

TD 2 : Caractéristiques géométriques et dimensionnement

Exercice 1:

Parmi les trois sections droites ci-dessous laquelle doit-on choisir pour supporter un effort selon l'axe \vec{y} ?

Justifier votre réponse en calculant le moment quadratique approprié (on prendra b=10e pour comparer les valeurs).

Exercice 2:

On considère la poutre de l'exercice 5 du TD1 ayant une section droite de forme circulaire creuse (rayon extérieur R et d'épaisseur e).

- 1) Déterminer la contrainte normale σ_{xx} . En quels points est-elle maximale? En déduire l'expression de la contrainte normale maximale.
- 2) Pour une longueur ℓ , un rayon extérieur R et un chargement p_0 donnés, quelle est l'épaisseur minimale de la section droite pour rester dans le domaine élastique (contrainte limite σ_{ℓ})?

Exercice 3:

On considère la poutre de l'exercice 4 du TD1 ayant une section droite en forme de T (voir figure ci-dessous).

- 1) Déterminer la contrainte normale σ_{xx} . En quels points est-elle maximale? En déduire l'expression de la contrainte normale maximale.
- 2) Pour les dimensions ℓ et a données, quel est le chargement maximum que l'on peut appliquer à la poutre pour rester dans le domaine élastique (contrainte limite σ_{ℓ})?

Exercice supplémentaire 1 :

Pour les deux sections droites ci-dessous calculer la position du centre de gravité $G(y_G, z_G)$ de la section ainsi que les moments quadratiques I_{Gy} et I_{Gz} respectivement par rapport aux axes $G\overrightarrow{y}$ et $G\overrightarrow{z}$.

Exercice supplémentaire 2 :

On considère une étagère de bibliothèque (voir figure ci-dessous) posée sur deux supports se situant chacun à une distance a des extrémités. Le poids des livres sera représenté par une densité linéique de charge uniforme $-p\vec{y}$.

- 1) Où faut-il disposer les supports pour minimiser la contrainte normale maximale?
- 2) L'étagère en verre de longueur $\ell=860mm$, de largeur b=190mm et d'épaisseur e=6mm ne peut dépasser une contrainte limite $\sigma_{\ell}=7$ MPa. Quelle charge répartie maximale peut-on infliger à l'étagère si les supports sont placés dans leur position optimale?