Exercice 1, énoncé. Inégalité de Ky-Fan.

- 1. Démontrer que $f: x \mapsto \ln\left(\frac{x}{1-x}\right)$ est concave sur $\left[0, \frac{1}{2}\right]$.
- 2. Soit $n \in \mathbb{N}^*$ et $(x_1, \dots, x_n) \in]0, \frac{1}{2}]^n$. Montrer que

$$\frac{\left(\prod_{i=1}^{n} x_{i}\right)^{1/n}}{\left(\prod_{i=1}^{n} (1 - x_{i})\right)^{1/n}} \leq \frac{\sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} (1 - x_{i})}.$$

Corrigé.

1. Pour tout $x \in]0, \frac{1}{2}]$, $f(x) = \ln(x) - \ln(1-x)$. La fonction f est dérivable deux fois sur $[0, \frac{1}{2}]$ et on a

$$\forall x \in]0, \frac{1}{2}]$$
 $f'(x) = \frac{1}{x} + \frac{1}{1-x}$ et $f''(x) = -\frac{1}{x^2} + \frac{1}{(1-x)^2} = \frac{2x-1}{x^2(1-x)^2}$.

La dérivée seconde de f est négative sur $]0,\frac{1}{2}]:$ f est concave sur cet intervalle

2. Appliquons l'inégalité de Jensen à la fonction f qui est concave, pour la moyenne $\frac{1}{n}\sum_{i=1}^n x_i$:

$$f\left(\frac{1}{n}\sum_{i=1}^{n}x_i\right) \ge \frac{1}{n}\sum_{i=1}^{n}f(x_i).$$

On obtient

$$\ln\left(\frac{\frac{1}{n}\sum_{i=1}^{n}x_i}{1-\frac{1}{n}\sum_{i=1}^{n}x_i}\right) \ge \frac{1}{n}\sum_{i=1}^{n}\ln\left(\frac{x_i}{1-x_i}\right),$$

c'est-à-dire

$$\ln\left(\frac{\frac{1}{h}\sum_{i=1}^{n}x_i}{\frac{1}{h}\left(1-\sum_{i=1}^{n}x_i\right)}\right) \ge \frac{1}{n}\ln\left(\prod_{i=1}^{n}\frac{x_i}{1-x_i}\right).$$

L'exponentielle étant croissante, on obtient

$$\frac{\sum_{i=1}^{n} x_i}{\left(1 - \sum_{i=1}^{n} x_i\right)} \ge \left(\prod_{i=1}^{n} \frac{x_i}{1 - x_i}\right)^{\frac{1}{n}}, \quad \text{soit} \quad \left|\frac{\left(\prod_{i=1}^{n} x_i\right)^{1/n}}{\left(\prod_{i=1}^{n} (1 - x_i)\right)^{1/n}} \le \frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} (1 - x_i)}\right|$$

Exercice 2, énoncé

Soit f une fonction continue sur [0,1]. On définit $\Delta_f: x \mapsto \int_0^1 |f(t)-x| dt$.

- 1. Démontrer que Δ_f est convexe sur \mathbb{R} .
- 2. Démontrer que Δ_f est continue sur \mathbb{R} . On pourra vérifier que f est 1-lipschitzienne.
- 3. Calculer les limites de Δ_f en $+\infty$. On pourra commencer par introduire les bornes de f sur [0,1].
- 4. Justifier que Δ_f admet un minimum sur \mathbb{R} .
- $5.\$ Prouver que l'ensemble des points où ce minimum est atteint est un intervalle.

Corrigé.

1. Soient x et y deux réels, soit $\lambda \in [0,1]$.

$$\Delta_f ((1 - \lambda)x + \lambda y) = \int_0^1 |f(t) - ((1 - \lambda)x + \lambda y)| dt$$

= $\int_0^1 |((1 - \lambda)(f(t) - x) + \lambda(f(t) - y))| dt$,

ceci en ayant écrit $f = (1 - \lambda)f + \lambda f$.

Pour $t \in [0,1]$ fixé, l'inégalité triangulaire donne

$$|((1-\lambda)(f(t)-x)+\lambda(f(t)-y))| \le (1-\lambda)|f(t)-x|+\lambda|f(t)-y|$$

Par croissance de l'intégrale, puis linéarité,

$$\int_{0}^{1} |((1-\lambda)(f(t)-x) + \lambda(f(t)-y))| dt \le \int_{0}^{1} ((1-\lambda)|f(t)-x| + \lambda|f(t)-y|) dt$$

$$\le (1-\lambda) \int_{0}^{1} |f(t)-x| dt + \lambda \int_{0}^{1} |f(t)-y| dt$$

Ceci laisse donc

$$\Delta_f ((1-\lambda)x + \lambda y) \le (1-\lambda)\Delta_f(x) + \lambda \Delta_f(y)$$

La fonction Δ_f est convexe sur \mathbb{R} .

2. Soient x et y deux réels.

En utilisant la linéarité, puis l'inégalité triangulaire pour l'intégrale,

$$|\Delta_f(x) - \Delta_f(y)| = \left| \int_0^1 |f(t) - x| dt - \int_0^1 |f(t) - y| dt \right|$$

$$= \left| \int_0^1 |f(t) - x| - |f(t) - y| dt \right|$$

$$\leq \int_0^1 ||f(t) - x| - |f(t) - y|| dt$$

Pour $t \in [0,1]$ fixé, l'inégalité triangulaire généralisée donne

$$||f(t) - x| - |f(t) - y|| \le |(f(t) - x) - (f(t) - y)| \le |x - y|.$$

Intégrons cette inégalité : par croissance,

$$\int_0^1 ||f(t) - x| - |f(t) - y|| \, \mathrm{d}t \le \int_0^1 |x - y| \, \mathrm{d}t.$$

ce qui amène
$$|\Delta_f(x) - \Delta_f(y)| \le |x - y|$$
.

La fonction Δ_f est 1-lipschitzienne, et partant, continue sur \mathbb{R} .

- 3. La fonction continue f admet sur le segment [0,1] un maximum M et un minimum m.
 - Soit $x \geq M$. On a

$$\forall t \in [0,1]$$
 $f(t) \le M \le x$ donc $|f(t) - x| = x - f(t)$

Par linéarité,

$$\Delta_f(x) = \int_0^1 (x - f(t)) dt$$
 soit $\Delta_f(x) = x - \int_0^1 f(t) dt$.

Au voisinage de $+\infty$, Δ_f est donc affine de pente 1. Ainsi, $f(x) \xrightarrow[x \to +\infty]{} +\infty$

• Soit x < m. On a

$$\forall t \in [0,1] \quad f(t) \ge M \ge x \quad \text{donc} \quad |f(t) - x| = f(t) - x$$

Par linéarité,

$$\Delta_f(x) = \int_0^1 (f(t) - x) dt$$
 soit $\Delta_f(x) = \int_0^1 f(t) dt - x$.

Au voisinage de $-\infty$, Δ_f est donc affine de pente -1. Ainsi, $f(x) \underset{x \to -\infty}{\longrightarrow} +\infty$

4. Puisque d'après la question précédente, Δ_f tend vers $+\infty$ en $+\infty$ et en $-\infty$, elle prend des valeurs supérieures à $\Delta_f(0)$ au voisinage de ces deux points. Considérons A < 0 et B > 0 tels que

$$\forall x \in]-\infty, A] \cup [B, +\infty[\Delta_f(x) \ge \Delta_f(0).$$

Sur le segment [A, B], la fonction Δ_f , continue d'après 2, possède un minimum : notons-le μ . Puisque $0 \in [A, B]$, on a $\mu \leq \Delta_f(0)$.

Ainsi, pour $x \in \mathbb{R} \setminus [A, B]$ $\Delta_f(x) \geq \Delta_f(0) \geq \mu$: le réel μ minore Δ_f sur tout \mathbb{R} . Puisque ce minorant μ est atteint (entre A et B),

$$\mu$$
 est le minimum global de Δ_f

5. Soient a et b deux points où le minimum μ de Δ_f est atteint. Par convexité, pour tout $\lambda \in [0,1]$,

$$\Delta_f((1-\lambda)a + \lambda b) \le (1-\lambda)\underbrace{\Delta_f(a)}_{=\mu} + \lambda \underbrace{\Delta_f(b)}_{=\mu} = \mu.$$

Puisque μ est un minorant de Δ_f sur \mathbb{R} , on a aussi $\Delta_f((1-\lambda)a+\lambda b) \geq \mu$, ce qui amène par antisymétrie $\Delta_f((1-\lambda)a+\lambda b) = \mu$. L'ensemble sur lequel le minimum est atteint est donc une partie convexe de \mathbb{R} : c'est un intervalle.