Welcome to my EDA

This time we're gonna explore the data from amazone website

Firstly, lets import the module that we need

```
In [22]: import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
```

Here's the csv that i got from laptop category on amazon

```
In [23]: testing = pd.read_csv("amazon_laptop_products.csv")
```

The data not perfect yet, so let's fix it!

Start from generalize the format

Were noticing that the data we're not complete

```
In [26]: testing.fillna(0, inplace=True)
  testing.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 312 entries, 0 to 311
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--- 0 title 312 non-null object
1 price 312 non-null float64
2 rating 312 non-null float64
3 total_buy 312 non-null float64
dtypes: float64(3), object(1)
memory usage: 9.9+ KB
```

Split it by space and get the first 6 words

```
In [27]: temp_column = testing["title"]
  temp_column = temp_column.str.replace(",", "")
  new_title = temp_column.astype(str).str.split(" ",expand=True).iloc[:,0:6
  new_title
```

Out[27]:		0	1	2	3	4	5
	0	HP	14	Laptop	Intel	Celeron	N4020
	1	Laptop	Laptop	Computer	with	Intel	N97
	2	HP	Laptop	Computer	for	Student	&
	3	ASUS	ROG	Strix	G16	(2025)	Gaming
	4	Laptop	16-inch	8GB	DDR	256GB	SSD
	•••					•••	
	307	Kipling	Women's	Seoul	Extra	Large	17"
	308	2025	Gaming	Laptop	15.6	Inch	Laptop
	309	Lenovo	IdeaPad	3	Laptop	15.6"	FHD
	310	15.6"	Laptop	Screen	Extender	1080P	FHD
	311	Lenovo	Ideapad	3i	15.6	FHD	Touchscreen

312 rows × 6 columns

Merge it in one column

```
In [28]: new_title["merged"] = new_title[0] + " " + new_title[1] + " " + new_title
new_title["merged"] = new_title["merged"].str.title()
new_title
```

Out[28]:		0	1	2	3	4	5	merged
	0	НР	14	Laptop	Intel	Celeron	N4020	Hp 14 Laptop Intel Celeron N4020
	1	Laptop	Laptop	Computer	with	Intel	N97	Laptop Laptop Computer With Intel N97
	2	НР	Laptop	Computer	for	Student	&	Hp Laptop Computer For Student &
	3	ASUS	ROG	Strix	G16	(2025)	Gaming	Asus Rog Strix G16 (2025) Gaming
	4	Laptop	16-inch	8GB	DDR	256GB	SSD	Laptop 16-Inch 8Gb Ddr 256Gb Ssd
	•••							
	307	Kipling	Women's	Seoul	Extra	Large	17"	Kipling Women'S Seoul Extra Large 17"
	308	2025	Gaming	Laptop	15.6	Inch	Laptop	2025 Gaming Laptop 15.6 Inch Laptop
	309	Lenovo	IdeaPad	3	Laptop	15.6"	FHD	Lenovo Ideapad 3 Laptop 15.6" Fhd
	310	15.6"	Laptop	Screen	Extender	1080P	FHD	15.6" Laptop Screen Extender 1080P Fhd
	311	Lenovo	Ideapad	3i	15.6	FHD	Touchscreen	Lenovo Ideapad 3I 15.6 Fhd Touchscreen

312 rows × 7 columns

Change the title before

```
In [29]: testing["title"] = new_title["merged"]
  testing
```

Out[29]:		title	ргісе	rating	total_buy
	0	Hp 14 Laptop Intel Celeron N4020	172.16	4.1	3877.0
	1	Laptop Laptop Computer With Intel N97	369.00	5.0	16.0
	2	Hp Laptop Computer For Student &	0.00	4.6	343.0
	3	Asus Rog Strix G16 (2025) Gaming	1274.99	4.6	80.0
	4	Laptop 16-Inch 8Gb Ddr 256Gb Ssd	199.99	5.0	16.0
	•••				•••
	307	Kipling Women'S Seoul Extra Large 17"	72.00	4.7	806.0
	308	2025 Gaming Laptop 15.6 Inch Laptop	549.99	3.8	4.0
	309	Lenovo Ideapad 3 Laptop 15.6" Fhd	499.00	4.2	273.0
	310	15.6" Laptop Screen Extender 1080P Fhd	279.99	4.6	323.0
	311	Lenovo Ideapad 3I 15.6 Fhd Touchscreen	0.00	4.8	41.0

312 rows × 4 columns

Is there any correlation?

```
In [30]: corr = testing[["price", "rating", "total_buy"]].corr()

sns.heatmap(corr, annot=True, cmap="coolwarm", center=0)
plt.title("Correlation Heatmap")
plt.show()
```


More closer the index to 1, more correlation the columns are

Visualize the most expensive laptop by rating

```
In [31]: good laptops = (
             testing[testing["rating"] == 5]
              .sort values(by="price", ascending=False)
              .head(5)
              .reset index(drop=True)
         )
         ax = good_laptops.plot(
             kind="barh",
             x="title",
             y="price",
             legend=False,
             figsize=(12, 8),
             color=plt.cm.tab10.colors[:len(good_laptops)]
          )
         plt.title("Most Expensive Laptops with 5 Rating", fontsize=20, weight="bo
         plt.xlabel("Price")
         plt.ylabel("Laptop Title")
         for p in ax.patches:
             ax.text(
                  p.get_width() + (p.get_width()*0.01),
                  p.get_y() + p.get_height()/2,
                  f"${p.get_width():,.0f}",
                 va="center"
         ax.invert yaxis()
         plt.show()
```


The most bought item

```
y="total buy",
    figsize=[12,8],
    color=plt.cm.tab10.colors[:len(most bought)]
for p in ax.patches:
    ax.text(
    p.get width() + (p.get width() * 0.01),
    p.get y() + p.get height() / 2,
    (lambda x: f''\{x/1_000_000:.1f\}M''.replace(".", ",") if x >= 1_000_000
     else f''\{x/1_000:.1f\}K''.replace(".", ",") if x >= 1_000
     else str(int(x)))(p.get width()),
    va="center"
plt.title("Most Bought Item", fontsize=20, weight="bold")
plt.xlabel("Total Buy")
plt.ylabel("Laptop Title")
ax.invert yaxis()
plt.show()
```


We're noticing here, that not all item is specific laptop

So the most worth it item by highest rating, highest bought, and lowest price is

```
In [33]: worth_it_item = testing.sort_values(by=["rating", "total_buy", "price"],
    ax = worth_it_item.plot(
        kind="barh",
        x="title",
        y=["price", "total_buy", "rating"],
        figsize=(12,8),
        color=plt.cm.tabl0.colors[:len(worth_it_item)]
)

for p in ax.patches:
    ax.text(
    p.get_width() + (p.get_width() * 0.01),
    p.get_y() + p.get_height() / 2,
    str(int(p.get_width())),
    va="center"
)
```

```
plt.title("Most Worth It Item", fontsize=20, weight="bold")
plt.xlabel("Value")
plt.ylabel("Laptop Title")
ax.invert_yaxis()
plt.show()
```

