☑ 関数の増減,極値,グラフの凹凸,変曲点

-【例題 4.3】

関数 $v = x^3 - 3x^2 + 4$ の増減とグラフの凹凸を調べよ.

Ø

- ※ 関数 f(x) について、x = a の近くの任意の x に対して f(a) > f(x) が成り立つ(周囲より大き
- い)とき,f(x) は x=a で極大になるといい,f(a) を極大値 (local maximum) と呼ぶ. cf. 最大値 同様に、x = a の近くの任意の x に対して f(a) < f(x) が成り立つ (周囲より小さ
- い) とき, f(x) は x=a で極小になるといい, f(a) を極小値 (local minimum) と呼ぶ. cf. 最小値 また、極大値と極小値をまとめて、極値 (extremum) という.

(関数 f(x) が x = a で微分可能で、その点で極値をとるならば、 f'(a) = 0.)

x < aとx > aとで曲線y = f(x)の凹凸が変わるとき、点(a, f(a))をこの曲線の変曲点という. (関数 f(x) が x = a で 2 階微分可能で、その点で変曲点になるならば、 f''(a) = 0.)

問題4.4 次の関数の増減を調べよ.

$$(1) \quad y = 2x^2 + 8x + 5$$

(1)
$$y = 2x^2 + 8x + 5$$
 (2) $y = 2x^3 - 3x^2 - 12x + 7$ (3) $y = x^4 - 2x^2 + 3$

$$(3) \quad y = x^4 - 2x^2 + 3$$

【例題 4.4】

次の関数の増減、極値、グラフの凹凸、変曲点を調べ、グラフの概形をかけ、

(1)
$$v = x^3 - 3x^2 - 9x + 2$$

(2)
$$y = 3x^4 - 8x^3 + 6x^2$$

(1)
$$y = x^3 - 3x^2 - 9x + 2$$
 (2) $y = 3x^4 - 8x^3 + 6x^2$ (3) $y = x^4 - 8x^3 + 18x^2 - 11$

問題4.5 次の関数の増減、極値、グラフの凹凸、変曲点を調べ、グラフの概形をかけ、

(1)
$$v = x^3 - 3x^2 + 1$$

(2)
$$v = -x^4 + 2x^2$$

(1)
$$y = x^3 - 3x^2 + 1$$
 (2) $y = -x^4 + 2x^2$ (3) $y = 3x^4 - 8x^3 + 7$

(4)
$$y = x^3 - 3x$$

$$(5) \quad y = x^4 - 4x^3$$