Regressão Logística

Prof. Danilo Silva

EEL7514/EEL7513 - Tópico Avançado em Processamento de Sinais EEL410250 - Aprendizado de Máquina

EEL / CTC / UFSC

Tópicos

- Classificação: conceitos gerais
- Classificação binária
- Regressão logística
- Classificação multi-classe
- Avaliação de classificadores binários

Classificação: Conceitos

Gerais

Classificação

- Problema de classificação com K classes:
 - $\mathbf{x} = (x_1, \dots, x_n)^T \in \mathbb{R}^n$ é o vetor de atributos
 - $y \in \mathcal{Y} = \{1, 2, \dots, K\}$ é o rótulo que indica a classe a qual \mathbf{x} pertence
 - ▶ Um classificador é uma função $\mathbf{x} \mapsto \hat{y} \in \mathcal{Y} = \{1, 2, \dots, K\}$
- Dado um conjunto de treinamento, desejamos um classificador que consiga prever corretamente a classe de novas amostras

Exemplo: Classificador *k*-NN (*k-nearest neighbors*)

- Classifica uma nova amostra com a classe mais comum (voto de maioria) entre as dos seus k vizinhos mais próximos no conjunto de treinamento
 - Requer uma medida de distância (ex: distância euclidiana)
 - k é um hiperparâmetro

Exemplo: Árvore de Decisão

$$\begin{split} x_1 &\in \left\{0 \text{ (female)}, 1 \text{ (male)}\right\} \\ x_2 &= \text{age} \\ x_3 &= \text{number of siblings or spouses} \\ y &\in \left\{0 \text{ (died)}, 1 \text{ (survived)}\right\} \end{split}$$

Classificação × Regressão

- ▶ Os rótulos das classes $\mathcal{Y} = \{1, \dots, K\}$ correspondem a um mapeamento arbitrário de algum conjunto
 - ightharpoonup Ex: $\{1 \rightarrow \mathsf{cat}, \ 2 \rightarrow \mathsf{dog}, \ 3 \rightarrow \mathsf{mug}, \ 4 \rightarrow \mathsf{hat}\}$
 - $\blacktriangleright \ \, \mathsf{Ex} \colon \{3 \to \mathsf{cat}, \ 1 \to \mathsf{dog}, \ 4 \to \mathsf{mug}, \ 2 \to \mathsf{hat}\}$
- Não existe uma ordenação natural entre as classes
- No jargão da área, este tipo de variável é conhecida como categórica, em oposição a uma variável numérica $y \in \mathbb{R}$ (valor-alvo de regressão)
- ▶ O que fazer se $y \in \{1, \dots, K\}$ permite uma interpretação numérica?
 - Ex: avaliação de um produto: 1 a 5 estrelas
- Nesse caso, o problema pode ser formulado tanto como classificação quanto como regressão—mas tipicamente é mais fácil resolver como regressão

Desempenho de um Classificador

- ▶ Considere o conjunto de dados $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})\}$ e seja $\hat{y}^{(i)}$ a predição do classificador sobre a amostra $(\mathbf{x}^{(i)}, y^{(i)})$.
- A forma mais geral de avaliar o desempenho de um classificador sobre um conjunto de dados é através da sua matriz de confusão

$$\mathbf{N} = \begin{bmatrix} N(1,1) & \cdots & N(1,K) \\ \vdots & \cdots & \vdots \\ N(K,1) & \cdots & N(K,K) \end{bmatrix}$$

onde $N(y,\hat{y})$ denota o número de amostras de \mathcal{D} que pertencem à classe y e foram classificadas como \hat{y} .

No entanto, esta é uma avaliação multi-objetivo; na prática, é útil sumarizar o desempenho em uma métrica de um único número (single-real-number evaluation metric)

Exemplo: Matriz de Confusão

Desempenho de um Classificador

 Uma forma simples e muito utilizada de avaliar o desempenho de um classificador é através da perda média

$$J = \frac{1}{m} \sum_{i=1}^{m} L(y^{(i)}, \hat{y}^{(i)})$$

onde $L(y,\hat{y})$ denota a perda ou custo de se classificar uma amostra como \hat{y} quando a classe correta é y

Nesse caso, temos

$$J = \frac{1}{m} \sum_{y=1}^{K} \sum_{\hat{y}=1}^{K} N(y, \hat{y}) L(y, \hat{y})$$

Perda 0-1 (zero-one loss)

$$L(y, \hat{y}) = 1[y \neq \hat{y}] = \begin{cases} 0, & y = \hat{y} \\ 1, & y \neq \hat{y} \end{cases}$$

onde $1[\cdot]$ é uma função indicadora dada por

$$1[P] = \begin{cases} 1, & \text{se } P \text{ \'e verdadeira} \\ 0, & \text{se } P \text{ \'e falsa} \end{cases}$$

- ▶ Todo acerto tem custo zero, todo erro tem o mesmo custo
- Nesse caso, a perda média corresponde à taxa de erro
- ▶ Acurácia = 1 − taxa de erro

Regiões de Decisão

▶ Em geral, um classificador pode ser equivalentemente representado por uma partição de \mathbb{R}^n em regiões de decisão $\mathcal{R}_1, \dots, \mathcal{R}_K$, de tal forma que

$$\hat{y} = \begin{cases} 1, & \text{se } \mathbf{x} \in \mathcal{R}_1 \\ \vdots & \vdots \\ K, & \text{se } \mathbf{x} \in \mathcal{R}_K \end{cases} = \sum_{k=1}^K k \cdot 1[\mathbf{x} \in \mathcal{R}_k]$$

onde $1[\cdot]$ é uma função indicadora dada por

$$1[P] = \begin{cases} 1, & \text{se } P \text{ \'e verdadeira} \\ 0, & \text{se } P \text{ \'e falsa} \end{cases}$$

 X_1

Funções Discriminantes

- ▶ Sem perda de generalidade¹, podemos representar um classificador através de funções discriminantes $f_1(\mathbf{x}), \dots, f_K(\mathbf{x}) \in \mathbb{R}$
 - Ex: $f_k(\mathbf{x}) = 1[\mathbf{x} \in \mathcal{R}_k]$
- Decide-se pela classe k que maximiza o discriminante:

$$\hat{y} = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} f_k(\mathbf{x})$$

- Informalmente, podemos interpretar $f_k(\mathbf{x})$ como um grau (ou *score*) de confiança de que a amostra \mathbf{x} percence à classe k
- \blacktriangleright Assim, o problema de classificação é transformado em K problemas de regressão

 $^{^{1}}$ Obs: embora não haja perda de generalidade nessa representação, nem todo classificador de fato a utiliza na prática. Ex: árvores de decisão, classificador k-nn

Classificação Linear

O tipo mais simples de discriminante é o discriminante linear

$$f_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + b_k, \qquad k = 1, \dots, K$$

onde
$$\mathbf{w}_k = (w_{k,1}, \dots, w_{k,n})^T$$

- Um classificador que utiliza discriminantes lineares é chamado de classificador linear
- Nesse caso, as regiões de decisão são separadas através de hiperplanos em \mathbb{R}^n
 - ▶ ⇒ regiões "simplesmente conexas" e convexas

Classificação Binária

Notação

- lacktriangle Se K=2, temos um problema de classificação binária
- Nesse caso, ao invés de considerar o conjunto de rótulos $\mathcal{Y} = \{1, 2\}$, é mais conveniente e mais comum considerar
 - $\mathcal{Y} = \{0 \text{ (classe negativa)}, 1 \text{ (classe positiva)}\}$
 - $\mathcal{Y} = \{-1 \text{ (classe negativa)}, +1 \text{ (classe positiva)}\}$

(Na literatura, é comum inclusive alternar entre as duas notações várias vezes ao longo de um texto)

- Para manter a consistência da notação, usaremos sempre:
 - $y, \hat{y} \in \mathcal{Y} = \{0, 1\}$
 - $ullet \ y_s, \hat{y}_s \in \{-1, +1\}$, i.e., $y_s = 2y 1$ e $y = (y_s + 1)/2$

Classificação Binária

▶ Na classificação binária, é suficiente usar um único discriminante:

$$\hat{y} = 1 \iff f_1(\mathbf{x}) > f_0(\mathbf{x})$$

 $\iff f(\mathbf{x}) \triangleq f_1(\mathbf{x}) - f_0(\mathbf{x}) > 0$

(consequentemente, $\hat{y} = 0$ se $f(\mathbf{x}) < 0$)

De forma mais compacta, podemos escrever:

$$\hat{y} = 1[f(\mathbf{x}) > 0]$$

Classificação Binária Linear

No caso de um classificador linear, temos

$$\hat{y} = 1 \iff \mathbf{w}^T \mathbf{x} + b > 0$$

onde $\mathbf{w} = (w_1, \dots, w_n)^T$, ou simplesmente

$$\hat{y} = 1[\mathbf{w}^T \mathbf{x} + b > 0]$$

- ▶ Geometricamente, a equação $\mathbf{w}^T\mathbf{x} + b = 0$ define um hiperplano em \mathbb{R}^n perpendicular a \mathbf{w} e que passa pelo ponto $-\frac{b}{\|\mathbf{w}\|}\frac{\mathbf{w}}{\|\mathbf{w}\|}$
- ▶ Uma amostra \mathbf{x} é classificada como positiva ($\hat{y}=1$) se estiver no semi-espaço do lado positivo do hiperplano (no sentido da projeção na direção de \mathbf{w}), caso contrário é classificada como negativa ($\hat{y}=0$)

Example of a linear decision boundary for binary classification.

Notação

Para facilitar, vamos a partir de agora considerar a notação

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

onde
$$\mathbf{w} = (b, w_1, \dots, w_n)^T$$
 e $\mathbf{x} = (1, x_1, \dots, x_n)^T$

Assim, a predição será dada simplesmente por

$$\hat{y} = 1[\mathbf{w}^T \mathbf{x} > 0]$$

Classificação Binária via Regressão Linear

- Uma forma simples de determinar w é usando regressão linear com perda quadrática (i.e., mínimos quadrados)
- ▶ Nesse caso, ajustamos um modelo

$$z = \mathbf{w}^T \mathbf{x}$$

a partir de exemplos de treinamento rotulados como $y_s \in \{-1,+1\}$, utilizando a função perda

$$L(y_s, z) = (y_s - z)^2$$

Note que a classificação continua sendo dada por

$$\hat{y} = 1[\mathbf{w}^T \mathbf{x} > 0] = 1[z > 0]$$

Problema: Sensibilidade a Outliers

Um problema desta solução é que o uso do erro quadrático

$$L(y_s, z) = (y_s - z)^2$$

penaliza predições que estão "certas demais"

- ▶ Por exemplo, supondo $y = y_s = 1$:
 - ightharpoonup z = 100 (acerto com alta confiança) $\implies L(y_s, z) = 99^2 = 9801$
 - z = -1 (erro) $\Longrightarrow L(y,z) = 4$
- ► Consequentemente, valores altos de $z = \mathbf{w}^T \mathbf{x}$ influenciam excessivamente o modelo

Regressão Logística

Regressão Logística

Uma solução para esse problema é o modelo de regressão logística

$$\tilde{y} = \sigma(\mathbf{w}^T \mathbf{x})$$

com rótulos codificados como $y \in \{0, 1\}$, onde

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

é a função sigmóide logística padrão

Note que

$$\lim_{z \to -\infty} \sigma(z) = 0, \qquad \sigma(0) = \frac{1}{2}, \qquad \lim_{z \to \infty} \sigma(z) = 1$$

- ► Classificação: $\hat{y} = 1[\mathbf{w}^T \mathbf{x} > 0] = 1[\tilde{y} > 1/2]$
- ▶ Obs: $\tilde{y} \in [0,1]$ pode ser interpretado como estimativa de $p(y=1|\mathbf{x})$

Função Logística

Propriedades:

$$\sigma(-x) = 1 - \sigma(x)$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Exemplo

Função Perda

A perda média do modelo é dada por

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} L(y^{(i)}, \tilde{y}^{(i)})$$

onde
$$\tilde{y}^{(i)} = \sigma(\mathbf{w}^T \mathbf{x}^{(i)})$$

Mesmo com o modelo de regressão logística, o uso do erro quadrático

$$L(y, \tilde{y}) = (y - \tilde{y})^2$$

ainda é problemático:

Penaliza pouco um score de confiança $z = \mathbf{w}^T \mathbf{x}$ muito errado:

Ex:
$$y=1, z=-\infty \implies \tilde{y}=0$$
 e $L(y,\tilde{y})=1$

lacktriangle Resulta em uma função custo $J(\mathbf{w})$ não-convexa

Função Perda

É usual adotar como função perda a entropia cruzada:

$$L(y, \tilde{y}) = -y \log \tilde{y} - (1 - y) \log(1 - \tilde{y})$$

- ▶ Note que $L(0,1) = L(1,0) = \infty$, enquanto L(0,0) = L(1,1) = 0
- ▶ Resulta em uma função custo $J(\mathbf{w})$ convexa

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (-1)y^{(i)} \log \sigma(\mathbf{w}^T \mathbf{x}^{(i)}) - (1 - y^{(i)}) \log(1 - \sigma(\mathbf{w}^T \mathbf{x}^{(i)}))$$

Exercício (opcional): prove que $J(\mathbf{w})$ é convexa

Função Custo: Exemplo

Figure B.1: Logarithmic transformation of the sigmoid function.

Função Custo: Exemplo

Treinamento

Função custo (em notação vetorial):

$$J(\mathbf{w}) = \frac{1}{m} \left(-\mathbf{y}^T \log \tilde{\mathbf{y}} - (1 - \mathbf{y})^T \log(1 - \tilde{\mathbf{y}}) \right)$$

onde $\tilde{\mathbf{y}} = \sigma(\mathbf{X}\mathbf{w})$

Gradiente:

$$\nabla J(\mathbf{w}) = \frac{1}{m} \mathbf{X}^T (\tilde{\mathbf{y}} - \mathbf{y}) = \frac{1}{m} \mathbf{X}^T (\sigma(\mathbf{X}\mathbf{w}) - \mathbf{y})$$

Extensão com Funções de Base

- Assim como no caso de regressão linear, o modelo básico de regressão logística pode ser estendido com funções de base, isto é, utilizando como atributos $x_j' = \varphi_j(\mathbf{x}), j = 1, \dots, n'$, funções não-lineares dos atributos originais $\mathbf{x} = (x_1, \dots, x_n)^T$
- ightharpoonup O treinamento é idêntico a partir dos atributos transformados \mathbf{x}' , entretanto a visualização a partir dos atributos originais \mathbf{x} será diferente
 - ► Em particular, permite uma separação não-linear entre as classes

Exemplo

Notação (Bishop): Atributos originais: x_1, x_2 ; Atributos transformados: ϕ_1, ϕ_2 $\phi_j(\mathbf{x}) = \exp(-\gamma \|\mathbf{x} - \mathbf{c}_j\|^2)$, $\mathbf{c}_1 = (-1, -1)$, $\mathbf{c}_2 = (0, 0)$

Regularização

- Com o aumento no número de atributos, aumenta também a tendência a overfitting no conjunto de treinamento, tornando-se importante usar regularização para garantir uma boa generalização
- ► Regularização ℓ_2 : $\Omega(\mathbf{w}) = \frac{1}{2m} \sum_{j=1}^n w_j^2 = \frac{1}{2m} \mathbf{w}^T \mathbf{L} \mathbf{w}$
- Função custo:

$$J(\mathbf{w}) = J_{\text{train}}(\mathbf{w}) + \lambda \Omega(\mathbf{w})$$

= $\frac{1}{m} (-\mathbf{y}^T \log \tilde{\mathbf{y}} - (1 - \mathbf{y})^T \log(1 - \tilde{\mathbf{y}})) + \lambda \frac{1}{2m} \mathbf{w}^T \mathbf{L} \mathbf{w}$

Gradiente:

$$\nabla J(\mathbf{w}) = \frac{1}{m} \mathbf{X}^T (\tilde{\mathbf{y}} - \mathbf{y}) + \lambda \frac{1}{m} \mathbf{L} \mathbf{w}$$

 $ightharpoonup \lambda$ é um hiperparâmetro a ser determinado na etapa de validação

Classificação Multi-Classe

Classificação Multi-Classe

- A regressão logística é, na verdade, um método de encontrar um discriminante linear $z=\mathbf{w}^T\mathbf{x}$ para um classificador binário
- Na classificação multi-classe linear, a regra de decisão é dada por

$$\hat{y} = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} \mathbf{w}_k^T \mathbf{x}$$

- ▶ Uma forma de utilizar regressão logística para encontrar os vetores \mathbf{w}_k é treinando-se, independentemente, para cada classe k, um classificador que prevê o rótulo $y_k=1[y=k]$
- Este tipo de classificador é conhecido como "um contra todos" (one-vs-all, one-vs-rest)

Classificação Multi-Classe

- ightharpoonup Uma forma de encontrar os rótulos y_k para cada amostra é realizando a chamada binarização do rótulo y
 - ► Também chamada de codificação 1-de-*K* ou *One-Hot Encoding*

$$\begin{array}{c|cc}
y & \mathbf{y} = (y_1, \dots, y_K) \\
\hline
1 & (1, 0, 0, 0, \dots, 0) \\
2 & (0, 1, 0, 0, \dots, 0) \\
3 & (0, 0, 1, 0, \dots, 0) \\
\vdots & \vdots \\
K & (0, 0, 0, 0, \dots, 1)
\end{array}$$

Regressão Softmax

- Também conhecida como regressão logística multinomial
- Consiste em ajustar um modelo com K saídas

$$\tilde{\mathbf{y}} = (\tilde{y}_1, \dots, \tilde{y}_K), \qquad \tilde{y}_k = \operatorname{softargmax}(\mathbf{w}_1^T \mathbf{x}, \dots, \mathbf{w}_K^T \mathbf{x})_k$$

onde

$$\operatorname{softargmax}(\mathbf{z})_k = \frac{e^{z_k}}{\sum_{j=1}^K e^{z_j}}$$

tendo como rótulo o vetor $\mathbf{y}=(y_1,\ldots,y_k)$, com $y_k=1[y=k]$, o qual corresponde à binarização de y

Tipicamente é usada como função perda a entropia cruzada categórica

$$L(\mathbf{y}, \tilde{\mathbf{y}}) = -\sum_{k=1}^{K} y_k \log \tilde{y}_k$$

Terminologia

A função softargmax realiza uma aproximação suave da função argmax (com *one-hot encoding*): se $z_k \gg z_j$, para todo $j \neq k$, então

$$\operatorname{softargmax}(\mathbf{z}) \approx (0, \dots, 0, 1, 0, \dots, 0)$$

onde o 1 aparece na k-ésima posição.

- No entanto, na literatura esta função é normalmente denominada simplesmente função softmax
- ▶ A função que faz uma aproximação suave da função max é na verdade a função LogSumExp

$$LSE(x_1, \dots, x_n) = \log(e^{x_1} + \dots + e^{x_n}) \approx \max\{x_1, \dots, x_n\}$$

 Confusamente, o livro do Watt utiliza a terminologia softmax para denotar a função LogSumExp, o que (embora faça sentido) é incomum

Avaliação de Classificadores

Binários

Avaliação do modelo

- A função custo usada no treinamento (mesmo sem regularização) não necessariamente é representativa do verdadeiro custo do modelo em uma aplicação real
 - ► Ex: podemos estar interessados na acurácia = 1 taxa de erro
- Para um classificador binário, uma avaliação genérica do modelo (sem se comprometer com uma métrica específica) pode ser feita a partir de duas grandezas:

$$TPR = \frac{TP}{TP + FN} \quad \text{(true positive rate)}$$

$$FPR = \frac{FP}{FP + TN} \quad \text{(false positive rate)}$$

 Um tradeoff entre as duas grandezas (conhecido como curva ROC) pode ser obtido variando-se o limiar de decisão Δ, i.e.,

$$\hat{y} = 1[z > \Delta]$$

Matriz de confusão

Curva ROC (Receiver Operating Characteristic)

