

8 STAGE SHIFT AND STORE BUS REGISTER WITH 3-STATE OUTPUTS

- 3-STATE PARALLEL OUTPUTS FOR CONNECTION TO COMMON BUS
- SEPARATE SERIAL OUTPUTS SYNCHRONOUS TO BOTH POSITIVE AND NEGATIVE CLOCK EDGES FOR CASCADING
- MEDIUM SPEED OPERATION 5MHz at 10V
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT

The HCF4094B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The HCF4094B is an 8 stages serial shift register having a storage latch associated with each stage for strobing data from the serial input to parallel buffered 3-state outputs. The parallel outputs may be connected directly to common bus lines. Data is shifted on positive clock transition. The data in each shift register stage is transferred to the

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4094BEY	
SOP	HCF4094BM1	HCF4094M013TR

storage register when the STROBE input is high. Data in the storage register appears at the outputs whenever the OUTPUT-ENABLE signal is high. Two serial outputs are available for cascading a number of HCF4094B devices. Data is available at the Q_S serial output terminal on positive clock edges to allow for high speed operation in cascaded system in which the clock rise time is fast. The same serial information, available at the Q_S terminal on the next negative clock edge, provides a means for cascading HCF4094B devices when the clock rise time is slow.

PIN CONNECTION

March 2004 1/13

IINPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN N°	SYMBOL	NAME AND FUNCTION
2	DATA	Data Input
1	STROBE	Strobe Input
3	CLOCK	Clock Input
9, 10	Q_S, Q'_S	Serial Outputs
4, 5, 6, 7, 14, 13, 12, 11	Q1 to Q8	Parallel Outputs
15	OUTPUT ENABLE	Output Enable Input
8	V_{SS}	Negative Supply Voltage
16	V_{DD}	Positive Supply Voltage

FUNCTIONAL DIAGRAM

TRUTH TABLE

CI OCK	CLOCK OUTPUTS ENABLE	CTRORE	DATA	PARALLEL	OUTPUTS	SERIAL OUTPUTS	
CLOCK		STROBE	DATA	Q ₁	Q _n	Q* _S	Q' _S
	L	Х	Х	ОС	ОС	Q7	No Change
L	L	Х	Х	OC	OC	No Change	Q7
	Н	L	Х	No Change	No Change	Q7	No Change
	Н	Н	L	L	Q _n - 1	Q7	No Change
	Н	Н	Н	Н	Q _n - 1	Q7	No Change
	Н	Н	Н	No Change	No Change	No Change	Q7

X : Don't Care
OC : Open Circuit
* At the positive clock edge information on the 7th shift register stage is transferred to the 8th register stage and the Q_S output.

LOGIC DIAGRAM

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.5 to +22	V
VI	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I _I	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	500 (*)	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

All voltage values are referred to V_{SS} pin voltage. (*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

DC SPECIFICATIONS

		Test Condition				Value							
Symbol Parameter	Vı	V _O	I _O	V _{DD}	T _A = 25°C		С	-40 to 85°C		-55 to 125°C		Unit	
		(V)	(V)	(μ A)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.04	5		150		150	
		0/10			10		0.04	10		300		300	
		0/15			15		0.04	20		600		600	μΑ
		0/20			20		0.08	100		3000		3000	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V _{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V _{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		
	Voltage		1/9	<1	10	7			7		7		V
			1.5/13.5	<1	15	11			11		11		
V _{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
I _{OH}	Output Drive	0/5	2.5		5	-1.36	-3.2		-1.1		-1.1		
	Current	0/5	4.6		5	-0.44	-1		-0.36		-0.36		A
		0/10	9.5		10	-1.1	-2.6		-0.9		-0.9		mA
		0/15	13.5		15	-3.0	-6.8		-2.4		-2.4		
l _{OL}	Output Sink	0/5	0.4		5	0.44	1		0.36		0.36		
	Current	0/10	0.5		10	1.1	2.6		0.9		0.9		mΑ
		0/15	1.5		15	3.0	6.8		2.4		2.4		
I _I	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	± 0.1		± 1		± 1	μΑ
I _{OH,} I _{OL}	3-State Output Leakage Current	0/18	0/18		18		±10 ⁻⁴	± 0.4		± 12		± 12	μΑ
C _I	Input Capacitance		Any In	put			5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, $C_L = 50$ pF, $R_L = 200$ K Ω , $t_r = t_f = 20$ ns)

Cumbal	D = = = = = = (= = =	Test Condition			Value (*)		
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
t _{PLH} t _{PHL}	Propagation Delay Time	5			300	600	
	(Clock to serial Output Q _S)	10			125	250	ns
		15			95	190	
t _{PLH} t _{PHL}	Propagation Delay Time	5			230	460	
	(Clock to serial Output Q' _S)	10			110	220	ns
	(Cook to condition output & S)	15			75	150	
t _{PLH} t _{PHL}	Propagation Delay Time	5			420	840	
	(Clock to Parallel Output)	10			195	390	ns
		15			135	270	
t _{PLH} t _{PHL}	Propagation Delay Time	5			290	580	
	(Strobe to Parallel Output)	10			145	290	ns
		15			100	200	
t _{PZL} , t _{PZH}	Propagation Delay Time	5			140	280	
,	Output Enable to Parallel Out:	10			75	150	ns
	Output High to High Impedance	15			55	110	
t _{PHZ} t _{PLZ}	Propagation Delay Time	5			225	450	
	Output Enable to Parallel Out:	10			95	190	ns
	Output Low to High Impedance	15			70	140	
t _W	Strobe Pulse Width	5		200	100		
**		10		80	40		ns
		15		70	35		
t _W	Clock Pulse Width	5		200	100		
••		10		100	50		ns
		15		83	40		
t _{setup}	Data Setup Time	5		125	60		
ootap	·	10		55	30		ns
		15		35	20		
t _{hold}	Minimum Hold Time	5		0	0	0	
noid		10		0	0	0	ns
		15		0	0	0	
t _{TLH} t _{THL}	Transition Time	5			100	200	
		10			50	100	ns
		15			40	80	1
t _{r,} t _f	Clock input Rise or Fall Time	5		15			
1, 1	·	10		5			μs
		15		5			1
f _{max}	Maximum Clock Input	5		1.25	2.5		
max	Frequency	10		2.5	5		MHz
		15		3	6		1

^(*) Typical temperature coefficient for all V_{DD} value is 0.3%/°C.

TYPICAL APPLICATION (REMOTE CONTROL HOLDING REGISTER)

TEST CIRCUIT

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

 $C_L = 50 pF$ or equivalent (includes jig and probe capacitance) $R_L = 200 K \Omega$ $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

WAVEFORM 1: PROPAGATION DELAY TIMES, PULSE WIDTH (CLOCK), SETUP AND HOLD TIME (DATA IN TO CLOCK) ($f=1\,MHz; 50\%$ duty cycle)

WAVEFORM 2: PROPAGATION DELAY TIME, PULSE WIDTH (STROBE), SETUP AND HOLD TIME (STROBE TO CLOCK) (f=1MHz; 50% duty cycle)

WAVEFORM 3: OUTPUT ENABLE AND DISABLE TIME (f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

SO-16 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			1.75			0.068	
a1	0.1		0.2	0.004		0.008	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)	•		
D	9.8		10	0.385		0.393	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		8.89			0.350		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.62			0.024	
S	8		° (1	max.)	•	•	

Tape & Reel SO-16 MECHANICAL DATA

DIM		mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			330			12.992	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
N	60			2.362			
Т			22.4			0.882	
Ao	6.45		6.65	0.254		0.262	
Во	10.3		10.5	0.406		0.414	
Ko	2.1		2.3	0.082		0.090	
Po	3.9		4.1	0.153		0.161	
Р	7.9		8.1	0.311		0.319	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.