2021/2022 Pr: S.Bouzawit

Devoir 2

Durée:2h

2bac s-math Madariss Joudour AlMaarifa Larache

Exercice 1

Les deux questions sont indépendantes

$$\boxed{1} \text{ Montrer que } (\forall x \in \mathbb{R}^+) \quad \sqrt[3]{1+x} \le 1 + \frac{x}{3}.$$

1pt

2 Soit f la fonction définie sur $\mathbb{R} - \{1\}$ par $f(x) = \arctan\left(\frac{x+1}{x-1}\right)$

(a) Montrer que
$$f'(x) = -\frac{1}{1+x^2}$$
 pour tout $x \text{ de } \mathbb{R} - \{1\}$.

1pt

(b) Simplifier f(x) sur chacun des intervalles $]-\infty,1[$ et $]1,+\infty[$.

1pt

Exercice 2

Soit f la fonction définie sur \mathbb{R} par : $f(x) = 1 - x + \frac{x}{\sqrt{x^2 + 1}}$.

(a) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$. 1

0.5 pt

(b) Montrer que f est continue sur \mathbb{R} .

 $0.5 \mathrm{pt}$

(a) Montrer que $(\forall x \in \mathbb{R}) f'(x) = \frac{1}{(x^2+1)\sqrt{x^2+1}} - 1$. 2

 $0.5 \mathrm{pt}$

(b) En déduire que f réalise une bijection de \mathbb{R} vers \mathbb{R} .

 $0.5 \mathrm{pt}$

(c) Montrer que l'équation f(x) = 0 admet une unique solution α dans \mathbb{R} .

1pt

d Montrer que f^{-1} est dérivable en 0 et que $(f^{-1})'(0) = -\frac{\alpha^3 + \alpha}{\alpha^3 + 1}$.

1.5 pt

 $|\mathbf{3}|$ Soit $n \in \mathbb{N}^* - \{1\}$.

(a) Montrer que l'équation $f(x) = \frac{1}{n}$ admet une unique solution x_n dans \mathbb{R} et que $x_n \geq 1$.

1pt

(b) Etudier la monotonie de (x_n) .

0.5pt

 \bigcirc Montrer que (x_n) est convergente et calculer sa limite.

1 pt

Exercice 3

Soit f la fonction définie sur \mathbb{R}^+ par $: f(x) = x \arctan \sqrt{x}$. C_f sa représentation graphique dans un repère orthonormé (O, \vec{i}, \vec{j})

1 Calculer $\lim_{x \to +\infty} f(x)$.

0.5pt

2 (a) Etudier la dérivabilité de f en 0 à droite . Interpréter graphiquement le résultat . 1pt (b) Calculer f'(x) pour tout x de $]0, +\infty[$.

(c) Dresser le tableau de variations de f . 0.5pt

 $oxed{3}$ (a) Etudier la branche infinie de C_f au voisinage de $+\infty$.

(b) Etudier la position relative de C_f et la droite (Δ) d'équation $y = \frac{\pi}{2}x$. 0.5pt

 $\boxed{\textbf{4}} \text{ Tracer } C_f \ .$

Exercice 4

Soient $n \in \mathbb{N}^* - \{1,2\}$ et $a \in]0,+\infty[$ On considère f la fonction définie sur $[0,\frac{\pi}{2a}[$ par : $f(x)=\sqrt[n]{\tan^2(ax)}$.

f 1 Etudier la dérivabilité de f en 0 à droite . 0.5pt

2 Calculer f'(x) pour tout x de $]0, \frac{\pi}{2a}[$. 0.5pt

3 (a) Montrer que f réalise une bijection de $[0, \frac{\pi}{2a}[$ vers \mathbb{R}^+ . 0.5pt

(b) Montrer que f^{-1} est dérivable sur $]0, +\infty[$. 0.5pt

© Calculer $f(\frac{\pi}{4a})$ et $(f^{-1})'(1)$.

 $\boxed{\mathbf{4}} \text{ V\'erifier que}: (\forall x \in]0, \frac{\pi}{2a}[) \quad f'(x) = \frac{2a}{n} \times \frac{1 + f^n(x)}{\sqrt{f(x)^{n-2}}}.$

5 En déduire que $(\forall x \in]0, +\infty[)$ $(f^{-1})'(x) = \frac{n}{2a} \times \frac{\sqrt{x^{n-2}}}{1+x^n}$.

6 (BONUS)

On pose $g(x) = f^{-1}(x^2) + f^{-1}(\frac{1}{x^2})$ pour tout x de $]0, +\infty[$.

(a) Montrer que g est dérivable sur $]0, +\infty[$. 0.5pt

(b) Calculer g'(x) pour tout x de $]0, +\infty[$. 0.5pt

© En déduire que $g(x) = \frac{\pi}{2a}$ pour tout x de $]0, +\infty[$.

Le Bac se prépare chaque jour

