Rethinking Floating Point for Deep Learning

Floating Point (IEEE 754 2008)

- B: radix, 2 orr 10
- p: # of digits in significant (precision)
- emax: max exponent
- emin: min exponent = 1 emax

Binary Format

Parameter	binary16	binary32	binary64	binary128	binary{ \emph{k} } ($\emph{k} \geq 128$)
k	16	32	64	128	multiple of 32 $1+w+t$
p	11	24	53	113	$k-round(4 imes \log_2 k)+13$
emax	15	127	1023	16383	$2^{k-p-1}-1$
bias, ${\cal E}-e$	15	127	1023	16383	emax
sign bit	1	1	1	1	1
w	5	8	11	15	$round(4 imes \log_2 k) - 13$
t	10	23	52	112	k-w-1

- k: storage width in bits. 저장 비트 수.
- p: precision in bits. the number of digits int the significant(precision).
- emax: the maximum exponent e
- sign bit : 부호 표시. 0 이면 +이고, 1 이면 이다.
- w : exponent field width in bits. 지수부 비트 수.
- t: trailing significand field width in bits. 가수부 비트 수.

Floating Point Representation

- Signed zeros
- (-1)^s x b^e x m
- Two infinities (positive and negative)
- Two NaNs, qNaN and sNaN
- Denormals

Efforts for reducing computational complexity

- Fixed point
- Uniform quantization via 8 bit integer
- Ternary representation
- Binary/low-bit representation
- etc

Floating Point Variants

- (e, s) float (IEEE 754 type)
- Blocking floating point
- LNS
- Posit
- Tapered floating point
 - exponent & significand size varies
- Posit by Gustafson

(N,s)-Posit (Gustafson)

Figure 2. Generic posit format for finite, nonzero values

As an example, fig. 4 shows a build up from a 3-bit to a 5-bit posit with es = 2, so useed = 16:

Figure 4. Posit construction with two exponent bits, es = 2, $useed = 2^{2^{es}} = 16$

Accumulator

- FP accumulation is not associative
- FMA(fused multiply add) is frequent
- $c + ab = c \dots Problem$
- Kulisch accumulator
 - fixed point register enough for $\pm (f_{max}^2 + f_{min}^2)$
 - shift and add
 - called EMA(exact multiply add)
 - $r(\sum_i a_i b_i)$ VS $r(a_n b_n + r(a_{n-1} b_{n-1} + r(\cdots + r(a_1 b_1 + 0) \cdots)))$
 - EMA can be more efficient

ELMA, (N,s,α,β,γ) log (exact log-linear multiply-add)

 $\log_2(x \pm y) = i + \sigma_{\pm}(j - i)$

 $\log_2(xy) = i + j$

 $\sigma_{\pm}(x) = \log_2(1 \pm 2^x)$

 $\log_2(x/y) = i - j$

- Logarithmic number system avoids hardware multipliers $i = \log_2(x), j = \log_2(y)$
- σ is the weak point
 - costly LUT & linearization
- Translate m.f to linear domain

```
m -> 2<sup>m</sup>
f -> g=p(f)=2<sup>f</sup>-1 using (2^{f_{bits}} \times \alpha)-bit LUT.
```

- Kulisch-accumulated
- Back to log using $(2^{\beta} \times \gamma)$ -bit LUT.
- if $\alpha \geq f_{bits} + 1, \beta \geq \alpha, \gamma = f_{bits}$, $f = r(q(r(r(p(f), \alpha), \beta)), \gamma)$ is identity

FPGA experiments

Table 2: ResNet-50 ImageNet validation set accuracy per math type

Math type	Multiply-add type	top-1 acc (%)	top-5 acc (%)	
float32	FMA	76.130	92.862	
$(8, 1, 5, 5, 7) \log$	ELMA	-0.90	-0.20	
(7, 1) posit	EMA	-4.63	-2.28	
(8, 0) posit	EMA	-76.03	-92.36	
(8, 1) posit	EMA	-0.87	-0.19	
(8, 2) posit	EMA	-2.20	-0.85	
(9, 1) posit	EMA	-0.30	-0.09	
Jacob et al. [15]:				
float32	FMA	76.400	n/a	
int8/32	MAC	-1.50	n/a	
Migacz [23]:				
float32	FMA	73.230	91.180	
int8/32	MAC	-0.20	-0.03	

Chip Area and Power

Table 3: Chip area and power for 28 nm, 1-cycle multiply-add at 500 MHz

Component	Area $\mu\mathrm{m}^2$	Power μW
int8/32 MAC PE	336.672	283
multiply	121.212	108.0
add	117.810	62.3
non-combinational	96.768	112.7
(8, 1, 5, 5, 7) log ELMA PE	376.110	272
log multiply (9 bit adder)	32.760	17.1
r(p(f)) (16x5 bit LUT)	8.946	5.4
Kulisch shift (6 \rightarrow 38 bit)	81.774	71.0
Kulisch add (38 bit)	123.732	54.2
non-combinational	126.756	124.3
float16 (w/o denormals) FMA PE (5, 10) (11, 11, 10) log ELMA PE (this log is (5, 10) float16-style encoding, same dynamic range; denormals for log and float16 here are unhandled and flush to zero)	1545.012 1043.154	1358 805
32x32 systolic w/ int8/32 MAC PEs 32x32 systolic w/ (8, 1, 5, 5, 7) log ELMA PEs	348231 457738	226000 195500