Ch 2. 矩阵

钟友良

zhongyl@scut.edu.cn

Sec 2.0 引言

Sec 2.1 矩阵与其运算

Sec 2.2 矩阵的分块

Sec 2.3 矩阵的秩

Sec 2.4 矩阵的逆

Sec 2.0 引言

Sec 2.1 矩阵与其运算

Sec 2.2 矩阵的分块

Sec 2.3 矩阵的秩

Sec 2.4 矩阵的逆

Sec 2.0 引言

Sec 2.1 矩阵与其运算

Sec 2.2 矩阵的分块

Sec 2.3 矩阵的秩

Sec 2.4 矩阵的逆

数域

定义 1.1 (数域)

对于一个集合 F 以及上面的两个运算 + 和 \times ,我们称 $(F,+,\times)$ 为一个 数域 (number field) 如果 F 关于 $+,\times$ 以及它们的逆是封闭的.

e.g.

- \triangleright N, \mathbb{Z}
- ightharpoonup \mathbb{Q} , $\mathbb{Q}(\sqrt{2})$
- $ightharpoonup \mathbb{R}$, \mathbb{C}

矩阵

定义 1.2 (矩阵)

对 $a_{i,j} \in F$, $i = 1, \ldots, m$, $j = 1, \ldots, n$, 称

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix}$$

为数域 F 上的一个 $m \times n$ 矩阵. 记号

- $\blacktriangleright A = (a_{i,j})_{m,n}, A_{m,n}, A_{m\times n}$
- ▶ m 维欧氏空间 ℝ^m
- ▶ 实矩阵 R^{m×n}, 复矩阵 C^{m×n}

同型与相等

定义 (同型)

称两个矩阵 同型, 如果它们的行数和列数相同.

定义 (相等)

称两个矩阵 相等, 如果它们同型而且相同位置的元素相等 $(a_{i,j} = b_{i,j})$.

向量

定义 (向量)

- ▶ 行向量 1 × n
- ▶ 列向量 m×1

一个方阵 $A = (a_{i,j})_{n,n}$ 的 \dot{w} (trace) 为

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{i,i}.$$

对角矩阵

定义 (对角矩阵,单位矩阵,零矩阵)

- ▶ 对角矩阵 diag(a_{1,1},...,a_{n,n})
- ▶ 单位矩阵 $E_n = \text{diag}(1, ..., 1)$
- ▶ 零矩阵 0

标量也可看作 1×1 矩阵.

负矩阵

定义 1.3 (负矩阵)

矩阵 $A = (a_{i,j})_{m,n}$ 的 负矩阵 为 $-A = (-a_{i,j})_{m,n}$.

矩阵的运算

类似数域 F 上可以定义运算 +, \times 以及它们的逆. 我们希望把这些运算推广到 $F^{m\times n}$ 上. 考虑 $A=(a_{i,j})_{m,n}, B=(b_{i,j})_{m,n}\in F^{m\times n}$.

矩阵加法的定义

定义 1.4 (矩阵加法) 矩阵 A 与 B 的 和 定义为

$$A+B:=(a_{i,j}+b_{i,j})_{m,n}.$$

定义 (矩阵减法)

$$A-B=A+(-B).$$

矩阵加法的性质

- ▶ 交換律: A + B = B + A
- ▶ 结合律: A + (B + C) = (A + B) + C
- ► 加法单位元: A+0=A
- ▶ 加法逆元: A + (-A) = 0

矩阵数乘的定义

定义 1.5 (矩阵数乘)

矩阵 A 与数 k 的 数乘 定义为

$$kA := (ka_{i,j})_{m,n}.$$

称 kE = diag(k, ..., k) 为 数量矩阵.

矩阵数乘的性质

- ► 结合律: k(IA) = (kI)A
- ▶ 分配率
 - (k+1)A = kA + IA
 - $\triangleright k(A+B) = kA+kB$
- ▶ 数乘单位元: 1A = A
- ▶ kA = 0 当且仅当 k = 0 或 A = 0

矩阵乘法的定义 1

定义 1.6 (矩阵乘法)

矩阵 $A_{s,n}$ 和 $B_{n,m}$ 的 乘积 定义为 C = AB, 其中

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}, i = 1, \dots, s, j = 1, \dots, m.$$

矩阵乘法的定义 2

$$egin{pmatrix} egin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \ a_{2,1} & a_{2,2} & a_{2,3} \end{pmatrix} egin{pmatrix} b_{1,1} & b_{1,2} \ b_{2,1} & b_{2,2} \ b_{3,1} & b_{3,2} \end{pmatrix} = egin{pmatrix} c_{1,1} & c_{1,2} \ c_{2,1} & c_{2,2} \end{pmatrix}$$

注意

- ▶ 矩阵乘法有意义的条件: A 的列数 = B 的行数
- ▶ 矩阵乘法不一定满足交换律
 - ▶ e.g. 以下的例题 1.2

例题 1.2

对于
$$A = (1, 4, 3)$$
 和 $B = (2, 3, 1)^T$, 有 $AB = 17$

和

$$BA = \begin{pmatrix} 2 & 8 & 6 \\ 3 & 12 & 9 \\ 1 & 4 & 3 \end{pmatrix}$$

可交换

定义 (矩阵可交换)

称矩阵 A 和 B 是 <mark>可交换的</mark>, 如果 AB = BA. 注意到矩阵乘法的交换律不一定成立. 两个矩阵一般是不可交换的.

例题 1.3

如果
$$A = diag(a_{1,1}, \ldots, a_{n,n})$$
 满足

$$a_{i,i} \neq a_{j,j}$$
 如果 $i \neq j$,

求证和 A 可交换的矩阵只可以是对角矩阵.

解

直接写出

- $\blacktriangleright AB = (a_{i,i}b_{i,j})$
- $\triangleright BA = (b_{i,j}a_{j,j})$

可见 $b_{i,j}$ 只能等于零, 如果 $i \neq j$.

矩阵方幂

定义 (矩阵方幂)

n 阶矩阵 A 的 k 次方幂, 记为 A^k, 表示 k 个 A 香乘.

- $ightharpoonup A^0 = E_n$
- $A^k A^l = A^{k+l}$
- $(A^k)^l = A^{kl}$

矩阵乘法的性质

- ▶ 结合律: (ABC) = (AB)C
- ▶ 分配率:
 - (A+B)C = AC + BC
 - A(B+C) = AB+AC
- ▶ 数乘与矩阵乘法:

$$k(AB) = (kA)B = A(kB)$$

矩阵多项式

设 $f(x) = a_m x^m + a_{m-1} x^{m-1} + \cdots + a_1 x + a_0$ 为一 m 次的复系数多项式. 我们可以把 f(x) 推广为 n 阶矩阵 a 的 m 阶行列式

$$f(A) = a_m A^m + a_{m-1} A^{m-1} + \cdots + a_1 A + a_0 E.$$

矩阵的转置

定义 1.7 (矩阵转置)

矩阵 A 的转置矩阵为矩阵 A 的行列互换得到的矩阵, 并记作 A^{T} .

记 $A=(a_{i,j})_{m,n}$,则

- ► A^T 为 $n \times m$
- \triangleright ($a_{i,j}^T = a_{j,i}$)

 A^T 有时也记作 A'.

对称矩阵与反称矩阵

定义 (对称矩阵与反称矩阵)

- ▶ 称 A 为 <mark>对称矩阵</mark> 如果 $A^T = A$
- ▶ 称 A 为 反称矩阵 如果 $A^T = -A$

矩阵转置的性质

- $(A^T)^T = A$
- $(A+B)^T = A^T + B^T$
- \triangleright $(kA)^T = kA^T$
- \triangleright $(AB)^T = B^T A^T$

前三个性质易证,这里仅证明最后一个性质.

矩阵共轭

定义 (共轭)

对于 $c = a + bi \in \mathbb{C}$, 它的共轭定义为

 $\bar{c} := a - bi$.

定义 1.8 (矩阵共轭)

对于复数矩阵 $A \in \mathbb{C}^{m \times n}$, 称 \bar{A} 为 A 的共轭矩阵 如果

$$\overline{a}_{i,j} = \overline{a_{i,j}}$$

矩阵共轭的性质

- ▶ Ā = A 当且仅当 A 是实矩阵
- $(\bar{A})^T = \overline{A^T}$
- $ightharpoonup \overline{kA} = \overline{k}\overline{A}$
- $ightharpoonup \overline{AB} = \overline{A} \cdot \overline{B}$

Sec 2.0 引言

Sec 2.1 矩阵与其运算

Sec 2.2 矩阵的分块

Sec 2.3 矩阵的秩

Sec 2.4 矩阵的逆

分块矩阵

定义 (分块矩阵)

将矩阵 A 用若干条水平线和垂直线划分成一些子矩阵 (称为 A 的一个 子块), 以子块为元素的形式上的矩阵称为 分块矩阵.

$$\begin{pmatrix} 1 & 0 & 0 & 3 & 1 \\ 0 & 1 & 0 & -1 & 2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

分块矩阵记号

$$\begin{pmatrix} 1 & 0 & 0 & 3 & 1 \\ 0 & 1 & 0 & -1 & 2 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} E_3 & X_{3,2} \\ 0_{2,3} & E_2 \end{pmatrix}$$

一般地, 分别取 m, n 的划分 $(m_1, \ldots, m_i, \ldots, m_M)$ 和 $(n_1, \ldots, n_j, \ldots, n_N)$, 矩阵 A 可表示为分块矩阵

$$\begin{pmatrix} A_{1,1} & \dots & A_{1,N} \\ \vdots & & \vdots \\ A_{M,1} & \dots & A_{M,N} \end{pmatrix}$$

其中 $A_{i,j}$ 为 $m_i \times n_j$ 矩阵.

准对角线矩阵

定义(准对角矩阵)

如果分块矩阵 $(A_{i,j})_{M,N}$ 有

- $\rightarrow M = N$
- ► $A_{i,j} = 0$ 如果 $i \neq j$

那么称 A 为 准对角矩阵, 并可记为

分块矩阵的加法

定义 (分块矩阵的加法)

如果分块矩阵 $A = (A_{i,j})_{M,N}$ 和 $B = (B_{i,j})_{M,N}$ 有相同的分块 $(m_i)_i \times (n_j)_j$, 那么它们的和也可表示为分块矩阵

$$A+B=(A_{i,j}+B_{i,j})_{M,N}.$$

分块矩阵的乘法

回顾矩阵的乘法, 如果 $n_A = m_B$

$$egin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n_A-1} & a_{1,n_A} \ dots & & & dots \ a_{i,1} & a_{i,2} & \dots & a_{i,n_A-1} & a_{i,n_A} \ dots & & & dots \ a_{m_A,1} & a_{m_A,2} & \dots & a_{m_A,n_A-1} & a_{m_A,n_A} \end{pmatrix} imes \ \begin{pmatrix} b_{1,1} & \dots & b_{1,j} & \dots & b_{1,n_B} \ b_{2,1} & \dots & b_{2,j} & \dots & b_{2,n_B} \ dots & & & & dots \ b_{m_B-1,1} & \dots & b_{m_B-1,j} & \dots & b_{m_B-1,n_B} \ b_{m_B,1} & \dots & b_{m_B,n_B} \end{pmatrix}$$

分块矩阵的乘法

尝试把矩阵乘法推广至分块矩阵, 如果 $N_A = M_B$

$$\begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,N_A-1} & A_{1,N_A} \\ \vdots & & & & \vdots \\ A_{i,1} & A_{i,2} & \dots & A_{i,N_A-1} & A_{i,N_A} \\ \vdots & & & & \vdots \\ A_{M_A,1} & A_{M_A,2} & \dots & A_{M_A,N_A-1} & A_{M_A,N_A} \end{pmatrix} \times \\ \begin{pmatrix} B_{1,1} & \dots & B_{1,j} & \dots & B_{1,N_B} \\ B_{2,1} & \dots & B_{2,j} & \dots & B_{2,N_B} \\ \vdots & & & & \vdots \\ B_{M_B-1,1} & \dots & B_{M_B-1,j} & \dots & B_{M_B-1,N_B} \\ B_{M_B,1} & \dots & B_{M_B,j} & \dots & B_{M_B,N_B} \end{pmatrix}$$

分块矩阵的乘法

定义 (分块矩阵的加法)

分块矩阵
$$A$$
 和 B 的乘积 $C = AB$ 有 $C_{i,j} = A_{i,1}B_{1,j} + \dots A_{i,k}B_{k,j} + \dots + A_{i,N_A}B_{N_A,j}$

为使得矩阵乘积 $A_{i,k}B_{k,j}$ 有意义, 我们需要

$$n_{A_{i,k}}=m_{B_{k,j}}$$

即

$$n_k = m_k, \quad \forall k = 1, \dots, N_A$$

分块矩阵的转置

回顾矩阵 A 的转置 $A^T = (a_{i,j}^T)_{n,m}$ 满足 $a_{i,j}^T = a_{j,i}$.

定义 (分块矩阵的转置) 分块矩阵 $A = (A_{i,j})_{M,N}$ 的转置 $A^T = (A_{i,j}^T)_{N,M}$ 有 $A_{i,j}^T = (A_{j,i})^T$.

方阵行列式

定义 (方阵行列式)

方阵 A 的行列式记为 |A| 或 det(A). 行列式可以看作一个映射

$$|\cdot|: \mathbb{R}^{n \times n} \to \mathbb{R}$$

 $(a_{i,j})_{m,n} \mapsto |a_{i,j}|_{m,n}$

性质

- $\triangleright ||A^T|| = ||A||$
- $|kA| = k^n |A|$
- $\triangleright |\bar{A}| = |\overline{A}|$

定理 2.1

定理 2.1 (乘积的行列式) 行列式的乘积 = 乘积的行列式. 即 |AB| = |A||B|.

定理 2.1 证明 1

我们记 C = AB, 其中 $c_{i,j} = \sum_k a_{i,k} b_{k,j}$. 考虑分块矩阵

$$D = \begin{pmatrix} A & -E \\ & B \end{pmatrix}$$

由行列式的拉普拉斯展开得

$$|D|=|A||B|.$$

定理 2.1 证明 2

希望通过初等变化凑出乘积 C.

$$D' = \begin{pmatrix} E & 0 \\ B & E \end{pmatrix} \cdot \begin{pmatrix} A & -E \\ 0 & B \end{pmatrix} = \begin{pmatrix} A & -E \\ AB & 0 \end{pmatrix}$$

再次由行列式的拉普拉斯展开得

$$|D'| = -|-E||AB| = |AB|.$$

Outline

Sec 2.0 引言

Sec 2.1 矩阵与其运算

Sec 2.2 矩阵的分块

Sec 2.3 矩阵的秩

Sec 2.4 矩阵的逆

Sec 2.5 初等矩阵

前情回顾

初等变换

定义 3.1 (矩阵的初等变换)

初等行变换:

- 1. $r_i \leftrightarrow r_i$: 交换第 i 行和第 j 行
- 2. k×r_i: k∈F乘第 i 行
- 3. $r_i + k \times r_j$: 第 j 行乘以 $k \in F$ 并加到第 i 行

初等列变换: 改"行"为"列"

初等变换: 初等行变换和初等列变换的统称.

等价

定义 3.2

称 A 等价于 B, 如果 A 可以通过一系列初等变换变成 B. 即, 存在一个序列

$$A = A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_s = B,$$

其中每个 A_{i+1} 可由 A_i 经过一次初等变换得到.

等价关系

一个二元关系 ~ 是一个等价关系, 如果满足以下 三个条件:

▶ 反身性: A ~ A

▶ 对称性: A ~ B 则 B ~ A

▶ 传递性: A~B且B~C,则A~C

可验证, 刚刚定义的矩阵等价关系确实是一个等价关系.

▶ 反身性: 显然

▶ 对称性: 初等变换均有初等变换的逆

▶ 传递性: 显然

阶梯形矩阵

定义 3.3 (阶梯形矩阵)

称一个矩阵 A 为一个 阶梯形矩阵, 如果

- ▶ 0 元素以下的元素都是 0
- ▶ 首个非零元一下的元素都是 0

记 a_{i,ji} 为第 i 行的首个非零元素, 则

$$a_{i,j} = 0$$
 if $j < j_i$

和

$$a_{i,j} = 0$$
 if $\exists i_0 < i \text{ s.t. } j_{i_0} = j$

定理 3.1

定理 3.1 (化简为阶梯形)

任意一个矩阵都可以经过有限次 初等行变换 化为 阶梯形矩阵.

Q: Why not 上三角矩阵?

定理 3.1 证明 其实就是消元法.

Q: 怎样化为 "下" 阶梯形矩阵?

例题 3.1

把以下矩阵化为阶梯形矩阵

$$\begin{pmatrix} 1 & 0 & 4 & -2 & 1 \\ 2 & -1 & 9 & -5 & 2 \\ 1 & -1 & 5 & 0 & -1 \\ 2 & 3 & 5 & 5 & -2 \end{pmatrix}$$

定理 3.2

定理 3.2 (进一步化简)

任何一个 $m \times n$ 矩阵都等价于一个矩阵形如

$$\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$$

其中 $r \leq \min\{m, n\}$.

证明

先行消元, 再列消元.

等价标准形

定理 3.2 (进一步化简)

如果

$$\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$$

等价于 A, 则称它为 A 的 <mark>等价标准形</mark>. 等价标准形只提供一个信息 r, 这就是矩阵的秩

k 阶子式

定义 3.4 (k 阶子式)

对一个 $m \times n$ 矩阵 A, 任取 k 行 k 列 $(k \le \min\{m, n\})$, 取这些行列交叉点上的 k^2 个元素, 按原来的顺序构成一个 $k \times k$ 的矩阵, 这个矩阵的行列式称为 A 的一个 k 阶子式.

秩

定义 3.5 (秩)

称 $r \in \mathbb{Z}_+$ 为一个矩阵 A 的 秩 (rank) (记为 r(A)), 如果

- ▶ 存在非零的 r 阶子式
- ightharpoonup 不存在非零的 r+1 阶子式

规定零矩阵的秩为 0.

满秩与降秩

定义 (满秩与降秩)

对于 n 阶方阵, 如果 r(A) = n, 那个称 A 为 满秩的 (非奇异的, 非退化的); 否则, 称为 降秩的 (奇异的, 退化的).

可见, A 满秩当且仅当 det(A) = 0.

定理 3.3

定理 3.3

初等变换不改变矩阵的秩.

可见, 矩阵 A 的标准形为 $\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$, 则 A 的秩

$$r(A)=r$$
.

证明

初等变换不改变行列式

性质 3.1

性质 3.1

两个同型矩阵等价, 当且仅当它们同秩.

$$r(A) = r = r(B)$$
 当且仅当

$$A \sim \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} \sim B.$$

性质 3.2

性质 3.2

阶梯形矩阵的秩等于它非零的行的数量.

证明

假设阶梯形矩阵 A 有 r 行非零元.

一方面, 对于第 i 行, 选取第 j_i 列, 可得 $r \times r$ 的上

三角矩阵, 其行列式不为 0.

另一方面,任意 $(r+1) \times (r+1)$ 的行列式都为 0.

例题 3.3

例题 3.3 求以下矩阵的秩

$$\begin{pmatrix} 0 & 2 & -1 & 3 \\ 1 & 4 & -2 & 0 \\ 2 & 3 & 5 & 2 \\ 0 & 0 & 13 & 19 \end{pmatrix}$$

例题 3.3 通过初等变换化为阶梯形矩阵

Outline

$$A = \begin{pmatrix} a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{in} & \cdots & a_{in} \end{pmatrix} = \begin{pmatrix} v_1 & \cdots & v_n \\ \vdots & & \vdots \\ a_{in} & \vdots & \ddots \\ \vdots & & \vdots \end{pmatrix}$$

Sec 2.0 引言

Sec 2.1 矩阵与其运算

Sec 2.2 矩阵的分块

Sec 2.3 矩阵的秩

Sec 2.4 矩阵的逆

Sec 2.5 初等矩阵

逆元

对于数域 F中的元素 a

- ▶ 加法的逆元 -a 满足 a + (-a) = 0
- ▶ 乘法的逆元 a^{-1} 满足 $a \times a^{-1} = 1$

对于矩阵

- ▶ 矩阵加法的逆元 -A 满足 A + (-A) = 0
- ▶ 矩阵乘法的逆元 A^{-1} 应该满足 $A \times A^{-1} = E$

逆矩阵

定义 4.1 (逆矩阵)

设 A 是一个 n 阶方阵, 如果存在矩阵 B, s.t.

$$AB = BA = E$$

则称 A 存在逆矩阵 B, 将 A 的 <mark>逆矩阵</mark> (记为 A^{-1}). 称 A 与 B 为 互逆矩阵.

Q: 为什么要先声明 B 的存在性?

Q: 如果 A 不是方阵呢?

例题 4.1 (1)

对角矩阵的逆矩阵 对角矩阵 $diag(a_1, \ldots, a_n)$ 的逆矩阵为 $diag(a_1^{-1}, \ldots, a_n^{-1})$.

例题 4.2 (2)

三角矩阵的逆矩阵

上三角矩阵 A 的逆矩阵 A^{-1} 也是上三角, 且 A^{-1} 的对角元 $a_{i,i}^{-1}$ 满足

$$a_{i,i}^{-1} = (a_{i,i})^{-1}.$$

逆矩阵的唯一性 如果 A 可逆, 那么 A 的逆矩阵唯一确定.

证明

如果 B, C 都是 A 的逆矩阵, 那么

$$B = BE$$

= $B(AC) = (BA)C$
= $EC = C$.

逆的逆

A 可逆,则 A⁻¹ 可逆,且

$$(A^{-1})^{-1} = A.$$

$$AA^{-1} = A^{-1}A = E.$$

乘积的逆

A, B 可逆, 那么 AB 可逆, 且

$$(AB)^{-1} = B^{-1}A^{-1}.$$

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$$

= AEA^{-1}
= E .

转置的逆 A 可逆, 则 A^T 可逆, 且

$$(A^T)^{-1} = (A^{-1})^T.$$

$$(A^{-1})^T A^T = (AA^{-1})^T = E^T = E.$$

例题 4.2

例题 4.2

判断
$$A = \begin{pmatrix} 0 & 3 \\ 0 & 4 \end{pmatrix}$$
 是否可逆.

假设
$$A$$
 存在逆矩阵 $B = \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{pmatrix}$, 那么

$$\begin{pmatrix} 0 & 3 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{pmatrix} = \begin{pmatrix} 3b_{2,1} & 3b_{2,2} \\ 4b_{2,1} & 4b_{2,2} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

伴随矩阵

定义 4.2 (伴随矩阵)

矩阵 $A = (a_{i,j})_{n,n}$ 的 伴随矩阵 定义为

$$\begin{array}{c} A_{ij} \stackrel{\bullet}{\text{Ar}} \stackrel{\bullet}$$

其中 A_{i,j} 为 a_{i,j} 的代数余子式.

逆矩阵的伴随矩阵表示

逆矩阵的伴随矩阵表示

逆矩阵的伴随矩阵表示

设 d := |A|. 由行列式按一行展开和定理 5.2 得

$$a_{i,1}A_{j,1}+\cdots+a_{i,n}A_{j,n}=$$

$$\begin{cases} d, & i=j\\ 0, & i\neq j \end{cases}$$

我们有

$$A \cdot A^* = (a_{i,j})(A_{j,k})$$

$$= (\sum_j a_{i,j}A_{j,k})$$

$$= \begin{pmatrix} d & & \\ & \ddots & \\ & & d \end{pmatrix} = dE$$

可逆的等价条件

矩阵 A 可逆, 当且仅当行列式 $|A| \neq 0$.

$$\Leftarrow : A^{-1} = \stackrel{\triangle}{A}.$$

从
$$A^{-1} = \frac{1}{|A|} A^*$$
 来理解.

▶ 对角矩阵

$$\begin{pmatrix}
\alpha_{ii} \\
\alpha_{ii}
\end{pmatrix} = \begin{pmatrix}
\alpha_{i1}^{-1} \\
\alpha_{i1}^{-1}
\end{pmatrix}$$

$$|A| = \prod_{i} \alpha_{ii}$$

定理 4.1 证明

必要性: 有 $AA^{-1} = E$ 可得

 $|A||A^{-1}| = |AA^{-1}| = |E| = 1.$

充分性: 如果 $|A| \neq 0$, 那么 $\frac{1}{|A|}A^*$ 为 A 的逆, i.e.

$$\frac{1}{|A|}A^* \cdot A = A \cdot \frac{1}{|A|}A^* = E.$$

例题 4.3

例题 4.3 求以下矩阵的行列式

$$A^{-1} = \frac{A^*}{1 A 1} \qquad A^*_{ij} = A_{ji}$$

$$\begin{pmatrix} 2 & 1 & -1 \\ 1 & 4 & 2 \\ 5 & -3 & 1 \end{pmatrix}$$

解

利用 $A^{-1} = \frac{1}{|A|}A^*$, 通过计算 A 的行列式和所有 2 阶代数余子式可得.

例题 4.4

例题 4.4

如果 A 可逆, 那么方程组 Ax = b 存在唯一解.

解

存在性: $X = A^{-1}b$ 为方程组的解

唯一性: 假设有另一个解 X', i.e. AX' = b. 两边左

乘 A^{-1} 得, $A^{-1}(AX')A^{-1}b$, i.e. $X' = A^{-1}b$.

$$\begin{pmatrix} a_{11} & --a_{1N} \\ \vdots \\ a_{n_1} & --a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \Rightarrow A^{-1}A = A^{-1}b$$

$$\Rightarrow A^{-1}A = A^{-1}b$$

$$\Rightarrow A = b$$

$$\Rightarrow A^{-1}A = A^{-1}b$$

$$\Rightarrow A = A^{-1}b$$

例题 4.5

例题 4.5

设可逆的
$$A$$
 和 C , 求 $D = \begin{pmatrix} A \\ B \end{pmatrix}$ 的逆.
$$\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} \begin{pmatrix} A_{$$

先证 A 的可逆性: 由 A, C 不可逆得 $|D| = |A| \cdot |C| \neq 0$.

例题 4.5 续

解 (续)

再求 \mathcal{D}^{-1} : 设 $\mathcal{D}^{-1} = \begin{pmatrix} X & Y \\ Z & T \end{pmatrix}$. 由 $AA^{-1} = E$ 可得: $\begin{cases} AX = E \\ AY = 0 \\ BX + CZ = 0 \end{cases} \begin{pmatrix} X & Y \\ B & C \end{pmatrix} \begin{pmatrix} X & Y \\ Z & T \end{pmatrix} \begin{pmatrix} E \\ B & C \end{pmatrix}$

由 A 可逆得 $X = A^{-1}$ 和 Y = 0. 代入得 $Z = -C^{-1}BA^{-1}$ 和 $T = C^{-1}$.

Outline

Sec 2.0 引言

Sec 2.1 矩阵与其运算

Sec 2.2 矩阵的分块

Sec 2.3 矩阵的秩

Sec 2.4 矩阵的逆

Sec 2.5 初等矩阵

1st 初等矩阵 2

- ▶ P(i, j)A: 通过交换 A 的第 i 行和第 j 行得到.
- ► *AP*(*i*, *j*): 列

2nd 初等矩阵 1

定义 5.2 (数乘行)

$$P(i(k)) := \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 \end{pmatrix}$$

2nd 初等矩阵 2

▶ P(i(k))A: 把 A 的第 i 行乘以 k 得到

► AP(i(k)): 列

3rd 初等矩阵 1

定义 5.3 (行加行)

3rd 初等矩阵 2

▶ P(i, j(k))A: k 乘以 A 的第 j 行, 加到第 i 行

▶ AP(i, j(k)): 列 ... 列

定理 5.1

定理 5.1 (初等变换的矩阵表示)

▶ 左乘: 作用于行

▶ 右乘: 作用于列

证明

$$AP = ((AP)^T)^T = (P^TA^T)^T.$$

例题 5.1

已知
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$$
, 求 $P(3,1(2))A$, $AP(2,3)$, $P(3(3))A$.

初等矩阵的逆

- $P(i,j)^{-1} = P(i,j)$
- $P(i(k))^{-1} = P(i(k^{-1}))$
- $P(i,j(k))^{-1} = P(i,j(-k))$

初等矩阵的应用

矩阵的初等变换 = 左乘或者右乘初等矩阵 接下来, 我们将以初等矩阵的乘法重新描述关于 初等变换的结果.

定理 5.2

回顾定理 3.2: 对秩为 r(A) = r 的矩阵 A, 通过有限次初等变换化为

$$\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$$

定理 5.2

对秩为 r(A) = r 的 $m \times n$ 矩阵 A, 存在有限个

- ightharpoonup m 阶初等矩阵 P_1, \ldots, P_s
- ▶ n 阶初等矩阵 Q_1, \ldots, Q_t

s.t.

$$P_s \dots P_1 A Q_1 \dots Q_t = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}.$$

推论 5.1

进一步地,如果 A 可逆,则只需行变换即可

推论 5.1

对于可逆矩阵 A, 存在有限初等变换 P_1, \ldots, P_m , s.t.

$$P_m \dots P_1 A = E$$
.

进而有

$$A^{-1}=P_m\dots P_1.$$

推论 5.1 证明

只需证明一个初等矩阵的右乘,等价于某个初等 矩阵的左乘. 对三类初等矩阵 Q, 验证

$$AQ = E \implies Q(AQ)Q^{-1} = E \implies QA = E.$$

由定理 5.2 得

$$E = P_s \dots P_1 A Q_1 \dots Q_t$$

= $Q_1 \dots Q_t P_s \dots P_1 A$

此时, 我们可得

$$A^{-1}=P_m\dots P_1.$$

推论 5.2

将推论 5.1 中的行变换换为列变换: 推论 5.2

....

$$AQ_1 \dots Q_m = E$$
.

由此可得 $A^{-1}=Q_1\ldots Q_m$.

推论 5.3

$$r(A^T) = r(A)$$
.

证明 若
$$PAQ = \begin{pmatrix} E_r \\ 0 \end{pmatrix}$$
, 则 $Q^T A^T P^T = \begin{pmatrix} E_r^T \\ 0 \end{pmatrix}$

初等行变换求逆矩阵

利用行变换表达 A-1:

$$P_{m} \dots P_{1} (A \quad E)$$

$$= (P_{m} \dots P_{1}A \quad P_{m} \dots P_{1})$$

$$= (E \quad A^{-1})$$

例题 5.2

例题 5.2 求以下矩阵的逆

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 4 & 2 \\ 5 & -3 & 1 \end{pmatrix}$$

例题 5.2 解 1

$$\left(\begin{array}{ccc|c}
2 & 1 & -1 & 1 \\
1 & 4 & 2 & 1 \\
5 & -3 & 1 & 1
\end{array}\right)$$

初等列变换求逆矩阵

$$\frac{\binom{A}{E}}{Q_1 \dots Q_m}$$

$$= \frac{\binom{AQ_1 \dots Q_m}{Q_1 \dots Q_m}}{\binom{E}{A^{-1}}}$$

例题 5.2 解 2