Geometría 2 – Grado en Matemáticas

Soluciones a la prueba de clase del tema 1 – Grupo B

27 de abril de 2020

Instrucciones para realizar el examen.

- 1. Lee detenidamente estas instrucciones y el examen.
- 2. Si tienes alguna pregunta sobre el examen o sobre su realización, puedes hacerla **antes de las 16:00** a través del chat de PRADO o por correo electrónico a jmmanzano@ugr.es y será respondida lo antes posible.
- 3. Al finalizar el examen, escanea o fotografía tus soluciones manuscritas bien iluminadas, de forma que que se lea sin dificultad todo lo que has escrito. En cada página o foto debe aparecer tu DNI/pasaporte (no el número, sino el documento físico).
- 4. Envía los documentos generados (en formato PDF/TIFF/PNG/JPG/... o similar) desde tu cuenta @correo.ugr.es a la dirección jmmanzano@ugr.es antes de las 17:00. No se valorarán las soluciones pasadas las 17:10 (hora del servidor de correo).

Si experimentas incidencias técnicas que no te permitan cumplir estas normas, notifícalas a la mayor brevedad por correo electrónico y se te hará un examen oral alternativo.

Instrucciones para responder al examen.

En el examen hay dos parámetros en rojo para generar los ejercicios, correspondientes a los dos últimos dígitos de tu DNI (o pasaporte en su defecto) omitiendo todas las letras.

- El parámetro a es el penúltimo dígito.
- El parámetro b es el último dígito.

Por ejemplo, si tu DNI es 93175486H, entonces $\mathbf{a} = 8 \text{ y } \mathbf{b} = 6$.

Presta atención ya que no se valorarán respuestas con parámetros erróneos ni tampoco respuestas para todo valor de los parámetros.

Ejercicio 1. Sea $f: \mathbb{R}^4 \to \mathbb{R}^4$ el endomorfismo cuya matriz en la base usual es

$$A = \begin{pmatrix} 2 \mathbf{a} + 1 & -\mathbf{a} - 1 & -\mathbf{a} - 1 & 1 \\ 4 \mathbf{a} + 4 & -2 \mathbf{a} - 3 & -2 \mathbf{a} - 2 & 2 \\ -2 \mathbf{a} - 2 & \mathbf{a} + 1 & \mathbf{a} & -1 \\ 0 & 0 & 0 & \mathbf{a} \end{pmatrix}.$$

- (a) (2 puntos) Calcular los valores propios de f.
- (b) (3 puntos) Halla una base de cada subespacio propio de f.
- (c) (1 puntos) ξ Es f diagonalizable?

Ejercicio 2 (1 punto por apartado). Se consideran un espacio vectorial real V de dimensión n, un endomorfismo $f: V \to V$ y dos matrices cuadradas $A, B \in \mathcal{M}_n(\mathbb{R})$.

- Si $0 \le b \le 3$, razona la veracidad o falsedad de las siguientes afirmaciones:
 - (a) Si U es un subespacio propio de f, entonces f(U) = U.
 - (b) La suma de las multiplicidades geométricas de los valores propios de f no puede superar la dimensión de V.
 - (c) Si A y B son diagonalizables, entonces A + B es diagonalizable.
 - (d) Si A es diagonalizable y $\lambda = 1$ y $\lambda = -1$ son los únicos valores propios de A, entonces A^2 es la matriz identidad.
- Si $4 \le b \le 6$, razona la veracidad o falsedad de las siguientes afirmaciones:
 - (a) El endomorfismo f tiene al menos un valor propio real.
 - (b) Si la suma de las multiplicidades algebraicas de todos los valores propios reales de f es igual a n, entonces f es diagonalizable.
 - (c) Si $A^3 = 3A^2 A$, entonces $\lambda = 2$ no es valor propio de A.
 - (d) Si $\lambda = 0$ es el único valor propio complejo de A, entonces A^n es la matriz nula.
- Si $7 \le b \le 9$, razona la veracidad o falsedad de las siguientes afirmaciones:
 - (a) Existe $u \in V$ no nulo tal que $u \vee f(u)$ son linealmente dependientes.
 - (b) Si f es diagonalizable, entonces existe una única base de V en la que la matriz de f es diagonal.
 - (c) Si A y B son diagonalizables y semejantes, entonces A = B.
 - (d) Si $A^2 = A$, entonces cualquier vector columna $x \in \mathbb{R}^n$ se expresa de forma única como $x = x_0 + x_1$, siendo $x_0, x_1 \in \mathbb{R}^n$ tales que $Ax_0 = 0$ y $Ax_1 = x_1$.

Solución al ejercicio 1. Vamos a resolverlo para todo valor del parámetro a, aunque en el examen sólo se pedía la resolución siendo a el penúltimo dígito del DNI.

Comenzamos calculando el polinomio característico de A. Aunque no es estrictamente necesario hacerlo para el apartado (a), lo vamos a necesitar responder al apartado (b).

$$p_A(t) = \det \begin{pmatrix} 2 \mathbf{a} + 1 - \mathbf{t} & -\mathbf{a} - 1 & -\mathbf{a} - 1 & 1 \\ 4 \mathbf{a} + 4 & -2 \mathbf{a} - 3 - \mathbf{t} & -2 \mathbf{a} - 2 & 2 \\ -2 \mathbf{a} - 2 & \mathbf{a} + 1 & \mathbf{a} - \mathbf{t} & -1 \\ 0 & 0 & \mathbf{a} - \mathbf{t} \end{pmatrix}$$
$$= (\mathbf{a} - \mathbf{t}) \det \begin{pmatrix} 2 \mathbf{a} + 1 - \mathbf{t} & -\mathbf{a} - 1 & -\mathbf{a} - 1 \\ 4 \mathbf{a} + 4 & -2 \mathbf{a} - 3 - \mathbf{t} & -2 \mathbf{a} - 2 \\ -2 \mathbf{a} - 2 & \mathbf{a} + 1 & \mathbf{a} - \mathbf{t} \end{pmatrix}$$
$$= (\mathbf{a} - \mathbf{t}) (\mathbf{a} + (2\mathbf{a} - 1)\mathbf{t} + (\mathbf{a} - 2)\mathbf{t}^2 - \mathbf{t}^3),$$

donde hemos desarrollado el determinante por la última fila. Evaluando en -1, tenemos que $p_A(-1) = 0$, luego -1 es un valor propio. También **a** es otro valor propio ya que tenemos el factor **a** – **t**. Esto nos permite factorizar el polinomio, obteniendo que

$$p_A(t) = (t - a)^2 (t + 1)^2,$$

luego tenemos dos valores propios, \mathbf{a} y -1, ambos con multiplicidad algebraica 2. Para calcular su multiplicidad geométrica, calculamos los subespacios propios:

$$V_{-1} = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 : \begin{pmatrix} 2 \, \mathbf{a} + 2 & -\mathbf{a} - 1 & -\mathbf{a} - 1 & 1 \\ 4 \, \mathbf{a} + 4 & -2 \, \mathbf{a} - 2 & -2 \, \mathbf{a} - 2 & 2 \\ -2 \, \mathbf{a} - 2 & \mathbf{a} + 1 & \mathbf{a} + 1 & -1 \\ 0 & 0 & 0 & \mathbf{a} + 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$$

La segunda y la tercera filas de la matriz anterior son múltiplos de la primera, luego nos quedan las ecuaciones t=0 y $(\mathbf{a}+1)(2x-y-z)=0$. Como $\mathbf{a}\neq -1$ (ya que es un dígito del DNI), se tiene que 2x-y-z=0. A partir de estas ecuaciones independientes, obtenemos que $m_q(-1)=\dim(V_{-1})=2$ y que

$$V_{-1} = \mathbf{L} \left(\left\{ \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix} \right\} \right).$$

Análogamente, tenemos que

$$V_{\mathbf{a}} = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 : \begin{pmatrix} \mathbf{a} + 1 & -\mathbf{a} - 1 & -\mathbf{a} - 1 & 1 \\ 4 \, \mathbf{a} + 4 & -3 \, \mathbf{a} - 3 & -2 \, \mathbf{a} - 2 & 2 \\ -2 \, \mathbf{a} - 2 & \mathbf{a} + 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$$

Este sistema es compatible indeterminado y la matriz tiene rango 3 ya que el determinante de la submatriz eliminando la última fila y la primera columna tiene determinante no nulo. Por tanto, tomando x=1 como parámetro, podemos despejar las otras tres variables como (y,z,t)=(2,-1,0). Esto nos dice que $m_q(\mathbf{a})=\dim(V_\mathbf{a})=1$ y se cumple que

$$V_{\mathbf{a}} = \mathbf{L} \left(\left\{ \begin{pmatrix} 1\\2\\-1\\0 \end{pmatrix} \right\} \right).$$

Solución al ejercicio 2.

1. Si U es un subespacio propio de f, entonces f(U) = U.

FALSO. Si f no es inyectiva, entonces el subespacio propio asociado al valor propio 0 es $V_0 = \ker(f) \neq \{0\}$, que cumple que $f(V_0) = \{0\} \neq V_0$.

2. La suma de las multiplicidades geométricas de los valores propios de f no puede superar la dimensión de V.

VERDADERO. Como $m_g(\lambda) \leq m_a(\lambda)$ para todo valor propio λ , sumando sobre todos los valores propios complejos, tenemos que $\sum_{\lambda} m_g(\lambda) \leq \sum_{\lambda} m_a(\lambda)$ y esta última suma es igual a n por el teorema fundamental del álgebra.

3. Si A y B son diagonalizables, entonces A + B es diagonalizable.

FALSO. Como contraejemplo, consideremos las matrices

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}, \quad A + B = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}.$$

Por un lado, A es diagonalizable ya que tiene valores propios reales simples $\frac{1}{2}(3\pm\sqrt{5})$ y B es trivialmente diagonalizable (ya que es diagonal). Sin embargo, A+B tiene valores propios no reales $1\pm i$, luego no es diagonalizable.

4. Si A es diagonalizable y $\lambda = 1$ y $\lambda = -1$ son los únicos valores propios de A, entonces A^2 es la matriz identidad.

VERDADERO. Si A es diagonalizable, entonces existe una matriz regular P y una matriz diagonal D tales que $A = P^{-1}DP$ y además los valores en la diagonal de D son los valores propios de A. Por tanto, $D^2 = I_n$ y $A^2 = P^{-1}D^2P = P^{-1}P = I_n$.

5. El endomorfismo f tiene al menos un valor propio real.

FALSO. Como contraejemplo, consideremos $f \in \text{End}(\mathbb{R}^2)$ dado por

$$M(f, \mathbb{B}_u) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix},$$

cuyo polinomio característico $p_f(t) = (t-1)^2 + 1$ no tiene raices reales.

6. Si la suma de las multiplicidades algebraicas de todos los valores propios reales de f es igual a n, entonces f es diagonalizable.

FALSO. Las multiplicidades geométricas también deben sumar n. Como contraejemplo, tenemos el endomorfismo del ejercicio 1.

7. Si $A^3 = 3A^2 - A$, entonces $\lambda = 2$ no es valor propio de A.

VERDADERO. Si λ es un valor propio de A, entonces existe $u \in V$ no nulo tal que $Au = \lambda u$, luego $A^2u = \lambda Au = \lambda^2 u$ y $A^3u = \lambda A^2u = \lambda^3 u$. Por tanto, multiplicando la igualdad $A^3 = 3A^2 - A$ por el vector propio u, obtenemos que $(\lambda^3 - 3\lambda^2 + \lambda)u = 0$ y, como $u \neq 0$, deducimos que $\lambda^3 - 3\lambda^2 + \lambda = 0$. Ahora sólo tenemos que fijarnos en que $\lambda = 2$ no satisface esta igualdad.

8. Si $\lambda = 0$ es el único valor propio complejo de A, entonces A^n es la matriz nula.

VERDADERO. Si 0 es el único valor propio complejo de A, por el teorema fundamental del álgebra la factorización del polinomio característico de A es $p_A(t) = (-1)^n(t-0)^n = (-1)^nt^n$. Por el teorema de Cayley-Hamilton, A satisface su ecuación característica, luego $(-1)^nA^n$ es la matriz nula, esto es, A^n es la matriz nula.

9. Existe $u \in V$ no nulo tal que $u \vee f(u)$ son linealmente dependientes.

FALSO. Supongamos que $u \in V$ es no nulo es tal que au + bf(u) = 0 para ciertos $a, b \in \mathbb{R}$ no ambos nulos. Como u es no nulo, no puede ser b = 0 ya que en tal caso a = 0 o u = 0 en contra de lo que hemos supuesto. Por tanto, $f(u) = \frac{-a}{b}u$ y $\lambda = \frac{-a}{b}$ es valor propio. Esto nos dice que podemos dar un contraejemplo conun endomorfismo que no tenga valores propios, por ejemplo $f \in \operatorname{End}(\mathbb{R}^2)$ dado por

$$M(f, \mathbb{B}_u) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix},$$

cuyo polinomio característico $p_f(t) = (t-1)^2 + 1$ no tiene raices reales.

10. Si f es diagonalizable, entonces existe una única base de V en la que la matriz de f es diagonal.

FALSO. Si $\mathbb{B} = (e_1, \dots, e_n)$ es una base de V en la que $M(f, \mathbb{B})$ es diagonal, entonces $\mathbb{B}' = (a_1 e_1, \dots, a_n e_n)$, siendo $a_1, \dots, a_n \in \mathbb{R}$ no nulos es también base de V en la que $M(f, \mathbb{B}')$ es la misma matriz diagonal.

11. Si A y B son diagonalizables y semejantes, entonces A = B.

FALSO. Si A y B son diagonalizables, entonces son semejantes si, y sólo si, tienen los mismos valores propios. Por ejemplo, las siguientes matrices de orden 2 son

diagonalizables (con valores propios simples $1 \ y \ 2$) y semejantes pero no son la misma matriz:

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

12. Si $A^2 = A$, entonces cualquier vector columna $x \in \mathbb{R}^n$ se expresa de forma única como $x = x_0 + x_1$, siendo $x_0, x_1 \in \mathbb{R}^n$ tales que $Ax_0 = 0$ y $Ax_1 = x_1$.

VERDADERO. Dado $x \in \mathbb{R}^n$, tomando $x_0 = x - Ax$ y $x_1 = Ax$, tenemos que $x = x_0 + x_1$. Además, $Ax_0 = Ax - A^2x = 0$ y $Ax_1 = A^2x = Ax = x_1$, ya que $A^2 = A$. Para ver que estos vectores son únicos, observemos que $Ax_0 = 0$ y $Ax_1 = x_1$ se traducen en que x_0 y x_1 son vectores propios de A para los valores propios 0 y 1, respectivamente, y la suma de subespacios propios $(\mathbb{R}^n)_0 \oplus (\mathbb{R}^n)_1$ es directa.