

Suicide Note Classification Using Natural Language Processing: A Content Analysis

John Pestian, Henry Nasrallah, Pawel Matykiewicz, Aurora Bennett and Antoon Leenaars

60% no mundo 🕆

EUA

- segunda principal causa de morte entre pessoas de 25-34 anos
- terceira causa de morte entre as pessoas de 15-25 anos

Brasil

- 5,8 mortes por 100 mil habitantes

Hungria, Coreia

- 21 mortes a çada 100 mil habitantes

About PLN

- *
- Principal método utilizado: Processamento da linguagem natural

- Subárea da computação, linguística e inteligência artificial
- Capacidade de uma máquina entendera linguagem humana natural

John Pestian Autor principal

 Análises de características de traços e estados para identificação precoce de doenças neuro psicológicas e psiquiátricas por meio de IA

Projetos atuais:

- Fusão de pistas linguísticas, acústicas e visuais que estão sendo testadas em clínicas
- Mentoria de 5 doscentes na Universidade de Cincinnati

PhD, MBA, diretor no centro de medicina computacional e professor no departamento de pediatria da UC;

Suicide Note Classification Using Natural Language Processing: a Content Analysis

- Objetivo do artigo
- Base de dados
- Tratamento das palavras
- Métodos: KNN, SMO, Naive Bayes, Árvores de decisão.

- Algoritmos
 - Árvores de decisão **74,4**%
 - SMO (Sequential Minimal Optimization) 70,5%
 - Arvores de decisão de apenas um nível **66,7**%

- Especialistas da área
 - Estagiários em psiquiatria51,0%
 - Profissionais da saúde60,9%

- Falta de dados
- Notícias sobre:
 - o 42 suicídio
 - 0 16 violência
 - 0 10 randômico
 - o 9 assédio
- Tratamento

Tokenização Stopwords e Dicionários

- Biblioteca NLTK
- Quebra de palavras
- Remoção de pontuação
- Remoção de Stopwords
- População do dicionário global
- Criação dos dicionários de cada documento
- Big-O

K-Nearest Neighbors

Time: O(1)

Space: O(kn)

Euclidiana:
$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

$$Manhattan: \sum_{i=1}^{\kappa} |x_i - y_i|$$

$$Minkowski: \left(\sum_{i=1}^{k}(|x_i-y_i|)^2\right)^{\frac{1}{q}}$$

Naive Bayes Time: O(kn)

$$P(class|data) = \frac{P(data|class)P(class)}{P(data)}$$

Time: $O(n^3)$

Sequencial Minimal Optimization

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(x_i \cdot x_j)$$

Resultados

*

Acurácia: 0.5

KNN	Precision	Recall	F1-Score
Suicídio	0.67	0.29	0.40
Outros	0.44	0.80	0.57
Média	0.56	0.54	0.49

Acurácia: 0.66

NB	Precision	Recall	F1-Score
Suicídio	0.64	1.00	0.78
Outros	1.00	0.70	0.33
Média	0.82	0.60	0.56

Acurácia: 0.75

SVM	Precision	Recall	F1-Score
Suicídio	0.75	0.86	0.80
Outros	0.75	0.60	0.67
Média	0.75	0.73	0.73

Conclusão

Implementar para identificação dos assuntos relacionados ao tema

* Análise e prevenção

