

and Cantilever Thermal Design

Joey Doll 4/30/2010

Piezoresistive (PR) vs. Piezoelectric (PE) Sensing

Examples from Univ. Neuchatel – Mars Phoenix Lander AFM and epitaxial PZT cantilever

Comparing PR and PE Sensing

PE Noise

Comparison of PE Sensing Modes

Detailed PR vs. PE Comparison

Force and Displacement Sensing

Thickness and Power

Thermal Issues with Cantilever Design

Adiabatic

B.C. Fixed Temp

$$-kw_c t_c \frac{\partial^2 T(x)}{\partial x^2} + 2hw_c (T(x) - T_\infty) = Q(x)$$
$$Q(x) = W/l_{pr} \quad x \in [0, l_{pr}]$$

k = 130 W/m-K $h = 2000 \text{ W/m}^2\text{-K (per K.J. Kim, W.P. King 2009)}$

Modeling

- Comsol
- 1D numerical

Measuring

- IR microscope
- Raman spectroscopy
- Resistance + temp calib.

Comparing Cantilever Designs

Cantilever = 1000 um x 30 um x 3 um PR = 153 um long, 1 kOhm

Cantilever = $100 \text{ um } \times 5 \text{ um } \times 300 \text{ nm}$ PR = 20 um long, 2 kOhm

Temp. and Cantilever Size Scaling

Conduction vs. Convection

The Effect of PR Length

Tip Temp. vs Power Constraints

- Optimized for 1 Hz 10 kHz ($f_0 = 20 \text{ kHz}$)
- Cantilever = 135 um x 2 um x 300 nm

	Power < 1 mW	Power < 0.1 mW	Temp. < 10K
PR Length (um)	40	18	10
Resistance (kOhm)	5.7	4.4	1.8
Bias (V)	4.8	1.3	1.1
Power (mW)	1	0.1	0.15
Tip Temp Rise (K)	<u>254</u>	<u>11.5</u>	<u>10</u>
MDF (pN)	<u>3.6</u>	<u>6.7</u>	<u>6.4</u>
MDD (nm)	5	9.3	8.8

Conclusions

- PR vs PE sensing
 - PR and PE resolution is limited by device (Johnson, Hooge) and amplifier noise
 - Use PR for thin cantilevers (< 1 micron), low frequencies (< 10 Hz) and moderate power dissipations (> 0.1 mW)
 - Use PE for thick cantilevers, maximizing sensitivity
- PR Thermal Design
 - Power dissipation needs to scale with device dimensions
 - Conduction dominates convection for small devices
 - Tip temp. can be minimized with a small impact on resolution