5.257 min_n

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [27]

Constraint min_n(MIN, RANK, VARIABLES)

Arguments MIN : dvar RANK : int

VARIABLES : collection(var-dvar)

 $\textbf{Restrictions} \qquad |\mathtt{VARIABLES}| > 0$

 $\mathtt{RANK} \geq 0$

 ${\tt RANK} < |{\tt VARIABLES}|$

required(VARIABLES, var)

Purpose

MIN is the minimum value of rank RANK (i.e., the RANK th smallest distinct value, identical values are merged) of the collection of domain variables VARIABLES. The minimum value has rank 0.

Example

```
(3,1,\langle 3,1,7,1,6\rangle)
```

The min_n constraint holds since its first argument MIN = 3 is fixed to the second (i.e., RANK + 1) smallest distinct value of the collection $\langle 3,1,7,1,6 \rangle$. Note that identical values are only counted once: this is why the minimum of order 1 is 3 instead of 1.

Typical

```
\begin{split} & \text{RANK} > 0 \\ & \text{RANK} < 3 \\ & | \text{VARIABLES} | > 1 \\ & \text{range}(\text{VARIABLES.var}) > 1 \end{split}
```

Symmetries

- Items of VARIABLES are permutable.
- One and the same constant can be added to MIN as well as to the var attribute of all items of VARIABLES.

Arg. properties

Functional dependency: MIN determined by RANK and VARIABLES.

Algorithm

[27].

Reformulation

The constraint <code>among_var(1, \langle MIN \rangle, VARIABLES)</code> enforces MIN to be assigned one of the values of VARIABLES. The constraint <code>nvalue(NVAL, VARIABLES)</code> provides a hand on the number of distinct values assigned to the variables of VARIABLES. By associating to each variable V_i ($i \in [1, |VARIABLES|]$) of the VARIABLES collection a <code>rank</code> variable $R_i \in [0, |VARIABLES|-1]$ with the reified constraint $R_i = RANK \Leftrightarrow V_i = MIN$, the inequality $R_i < NVAL$, and by creating for each pair of variables V_i, V_j ($i, j < i \in [1, |VARIABLES|]$)

20000128 1693

```
\begin{aligned} V_i &< V_j \Leftrightarrow R_i < R_j, \\ V_i &= V_j \Leftrightarrow R_i = R_j, \\ V_i &> V_j \Leftrightarrow R_i > R_j, \end{aligned}
                             one can reformulate the min_n constraint in term of 3 \cdot \frac{|\text{VARIABLES}| \cdot (|\text{VARIABLES}| - 1)}{2} + 1 reified
                              constraints.
See also
                              comparison swapped: max_n.
                              generalisation: minimum (absolute minimum replaced by minimum or order n).
                              used in reformulation: among_var, nvalue.
Keywords
                              characteristic of a constraint:
                                                                       rank,
                                                                                    minimum,
                                                                                                       maxint,
                                                                                                                       automaton,
                              automaton with array of counters.
                              constraint arguments: pure functional dependency.
                              constraint type: order constraint.
                              modelling: functional dependency.
Cond. implications
                              • min_n(MIN, RANK, VARIABLES)
                                implies atleast(N, VARIABLES, MIN)
                                 when N = 1.
                              • min_n(MIN, RANK, VARIABLES)
                                 with RANK = 1
                                 and minval(VARIABLES.var) = 1
                                implies minimum_greater_than(VAR1, VAR2, VARIABLES).
```

the reified constraints

Arc input(s)	VARIABLES
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{variables1}, \texttt{variables2})$
Arc arity	2
Arc constraint(s)	$\bigvee \left(egin{array}{l} { t variables1.key} = { t variables2.key}, \ { t variables1.var} < { t variables2.var} \end{array} ight)$
Graph property(ies)	$\frac{\mathbf{ORDER}(\mathtt{RANK},\mathtt{MAXINT},\mathtt{var})}{\mathbf{MIN}}$

Graph model

Parts (A) and (B) of Figure 5.556 respectively show the initial and final graph associated with the **Example** slot. Since we use the **ORDER** graph property, the vertex of rank 1 (without considering the loops) of the final graph is shown in grey.

Figure 5.556: Initial and final graph of the min_n constraint

20000128 1695

Automaton

Figure 5.557 depicts the automaton associated with the min_n constraint. Figure 5.557 depicts the automaton associated with the min_n constraint. To each item of the collection VARIABLES corresponds a signature variable S_i that is equal to 1.

Figure 5.557: Automaton of the min_n constraint