CS 521: Systems Programming

Measuring Performance

Lecture 12

A Need for Speed

- Single-threaded CPU performance has been somewhat stagnant over the past years
- Most gains are being made in:
 - Power efficiency
 - Increased hardware efficiency (more instructions per clock cycle)
 - Adding more cores
- The last approach doesn't work unless we (as programmers) take advantage of those cores

Today's Reality

- These days, we get better performance through horizontal scaling
 - Rather than making one really fast processor (vertical scaling), we'll make a processor running at a reasonable speed with multiple cores
- And in some cases, we'll have multiple processors, or even multiple machines
 - Clusters

Examples

- Google doesn't buy the world's craziest, most expensive supercomputers
 - They buy commodity hardware in huge quantities
 - A single Google search may query tens or even hundreds of servers
- AMD's Ryzen/EPYC CPUs push multicore further
 - Let's say we want to build a 128-core CPU
 - The chance of a manufacturing defect is high
 - AMD's latest approach: take four 32-core CPUs and fuse them together (multi-chip module)

Who Cares About Performance?

- Mostly, this slowdown in CPU advancement is okay:
 - Most applications run "fast enough"
 - I don't have to buy a new laptop every year!
- But some use cases still need more power:
 - Climate models, large-scale, more realistic simulations
 - Machine Learning (deep learning)
 - Bioinformatics
 - Games! VR requires massive computational capabilities

Parallelism [1/2]

- Adding more cores is only helpful if we can actually make use of them!
- The bad news: parallelizing applications can be hard
- The basic idea behind parallel computing is:

Divide and Conquer

 If we can split a problem up into many smaller problems, then each core (or each machine) can take care of part of the work

Parallelism [2/2]

- Some problems are embarrassingly parallel
 - If I told everyone to raise their hands, no coordination is necessary
- Unfortunately, not all problems are as easy to parallelize
 - Communication is required between CPUs and machines
 - This is where things get tricky

Measuring Parallel Performance

- There are two common metrics for measuring the performance of our parallel algorithms:
 - Speedup
 - Parallel Efficiency
- Evaluating these is crucial: if we're not gaining anything from parallelism, there's no reason to do it
- A closely related concept is scalability
 - How our algorithm performs when we give it more resources

Terminology

- We're kinda-sorta familiar with CPU cores, right?
- A 4-core CPU means you can do... four things at once (at least in theory – the truth is way more complicated)
- For our purposes:
 - processor = core = processing element (PE) = rank
- We don't care too much about the details, as long as we can have these processors do work for us

Speedup

The speedup of a parallel program is given by:

$$ullet S = rac{T_{serial}}{T_{parallel}}$$

- Or: how long the serial (original, non-parallel) program takes to run divided by the parallel run time
- Best speedup possible: S=p
 - Where p is the number of processors
 - This is fairly intuitive. If you add 100 processors, you'd hope for a 100x speedup.

Efficiency

• The parallel efficiency of a program is given by:

$$ullet E = rac{S}{p} = rac{T_{serial}}{pT_{parallel}}$$

- The speedup divided by the number of processors
- Best efficiency possible: 1

Scalability [1/2]

- It's possible to write an algorithm that has high efficiency on two, four, eight cores, but:
 - Maybe when you try to run it on 16 cores efficiency starts to drop
- There are many reasons this can happen
 - Your algorithm requires a lot of communication
 - Your processes spend a lot of time blocked
 - In some cases, you're only as fast as the slowest worker

Scalability [2/2]

- A program that scales can use additional resources effectively
 - Doubling the number of processes should halve the execution time!
- We can measure this by calculating parallel efficiency
- If efficiency decreases as we add processes, then the algorithm is not scalable

Keeping Track of Time

- We've actually done a little bit of timing already this semester
 - The time command
- Not fine-grained
 - We can only test how long it takes to run the entire program
 - What happens when we prompt for a value? What about application startup time (from the OS)?
- We need to be able to track things at a finer level

The clock function (avoid!)

- C includes a clock function that tells us the number of clock ticks since the program started
 - Originally intended to be the number of CPU cycles but is implementation-specific
- Different hardware has different clock resolutions
 - Often clock() is a fairly low-resolution timer
- To translate the abstract notion of clock ticks into time, we can use CLOCKS_PER_SEC:
 - clock() / CLOCKS_PER_SEC

gettimeofday

- On Unix-based systems, this function provides the wall clock time, generally with $1~\mu s$ precision
 - Note that this is also hardware dependent
- Wall clock time: the actual time taken for something to run
 - As opposed to CPU time
 - Check the output of top for CPU time
- Usually a much better option than clock(), if you have it
- #include <timer.h>

Timing

```
double get_time(void)
{
    struct timeval t;
    gettimeofday(&t, NULL);
    // Convert to ms before returning:
    return t.tv_sec + t.tv_usec / 1000000.0;
}
```

Estimating π

- To measure performance, we need something CPUintensive to do
 - Printing 'hello world' ain't gonna cut it
- How about estimating π ? Sure, we could just look it up and copy several digits into our code as a constant...
 - But that sounds much too easy. This is CS 521!
- Instead, we can do this with something called the Madhava–Leibniz series:

•
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \frac{\pi}{4}$$

Madhava-Leibniz

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \frac{\pi}{4}$$

- The more iterations, the more accurate our estimate gets...
 - ...however, please note that this is **NOT** a particularly efficient method
 - We're just using it to make our CPUs burn
- We can split these iterations up across multiple processes to speed things up
 - pthreads to the rescue! We can look at a few approaches...