

Universidade Federal da Paraíba – Campus IV Centro de Ciências Aplicadas e Educação Introdução ao Computador

3 - Sistemas de Numeração

Professor: Alexandre Scaico alexandre@dcx.ufpb.br

- Sistemas de Computação
 - Manipulam informações numéricas
- Sistema de numeração egípcio
 - Um dos mais antigos conhecidos (3.000 a.C.)
 - Sistema aditivo onde cada símbolo representava um valor e sua ordem não importava

- Sistema de numeração romano
 - Cada símbolo só pode ser utilizado 3 vezes

- Notação posicional
 - Cada numeral tem seu valor dependente de sua posição no número
 - Cada posição tem seu valor definido pela seu valor multiplicado potência da base) de sua posição
 - 1951 → um milhar + nove centenas + cinco dezenas + uma unidade

- Sistema de numeração decimal ou indo-arábico
 - Sistema de utilizamos atualmente
 - Possui 10 símbolos que representam os valores
 - O número de símbolos define a base, por isso que esse sistema é chamado de base 10 ou decimal
 - Introduziu o valor zero
 - É um sistema posicional
 - Cada posição tem seu valor definido pela seu valor multiplicado potência de 10 (potência da base) de sua posição

Sistema de numeração decimal ou indo-arábico

- Sistema de numeração binário
 - Sistema de numeração posicional de base 2
 - Possui apenas 2 valores (0 e 1)
 - A contagem segue a mesma regra da contagem decimal, só que agora tendo apenas 2 algarismos ao invés de 10
 - Ao se chegar ao último algarismo da base acontece um "vai um" para a posição a esquerda e se reinicia a contagem a partir de zero para aquela posição

- Sistema de numeração binário
 - Como seria a contagem em binário?

Binário	Decimal
	0
	1
	2
	3
	4
	5
	6
	7

Binário	Decimal
	8
	9
	10
	11
	12
	13
	14
	15

- Sistema de numeração binário
 - Como seria a contagem em binário?

Binário	Decimal
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7

Binário	Decimal
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

Sistema de numeração binário

 Podemos usar o mesmo sistema posicional de potências da base para saber qual o valor decimal de um número

binário

- Sistema de numeração binário
 - Para ajudar segue as potências da base 2

Potência	Valor
2^0	1
2^{1}	2
2^{2}	4
2^3	8
2^{4}	16
2^{5}	32
2^{6}	64
2^{7}	128

Potência	Valor
2^8	256
2^{9}	512
2^{10}	1024
2^{11}	2048
2^{12}	4096
2^{13}	8192
2^{14}	16384
2^{15}	32768

- Para se saber em qual base um determinado número está se usa um índice após o número
 - Se não tiver índice então a base é decimal
- Exemplos
 - 23 ou 23_{10} → base decimal
 - 1011_2 → base binária
 - $1AF3_{16}$ ou $1AF3_{H} \rightarrow base hexadecimal$
 - 23_8 → base octal

- Sistema de numeração octal
 - Sistema de numeração posicional de base 8
 - Possui 8 valores (0 e 7)
 - A contagem segue a mesma regra da contagem decimal, só que agora tendo 8 algarismos ao invés de 10
 - Ao se chegar ao último algarismo da base acontece um "vai um" para a posição a esquerda e se reinicia a contagem a partir de zero para aquela posição

- Sistema de numeração octal
 - Como seria a contagem em octal?

Octal	Decimal
	0
	1
	2
	3
	4
	5
	6
	7

Octal	Decimal
	8
	9
	10
	11
	12
	13
	14
	15

Octal	Decimal
	16
	17
	18
	19
	20
	21
	22
	23

- Sistema de numeração octal
 - Como seria a contagem em octal?

Octal	Decimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7

Octal	Decimal
10	8
11	9
12	10
13	11
14	12
15	13
16	14
17	15

Octal	Decimal
20	16
21	17
22	18
23	19
24	20
25	21
26	22
27	23

- Sistema de numeração hexadecimal
 - Sistema de numeração posicional de base 16
 - Possui 16 valores (algarismos 0 a 9 e letras A a F)
 - A contagem segue a mesma regra da contagem decimal, só que agora tendo 16 algarismos (símbolos) ao invés de 10
 - Ao se chegar ao último algarismo da base acontece um "vai um" para a posição a esquerda e se reinicia a contagem a partir de zero para aquela posição

- Sistema de numeração hexadecimal
 - Como seria a contagem em hexadecimal?

Hexa	Decimal	Hexa	Decimal	Hexa	Decimal	Hexa	Decimal
	0		8		16		16
	1		9		17		17
	2		10		18		18
	3		11		19		19
	4		12		20		20
	5		13		21		21
	6		14		22		22
	7		15		23		23

- Sistema de numeração hexadecimal
 - Como seria a contagem em hexadecimal?

Hexa	Decimal	Hexa	Decimal	Hexa	Decimal	Hexa	Decimal
0	0	8	8	10	16	18	16
1	1	9	9	11	17	19	17
2	2	A	10	12	18	1A	18
3	3	В	11	13	19	1B	19
4	4	С	12	14	20	1C	20
5	5	D	13	15	21	1D	21
6	6	Е	14	16	22	1E	22
7	7	F	15	17	23	1F	23

- Por que estudamos especificamente esses sistemas de numeração?
 - O sistema decimal é nosso sistema padrão
 - O sistema binário é o sistema padrão dos sistemas computacionais
 - Os sistemas octal e hexadecimal são utilizados para representar números binários de um modo mais compacto
 - São sistemas de numeração derivados do sistema binário
 - A conversão para o binário é bem simples

Sistema Octal e Binário

- Há uma correspondência entre as bases
 - Cada dígito octal corresponde a 3 binários

Octal	Binário	Octal	Binário	Octal	Binário	Octal	Binário
0	000	10	001 000	20	010 000	30	011 000
1	001	11	001 001	21	010 001	31	011 001
2	010	12	001 010	22	010 010	32	011 010
3	011	13	001 011	23	010 011	33	011 011
4	100	14	001 100	24	010 100	34	011 100
5	101	15	001 101	25	010 101	35	011 101
6	110	16	001 110	26	010 110	36	011 110
7	111	17	001 111	27	010 111	37	011 111

Sistema Hexadecimal e Binário

- Há uma correspondência entre as bases
 - Cada dígito hexadecimal corresponde a 4 binários

$$2^4 = 16$$

Hexa	Binário	Hexa	Binário	Hexa	Binário	Hexa	Binário
0	0000	8	1000	10	0001 0000	18	0001 1000
1	0001	9	1001	11	0001 0001	19	0001 1001
2	0010	A	1010	12	0001 0010	1A	0001 1010
3	0011	В	1011	13	0001 0011	1B	0001 1011
4	0100	С	1100	14	0001 0100	1C	0001 1100
5	0101	D	1101	15	0001 0101	1D	0001 1101
6	0110	Е	1110	16	0001 0110	1E	0001 1110
7	0111	F	1111	17	0001 0111	1F	0001 1111

Sistema Hexadecimal e Binário

- Há uma correspondência entre as bases
 - Cada dígito hexadecimal corresponde a 4 binários

$$2^4 = 16$$

Hexa	Binário	Hexa	Binário	Hexa	Binário	Hexa	Binário
20	0010 0000	28	0010 1000	30	0011 0000	38	0011 1000
21	0010 0001	29	0010 1001	31	0011 0001	39	0011 1001
22	0010 0010	2A	0010 1010	32	0011 0010	3A	0011 1010
23	0010 0011	2B	0010 1011	33	0011 0011	3B	0011 1011
24	0010 0100	2C	0010 1100	34	0011 0100	3C	0011 1100
25	0010 0101	2D	0010 1101	35	0011 0101	3D	0011 1101
26	0010 0110	2E	0010 1110	36	0011 0110	3E	0011 1110
27	0010 0111	2F	0010 1111	37	0011 0111	3F	0011 1111

Bibliografia

- MARÇULA, M.: Informática: Conceitos e Aplicações. 5 edição, Editora Érica, 2019. (Disponível na biblioteca virtual)
 - Capítulo 1, Seções 1.1, 1.2, 1.7 e 1.8
- IODETA, I. V.; CAPUANO, F. G.: Elementos de Eletrônica Digital. 42 edição, Editora Érica, 2019. (Disponível na biblioteca virtual)
 - Capítulo 1, seções 1.1, 1.2 e 1.3