Method	Arch.	Epochs	Accur.
Methods without view data augmentations			
data2vec [8]	ViT-L/16	1600	77.3
MAE [36]	ViT-B/16	1600	68.0
	ViT-L/16	1600	76.0
	ViT-H/14	1600	77.2
CAE [22]	ViT-B/16	1600	70.4
	ViT-L/16	1600	78.1
	ViT-B/16	600	72.9
I-JEPA	ViT-L/16	600	77.5
	ViT-H/14	300	79.3
	ViT-H/16448	300	81.1
Methods using extra view data augmentations			
SimCLR v2 [21]	RN152 (2×)	800	79.1
DINO [18]	ViT-B/8	300	80.1
iBOT [79]	ViT-L/16	250	81.0

Table 1. **ImageNet**. Linear-evaluation on ImageNet-1k (the ViT-H/16 $_{448}$ is pretrained at at a resolution of 448 \times 448). I-JEPA improves linear probing performance compared to other methods that do not rely on hand-crafted view data-augmentations during pretraining. Moreover, I-JEPA demonstrates good scalability — the larger I-JEPA model matches the performance of view-invariance approaches without requiring view data-augmentations.