TEAM 8 - Adult Income Prediction

Fernanda Lin, Kyle Blackburn, Mansi Tolla, Lyufan Pan, Honyang Liu

- The inequality gap in the US has steadily risen over the past 40 years¹
- We are interested in predicting income levels based on 1994 US census data
 - Predict >= \$50k/year OR < \$50k
- \$50K per year is defined as the bottom threshold for the middle class

Dataset

- Adult Income Dataset from Kaggle¹
- Data extracted from 1994 Census database by Ronny Kohavi and Barry Becker
 - Unclean dimensions: 48.8K x 15
 - Clean dimensions: 41.1K x 11
 - Removed 4 unnecessary fields
 - Removed all incomplete rows ~7K
- Target field income
 - <=\$50K and >\$50K
- Predictors 24 socioeconomic factors/demographics

Dataset

	age	workclass	fnlwgt	education	educational- num	marital-status	occupation	relationship	race	gender	capital- gain	capital- loss
1	25	Private	226802	11th	7	Never-married	Machine-op-inspct	Own-child	Black	Male	0	0
2	38	Private	89814	HS-grad	9	Married-civ-spouse	Farming-fishing	Husband	White	Male	0	0
3	28	Local-gov	336951	Assoc-acdm	12	Married-civ-spouse	Protective-serv	Husband	White	Male	0	0
4	44	Private	160323	Some-college	10	Married-civ-spouse	Machine-op-inspct	Husband	Black	Male	7688	0
5	18	?	103497	Some-college	10	Never-married	?	Own-child	White	Female	0	0

*	ID	age	income	capChange	gender	hoursPerWeek	skilled	workClass_Federal.gov	* workClass_Local.gov	workClass_Private	workClass_Self_employe
1	1	25	0	0	0	40	1	0	0	1	0
2	2	38	0	0	0	50	0	0	0	1	0
3	3	28	1	0	0	40	0	0	1	0	0
4	4	44	1	7688	0	40	1	0	0	1	0
5	6	34	0	0	0	30	0	0	0	1	0

Exploration

Exploration

Main Results

Model	Test MSE			
Random Forest	0.1049572			
Forward Selection	0.12361100			
Backward Selection	0.12368289			
Lasso	0.12369716			
Elastic Net	0.12369737			
Ridge	0.12376343			
Boosting Trees	0.13491678			

Lasso/Ridge/Elastic Net

Lasso reduced the number of predictors down to 13

maritalStatus_Married1	2.97E-01	0.2970958
education_Primary1	-1.63E-01	0.1626783
education_Full_uni1	1.19E-01	0.1192258
education_Post_uni1	1.15E-01	0.1151875
education_Secondary1	-6.44E-02	0.06435764

Boosting Trees

- Used 100 trees
- Increasing the shrinkage & the interaction depth helped reduce MSE of the model

Best Model - Random Forest

- The random forest algorithm returned the best MSE_{test}
- Rest of models were very close in MSE_{test}
- No. of trees used: 100
- Recurring attributes across models (shared significance):
 - Marital Status
 - Capital Change
 - Race
 - Education

Best Model - Random Forest

Challenges

- Data Cleaning
 - Choosing relevant variables to use
 - Census data is specific
 - Grouping years of school, marital status, employment status, occupation
 - Choosing unnecessary variables to omit (arbitrary figures, came with data, collinearity)
 - Fnlwgt
 - Educational-num
 - Relationship
 - Native country data was > 95% USA
 - What to do with N/As (removed)
- Applying theoretical knowledge (classroom) to R environment (programming)

Learning Points

- Comparing ML algorithms to find make prediction
- Nuances of different ML packages
 - Differ across classification, prediction, etc.
- Familiarity with spreading categorical variables into dummy variables with significance
- Tuning hyperparameters and their impact on overall MSE

Thank You! Questions?