

EINFÜHRUNG IN DIE TECHNISCHE INFORMATIK

TUTORIUM 23.12.2016

BESPRECHUNG

Blatt 9

WIEDERHOLUNG

Für Blatt 10

WIEDERHOLUNG: LORENTZKRAFT

- ➤ Kraft, die auf einen stromdurchflossene Leiter im Magnetfeld wirkt, wird Lorentzkraft gennant.
- > Sie greift an den bewegten Ladungen (Elektronen) an

$$\frac{\vec{F}_L}{N} = \vec{F} = q \cdot \vec{v} \times \vec{B}$$

WIEDERHOLUNG: HALL-EFFEKT

➤ Mit der Lorentzkraft kann man den Hall-Effekt erklären:

- Ein Leiter wird in Längsrichtung von einem Strom I durchflossen.
- Bringen wir ihn in ein Magnetfeld der Flussdichte \vec{B} ,
- dann ist senkrecht zum Strom an den gegenüberliegenden Punkten eine Gleichspannung U_H messbar.
- Diese wird Hallspannung genannt.

$$U_H = -R_H \cdot \frac{I \cdot B}{d}$$

➤ Gegeben sei folgendes Widerstandsnetzwerk:

➤ Gesucht: U5, I5

- Was wird gemacht?
- Bestimme Maschen und lege Umlaufrichtung fest
- ➤ Maschengleichungen aufstellen (Kirchhoffschen Gesetze)
- ➤ Gleichungssystem lösen

➤ Wähle Maschen M1, M2, M3 und Maschenströme Im1, Im2, Im3

➤ Stelle Maschengleichungen auf

$$RI_{M1} + 2R(I_{M1} + I_{M2}) + R(I_{M1} + I_{M3}) = U_0$$

$$2R(I_{M1} + I_{M2}) + 2R(I_{M2} - I_{M3}) + 2RI_{M2} = 0$$

$$R(I_{M1} + I_{M3}) + 2R(I_{M3} - I_{M2}) + 2RI_{M3} = 0$$

➤ Multipliziere aus und löse das LGS

$$4RI_{M1} + 2RI_{M2} + RI_{M3} = U_0$$

$$2RI_{M1} + 6RI_{M2} - 2RI_{M3} = 0$$

$$RI_{M1} - 2RI_{M2} + 5RI_{M3} = 0$$

	I_{M1}	I_{M2}	I_{M3}	rechte Seite	Umformung
Ι	4R	2R	R	U_0	
II	2R	6R	-2R	0	
Ш	R	-2R	5R	0	
\overline{I}	4R	2R	R	U_0	
II	0	10R	-5R	- U_0	2*II - I
III	0	-10R	19R	- U_0	4*III - I
\overline{I}	4R	2R	R	U_0	
II	0	10R	-5R	- U_0	
Ш	0	0	14R	-2U ₀	II + III

Aus III: $14RI_{M3} = -2U_0$ $I_{M3} = -\frac{2}{14}\frac{U_0}{R} = -\frac{1}{7}\frac{U_0}{R}$

Aus II:
$$10RI_{M2} - 5RI_{M3} = -U_0$$

$$10RI_{M2} = 5R\left(-\frac{1}{7}\right)\frac{U_0}{R} - U_0 = -\frac{12}{7}U_0$$

$$I_{M2} = -\frac{12}{70}\frac{U_0}{R} = -\frac{6}{35}\frac{U_0}{R}$$

$$I_5 = I_{M2} - I_{M3} = -\frac{6}{35} \frac{U_0}{R} - \left(-\frac{1}{7}\right) \frac{U_0}{R}$$

$$= \left(-\frac{6}{35} + \frac{5}{35}\right) \frac{U_0}{R} = -\frac{1}{35} \frac{U_0}{R}$$

$$U_5 = 2R \cdot I_5 = 2R \cdot \left(-\frac{1}{35}\right) \frac{U_0}{R} = -\frac{2}{35} U_0$$

FROHE WEINACHTEN

und einen guten Rutsch ins neue Jahr