Introduction to Machine Learning

Practical Advice for Building Machine Learning Systems

Varun Chandola

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu

Outline

Introduction

From Theory to Practice

Problems that we can solve

- ▶ Given (\mathbf{X}, \mathbf{y}) , learn a model to predict y^* for a test \mathbf{x}^*
- Or the unsupervised or RL variant
- Many tools at our disposal

Problems that we need to solve

- ▶ Predict outages in a massive data center
- ▶ Build an automated insulin pump
- ▶ Design a next generation space propulsion system

A General ML Pipeline

▶ Sometimes we need to go back to the problem definition itself

 ←□ ▶ ←□ ▶ ←□ ▶ ←□ ▶ ←□ ▶ ←□ ▼

 Chandola@UB

 CSE 474/574
 4 / 9

Debugging an ML Pipeline

- ► Is the pipeline good?
- ► How do we define goodness?

Performance

- Cross-validation performance
- Generalizability

Costs

- Computing
- Data

Acceptance

- Fairness
- Interpretability
- Privacy preserving
- Ethical

How to measure goodness?

- ▶ Ideally we want the model to be **generalizable**
- Two things that we need:
 - Good validation data (out of sample)
 - Random sampling is not always enough
 - Robust evaluation metric
- ▶ What if we do not have enough validation data?
 - Get more data (manual work, Mechanical Turk, synthetic)
 - Test for stability

6 / 9

Chandola@UB

What do we do if the model is not good? I

- Change the model
 - ► Make model more complex or simpler (??)
 - Incorporate domain knowledge
 - e.g., physics inspired neural networks
 - Handle structural dependencies
- Change the data
 - Feature selection/reduction
 - Representation learning (embedding)
 - More data
- Change the problem
 - New problem formulation

7 / 9

Finally - Is the model useful?

- ▶ Domain intepretation
- ► Stability of the model
- ► What do we if not useful?
 - Maybe solve a different (better) problem

Correlation is not causation

8 / 9

References