Problem 1: Calculating Propagation Delay

♦ Problem:

A CSMA/CD network has two stations A and B that are 2 km apart. The signal propagation speed in the medium is 2×10^8 m/s.

Find the propagation delay (T_p) .

Solution:

We use the formula:

$$T_p = \frac{\text{Distance}}{\text{Propagation Speed}}$$

Given:

- Distance = 2 km = 2000 m
- $\bullet \quad \text{Propagation speed} = 2 \times 10^8 \text{ m/s}$

$$T_p = \frac{2000}{2 \checkmark 10^8}$$

$$T_p = 10 \text{ } \mu\text{s}$$

Problem 2: Collision Detection Time

Problem:

In an Ethernet CSMA/CD network, two stations are 5 km apart. The propagation speed is $2 \times 10^8 \text{ m/s}$. What is the minimum time required for a station to detect a collision?

Solution:

The minimum time to detect a collision is:

$$T_{
m collision} = 2T_p$$

First, we calculate T_p :

$$T_p = rac{ ext{Distance}}{ ext{Propagation Speed}} = rac{5000}{2 imes 10^8}$$

$$T_p = 25 \; \mu ext{s}$$

Now, applying $2T_p$:

$$T_{collision} = 2 \times 25 = 50 \; \mu s$$

Answer: 50 µs

Problem 3: Minimum Frame Size in Ethernet

Problem:

An Ethernet network has a maximum cable length of 2500 meters, and the signal propagation speed is 2×10^8 m/s. The data rate is 10 Mbps. Find the minimum frame size required to ensure collision detection.

Solution:

Step 1: Calculate $2T_p$

$$T_p=rac{ ext{Distance}}{ ext{Propagation Speed}}=rac{2500}{2 imes10^8}$$
 $T_p=12.5~\mu ext{s}$ $2T_p=25~\mu ext{s}$

Step 2: Calculate Minimum Frame Size

Minimum frame size is:

Frame Size = Data Rate
$$imes (2T_p)$$

= $10 imes 10^6 imes 25 imes 10^{-6}$
= 250 bits = $250/8 = 31.25$ bytes

Since Ethernet requires a minimum frame size of 64 bytes, this confirms that a 64-byte frame is sufficient.

Answer: 64 bytes (standard minimum Ethernet frame size)

Problem 4: Time Required to Send a Frame

♪ Sha

* Problem:

A **1500-byte frame** is transmitted over a **100 Mbps** Ethernet network. How long does it take to send the entire frame?

Solution:

$$T_{fr} = rac{ ext{Frame Size}}{ ext{Data Rate}}$$

Given:

- Frame Size = $1500 \times 8 = 12,000$ bits
- Data Rate = 100×10^6 bps

$$T_{fr} = rac{12,000}{100 imes 10^6}$$

$$T_{fr}=120~\mu \mathrm{s}$$

Answer: 120 µs

Problem 5: Maximum Transmission Distance Without Collision

* Problem:

A network operates at 1 Gbps, and the minimum Ethernet frame size is 64 bytes. The signal propagation speed is 2×10^8 m/s. What is the maximum cable length to ensure collision detection?

Solution:

We need to find the maximum propagation delay T_p that satisfies:

$$T_{fr} \geq 2T_p$$

First, find T_{fr} :

$$T_{fr} = rac{ ext{Frame Size}}{ ext{Data Rate}} = rac{64 imes 8}{10^9}$$

$$T_{fr}=rac{512}{10^9}=0.512~\mu {
m s}$$

 $(\mathbf{\psi})$

Now, solving for distance:

Now, solving for distance:

$$2T_p \leq T_{fr}$$
 $2 imes rac{D}{2 imes 10^8} \leq 0.512~\mu ext{ms}$ $D \leq (0.512 imes 10^{-6}) imes (2 imes 10^8)$ $D \leq 102.4~ ext{meters}$

Answer: Maximum cable length = 102.4 meters