解集合プログラミングを用いた グラフ彩色問題の解法に関する考察

春田 穂高

番原研究室

2021年度番原研中間発表会 2021年12月3日

グラフ彩色問題 (graph coloring)

グラフ彩色問題の定義

与えられたグラフ G=(V,E) と色数 k に対して,以下の制約を満たす解が存在するかを判定する問題.

- 各頂点は少なくとも1つの色で塗られる.
- $(u,v) \in E$ である $u,v \in V$ について,u と v は異なる色で塗られる.

グラフ彩色問題の例

解集合プログラミング (Answer Set Programing)

- ASP 言語は一階論理に基づいた知識表現言語の一種である.
- ASP システムは,安定モデル意味論 [Gelfond and Lifschitz '88] に基づく解集合を計算するシステムである.
- 近年,SAT 技術を利用した高速な ASP システムが開発され, 様々な分野への実用的応用が急速に拡大している.

グラフ彩色問題に対して ASP を用いる利点

- ASP 言語の高い表現力により,記号上の制約を簡潔に記述できる.
- 充足不能コアなどの SAT 技術を利用した最適値探索が可能.

研究目的

目的

グラフ彩色問題に対して、ASP を利用して符号化を提案し、実 験,評価する.

研究内容

- McGregor グラフにおいて 4 種の彩色問題に対する 4 つの符 号化の実装.
 - グラフ彩色問題を解く符号化
 - ある色の彩色数を最大化,最小化した際の符号化
 - 多色で彩色される頂点数を最大化した際の符号化
- 各符号化について McGregor グラフで実験.

McGregor グラフ

McGregor グラフ

- オーダー n を決定することで決定されるグラフ.
- 頂点数 N = n*(n+1) 個,辺数 3N-6 個からなるグラフ.
- 頂点は $(j,k)(0 \le j \le n)(0 \le k < n)$ で表される.

オーダー n=10 の McGregor グラフ

ASP 符号化 (1/2)

グラフ彩色問題を解く符号化

- 頂点 X について,色 K で彩色する color(X, K) を生成する.
- 隣接する頂点について、同じ色で彩色しない制約を導入する。 この符号化を color とする.

多色で塗ることのできる頂点数を最大化した際の符号化

- 頂点 X について,色 K で彩色する color(X, K) を生成する.
- 隣接する頂点について、同じ色で彩色しない制約を導入する。
- ある頂点 X について、複数の色で塗られている場合、 mult(X) を生成する.
- \blacksquare mult(X) について,その頂点 X の数を最大化する制約を導 入する.

この符号化を mult とする.

ASP 符号化 (2/2)

ある色の彩色数を最小化した際の符号化

ある色に対して彩色数を最小化する制約を導入する。 符号化 color にこの制約を追加した符号化を minimize とする.

ある色の彩色数を最大化した際の符号化

ある色に対して彩色数を最大化する制約を導入する。 符号化 color にこの制約を追加した符号化を maxmize とする.

実験内容(1/3)

color

● 使用問題: 138 問 The Art of Computer Programming で解説されている McGregor グラフの定義に基づいて作成したオーダー 3 < n < 140 のグラフ

■ 色数: 4色

■ ASP システム: clingo-5.5.0

■ オプション: trendy

■ 制限時間: 1800 秒/問

■ 実験環境:Mac mini(3.2GHz 64GB)

結果,138 問中オーダー $3 \le n \le 138$ のグラフにおいて 4 色での解が見つかった.

実験内容(2/3)

minimize, maxmize

- 使用問題: 18 問 The Art of Computer Programming で解説されている McGregor グラフの定義に基づいて作成したオーダー 3 < n < 20 のグラフ
- 色数: 4 色
- ASP システム: clingo-5.5.0
 - strategy: BB, USC
 - オプション: trendy
- 制限時間: 1800 秒/問
- 実験環境:Mac mini(3.2GHz 64GB)

実験内容(3/3)

mult

■ 使用問題: 13 問 The Art of Computer Programming で解説されている McGregor グラフの定義に基づいて作成したオーダー 3 < n < 15 のグラフ

■ 色数: 4色

■ ASP システム: clingo-5.5.0

■ strategy: *BB, USC* ■ オプション: *trendy*

■ 制限時間: 1800 秒/問

■ 実験環境:Mac mini(3.2GHz 64GB)

実験結果(1/3)

<u>minimize</u>

符号化 minimize の実験結果

■ BB 法と USC 法の両方において以下の結果の通りになった.

order	BB	USC	order	BB	USC
3	2	2	12	9	9
4	2	2	13	10	10
5	3	3	14	12	12
6	4	4	15	13	49
7	5	5	16	19	12
8	7	7	17	21	13
9	7	7	18	19	14
10	7	7	19	20	58
_11	8	8	20	22	59

■ USC 法の結果が優れていた.

実験結果(2/3)

maximize

符号化 maximize の実験結果

■ BB 法と USC 法の両方において以下の結果の通りになった.

order	BB	USC	order	BB	USC
3	4	4	12	48	50
4	6	6	13	56	58
5	10	10	14	56	68
6	13	13	15	70	77
7	17	17	16	71	88
8	23	23	17	75	99
9	28	28	18	91	111
10	35	35	19	92	123
11	42	42	20	109	137

■ USC 法の結果が優れていた.

実験結果(3/3)

mult

符号化 mult の実験結果

■ BB 法と USC 法の両方において以下の結果の通りになった.

order	BB	USC	order	BB	USC
3	1	1	10	23	23
4	3	3	11	27	29
5	4	4	12	33	36
6	7	7	13	38	15
7	9	9	14	44	11
8	13	13	15	49	20
9	18	18			

■ USC 法の結果が優れていた.

まとめと今後の課題

まとめ

- McGregor グラフにおいて 4 種の彩色問題に対する 4 つの符号化を実装した。
 - color: グラフを彩色する符号化
 - minimize: ある色の彩色数を最小化する符号化
 - maximize: ある色の彩色数を最大化する符号化
 - mult: 多色で彩色される頂点を最大化する符号化
- 各符号化について McGregor グラフで実験.
 - minimize, maximize, mult の最適化問題では USC 法がより大きいオーダーで最適値を示した。

今後の課題

- より大きいサイズのグラフでの実験.
- ■より長い制限時間内での実験.
- McGregor グラフ以外のグラフに対しての実験.

補足

実験結果

minimize

符号化 minimize の実験結果

■ BB 法と USC 法の両方において以下の結果の通りになった.

00 公と 00 区 公の同力に切りて外下の相来の通りになった。									
ord	der	optimization	BB	USC	order	optmization	BB	USC	
3		2	0.002	0.002	12	9	166.314	0.351	
4		2	0.003	0.003	13	10	1172.519	0.288	
5		3	0.013	0.003	14	12	-	132.131	
6		4	0.049	0.006	15	-		-	
7		5	0.197	0.024	16	12	-	1.930	
8		7	0.941	0.095	17	13	-	56.514	
9		7	1.316	0.025	18	14		74.041	
10		7	1.436	0.023	19	-	-	-	
11		8	14.002	0.185	20	-	-	-	

実験結果

maximize

符号化 maximize の実験結果

■ BB 法と USC 法の両方において以下の結果の通りになった.

ט	3 仏と 030 仏の向力にあいて外下の相来の通りになり							
	order	optimization	BB	USC	order	optmization	BB	USC
	3	4	0.002	0.002	12	50	-	0.077
	4	6	0.003	0.003	13	58	-	0.043
	5	10	0.005	0.003	14	68	-	0.099
	6	13	0.003	0.005	15	77	-	1.433
	7	17	1.041	0.007	16	88	-	0.555
	8	23	69.767	0.009	17	99	-	1.046
	9	28	-	0.016	18	111	-	0.287
	10	35	-	0.017	19	123	-	1.954
	11	42	-	0.026	20	137	-	1.083
					•			

実験結果

mult

符号化 mult の実験結果

■ BB 法と USC 法の両方において以下の結果の通りになった.

000 公と 000 公の同力に切り、000 1 00 加米の通りになった。									
order	optimization	BB	USC	order	optmization	BB	USC		
3	1	0.003	0.004	12	36	-	196.726		
4	3	0.016	0.009	13	-	-	-		
5	4	0.099	0.084	14	-	-	-		
6	7	0.291	0.829	15	-	-	-		
7	9	0.812	7.530	16	-	-	-		
8	13	3.483	15.040	17	-	-	-		
9	18	203.468	39.851	18	-	-	-		
10	23	-	126.909	19	-	-	-		
11	29	-	1006.760	20	-	-	-		
		•	· · · · · · · · · · · · · · · · · · ·	•		•			