

Equação de Onda Eletromagnética Plana e Uniforme no Domínio Fasorial

Prof. Fábio Alencar Mendonça

O conceito de Onda Eletromagnética Plana e Uniforme (OEMPU) – Uma aproximação

Ondas planas

Um caso especial, particularmente útil e didático é considerar a OEM como sendo **plana e uniforme**. Nos exemplos abaixo, nota-se que a frente de onda global apresenta formato esférico.

Ondas planas

No entanto, para um receptor (observador) a uma distância muito grande da fonte, a frente de onda pode ser considerada como sendo **plana** e com distribuição **uniforme**.

Ondas Eletromagnética Planas e Uniformes

No caso de uma OEMPU, os campos **E** e **H** são ortogonais (transversais) e estão contidos em um plano transversal à direção de propagação da onda. Por essa razão, tais ondas são também chamadas de **ondas TEM** (**Transversal Electric-Magnetic**).

Ondas Eletromagnética Planas e Uniformes

Além disso, em uma OEMPU a magnitude e a fase dos campos **E** e **H** que a constituem são uniformes nesse plano transversal.

Solução das Equações de Onda para OEMPU

Solução das Equações de Onda

Uma vez que temos as equações de onda de uma OEM na forma fasorial como sendo:

$$\nabla^2 \tilde{E} - \gamma^2 \tilde{E} = 0$$
$$\nabla^2 \tilde{H} - \gamma^2 \tilde{H} = 0$$

devemos agora determinar **E** e **H** fasores que sejam solução para essas equações.

Solução para E

Determina E solução da equação de onda

Aplica E na relação:

$$\nabla \times \widetilde{E} = -j\omega\mu \widetilde{H}$$

Determina H

OU

Determina H solução da equação de onda

Aplica **H** na relação:

Determina E

Sabe-se que um campo vetorial **A** na forma fasorial pode ser representado em coordenadas cartesianas por:

$$\vec{\tilde{\mathbf{A}}}(x,y,z) = \tilde{\mathbf{A}}_{\mathbf{x}}(x,y,z)\hat{\mathbf{x}} + \tilde{\mathbf{A}}_{\mathbf{y}}(x,y,z)\hat{\mathbf{y}} + \tilde{\mathbf{A}}_{\mathbf{z}}(x,y,z)\hat{\mathbf{z}}$$
(1)

Vamos considerar, nesse momento, uma OEMPU que se propaga na direção arbitrária z. Desse modo, o campo elétrico **E** pode ser representado como sendo:

$$\vec{\tilde{E}}(z) = \tilde{E}_{x}(z)\hat{x} + \tilde{E}_{y}(z)\hat{y}$$
 (2)

$$\tilde{E}_z = 0$$

$$\vec{\tilde{E}}(z) = \tilde{E}_{x}(z)\hat{x} + \tilde{E}_{y}(z)\hat{y}$$

Substituindo (2) na equação de onda para o campo elétrico na forma fasorial para uma OEMPU, temos:

$$\nabla^{2} \left(\widetilde{E}_{x} \hat{x} + \widetilde{E}_{y} \hat{y} \right) - \gamma^{2} \left(\widetilde{E}_{x} \hat{x} + \widetilde{E}_{y} \hat{y} \right) = 0$$
 (3)

Logo podemos escrever:

$$(\nabla^2 - \gamma^2) \widetilde{E}_x \hat{x} + (\nabla^2 - \gamma^2) \widetilde{E}_y \hat{y} = 0$$
 (4)

Para que (4) seja satisfeita, devemos ter:

$$\left(\nabla^2 - \gamma^2\right) \widetilde{E}_x \hat{x} = 0 \tag{5}$$

$$\left(\nabla^2 - \gamma^2\right) \widetilde{E}_{y} \hat{y} = 0 \tag{6}$$

Usando a definição do **operador laplaciano** em coordenadas cartesianas:

$$\nabla^2 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)$$

As equações (5) e (6) para $E_x(z)$ e $E_y(z)$ podem ser escritas como sendo:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} - \gamma^2\right) \tilde{\mathbf{E}}_{\mathbf{x}}(z)\hat{\mathbf{x}} = 0 \Longrightarrow$$

$$\frac{\partial^2 \widetilde{\mathbf{E}}_{\mathbf{x}}(z)}{\partial z^2} - \gamma^2 \widetilde{\mathbf{E}}_{\mathbf{x}}(z) = 0 \tag{7}$$

$$\frac{\partial^2 \widetilde{\mathbf{E}}_{\mathbf{y}}(z)}{\partial z^2} - \gamma^2 \widetilde{\mathbf{E}}_{\mathbf{y}}(z) = 0 \tag{8}$$

Apresentaremos a demonstração para determinar $\mathbf{E_x(z)}$ que seja solução da equação (7). O mesmo procedimento pode ser feito para determinar $\mathbf{E_v(z)}$ que seja solução da equação (8).

A equação (7) é classificada como sendo uma equação diferencial ordinária de 2ª ordem, linear e homogênea do tipo:

$$\frac{d^2 F(z)}{dz^2} - \gamma^2 F(z) = 0$$

Sua solução já é conhecida e é dada por:

$$F(z) = F_0^+ e^{-\gamma z} + F_0^- e^{+\gamma z}$$

Assim, $\mathbf{E}_{\mathbf{x}}(\mathbf{z})$ solução da equação (7) deve ser no formato:

$$\widetilde{E}_{x}(z) = \left[E_{0x}^{+}e^{-\gamma z} + E_{0x}^{-}e^{\gamma z}\right]\hat{x} = \left[E_{0x}^{+}e^{-(\alpha+j\beta)z} + E_{0x}^{-}e^{(\alpha+j\beta)z}\right]\hat{x} \Longrightarrow$$

$$\widetilde{E}_{x}(z) = \left[E_{0x}^{+}e^{-\alpha z}e^{-j\beta z} + E_{0x}^{-}e^{\alpha z}e^{j\beta z}\right]\hat{x} \tag{9}$$

Se considerarmos:
$$E_{0x}^+ = \left| E_{0x}^+ \right| . e^{j\phi_{0x}^+} e E_{0x}^- = \left| E_{0x}^- \right| . e^{j\phi_{0x}^-}$$

Então:
$$\tilde{E}_{x}(z) = |E_{0x}| e^{-\alpha z} e^{-j\beta z} e^{j\phi_{0x}^{+}} \hat{x} + |E_{0x}| e^{\alpha z} e^{j\beta z} e^{j\phi_{0x}^{-}} \hat{x}$$
 (10)

A equação (10) pode também ser escrita no domínio temporal, dada por:

$$\vec{E}_{x}(z,t) = \left| E_{0x}^{+} \middle| e^{-\alpha z} \cos(\omega t - \beta z + \phi_{0x}^{+}) \hat{x} + \middle| E_{0x}^{-} \middle| e^{\alpha z} \cos(\omega t + \beta z + \phi_{0x}^{-}) \hat{x} \right|$$
Propagação em +z

Propagação em -z

Propagação em -z

As equações (10) e (11) são a solução no domínio fasorial e temporal para o campo elétrico respectivamente. Falta então determinar a solução para o campo magnético $\mathbf{H_v}$ associado a $\mathbf{E_x}$.

Sabemos que:
$$\nabla \times E = -\mu \frac{\partial H}{\partial t}$$

No domínio fasorial, essa mesma equação fica:

$$\nabla \times \widetilde{E} = -j\omega \mu \widetilde{H}$$

O operador rotacional aplicado a um campo **A** em coordenadas cartesianas é dado por:

$$\nabla \mathbf{x} \mathbf{A} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \mathbf{A}_{\mathbf{x}} & \mathbf{A}_{\mathbf{y}} & \mathbf{A}_{\mathbf{z}} \end{vmatrix}$$

Aplicando esse operador ao campo elétrico fasorial $E_x(z)$ que já determinamos, temos:

$$\nabla \times \tilde{E} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{z}} \\ \tilde{E}_{x} & 0 & 0 \end{vmatrix} = \frac{\partial \tilde{E}_{x}}{\partial \mathbf{z}} \hat{\mathbf{y}} - \frac{\partial \tilde{E}_{x}}{\partial \mathbf{y}} \hat{\mathbf{z}}$$

Logo:

$$\nabla \times \tilde{E} = \frac{\partial \tilde{E}_{x}}{\partial z} \hat{y} = -j\omega\mu \tilde{H} \Rightarrow \tilde{H}_{y} = -\frac{1}{j\omega\mu} \frac{\partial \tilde{E}_{x}}{\partial z} \hat{y}$$
(12)

Mas de (9):

$$\frac{\partial \widetilde{\mathbf{E}}_{\mathbf{x}}}{\partial \mathbf{z}} = \left(-\gamma E_{0x}^{+} e^{-\gamma z} + \gamma E_{0x}^{-} e^{\gamma z}\right)$$

Assim, H_y fica:

$$\widetilde{H}_{y}(z) = \left(\frac{\gamma}{j\omega\mu} E_{0x}^{+} e^{-\gamma z} - \frac{\gamma}{j\omega\mu} E_{0x}^{-} e^{\gamma z}\right) \hat{y} \quad (13)$$

Observe que

$$\widetilde{H}_{y}(z) = \left(H_{0y}^{+}e^{-\gamma z} + H_{0y}^{-}e^{\gamma z}\right)\hat{y}$$

em que

$$H_{0y}^{+} = \frac{\gamma}{j\omega\mu} E_{0x}^{+} \Rightarrow \frac{E_{0x}^{+}}{H_{0y}^{+}} = \frac{j\omega\mu}{\gamma} = \eta$$

$$H_{0y}^{-} = -\frac{\gamma}{j\omega\mu} E_{0x}^{-} \Longrightarrow -\frac{E_{0x}^{-}}{H_{0y}^{-}} = \frac{j\omega\mu}{\gamma} = \eta$$

O parâmetro η é definido como sendo a **impedância intrínseca** do meio $[\Omega]$

Lembrando que:

$$\gamma = \sqrt{j\omega\mu(\sigma + j\omega\varepsilon)} = \alpha + j\beta$$

A impedância intrínseca do meio fica:

$$\eta = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}} = |\eta| e^{j\theta_{\eta}} \tag{14}$$

• $|\eta|$, a magnitude da impedância intrínseca, relaciona as amplitudes de campo elétrico e magnético:

$$|\eta| = \frac{\left|E_{0x}^{+}\right|}{\left|H_{0y}^{+}\right|} = \frac{\left|E_{0x}^{-}\right|}{\left|H_{0y}^{-}\right|}$$

• θ_{η} , a fase da impedância intrínseca, representa a defasagem entre os campos elétrico e magnético;

Pode-se demonstrar que:

$$|\eta| = \frac{\eta_0 \sqrt{\frac{\mu_R}{\varepsilon_R}}}{\left[1 + \left(\frac{\sigma}{\omega \varepsilon}\right)^2\right]^{\frac{1}{4}}} \Omega$$

$$\theta_{\eta} = \frac{1}{2} t g^{-1} \left(\frac{\sigma}{\omega \varepsilon} \right)$$

Assim, a expressão fasorial para o campo magnético $H_y(z)$ pode ser escrita em função da amplitude do campo elétrico e da impedância intrínseca do meio como sendo:

$$\widetilde{\mathbf{H}}_{y}(z) = \frac{\left| E_{0x}^{+} \right|}{\left| \eta \right|} e^{-\alpha z} e^{-j\beta z} e^{j\phi_{0x}^{+}} e^{-j\theta_{\eta}} \, \hat{\mathbf{y}} - \frac{\left| E_{0x}^{-} \right|}{\left| \eta \right|} e^{\alpha z} e^{j\beta z} e^{j\phi_{0x}^{-}} e^{-j\theta_{\eta}} \, \hat{\mathbf{y}} \quad (16)$$

Já a forma temporal para o campo magnético fica:

$$\vec{\mathbf{H}}_{\mathbf{y}}(\mathbf{z},\mathbf{t}) = \frac{\left|E_{0x}^{+}\right|}{\left|\eta\right|} e^{-\alpha z} \cos\left(\omega t - \beta z + \phi_{0x}^{+} - \theta_{\eta}\right) \hat{\mathbf{y}} - \frac{\left|E_{0x}^{-}\right|}{\left|\eta\right|} e^{\alpha z} \cos\left(\omega t + \beta z + \phi_{0x}^{-} - \theta_{\eta}\right) \hat{\mathbf{y}}$$
(17)

Propagação em +z

Propagação em -z

Solução para $E_y(z)$ e $H_x(z)$

Seguindo o mesmo procedimento, pode ser verificado que $E_y(z)$ e $H_x(z)$:

$$\widetilde{\mathbf{E}}_{y}(z) = |E_{0y}^{+}| e^{-\alpha z} e^{-j\beta z} e^{j\phi_{0y}^{+}} \hat{y} + |E_{0y}^{-}| e^{\alpha z} e^{j\beta z} e^{j\phi_{0y}^{-}} \hat{y}$$

$$\vec{\mathbf{E}}_{y}(z,t) = |E_{0y}^{+}| e^{-\alpha z} \cos(\omega t - \beta z + \phi_{0y}^{+}) \hat{y} + |E_{0y}^{-}| e^{\alpha z} \cos(\omega t + \beta z + \phi_{0y}^{-}) \hat{y}$$

$$\widetilde{\mathbf{H}}_{x}(z) = \frac{\left|E_{0y}^{+}\right|}{|\eta|} e^{-\alpha z} e^{-j\beta z} e^{j\phi_{0y}^{+}} e^{-j\theta_{\eta}} \hat{x} - \frac{\left|E_{0y}^{-}\right|}{|\eta|} e^{\alpha z} e^{j\beta z} e^{j\phi_{0y}^{-}} e^{-j\theta_{\eta}} \hat{x}$$

$$\vec{\mathbf{H}}_{x}(z,t) = \frac{\left|E_{0y}^{+}\right|}{|\eta|} e^{-\alpha z} \cos(\omega t - \beta z + \phi_{0y}^{+} - \theta_{\eta}) \hat{x} - \frac{\left|E_{0y}^{-}\right|}{|\eta|} e^{\alpha z} \cos(\omega t + \beta z + \phi_{0y}^{-} - \theta_{\eta}) \hat{x}$$

E e H para um meio sem perdas

Expressões para meios sem perdas (σ =0)

$$\alpha = 0 \qquad \beta = \frac{\omega}{c} \sqrt{\mu_R \varepsilon_R}$$

$$\eta = \eta_0 \sqrt{\frac{\mu_R}{\varepsilon_R}} \qquad \theta_{\eta} = 0$$

$$\tilde{E}_x(z) = \left| E_{0x}^+ \middle| e^{-j\beta z} e^{j\phi_{0x}^+} \hat{x} + \middle| E_{0x}^- \middle| e^{j\beta z} e^{j\phi_{0x}^-} \hat{x}$$

$$\vec{E}_x(z,t) = \left| E_{0x}^+ \middle| \cos(\omega t - \beta z + \phi_{0x}^+) \hat{x} + \middle| E_{0x}^- \middle| \cos(\omega t + \beta z + \phi_{0x}^-) \hat{x}$$

$$\tilde{H}_y(z) = \frac{\left| E_{0x}^+ \middle|}{\eta} e^{-j\beta z} e^{j\phi_{0x}^+} \hat{y} - \frac{\left| E_{0x}^- \middle|}{\eta} e^{j\beta z} e^{j\phi_{0x}^-} \hat{y}$$

$$\vec{H}_y(z,t) = \frac{\left| E_{0x}^+ \middle|}{\eta} \cos(\omega t - \beta z + \phi_{0x}^+) \hat{y} - \frac{\left| E_{0x}^- \middle|}{\eta} \cos(\omega t + \beta z + \phi_{0x}^-) \hat{y}$$

Relação Geral Entre E e H

Pode-se demonstrar que, para qualquer onda plana e uniforme que se propaga em uma direção arbitrária indicada pelo vetor unitário **k**, os fasores campo elétrico e campo magnético estão interrelacionados pelas seguintes expressões:

$$\widetilde{H} = \frac{1}{\eta} \left[\hat{k} \times \widetilde{E} \right]$$

$$\widetilde{E} = -\eta \left[\hat{k} \times \widetilde{H} \right]$$

Em que **k** é o sentido de propagação da onda e $\eta = |\eta| e^{j\theta_{\eta}}$

Ver o site e praticar:

http://www.amanogawa.com/archive/PlaneWave/PlaneWave-2.html