Learning Deep Architectures for Pattern Recognition —An introduction to Deep Neural Networks—

Zhuowei Han

Institut für Signalverarbeitung und Systemtheorie

Universität Stuttgart

05.06.2014

Motivation

Issues from Pattern Recognition

Optical Character Recognition

Object Recognition

 Speech Recognition / Speeker Identification / Emotion Recognition

Motivation

The usual approach

Motivation

The usual approach

- Feature engineering heavily dependent on application
 - $\begin{tabular}{ll} \square & Natural clustering \\ $P(X|Y=i)$ well separated \\ \end{tabular}$
 - $\Box \ \, \mathsf{Smoothness} \\ x \approx y \to f(x) \approx f(y)$
- Gap between feature engineering / classification
- Deep Architectures can bridge this gap by learning representations from high dimensional data

Table of Contents

Deep Architectures

Artificial Deep Neural Networks

Concept Problems

Unsupervised greedy layer-wise pre-training

Experiments

Auto-Encoder for data compression dNN for digit recognition Auto-Encoder for image reconstruction

Summary

Table of Contents

Deep Architectures

Artificial Deep Neural Networks

Concept

Problems

Unsupervised greedy layer-wise pre-training

Experiments

Auto-Encoder for data compression dNN for digit recognition

Auto-Encoder for image reconstruction

Summary

Deep Architectures

Yoshua Bengio: A set of algorithms in machine learning that use a set of non-linear transformations to model high-level abstractions and hidden dependencies in data

Deep Architectures

 Yoshua Bengio: A set of algorithms in machine learning that use a set of non-linear transformations to model high-level abstractions and hidden dependencies in data

A natural Deep Architecture

- Can learn high-level abstractions from unlabeled data
- Representationally efficient

Deep Architectures

Deep Architectures in machine learning

Deep Belief Networks
Geoffrey E. Hinton 2006

Deep Neural Networks
Yoshua Bengio 2006

Convolutional dNNs others

Evolution of Deep Neural Networks

Table of Contents

Deep Architectures

Artificial Deep Neural Networks

Concept Problems

Unsupervised greedy layer-wise pre-training

Experiments

Auto-Encoder for data compression dNN for digit recognition Auto-Encoder for image reconstructio

Summary

Structure of Deep Neural Networks

Computing net-activation

$$\begin{array}{rcl} \underline{z}_k^{(l+1)} & = & \mathbf{W}^{(l)}\underline{a}_k^{(l)} + \underline{b}^{(l)} \\ \underline{a}_k^{(l+1)} & = & \underline{\Phi}\left(\underline{z}_k^{(l+1)}\right) \\ & \underline{\hat{y}}_k & = & \underline{a}_k^{(ol)} \end{array}$$

- Arbitrary non-linear mapping from \underline{x}_k to $\underline{\hat{y}}_k$ possible
- Relation $N \Leftrightarrow \mathsf{Complexity}$
- Deep Architectures $(l \uparrow)$ more efficient than shallow ones $(l \downarrow, N_l \uparrow)$

Determining the parameters

Training objective

$$J(\mathbf{W}, \underline{b}) = \sum_{\forall k} \frac{1}{2} ||\underline{y}_k - \underline{\hat{y}}_k||^2 + \frac{\lambda}{2} \sum_{\forall l} ||\mathbf{W}^{(l)}||_F^2$$
 (1)

$$\mathbf{W}, \underline{b} = \arg\min_{\mathbf{W}, b} J(\mathbf{W}, \underline{b})$$
 (2)

Numerical minimization

- Gradient calculation with Backpropagation
- Stochastic gradient descent
- Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

Problems

- Optimization problem non-convex⇒ getting stuck in poor local minima
- Diffusion of gradients

Table of Contents

Deep Architectures

Artificial Deep Neural Networks

Concept

Problems

Unsupervised greedy layer-wise pre-training

Experiments

Auto-Encoder for data compression dNN for digit recognition

Auto-Encoder for image reconstruction

Summary

- Train the Deep Neural Network layer by layer (Hinton, Bengio)
- Truncate network after first layer

Reconstruction error

$$J_{AE} = \sum_{\forall k} \frac{1}{2} ||\underline{a}_k^{(1)} - \underline{\hat{a}}_k^{(1)}||^2$$

■ Small hidden layer: Learned subspace similar to PCA for linear activation $\underline{\Phi}(\cdot)$

■ Activation of the output layer $\underline{\hat{a}}_{k}^{(1)} = \underline{\Phi}\left(\mathbf{W}^{T}\underline{\Phi}\left(\mathbf{W}\underline{x}_{k} + \underline{b}_{enc}\right) + \underline{b}_{rec}\right)$

Force non-trivial solution

- Reduce number of hidden neurons
- Regularization

$$J_{reg} = ||\mathbf{W}||_F^2 \tag{3}$$

Sparsity constraint

$$\hat{\rho} = \frac{1}{m} \sum_{\forall k} [\underline{a}_k^{(2)}]_n \tag{4}$$

$$J_{sp} = \sum_{\forall n} \text{KL}(\rho||\hat{\rho}_n)$$
 (5)

$$KL(\rho||\hat{\rho}_n) = \rho \log \frac{\rho}{\hat{\rho}_n} + (1 - \rho) \log \frac{1 - \rho}{1 - \hat{\rho}_n}$$
 (6)

Overall cost

$$J = J_{AE} + \lambda J_{reg} + \beta J_{sp} \tag{7}$$

Propagate input to second layer

$$\underline{a}_k^{(2)} = \underline{\Phi} \left(\mathbf{W}^{(1)} \underline{a}_k^{(1)} + \underline{b}^{(1)} \right)$$

- Do pre-training of second layer
- ...

- Add randomly initialized classification layer
- Perform dicriminative fine tuning, optimizing over weights and bias terms of each stage

Table of Contents

Deep Architectures

Artificial Deep Neural Networks
Concept

Unsupervised greedy layer-wise pre-training

Experiments

Auto-Encoder for data compression dNN for digit recognition Auto-Encoder for image reconstruction

Summary

Data compression

Experimental Setup

- Take 10 gray scale images
- Extract non-overlapping 8x8 patches
- Train Auto-Encoder for compression
- Setup of the Auto-Encoder
 - $\ \square$ 1 hidden layer [64,25,64]
 - Training with 10.000 randomly selected patches
 - □ LBFGS for optimization

Data compression

Original

Reconstructed

Data compression

Learned features

- Visualization
 - \square Plot row vectors of $\mathbf{W}^{(1)}$, because:

$$\underline{z}_k^{(2)} = \mathbf{W}^{(1)}\underline{x}_k + \underline{b}^{(1)}$$

- The features are
 - □ Corner features
 - □ Edge features
 - □ Texture features

Digit Recognition

Experimental Setup

- Using MNIST data base
 - □ 60.000 binar training images
 - □ 10.000 binar test images
 - □ 28x28 pixels
- Setup of the dNN
 - □ 4 hidden layers [784, 500, 200, 100, 10, 4]
 - Sigmoid activation function in all layers
 - ☐ Tied-weights during layer-wise pre-training
 - Cost / gradient calculation with all 60.000 training sets
 - LBFGS for optimization

First stage features

Digit Recognition

Last stage features

Result

- Clustering into 16 groups
- Learned representations are prototypes of handwritten digits
- Recognition rate after discarding the last layer and performing discriminative fine tuning 98.2%

Experimental Setup

- Using MNIST data base
- Adding random distortion which flips values at arbitrary positions $\underline{\tilde{x}}_k = \underline{x}_k + \underline{w}$
- Setup of the Auto-Encoder

 - Sigmoid activation function in all layers
 - □ Tied-weights
 - Cost / gradient calculation with all 60.000 training sets
 - □ LBFGS for optimization

Results

Quadratic error:

$$e_1 = \frac{1}{NL} \sum_{k=1}^{N} ||\underline{x}_k - \underline{\tilde{x}}_k||^2 = 0.0873$$

$$e_2 = \frac{1}{NL} \sum_{k=1}^{N} ||\underline{x}_k - \underline{\hat{y}}_k||^2 = 0.0158$$

Results

Quadratic error:

$$e_1 = \frac{1}{NL} \sum_{k=1}^{N} ||\underline{x}_k - \underline{\tilde{x}}_k||^2 = 0.2038$$

$$e_2 = \frac{1}{NL} \sum_{k=1}^{N} ||\underline{x}_k - \underline{\hat{y}}_k||^2 = 0.0239$$

Why this works (Vincent et al. 2010)

- Auto-Encoder captures structure of input distribution
- Learns to map from low-probability regions to lower-dimensional high-probability regions

Table of Contents

Deep Architectures

Artificial Deep Neural Networks

Concept

Problems

Unsupervised greedy layer-wise pre-training

Experiments

Auto-Encoder for data compression dNN for digit recognition

Auto-Encoder for image reconstruction

Summary

- Deep Architectures can bridge the gap between feature engineering and classification (representation learning)
- Deep Architectures can learn hierarchical abstractions from high-dimensional raw data and therefore enable non-local learning
- Greedy layer-wise pre-training results in an initialization of the network near a good local minima of the cost function
- Only unlabeled data is used during pre-training
- Stacked Auto-Encoders can be used for reconstruction of noisy data (Maybe even for reconstruction of MR-Images??)