Appendix: On standard Deviations of the Parameter Estimates

Peilun He, Karol Binkowski, Nino Kordzakhia, Pavel Shevchenko

The algorithm for obtaining the variances of the estimates of parameters is outlined below.

- 1. For a given data set y, obtain MLE estimates $\hat{\theta}$ for the vector of unknown parameters.
- 2. Let $\theta = \hat{\theta}$. Generate a new data set.
- 3. For the data \tilde{y} and parameters $\hat{\theta}$, obtain the score vector numerically. That is, given an increment h, the score is $\frac{\mathcal{G}(\theta+h)-\mathcal{G}(\theta)}{h}$, where \mathcal{G} is the score vector.
- 4. Let $\mathcal{F}_i = \mathcal{GG}'$ be the product of the score vector.
- 5. Repeat step 2 4 M times, we get $\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_M$. Get the expectation of these \mathcal{F}_i 's to obtain the Fisher Information Matrix \mathcal{I} .
- 6. Take the inverse of \mathcal{I} . This would be the asymptotic covariance matrix of the parameter estimates.

This algorithm was used in Table 1 for evaluation of the standard errors of the estimate of θ .

Table 1: Negative log-likelihood (NLL); standard errors are given in parentheses; n is the sample size.

Period	κ	γ	μ_{ξ}	σ_χ	σ_{ξ}	ρ	λ_χ	λ_{ξ}	s_1	s_2	NLL
2001-2005	1.5117	0.0558	-0.0502	0.3036	0.2201	0.4222	-4.0223	0.0093	0.0209	0.0037	-48562
($n = 993$)	(0.0097)	(0.0023)	(0.0057)	(0.0205)	(0.0014)	(0.0079)	(4.70E-04)	(0.0014)	(5.20E-05)	(2.20E-05)	
2005-2009	1.2087	0.0027	-0.9515	0.2088	0.2811	0.3062	0.6292	-0.8723	0.0181	0.0032	-50717
($n = 1004$)	(0.0103)	(0.0236)	(0.0236)	(0.0299)	(0.0071)	(0.0050)	(4.10E-04)	(0.0016)	(5.30E-05)	(1.80E-05)	
2014-2018 (n = 1007)	1.1293 (0.0081)	0.0046 (0.0140)	-3.4150 (0.0222)	0.2441 (0.0065)	0.2389 (0.0059)	0.4530 (0.0140)	-3.5956 (5.70E-05)	-3.3445 (0.0018)	0.0133 (3.20E-04)	0.0029 (1.50E-05)	-52450