AUT202 - Automatique : dynamique et contrôle des systèmes

Stabilisation

NICOLAS PETIT

Centre Automatique et Systèmes MINES ParisTech, PSL University nicolas.petit@mines-paristech.fr

Vendredi 12 février 2021

Plan

Suivi de trajectoires

2 Synthèse de contrôleur en cascade

Intérêt du suivi de trajectoire

Calculer en temps réel la correction Δu en fonction des écarts observés Δx (loi de rétroaction ou feedback) pour que Δx reste petit : stabilisation en 0 de Δx .

Dynamique de l'erreur

La planification de trajectoire donne une trajectoire de référence $t \mapsto (x_r, u_r)$ qui vérifie les équations $\frac{d}{dt}x_r = Ax_r + Bu_r$. Si on note $\Delta x = x - x_r$ et $\Delta u = u - u_r$, on a comme dynamique d'erreur

$$\frac{d}{dt}\Delta x = A \, \Delta x + B \, \Delta u.$$

On cherche un feedback $\Delta u = K \Delta x$ tel que le système bouclé $\frac{d}{dt} \Delta x = (A + BK) \Delta x$ soit asymptotiquement stable.

Dynamique de l'erreur

La planification de trajectoire donne une trajectoire de référence $t\mapsto (x_r,u_r)$ qui vérifie les équations $\frac{d}{dt}x_r=Ax_r+Bu_r$. Si on note $\Delta x=x-x_r$ et $\Delta u=u-u_r$, on a comme dynamique d'erreur

$$\frac{d}{dt}\Delta x = A \Delta x + B \Delta u.$$

On cherche un feedback $\Delta u = K \Delta x$ tel que le système bouclé $\frac{d}{dt} \Delta x = (A + BK) \Delta x$ soit asymptotiquement stable.

Dynamique de l'erreur

La planification de trajectoire donne une trajectoire de référence $t\mapsto (x_r,u_r)$ qui vérifie les équations $\frac{d}{dt}x_r=Ax_r+Bu_r$. Si on note $\Delta x=x-x_r$ et $\Delta u=u-u_r$, on a comme dynamique d'erreur

$$\frac{d}{dt}\Delta x = A \Delta x + B \Delta u.$$

On cherche un feedback $\Delta u = K \Delta x$ tel que le système bouclé $\frac{d}{dt} \Delta x = (A + BK) \Delta x$ soit asymptotiquement stable.

Exemple de stabilisation

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 4 & 0 \\ 1 & 2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$A + BK = A + B(k_1 \ k_2 \ k_3) = \begin{pmatrix} 1 & 2 & 3 \\ -1 + k_1 & 4 + k_2 & k_3 \\ 1 & 2 & 2 \end{pmatrix}$$

Valeurs propres souhaitées -1, -2, -3

On identifie le polynôme caractéristique

$$s^{3} + (-k_{2} - 7)s^{2} + (-2k_{1} + 3k_{2} - 2k_{3} + 13)s + -2k_{1} + k_{2} + 6 = 0$$

$$a(s+1)(s+2)(s+3) = s^{3} + 6s^{2} + 11s + 6 = 0$$

3 équations linéaires à 3 inconnues

Exemple de stabilisation

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 4 & 0 \\ 1 & 2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$A + BK = A + B(k_1 \ k_2 \ k_3) = \begin{pmatrix} 1 & 2 & 3 \\ -1 + k_1 & 4 + k_2 & k_3 \\ 1 & 2 & 2 \end{pmatrix}$$

Valeurs propres souhaitées −1, −2, −3

On identifie le polynôme caractéristique

$$s^{3} + (-k_{2} - 7)s^{2} + (-2k_{1} + 3k_{2} - 2k_{3} + 13)s + -2k_{1} + k_{2} + 6 = 0$$

$$a(s+1)(s+2)(s+3) = s^{3} + 6s^{2} + 11s + 6 = 0$$

3 équations linéaires à 3 inconnues

Exemple de stabilisation

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 4 & 0 \\ 1 & 2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
$$A + BK = A + B(k_1 \ k_2 \ k_3) = \begin{pmatrix} 1 & 2 & 3 \\ -1 + k_1 & 4 + k_2 & k_3 \\ 1 & 2 & 2 \end{pmatrix}$$

Valeurs propres souhaitées -1, -2, -3

On identifie le polynôme caractéristique

$$s^{3} + (-k_{2} - 7)s^{2} + (-2k_{1} + 3k_{2} - 2k_{3} + 13)s + -2k_{1} + k_{2} + 6 = 0$$

à $(s+1)(s+2)(s+3) = s^{3} + 6s^{2} + 11s + 6 = 0$

3 équations <u>linéaires</u> à 3 inconnues

Si le système est commandable, on aura toujours une solution.

Avec une seule commande : formule d'Ackermann

$$K = -[0 \dots 0 \quad 1] C^{-1} \mathcal{P}(A)$$

où ${\mathcal P}$ est le polynôme caractéristique désiré, ${\mathcal C}$ la matrice de commandabilité

Placement de pôles

Si la paire (A, B) est commandable alors, pour toute matrice réelle F de taille $n \times n$, il existe une matrice $m \times n$, K (non nécessairement unique si m > 1), telle que le spectre de A + BK coïncide avec celui de F

Si le système est commandable, on aura toujours une solution. Avec une seule commande : formule d'Ackermann

$$K = -\begin{bmatrix} 0 & \dots 0 & 1 \end{bmatrix} C^{-1} \mathcal{P}(A)$$

où ${\mathcal P}$ est le polynôme caractéristique désiré, ${\mathcal C}$ la matrice de commandabilité

Placement de pôles

Si la paire (A, B) est commandable alors, pour toute matrice réelle F de taille $n \times n$, il existe une matrice $m \times n$, K (non nécessairement unique si m > 1), telle que le spectre de A + BK coïncide avec celui de F

Si le système est commandable, on aura toujours une solution. Avec une seule commande : formule d'Ackermann

$$K = -[0 ...0 1] C^{-1} P(A)$$

où $\mathcal P$ est le polynôme caractéristique désiré, $\mathcal C$ la matrice de commandabilité

Placement de pôles

Si la paire (A, B) est commandable alors, pour toute matrice réelle F de taille $n \times n$, il existe une matrice $m \times n$, K (non nécessairement unique si m > 1), telle que le spectre de A + BK coïncide avec celui de F

Si le système est commandable, on aura toujours une solution. Avec une seule commande : formule d'Ackermann

$$K = -[0 ...0 1] C^{-1} P(A)$$

où ${\mathcal P}$ est le polynôme caractéristique désiré, ${\mathcal C}$ la matrice de commandabilité

Placement de pôles

Si la paire (A, B) est commandable alors, pour toute matrice réelle F de taille $n \times n$, il existe une matrice $m \times n$, K (non nécessairement unique si m > 1), telle que le spectre de A + BK coïncide avec celui de F

Liens avec la forme normale

$$\frac{d}{dt}x = Ax + Bu, \quad (\dim B = n \times 1)$$

Changement de variables z = Mx, v = Ex + Nu mettant le système sous forme normale de Brunovsky

$$\frac{d}{dt}z_1=z_2,\ldots,\frac{d}{dt}z_{n-1}=z_n,\ \frac{d}{dt}z_n=v$$

c.-à-d.
$$\frac{d''}{dt^n} z_1 = v$$

Forme canonique

$$A_1 = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 1 \\ 0 & \dots & 0 & 0 & 0 \end{pmatrix}, B_1 = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix}$$

Liens avec la forme normale

$$\frac{d}{dt}x = Ax + Bu, \quad (\dim B = n \times 1)$$

Changement de variables z = Mx, v = Ex + Nu mettant le système sous forme normale de Brunovsky

$$\frac{d}{dt}z_1=z_2,\ldots,\frac{d}{dt}z_{n-1}=z_n,\ \frac{d}{dt}z_n=v$$

c.-à-d. $\frac{d^n}{dt^n} z_1 = v$ Forme canonique

$$A_1 = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 1 \\ 0 & \dots & 0 & 0 & 0 \end{pmatrix}, B_1 = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix}$$

En boucle fermée, $v = K_1 z$: on obtient $A_1 + B_1 K_1$

$$A_1 + B_1 K_1 = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & \dots \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 1 \\ k_0 & k_1 & \dots & \dots & k_{n-1} \end{pmatrix}$$

Polynôme caractéristique

$$s^{n} - k_{n-1}s^{n-1} - \dots - k_{1}s - k_{0} = 0$$

à identifier au polynôme désiré.

Enfin, changement de variables inverse pour revenir dans les variables d'origine (x, u)

Placement de pôles sur la forme normale

Il suffit de résoudre la placement de pôle sur la forme de Brunovsky (z, v) (le retour aux variables (x, u): un changement de variables sur z = Mx (ce qui ne change pas le spectre) et un feedback supplémentaire v = Ex + Nu pour avoir u). On part de $y^{(n)} = v$ et on note $\lambda_1, \ldots, \lambda_n$ le spectre d'une

matrice réelle de dimension n. Notons s_k les fonctions symétriques des λ_i (des quantités réelles donc) homogènes de degré k,

$$\prod_{k=1}^{n} (X - \lambda_k) = X^n - \mathbf{s_1} X^{n-1} + \mathbf{s_2} X^{n-2} + \ldots + (-1)^n \mathbf{s_n}$$

Alors, dès que les λ_k sont à partie réelle strictement négative, le bouclage

$$v = s_1 y^{(n-1)} - s_2 y^{(n-2)} + \ldots + (-1)^{n-1} s_n y$$

assure la stabilité de $v^{(n)} = v$.

Placement de pôles sur la forme normale

Il suffit de résoudre la placement de pôle sur la forme de Brunovsky (z,v) (le retour aux variables (x,u): un changement de variables sur z=Mx (ce qui ne change pas le spectre) et un feedback supplémentaire v=Ex+Nu pour avoir u). On part de $y^{(n)}=v$ et on note $\lambda_1,\ldots,\lambda_n$ le spectre d'une matrice réelle de dimension n. Notons s_k les fonctions symétriques des λ_i (des quantités réelles donc) homogènes de degré k,

$$\prod_{k=1}^{n} (X - \lambda_k) = X^n - s_1 X^{n-1} + s_2 X^{n-2} + \ldots + (-1)^n s_n$$

Alors, dès que les λ_k sont à partie réelle strictement négative, le bouclage

$$v = s_1 y^{(n-1)} - s_2 y^{(n-2)} + \ldots + (-1)^{n-1} s_n y$$

Placement de pôles sur la forme normale

Il suffit de résoudre la placement de pôle sur la forme de Brunovsky (z,v) (le retour aux variables (x,u): un changement de variables sur z=Mx (ce qui ne change pas le spectre) et un feedback supplémentaire v=Ex+Nu pour avoir u). On part de $y^{(n)}=v$ et on note $\lambda_1,\ldots,\lambda_n$ le spectre d'une matrice réelle de dimension n. Notons s_k les fonctions symétriques des λ_i (des quantités réelles donc) homogènes de degré k,

$$\prod_{k=1}^{n} (X - \lambda_k) = X^n - s_1 X^{n-1} + s_2 X^{n-2} + \ldots + (-1)^n s_n$$

Alors, dès que les λ_k sont à partie réelle strictement négative, le bouclage

$$v = s_1 y^{(n-1)} - s_2 y^{(n-2)} + \ldots + (-1)^{n-1} s_n y$$

assure la stabilité de $v^{(n)} = v$.

Synthèse de contrôleur sur une cascade

$$\frac{d^2}{dt^2}x = f(x, \frac{d}{dt}x) + u$$

"cruise-control": f mal connue

Problème : asservir la position à \bar{x} 1 commande u pour 2 états $(x, \frac{d}{dt}x)^T$

$$\begin{cases} \frac{d}{dt}x = v \\ \frac{d}{dt}v = f(x, v) + u \end{cases}$$

Quelle dynamique cible?

Asservissement de *x*

Pour que x converge vers \bar{x} , on désire

$$v \approx -k_1(x-\bar{x}) \triangleq \bar{v}, \quad k_1 > 0$$

Peut-on l'assurer?

$$\frac{d}{dt}v = f(x,v) - \frac{k_2}{\epsilon}(v - \bar{v}), \quad k_2 > 0$$

c.-à-d. (u est un retour d'état)

$$u=-\frac{k_2}{\epsilon}(v+k_1(x-\bar{x}))$$

Cascade

Utilisation de la forme cascade en présence d'incertitudes : le grand gain

$$\frac{d}{dt}x = v$$

$$\frac{d}{dt}v = f(x, v) - \frac{k_2}{\epsilon}(v + k_1(x - \bar{x}))$$

Faire apparaître $\epsilon << 1$.

$$\Sigma^{\epsilon} \begin{cases} \frac{d}{dt} x = v & \text{lent} \\ \epsilon \frac{d}{dt} v = \epsilon f(x, v) - k_2 (v + k_1 (x - \bar{x})) & \text{rapide} \end{cases}$$

de solution $x_{\epsilon}(t)$, $v_{\epsilon}(t)$

Réduction par le théorème de Tikhonov

Le système rapide est asymptotiquement stable

$$g(x, v, \epsilon) = \epsilon f(x, v) - k_2(v + k_1(x - \bar{x}))$$

Pour $\epsilon = 0$, $g(x, v, 0) = k_2(v + k_1(x - \bar{x}))$ a pour solution $v = -k_1(x - \bar{x})$,

$$\frac{\partial g}{\partial v}(x,-k_1(x-\bar{x}),0)=-k_2<0$$

Le système réduit est

$$\frac{d}{dt}x = -k_1(x - \bar{x}), \quad v = -k_1(x - \bar{x})$$

Le système réduit est asymptotiquement stable

$$\frac{d}{dt}x = -k_1(x - \bar{x})$$

donc, sa solution $x_0(t)$ est une bonne approximation de la solution $x_{\epsilon}(t)$ pour tout t, et lorsque $\epsilon \longrightarrow 0$,

$$\lim_{t\to +\infty} x_{\epsilon}(t) = \bar{x}, \quad \lim_{t\to +\infty} v_{\epsilon}(t) = 0$$

sans aucune connaissance de f

Cascade

extensions : Cascades multi-échelles