Задание №2 по дисциплине "Методы оптимизации"

Симплекс-метод

$$a)\,F=5x_1+4x_2 o\max$$

$$egin{cases} x_1 - 2x_2 \leq 6 \ -x_1 + x_2 \leq 8 \ x_1 + x_2 \leq 10 \end{cases}$$

$$x_1\geq 0,\,x_2\geq 0$$

Записываем в канонической форме:

$$egin{cases} x_1-2x_2+x_3=6 \ -x_1+x_2+x_4=8 \ x_1+x_2+x_5=10 \end{cases}$$

$$x_i \geq 0,\, i=\overline{1,5}$$

$$A_1 = egin{pmatrix} 1 \ -1 \ 1 \end{pmatrix}, \, A_2 = egin{pmatrix} -2 \ 1 \ 1 \end{pmatrix}, \, A_3 = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}, \, A_4 = egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}, \, A_5 = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}$$

Начальный базис: $(A_3,\ A_4,\ A_5)$

базис	c ₆	В	$c_1 = 5$	$c_2=4$	$c_3 = 0$	$c_4=0$	$c_5 = 0$
			A_1	A_2	A_3	A_4	A_5
A_3	0	6	1	-2	1	0	0

A_4	0	8	-1	1	0	1	0
A_5	0	10	1	1	0	0	1
Оце	нки	F=0	$\Delta_1=5$	$\Delta_2=4$	$\Delta_3=0$	$\Delta_4=0$	$\Delta_5=0$

$$egin{aligned} x_{onop} &= (0,0,6,8,10) \ F(x_{onop}) &= 0 \end{aligned}$$

Симплекс-разности:

$$egin{aligned} \Delta_1 &= 5 - (0) = 5 \,-\, max \ \Delta_2 &= 4 - (0) = 4 \ \Delta_3 &= 0 \ \Delta_4 &= 0 \ \Delta_5 &= 0 \end{aligned}$$

Не все $\Delta_r \leq 0 \implies$ решение не оптимально.

Не существует такой $\Delta_r>0$, что все $x_{ir}\leq 0,\ i=\overline{1,3}\Longrightarrow$ критерий отсутствия решения не выполняется.

Так как Δ_1 —наибольшая положительная, A_1 вводится в базис.

 $\text{Так как } \frac{6}{1} = 6, \, \frac{10}{1} = 10, \, 6 < 10 \\ \text{,} \quad A_3 \quad \text{выводится из базиса, } \mathbf{1} \quad -$ разрешающий элемент.

$$(A_1, A_4, A_5)_{-6$$
азис

базис	c ₆	В	$c_1=5$	$c_2=4$	$c_3=0$	$c_4=0$	$c_5 = 0$
			A_1	A_2	A_3	A_4	A_5
A_1	5	6	1	-2	1	0	0
A_4	0	14	0	-1	1	1	0
A_5	0	4	0	<u>3</u>	-1	0	1
Оце	Оценки		$\Delta_1=0$	$\Delta_2=14$	$\Delta_3=-5$	$\Delta_4=0$	$\Delta_5=0$

$$egin{aligned} x_{onop} &= (6,\,0,\,0,\,14,\,4) \ F(x_{onop}) &= 30 \end{aligned}$$

Симплекс-разности:

$$egin{aligned} \Delta_1 &= 0 \ \Delta_2 &= 4 - (-10) = 14 - max \ \Delta_3 &= 0 - (5) = -5 \ \Delta_4 &= 0 \ \Delta_5 &= 0 \end{aligned}$$

Не все $\Delta_r \leq 0 \implies$ решение не оптимально.

Не существует такой $\Delta_r>0$, что все $x_{ir}\leq 0,\ i=\overline{1,3}\Longrightarrow$ критерий отсутствия решения не выполняется.

Так как Δ_2 —наибольшая положительная, A_2 вводится в базис.

 A_5 выводится из базиса, **3** – разрешающий элемент.

$$(A_1, A_4, A_2)$$
 – базис

базис	c ₆	В	$c_1=5$	$c_2=4$	$c_3=0$	$c_4=0$	$c_5=0$
			A_1	A_2	A_3	A_4	A_5
A_1	5	$\frac{26}{3}$	1	0	$\frac{1}{3}$	0	$\frac{1}{3}$
A_4	0	$\frac{46}{3}$	0	0	$\frac{2}{3}$	1	$\frac{1}{3}$
A_2	4	$\frac{4}{3}$	0	1	$-\frac{1}{3}$	0	$\frac{1}{3}$
Оце	енки	$F = \frac{146}{3}$	$\Delta_1=0$	$\Delta_2=0$	$\Delta_3 = -rac{1}{3}$	$\Delta_4=0$	$\Delta_5 = -rac{14}{3}$

Опорная точка:

$$egin{aligned} x_{onop} &= \left(rac{26}{3},\,rac{4}{3},\,0,\,rac{46}{3},\,0
ight) \ F(x_{onop}) &= rac{146}{3} \end{aligned}$$

Симплекс-разности:

$$egin{aligned} \Delta_1 &= 0 \ \Delta_2 &= 0 \ \\ \Delta_3 &= 0 - \left(rac{5}{3} - rac{4}{3}
ight) = -rac{1}{3} \ \Delta_4 &= 0 \ \\ \Delta_5 &= 0 - \left(rac{10}{3} + rac{4}{3}
ight) = -rac{14}{3} \end{aligned}$$

 $\begin{pmatrix} 3 & 3 \end{pmatrix}$ 3

Все $\Delta_r \leq 0 \implies$ решение оптимально.

$$x_{max} = \left(rac{26}{3}, \, rac{4}{3}, \, 0, \, rac{46}{3}, \, 0
ight) \ F_{max} = rac{146}{3}$$

$$x_{max} = igg(rac{26}{3}, \, rac{4}{3}igg), \, F_{max} = rac{146}{3}$$

$$egin{aligned} b)\,F &= 5x_1 + 2x_2 o \max \ \left\{ egin{aligned} 5x_1 - 6x_2 &\leq 30 \ x_1 + 2x_2 &\geq 4 \end{aligned}
ight. \ x_1 &> 0, \ x_2 &> 0 \end{aligned}$$

Канонический вид:

$$egin{cases} 5x_1 - 6x_2 + x_3 = 30 \ x_1 + 2x_2 - x_4 = 4 \end{cases}$$

$$x_i \geq 0,\, i=\overline{1,4}$$

Ставим вспомогательную задачу:

$$G=-y_1 o max$$

$$\begin{cases} 5x_1 - 6x_2 + x_3 = 30 \\ x_1 + 2x_2 - x_4 + y_1 = 4 \end{cases}$$

$$x_i \geq 0, \ i = \overline{1,4} \quad y_1 \geq 0$$

$$A_1=inom{5}{1},\,A_2=inom{-6}{2},\,A_3=inom{1}{0},\,A_4=inom{0}{-1},\,A_{y_1}=inom{0}{1}$$

Начальный базис: (A_3, A_{y_1})

базис	c _g	В	$c_1=0$	$c_2=0$	$c_3 = 0$	$c_4=0$	$c_{y_1}=-1$
			A_1	A_2	A_3	A_4	A_{y_1}
A_3	0	30	5	-6	1	0	0
A_{y_1}	-1	4	1	<u>2</u>	0	-1	1
Оце	нки	G=-4	$\Delta_1=1$	$\Delta_2=2$	$\Delta_3=0$	$\Delta_4 = -1$	$\Delta_{y_1}=0$

Опорная точка:

$$egin{aligned} x_{onop} &= (0,\,0,\,30,\,0,\,4) \ G(x_{onop}) &= -4 \end{aligned}$$

Симплекс-разности:

$$egin{aligned} \Delta_1 &= 0 - (-1) = 1 \ \Delta_2 &= 0 - (-2) = 2 - & \max \ \Delta_3 &= 0 \ \Delta_4 &= 0 - (1) = -1 \ \Delta_{y_1} &= 0 \end{aligned}$$

Не все $\Delta_r \leq 0 \implies$ решение не оптимально.

Не существует такой $\Delta_r>0$, что все $x_{ir}\leq 0,\ i=\overline{1,2}\implies$ критерий отсутствия решения не выполняется.

Так как Δ_2 —наибольшая положительная, A_2 вводится в базис.

 A_{y_1} выводится из базиса, **2** – разрешающий элемент.

$$(A_3, A_2)_{\,-\,$$
базис

базис	c ₆	В	$c_1 = 0$	$c_2 = 0$	$c_3=0$	$c_4 = 0$	$c_{y_1}=-1$
			A_1	A_2	A_3	A_4	A_{y_1}
A_3	0	42	8	0	1	-3	3
A_2	0	2	$\frac{1}{2}$	1	0	$-\frac{1}{2}$	$\frac{1}{2}$

Оценки	G=0	$\Delta_1=0$	$\Delta_2=0$	$\Delta_3=0$	$\Delta_4=0$	$\Delta_{y_1}=-1$
--------	-----	--------------	--------------	--------------	--------------	-------------------

$$egin{aligned} x_{onop} &= (0,\,2,\,42,\,0,\,0) \ G(x_{onop}) &= 0 \end{aligned}$$

Симплекс-разности:

$$egin{aligned} \Delta_1 &= 0 - (0) = 0 \ \Delta_2 &= 0 \ \Delta_3 &= 0 \ \Delta_4 &= 0 - (0) = 0 \ \Delta_{y_1} &= -1 \end{aligned}$$

Все $\Delta_r \leq 0 \implies$ решение оптимально.

Базис, соответствующий оптимальному решению вспомогательной задачи, нужно взять в качестве исходного базиса основной задачи.

Теперь переходим к исходной целевой функции, используя базис, который приводит вспомогательную задачу к оптимальному решению.

$$(A_3, A_2)_{-6$$
азис

базис	c ₆	В	$c_1=5$	$c_2=2$	$c_3 = 0$	$c_4=0$
			A_1	A_2	A_3	A_4
A_3	0	42	8	0	1	-3
A_2	2	2	$\frac{1}{2}$	1	0	$-\frac{1}{2}$
Оце	нки	F=4	$\Delta_1=4$	$\Delta_2=0$	$\Delta_3=0$	$\Delta_4=1$

Опорная точка:

$$x_{onop} = (0, 2, 42, 0)$$

 $F(x_{onop}) = 4$

Симплекс-разности:

$$egin{aligned} \Delta_1 &= 5 - (1) = 4 - \ max \ \Delta_2 &= 0 \ \Delta_3 &= 0 \ \Delta_4 &= 0 - (-1) = 1 \end{aligned}$$

Не все $\Delta_r \leq 0 \implies$ решение не оптимально.

Не существует такой $\Delta_r>0$, что все $x_{ir}\leq 0,\ i=\overline{1,3}\Longrightarrow$ критерий отсутствия решения не выполняется.

Так как Δ_1 — наибольшая положительная, A_1 вводится в базис.

$$\frac{42}{8}=5.25,\ \frac{2}{\frac{1}{2}}=4,\ 4<5.25$$
 , A_2 выводится из базиса, $\frac{1}{2}$ — разрешающий элемент.

$$(A_3, A_1)$$
 – базис

базис	c ₆	В	$c_1=5$	$c_2=2$	$c_3 = 0$	$c_4=0$
			A_1	A_2	A_3	A_4
A_3	0	10	0	-16	1	<u>5</u>
A_1	5	4	1	2	0	-1
Оце	Оценки		$\Delta_1=0$	$\Delta_2 = -8$	$\Delta_3=0$	$\Delta_4=5$

Опорная точка:

$$x_{onop} = (4, 0, 10, 0)$$

 $F(x_{onop}) = 20$

Симплекс-разности:

$$egin{aligned} \Delta_1 &= 0 \ \Delta_2 &= 2 - (10) = -8 \ \Delta_3 &= 0 \ \Delta_4 &= 0 - (-5) = 5 - max \end{aligned}$$

Не все $\Delta_r \leq 0 \Longrightarrow$ решение не оптимально.

Так как Δ_4 – наибольшая положительная, A_4 вводится в базис.

 A_3 выводится из базиса, 5 – разрешающий элемент.

$$(A_4, A_1)_{\,-\,$$
базис

базис	c ₆	В	$c_1=5$	$c_2=2$	$c_3 = 0$	$c_4=0$
			A_1	A_2	A_3	A_4
A_4	0	2	0	$-\frac{16}{5}$	$\frac{1}{5}$	1
A_1	5	6	1	$-\frac{6}{5}$	$\frac{1}{5}$	0
Оце	Оценки		$\Delta_1=0$	$\Delta_2=8$	$\Delta_3 = -1$	$\Delta_4=0$

$$egin{aligned} x_{onop} &= (6,\,0,\,0,\,2) \ F(x_{onop}) &= 30 \end{aligned}$$

Симплекс-разности:

$$egin{aligned} \Delta_1 &= 0 \ \Delta_2 &= 2 - (-6) = 8 - max \ \Delta_3 &= 0 - (1) = -1 \ \Delta_4 &= 0 \end{aligned}$$

Не все $\Delta_r \leq 0 \implies$ решение не оптимально.

 $\Delta_2 - max$, координаты вектора $A_2 \leq 0 \Longrightarrow$ нет оптимального решения, так как целевая функция не ограничена сверху на области допустимых решений.

Ответ: x_{max} не существует, так как целевая функция не ограничена сверху.

c)
$$F=x_1+3x_2
ightarrow max \ egin{cases} -7x_1+4x_2\geq 28 \ x_1-3x_2\geq 15 \end{cases} \ x_1\geq 0,\ x_2\geq 0 \end{cases}$$

Канонический вид:

$$\begin{cases} -7x_1 + 4x_2 - x_3 = 28 \\ x_1 - 3x_2 - x_4 = 15 \end{cases}$$

$$x_i \geq 0,\, i=\overline{1,4}$$

Ставим вспомогательную задачу:

$$G = -y_1 - y_2
ightarrow max \ egin{cases} -7x_1 + 4x_2 - x_3 + y_1 = 28 \ x_1 - 3x_2 - x_4 + y_2 = 15 \end{cases}$$

$$x_i \geq 0, \ i = \overline{1,4}, \ y_1 \geq 0, \ y_2 \geq 0$$

$$A_1=inom{-7}{1},\ A_2=inom{4}{-3},\ A_3=inom{-1}{0},\ A_4=inom{0}{-1},\ A_{y_1}=inom{1}{0},\ A_{y_2}=inom{0}{1}$$

Начальный базис: (A_{y_1}, A_{y_2})

базис	<i>с</i> _б	В	$c_1 = 0$	$c_2=0$	$c_3 = 0$	$c_4=0$	$c_{y_1}=-1$	$c_{y_2}=-1$
			A_1	A_2	A_3	A_4	A_{y_1}	A_{y_2}
A_{y_1}	-1	28	-7	4	-1	0	1	0
A_{y_2}	-1	15	1	-3	0	-1	0	1
Оцени	ки	G=-43	$\Delta_1 = -6$	$\Delta_2=1$	$\Delta_3 = -1$	$\Delta_4 = -1$	$\Delta_{y_1}=0$	$\Delta_{y_2}=0$

Опорная точка:

$$egin{aligned} x_{onop} &= (0,\,0,\,0,\,0,\,28,\,15) \ G(x_{onop}) &= -43 \end{aligned}$$

Симплекс-разности:

$$egin{aligned} \Delta_1 &= 0 - (7-1) = -6 \ \Delta_2 &= 0 - (-4+3) = 1 - max \ \Delta_3 &= 0 - (1) = -1 \ \Delta_4 &= 0 - (1) = -1 \ \Delta_{y_1} &= 0 \ \Delta_{y_2} &= 0 \end{aligned}$$

Не все $\Delta_r \leq 0 \implies$ решение не оптимально.

Не существует такой $\Delta_r>0$, что все $x_{ir}\leq 0,\ i=\overline{1,2}\implies$ критерий отсутствия решения не выполняется.

Так как Δ_2 —наибольшая положительная, A_2 вводится в базис.

 A_{y_1} выводится из базиса, **4** – разрешающий элемент.

$$(A_2,\,A_{y_2})_{\,-\,$$
базис

базис	c _g	В	$c_1=0$	$c_2=0$	$c_3=0$	$c_4=0$	$c_{y_1}=-1$	$c_{y_2}=-1$
			A_1	A_2	A_3	A_4	A_{y_1}	A_{y_2}
A_2	0	7	$-\frac{7}{4}$	1	$-\frac{1}{4}$	0	$\frac{1}{4}$	0
A_{y_2}	-1	36	$-rac{17}{4}$	0	$-\frac{3}{4}$	-1	$\frac{3}{4}$	1
Оцен	ки	G=-36	$\Delta_1 = -rac{17}{4}$	$\Delta_2=0$	$\Delta_3 = -rac{3}{4}$	$\Delta_4 = -1$	$\Delta_{y_1} = -\frac{1}{4}$	$\Delta_{y_2}=0$

Опорная точка:

$$egin{aligned} x_{onop} &= (0,\,7,\,0,\,0,\,0,\,36) \ G(x_{onop}) &= -36 \end{aligned}$$

Симплекс-разности:

$$egin{aligned} \Delta_1 &= 0 - \left(rac{17}{4}
ight) = -rac{17}{4} \ \Delta_2 &= 0 \ \Delta_3 &= 0 - \left(rac{3}{4}
ight) = -rac{3}{4} \ \Delta_4 &= 0 - (1) = -1 \ \Delta_{y_1} &= -1 - \left(-rac{3}{4}
ight) = -rac{1}{4} \ \Delta_{y_2} &= 0 \end{aligned}$$

Так как все $\Delta_i \leq 0,\ i=\overline{1,4},\ y_1,\ y_2,\ G=-36<0 \Rightarrow$ изначальная задача не имеет допустимых точек; множество D (область допустимых решений) - пусто.

Ответ: решений нет, так как область допустимых решений пуста.