Algebra II: Class Notes Avinash Iyer

Motivation and Introduction

Main purpose of this course is to study Galois theory — a field that arose in trying to study roots of polynomials.

Consider $f(x) = ax^2 + bx + c$. If we want to find a general, closed-form expression for the roots of the function, we complete the square.

$$roots = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

We found these roots by by the coefficients, \mathbb{Q} , addition, subtraction, multiplication, division, and square root (raising to the 1/2 power: see Math 310 notes, Page 104). Naturally, this leads us to ask whether we can do this for cubic polynomials with the same operations. Obviously, we have to change from 1/2 power to the 1/3 power, but Cardano showed that it was possible to solve a cubic and quartic equation using these traditional operations and radicals.

Évariste Galois invented his theory to prove there is no such closed formula by radicals for any polynomial of degree 5 or above.

For example, $x^5 - x + 1$ does not have roots given by radicals.

Example: A Solvable Polynomial

Consider the polynomial $f(x) = x^2 - 2$. We know that the roots of this polynomial are $\pm \sqrt{2}$. From this, we want to create a set K(f) that satisfies the following rules:

- $\mathbb{Q} \subseteq K(f)$.
- K(f) must contain the roots of f.
- K(f) must be closed under the traditional operations: $+, -, \times, /$
- K(f) must be the smallest field that satisfies the above three requirements.

Claim: $K(f) = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$

- $\mathbb{Q} \subseteq K(f)$, because we can set b = 0.
- $\sqrt{2} = 0 + (1)(\sqrt{2}), -\sqrt{2} = 0 + (-1)(\sqrt{2})$
- Let $a + b\sqrt{2}$ and $c + d\sqrt{2}$ be elements of K(f). Then,

$$-(a+b\sqrt{2})\pm(c+d\sqrt{2})=(a\pm c)+(b\pm d)\sqrt{2}$$

$$-(a+b\sqrt{2})(c+d\sqrt{2}) = (ac+2bd) + (ad+bc)\sqrt{2}$$

- Set
$$c + d\sqrt{2} \neq 0$$

$$\frac{a+b\sqrt{2}}{c+d\sqrt{2}} = \frac{(a+b\sqrt{2})(c-d\sqrt{2})}{c^2-2d^2}$$
$$= \frac{1}{c^2-2d^2} \left((ac-2bd) + (bc-ad)\sqrt{2} \right)$$
$$= \frac{ac-2bd}{c^2-2d^2} + \frac{bc-ad}{c^2-2d^2}\sqrt{2}$$

- K(f) is indeed the smallest set.
 - Note that K(f) is a \mathbb{Q} -vector space, with basis $\{1, \sqrt{2}\}$. Therefore, $\dim_{\mathbb{Q}} K(f) = 2$. K(f) is known as the "splitting field" of f.

We want to consider a bijective function $\varphi: K(f) \to K(f)$ with the following properties:

- $\varphi(r) = r$ for every $r \in \mathbb{Q}$
- $\varphi(x + y) = \varphi(x) + \varphi(y)$
- $\varphi(xy) = \varphi(x)\varphi(y)$

We denote the collection of all such φ as $\operatorname{Aut}(K(f)/\mathbb{Q})$. This is a group under the operation \circ (composition). Specifically, we have

$$\varphi(a+b\sqrt{2}) = \varphi(a) + \varphi(b)\varphi(\sqrt{2})$$
$$= a + b\varphi(\sqrt{2}).$$

Notice

$$\left(\varphi(\sqrt{2})\right)^2 - 2 = \varphi\left(\left(\sqrt{2}\right)^2 - 2\right)$$
$$= \varphi(0)$$
$$= 0$$

Therefore, $\varphi(\sqrt{2}) = \pm \sqrt{2}$. Therefore, we have that the elements of Aut $(K(f)/\mathbb{Q})$ as the following:

$$\varphi_0: a + b\sqrt{2} \mapsto a + b\sqrt{2}$$

$$\varphi_1: a + b\sqrt{2} \mapsto a - b\sqrt{2}$$

$$\varphi_1 \circ \varphi_1 = \varphi_0$$

Thus,

$$\operatorname{Aut}(K(f)/\mathbb{Q}) = \{\varphi_0, \varphi_1\}$$
$$\cong \mathbb{Z}/2\mathbb{Z}$$

Example: A Harder Polynomial

Let $f(x) = (x^2 - 2)(x^2 - 3)$. Our roots are $\{\pm\sqrt{2}, \pm\sqrt{3}\}$. We want to form K(f) with the same properties. Let

$$K(f) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$$

= $\{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \mid a, b, c, d \in \mathbb{Q}\}.$

Just as with our previous example, K(f) is a vector space over \mathbb{Q} , with basis $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}$, so $\dim_{\mathbb{Q}}K(f)=4$.

Now, we want $\operatorname{Aut}(K(f)/\mathbb{Q})$. If $\varphi \in \operatorname{Aut}(K(f)/\mathbb{Q})$, then

$$\varphi(a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}) = a+b\varphi(\sqrt{2})+c\varphi(\sqrt{3})+d\varphi(\sqrt{6})$$
$$= a+b\varphi(\sqrt{2})+c\varphi(\sqrt{3})+d\varphi(\sqrt{2})\varphi(\sqrt{3}).$$

Thus, we need to know $\varphi(\sqrt{2})$ and $\varphi(\sqrt{3})$. So,

$$f(\varphi(\sqrt{2})) = \left(\left(\varphi(\sqrt{2})\right)^2 - 2\right) \left(\left(\varphi(\sqrt{2})\right)^2 - 3\right)$$
$$= 0$$

and the same is the case with $\varphi(\sqrt{3})$. So,

$$\varphi(\sqrt{2}) \in \{\pm\sqrt{2}, \pm\sqrt{3}\}$$

$$\varphi(\sqrt{3}) \in \{\pm\sqrt{2}, \pm\sqrt{3}\}.$$

Suppose $\varphi(\sqrt{2}) = \sqrt{3}$. Then,

$$\left(\left(\varphi(\sqrt{2})\right)^2\right) = (\sqrt{3}^2 - 1)$$

$$= 0$$

$$= (\varphi(2) - 3)$$

$$= -1. \perp$$

Thus,

$$\varphi(\sqrt{2}) \in \{\pm\sqrt{2}\}\$$

 $\varphi(\sqrt{3}) \in \{\pm\sqrt{3}\},$

and we have the maps as:

$$\begin{split} & \varphi_0: \sqrt{2} \mapsto \sqrt{2}, \sqrt{3} \mapsto \sqrt{3} \\ & \varphi_1: \sqrt{2} \mapsto -\sqrt{2}, \sqrt{3} \mapsto \sqrt{3} \\ & \varphi_2: \sqrt{2} \mapsto \sqrt{2}, \sqrt{3} \mapsto -\sqrt{3} \\ & \varphi_3: \sqrt{2} \mapsto -\sqrt{2}, \sqrt{3} \mapsto -\sqrt{3} \end{split}$$

Example: A Cubic Polynomial

Consider the function $f(x) = x^3 - 2$. The function has one real root, $r_1 = \sqrt[3]{2}$, and two complex roots. Let's examine $\mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}$; r_2 and r_3 are not in $Q(\sqrt[3]{2})$. We could instead consider $\mathbb{Q}(\sqrt[3]{2}, r_1, r_2)$.

$$x^{3} - 2 = (x - r_{1})(x^{2} + r_{1}x + r_{1}^{2})$$

$$r_{2} = \frac{-r_{1} + \sqrt{r_{1}^{2} - 4r_{1}^{2}}}{2}$$

$$= r_{1} \frac{-1 + \sqrt{-3}}{2}$$

$$= r_{1}\zeta_{3}$$

$$r_{3} = r_{1} \frac{-1 - \sqrt{-3}}{2}$$

$$= r_{1}\zeta_{3}^{2}$$

However, including r_2 and r_3 is excessive — all we need is $\mathbb{Q}(\sqrt[3]{2},\zeta_3)$. Therefore, the basis of this vector space is $\{1,r_1,r_1^2,\zeta_3,\zeta_3r_1,\zeta_3r_1^2\}$ (note that $\zeta_3^2=-1-\zeta_3$). Therefore, $\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt[3]{2},\zeta_3)=6$, and $\mathbb{Q}(\sqrt[3]{2},\zeta_3)=K(f)$. Additionally, we have $\mathrm{Aut}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})=\{\varphi_0\}$, but $\dim_{\mathbb{Q}}\mathbb{Q}(\sqrt[3]{2})=3$. For the full field extension, we need to find $\varphi(\sqrt[3]{2})$ and $\varphi(\zeta_3)$.

$$\varphi(\sqrt[3]{2}) \in \{r_1, \zeta_3 r_1, \zeta_3^2 r_1\}$$

$$\varphi(\zeta) \in \{\zeta_3, \zeta_3^2\}$$

$$\varphi_0 : r_1 \mapsto r_1, \zeta_3 \mapsto \zeta_3$$

$$\varphi_1 : r_1 \mapsto \zeta_3 r_1, \zeta_3 \mapsto \zeta_3$$

$$\varphi_2 : r_1 \mapsto r_1, \zeta_3 \mapsto \zeta_3^2$$

$$\varphi_3 : r_1 \mapsto \zeta_3^2 r_1, \zeta_3 \mapsto \zeta_3$$

$$\varphi_4 : r_1 \mapsto \zeta_3 r_1, \zeta_3 \mapsto \zeta_3^2$$

$$\varphi_5 : r_1 \mapsto \zeta_3^2 r_1, \zeta_3 \mapsto \zeta_3^2$$

Therefore,

$$\begin{split} \mathsf{Aut}(\mathbb{Q}(\sqrt[3]{2},\zeta_3)/\mathbb{Q}) &= 6 \\ &= \mathsf{dim}_{\mathbb{Q}} \, \, \mathbb{Q}(\sqrt[3]{7},\sqrt[3]{2}) \end{split}$$