Groupes

Morphismes de groupes

Exercice 1 [02218] [Correction]

Soient $n \in \mathbb{N}^*$ et $f: \mathbb{R}^* \to \mathbb{R}$ définie par $f(x) = x^n$.

Montrer que f est un morphisme du groupe (\mathbb{R}^*,\times) dans lui-même.

En déterminer image et noyau.

Exercice 2 [02219] [Correction]

Justifier que exp: $\mathbb{C} \to \mathbb{C}^*$ est un morphisme du groupe $(\mathbb{C}, +)$ vers (\mathbb{C}^*, \times) . En déterminer image et noyau.

Exercice 3 [02221] [Correction]

Soit (G,*), (G',\top) deux groupes et $f\colon G\to G'$ un morphisme de groupes.

- (a) Montrer que pour tout sous-groupe H de G, f(H) est un sous-groupe de (G', \top) .
- (b) Montrer que pour tout sous-groupe H' de G', $f^{-1}(H')$ est un sous-groupe de (G,*).

Exercice 4 [02222] [Correction]

On note $\operatorname{Aut}(G)$ l'ensemble des isomorphismes d'un groupe (G,*) dans lui-même. Montrer que $\operatorname{Aut}(G)$ est un sous-groupe du groupe des permutations (\mathcal{S}_G, \circ) .

Exercice 5 [02223] [Correction]

Soit (G, *) un groupe et $a \in G$.

On définit une loi de composition interne \top sur G par $x \top y = x * a * y$.

- (a) Montrer que (G, \top) est un groupe.
- (b) Soit H un sous groupe de (G, *) et $K = \text{sym}(a) * H = \{\text{sym}(a) * x \mid x \in H\}$. Montrer que K est un sous groupe de (G, \top) .
- (c) Montrer que $f: x \mapsto x * \text{sym}(a)$ est un isomorphisme de (G, *) vers (G, \top) .

Exercice 6 [00119] [Correction]

Soit $n \in \mathbb{N}$ tel que $n \geq 2$. Déterminer les morphismes du groupe (\mathcal{S}_n, \circ) vers (\mathbb{C}^*, \times) .

Sous-groupes

Exercice 7 [00113] [Correction]

Un sous-groupe d'un groupe produit est-il nécessairement produit de deux sous-groupes ?

Exercice 8 [00114] [Correction]

Soient H et K deux sous-groupes d'un groupe (G, *).

À quelle condition l'ensemble $H \cup K$ est-il un sous-groupe de (G, *)?

Exercice 9 [03432] [Correction]

Un sous-groupe H de (G, .) est dit distingué si

$$\forall x \in H, \forall a \in G, axa^{-1} \in H.$$

- (a) Montrer que le noyau d'un morphisme de groupes au départ de (G,.) est distingué.
- (b) Soient H, K deux sous-groupes de (G, .). On suppose le sous-groupe H distingué, montrer que l'ensemble

$$HK = \{xy \mid x \in H, y \in K\}$$

est un sous-groupe de (G, .).

Exercice 10 [02366] [Correction]

Montrer que

$$\{x + y\sqrt{3} \mid x \in \mathbb{N}, y \in \mathbb{Z}, x^2 - 3y^2 = 1\}$$

est un sous-groupe de (\mathbb{R}_+^*, \times) .

Exercice 11 [02648] [Correction]

Soit G un groupe, H un sous-groupe de G, A une partie non vide de G. On pose $AH = \{ah \mid a \in A, h \in H\}$. Montrer que AH = H si, et seulement si, $A \subset H$.

Exercice 12 [02948] [Correction]

(a) Montrer que tout sous-groupe additif de $\mathbb R$ qui n'est pas monogène est dense dans $\mathbb R.$

(b) Soit $x \in \mathbb{R} \setminus \mathbb{Q}$. Montrer qu'il existe une infinité de $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ tels que

$$\left| x - \frac{p}{q} \right| < \frac{1}{q^2}.$$

(c) Montrer la divergence de la suite de terme général

$$u_n = \frac{1}{n \sin n}.$$

Éléments d'ordre fini

Exercice 13 [03453] [Correction]

Soit (G, .) un groupe de cardinal 2n.

(a) Justifier que l'on définit une relation d'équivalence $\mathcal R$ sur G en posant

$$x\mathcal{R}y \iff x = y \text{ ou } x = y^{-1}.$$

(b) En déduire l'existence dans G d'un élément d'ordre 2.

Exercice 14 [00116] [Correction]

Soient (G,*) un groupe fini commutatif d'ordre n et $a \in G$.

- (a) Justifier que l'application $x \mapsto a * x$ est une permutation de G.
- (b) En considérant le produit des éléments de G, établir que $a^n = e$.

Exercice 15 [02363] [Correction]

Quel est le plus petit entier n tel qu'il existe un groupe non commutatif de cardinal n?

Exercice 16 [03292] [Correction]

Soient a et b deux éléments d'ordre respectifs p et q d'un groupe abélien (G,*).

- (a) On suppose que p et q sont premiers entre eux. Montrer que l'élément ab est d'ordre pq.
- (b) On ne suppose plus p et q premiers entre eux. L'élément ab est-il nécessairement d'ordre ppcm(p,q)?

Exercice 17 [04053] [Correction]

Soit (G, .) un groupe abélien fini de neutre e.

- (a) Soient x et y deux éléments de G d'ordres finis p et q premiers entre eux. Montrer que l'élément z=xy est d'ordre pq.
- (b) On note m le ppcm des ordres des éléments de (G,.) et l'on introduit sa décomposition en facteurs premiers

$$m = p_1^{\alpha_1} \dots p_N^{\alpha_N}.$$

Montrer qu'il existe un élément x_i dans G d'ordre $p_i^{\alpha_i}$ pour chaque $i \in [1; N]$.

(c) Établir l'existence dans G d'un élément d'ordre m exactement.

Exercice 18 [04151] [Correction]

Dans tout ce sujet n désigne un naturel non nul.

On note $\varphi(n)$ l'indicatrice d'Euler de n, U_n l'ensemble des racines n-ième de l'unité et U_n^* l'ensemble des racines de l'unité d'ordre exactement n. Enfin, pour $d \in \mathbb{N}^*$, on pose

$$\Phi_d = \prod_{z \in U_d^*} (X - z).$$

(a) Écrire en Python la fonction liste(n) qui renvoie

$$\{k \in [1; n] \mid k \wedge n = 1\}.$$

Écrire la fonction phi (n) qui renvoie $\varphi(n)$ puis sumphi (n) qui renvoie

$$\sum_{d|n} \varphi(d).$$

(b) Montrer

$$X^n - 1 = \prod_{d|n} \Phi_d.$$

(c) Justifier

$$\sum_{d|n} \varphi(d) = n.$$

(d) Montrer que Φ_n est un polynôme à coefficients entiers.

On pose $Q_n = X^n - 1$ et on choisit p, q, r des nombres premiers vérifiant

$$p < q < r < p + q.$$

On pose

$$n = pqr$$
 et $R = \frac{Q_p Q_q Q_r}{X - 1}$.

(e) Montrer

$$\Phi_n = \frac{Q_n R}{Q_{pq} Q_{qr} Q_{rp}}.$$

(f) Montrer qu'il existe un polynôme S tel que

$$\Phi_n - R = X^{pq} S.$$

(g) En déduire que le coefficient de X^r dans Φ_n est égal à -2.

Exercice 19 [02649] [Correction]

Soit (G, .) un groupe fini tel que

$$\forall g \in G, g^2 = e$$

où e est le neutre de G. On suppose G non réduit à $\{e\}$. Montrer qu'il existe $n \in \mathbb{N}^*$ tel que G est isomorphe à $((\mathbb{Z}/2\mathbb{Z})^n, +)$.

Parties génératrices

Exercice 20 [02229] [Correction]

Dans (S_n, \circ) on considère les permutations

$$\tau = \begin{pmatrix} 1 & 2 \end{pmatrix}$$
 et $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \end{pmatrix}$.

- (a) Calculer $\sigma^k \circ \tau \circ \sigma^{-k}$ pour $0 \le k \le n-2$.
- (b) En déduire que tout élément de \mathcal{S}_n peut s'écrire comme un produit de σ et de τ .

Exercice 21 [02368] [Correction]

Soit n un entier naturel non nul, (e_1, \ldots, e_n) la base canonique de $E = \mathbb{R}^n$. Soit \mathcal{S}_n l'ensemble des permutations de $\{1, 2, \ldots, n\}$. Soit $t_i = (1, i)$. Pour $s \in \mathcal{S}_n$, on définit $u_s(e_i) = e_{s(i)}$.

- (a) Montrer que (t_2, t_3, \ldots, t_n) engendre S_n .
- (b) Interpréter géométriquement u_s lorsque s est une transposition.
- (c) Soit $s=(1\ 2\ \dots\ n-1\ n)$. On suppose que s est la composée de p transpositions. Montrer que $p\geq n-1$.
- (d) Quel est le cardinal minimal d'une famille de transpositions génératrice de S_n ?

Groupes cycliques

Exercice 22 [03364] [Correction]

Soit x est un élément d'un groupe cyclique de cardinal n. Calculer x^n .

Exercice 23 [00125] [Correction]

Soient H et K deux groupes notés multiplicativement.

- (a) Montrer que si h est un élément d'ordre p de H et k un élément d'ordre q de K alors (h,k) est un élément d'ordre $\operatorname{ppcm}(p,q)$ de $H\times K$.
- (b) On suppose H et K cycliques. Montrer que le groupe produit $H \times K$ est cyclique si, et seulement si, les ordres de H et K sont premiers entre eux.

Exercice 24 [02365] [Correction]

(Groupe quasi-cyclique de Prüfer) Soit p un nombre premier. On pose

$$G_p = \{ z \in \mathbb{C} \mid \exists k \in \mathbb{N}, z^{p^k} = 1 \}.$$

- (a) Montrer que G_p est un sous-groupe de (\mathbb{C}^*, \times) .
- (b) Montrer que les sous-groupes propres de G_p sont cycliques et qu'aucun d'eux n'est maximal pour l'inclusion.
- (c) Montrer que G_p n'est pas engendré par un système fini d'éléments.

Exercice 25 [03444] [Correction]

Soit n un entier ≥ 3 .

(a) Montrer que pour tout entier impair a, on a

$$a^{2^{n-2}} \equiv 1 \left[2^n \right].$$

(b) Le groupe $((\mathbb{Z}/2^n\mathbb{Z})^*, \times)$ est-il cyclique?

Exercice 26 [02505] [Correction] Soit

$$M = \begin{pmatrix} 0 & 1 & & (0) \\ & \ddots & \ddots & \\ & & & \ddots & \\ (0) & & & \ddots & 1 \\ 1 & (0) & & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}).$$

- (a) Calculer le polynôme caractéristique de M. La matrice M est-elle diagonalisable? est-elle inversible?
- (b) Soit $G = \{M^k \mid k \in \mathbb{Z}\}$. Montrer que G est une groupe cyclique et préciser son cardinal.

Exercice 27 [03715] [Correction]

Soit (G,*) un groupe cyclique à n élément engendré par a. Pour $r \in \mathbb{N}^*$, on introduit l'application $f \colon G \to G$ définie par

$$\forall x \in G, f(x) = x^r$$
.

- (a) Vérifier que f est un endomorphisme de (G, *).
- (b) Déterminer le noyau f.
- (c) Montrer que l'image de f est le sous-groupe engendré par a^d avec $d = \operatorname{pgcd}(n, r)$.
- (d) Pour $y \in G$, combien l'équation $x^r = y$ possède-t-elle de solutions?

Exercice 28 [03845] [Correction]

Montrer que les sous-groupes finis du groupe $(SO(2), \times)$ des rotations du plan sont cycliques.

Exercice 29 [02364] [Correction]

Soit un entier $n \geq 2$. Combien le groupe $(\mathbb{Z}/n\mathbb{Z}, +)$ admet-il de sous-groupes?

Groupes isomorphes

Exercice 30 [02650] [Correction]

On note V l'ensemble des matrices à coefficients entiers du type

$$\begin{pmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{pmatrix}$$

et G l'ensemble des $M \in V$ inversibles dans $\mathcal{M}_4(\mathbb{R})$ et dont l'inverse est dans V.

- (a) Quelle est la structure de G?
- (b) Soit $M \in V$. Montrer que $M \in G$ si, et seulement si, $\det M = \pm 1$.

(c) Donner un groupe standard isomorphe à G muni du produit.

Exercice 31 [00122] [Correction] Les groupes $(\mathbb{Q}, +)$ et (\mathbb{Q}^*, \times) sont-ils isomorphes?

Groupe fini

Exercice 32 [04200] [Correction]

Soit H et K deux sous-groupes d'un groupe fini G noté multiplicativement. On note $HK = \{hk \mid h \in H \text{ et } k \in K\}$. Montrer

 $Card(HK) Card(H \cap K) = Card H Card K$.

Corrections

Exercice 1 : [énoncé]

Pour $x \in \mathbb{R}^*$, on a bien $f(x) \in \mathbb{R}^*$. Pour $x, y \in \mathbb{R}^*$

$$f(xy) = (xy)^n = x^n y^n = f(x)f(y)$$

donc f est un morphisme de (\mathbb{R}^*,\times) vers lui-même.

 $\operatorname{Ker} f = f^{-1}(\{1\}) \text{ et } \operatorname{Im} f = \{x^n \mid x \in \mathbb{R}^*\}.$

Si n est pair alors

$$\operatorname{Ker} f = \{1, -1\} \text{ et } \operatorname{Im} f = \mathbb{R}_{+}^{*}.$$

Si n est impair alors

$$\operatorname{Ker} f = \{1\} \text{ et } \operatorname{Im} f = \mathbb{R}^*.$$

Exercice 2 : [énoncé]

On sait

$$\forall x, y \in \mathbb{C}, \exp(x+y) = \exp(x) \exp(y)$$

donc exp: $\mathbb{C} \to \mathbb{C}^*$ est un morphisme de groupes.

$$\exp(x) = 1 \iff \exists k \in \mathbb{Z}, x = 2ik\pi$$

donc

$$Ker \exp = \{2ik\pi \mid k \in \mathbb{Z}\}.$$

La fonction exponentielle complexe prend toutes les valeurs de \mathbb{C}^* donc

$$\operatorname{Im} \exp = \mathbb{C}^*$$
.

Exercice 3: [énoncé]

(a) $f(H) \subset G'$, $e' = f(e) \in f(H)$ car $e \in H$. Soit $y, y' \in f(H)$, on peut écrire y = f(x) et y' = f(x') avec $x, x' \in H$.

$$y \top y'^{-1} = f(x) \top f(x')^{-1} = f(x) \top f(x'^{-1}) = f(x * x'^{-1})$$

avec $x * x'^{-1} \in H$ donc $y \top y'^{-1} \in f(H)$.

Ainsi f(H) est un sous-groupe de (G', \top)

(b) $f^{-1}(H') \subset G$ et $e \in f^{-1}(H')$ car $f(e) = e' \in H'$. Soit $x, x' \in f^{-1}(H')$. On a $f(x), f(x') \in H'$.

$$f(x * x'^{-1}) = f(x) \top f(x'^{-1}) = f(x) \top f(x')^{-1} \in H'$$

donc $x * x'^{-1} \in f^{-1}(H')$.

Ainsi $f^{-1}(H')$ est un sous-groupe de (G,*).

Exercice 4 : [énoncé]

 $\operatorname{Aut}(G) \subset \mathcal{S}_G \text{ et } \operatorname{Id}_G \in \operatorname{Aut}(G).$

Pour tout $f,g \in \operatorname{Aut}(G)$, on a $f \circ g \in \operatorname{Aut}(G)$ et $f^{-1} \in \operatorname{Aut}(G)$ par les propriétés sur les automorphismes.

Ainsi $\operatorname{Aut}(G)$ est un sous-groupe de (\mathcal{S}_G, \circ) .

Exercice 5 : [énoncé]

(a) Soit $x, y, z \in G$,

$$(x \top y) \top z = (x * a * y) * a * z = x * a * (y * a * z) = x \top (y \top z).$$

L'élément sym(a) est neutre pour la loi \top . En effet, pour $x \in G$, on a

$$x \top \operatorname{sym}(a) = x = \operatorname{sym}(a) \top x.$$

Soit $x \in G$. Posons $y = \text{sym}(a) * \text{sym}(x) * \text{sym}(a) \in G$. On a

$$x \top y = y \top x = \text{sym}(a).$$

(b) $K \subset G$, $\operatorname{sym}(a) = \operatorname{sym}(a) * e \operatorname{donc sym}(a) \in K$. Soit $\operatorname{sym}(a) * x$, $\operatorname{sym}(a) * y \in K$. On a

$$(\operatorname{sym}(a)*x)\top(\operatorname{sym}(a)*y)^{\top(-1)} = \operatorname{sym}(a)*x*a*\operatorname{sym}(a)*\operatorname{sym}(y)*a*\operatorname{sym}(a) = \operatorname{sym}(a)*(x*a)$$

(c) Pour $x, y \in G$,

$$f(x * y) = x * y * \operatorname{sym}(a) = (x * \operatorname{sym}(a)) \top (y * \operatorname{sym}(a)) = f(x) \top f(y)$$

f est un morphisme de groupe et il est bijectif d'application réciproque $g\colon x\mapsto x*a.$

Exercice 6: [énoncé]

Soient φ un tel morphisme et τ la transposition qui échange 1 et 2. On a $\tau^2 = \operatorname{Id}$ donc $\varphi(\tau)^2 = 1$ d'où $\varphi(\tau) = 1$ ou -1. Soit $\tau' = \begin{pmatrix} i & j \end{pmatrix}$ une transposition quelconque de \mathcal{S}_n . Il existe une permutation $\sigma \in \mathcal{S}_n$ telle que $\tau' = \sigma \circ \tau \circ \sigma^{-1}$ et alors $\varphi(\tau') = \varphi(\tau)$. Sachant enfin que tout élément de \mathcal{S}_n est produit de transpositions on peut conclure :

Si $\varphi(\tau) = 1$ alors $\varphi \colon \sigma \mapsto 1$. Si $\varphi(\tau) = -1$ alors $\varphi = \varepsilon$ (morphisme signature).

Exercice 7: [énoncé]

Non, $\{(x,x) \mid x \in \mathbb{Z}\}$ est un sous-groupe de $(\mathbb{Z}^2,+)$ mais n'est pas produit de deux sous-groupes de $(\mathbb{Z},+)$!

Exercice 8: [énoncé]

Si $H \subset K$ ou $K \subset H$ alors $H \cup K = K$ (resp. H) et donc $H \cup K$ est un sous-groupe de (G,*)

Inversement, supposons que $H \cup K$ est un sous groupe et que $H \not\subset K$. Il existe alors $h \in H$ tel que $h \notin K$.

Pour tout $k \in K$, on a $k * h \in H \cup K$ car $H \cup K$ est stable.

Si $k * h \in K$ alors $h = k^{-1} * (k * h) \in K$ ce qui est exclu.

Il reste $k * h \in H$ qui donne $k = (k * h) * h^{-1} \in H$. Ainsi $K \subset H$.

Ainsi si $H \cup K$ est un sous-groupe alors $H \subset K$ ou $K \subset H$.

Exercice 9: [énoncé]

(a) Soit $\varphi \colon G \to G'$ un tel morphisme et $H = \{x \in G \mid \varphi(x) = e_{G'}\}$ son noyau. On sait déjà que H est un sous-groupe de (G, .). Soient $x \in H$ et $a \in G$. On a

$$\varphi(axa^{-1}) = \varphi(a)\varphi(x)\varphi(a)^{-1} = \varphi(a)e_{G'}\varphi(a)^{-1} = e_{G'}$$

donc $axa^{-1} \in H$.

(b) $HK \subset G$ et $e = e.e \in HK$. Soient $a, b \in HK$. On peut écrire

$$a = xy$$
 et $b = x'y'$ avec $x, x' \in H$ et $y, y' \in K$.

On a alors

$$ab = xyx'y'.$$

Puisque $z = yx'y^{-1} \in H$, on a encore

$$ab = (xz)(yy') \in HK.$$

Aussi

$$a^{-1} = y^{-1}x^{-1} = zy^{-1} \in HK$$

avec $z = y^{-1}x^{-1}y \in H$.

Ainsi HK est bien un sous-groupe de (G, .).

Exercice 10: [énoncé]

Notons

$$H = \{x + y\sqrt{3} \mid x \in \mathbb{N}, y \in \mathbb{Z}, x^2 - 3y^2 = 1\}.$$

Pour $a\in H,\ a=x+y\sqrt{3}$ avec $x\in\mathbb{N},\ y\in\mathbb{Z}$ et $x^2-3y^2=1.$ On a donc $x=\sqrt{1+3y^2}>\sqrt{3}|y|$ puis a>0. Ainsi $H\subset\mathbb{R}_+^*.$

 $1 \in H$ car on peut écrire $1 = 1 + 0\sqrt{3}$ avec $1^2 - 3.0^2 = 1$.

Pour $a \in H$, on a avec des notations immédiates,

$$\frac{1}{a} = x - y\sqrt{3}$$

avec $x \in \mathbb{N}$, $-y \in \mathbb{Z}$ et $x^2 - 3(-y)^2 = 1$. Ainsi $1/a \in H$.

Pour $a, b \in H$ et avec des notations immédiates,

$$ab = xx' + 3yy' + (xy' + x'y)\sqrt{3}$$

avec $xx' + 3yy' \in \mathbb{Z}$, $xy' + xy' \in \mathbb{Z}$ et $(xx' + 3yy')^2 - 3(xy' + x'y)^2 = 1$. Enfin puisque $x > \sqrt{3}|y|$ et $x' > \sqrt{3}|y'|$, on a $xx' + 3yy' \ge 0$ et finalement $ab \in H$.

Exercice 11: [énoncé]

Supposons AH = H.

$$\forall a \in A, a = ae \in AH = H$$

donc $A \subset H$.

Supposons $A \subset H$. Pour $x \in AH$, x = ah avec $a \in A$, $h \in H$. Or $a, h \in H$ donc $x = ah \in H$.

Ainsi $AH \subset H$.

Inversement, pour $a \in A$ (il en existe car $A \neq \emptyset$) et pour tout $h \in H$, $h = a(a^{-1}h)$ avec $a^{-1}h \in H$ donc $h \in AH$. Ainsi $H \subset AH$ puis =.

Exercice 12 : [énoncé]

(a) Soit H un tel groupe. Nécessairement $H \neq \{0\}$ ce qui permet d'introduire

$$a = \inf\{h > 0 \mid h \in H\}.$$

Si $a \neq 0$, on montre que $a \in H$ puis par division euclidienne que tout $x \in H$ est multiple de a. Ainsi $H = a\mathbb{Z}$ ce qui est exclu. Il reste a = 0 et alors pour tout $\varepsilon > 0$, il existe $\alpha \in H \cap]0$; $\varepsilon]$. On a alors $\alpha\mathbb{Z} \subset H$ et donc pour tout $x \in \mathbb{R}$, il existe $h \in \alpha\mathbb{Z} \subset H$ vérifiant $|x - h| \leq \alpha \leq \varepsilon$. Ainsi H est dense dans \mathbb{R} .

(b) Soit $x \in \mathbb{R} \setminus \mathbb{Q}$. Pour $N \in \mathbb{N}^*$, considérons l'application

$$f: \{0, \dots, N\} \to [0; 1[$$

définie par $f(k) = kx - \lfloor kx \rfloor$. Puisque les N+1 valeurs prises par f sont dans les N intervalles [i/N; (i+1)/N[(avec $i \in \{0, \dots, N-1\})$), il existe au moins deux valeurs prises dans le même intervalle. Ainsi, il existe $k < k' \in \{0, \dots, N\}$ tel que

$$\left| f(k') - f(k) \right| < \frac{1}{N}$$

. En posant $p=\lfloor k'x\rfloor-\lfloor kx\rfloor\in\mathbb{Z}$ et $q=k'-k\in\{1,\ldots,N\},$ on a |qx-p|<1/N et donc

$$\left| x - \frac{p}{q} \right| < \frac{1}{Nq} < \frac{1}{q^2}.$$

En faisant varier N, on peut construire des couples (p,q) distincts et donc affirmer qu'il existe une infinité de couple $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ vérifiant

$$\left| x - \frac{p}{q} \right| < \frac{1}{q^2}.$$

(c) Puisque π est irrationnel, il existe une suite de rationnels p_n/q_n vérifiant

$$\left|\pi - \frac{p_n}{q_n}\right| < \frac{1}{q_n^2}$$

avec $q_n \to +\infty$.

On a alors

$$|u_{p_n}| = \left| \frac{1}{p_n \sin p_n} \right| = \left| \frac{1}{p_n \sin(p_n - q_n \pi)} \right| \ge \frac{1}{|p_n|} \frac{1}{|p_n - q_n \pi|} \ge \frac{q_n}{p_n} \to \frac{1}{\pi}.$$

Ainsi la suite (u_n) ne tend pas vers 0.

$$\left\{\left|\sin n\right|\,\middle|\,\,n\in\mathbb{N}\right\}=\left\{\left|\sin(n+2k\pi)\right|\,\middle|\,\,n\in\mathbb{Z},k\in\mathbb{Z}\right\}=\left|\sin(\mathbb{Z}+2\pi\mathbb{Z})\right|.$$

Puisque le sous-groupe $H=\mathbb{Z}+2\pi\mathbb{Z}$, n'est pas monogène (car π irrationnel), H est dense dans \mathbb{R} et par l'application $|\sin(.)|$ qui est une surjection continue de \mathbb{R} sur $[0\,;1]$, on peut affirmer que $\{|\sin n| \mid n\in\mathbb{N}\}$ est dense dans $[0\,;1]$. En particulier, il existe une infinité de n tel que $|\sin n|\geq 1/2$ et pour ceux-ci $|u_n|<2/n$.

Ainsi, il existe une suite extraite de (u_n) convergeant vers 0. Au final, la suite (u_n) diverge.

Exercice 13: [énoncé]

- (a) La relation est immédiatement réflexive et symétrique. En discutant selon les cas d'égalité, on montre aussi qu'elle est transitive.
- (b) S'il n'existe pas dans (G,.) d'élément d'ordre 2, les classes d'équivalence de la relation \mathcal{R} comportent toutes deux éléments sauf celle de e qui ne comporte qu'un élément. Les classes d'équivalence étant disjointes de réunion G, le cardinal de G est alors impair ce qui est contraire aux hypothèses.

Exercice 14: [énoncé]

- (a) Puisque a est inversible, a est régulier ce qui fournit l'injectivité de l'application $x\mapsto a*x.$
 - Un argument de cardinalité finie donne la bijectivité de l'application.
- (b) Par permutation

$$\prod_{x \in G} x = \prod_{x \in G} (a * x) = a^n * \prod_{x \in G} x$$

donc $a^n = e$.

Exercice 15: [énoncé]

Notons, pour n = 6 que (S_3, \circ) est un groupe non commutatif à 6 éléments. Un groupe à n = 1 élément est évidemment commutatif.

Pour n=2,3 ou 5, les éléments d'un groupe à n éléments vérifient $x^n=e$. Puisque n est premier, un élément autre que e de ce groupe est un élément d'ordre n et le groupe est donc cyclique donc commutatif.

Pour n=4, s'il y a un élément d'ordre 4 dans le groupe, celui-ci est cyclique. Sinon, tous les éléments du groupe vérifient $x^2=e$. Il est alors classique de justifier que le groupe est commutatif.

Exercice 16: [énoncé]

(a) On a évidemment

$$(ab)^{pq} = (a^p)^q (b^q)^p = e.$$

Inversement, supposons $(ab)^r = e$. On a alors

$$a^{qr} = (a^r)^q = (b^{-r})^q = (b^q)^{-r} = e$$

et donc p divise qr. Or p et q sont premiers entre eux donc p divise r.

Mutatis mutandis, on obtient que q divise r et donc pq divise r car p et q sont premiers entre eux.

Finalement ab est un élément d'ordre pq exactement.

(b) Dans (\mathbb{C}^* , \times), a = -1 est d'ordre 2 et b = -j est d'ordre 6 tandis que ab = j est d'ordre 3.

Plus simplement encore, si x est d'ordre n alors $x \times x^{-1}$ est d'ordre 1.

Exercice 17: [énoncé]

(a) Puisque G est abélien

$$z^{pq} = x^{pq}y^{pq} = (x^p)^q (y^q)^p = e.$$

De plus, pour $k \in \mathbb{N}$, si $z^k = e$ alors $z^{kp} = e$ donc $y^{kp} = e$ ce qui entraîne que q divise kp. Or p et q sont premiers entre eux donc q divise k. De même, on obtient que p divise k. À nouveau puisque p et q sont premiers entre eux, on conclut que pq divise k. L'ordre de z est donc exactement pq.

- (b) Puisque $p_i^{\alpha_i}$ est facteur du ppcm des ordres des éléments de (G,.), il existe un élément x dans G d'ordre $p_i^{\alpha_i}d$ pour un certain $d \in \mathbb{N}^*$. L'élément $x_i = x^d$ est alors d'ordre exactement $p_i^{\alpha_i}$.
- (c) Une petite récurrence et l'élément $y = x_1 \dots x_m$ fait l'affaire.

Exercice 18: [énoncé]

(a) On commence par définir une fonction calculant le pgcd de deux entiers

```
def gcd(a,b):
    if a % b == 0: return b
    else: return gcd(b, a % b)

def liste(n):
    L = []
    for k in range(1,n):
        if gcd(n,k) == 1: L.append(k)
    return L

def phi(n):
    return len(liste(n))

def sumphi(n):
    return sum(liste(n))
```

(b) U_n est un groupe à n. Les éléments de ce groupe ont un ordre divisant n et pour tout d divisant n, les éléments du groupe U_n d'ordre d sont exactement ceux de U_d^* . On en déduit que U_n est la réunion disjointe des U_d^* pour d parcourant les diviseurs de n. On en déduit

$$X^{n} - 1 = \prod_{z \in U_{d}} (X - z) = \prod_{d \mid n} \Phi_{d}.$$

(c) Le polynôme Φ_n est de degré $\varphi(n)$ car les racines de l'unité d'ordre n sont les

$$e^{2ik\pi/n}$$
 avec $k \in [1; n], k \wedge n = 1$.

L'identité précédente donne la relation voulue en passant celle-ci au degré.

(d) Par récurrence forte sur l'entier $n \geq 1$.

La propriété est immédiate quand n=1. Supposons la propriété vérifiée jusqu'au rang n-1.

On a

$$X^n - 1 = \prod_{d|n, d \neq n} \Phi_d \times \Phi_n.$$

Le polynôme X^n-1 est à coefficients entiers et $\prod_{d|n,d\neq n}$ l'est aussi. De plus, le coefficient dominant de ce dernier vaut 1. On réalisant une division euclidienne, le calcul de Φ_n détermine un polynôme à coefficients entiers.

(e) Les diviseurs de n sont 1, p, q, r, pq, qr, rp et n donc

$$Q_n = (X - 1)\Phi_p \Phi_q \Phi_r \Phi_{pq} \Phi_{qr} \Phi_{rp} \Phi_n.$$

De même

$$Q_{pq} = (X-1)\Phi_p\Phi_q\Phi_{pq}$$
, etc.

La relation demandée s'en déduit.

(f) Par ce qui précède, on peut écrire

$$(\Phi_n - R)Q_{pq}Q_{qr}Q_{rp} = R(Q_n - Q_{pq}Q_{qr}Q_{rp})$$

0 n'est pas racine de $Q_{pq}Q_{qr}Q_{rp}$, ni de R, mais

$$Q_n - Q_{pq}Q_{qr}Q_{rp} = X^{pq} + \dots$$

On en déduit que 0 est racine de multiplicité pq de $\Phi_n - R$.

(g) Puisque r < pq, le coefficient de X^r dans Φ_n est celui de X^r dans P. Or

$$P = (X^{p} - 1)(X^{q} - 1)(1 + X + \dots + X^{r-1})$$

= $(1 - X^{p} - X^{q} + X^{p+q})(1 + X + \dots + X^{r-1}).$

Le coefficient de X^r dans ce polynôme est -2 car p+q>r.

Exercice 19: [énoncé]

Le groupe (G,.) est abélien. En effet, pour tout $x \in G$, on a $x^{-1} = x$ donc, pour $x, y \in G$, $(xy)^{-1} = xy$. Or $(xy)^{-1} = y^{-1}x^{-1} = yx$ donc xy = yx.

Pour $\overline{0}, \overline{1} \in \mathbb{Z}/2\mathbb{Z}$ et $x \in G$, posons

$$\overline{0}.x = e \text{ et } \overline{1}.x = x.$$

On vérifie qu'on définit alors un produit extérieur sur G munissant le groupe abélien (G,.) d'une structure de $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel. En effet, pour $(x,y) \in G^2$ et $(\lambda,\mu) \in (\mathbb{Z}/2\mathbb{Z})^2$ on a

$$(\lambda + \mu).x = \lambda.x + \mu.x, \lambda.(x + y) = \lambda.x + \lambda.y, \lambda.(\mu.x) = (\lambda \mu).x \text{ et } \overline{1}.x = x.$$

De plus, cet espace est de dimension finie car $\operatorname{Card} G < +\infty$, il est donc isomorphe à l'espace $((\mathbb{Z}/2\mathbb{Z})^n, +, .)$ pour un certain $n \in \mathbb{N}^*$. En particulier, le groupe (G, .) est isomorphe à $((\mathbb{Z}/2\mathbb{Z})^n, +)$.

Exercice 20: [énoncé]

- (a) $\sigma \circ \tau \circ \sigma^{-1} = \begin{pmatrix} 2 & 3 \end{pmatrix}, \ \sigma^2 \circ \tau \circ \sigma^{-2} = \begin{pmatrix} 3 & 4 \end{pmatrix}, \dots \ \sigma^k \circ \tau \circ \sigma^{-k} = \begin{pmatrix} k+1 & k+2 \end{pmatrix}.$
- (b) Il est « connu » que toute permutation de S_n peut s'écrire comme produit de transpositions de la forme (k + 1). Ces dernières peuvent s'écrire comme produit de σ , de τ , et de σ^{-1} . Or $\sigma^n = \text{Id}$ et donc $\sigma^{-1} = \sigma^{n-1}$ et par conséquent, σ^{-1} peut s'écrire comme produit de σ .

Exercice 21 : [énoncé]

(a) Pour $i \neq j \in \{2, ..., n\}$,

$$(i,j) = (1,i) \circ (1,j) \circ (1,i).$$

Toute transposition appartient à $\langle t_2, t_3, \dots, t_n \rangle$ et puisque celles-ci engendrent S_n ,

$$S_n = \langle t_2, t_3, \dots, t_n \rangle$$
.

- (b) Si s = (i, j), u_s est la réflexion par rapport à l'hyperplan de vecteur normal $e_i e_i$.
- (c) Si s est le produit de p transpositions alors $\operatorname{Ker}(u_s \operatorname{Id}_E)$ contient l'intersection de p hyperplans (ceux correspondant aux transpositions comme décrit ci-dessus). Or, ici $\operatorname{Ker}(u_s \operatorname{Id}_E) = \operatorname{Vect}(e_1 + \cdots + e_n)$ et donc $p \geq n 1$.
- (d) n-1 en conséquence de ce qui précède.

Exercice 22: [énoncé]

Soit a un générateur du groupe cyclique (G,*) introduit dans l'énoncé. On sait

$$G = \{e, a, a^2, \dots, a^{n-1}\}$$
 avec $a^n = e$.

Puisque x est élément de G, il existe $k \in [0; n-1]$ tel que $x=a^k$ et alors

$$x^n = a^{kn} = e.$$

Exercice 23: [énoncé]

- (a) $(h,k)^n = 1_{H \times K} \iff p \mid n \text{ et } q \mid n \text{ donc } (h,k) \text{ est un élément d'ordre ppcm}(p,q).$
- (b) Posons p et q les ordres de H et K.

Supposons p et q premiers entre eux.

Si h et k sont générateurs de H et K alors (h,k) est un élément d'ordre $\operatorname{ppcm}(p,q)=pq$ de $H\times K$.

Or Card $H \times K = pq$ donc $H \times K$ est cyclique.

Inversement, supposons $H \times K$ cyclique.

Si (h,k) est générateur de $H\times K$ alors h et k sont respectivement générateurs de H et K.

On en déduit que h est un élément d'ordre p, k d'ordre q et puisque (h, k) est d'ordre ppcm(p, q) et pq, on conclut que p et q sont premiers entre eux.

Exercice 24: [énoncé]

(a) $G_p \subset \mathbb{C}^*$, $1 \in G_p$, pour $z \in G_p$, il existe $k \in \mathbb{N}$ tel que $z^{p^k} = 1$ et alors $(1/z)^{p^k} = 1$ donc $1/z \in G_p$.

Si de plus $z' \in G_p$, il existe $k' \in \mathbb{N}$ vérifiant $z'^{p^{k'}}$ et alors

$$(zz')^{p^{k+k'}} = (z^{p^k})^{p^{k'}} (z'^{p^{k'}})^{p^k} = 1 \text{ donc } zz' \in G_p.$$

(b) Notons

$$U_{p^k} = \left\{ z \in \mathbb{C} \mid z^{p^k} = 1 \right\}.$$

Soit H un sous-groupe de G_p différent de G_p .

S'il existe une infinité de $k\in\mathbb{N}$ vérifiant $U_{p^k}\subset H$ alors $H=G_p$ car G_p est la réunion croissante de U_{p^k} .

Ceci étant exclu, on peut introduire le plus grand $k \in \mathbb{N}$ vérifiant $U_{n^k} \subset H$.

Pour $\ell > k$, tous les éléments de $U_{p^\ell} \setminus U_{p^k}$ engendrent au moins $U_{p^{k+1}}$, or $U_{p^{k+1}} \not\subset H$ donc $H \subset U_{p^k}$ puis $H = U_{p^k}$

H est donc un sous-groupe cyclique et ne peut être maximal pour l'inclusion car inclus dans le sous-groupe propre $U_{p^{k+1}}$.

(c) Si G_p pouvait être engendré par un système fini d'éléments, il existerait $k \in \mathbb{N}$ tel que ses éléments sont tous racines p^k -ième de l'unité et alors $G_p \subset U_{n^k}$ ce qui est absurde.

Exercice 25 : [énoncé]

(a) Par la factorisation $a^2 - b^2 = (a - b)(a + b)$

$$a^{2^{n-2}} - 1 = (a^{2^{n-3}} + 1)(a^{2^{n-3}} - 1)$$

et en répétant l'opération

$$a^{2^{n-2}} - 1 = (a^{2^{n-3}} + 1)(a^{2^{n-4}} + 1)\dots(a^{2^0} + 1)(a^{2^0} - 1).$$

Il y a n-1 facteurs dans ce produit et ceux-ci sont tous pairs car a est impair. De plus, les deux derniers facteurs sont a+1 et a-1 et parmi ces deux figure un multiple de 4.

On en déduit que 2^n divise $a^{2^{n-2}} - 1$ et donc $a^{2^{n-2}} \equiv 1$ [2ⁿ].

(b) Par l'absurde supposons $(\mathbb{Z}/2^n\mathbb{Z})^*$ cyclique. Les éléments de ce groupe sont les \overline{k} avec $2 \wedge k = 1$, ce sont donc les classes des entiers impairs. Il y en a exactement 2^{n-1} . Si \overline{a} est un générateur de $(\mathbb{Z}/2^n\mathbb{Z})^*$ alors a est un entier impair et \overline{a} est un élément d'ordre 2^{n-1} . Or le résultat précédent donne $\overline{a}^{2^{n-2}} = \overline{1}$ et donc l'ordre de a est inférieur à $2^{n-2} < 2^{n-1}$. C'est absurde.

Exercice 26 : [énoncé]

- (a) On obtient $\chi_M(X) = (-1)^n (X^n 1)$. Les racines de χ_M sont les racines de l'unité, il y en a n ce qui est la taille de la matrice et donc M est diagonalisable. Puisque 0 n'est pas racine de χ_M , la matrice M est inversible.
- (b) Par Cayley-Hamilton, nous savons $M^n = I_n$ et donc M est un élément d'ordre fini du groupe $(GL_n(\mathbb{C}), \times)$. Par calcul ou par considération de
- polynôme minimal, on peut affirmer que n est le plus petit exposant p>0 tel que $M^p = I_n$ et donc M est un élément d'ordre exactement n. On en déduit que G est un groupe cyclique de cardinal n.

(a) Le groupe (G, *) est nécessairement commutatif car cyclique. Pour tout $x,y\in G$, on a

$$f(x * y) = (x * y)^r = x^r * y^r = f(x) * f(y).$$

(b) Pour $x \in G$, on peut écrire $x = a^k$ avec $k \in \mathbb{Z}$ et alors

$$f(x) = e \iff a^{kr} = e.$$

Puisque a est d'ordre n

$$f(x) = e \iff n \mid kr.$$

En introduisant $d = \operatorname{pgcd}(n, r)$, on peut écrire n = dn' et r = dr' avec $n' \wedge r' = 1$ et alors le théorème de Gauss donne

$$n \mid kr \iff n' \mid k$$
.

Par conséquent

$$\operatorname{Ker} f = \left\langle a^{n'} \right\rangle.$$

(c) Par l'égalité de Bézout, on peut écrire nu + rv = d et alors

$$a^{d} = a^{nu} * a^{rv} = a^{rv} = f(a^{v}) \in \text{Im } f.$$

Puisque Im f est un sous-groupe, on a déjà $\langle a^d \rangle \subset \operatorname{Im} f$. Inversement, soit $y \in \text{Im } f$. On peut écrire $y = x^r$ avec x de la forme a^k où $k \in \mathbb{Z}$. On a donc

$$y = a^{kr}$$
.

Or $d \mid r$ et donc $y \in \langle a^d \rangle$. Ainsi Im $f \subset \langle a^d \rangle$ puis l'égalité.

(d) Si $y \notin \text{Im } f$, l'équation n'a pas de solution. Sinon, il existe $x_0 \in G$ tel que $x_0^r = y$ et alors

$$x^r = y \iff (x * x_0^{-1})^r = e.$$

Ceci permettre de mettre en correspondance bijective les solutions de l'équation $x^r = y$ avec les éléments du novau de f. Dans ce cas, il y a exactement n/n'=d solutions à l'équation.

Exercice 28 : [énoncé]

Commençons par rappeler que les éléments de SO(2) sont les matrices

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Soit G un sous-groupe fini de $(SO(2), \times)$.

L'ensemble $T = \{\theta > 0 \mid R(\theta) \in G\}$ est une partie non vide (car 2π en est élément) et minorée de \mathbb{R} . On peut donc introduire

$$\theta_0 = \inf T \in \mathbb{R}_+$$
.

Commençons par établir que θ_0 est élément de T.

On peut construire une suite $(\theta_n)_{n\geq 1}$ d'éléments de T convergeant vers θ_0 . Puisque l'ensemble G est fini, l'ensemble des $R(\theta_n)$ est lui aussi fini. Il existe donc une infinité d'indicesn pour lesquels les θ_n sont égaux modulo 2π à une valeur α . Puisque $\theta_n \to \theta_0$, il y a une infinité de θ_n égaux à θ_0 et donc $\theta_0 \in T$. Puisque $R(\theta_0) \in G$, on a $\langle R(\theta_0) \rangle \subset G$.

Inversement, soit R un élément de G. Il existe $\theta \in \mathbb{R}$ tel que $R = R(\theta)$. On peut

Inversement, soit R un element de G. Il existe $\theta \in \mathbb{R}$ tel que $R = R(\theta)$. On peu écrire $\theta = q\theta_0 + \theta'$ avec $q \in \mathbb{Z}$ et $\theta' \in [0; 2\pi[$. On a alors

$$R(\theta') = R(\theta)R(\theta_0)^{-q} \in G.$$

Si $\theta' > 0$ alors $\theta' \in T$ ce qui contredit la définition de $\theta_0 = \inf T$ car $\theta' < \theta_0$. Nécessairement $\theta' = 0$ et donc $\theta = q\theta_0$ ce qui donne $R = R(\theta_0)^q \in \langle R(\theta_0) \rangle$. Finalement

$$G = \langle R(\theta_0) \rangle$$
.

Exercice 29 : [énoncé]

On note \overline{x} la classe d'un entier x dans $\mathbb{Z}/n\mathbb{Z}$.

Soit H un sous-groupe de $\mathbb{Z}/n\mathbb{Z}$.

On peut introduire

$$a = \min\{k > 0, \overline{k} \in H\}$$

car toute partie non vide de N possède un plus petit élément.

Considérons alors $\langle \overline{a} \rangle$ le groupe engendré par la classe de a. On peut décrire ce groupe

$$\langle \overline{a} \rangle = \{q.\overline{a} \mid q \in \mathbb{Z}\}.$$

C'est le plus petit sous-groupe contenant l'élément \overline{a} car il est inclus dans tout sous-groupe contenant cet élément. Par conséquent $\langle \overline{a} \rangle$ est inclus dans H. Montrons qu'il y a en fait égalité.

Soit $\overline{k} \in H$. Par division euclidienne de k par a, on écrit

$$k = aq + r \text{ avec } r \in \{0, \dots, a - 1\}.$$

On a alors $\overline{k}=q.\overline{a}+\overline{r}$ et donc, par opérations dans le groupe H, on obtient $\overline{r}=\overline{k}-q.\overline{a}\in H$. On ne peut alors avoir r>0 car cela contredirait la définition de a. Il reste donc r=0 et par conséquent $\overline{k}=q.\overline{a}\in\langle\overline{a}\rangle$

Finalement

$$H=<\overline{a}>$$

De plus, en appliquant le raisonnement précédent avec k=n (ce qui est possible car $\overline{n}=\overline{0}\in H$), on obtient que a est un diviseur de n.

Inversement, considérons un diviseur a de n. On peut écrire

$$n = aq \text{ avec } q \in \mathbb{N}^*$$

et on peut alors décrire les éléments du groupe engendré par \overline{a} , ce sont

$$\overline{0}, \overline{a}, 2.\overline{a}, \ldots, (q-1)\overline{a}.$$

On constate alors que les diviseurs de n déterminent des sous-groupes deux à deux distincts de $(\mathbb{Z}/n\mathbb{Z}, +)$.

On peut conclure qu'il y a autant de sous-groupe de $(\mathbb{Z}/n\mathbb{Z}, +)$ que de diviseurs positifs de n.

Exercice 30: [énoncé]

- (a) $G \subset GL_4(\mathbb{R})$, G est non vide, stable par passage à l'inverse et par produit car V l'est. Ainsi G est un sous-groupe de $GL_4(\mathbb{R})$ donc un groupe.
- (b) Si $M \in G$ alors $\det M$, $\det M^{-1} \in \mathbb{Z}$ et $\det M \times \det M^{-1} = \det I_4 = 1$ donc $\det M = \pm 1$.

Inversement si det $M=\pm 1$ alors $M^{-1}=\pm^t\mathrm{Com}\,M$ est à coefficients entiers. On peut remarquer que

$$E = \left\{ \begin{pmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{pmatrix} \mid a, b, c, d \in \mathbb{R} \right\}$$

est un sous-espace vectoriel de $\mathcal{M}_4(\mathbb{R})$ stable par produit et contenant I_n . L'application $\varphi \colon X \mapsto MX$ y définit un endomorphisme injectif donc bijectif. On en déduit que $M^{-1} = \varphi^{-1}(I_n)$ est élément de E donc de V. Par conséquent, $M \in G$.

(c)
$$\det M = ((a+c)^2 - (b+d)^2)((a-c)^2 + (b-d)^2)$$

donc

$$\det M = \pm 1 \iff \begin{cases} (a+c)^2 - (b+d)^2 = \pm 1\\ (a-c)^2 + (b-d)^2 = \pm 1. \end{cases}$$

La résolution de ce système à coefficients entiers donne à l'ordre près : $a,b,c,d=\pm 1,0,0,0$.

Posons J la matrice obtenue pour a=c=d=0 et b=1. On vérifie $J^4=I_4$. L'application $\varphi\colon U_2\times \mathbb{Z}/4\mathbb{Z}\to G$ définie par $\varphi(\varepsilon,n)=\varepsilon J^n$ est bien définie, c'est un morphisme de groupe, injectif et surjectif. Ainsi G est isomorphe à $U_2\times \mathbb{Z}/4\mathbb{Z}$ ou plus élégamment à $\mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/4\mathbb{Z}$.

Exercice 31: [énoncé]

Non, l'équation $x^2 = 1$ admet deux solutions dans (\mathbb{Q}^*, \times) alors que l'équation analogue dans $(\mathbb{Q}, +)$, à savoir 2x = 0, n'admet qu'une solution.

Exercice 32 : [énoncé]

Introduisons l'application $f: H \times K \to G$ définie par f(h, k) = hk. L'ensemble HK est exactement l'ensemble des valeurs prises par f.

On étudie l'ensemble des antécédents de chaque valeur prise par f.

Soit y une valeur prise par f sur un certain couple $(h,k) \in H \times K$. Déterminons les autres couples $(h',k') \in H \times K$ envoyés sur y. Si (h',k') est un tel couple, on a h'k' = hk et donc $h^{-1}h' = kk'^{-1}$. Notons a cette valeur. Par opérations, l'élément a est commun aux sous-groupes H et K et permet d'écrire h' = ha et $k' = a^{-1}k$. Inversement, si h' = ha et $k' = a^{-1}k$ avec $a \in H \cap K$, h' et k' sont des éléments de H et K de produit y. L'ensemble des antécédents de y est donc

$$f^{-1}(\{y\}) = \{(ha, a^{-1}k) \mid a \in H \cap K\}.$$

À chaque valeur de a correspond un couple $(ha, a^{-1}k)$ distinct, l'ensemble $f^{-1}(\{y\})$ a donc le cardinal de $H \cap K$.

Résumons, les valeurs de l'application f sont les éléments de $H \times K$ et chacun est une valeur prise $\operatorname{Card}(H \cap K)$ fois. On a donc

$$Card(HK) Card(H \cap K) = Card(H \times K) = Card H \times Card K.$$