## Numerical calculation of Capacitance

Assignment #4

20202010 Hyunsuk Shin



Figure 1 Schematic image for capacitor with 2 different dielectric materials

## Analytic solution for capacitance:

$$C_1 = \frac{\epsilon_1 \epsilon_0}{x}; capacitance \ per \ area \ of \ material \ 1$$
 
$$\frac{1}{C_{tot}} = \frac{1}{C_1} + \frac{1}{C_2} \ ; total \ capacitance \ for \ series \ capacitor$$
 
$$C_{tot} = \frac{\epsilon_1 \epsilon_2 \epsilon_0}{\epsilon_1 (a-x) + \epsilon_2 x}$$

Where  $\epsilon_0$  is permittivity of vacuum,  $\epsilon_1 \& \epsilon_2$  is relative permittivity of each material, x is the thickness of material 1 and a is the total material. The analytic solution is  $4.126 \times 10^{-6} F/cm^2$ 

## **Numerical solution:**



Figure 2 Voltage-Position graph for N = 2400 case.

In the numerical calculation, the voltage difference is used for calculation of capacitance. Because of the charge conservation law, the total capacitance can be calculated as follows:

$$q = C_{tot}V_{tot} = C_1V_1$$

We know the  $C_1$  by easy calculation, and  $V_1$  from the voltage of contact between two materials. From that calculation we can get the results.

| N                                              | 24    | 240   | 2400  |
|------------------------------------------------|-------|-------|-------|
| Capacitance per unit area(µF/cm <sup>2</sup> ) | 4.082 | 4.123 | 4.126 |
| Error (%)                                      | 1.07  | 0.073 | 0     |