Problem session 3

Reza Mohammadpour
Department of Mathematics
Uppsala University, Sweden
reza.mohammadpour@math.uu.se

- 1. Give examples or claim non-existence (with brief motivations) of:
- a) A function $\mathbb{R}^2 \to \mathbb{R}$ which is differentiable but not continuously differentiable.
- b) A function f not differentiable at zero and a function g differentiable at zero where fg is differentiable at zero.
- 2. Let the function $f:[0,1]\to\mathbb{R}$ be given by

$$f(x) = \begin{cases} 1 & \text{if } \frac{1}{2} \cdot 4^{-n} \le x \le 4^{-n} \text{ for some } n \in \{0, 1, 2, 3, \ldots\} \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is Riemann integrable on [0, 1], and determine $\int_0^1 f(x)dx$.

3. Let

$$g_a(x) = \begin{cases} x^a \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Find a particular (potentially noninteger) value for a so that

- a) g_a is differentiable on \mathbb{R} but such that g'_a is unbounded on [0,1].
- b) g_a is differentiable on \mathbb{R} with g'_a continuous but not differentiable at zero.
- c) g_a is differentiable on \mathbb{R} and g'_a is differentiable on \mathbb{R} , but such that g''_a is not continuous at zero.
- 4. Let f be differentiable on an interval A. If $f'(x) \neq 0$ on A, show that f is one-to-one on A. Provide an example to show that the converse statement need not be true.
- 5. Let $g:[0,a]\to \mathbf{R}$ be differentiable, g(0)=0, and $|g'(x)|\leq M$ for all $x\in[0,a]$. Show $|g(x)|\leq Mx$ for all $x\in[0,a]$
 - 6. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

- a) Compute $D_1 f(0,0)$ and $D_2 f(0,0)$.
- b) Prove that f is not differentiable at (0,0).

- 7. Show that if f is differentiable on a closed interval [a, b] and if f' is continuous on [a, b], then f is Lipschitz on [a, b].
 - 8. Compute the upper and lower integrals of the function $f:[0,1]\to\mathbb{R}$,

$$f(x) = \begin{cases} 2 - x, & x \in [0, 1] \backslash \mathbb{Q} \\ x, & x \in \mathbb{Q} \cap [0, 1] \end{cases}$$

and conclude that it is not Riemann integrable.

Also, one must look at the following exercises 5.1-5.10 and 6.1-6.15 in Rudin's book.