Estudo de um modelo simples para o diodo térmico

- 1. Introdução
 - 1.1. Motivação
 - 1.2. Fundamentos
- 2. Modelo matemático
- 3. Metodologia
 - 3.1. Análise
 - 3.2. Métodos Numéricos
- 4. Resultados
- 5. Conclusão

Solid-State Thermal Rectifier

C. W. Chang, 1,4 D. Okawa, A. Majumdar, 2,3,4 A. Zettl 1,3,4*

Solid-State Thermal Rectifier

C. W. Chang, 1,4 D. Okawa, A. Majumdar, 2,3,4 A. Zettl 1,3,4*

Solid-State Thermal Rectifier

C. W. Chang, 1,4 D. Okawa, A. Majumdar, 2,3,4 A. Zettl 1,3,4*

Solid-State Thermal Rectifier

C. W. Chang, 1,4 D. Okawa, A. Majumdar, 2,3,4 A. Zettl 1,3,4*

Solid-State Thermal Rectifier

C. W. Chang, 1,4 D. Okawa, A. Majumdar, 2,3,4 A. Zettl 1,3,4*

Solid-State Thermal Rectifier

C. W. Chang, 1,4 D. Okawa, A. Majumdar, 2,3,4 A. Zettl 1,3,4*

Solid-State Thermal Rectifier

C. W. Chang, 1,4 D. Okawa, A. Majumdar, 2,3,4 A. Zettl 1,3,4*

Solid-State Thermal Rectifier

C. W. Chang, 1,4 D. Okawa, A. Majumdar, 2,3,4 A. Zettl 1,3,4*

Solid-State Thermal Rectifier

C. W. Chang, 1,4 D. Okawa, A. Majumdar, 2,3,4 A. Zettl 1,3,4*

$$\frac{K_1 - K_2}{K_2} \approx 7\%$$

Solid-State Thermal Rectifier

C. W. Chang, 1,4 D. Okawa, A. Majumdar, 2,3,4 A. Zettl 1,3,4*

Solid-State Thermal Rectifier

C. W. Chang, 1,4 D. Okawa, 1 A. Majumdar, 2,3,4 A. Zettl 1,3,4*

www.sciencemag.org SCIENCE VOL 314 17 NOVEMBER 2006

APPLIED PHYSICS LETTERS 95, 171905 (2009)

An oxide thermal rectifier

W. Kobayashi, 1,a) Y. Teraoka, 2 and I. Terasaki3

(Received 13 June 2009; accepted 2 October 2009; published online 29 October 2009)

Solid-State Thermal Rectifier

C. W. Chang, 1,4 D. Okawa, A. Majumdar, 2,3,4 A. Zettl 1,3,4*

www.sciencemag.org SCIENCE VOL 314 17 NOVEMBER 2006

APPLIED PHYSICS LETTERS 95, 171905 (2009)

An oxide thermal rectifier

W. Kobayashi, 1,a) Y. Teraoka, and I. Terasaki 3

(Received 13 June 2009; accepted 2 October 2009; published online 29 October 2009)

Rectification of electronic heat current by a hybrid thermal diode

Maria José Martínez-Pérez, Antonio Fornieri and Francesco Giazotto*

1ª lei da termodinâmica Equação da Continuidade
$$-\frac{\partial Q}{\partial x} = C\rho \frac{\partial Q}{\partial x}$$

1ª lei da termodinâmica Equação da Continuidade
$$-\frac{\partial \dot{Q}}{\partial x} = C\rho \frac{\partial \dot{Q}}{\partial x}$$

Lei de Fourier
$$\dot{Q} = -\kappa \frac{dT}{dz}$$

Equação do Calor

Lei de Fourier

$$\dot{Q} = -\kappa \frac{dT}{dx}$$

$$\frac{\partial T}{\partial t} = \alpha^2 \frac{\partial^2 T}{\partial x^2}; \quad \alpha^2 = \frac{\kappa}{C \rho}$$

Equação do Calor

$$\frac{\partial T}{\partial t} = \alpha^2 \frac{\partial^2 T}{\partial x^2}; \quad \alpha^2 = \frac{\kappa}{C \rho}$$

Equação do Calor

Equação do Calor

$$\frac{\partial T}{\partial t} = \alpha^2 \frac{\partial^2 T}{\partial x^2}; \quad \alpha^2 = \frac{\kappa}{C\rho}$$

Estado Estacionário

$$T = -\frac{(T_1 - T_2)}{I} \cdot x + T_1$$

Equação do Calor

Equação do Calor

$$\frac{\partial T}{\partial t} = \alpha^2 \frac{\partial^2 T}{\partial x^2}; \quad \alpha^2 = \frac{\kappa}{C\rho}$$

Estado Estacionário

$$T = -\frac{(T_1 - T_2)}{L} \cdot x + T_1 \qquad \frac{\dot{Q}}{\Delta T} = -\frac{\kappa}{L}$$

Sólidos

$$H = \sum_{n} \frac{m}{2} v^2 + \frac{K}{2} (u_n - u_{n+1})^2$$

Sólidos

$$H = \sum_{n} \frac{m}{2} v^2 + \frac{K}{2} (u_n - u_{n+1})^2$$

Sólidos

$$H = \sum_{n} \frac{m}{2} v^2 + \frac{K}{2} (u_n - u_{n+1})^2$$

Sólidos

$$H = \sum_{n} \frac{m}{2} v^2 + \frac{K}{2} (u_n - u_{n+1})^2$$

Sólidos

$$H = \sum_{n} \frac{m}{2} v^2 + \frac{K}{2} (u_n - u_{n+1})^2$$

- Resistividade elétrica

Calor específico

Condutividade térmica

Sólidos

$$H = \sum_{n} \frac{m}{2} v^2 + \frac{K}{2} (u_n - u_{n+1})^2$$

- Resistividade elétrica

Calor específico

Condutividade térmica

$$U^{anh} = \sum_{i,j,k} \frac{1}{3!} \frac{\partial^3 U}{\partial u_i \partial u_j \partial u_k} \bigg|_{u=0} \cdot u_i u_j u_k + \sum_{i,j,k,l} \frac{1}{4!} \frac{\partial^4 U}{\partial u_i \partial u_j \partial u_k \partial u_l} \bigg|_{u=0} \cdot u_i u_j u_k u_l + \dots$$

Sólidos

$$H = \sum_{n} \frac{m}{2} v^2 + \frac{K}{2} (u_n - u_{n+1})^2$$

- Resistividade elétrica

Calor específico

• Condutividade térmica

$U^{anh} = \sum_{i,j,k} \frac{1}{3!} \frac{\partial^3 U}{\partial u_i \partial u_j \partial u_k} \bigg|_{u=0} \cdot u_i u_j u_k + \sum_{i,j,k,l} \frac{1}{4!} \frac{\partial^4 U}{\partial u_i \partial u_j \partial u_k \partial u_l} \bigg|_{u=0} \cdot u_i u_j u_k u_l + \dots$

Sólidos

$$H = \sum_{n} \frac{m}{2} v^2 + \frac{K}{2} (u_n - u_{n+1})^2$$

- Resistividade elétrica

Calor específico

- Condutividade térmica

$U^{anh} = \sum_{i,j,k} \frac{1}{3!} \frac{\partial^3 U}{\partial u_i \partial u_j \partial u_k} \bigg|_{u=0} \cdot u_i u_j u_k + \sum_{i,j,k,l} \frac{1}{4!} \frac{\partial^4 U}{\partial u_i \partial u_j \partial u_k \partial u_l} \bigg|_{u=0} \cdot u_i u_j u_k u_l + \dots$

cálculo da **condutividade térmica** X **relaxação** para o estado estacionário

cálculo da **condutividade térmica** X **relaxação** para o estado estacionário

cálculo da **condutividade térmica** X **relaxação** para o estado estacionário

2. Modelo matemático

$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + U_{int}(x_{i+1}, x_i) + U_{ext, i}(x_i)$$

$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + U_{int}(x_{i+1}, x_i) + U_{ext, i}(x_i)$$

Banho Térmico?

$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + U_{int}(x_{i+1}, x_i) + U_{ext, i}(x_i)$$

Banho Térmico?

Alterações nas equações de movimento para as partículas 1 e N

Como interpretar o modelo em termos "termodinâmicos"?

Como interpretar o modelo em termos "termodinâmicos"?

Temperatura "Cinética"

$$T_j = \left\langle \frac{p_j^2}{m} \right\rangle$$

Como interpretar o modelo em termos "termodinâmicos"?

Temperatura "Cinética"

$$T_j = \left\langle \frac{p_j^2}{m} \right\rangle$$

Como interpretar o modelo em termos "termodinâmicos"?

Temperatura "Cinética"

$$T_j = \left\langle \frac{p_j^2}{m} \right\rangle$$

Fluxo de Calor

$$\mathcal{J}_n = \frac{1}{2}(\dot{x}_{n+1} + \dot{x}_n) \cdot F(x_{n+1} - x_n)$$

Como interpretar o modelo em termos "termodinâmicos"?

Temperatura "Cinética"

$$T_j = \left\langle \frac{p_j^2}{m} \right\rangle$$

Fluxo de Calor

$$\mathcal{J}_{n} = \frac{1}{2}(\dot{x}_{n+1} + \dot{x}_{n}) \cdot F(x_{n+1} - x_{n})$$

Banho Térmico

Banho Térmico

Como descrever um banho térmico?

Banho Térmico

Temperatura constante ⇒ Ensemble canônico ⇒ Distribuição de Maxwell-Boltzmann

Como descrever um banho térmico?

Banho Térmico

Como descrever um banho térmico?

Banho Térmico

Como descrever um banho térmico?

Banho Térmico

Como descrever um banho térmico?

$$p(v) = \left(\frac{m}{2\pi k_B T}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{mv^2}{2k_B T}\right)$$

Banho Térmico

$$p(v) = \left(\frac{m}{2\pi k_B T}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{mv^2}{2k_B T}\right)$$

Banho Térmico

Distribuição de Maxwell-Boltzmann

$$p(v) = \left(\frac{m}{2\pi k_B T}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{mv^2}{2k_B T}\right)$$

Modelo determinístico

Termostato de Nosè-Hoover

Banho Térmico

Distribuição de Maxwell-Boltzmann

$$p(v) = \left(\frac{m}{2\pi k_B T}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{mv^2}{2k_B T}\right)$$

Modelo determinístico

Termostato de Nosè-Hoover

Modelo estocástico

Banho Térmico

Termostato Nosè-Hoover

$$H_N = \sum_{i=1}^{N} \left(\frac{\mathbf{p}_i^2}{2m_i s^2} + \phi(\mathbf{q}) \right) + gk_B T \cdot \ln(s) + \frac{p_s^2}{2Q} \quad ; \quad Q = 3Nk_B T \tau^2$$

Banho Térmico

Termostato Nosè-Hoover

$$H_N = \sum_{i=1}^N \left(\frac{\mathbf{p}_i^2}{2m_i s^2} + \phi(\mathbf{q}) \right) + gk_B T \cdot \ln(s) + \frac{p_s^2}{2Q} \; ; \quad Q = 3Nk_B T \tau^2 \\ g = 3N \qquad ; \quad \xi = \frac{p_s}{Q}$$

$$\begin{aligned}
\frac{d\mathbf{q}_i}{dt} &= \frac{\mathbf{p}_i}{m} \\
\frac{d\mathbf{p}_i}{dt} &= \mathbf{F}_i - \xi \mathbf{p}_i \\
\frac{d\xi}{dt} &= \frac{1}{\tau^2} \left[\frac{1}{mk_B TN} \sum_{i=1}^{N} \mathbf{p}_i^2 - 1 \right]
\end{aligned}$$

Banho Térmico

$$m\frac{d\dot{q}}{dt} = -\gamma\dot{q} + \eta(t) \quad ; \quad \langle \eta(t) \rangle = 0 \\ \langle \eta(t)\eta(t') \rangle = \Gamma\delta(t - t')$$

Banho Térmico

Banho de Langevin

Graus de liberdade lentos

Banho Térmico

$$m\frac{d\dot{q}}{dt} = -\gamma\dot{q} + \eta(t) \quad ; \quad \langle \eta(t) \rangle = 0 \\ \langle \eta(t)\eta(t') \rangle = \Gamma\delta(t - t')$$

Banho Térmico

$$m\frac{d\dot{q}}{dt} = -\gamma\dot{q} + \eta(t) \quad \frac{\langle \eta(t) \rangle = 0}{\langle \eta(t) \eta(t') \rangle = \Gamma\delta(t - t')}$$

$$\langle \dot{q} \rangle = v_0 e^{-\gamma t}$$

Banho Térmico

$$m\frac{d\dot{q}}{dt} = -\gamma\dot{q} + \eta(t) \quad ; \quad \langle \eta(t) \rangle = 0 \\ \langle \eta(t)\eta(t') \rangle = \Gamma\delta(t - t')$$

$$\langle \dot{q} \rangle = v_0 e^{-\gamma t}$$

$$\langle \dot{q}^2 \rangle - \langle \dot{q} \rangle^2 = \frac{\Gamma}{2\gamma} (1 - e^{-2\gamma t})$$

Banho Térmico

$$m\frac{d\dot{q}}{dt} = -\gamma\dot{q} + \eta(t) \quad ; \quad \langle \eta(t) \rangle = 0 \\ \langle \eta(t)\eta(t') \rangle = \Gamma\delta(t - t')$$

$$\langle \dot{q} \rangle = v_0 e^{-\gamma t}$$

$$\langle \dot{q} \rangle = v_0 e^{-\gamma t}$$

$$\langle \dot{q}^2 \rangle - \langle \dot{q} \rangle^2 = \frac{\Gamma}{2\gamma} (1 - e^{-2\gamma t})$$

$$\Gamma = \frac{2\gamma k_B T}{m}$$

$$\Gamma = \frac{2\gamma k_B T}{m}$$

Banho Térmico

$$m\frac{d\dot{q}}{dt} = -\gamma\dot{q} + \frac{2\gamma k_B T}{m}\epsilon(t) \quad ; \quad \langle \epsilon(t) \rangle = 0 \\ \langle \epsilon(t)\epsilon(t') \rangle = \delta(t-t')$$

$$\langle \dot{q} \rangle = v_0 e^{-\gamma t}$$

$$\langle \dot{q} \rangle = v_0 e^{-\gamma t}$$

$$\langle \dot{q}^2 \rangle - \langle \dot{q} \rangle^2 = \frac{\Gamma}{2\gamma} (1 - e^{-2\gamma t})$$

$$\Gamma = \frac{2\gamma k_B T}{m}$$

$$\Gamma = \frac{2\gamma k_B T}{m}$$

$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \frac{k}{2} (x_i - x_{i+1})^2$$

Cadeia de Partículas

$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \frac{k}{2} (x_i - x_{i+1})^2$$

Modelo harmônico

$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \frac{k}{2} (x_i - x_{i+1})^2 + U_{anh, i}$$

$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \frac{k}{2} (x_i - x_{i+1})^2 + U_{anh, i}$$

Toda
$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \exp(-(x_{i+1} - x_i)) + (x_{i+1} - x_i) - 1$$

Toda
$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \exp(-(x_{i+1} - x_i)) + (x_{i+1} - x_i) - 1$$

FPUT
$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \frac{k}{2}(x_i - x_{i+1})^2 + \frac{k'}{4}(x_i - x_{i+1})^4$$

Toda
$$\mathscr{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \exp(-(x_{i+1} - x_i)) + (x_{i+1} - x_i) - 1$$

FPUT
$$\mathscr{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \frac{k}{2}(x_i - x_{i+1})^2 + \frac{k'}{4}(x_i - x_{i+1})^4$$

$$\phi^{4} \qquad \mathscr{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \frac{k}{2} (x_i - x_{i+1})^2 + \frac{k''}{4} x_i^4$$

Cadeia de Partículas

Frenkel-Kontorova

$$\mathscr{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + \frac{k}{2} (x_i - x_{i+1})^2 + \frac{k'}{4} (x_i - x_{i+1})^4$$

$$R = \frac{\kappa_R - \kappa_L}{\kappa_L}$$

Métodos Numéricos Estocásticos

Processo Ornstein-Uhlenbeck => Cálculo Estocástico => Revisar nossos métodos numéricos

Pulo do Gato: Variar só um pouco os determinísticos pra obter os estocásticos. É mais fácil.

B.2

Integração numérica de equações diferenciais estocásticas

Para uma equação diferencial estocástica da forma

$$\frac{dx}{dt} = a(x,t) + b(x,t)\xi(t), \tag{B-5}$$

não existe uma adaptação simples dos métodos numéricos de equações diferencias ordinárias [22] e isto é porque a idealização do ruido é não diferenciável. Portanto, a solução

$$x(t) = x_0 + \int_{t_0}^t a(x(s))ds + \int_{t_0}^t b(x(s))dW(s),$$
 (B-6)

o qual permite usar os métodos de integração numérica usuais e acrescentar o termo do ruído a cada passo de tempo.

Euler

The Euler's Method consists of approaching the evolution of the system by a Taylor series truncated at the linear terms at each step

$$\mathbf{u}(t_n + \tau) \approx \mathbf{u}(t_n) + \tau \left(\frac{d\mathbf{u}}{dt}\right)_{t=t_n},$$

$$v_{n+1} = v_n - \tau \gamma v_n + \sqrt{\tau \Gamma} \xi_n$$
$$x_{n+1} = x_n + \tau v_n$$

Verlet

$$e^{i\mathcal{L}\delta t} \approx e^{i\mathcal{L}_2\delta t/2} e^{i\mathcal{L}_1\delta t} e^{i\mathcal{L}_2\delta t/2}$$
.

Using \mathcal{A} as being the vector in the phase space and applying the approximated evolution operator, one gets the system of equations:

$$\mathbf{p}(t + \delta t/2) = \mathbf{p}(t) + \frac{\delta t}{2} \frac{d\mathbf{p}(t)}{dt}$$

$$\mathbf{q}(t) = \mathbf{q}(t) + \delta t \frac{1}{m} \mathbf{p}(t)$$

$$\mathbf{p}(t+\delta t) = \mathbf{p}(t+\delta t/2) + \frac{\delta t}{2} \frac{d\mathbf{p}(t+\delta t)}{dt}$$

Runge Kutta

Runge Kutta

Another commonly used algorithm is the Runge Kutta family of methods, mostly the classical 2nd order and 4th order methods. In this method, the increment is approximated by a series.

$$\phi = \sum_{i=0}^{m} (a_i k_i)$$

Modelo de Frenkel-Kontorova

$$U_{ext}(x_i) = A \cdot \left(1 - \cos\left(\frac{2\pi x_i}{a_S}\right)\right)$$

Modelo ϕ^4

$$U_{ext}(x_i) = A \cdot x_i^4$$

Modelo Frenkel-Kontorova

Modelo Frenkel-Kontorova

Modelo Frenkel-Kontorova x Modelo ϕ^4

Dificuldade do modelo Frenkel Kontorova para convergência

Número de amostras: 200

Número de partículas na cadeia: 4

Potencial:

Passo de tempo: 0.001

Tempo total da simulação: 100,000.0

Tempo transiente: 1,000.0

Temperatura média: 1.0

Constante elástica da esquerda: 1.0

Amplitude do potencial esquerdo: 1.0

Constante elástica da direita: 5.0

Amplitude do potencial direita: 5.0

Coeficiente de arraste: 1.0

Constante elástica da interfase: 0.1

A razão k/A fica constante na esquerda e na direita.

- > Variar mu
- > Variar dT ou k_int

Eficiência

5. Conclusão

5. Conclusões

Discussão de resultados

- Mu: um tipo de interação de interfase. Quanto maior, melhor.

5. Conclusões

Novos trabalhos

- Tempo até estacionaridade

REFERÊNCIAS

1. Introdução