```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="whitegrid") # for better visuals
titanic = pd.read_csv('train.csv')
titanic.head()
```

→		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fi
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2

Haildinan

Next steps: (Generate code with titanic

View recommended plots

New interactive sheet

```
print(titanic.shape)
print(titanic.info())
print(titanic.isnull().sum())
```

→ (891, 12)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype		
0	PassengerId	891 non-null	int64		
1	Survived	891 non-null	int64		
2	Pclass	891 non-null	int64		
3	Name	891 non-null	object		
4	Sex	891 non-null	object		
5	Age	714 non-null	float64		
6	SibSp	891 non-null	int64		
7	Parch	891 non-null	int64		
8	Ticket	891 non-null	object		
9	Fare	891 non-null	float64		
10	Cabin	204 non-null	object		
11	Embarked	889 non-null	object		
<pre>ltypes: float64(2), int64(5), object(5)</pre>					

memory usage: 83.7+ KB

None

PassengerId	6
Survived	6
Pclass	6
Name	6
Sex	6
Age	177
SibSp	6
Parch	6
Ticket	6
Fare	6
Cabin	687
Embarked	2
dtype: int64	

titanic.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fi
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.0000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.2042
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.6934
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.0000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.9104
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.4542
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.0000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.3292

Observation:

- The average passenger age is around 29.7 years.
- Fare values are highly skewed with some very high ticket prices.
- 50% of passengers paid fare amounts less than 14.45.

```
titanic['Sex'].value_counts()
titanic['Embarked'].value_counts()
```

→		count
	Embarked	
	s	644
	С	168
	Q	77

dtype: int64

- There are more males (577) than females (314) aboard.
- Most passengers embarked from Southampton ('S'), followed by Cherbourg ('C') and Queenstown ('Q').

```
titanic['Age'].fillna(titanic['Age'].median(), inplace=True)
titanic['Embarked'].fillna(titanic['Embarked'].mode()[0], inplace=True)
```

ipython-input-12-595430d40845>:1: FutureWarning: A value is trying to be set on a copy he behavior will change in pandas 3.0. This inplace method will never work because the or example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({colored} titanic['Age'].fillna(titanic['Age'].median(), inplace=True)

- Missing 'Age' values were filled with the median age (28.0).
- Missing 'Embarked' values were filled with the mode, which is 'S' (Southampton).
- 'Cabin' still has many missing values and may need further treatment if required.

```
titanic['Age'].hist(bins=30)
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
```


- Most passengers were between 20 to 40 years old.
- Very few very young or very old passengers were on board.

```
sns.boxplot(x='Pclass', y='Age', data=titanic)
plt.title('Age vs Passenger Class')
plt.show()
```


- 1st class passengers are generally older than 2nd and 3rd class passengers.
- 3rd class had a wider range of younger passengers.

```
sns.countplot(x='Survived', data=titanic)
plt.title('Survival Count')
plt.show()
```


Survived

- More passengers died (Survived = 0) than survived (Survived = 1).
- Survival rate was less than 50%.

```
sns.pairplot(titanic[['Survived', 'Pclass', 'Age', 'Fare']], hue='Survived')
plt.show()
```


- Higher fares and 1st class are strongly associated with higher survival rates.
- Passengers who survived were generally younger and had paid higher fares.

```
plt.figure(figsize=(10,8))
# Select only numerical features for correlation analysis
numerical_features = titanic.select_dtypes(include=np.number)
sns.heatmap(numerical_features.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```


- "Fare" and "Pclass" are negatively correlated (higher class = lower Pclass number = higher fare).
- "Survived" shows a good positive correlation with "Fare" and slight negative correlation with "Pclass".

```
sns.scatterplot(x='Age', y='Fare', hue='Survived', data=titanic)
plt.title('Fare vs Age (colored by Survival)')
plt.show()
```

→

Fare vs Age (colored by Survival)

500 Survived