TO THE CLAIMS:

Please amend the claims as follows:

1. (previously presented) A method for compressing a Global Positioning System (GPS) signal, comprising:

receiving the GPS signal from a remote location via a wireless communications link; removing a carrier component of the GPS signal;

matching a comb filter to the GPS signal to obtain a first output signal comprising filter lines; and

frequency shifting the filter lines in the first output signal_to produce a compressed GPS signal.

- 2. (original) The method of claim 1, further comprising frequency shifting the compressed GPS signal to produce a second compressed GPS signal.
- 3. (previously presented) The method of claim 2, wherein the matching of the comb filter further comprises:

applying the GPS signal from the remote location to the comb filter, wherein the GPS signal shifts the comb filter to an expected location of the filter lines of the first output signal.

4. (previously presented) The method of claim 3, wherein the frequency shifting of the filter lines comprises mixing the filter lines of the first output signal with at least one output of a frequency generator.

5. (previously presented) A method for compressing a Global Positioning System (GPS) signal, comprising:

receiving the GPS signal from a remote location via a wireless communications link; removing a carrier component of the GPS signal to produce a first resultant signal;

filtering the first resultant signal through a comb filter to produce a second resultant signal that includes a plurality of signals dispersed over a frequency spectrum;

generating a plurality of mixing signals at selected frequencies; and

mixing the second resultant signal with the plurality of mixing signals to produce a first compressed GPS signal.

- 6. (previously presented) The method of claim 5, further including filtering the compressed GPS signal through a bandpass filter to produce a second compressed GPS signal.
- 7. (currently amended) The method of claim 6, further including:

receiving a the second compressed GPS signal from a remote location via a wireless communications link;

mixing the second <u>compressed</u> GPS signal and the first resultant signal to produce another first resultant signal; and

filtering the another first resultant signal through a comb filter to produce the second resultant signal.

8. (currently amended) The method of claim 7, wherein filtering the another first resultant

signal further includes matching the first resultant signal with the second compressed GPS

signal.

9. (previously presented) The method of claim 7, further including:

sending the second compressed GPS signal to a base station via a wireless

communications link.

10. (currently amended) The method of claim 9, wherein the second compressed GPS signal

includes a signal identifier.

11. (previously presented) The method of claim 10, wherein the signal identifier is a Mobile

Identification Number/Electronic Serial Number ("MIN/ESN").

12. (previously presented) An apparatus for compressing a Global Positioning System (GPS)

signal, the apparatus comprising:

a receiver configured to receive the GPS signal from a remote location via a wireless

communications link;

a first mixer coupled to the receiver, configured to remove a carrier component of the GPS signal

and to produce a first resultant signal;

a comb filter, coupled to the mixer, configured to filter the first resultant signal and to produce a

second resultant signal that includes a plurality of signals dispersed over a frequency spectrum; and

a first frequency shifter configured to shift the frequencies of the plurality of signals in the second resultant to produce a first compressed GPS signal.

- 13. (previously presented) The apparatus of claim 12, wherein the frequency shifter includes:
 - a frequency generator; and
- a second mixer, coupled to the comb filter and to the frequency generator, configured to shift the frequencies of the plurality of signals in the second resultant signal.
- 14. (previously presented) The apparatus of claim 13, further including a second frequency shifter, coupled to the second mixer, configured to produce a second compressed GPS signal.
- 15. (previously presented) The apparatus of claim 12, further including:
 a third mixer coupled to the receiver and to the first mixer and in signal communication with the
 comb filter, configured to produce the second resultant signal.
- 16. (previously presented) The apparatus of claim 15, wherein the frequency shifter includes: a frequency generator; and
- a second mixer, coupled to the comb filter and to the frequency generator, configured to shift the frequencies of the plurality of signals in the second resultant signal.
- 17. (previously presented) The apparatus of claim 16, further including a second frequency shifter, coupled to the second mixer, configured to produce the second compressed GPS signal.

Docket No.: ST00015USU1 (108-US-U1)

09/938,459

- 18. (previously presented) The apparatus of claim 17, wherein the second frequency shifter is a bandpass filter signal combiner.
- 19. (previously presented) The apparatus of claim 17, further including a transmitter coupled to the second mixer, configured to transmit the second compressed GPS signal to the base station.
- 20. (previously presented) The apparatus of claim 19, further including means for identifying the second compressed GPS signal to the base station.