

Лекция 11 Large scale machine learning

Владимир Гулин

5 мая 2018 г.

План лекции

Unbiased Learning

Large scale linear models

Large scale decision trees ensembles

Training with Instance Bias

Unbiased Learning

$$l(b_x) = \prod_{b_j < b_x} \frac{n_j - d_j}{n_j}$$
 $w(b_x) = 1 - \prod_{b_j < b_x} \frac{n_j - d_j}{n_j}$

Table 3.1: An example of data transformation of 8 instances with bid price between 1 and 4. Left: tuples of bid, win and cost $\langle b_i, w_i, z_i \rangle_{i=1...8}$. Right: transformed survival model tuples $\langle b_j, d_j, n_j \rangle_{j=1...4}$ and the calculated winning probabilities. Here we also provide a calculation example of $n_3=4$ shown as blue in the right table. The counted cases of n_3 in the left table are 2 winning cases with $z \geq 3-1$ and the 2 losing cases with $b \geq 3$, shown highlighted in blue colour. Source [Zhang et al., 2016e].

o_i	w_i	z_i
2	win	1
3	win	2
2	lose	×
3	win	1
3	lose	×
4	lose	×
4	win	3
1	lose	×

b_j	n_j	d_j	$\frac{n_j - d_j}{n_j}$	$w(b_j)$	$w_o(b_j)$
1	8	0	1	1 - 1 = 0	0
2	7	2	<u>5</u>	$1 - \frac{5}{7} = \frac{2}{7}$	$\frac{2}{4}$
3	4	1	$\frac{3}{4}$	$1 - \frac{5}{7} \frac{3}{4} = \frac{13}{28}$	$\frac{3}{4}$
4	2	1	$\frac{1}{2}$	$1 - \frac{5}{7} \frac{3}{4} \frac{1}{2} = \frac{41}{56}$	$\frac{4}{4}$

Unbiased Learning

$$\begin{split} & \min_{\pmb{\theta}} \quad \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}(\boldsymbol{x})} \big[\mathcal{L}(\boldsymbol{y}, f_{\pmb{\theta}}(\boldsymbol{x})) \big] + \lambda \Phi(\pmb{\theta}) \\ & \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}(\boldsymbol{x})} [\mathcal{L}(\boldsymbol{y}, f_{\pmb{\theta}}(\boldsymbol{x}))] = \int_{\boldsymbol{x}} p_{\boldsymbol{x}}(\boldsymbol{x}) \mathcal{L}(\boldsymbol{y}, f_{\pmb{\theta}}(\boldsymbol{x})) d\boldsymbol{x} \\ & = \int_{\boldsymbol{x}} q_{\boldsymbol{x}}(\boldsymbol{x}) \frac{\mathcal{L}(\boldsymbol{y}, f_{\pmb{\theta}}(\boldsymbol{x}))}{w(b_{\boldsymbol{x}})} d\boldsymbol{x} = \mathbb{E}_{\boldsymbol{x} \sim q_{\boldsymbol{x}}(\boldsymbol{x})} \Big[\frac{\mathcal{L}(\boldsymbol{y}, f_{\pmb{\theta}}(\boldsymbol{x}))}{w(b_{\boldsymbol{x}})} \Big] \\ & = \frac{1}{|D|} \sum_{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in D} \frac{\mathcal{L}(\boldsymbol{y}, f_{\pmb{\theta}}(\boldsymbol{x}))}{w(b_{\boldsymbol{x}})} = \frac{1}{|D|} \sum_{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in D} \frac{\mathcal{L}(\boldsymbol{y}, f_{\pmb{\theta}}(\boldsymbol{x}))}{1 - \prod_{b_{\boldsymbol{j}} < b_{\boldsymbol{x}}} \frac{n_{\boldsymbol{j}} - d_{\boldsymbol{j}}}{n_{\boldsymbol{j}}}}. \\ & \min_{\pmb{\theta}} \frac{1}{|D|} \sum_{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in D} \frac{-\boldsymbol{y} \log f_{\pmb{\theta}}(\boldsymbol{x}) - (1 - \boldsymbol{y}) \log (1 - f_{\pmb{\theta}}(\boldsymbol{x}))}{1 - \prod_{b_{\boldsymbol{j}} < b_{\boldsymbol{x}}} \frac{n_{\boldsymbol{j}} - d_{\boldsymbol{j}}}{n_{\boldsymbol{j}}}} + \frac{\lambda}{2} \| \boldsymbol{\theta} \|_2^2 \end{split}$$

Вопрос:

 Как будет выглядеть правило обновления весов в линейной модели?

Unbiased CTR Estimation Learning

Table: Online A/B testing of CTR estimation (Yahoo!).

Camp.	BIAS AUC.	KMMP AUC	AUC Lift
C1	63.78%	64.12%	0.34%
C2	87.45%	88.58%	1.13%
C3	69.73%	75.52%	5.79%
C4	88.82%	89.55%	0.73%
C5	69.71%	72.29%	2.58%
C6	89.33%	90.70%	1.37%
C7	77.76%	78.92%	1.16%
C8	74.57%	76.98%	2.41%
C9	71.04%	73.12%	2.08%
all	73.48%	76.45%	2.97%

Как обучаться на больших данных?

Линейная модель

$$P(click|x) = \frac{1}{1 + exp(-w^Tx)}$$

Как ее обучать?

Как обучаться на больших данных?

Линейная модель

$$P(click|x) = \frac{1}{1 + exp(-w^Tx)}$$

Online learning

Инициализировать w = 0 Повторять:

- 1. Получить признаки $x \in R^n$
- 2. Вычислить предсказания $\hat{p}(x) = \sigma(w^T x)$
- 3. Обновить вектор весов так, чтобы $\hat{p}(x)$ стало ближе к y.

$$w_i \to w_i - \eta \frac{\partial L(\hat{p}(x), y)}{\partial w_i}$$

Distributed online learning

Входные данные:

- ightharpoonup Обучающая выборка X
- К машин
- ightharpoonup Число итераций T
- 1. Случайно разбить выборку по примерам на K частей: $X^k, k = 1, \dots, K$
- 2. $w^k \to 0, k = 1, ..., K$
- 3. Выполнить t = 1, ..., T
- 4. Выполнить на каждой машине:
- 5. $w^k o$ результат онлайн обучения на X^k

6.
$$w_i \rightarrow \sum_{k=1}^K A_i^k w_i^k$$

Варианты агрегации:

$$A_i^k = \frac{1}{K}$$

$$A_i^k = \frac{G_i^k}{\sum\limits_{u=1}^K G_i^u}, \quad G_i^u = \sum\limits_{j=1}^N \left(\frac{\partial L(\hat{p}(x_j), y_j)}{\partial w_i}\right)^2$$

Ускорение онлайн обучения

Вопрос:

 $\mathsf{Kak}\ \mathsf{yчит}\mathsf{b}\ \mathsf{nuheйhble}\ \mathsf{moдenu}\ \mathsf{hadoop}?$

Allreduce initial state

Allreduce final state

 28
 28
 28

 28
 28
 28

Create Binary Tree

Reducing, step 1

Reducing, step 2

Broadcast, step 1

Allreduce final state

Не нужно править код (SPMD)

Метод градиентного спуска

Входные данные:

- ightharpoonup Обучающая выборка X
- $ightharpoonup w^k o 0$
- η шаг обучения
- 1. Пока не выполнен критерий останова:
- 2. Вычислить градиент $g = \nabla L(w)$
- 3.
- 4. $w \rightarrow w \eta g$
- Вернуть w

Не нужно править код (SPMD)

Метод градиентного спуска

Входные данные:

- ightharpoonup Обучающая выборка X
- $ightharpoonup w^k o 0$
- η шаг обучения
- 1. Пока не выполнен критерий останова:
- 2. Вычислить градиент $g = \nabla L(w)$
- 3. $g \rightarrow AllReduce(g)$
- 4. $w \rightarrow w \eta g$
- Вернуть w

Parameter Server

Как экономить память?

Локальное обновление весов в лог. регрессии

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \mathbf{g}_t$$

Локальное обновление весов в лог. регрессии

$$\begin{aligned} \mathbf{w}_{t+1} &= \arg\min_{w} \left(\mathbf{g}_{1:t} \cdot w + \frac{1}{2} \sum_{s=1}^{t} \sigma_{s} \|\mathbf{w} - \mathbf{w}_{s}\|_{2}^{2} + \lambda_{1} \|\mathbf{w}\|_{1} \right) \\ \mathbf{g}_{1:t} &= \sum_{s=1}^{t} \mathbf{g}_{s}, \quad \sigma_{1:t} = \frac{1}{\eta_{t}}, \quad \eta_{t} = \frac{1}{\sqrt{t}} \end{aligned}$$

Можно записать как

$$\left(\mathbf{g}_{1:t} - \sum_{s=1}^{t} \sigma_{s} \mathbf{w}_{s}\right) \cdot w + \frac{1}{\eta_{t}} \|\mathbf{w}\|_{2}^{2} + \lambda_{1} \|\mathbf{w}\|_{1} + const$$

FTRL Proximal

Follow The Regularized Leader

```
Algorithm 1 Per-Coordinate FTRL-Proximal with L_1 and L_2 Regularization for Logistic Regression
```

```
#With per-coordinate learning rates of Eq. (2).
Input: parameters \alpha, \beta, \lambda_1, \lambda_2
(\forall i \in \{1, \ldots, d\}), initialize z_i = 0 and n_i = 0
for t = 1 to T do
    Receive feature vector \mathbf{x}_t and let I = \{i \mid x_i \neq 0\}
    For i \in I compute
    w_{t,i} = \begin{cases} 0 & \text{if } |z_i| \le \lambda_1 \\ -\left(\frac{\beta + \sqrt{n_i}}{\alpha} + \lambda_2\right)^{-1} (z_i - \text{sgn}(z_i)\lambda_1) & \text{otherwise.} \end{cases}
    Predict p_t = \sigma(\mathbf{x}_t \cdot \mathbf{w}) using the w_{t,i} computed above
    Observe label y_t \in \{0, 1\}
    for all i \in I do
        g_i = (p_t - y_t)x_i #gradient of loss w.r.t. w_i
       \sigma_i = \frac{1}{\alpha} \left( \sqrt{n_i + g_i^2} - \sqrt{n_i} \right) \#equals \frac{1}{\eta_{t,i}} - \frac{1}{\eta_{t-1,i}}
       z_i \leftarrow z_i + q_i - \sigma_i w_{t,i}
        n_i \leftarrow n_i + a^2
    end for
end for
```


- ► Наблюдение 1: Одного прохода по данным достаточно на каждый уровень дерева
- ▶ Наблюдение 2: Итерироваться можно либо по точкам, либо по фичам

Feature Distributed

Master

- Request workers to expand a set of nodes
- ▶ Wait to receive best per-feature splits from workers
- ► Select best feature-split for every node
- Request best splits' workers to broadcast per-instance assignments and residuals

Worker

- Pass through all instances for local features, aggregating split histograms for each node
- Select local features' best splits for each node, send to master

Data Distributed

Master

- ▶ Send workers current model and set of nodes to expand
- ▶ Wait to receive local split histograms from workers
- ► Aggregate local split histograms, select best split for every node

Worker

- Pass through local data, aggregating split histograms
- Send completed local historograms to master

Data Distributed for sparse features

Algorithm 2 FindBestSplit	Algorithm 3 PV-Tree_FindBestSplit
Input: DataSet D	Input: Dataset D
for all X in D.Attribute do	localHistograms = ConstructHistograms(D)
▷ Construct Histogram	▶ Local Voting
H = new Histogram()	splits = []
for all x in X do	for all H in localHistograms do
H.binAt(x.bin).Put(x.label)	splits.Push(H.FindBestSplit())
end for	end for
⊳ Find Best Split	localTop = splits.TopKByGain(K)
leftSum = new HistogramSum()	Gather all candidates
for all bin in H do	allCandidates = AllGather(localTop)
leftSum = leftSum + H.binAt(bin)	▷ Global Voting
rightSum = H.AllSum - leftSum	globalTop = allCandidates.TopKByMajority(2*K)
split.gain = CalSplitGain(leftSum, rightSum)	▶ Merge global histograms
bestSplit = ChoiceBetterOne(split,bestSplit)	globalHistograms = Gather(globalTop, localHis
end for	tograms)
end for	bestSplit = globalHistograms.FindBestSplit()
return bestSplit	return bestSplit

Вопросы

