Data Analysis using Time Series Forecasting for ABC Estate Wines

Name: Aishwariya Hariharan

PGP-DSBA Online September' 23

Date: 02 June 2024

Contents

Business context and objective	5
Data description	6
Exploratory data analysis	7
Data decomposition	9
Performance of models based on RMSE	10
Model building	15
Comparison of model performance	20
Forecasting	21
Insights and recommendations	21

List of Figures

Figure 1: Data description
Figure 2: Plot of data
Figure 3: Data distribution
Figure 4: Yearly sales
Figure 5: Monthly sales
Figure 6: Trend of months across years
Figure 7: Additive decomposition
Figure 8: Splitting the data into train and test
Figure 9: Linear regression model
Figure 10: Simple average model
Figure 11: Moving average
Figure 12: Single exponential smoothening
Figure 13: Double exponential smoothening
Figure 14: Triple exponential smoothening
Figure 15: 1st differencing
Figure 16: ACF plot
Figure 17: PACF plot
Figure 18: ARIMA(2, 0, 1)
Figure 19: ARIMA (2, 1, 2)
Figure 20: Auto SARIMA (0, 0, 2) (2, 0, 2, 12)
Figure 21: SARIMA (1, 2, 2) (1, 1, 2, 12)
Figure 22: Best ARIMA and SARIMA
Figure 23: Forecasting

List of Tables

Table 1:	Samp	le data
----------	------	---------

Table 2: Statistical description

Table 3: RMSE performance

Table 4: Auto ARIMA-AIC

Table 5: Auto SARIMA (0, 0, 2) (2, 0, 2, 12)

Table 6: Model performance comparison

Wine Sales Forecasting

Context

As an analyst at ABC Estate Wines, we are presented with historical data encompassing the sales of different types of wines throughout the 20th century. These datasets originate from the same company but represent sales figures for distinct wine varieties. Our objective is to delve into the data, analyze trends, patterns, and factors influencing wine sales over the century. By leveraging data analytics and forecasting techniques, we aim to gain actionable insights that can inform strategic decision-making and optimize sales strategies for the future.

Objective

The primary objective of this project is to analyze and forecast wine sales trends for the 20th century based on historical data provided by ABC Estate Wines. We aim to equip ABC Estate Wines with the necessary insights and foresight to enhance sales performance, capitalize on emerging market opportunities, and maintain a competitive edge in the wine industry.

Sparkling wine

Q1. Define the problem and perform Exploratory Data Analysis - - Read the data as an appropriate time series data - Plot the data - Perform EDA - Perform Decomposition

Data Description

Data Dictionary

```
Data columns (total 1 columns):

# Column Non-Null Count Dtype
--- 0 Sparkling 187 non-null int64
dtypes: int64(1)
```

Figure 1: Data description

Sparkling

YearMonth 1980-01-01 1686 1980-02-01 1591 2304 1980-03-01 1980-04-01 1712 count mean std min 25% 50% 75% max 1980-05-01 1471 Sparkling 187.0 2402.417112 1295.11154 1070.0 1605.0 1874.0 2549.0 7242.0

Table 1: Sample data

Table 2: Statistical description

- The column Sparkling lists the sales of Sparkling wine (integer values) from 1980 to 1995, i.e. 15 years.
- There are 187 rows in the data.
- The mean of the data, i.e. the average sales is 2402.41
- The median sales is 1874.
- There are no missing values in the data.

Exploratory Data Analysis

Plot of the data

The data shows a slight positive trend with strong seasonality.

Figure 2: Plot of data

Distribution of data

- The data is right-skewed
- Most commonly sold quantity of sales of Sparkling wine is in the range of 1000 to 3000.

Figure 3: Data distribution

Yearly sales

- The median sales across years are almost the same.
- There are outlier cases.

Figure 4: Yearly sales

Monthly sales and trend of months across years

• The sales of Sparkling wine are higher towards the end of the year, post August.

Figure 5: Monthly sales

Figure 6: Trend of months across years

Additive decomposition

- The data shows an overall positive trend.
- The seasonality varies between -1000 to 3000
- The residuals are random.

Figure 7: Additive decomposition

Q2. Data Pre-processing - Missing value treatment - Visualize the processed data - Train-test split

There are no missing values in the data.

Splitting the data into train and test set.

Number of rows in training data = 130 Number of rows in testing data = 57

Figure 8: Splitting the data into train and test

Q3. Model Building - Original Data - - Build forecasting models - Linear regression - Simple Average - Moving Average - Exponential Models (Single, Double, Triple) - Check the performance of the models built

Performance of the models based on RMSE scores

- The RMSE score measures the prediction accuracy. The lower the better.
- The triple exponential smoothening model has the lowest RMSE score. Therefore, it tracks the level, trend, and seasonality very well.

	RMSE
Linear Regression Model	1374.550202
Simple Average Model :	1368.746717
Moving Average Model :	811.178937
Single Exponential Smoothening Model:	1363.702251
Double Exponential Smoothening Model	1472.253632
Triple Exponential Smoothening Model Additive:	366.859156

Table 3: RMSE performance

Plots forecasting the sales based on the models for sparkling wine

• Linear regression model

Figure 9: Linear regression model

Simple average

Figure 10: Simple average model

Moving average

Figure 11: Moving average

Single exponential smoothening

Figure 12: Single exponential smoothening

Double exponential smoothening

Figure 13: Double exponential smoothening

• Triple exponential smoothening

Figure 14: Triple exponential smoothening

Q4. Check for Stationarity - Check for stationarity - Make the data stationary (if needed)

Using the Augmented Dickey-Fuller Test:

Null Hypothesis: Time series is not stationary Alternative Hypothesis: Time series is stationary

P-value = 0.6011

0.6011 > 0.05

Therefore, the time series is not stationary.

We take the difference of the time series with period = 1 and re-run the test:

Figure 15: 1st differencing

- We observe seasonality even after differencing. This could imply that the variance in the data is increasing.
- We stop differencing at 1 since the data now looks stationary.

Q5. Model Building - Stationary Data

Model building

ACF plot

Figure 16: ACF plot

PACF Plot

Figure 17: PACF plot

p(AR) has 2 significant lags

ARIMA Models

Auto ARIMA

- For an Auto-ARIMA, we calculate the best p and q parameters by looking at the lowest corresponding Akaike Information Criterion (AIC) values.
- Here, the lowest AIC is for (2, 0, 1).

	param	AIC
7	(2, 0, 1)	2197.084442
1	(0, 0, 1)	2204.869799
6	(2, 0, 0)	2204.880722
2	(0, 0, 2)	2206.111207
4	(1, 0, 1)	2206.142158
5	(1, 0, 2)	2207.163048
3	(1, 0, 0)	2207.502101
8	(2, 0, 2)	2208.120889
0	(0, 0, 0)	2228.48366

Table 4: Auto ARIMA-AIC

Summary of ARIMA (2, 0, 1)

SARIMAX Results

=======							
Dep. Vari	able:	Sparkl	ing No.	Observations:		130	
Model:		ARIMA(2, 0,	1) Log	Likelihood		-1093.542	
Date:	Su	ın, 02 Jun 2	024 AIC			2197.084	
Time:		08:21	:36 BIC			2211.422	
Sample:		01-01-1980 HQIC		2202.910			
		- 10-01-1	990				
Covarianc	e Type:		opg				
	coef	std err	z	P> z	[0.025	0.975]	
const	2379.9379	112.866	21.086	0.000	2158.725	2601.151	
ar.L1	1.2114	0.135	8.991	0.000	0.947	1.475	
ar.L2	-0.4998	0.124	-4.046	0.000	-0.742	-0.258	
ma.L1	-0.8128	0.152	-5.349	0.000	-1.111	-0.515	
sigma2	1.182e+06	1.28e+05	9.214	0.000	9.31e+05	1.43e+06	
Ljung-Box	(L1) (Q):		0.02	Jarque-Bera	(JB):	3	9.43
Prob(Q):	, , , , , ,		0.90	Prob(JB):	. ,		0.00
Heteroske	dasticity (H):		2.19	Skew:			0.96
Prob(H) (two-sided):		0.01	Kurtosis:			4.90

Figure 18: ARIMA(2, 0, 1)

RMSE = 1338.13987

Manual ARIMA Model

From ACF and PACF, we get p = 2 and q = 2, with d = 1.

SARIMAX Results

Dep. Variable	:	Spark:	ling	No.	Observations	:	130
Model:		ARIMA(2, 1	, 2)	Log	Likelihood		52.483
Date:	9	Sun, 02 Jun	2024	AIC			-94.966
Time:		08:21:37					-80.667
Sample:		01-01-1980					-89.156
		- 10-01-	1990				
Covariance Ty	pe:		opg				
	coef	std err		Z	P> z	[0.025	0.975]
ar.L1	-0.0013	0.010	-0.	132	0.895	-0.021	0.018
ar.L2	-1.0000	0.005	-196.	015	0.000	-1.010	-0.990
ma.L1	0.0062	0.112	0.0	056	0.956	-0.213	0.226
ma.L2	0.9999	22.870	0.0	044	0.965	-43.824	45.824
sigma2	0.0246	0.562	0.0	044	0.965	-1.078	1.127
				====			

Figure 19: ARIMA (2, 1, 2)

RMSE = 1843.421

SARIMA Models

Auto SARIMA

• (0, 0, 2) (2, 0, 2, 12) has the lowest SARIMA value.

AIC	seasonal	param	
1534.072513	(2, 0, 2, 12)	(0, 0, 2)	26
1534.4277	(2, 0, 2, 12)	(1, 0, 2)	53
1535.130924	(1, 0, 2, 12)	(0, 0, 2)	23
1536.287014	(2, 0, 2, 12)	(2, 0, 2)	80
1536.302588	(1, 0, 2, 12)	(2, 0, 2)	77

Table 5: Auto SARIMA (0, 0, 2) (2, 0, 2, 12)

SARIMAX Results								
Dep. Varia	 ble:			У	No.	Observations	 :	130
Model:		1AX(0, 0,	2)x(2, 0, 2	, 12)	Log	Likelihood		-760.036
Date:			Sun, 02 Jun					1534.073
Time:			08:	51:57	BIC			1552.516
Sample:				0	HQIO			1541.543
				- 130				
Covariance	Type:			opg				
=======								
	coef	std err	z	P	> z	[0.025	0.975]	
ma.L1	0.1863	0.101	1.840	0	.066	-0.012	0.385	
ma.L2	-0.1082	0.120	-0.902	0	.367	-0.343	0.127	
ar.S.L12	0.6572	0.720	0.913	0	.361	-0.753	2.067	
ar.S.L24	0.3848	0.744	0.517	0	.605	-1.073	1.843	
ma.S.L12	0.5441	3.347	0.163	0	.871	-6.016	7.104	
ma.S.L24	-3.6923	5.366	-0.688	0	.491	-14.209	6.824	
sigma2	1.094e+04	3.2e+04	0.341	0	.733	-5.19e+04	7.37e+04	
Ljung-Box	(L1) (Q):		0.05	Jarqu	e-Bera	(JB):	2	==== 0.03
Prob(Q):	. , , , , , ,		0.83			` '		0.00
1 -/	asticity (H):		1.34				0.50	
Prob(H) (t	2 1 1		0.39	Kurto	sis:			4.91

Figure 20: Auto SARIMA (0, 0, 2) (2, 0, 2, 12)

RMSE = 641.08

Manual SARIMA Model

From ACF and PACF, we get p = 1 and q = 2, with d = 1 and P = 1, D = 1, Q = 2, S = 12

Summary of SARIMA (1, 2, 2) (1, 1, 2, 12)

Dep. Variab	le:		Spar	kling N	o. Observation	5:	136
Model:		MAX(1, 1, 2			og Likelihood		145.652
Date:		(-, -, -	Sun, 02 Jur		_		-279.309
Time:				47:35 B			-262.732
Sample:					OIC		-272.576
Sumpre!			- 10-01		Ž.C		2,2,5,0
Covariance	Tyne		10 01	opg			
				^υ Ρδ			
				чрь 			
		std err	z		[0.025	 0.975]	
		std err 0.393	z -1.851	P> z	[0.025 -1.496	0.975]	
	coef		-1.851	P> z			
	coef -0.7265	0.393	-1.851	P> z 0.064 0.768	-1.496	0.043	
ar.L1 ma.L1	coef -0.7265 -0.1068 -0.7328	0.393 0.362 0.326	-1.851 -0.295	P> z 0.064 0.768	-1.496 -0.816 -1.371	0.043 0.602	
ar.L1 ma.L1	coef -0.7265 -0.1068 -0.7328	0.393 0.362 0.326	-1.851 -0.295 -2.249	P> z 0.064 0.768 0.025	-1.496 -0.816 -1.371	0.043 0.602 -0.094	

Figure 21: SARIMA (1, 2, 2) (1, 1, 2, 12)

RMSE = 303.552

The Best SARIMA RMSE value 303.552 is close to the Triple Exponential Smoothening RMSE value, which is 366.85.

Best ARIMA and SARIMA models

Figure 22: Best ARIMA and SARIMA

Q6. Compare the performance of models - - Compare the performance of all the models built - Choose the best model with proper rationale - Rebuild the best model using the entire data - Make a forecast for the next 12 months

Comparison of model performance

	RMSE
Linear Regression Model	1374.55
Simple Average Model :	1368.75
Moving Average Model :	811.18
Single Exponential Smoothening Model :	1363.70
Double Exponential Smoothening Model	1472.25
Triple Exponential Smoothening Model Additive:	366.86
Triple Exponential Smoothening Model Multiplica	381.66
Best AR Model :	1398.06
Best ARMA Model:	1021.27
Best ARIMA Model :	1843.42
Best SARIMA Model :	303.55

Table 6: Model performance comparison

• The triple exponential and SARIMA models have the lowest scores.

Forecasting

Figure 23: Forecasting

- The forecasted sales of Sparkling from August'95 to July'96 look like the given chart.
- We can observe that the overall forecasted sales are similar to the duration of 1993-94 and higher than August'94 to July'95.
- The confidence interval band increases as the duration of forecast increases.

Insights and recommendations

Insights

- The SARIMA model's parameters reveal a significant seasonal dependency on the sales.
- The 12th order lag residual in the 1st differential series hints the importance of monitoring sales of corresponding months of previous years.

Recommendation

- Continuously monitor sales trends, seasonal highs and lows.
- Adjust inventory levels and modify marketing strategy accordingly.
- Inventory during year ends must be carefully and strategically managed due to high sales during year end and also increase profitability during this period.