

UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES CATEDRA DE ELECTRÓNICA DIGITAL I

TRABAJO PRÁCTICO Nº 3

"Práctica en el uso de la Tarjeta FPGA Basys 3 En Aritmética Binaria"

Multiplexor 4 a 1

Grupo Nº 3

Alumno:

Alfici, Facundo Ezequiel

Profesor:

Ing. Ruben Vrech

Comisión: 1,2

Mayo / Año 2024

Consigna

El objetivo es demostrar la capacidad del conocimiento mínimo de FPGA con en el manejo del **Programa Vivado** y su implementación sobre la tarjeta didactica **BASYS 3.** Creación "in situ" de un programa elemental de Aritmética Binaria asignado por el Profesor.

Desarrollo

Como inicio en el desarrollo del trabajo práctico realizado, se empieza definiendo las variables de entrada y salida, en este caso son 5 variables de entrada y 1 de salida, siendo las variables de entrada definidas como A, B, C, D y selector, mientras que la de salida como su mismo nombre lo dice.

Luego de haber definido las variables se realizó el código en vivado y, habiendo pasado la síntesis, se pasa a la etapa de implementación, cuyo objetivo es definir los puertos a utilizar en la placa BASYS 3.

Finalmente, se genera un bitstream, el cual será posteriormente programado a la placa en cuestión.

El código que se realizó fue el siguiente:

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Multi_4 is

Port ( A : in STD_LOGIC;

B : in STD_LOGIC;

C : in STD_LOGIC;

D : in STD_LOGIC;

selector : in STD_LOGIC_VECTOR (1 downto 0);
salida : out STD_LOGIC);
end Multi 4;
```

```
architecture Behavioral of Multi_4 is
begin
  process(A, B, C, D, selector)
     begin
       case selector is
          when "00" =>
            salida <= A;
          when "01" =>
            salida <= B;
          when "10" =>
            salida <= C;
          when "11" =>
            salida <= D;
       end case;
  end process;
end Behavioral;
```

Conclusiones

Este trabajo nos sirvió para aprender a utilizar el lenguaje de Vivado, que es VHDL, siendo éste de mucha utilidad y de posibilidades casi infinitas, pues habiendo testeado varios circuitos, es evidente ver que solo nos limita lo que podemos llegar a pensar en realizar.