Problem 1. Let A be a measurable subset of \mathbb{R}^d and $f: A \to \overline{\mathbb{R}}$. For every $\delta = (\delta_1, \dots, \delta_d) \in (0, \infty)^d$ and $y = (y_1, \dots, y_d) \in \mathbb{R}^d$, let

$$A_{\delta,y} := \{ (\delta_1 x_1 + y_1, \dots, \delta_d x_d + y_d) : x = (x_1, \dots, x_d) \in A \}$$

and $f_{\delta,y}: A_{\delta,y} \to \overline{\mathbb{R}}$ be the function defined by

$$f_{\delta,y}(x) = f(((x_1 - y_1)/\delta_1, \dots, (x_d - y_d)/\delta_d)), \ \forall x \in A_{\delta,y}$$

Show that:

- 1. f is measurable if and only if $f_{\delta,y}$ is measurable.
- 2. f is integrable over A if and only if $f_{\delta,y}$ is integrable over $A_{\delta,y}$. Furthermore, if f is integrable over A, then

$$\int_{A_{\delta,y}} f_{\delta,y} = \delta_1 \cdots \delta_d \int_A f.$$

Proof of 1.1. We note that throughout the solution, by $1/\delta$ we mean $(1/\delta_1, \ldots, 1/\delta_d)$ and by $\delta x + y$ we mean $(\delta_1 x_1 + y_1, \ldots, \delta_d x_d + y_d)$. For " \Rightarrow ", suppose f is measurable. Let $c \in \mathbb{R}$ be given. Let $\delta x + y \in A_{\delta,y}$ be such that $\delta x + y \in f_{\delta,y}^{-1}([-\infty, c))$. Then

$$\delta x + y \in f_{\delta,y}^{-1}([-\infty, c]) \iff f\left(\left(\frac{\delta_1 x_1 + y_1 - y_1}{\delta_1}, \dots, \frac{\delta_d x_d + y_d - y_d}{\delta_d}\right)\right) < c$$

$$\iff f(x_1, \dots, x_d) < c \iff x \in f^{-1}([-\infty, c])$$

$$\iff \delta x + y \in \delta(f^{-1}([-\infty, c])) + y := \{\delta x + y : x \in f^{-1}([-\infty, c])\}.$$

Thus, it follows that $f_{\delta,y}^{-1}([-\infty,c)) = \delta(f^{-1}([-\infty,c))) + y$. Since f is measurable, $f^{-1}([-\infty,c))$ is measurable by definition. By question three of assignment one, it follows that $\delta(f^{-1}([-\infty,c))) + y = f_{\delta,y}^{-1}([-\infty,c))$ is measurable as we showed that translations and dilations of measurable sets preserve measurability. Since c was arbitrary, we conclude that $f_{\delta,y}^{-1}([-\infty,c))$ is measurable.

On the other hand, for " \Leftarrow ", suppose $f_{\delta,y}$ is measurable and let $c \in \mathbb{R}$ be arbitrary. Then

$$x = (x_1, \dots, x_d) \in f^{-1}([-\infty, c]) \iff \left(\frac{\delta_1 x_1 + y_1 - y_1}{\delta_1}, \dots, \frac{\delta_d x_d + y_d - y_d}{\delta_d}\right) \in f^{-1}([-\infty, c])$$

$$\iff f\left(\left(\frac{(\delta_1 x_1 + y_1) - y_1}{\delta_1}, \dots, \frac{(\delta_d x_d + y_d) - y_d}{\delta_d}\right)\right) < c$$

$$\iff \delta x + y \in f_{\delta, y}^{-1}([-\infty, c]) \iff \delta x \in f_{\delta, y}^{-1}([-\infty, c]) - y$$

$$\iff x \in \frac{1}{\delta}(f_{\delta, y}^{-1}([-\infty, c]) - y),$$

where $\frac{1}{\delta}(f_{\delta,y}^{-1}([-\infty,c))-y):=\{\frac{1}{\delta}(x-y):x\in f_{\delta,y}^{-1}([-\infty,c))\}$. Thus since $1/\delta\in(0,\infty)^d$ and $-y\in\mathbb{R}^d$, the measurability of $f_{\delta,y}^{-1}([-\infty,c))$ implies that $\frac{1}{\delta}(f_{\delta,y}^{-1}([-\infty,c))-y)=f^{-1}([-\infty,c))$ is measurable (this likewise follows via question one of assignment 3). Since c was arbitrary, f is measurable.

Therefore, we conclude that f is measurable if and only if $f_{\delta,y}$ is measurable.

Proof of 1.2. For " \Rightarrow ", suppose f is integrable on A. Let $E \subseteq A$ be measurable. We first consider the case where f is a characteristic function, so we define $f := \chi_E$. It follows that $f_{\delta,y} = \chi_{E_{\delta,y}}$ since for $\delta x + y \in E_{\delta,y}$ we have $f_{\delta,y}(\delta x + y) = f(\frac{(\delta x + y) - y}{\delta}) = f(x) = 1$ since $\delta x + y \in E_{\delta,y} \implies x \in E$; on the other hand, if $\delta x + y \notin E_{\delta,y}$, then $x \notin E$ so that $f_{\delta,y}(\delta x + y) = f(x) = 0$. Furthermore, $E_{\delta,y}$ is measurable and $m(E_{\delta,y}) = \delta_1 \cdots \delta_d m(E)$ (cf. Assignment 1, Question 3). Thus, by definition of the Lebesgue integral we have

$$\int_{E_{\delta,y}} f_{\delta,y} = \int_{E_{\delta,y}} \chi_{E_{\delta,y}} = m(E_{\delta,y}) = \delta_1 \cdots \delta_d m(E) = \delta_1 \cdots \delta_d \int_E \chi_E = \delta_1 \cdots \delta_d \int_E f.$$

Now suppose f is any characteristic function with canonical form $f = \sum_{k=1}^{N} c_k \chi_{E_k}$. Thus, $f_{\delta,y} = \sum_{k=1}^{N} c_k \chi_{E_{k,\delta,y}}$, where $E_{k,\delta,y} := \{\delta x + y : x \in E_k\}$ and $m(E_{k,\delta,y}) = \delta_1 \cdots \delta_d m(E_k)$ (cf. Assignment 1, Question 3). Therefore, by the construction of the Lebesgue integral of simple functions, we have

$$\int_{E_{\delta,y}} f_{\delta,y} = \int_{E_{\delta,y}} \sum_{k=1}^{N} c_k \chi_{E_{k,\delta,y}} = \sum_{k=1}^{N} c_k m(E_{k,\delta,y}) = \delta_1 \cdots \delta_d \sum_{k=1}^{N} c_k m(E_k) = \delta_1 \cdots \delta_d \int_{E} \sum_{k=1}^{N} c_k \chi_{E} = \delta_1 \cdots \delta_d \int_{E} f(E_k) dE_k$$

Thus, we have the desired equality for simple functions.

We now suppose that f is non-negative on E. In this case, so is $f_{\delta,y}$ since for each $\delta x + y \in E_{\delta,y}$, $f_{\delta,y}(\delta x + y) = f(x) \ge 0$. By the simple approximation theorem, there exists a sequence $\{\varphi_k\}_{k\in\mathbb{N}}$ of simple functions such that $\lim_{k\to\infty} \varphi_k = f$ and for each $k\in\mathbb{N}$, $\varphi_k \ge 0$ and $\varphi_k \le \varphi_{k+1}$. Define for each $k\in\mathbb{N}$ and $\delta x + y \in E_{\delta,y}$ the function $\varphi_{k,\delta,y}(\delta x + y) = \varphi_k(\frac{(\delta x + y) - y}{\delta}) = \varphi_k(x)$ so that:

- 1. For each $\delta x + y \in E_{\delta,y}$, $\varphi_{k,\delta,y}(\delta x + y) \to f_{\delta,y}(\delta x + y)$. Indeed, $\varphi_{k,\delta,y}(\delta x + y) = \varphi_k(x) \to f(x) = f_{\delta,y}(\delta x + y)$.
- 2. For each $k \in \mathbb{N}$, $0 \le \varphi_{k,\delta,y} \le \varphi_{k+1,\delta,y}$. Indeed, for each $k \in \mathbb{N}$ and $\delta x + y \in E_{\delta,y}$ we have

$$0 \le \varphi_k(x) = \varphi_{k,\delta,y}(\delta x + y) \le \varphi_{k+1}(x) = \varphi_{k+1,\delta,y}(\delta x + y).$$

Thus, we can use the monotone convergence theorem as well as the previous argument regarding simple functions to obtain

$$\int_{E_{\delta,y}} f_{\delta,y} = \lim_{k \to \infty} \int_{E_{\delta,y}} \varphi_{k,\delta,y} = \lim_{k \to \infty} \left(\delta_1 \cdots \delta_d \int_E \varphi_k \right) = \delta_1 \cdots \delta_d \lim_{k \to \infty} \int_E \varphi_k = \delta_1 \cdots \delta_d \int_E f.$$

Finally, if f can change sign, we write $f=f_+-f_-$. It follows that for $\delta x+y\in E_{\delta,y}$ we have that $f_{\delta,y}(\delta x+y)=f(\frac{(\delta x+y)-y}{\delta})=f_+(\frac{(\delta x+y)-y}{\delta})-f_-(\frac{(\delta x+y)-y}{\delta})=:f_{+,\delta,y}(\delta x+y)-f_{-,\delta,y}(\delta x+y)$, where $f_{+,\delta,y}(\delta x+y):=f_+(\frac{(\delta x+y)-y}{\delta})$ and $f_{-,\delta,y}(\delta x+y):=f_-(\frac{(\delta x+y)-y}{\delta})$. Thus, by the previous argument regarding nonnegative functions, since $f_+,f_{+,\delta,y},f_-,f_{-,\delta,y}\geq 0$ on their domains. Since $\int_E f=\int_E f_+-\int_E f_-$, it follows that

$$\int_{E_{\delta,y}} f_{\delta,y} = \int_{E_{\delta,y}} f_{+,\delta,y} - \int_{E_{\delta,y}} f_{-,\delta,y} = \delta_1 \cdots \delta_d \int_E f_{+,\delta} - \delta_1 \cdots \delta_d \int_E f_{-,\delta} = \delta_1 \cdots \delta_d \int_E f_{-,\delta}$$

Thus, in all of such cases, we have that $f_{\delta,y}$ is also integrable since $\int_{E_{\delta,y}} f_{\delta,y} = \delta_1 \cdots \delta_d \int_E f < \infty$, thereby completing the forward implication of the proof, taking E = A.

On the other hand, for " \Leftarrow ", suppose $f_{\delta,y}$ is integrable over $A_{\delta,y}$. For the sake of clarity, let $E := A_{\delta,y}$,

and we denote $f_{\delta,y}$ by g. By the forward implication, we know that for any $\alpha = (\alpha_1, \dots, \alpha_d) \in (0, \infty)^d$ and $z = (z_1, \dots, z_d) \in \mathbb{R}^d$, the function $g \circ h$ is integrable, where $h : E_{\alpha,z} \to \overline{\mathbb{R}}$ is a function given by $h(x) = \frac{x-z}{\alpha}$. Thus, for the given δ and y, let $\alpha := 1/\delta$ and $z := -y/\delta$ so that by " \Rightarrow " we obtain that $g \circ h$ is integrable. But notice that $A = E_{\alpha,z}$ as

$$\alpha(\delta x + y) + z \in E_{\alpha, z} \iff \frac{1}{\delta}(\delta x + y) - \frac{y}{\delta} = x + \frac{y}{\delta} - \frac{y}{\delta} = x \in E_{\alpha, z} \iff \delta x + y \in E = A_{\delta, y} \iff x \in A.$$

Thus, $h: A \to \overline{\mathbb{R}}$ and $g \circ h = f_{\delta,y} \circ h$ is integrable. But for $x \in A$,

$$f_{\delta,y} \circ h(x) = f_{\delta,y}(h(x)) = f_{\delta,y}\left(\frac{x-z}{\alpha}\right) = f_{\delta,y}\left(\frac{x+\frac{y}{\delta}}{\frac{1}{\delta}}\right) = f\left(\frac{\left(\frac{x+\frac{y}{\delta}}{\frac{1}{\delta}}\right)-y}{\delta}\right) = f\left(\frac{\delta x + y - y}{\delta}\right) = f(x).$$

Thus, we conclude that $g \circ h = f$ is integrable, thereby completing the proof.

Problem 2. Let f be integrable over $A \subseteq \mathbb{R}^d$. Show that:

- 1. If $\int_B f \geq 0$ for all measurable sets $B \subseteq A$, then $f \geq 0$ a.e. in A.
- 2. If $\int_B f = 0$ for all measurable sets $B \subseteq A$, then f = 0 a.e. in A.

Proof of 2.1. Define $N = \{x \in A : f(x) < 0\} = f^{-1}([-\infty, 0)) \subseteq A$. Since f is integrable, it is measurable; thus N is measurable by the measurability of f. Since $N \subseteq A$, by hypothesis

$$\int_{N} f \ge 0.$$

Notice that for each $k \in \mathbb{N}$, $k \cdot \chi_N f \leq f$ on A since for $x \in N$, the $k \cdot \chi_N(x) f(x) = -k|f(x)| \leq -|f(x)|$, and for $x \notin N$, $k \cdot \chi_N(x) f(x) = 0 \leq f(x)$, since $f \geq 0$ on $A \setminus N$. Thus, by monotonicity, for every $k \in \mathbb{N}$ we have

$$\int_{A} k \cdot \chi_{N} f \leq \int_{A} f \iff k \int_{A} \chi_{N} f \leq \int_{A} f
\iff \int_{N} f = \int_{A} \chi_{N} f \leq \frac{1}{k} \int_{A} f.$$
(by linearity)

Thus, we have that for every $k \in \mathbb{N}$, $0 \le \int_N f \le \frac{1}{k} \int_A f$. Since f is integrable, there exists $\ell \in \mathbb{R}$ such that $\int_A f = \ell$. Thus, $0 \le \int_N f \le \ell/k$. Since ℓ is fixed, sending $k \to \infty$ gives $\int_N f \le 0$ so that $\int_N f = 0$, since we also have $\int_N f \ge 0$. But by definition, f < 0 on N so that $f_+ = \max(f, 0) = 0$ on N. Hence,

$$0 = \int_{N} f = \int_{N} f_{+} - \int_{N} f_{-} = \int_{N} 0 - \int_{N} f_{-} = - \int_{N} f_{-} = - \left(\underbrace{\int_{A \setminus N} f_{-}}_{=0} + \int_{N} f_{-} \right) = - \int_{A} f_{-},$$

which holds as $f_- = 0$ on $A \setminus N$ (as $f \ge 0$ on $A \setminus N$) and since $(A \setminus N) \cap N = \emptyset$ and the sets $A \setminus N$, N are measurable (difference of measurable sets; for $B_1, B_2 \subseteq \mathbb{R}^d$ disjoint, measurable, f integrable: $\int_{B_1 \cup B_2} f = \int_{B_1} f + \int_{B_2} f$). Thus, we conclude that $-\int_A f_- = 0$ so that $\int_A f_- = 0$. Since $f_- : A \to [0, \infty]$ is measurable and $\int_A f_- = 0$, by lecture we have $f_- = 0$ a.e. in A. Thus, $\max(-f, 0) = 0$ a.e. in A so that $f \ge 0$ a.e. in A as desired.

Proof of 2.2. By (2.1), we already know that $f \ge 0$ a.e. in A. Thus, it remains to be shown that $f \le 0$ a.e. in A. Define $N = \{x \in A : f(x) > 0\} = f^{-1}((0, \infty]) \subseteq A$, which is measurable since f is. Thus, by hypothesis, $\int_N f = 0$ so that, since $f_- = 0$ on N (since f is positive on N) and $f_+ = 0$ on $A \setminus N$ (as f non-positive on $A \setminus N$),

$$\int_{N} f = \int_{N} f_{+} - \int_{N} f_{-} = \int_{N} f_{+} = \left(\underbrace{\int_{A \setminus N} f_{+}}_{=0} + \int_{N} f_{+}\right) = \int_{A} f_{+} = 0,$$

since $(A \setminus N) \cap N = \emptyset$ and the sets $A \setminus N$, N are measurable (difference of measurable sets; property of integral over disjoint, measurable sets as above). Thus, since $f_+: A \to [0, \infty]$ is measurable and $\int_A f_+ = 0$, it follows by lecture that $f_+ = 0$ a.e. in A so that $f \leq 0$ a.e. in A.

Since $f \ge 0$ a.e. in A, the set $N_1 := \{x \in A : f(x) < 0\}$ has measure zero, and since $f \le 0$ a.e. in A, the set $N_2 := \{x \in A : f(x) > 0\}$ has measure zero. Thus, the set $M = N_1 \cup N_2$ has measure zero since by finite

sub-additivity,

$$m(M) = m(N_1 \cup N_2) \le m(N_1) + m(N_2) = 0 \implies m(M) = 0.$$

Thus, the set on which $f \neq 0$ has measure zero. Hence, we conclude that f = 0 a.e. in A.

Problem 3. Let $f: \mathbb{R}^d \to \mathbb{R}$ be measurable, non-negative on \mathbb{R}^d , and finite almost everywhere. For each $k \in \mathbb{Z}$, let $F_k := \{x : 2^k < f(x) \le 2^{k+1}\}$.

- 1. Show that f is integrable on \mathbb{R}^d if and only if $\sum_{k=-\infty}^{\infty} 2^k m(F_k) < \infty$.
- 2. Use (1) to verify that

$$f(x) := \begin{cases} |x|^{-a} & |x| \le 1\\ 0 & \text{otherwise} \end{cases}$$

is integrable over \mathbb{R}^d if and only if a < d.

3. Use (1) to verify that

$$g(x) := \begin{cases} |x|^{-b} & |x| > 1\\ 0 & \text{otherwise} \end{cases}$$

is integrable over \mathbb{R}^d if and only if b > d.

Note that $|x| = \sqrt{x_1^2 + \dots + x_d^2}$ for all $x \in (x_1, \dots, x_d) \in \mathbb{R}^d$.

Proof of 3.1.

For "\(\Rightarrow\)", suppose f is integrable on \mathbb{R}^d . Let $\varphi := \sum_{k=-\infty}^{\infty} 2^k \chi_{F_k}$. Then it is clear by the definition of F_k that for $k \in \mathbb{Z}$ the F_k 's are mutually disjoint.\)\text{1} We note that $F_{-\infty} = \{x : 0 < f(x) \le 0\} = \emptyset$ and $F_{\infty} = \{x : \infty < f(x) \le \infty\} = \emptyset$ as well; thus, we write $\sum_{k=-\infty}^{\infty} 2^k m(F_k) = \sum_{k \in \mathbb{Z}} 2^k m(F_k)$, since $m(\emptyset) = 0$.

Let $x \in \mathbb{R}^d$ be arbitrary. If there does not exist a k for which $x \in F_k$, then $\varphi(x) = 0 \le f(x)$ by non-negativity. Otherwise, there is a unique F_k containing x so that $\varphi(x) = 2^k < f(x)$ by definition of F_k . Thus, $\varphi \le f$ on \mathbb{R}^d so that by monotonicity,

$$\int \varphi \le \int f < \infty. \tag{3.1}$$

Notice that by Lemma 3.1, since $2^k > 0$ for every $k \in \mathbb{Z}$,

$$\int \varphi = \int \sum_{k \in \mathbb{Z}} 2^k \chi_{F_k} = \sum_{k \in \mathbb{Z}} \int 2^k \chi_{F_k} = \sum_{k \in \mathbb{Z}} 2^k \int \chi_{F_k} = \sum_{k \in \mathbb{Z}} 2^k m(F_k) = \sum_{k = -\infty}^{\infty} 2^k m(F_k) \le \int f < \infty,$$

using (3.1), linearity, and the definition of the integral of a characteristic function. Thus, we have that $\sum_{k=-\infty}^{\infty} 2^k m(F_k) < \infty$, completing the forward implication.

On the other hand, for " \Leftarrow ", suppose $\sum_{k=-\infty}^{\infty} 2^k m(F_k) = \sum_{k\in\mathbb{Z}} 2^k m(F_k) < \infty$. Then

$$2\sum_{k=-\infty}^{\infty} 2^k m(F_k) = \sum_{k \in \mathbb{Z}} 2^{k+1} m(F_k) < \infty.$$
 (3.2)

Define $\psi := \sum_{k \in \mathbb{Z}} 2^{k+1} \chi_{F_k}$. It follows for almost every $x \in \mathbb{R}^d$, $\psi \leq f$. Indeed, for $x \in \mathbb{R}^d$, if there is no k such that $x \in F_k$, then $f(x) = \infty$ or f(x) = 0 (such holds as $(0, \infty) = \bigcup_{k \in \mathbb{Z}} (2^k, 2^{k+1}] \subseteq [0, \infty]$, which is the image of f). Since f is finite almost everywhere, we need not consider such x for which $f(x) = \infty$; and if

Indeed, if $x \in F_i \cap F_j$ for $i, j \in \mathbb{Z}$ then $x \in f^{-1}((2^i, 2^{i+1}])$ and $x \in f^{-1}((2^j, 2^{j+1}])$. Thus $f(x) \in (2^i, 2^{i+1}] \cap (2^j, 2^{j+1}]$. Suppose towards a contradiction that $i \neq j$; without loss of generality, take i < j. Then $2^{i+1} < 2^{i+2} \le 2^j$ implies that $f(x) \in (2^i, 2^{i+1}] \cap (2^j, 2^{j+1}] = \emptyset$, a contradiction.

f(x) = 0 then $\psi(x) = 0 = f(x)$ as needed. On the other hand, if there is an F_k containing x, by disjointness F_k is unique so that $\psi(x) = 2^{k+1} \ge f(x)$ by definition of F_k . Thus, by monotonicity,

$$\int f \le \int \psi. \tag{3.3}$$

Again, using Lemma 3.1, since $2^{k+1} > 0$ for $k \in \mathbb{Z}$, we must have that

$$\int \psi = \int \sum_{k \in \mathbb{Z}} 2^{k+1} \chi_{F_k} = \sum_{k \in \mathbb{Z}} \int 2^{k+1} \chi_{F_k} = \sum_{k \in \mathbb{Z}} 2^{k+1} \int \chi_{F_k} = \sum_{k \in \mathbb{Z}} 2^{k+1} m(F_k) < \infty,$$

using (3.2), linearity, and the definition of the integral of a characteristic function. Thus, using (3.3), we conclude that f is integrable since

$$\int f \le \int \psi = \sum_{k \in \mathbb{Z}} 2^{k+1} m(F_k) < \infty,$$

thereby completing the proof.

Proof of 3.2.

We first handle the trivial case where $a \leq 0$. Then a < d is a tautology as $d \geq 1$ so that f integrable \implies a < d. On the other hand, we now show that f is integrable whenever $a \leq 0 < d$. Let $k \coloneqq |a|$ and note that for $x \in \overline{B(0,1)}$, $|x| \leq 1 \implies |x|^{k-1} \leq 1 \implies |x|^k \leq |x| \leq 1$ so that by monotonicity and the disjointness of a set with its complement,

$$\int_{\mathbb{R}^d} f = \underbrace{\int_{\mathbb{R}^d \setminus \overline{B(0,1)}} f}_{=0} + \underbrace{\int_{\overline{B(0,1)}} f = \int_{\overline{B(0,1)}} |x|^k} \le \underbrace{\int_{\overline{B(0,1)}} 1 = \int_{\overline{B(0,1)}} \chi_{\overline{B(0,1)}} = m(\overline{B(0,1)}) < \infty$$

so that f is integrable as needed.

We now suppose that a > 0 and commence by noting that

$$x \in F_k \iff f(x) \in (2^k, 2^{k+1}] \iff 0 < 2^k < |x|^{-a} \le 2^{k+1} \text{ and } |x| \le 1$$

 $\iff 0 < 2^k < |x|^{-a} \le 2^{k+1} \text{ and } x \in \overline{B(0, 1)}$

so that

$$F_k = \{x \in \overline{B(0,1)} : 2^k < |x|^{-a} \le 2^{k+1}\}.$$

We must calculate $m(F_k)$ for each $k \in \mathbb{Z}$. Notice that if $k \in \mathbb{Z}$ then any $x \in \overline{B(0,1)}$ satisfies $x \in F_k$ if and only if

$$2^k < |x|^{-a} \le 2^{k+1} \iff 2^k < \left(\frac{1}{|x|}\right)^a \le 2^{k+1} \iff 2^{k/a} < \frac{1}{|x|} \le 2^{\frac{k+1}{a}}$$
$$\iff 2^{-k/a} > |x| \ge 2^{-\frac{k+1}{a}}.$$

For $k \geq 0$ we have $F_k = B(0, 2^{-k/a}) \setminus B(0, 2^{-\frac{k+1}{a}})$. Indeed, $B(0, 2^{-k/a}) \setminus B(0, 2^{-\frac{k+1}{a}}) \subseteq B(0, 2^{-k/a}) \subseteq \overline{B(0, 1)}$ since $2^{-k/a} \leq 1$ (the exponent is non-positive). Furthermore, for $k \leq -1$ we can bound $m(F_k) \leq m(\overline{B(0, 1)}) < \infty$ by monotonicity as $F_k \subseteq \overline{B(0, 1)}$.

Moreover, we claim that for $k \ge 0$, $B(0, 2^{-\frac{k+1}{a}}) \subseteq B(0, 2^{-k/a})$ since $x \in B(0, 2^{-\frac{k+1}{a}}) \implies |x| < 2^{-\frac{k+1}{a}} = 1$ $\frac{1}{2^{\frac{k+1}{a}}} \leq \frac{1}{2^{\frac{k}{a}}} = 2^{-k/a}$ so that $x \in B(0, 2^{-k/a})$. Since these open balls have finite radii, it follows that they have finite measure. Thus, by the excision property,

$$m(F_k) = m(B(0, 2^{-k/a}) \setminus B(0, 2^{-\frac{k+1}{a}})) = m(B(0, 2^{-k/a})) - m(B(0, 2^{-\frac{k+1}{a}})).$$

Now notice that

$$B(0, 2^{-k/a}) = \{2^{-k/a}x : x \in B(0, 1)\}$$
 and $B(0, 2^{-\frac{k+1}{a}}) = \{2^{-\frac{k+1}{a}}x : x \in B(0, 1)\}.$ (by scaling of balls)

Thus, using question 3 of assignment 1, we can use the dilation property of measure (with $\delta = (2^{-k/a}, \dots, 2^{-k/a})$) or $\delta = (2^{-\frac{k+1}{a}}, \dots, 2^{-\frac{k+1}{a}}))$ to obtain:

$$\begin{split} m(F_k) &= m(B(0,2^{-k/a})) - m(B(0,2^{-\frac{k+1}{a}})) = (2^{(-k/a)})^d m(B(0,1)) - (2^{(-\frac{k+1}{a})})^d m(B(0,1)) \\ &= m(B(0,1)) \cdot (2^{-dk/a} - 2^{(-dk-d)/a}) = m(B(0,1)) \cdot (2^{-dk/a} - 2^{-dk/a-d/a}) \\ &= m(B(0,1)) \cdot (2^{-dk/a} - 2^{-dk/a} \cdot 2^{-d/a}) = 2^{-dk/a} m(B(0,1)) (1 - 2^{-d/a}). \end{split}$$

For the sake of clarity, let $b_d := m(B(0,1))$ and $\overline{b_d} := m(\overline{B(0,1)})$. For " \Rightarrow ", suppose f is integrable over \mathbb{R}^d . It follows from (1) that

$$\sum_{k=-\infty}^{\infty} 2^k m(F_k) = \sum_{k \in \mathbb{Z}} 2^k m(F_k) < \infty.$$

But notice that

$$\sum_{k \in \mathbb{Z}} 2^k m(F_k) = \sum_{k \in \mathbb{Z}_{\leq -1}} 2^k m(F_k) + \sum_{k=0}^{\infty} 2^k m(f_k)$$

$$\leq \sum_{k \in \mathbb{Z}_{\leq -1}} 2^k \cdot \overline{b_d} + \sum_{k=0}^{\infty} 2^k m(F_k) \qquad (\text{as } m(F_k) \leq m(\overline{B(0,1)}))$$

$$= \overline{b_d} \cdot \sum_{k=1}^{\infty} 2^{-k} + \sum_{k=0}^{\infty} 2^k m(F_k) = \overline{b_d} + \sum_{k=0}^{\infty} 2^k m(F_k),$$

and since $\sum_{k=0}^{\infty} 2^k m(F_k) \le \sum_{k \in \mathbb{Z}_{\le -1}} 2^k m(F_k) + \sum_{k=0}^{\infty} 2^k m(F_k) = \sum_{k=-\infty}^{\infty} 2^k m(F_k) < \infty$, it follows that

$$\sum_{k=0}^{\infty} 2^k m(F_k) = \sum_{k=0}^{\infty} 2^k b_d(2^{-dk/a}) (1 - 2^{-d/a}) = b_d(1 - 2^{-d/a}) \sum_{k=0}^{\infty} 2^{k-dk/a}$$
$$= b_d(1 - 2^{-d/a}) \sum_{k=0}^{\infty} 2^{k(1-d/a)}$$

so that $\sum_{k=0}^{\infty} 2^{k(1-d/a)} < \infty$. But then we must have that 1-d/a is negative, otherwise the sum would

diverge as $c := 1 - d/a \ge 0$ is fixed and $\lim_{k \to \infty} 2^{ck} = \infty \ne 0$. Thus 1 < d/a so that a < d. On the other hand, for " \Leftarrow ", if a < d then $\sum_{k=0}^{\infty} 2^{k(1-d/a)}$ converges, since a < d means that $\sum_{k=0}^{\infty} 2^{k(1-d/a)} = 0$ $\sum_{k=0}^{\infty} \frac{1}{2^{k(d/a-1)}} < \infty$. Then since c := d/a - 1 > 0 is fixed, by the ratio test we have convergence:

$$\lim_{k \to \infty} \left| \frac{\frac{1}{2^{ck+c}}}{\frac{1}{2^{ck}}} \right| = \frac{2^{ck}}{2^{ck} \cdot 2^c} = \frac{1}{2^c} < 1.$$

Thus,

$$\sum_{k=-\infty}^{\infty} 2^k m(F_k) \le \overline{b_d} + \sum_{k=0}^{\infty} 2^k m(F_k) < \infty,$$

thus f is integrable by (1). Thus, the proof is complete.

Proof of 3.3. Let $F_k = \{x : 2^k < g(x) \le 2^{k+1}\}$. We first note that if b is negative then g is unbounded on $\mathbb{R}^d \setminus \overline{B(0,1)}$. This means by monotonicity that

$$\int_{\mathbb{R}^d \setminus \overline{B(0,1)}} g \ge \int_{\mathbb{R}^d \setminus \overline{B(0,1)}} \chi_{\mathbb{R}^d \setminus \overline{B(0,1)}} = m(\mathbb{R}^d \setminus \overline{B(0,1)}) = \infty,$$

since $|x| > 1 \implies g(x) = |x|^{|b|} > 1 = \chi_{\mathbb{R}^d \setminus \overline{B(0,1)}}(x) = 1$, for $x \in \mathbb{R}^d \setminus \overline{B(0,1)}$. Thus, g is not integrable over $\mathbb{R}^d \setminus \overline{B(0,1)}$ as $\int_{\mathbb{R}^d \setminus \overline{B(0,1)}} g = \infty$. It follows that g can not be integrable on \mathbb{R}^d . Hence, we may assume that $b \ge 0$.

Using (2), we see that for $k \in \mathbb{Z}$,

$$F_k = \{x \in \mathbb{R}^d \setminus \overline{B(0,1)} : 2^k < |x|^{-b} \le 2^{k+1}\} = \{x \in \mathbb{R}^d \setminus \overline{B(0,1)} : 2^{-k/b} > |x| \ge 2^{-\frac{k+1}{b}}\}.$$

Thus, since $x \in F_k \iff x \in B(0, 2^{-k/b}) \setminus (\overline{B(0, 1)} \cup B(0, 2^{-\frac{k+1}{b}}))$, we have that $F_k = \emptyset$ for $k \ge 0$ since $B(0, 2^{-k/b}) \subseteq \overline{B(0, 1)}$ since $2^{-k/b} \le 1$. For $k \le -1$ we have $2^{-\frac{k+1}{b}} \ge 1$ (since the exponent is non-negative) so that $F_k = B(0, 2^{-k/b}) \setminus B(0, 2^{-\frac{k+1}{b}})$. Thus, using the work in (2) to calculate $m(F_k) = 2^{-dk/b}b_d(1-2^{-d/b})$, we obtain

$$\sum_{k=-\infty}^{\infty} 2^k m(F_k) = \sum_{k \le -1} 2^k m(F_k) + \sum_{k \ge 0} 2^k \cdot 0 \qquad (k \ge 0 \implies F_k = \emptyset)$$

$$= b_d (1 - 2^{-d/b}) \sum_{k \le -1} 2^{k(1 - d/b)} = b_d (1 - 2^{-d/b}) \sum_{k=1}^{\infty} \frac{1}{2^{k(1 - d/b)}}.$$

Now, if b>d, letting c:=1-d/b>0 so that $\sum_{k=1}^{\infty}\frac{1}{2^{ck}}$ converges by the ratio test (this was proven in (2)). Thus $\sum_{k=-\infty}^{\infty}2^km(F_k)=b_d(1-2^{-d/b})\sum_{k=1}^{\infty}2^{-k(1-d/b)}<\infty$ so that g is integrable.

On the other hand, if g is integrable, then the above sum converges by (1). In this case, we have that 1-d/b is positive, otherwise the sum would diverge since if c:=1-d/b<0 is fixed then the sum diverges since $\lim_{k\to\infty}1/2^{kc}=\lim_{k\to\infty}2^{|kc|}=\infty\neq0$. Thus, $1-d/b>0\iff d/b<1\iff b>d$. Therefore, the proof is complete.

Lemma 3.1. Let $\{F_k\}_{k\in\mathbb{Z}}$ be a sequence of mutually disjoint measurable sets and $(c_k)_{k\in\mathbb{Z}}$ be a sequence of non-negative reals. Then,

$$\int \sum_{k \in \mathbb{Z}} c_k \cdot \chi_{F_k} = \sum_{k \in \mathbb{Z}} \int c_k \chi_{F_k}.$$

Proof. For $k \in \mathbb{Z}$ define $a_k(x) := c_k \cdot \chi_{F_k}(x)$. Then a_k is non-negative for each k, and it is measurable since it is a simple function. Since \mathbb{Z} is countable, without loss of generality, we can re-index the sequence and the sets F_k to both start at k = 1. Therefore, we can apply the corollary of Fatou's lemma regarding series

(covered in lecture), we conclude that

$$\int \sum_{k \in \mathbb{Z}} c_k \cdot \chi_{F_k} = \int \sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} \int a_k = \sum_{k \in \mathbb{Z}} \int c_k \cdot \chi_{F_k}.$$

10

Problem 4. Let f be measurable on $A \subseteq \mathbb{R}^d$ and $(A_k)_{k \in \mathbb{N}}$ be a sequence of measurable subsets of A. Show that:

1. If f is non-negative and $A_k \subseteq A_{k+1}$ for all $k \in \mathbb{N}$ then

$$\int_{\bigcup_{k=1}^{\infty} A_k} f = \lim_{k \to \infty} \int_{A_k} f.$$

2. If f is integrable and $A_k \subseteq A_{k+1}$ for all $k \in \mathbb{N}$ then

$$\int_{\bigcup_{k=1}^{\infty} A_k} f = \lim_{k \to \infty} \int_{A_k} f.$$

3. If f is integrable over A_1 and $A_{k+1} \subseteq A_k$ for all $k \in \mathbb{N}$, then

$$\int_{\bigcap_{k=1}^{\infty} A_k} f = \lim_{k \to \infty} \int_{A_k} f.$$

Proof of 4.1. Let f be non-negative. We note that if f is integrable over $\bigcup_{k=1}^{\infty} A_k$, then we obtain from (2) that

$$\int_{\bigcup_{k=1}^{\infty} A_k} f = \lim_{k \to \infty} \int_{A_k} f$$

as needed, thus we suppose that $\int_{\bigcup_{k=1}^{\infty} A_k} f = \infty$, as this is all that is left to show by non-negativity. To show that $\lim_{k\to\infty} \int_{A_k} f = \int_{\bigcup_{k=1}^{\infty} A_k} = \infty$, we show that it is unbounded. Thus, let $M \in \mathbb{N}$ be arbitrary. Since $A_k \subseteq A_{k+1}$ for each $k \in \mathbb{N}$, it follows that there is a large enough $n \in \mathbb{N}$ such that

$$\int_{\bigcup_{k=1}^n A_k} f > M;$$

indeed, if there is no such n, then since limits respect order

$$\lim_{n \to \infty} \int_{\bigcup_{k=1}^n A_k} f = \int_{\bigcup_{k=1}^\infty A_k} f \le M < \infty$$

is a contradiction to the choice of f. We note that $\bigcup_{k=1}^n A_k = A_n$ (since $A_n \subseteq \bigcup_{k=1}^n A_n$ trivially and $x \in \bigcup_{k=1}^n A_k \implies \exists m=1,2,\ldots,n: x \in A_m \subseteq A_{m+1} \subseteq \cdots \subseteq A_n \implies x \in A_n$ as needed.) Thus, for this given M, we have found a set A_n such that

$$\int_{\bigcup_{k=1}^{n} A_k} f = \int_{A_n} f > M.$$

Since M was arbitrary, we conclude as required that

$$\int_{\bigcup_{k=1}^{\infty} A_k} f = \lim_{k \to \infty} \int_{A_k} f = \infty.$$

Proof of 4.2. Let f be integrable over $A = \bigcup_{k=1}^{\infty} A_k$ and define $E_1 := A_1$ and for $k \in \mathbb{N}_{\geq 2}$, let $E_k :=$ $A_k \setminus A_{k-1}$. Then each E_k is a difference of measurable sets and hence measurable, and $\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} E_k$. By construction, the E_k 's are mutually disjoint. Thus, it follows by disjointness that for each $n \in \mathbb{N}$

$$\int_{\bigcup_{k=1}^{n} A_k} f = \int_{\bigcup_{k=1}^{n} E_k} f = \sum_{k=1}^{n} \int_{E_k} f = \int_{A_n} f$$
 (Lemma 4.1 by disjointness of E_k 's.)

since $A_k \subseteq A_{k+1} \ \forall k \in \mathbb{N} \implies A_n = \bigcup_{k=1}^n A_k$ for $n \in \mathbb{N}$. Thus, again by disjointness and Lemma 4.2, we have

$$\int_{\bigcup_{k=1}^{\infty} A_k} f = \int_{\bigcup_{k=1}^{\infty} E_k} f = \lim_{n \to \infty} \int_{\bigcup_{k=1}^{n} E_k} f = \lim_{n \to \infty} \sum_{k=1}^{n} \int_{E_k} f = \lim_{n \to \infty} \int_{A_n} f.$$

Replacing n with k gives $\int_{\bigcup_{k=1}^{\infty} A_k} f = \lim_{k \to \infty} \int_{A_k} f$, completing the proof.

Proof of 4.3.

Let f be integrable over A_1 so that $\int_{A_1} f < \infty$. Define for all integers $k \ge 1$ $E_k := A_1 \setminus A_k$. Then since $A_{k+1} \subseteq A_k$ for each $k \in \mathbb{N}$, we must have that the E_k 's are mutually disjoint.³ Moreover, since for each $k \in \mathbb{N}$ we have $A_{k+1} \subseteq A_k$, we obtain $E_k = A_1 \setminus A_k \subseteq A_1 \setminus A_{k+1} = E_{k+1}$ for every $k \in \mathbb{N}$. Furthermore,

$$\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} (A_1 \setminus A_k) = \bigcup_{k=1}^{\infty} (A_1 \cap A_k^c) = A_1 \cap \bigcup_{k=1}^{\infty} A_k^c = A_1 \setminus \left(\bigcup_{k=1}^{\infty} A_k^c\right)^c = A_1 \setminus \bigcap_{k=1}^{\infty} A_k$$

via DeMorgan's law. Since f is integrable on A_1 , it is also integrable on $\bigcup_{k=1}^{\infty} E_k = A_1 \setminus \bigcap_{k=1}^{\infty} A_k \subseteq A_1$. By (2), since the E_k 's increase towards their union, we obtain

$$\int_{A_1 \setminus \bigcap_{k=1}^{\infty} A_k} f = \int_{\bigcup_{k=1}^{\infty} E_k} f = \lim_{k \to \infty} \int_{E_k} f = \lim_{k \to \infty} \int_{A_1 \setminus A_k} f. \tag{*}$$

Furthermore, since f is integrable on A_1 , it is integrable on $\bigcap_{k=1}^{\infty} A_k \subseteq A_1$ so that

$$\int_{A_1 \setminus \bigcap_{k=1}^{\infty} A_k} f = \int_{A_1} f - \int_{\bigcap_{k=1}^{\infty} A_k} f,$$

and since $A_k \subseteq A_1$ for each $k \in \mathbb{N}$, we also have $\int_{A_1 \setminus A_k} f = \int_{A_1} f - \int_{A_k} f$ (cf. Lemma 4.3). Therefore, using (*) we obtain that

$$\int_{A_1} f - \int_{\bigcap_{k=1}^{\infty} A_k} f = \int_{A_1 \setminus \bigcap_{k=1}^{\infty} A_k} = \lim_{k \to \infty} \left(\int_{A_1 \setminus A_k} f \right) = \lim_{k \to \infty} \left(\int_{A_1} f - \int_{A_k} f \right) = \int_{A_1} f - \lim_{k \to \infty} \int_{A_k} f.$$

Since $\int_{A_1} f < \infty$, we obtain (by subtracting and multiplying by -1)

$$\int_{\bigcap_{k=1}^{\infty} A_k} f = \lim_{k \to \infty} \int_{A_k} f,$$

^{2&}quot;\text{\text{\$\text{2}}" clearly holds by construction. On the other hand, if } \$x \in A_k\$ for some \$k \in \mathbb{N}_{\geq 2}\$ then \$x \in A_k \hat A_{k-1}\$ or \$x \in A_{k-1}\$; in the former case, \$x \in E_k \in \bigcup_{k=1}^{\inpty} E_k\$ and in the latter case, \$x \in A_{k-1} \hat A_{k-2}\$ or \$x \in A_{k-2}\$; eventually, \$x \in E_j \subseteq \bigcup_{k=1}^{\infty} E_k\$ for some \$j \geq 2\$ (otherwise \$x \in A_1 = E_1\$). And if \$x \in A_1\$ then \$x \in E_1 \subseteq \bigcup_{k=1}^{\infty} E_k\$. This set equality also holds by the exact same reasoning with \$\bigcup_{k=1}^n A_k = \bigcup_{k=1}^n E_k\$ for each \$n \in \mathbb{N}\$.

3Indeed, if \$1 \leq i < j\$ are integers, then \$E_i = A_1 \hat A_i\$ and \$E_j = A_1 \hat A_j\$; hence \$i < j \implies A_j \subseteq A_i\$ so that \$E_i \cap E_j = \emptils\$.

thereby completing the proof.

Lemma 4.1. Let $X \subseteq \mathbb{R}^d$ and f be an integrable function on X. If $\{X_k\}_{k=1}^n$ is a finite collection of mutually disjoint measurable subsets of X, then

$$\int_{X_1 \cup \dots \cup X_n} f = \int_{X_1} f + \dots + \int_{X_n} f.$$

Proof. We proceed by induction on n. For n=1 there is nothing to prove. If n=2, then $\int_{X_1 \cup X_2} f = \int_{X_1} f + \int_{X_2} f$ was proven in lecture. Suppose the claim holds for some $n \geq 1$ and let $X_1, \ldots, X_n, X_{n+1}$ be a collection of mutually disjoint measurable subsets of X. Then letting $Y_k := X_k$ for $k=1,2,\ldots,n-1$ and $Y_n := X_n \cup X_{n+1}$, the inductive hypothesis gives:

$$\int_{Y_1 \cup \dots \cup Y_n} f = \int_{Y_1} f + \dots + \int_{Y_n} f = \int_{X_1} f + \dots + \int_{X_{n-1}} f + \int_{X_n \cup X_{n+1}} f$$

$$= \sum_{k=1}^{n-1} \int_{X_k} f + \int_{X_n \cup X_{n+1}} f = \sum_{k=1}^{n+1} \int_{X_k} f.$$
 (by disjointness and case $n = 2$)

Furthermore, notice that

$$\int_{X_1 \cup \dots X_{n+1}} f = \int_{Y_1 \cup \dots \cup Y_n} f = \sum_{k=1}^{n+1} \int_{X_k} f,$$

which completes the inductive step and hence the proof.

Lemma 4.2. Let $X \subseteq \mathbb{R}^d$ and f be a integrable function on X. If $\{X_k\}_{k=1}^{\infty}$ is a sequence of mutually disjoint measurable subsets of X such that

$$X = \bigcup_{k=1}^{\infty} X_k, \text{ then } \int_X f = \sum_{k=1}^{\infty} \int_{X_k} f.$$

Proof. Define for $j \in \mathbb{N}$

$$f_j \coloneqq f \cdot \chi_{\bigcup_{k=1}^j X_k}.$$

Then for each $j \in \mathbb{N}$, f_j is measurable by lecture as it is a product of measurable functions (note that characteristic functions are measurable by lecture). Furthermore, by the construction of f_j , $|f_j| \leq |f|$ since for $x \in \bigcup_{k=1}^j X_k$, $|f_j(x)| = |f(x)|$ and for $x \notin \bigcup_{k=1}^j X_k$, $|f_j(x)| = 0 \leq |f(x)|$; and |f| is integrable by lecture since f is. Moreover, $f_j \to f$ pointwise: given $\varepsilon > 0$ and $x \in X$, since $X = \bigcup_{k=1}^{\infty} X_k$ there is a large enough f so that f is that f is integrable by lecture f is that f is integrable by lecture f is the formula of f is integrable by lecture f is the formula of f is integrable by lecture f is the formula of f is integrable by lecture f is the formula of f is integrable by lecture f is integrable f in f is integrable f in f is integrable f is i

$$\lim_{j \to \infty} \int_X f_j = \int_X f.$$

Notice that for each $j \in \mathbb{N}$, since $f_j = f$ on $\bigcup_{k=1}^j X_k$ and using the disjointness (and measurability) of $\bigcup_{k=1}^j X_k$ and $X \setminus \bigcup_{k=1}^j X_k$,

$$\int_{X} f_{j} = \int_{\bigcup_{k=1}^{j} X_{k}} f_{j} + \underbrace{\int_{X \setminus \bigcup_{k=1}^{j} X_{k}} f_{j}}_{=0} = \int_{\bigcup_{k=1}^{j} X_{k}} f.$$

By Lemma 4.1, since the X_k 's are mutually disjoint by hypothesis, we additionally have:

$$\int_{X} f_{j} = \int_{\bigcup_{k=1}^{j} X_{k}} f = \sum_{k=1}^{j} \int_{X_{k}} f.$$

Thus, we conclude that

$$\int_X f = \lim_{j \to \infty} \int_X f_j = \lim_{j \to \infty} \sum_{k=1}^j \int_{X_k} f_j = \sum_{k=1}^\infty \int_{X_k} f.$$

Lemma 4.3. Let f be integrable on A and $B \subseteq A$. Then

$$\int_{A \setminus B} f = \int_A f - \int_B f.$$

Proof. Notice that $B \subseteq A \implies A = A \setminus B \cup B$ is a disjoint union. Since f is integrable over A, it is integrable over B so that

$$\int_A f = \int_{A \backslash B} f + \int_B f \implies \int_{A \backslash B} = \int_A f - \int_B f,$$

using $\int_B f < \infty$ to subtract it on both sides.

Problem 5. Let $(f_k)_{k\in\mathbb{N}}$ be a sequence of integrable functions over $A\subseteq\mathbb{R}$ which converges pointwise almost everywhere in A to a function f which is also integrable over A. Show that

$$\lim_{k \to \infty} \int_A |f_k - f| = 0 \iff \lim_{k \to \infty} \int_A |f_k| = \int_A |f|.$$

Hint. If may be useful to consider the functions $g_k = |f_k| + |f| - |f_k - f|$.

Proof.

For " \Rightarrow ", suppose $\lim_{k\to\infty}\int_A|f_k-f|=0$ and let $\varepsilon>0$. To show that

$$\lim_{k \to \infty} \int_A |f_k| = \int_A |f|,$$

we must find an $N \in \mathbb{N}$ such that for all $m \geq N$,

$$\left| \int_A |f| - \int_A |f_m| \right| < \varepsilon.$$

Since $\lim_{k\to\infty}\int_A |f_k-f|=0$, there exists an $N\in\mathbb{N}$ such that for all $m\geq N$, we have $\int_A |f_m-f|<\varepsilon$. But notice that

$$\left| \int_{A} |f| - \int_{A} |f_{n}| \right| = \left| \int_{A} (|f| - |f_{m}|) \right|$$
 (linearity)
$$\leq \int_{A} ||f| - |f_{m}||$$
 ($|\int_{A} f| \leq \int_{A} |f|$)
$$\leq \int_{A} |f - f_{m}| < \varepsilon,$$

by monotonicity since $||a|-|b|| \le |a-b|$ for $a,b \in \mathbb{R}$ by the triangle inequality. Since ε was arbitrary, we conclude that

$$\lim_{k\to\infty} \int_A |f_k| = \int_A |f|.$$

For " \Leftarrow ", let $N = \{x \in A : f_k(x) \not\to f(x)\}$. It suffices to show that

$$\limsup_{k \to \infty} \int_{A \setminus N} |f_k - f| \le 0. \tag{*}$$

Indeed, we already know that

$$\liminf_{k \to \infty} \int_{A \setminus N} |f_k - f| \le \limsup_{k \to \infty} \int_{A \setminus N} |f_k - f| \tag{5.1}$$

holds in general; and by Fatou's lemma (since $|f_k|$ is non-negative)

$$\int_{A \setminus N} \liminf_{k \to \infty} |f_k - f| = \int_{A \setminus N} 0 = 0 \le \liminf_{k \to \infty} \int_{A \setminus N} |f_k - f|, \tag{5.2}$$

where $\liminf_{k\to\infty} |f_k - f| = 0$ since $f_k \to f$ everywhere in $A \setminus N$. Combining (5.1) and (5.2), we attain that

$$\liminf_{k \to \infty} \int_{A \setminus N} |f_k - f| \le \limsup_{k \to \infty} \int_{A \setminus N} |f_k - f| \le 0 \le \liminf_{k \to \infty} \int_{A \setminus N} |f_k - f| \le \limsup_{k \to \infty} \int_{A \setminus N} |f_k - f|$$

so that $\liminf_{k\to\infty} \int_{A\setminus N} |f_k - f| = \limsup_{k\to\infty} \int_{A\setminus N} |f_k - f| = 0$. Thus, since N has measure 0, it would follow that

$$\liminf_{k\to\infty}\int_{A\backslash N}|f_k-f|=0\leq \lim_{k\to\infty}\int_{A\backslash N}|f_k-f|=\lim_{k\to\infty}\int_A|f_k-f|\leq 0=\limsup_{k\to\infty}\int_{A\backslash N}|f_k-f|$$

so that $\lim_{k\to\infty}\int_A |f_k-f|=0$ as required. Thus, we prove (*) now to complete the proof.

Following the hint, for each $k \in \mathbb{N}$ we define $g_k := |f_k| + |f| - |f_k - f|$. Since $|a + b| \le |a| + |b|$ for each $a, b \in \mathbb{R}$ (triangle inequality), $|f_k| + |f| \ge |f_k - f|$ so that $g_k \ge 0$ on A. Since $\lim_{k \to \infty} \int_A |f_k| = \lim_{k \to \infty} \int_{A \setminus N} |f_k| = \int_A |f| = \int_{A \setminus N} |f|$, we have also that $\lim \inf_{k \to \infty} \int_A |f_k| = \lim \inf_{k \to \infty} \int_{A \setminus N} |f_k| = \int_A |f| = \int_{A \setminus N} |f|$; so, using this, we obtain via Fatou's lemma that

$$\begin{split} & \lim_{k \to \infty} \inf g_k = \int_{A \setminus N} (|f| + \liminf_{k \to \infty} (|f_k| - |f_k - f|)) \\ & = \int_{A \setminus N} (|f| + |f| + 0) & (f_k \to f \text{ in } A) \\ & = 2 \int_{A \setminus N} |f| & (\text{by linearity}) \\ & \leq \liminf_{k \to \infty} \int_{A \setminus N} g_k \\ & = \liminf_{k \to \infty} \left(\int_{A \setminus N} |f| + \int_{A \setminus N} |f_k| - \int_{A \setminus N} |f_k - f| \right) & (\text{by linearity}) \\ & = \liminf_{k \to \infty} \int_{A \setminus N} |f| + \liminf_{k \to \infty} \int_{A \setminus N} |f_k| + \liminf_{k \to \infty} \left(- \int_{A \setminus N} |f_k - f| \right) \\ & = 2 \int_{A \setminus N} |f| + \liminf_{k \to \infty} \left(- \int_{A \setminus N} |f_k - f| \right). \end{split}$$

Thus, it follows that

$$\liminf_{k \to \infty} \left(-\int_{A \setminus N} |f_k - f| \right) \ge 0 \iff -\liminf_{k \to \infty} \left(-\int_{A \setminus N} |f_k - f| \right) = \limsup_{k \to \infty} \int_{A \setminus N} |f_k - f| \le 0,$$

since $-\liminf_{k\to\infty}(-x_k)=\limsup_{k\to\infty}x_n$ for any sequence x_n of reals. Thus, this proves (*) and hence completes the proof.

Problem 6. For each $\lambda \in (-\infty, 1)$, find

$$\lim_{k \to \infty} \int_{(0,k)} \left(1 - \frac{x}{k} \right)^k e^{\lambda x}.$$

Proof.

Fix $\lambda \in (-\infty, 1)$. We first note that the sequence $(1-(x/k))^k$ converges to e^{-x} as $k \to \infty$ and is monotonically increasing (cf. Lemma 6.1). Thus, for each fixed $k \in \mathbb{N}$ and $x \in (0, \infty)$,

$$|f_k(x)| = \left(1 - \frac{x}{k}\right)^k e^{\lambda x} < e^{-x} e^{\lambda x} = e^{x(\lambda - 1)}.$$

We must show that $e^{x(\lambda-1)}$ is integrable in order to apply the dominated convergence theorem. To do so, we calculate

$$\int_{(0,\infty)} e^{x(\lambda-1)} = \lim_{t \to \infty} \int_{(0,t)} e^{x(\lambda-1)} = \lim_{t \to \infty} \int_{[0,t]} e^{x(\lambda-1)},$$

since $\{0, t\}$ is finite and hence of measure 0, by lecture we have

$$\int_{(0,t)} e^{x(\lambda-1)} = \int_{(0,t)} e^{x(\lambda-1)} + \underbrace{\int_{\{0,t\}} e^{x(\lambda-1)}}_{=0}.$$

Thus, by lecture, we can take the Reimann integral to find the Lebesgue integral $\int_{(0,t)} e^{x(\lambda-1)}$ (since $\lambda < 1$ we have that $e^{x(\lambda-1)}$ is bounded and continuous, and hence Reimann integrable on [0, t] for $t \in \mathbb{R}$ with t > 0). Using calculus,

$$\int_0^t e^{x(\lambda-1)} = \left[\frac{e^{(\lambda-1)x}}{\lambda-1}\right]_0^t = \frac{e^{t(\lambda-1)}-e^0}{\lambda-1} = \frac{e^{t(\lambda-1)}-1}{\lambda-1}, \qquad \text{(this is the Reimann integral)}$$

so that

$$\int_{(0,\infty)} e^{x(\lambda-1)} = \lim_{t\to\infty} \int_{[0,t]} e^{x(\lambda-1)} = \lim_{t\to\infty} \frac{e^{t(\lambda-1)}-1}{\lambda-1} = \lim_{t\to\infty} \frac{\frac{1}{e^{t(1-\lambda)}}-1}{\lambda-1} = -\frac{1}{\lambda-1} < \infty,$$

since $1 - \lambda > 0$ so that $e^{t(1-\lambda)} \to \infty$ as $t \to \infty$; hence $t/e^{t(1-\lambda)} \to 0$ as $t \to \infty$.

Therefore, $e^{x(\lambda-1)}$ is integrable. Furthermore, since for $x \in (0,\infty)$ we have

$$\lim_{k \to \infty} ((1 - (x/k))^k e^{\lambda x}) = e^{\lambda x} \lim_{k \to \infty} (1 - (x/k))^k = e^{\lambda x} \cdot e^{-x}.$$

Thus, by the dominated convergence theorem, we have that

$$\lim_{k\to\infty}\int_{(0,k)}\left(1-\frac{x}{k}\right)^ke^{\lambda x}=\int_{(0,\infty)}\left(\lim_{k\to\infty}\left(1-\frac{x}{k}\right)^ke^{\lambda x}\right)=\int_{(0,\infty)}e^{x(\lambda-1)}=-\frac{1}{\lambda-1}.$$

Therefore, we conclude that for each $\lambda \in (-\infty, 1)$,

$$\left| \lim_{k \to \infty} \int_{(0,k)} \left(1 - \frac{x}{k} \right)^k e^{\lambda x} = \frac{1}{1 - \lambda} \right|$$

Lemma 6.1. The sequence defined by $x_k := (1 - \frac{x}{k})^k$ is increasing and converges to e^{-x} for $x \in \mathbb{R}$. **Proof.** The convergence of x_k is trivially proven using techniques from calculus. Let $f(k) = (1 - \frac{x}{k})^k$ for each $k \in \mathbb{R}$. Then for each $k \in \mathbb{N}$, $x_k = f(k)$ so it remains to be shown that $\lim_{k \to \infty} f(k) = e^{-x}$. If we let $L = \lim_{k \to \infty} f(k)$, by the continuity of the natural logarithm, we obtain

$$\ln L = \ln \lim_{k \to \infty} \left(1 - \frac{x}{k} \right)^k = \lim_{k \to \infty} \ln \left(\left(1 - \frac{x}{k} \right)^k \right) = \lim_{k \to \infty} \frac{\ln \left(1 - \frac{x}{k} \right)}{\frac{1}{k}}$$

$$= \lim_{k \to \infty} \frac{\frac{\frac{x}{k^2}}{1 - \frac{x}{k}}}{\frac{-1}{k^2}} = \lim_{k \to \infty} \frac{-x}{1 - \frac{x}{k}} = -x, \tag{Indt. } \frac{0}{0} \text{ (H)})$$

so that $\ln L = -x \implies e^{\ln L} = L = e^{-x}$ as needed. It remains to be shown that x_k is increasing, that is, that for each $k \in \mathbb{N}$, $x_{k+1}/x_k \ge 1$. Let $k \in \mathbb{N}$ be fixed. Then,

$$\frac{x_{k+1}}{x_k} = \frac{\left(1 - \frac{x}{k+1}\right)^{k+1}}{\left(1 - \frac{x}{k}\right)^k} = \left(\frac{1 - \frac{x}{k+1}}{1 - \frac{x}{k}}\right)^{k+1} \left(1 - \frac{x}{k}\right) = \left(\frac{\frac{k+1-x}{k+1}}{\frac{k-x}{k}}\right)^{k+1} \left(1 - \frac{x}{k}\right)$$

$$= \left(\frac{k(k+1-x)}{(k+1)(k-x)}\right)^k \left(1 - \frac{x}{k}\right) = \left(\frac{k^2 + -kx + k - x + x}{(k+1)(k-x)}\right)^{k+1} \left(1 - \frac{x}{k}\right)$$

$$= \left(\frac{(k+1)(k-x) + x}{(k+1)(k-x)}\right)^{k+1} \left(1 - \frac{x}{k}\right) = \left(1 + \frac{x}{k-x} \cdot \frac{1}{k+1}\right)^{k+1} \left(1 - \frac{x}{k}\right)$$

$$\geq \left(1 + \frac{x(k+1)}{(k-x)(k+1)}\right) \left(1 - \frac{x}{k}\right) = \left(1 + \frac{x}{k-x}\right) \left(1 - \frac{x}{k}\right)$$
(Bernoulli inequality with $r = k+1$, $x = \frac{x}{(k-x)(k+1)}$)
$$= 1 + \frac{x}{k-x} - \frac{x}{k} - \frac{x^2}{k(k-x)} = 1 + \frac{kx - x(k-x) - x^2}{k(k-x)} = 1.$$

Thus x_k is increasing and converges to e^{-x} as needed.