Emory University MATH 361 Mathematical Statistics I Learning Notes

Jiuru Lyu

August 24, 2023

Contents

1 Prerequisites 2

1 Prerequisites

Definition 1.0.1 (Geometric Series). A geometric series has the form

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

If |r| < 1, then the series converges to $\frac{a}{1-r}$. Otherwise, it diverges.

Example 1.0.2 Does the series $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ converge or divers?

Solution 1.

Note that

$$2^{2n}3^{1-n} = \left(2^2\right)^n 3^{1-n} = 4^n \left(\frac{1}{3}\right)^{n-1} = 4 \cdot 4^{n-1} \left(\frac{1}{3}\right)^{n-1} = 4\left(\frac{4}{3}\right)^{n-1}.$$

So,

$$\sum_{n=1}^{\infty} 2^{2n} 3^{1-n} = \sum_{n=1}^{\infty} 4\left(\frac{4}{3}\right)^{n-1}$$

is a geometric series, with a = 4 and $r = \frac{4}{3}$.

Since $|r| = \left| \frac{4}{3} \right| = \frac{4}{3} > 1$, the series diverges.

Definition 1.0.3 (Taylor Series). The Taylor series expanded about a of a differentiable function f is

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \cdots$$

Definition 1.0.4 (Maclaurin Series). The Taylor series expanded about a=0.

Remark. The Maclurin Series of e^x is given by $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Theorem 1.0.5 Binomial Expansion

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k},$$

where $\binom{n}{k}$ is read as "n choose k" and can also be written as nCk.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k!}.$$

2

Theorem 1.0.6 Integration by Parts

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u.$$

Example 1.0.7 Evaluate $\int xe^{-x} dx$.

Solution 2.

Let u = x, $dv = e^{-x} dx$. So, du = dx and $v = \int e^{-x} dx = -e^{-x}$. Then,

$$\int xe^{-x} dx = -xe^{-x} - \int -e^{-x} dx = -xe^{-x} - e^{-x} + C.$$

Definition 1.0.8 (Type I Improper Integral). If $\int_a^t f(x) dx$ exists for all t > 0, then

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x = \lim_{t \to \infty} \int_{a}^{t} f(x) \, \mathrm{d}x.$$

Example 1.0.9 Evaluate $\int_0^\infty xe^{-x} dx$.

Solution 3.

$$\int_0^\infty x e^{-x} \, dx = \lim_{t \to \infty} \int_0^t x e^{-x} \, dx = \lim_{t \to \infty} \left[-x e^{-x} - e^{-x} \right]_0^t$$

$$= \lim_{t \to \infty} \left(-t e^{-t} - e^{-t} + 1 \right)$$

$$= -\lim_{t \to \infty} \left(\frac{t}{e^t} \right) - \lim_{t \to \infty} e^{-t} + 1$$

$$= -\lim_{t \to \infty} \left(\frac{1}{e^t} \right) - 0 + 1 = -0 - 0 + 1 = 1.$$

Example 1.0.10 Double Integrals over Irregular Domains.

Consider

$$\iint_D 4xy - y^4 \, \mathrm{d}A,$$

where *D* is the region bounded between $y = \sqrt{x}$ and $y = x^3$.

Evaluate this double integral over D.

Solution 4.

Firstly, we draw the diagram representing D as follows:

$$\iint_D 4xy - y^3 \, dA = \int_0^1 \int_{x^3}^{\sqrt{x}} 4xy - y^3 \, dy dx = \int_0^1 \left[2xy^2 - \frac{1}{4}y^4 \right]_{x^3}^{\sqrt{x}} \, dx$$

$$= \int_0^1 2x(x - x^6) - \frac{1}{4}(x^2 - x^{12}) \, dx$$

$$= \int_0^1 2x^2 - 2x^7 - \frac{1}{4}x^2 + \frac{1}{4}x^{12} \, dx$$

$$= \left[\frac{2}{3}x^3 - \frac{1}{4}x^8 - \frac{1}{12}x^3 + \frac{1}{52}x^{13} \right]_0^1$$

$$= \frac{2}{3} - \frac{1}{4} - \frac{1}{12} + \frac{1}{52} = \frac{55}{156}.$$