# Number Theory ITT9131 Konkreetne Matemaatika

#### Chapter Four

Divisibility

**Primes** 

Prime examples

Factorial Factors

Relative primality

'MOD': the Congruence Relation

Independent Residues

Additional Applications

Phi and Mu



## Contents

- 1 Prime and Composite Numbers
  - Divisibility
- 2 Greatest Common Divisor
  - Definition
  - The Euclidean algorithm
- 3 Primes
  - The Fundamental Theorem of Arithmetic
  - Distribution of prime numbers



## Next section

- 1 Prime and Composite Numbers
  - Divisibility
- 2 Greatest Common Divisor
  - Definition
  - The Euclidean algorithm
- 3 Primes
  - The Fundamental Theorem of Arithmetic
  - Distribution of prime numbers



## Next subsection

- 1 Prime and Composite Numbers
  - Divisibility
- 2 Greatest Common Divisor
  - Definition
  - The Euclidean algorithm
- 3 Primes
  - The Fundamental Theorem of Arithmetic
  - Distribution of prime numbers



# Division (with remainder)

#### Definition

Let a and b be integers and a>0. Then division of b by a is finding an integer quotient q and a remainder r satisfying the condition

$$b = aq + r$$
 , where  $0 \leqslant r < a$ .

Here

$$b$$
 — dividend  
 $a$  — divider (=divisor) (=factor)  
 $q = \lfloor a/b \rfloor$  — quotient  
 $r = a \mod b$  — remainder (=residue)

#### Example

If a = 3 and b = 17, then



# Division (with remainder)

#### Definition

Let a and b be integers and a > 0. Then division of b by a is finding an integer quotient a and a remainder b satisfying the condition

$$b = aq + r$$
 , where  $0 \leqslant r < a$ .

Here

$$b$$
 — dividend  
 $a$  — divider (=divisor) (=factor)  
 $q = \lfloor a/b \rfloor$  — quotient  
 $r = a \mod b$  — remainder (=residue)

#### Example

If 
$$a = 3$$
 and  $b = 17$ , then

$$17 = 3 \cdot 5 + 2$$
.



# Negative dividend

■ If the divisor is positive, then the remainder is always **non-negative**.

#### For example

If a=3 ja b=-17, then

$$-17 = 3 \cdot (-6) + 1.$$

■ Integer *b* can be always represented as b = aq + r with  $0 \le r < a$  due to the fact that *b* either coincides with a term of the sequence

$$\dots, -3a, -2a, -a, 0, a, 2a, 3a, \dots$$

or lies between two succeeding figures



# Negative dividend

If the divisor is positive, then the remainder is always non-negative.

#### For example

If a = 3 ja b = -17, then

$$-17 = 3 \cdot (-6) + 1.$$

■ Integer b can be always represented as b = aq + r with  $0 \le r < a$  due to the fact that b either coincides with a term of the sequence

$$\dots, -3a, -2a, -a, 0, a, 2a, 3a, \dots$$

or lies between two succeeding figures.



# NB! Division by a negative integer yields a negative remainder

5 mod 
$$3 = 5 - 3 \lfloor 5/3 \rfloor = 2$$
  
5 mod  $-3 = 5 - (-3) \lfloor 5/(-3) \rfloor = -1$   
 $-5$  mod  $3 = -5 - 3 \lfloor -5/3 \rfloor = 1$   
 $-5$  mod  $-3 = -5 - (-3) \lfloor -5/(-3) \rfloor = -2$ 

#### Be careful

Some computer languages use another definition.

We assume a > 0 in further slides



# NB! Division by a negative integer yields a negative remainder

5 
$$\mod 3 = 5 - 3 \lfloor 5/3 \rfloor = 2$$
  
5  $\mod -3 = 5 - (-3) \lfloor 5/(-3) \rfloor = -1$   
-5  $\mod 3 = -5 - 3 \lfloor -5/3 \rfloor = 1$   
-5  $\mod -3 = -5 - (-3) \lfloor -5/(-3) \rfloor = -2$ 

#### Be careful!

Some computer languages use another definition.

We assume a > 0 in further slides



# NB! Division by a negative integer yields a negative remainder

5 mod 
$$3 = 5 - 3 \lfloor 5/3 \rfloor = 2$$
  
5 mod  $-3 = 5 - (-3) \lfloor 5/(-3) \rfloor = -1$   
-5 mod  $3 = -5 - 3 \lfloor -5/3 \rfloor = 1$   
-5 mod  $-3 = -5 - (-3) \lfloor -5/(-3) \rfloor = -2$ 

#### Be careful!

Some computer languages use another definition.

We assume a > 0 in further slides!



# Divisibility

#### Definition

Let a and b be integers. We say that a divides b, or a is a divisor of b, or b is a multiple of a, if there exists an integer m such that  $b = a \cdot m$ .

#### Notations

- a|b a divides b
- a\b a divides b
- b:a b is a multiple of a

#### For example

$$7|-91$$

$$-7|-91$$



#### Definitsioon

#### If a|b, then

■ an integer a is called divisor or factor or multiplier of an integer b.

- Any integer b at least four divisors: 1,-1,b,-b
- lacksquare a 0 for any integer a; reverse relation 0 a is valid only for a=0. That means 0 constant
- 1|b for any integer b, whereas b|1 is valid iff b=1 or b=-1.



#### Definitsioon

#### If a|b, then

■ an integer a is called divisor or factor or multiplier of an integer b.

- Any integer b at least four divisors: 1, -1, b, -b.
- a|0 for any integer a; reverse relation 0|a is valid only for a=0. That means 0|0
- 1|b for any integer b, whereas b|1 is valid iff b=1 or b=-1.



#### Definitsioon

If a|b, then

■ an integer a is called divisor or factor or multiplier of an integer b.

- Any integer b at least four divisors: 1,-1,b,-b.
- a|0 for any integer a; reverse relation 0|a is valid only for a=0. That means 0|0.
- 1|b for any integer b, whereas b|1 is valid iff b=1 or b=-1.



#### Definitsioon

If a|b, then

an integer a is called divisor or factor or multiplier of an integer b.

- Any integer b at least four divisors: 1, -1, b, -b.
- a|0 for any integer a; reverse relation 0|a is valid only for a=0. That means 0|0.
- 1|b for any integer b, whereas b|1 is valid iff b=1 or b=-1.



# More properties:

- 1 If a|b, then  $\pm a|\pm b$ .
- If a|b and a|c, for every m, n integer it is valid that a|mb+nc.
- 3 a|b iff ac|bc for every integer c

The first property allows to restrict ourselves to study divisibility on positive integers

It follows from the second property that if an integer a is a divisor of b and c, then it is the divisor their sum and difference.

Here a is called common divisor of b and c (as well as of b+c, b-c, b+2c etc



# More properties:

- 1 If a|b, then  $\pm a|\pm b$ .
- If a|b and a|c, for every m, n integer it is valid that a|mb+nc.
- 3 a|b iff ac|bc for every integer c

The first property allows to restrict ourselves to study divisibility on positive integers.

It follows from the second property that if an integer a is a divisor of b and c, then it is the divisor their sum and difference.

Here a is called common divisor of b and c (as well as of  $b\!+\!c$ ,  $b\!-\!c$ ,  $b\!+\!2c$  etc



# More properties:

- 1 If a|b, then  $\pm a|\pm b$ .
- If a|b and a|c, for every m, n integer it is valid that a|mb+nc.
- 3 a|b iff ac|bc for every integer c.

The first property allows to restrict ourselves to study divisibility on positive integers.

It follows from the second property that if an integer a is a divisor of b and c, then it is the divisor their sum and difference.

Here a is called common divisor of b and c (as well as of b+c, b-c, b+2c etc.)



## Next section

- 1 Prime and Composite Numbers
  - Divisibility
- 2 Greatest Common Divisor
  - Definition
  - The Euclidean algorithm
- 3 Primes
  - The Fundamental Theorem of Arithmetic
  - Distribution of prime numbers



## Next subsection

- 1 Prime and Composite Numbers
  - Divisibility
- 2 Greatest Common Divisor
  - Definition
  - The Euclidean algorithm
- 3 Primes
  - The Fundamental Theorem of Arithmetic
  - Distribution of prime numbers



## Greatest Common Divisor

#### Definition

The greatest common divisor (gcd) of two or more non-zero integers is the largest positive integer that divides the numbers without a remainder.

#### Example

The common divisors of 36 and 60 are 1, 2, 3, 4, 6, 12. The greatest common divisor gcd(36,60) = 12.

■ The greatest common divisor exists always because of the set of common divisors of the given integers is non-empty and finite.



## Greatest Common Divisor

#### Definition

The greatest common divisor (gcd) of two or more non-zero integers is the largest positive integer that divides the numbers without a remainder.

#### Example

The common divisors of 36 and 60 are 1, 2, 3, 4, 6, 12. The greatest common divisor gcd(36,60) = 12.

 The greatest common divisor exists always because of the set of common divisors of the given integers is non-empty and finite.



# Next subsection

- 1 Prime and Composite Numbers
  - Divisibility
- 2 Greatest Common Divisor
  - Definition
  - The Euclidean algorithm
- 3 Primes
  - The Fundamental Theorem of Arithmetic
  - Distribution of prime numbers



# The Euclidean algorithm

### The algorithm to compute gcd(a, b) for positive integers a and b

**Input:** Positive integers a and b, assume that a > b

Output: gcd(a,b)

- while b > 0
  do
  - 1  $r := a \mod b$
  - 2 a := b
  - 3 b := r

od

■ return(a)



| а | b |
|---|---|
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |



| а    | b   |
|------|-----|
| 2322 | 654 |
|      |     |
|      |     |
|      |     |
|      |     |
|      |     |
|      |     |



| а    | b   |
|------|-----|
| 2322 | 654 |
| 654  | 360 |
|      |     |
|      |     |
|      |     |
|      |     |
|      |     |



| а    | b   |
|------|-----|
| 2322 | 654 |
| 654  | 360 |
| 360  | 294 |
|      |     |
|      |     |
|      |     |
|      |     |



| а    | Ь   |
|------|-----|
| 2322 | 654 |
| 654  | 360 |
| 360  | 294 |
| 294  | 66  |
|      |     |
|      |     |
|      |     |
|      |     |



| а    | b   |
|------|-----|
| 2322 | 654 |
| 654  | 360 |
| 360  | 294 |
| 294  | 66  |
| 66   | 30  |
|      |     |
|      |     |
|      |     |



| a    | b   |
|------|-----|
| 2322 | 654 |
| 654  | 360 |
| 360  | 294 |
| 294  | 66  |
| 66   | 30  |
| 30   | 6   |
|      |     |
|      |     |



| а    | b   |
|------|-----|
| 2322 | 654 |
| 654  | 360 |
| 360  | 294 |
| 294  | 66  |
| 66   | 30  |
| 30   | 6   |
| 6    | 0   |
|      |     |



# Important questions to answer:

- Does the algorithm terminate for every input?
- Is the result the greatest common divisor?
- How long does it take?



# Termination of the Euclidean algorithm

- In any cycle, the pair of integers (a,b) is replaced by (b,r), where r is the remainder of division of a by b.
- Hence r < b.
- The second number of the pair decreases, but remains non-negative, so the process cannot last infinitely long.



# Correctness of the Euclidean algorithm

#### Theorem

If r is a remainder of division of a by b, then

$$gcd(a,b) = gcd(b,r)$$

*Proof.* It follows from the equality a = bq + r that

- 1 if d|a and d|b, then d|r
- 2 if d|b and d|r, then d|a

In other words, the set of common divisors of a and b equals to the set of common divisors of b and r, recomputing of (b,r) does not change the greatest common divisor of the pair.

The number returned  $r = \gcd(r, 0)$ . Q.E.D.



# Complexity of the Euclidean algorithm

#### Theorem

The number of steps of the Euclidean algorithm applied to two positive integers  $\boldsymbol{a}$  and  $\boldsymbol{b}$  is at most

$$1 + \log_2 a + \log_2 b.$$

**Proof.** Let consider the step where the pair (a,b) is replaced by (b,r). Then we have r < b and  $b+r \leqslant a$ . Hence  $2r < r+b \leqslant a$  or br < ab/2. This is that the product of the elements of the pair decreases at least 2 times.

If after k cycles the product is still positive, then  $ab/2^k > 1$ , that gives

$$k \leqslant \log_2(ab) = \log_2 a + \log_2 b$$



### GCD as a linear combination

### Theorem (Bézout's identity)

Let  $d = \gcd(a, b)$ . Then d can be written in the form

$$d = as + bt$$

where  $\boldsymbol{s}$  and  $\boldsymbol{t}$  are integers. In addition,

$$gcd(a,b) = \min\{n \ge 1 \mid \exists s,t \in \mathbb{Z} : n = as + bt\}.$$

For example: a = 360 and b = 294

$$gcd(a,b) = 294 \cdot (-11) + 360 \cdot 9 = -11a + 9b$$



## Application of EA: solving of linear Diophantine Equations

#### Corollary

Let a, b and c be positive integers. The equation

$$ax + by = c$$

has integer solutions if and only if c is a multiple of gcd(a, b).

The method: Making use of Euclidean algorithm, compute such coefficients s and t that sa + tb = gcd(a, b). Then

$$x = \frac{cs}{\gcd(a, b)}$$
$$y = \frac{ct}{\gcd(a, b)}$$



# Linear Diophantine Equations (2)

### Example: 92x + 17y = 3

| From EA: |    |                       |
|----------|----|-----------------------|
| а        | b  | Seos                  |
| 92       | 17 |                       |
| 17       | 7  | $92 = 5 \cdot 17 + 7$ |
| 7        | 3  | $17 = 2 \cdot 7 + 3$  |
| 3        | 1  | $7 = 2 \cdot 3 + 1$   |
| 1        | 0  |                       |

Transformations:

$$\begin{aligned} 1 &= 7 - 2 \cdot 3 \\ &= 7 - 2 \cdot (17 - 7 \cdot 2) = (-2) \cdot 17 + 5 \cdot 7 = \\ &= (-2) \cdot 17 + 5 \cdot (92 - 5 \cdot 17) = 5 \cdot 92 + (-27) \cdot 17 \end{aligned}$$

gcd(92,7)|3 yields a solution

$$x = \frac{3 \cdot 5}{\gcd(92,17)} = 3 \cdot 5 = 15$$
$$y = \frac{3 \cdot (-27)}{\gcd(92,17)} = -3 \cdot 27 = -81$$



# Linear Diophantine Equations (3)

Example: 
$$5x + 3y = 2$$
  $\rightarrow$  many solutions

$$gcd(5,3) = 1$$

As 
$$1 = 2 \cdot 5 + 3 \cdot 3$$
, then one solution is:

$$x = 2 \cdot 2 = 4$$

$$y = -3 \cdot 2 = -6$$

As  $1 = (-10) \cdot 5 + 17 \cdot 3$ , then another solution is:

$$x = -10 \cdot 2 = -20$$

$$y = 17 \cdot 2 = 34$$

### Example: $15x + 9y = 8 \longrightarrow \text{no solutions}$

Whereas, gcd(15,9) = 3, then the equation can be expressed as

$$3 \cdot (5x + 3y) = 8$$

The left-hand side of the equation is divisible by 3, but the right-hand side is not, therefore the equality cannot be valid for any integer x and y.



# Linear Diophantine Equations (3)

Example: 
$$5x + 3y = 2$$
  $\rightarrow$  many solutions

$$gcd(5,3) = 1$$

As  $1 = 2 \cdot 5 + 3 \cdot 3$ , then one solution is:

As 
$$1 = (-10) \cdot 5 + 17 \cdot 3$$
, then another solution is:

$$x = 2 \cdot 2 = 4$$

$$v = -3 \cdot 2 = -6$$

$$x = -10 \cdot 2 = -20$$
$$y = 17 \cdot 2 = 34$$

### Example: 15x + 9y = 8 $\rightarrow$ no solutions

Whereas, gcd(15,9) = 3, then the equation can be expressed as

$$3\cdot (5x+3y)=8.$$

The left-hand side of the equation is divisible by 3, but the right-hand side is not, therefore the equality cannot be valid for any integer x and y.



# More about Linear Diophantine Equations (1)

■ General solution of a Diophantine equation ax + by = c is

$$\begin{cases} x = x_0 + \frac{kb}{\gcd(a,b)} \\ y = y_0 - \frac{ka}{\gcd(a,b)} \end{cases}$$

where  $x_0$  and  $y_0$  are particular solutions and k is an integer.

Particular solutions can be found by means of Euclidean algorithm:

$$\begin{cases} x_0 = \frac{cs}{\gcd(a,b)} \\ y_0 = \frac{ct}{\gcd(a,b)} \end{cases}$$

- This equation has a solution (where x and y are integers) if and only if gcd(a,b)|c
- The general solution above provides all integer solutions of the equation (see proof in http://en.wikipedia.org/wiki/Diophantine\_equation)



# More about Linear Diophantine Equations (2)

#### Example: 5x + 3y = 2

We have found, that gcd(5,3) = 1 and its particular solutions are  $x_0 = 4$  and  $y_0 = -6$ .

Thus, for any  $k \in \mathbb{Z}$ :

$$\begin{cases} x = 4+3k \\ y = -6-5k \end{cases}$$

Solutions of the equation for  $k=\ldots,-3,-2,-1,0,1,2,3,\ldots$  are infinite sequences of numbers:

Among others, if k = -8, then we get the solution x = -20 ja y = 34.



### Next section

- 1 Prime and Composite Numbers
  - Divisibility
- 2 Greatest Common Divisor
  - Definition
  - The Euclidean algorithm
- 3 Primes
  - The Fundamental Theorem of Arithmetic
  - Distribution of prime number



### Prime and composite numbers

Every integer greater than 1 is either prime or composite, but not both:

A positive integer p is called prime if it has just two divisors, namely 1 and p. By convention, 1 is not prime

Prime numbers: 2,3,5,7,11,13,17,19,23,29,31,37,41,...

■ An integer that has three or more divisors is called composite

Composite numbers: 4,6,8,9,10,12,14,15,16,18,20,21,22,...



### Next subsection

- 1 Prime and Composite Numbers
  - Divisibility
- 2 Greatest Common Divisor
  - Definition
  - The Euclidean algorithm
- 3 Primes
  - The Fundamental Theorem of Arithmetic
  - Distribution of prime numbers



## Another application of EA

#### The Fundamental Theorem of Arithmetic

Every positive integer n can be written uniquely as a product of primes:

$$n=p_1\ldots p_m=\prod_{k=1}^m p_k, \qquad p_1\leqslant \cdots \leqslant p_m$$

*Proof.* Suppose we have two factorizations into primes

$$n = p_1 \dots p_m = q_1 \dots q_k,$$
  $p_1 \leqslant \dots \leqslant p_m \text{ and } q_1 \leqslant \dots \leqslant q_k$ 

Assume that  $p_1 < q_1$ . Since  $p_1$  and  $q_1$  are primes,  $gcd(p_1, q_1) = 1$ . That means that EA defines integers s and t that  $sp_1 + tq_1 = 1$ . Therefore

$$sp_1q_2\ldots q_k+tq_1q_2\ldots q_k=q_2\ldots q_k$$

Now  $p_1$  divides both terms on the left, thus  $q_2\dots q_k/p_1$  is integer that contradicts with  $p_1< q_1$ . This means that  $p_1=q_1$ . Similarly, using induction we can prove that  $p_2=q_2$ ,  $p_3=q_3$ , etc



# Canonical form of integers

Every positive integer *n* can be represented uniquely as a product

$$n=p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k}=\prod_p p^{n_p}, \quad ext{ where each } n_p\geqslant 0$$

### For example:

$$600 = 2^{3} \cdot 3^{1} \cdot 5^{2} \cdot 7^{0} \cdot 11^{0} \cdots$$

$$35 = 2^{0} \cdot 3^{0} \cdot 5^{1} \cdot 7^{1} \cdot 11^{0} \cdots$$

$$5 \ 251 \ 400 = 2^{3} \cdot 3^{0} \cdot 5^{2} \cdot 7^{1} \cdot 11^{2} \cdot 13^{0} \cdots 29^{0} \cdot 31^{1} \cdot 37^{0} \cdots$$



## Prime-exponent representation of integers

■ Canonical form of an integer  $n = \prod_p p^{n_p}$  provides a sequence of powers  $\langle n_1, n_2, \ldots \rangle$  as another representation.

### For example:

$$\begin{aligned} 600 &= \langle 3,1,2,0,0,0,\ldots\rangle \\ 35 &= \langle 0,0,1,1,0,0,0,\ldots\rangle \\ 5\ 251\ 400 &= \langle 3,0,2,1,2,0,0,0,0,0,1,0,0,\ldots\rangle \end{aligned}$$



# Prime-exponent representation and arithmetic operations

### Multiplication

Let

$$m = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k} = \prod_p p^{m_p}$$
$$n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k} = \prod_p p^{n_p}$$

Then

$$mn = p_1^{m_1 + n_1} p_2^{m_2 + n_2} \cdots p_k^{m_k + n_k} = \prod_p p^{m_p + n_p}$$

Using prime-exponent representation:

$$mn = \langle m_1 + n_1, m_2 + n_2, m_3 + n_3, \ldots \rangle$$

#### For example

$$600 \cdot 35 = \langle 3, 1, 2, 0, 0, 0, \ldots \rangle \cdot \langle 0, 0, 1, 1, 0, 0, 0, \ldots \rangle$$
$$= \langle 3 + 0, 1 + 0, 2 + 1, 0 + 1, 0 + 0, 0 + 0, \ldots$$
$$= \langle 3, 1, 3, 1, 0, 0, \ldots \rangle = 21 \ 000$$



# Prime-exponent representation and arithmetic operations

#### Multiplication

Let

$$m = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k} = \prod_p p^{m_p}$$
$$n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k} = \prod_p p^{n_p}$$

Then

$$mn = p_1^{m_1 + n_1} p_2^{m_2 + n_2} \cdots p_k^{m_k + n_k} = \prod_p p^{m_p + n_p}$$

Using prime-exponent representation:

$$mn = \langle m_1 + n_1, m_2 + n_2, m_3 + n_3, \ldots \rangle$$

#### For example

$$600 \cdot 35 = \langle 3, 1, 2, 0, 0, 0, \ldots \rangle \cdot \langle 0, 0, 1, 1, 0, 0, 0, \ldots \rangle$$
$$= \langle 3 + 0, 1 + 0, 2 + 1, 0 + 1, 0 + 0, 0 + 0, \ldots$$
$$= \langle 3, 1, 3, 1, 0, 0, \ldots \rangle = 21\ 000$$



## Prime-exponent representation and arithmetic operations

#### Multiplication

Let

$$m = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k} = \prod_p p^{m_p}$$
$$n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k} = \prod_p p^{n_p}$$

Then

$$mn = p_1^{m_1 + n_1} p_2^{m_2 + n_2} \cdots p_k^{m_k + n_k} = \prod_p p^{m_p + n_p}$$

Using prime-exponent representation:  $mn = \langle m_1 + n_1, m_2 + n_2, m_3 + n_3, \ldots \rangle$ 

### For example

$$600 \cdot 35 = \langle 3, 1, 2, 0, 0, 0, \ldots \rangle \cdot \langle 0, 0, 1, 1, 0, 0, 0, \ldots \rangle$$
$$= \langle 3 + 0, 1 + 0, 2 + 1, 0 + 1, 0 + 0, 0 + 0, \ldots \rangle$$
$$= \langle 3, 1, 3, 1, 0, 0, \ldots \rangle = 21 \ 000$$



## Some other operations

### The greatest common divisor and the least common multiple (Icm)

$$gcd(m,n) = \langle \min(m_1,n_1), \min(m_2,n_2), \min(m_3,n_3), \ldots \rangle$$

$$lcm(m,n) = \langle max(m_1,n_1), max(m_2,n_2), max(m_3,n_3), \ldots \rangle$$

### Example

$$120 = 2^{3} \cdot 3^{1} \cdot 5^{1} = \langle 3, 1, 1, 0, 0, \cdots \rangle$$
$$36 = 2^{2} \cdot 3^{2} = \langle 2, 2, 0, 0, \cdots \rangle$$

$$|cm(120,36) = 2^{\max(3,2)} \cdot 3^{\max(1,2)} \cdot 5^{\max(1,0)} = 2^3 \cdot 3^2 \cdot 5^1 = \langle 3,2,1,0,0,\ldots \rangle = 360$$



## Some other operations

### The greatest common divisor and the least common multiple (Icm)

$$gcd(m,n) = \langle \min(m_1,n_1), \min(m_2,n_2), \min(m_3,n_3), \ldots \rangle$$

$$lcm(m,n) = \langle \max(m_1,n_1), \max(m_2,n_2), \max(m_3,n_3), \ldots \rangle$$

### Example

$$\begin{aligned} 120 &= 2^3 \cdot 3^1 \cdot 5^1 = \langle 3, 1, 1, 0, 0, \cdots \rangle \\ 36 &= 2^2 \cdot 3^2 = \langle 2, 2, 0, 0, \cdots \rangle \end{aligned}$$

$$\begin{split} & \textit{gcd}(120,36) = 2^{\min(3,2)} \cdot 3^{\min(1,2)} \cdot 5^{\min(1,0)} = 2^2 \cdot 3^1 = \langle 2,1,0,0,\ldots \rangle = 12 \\ & \textit{lcm}(120,36) = 2^{\max(3,2)} \cdot 3^{\max(1,2)} \cdot 5^{\max(1,0)} = 2^3 \cdot 3^2 \cdot 5^1 = \langle 3,2,1,0,0,\ldots \rangle = 360 \end{split}$$



### Properties of the GCD

#### Homogeneity

 $gcd(na, nb) = n \cdot gcd(a, b)$  for every positive integer n.

#### Proof.

Let  $a=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$ ,  $b=p_1^{\beta_1}\cdots p_k^{\beta_k}$ , and  $gcd(a,b)=p_1^{\gamma_1}\cdots p_k^{\gamma_k}$ , where  $\gamma_i=min(\alpha_i,\beta_i)$ . If  $n=p_1^{n_1}\cdots p_k^{n_k}$ , then

$$\begin{split} \gcd(\textit{na},\textit{nb}) &= p_1^{\min(\alpha_1 + n_1,\beta_1 + n_1)} \cdots p_k^{\min(\alpha_k + n_k,\beta_k + n_k)} = \\ &= p_1^{\min(\alpha_1,\beta_1)} p_1^{n_1} \cdots p_k^{\min(\alpha_k,\beta_k)} p_k^{n_k} = \\ &= p_1^{n_1} \cdots p_k^{n_k} p_1^{n_1} \cdots p_k^{n_k} = n \cdot \gcd(a,b) \end{split}$$

Q.E.D.



### Properties of the GCD

#### GCD and LCM

 $gcd(a,b) \cdot lcm(a,b) = ab$  for every two positive integers a and b

Proof

$$\begin{split} \gcd(a,b) \cdot \mathit{lcm}(a,b) &= \rho_1^{\min(\alpha_1,\beta_1)} \cdots \rho_k^{\min(\alpha_k,\beta_k)} \cdot \rho_1^{\max(\alpha_1,\beta_1)} \cdots \rho_k^{\max(\alpha_k,\beta_k)} = \\ &= \rho_1^{\min(\alpha_1,\beta_1) + \max(\alpha_1,\beta_1)} \cdots \rho_k^{\min(\alpha_k,\beta_k) + \max(\alpha_k,\beta_k)} = \\ &= \rho_1^{\alpha_1+\beta_1} \cdots \rho_k^{\alpha_k+\beta_k} = \mathit{ab} \end{split}$$

Q.E.D.



## Relatively prime numbers

#### Definition

Two integers a and b are said to be relatively prime (or co-prime) if the only positive integer that evenly divides both of them is 1.

Notations used:

- $\gcd(a,b)=1$
- a ⊥ b

#### For example

 $16 \perp 25$  and  $99 \perp 100$ 

Some simple properties

■ Dividing a and b by their greatest common divisor yields relatively primes



## Relatively prime numbers

#### Definition

Two integers a and b are said to be relatively prime (or co-prime) if the only positive integer that evenly divides both of them is 1.

Notations used:

- $\gcd(a,b)=1$
- a ⊥ b

#### For example

16 | 25 and 99 | 100

Some simple properties:

■ Dividing a and b by their greatest common divisor yields relatively primes:

$$gcd\left(\frac{a}{gcd(a,b)},\frac{b}{gcd(a,b)}\right)=1$$

Any two positive integers a and b can be represented as a=a'd and b=b'c where d=gcd(a,b) and  $a'\perp b'$ 



## Relatively prime numbers

#### Definition

Two integers a and b are said to be relatively prime (or co-prime) if the only positive integer that evenly divides both of them is 1.

Notations used:

- $\gcd(a,b)=1$
- a ⊥ b

#### For example

16 | 25 and 99 | 100

Some simple properties:

■ Dividing a and b by their greatest common divisor yields relatively primes:

$$gcd\left(\frac{a}{gcd(a,b)},\frac{b}{gcd(a,b)}\right)=1$$

■ Any two positive integers a and b can be represented as a = a'd and b = b'd, where d = gcd(a,b) and  $a' \perp b'$ 



# Properties of relatively prime numbers

#### **Theorem**

If  $a \perp b$ , then gcd(ac, b) = gcd(c, b) for every positive integer c.

#### Proof.

Assuming canonic representation of  $a=\prod_p p^{\alpha_p},\ b=\prod_p p^{\beta_p}$  and  $c=\prod_p p^{\gamma_p},$  one can conclude that for any prime p:

- The premise  $a \perp b$  implies that  $p^{\min(\alpha_p,\beta_p)}=1$ , it is that either  $\alpha_p=0$  or  $\beta_p=0$ .
- If  $\alpha_p = 0$ , then  $p^{\min(\alpha_p + \gamma_p, \beta_p)} = p^{\min(\gamma_p, \beta_p)}$ .
- If  $\beta_p=0$ , then  $p^{\min(\alpha_p+\gamma_p,\beta_p)}=p^{\min(\alpha_p+\gamma_p,0)}=1=p^{\min(\gamma_p,0)}=p^{\min(\gamma_p,\beta_p)}$

Hence, the set of common divisors of ac and b is equal to the set of common divisors of c and b.

Q.E.D.



# Divisibility

### Observation

Let

$$a=\prod_p p^{\alpha_p}$$

and

$$b=\prod_{p}p^{\beta_{p}}.$$

Then a|b iff  $\alpha_p \leqslant \beta_p$  for every prime p.



## Consequences from the theorems above

- 1 If  $a \perp c$  and  $b \perp c$ , then  $ab \perp c$
- 2 If a|bc and  $a\perp b$ , then a|c
- 3 If a|c, b|c and  $a \perp b$ , then ab|c

### Example: compute gcd(560, 315)

$$gcd(560,315) = gcd(5 \cdot 112, 5 \cdot 63) =$$

$$= 5 \cdot gcd(112,63) =$$

$$= 5 \cdot gcd(2^{4} \cdot 7,63) =$$

$$= 5 \cdot gcd(7,63)$$

$$= 5 \cdot 7 = 35$$



# Consequences from the theorems above

- 1 If  $a \perp c$  and  $b \perp c$ , then  $ab \perp c$
- 2 If a|bc and  $a\perp b$ , then a|c
- 3 If a|c, b|c and  $a \perp b$ , then ab|c

### Example: compute gcd(560, 315)

$$gcd(560,315) = gcd(5 \cdot 112, 5 \cdot 63) =$$

$$= 5 \cdot gcd(112,63) =$$

$$= 5 \cdot gcd(2^{4} \cdot 7,63) =$$

$$= 5 \cdot gcd(7,63)$$

$$= 5 \cdot 7 = 35$$



### The number of divisors

- Canonic form of a positive integer permits to compute the number of its factors without factorization:
- If

$$n=p_1^{n_1}p_2^{n_2}\cdots p_k^{n_k},$$

then any divisor of n can be constructed by multiplying  $0, 1, \dots, n_1$  times the prime divisor  $p_1$ , then  $0, 1, \dots, n_2$  times the prime divisor  $p_2$  etc.

■ Then the number of divisors of n should be

$$(n_1+1)(n_2+1)\cdots(n_k+1).$$

#### Example

Integer 694 575 has 694 575 =  $3^4 \cdot 5^2 \cdot 7^3$  on (4+1)(2+1)(3+1) = 60 factors.

