COMPLEX ENGINEERING PROBLEM- MACHINE LEARNING

INSTRUCTOR: Dr. Hammad Afzal

COURSE CODE: CS-471

SEMESTER: 7th (Fall, 2023) Credit Hours: 03 (Theory)+ 1 (Lab)

Semester project is designed in a way to able students to solve the complex engineering problem. Following characteristics of complex engineering problem are targeted in this semester project of Machine Learning:

WP-1 Depth of Knowledge Required		WP3 Depth of Analysis Required	WP-4 Familiarity of Issues
CLO	WA/PLO¹	Definition: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models.	Definition: Involve infrequently encountered issues.
CLO-2 CLO-3	PLO-4 PLO-5	Exploratory Data Analysis Techniques to show the initial insights into different variables	What types of attributes are more suitable to be used in ML models

Note:

• Total Number of WPs are 7. For any particular CEP, WP-1 is mandatory, and Some or All of WP-2 to WP-7 can be used.

Objective:

The objective of this assignment is to develop a machine learning model to predict employee attrition in a company based on a provided dataset. Students will work on a binary classification task, and the assignment includes preprocessing, exploratory data analysis (EDA), model selection, and evaluation.

Dataset:

The dataset contains various features related to employees in a software engineering company, and the target variable is "Attrition," indicating whether an employee has left the company (1) or is still with the company (0). Dataset is available at:

https://github.com/nelson-wu/employee-attrition-ml/blob/master/WA_Fn-UseC_-HR-Employee-Attrition.csv

Tasks:

Data Preprocessing:

- Handle missing data by either imputation or removal of incomplete records.
- Encode categorical variables appropriately.
- Scale numerical features to ensure uniformity.

¹ Mapping of CLO to WA/PLO from First Day Handout

• Explore and handle any outliers or anomalies in the data.

Exploratory Data Analysis (EDA):

- Conduct a thorough analysis of the dataset to understand its characteristics.
- Visualize the distribution of employees with respect to different features.
- Analyze the correlation between various features and attrition.
- Identify patterns or trends that may influence employee attrition.

Attrition Prediction:

- Split the dataset into training and testing sets.
- Choose an appropriate machine learning algorithm for binary classification (e.g., Logistic Regression, Random Forest, or Decision Tree).
- Train the model on the training set.
- Evaluate the model on the testing set and report performance metrics such as accuracy, precision, recall, and F1 score.

Model Improvement (Optional):

- Experiment with different hyperparameters or feature selection techniques to improve model performance.
- Consider using techniques such as cross-validation to fine-tune the model.

Documentation:

• Create a single presentation slide (like a poster) (i) Document your approach, including the preprocessing steps, choice of model, and any adjustments made. (ii) summarizing your findings, challenges faced, and the overall performance of your machine learning model.

Note:

 Feel free to use any popular machine learning libraries (e.g., scikit-learn, TensorFlow, PyTorch) and visualization tools (e.g., Matplotlib, Seaborn) in your implementation. Ensure that your code is wellcommented and your documentation is clear and organized.

Deliverables:

Items	CLOs	Marks
Jupyter Notebook or Python script containing the code.	CLO2, CLO3	10
Preprocessing, EDA, Visualization	CLO2, CLO3	40
Prediction, Cross Validation	CLO2, CLO1	30
A presentation slide deck summarizing key findings and insights.	CLO3	10
Creativity and innovation in addressing challenges.	CLO1, CLO2	10