HIGHER SYMPLECTIC SIGMA MODELS

RYAN GRADY AND BRIAN WILLIAMS

CONTENTS

1.	Introduction	1
2.	Boundary Conditions in BV Theory	1
3.	Poisson Sigma Model	1
3.1.	The Boundary Theory	1
4.	Courant Sigma Model	1
4.1.	Exact Courant Algebroids and the A-model with H-flux	1
4.2.	Dirac Structures	1
4.3.	Link Invariants	1
5.	Higher Courant Sigma Models	1
5.1.	Dimension 4	1
5.2.	Generalized Dirac Structures	2
5.3.	Link Invariants	2
6.	Topological Boundary Conditions and Quantum Groupoids	2
6.1.	Quantizing Lie-bialgebroids	2

1. Introduction

2. BOUNDARY CONDITIONS IN BV THEORY

3. Poisson Sigma Model

3.1. The Boundary Theory.

4. Courant Sigma Model

- 4.1. Exact Courant Algebroids and the A-model with H-flux. Exact Courant algebroids are classified by their Severa class $H \in \Omega^3_{cl}(X)$. Twisting the canonical topological boundary condition via this class may give a description of the A-model with H-flux H. See R. Szabo's work or the JHEP article of Bonechi-Cattaneo–Iraso (RG: they get it as a certain gauged fixing for the Poisson sigma model where the Poisson structure is the inverse of a Kahler form).
- 4.2. **Dirac Structures.** Claim: For fixed *E*, topological boundary conditions (on the target) are given precisely by Dirac structures.
- 4.3. **Link Invariants.** Let *E* be a Courant algebroid and *R* a representation up to homotopy of the associated 2-symplectic Lie algebroid. Further, assume that *R* is equipped with an invariant trace. Wilson loop observables determine invariants for links in a 3-manifold source manifold (anomalies?).

5. HIGHER COURANT SIGMA MODELS

5.1. **Dimension 4.** Relate to R. Szabo's papers....

5.2. **Generalized Dirac Structures.** Nothing too special...a Dirac structure is just a (n-1) Lagrangian in a n symplectic Lie algebroid E. Is there a canonical one? Szabo claims there is for n=3. Higher Severa classes.

RG: These are different than the *n*-plectic people consider...we want non-degeneracy! So not the same as Zambon or Ikeda's QP manifolds.

- 5.3. Link Invariants. Same as in the CSM case....
 - 6. TOPOLOGICAL BOUNDARY CONDITIONS AND QUANTUM GROUPOIDS

RG: This could be speculative...

6.1. **Quantizing Lie-bialgebroids.** Let E be the Courant algebroid determined by the Lie bi-algebroid (L, L^{\vee}) . Then L itself determines a topological boundary condition. The boundary observables of this theory may be related to the quantum groupoid quantizing (L, L^{\vee}) as originally described by Ping Xu.

Montana State University, Bozeman 59717, USA

Email address: ryan.grady1@montana.edu

NORTHWESTERN UNIVERSITY, EVANSTON 60208, USA Email address: bwill@math.northwestern.edu