EXHIBIT 23

PROCESS VALIDATION REPORT

DIGOXIN TABLETS, 0.5 mg 400,000 TABLETS

BATCHES 4296A, 4300A, and 4301A

MPR NO. 14702

Revision No. 00

Prepared by:	KUON ean
Date Prepared:	11/17/94
Approved by:	

Date: 11/22/94

Date: _

Regulatory Affairs Director

Date: 11/17/94

Quality Control Director

Ashla G Wish VP Operations

PROCESS VALIDATION SUMMARY

PRODUCT DIGOXIN TABLETS, 0.5 mg BATCH 4296A 4300A 4301A

The following comments apply to the three 400,000 tablet validation batches produced in this series.

This report includes data through Compression, which is the finished dosage form.

The process used to produce this batch follows exactly that shown in the normal batch record. Copies of the actual batch records are available in the file.

The data supporting the validation of the analytical methods used may be found in the Analytical Method Validation Report issued for this product.

A copy of the protocol to be followed for this project is included.

Evaluation of the data includes calculation of the Process Capability Index, Cp, when appropriate. Cp is a measure of the ability of a process to produce material that is all within the specification range. It verifies that the entire distribution curve for the data collected falls within the allowable limits. The following equation is used.

$$Cp = \frac{(Upper Limit - Lower Limit)}{6 \times St. Dev.}$$

Any value equal to or greater than 1 is acceptable.

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg MPR NO. 14702 - 00

CONCLUSIONS AND OBSERVATIONS

All samples met the established acceptance criteria.

Based on these three batches, the process is considered validated and is acceptable for use.

The data verifies the initial acceptance criteria for all parameters. At this point no revision to any of these ranges will be made.

The final blends showed adequate uniformity for all batches. The resulting Cp value is 2.1, which is more than acceptable.

Content uniformity results are all within the acceptance criteria, and are essentially comparable to the blend results.

Results for both the final blends and content uniformity center around the label amount.

All Dissolution samples for the three batches met the USP requirements. The values for the three batches are comparable, however there is some variability within the individual batches.

The data for each protocol step follows a summary of that step, in the order in which it appears in the protocol.

Amide Pharmaceutical, Inc.

Process Validation

DIGOXIN TABLETS, 0.5 mg

Process Validation Summary

Past Initial Limite Batch A296A A300A A301A Combined Final Limite Final Bland Final Limite Batch A296A A300A A301A Combined Final Limite Final Limite Final Bland Final Limite F								
######################################	Test		Batch	4296A	4300A		Combined	Final Limits
Std Dev 0.8 1.6 2.0 1.6 Cp Cp Average 0.130 0.131	Final Blend	85.0 - 115.0 %Th. (Ind.)	Average	8.86	5.66	100.1	99.4	85.0 - 115.0 %Th. (Ind.)
Cp 2.11 2.	Авелу (%)		Std Dev	8.0	1.6	2.0	1.6	90.0 - 110.0 % Th. (Avg.)
Average 0.130 0.131 0.101 0.102 0.102 0.103 0.104 0.15 0.5 0.5 0.5 0.5 0.5 0.101			Ср				2.1	
	Compression		Average	0.130	0.131	0.131	0.131	
Ccp Average A.3 A.9 A.9 A.7	Weight (g)	0.123 - 0.137 g	Std Dev	0.002	0.002	0.001	0.002	0.123 - 0.137 9
Average 4.3 4.9 4.9 4.7			Ср				1.5	
NMT: 1.0 % Std Dev 0.4 0.3 0.4 0.5	Compression		Average	4.3	4.9	4.9	4.7	
Cp 3.36 3.33 3.32 3.34 Std Dev 0.02 0.03 0.02 0.03 Cp	Hardness (KP)	2.0 - 8.0 kp	Std Dev	0.4	0.3	0.4	0.5	2.0 - 8.0 kp
Average 3.36 3.33 3.32 3.34 Std Dev 0.02 0.03 0.02 0.03 Cp			Сp				2.0	
MMT: 1.0 % Std Dev 0.02 0.03 0.02 0.03 Cp Cp Cp Cp Cp Cp Cp C	Compression		Average	3.36	3.33	3.32	3.34	
Cp 6.1 Average 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04 0.05	Thickness (mm)	3.0 - 4.0 mm	Std Dev	0.02	0.03	0.02	0.03	3.0 - 4.0 mm
Average 0.04 0.05 0.04 0.04 Std Dev 0.01 0.01 0.01 0.01 0.01 Average 3.5 3.5 3.5 3.5 3.5 Std Dev 0.5 0.5 0.5 0.5 Std Dev 0.5 0.5 0.5 0.5 Std Dev 2.8 100.9 99.8 100.8 RSD NMT: 6.0 % Cp 2.8 1.4 1.6 2.2 RSD NMT: 90% (ind.) Average 82.3 79.0 79.9 80.4 Average 94.0 91.1 94.1 93.0 Average 94.0 91.1 94.1 93.0 Std Dev 6.4 3.4 4.3 5.0			Сp				6.1	
MMT: 1.0 % Std Dev 0.01	Compression		Ачегаде	0.04	0.05	0.04	0.04	
Average 3.5	Friability (%)	NMT: 1.0 %	Std Dev	0.01	0.01	0.01	0.01	NMT: 1.0 %
(min) N/A Average Std Dev O.5 3.5 3.5 3.5 3.5 1ity (%) 85.0 - 115.0 % RSD NMT: 6.0 % Std Dev O.5 101.8 O.5 100.9 O.5 99.8 O.5 100.8 O.5 Average RSD NMT: 90% (ind.) Extd Dev O.5 2.8 O.5 1.4 O.5 2.2 O.5 Average RSD NMT: 90% (ind.) Average RSD								
(min) N/A Std Dev 0.5 0.5 0.5 0.5 iity (%) 85.0 - 115.0 % Average 101.8 100.9 99.8 100.8 RSD NMT: 6.0 % Cp 2.8 1.4 1.6 2.2 Average 82.3 79.0 79.9 80.4 1.7 2.8 NHT: 90% (ind.) Std Dev 2.3 3.1 1.7 2.8 Average 94.0 91.1 94.1 93.0 NLT: 80% (avg) Std Dev 6.4 3.4 4.3 5.0	Compression		Average	3.5	3.5	3.5	3.5	
Average 101.8 100.9 99.8 100.8 RSD NMT: 6.0 % Cp 2.8 1.4 1.6 2.2 Average 82.3 79.0 79.9 80.4 Std Dev 2.3 3.1 1.7 2.8 NLT: 80% (avg) Std Dev 6.4 3.4 4.3 5.0	Disintegration (min)	N/A	Std Dev	0.5	0.5	0.5	0.5	K/K
Average 101.8 100.9 99.8 100.8 std Dev 2.8 1.4 1.6 2.2 Cp								
iity (%) 85.0 - 115.0 % Std Dev 2.8 1.4 1.6 2.2 RSD NMT: 6.0 % Cp 2.3 79.0 79.9 80.4 NMT: 90% (ind.) Std Dev 2.3 3.1 1.7 2.8 Average 94.0 91.1 94.1 93.0 NLT: 80% (avg) Std Dev 6.4 3.4 4.3 5.0	Compression		Average	101.8	100.9	8.66	100.8	
RSD NMT: 6.0 % Cp 2.3 Average 82.3 79.0 79.9 80.4 Std Dev 2.3 3.1 1.7 2.8 Average 94.0 91.1 94.1 93.0 NLT: 80% (avg) Std Dev 6.4 3.4 4.3 5.0	Content Uniformity (%)		Std Dev	2.8	1-4	1.6	2.2	85.0 - 115.0 &
Average 82.3 79.0 79.9 80.4 NMT: 90% (ind.) Std Dev 2.3 3.1 1.7 2.8 Average 94.0 91.1 94.1 93.0 NLT: 80% (avg) Std Dev 6.4 3.4 4.3 5.0			Cp				2.3	RSD Men: 6.0 8
NMT: 90% (ind.) Std Dev 2.3 3.1 1.7 2.8 Average 94.0 91.1 94.1 93.0 NLT: 80% (avg) Std Dev 6.4 3.4 4.3 5.0	Compression		Average	82.3	79.0	79.9	80.4	
n. Average 94.0 91.1 94.1 93.0 NLT: 80% (avg) Std Dev 6.4 3.4 4.3 5.0	Dissolution (%)	NMT: 90% (ind.)	Std Dev	2.3	3.1	1.7	2.8	NMT: 90% (ind.)
Average 94.0 91.1 94.1 93.0 Std Dev 6.4 3.4 4.3 5.0	15 min.							
NLT: 80% (avg) Std Dev 6.4 3.4 4.3 5.0	Compression		Average	94.0	91.1	94.1	93.0	
	Dissolution (%)	NLT: 80% (avg)	Std Dev	6.4	3.4	4.3	5.0	NIT: 808 (avg)
	60 min.							

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg MPR NO. 14702 - 00

PROTOCOL STEP - RAW MATERIALS

The raw materials used will be tested, as stated in the protocol, in accordance with approved specifications and methods. In addition, bulk density, tamped density and particle size distribution will be included.

ACCEPTANCE CRITERIA

Parameters normally evaluated will be compared to the current specifications. The density and particle size data will be gathered and used to formulate guidelines when sufficient data is accumulated.

RESULTS - See attached data summary sheets.

CONCLUSIONS AND COMMENTS

All data is acceptable.

Any differences noted do not appear to have any effect on finished product quality.

Particle size determinations were run on two different pieces of equipment. One is a "Ro-Tap" type unit and the other a Micron Air Jet Sieve. For samples run on the "Ro-Tap" the coarser mesh screen is listed first.

It should be noted that particle size and density evaluation was not done for the Green Lake Blend. Since this material is present in such a small amount any differences in either of these parameters will have no significant effect on the final blend.

3089 3081

Silicon Dioxide, NF Stearic Acid, NF

AMIDE PHARMACEUTICAL, INC.

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg

;	3050 Lac	3059 Microcti	3088 Starc	3051 Lactose	3000 Crosc	3038 Gree	0111	3115	Item #	
	Lactose Anhydrous, NF	Microctystalline Cellulose, NF	Starch Pregelatinized, NF	Lactose Hydrous Impalpable, NF	Croscarmellose Sodium, NF	Green Lake Blend LB 603	Digoxin, USP	Corn Starch, NF	Item Name	

3696	3910	4015	3909	3789-1	3855	3799	3245	2967 & 2629-1	2961	P.O. #	Batch # 4296A
3696	3910	40 15	3909	3789-1	3855	3799	3245	2629-1	2961	P.O. #	Batch # 4300A
3696	3910	4015	3909	3789-1	3855	3799	3245	2629-1	2961	P.O. #	Batch # 4301A

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg Rau Material Comparison

	_
	Material
1	Comparison
	ı
	Corn
	Corn Starch,
	폮
	(3115)

P.O. #	2961			
Test Type	Initial			
rer	National Starch & Chem	Starch	æ	Cher
Manufacturer Lot # MC-7621	MC-7621			

PARTICAL SIZE (US 100) // Retained	PARTICAL SIZE (US 200) / Retained	PARTICAL SIZE (US 325) % Retained	TAP DENSITY	BULK DENSITY	SULFER DIOXIDE	OXIDIZING SUBSTANCES	IRON	RESIDUE ON IGNITION	LOSS ON DRYING	PH	MICROBIAL LIMITS	IDENTIFICATION B	IDENTIFICATION A	DESCRIPTION	PARAMETERS	
Retained	7. Retained	% Retained	A Part Brook to work of the supplementary of the su		Passes Test	Passes Test	NMT 0.002%	NMT 0.5%	NMT 14.0%	4.5 - 7.0	Passes Test	Positive	Positive	Passes Test	SPECIFICATIONS	
ZIC	7.9%	48.0%	0.69 g/mL	0.55 g/mL	Passes	Passes	< 0.002%	0.1%	0.8%	4.9	Passes	Passes	Passes	Passes	RESULTS	

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg

Raw Material Comparison - Digoxin USP (0111)

2967
Initial
Boehringer Ingelheim
240 180
2817

PARAMETERS	SPECIFICATIONS	RESULTS	RESULTS
DESCRIPTION	Fine white pouder	Passes	Passes
IDENTIFICATION A	IR spectrum corr. to stnd.	sassed	Passes
IDENTIFICATION B	Retention time corr. to stnd.	Passes	Passes
IDENTIFICATION C	Rf value of blue spot corr. to stnd. Passes	Passes	Passes
LOSS ON DRYING	NMT 1.0%	0.6%	0.6%
RESIDUE ON IGNITION	NMT 0.5%	0.1%	0.1%
RELATED GLYCOSIDES	NMT 3% as grtoxin	⟨ 3½	⟨ 3'.
ASSAY		98.6%	98.6%
BULK DENSITY		0.24 g/ml	0.24 g/ml
TAP DENSITY		0.37 g/ml	0.37 g/ml
PARTICLE SIZE (US 200) 'Retained	'Retained	95.6%	95.6%
PARTICLE SIZE (US 325) Retained		4.0%	4.0%

	Green odorless fine pouder.	Passes
9	Max absorption at 630 + or - 5 nm	Passes

Paç	e Manufacturer Lot #	10 Manufacturer	of Test Type	P.O. #	a P	#: DIGOXIN TABLETS, 0.5 mg	0613 PROCESS VALIDATION
	208 18 1	Colorcon	Initial	3245			

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg

Rau Material Comparison - Croscarmellose Sodium, NF (3000)

Manufacturer Lot #	Manufacturer	Test Type	P.O. #	
	FMC	Initial	3799	

PARAMETERS	SPECEFICATIONS	
DESCRIPTION	Passes Test	Passes
IDENTIFICATION A	Positive	Passes
IDENTIFICATION B	Positive	Passes
IDENTIFICATION C	Positive	Passes
HQ	5.0 - 7.0	6.3
LOSS ON DRYING	NMT 10.0%	2.3%
HEAUY METALS	NMT 0.001%	< 0.001%
SODIUM CHLORIDE & SODIUM STARCH GLYCOLATE NMT 0.5%	NMT 0.5%	0.21%
DEGREE OF SUBSTITUTION	0.60 to 0.85	0.7
CONTENT OF WATER SOLUBLE MATERIAL	1.0% - 10.0%	3.7%
SETTLING VOLUME	10.0 mL - 30.0 mL	23 mL
MICROBIAL TEST		Passes
BULK DENSITY		0.50 g/mL
TAP DENSITY		0.72 q/mL
PARTICLE SIZE (US 325)	∴ Retained	0.8%
		`.'.

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg

Material Comparing

Rau Materaıal Comparıson - Lactose Hydrous Impalpable NF (3051)

P.O. #	3855
Test Type	Initial
Manufacturer	HMS Chemical
Manufacturer Lot #	16478

PARAMETERS	SPECIFICATIONS	RESULTS
DESCRIPTION	Passes Test	Passes
IDENTIFICATION A	Positive	Passes
IDENTIFICATION B	Positive	Passes
CLARITY AND COLOR OF SOLUTION	Passes Test	Passes
LOSS ON DRYING	NMT 1.0%	0.1%
SPECIFIC ROTATION	+54.8° to +55.5°	+55.3°
MICROBIAL LIMITS	Passes Test	Passes
WATER	Hydrous: NMT 5.5%	5.0%
RESIDUE ON IGNITION	NMT 0.1%	0.03%
HEAUY METALS	NMT 5 ppm	< 5 ppm
ACIDITY/ALKALINITY	Passes Test	Passes
PROTEIN/LIGHT ABSORBING IMPUR.	Passes Test	Passes
ORGANIC VOLATILE IMPURITIES	Passes Test	Passes
BULK DENSITY		0.58 g/mL
TAP DENSITY		0.89 g/mL
PARTICAL SIZE (US 325)	7. Retained	82.8%
PARTICAL SIZE (US 200)	% Retained	11.6%

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg

Material Comparison -

Rau Material Comparison - Starch Pregelatinized NF (3088)

P.O. #	3789-1
Test Type	Initial
Manufacturer	Colorcon
Manufacturer Lot #	407056
	Charles and the Control of the Contr

AND CONTRACTOR OF THE CONTRACT		
PARAMETERS	SPECIFICATIONS	RESULTS
DESCRIPTION	Passes Test	Passes
IDENTIFICATION	Positive	Passes
PH	4.5 - 7.0	6.1
IRON	NMT 0.002%	<0.002 %
OXIDIZING SUBSTANCES	Passes Test	Passes
SULFUR DIOXIDE	NMT: 0.008%	Passes
MICROBIAL LIMITS	Passes Test	Passes
LOSS ON DRYING	NMT 14.0%	9.4%
RESIDUE ON IGNITION	NMT 0.5%	0.2%
BULK DENSITY		0.65 g/mL
TAP DENSITY		0.83 g/mL
PARTICAL SIZE (US 100) % Accumulation		2.8 %
PARTICAL SIZE (US 200)	(US 200) % Accumulation	24.2 %
PARTICAL SIZE (US 325) / Accumulation	% Accumulation	47.2 %

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg

Raw Material Comparison - Microcrystalline Cellulose, NF (3059)

Manufacturer Lot #	Manufacturer	Test Type	P.O. #
4577	Mendell	Initial	3909

PARAMETERS	SPECIFICATIONS	RESULTS
DESCRIPTION	Passes Test	Passes
IDENTIFICATION	Positive	Passes
PH	5.5 to 7.0	6.5
LOSS ON DRYING	NMT 5.0%	3.2%
RESIDUE ON IGNITION	NMT 0.05%	0.01%
WATER SOLUBLE SUBSTANCES	NMT 0.16%	0.10%
HEAUY METALS	NMT 0.001%	<0.001%
STARCH	Passes Test	Passes
ASSAY	97.0% - 102.0%	98.8%
BULK DENSITY		0.32 g/m
TAP DENSITY		0.42 g/m
PARTICAL SIZE (US 325)	2. Retained	40.1
		17.0
	Netained	Z:

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg

Rau Material Comparison - Lactose Anhydrous, NF (DT) (3050)

Manufacturer Lot #	Manufacturer	Test Type	P.O. #	
MRP545363	Quest	Initial	40 15	

PARAMETERS	SPECIFICATIONS	RESULTS
DESCRIPTION	Passes Test	Passes
IDENTIFICATION A	Positive	Passes
IDENTIFICATION B	P05111ve	Passes
CLARITY AND COLOR OF SOLUTION	Passes Test	Passes
LOSS ON DRYING	NMT 0.5%	0.2%
SPECIFIC ROTATION	Between +54.8° and +55.5°	+55.2°
MICROBIAL LIMITS	NMT 100 per gm	Passes
WATER	NMT 1.0%	0.4%
RESIDUE ON IGNITION	NMT 0.1%	0.04%
HEAUY METALS	NMT 5 ppm	< 5 ppm
ACIDITY/ALKALINITY	Passes Test	Passes
PROTEIN AND LIGHT ABSORBING IMPURITIES	NMT 0.25	Passes
ORGANIC VOLATILE IMPURITIES	Passes Test	Passes
BULK DENSITY		0.57 g/ml
TAP DENSITY		0.81 g/ml
PARTICAL SIZE (US 100)	Accumilation	13. 1%
- Andrewski de la companya de la com	and the state of t	28.6%
PARTICAL SIZE (US 325)		40.5%

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg

Rau Material Comparison - Stearic Acid, NF (3089)

D.O.# Test Tupe	3910 Initial
Manufacturer	Witco
Manufacturer Lot #	440069

PARAMETERS	SPECIFICATIONS	RESULTS
DESCRIPTION	Passes Test	Passes
CONGEALING TEMPERATURE	NLT 54°	55°
RESIDUE ON IGNITION	NMT 0.1%	0.01
HEAUY METALS	NMT 0.001%	<0.001
MINERAL ACID	Passes Test	Passes
NEUTRAL FAT OR PARAFIN	Passes Test	Passes
IODINE UALUE	NMT 4	0.10
ASSAY A	NLT 40.0%	43.4%
ASSAY B	NLT 90.0%	96.4%
ORGANIC VOLATILE IMPURITIES Passes Test	Passes Test	Passes
BULK DENSITY		0.38 g/ml
TAP DENSITY		0.49 q/ml
	% Retained	54.0%
	Netained	K 4.

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg

Haterial Comparison -

Rau Material Comparison - Silicon Dioxide, NF (3081)

P.O. #	3696
Test Type	In1t1al
Manufacturer	Degussa Corp.
Manufacturer Lot #	4-90

N ₁ 1	1. Retained	PARTICAL SIZE (US 325)
0.13 g/ml		TAP DENSITY
0.10 g/ml		BULK DENSITY
99.6%	NLT 99.0%	ASSAY
(0.003%	NMT 0.003%	HEAUY METAL
<3 ppm	NMT 3 ppm	ARSENIC
⟨0.5%	NMT 0.5%	SULFATE
⟨0.1%	NMT 0.1%	CHLORIDE
4.0%	NMT 5.0%	LOSS ON DRYING
6.7	4 - 8	РН
Passes	Positive	IDENTIFICATION
Passes	Passes Test	DESCRIPTION
RESULTS	SPECIFICATIONS	PARAMETERS

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg MPR NO. 14702 - 00

PROTOCOL STEP - TEMPERATURE/HUMIDITY READINGS

A temperature and humidity reading will be taken once each day in the production area. The production dates for the three batches are as follows:

> 4296A 10/14/94 - 10/18/94 4300A 10/18/94 - 10/21/94 4301A 10/18/94 - 10/21/94

RESULTS - See attached data summary sheets.

CONCLUSIONS AND COMMENTS

The temperature ranged from 69 - 72 degrees F, and the relative humidity from 48 - 67 %. This indicates that acceptable product can be made at these levels.

TEMPERATURE/HUMIDITY READINGS PERIOD COVERING DIGOXIN TABLETS, 0.5 mg

BATCHES 4296A, 4300A, AND 4301A

LOCATION	DATE	TEMP. (Deg. F)	RH (%)	
Near Pr. Rm. #1	14-Oct-94	70	(12)	54
Near Pr. Rm. #1	17-Oct-94	69		48
Near Pr. Rm. #1	18-Oct-94	70		56
Near Pr. Rm. #1	19-Oct-94	71		58
Near Pr. Rm. #1	20-Oct-94	72		65
Near Pr. Rm. #1	21-Oct-94	72		67

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg MPR NO. 14702 - 00

PROTOCOL STEP - BLEND UNIFORMITY

Utilizing a sampling thief, sample each of the blenders from the positions shown on the attached data summary. Separately analyze, and report, each one for active ingredient content.

The speed of each blender will be monitored both empty and at each stage of blending.

ACCEPTANCE CRITERIA

Final Blend - 85.0 - 115.0 % Th. (Individual)

RESULTS - See the attached data summary.

CONCLUSIONS AND COMMENTS

The final blends for the three batches met all acceptance criteria and appear to be uniformly blended.

The bulk and tamped density results are comparable for all three batches.

Some differences are evident in the particle size distribution for the three batches. This is especially noticeable for the 100 and 200 mesh screens. Batches 4300A, and 4301A, are comparable to one another, while batch 4296A is significantly finer. These differences do not correlate with either the content uniformity or dissolution results. Therefore this is considered normal variation.

The speed for both blenders was observed to be constant throughout production of the three batches. The same speed was obtained both empty and under load. The supporting documentation is attached.

1 Cu. Ft. (31) - 26 rpm 3 Cu. Ft. (32) - 22 rpm

PROCESS VALIDATION

GOXIN TABLETS, 0.5 m

nal
Blend
1
Assay
?
Labe 1

-	-	_	-	_										
RSD	St Dev.	Average	Bottom Right	Bottom Left	n iddle Right	Middle Center	Middle Left	Right Column - Top Right	Right Column - Top Center	Right Column - Top Left	Left Col umn - Top Right	Left Column - Top Center	Left Column - Top Left	Batch
0.8	0.8	98.8	98.7	99.2	99.9	99.7	98.3	99.4	98.9	97.6	98.6	98.4	97.7	4296A
1.6	1.6	99.5	101.0	100.2	102.5	99.6	99.4	98.3	98.9	96.2	99.2	100.2	98.6	4300A
2.0	2.0	1.00	100.3	98.7	102.8	100.2	101.2	99.3	99.9	95.9	100.9	103.1	98.7	430 1A

15.3

14.2

13.9

AMIDE PHARMACEUTICAL, INC.

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg

inal Blend - Densitus

Final Blend - Density/Particle Size

Density (g/ml)

Tap	Bulk	Batch
0.91	0.62	4296A
0.87	0.61	4300A
0.87	0.61	4301A

Particle Size

⟨% Retained⟩

Amide Pharmaceutical, Inc.

PROCESS VALIDATION DATA SHEET

PRODUCT NAM	ME (#): DisexI	nrch	0.5 Mg (147)		
ватси #:	_			00	DATE: 10/14/94
BLENDER #:	31				

TIME	BLENDER'S CONTENTS	BLENDER'S THEO. MATERIAL WEIGHT (Kg)	BLENDER'S RPM	DONE BY	BY CHECKED
86 345 Az	IN 10/14/12 EMTY	0	26	KI	J.D
3.53Pm	wrn such Discoin, weenuke	5.02 Kg	26	ŁO	J. 9
	CY OSCTOXINE 110 St.				
4.08 Pm	Cornstarch, Digetin, Greentake	11.9219	26	ks	7.0
	(rosigrmellese, lactorety from				
			1		
				-	
				-	
				_	
				-	
	pp.				<u> </u>
]				_\	
				1	

PD2-046

Je Pharmaceutical, Inc.

PROCESS VALIDATION DATA SHEET

PRODUCT NAME (#): Digexin	The 0.5 mg (1417)	
	MPR #: 14702 REV #: 00	DATE: 10/14/94
BLENDER #: 32		

TIME	BLENDER'S CONTENTS	BLENDER'S THEO. MATERIAL WEIGHT (Kg)	BLENDER'S RPM	DONE BY	CHECKED BY
4.10 PM	FATRAY EMAY	Ò	22	Kl	Ţ.D
	corn starch, Digoxin Greensle				
5.03Pm	Crosscrmellose 12C+OSE14ydross		22	Kb	J.D
	Starch, microcrystalline	33.80 Kg	33-80 TO 10/14/94		
	cornstanch, pigusin, cereentake				
5.25 pm	Croscarmellose, Lactose Hydrous		22	<u> </u>	
	starch, microcrystallin		7. T. P		
	Lactose Anhy frozis	50.60 kg	10/14/94 50.60	K6	J.0
	cornstarch, pigoxin, GreenLake				
	(YOSCAT Mellos & LACTOSCHYJOOUS				
	Starch, microcry Stellin,				
	LACTOSE ANLYDOUS, STEASICACID	•		-	
5.4712	Silicon Di Oxide	52.00 kg	22	7.0	AN

Ámide Pharmaceutical, Inc.

PROCESS VALIDATION DATA SHEET

PRODUCT NAME (#): DIGOXIN	Tablets 0.5%	7) (147)	
BATCH #: 4300 A	MPR #: 14702	REV #: 00	DATE: 10/18/94
BLENDER #: 31			

TIME	BLENDER'S CONTENTS	BLENDER'S THEO. MATERIAL WEIGHT (Kg)	BLENDER'S RPM	DONE BY	CHECKED BY
10:55Am	EMPTY.	o ookg.	26	Kſ	IP
1 1	•	. 0			
12:16 Pm	STEP # R·M· ID #, 3115 + 0111 + 3038 +3000	5.020	26	Kſ	IP .
	STEP#2	11.0-0	2.6		-0
12:30 Am	STEP #1 + 3051	11.920	26	<u> {< f</u>	IP

					-
	·				-
				_	
	The second secon	ŧ		1	

é Pharmaceutical, Inc.

PROCESS VALIDATION DATA SHEET

PRODUCT NAME (1): Di JOXIN TableH 0-5mg (147)

BATCH 1: 4300 A MPR 1: 14702 REV 1: 00 DATE: 10/18/94

BLENDER 1: 32

TIME	BLENDER'S CONTENTS	BLENDER'S THEO. MATERIAL WEIGHT (Kg)	BLENDER'S RPH	DONE BY	CHECKED BY
			22	pr	Il
10:50 Am		0.000kg	12	7.	
1:12 Bn	STEP # 1 BLENDED MATERIAL + 3088	33-800	22	KB	zl
	+ 30.59				
1:31Pm	STEP # 1 + 3050	50.600	22	KE	Il
	STEP # 3	52.000	22	101	TH.
1:56 pm	3/6/ 4 2 / 3/03 / 3 / 3				
	·				
. Opens consuma					

Amide Pharmaceutical, Inc.

PROCESS VALIDATION DATA SHEET

PRODUCT NAME (#): Digoxin	Tablets 0.5mg	(147)	
BATCH 1: 430/A	HPR 1: 14702	REV 1: 00	DATE: 10/18/94
BLENDER 1: 31			

TIME	BLENDER'S CONTENTS	BLENDER'S THEO. MATERIAL WEIGHT (Kg)	BLENDER'S RPM	DONE BY	CHECKED BY
3.40 /21					
	EMPTY	0 - 000	26	14	J.0
				·	
	CTCP #1				
3·48Pm	STEP # 1 R·m . 7.0 # 3115 + 0111+3038+3000	5.020	26	KI	J.D
	STEP #2				
4.03 Pm	STEP #1 + 3051	11.920	26	KL	J.D

	4				
-					
				1	

Je Pharmaceutical, Inc.

PROCESS VALIDATION DATA SHEET

PRODUCT NAME (1): Digoxin Tablets 0.5 mg (147)

BATCH 1: 4301A MPR 1: 14702 REV 1: 00 DATE: 10/18194

BLENDER 1: 32

TIME	BLENDER'S CONTENTS	BLENDER'S THEO. HATERIAL WEIGHT (Kg)	BLENDER S RPM	DONE BY	CHECKED BY
3.45PH	EMPTY.	0-000	22	k8	J.D
	STEP # BLEHDED MATERIAL + 3088	33.800	12	61-C	J.D
A. 50 PM	+3059				
5.13Pm	STEP#1+3050	50-600	22	6.0	J. D
5.38 Pr	STEP#3 STEP#2+3089+3081	52-000	22	61-6	J. D
	ry to the second control of the cont				

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg MPR NO. 14702 - 00

PROTOCOL STEP - COMPRESSION

Samples were taken from each side of the press each 15 minutes and were evaluated for the following parameters.

Weight (n = 10)Thickness (n = 5)Hardness (n = 5)

These samples will be arranged chronologically and the batch divided into thirds. Front and rear will be analyzed separately as follows.

Friability 10 g - 1 run Dissolution N = 12 (6 front & 6 rear) Disintegration N = 6

Content uniformity is to be run across the entire batch. One tablet from each sample taken is to be run from the front, and one from the rear. A minimum of 30 is required from each side.

During compression a minimum quantity of tablets will be run at speeds higher and lower than normal. The actual speeds will be selected during production. These tablets will be evaluated for weight and hardness.

During compression minimum quantities of tablets will be run at hardness of 0.5 - 3 KP and greater than 8 KP. An attempt will also be made to run some tablets at the highest possible hardness that can be obtained without capping. These tablets will be evaluated for Dissolution and Friability.

ACCEPTANCE CRITERIA

Weight: 0.123 - 0.137 g
Hardness: 2.0 - 8.0 KP
Thickness: 3.0 - 4.0 mm
Friability: NMT 1.0 %

Dissolution: Meets USP Requirement

Disintegration: N/A (for characterization only)

Content Uniformity: 85.0 - 115.0 % TH, (RSD NMT 6.0 %)

Assay: 90.0 - 105.0 % Label

RESULTS - See attached data summary sheets.

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg MPR NO. 14702 - 00

CONCLUSIONS AND COMMENTS

The samples met all acceptance criteria.

The values for weight, hardness, and thickness for the three batches were comparable to each other and showed no unusual shifts or trends. The overall averages for weight and hardness are very close to the midpoints of the preset ranges. Therefore, no revisions to these limits are indicated by the validation data. The midpoint of the thickness range is 3.5 mm, while the observed value for these three batches is 3.3 mm. Since the variability is so low the guideline should be met without difficulty. Therefore the range will not be revised at this time. However, if this trend continues during future production, the range will be revised when sufficient data is obtained. Results are attached in both tabular and graphical form.

Content Uniformity was within limits for all samples tested, with no significant trends being observed. All values except one were within 95 - 107 % L. One tablet had a value of 88, which is within the limit. The values obtained were observed to agree favorably with the blend assays. It should be noted that the averages for the blend assays, and the content uniformity results are essentially the label amount.

All Dissolution samples for the three batches met the USP requirements. This statement is true for both USP XXII (60 Min.) and XXIII (15 & 60 Min.). The values for the three batches were comparable, however there is some variability within the batches themselves. This is more pronounced in the 60 minute readings than in the 15. Batch 4301A appears to be less variable than the other two.

Friability values were all well within the acceptance criteria, and comparable for the three batches.

Disintegration results were comparable with no unusual shifts or trends. Note that this test was run for characterization only, and therefore no acceptance criteria have been, or will be, established.

Acceptable tablets were produced at the low press speed

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg MPR NO. 14702 - 00

Acceptable tablets were produced at the low press speed for all three batches, and at high speed for batch 4296A. Unacceptable tablets (weight variability) were produced at high speed for batches 4300A, and 4301A. The normal, high, and low operating speeds for each batch are as follows. Based on the data obtained here, the press may be safely run a slow as 17 rpm. No upper limit can be set at this time.

BATCH	NORMAL	HIGH	LOW
4296A	22 rpm	27 rpm	17 rpm
4300A	22 rpm	27 rpm	17 rpm
4301A	22 rpm	28 rpm	17 rpm

The high and low hardness validation produced acceptable tablets at both ends of the range. Tablets with hardness above the upper limit could not be produced. Therefore the guideline will remain at 2.0 - 8.0 KP. The values for friability are listed below. Those for dissolution are attached.

FRIABILITY (%)

BATCH	4296A	4300A	4301A
LOW KP FRONT	0.06	0.04	0.05
REAR	0.05	0.05	0.06
HIGH KP FRONT	0.03	0.02	0.04
REAR	0.03	0.03	0.03

The results for the overall composites are attached. These are also all within the acceptance criteria, and are essentially comparable to those obtained for the individual samples.

PROCESS VALIDATION

DIGOXIMTABLETS, 0.5 mg - Batch # 4296A

Compression - Weight (g) - Front

RSD	1.1	0.8	1.0	1.4	1.5	0.8	1.0	0.7	1.7	1.3	1.6	4
St Dev.	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.001	0.002	0.002	0.002	00.0
Average	0.131	0.131	0.131	0, 133	0.130	0.128	0.129	0.130	0.130	0.130	0.130	0.130
10	0.132	0, 130	0, 133	0.130	0.131	0.128	0.128	0.131	0.128	0.129	0.132	0.130
6	0.129	0.132	0.130	0.131	0, 128	0.129	0.129	0.131	0.132	0.130	0.129	0, 129
8	0.132	0.131	0.131	0.134	0.131	0.129	0.128	0.132	0.129	0.132	0, 129	D. 129
7	0.130	0.132	0.129	0. 133	0.131	0.128	0.131	0.130	0.129	0.133	0.130	n. 13n
9	0.133	0.132	0.132	0.132	0.130	0.128	0.128	0.129	0.130	0.131	0.131	0, 129
5	0.130	0.131	0.131	0.133	0.126	0.127	0.128	0.130	0, 131	0.129	0.132	0. 130
4	0.129	0.130	0.133	0.131	0.133	0.129	0.129	0.131	0.133	0.128	0. 133	0, 129
3	0.130	0.129	0.131	0.135	0.130	0.126	0.131	0.131	0.131	0.129	0.128	0.130
2	0.131	0.132	0.131	0.133	0.128	0.129	0.131	0.129	0.134	0.130	0.127	0.130
1	0.129	0.131	0.132	0.136	0, 130	0.129	0.129	0.130	0.127	0.128	0.128	0.130
Date k Time	10/17/94 3:00 PM	10/17/94 3:15 PM	10/17/94 3:30 PM	10/17/94 3:45 PM	10/17/94 4:00 PM	10/17/94 4:15 PM	10/17/94 4:30 PM	10/17/94 4:45 PM	10/17/94 5:00 PM	10/17/94 5:15 PM	10/18/94 8:15 AM	10,18,94 8:30 AM

Compression - Weight (g) - Rear

_	,	_	_									
RSD	0.7	0.5	1.2	1.8	1:1	0.7	0.8	0.5	1.0	0.7	0.7	0.8
St Dev.	0.001	0.001	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Average	0.131	0.130	0.130	0.132	0.130	0.131	0.130	0.130	0.131	0. 132	0.129	0.131
10	0.131	0.131	0.130	0.131	0.130	0.131	0.130	0.130	0.132	0.130	0.129	0.131
6	0.130	0.129	0.129	0.130	0.130	0.130	0.131	0.129	0.130	0.132	0. 128	0. 132
8	0.132	0.131	0.132	0.132	0.131	0.131	0. 132	0.130	0.129	0.131	0.129	0.131
7	0.131	0.131	0.129	0.132	0.132	0.130	0.130	0.131	0.132	0.132	0.129	0.130
9	0.129	0.130	0.130	0. 133	0.129	0.132	0.129	0.131	0.131	0.133	0.131	0.132
5	0.130	0.130	0.129	0.130	0.130	0.132	0.131	0.131	0.130	0. 132	0.129	0.130
4	0.130	0.131	0. 127	0.132	0.131	0.130	0.129	0.130	0.131	0, 133	0.128	0.131
3	0.131	0.131	0.131	0.128	0.127	0.131	0.129	0.131	0.133	0.131	0.129	0.130
2	0.130	0.130	0.129	0.137	0, 131	0.129	0.130	0.131	0.132	0.132	0.130	0, 132
1	0.131	0.130	0.132	0.132	0.131	0.131	0.130	0.130	0. 133	0.131	0.130	0, 129
Time	717/94 3:00 PM	0/17/94 3:15 PM	10/17/94 3:30 PM	0/17/94 3:45 PM	10/17/94 4:00 PM	0/17/94 4:15 PM	10/17/94 4:30 PM	4:45 PM	5:00 PM	5:15 PM	8:15 AM	8:30 AM
Date	10/17/94	10/17/94	10/17/94	10/17/94	10/17/94	10/17/94	10/17/94	10/17/94 4:45 PM	10/17/94 5:00 PM	10/17/94 5:15 PM	10,18/94 8:15 AM	10,18,94 8:30 AM

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg - Batch # 4300A

Compression - Weight (g) - Front

			Ü											-
Uate	11me		7	Ж	4	ດ	9	7	ထ	6	10	Average	St Dev.	RSD
10/20/94	3:45 PM	0.132	0.131	0.133	0.133	0.135	0.132	0.134	0.135	0, 133	0. 134	0, 133	0.00	C .
10/20/94	4:00 PM	0.131	0.134	0.133	0.131	0, 132	0.133	0.132	0. 133	0. 132	0, 133	0.132	0 001	7 0
10/20/94	.0/20/94 4:15 PM	0.135	0.131	0.134	0.131	0.133	0.134	0. 133	0.134	0, 134	0.134	0. 133	0.001	-
10/20/94	10/20/94 4:30 PM	0. 133	0.134	0.132	0.133	0.133	0.132	0.132	0.133	0.131	0.132	0. 133	0.001	0.6
10/20/94	4:45 PM	0.131	0.133	0.131	0.130	0, 132	0.131	0.133	0.129	0.135	0.133	0.132	0.002	1.3
10/20/94 5:00	5:00 PM	0, 134	0.130	0.130	0.129	0.129	0.130	0.128	0, 129	0.130	0, 130	0.130	0.002	1.2
10/20/94	0/20/94 5:15 PM	0.129	0.132	0.132	0.130	0.130	0.129	0.130	0.129	0.128	0.127	0.130	0.002	1.2
10/20/94	0/20/94 5:30 PM	0.130	0.130	0.132	0.131	0.130	0.130	0, 130	0.133	0.132	0. 130	0, 131	0.001	0
10/20/94	0/20/94 5:45 PM	0.132	0.131	0.130	0.131	0.131	0. 131	0.130	0.132	0, 129	0.131	0. 131	0.001	0.7
10/21/94	7:45 AM	0.132	0. 132	0.129	0.131	0. 131	0.131	0.130	0.131	0.131	0.131	0. 131	0.001	0.7
10/21/94	10/21/94 8:45 AM	0.128	0, 129	0.132	0. 129	0.133	0.131	0.129	0.130	0, 131	0.130	0. 130	0.002	1.2
10/21/94	0/21/94 9:00 AM	0.130	0. 131	0.130	0.132	0. 131	0.133	0.131	0.129	0.132	0.129	0, 131	0.001	1.0

Compression - Weight (g) - Rear

9	-	_	_	-	_	_		_					
	RSD	α.	-	0.9	-	α	1.2	4		1.1	1 1	-	100
	St Dev.	0.001	0.001	0.00	0.001	0.001	0 00	00.0	000	0000	00.0	0.002	200
	Average	0.132	0, 131	0.131	0.131	0. 131	0.132	0.137	121	0. 131	0, 131	0.130	0.130
	10	0, 131	0.132	0.131	0.132	0.132	0.133	0.137	0.178	0.131	0.133	0.131	0.178
3	9	0, 131	0.131	0.132	0.130	0.131	0.130	0.131	0.129	0.127	0.132	0, 130	0.132
	8	0.132	0, 133	0.130	0, 130	0.131	0.131	0.132	0.130	0.132	0.131	0.129	0.129
	7	0.130	0.131	0.131	0.132	0.130	0.130	0.132	0.131	0.130	0.130	0.129	0.131
	9	0.131	0.129	0.132	0.128	0.129	0.134	0.131	0.132	0.131	0.131	0.129	0.129
	ဂ	0.132	0.131	0.131	0.131	0.131	0, 133	0.132	0.133	0.132	0.132	0.129	0. 132
ŀ	4	0.133	0.132	0.131	0.132	0.131	0.134	0. 131	0, 131	0.131	0.131	0.133	0.133
í	7	0.130	0.129	0, 130	0.131	0.132	0.132	0.131	0.131	0.132	0.130	0.133	0. 129
	7	0. 132	0.133	0.130	0.131	0.130	0.133	0.132	0.132	0.131	0.129	0.130	0.129
-		0. 133	0.131	0. 128	0, 130	0.132	0.130	0.132	0.130	0.133	0.134	0.130	0.129
	1100	3:45 PM	4:00 PM	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	7:45 AM	8:45 AM	9:00 AM
	Uate	10/20/94	10/20/94	10/20/94 4:15 PM	10/20/94	10/20/94 4:45 PM	10/20/94 5:00 PM	10/20/94 5:15 PM	10/20/94 5:30 PM	10/20/94	10/21/94	10/21/94 8:45 AM	10/21/94 9:00 AM

PROCESS VALIDATION

DIGOLIN TABLETS, 0.5 mg - Batch # 4301 A

Compression - Weight (g) - Front

_	-				,				,				
RSD	0.8	1.1	9.0	1.0	0.8	0.8	1,1	0.9	0.7	1.0	1.4	6.0	1.2
St Dev.	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.002	0.001	0.002
Average	0.131	0.130	0.132	0. 132	0.131	0. 131	0.131	0.130	0.130	0. 131	0.131	0.131	0.130
10	0.131	0.130	0.132	0.131	0, 131	0.132	0.131	0.130	0.129	0.133	0.135	0.131	0, 129
6	0.129	0.128	0. 132	0.132	0.131	0.130	0.130	0.131	0.130	0.129	0.131	0.129	0.128
8	0.131	0.129	0.131	0. 133	0.131	0.130	0.132	0.132	0.130	0.130	0.132	0.130	0.129
7	0.130	0.131	0.132	0.131	0.130	0.130	0.134	0.130	0.130	0.132	0.132	0.132	0.131
9	0.130	0.132	0.133	0.132	0.131	0.133	0.129	0.129	0.131	0.131	0.132	0.131	0.130
5	0. 132	0.131	0, 131	0.133	0.131	0.132	0. 131	0.130	0.132	0. 133	0.130	0. 129	0.132
4	0.129	0.129	0.132	0.129	0.129	0.130	0.133	0.130	0.129	0.130	0.132	0.131	0.127
3	0.130	0. 132	0.133	0.131	0.130	0.132	0.132	0, 128	0.130	0.131	0.128	0.129	0.131
2	0.132	0.131	0.132	0.133	0.133	0.131	0, 130	0.132	0.130	0.130	0.131	0.131	0.130
1	0.131	0, 129	0.133	0.132	0.130	0.131	0.132	0.130	0.129	0.130	0.131	0.132	0.131
Time	0/21/94 11:15 AM	0/21/94 11:30 AM	0/21/94 11:45 AM	0/21/94 12:00 PM	0/21/94 12:15 PM	0/21/94 12:30 PM	10/21/94 12:45 PM	10/21/94 1:00 PM	0/21/94 1:15 PM	1:30 PM	0/21/94 3:05 PM	3:20 PM	3:35 PM
Date	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94 3:20 PM	10/21/94 3:35 PM

Compression - Weight (g) - Rear

-	-	7	7	_		~	-	,	-	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
RSD	0.8	1.0	0.8	1:1	0.9	0.7	0.8	1.4	1.0	1.4	0.9	0.6	1.3
St Dev.	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.002	0.001	0.001	0.002
Average	0.130	0.131	0. 132	0.132	0. 132	0, 133	0.132	0.131	0.132	0.131	0.131	0.131	0.131
9	0.129	0.132	0.130	0.130	0. 132	0.132	0. 133	0.128	0. 133	0.129	0. 132	0.131	0.132
6	0.130	0.131	0. 131	0.132	0.133	0.132	0.131	0.132	0.131	0.130	0.132	0.129	0.131
8	0.129	0.129	0.131	0. 133	0.132	0.134	0.132	0.131	0.132	0.129	0.133	0.130	0. 127
7	0.132	0.130	0.132	0.131	0.133	0.133	0.133	0.131	0.130	0.132	0.131	0.131	0.131
9	0.131	0.130	0.133	0.129	0.131	0.132	0.130	0.130	0.132	0, 129	0.131	0.131	0.129
5	0.130	0. 132	0.132	0.133	0.131	0.132	0. 132	0.130	0.133	0. 132	0. 132	0.130	0.130
4	0.130	0.131	0.133	0.131	0. 132	0.134	0.133	0.131	0.129	0.130	0.130	0.131	0.130
3	0.129	0.132	0.131	0.132	0.132	0.133	0.132	0.135	0.132	0.134	0.129	0.131	0.131
2	0.130	0.133	0.133	0.133	0.132	0.132	0.132	0.131	0.133	0.133	0.132	0.132	0.131
1	0.129	0.130	0.131	0. 133	0.135	0.131	0.133	0.132	0.132	0. 129	0.131	0.131	0.133
Time	0/21/94 11:15 AM	0/21/94 11:30 AM	0/21/94 11:45 AM	10/21/94 12:00 PM	0/21/94 12:15 PM	0/21/94 12:30 PM	10/21/94 12:45 PM	1:00 PM	1:15 PM	1:30 PM	0/21/94 3:05 PM	10,21,94 3:20 PM	3:35 PM
Date	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94	10/21/94 3:35 PM

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg - Baich # 4296A

Compression - Hardness (kp) - Front

Date	1 me	-	7	3	4	ည	Average	St Dev.	RSD
10/17/94	3:00 PM	4.6	3.8	4.6	3.9	4.6	4.3	4.0	9.6
10/17/94	10/17/94 3:15 PM	4.7	4.2	4.5	4.2	4.7	4.5	0.3	5.6
10/17/94	3:30 PM		4.7	5.0	4.7	5.0	4.8	0.2	3.9
10/17/94	10/17/94 3:45 PM	5.0	4.4	4.5	4.1	5.0	4.6	0.4	9.8
10/17/94	10/17/94 4:00 PM	3.8	4.2	3.9	4.3	4.2	4.1	0.2	5.3
10/17/94	10/17/94 4:15 PM	3.9	3.9	4.0	3.7	3.9	3.9	0.1	2.8
10/17/94	10/17/94 4:30 PM	4.5	3.8	4.1	4.6	4.1	4.2	0.3	7.8
10/17/94	4:45 PM	4.1	3.9	4.2	4.5	4.7	4.3	0.3	7.5
10/17/94	5:00 PM	4.5	3,9	4.0	4.1	4.8	4.3	0.4	8.9
10/17/94	5:15 PM	4.9	4.3	3.9	4.0	4.1	4.2	0.4	9.4
10/18/94 8:15	8:15 AM	4.0	3.6	4.3	4.0	4.0	4.0	0.2	6.3
10/18/94 8:30	8:30 PM	4.3	4.0	4.0	4.2	4.1	4.1	0.1	3.2

Compression - Hardness (kp) - Rear

RSD	27.4	7.7	6.3	8.9			1.6		4.9	3.2	4
St Dev.	1.3	0.3	0.3	0.4	0.2	0.3	0.1	0.2	0.2	0.1	0.7
Average	4.6	4.2	4.2	4.2	4.0	4.3	4.3	4.2	4.4	4.6	3.7
മ	6.9	4.6	4.5	3.9	4.2	4.0	4.3	4.1	4.7	4.5	3.5
4	4.1	4.2	3.8	4.0	4.3	4.4	4.2	4.1	4.1	4.6	3.9
3	3.9	3.7	4.3	4.7	4.1	4.1	4.4	4.0	4.5	4.4	3.6
2	4.0	4.3	4.1	4.6	3.8	4.6	4.3	4.2	4.4	4.8	3.6
1	4.3	4.2	4.3	4.0	3.8	4.5	4.3	4.6	4.5	4.6	3,7
Time	3:00 PM	3:15 PM	3:30 PM	3:45 PM	4:00 PM	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	8:15 AM
Oate	10/17/94	10/17/94	10/17/94	10/17/94	10/17/94	10/17/94	10/17/94	10/17/94	10/17/94	10/17/94	10,18/94

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg - Batch # 4300A

Compression - Hardness (kp) - Front

RSD	2.7	8.1	2.2	2.3	6.2	4.8	7.4	2.6	5.2	6.2	2.7	2.7
St Dev.	0.1	0.4	0.1	0.1	0.3	0.2	0.4	0.1	0.3	0.3	0.1	0.1
Average St Dev.	4.9	4.7	5.2	5.0	4.9	4.5	4.8	5, 1	5.0	4.8	4.6	5.0
ಬ	5.0	4.9	5.2	5.1	5.1	4.7	4.6	5.0	4.8	4.6	4.6	4.9
4	4.7	4.4	5.0	5.2	4.8	4.8	4.6	5.2	4.7	4.7	4.7	4.8
3	4.9	4.6	5.2	4.9	4.5	4.4	5.3	5.1	5.1	4.7	4.4	4.9
2	5.0	4.4	5.1	5.0	5.3	4.3	4.4	4.9	5.3	5.3	4.7	5.1
	4.8	5.3	5.3	5.0	5.0	4.4	4.9	5.2	5.2	4.6	4.6	5.1
Time	3:45 PM	4:00 PM	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	7:45 AM	8:45 AM	9:00 AM
Date	10/20/94	10/20/94	10/20/94	10/20/94	10/20/94	10/20/94	10/20/94	10/20/94	10/20/94	10/21/94	10/21/94	10/21/94

Compression - Hardness (kp) - Rear

. RSD	7.6	7.5	12.3	9.6	2.2	4.7	4.7	7.9	10.8	4.0	10.5	
St Dev.	0.4	0.4	9.0	0.5	0.1	0.2	0.2	0.4	0.5	0.2	0.5	
Average	4.9	4.9	4.9	4.8	5.0	4. 9.	5.3	5.0	4.8	4.8	4.6	
2	5.0	4.8	4.8	4.8	5.0	0.3	5.1	4.8	4.7	4.9	4.7	
4	5.2	5.0	5.0	5.4	5.0	4.7	5.1	5.1	4.0	4.7	4.9	
3	4.3	5,5	4.3	4.5	5, 1	5.2	5.7	5.2	5.3	4.6	3,9	1
2	4.8	4.5	4.4	4.2	4.8	4.7	5.2	4.7	5.2	4.8	4.5	
1	5.2	4.8	5.8	5.0	5.0	5, 1	5.3	4.9	5.0	5, 1	5.2	,
Time	3:45 PM	4:00 PM	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	7:45 AM	8:45 AM	2 000
Oate	10/20/94	10/20/94	10/20/94	10/20/94	10/20/94	10/20/94	10/20/94		0/20/94	0/21/94	0/21/94	

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg - Batch # 4301A

Compression - Hardness (kp) - Front

St Dev. RSD	0.2 3.1	_				_				0.2 4.7	0.4 9.3	0.2 4.2	0.7 5.0
Average	4.8	4.9	5.3	5,3	4.8	4.9	5, 1	4.6	e⁴	4.9	4.1	4.5	4.5
5	4.8	4.9	5.3	5.4	5.1	5.1	5.2	4.4	4.6	5.1	4.6	4.6	4.3
4	4.7	5.2	5.5	5.3	4.6	4.8	5.2	4.5	4.9	4.9	4.4	4.2	4.7
3	5.0	5.0	5.2	4.8	4.6	4.7	4.9	5.0	5.1	5.1	4.1	4.5	8.
2	5.0	4.8	5.1	5.4	5.1	5.2	5.1	4.4	4.9	4.6	3.6	. n	4. ت
	4.7	4.6	5.3	5.5	4.7	4.5	5.0	4.6	4.8	4.7	4.0	4.7	6.3
Time	11:15 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	1:15 PM	1:30 PM	3:05 PM	3:20 PM	3:35 PM
Date	10/21/94 11:15	10/21/94	10/21/94	10/21/94	10/21/94 12:15	10,21,94	10,21,94	10/21/94	10/21/94	10/21/94	10,21,94	10/21/94	10/21/94

Compression - Hardness (kp) - Rear

THE REAL PROPERTY AND ADDRESS OF THE PERSONS ASSESSMENT OF THE PERSONS					The second secon	Contract of the last of the la			
Date	Time		2	3	4	5	Average	St Dev.	RSD
10/21/94	11:15 AM	5.0	5, 1	4.9	5.1	4.4	4.9	0.3	5.9
10/21/94	11:30 AM	5.2	5.5	5.3	5.1	4.8	5.2	0.3	5.0
10/21/94	11:45 AM	5.5	5.6	4.8	5.4	5.5	5.4	0.3	6.0
10/21/94	12:00 PM	5.5	5.1	5.6	5.2	4.9	5.4	0.3	6.4
10/21/94	12:15 PM	5, 1	5.3	5.5	5.2	5.3	5.3	0.1	2.8
10,21,94	12:30 PM	5.0	4.8	5.7	5.2	5.3	5.2	0.3	6.5
10,21,94	12:45 PM	5.4	5.4	5.3	5.5	5.3	5.4	0.1	1.6
10/21/94	1:00 PM	4.4	5,1	4.6	5.3	5, 1	4.9	0.4	7.8
10,21,94	1:15 PM	5.2	5.4	5.2	5.2	5.3	5.3	0.1	1.7
10,21/94	1:30 PM	4.5	9.9	5.0	4.6	5,5	4.9	0.4	8.0
10,23,94	3:05 PM	r. 4	4.7	4.5	4.4	4.4	4.5	0.1	2.7
10,23,94	3:20 PM	4.6	4.8	4.8	4.6	4.8	4.7	0.1	2.3
1021/94	3:35 PM	4.5	5.0	5.1	5.1	4.8	4.9	0.3	5.2

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg - Batch # 4296A

Compression - Thickness (mm) - Front

	_	_				·		_				
RSD	9.0	0.3	0.3	0.7	0.2	0.2	9.0	0.2	0.4	0.5	0.7	0.5
St Dev.	0.02	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.02	0.02	0.02
Average	3.37	3.37	3, 37	3,39	3.34	3, 33	3,34	3,35	3,34	3,34	3.36	3,35
വ	3,35	3.37	3,38	3,38	3.34	3.34	3.35	3,35	3,35	3.36	3,39	3,34
4	3,35	3,38	3.37	3, 40	3,35	3,34	3.34	3,35	3.36	3,32	3,35	3.37
3	3,40	3.36	3,38	3, 42	3,34	3,33	3.37	3,34	3,35	3.34	3.38	3.37
2	3.38	3.37	3.36	3,40	3,34	3,33	3,33	3,34	3,33	3.32	3,35	3.33
1	3.36	3.39	3,38	3,36	3,33	3,33	3.32	3,35	3,33	3,35	3,33	3,35
Time	3:00 PM	3:15 PM	3:30 PH	3:45 PM	4:00 PM	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PH	8:15 AM	8:30 AM
Date	10/17/94	10/17/94	10/17/94	10/17/94	10/17/94	10/17/94	10/17/94		10/17/94	10/17/94	10/18/94	10/18/94

Rear
j
(mm)
Thickness
ı
Compression

	Date	Time	1	2	3	4	വ	Average	St Dev.	RSD
3.35 3.36 3.38 3.36 3.36 3.36 3.36 3.38 3.40 3.38 3.35 3.37 3.35 3.37 3.40 3.38 3.36 3.37 3.36 3.37 3.36 3.37 3.38 3.36 3.34 3.35 3.34 3.36 3.31 3.34 3.34 3.36 3.36 3.34 3.35 3.34 3.34 3.34 3.34 3.35 3.36 3.34 3.34 3.34 3.35 3.36 3.36 3.37 3.36 3.36 3.35 3.35 3.36 3.35 3.36 3.35 3.35 3.36 3.35 3.35 3.36 3.35 3.35 3.36 3.37 3.36 3.35	10/17/94	3:00 PM		3,40	3.36	3.38	3.37	3.36	0.05	1.4
3.36 3.38 3.40 3.38 3.35 3.35 3.35 3.37 3.36 3.37 3.35 3.36 3.34 3.35 3.35 3.35 3.35 3.35 3.38 3.34 3.34 3.35 3.34 3.36 3.37 3.36 3.35 3.34 3.34 3.34 3.35 3.35 3.34 3.34 3.34 3.35 3.36 3.36 3.36 3.37 3.36 3.35 3.35 3.35 3.35 3.35 3.35 3.35 3.35 3.36 3.33 3.35 3.35 3.35 3.36 3.38 3.36 3.35 3.35	10,17,94		3,35	3,37	3.36	3.38	3,36	3.36	0.01	0,3
3.40 3.38 3.36 3.37 3.36 3.37 3.35 3.36 3.34 3.35 3.34 3.35 3.38 3.34 3.34 3.34 3.34 3.34 3.35 3.34 3.34 3.34 3.34 3.35 3.36 3.36 3.36 3.37 3.36 3.35 3.35 3.35 3.35 3.35 3.35 3.35 3.35 3.37 3.36 3.35 3.36 3.37 3.36 3.35	10/17/94	3:30 PM	3.36	3,38	3.40	3.38	3,35	3.37	0.02	9.0
3.35 3.36 3.34 3.35 3.36 3.38 3.36 3.36 3.34 3.34 3.36 3.33 3.34 3.34 3.34 3.34 3.34 3.35 3.36 3.36 3.34 3.35 3.36 3.36 3.34 3.35 3.36 3.36 3.37 3.36 3.35 3.35 3.35 3.37 3.36 3.35 3.36 3.37 3.36 3.37	10,17,94	3:45 PM	3.	3,38	3.36	3,37	3,36	3.37	0.02	0.5
3.38 3.36 3.36 3.38 3.34 3.34 3.33 3.34 3.34 3.34 3.33 3.34 3.34 3.35 3.35 3.35 3.36 3.34 3.37 3.40 3.35 3.36 3.37 3.36 3.35 3.35 3.37 3.36 3.37 3.36 3.35 3.36 3.37 3.36 3.37	10,17,94	4:00 PM	3,35	3.35	3.36	3,34	3,35	35.8	0.01	0.2
3.33 3.34 3.34 3.34 3.34 3.35 3.34 3.34 3.35 3.35 3.35 3.34 3.34 3.35 3.36 3.40 3.35 3.36 3.37 3.36 3.35 3.35 3.37 3.35 3.37 3.36 3.35 3.36 3.38 3.37 3.36 3.37	10,17,94	4:15 PM		3,36	3.36	3,38	3.34	3,36	0.02	0.5
3.34 3.35 3.36 3.35 3.35 3.34 3.34 3.37 3.36 3.40 3.35 3.36 3.37 3.36 3.38 3.35 3.37 3.36 3.38 3.39 3.37 3.36	10,17/94	4:30 PM	3,33	3.34	3,34	3,34	3, 33	3,34	0.01	0.2
3.34 3.37 3.36 3.40 3.35 3.36 3.37 3.38 3.35 3.39 3.35 3.35 3.33 3.37 3.36 3.35 3.36 3.38 3.39 3.37 3.36 3.37	0,17/94	4:45 PM	3,34	3,35	3.36	3,35	3.32	3,34	0.02	0.5
3.37 3.36 3.38 3.35 3.35 3.35 3.35 3.35 3.35 3.36 3.35 3.35 3.36 3.38 3.39 3.37 3.36	0,17/94	5:00 PM	3.34	3.37	3,36	3.40	3,35	3,36	0.02	0.7
3.35 3.33 3.37 3.36 3.36 3.35 3.36 3.38 3.39 3.37 3.36 3.37	0,17/94	5:15 PH	3.37	3.36	3,38	3.35	3, 39	3.37	0.02	0.5
3.36 3.38 3.39 3.37 3.36 3.37			3,35	3,33	3,37	3.36	3.36	3.35	0.02	0.5
	0,18/94	8:30 AM		3.38	3,39	3.37	3.36	3.37	0.01	0.4

PROCESS VALIDATION

DIGOXIMTABLETS, 0.5 mg - Batch # 4300A

Compression - Thickness (mm) - Front

Date	Time	1	2	3	4	5	Average	St Dev.	RSD
10/20/94	0/20/94 3:45 PM	3,37	3.38	3.37	3,39	3,38	3.38	0.01	0.2
10,20/94	4:00 PM	3.37	3,38	3.40	3.38	3.36	3,38	0.01	0.4
10/20/94	4:15 PM	3.36	3.39	3.41	3.36	3, 35	3,37	0.03	0.7
10/20/94	4:30 PM	3,35	3,33	3,37	3,39	3,36	3,36	0.02	0.7
10/20/94	4:45 PM	3,36	3,35	3.34	3,38	3, 32	3,35	0.02	0.7
10/20/94	5:00 PM	3,30	3,32	3, 33	3.31	3,33	3.32	0.01	0.4
10/20/94	5:15 PM	3,30	3.32	3, 29	3.32	3,34	3.31	0.02	0.6
10/20/94	5:30 PM	3, 33	3,30	3.31	3, 32	3.34	3.32	0.02	0.5
10/20/94	5:45 PM	3,28	3.30	3.31	3,34	3.32	3.31	0.02	0.7
10/21/94	7:45 AM	3,30	3.32	3, 33	3,31	3.29	3.31	0.02	0.5
10/21/94	8:45 AM	3.36	3.35	3,33	3, 33	3.33	3.34	0.01	0.4
10/21/94	9:00 AM	3.32	3.32	3,35	3,34	3,34	3,33	0.01	0.4

Compression - Thickness (mm) - Rear

Date	Time	1	2	3	4	ഗ	Average St Dev	St Dev.	
10/20/94	m	3.36	3.32	3,35	3.33	3,35	3.34	0.02	
10/20/94	4:00 PM	3,33	3.35	3.32	3,30	3.31	3.32	0.02	Ι
10,20/94 4:15	4:15 PM	3,34	3.32	3.31	3,34	3, 33	3, 33	0.01	
10/20/94	4:30 PM	3,30	3.33	3.31	3.32	3.31	3.31	0.01	
10/20/94	4:45 PM	3.31	3.30	3,33	3, 29	3,30	3.31	0.02	
10/20/94	5:00 PM	3,32	3.35	3.33	3.35	3,30	3,33	0.02	
10,20/94	10/20/94 5:15 PM	3.34	3,33	3,30	3.33	3,30	3.32	0.02	
10/20/94	0/20/94 5:30 PM	3.30	3.34	3, 29	3,28	3, 33	3.31	0.03	П
10/20/94	10,20,94 5:45 PM	3.33	3.30	3,34	3.31	3.32	3.32	0.02	-
10/21/94	10/21/94 7:45 AM	3.33	3,35	3,30	3.38	3.31	3,33	0.03	
10/21/94	8:45 AM	3,30	3.29	3,33	3.31	3,34	3,31	0.02	\vdash
10.71794	10,21,94 9:00 AM	3.37	3.30	3.30	3.32	3,29	3.32	0.03	-

PROCESS WALIDATION

DIGOXIN TABLETS, 0.5 mg - Batch # 4301A

Compression - Thickness (mm) - Front

Date	Time	1	2	Э	4	5	Average	St Dev.	RSD
10/21/94	11:15 AM	3,30	3.32	3,33	3,30	3.34	3,32	0.02	0.5
10/21/94	11:30 AM	3.33	3.32	3,34	3,30	3.31	3.32	0.02	0.5
10/21/94	11:45 AM	3.31	3,34	3,32	3,33	3,33	3,33	0.01	0.3
10/21/94	10,21,94 12:00 PM	3.31	3.34	3.32	3,33	3,33	3,33	0.01	0.3
10/21/94	0/21/94 12:15 PM	3,32	3.30	3.30	3,30	3,31	3.31	0.01	0.3
10/21/94	0/21/94 12:30 PM	3.36	3.33	3,33	3.32	3,34	3.34	0.02	0.5
10/21/94	12:45 PM	3.30	3.32	3.34	3.31	3,31	3.32	0.02	0.5
10/21/94	1:00 PM	3.31	3.33	3,35	3.32	3.33	3,33	0.01	0.4
10/21/94	1:15 PM	3.30	3.31	3,30	3,30	3.31	3,30	0.01	0.2
10/21/94	1:30 PM	3.31	3.34	3.34	3.35	3.35	3,34	0.02	0.5
10/21/94	3:05 PM	3, 33	3.37	3,34	3, 33	3.36	3,35	0.02	0.5
10/21/94	3:20 PM	3,35	3.36	3, 33	3.34	3,35	3,35	0.01	0.3
10/21/94	3:35 PM	3.32	3.34	3.35	3.30	3.29	3.32	0.03	0.8

Compression - Thickness (mm) - Rear

Date	Time	1	2	3	4	5	Average	St Dev.	RSD
10,23,634	11:15 AM	3.31	3.32	3.35	3, 29	3.31	3.32	0.02	0.7
10/21/84	11:30 AM	3.33	3.31	3.30	3.32	3.34	3.32	0.02	0.5
10,21,94	11:45 AM	3,34	3,30	3.32	3,33	3.31	3,32	0.02	0.5
10/21/94	12:00 PM	3.32	3.34	3.31	3.30	3.34	3.32	0.02	0.5
10,21,/94	12:15 PM	3.34	3.30	3,34	3.32	3.32	3.32	0.02	0.5
10,21,494	12:30 PM	3,33	3.35	3.34	3.36	3,33	3.34	0.01	0.4
20,21,61	12:45 PM	3.30	3,30	3,31	3.32	3,31	3.31	0.01	0.3
10,21,494	1:00 PM	3,31	3.35	3.33	3,35	3,34	3.34	0.02	0.5
10.23.594	1:15 PM	3.31	3,31	3,32	3.30	3,32	3.31	0.01	0.3
10,21,94	1:30 PM	3,30	3,35	3.30	3.37	3,31	3,33	0.03	1.0
023294	3:05 PM	3,33	3.32	3.36	3.36	3,35	3,34	0.02	0.5
A.21881	3:20 PM	3,33	3,33	3.34	3,33	3,34	3,33	0.01	0.2
A-21/41	3:35 PM	3.32	3.30	3.30	3.31	3.28	3.30	0.01	0.4

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg

Compression - Content Uniformity (%)

Batch #	1296A	4296A	4300A	4300A	4301A	4301A
Side	Front	Rear	Front	Rear	Front	Rear
1	105.2	104.8	100.1	102.6	97.1	99.2
2	103.3	101.6	99.7	101.6	97.0	100.9
3	103.7	104.5	100.7	102.2	99.6	100.2
4	102.5	102.6	98.5	100.3	100.8	99.8
5	103.6	104.4	100.1	102.0	102.1	99.3
6	104.5	104.0	102.6	100.0	97.9	99.1
7	104.2	102.5	102.2	100.1	101.4	98.0
8	105.9	100.2	102.7	100.0	100.9	102.5
9	97.6	99.9	100.9	98.7	100.5	98.1
10	97.6	98.3	102.6	99.8	101.1	100.2
11	101.1	106.5	103.0	99.3	100.8	100.0
12	101.9	88.0	102.6	100.7	96.1	101.4
13	103.1	99.5	103.3	103.2	101.0	98.2
14	104.3	105.1	101.1	103.4	101.1	100.0
15	101.5	98.9	103.0	102.5	97.1	99.3
16	103.5	99.9	100.9	101.3	100.3	99.4
17	101.0	104.7	100.2	102.0	102.0	98.4
18	100.3	100.4	100.8	99.5	95.3	102.7
19	102.4	99.1	99.5	100.8	99.6	99.4
20	103.1	105.0	99.9	100.2	98.5	99.0
21	101.5	102.1	101.9	99.0	98.4	101.5
22	101.6	99.4	102.3	100.7	99.0	99.8
23	101.5	101.3	103.8	103.0	102.9	100.4
24	104.2	103.7	100.9	99.8	98.1	101.1
25	100.4	103.9	102.3	99.7	99.2	99.4
26	100.9	103.1	100.5	99.8	99.3	99.2
27	101.3	103.0	100.1	99.3	100.9	100.0
28	101.1	102.4	99.5	100.8	99.3	100.6
29	99.4	98.0	99.1	100.0	103.6	99.7
30	98.9	100.0	99.9	99.2	99.1	100.1
Average	102.0	101.6	101.2	100.7	99.7	99.9
St Dev.	2.1	3.5	1.4	1.3	2.0	1.2
RSD	2.0	3.4	1.4	1.3	2.0	1.2

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg

Compression - Dissolution (%) - 15 min.

Batch #	4296A	4296A	4296A	4300A	4300A	4300A	4301A	4301A	4301A
Sample	1st Third	2nd Third	Final Third	1st Third		Final Third		2nd Third	
11	83.5	<i>7</i> 9.3	84. 1	79.4	75.4	84.4	77.9	77.9	81.2
2	84.2	81.6	80.2	78.0	75.3	79.9	80.6	82.3	80.6
3	81.3	83.4	79.1	82. <i>7</i>	75.4	84.6	78.8	79.0	81.0
4	82.0	82.7	82.4	77.8	75.4	80.9	80.5	77.9	80.5
5	79.8	81.0	82.9	78.1	<i>7</i> 5.2	80.6	80.5	79.3	81.4
6	80.6	78.7	86.2	<i>7</i> 5.5	73.1	82.3	79.4	83.7	79.3
7	82.2	82.1	83.3	76.1	82.4	81.8	81.6	81.0	77.6
8	8D. 1	81.0	83.7	78.8	77.7	86.8	78.6	81.4	78.8
9	83.4	83.1	85.0	76.5	80.9	78.1	83.1	82.2	80.9
10	83.0	82.5	83.9	78.6	79.1	82.2	78.7	78.2	78.5
11	79.7	84.8	87.4	77.4	81.2	79.1	80.3	77.0	79.4
12	80.1	<i>7</i> 8.2	87.4	<i>7</i> 5. <i>7</i>	79.5	78.8	79.2	76.9	80.0
Average	81.7	81.5	83.8	77.9	77.6	81.6	79.9	79.7	79.9
St Dev.	1.6	2.0	2.5	2.0	3.0	2.6	1.5	2.3	1.2
QSD .	2.0	2.5	3.0	2.5	3.9	3.2	1.8	2.9	1.5

compression - Dissolution (%) - 60 min.

Batch #	4296A	4296A	4296A	4300A	4300A	4300A	4301A	4301A	4301A
Sample	1st Third	2nd Third	Final Third	1st Third	2nd Third	Final Third			Final Third
11	93.4	87.2	99. <i>7</i>	88.3	91.8	97.7	87.2	99.5	96.9
2	92.9	87.3	101.3	91.3	94.4	89.7	88.4	96.7	98.7
3	91.3	88.8	102.1	91.4	92.4	86.5	90.2	98.8	90.6
4	93.1	87.2	104.4	90.2	92.4	87.6	91.8	92.4	89.4
5	93.6	86.7	103.8	95.4	93.7	87.7	93.4	92.0	95.5
6	92.9	89.9	103.5	89.3	96.4	88. 1	97.1	99.3	97.7
7	92.3	87.5	98.4	91.6	95.7	88.4	98.8	88.3	94.4
8	93.4	90.4	94.0	91.4	93.4	88.3	98.3	87.2	91.7
9	91.3	86.1	99.0	90.3	95.1	87.1	101.7	91.9	91.3
10	91.1	83.6	102.7	89.1	92.6	85.6	98.5	98.6	90.3
11	90.5	82.4	105.0	93.4	93.7	83.8	98.8	88.8	91.2
12	100.9	92.8	101.8	94.8	94.3	85.8	99.7	91.2	91.1
Average	93.1	87.5	101.3	91.4	93.8	88.0	95.3	93.7	93.2
St Dev.	2.7	2.8	3. 1	2.2	1.4	3.4	4.9	4.6	3.2
RSD	2.9	3.2	3. 1	2.4	1.5	3.9	5. 1	4.9	3.5

PROCESS VALIDATION

A STATE OF THE STA

High/Low kp - Dissolution (%) - 15 min.

RSD	St Dev.	Average	6	IJ	4	3	2	-	Side	Sample	Batch #
1.4	1. 1	79.2	78.0	80.7	79.5	80.1	79. 1	77.9	Front	H1gh kp	4296A
2. 1	1.8	86.1	84.4	87.7	83.5	86.2	88. 1	86.5	Rear	High kp	4296A
0.7	0.5	76.2	77. 1	76.4	76.2	75.9	75.8	75.7	Front	Lou kp	4296A
2.2	1.7	80.3	81.5	78.9	81.5	80.2	82.0	77.6	Rear	Low kp	4296A
1.8	1.5	82.4	85.0	83.2	81.6	81.6	82.2	80.7	Front	H1gh kp	4300A
1.6	1.3	82.0	82.3	80.8	83.6	82.9	82.4	80.0	Rear	High kp	4300A
3.3	2.7	79.8	80.8	78.7	78.7	82. 1	75.7	83.0	Front	Lou kp	4300A
3.4	2.7	78.5	75.2	81.2	78.0	77.3	76.8	82.2	Rear	Lou kp	4300A
2.7	2.2	80.6	83.6	81.3	81.3	78.3	81.2	77.8	Front	High kp	4301A
2.9	2.3	81.9	84.3	83. 9	79.8	83.2	81.9	78.5	Rear	High kp	4301A
2. 1	1.7	83.4	86.6	83.2	81.4	83.2	82.8	83.3	Front	Low kp	430 IA
2.6	2.2	83.8	79.7	84.9	85. 1	83.4	83.6	85.9	Rear	Lou kp	4301A

High/Low kp - Dissolution (%) - 60 min.

RSD	St Dev.	Average	6	ഗ	4	З	2	1	Side	Sample	Batch #	
2.3	2.2	98.1	99.7	98.8	97.3	98, 1	100.5	94.2	Front	High kp	4296A	
				93.2	90.6	96. 1	99.0	96.6	Rear	High kp	4296A	
	2.0			97.5	92.9	94.6	96. 1	92.4	Front	Lou kp	4296A	
				92.7	93.7	96.0	97.9	93.9	Rear	Lou kp	4296A	
1.4	1.3	98.4	99.4	98.0	98.8	97.9	100.1	36.3	Front	H1gh kp	4300A	
1.0	1.0			98.7			98.0	99. 1	Rear	H1gh kp	4300A	
ယ	3.0	90.4	93.6	93.6	89.6	90.8	85.9	88.6	Front	Lou kp	4300A	
<u>ლ</u> თ	4.9	92.5	93.2	100.5	94.3	86.6	88.7	91.5	Rear	Lou kp	4300A	
1.0	1.0	98.0	97.6	97.8	99.5	96.8	8.86	97.6	Front	High kp	4301A	
2.0	2.0	97. 1	99.2	98.9	95.3	98.4	94.6	96.4	Rear	High kp	430 1A	
3. 1	2.9	95.8	101.4	95.8	94. 1	94.9	95.5	93.0	Front	Lou kp	4301A	
1.3	1.3			100.4			101.7	99.3	Rear	Lou kp	4301A	

DIGOXIN TABLETS, 0.5 mg - BATCH 4296A

DIGOXIN TABLETS, 0.5 mg - BATCH 4296A

DIGOXIN TABLETS, 0.5 mg - BATCH 4296A

DIGOXIN TABLETS, 0.5 mg - BATCH 4300A

DIGOXIN TABLETS, 0.5 mg - BATCH 4300A 60 MIN. DISSOLUTION - LOW KP

DIGOXIN TABLETS, 0.5 mg - BATCH 4301A

DIGOXIN TABLETS, 0.5 mg - BATCH 4301A

Case 2:08-md-01968 Document 522-23 Filed 08/01/11 Page 59 of 89 PageID #: 10662

Amide Pharmaceutical, Inc.

COMPRESSION DEPARTMENT PROCESS VALIDATION

PRODUCT HAME: Digoxin Tablects 0.5 mg

BATCH #: 4296 A

TABLET PRESS ID 1: 66

	Limit	Time
High KP	above 8.0 Kp	5.22 Pm
Low KP	0.5-3.0 kp	5.49 Pm
Maximum KP	Not Possible	T-1000
Regular Speed	22 1287	

	RPM	Time
High Speed	2)	7,23 Am
Low Speed	17	8.13 Am

The second secon			
Done By:	Date:	12/14/01	1
1	dm	10/14/74	

Filed 08/01/11 Page 60 of 89 PageID #: 10663 pord Weight Target Target rablet Amide Pharmaceutical, Inc. S An. Comments: 24.5 1 Min. 5-2 Ain. THE PROPERTY Composite Xin. Time 1 ò Id: 147 Range Weight Weight Press Ţ. Weight (g) 77.6 Weight of 35.00 136 133 (10 Tablets) Id: (1 Tablet)
(10 Tablets) Weight prod Name: 1/34 135 Hardness 3:8 3.35 3.30 Front 66 STONE Thickness 132 133 on. وري 10 134 136 TXIT ロガガロ Each Tablets هز. د ر. در بن Digoxin Tablets 0.5 mg d' Hardness Tester Id: 25 133 Chuce 7. Chuce 6.9 Tablet(mg CC 1.300 ö Hardness KP 120.0 132 274 9 Z 8 t. 4 132 130 g g 6.6 9 5 134 1138 133 977 COMPRESSION DATA SHEET 5 Process Validation Ł Init 132 c T Ą 255 J Æ thigh kp C by circu 1 Hin. Xin. ž Time ¥ 5 DHILL Hardness Thickness Gauge Thickness 133 しいい Weight maximum 1.326 (<u>a</u> Batch 132 134 3/6 Above 8.0 Cimits Weight Limits 735 133 17.7 -11-Rear 15.69 15.49 13.51 16.9 Rear Exit 1132 1134 1132 \<u>\</u> OH, Thicknes ď 3.40 3.50 4296A TX1t かんかんかっちょ Each 138 343 ں. 0 3.0 KB 135 Chuce Chuce Tablet(mg) 1 6 スクスーとと - 4.0 目 133 Hardness 13; 4.9 1.9 Page achiero Scale Date: 1134 1132 1133 134 6.9 7.6 1133 KS12 10/13/64 Id: 10/18/94 de de Enit G, 135 250

50187. I>

Filed 08/01/11 Page 61 of 89 PageID #: 10664 Document 522-23 Case 2:08-md-01968 porq Weight Range Target Target rabler Press Id: Amide Pharmaceutical, Inc. S X N Min. 5.48 Comments: Composite Weight ž. i ne Min. 日は、日田田 Ed: 147 Ì Weight Weight (g) Ę, ۵ 562 120 291 131 (10 Tablets) (1 Tablet)
(10 Tablets) Weight Prod Name: 130 ムム 3.62 8 5.65 3.67 3.64 11.2 STONE Front Q H. Thickness 128 1129 (i) /1 3.64 3.64 1.5 a H. 10 Exit Chuta 1127/128 コナスゴロ Each Tablets Digoxin Tablets 0.5 Hardness Tester 1 : 9 Chuce Tablet(mg) 120.0 Hardness 1 29 124 130 1.0 131 d H - 1.5 į 7.5 1 28 127 326 COMPRESSION DATA SHEET Process Validation init 128 128 a 3 You Ko 5 317 Hin. Hin. Time Time Hardness Limits Thickness Thickness Gauge (g) Weight 3) Ľ, 1. X. 1.303 Batch 133 131 Limits Weight 123 128 130 -11-3.64 3.64 3.64 1.1 Rear Rear Exit d Thicknes e H, 129 366 3.64 4296A はない Each 100 545 ں. 0 Chuce Chuce ٠. ن: 128 130 Tablet(mg) 1.4 ŧ 入7312 Hardness 2,0 2age Scale Date: 132 <u>ر</u> ري 1:20 Ľď. 130 (3; or, Init 127 250

(2)

S X

15.

3-53

Ŕ.

ナントい

3.4

7.7

B

3.19 3.31

1

?

3.0

٠, څ

3.51

W

ġ

رې

ر ۾

Init

3.24

3.32

3.36

1,

1.1

Composite Weight of

10 Tablets

といいま 1 Min. 7.22

Target Weight prod Target Tablet Press Id: Amide Pharmaceutical, Inc. Time Id: 147 Weight Weight Range Weight (10 Tablets) (1 Tablet) (10 Tablets) Prod Name: 66 Front Thickness EXit Digoxin Tablets 0.5 Hardness Tester Id: Chute 130.0 Hardness KP Q B 1.326 COMPRESSION DATA SHEET Process Validation Init 553 High speed-Time Hardness Limits Thickness Limits Thickness Gauge Id: Batch シノ -6 6:2 • • Rear Thicknes 4296 A コガスゴ 5170 3.0 2 Chute Ö ķ ŧ Hardness KP 4.0 Scale Date: Ä Id:

Min. Hin. Weight (9) 1.271

			Rea	Rear E	Exit Chute	Chut	(D			
Time		Wе	Weight of	of	Each Tablet(mg)	Tab.	let(ı	ng)		
1 Hin.	135	133	126	130	135 133 126 130 132 131 132 131 131 131	131	132	131	131	13;
5 Hin.	130	:36	131	124	130 136 131 124 125 130 124 121 131 130	130	124	131	/3)	3
		1						O'Territoria		

5 min.

1 Min.

<u>.</u> ز^

: 27

129

~

こん2

1.26

124

121

126

13

٥̈́۲

124

ار الرر

134

1.37

3

7.7.

Į,

\$

TIME

Weight of

Each

Tablet(mg

Front

Exit

Chute

Comments:

226

Page 63 of 89 PageID #: 10666 porg Weight Target Target Tablet Amide Pharmaceutical, Inc. 2 5 0 2 5 0 2 5 0 かこう Comments Min. E S mi me Composite XI. Time Id: 147 Range Meight SSaro Weight ~ (g) 29 | 132 | 133 767 Weight of 200 (10 Id: 321127 (1 Tablet)
(10 Tablets) Weight Prod Name: Tablets) 3.33 3.35 3.57 4.2 3.37 3.35 3.36 66 Front Front Thickness 1132 134 150 Q H 5 1775 1/32 in X Each Tablets Digoxin Tablets 0.5 mg Hardness Tester Id: ころ 133 Chuce Chuce rablet(mg) r 130.0 1.300 134 Hardness KP 128 .274 4.2 132 132 D D 7.7 なが 13) 133 . 1126 COMPRESSION DATA SHEET Process Validation Init 131 13) 贫 sow speed 1 Kin. ž. Time Hin. Hin. HE Hardness Limits Thickness Limits Thickness Gauge 25.1 (g) Š 1.310 1.07 Batch 131 129 Weight 1132 1130 1) 30 1/31 1/30 -11 Rear 3.36 3.33 3.6 4.6 4.1 4.7 33 3.35 3.35 Id: Thicknes Q H 40 in X LITY II Each 50 545 96 A 13 0 Chute Chute 0 130 131 Tablet (mg) 4.6 ŝ ŧ Hardness KP -) ~ ~ 4.0 ω 1131 132 4.4 O Page Scale Date: 1,0 Ħ ð Id: 131 10/12/46 151 150 Init 176 7336

Amide Pharmaceutical, Inc.

COMPREDATOU_DEPARTMENT

PROCESS VALIDATION

PRODUCT	Die	iaxin	Tublects	0.50019	(147)
	(] ` `			

BATCH #: 4300 A

TABLET PRESS ID #: 66

	Limit	Time
High KP	above 8.0 /cP	7.51 Am
Low KP	0.5-3.0 /68	8.08 Am
Maximum KP	Not Possible	
Regular Speed	22 pron	-

	RPM	Time
High Speed	27	8.25 Am
Low Speed	17	8.40 Hm

1	Done By:	k. 3	Date:	10/21/94	

7.50

286

1.25 3.44 3.26

0,

5.7

ý

Time

Weight

Thickness

Hardness KP

Init

Front

EXT C

Chute

 $\widehat{\mathfrak{g}}$

オージン・サ

289

3.3 13.35 3.47

3

9

7.2

A'

Composite Weight

e H

10

Tablets

Amide Pharmaceutical, Inc.

Process Validation

of |-

COMPRESSION DATA SHEET

Batch

:11: • •

4300A

Date:

10/21/94

υ Η Prod Name: Digoxin Tablets 0.5 ЩG

155

Hardness Tester ξĠ

Thickness

Gauge

Ω

843

Scale

U.

rablet

SSard

Ld.

86

130.0 រជាដ្ឋ

1.326 Ą

Weight

Range (10 Tablets)

Weight Weight

(1 Tablet)
(10 Tablets)

Thickness

Limits

3.0

Above

Hardness Limits

0

RPM UH

Time Weight Thicknes Hardness
1 Hin. 1.266 3.23 3.25 3.23 6-0 54 5.7 A
5 Hin. 1.273 3.23 3.23 3.24 5.7 5.7 5.9 Am

			Rear	Į.	Exit Chute	Chute	10			
Time		We	Weight of	O ff	Each Tablet(mg)	Tabl	et(n	ng)		
1 Hin.	125	/49	125 129 128 126 124 128 127 128 127 126	126	129	148	/27	128	127	~
,	75%	75/ 05/ 05/ 05/ 05/ 05/ 05/ 05/ 05/ 05/ 0	77	Š			7	``````````````````````````````````````	20	~

ていらん K hardungs 7 そどろ trans 00) Ĺ Corre 4 ž abstained historist S Min.

33

127

129

175

131

[] 27

129

130

\23

1128

Comments:

objectives

1 E 15.

250

25.

130

729

130

129

130

125

131

129

ma me

Weight

O H

Each

Tablet (mg)

Front

EXP. C

Chute

5

8.07

Time

Weight (g)

Thickness

Hardness

Init

ą

Front

Exit

Chute

Min. Si the

₹66

3.62 3.63

3.63

6.0

0.9

0 0.7

1.273

w

62363

3.63

6:0

7: ~

Composite Weight of 10 Tablets

Amide Pharmaceutical, Inc. COMPRESSION DATA SHEET Process Validation Page

Prod Id: 147 Prod Name: Digoxin Tablets 0.5 mg

Tablet Press Id: 66

Hardness Tester Id: 454

130.0 1.300

i dig

1.326

Q

Hardness Limits

Target Weight

Range (10 Tablets) Weight (1 Tablet)
Weight (10 Tablets)

Target

Thickness Gauge Id:

Batch #: 4300A

Date:

10/21/94

Scale Id:

643

Thickness Limits

5-0-8.0 KP Cx 1-118194 3.0 ŧ 4.0 mm

0.5 ò

Rear Exit Chute	ute	
Time Weight* Thicknes Har	Hardness KP	Init
1 Hin. 1.249 361 3.62 3.61 0.8 5.7 0.9	5.0 C.C S.0	Ž.
5 Min. 1.250 3.603.60 3.62 1.0 0.9 0.8 An	8.0 0.9 0.8	Å

Time	
Weight of Each Tablet(mg)	Rear Exit Chute

	ŝ	154	We	
	124	127	Weight	Xex
	145	128	of	17
The state of the s	[]	124	Each	1 1
	125 124 125 127 126 126 128	124 127 128 124 185 123 126 127	Tab	kear Exit Chute
	116	123	Tablet(mg)	(D
	136	126	ng)	
	123	127		

S Hin.

カンイ

25

ナンン

126

127

125

128

127

Min.

ナンイ

124

4

3

7

122

127

521

24

132

125

124

128

こ

E.

Time

Weight

Of.

Each

Tablet(mg)

Front Exit Chute

Comments:

<P0187.1>

of f

34.5%

3

1.147

3. c 3.13 3.18

7.7

s.

ふい

Composite Weight of

0.1

Tablets

ることで

20%

3.09 3.27 3.18

7.6

5.8 1.8

DEL LE

Weight

Thickness

Hardness KP

Init

Front

西女斗七

Chute

Hardness Tester Id:

Tablet

SSand

Eq.

66

Target Target

> Weight Weight

(1 Tablet)
(10 Tablets)

130.0

i d H

1.326

ıΩ

Hardness Limits

Thickness

Limits

3.0

ı 4.0

Weight Range (10 Tablets)

Thickness Gauge

Ω.

543

Scale

υ. |-|

2. 0 ı α •

Ä

RPM.

Time	Weight (g)	Thicknes	Hardness KP	Init
1 Hin.	1.210	3.24 3.27 3.33	3.24 3.7 3.3 44 2.4 3.3 3	Se
S Min.	1.4.18	3.66 3.21 3.32	3.6 3.21 3.52 3.5 2.8 2.7 Pm	Å

119 120 118 121 170 134 120 125 123 124	~	3	ر د د	200	<u> </u>	2	2	2]/q	7 5	
130 120 124 110 125 125 124 115 122 124	72	115	124	152	125	140	124	/ ecc	130	1 Hin.	1
		ng)	Tablet(mg)	Tab	Each	O.F.	Weight	We.		Time	1
			æ	Chute	Exit		Rear				
										Andreas Street Street Street Street Street Street	1

S Min.

118 117 117

こん

126

3

==

... ...

101

107 113

121 113

138

こと

Time

Weight of

Each Tablet(mg

Front

西女当代

Chute

Comments:

<P0187.1>

¥ 3

5

1.277

352

20.52

3.29

in T

可は田の

Weight (g)

Thickness

Hardness

Init

Time

(g)

Thicknes

Hardness

Front

はなばけ

Chute

2 × 43

1.279

3.5213.69

3.30

4.0

1.

ار الا 1:12

Composite Weight of

10

Tablets

Amide Pharmaceutical, Inc.

Process Validation

COMPRESSION DATA SHEET

E Q 14 Prod Name: Digoxin Tablets 0.5

מבים

rablet

SSard

Ω. |-|

66

Target Target

Weight

(1 Tablet) (10 Tablets)

130.0

Ö Ü

1.326

Q

Range (10 Tablets)

Дg

Batch

:44: **

4300A

Date:

Hardness Tester υ. |-|

からか

Thickness Gauge

U. 643

Scale

3

3.0 ı Ö

H

Hardness Limits Thickness Limits .. N 0

ŧ

0

F

Kno Speed -ROZ

Rear

コメンけ

Chuce

5 Hin.	1 Hin.
1.294	1.49/
3.49 3.33	£30 3.54
3.35	3.51
3.49 3.33 3.35 4.3 4.1 3.9	230 3.54 3.51 4.8 4.2 4.8
3.9	4.8
3	2

	1 Hin. (3:	Time	
9 130	130 132 128 130 130 128 129 130 131 129	We.	
129 130 132 129 127 130 128 131 130 150	128	Weight of	Rear
129	130		1 11
757	130	Each Tablet(mg)	Exit Chute
130	128	Tab	Chute
158	129	let()	U
131	130	ng)	
130	131		
130	129		

<90187.1>

Comments:

Hin.

63

130 126 129

130 136

K

ૡ૾

128

7.7

127

129

131

727

128

127

129

126

127

129

T'He

Weight

O H

Each

Tablet(mg)

Front

EXET

Chute

Page

Case 2:08-md-01968 Document 522-23 Filed 08/01/11 Page 69 of 89 PageID #: 10672 Amide Pharmaceutical, Inc.

COMPRESSION DEPARTMENT PROCESS VALIDATION

PRODUCT NA	ME: Digoxin	Tableils O.	5 mg	(147)	
	U		71		

BATCH #: 4301 A

TABLET PRESS ID #: 66

	Limit	Time
High KP	chove 8.01cP	1. 45 Pon
Low KP	C.5. 3.0/cP	2.05 / 00
Maximum KP	Not Possible	
Regular Speed	22	•

	RPM	Time
High Speed	29	2.28 8001
Low Speed	17	3 00 Pm

Done By:	An	Date:	10/21/94	

TIO. いか・1

<u>5</u>

: ا

3.33 3.32 3.38

0

6.7

0.0

13

Ú

12

Time

Weight (g)

Thickness

Hardness

Init

Front

EXit

Chute

S Min.

Composite Weight of

5

Tablets

24-1

1.339

3.52

3.36 3.34

מסק Amide Pharmaceutical, Inc. Id: Prod Name: Digoxin Tablets 0.5 mg COMPRESSION DATA SHEET Process Validation Batch 41: 4301A Date: 10/21/94

Tester Id: 454

Thickness Gauge

Hd:

843

Scale

HQ.

3.o

ŧ

H

Hardness

Tablet

press

Ed:

66

130.0

1.326

Weight Target Target

Range (10 Tablets)

Weight

Weight

(1 Tablet)
(10 Tablets)

i d H

Kiga KP

Hardness Limits Thickness Limits

Aboue cs) G

アロス

8.0 52 KSP 10/18/94

44

		Rear Exit Chute	nute	
Time	Weight (9)	Thicknes	Hardness KP	Init
Hin.	1.329	1.329 3.12 3.30 3.32 7.0 6.0 6.6 Am	7.0 6.0 6.6	A.
Hin.	1.319	1.319 5.33 3.68 3.29 7.7 7.4 7.0 An	7.3 7.4 7.0	m

			Rear	ar E	Exit Chuce	hute	10			
Time		₩e⊥	Weight of	O.F.	Each Tablet(mg)	Tabi	Let(I	ıg)		
1 Min.	131	131 131 132 133 137 130 132 142 133 130	/}2	/33	131	130	132	142	133	130
5 Hin.	131	131 134 132 133 128 132 132 133 132 132	132	133	148	132	132	133	132	132

<P0187.1>

Comments:

K

0

hardness

7

o So

T

can not

7

のすなべい

trans.

horadiners

Chrasago

ナ・イ

Ein.

134

/33

135

/71

134

135

136

134

138

7

 \approx

134

53

136

130

135

133

DECE

Weight

O H

Each

Tablet (mg

Front

EXit

Chute

Min.

1.307

3.63 3

60

3.64

ì

7.7

J.

BUTTE

Weight (g)

Thickness

Hardness

Init

PLOUE

EXH C

Chute

S O S

1.301

3.60

3.63 3.62

j.

ż

XI.

* Composite Weight of

10

Tablets

5 115.

2

133

72

731

128

≈~

3

130

23

129

Comments:

- Min.

129

132

) 30

177

200

30

Š

129

1-

mine

Weight

O Hi

Each

Tablet (mg

Front

お子がは

Chuce

porte Amide Pharmaceutical, Inc. Ed: 147 Prod Name: Digoxin Tablets 0.5 mg 66 COMPRESSION DATA SHEET Process Validation Batch #: 4301A 643 Page Date: 217

Hardness Tester Id: **75%**

Thickness Gauge

μ Ω

Scale Id:

3.0 1

4.0 mm

1.300 130.0 g Da

Weight Range (10 Tablets)

Target Target

Weight

(1 Tablet)
(10 Tablets)

rablet

Press

Hd:

1.326

Sow KP Hardness Limits Thickness Limits

o S t

0,0

Rear Exit Chute

ROM 22

8.0 KS P 10/13/94

7	7	,——
5	1.	
5 Hin.	Hin.	Time
		e
		£
٠,٠	~	Weight
0	1.309	(a) Tâp
1.305	0	ri,
٠,٠	۶. و	
55	<u>`</u> _	13
٠,	<u>ښ</u>	ı K
33	2	Thicknes
~	"	ne
6.	0	, vi
	-	i
~	3.61 3.63 3.60 1.6 1.6 2.7	<u> </u>
7.	7.	_
0	19:	8 8
~	\ 2	Hardness KP
3.59 3.58 3.61 1.6 1.6 1.4	1	ll o
	1	I
a	4	Init
7		1 7

5 Hin.	i Xin.	Time	
134	130		
134 130 132 135 130 132 130 130 131 134	130 130 127 134 130 131 130 130 130	Wei	
132	۱۲۶۱	Weight of	Rear
133	134		
130	130	Each	Xi d
132	/31	Each Tablet(mg)	Exit Chute
130	130	let(m	10
130) \$0	1g)	
131	f-30		
134	131		

<P0187_1>

Target prod Target Amide Pharmaceutical, Inc. Weight Range (10 Tablets) Tablet Press - X-5 X Comments X THE PERSON Composite Weight of THE DE P Weight Weight 134 134 132 131 147 Weight 33 1.341 21% <u>@</u> 100 (1 Tablet)
(10 Tablets) Weight Prod Name: Digoxin Tablets 0.5 130 133 2.50 2 Ä Front Front Thickness O th 3.34 3.36 5.4 3.34 3.35 54 10 EXit 1301131 14 14 14 Each 123 Tablets Hardness Tester Id: 132 Chute Chure Tablet (mg) 1.300 1.274 Ha191(111 CF-4 130.0 Hardness 3 ر بر بر 5 3 ٦ 130 131 ь Бщ 5.5 3 18 1 COMPRESSION DATA SHEET Itightime speed Process Validation 3 Thit 120 132 рщ 25 ¥. K ž. Min. Time Time Hardness Limits Thickness Gauge Thickness Limits Weight 132 1.325 . 528 Batch 134 134 RAM Weight 134 7.2 =1: Rear Rear 3.34 3.33 3.32 5.3 Id: Thicknes O H 133 3.34 3.34 5.2 24 4301A EXit EXit Each . . 643 133 /31 .. ဝ t.3 Chuce 0 Chute 134 135 | 133 | 134 | 132 | 134 Tablet(mg) ŧ į Hardness 8.0 4.0 50, 2.5 25.5 Page (Scale Date: F 131 Ħ 5.5 4 10/21/94 i d 134 of | Init 133

ر رن ن

1.247

<u>5</u>; 3 3:36

5.31

انزيز

برز

3.7

3.9

5 Hin.

Composite Weight

O H

10

Tablets

12. No. 14 Min.

かない、

3.45 3.43

12.5

525

Į.

Ø

B

Min.

Time

|Weight

Thickness

Hardness

Init

Ä

Front

EXit

Chute

7) 11/18/194 TO 12/

High Spice -

COMPRESSION DATA SHEET

Prod Id: 147

Prod Name: Digoxin Tablets 0.5 mg

Hardness Tester Id:

Tablet Press Id:

66

Weight Range (10 Tablets)

Weight (1 Tablet)
Weight (10 Tablets)

130.0 1.300 1.274

g p

1.326 g

Target Target

255

Thickness Gauge Id:

Batch #: 4301A

Date:

Scale Id:

828

545

2.0 ŧ 8.0

ð

3.o

ı

4.0

H

Hardness Limits

Thickness Limits

		Rear	Ex	Rear Exit Chute	ute		
Time	Weight [*] (g)	Th	Thicknes	sət	H	Hardness KP	ູ້ນ
1 Hin.	(-251	3.42 3.27 3.30 58 4,3 40	3, 47	3.30	ي. ۾	4.3	4.0
s xin.	1.250 3.28 3.4 3.26 3.8 3.7 3.5	3.28	3. <4	3.26	3.8	3.7	۶.5

J.

Init

1 Min. 123 126 126 124 13 125 122 127 126 124	Time		We	Weight of	of	Each Tablet(mg)	Tabl	et(I	īg)		
	1 Min.	123	136	126	124	7.33	125	122	127	1%6	/20

5 Hin.

~

122 11 27

120

135/130

77

2

200 38

116

Comments:

1 Min.

27

135

24

126

131

Time

Weight

0

Each

Tablet(mg)

Front

西女立七

Chute

<P0187.1>

PROCESS VALIDATION

DIGOXIN TABLETS, 0.5 mg

Compression - Composite Dissolution (%)

Batch #	4296A	4296A	4300A	4300A	430 IA	430 1F
Time	15 mın.	60 mın.	15 mın.	60 min.	15 mın.	60 mır
_	84.2	93.0	84.3	96.5	78.7	94.
2	82.6	91.6	81.7	90.7	77.8	95
ω	80.1	90.0	81.1	87.2	73.7	92.
4	80.8	93.1	82.3	88.3	77.5	97.
5	78.5	92.4	83.0	89.0	78.3	88.
0	81.8	94.8	81.8	88.9	79.0	88.
7	79.0	89.8	82.9	90.0	80.6	90.
8	82.6	93.5	82.0	89. 1	77.9	91.
9	81. 9	93.0	82.2	88.3	78.7	91.
6	79. 1	92.2	78.8	88.3	77.0	90.
	82.4	99.5	79.7	86.5	75.9	89.
12	77.1	97.4	79.9	88.5	77.4	89.
Average	80.8	93.4	81.6	89.3	77.7	91.5
St Dev.	2.1	2.8	1.6	2.5	1.7	
nsa	2.6	3.0	1.9	2.8	2.2	<u>.</u>

Amide Pharmaceutical, Inc.

Page 1 of 2

LANGRATORS TENT REPORT FINISHED DRUG PRODUCT

PRODUCT: <u>bigoxin Tablets b</u>	:5 mg	
specification! <u>USP</u>	CO	NTROL #: 4296 A
CHEMIST! BR PK/K.A VOLUME	#1302.02 321.04PAGE #1 93	107 DATE: 11/194
sámple stage! <u>Ovetæll ((</u>	mouste & the batch	A Form warm filed by 16A
TEST	RESULT	LIHIT
DESCRIPTION! Color!	Green	Green
Profile:	Round busected tablet	Round Bisected Tablets
other: bebossed	"A" on byected side of the	"Å 147" on blsected side of the tablet
THICKNESS! (Guideline)	3.4 mm	3.0 mm to 4.0 mm
WEIGHT VARIATION:	130.7 mg	± 10% Theo. wt (130 mg) 117.0 mg - 143.0 mg
FRIĀBĪĒĪŢŸ!	0 06 /	NMT 1.0 %
IDENTIFICATION: (A)	The RATH time of the major Peak in the Chromato pram to sto proph to sto proph	The retention time of the major peak in the chromatogram of Assay prepration corresponds to standard prepration:
AssAy: Digoxin, 0.5 mg	101.3 1/.	90.0% to 105.0%
UNIFORMITY OF DOSAGE UNITS:	1) 104-3 \$ 6) 101-2 \$	85.0% to 115.0%
(Content Uniformity)	2) 102.1 \$ 7) 102.7 \$	
A COLL	1) 101-9 \$ 8) 102-6 \$ 4) 102-9 \$ 9) 102-0 \$ 5) 101-9 \$ 10) 100-7 \$	
M. S. V. Milliefelow	Wi 105-5 Rapi 1-0-4	RSD: NMT 6.0%
(X computes	PREPARED BY! MICAN	CUC DATE: 11174
() boes Nor comply	APPROVED BY! 5 WEGU	iant late DATE: 11/1/94

Pharmaceutical, Inc.

Page 2 of 2

LABORATORY TRAT REPORT

FINISHED DRUG PRODUCT

PRODUCT: Digoxin T	ablets, 0.5 mg		
SPECIFICATION: USP		CONTROL #	: 4296 A
CHEMIST: KA	VOLUME #: 3 26. 01	PAGE #: 131	DATE: 11/1/95
SAMPLE STAGE:	Overall composite	of the butch	

	·	
TEST	RESULT	LIMIT
DISSOLUTION: Media: 500mL 0.1N HCl	15 minutes:	(Note - The specified tolerances are for %
Appar: I, rpm: 120	1) 54.2 \$ 7) 79.0 \$	dissolved, and are not to be interpreted as 0
Temp: 37°C ± 0.5°C	2) 82.6 \$ 8) 82.6 \$ 3) 80.1 \$ 9) 91.9 \$	values.) NLT 80% of the LC of Digoxin dissolved
Time: 60 minutes	4) 80 8 \$ 10) 79 / \$	in 60 minutes for the average of 12 tablets tested and no individual
	5) 78.5 \$ 11) 82.4 \$	tablet has less than 75% of the LC of Digoxin
	6) 81.8 \$ 12) 77.1 \$	dissolved in 60 minutes. If the amount of Digoxin dissolved in 60 minutes
	Average: 80 8 / . %	is more than 95% for any individual Tablet, the
	60 minutes:	amount dissolved in 15 minutes is not more than
	1) 43.0 \$ 7) 89.8 \$	90% for each individual Tablet. (LC: Labeled amount)
gration terminal and the second secon	2) 91.6 8 8) 93.5 8	(20. Dabeled amount)
	3) <u>90 0</u> \$ 9) <u>73 0</u> \$ 4) <u>93 1</u> \$ 10) <u>92 2</u> \$	
MILLIAM CENT	5) 92-4 \$ 11) 99.5 \$	
Comment of the second s	6) 94.8 \$ 12) 97-4 \$	
	Average: 93.3 %	
M COMPLIES	PREPARED BY: Milesh Pa	DATE:
() DOES NOT COMPLY	APPROVED BY: SurjaGant	

QC12-147d1

Amide Pharmaceutical, Inc.

Page 1 of 2

LABORATORY THEY REPORT FINIBLED DRUG PRODUCT

PRODUCT! <u>Digoxin Tablets o</u>	45 mid	
specificAtion! <u>usb</u>	co	ONTROL #: 4300 1
chemistiek 7 Aliana	\$1321.04 314.02 PAGE \$11241	15 DATE: 11/1194
SAMPLE STAGE! Nevall (326.01 The bat	1617
TEST	RESULT	LIMIT
DESCRIPTION! Color!	Green	Green
Profile!	Palino bijected lablets	Round Bisected Tablets
Other: Debossed	"" on bisect en sweet the tobe	"A 147" on bisected side of the tablet
THICKNESS! (Guldeline)	3.4 mm	3.0 mm to 4.0 mm
WEIGHT VARIATION:	130.0mg	± 10% Theo. wt (130 mg) 117.0 mg - 143.0 mg
friābilitÿ!	0.04 ./-	NMT 1.0 %
identification: (A)	The relention time of the major peute in the chroma topmin of the sto Preparation	The retention time of the major peak in the chromatogram of Assay prepration corresponds to standard prepration.
ASSAY! bigoxin, 0.5 mg	100.3 1.	90.0% to 105.0%
UNITORMITY OF DOSAGE	1) 99.7 \$ 6) 100.2 \$	85.0% to 115.0%
UNITS! (Content Uniformity)	2) 100.1 \$ 1) 101.0 \$	
APPROVED	3) 99-3 \$ 8) 101.6 \$	
	4) 100.8 \$ 9) 100.6 \$	
DATE ILLIA	5) 1014 \$ 10) 100 9 \$	
	Avi_iw.5/ Rabi_ o.8 /	RSD: NMT 6.0%
LY complites	PREPARED BY! MICH !	EUC DATE: 11/174
() boes Not comply	APPROVED BY! SWEYUL	art Patopate: 11/1/94

ide Pharmaceutical, Inc.

Page 2 of 2

LANGRATORS THEY REPORT TINIBRED DRUG PRODUCT

PRODUCT: blgoxin Tablets, 0.5 md	
SPECIFICATION: USP	CONTROL #: 43CV A
CHEMIST: KA VOLUME #: 326.01	PAGE #: 144 DATE: 111194
BAMPLE STAGE! Nerall Composite	the baten

TEST	RESULT	Limit
	15 minutes: 1) \$4.3 \ 7) \$2.9 \ 2) \$1.7 \ 8) \$2.0 \ 3) \$1.1 \ 9) \$2.2 \ 4) \$2.3 \ 10) 78.8 \ 5) \$3.0 \ 11) 79.7 \ 6) \$1.8 \ 12) 79.9 \ Average: \$1.6 \ 60 minutes: 1) 96.5 \ 7) 90.0 \ 2) 90.7 \ 8) \$9.1 \ 4) \$8.3 \ 10) \$8.3 \ 5) \$9.0 \ 11) \$6.5 \ 6) \$8.9 \ 12) \$8.3 \ 4) \$8.3 \ 10) \$8.3 \ 5) \$9.0 \ 11) \$6.5 \ 4) \$8.3 \ 10) \$8.3 \ 6) \$8.9 \ 12) \$8.5 \ Average: \$9.3 \ 4	individual Tablet, the amount dissolved in 15 minutes is not more than 90% for each individual Tablet. (LC: Labeled amount)
COMPLIES	PREPARED BY! Nileali	
() boes Nor comply	APPROVED BY! SULJUGO	A COL DATE: HILLAN

oc12-147d1

Amide Pharmaceutical, Inc.

Page 1 of 2

LABORATORY TEST REPORT FINISHED DRUG PRODUCT

SPECIFICATION: USP

CHEMIST: P.K./NP/PA VOLUME #: 321.04 | 306.72 PAGE #: 126 | 8 / 122 DATE: 11/9/94

SAMPLE STAGE: OVERAL Companie = 10 bodels (from till up by PA)

AMPLE STAGE: OVERNI CO	mposite up bouters	
TEST	RESULT	LIMIT
DESCRIPTION: Color:	(19 6c-2)	Green
Profile:	Round Discoved Tivild	Round Bisected Tablets
Other: Debossed	'Alur' on hisested side	"A 147" on bisected side of the tablet
THICKNESS: (Guideline)	3.4 10m	3.0 mm to 4.0 mm
WEIGHT VARIATION:	130.6 mg	± 10% Theo. wt (130 mg) 117.0 mg - 143.0 mg
FRIABILITY!	ο ο ίμη.	NMT 1.0 %
IDENTIFICATION: (A)	The ratentian time of the the chromatogram of analy preparation corresponds	The retention time of the major peak in the chromatogram of Assay prepration corresponds to standard prepration.
ASSAY: Digoxin, 0.5 mg	100.7 7.	90.0% to 105.0%
UNIFORMITY OF DOSAGE UNITS: (Content Uniformity)	1) 100 · 8 * 6) 99·2 * 2) 101·7 * 7) 101·8 * 3) 100·6 * 8) 100·8 * 4) 100·3 * 9) 100·8 * 5) 100·4 * 10) 100·4 * AV: 100·7 7. RSD: 0·7 %	APPROVED DATE 11494
(V) COMPLIES	PREPARED BY: MIESH	culc DATE: 11/194
() DOES NOT COMPLY	APPROVED BY: SWYOU	ant Patopate: 11/194

QC13-147c

de Pharmaceutical, Inc.

Page 2 of 2

LABORATORN TEST REPORT

FINISHED DRUG PRODUCT

PRODUCT: Digoxi	in Tablets, 0.5 mg	
SPECIFICATION:	USP	ONTROL #: 4301 A
CHEMIST: PA	VOLUME #: 332 00 PAGE #: 12	2. DATE: 11/9/194
SAMPLE STAGE:	Composité sample	(Farm fill cop by PA)

TEST	RESULT	LIMIT
DISSOLUTION: Media: 500mL 0.1N HC1 Appar: I, rpm: 120 Temp: 37°C ± 0.5°C Time: 60 minutes	15 minutes: 1) 78 7 \$ 7) 80 6 \$ 2) 77 8 \$ 8) 77 7 \$ 3) 73 7 \$ 9) 78 7 \$ 4) 77 5 \$ 10) 77 0 \$ 5) 78 3 \$ 11) 75 7 \$ 6) 79 0 \$ 12) 77 4 \$ Average: 77 7 \$ 60 minutes: 1) 94 1 \$ 7) 90 7 \$ 2) 95 7 \$ 8) 91 0 \$ 3) 92 4 \$ 9) 91 7 \$ 4) 99 9 71 7 \$ 4) 99 9 8 10) 90 2 \$ 5) 88 7 \$ 11) 99 0 \$ 6) 89 4 \$ 12) 87 3 \$ Average: 91 5 \$	individual Tablet, the amount dissolved in 15 minutes is not more than 90% for each individual
(COMPLIES	PREPARED BY: Nilesh le	
() DOES NOT COMPLY	APPROVED BY: Surjalan	Patel DATE: 11/1/AM

qc12-147d1

PROCESS VALIDATION PROTOCOL

DIGOXIN TABLETS 0.5 mg MPR NO. 14702 REV. 00

	BATCH SIZE: 400,000 TABLETS
PREPARED BY:	mine Bl
	Regulatory Affairs Director
DATE:	10/10/94
APPROVED BY:	
	Ashde G. Lises
-	Manufacturing Operations Director
DATE:	10-11-94
	ollew ean
	Quality Assurance Director
DATE:	10/11/94
Control of the contro	Surgaldant Palet
	Quality Control Director
DATE:	10/11/9h
	Alach G- Nisah
	Vice President Operations
DATE:	10-11-54

1

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.5 mg MPR NO. 14702 REV.00

PURPOSE:

This document provides the procedure to be followed to validate the manufacturing process for Digoxin Tablets 0.5 mg. It applies to the next three consecutive batches to be produced.

SCOPE:

This protocol is designed to be prospective in nature.

The guidelines presented here include all steps of the manufacturing process which may have an impact on product quality. They are as follows:

Raw Materials Blending Compression

Details of the process will be found in the completed copies of the Manufacturing Batch Records which are available in the file. A summary of the process is found on the attached flow chart. The major equipment used will be documented and monitored as described in the appropriate section below.

Temperature and humidity will be monitored in the production area on a daily basis.

3% excess of Digoxin is added in the finished product to compensate for production losses.

The data gathered during the course of this study will be evaluated and any adjustments to the predetermined specifications or guidelines will be made as warranted based on the results of the three validation batches.

PROCEDURE:

RAW MATERIALS

All raw materials used in a validation batch will be certified to meet all current Amide specifications for that item. These will specifically include particle size profile, bulk density, and tamped density.

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.5 mg MPR NO. 14702 REV.00

Certification may be accomplished through direct testing by Amide, or an approved contract laboratory, or through a manufacturers Certificate of Analysis.

Digoxin, USP will be tested by Amide, or an approved contract laboratory for the complete monograph. This will include bulk density, tamped density, and particle size testing.

The excipients will be tested by Amide, or an approved contract laboratory, for those parameters required for expired stock retesting. In addition, particle size, bulk and tamped density will be run on all ingredients. The other results may be taken from the manufacturers COA.

In addition to the actual results, the name of the manufacturer, and the manufacturers lot number should be included in the report.

If more than one lot of a raw material is used in the production of the three batches the data should be evaluated to determine if any differences are detectable.

The acceptance criteria will be the specification limits for those tests listed in the Specification document.

BLENDING UNIFORMITY

The preblend will be produced in the 1 cu.ft. Twin Shell Blender, (#31). The speed will be monitored and documented both empty and during blending.

The blend in this step will be subjected to further processing, no sampling will be taken at this point.

The final blend will be produced in the 3 Cu Ft. Twin Shell Blender, (#32). The speed will be monitored and documented both empty and during blending.

The sampling plan for the final blend is designed to evaluate overall blend uniformity, and those points in the blender where uniformity is most difficult to achieve. Samples are to be taken from the points shown below using only the 36 inch (small chamber) single port thief. The sample drawn should be about 390 mg which is three times the single dosage unit, and should be submitted to the laboratory in "Butter Paper."

PROCESS VALIDATION PROTOCOL - DIGORIN TABLETS 0.5 mg MPR NO. 14702 REV.00

SAMPLING POINTS

- 1. Left Column Top left
 2. Left Column Top Center
 3. Left Column Top Right
 4. Right Column Top left
 5. Right Column Top Center
 10. Bottom Left
 11. Bottom Right
- 6. Right Column Top Right

The samples are to be analyzed individually, without being ground, for Digoxin. No composite samples are to be prepared. The sample weight used for analysis should approximate 130 mg, which is the amount of this blend which would be present in one unit of the tablet.

Acceptance criteria is 85.0 - 115.0 % Th for the individual data points. This product has a 3% overage to compensate for the production losses.

one additional sample of about 150 g will be taken with the help of a stainless steel scoop from the top center of the blender. This sample will be tested for physical characterization which includes; bulk and tap density and particle size analysis. This data is for characterization only and these parameters will not be used to monitor routine production. Therefore, acceptance criteria will not be established.

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.5 mg MPR NO. 14702 REV.00

COMPRESSION

Compression will be accomplished using the stokes 45 station tablet press. The speed will be determined and documented during the validation study.

During compression samples will be collected every 15 minute by QA. These samples will be evaluated for individual tablet weight, thickness, and hardness. This will be 10 tablets for weight, and five each for thickness and hardness. Front and rear samples will be tested separately and will not be composited for any test in this section unless specifically stated.

The 15 minute samples should be arranged chronologically and the batch divided into thirds. Each third should be evaluated as described below for all tests except content uniformity. The samples for each test should be prepared by selecting, as close as possible, an equal number of tablets from each 15 minute sample. If selecting one tablet per 15 minute results in a greater number of tablets than the test requires the distribution should be as even as possible.

TEST	N
Friability Disintegration Dissolution	10 g - 1 Run 6
	12 (6 front & 6 rear)

Content Uniformity testing is to be run across the entire batch. One tablet per 15 minute sample is to be run with a minimum of 30 tablets being required. The tablets selected for testing should be weighed prior to testing and their identity maintained. If compression runs for less than 8 hours, the additional tablets should be selected as evenly distributed as possible throughout the batch.

A portion of the blend will be run at hardness of $0.5-3.0~\mathrm{KP}$ and above 8.0 KP. This will determine the effect of hardness on friability and dissolution.

Minimum quantities sufficient to equilibrate the press will be run at both lower and higher speeds. The actual ranges will be determined during production. Samples will be evaluated for hardness and weight.

Data analysis will consist of Average and Standard Deviation, with comparison both within and across the three batches. The data collected within each batch will also be evaluated for any possible trends.

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.5 mg MPR NO. 14702 REV.00

An overall composite sample will be prepared from all the 15 minute samples. This data will provide the basis for product release and will also be the initial data for stability.

Acceptance criteria will be as follows:

Target Weight (1 tablet): 130.0 mg Target Weight (10 tablets): 1.300 g Weight Range (1 tablets): 0.123 - 0.137 qThickness: 3.0 - 4.0 mmHardness: 2.0 - 8.0 KP Friability NMT 1% Identification Meets requirements. Content Uniformity 85.0% - 115.0% (RSD NMT 6.0%) Dissolution Meets USP Requirement. Assay 90.0 - 105.0%

BATCH FLOW CHART FOR DIGOXIN TABLETS 0.5 mg BATCH SIZE: 400,000 TABLETS MPR # 14702, REV # 00

