8.1 סוגי אינטגרלים לא אמיתיים

סוגי אינטגרלים

אינטגרל לא אמיתי מסוג ראשון - תחום האינטגרציה הוא קרן

 $a < N \in \mathbb{R}$ עבור [a,N] אינטגרבילית בכל $f:[a,\infty) o \mathbb{R}$

- $[a,\infty)$ נאמר שהאינטגרל הלא אמיתי $\int\limits_{0}^{\infty}f\left(x
 ight)dx$ מתכנס, או ש $\int\limits_{0}^{\infty}f\left(x
 ight)dx$ נאמר שהאינטגרל הלא אמיתי י
 - $\int\limits_{0}^{\infty}f\left(x
 ight) dx=L$ במקרה זה נסמן -
 - אם הגבול $\int\limits_{a}^{\infty}f\left(x
 ight)dx$ אם הגבול אוים במובן הצר, נאמר שהאינטגרל הלא אמיתי ווא $\int\limits_{a}^{\infty}f\left(x
 ight)dx$ אם הגבול איים במובן הצר, נאמר שהאינטגרל אוים במובן הצר, נאמר שהאינטגרל הלא אמיתי
 - $\lim_{N o -\infty} \int\limits_{N}^{a} f\left(x
 ight) dx$ בדומה, עבור $f:\left(-\infty,a
 ight]$ נבדוק את •

אינטגרל לא אמיתי מסוג שני - תמונת הפונקציה אינה חסומה

a,b>0 לכל $[a,b-\delta]$ אינטגרבילית ב $f:[a,b) o\mathbb{R}$

- [a,b)אם אינטגרבילית במובן הצר הגבול $\int\limits_a^b f\left(x
 ight)dx$ אם קיים במובן הצר הגבול או ש $\int\limits_a^b f\left(x
 ight)dx$ אם קיים במובן הצר הגבול $\int\limits_a^b f\left(x
 ight)dx$ אם קיים במובן הצר הגבול אוינטגרבילית בייט אוינטגרבילית בייט אוינטגרבילים.
 - $\int\limits_{a}^{b}f\left(x
 ight) dx=L$ במקרה זה נסמן -
 - אם הגבול $\int\limits_{a}^{\infty}f\left(x
 ight)dx$ אם הגבול $\int\limits_{a}^{\infty}f\left(x
 ight)dx$ איים במובן הצר, נאמר שהאינטגרל הלא אמיתי לא $\lim\limits_{a\to0^{+}}\int\limits_{a}^{b-\delta}f\left(x
 ight)dx$ אם הגבול אפיים.
 - $\lim_{\delta o 0^-} \int\limits_{a+\delta}^b f\left(x
 ight) dx$ בדומה, עבור f:(a,b], נבדוק את

3 אינטגרלים לא אמיתיים בצורה מרובה

אינטגרלים כאלו יהיו לא אמיתיים בכמה נקודות קצה

∞ עד $-\infty$ אינטגרל 1.3

 $[a,b]\subseteq\mathbb{R}$ אינטגרבילית לכל $f:\mathbb{R} o\mathbb{R}$ תהי $f:\mathbb{R} o\mathbb{R}$ אינטגרבילית לכל $x_0\in\mathbb{R}$ מתכנסים. עניח שקיים (כלומר יהא) ב $x_0\in\mathbb{R}$ כך ששני האינטגרלים הלא אמיתיים מהסוג הראשון $x_0\in\mathbb{R}$

(sin : $\mathbb{R} o \mathbb{R}$ אם שני הגבולות קיימים במובן הצר, באופן **נפרד בלתי תלוי** (כלומר הגבול $\int\limits_{N o \infty}^N f\left(x
ight) dx$ לא רלוונטי בבדיקה זו-ד"נ היא

$$\int\limits_{-\infty}^{\infty}f\left(x
ight)dx=\int\limits_{-\infty}^{x_{0}}f\left(x
ight)dx+\int\limits_{x_{0}}^{\infty}f\left(x
ight)dx$$
במקרה זה נאמר ש $\int\limits_{-\infty}^{\infty}f\left(x
ight)dx$ מתכנס, מתקיים

2.3 אינטגרל בקטע חסום ופתוח עם פונקציה לא חסומה בשני קצוות הקטע

 $\delta \in (0, rac{b-a}{2})$ לכל $[a+\delta, b-\delta]$ אינטגרבילית בכל $f:(a,b) o \mathbb{R}$

נניח שקיים (כלומר יהא) $\int\limits_b^{x_0}f\left(x
ight)dx,\int\limits_{x_0}^bf\left(x
ight)dx$ נניח שקיים (כלומר יהא) כך ששני האינטגרלים הלא אמיתיים מהסוג הראשון $x_0\in(a,b)$ מתכנסים באופן בלתי תלוי.

$$\int\limits_{a}^{b}f\left(x\right)dx=\int\limits_{b}^{x_{0}}f\left(x\right)dx+\int\limits_{x_{0}}^{b}f\left(x\right)dx$$
אם הדבר קורה, נאמר ש

3.3 אינטגרל בקרן פתוחה (התחום לא חסום והפונקציה לא חסומה בקצה הממשי)

תהי
$$\int\limits_a^{x_0}f\left(x\right)dx,\int\limits_{x_0}^Nf\left(x\right)dx$$
 אם $a< x_0\in\mathbb{R}$ תכנסים. $[a+\delta,\infty]$ מתכנסים $f:(a,\infty)\to\mathbb{R}$ תהי $f:(a,\infty)\to\mathbb{R}$ מתכנס ומתקיים $\int\limits_a^\infty f\left(x\right)dx+\int\limits_{x_0}^\infty f\left(x\right)dx$ מתכנס ומתקיים

4 משפטים

1. הגדרת האינטגרל ב $(-\infty,\infty)$ אינה תלויה בבחירת x_0 אינה x_0 אינה תלויה בבחירת אינטגרבילית ב $x_0< x_1\in\mathbb{R}$, עבור עבור $x_0< x_1\in\mathbb{R}$ ומקיימת נוכיח בכך שנשים לב שאם ההתכנסות מתקיימת אז בפרט $x_0< x_1\in\mathbb{R}$

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{x_0} f(x) dx + \int_{x_0}^{\infty} f(x) dx = \int_{-\infty}^{x_1} f(x) dx - \int_{x_0}^{x_1} f(x) dx + \int_{x_0}^{\infty} f(x) dx = \int_{-\infty}^{x_1} f(x) dx + \int_{x_0}^{\infty} f(x) dx = \int_{x_0}^{x_1} f($$

2. אריתמטיקה של אינגטרביליות בקטעים פתוחים

'יהיו $\lambda,a\in\mathbb{R}$ עם $g,f:[a,\infty) o\mathbb{R}$ יהיו

ומתקיים $[a,\infty)$ אינטגרבילית אינטגרב λf ומתקיים א(

$$\int_{a}^{\infty} \lambda f(x) dx = \lambda \int_{a}^{\infty} f(x) dx$$

ומתקיים [a,∞) אינטגרבילית בקטע (f+g) (x) ומתקיים

$$\int_{a}^{\infty} (f+g)(x) dx = \int_{a}^{\infty} f(x) dx + \int_{a}^{\infty} g(x) dx$$

ומתקיים c>a לכל $[c,\infty)$ ו ומתקיים אינטגרבילית ב

$$\int_{a}^{\infty} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$$