POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY

Sprawozdanie z laboratorium nr 2 z przedmiotu *Technika cyfrowa*

Imię i nazwisko:	nię i nazwisko: Data zajęć:		
Tomasz Cudziło	12 marca 2012		
Łukasz Gwiazda			
Andrzej Tolarczyk			
Rok akademicki:	Kierunek:	Nr grupy:	Nr zespołu:
2011/2012	Informatyka	2	3

Tablica prawdy układu

	Wejścia				W	yjśc	ia				
	а	b	С	d	а	b	С	d	е	f	g
1.	0	0	0	0	1	1	1	0	0	0	1
2.	0	0	0	1	0	0	0	1	1	1	1
3.	0	0	1	0	0	0	0	1	0	0	0
4.	0	0	1	1	1	1	0	0	0	1	0
5.	0	1	0	0	0	0	1	0	0	1	1
6.	0	1	0	1	0	0	0	0	0	1	1
7.	0	1	1	0	0	0	0	1	0	0	1
8.	0	1	1	1	0	0	1	0	0	0	1
9.	1	0	0	0	0	0	0	0	0	0	1
10.	1	0	0	1	0	0	0	0	1	1	0
11.	1	0	1	0	-	-	-	-	-	-	-
12.	1	0	1	1	-	-	-	-	-	-	-
13.	1	1	0	0	-	-	-	-	-	-	-
14.	1	1	0	1	-	-	-	-	-	-	-
15.	1	1	1	0	-	-	-	-	-	-	-
16.	1	1	1	1	-	-	-	-	-	-	-

Tablice prawdy poszczególnych segmentów

	00	01	11	10
00 01	1	0	1	0
01	0	0	0	0
11	_	-	-	-
10	0	0	-	-

Tabela 1: Segment a. Tabela 2: Segment b. Tabela 3: Segment c.

	00	01	11	10
00	1	0	1	0
01	0	0	0	0
11	_	-	-	-
10	0	0	-	-

	00	01	11	10
00	1	0	0	0
01	1	0	1	0
11	_	-	-	-
10	0	0	_	_

00	01	11	10
0	1	0	1
0	0	0	1
-	-	-	-
0	0	-	-
	0 -	0 1 0 0 	0 1 0 0 0 0

Tabela 4: Segment d. Tabela 5: Segment e. Tabela 6: Segment f.

	00	01	11	10
00	0	1	0	0
01	0	0	0	0
11	_	-	-	-
10	0	1	-	-

	00	01	11	10
00 01	0	1	1	0
01	1	1	0	0
11	_	-	-	-
10	0	1	-	-

	00	01	11	10
00	1	1	0	0
01	1	1	1	1
11	_	-	-	-
10	1	0	_	_

Tabela 7: Segment g.

Równania układu po minimalizacji

$$f_a(abcd) = \overline{b} \cdot \overline{a} \cdot (c + \overline{d}) \cdot (\overline{c} + d)$$
$$= \overline{b} \cdot \overline{a} \cdot \overline{c} \cdot \overline{d} \cdot \overline{c} \cdot \overline{d}$$

$$f_b(abcd) = f_a(abcd)$$

$$f_c(abcd) = \overline{a} \cdot (b + \overline{c}) \cdot (\overline{c} + d) \cdot (c + \overline{d})$$
$$= \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot \overline{c} \cdot \overline{d} \cdot \overline{c} \cdot \overline{d}$$

$$f_d(abcd) = \overline{a} \cdot (c+d) \cdot (\overline{c} + \overline{d}) \cdot (\overline{b} + c)$$
$$= \overline{a} \cdot \overline{c} \cdot \overline{d} \cdot \overline{c} \cdot \overline{d} \cdot \overline{b} \cdot \overline{c}$$

$$f_e(abcd) = d \cdot \overline{c} \cdot \overline{b}$$

$$f_f(abcd) = (b+d) \cdot (\overline{b} + \overline{c})$$
$$= \overline{\overline{b} \cdot \overline{d}} \cdot \overline{b \cdot c}$$

$$f_g(abcd) = (\overline{a} + \overline{d}) \cdot (b + \overline{c})$$
$$= \overline{a \cdot d} \cdot \overline{\overline{b} \cdot c}$$

Równania unikalnych układów

1. $\overline{\overline{c} \cdot d}$

4. $\overline{\overline{c} \cdot \overline{d}}$

7. $\overline{\overline{b}\cdot\overline{d}}$

2. $\overline{c \cdot \overline{d}}$

5. $\overline{c \cdot d}$

8. $\overline{b \cdot c}$

3. $\overline{\overline{b} \cdot c}$

6. $\overline{b \cdot \overline{c}}$

9. $\overline{a \cdot d}$

