Machine Learning for Graphs and Sequential Data

Graphs – Limitations of GNNs

Lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Summer Term 2020

Roadmap

Chapter: Graphs

- 1. Graphs & Networks
- Generative Models
- 3. Clustering
- 4. Node Embeddings
- 5. Ranking
- 6. Semi-Supervised Learning
- 7. Limitations of GNNs
 - Overview
 - Robustness

Adversarial Attacks on GNNs

■ Earlier in this course we have seen the problem of (adversarial) robustness of classifiers on "traditional" data, e.g. images.

- In contrast, graph neural networks (GNNs) use both the node's attributes as well as their connections to make a prediction.
 - Therefore, adversarial attacks can happen through both the node attributes as well as the graph structure.
 - Structural attacks are indeed quite common in the real world (e.g. adding fake connections in a social network)
- Structure attacks are specifically challenging since they change the flow of messages passed through the GNN

Adversarial Attacks on GNNs

Example: two-layer GCN in matrix form:

node attributes

$$\mathbf{Z} \in \mathbb{R}^{N \times C} = f_{\theta}(\mathbf{A}, \mathbf{X}) = \operatorname{softmax}(\widehat{\mathbf{A}} \operatorname{ReLU}(\widehat{\mathbf{A}} \mathbf{X} \mathbf{W}^{(1)} + \mathbf{b}^{(1)}) \mathbf{W}^{(2)} + \mathbf{b}^{(2)})$$
message passing

- $m{\theta} = \left\{ m{W}^{(1)}, m{b}^{(1)}, m{W}^{(2)}, m{b}^{(2)} \right\}$ are learnable model weights.
- Adversarial attack: Modify node attributes X and/or adjacency matrix A in order to maximize classification loss
 - of an individual target node or
 - on the whole dataset/test set (global attack).

GNN Adversarial Attacks: Challenges

- 1. Optimization over **discrete variables** (the graph structure). Perturbations are measured via non-convex L_0 norm.
- 2. Relational dependencies between the nodes: cannot view samples in isolation.
- 3. $(A', X') \approx (A, X)$: What is a sensible measure of perturbations that do not change the semantics for (attributed) graphs?
- 4. **Transductive setting**: unlabeled data is **used during training**; most realistic scenario is a **poisoning attack**, where the attacker modifies the training data, which corresponds to a challenging **bilevel optimization problem**:

$$\max_{\boldsymbol{A},\boldsymbol{X}} \mathcal{L}_{test} \big(f_{\theta^*}(\boldsymbol{A},\boldsymbol{X}) \big) \quad s.\,t.\,\, \theta^* = \arg\min_{\theta} \mathcal{L}_{train} (f_{\theta}(\boldsymbol{A},\boldsymbol{X}))$$

GNN Adversarial Attack: Nettack

- One of the earliest GNN attack algorithms [Zügner+ 2018].
- Targets a **single node's prediction**.

$$Z = f_{\theta}(A, X) = sof max(\widehat{A} RXLU(\widehat{A}XW^{(1)})W^{(2)})$$
 Linearize classifier $\log Z' = \widehat{A}^2 XW'$

Structure perturbations: $\max_{\widehat{A}} \mathcal{L}'(\log \mathbf{Z}'_v)$ where $\log Z'_v = [\widehat{A}^2 \mathbf{C}]_v$ Constants Feature perturbations: $\max_{\mathbf{X}} \mathcal{L}'(\log \mathbf{Z}'_v)$ where $\log Z'_v = [\mathbf{C}_1 \mathbf{X} \mathbf{C}_2]_v$

- **Greedily** pick the **optimal perturbation** at each step.
- → Uses closed-form solutions for the **optimal perturbation** at each step

GNN Adversarial Attack: Nettack results

- Poisoning attack scenario (model is trained on perturbed data)
- Each point represents one attacked node
- Attack budget per node: $\Delta(i) = \deg(i) + 2$

% Correct: **1.0%** 2.7% 60.8% 90.3%

Improving Robustness

- GNNs are not robust under adversarial perturbations
 - specifically graph structure perturbations are harmful
- Heuristic defenses:
 - E.g. adjacency low-rank approximation via truncated Singular Value
 Decomposition (Entezari et al., 2020); filtering of malicious edges via attribute similarity (Wu et al., 2019)
 - However: equivalent/similar defenses for CNNs have been proven to be nonrobust against worst-case perturbations
- Robust Training:
 - In form of Adversarial Training, e.g., via Projected Gradient Descent (Xu et al., 2019)
 - Or proposed together with a certification technique (upcoming topic)

Recall: Certification (via Convex Relaxation)

Rephrase the original **goal**: develop an algorithm that answers the question:

"Is the GNN f_{θ} around the features **X** and adjacency matrix **A** adversarial-free (within an ϵ -ball(s) measured by some norm)?"

Allowed answers in the relaxed setting:

- YES: If for all $\widetilde{\mathbf{x}} \in \mathcal{P}_X(\mathbf{x})$, $\widetilde{\mathbf{A}} \in \mathcal{P}_A(\mathbf{A})$: arg max $F(\widetilde{\mathbf{x}}, \widetilde{\mathbf{A}}) = \arg\max F(\mathbf{x}, \mathbf{A})$
- POTENTIALLY NOT / MAYBE: In this case we have no guarantees.
- [NO: If any $\tilde{\mathbf{x}} \in \mathcal{P}_X(\mathbf{x})$, $\tilde{\mathbf{A}} \in \mathcal{P}_A(\mathbf{A})$: $\arg \max F(\tilde{\mathbf{x}}, \tilde{\mathbf{A}}) \neq \arg \max F(\mathbf{x}, \mathbf{A})$]

- 1. Graph and Attributes may change simultaneously
- 2. The nodes of a graph are non i.i.d.
- 3. L_0 -ball perturbations is natural for discrete data

Exact / Relaxed Certification

Already challenging if we are only allowed to perturb X

Proposed approaches so far are focusing on specific architectures and/or only attribute or structure perturbations:

- One can generalize the relaxed certification setting via linear programs to attribute perturbations on a GCN (Zügner and Günnemann, 2019).
- Certifying a GCN against structure perturbations can be formulized via a Jointly Constraint Bilinear Program (Zügner and Günnemann, 2020).
- To certify a PPNP model w.r.t. structure perturbations, we may solve a Quadratically Constrained Linear Program (Bojchevski and Günnemann, 2019).
 - under specific perturbation models ("local budget"; max x perturbations per node) one can perform certification exactly in polynomial time; for a global budget (max x perturbations overall), the problem becomes NP-hard and, thus, requires relaxation for efficiency

Randomized Smoothing

Recall: Smooth classifier $g(\mathbf{x})_c$ returns the probability that the base classifier f classifies a smoothed sample $\tilde{\mathbf{x}} \sim \phi(\mathbf{x})$ as class c

$$g(\mathbf{x})_c := \mathbb{P}(f(\phi(\mathbf{x})) = c) = \mathbb{E}_{\tilde{\mathbf{x}} \sim \phi(\mathbf{x})}(\mathbb{I}[f(\tilde{\mathbf{x}}) = c])$$

with a randomization scheme $\phi(\mathbf{x})$. We denote with $c^* = \arg\max_c g(\mathbf{x})_c$ the most likely class.

Goal: We want to certify the smooth classifier g. That is we aim to show that for a radius r it holds:

for all
$$\mathbf{x}'$$
 with $\|\mathbf{x}' - \mathbf{x}\|_0 \le r$: $c^* = \arg\max_c g(\mathbf{x}')_c$

For simplicity, we assume binary data (e.g. an unweighted graph)

→ L₀-norm radius certification.

How to Smooth Graph Data?

Challenge: Adding Gaussian noise to the discrete graph structure is not suitable

Solution: We model the n^2 possible edges in the adjacency matrix as a **Bernoulli random variable**

First idea: Same "flip probability" for every element

$$\tilde{\mathbf{x}} \sim \phi(\mathbf{x}) \text{ defined via } \mathbb{P}(\tilde{\mathbf{x}}_i | \, \mathbf{x}) = \begin{cases} p & \text{, } \tilde{\mathbf{x}}_i = 1 - \mathbf{x}_i \\ 1 - p & \text{, } \tilde{\mathbf{x}}_i = \mathbf{x}_i \end{cases}$$

How to Smooth Graph Data?

First idea: Same "flip probability" for every element

Problem: Real-world graphs are typically very **sparse** ($m \ll n^2$) and hence picking a meaningful p almost impossible

- Large flip probability p: most certainly we will add more random edges than original edges exist
- Small flip probability p: usually only a very few edges would be deleted

How to Smooth Graph Data? Sparsity Matters!

Sparsity-aware random sampling $\tilde{\mathbf{x}} \sim \phi(\mathbf{x})$:

Every element of the adjacency matrix is modelled via a **Bernoulli random** variable with data dependent probability:

$$\mathbb{P}(\tilde{\mathbf{x}}_i \mid \mathbf{x}) = \begin{cases} p_d^{\mathbf{x}_i} p_a^{1-\mathbf{x}_i} & , \ \tilde{\mathbf{x}}_i = 1 - \mathbf{x}_i \\ (1 - p_d)^{\mathbf{x}_i} (1 - p_a)^{1-\mathbf{x}_i} & , \ \tilde{\mathbf{x}}_i = \mathbf{x}_i \end{cases}$$

That is, each of the n^2 elements in the adjacency matrix is flipped with probability p_a if the value was previously 0 (no edge) or with p_d if previously an edge existed:

Smoothed Classifier for Discrete Data

With this randomization scheme we can write:

$$g(\mathbf{x})_{c} \coloneqq \mathbb{P}(f(\phi(\mathbf{x})) = c) = \mathbb{E}_{\tilde{\mathbf{x}} \sim \phi(\mathbf{x})}(\mathbb{I}[f(\tilde{\mathbf{x}}) = c])$$

$$= \sum_{\tilde{\mathbf{x}}} \mathbb{P}(\tilde{\mathbf{x}} \mid \mathbf{x}) \mathbb{I}[f(\tilde{\mathbf{x}}) = c] = \sum_{\tilde{\mathbf{x}} \text{ s.t. } f(\tilde{\mathbf{x}}) = c} \mathbb{P}(\tilde{\mathbf{x}} \mid \mathbf{x}) = \sum_{\tilde{\mathbf{x}} \text{ s.t. } f(\tilde{\mathbf{x}}) = c} \prod_{i=1}^{n^{2}} \mathbb{P}(\tilde{\mathbf{x}}_{i} \mid \mathbf{x})$$

We illustrate $\mathbb{P}(\tilde{\mathbf{x}} | \mathbf{x})$ with a hypothetical subgraph:

$$\mathbb{P}(\boxed{}) = (1 - p_a)^2 (1 - p_d)$$

$$\mathbb{P}(\boxed{)} = p_a(1 - p_a)(1 - p_d)$$

$$\mathbb{P}() = p_a (1 - p_a)(1 - p_d)$$

$$\mathbb{P}(\boxed{) = p_a^2(1 - p_d)$$

$$\mathbb{P}(\boxed{}) = (1 - p_a)^2 p_d$$

 $\tilde{\mathbf{x}}$ s.t. $f(\tilde{\mathbf{x}}) = c$ i = 1

$$\mathbb{P}(\boxed{}) = p_a(1 - p_a)p_d$$

$$\mathbb{P}(\boxed{) = p_a^2 p_d$$

Worst-Case Base Classifier

Let's assume we know the value of $g(\mathbf{x})_{c^*}$ for the original sample \mathbf{x}

 Note: Of course, like in the Gaussian/continuous case, we do **not** compute this term exactly (far too expensive) but rather derive a bound based on MC samples

How far can we deviate from \mathbf{x} , e.g. obtaining \mathbf{x}' , and still **guarantee** that we do not change the prediction, i.e. still have $\arg\max_{c} g(\mathbf{x})_{c} = c^{*} = \arg\max_{c} g(\mathbf{x}')_{c}$?

→ Similarly to the Gaussian/continuous randomized smoothing, to answer this question, we can inspect the **worst-case base classifier.**

Since the worst-case base classifier has a simple form (e.g. linear in the Gaussian case), once we know it, it is "rather simple" to obtain the certification radius

The Space of Base Classifiers

- lacktriangle Recall: we only assumed knowledge about the value of $g(\mathbf{x})_{c^*}$
 - We do **not** know the output of the actual base classifier f at every possible input
- Various base classifiers h fulfill the property $\sum_{\tilde{\mathbf{x}} \text{ s.t. } h(\tilde{\mathbf{x}}) = c^*} \mathbb{P}(\tilde{\mathbf{x}} | \mathbf{x}) = g(\mathbf{x})_{c^*}$
 - Let \mathcal{H} denote the set of all these base classifiers; clearly $f \in \mathcal{H}$

$h_1\in\mathcal{H}$		$h_2\in\mathcal{H}$
$\mathbb{P}($	$= (1 - p_a)^2 (1 - p_d) =$	P()
$\mathbb{P}()$	$= (1 - p_a)^2 p_d =$	$\mathbb{P}()$
$\mathbb{P}($	$= p_a (1 - p_a)(1 - p_d) =$	P()
$\mathbb{P}()$	$= p_a(1 - p_a)p_d =$	$\mathbb{P}($
$\mathbb{P}($	$= p_a (1 - p_a)(1 - p_d) =$	$\mathbb{P}($
$\mathbb{P}($)	$= p_a(1 - p_a)p_d =$	P()
$\mathbb{P}($	$= p_a^2(1 - p_d) =$	P()
ℙ()	$=p_a^2p_d=$	₽()

How to Find the Worst-Case Base Classifier?

For any **chosen location** \mathbf{x}' , we can express the **worst-case base classifier** as a minimization problem:

$$\min_{h \in \mathcal{H}} \sum_{\tilde{\mathbf{x}} \text{ s.t. } h(\tilde{\mathbf{x}}) = c^*} \mathbb{P}(\tilde{\mathbf{x}} \mid \mathbf{x}') \qquad \left(\leq \sum_{\tilde{\mathbf{x}} \text{ s.t. } f(\tilde{\mathbf{x}}) = c} \mathbb{P}(\tilde{\mathbf{x}} \mid \mathbf{x}') = g(\mathbf{x}')_{c^*} \right),$$

Intuition:

We search for a base classifier h such that the resulting smooth classifier

- maintains the probability mass for the clean sample \mathbf{x} , i.e. $\mathbb{P}\big(h(\phi(\mathbf{x}))=c^*\big)=g(\mathbf{x})_{c^*}$ // $h\in\mathcal{H}$
- and simultaneously minimizes the probability mass at the perturbed sample \mathbf{x}' , i.e. $\mathbb{P}\big(h\big(\phi(\mathbf{x}')\big) = c^*\big) = \sum_{\tilde{\mathbf{x}} \text{ s.t. } h(\tilde{\mathbf{x}}) = c^*} \mathbb{P}(\tilde{\mathbf{x}} \mid \mathbf{x}')$

Solution for the Worst-Case Base Classifier

The previous minimization problem can be formulated as a linear program! Denote with $\tilde{\mathbf{x}}^{(i)}$ the enumeration of all possible $\tilde{\mathbf{x}}$.

$$\min_{\mathbf{h}} \sum_{i} \mathbf{h}_{i} \, \mathbb{P}(\tilde{\mathbf{x}}^{(i)} | \mathbf{x}')$$
 subject to
$$\sum_{i} \mathbf{h}_{i} \, \mathbb{P}(\tilde{\mathbf{x}}^{(i)} | \mathbf{x}) = g(\mathbf{x})_{c^{*}} \, \text{ and } 0 \leq \mathbf{h}_{i} \leq 1$$

The vector \mathbf{h} represents the worst-case base classifier: \mathbf{h}_i indicates whether $h(\tilde{\mathbf{x}}^{(i)})$ outputs c^* ($\mathbf{h}_i = 1$) or some other class

- Technically it is a soft classifier (like logistic regression) since $0 \le h_i \le 1$

Solution for the Worst-Case Base Classifier

Interesting fact: This is a very special LP, which can efficiently and exactly be solved with a greedy approach

- Initialize all \mathbf{h}_i with zero
- Compute likelihood ratios $\eta_i = \frac{\mathbb{P}(\tilde{\mathbf{x}}^{(i)}|\mathbf{x})}{\mathbb{P}(\tilde{\mathbf{x}}^{(i)}|\mathbf{x'})}$ and sort them
 - i.e. get indices j_1, j_2, j_3, \dots such that $\eta_{j_1} \ge \eta_{j_2} \ge \eta_{j_3} \ge \dots$
- For k=1, ... set $\mathbf{h}_{j_k}=1$ while budget $\sum_i \mathbf{h}_i \, \mathbb{P} \big(\mathbf{\tilde{x}^{(i)}} | \mathbf{x} \big) = g(\mathbf{x})_{c^*}$ is not used up
 - i.e. process the sorted indices from left to right and assign a 1 (again: at the "switch point" we might have $0 < \mathbf{h}_j < 1$ to consume the budget fully).
- Result: We do not even have to solve an optimization problem! We just sort based on the **likelihood ratio** and assign class c^* to the "left part"
 - Note the similarity to the linear classifier in the Gaussian/continuous case
 - > The worst-case base classifier has a very simple form

Some Details We Skip

- Knowing the worst-case base classifier, enables us to find the certification radius r (technically we even have two radii: addition/deletion)
 - Core insight: The general form of the worst-case classifier is always the same, independent of which \mathbf{x}' we consider; similar to the Gaussian/continuous case
- In the linear program the dimensionality of \mathbf{h} would be enormous (all possible graphs). We can use the fact that only the likelihood ratio $\eta_i = \frac{\mathbb{P}(\tilde{\mathbf{x}}^{(i)}|\mathbf{x})}{\mathbb{P}(\tilde{\mathbf{x}}^{(i)}|\mathbf{x}')}$ matters for the solution.
 - Intuition: Group together all graphs that have the same value for η_i into one large region \rightarrow dimensionality of \mathbf{h} equals to the number of regions
 - Indeed we have only a small number of regions: linear in the radius/dimensionality of the input; very fast certification possible
- For further details we refer to (Bojchevski et al., 2020).

Most importantly, this randomized smoothing technique works for all models with binary input data: GNNs, CNNs, SVMs, Decision Trees, ...

Questions

- 1. Is a projected-gradient-descent (PGD) attack on a GNN via the graph structure a good idea? Why or why not?
- 2. Suppose you want to determine the worst-case structure perturbation Δ , which is limited to (i) insert or (ii) remove at most k edges. How many possible perturbations are there (in big-O notation w.r.t. the number of nodes N and number of edges E)?
- 3. Given a graph with 2810 nodes and 7336 edges. What value of p_a do we need to choose if in expectation we want to sample 7336 further edges?

Summary

- GNNs are not robust to adversarial attacks.
- GNN robustness/certification is a highly active research area.
 - To date there exists no defense against structure attacks that consistently improves results; standard methods such as adversarial training do not seem to work well.
- Robustness certification of GNNs is challenging but possible
 - specialized approaches enable to exploit structure of the GNN models
- Randomized smoothing can be adapted to discrete input data via Bernoulli random variables
 - ightarrow We draw Monte Carlo samples for $g(\mathbf{x})$ and obtain the certified radii analytically.
 - → Most importantly, randomized smoothing with the proposed noise model works for all models with binary input data: GNNs, CNNs, SVMs, Decision Trees, ...

References: Attacks

- Bojchevski, Aleksandar, and Stephan Günnemann. "Adversarial attacks on node embeddings via graph poisoning." ICML 2019.
- Zügner, Daniel, Amir Akbarnejad, and Stephan Günnemann. "Adversarial attacks on neural networks for graph data." KDD 2018.
- Zügner, Daniel and Stephan Günnemann. "Adversarial attacks on Graph Neural Networks via Meta Learning." ICLR 2019.

References: Improving Robustness

- Negin Entezari, Saba A. Al-Sayouri, Amirali Darvishzadeh, and Evangelos E. Papalexakis. All you need is Low (rank): Defending against adversarial attacks on graphs. WSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining, pages 169–177, 2020.
- Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial examples for graph data: Deep insights into attack and defense. IJCAI International Joint Conference on Artificial Intelligence, 2019.
- Kaidi Xu, Hongge Chen, Sijia Liu, Pin Yu Chen, Tsui Wei Weng, Mingyi Hong, and Xue Lin. Topology attack and defense for graph neural networks: An optimization perspective. IJCAI International Joint Conference on Artificial Intelligence, 2019.

References: Certification

- Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph convolutional networks. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 246–256, 2019.
- Daniel Zügner and Stephan Günnemann. Certifiable Robustness of Graph Convolutional Networks under Structure Perturbations. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2020.
- Aleksandar Bojchevski and Stephan Günnemann. Certifiable Robustness to Graph Perturbations. (NeurIPS), 2019
- Aleksandar Bojchevski, Johannes Klicpera and Stephan Günnemann. Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs, Images and More, ICML 2020