ME414 2S 2018

ME414 - Estatística para Experimentalistas

Profa.: Larissa Avila Matos

4^a Lista de Exercícios

- 1. Considere que queremos determinar, em uma população, a proporção de pessoas acima de 40 anos que sofrem de artrite. Sabemos que, de uma amostra de 4000 pessoas acima de 40 anos, foi verificado que 240 pessoas têm artrite.
- (a) Estime a proporção de pessoas acima de 40 anos que sofrem de artrite.
- (b) Determine um intervalo de confiança de 95% para a verdadeira proporção de pessoas acima de 40 anos que sofrem de artrite?
- 2. Uma amostra aleatória de 625 pessoas revelou que 70% preferem a marca X de sabonete. Construa um interevalo de 90% de confinaça para p =proporção de pessoas que preferem a marca X.
- 3. Antes de uma eleição um determinado partido está interessado em estimar a proporção p de eleitores favoráveis a seu candidato. Uma amostra piloto de tamanho 100 revelou que 60% dos eleitores eram favoráveis ao cantidato em questão.
- (a) Determine o tamanho da amostra necessário para que o erro cometido na estimação seja no máximo 0.01 com probabilidade de 80%.
- (b) Se na amostra fina (com tamanho dado por (a)) observou-se que 55% dos eleitores eram favoráveis ao candidato em questão, construa um intervalo de confiança (95%) para a proporção p.
- 4. Suponha que estejamos interessados em estimar a porcentagem de consumidores de um certo produto. Se uma amostra de tamanho 300 forneceu 100 indivíduos que consomem o dado produto, determine:
- (a) O intervalo de confiança para p, com coeficiente de confiança 95%.
- (b) O tamanho da amostra para que o erro da estimativa não exceda a 0.02 unidades com probabilidade 95%.
- **5.** Seja uma X_1, X_2, \dots, X_n uma amostra aleatória da distribuição $N(\mu, \sigma^2)$. Mostre que a estatística $T = \sum_{i=1}^n a_i X_i$ com $\sum_{i=1}^n a_i = 1$ é não viciada para a média.
- 6. O projetista de uma indústria tomou uma amostra de 50 funcionários para verificar o tempo médio gasto para montar um determinado brinquedo. Lembrando que foi verificado que $\overline{X} = 20.5$ e $\sigma = 2$.
- (a) Construa um intervalo de confiança de nível 99% para μ .
- (b) Qual deverá ser o tamanho da amostra para que o erro máximo cometido, a 99% de confiança, ao estimar μ por \overline{X} , não exceda $\epsilon = 0.1$?
- 7. Foram realizados testes glicêmicos em 25 pacientes após um jejum de 8 horas. Os resultados são apresentados na tabela abaixo. Encontre um intervalo de confiança de nível 95% para a média μ .

Teste glicêmico (mg/dL)												
80	118	100	90	83	117	95	84	102	80	112	78	102
121	82	77	88	73	104	88	132	91	103	140	101	

- 8. Seja X a duração da vida de uma peça de equipamento tal que $\sigma=5$ horas. Admita que 100 peças foram ensaiadas fornecendo uma duração de vida média de 500 horas. Construa um intervalo de 95% para a verdadeira média populacional.
- 9. Seja X_1, X_2, \ldots, X_n uma amostra aleatória de uma distribuição normal com média μ , desconhecida e variância σ^2 , conhecida. Qual deve ser o tamanho da amostra n, tal que exista um intervalo de confiança para μ com coeficientes de confiança de 90% e comprimento menor do que 0.2σ ?
- 10. Uma turma de 36 alunos é dividida ao acaso em dois grupos de 18. Para o primeiro grupo o ensino de Matemática é feito usando elementos de multimídia. Enquanto isso, no segundo grupo o ensino é feito pelo método tradicional (quadro negro e giz). No final do período é aplicado um teste, comum aos dois grupos, com os seguintes resultados:

Grupo 1:	7,3	8,2	6,0	7,7	8,0	6,1	5,6	5,3	5,9
	5,8	5,8	7,1	5,1	8,0	7,6	8,3	4,9	6,5
Grupo 2:	7,5	6,2	5,7	4,4	4,7	5,8	5,0	6,0	6,5
	5,8	4,5	5,1	5,5	6,0	5,8	5,8	5,7	7,5

Considerando os dois grupos como amostras aleatórias de duas populações independentes e normalmente distribuídas, determine um intervalo de confiança de 95% para a verdadeira diferença das médias populacionais dos dois grupos.

- 11. Dois grupos, A e B, são formados por pessoas distintas que possuem a mesma enfermidade. É ministrado um soro ao grupo A mas não ao grupo B. Das 100 pessoas que formaram o grupo A, 75 se curaram e, das 100 pessoas que formaram o grupo B, 65 obtiveram a cura. Verifique se o soro é eficiente na cura da enfermidade.
- 12. Um método de borrifar nuvens (para provocar chuva) obteve sucesso em 54 dentre 150 tentativas, enquanto que o outro método obteve sucesso em 33 dentre 100 tentativas. Pode-se concluir que o primeiro método é superior ao segundo?
- 13. Membros de uma associação patronal desejam demonstrar que mais de 60% dos seus associados apoiam a política de privatização do governo. Determine a região crítica do teste de hipótese para essa situação, para um nível de significância $\alpha = 0.05$, supondo que os dados são colhidos de uma amostra com 80 associados selecionados ao acaso.
- 14. Para cada situação apresentada a seguir, verifique se os dados apresentam evidência suficiente para rejeitar a hipótese nula sendo que s denota o desvio padrão amostral $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2}$.
- (a) População normal, n = 15, $\overline{X} = 83.9$, s = 18.2, $\alpha = 10\%$, para o teste $H_0: \mu = 85$ vs $H_1: \mu < 85$.
- (b) População normal, n=15, $\overline{X}=79.1$, s=11.8, $\alpha=10\%$, para o teste $H_0: \mu=76$ vs $H_1: \mu\neq 76$.
- 15. O ponto de desvanecimento de cada uma de 16 amostras de uma certa marca de vegetais hidrogenados foi determinado, resultando numa média amostral $\overline{X}=94.32$. Considerando que o ponto de desvanecimento possui distribuição normal com desvio conhecido $\sigma=1.20$.
- (a) Verifique se a amostra apresenta evidência suficiente para rejeitar H_0 ao nível $\alpha = 0.01$, calculando o p-valor onde $H_0: \mu = 95$ vs $H_1: \mu \neq 95$.
- (b) Se $\alpha = 0.01$ e $\mu' = 94$. Qual é a probabilidade de cometer erro tipo II?
- 16. O ponto médio desejado de SiO_2 em certo tipo de cimento aluminoso é de 5.5. Para provar se o verdadeiro ponto médio da porcentagem numa planta de produção em particular é 5.5, foram coletadas 16 amostras. Supondo que a porcentagem de SiO_2 numa amostra está normalmente distribuída com desvio conhecido e igual a $\sigma=0.3$ e sabendo que na amostra selecionada obteve-se $\overline{X}=5.25$, responda:

Os dados indicam de forma conclusiva que o verdadeiro ponto médio de porcentagem não é $\mu = 5.5$?.

17. Os estudantes universitários homens entediam-se mais facilmente que as estudantes mulheres?. Esta pergunta foi examinada pelo artigo "Boredom in Young Adults Gender and Cultural Comparisons" (J. of Cross Cultural Psych. pp. 209-223). Os autores aplicaram uma escala denominada Escala de propensão para o tédio a 97 estudantes homens e a 148 estudantes mulheres, todos eles de universidades norte americanas. Assumindo que a classificação fornecida pela escala possui distribuição normal verifique se a seguinte informação apoia a hipótese da investigação. Faça o teste adequado utilizando um nível de significância $\alpha = 0.05$ e os dados da seguinte tabela:

Gênero	Tamanho amostral	Média amostral	Desvio verdadeiro (σ)
Homens	97	10.40	4.83
Mulheres	148	9.26	4.86

- 18. Denotemos por μ_1 e μ_2 os verdadeiros pontos médios de durações de superfícies de rodagem para duas marcas competidoras de medida FR78-15 de pneus radiais. Faça o seguinte teste de hipótese assumindo que a duração das superfícies de rodagem possui distribuição normal e $H_0: \mu_1 \mu_2 = 0$ vs $H_1: \mu_1 \mu_2 \neq 0$ com nível de significância $\alpha = 0.05$, usando a seguinte informação: m = 40, $\overline{X} = 36500$, $\sigma_1 = 2200$ (valor verdadeiro do desvio) e n = 40, $\overline{Y} = 33400$, $\sigma_2 = 1900$ (valor verdadeiro do desvio).
- 19. Um experimento deseja comparar a resistência de coesão à tensão do morteiro modificado de látex de polímeros, com a resistência do morteiro não modificado. Supondo que os dados tem distribuição normal e que resultou em $\overline{X}=18.12kfg/cm^2$ para o morteiro modificado e em $\overline{Y}=16.87kfg/cm^2$ para o morteiro não modificado. Sejam μ_1 e μ_2 as verdadeiras resitências de coesão à tensão para os morteiros modificado e não modificado respectivamente. Verifique se os dados suportam a rejeição de H_0 , onde $H_0: \mu_1 \mu_1 = 0$ vs $H_1: \mu_1 \mu_2 > 0$ com nível de significância $\alpha = 0.01$, na seguinte situação:

Para o morteiro modificado foi utilizada uma amostra de tamanho m=40 e para o não modificado foi utilizada uma amostra de tamanho n=32. Os valores dos desvios são conhecidos σ_1 e σ_2 (associados respectivamente ao morteiro modificado e ao não modificado), $\sigma_1=1.6$ e $\sigma_2=1.4$. Proponha uma estatística para conduzir o teste e verifique se os dados indicam a rejeição de H_0 .

20. Estuda-se o conteúdo de nicotina de duas marcas de cigarros (A e B), obtendo-se os seguintes resultados.

ME414 2S 2018

A: 17; 20; 23; 20 B: 18; 20; 21; 22; 24

Admitindo que o conteúdo de nicotinas das duas marcas tem distribuiço Normal e que as variâncias populacionais são iguais, com $\alpha=0.05$, pode-se afirmar que existe alguma diferença significativa no conteúdo médio de nicotina nas duas marcas?