Solutions to Test 1

1)

- a) The power set of *B* is $\{\phi, \{2\}, \{3\}, \{6\}, \{2,3\}, \{2,6\}, \{3,6\}, \{2,3,6\}\}\}$.
- b) $B \times (A \cap C) = \{2, 3, 6\} \times \{2, 5\} = \{(2, 2), (2, 5), (3, 2), (3, 5), (6, 2), (6, 5)\}.$
- c) $|C \cup D| = |C| + |D| |C \cap D| = 5 + 5 2 = 8$.

2)

- a) Yes. Assume $x \in A$, then let x = 8p + 7 for $\forall p \in \mathbb{Z}$. Rewrite it as x = 4(2p + 1) + 3 so $x \mod 4 = 3$ always holds and $x \in B$. Since $x \in A$ implies $x \in B$, it follows that $A \subseteq B$.
- b) No. To disprove this statement, we need to show $\exists x \in B$ and this $x \notin A$. It is easy to see that $3 \in B$ but $3 \notin A$, which is a counterexample.

3)

- a) $A \cup B = \{x \in \mathbb{R} : 0 \le x \le 1 \text{ or } 3 < x \le 4\}.$
- b) They are equal. We have $|A| \le |A \cup B|$ because there exists an injection f(x) = x from A to $A \cup B$, and $|A \cup B| \le |A|$ because there exists an injection g(x) = x/4 from $A \cup B$ to A. That is, $|A| = |A \cup B|$.

Alternative solution: $|A| = |A \cup B|$ because there exists a bijection f from A to $A \cup B$ defined by f(x) = 2x when $0 \le x \le 0.5$ and f(x) = 2x + 2 when $0.5 < x \le 1$.

4)

- a) p = 1, q = 7.
- b) Such values cannot be found since both (1,5) and (3,5) are in f, which cannot be injective.
- c) p = 4, q = 7.

5)

- a) f is injective: assume $x_1, x_2 \in \mathbb{Z}$ and $f(x_1) = f(x_2) = 2x_1 = 2x_2 \rightarrow x_1 = x_2$. f is not surjective: for example, $y = 3 \in \mathbb{Z}$ but there does not exist $x \in \mathbb{Z}$ such that f(x) = 3.
- b) f is not injective: we can find f(4) = 4/2 = 2 = f(5) = (5-1)/2, but $4 \ne 5$. f is surjective: for any $y \in \mathbb{Z}$, there exists $x = 2y \in \mathbb{Z}$ such that f(x) = 2y/2 = y.

- 6) a) $f(x) = x^2 + 4x 3 = (x + 2)^2 7 \in (-3, 2]$, so the co-domain *Y* of the function *f* is $Y = \{y \in \mathbb{R}: -3 < y \le 2\}$.
 - b) g is injective: $g(z_1) = 1/z_1 = g(z_2) = 1/z_2 \rightarrow z_1 = z_2$. g is surjective: For any $x \in \mathbb{R}$ and $0 < x \le 1$, there exists $z \in \mathbb{R}$ and $z \ge 1$ such that g(z) = 1/z = x. Hence, g is a bijection. Let $g(z) = 1/z = x \rightarrow z = 1/x$, so its inverse function $g^{-1}(x) = 1/x$.
 - c) $f \circ g = f(g(z)) = f(1/z) = (1 + 4z 3z^2)/z^2$. $f \circ g$ is an injection since $g: \mathbb{Z} \to X$ and $f: X \to Y$ are both injections.
- 7) Let these two integers be p and q, respectively. Suppose both p and q are not less than 50, then their sum $p + q \ge 50 + 50 = 100$. Hence, the statement is proved.
- 8) a) T is not a partial order relation since it is not antisymmetric. Consider $sTt \leftrightarrow l(s) \le l(t)$ and $tTs \leftrightarrow l(t) \le l(s)$, we have l(s) = l(t). Let t = 0 and s = 1, it is easy to see l(s) = l(t) = 1 but $0 \ne 1$.
 - b) R is reflexive: $\forall x \in \mathbb{R}_+$, xRx is true since $x^2 \le x^2$. R is antisymmetric: $\forall x, y \in \mathbb{R}_+$, $xRy \land yRx \rightarrow x^2 = y^2 \rightarrow x = y$. R is transitive: $\forall x, y, z \in \mathbb{R}_+$, $xRy \land yRz \leftrightarrow x^2 \le y^2 \le z^2 \rightarrow xRz$.
- 9)
 a) R is reflexive: $\forall x \in \mathbb{B}^{\infty}$, xRx is true since g(x) = g(x). R is symmetric: $\forall x, y \in \mathbb{B}^{\infty}$, $xRy \to g(x) = g(y) \to yRx$. R is transitive: $\forall x, y, z \in \mathbb{B}^{\infty}$, $xRy \land yRz \to g(x) = g(y) = g(z) \to xRz$.
 So R is an equivalence relation and the number of its distinct equivalence classes is 8.

List them: [000...], [001...], [010...], [011...], [100...], [101...], [110...], [111...].

b) S is reflexive: $\forall x \in \mathbb{B}^{\infty}$, xSx is true since $g(x) \leq g(x)$. S is not symmetric: This can be proved by giving a counterexample. Let x be an infinite string starts with 000 while y starts with 001. Then $0 = g(x) \leq g(y) = 1$ and xSy is true. On the other hand, we do not have ySx since $g(y) \leq g(x)$ is false. S is transitive: $\forall x, y, z \in \mathbb{B}^{\infty}$, $xSy \land ySz \rightarrow g(x) \leq g(y) \leq g(z) \rightarrow xSz$. S is not antisymmetric: $\forall x, y \in \mathbb{B}^{\infty}$, $xSy \land ySx \rightarrow g(x) = g(y) \Rightarrow x = y$ by giving a counterexample g(x) = g(y) = 0 but x = 0000 ... y = 0000 ... y = 0000 ...

So *S* is neither an equivalence relation nor a partial order.