Real Analysis Qual Prep Week 2: Measure Theory, Fubini Tonelli

D. Zack Garza

Table of Contents

Contents

Ta	Table of Contents	
1	Study Guide	3
	1.1 Convergence Tips/Tricks	3
	1.2 Measure Theory	5
	1.3 Fubini-Tonelli	8
2	Qual Problems	13

Table of Contents

Study Guide

References:

- Folland's "Real Analysis: Modern Techniques", Ch.1
- Stein and Shakarchi Ch.1, Ch.2

1.1 Convergence Tips/Tricks

• Our favorite tools: **metrics** and **norms**!

A **metric** on a set X is a function $\rho: X \times X \to [0, \infty)$ such that

- $\rho(x,y) = 0 \text{ iff } x = y;$
- $\rho(x,y) = \rho(y,x)$ for all $x,y \in X$;
- $\rho(x,z) \le \rho(x,y) + \rho(y,z)$ for all $x,y,z \in X$.
- So show things are equal by showing |x-y|=0. Know the triangle inequality by heart!
- Uniform convergence:

Definition 1.2.7 (Uniform Convergence)

$$(\forall \varepsilon > 0) (\exists n_0 = n_0(\varepsilon)) (\forall x \in S) (\forall n > n_0) (|f_n(x) - f(x)| < \varepsilon).$$

$$(\forall \varepsilon > 0) (\exists n_0 = n_0(\varepsilon)) (\forall x \in S) (\forall n > n_0) (|f_n(x) - f(x)| < \varepsilon).$$
 Negated:^a
$$(\exists \varepsilon > 0) (\forall n_0 = n_0(\varepsilon)) (\exists x = x(n_0) \in S) (\exists n > n_0) (|f_n(x) - f(x)| \ge \varepsilon).$$
 \[\frac{a}{Slogan:} to negate, find a bad x depending on n_0 that are larger than some \varepsilon.

- ^aSlogan: to negate, find a bad x depending on n_0 that are larger than some ε .
- Negating: find a bad ε and a single bad point x.
- Showing a sum converges uniformly: remember that $\sum_{k\geq 1} a_k$ is defined to be $\lim_{N\to\infty} \sum_{k\leq N} a_k$. So the trick is to define $f_n(x) := \sum_{k \le n} a_k$ and then apply the usual criteria above.
- It's sometimes useful to trade the $\forall x$ in the definition with $\sup_{x \in X} |f_n(x) f(x)| < \varepsilon$ instead.
- Compare and contrast to **pointwise convergence**, which is strictly weaker:

Study Guide 3 **Definition 1.2.8** (Pointwise Convergence)

A sequence of functions $\{f_j\}$ is said to **converge pointwise** to f if and only if

$$(\forall \varepsilon > 0)(\forall x \in S) (\exists n_0 = n_0(x, \varepsilon)) (\forall n > n_0) (|f_n(x) - f(x)| < \varepsilon).$$

- The main difference: pointwise can depend on the x and the ε , but uniform needs one ε that works for all x simultaneously.
- Note uniform implies pointwise but not conversely.
- The sup norm: $||f||_{\infty} := \sup_{x \in X} |f_n(x)|$
 - A useful way to force uniform convergence: bound your sequence uniformly by a sequence that goes to zero:

Proposition 1.4.1(Testing Uniform Convergence: The Sup Norm Test). $f_n \to f$ uniformly iff there exists an M_n such that $||f_n - f||_{\infty} \le M_n \to 0$.

- Sups and infs: sup is the least upper bound, inf is the greatest lower bound.
- The p-test:

$$\sum_{n\geq 1} \frac{1}{n^p} < \infty \iff p > 1$$

• Useful fact: convergent sums have small tails, i.e.

$$\sum_{n\geq 1} a_n < \infty \implies \lim_{N\to\infty} \sum_{n\geq N} a_n = 0$$

- So try bounding things from above by the tail of a sum!
- If you can't bound by a tail: as long as you have control over the coefficients, you can pick them to make the sum to converge "fast enough".
 - Example: for a fixed ε , choose $a_n = 1/2^n$. Note that $\sum_{n \ge 1} 1/2^n = 1$, so choose $a_n := \varepsilon/2^n$:

$$\cdots \le \sum_{n \ge 1} a_n := \sum_{n \ge 1} \frac{\varepsilon}{2^n} = \varepsilon \to 0$$

• The $\varepsilon/3$ trick:

Theorem 1.4.4(Uniform Limit Theorem).

If $f_n \to f$ pointwise and uniformly with each f_n continuous, then f is continuous.

^aSlogan: a uniform limit of continuous functions is continuous.

Proof.

• Follows from an $\varepsilon/3$ argument:

$$|F(x) - F(y)| \le |F(x) - F_N(x)| + |F_N(x) - F_N(y)| + |F_N(y) - F(y)| \le \varepsilon \to 0.$$

- The first and last $\varepsilon/3$ come from uniform convergence of $F_N \to F$.
- The middle $\varepsilon/3$ comes from continuity of each F_N .
- So just need to choose N large enough and δ small enough to make all 3 ε bounds hold.

• The *M*-test:

Weierstrass M-test. Suppose that (f_n) is a sequence of real- or complex-valued functions defined on a set A, and that there is a sequence of non-negative numbers (M_n) satisfying the conditions

- $|f_n(x)| \leq M_n$ for all $n \geq 1$ and all $x \in A$, and
- $\sum_{n=1}^{\infty} M_n$ converges.

Then the series

$$\sum_{n=1}^{\infty} f_n(x)$$

converges absolutely and uniformly on A.

1.2 Measure Theory

- F_{σ} sets: unions of closed sets (F for fermi, French for closed. Sigma for sums, ie unions)
- G_{δ} sets: intersections of open sets
- σ algebras: closed under complements, countable intersections, countable unions
- Some of the most useful properties of measures:

Let X be a set equipped with a σ -algebra \mathfrak{M} . A **measure** on \mathfrak{M} (or on (X, \mathfrak{M}) , or simply on X if \mathfrak{M} is understood) is a function $\mu : \mathfrak{M} \to [0, \infty]$ such that

i.
$$\mu(\varnothing) = 0$$
,

ii. if $\{E_i\}_{1}^{\infty}$ is a sequence of disjoint sets in \mathcal{M} , then $\mu(\bigcup_{1}^{\infty} E_i) = \sum_{1}^{\infty} \mu(E_i)$.

Property (ii) is called countable additivity. It implies finite additivity:

1.2 Measure Theory 5

1.8 **Theorem.** Let (X, \mathcal{M}, μ) be a measure space.

- a. (Monotonicity) If $E, F \in \mathcal{M}$ and $E \subset F$, then $\mu(E) \leq \mu(F)$.
- b. (Subadditivity) If $\{E_j\}_1^{\infty} \subset \mathcal{M}$, then $\mu(\bigcup_1^{\infty} E_j) \leq \sum_1^{\infty} \mu(E_j)$.
- c. (Continuity from below) If $\{E_j\}_1^{\infty} \subset \mathcal{M} \text{ and } E_1 \subset E_2 \subset \cdots$, then $\mu(\bigcup_{j=1}^{\infty} E_j) = \lim_{j \to \infty} \mu(E_j)$.
- d. (Continuity from above) If $\{E_j\}_1^{\infty} \subset \mathcal{M}$, $E_1 \supset E_2 \supset \cdots$, and $\mu(E_1) < \infty$, then $\mu(\bigcap_1^{\infty} E_j) = \lim_{j \to \infty} \mu(E_j)$.
- The proof of continuity of measure contains a very useful trick: replace a sequence of sets $\{E_k\}$ with a sequence of disjoint sets that either union or intersect to the same thing.
 - Example: if $A_1 \subseteq A_2 \subseteq \cdots$, set $F_1 = A_1$ and $F_k = A_k \setminus A_{k-1}$ for $k \geq 2$. Then $\bigcup_{k \geq 1} A_k = \coprod_{k \geq 1} F_k$.
- Occasionally you need some properties of **outer measures**:

containing E, the inner area of E is just the area of R minus the outer area of $R \setminus E$. The abstract generalization of the notion of outer area is as follows. An **outer** measure on a nonempty set X is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ that satisfies

- $\mu^*(\emptyset) = 0$,
- $\mu^*(A) \le \mu^*(B)$ if $A \subset B$,
- $\mu^*(\bigcup_1^\infty A_j) \leq \sum_1^\infty \mu^*(A_j)$.

The most common way to obtain outer measures is to start with a family E of

1.10 Proposition. Let $\mathcal{E} \subset \mathcal{P}(X)$ and $\rho : \mathcal{E} \to [0, \infty]$ be such that $\emptyset \in \mathcal{E}$, $X \in \mathcal{E}$, and $\rho(\emptyset) = 0$. For any $A \subset X$, define

$$\mu^*(A) = \inf \left\{ \sum_{1}^{\infty} \mu(E_j) : E_j \in \mathcal{E} \text{ and } A \subset \bigcup_{1}^{\infty} E_j \right\}.$$

Then μ^* is an outer measure.

• Outer measure for \mathbb{R}^n : you consider all collections of cubes that cover your set, sum up their

1.2 Measure Theory 6

volumes, and take the infimum over all such collections:

Definition 1.2.9 (Outer Measure)

The outer measure of a set is given by

$$m_*(E) \coloneqq \inf_{\substack{\{Q_i\} \Rightarrow E \\ \text{closed cubes}}} \sum |Q_i|.$$

- "Almost everywhere blah": the set where blah does not happen has measure zero.
- "Infinitely many/all but finitely many" types of sets, which show up in Borel-Cantelli style problems

and likewise for unions and intersections. In this situation, the notions of **limit** superior and **limit inferior** are sometimes useful:

$$\limsup E_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n, \qquad \liminf E_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n.$$

The reader may verify that

$$\limsup E_n = \{x : x \in E_n \text{ for infinitely many } n\},$$
$$\liminf E_n = \{x : x \in E_n \text{ for all but finitely many } n\}.$$

$$E = A \setminus E$$
.

In this situation we have deMorgan's laws:

$$\left(\bigcup_{\alpha \in A} E_{\alpha}\right)^{c} = \bigcap_{\alpha \in A} E_{\alpha}^{c}, \qquad \left(\bigcap_{\alpha \in A} E_{\alpha}\right)^{c} = \bigcup_{\alpha \in A} E_{\alpha}^{c}.$$

• Lemmas that sometimes show up on quals:

1.2 Measure Theory 7

1.18 Theorem. If $E \in \mathcal{M}_{\mu}$, then

$$\mu(E) = \inf \{ \mu(U) : U \supset E \text{ and } U \text{ is open} \}$$

= $\sup \{ \mu(K) : K \subset E \text{ and } K \text{ is compact} \}.$

1.19 Theorem. If $E \subset \mathbb{R}$, the following are equivalent.

a.
$$E \in \mathcal{M}_{\mu}$$
.

b.
$$E = V \setminus N_1$$
 where V is a G_δ set and $\mu(N_1) = 0$.

c.
$$E = H \cup N_2$$
 where H is an F_{σ} set and $\mu(N_2) = 0$.

1.3 Fubini-Tonelli

Quick statement:

Theorem 3.1.10(Tonelli (Non-Negative, Measurable)).

For f(x,y) non-negative and measurable, for almost every $x \in \mathbb{R}^n$,

- f_x(y) is a measurable function
 F(x) = \int f(x,y) dy is a measurable function,
- For E measurable, the slices $E_x = \{y \mid (x,y) \in E\}$ are measurable.
- $\int f = \int \int F$, i.e. any iterated integral is equal to the original.

Theorem 3.1.11(Fubini (Integrable)).

For f(x,y) integrable, for almost every $x \in \mathbb{R}^n$,

- f_x(y) is an integrable function
 F(x) := ∫ f(x,y) dy is an integrable function,
- For E measurable, the slices $E_x = \{y \mid (x,y) \in E\}$ are measurable.

Explained in Stein and Shakarchi (Fubini, which requires integrability)

interesting issues arise.

In general, we may write \mathbb{R}^d as a product

$$\mathbb{R}^d = \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$$
 where $d = d_1 + d_2$, and $d_1, d_2 \ge 1$.

A point in \mathbb{R}^d then takes the form (x, y), where $x \in \mathbb{R}^{d_1}$ and $y \in \mathbb{R}^{d_2}$. With such a decomposition of \mathbb{R}^d in mind, the general notion of a slice, formed by fixing one variable, becomes natural. If f is a function in $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$, the slice of f corresponding to $y \in \mathbb{R}^{d_2}$ is the function f^y of the $x \in \mathbb{R}^{d_1}$ variable, given by

$$f^{\widehat{y}}(x) = f(x,y).$$

Similarly, the slice of f for a fixed $x \in \mathbb{R}^{d_1}$ is $f_x(y) = f(x, y)$. In the case of a set $E \subset \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ we define its **slices** by

$$E^y = \{x \in \mathbb{R}^{d_1} : (x, y) \in E\}$$
 and $E_x = \{y \in \mathbb{R}^{d_2} : (x, y) \in E\}.$

See Figure 1 for an illustration.

Figure 1. Slices E^y and E_x (for fixed x and y) of a set E

The main theorem is as follows. We recall that by definition all integrable functions are measurable.

Theorem 3.1 Suppose f(x,y) is integrable on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$. Then for almost every $y \in \mathbb{R}^{d_2}$:

- (i) The slice f^y is integrable on \mathbb{R}^{d_1} .
- (ii) The function defined by $\int_{\mathbb{R}^{d_1}} f^y(x) dx$ is integrable on \mathbb{R}^{d_2} .

(iii)
$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f(x, y) \, dx \right) \, dy = \int_{\mathbb{R}^d} f.$$

Clearly, the theorem is symmetric in x and y so that we also may conclude that the slice f_x is integrable on \mathbb{R}^{d_2} for a.e. x. Moreover, $\int_{\mathbb{R}^{d_2}} f_x(y) \, dy$ is integrable, and

$$\int_{\mathbb{R}^{d_1}} \left(\int_{\mathbb{R}^{d_2}} f(x, y) \, dy \right) dx = \int_{\mathbb{R}^d} f.$$

In particular, Fubini's theorem states that the integral of f on \mathbb{R}^d can be computed by iterating lower-dimensional integrals, and that the iterations can be taken in any order

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f(x, y) \, dx \right) \, dy = \int_{\mathbb{R}^{d_1}} \left(\int_{\mathbb{R}^{d_2}} f(x, y) \, dy \right) \, dx = \int_{\mathbb{R}^d} f.$$

And Tonelli, which only requires measurability:

- -

Theorem 3.2 Suppose f(x, y) is a non-negative measurable function on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$. Then for almost every $y \in \mathbb{R}^{d_2}$:

- The slice f^y is measurable on ℝ^{d1}.
- (ii) The function defined by $\int_{\mathbb{R}^{d_1}} f^y(x) dx$ is measurable on \mathbb{R}^{d_2} .

Moreover:

(iii)
$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f(x, y) \, dx \right) \, dy = \int_{\mathbb{R}^d} f(x, y) \, dx \, dy \text{ in the extended sense.}$$

In practice, this theorem is often used in conjunction with Fubini's theorem.³ Indeed, suppose we are given a measurable function f on \mathbb{R}^d and asked to compute $\int_{\mathbb{R}^d} f$. To justify the use of iterated integration, we first apply the present theorem to |f|. Using it, we may freely compute (or estimate) the iterated integrals of the non-negative function |f|. If these are finite, Theorem 3.2 guarantees that f is integrable, that is, $\int |f| < \infty$. Then the hypothesis in Fubini's theorem is verified, and we may use that theorem in the calculation of the integral of f.

A more precise statement from Folland:

In this section we fix a measure space (X, \mathcal{M}, μ) , and we define

 L^+ = the space of all measurable functions from X to $[0, \infty]$.

2.37 The Fubini-Tonelli Theorem. Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ -finite measure spaces.

a. (Tonelli) If $f \in L^+(X \times Y)$, then the functions $g(x) = \int f_x d\nu$ and $h(y) = \int f^y d\mu$ are in $L^+(X)$ and $L^+(Y)$, respectively, and

(2.38)
$$\int f d(\mu \times \nu) = \int \left[\int f(x, y) d\nu(y) \right] d\mu(x) = \int \left[\int f(x, y) d\mu(x) \right] d\nu(y).$$

b. (Fubini) If $f \in L^1(\mu \times \nu)$, then $f_x \in L^1(\nu)$ for a.e. $x \in X$, $f^y \in L^1(\mu)$ for a.e. $y \in Y$, the a.e.-defined functions $g(x) = \int f_x d\nu$ and $h(x) = \int f^y d\nu$ are in $L^1(\mu)$ and $L^1(\nu)$, respectively, and (2.38) holds.

Some things that qual questions are commonly based on:

Corollary 3.3 If E is a measurable set in $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$, then for almost every $y \in \mathbb{R}^{d_2}$ the slice

$$E^y = \{ x \in \mathbb{R}^{d_1} : (x, y) \in E \}$$

is a measurable subset of \mathbb{R}^{d_1} . Moreover $m(E^y)$ is a measurable function of y and

$$m(E) = \int_{\mathbb{R}^{d_2}} m(E^{\overline{y}}) \, dy.$$

This is an immediate consequence of the first part of Theorem 3.2 applied to the function χ_E . Clearly a symmetric result holds for the x-slices in \mathbb{R}^{d_2} .

We have thus established the basic fact that if E is measurable on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$, then for almost every $y \in \mathbb{R}^{d_2}$ the slice E^y is measurable in \mathbb{R}^{d_1} (and also the symmetric statement with the roles of x and y interchanged). One might be tempted to think that the converse assertion holds. To see that this is not the case, note that if we let \mathcal{N} denote a

Corollary 3.8 Suppose f(x) is a non-negative function on \mathbb{R}^d , and let

$$\mathcal{A} = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} : 0 \le y \le f(x)\}.$$

Then:

- (i) f is measurable on \mathbb{R}^d if and only if A is measurable in \mathbb{R}^{d+1} .
- (ii) If the conditions in (i) hold, then

$$\int_{\mathbb{R}^d} f(x) \, dx = m(\mathcal{A}).$$

Proof. If f is measurable on \mathbb{R}^d , then the previous proposition guarantees that the function

$$F(x,y) = y - f(x)$$

is measurable on \mathbb{R}^{d+1} , so we immediately see that $\mathcal{A} = \{y \geq 0\} \cap \{F \leq 0\}$ is measurable.

Conversely, suppose that A is measurable. We note that for each $x \in \mathbb{R}^{d_1}$ the slice $A_x = \{y \in \mathbb{R} : (x,y) \in A\}$ is a closed segment, namely $A_x = [0, f(x)]$. Consequently Corollary 3.3 (with the roles of x and y interchanged) yields the measurability of $m(A_x) = f(x)$. Moreover

$$m(A) = \int \chi_A(x, y) dx dy = \int_{\mathbb{R}^{d_1}} m(A_x) dx = \int_{\mathbb{R}^{d_1}} f(x) dx,$$

as was to be shown.

2 | Qual Problems

Suggested by Peter Woolfitt!

Spring 2012 #4

Qual Problems 13

- **4.** Let $f: \mathbb{R} \to \mathbb{R}$ be a nonnegative integrable function.
 - a. Show that $\sin \circ f$ is integrable.
 - b. Use Fubini's theorem to show that

$$\int_{[0,\infty)} m(\{x : f(x) \ge y\}) \cos y \, dy = \int_{\mathbb{R}} \sin(f(x)) \, dx.$$

Fall 2016 #2

2. Let f and g be real valued measurable functions on [a,b] with $\int_a^b f(x) \ dx = \int_a^b g(x) \ dx$. Show that either f(x) = g(x) a.e., or there exists measurable subset E of [a,b] such that $\int_E f(x) \ dx > \int_E g(x) \ dx$.

Fall 2018 #5

Problem 5. Let $f \geq 0$ be a Lebesgue measurable function on \mathbb{R} . Show that

$$\int_{\mathbb{R}} f = \int_0^\infty m(\{x : f(x) > t\}) dt.$$

Spring 2019 #4: This is an expanded version of Fall 2018 #5 above.

- 4. Let f be a non-negative function on \mathbb{R}^n and $\mathcal{A} = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : 0 \le t \le f(x)\}$. Prove the validity of the following two statements:
 - (a) f is a Lebesgue measurable function on $\mathbb{R}^n \iff \mathcal{A}$ is a Lebesgue measurable subset of \mathbb{R}^{n+1}
 - (b) If f is a Lebesgue measurable function on \mathbb{R}^n , then

$$m(\mathcal{A}) = \int_{\mathbb{R}^n} f(x) dx = \int_0^\infty m(\{x \in \mathbb{R}^n : f(x) \ge t\}) dt$$