MACHINE LEARNING PART 2

Lecture SOURCES OF ERROR

By

Gourab Nath

Assistant Professor of Data Science

Praxis Business School

POPULATION DATA

POPULATION REGRESSION LINE

IRREDUCIBLE ERROR

REGRESSION LINE ON 1 SAMPLE

REGRESSION LINES FITTED ON 2 DIFFERENT SAMPLE

REGRESSION LINES FITTED ON 30 DIFFERENT SAMPLE

THE AVERAGE REGRESSION LINE

NOTATIONS

Let \boldsymbol{x} be an observation.

$$f(x) = {}^{\text{True regression line. That is, the regression line obtained by fitting on the population data.}$$

$$\widehat{f_{sample}}(x) =$$
 The fitted sample regression line. That is, the regression line obtained by fitting on a sample.

$$\bar{f}(x)=$$
 The average of all the regression line fitted over all possible sample.

OUTPUTS OF THE FUNCTIONS

Let \boldsymbol{x} curl be an observation.

$$f(x) =$$
Returns the predicted value of x using the fitted population regression model

$$\widehat{f_{sample}}(x) = \frac{\text{Returns the predicted value of } x \text{ using the estimated regression model based on the sample.}}$$

$$f(x)$$
 = Returns the average of all the predicted value of x predicted using all possible regression models fitted over all possible samples.

THE DIFFERENCE BETWEEN ACTUAL AND PREDICTED

BIAS AND VARIANCE

$$Bias(\mathbf{x}) = f(\mathbf{x}) - \bar{f}(\mathbf{x})$$

How far the average of all the models is from the true model?

$$Variance(\mathbf{x}) = E_{sample}[\widehat{f_{sample}}(\mathbf{x}) - \overline{f}(\mathbf{x})]^{2}$$

How much does the outputs of each models (fitted over different samples of same size) varies from the average of all the models?

MSE at x

$$MSE = Irreducible Error + bias^{2}(x) + variance(x)$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$variance = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$E(X) = \sum_{i=1}^{n} x_i p_i$$

$$E(X) = \sum_{i=1}^{n} x_i p_i \qquad Var(X) = E[(X - E(X))^2]$$

MODEL COMPLEXITY AND VARIANCE

POLYNOMIAL OF ORDER 12

POLYNOMIAL OF ORDER 12 FITTED ON 1 SAMPLE

POLYNOMIAL OF ORDER 12 FITTED ON A DIFFERENT SAMPLE

POLYNOMIAL OF ORDER 12 FITTED ON 2 DIFFERENT SAMPLES

POLYNOMIAL OF ORDER 12 FITTED ON 5 DIFFERENT SAMPLES

MODEL COMPLEXITY - BIAS - VARIANCE

COMPLEXITY VS OVERFITTING

MODEL VARIANCE AGAINST SAMPLE SIZE

Sample Size = 30

Sample Size = 30

EXPECTED ERROR VS SAMPLE SIZE

