算法设计Assignment_1

ZY2006109_姬轶

一、用动态规划方法手工求解下面的问题:

某工厂调查了解市场情况,估计在今后四个月内,市场对其产品的需求量如下表所示。

时期 (月)	需要量(产品单位)
1	2
2	3
3	2
4	4

已知:对每个月来讲,生产一批产品的固定成本费为3(千元),若不生产,则为零。每生产单位产品的成本费为1(千元)。同时,在任何一个月内,生产能力所允许的最大生产批量为不超过6个单位。

又知每单位产品的库存费用为每月 0.5 (千元), 同时要求在第一个月开始之初, 及在第四个月末, 均无产品库存。

问:在满足上述条件下,该厂应如何安排各个时期的生产与库存,使所花的总成本费用最低?

要求: 写出各种变量、状态转移方程、递推关系式、和详细计算步骤。

解:

每个月的需求量: n_k 。

状态变量: 每月初的库存容量: x_k , 有 $x_1 = x_5 = 0$, $0 \le x_k \le n_k + \cdots + n_4$.

决策变量: 每月初需要生产的容量: p_k , 有 $max\{0, n_k - x_k\} \leq p_k \leq$

 $min\{n_k+\cdots+n_4-x_k,6\}.$

状态转移方程: $x_{k+1} = x_k + p_k - n_k$ 。

则每月花费 (Cost):

$$c_k = egin{cases} 0.5(x_k - n_k) & \hbox{ ZE } p_k = 0 \ 3 + p_k + 0.5(x_k + p_k - n_k) & \hbox{ ZE } p_k
eq 0.$$

递推关系式为:

$$egin{aligned} F_k(x_k) &= min\{c_k + F_{k+1}(x_{k+1})\} \ &= egin{cases} min\{0.5(x_k - n_k) + F_{k+1}(x_{k+1})\} & egin{cases} E_{p_k} = 0 \ min\{3 + p_k + 0.5(x_k + p_k - n_k) + F_{k+1}(x_{k+1})\} & egin{cases} E_{p_k} \neq 0 \end{cases} \ F_5(x_5) &= 0 \end{aligned}$$

本题最优条件即为: $F_1(x_1)$ 最小。下面进行推导:

1) k = 4时, $x_4 + p_4 = 4$ 为最优决策, $x_5 = 0$,

	x_4	p_4	x_5	c_4	$F_5(x_5)$	$c_4+F_5(x_5)$
$F_4(0)$	0	4	0	7	0	7
$F_4(1)$	1	3	0	6	0	6
$F_4(2)$	2	2	0	5	0	5
$F_4(3)$	3	1	0	4	0	4
$F_4(4)$	4	0	0	0	0	0

2) k=3时, $max\{0,2-x_3\} \leq p_3 \leq min\{6-x_3,6\}$, a) $x_3=0$ 时:

	x_3	p_3	x_4	c_3	$F_4(x_4)$	$c_3+F_4(x_4)$
$F_{3}(0)$	0	2	0	5	7	12
$F_{3}(0)$	0	3	1	6.5	6	12.5
$F_{3}(0)$	0	4	2	8	5	13
$F_{3}(0)$	0	5	3	9.5	4	13.5
$F_{3}(0)$	0	6	4	11	0	11

此时可以得到 $F_3(0) = 11$ 。

b)
$$x_3 = 1$$
时:

$egin{array}{ c c c c c c c c c c c c c c c c c c c$
--

	x_3	p_3	x_4	c_3	$F_4(x_4)$	$c_3+F_4(x_4)$
$F_{3}(1)$	1	1	0	4	7	11
$F_{3}(1)$	1	2	1	5.5	6	11.5
$F_3(1)$	1	3	2	7	5	12
$F_{3}(1)$	1	4	3	9.5	4	13.5
$F_{3}(1)$	1	5	4	10	0	10

此时可以得到 $F_3(1) = 10$ 。

c) $x_3=2$ 时:

	x_3	p_3	x_4	c_3	$F_4(x_4)$	$c_3+F_4(x_4)$
$F_3(2)$	2	0	0	0	7	7
$F_3(2)$	2	1	1	4.5	6	10.5
$F_3(2)$	2	2	2	6	5	11
$F_3(2)$	2	3	3	7.5	4	11.5
$F_3(2)$	2	4	4	9	0	9

此时可以得到 $F_3(2) = 7$ 。

d) $x_3=3$ 时:

	x_3	p_3	x_4	c_3	$F_4(x_4)$	$c_3+F_4(x_4)$
$F_{3}(3)$	3	0	1	0.5	6	6.5
$F_{3}(3)$	3	1	2	5	5	10
$F_{3}(3)$	3	2	3	6.5	4	10.5
$F_3(3)$	3	3	4	8	0	8

此时可以得到 $F_3(3) = 6.5$ 。

e) $x_3 = 4$ 时:

	x_3	p_3	x_4	c_3	$F_4(x_4)$	$c_3+F_4(x_4)$
$F_3(4)$	4	0	2	1	5	6

	x_3	p_3	x_4	c_3	$F_4(x_4)$	$c_3+F_4(x_4)$
$F_3(4)$	4	1	3	5.5	4	9.5
$F_3(4)$	4	2	4	7	0	7

此时可以得到 $F_3(4) = 6$ 。

f) $x_3 = 5$ 时:

		x_3	p_3	x_4	c_3	$F_4(x_4)$	$c_3+F_4(x_4)$
F	$7_3(5)$	5	0	3	1.5	4	5.5
F	$7_3(5)$	5	1	4	6	0	6

此时可以得到 $F_3(5) = 5.5$ 。

f) $x_3 = 6$ 时:

	x_3	p_3	x_4	c_3	$F_4(x_4)$	$c_3+F_4(x_4)$
$F_{3}(6)$	6	0	4	2	0	2

此时可以得到 $F_3(6) = 2$ 。

3) k=2时, $max\{0,3-x_2\} \leq p_2 \leq min\{9-x_2,6\}$, a) $x_2=0$ 时:

	x_2	p_2	x_3	c_2	$F_3(x_3)$	$c_2+F_3(x_3)$
$F_2(0)$	0	3	0	6	11	17
$F_2(0)$	0	4	1	7.5	10	17.5
$F_2(0)$	0	5	2	9	7	16
$F_2(0)$	0	6	3	10.5	6.5	17.5

此时可以得到 $F_2(0) = 16$ 。

b) $x_2 = 1$ 时:

	x_2	p_2	x_3	c_2	$F_3(x_3)$	$c_2+F_3(x_3)$
$F_2(1)$	1	2	0	5	11	16

	x_2	p_2	x_3	c_2	$F_3(x_3)$	$c_2+F_3(x_3)$
$F_2(1)$	1	3	1	6.5	10	16.5
$F_2(1)$	1	4	2	8	7	15
$F_2(1)$	1	5	3	9.5	6.5	16
$F_{2}(1)$	1	6	4	11	6	17

此时可以得到 $F_2(1) = 15$ 。

c) $x_2=2$ 时:

	x_2	p_2	x_3	c_2	$F_3(x_3)$	$c_2+F_3(x_3)$
$F_2(2)$	2	1	0	4	11	15
$F_2(2)$	2	2	1	5.5	10	15.5
$F_2(2)$	2	3	2	7	7	14
$F_2(2)$	2	4	3	8.5	6.5	15
$F_2(2)$	2	5	4	10	6	16
$F_2(2)$	2	6	5	11.5	5.5	17

此时可以得到 $F_2(2) = 14$ 。

d) $x_2=3$ 时:

	x_2	p_2	x_3	c_2	$F_3(x_3)$	$c_2+F_3(x_3)$
$F_2(3)$	3	0	0	0	11	11
$F_{2}(3)$	3	1	1	4.5	10	14.5
$F_2(3)$	3	2	2	6	7	13
$F_2(3)$	3	3	3	7.5	6.5	14
$F_2(3)$	3	4	4	9	6	15
$F_2(3)$	3	5	5	10.5	5.5	16
$F_2(3)$	3	6	6	12	2	14

此时可以得到 $F_2(3) = 11$ 。

e) $x_2 = 4$ 时:

	x_2	p_2	x_3	c_2	$F_3(x_3)$	$c_2+F_3(x_3)$
$F_2(4)$	4	0	1	0.5	10	10.5
$F_2(4)$	4	1	2	5	7	13
$F_2(4)$	4	2	3	6.5	6.5	13
$F_2(4)$	4	3	4	8	6	14
$F_2(4)$	4	4	5	9.5	5.5	15
$F_2(4)$	4	5	6	11	2	13

此时可以得到 $F_2(4) = 10.5$ 。

f) $x_2=5$ 时:

	x_2	p_2	x_3	c_2	$F_3(x_3)$	$c_2+F_3(x_3)$
$F_2(5)$	5	0	2	1	7	8
$F_2(5)$	5	1	3	5.5	6.5	12
$F_2(5)$	5	2	4	7	6	13
$F_2(5)$	5	3	5	8.5	5.5	14
$F_2(5)$	5	4	6	10	2	12

此时可以得到 $F_2(5) = 8$ 。

f) $x_2=6$ 时:

	x_2	p_2	x_3	c_2	$F_3(x_3)$	$c_2+F_3(x_3)$
$F_{2}(6)$	6	0	3	1.5	6.5	8
$F_{2}(6)$	6	1	4	6	6	12
$F_{2}(6)$	6	2	5	7.5	5.5	13
$F_{2}(6)$	6	3	6	9	2	1

此时可以得到 $F_2(6) = 8$ 。

g) $x_2=7$ 时:

	x_2	p_2	x_3	c_2	$F_3(x_3)$	$c_2+F_3(x_3)$
$F_2(7)$	7	4	2	1.5	6	8
$F_2(7)$	7	5	6.5	6	5.5	12
$F_2(7)$	7	6	8	7.5	2	10

此时可以得到 $F_2(7) = 8$ 。

h) $x_2 = 8$ 时:

	x_2	p_2	x_3	c_2	$F_3(x_3)$	$c_2+F_3(x_3)$
$F_{2}(8)$	8	5	3	2.5	5.5	8
$F_{2}(8)$	8	6	4	7	2	9

此时可以得到 $F_2(8) = 8$ 。

i) $x_2 = 9$ 时:

	x_2	p_2	x_3	c_2	$F_3(x_3)$	$c_2+F_3(x_3)$
$F_2(9)$	9	0	6	3	2	5

此时可以得到 $F_2(9) = 5$ 。

3) k=1时, $x_1=0$, $max\{0,2\} \leq p_2 \leq min\{6,11\}$,

	x_1	p_1	x_2	c_1	$F_2(x_2)$	$c_1+F_2(x_2)$
$F_1(0)$	0	2	0	5	16	21
$F_1(0)$	0	3	1	6.5	15	21.5
$F_1(0)$	0	4	2	8	7	22
$F_1(0)$	0	5	3	9.5	11	20.5
$F_1(0)$	0	6	4	11	10.5	21.5

此时可以得到 $F_1(0) = 20.5$ 。

通过以上步骤可以得出,最优总成本为 $F_1(0)=20.5$ (千元)。

每月产能安排如下所示:

月份 k	月初库存量 x_k	月需求量 n_k	月产量 p_k	月成本 c_k
1	0	2	5	9.5
2	3	3	0	0
3	0	2	6	11
4	4	4	0	0
5	0			

二、用动态规划方法编程求解下面的问题:

某推销员要从城市 v_1 出发,访问其它城市 v_2 , v_3 , ... , v_6 各一次且仅一次,最后返回 v_1 。D 为各城市间的距离矩阵。

问:该推销员应如何选择路线,才能使总的行程最短?

$$D = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} \begin{bmatrix} 0 & 10 & 20 & 30 & 40 & 50 \\ 12 & 0 & 18 & 30 & 25 & 21 \\ 23 & 19 & 0 & 5 & 10 & 15 \\ 34 & 32 & 4 & 0 & 8 & 16 \\ 45 & 27 & 11 & 10 & 0 & 18 \\ v_6 & 56 & 22 & 16 & 20 & 12 & 0 \end{bmatrix}$$

要求: 写出递推关系式、伪代码和程序相关说明,并分析时间复杂性。

解:

设 $v_1, v_a, ..., v_e, v_1$ 为满足题意的最短路径,假设 v_e, v_1 已经确定时,问题暂时转化为求 v_1 到 v_e 的最短路径问题。

我们定义 $C(V,v_i)$,表示从点 v_1 出发,访问过 $V\subseteq\{v_2,v_3,...,v_n\}$ 最后停留在 v_i 时的最短路径长度。

当V中没有城市时,有 $C(v_1,v_1)=0$ 。

当V中仅有一个城市 v_2 时,有 $C(v_1,v_i)=d(v_1,v_2)$ 。

状态转移方程也就为 $(v_j \in V)$:

$$C(V,v_i) = min\{C(V-\{v_i\},v_j) + d(v_j,v_i)\}$$

最优解即为 $(V = \{v_2, v_3, ..., v_n\})$:

伪代码如下所示:

```
输入:城市数n和相应的距离矩阵
输出: 最短距离和相应的路径
function TSP(v, reach):
    if dp[v][reach] != -1 then
         return dp[v][reach]
    endif
    if v == (1 << n) THEN
       return dist[0][reach]
    endif
    # 初始最长路径设置为99999999
    sumpath <- 999999999
    for var i to n by 1 do
       # 取出整数v在二进制表示下的第i位,表示经过城市V中的vi
       if v & (1 << i) then
           m \leftarrow TSP(v \& (\sim(1 << i)), i) + dist[i][reach]
           # 更新最短路径长度, 保存路径
           if m < sumpath then</pre>
               sumpath <- m
               path[v][reach] <- i</pre>
           endif
       endif
    endfor
    dp[v][reach] <- sumpath</pre>
    return dp[v][reach]
endfunction
if __name__ == "__main__" then
   if n == 1 then
       print('最短距离为: 0')
       print('最短路径为: 1->', end='')
    else:
       # 起点为v1
       reach_point <- 0
       # 二进制表示经过城市, 初始状态全为1, 表示所有城市都经过
       s \leftarrow 2**(n + 1) - 2
       do TSP(s, reach_point)
       reach <- 0
       print('最短距离为: ' + str(distance))
       print('最短路径为: 1->', end='')
       for var num to n-1 by 1 do
           reach <- int(path[s][reach])</pre>
           print(str(reach + 1) + '->', end='')
           # 在路径中去掉该已达城市
           s \leftarrow s \& (\sim(1 << reach))
       endfor
    endif
```

算法流程图:

具体设计采用动态压缩的思想,使用二进制位运算代替多维数组存储各路径状态,0代表未经过的城市,1代表已经经过的城市,通过位运算可以获得下一个城市节点,例如v&(1<<

i)可以表示取出V中已存在的城市 v_i 。 分析复杂度:对于n个城市,我们有 $O(2^n\cdot n)$ 种状态,对于每种状态,状态转移的复杂度为O(n),故算法的整体时间复杂度为 $O(2^n\cdot n^2)$ 。