Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию №3

Выполнили: Турсуналиев Чингиз Серебрякова София Сарджаев Мередкули Ройтман Андрей

Преподаватель: Гусева Юлия

Москва

2020

Постановка задачи

На вход подается информация о:

- Закупках (поставки яблок и карандашей два раза в месяц)
- Продажах (лог транзакций, по записи на каждую проданную позицию)
- Инвентаре (месячные данные общего количества яблок и карандашей на складе)

Данные доступны в формате CSV. Внутри файла данные отсортированы по дате. Нам необходимо получить следующие данные в CSV-файлах:

- 1. Состояние склада на каждый день;
- 2. Месячные данные о количестве сворованного товара;
- 3. Агрегированные данные об объемах продаж и количестве сворованной продукции по штату и году

Ход решения

Будем работать с каждой тройкой файлов, содержащих информацию для определённого магазина штата.

Сначала создадим таблицу, где для каждой даты будет храниться количество купленных яблок и карандашей в этот день.

- 1. Чтобы узнать состояние склада на определённый день, надо суммировать все произведенные поставки и вычесть общее количество проданных товаров к текущему дню.
- 2. Чтобы получить число украденных в каждый месяц товаров, нужно сначала из теоретически высчитанного на предыдущем этапе состояния склада в конце месяца вычесть фактическое состояние склада, известное после инвентаризации. То, что мы получим, будет являться суммарным количеством товара, украденного к концу данного месяца, т. е. будет включать в себя товары, которые были украдены и во все предыдущие месяцы. Значит, чтобы получить количество сворованного товара только для текущего месяца, осталось из полученной величины вычесть суммарное количество сворованного товара, украденного к концу уже предыдущего месяца.
- Для агрегирования данных об объёмах продаж и количестве сворованной продукции по штату и году необходимо найти сумму годовых продаж и суммарное количество украденных товаров по всем магазинам каждого штата.

Описание программы

Первый этап

Считываем данные при помощи функции read. Затем группируем по дням данные о продажах ручек и яблок, используя функцию sell_per_day. Кладем полученные для ручек и яблок в df1 и df2 соответственно.

Теперь все готово, чтобы посчитать количество товара на складе за каждый день. Делаем это учитывая следующее:

- 1. В первый день вычитаем из поставок продажи
- 2. Во второй из полученной в п1 разности продажи во второй день и тд
- 3. Каждого 1 и 15 числа прибавляем новый поставки
- 4. Каждого 30 числа заменяем данные в нашей таблице данными из таблицы о состоянии склада на конец месяца(таблица дана нам в условии)

Проверяем наш результат, сравнивая его с данными из таблицы с ответами при помощи функции check_daily_on_stock

Второй этап

Скачиваем таблицы с помощью библиотеки requests. Приводим данные в удобный формат, присваивая индексам dataFrame дату, для удобства манипулирования ими.

Создаем нужный временной интервал. Подсчитываем сворованный товар по формуле: (сумма поставок товара за месяц) - (сумма продаж за месяц). Берем разницу с реальным количеством товара на складе + товар, оставшийся на складе за прошлый месяц.

Сохраняем таблицы сворованных товаров в csv.

Третий этап

Сперва определяем строки - названия столбцов будущей таблицы. Далее идёт функция вычисления продаж за год, написанная аналогично функции продаж за месяц из первого пункта. То есть из строк в логах о покупках выделяем информацию, продана ручка или яблоко. Затем считаем каждые из них по отдельности, распределяя в Series.

Создаётся словарь (чтобы была возможность по строке названия конкретного магазина получить доступ к соответствующей таблице статистики). Начинается цикл, который проходит одновременно по всем заявленным именам магазинов (markets),

по таблицам ежемесячных краж из магазинов и по таблицам с логами продаж для каждого магазина.

Для каждого имени магазина создаётся DataFrame с заготовками лет, штата (он один — вывод из ручного просмотра файлов) и пока столбцами (нулевыми остальными).

Из функции sell_per_year получаем две Series, которые поэлементно вносим в таблицу. Суммируем по каждому году данные о кражах, которые были посчитаны во втором этапе.

Итоги

Результат выполнения Второго Этапа

	date	apple	pen
0	2006-01	0	1
1	2006-02	2	1
2	2006-03	4	3
3	2006-04	1	1
4	2006-05	2	2
115	2015-08	2	3
116	2015-09	5	4
117	2015-10	2	2
118	2015-11	1	0
119	2015-12	2	2

120 rows × 3 columns

Результат выполнения Третьего Этапа

Out[229]:	{ 's	1':	year	state apple_sold	apple_stolen	pen_sold	pen_stolen
	0	2006	MS	33930	31	3683	26
	1	2007	MS	33608	25	3729	13
	2	2008	MS	34071	19	3658	23
	3	2009	MS	33671	33	3657	33
	4	2010	MS	33806	31	3760	22
	5	2011	MS	33918	30	3676	27
	6	2012	MS	34046	19	3670	29
	7	2013	MS	33729	19	3521	25
	8	2014	MS	33871	24	3549	27
	9	2015	MS	34099	17	3629	24}

Участники

Серебрякова София – Первый этап

Турсуналиев Чингиз – Второй этап

Ройтман Андрей – Третий этап

Сарджаев Мередкули - Readme