A Level Physics Sam Robbins 13SE

Paper 2 Cheat Sheet

1 Thermal physics

1.1 Thermal energy transfer

Specific heat capacity - The energy required to raise the temperature of a unit mass of a given substance by one degree

Specific latent heat - The energy required to change the state of a material without changing the temperature

Temperature - The average kinetic energy of the atoms or molecules in the system

Heat - Energy transfer due to a difference in temperature

1.1.1 Continuous flow

By dividing the specific heat capacity formula by t it can be found that

$$IV = mc\frac{\Delta T}{t}$$

This gives the power per second, where a mass m flows in a time t

1.2 Ideal gases

Law	Proportionality	Constant	Equation
Boyle's	$p \propto \frac{1}{v}$	Temperature, moles	$p_1v_1 = p_2v_2$
Charles'	$V \propto T$	Pressure, moles	$\frac{v_1}{T_1} = \frac{v_2}{T_2}$
Gay-Lussac	$p \propto T$	Volume, moles	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$

The two formulas on the formula book for the gas laws have n moles and N molecules

1.2.1 Deriving Pressure volume work formula

$$W = FS = F \times \Delta L = \frac{F}{A} \times A\Delta L = P\Delta V$$

1.2.2 Types of masses

Molar mass - The mass of a mole of a substance Molecular mass - The mass of the molecules A Level Physics Sam Robbins 13SE

1.3 Molecular kinetic theory model

1.3.1 Brownian motion as evidence for the existence of atoms

Brownian motion - The random motion of smoke particles in a gas

As Newton's first law states that objects remain in motion until acted on by a force, the smoke particles should remain in motion, instead they move randomly, suggesting collisions with something else

1.3.2 Explanation of relationships between p,V and T

Increase pressure - More collisions, increase temperature. Same number of molecules, volume must decrease

1.3.3 Empirical gas laws but theoretical kinetic theory

By changing variables of a gas, the gas laws can be derived, however the kinetic theory is based on what else would be expected to be required to be constant.

1.3.4 Derivation

Newton's 3rd law - Every action has an equal and opposite reaction

$$\Delta mc = mc_{x1} - -mc_{x1} = 2mc_{x1}$$

Use Velocity =
$$\frac{\text{Distance}}{\text{Times}}$$

$$\begin{aligned} & \text{Use Velocity} = \frac{\text{Distance}}{\text{Time}} \\ & \text{Time} = \frac{\text{Distance}}{\text{Velocity}} = \frac{2l}{c_{x1}} \end{aligned}$$

Use force=
$$\frac{\text{Change in momentum}}{\text{time}}$$

Force
$$\Delta mc = \frac{\text{time}}{2mcx1} mc_{x1}^2$$

Use force =
$$\frac{\text{time}}{\Delta t}$$
 = $\frac{2mcx1}{2l/c_{x1}}$ = $\frac{mc_{x1}^2}{l}$

Use Pressure=
$$\frac{\text{Force}}{\text{Area}}$$

$$p_1 = \frac{mc_{x1}^2/l}{l^2} = \frac{mc_{x1}^2}{l^3}$$

Expand for N particles

$$p = \sum p_n = p_1 + p_2 + p_3 \dots + p_N$$

$$p = \frac{mc_{x1}^2}{l^3} + \frac{mc_{x2}^2}{l^3} + \frac{mc_{x3}^2}{l^3} + \frac{mc_{xN}^2}{l^3}$$

$$p = \frac{m}{l^3}(c_{x1}^2 + c_{x2}^2 + c_{x3}^2 \dots + c_{xN}^2)$$

The mean of all the squares of the velocities is written as \bar{c}_x^2

$$\bar{c_x^2} = \frac{c_{x1}^2 + c_{x2}^2 + c_{x3}^2 ... + c_{xN}^2}{N}$$

$$N\bar{c_x^2} = c_{x1}^2 + c_{x2}^2 + c_{x3}^2 \dots + c_{xN}^2$$

A Level Physics Sam Robbins 13SE

Simplify expression for pressure

$$p = \frac{Nm\bar{c_x^2}}{l^3}$$

Consider in 3 dimensions

$$\bar{c^2} = \bar{c_x^2} + \bar{c_y^2} + \bar{c_z^2}$$

 $\bar{c^2}=\bar{c_x^2}+\bar{c_y^2}+\bar{c_z^2}$ Average of mean square velocity for each dimension are equal

$$\bar{c_x^2} = \bar{c_y^2} = \bar{c_z^2}$$

$$\begin{split} \bar{c_x^2} &= \bar{c_y^2} = \bar{c_z^2} \\ \text{Simplify 3D formula} \end{split}$$

$$\frac{\bar{c^2}}{3} = \bar{c_x^2} = \bar{c_y^2} = \bar{c_z^2}$$

Simplify pressure formula

$$p = \frac{1}{3} \times \frac{Nm\bar{c^2}}{l^3}$$

Insert Density formula

$$\rho = \frac{\text{Mass}}{\text{Volume}} = \frac{Nm}{l^3}$$
 Substitute into Pressure formula

$$p = \frac{1}{3}\rho\bar{c^2}$$

Fields and their consequences 2

2.1 **Fields**

Similarities and differences between gravitational and electrostatic forces

Similarities Similarities	Differences
 Inverse square laws Use of field lines Use of potential Use of equipotentials 	Masses always attract, but charges may attract or repel

A Level Physics Sam Robbins 13SE

2.2 Gravitational fields

2.2.1 Gravitational field strength

2.2.2 Gravitational potential

Gravitational potential has a value of 0 at infinity, then reduces as it approaches the planet.

Gravitational potential - The work done in moving a unit mass from infinity to that point int he field

Gravitational potential difference - The work done in moving a unit mass from one point to another

Equipotential - The group of points with the same potential energy

The sign is negative because a negative amount of work has to be done to move the object from infinity to earth because the object is attracted to earth.

2.2.3 Orbits of planets and satellites

2.2.3.1 Kepler's law

$$F = \frac{GMm}{r^2} = \frac{mv^2}{r} \quad \therefore \frac{GM}{r} = v^2$$

$$v = \frac{s}{t} = \frac{2\pi r}{T}$$

$$v^2 = \frac{4\pi^2 r^2}{T^2} = \frac{GM}{r}$$

$$\frac{r^2}{T^2} = \frac{GM}{4\pi^2}$$

RHS is a constant

$$r^2 \propto T^2$$

2.2.3.2 Escape velocity

$$\frac{1}{2}mv^2 = \frac{GMm}{r} \quad \therefore v = \sqrt{\frac{2GM}{r}}$$
$$g = \frac{GM}{r^2} \quad \therefore gr = \frac{GM}{r}$$
$$v = \sqrt{2gr}$$

A Level Physics Sam Robbins 13SE

2.2.3.3 Total energy of an orbiting satellite

Total energy=KE+GPE

$$KE = \frac{1}{2}mv^2$$