

The Lovász Extension

Submodularity

 $\{0,1\}^n$ $[0,1]^n$ Extends the domain of trom

submodular: For

Convex!

 $f(w) = \max w^{\mathsf{T}} x$

 $x \in \mathcal{B}_F$

Base Polytope

Submodularity The Lovász Extension

• Extends the domain of F from $\{0,1\}^n$ to $[0,1]^n$

- For F submodular: $f(w) = \max_{x \in \mathscr{B}_F} w^{\mathsf{T}} x$
- Convex!

Base Polytope

Structured OT Relaxing the Objective

- So far: **deterministic** matches
- Want: **soft**, fractional assignments

	Classic OT	Submodular OT	
Strict Formulation	$\min_{M} \sum_{(i,j) \in M} C_{ij}$	$\min_{M} F(M)$	
Relaxed Formulation	$\min_{\Gamma \in \Pi(\mathbf{a}, \mathbf{b})} \sum_{(i,j)} C_{ij} \Gamma_{ij}$?	

