Standard Functions

Reading

Section 3.2

Problems

Practice problems:

(Pages 41-42) 12, 13, 14, 15, 17, 18

Challenge: 16

Be ready to present problems 14, 15

Topics to know

- 1. Can define e^z via its power series. We will offer an alternative definition.
 - Denote the function we are after as f(z). We are looking for:
 - f analytic.
 - f(z+w) = f(z)f(w).
 - f is the exponential when restricted to real numbers.
 - If z = x + iy, then f(z) = f(x)f(iy). But $f(x) = e^x$. Suppose f(iy) = A(y) + iB(y), where A, B are differentiable real functions.
 - Then $f(z) = e^x A(y) + i e^x B(y)$. Also B(0) = 0 and A(0) = 1.
 - Cauchy-Riemann equations must hold. We compute $f_x(z) = f(z)$, and $f_y(z) = e^x A'(y) + i e^x B'(y)$. In order for $f_y = i f_x$ to hold, must have B' = A and A' = -B.
 - These two real-variable differentiable equations are solved by $A(y) = \cos y$ and $B(y) = \sin y$.
 - We therefore have $f(z) = e^x(\cos y + i\sin y) = e^x \mathbf{cis} y$.
- 2. Properties:
 - $\bullet |e^z| = e^{\operatorname{Re}(z)}.$
 - $e^z \neq 0$.
 - $e^{iy} = \mathbf{cis}y$.
 - $e^z = a$ has infinitely many solutions (explain!!!!).
 - $(e^z)' = e^z$. Check it!
- 3. Can define:
 - $\sin z = \frac{1}{2i} (e^{iz} e^{-iz})$.
 - $\cos z = \frac{1}{2} (e^{iz} + e^{-iz}).$
 - These make sense: Can use the two equations $e^{\pm iy} = \cos y \pm i \sin y$ to show that when z is real these equations are indeed correct.

1