Tutorial 5: Laplace Equation

Variable Separation in 3D, Conformal Mapping

- 1. Find the steady-state temperature distribution in solid cylinder of height h and radius a if the top and the curved surface are held at 0° and the base at 100° .
- 2. Find the steady-state temperature distribution in a solid semi-infinite cylinder (bounded by $\rho=a$ and z=0) if the boundary temperatures are T=0 at $\rho=a$ and $T=\rho\sin\phi$ at z=0. Hints: This problem is similar to the one we did in the class except the last integral. Look at the recursion relations to integrate integrands with Bessel functions.
- 3. Find the steady-state, bounded temperature distribution in the interior of a solid cylinder of radius a and height h, given that the temperature of the curved lateral surface is kept at zero, the base is insulated, and the top is kept at constant temperature u_0 .
- 4. Discuss the image of the circle |z-2|=1 and its interior under the following transformations:
 - (a) w = z 2i;
 - (b) w = 3iz;
 - (c) $w = \frac{z-2}{z-1}$;
 - (d) $w = \frac{z-4}{z-3}$;
 - (e) w = 1/z.
- 5. What is the image of the sector $-\pi/4 < \arg z < \pi/4$ under the mapping w = z/(z-1)?
- 6. Write an equation defining a Möbius transformation that maps the half-plane below the line y = 2x 3 onto the interior of the circle |w 4| = 2. Repeat for the exterior of this circle.
- 7. Two points z_1 and z_2 are said to be symmetric with respect to a circle (line) C if every straight line or circle passing through z_1 and z_2 intersects C orthogonally.
 - (a) Show that if C is a line then it must be a perpendicular bisector of the line segment joining z_1 and z_2 .
 - (b) Show that if C is a circle then z_1 and z_2 lie on some radius of the circle C and if the radius of the circle is R and if distances of z_1 and z_2 from the center of the circle are a and d then $R^2 = ad$
 - (c) Show that if the center of the circle at z_0 in above question, then the same conditions can be put as

$$arg(z_1 - z_0) = arg(z_2 - z_0)$$

 $|z_1 - z_0| = \frac{R^2}{|z_2 - z_1|}$

(d) Prove following theorem:

(Symmetry Principle) Let C_z be a line or a circle in z-plane, and let w = f(z) be any Möbius transformation. Then two points z_1 and z_2 are symmetric with respect to C_z if and only if their images $w_1 = f(z_1)$ and $w_2 = f(z_2)$ are symmetric with respect to the image C_w of C_z under f.

- 8. Find a point symmetric to 4-3i with respect to each of the following circles:
 - (a) |z| = 1;
 - (b) |z-1|=1;
 - (c) |z-1|=2.

- 9. By Completing following steps prove that any two non intersecting circles C_1 and C_2 there always exist two distinct points z_1 and z_2 that are symmetric with respect to C_1 and C_2 simultaneously.
 - (a) Argue that there exists a Möbius transformation that maps C_1 onto the real axis and C_2 onto some circle C of the form $|w \lambda i| = R$ with λ real and $R < |\lambda|$.
 - (b) Show that w_1 and w_2 are symmetric with respect ${\bf R}$ and C if and only if

$$w_2 = \overline{w_1}$$
 and $w_2 = \frac{R^2}{\overline{w_1} + \lambda i} + \lambda i$.

Solve this pair of equations to obtain

$$w_1 = i\sqrt{\lambda^2 - R^2}$$
 and $w_2 = -i\sqrt{\lambda^2 - R^2}$

as simultaneous symmetric points.

- (c) Use the symmetry principle to conclude that there are points z_1 and z_2 are symmetric with respect to both C_1 and C_2 .
- 10. Use the results of previous problem to show that for any two non-intersecting circles C_1 and C_2 there exists a Möbius transformation that maps C_1 and C_2 onto concentric circles. Hint: Map z_1 to origin and z_2 to infinity.
- 11. Find the function ϕ that is harmonic in the shaded region depicted in the figure and takes values 0 on the inner circle and 1 on the outer circle. This is a cylindrical capacitor with nonconcentric cylinders.
- 12. Find electrostatic potential in the shaded region in the Figure.

13. Find steady state temp in the shaded region in the Figure.

