# 连杆变换

### D-H参数

关节轴线:第i个关节的轴线记为 $J_i$  连杆参数:

- 连杆长度:两个关节的关节轴线 $J_i$ 与 $J_{i+1}$ 的公垂线距离为连杆长度,记为 $a_i$
- 连杆扭转角:由 $J_i$ 与公垂线组成平面P, $J_{i+1}$  与平面P的夹角为连杆扭转角,记为 $\alpha_i$  这里的公垂线指的是 $J_i$ 与 $J_{i+1}$ 间的公垂线
- 连杆偏移量:除第一和最后连杆外,中间的连杆的两个关节轴线 $J_i$ 与 $J_{i+1}$ 间都有一条公垂线,一个关节的相邻两条公垂线 $a_i$ 与 $a_{i-1}$ 的距离为连杆偏移量,记为 $d_i$
- 关节角:关节 $J_i$ 的相邻两条公垂线 $a_i$ 与 $a_{i-1}$ 在以 $J_i$ 为法线的平面上的投影的夹角为关节角,记为 $heta_i$

 $(ai, \alpha_i, di, \theta_i)$ 这组参数称为D-H参数



## 连杆变换矩阵

#### 坐标系的建立

以上图为例,我们有两个连杆,三个关节,那么坐标系的建立无非就有三种情况:

- 1. 在非首尾连杆 $C_i$ 处建立坐标系
  - 原点 $O_i$ :取关节轴线 $J_i$ 与 $J_{i+1}$ 与公垂线交点作为原点。由于交点有两个,也有两种原地取法,在这里是在 $J_{i+1}$ 处建立原点
  - $Z_i$  轴:取关节轴线方向作为  $Z_i$  轴,这里就是取 $J_{i+1}$
  - $X_i$  轴:取公垂线指向方向,即沿着公垂线指向下一个连杆的方向
  - $Y_i$  轴:根据右手定则确定,个人理解为四指环绕方向为X到Y方向,拇指指向Z的方向

- 2. 在第一连杆 $C_1$ 建立坐标系
  - 原点 $O_i$ :取基坐标系原点
  - $Z_i$  轴:取 $J_1$ 方向
  - X<sub>i</sub> 轴:任选
  - $Y_i$  轴:根据右手定则确定
- 3. 在最后连杆 $C_n$ 建立坐标系
  - 原点 $O_i$ :取末端抓手中心点
  - $Z_i$  轴:取抓手朝向
  - $X_i$  轴:抓手一个指尖到另一个指尖
  - $Y_i$  轴:根据右手定则确定

下图展示的是在 $J_{i+1}$ 处建立原点的示意图,实际上我们只需要掌握在 $C_i$ 处建立坐标系就可以了



请注意,上图是在 $J_{i+1}$ 处建立原点,也就是说我的 $C_i$ 坐标系是在 $J_{i+1}$ 处建立原点的原点。对应上图, $J_i$ 处原点是 $C_{i-1}$ 的, $J_{i+1}$ 处原点是 $C_i$ 的

### 矩阵的形成

那么我要想将 $C_{i-1}$ 坐标系变为 $C_i$ 坐标系,需要经历如下几个变换步骤:

- 1. 以 $Z_{i-1}$ 轴为转轴,旋转 $heta_i$ 角度,使旋转后的的 $X_{i-1}$ 轴与 $X_i$ 轴同向
- 2. 沿 $Z_{i-1}$ 轴平移 $d_i$ ,使移动后的 $O_{i-1}$ 移动到关节轴线 $J_i$ 与 $J_{i+1}$ 的公垂线在与 $J_i$ 的交点。其实就是往上移动了一下,移动到 $O_i$ 一个高度去了
- 3. 沿新的(旋转后)的 $X_{i-1}$ 轴平移 $a_i$ ,使新的 $O_{i-1}$ 移动到 $O_i$
- 4. 以 $X_i$ 轴为转轴,旋转 $lpha_i$ 角度,使新的 $Z_{i-1}$ 轴与 $Z_i$ 轴同向

我们按照上述步骤,可以得到旋转变换矩阵,值得注意的是,每次进行变换的时候他们都不是在一个坐标系下进行的,所以是连体坐标系,他们之间是 右乘的关系  $T_i = \text{Rot}(z, \theta_i) \text{Trans}(0, 0, d_i) \text{Trans}(a_i, 0, 0) \text{Rot}(x, \alpha_i)$ 

$$= \begin{bmatrix} \cos\theta_i & -\sin\theta_i & 0 & 0 \\ \sin\theta_i & \cos\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\alpha_i & -\sin\alpha_i & 0 \\ 0 & \sin\alpha_i & \cos\alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta_i & -\sin \theta_i \cos \alpha_i & \sin \theta_i \sin \alpha_i & a_i \cos \theta_i \\ \sin \theta_i & \cos \theta_i \cos \alpha_i & -\cos \theta_i \sin \alpha_i & a_i \sin \theta_i \\ 0 & \sin \alpha_i & \cos \alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$