9. Pochodne jednostronne

- 1. Na poprzednim wykładzie zakładaliśmy, że $D \subset \mathbb{R}, f: D \to \mathbb{R}$ i x_0 jest punktem wewnętrznym D. W pozostałych dwóch definicjach **nie** wymagamy by x_0 był punktem wewnętrznym D
 - (a) Def. (pochodnej lewostronnej): Jeśli $\exists_{\delta>0}(x_0-\delta,x_0]\subset D$ i istnieje skończona granica $\lim_{x\to x_0^-}\frac{f(x)-f(x_0)}{x-x_0}=\lim_{h\to 0^-}\frac{f(x_0+h)-f(x_0)}{h}$ to nazywamy ją pochodną lewostronną $f \le x_0$ i oznaczamy $f'_{-}(x_0)$
 - (b) Def. (pochodnej prawostronnej): Jeśli $\exists_{\delta>0}[x_0,x_0+\delta]\subset D$ i istnieje skończona granica $\lim_{x\to x_0^+}\frac{f(x)-f(x_0)}{x-x_0}=\lim_{h\to 0^+-}\frac{f(x_0+h)-f(x_0)}{h}$ to nazywamy ją pochodną prawostronną $f \le x_0$ i oznaczamy $f'_+(x_0)$
- 2. Twierdzenie 9.1 (warunek konieczny i dostateczny różniczkowalności): Funkcja f jest różniczkowalna w $x_0 \iff$ istnieją $f'_-(x_0)$ i $f'_+(x_0)$ oraz $f'_-(x_0) = f'_+(x_0)$. W przypadku różniczkowalności $f'(x_0) = f'_{-}(x_0) = f'_{+}(x_0)$

Pochodne wyższych rzędów

1. Def. Pochodną n-tego rzędu funkcji $f \le x_0$ definiujemy rekurencyjnie:

$$f^{(0)} = f(x)$$

$$f^{(n)}(x_0) = (f^{(n-1)})'(x_0)$$

Aby istniała pochodna n-tego rzędu f w x_0 musi istnieć pochodna rzędu n-1 w pewnym otoczeniu $x_0 \implies$ muszą istnieć wszystkie poprzednie pochodne w pewnym otoczeniu punktu x_0

Do oznaczanie $f^{(n)}(x_0)$ używa się także $\frac{d^n f}{dx^n}(x_0)$ lub $D^n f(x_0)$

Funkcję, która ma n-tą pochodną w penwym przedziale będzemy nazywać n-krotnie różniczkowalną w tym przedziale

Twierdzenie Rolle'a i twierdzenie Lagrange'a

- 1. Twierdzenie 9.2 (Rolle'a): Jeśli funkcja f jest ciągła na [a,b] i różniczkowalna w (a,b) i f(a)=f(b) to $\exists_{c\in(a,b)}f'(c)=0$
 - (a) Interpretacja geometryczna:

EVERY NOW AND THEN, I FEEL LIKE THE MATH EQUIVALENT OF THE CLUELESS ART MUSEUM VISITOR SQUINTING AT A PAINTING AND SAYING "C'MON, MY KID COULD MAKE THAT."

(b) D: Z założenia f jest ciągła na $[a,b]^{\text{tw.Weierstrassa II}}$ f osiąga swoje kresy na [a,b], tzn $\exists_{x_m \in [a,b]} f(x_m) = \inf_{x \in [a,b]} f(x)$ oraz

$$\exists_{x_M \in [a,b]} f(x_M) = \sup_{x \in [a,b]} f(x)$$

$$\implies \forall_{x \in [a,b]} f(x_m) \le f(x) \le f(x_M)$$

- i. Jeśli $f(x_m) = f(x_M)$,
to $\forall_{x \in [a,n]} f(x_m) = f(x) = f(x_M)$, tzn f jest stała w na $[a,b] \implies \forall_{x \in (a,b)} f'(x) = 0 \implies$ za c możemy wziąć dowolny punkt z (a,b)
- ii. Jeśli $f(x_m) \neq f(x_M)$ to $f(x_m) \neq f(a)$ lub $f(x_n) \neq f(a) \implies f(x_m) < f(a)$ lub $f(x_n) > f(a)$ Załózmy, że $f(x_m) < f(a)$, (dowód gdy $f(x_M) > f(a)$ przebiega analogicznie)

Mamy zatem $f(x_m) < f(a) = f(b) \implies x_m \in (a,b) \implies f$ jest różniczkowalna w punkcie $x_m \stackrel{\text{tw } 9.1}{\Longrightarrow}$ istnieją

 $f'_-(x_m)$ i $f'_+x(m)$ i $f'(x_m)=f'_-(x_m)=f'_+(x_m)$ $f'_-(x_m)=\lim_{h\to 0^-}\frac{f(x_0+h)-f(x_0)}{h}\leq 0$ bo "góra" jest zawsze ≥ 0 a dół<0

 $f'_{+}(x_{m}) = \lim_{h \to 0^{+}} \frac{f(x_{0}+h) - f(x_{0})}{h} \ge 0$ bo "góra" jest zawsze ≥ 0 a dół > 0 Wtedy $f'(x_{m}) = 0$ bo $0 \le f'_{+}(x_{m}) = f'(x_{m}) = f'_{+}(x_{m}) \le 0$

- 2. Twierdzenie 9.3 (tw. Lagrange'a o wartości średniej). Jeśli f jest ciągła w [a,b] i rózniczkowalna w (a,b) to $\exists_{c \in (a,b)} f'(c) =$ $\frac{f(b) - f(a)}{b - a}$

D: Weźmy $g(x) = f(x - f(a) - \frac{f(x) - f(a)}{b - a}(x - a)$. $g(a) = 0, g(b) = 0 \implies g(a) = g(b)$ Funkcja g jest ciągła w [a, b] i różniczkowalna w (a, b). Zatem g spełnia założenia tw. Rolle'a i używając tego twierdzenia otrzymujemy $\exists_{c \in (a,b)} g'(c) = 0$

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \cdot 1$$

$$\Longrightarrow \exists_{c \in (a,b)} f'(c) = \frac{f(b) - f(a)}{b - 1}$$

Wnioski:

(a) $\forall_{x \in (a,b)} f'(x) = 0 \iff f$ jest funkcją stałą na (a,b) \implies Zakładamy, że $\forall_{x \in (a,b)} f'(x) = 0$. Weźmy dowolne $x_1, x_2 \in (a,b)$ takie, że $x_1 < x_2$. Pokażemy, że $f(x_1) = f(x_2)$, a z tego już będzie łatwo wykazać że f jest stała na (a,b)

Z założenia f jest różniczkowalna na $(a,b) \implies$ jest ciągła na (a,b)

W szczególności f jest ciągła na $[x_1,x_2]$. Wtedy $\exists_{c\in(x_1,x_2)}\frac{f(x_2)-f(x_1)}{x_2-x_1}=f'(c)=0 \implies f(x_2)-f(x_1)=0 \implies f(x_1)=f(x_2)$ co zachodzi dla dowolnego x_1,x_2 , więc f jest stała.

- (b) $\forall_{x \in (a,b)} f'(x) > 0 \implies f$ jest rosnąca na (a,b) (nie zachodzi w drugą stronę, bo na przykład $f: \mathbb{R} \to \mathbb{R} \, x \mapsto x^3$) D: Weźmy dowolne $x_1, x_2 \in (a, b)$ takie, że $x_1 < x_2$. Powtarzamy rozumowanie z dowodu powyżej, otrzymujemy $\exists_{c \in (x_1, x_2)} \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) > 0 \implies f(x_2) - f(x_1) > 0 \implies f(x_2) > f(x_1)$
- (c) $\forall_{x \in (a,b)} f'(x) < 0 \implies f$ jest malejąca na (a,b) (nie zachodzi w drugą stronę, bo na przykład $f: \mathbb{R} \to \mathbb{R} x \mapsto -x^3$) D: Analogicznie do poprzedniego.
- 3. Twierdzenie 9.4: $\forall_{x \in (a,b)} f'(x) \ge 0 \iff f$ jest rosnąca (niemalejąca) i różniczkowalna na (a,b)

D: Niech $x \in (a, b)$. Z założenia f jest rózniczkowalna w $x_0 \stackrel{\text{tw } 9.1}{\Longrightarrow} \text{istnieje } f'_+(x) \text{ i } f'(x) = f'_{+(x)}$

$$\begin{split} f'(x) &= f'_+(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \ge 0 \text{ bo góra i dół} > 0 \\ \begin{cases} f \text{ jest rosnąca} \\ h > 0 \implies x+h > x \end{cases} & \Longrightarrow f(x+h) > f(x) \end{split}$$

- 4. Twierdzenie 9.5: $\forall_{x \in (a,b)} f'(x) \leq 0 \iff f$ jest malejąca (nierosnąca) i różniczkowalna na (a,b)Wnioski 2.(a-c) oraz twierdzenia 3,4 pozostają prawdziwe, gdy przedział ograniczone (a, b) zamienimy na nieograniczone $(a, +\infty), (-\infty, b), (-\infty, +\infty)$
- 5. Regula De L'Hospitala

Twierdzenie 9.6 (tw. de l'Hospitala):

Jeśli

$$\begin{aligned} &1.x_0 \in (a,b) \\ &2.f,g: (a,b) \setminus \{x_0\} \to \mathbb{R} \\ &3.\forall_{x \in (a,b) \setminus \{x_0\}} g(x) \neq 0 \ \mathrm{i} \ g'(x) \neq 0 \\ &4. \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \ \mathrm{lub} \ \lim_{x \to x_0} = \pm \infty \end{aligned}$$

5. istnieje granica (skończona lub nie) $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$

To istnieje granica $\lim_{x\to x_0} \frac{f(x)}{g(x)}$ oraz $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}$

W skrócie $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \left[\frac{0}{0} \text{ lub } \frac{\cos}{\pm\infty}\right]^{\frac{H}{2}} \lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ jeśli $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ istnieje

Uwaga: Twierdzenie de l'Hostpitala jest także prawdziwe dla granic jednostronnych i granic w $\pm \infty$, z tym że w przypadku granicy w $+\infty$ musimy założyć $f,g:(0,+\infty)\to\mathbb{R}$ są różniczkowalne w $(0,+\infty)$. $\forall_{x\in(0,\infty)}g(x)\neq0$ i $g'(x)\neq0$