Analízis 3. (B és C szakirány)

Szükséges ismeretek a 3. gyakorlathoz

Jelen dokumentum ekkor lett frissítve: 2019/03/05 13:28

További kidolgozások elérhetőek ide kattintva. A gyakorlatok anyaga ide kattintva érhető el.

Forrás(ok): Dr. Szili László - Analízis 3. gyakorlatok, 2018 őszi kidolgozás

1. Milyen elégséges feltételt ismer primitív függvény létezésére?

Ha $I \subset \mathbb{R}$ nyílt intervallum és $f: I \to \mathbb{R}$ folytonos függvény, akkor f-nek létezik primitív függvénye.

2. Adjon meg olyan függvényt, amelynek nincs primitív függvénye.

 $f(x) = sign(x) \quad (x \in (-1, 1))$

3. Milyen állítást ismer a primitív függvények számával kapcsolatban?

Tegyük fel, hogy $I \subset \mathbb{R}$ nyílt intervallum és $f: I \to \mathbb{R}$ adott függvény. Ekkor

- 1. Ha $F:I\to\mathbb{R}$ a f függvény egy primitív függvénye, akkor minden $c\in\mathbb{R}$ esetén az F+c függvény is primitív függvénye f-nek.
- 2. Ha $F_1,F_2:I\to\mathbb{R}$ primitív függvényei a f függvénynek, akkor

$$\exists c \in \mathbb{R} : F_1(x) = F_2(x) + c \quad (x \in I),$$

azaz a primitív függvények konstansban különböznek egymástól.

4. Mit ért a határozatlan integrál linearitásán?

Legyen $I \subset \mathbb{R}$ egy nyílt intervallum. Ha az $f,g:I \to \mathbb{R}$ függvényeknek létezik primitív függvénye, akkor tetszőleges $\alpha,\beta \in \mathbb{R}$ mellett $(\alpha f + \beta g)$ -nek is létezik primitív függvénye és

$$\int (\alpha f + \beta g) = \alpha \int f + \beta \int g.$$

5. Fogalmazza meg a primitív függvényekkel kapcsolatos második helyettesítési szabályt.

Legyen $I,J \subset \mathbb{R}$ nyílt intervallum; $g:I \to J$ bijekció, $g \in D(I), \ g'(x) \neq 0 (x \in I); \ f:J \to \mathbb{R}$ és $x_0 \in J$. Ha az $(f \circ g) \cdot g':I \to \mathbb{R}$ függvénynek van primitív függvénye, akkor f-nek is van primitív függvénye és

$$\int_{x_0} f = \left(\int_{g^{-1}(x_0)} (f \circ g) \cdot g' \right) \circ g^{-1}.$$

6. Milyen ekvivalens átfogalmazást ismer a Riemann-integrálhatóságra a Riemann-féle közelítő összegekkel?

Legyen $a,b \in \mathbb{R},\ a < b$. Ekkor $f \in R[a,b]$ és $\int_a^b f = I \iff \forall \varepsilon > 0$ számhoz $\exists \delta > 0: \forall \tau \in \mathcal{F}[a,b], ||\tau|| := \max_{k=0,\dots,n-1} (x_{k+1}-x_k) < \delta$ esetén az

$$|\sigma(f, \tau, \xi) - I| < \varepsilon$$

1

egyenlőtlenség teljesül a ξ közbülső helyek tetszőleges megválasztása mellett.

7. Írja le az integrálfüggvénnyel kapcsolatban tanult tételt.

Legyen $f \in R[a, b], x_0 \in [a, b], F(x) := \int_{x_0}^{x} f(t)dt \quad (x \in [a, b]).$ Ekkor

- 1. a F integrálfüggvény folytonos [a, b]-n;
- 2. ha $d \in (a, b)$ és f folytonos d-ben, akkor F differenciálható d-ben és F'(d) = f(d).