Schedule

A week-by-week breakdown of the material.

Week 1 (01/05-01/09)

- Day 1
 - Numbers: Rationals, Reals, Complex¹
 - Basic proof techniques: Direct²
 - Assignment 1³
- Day 2
 - Basic proof techniques: Indirect⁴
 - Square root of 2 is irrational⁵
- Day 3
 - Quantifiers⁶
 - Assignment 2⁷
- Day 4
 - Principle of Mathematical Induction⁸

Week 2 (01/12-01/16)

- Day 1
 - Strong induction⁹
 - Well Ordering Principle¹⁰
- Day 2
 - Fibonnaci Numbers¹¹
- Day 3
 - Divisibility¹²

¹notes/numbers_intro.html

²notes/proofs_basic.html

³assignments/1.html

⁴notes/proofs_basic.html

⁵notes/irrationality_of_sqrt2.html

⁶notes/proofs_quantifiers.html

⁷assignments/2.html

⁸notes/proofs_induction.html

⁹notes/proofs_strong_induction.html

¹⁰notes/proofs_well_ordering.html

¹¹notes/numbers_fibonacci.html

¹²notes/numbers_divisibility.html

- Prime and Composite Numbers¹³
- Day 4
 - Prime Factorization: Existence¹⁴

Week 3 (01/19-01/23)

- Day 1
 - Infinitude of Primes¹⁵
 - The Prime Number Theorem¹⁶
- Day 2
 - Common Divisors¹⁷
- Day 3
 - The Division Theorem¹⁸
- Day 4
 - Euclidean Division Algorithm¹⁹

Week 4 (01/26-01/30)

- Day 1
 - GCD via Euclidean Algorithm²⁰
- Day 2
 - Diophantine Equations²¹
- Day 3
 - Euclidean Division and Diophantine Equations²²
- Day 4
 - Other Diophantine Equations²³
 - Diophantine Equations: Finding all solutions²⁴

¹³notes/primes_intro.html

¹⁴notes/primes_factorization_existence.html

¹⁵notes/primes_infinitude.html

¹⁶notes/primes_theorem.html

¹⁷notes/numbers_gcd.html

¹⁸notes/numbers division theorem.html

¹⁹notes/numbers_euclidean.html

²⁰notes/numbers_gcd_compute.html

²¹notes/equations diophantine intro.html

²²notes/equations_diophantine_and_euclidean.html

²³notes/equations_diophantine_other.html

²⁴notes/equations_diophantine_all_solutions.html

Week 5 (02/02-02/06)

- Day 1
 - Fundamental Theorem of Arithmetic²⁵
- Day 2
 - Finding all Divisors²⁶
- Day 3
 - Modular Arithmetic and Congruences²⁷
- Day 4
 - Arithmetic with Congruences²⁸
 - Divisibility Tests²⁹

Week 6 (02/09-02/13)

- Day 1
 - Chinese Remainder Theorem³⁰
- Day 2
 - Congruence Classes as a Number System³¹
- Day 3
 - Zn as a Ring³²
- Day 4
 - Multiplicative Inverses³³
 - Multiplicative Cancellation³⁴

²⁵notes/numbers fundamental theorem.html

 $^{^{26}}$ notes/numbers_all_divisors.html

²⁷notes/congruence intro.html

²⁸notes/congruence_arithmetic.html

²⁹notes/numbers_divisibility_tests.html

³⁰notes/congruence_chinese_remainder.html

³¹notes/congruence_system.html

³²notes/congruence_ring.html

³³notes/congruence_multiplicative_inverses.html

³⁴notes/congruence multiplicative cancellation.html

Week 7 (02/16-02/20)

- Day 1
 - Wilson's Theorem³⁵
- Day 2
 - Basics of Encryption³⁶
- Day 3
 - Encryption via Multiplication³⁷
- Day 4
 - Fermat's Little Theorem³⁸

Week 8 (02/23-02/27)

BREAK

Week 9 (03/02-03/06)

- Day 1
 - Reduced Residues and Euler's phi³⁹
- Day 2
 - Euler's Theorem⁴⁰
- Day 3
 - Fast exponentiation⁴¹
- Day 4
 - Encryption via Exponentiation 42

³⁵notes/congruence_wilsons.html

³⁶notes/encryption_basic.html

³⁷notes/encryption_mult.html

³⁸notes/congruence_fermats.html

³⁹notes/residues_basics.html

⁴⁰notes/residues_eulers_theorem.html

⁴¹notes/residues_exponentation.html

⁴²notes/encryption_exp.html

Week 10 (03/09-03/13)

- Day 1
 - Public Keys and RSA⁴³
- Day 2
 - Order of Elements in Zn⁴⁴
- Day 3
 - Polynomials over Zn⁴⁵
- Day 4
 - Primitive Roots⁴⁶

Week 11 (03/16-03/20)

- Day 1
 - Primitive Root Theorem⁴⁷
- Day 2
 - Applications of Primitive Roots: Diffie-Hellman protocol⁴⁸
- Day 3
 - Congruential Random Number Generators⁴⁹
- Day 4

Week 12 (03/23-03/27)

- Day 1
 - Quadratic Residues⁵⁰
- Day 2
 - The Legendre Symbol⁵¹
- Day 3

⁴³notes/encryption_rsa.html

⁴⁴notes/residues_order.html

⁴⁵notes/residues_polynomials.html

⁴⁶notes/residues_primitive_roots.html

⁴⁷notes/residues_primitive_root_theorem.html

⁴⁸notes/encryption_diffie_hellman.html

⁴⁹notes/numbers random.html

⁵⁰notes/residues_quadratic.html

⁵¹notes/residues_legendre.html

- Euler's Identity⁵²
- Day 4
 - Properties of Legendre symbol⁵³

Week 13 (03/30-04/03)

- Day 1
 - Law of Quadratic Reciprocity⁵⁴
- Day 2
 - Gauss's Lemma⁵⁵
- Day 3
 - **-** []
- Day 4

Week 14 (04/06-04/10)

- Day 1
- Day 2
- Day 3
- Day 4

⁵²notes/residues_eulers_identity.html

⁵³notes/residues_legendre_properties.html

⁵⁴notes/residues_reciprocity.html

⁵⁵notes/residues_gauss_lemma.html