

ATLAS Note

EXOT-2018-XX

October 22, 2018

EXOT group text snippets for INT notes

ATLAS EXOT Group

- This note contains text snippets and tables that should be included in supporting notes from the EXOT group.
- The templates are in American English. Some adaption toBritish English is therefore required.
- ⁷ 2018-10-22: This file is very much a work in progress (WIP) and is expected to be updated
- regularly. Bachwards incompatible changes may be made as the examples develop.

© 2018 CERN for the benefit of the ATLAS Collaboration.

⁹ Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

10 Contents

11	1	Exec	cutive Summary	3
12		1.1	Target	3
13		1.2	Context	3
14		1.3	Milestones	3
15	2	Obje	ect selection	5
16		2.1	Electron selection	6
17		2.2	Photon selection	7
18		2.3	Muon selection	8
19		2.4	Tau selection	Ç
20		2.5	Small-R jet selection	10
21		2.6	Large-R jet selection	11
22		2.7	MET selection	11
23		2.8	Jet flavor tagging selection	12
24		2.9	Tracks selection	13
25		2.10	Overlap Removal	14
26	3	Even	nt selection	15
27		3.1	Event cleaning	16

28 1 Executive Summary

- This section, ideally 2-pages (max), should be placed at the beginning of the internal note. It should give a high-level overview of the analysis including (but not limited to):
- physics target and the general characteristics of the signal;
- analysis strategy;
- general characteristics of the control, validation, and signal regions;
- background estimation strategy overview;
- highlight major or most important points of the analysis;
- team overview task list;
- list of all critical tasks, who is responsible for each, and what else they are working on outside of this analysis.
- split as in the subsections below.

40 **1.1 Target**

O(1 paragraph) Is this a new analysis? If not, what are the main improvements expected with respect to the previous version? What is the target publication date / conference?

43 **1.2 Context**

- Motivate this analysis in 1 paragraph: why is this signature interesting? Which kind of models are you probing?
- 46 How is the analysis done is 1 paragraph: what are the main BG processes and how do you estimate them
- $_{47}$ (are they MC- or data-driven, what is the general idea of the control regions, ...), general characteristics of
- the PL fit (which distribution, binned?, ...)

49 1.3 Milestones

- Table giving a factual list of who is working on what and what else they do; the idea is to show how the team can / does progress.
- The following table summarizes the tasks to be worked on by analysis team. This is not a complete analysis
- outline but only an overview of the further steps to be taken as of the time of writing. Details are not
- provided here but in the dedicated sections throughout this note. Tasks which are based on established
- techniques and straightforward to achieve are marked green in the table. Tasks which require new work are
- marked red. Concerning the involved people, the responsible student supervisors and analysis coordinators
- are already mentioned in the list of contributions above, which shall not be repeated here. A fair overview of
- all single tasks including past work and of all relevant team members is only given in the list of contributions
- above! It is also worth noting that some of the tasks listed below are being worked on in parallel.

Table 1: Milestones in the analysis.

Task	Analyzer	Role	Other responsibilities
Describe a first milestone.			
A straightforward task	Name	PhD student, PostDoc/Prof/	thesis writing / teaching / name some CP work
A more involved task			
Describe a second milestone			
First task			

2 Object selection

- The supporting notes should now include the following standardized tables of properties: each analysis
- should simply fill them in by writing / replacing the value with the appropriate number or by choosing the
- appropriate option. The idea of these tables is to harmonize some sections of the supporting notes as to
- make review and analysis comparisons simpler.
- If you use non-standard selections which do not fit in these tables, this should of course be noted and
- 66 discussed in more detail in the text.

2.1 Electron selection

Table 2: Electron selection criteria.

Feature	Criterion
Pseudorapidity range Energy calibration Energy Transverse energy Transverse momentum	$ \eta < X$ es2017_R21_PRE (ESModel) E > XX GeV $E_T > XX \text{ GeV}$ $p_T > XX \text{ GeV}$
Object quality	Not from a bad calorimeter cluster (BADCLUSELECTRON) Remove clusters from regions with EMEC bad HV (2016 data only)
Track to vertex association	$\begin{aligned} d_0^{\rm BL}(\sigma) &< X \\ \Delta z_0^{\rm BL} \sin \theta &< X \text{mm} \end{aligned}$
Identification Isolation	(Loose/Medium/Tight) LooseTrackOnly / Loose / Tight / Gradient /

Notes:

69

71

72

73

75

76

77

78

- Pseudorapidity: when the calorimeter crack is not excluded, the range can be indicated simply as " $|\eta| < 2.47$ ", when the crack is excluded: " $(|\eta| < 1.37)$ || $(1.52 < |\eta| < 2.47)$ ". 70
 - Usually only one among "Energy", "Transverse energy" and "Transverse momentum" criteria is applied — the 30 GeV value is just an example. In special cases energy (i.e. calorimeter-based measurement) and momentum (i.e. tracking-based measurement) criteria can be required in order to constraint different aspects of the reconstruction.
 - Electron ID: 3 working points (Loose/Medium/Tight) are evaluated using the Likelihood-based (LH) method, by the ElectronPhotonSelectorTools.
 - Energy calibration of electrons is implemented in the $Electron Photon Four Momentum Correction\ tool.$
- Scale Factors for efficiencies for electrons are implemented in the 79 ElectronEfficiencyCorrection tool. 80
- Updated configurations for the EGamma CP tools can be found on this TWiki page.

2.2 Photon selection

Table 3: Photon selection criteria.

Feature	Criterion
Pseudorapidity range Energy calibration Energy Transverse energy	$ \eta < X$ es2017_R21_PRE (ESModel) E > XX GeV $E_T > XX \text{ GeV}$
Object quality	Not from a bad calorimeter cluster (BADCLUSELECTRON) Remove clusters from regions with EMEC bad HV (2016 data only)
Photon cleaning Fudging	passOQquality Applied for Full sim / not for AtlFastII
Identification Isolation	<pre>(Loose/Tight) FixedCutTightCaloOnly / FixedCutTight / FixedCutLoose</pre>

83 Notes:

85

88

89

90

91

92

93

95

- Pseudorapidity: please note that the maximum value for $|\eta|$ for photon candidates (2.37) is smaller than for electron candidates (2.47). If crack excluded: " $(|\eta| < 1.37)$ || $(1.52 < |\eta| < 2.37)$ ".
- Usually only one between "Energy" and "Transverse energy" criteria is applied the 30 GeV value is just an example.
 - Photon cleaning: a new Photon helper is available to apply the photon cleaning cut (from the ElectronPhotonSelectorTools, tag ≥ 00 -02-92-21, release $\geq 2.4.30$).
 - Photon ID: 2 working points (Loose/Tight) are evaluated using a cut-based method, by the ElectronPhotonSelectorTools.
 - Energy calibration of photons is implemented in the ElectronPhotonFourMomentumCorrection tool.
 - Scale Factors for efficiencies for photons are implemented in the ElectronEfficiencyCorrection tool.
 - Updated configurations for the EGamma CP tools can be found on this TWiki page.

97 **2.3 Muon selection**

Table 4: Muon selection criteria.

Criterion
Loose/Medium/Tight /High-pT
LooseTrackOnly/Loose/Tight/Gradient/
Sagitta correction [used/not used]
X GeV
X
X
X mm

The selection criteria are implemented in the MuonSelectorTools-XX-XX-XX

 $^{^{99}}$ with MuonMomentumCorrections-XX-XX-XX, isolation in IsolationSelection-XX-XX-XX and d_0

and z_0 cuts in xAODTracking-XX-XX. The muon recommendations can be found in MCPAnalysis-

¹⁰¹ GuidelinesMC16.

102 **2.4 Tau selection**

Table 5: Tau selection criteria.

Feature	Criterion
Pseudorapidity range	$ \eta < X$
Track selection	1 or 3 tracks
Charge	Q = 1
Tau energy scale	MVA TES
Transverse momentum	$p_{\rm T} > { m XXGeV}$
Jet rejection	BDT-based (Loose/Medium/Tight)
Electron rejection	BDT-based
Muon rejection	via overlap removal in $\Delta R < 0.2$ and $p_T > 2$ GeV. Muons must not be calo-tagged

¹⁰³ If the crack is excluded: $(|\eta| < 1.37)||(1.52 < |\eta| < 2.5)$

The selection criteria are all implemented in the TauSelectionTool as part of the TauAnalysisTools.

Documentation can be found in the README-TauSelectionTool.rst.

2.5 Small-R jet selection

Note: these tables still have to be adapted to normal ATLAS conventions.

Jet reconstruction parameters		
Parameter	Value	
algorithm	anti- k_T	
R-parameter	0.4	
input constituent	ЕМТоро	
Analysis Release Number	21.2.10	
CalibArea tag	00-04-81	
Calibration configuration	JES_data2017_2016_2015_Recommendation_Feb2018_rel21.config	
Calibration sequence (Data)	JetArea_Residual_EtaJES_GSC_Insitu	
Calibration sequence (MC)	JetArea_Residual_EtaJES_GSC	
	Selection requirements	
Observable	Requirement	
Jet cleaning	LooseBad	
BatMan cleaning	No	
рТ	>XX GeV	
$ \eta $	<x< td=""></x<>	
JVT	(update if needed) >0.59 for p_T <60 GeV , $ \eta $ <2.4	

108 **2.6 Large-R jet selection**

Jet reconstruction parameters		
Parameter	Value	
algorithm	anti- k_T	
R-parameter	1.0	
input constituent	LCTopo	
grooming algorithm	Trimming	
fcut	0.05	
R_{trim}	0.2	
Analysis Release Number	21.2.10	
CalibArea tag	00-04-81	
Calibration configuration	JES_MC16recommendation_FatJet_JMS_comb_19Jan2018.config	
Calibration sequence (Data)	EtaJES_JMS_Insitu	
Calibration sequence (MC)	EtaJES_JMS	
Selection requirements		
Observable	Requirement	
pT	>X GeV	
$ \eta $	<x< td=""></x<>	
mass	> X GeV	
Boosted Object Tagger		
Object	Working point	
W / Z / Top	50% / 80%	
$X \rightarrow bb$	single/double b-tag with/without loose/tight mass	

109 **2.7 MET selection**

MET reconstruction parameters		
Parameter	Value	
Algorithm	Calo-based	
Soft term	Track-based (TST)	
MET operating point	Tight	
Analysis release	21.2.16	
Calibration tag	METUtilities-00-02-46	
Selection requir	ements	
Observable	Requirement	
E_T^{miss}	>X GeV	
$\frac{\sum E_T}{E_T^{miss}}$	<x< td=""></x<>	
Object-based \vec{E}_T^{miss} significance	> X	

2.8 Jet flavor tagging selection

Note: this table still have to be adapted to normal ATLAS conventions.

b-tagging selection		
	EM Topo Jets / Track jets / VR jets	
Jet collection	AntiKt4EMTopo / AntiKt2PV0 / AntiKtVR30Rmax4Rmin02	
Jet selection	$p_{\rm T} > { m X~GeV}$	
	$ \eta < \mathrm{Y}$	
	JVT cut if applicable	
Algorithm	MV2c10 / MV2c10mu / MV2c10rnn / DL1 / DL1mu /DL1rnn	
Operating point	Hybrid / Fixed	
	Eff = 60 / 70 / 77 / 85	
CDI	2017-21-13TeV-MC16-CDI-2017-12-22_v1	

2.9 Tracks selection

- Note: this table still have to be adapted to normal ATLAS conventions.
- 114 If you use tracks as particular objects on which you cut in your analysis.

TrackParticle object selection			
Tracking Algorithm	Primary/Large Radius Tracking/Custom		
Track Quality Selection (official)	Loose/Tight		
Additional Selections			
$ \eta $	<x< td=""></x<>		
p_T	>X GeV		
Track-Vertex-Association Criteria	Loose/Tight		
Track-to-Jet Association Method	Ghost Matched/dR		

2.10 Overlap Removal

- Note: this table still have to be adapted to normal ATLAS conventions.
- The reconstruction of the same energy deposits as multiple objects is resolved using the standard overlap removal tools, AssociationUtils, documented here
- The (Standard/Heavy-flavor/Boosted/Boosted+Heavy-flavor/Lapton-favored) working point is used corresponding to:

Reject	Against	Criteria
electron	electron	shared track, $p_{T,1} < p_{T,2}$
tau	electron	$\Delta R < 0.2$
tau	muon	$\Delta R < 0.2$
muon	electron	is calo-muon and shared ID track
electron	muon	shared ID track
photon	electron	$\Delta R < 0.4$
photon	muon	$\Delta R < 0.4$
jet	electron	$[\Delta R < 0.2/\text{Not a bjet and } \Delta R < 0.2]$
electron	jet	$[\Delta R < 0.4/\Delta R < \min(0.4, 0.04 + 10\text{GeV/ElePt})/\text{None}]$
jet	muon	[NumTrack < 3 and (ghost-associated or ΔR < 0.2)
		/ Not a bjet and NumTrack < 3 and (ghost-associated or $\Delta R < 0.2$)]
muon	jet	$[\Delta R < 0.4/\Delta R < \min(0.4, 0.04 + 10 \text{GeV/MuPt})/\text{None}]$
jet	tau	$\Delta R < 0.2$
photon	jet	$\Delta R < 0.4$
fat-jet	electron	$\Delta R < 1.0$
jet	fat-jet	$\Delta R < 1.0$

 $[\]Delta R$ is calculated using rapidity by default.

3 Event selection

The following items should also be filled in for the event selection.

24 3.1 Event cleaning

- Following the recommendations of the DataPrep group, the following event-level requirements are made.
- We use the official GRL:
- 127 FILL IN HERE
- The following event-level vetos are made to reject bad / corrupt events:
- LAr noise burst and data corruption (xAOD::EventInfo::LAr),
- Tile corrupted events (xAOD::EventInfo::Tile),
- events affected by the SCT recovery procedure for single event upsets (xAOD::EventInfo::SCT),
- incomplete events (xAOD::EventInfo::Core).
- Debug stream events [have/have not] been included.
- 134 Checks [have/have not] been done to remove duplicate events.
- Events are required to have a primary vertex with at least two associated tracks. The primary vertex is
- selected as the one with the largest $\Sigma p_{\rm T}^2$, where the sum is over all tracks with transverse momentum
- $p_{\rm T} > 0.4 \, {\rm GeV}$ that are associated with the vertex.