Real-time Traffic Signs Detection

- Introduction
- Solution
- Results and Discussion
- Improvement

Introduction

- Traffic signs
- Traffic signs in the real-world

Introduction

- The potential problems:
 - Noisy background.
 - Shape change when observing from side,
 like circle → ellipse

 Low cost, so it could be deployed in real-time systems.

Solution

- Need 4 steps to compute result.
 - Color Threshold
 - Draw Contours
 - Corner Detection(optional)
 - Shape Recognition
 - Circle
 - Ellipse
 - Triangle
 - Other polygons ...

Solution

- The common characteristics for most traffic signs
 - Conspicuous and constant color, like red, yellow, orange...

- Regular shape and wide border

- Two techniques to separate traffic signs from other irrelevant signals
 - Color threshold
 - Shape detection
- In this project, the color threshold will be applied first
 - Reason: it could filter more signals from raw image.

 Problem: RGB metric system could be easily impacted by amphibians light change, like shadow or sunshine

Sample a point of border

RGB = [49, 22, 37]

covered by shadow

• To solve it, convert it to HSV or HSL metric.

•HSV/HSL metric

- Composed by 3 elements, fewer impact from light change than RGB.
 - Hue
 - Saturation
 - Lightness
- How to set the color threshold in HSV/HSL?

•HSV/HSL metric

Color spectrum

- What's the specific value of this range in HSV/HSL metric? Use some color tools:
- Range:

 $[H,S,V] = [0\sim20, 50\sim255, 50\sim255]$ and $[150\sim179, 50\sim255, 50\sim255]$

Demonstration:

Color threshold

raw image

output

Draw Contours

- Motivation: we can not deploy shape recognition based on separated points.
- Demonstration:

 Output: a set of objects, and the object is composed by several points

Shape Detection

- Sorts of shape detections
 - Circle detection
 - Ellipse detection
 - Triangle detection

. . .

• In this case, we will use only circle and ellipse, and circle could be treated as special case of ellipse, so we will deploy Ellipse detection.

Ellipse Detection

- 3 Techniques to fit ellipse:
 - Compare actual area, to estimated area

actual area

estimated area

- Actual area(aa) could be computed based on contour
- Estimated area(ea):

```
ea = PI * rect. width * rect. height
```

If |aa- ea| > error_threshod
 we say this shape is not a ellipse.

Ellipse Detection

- 2nd technique: Ratio of width/height of the contour
- Shortcoming of previous 2 methods:
 - Not always reliable
 - Inaccurate
- Advantages for these 2 methods:
 - Fast, few computation is required
 - Easy to deploy.

Ellipse Detection

• 3rd technique: corner detection.

Principle: design 4 different masks to match 4

corners of the object.

- Advantages:
 - Accurate
 - Robust
- Drawback:
 - More calculation required

than previous 2 method, need to be adapted before it is deployed in real-time system.

Result

Demonstration

 Incorrect detection could hardly be prevented if based on current algorithm

Improvement

- Run shape detection before color threshold to prevent rough contour edges
- Adapting the algorithm of ellipse detection, one available solution is check if the object is symmetric
- Improving color threshold algorithm to prevent isolated points.

Thank you!