Large Stepsize GD for Logistic Loss

Non-Monotonicity of the Loss Improves Optimization Efficiency

Jingfeng Wu¹, Peter Bartlett^{1,3}, Matus Telgarsky², Bin Yu¹ ¹UC Berkeley, ²New York University, ³Google DeepMind

Background

$$w_{+} = w - \eta \nabla L(w)$$

How to choose stepsize?

Descent lemma

For small η , $L(w_t)$ decreases monotonically

large stepsize works better;

"spikes" or "edge of stability"

unexplained by descent lemma

 $L(w) = w^2$

 $w_+ = (1 - 2\eta)w$

3-layer net + 1,000 samples from MNIST

logistic regression + 1,000 samples from MNIST "0" or "8"

A EoS Theory in Logistic Regression

classification data $(x_i, y_i)_{i=1}^n$, $||x_i|| \le 1$, $y_i \in \{\pm 1\}$ logistic loss + linear model

$$L(w) := \frac{1}{n} \sum_{i} \ln(1 + \exp(-y_i x_i^{\mathsf{T}} w))$$

Assume [linear separability]:

 \exists vector w_* such that $yx^Tw_* > \gamma > 0$

Theorem

• **EoS phase**. For every *t*

$$\frac{1}{t} \sum_{k=0}^{t-1} L(w_k) \le \tilde{O}\left(\frac{1+\eta^2}{\eta t}\right)$$

• Stable phase. If $L(w_s) \le 1/\eta$ for some s, then $L(w_{s+t}) \downarrow$ for $t \ge 0$ and

$$L(w_{s+t}) \le \tilde{O}\left(\frac{F(w_s)}{\eta t}\right), \quad F(w_s) := \hat{\mathbb{E}} \exp(-yx^{\mathsf{T}}w_s)$$

• Phase transition. We have $L(w_s) \le 1/\eta$ and $F(w_s) \le 1$ for

$$s \le \tau := \Theta(\max\{\eta, n, n/\eta \ln(n/\eta)\})$$

Benefits of large stepsizes

- 1. Asymptotic $\tilde{O}(1/\eta t)$ for **every** η (beyond 1/smoothness)
- 2. Larger $\eta =>$ smaller const factor, but longer EoS
- 3. Given #steps $T \ge \Omega(n)$, if choose $\eta = \Theta(T)$, then

$$\tau \le T/2$$
 and $L(w_T) \le \tilde{O}(1/T^2)$

"acceleration" by EoS w/o momentum or varying stepsizes

4. Theorem. In general, if not enter EoS, then $L(w_T) \ge \Omega(1/T)$

Extensions — SGD — General Loss Functions — Neural Tangent Kernel

Theorem. SGD for logistic regression

Let $(w_k)_{k=1}^n$ be iterates of **const stepsize online SGD** for **logistic regression** on iid data from a **separable distribution**. Then for **every stepsize** η , w.p. $\geq 1 - \delta$:

$$\frac{1}{n} \sum_{k=1}^{n} \mathbb{E} \ln\left(1 + \exp(-yx^{\mathsf{T}}w_k)\right) \lesssim \frac{\ln^2(\gamma^2 \eta n) + \eta^2}{\gamma^2 \eta n} + \frac{\left(\ln(\gamma^2 \eta n) + \eta\right) \ln(1/\delta)}{\gamma n}$$

$$\frac{1}{n} \sum_{k=1}^{n} \Pr(y x^{\mathsf{T}} w_k \le 0) \lesssim \frac{\ln(\gamma^2 \eta n) + \eta}{\gamma^2 \eta n} + \frac{\ln(1/\delta)}{n}$$

large stepsize works but no acceleration (upto log)

A general loss function $\ell: \mathbb{R} \to \mathbb{R}_+$

A. **Regularity**. Assume ℓ is \mathscr{C}^2 , convex, \downarrow , and $\ell(+\infty) = 0$,

define
$$\rho(\lambda) := \min_{z \in \mathbb{R}} \lambda \mathcal{C}(z) + z^2, \quad \lambda \ge 1$$
 minimizer away from init

B. Lipschitzness. Assume $g(\cdot) := |\ell'(\cdot)| \le C_g$ prevents GD from diverging

C. **Self-boundedness**. Assume $g(\cdot) \leq C_{\beta} \mathcal{E}(\cdot)$ and for entering stable phase $\ell(z) \le \ell(x) + \ell'(z - x) + C_{\beta}g(x)(z - x)^2$, for $|z - x| \le 1$

D. **Exp-tail**. Assume $\ell(\cdot) \leq C_e g(\cdot)$ unnecessary but improves transition time $L(w) := \hat{\mathbb{E}} \ell(y f_x(w)), \ f_x(w) := \frac{1}{\sqrt{m}} \sum_{s=1}^m a_s \max\{x^{\mathsf{T}} w^{(s)}, 0\}, \ w \in \mathbb{R}^{md}$

Assume NTK init: $w_0 \sim \mathcal{N}(0, I_{md})$, $(a_s)_{s=1}^m$ random from $\{\pm 1\}$ & fixed

Assume: "separable" in NTK RKHS holds generically

Theorem. GD for NN/general losses

Assume ℓ satisfies A-B. Fix T, assume $m \ge \Omega(R^2)$ for $R := \Theta(\sqrt{\rho(\eta T)} + \eta)$.

• Lazy training. For $t \le T$, we have $||w_t - w_0|| \le R$

• **EoS phase**. For $t \le T$, we have $\frac{1}{t} \sum_{k=0}^{t-1} L(w_k) \le O\left(\frac{\rho(\eta t) + \eta^2}{\eta t}\right)$

• Stable phase. Assume ℓ also satisfies C. If $L(w_s) \leq \Theta(1/(\eta + n))$ for some s,

then
$$L(w_{s+t}) \downarrow$$
 and $L(w_{s+t}) \leq O\left(\frac{\rho(\eta t)}{\eta t}\right)$, $s+t \leq T$

• Phase transition. We have $L(w_s) \leq \Theta(1/(\eta + n))$ for some $s \leq \tau$, where

$$\tau := \Theta(\max\{\psi^{-1}(\eta + n), \eta(\eta + n)\}), \ \psi(\lambda) := \lambda/\rho(\lambda)$$

or $\tau := \Theta(\max\{\eta, n \ln(n)\})$ if ℓ also satisfies D

large stepsize accelerates NTK & general losses