$12a_{0306} (K12a_{0306})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{66} - u^{65} + \dots + 2u + 1 \rangle$$

 $I_2^u = \langle u^7 + u^5 + 2u^3 + u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 73 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{66} - u^{65} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{8} + u^{6} + 3u^{4} + 2u^{2} + 1 \\ -u^{10} - 2u^{8} - 3u^{6} - 4u^{4} - u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{6} + u^{4} + 2u^{2} + 1 \\ -u^{6} - u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{13} - 2u^{11} - 5u^{9} - 6u^{7} - 6u^{5} - 4u^{3} - u \\ u^{13} + u^{11} + 3u^{9} + 2u^{7} + 2u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{36} + 5u^{34} + \dots + u^{2} + 1 \\ -u^{36} - 4u^{34} + \dots - 12u^{8} - u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{24} - 3u^{22} + \dots + 2u^{2} + 1 \\ u^{26} + 4u^{24} + \dots + 3u^{6} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{47} - 6u^{45} + \dots - 4u^{3} - 2u \\ u^{49} + 7u^{47} + \dots + 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{64} 4u^{63} + \cdots + 8u^2 + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{66} + 21u^{65} + \dots + 4u + 1$
c_2, c_6	$u^{66} - u^{65} + \dots - 2u + 1$
c_3, c_{12}	$u^{66} + 6u^{65} + \dots + 1260u + 392$
c_4, c_{10}	$u^{66} - u^{65} + \dots + 2u + 1$
c ₇	$u^{66} + 5u^{65} + \dots - 4u + 37$
c_8, c_9, c_{11}	$u^{66} - 17u^{65} + \dots - 4u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{66} + 49y^{65} + \dots + 76y + 1$
c_2, c_6	$y^{66} + 21y^{65} + \dots + 4y + 1$
c_3, c_{12}	$y^{66} - 42y^{65} + \dots + 3127376y + 153664$
c_4, c_{10}	$y^{66} + 17y^{65} + \dots + 4y + 1$
c ₇	$y^{66} - 7y^{65} + \dots - 10820y + 1369$
c_8, c_9, c_{11}	$y^{66} + 65y^{65} + \dots + 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.276142 + 0.973147I	4.50590 - 2.85550I	12.05805 + 4.41993I
u = 0.276142 - 0.973147I	4.50590 + 2.85550I	12.05805 - 4.41993I
u = -0.311087 + 0.967783I	1.20301 + 5.52787I	4.00000 - 8.08112I
u = -0.311087 - 0.967783I	1.20301 - 5.52787I	4.00000 + 8.08112I
u = -0.225553 + 0.996987I	7.62104 - 4.67869I	10.89032 + 2.00709I
u = -0.225553 - 0.996987I	7.62104 + 4.67869I	10.89032 - 2.00709I
u = 0.236153 + 0.997386I	8.32399 - 1.19963I	12.16015 + 3.25993I
u = 0.236153 - 0.997386I	8.32399 + 1.19963I	12.16015 - 3.25993I
u = 0.304523 + 1.001500I	7.92106 - 4.82325I	11.07978 + 4.36296I
u = 0.304523 - 1.001500I	7.92106 + 4.82325I	11.07978 - 4.36296I
u = -0.312943 + 1.002150I	7.10672 + 10.70210I	9.44810 - 9.41252I
u = -0.312943 - 1.002150I	7.10672 - 10.70210I	9.44810 + 9.41252I
u = 0.456777 + 0.785683I	1.23819 - 6.54922I	4.17677 + 9.67765I
u = 0.456777 - 0.785683I	1.23819 + 6.54922I	4.17677 - 9.67765I
u = -0.397793 + 0.800537I	1.82221 + 1.25981I	6.09781 - 4.41931I
u = -0.397793 - 0.800537I	1.82221 - 1.25981I	6.09781 + 4.41931I
u = 0.784027 + 0.781220I	1.10586 - 5.81643I	0
u = 0.784027 - 0.781220I	1.10586 + 5.81643I	0
u = -0.023490 + 0.865695I	3.89741 + 2.71211I	12.15997 - 3.32953I
u = -0.023490 - 0.865695I	3.89741 - 2.71211I	12.15997 + 3.32953I
u = -0.836827 + 0.807352I	-2.60329 - 1.13595I	0
u = -0.836827 - 0.807352I	-2.60329 + 1.13595I	0
u = -0.858606 + 0.795301I	0.37310 - 3.30299I	0
u = -0.858606 - 0.795301I	0.37310 + 3.30299I	0
u = 0.863434 + 0.797395I	-0.53580 + 9.14737I	0
u = 0.863434 - 0.797395I	-0.53580 - 9.14737I	0
u = 0.827585 + 0.837312I	-4.93871 - 2.14028I	0
u = 0.827585 - 0.837312I	-4.93871 + 2.14028I	0
u = 0.854921 + 0.812716I	-6.26873 + 3.63660I	0
u = 0.854921 - 0.812716I	-6.26873 - 3.63660I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.827211 + 0.875814I	-5.15023 - 2.33627I	0
u = 0.827211 - 0.875814I	-5.15023 + 2.33627I	0
u = -0.845186 + 0.880793I	-6.18098 - 2.57775I	0
u = -0.845186 - 0.880793I	-6.18098 + 2.57775I	0
u = 0.459757 + 0.623778I	-3.05863 - 1.75367I	-4.05356 + 5.04373I
u = 0.459757 - 0.623778I	-3.05863 + 1.75367I	-4.05356 - 5.04373I
u = 0.815789 + 0.918639I	-5.01899 - 3.79645I	0
u = 0.815789 - 0.918639I	-5.01899 + 3.79645I	0
u = -0.761181 + 0.966217I	2.20192 + 5.87663I	0
u = -0.761181 - 0.966217I	2.20192 - 5.87663I	0
u = -0.837522 + 0.902945I	-9.94428 + 3.11601I	0
u = -0.837522 - 0.902945I	-9.94428 - 3.11601I	0
u = 0.791445 + 0.947693I	-4.59364 - 3.91730I	0
u = 0.791445 - 0.947693I	-4.59364 + 3.91730I	0
u = -0.830031 + 0.923795I	-6.04701 + 8.80946I	0
u = -0.830031 - 0.923795I	-6.04701 - 8.80946I	0
u = -0.787054 + 0.967827I	-2.10788 + 7.20390I	0
u = -0.787054 - 0.967827I	-2.10788 - 7.20390I	0
u = 0.798774 + 0.972679I	-5.77098 - 9.79547I	0
u = 0.798774 - 0.972679I	-5.77098 + 9.79547I	0
u = -0.792645 + 0.983270I	0.95662 + 9.45046I	0
u = -0.792645 - 0.983270I	0.95662 - 9.45046I	0
u = 0.795929 + 0.984558I	0.0466 - 15.3200I	0
u = 0.795929 - 0.984558I	0.0466 + 15.3200I	0
u = -0.223454 + 0.622794I	0.329896 + 0.949161I	5.93547 - 7.10571I
u = -0.223454 - 0.622794I	0.329896 - 0.949161I	5.93547 + 7.10571I
u = 0.487684 + 0.434861I	0.22976 + 2.99529I	0.08554 - 2.50316I
u = 0.487684 - 0.434861I	0.22976 - 2.99529I	0.08554 + 2.50316I
u = -0.643478 + 0.086667I	4.24877 - 7.37536I	3.63430 + 5.60307I
u = -0.643478 - 0.086667I	4.24877 + 7.37536I	3.63430 - 5.60307I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.638810 + 0.068850I	5.02009 + 1.56359I	5.22655 - 0.46859I
u = 0.638810 - 0.068850I	5.02009 - 1.56359I	5.22655 + 0.46859I
u = -0.565065 + 0.112376I	-1.37963 - 2.39285I	-2.15770 + 3.99262I
u = -0.565065 - 0.112376I	-1.37963 + 2.39285I	-2.15770 - 3.99262I
u = -0.467047 + 0.336383I	0.51184 + 1.97273I	0.43404 - 3.18104I
u = -0.467047 - 0.336383I	0.51184 - 1.97273I	0.43404 + 3.18104I

II.
$$I_2^u = \langle u^7 + u^5 + 2u^3 + u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} + u^{2} + u + 1 \\ -u^{4} - u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{6} + u^{4} + 2u^{2} + 1 \\ -u^{6} - u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{6} - u^{4} - 2u^{2} - 1 \\ u^{6} + u^{2} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} \\ -u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{5} - u \\ -2u^{3} + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^7 + 2u^6 + 5u^5 + 6u^4 + 6u^3 + 4u^2 + u - 1$
c_2, c_4, c_6 c_{10}	$u^7 + u^5 + 2u^3 + u - 1$
c_3, c_{12}	$(u-1)^7$
c_7	$u^7 - 3u^5 - 2u^4 + 8u^3 + 2u^2 - u - 3$
c_8, c_9, c_{11}	$u^7 - 2u^6 + 5u^5 - 6u^4 + 6u^3 - 4u^2 + u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_8 c_9, c_{11}	$y^7 + 6y^6 + 13y^5 + 10y^4 + 2y^3 + 8y^2 + 9y - 1$
c_2, c_4, c_6 c_{10}	$y^7 + 2y^6 + 5y^5 + 6y^4 + 6y^3 + 4y^2 + y - 1$
c_3, c_{12}	$(y-1)^7$
<i>C</i> ₇	$y^7 - 6y^6 + 25y^5 - 54y^4 + 78y^3 - 32y^2 + 13y - 9$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.237779 + 0.943997I	1.64493	6.00000
u = -0.237779 - 0.943997I	1.64493	6.00000
u = -0.799839 + 0.781167I	1.64493	6.00000
u = -0.799839 - 0.781167I	1.64493	6.00000
u = 0.755347 + 0.961681I	1.64493	6.00000
u = 0.755347 - 0.961681I	1.64493	6.00000
u = 0.564540	1.64493	6.00000

III. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1, c_5	$(u^7 + 2u^6 + \dots + u - 1)(u^{66} + 21u^{65} + \dots + 4u + 1)$	
c_2, c_6	$(u^7 + u^5 + 2u^3 + u - 1)(u^{66} - u^{65} + \dots - 2u + 1)$	
c_3,c_{12}	$((u-1)^7)(u^{66} + 6u^{65} + \dots + 1260u + 392)$	
c_4,c_{10}	$(u^7 + u^5 + 2u^3 + u - 1)(u^{66} - u^{65} + \dots + 2u + 1)$	
<i>C</i> ₇	$(u^7 - 3u^5 - 2u^4 + 8u^3 + 2u^2 - u - 3)(u^{66} + 5u^{65} + \dots - 4u + 37)$	
c_8, c_9, c_{11}	$(u^7 - 2u^6 + \dots + u + 1)(u^{66} - 17u^{65} + \dots - 4u + 1)$	

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^7 + 6y^6 + 13y^5 + 10y^4 + 2y^3 + 8y^2 + 9y - 1)$ $\cdot (y^{66} + 49y^{65} + \dots + 76y + 1)$
c_2, c_6	$(y^7 + 2y^6 + \dots + y - 1)(y^{66} + 21y^{65} + \dots + 4y + 1)$
c_3, c_{12}	$((y-1)^7)(y^{66} - 42y^{65} + \dots + 3127376y + 153664)$
c_4, c_{10}	$(y^7 + 2y^6 + \dots + y - 1)(y^{66} + 17y^{65} + \dots + 4y + 1)$
c_7	$(y^7 - 6y^6 + 25y^5 - 54y^4 + 78y^3 - 32y^2 + 13y - 9)$ $\cdot (y^{66} - 7y^{65} + \dots - 10820y + 1369)$
c_8, c_9, c_{11}	$(y^7 + 6y^6 + 13y^5 + 10y^4 + 2y^3 + 8y^2 + 9y - 1)$ $\cdot (y^{66} + 65y^{65} + \dots + 4y + 1)$