Einführung in die Mathematik für Informatiker Lineare Algebra

Prof. Dr. Ulrike Baumann www.math.tu-dresden.de/~baumann

26.11.2018

8. Vorlesung

- Rangberechnung für Matrizen, Dimensionsformel
- reguläre Matrizen Berechnung der inversen Matrix
- Lineare Abbildungen
 - Lineare Fortsetzung
 - Kern und Bild, Dimensionsformel

Vin . unabh. St ist eine Von S, S2, \$3 Maximalzent Cin unch Spaltenvertoren ist 3

Rückblick: Elementare Zeilenumformungen

- Vertauschen zweier Zeilen
- ② Multiplizieren einer Zeile mit einem Faktor $k \in K \setminus \{0\}$
- 3 Addieren des k-fachen ($k \in K$) einer Zeile zu einer anderen Zeile

Elementare Zeilenumformungen ändern die Lösungsmenge des LGS Ax = b nicht.

Rangberechnung für Matrizen

- Elementare Zeilenumformungen ändern den Rang einer Matrix nicht.
- Bringt man eine Matrix A mittels elementarer Zeilenumformungen auf Zeilenstufenform, so ist der Rang rg(A) von A die Anzahl der Zeilen, in denen nicht nur Nullen als Einträge erscheinen.
- Satz: (Dimensionsformel)

Ist $A \in K^{m \times n}$, dann gilt:

Rem $(A) + \dim \operatorname{Ker}(A) = n$

rg(A)=1 \implies dim for (A)=0 \implies for (A)=\(\int_K)\)

v9(A)=0 () din kor(A)=n () ker(A) ist ein n-dim UVR von

 $Y9(A) = 19(A^7)$

Vim Ker/A -2 D -Spalteranalah din Ker/A = = (1 freier Paramoter in der Lisingsmenger 2

Rückblick: Inverse Matrix (Kann man durch Matrizen dividieren?)

$$A6=b \Rightarrow 6=A^{-1} \cdot b$$
; marks News. Existors! Beverly.

(regulair)

■ Eine quadratische Matrix $A \in K^{n \times n}$ heißt invertierbar, wenn es eine Matrix $A^{-1} \in K^{n \times n}$ mit

$$\underline{AA}^{-1} = A^{-1}A = E_n$$

gibt. Die eindeutig bestimmte Matrix A^{-1} mit dieser Eigenschaft wird die zu A inverse Matrix genannt. Ben falls bei inter Allevio onte ist die einder detained, detain and die zu A inverse Matrix A genannt. Allevio onte ist die einder detained detained

● <u>Die inverse Matrix A^{-1} </u> einer invertierbaren Matrix $A \in K^{n \times n}$ kann man durch paralleles Lösen von n linearen LGS mit der Koeffizientenmatrix A berechnen.

Paralleles Lösen von n LGS $Ax = e_i$

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nn} \end{pmatrix} = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$

$$\iff$$

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} \\ \vdots \\ b_{n1} \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{1n} \\ \vdots \\ b_{nn} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$$

Ulrike Baumann

Lineare Algebra

Berechnung der inversen Matrix zu $A \in K^{n \times n}$

- ① Notiere $(A \mid E_n)$, wobei E_n die n-reihige Einheitsmatrix bezeichnet.
- ② Mit elementaren Zeilenumformungen bringe man $(A \mid E_n)$ in Zeilenstufenform $(B \mid ...)$.
- 3 Enthält $(B \mid ...)$ eine Nullzeile, so existiert A^{-1} nicht.

Andernfalls setze man mit elementaren Zeilenumfomungen so lange fort, bis man eine Matrix in reduzierter Zeilenstufenform erhält:

$$(A \mid E_n) \rightarrow \ldots \rightarrow (B \mid \ldots) \rightarrow \ldots \rightarrow (E_n \mid A^{-1})$$

Die inverse Matrix zu A kann man unmittelbar aus dieser Darstellung ablesen.

Ulrike Baumann

Lineare Algebra

Sei AE CAR (A En = (A) Determunt ex. gine Nullbeile dam or At nicht et poine Nulleile dann ex 1º veduz. 25 el deilenunt. / En 64

Inverse spezieller Matrizen

• Sei
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K^{2 \times 2}$$
 und $ad - bc \neq 0$.

Dann gilt:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)^{-1} = \frac{1}{ad - bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right)$$

• Sind $a_{11}, a_{22}, \ldots, a_{nn} \in K \setminus \{0\}$, dann gilt:

$$\begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}^{-1} = \begin{pmatrix} a_{11}^{-1} & 0 & \dots & 0 \\ 0 & a_{22}^{-1} & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn}^{-1} \end{pmatrix}$$

•
$$E_n^{-1} = E_n$$

Ulrike Baumann

Lineare Algebra

Andorer Rechange (h=2)

Äquivalente Bedingungen

Es sei $A \in K^{n \times n}$.

- A ist eine invertierbare Matrix.
- A^T ist eine invertierbare Matrix.
- Die Spaltenvektoren von A sind linear unabhängig.
- Die Zeilenvektoren von A sind linear unabhängig.
- \bullet dim Col(A) = n
- $Ker(A) = \{0_{K^n}\}$
- \bullet dim Ker(A) = 0

Lineare Abbildungen

Sei K ein Körper.

Eine Abbildung $\underline{f}:V\to W$ von einem Vektorraum V über K in einen Vektorraum W über K heißt lineare Abbildung (oder Homomorphismus), wenn für alle $v_1,v_2\in V$ und alle $k\in K$ gilt:

- 2 $f(kv_1) = k f(v_1)$ (Homogenität)
- Jede lineare Abbildung $f: V \to W$ bildet den Nullvektor 0_V von V auf den Nullvektor 0_W von W ab:

$$\frac{f(0_V)=0_W}{f(v)=0_v=0_v+\beta_v\Rightarrow f(0_v)=f(0_v+\theta_v)\Rightarrow f(0_v)=f(0_v)+\frac{f(0_v)=f(0_v)-f(0_v)}{f(0_v)}=\frac{f(0_v)-f(0_v)}{f(0_v)}=\frac{f(0_v)-f(0_v)-f(0_v)-f(0_v)}{f(0_v)}=\frac{f(0_v)-f(0_v$$

Kriterien für die Linearität einer Abbildung

Für Vektorräume \underline{V} und \underline{W} über einem Körper K und eine Abbildung $f: V \to W$ sind die folgenden Aussagen äquivalent:

- Die Abbildung f ist linear.
- Für alle $v_1, v_2 \in V$ und alle $k_1, k_2 \in K$ gilt:

$$\frac{f(k_1v_1 + k_2v_2) = k_1f(v_1) + k_2f(v_2)}{A} \quad \text{(Linearität)}$$

Lineare Fortsetzung

Jede lineare Abbildung $f:V\to W$ ist durch die Bilder der Basisvektoren von V eindeutig bestimmt:

lst

$$\varphi: B \to W: b \mapsto \varphi(b)$$

eine Abbildung von einer Basis $B = \{b_1, b_2, \dots, b_n\}$ von V in den Vektorraum W, dann gibt es genau eine lineare Abbildung

$$f: V \to W$$

mit

$$\underline{f}(b_i) = \varphi(b_i) \quad (i = 1, 2, \dots, n),$$

nämlich:

$$f: \underline{V} \rightarrow W: k_1b_1 + \cdots + k_nb_n \mapsto k_1f(b_1) + \cdots + k_nf(b_n)$$

Man nennt diese eindeutig bestimmte Abbildung f die lineare Fortsetzung von φ auf V.

Kern und Bild einer linearen Abbildung

Sei $f: V \to W$ eine lineare Abbildung.

- Mer(f) := { $v \in V \mid f(v) = 0_W$ } ⊆ V heißt Kern von f. Im(f) := { $f(v) \mid v \in V$ } ⊆ W nennt man das Bild von f.
- lacktriangle Ker(f) ist ein Untervektorraum von V.
- ullet Im(f) ist ein Untervektorraum von W.
- Eine lineare Abbildung f ist genau dann injektiv, wenn $Ker(f) = \{0_V\}$ gilt.

Dimensionsformel

Ist V ein endlichdimensionaler Vektorraum, dann gilt für jede lineare Abbildung

$$f: V \rightarrow W$$

die folgende Gleichung:

$$\dim(V) = \dim(\underbrace{f^{-1}(\{0_W\})}_{\mathsf{Ker}(f)}) + \dim(\underbrace{f(V)}_{\mathsf{Im}(f)})$$