S.NO	AUTHOR'S NAME	PROPOSED WORK
01	Daud et al	Gathered water samples from
		different areas of Pakistan and
		tested them against different
		parameters using a manual lab
		analysis and found a high
		presence of E. coli and fecal
		coliform due to industrial and
		sewerage waste.
02	Alamgir et al	Tested 46 different samples
		from Orangi town, Karachi,
		using manual lab analysis and
		found them tobe high in and
		total fecal coliform count.After
		getting familiar with the water
		quality research concerning
		Pakistan, we explored research
		employing machine learning
		methodologies in the realm of
		water quality
03	Shafi et al	Estimated water quality using
		classical machine learning
		algorithms namely, Support
		Vector Machines (SVM),
		Neural Networks (NN), Deep
		Neural Networks (Deep NN)
		and k Nearest Neighbors
		(kNN), with the highest
		accuracy of 93% with Deep
		NN.The estimated water quality
		in their work is based on only

04	Ahmad et al	tested according to World Health Organization (WHO) standards. Employed single feed forward neural networks and a combination of multiple neural networks toestimate the WQI. They used 25 water quality parameters as the input. Using a combination of backward elimination and forward selection selective combination methods, they achieved an R2 and MSE of 0.9270, 0.9390 and 0.1200, 0.1158, respectively. The use of 25 parameters makes
		their solution a little immoderate in terms of an inexpensive real time system, given the price of the parameter sensors.
05	Sakizadeh	Predicted the WQI using 16 water quality parameters and ANN with Bayesian regularization.

06	Rankovic et al.	Predicted the dissolved
		oxygen (DO) using a
		feedforward neural network
		(FNN). They used 10
		parameters to predict the DO,
		which again defeats the
		purpose if it has to be used
		for a Real time WQI
		estimation of an IOT system.