SEQ³: Differentiable Sequence-to-Sequence-to-Sequence Autoencoder for Unsupervised Abstractive Sentence Compression

Christos Baziotis, Ion Androutsopoulos, Ioannis Konstas, Alexandros Potamianos

NAACL-HLT 2019, Minneapolis, USA

Introduction

SEQ³: Sequence-to-Sequence Autoencoder

Unsupervised Models for Language

Vanilla Autoencoders

Unsupervised Models for Language

Vanilla Autoencoders

Discrete Latent Variable Autoencoders

- + Model the discreteness of language
- Sampling is not differentiable
- REINFORCE: sample inefficient and unstable

Contributions

Model	Supervision	Abstractive	Differentiable	Latent
Miao & Blunsom (2016)	semi			✓
Wang & Lee (2018)	weak	✓		\checkmark
Fevry & Phang (2018)	none		✓	
SEQ^3	none	✓	✓	✓

${\rm SEQ}^3$ Features

(+ contributions)

- + Fully unsupervised and abstractive
- + Fully differentiable (continuous approximations)
- + **Topic**-grounded compressions
- Human-readable compressions via LM prior
- User-defined flexible compression ratio

SOTA in unsupervised sentence compression

Reconstruction loss: distill input into the latent sequence

${\rm SEQ}^3$ Overview

- Reconstruction loss: distill input into the latent sequence
- LM Prior loss: human-readable compressions

- Reconstruction loss: distill input into the latent sequence
- LM Prior loss: human-readable compressions

- Reconstruction loss: distill input into the latent sequence
- LM Prior loss: human-readable compressions

- Reconstruction loss: distill input into the latent sequence
- LM Prior loss: human-readable compressions

- Reconstruction loss: distill input into the latent sequence
- LM Prior loss: human-readable compressions

- Reconstruction loss: distill input into the latent sequence
- LM Prior loss: human-readable compressions

- Reconstruction loss: distill input into the latent sequence
- LM Prior loss: human-readable compressions
- Topic loss: similar topic as input
- Length constraints: user-defined shorter length

Differentiable Sampling

Straight-Through + Gumbel-softmax

(Bengio et al., 2013, Maddison et al., 2017; Jang et al., 2017)

(Gumbel-max trick)

Backward-pass: Mixture of embeddings

(Gumbel-softmax approx.)

Gradient
$$\nabla_{\theta} e \approx \nabla_{\theta} \tilde{e}$$

Differentiable Sampling

Straight-Through + Gumbel-softmax

(Bengio et al., 2013, Maddison et al., 2017; Jang et al., 2017)

(Gumbel-max trick)

Backward-pass: Mixture of embeddings

(Gumbel-softmax approx.)

Gradient
$$\nabla_{\theta} e \approx \nabla_{\theta} \tilde{e}$$

Differentiable Sampling

Straight-Through + Gumbel-softmax

(Bengio et al., 2013, Maddison et al., 2017; Jang et al., 2017)

(Gumbel-max trick)

Backward-pass: Mixture of embeddings

(Gumbel-softmax approx.)

Gradient
$$\nabla_{\theta} e \approx \nabla_{\theta} \tilde{e}$$

Experimental Setup

Dataset	Training	Evaluation
Gigaword (English)	√ (source sentences)	✓
DUC-2003	,	✓
DUC-2004		\checkmark

Training

- Train LM (LM prior) \rightarrow Train SEQ³
- **Never** exposed to target sentences (compressions)
- Vocabulary: 15K most frequent words in source sentences

Metrics

Average F1 of ROUGE-1, ROUGE-2, ROUGE-L

Results on Gigaword

Supervision	Model	R-1	R-2	R-L
	${ m LEAD-8}$ (Rush et al., 2015)	21.86	7.66	20.45
Unsupervised	Pretrained Generator (Wang & Lee,2018)	21.26	5.60	18.89
	SEQ^3	25.39	8.21	22.68

Table: Results on (English) Gigaword for sentence compression.

Results on Gigaword

Supervision	Model	R-1	R-2	R-L
	${ m LEAD-8}$ (Rush et al., 2015)	21.86	7.66	20.45
Unsupervised	Pretrained Generator (Wang & Lee,2018)	21.26	5.60	18.89
	SEQ^3	25.39	8.21	22.68
Weak	Adv. REINFORCE (Wang & Lee,2018)	28.11	9.97	25.41
	ABS (Rush et al.,2015)	29.55	11.32	26.42
Supervised	SEASS (Zhou et al., 2017)	36.15	17.54	33.63
	words-lvt5k-1sent (Nallapati et al.,2016)	<u>36.40</u>	<u>17.70</u>	33.71

Table: Results on (English) Gigaword for sentence compression.

Model	R-1	R-2	R-L
SEQ^3 (Full)	25.39	8.21	22.68
${ m SEQ}^3$ w/o ${ m LM}$	24.48 (-0.91)	6.68 (-1.53)	21.79 (-0.89)
${ m SEQ}^3$ w/o topic	3.89	0.10	3.75

Table: Ablation results on Gigaword.

Both topic and LM losses work in synergy

- LM prior loss: how words should be included
- Topic loss: what words to include

Model Outputs

INPUT	the central election commission (cec) on monday decided that taiwan will hold another election of national assembly members on may $\#$.
GOLD	national <unk> election scheduled for may</unk>
SEQ ³	the central election commission (cec) announced elections
INPUT	dave bassett resigned as manager of struggling english premier league side nottingham forest on saturday after they were knocked out of the f.a. cup in the third round, according to
	local reports on saturday .
GOLD	· · · · · · · · · · · · · · · · · · ·

Conclusions and Future Work

Conclusions

- Fully **differentiable** seq2seq2seq (SEQ³) autoencoder
- SOTA in unsupervised abstractive sentence compression
- **Topic** loss is essential for convergence
- LM prior improves readability

Conclusions

- Fully **differentiable** seq2seq2seq (SEQ³) autoencoder
- SOTA in unsupervised abstractive sentence compression
- **Topic** loss is essential for convergence
- LM prior improves readability

Next Step: unsupervised machine translation

Questions?

Source code

• https://github.com/cbaziotis/seq3

Contact me

@cbaziotis

Appendix

Bonus Slides

Soft-argmax: Weighted sum of embeddings from peaked softmax (Goyal et al.,2017)

Soft-argmax: Weighted sum of embeddings from peaked softmax (Goyal et al.,2017)

Soft-argmax: Weighted sum of embeddings from peaked softmax (Goyal et al.,2017)

Gumbel-softmax: Differentiable approximation to sampling (Maddison et al.,2017; Jang et al.,2017)

Soft-argmax: Weighted sum of embeddings from peaked softmax (Goyal et al.,2017)

Gumbel-softmax: Differentiable approximation to sampling (Maddison et al.,2017; Jang et al.,2017)

Straight-Through: forward-pass: one-hot, backward-pass: soft (Bengio et al.,2013)

Out of Vocabulary (OOV) Words

We **copy OOV** words using the approach of Fevry and Phang (2018). Simpler alternative to pointer networks (See et al., 2017).

- **1** We use a set of **special OOV tokens**: OOV_1 , OOV_2 , ..., OOV_N .
- **2** We **replace** the ith unknown word in the input with the OOV_i token.
- ${f 3}$ If all the OOV tokens are used, we use the generic UNK token.
- 4 In inference, we replace the special tokens with the original words.

OOV Handling Example

RAW "John arrived in Rome yesterday. While in Rome, John had fun." INPUT " OOV_1 arrived in OOV_2 yesterday. While in OOV_2 , OOV_1 had fun." OOV_3 John, Rome

Temperature for Gumbel-Softmax

Temperature τ does not affect the forward pass, but it **affects gradients**.

- **1** Jang et al. (2017) anneal $\tau \to 0$.
- **2** Gulcehre et al. (2017) **learn** τ :

$$\tau(h_t^c) = \frac{1}{\log(1 + \exp(w_{\tau}^{\mathsf{T}} h_t^c)) + 1}$$

3 Havrylov & Titov (2017) tune bound τ_0 :

$$\tau(h_t^c) = \frac{1}{\log(1 + \exp(w_\tau^\intercal h_t^c)) + \textcolor{red}{\tau_0}}$$

Figure: Values of τ_0 bound.

In our experiments the learned temperature lead to **instability**. We **fix** $\tau=0.5$ following (Gu et al., 2018).

Implementation Details

Hyper-Parameters

- Encoders: 2-layer bidirectional LSTM with size 300
- Decoders: 2-layer unidirectional LSTM with size 300
- Embedding: initialize with $100d~\mathrm{GLoVE}$ (Pennington et al., 2014)

Parameter Sharing

- **Tied encoders** of the compressor and reconstructor.
- **Shared embedding** layer for all encoders and decoders.
- Tied embedding-output layers of both decoders.

1 Sample target length ${\rm M}.$

- 1 Sample target length M.
- 2 Decoder's state **length-aware initialization**.

- 1 Sample target length M.
- 2 Decoder's state **length-aware initialization**.
- 3 Countdown input.

- 1 **Sample** target length M.
- 2 Decoder's state **length-aware initialization**.
- 3 Countdown input.
- 4 Explicit length penalty.

Results on DUC Shared Tasks

Model	R-1	R-2	R-L
TOPIARY (Zajic et al., 2007)	25.12	6.46	20.12
(Woodsend et al., 2010)	22.00	6.00	17.00
ABS (Rush et al., 2015)	28.18	8.49	23.81
Prefix	20.91	5.52	18.20
SEQ ³ (Full)	22.13	6.18	19.3

Table: Results on the DUC-2004

Model	R-1	R-2	R-L
ABS (Rush et al., 2015)	28.48	8.91	23.97
Prefix	21.3	6.38	18.82
SEQ ³ (Full)	20.90	6.08	18.55

Table: Results on the DUC-2003

Model Output (Extra)

INPUT	the american sailors who thwarted somali pirates flew home
	to the u.s. on wednesday but without their captain , who
	was still aboard a navy destroyer after being rescued from
	the hijackers .

GOLD us sailors who thwarted pirate hijackers fly home

SEQ³ the american sailors who foiled somali pirates flew home after crew hijacked .

Baziotis et al. SEQ³ Autoencoder 8 / 8