Application No.: 09/575,060 Docket No.: 219002029000

each R^4 is independently a noninterfering substituent selected from the group consisting of alkyl, alkenyl, aryl, arylalkyl, acyl, aroyl, heteroaryl, NH-aroyl, halo, OR, NR₂, SR, SOR, SO₂R, OCOR, NRCOR, NRCONR₂, NRCOOR, OCONR₃, RCO, COOR, alkyl-OOCR, SO₃R, CONR₂, SO₃NR₂, NRSO₂NR₂, CN, CF₃, R₃Si, and NO₂, wherein each R is independently H, alkyl, alkenyl or aryl, and two of R^4 on adjacent positions can be joined to form a fused, optionally substituted aromatic or nonaromatic, saturated or unsaturated ring which contains 3-8 members, or R^4 is =O or an oxime, oximeether, oximeester or ketal thereof;

m is 0-4;

Ar is an aryl group substituted with 0-5 noninterfering substituents, wherein two adjacent noninterfering substituents can form a fused ring of 3-8 members substituents selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, arylalkyl, acyl, aroyl, heteroaryl, NH-aroyl, halo, OR, NR₂, SR, SOR, SO₂R, OCOR, NRCOR, NRCONR₂, NRCOOR, OCONR₂, RCO, COOR, alkyl-OOCR, SO₃R, CONR₂, SO₂NR₂, NRSO₂NR₂, CN, CF₃, R₃Si, and NO₂, wherein each R is independently H, alkyl, alkenyl or aryl, and wherein two of said optional substituents on adjacent positions can be joined to form a fused, optionally substituted aromatic or nonaromatic, saturated or unsaturated ring which contains 3-8 members.

- 2-4. (canceled)
- (original): The compound of claim 1 wherein each of i and j is 0.
 - 3 6. (original): The compound of claim 2 wherein j is 0.
 - 7-8. (canceled)
- (currently amended): The compound of claim 1 wherein R⁷ is H, or is optionally substituted alkyl or acyl.
 - 10-11. (canceled)
- (previously presented): The compound of claim 1 wherein L¹ is CO.

polos