Glomerulus Segmentation in Kidney Biopsies Computer Vision Project, Group 9

Lukas Göbl, Peer Schäfer, Lukas Scheib

15.07.2025

1/10

Problem Statement

General: Accurate segmentation of glomeruli in kidney biopsy images is crucial for diagnosing chronic kidney diseases.

Precise Tasks: Segment glomeruli at patch-level and whole-slide level in kidney tissue images as part of the MICCAI 2024 KPIs Challenge.

WSI Example: $train \56Nx \12_116$

WSI Mask Example: $train \ 56Nx \ 12_116$

VariableUNet Model

- Standard UNet architecture with 8 double convolution layers split into encoder and decoder layers with skip connections between them.
- Dilated convolutions in the bottleneck (with dilation rates 1, 2, 4 on $\frac{1}{3}$ of the channels each) for multi-scale feature extraction.¹
- Channel quantities scale with variable patch size.

Experimental Design

- Trained on official KPIs dataset (train/val/test splits).
- Combined binary cross entropy (BCE) and Dice loss to address class imbalance.
- Hyperparameter tuning: BCE/Dice ratio, Dice smooth, positive class weighting for BCE, learning rate for Adam optimizer.
- Experiments with different patch sizes (256² and 2048² pixels) and data subsets.
- Evaluated using accuracy, precision, recall, and F_1 -score.
- Qualitative assessment via visual inspection.

Metrics of our best performing Models

Patch size	Split	Accuracy	Precision	Recall	F ₁ -score
256	Validation	0.9781	0.7479	0.7660	0.7569
	Test	0.9757	0.7537	0.7133	0.7330
2048	Validation	0.9705	0.9299	0.3662	0.5255
	Test	0.9643	0.9159	0.2616	0.4070

Hyperparameters:

- BCEDiceLoss Ratio = 0.8
- BCE Positive Weight = 25
- Dice Smooth = 10^{-6}
- Learning Rate = 10^{-4}

WSI Segmentation

Implemented patching pipeline with the following hyperparameters:

- Patch size
- Patch overlap (stride)
- Trivial patch threshold for positive pixels

Possible next steps:

- Implementation of a stitching pipeline to combine patch predictions into a full WSI mask.
- Train VariableUNet using the complete patching and stitching pipeline.

Discussion

What worked:

- BCE + Dice loss crucial for recall and F_1 -score.
- Hyperparameter tuning improved glom detection.
- WSIs can be patched for patch-level segmentation.

Limitations:

- Instability in training, especially with full-size patches.
- Our configurations, trained on small patches, did not generalize well to larger patches.
- No empirical validation on WSI segmentation due to time constraints.

Discussion

In retrospect:

- Greater emphasis on pre- and post-processing (downsampling patches and upsampling predictions).
- More in-depth data exploration regarding samples of different diseases.

Future work:

- Exploring different model architectures and methods.
- Search for more robust hyperparameters and domain adaptation.
- Continued work on WSI segmentation pipeline.

Backup

UNet Architecture

Figure: Source: Li et al. (2021), Figure 3 (edited)

Double Convolution in our Code Base

```
1 class DoubleConv(nn.Module):
     def __init__(self, in_channels, out_channels):
          super().__init__()
          self.double_conv = nn.Sequential(
              nn.Conv2d(in_channels, out_channels, 3,
                 padding=1),
              nn.BatchNorm2d(out_channels),
              nn.ReLU(inplace=True),
              nn.Conv2d(out_channels, out_channels, 3,
                 padding=1),
              nn.BatchNorm2d(out_channels),
              nn.ReLU(inplace=True),
     def forward(self, x):
13
          return self.double_conv(x)
14
```

F_1 -Score Heat Map from Experiment 2

Recall Heat Map from Experiment 2

FlipFlop Graph from Experiment 3

