

Topics to be covered

- Medics Test, Revision of Last Class
- Buffer solution numericals
- Indicators and its use
- Home work from modules

Rule to Attend Class

- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- 2. Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your home work along with DPP.
- 4. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.

Rule to Attend Class

- Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.
- 7. Don't watch the videos in high speed if you want to understand better.

MEDICS

Mastery

Checks your grasp over NEET-level concepts

Evaluation

Judging both knowledge and test-smartness

Decision Making

Testing your speed + accuracy under pressure

Intuition

Some answers need gut + logic - can you spot the trick?

Concepts

It's all about strong basics no shortcuts here

Strategy

The **MEDICS** test – built for those who heal, hustle, and hope.

®

(d) 0

pH of an aqueous NaCl solution at 50°C should be:
(a) 7
(b) > 7
(c) < 7

Nacel (one.) -> sout of S.A.2 S.B. -> newtonal.
TMpHU

Upon hydrolysis of sodium carbonate, the reaction takes place between:

(a) Na⁺ and water

(b) Na⁺ and OH⁻

(c) CO₃² and water

(d) CO₃² and H⁺

Carbonic acid (H₂CO₃), a diprotic acid has $K_{a_1} = 4.0 \times 10^{-7}$ and $K_{a_2} = 7.0 \times 10^{-11}$. What is the

[CO₃²] of a 0.025 M solution of carbonic acid?

(a)
$$5.5 \times 10^{-9}$$
 (b) 5.5×10^{-8}

(b)
$$5.5 \times 10^{-8}$$

(c)
$$7.0 \times 10^{-9}$$

(d)
$$7.0 \times 10^{-11}$$

Selenious acid (H₂SeO₃), a diprotic acid has $K_{a_1} = 3.0 \times 10^{-3}$ and $K_{a_2} = 5.0 \times 10^{-8}$. What is the

[OH] of a 0.30 M solution of a selenious acid?

(a)
$$2.85 \times 10^{-3}$$
 (b) 5.0×10^{-6}

(b)
$$5.0 \times 10^{-6}$$

(c)
$$3.5 \times 10^{-12}$$

(d)
$$3.5 \times 10^{-13}$$

$$Ka_1 = [H]^2$$

$$[H_0SeO_3]$$

$$[3xio^3x3xio' = [H^{\dagger}] = 3xio^2$$

$$\frac{1}{3} \times 10^{-12}$$

$$= 3.3 \times 10^{-12}$$

$$= 3.3 \times 10^{-13}$$

A+the >HA+ON

Consider the following salts. Which one(s) when dissolved in water will produce a basic solution?

1. RbClO₄ 2. NaNO₂ 3. NH₄Cl 4. NaCl

(a) 1 and 3 (b) only 2 (c) 1 and 2 (d) 3 and 4

Tomorrow > Lec-72 Lec-8 -> Ionic eq -> Revise

Revision of Last Class

Acidic Buffer

(a) Find pH of buffer 0.1 M CH₃COOH, 0.15 M Sodium acetate (CH₃COONa).

If pK_a of $CH_3COOH = 4.76$.

(b) Find pH when 1 ml of 1 M NaOH is added to it.

(c) Find pH when 1 ml of 1 M HCl is added to it.

THIS I millimole T : [CH3 COOTI] = 100+1=101 TCH3C00] = 150-1=149. PH = 4.76 tday 149. = 4-76 + 2.17 - 2.

= 4.76+1724.93

Buffer Capacity (4)

no of moles of a cid on base addless to Lay buffer by charges by

φ = no. of moles of acid or base added to 1 L of Buffer
Change in pH

moles: acid on base	Vay buffer	Change in pH	ϕ
6	1 4	1	$\frac{6}{1} = 6$
6	2 L	1	3=3
6	l, L.	2	6=3

Brestda Pita shree Johns is well study. Selection. 113 7

If 4 moles of acid are added to 2L of buffer solution to change it's by pH by ストラムmoles 1トフリニスmoles unity. Find buffer capacity?

Range of a Buffer

pH range where it can act as buffer.

PH range where it can act as buffer.

Acidic Buffer act as buffer
$$\frac{[A]}{[HA]} = \frac{10}{1}$$
 are $\frac{1}{10}$ pKa ± 1

炸

action.

At what pH action of Buffer is maximum.

[A]

Acidic Buffer

[HA]

G

Indicators

1) exteremely w.A. on w.B. they have and sociated & undissociated different Colown in dissociated & undissociated

WA + HO == H+ A

undissociated

dissociated Jerm Colown B

Colown A

2) at eq. pt dez show Colon Change

(at eq. pt.) g.eq.A:g.eq.B

KIn=EHTJx10 =1-logkIn=doglat] - loglo

Indicator

Range indicator

PKIn=7

G-8

Litmus->pkgron 7

For an acid indicator $K_a = 1 \times 10^{-5}$. The range of the pH for change of colour is: $\rho K_a = \rho K_{In} = -169^{-5} = 5$

A) 3-5 pH orange = pKa±1
= 4-6

- **C** 5-7
- D 6-8

C.A.

A given indicator when placed in a buffer solution of pH 4.63 was found to exhibit a colour which corresponds to 25% acid and 75% basic form. Find

pK_a of the indicator.

$$K_{In} = 7$$
 $K_{In} = 7$
 $K_{In} = \frac{7}{10} = \frac{7}{10$

MAIN

In=A

®

Phenolphthalein is colourless in acidic solution and pink in basic solution. At what pH, indicator is 10% in colourless form? $p_{k_{ln}}$ = 9.4

Indicators in acid-base titrations

Acid-base titrations	Indicators
Strong acid vs strong base	Bromothymol blue, phenolphthalein methyl orange,
2. Strong acid vs weak base	Methyl orange, methyl red,
3. Weak acid vs strong base	Phenolphthalein,
4. Weak acid vs weak base	Phenol red

Colowa

Range	Acidic Jasum	Basic fromm.
8.3-10	Colonless	Pink.
3-1-4-4	Red	Ogrange
4.1-6.3	Red	Yellow.
6-8	Red	Blue
	8.3-10	8.3-10 Colonless 3.1-4.4 Red 4.1-6.3 Red

Ph of amphiprotic anion

```
(%)
```

```
Ht gain & Ht Loose
Hapon ) HPOy => PHHPOy = PKan + pKan 3
 = PKa,+pKas
H3POn+ NaoH -> NaH2POH + 120
                                  Kag, pkag
Natheron + NooH -> Naghtron + Hoo
NagHPOy+NaOH >> NazPoy + Hao
```


Home work from modules

all questions of Buffer solution

