Name: Udandarao Sai Sandeep Roll Number: 180123063

Dept.: Mathematics and Computing

Q1. Using the values of the parameters (given in the question), the up factor (u) and down factor (d) was calculated for each value of M by using the below formulas:

$$\frac{\Delta t = \frac{T}{M}}{u = e^{\sigma\sqrt{\Delta t} + \left(r - \frac{1}{2}\sigma^2\right)\Delta t}}$$
$$d = e^{-\sigma\sqrt{\Delta t} + \left(r - \frac{1}{2}\sigma^2\right)\Delta t}$$

The up probability (p) was calculated as follows:

$$p = \frac{e^{r\Delta t} - d}{u - d}$$

The Option Price (at t = 0) was calculated as follows:

$$H(0) = \frac{1}{e^{rT}} \sum_{k=0}^{M} {M \choose k} p^{k} (1-p)^{M-k} f(S(0)u^{k}d^{M-k})$$

where f represents Payoff of the option for European call option: $f(x) = \max(x - K, 0)$ for European put option: $f(x) = \max(K - x, 0)$

The Option Prices for various values of M is as follows:

М	European Call Option Price	European Put Option Price
1	38.16763503	19.94171725
5	34.90653251	16.68061473
10	33.62502175	15.39910398
20	33.85944949	15.63353171
50	33.98118437	15.75526659
100	34.01116098	15.78524321
200	34.01957870	15.79366093
400	34.01913177	15.79321399

Q2.
Two sets of input arrays (containing various values of M) were used.
The first array contained the values from 1 to 200 varying M in steps of 1.
The second array contained the values from 1 to 200 varying M in steps of 5.

Observations:

Both the Call option prices and the Put option prices (at t=0) seem to oscillate about a central value. If we only consider even values of M separately, the corresponding option prices form a gradually increasing sequence (0 < M < 200) converging to the central value from the bottom. Similarly, if we consider only odd values of M separately, the corresponding option prices form a gradually decreasing sequence (0 < M < 200) converging to the central value from the above.

The absolute difference between consecutive values of option prices decreases as M increases. The difference reaches zero as M reaches higher values (0<M<200). The European Call Option price seems to converge to the point 34.01 and the European Call Option price converges to 15.78.

Note: The graph matches theoretical conclusions when M remains below 200. When M surpasses 200, the option prices graph shows some irregularity, which may be explained through accumulating errors, or computational discrepancies. However, for higher values of M (~1800), these irregularities decrease and the option price converges to the expected values.

Q3.

The value of M has been set to 20.

For each value of t, the number of remaining time intervals and the number of time intervals that have already occurred were calculated.

All possible case scenarios till time t were taken into consideration.

For each possible case, the number of ups and the number of downs that have already occurred have been noted. Then, the stock price at the current time (t) was calculated. Considering this as the initial stock price, the option price was calculated (for the remaining time period).

The results obtained are given in the next page.

Given below are all the European Call Option Prices at different times (for all scenarios). **UPS** represents the number of ups that have already occurred.

DOWNS represents the number of downs that have already occurred.

M=20			t =	3	
t =	0		UPS	DOWNS	CALL OPTION PRICE
UPS	DOWNS	CALL OPTION PRICE	0	12	0.0
			1	11	0.0
0	0	33.85944948849384	2	10 9	0.0
			3 4	8	0.1183301448516881 1.235971133857899
t =	0.5		5	8 7	6.14852046342653
_		CALL OPTION PRICE	6	6	19.725206220102642
UPS	DOWNS	CALL OPTION PRICE	7	5	46.97618778485102
0	2	15.095872513879758	8	4	91.19343329629588
1	1	31.893253222246376	9	3	154.84169905359852
2	0	59.95876890092259	10	2	242.03018282001364
_	•	33.33070032233	11	1	359.93418379078935
			12	0	519.099688850719
t =	1				
UPS	DOWNS	CALL OPTION PRICE	t =	4.5	
0	4	5.154831129992469	UPS	DOWNS	CALL OPTION PRICE
1	3	13.469716242796965	0	18	0.0
			1	17	0.0
2	2	29.80395512132694	2	16 15	0.0 0.0
3	1	57.69999468717516	4	14	0.0
4	0	100.66266571336136	5	13	0.0
			6	12	0.0
_	1 -		7	11	0.0
t =	1.5		8	10	0.0
UPS	DOWNS	CALL OPTION PRICE	9	9	8.14917387261674
0	6	1.1250032145209163	10	8	36.25149449124525
1	5	4.121404621027414	11	7	83.95057683153279
2	4	11.767496962598837	12	6	149.1496056352558
	-		13	5	237.15908891136283
3	3	27.5732042363838	14	4	355.95946506182884
4	2	55.29535567856727	15 16	3 2	516.3231991518774 732.791598029106
5	1	98.43886924880034	17	1	1024.993372815408
6	0	160.6113877530171	18	0	1419.424512100038

Given below are all the European Put Option Prices at different times (for all scenarios).

UPS represents the number of ups that have already occurred.

DOWNS represents the number of downs that have already occurred.

M=20)		t =	3	
t =	0		UPS	DOWNS	PUT OPTION PRICE
_	_		0	12	78.22822279375715
UPS	DOWNS	PUT OPTION PRICE	1	11	72.35769482612885
0	0	15.633531710991276	2	10	64.43331094390453
			3	9	53.85484171072243
t =	0.5		4	8	40.53331384641619
_			5	7	25.955023925263923
UPS	DOWNS	PUT OPTION PRICE	6	6	13.221828652306376
0	2	24.672817161536063	7	5 4	4.958185582926971 1.2357022342387138
1	1	15.48714343140138	9	3	0.17210275688518661
2	0	8.479204228539846	10	2	0.008705281628291726
2	0	0.4/9204220339040	11	1	0.0
			12	9	0.0
t =	1				
UPS	DOWNS	PUT OPTION PRICE	t =	4.5	
0	4	35,965303616397534	UPS	DOWNS	PUT OPTION PRICE
1	3	24.983286569394075	0	18	95.53406311515673
			1	17	93.12931642139075
2	2	15.26943210857484	2	16	89.88324791682146
3	1	8.00422345974074	3	15 14	85.50151375593353 79.58679130640233
4	0	3,5041738979719717	5	13	71.60275111353513
			6	12	60.82542413915252
+	1 F		7	11	46.27755440065571
t =	1.5		8	10	26.639984302677398
UPS	DOWNS	PUT OPTION PRICE	9	9	8.281211219146925
0	6	48.30495083519326	10	8	0.6015461682626682
1	5	36.970072066516465	11	7	0.0
2	4	25,270959639777367	12	6	0.0
	_		13	5	0.0
3	3	14.96337187269708	14	4	0.0
4	2	7.436262009137822	15	3	0.0
5	1	2.9982497452660692	16 17	2 1	0.0 0.0
6	0	0.9424265244113356	18	0	0.0
_					3.0

Note: For every question and every subcase, the program initially checks for **No Arbitrage Condition** before proceeding further. The following check is carries out:

No Arbitrage Condition: $d < e^{rac{rT}{m}} < u$