

Sub JP

What is claimed is:

- 5 1. A slitter blade assembly for cutting off a workpiece, comprising:
a drum-shaped rotary blade; and
a disk-shaped rotary blade;
said disk-shaped rotary blade having a cutting edge, a first beveled surface facing said drum-shaped rotary blade and progressively spaced from said drum-shaped rotary blade toward said cutting edge, and a second beveled surface facing the workpiece and progressively spaced from said cutting edge away from the workpiece.
- [5] 2. A slitter blade assembly according to claim 1,
wherein the distance CL of said first beveled surface up to
said cutting edge along a severance plane perpendicular to a
surface of the workpiece is set to a value which ranges from
40 μm to 200 μm , the angle θ_6 of said first beveled surface
from said severance plane is set to a value which ranges
20 from 0.8° to 14° , and the angle θ_1 of said second beveled
surface from said severance plane is set to a value which
ranges from 65° to 85° .
- 25 3. A slitter blade assembly according to claim 2,
wherein said disk-shaped rotary blade has a first clearance
surface contiguous to said first beveled surface, and the
angle θ_3 of said first clearance surface from said severance

plane is set to a value which ranges from 2° to 5°.

4. A slitter blade assembly according to claim 2,
wherein said disk-shaped rotary blade has a second clearance
5 surface contiguous to said second beveled surface, and the
angle θ2 of said second clearance surface from said
severance plane is set to a value which ranges from 20° to
45°.

10 5. A slitter blade assembly according to claim 4,
wherein said second beveled surface and said second
clearance surface are joined to each other at a junction,
and the distance L1 from said junction to said severance
plane is set to a value which ranges from 0.2 mm to 0.8 mm.

15 6. A slitter blade assembly according to claim 1,
wherein said cutting edge of the disk-shaped rotary blade
has irregularities along a circumference of the disk-shaped
rotary blade, said irregularities having an irregularity
20 quantity G set to a value which ranges from 0.5 μm to 5 μm.

25 7. A slitter blade assembly according to claim 1,
wherein said disk-shaped rotary blade and/or said drum-
shaped rotary blade is made of a cemented carbide.

8. A slitter blade assembly for cutting off a
workpiece, comprising:

a drum-shaped rotary blade; and
a disk-shaped rotary blade;
said drum-shaped rotary blade having a cutting edge and
a third beveled surface facing said disk-shaped rotary blade
and progressively spaced from said disk-shaped rotary blade
5 toward said cutting edge.

9. A slitter blade assembly according to claim 8,
wherein the distance HL of said third beveled surface up to
said cutting edge along a severance plane perpendicular to a
surface of the workpiece is set to a value which ranges from
25 μm to 500 μm , and the angle θ_5 of said third beveled
surface from said severance plane is set to a value which
ranges from 0.0° to 0.6° .

10. A slitter blade assembly according to claim 9,
wherein said drum-shaped rotary blade has a third clearance
surface contiguous to said third beveled surface, and the
angle θ_4 of said third clearance surface from said severance
20 plane is set to a value which ranges from 2° to 4° .

11. A slitter blade assembly according to claim 8,
wherein said disk-shaped rotary blade and/or said drum-
shaped rotary blade is made of a cemented carbide.

25
12. A slitter blade assembly for cutting off a
workpiece, comprising:

a drum-shaped rotary blade; and
a disk-shaped rotary blade;

5 said disk-shaped rotary blade having a cutting edge, a first beveled surface facing said drum-shaped rotary blade and progressively spaced from said drum-shaped rotary blade toward said cutting edge of the disk-shaped rotary blade, and a second beveled surface facing the workpiece and progressively spaced from said cutting edge of the disk-shaped rotary blade away from the workpiece;

10 said drum-shaped rotary blade having a cutting edge and a third beveled surface facing said disk-shaped rotary blade and progressively spaced from said disk-shaped rotary blade toward said cutting edge of the drum-shaped rotary blade.

15 13. A slitter blade assembly according to claim 12, wherein said disk-shaped rotary blade and/or said drum-shaped rotary blade is made of a cemented carbide.

20 14. A slitter blade assembly according to claim 12, wherein the distance CL of said first beveled surface up to said cutting edge along a severance plane perpendicular to a surface of the workpiece is set to a value which ranges from 40 μm to 200 μm , the angle θ_6 of said first beveled surface from said severance plane is set to a value which ranges from 0.8° to 14°, the angle θ_1 of said second beveled surface from said severance plane is set to a value which ranges from 65° to 85°, the distance HL of said third

beveled surface up to said cutting edge along a severance plane is set to a value which ranges from 25 μm to 500 μm , and the angle θ_5 of said third beveled surface from said severance plane is set to a value which ranges from 0.0° to 0.6° .