Linear Algebra Assignments

Mostafa Hassanein 1st April 2020

1.2.13

No. Because the inverse is undefined for some elements in V.

To show this, let's begin by finding the identity element. Let $a = (a_1, a_2) \in V$, we want to find the element $id = (id_1, id_2)$ such that:

$$a + id = a$$

$$(a_1, a_2) + (id_1, id_2) = (a_1, a_2)$$

$$(a_1 + id_1, a_2id_2) = (a_1, a_2)$$
(1)

(1) implies that id = (0, 1).

Next, let's find the inverse element a^{-1} for any $a \in V$:

$$a + a^{-1} = id$$

$$(a_1, a_2) + (a_1^{-1}, a_2^{-1}) = (0, 1)$$

$$(a_1 + a_1^{-1}, a_2 * a_2^{-1}) = (0, 1)$$
(2)

(2) implies that $a_1^{-1}=-a_1$ and $a_2^{-1}=\frac{1}{a_2}$. But whenever $a_2=0,\,a_2^{-1}$ is undefined.

Since the inverse is not defined for all $a \in V$, then V is not a vector space.

1.2.14

Yes.

Since the set of elements in V over $\mathbb R$ is a subset of V over $\mathbb C$, and V over $\mathbb C$ is a vector space, this problem can be reduced to checking whether V over $\mathbb R$ is a subspace of V over $\mathbb C$. We only need to check 2 conditions: closure under vector addition and closure and scalar multiplication.

Closure under Vector Addition

Let a and $b \in V$, then:

$$a + b = (a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

Since a and $b \in \mathbb{R} \Rightarrow a_1, a_2, b_1,$ and $b_2 \in \mathbb{R} \Rightarrow a_1 + b_1$ and $a_2 + b_2 \in \mathbb{R} \Rightarrow a + b \in V$. Therefore V is closed under vector addition.

Closure under Scalar Multiplication

Let $a \in V$ and $c \in \mathbb{R}$, then:

$$ca = c(a_1, a_2) = (c * a_1, c * a_2)$$

Since $a \in V \Rightarrow a_1, a_2 \in \mathbb{R} \Rightarrow ca_1$ and $ca_2 \in \mathbb{R} \Rightarrow ca \in V$. Therefore V is closed under scalar multiplication.

1.2.19

No. Because it fails axiom 8: $(k_1 + k_2)u = k_1u + k_2u$.

Counter Example

Let $u = (1, 1), k_1 = 1, \text{ and } k_2 = 1$:

$$(k_1 + k_2)u = (1+1)(1,1)$$

$$= (2)(1,1)$$

$$= (2, \frac{1}{2})$$
(3)

But,

$$k_1 u + k_2 u = 1(1, 1) + 1(1, 1)$$

$$= (1, 1) + (1, 1)$$

$$= (2, 2)$$
(4)

Since $(3) \neq (4)$, V is not a vector space.