ESC Final project

아파트실거래가구하기 With Bayesian Regression

박재현, 임세희, 김송희, 전상후, 박태주, 정연섭

2022. 11. 24

목차 a table of contents

- 1 실거래가 & 기타 용어정리
- **2** 베이지안 회귀분석이란?
- 3 데이터 소개
- **4** 분석 결과
- 5 기타 방법론 소개

Part 1 실거래가 & 기타 용어정리

실거래가란?

부동산이 실제로 시장에서 거래된 가격

- -> "절대 바꿀 수 없는 가격 정보" (by 부동산실거래가 신고의무제도)
- -> 부동산 거래 시 취득세나 양도세의 기준이 되는 가격
- -> 계약이 이루어져야 나타나는 정보

단점: 거래가 자주 일어나지 않는 지역이 아니라면, 부동산 조사나 가격 동향 조사할 때 실거래가를 사용하기는 어렵다.

-→ 현재의 가격을 유추하기 위해 <mark>다른 가격 용어</mark>들을 사용하게 된다.

호가란?

집 주인이 집을 <mark>팔고자 부르는 가격</mark>

- -> 집 주인이 기대하는 기대가격
- -> if (부동산 과열) : 호가는 계속 올라가고 실거래가는 밑에서 빠르게 증가

장점: 구매자 눈 앞에 직접 제시된 가격으로, 바로 살 수 있다는 의미. 즉, 주택을 거래하기 위해 필요한 최고액

단점:

- 1) 호가는 판매자의 가격이기 때문에 실제 시세 범위에 비해 호가는 <mark>높게</mark> 형성되있다.
- 2) 판매자들의 담합에 의해 호가 범위를 높게 붙잡는 경우도 있다.

아파트명	실매물 정보	전용면적(m')	12월 시세	12월 실거래	1월 실거래	매물 호가
포항자이	317건 (아파트 전체)	84.95m(26평)	59,500	11건	1건	65,000
효자웰빙타운SK뷰(1차)	209건	84.94m'(26평)	39,000	13건	1건	50,000
효자그린(2차)	233건	84.97m(26명)	36,000	4건	0건	45,000
장성푸르지오	59건	84.98m(26평)	48,000	1건	0건	60,000
두호SK뷰푸르지오(1단지)	140건	84.99m(26평)	45,000	6건	1건	60,000
창포메트로시티(1단지)	90건	84.69m(26평)	41,000	8건	0건	47,000
창포주공(1차)	95건	49.77m(15평)	6,750	1521	0건	12,000
두호주공아파트(2차)	50건	46.68m/(14평)	15,250	3171	1건	17,500

© Saebyeol Yu. Saebyeol's PowerPoint

자료/KB부동산/국토교통부 살거레가 곧게시스템/디디하우.

시세란?

현재 상황을 고려했을 때 <mark>거래 될 가격</mark>

만약, 실거래 내역 자체가 오래되어 현재 가격을 제대로 반영하지 못한다면?? → 부동산 업계에서 해당 아파트 단지의 예상 가격을 선정

- → 즉, 부동산마다 기준이 다르기 때문에 아파트의 "하한가" 와 "상한가" 가 설정될 것이다.
- * KB 부동산 시세가 가장 공신력 있는 것으로 여겨진다.

〈네이버 부동산 은마아파트 시세 정보〉

공시지가란?

<mark>세금 납부에 대한 기준</mark>을 매기기 위해, 정부와 감정평가사가 함께 매년 매기는 부동산 가치의 가격 (= 개별 공시지가)

- -> 통상적으로 <mark>주택실거래가의</mark> 50% ~ 70% 를 반영
- * 2021년에는 전국 평균 19% 상승, 세종시의 경우 약 70% 상승

요약

일반적으로, 부동산 호가 >= 실거래가, 시세가 >= 공시지가

가장 중요한 정보: <mark>최근의 실거래가 (= 실제로 계약이 되었던 가격)으로, 실제로 이 가격에서 큰 변동이 없는 편이다.</mark>

용어	의미	주의점				
분양가	건설사가 정한 첫 주택 가격	만드는 건설사에 따라 가격이 다르게 정해짐				
실거래가 실제 계약이 이루어진 가격		오래되거나 없으면 현재의 가치를 알 수 없음				
부동산 호가 판매자가 원하는 가격(매물가)		실제 실거래가보다 가격이 높게 형성				
시세가 업계에서 예측하는 실제 판매가격		업계마다 다른 기준, 매물수에 따라 시세가 경확하지 않을 수 있음				
공시지가 부동산 세금 기준에 쓰이는 부동산자산가격		1년에 한번으로 시세의 급격한 변화를 반영하지 못함				
감정평가액	공시지가에 '그밖의 요인'을 포함한 부동산 가치 평가금액	평가 방법에 따른 금액이 달라짐				

Part 2 베이지안 회귀분석이란?

Bayesian Model

We have observed data (X_i, Y_i) for $i = 1, \dots, n$ and we will regress Y_i onto X_i .

 X_1 : city (1 if Seoul, 0 if Busan)

 X_2 : dong

 X_3 : apt

 X_4 : year of completion

 X_5 : transaction year month

 X_6 : floor

 X_7 : top10

 X_8 : log_area

log_price

Binary 범주형 변수 (City, top10)

Beta distribution

연속형 변수(Log_area, dong, apt, floor 등등)

Normal distribution

범주형 beta distribution initial value

범주형 변수 initial value 설정

train seoul(1) : 790438 train busan(0) : 426115

test seoul(1): 4016 test busan(0): 1447

train top10(1) : 150150 train not top10(0) : 1066403

test top10(1): 654

test not top10(0): 4809

City:

1인 data 수 > 0인 data 수 → α=3, β=1 사용

Top 10:

1인 data 수 < 0인 data 수 → α=1, β=3 사용

Posterior Distribution

The posterior can be written up to some constant.

$$p(\beta_0, \beta_1, \beta_2, \cdots, \beta_8, \sigma^2 | \mathbf{X}, \mathbf{Y})$$

$$\propto \prod_{i=1}^{n} p(\boldsymbol{X_i}, \boldsymbol{Y_i} | \beta_0, \beta_1, \beta_2, \cdots, \beta_8, \sigma^2) \times p(\beta_0) p(\beta_1) \cdots p(\beta_8) p(\sigma^2)$$

Bayesian Regression 원리

Posterior distribution으로부터 각 parameter마다 Sampling을 진행한다. 방법) Gibbs Sampler, Metropolis-Hastings Algorithm

각 parameter마다 만들어진 sample에서 posterior mean을 구한다.

Estimator

Part 3 데이터 소개

Steps

1. Build a formula relating the features to the target and decide on a prior distribution for the data likelihood

2. Sample from the parameter posterior distribution using MCMC

pm. Model()

```
with pm.Model() as independent_regression_model_full:
In [30]:
                 # data
                                                                                                                                   data
                 x1 = pm.Data('x1',train_['city'].values)
                 x2 = pm.Data('x2',train_['dong'].values)
                 x3 = pm.Data('x3',train ['apt'].values)
                 x4 = pm.Data('x4',train_['year_of_completion'].values)
                 x5 = pm.Data('x5',train_['transaction_year_month'].values)
                 x6 = pm.Data('x6',train_['floor'].values)
                 x7 = pm.Data('x7',train_['top10'].values)
           9
                 x8 = pm.Data('x8',train ['log area'].values)
         10
         11
                 y1 = pm.Data('y1',train ['log price'].values)
         12
         13
                 # prior
                                                                                                                                  prior
         14
                 alpha = pm.Normal('intercept 1',0,10)
         15
                 # beta_1 = pm.Normal('coeff_1',0,10)
         16
                 beta_1 = pm.Beta('coeff_1',3,1)
                                                               #binary
         17
                 beta_2 = pm.Normal('coeff_2',0,10)
                 beta 3 = pm.Normal('coeff 3',0,10)
         18
         19
                 beta_4 = pm.Normal('coeff_4',0,10)
         20
                 beta_5 = pm.Normal('coeff_5',0,10)
          21
                 beta 6 = pm.Normal('coeff 6',0,10)
                 # beta_7 = pm.Normal('coeff_7',0,10)
         22
          23
                 beta_7 = pm.Beta('coeff_7',1,3)
                                                               #binary
          24
                 beta 8 = pm.Normal('coeff 8',0,10)
                 sigma = pm.Exponential('error', lam=1)
          25
          26
                                                                                                                                   formula
          27
                 mu = alpha + beta_1*x1 + beta_2*x2 + beta_3*x3 + beta_4*x4 + beta_5*x5 + beta_6*x6 + beta_7*x7 + beta_8*x8
                 v hat = pm.Normal('v hat', mu, sigma, observed=v1)
         28
         29
         30
                 trace independent regression full = pm.sample(draws=2000,tune=1000,init="adapt diag")
```

sampling

Regression Model

Data

pm.Data()로 모델에 불러와서 각각 x1~x8로 변수 지정

Prior

regression coefficients: alpha(intercept), beta_1~beta_8, sigma에 대한 prior를 각각 지정

- numerical type은 일괄 normal(0, 10)
- binary type인 'city'에 해당하는 beta_1 ~ beta(3, 1), 'top10'에 해당하는 beta_7 ~ beta(1, 3)
- sigma ~ Exponential

Regression Model

Formula

```
mu = alpha + beta_1*x1 + beta_2*x2 + beta_3*x3 + beta_4*x4 + beta_5*x5 + beta_6*x6 + beta_7*x7 + beta_8*x8 y_hat = pm.Normal('y_hat',mu,sigma,observed=y1)
```

MCMC Sampling

총 3000개를 sampling해서 1000개를 burn-in으로 취급, 최종 2000개 samples.

Part 4 분석 결과

MCMC 결과: plot

MCMC 결과: summary

In [33]:

1 az.summary(trace_independent_regression_full)

Got error No model on context stack. trying to find log_likelihood in translation.

/Users/happyducky/opt/anaconda3/lib/python3.8/site-packages/arviz/data/io_pymc3_3x.py:98: FutureWarning: Using `from _pymc3` without the model will be deprecated in a future release. Not using the model will return less accurate and less useful results. Make sure you use the model argument or call from_pymc3 within a model context.

warnings.warn(

Out[33]:

	mean	sd	ndi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
intercept_1	6.750	0.050	6.657	6.843	0.001	0.001	1864.0	2406.0	1.0
coeff_2	-0.003	0.000	-0.003	-0.003	0.000	0.000	2271.0	2347.0	1.0
coeff_3	-0.001	0.001	-0.002	0.001	0.000	0.000	2462.0	2293.0	1.0
coeff_4	0.001	0.000	0.000	0.002	0.000	0.000	4111.0	2285.0	1.0
coeff_5	0.003	0.000	0.003	0.003	0.000	0.000	4272.0	2955.0	1.0
coeff_6	0.009	0.001	0.008	0.010	0.000	0.000	3961.0	2913.0	1.0
coeff_8	0.859	0.009	0.842	0.876	0.000	0.000	2239.0	2642.0	1.0
coeff_1	0.286	0.010	0.268	0.306	0.000	0.000	2449.0	2323.0	1.0
coeff_7	0.126	0.014	0.098	0.150	0.000	0.000	2609.0	2532.0	1.0
error	0.274	0.002	0.269	0.278	0.000	0.000	4517.0	2379.0	1.0

"Observed Y" vs "Posterior predictive Y"

Validation

- ♥ Validation set에 위의 independent_regression_full을 fitting시킴.
- Bayesian vs Frequentist

Frequentist: point estimate만 반환

Bayesian: 분포로서 반환

=> prediction 위해서는 Bayesian 방식을 써서 posterior 분포를 구했을지라도 하나의 추정치가

필요

=> posterior mean을 사용

MAE, RMSE

mae = 0.20821793668513697 rmse = 0.2714614655785255

Submission

42등 나이스~

DAC	ON 커뮤니티	티 대회 교육 랭킹 더보기			Q #	(P)	Ċ	태주
대회안내	데이터 코드 공유	R 토크 리더보드 제	출					
38	rollcake			19,373.18717	3		:	2년 전
39	ES			20,134.06269	4		:	3년 전
40	ahj			20,907.17812	2		Ģ	일 년 전
41	선호			21,018.25906	3		Ç	일 년 전
42	태주	태주		23,697.9639	1		:	2분 전
43	sally	sa		25,415.04747	1		:	2년 전
44	bossal00			25,893.89176	2			6달 전
45	bacon	ba		28,627.24332	2		:	2년 전

 Part 5

 기타 방법론 소개

모델링 기타방법론소개

Scikit-learn LinearRegression

Python lightgbm + Optuna

LightGBM

Linear Regression - Coding 기타방법론소개

```
[32] from sklearn.linear_model import LinearRegression import pandas as pd import numpy as np import matplotlib.pyplot as plt
```

```
cut = int(len(train_df)+0.8)
h_train = train_df[:cut]
h_valid = train_df[[cut:]]

h_train_X = h_train.drop('log_price', axis=1)
h_train_y = h_train['log_price']
h_valid_X = h_valid.drop('log_price', axis=1)
h_valid_y = h_valid['log_price']
```

```
[36] dat = LinearRegression()
dat.fit(h_train_X, h_train_y)
LinearRegression()

[38] y_pred = dat.predict(h_valid_X)
```


T Fitting 및 prediction

RMSE: 0.2735

Light GBM + Optuna 기타방법론소개

	Mode I	Score
0	LinearRegression	0.288778
1	Ridge	0.288777
2	Lasso	0.299014
3	ElasticNet	0.297440
4	DecisionTreeRegressor	0.309207
5	RandomForestRegressor	0.276021
6	XGBRegressor	0.247439
7	LGBMRegressor	0.239455

```
from optuna.samplers import TPESampler
sampler = TPESampler(seed=10)
def objective(trial):
   dtrain = lgb.Dataset(h_train_X, label=h_train_y)
   dtest = lgb.Dataset(h_valid_X, label=h_valid_y)
   param = {
        'objective': 'regression', # 회귀
        'max_depth': trial.suggest_int('max_depth',3, 15),
         'learning_rate': trial.suggest_loguniform("learning_rate", 1e-8, 1e-2),
        'n_estimators': trial.suggest_int('n_estimators', 100, 3000),
        'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
         'subsample': trial.suggest_loguniform('subsample', 0.4, 1),
   model = lgb.LGBMRegressor(**param)
   _lgb_model = model.fit(h_train_X, h_train_y, eval_set=[(h_valid_X, h_valid_y)], verbose<u>=0, early_stopping_rounds=25</u>)
   rmse = RMSE(h_valid_y, lgb_model.predict(h_valid_X))
   return rmse
study_lgb = optuna.create_study(direction='minimize', sampler=sampler)
study_lgb.optimize(objective, n_trials=100)
[1 2021-10-03 21:46:14,337] A new study created in memory with name: no-name-efe5cd63-f0e7-4b3e-8af4-1f6830447f94
[| 2021-10-03 21:46:29,273] Trial O finished with value: 0.7371358593423419 and parameters: {'max_depth': 13, 'learning_rate': 1.33202291
[| 2021-10-03 21:46:44,414] Trial 1 finished with value: 0.7369466723386557 and parameters: {'max_depth': 5, 'learning_rate': 1.543040014
 [| 2021-10-03 21:46:45,360] Trial 2 finished with value: 0.4897832583187339 and parameters: {'max_depth': 11, 'learning_rate': 0.00525242'
```


Light GBM + Optuna 기타방법론소개

```
trial = study_lgb.best_trial
trial_params = trial.params

print('Best Trial: score {},\ndftynparams {}'.format(trial.value, trial_params))

Best Trial: score 0.2073642671090797,
params {'max_depth': 13, 'learning_rate': 0.009480267802321527, 'n_estimators': 2566, 'min_child_samples': 84, 'subsample': 0.5742064444292969}
```

Best Score: 0.207

```
] final_lgb_model = lgb.LGBMRegressor(**trial_params)
final_lgb_model.fit(train_X, train_y)
final_lgb_pred = final_lgb_model.predict(test_df)
```

감사합니다