BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI - K.K. BIRLA GOA CAMPUS First Semester 2024-2025, Mid-Semester Examination (Closed Book)

Course No: CHEM F111
Course Title: General Chemistry

Date: 03/10/2024

Total Marks: 90 Duration: 90 min

Name:	ID No:	Marks Obtained:
Recheck:		

Instructions: Write the <u>FINAL ANSWERS ONLY</u> with <u>BLUE PEN</u> in the boxes provided; **DO NOT OVERWRITE!** <u>Main answer book may be used for rough work only.</u> Useful Information: $m_{\text{electron}} = 9.11 \times 10^{-31} \, \text{kg}$, $m_{\text{neutron}} = 1.67 \times 10^{-27} \, \text{kg}$, $h = 6.626 \times 10^{-34} \, \text{J s}$, $c = 3 \times 10^8 \, \text{m s}^{-1}$, $1 \, \text{eV} = 1.602 \times 10^{-19} \, \text{J}$, $R = 8.314 \, \text{J K}^{-1} \, \text{mol}^{-1}$, Bohr Radius $(a_0) = 52.9 \, \text{pm}$, $1 \, \text{kcal} = 4.18 \, \text{kJ}$, $1 \, \text{kJ} \, \text{mol}^{-1} = 83.7 \, \text{cm}^{-1}$, $R_1 = 109678 \, \text{cm}^{-1}$, $1 \, \text{amu} = 1.67 \times 10^{-27} \, \text{kg}$, $N_1 = 6.023 \times 10^{23}$, $\psi_n(x) = N \sin(\frac{n\pi x}{x})$, $\int \sin^2 bx \, dx = x/2 - \sin(2bx)/4b$, $\Psi_{1s} = \left(\frac{1}{\sqrt{\pi}}\right) \left(\frac{z}{a_0}\right)^{3/2} e^{-\frac{zr}{a_0}}$, Atomic No. of $1 \, \text{Cr} = 24$, $1 \, \text{Cr} =$

1.	An acceptable wavefunction for the particle in a one-dimensional infinite depth box of length 'a' is $x(1-\frac{x}{\alpha})$. What is the normalization constant (in nm ^{-3/2}) if the length of the box is 3 nm? (Answer up to three decimal places). [4]	± 1.054
2.	Calculate the wavenumber (in cm ⁻¹) corresponding to (i) the highest and (ii) the lowest energy spectral line in the Paschen series for the hydrogen atom. (Answer up to two decimal	12186.44
	places) [2+2]	(ii) 5331·57
3.	A 5 mm cell was filled with a solution of a dye of concentration 18.5 mmol dm ⁻³ . Calculate the (i) molar absorption coefficient of the dye (in dm ³ mol ⁻¹ cm ⁻¹) when the	(i) 58·12
	% transmittance (%T) was 29 and (ii) the %T at the same wavelength when the same solution is placed in a 2.5 mm cell. [2+2]	53.85
4.	The fundamental and first overtone transitions of a molecule are centered at 1500 cm ⁻¹ and 2977 cm ⁻¹ , respectively. Calculate the (i) vibrational frequency (v _e) (in s ⁻¹) and (ii)	(i) 4569*10
	anharmonicity constant (x _e). [2+2]	(ii) 0·00755
5.	The mean distance $\langle r \rangle_{n.\ l,\ m_l}$ (in pm) from the nucleus for the electron given by the wavefunction i) $\psi_{5,2,0}$ and ii) $\psi_{5,0,0}$ in \mathbf{B}^{4+} ion are:	(i) 365·01
	(Answer up to two decimal places) [2+2] Here B represents Boron.	(ii) 396·75
6.	The orbital angular momentum (in J s) of an electron in (i) 3d and (ii) 2p levels, respectively are: (Answer up to two decimal places) [2+2]	(i) 3d 2.58 * 10
	(Answer up to two decimal places) [2+2]	(ii) 2p 1.49 * 10

7.	What are the ratios of the probability the 1s-electron in a small spherical vol wavefunction can be considered con-		=0 = O·125	7.10		
	$r=0$ and (ii) at $r=a_0$ in H-atom and He two decimal places).	tion? (Answers up to		r=ao =		
			-	0.92		
8.	The vibrational energy level of CO more expression E _v (in J mol ⁻¹) = 25000 (v + ½) – 150 (v where v is the vibrational quantum n force constant (in N m ⁻¹) (Answer up t	+ ½)² umber. Calculate the		1773		
9.	The energy of the electron present in is 602.5 eV. How many nodes are pre-	1-D box of length 1		03		
10.	At what value of radius (r) (in pm), do finding an electron in a small volume	oes the probability o	J. 61			
	the ground state of an H-atom fall to value? (Answer up to two decimal pla	75% of its maximun		7.61	1 HP A	
11.	the ground state of an H-atom fall to value? (Answer up to two decimal plants of the light of th	75% of its maximun aces) [3]			d (iii) octahedral	
11.	the ground state of an H-atom fall to value? (Answer up to two decimal plants of the state of th	75% of its maximun aces) [3]	al planar, (ii) tri			
11.	the ground state of an H-atom fall to value? (Answer up to two decimal plants of the light of th	75% of its maximun nces) [3] (s) that have (i) trigor	al planar, (ii) tri	gonal pyramidal an		
11.	the ground state of an H-atom fall to value? (Answer up to two decimal plant identify from the following molecule) geometry? BF3, NF3, PCl5, SF6, CO2, ethylene (i) Trigonal planar	i) Trigonal pyramidal NF3 he box, based on the energy levels decreaenergy levels remain	al planar, (ii) tri (ii) conditions givenuses with increases constant	gonal pyramidal an ii) Octahedral SFG in below. ing energy		
	the ground state of an H-atom fall to value? (Answer up to two decimal place) Identify from the following molecule geometry? BF3, NF3, PCl5, SF6, CO2, ethylene (i) Trigonal planar (i) A, the spacing between adjacent B, the spacing between adjacent C, the spacing between adjacent	(s) that have (i) trigor (i) Trigonal pyramidal NF3 the box, based on the energy levels decreaenergy levels increase	al planar, (ii) tri (ii) conditions givenuses with increases constant	gonal pyramidal an ii) Octahedral SFG in below. ing energy	[1+1+1]	
	the ground state of an H-atom fall to value? (Answer up to two decimal place) Identify from the following molecule (geometry? BF3, NF3, PCl5, SF6, CO2, ethylene (i) Trigonal planar (i) Atthe spacing between adjacent B, the spacing between adjacent	(s) that have (i) trigor (i) Trigonal pyramidal NF3 the box, based on the energy levels decreaenergy levels increase	conditions gives ses with increasi es with increasi	gonal pyramidal an SFG h below. hing energy Answers	[1+1+1]	
	the ground state of an H-atom fall to value? (Answer up to two decimal place) Identify from the following molecule geometry? BF3, NF3, PCl5, SF6, CO2, ethylene (i) Trigonal planar (i) A, the spacing between adjacent B, the spacing between adjacent C, the spacing between adjacent	i) Trigonal pyramidal NF3 he box, based on the energy levels decreaenergy levels increasenergy levels increasene	conditions givenues with increasing services with increasing services with increasing constant es with increasing services.	gonal pyramidal an SFG h below. hing energy ng energy	[1+1+1]	

Nam	ne:				ID No:				
13.	The octahedral crystal field splitting (Δ_o) value for $[Cr(OH_2)_6]^{2^+}$ is 13,900 cm ⁻¹ . The predicted (theoretical) hydration energy of octahedral Cr^{2^+} is -1830 kJ mol ⁻¹ . What is the value for the experimentally determined hydration energy (in kJ mol ⁻¹)? (Answer up to one decimal point) (Assume no distortion)								
14.	Three compounds A, B and C have empirical formula of CrCl ₃ . 6H ₂ O. When 1 g of each compound separately kept in a container with dehydrating agent, showed a final weight of 0.865 g for A, and 0.932 g for B. No change in weight was observed for C. Write the molecular formula for A, B and C. [1+1+1]								
	(i) Molecular formula for A (ii) Molecular formula for					or B (iii) Molecular formula for C			
	(Cr (Hz)) d2) d.	24,0	(Cr (H20)54)	1: H20				
15.	perfect octo (i) [Co(NH ₃), (ii) [Fe(ox) ₃] (iii) [Cr(en) ₃	hedron geome $_{6}$] ³⁺ and [Rh(NF) $_{4}$ - and [Fe(ox) $_{3}$, $_{1}$] ³⁺ and [Cr(ox) $_{3}$	etry) 1 ₃) ₆] ³⁺] ³⁻ (wher] ³⁺ (whe	re en=ethylenediamine)		on that has h	igner value of Δ _o ?	[1+1+1]	
	(ii) (Rh (NH3)6) (Fe (0x)3) (Cr (en3)								
16.	(i) Calculate the ratio of the CFSE values (in terms of Δ_0) for the octahedral and tetrahedral complexes of a d^7 metal ion in presence of strong field ligands. (Answer up to two decimal places). (ii) Write the number of unpaired electrons in octahedral (n_{Oh}) and tetrahedral (n_{Td}) cases. (Assume no distortion) [3+1+1]				3.377 (ii) noh = 01				
					n _{Td} = 03				
17.	Match the	following com	plexes (A-D) to their CFSEs (i-iv)		Complex	CFSE	[1,1,1,1,1]	
		Complex		CFSE		Complex			
	A. [Co(NH ₃) ₆] ³⁺ B. [Co(NH ₃) ₆] ²⁺)6]3+	ί, -0.8 Δο		Α	iii		
-			ii0.4 Δ _o		С	iV			
		C. [Co(H ₂ O	15.0	iii2.4 Δ _o			ii		
		D. [Co(H ₂ O)6]2+	iv1.8 Δ _o		D			
18.	Predict the following, for the complexes: [NiCl ₄] ²⁻ , [Ni(CN) ₄] ²⁻ and Ni(CO) ₄ . (BM = Bohr Magnetons) [2+							[2+2+2	
				Magnetic		Magnetic moment (spin only) in BM			
	Complexes No. of u			unpaired electrons		2.828	spin cin II in cin		
		[Ni(CN) ₄] ²⁻		0		0			
		Ni(CO) ₄		D		6			

Nan	ne:		ID	No:				
19.	copper ion (in oc state) when four flu	pitals in increasing order tahedral environment) is portide ions are at 191 pm a from the copper ion. (Usi ppropriate)	dx 2 dy < dx < dx < dx - x					
20.	follow the effective	ex(es) among the follow e atomic number (EAN) ru e(CN) ₆] ⁴⁻ , (iii) [Cu(NH ₃) ₄] ²⁻	ile.	(1) × (iii)				
21.	How many normal (i) XeF ₂ (ii) B ₂ H ₆ (iii)	modes of vibration are th SO_2 (iv) CO_3^{2-}	ving n	nolecules?	[1+1	+1+1]		
	(i) XeF ₂	(ii) B ₂ H ₆	(iii) SO ₂	3	APE MARKET	(iv) CO ₃ 2-	3)	
22.	these complexes t	Consider the ML ₆ complexes of Cr(II), Fe(II) and Co(II). Match these complexes to the relative extent of Jahn-Teller (J-T)			Strong J-T distortion	Co (11)		
	distortion, considering the same strong field ligand (L). [1+1+1]				Weak J-T distortion	Cr (11)		
				(iii)	No J-T distortion	Fe (11)		
23.	Arrange the following in the increasing order of ligands field strength (Use symbol '<'). H ₂ O, CO, NH ₃ , I ⁻ , F ⁻ [3]				IS F CH20 CNH3 CCO			
24.	K[Cr(ox) ₂ (H ₂ O) ₂] are:				oordination N Oxidation Stat	6		
25.	(i) Identify the correct geometrical isomer(s) of [PtCl ₂ (NH ₃) ₂] from the given options. CI NH ₃ CI NH ₃ CI NH ₃ Pt NH ₃ N							
	(ii) Which of the po	ossible isomer(s) has the l	(ii) A (or) Cis isomer					