Brain Stroke Medical Data Analysis Using Matplotlib and Seaborn

Risad Raihan Malik

Brain Stroke Medical Data Analysis Using Matplotlib and Seaborn

I'm thrilled to share the successful completion of a groundbreaking Brain Stroke Analysis project! Here are the key highlights of my work:

Null Value Handling: Identified and meticulously addressed null values within the dataset to ensure impeccable data integrity and accuracy, laying a robust foundation for further analysis.

In-depth Analysis: Conducted a thorough and insightful analysis to decipher patterns and trends related to brain stroke occurrences, providing valuable insights into this critical healthcare domain.

Data Manipulation Expertise: Employed advanced data manipulation techniques to fill missing values and optimize data quality, enhancing the reliability and usefulness of the dataset.

Ill Visualization Proficiency: Utilized state-of-the-art visualization tools such as Matplottib and Seaborn to craft visually engaging charts and graphs, effectively communicating complex insights to stakeholders.

```
In [1]: import matplotlib.pyplot as plt
   import matplotlib.image as mpimg

img = mpimg.imread('images.JFIF')
   plt.imshow(img)
   plt.show()
```


Import Library

In [2]: import pandas as pd

In [3]: import pandas as pd import seaborn as sns import matplotlib.pyplot as plt

Uploading Csv fle

In [4]: df = pd.read_csv("healthcare-dataset-stroke-data.csv")

Out[4]:

	Id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bml	emoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
				***		-						
5105	18234	Female	80.0	1	0	Yes	Private	Urban	83.75	NaN	never smoked	0
5106	44873	Female	81.0	0	0	Yes	Self-employed	Urban	125.20	40.0	never smoked	0
5107	19723	Female	35.0	0	0	Yes	Self-employed	Rural	82.99	30.6	never smoked	0
5108	37544	Male	51.0	0	0	Yes	Private	Rural	166.29	25.6	formerly smoked	0
5109	44679	Female	44.0	0	0	Yes	Govt_job	Urban	85.28	26.2	Unknown	0

5110 rows × 12 columns

Data Preprocessing

head is used show to the By default = 5 rows in the dataset

In [5]: df.head(10)

Out[5]:

	ld	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bml	emoking_etatue	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1 8	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	- 1
3 (60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
5	56669	Male	81.0	0	0	Yes	Private	Urban	186.21	29.0	formerly smoked	1
6	53882	Male	74.0	1	1	Yes	Private	Rural	70.09	27.4	never smoked	1
7	10434	Female	69.0	0	0	No	Private	Urban	94.39	22.8	never smoked	1
8 :	27419	Female	59.0	0	0	Yes	Private	Rural	76.15	NaN	Unknown	1
9 (E0491	Female	78.0	п	0	Yes	Private	Urhan	58.57	24.2	Unknown	1

```
In [6]: df.tail(10)
 Out[6]:
                  ld gender age hypertension heart_disease ever_married work_type Residence_type avg_glucose_level bml smoking_status stroke
          5100 68398 Male 82.0
                                                                                         Rural
                                                                                                         71.97 28.3
                                                                  Yes Self-employed
                                                                                                                     never smoked
          5101 36901 Female 45.0
                                                                           Private
                                                                                         Urban
                                                                                                         97.95 24.5
          5102 45010 Female 57.0
                                                                          Private
                                                                                         Rural
                                                                                                         77.93 21.7 never smoked
          5103 22127 Female 18.0
                                                                          Private
                                                                                         Urban
                                                                                                         82.85 46.9
                                                                                                                         Unknown
          5104 14180 Female 13.0
                                                                          children
                                                                                         Rural
                                                                                                         103.08 18.6
                                                                                                                         Unknown
          5105 18234 Female 80.0
                                                                          Private
                                                                                                         83.75 NaN
                                                                                         Urban
                                                                                                                     never smoked
          5106 44873 Female 81.0
                                                                  Yes Self-employed
                                                                                                         125.20 40.0 never smoked
          5107 19723 Female 35.0
                                                                                                                     never smoked
                                                                  Yes Self-employed
                                                                                         Rural
                                                                                                         82.99 30.6
          5108 37544 Male 51.0
                                                                          Private
                                                                                         Rural
                                                                                                         166.29 25.6 formerly smoked
          5109 44679 Female 44.0
                                                                         Govt_job
                                                                                         Urban
                                                                                                         85.28 26.2
                                                                                                                         Unknown
         It show the total no of rows & Column in the dataset
 In [7]: df.shape
 Out[7]: (5110, 12)
         It show the no of each Column
 In [8]: df.columns
 Out[8]: Index(['id', 'gender', 'age', 'hypertension', 'heart_disease', 'ever_married',
                 'work_type', 'Residence_type', 'avg_glucose_level', 'bmi',
                 'smoking_status', 'stroke'],
                dtype='object')
         This Attribute show the data type of each column
 In [9]: df.dtypes
 Out[9]: id
                                 int64
          gender
                                object
                                float64
          hypertension
                                 int64
         heart_disease
                                 int64
         ever_married
                                object
          work_type
                                object
         Residence_type
                                object
          avg_glucose_level
                               float64
                                float64
          smoking_status
                                object
         stroke
                                 int64
         dtype: object
         In a column, It show the unique value of specific column.
In [10]: df["work_type"].unique()
Out[10]: array(['Private', 'Self-employed', 'Govt_job', 'children', 'Never_worked'],
                dtype=object)
```

It will show the total no of unque value from whole data frame

In [11]: df.nunique()

Out[11]: id

 id
 5110

 gender
 3

 age
 104

 hypertension
 2

 heart_disease
 2

 ever_married
 2

 work_type
 5

 Residence_type
 2

 avg_glucose_level
 3979

 bmi
 418

 smoking_status
 4

 stroke
 2

 dtype: int64
 2

It show the Count, mean, median etc

In [12]: df.describe()

Out[12]:

:		ld	age	hypertension	heart_disease	avg_glucose_level	bml	stroke	
	count	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	4909.000000	5110.000000	
	mean	36517.829354	43.226614	0.097456	0.054012	106.147677	28.893237	0.048728	
	atd	21161.721625	22.612647	0.296607	0.226063	45.283560	7.854067	0.215320	
	min	67.000000	0.080000	0.000000	0.000000	55.120000	10.300000	0.000000	
	25%	17741.250000	25.000000	0.000000	0.000000	77.245000	23.500000	0.000000	
	50%	36932.000000	45.000000	0.000000	0.000000	91.885000	28.100000	0.000000	
	75%	54682.000000	61.000000	0.000000	0.000000	114.090000	33.100000	0.000000	
	max	72940.000000	82.000000	1.000000	1.000000	271.740000	97.600000	1.000000	

It shows the how many null values

In [13]: df.isnull()

Out[13]:

Id gender age hypertension heart_disease ever_married work_type Residence_type avg_glucose_level bml smoking_status stroke 0 False 1 False False False False True False False False False False False False 2 False 3 False 4 False 5105 False False False False False False False False True False False 5106 False 5107 False 5108 False 5109 False False

5110 rows × 12 columns

Is there any Null value present in any Column? Show with heatmap

Change the Numeric values to categorical

```
In [17]: #replace 'yes' with 1 and 'no' with 0 in the specified column
         df['hypertension'] = df['hypertension'].replace({1: 'yes', 0: 'no'})
In [18]: df.dtypes
Out[18]: id
                               int64
                              object
         gender
                             float64
         hypertension
                              object
         heart_disease
                               int64
         ever_married
                              object
                              object
         work_type
         Residence_type
                              object
         avg_glucose_level
                             float64
                             float64
         smoking_status
                              object
         stroke
                               int64
         dtype: object
In [19]: #replace 'yes' with 1 and 'no' with 0 in the specified column
         df['heart_disease'] = df['heart_disease'].replace({1: 'yes', 0: 'no'})
In [20]: #replace 'yes' with 1 and 'no' with 0 in the specified column
         df['stroke'] = df['stroke'].replace({1: 'yes', 0: 'no'})
         Bar Graph
In [21]: df.dtypes
Out[21]: id
                               int64
                              object
         gender
                             float64
         hypertension
                              object
         heart_disease
                              object
         ever married
                              object
         work_type
                              object
                              object
         Residence_type
         avg_glucose_level
                             float64
         bmi
                             float64
         smoking_status
                              object
         stroke
                              object
         dtype: object
```

Count of Heart Disease

```
In [23]: ds = df.groupby("heart_disease").heart_disease.count()
In [24]: ds
Out[24]: heart_disease
               4834
276
         yes
         Name: heart_disease, dtype: int64
In [25]: ds.plot(kind = 'bar')
Out[25]: <Axes: xlabel='heart_disease'>
          5000 -
          4000 -
          3000
          2000 -
          1000
                               2
                                         heart_disease
```

```
In [27]: # Apply conditions and replace values in the column

df['age'] = df['age'].apply(lambda x: 'Younger' if x < 18 else ('Young Adult' if x <= 30 else ('Adult' if 40 <= x <= 50 else 'Se

4
```

Gender wise Count of Brain Stroke

```
In [29]: plt.figure(figsize =(8,6))
    sns.countplot(data = df, x = 'gender', hue = "stroke")
    plt.xlabel('Gender')
    plt.ylabel('stroke')
    plt.title("Gender wise Brain Stroke")
    plt.show()
```

Gender wise Brain Stroke

Gender wise Count of Heart Disease

```
In [30]: plt.figure(figsize = (8,6))
    sns.countplot( data = df, x = 'gender', hue = "heart_disease")
    plt.xlabel('Gender')
    plt.ylabel('heart_disease')
    plt.title ('Gender wise Heart Disease')
    plt.show()
```


Count of Residency Type

Count of Residency Type

Residence_type

Pie Chart for work Type

```
In [32]: df['work_type'].value_counts().plot(kind = 'pie', title = 'Pie chart of work type', autopct="%.0f%%", colormap='Pastel1'),
Out[32]: (<Axes: title={'center': 'Pie chart of work type'}, ylabel='count'>,)
```

Pie chart of work type

Count Of Marraige wise Brain Stroke

```
In [33]: plt.figure(figsize=(8, 6))
    sns.countplot(data=df, x='ever_married', hue ="stroke")
    plt.xlabel('ever_married')
    plt.ylabel('stroke')
    plt.title('Marriage Status Vise Brain stroke')
    plt.show()
```


Count of Age wise Brain Stroke

Count of Age Wise Smoking

```
In [35]: plt.figure(figsize=(8, 6))
    sns.countplot(data=df, x='age', hue ="smoking_status")
    plt.xlabel('age')
    plt.ylabel('smoking_status')
    plt.title('Age Vise Smoking Status')
    plt.show()
```


