# Kaggle Seasons #08



# **PCA**



#### What is PCA?

- PCA is a dimensionality reduction technique
  - Reduces the number of features while maintaining information
- It is useful when the data has too many features, especially if many of the features are correlated or uninformative
- Can be used in EDA to understand key relationships in the data
- Is often used in the social sciences to identify influential psychological or sociological factors
  - E.g. IQ tests and personality tests



PCA works by transforming the original coordinates into a different coordinate system:





It does so by computing a linear combination (i.e. weighted sum) of the original coordinates:

$$Z_k = \sum_{i=1}^d x_i v_{ik}$$

Where  $Z_k$  is the k-th transformed coordinate, or **principal component** 



The weights  $x_i$  are **learnt** such that they **maximise the variance** of the data along the first (then second, then third, etc) principal component while all the components **orthogonal** to each other:

$$Z_k = \sum_{i=1}^d x_i v_{ik}$$



The weights x<sub>i</sub> are **learnt** such that they **maximise the variance** of the data along the first (then second, then third, etc) principal component while all the components **orthogonal** to each other:



The weights x<sub>i</sub> are **learnt** such that they **maximise the variance** of the data along the first (then second, then third, etc) principal component while all the components **orthogonal** to each other:



An example of ineffective coordinates would be as follows, as the **variance** of the data along those components isn't **maximised**:





Interactive Visualization: <a href="https://setosa.io/ev/principal-component-analysis/">https://setosa.io/ev/principal-component-analysis/</a>





Interactive Visualization: <a href="https://setosa.io/ev/principal-component-analysis/">https://setosa.io/ev/principal-component-analysis/</a>







Interactive Visualization: <a href="https://setosa.io/ev/principal-component-analysis/">https://setosa.io/ev/principal-component-analysis/</a>



# How to use PCA in Python?

SciKit Learn's library includes PCA. The documentation can be found here: <a href="https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html">https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html</a>



# Thanks for listening!

