Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Test 5

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 \cdot (18 - 2 \cdot 9) + (2 \cdot 9 - 8) : 2 = 2 \cdot (18 - 18) + (18 - 8) : 2 =$	2p
	$= 2 \cdot 0 + 10 : 2 = 0 + 5 = 5$	3 p
2.	$f(x) = g(x) \Leftrightarrow x+1 = 2x-1 \Leftrightarrow x=2$	3p
	y=3	2 p
3.	10-2x=2	3p
	x = 4, care convine	2 p
4.	Cifra unităților poate fi aleasă în 4 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 9 moduri, deci se pot forma $4.9 = 36$ de numere naturale pare de două cifre cu ambele cifre nenule	3 p
5.	AB = 4	2p
J.	$BC = 4$, deci $\triangle ABC$ este isoscel	3p
6.	$\sin 60^\circ = \frac{\sqrt{3}}{2}, \cos 60^\circ = \frac{1}{2}$	2p
	$(\sin 60^{\circ} - \cos 60^{\circ})(\sin 60^{\circ} + \cos 60^{\circ}) = \sin^{2} 60^{\circ} - \cos^{2} 60^{\circ} = \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.	$3 \circ (-1) = 3 \cdot (-1) + 3 \cdot 3 + 3 \cdot (-1) + 6 =$	3p
	=-3+9-3+6=9	2p
2.	$x \circ y = xy + 3x + 3y + 6 = yx + 3y + 3x + 6 =$	3p
	$= y \circ x$, pentru orice numere reale $x \neq y$, deci legea de compoziție " \circ " este comutativă	2 p
3.	$x \circ y = xy + 3x + 3y + 9 - 3 =$	2p
	= x(y+3)+3(y+3)-3=(x+3)(y+3)-3, pentru orice numere reale x şi y	3p
4.	$(a+3)(x+3)-3=a \Leftrightarrow (a+3)(x+2)=0$, pentru orice număr real x	3p
	a = -3	2 p
5.	$x, y \in (-3, +\infty) \Rightarrow x > -3 \text{ si } y > -3, \text{ deci } x + 3 > 0 \text{ si } y + 3 > 0$	2p
	$(x+3)(y+3) > 0 \Rightarrow (x+3)(y+3) - 3 > -3 \Rightarrow x \circ y > -3, \text{ deci } x \circ y \in (-3, +\infty)$	3p
6.	$(x+3+3)(x-3+3)-3 \le 37 \Leftrightarrow x^2+6x-40 \le 0$	3p
	$x \in [-10,4]$	2p

(30 de puncte) SUBIECTUL al III-lea

1.	$A(3) = \begin{pmatrix} 1 & 0 \\ 0 & 5^3 \end{pmatrix} \Rightarrow \det(A(3)) = \begin{vmatrix} 1 & 0 \\ 0 & 5^3 \end{vmatrix} =$	3р
	$= \begin{vmatrix} 1 & 0 \\ 0 & 125 \end{vmatrix} = 125$	2p
2.	$A(a) \cdot A(b) = \begin{pmatrix} 1 & 0 \\ 0 & 5^a \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 5^b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 5^a \cdot 5^b \end{pmatrix} =$	3р
	$= \begin{pmatrix} 1 & 0 \\ 0 & 5^{a+b} \end{pmatrix} = A(a+b), \text{ pentru orice numere reale } a \text{ și } b$	2p
3.	$A(1) \cdot A(4) - A(2) \cdot A(3) = A(1+4) - A(2+3) =$	3p
	$= A(5) - A(5) = O_2$	2p
4.	$\det(A(a)) = \begin{vmatrix} 1 & 0 \\ 0 & 5^a \end{vmatrix} = 5^a, \text{ pentru orice număr real } a$	2p
	$5^a \neq 0 \Rightarrow \det(A(a)) \neq 0$, deci matricea $A(a)$ este inversabilă, pentru orice număr real a	3p
5.	$A(2)A(-2) = A(0) = I_2$, deci $(A(2))^{-1} = A(-2)$	2p
	$X = (A(2))^{-1} \cdot A(0) \Rightarrow X = A(-2) \cdot A(0) \Rightarrow X = A(-2) \Rightarrow X = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{25} \end{pmatrix}$	3p
6.	$5^n \le \sqrt[3]{125} \iff 5^n \le 5 \iff n \le 1$	3p
	Cum n este număr natural, obținem $n = 0$ sau $n = 1$	2p