Python - Analiza danych z modułem PANDAS

www.udemy.com (http://www.udemy.com) (R)

LAB - S07-L004 - metoda merge

- 1. Zaimportuj moduł pandas i numpy nadaj im standardowe aliasy
- Do zmiennej f_2015 zaimportuj z pliku Fortune_500_2015.csv informacje o firmach zakwalifikowanych na listę Fortune 500 w roku 2015. Wybierz tylko kolumny rank i company
- Do zmiennej f_2016 zaimportuj z pliku Fortune_500_2016.csv informacje o firmach zakwalifikowanych na listę Fortune 500 w roku 2016. Wybierz tylko kolumny rank i company
- 4. W tym zadaniu będziemy się zastanawiać, czy są takie firmy, które:
 - znalazły się na liście w 2015 i w 2016
 - znalazły się na liście w 2015, ale nie w 2016
 - znalazły się na liście w 2016, ale nie w 2015
- 5. W zmiennej companies_2015_2016 zapamiętaj wynik złączenia f_2015 i f_2016 łącząc ze sobą tylko te wiersze, które można odnaleźć jednocześnie w obu data frame. Złączenie ma się odbyć w oparciu o kolumnę company
- 6. W wyniku złączenia powinny się znajdować kolumny określające pozycję w rankingu w 2015 i 2016 roku. Korzystając z odpowiedniego parametru spraw, aby ranking za rok 2015 znajdował się w kolumnie o nazwie rank_2015, a ranking za rok 2016 w kolumnie rank_2016
- 7. Wyświetl z companies_2015_2016 wiersz odpowiadający za pozycję firmy Microsoft w 2015 i 2016 roku
- 8. Teraz w zmiennej companies_2015_2016 zapamiętaj wynik złączenia f_2015 i f_2016 łącząc ze sobą tylko te wiersze, które można odnaleźć jednocześnie w obu data frame lub tylko w 2015 lub tylko w 2016. Złączenie ma się odbyć w oparciu o kolumnę company. Polecenie powinno zwrócić również informacje o pochodzeniu wiersza (kolumna _merge)
- W zmiennej only_2015 zapamiętaj dane tylko tych firm, które znalazły się na liście Fortune 500 w roku 2015, ale nie znalazły się na niej w 2016
- 10. W zmiennej **only_2016** zapamiętaj dane tylko tych firm, które znalazły się na liście Fortune 500 w roku 2016, ale nie znalazły się na niej w 2015

Rozwiązania:

Poniżej znajdują się propozycje rozwiązań zadań. Prawdopodobnie istnieje wiele dobrych rozwiązań, dlatego jeżeli rozwiązujesz zadania samodzielnie, to najprawdopodobniej zrobisz to inaczej, może nawet lepiej :) Możesz pochwalić się swoimi rozwiązaniami w sekcji Q&A

```
In [1]: import pandas as pd
import numpy as np
```

Rafal Kraik

```
In [2]: f_2015 = pd.read_csv("Fortune_500_2015.csv", usecols=['rank','company'])
    f_2015.head()
```

Out[2]:

r	ank	(
0	1	Walmart
1	2	Exxon Mobil
2	3	Chevron
3	4	Berkshire Hathaway
4	5	Apple

```
In [3]: f_2016 = pd.read_csv("Fortune_500_2016.csv", usecols=['rank','company'])
    f_2016.head()
```

Out[3]:

rank		company
0	1	Walmart
1	2	Exxon Mobil
2	3	Apple
3	4	Berkshire Hathaway
4	5	McKesson

Out[4]:

	rank_x company		rank_y
(1	Walmart	1
1	2	Exxon Mobil	2
2	2 3	Chevron	14
3	3 4	Berkshire Hathaway	4
4	5	Apple	3

Out[5]:

	rank_2015	company	rank_2016
0	1	Walmart	1
1	2	Exxon Mobil	2
2	3	Chevron	14
3	4	Berkshire Hathaway	4
4	5	Apple	3

```
In [6]: companies_2015_2016[companies_2015_2016["company"] == "Microsoft"]
```

Out[6]:

	rank_2015	company	rank_2016	
30	31	Microsoft	25	

Rafal Kraik 2 z 3

Out[7]:

	rank_2015	company	rank_2016	_merge
0	1.0	Walmart	1.0	both
1	2.0	Exxon Mobil	2.0	both
2	3.0	Chevron	14.0	both
3	4.0	Berkshire Hathaway	4.0	both
4	5.0	Apple	3.0	both

```
In [8]: only_2015 = companies_2015_2016[companies_2015_2016["_merge"] == "left_only"]
```

In [9]: only_2015.head()

Out[9]:

_merge	rank_2016	company	rank_2015	
left_only	NaN	Safeway	84.0	83
left_only	NaN	DirecTV	95.0	94
left_only	NaN	Alcoa	125.0	124
left_only	NaN	Kraft	165.0	164
left_only	NaN	TRW Automotive Holdings	175.0	174

```
In [10]: only_2016 = companies_2015_2016[companies_2015_2016["_merge"] == "right_only"]
```

In [11]: only_2016.head()

Out[11]:

	rank_2015	company	rank_2016	_merge
500	NaN	Arconic	126.0	right_only
501	NaN	Kraft Heinz	153.0	right_only
502	NaN	Performance Food Group	185.0	right_only
503	NaN	Hertz Global Holdings	269.0	right_only
504	NaN	PayPal Holdings	307.0	right_only

In []:

Rafal Kraik 3 z 3