Δομές δεδομένων και τεχνικές προγραμματισμού

3ή Εργασία

Πρόγραμμα ταξινόμησης - αποθήκευσης δεδομένων με χρήση ευρετηρίου.

Ονοματεπώνυμο: Κώστας Χατζόπουλος ΑΜ: 1115201300202

Οδηγίες χρήσης:

Δεν απαιτείται από το χρήστη κάποια εισαγωγή από το πληκτρολόγιο, πρέπει όμως να υπάρχουν τα παρακάτω αρχεία σε έναν φάκελο με όνομα **Data Files**:

- 1) ICAO_Random_Input-Windows.txt
- 2) ICAO_SEARCH-Windows.txt
- 3) ICAO_Sorted_Input-Windows.txt

Μετά την εκτέλεση του προγράμματος θα πρέπει να έχουν δημιουργηθεί τα παρακάτω αρχεία στον ίδιο φάκελο:

- 1) ICAO FOUND.txt
- 2) AIRPORTS.txt

Από τα οποία το **1)** θα πρέπει να περιέχει μόνο τα <u>ICAO που βρέθηκαν</u> από το αρχείο:

ICAO SEARCH-Windows.txt.

Το 2) θα πρέπει να περιέχει ότι υπήρξε στο αρχείο: ICAO_Random_Input-Windows.txt αλλά με <u>αλφαβητική</u> ταξινόμηση ως προς το πεδίο ICAO.

Λειτουργικότητα:

Το πρόγραμμα υλοποιεί όλα τα ερωτήματα της εκφώνησης.

Περιβάλλον υλοποίησης:

Αρχικά αναπτύχθηκε σε **Visual Studio 2013** σε περιβάλλον Windows Server 2012 (Virtual Machine), ενώ παράλληλα σε κάθε καινούργια έκδοση, έκανα δοκιμές σε **linux gcc** (Της σχολής) με χρήση **#define OS 0** (Για τους χρόνους) αλλά και σε **Dev C++** σε περιβάλλον Windows Server 2012. Το τελικό (Παραδοτέο) project είναι σε **Dev C++**.

Λεπτομέρειες υλοποίησης:

Για λόγους debugging το πρόγραμμα γράφτηκε έτσι ώστε να μπορεί να πάρει είσοδο δεδομένων και από το χρήστη ή να εκτυπώσει τα δεδομένα εξόδου και στην κονσόλα.

(Αντί για το ρεύμα αρχείων: **in - out** χρησιμοποιούμε: **stdin - stdout** αντίστοιχα στα ορίσματα των συναρτήσεων)

Στον παρακάτω πίνακα έχω συμπληρώσει τις μετρήσεις για το κάθε ερώτημα σε millisecond οι οποίες γίνανε σε λειτουργικό σύστημα Windows στο Visual Studio:

Εργασία/Χρόνος	Μέγεθος
Εισαγωγές (Ερ. 2)	511
	1023
	2047
	Όλα (AVG)
	4046
Αναζητήσεις (Ερ. 3)	3840/8788
(Ep. 4)	3840/3840
Εκτύπωση (Ερ. 5)	4037

Απλο ΔΔΑ	
Sorted input	
196.565 msec	
967.163 msec	
2221.24 msec	
1.42644 msec	
5771.36 msec	
10244 msec	
5164.09 msec	
67.6461 msec	

ΑVL ΔΔΑ		
Random input	Sorted	
24.7583 msec	308.16 msec	
46.5395 msec	594.815 msec	
115.03 msec	1584.52 msec	
0.0603214 msec	0.431669 msec	
244.06 msec	1746.53 msec	
59.8263 msec	57.228 msec	
14.3287 msec	13.8016 msec	
18.7829 msec	16.2911 msec	

Στους παραπάνω χρόνους παρατηρούμε πως στο Απλό ΔΔΑ η είσοδος εγγραφών με ταξινομημένη σειρά καθυστερεί σε σχέση με την τυχαία λόγω ότι το δένδρο εκφυλίζεται σε λίστα,

δηλαδή με βάση τη θεωρία η πολυπλοκότητα είναι O(n) για ταξινομημένη είσοδο αντί για O(logn) που είναι κανονικά στα δένδρα.

Η εκτύπωση πραγματοποιείται ταξινομημένα λόγω της ορθής εισαγωγής αλλά και της ενδοδιάταξης για προσπέλαση των κόμβων, οπότε η πολυπλοκότητά της είναι O(n).