Analysis 3 - Exercise Sheet 9

Publication date: Dezember 7, 2022 Due date: Dezember 14, 2022

Exercise 9.1 (20 pts) Sei $f: U \to V$ stetig differenzierbar mit $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ beide offen. Sei $x_0 \in U$ und $Df(x_0)$ habe vollen Rang.

- a) Sei n < m. Zeige, dass f lokal injektiv ist, d.h., es gibt U' offen in \mathbb{R}^n mit $x_0 \in U'$, sodass $f: U' \to V$ injektiv ist.
- b) Sei n > m. Zeige, dass f lokal surjektiv ist, d.h., es gibt V' offen in \mathbb{R}^m mit $f(x_0) \in V'$, sodass $V' \subset f(U)$.

Exercise 9.2 (20 pts) Sei X ein endlich-dimensionaler Vektorraum und $f: X \to X$ ein Diffeomorphismus. Weiters sei $g: X \to X$ eine C^1 Abbildung, die außerhalb einer kompakten Teilmenge von X verschwindet. Zeige, dass es ein $\epsilon > 0$ derart gibt, dass for alle $|\lambda| < \epsilon$ die Abbildung $f + \lambda g: X \to X$ ein Diffeomorphismus ist.

Exercise 9.3 (20 pts) Sei $SL(n) = \{A \in \mathbb{R}^{n \times n} \mid \det(A) = 1\}$. Finde eine Darstellung von $T_I SL(N)$, dem Tangentialraum zu SL(n) in der Einheitsmatrix I. Zeige weiters, dass für $A \in \mathbb{R}^{n \times n}$ mit tr(A) = 0 (tr(A) bezeichnet die Spur von A) gilt, dass $\gamma(t) = \exp(tA)$ eine Kurve in SL(n) mit $\dot{\gamma}(0) = A$.

Exercise 9.4 (20 pts) Sei $M = f^{-1}(0)$ eine erklpf im \mathbb{R}^2 mit der Dimension 1, wobei $f : \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}$ eine stetig differenzierbare Funktion mit 0 als regulärem Wert ist (d.h., Df(x) hat vollen rang für alle x mit f(x) = 0) und $(0,0) \notin M$. Zeige, dass

$$R = \{(x, y, z) \in \mathbb{R}^3 \mid f(\sqrt{x^2 + y^2}, z) = 0\}$$

eine 2-dimensionale erklpf des \mathbb{R}^3 ist. Veranschauliche dieses Resultat am Beispiel eines Torus.

Exercise 9.5 (20 pts) Sind die folgenden Mengen erklpf? Begründen Sie Ihre Antworten.

- a) Die Ebene als Teilmenge des \mathbb{R}^3 .
- **b)** Die Sphäre S^n als Teilmenge des \mathbb{R}^n .
- c) Die Sphäre S^n als Teilmenge des \mathbb{R}^m für m > n.
- d) Die linke Menge in Figure 1 im \mathbb{R}^2 .
- e) Die rechte Menge in Figure 1 im \mathbb{R}^2 .

Figure 1: Erklpf?