Chapter 3 Combinational Logic Design

- [3.1] In the canonical SOP form, $f(a,b,c) = a \cdot c = a \cdot 1 \cdot c = a \cdot (b + \overline{b}) \cdot c$ $= a \cdot b \cdot c + a \cdot \overline{b} \cdot c$
- [3.2] In the canonical SOP form, $g(x,y) = x + y = x \cdot 1 + 1 \cdot y$ $= x \cdot (y + y) + (x + x) \cdot y$ $= x \cdot y + x \cdot y + x \cdot y + x \cdot y$ $= x \cdot y + x \cdot y + x \cdot y$
- [3.3] In the canonical SOP form, $f(u,v,w) = u \cdot v \cdot \overline{w} + u \cdot v$ $= u \cdot v \cdot \overline{w} + u \cdot v \cdot 1$ $= u \cdot v \cdot \overline{w} + u \cdot v \cdot (w + \overline{w})$ $= u \cdot v \cdot \overline{w} + u \cdot v \cdot w + u \cdot v \cdot \overline{w}$ $= u \cdot v \cdot w + u \cdot v \cdot \overline{w}$
- [3.4] In the canonical SOP form, $g(A,B,C) = \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$
- [3.5] In the canonical POS form, $g(A,B,C) = (A+B+C) \cdot (A+B+\overline{C}) \cdot (\overline{A}+B+\overline{C})$

[3.6]

				_
a	b	С	g(a,b,c)	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$\Leftarrow \bar{a} \cdot b \cdot c$
1	0	0	1	$\Leftarrow a \cdot \bar{b} \cdot \bar{c}$
1	0	1	1	$\Leftarrow a \cdot \bar{b} \cdot c$
1	1	0	1	$\Leftarrow a \cdot b \cdot \bar{c}$
1	1	1	0	

[3.7]

X	y	Z	$\mathbf{F}(\mathbf{x},\mathbf{y},\mathbf{z})$	
0	0	0	1	$\Leftarrow x \cdot y \cdot z$
0	0	1	0	
0	1	0	1	$\Leftarrow x \cdot y \cdot z$
0	1	1	0	
1	0	0	1	$\Leftarrow x \cdot y \cdot z$
1	0	1	0	
1	1	0	0	
1	1	1	1	

[3.8]

X	y	z	f(x,y,z)	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$\Leftarrow x \cdot y \cdot z$
1	0	0	1	$\Leftarrow x \cdot y \cdot z$
1	0	1	1	$\Leftarrow x \cdot y \cdot z$
1	1	0	1	$\Leftarrow x \cdot y \cdot z$
1	1	1	1	

In the canonical SOP form, $f(x,y,z) = \overline{x} \cdot y \cdot z + x \cdot z + x \cdot y \cdot z + x \cdot z \cdot z + x$

[3.9] In the canonical SOP form,

$$f(x,y,z) = \overline{x \cdot y \cdot z} + \overline{x \cdot y} \cdot z + \overline{x \cdot y} \cdot \overline{z} + x \cdot y \cdot z$$

[3.10] In the canonical SOP form, $g(a,b,c) = \overline{a \cdot b} \cdot c + \overline{a \cdot b} \cdot \overline{c} + \overline{a \cdot b} \cdot \overline{c} + \overline{a \cdot b} \cdot c + \overline{a \cdot b} \cdot c$

[3.11] (a) In the canonical SOP form, $B(u,v,w) = \overline{u \cdot v \cdot w} + \overline{u \cdot v \cdot w} + u \cdot \overline{v \cdot w} +$

(b) In the canonical SOP form, $R(a,b,c) = \overline{a \cdot b \cdot c} + \overline{a \cdot$

[3.12]

$$r(u,v,w) = u \cdot v \cdot w + (\overline{u} + v) \cdot w = u \cdot v \cdot w + \overline{u} \cdot w + v \cdot w$$

$$= u \cdot v \cdot w + \overline{u} \cdot v \cdot w + \overline{u} \cdot \overline{v} \cdot w + u \cdot v \cdot w + \overline{u} \cdot v \cdot w$$

$$= u \cdot v \cdot w + \overline{u} \cdot v \cdot w + \overline{u} \cdot \overline{v} \cdot w$$

u	v	w	r(u,v,w)	
0	0	0	0	
0	0	1	1	← u•v•w
0	1	0	0	
0	1	1	1	← u•v•w
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

[3.13]
$$f(a,b,c,d) = (a+\overline{b}) \cdot c + b \cdot \overline{c} \cdot d + b \cdot c$$
$$= a \cdot c + \overline{b} \cdot c + b \cdot \overline{c} \cdot d + b \cdot c$$
$$= a \cdot c + (\overline{b} + b) \cdot c + b \cdot \overline{c} \cdot d$$
$$= a \cdot c + c + b \cdot \overline{c} \cdot d = c + b \cdot \overline{c} \cdot d$$

а	b	С	d	f(a,b,c,d)]
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	1	← c
0	0	1	1	1	← c
0	1	0	0	0	
0	1	0	1	1	$\Leftarrow b \cdot \bar{c} \cdot d$
0	1	1	0	1	← c
0	1	1	1	1	← c
1	0	0	0	0	
1	0	0	1	0	
,1	0	1	0	1	← c
1	0	1	1	1	← c
1	1	0	0	0	
1	1	0	1	1	$\Leftarrow b \cdot c \cdot d$
1	1	1	0	1	← c
1	1	1	1	1	← c

[3.14]
$$g(a,b) = m_0 + m_2 = \overline{a \cdot b} + a \cdot \overline{b}$$

[3.15]
$$f(x,y,z) = m_0 + m_1 + m_5 + m_6$$

 $f(x,y,z) = \overline{x \cdot y} \cdot \overline{z} + \overline{x} \cdot \overline{y} \cdot z + x \cdot y \cdot z + x \cdot y \cdot z + x \cdot y \cdot \overline{z}$

[3.16]

(a)
$$f(x,y,z) = m_0 + m_2 + m_4 + m_5$$

 $f(x,y,z) = \overline{x \cdot y \cdot z} + \overline{x \cdot y \cdot z} + x \cdot \overline{y \cdot z} + x \cdot \overline{y \cdot z} + x \cdot \overline{y \cdot z}$
(b) $f(x,y,z) = \overline{x \cdot (y + y) \cdot z} + x \cdot \overline{y \cdot (z + z)} = \overline{x \cdot z} + x \cdot \overline{y}$

[3.17]
$$h(a,b,c) = \sum m(0, 2, 4, 5, 6)$$

 $h(a,b,c) = \overline{a \cdot b \cdot c} + \overline{a \cdot b \cdot c}$
 $= \overline{a \cdot (b + b) \cdot c} + \overline{a \cdot b \cdot (c + c)} + \overline{a \cdot b \cdot c}$
 $= \overline{a \cdot c} + \overline{a \cdot b} + \overline{a \cdot b \cdot c} = \overline{a \cdot c} + \overline{a \cdot (b + b \cdot c)}$
 $= \overline{a \cdot c} + \overline{a \cdot (b + c)} = \overline{a \cdot c} + \overline{a \cdot b} + \overline{a \cdot c}$
 $= (\overline{a + a}) \cdot \overline{c} + \overline{a \cdot b} = \overline{c} + \overline{a \cdot b}$

[3.18]
$$h(x,y,z) = \sum_{x \to y} m(1, 2, 4)$$

= $x \cdot y \cdot z + x \cdot y \cdot z + x \cdot y \cdot z$

[3.19]
$$G(a,b) = M_0 \cdot M_2 = (a+b) \cdot (a+b)$$

[3.20]
$$G(A,B,C) = \prod M(1, 3, 4, 7)$$

 $G(A,B,C) = (A+B+\overline{C}) \cdot (A+\overline{B}+\overline{C}) \cdot (\overline{A}+B+C) \cdot (\overline{A}+\overline{B}+\overline{C})$

[3.21]
$$f(a,b,c) = \sum m(0, 1, 4, 7)$$

 $g(a,b,c) = \sum m(0, 2, 5, 7)$

[3.22]
$$f_1 = \mathbf{u} \cdot \mathbf{v} \cdot \overline{\mathbf{w}} + \mathbf{u} \cdot \overline{\mathbf{v}} \cdot \mathbf{w} + \mathbf{u} \cdot \mathbf{v} \cdot \mathbf{w} + \overline{\mathbf{u}} \cdot \mathbf{v} \cdot \overline{\mathbf{w}}$$
$$= \sum m(6, 5, 7, 2)$$
$$f_2 = \mathbf{u} \cdot \overline{\mathbf{v}} \cdot \overline{\mathbf{w}} + \mathbf{u} \cdot \mathbf{v} \cdot \overline{\mathbf{w}} + \overline{\mathbf{u}} \cdot \mathbf{v} \cdot \mathbf{w} + \mathbf{u} \cdot \overline{\mathbf{v}} \cdot \mathbf{w}$$
$$= \sum m(4, 6, 3, 5)$$

[3.23]
$$F(x,y,z,w) = \sum m(0, 1, 5, 8, 9, 12, 14)$$

 $H(x,y,z,w) = \sum m(4, 5, 11, 13, 15)$
 $G(x,y,z) = \sum m(1, 2, 4, 7)$

There are more than one ways of designing AND-OR PLA for these equations. The method shown here is to extend the G(x,y,z) into G(x,y,z,w) using the following fact that $(\overline{w}+w)=1$. Thus,

$$G(x,y,z)=G(x,y,z,w)=\sum m(2,3,4,5,8,9,14,15)$$

[3.24]
$$F_1 = \prod M(0, 1, 3, 4, 7)$$

 $F_2 = \prod M(3, 5)$
 $F_3 = \prod M(4, 5, 6)$

[3.25]

$$g_0 = (x + y + z + w) \cdot (x + y + z + w) \cdot (x + y + z + w)$$

 $= \prod M(5, 4, 8)$
 $g_1 = (x + y + z + w) \cdot (x + y + z + w) \cdot (x + y + z + w)$
 $= \prod M(8, 14, 4)$
 $g_2 = (x + y + z + w) \cdot (x + y + z + w) \cdot (x + y + z + w)$
 $= (x + y + z + w) \cdot (x + y + z + w)$
 $= \prod M(0, 2)$
 $g_3 = (x + y + z + w) \cdot (x + y + z + w) \cdot (x + y + z + w)$
 $= (x + y + z + w) \cdot (x + y + z + w) \cdot (x + y + z + w)$
 $= (x + y + z + w) \cdot (x + y + z + w) = g_2$

[3.27] $h(x,y,z) = x \cdot y + x \cdot (y + z) + (x + y) \cdot z$

[3.28]
$$g(a,b,c) = \sum_{m} (0, 1, 2, 3, 6)$$

[3.30] $F = A \cdot B \cdot C + \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot C + \overline{A} \cdot \overline{B} \cdot C$

[3.37] $h = x \cdot y \cdot (z + \overline{w}) + (\overline{x} + y) \cdot z$

X	y	z	w	h(x,y,z,w)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1_	1_	1	1

The canonical SOP form of h(x,y,z,w) is

$$h = \overline{x \cdot y} \cdot z \cdot \overline{w} + \overline{x} \cdot \overline{y} \cdot z \cdot \overline{w} + \overline{x} \cdot y \cdot z \cdot \overline{w}$$

$$F = y \cdot w + x \cdot y \cdot z + x \cdot y \cdot z + x \cdot z \cdot w$$

= $y \cdot w + (x \cdot y + x \cdot y) \cdot z + x \cdot z \cdot w$

The state of the s
--

			ANDITIONAL	PREBLER
ABC000000000000000000000000000000000000	F00-00-00-0-0	FX X 1 00 100 1	F3 X X 0 0 1 1 1 1 0 1 1 X X X	

$$FI = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$= \overline{ABCD} + \overline{ABCD}$$

$$FI = \overline{AB} \overline{CD} + \overline{CD} (\overline{AB} + \overline{AB}) + \overline{CD} (\overline{AB} + \overline{AB})$$

$$= (\overline{AB} + \overline{AB}) \overline{CD} + \overline{CD} (\overline{AB} + \overline{AB}) + \overline{CD} (\overline{AB} + \overline{AB}) + \overline{CD} (\overline{AB} + \overline{AB}) + \overline{CD} (\overline{AB} + \overline{AB})$$

$$= (AB + \overline{AB}) \overline{CD} + C\overline{D} (AB + \overline{AB}) + \overline{CD} (AB + \overline{AB})$$

$$= (\overline{AB}) \overline{CD} + C\overline{D} (\overline{AB}) + \overline{CD} (\overline{AB}) + \overline{CD} (\overline{AB})$$

$$= (\overline{AB}) \overline{CD} + \overline{CD} (\overline{AB}) + \overline{CD} (\overline{AB}) + \overline{CD} (\overline{AB})$$

$$= (\overline{AB}) \overline{CD} + \overline{CD} (\overline{AB}) + \overline{CD} (\overline{AB}) + \overline{CD} (\overline{AB})$$

$$= (\overrightarrow{AB+AB})^{CD} + (\overrightarrow{B}(\overrightarrow{AB}) + CB(\overrightarrow{AB}))$$

$$= (\overrightarrow{AB}B)(\overrightarrow{CD} + \overrightarrow{CD}) + \overrightarrow{ABB}(\overrightarrow{CD} + \overrightarrow{CD})$$

$$= (\overrightarrow{AB}B)(\overrightarrow{CD} + \overrightarrow{CD}) + \overrightarrow{ABB}(\overrightarrow{CBD})$$

$$= (\overrightarrow{A \oplus B}) (\overrightarrow{C A + \overline{C} A}) + \overrightarrow{A \oplus B} (\overrightarrow{C \oplus A})$$

$$= (\overrightarrow{A \oplus B}) (\overrightarrow{C A + \overline{C} A}) + \overrightarrow{A \oplus B} (\overrightarrow{C \oplus A})$$

=
$$(\overline{A} \oplus \overline{B})$$
 $(\overline{C} \wedge + \overline{C} \wedge)$ + $A \oplus \overline{B}$ $(\overline{C} \oplus \overline{A})$
= $(\overline{A} \oplus \overline{B})$ $(\overline{C} \wedge \overline{D})$ + $A \oplus \overline{B}$ $(\overline{C} \oplus \overline{A})$
= $A \oplus \overline{B} \oplus \overline{C} \oplus \overline{D}$ [The rest sheave it up to you.].

[This is one possible Solution]

4 ANDZ GATES

1 OR4 GATE

B(C+D) + A(C+D)

23

1 NOT GATE
2 AND 2 GATES
3 OR 2 GATES