

# Prueba Técnica Machine Learning Engineer - Nequi

### **Consideraciones iniciales**

- Entregue toda la solución en un repositorio de GitHub (con un archivo README que permite seguir el paso a paso de toda la solución propuesta).
- Debe contener mínimo un (1) dataset con datos públicos.
- El dataset debe contener mínimo 1 millón de registros (filas).

#### Recursos

En Ciencia de Datos, los pasos de identificación y extracción de datos son los más importantes. ya que de allí dependerá mucho los resultados y estrategias que tome el negocio. A continuación, le listamos algunos lugares donde puede tomar los datos:

- Google:DatasetSearch
- KaggleDatasets
- Github:AwesomePublicDatasets
- Github:PublicAPIs
- Data.gov
- Dataquest:18placestofinddatasetsfordatascienceprojects
- KDnuggets:DatasetsforDataMiningandDataScience
- UCIMachineLearningRepository
- Reddit:rdatasets
- LastCall:Top50MostPopularAPIsonRapidAPI(2018)
- Facebook:GraphAPI

### 1. Propuesta de Arquitectura en la Nube

- Proponga una arquitectura basada en la nube para desplegar un modelo de ML en Batch (*Utilice preferentemente la nube de AWS*).
- Explique cómo la arquitectura facilita escalabilidad y confiabilidad con grandes conjuntos de datos.
- Explique la elección de los componentes para la preparación de datos, trabajos ETL, implementación de modelos y su papel en la arquitectura.

## 2. Step-by-Step

- Diagrame la secuencia de pasos desde la ingestión de datos hasta la monitorización y el entrenamiento continuo, incluyendo la orquestación.
- Explique cómo contribuye el componente de orquestación a la ejecución del pipeline de ML.

## 3. Estructura de Directorios

- Proponga una estructura de directorios para el proyecto que mejore la organización y mantenimiento del código.
- ¿Cómo manejaría la versión del pipeline de preprocesamiento y los modelos entrenados en el directorio de modelos?















# 4. Datos

- Explore los datos para hacer un paso a paso de la limpieza y calidad que tienen, donde muestre qué estrategia utilizó para sacar el máximo provecho.
- Incluya un diccionario de datos.
- Trace el modelo de datos conceptual y explique la selección del mismo.
- **(BONUS TRACK ETL)** Este ítem da puntos extras en caso tal de resolverlo
  - 1. Cree el pipelline de los datos
  - 2. Ejecute controles de calidad
  - 3. Pruebas de unidad en los scripts para validad que lo que funciona, funcione como debe ser

#### 5. Entrenar un Modelo de ML

• Con el conjunto de datos previamente procesado, entrene un modelo de ML siguiendo las mejores prácticas de Ciencia de Datos y Machine Learning (no debe ser el mejor modelo, pero sí cumplir con unas métricas aceptables).

# 6. Despliegue del Modelo

Despliegue el modelo entrenado en la arquitectura propuesta.

# 7. Pipeline de CI/CD/CT

- Construya un pipeline de CI/CD/CT (usando GitHub Actions preferiblemente).
- Explique cómo se ejecutaría el pipeline de entrenamiento continuo.

### 8. Propuesta de Monitoreo

- Hable sobre las métricas propuestas para monitorear el pipeline de ML y por qué son importantes.
- ¿Cómo configuraría alertas para cambios y problemas en calidad de datos en el modelo implementado?
- ¿Cómo configuraría alertas y acciones para una posible degradación del modelo?

| Nombre del candidato a MLE:    | Por favor coloque su nombre completo                                                                                        |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| URL del repositorio en GitHub: | Por favor coloque la URL del repositorio de Github                                                                          |
| Comentarios adicionales:       | Acá le agrademos los comentarios adicionales que pueda tener y/o el feedback que nos quiera dar con respecto a esta prueba. |

# ¡ Mucho ánimo!











