Question Bank of Unit I and Unit-II

- 1) Verify LMVT for the function f(x) = x(x-1)(x-2) on $[0,\frac{1}{2}]$
- 2) Prove that if 0 < a < b then

$$\frac{b-a}{1+b^2} < (\tan^{-1}b - \tan^{-1}a) < \frac{b-a}{1+a^2} \quad \text{and hence prove that } \frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$$

- 3) Using Taylor's Theorem expand $\log \cos \left(x + \frac{\pi}{4}\right)$ in ascending powers of x.
- 4) Prove that $\log(1 + tanx) = x \frac{x^2}{2} + \frac{2}{3}x^3 \cdots$
- 5) Using Taylor's theorem Expand $5 + 4(x-2)^2 3(x-2)^3 + (x-2)^4$ in ascending power of x.
- 6) Using Taylor's Theorem expand $2x^3 + 3x^2 8x + 7$ in ascending powers of (x 2).
- 7) Using Taylor's theorem Expand $7 + (x + 1) + 3(x + 1)^3 + (x + 1)^4$ in ascending power of x.
- 8) Find a and b if $\lim_{x\to 0} \left[\frac{a\cos x a + bx^2}{x^4} \right] = \frac{1}{12}$
- 9) Evaluate $\lim_{x\to 0} (\cot x)^{\sin x}$
- 10) Expand $\sqrt{1 + \sin x}$ unto x^6 .
- 11) Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{\tan 3x}{\tan x}$
- 12) If $\lim_{x\to 0} \frac{\sin 2x + p \sin x}{x^3}$ is finite then find the value of p and hence find the value of limit.

- 13) Obtain Fourier Series of $f(x) = \pi^2 x^2$ on $[-\pi, \pi]$ with period 2π .
- 14) Obtain half range Fourier sine series $f(x) = x^2$ on [0, l].
- 15) Find first three coefficient of Fourier sine Series of y in the interval [0,6]

X	0	1	2	3	4	5
Y	4	8	15	7	6	2

- 16) Obtain the Fourier Series of f(x), where $f(x) = x^3$ on $[-\pi, \pi]$ with period 2π .
- 17) Obtain Half Range Fourier Cosine Series of $f(x) = \pi x x^2$ in the interval $0 < x < \pi$.
- 18) Find the Fourier Series of the following values of y up to first harmonic in the interval [0,6]

X	0	1	2	3	4	5	6
Y	9	18	24	28	26	20	9

- 19) Obtain the Fourier Series of f(x), where $f(x) = x^2$ on $[-\pi, \pi]$ and $f(x) = f(x + 2\pi)$
- 20) Obtain half range Fourier sine series f(x) = x on [0, l]
- 21) Find first three coefficient of Fourier cosine Series of y in the interval [0,180°]

Xº	0	30	60	90	120	150
Y	0	9.2	14.4	17.8	17.3	11.7

- 22) Obtain the Fourier Series of f(x), where f(x) = x on $[-\pi, \pi]$ and $f(x) = f(x + 2\pi)$.
- 23) Obtain Half Range Fourier Cosine Series of $f(x) = x x^2$ in the interval 0 < x < 1.
- 24) Find the Fourier Series of the following values of y up to first harmonic in the interval [0,6]

X	0	1	2	3	4	5	6
Y	9	18	24	28	26	20	9