Math101

Benjamin Buus Støttrup benjamin@math.aau.dk

Institut for matematiske fag Aalborg universitet Danmark

Introduktion

Disse slides er oprindeligt udarbejdet af

Benjamin Buus Støttrup

til Math101 kurset på Aalborg Universitet i efteråret 2018.

Seneste opdateret 25. marts 2021

This work is licensed under a Creative Commons "Attribution-NonCommercial 4.0 International" license.

Differentialregning Repetition af regneregler

► Vi har følgende regneregler:

f(x)	f'(x)
С	0
X	1
x ⁿ	nx^{n-1}
e^{x}	e ^x
e ^{cx}	ce ^{cx}

f(x)	f'(x)	
a ^x	a ^x In a	
ln x	$\frac{1}{x}$	
cos X	— sin <i>X</i>	
sin X	cos X	
tan X	$1 + \tan^2(x)$	

► Samt (cf)'(x) = cf'(x) og $(f \pm g)'(x) = f'(x) \pm g'(x)$.

Differentialregning Repetition af regneregler

► Vi har følgende regneregler:

f(x)	f'(x)	f(x)	<i>f</i> ′(<i>x</i>)
С	0	a ^x	a ^x In a
Х	1	ln X	$\frac{1}{x}$
x ⁿ	nx ⁿ⁻¹	cos X	— sin <i>X</i>
e ^x	e ^x	sin X	cos X
e^{cx}	cecx	tan X	$1 + \tan^2(x)$

► Samt (cf)'(x) = cf'(x) og $(f \pm g)'(x) = f'(x) \pm g'(x)$.

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x).$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$g(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x).$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x).$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x).$

$$f'(x) =$$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x).$

$$f'(x) = e^{2x}$$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x).$

$$f'(x) = e^{2x} + 2xe^{2x}$$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x).$

$$f'(x) = e^{2x} + 2xe^{2x},$$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $f'(x) = e^{2x} + 2xe^{2x},$ $g'(x) = -\frac{\cos(x)}{x},$

$$h(x) = \cos(x)\sin(x).$$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $f'(x) = e^{2x} + 2xe^{2x},$ $g'(x) = \frac{-\sin(x)x}{x},$

$$h(x) = \cos(x)\sin(x).$$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $f'(x) = e^{2x} + 2xe^{2x},$ $g'(x) = \frac{-\sin(x)x - \cos(x)}{x},$

$$h(x) = \cos(x)\sin(x).$$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x}, g(x) = \frac{\cos(x)}{x}, h(x) = \cos(x)\sin(x).$$

$$f'(x) = e^{2x} + 2xe^{2x}, g'(x) = \frac{-\sin(x)x - \cos(x)}{x^2},$$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x).$ $f'(x) = e^{2x} + 2xe^{2x},$ $g'(x) = \frac{-\sin(x)x - \cos(x)}{x^2},$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x},$$
 $g(x) = \frac{\cos(x)}{x},$ $h(x) = \cos(x)\sin(x).$ $f'(x) = e^{2x} + 2xe^{2x},$ $g'(x) = \frac{-\sin(x)x - \cos(x)}{x^2},$ $h'(x) =$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x}, g(x) = \frac{\cos(x)}{x}, h(x) = \cos(x)\sin(x).$$

$$f'(x) = e^{2x} + 2xe^{2x}, g'(x) = \frac{-\sin(x)x - \cos(x)}{x^2}, h'(x) = -\sin(x)\sin(x).$$

► For produkter og kvotienter af funktioner har vi følgende regneregler

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$f(x) = xe^{2x}, g(x) = \frac{\cos(x)}{x}, h(x) = \cos(x)\sin(x).$$

$$f'(x) = e^{2x} + 2xe^{2x}, g'(x) = \frac{-\sin(x)x - \cos(x)}{x^2}, h'(x) = -\sin(x)\sin(x) - \cos(x)\cos(x).$$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f\circ g)'(x)=f'(g(x))g'(x).$$

$$f(x) = \cos(x^2),$$
 $g(x) = e^{x^3 + 3x}$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

$$f(x) = \cos(x^2), \qquad g(x) = e^{x^3 + 3x}$$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

$$f(x) = \cos(x^2),$$
 $g(x) = e^{x^3 + 3x}$

► Husk at sammensatte funktioner er på formen

$$(f \circ g)(x) = f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

$$f(x) = \cos(x^2),$$
 $g(x) = e^{x^3 + 3x}$
 $f'(x) =$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

$$f(x) = \cos(x^2),$$
 $g(x) = e^{x^3 + 3x}$
 $f'(x) = -\sin(x^2)$,

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f\circ g)'(x)=f'(g(x))g'(x).$$

$$f(x) = \cos(x^2),$$
 $g(x) = e^{x^3 + 3x}$
 $f'(x) = -\sin(x^2)2x,$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

$$f(x) = \cos(x^2),$$
 $g(x) = e^{x^3+3x},$ $f'(x) = -\sin(x^2)2x,$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

$$f(x) = \cos(x^2),$$
 $g(x) = e^{x^3 + 3x},$ $f'(x) = -\sin(x^2)2x,$ $g'(x) =$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

$$f(x) = \cos(x^2),$$
 $g(x) = e^{x^3 + 3x},$ $f'(x) = -\sin(x^2)2x,$ $g'(x) = e^{x^3 + 3x}$

► Husk at sammensatte funktioner er på formen

$$(f\circ g)(x)=f(g(x)).$$

► Sammensatte funktioner differentieres med kædereglen:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

$$f(x) = \cos(x^2),$$
 $g(x) = e^{x^3 + 3x},$ $f'(x) = -\sin(x^2)2x,$ $g'(x) = e^{x^3 + 3x}(3x^2 + 3),$

► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) =$$

► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}}$$

► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}} + x \left(\frac{d}{dx} e^{\sqrt{x}}\right)$$

► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}} + x \left(\frac{d}{dx} e^{\sqrt{x}}\right)$$
$$= e^{\sqrt{x}}$$

► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}} + x \left(\frac{d}{dx} e^{\sqrt{x}}\right)$$
$$= e^{\sqrt{x}} + x e^{\sqrt{x}}$$

► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}} + x \left(\frac{d}{dx} e^{\sqrt{x}}\right)$$
$$= e^{\sqrt{x}} + x e^{\sqrt{x}} \left(\frac{d}{dx} \sqrt{x}\right)$$

▶ Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}} + x \left(\frac{d}{dx}e^{\sqrt{x}}\right)$$
$$= e^{\sqrt{x}} + xe^{\sqrt{x}}\left(\frac{d}{dx}\sqrt{x}\right)$$
$$= e^{\sqrt{x}} + \frac{1}{2}xe^{\sqrt{x}}x^{-\frac{1}{2}}$$

► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}} + x \left(\frac{d}{dx}e^{\sqrt{x}}\right)$$
$$= e^{\sqrt{x}} + xe^{\sqrt{x}} \left(\frac{d}{dx}\sqrt{x}\right)$$
$$= e^{\sqrt{x}} + \frac{1}{2}xe^{\sqrt{x}}x^{-\frac{1}{2}}$$
$$= e^{\sqrt{x}} + \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$$

► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}} + x \left(\frac{d}{dx}e^{\sqrt{x}}\right)$$
$$= e^{\sqrt{x}} + xe^{\sqrt{x}} \left(\frac{d}{dx}\sqrt{x}\right)$$
$$= e^{\sqrt{x}} + \frac{1}{2}xe^{\sqrt{x}}x^{-\frac{1}{2}}$$
$$= e^{\sqrt{x}} + \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$$

► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}} + x \left(\frac{d}{dx}e^{\sqrt{x}}\right)$$

$$= e^{\sqrt{x}} + xe^{\sqrt{x}} \left(\frac{d}{dx}\sqrt{x}\right)$$

$$= e^{\sqrt{x}} + \frac{1}{2}xe^{\sqrt{x}}x^{-\frac{1}{2}}$$

$$= e^{\sqrt{x}} + \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$$

$$h'(x) =$$

► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}} + x \left(\frac{d}{dx}e^{\sqrt{x}}\right)$$

$$= e^{\sqrt{x}} + xe^{\sqrt{x}} \left(\frac{d}{dx}\sqrt{x}\right)$$

$$= e^{\sqrt{x}} + \frac{1}{2}xe^{\sqrt{x}}x^{-\frac{1}{2}}$$

$$= e^{\sqrt{x}} + \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$$

$$h'(x) = 2\sin(x^2 - 2x + 1)$$

► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}} + x \left(\frac{d}{dx}e^{\sqrt{x}}\right)$$

$$= e^{\sqrt{x}} + xe^{\sqrt{x}} \left(\frac{d}{dx}\sqrt{x}\right)$$

$$= e^{\sqrt{x}} + \frac{1}{2}xe^{\sqrt{x}}x^{-\frac{1}{2}}$$

$$= e^{\sqrt{x}} + \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$$

$$h'(x) = 2\sin(x^2 - 2x + 1)\left(\frac{d}{dx}\sin(x^2 - 2x + 1)\right)$$

▶ Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}} + x \left(\frac{d}{dx}e^{\sqrt{x}}\right)$$

$$= e^{\sqrt{x}} + xe^{\sqrt{x}} \left(\frac{d}{dx}\sqrt{x}\right)$$

$$= e^{\sqrt{x}} + \frac{1}{2}xe^{\sqrt{x}}x^{-\frac{1}{2}}$$

$$= e^{\sqrt{x}} + \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$$

$$h'(x) = 2\sin(x^2 - 2x + 1)\left(\frac{d}{dx}\sin(x^2 - 2x + 1)\right)$$
$$= 2\sin(x^2 - 2x + 1)\cos(x^2 - 2x + 1)$$

► Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}} + x \left(\frac{d}{dx}e^{\sqrt{x}}\right)$$

$$= e^{\sqrt{x}} + xe^{\sqrt{x}} \left(\frac{d}{dx}\sqrt{x}\right)$$

$$= e^{\sqrt{x}} + \frac{1}{2}xe^{\sqrt{x}}x^{-\frac{1}{2}}$$

$$= e^{\sqrt{x}} + \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$$

$$h'(x) = 2\sin(x^2 - 2x + 1)\left(\frac{d}{dx}\sin(x^2 - 2x + 1)\right)$$
$$= 2\sin(x^2 - 2x + 1)\cos(x^2 - 2x + 1)\left(\frac{d}{dx}(x^2 - 2x + 1)\right)$$

▶ Eksempel: Differentier funktionen $f(x) = xe^{\sqrt{x}}$.

$$f'(x) = e^{\sqrt{x}} + x \left(\frac{d}{dx}e^{\sqrt{x}}\right)$$
$$= e^{\sqrt{x}} + xe^{\sqrt{x}}\left(\frac{d}{dx}\sqrt{x}\right)$$
$$= e^{\sqrt{x}} + \frac{1}{2}xe^{\sqrt{x}}x^{-\frac{1}{2}}$$
$$= e^{\sqrt{x}} + \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$$

$$h'(x) = 2\sin(x^2 - 2x + 1) \left(\frac{d}{dx}\sin(x^2 - 2x + 1)\right)$$

$$= 2\sin(x^2 - 2x + 1)\cos(x^2 - 2x + 1) \left(\frac{d}{dx}(x^2 - 2x + 1)\right)$$

$$= 2\sin(x^2 - 2x + 1)\cos(x^2 - 2x + 1)(2x - 2)$$

Opgaveregning!

