Урок 11. Характеристическое свойство арифметической прогрессии

1° . Упражнения на использование формулы общего члена

- 1) Между числами -6 и 3 вставьте пять таких чисел, чтобы они вместе с данными числами образовывали арифметическую прогрессию.
- 2) Известно, что x_1 и x_2 корни уравнения $x^2 7x + a = 0$, а x_3 и x_4 корни уравнения $x^2 19x + b = 0$, причем числа x_1, x_2, x_3, x_4 образуют в указанном порядке арифметическую прогрессию. Найдите a и b.
- 3) Дана арифметическая прогрессия $\{a_n\}$, в которой $a_k = m$, $a_m = k \ (k \neq m)$. Найдите a_{k+m} .

2° . Характеристическое свойство арифметической прогрессии

1) Справедливо следующее утверждение:

Теорема 11.1 (характеристическое свойство арифметической прогрессии).

Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов, и, наоборот, если каждый член последовательности, начиная со второго, равен среднему арифметическому предыдущего и последующего членов, то последовательность является арифметической прогрессией:

$$\{a_n\}$$
 — арифметическая прогрессия $\Leftrightarrow a_n = \frac{a_{n-1} + a_{n+1}}{2}, n \geqslant 2.$

Замечание. Если речь идет о конечной арифметической прогрессии, то в формулировке теоремы 11.1 слова "каждый член, начиная со второго" должны быть заменены на слова "каждый член, кроме первого и последнего".

Доказательство теоремы:

<u>Необходимость:</u> Если $\{a_n\}$ – арифметическая прогрессия, то, с одной стороны, $a_n=a_{n-1}+d$, а с другой стороны, $a_n=a_{n+1}-d$. Складывая эти равенства, получаем требуемое.

<u>Достаточность:</u> Пусть $a_n=\frac{a_{n-1}+a_{n+1}}{2}$. Тогда $a_n-a_{n-1}=a_{n+1}-a_n$. Обозначим эту величину d. Из полученного равенства следует, что d не зависит от номера n. Но, очевидно, $a_{n+1}=a_n+d$. Следовательно, $\{a_n\}$ — арифметическая прогрессия.

2) Доказанное нами характеристическое свойство объясняет, почему арифметическая прогрессия получила такое название.

3) Теорема 11.1 может быть обобщена. А именно, имеет место следующая теорема:

Теорема 11.2.

 $\overline{\Pi y cmb \ k, \ m, \ p, \ q - натуральные числа, причем \ k+m=p+q. \ Torda}$

$$a_k + a_m = a_p + a_q.$$

B частности,

$$a_1 + a_n = a_2 + a_{n-1} = a_3 + a_{n-2} = \dots = a_{i+1} + a_{n-i}.$$

Указание: Для доказательства проще всего воспользоваться формулой общего члена (10.1).

Замечание. В случае конечной арифметической прогрессии эту теорему часто формулируют так: "суммы членов, равноотстоящих от концов, равны".

4) Упражнения.

- (1) При каких x значения выражений $x^2 4$, 5x + 3 и 3x + 2 в указанном порядке являются последовательными членами арифметической прогрессии?
- (2) При каких y значения выражений y^2-2y , 3y+5, 4y+13 и $2y^2-y+25$ в указанном порядке являются последовательными членами арифметической прогрессии?
- (3) Числа a_k , a_n , a_m являются членами арифметической прогрессии (не обязательно последовательными). Известно, что $n=\frac{k+m}{2}$. Докажите, что

$$3(a_k^2 + a_n^2 + a_m^2) = (a_k + a_n + a_m)^2 + 6(a_k - a_n)^2.$$

Домашнее задание

- 1) Восьмой и десятый члены арифметической прогрессии равны соответственно 3, 5 и 2, 7. Найдите девятый член этой прогрессии.
- 2) Докажите, что значения выражений $(a+b)^2$, a^2+b^2 , $(a-b)^2$ при любых a и b являются последовательными членами арифметической прогрессии.
- 3) При каких y значения выражений $y^2+1,\ y^2+y$ и 8y-10 в указанном порядке являются последовательными членами арифметической прогрессии?
- 4) При каких x значения выражений 3x+4, 2x+3, x^2 и $2x^2+x$ в указанном порядке являются последовательными членами арифметической прогрессии?

- 5) Какие четыре числа надо вставить между числами 4 и -5, чтобы они вместе с данными числами образовывали арифметическую прогрессию?
- 6) Докажите, что если $\{a_n\}$ арифметическая прогрессия, разность которой отлична от нуля, то при n>2

$$a_1 a_n < a_2 a_{n-1}.$$

7) Докажите, что если корни уравнения $x^4 + px^2 + q = 0$ образуют арифметическую прогрессию, то $q = 0,09\,p^2$.