MÉTODOS MATEMÁTICOS DE LA INFORMÁTICA

2. Sucesiones y Series

- 2.1. Usa la definición de límite de una sucesión para probar que:
- a) $\lim_{n\to\infty}\frac{1}{n^2+1}=0$ b) $\lim_{n\to\infty}\frac{3n-1}{4n}=3/4$. Halla un número natural N tal que para todo $n\geq N$ se tenga que $|\frac{3n-1}{4n}-\frac{3}{4}|<10^{-3}$.
- 2.2. De la sucesión $(x_n)_{n=1}^{\infty}$ se sabe que es convergente y que sus términos son alternativamente positivos y negativos. ¿Cuál es su límite? Razona la respuesta. Pon un ejemplo.
- 2.3. Sea $(x_n)_{n=1}^{\infty}$ una sucesión convergente a un punto x.
- a) Si a > x, prueba que existe un n_0 tal que para todo $n \ge n_0, a > x_n$
- b) Si a < x, prueba que existe un n_0 tal que para todo $n \ge n_0, a < x_n$.
- 2.4. Una sucesión $(x_n)_{n=1}^{\infty} \subset \mathbb{R}$ se dice que converge a infinito (lím $_{n\to\infty} x_n = \infty$) si para todo M > 0 existe n_0 tal que si $n > n_0$ entonces $x_n > M$.
- a) ¿Qué significa entonces que $\lim_{n\to\infty} x_n = -\infty$?
- b) Prueba que toda sucesión no acotada tiene una subsucesión convergente a ∞ o a $-\infty$.
- 2.5. Calcula los siguientes límites:

2.5. Calcula los signientes limites:

1)
$$\lim_{n \to \infty} \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n}$$
 2) $\lim_{n \to \infty} \sqrt{n^2 + 1} - \sqrt{n}$ 3) $\lim_{n \to \infty} \frac{1}{n^2} (3 + 6 + 9 + \dots + 3n)$.

4) $\lim_{n \to \infty} (\frac{1}{\sqrt{n^2 + 1}} + \dots + \frac{1}{\sqrt{n^2 + n}})$ 5) $\lim_{n \to \infty} \frac{3(\sqrt[3]{n + 1} - \sqrt[3]{n})}{2(\sqrt{n + 1} - \sqrt{n})}$

4)
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right)$$
 5) $\lim_{n \to \infty} \frac{3(\sqrt[3]{n} + 1 - \sqrt[3]{n})}{2(\sqrt{n + 1} - \sqrt{n})}$

6)
$$\lim_{n \to \infty} \left(\frac{1}{2^2 - 1} + \frac{1}{3^2 - 1} + \dots + \frac{1}{n^2 - 1} \right)$$
.

2.6. Prueba que la sucesión $((1+1/n)^n)_{n=1}^{\infty}$ es creciente y acotada; por tanto convergente. Se define el número real e como:

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

Calcula los límites de las sucesiones siguientes:

a)
$$((1+\frac{1}{n})^{n+1})_{n=1}^{\infty}$$
 b) $((1+\frac{1}{n})^{2n})_{n=1}^{\infty}$ c) $((1+\frac{1}{2n})^{n})_{n=1}^{\infty}$.

2.7. Demuestra que si $\lim_{n\to\infty} x_n = 0$ y $(b_n)_{n=1}^{\infty}$ es otra sucesión acotada, entonces se tiene que $\lim_{n\to\infty} x_n b_n = 0$. Pon ejemplos en los que $\lim_{n\to\infty} x_n = 0$, $(b_n)_{n=1}^{\infty}$ no esté acotada y que $\lim_{n\to\infty}x_nb_n=1, \lim_{n\to\infty}x_nb_n=0$ o bien $\lim_{n\to\infty}x_nb_n$ no exista.

2.8. Sucesiones recurrentes:

- 1) Sea a > 0. Definimos $x_1 = \sqrt{a}$ y $x_{n+1} = \sqrt{a + x_n}$ $\forall n \in \mathbb{N}$. Prueba que $(x_n)_{n=1}^{\infty}$ es creciente y acotada. Calcula su límite.
- 2) Sea $x_1 > 2$ y para cada $n \in \mathbb{N}$ sea $x_{n+1} = 2 1/x_n$. Demuestra que $(x_n)_{n=1}^{\infty}$ es convergente y determina su límite.
- 3) Sea $x_1 > 1$ y $x_{n+1} = \sqrt{1 + x_n^2}$. ¿Es esta sucesión convergente?
- 4) Sea $m \in \mathbb{N}$. Si $x_1 = m$ y $x_{n+1} = x_n \frac{x_n^2 m}{2x_n}$. ¿Cuál es el límite de esta sucesión?
- 5) Sean $x_1 = 1, x_2 = 3$ y $x_{n+2} = \frac{x_n + x_{n+1}}{2}$ si $n \ge 0$. ¿Es esta sucesión convergente?
- 2.9. Sea a_n el número de instrucciones de un determinado algoritmo para su ejecución sobre n datos de entrada. Se sabe que dicho algoritmo actúa de la siguiente manera:
 - 1) con solo un dato de entrada resuelve el problema usando una instrucción.
- 2) con n datos de entrada usa 4n instrucciones para reducir el problema a n-1 datos y se ejecuta sobre ellos el mismo algoritmo.

Se pide: a) definir la sucesión recurrente $(a_n)_{n=1}^{\infty}$. b) Estudiar la monotonía y acotación de la misma. c) Probar por inducción que $|a_n-2n^2|<2n$ para todo n. d) Deducir que $\lim_{n\to\infty}\frac{a_n}{2n^2}=1$.

- 2.10. Sea $x_0 = 2$. Consideremos la función $f(x) = x^2 2$. Sea el punto del eje OX, $P_n = (x_n, 0)$, intersección de las rectas y = 0 y la recta tangente a la gráfica de f por el punto $(x_{n-1}, f(x_{n-1})), n = 1, 2, 3, ...$
- a) Encuentra una fórmula recurrente para la sucesión $(x_n)_{n=1}^{\infty}$.
- b) Prueba que la sucesión anterior es convergente. ¿Cuál es su límite?
- c) Encuentra un algoritmo para calcular $\sqrt[n]{x_0}$, con $x_0 > 0$ y $n \in \mathbb{N}$.
- 2.11. Sea (a_n) y (b_n) dos sucesiones de números reales definidas por su primer término $a_0 = 2, b_0 = 4$ y por las relaciones $a_{n+1} = \frac{1}{4}(a_n + 3b_n)$ y $b_{n+1} = \frac{1}{4}(3a_n + b_n)$. Designamos por A_n y B_n los puntos del eje OX de abscisas a_n y b_n respectivamente. Justificar la certeza o falsedad de las siguientes expresiones:
- a) La sucesión $u_n = a_n + b_n$ es constante.
- b) La sucesión $v_n = a_n b_n$ es una sucesión geométrica .
- c) Para todo $n \in \mathbb{N}$ los segmentos $[A_n, B_n]$ tienen el mismo punto medio, I, que es el punto del eje OX de abscisa 3.
- d) Para cada $n \in \mathbb{N}$, se verifica que $a_n = 3 \frac{1}{2^n}$ y $b_n = 3 + \frac{1}{2^n}$.

2.12. Calcula la suma de :
$$\sum_{n=1}^{\infty} \frac{1-2^n}{3^n}$$
 y $\sum_{n=1}^{\infty} \frac{2^{n+3}}{3^n}$.

- 2.13. Sea (u_n) una serie geométrica de primer término $u_0 = 1$ y razón $q \in (0, \infty)$. Llamemos $S_n = \sum_{k=0}^n u_k$. Justificar la certeza o falsedad de las siguientes expresiones:
- a) Si $\exists n \in \mathbb{N}$ tal que $u_n > 2009$, entonces q > 1.
- b) Si q < 1, entonces $\exists n \in \mathbb{N}$ tal que $0 < u_n < 1/2$.
- c) Si q > 1, entonces $\lim_{n \to \infty} S_n = \infty$.
- d) Si $\lim_{n\to\infty} S_n = 2$, entonces q = 1/2.
- e) Si q=2, entonces $S_4=15$.
- 2.14. Sean (a_n) y (b_n) dos sucesiones tales que $a_n = b_n b_{n+1}$. 1) Prueba que $\sum_{n=1}^{\infty} a_n$ es convergente si y solo si la sucesión (b_n) es convergente y se tiene que:

$$\sum_{n=1}^{\infty} a_n = b_1 - \lim_{n \to \infty} b_n$$

- 2) prueba que para cualquier serie $\sum_{n=1}^{\infty} a_n$ se puede encontrar una sucesión (b_n) que verifica las condiciones del apartado anterior.
- 3) Aplica 1) al cálculo de la suma de las series:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}, \qquad \sum_{n=1}^{\infty} \frac{2}{n(n+1)(n+2)}, \qquad \sum_{n=1}^{\infty} \frac{2^{n-1}}{(1+2^n)(1+2^{n-1})} \quad \text{y} \quad \sum_{n=2}^{\infty} \log(1-\frac{1}{n^2}).$$

- 2.15. Prueba que si (a_n) es una sucesión decreciente de números reales positivos y $\sum_{n=1}^{\infty} a_n$ es convergente, entonces $\lim_{n\to\infty} na_n = 0$.
- 2.16. Estudia la convergencia de las series:

1)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt[3]{n^2 - 1}}$$
2)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n + 1} - \sqrt{n}}{n}$$
3)
$$\sum_{n=1}^{\infty} \frac{\sin(n\theta)}{n^2}, 0 < \theta < 2\pi$$
4)
$$\sum_{n=1}^{\infty} \frac{n^2}{n!}$$
5)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$
6)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt[n]{\log n}}$$
7)
$$\sum_{n=1}^{\infty} \frac{n^3}{2^n}$$
8)
$$\sum_{n=1}^{\infty} \sec(\frac{\pi}{n})$$
9)
$$\sum_{n=1}^{\infty} \frac{\log n}{2n^3 - 1}$$
10)
$$\sum_{n=1}^{\infty} \frac{1/2 + \cos(n\pi)}{n^2}.$$

2.17. Determina si cada una de las series siguientes es absolutamente convergente, condionalmente convergente o ninguna de ambas cosas:

a)
$$\frac{1}{1 \times 2} - \frac{1}{3 \times 2} + \frac{1}{5 \times 2} - \frac{1}{7 \times 2} + \dots$$
 b) $\frac{3}{2} - \frac{4}{3} + \frac{5}{4} - \frac{6}{5} + \dots$ c) $\sum_{k=1}^{\infty} \frac{(-1)^k}{k(\log(k+1))^2}$.

- 2.18. Si $\sum_{n=0}^{\infty} |b_n| = 1$ y $\lim_{n \to \infty} \frac{b_n}{a_n} = \infty$, entonces

- a) $\lim_{n\to\infty} a_n = 1$ b) $\lim_{n\to\infty} a_n = \infty$ c) $\sum_{n=1}^{\infty} a_n$ es convergente. d) $\sum_{n=1}^{\infty} a_n = \infty$.
- 2.19. La serie $\sum_{n=1}^{\infty} \frac{a_n}{10^n}$, donde $a_1 = 1, a_2 = 3$ y $a_n = 9 \forall n > 2$, representa el número real:
- a) 1, 3

- 2.20. Un sabio pirata decidió enterrar su tesoro en la isla Calavera en la posición límite de los puntos siguientes: partiendo del único manantial de la isla se avanza 1 hacia el este, después la mitad hacia el norte, de nuevo la mitad hacia el este, de nuevo al norte la mitad que en el paso anterior y así sucesivamente. ¿Sabrías donde encontrar el tesoro?
- 2.21. Sean las series: $\sum_{k=0}^{\infty} \frac{x^k}{k!}$, $\sum_{k=0}^{\infty} \frac{x^{2k}}{2k!} (-1)^k$ y $\sum_{k=1}^{\infty} \frac{x^{2k-1}}{(2k-1)!} (-1)^{k+1}$; prueba que todas son absolutamente convergentes en todo $x \in \mathbb{R}$. (Se verá que: e^x , cos $x-y-\sin x$ son las sumas, respectivamente, de las series anteriores).
- 2.22. Calcula el dominio de la función $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{3n}$.