A Family of 4-point Dyadic High Resolution Subdivision Schemes

DANIEL LEMIRE

Research Officer

National Research Council of Canada (NRC)

email: lemire@ondelette.com

Subdivision: why care?

multiscale approach

Subdivision: why care?

- multiscale approach
- ✓ local interpolation

Subdivision: why care?

- multiscale approach
- local interpolation
- compactly supported wavelets

How Dubuc did it!

✓ 4 points — cubic polynomial

How Dubuc did it!

✓ 4 points → cubic polynomial
 →midpoint value (dyadic interpolation)

How Dubuc did it!

- ✓ 4 points → cubic polynomial
 →midpoint value (dyadic interpolation)
- ✓ repeat at finer scales

One follow-up...

Same story but...

✓ 4 points — cubic polynomial

One follow-up...

Same story but...

✓ 4 points — cubic polynomial

Question

Given a 4—point subdivision scheme, can we reproduce more than just cubic polynomials?

One more simple trick?

Recall Richardson's extrapolation:

1. an error or order p

$$a_{\Delta x} = a_{true} + \underbrace{k(\Delta x)^p + O(\Delta x^{p+1})}_{\text{some error}}$$

One more simple trick?

Recall Richardson's extrapolation:

1. an error or order p

$$a_{\Delta x} = a_{true} + \underbrace{k(\Delta x)^p + O(\Delta x^{p+1})}_{\text{some error}}$$

2.
$$\Delta x \rightarrow \Delta x/2$$

$$a_{\frac{\Delta x}{2}} = a_{true} + \underbrace{k\left(\frac{\Delta x}{2}\right)^p + O\left(\Delta x^{p+1}\right)}_{\text{somewhat smaller error}}$$

3. Combine $a_{\Delta x}$ and $a_{\frac{\Delta x}{2}}$,

$$\frac{2^p \times a_{\Delta x} - a_{\Delta x}}{2^p - 1} = a_{true} + \underbrace{O\left(\Delta x^{p+1}\right)}_{\text{we gain an order!}}$$

Guessing early or coarsing it up

✓ Ample storage: why not use it early?

1. recopy stable data: $y_{j+1,4k} = y_{j,2k}$;

- 1. recopy stable data: $y_{j+1,4k} = y_{j,2k}$;
- 2. Tetradic scheme:
- \checkmark cubic p interpolates $y_{j,2k-2}$, $y_{j,2k}$, $y_{j,2k+2}$, $y_{j,2k+4}$

- 1. recopy stable data: $y_{j+1,4k} = y_{j,2k}$;
- 2. Tetradic scheme:
- \checkmark cubic p interpolates $y_{j,2k-2}$, $y_{j,2k}$, $y_{j,2k+2}$, $y_{j,2k+4}$

$$\checkmark y_{j+1,4k+1}^{\text{coarse}} = p(x_{j+1,4k+1}), y_{j+1,4k+2}^{\text{fine}} = p(x_{j+1,4k+2}), y_{j+1,4k+3}^{\text{coarse}} = p(x_{j+1,4k+3})$$

- 1. recopy stable data: $y_{j+1,4k} = y_{j,2k}$;
- 2. Tetradic scheme:
- \checkmark cubic p interpolates $y_{j,2k-2}, y_{j,2k}, y_{j,2k+2}, y_{j,2k+4}$

$$\checkmark y_{j+1,4k+1}^{\text{coarse}} = p(x_{j+1,4k+1}), y_{j+1,4k+2}^{\text{fine}} = p(x_{j+1,4k+2}), y_{j+1,4k+3}^{\text{coarse}} = p(x_{j+1,4k+3})$$

1. Update midpoint:

$$y_{j+1,4k+2} = (1 - \alpha)y_{j+1,4k+2}^{\text{fine}} + \alpha y_{j,2k+1}^{\text{coarse}}.$$

Smoothness

$$> \alpha = 0 \Rightarrow Dubuc$$

Smoothness

$$> \alpha = 0 \Rightarrow Dubuc$$

- \triangleright Dubuc $\Rightarrow C^1$.
- \triangleright For $-25/56 < \alpha < 15/32$, the HRS schemes are C^1 .

Reproduced polynomials

> HRS always reproduce cubic polynomials.

Reproduced polynomials

- > HRS always reproduce cubic polynomials.
- > Reproduce quartic polynomials when $\alpha = -3/32$.

Reproduced polynomials

- > HRS always reproduce cubic polynomials.
- \triangleright Reproduce quartic polynomials when $\alpha = -3/32$.

$$y_{j-1,k} = p_4(x_{j-1,k})$$
 where $p_4(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$, then

$$y_{j,2k+1}^{\text{coarse}} = p_4(x_{j,2r+1}) - \frac{105a_4}{2^{4j}}$$

$$\checkmark y_{j,2k+1}^{\text{fine}} = p_4(x_{j,2r+1}) - \frac{9a_4}{2^{4j}}$$

Initialisation

Need subdivision scheme such that $y_{i-1,k} = p_4(x_{i-1,k}) \Longrightarrow$

$$y_{j,2k+1} = p_4(x_{j,2k+1}) - \frac{105a_4}{16 \times 2^{4j}}$$

$$y_{j,2k} = p_4(x_{j,2k})$$

(Possible with a 5—point s.s.)

Reproducing quartic polynomials

 \triangleright subdivision \Longrightarrow 5-point scheme

Reproducing quartic polynomials

 \triangleright subdivision \Longrightarrow 5-point scheme

ightharpoonup HRS ($\alpha = -3/32$) \Longrightarrow 5-point initialization + 4-point for the rest

How does it compare to Vector Subdivision Schemes?

✓ Vector ⇒several fixed value per node

How does it compare to Vector Subdivision Schemes?

- ✓ Vector ⇒several fixed value per node
- ✓ HRS⇒one value per node but allowed to changed over time

Conclusion (a comparative table)

scheme	regularity	reproduced polynomials
Dubuc	C^1	cubic
Deslauriers-Dubuc	C^1	cubic
Dyn-Gregory-Levin	up to C^1	up to cubic
Hassan et al.	C^2	quadratic
presented HRS	up to C^1	cubic to quartic

Key Mathematical Argument

Fourier \Longrightarrow

$$P(z) = \sum_{k} y_{j,k} z^{k}$$

Key Mathematical Argument

Fourier ⇒

$$P(z) = \sum_{k} y_{j,k} z^{k}$$

and

$$\Gamma(z) = 1 + \frac{9(z+z^{-1})}{16} - \frac{9(z^3+z^{-3})}{16}$$

then

$$P^{j+1}(z) = \Gamma(z)P^{j}(z^{2})$$

Key Mathematical Argument

Fourier \Longrightarrow

$$P(z) = \sum_{k} y_{j,k} z^{k}$$

and

$$\Gamma(z) = 1 + \frac{9(z+z^{-1})}{16} - \frac{9(z^3+z^{-3})}{16}$$

then

$$P^{j+1}(z) = \Gamma(z)P^{j}(z^{2})$$

HRS requires 2 trig. poly.

$$P^{j+1}(z) = \Gamma_1(z)P^j(z^2) + \Gamma_2(z)P^j(-z^2)$$

Bonus material 1 - nice pictures

Derivatives of the fundamental functions for $\alpha=-0.2$ (continuous line), $\alpha=0$ (dash-dot line), and $\alpha=0.15$ (dashed line).

Bonus material 2 - intermediate result

 \triangleright (Dyn) Given trigonometric polynomials $\Gamma_1(z)$ and $\Gamma_2(z)$, the HRS scheme defined by

$$P^{j+1}(z) = \Gamma_1(z)P^j(z^2) + \Gamma_2(z)P^j(-z^2)$$

is C^n if the symbol corresponding to finite differences of order n+1

$$dH_n^j(z) = \frac{2^{jn}(1-z)^{n+1}}{z^{n+1}}P^j(z)$$

is the symbol of a HRS scheme converging uniformly to zero for all bounded initial data.

Bonus material 3 - more on proof

For a given α , an HRS scheme is differentiable if $\lambda_{HR}(\alpha) = \max\left\{\lambda_1(\alpha), \lambda_2(\alpha)\right\} < 1.$

Bonus material 4 - proper initialization

- 1. recopy data at $x_{j+1,2k} = x_{j,k}$: $y_{j+1,2k} = y_{j,k}$;
- 2. extrapolate $y_{j,k+4}$ using $y_{j,k-2}, y_{j,k-1}, y_{j,k}, y_{j,k+1}, y_{j,k+2}$ by the formula

$$\gamma_{j,k} = 5y_{j,k-2} - 24y_{j,k-1} + 45y_{j,k} - 40y_{j,k+1} + 15y_{j,k+1}; \tag{1}$$

3. interpolate midpoint:

$$y_{j+1,2k+1} = \frac{-7y_{j,k-2} + 105y_{j,k} + 35y_{j,k+2} - 5\gamma_{j,k}}{128}.$$

Bonus material 5 - Crunch the tetradic tree into a dyadic one

Some references

References

- [1] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure & Appl. Math. 41, pp. 909–996, 1988.
- [2] G. Deslauriers and S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx., 5, pp. 49-68, 1989.
- [3] G. Deslauriers, S. Dubuc, and D. Lemire, Une famille d'ondelettes biorthogonales sur l'intervalle obtenue par un schéma d'interpolation itérative, Ann. Sci. Math. Québec 23 no. 1, pp. 37-48, 37-48, 1999.

- [4] F. Dubeau and R. Gervais, Procédures locale et non locale d'interpolation à l'aide de fonctions splines quadratiques, Ann. Sci. Math. Québec 23 no. 1, pp. 49-61, 1999.
- [5] S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl., 114, pp. 185-204,1986.
- [6] S. Dubuc, D. Lemire, J.-L. Merrien, Fourier analysis of 2-point Hermite interpolatory subdivision schemes, J. of Fourier Anal. Appl., 7 no. 5, 2001.
- [7] N. Dyn, Subdivision schemes in computer-aided geometric design, Advances in numerical analysis (W. Light, ed.), vol. 2, Clarendon Press, pp. 36-104, 1992.
- [8] N. Dyn, J.A. Gregory, and D. Levin, A 4-point interpolatory subdivision

scheme for curve design. Comput. Aided Geom. Design, 4, pp. 257-268, 1987.

- [9] B. Han, Approximation Properties and Construction of Hermite Interpolarity and Biorthogonal Multiwavelets, Journal of Approximation Theory, 110 no.1, pp. 18-53, 2001.
- [10] M.F. Hassan, I.P. Ivrissimitzis, N.A. Dodgson, and M.A. Sabin, An Interpolating 4—Point C^2 Ternary Stationary Subdivision Scheme, submitted for publication to CAGD (December 18, 2001).
- [11] C. Heil and D. Colella, Matrix refinement equations and subdivision schemes, J. Fourier Anal. Appl., 2, pp. 363-377, 1996.
- [12] F. Kuijt and R. van Damme, Stability of subdivision schemes, Mem-

- orandum no. 1469, Faculty of Applied Mathematics, University of Twente, the Netherlands.
- [13] J.-L. Merrien, A family of Hermite interpolants by bissection algorithms. Numer. Algorithms 2, pp. 187-200, 1992.
- [14] J.-L. Merrien, Interpolants d'Hermite \mathbb{C}^2 obtenus par subdivision. M2An Math. Model. Numer. Anal. 33, pp. 55-65, 1999.
- [15] G. Plonka, Approximation order provided by refinable function vectors, Constr. Approx. 13, pp. 221-244, 1997.