Unsupervised Learning (2018 Fall) Homework #2

Youki Cao -

Oct 26 2018

Problem 1

1. "A lower bound on the distortion of embedding planar metrics into Euclidean space" by Newman and Rabinovich.

In general this paper gives a tight lower bound on the distortion of embedding planar metrics into Euclidean spaces. For definition, a metric is called planar if it can be obtained by restricting the geodetic metric of some weighted planar graph to a subset of its vertices. Also given two metric spaces (S, μ) , (R, δ) and an embedding $f: S \to R$, define the distortion of f as the product of the max expansion and the max contraction of f, which can be proved to be great or equal to 1, and comes to be 1 iff f preserves μ up to scaling.

$$distr(f) = \max_{x,y \in S} \frac{\delta(f(x), f(y))}{\mu(x, y)} \max_{x,y \in S} \frac{\mu(x, y)}{\delta(f(x), f(y))}$$

For a finite metric μ , define $c_2(\mu)$ and $c_1(\mu)$ respectively as the smallest possible distortion of embedding μ into real Euclidean and l_1 space. It holds that $c_2(\mu) \geq c_1(\mu)$. So now we want to establish a lower bound for series-parallel metrics. Define a family $\{G_k\}$ as below: G_0 is a single edge. G_i is generated by replacing each edge of G_{i-1} by two parallel paths, each containing two edges. The length of every edge in G_i is defined as 2^{-i} , half of that in G_{i-1} . The sketch of graph G_1, G_2, G_3 is shown in Figure 1. Also we define anti-edge as below: assume we replace the edge (a, b) in G_i with edges (a, x), (x, b), (a, y), (y, b), then we call the pair vertices $\{x, y\} \subset V(G_i)$ the anti-edge of (a, b). It's easy to notice that G_k is a series-parallel graph containing 4^k edges and $(2 * 4^k + 4)/3$ vertices. Then it comes to our main theorem.

Theorem 1. Let μ denote the geodetic metric of G_k . Then we have $c_2(\mu) \geq \sqrt{k+1}$.

I provide the proof sketch here. Let $f:V(G)\to \mathcal{R}^d$ be an embedding of μ into Euclidean space. Assume that f is non-expanding. Let $\alpha=\min_{v,u\in V(G_k)}(||f(v)-f(u)||_2/\mu(v,u))$. All we need to do is to show $\alpha\leq \frac{1}{\sqrt{k+1}}$. Firstly we use downwards induction to prove that for $\exp(a,c)\in E(G_i)$,

$$||f(a) - f(c)||_2 \le \sqrt{1 - (k - i)\alpha^2}\mu(a, c)$$

Figure 1: The graph of G_0, G_1, G_2

The induction can be proved using the fact that for any four points a, b, c, d in Euclidean space the sum of the squares of the diagonals will not exceed the sum of the squares of the sides. Use it to the anti-edge and the original edges, we can get the induction proved. Then we consider the edge (s,t) of G_0 . The images of s and t are at least α and at most $\sqrt{1-k\alpha^2}$ apart. We we have $\alpha \leq 1/\sqrt{k+1}$. Therefore proved. Furthermore we can slightly strengthen the theorem by restoring all pairs edges. Let H_0 consist of single edge of length 1, and let H_i be obtained by taking H_{i-1} . In addition to existing vertices and edges, introducing for each edge e=(a,c) of H_{i-1} of length $2^{-(i-1)}$ two new vertices b_e , d_e , a new edge (b_e,d_e) of length $2^{-(i-1)}$ and four new edges (a,b_e) , (b_e,c) , (c,d_e) , (d_e,a) and each of length 2^{-i} . H_{i-1} isometrically embeds into H_i under the natural identification of the vertices. Also by the preceding discussion we have theorem 2.

Theorem 2. In any embedding f of H_k into Euclidean space which does not expand the edges, there exists an edge in $E(H_k)$ whose length is contracted by f by at least a factor of $\sqrt{k+1}$.

2. "On the Impossibility of Dimension Reduction in l_1 " by Brinkman and Charikar.

This paper shows strong lower bounds for general dimension reduction in l_1 . It gives an explicit family of n points in l_1 such that any embedding with distortion δ requires $n^{\Omega(1/\delta^2)}$ dimensions. So there is no analog of the JL Lemma for l_1 .

We first define the concept of stretch-limited embedding. Suppose a metric space (M, ρ) could be written as a collection of t line metrics $\{\rho_1, \dots, \rho_t\}$ with weights $\{\omega_1, \dots, \omega_t\}$ s.t. the sum is equal to 1. Define the weighted distance function d' as:

$$d'(u,v) = \sum_{i=1}^{t} \omega_i |\rho_i(u) - \rho_i(v)|$$

Then we focus on series-parallel graphs called recursive diamond graphs the same as the previous paper. A vertex is said to have $level\ k$ if it first appears in the order k

graph but not in the order k-1 graph. The two new vertices created by replacing an edge with a diamond are called siblings and they are called the diagonal of that specific diamond. We'll call a diagonal level k if the vertices concerned are level k. For a label x, e_x denotes the edge labeled as x, f_x denote the diagonal whose label is x. This leaves the original first edge unlabeled. We will treat it as if being "diagonal like" and refer to as f_* . The length of a particular edge labeled as x is denoted as m_x . The length of a diagonal labeled y is denoted as d_y . For the original first edge, d_* . For each edge, the two endpoints are designated as hd and tl, so we can obtain an expression $\rho(hd(e)) - \rho(tl(e))$. For a diagonal edge e_y the two endpoints are designated as tp and tt, such that $\rho(tp(e_y)) \geq \rho(bt(e_y))$ and denote the length of that diagonal edge as tt. We can define the following

$$m_{x} = \rho(hd(e_{x})) - \rho(tl(e_{x}))$$

$$d_{x} = \rho(tp(f_{x})) - \rho(bt(f_{x}))$$

$$n_{x} = \frac{\rho(tp(f_{x})) + \rho(bt(f_{x}))}{2} - \frac{\rho(hd(e_{x})) + \rho(tl(e_{x}))}{2}$$

From all these definitions we can calculate m_{x0} , m_{x2} , m_{x3} , and find a representation of m_x as below:

$$m_x = \frac{d_*}{2^{|x|}} + \sum_{y \subseteq x} \frac{S(x_{|y|+1})d_y}{2^{|x|-|y|}} + \sum_{y \subseteq x} \frac{T(x_{|y|+1})n_y}{2^{|x|-|y|-1}}$$

Then we will place our edges and diagonals into groups and write the constraints in terms of the average distances in these groups. We group edges into 2^k edges, where each group is identified by label $\{0,1\}^k$. An edge e_x is in group $z \in \{0,1\}^k$ if x(mod2) = z. Similarly diagonals of level i are grouped into 2^i groups, identified with labels in $\{0,1\}^i$.

$$\overline{m_z} = \frac{1}{2^k} \sum_{x: x (mod)2=z} |m_x|$$

$$\overline{d_z} = \frac{1}{2^k} \sum_{x: x (mod)2=z} d_x$$

So we can rewrite our δ constraint.

$$\delta(\overline{d_*} + \sum_{i=0}^{k-1} \sum_{y \in \{0,1\}^i} \overline{d_y}) - \gamma \sum_{x \in \{0,1\}^k} \overline{m_x} \ge k + 1 - \gamma$$

For a group label $z \in \{0, 1\}^k$,

$$\overline{m_z} \ge \frac{d_*}{2^k} + \sum_{y \subseteq z} S(z_{|y|} + 1) \frac{\overline{d_y}}{2^{k-|y|}}$$

$$\overline{m_z} \ge -\frac{d_*}{2^k} - \sum_{y \subseteq z} S(z_{|y|} + 1) \frac{\overline{d_y}}{2^{k-|y|}}$$

So now we can give our linear program and construct the dual as algo 2.

Algorithm 1 Linear Programming

 $\min s$

(a)
$$\delta(\overline{d_*} + \sum_{i=0}^{k-1} \sum_{y \in \{0,1\}^i} \overline{d_y}) - \gamma \sum_{z \in \{0,1\}^k} \overline{m_x} \ge k + 1 - \gamma [\mu]$$

(b)
$$\forall z \in \{0, 1\}^k \quad s/2^k \ge \overline{m_z} \ [p_z]$$

(c)
$$\forall z \in \{0, 1\}^k \quad \overline{m_z} \ge \frac{\overline{d_*}}{2^k} + \sum_{y \sqsubseteq z} S(z_{|y|} + 1) \frac{\overline{d_y}}{2^{k-|y|}} [\alpha_z]$$

(d)
$$\forall z \in \{0, 1\}^k \quad \overline{m_z} \ge -\frac{\overline{d_*}}{2^k} - \sum_{y \sqsubseteq z} S(z_{|y|} + 1) \frac{\overline{d_y}}{2^{k-|y|}} [\beta_z]$$

Algorithm 2 Dual Problem

 $\max \ (k+1-\gamma)\mu$

(a)
$$\forall z \in \{0,1\}^k$$
 $-\gamma \mu - p_z + \alpha_z + \beta_z \le 0 \ [\overline{m_z}]$

(b)
$$\sum_{z \in \{0,1\}^k} p_z \le 2^k [s]$$

(c)
$$\forall y \in \bigcup_{i \in [0,k-1]} \{0,1\}^i \quad \mu \delta + \sum_{v \in \{0,1\}^{k-|y|}} \frac{S((yv)_{|y|+1})(\alpha_{yv} - \beta_{yv})}{2^{k-|y|}} \le 0 \ [\overline{d_y}]$$

(d)
$$\mu \delta + \sum_{z \in \{0,1\}^k} \frac{\alpha_z - \beta_z}{2} \le 0 \ [\overline{d_*}]$$

Finally we can get the solution. Then for any n arbitrary points with l_1 metric, we can construct a similar structure analogous to the recursive diamond graph. Starting from the original first edge with endpoints 0 and 1, the vertices will correspond to points in $\{0,1\}^i$. To go from level i to i+1, first double the dimensions. Then replace the parent node x and y with xx and yy. The children will be the points xy and yx. The level k recursive diamond graph corresponds to a set of $\Theta(4^{k+1})$ points in 2^{k+1} dimensions. Therefore the n points could be embedding into a space with dimension $n^{\Omega(1/\delta^2)}$ with the distortion δ . So the dimensional reduction in l_1 without distortion is impossible.

(a)

From definition we know $G = -\frac{1}{2}H^{T}DH$. Here H is a symmetric matrix, so that $H^{T} = H$. Because

$$H_{ij} = \begin{cases} 1 - \frac{1}{n} & i = j, \\ -\frac{1}{n} & i \neq j. \end{cases}$$

So we have

$$G_{ij}/(-\frac{1}{2}) = \sum_{l=1}^{n} \sum_{k=1}^{n} H_{il} \rho_{lk} H_{kj}$$

$$= (1 - \frac{1}{n})^{2} \rho_{ij} + \sum_{k \neq j} (1 - \frac{1}{n})(-\frac{1}{n}) \rho_{ik} + \sum_{l \neq i} (1 - \frac{1}{n})(-\frac{1}{n}) \rho_{lj} + \sum_{l \neq i} \sum_{k \neq j} \frac{1}{n^{2}} \rho_{lk}$$

$$= \rho_{ij} - \frac{2}{n} \rho_{ij} + \frac{1}{n^{2}} \rho_{ij} - \frac{1}{n} \sum_{k \neq j} \rho_{ik} + \frac{1}{n^{2}} \sum_{k \neq j} \rho_{ik} - \frac{1}{n} \sum_{l \neq i} \rho_{lj} + \sum_{l \neq i} \sum_{k \neq j} \frac{1}{n^{2}} \rho_{lk}$$

$$= \rho_{ij} - \frac{1}{n} \sum_{k=1}^{n} \rho_{ik} - \frac{1}{n} \sum_{l=1}^{n} \rho_{lj} + \frac{1}{n^{2}} \sum_{l=1}^{n} \sum_{k=1}^{n} \rho_{lk}$$

$$= \rho_{ij} - \frac{1}{n} \sum_{j} \rho_{ij} - \frac{1}{n} \sum_{i} \rho_{ij} + \frac{1}{n^{2}} \sum_{ij} \rho_{ij}$$

Therefore,

$$G_{ij} = -\frac{1}{2}(\rho_{ij} - \frac{1}{n}\sum_{j}\rho_{ij} - \frac{1}{n}\sum_{i}\rho_{ij} + \frac{1}{n^2}\sum_{ij}\rho_{ij})$$

(b)

For $\forall i, j, \rho_{ij} = ||x_i - x_j||^2 = ||(x_i - \overline{x}) - (x_j - \overline{x})||^2 = ||x_i - \overline{x}||^2 + ||x_j - \overline{x}||^2 - 2(x_i - \overline{x})^{\mathbf{T}}(x_j - \overline{x})$ We can calculate each term inside the paranthesis of

$$G_{ij} = -\frac{1}{2}(\rho_{ij} - \frac{1}{n}\sum_{j}\rho_{ij} - \frac{1}{n}\sum_{i}\rho_{ij} + \frac{1}{n^{2}}\sum_{ij}\rho_{ij})$$

$$\rho_{ij} = ||x_{i} - \overline{x}||^{2} + ||x_{j} - \overline{x}||^{2} - 2(x_{i} - \overline{x})^{\mathbf{T}}(x_{j} - \overline{x})$$

$$-\frac{1}{n}\sum_{j}\rho_{ij} = -\frac{1}{n}(n||x_{i} - \overline{x}||^{2} + \sum_{j}||x_{j} - \overline{x}||^{2} - 2\sum_{j}(x_{i} - \overline{x})^{\mathbf{T}}(x_{j} - \overline{x}))$$

$$-\frac{1}{n}\sum_{i}\rho_{ij} = -\frac{1}{n}(\sum_{i}||x_{i} - \overline{x}||^{2} + n||x_{j} - \overline{x}||^{2} - 2\sum_{i}(x_{i} - \overline{x})^{\mathbf{T}}(x_{j} - \overline{x}))$$

$$\frac{1}{n^{2}}\sum_{ij}\rho_{ij} = \frac{1}{n^{2}}(\sum_{ij}||x_{i} - \overline{x}||^{2} + \sum_{ij}||x_{j} - \overline{x}||^{2} - 2\sum_{ij}(x_{i} - \overline{x})^{\mathbf{T}}(x_{j} - \overline{x}))$$

Because
$$\sum_{j}(x_{j}-\overline{x})=\sum_{j}(x_{j})-n\overline{x}=0$$
, we have

$$-\frac{1}{n}\sum_{j}\rho_{ij} = -\frac{1}{n}(n||x_i - \overline{x}||^2 + \sum_{j}||x_j - \overline{x}||^2) = -||x_i - \overline{x}||^2 - \frac{1}{n}\sum_{j}||x_j - \overline{x}||^2$$

$$-\frac{1}{n}\sum_{i}\rho_{ij} = -\frac{1}{n}(\sum_{i}||x_{i} - \overline{x}||^{2} + n||x_{j} - \overline{x}||^{2}) = -\frac{1}{n}\sum_{i}||x_{i} - \overline{x}||^{2} - ||x_{j} - \overline{x}||^{2}$$

$$\frac{1}{n^2} \sum_{ij} \rho_{ij} = \frac{1}{n^2} \left(\sum_{ij} ||x_i - \overline{x}||^2 + \sum_{ij} ||x_j - \overline{x}||^2 - 2 \sum_i \sum_j (x_i - \overline{x})^{\mathbf{T}} (x_j - \overline{x}) \right)
= \frac{1}{n^2} \left(n \sum_i ||x_i - \overline{x}||^2 + n \sum_j ||x_j - \overline{x}||^2 \right)
= \frac{1}{n} \sum_i ||x_i - \overline{x}||^2 + \frac{1}{n} \sum_j ||x_j - \overline{x}||^2$$

$$G_{ij} = -\frac{1}{2}(\rho_{ij} - \frac{1}{n}\sum_{j}\rho_{ij} - \frac{1}{n}\sum_{i}\rho_{ij} + \frac{1}{n^{2}}\sum_{ij}\rho_{ij})$$

$$= -\frac{1}{2}(||x_{i} - \overline{x}||^{2} + ||x_{j} - \overline{x}||^{2} - 2(x_{i} - \overline{x})^{T}(x_{j} - \overline{x}) - ||x_{i} - \overline{x}||^{2} - \frac{1}{n}\sum_{j}||x_{j} - \overline{x}||^{2}$$

$$-\frac{1}{n}\sum_{i}||x_{i} - \overline{x}||^{2} - ||x_{j} - \overline{x}||^{2} + \frac{1}{n}\sum_{i}||x_{i} - \overline{x}||^{2} + \frac{1}{n}\sum_{j}||x_{j} - \overline{x}||^{2})$$

$$= (x_{i} - \overline{x})^{T}(x_{i} - \overline{x})$$

(c)

Given n items $\gamma_i \cdots, \gamma_n \in \Gamma$, and a (symmetric) comparison function $\rho : \Gamma \times \Gamma \to \mathbf{R}$. Define $G := -\frac{1}{2}H^{\mathbf{T}}DH$, where $D_{ij} = \rho(\gamma_i, \gamma_j)$, and $H := I - \frac{1}{n}\mathbf{1}\mathbf{1}^T$. We want to prove that if G is positive semidefinite, then the n items be can isometrically embeddable in n-dim Euclidean space.

Lemma 1. For every positive definite matrix A, there exists matrix U s.t. $A = U^{T}U$.

Proof. We'll use induction to prove the results. The base situation is when A's dim is 1. It's trivial to be correct. Then we assume that for each positive definite matrix of n-1 dimension, it can be decomposed as $U^{\mathbf{T}}U$ for some U. Then consider an n-dimensional positive definite matrix A, write A as:

$$A = \begin{bmatrix} A_1 & a \\ a^{\mathbf{T}} & \alpha \end{bmatrix}$$

Since A_1 is a principle submatrix of A, we have A_1 is also positive definite, of dimension = n-1. From inductive assumption we know that there exists U_1 s.t. $A_1 = U_1^{\mathbf{T}}U_1$. And U_1 is

invertible. Denote $Y_1 = \begin{bmatrix} U_1 & 0 \\ 0 & 1 \end{bmatrix}$ Then we have

$$Y_1^{-T}AY_1^{-1} = \begin{bmatrix} U_1^{-T} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} A_1 & a \\ a^{\mathbf{T}} & \alpha \end{bmatrix} \begin{bmatrix} U_1^{-1} & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} I & b \\ b^{\mathbf{T}} & \alpha \end{bmatrix}$$

Here $b = U_1^{\mathbf{T}} a$. Consider $Y_2 = \begin{bmatrix} I & b \\ 0 & 1 \end{bmatrix}$, and we have

$$Y_2^{-T}Y_1^{-T}AY_1^{-1}Y_2^{-1} = \begin{bmatrix} I & 0 \\ -b^\mathbf{T} & 1 \end{bmatrix} \begin{bmatrix} I & b \\ b^T & \alpha \end{bmatrix} \begin{bmatrix} I & -b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & \alpha - b^\mathbf{T}b \end{bmatrix}$$

Because the matrix $\begin{bmatrix} I & 0 \\ 0 & \alpha - b^{\mathbf{T}}b \end{bmatrix}$ and A are congruent, and A is positive definite, we have this matrix is also positive definite. So we know $\alpha - b^{\mathbf{T}}b > 0$, let $\lambda^2 = \alpha - b^{\mathbf{T}}b$, $\lambda > 0$. Denote $Y_3 = \begin{bmatrix} I & 0 \\ 0 & \lambda \end{bmatrix}$, so we have

$$Y_2^{-T} Y_1^{-T} A Y_1^{-1} Y_2^{-1} = Y_3^{\mathbf{T}} Y_3$$

$$A = (Y_3 Y_2 Y_1)^{\mathbf{T}} (Y_3 Y_2 Y_1)$$

Denote $U = Y_3Y_2Y_1$, here we have $A = U^{\mathbf{T}}U$. And thus we proved the situation with n dimension. Then by induction, the claim is correct.

Lemma 2. For every positive semidefinite matrix A, there exists matrix U s.t. $A = U^{T}U$.

Proof. For any positive semidefinite matrix A, construct a sequence A_k , $k = 1, 2, \cdots$. Here $A_k := A + \frac{1}{k}I$. Then we know A_k is positive definite and $A_k \to A$ when $k \to \infty$. From Lemma 1 we know that for each A_k , there exists a matrix U_k s.t. $A_k = U_k^{\mathbf{T}}U_k$. So in operator norm we have

$$||U_k||^2 \ge ||U_k^{\mathbf{T}} U_k|| = ||A_k||$$

Since the eigenvalues of A_k are bounded, we get the singular values of U_k are bounded. So we know $\{U_k\}$ is a bounded set in the Banach space of operators. Also the underlying space is finite dimensional. So $\{U_k\}$ is relative compact. Therefore it contains a convergent subsequence, denote as $\{U_k\}$ itself for convenience, and denote its limit as U. For every x, y,

$$(Ax, y) = (\lim_{k \to \infty} A_k x, y) = (\lim_{k \to \infty} U_k^{\mathbf{T}} U_k x, y) = (U^{\mathbf{T}} U x, y)$$

Therefore we have $A = U^{\mathbf{T}}U$

Since G is positive semidefinite, from Lemma 2 we know that there exists X s.t. $G = X^TX$, where $X = [x_1, \dots, x_n], x_1, \dots, x_n \in \mathbb{R}^n$. By the definition of G, we have $G = -\frac{1}{2}H^TDH$. Denote \overline{x} as the vector, element of which is the mean of each row of X. That is $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{n} X \mathbf{1}$. Because $H = I - \frac{1}{n} \mathbf{1} \mathbf{1}^T$, we have $H \mathbf{1} = 0$. So

$$\mathbf{1}^{\mathbf{T}}X^{\mathbf{T}}X\mathbf{1} = \mathbf{1}^{\mathbf{T}}G\mathbf{1} = -\frac{1}{2}\mathbf{1}^{\mathbf{T}}H^{\mathbf{T}}DH\mathbf{1} = 0$$

Youki Cao -

Therefore $(X\mathbf{1})^{\mathbf{T}}(X\mathbf{1}) = 0$. That is, $(n\overline{x})^{\mathbf{T}}(n\overline{x}) = 0$. So $\overline{x} = 0$. From the question 2(a), we have

$$\begin{aligned} ||x_{i} - x_{j}||_{2}^{2} &= x_{i}^{\mathbf{T}} x_{i} + x_{j}^{\mathbf{T}} x_{j} - 2x_{i}^{\mathbf{T}} x_{j} \\ &= G_{ii} + G_{jj} - 2G_{ij} \\ &= -\frac{1}{2} (\rho_{ii} - \frac{1}{n} \sum_{l} \rho_{il} - \frac{1}{n} \sum_{k} \rho_{ki} + \frac{1}{n^{2}} \sum_{kl} \rho_{kl}) \\ &- \frac{1}{2} (\rho_{jj} - \frac{1}{n} \sum_{l} \rho_{jl} - \frac{1}{n} \sum_{k} \rho_{kj} + \frac{1}{n^{2}} \sum_{kl} \rho_{kl}) \\ &+ (\rho_{ij} - \frac{1}{n} \sum_{l} \rho_{il} - \frac{1}{n} \sum_{k} \rho_{kj} + \frac{1}{n^{2}} \sum_{kl} \rho_{kl}) \\ &= \frac{1}{2n} (-\sum_{l} \rho_{il} + \sum_{l} \rho_{jl} + \sum_{l} \rho_{li} - \sum_{l} \rho_{lj}) + \rho_{ij} \\ &= \rho_{ij} \end{aligned}$$

So we have the X we get can recover the Euclidean representation of the given n items. #

Given two metric spaces $X=(\mathbb{R}^d,||\cdot||_2)$ and $Y=(\mathbb{R}^{2^d},||\cdot||_\infty)$. We need to find an isometric embedding $\phi:X\to Y$. For a decimal based number x, denote its binary number as \hat{x} . Also denote \hat{x}_i as the i_{th} digit of \hat{x}_i . $\hat{x}_i\in\{0,1\}$. Define ϕ as below: $\forall x=(x^1,\cdots,x^d)\in\mathbb{R}^d$, $\phi(x)=(y^0,\cdots,y^{2^d-1})$, where $y^l=\sum_{i:\hat{l}_i=1}x^i-\sum_{i:\hat{l}_i=0}x^i$. Because $l\leq 2^d-1$, we know the length of its binary number is at most d. Here if the length of its binary number is less than d, then we add 0 in the front so that each binary number's length is d. So ϕ is defined well. Then I'll show that ϕ is an isometric embedding. $\forall x_1=(x_1^1,\cdots,x_1^d), x_2=(x_2^1,\cdots,x_2^d)\in\mathbb{R}^d$, denote $\phi(x_1)=(y_1^0,\cdots,y_1^{2^d-1}), \phi(x_2)=(y_2^0,\cdots,y_2^{2^d-1})$.

1. First I will show $||\phi(x_1) - \phi(x_2)||_{\infty} \le ||x_1 - x_2||_1$. $\forall 0 < l < 2^d - 1$,

$$|y_1^l - y_2^l| = |(\sum_{i:\hat{l}_i=1} x_1^i - \sum_{i:\hat{l}_i=0} x_1^i) - (\sum_{i:\hat{l}_i=1} x_2^i - \sum_{i:\hat{l}_i=0} x_2^i)|$$

$$\leq \sum_{i:\hat{l}_i=1} |x_1^i - x_2^i| + \sum_{i:\hat{l}_i=0} x_2^i |x_1^i - x_2^i|$$

$$\leq \sum_{i=1}^d |x_1^i - x_2^i| = ||x_1 - x_2||_1$$

Because l is randomly selected, we know that it holds for every l. So

$$||\phi(x_1) - \phi(x_2)||_{\infty} = \max_{l} |y_1^l - y_2^l| \le ||x_1 - x_2||_1$$

2. Then I'll show $||\phi(x_1) - \phi(x_2)||_{\infty} \ge ||x_1 - x_2||_1$.

Denote $A_1 = \{i : x_1^i \ge x_2^i\}$, and $A_2 = \{i : x_1^i < x_2^i\}$. Find $0 \le l \le 2^d - 1$ so that $l = \sum_{j \in A_1} 2^{d-j}$. So we have $\{i : \hat{l}_i = 1\} = A_1$ and $\{i : \hat{l}_i = 0\} = A_2$.

$$\begin{aligned} ||\phi(x_1) - \phi(x_2)||_{\infty} &= \max_{t} |y_1^t - y_2^t| \\ &\geq |y_1^l - y_2^l| \\ &= |(\sum_{i:\hat{l}_i = 1} x_1^i - \sum_{i:\hat{l}_i = 0} x_1^i) - (\sum_{i:\hat{l}_i = 1} x_2^i - \sum_{i:\hat{l}_i = 0} x_2^i)| \\ &= |\sum_{i\in A_1} (x_1^i - x_2^i) + \sum_{i\in A_2} (x_2^i - x_1^i)| \\ &= \sum_{i\in A_1} (x_1^i - x_2^i) + \sum_{i\in A_2} (x_2^i - x_1^i) \\ &= \sum_{i\in A_1} |x_1^i - x_2^i| + \sum_{i\in A_2} |x_2^i - x_1^i| \\ &= \sum_{i\in A_1} |x_1^i - x_2^i| = ||x_1 - x_2||_1 \end{aligned}$$

So we have $||\phi(x_1) - \phi(x_2)||_{\infty} = ||x_1 - x_2||_1$. Hence ϕ is a satisfying isometric embedding from l_1^d to $l_{\infty}^{2^d}$. #

Let (X, ρ) be an n-point metric space. Let $q = \lceil \log n \rceil$, recall from the theorem in the lecture we know that there exists a $O(\log(n))$ -embedding $f: X \to l_{\infty}^d$ with $d = O(\log n n^{1/\log n} \log n)$ Because $n^{1/\log n} = e^{\frac{1}{\log n} \log n} = O(1)$, so we know $d = O(\log^2 n)$. From the definition of D-embedding we know that $\exists r > 0, \forall x, x' \in X$,

$$r\rho(x, x') < ||f(x) - f(x')||_{\infty} < O(\log n)r\rho(x, x')$$
 (1)

Now recall question 1.2 (c) and (d) in HW0, we know that $\forall x \in \mathbb{R}^d, p=2, q=\infty$, we have

$$||x||_{\infty} \le ||x||_{2} \le ||x||_{\infty} \cdot d^{1/2} = ||x||_{\infty} \cdot O(\log n)$$
(2)

From (1) and (2) we can get,

$$r\rho(x, x') \le ||f(x) - f(x')||_{\infty} \le ||f(x) - f(x')||_{2}$$

 $\le ||f(x) - f(x')||_{\infty} \cdot O(\log n) \le O(\log^{2} n) r\rho(x, x')$

So let r remains the same as above, $D = O(\log^2 n)$, then for $\forall x, x' \in X$,

$$r\rho(x, x') \le ||f(x) - f(x')||_2 \le Dr\rho(x, x')$$

Here we get that every *n*-point metric space can be *D*-embedded into l_2^d , with $D = O(\log^2 n)$, $d = O(\log^2 n)$. #

Consider a tree G = (V, E) on n vertices. I'll use induction to prove that it can be isometrically embedded to l_1^{n-1} .

- 1. Base: when n=2. Denote $V=(v_1,v_2)$. Define the embedding ϕ as: $\phi(v_1)=0, \phi(v_2)=\rho(v_1,v_2)$. Then we have $||\phi(v_1)-\phi(v_2)||_1=\rho(v_1,v_2)$. So ϕ is an isometric embedding from a two-node tree to l_1^1 .
- 2. Induction Hypothesis: Assume that we can isometrically embed every (n-1)-node tree to l_1^{n-2} . $(n \ge 2)$
- 3. Induction Step: Consider \forall n-node tree G=(V,E). Remove a leaf $v\in V$ and corresponding edge (v,u). Denote the remains as G'=(V',E'). Then we know G' is connected, otherwise only u can be not connected to others, so there is only one edge in E connecting u, that is (u,v), since there is only one edge connecting v, also (u,v), we can derive that u,v are not connected to other points, leading to contradiction to G is a tree. Plus in G', we have |V'| = |V| 1 = |E| 2 = |E'| 1. From question 6.1 in HW1 we know that G' is a tree with n-1 nodes.

From induction hypothesis we know that there exists an isometric embedding $\phi': G' \to l_1^{n-2}$. Now define embedding $\phi: G \to l_1^{n-1}$ as below:

$$\phi(x) = \begin{cases} (\phi'(x), 0) & \text{if } x \in V' \\ (\phi'(u), \rho(v, u)) & \text{if } x = v \end{cases}$$

Then I'll show that it's isometric.

- (a) For $x_1, x_2 \in G'$, $||\phi(x_1) \phi(x_2)||_1 = ||(\phi'(x_1), 0) (\phi'(x_2), 0)||_1 = ||\phi'(x_1) \phi'(x_2)||_1 = \rho(x_1, x_2)$. Correct.
- (b) For $x_1 \in G'$, $x_2 = v$,

$$||\phi(x_1) - \phi(v)||_1 = ||(\phi'(x_1), 0) - (\phi'(u), \rho(v, u))||_1$$

= $||\phi'(x_1) - \phi'(u)||_1 + |0 - \rho(v, u)|$
= $\rho(x_1, u) + \rho(v, u)$

Because v is a leaf node, the only edge connecting to v is (u, v). The path from x_1 to v definitely go though u. So the shortest path from x_1 to v is the shortest path from x_1 to v plus the path v to v. That means $\rho(x_1, v) = \rho(x_1, v) + \rho(v, v)$.

$$||\phi(x_1) - \phi(v)||_1 = \rho(x_1, u) + \rho(v, u) = \rho(x_1, u)$$

So we know that the embedding ϕ is isometric. And we know the statement is true for every tree with n nodes.

4. Conclusion: So from induction we know that any finite tree can be isometrically embedded into l_1 . #

1. First I'll compute $\rho^2(Q_d)$. Denote the vertices in Q_d as v_1, v_2, \dots, v_{2^d} .

$$\rho^{2}(Q_{d}) = \sum_{e \in E} \rho(e_{0} - e_{1})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{2^{d}} \sum_{j: \rho(v_{i}, v_{j}) = 1} \rho(v_{i} - v_{j})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{2^{d}} \sum_{j: \rho(v_{i}, v_{j}) = 1} 1$$

From definition, we know that $\rho(v_i, v_j) = 1$ iff in v_j there is exactly one coordinate different from v_i , so there is exactly d different v_j that is connected to v_i . So

$$\rho^{2}(Q_{d}) = \frac{1}{2} \sum_{i=1}^{2^{d}} \sum_{i: \rho(v_{i}, v_{i}) = 1} 1 = \frac{1}{2} \sum_{i=1}^{2^{d}} d = 2^{d-1} d$$

Then I'll compute $\rho^2(K_{2^d})$. For fix v_i , the number of v_j so that $\rho(v_i, v_j) = t$ is equal to $\binom{d}{t}$.

$$\rho^{2}(K_{2^{d}}) = \sum_{e \in E} \rho(e_{o}, e_{1})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{2^{d}} \sum_{j=1}^{2^{d}} \rho(v_{i}, v_{j})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{2^{d}} \sum_{t=1}^{d} \binom{d}{t} t^{2}$$

$$= 2^{d-1} \sum_{t=1}^{d} \binom{d}{t} t^{2}$$

From Binomial Theorem we know

$$(1+x)^d = \sum_{t=0}^d \binom{d}{t} x^t$$

Compute its derivative and second-order derivative

$$d(1+x)^{d-1} = \sum_{t=1}^{d} {d \choose t} t x^{t-1}$$
$$d(d-1)(1+x)^{d-2} = \sum_{t=2}^{d} {d \choose t} t (t-1) x^{t-2}$$

Let x = 1, and we have

$$d2^{d-1} = \sum_{t=1}^{d} {d \choose t} t$$
$$d(d-1)2^{d-2} = \sum_{t=2}^{d} {d \choose t} (t^2 - t)$$

Therefore we have

$$\rho^{2}(K_{2^{d}}) = 2^{d-1} \left(\sum_{t=2}^{d} \binom{d}{t} (t^{2} - t) + \binom{d}{1} (1^{2} - 1) + \sum_{t=1}^{d} \binom{d}{t} t\right)$$

$$= 2^{d-1} \left(d(d-1)2^{d-2} + 0 + d2^{d-1}\right)$$

$$= (d^{2} + d)2^{2d-3}$$

2. Denote $f = (f(v_1), \dots, f(v_{2^d}))^T$ is the vector of embedded vertices. Denote L_{Q_d} and $L_{K_{2^d}}$ as the Laplacians of Q_d and K_{2^d} . m = 1.

$$\sigma^{2}(Q_{d}) = \sum_{e \in E_{Q_{d}}} \sigma^{2}(e_{0}, e_{1})$$

$$= \sum_{e \in Q_{d}} ||f(e_{o}) - f(e_{1})||_{2}^{2}$$

$$= \sum_{i=1}^{2^{d}} deg(v_{i}) f^{2}(v_{i}) - 2 \sum_{i < j, (v_{i}, v_{j}) \in E_{Q_{d}}} f(v_{i}) f(v_{j})$$

$$= f^{T} L_{Q_{d}} f$$

The last equation holds because for L_{Q_d} , we have

$$l_{pq} = \begin{cases} \deg(v_p) & p = q \\ -1 & p \neq q \text{ and}(v_p, v_q) \in E_{Q_d} \\ 0 & o.w. \end{cases}$$

Similarly we can show that $\sigma^2(K_{2^d}) = f^{\mathbf{T}} L_{K_{2^d}} f$.

3. Because f is zero-centered, we know that $\mathbf{1}^{\mathbf{T}}f = 0$. So we want to solve the following problem:

$$\min f^{\mathbf{T}} L_{Q^d} f$$

$$s.t. \mathbf{1}^{\mathbf{T}} f = 0$$

$$||f||_2^2 = s^2$$

Because 0 is the smallest eigenvalue of L_{Q_d} , and 1 is one of its eigenvectors. But we know that f is orthogonal to 1. So we know that the solution of the optimization problem is the smallest nontrivial eigenvalues of L_{Q_d} times s^2 . From the fact we know that the smallest nontrivial eigenvalue for L_{Q_d} is $\lambda_2 = 2$. So we have the lower bound for $\sigma^2(Q_d) = 2s^2 = 2||f||_2^2$.

4.

$$\begin{split} \sigma^2(K_{2^d}) &= \sum_{e \in E_{K_{2^d}}} \sigma^2(e_0, e_1) \\ &= \sum_{i < j} ||f(v_i) - f(v_j)||_2^2 \\ &= \frac{1}{2} \sum_{i=1}^{2^d} \sum_{j=1}^{2^d} [f^2(v_i) + f^2(v_j) - 2f(v_i)f(v_j)] \\ &= \frac{1}{2} \sum_{i=1}^{2^d} [2^d f^2(v_i) + \sum_{j=1}^{2^d} f^2(v_j) - 2f(v_i) \sum_{k=1}^{2^d} f(v_j)] \end{split}$$

Because f is zero-centered, we have $\sum_{j=1}^{2^d} f(v_j) = 0$. So we have

$$\sigma^{2}(K_{2^{d}}) = \frac{1}{2} \sum_{i=1}^{2^{d}} [2^{d} f^{2}(v_{i}) + \sum_{j=1}^{2^{d}} f^{2}(v_{j})]$$

$$= \frac{1}{2} \sum_{i=1}^{2^{d}} [2^{d} f^{2}(v_{i}) + ||f||_{2}^{2}]$$

$$= 2^{d-1} \sum_{i=1}^{2^{d}} f^{2}(v_{i}) + \frac{1}{2} 2^{d} ||f||_{2}^{2}$$

$$= 2^{d-1} ||f||_{2}^{2} + 2^{d-1} ||f||_{2}^{2}$$

$$= 2^{d} ||f||_{2}^{2}$$

5. First I'll prove $\frac{\rho^2(K_{2d})}{\rho^2(Q_d)} = \frac{\sigma^2(K_{2d})}{\sigma^2(Q_d)}\Omega(d)$. Actually from the result of (a) we have

$$\frac{\rho^2(K_{2^d})}{\rho^2(Q_d)} = \frac{(d^2+d)2^{2d-3}}{d2^{d-1}} = (d+1)2^{d-2}$$

From the result of (c) and (d) we have

$$\frac{\sigma^2(K_{2^d})}{\sigma^2(Q_d)} \le \frac{2^d ||f||_2^2}{2||f||_2^2} = 2^{d-1}$$

Let $g(d) = \frac{d+1}{2}$, where $g(d) \in \Theta(d)$. Then we have

$$\begin{split} \frac{\rho^2(K_{2^d})}{\rho^2(Q_d)} &= (d+1)2^{d-2} = g(d)2^{d-1} \geq g(d)\frac{\sigma^2(K_{2^d})}{\sigma^2(Q_d)} \\ &\qquad \frac{\rho^2(K_{2^d})}{\rho^2(Q_d)} = \frac{\sigma^2(K_{2^d})}{\sigma^2(Q_d)}\Omega(d) \end{split}$$

From here we get that any embedding $f: Q_d \to l_2^1$ will require distortion $D = \Omega(\sqrt{d})$.

And then I'll show that any embedding into l_2^m also have distortion $\Omega(\sqrt{d})$. Denote $f(v) = (f_1(v), \dots, f_m(v))$. f_i is an embedding to l_2^1 . Then $\forall v_1, v_2 \in Q_d$, from Pythagorean Theorem we have

$$\sigma^{2}(v_{1}, v_{2}) = ||f(v_{1}) - f(v_{2})||_{2}^{2} = \sum_{i=1}^{m} |f_{i}(v_{1}) - f_{i}(v_{2})|^{2}$$

$$\sigma^{2}(Q_{d}) = \sum_{e \in E_{Q_{d}}} \sigma^{2}(v_{1}, v_{2}) = \sum_{e \in E_{Q_{d}}} \sum_{i=1}^{m} |f_{i}(v_{1}) - f_{i}(v_{2})|^{2}$$
$$= \sum_{i=1}^{m} \sum_{e \in E_{Q_{d}}} |f_{i}(v_{1}) - f_{i}(v_{2})|^{2} = \sum_{i=1}^{m} v_{f_{i}}^{T} L_{G} v_{f_{i}}$$

Denote $\sigma^2(Q_d) = \sum_{i=1}^m \sigma^2(Q_d^i)$. Similarly we have $\sigma^2(K_{2^d}) = \sum_{i=1}^m \sigma^2(K_{2^d}^i)$ We've already proved that for each i, there is an upper bound U s.t. $\frac{\sigma^2(K_{2^d}^i)}{\sigma^2(Q_d^i)} \leq U$.

$$\frac{\sigma^2(K_{2^d})}{\sigma^2(Q_d)} = \frac{\sum_{i=1}^m \sigma^2(K_{2^d}^i)}{\sum_{i=1}^m \sigma^2(Q_d^i)} \le U$$

It shares the same upper bound as the embedding to l_2^1 , so we can conclude that any embedding into l_2^m also have distortion $\Omega(\sqrt{d})$ in the same way. #