Ω Tip

Déf

Soit G=(S,A) un graph et $x \in S$. Lors d'un parcours de G, on note (s'il existe) pred(x) le sommet y dont la visite a inséré dans le sac la 1iere copie de x qui est sorti du sac.

2. BFS

Comme dans les arbres, si le Sac est une file, on explore les sommets par distance croissante au sommet initial s_0

Exemple:

Déf

On appelle arbre de parcours en largeur l'arbre obtenu en ne gardant que les sommets accessibles depius s_0 le sommet initial et les (pred(x), x) comme arcs

Important

Propriété

C'est bien un arbre

Preuve: montrons que, sans son orientation, c'est un arbre On sait que:

- chq arête est un (pred(x), x) <- Autant d'arêtes que de pred
- chq sommet a un unique prédecesseur <- Autant de pred que de sommets, racine exclue

Donc il y a n-1 arêtes

Pour la connexité, on mq: << Pour tt sommet x traité, $x, pred(x), pred^2(x), \dots$ est un chemin fini de x à s_0 le sommet initial >> est un invariant (Admis)

Pour tous sommets x, y, on a alors un chemin x, ..., s_0 , ..., y

Important

Propriété

Pour un BFS, on peut utiliser un marquage anticipé et obtenir le même ordre de parcours

Preuve:

L'ordre de parcours est l'ordre de sortie de la File. Or, la File est FIFO, donc l'ordre de parcours est l'ordre d'entrée: des doublons ajoutés + tard ne chq rien, on peut ne pas les ajouter

Important

Théorème

- L'arbre d'un BFS est un arbre de plus courts chemin de s_0 le sommet initial vers les sommets accessibles.
- Le BFS parcourt par distance croissante à $oldsymbol{s}_0$

Preuve: adapter les arbres

Code OCaml: cf annexe

3. DFS (récursif)

Idée:

On "s'enfonce" le + possible dans le graphe. Lorsque l'on est bloqués; on revient sur nos pas jusqu'à trouver un nouvel embranchement.

C'est un parcours naturellement récursif

Pseudo-code: cf annexe

Théorème

L'arbre de parcours d'un DFS (ie l'arbre des (pred(x), x)) est un arbre T=(S,A) enraciné en s_0 le sommet initial qui vérifie:

Si xy est une arête de G qui n'est pas dans T, alors x est ancêtre de y dans T ou y de x

Preuve: Admis/MP

Ex:

→ BFS → DFS

2-3 ne vérifie pas la ppté pour un BFS mais la vérifie pour un DFS

Rmq

Ce thm dit que << si l'on a pas emprunté xy, c'est que lorsque l'on a visité on s'est enfoncé dans un autre chemin qui a mené à y (ou l'inverse)>>

4. Parcours Pile

Si l'on prend le parcours générique où le Sac est une Pile, on obtient:

- un DFS si l'on marque en sortie du Sac/Pile
- /!\ PAS un DFS si marquage anticipé /!\

contre-ex pour le 2nd point:

est obtenu avec un parcours Pile et marquage anticipé. L'arête 2 - 3 ne vérifie pas le thm

(!) Caution

Rmq

Ce parcours n'est pas un BFS non-plus

5. Parcours du graphe en entier

Rappel: un parcours ne visite que les sommets accessibles depuis $oldsymbol{s}_0$

Si on veut tous les visiter, on peut procéder par parcours successif:

Pour chq sommet:

s'il n'a pas été marqué lors d'un parcours précédent: Lancer un parcours depuis ce sommet.

Complexité: ss les même hyp que le parcours général, on a:

 $C(G) = \Theta(|S| + |A|)$ si les listes d'adj = $\Theta(|S|^2)$ si matrices d'adj