Modeling Acoustic-Prosodic Cues for Word Importance Prediction in Spoken Dialogues

Sushant Kafle, Matt Huenerfauth Golisano College of Computing and Information Sciences (GCCIS) Rochester Institute of Technology

Motivation

Not all words are equally important to the meaning of a spoken message; identifying word-importance is useful for speech recognition evaluation or text summarization. Prior models based only on text features are insufficient for conversational speech: Unlike formal text, conversation transcripts may lack capitalization or punctuation, use less formal grammar, contain filler words, or include more out-of-vocabulary words. Moreover, spoken conversations require transcription by human a automatic speech recognition (ASR) system, yet ASR is not always feasible or reliable, especially for low-resource languages.

Prosodic Cues in Speech

Fig 1: Example of conversational-style of text ("right where you move from") that is difficult to disambiguate without prosodic cues; the correct sentence structure being: "Right! Where you move from?"

Objectives

In this work, we investigate modeling acoustic-prosodic cues for predicting the importance of words to the meaning of a spoken dialogue. We frame this as a sequence labeling task and explore neural architecture for context modeling on speech. Our goal is to incorporate speech features extracted from a sequence of voiced-regions in speech into a prediction model, operating at an utterance-level, to make the prediction of the importance of individual words in the utterance.

Word Importance

Fig 2: Importance scores assigned to words in an example sentence by human annotators on our project.

Feature Representation

Fig 3: Architecture for feature extraction from words in a time-series speech data.

Approach

For each word-segment in an utterance, a fixed-length (10ms) interval window sliding through the word is used to obtain smaller interval-segments. We examine four categories of features, including: pitch-related features (10), energy features (11), voicing features (3) and lexical features (6). Using the neural architecture in Fig 3, a word-level feature representation is learned based on the prosodic features extracted from the interval sequences. Finally, another bidirectional RNN network based on Long-Short Term Memory (LSTM) units, used for context modeling, makes the wordimportance prediction utilizing the learned word-level features from the previous network.

This material is based upon work supported by a Google Faculty Research Award and by the National Technical Institute for the Deaf (NTID).

Results

Model	RMS	F1
LSTM-SOFTMAX	0.705	0.60
LSTM-ORD	0.672	0.601
LSTM-CRF	0.706	0.598

Performance of the speech-based models on the test data under different projection layers: softmax layer (LSTM-SOFTMAX), oridinal softmax layer (LSTM-ORD) and, conditional random field based layer (LSTM-CRF).

Model	RMS	F1
speech-based	0.672	0.601
text-based	0.598	0.73
+ WER: 0.18	0.621	0.658
+ WER: 0.28	0.677	0.59
	•	•

Comparison of the speech-based model with the text-based models operating on transcripts from two ASR systems, with different levels of Word Error Rate (WER): Watson Speech-to-Text(with WER=0.18 on our test data set) and Google Cloud Speech (with WER=0.28).

Conclusions

Using acoustic features in spoken dialogues, we evaluated neural architectures for the task of the identifying importance individual words to the overall meaning of a dialogue. Specifically, we evaluated an importance labeler for this classification task. Our model performed competitively against state-of-the-art text-based word-importance prediction models, models especially against operating on imperfect Automatic Speech Recognition output.