[]	ime : 3H	ours] [Total marks :100]	
N.B.	: (1) Al	l questions are compulsory.	
	(2) Fi	gures to the right indicate full marks.	A. S.
	(3) Us	se of logarithmic table/non-programmable calculator is allowed .	
1.	Atte	mpt any four of the following:	
	A.	What is crystal field splitting? Explain with reference to square planar complexes.	5
	В.	Explain why [Fe $(H_2O)_6$] ³⁺ is a high spin and [Fe $(CN)_6$] ³⁻ is a low spin complex.	5
	C.	Explain the following with respect to the factors affecting crystal field splitting parameter.	
		i] Geometry of the complex	21/
	ъ	ii] Nature of the ligands.	21/
	D.	Explain the term crystal field stabilization energy [CFSE]. Calculate CFSE for d ³ and d ⁸ configurations in strong field octahedral complexes.	5
	Е.	Discuss in brief the merits and demerits of Crystal Field theory.	5
	F.	Discuss any two experimental evidences which proves covalent bonding in	5
		the metal complexes.	
2.	Atte	mpt any four of the following:	
	A.	Draw and explain a neat labelled molecular orbital diagram for hexacyano	5
37		ferrate (II) ion. [Fe(CN) ₆] ⁴⁻	
	В.	Discuss the effect of π bonding on Δ_0 values of octahedral complexes with ligands having filled π orbital.	5
	C.	What are chelating agents? Discuss their effect on stability of complexes.	5
	D.	Write a note on the Associative mechanism for ligand substitution reaction.	5
	E.	What is Russell-Saunders (LS) coupling? Explain with suitable example.	5
	F.	i. Calculate the ground state term for 'd ¹ ' configuration of Ti ^{3+.} ii. Explain spin multiplicity for two electrons.	3 2
3.	Atte	mpt any four of the following:	
	A.	Write a note on ionic organometallic compound.	5
	В.	How will you prepare organometallic compound by Transmetallation reaction?	5
	C.	Explain the complex formation reaction for the organometallic compound.	5
	D.	What is ferrocene? Explain structure of ferrocene according to valence bond theory.	5
	E.	Discuss homogeneous catalysis with suitable example.	5
	F.	Discuss the following steps involved in hydrogenation of alkene using Wilkinson's catalyst. a) oxidative addition b) alkene coordination.	5

23885 Page **1** of **3**

4.	Atte	mpt any four of the following:	
	A.	What is meant by term metallurgy? Explain self-reduction process in	5
		pyrometallurgy.	
	В.	Define roasting. Explain different types of roasting methods used for extraction of ore.	5
	C.	Describe electrolytic refining of copper with suitable diagram.	5
	D.	Explain with suitable diagram Froth floatation process for concentration of ore.	5
	E.	Discuss the structure of XeOF ₄ molecules on the basis of VSEPR theory.	5
	F.	Give an account of Na+ - K+ ion pump with suitable diagram.	5
5.	Ansv	wer the following:	
A	۸.	Select whether the following statements are true or false (Any five)	5
	a.	Splitting of d - orbitals is maximum in tetrahedral complexes.	
	b.	Triply degenerate set of dxy, dyz, dxz are called as t _{2g} orbitals.	
	c.	The value of 10Dq does not depend on the nature of central metal atom.	
	d.	In octahedral complexes, due to the crystal field splitting, orbital with maximum energy is $dx^2 - y^2$.	
	e.	In the absorption spectrum of $[Ti (H_2O)_6]^{3+}$, one transitions are possible.	
	f.	In an octahedral complex, metal ion with d ² configuration has CFSE value - 8 dq.	
	g.	Electrons prefer to pair up in eg orbital when $\Delta_0 < P$.	
	h.	The effect of ligands in expanding the d-electron cloud is called Jahn -Teller effect.	
, ,		Till in the blank with annuaviete world siven to the burst of (A my first)	_
	3. (*)	Fill in the blank with appropriate words given in the bracket (Any five) [weakening, isomerization, unpaired electrons, microstates, even and symmetrical, less stable, two, bonding]	5
	a.	The term gerade corresponds to	
	b.	If the matching orbitals overlap combines with maximum positive overlap, they form molecular orbitals.	
	c.	Presence of bulky ligands in a chelate results in of metal ligand bond.	
	d.	The complexes with forced configurations are	
	e.	The reactions which involve structural changes are called reactions.	
	f.	With respect to octahedral complexes, dissociative mechanism can be considered as step mechanism.	
	g.	The allowed combinations of m ₁ and m ₈ for electrons are called	
	h.	A transition is said to be spin forbidden, if it involves different number of	

23885 Page **2** of **3**

is the example of organometallic compound. a) CH ₄ b) H ₂ O c) CH ₃ MgCl d) CH ₃ Cl In preparation of organometallic compound by metallation reaction, Hydrogen from R-H is replaced by a) carbon b) metal c) non-metal d) nitrogen In the complex formation reaction of organometallic compound, organometallic compound acts as a) Lewis acid b) Lewis base c) Arrhenius acid d) Arrhenius base d is the best example of metallocene. a) Ferrocene b) Ferric chloride c) Ferrous sulphate d) Ferric Hydr e. According to valence bond theory, ferrocene is a) Diamagnetic b) paramagnetic c) ferromagnetic d) antiferromagn f is known as Wilkinson's Catalyst Rh Cl ₃ (PPh ₃) a) Rh Cl ₃ (P.Ph ₃) b) Rh Cl(P.Ph ₃) ₃ c) Rh Cl ₂ (P.Ph ₃) ₂ d) Rh (P.Ph ₃) ₃ g. In Homogeneous catalysis, if reactants and products are in gaseous then catalyst may be in phase only a) solid b) liquid c) gaseous d) changing f. Ferrocene can be prepared by oxidation of cyclopentadienyl Grignar Reagent with a) KOH b) HCl c) FeCl ₃ d) NaCl	
a) CH ₄ b) H ₂ O c) CH ₃ MgCl d) CH ₃ Cl In preparation of organometallic compound by metallation reaction, Hydrogen from R-H is replaced by a) carbon b) metal c) non-metal d) nitrogen In the complex formation reaction of organometallic compound, organometallic compound acts as a) Lewis acid b) Lewis base c) Arrhenius acid d) Arrhenius base 1 is the best example of metallocene. a) Ferrocene b) Ferric chloride c) Ferrous sulphate d) Ferric Hydr 2. According to valence bond theory, ferrocene is a) Diamagnetic b) paramagnetic c) ferromagnetic d) antiferromagn 3. a) Rh Cl ₃ (P.Ph ₃) b) Rh Cl(P.Ph ₃) ₃ c) Rh Cl ₂ (P.Ph ₃) ₂ d) Rh (P.Ph ₃) 4. In Homogeneous catalysis, if reactants and products are in gaseous then catalyst may be in phase only a) solid b) liquid c) gaseous d) changing 4. Ferrocene can be prepared by oxidation of cyclopentadienyl Grignar Reagent with	
Hydrogen from R-H is replaced by	
a) carbon b) metal c) non-metal d) nitrogen In the complex formation reaction of organometallic compound, organometallic compound acts as	
a) Lewis acid b) Lewis base c) Arrhenius acid d) Arrhenius base a) Lewis acid b) Lewis base c) Arrhenius acid d) Arrhenius base dis the best example of metallocene. a) Ferrocene b) Ferric chloride c) Ferrous sulphate d) Ferric Hydre. According to valence bond theory, ferrocene is a) Diamagnetic b) paramagnetic c) ferromagnetic d) antiferromagnetic b) paramagnetic c) ferromagnetic d) antiferromagnetic sknown as Wilkinson's Catalyst Rh Cl ₃ (PPh ₃) a) Rh Cl ₃ (P.Ph ₃) b) Rh Cl(P.Ph ₃) ₃ c) Rh Cl ₂ (P.Ph ₃) ₂ d) Rh (P.Ph ₃) g. In Homogeneous catalysis, if reactants and products are in gaseous then catalyst may be in phase only a) solid b) liquid c) gaseous d) changing n. Ferrocene can be prepared by oxidation of cyclopentadienyl Grignar Reagent with	
organometallic compound acts asa) Lewis acid b) Lewis base c) Arrhenius acid d) Arrhenius base lis the best example of metallocene. a) Ferrocene b) Ferric chloride c) Ferrous sulphate d) Ferric Hydre. According to valence bond theory, ferrocene isa) Diamagnetic b) paramagnetic c) ferromagnetic d) antiferromagnetic is known as Wilkinson's Catalyst Rh Cl ₃ (PPh ₃) a) Rh Cl ₃ (P.Ph ₃) b) Rh Cl(P.Ph ₃) ₃ c) Rh Cl ₂ (P.Ph ₃) ₂ d) Rh (P.Ph ₃) g. In Homogeneous catalysis, if reactants and products are in gaseous then catalyst may be inphase only a) solid b) liquid c) gaseous d) changing n. Ferrocene can be prepared by oxidation of cyclopentadienyl Grignar Reagent with	
a) Lewis acid b) Lewis base c) Arrhenius acid d) Arrhenius base	
is the best example of metallocene. a) Ferrocene b) Ferric chloride c) Ferrous sulphate d) Ferric Hydre. According to valence bond theory, ferrocene is a) Diamagnetic b) paramagnetic c) ferromagnetic d) antiferromagnetic d) antifer	
a) Ferrocene b) Ferric chloride c) Ferrous sulphate d) Ferric Hydre. According to valence bond theory, ferrocene is a) Diamagnetic b) paramagnetic c) ferromagnetic d) antiferromagnetic d) an	
a) Ferrocene b) Ferric chloride c) Ferrous sulphate d) Ferric Hydre. According to valence bond theory, ferrocene is a) Diamagnetic b) paramagnetic c) ferromagnetic d) antiferromagnetic d) an	
a) Diamagnetic b) paramagnetic c) ferromagnetic d) antiferromagnetic b) paramagnetic c) ferromagnetic d) antiferromagnetic d) antiferro	ovide
a) Diamagnetic b) paramagnetic c) ferromagnetic d) antiferromagnetic d)	JAIGC
a) Diamagnetic b) paramagnetic c) ferromagnetic d) antiferromagnetic d)	
is known as Wilkinson's Catalyst Rh Cl ₃ (PPh ₃) a) Rh Cl ₃ (P.Ph ₃) b) Rh Cl(P.Ph ₃) ₃ c) Rh Cl ₂ (P.Ph ₃) ₂ d) Rh (P.Ph ₃) g. In Homogeneous catalysis, if reactants and products are in gaseous then catalyst may be inphase only a) solid b) liquid c) gaseous d) changing n. Ferrocene can be prepared by oxidation of cyclopentadienyl Grignar Reagent with	etic
a) Rh Cl ₃ (P.Ph ₃) b) Rh Cl(P.Ph ₃) ₃ c) Rh Cl ₂ (P.Ph ₃) ₂ d) Rh (P.Ph ₃) g. In Homogeneous catalysis, if reactants and products are in gaseous particles then catalyst may be inphase only a) solid b) liquid c) gaseous d) changing g. Ferrocene can be prepared by oxidation of cyclopentadienyl Grignar Reagent with	
In Homogeneous catalysis, if reactants and products are in gaseous partners then catalyst may be inphase only a) solid b) liquid c) gaseous d) changing Ferrocene can be prepared by oxidation of cyclopentadienyl Grignar Reagent with	
then catalyst may be inphase only a) solid b) liquid c) gaseous d) changing 1. Ferrocene can be prepared by oxidation of cyclopentadienyl Grignar Reagent with	3 4
then catalyst may be inphase only a) solid b) liquid c) gaseous d) changing 1. Ferrocene can be prepared by oxidation of cyclopentadienyl Grignar Reagent with	
then catalyst may be inphase only a) solid b) liquid c) gaseous d) changing 1. Ferrocene can be prepared by oxidation of cyclopentadienyl Grignar Reagent with	hase
Ferrocene can be prepared by oxidation of cyclopentadienyl Grignar Reagent with	
Reagent with	
Reagent with	
	i
a) KOH b) HCl c) FeCl ₃ d) NaCl	
Match the column: (Any five)	
i. Pyramidal geometry ii. Calcium deficiency	
c. Smelting iii. Square Planar Geometry	
d. XeF4 iv. Used in electronic tubes	
e. XeO ₃ v. Pyrometallurgical reduction	
f. Krypton-85 vi. Purification of metal	
	n
yii. Copper Ore n. Oxygen transfer viii. Copper Ore viii. Concentration of Ore	n
i. Oxygen transfer vin. Concentration of Ofe ix. Non-Metallic Impurities	<u>n</u>

Heamoglobin