Классификация ЭВМ

Классификация ЭВМ по принципу действия

Классификация ЭВМ по этапам создания и по назначению

Классификация ЭВМ по размерам и функциональным возможностям

КЛАССИФИКАЦИЯ ЭВМ ПО ПРИНЦИПУ ДЕЙСТВИЯ

- По принципу действия вычислительные машины делятся на три больших класса аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ).

- [®] Гибридные вычислительные машины (ГВМ) вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

КЛАССИФИКАЦИЯ ЭВМ ПО НАЗНАЧЕНИЮ Вычислитель ные машины Универсальные ПроблемноСпециализирован

ные

❖Универсальные ЭВМ предназначены для решения самых различных инженернотехнических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

ориентированные

- ❖Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.
- ❖Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.

Классификация ЭВМ по размерам и функциональным возможностям

По размерам и функциональным возможностям ЭВМ можно разделить на **сверхбольшие** (суперЭВМ), **большие**, **малые**, **сверхмалые** (микро ЭВМ).

Первая **большая ЭВМ ЭНИАК** (Electronic Numerical Integrator and Computer) была создана в 1946 г. (в 1996 г. отмечалось 50-летие создания первой ЭВМ). Эта машина имела массу более 50 т, быстродействие несколько сотен операций в секунду, оперативную память емкостью 20 чисел; занимала огромный зал площадью около 100 кв.м.

Появление в 70-х гг. малых ЭВМ обусловлено, с одной стороны, прогрессом в области электронной элементной базы, а с другой - избыточностью ресурсов больших ЭВМ для ряда приложений. Малые ЭВМ используются чаще всего для управления технологическими процессами. Они более компактны и значительно дешевле больших ЭВМ.

Изобретение в 1969 г. микропроцессора (МП) привело к появлению в 70-х гг, еще одного класса ЭВМ – микро ЭВМ. Именно наличие МП служило первоначально определяющим признаком микро ЭВМ. Сейчас микропроцессоры используются во всех без исключения классах ЭВМ.

К суперЭВМ относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов - десятки миллиардов операций в секунду.

Типовая модель суперЭВМ (2000 г.), имеет следующие характеристики: высокопараллельная многопроцессорная вычислительная система с быстродействием примерно 100 000 MFLOPS;

емкость: оперативной памяти 10 Гбайт, дисковой памяти 1-10 Тбайт (1 Тбайт = 1000 Гбайт); разрядность 64; 128 бит.

Создать такую высокопроизводительную ЭВМ по современной технологии на одном микропроцессоре не представляется возможным ввиду ограничения, обусловленного конечным значением скорости распространения электромагнитных волн (300 000 км/с), ибо время распространения сигнала на расстояние несколько миллиметров (линейный размер стороны МП) при быстродействии 100 млрд. оп/с становится соизмеримым с временем выполнения одной операции. Поэтому суперЭВМ создаются в виде высокопараллельных многопроцессорных вычислительных систем (МПВС).

В сфере суперЭВМ Россия, пожалуй, впервые представила (2000 г.) собственные оригинальные модели ЭВМ. Все остальные: и ПК, и малые, и универсальные ЭВМ, за редким исключением (например, ЭВМ Рута 110), на базе отечественной технологии копировали зарубежные разработки (в первую очередь разработки фирм США).

БОЛЬШИЕ ЭВМ

Большие ЭВМ за рубежом часто называют мэйнфреймами (Mainframe). К мэйнфреймам относят, как правило, компьютеры, имеющие следующие характеристики:

производительность не менее 100 MIPS;

основную память емкостью от 64 до 10000 Мбайт;

внешнюю память не менее 50 Гбайт;

многопользовательский режим работы (обслуживают одновременно от 16 до

1000 пользователей).

Основные направления эффективного применения мэйнфреймов - это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами.

Последнее направление - использование мэйнфреймов в качестве больших серверов вычислительных сетей часто отмечается специалистами среди наиболее актуальных.

Родоначальником современных больших ЭВМ, по стандартам которой в последние несколько десятилетий развивались ЭВМ этого класса в большинстве стран мира, является фирма IВМ. Ее модели IBM 360 и IBM 370, их архитектура и программное обеспечение взяты за основу и при создании отечественной системы больших машин ЕС ЭВМ.

По данным экспертов, на мэйнфреймах сейчас находится около 70% "компьютерной" информации; только в США в 1995 г. было установлено 40 тыс. мэйнфреймов. В России в настоящее время используется около 5 тыс. ЕС ЭВМ и примерно столько же фирменных мэйнфреймов: IBM (ES/9000 установлены в нескольких банках, на автозаводах, металлургических комбинатах), Hitachi Data System, Fujitsu и др.

МАЛЫЕ ЭВМ

Малые ЭВМ (мини-ЭВМ) - надежные, недорогие и удобные в эксплуатации компьютеры, обладающие несколько более низкими по сравнению с мэйнфреймами возможностями.

Мини-ЭВМ (и наиболее мощные из них супермини ЭВМ) обладают следующими характеристиками производительность - до 100 MIPS;

емкость основной памяти - 4-512 Мбайт;

емкость дисковой памяти - 2 - 100 Гбайт;

число поддерживаемых пользователей - 16-512

Все модели мини-ЭВМ разрабатываются на основе микропроцессорных наборов интегральных микросхем, 16-, 32-, 64-разрядных микропроцессоров. Основные их особенности: широкий диапазон производительности в конкретных условиях применения, аппаратная реализация большинства системных функций ввода-вывода информации, простая реализация микропроцессорных и многомашинных систем, высокая скорость обработки прерываний, возможность работы с форматами данных различной длины.

Наряду с использованием для управления технологическими процессами мини-ЭВМ успешно применяются для вычислений в многопользовательских вычислительных системах, в системах автоматизированного проектирования, в системах моделирования несложных объектов, в системах искусственного интеллекта.

МАЛЫЕ ЭВМ

К достоинствам мини-ЭВМ можно отнести: специфичную архитектуру с большой модульностью, лучшее, чем у мэйнфреймов, соотношение производительность/цена, повышенная точность вычислений.

ПЕРСОНАЛЬНЫЕ КОМПЬЮТЕРЫ

Персональный компьютер для удовлетворения требованиям общедоступности и универсальности применения должен иметь следующие характеристики:

- малую стоимость, находящуюся в пределах доступности для индивидуального покупателя;
- автономность эксплуатации без специальных требований к условиям окружающей среды;
- гибкость архитектуры, обеспечивающую ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту;
- "дружественность" операционной системы и прочего программного обеспечения, обусловливающую возможность работы с ней пользователя без специальной профессиональной подготовки;

высокую надежность работы (более 5000 ч наработки на отказ).

Персональные компьютеры можно классифицировать по ряду признаков.

Классификация ПК по конструктивным особенностям

По поколениям персональные компьютеры делятся следующим образом:

ПК 1-го поколения - используют 8-битные микропроцессоры;

ПК 2-го поколения - используют 16-битные микропроцессоры;

ПК 3-го поколения - используют 32-битные микропроцессоры;

ПК 4-го поколения - используют 64-битные микропроцессоры.

ПЕРСОНАЛЬНЫЕ КОМПЬЮТЕРЫ

```
стационарные (настольные, Desktop);
переносимые:
     портативные (Laptop);
     блокнотные (Notebook);
     карманные (Palmtop).
стационарные (настольные, Desktop);
переносимые:
     портативные (Laptop);
     блокнотные (Notebook);
     карманные (Palmtop).
```

СЕРВЕРЫ

Сервер - выделенный для обработки запросов от всех станций вычислительной сети компьютер, предоставляющий этим станциям доступ к общим системным ресурсам (вычислительным мощностям, базам данных, библиотекам программ, принтерам, факсам и др.) и распределяющий эти ресурсы. Такой универсальный сервер часто называют сервером приложений.

Серверы в сети часто специализируются. Специализированные серверы используются для устранения наиболее "узких" мест в работе сети: создание и управление базами данных и архивами данных, поддержка многоадресной факсимильной связи и электронной почты, управление многопользовательскими терминалами (принтеры, плоттеры) и др.

Файл-сервер (File Server) используется для работы с файлами данных, имеет объемные дисковые запоминающие устройства, часто на отказоустойчивых дисковых массивах RAID емкостью до 1 Тбайта.

Архивационный сервер (сервер резервного копирования, Storage Express System) служит для резервного копирования информации в крупных многосерверных сетях, использует накопители на магнитной ленте (стримеры) со сменными картриджами емкостью до 5 Гбайт; обычно выполняет ежедневное автоматическое архивирование со сжатием информации от серверов и рабочих станций по сценарию, заданному администратором сети (естественно, с составлением каталога архива).

Факс-сервер (Net SatisFaxion) - выделенная рабочая станция для организации эффективной многоадресной факсимильной связи с несколькими факсмодемными платами, со специальной защитой информации от несанкционированного доступа в процессе передачи, с системой хранения электронных факсов.

Почтовый сервер (Mail Server) - то же, что и факс-сервер, но для организации электронной почты, с электронными почтовыми ящиками.

Сервер печати(Print Server, Net Port) предназначен для эффективного использования системных принтеров.

Сервер телеконференций имеет систему автоматической обработки видеоизображений и др

ТЕНДЕНЦИИ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций с широким диапазоном функциональных возможностей и характеристик.

Специалисты считают, что в начале XXI в. в цивилизованных странах произойдет смена основной информационной среды. Удельные объемы информации, получаемой обществом по традиционным информационным каналам (радио, телевидение, печать) и компьютерным сетям, можно проиллюстрировать следующей диаграммой, показанной на рисунке

Специалисты предсказывают в ближайшие годы возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Но в будущем можно говорить не об играх, а о виртуальной реальности в нашей повседневной жизни, когда нас в комнате, например, будут окружать сотни активных компьютерных устройств, автоматически включающихся и выключающихся по мере надобности, активно отслеживающих наше местоположение, постоянно снабжающих нас ситуационно необходимой информацией, активно воспринимающих нашу информацию и управляющих многими бытовыми приборами и устройствами.

