VEHICLE SHOWROOM MANAGEMENT DATABASE

MEMBERS	ROLL_NO.	
PUSHPRAJ BHURIYA	197164	
AKSHAT DHIMAN	197108	
ABHINAV	197202	
-CSE 2 nd Year (2020-2021)		

INTRODUCTION:

This Database can be used by an automobile center for keeping the records of items which is to be transacted for purchase and sell.

ADVANTAGES:

- It is much faster than manual system.
- Easy to generate report for any transaction
- It is very much flexible to work
- Easy and fastest record finding technique

Contents:

- Characteristics
- ER Model Assumption
- Functional Dependencies and Primary Key
- Normalization
- Relational Schema with Normalized tables
- Queries

CHARACTERISTICS:

Entity:

- VENDOR (VENDOR_CODE, VEDOR_NAME, CITY,ADDRESS,PHONE_NO)
- PURCHASE (PURCHASE_CODE, DESC)
- ITEM_TABLE (<u>ITEM_CODE</u>, ITEM_NAME, PURCHASE_PRICE, SALE_PRICE, CURR_STOCK)
- VEHICLE (VEHICLE_CODE, VEHICLE_NAME)
- COMPANY (<u>COMPANY_ID</u>, COMPANY_NAME, CITY,PHONE_NO, ADDRESS, EMAIL)
- SALES (SALES_CODE, DESC)
- CUSTOMER (CUST_ID, CNAME, CITY, PHONE_NO, EMAIL)

Relations:

- VENDOR_SELLED (VENDOR_CODE, <u>PURCHASE_CODE</u>)
- PURCHASE_TRANS (<u>PURCHASE_CODE</u>, <u>ITEM_CODE</u>, QTY, AMOUNT)
- READY_FOR_SALE (<u>VEHICLE_CODE</u>, <u>ITEM_CODE</u>)
- BUILD (COMPANY_ID, VEHICLE_CODE)
- SALES_TRANS (<u>SALES_CODE</u>, <u>ITEM_CODE</u>, QTY, AMOUNT)
- CUSTOMER_PURCHASED (CUST_ID, <u>SALES_CODE</u>)

ER Model Assumption -

- A Customer can have any no. of items or zero items from the sold items while a particular sold item can be sold to only one customer. Hence CUSTOMER PURCHASED relation is 1:M (CUSTOMER to SALES). Each sold item must have the customer hence entity SALES has total participation.
- Each item which is sold from the available items must have single and unique transaction ID. So, SALES_TRANS is 1:1 relation and the entity SALES has total participation in it.
- A company can make any no. of vehicles or there may be some new established company which didn't made any vehicle till now, but for every vehicle there is a company which made him, So BUILD is 1:M relation (COMPANY TO VEHICLE) and entity VEHICLE has full participation in BUILD relation.

- Among the built vehicles there may be some vehicles which are not ready to include in the ready to sell item list. Hence it is READY_FOR_SALE is a 1:1 relationship and both the entities has partial participation.
- A vendor can sell any no. of items but each item which is sold by vendors must be built by a particular vendor. Hence VENDOR_SELLED is 1:M relation (VENDOR TO PURCHASE) and entity PURCHASE HAS full participation.
- Similar to SALES_TRANS relation we can define PURCHASE_TRANS, so it's a 1:1 relationship in which entity purchase has full participation.

Functional Dependencies and Primary Key_-

1.) Customer-

Cust_id -> {Fname, Lname, City, Phone_no, Email}

Since all the fields depend on Cust_id,

 $(Cust_id)^+ \rightarrow R.$

Hence ,Cust_id is Primary Key.

2.) Vendor-

Vendor_code -> {Fname, Lname, City, Address, Phone_no}

Since all the fields depend on Vendor_code,

(Vendor_code)⁺ → R.

Hence, Vendor_code is Primary Key.

3.) Company-

Comany_id -> {Company_name, City, Phone_no, Email, Address}

Since all the fields depend on Company_id,

 $(Company_id)^+ \rightarrow R.$

Hence, Company_id is Primary Key.

4.) Sales-

{Sales_code, Cust_id} -> Desc

Since all the fields depend on {Sales_code, Cust_id},

 $({Sales_code, Cust_id})^+ \rightarrow R.$

Hence, {Sales_code, Cust_id} is Primary Key.

5.) Purchase-

{Purchase_code, Vendor_code} -> Desc

Since all the fields depend on {Purchase_code, Vendor_code},

```
({Purchase_code, Vendor_code})* -> R.

Hence , {Purchase_code, Vendor_code} is Primary Key.
```

6.) Vehicle-

{Vehicle_code, Company_id} -> Vehicle_name

Since all the fields depend on {Vehicle_code, Company_id},

({Vehicle_code, Company_id})^+ -> R.

Hence , {Vehicle_code, Company_id} is Primary Key.

7.) Item_Table-

Item_code -> {Item_name, Purchase_price, Curr_stock, Sale_price}

Since all the fields depend on Item_code ,

(Item_code)* -> R.

Hence ,Item_code is Primary Key.

8.) Sales_Trans-

{Item_code, Sales_code} -> {Amount, Qty}
Since all the fields depend on {Item_code, Sales_code},
({Item_code, Sales_code})^+ -> R.
Hence , {Item_code, Sales_code} is Primary Key.

9.) Purchase_Trans-

```
{Item_code, Purchase_code} -> {Amount, Qty}

Since all the fields depend on {Item_code, Purchase_code},

({Item_code, Purchase_code})^+ -> R.

Hence, {Item_code, Purchase_code} is Primary Key.
```

10.) Ready_For_Sale-

In this relationship the only attributes are Primary Key attributes .

Normalization-_

** All the tables contain only atomic values , therefore all the tables are in 1NF.

1.) Customer

- Primary key: Cust_id
- All the attributes depend on the Cust_id ,hence the table is in 2NF
- All the attributes depend on Cust_id directly, hence the table is in 3NF
- All determinants(Cust_id) are candidate keys, hence the table is in BCNF

2.) Vendor

- Primary key: Vendor_code
- All the attributes depend on the Vendor_code,hence the table is in 2NF
- All the attributes depend on Vendor_codedirectly, hence the table is in 3NF
- All determinants(Vendor_code) are candidate keys, hence the table is in BCNF

3.) Comapany

- Primary key: Company_id
- All the attributes depend on the Company_id ,hence the table is in 2NF
- All the attributes depend on Company_iddirectly, hence the table is in 3NF
- All determinants(Company_id) are candidate keys, hence the table is in BCNF

4.) Vehicle

- Primary key: {Vehicle_code, Company_id}
- All the attributes depend on the {Vehicle_code, Company_id},hence the table is in 2NF
- All the attributes depend on {Vehicle_code, Company_id}directly, hence the table is in 3NF

 All determinants({Vehicle_code, Company_id}) are candidate keys, hence the table is in BCNF

5.) Item_Table

- Primary key: Item_code
- All the attributes depend on the Item_code, hence the table is in 2NF
- All the attributes depend on Item_codedirectly , hence the table is in 3NF
- All determinants(Item_code) are candidate keys, hence the table is in BCNF

6.) Sales

- Primary key: {Sales_code, Cust_id}
- All the attributes depend on the {Sales_code, Cust_id},hence the table is in 2NF
- All the attributes depend on {Sales_code, Cust_id}directly, hence the table is in 3NF
- All determinants({Sales_code, Cust_id}) are candidate keys, hence the table is in BCNF

7.) Purchase

- Primary key : {Purchase_code, Vendor_code}
- All the attributes depend on the {Purchase_code,
 Vendor_code},hence the table is in 2NF

- All the attributes depend on {Purchase_code, Vendor_code}directly, hence the table is in 3NF
- All determinants({Purchase_code, Vendor_code}) are candidate keys, hence the table is in BCNF

8.) Sales_trans

- Primary key: {Item_code, Sales_code}
- All the attributes depend on the {Item_code, Sales_code},hence the table is in 2NF
- All the attributes depend on {Item_code, Sales_code} directly, hence the table is in 3NF
- All determinants({Item_code, Sales_code}) are candidate keys, hence the table is in BCNF

9.) Purchase_trans

- Primary key: {Item_code, Purchase_code}
- All the attributes depend on the {Item_code, Purchase_code},hence the table is in 2NF
- All the attributes depend on {Item_code, Purchase_code} directly, hence the table is in 3NF
- All determinants({Item_code, Purchase_code}) are candidate keys, hence the table is in BCNF

10.) Ready_For_Sale

- Primary key: {Item_code, Vehicle_code}
- All the attributes depend on the {Item_code, Vehicle_code}
 ,hence the table is in 2NF
- All the attributes depend on {Item_code, Vehicle_code} directly, hence the table is in 3NF
- All determinants({Item_code, Vehicle_code}) are candidate keys, hence the table is in BCNF

ER-DIAGRAM

Relational Schema with Normalized tables

QUERIES

Q-1. Display all the vehicle companies. select c_name from company;

Q-2. Display all the vehicle name made by Hyundai.

select v.v_name from vehicle v,company c where v.c_id=c.c_id and c.c_name='Hyundai';

Q-3. Display the name of the expensive vehicle.

```
select item_name
from item_table
where purchase_price in
(
     select max(purchase_price)
     from item_table
);
```

Q-4. Display the name of the cheapest vehicle.

```
select item_name
from item_table
where purchase_price in
(
     select min(purchase_price)
     from item_table
);
```

Q-5. Display the number of vehicles made by each company.

select c.c_name,count(*) from company c,vehicle v where c.c_id=v.c_id group by(c.c_name);

	∯ C_NAME	
1	BMW	2
2	Hyundai	4
3	Maruti Suzuki	2
4	Audi	2
5	Honda	3

Q-6. Display all the vendor's name.

select f_name||' '||l_name Name
from vendor;

Q-7. Display customer name handled by the vendor 'Ashish Sinha'.

select c.f_name||' '||c.l_name NAME from customer__ c,sales__ s,sales_trans st,purchase_trans pt,purchase p,vendor v where c.cust_id=s.cust_id and s.sales_code=st.sales_code and st.item_code = pt.item_code and pt.pur_code = p.pur_code and p.ven_code = v.ven_code and v.f_name='Ashish' and v.l_name='Sinha';

Q-8. Display name of the customer and purchased car.

select c.f_name||' '||c.l_name||' Purchased '||it.item_name TRANSACTION

from customer__ c,sales__ s,sales_trans st,item_table it where c.cust_id=s.cust_id and s.sales_code=st.sales_code and st.item_code=it.item_code;

Q-9. Display address of the customer with highest bill.

```
select c.address
from customer__ c,sales__ s,sales_trans st
where c.cust_id=s.cust_id and s.sales_code=st.sales_code
    and st.amount = (
    select max(amount)
    from sales_trans
    );

ADDRESS

1 D, block, Mahanagar, Lucknow, Uttar Pradesh 226006
```

Q-10. Display vehicle name with highest stock

```
select item_name,curr_stock
from item_table
where curr_stock in (
select max(curr_stock)
from item_table
);
```

