K-means Clustering for Visualization

Yu-Shuen Wang, CS, NYCU

K-means Clustering

- What is clustering?
- Why would we want to cluster?
- How would you determine clusters?
- How can you do this efficiently?

K-means Clustering

- Strengths
 - Simple iterative method
 - User provides "K"
- Weaknesses
 - Often too simple → bad results
 - Difficult to guess the correct "K"

1. Ask user how many clusters they'd like. (e.g. k=5)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to. (Thus each Center "owns" a set of datapoints)

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- 2. Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 4. Each Center finds the centroid of the points it owns...
- 5. ...and jumps there
- 6. ...Repeat until terminated!

K-means Start

Advance apologies: in Black and White this example will deteriorate

Example generated by Dan Pelleg's super-duper fast K-means system:

Dan Pelleg and Andrew
Moore. Accelerating Exact
k-means Algorithms with
Geometric Reasoning.
Proc. Conference on
Knowledge Discovery in
Databases 1999, (KDD99)
(available on
www.autonlab.org/pap.html)

K-means terminates

K-means Clustering

• Iterate:

- Calculate distance from objects to cluster centroids.
- Assign objects to closest cluster
- Recalculate new centroids
- Stop based on convergence criteria
 - No change in clusters
 - Max iterations

K-means Issues

- Distance measure is squared Euclidean
 - Scale should be similar in all dimensions
 - Rescale data?
 - Not good for nominal data. Why?
- Approach tries to minimize the within-cluster sum of squares error (WCSS)
 - Implicit assumption that sum of square error (SSE) is similar for each group

WCSS

The over all WCSS is given by:

$$\sum_{i=1}^{k} \sum_{x \in C_i} ||x - \mu_i||^2$$

- The goal is to find the smallest WCSS
- Does this depend on the initial seed values?
- Possibly.

Bottom Line

- K-means
 - Easy to use
 - Need to know K
 - May need to scale data
 - Good initial method
- Local optima
 - No guarantee of optimal solution
 - Repeat with different starting values

Uncertainty Visualization

Uncertainty with color

Uncertainty – life time expectancy

Uncertainty – life time expectancy

Uncertainty – life time expectancy

Uncertainty – consumer satisfaction

Uncertainty – weather forecast

