Assignment 1

Convex Optimization SS2022

Martin Zach (martin.zach@icg.tugraz.at)

March 17, 2022

Submission: Upload your solution as a single pdf-file (≤ 10 MB) to the TeachCenter.

Deadline: 11.4.2022, 17:00

Convex Sets (12P)

1. Which of the following sets are convex? Prove your results!

- (a) $\{(x,y) \in \mathbb{R}^2_+ : \frac{x}{y} \le 1\}$
- (b) $\{(x,y) \in \mathbb{R}^2_+ : \frac{x}{y} \ge 1\}$
- (c) $\{(x,y) \in \mathbb{R}^2_+ : xy \le 1\}$
- (d) $\{(x,y) \in \mathbb{R}^2_+ : xy \ge 1\}$
- 2. Show that the Euclidean ball in \mathbb{R}^n

$$B_{\|\cdot\|_2}(\mathbf{x}_c, r) = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{x}_c\|_2 \le r\}$$

is a convex set using the definition of convexity.

3. Prove that

$$\mathrm{conv}(B_{\|\cdot\|_0}(\mathbf{0},1)\cap B_{\|\cdot\|_\infty}(\mathbf{0},1))=B_{\|\cdot\|_1}(\mathbf{0},1)$$

where $\mathbf{0} = (0,0)^{\top}$. Visualize the sets in a plot and include it in your submission. Side note: $\|\mathbf{x}\|_0 = \text{nnz}(\mathbf{x})$ is not a proper norm since it is not homogeneous: $\|\alpha\mathbf{x}\|_0 = \|\mathbf{x}\|_0$.

4. Let $S \subset \mathbb{R}^n$. We define

$$S^{\circ} := \{ \mathbf{x} \in \mathbb{R}^n : \langle \mathbf{x}, \mathbf{s} \rangle \le 1 \text{ for all } \mathbf{s} \in S \}.$$

- (a) Prove that for arbitrary $S \subset \mathbb{R}^n$ the set S° is convex.
- (b) Let $\|\cdot\|$ be any norm in \mathbb{R}^n and $S = \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\| \le 1\}$. What is S° ?
- 5. Prove that \mathbb{S}^n_+ is a convex cone.

Convex Functions (13P)

- 1. Are the following functions convex? Prove your results!
 - (a) $f: \mathbb{R}^n \to \mathbb{R}, \mathbf{x} \mapsto \exp(\exp(\exp(\|\mathbf{x}\|_2^2)))$
 - (b) $f: \mathbb{R}^3 \to \mathbb{R}, \mathbf{x} = (x_1, x_2, x_3) \mapsto (x_1^2 + \exp(x_2^2))x_3$
 - (c) $f: \{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_2 < 1\} \to \mathbb{R}, \, \mathbf{x} \mapsto \frac{\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2}{1 \|\mathbf{x}\|_2^2} \text{ for } \mathbf{A} \in \mathbb{R}^{n,n} \text{ and } \mathbf{b} \in \mathbb{R}^n.$
 - (d) $f: \{\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n_+: \sum_{i=1}^n c_i e^{-x_i} \le 1\} \to \mathbb{R}, \mathbf{x} \mapsto -\prod_{i=1}^n (1 e^{-x_i})^{c_i} \text{ for fixed } c_1, \dots, c_n > 0.$
- 2. Let $f, g: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$. Are the following statements correct? Prove your results!
 - (a) If f and g are convex, then $\mathbf{x} \mapsto (f(\mathbf{x}) + g(\mathbf{x}))^2$ is convex.

- (b) If f and g are convex, then $(\mathbf{x}, \mathbf{y}) \mapsto \exp((f(\mathbf{x}) + g(\mathbf{y}))^2)$ is convex.
- (c) If f and h are convex and smooth and h is strictly monotonically increasing, then $\mathbf{x} \mapsto h(f(\mathbf{x}))$ is convex.
- (d) If f and g are concave and positive, then $\mathbf{x} \mapsto \sqrt{f(\mathbf{x})g(\mathbf{x})}$ is concave.
- 3. Suppose that $f: \mathbb{R}^n \to \mathbb{R}_+$ is convex and $g: \mathbb{R}^n \to \mathbb{R}_{++}$ is concave. Show that the function $\frac{f^2}{g}$ is convex.
- 4. Let $f: C \to \mathbb{R}$ be a convex function over the convex set $C \subseteq \mathbb{R}^n$. Let $\mathbf{x}_1, \mathbf{x}_3 \in C$ and $\mathbf{x}_2 \in [\mathbf{x}_1, \mathbf{x}_3]$ ly on the line connecting \mathbf{x}_1 and \mathbf{x}_3 . Prove for different points $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ that

$$\frac{f(\mathbf{x}_2) - f(\mathbf{x}_1)}{\|\mathbf{x}_2 - \mathbf{x}_1\|} \le \frac{f(\mathbf{x}_3) - f(\mathbf{x}_2)}{\|\mathbf{x}_3 - \mathbf{x}_2\|}.$$

- 5. Let $C \subseteq \mathbb{R}^n$ be a convex set and let $f: C \to \mathbb{R}$ be a function over C. Recall that f is strongly convex if there exists a $\sigma > 0$ such that the function $g: C \to \mathbb{R}$, $\mathbf{x} \mapsto f(\mathbf{x}) \frac{\sigma}{2} ||\mathbf{x}||^2$ is convex over C.
 - (a) Prove that f is strongly convex over C with parameter σ if and only if

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) - \frac{\sigma}{2}\alpha(1 - \alpha)\|\mathbf{x} - \mathbf{y}\|^2$$

for any $\mathbf{x}, \mathbf{y} \in C$ and $\alpha \in [0, 1]$.

(b) Assume that f is continuously differentiable over C. Prove that f is strongly convex over C with parameter σ if and only if

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle > \sigma ||\mathbf{x} - \mathbf{y}||^2$$

for any $\mathbf{x}, \mathbf{y} \in C$.

(c) Suppose that f is twice continuously differentiable over C. Prove that f is strongly convex over C with parameter σ if and only if $\nabla^2 f(\mathbf{x}) \succeq \sigma I$ for any $\mathbf{x} \in C$.