respectively). Sample sizes considered were n = 100, 500, 1000, and 2000. The number of covariates considered were $p = 1 \times 10^3, 1 \times 10^4, 5 \times 10^4,$ and 1×10^5 , respectively. Note that only cases in which p > n were timed. Results are based on 100 different simulated datasets. Standard errors Table S2: Computational time (in seconds) to run different Bayesian variable selection methods for 100 MCMC iterations, as a function of sample size and the number of covariates. Compared here are Bayes Ridge (BRR), Bayes Lasso (BL), Bayes LMM (BLMM), and Bayes $C\pi$. BAKR is assessed under both its full model specification (V = 1), as well as under its empirical factor representation $(V \approx 0.9)$ and $(V \approx 0.9)$ are also as a finite point of $(V \approx 0.9)$ and $(V \approx 0.9)$ and $(V \approx 0.9)$ and $(V \approx 0.9)$ and $(V \approx 0.9)$ are a finite point of $(V \approx 0.9)$ and $(V \approx 0.9)$ across these replicates for each model are given the parentheses.

			Other Methods	[ethods			BAKR Models	
Samples	Covariates	BRR	BL	BLMM	$\mathrm{BC}\pi$	V = 1	$V \approx 0.9$	$V \approx 0.8$
	1×10^3	0.09 (0.04)	0.20 (0.09)	0.14 (0.02)	0.12 (0.09)	0.03 (0.00)	0.02 (0.00)	0.01 (0.00)
n = 100	1×10^4	0.58(0.09)	0.97 (0.12)	0.60(0.11)	0.62 (0.18)	0.03(0.00)	0.02 (0.00)	0.01 (0.00)
	5×10^4	2.44(0.20)	4.46 (0.12)	2.72 (0.21)	2.85 (0.17)	0.03 (0.00)	0.02 (0.00)	0.01 (0.00)
	1×10^5	4.76(0.19)	8.64 (0.21)	4.81 (0.20)	5.48 (0.14)	0.03 (0.00)	0.02 (0.00)	0.01 (0.00)
	1×10^3	0.39 (0.18)	0.36 (0.17)	2.29 (0.58)	0.30 (0.15)	2.64 (0.01)	1.61 (0.00)	0.93 (0.00)
n = 500	1×10^4	1.91(0.27)	2.36 (0.23)	3.57 (0.43)	2.08 (0.23)	2.66(0.02)	1.79 (0.01)	1.13(0.00)
	5×10^4	8.21 (0.51)	10.61 (0.49)	9.91 (0.10)	8.94 (0.32)	2.67 (0.02)	1.83 (0.00)	1.19(0.00)
	1×10^5	15.89 (0.36)	19.71 (1.43)	18.80 (1.93)	17.81 (0.21)	2.65 (0.01)	1.84 (0.01)	1.20(0.00)
	1×10^3	I	I	I	ı	I	I	
n = 1000	1×10^4	3.57 (0.37)	3.57(0.48)	11.09 (0.47)	3.70 (0.53)	21.06 (0.13)	13.71 (0.07)	8.53(0.02)
	5×10^4	14.80 (0.53)	16.62 (0.72)	22.92 (0.76)	15.71 (0.11)	21.20(0.32)	14.36 (0.17)	9.17 (0.08)
	1×10^5	28.93 (0.41)	$33.47 \ (0.57)$	$36.57 \; (0.46)$	31.17 (0.39)	21.01 (0.10)	14.44 (0.10)	$9.30\ (0.09)$
	1×10^3	I	I	I	I	I	I	I
n = 2000	1×10^4	$6.37\ (0.63)$	6.91(0.83)	51.42 (2.11)	6.56(0.83)	$164.40 \ (0.58)$	104.97 (1.01)	63.98 (0.90)
	5×10^4	$29.55\ (0.69)$	32.29 (0.55)	75.37 (3.20)	29.98 (0.63)	$163.57\ (1.81)$	$109.40 \ (0.52)$	70.17 (0.60)
	1×10^5	58.86 (0.30)	63.63 (0.43)	101.69 (1.47)	61.16 (0.42)	163.53 (1.94)	111.45 (1.11)	72.09 (0.98)