北京理工大学(一)

概率与数埋统计试题(A 卷)											
座号		班	级		学号			姓名_		- Car	
(本试卷共 8 页,八个大题,满分 100 分;最后一页空白纸为草稿纸,可撕下,考试结束后											
不交此页草稿纸,答案写在草稿纸上无效)											
题号	-	=	三	四	五	六	七	八	总分	核分	
得分									-		
签名											
附表:											
$\Phi(2)=0.9772$, $\Phi(1.96)=0.975$, $\Phi(1.64)=0.95$, $\Phi(3)=0.9987$, $\Phi(1)=0.8413$, $\Phi(1/3)=0.6293$,											
$t_{0.05}(9) = 1.8331$, $t_{0.05}(10) = 1.8125$, $t_{0.025}(9) = 2.2622$, $t_{0.025}(10) = 1.8125$, $\chi_{0.95}^2(9) = 3.325$,											
$\chi^2_{0.95}(10) = 3.940$, $\chi^2_{0.975}(9) = 2.700$, $\chi^2_{0.975}(10) = 3.247$, $\chi^2_{0.025}(9) = 19.022$, $\chi^2_{0.025}(10) = 20.483$,											
$\chi_{0.05}^2(9) = 16.919$, $\chi_{0.05}^2(10) = 18.307$, $\sqrt{10} = 3.16$											
20.7											
一、填空题(10分,将答案写在下面的表格中)											
序	序号 1			2		3		4		5	
答	答案										
1. 设离散型随机变量 X 的分布律为 $P(X=k)=C\cdot \frac{\lambda^k}{k!}$, $\lambda>0$, $k=1,2,\cdots$,则常数 C 为											
2. 设随机变量 X 服从正态分布 $N(2,5)$,随机变量 Y 服从正态分布 $N(1,4)$,且 X 与 Y 相互独立,											
则概率 <i>P(X≤Y+4)=</i> .											
3. 设随机变量 X 与 Y 相互独立且都服从均匀分布 $U(0,\theta)$,则 $E[\min(X,Y)] =$											
4. 设总体 X 服从期望为 2 的指数分布, X_1 , X_2 ,, X_n 是来自总体 X 的简单随机样本,											
$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, 则统计量 $\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ 的数学期望为											
5. 设 X_1, X_2, \dots, X_n 为取自总体 $N(\mu, \sigma^2)$ 的一个样本,其中 $\mu \in R$, $\sigma > 0$ 均未知, $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$,											

第1页共8页

 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ 分别表示样本均值和样本方差,则对于给定的常数 α (0< α <1),区间

 $[\bar{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1), \bar{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)]$ 包含 μ 的概率是 _______

在数字通讯中,信号由0和1组成,因为有随机干扰,收到信号时,0被误收作1的概率为0.2,而1被误收作0的概率为0.1,假定发送信号0与1的几率均等.

- 1. 求发送的是信号 0 且收到的也是信号 0 的概率;
- 2. 求收到的是信号 0 的概率;
- 3. 已知收到的是信号 0, 求发出的是信号 0 的概率.

- 1. 叙述"事件 A 概率为零"与"事件 A 为不可能事件"的关系,并给出例子支持你的结论.
- 2. 设连续型随机变量 X 的概率密度函数为

得分

$$f_X(x) = \begin{cases} \theta x^{\theta-1}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$$

其中常数 $\theta > 0$, 令 $Y = -2\theta \ln X$. 求 Y的概率密度函数 $f_Y(y)$.

设二维连续型随机变量(X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} Ce^{-2x}, & x > 0, 0 < y < x, \\ 0, &$$
其它.

- 1. 确定常数 C 的值; 2. 求 X 与 Y 边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$,并判断 X 与 Y 是否独立;
- 3. 求 Z=X+Y 的概率密度函数 $f_Z(z)$; 4. 求概率 $P(X\leq Y+2)$.

- 1. 叙述两个随机变量 X和 Y 的相关系数 ρ_{XY} 的含义.
- 2. 设G是由x轴、y 轴及直线 2x+y-2=0 所围成的区域,二维随机变量(X,Y)在G 内服从均匀 分布. 求X与Y的相关系数 ρ_{xy} .

已知随机变量 $X_1, X_2, ..., X_{100}$ 独立同分布且均服从U(0, 1),令 $Y = X_1 \cdot X_2 \cdot ... X_{100}$,求 $Y < e^{-80}$ 的概率的近似值.

设总体 X 服从参数为 p 的几何分布,其中 $0 为未知参数, <math>X_1, X_2, \ldots, X_n$ 为取自该总体的 样本, x_1, x_2, \dots, x_n 为相应的样本观测值.

1. 求参数 p 的矩估计; 2. 求 p 的最大似然估计.

- 1. 在假设检验问题中
- (1) 若检验结果是接受原假设,则检验可能犯哪一类错误?
- (2) 若检验结果是拒绝原假设,则检验又有可能犯哪一类错误?
- 2. 某厂生产的汽车电池使用寿命服从正态分布 $N(\mu\sigma)$,其说明书上写明其标准整不超过 0.9年。现随机抽取 10 个,得样本均值为 4 年,样本标准差为 1.2 年,试在显著性水平 α = 0.05 下,检验厂方说明书上所写的标准差是否可信。

概率与数理统计试题(A卷)-参考答案(一) 一、填空题(10分,每空2分)

1.
$$(e^{\lambda} - 1)^{-1}$$
 ; 2. 0.8413 ; 3. $\frac{\theta}{3}$; 4. 4. 4 ; 5. 1-\alpha

解: \Diamond $A = \{$ 收到的是信号0 $\}$

 $B = \{ 发出的是信号0 \}$

 $\overline{B} = \{$ 发出的是信号1 $\}$

则 B,\overline{B} 是样本空间的划分

由己知

$$P(B) = \frac{1}{2}, \qquad P(A \mid B) = 0.8$$
$$P(\overline{B}) = \frac{1}{2}, \qquad P(A \mid \overline{B}) = 0.1$$

1. 由乘法公式得

$$P(BA) = P(B)P(A|B) = \frac{1}{2} \times 0.8 = 0.4$$

2. 由全概率公式得

$$P(A) = P(B)P(A | B) + P(\overline{B})P(A | \overline{B})$$

= $\frac{1}{2} \times 0.8 + \frac{1}{2} \times 0.1 = 0.45$

3. 由条件概率的定义得

$$P(B|A) = \frac{P(BA)}{P(A)} = \frac{0.4}{0.45} = \frac{40}{45} = \frac{8}{9}$$

三、(10分)

但是反过来不成立,反例如下:

设X服从正态分布, $A = \{X = 0\}$,则A的概率为零,但A不是不可能事件。

2. 解: $Y = -2\theta \ln X$ 的可取值范围是 $(0,+\infty)$

因为
$$y' = -\frac{2\theta}{x} < 0$$

其反函数为
$$x = h(y) = e^{-\frac{1}{2\theta}y}$$

$$|h'(y)| = \frac{1}{2\theta} e^{-\frac{1}{2\theta}y}$$

所以 $Y = -2\theta \ln X$ 的密度函数为

$$f_{Y}(y) = \begin{cases} \theta e^{-\frac{\theta-1}{2\theta}y} \frac{1}{2\theta} e^{-\frac{1}{2\theta}y}, & y > 0\\ 0, & \text{#th} \end{cases}$$

$$= \begin{cases} \frac{1}{2} e^{-\frac{1}{2}y}, & y > 0\\ 0, & \text{#th} \end{cases}$$

四、(16分)

解: 1. 由概率密度的性质得

$$1 = \iint_{\mathbb{R}^2} f(x, y) dx dy = \int_0^\infty dx \int_0^x Ce^{-2x} dy$$

化简后得到
$$1 = \int_0^\infty dx \int_0^x Ce^{-2x} dy = \int_0^\infty Ce^{-2x} x dx = \frac{C}{2} \int_0^\infty 2e^{-2x} x dx = \frac{C}{2} \frac{1}{2}$$

所以 C=4

2. 由 1 知(X,Y)的概率密度为

$$f(x,y) = \begin{cases} 4e^{-2x}, & x > 0, 0 < y < x, \\ 0, & \text{其它.} \end{cases}$$

当
$$x > 0$$
 时, $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_0^x 4e^{-2x} dy = 4xe^{-2x}$

所以 X 的边缘概率密度为

$$f_X(x) = \begin{cases} 4xe^{-2x}, & x > 0 \\ 0, & 其他 \end{cases}$$

当
$$y > 0$$
 时, $f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_{y}^{\infty} 4e^{-2x} dx = 2e^{-2y}$

所以 Y的边缘概率密度为

$$f_{\gamma}(y) = \begin{cases} 2e^{-2y}, & y > 0\\ 0, & \text{其他} \end{cases}$$

因为
$$f_X(x) \cdot f_Y(y) = 4xe^{-2x} \cdot 2e^{-2y} \neq f(x, y)$$

所以X与Y不独立。

3. Z=X+Y的概率密度函数为

$$f_{z}(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \begin{cases} \int_{z/2}^{z} 4e^{-2x} dx, & z > 0 \\ 0 & z \le 0 \end{cases} = \begin{cases} 2e^{-z} - 2e^{-2z}, & z > 0 \\ 0 & z \le 0 \end{cases}$$

4. 由题设条件

第2页共5页

$$P(X \le Y + 2) = \iint_{x \le y + 2} f(x, y) dx dy = \int_0^\infty dy \int_y^{y+2} 4e^{-2x} dx$$

$$= \int_0^\infty 2(e^{-2y} - e^{-2(y+2)}) dy = (1 - e^{-4}) \int_0^\infty 2e^{-2y} dy = 1 - e^{-4}.$$
£1. (14 分)

1. 答: $|\rho_{XX}|$ 的大小刻画了X和Y的线性相关的程度.

若 $|\rho_{XY}|$ 越接近于 1,说明 X与 Y之间越近似有线性关系;

即:X与Y的线性相关的程度越高;

若 $|\rho_{XY}|$ 越接近于 0,说明 X与 Y之间越不能有线性关系;

即:X与Y的线性相关的程度越弱;

 $|P_{XY}| = 1$, 说明 Y = X之间以概率 1 有严格线性关系;

若 $\rho_{XY}=0$,说明X与Y之间没有线性关系,此时X与Y之间的关系较复杂,可能相互独立,也可能有其他某种非线性的函数关系.

2. 解:由于区域G的面积为1,因此(X, Y)的联合密度函数为

$$\text{Var}(X) = E(X^2) - (E(X))^2 = \frac{1}{6} - \left(\frac{1}{3}\right)^2 = \frac{1}{18}$$

$$\text{Var}(Y) = E(Y^2) - (E(Y))^2 = \frac{2}{3} - \left(\frac{2}{3}\right)^2 = \frac{2}{9}$$

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xyf(x, y)dxdy = \int_{0}^{1} dx \int_{0}^{2-2x} xydy = \int_{0}^{1} x \cdot \frac{y^2}{2} \Big|_{0}^{2-2x} dx$$

$$= 2\int_{0}^{1} x(1-x)^2 dx = 2\int_{0}^{1} (x^3 - 2x^2 + x)dx = 2\left(\frac{1}{4} - \frac{2}{3} + \frac{1}{2}\right) = \frac{1}{6}$$

$$\text{FILL } \text{Cov}(X, Y) = E(XY) - E(X)E(Y) = \frac{1}{6} - \frac{1}{3} \times \frac{2}{3} = -\frac{1}{18}$$

$$\rho_{XY} = \frac{\text{cov}(X, Y)}{\sqrt{\text{var}(X)}\sqrt{\text{var}(Y)}} = \frac{-\frac{1}{18}}{\sqrt{\frac{1}{18}\sqrt{\frac{2}{9}}}} = -\frac{1}{2}$$

六、(10分)

解: 令
$$Z_k = \ln(X_k)$$
, $k = 1, 2, ..., 100$.

$$E(Z_{k}) = \int_{0}^{1} \ln x dx = (x \ln x - x) \Big|_{0}^{1} = -1$$

$$E(Z_{k}^{2}) = \int_{0}^{1} \ln^{2} x dx = x \ln^{2} x \Big|_{0}^{1} - 2 \int_{0}^{1} \ln x dx = 2$$

$$D(Z_{k}) = E(Z_{k}^{2}) - E^{2}(Z_{k}) = 1$$

由独立同分布的中心极限定理得

$$\frac{\sum_{k=1}^{100} Z_k - 100 \times (-1)}{\sqrt{100 \times 1}}$$
近似服从 $N(0,1)$.

$$P(Y < e^{-80}) = P(\sum_{k=1}^{100} Z_k < -80)$$

$$= P(\frac{\sum_{i=1}^{100} Z_i - 100 \times (-1)}{\sqrt{100}} < \frac{-80 - 100 \times (-1)}{\sqrt{100}})$$

$$\approx \Phi(2)$$

$$= 0.9772$$

七、(14分)

解: 1. X的概率分布律为: $P(X=k) = p(1-p)^{k-1}, k=1,2,...$

$$\mu_1 = E(X) = \sum_{k=1}^{\infty} k \cdot p(1-p)^{k-1} = p(\sum_{k=1}^{\infty} q^k)' = p(\frac{q}{1-q})' = 1/p$$

第4页共5页

解方程得 $p=1/\mu$

用 \bar{X} 代替 μ_1 ,得参数p的矩估计 $\hat{p}=1/\bar{X}$

2. 易知似然函数为:

$$L(p) = \prod_{i=1}^{n} p(1-p)^{x_i-1} = p^n (1-p)^{\sum_{i=1}^{n} x_i - n}$$

对数似然函数为:

$$\ln L(p) = n \ln p + (\sum_{i=1}^{n} x_i - n) \ln(1 - p)$$

关于未知参数p求导数并令导函数为0,得

$$\frac{d \ln L(p)}{dp} = \frac{n}{p} - \frac{1}{1 - p} (\sum_{i=1}^{n} x_i - n) = 0$$

解方程得p的最大似然估计为 $\hat{p} = n / \sum_{i=1}^{n} x_i = 1 / \bar{x}$

最大似然估计量为
$$\hat{p}=1/\bar{X}$$

八、(14分)

1. 答:(1) 若检验结果是接受原假设,则检验有可能犯第二类错误;

(2) 若检验结果是拒绝原假设,则检验有可能犯第一类错误.

2. 解:提出假设 $H_0: \sigma \le 0.9$; $H_1: \sigma > 0.9$

检验统计量
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

拒绝域 $W = \{(x_1, \dots, x_n) : \chi^2 \ge \chi^2_\alpha(n-1)\}$

查表得 $\chi_{\alpha}^{2}(n-1) = \chi_{0.05}^{2}(9)=16.919$

计算得 $\chi^2 = \frac{9s^2}{0.9^2} = \frac{9 \times 1.2^2}{0.9^2} = 16 < 16.919$

未落入拒绝域, 所以接受原假设, 即认为说明书上所写的标准差可信