Datum 25. 9. 2019	SPŠ CHOMUTOV	Třída A4-2
Číslo úlohy 3	MĚŘENÍ NA AKTIVNÍCH FILTRECH S OZ	Jméno PETŘÍK

Zadání

Proveďte měření dolní propusti na aktivních filtrech s operačními zesilovači.

Schéma

Dolní propusť

Tabulka použitých přístrojů

Zařízení Značka		Údaje	Evidenční číslo	
Stabilizovaný zdroj	-	TSZ 75	LE4 1043	
Generátor	G	Agilent 33250A	LE 108	
Multimetr	ČV	Agilent 34401A	LE 5026	
Odporová dekáda	R1	111 111Ω	LE1 1827	
Odporová dekáda	R2	111 111Ω	LE1 1834	
Kondenzátor	С	0,01 μF	-	
Operační zesilovač	OZ	MAA 741CN	-	

Mezní parametry MAA 741CN

Mezní hodnoty:

<u> </u>	min.	max.	T
U _{oc}	±3	±18	! v
U_{0}		±30	v
U _{cc} U ₀ U ¹ ₁)		±15	v
P_{ini}		310	mW
δ _a	0	+70	∘c
∂ _{etg}	5 5	+1 2 5	∘c
			1

¹) Pro napájecí napětí nižší než ± 15 V je max, vstupní napětí rovno hodnotě $U_{\rm CC}$.

Teorie

Aktivní filtry jsou filtry využívající aktivní součástky pro vytvoření přenosových funkcí s požadavkem závislosti na frekvenci. V současnosti se jako aktivní prvky používají výhradně operační zesilovače. Dosažitelná kmitočtová oblast je shora omezená použitým OZ, zdola není použití aktivních filtrů omezeno. Výhodou aktivních filtrů je konstrukce bez cívek a dosažení příznivých hodnot vstupní a výstupní impedance, což dovoluje kaskádní řazení filtrů.

Z hlediska přenosových vlastností rozlišujeme čtyři základní typy filtrů

- dolní propust
- horní propust
- pásmová propust
- pásmová zádrž

Ve srovnání s filtry pasivními jsou výhod tyto

- Není třeba používat indukčnosti, obvykle lze použít RC článek.
- I pro nízký rozsah kmitočtů lze použít kondenzátory s malou kapacitou.
- Lze měnit vstupní a výstupní odpor, dle potřeby.
- Dosažený zisk je větší než 1.

Postup

- Zapojení obvodu dle schématu dolní propust.
- Výpočet odporů R₁ a R₂.
- Sestrojení programu pro měření ve vývojovém prostředí VEE.
- Spuštění vytvořeného programu
- Print screen obrazovky vytvořeného grafu a programu.

²) Zkrat výstupu (proti zemí nebo napájení) není časově omezen pokud je dodrženo ô_c ≤ 125°C nebo ô_s ≤ 70 °C při U_{cc} ≤ 15 V.

Výpočty

Výpočet odporu R_1 a R_2 Pro A_u = 1 a F_d = 1 kHz

$$R_1 = R_2 = \frac{1}{2 \times \pi \times f \times C} = \frac{1}{2 \times \pi \times 1000 \times 0.01 \times 10^{-6}} = 15915.5\Omega$$

Výpočet impedance ve zpětné vazbě při dělící frekvenci

$$Z = \frac{X_C \times R_2}{X_C + R_2} = \frac{\frac{1}{2 \times \pi \times 1000 \times 0,01 \times 10^{-6}} \times 15915,5}{\frac{1}{2 \times \pi \times 1000 \times 0,01 \times 10^{-6}} \times 15915,5} = 7957,7 \,\Omega$$

Důkaz -3 dB zesílení při dělící frekvenci

Zesílení na dělící frekvenci

$$A_v = \frac{A_u}{\sqrt{1 + \left(\frac{f}{f_d}\right)^2}} = \frac{1}{\sqrt{1 + \left(\frac{1000}{1000}\right)^2}} = \frac{\sqrt{2}}{2} = 0,707 \dots$$

Výpočet zesílení

$$A_u(dB) = 20 \times log_{10} \left(\frac{U_{v\acute{y}st}}{U_{vst}} \right) = 20 \times log_{10} \left(\frac{0,707}{1} \right) = -3.010 \dots dB$$

Doplňující popis programu

- 1 Spojení dvou signálů do jednoho
- 2 Vygenerování frekvencí v mezi určené signály "from" a "thru" s určením počtu frekvencí na dekádu
- 3 Výpočet dělící frekvence a frekvence o dekádu menší a větší.
- 4 Vytvoření struktury pole z vypočtených frekvencí
- 5 Vytvoření konstantního pole obsahující elementy: [0 dB, 0 dB, -20 dB], které tvoří asymptotickou charakteristiku.

Závěr		
Měření se mi líbilo. Zapojení bylo jednoduché a práce s VEE byla zábavná. Z naměřené charakteristiky si můžeme ověřit teoretické předpoklady funkce dolní propusti. Zvláště pěkné je ověření teoretického výpočtu zesílení při dělící frekvenci.		