UNIVERSITY OF ABERDEEN SESSION 2014-2015

Degree Examination in EG501J Renewable Energy: Solar and Geothermal

0th December 2014 00.00–00.00

Notes: (i) Candidates ARE permitted to use an approved calculator.

- (ii) Candidates ARE permitted to use steam tables, which will be provided.
- (iii) Candidates ARE permitted to use refrigerant tables, which will be provided.
- (iv) Candidates ARE permitted to use psychrometric chart, which will be provided.
- (v) Data sheets are attached to the paper.

PLEASE NOTE THE FOLLOWING

- (i) You **must not** have in your possession any material other than that expressly permitted in the rules appropriate to this examination. Where this is permitted, such material **must not** be amended, annotated or modified in any way.
- (ii) You **must not** have in your possession any material that could be determined as giving you an advantage in the examination.
- (iii) You **must not** attempt to communicate with any candidate during the exam, either orally or by passing written material, or by showing material to another candidate, nor must you attempt to view another candidate's work.

Failure to comply with the above will be regarded as cheating and may lead to disciplinary action as indicated in the Academic Quality Handbook (www.abdn.ac.uk/registry/quality/appendix7x1.pdf) Section 4.14 and 5.

Candidates must attempt all questions.

Question 1

A binary geothermal power station is operated with brine extracted at 90°C and reinjected at 30°C. Propane (n-C₃) is used as working fluid in the Rankine cycle to produce power (W_T) in a turbine (isentropic expansion) with efficiency (η_T) of 90%. After condensated, n-C₃ is driven to a heat exchanger (with thermal efficiency of 68%) and the cycle continues. The mass flow rate of n-C₃ (\dot{m}_{C3}) is 250 kg.s⁻¹ and the heat capacity (C_p) of brine is 3565.5 J.(kg.K)⁻¹. Conditions for n-C₃ and brine flows are described in Table 1.

Table 1: Thermodynamic table of the geothermal binary cycle.

Stage	P	T	State	H	S
	(bar)	$(^{o}\mathbf{C})$		$(\mathrm{kJ.kg^{-1}})$	$(\mathrm{kJ.(kg.K})^{-1})$
1	16	50	(a)	(b)	(c)
\parallel 2	6	_	wet vapour	(d)	_
3	6		sat. liquid	(e)	_
4	16		(f)	(\mathbf{g})	_
$\ $ A	_	90	_	_	_
\parallel B	_	30	_	_	_

(a) In Table 1, determine (a)-(g).

- [7 marks]
- (b) Calculate the power produced by the turbine (W_T) in MW.
- [1 marks]
- (c) Assuming that the heat exchanger has an efficiency of 68%, calculate the mass flow rate of brine in $kg.s^{-1}$. [3 marks]
- (d) Sketch the temperature × entropy (TS) diagram for the process indicating the liquid and vapour saturated lines and each stage of the n-C₃ Rankine cycle. [4 marks]
- (e) Dry-steam, flash-steam and binary-cycle power plants are considered the three main conversion technologies in geothermal systems. Describe the flash-steam process.

 [4 marks]
- (f) Temperature gradient (∇T) between upper and deep layers of rocks (i.e., near the surface and at large depths) can lead to geothermal circulation. Define thermal buoyancy and its links to thermal convection. [6 marks]

To solve this problem, you should assume that the saturated liquid streams are incompressible, and therefore dH = VdP (where H, V and P are enthalpy, volume and pressure, respectively). Quality of the vapour is expressed as

$$x_j = \frac{\Psi_j - \Psi_f}{\Psi_q - \Psi_f}$$
 with $\Psi = \{H, S\}$

where S is the entropy. Efficiency of the turbine (η_{Turbine}) and the heat exchanger (η_{HE}) are given by,

$$\eta_{\text{Turbine}} = \frac{H_2 - H_1}{H_{2s} - H_1} \quad \text{and} \quad \eta_{\text{HE}} = \frac{\dot{Q}_{C3}}{\dot{Q}_{qf}}$$

where H_{2s} is the enthalpy of stream 2 assuming ideal turbine performance (i.e., reversible expansion). \dot{Q}_{C3} and \dot{Q}_{gf} are the heat associated with the n-C₃ and brine streams, respectively, at the heat exchanger.

Appendix A: Physical Constants and Conversion Factors

PHYSICAL CONSTANTS

```
Avogadro's number, N_{\rm A}=6.023\times 10^{26}~{\rm molecules/kgmole} Boltzmann's constant, k=1.381\times 10^{-23}~{\rm J/(molecule\cdot K)} Electron charge, e=1.602\times 10^{-19}~{\rm C} Electron mass, m_e=9.110\times 10^{-31}~{\rm kg} Faraday's constant, F=96,487~{\rm kC/kgmole} electrons =96,487~{\rm kJ/(V\cdot kgmole} electrons) Gravitational acceleration (standard), g=32.174~{\rm ft/s^2}=9.807~{\rm m/s^2} Gravitational constant, k_G=6.67\times 10^{-11}{\rm m^3/(kg\cdot s^2)} Newton's second law constant, g_c=32.174~{\rm lbm\cdot ft/(lbf\cdot s^2)}=1.0~{\rm kg\cdot m/(N\cdot s^2)} Planck's constant, \hbar=6.626\times 10^{-34}~{\rm J\cdot s/molecule} Stefan-Boltzmann constant, \sigma=0.1714\times 10^{-8}~{\rm Btu/(h\cdot ft^2\cdot R^4)}=5.670\times 10^{-8}~{\rm W/(m^2\cdot k^4)} Universal gas constant \Re=1545.35~{\rm ft\cdot lbf/(lbmole\cdot R)}=8314.3~{\rm J/(kgmole\cdot K)}=8.3143~{\rm kJ/(kgmole\cdot K)}=1.9858~{\rm kcal/(kgmole\cdot K)}=1.9858~{\rm cal/(gmole\cdot K)}=0.08314~{\rm bar\cdot m^3/(kgmole\cdot K)}=1.9858~{\rm cal/(gmole\cdot K)} Velocity of light in a vacuum, c=9.836\times 10^8~{\rm ft/s}=2.998\times 10^8~{\rm m/s}
```

UNIT DEFINITIONS

```
1 coulomb (C) = 1 A·s
                                                                       1 ohm (\Omega) = 1 \text{ V/A}
1 dyne = 1 \text{ g} \cdot \text{cm/s}^2
                                                                       1 pascal (Pa) = 1 \text{ N/m}^2
1 erg = 1 dyne·cm
                                                                       1 poundal = 1 lbm \cdot ft/s^2
1 farad (F) = 1 \text{ C/V}
                                                                       1 siemens (S) = 1 A/V
1 henry (H) = 1 \text{ Wb/A}
                                                                       1 slug = 1 lbf \cdot s^2/ft
1 hertz (Hz) = 1 cycle/s
                                                                       1 tesla (T) = 1 Wb/m^2
1 joule (J) = 1 \text{ N} \cdot \text{m}
                                                                       1 volt (V) = 1 W/A
                                                                       1 watt (W) = 1 J/s
1 lumen = 1 candela·steradian
                                                                       1 weber (Wb) = 1 V·s
1 \text{ lux} = 1 \text{ lumen/m}^2
1 newton (N) = 1 \text{ kg} \cdot \text{m/s}^2
```

CONVERSION FACTORS

Length	Energy
$1 \text{ m} = 3.2808 \text{ ft} = 39.37 \text{ in} = 10^2 \text{ cm} = 10^{10} \text{ Å}$	$1 J = 1 N \cdot m = 1 kg \cdot m^2/s^2 = 9.479 \times 10^{-4} Btu$
$1 \text{ cm} = 0.0328 \text{ ft} = 0.394 \text{ in} = 10^{-2} \text{ m} = 10^{8} \text{ Å}$	1 kJ = 1000 J = 0.9479 Btu = 238.9 cal
$1 \text{mm} = 10^{-3} \text{m} = 10^{-1} \text{cm}$	1 Btu = 1055.0 J = 1.055 kJ = 778.16 ft⋅lbf = 252 cal
1 km = 1000 m = 0.6215 miles = 3281 ft	$1 \text{ cal} = 4.186 \text{ J} = 3.968 \times 10^{-3} \text{ Btu}$
1 in = 2.540 cm = 0.0254 m	1 Cal (in food value) = $1 \text{ kcal} = 4186 \text{ J} = 3.968 \text{ Btu}$
1 ft = 12 in = 0.3048 m	1 erg = 1 dyne·cm = 1 g·cm ² /s ² = 10^{-7} J
1 mile = 5280 ft = 1609.36 m = 1.609 km	$1 \text{ eV} = 1.602 \times 10^{-19} \text{J}$

(Continued)

CONVERSION FACTORS

Area

 $1 \text{ m}^2 = 10^4 \text{cm}^2 = 10.76 \text{ ft}^2 = 1550 \text{ in}^2$ $1 \text{ ft}^2 = 144 \text{ in}^2 = 0.0929 \text{ m}^2 = 929.05 \text{ cm}^2$ $1 \text{ cm}^2 = 10^{-4} \text{ m}^2 = 1.0764 \times 10^{-3} \text{ ft}^2 = 0.155 \text{ in}^2$ $1 \text{ in}^2 = 6.944 \times 10^{-3} \text{ ft}^2 = 6.4516 \times 10^{-4} \text{ m}^2 = 6.4516 \text{ cm}^2$

Volume

$$\begin{split} 1 \text{ m}^3 &= 35.313 \text{ ft}^3 = 6.1023 \times 10^4 \text{ in}^3 = 1000 \text{ L} = 264.171 \text{ gal} \\ 1 \text{ L} &= 10^{-3} \text{m}^3 = 0.0353 \text{ ft}^3 = 61.03 \text{ in}^3 = 0.2642 \text{ gal} \\ 1 \text{ gal} &= 231 \text{ in}^3 = 0.13368 \text{ ft}^3 = 3.785 \times 10^{-3} \text{ m}^3 \\ 1 \text{ ft}^3 &= 1728 \text{ in}^3 = 28.3168 \text{ L} = 0.02832 \text{ m}^3 = 7.4805 \text{ gal} \\ 1 \text{ in}^3 &= 16.387 \text{ cm}^3 = 1.6387 \times 10^{-5} \text{ m}^3 = 4.329 \times 10^{-3} \text{ gal} \end{split}$$

Mass

1 kg = $1000 \, \text{g}$ = $2.2046 \, \text{lbm}$ = $0.0685 \, \text{slug}$ 1 lbm = $453.6 \, \text{g}$ = $0.4536 \, \text{kg}$ = $3.108 \times 10^{-2} \, \text{slug}$ 1 slug = $32.174 \, \text{lbm}$ = $1.459 \times 10^4 \, \text{g}$ = $14.594 \, \text{kg}$

Force

1 N = 10^5 dyne = $1 \text{ kg} \cdot \text{m/s}^2 = 0.225 \text{ lbf}$ 1 lbf = 4.448 N = 32.174 poundals1 poundal = $0.138 \text{ N} = 3.108 \times 10^{-2} \text{ lbf}$

Power

(Continued)

1 W = 1 J/s = 1 kg·m²/s³ = 3.412 Btu/h = 1.3405×10^{-3} hp 1 kW = 1000 W = 3412 Btu/h = 737.3 ft·lbf/s = 1.3405 hp 1 Btu/h = 0.293 W = 0.2161 ft·lbf/s = 3.9293×10^{-4} hp 1 hp = 550 ft·lbf/s = 33000 ft·lbf/min = 2545 Btu/h = 746 W

Pressure

$$\begin{split} 1 & Pa = 1 \text{ N/m}^2 = 1 \text{ kg/(m \cdot s^2)} = 1.4504 \times 10^{-4} \text{ lbf/in}^2 \\ 1 & \text{ lbf/in}^2 = 6894.76 \text{ Pa} = 0.068 \text{ atm} = 2.036 \text{ in Hg} \\ 1 & \text{ atm} = 14.696 \text{ lbf/in}^2 = 1.01325 \times 10^5 \text{ Pa} \\ & = 101.325 \text{ kPa} = 760 \text{ mm Hg} \\ 1 & \text{ bar} = 10^5 \text{ Pa} = 0.987 \text{ atm} = 14.504 \text{ lbf/in}^2 \\ 1 & \text{ dyne/cm}^2 = 0.1 \text{ Pa} = 10^{-6} \text{ bar} = 145.04 \times 10^{-7} \text{ lbf/in}^2 \\ 1 & \text{ in Hg} = 3376.8 \text{ Pa} = 0.491 \text{ lbf/in}^2 \\ 1 & \text{ in H}_2O = 248.8 \text{ Pa} = 0.0361 \text{ lbf/in}^2 \end{split}$$

MISCELLANEOUS UNIT CONVERSIONS

Specific Heat Units

$$\label{eq:lbm-R} \begin{split} 1 & Btu/(lbm \cdot {}^oF) = 1 \, Btu/(lbm \cdot R) \\ 1 & kJ/(kg \cdot K) = 0.23884 \, Btu/(lbm \cdot R) = 185.8 \, ft \cdot lbf/(lbm \cdot R) \end{split}$$

 $1 Btu/(lbm \cdot R) = 778.16 \text{ ft} \cdot lbf/(lbm \cdot R) = 4.186 \text{ kJ/(kg} \cdot K)$

Energy Density Units

1 kJ/kg = $1000 \text{ m}^2/\text{s}^2 = 0.4299 \text{ Btu/lbm}$ 1 Btu/lbm = $2.326 \text{ kJ/kg} = 2326 \text{ m}^2/\text{s}^2$

Energy Flux

1 W/m² = 0.317 Btu/(h·ft²) 1 Btu/(h·ft²) = 3.154 W/m²

Heat Transfer Coefficient

1 W/($m^2 \cdot K$) = 0.1761 Btu/($h \cdot ft^2 \cdot R$) 1 Btu/($h \cdot ft^2 \cdot R$) = 5.679 W/($m^2 \cdot K$)

Thermal Conductivity

 $1 \text{ W/(m\cdot K)} = 0.5778 \text{ Btu/(h\cdot ft\cdot R)}$ $1 \text{ Btu/(h\cdot ft\cdot R)} = 1.731 \text{ W/(m\cdot K)}$

Temperature

$$\begin{split} &T(^{\circ}\text{F}) = \frac{9}{5}\,T(^{\circ}\text{C}) + 32 = T(\text{R}) - 459.67 \\ &T(^{\circ}\text{C}) = \frac{5}{9}\,[T(^{\circ}\text{F}) - 32] = T(\text{K}) - 273.15 \\ &T(\text{R}) = \frac{9}{5}\,T(\text{K}) = (1.8)T(\text{K}) = T(^{\circ}\text{F}) + 459.67 \\ &T(\text{K}) = \frac{5}{9}\,T(\text{R}) = T(\text{R})/1.8 = T(^{\circ}\text{C}) + 273.15 \end{split}$$

Density

 $\begin{array}{l} 1 \text{ lbm/ft}^3 = 16.0187 \text{ kg/m}^3 \\ 1 \text{ kg/m}^3 = 0.062427 \text{ lbm/ft}^3 = 10^{-3} \text{ g/cm}^3 \\ 1 \text{ g/cm}^3 = 1 \text{ kg/L} = 62.4 \text{ lbm/ft}^3 = 10^3 \text{ kg/m}^3 \\ \textbf{Viscosity} \\ 1 \text{ Pa} \cdot \text{s} = 1 \text{ N} \cdot \text{s/m}^2 = 1 \text{ kg/(m} \cdot \text{s}) = 10 \text{ poise} \\ \end{array}$

1 poise = 1 dyne·s/cm² = 1 g/(cm·s) = 0.1 Pa·s 1 poise = 2.09×10^{-3} lbf·s/ft² = 6.72×10^{-2} lbm/(ft·s) 1 centipoise = 0.01 poise = 10^{-3} Pa·s 1 lbf·s/ft² = 1 slug/(ft·s) = 47.9 Pa·s = 479 poise 1 stoke = 1 cm²/s = 10^{-4} m²/s = 1.076×10^{-3} ft²/s 1 centistoke = 0.01 stoke = 10^{-6} m²/s = 1.076×10^{-5} ft²/s 1 m²/s = 10^4 stoke = 10^6 centistoke = 10.76 ft²/s

748 Tables in SI Units

 TABLE A-17
 Properties of Saturated Propane (Liquid-Vapor): Pressure Table

		Specific Volume m ³ /kg		Internal Energy kJ/kg		Enthalpy kJ/kg			Entropy kJ/kg · K		
		Sat.	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.	Sat.	
Press. bar	Temp. °C	Liquid $v_{ m f} imes 10^3$	Vapor	Liquid	Vapor	Liquid	Evap.	Vapor	Liquid	Vapor	Press. bar
			v_{g}	u_{f}	$u_{\rm g}$	$h_{ m f}$	$h_{ m fg}$	$h_{ m g}$	$s_{ m f}$	s_{g}	
0.05	-93.28	1.570	6.752	-114.6	326.0	-114.6	474.4	359.8	-0.556	2.081	0.05
0.10	-83.87	1.594	3.542	-95.1	335.4	-95.1	465.9	370.8	-0.450	2.011	0.10
0.25 0.50	-69.55 -56.93	1.634 1.672	1.513 0.7962	-64.9 -37.7	350.0 363.1	-64.9 -37.6	452.7 440.5	387.8 402.9	-0.297 -0.167	1.927 1.871	0.25 0.50
0.30	-36.93 -48.68	1.698	0.7902	-37.7 -19.6	371.8	-37.0 -19.5	432.3	412.8	-0.167 -0.085	1.841	0.30
1.00	-42.38	1.719	0.4185	-5.6	378.5	-5.4	425.7	420.3	-0.023	1.822	1.00
2.00 3.00	-25.43 -14.16	1.781 1.826	0.2192 0.1496	33.1 59.8	396.6 408.7	33.5 60.3	406.9 393.3	440.4 453.6	0.139 0.244	1.782 1.762	2.00 3.00
4.00	-14.16 -5.46	1.865	0.1490	80.8	418.0	81.5	393.3	463.5	0.244	1.762	4.00
5.00	1.74	1.899	0.09172	98.6	425.7	99.5	372.1	471.6	0.324	1.743	5.00
6.00	7.93	1.931 1.960	0.07680	114.2 128.2	432.2	115.3	363.0	478.3 484.2	0.446	1.737	6.00
7.00 8.00	13.41 18.33	1.989	0.06598 0.05776	128.2	438.0 443.1	129.6 142.6	354.6 346.7	484.2	0.495 0.540	1.733 1.729	7.00 8.00
9.00	22.82	2.016	0.05770	152.9	447.6	154.7	339.1	493.8	0.580	1.726	9.00
10.00	26.95	2.043	0.03125	164.0	451.8	166.1	331.8	497.9	0.618	1.723	10.00
	30.80							501.5			11.00
11.00 12.00	34.39	2.070 2.096	0.04174 0.03810	174.5 184.4	455.6 459.1	176.8 187.0	324.7 317.8	504.8	0.652 0.685	1.721 1.718	12.00
13.00	37.77	2.122	0.03499	193.9	462.2	196.7	311.0	507.7	0.083	1.716	13.00
14.00	40.97	2.148	0.03433	203.0	465.2	206.0	304.4	510.4	0.745	1.714	14.00
15.00	44.01	2.174	0.02997	211.7	467.9	215.0	297.9	512.9	0.772	1.712	15.00
	46.89	2.200			470.4	223.6	291.4		0.799		16.00
16.00 17.00	49.65	2.200	0.02790 0.02606	220.1 228.3	470.4	232.0	285.0	515.0 517.0	0.799	1.710 1.707	17.00
18.00	52.30	2.253	0.02441	236.2	474.9	240.2	278.6	517.0	0.824	1.707	18.00
19.00	54.83	2.280	0.02292	243.8	476.9	248.2	272.2	520.4	0.873	1.703	19.00
20.00	57.27	2.308	0.02157	251.3	478.7	255.9	265.9	521.8	0.896	1.700	20.00
22.00	61.90	2.364	0.01021	265.0	481.7	271.0	253.0	524.0	0.939	1.695	22.00
22.00 24.00	66.21	2.304	0.01921 0.01721	265.8 279.7	481.7	271.0 285.5	233.0	525.6	0.939	1.688	24.00
26.00	70.27	2.424	0.01721	293.1	486.2	299.6	226.9	526.5	1.021	1.681	26.00
28.00	74.10	2.555	0.01349	306.2	487.5	313.4	213.2	526.6	1.060	1.673	28.00
30.00	77.72	2.630	0.01263	319.2	488.1	327.1	198.9	526.0	1.097	1.664	30.00
35.00	86.01	2.862	0.009771	351.4	486.3	361.4	159.1	520.5	1.190		35.00
40.00	93.38	3.279	0.009771	351.4	486.3	401.0	102.3	520.5	1.190	1.633 1.574	40.00
42.48	95.38	4.535	0.007131	434.9	434.9	454.2	0.0	454.2	1.437	1.437	42.48
12.10	70.70	1.555	0.001333	131.7	15 1.7	13 1.2	0.0	13 1.2	1.157	1.157	12.10

TABLE A-18 Properties of Superheated Propane

IABLI	E A-10 FI	opernes	or Superi	neated Prop	ane				
$^{T}_{^{\circ}\mathrm{C}}$	v m³/kg	и kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K		v m³/kg	и kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K
p = 0.05 bar = 0.005 MPa $(T_{\text{sat}} = -93.28^{\circ}\text{C})$						p = 0.1 bar = 0.01 MPa $(T_{\text{sat}} = -83.87^{\circ}\text{C})$			
Sat90	6.752 6.877	326.0 329.4	359.8 363.8	2.081 2.103		3.542	367.3	370.8	2.011
-80	7.258	339.8	376.1	2.169		3.617	339.5	375.7	2.037
-70	7.639	350.6	388.8	2.233		3.808	350.3	388.4	2.101
-60	8.018	361.8	401.9	2.296		3.999	361.5	401.5	2.164
-50	8.397	373.3	415.3	2.357		4.190	373.1	415.0	2.226
-40	8.776	385.1	429.0	2.418		4.380	385.0	428.8	2.286
-30	9.155	397.4	443.2	2.477		4.570	397.3	443.0	2.346
-20	9.533	410.1	457.8	2.536		4.760	410.0	457.6	2.405
-10	9.911	423.2	472.8	2.594		4.950	423.1	472.6	2.463
0	10.29	436.8	488.2	2.652		5.139	436.7	488.1	2.520
10	10.67	450.8	504.1	2.709		5.329	450.6	503.9	2.578
20	11.05	270.6	520.4	2.765		5.518	465.1	520.3	2.634
	p = 0.5 bar = 0.05 MPa $(T_{\text{sat}} = -56.93^{\circ}\text{C})$					p		r = 0.1 M -42.38°C	
Sat. -50 -40	0.796 0.824 0.863	363.1 371.3 383.4	402.9 412.5 426.6	1.871 1.914 1.976		0.4185	378.5 381.5	420.3 423.8	1.822 1.837
-30	0.903	396.0	441.1	2.037		0.4439	394.2	438.6	1.899
-20	0.942	408.8	455.9	2.096		0.4641	407.3	453.7	1.960
-10	0.981	422.1	471.1	2.155		0.4842	420.7	469.1	2.019
0	1.019	435.8	486.7	2.213		0.5040	434.4	484.8	2.078
10	1.058	449.8	502.7	2.271		0.5238	448.6	501.0	2.136
20	1.096	464.3	519.1	2.328		0.5434	463.3	517.6	2.194
30	1.135	479.2	535.9	2.384		0.5629	478.2	534.5	2.251
40	1.173	494.6	553.2	2.440		0.5824	493.7	551.9	2.307
50	1.211	510.4	570.9	2.496		0.6018	509.5	569.7	2.363
60	1.249	526.7	589.1	2.551		0.6211	525.8	587.9	2.419
		$= 2.0 \text{ bar}$ $(T_{\text{sat}} = -$				p		r = 0.3 N -14.16°C	
Sat. -20 -10	0.2192 0.2251 0.2358	396.6 404.0 417.7	440.4 449.0 464.9	1.782 1.816 1.877		0.1496 0.1527	408.7 414.7	453.6 460.5	1.762 1.789
0	0.2463	431.8	481.1	1.938		0.1602	429.0	477.1	1.851
10	0.2566	446.3	497.6	1.997		0.1674	443.8	494.0	1.912
20	0.2669	461.1	514.5	2.056		0.1746	458.8	511.2	1.971
30	0.2770	476.3	531.7	2.113		0.1816	474.2	528.7	2.030
40	0.2871	491.9	549.3	2.170		0.1885	490.1	546.6	2.088
50	0.2970	507.9	567.3	2.227		0.1954	506.2	564.8	2.145
60	0.3070	524.3	585.7	2.283		0.2022	522.7	583.4	2.202
70	0.3169	541.1	604.5	2.339		0.2090	539.6	602.3	2.258
80	0.3267	558.4	623.7	2.394		0.2157	557.0	621.7	2.314
90	0.3365	576.1	643.4	2.449		0.2223	574.8	641.5	2.369

 TABLE A-18 (Continued)

TABLE	A-18 (C	Continued	<i>(</i>)					
<i>T</i>	v	и	<i>h</i>	s	v	и	<i>h</i>	s
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
p = 4.0 bar = 0.4 MPa $(T_{\text{sat}} = -5.46^{\circ}\text{C})$					р		r = 0.5 M 1.74°C)	MPa
Sat.	0.1137	418.0	463.5	1.751	0.09172	425.7	471.6	1.743
0 10	0.1169 0.1227	426.1 441.2	472.9 490.3	1.786 1.848	0.09577	438.4	486.3	1.796
20	0.1283	456.6	507.9	1.909	0.1005	454.1	504.3	1.858
30	0.1338	472.2	525.7	1.969	0.1051	470.0	522.5	1.919
40	0.1392	488.1	543.8	2.027	0.1096	486.1	540.9	1.979
50	0.1445	504.4	562.2	2.085	0.1140	502.5	559.5	2.038
60	0.1498	521.1	581.0	2.143	0.1183	519.4	578.5	2.095
70	0.1550	538.1	600.1	2.199	0.1226	536.6	597.9	2.153
80	0.1601	555.7	619.7	2.255	0.1268	554.1	617.5	2.209
90	0.1652	573.5	639.6	2.311	0.1310	572.1	637.6	2.265
100	0.1703	591.8	659.9	2.366	0.1351	590.5	658.0	2.321
110	0.1754	610.4	680.6	2.421	0.1392	609.3	678.9	2.376
p = 6.0 bar = 0.6 MPa $(T_{\text{sat}} = 7.93^{\circ}\text{C})$					p		r = 0.7 N 13.41°C)	
Sat. 10 20	0.07680 0.07769 0.08187	432.2 435.6 451.5	478.3 482.2 500.6	1.737 1.751 1.815	0.06598	438.0 448.8	484.2 496.7	1.733 1.776
30	0.08588	467.7	519.2	1.877	0.07210	465.2	515.7	1.840
40	0.08978	484.0	537.9	1.938	0.07558	481.9	534.8	1.901
50	0.09357	500.7	556.8	1.997	0.07896	498.7	554.0	1.962
60	0.09729	517.6	576.0	2.056	0.08225	515.9	573.5	2.021
70	0.1009	535.0	595.5	2.113	0.08547	533.4	593.2	2.079
80	0.1045	552.7	615.4	2.170	0.08863	551.2	613.2	2.137
90	0.1081	570.7	635.6	2.227	0.09175	569.4	633.6	2.194
100	0.1116	589.2	656.2	2.283	0.09482	587.9	654.3	2.250
110	0.1151	608.0	677.1	2.338	0.09786	606.8	675.3	2.306
120	0.1185	627.3	698.4	2.393	0.1009	626.2	696.8	2.361
$p = 8.0 \text{ bar} = 0.8 \text{ MPa}$ $(T_{\text{sat}} = 18.33^{\circ}\text{C})$						= 9.0 ba	r = 0.9 N 22.82°C)	
Sat. 20 30	0.05776 0.05834 0.06170	443.1 445.9 462.7	489.3 492.6 512.1	1.729 1.740 1.806	0.05129	447.2 460.0	493.8 508.2	1.726 1.774
40	0.06489	479.6	531.5	1.869	0.05653	477.2	528.1	1.839
50	0.06796	496.7	551.1	1.930	0.05938	494.7	548.1	1.901
60	0.07094	514.0	570.8	1.990	0.06213	512.2	568.1	1.962
70	0.07385	531.6	590.7	2.049	0.06479	530.0	588.3	2.022
80	0.07669	549.6	611.0	2.107	0.06738	548.1	608.7	2.081
90	0.07948	567.9	631.5	2.165	0.06992	566.5	629.4	2.138
100	0.08222	586.5	652.3	2.221	0.07241	585.2	650.4	2.195
110	0.08493	605.6	673.5	2.277	0.07487	604.3	671.7	2.252
120	0.08761	625.0	695.1	2.333	0.07729	623.7	693.3	2.307
130	0.09026	644.8	717.0	2.388	0.07969	643.6	715.3	2.363
140	0.09289	665.0	739.3	2.442	0.08206	663.8	737.7	2.418

 TABLE A-18 (Continued)

IABLE A-18 (Continued)							
T	v	и	<i>h</i>	s	$\begin{array}{cccc} v & u & h & s \\ { m m}^3/{ m kg} & { m kJ/kg} & { m kJ/kg} & { m kJ/kg} \cdot { m K} \end{array}$		
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K			
p = 10.0 bar = 1.0 MPa					p = 12.0 bar = 1.2 MPa		
$(T_{\text{sat}} = 26.95^{\circ}\text{C})$					$(T_{\text{sat}} = 34.39^{\circ}\text{C})$		
Sat. 30	0.04606 0.04696	451.8 457.1	497.9 504.1	1.723 1.744	0.03810 459.1 504.8 1.718		
50 60	0.04980 0.05248 0.05505	474.8 492.4 510.2	524.6 544.9 565.2	1.810 1.874 1.936	0.03957 469.4 516.9 1.757 0.04204 487.8 538.2 1.824 0.04436 506.1 559.3 1.889		
70	0.05752	528.2	585.7	1.997	0.04657 524.4 580.3 1.951 0.04869 543.1 601.5 2.012 0.05075 561.8 622.7 2.071		
80	0.05992	546.4	606.3	2.056			
90	0.06226	564.9	627.2	2.114			
100	0.06456	583.7	648.3	2.172	0.05275 580.9 644.2 2.129 0.05470 600.4 666.0 2.187		
110	0.06681	603.0	669.8	2.228			
120	0.06903	622.6	691.6	2.284	0.05662 620.1 688.0 2.244 0.05851 640.1 710.3 2.300 0.06037 660.6 733.0 2.355		
130	0.07122	642.5	713.7	2.340			
140	0.07338	662.8	736.2	2.395			
		14.0 bar $(T_{\text{sat}} = 4)$	r = 1.4 M 40.97°C)	МРа	p = 16.0 bar = 1.6 MPa $(T_{\text{sat}} = 46.89^{\circ}\text{C})$		
Sat. 50 60	0.03231 0.03446 0.03664	465.2 482.6 501.6	510.4 530.8 552.9	1.714 1.778 1.845	0.02790 470.4 515.0 1.710 0.02861 476.7 522.5 1.733 0.03075 496.6 545.8 1.804		
70	0.03869	520.4	574.6	1.909	0.03270 516.2 568.5 1.871 0.03453 535.7 590.9 1.935 0.03626 555.2 613.2 1.997		
80	0.04063	539.4	596.3	1.972			
90	0.04249	558.6	618.1	2.033			
100	0.04429	577.9	639.9	2.092	0.03792 574.8 635.5 2.058 0.03952 594.7 657.9 2.117		
110	0.04604	597.5	662.0	2.150			
120	0.04774	617.5	684.3	2.208	0.04107 614.8 680.5 2.176 0.04259 635.3 703.4 2.233 0.04407 656.0 726.5 2.290 0.04553 677.1 749.9 2.346 0.04696 698.5 773.6 2.401		
130	0.04942	637.7	706.9	2.265			
140	0.05106	658.3	729.8	2.321			
150	0.05268	679.2	753.0	2.376			
160	0.05428	700.5	776.5	2.431			
		= 18.0 bar $(T_{\text{sat}} = 5)$	$r = 1.8 \text{ M}$ 52.30°C	МРа	p = 20.0 bar = 2.0 MPa $(T_{\text{sat}} = 57.27^{\circ}\text{C})$		
Sat. 60 70	0.02441 0.02606 0.02798	474.9 491.1 511.4	518.8 538.0 561.8	1.705 1.763 1.834	0.02157 478.7 521.8 1.700 0.02216 484.8 529.1 1.722 0.02412 506.3 554.5 1.797		
80	0.02974	531.6	585.1	1.901	0.02585 527.1 578.8 1.867 0.02744 547.6 602.5 1.933 0.02892 568.1 625.9 1.997		
90	0.03138	551.5	608.0	1.965			
100	0.03293	571.5	630.8	2.027			
110	0.03443	591.7	653.7	2.087	0.03033 588.5 649.2 2.059 0.03169 609.2 672.6 2.119 0.03299 630.0 696.0 2.178		
120	0.03586	612.1	676.6	2.146			
130	0.03726	632.7	699.8	2.204			
140	0.03863	653.6	723.1	2.262	0.03426 651.2 719.7 2.236		
150	0.03996	674.8	746.7	2.318	0.03550 672.5 743.5 2.293		
160	0.04127	696.3	770.6	2.374	0.03671 694.2 767.6 2.349		
170	0.04256	718.2	794.8	2.429	0.03790 716.2 792.0 2.404 0.03907 738.5 816.6 2.459		
180	0.04383	740.4	819.3	2.484			