Dendrograma

Lino Oswaldo Sanchez

12/5/2022

Paqueterías nesesarías

library(cluster.datasets)

Base de datos

```
data("all.mammals.milk.1956")
AMM=all.mammals.milk.1956
```

Usaremos el data set de "all.mammals.milk.1956", el cual contiene datos sobre la leche de diferentes especies de animales.

Revisión de la base de datos

Dimensión

dim(AMM)

[1] 25 6

Esta base cuenta con 25 observaciones y 6 variables

Datos faltantes

anyNA(AMM)

[1] FALSE

La búsqueda sale negativa así que proseguimos con el Dendograma

Tipo de variables

str(AMM)

```
## 'data.frame': 25 obs. of 6 variables:
## $ name : chr "Horse" "Orangutan" "Monkey" "Donkey" ...
## $ water : num    90.1 88.5 88.4 90.3 90.4 87.7 86.9 82.1 81.9 81.6 ...
## $ protein: num    2.6 1.4 2.2 1.7 0.6 3.5 4.8 5.9 7.4 10.1 ...
## $ fat : num    1 3.5 2.7 1.4 4.5 3.4 1.7 7.9 7.2 6.3 ...
## $ lactose: num    6.9 6 6.4 6.2 4.4 4.8 5.7 4.7 2.7 4.4 ...
## $ ash : num    0.35 0.24 0.18 0.4 0.1 0.71 0.9 0.78 0.85 0.75 ...
```

Encontramos que la base esta conformada por 5 variables numéricas y una carácter donde se encuentra registrado el nombre de los animales, en las numéricas teneos la cantidad de proteína, nivel de agua, grasa, lactosa, los minerales de la leche.

Cálculo de la matriz de distancias de Mahalonobis

```
dist.AMM<-dist(AMM[,2:6])</pre>
```

Calculamos la distancia de Mahalanobis para las variables que comprende de la dos a la seis, variables numéricas.

Con la distancia de Mahalanobis podemos calcular la similitud que existe entre las variables teniendo en cuenta la correlación que hay entre ellas.

Redondeo

```
round(as.matrix(dist.AMM)[1:6, 1:6],3)
```

```
## 1 2 3 4 5 6

## 1 0.000 3.327 2.494 1.226 4.759 4.107

## 2 3.327 0.000 1.206 2.794 2.798 2.592

## 3 2.494 1.206 0.000 2.375 3.716 2.348

## 4 1.226 2.794 2.375 0.000 3.763 4.007

## 5 4.759 2.798 3.716 3.763 0.000 4.176

## 6 4.107 2.592 2.348 4.007 4.176 0.000
```

Realizamos un redondeo de los cálculos de la distancia de Mahalanobis y los convertimos a una matriz, proyectamos e indicamos que solo usaremos a los primeros 6 individuos así que especificamos la selección de las 6 filas y 6 columnas pertenecientes a dichos individuos.

Calculo del dendrograma

```
dend.AMM<-as.dendrogram(hclust(dist.AMM))</pre>
```

Se calcula el Dendograma para nuestras observaciones elegidas donde usaremos el método de agrupación por Clústers "hclust", el cual nos ofrece una agrupación jerárquica.

Graficación del dendrograma

Creamos un vector para las etiquetas que le asignaremos al Dendograma para el cual necesitaremos la librería "dendextend"

```
library(dendextend)
```

```
L=labels(dend.AMM)
labels(dend.AMM)=AMM$name[L]
```

Graficamos el Dendograma cambiamos el tamaño de las etiquetas y aplicamos color a las etiquetas para que resalten.

```
dend.AMM %>%
  set(what="labels_col", "blue") %>% #Colores etiqueta
  set(what="labels_cex", 0.8) %>%
  plot(main="Dendrograma de mamíferos")
```

Dendrograma de mamíferos

Obtenemos el Dendograma agrupado y podemos ver que esta dividido en dos grupos en el primer grupo se encuentran la leche de las especies de foca y delfín son deferentes de el segundo grupo el cual esta sub-dividido en dos grupos más y dos mas para estos grupos que a su vez contienen más.

Pero lo interesante es ver que el gráfico nos muestra dos grupos en los que se pueden separara la leche de estos animales.