IoT Architecture & Technologies IoT Technologies

IoT Technologies

❖ WSN (Wireless Sensor Networks)

- Efficient, low cost, low power devices for use in remote sensing applications
 - Low power integrated circuits and wireless communications
- A large number of intelligent sensors collect raw data, and create valuable services by processing, analyzing, and spreading data
- Challenges are related to limited processing capability and storage, and sensor data sharing for multiple device/system cooperation

IoT Cloud Computing Support

- For Advanced IoT services, IoT networks may need to collect, analyze, and process segments of raw data and turn it in into operational control information
- Advanced IoT services will need support of Cloud computing
 - Numerous IoT connections will be made to various devices and sensors
 - Many IoT devices will not have (PC or smartphone level) sufficient data processing capability or interoperability functionality

IoT Technologies

Cloud Computing

- IoT applications will need support from a reliable, fast, and agile computing platform
- IoT devices can overcome lack of Software,
 Firmware, Memory Storage, Hardware, Data
 Processing capability through Cloud computing
- Cloud service models
 - SaaS (Software as a Service)
 - PaaS (Platform as a Service)
 - laaS (Infrastructure as a Service)

IoT R&D (Research & Development)

- Many IoT devices have small memory and limited processing & communication functionalities and are also battery operated
- IoT requires integration of multi-technology networks to a common IP network platform
 - IPv4 & IPv6 protocols support addressing, management, and scalability requirements
 - IoT will have significant influence on the future Internet architecture

IoT Technologies

❖ IoT R&D

- IoT services must guarantee the security, privacy, integrity of information and user confidentiality
- Key Features
 - 'Thing' Authentication & Authorization
 - User Authentication & Authorization
 - IoT Public & Private Key Management
 - · 'Thing' to 'Thing' Access Control
 - IoT Low Overhead Protocols
 - IoT Low Complexity Processing

❖ IoT R&D

- Mobility Support
 - Mobility support increases the applicability of Internet to new areas
- Mobile platform based IoT enables an enormous range of future applications
 - LBS (Location based Service)
 - Social Networking
 - Environment Monitoring & Interaction

IoT Technologies

❖ IoT R&D

- Energy and Resource Management
 - Energy issues are related to optimization of energy harvesting, conservation, and usage, and are essential to the development of IoT
- It is important to consider resource restrictions
 - Wake-Up Delays
 - Power Consumption
 - Battery Capacity
 Packet sizes

❖ IoT R&D

- Identification Technology
 - IoT devices produce their own contents
 - · Contents are shared by any authorized user
 - Identification and authentication technologies need to be converged and interoperated at a global scale
 - · Management of unique identities for 'things'
 - Handling of multiple identifiers for people and locations

IoT Technologies

❖ IoT Hardware Technologies

- In ecosystem of IoT, IoT hardware platform takes charge of collecting, storing, and processing data based on the connection of the Internet
- IoT Hardware Components
 - Sensor
 - Detect events or changes in its near physical environment
 - · Temperature, Image, Infrared, etc.

❖ IoT Hardware Technologies

- IoT Hardware Components
 - Actuator
 - Motors that is responsible for controlling or taking action in a system
 - RFID
 - Transmit pre-embedded 'information' directly to the RFID Reader
 - Processor & Microcontroller
 - Connects sensor and actuator to the Internet
 - Operates corresponding instructions

IoT Technologies

Sensors

Sensor Types

Type	Detect	Model	Measurement	Shape
Temperature/ Humidity sensor	Actual Temp. and humidity	DHT11, DHT22	Temperature: -40 ~ 80 °C Humidity: 0 ~ 100% RH	
Pressure sensor	Pressure w. r. t. atmospheric pressure	SPD005G SPD100G	SPD005G: 0 kPa ~ 35 kPa SPD100G: 0 kPa ~ 650 kPa	L
Flow sensor	Rate of fluid flow	YF-S201	1 to 30 Liters/Minute	
Imaging sensor	Conversion of variable attenuation of image into signal	OV7670	Maximum 30 fps, 640 x 480 VGA resolutions (= 0.3 Megapixels)	
Ultrasonic sensor	Presence of an object by ultrasonic wave	HC-SR04	2 ~ 400 cm non-contact measurement @ 40 Hz	00

Actuators

- Actuator Types
 - Electrical actuator
 - Converts energy to mechanical torque
 - Mechanical linear actuator
 - Converts rotary motion to linear motion
 - Hydraulic / Pneumatic actuator
 - Convert fluidal (liquid / gas) compression to a mechanical motion
 - Motion Types: Linear, Rotary, Oscillatory, etc.

IoT Technologies

* RFID (Radio Frequency Identification)

- RFID chip (tag) holds information about a 'thing'
- RFID chip is attached and transfers data to the reader
- Antenna is used to receive energy from the Reader that is used to operate the RFID device
- RFID tag transmits its information back to the reader

* RFID (Radio Frequency Identification)

RFID types

Туре	Working frequency	Read range	Standard
Low frequency RFID	125 ~134.3 kHz	10~ 30 cm	ISO 14223 ISO/IEC 18000-2
High frequency RFID	13.56 MHz	10 cm ~ 1 m	ISO 15693 ECMA-340, ISO/IEC 18092 NFC (Near Field Communication)
Ultra-high Frequency RFID	860 ~ 960 MHz	12 m	ISO 18000-63

IoT Technologies

* RFID (Radio Frequency Identification)

- RFID enables efficient management, tracking, and monitoring processes
 - Logistics and supply chain applications
- RFID R&D
 - Streams of data support
 - · Chip design
 - Energy usage optimization
 - Automatic meter reading
 - Home automation applications
 - Vehicle & transportation applications

Processors & Microcontrollers

- IoT Device Platform
 - Processors & Microcontrollers
 - · HW, SW, Sensors, and Interfaces
 - Networking Modules (WAN, LAN, WLAN, PAN)
- Provides HW interfaces (USB, GPIO, UART etc.) to connect User ↔ Sensor ↔ Actuator
- OS (Operating System) supports a
 SW interface to control HW resources
 - Power, Memory, File I/O, etc.

IoT Technologies

Arduino

- Open-source microcontroller & hardware
 - May also refer to an 'Open-source Arduino hardware and software project'
- Single-board microcontrollers and kits
 - Enables easy sensing and controlling objects
 - Popular for IoT development

Arduino

- Arduino board circuit design and the IDE (Integrated Development Environment) are available on the Arduino website
- User-specific programs can be developed and uploaded using the IDE
 - · Uses USB connection to an Arduino board

IoT Technologies

Arduino

- Arduino Product Types
 - Arduino Uno R3 (Entry and General purpose)

• Arduino Yun (IoT)

• Arduino Lilypad (Wearable)

Author: leah buechley

https://commons.wikimedia.org/wi
ki/File:Flexible_Lilypad_Arduino.jpg

❖ Atmel

- IoT Hardware
 - megaAVR (ATmega) series are adopted as a Arduino physical computing platform

Arduino board	Description	Atmel AVR
Arduino Uno	Entry lovel	ATmega328P
Arduino Leonardo	Entry level	ATmega32u4
Arduino Yun	LaT	ATmega32u4
Arduino Ethernet	loT	ATmega328
Arduino Lilypad (USB, Mainboard, Simple)	Wearable	ATmega32u4 ATmega168 ATmega328

IoT Technologies

❖ Atmel

- IoT Hardware
 - ATmega328 specifications

Parameter Name	Value
CPU speed	20 MIPS
RAM	2048 bytes EEPROM
Program Memory	32 KB, ISP flash memory
Data EEPROM	1024 bytes
1/0	1-UART, 2-SPI, 1-I2C
Timers	2 x 8-bit, 1 x 16-bit
Temperature range	-40 ~ 85 °C
Operating Voltage Range	1.8 to 5.5 V

Atmel

- IoT hardware
 - ATmega328P
 - Supports low power consumption mode
 - · Other specifications are the same
 - Adopted the main line of Arduino, Arduino Uno
 - Operates at 1 MHz, 1.8 V
 - · Active mode: 0.2 mA
 - · Power-save mode: 0.75 μA
 - · Power-down mode: 0.1 μA

IoT Technologies

❖ Raspberry Pi

- Developed by Raspberry Pi Foundation in the UK
- Developed as a low cost single-board computer to promote basic computer science skills in schools
- Supports general computations and basic web server functions
- Specifications
 - HW: Broadcom SoC, ARM CPU, On-chip GPU
 - SW: Raspbian OS

❖ Raspberry Pi

- Product Series
 - Mainline: Raspberry Pi 3 Model B

- 1.2 GHz ARM Cortex CPU based micro computer for general IoT functionality
- Subline: Raspberry Pi Zero W

Smaller size and restricted I/O, GPIO capabilities

IoT Technologies

❖ BeagleBoard

- Open-source single-board computer produced by Texas Instruments
- Fully functional basic computer
- Supports various OSs
 - Linux, Android
- Includes advanced features
- Little more expensive than other single-board computers

❖ BeagleBoard

- Key features
 - Very low power requirements (~2W)
 - PRU (Programmable Real-time Unit)
 - Used for deterministic latency (5ns per instruction) and delay-sensitive applications
 - Enhanced processor with image and 3D graphics processing

Beaglebone

IoT Technologies

❖ IoT Device Platforms

	Arduino Uno	Raspberry Pi 3 Model B	Beaglebone Black
Category	Microcontroller	Single-board micro computer	Single-board micro computer
SoC/CPU	16 MHz ATMega 328	 Broadcom BCM2837 SoC 1.2 GHz ARM Cortex-A53 Quad-core @ 700 MHz 	 Sitara AM3358 1 GHz ARM Cortex-A8 Single core @ 1000 MHz + Dual PRU @ 200 MHz
Memory	2 KB SRAM / 32 KB Flash	1 GB LPDDR2 / Micro SDHC support	512 MB DDR3 / 4GB Micro SDHC
1/0	14 (Digital GPIO) 6 (10-bit analog Input)	40 (Digital GPIO), 4 USB 2.0	69 GPIO 4 UART Serial, 8 PWM
Size	68.6 x 53.4 mm, 25 g	85.60 x 56.5 mm, 45 g	86.40 x 53.3 mm, 39.68 g

❖ IoT Device Platforms

	Arduino Uno	Raspberry Pi 3 Model B	Beaglebone Black
Operating System	n/a, Arduino IDE for IDE	Linux (Raspbian)	Linux (Ubuntu, Devian, Android), Windows
Audio	n/a	3.5 mm analog, HDMI	Micro-HDMI
Video	n/a	HDMI	Micro-HDMI
Network	n/a, Extra shield required	Bluetooth 4.1 Classic, BLE 10/100 Mbps Ethernet 2.4 GHz Wi-Fi 802.11n	10 / 100 Mbps Ethernet
Price	\$ 29.95	\$ 35	\$ 55

IoT Architecture & Technologies

Reference

References

- J. Bradley, J. Barbier, and D. Handler, "Embracing the Internet of Everything To Capture Your Share of \$14.4 Trillion," Cisco, White Paper, 2013.
- J. Bradley, C, Reberger, A. Dixit, and V. Gupta, "Internet of Everything: A \$4.6 Trillion Public-Sector Opportunity," Cisco, White Paper, 2013.
- D. Evans, "The Internet of Everything," Cisco IBSG, White Paper, 2012.
- S. Mitchell, N. Villa, M. Stewart-Weeks, and A. Lange, "The Internet of Everything for Cities," Cisco, White Paper, 2013.
- O. Hersent, D. Boswarthick, and O. Elloumi, The Internet of Things: Key Applications and Protocols. John Wiley & Sons, Dec. 2011.
- "Machine 2 Machine Perspective on Industry Status (Key Challenges and Opportunities)," Frost & Sullivan, Research Paper, Nov. 2011.
- "M2M Sector Map," Beecham Research, Sep. 2011. [Online] Available from: http://www.beechamresearch.com/download.aspx?id=18 [Accessed June 1, 2015]

References

- F. Behmann and K. Wu, Collaborative Internet of Things (C-IoT). John Wiley & Sons, 2015.
- J. Gubbia, R. Buyyab, S. Marusica, and M. Palaniswamia, "Internet of Things (IoT): A vision, architectural elements, and future directions," Future Generation Computer Systems, vol. 29, no. 7, pp. 1645-1660, Sep. 2013.
- L. Atzori, A. Iera, and G. Morabito, "The Internet of Things: A survey," Computer Networks, vol. 54, no. 15, pp. 2787-2805, Oct. 2010.
- S. Li, L. D. Xu, and S. Zhao, "The Internet of Things: a Survey," Information Systems Frontiers, vol. 17, no, 2, pp. 243-259, Apr. 2015.
- A. J. Jara, L. Ladid, and A. Skarmeta, "The Internet of Everything through IPv6: An Analysis of Challenges, Solutions and Opportunities," Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, vol. 4, no. 3, pp. 97-118, 2013.
- O. Vermesan and P. Friess, Internet of Things Global Technological and Societal Trends From Smart Environments and Spaces to Green ICT. River Publishers, 2011.

References

- O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, I. S. Jubert, M. Mazura, M. Harrison, M. Eisenhauer, and P. Doody, "Internet of Things Strategic Research Roadmap," European Research Cluster on the Internet of Things, Sep. 2011.
- IEEE Std. 802.15.4-2006, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE, Sep. 2006.
- N. Kushalnagar, G. Montenegro, and C. Schumacher, "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals," IETF RFC 4919, Aug. 2007.
- G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks," IETF RFC 4944, Sep. 2007.
- ZigBee Alliance, "ZigBee specification: ZigBee document 053474r13 Version 1.1," Dec. 2006.
- · ZigBee Alliance, www.zigbee.org
- DHT22 By L293D (Own work) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

References

- Digital Pressure Sensor By Medvedev (Own work) [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
- Flow Sensor, [Online] Available from: http://www.hobbytronics.co.uk/yf-s201-water-flow-meter [Accessed Feb. 20, 2018]
- Image Sensor, [Online] Available from: https://www.lazada.com.my/fang-fang-ov7670-camera-module-for-arduino-black-2114132.html [Accessed Feb. 20, 2018]
- Arduino, https://www.arduino.cc/
- Lilypad Arduino, By leah buechley [CC BY-SA 2.0 (https://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons
- Raspberry Pi, https://www.raspberrypi.org/
- Beagleboard, http://beagleboard.org/bone