Recursion. Example $n! = 1 \cdot 2 \cdot ... \cdot n$, $n \ge 0$

Mathematical definition:

$$0! = 1$$
 (i)
 $n! = n \cdot (n-1)!$, for $n > 0$ (ii)

Computation:

$$\begin{array}{rcl} & 3! \\ = & 3 \cdot (3-1)! & (ii) \\ = & 3 \cdot 2 \cdot (2-1)! & (ii) \\ = & 3 \cdot 2 \cdot 1 \cdot (1-1)! & (ii) \\ = & 3 \cdot 2 \cdot 1 \cdot 1 & (i-1)! \\ = & 6 & (i-1)! & (i-1)! \end{array}$$

Recursion. Example $n! = 1 \cdot 2 \cdot \ldots \cdot n$, $n \ge 0$

Mathematical definition:

recursion formula

$$0! = 1$$
 (i)
 $n! = n \cdot (n-1)!$, for $n > 0$ (ii)

Computation:

$$\begin{array}{rcl}
3! \\
= & 3 \cdot (3-1)! & (ii) \\
= & 3 \cdot 2 \cdot (2-1)! & (ii) \\
= & 3 \cdot 2 \cdot 1 \cdot (1-1)! & (ii) \\
= & 3 \cdot 2 \cdot 1 \cdot 1 & (i) \\
= & 6
\end{array}$$

Function declaration:

Evaluation:

```
fact(3)

3*fact(3-1) (ii) [n \mapsto 3]

3*2*fact(2-1) (ii) [n \mapsto 2]

3*2*1*fact(1-1) (ii) [n \mapsto 1]

3*2*1*1 (i) [n \mapsto 0]
```

Function declaration:

Evaluation:

Function declaration:

Evaluation:

fact(3)

⇒
$$3*fact(3-1)$$
 (ii) $[n \mapsto 3]$

⇒ $3*2*fact(2-1)$ (ii) $[n \mapsto 2]$

⇒ $3*2*1*fact(1-1)$ (ii) $[n \mapsto 1]$

⇒ $3*2*1*1$ (i) $[n \mapsto 0]$

Function declaration:

Evaluation:

fact(3)

$$\rightarrow$$
 3*fact(3-1) (ii) [n \mapsto 3]
 \rightarrow 3*2*fact(2-1) (ii) [n \mapsto 2]
 \rightarrow 3*2*1*fact(1-1) (ii) [n \mapsto 1]
 \rightarrow 3*2*1*1 (i) [n \mapsto 0]

Function declaration:

Evaluation:

```
fact(3)

\Rightarrow 3 * fact(3-1) \\
 \Rightarrow 3 * 2 * fact(2-1) \\
 \Rightarrow 3 * 2 * 1 * fact(1-1)

(ii) [n \mapsto 3]
(ii) [n \mapsto 2]
(ii) [n \mapsto 1]
(ii) [n \mapsto 1]
(ii) [n \mapsto 1]
```

e₁ → e₂ reads: e₁ evaluates to e₂

Function declaration:

Evaluation:

Recursion. Example $x^n = x \cdot ... \cdot x$, n occurrences of x

Mathematical definition:

recursion formula

$$x^0 = 1$$
 (1)
 $x^n = x \cdot x^{n-1}$, for $n > 0$

Function declaration:

```
et rec power = function

| (-,0) \rightarrow 1.0  (* 1 *)

| (x,n) \rightarrow x * power(x,n-1)  (* 2 *)
```

Patterns

(_, 0) matches any pair of the form (x, 0). The wildcard pattern _ matches any value.

$$x \mapsto U$$
, $n \mapsto 1$

Recursion. Example $x^n = x \cdot \dots \cdot x$, *n* occurrences of *x*

Mathematical definition:

recursion formula

$$x^0 = 1$$
 (1)
 $x^n = x \cdot x^{n-1}$, for $n > 0$ (2)

Function declaration:

let rec power = function

$$| (-,0) \rightarrow 1.0$$
 (* 1 *)
 $| (x,n) \rightarrow x * power(x,n-1)$ (* 2 *)

Patterns

(_, 0) matches any pair of the form (x, 0).

The wildcard pattern _ matches any value.

$$x\mapsto U, n\mapsto i$$

Recursion. Example $x^n = x \cdot ... \cdot x$, n occurrences of x

Mathematical definition:

recursion formula

$$x^0 = 1$$
 (1)
 $x^n = x \cdot x^{n-1}$, for $n > 0$

$$x^n = x \cdot x^{n-1}, \quad \text{for } n > 0$$
 (2)

Function declaration:

```
let rec power = function
  |(-,0)| \rightarrow 1.0
  | (x,n) -> x * power(x,n-1) (* 2 *)
```

Patterns:

- (-,0) matches any pair of the form (x,0). The wildcard pattern _ matches any value.
- (x, n) matches any pair (u, i) yielding the bindings

$$x \mapsto u, n \mapsto i$$

Evaluation. Example: power (4.0, 2)

Function declaration:

```
let rec power = function

| (-,0) \rightarrow 1.0  (* 1 *)

| (x,n) \rightarrow x * power(x,n-1)  (* 2 *)
```

Evaluation:

```
power(4.0,2)

→ 4.0 * power(4.0,2-1) Clause 2, [x \mapsto 4.0, n \mapsto 2]

→ 4.0 * power(4.0,1)

→ 4.0 * (4.0 * power(4.0,1-1)) Clause 2, [x \mapsto 4.0, n \mapsto 1]

→ 4.0 * (4.0 * power(4.0,0))

→ 4.0 * (4.0 * 1) Clause 1

→ 16.0
```