Peyton D. Murray

Computing

Python (proficient), C++ (intermediate), Go (intermediate), Bash (intermediate), CUDA (intermediate), Git (proficient), SQL (basic)

Skills

Simulations, Data Analysis, Statistics, Data Visualization, Linux, Python Data & Visualization Ecosystem (numpy, scipy, pandas, dask, matplotlib, bokeh, pyqtgraph, ...), HPC, Distributed Computing, VTK.

Education

University of California, Davis Ph. D. Physics: Dec 2018 M. S. Physics: Dec 2013

Saint Mary's College of California, Moraga B. S. Physics, summa cum laude

2007 - 2011

2012 - 2018

Research & Experience Computational Physics Laboratory, Tampere University, Finland

Jan 2019 - Present

Postdoctoral Researcher Advisor: Lasse Laurson

- Simulated nanoscale magnetic materials using a combination of open source software and in-house code (Go, CUDA, and Python).
- Leveraged GPUs deployed as part of the CSC's Taito-GPU supercluster to enable massively parallelized simulations.

Department of Physics, University of California, Davis

2012 - 2018

Graduate Student Researcher

Advisor: Kai Liu

- Fabricated and characterized a wide variety of nanoscale magnetic materials using multiple techniques.
- Developed PyFORC, a suite of open source tools for analyzing and visualizing magnetic measurements using the First-Order Reversal-Curves (FORC) technique (Python).
- Instrument control software

Physics Division, Lawrence Berkeley National Laboratory

2011 - 2012

Junior Specialist, ATLAS Experiment

Principal Investigator: Maurice Garcia-Sciveres

- Tested prototype next-generation hardware developed for tracking the trajectories of charged particles at the Large Hadron Collider (LHC), the largest particle physics experiment in the world.
- Developed system control GUI and backend for an integrated circuit tester (C++ and Qt; version control with SVN). These tools allowed for automated testing of hundreds of chips (entire wafers) at a time, greatly increasing throughput.
- Chips which passed tests were installed as part of the Insertable B-Layer system at the LHC in 2014, enabling continued studies of the Higgs boson.

Physics Department, Saint Mary's College of California, Moraga

2010 - 2011

2012 - 2016

Research Assistant, ALFALFA Collaboration

Advisor: Ron Olowin

 Classified galactic and extragalactic astronomical observations as part of the Arecibo Legacy Fast-ALFA (ALFALFA) project, an international collaboration of astronomers based at the Arecibo Radio Observatory in Puerto Rico.

Teaching Teaching Assistant Physics Department, Saint Mary's College of California, Moraga

Laboratory Skills

Fabrication

Sputtering, e-beam evaporation, and e-beam-/photo-lithography and lift-off.

Magnetic Characterization

Vibrating sample magnetometry (VSM), magneto-optic Kerr effect (MOKE), SQUID magnetometry, and magnetoresistance.

Other Techniques

X-ray diffraction (XRD), reciprocal space mapping (RSM), scanning electron microscopy (SEM), polarized neutron reflectometry (PNR), x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD), and Hall effect and van der Pauw resistivity methods.

Publications

- 1. Murray, P. D. et al. Interfacial-Redox-Induced Tuning of Superconductivity in YBa₂Cu₃O_{7-δ}. In review.
- 2. Murray, P. D., Zhang, J., Zhang, X. & Liu, K. Electrically Tunable Exchange Bias. In preparation.
- 3. Gilbert, D. A. et al. Building Bridges from FORC to Phase-Resolved Major Loops. In preparation.
- 4. Skaugen, A., Murray, P. D. & Laurson, L. Analytical computation of the demagnetizing energy of thin film domain walls. **2,** 1–11. arXiv: 1906.07475 (2019).
- 5. Karayev, S. et al. Interlayer exchange coupling in Pt/Co/Ru and Pt/Co/Ir superlattices. Physical Review Materials 3, 041401. doi:10.1103/PhysRevMaterials.3.041401 (2019).
- 6. Quintana, A. et al. Voltage-Controlled ON-OFF Ferromagnetism at Room Temperature in a Single Metal Oxide Film. ACS Nano 12, 10291–10300. doi:10.1021/acsnano.8b05407 (2018).
- 7. Gilbert, D. A. et al. Ionic tuning of cobaltites at the nanoscale. Physical Review Materials 2, 104402. doi:10.1103/PhysRevMaterials.2.104402 (2018).
- 8. De Toro, J. A. et al. Remanence plots as a probe of spin disorder in magnetic nanoparticles. Chemistry of Materials 29, 8258-8268. doi:10.1021/acs.chemmater.7b02522 (2017).
- 9. Sun, L. et al. Magnetization reversal in kagome artificial spin ice studied by first-order reversal curves. Physical Review B **96**, 144409. doi:10.1103/PhysRevB.96.144409 (2017).
- 10. Zhang, Q. et al. Magnetic fingerprint of interfacial coupling between CoFe and nanoscale ferroelectric domain walls. Applied Physics Letters 109, 082906. doi:10.1063/1.4961545 (2016).
- 11. The ATLAS IBL Collaboration. Prototype ATLAS IBL modules using the FE-I4A front-end readout chip. *Journal of Instrumentation* 7, P11010–P11010. doi:10.1088/1748-0221/7/11/P11010 (2012).