## Graph Theory Final Review

This review only covers material introduced after midterm 2, but the final exam is cumulative! Combine this review with the midterm 1 and midterm 2 reviews for all topics that will appear on the final.

Definitions: adjacency matrix, eigenvalue and eigenvector for a graph, strongly connected network, probability vector, Perron value, Perron vector, random walk, distance, diameter, incidence matrix, Laplacian matrix, algebraic connectivity, Tutte layout.

## Theorems:

Let  $\lambda_{\max} \geq \cdots \geq \lambda_n$  be the eigenvalues for the adjacency matrix A = A(G) and let  $0 \leq \mu_2 \leq \cdots \leq \mu_n$  be the eigenvalues for the Laplacian matrix L(G).

- The number of walks of length k that start and end at the same vertex is  $\lambda_{\max}^k + \cdots + \lambda_n^k$ . As a corollary, the graph has is  $(\lambda_{\max}^3 + \cdots + \lambda_n^3)/6$  triangles.
- If v is the Perron vector for A, then v gives the limiting distribution of landing on a given vertex after a long random walk.
- The graph is bipartite if and only if  $-\lambda_{\max}$  is an eigenvalue. In this case the positive and negative components of the corresponding eigenvector gives the independent sets.
- (average degree)  $\leq \lambda_{\text{max}} \leq$  (maximum degree).
- We have  $1 \lambda_{\max}/\lambda_n \le \chi(G) \le \lambda_{\max} + 1$ .
- The graph G has no cycles if and only if  $M_G(-x)$  is the characteristic polynomial for A(G).
- The diameter of G is less than the number of distinct eigenvalues of A(G).
- If G is d-regular, then  $\mu_i = d \lambda_i$ .
- $\mu_2 \leq \sum_{\{i,j\} \text{ is an edge}} (x_i x_j)^2 / (x_1^2 + \dots + x_n^2)$  for any  ${\bf x}$  with  ${\bf 1}^{\top} {\bf x} = {\bf 0}$ .
- $\mu_2 < \kappa(G)$
- The multiplicity of 0 as an eigenvalue for L(G) is the number of components of G.
- The number of spanning trees in G is  $\mu_2 \cdots \mu_n/n$ .
- The eigenvectors corresponding to  $\mu_2, \mu_3, \mu_4$  give good coordinates for a graph layout.
- The Tutte layout can give planar embeddings.

## Sample questions:

- **1.** Find the Perron value for the adjacency matrix for  $K_{m,n}$ .
- 2. Find a reasonable upper bound for the algebraic multiplicity  $\mu_2$  for the Petersen graph (or your favorite graph) using the Courant-Fischer theorem.
- **3.** Find the eigenvalues for the star graph with *n* vertices. This is the star graph with 10 vertices:



**4.** Place vertices 1, 2, 3, 4 in  $C_6$  at (0,0), (1,0), (1,1), and (0,1), shown below:



Where should vertices 5 and 6 be placed in a Tutte layout?

5. How would you find the limiting distribution of landing on a given vertex after a long random walk in this graph?



- **6.** How many spanning trees are there for the cube  $Q_n$ ?
- 7. Find a formula for the number of cycles in length 4 in a d regular graph with eigenvalues  $\lambda_1, \ldots, \lambda_n$ .