IC105: Probability and Statistics

2021-22-M

Lecture 16: Classification of Random Vectors

Instructor: Dr. Kuldeep Kumar Kataria

Scribe:

16.0.1. Independent Random Variables

For an arbitary (countable or uncountable) set Δ , let $\{X_{\lambda} : \lambda \in \Delta\}$ be a family of random variables.

Definition 16.1. The random variables X_{λ} , $\lambda \in \Delta$ are said to be mutually independent if for any finite subcollection $\{X_{\lambda_1}, X_{\lambda_2}, \dots, X_{\lambda_p}\}$ in $\{X_{\lambda} : \lambda \in \Delta\}$

$$F_{\lambda_1,\lambda_2,\ldots,\lambda_p}(x_1,x_2,\ldots,x_p) = \prod_{i=1}^p F_{\lambda_i}(x_i) \ \forall \ \underline{x} = (x_1,x_2,\ldots,x_p) \in \mathbb{R}^p,$$

where $F_{\lambda_1,\lambda_2,...,\lambda_p}(\cdot)$ denotes the joint d.f. of $(X_{\lambda_1},X_{\lambda_2},...,X_{\lambda_p})$ and $F_{\lambda_i}(\cdot)$, i=1,2,...,p denotes the marginal d.f. of X_{λ_i} .

The random variables $X_{\lambda}, \lambda \in \Delta$ are said to be pairwise independent if for any $\lambda_1, \lambda_2 \in \Delta$ ($\lambda_1 \neq \lambda_2$)

$$F_{\lambda_1,\lambda_2}(x_1,x_2) = F_{\lambda_1}(x_1)F_{\lambda_2}(x_2) \ \forall \ \underline{x} = (x_1,x_2) \in \mathbb{R}^2.$$

Remark 16.2. (a) Random variables $\{X_{\lambda}, \lambda \in \Delta\}$ are independent iff those in any finite subset of $\{X_{\lambda} : \lambda \in \Delta\}$ are independent.

(b) Let $\Delta_1 \subseteq \Delta_2$. Then r.v.s $\{X_{\lambda}, \lambda \in \Delta_2\}$ are independent \implies r.v.s $\{X_{\lambda}, \lambda \in \Delta_1\}$ are independent. In particular, if r.v.s in a collection are independent then they are pairwise independent. The converse may not be true.

Theorem 16.3. For any positive integer $p (\geq 2)$ the random variables X_1, X_2, \dots, X_p are independent iff

$$F(x_1, x_2, \dots, x_p) = \prod_{i=1}^p F_{X_i}(x_i) \,\forall \, \underline{x} = (x_1, x_2, \dots, x_p) \in \mathbb{R}^p,$$
(16.1)

where $F(\cdot)$ is the joint d.f. of $\underline{X} = (X_1, X_2, \dots, X_p)$.

Proof. Obviously, if X_1, X_2, \ldots, X_p are independent then (16.1) holds. Conversely suppose that (16.1) holds. Consider a subset of $\{X_1, X_2, \ldots, X_p\}$. For simplicity let this subset be $\{X_1, X_2, \ldots, X_q\}$, for some $2 \le q \le p$. Thus for $\underline{x} = (x_1, x_2, \ldots, x_q) \in \mathbb{R}^q$ the joint (marginal) d.f. of (X_1, X_2, \ldots, X_q) is

$$G(x_1, x_2, \dots, x_q) = \lim_{\substack{x_i \to \infty \\ i = q+1, \dots, p}} F(x_1, x_2, \dots, x_q, x_{q+1}, \dots, x_p) = \lim_{\substack{x_i \to \infty \\ i = q+1, \dots, p}} \prod_{j=1}^p F_{X_j}(x_j) = \prod_{j=1}^q F_{X_j}(x_j),$$

$$\forall \ \underline{x}=(x_1,x_2,\ldots,x_q)\in \mathbb{R}^q$$
. Here $F_{X_j}(\cdot)$ is the marginal d.f. of $X_j,\ j=1,2,\ldots,q$.

16.0.2. Discrete Random Vectors

Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be p-dimensional random vector with d.f. $F(\cdot)$.

Definition 16.4. (a) The random vector $\underline{X} = (X_1, X_2, \dots, X_p)$ is said to be a discrete random vector if there exists a countable set S (finite or infinite) such that

$$\Pr(\underline{X} = \underline{x}) > 0 \ \forall \ \underline{x} \in S, \ \ and \ \Pr(\underline{X} \in S) = 1.$$

The set S is called support of random vector X (or of F).

(b) The joint p.m.f. of \underline{X} having support S is defined by

$$f(\underline{x}) = \begin{cases} \Pr(\underline{X} = \underline{x}), & \text{if } \underline{x} \in S, \\ 0, & \text{otherwise.} \end{cases}$$

Remark 16.5. (a) Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be a p-dimensional discrete random vector with p.m.f. $f(\cdot)$ and d.f. $F(\cdot)$ and support S. Then, for any $A \subseteq \mathbb{R}^p$

$$\Pr(\underline{X} \in A) = \Pr(\underline{X} \in A \cap S) = \sum_{\underline{x} \in A \cap S} f(\underline{x}), \quad (\Pr(\underline{X} \in S) = 1, \ A \cap S \subseteq S \ \textit{and thus} \ A \cap S \ \textit{is a countable set}).$$

$$\textit{Moreover, } F(\underline{x}) = \sum_{y \in S \cap (-\infty,\underline{x}]} f(\underline{y}), \, \underline{x} \in \mathbb{R}^p.$$

(b) Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be a p-dimensional discrete random vector with p.m.f. $f(\cdot)$ and support S. Then the p.m.f. $f: \mathbb{R}^p \to \mathbb{R}$ satisfies:

$$(i) \quad f(\underline{x}) > 0 \; \forall \; x \in S \; \; \text{and} \; f(\underline{x}) = 0 \; \forall \; x \in S^c, \quad (ii) \; \sum_{x \in S} f(\underline{x}) = 1.$$

Conversely suppose that $g: \mathbb{R}^p \to \mathbb{R}$ is a function such that for some countable set T

$$(i) \quad g(\underline{x}) > 0 \; \forall \; x \in T \; \; \text{and} \; g(\underline{x}) = 0 \; \forall \; x \in T^c, \quad (ii) \; \sum_{x \in T} g(\underline{x}) = 1.$$

Then $g(\cdot)$ is a p.m.f. of some p-dimensional discrete random vector having support T.

(c) Marginal distributions of discrete random vector are discrete.

Theorem 16.6. Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be a p-dimensional discrete random vector with p.m.f. $f(\cdot)$ and support S. Then the marginal distribution of any subset of $\{X_1, X_2, \dots, X_p\}$ (say that of $\underline{Y} = (X_1, X_2, \dots, X_q), \ 1 \le q < p$) is again discrete with p.m.f.

$$g(x_1,x_2,\ldots,x_q) = \begin{cases} \sum_{x_{q+1}} \sum_{x_{q+2}} \cdots \sum_{x_p} f(\underline{x}), & \text{if } \underline{x} \in T, \\ 0, & \text{otherwise} \end{cases}$$

and support

$$T = \{y = (y_1, y_2, \dots, y_q) \in \mathbb{R}^q : (y_1, y_2, \dots, y_q, y_{q+1}, \dots, y_p) \in S, \text{ for some } (y_{q+1}, y_{q+2}, \dots, y_p) \in \mathbb{R}^{p-q} \}.$$

Proof. Follows using theorem of total probability.

Conditional distribution of discrete random vectors

Let $\underline{Y}=(Y_1,Y_2,\ldots,Y_p), \quad \underline{Z}=(Z_1,Z_2,\ldots,Z_q)$ and $\underline{X}=(\underline{Y},\underline{Z})=(Y_1,Y_2,\ldots,Y_p,Z_1,Z_2,\ldots,Z_q)$ be random vectors with p.m.f. $f_1,\ f_2$ and f, respectively. Suppose $\underline{X},\ \underline{Y}$ and \underline{Z} have support $S,\ S_1,\ S_2$, respectively. For fixed $z\in S_2$ define

$$T_z = \{ y = (y_1, y_2, \dots, y_p) \in \mathbb{R}^p : (y, \underline{z}) \in S \}.$$

For fixed $\underline{z} \in S_2$, the conditional p.m.f. of \underline{Y} given $\underline{Z} = \underline{z}$ is defined by

$$f(\underline{y}|\underline{z}) = \Pr(\underline{Y} = \underline{y}|\underline{Z} = \underline{z}) = \frac{\Pr(\underline{X} = (\underline{y},\underline{z}))}{\Pr(\underline{Z} = \underline{z})} = \begin{cases} \frac{f(\underline{y},\underline{z})}{f_2(\underline{z})}, \ \underline{y} \in T_{\underline{z}}, \\ 0, \text{ otherwise.} \end{cases}$$

Clearly for each $\underline{z} \in S_2$, $f(\cdot | \underline{z})$ is a proper p.m.f. with support $T_{\underline{z}}$. Also for fix $\underline{z} \in S_2$

$$\Pr(Y_1 \leq y_1, \dots, Y_q \leq y_q | \underline{Z} = \underline{z}) = \frac{\Pr(Y_1 \leq y_1, \dots, Y_q \leq y_q, \underline{Z} = \underline{z})}{\Pr(\underline{Z} = \underline{z})} = \sum_{\underline{s} \in T_{\underline{z}}, \underline{s} \leq y} \frac{f(\underline{s}, \underline{z})}{f_{\underline{Z}}(\underline{z})} = \sum_{\underline{s} \in T_{\underline{z}}, \underline{s} \leq y} f(\underline{s} | \underline{z}).$$

Theorem 16.7. Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be a p-dimensional random vector with support S and p.m.f. $f(\cdot)$. Let $f_i(\cdot)$ denote the marginal p.m.f. of X_i , $i = 1, 2, \dots, p$. Then X_1, \dots, X_p are independent iff

$$f(x_1, x_2, \dots, x_p) = \prod_{i=1}^p f_i(x_i) \ \forall \ \underline{x} \in S.$$

Proof. (For p=2)

Suppose that $f(x_1, x_2) = f_1(x_1) f_2(x_2) \ \forall \underline{x} = (x_1, x_2) \in S$. Then the d.f. of $\underline{X} = (X_1, X_2)$ is

$$F(x_1, x_2) = \sum_{\substack{(y_1, y_2) \in S \\ y_1 \le x_1, y_2 \le x_2}} f(y_1, y_2) = \sum_{\substack{(y_1, y_2) \in S \\ y_1 \le x_1, y_2 \le x_2}} f_1(y_1) f_2(y_2), \quad (x_1, x_2) \in \mathbb{R}^2.$$

Let S_1 and S_2 be supports of X_1 and X_2 respectively. Then

$$S = \{(y_1, y_2) \in \mathbb{R}^2 : f(y_1, y_2) > 0\}$$

$$= \{(y_1, y_2) \in \mathbb{R}^2 : f_1(y_1) f_2(y_2) > 0\}$$

$$= \{(y_1, y_2) \in \mathbb{R}^2 : f_1(y_1) > 0 \text{ and } f_2(y_2) > 0\}$$

$$= \{y_1 \in \mathbb{R} : f_1(y_1) > 0\} \times \{y_2 \in \mathbb{R} : f_2(y_2) > 0\} = S_1 \times S_2.$$

Therefore, for $(x_1, x_2) \in \mathbb{R}^2$

$$F(x_1, x_2) = \sum_{\substack{y_1 \in S_1, y_2 \in S_2 \\ y_1 \le x_1, y_2 \le x_2}} f_1(y_1) f_2(y_2) = \left(\sum_{\substack{y_1 \in S_1 \\ y_1 \le x_1}} f_1(y_1)\right) \left(\sum_{\substack{y_2 \in S_2 \\ y_2 \le x_2}} f_2(y_2)\right) = F_1(x_1) F_2(x_2)$$

where F_1 and F_2 are marginal d.f.s of X_1 and X_2 respectively. This implies X_1 and X_2 are independent. Conversely,

П

suppose that X_1 and X_2 are independent. Then $F(y_1, y_2) = F_1(y_1)F_2(y_2) \ \forall \ (y_1, y_2) \in \mathbb{R}^2$. Then, for $(x_1, x_2) \in \mathbb{R}^2$

$$\begin{split} f(x_1, x_2) &= \Pr(X_1 = x_1, X_2 = x_2) \\ &= \Pr\left(\bigcap_{n=1}^{\infty} \left\{ x_1 - \frac{1}{n} < X_1 \le x_1, x_2 - \frac{1}{n} < X_2 \le x_2 \right\} \right) \\ &= \lim_{n \to \infty} \Pr\left(x_1 - \frac{1}{n} < X_1 \le x_1, x_2 - \frac{1}{n} < X_2 \le x_2 \right) \\ &= \lim_{n \to \infty} \left[F(x_1, x_2) - F\left(x_1 - \frac{1}{n}, x_2\right) - F\left(x_1, x_2 - \frac{1}{n}\right) + F\left(x_1 - \frac{1}{n}, x_2 - \frac{1}{n}\right) \right] \\ &= \lim_{n \to \infty} \left[F_1(x_1) F_2(x_2) - F_1\left(x_1 - \frac{1}{n}\right) F_2(x_2) - F_1(x_1) F_2\left(x_2 - \frac{1}{n}\right) + F_1\left(x_1 - \frac{1}{n}\right) F_2\left(x_2 - \frac{1}{n}\right) \right] \\ &= F_1(x_1) F_2(x_2) - F_1(x_1 -) F_2(x_2) - F_1(x_1) F_2(x_2 -) + F_1(x_1 -) F_2(x_2 -) \\ &= (F_1(x_1) - F_1(x_1 -)) (F_2(x_2) - F_2(x_2 -)) = f_1(x_1) f_2(x_2). \end{split}$$

This completes the proof for p = 2 case. Similarly, it can be proved for other cases.

Remark 16.8. (a) If $\underline{X} = (X_1, X_2, \dots, X_p)$ is a discrete r.v. with support S and X_i has support S_i , $i = 1, 2, \dots, p$ then X_1, X_2, \dots, X_p are independent $\implies S = S_1 \times S_2 \times \dots \times S_p$.

(b) Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be a discrete random vector with support S and p.m.f. $f(\cdot)$. Then X_1, \dots, X_p are independent iff

$$f(x_1, x_2, \dots, x_p) = f_1(x_1) f_2(x_2) \cdots f_p(x_p), \ \underline{x} = (x_1, x_2, \dots, x_p) \in \mathbb{R}^p$$

and $S = A_1 \times A_2 \times \cdots \times A_p$ for some functions f_1, f_2, \ldots, f_p and countable set $A_i = \{x \in \mathbb{R} : f_i(x) > 0\}$, $i = 1, 2, \ldots, p$. In that case the marginal p.m.f. of X_i is $f_i(x) = c_i g_i(x)$, $x \in \mathbb{R}$ for some constant c_i such that $\sum_{x \in A_i} c_i g_i(x) = 1$, $i = 1, 2, \ldots, p$.

- (c) If $\underline{X} = (Y, Z)$ is a two-dimensional r.v. then Y and Z are independent iff $f(y|z) = f_1(y) \ \forall \ y \in \mathbb{R}$ and $z \in \mathbb{R}$ such that $f_2(z) > 0$, here f(y|z) denotes the conditional p.m.f. of Y given Z = z and $f_1(\cdot)$ denotes the marginal p.d.f. of Y.
- (d) One can extend Definition 16.1 to define indepedence of a collection of random vectors. Then analogous of Theorem 16.3, Remark 16.5, Theorem 16.6, Theorem 16.7 and (c) above holds for random vectors.

Example 16.9. Let $\underline{X} = (X_1, X_2, X_3)$ have the joint p.m.f.

$$f(x_1, x_2, x_3) = \begin{cases} cx_1x_2x_3, \ x_1 = 1, 2, \ x_2 = 1, 2, 3, \ x_3 = 1, 3, \\ 0, \ \textit{otherwise}. \end{cases}$$

where c is a real constant.

- (a) Find the value of c.
- (b) Find the marginal p.m.f.s of X_1, X_2 and X_3 .
- (c) Are X_1, X_2 and X_3 independent.
- (d) Find marginal p.m.f. of (X_1, X_3) .
- (e) Find conditional p.m.f. of X_1 given $(X_2, X_3) = (2, 1)$.
- (f) Are X_1 and X_3 independent.
- (g) Compute $Pr(X_1 = X_2 = X_3)$.

Solution: Here the support of random vector \underline{X} is $S_{\underline{X}} = \{1,2\} \times \{1,2,3\} \times \{1,3\}$.

$$(a) \sum_{\underline{x} \in S_{\underline{X}}} f(\underline{x}) = 1 \implies c(1+3+2+6+3+9+2+6+4+12+6+18) = 1 \implies c = \frac{1}{72}. \text{ Clearly } f(\underline{x}) \geq 0 \\ \forall \, \underline{x} \in \mathbb{R}^3.$$

(b) For $x_1 \neq \{1, 2\}$, clearly $f_{X_1}(x_1) = 0$. For $x_1 \in \{1, 2\}$

$$f_{X_1}(x_1) = \sum_{(x_2, x_3) \in \{1, 2, 3\} \times \{1, 3\}} \frac{x_1 x_2 x_3}{72} = \frac{x_1}{72} \left(\sum_{x_2 = 1}^3 x_2 \right) \left(\sum_{x_1 = 1, 3} x_3 \right) = \frac{x_1}{3}.$$

Thus,

$$f_{X_1}(x_1) = \begin{cases} \frac{x_1}{3}, \ x_1 \in \{1, 2\}, \\ 0, \text{ otherwise.} \end{cases}$$

Similarly,

$$f_{X_2}(x_2) = \begin{cases} \frac{x_2}{6}, & x_2 \in \{1, 2, 3, \\ 0, & \text{otherwise.} \end{cases}; \quad f_{X_3}(x_3) = \begin{cases} \frac{x_3}{4}, & x_3 \in \{1, 3, \\ 0, & \text{otherwise.} \end{cases}$$

(c) Clearly, $f(x_1, x_2, x_3) = f_1(x_1) f_2(x_2) f_3(x_3)$, $(x_1, x_2, x_3) \in \mathbb{R}^3$ and $S_X = \Delta_1 \times \Delta_2 \times \Delta_3$ where $\Delta_1 = \{1, 2\}$, $\Delta_2 = \{1, 2, 3\}$ and $\Delta_3 = \{1, 3\}$.

$$f_1(x_1) = \begin{cases} c_1 x_1, \ x_1 \in \Delta_1, \\ 0, \ \text{otherwise.} \end{cases}; \quad f_2(x_2) = \begin{cases} c_2 x_2, \ x_2 \in \Delta_2, \\ 0, \ \text{otherwise.} \end{cases}; \quad f_3(x_3) = \begin{cases} c_3 x_3, \ x_3 \in \Delta_3, \\ 0, \ \text{otherwise.} \end{cases}$$

Obviously, $c_1 = \frac{1}{3}$, $c_2 = \frac{1}{6}$ and $c_3 = \frac{1}{4}$. Thus X_1, X_2 and X_3 are independent.

(d) Marginal of (X_1, X_3) is $f_{X_1, X_3}(x_1, x_3) = \sum_{x_2} f_{\underline{X}}(x_1, x_2, x_3) = \frac{x_1 x_3}{72} \times 6 = \frac{x_1 x_3}{12}$. Thus,

$$f_{X_1,X_3}(x_1,x_3) = \begin{cases} \frac{x_1x_3}{12}, & (x_1,x_3) \in \{1,2\} \times \{1,3\}, \\ 0, & \text{otherwise} \end{cases}$$

(e) For $x_1 \in \{1, 2\}$,

$$\Pr(X_1 = x_1 | X_2 = 2, X_3 = 1) = \frac{\Pr(X_1 = x_1, X_2 = 2, X_3 = 1)}{\Pr(X_2 = 2, X_3 = 1)} = \frac{x_1 2}{72} / \frac{1}{12} = \frac{x_1}{3}.$$

Thus

$$f_{X_1|(X_2,X_3)}(x_1|(2,1)) = \begin{cases} \frac{x_1}{3}, \ x_1 \in \{1,2\}, \\ 0, \ \text{otherwise}. \end{cases}$$

Alternatively, since X_1, X_2 and X_3 are independent and X_1 and (X_2, X_3) are independent (why!), thus for fixed $(x_2, x_3) \in \mathbb{R}^2$ such that $f_{X_2, X_3}(x_2, x_3) > 0$,

$$f_{X_1|(X_2,X_3)}(x_1|(x_2,x_3)) = f_{X_1}(x_1) \,\forall \, x_1 \in \mathbb{R}$$

$$\implies f_{X_1|(X_2,X_3)}(x_1|(2,1)) = \begin{cases} \frac{x_1}{3}, \, x_1 \in \{1,2\}, \\ 0, \text{ otherwise.} \end{cases}$$

(f) By (c), X_1 and X_3 are indepedent.

(g)
$$\Pr(X_1 = X_2 = X_3) = \sum_{\substack{x \in S_X \\ x_1 = x_2 = x_3}} \frac{x_1 x_2 x_3}{72} = P(X_1 = X_2 = X_3 = 1) = \frac{1}{72}.$$

16.0.3. Continuous Random Vectors

Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be a p-dimensional random vector with d.f. F.

Definition 16.10. The random vector \underline{X} is called a continuous random vector if there exists a non-negative function $f: \mathbb{R}^p \to \mathbb{R}$ such that for any rectangale set A in \mathbb{R}^p

$$P(\underline{X} \in A) = \int \cdots \int_A f(\underline{t}) dt_1 dt_2 \dots dt_p, \quad \underline{t} = (t_1, t_2 \dots, t_p).$$

The function $f(\cdot)$ is called probability density function of X and the set

$$S = \{\underline{x} \in \mathbb{R}^p : \Pr(x_i - h_i < x_i \le x_i + h_i, i = 1, 2, \dots, p) > 0 \ \forall h_i > 0, i = 1, 2, \dots, p\}$$

is called the support of F (or of X).

Remark 16.11. (a) In particular, if for fixed $\underline{x} = (x_1, x_2, \dots, x_p) \in \mathbb{R}^p$ if $A = (-\infty, x_1] \times (-\infty, x_2] \times \dots \times (-\infty, x_p]$, then

$$F(x_1, x_2, \dots, x_p) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \dots \int_{-\infty}^{x_p} f(t_1, t_2, \dots, t_p) dt_1 dt_2 \dots dt_p.$$

- (b) If X is continuous random vector then its d.f. F is a continuous function.
- (c) For a continuous random vector if its p.d.f. $f(\underline{x})$ is a piecewise continuous function then from the fundamental theorem of multivariable calculus

$$f(\underline{x}) = \frac{\partial^p}{\partial x_1 \partial x_2 \dots \partial x_p} F(\underline{x}), \ \underline{x} \in \mathbb{R}^p,$$

whenever the derivative is defined.

- (d) There are random vectors that are neither discrete nor continuous.
- (e) If \underline{X} is a continuous random vector with p.d.f. $f(\cdot)$ then $P(\underline{X} = \underline{a}) = \int \cdots \int_{\{\underline{x} = a\}} f(\underline{t}) d\underline{t} = 0$.
- (f) As in the univariate case the p.d.f. of a continuous r.v. is not unique and it has different versions.
- (g) It can be shown that if X is a p-dimensional random vector with continuous d.f. $F(\cdot)$ such that

$$\frac{\partial^p}{\partial x_1 \partial x_2 \dots \partial x_p} F(x_1, x_2, \dots, x_p)$$

exists everywhere except (possibly) on a set C comprising of countable number of curves (having 0 volume in \mathbb{R}^p) and

$$\int_{\mathbb{R}^p \setminus C} \frac{\partial^p}{\partial x_1 \partial x_2 \dots \partial x_p} F(x_1, x_2, \dots, x_p) \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_p = 1.$$

Then \underline{X} is a continuous random vector with p.d.f.

$$f(\underline{x}) = \begin{cases} \frac{\partial^p}{\partial x_1 \partial x_2 \dots \partial x_p} F(x_1, x_2, \dots, x_p), & \text{if } \underline{x} \in \mathbb{R}^p \setminus C, \\ 0, & \text{if } \underline{x} \in C. \end{cases}$$

(h) Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be a continuous random vector with joint p.d.f. $f_{\underline{X}}(\underline{x})$ and d.f. $F_{\underline{X}}(\underline{x})$. Then for $q \in \{1, 2, \dots, p-1\}$ and $\underline{x} = (x_1, x_2, \dots, x_q) \in \mathbb{R}^q$, the marginal of (X_1, X_2, \dots, X_q) is a continuous random vector with p.d.f.

$$f_{X_1,X_2,\ldots,X_q}(x_1,x_2,\ldots,x_q) = \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_{\underline{X}}(x_1,x_2,\ldots,x_q,t_{q+1},\ldots,t_p) dt_{q+1} dt_{q+2} \ldots dt_q.$$

Thus, marginal distribution of a continuous random vector \underline{X} are continuous. Its p.d.f. is obtained by integrating the p.d.f. of \underline{X} with respect to other (unwanted) variables.

Conditional distributions of continuous random vectors:

For simplicity consider p=2 and let $\underline{X}=(X_1,X_2)$ be a random vector (discrete or continuous) with d.f. $F_{X_1,X_2}(x_1,x_2)$. Suppose that, for $x_1 \in S_{X_1}$ (the support of distribution of X_1) we want to define conditional d.f. of X_2 given $X_1=x_1$. If X_1 is a continuous r.v. then $\Pr(X_1=x_1)=0, \ \forall x_1 \in \mathbb{R}$ and therefore $\Pr(X_2 \le x|X_1=x_1)$ is not defined for any $x_1 \in \mathbb{R}$; although it is defined for discrete r.v. X_1 when $x_1 \in S_{X_1}$. Thus we define the conditional r.v. X_1 when $x_1 \in S_{X_1}$. Thus we define the conditional d.f. of X_2 given $X_1=x_1$, through the limiting argument

$$\begin{split} F_{X_2|X_1}(x,x_1) &= \lim_{h\downarrow 0} \Pr(X_2 \leq x | x_1 - h < X_1 \leq x_1) \\ &= \lim_{h\downarrow 0} \frac{\Pr(X_2 \leq x | x_1 - h < X_1 \leq x_1)}{\Pr(x_1 - h < X_1 \leq x_1)} = \lim_{h\downarrow 0} \frac{F_{X_1,X_2}(x_1,x) - F_{X_1,X_2}(x_1 - h,x)}{F_{X_1}(x_1) - F_{X_1}(x_1 - h)}. \end{split}$$

Clearly if $\underline{X} = (X_1, X_2)$ is discrete and $x_1 \in S_{X_1}$, then

$$F_{X_2|X_1}(x,x_1) = \lim_{h\downarrow 0} \frac{F_{X_1,X_2}(x_1,x) - F_{X_1,X_2}(x_1-h,x)}{F_{X_1}(x_1) - F_{X_1}(x_1-)} = \frac{\Pr(X_1 = x_1, X_2 \le x)}{\Pr(X_1 = x_1)} = \Pr(X_2 \le x | X_1 = x_1).$$

Also, if $\underline{X} = (X_1, X_2)$ is continuous random vector with p.d.f. $f(x_1, x_2)$ hen

$$F_{X_2|X_1}(x,x_1) = \lim_{h\downarrow 0} \frac{\frac{1}{h} \int_{-\infty}^x \int_{x_1-h}^{x_1} f_{X_1,X_2}(y_1,y_2) \mathrm{d}y_1 \mathrm{d}y_2}{\frac{F_{X_1}(x_1) - F_{X_1}(x_1 - h)}{h}} = \frac{\int_{-\infty}^x f_{X_1,X_2}(x_1,y_2) \mathrm{d}y_2}{f_{X_1}(x_1)}.$$

This implies conditional distribution of X_2 given $X_1 = x_1$ (provided $f_{X_1}(x_1) > 0$) is continuous with p.d.f.

$$f_{X_2|X_1}(x|x_1) = \frac{f_{X_1,X_2}(x_1,x)dy_2}{f_{X_1}(x_1)}, \ x \in \mathbb{R}$$

provided $f_{X_1}(x_1) > 0$.

The above discussion easily extends to general $p \ge 2$ by defining conditional d.f. of $\underline{X}_2 = (X_{q+1}, \dots, X_p)$ given $\underline{X}_1 = (X_1, X_2, \dots, X_q) = (x_1, x_2, \dots, x_q) = \underline{x}_1$ as

$$F_{\underline{X}_2|\underline{X}_1}(\underline{x}_2|\underline{x}_1) = \lim_{h \downarrow 0} \Pr(X_q \le x_j, \ j = q+1, \dots, p|x_i - h_i < X_i \le x_i, i = 1, 2, \dots, q),$$

where $\underline{x}_2 = (x_{q+1}, x_{q+2}, \dots, x_p) \in S_{X_2}$.

Definition 16.12. Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be a p-dimensional random vector with joint p.d.f. $f_{\underline{X}}(\cdot)$. Let $q \in \{1, 2, \dots, p-1\}$, $\underline{X}_1 = (X_1, X_2, \dots, X_q)$ and $\underline{X}_2 = (X_{q+1}, \dots, X_p)$. Then the conditional p.d.f. of \underline{X}_2 given $\underline{X}_1 = \underline{x}_1$ is defined by

$$f_{\underline{X}_2|\underline{X}_1}(\underline{x}_2|\underline{x}_1) = \frac{f_{\underline{X}_1,\underline{X}_2}(\underline{x}_1,\underline{x}_2)}{f_{\underline{X}_1}(\underline{x}_1)} = \frac{f_{\underline{X}}(\underline{x}_1,\underline{x}_2)}{f_{\underline{X}_1}(\underline{x}_1)}, \ \underline{x}_2 \in \mathbb{R}^{q-1}.$$

Theorem 16.13. Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be a continuous random vector with joint p.d.f. $f_{\underline{X}}(\cdot)$ and marginal p.d.f.s $f_{X_i}(\cdot)$, $i = 1, 2, \dots, p$. Then X_1, X_2, \dots, X_p are independent iff

$$f_{X_1,X_2,...,X_p}(x_1,...,x_p) = \prod_{i=1}^p f_{X_i}(x_i), \ \underline{x} = (x_1,x_2,...,x_p) \in \mathbb{R}^p.$$

Proof. Exercise. \Box

Remark 16.14. (a) Let $S_{\underline{X}}$ be the support of distribution $\underline{X} = (X_1, X_2, \dots, X_p)$ and let $S_{\underline{X}_i}$ be the support of distribution of X_i , $i = 1, 2, \dots, p$. It can be shown that if X_1, X_2, \dots, X_p are indepedent then $S_{\underline{X}} = \prod_{i=1}^p S_{\underline{X}_i}$ (cartesian product).

(b) Let $\underline{X} = (X_1, X_2)$ be a continuous random vector. Then X_1 and X_2 are independent iff, $\forall x_1 \in S_{X_1}$,

$$f_{X_2|X_1}(x_2|x_1) = f_{X_2}(x_2) \ \forall x_2 \in \mathbb{R}.$$

Theorem 16.15. Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be a continuous random vector with joint p.d.f. $f_{\underline{X}}(\cdot)$ and marginal p.d.f.s $f_{X_i}(\cdot)$, $i = 1, 2, \dots, p$. Then X_1, X_2, \dots, X_p are independent iff

$$f_{X_1,X_2,...,X_p}(x_1,...,x_p) = \prod_{i=1}^p g_i(x_i), \ \underline{x} \in \mathbb{R}^p,$$

for some non-negative functions $g_i : \mathbb{R} \to \mathbb{R}$, i = 1, 2, ..., p. In that case $f_{X_i}(x) = c_i g_i(x)$, $x \in \mathbb{R}$, for some positive constants c_i , i = 1, 2, ..., p.