Guía Práctica 3 - INF 3144

Programación con Restricciones

Investigación de Operaciones

Profesor: Ricardo Soto

Ejercicio 1: Instalar ECL^iPS^e

- Descargue $\mathrm{ECL}^i\mathrm{PS}^e$ CLP
- Instale y ejecute TkEclipse.
- Descargue y comprenda el modelo test1.ecl, identifique variables, dominios y restricciones.
- Ejecute el modelo utilizando el comando test1(A).
- ¿Existen más soluciones?

Ejercicio 2: Modele y resuelva el problema SEND+MORE=MONEY. Utilice la restricción global alldifferent(L).

Ejercicio 3: Modele y resuelva el problema N-Queens. Considere las siguientes instrucciones:

```
%Define una lista de N variables con dominio de 1..N
dim(Board, [N]),
Board[1..N] :: 1..N,
%Loop for
( for(I,1,N), param(Board,N) do
    ....
)
```

Ejercicio 4: Modele y resuelva el problema Packing Squares. Considere la siguiente instrucción para determinar el tamaño de los cuadrados:

```
SIZE = [](3,2,2,2,1,1,1,1),
```

Ejercicio 5: Heurísticas de selección de variable y valor.

- Descargue el archivo queens_search.ecl y resuelva distintas instancias del problema con distintas estrategias de enumeración. Organice los resultados utilizando la tabla 1.
- Realice un gráfico de desempeño en Excel incluyendo las 4 mejores estrategias.

Heurísticas de selección de variable

- 1. input_order: se selecciona la primera variable de la lista.
- 2. first_fail: se selecciona la variable con el dominio de menor tamaño.
- 3. anti_first_fail: se selecciona la variable con el dominio de mayor tamaño.

Table 1: Tiempos de resolución en ms.

	input_order				
	$+$ indomain_min				
4-Queens					
6-Queens					
8-Queens					
10-Queens					
15-Queens					
20-Queens					
25-Queens					
30-Queens					

- 4. smallest: se selecciona la variable con el menor valor en el dominio.
- 5. largest: se selecciona la variable con el mayor valor en el dominio.
- 6. occurrence: se selecciona la variable que participa en la mayor cantidad de restricciones.
- most_constrained: se selecciona la variable con el dominio de menor tamaño. Si varias variables cumplen esta condición, se selecciona la que participa en la mayor cantidad de restricciones.
- 8. max_regret se selecciona la variable con la mayor diferencia entre el valor más pequeño y el siguiente de su dominio.

Heurísticas de selección de valor

- 1. indomain_min se seleccionan los valores en orden creciente.
- 2. indomain_max se seleccionan los valores en orden decreciente.
- 3. indomain_middle se seleccionan los valores empezando desde el medio de la lista.

Ejercicio 6: Considere una empresa de retail que contiene un set de acciones para mejorar sus ventas. Estas acciones se aplican en forma diferente en los distintos puntos de venta que tiene la empresa. La siguiente tabla contiene el nombre de la acción, el costo de aplicarla y el incremento de las ventas que tiene sobre un cierto producto. Considerando que la empresa sólo dispone de 220.000 diarios por producto para aplicar acciones, resuelva el problema utilizando ECL^iPS^e .

Table 2: Acciones de retail (valores en miles de pesos/día)

	Costo	Incremento en venta
Promotora 1	52	100
Promotora 2	23	80
Góndola central	35	45
Góndola en ingreso	15	36
Góndola en ingreso 2	10	26
Oferta 2 x 1	71	120
Oferta 3 x 2	30	65
Publicidad google ads	24	100
Publicidad facebook	16	45
Publicidad diario 1	78	89
Publicidad diario 2	34	48
Publicidad diario 3	23	45
Publicidad revista 1	28	49
Publicidad revista 2	34	48
Publicidad revista 3	13	18

Consideraciones:

- Revise el knapsack problem, le servirá como base para realizar su implementación.
- Revise el predicado minimize.
- Revise el iterador foreach.

Pontificia Universidad Católica de Valparaíso Prof. Ricardo Soto, Ph.D.