Skúška 15.5.2007 Meno a priezvisko:

Označte správnu odpoveď (môže byť správna jedna odpoveď, viac odpovedí, žiadna odpoveď). Vyhodnocujú sa len označené odpovede a to tak, že ak označená odpoveď je správna, pripočíta sa 1 bod, ak je nesprávna, 1 bod sa odpočíta. Na urobenie skúšky potrebujete aspoň 10 bodov.

1. Jedným z koeficientov procesu $\mathbf{f} = (1, 2, -2, 1, 3)$ v harmonickej báze \mathcal{H}
je reálne číslo
\square 0
\square 1
\square 5
2. Koeficienty procesu $\mathbf{f} = (1, 3, -2, 1, 3, 2, 1)$ v harmonickej báze \mathcal{H} sú $\mathbf{f} = (1.2857; -0.0157 0.4577i; 0.3720-0.7499i; -0.4991-0.2922i; -0.4991+0.2922i; 0.3720+0.7499i; -0.0157-0.4577i)_{\mathcal{H}}$. Proces \mathbf{f} môžeme vyjadriť ako lineárnu kombináciu troch funkcií kosínus a jednej konštanty, pričom kosínus s najväčšou amplitúdov nadobudne počas priebehu procesu jednu periódu \Box tri periódy
□ dve periódy
3. V harmonickej báze 4-rozmerného priestoru sa nachádza vektor
4. Ak proces $\tilde{\mathbf{f}}$ je kolmým priemetom procesu \mathbf{f} do podpriestoru \mathcal{S} , takého, že $\mathbf{f} \notin \mathcal{S}$, potom platí $\Box (\tilde{\mathbf{f}} - \mathbf{f}, \mathbf{f}) = 0 \Box (\mathbf{f} - \tilde{\mathbf{f}}, \mathbf{f}) = 0$
5. Do spektra procesu $\mathbf{f}=(1,0,1,-1)$ v báze $\mathcal{B}=\{(2,0,0,0),(0,0,1,2)\}$ patrí číslo \Box 1 \Box $-\frac{1}{5}$ \Box $-\frac{1}{2}$
6. Spektrum procesu $\mathbf{f} = (f_0, f_1, f_2, f_3)$ v báze \mathcal{B} je dané hodnotami $\tilde{\mathbf{f}} = (c_0, c_1, c_2, c_3)_{\mathcal{B}}$, potom $\mathbf{f} = \tilde{\mathbf{f}}$ \square vždy \square niekedy \square nikdy
7. Spektrom procesu $\mathbf{f} = (f_0, f_1, f_2, f_3)$ v báze $\mathcal{B} = \{\mathbf{b_0}, \mathbf{b_1}, \mathbf{b_2}\}$ je vektor $\Box (c_0, c_1) \Box (c_0, c_1, c_2) \Box (c_0, c_1, c_2, c_3)$
8. Pre odhad nasledujúcej hodnoty procesu $\mathbf{f} = (0, 1, 2, 1, 0, 2, 3)$ pomocou metódy kĺzavých súčtov (v tvare $\tilde{f}_k = c_0 f_{k-1} + c_1 f_{k-2}$), môžeme pre výpočet koeficientov c_0, c_1 , použiť vzorce $c_0 = \frac{(\mathbf{f}, \mathbf{b_0})}{(\mathbf{b_0}, \mathbf{b_0})}, c_1 = \frac{(\mathbf{f}, \mathbf{b_1})}{(\mathbf{b_1}, \mathbf{b_1})}$
□ nikdy □ vždy □ niekedy
9. Kharnunen-Loevova báza sa zhoduje s harmonickou bázou vtedy, ak proces ktorý
rozkladáme je
\square periodický \square stacionárny \square deterministický

$cov(\mathbf{f}) = \begin{pmatrix} 4 & 1 & 2 \\ 1 & 4 & 2 \\ 1 & 1 & 2 \end{pmatrix}$, patrí vektor \Box (2, 2, 1) \Box (-1, 1, 0) \Box	(1, 1, 1)
11. Energiou procesu \mathbf{f} nazveme	
 12. Spektrum stacionárneho náhodného procesu v Kharnunen-Loẽvovej trans □ je náhodný vektor □ je nenáhodný vektor □ je náhodná premenná 	formácii
13. Odozva časovo invariantného lineárneho systému určeného impulznou charakteristikou $\delta=(1,-2,3)$ na vstupný proces $\mathbf{x}=(1,7,-3)$ je vektor	
14. 13. Odozva časovo invariantného lineárneho systému na harmoniký vstupr je znovu harmonický proces □ vždy □ niekedy □ nikdy 15. Harmonická báza dvojrozmerného vektorového priestoru, je tvorená vekto □ (1,0); (0,1) □ (1,1); (1,i) □ (1,1);(1,-1) / 1 -0.8 1	rmi
16. Náhodný proces $\mathbf f$ má kovariančnú maticu $cov(\mathbf f)=\begin{pmatrix} 1&-0.8&1\\ -0.8&0.9&-1.2\\ 1&-1.2&1.2\\ -0.7&0&0 \end{pmatrix}$ jej vlastné čísla sú $\lambda_0=0,\lambda_1=0.1,\lambda_2=2.1,\lambda_3=3.4$ a im zodpovedajúce vla	4 /
vektory sú	
bude najlepšie aproximovaný proces f . (Vyberte jednu dvojicu.) $\Box \mathbf{b_0}, \mathbf{b_3} \Box \mathbf{b_1}, \mathbf{b_3} \Box \mathbf{b_1}, \mathbf{b_2}$ 17. Aritmetický priemer hodnôt procesu $\mathbf{f} = (f_0, f_1, \dots, f_{N-1})$ je jeho najlepši	
dom v podpriestore určenom bázou	
18. Do spektra procesu $\mathbf{f} = (1,0,1,-1)$ v báze $\mathcal{B} = \{(2,0,0,0),(0,0,1,2)\}$ patrí o \square	íslo

 ${\bf 10.}$ Do Karhunen Loẽvovej bázy procesu ${\bf f},$ ktorého kovariančná matica je