Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Fall 2011)

Tutorial 1 Solutions September 15/16, 2011

- 1. If $A \subset B$, then $\mathbf{P}(B \cap A) = \mathbf{P}(A)$ But we know that in order for A and B to be independent, $\mathbf{P}(B \cap A) = \mathbf{P}(A)\mathbf{P}(B)$. Therefore, A and B are independent if and only if $\mathbf{P}(B) = 1$ or $\mathbf{P}(A) = 0$. This could happen, for example, if B is the universe or if A is empty.
- 2. This problem is similar in nature to Example 1.24, page 40. In order to compute the success probability of individual sub-systems, we make use of the following two properties, derived in that example:
 - If a serial sub-system contains m components with success probabilities $p_1, p_2...p_m$, then the probability of success of the entire sub-system is given by

$$\mathbf{P}(\text{whole system succeeds}) = p_1 p_2 p_3 ... p_m$$

• If a parallel sub-system contains m components with success probabilities $p_1, p_2...p_m$, then the probability of success of the entire sub-system is given by

P(whole system succeeds) =
$$1 - (1 - p_1)(1 - p_2)(1 - p_3)...(1 - p_m)$$

Let $\mathbf{P}(X \to Y)$ denote the probability of a successful connection between node X and Y. Then,

$$\mathbf{P}(A \to B) = \mathbf{P}(A \to C)\mathbf{P}(C \to E)\mathbf{P}(E \to B)$$
 (since they are in series)
 $\mathbf{P}(A \to C) = p$
 $\mathbf{P}(C \to E) = 1 - (1 - p)(1 - \mathbf{P}(C \to D)\mathbf{P}(D \to E))$
 $\mathbf{P}(E \to B) = 1 - (1 - p)^2$

The probabilities $\mathbf{P}(C \to D)$, $\mathbf{P}(D \to E)$ can be similarly computed as

$$\mathbf{P}(C \to D) = 1 - (1 - p)^3$$

$$\mathbf{P}(D \to E) = p$$

The probability of success of the entire system can be obtained by substituting the subsystem success probabilities:

$$\mathbf{P}(A \to B) = p \left(1 - (1 - p)(1 - (1 - (1 - p)^3)p\right) \left(1 - (1 - p)^2\right).$$

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering & Computer Science

6.041/6.431: Probabilistic Systems Analysis (Fall 2011)

3. The Chess Problem.

- (a) i. $P(2\text{nd Rnd Req}) = (0.6)^2 + (0.4)^2 = 0.52$
 - ii. **P**(Bo Wins 1st Rnd) = $(0.6)^2 = 0.36$

iii.
$$\mathbf{P}(\text{Al Champ}) = 1 - \mathbf{P}(\text{Bo Champ}) - \mathbf{P}(\text{Ci Champ})$$

= $1 - (0.6)^2 * (0.5)^2 - (0.4)^2 * (0.3)^2 = 0.8956$

- (b) i. **P**(Bo Challenger|2nd Rnd Req) = $\frac{(0.6)^2}{0.52} = \frac{0.36}{0.52} = 0.6923$
 - ii. P(Al Champ|2nd Rnd Req)
 - = $\mathbf{P}(\text{Al Champ}|\text{Bo Challenger}, 2\text{nd Rnd Req}) \times \mathbf{P}(\text{Bo Challenger}|\text{2nd Rnd Req})$ + $\mathbf{P}(\text{Al Champ}|\text{Ci Challenger}, 2\text{nd Rnd Req}) \times \mathbf{P}(\text{Ci Challenger}|\text{2nd Rnd Req})$ = $(1 - (0.5)^2) \times 0.6923 + (1 - (0.3)^2) \times 0.3077$
 - $= (1 (0.5)^2) \times 0.6923 + (1 (0.3)^2) \times 0.3077$ = 0.7992
- (c) $\mathbf{P}((\text{Bo Challenger})|\{(2\text{nd Rnd Req}) \cap (\text{One Game})\}) = \frac{(0.6)^2*(0.5)}{(0.6)^2*(0.5)+(0.4)^2*(0.7)} = \frac{(0.6)^2(0.5)}{0.2920} = 0.6164$