Associated learning

Hung-Hsuan Chen

1/11/21

1

Backward locking

- Since the parameters in a DNN are updated in a layer-wise fashion:
 - Updating the weights of one layer *locks* the weight updates in the other layers
- Challenging to apply parallel computing or a pipeline structure to update the weights in different layers simultaneously

1/11/2

Review: backpropagation

- A method to efficiently compute the gradient of the loss with respect to the parameters
 - Chain rule
 - Layer-wise update

1/11/21

2

Time complexity of training a DNN

- Training accuracy:
 - -n: number of training instances
 - $-\ell$: number of hidden layers.
 - Time complexity: $O(n\ell)$
- As a network becomes deeper, more training time are needed

1/11/21

4

-3

Can we "parallelize" the training?

- Two types of parallelizations
- Type 1
 - Compute SGD at different cores using different subsamples
 - Average the gradients of different cores, and apply parameter updates
- Type 2
 - Update parameters of different layers simultaneously
 - Seems more challenging
 - We focus on this type

1/11/2

5

5

Add pipeline directly

	t = 1	t = 2	t = 3	t = 4	t = 5	t = 6	t = 7	t = 8	t = 9	t = 10	t = 11	t = 12
$(x^{(1)}, y^{(1)})$	f ₁ ⁽⁰⁾	f ₂ ⁽⁰⁾	f ₃ ⁽⁰⁾	$\frac{\partial L}{\partial \theta_{f_3}}$	$\frac{\partial L}{\partial \theta_{f_2}}$	$\frac{\partial L}{\partial \theta_{f_1}}$						
$(x^{(2)}, y^{(2)})$		$f_1^{(0)}$	$f_2^{(0)}$	f ₃ ⁽⁰⁾	$\frac{\partial L}{\partial \theta_{f_3}}$	$\frac{\partial L}{\partial \theta_{f_2}}$	$\frac{\partial L}{\partial \theta_{f_1}}$					
$(x^{(3)}, y^{(3)})$			f ₁ ⁽⁰⁾	$f_2^{(0)}$	f ₃ ⁽¹⁾	$\frac{\partial L}{\partial \theta_{f_3}}$	$\frac{\partial L}{\partial \theta_{f_2}}$	$\frac{\partial L}{\partial \theta_{f_1}}$				
$(x^{(4)}, y^{(4)})$				f ₁ ⁽⁰⁾	f ₂ ⁽⁰⁾	f ₃ ⁽²⁾	$\frac{\partial L}{\partial \theta_{f_3}}$	$\frac{\partial L}{\partial \theta_{f_2}}$	$\frac{\partial L}{\partial \theta_{f_1}}$			
$(x^{(5)}, y^{(5)})$					f ₁ ⁽⁰⁾	$f_2^{(1)}$	$f_3^{(3)}$	$\frac{\partial L}{\partial \theta_{f_3}}$	$\frac{\partial L}{\partial \theta_{f_2}}$	$\frac{\partial L}{\partial \theta_{f_1}}$		

- If ℓ hidden layers and fully pipelined
 - Starting from $2(\ell+1)$ time unit, all paramters are updated once for every time unit
- · However, the updating is wrong

- E.g., at
$$t = 6$$
, $\nabla_{\theta f_1} L = \frac{\partial L}{\partial \theta f_3} \Big|_{f_3 = f_3^{(2)}} \cdot \frac{\partial f_3}{\partial \theta f_2} \Big|_{f_2 = f_2^{(1)}} \cdot \frac{\partial f_2}{\partial \theta f_1} \Big|_{f_1 = f_1^{(0)}}$

Naively using SGD and backpropagation

	t = 1	t = 2	t = 3	t = 4	t = 5	t = 6	t = 7	t = 8	t = 9	t = 10	t = 11	t = 12
$(x^{(1)}, y^{(1)})$	$f_1^{(0)}$	f ₂ ⁽⁰⁾	f ₃ ⁽⁰⁾	$\frac{\partial L}{\partial \theta_{f_3}}$	$\frac{\partial L}{\partial \theta_{f_2}}$	$\frac{\partial L}{\partial \theta_{f_1}}$						
$\left(x^{(2)},y^{(2)}\right)$							$f_1^{(1)}$	$f_2^{(1)}$	$f_3^{(1)}$	$\frac{\partial L}{\partial \theta_{f_3}}$	$\frac{\partial L}{\partial \theta_{f_2}}$	$\frac{\partial L}{\partial \theta_{f_1}}$

- Notation
 - f_i : function at layer i
 - $-f_i^{(j)}$: parameter values for layer i after j updates
 - $-\theta_{f_i}$: parameters for layer i
- Two hidden layers
 - Updating all parameters once requires 6 time units
- If ℓ hidden layers
 - Updating all parameters once requires $2(\ell+1)$ time units
- Training time: $O(\ell)$
 - Training time is long for "deep" network

6

How to pipeline?

- Gpipe
 - Yanping Huang et al.
 - NeurIPS 2019
- Associated learning
 - Yu-Wei Kao and Hung-Hsuan Chen
 - Neural Computation 33(1) 2021.

1/11/21

Q

9

11

Oevice D_3 Device D_2 Device D_1 Device D_0 Fig. Fig. Fig. Fig. Bubble • If no Gpipe, computing forward and backward for one mini-batch (i.e., $F_{0,0}$, $F_{0,1}$, ..., $F_{0,0}$ and all updates) requires 36 time units • With Gpipe, computation time reduces to 15 time units

10

1/11/21

12

Associated learning (AL)

- Modularize a DNN into smaller components
 - Each small component has a local objective
 - Local objectives are mutually indenpoent
- AL fully pipelines the forward and backward process, because the objectives are mutually independent

How to pipeline 2 Time unit 5 6 1st mini-batch Task 1 Task 2 Task 3 2nd mini-batch Task 1 Task 2 Task 3 3rd mini-batch Task 1 Task 2 Task 3 4th mini-batch Task 1 Task 2 Task 3 5th mini-batch Task 1 Task 2 Task 3 1/11/21

14

Associated learning - procedure

• Look for h_i such that $h_i(g_i(t_{i-1})) \approx t'_{i-1}$ • Regarded as an autoencoder $t_{i-1} \stackrel{g_i}{\rightarrow} t_i \stackrel{h_i}{\rightarrow} t'_{i-1}$ • If we can find such h_i s, then $t_{i-1} \approx h_i(t_i)$ • So we know how to $t_3 \rightarrow t_2 \rightarrow t_1 \rightarrow t_0$ • Prediction function $y = h_1 \left(h_2 \left(h_3 \left(b_3 \left(f_2 \left(f_1(x)\right)\right)\right)\right)\right)$

17

Associated learning

• Prediction function

$$y = h_1 \left(h_2 \left(h_3 \left(b_3 \left(f_3 \left(f_2 (f_1(x)) \right) \right) \right) \right) \right)$$
 backward function

The last bridge function

11/21

19

10

18

20

Effective and affiliated parameters

• During training, the model learns $-f_{is}, b_{i}, s, g_{is}, h_{is}$ • At prediction, only $-f_{is}, h_{i}, s \text{ and last } b_{i} \text{ are used}$ • We call f_{i}, h_{i} and last b_{i} effective parameters

• The others are affiliated parameters

21

Experimental results on MNIST BP AL MLP 98.5 ± 0.0% 98.6 ± 0.0% Vanilla CNN 99.4 ± 0.0% 99.5 ± 0.0% • MLP: 5 hidden layers - 1024 × 1024 × 5120 × 1024 × 1024 • Vanilla CNN: 13 hidden layers - First four layers: (3 × 3 × 32) kernels - Next four layers: (3 × 3 × 64) kernels - Last five layers: fully connected 1280 × 256 × 256 × 256 × 256 • We didn't try more complex networks, as MLP and Vanilla CNN are extremely good

Experimental settings

- Dataset
 - MNIST
 - CIFAR-10
 - CIFAR-100
- NN structure
 - MLP
 - Vanilla CNN
 - VGG Net
 - ResNet-20
 - ResNet-32

1/11/21

1/11/21

•

22

Experimental results on CIFAR-10

$\begin{array}{llllllllllllllllllllllllllllllllllll$
ResNet-20 91. $2 \pm 0.4\%$ 89.1 $\pm 0.5\%$
ResNet-32 $92.0 \pm 0.2\%$ $88.7 \pm 0.4\%$
VGG 92.3 \pm 0.2% 92.6 \pm 0.1 %

23

Experimental results on CIFAR-100 $26.5 \pm 0.4\%$ MLP $29.7 \pm 0.2\%$ Vanilla CNN $51.1 \pm 0.2\%$ $52.2 \pm 0.5\%$ ResNet-20 $63.7 \pm 0.2\%$ $61.0 \pm 0.6\%$ ResNet-32 $63.7 \pm 0.3\%$ $59.0 \pm 1.6\%$ $65.8 \pm 0.3\%$ $67.1 \pm 0.3\%$ 1/11/21

25

Number of layers vs training/test accuracies | Number of component layers | 1 layer | 2 layers | 3 layers layers | 3

Associated loss at different layers on **MNIST after 200 epochs** Number of 1 layer 2 layers 3 layers componen t layers $||s_1' - t_1||^2$ 1.2488 1.2219 $\times 10^{-5}$ $||s_2' - t_2||^2$ -3.8033 $\times 10^{-7}$ $\times 10^{-7}$ $||s_3' - t_3||^2$ -6.7192 $\times 10^{-10}$ Difference between s'_i and t_i indeed becomes smaller in the "higher" layer 1/11/21

26

t-SNE visualization of CNN on CIFAR-10

 Raw data, 4th layer, 8th layer, and 12th layer when training by BP

 Raw data, 4th layer, 8th layer, and 12th layer when training by AL

29

Summary

- Propose a method , AL, to decompose end-toend backpropagation into many short gradient flows
- Fully pipelined the learning
- Experiments of multiple network structures on multiple datsets show that AL is comparable (and sometimes better) than BP

1/11/21

31

Inter- and intra-distances and ratios of the two

Dataset	Network	Method	Interclass distance	Intraclass distance	Inter:Intra ratio
CIFAR-10	1.00 D	BP	39.36	67.97	0.58
	MLP	AL	0.73	0.66	1.11
		BP	41.82	26.87	1.56
	Vanilla CNN	AL	1.17	0.36	3.25
CIFAR-100		BP	114.42	342.65	0.33
	MLP	AL	0.23	0.28	0.82
		BP	114.71	163.43	0.70
	Vanilla CNN	AL	0.55	0.51	1.08

30

1/11/21

Discussion

- We implemented AL, but we didn't implement a "pipelined" AL
 - How to implement pipeline in Tensorflow or PyTorch?
- Most components in AL do not receive messages directly from the target, but AL performs comparable to BP.
 - This is a nice surprise, but we don't know why
 - If we know why AL works, perhaps we can design better network structure?
- Does AL converge? Does the loss function converge to minima?
- Experiments on other (larger) datasets?
- If you are interested in any of the above topics, please let me know

More information

- Associated Learning: Decomposing End-to-End Backpropagation Based on Autoencoders and Target Propagation
 - Yu-Wei Kao (高聿緯), Hung-Hsuan Chen (陳弘軒)
 - MIT Neural Computation 33(1), 2021
 - https://arxiv.org/pdf/1906.05560.pdf

1/11/21

33

33

Quiz

- What is backward locking?
- Compare pipeline and parallel computing
- What is the key concept of associated learning?

1/11/21