

(Chapter-7) Logical Agents

Yanmei Zheng

Outline

- QAgent Case (Wumpus world)
- Knowledge-Representation
- QLogic in general models and entailment
- Propositional (Boolean) logic

Knowledge Bases

Inference Engine
Knowledge Base
Content
Domain-independent Algorithm
Domain-Specific Content

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 - 1. Tell it what it needs to know
 - Then it can Ask itself what to do answers should follow from the KB
- Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented
- Or at the implementation level
 - 1. i.e., data structures in KB and algorithms that manipulate them

Propositional Logic: A Very Simple Logic

A simple knowledge-based agent

```
function KB-AGENT(percept)returns an action
static:KB,a knowledge base
t,a couter,initially 0,idicating time
TELL(KB,MAKE-PERCEPT-SENTENCE(percept,t))
action←ASK(KB,MAKE-ACTION-QUERY(t))
TELL(KB,MAKE-ACTION-SENTENCE(action,t))
t←t+1
return action
```

@The agent must be able to:

- 1. Represent states, actions, etc.
- 2. Incorporate new percepts
- 3. Update internal representations of the world
- 4. Deduce hidden properties of the world
- 5. Deduce appropriate actions

What will we learn?

We design (knowledge based) agents that can form representations of a complex world, use a process of inference to derive new representation about the world, and use these new representations to deduce what to do.

What is the central component of knowledge based agent?

Knowledge Based Agents {7.1}

- The knowledge base(KB) is the central component
- QKB is a set of sentences representing assertions
 about the world
- Sentences are represented with a knowledge representation language
- **@Tell** and Ask
- @Both may involve inferencing, deriving new sentences from old

Knowledge Based Agents {7.1}

- Procedural, e.g.: functions
 - 1. Such knowledge can only be used in one way --by executing it
- Declarative, e.g.: constraints
 - 1. It can be used to perform many different sorts of inferences
- @Logic is a ______ language

Knowledge Based Agents {7.1}

Procedural, e.g.: functions

1. Such knowledge can only be used in one way --by executing it

Declarative, e.g.: constraints

1. It can be used to perform many different sorts of inferences

QLogic is a Declarative language to:

- Assert sentences representing facts that hold in a world W (these sentences are given the value true)
- 2. Deduce the true/false values to sentences representing other aspects of W

logic is a declarative language (7.1)

Propositional logic sentence

$$A \wedge B \Rightarrow C$$

@First-order predicate logio-sentence

$$(\forall x)(\exists y)$$
Mother (y, x)

Agent Case (Wumpus world)

The Wumpus World

- √ The wumpus world is a cave consisting of rooms connected by passageways.
- ✓ Lurking somewhere is the wumpus, which eats anyone who enters its room.
- √The wumpus can be shot by an agent, but the agent has only one arrow.
- ✓ Some rooms contain pits that will trap anyone who wanders into these rooms (except for the wumpus, which is too big).
- ✓ The only mitigating feature of this bleak environment is the possibility of finding a heap of gold.
- ✓ What is the PEAS of this world?

PEAS of Wumpus World {7.2}

Performance measure

- Gold \rightarrow +1000, death \rightarrow -1000
- -1 per step, -10 for using the arrow

Environment

- A 4×4 grid of rooms. Start at [1,1], facing to the right.
- The locations of the gold and the wumpus are chosen randomly (and uniformly) from the squares other than the start square.
- In addition, each square other than the start can be a pit, with probability 0.2.
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy(windy)
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

PEAS of Wumpus World {7.2}

@Actuators

- 1. Left turn
- 2. Right turn
- 3. Forward
- 4. Grab
- 5. Shoot

Sensors

- 1. Stench, in,4-adjacent
- 2. Breeze (for movement), 4-adjacent
- 3. Glitter (gold), in
- 4. Bump (hit), walking into a wall
- 5. Scream, wumpus killed, anywhere

Wumpus world characterization

```
<u>Pully Observable</u> No – only local perception
<u>Deterministic</u> Yes – outcomes exactly specified
<u>Episodic</u> No – sequential at the level of actions
<u>Static</u> Yes – Wumpus and Pits do not move
<u>Discrete</u> Yes
```

Single-agent? Yes – Wumpus is essentially a natural feature

Ok because: Haven't fallen into a pit. Haven't been eaten by a Wumpus.

OK since no Stench, no Breeze, neighbors are safe (OK).

We move and smell a stench.

We can infer the following.

Note: square (1,1) remains OK.

Move and feel a breeze What can we conclude?

But, can the 2,2 square really have either a Wumpus or a pit?

And what about the other P? and W? squares

Dr.Yanmei Zheng

• • •

And the exploration continues onward until the gold is found.

• • •

Exploring the Wumpus World {7.2}

- Agent needs to know which actions are safe.
- reasoning
- □ Wumpus world can be solved using logic.

What does an agent need to perform well in the wumpus world?

- It needs to represent the knowledge about the wumpus world: ex, stench → wumpus nearby.
- It needs to incorporate new knowledge that it discovers when exploring the cave → feeling a breeze in the current square.
- Deduce from the preceding information the appropriate actions (safe and rewarding):
- The agent needs a knowledge-base.

Knowledge bases

What does an agent need to perform well in the wumpus world?

Each time the agent program is called, it does three things

- ✓ First, it TELLS the knowledge base what it perceives.
- ✓ Second, it ASKS the knowledge base what action it should perform
- ✓ Third, the agent program TELLS the knowledge base which
 action was chosen, and the agent executes the action.

Knowledge bases

 Knowledge base: set of sentences. Each sentence is expressed in a language called a knowledge representation language.

 Sentence: a sentence represents some assertion about the world.

Inference: Process of deriving new sentences from old ones.

Types of Knowledge

Declarative Describes what is known Concepts knowledge about a problem. **Facts** Simple statements that are **Objects** asserted to be either true or false. A list of statements that more fully describes some object or concept (objectattribute-value triplet).

Types of Knowledge

Procedural Rules
Strategies
Agendas
Procedures

Agendas
Procedures

Describes how a problem is solved. This type of knowledge provides direction on how to do something.

Some General Knowledge Representations

- 1. Logical Representations
- 2. Production Rules
- 3. Semantic Networks
 - Conceptual graphs, frames
- 4. Description Logics (not covered in this course)

Logical Representation

Logic in general

@A language with concrete rules

- Many ways to translate between languages
 - 1. A statement can be represented in different logics
 - 2. And perhaps differently in same logic
- Not to be confused with logical reasoning
 - 1. Logics are languages, reasoning is a process (may use logic)

Logic in general

- QLogics are formal languages for representing information such that conclusions can be drawn Syntax defines the sentences in the language Semantics define the "meaning" of sentences;
 - 1. i.e., define truth of a sentence in a world
- **@**E.g., the language of arithmetic
 - 1. $x+2 \ge y$ is a sentence; $x2+y > \{\}$ is not a sentence
 - 2. $x+2 \ge y$ is true iff the number x+2 is no less than the number y
 - 3. $x+2 \ge y$ is true in a world where x = 7, y = 1
 - 4. $x+2 \ge y$ is false in a world where x = 0, y = 6

Logic in general

Syntax and Semantics

@Syntax

- 1. Rules for constructing legal sentences in the logic
- 2. Which symbols we can use (English: letters, punctuation)
- 3. How we are allowed to combine symbols

@Semantics

- 1. How we interpret (read) sentences in the logic
- 2. Assigns a meaning to each sentence

Logic in general

Syntax and Semantics

Example: "All lecturers are 170 centimeters tall"

- 1. A valid sentence (syntax)
- 2. And we can understand the meaning (semantics)
- 3. This sentence happens to be false (there is a counter example)

Logic

- ©Oldest form of knowledge representation in a computer is logic
- QLogic is concerned with the truthfulness of a chain of statements.

Logic

- **Two kinds of logic:**
 - Propositional Logic
 - Predicate Calculus
- @ Both use symbols to represent knowledge and operators applied to the symbols to produce logical reasoning

Propositional Logic

- Propositional logic represents and reasons with propositions.
- @P.L. assigns symbolic variable to a proposition such as
 - 1. A = The car will start
- In. P. L. if we are concern with the truth of the statement, we will check the truth of A.

Operators	Symbol
AND	∧, &, ∩
OR	∨, ∪, +
NOT	一,~
IMPLIES	\supset , \rightarrow
EQUIVALENT	=

Propositions that are linked together with connectives, such as AND, OR, NOT, IMPLIES, and EQUIVALENT, are called compound statements.

@Example:

IF	The Students Work Hard \rightarrow	A
AND	Always come to lectures →	В
AND	Do all their homework's \rightarrow	C
THEN	they will get an A \rightarrow	D

QUsing the symbols: $A \wedge B \wedge C \rightarrow D$

Truth Table

A	В	A and B	A or B	Not A	$A \equiv B$
F	F	F	F	T	Т
F	Т	F	Т	Т	F
Т	F	F	Т	F	F
Т	Т	T	Т	F	Т

- **@Implies Operator:** $C = A \rightarrow B$
- For implication C, if A is true, then B is implied to be true
- The implies return a F when A is TRUE and B is FALSE Otherwise it return a TRUE.

A	В	С
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

Ex : A = it is raining
B= I have an umbrella

Ex : A = program code B= output

Idempotent Laws	$A \rightarrow B \equiv \neg A \cup B$ $A \cap \neg A \equiv F$ $A \cup \neg A \equiv T$
Commutative Laws	$A \cap B \equiv B \cap A$ $A \cup B \equiv B \cup A$
Distributive Laws	$A \cap (B \cup C) \equiv (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) \equiv (A \cup B) \cap (A \cup C)$
Associative Laws	$A \cap (B \cap C) \equiv (A \cap B) \cap C$ $A \cup (B \cup C) \equiv (A \cup B) \cup C$
Absorptive Laws	$A \cup (A \cap B) \equiv A$ $A \cap (A \cup B) \equiv A$
DeMorgan's Laws	$\neg(A \cap B) \equiv \neg A \cup \neg B$ $\neg(A \cup B) \equiv \neg A \cap \neg B$

Propositional logic: Syntax

- Propositional logic is the simplest logic
 The proposition symbols P₁, P₂ etc are sentences
 - 1. If S is a sentence, ¬S is a sentence (negation) If S₁ and S₂ are sentences, S₁ ∧ S₂ is a sentence (conjunction) If S₁ and S₂ are sentences, S₁ ∨ S₂ is a sentence (disjunction) If S₁ and S₂ are sentences, S₁ ⇒ S₂ is a sentence (implication) If S₁ and S₂ are sentences, S₁ ⇔ S₂ is a sentence (biconditional)

Propositional logic: Syntax

```
Sentence →
AtomicSentence|ComplexSentence
 AtomicSentence → True | False | Symbol
           Symbol \rightarrow P | Q | R |...
ComplexSentence → ¬Sentence
                         (Sentence Λ Sentence)
                         (Sentence V Sentence)
                        (Sentence ☐ Sentence)
                         (Sentence 

Sentence)
Figure A BNF (Backus-Naur Form) grammar of sentences in
propositionalogifrom highest to lowest
               \neg , \land , \lor , \Box , and \Box
```

Propositional logic: Semantics

Rules for evaluating truth with respect to a model *m*:

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. $P_{1,2}$ $P_{2,2}$ $P_{3,1}$ false true false

With these symbols, 8 possible models, can be enumerated automatically.

Simple recursive process evaluates an arbitrary sentence, e.g., $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$

Model of a sentence {7.3}

- use the term model in place of "possible world."
- \square We say m is a model of a sentence α (or m satisfies α) if α is true in m,
 - "x=2,y=2"____ a model of $x^2+y^2<=16$
 - "x=3,y=3"_____ a model of $x^2+y^2<=16$
 - "P=T,Q=T"_____ a model of PΛQ
 - "P=T,Q=F"_____ a model of PΛQ

Model of a sentence {7.3}

- □ use the term model in place of "possible world."
- \square We say m is a model of a sentence α (or m satisfies α) if α is true in m,
 - "x=2,y=2"____ a model of x²+y²<=16
 - "x=3,y=3"____ a model of x²+y²<=16
 - "P=T,Q=T"____ a model of PAQ
 - "P=T,Q=F"____ a model of PAQ
- \square M(α) is the set of all models of α
 - M(PVQ) = _____

Model of a sentence {7.3}

- use the term model in place of "possible world."
- \square We say m is a model of a sentence α (or m satisfies α) if α is true in m,
 - "x=2,y=2"____ a model of x²+y²<=16
 - "x=3,y=3"____ a model of x²+y²<=16
 - "P=T,Q=T" a model of PAQ
 - "P=T,Q=F"____ a model of PAQ
- \square M(α) is the set of all models of α
 - M(PVQ) = {"P=T,Q=T","P=T,Q=F","P=F,Q=T"}

Satisfiability of a sentence{}

☐ A sentence is valid if it is true in all models, A V B,x≥0 are_____ \blacksquare A V \neg A, $x^2 \ge 0$ are ☐ A sentence is satisfiable if it is true in some model; A sentence is unsatisfiable if it is true in no models \blacksquare A $\land \neg A, X^2 < 0$ are _____ **A V B,X>0** are_____ α is satisfiable iff M(α) is ______ α is unsatisfiable iff M(α) is

Satisfiability of a sentence{}

- ☐ A sentence is valid if it is true in all models,
 - AVB,x≥0 are not valid
 - AV¬A,x²≥0 are valid
- ☐ A sentence is satisfiable if it is true in some model; A sentence is unsatisfiable if it is true in no models
 - \blacksquare A Λ ¬A, X^2 <0 are unsatisfiable
 - AVB,X>0 are satisfiable
 - \blacksquare α is satisfiable iff M(α) is not empty
 - α is unsatisfiable iff M(α) is empty

Model of a KB {7.3}

- □ A KB is a set of sentences
- □ A model m is a model of KB iff it is a model of all sentences in KB, that is, all sentences in KB are true in m.
- □ KB = {P,P ∨ R}
 M(KB)=_____

Model of a KB {7.3}

- □ A KB is a set of sentences
- □ A model m is a model of KB iff it is a model of all sentences in KB, that is, all sentences in KB are true in m.
- KB = {P,P V R}

 M(KB)={"P=T,R=T","P=T,R=F"}

Satisfiability of a KB {7.3}

□ A KB is satisfiable iff it admits at least one model (M(KB) is not empty); otherwise it is unsatisfiable (M(KB) is empty)

- \blacksquare KB1 = {P,¬Q \land R} is_____
- **KB2** = $\{\neg P \lor P\}$ is______
- **KB3** = $\{P, \neg P\}$ is_____

Satisfiability of a KB {7.3}

- ☐ A KB is satisfiable iff it admits at least one model (M(KB) is not empty); otherwise it is unsatisfiable (M(KB) is empty)
 - KB1 = {P,¬Q∧R} is satisfiable
 - KB2 = {¬PVP} is satisfiable
 - KB3 = {P,¬P} is unsatisfiable

©Entailment means that one thing follows from another:

$$KB \models \alpha$$

- - E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won" E.g., x+y = 4 entails 4 = x+y Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

$$x + y = 4 = x + y$$
 _____yes/no
 $x^2 + y^2 < = 4 = X^2 + y^2 < = 16$? _____yes/no
 $P = P \land R$? _____yes/no

$$x + y = 4 = x + y ? \text{ (yes)}$$

 $x^2 + y^2 < = 4 = x^2 + y^2 < = 16 ? \text{ (yes)}$
 $P = P \land R ? \text{ (no)}$

Models

- QLogicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- **@**We say m is a model of a sentence α if α is true in m
- $@M(\alpha)$ is the set of all models of α
- **@**Then KB $\models \alpha$ iff $M(KB) \subseteq M(\alpha)$
 - 1. E.g. KB = Giants won and Reds won; α = Giants won


```
    KB ⊨ α
    iff ...,
    iff ...,
    iff ...,
    iff ...,
```


Entailment in the wumpus world

©Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

©Consider possible models for KB assuming only pits

Wumpus models

Wumpus models

@KB = wumpus-world rules + observations

Wumpus models

- **@**KB = wumpus-world rules + observations
- $Q \alpha_1 = "[1,2]$ is safe", $KB = \alpha_1$, proved by model checking

Wumpus models

@KB = wumpus-world rules + observations

Wumpus models

- **@**KB = wumpus-world rules + observations
- $Q \alpha_2 = "[2,2]$ is safe", KB can not $= \alpha_2$

Property of Inference Algorithm

- @An inference algorithm that derives only entailed sentences is called sound or truth-preserving.
- @If KB is true in the real world, then any sentence Alpha derived from KB by a sound inference procedure is also true in the real world.

Property of Inference Algorithm

Sensors and learning

How to prove Entailment

Wumpus world sentences

how to represent wumpus world using PL? Let Pi,j be true if there is a pit in [i, j] Let Bi,j be true if there is a breeze in [i,j] Start ■R1: ¬P1,1 ☐ Pits cause breezes in adjacent squares \blacksquare R2: B1,1 \Box (P1,2 \lor P2,1) 1,2 **R**3: B2,1 \Box (P1,1 \vee P2,2 \vee P3,1) Perceiving ■R4:¬B1,1 1,1 2,1 3,1 4,1 **R5:B2,1** is P1,2 true????

How to prove KB $\mid \alpha$

Proof methods

□ TELL(KB,R1)
 □ ...
 □ TELL(KB,R5)
 □ ASK(KB,¬P1,2)
 KB |= ¬P1,2 ?
 □ how to prove KB |=¬P1,2

1,4
1,3
1,2
1,1
2,1
3,1
4,1

- □ KB | ¬P1,2?
- \square KB $\models \alpha$ iff ...

- □ KB | = ¬P1,2? □ KB | = α iff M(KB) □ M(α) □ KB | = α iff (KB Λ α) is unsatisfiable □ KB | = α iff KB = > α is valid □ KB | = α iff KB, ¬α | = False 1,1 2,1 3,1 4,1
- □ proof by:
 - Model checking
 - truth table enumeration(always exponential in n)
 - logical equivalence
 - inference rules

proof by model checking{7.4.4}

 \square KB $\models \neg P1,2$?

1,1 2,1 3,1 4,1

B1,1	B2,1	P1,1	P1,2	P2,1	P2,2	P3,1	R1	R2	R3	R4	R5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
false	true	true	false	true	true	false						
false	true	false	false	false	false	true						
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	false	true						
false	true	false	false	true	false	false	true	false	false	true	true	false
true	false	true	true	false	true	false						

Proof by model checking

 \square (A $\vee \neg$ B) \wedge (B $\vee \neg$ C) \square A $\vee \neg$ C is valid?

A	В	C	AV¬B	BV¬C	AV¬C	(AV¬B) ∧(BV¬C) □ AV¬C
0	0	0	1	1	1	1
0	0	1	1	0	0	1
0	1	0	0	1	1	1
0	1	1	0	1	0	1
1	0	0	1	1	1	1
1	0	1	1	0	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

Logical equivalence (7.5)

```
Logical equivalence: Two sentences are logically equivalent iff
they are true in same models
           (\alpha \Lambda \beta) \equiv (\beta \Lambda \alpha) commutativity of \Lambda
           (\alpha V\beta) \equiv (\beta V\alpha) commutativity of V
      ((\alpha \Lambda \beta) \Lambda \gamma) \equiv (\alpha \Lambda (\beta \Lambda \gamma)) associativity of \Lambda
      ((\alpha V\beta)Vy) \equiv (\alpha V(\beta Vy)) associativity of V
            \neg(\neg\alpha) \equiv \alpha double-negation elimination
            (\alpha => \beta) \equiv (\neg \beta => \neg \alpha) contraposition
            (\alpha => \beta) \equiv (\neg \alpha \lor \beta) implication elimination
           (\alpha <=> \beta) \equiv ((\alpha => \beta) \land (\beta => \alpha)) biconditional elimination
           \neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta) de Morgan
           \neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) de Morgan
       (\alpha \Lambda(\beta V \gamma)) \equiv (\alpha \Lambda \beta) V(\alpha \Lambda \gamma) distributivity of \Lambda over V
       (\alpha V(\beta \Lambda \gamma)) \equiv (\alpha V \beta) \Lambda(\alpha V \gamma) distributivity of V over \Lambda
```

Validity and satisfiability

A sentence is valid if it is true in all models,

e.g., True,
$$A \lor \neg A$$
, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

$$A \Rightarrow A$$

$$(A \land (A \Rightarrow B)) \Rightarrow B$$

Validity is connected to inference via the **Deduction Theorem:**

 $KB = \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is satisfiable if it is true in some model e.g., $A \vee B$, C

A sentence is unsatisfiable if it is true in no models e.g., $A \wedge \neg A$

Satisfiability is connected to inference via the following:

 $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable $\alpha \models \beta$ if and only if the sentence $(\alpha \land \neg \beta)$ is unsatisfiable

poof by logical equivalence:

 \square (AV¬B) Λ (BV¬C)=>AV¬C is valid? $(AV-B)\Lambda(BV-C)=>AV-C$ $\equiv \neg((AV \neg B)) \land (BV \neg C) \lor AV \neg C$ $\equiv (\neg(AV\neg B)V\neg(BV\neg C))VAV\neg C$ $\equiv (\neg A \land B) \lor (\neg B \land C) \lor A \lor \neg C$ $\equiv (\neg A \land B) \lor A \lor (\neg B \land C) \lor \neg C$ $\equiv ((\neg AVA) \land (BVA)) \lor ((\neg BV \neg C) \land (CV \neg C))$ $\equiv (BVA)V(\neg BV\neg C)$ ΞT

Proof methods divide into (roughly) two kinds:

1. Application of inference rules

- Legitimate (sound) generation of new sentences from old
 Proof = a sequence of inference rule applications
- Can use inference rules as operators in a standard search algorithm
 Typically require transformation of sentences into a normal form

2. Model checking

 truth table enumeration (always exponential in n) improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)

Heuristic search in model space (sound but incomplete) e.g., min-conflicts-like hill-climbing algorithms

Inference Rules

$$\frac{\alpha \implies \beta, \alpha}{\beta}$$

$$\frac{\alpha \Lambda \beta}{\alpha}$$

$$\Box$$
 logical equivalence α \Box β≡(α \Box β)Λ(β \Box α)

$$\frac{\alpha <=> \beta}{(\alpha => \beta) \Lambda(\beta => \alpha)}$$

$$\frac{(\alpha => \beta) \Lambda (\beta => \alpha)}{\alpha <=> \beta}$$

Inference

@Example:

- **@**"Gary is either intelligent or a good actor.
- @If Gary is intelligent, then he can count from 1 to 10.
- @Gary can only count from 1 to 2.
- Therefore, Gary is a good actor."
- **@Propositions:**
- @I: "Gary is intelligent."
- @A: "Gary is a good actor."
- ©C: "Gary can count from 1 to 10."

Inference

@I: "Gary is intelligent."

A: "Gary is a good actor."

C: "Gary can count from 1 to 10."

@Step 1: ¬C Hypothesis

@Step 2: I⊃C Hypothesis

@Step 4: A \vee I Hypothesis

@Step 5: A Disjunctive Syllogism

Steps 3 & 4

@Conclusion: A ("Gary is a good actor.")

Inference{7.5.1}

The preceding derivation a sequence of applications of inference rules is called a proof.

Finding proofs is exactly like finding solutions to search problems.

Searching for proofs is an alternative to enumerating

models.


```
☐ Start
```

inference[7.5.1)

■ R1: ¬ P1,1

- ☐ Pits cause breezes in adjacent squares
 - R2: B1,1 <=> (P1,2VP2,1)
 - R3: B2,1 <=>(P1,1VP2,2V P3,1)
- Perceiving
 - R4:¬B1,1
 - **R5: B2,1**
- □ KB =¬P1,2?
- \square R6:(B1,1 => (P1,2VP2,1)) \land ((P1,2VP2,1)=> B1,1)

- \square R8:(¬B1,1=>¬(P1,2vP2,1))
- □ R9: ¬(P1,2VP2,1)
- \square R10:¬P1,2 Λ P2,1
- □ R11: ¬P1,2

1,1 2,1 3,1 4,1

R2, biconditional-elimination

R6, And- Elimination

R7, contraposition

R8,R4, Modus-ponens

R9, De Morgan

R10, And- Elimination

Dr.Yanmei Zheng

Inference{7.5.1}

```
□ Car problem:
(1) Batter-OK、
(2) ¬Empty-Gas-Tank、
(3) ¬Car-OK
(4) Battery-OKˬEmpty-Gas-Tank □ Engine-Starts
(5) Engine-StartsˬFlat-Tire □ Car-OK
□ What's the problem?
■ _______
```

Inference{7.5.1}

```
□ Car problem:
(1) Batter-OK、
(2) ¬Empty-Gas-Tank、
(3) ¬Car-OK
(4) Battery-OKˬEmpty-Gas-Tank□ Engine-Starts
(5) Engine-StartsˬFlat-Tire□ Car-OK
□ What's the problem?
■ Flat-Tire
```

Formalize the inference as a search problem

inference by searching{7.5.1}

apply a search algorithm
Initial state:
Actions:
Result:
Goal:

inference by searching{7.5.1}

- ☐ apply a search algorithm
 - Initial state: the initial KB
 - Actions: inference rules
 - Result: add inferred sentences to KB
 - Goal: the sentence we are trying to prove is in the KB.

from KB. derive α from [KB,- -a), derive False [KB, a) is unsatisfiable using resolution inference rule

Thank you

End of
Chapter 7-1