Human balancing in VR under the influence of optical flow

Kai Streiling, Maximilian Stasica, Alsou Bellmann, André Seyfarth and Loes C. J. van Dam

Motivation and questions

We assume that the Feeling of **Agency** over a change in the environment plays a role **discriminating self-generated from external optical flow**.

- How are **visual** and **proprioceptive** cues integrated for stable balancing?
- How are external perturbations in one domain detected and countered?

The moving room illusion VR environment

Ex or

Experimental conditions on the background

- pattern: striped/ grey
- lateral motion:
 linear/ sinusoidal,
 fast/ slow
- static phase 10 s
 movement 10 s
 static phase 10 s

Captured human data

- Motion capture
- n = 7 participants

LQG model

- Visual angle and angular velocity
- α Proprioceptive angle and velocity

Initial experimental results

1. Average balancing dynamics

Average relative head position over time

- 2. Validation: Optical flow influences human balancing
 - Less stable standing during and after visual movement

LQG model: multisensory estimate with adaptive

The weighting mechanism in simulation

2. The sensory weighting mechanism based on the comparator model for Agency

Initial model results

1. Qualitative fits of predicted average pendulum head position

Further initial model predictions

- Increasing motor noise disturbs the weighting mechanism and leads to increased susceptibility (for linear movements).
- Smooth acceleration delays the perturbation detection.

Conclusion

- The proposed model provides a mechanism for reweighing cues in a manner consistent with Agency
- Promising initial model predictions

Limitations

- Small sample size
- Only initial model parameters
- Model cannot explain after-effects

Outlook

- Additional data collection
- Fit parameters to collected data
- Compare alternative modelling approaches

References

Engel D., Schütz A., Krala M. et al. (2020). Inter-trial phase coherence of visually evoked postural responses in virtual reality.
Exp Brain Res 238, 1177–1189. https://doi.org/10.1007/s00221-020-05782-2
Leonards U., Fennell J.G., Oliva G., Drake A., Redmill D.W. (2015). Treacherous Pavements: Paving Slab Patterns Modify Intended Walking Directions. PLOS ONE 10(6): e0130034. https://doi.org/10.1371/journal.pone.0130034

