Luce	l=	6,02 m
Luce di calcolo	l=	6,02 m

Profili utilizzati

HE 140 A Acciao	S275	P=	0,25 kN/m
Altezza Base Spessore anima Spessore Ali Area trasversale Peso Momento di Inerzia Modulo resistente Modulo Elastico Resist. Flessione	h= b= tw= tf= A= P= Iy= Wy= E= Fy,k=	= 140 mm = 5,5 mm = 8,5 mm = 31,4 cmq = 0,25 kN/m = 1033,10 cm ⁴ = 155,40 cm ³ = 210000 N/mmq	

Ipotesi di vincolo Semincastro

Analisi dei carichi

Carichi Permanenti

Peso telai metallici 0,20 kN/mq
Peso vetri 0,32 kN/mq

 $G_1 = \frac{0,52 \text{ kN/mq}}{}$

Verifiche S.L.U.

La verifica allo S.L.U. viene eseguita sulla base di quanto indicato al punto 4.2.4.1 del D.M. 14/01/2008, adottando combinazioni del tipo:

$$qd = \gamma g1 \cdot G1 + \gamma g2 \cdot G2 + \gamma q \cdot [Qk1 + \Sigma(\psi 0i \cdot Qki)]$$
 (i=2,n)

e verificando che le tensioni indotte risultino inferiori alla resistenza di calcolo:

Sd < Rd

Coefficienti Normativi relativi alle Azioni

Coefficiente Azioni Permanenti	:	γ g1 =	1,1
Coeff. Azioni Permanenti non strutturali :		γg2 =	1,5
Coefficiente Azioni Variabili :		$\gamma q =$	1,5
E			

Fattori di Combinazione

$$\psi$$
01 = 0,70 **0,7**

COMBINAZIONI DI CARICO x S.L.U.

$$\gamma g1 \cdot Gk + \gamma g2 \cdot G2 + \gamma q \cdot [Qk1 + psi01 * qk2]$$

Carico totale

Carico totale: $Q_d = 0,57 \text{ kN/mq}$ Carico su 1 trave: q = 0,57 kN/ml

Verifica a flessione sezione di mezzeria

 $Md = 1/10 \times q \times 12 = 2,07 \text{ kNxm}$

Momento resistente

 $Mrd = Wy \cdot fyk/gM = 40,7 kNxm$

Md/Mrd = 0,05093245 < 1 VERIFICA

Verifica S.L.E

La verifica allo S.L.E. viene eseguita sulla base di quanto indicato al punto 4.2.4.2.1 del D.M. 14/01/2008, sommando:

- la deformazione $\delta 1$ dovuto ai carichi permanenti
- con la deformazione δ2 dovuta ai carichi variabili
- e sottraendo alla stessa l'eventuale monta iniziale.

Data la condizione di vincolo Semincastro

La deformazione viene calcolata con la seguente formula:

$$d = (3.8 \cdot q \cdot L^4)/(384 \cdot E \cdot J)$$

Carichi permanenti =>
$$\begin{array}{ccc} G1+G2= & 0,52 & kN/mq \\ q_p= & 0,52 & kN/m \end{array}$$
 Carichi variabili =>
$$\begin{array}{cccc} Q_{k1}= & 0,00 & kN/mq \\ q_v= & 0,00 & kN/m \end{array}$$

Il valore totale dello spostamento ortogonale all'asse dell'elemento (Fig. 4.2.1) è definito come

$$\tilde{o}_{tot} = \tilde{o}_1 + \tilde{o}_2$$
 (4.2.55)

Figura 4.2.1 - Definizione degli spostamenti verticali per le verifiche in esercizio

essendo:

δc la monta iniziale della trave,

δι lo spostamento elastico dovuto ai carichi permanenti,

82 lo spostamento elastico dovuto ai carichi variabili,

δ_{max} lo spostamento nello stato finale, depurato della monta iniziale = δ_{tot} - δc.

Nel caso di coperture, solai e travi di edifici ordinari, i valori limite di δ_{max} e δ2, riferiti alle combinazioni caratteristiche delle azioni, sono espressi come funzione della luce L dell'elemento.

I valori di tali limiti sono da definirsi in funzione degli effetti sugli elementi portati, della qualità del comfort richiesto alla costruzione, delle caratteristiche degli elementi strutturali e non strutturali gravanti sull'elemento considerato, delle eventuali implicazioni di una eccessiva deformabilità sul valore dei carichi agenti.

In carenza di più precise indicazioni si possono adottare i limiti indicati nella Tab. 4.2.X, dove L è la luce dell'elemento o, nel caso di mensole, il doppio dello sbalzo.

Tabella 4.2.X Limiti di deformabilità per gli elementi di impalcato delle costruzioni ordinarie

Elementi strutturali	Limiti superiori per gli spostamenti verticali	
	Ž _{max} L	<u>δ</u> 2
Coperture in generale	1 200	1 250
Coperture praticabili	250	300
Solai in generale	250	300
Solai o coperture che reggono intonaco o altro materiale di finitura fragile o tramezzi non flessibili	250	350
Solas che supportano colonne	1 400	500
Nei casi in cui lo spostamento può compromettere l'aspetto dell'edificio	250	

Mont

Freccia limite nello stato finale

Determinazione della freccia limite

 δ Max/l= 1/500 L

1,20

cm

VERIFICA

Freccia limite dovuta ai carich	ni variabili	$\delta_2/I= 1/300 L$	=	2,01	cm	
Foresta decoda et	Verifich	ne di deformabilità				
Freccia dovuta ai carichi permanenti	δ1=	0,31 cm				
Freccia dovuta ai carichi variabili	δ_2 =	0,00 cm	<	2,01	VERIFIC	CA

Freccia Totale
$$\delta$$
Tot= δ 1+ δ 2= 0,31 cm

Freccia massima

$$\delta_{\text{Tot}}$$
- δ_{c} δ_{Max} = 0,31 cm < 1,20