ELSEVIER

Contents lists available at ScienceDirect

# Theoretical Computer Science

www.elsevier.com/locate/tcs



# On continuous one-way functions

Ker-I Ko<sup>a</sup>, Lidong Wu<sup>b,\*</sup>



<sup>&</sup>lt;sup>b</sup> University of Texas at Tyler, Tyler, TX 75799, United States of America



#### ARTICLE INFO

Article history:
Received 27 May 2020
Received in revised form 2 October 2020
Accepted 23 October 2020
Available online 1 December 2020

Keywords: Continuous functions Polynomial-time Inverse modulus of continuity

#### ABSTRACT

The existence of one-way functions seems to depend, intuitively, on certain irregular properties of polynomial-time computable functions. Therefore, for functions with continuity properties, it suggests that all such functions are not one-way. It is shown here that in the formal complexity theory of real functions, this nonexistence of continuous one-way functions can be proved for one-to-one one-dimensional real functions, but fails for one-to-one two-dimensional real functions, if certain strong discrete one-way functions exist. Furthermore, for k-to-one functions, we can prove the existence of four-to-one one-dimensional one-way functions under the same assumption of the existence of strong discrete one-way functions. (A function f is k-to-one if for any g there exist at most g distinct values g such that g (g).

© 2020 Published by Elsevier B.V.

#### 1. Introduction

The notion of one-way functions has played a central role in several areas of theoretical computer science, including cryptography and pseudorandom number generation. In these areas, certain strong one-way functions are often assumed, without a proof that these one-way functions actually exist. From the complexity-theoretic point of view, it is important to find the necessary and sufficient conditions for the existence of such one-way functions. For a certain weak form of one-way functions, such characterizations by the relations between complexity classes have been known. For example, let us call a function  $\phi$  from finite strings to finite strings a *one-way function* if  $\phi$  is one-to-one, polynomially honest (i.e., there exists a polynomial function p such that  $p(l(\phi(s))) > l(s)$  for all inputs s, where l(t) is the length of t) and polynomial-time computable but is not polynomial-time invertible (i.e., for any function  $\psi$  such that  $\phi(\psi(t)) = t$  for all  $t \in Range(\phi), \psi$  is not polynomial-time computable). Then, it is known [2,3] that such a one-way function exists if and only if  $P \neq UP$ , where UP is the class of sets computable in polynomial time by some unambiguous nondeterministic machines (see Section 2 for the formal definition of the class UP). In the above, the requirement that  $\phi$  be polynomially honest is necessary in order to exclude trivial one-way functions whose inverses map some strings to exponentially long strings. In general, however, the requirement of one-to-oneness is not necessary. Let us call a function  $\phi$  a k-to-one function if for any t, there are at most k strings  $s_1, \dots, s_k$  such that  $\phi(s_i) = t$ ,  $1 \le i \le k$ . The existence of k-to-one one-way functions is often assumed in cryptography. The computational complexity of k-to-one one-way functions has also been studied in literature (see, for example, Watanabe [7]).

Intuitively, the inverse of a polynomial-time computable, polynomially honest function  $\phi$  is difficult to compute because the function  $\phi$  could be irregular in the sense that the values of  $\phi(s)$  and  $\phi(t)$  do not have any obvious relation even if

E-mail addresses: lwu@uttyler.edu, wuld666@gmail.com (L. Wu).

<sup>\*</sup> Corresponding author.

s and t are nicely related. On the other hand, if the function  $\phi$  does show some regularity, then the inverse  $\phi^{-1}$  may be easy to compute. For example, if we know that  $\phi$  is order-preserving in the sense that  $s \le t$  implies  $\phi(s) \le \phi(t)$  for some natural ordering  $\le$ , then a simple binary search procedure computes the inverse  $\phi^{-1}$  easily. The above observation suggests that if  $\phi$  is a *continuous* function, in the general sense that  $\phi(s)$  and  $\phi(t)$  satisfy certain relation whenever s and t satisfy some similar relation, then the inverse of  $\phi$  could be easy to compute. For instance, in an informal setting, we can see easily that a one-to-one function f which maps real numbers in a closed interval [a,b] to real numbers must preserve the natural ordering on reals and thus should have a polynomial-time computable inverse. It should be cautioned however that this argument is made in a very informal manner. A formal argument must be based on a formal computational model of real-valued continuous functions. In this paper, we pursue the question of the existence of continuous one-way functions in this direction.

Our model of computation for real functions is based on the oracle Turing machines and is a generalization of the model used in recursive analysis. In this model, a real number  $x \in [0,1]$  is *polynomial-time computable* if there exists a Turing machine M which computes an approximate value d to x, with error  $\leq 2^{-n}$ , in time p(n) for some polynomial function p. A real function  $f:[0,1] \to R$  is *polynomial-time computable* if there exists an oracle Turing machine M which computes an approximate value e to f(x), with error  $\leq 2^{-n}$ , in time p(n) for some polynomial function p, when an approximate value d to x with error  $\leq 2^{-p(n)}$  is given to M by the oracle. A polynomial complexity theory of real functions based on this model of computation has been developed by Ko and Friedman [5]. In this theory, the computational complexity of many basic numerical operations is characterized by the discrete complexity classes such as P, NP and PSPACE. (See Section 3 for the formal definitions; and see Ko [4] for a detailed survey of this theory).

Following the direction of this complexity theory, we study the necessary and sufficient conditions for the existence of continuous one-way functions. Before we begin to describe our main results, it is necessary to establish some technical definitions. One of the most basic properties of a polynomial-time computable function f on [0,1] is that f must have a polynomial modulus of continuity: if  $|x-y| \le 2^{-p(n)}$  then  $|f(x)-f(y)| \le 2^{-n}$ , where p is a fixed polynomial function. Thus, in order to exclude trivial one-way functions on [0,1], we require that a one-way function f on [0,1] must have a polynomial *inverse modulus of continuity*: the inverse function  $f^{-1}$  must have a polynomial modulus of continuity.

With this requirement, we can prove that there does not exist a one-way function from [0, 1] to *R*, thus confirming the intuition discussed above. However, when we consider two-dimensional one-way functions, then the property of continuity does not help too much. More precisely, we prove the following:

- (1) If P = NP then there does not exist a one-to-one one-way function f from  $[0, 1]^2$  to  $R^2$ .
- (2) If P = UP then there exists a one-to-one one-way function from  $[0, 1]^2$  to  $\mathbb{R}^2$ .
- (3) If  $P_1 \neq UP_1 \cap_{co}UP_1$ , then there exists a one-to-one one-way function from  $[0,1]^2$  to  $R^2$  such that  $f^{-1}(\langle 1,1\rangle)$  is not a polynomial time compatible real number.

In the above condition  $P_1 \neq UP_1 \cap_{co} UP_1$ , the subscription 1 indicates the complexity classes restricted to tally sets (sets over a singleton alphabet  $\{0\}$ ). This condition  $P_1 \neq UP_1 \cap_{co} UP_1$  is equivalent to the existence of certain strong discrete one-way functions. See Section 2 for more discussions.

The above results seem to suggest that in the one-dimensional case, the reason that a one-way function does not exist is really due to the order-preserving property of the continuous function rather than the continuity property of the function. To further investigate this observation, we consider k-to-one continuous one-way functions. With a reasonable extension of the notion of polynomial inverse modulus of continuity (for the formal definition see Section 5), we define a k-to-one continuous one-way function to be a polynomial-time computable function f which has a polynomial inverse modulus of continuity and yet there exists some non-polynomial-time computable point x whose image f(x) is polynomial-time computable. (Note that for k > 1, f does *not* have a continuous inverse function, so one-way functions are defined in such a way that a single inverse point is difficult to compute.)

Based on this definition, we show that for one-dimensional functions, if k = 3, then k-to-one functions still have a certain order-preserving property and hence they cannot be one-way functions. For k = 4, however, we can show a similar result as items (1) and (3):

- (4) If P = NP then, for all  $k \ge 4$ , there does not exist a k-to-one one-way function f from [0, 1] to R.
- (5) If  $P_1 \neq UP_1 \cap_{co}UP_1$ , then there exists a four-to-one strong one-way function from [0, 1] to R.

In addition, we consider two-dimensional k-to-one one-way functions. Recall that in the study of discrete one-way functions, it is often observed that the complexity of the inverse function is closely related to the complexity of the range of the function. In the case of one-dimensional functions, the range of a function on a compact interval must be a compact interval, and so there is no such relation. In the case of two-dimensional functions, we observe that the function f constructed above in result (3) does have an irregular range. In fact, the question of whether we can find a one-to-one two-dimensional one-way function whose range is exactly  $[0,1]^2$  is left open. Our last result shows that such a one-way function exists if we allow the function to be three-to-one.

(6) If  $P_1 \neq UP_1 \cap_{co} UP_1$ , then there exists a three-to-one strong one-way function from  $[0, 1]^2$  onto  $[0, 1]^2$ .

We review, in Section 2, the notions of one-way functions and the sufficient conditions for their existence in terms of relations on complexity classes. In Section 3 we present our formal model of computation for real numbers and real functions. The main results (1)-(6) are proved in Sections 4, 5 and 6.

# 2. Discrete one-way functions

In this section we review the definitions and basic characterizations of some discrete one-way functions. We assume that the reader is familiar with (deterministic and non-deterministic) Turing machines (TMs) and their complexity measures. We will use the alphabet  $\Sigma = \{0, 1\}$ . Let  $s \in \Sigma^*$ , we let l(s) denote its length. (In the next three sections, we will write |x| to denote the absolute value of a real number x, and so we use the nonstandard notation l(s) for the length of a string.)

We first define some complexity classes which are useful in characterization of one-way functions. Let P and NP be the classes of sets accepted in polynomial time by deterministic and, respectively, nondeterministic TMs. The class NP has a simple characterization by polynomial-time predicates: a set A is in NP if and only if there exist a polynomial-time predicate R and a polynomial function P such that for all P is called P there exist a most P different accepting computations of P on P is the class of sets accepted in polynomial-time by P in an another minimization P if and only if there exist a polynomial-time predicate P and a polynomial function P such that for all P is in P0 if and only if there exist a polynomial-time predicate P0 and a polynomial function P0 such that for all P1, P2 if and only if there exist a polynomial-time predicate P3 and a polynomial function P3 such that for all P3,

```
s \in A \Leftrightarrow (\exists t, l(t) \le p(l(s))) \ R(s, t)
 \Leftrightarrow (\exists \text{ at most } k \text{ different } t, l(t) < p(l(s))) R(s, t).
```

When k = 1, the class  $_{1}$ –UP is exactly the class UP of Valiant [6].

It is clear that  $P \subseteq {}_{k-}UP \subseteq {}_{(k+1)-}UP$  for all  $k \ge 1$ . Whether these inclusions are proper is one of the major open questions in complexity theory. An interesting relation between these complexity classes is, however, known:

**Proposition 2.1.** [7] For any k > 1, P = UP if and only if  $P = {}_{k-}UP$ .

**Proof.** The backward direction is immediate. The forward direction can be proved by induction. We describe the case k=2 here. Assume that P=UP and that  $A\in {}_{2-}UP$  such that for some polynomial-time predicate Q and some polynomial function p, we have  $s\in A\Leftrightarrow (\exists t,l(t)\leq p(l(s)))Q(s,t)\Leftrightarrow (\exists \text{ at most } 2 \text{ strings } t,l(t)\leq p(l(s)))Q(s,t)$ . Let  $B=\{s\in A|(\exists \langle t_1,t_2\rangle,l(t_1)\leq l(t_2)\leq p(l(s)))\ [t_1< t_2 \text{ and } Q(s,t_1) \text{ and } Q(s,t_2)]\}$  Then, B is in UP and hence by assumption P=UP,  $B\in P$ . Furthermore, let C=A-B. Then,  $s\in C\Leftrightarrow (\exists t,l(t)\leq p(l(s)))\ [Q(s,t) \text{ and } s\notin B]$ . Since  $B\in P$ , the predicate  $[Q(s,t) \text{ and } s\notin B]$  is polynomial-time computable. Thus,  $C\in UP$  and again, by assumption P=UP,  $C\in P$ . Therefore,  $C\in E$ 0 is in  $C\in E$ 1.

One-way functions are defined in Section 2. The existence of a one-way function is closely related to the complexity class UP.

**Proposition 2.2.** [2,3] There exists a one-one one-way function if and only if  $P \neq UP$ .

In general, one-way functions do not have to be one-to-one. We may define a k-to-one one-way function  $\phi$  to be a k-to-one, polynomial-time computable, polynomially honest function which is not polynomial-time invertible. However, from a generalization of Proposition 2.2, we know that a k-to-one one-way function exists if and only if  $P \neq k \cup UP$ ,  $k \geq 1$ . So, by Proposition 2.1, a k-to-one one-way function exists if and only if a one-to-one one-way function exists (cf. Watanabe [7]).

The difficulty of inverting a one-way function seems, intuitively, partially due to the difficulty of computing the range of the one-way function [7]. Therefore, one might ask whether there exists a one-way function whose range is easily recognizable. The next proposition answers this question.

**Proposition 2.3.** [2] The following are equivalent.

- (i) There exists a one-way function  $\phi$  such that Range( $\phi$ ) is polynomial-time computable.
- (ii)  $P \neq UP \cap_{co} UP$ .

The next question about one-way functions with even simpler forms of range is whether there exists a one-way function which is one-to-one and onto. From the above proposition, we easily see that such a one-way function does not exist if  $P = UP \cap_{CO} UP$ . However, it is unknown whether the converse holds.

For the purpose of constructing continuous one-way functions, we need the existence of some stronger types of one-way functions. One of them is the one-way function whose inverse on simple inputs  $0^n$  is not polynomial-time computable. Let C be a complexity class. We write  $C_1$  to denote the class of all Tally sets  $A \subseteq 0^*$  in C.

# **Proposition 2.4.** *The following are equivalent.*

- (i) There exists a one-way function  $\phi$  such that the function  $\phi^{-1}$  restricted to  $0^* \cap Range(\phi)$  is not polynomial-time computable.
- (ii)  $P_1 \neq UP_1$

**Proof.** (i)  $\Rightarrow$  (ii) Assume that  $\phi$  is a function satisfying condition (i) such that  $q(l(\phi(s))) \ge l(s)$  for some polynomial function a.

Let  $A = \{0^{(n,i,b)} | i \le q(n), b \in \{0,1\}, (\exists s, i \le l(s) \le q(n))[\phi(s) = 0^n \text{ and the } i\text{th bit of } s \text{ is equal to } b]\}$ . Then, apparently,  $A \in UP_1$ . We claim that  $A \notin P_1$ . To see this, we observe that  $Range(\phi) \cap 0^*$  is polynomial-time recognizable using A as an oracle and that the function  $\psi$  defined on  $Range(\phi) \cap 0^*$  such that  $\psi(0^n) = \phi^{-1}(0^n)$  is computable in polynomial time using A as an oracle.

(ii)  $\Rightarrow$  (i): Let  $A \subseteq 0^*$  be in  $UP_1 - P_1$ . Then, there exist a polynomial-time predicate R and a polynomial p such that for all n.

$$0^{n} \in A \Leftrightarrow (\exists s, l(s) \le p(n)) \ R(0^{n}, s)$$

$$\Leftrightarrow (\exists a \text{ unique } s, l(s) < p(n)) \ R(0^{n}, s)$$
(1)

Furthermore, with a simple padding technique, we may assume that the string s satisfying  $R(0^n, s)$  is of length exactly p(n).

Now define a function  $\phi$  as follows: on input s, if l(s) = p(n) and  $R(0^n, s)$  for some n then  $\phi(s) = 0^n$  else  $\phi(s) = 1s$ . Then, obviously,  $\phi$  is a one-to-one, polynomial-time computable, polynomially honest function. Furthermore,  $0^* \cap Range(\phi) = A$ . We note that if  $\phi$  is polynomial-time invertible on  $0^*$  (i.e., if there exists a polynomial-time computable function  $\psi$  on  $0^*$  such that  $\phi(\psi(0^n)) = 0^n$  for all  $0^n \in Range(\phi)$ ), then we can determine whether  $0^n \in A$  easily by computing  $s = \psi(0^n)$  and comparing  $\phi(s)$  with  $0^n$ .  $\square$ 

### **Proposition 2.5.** The following are equivalent.

- (i) There exists a one-way function  $\phi$  such that  $0^* \subseteq Range(\phi)$  and that the function  $\phi^{-1}$  restricted to  $0^*$  is not polynomial-time computable.
- (ii)  $P_1 \neq UP_1 \cap_{co} UP_1$

**Proof.** The proof is similar to Proposition 2.3. In the direction (i)  $\Rightarrow$  (ii), the main difference is that the set A is also in  $c_0 - UP_1$  because for any triple  $\langle n, i, b \rangle$ , if  $0^{\langle n, i, b \rangle} \notin A$  then there also exists a unique s such that  $\phi(s) = 0^n$  and that either l(s) < i or the ith bit of s is not equal to b.

For the direction (ii)  $\Rightarrow$  (i), we observe that there exists another polynomial-time predicate O such that

$$0^n \notin A \Leftrightarrow (\exists s, l(s) \le p(n)) \ Q(0^n, s)$$
  
  $\Leftrightarrow (\exists a \text{ unique } s, l(s) \le p(n)) \ Q(0^n, s),$ 

because A is also in  $_{co-}UP_1$ . Now define the function  $\phi$  as follows: on input s, if l(s)=p(n) and  $[R(0^n,s)$  or  $Q(0^n,s)]$  for some n then  $\phi(s)=0^n$  else  $\phi(s)=1s$ . Then,  $\phi$  is again a one-to-one, polynomial-time computable, polynomially honest function, and  $0^*\subseteq Range(\phi)$ . Also, if  $\phi$  is polynomial-time invertible on  $0^*$ , then we can determine whether  $0^n\in A$  by computing  $s=\psi(0^n)$  and checking whether  $R(0^n,s)$  or  $Q(0^n,s)$ .  $\square$ 

Finally we remark that the existence of strong one-way functions of the type defined above has some interesting applications in complexity theory. For instance, Allender and Watanabe [1] have studied carefully the question of whether there exists a polynomial-time computable, polynomially honest function  $\phi: \Sigma^* \to 0^*$  such that  $\phi$  is not polynomial-time invertible. They demonstrated several interesting relations between this question and other questions in complexity theory, including some concerning the generalized Kolmogorov complexity of strings.

# 3. Model of computation for continuous functions

In this section, we present the formal model of computation for real functions on [0, 1] or  $[0, 1]^2$ . The computational complexity theory of real functions based on this model has been developed in Ko and Friedman [4,5]. Here we will only give a short review.

First we consider the representation of real numbers. Let D be the set of all dyadic rational numbers, i.e.,  $D = \{m/2^n | n, m \in \mathbb{N}, n > 0\}$ . A dyadic rational  $d \in D$  is represented by a string of the form

$$\pm d_n \cdots d_1 d_0 . e_1 \cdots e_m$$

with each  $d_i$  and each  $e_i$  in  $\{0, 1\}$ , and its value is

$$d = \pm \left( \sum_{i=0}^{n} d_i \cdot 2^i + \sum_{j=1}^{m} e_j \cdot 2^{-j} \right)$$

Each dyadic rational  $d \in D$  has infinitely many representations. For each string s which represents some dyadic rational d we write prec(s) to denote the precision of s, i.e., the number of bits to the right of the binary point. For convenience, we often speak of a dyadic rational d of precision n to denote one of its specific representation with prec(s) = n.

A real number x is represented by a *Cauchy function*  $\phi: N \to D$  which has the property that for each n,  $\phi(n)$  is a dyadic rational d of precision n such that  $|d-x| \le 2^{-n}$ . Such a function  $\phi$  is said to *binary converge* to x. A real number x has an infinite number of Cauchy functions binary converging to it, and has a unique *standard Cauchy function*  $\phi_x$  which is defined by  $\phi_x(n)$  = the maximum dyadic rational d of precision n such that  $d \le x$ . A real number x is *computable* if there exists a computable function  $\phi$  which binary converges to x. A real number x is *polynomial-time computable* if there exists a function  $\phi$  which binary converges to x such that  $\phi(n)$  is computable in time  $\phi(n)$  for some polynomial  $\phi(n)$ .

The computation of real functions is based on the model of oracle TMs. We first consider real functions defined on [0, 1]. A real function  $f:[0, 1] \to R$  is computable if there exists an oracle TM M such that for any oracle  $\phi$  which binary converges to some x in [0, 1] and for any input n, M outputs a dyadic rational of precision n such that  $|d - f(x)| \le 2^{-n}$ . The function f is polynomial-time computable if this oracle machine always halts in p(n) moves for some polynomial p, independent of the oracle function  $\phi$ . One of the most important properties of computable functions is that they must be continuous. A polynomial-time computable function f must have a polynomial modulus of continuity: for some polynomial p,  $|f(x) - f(y)| \le 2^{-n}$  whenever  $x, y \in [0, 1]$  and  $|x - y| \le 2^{-p(n)}$ . This property can actually be used to characterize polynomial-time computable real functions.

**Proposition 3.1.** [5] A real function  $f:[0,1] \to R$  is polynomial-time computable if and only if

- (i) f has a polynomial modulus of continuity and
- (ii) there exist a polynomial-time Timing machine M and a polynomial p such that for any dyadic rational d of precision p(n), M(d) is a dyadic rational e of precision n such that  $|e f(d)| < 2^{-n}$ .

Two-dimensional polynomial-time computable functions are similarly defined. To avoid confusion, we will write  $\langle x,y\rangle$  to denote a point in  $R^2$  and reserve the notation (x,y) to denote the one-dimensional open interval  $\{z|x < z < y\}$ . A function  $f:[0,1]^2 \to R^2$  is *polynomial-time computable* if there exist a two-oracle machine M and a polynomial p such that for any oracles  $\phi$  and  $\psi$  binary converging to x and y in [0,1], respectively, and for any input n, M outputs, in time p(n), two dyadic nationals d and e of precision n and  $|d-f_1(\langle x,y\rangle)| \le 2^{-n}$  and  $|e-f_2(\langle x,y\rangle)| \le 2^{-n}$ , where  $f_1$  and  $f_2$  are defined by  $f(\langle x,y\rangle) = \langle f_1(\langle x,y\rangle), f_2(\langle x,y\rangle)\rangle$ . (For convenience, we use the  $L_\infty$  norm for the distance in the two-dimensional space  $R^2$ .) Similarly, a function  $f:S\to R^2$  has a polynomial modulus function q on  $S\subseteq R^2$  if for any  $\langle x_1,y_1\rangle, \langle x_2,y_2\rangle \in S$ ,  $|f(\langle x_1,y_1\rangle)-f(\langle x_2,y_2\rangle)| \le 2^{-n}$  whenever  $|\langle x_1,y_1\rangle-\langle x_2,y_2\rangle| \le 2^{-q(n)}$ .

# 4. A two-dimensional one-way function

Following the notion of discrete one-way functions, we define continuous one-way functions as follows. Let S be either the interval [0,1] or the unit square  $[0,1]^2$ , and let T be either the set R or  $R^2$ . A function  $f:S\to T$  is a weak one-way function if f is a one-to-one, polynomial-time computable function such that  $f^{-1}$  has a polynomial modulus of continuity on Range(f) but  $f^{-1}$  is not polynomial-time computable; f is a f strong one-way function if, in addition, there exists a point f in f is not polynomial-time computable but f is not polynomial-time computable.

As we pointed out in Section 1, the requirement of  $f^{-1}$  having a polynomial modulus of continuity is necessary, like the concept of polynomial honesty in the discrete case, to exclude the possibility of trivial continuous one-way functions. In particular, for functions not having this property, Ko and Friedman [5] have proved the existence of trivial one-way functions.

**Proposition 4.1.** [5] For any recursive function  $\alpha$ , there exists a one-to-one, polynomial-time computable function f on [0,1] such that f(0) < 0 < f(l) and  $f^{-1}(0) >$  is a real number not computable in time  $\alpha(n)$ .

On the other hand, if f does have this property then  $f^{-1}$  is easy to compute.

**Theorem 4.1.** Let f be a one-to-one, polynomial-time computable function from [0,1] to R such that  $f^{-1}$  has a polynomial modulus of continuity on f([0,1]). Then, the inverse function  $f^{-1}$  is also polynomial-time computable on f([0,1]).

**Proof.** Since f is one-to-one, it must be strictly increasing on [0, 1] or strictly decreasing on [0, 1]. Without loss of generality, we assume that f is strictly increasing on [0, 1].

The value  $f^{-1}(y)$ , for any y given by a function  $\psi$  such that  $|\psi(m)-y| \le 2^{-m}$  for all m>0, can be found by a binary search. Assume that f has a polynomial inverse modulus function q. Then, an iteration of the binary search may be described as follows. If l is the current lower bound for  $f^{-1}(y)$  and r is the current upper bound for  $f^{-1}(y)$ , then we find an approximate value e to f((l+r)/2) with error  $\le 2^{-(q(n)+2)}$ . The search halts with output (l+r)/2 if  $|e-\psi(q(n)+2)| \le 2^{-(q(n)+2)}$  (because this implies that  $|f((l+r)/2)-y| \le 2^{-q(n)}$  and hence  $|(l+r)/2-f^{-1}(y)| \le 2^{-n}$ ); and otherwise it continues by resetting l and r accordingly.

Note that the above procedure works uniformly for all y in polynomial time, and hence is a polynomial-time algorithm for computing  $f^{-1}$ .  $\Box$ 

The above proof uses a simple binary search algorithm which evaluates the function value  $f(x_0)$  at some point  $x_0$  and determine whether the inverse  $f^{-1}(y)$  lies to the left or to the right of  $x_0$ . When one tries to extend this idea of binary search to two-dimensional functions, it becomes difficult to implement as the search procedure needs to evaluate the function f on a line, e.g.,  $x = x_0$ , to determine whether the point  $f^{-1}((y_1, y_2))$  lies to the left or to the right of this line, and the evaluation of a function f on a line means, in general, the evaluation at an exponential number of points. In the following we formally tie this intuition with the difficulty to invert a discrete one-way function. First, we show that if P = NP then (weak) two-dimensional one-way functions do not exist.

**Theorem 4.2.** Let f be a one-to-one, polynomial-time computable function from  $[0, 1]^2$  to  $R^2$  such that  $f^{-1}$  has a polynomial modulus of continuity. Then,  $f^{-1}$  is also polynomial-time computable if P = NP.

**Proof.** Assume that f is computed by an oracle TM M in time p and that  $f^{-1}$  has a modulus function q, where both p and q are polynomial functions. For each dyadic rationals  $d_1, d_2$ , we write  $M^{d_1, d_2}$  to denote the computation of M using the standard Cauchy functions of  $d_1$  and  $d_2$  as oracle functions. We will compute an approximate point to  $f^{-1}(\langle y_1, y_2 \rangle)$  by nondeterministically guessing a point  $\langle d_1, d_2 \rangle$  and then checking that  $f(\langle d_1, d_2 \rangle)$  is close to  $\langle y_1, y_2 \rangle$ ; or, more formally, we will make a binary search for  $\langle d_1, d_2 \rangle$  by querying about the following prefix set:

$$A = \{ \langle 0^n, 0^m, d_1, d_2, e_1, e_2 \rangle | (\exists d_1^*, d_2^*) prec(d_1^*) = prec(d_2^*) = p(q(n+1)), \\ |M^{d_1^*, d_2^*}(q(n+1)) - \langle e_1, e_2 \rangle | \le 2^{-q(n+1)}, |\langle d_1, d_2 \rangle - \langle d_1^*, d_2^* \rangle | \le 2^{-m} \}$$

We claim that a point  $\langle d_1, d_2 \rangle$  such that  $|\langle d_1, d_2 \rangle| - |\langle y_1, y_2 \rangle| \le 2^{-n}$  can be found by making queries to A for at most 4n times. To see this, let  $e_1$  and  $e_2$  be dyadic rationals such that  $|e_i - y_i| \le 2^{-q(n+1)}$  for i = 1, 2. If we have already obtained some  $\langle d_1^{(k)}, d_2^{(k)} \rangle$  such that  $|\langle d_1^{(k)}, d_2^{(k)} \rangle - \langle e_1, e_2 \rangle| \le 2^{-k}$ , then we make queries  $\langle 0^n, 0^{k+1}, d_1, d_2, e_1, e_2 \rangle \in ?A$  for each of the following pairs:

$$\begin{split} \langle d_1^{(k)} - 2^{-(k+1)}, d_2^{(k)} - 2^{-(k+1)} \rangle, \langle d_1^{(k)} - 2^{-(k+1)}, d_2^{(k)} + 2^{-(k+1)} \rangle, \\ \langle d_1^{(k)} + 2^{-(k+1)}, d_2^{(k)} - 2^{-(k+1)} \rangle, \langle d_1^{(k)} + 2^{-(k+1)}, d_2^{(k)} + 2^{-(k+1)} \rangle, \end{split}$$

Then, at least one of the queries receives an affirmative answer and we let this pair be  $\langle d_1^{(k+1)}, d_2^{(k+1)} \rangle$ . It is easy to see that  $A \in NP$ . So, P = NP implies that the above algorithm computes  $f^{-1}(\langle y_1, y_2 \rangle)$  in polynomial time.  $\square$ 

Next we show that strong two-dimensional one-way functions exist if certain strong discrete one-way functions exist.

**Theorem 4.3.** If  $P_1 \neq UP_1 \cap_{co} UP_1$  then there exists a one-to-one polynomial-time computable function f from  $[0,1]^2$  to  $[0,1]^2$  such that  $f^{-1}$  has a polynomial inverse modulus of continuity and that  $f^{-1}(1,1)$  is unique and is not polynomial-time computable.

**Proof.** The construction of the function f is quite involved. We first describe a basic construction of an infinite class of one-to-one functions  $g = g(\alpha, \beta, \delta, \delta')$ , where the parameters  $\alpha, \beta, \delta, \delta'$  are dyadic rationals in the interval [0, 1] satisfying a  $\alpha < \beta$  and  $0 < 4\delta' < 4\delta \le \beta - \alpha < 1/2$ .

Let  $\gamma=1-(\beta-\alpha)$ . Let S be the subset of the square  $[0,1]^2$  with the square  $[\alpha,\beta]\times[\gamma,1]$  removed (but retaining the boundaries); more precisely,  $S=[0,1]^2-\{\langle x,y\rangle|\alpha< x<\beta,\gamma< y\leq 1\}$ . Also let T be the rectangle  $[0,1]\times[0,1/2]$  plus a trapezoid T' where T' is the trapezoid with the following four corners:  $\langle \alpha-\delta,1/2\rangle,\langle \beta+\delta,1/2\rangle,\langle 1,\gamma\rangle,\langle \gamma,\gamma\rangle$ . The domain of the function g is S and its range is T. We divide sets S and T each into S regions:  $S_1,\cdots,S_8$ , and  $S_2,\cdots,S_8$ , and  $S_1,\cdots,S_8$ , and  $S_1,\cdots,S_8$ , and  $S_2,\cdots,S_8$ , and  $S_1,\cdots,S_8$ , and  $S_1,\cdots,S_8$ , and  $S_2,\cdots,S_8$ , and  $S_1,\cdots,S_8$ , and  $S_1,\cdots,S_8$ , and  $S_1,\cdots,S_8$ , and  $S_2,\cdots,S_8$ , and  $S_1,\cdots,S_8$ , and  $S_1,\cdots,S_8$ , and  $S_2,\cdots,S_8$ , and  $S_3,\cdots,S_8$ , and  $S_4,\cdots,S_8$ , and





(a) Domain of function g

(b) Range of function g

Fig. 1. Function g.

$$\begin{split} S_1 &= [0, \delta] \times [0, 1], & T_1 &= [0, \delta] \times [0, 1/2], \\ S_2 &= [\delta, \alpha - 2\delta] \times [0, 1], & T_2 &= [\delta, \alpha - 2\delta] \times [0, 1/2], \\ S_3 &= [\alpha - 2\delta, \alpha - \delta] \times [0, 1], & T_3 &= [\alpha - 2\delta, \alpha] \times [0, 1/2], \\ S_4 &= [\alpha - \delta, \beta + \delta] \times [0, 1/2], & T_4 &= [\alpha, \beta] \times [0, 1/2], \\ S_5 &= [\beta + \delta, \beta + 2\delta] \times [0, 1], & T_5 &= [\beta, \beta + 2\delta] \times [0, 1/2], \\ S_6 &= [\beta + 2\delta, 1 - \delta] \times [0, 1], & T_6 &= [\beta + 2\delta, 1 - \delta] \times [0, 1/2], \\ S_7 &= [1 - \delta, 1] \times [0, 1], & T_7 &= [1 - \delta, 1] \times [0, 1/2]. \end{split}$$

The region  $S_8$  is the rectangle  $[\alpha - \delta, \beta + \delta] \times [1/2, 1]$  with the square  $[\alpha, \beta] \times [\gamma, 1]$  removed; i.e.,  $S_8 = [\alpha - \delta, \beta + \delta] \times [1/2, 1] - \{\langle x, y \rangle | \alpha < x < \beta, \gamma < y \le 1\}$ . The region  $T_8$  is just the trapezoid T'. The 8 regions of S and T are shown in Fig. 1. In the following we will describe the function g as a combination of 8 functions  $g_i$ ,  $1 \le i \le 8$ , each defined on  $S_i$ . Each function  $g_i$  is in turn a combination of some linear functions. Here we say a function h maps a triangle h onto a triangle h is linear if h maps the three corners of h to three corners of h and maps all other points linearly dependent on the mapping on three corners. Similarly, a function h maps a trapezoid h onto a trapezoid h is linear if h maps the four corners of h to four corners of h in the same orientation such that the two parallel sides are mapped to two parallel sides and it maps all other points in h linearly dependent on the mapping of four corners. For a triangle h with three corners h in the same orientation of the mapping of four corners. For a triangle h with three corners h in the same orientation of the mapping of four corners. For a triangle h with three corners h in the same orientation of the mapping of four corners. For a triangle h with three corners h in the same orientation of the mapping of four corners h in the same orientation of h in the same orientation such that the two parallel sides are mapped to two parallel sides and it maps all other points in h in the same orientation of h in the same orientation

- (1) To describe function  $g_1$  we define  $u_1 = \langle 0, 1 \rangle$ ,  $u_2 = \langle \delta/2, 1 \rangle$ ,  $u_3 = \langle \delta, 1 \rangle$ ,  $u_4 = \langle \delta, 0 \rangle$ ,  $u_5 = \langle 0, 0 \rangle$ ,  $v_1 = \langle 0, 0 \rangle$ ,  $v_2 = \langle 0, 1/2 \rangle$ ,  $v_3 = \langle \delta, 1/2 \rangle$ ,  $v_4 = \langle \delta, 0 \rangle$  and  $v_5 = \langle \delta/2, 0 \rangle$ . Then  $g_1$  is a combination of three linear functions on three triangles:  $g_1$  maps each  $u_i$ ,  $1 \le i \le 5$ , to  $v_i$ , and maps the triangle  $S_{1,1} = \triangle u_1 u_2 u_5$  to the triangle  $T_{1,1} = \triangle v_1 v_2 v_5$ , the triangle  $S_{1,2} = \triangle u_2 u_3 u_5$  to the triangle  $T_{1,2} = \triangle v_2 v_3 v_5$  and the triangle  $S_{1,3} = \triangle u_3 u_4 u_5$  to the triangle  $T_{1,3} = \triangle v_3 v_4 v_5$
- (2) The function  $g_2$  is linear on  $S_2$  with the four corners mapped as follows:  $g_2(\langle \delta, 0 \rangle) = \langle \delta, 0 \rangle$ ,  $g_2(\langle \alpha 2\delta, 0 \rangle) = \langle \alpha 2\delta, 0 \rangle$ ,  $g_2(\langle \alpha 2\delta, 1 \rangle) = \langle \alpha 2\delta, 1/2 \rangle$  and  $g_2(\langle \delta, 1 \rangle) = \langle \delta, 1/2 \rangle$ . That is, for any  $\langle x, y \rangle$  in  $S_2$ ,  $g_2(\langle x, y \rangle) = \langle x, y/2 \rangle$ .
- (3) The function  $g_3$  is a combination of three linear functions. Let  $u_1 = \langle \alpha 2\delta, 1 \rangle$ ,  $u_2 = \langle \alpha \delta, 1 \rangle$ ,  $u_3 = \langle \alpha \delta, 1/2 \rangle$ ,  $u_4 = \langle \alpha \delta, 0 \rangle$ ,  $u_5 = \langle \alpha 2\delta, 0 \rangle$ ,  $v_1 = \langle \alpha 2\delta, 1/2 \rangle$ ,  $v_2 = \langle \alpha \delta, 1/2 \rangle$ ,  $v_3 = \langle \alpha, 1/2 \rangle$ ,  $v_4 = \langle \alpha, 0 \rangle$  and  $v_5 = \langle \alpha 2\delta, 0 \rangle$ . The function  $g_3$  maps each  $u_i$ ,  $1 \le i \le 5$ , to  $v_i$  and is a linear function from triangle  $S_{3,1} = \Delta u_1 u_2 u_5$  to triangle  $T_{3,1} = \Delta v_1 v_2 v_5$ , from triangle  $S_{3,2} = \Delta u_2 u_3 u_5$  to triangle  $T_{3,2} = \Delta v_2 v_3 v_5$ , and from triangle  $S_{3,3} = \Delta u_3 u_4 u_5$  to triangle  $T_{3,3} = \Delta v_3 v_4 v_5$ .
- (4) The function  $g_4$  is linear on  $S_4$  with the four corners mapped as follows:  $g_4(\langle \alpha \delta, 0 \rangle) = \langle \alpha, 0 \rangle, g_4(\langle \beta + \delta, 0 \rangle) = \langle \beta, 0 \rangle, g_4(\langle \beta + \delta, 1/2 \rangle) = \langle \beta, 1/2 \rangle$  and  $g_4(\langle \alpha \delta, 1/2 \rangle) = \langle \alpha, 1/2 \rangle$ .
- (5) The function  $g_5$  is, similar to  $g_3$ , a combination of three linear functions. Let  $u_1 = \langle \beta + \delta, 0 \rangle$ ,  $u_2 = \langle \beta + \delta, 1/2 \rangle$ ,  $u_3 = \langle \beta + \delta, 1 \rangle$ ,  $u_4 = \langle \beta + 2\delta, 1 \rangle$ ,  $u_5 = \langle \beta + 2\delta, 0 \rangle$ ,  $v_1 = \langle \beta, 0 \rangle$ ,  $v_2 = \langle \beta, 1/2 \rangle$ ,  $v_3 = \langle \beta + \delta, 1/2 \rangle$ ,  $v_4 = \langle \beta + 2\delta, 1/2 \rangle$  and  $v_5 = \langle \beta + 2\delta, 0 \rangle$ . The function  $g_5$  maps each  $u_i$ ,  $1 \le i \le 5$ , to  $v_i$  and is a linear function from triangle  $S_{5,1} = \Delta u_1 u_2 u_5$  to

triangle  $T_{5,1} = \triangle v_1 v_2 v_5$ , from triangle  $S_{5,2} = \triangle u_2 u_3 u_5$  to triangle  $T_{5,2} = \triangle v_2 v_3 v_5$ , and from triangle  $S_{5,3} = \triangle u_3 u_4 u_5$  to triangle  $T_{5,3} = \triangle v_3 v_4 v_5$ .

- (6) The function  $g_6$  is the same as  $g_2$ ; namely,  $g_6(\langle x, y \rangle) = \langle x, y/2 \rangle$ .
- (7) The function  $g_7$  is Similar to  $g_1$ . Let  $u_1 = \langle 1, 0 \rangle$ ,  $u_2 = \langle 1 \delta/2, 0 \rangle$ ,  $u_3 = \langle 1 \delta, 0 \rangle$ ,  $u_4 = \langle 1 \delta, 1 \rangle$ ,  $u_5 = \langle 1, 1 \rangle$ ,  $v_1 = \langle 1, 1/2 \rangle$ ,  $v_2 = \langle 1, 0 \rangle$ ,  $v_3 = \langle 1 \delta, 0 \rangle$ ,  $v_4 = \langle 1 \delta, 1/2 \rangle$  and  $v_5 = \langle 1 \delta/2, 1/2 \rangle$ . The function  $g_7$  maps each  $u_i$ ,  $1 \le i \le 5$ , to  $v_i$  and is a linear function from triangle  $S_{7,1} = \Delta u_1 u_2 u_5$  to  $T_{7,1} = \Delta v_1 v_2 v_5$ , from triangle  $S_{7,2} = \Delta u_2 u_3 u_5$  to  $T_{7,2} = \Delta v_2 v_3 v_5$ , and from triangle  $S_{7,3} = \Delta u_3 u_4 u_5$  to  $T_{7,3} = \Delta v_3 v_4 v_5$ .
- (8) The function  $g_8$  is a combination of three linear functions on trapezoids. Let  $u_1 = \langle \alpha \beta, 1 \rangle$ ,  $u_2 = \langle \alpha, 1 \rangle$ ,  $u_3 = \langle \alpha, \gamma \rangle$ ,  $u_4 = \langle \beta, \gamma \rangle$ ,  $u_5 = \langle \beta, 1 \rangle$ ,  $u_6 = \langle \beta + \delta, 1 \rangle$ ,  $u_7 = \langle \beta + \delta, 1/2 \rangle$ ,  $u_8 = \langle \alpha \delta, 1/2 \rangle$ ,  $v_1 = \langle \alpha \delta, 1/2 \rangle$ ,  $v_2 = \langle \gamma, \gamma \rangle$ ,  $v_3 = \langle \gamma + \delta', \gamma \rangle$ ,  $v_4 = \langle 1 \delta', \gamma \rangle$ ,  $v_5 = \langle 1, \gamma \rangle$ ,  $v_6 = \langle \beta + \delta, 1/2 \rangle$ ,  $v_7 = \langle \beta, 1/2 \rangle$  and  $v_8 = \langle \alpha, 1/2 \rangle$ . The function  $g_8$  maps each  $u_i$ ,  $1 \le i \le 5$ , to  $v_i$  and is a linear function from trapezoid  $S_{8,1} = \Box u_1 u_2 u_3 u_8$  to trapezoid  $T_{8,1} = \Box v_1 v_2 v_3 v_8$ , from trapezoid  $T_{8,2} = \Box u_3 u_4 u_7 u_8$  to trapezoid  $T_{8,2} = \Box v_3 v_4 v_7 v_8$ , from trapezoid  $T_{8,3} = \Box u_4 u_5 u_6 u_7$  to trapezoid  $T_{8,3} = \Box v_4 v_5 v_6 v_7$ .

The above definitions of functions  $g_1, g_3, g_5, g_7$  and  $g_8$  are shown in Fig. 2.

From the definition of  $g_i$ 's, we can easily check that function g is well-defined, in the sense that functions  $g_i$ 's agree with each other on the boundaries of their regions  $S_i$ 's. Since g is piecewise linear, it is continuous. Furthermore, both g and  $g^{-1}$  have the modulus of continuity  $m(n) = n + 1 + log(1/\delta)$ : we observe that, within any region, the maximum distance between two points  $g(\langle x_1, y_1 \rangle)$  and  $g(\langle x_2, y_2 \rangle)$  is  $\leq 2$ , if the distance between  $\langle x_1, y_1 \rangle$  and  $\langle x_2, y_2 \rangle$  is  $\leq \delta$  (this happens in  $g_8$  Which maps the points  $u_1$  and  $u_2$  of distance  $\delta$  to  $v_1$  and  $v_2$  of distance  $\leq 3/2$ ), and the minimum distance between two points  $g(\langle x_1, y_1 \rangle)$  and  $g(\langle x_2, y_2 \rangle)$  is  $\geq \delta$ , if the distance between  $\langle x_1, y_1 \rangle$  and  $\langle x_2, y_2 \rangle$  is  $\geq 1$ . So the modulus function m is correct for both g and  $g^{-1}$  because g is piecewise linear on each region  $S_i$ ,  $1 \leq i \leq 8$ .

From this basic function g, we are ready to describe the function f. First we recall that from the assumption  $P_1 \neq UP \cap_{co} UP_1$ , there exists a one-to-one, polynomial-time computable function  $\phi: \Sigma^* \to \Sigma^*$  such that  $0^* \subseteq Range(\phi)$  and that the function  $\phi^{-1}(0^*)$  is not polynomial-time computable. Furthermore, without loss of generality, we may assume that there exists a polynomial-time function p such that  $l(\phi^{-1}(0^n)) = p(n)$  and  $\phi^{-1}(0^n) \neq 0^{p(n)}$  and  $\phi^{-1}(0^n) \neq 1^{p(n)}$ . Define a function  $\psi: N \to N$  by  $\psi(n) = 0$  the integer m whose p(n)-bit binary representation, with leading zeros, is equal to  $\phi^{-1}(0^n)$ .

Now we define the following function r(n) and sequences  $a_n, b_n$  and  $c_n$ :

$$r(1) = 0; \quad r(n) = \sum_{i=1}^{n-1} p(i), n > 0;$$

$$c_n = 1 - 2^{-r(n)};$$

$$a_1 = 0; \quad a_{n+1} = a_n + \psi(n) \cdot 2^{-r(n+1)};$$

$$b_n = a_n + 2^{-r(n)}.$$

Then, let  $W_n$  be the square  $[a_n,b_n]\times[c_n,1]$  and  $V_n$  be the square  $[c_n,1]\times[c_n,1]$ . Let  $U_n$  be the set  $W_n-W_{n+1}$  plus its boundary. Let  $g_n$  be the function g defined above with the parameters  $\alpha_n=\psi(n)\cdot 2^{-p(n)}, \beta_n=(\psi(n)+1)\cdot 2^{-p(n)}, \delta_n'=2^{-(p(n)+2)}$  and  $\delta_n'=2^{-(p(n)+p(n+1)+3)}$ ; that is,  $g_n=g(\alpha_n,\beta_n,\delta_n,\delta_n')$ . Let  $\gamma=1-(\beta_n-\alpha_n)$ . We define a function  $f_n$  which maps  $U_n$  to a subset  $T_n$  of  $V_n$  by

$$f_n(\langle x, y \rangle) = \langle 1 - 2^{-r(n)} (1 - u_n), 1 - 2^{-r(n)} (1 - v_n) \rangle, \tag{*}$$

where

$$\langle u_n, v_n \rangle = g_n(\langle 2^{r(n)}(x - a_n), 2^{r(n)}(y - c_n) \rangle).$$

That is, the function  $f_n$  from  $U_n$  to  $V_n$ , is a linear transformation of  $g_n$  from  $[0,1]^2$  to  $[0,1]^2$ . The function f is the combination of  $f_n$  on  $U_n$ ,  $n \ge 1$ , plus  $f(\langle x_0, 1 \rangle) = \langle 1, 1 \rangle$ , where  $x_0 = \lim_{n \to \infty} a_n$ . Note that  $[0,1]^2 = \bigcup_{n=1}^{\infty} U_n \cup \{\langle x_0, 1 \rangle\}$ , and so f is defined on every point in  $[0,1]^2$ . Furthermore, we claim that the function f is defined in such a way that the values of  $f_n(\langle x, y \rangle)$  and  $f_{n+1}(\langle x, y \rangle)$  agree on the boundary between  $S_n$  and  $S_{n+1}$  and therefore f is well-defined.

**Proof.** This can be verified by inspection about the functions  $f_n$  and  $f_{n+1}$  on the following points:  $\langle a_{n+1}, 1 \rangle$ ,  $\langle a_{n+1}, c_{n+1} \rangle$ ,  $\langle b_{n+1}, c_{n+1} \rangle$  and  $\langle b_{n+1}, 1 \rangle$ . For instance, consider the point  $\langle x, y \rangle = \langle a_{n+1}, c_{n+1} \rangle$ . We verify that

$$\begin{split} \langle u_n, v_n \rangle &= g_n(\langle 2^{r(n)}(a_{n+1} - a_n), 2^{r(n)}(C_{n+1} - c_n) \rangle) \\ &= g_n(\langle \psi(n) \cdot 2^{-p(n)}, 1 - 2^{p(n)} \rangle) = g_n(\langle \alpha_n, \gamma_n \rangle) \\ &= \langle \gamma_n + \delta'_n, \gamma_n \rangle), \quad \text{(this is the point $v_3$ in the definition of $g_8$)} \end{split}$$

and hence

$$\begin{split} f_n(\langle a_{n+1},c_{n+1}\rangle) &= \langle 1-2^{-r(n)}(1-\gamma_n-\delta_n',1-2^{-r(n)}(1-\gamma_n)\rangle \\ &= \langle 1-2^{-r(n+1)}+2^{-(r(n+1)+p(n+1)+3)},1-2^{-r(n+1)}\rangle \\ &= \langle 1-2^{-r(n+1)}+2^{-(r(n+2)+3)},1-2^{-r(n+1)}\rangle; \end{split}$$



Fig. 2. Definitions of functions.

and

$$\begin{split} \langle u_{n+1}, v_{n+1} \rangle &= g_{n+1}(\langle 2^{r(n+1)}(a_{n+1} - a_{n+1}), 2^{r(n+1)}(c_{n+1} - c_{n+1}) \rangle) \\ &= g_{n+1}(\langle 0, 0 \rangle) = \langle \delta_{n+1}/2, 0 \rangle = \langle 2^{-(p(n+1)+3)}, 0 \rangle, \end{split}$$

and hence

$$\begin{split} f_{n+1}(\langle a_{n+1},c_{n+1}\rangle) &= \langle 1-2^{-r(n+1)}(1-2^{-(p(n+1)+3)}), 1-2^{-r(n+1)}(1-0)\rangle) \\ &= \langle 1-2^{-r(n+1)}+2^{-(r(n+2)+3)}), 1-2^{-r(n+1)}\rangle) \\ &= f_n(\langle a_{n+1},c_{n+1}\rangle). \end{split}$$

The values at other points can be similarly verified.  $\Box$ 

Next we claim that both f and  $f^{-1}$  have polynomial moduli of continuity. This can be seen from the moduli of continuity of g and  $g^{-1}$ . Namely, for any two points  $\langle x_1,y_1\rangle$  and  $\langle x_2,y_2\rangle$  in  $U_n$ , if  $|\langle x_1,y_1\rangle-\langle x_2,y_2\rangle| \leq 2^{-(m+1+\log(1/\delta_n))}\cdot 2^{-r(n)}=2^{-(m+r(n+1)+3)}$ , then  $|f(\langle x_1,y_1\rangle-\langle x_2,y_2\rangle)| \leq 2^{-(m+r(n))}$ ; and if  $|f(\langle x_1,y_1\rangle-\langle x_2,y_2\rangle)| \geq 2^{-(m+r(n))}$  then  $|f(\langle x_1,y_1\rangle-\langle x_2,y_2\rangle)| \geq 2^{-(m+r(n+1)+3)}$ , for all  $m\geq 0$  (note that if both  $\langle x_1,y_1\rangle$  and  $\langle x_2,y_2\rangle$  are in  $U_n$ , then their distance and the distance between their image points are bounded by  $2^{-r(n)}$ ). So the claim is proven.

Now we want to show that f is polynomial-time computable on  $[0, 1]^2$ . We first claim that for any given dyadic national point  $\langle d_1, d_2 \rangle$  and any integer m, we can either find an integer n < m such that  $\langle d_1, d_2 \rangle \in U_n - U_{n+1}$  and obtain the values of  $a_i$  and  $b_i$  for  $1 \le i \le n$ , or conclude that  $\langle d_1, d_2 \rangle \in U_m$  and obtain the values of  $a_i$  and  $b_i$  for  $1 \le i \le m$ , and we can do it in time  $q_1(m)$  for some polynomial  $q_1$ .

**Proof.** This can be done recursively. Assume that we already know that  $\langle d_1, d_2 \rangle \in U_n$  and know the values of  $a_n$  and  $b_n$ . To determine whether  $\langle d_1, d_2 \rangle \in U_{n+1}$ , we simply find the maximum integer k such that  $a_n + k \cdot 2^{-r(n+1)} \le d_1$  and let  $s_k$  and  $s_{k-1}$  be the p(n)-bit binary representations of the integer k and k-1 (with leading zeros), respectively, and compote  $\phi(s_k)$  and  $\phi(s_{k-1})$ . If  $\phi(s_k) = 0^n$  then  $a_{n+1} \le d_1 \le b_{n+1}$ , else if  $\phi(s_{k-1}) = 0^n$  and  $d_1 = a_n + k \cdot 2^{-r(n+1)}$  then  $d_1 = b_{n+1}$ , and else  $\langle d_1, d_2 \rangle \in U_n - U_{n+1}$ . If  $a_{n+1} \le d_1 \le b_{n+1}$  then we conclude that  $\langle d_1, d_2 \rangle \in U_{n+1}$  if and only if  $c_{n+1} \le d_2 \le 1$ . Note that  $c_{n+1}$  is computable in polynomial time from  $0^n$  and  $a_{n+1}$  and  $b_{n+1}$  have been found in polynomial time. Therefore, we can recursively apply this procedure to determine the integer n < m such that  $\langle d_1, d_2 \rangle \in U_n - U_{n+1}$ , or to determine that  $\langle d_1, d_2 \rangle \in U_m$ .  $\square$ 

Once we have established that  $\langle d_1, d_2 \rangle \in U_n - U_{n+1}$  and knowing the values of  $a_n$  and  $b_n$  we can compute  $f(\langle d_1, d_2 \rangle) = f_n(\langle d_1, d_2 \rangle)$  by the formula (\*). That is, we only need to show that  $g_n(\langle d'_1, d'_2 \rangle)$  can be computed correct to within an error  $2^{-m}$  in  $q_2(n+m)$  moves for some polynomial  $q_2$ , where  $d'_1 = 2^{r(n)}(d_1 - a_n)$  and  $d'_2 = 2^{r(n)}(d_2 - c_n)$ . We observe that the proof of the earlier claim actually gives a procedure to determine whether  $a_{n+1} \leq d_1 \leq b_{n+1}$ . Use this procedure, we can actually determine which of the following cases holds.

**Case 1.** 
$$(d'_1, d'_2) \in S_1$$
 or  $(d'_1, d'_2) \in S_7$ .

In this case, we calculate  $g_n(\langle d'_1, d'_2 \rangle)$  in polynomial-time without knowing what  $a_{n+1}$  is.

**Case 2.** 
$$(d'_1, d'_2) \in S_2 \cup S_6$$
.

In this case, we compute  $g_n(\langle d_1',d_2'\rangle) = \langle d_1',d_2'/2\rangle$ . (Note that we do not need to know whether  $\langle d_1',d_2'\rangle \in S_2$  or  $\langle d_1',d_2'\rangle \in S_6$ . As long as  $|d_1-a_n|>\varepsilon_n, |d_1-b_n|>\varepsilon_n, |d_1-2\varepsilon_n|$  and  $d_l+2\varepsilon_n$  are not in  $(a_{n+1},b_{n+1})$ , we decide that Case 2 holds.)

**Case 3.** 
$$(d'_1, d'_2) \in S_3 \cup S_4 \cup S_5 \cup S_8$$
.

In this case, we must have already known the values  $a_{n+1}$  and  $\psi(n)$ , and hence knew whether  $\langle d_1', d_2' \rangle$  is in  $S_3$  or in  $S_4$  or in  $S_5$  or in  $S_8$ . Thus, we can calculate  $g_n(\langle d_1', d_2' \rangle)$  from the definition accordingly.

Finally, since f has a polynomial modulus of continuity, the above calculation  $f(\langle d_1, d_2 \rangle)$  can be used to approximate the value  $f(\langle x, y \rangle)$  at any point  $\langle x, y \rangle$ . This completes the proof that f is polynomial-time computable.

The only thing left to show is that  $f^1((1,1))$  is not polynomial-time computable. To see this, we note that if  $f(\langle x,y\rangle)=\langle 1,1\rangle$  then  $x=\lim a_n$  and  $y=\lim c_n$ . Therefore, y=1. Assume otherwise that x is a polynomial-time computable real number. Then, we can compute, for any given n, a dyadic rational d of precision r(n+1) such that  $|d-x|\leq 2^{-r(n+1)}$ , in  $q_3(n)$  moves for some polynomial  $q_3$ . Now, take the maximum dyadic rational e of precision e0 precision e1 such that e1 then e2 must be exactly e1 because e2 then e3 must be exactly e3. In other words, we can compute e4 n in e4 n moves for some polynomial e4. From e5 n and e6 n and e7 imply that e8 d d d e8 n. In other words, we can compute e9 n in e9 n moves for some polynomial e9. From e1 n and e1, we can calculate the value e9 n essily. This shows that the function e9 is polynomial time computable and is a contradiction. This completes the proof of the theorem.

From the above proof, we were not able to perform a binary search to find the inverse value  $f^1(\langle 1,1\rangle)$ . This is partly due to the fact that a binary search in the two-dimensional space requires the evaluation of f at potentially an exponential number of points, and also partly due to the fact that Range(f) does not include a neighborhood  $\{\langle y_1,y_2\rangle||y_j-1|\leq \varepsilon, j=1,2\}$  of  $\langle 1,1\rangle$ . It seems that either reason is strong enough to guarantee a two-dimensional one-way function. Nevertheless, we are not able to construct a one-way function which is one-to-one from  $[0,1]^2$  onto  $[0,1]^2$ . (It is interesting to compare this inability of finding continuous one-way functions with the domain and range both equal to  $[0,1]^2$  with the ease of discrete one-to-one onto one-way functions discussed in Section 2.)

**Question** Does there exist a two-dimensional one-way function whose range is exactly  $[0, 1]^2$ ? We will give a partial answer to this question in Section 6.

### 5. Many-to-one one-way functions

In this and the next sections, we consider continuous one-way functions which are not necessarily one-to-one. In the case of discrete functions, we have seen in Section 2 that a k-to-one one-way function exists if and only if a one-to-one one-way function exists. In the case of continuous functions, we will see quite different results. In particular, we will show, under the assumption  $P_1 \neq UP_1 \cap_{co} UP_1$ , the existence of one-dimensional four-to-one one-way functions (in contrast to Theorem 4.1) and, in Section 6, the existence of two-dimensional three-to-one one-way functions (in contrast to the above Question). Intuitively, the one-to-oneness of a continuous function implies strong regularity between the function values at neighboring points while the k-to-oneness, for k > 1, allows more irregularity.

Before we can prove our main results, we must define what a one-way function f is if f is allowed to be many-toone. In this section, we only consider one-dimensional functions. First we need to introduce a new concept of polynomial
inverse modulus of continuity which is an extension of the requirement that the inverse of a one-way function must have
a polynomial modulus of continuity. The purpose of this requirement is to exclude trivial one-way functions. Intuitively, a
function f has an inverse modulus of continuity q if for any points  $x, x' \in [0, 1]$  and for any n > 0,  $|x - x'| > 2^{-n}$  implies  $|f(x) - f(x')| > 2^{-q(n)}$ ; that is, the graph of f does not occur to the right or the left of the square  $S_x = \{\langle x', y' \rangle | | | x - x'| \le 2^{-n}, |f(x) - y'| > 2^{-q(n)} \}$ . However, for a k-to-one function f, this condition is too strong because we need allow f to have
same value f(x) = f(x') at some different points f and f and f are the spirit of this requirement while still allowing simple
functions such as  $f(x) = x^2$  on f and f are modify this requirement into the following two conditions.

- (a) For any two points  $x < x' \in [0, 1]$  and for any n > 0,  $|x x'| > 2^{-n}$  implies that  $|f(x) f(z)| > 2^{-q(n)}$  for some  $z \in (x, x']$ .
- (b) For any point  $x \in [0, 1]$ , there exists an interval (a, b) such that  $x \in (a, b)$  and for any  $x' \in (a, b) \cap [0, 1]$  and for any n > 0,  $|x x'| > 2^{-n}$  implies that  $|f(x) f(x')| > 2^{-q(n)}$ .

Intuitively, the condition (a) is a global extension of the condition for one-to-one functions. Namely, condition (a) implies that if f is one-to-one on [a,b] then  $f^{-1}$  on f([a,b]) has a modulus function q. The condition (b) is a local extension of the same condition; it allows f to have some point x' such that f(x') is close to f(x) either if x' is very close to x or if x' is outside a fixed neighborhood of x. In the following we will show that if f satisfies these two conditions with respect to a polynomial function f, then  $f^{-1}$  cannot be too difficult to compute (i.e., is polynomial-time computable if f and so it cannot be a "trivial" one-way function.

**Definition 5.1.** A function  $f:[0,1] \to R$  is said to have a *polynomial inverse modulus of continuity* if there exists a polynomial function q such that f and q satisfy conditions (a) and (b) above.

For k > 1, since a k-to-one function f is not necessarily one-to-one,  $f^{-1}$  does not necessarily exist and so we only consider strong one-way functions.

**Definition 5.2.** Let k > 0. A k-to-one function  $f : [0,1] \to R$  is a *strong one-way function* if it is polynomial-time computable, has a polynomial inverse modulus of continuity and for which there exists a non-polynomial-time computable point  $x \in [0,1]$  such that y = f(x) is polynomial-time computable.

Our first result shows that there is no such three-to-one one-way functions.

**Theorem 5.1.** There does not exist a three-to-one one-way function.

**Proof.** First, we prove that there is no two-to-one one-way function. Assume that f is two-to-one, is computable in polynomial time p, and has a polynomial inverse modulus function q. Also let y be a polynomial-time computable real number in Range(f).

For each  $x \in f^{-1}(\{y\})$ , we find an interval [a, b], with a and b both dyadic rationals, such that f and q satisfy condition (a) of Definition 5.1 on the interval  $(a - \varepsilon, b + \varepsilon)$  for some  $\varepsilon > 0$ . It is clear then that x is the unique number in [a, b] such

that f(x) = y. Thus there are four cases regarding the relation between f(x) and f(z) for  $z \in [a,b]$ : (1)  $f(z_1) < y < f(z_2)$  for all  $z_1 \in [a,x)$  and all  $z_2 \in [x,b)$ , (2)  $f(z_1) < y < f(z_2)$  for all  $z_1 \in [a,x)$  and all  $z_2 \in (x,b)$ , (3) f(z) < y for all  $z \in [a,x) \cup (x,b]$ , or (4) f(z) > y for all  $z \in [a,x) \cup (x,b)$ . In the first two cases, we may use a binary search algorithm similar to the one in Theorem 4.1 to compute x and hence x is polynomial-time computable. So we may assume that, without loss of generality, f(z) < y for all  $z \in [a,x) \cup (x,b]$ . Furthermore, we may assume that  $f(a) \le f(b)$ . Then, we can find another dyadic rational  $a' \in [a,x)$  such that f(a') = f(b). We note that by the two-to-oneness of f, f must be strictly increasing on [a,x] and be strictly decreasing on [x,b]. The following algorithm performs a binary search for x, assuming that a' and b are explicitly given.  $\Box$ 

# **Algorithm 1:** A binary search for x.

We note that if the above algorithm halts inside the loop and outputs c, then we have  $|e_1 - e_2| \neq 2^{-(q(n+2)+2)}$  and hence  $|f(c_1) - f(c_2)| \neq 2^{-q(n+2)}$ , but  $|c_1 - c_2| = 2^{-n}$ . By condition (a) of Definition 5.1 and the monotonicity of f on [a, x] and on [x, b],  $c_1$  and  $c_2$  must locate on the two different sides of x. Since  $|c_1 - c_2| = 2^{-n}$ , we must have  $|c - x| \leq 2^{-(n+1)}$ .

Assume that the algorithm halts outside the loop. We first show that we always have  $l \le x \le r$  after each iteration of the loop. To see this, we claim that if before a particular iteration, we have  $l \le x \le r$  and if we finish this iteration in Case 2  $(e_1 < e_2 - 2^{-(q(n+2)+2)})$  then we must have  $c_1 \le x$ .

**Proof.** Suppose otherwise that  $x < c_1 < c_2$ . Then, by the monotonicity of f on [x,b] and condition (a) of Definition 5.1, we must have  $f(c_1) > f(c_2) + 2^{-q(n+2)}$ . However,  $e_1 < e_2 - 2^{-(q(n+2)+2)}$  implies that  $f(c_1) \le e_1 + 2^{-(q(n+2)+2)} < e_2 \le f(c_2) + 2^{-(q(n+2)+2)}$ . Thus we have a contradiction.  $\square$ 

Similarly, if we finish the iteration in Case 3, we must have  $x \le c_2$ . Thus, the condition  $l \le x \le r$  always holds. Next we observe that in each iteration, we reduce the size r-l to its half plus  $2^{-(n+1)}$ . So, after n iterations, the size r-l is at most  $2^{-n} + 2^{-(n+1)} + 2^{-(n+2)} + \cdots + 2^{-2n} < 2^{-(n-1)}$ . This shows that the output (l+r)/2 is within the distance  $2^{-n}$  to x.

The above proved that the algorithm always outputs a correct approximate value for x. It is easy to verify that the algorithm always halts in polynomial time. So, we have proved the theorem for the case when f is two-to-one.

Now, consider the case for a three-to-one function f. Similarly to the case of two-to-one functions, we find, for each  $x \in f^{-1}(y)$ , an interval [a,b] such that f and q satisfy conditions (a) and (b) of Definition 5.1. Again, without loss of generality, we may assume that f(z) < x for all  $z \in [a,x) \cup (x,b]$ , and that  $f(a) \le f(b)$ . Let  $a' = \max\{z \in [a,x) | f(z) = f(b)\}$ . Then, we note that f must be strictly increasing on [a',x] (otherwise the function f would be three-to-one on [a',x), and so would be four-to-one on [a',b], which is a contradiction). Similarly, f must be strictly decreasing on [x,b]. So, by the above proof for the case of two-to-one functions, we know that x is polynomial-time computable.

**Remark.** It is interesting to note that Algorithm 1 above actually did not use the value y to compute x; it only uses the fact that x is the local maximum point. In other words, for a three-to-one, polynomial-time computable function which has a polynomial inverse modulus of continuity, its local maximum points as well as its local maximum values are polynomial-time computable (cf. Ko [4]).

Next we show that if P = NP then there is no k-to-one one-way functions, for any k > 0.

**Theorem 5.2.** If P = NP then there does not exist a k-to-one one-way function on [0, 1] for all k > 0.

**Proof.** Let f be a k-to-one function from [0,1] to R. Assume that f is computable by an oracle TM M in polynomial time p and has a polynomial inverse modulus function q. Let  $y \in Range(f)$  be a polynomial-time computable point. For any x such that f(x) = y, let [a, b] be an interval such that f on  $(a - \varepsilon, b + \varepsilon)$  and q satisfy condition (b) of Definition 5.1 at x for some  $\varepsilon > 0$ .

We can compute x by nondeterministically guessing a dyadic point  $d \in [a,b]$  of precision prec(d) = p(q(n)+2) and checking that  $|M^d(q(n)+2)-d_y| \leq 2^{-(q(n)+2)}$ , where  $M^d(m)$  is the output of machine M on input n with the standard Cauchy function  $\phi_d$  as the oracle function and  $d_y$  is a dyadic rational such that  $|d_y-y| \leq 2^{-(q(n)+2)}$ . By the property of the inverse modulus function q, we know that this d must be within distance  $2^{-n}$  of x. Therefore, if P=NP then x is computable in polynomial time (cf. proof of Theorem 4.2).  $\square$ 

**Remark.** The above assumption P = NP can actually be weakened into P = UP. Since the proof using the weaker assumption P = UP is too technical, we only include a sketch here. Roughly speaking, we need to modify the above nondeterministic algorithm into the following form:

Let i = q(n+2) and m = q(p(i)+1) and assume that  $|d_y - y| \le 2^{-(m+1)}$ . Then, we need to guess some dyadic point  $d \in [a,b]$  of precision prec(d) = p(i) and check that

$$M^d(m+1) \ge d_v - 2^{-i}$$
 and  $M^{d'}(m+1) \ge d_v - 2^{-i}$ , (\*)

where  $d' = d + 2^{-p(i)}$ . It can be proved that f(d) is approximately  $\geq d_y - 2^{-i}$  and f(d') is approximately  $< d_y - 2^{-i}$ , and there are at most k such points d satisfying the above (\*). Thus this computation can be done in polynomial time relative to an oracle in  $_{k-}UP$ . Since P = UP implies  $P = _{k-}UP$ , we know that P = UP implies this algorithm finds in polynomial time a point d which is close to x.

Finally we show that  $P_1 \neq UP_1 \cap_{co} UP_1$  is sufficient for the existence of a four-to-one one-way function on [0, 1].

**Theorem 5.3.** Assume that  $P_1 \neq U P_1 \cap_{co-} U P_1$ . Then, there exists a four-to-one, polynomial-time computable function f from [0,1] to R such that f has a polynomial inverse modulus of continuity and  $f^{-1}(1)$  is unique and is not polynomial-time computable.

**Proof.** The function f will be constructed as a piecewise linear function. Recall that from the assumption  $P_1 \neq UP_1 \cap c_0 - UP_1$ , there exists a one-to-one, polynomial-time computable function  $\phi: \Sigma^* \to \Sigma^*$  such that  $0^* \subseteq Range(\phi)$  and that the function  $\phi^{-1}$  restricted to  $0^*$  is not polynomial-time computable. Furthermore, by a simple padding argument, we may assume that there exists a polynomial function p such that  $|\phi^{-1}(0^n)| = p(n)$  and  $\phi^{-1}(0^n) \neq 0^{p(n)}$  and  $\phi^{-1}(0^n) \neq 1^{p(n)}$ . We also assume that p(n) > 2 for all p(n) > 3 foreal p(n) > 3 for all p(n) > 3 for all p(n) > 3 for all p(n

Next we define the function r(n) and sequences  $a_n, b_n, c_n$  and  $\varepsilon_n$  as follows.

$$r(1) = 0; \quad r(n) = \sum_{i=1}^{n-1} p(i), n > 0;$$

$$c_n = 1 - 2^{-r(n)};$$

$$\varepsilon_n = (1 - c_n)/4 = 2^{-(r(n)+2)};$$

$$a_1 = 0; \quad a_{n+1} = a_n + \psi(n) \cdot 2^{-r(n+1)};$$

$$b_n = a_n + 2^{-r(n)}.$$
(3)

Then let  $f_n$  be the piecewise linear function on  $[a_n, a_{n+1}] \cup [b_n, b_{n+1}]$  defined by the following six breakpoints

$$f_{n}(a_{n}) = c_{n},$$

$$f_{n}(a_{n+1} - \varepsilon_{n+1}) = (a_{n+1} - a_{n} - \varepsilon_{n+1})/2 + c_{n},$$

$$f_{n}(a_{n+1}) = c_{n+1},$$

$$f_{n}(b_{n+1}) = (1 + c_{n+1})/2,$$

$$f_{n}(b_{n+1} + \varepsilon_{n+1}) = (b_{n+1} + \varepsilon_{n+1} - a_{n})/2 + c_{n},$$

$$f_{n}(b_{n}) = (1 + c_{n})/2.$$

$$(4)$$

The function  $f_n$  is shown in Fig. 3. (Note that f(n) has slope 1/2 on  $[a_n, a_{n+1} - \varepsilon_{n+1}] \cup [b_{n+1} + \varepsilon_{n+1}, b_n]$ .) Let  $f(x) = f_n(x)$  if  $x \in [a_n, a_{n+1}] \cup [b_{n+1}, b_n]$ , and  $f(x_0) = 1$ , where  $x_0 = \lim_{n \to \infty} a_n$ . We claim that f satisfies our requirements.

First, we check that f is well-defined, and is continuous on [0,1]. This can be seen easily by verifying that  $f_n(a_{n+1}) = c_{n+1} = f_{n+1}(a_{n+1})$ ,  $f_n(b_{n+1}) = (1 + c_{n+1})/2 = f_{n+1}(b_{n+1})$ , and that  $\lim_{n\to\infty} c_n = 1$ .

Next, we show that f is a four-to-one function. First, it is easy to see by inspection that each  $f_n$  is three-to-one from  $[a_n,a_{n+1}]\cup[b_{n+1},b_n]$  to  $[c_n,(1+c_{n+1})/2]$ , and it is actually one-to-one *onto* the interval  $(c_{n+1},(1+c_{n+1})/2]$  (in the sense that  $f^{-1}(\{y\})\cap([a_n,a_{n+1}]\cup[b_{n+1},b_n])$  has size  $\leq 1$  for all  $y\in(c_{n+1},(1+c_{n+1})/2]$ ). Furthermore, by the fact that  $(1+c_n)/2< c_{n+1}$  all n (because p(n)>2 for all n and hence p(n)>2 for all n is one-to-one to the interval p(n), and p(n) for all p(n) fo

The next thing to check is that f is polynomial-time computable. We will show two properties of f: (a) the function f has a polynomial modulus of continuity, and (b) for any dyadic rational d of precision m, f(d) is a dyadic rational of



**Fig. 3.** Function of  $f_n$  of Theorem 4.3.

precision  $\leq q(m)$  and is computable in time q(m) for some polynomial q. By Proposition 3.1, these two properties imply that f is polynomial-time computable.

Proof of part (a). We need only to check about the slopes of the function  $f_n$ . The slope of  $f_n$  is 1/2 on  $[a_n, a_{n+1} - \varepsilon_{n+1}]$  and on  $[b_{n+1} + \varepsilon_{n+1}, b_n]$ . The slope of  $f_n$  on  $[a_{n+1} - \varepsilon_{n+1}, a_{n+1}]$  is  $\leq (1 - c_n)/\varepsilon_{n+1} = 2^{-r(n)} \cdot 2^{r(n+1)+2} = 2^{p(n)+2}$ . Similarly, the slope of  $f_n$  on  $[b_{n+1}, b_{n+1} + \varepsilon_{n+1}]$  is  $\geq -2^{p(n)+2}$ . Since f is piecewise linear, the function  $p_1(n) = p(n) + 2$  is a modulus function for f.

Proof of part (b). This part is similar to the proof of Theorem 4.3. Note that we have defined the sequences  $a_n, b_n$  exactly the same as in Theorem 4.3. And, in that proof, we showed that, given a dyadic rational d, we can find in polynomial time the integer n such that  $d \in [a_n, b_n] - (a_{n+1}, b_{n+1})$  and can determine the values of  $a_i, b_i$  for  $i \le n$ . Similarly, we can determine whether  $d \in [a_{n+1} - \varepsilon_{n+1}, a_{n+1}]$  or  $d \in [b_{n+1}, b_{n+1} + \varepsilon_{n+1}]$ . If this is the case, then compute  $f_n(a_{n+1} - \varepsilon_{n+1})$  and  $f_n(a_{n+1})$  (or,  $f_n(b_{n+1})$  and  $f_n(b_{n+1} + \varepsilon_{n+1})$ ) according to the definition of  $f_n$  and linearly interpolate  $f_n(d)$ . If not, then we output  $f(d) = f_n(d) = (d - a_n)/2 + c_n$ . This completes the proof of part (b).

In the above, we have checked the slope of function  $f_n$ . In general, the absolute value of the slope of function f is  $\geq 1/2$ , and therefore, f has a polynomial inverse modulus of continuity.

Finally, to see that  $f^{-1}(1)$  is unique and is not polynomial-time computable, we observe again that it is similar to the proof in Theorem 4.3. Note that  $x_0 = \lim a_n$  is the unique number such that f(x) = 1, and that if  $x_0$  is polynomial-time computable then we can, as shown in Theorem 4.3, compute sequence  $\{a_n\}$  and hence the function  $\psi(n)$  in polynomial time.  $\square$ 

# 6. Two-dimensional onto one-way functions

Following the discussion of Section 5, we define two-dimensional k-to-one one-way functions as follows.

**Definition 6.1.** A function  $f:[0,1]^2 \to R^2$  is said to have a *polynomial inverse modulus of continuity* if there exists a polynomial function q such that f and q satisfy the following conditions:

- (1) for any point  $\langle x_1, x_2 \rangle \in [0, 1]^2$  and for any n > 0, there exists a point  $\langle z_1, z_2 \rangle$  such that  $|\langle z_1, z_2 \rangle \langle x_1, x_2 \rangle| \le 2^{-n}$  and  $|f(\langle z_1, z_2 \rangle) f(\langle x_1, x_2 \rangle)| > 2^{-q(n)}$ , and
- (2) for any point  $\langle x_1, x_2 \rangle \in [0, 1]$ , there exists  $\delta > 0$  such that for any  $\langle x_1', x_2' \rangle \in [0, 1]^2$  such that  $|\langle x_1, x_2 \rangle \langle x_1', x_2' \rangle| < \delta$  and for any n > 0,  $|\langle x_1, x_2 \rangle \langle x_1', x_2' \rangle| > 2^{-n}$  implies that  $|f(\langle x_1, x_2 \rangle) f(\langle x_1', x_2' \rangle)| > 2^{-q(n)}$ .

**Definition 6.2.** Let k > 0. A k-to-one function  $f:[0,1]^2 \to R^2$  is a *one-way function* if it is polynomial-time computable, has a polynomial inverse modulus of continuity and for which there exists a non-polynomial-time computable point  $\langle x_1, x_2 \rangle \in [0,1]$  such that  $f(\langle x_1, x_2 \rangle)$  is polynomial-time computable.

Similarly to Theorems 4.2 and 5.2, k-to-one one-way functions on  $[0, 1]^2$  do not exist if P=NP.

**Theorem 6.1.** Let k > 1. If P=NP then there does not exist a k-to-one one-way function from  $[0,1]^2$  to  $R^2$ .



Fig. 4. Function g.

**Proof.** The proof is similar to those of Theorems 4.2 and 5.2. We omit it here.  $\Box$ 

In the following we construct a three-to-one one-way function whose range is exactly  $[0, 1]^2$ . This gives a partial answer to the Question at the end of Section 4.

**Theorem 6.2.** If  $P_1 \neq UP_1 \cap_{co} = UP_1$ , then there exists a three-to-one polynomial-time computable function f from  $[0,1]^2$  onto  $[0,1]^2$  such that f has a polynomial inverse modulus of continuity and  $f^{-1}(\langle 1,1\rangle)$  is unique and is not polynomial-time computable.

**Proof.** The construction of the function f is similar to Theorem 4.3. We first describe a basic function g, whose role in the construction of f is similar to that of the basic function g in Theorem 4.3.

The function g is defined by four parameters; that is  $g = g(\alpha, \beta, \delta, \delta')$ , where the parameters  $\alpha, \beta, \delta, \delta'$  are dyadic rationals in the interval [0, 1] satisfying  $\alpha < \beta$  and  $0 < 4\delta' < 4\delta < \beta - \alpha < 1/2$ .

Let  $\gamma=1-(\beta-\alpha)$ . Let S be the subset of the square  $[0,1]^2$  with the square  $[\alpha,\beta]\times[\gamma,1]$  removed (but retaining the boundaries). Also let T be the square  $[0,1]^2$  with the square  $[\gamma,1]^2$  removed (but retaining the boundaries).  $S=[0,1]^2-\{\langle x,y\rangle|\alpha< x<\beta,\gamma< y\leq 1\}$  and  $T=[0,1]^2-\{\langle x,y\rangle|\gamma< x\leq 1,\gamma< y\leq 1\}$ . The domain of the function g is S and its range is T. We divide set S into S regions  $S_1,\cdots,S_7$ , and define S subregions of S and regions S and S are the unions of two rectangles. These regions are described as follows and shown in Fig. 4.

$$\begin{split} S_1 &= [0, \alpha - \delta] \times [0, 1], & T_1 &= S_1, \\ S_2 &= [\alpha - \delta, \alpha] \times [0, 1], & T_2 &= [\alpha - \delta, \gamma] \times [0, 1], \\ S_3 &= ([\alpha, \beta] \times [0, \gamma]) \cup ([\beta, \beta + \delta] \times [0, 1]), & T_3 &= [\gamma, 1] \times [0, \gamma], \\ S_4 &= [\beta + \delta, \beta + 2\delta] \times [0, 1], & T_4 &= ([\beta + 2\delta, \gamma] \times [0, 1]) \cup ([\gamma, 1] \times [0, \gamma]), \\ S_5 &= [\beta + 2\delta, \gamma - \delta] \times [0, 1], & T_5 &= S_5, \\ S_6 &= [\gamma - \delta, \gamma] \times [0, 1], & T_6 &= S_6, \\ S_7 &= [\gamma, 1] \times [0, 1] & T_7 &= [\gamma, 1] \times [0, \gamma]. \end{split}$$

The function g is a combination of 7 functions  $g_i$ ,  $1 \le i \le 7$ , each defined on  $S_i$ . Each function  $g_i$  is in turn a combination of some linear functions. For what we mean by linear functions on triangles and trapezoids, see the proof of Theorem 4.3. We describe each  $g_i$  as follows:

- (1) Functions  $g_1$  and  $g_5$  are the identity function on  $S_1$  and  $S_5$ , respectively.
- (2) The function  $g_2$  is linear on  $S_2$  with the four corners mapped as follows:  $g_2(\langle \alpha \delta, 0 \rangle) = \langle \alpha \delta, 0 \rangle$ ,  $g_2(\langle \alpha, 0 \rangle) = \langle \gamma, 0 \rangle$ ,  $g_2(\langle \alpha, 1 \rangle) = \langle \gamma, 1 \rangle$  and  $g_2(\langle \alpha \delta, 1 \rangle) = \langle \alpha \delta, 1 \rangle$ . That is, for any  $\langle x, y \rangle$  in  $S_2$ ,  $g_2(\langle x, y \rangle) = \langle x', y \rangle$ , where  $\delta(\gamma x') = (\gamma \alpha + \beta)(a x)$ .
- (3) The function  $g_3$  is a combination of three linear functions. Let  $u_1 = \langle \alpha, \gamma \rangle$ ,  $u_2 = \langle \beta, \gamma \rangle$ ,  $u_3 = \langle \beta, 1 \rangle$ ,  $u_4 = \langle \beta + \delta, 1 \rangle$ ,  $u_5 = \langle \beta + \delta, 0 \rangle$ ,  $u_6 = \langle \alpha, 0 \rangle$ ,  $v_1 = \langle \gamma, \gamma \rangle$ ,  $v_2 = \langle 1 \delta', \gamma \rangle$ ,  $v_3 = \langle 1, \gamma \rangle$ ,  $v_4 = \langle 1, \gamma \delta \rangle$ ,  $v_5 = \langle 1, 0 \rangle$  and  $v_6 = \langle \gamma, 0 \rangle$ . The function  $g_3$  maps each  $u_i$ ,  $1 \le i \le 6$ , to  $v_i$  and is a linear function from trapezoid  $S_{3,1} = \Box u_1 u_2 u_5 u_6$  to trapezoid  $T_{3,1} = \Box v_1 v_2 v_5 v_6$ , from triangle  $S_{3,2} = \Delta u_2 u_4 u_5$  to triangle  $T_{3,2} = \Delta v_2 v_4 v_5$ , and from triangle  $S_{3,3} = \Delta u_2 u_3 u_4$  to triangle  $T_{3,3} = \Delta v_2 v_3 v_4$ .



Fig. 5. Definitions of functions.

- (4) The function  $g_4$  is a combination of six linear functions. Let  $u_1 = \langle \beta + \delta, 1 \rangle$ ,  $u_2 = \langle \beta + 9\delta/8, 1 \rangle$ ,  $u_3 = \langle \beta + 5\delta/4, 1 \rangle$ ,  $u_4 = \langle \beta + 11\delta/8, 1 \rangle$ ,  $u_5 = \langle \beta + 3\delta/2, 1 \rangle$ ,  $u_6 = \langle \beta + 2\delta, 1 \rangle$ ,  $u_7 = \langle \beta + 2\delta, 0 \rangle$ ,  $u_8 = \langle \beta + 3\delta/2, 0 \rangle$ ,  $u_9 = \langle \beta + \delta, 0 \rangle$ ,  $v_1 = \langle 1, \gamma \delta \rangle$ ,  $v_2 = \langle 1, \gamma \rangle$ ,  $v_3 = \langle \gamma, \gamma \rangle$ ,  $v_4 = \langle \gamma, 1 \rangle$ ,  $v_5 = \langle \gamma \delta, 1 \rangle$ ,  $v_6 = u_6$ ,  $v_7 = u_7$ ,  $v_8 = \langle \gamma \delta, 0 \rangle$  and  $v_9 = \langle 1, 0 \rangle$ . The function  $g_4$  maps each  $u_i$ ,  $1 \le i \le 9$ , to  $v_i$  and is a linear function from triangle  $S_{4,1} = \Delta u_1 u_8 u_9$  to triangle  $T_{4,1} = \Delta v_1 v_8 v_9$ , from triangle  $S_{4,2} = \Delta u_1 u_2 u_8$  to triangle  $T_{4,2} = \Delta v_1 v_2 v_8$ , from triangle  $S_{4,3} = \Delta u_2 u_3 u_8$  to triangle  $T_{4,3} = \Delta v_2 v_3 v_8$ , from triangle  $S_{4,4} = \Delta u_3 u_4 u_8$  to triangle  $T_{4,4} = \Delta v_3 v_4 v_8$ , from triangle  $S_{4,5} = \Delta u_4 u_5 u_8$  to triangle  $T_{4,5} = \Delta v_4 v_5 v_8$ , and from rectangle  $S_{4,6} = \Box u_5 u_6 u_7 u_8$  to rectangle  $T_{4,6} = \Box v_5 v_6 v_7 v_8$ .
- (5) The function  $g_6$  is a combination of three linear functions. Let  $u_1 = \langle \gamma \delta, 1 \rangle$ ,  $u_2 = \langle \gamma \delta/2, 1 \rangle$ ,  $u_3 = \langle \gamma, 1 \rangle$ ,  $u_4 = \langle \gamma, 0 \rangle$ ,  $u_5 = \langle \gamma \delta, 0 \rangle$ ,  $v_1 = u_1$ ,  $v_2 = u_3$ ,  $v_3 = \langle \gamma, \gamma \rangle$ ,  $v_4 = u_4$  and  $v_5 = u_5$ . The function  $g_6$  maps each  $u_i$ ,  $1 \le i \le 5$ , to  $v_i$  and is a linear function from triangle  $S_{6,1} = \Delta u_1 u_2 u_5$  to triangle  $T_{6,1} = \Delta v_1 v_2 v_5$ , from triangle  $S_{6,2} = \Delta u_2 u_3 u_5$  to triangle  $T_{6,2} = \Delta v_2 v_3 v_5$ , and from triangle  $S_{6,3} = \Delta u_3 u_4 u_5$  to triangle  $T_{6,3} = \Delta v_3 v_4 v_5$ .

(6) The function  $g_7$  is a combination of two linear functions. Let  $u_1 = \langle \gamma, 1 \rangle$ ,  $u_2 = \langle 1 - \delta, 1 \rangle$ ,  $u_3 = \langle 1, 1 \rangle$ ,  $u_4 = \langle 1, 0 \rangle$ ,  $u_5 = \langle \gamma, 0 \rangle$ ,  $v_1 = \langle \gamma, \gamma \rangle$ ,  $v_2 = \langle 1, \gamma \rangle$ ,  $v_3 = u_4$ ,  $v_4 = \langle 1 - \delta, 0 \rangle$  and  $v_5 = u_5$ . The function  $g_7$  maps each  $u_i$ ,  $1 \le i \le 5$ , to  $v_i$  and is a linear function from trapezoid  $S_{7,1} = \Box u_1 u_2 u_4 u_5$  to trapezoid  $T_{7,1} = \Box v_1 v_2 v_4 v_5$ , and from triangle  $S_{7,2} = \Delta u_2 u_3 u_4$  to triangle  $T_{7,2} = \Delta v_2 v_3 v_4$ .

The above definitions of functions  $g_3$ ,  $g_4$ ,  $g_6$  and  $g_7$  are shown in Fig. 5.

Similar to the function g constructed in the proof of Theorem 5.1, the function g is continuous and has the modulus of continuity  $m(n) = n + 1 + \log(1/\delta')$ . We observe that the regions  $T_1$ ,  $T_2$  and  $T_3$ , form a partition of the set T, that the regions  $T_5$ ,  $T_6$  and  $T_7$  form a partition of the region  $T_4$  and that  $T_4$  is contained in  $T_2 \cup T_3$ . Since g is one-to-one on each region  $S_i$ ,  $1 \le i \le 7$ , g is a three-to-one function on S. From the three-to-oneness of g and from the same argument for function g in Theorem 4.3, we can see that this g also has the polynomial inverse modulus of continuity m(n). We leave it to the reader to verify it.

Now we are ready to define the function f. Let functions  $\psi$ , p and r, sequences  $a_n$ ,  $b_n$  and  $\gamma_n$ , and sets  $W_n$ ,  $V_n$ , and  $U_n$  be exactly the same as those defined in the proof of Theorem 4.3. Then define  $f_n$  in exactly the same way. That is, let  $g_n$  be the function g defined above with the parameters  $\alpha_n = \psi(n) \cdot 2^{-p(n)}$ ,  $\beta_n = (\psi(n) + 1) \cdot 2^{-p(n)}$ ,  $\delta_n = 2^{-(p(n)+2)}$  and  $\delta'_n = 2^{-(p(n)+p(n+1)+3)}$ ; that is  $g_n = g(\alpha_n, \beta_n, \delta_n, \delta'_n)$ . Let  $\gamma = 1 - (\beta_n - \alpha_n)$ . We define the function  $f_n$  from  $U_n$  onto  $V_n$  by

$$f_n(\langle x, y \rangle) = \langle 1 - 2^{-r(n)} (1 - u_n), 1 - 2^{-r(n)} (1 - v_n) \rangle, \tag{5}$$

where

$$\langle u_n, v_n \rangle = g_n(\langle 2^{r(n)}(x - a_n), 2^{r(n)}(y - c_n) \rangle). \tag{6}$$

The function f is the combination of  $f_n$  on  $U_n$ ,  $n \ge 1$ , plus  $f(\langle x_0, 1 \rangle) = \langle 1, 1 \rangle$ , where  $x_0 = \lim a_n$ . Note that  $[0, 1]^2 = \bigcup_{n=1}^{\infty} U_n \cup \{\langle x_0, 1 \rangle\}$ , and so f is defined on every point in  $[0, 1]^2$ .

Similarly to the proof of Theorem 4.3, we can prove that f is well-defined on  $[0,1]^2$ , is polynomial-time computable and has a polynomial inverse modulus of continuity. We leave these proofs to the reader. We further observe that f maps  $[0,1]^2$  onto  $[0,1]^2$ , because it maps each set  $U_n$  onto  $V_n$  and maps  $\langle x_0,1\rangle$ , the only point in  $[0,1]^2-\bigcup_{n=1}^\infty U_n$ , to  $\langle 1,1\rangle$ , the only point in  $[0,1]^2-\bigcup_{n=1}^\infty V_n$ . Finally, we observe that f is a three-to-one function, because each  $f_n$  is three-to-one and the range of  $f_n$  and the range of  $f_m$ , for  $m \neq n$ , intersect only on the boundary of  $V_n$  and  $V_m$ . The above completes the proof of the theorem.  $\square$ 

### **Declaration of competing interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

# Acknowledgements

The author would like to thank Professor Osamu Watanabe for interesting discussions on one-way functions.

# References

- [1] E. Allender, O. Watanabe, Kolmogorov complexity and degrees of tally sets, in: Proc. Structure in Complexity Theory 3rd Annual Conf., 1988, pp. 102–111.
- [2] J. Grollman, A. Selman, Complexity measures for public-key cryptosystems, in: Proc. 25th IEEE Symp. on Foundations of Computer Science, 1984, pp. 495–503.
- [3] K. Ko, On some natural complete operators, Theor. Comput. Sci. 37 (1985) 1–30.
- [4] K. Ko, Applying techniques of discrete complexity theory to numerical computation, in: R. Book (Ed.), Studies in Complexity Theory, Pitman, London, 1986.
- [5] K. Ko, I.I. Friedman, Computational complexity of real functions, Theor. Comput. Sci. 20 (1982) 323-352.
- [6] L. Valiant, Relative complexity of checking and evaluating, Inf. Process. Lett. 5 (1976) 20-23.
- [7] O. Watanabe, On hardness of one-way functions, Inf. Process. Lett. 27 (1988) 151-157.