PRÁCTICO 4

Grupo simétrico.

- (1) Encontrar cuatro subgrupos diferentes de \mathbb{S}_4 isomorfos a \mathbb{S}_3 y nueve isomorfos a \mathbb{S}_2 .
- (2) Si $\sigma = (i_1 \ i_2 \ \cdots \ i_r) \in \mathbb{S}_n \ y \ \tau \in \mathbb{S}_n$, entonces $\tau \sigma \tau^{-1} = (\tau(i_1) \ \tau(i_2) \ \cdots \ \tau(i_r))$.
- (3) Probar que $Z(\mathbb{S}_n) = \{(1)\}$ e $\operatorname{Int}(\mathbb{S}_n) \cong \mathbb{S}_n$, para todo entero $n \geq 2$. Calcular $Z(\mathbb{S}_2)$ e $\operatorname{Int}(\mathbb{S}_2)$.
- (4) Sea $\sigma \in \mathbb{S}_n$. Caracterizar la clase de conjugación C_{σ} y el centralizador \mathbb{S}_n^{σ} de la permutación σ en \mathbb{S}_n . Determinar sus órdenes.
- (5) Probar que \mathbb{A}_n es el único subgrupo de \mathbb{S}_n de índice dos.

Producto directo y semidirecto de grupos.

- (6) ¿Es \mathbb{S}_3 el producto directo de alguna familia de (sus) subgrupos propios? ¿Es $\mathbb{Z} \times \mathbb{Z} \cong \mathbb{Z}$?
- (7) Dar un ejemplo de grupos H_i , K_j tales que $H_1 \times H_2 \cong K_1 \times K_2$ y H_i no es isomorfo a ningún K_i .
- (8) Sean G un grupo abeliano y $H_j < G$, j = 1, 2. Mostrar que $G \cong H_1 \oplus H_2$ si y sólo si existen homomorfismos $\pi_j : G \to H_j$, $\iota : H_j \to G$, j = 1, 2, tales que $\pi_j \iota_j = \mathrm{id}_{H_j}$, $\pi_2 \iota_1 = \mathbf{0} = \pi_1 \iota_2$, y $\iota_1 \pi_1(x) + \iota_2 \pi_2(x) = x$, para todo $x \in G$. (Aquí $\mathbf{0}$ denota el homomorfismo $\mathbf{0}(x) = 0$, donde 0 es el elemento neutro del grupo abeliano G).
- (9) Sean G y H grupos y $\theta: H \to \operatorname{Aut}(G)$ un homomorfismo de grupos. Definimos en el conjunto $G \times H$ la siguiente operación binaria

$$(g,h) \cdot (g',h') := (g \ \theta(h)(g'),hh').$$

- (a) Probar que $(G \times H, \cdot)$ es un grupo. Este grupo se llama el producto semidirecto de G y H respecto de θ y se lo denota por $G \times_{\theta} H$ ó $G \rtimes_{\theta} H$ ó simplemente $G \rtimes H$.
- (b) Probar que $G \cong G \times \{e_H\} \triangleleft G \rtimes H$ y que $H \cong \{e_G\} \times H \hookrightarrow G \rtimes H$.
- (c) Hallar un $\theta : \mathbb{Z}_2 \to \operatorname{Aut}(\mathbb{Z}_3)$ tal que $\mathbb{S}_3 \simeq \mathbb{Z}_3 \rtimes_{\theta} \mathbb{Z}_2$.
- (10) Probar las siguientes afirmaciones.
 - (a) Para cada $n \geq 2$, $D_n \cong \mathbb{Z}_n \rtimes \mathbb{Z}_2$.
 - (b) Para cada $n \geq 2$, $\mathbb{S}_n \cong \mathbb{A}_n \rtimes \langle (12) \rangle$.
 - (c) El grupo Q_8 no es un producto semidirecto.

Grupo libre. Presentaciones de grupos.

- (11) Probar que todo elemento distinto de la identidad en un grupo libre tiene orden infinito.
- (12) Sea F un grupo libre y $n \in \mathbb{Z}$. Probar que el subgrupo de F generado por el conjunto $\{w^n : w \in F\}$ es normal en F.
- (13) Mostrar que el grupo definido por generadores a y b y relaciones:
 - (a) $a^8 = b^2 a^4 = ab^{-1}ab = e$, tiene orden ≤ 16 .
 - (b) $a^2 = e$, $b^3 = e$, es infinito y no abeliano.

- (14) Muestre que el grupo libre sobre el conjunto $\{a\}$ es un grupo infinito cíclico, y por lo tanto isomorfo a \mathbb{Z} .
- (15) Dar una presentación (X,Y) de \mathbb{S}_n con |X|=n-1 y otra con |X|=2.
- (16) Caracterizar el grupo presentado en cada caso.
 - (a) $\langle x \mid x \rangle$.
 - (b) $\langle x, y \mid x^2, y^4, xyxy \rangle$.
 - (c) $\langle x, y \mid x^n, xyx^{-1}y^{-1} \rangle$.
- (17) Probar que $\langle a,b \mid a^4,abab^{-1},a^2b^{-2} \rangle$ es una presentación del grupo de cuaterniones.