Mushroom Analysis: A Guide To Predicting Mushroom Edibility

A Demonstration of Classification Implementations

Background:

- Mushrooms possess external features that allow for classification as either poisonous or edible.
- Providing an accurate classification tool can eliminate repetitious, biological testing.
- The University of California, Irvine's data contains mushrooms' external features marked as single characters within an array.

Objective:

- Our group aims to create a classification system that produces reliable predictions on the edibility of the mushrooms examined through their trait arrays.
- Our goal is to use the most efficient and accurate classification algorithm to achieve our results.
- We also wanted to create a GUI that demonstrated our algorithms and could function in the field.
 - How we handled this goal will be demonstrated further into the presentation.

Weka:

- Java based machine learning toolkit and library
- Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization.

The University

- Easy-to-understand GUI and helpful documentation for Java implementation
- From the University of Waikato

Weka: The GUI

Exploratory Data Analysis (EDA):

- Our data is split into two classes: edible or poisonous
 - This situation requires a binomial classification method.
- The data is a character array of 22 mushroom features with a classification (e or p).
 - For example: x,s,n,f,n,f,w,b,h,t,e,s,s,w,w,p,w,o,e,n,s,g,e
- Which features should we keep and which features should we remove based on uselessness?

Exploratory Data Analysis (EDA) [continued]:

- We ran 6 different ranker algorithms on our data using the Weka library
- These 6 algorithms returned a unique sequence of features, and each feature was then given a specific rank.

Exploratory Data Analysis (EDA) [continued]:

Attribute Analysis using Ranker Algorithms in Weka

Implementation #1: Naive Bayes

- We utilized Weka's Naive Bayes classifier because of the reputation and its immediate compatibility with our data's current character array form.
- Naive Bayes proved to be the least complex: simple results with a simple algorithm
- Naive Bayes gives equal weights to features regardless if that feature is significant to the classification regions.

Implementation #2: Logistic Regression

- Logistic Regression is great for predicting binary results.
 - Edible/Poisonous
- Generally limits over-fitting and has low variance from results
- We eliminated 17 features and discovered that logistic regression maintained 100% accuracy, while naive bayes lost accuracy.
 - Those changes in accuracy demonstrate logistic regression's higher potential for dimension reduction.
 - This means we were able to further simplify our data manipulation, while maintaining the same level of reliability (accuracy).
- These benefits are why we chose to pursue this algorithm.

Optimal Algorithm: Logistic Regression

- We chose to pursue logistic regression
 - This is because of base-reliability and with Weka's library utility.
- We abandoned other algorithms such as K-NN, logical ruleset, clustering, and decision trees for reasons such as efficiency and memory.
- Logistic regression returned the highest accuracy in low-dimension conditions.
 - This demonstrates that logistic regression is the best classification algorithm for this data.

Difficulties, Solutions and Potential Improvements:

- Problem: Difficulty with using Weka
 - Solution: Fight the learning curve of Weka and convert our data file type to a Weka-supported file type (ARFF).
- Problem: Unsure of Accuracy Reliability
 - Solution: 3-fold and 10-fold cross validation

Visualization:

Logistic Regression Confusion Matrix

Logistic	Edible	Poisonous
Regression	(Predicted)	(Predicted)
Edible	1402	0
(Actual)		
Poisonous	0	1352
(Actual)		

- 100% accuracy
- Demonstrates the utility of assigning higher weights to more indicative features.

Naïve Bayes Confusion Matrix

Naïve Bayes	Edible (Predicted)	Poisonous (Predicted)
Edible (Actual)	1402	8
Poisonous (Actual)	21	1331

- 98.95% accuracy
- Demonstrates that equal trait weights can still lead to error simply because statistical significance goes unaccounted for.

Potential Next Steps:

- Collecting our own data
 - Mark each observation with the species so we can return more information
 - Collect data for more than two general
- Clustering
 - Create a cluster for each genera (Agaricus and Lepiota)
 - Within these, create a cluster for each species (Agaricus: ~300, Lepiota: ~400)

Application: Mushroom Analyzer

- 1
- Using our classification algorithms, our group created an android application "Mushroom Analyzer".
- Interested in testing some shrooms! Try it yourself!
- Link: bit.ly/2s9aYtx
- Simply select the features on the mushroom you wish to analyze and our application can determine its edibility.
- Everything is open source!
 - https://github.com/leonardishere/MushroomAnalyzer

Demonstration

- Try our methods for yourself!
 Here's the download link once more"
 - bit.ly/2s9aYtx
- You can test a mushroom yourself!

Features:

Odor: none

Gill spacing: crowded

Stalk surface: fibrous

Spore print color: black Population: abundant

Data/Library Resources:

- Weka 3: Data Mining Software in Java
 - http://www.cs.waikato.ac.nz/ml/weka/
- Weka for Android
 - https://github.com/rjmarsan/Weka-for-Android
- University of California, Irvine mushroom data sets
 - https://archive.ics.uci.edu/ml/datasets/Mushroom

Sources

- Mushroom image: http://www.iucnredlist.org/details/75093504/0
- Screenshots from Weka GUI

THANK YOU!