UniBPF: Safe and Verifiable Unikernels Extensions

Kai-Chun Hsieh Advisor: Masanori Misono Chair of Computer Systems https://dse.in.tum.de/

16.05.2023 - 15.11.2023

Motivation

Unikernels

- Kernel as a library
- Eliminate unneeded components.
- Optimize system procedures, e.g., system calls
- Compact, efficient, secure

But...

- Lack of **debuggability**
- Lack of **observability**
- Lack of runtime-extensibility

State-of-the-art

Extensible Unikernels with **BPF**:

• eBPF Runtime + kernel tracing with interpreters. But...

X Lack of verifier:

• Use an interpreter to provide sandboxed runtime

X Insufficient security guarantee:

Cannot resist runtime errors

Inefficient runtime:

○ Our work: ≤ 600% **slowdown** in <u>instruction level</u> v.s. JiT compiled

Research Question

How can we have a safe and verifiable extension for Unikernels?

- Design Goal
 - Safety: Provide safety of executing extension binaries
 - Sustainable Design: Easy to use, easy to maintain
 - **Performance:** Acceptable overhead and improve BPF runtime efficiency

System Overview

Background: extended Berkeley Packet Filter (eBPF)

000::::

000:::: •••::::

Lightweight in-kernel language VM

The **sandbox** property of BPF runtime can be ensured by:

- Using interpreters (weaker)
- Using **verifiers** to verify in advance (stronger)
 - Detects potential sandbox escalation
 - Forbid undefined behaviors

Useful features:

- Maps (kv-store)
- Helper functions
- Program Types: Runtime context & helper permissions

Outline

- Motivation & Background
- Design Challenges
- Evaluation
- Further Ideas

Design Challenges

1. Impact of Verification Processes on Unikernel Applications' Runtime

- 2. Feasibility of Integrating Verifier into Unikernel Application
- 3. Usability and Maintainability: Configuring Shared Verifier for Different Unikernels

1 Verification can block Unikernel applications

- X Lack of multi-processing support:
 - Application is the only process
- X Lack of comprehensive schedulers:
 - CPU resource is released by voluntary "yields"
- Verification is time-consuming!
 - Our example BPF program: 12.05 ms to verify 26 instructions.
 - Lower-Bound: 8.82 ms
- With common approaches:
 - Clients may experience huge latencies

```
1 __attribute__((section("executable"), used))
   __u64 hash(uk_bpf_type_executable_t* context) {
       _{u64} sum = 0;
       for(int index = 0; index < 256; index++) {</pre>
           char* input = context->data + index;
           if(input >= context->data_end) {
               break;
12
           char to_add = *input;
13
14
           if(to_add >= 'A' && to_add <= 'Z') {
15
               to_add += 'A' - 'a';
           } else if(to_add >= '0' && to_add <= '9') {
18
19
20
           sum += to_add;
21
22
       return sum;
24 }
```


Put BPF verifiers as processes on the host system where schedulers are more flexible

② BPF Verifiers Are Too Complicated to Integrate

- Common BPF verifiers are **complicated**:
 - O PREVAIL (PLDI'19): 27,000 Lines of code
 - O KLINT (NSDI'22): 13,000 Lines of code
- Common BPF verifiers need **complicated runtime**:
 - PREVAIL: C++ runtime library
 - o KLINT: Python Interpreter
 - Linux BPF verifier: GPL License, Depends on Linux

Put BPF Verifiers on the host system utilizing the host system's runtime environment

3 Customizability Impedes Building a Unified Solution

Our Goal: Maintain customizability for BPF runtime

- BPF Helper functions & program types
- Keep compactness
- Increase our system's usability
- But, without a standard framework:
 - Each Unikernel needs one BPF verifier: Unmaintable!
 - Waived support for customizable parts: Our work is Meaningless!

We provide libraries that allow developers to easily export their BPF runtime specifications

Implementation

Outline

- Motivation & Background
- Design Challenges
- Evaluation
- Further Ideas

Evaluation - Security

Evaluation Program	Result - Interpreter	Result - JiT Compiled	Result - UniBPF	
OOB*	Terminated	Exploited	Denied	
OOB* with Nullptr	Terminated	System crashed	Denied	: Memor
Infinity Loop	System freezes	System freezes	Denied	: Termina
Division by Zero	Error Ignored	Error Ignored	Partially Denied	: Runtime
Instruction Type Safety	Error Ignored	Error Ignored	Denied	: Type Sa
Program Type Safety	Error Ignored	Error Ignored	Denied	
Helper Function Type Safety	Error Ignored	Error Ignored	Denied	

UniBPF overall provides more solid security promises

Evaluation - Verification and JiT Overhead

	Instructions	Verification Time Overhead*	Verification Memory Overhead*	JiT Time Overhead
Nop	2	8.82 ms	3328 kb	9.74 ms
Hash	26	12.05 ms (7.43 instr./ ms)	4096 kb	9.79 ms
Adds	1002	43.60 ms (28.75 instr./ms)	5056 kb	9.85 ms

[:] The lower bound overhead of the entire system.

The JiT compilation overhead and the corresponding verification overhead are negligible

^{* :} Overhead made to the host system.

Evaluation - BPF Kernel Tracing Nginx and Redis

The improvement in jitted BPF runtime is more significant as the program size increases

Further Ideas

BPF Program

Digital Signature

- BPF program as configurations
- Support verification with BPF maps
- Ensure verification integrity with digital signature
- Secure verification process from malicious cloud provider: Confidential VM
- More robust BPF runtime isolation:
 - Intel MPK
 - BPF helper function stub

Conclusion

- UniBPF provides **more secure** BPF runtime
 - Resist runtime errors interpreters cannot
 - Protect jitted runtime from malicious codes
- Only brings **negligible overhead**
- Enables more efficient runtime through JiT compilation
 - Instruction level: Up to 600%
 - Kernel-Tracing:
 - Nginx: 40% ~
 - Redis: 14.48% ~

Try it out!

https://github.com/TUM-DSE/ushell/