CS 577- Intro to Algorithms

Network Flow (Part 4)

Dieter van Melkebeek

November 5, 2020

Outline

Outline

Applications of min cut

- ► Image segmentation
- ▶ Project selection

Network

- ightharpoonup a digraph (V, E)
- ▶ edge capacities $c: E \to [0, \infty)$
- ▶ the source $s \in V$, which has indegree 0, and
- ▶ the sink $t \in V$, which has outdegree 0.

Network

- ightharpoonup a digraph (V, E)
- ▶ edge capacities $c: E \to [0, \infty)$
- ▶ the source $s \in V$, which has indegree 0, and
- ▶ the sink $t \in V$, which has outdegree 0.

st-Cut

A partition (S, T) of V such that $s \in S$ and $t \in T$.

Network

- ightharpoonup a digraph (V, E)
- ▶ edge capacities $c: E \to [0, \infty)$
- ▶ the source $s \in V$, which has indegree 0, and
- ▶ the sink $t \in V$, which has outdegree 0.

st-Cut

A partition (S, T) of V such that $s \in S$ and $t \in T$.

Min cut problem

Input: network N = (V, E, c, s, t)

Output: st-cut (S, T) such that $c(S, T) \doteq \sum_{e \in S \times T} c(e)$ is minimized

4D + 4B + 4B + B + 900

Network

- ightharpoonup a digraph (V, E)
- edge capacities $c: E \to [0, \infty)$
- ightharpoonup the source $s \in V$, which has indegree 0, and
- ▶ the sink $t \in V$, which has outdegree 0.

st-Cut

A partition (S, T) of V such that $s \in S$ and $t \in T$.

Min cut problem

Input: network N = (V, E, c, s, t)

Output: st-cut (S, T) such that $c(S, T) \doteq \sum_{e \in S \times T} c(e)$ is

minimized

Complexity: time O(nm)

Computational problem

Input: grid of pixels $i \in [n]$

```
Input: grid of pixels i \in [n] f_i \in [0, \infty): "likelihood" that i is foreground
```

```
Input: grid of pixels i \in [n] f_i \in [0, \infty): "likelihood" that i is foreground b_i \in [0, \infty): "likelihood" that i is background
```

Computational problem

```
Input: grid of pixels i \in [n]

f_i \in [0, \infty): "likelihood" that i is foreground

b_i \in [0, \infty): "likelihood" that i is background
```

Output: partition of [n] into foreground F and background B

Computational problem

```
Input: grid of pixels i \in [n]
f_i \in [0, \infty): "likelihood" that i is foreground
b_i \in [0, \infty): "likelihood" that i is background
c \in [0, \infty): penalty for separating neighboring pixels
```

Output: partition of [n] into foreground F and background B

Computational problem

```
Input: grid of pixels i \in [n]
f_i \in [0, \infty): "likelihood" that i is foreground
b_i \in [0, \infty): "likelihood" that i is background
c \in [0, \infty): penalty for separating neighboring pixels
```

Output: partition of [n] into foreground F and background B maximizing

$$\sum_{i\in F} f_i + \sum_{j\in B} b_j - \mathbf{c} \cdot |\{(i,j)\in F\times B: i\sim j\}|$$

Computational problem

Input: grid of pixels $i \in [n]$

 $f_i \in [0, \infty)$: "likelihood" that i is foreground $b_i \in [0, \infty)$: "likelihood" that i is background

 $c \in [0, \infty)$: penalty for separating neighboring pixels

Output: partition of [n] into foreground F and background B maximizing

$$\sum_{i\in F} f_i + \sum_{j\in B} b_j - \mathbf{c} \cdot |\{(i,j)\in F\times B: i\sim j\}|$$

Model

Computational problem

Input: grid of pixels $i \in [n]$ $f_i \in [0, \infty)$: "likelihood" that i is foreground $b_i \in [0, \infty)$: "likelihood" that i is background $c \in [0, \infty)$: penalty for separating neighboring pixels

Output: partition of [n] into foreground F and background B maximizing

$$\sum_{i\in F} f_i + \sum_{j\in B} b_j - \mathbf{c} \cdot |\{(i,j)\in F\times B: i\sim j\}|$$

Model

► Vertex for each pixel, source s, sink t

Computational problem

Input: grid of pixels $i \in [n]$ $f_i \in [0, \infty)$: "likelihood" that i is foreground $b_i \in [0, \infty)$: "likelihood" that i is background $c \in [0, \infty)$: penalty for separating neighboring pixels

Output: partition of [n] into foreground F and background B maximizing

$$\sum_{i\in F} f_i + \sum_{j\in B} b_j - \mathbf{c} \cdot |\{(i,j)\in F\times B: i\sim j\}|$$

Model

- Vertex for each pixel, source s, sink t
- $ightharpoonup S = F \cup \{s\} \text{ and } T = B \cup \{t\}$

Image Segmentation – rewriting objective

Image Segmentation - rewriting objective

$$\max_{F,B} \left(\sum_{i \in F} f_i + \sum_{j \in B} b_j - \sum_{\substack{i \sim j \\ (i,j) \in F \times B}} c \right)$$

$$= -\min_{F,B} \left(\sum_{\substack{i \sim j \\ (i,j) \in F \times B}} c - \sum_{i \in F} f_i - \sum_{j \in B} b_j \right)$$

$$= -\min_{F,B} \left(\sum_{\substack{i \sim j \\ (i,j) \in F \times B}} c - \sum_{i \in [n]} f_i + \sum_{i \in B} f_i - \sum_{j \in [n]} b_j + \sum_{j \in F} b_j \right)$$

$$= \sum_{i \in [n]} f_i + \sum_{j \in [n]} b_j - \min_{F,B} \left(\sum_{\substack{i \sim j \\ (i,j) \in F \times B}} c + \sum_{i \in B} f_i + \sum_{j \in F} b_j \right)$$

▶ Need to find partition of [n] into F and B minimizing

$$(*) \doteq \sum_{\substack{i \sim j \\ (i,j) \in F \times B}} c + \sum_{i \in B} f_i + \sum_{j \in F} b_j.$$

▶ Need to find partition of [n] into F and B minimizing

$$(*) \doteq \sum_{\substack{i \sim j \\ (i,j) \in F \times B}} c + \sum_{i \in B} f_i + \sum_{j \in F} b_j.$$

► Construct network N such that (*) = c(S, T) where $S = F \cup \{s\}$ and $T = B \cup \{t\}$.

▶ Need to find partition of [n] into F and B minimizing

$$(*) \doteq \sum_{\substack{i \sim j \\ (i,j) \in F \times B}} c + \sum_{i \in B} f_i + \sum_{j \in F} b_j.$$

► Construct network N such that (*) = c(S, T) where $S = F \cup \{s\}$ and $T = B \cup \{t\}$.

▶ Need to find partition of [n] into F and B minimizing

$$(*) \doteq \sum_{\substack{i \sim j \\ (i,j) \in F \times B}} c + \sum_{i \in B} f_i + \sum_{j \in F} b_j.$$

► Construct network N such that (*) = c(S, T) where $S = F \cup \{s\}$ and $T = B \cup \{t\}$.

▶ Resulting algorithm runs in time $O(n^2)$.

Computational problem

Input: n projects $i \in [n]$

```
Input: n projects i \in [n] m tools j \in [m]
```

```
Input: n projects i \in [n]
m tools j \in [m]
T_i \subseteq [m]: tools needed to realize project i \in [n]
```

```
Input: n projects i \in [n]
m tools j \in [m]
T_i \subseteq [m]: tools needed to realize project i \in [n]
v_i \in [0, \infty): value of project i \in [n] if realized
```

```
Input: n projects i \in [n]
m tools j \in [m]
T_i \subseteq [m]: tools needed to realize project i \in [n]
v_i \in [0, \infty): value of project i \in [n] if realized c_j \in [0, \infty): one-time cost of tool j \in [m] if bought
```

```
Input: n projects i \in [n] m tools j \in [m] T_i \subseteq [m]: tools needed to realize project i \in [n] v_i \in [0,\infty): value of project i \in [n] if realized c_j \in [0,\infty): one-time cost of tool j \in [m] if bought Output: Set of projects I \subseteq [n] to realize and set of tools J \subseteq [m] to buy maximizing \sum_{i \in I} v_i - \sum_{j \in J} c_j such that (\forall i \in I) T_i \subseteq J.
```

Computational problem

```
Input: n projects i \in [n] m tools j \in [m] T_i \subseteq [m]: tools needed to realize project i \in [n] v_i \in [0, \infty): value of project i \in [n] if realized c_j \in [0, \infty): one-time cost of tool j \in [m] if bought Output: Set of projects I \subseteq [n] to realize and set of tools J \subseteq [m] to buy maximizing \sum_{i \in I} v_i - \sum_{j \in J} c_j such that (\forall i \in I) T_i \subseteq J.
```

Model

▶ Vertex for each project $i \in [n]$ & tool $j \in [m]$; source s, sink t

Computational problem

```
Input: n projects i \in [n] m tools j \in [m] T_i \subseteq [m]: tools needed to realize project i \in [n] v_i \in [0, \infty): value of project i \in [n] if realized c_j \in [0, \infty): one-time cost of tool j \in [m] if bought Output: Set of projects I \subseteq [n] to realize and set of tools J \subseteq [m] to buy maximizing \sum_{i \in I} v_i - \sum_{j \in J} c_j such that (\forall i \in I) T_i \subseteq J.
```

Model

- ▶ Vertex for each project $i \in [n]$ & tool $j \in [m]$; source s, sink t
- ▶ Project $i \in [n]$ is realized iff $i \in S$.

Computational problem

```
Input: n projects i \in [n] m tools j \in [m] T_i \subseteq [m]: tools needed to realize project i \in [n] v_i \in [0, \infty): value of project i \in [n] if realized c_j \in [0, \infty): one-time cost of tool j \in [m] if bought Output: Set of projects I \subseteq [n] to realize and set of tools J \subseteq [m] to buy maximizing \sum_{i \in I} v_i - \sum_{j \in J} c_j such that (\forall i \in I) T_i \subseteq J.
```

Model

- ▶ Vertex for each project $i \in [n]$ & tool $j \in [m]$; source s, sink t
- ▶ Project $i \in [n]$ is realized iff $i \in S$.
- ▶ Side of *st*-cut determines whether tool $j \in [m]$ is bought.

Project Selection – rewriting objective

Project Selection - rewriting objective

$$\max_{I,J} \left(\sum_{i \in I} v_i - \sum_{j \in J} c_j \right)$$

$$= -\min_{I,J} \left(\sum_{j \in J} c_j - \sum_{i \in I} v_i \right)$$

$$= -\min_{I,J} \left(\sum_{j \in J} c_j - \sum_{i \in [n]} v_i + \sum_{i \in [n] \setminus I} v_i \right)$$

$$= \sum_{i \in [n]} v_i - \min_{I,J} \left(\sum_{j \in J} c_j + \sum_{i \in [n] \setminus I} v_i \right)$$

▶ Need to find $I \subseteq [n]$ and $J \subseteq [m]$ with $(\forall i \in I)$ $T_i \subseteq J$ minimizing

$$(*) \doteq \sum_{j \in J} c_j + \sum_{i \in [n] \setminus I} v_i.$$

▶ Need to find $I \subseteq [n]$ and $J \subseteq [m]$ with $(\forall i \in I)$ $T_i \subseteq J$ minimizing

$$(*) \doteq \sum_{j \in J} c_j + \sum_{i \in [n] \setminus I} v_i.$$

▶ Construct network N such that (*) = c(S, T) where I are the projects in S.

▶ Need to find $I \subseteq [n]$ and $J \subseteq [m]$ with $(\forall i \in I)$ $T_i \subseteq J$ minimizing

$$(*) \doteq \sum_{j \in J} c_j + \sum_{i \in [n] \setminus I} v_i.$$

- ► Construct network N such that (*) = c(S, T) where I are the projects in S.
- ▶ Enforce condition $(\forall i \in I)$ $T_i \subseteq J$ by including edges (i,j) with $c(i,j) = \infty$ for each $i \in [n]$ and $j \in T_i$, and let J be the tools in S.

▶ Need to find $I \subseteq [n]$ and $J \subseteq [m]$ with $(\forall i \in I)$ $T_i \subseteq J$ minimizing

$$(*) \doteq \sum_{j \in J} c_j + \sum_{i \in [n] \setminus I} v_i.$$

- ▶ Construct network N such that (*) = c(S, T) where I are the projects in S.
- ▶ Enforce condition $(\forall i \in I)$ $T_i \subseteq J$ by including edges (i,j) with $c(i,j) = \infty$ for each $i \in [n]$ and $j \in T_i$, and let J be the tools in S.
- ► Resulting algorithm runs in time $O((n+m)(n+m+\sum_{i\in[n]}|T_i|)).$

