Dr. Shashi Ranjan Kumar

Assistant Professor
Department of Aerospace Engineering
Indian Institute of Technology Bombay
Powai, Mumbai, 400076 India

1 / 30

Dr. Shashi Ranjan Kumar AE 305/717 Lecture 9 Flight Mechanics/Dynamics

- Consider a pull up maneuver of airplane with load factor n.
- Horizontal flight path
- Net normal force L W = (n 1)W
- Normal acceleration $a_n = (n-1)g$
- Assume that elevator angle and control force, when airplane is in straight horizontal flight, be denoted as δ_e and P, respectively.
- In pull-up flight, they are changed to $\delta_e + \Delta \delta_e$ and $P + \Delta P$, respectively.

- Measure of maneuverability
 - \Rightarrow Elevator angle per g
 - \Rightarrow Control force per g
- $\bullet \ \ {\rm Elevator \ angle \ per} \ g = \frac{\Delta \delta_e}{(n-1)}$
- $\bullet \ \ {\rm Control \ force \ per} \ g = \frac{\Delta P}{(n-1)}$
- Angular velocity

$$q = \frac{V}{R} = \frac{a_n}{V} = \frac{(n-1)g}{V}$$

- Field of relative air flow past airplane is curved, due to angular velocity.
- Curvature of flow field alters pressure distribution, and thus aerodynamic forces from their values in translational flight.

Elevator Angle per ${\it g}$

ullet Assuming q, $\Delta lpha$ and $\Delta \delta_e$ small, the increments in lift and moment

$$\begin{split} \Delta C_L &= C_{L_\alpha} \Delta \alpha + C_{L_q} \hat{q} + C_{L_{\delta_e}} \Delta \delta_e \\ \Delta C_m &= C_{m_\alpha} \Delta \alpha + C_{m_q} \hat{q} + C_{m\delta_e} \Delta \delta_e, \end{split}$$

where
$$\hat{q}=rac{qar{c}}{2V}$$
, $C_{L_q}=rac{\partial C_L}{\partial \hat{q}}$, and $C_{m_q}=rac{\partial C_m}{\partial \hat{q}}$.

ullet Angular velocity \hat{q}

$$\hat{q} = (n-1)\frac{g\bar{c}}{2V^2} = (n-1)\frac{C_W}{2\mu},$$

where weight coefficient $C_W=rac{W}{(1/2)
ho V^2 S},$ mass ratio $\mu=rac{2m}{
ho Sar{c}}$

- As curved flight is assumed to be steady, $\Delta C_m = 0$.
- Increment in lift coefficient

$$\Delta C_L = \frac{(n-1)W}{(1/2)\rho V^2 S} = (n-1)C_W$$

Elevator Angle per ${\it g}$

ullet Assuming q, $\Delta lpha$ and $\Delta \delta_e$ small, increment in lift and moment

$$C_{L_{\alpha}}\Delta\alpha + C_{L_{q}}\hat{q} + C_{L_{\delta_{e}}}\Delta\delta_{e} = (n-1)C_{W}$$
$$C_{m_{\alpha}}\Delta\alpha + C_{m_{q}}\hat{q} + C_{m\delta_{e}}\Delta\delta_{e} = 0$$

• On substituting for \hat{q} ,

$$C_{L_{\alpha}} \Delta \alpha + C_{L_{\delta_e}} \Delta \delta_e = (n-1)C_W \left[1 - \frac{C_{L_q}}{2\mu} \right]$$
$$C_{m_{\alpha}} \Delta \alpha + C_{m\delta_e} \Delta \delta_e = -(n-1)C_{m_q} \frac{C_W}{2\mu}$$

On solving these equations,

$$\begin{split} \frac{\Delta \delta_e}{n-1} &= -\frac{C_W}{\text{det}} \left[C_{m_\alpha} - \frac{1}{2\mu} (C_{L_q} C_{m_\alpha} - C_{L_\alpha} C_{m_q}) \right] \\ \frac{\Delta \alpha}{n-1} &= \frac{1}{C_{L_\alpha}} \left[C_W \left(1 - \frac{C_{L_q}}{2\mu} \right) - C_{L_{\delta_e}} \frac{\Delta \delta_e}{n-1} \right] \end{split}$$

• As determinant is independent of CG position, variation of $\Delta \delta_e/(n-1)$ w.r.t. h depends on numerator only.

Elevator Angle per ${\it g}$

• Using $C_{m_{\alpha}}=C_{L_{\alpha}}(h-h_n)$,

$$\frac{\Delta \delta_e}{n-1} = \\ -\frac{C_W C_{L_\alpha} (2\mu - C_{L_q})}{2\mu \det} \left[h - h_n + \frac{C_{m_q}}{2\mu - C_{L_q}} \right] \label{eq:delta_e}$$

- \bullet Both C_{L_q} and C_{m_q} vary with h, linearly and quadratically, respectively.
- Variation of $\Delta \delta_e/(n-1)$ is not linear in h.
- \bullet For tailed aircraft, $C_{L_q} \ll 2\mu,\, dC_{m_q} \approx 0,$ and thus relation is linear.
- For tailless aircraft, variation has more curvature.
- Control-fixed maneuver point (h_m) : point where $\Delta \delta_e/(n-1)=0$

$$h_m = h_n - \frac{C_{m_q}(h_m)}{2\mu - C_{L_q}(h_m)}$$

ullet If C_{L_a} and C_{m_a} are independent of h then

$$\frac{\Delta \delta_e}{n-1} = \ - \frac{C_W C_{L_\alpha}(2\mu - C_{L_q})}{2\mu \det} (h - h_m) \label{eq:delta_e}$$

Control-fixed maneuver margin: $h_m - h$

Incremental control force

$$\Delta P = GS_e \bar{c}_e \frac{1}{2} \rho V^2 \Delta C_{h_e}$$

• Increment in C_{he} , with $\Delta \delta_t = 0$

$$\Delta C_{he} = C_{he} \Delta \alpha + C_{he_q} \hat{q} + b_2 \Delta \delta_e$$

ullet On substituting $\Delta lpha$ and \hat{q} ,

$$\begin{split} \frac{\Delta C_{he}}{n-1} = & C_{he_{\alpha}} \frac{\Delta \alpha}{n-1} + C_{he_{q}} \frac{\hat{q}}{n-1} + b_{2} \frac{\Delta \delta_{e}}{n-1} \\ = & C_{he_{\alpha}} \frac{\Delta \alpha}{n-1} + C_{he_{q}} \frac{C_{W}}{2\mu} + b_{2} \frac{\Delta \delta_{e}}{n-1} \\ = & \frac{C_{he_{\alpha}}}{C_{L_{\alpha}}} \left(C_{W} - C_{L_{q}} \frac{C_{W}}{2\mu} - C_{L_{\delta_{e}}} \frac{\Delta \delta_{e}}{n-1} \right) + C_{he_{q}} \frac{C_{W}}{2\mu} + b_{2} \frac{\Delta \delta_{e}}{n-1} \\ = & \frac{C_{W}}{2\mu C_{L_{\alpha}}} \left[C_{he_{\alpha}} (2\mu - C_{L_{q}}) + C_{he_{q}} C_{L_{\alpha}} \right] + \frac{\Delta \delta_{e}}{n-1} \left[b_{2} - \frac{C_{L_{\delta_{e}}} C_{he_{\alpha}}}{C_{L_{\alpha}}} \right] \end{split}$$

Control Force per ${\it g}$

 \bullet On substituting for $\Delta \delta_e$, we get

$$\begin{split} \frac{\Delta C_{he}}{n-1} &= \frac{C_W}{2\mu C_{L_\alpha}} \left[C_{he_\alpha} (2\mu - C_{L_q}) + C_{he_q} C_{L_\alpha} \right] \\ &- \left[b_2 - \frac{C_{L_{\delta_e}} C_{he_\alpha}}{C_{L_\alpha}} \right] \left[\frac{C_W C_{L_\alpha} (2\mu - C_{L_q})}{2\mu \ \text{det}} (h - h_m) \right] \\ &= - \frac{C_W}{2\mu} \frac{a' b_2}{\text{det}} (2\mu - C_{L_q}) (h - h'_m) \end{split}$$

where control-free maneuver point, h_m' , is given by

$$h'_{m} = h_{m} + \frac{\Delta}{a'b_{2}} \left(\frac{C_{he_{\alpha}}}{C_{L_{\alpha}}} + \frac{C_{he_{q}}}{2\mu - C_{L_{q}}} \right)$$

- Control-free maneuver margin: $h'_m h$.
- $\bullet \ \ \text{Wing loading} \ w = \frac{W}{S} = C_W q_\infty$

 ${\sf Control\ Force\ per}\ g$

Control force per g

$$Q = \frac{\Delta P}{n-1} = -GS_e \bar{c}_e \frac{w}{2\mu} \frac{a'b_2}{\det} (2\mu - C_{L_q})(h - h'_m)$$

Result applicable for both tailed and tailless aircraft.

High Lift Devices: Flap Operation

- What is the effect of high lift devices on stiffness?
- Several kinds of high lift devices such as flap, slots, boundary layer control, etc. are used.
- "Configuration-type" devices (flaps): Specific changes can always be incorporated with the appropriate changes to $h_{n_{wb}}$, $C_{m_{ac_{wb}}}$, $C_{L_{wb}}$.
- What are the effect of trailing edge flap?
 - ⇒ Distortion of shape of span-wise distribution of lift on wing, increasing vorticity behind the flap tips,
 - \Rightarrow Same effect locally as an increase in wing-section camber, i.e, a negative increment in $C_{m_{ac}}$, and a positive increment in $C_{L_{wb}}$.
 - \Rightarrow Increased downwash at the tail, both ϵ_0 , and $\partial \epsilon/\partial \alpha$ will change.

Change in wing-body moment coefficient

$$\Delta C_{m_{wb}} = \Delta C_{m_{ac_{wb}}} + \Delta C_{L_{wb}} (h - h_{n_{wb}})$$

Change in airplane lift coefficient

$$\Delta C_L = \Delta C_{L_{wb}} - a_t \frac{S_t}{S} \Delta \epsilon$$

Change in tail pitching moment

$$\Delta C_{m_t} = a_t V_H \Delta \epsilon$$

 \bullet Changes in lift-slope and stiffness, with $\Delta C_{m_{wb}}, \Delta C_{L_{wb}}$ constant w.r.t. α ,

$$\Delta a = \Delta C_{L_{\alpha}} = -a_t \frac{S_t}{S} \Delta \frac{\partial \epsilon}{\partial \alpha}, \quad \Delta C_{m_{\alpha}} = (h - h_{n_{wb}}) \Delta a + a_t \bar{V}_H \Delta \frac{\partial \epsilon}{\partial \alpha}$$

High Lift Devices: Flap

What would be the effect on trim condition?

High Lift Devices: Flap

Can we maintain trim speed, even with a flap operation?

Propulsion Systems

- What is the effect of propulsion system on trim and stability?
- Types of propulsive units
 - \Rightarrow Reciprocating-engine-driven propellers
 - \Rightarrow Turbojets
 - \Rightarrow Turboprops
 - ⇒ Rockets
- Sufficient theoretical or empirical information do not exist to enable reliable predictions to be made under all conditions.
- Appropriate direct effect on C_{m_p} and $\frac{\partial C_{m_p}}{\partial \alpha}$, with indirect effect on wing-body and tail coefficients
- While calculating trim curves, thrust must be the one required to maintain equilibrium at condition of speed and angle of climb being investigated.

Propulsion Systems

• Using force balance, with $\alpha_T \ll 1$

$$C_T = C_D + C_W \sin \gamma, \ C_W \cos \gamma = C_L + C_T \alpha_T$$

• Can we solve for C_T in terms of C_L, C_D ?

Propulsion Systems

ullet On solving for C_T

$$C_T = \frac{C_D + C_L \tan \gamma}{1 - \alpha_T \tan \gamma}$$

• For small angle assumption of α_T , $\alpha_T \tan \gamma \ll 1$, and

$$C_T = C_D + C_L \tan \gamma$$

- Let the thrust line be offset by a distance z_p from CG.
- Moment coefficient due to thrust

$$C_{m_p} = C_T \frac{z_p}{c} = (C_D + C_L \tan \gamma) \frac{z_p}{c}$$

Using equation for drag polar

$$C_{m_p} = (C_{D_{\min}} + KC_L^2 + C_L \tan \gamma) \frac{z_p}{c}$$

• Thrust moment Tz_p is independent of α ,

$$\frac{\partial C_{m_p}}{\partial \alpha} = 0$$

No change in the NP from that for unpowered flight.

Propulsion Systems

• If full throttle thrust does not change with speed then

$$C_{m_p} = \frac{T}{W} C_L \frac{z_p}{\bar{c}} \Rightarrow \boxed{\frac{dC_{m_p}}{dC_L} = \frac{T}{W} \frac{z_p}{\bar{c}}}$$

- In constant thrust case, C_m - C_L graph simply has its slope changed by the addition of thrust.
- ullet If power is invariant then T=P/V and

$$C_{m_p} = \frac{P}{VW} \frac{z_p}{\bar{c}} C_L = \frac{P}{W} \frac{z_p}{\bar{c}} \sqrt{\frac{\rho}{2w}} C_L^{3/2}$$

• What would be the slope $\frac{dC_{m_p}}{dC_L}$?

$$\frac{dC_{m_p}}{dC_L} = \frac{3P}{2W} \frac{z_p}{\bar{c}} \sqrt{\frac{\rho}{2w}} C_L^{1/2}$$

• In constant power case, the shape is also changed.

Propulsion Systems: Influence of Running Propeller

- Resultant force on propeller: T along axis, and N_p in plane of propeller.
- ullet Change in moment due to N_p

$$\Delta C_m = C_{N_p} \frac{x_p}{\bar{c}} \frac{S_p}{S}, \quad C_{N_p} = \frac{N_p}{(1/2)\rho V^2 S_p}$$

- To get total moment for several propellers, increments must be calculated for each and summed.
- For small angles, $C_{N_p} \propto \alpha_p$.

$$\frac{\partial C_{m_p}}{\partial \alpha} = \frac{x_p}{\bar{c}} \frac{S_p}{S} \frac{\partial C_{N_p}}{\partial \alpha_p} \frac{\partial \alpha_p}{\partial \alpha}$$

• If the propellers were situated far from flow field of wing, $\frac{\partial \alpha_p}{\partial \alpha} = 1$.

• For wing-mounted propellers with propeller plane close to wing, there is a strong upwash ϵ_p , at propeller.

$$\alpha_p = \alpha + \epsilon_p + \text{constant}, \quad \boxed{\frac{\partial \alpha_p}{\partial \alpha} = 1 + \frac{\partial \epsilon_p}{\partial \alpha}}$$

where the constant is angle of attack of propeller axis relative to airplane zero-lift line.

 \bullet Now, $\frac{\partial C_{m_p}}{\partial \alpha}$ reduces to

$$\frac{\partial C_{m_p}}{\partial \alpha} = \frac{x_p}{\bar{c}} \frac{S_p}{S} \left(1 + \frac{\partial \epsilon_p}{\partial \alpha} \right) \frac{\partial C_{N_p}}{\partial \alpha_p}$$

Propulsion Systems: Influence of Jet Engine

- Air that passes through a propulsive duct experiences changes in both direction and magnitude of its velocity.
- ullet Change in magnitude is the principal source of thrust, and direction change entails a force \bot thrust line.
- Using momentum principle, reaction of air flow on the airplane

$$\boldsymbol{F} = -m'(\boldsymbol{V}_j - \boldsymbol{V}_i) + \boldsymbol{F'},$$

where F' is resultant of pressure forces across inlet and outlet areas.

Dr. Shashi Ranjan Kumar

Propulsion Systems: Influence of Jet Engine

- ullet It is assumed that V_i has that direction which the flow would take in the absence of the engine.
- ullet What would be the component of $F\perp$ thrust line?

$$N_j = m'V_i \sin \theta \approx m'V_i \theta$$

ullet Angle heta equals the angle of attack of the thrust line plus upwash angle due to wing induction.

$$\theta = \alpha_j + \epsilon_j$$

• Speed V_i , with inlet area A_i and air density ρ_i , is obtained as

$$V_i = \frac{m'}{A_i \rho_i}$$

Pitching moment coefficient

$$N_j = \frac{m'^2}{A_i \rho_i} (\alpha_j + \epsilon_j) \implies \boxed{\Delta C_m = \frac{m'^2}{A_i \rho_i} \frac{x_j (\alpha_j + \epsilon_j)}{(1/2) \rho V^2 S \overline{c}}}$$

Propulsion Systems: Influence of Jet Engine

ullet As pitching moment varies wth lpha, change in $C_{m_{lpha}}$

$$\left(\Delta C_{m_{\alpha}} = \frac{m'^2}{A_i \rho_i} \frac{1}{(1/2)\rho V^2 S \bar{c}} \left[x_j \left(1 + \frac{\partial \epsilon_j}{\partial \alpha} \right) + \theta \frac{\partial x_j}{\partial \alpha} \right] \right)$$

- ullet Quantities m' and ho_i can be determined from the engine performance data.
- For subsonic flow, $\frac{\partial \epsilon_j}{\partial \alpha} = \frac{\partial \epsilon_p}{\partial \alpha}$.
- $\frac{\partial x_j}{\partial \alpha}$ can be calculated from the geometry.

Effect of Structural Flexibility

• Consider the influence of fuselage flexibility on stiffness and control.

- Assume that L_t bends fuselage so that tail rotates through angle $\Delta \alpha_t = -k L_t$ while wing angle of attack remains unaltered.
- Net angle of attack of tail

$$\alpha_t = \alpha_{wb} - \epsilon - i_t - kL_t$$

ullet Tail lift coefficient with $\delta_e=0$

$$C_{L_t} = a_t \alpha_t = a_t (\alpha_{wb} - \epsilon - i_t - kL_t) = a_t \left(\alpha_{wb} - \epsilon - i_t - k\frac{1}{2}\rho V^2 S_t C_{L_t} \right)$$

Effect of Structural Flexibility

On solving for tail lift coefficient

$$C_{L_t} = \frac{a_t(\alpha_{wb} - \epsilon - i_t)}{1 + (ka_t \rho V^2 S_t)/2}$$

Tail effectiveness has been reduced by the factor $\left| \frac{1}{1 + (k a_t \rho V^2 S_t)/2} \right|$

$$\frac{1}{1 + (ka_t \rho V^2 S_t)/2}$$

- Reduction is largest at high speed.
- Location of NP

$$h_n = h_{n_{wb}} + \frac{a_t}{a} \bar{V}_H \left(1 - \frac{\partial \epsilon}{\partial \alpha} \right) - \frac{1}{a} \frac{\partial C_{m_p}}{\partial \alpha}$$

Forward shift in NP

$$\Delta h_n = \frac{\Delta a_t \bar{V}_H}{a} \left(1 - \frac{\partial \epsilon}{\partial \alpha} \right), \quad \Delta a_t = a_t \left(\frac{1}{1 + (k a_t \rho V^2 S_t)/2} - 1 \right)$$

Effect of Structural Flexibility

- What would happen to the elevator effectiveness?
- Elevator effectiveness is also reduced by same factor. How?
- For nonzero δ_e , we have tail lift coefficient

$$C_{L_t} = a_t \left(\alpha_{wb} - \epsilon - i_t - k \frac{1}{2} \rho V^2 S_t C_{L_t} \right) + a_e \delta_e$$

On simplifying, we get

$$C_{L_t} = \frac{a_t \left(\alpha_{wb} - \epsilon - i_t \right)}{1 + (k a_t \rho V^2 S_t)/2} + \frac{a_e \delta_e}{1 + (k a_t \rho V^2 S_t)/2}$$

Ground Effect

- Presence of ground modifies air flow significantly, affecting trim and stability.
- Take-off and landing: governing design criteria of airplanes
- Reduced downwash due to ground effect
 - \Rightarrow A reduction in downwash angle at the tail, ϵ .
 - \Rightarrow An increase in wing-body lift slope, a_{wb} .
 - \Rightarrow An increase in tail lift slope, a_t .
- Most important items to be determined are the elevator angle and control force required to maintain $C_{L,\max}$ in level flight close to ground.
- Ratio a_t/a decreases, leading to forward movement of NP. However, the reduction in $\partial \epsilon/\partial \alpha$ results in a net effect of large rearward shift of NP.
- Since C_{m_0} is only slightly affected, $\delta_{e_{\rm trim}}$ at $C_{L\,{
 m max}}$ is much larger than in flight remote from ground.

Reference

Bernard Etkin and Llyod Duff Reid, Dynamics of Flight Stability and Control, John Wiley and Sons, Third Edition, 1996.

Thank you for your attention !!!