WO 2004/091669 PCT/US2004/011685

BIFUNCTIONAL TRIDENTATE PYRAZOLYL CONTAINING LIGANDS FOR RE, TC AND MN TRICARBONYL COMPLEXES

This invention lies in the field of

- 5 radiopharmaceuticals and provides new chelating agents to link biomolecules and carbonyl moieties for labeling with technetium and rhenium. In particular the invention relates to bifunctional tridentate pyrazolyl-polyamines, pyrazolyl-aminothioethers, pyrazolyl-polythioethers, pyrazolyl-
- 10 aminophosphines and pyrazolyl-thioetherphosphines which stabilize the moieties $[M(CO)_3]^+$ (M = Re, Tc, Mn) and bind to biomolecules which accumulate in diseased tissues. The invention relates to the chelators as such, to chelators coupled to a biomolecule and to either of these complexed
- 15 with carbonyl. In addition the invention relates to a kit for providing radiolabeled biomolecules and to the use of such radiolabeled molecules in diagnosis and therapy.

The diagnosis and therapy of cancer still needs a significant input from the chemical, radiochemical and 20 pharmaceutical point of view. Tumour seeking compounds stable in vitro and in vivo, with high specific activity and specificity are still an important issue in the

- radiopharmaceutical field. Since the publication of international patents on $[Re(CO)_3]^+$ and $[Tc(CO)_3]^+$ [1] a
- 25 significant interest has appeared in this oxidation state, which opens new perspectives on pharmaceutical and Nuclear Medicine fields. The search for new chelating agents is essential as they are determinant for the uptake of biological vectors. Several chelating agents have been 30 described in patents [1, 2] and publications [3, 4, 5].
 - It is the object of the present invention to enlarge the family of bifunctional chelating agents.

This is achieved by the invention by chelating agents of the general formula:

10 wherein m is 0 or 1;

X is NR₄ or S;

Y is SR_5 , NHR_5 or $P(R_5)_2$;

 R_1 and R_3 are the same or different and are selected from H, alkyl or aryl;

15 R_2 is H, COOH, NHR₆ or $(CH_2)_nCOOR_6$;

 R_4 is H, alkyl, aryl, $(CH_2)_nCOOR_6$ or $(CH_2)_nOR_6$;

 R_{5} is H, alkyl, aryl, $(\text{CH}_{\text{2}})_{n}\text{COOR}_{\text{6}}$ or $(\text{CH}_{\text{2}})_{n}\text{OR}_{\text{6}}$

R₆ is H, alkyl or aryl;

n is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10; and

20 when $R_1=$ $R_3=CH_3$, R_2 , R_4 and R_5 are not all three H.

These molecules combine two functions. One is for the stabilization of metal centers, including radioactive metals, and comprises different donor atom sets, and the other is a functional group for binding to the molecule of interest.

The alkyl is a C₁ alkyl, C₂ alkyl, C₃ alkyl, C₄ alkyl, C₅ alkyl or C₆ alkyl, in particular selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl (2-methylpentyl), neohexyl (2,2-dimethylbutyl), 3-methylpentyl, 30 2,3- dimethylbutyl.

The aryls are monocyclic, C_5-C_8 , or polycyclic $C_{10}-C_{18}$, and are optionally substituted with alkyl, carboxy, oxo,

amino, alkoxy or aldehyde groups.

n is 2, 3, 4, 5 or 6 and preferably 2, 3 or 4.

The chelating agent is for example a pyrazolyl-polyamine of the general formula:

R3
$$R2$$

$$N$$

$$M = 0, 1$$

$$(A)$$

10 wherein R_1 , R_2 , R_3 , R_4 and R_5 are as defined above.

Alternatively, the chelating agent is a pyrazolyl-aminothioether of the general formula:

wherein R_1 , R_2 , R_3 , R_4 and R_5 are as defined above.

In yet another embodiment the chelating agent is a 20 pyrazolyl-polythioether of the general formula:

wherein R_1 , R_2 , R_3 , R_4 and R_5 are as defined above.

In yet another embodiment the chelating agent is a pyrazolyl-aminophosphine of the general formula :

R2

$$M = 0, 1$$
 $M = 0, 1$
 $M = 0, 1$
 $M = 0, 1$
 $M = 0, 1$

wherein R_1 , R_2 , R_3 , R_4 and R_5 are as defined above.

In a further embodiment the chelating agent is a pyrazolyl-thioetherphosphine of the general formula :

R2
$$\begin{array}{c}
R3 \\
N \\
\hline
N \\
m = 0, 1
\end{array}$$
(E)

wherein R_1 , R_2 , R_3 , R_4 and R_5 are as defined above.

The invention provides more particularly chelating agents of formula I, wherein X and Y are N, R₆ is H, C₁ alkyl, C₂ alkyl, C₃ alkyl, C₄ alkyl, C₅ alkyl or C₆ alkyl, monocyclic aryls, preferably phenyl or benzyl, or polycyclic C₁₀-C₁₈ aryls, optionally substituted with alkyl, carboxy, oxo amino, alkoxy or aldehyde groups, or a biomolecule and R₁, R₃, R₃, R₄ and R₅ are as listed in Table 1.

In another embodiment the invention relates to chelating agents of formula I, wherein X and Y are S, R₆ is H, C₁ alkyl, C₂ alkyl, C₃ alkyl, C₄ alkyl, C₅ alkyl or C₆

20 alkyl, monocyclic aryls, preferably phenyl or benzyl, or polycyclic C₁₀-C₁₈ aryls, optionally substituted with alkyl, carboxy, oxo amino, alkoxy or aldehyde groups, or a biomolecule and R₁, R₂, R₃, R₄ and R₅ are as listed in Table 1.

In yet another embodiment chelating agents of formula I are provided, wherein X is N and Y is S, R₆ is H, C₁ alkyl, C₂ alkyl, C₃ alkyl, C₄ alkyl, C₅ alkyl or C₆ alkyl, monocyclic aryls, preferably phenyl or benzyl, or polycyclic C₁₀-C₁₈ aryls, optionally substituted with alkyl, carboxy, oxo amino, 30 alkoxy or aldehyde groups, or a biomolecule and R₁, R₂, R₃, R₄ and R₅ are as listed in Table 1.

According to a further aspect thereof the invention

relates to chelating agents of formula I, wherein X is S and Y are N, R_6 is H, C_1 alkyl, C_2 alkyl, C_3 alkyl, C_4 alkyl, C_5 alkyl or C_6 alkyl, monocyclic aryls, preferably phenyl or benzyl, or polycyclic C_{10} - C_{18} aryls, optionally substituted 5 with alkyl, carboxy, oxo amino, alkoxy or aldehyde groups, or a biomolecule and R_1 , R_2 , R_3 , R_4 and R_5 are as listed in Table 1.

According to another aspect of the invention, chelating agents of formula I are provided, wherein X is N 10 and Y is P, R₆ is H, C₁ alkyl, C₂ alkyl, C₃ alkyl, C₄ alkyl, C₅ alkyl or C₆ alkyl, monocyclic aryls, preferably phenyl or benzyl, or polycyclic C₁₀-C₁₈ aryls, optionally substituted with alkyl, carboxy, oxo amino, alkoxy or aldehyde groups, or a biomolecule and R₁, R₂, R₃, R₄ and R₅ are as listed in Table 15 1.

In another embodiment the invention relates to chelating agents of formula I, wherein X is S and Y is P, R_6 is H, C_1 alkyl, C_2 alkyl, C_3 alkyl, C_4 alkyl, C_5 alkyl or C_6 alkyl, monocyclic aryls, preferably phenyl or benzyl, or 20 polycyclic C_{10} - C_{18} aryls, optionally substituted with alkyl, carboxy, oxo amino, alkoxy or aldehyde groups, or a biomolecule and R_1 , R_2 , R_3 , R_4 and R_5 are as listed in Table 1.

The chelating agents of the invention are 25 particularly suited to link biomolecules with carbonyl moieties in order to arrive at labeled biomolecules having a high specificity for the target. In formula I R_6 can thus be a biomolecule.

The possible positions of the biomolecules (BM) are 30 shown in Fig. 1.

The biomolecule can be anything that is useful in the treatment and diagnosis of tumors and can be coupled to the

chelators of the invention. The skilled person will be able to establish for which biomolecules the chelators of the invention can be used. In particular the biomolecule is selected from amino acids, peptides, proteins, 5 oligonucleotides, polynucleotides, sugars.

More specifically, the biomolecule is selected from the group consisting of antibodies, ligands of tumor receptors, such as CCK, thioglucose, glucosamine, somatostatin, neurotensin, bombesin, CCK, annexin,

10 interleukins, growth factors, steroid hormones and molecules binding to GPIIb/IIIa receptors. Other biomolecules can be glucose, thioglucose, neurotransmitters, inhibitors of the tyrosine kinase activity such as benzothiopyranones, anilinophthalimides, quinazolines, pyridopyrimidines and pyrrolopyrimidines.

Particular agents of the invention are the following:

All of the chelating agents, either with or without a biomolecule coupled thereto can be complexed with a carbonyl

WO 2004/091669 PCT/US2004/011685

moiety of the formula $[M(CO)_3]^+$, wherein M is rhenium (Re), technetium (Tc) or Manganese (Mn).

The chelating agents of the invention are molecules according to formula I wherein X and Y can be either N and N, 5 N and S, S and N, S and S, N and P, or S and P. Each of these combinations can be combined with various combinations of R_1 , $R_2,\ R_3,\ R_4$ and $R_5.$ All possible combinations of $R_1,\ R_2,\ R_3,\ R_4$ and R_5 are listed in Table 1. In Table 1 alkyl is a C_1 alkyl, C_2 alkyl, C_3 alkyl, C_4 alkyl, C_5 alkyl or C_6 alkyl, in 10 particular selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl (2-methylpentyl), neohexyl (2,2dimethylbutyl), 3-methylpentyl, 2,3-dimethylbutyl; the aryl is monocyclic, C_5-C_8 , or polycyclic, $C_{10}-C_{18}$, and optionally 15 substituted with alkyl, carboxy, oxo, amino, alkoxy or aldehyde groups and is in particular phenyl or benzyl, and n is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. R 6 is H, alkyl, aryl or a biomolecule as defined above. Substituting each of the above variables into the table will give all compounds of 20 claim 1 that are herewith disclosed.

Table 1

R1	R2	R3	R4	
Н	Н	н		R5
Н	Н		H	H
H	Н	H	Н	alkyl
н		H	H	aryl
	H	H	Н	(CH ₂) _n COOR ₆
H	Н	Н	Н	(CH ₂) _n OR ₆
H	H	Н	alkyl	H
H	Н	Н	alkyl	
Н	Н	Н		alkyl
Н	Н		alkyl	aryl
H	Н Н	H	alkyl	(CH ₂) _n COOR ₆
H		H	alkyl	(CH ₂) _n OR ₆
	H	Н	aryl	Н

H	H	Н	aryl	alkyl
Н	Н	Н	aryl	aryl
Н	H	Н	aryl	(CH ₂) _n COOR ₆
H	Н	Н	aryl	(CH ₂) _n OR ₆
H	Н	Н	(CH ₂) nCOOR ₆	H H
H	H	Н	(CH ₂) _n COOR ₆	alkyl
H	H	Н	(CH ₂) _n COOR ₆	aryl
Н	Н	Н	(CH ₂) nCOOR ₆	(CH ₂) _n COOR ₆
H	Н	Н	(CH ₂) nCOOR ₆	(CH ₂) _n COOR ₆
Н	H	Н	(CH ₂) _n OR ₆	H H
Н .	Н	Н	(CH ₂) _n OR ₆	alkyl
Н	Н	Н	(CH ₂) _n OR ₆	
Н	H	Н	(CH ₂) _n OR ₆	aryl
Н	Н	Н	(CH ₂) _n OR ₆	(CH ₂) nCOOR ₆
Н	Н	alkyl	Н	(CH ₂) _n OR ₆
H	Н	alkyl	H	alkyl
H	Н	alkyl	Н ,	
H	Н	alkyl	H	aryl
Н	H	alkyl	Н	(CH ₂) _n COOR ₆
Н	Н	alkyl	alkyl	(CH ₂) _n OR ₆
Н	Н	alkyl	alkyl	
Н	Н	alkyl	alkyl	alkyl
Н	Н	alkyl	alkyl	aryl
Н	Н	alkyl	alkyl	(CH ₂) _n COOR ₆
Н	Н	alkyl	aryl	(CH ₂) _n OR ₆
Н	Н	alkyl	aryl	H
Н	Н	alkyl	aryl	alkyl
Н	Н	alkyl	aryl	aryl
Н	Н	alkyl	aryl	(CH ₂) _n COOR ₆
Н	Н	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
H	Н	alkyl	(CH ₂) _n COOR ₆	H
Н	Н	alkyl	(CH ₂) _n COOR ₆	alkyl
Н	Н	alkyl	(CH ₂) _n COOR ₆	aryl
H	Н	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
H	Н	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
1	Н	alkyl	(CH ₂) _n OR ₆	H
1	Н	alkyl	(CH2)nOR6	alkyl
i	Н	alkyl	$(CH_2)_nOR_6$	aryl
i	Н	alkyl	$(CH_2)_nOR_6$	(CH ₂) _n COOR ₆
i	Н	aryl	H	(CH ₂) _n OR ₆
1	Н	aryl	н	H
ı	Н	aryl	H	alkyl
I	Н	aryl	44	aryl

H	Н	aryl	H	(CH ₂) _n OR ₆
H	H	aryl	alkyl	Н
H	H	aryl	alkyl	alkyl
Н	H	aryl	alkyl	aryl
H	H	aryl	alkyl	
Н	H	aryl	alkyl	(CH ₂) _n COOR ₆
H	H	aryl	aryl	(CH ₂) _n OR ₆
Н	H	aryl	aryl	H
Н	H	aryl	aryl	alkyl
Н	Н	aryl	aryl	aryl
Н	Н	aryl	aryl	(CH ₂) _n COOR ₆
H	H	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
H	Н	aryl	(CH ₂) _n COOR ₆	H
·H	Н	aryl	(CH ₂) _n COOR ₆	alkyl
Н	Н	aryl	(CH ₂) _n COOR ₆	aryl
Н	Н	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
Н	Н	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
Н	Н	aryl		H
Н	Н	aryl	(CH ₂) _n OR ₆	alkyl
Н .	Н	aryl	(CH ₂) _n OR ₆	aryl
Н	Н	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
Н	СООН	H	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
Н	СООН	H	H	H
Н	СООН	Н	H	alkyl
Н	СООН	Н	H	aryl
Н	СООН	Н	H	(CH ₂) _n COOR ₆
Н	СООН	Н	H	(CH ₂) _n OR ₆
Н	СООН	н	alkyl	H
H	СООН	Н	alkyl	alkyl
Н	СООН	Н	alkyl	aryl
Н	СООН	Н Н	alkyl	(CH ₂) _n COOR ₆
H	СООН	Н	alkyl	(CH ₂) _n OR ₆
H	СООН		aryl	Н
H	СООН	H	aryl	alkyl
1	СООН	H	aryl	aryl
	СООН		aryl	(CH ₂) _n COOR ₆
I .	СООН	<u>H</u>	aryl	(CH ₂) _n OR ₆
I .	СООН	H	(CH ₂) _n COOR ₆	Н
	СООН	H	· (CH ₂) _n COOR ₆	alkyl
	СООН	H	(CH ₂) _n COOR ₆	aryl
	СООН	H	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
·		H	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
: !	СООН	H	(CH ₂) _n OR ₆	Н
·	СООН	H	(CH ₂) _n OR ₆	alkyl

H	СООН	H	(CH ₂) _n OR ₆	aryl
H	СООН	Н	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
H	СООН	Н	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
H	СООН	alkyl	Н	H
H	СООН	alkyl	Н	alkyl
Н	СООН	alkyl	Н	aryl
H	СООН	alkyl	Н	
Н	СООН	alkyl	н	(CH ₂) _n COOR ₆
Н	СООН	alkyl	alkyl	(CH ₂) _n OR ₆
Н	СООН	alkyl	alkyl	
H	СООН	alkyl	alkyl	alkyl
H	СООН	alkyl	alkyl	aryl
H	СООН	alkyl	alkyl	(CH ₂) _n COOR ₆
Н	СООН	alkyl	aryl	(CH ₂) _n OR ₆
Н	СООН	alkyl	aryl	H
Н	СООН	alkyl	aryl	alkyl
Н	СООН	alkyl	aryl	aryl
Н	СООН	alkyl	aryl	(CH ₂) _n COOR ₆
H	СООН	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
Н	СООН	alkyl	$(CH_2)_nCOOR_6$	H
Н	СООН	alkyl	(CH ₂) _n COOR ₆	alkyl
Н	СООН	alkyl	(CH ₂) _n COOR ₆	aryl
Н	СООН	alkyl		(CH ₂) _n COOR ₆
Н	СООН	alkyl	(CH ₂) nCOOR ₆	(CH ₂) _n OR ₆
H	СООН	alkyl	(CH ₂) _n OR ₆	H
Н	СООН	alkyl	(CH ₂) _n OR ₆	alkyl
Н	СООН	alkyl	(CH ₂) _n OR ₆	aryl
Н	СООН	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
H ·	СООН	aryl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
Н	СООН	aryl	H	Н
Н	СООН	aryl	H	alkyl
Н .	СООН	aryl	H	aryl
Н	СООН	aryl	H	(CH ₂) _n COOR ₆
Н	СООН	aryl	H = 2.112	- (CH ₂) _n OR ₆
H	СООН	aryl.	alkyl	H
Н	СООН	aryl	alkyl	alkyl
H	СООН	aryl	alkyl	aryl
I	СООН		alkyl	(CH ₂) _n COOR ₆
i	. СООН	aryl	alkyl	(CH ₂) _n OR ₆
i	СООН	aryl	aryl	Н
	СООН	aryl	aryl	alkyl
ł	СООН	aryl	aryl	aryl
<u> </u>	СООН	aryl	aryl	(CH ₂) _n COOR ₆
	COOR	aryl	aryl	(CH ₂) _n OR ₆

H	СООН	aryl	(CH ₂) _n COOR ₆	Н
H	СООН	aryl	(CH ₂) _n COOR ₆	alkyl
Н	СООН	aryl	(CH ₂) _n COOR ₆	aryl
Н	СООН	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
H	СООН	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
H	СООН	aryl	(CH ₂) _n OR ₆	H H
Н	СООН	aryl	(CH ₂) _n OR ₆	alkyl
H	СООН	aryl	(CH ₂) _n OR ₆	aryl
H	СООН	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
<u>H</u>	СООН	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
H	NHR ₆	Н	Н	H
H	NHR ₆	Н	Н	alkyl
H	NHR ₆	Н	Н	
H	NHR ₆	н	Н	aryl
Н	NHR ₆	Н	Н	(CH ₂) _n COOR ₆ (CH ₂) _n OR ₆
Н	NHR ₆	Н	alkyl	H H
H	NHR ₆	Н	alkyl	
Н	NHR ₆	Н	alkyl	alkyl
Н	NHR ₆	Н	alkyl	aryl
Н	NHR ₆	Н	alkyl	(CH ₂) _n COOR ₆
Н	NHR ₆	Н	aryl	(CH ₂) _n OR ₆
H	NHR ₆	Н	aryl	H
H	NHR ₆	Н	aryl	alkyl
H	NHR ₆	Н	aryl	aryl
Н	NHR ₆	Н	aryl	(CH ₂) _n COOR ₆
Н	NHR ₆	н		(CH ₂) _n OR ₆
Н	NHR ₆	н	(CH ₂) _n COOR ₆	H
Н	NHR ₆	Н	(CH ₂) _n COOR ₆	alkyl
H	NHR ₆	н	(CH ₂) _n COOR ₆	aryl
Н	NHR ₆	Н	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
H	NHR ₆	Н	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
Н	NHR ₆	Н	(CH ₂) _n OR ₆	H
Н	NHR ₆	Н	(CH ₂) _n OR ₆	alkyl
I	NHR ₆	Н	(CH ₂) _n OR ₆	aryl
H	NHR ₆	Н	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
I	NHR ₆	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
i	NHR ₆	alkyl	H	H
I	NHR ₆	alkyl	H	alkyl
i	NHR ₆	alkyl	H	aryl
I	NHR ₆	alkyl	H	(CH ₂) _n COOR ₆
I	NHR ₆	alkyl	H	(CH ₂) _n OR ₆
I	NHR ₆	alkyl	alkyl	Н
l	NHR ₆	alkyl	alkyl	alkyl
	1	TarrAt	alkyl	aryl

Н	NHR ₆	alkyl	alkyl	/CH \ CCC=
Н	NHR ₆	alkyl	alkyl	(CH ₂) _n COOR ₆
Н	NHR ₆ .	alkyl	aryl	(CH ₂) _n OR ₆
Н	NHR ₆	alkyl	aryl	H
Н	NHR ₆	alkyl	aryl	alkyl
Н	NHR ₆	alkyl	aryl	aryl
Н	NHR ₆	alkyl	aryl	(CH ₂) _n COOR ₆
Н	NHR ₆	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
Н	NHR ₆	alkyl	(CH ₂) _n COOR ₆	H
H	NHR ₆	alkyl	(CH ₂) _n COOR ₆	alkyl
Н	NHR ₆	alkyl	$(CH_2)_nCOOR_6$	aryl
Н	NHR ₆	alkyl		(CH ₂) _n COOR ₆
Н	NHR ₆	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
Н	NHR ₆	alkyl	(CH ₂) _n OR ₆	H
Н	NHR ₆	alkyl	(CH ₂) _n OR ₆	alkyl
Н	NHR ₆	alkyl	(CH ₂) _n OR ₆	aryl
Н	NHR ₆	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
Н	NHR ₆	aryl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
Н	NHR ₆	aryl	H	H
Н	NHR ₆	aryl	H	alkyl
Н	NHR ₆	aryl	H	aryl
Н	NHR ₆	aryl	H	(CH ₂) _n COOR ₆
Н	NHR ₆	aryl	H	(CH ₂) _n OR ₆
Н	NHR ₆	aryl	alkyl	H
Н	NHR ₆	aryl	alkyl	alkyl
Н	NHR ₆	aryl	alkyl	aryl
Н	NHR ₆	aryl	alkyl	(CH ₂) _n COOR ₆
Н	NHR ₆	aryl	alkyl	(CH ₂) _n OR ₆
Н	NHR ₆	aryl	aryl	Н
Н	NHR ₆		aryl	alkyl
н .	NHR ₆	aryl	aryl	aryl
Н	NHR ₆	aryl	aryl	(CH ₂) _n COOR ₆
Н	NHR ₆	aryl	aryl	(CH ₂) _n OR ₆
Н	NHR ₆	aryl	(CH ₂) _n COOR ₆	Н
Н	NHR ₆	aryl	(CH ₂) _n COOR ₆	alkyl
Н	NHR ₆	aryl	(CH ₂) _n COOR ₆	aryl
i	NHR ₆	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
	NHR ₆	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
I	NHR ₆	aryl	(CH ₂) _n OR ₆	Н
I	NHR ₆	aryl	(CH ₂) _n OR ₆	alkyl
ı	NHR ₆	aryl	(CH ₂) _n OR ₆	aryl
I	NHR ₆	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
I	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
		Н	Н	Н

H	(CH ₂) _n COOR ₆	H	Н	alkyl
H	(CH ₂) _n COOR ₆	Н	Н	
H	(CH ₂) _n COOR ₆	Н	н	aryl
H	(CH ₂) _n COOR ₆	Н	Н	(CH ₂) _n COOR ₆
H	(CH ₂) _n COOR ₆	Н	alkyl	(CH ₂) _n OR ₆
H	(CH ₂) nCOOR ₆	Н	alkyl	H
H	(CH ₂) _n COOR ₆	Н	alkyl	alkyl
H	(CH ₂) _n COOR ₆	Н	alkyl	aryl
Н	(CH ₂) _n COOR ₆	Н	alkyl	(CH ₂) _n COOR ₆
Н	(CH ₂) _n COOR ₆	Н	aryl	(CH ₂) _n OR ₆
Н	(CH ₂) nCOOR ₆	Н		H
H	(CH ₂) nCOOR ₆	Н	aryl	alkyl
Н	(CH ₂) _n COOR ₆	Н	aryl	aryl
Н	(CH ₂) _n COOR ₆	Н	aryl	(CH ₂) _n COOR ₆
H	(CH ₂) _n COOR ₆	Н	aryl	(CH ₂) _n OR ₆
H	(CH ₂) _n COOR ₆	Н	(CH ₂) _n COOR ₆	Н
Н	(CH ₂) _n COOR ₆	Н	(CH ₂) _n COOR ₆	alkyl
Н	(CH ₂) _n COOR ₆	н	(CH ₂) _n COOR ₆	aryl
Н	(CH ₂) _n COOR ₆	H	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
Н	(CH ₂) _n COOR ₆	Н	$(CH_2)_nCOOR_6$	(CH ₂) _n OR ₆
Н	(CH ₂) nCOOR ₆	H	(CH ₂) _n OR ₆	H
Н	(CH ₂) _n COOR ₆	H H	(CH ₂) _n OR ₆	alkyl
Н	(CH ₂) _n COOR ₆	H	(CH ₂) _n OR ₆	aryl
Н	(CH ₂) _n COOR ₆	H	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
Н	(CH ₂) _n COOR ₆		(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
Н	(CH ₂) _n COOR ₆	alkyl	H	Н
Н	(CH ₂) _n COOR ₆	alkyl	Н	alkyl
H	(CH ₂) _n COOR ₆	alkyl	H	aryl
Н	(CH ₂) _n COOR ₆	alkyl	H	(CH ₂) _n COOR ₆
H	(CH ₂) _n COOR ₆	alkyl	, H	(CH ₂) _n OR ₆
Н	(CH ₂) _n COOR ₆	alkyl	alkyl	Н
H		alkyl	alkyl	alkyl
-	(CH ₂) _n COOR ₆	alkyl	alkyl	aryl
i	(CH ₂) _n COOR ₆	alkyl	alkyl	(CH ₂) _n COOR ₆
i	(CH ₂) _n COOR ₆	alkyl	alkyl	(CH ₂) _n OR ₆
ł	(CH ₂) _n COOR ₆	alkyl	aryl	Н
	(CH ₂) _n COOR ₆	alkyl	aryl	alkyl
	(CH ₂) _n COOR ₆	alkyl	aryl	aryl
<u>. </u>	(CH ₂) _n COOR ₆	alkyl	aryl	(CH ₂) _n COOR ₆
	(CH ₂) _n COOR ₆	alkyl	aryl	(CH ₂) _n OR ₆
	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COOR ₆	Н
	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COOR ₆	alkyl
	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COOR ₆	aryl
	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆

H	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COOR ₆	/CH \ 05
H	(CH ₂) _n COOR ₆	alkyl	$(CH_2)_nCOOR_6$	(CH ₂) _n OR ₆
H	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n OR ₆	H
H	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n OR ₆	alkyl
H	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n OR ₆	aryl
H	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
H	(CH ₂) _n COOR ₆	aryl	H H	(CH ₂) _n OR ₆
H	(CH ₂) _n COOR ₆	aryl	Н	H
Н	(CH ₂) _n COOR ₆	aryl	Н	alkyl
Н	(CH ₂) _n COOR ₆	aryl	H	aryl
Н	(CH ₂) _n COOR ₆	aryl	Н	(CH ₂) _n COOR ₆
Н	(CH ₂) _n COOR ₆	aryl	alkyl	(CH ₂) _n OR ₆
Н	(CH ₂) _n COOR ₆	aryl		H
Н	(CH ₂) _n COOR ₆	aryl	alkyl	alkyl
Н	(CH ₂) _n COOR ₆	aryl	alkyl	aryl
Н	(CH ₂) _n COOR ₆	aryl	alkyl	(CH ₂) _n COOR ₆
Н	(CH ₂) _n COOR ₆	aryl	alkyl	(CH ₂) _n OR ₆
Н	(CH ₂) nCOOR ₆	aryl	aryl	H
H	(CH ₂) _n COOR ₆	aryl	aryl	alkyl .
Н	(CH ₂) _n COOR ₆	aryl	aryl	aryl
Н	(CH ₂) _n COOR ₆	aryl	aryl	(CH ₂) _n COOR ₆
Н	(CH ₂) _n COOR ₆	aryl	aryl	(CH ₂) _n OR ₆
H .	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n COOR ₆	H
Н	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n COOR ₆	alkyl
Н	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n COOR ₆	aryl
Н	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n COOR ₆	$(CH_2)_nCOOR_6$
Н	(CH ₂) _n COOR ₆		(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
Н	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	Н
Н	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	alkyl
Н	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	aryl
Н	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
alkyl	H	aryl H	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
alkyl	Н	 	H	Н
alkyl	Н	H	H	alkyl
alkyl	Н	H	Н	aryl
alkyl	H	H	Н	(CH ₂) _n COOR ₆
alkyl	Н	H	Н	(CH ₂) _n OR ₆
lkyl	Н	H	alkyl	Н
alkyl	H	H	alkyl	alkyl
alkyl	H	H	alkyl	aryl
lkyl	Н	H	alkyl	(CH ₂) _n COOR ₆
lkyl	Н	H	alkyl	(CH ₂) _n OR ₆
lkyl	H	H	aryl	Н
	n	н	aryl	alkyl

alkyl	H	Н	aryl	aryl
alkyl	H	Н	aryl	(CH ₂) _n COOR ₆
alkyl	H	Н	aryl	(CH ₂) _n OR ₆
alkyl	H	H	(CH ₂) _n COOR ₆	Н
alkyl	H	н	(CH ₂) _n COOR ₆	alkyl
alkyl	Н	Н	(CH ₂) _n COOR ₆	aryl
alkyl	H	Н	(CH ₂) _n COOR ₆	(CH ₂) nCOOR ₆
alkyl	H	Н	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
alkyl	Н	Н	(CH ₂) _n OR ₆	H H
alkyl	H	Н	(CH ₂) _n OR ₅	alkyl
alkyl	H	Н	(CH ₂) _n OR ₆	aryl
alkyl	H	Н	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
alkyl	Н	Н	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
alkyl	Н	alkyl	Н	H H
alkyl	Н	alkyl	Н	alkyl
alkyl	Н	alkyl	Н	aryl
alkyl	Н	alkyl	Н	(CH ₂) _n COOR ₆
alkyl	Н	alkyl	Н	(CH ₂) _n COOR ₆
alkyl	Н	alkyl	alkyl	H
alkyl	Н	alkyl	alkyl	alkyl
alkyl	Н	alkyl	alkyl	aryl
alkyl	Н	alkyl	alkyl	
alkyl	Н	alkyl	alkyl	$(CH_2)_nCOOR_6$ $(CH_2)_nOR_6$
alkyl	Н	alkyl	aryl	H H
alkyl	Н	alkyl	aryl	alkyl
alkyl	Н	alkyl	aryl	
alkyl	H	alkyl	aryl	aryl
alkyl	Н	alkyl	aryl	(CH ₂) _n COOR ₆
alkyl	Н	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
alkyl	Н	alkyl	(CH ₂) _n COOR ₆	
alkyl	H	alkyl	(CH ₂) _n COOR ₆	alkyl
alkyl	Н	alkyl	(CH ₂) _n COOR ₆	aryl
alkyl	Н	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
alkyl	Н	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
alkyl	Н	alkyl	(CH ₂) _n OR ₆	
alkyl	Н	alkyl	(CH ₂) _n OR ₆	alkyl
alkyl	Н	alkyl	(CH ₂) _n OR ₆	aryl
alkyl	Н	alkyl	$(CH_2)_nOR_6$	(CH ₂) _n COOR ₆
alkyl	Н	aryl	H	(CH ₂) _n OR ₆
alkyl	Н	aryl	H	H
alkyl	Н	aryl	H	alkyl
alkyl	Н	aryl	Н	aryl
alkyl	Н	aryl		(CH ₂) _n COOR ₆

alkyl	Н	aryl	alkyl	Н
alkyl	Н	aryl	alkyl	alkyl
alkyl	Н	aryl	alkyl	aryl
alkyl	Н	aryl	alkyl	(CH ₂) _n COOR ₆
alkyl	Н	aryl	alkyl	(CH ₂) _n OR ₆
alkyl	Н	aryl	aryl	Н
alkyl	Н	aryl	aryl	alkyl
alkyl	Н	aryl	aryl	aryl
alkyl	Н	aryl	aryl	(CH ₂) _n COOR ₆
alkyl	Н	aryl	aryl	(CH ₂) _n OR ₆
alkyl	Н	aryl	(CH ₂) _n COOR ₆	Н
alkyl	Н	aryl	(CH ₂) _n COOR ₆	alkyl
alkyl	Н	aryl	(CH ₂) _n COOR ₆	aryl
alkyl	Н	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
alkyl	Н	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
alkyl	Н	aryl	(CH ₂) _n OR ₆	Н
alkyl	Н	aryl	(CH ₂) _n OR ₆	alkyl
alkyl	Н	aryl	(CH ₂) _n OR ₆	aryl
alkyl	Н	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
alkyl	Н	aryl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
alkyl	СООН	Н	н	H
alkyl	СООН	Н	Н	alkyl
alkyl	СООН	Н	Н	aryl
alkyl	СООН	Н	Н	(CH ₂) _n COOR ₆
alkyl	СООН	Н	Н	(CH ₂) _n OR ₆
alkyl	СООН	Н	alkyl	H
alkyl	СООН	Н	alkyl	alkyl
alkyl	СООН	Н	alkyl	aryl
alkyl	СООН	Н	alkyl	(CH ₂) _n COOR ₆
alkyl	СООН	Н	alkyl	(CH ₂) _n OR ₆
alkyl	СООН	Н	aryl	H
alkyl	СООН	Н	aryl	alkyl
alkyl	СООН	Н	aryl	aryl
alkyl	СООН	Н	aryl	(CH ₂) _n COOR ₆
alkyl	СООН	Н	aryl	(CH ₂) _n OR ₆
alkyl	СООН	Н	(CH ₂) _n COOR ₆	H
alkyl	СООН	Н	(CH ₂) _n COOR ₆	alkyl
alkyl	СООН	Н	(CH ₂) _n COOR ₆	aryl
alkyl	СООН	Н	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
alkyl	СООН	Н	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
alkyl	СООН	н	(CH ₂) _n OR ₆	H H
alkyl	СООН	Н	(CH ₂) _n OR ₆	alkyl
alkyl	СООН	Н	(CH ₂) _n OR ₆	aryl

alkyl	СООН	Н	(CH ₂) _n OR ₆	(CH ₂) nCOOR ₆
alkyl	СООН	Н	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
alkyl	СООН	alkyl	Н	Н
alkyl	СООН	alkyl	Н	alkyl
alkyl	СООН	alkyl	Н	aryl
alkyl	СООН	alkyl	Н	
alkyl	СООН	alkyl	Н	(CH ₂) _n COOR ₆
alkyl	СООН	alkyl	alkyl	H
alkyl	СООН	alkyl	alkyl	alkyl .
alkyl	СООН	alkyl	alkyl	aryl
alkyl	СООН	alkyl	alkyl	
alkyl	СООН	alkyl	alkyl	(CH ₂) _n COOR ₆
alkyl	СООН	alkyl	aryl	(CH ₂) _n OR ₆
alkyl	СООН	alkyl	aryl	alkyl
alkyl	СООН	alkyl	aryl	
alkyl	СООН	alkyl	aryl	aryl (CHa) COOR
alkyl	СООН	alkyl	aryl	$(CH_2)_nCOOR_6$ $(CH_2)_nOR_6$
alkyl	СООН	alkyl	(CH ₂) _n COOR ₆	H H
alkyl	СООН	alkyl	(CH ₂) _n COOR ₆	alkyl
alkyl	СООН	alkyl	(CH ₂) _n COOR ₆	aryl
alkyl	СООН	alkyl	(CH ₂) nCOOR ₆	(CH ₂) _n COOR ₆
alkyl	СООН	alkyl	(CH ₂) COOR ₆	(CH ₂) _n OR ₆
alkyl	СООН	alkyl	$(CH_2)_nOR_6$	H
alkyl	СООН	alkyl	(CH ₂) _n OR ₆	alkyl
alkyl	СООН	alkyl	(CH ₂) _n OR ₆	aryl
alkyl	СООН	alkyl	(CH ₂) _n OR ₆	
alkyl	СООН	alkyl	(CH ₂) _n OR ₆	$(CH_2)_nCOOR_6$ $(CH_2)_nOR_6$
alkyl	СООН	aryl	Н	H
alkyl	СООН	aryl	Н	alkyl
alkyl	СООН	aryl	Н	aryl
alkyl	СООН	aryl	Н	(CH ₂) _n COOR ₆
alkyl	СООН	aryl	Н	(CH ₂) _n OR ₆
alkyl	СООН	aryl	alkyl	H
alkyl	СООН	aryl	alkyl	alkyl
alkyl	СООН	aryl	alkyl	aryl
alkyl	СООН	aryl	alkyl	(CH ₂) _n COOR ₆
alkyl	СООН	aryl	alkyl	(CH ₂) _n OR ₆
alkyl	СООН	aryl	aryl	H H
alkyl	СООН	aryl	aryl	alkyl
alkyl	СООН	aryl	aryl	aryl
alkyl	СООН	aryl	aryl	(CH ₂) _n COOR ₆
alkyl	СООН	aryl	aryl	(CH ₂) _n COOR ₆
alkyl	СООН	aryl	(CH ₂) _n COOR ₆	H H

alkyl	СООН			
alkyl	СООН	aryl	(CH ₂) _n COOR ₆	alkyl
alkyl		aryl	(CH ₂) _n COOR ₆	aryl
alkyl	СООН	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
alkyl	СООН	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
alkyl	СООН	aryl	(CH ₂) _n OR ₆	Н
alkyl		aryl	(CH ₂) _n OR ₆	alkyl
alkyl	СООН	aryl	(CH ₂) _n OR ₆	aryl
alkyl	СООН	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
alkyl	СООН	aryl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
alkyl	NHR ₆	Н	Н	Н
	NHR ₆	H	Н	alkyl
alkyl alkyl	NHR ₆	Н	Н	aryl
	NHR ₆	H	Н	(CH ₂) _n COOR ₆
alkyl	NHR ₆	Н	Н	(CH ₂) _n OR ₅
alkyl	NHR ₆	Н	alkyl	Н
alkyl	NHR ₆	Н	alkyl	alkyl
alkyl	NHR ₆	H	alkyl	aryl
alkyl	NHR ₆	Н	alkyl	(CH ₂) _n COOR ₆
alkyl	NHR ₆	H	alkyl	(CH ₂) _n OR ₆
alkyl	NHR ₆	Н	aryl	Н
alkyl	NHR ₆	Н	aryl	alkyl
alkyl	NHR ₆	Н	aryl	aryl
alkyl	NHR ₆	Н	aryl	(CH ₂) _n COOR ₆
alkyl	NHR ₆	Н	aryl	(CH ₂) _n OR ₆
alkyl	NHR ₆	Н	(CH ₂) _n COOR ₆ .	Н
alkyl	NHR ₆	Н	(CH ₂) _n COOR ₆	alkyl
alkyl	NHR ₆	Н	(CH ₂) nCOOR ₆	aryl
alkyl	NHR ₆	Н	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
alkyl	NHR ₆	Н	(CH ₂) nCOOR ₆	(CH ₂) _n OR ₆
alkyl	NHR ₆	Н	(CH ₂) _n OR ₆	Н
alkyl	NHR ₆	Н	(CH ₂) _n OR ₆	alkyl
alkyl	NHR ₆	H	(CH ₂) _n OR ₆	aryl
alkyl	NHR ₆	Н	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
alkyl	NHR ₆	Н	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
alkyl	NHR ₆	alkyl	Н	H
alkyl	NHR ₆	alkyl	Н	alkyl
alkyl	NHR ₆	alkyl	Н	aryl
alkyl	NHR ₆	alkyl	Н	(CH ₂) _n COOR ₆
alkyl	NHR ₆	alkyl	Н	(CH ₂) _n COCR ₆
alkyl	NHR ₆	alkyl	alkyl	H H
alkyl	NHR ₆	alkyl	alkyl	alkyl
alkyl	NHR ₆	alkyl	alkyl	aryl
alkyl	NHR ₆	alkyl	alkyl	(CH ₂) _n COOR ₆
				1 (~112/n~00K6

alkyl	NHR ₆	211001		
alkyl	NHR ₆	alkyl	alkyl	(CH ₂) _n OR ₆
alkyl	NHR ₆	alkyl	aryl	Н
alkyl	NHR ₆	alkyl	aryl	alkyl
alkyl	NHR ₆	alkyl	aryl	aryl
alkyl	NHR ₆	alkyl	aryl	(CH ₂) _n COOR ₆
alkyl	NHR ₆	alkyl	aryl	(CH ₂) _n OR ₆
alkyl	NHR ₆	alkyl	(CH ₂) _n COOR ₆	H
alkyl	NHR ₆	alkyl	(CH ₂) _n COOR ₆	alkyl
alkyl	NHR ₆	alkyl	(CH ₂) _n COOR ₆	aryl
alkyl	NHR ₆	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
alkyl	NHR ₆	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
alkyl	NHR ₆	alkyl	(CH ₂) _n OR ₆	Н
alkyl	NHR ₆	alkyl	(CH ₂) _n OR ₆	alkyl
alkyl	NHR ₆	alkyl	(CH ₂) _n OR ₆	aryl
alkyl	NHR ₆	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
alkyl	NHR ₆	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
alkyl .	NHR ₆	aryl	H	Н
alkyl	NHR ₆	aryl	H	alkyl
alkyl	NHR ₆	aryl	H	aryl
alkyl	NHR ₆	aryl	H	(CH ₂) _n COOR ₆
alkyl	NHR ₆	aryl	H	(CH ₂) _n OR ₆
alkyl	NHR ₆	aryl	alkyl	Н
alkyl	NHR ₆	aryl	alkyl	alkyl
alkyl	NHR ₆	aryl	alkyl	aryl
alkyl	NHR ₆	aryl	alkyl	(CH ₂) _n COOR ₆
alkyl	NHR ₆	aryl	alkyl	(CH ₂) _n OR ₆
alkyl		aryl	aryl	Н
alkyl	NHR ₆	aryl	aryl	alkyl
alkyl	NHR ₆	aryl	aryl	aryl
alkyl	NHR ₆	aryl	aryl	(CH ₂) _n COOR ₆
alkyl	NHR ₆	aryl	aryl	(CH ₂) _n OR ₆
alkyl	NHR ₆	aryl	$(CH_2)_nCOOR_6$	H
alkyl		aryl	(CH ₂) _n COOR ₆	alkyl
alkyl	NHR ₆	aryl	(CH ₂) _n COOR ₆	aryl
alkyl		aryl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
alkyl	NHR ₆	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
alkyl	NHR ₆	aryl	(CH ₂) _n OR ₆	Н
alkyl	NHR ₆	aryl	(CH ₂) _n OR ₆	alkyl
alkyl	NHR ₆	aryl	(CH ₂) _n OR ₆	aryl
alkyl	· NHR ₆	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
alkyl	NHR ₆	aryl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
alkyl	(CH ₂) _n COOR ₆	H	H	Н
	(CH ₂) _n COOR ₆	Н	H	alkyl

	_			
alkyl	(CH ₂) _n COOR ₆	H	Н	aryl
alkyl	(CH ₂) _n COOR ₆	H	Н	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	H	Н	(CH ₂) _n OR ₆
alkyl	(CH ₂) _n COOR ₆	Н	alkyl	H
alkyl	(CH ₂) _n COOR ₆	Н	alkyl	alkyl
alkyl	(CH ₂) _n COOR ₆	Н	alkyl	aryl
alkyl	(CH ₂) _n COOR ₆	Н	alkyl	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	H ·	alkyl	(CH ₂) _n OR ₆
alkyl	(CH ₂) _n COOR ₆	Н	aryl	H
alkyl	(CH ₂) _n COOR ₆	Н	aryl	alkyl
alkyl	(CH ₂) _n COOR ₆	Н	aryl	aryl
alkyl	(CH ₂) _n COOR ₆	Н	aryl	
alkyl	(CH ₂) _n COOR ₆	Н	aryl	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
alkyl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n COOR ₆	alkyl
alkyl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n COOR ₆	
alkyl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n COOR ₆	aryl
alkyl	(CH ₂) _n COOR ₆	н	(CH ₂) _n COOR ₆	$(CH_2)_nCOOR_6$ $(CH_2)_nOR_6$
alkyl	(CH ₂) _n COOR ₆	H ·	(CH ₂) _n OR ₆	H
alkyl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n OR ₆	alkyl
alkyl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n OR ₆	aryl
alkyl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n OR ₆	$(CH_2)_nCOOR_6$
alkyl	(CH ₂) _n COOR ₆	alkyl	Н	H
alkyl	(CH ₂) _n COOR ₆	alkyl	H	alkyl
alkyl	(CH ₂) _n COOR ₆	alkyl	Н	aryl
alkyl	(CH ₂) _n COOR ₆	alkyl	н	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	alkyl	Н	(CH ₂) _n OR ₆
alkyl	(CH ₂) _n COOR ₆	alkyl	alkyl	H
alkyl	(CH ₂) _n COOR ₆	alkyl	alkyl	alkyl
alkyl	(CH ₂) _n COOR ₆	alkyl	alkyl	aryl
alkyl	(CH ₂) _n COOR ₆	alkyl	alkyl	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	alkyl	alkyl	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	alkyl	aryl	H H
alkyl	(CH ₂) _n COOR ₆	alkyl	aryl	alkyl
alkyl	(CH ₂) _n COOR ₆	alkyl	aryl	aryl
alkyl	(CH ₂) _n COOR ₆	alkyl	aryl	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	alkyl	aryl	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COOR ₆	H H
alkyl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COOR ₆	alkyl
alkyl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COOR ₆	aryl
alkyl	(CH ₂) nCOOR ₆	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	alkyl	. 2,11-0-1.0	

211001	(CII) COOP	T		
alkyl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n OR ₆	Н
alkyl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n OR ₆	alkyl
alkyl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n OR ₆	aryl
alkyl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COR ₆	(CH ₂) _n OR ₆
alkyl	(CH ₂) _n COOR ₆	aryl	Н	Н
alkyl	(CH ₂) _n COOR ₆	aryl	Н	alkyl
alkyl	(CH ₂) _n COOR ₆	aryl	Н	aryl
alkyl	(CH ₂) _n COOR ₆	aryl	Н	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	aryl	Н	(CH ₂) _n OR ₆
alkyl	(CH ₂) _n COOR ₆	aryl	alkyl	Н
alkyl	(CH ₂) _n COOR ₆	aryl	alkyl	alkyl
alkyl	(CH ₂) _n COOR ₆	aryl	alkyl	aryl
alkyl	(CH ₂) _n COOR ₆	aryl	alkyl	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	aryl	alkyl	(CH ₂) _n OR ₆
alkyl	(CH ₂) _n COOR ₆	aryl	aryl	Н
alkyl	(CH ₂) _n COOR ₆	aryl	aryl	alkyl
alkyl	(CH ₂) _n COOR ₆	aryl	aryl	aryl
alkyl	(CH ₂) _n COOR ₆	aryl	aryl	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	aryl	aryl	(CH ₂) _n OR ₆
alkyl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n COOR ₆	Н
alkyl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n COOR ₆	alkyl
alkyl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n COOR ₆	aryl
alkyl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
alkyl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	Н
alkyl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	alkyl
alkyl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	aryl
alkyl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
alkyl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
aryl	Н	Н	Н	Н
aryl	Н	Н	Н	alkyl
aryl	Н	Н	Н	aryl
aryl	Н	Н	Н	(CH ₂) _n COOR ₆
aryl	Н	Н	Н	(CH ₂) _n OR ₆
aryl	Н	Н	alkyl	Н
aryl	Н	Н	alkyl	alkyl
aryl	Н	н .	alkyl	aryl
aryl	Н	Н	alkyl	(CH ₂) _n COOR ₆
aryl	Н	Н	alkyl	(CH ₂) _n OR ₆
aryl	Н	Н	aryl	H
arvl			<u> </u>	1
aryl	н	Н	aryl	alkyl

aryl	I _H			
		H	aryl	(CH ₂) _n COOR ₆
aryl	H	H	aryl	(CH ₂) _n OR ₆
aryl	H	H	(CH ₂) _n COOR ₆	Н
aryl	H	H	(CH ₂) nCOOR ₆	alkyl
aryl	· H	H	(CH ₂) _n COOR ₆	aryl
aryl	H	H	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
aryl	H	H	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
aryl	H	H	(CH ₂) _n OR ₆	Н
aryl	H	Н	(CH ₂) _n OR ₆	alkyl
aryl	H	Н	(CH ₂) _n OR ₆	aryl
aryl	H	H	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
aryl	H	H	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
aryl	H	alkyl	Н	Н
aryl	H	alkyl	Н	alkyl
aryl	H	alkyl	н	aryl
aryl	H	alkyl	H	(CH ₂) _n COOR ₆
aryl	H	alkyl	Н	(CH ₂) _n OR ₆
aryl	H	alkyl	alkyl	Н
aryl	H	alkyl	alkyl	alkyl
aryl	H	alkyl	alkyl	aryl
aryl	H	alkyl	alkyl	(CH ₂) _n COOR ₆
aryl	H	alkyl	alkyl	(CH ₂) _n OR ₆
aryl	H	alkyl	aryl	Н
aryl	H	alkyl ·	aryl	alkyl
aryl	H	alkyl	aryl	aryl
aryl	H	alkyl	aryl	(CH ₂) _n COOR ₆
aryl	H	alkyl	aryl	(CH ₂) _n OR ₆
aryl	H	alkyl	(CH ₂) _n COOR ₆	Н
aryl	H	alkyl	(CH ₂) _n COOR ₆	alkyl
aryl	H	alkyl	(CH ₂) _n COOR ₆	aryl
aryl	Н	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
aryl	H	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
aryl	Н	alkyl .	(CH ₂) _n OR ₆	Н
aryl	Н	alkyl	(CH ₂) _n OR ₆	alkyl
aryl	Н	alkyl	(CH ₂) _n OR ₆	aryl
aryl	H	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
aryl	H	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
aryl	H	aryl	Н	Н
aryl	Н	aryl	Н	alkyl
aryl	Н	aryl	Н	aryl
aryl	H	aryl	Н	(CH ₂) _n COOR ₆
aryl	Н	aryl		
	Н	aryr	Н	(CH ₂) _n OR ₆

aryl	Н	l amul	Т	
aryl	'' H	aryl	alkyl	alkyl
aryl	H	aryl	alkyl	aryl
aryl	Н	aryl	alkyl	(CH ₂) _n COOR ₆
aryl		aryl	alkyl	(CH ₂) _n OR ₆
aryl	H	aryl	aryl	H
	H	aryl	aryl	alkyl
aryl	H	aryl	aryl	aryl
aryl	H	aryl	aryl	(CH ₂) _n COOR ₆
aryl	H	aryl	aryl	(CH ₂) _n OR ₆
aryl	H	aryl	(CH ₂) _n COOR ₆	Н
aryl	H	aryl	(CH ₂) _n COOR ₆	alkyl
aryl	H	aryl	(CH ₂) _n COOR ₆	aryl
aryl	H	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
aryl	H	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
aryl	H	aryl	(CH ₂) _n OR ₆	Н
aryl	H	aryl	(CH ₂) _n OR ₆	alkyl
aryl	H	aryl	(CH ₂) _n OR ₆	aryl
aryl	H	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
aryl	H	aryl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
aryl	СООН	Н	Н	Н
aryl	СООН	Н	Н	alkyl
aryl	СООН	Н	Н	aryl
aryl	СООН	Н	Н	(CH ₂) _n COOR ₆
aryl	СООН	Н	Н	(CH ₂) _n OR ₆
aryl	СООН	Н	alkyl	Н
aryl	СООН	Н	alkyl	alkyl
aryl	СООН	Н	alkyl	aryl
aryl	СООН	Н	alkyl	(CH ₂) _n COOR ₆
aryl	СООН	Н	alkyl	(CH ₂) _n OR ₆
aryl	СООН	Н	aryl	н
aryl	СООН	Н	aryl	alkyl
aryl	СООН	Н	aryl	aryl
aryl	СООН	Н	aryl	(CH ₂) _n COOR ₆
aryl .	СООН	Н	aryl	(CH ₂) _n OR ₆
aryl	СООН	Н	(CH ₂) _n COOR ₆	Н
aryl	СООН	н	(CH ₂) _n COOR ₆	alkyl
aryl	СООН	Н	(CH ₂) _n COOR ₆	aryl
aryl	СООН	Н	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
aryl	СООН -	Н	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
aryl	СООН	Н	(CH ₂) _n OR ₆	Н
aryl	СООН	Н	(CH ₂) _n OR ₆	alkyl
aryl	СООН	Н	(CH ₂) _n OR ₆	aryl
aryl	СООН	Н	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆

aryl	СООН	H	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
aryl	СООН	alkyl	Н	H
aryl	СООН	alkyl	Н	alkyl
aryl	СООН	alkyl	Н	aryl
aryl	СООН	alkyl	Н	(CH ₂) _n COOR ₆
aryl	СООН	alkyl	Н	$(CH_2)_nOR_6$
aryl	СООН	alkyl	alkyl	H
aryl	СООН	alkyl	alkyl	alkyl
aryl	СООН	alkyl	alkyl	aryl
aryl	СООН	alkyl	alkyl	(CH ₂) _n COOR ₆
aryl	СООН	alkyl	alkyl	(CH ₂) _n COOR ₆
aryl	СООН	alkyl	aryl	H
aryl	СООН	alkyl	aryl	alkyl
aryl	СООН	alkyl	aryl	
aryl	СООН	alkyl	aryl	aryl
aryl	СООН	alkyl	aryl	(CH ₂) _n COOR ₆
aryl	СООН	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
aryl.	СООН	alkyl	(CH ₂) _n COOR ₆	
aryl	СООН	alkyl	(CH ₂) _n COOR ₆	alkyl
aryl	СООН	alkyl	(CH ₂) _n COOR ₆	aryl
aryl	СООН	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
aryl	СООН	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
aryl	СООН	alkyl	(CH ₂) _n OR ₆	H
aryl	СООН	alkyl	(CH ₂) _n OR ₆	alkyl
aryl	СООН	alkyl	$(CH_2)_nOR_6$	aryl
aryl	СООН	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
aryl	СООН	aryl	H	(CH ₂) _n OR ₆
aryl	СООН	aryl		H
aryl	СООН	aryl	H	alkyl
aryl	СООН	aryl	H	aryl
aryl	СООН	aryl		(CH ₂) _n COOR ₆
aryl	СООН	aryl	H	(CH ₂) _n OR ₆
aryl	СООН	aryl	alkyl	H
aryl	СООН	aryl	alkyl	alkyl
aryl	СООН	aryl	alkyl	aryl
aryl	СООН	aryl	alkyl	(CH ₂) _n COOR ₆
aryl	СООН	aryl	alkyl	(CH ₂) _n OR ₆
aryl	СООН		aryl	Н
aryl	. СООН	aryl	aryl	alkyl
aryl	СООН	aryl	aryl	aryl
aryl	СООН	aryl	aryl	(CH ₂) _n COOR ₆
aryl	СООН	aryl	aryl	(CH ₂) _n OR ₆
aryl	СООН	aryl	(CH ₂) _n COOR ₆	Н
	1 00011	aryl	(CH ₂) _n COOR ₆	alkyl

aryl	СООН	aryl	(CH ₂) _n COOR ₆	aryl
aryl	СООН	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
aryl	СООН	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
aryl	СООН	aryl	(CH ₂) _n OR ₆	H
aryl	СООН	aryl	(CH ₂) _n OR ₆	alkyl
aryl	СООН	aryl	(CH ₂) _n OR ₆	aryl
aryl	СООН	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
aryl	СООН	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
aryl	NHR ₆	Н	Н	H
aryl	NHR ₆	H	Н	alkyl
aryl	NHR ₆	Н	Н	
aryl	NHR ₆	Н	Н	aryl .
aryl	NHR ₆	Н	Н	(CH ₂) _n COOR ₆
aryl	NHR ₆	Н	alkyl	(CH ₂) _n OR ₆
aryl	NHR ₆	Н	alkyl	H
aryl	NHR ₆	Н	alkyl	alkyl
aryl	NHR ₆	Н	alkyl	aryl
aryl	NHR ₆	Н	alkyl	(CH ₂) _n COOR ₆
aryl	NHR ₆	Н	aryl	(CH ₂) _n OR ₆
aryl	NHR ₆	Н	aryl	H
aryl	NHR ₆	Н		alkyl
aryl	NHR ₆	Н	aryl	aryl
aryl	NHR ₆	Н	aryl	(CH ₂) _n COOR ₆
aryl	NHR ₆	Н	aryl	(CH ₂) _n OR ₆
aryl	NHR ₆	Н	(CH ₂) _n COOR ₆	H
aryl	NHR ₆	Н	(CH ₂) _n COOR ₆	alkyl
aryl	NHR ₆	Н	(CH ₂) _n COOR ₆	aryl
aryl	NHR ₆	Н	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
aryl	NHR ₆	H	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
aryl	NHR ₆	H	(CH ₂) nOR ₆	H
aryl	NHR ₆	н	(CH ₂) _n OR ₆	alkyl
aryl	NHR ₆	H	(CH ₂) _n OR ₆	aryl
aryl	NHR ₆	H	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
aryl	NHR6	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
aryl	NHR ₆	alkyl	H	H
aryl	NHR ₆		H	alkyl
aryl	NHR ₆	alkyl	H	aryl
aryl	NHR ₆	alkyl	H	(CH ₂) _n COOR ₆
aryl	NHR ₆	alkyl	H	(CH ₂) _n OR ₆
aryl	NHR ₆	alkyl	alkyl	Н
aryl	NHR ₆	alkyl	alkyl	alkyl
aryl	NHR ₆	alkyl	alkyl	aryl
aryl	NHR ₆	alkyl	alkyl	(CH ₂) _n COOR ₆
3	NUL 6	alkyl	alkyl	(CH ₂) _n OR ₆

aryl	NHR ₆	alkyl	aryl	н
aryl	NHR ₆	alkyl	aryl	alkyl
aryl	NHR ₆	alkyl	aryl	
aryl	NHR ₆	alkyl	aryl	aryl
aryl	NHR ₆	alkyl	aryl	(CH ₂) _n COOR ₆
aryl	NHR ₆	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
aryl	NHR ₆	alkyl	(CH ₂) _n COOR ₆	H
aryl	NHR ₆	alkyl	(CH ₂) _n COOR ₆	alkyl
aryl	NHR ₆	alkyl	(CH ₂) _n COOR ₆	aryl
aryl	NHR ₆	alkyl	(CH ₂) COOR ₆	(CH ₂) _n COOR ₆
aryl	NHR ₆	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆
aryl	NHR ₆	alkyl	(CH ₂) _n OR ₆	H
aryl	NHR ₆	alkyl	(CH ₂) _n OR ₆	alkyl
aryl	NHR ₆	alkyl	(CH ₂) _n OR ₆	aryl
aryl	NHR ₆	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
aryl	NHR ₆	aryl	H	(CH ₂) _n OR ₆
aryl	NHR ₆	aryi	н	H
aryl	NHR ₆	aryl	— "	alkyl
aryl	NHR ₆	aryl	— H	aryl
aryl	NHR ₆	aryl	Н .	(CH ₂) _n COOR ₆
aryl	NHR ₆	aryl	alkyl	(CH ₂) _n OR ₆
aryl	NHR ₆	aryl	alkyl	Н
aryl	NHR ₆	aryl	alkyl	alkyl
aryl	NHR ₆	aryl	alkyl	aryl
aryl	NHR ₆	aryl	alkyl	(CH ₂) _n COOR ₆
aryl	NHR ₆	aryl	aryl	(CH ₂) _n OR ₆
aryl	NHR ₆	aryl		H
aryl	NHR ₆	aryl	aryl	alkyl
aryl	NHR ₆	aryl	aryl	aryl
aryl	NHR ₆	aryl	aryl	(CH ₂) _n COOR ₆
aryl	NHR ₆	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
aryl	NHR ₆	aryl	(CH ₂) _n COOR ₆	H
aryl	NHR ₆	aryl	(CH ₂) _n COOR ₆	alky1
aryl	NHR ₆	aryl	(CH ₂) _n COOR ₆	aryl
aryl	NHR ₆	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
aryl	NHR ₆	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
aryl	NHR ₆	aryl	$(CH_2)_nOR_6$ $(CH_2)_nOR_6$	H
aryl	NHR ₆	aryl	$(CH_2)_nOR_6$ $(CH_2)_nOR_6$	alkyl
ryl	NHR ₆	aryl	(CH ₂) _n OR ₆	aryl
ıryl	NHR ₆	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
ıryl	(CH ₂) _n COOR ₆	н	H	(CH ₂) _n OR ₆
ryl	(CH ₂) _n COOR ₆	H	H	H
ryl	(CH ₂) _n COOR ₆	Н	H	alkyl

aryl	(CH ₂) _n COOR ₆	Н	Н	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	Н	Н	(CH ₂) _n OR ₆
aryl	(CH ₂) _n COOR ₆	Н	alkyl	Н
aryl	(CH ₂) _n COOR ₆	Н	alkyl	alkyl
aryl	(CH ₂) _n COOR ₆	Н	alkyl	aryl
aryl	(CH ₂) _n COOR ₆	Н	alkyl	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	Н	alkyl	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	Н	aryl	H
aryl	(CH ₂) _n COOR ₆	Н	aryl	alkyl
aryl	(CH ₂) _n COOR ₆	Н	aryl	aryl
aryl	(CH ₂) _n COOR ₆	Н	aryl	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	Н	aryl	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n COOR ₆	H H
aryl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n COOR ₆	alkyl
aryl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n COOR ₆	aryl
aryl	(CH ₂) _n COOR ₆	Н	(CH ₂) nCOOR ₆	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
aryl ·	(CH ₂) _n COOR ₆	Н	(CH ₂) _n OR ₆	H
aryl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n OR ₆	alkyl
aryl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n OR ₆	aryl
aryl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	Н	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	alkyl	Н	H
aryl	(CH ₂) _n COOR ₆	alkyl	Н	alkyl
aryl	(CH ₂) _n COOR ₆	alkyl	H	aryl
aryl	(CH ₂) _n COOR ₆	alkyl	Н	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	alkyl	Н	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	alkyl	alkyl	H H
aryl	(CH ₂) _n COOR ₆	alkyl	alkyl	alkyl
aryl	(CH ₂) _n COOR ₆	alkyl	alkyl	aryl
aryl	(CH ₂) _n COOR ₆	alkyl	alkyl	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	alkyl	alkyl	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	alkyl	aryl	H H
aryl	(CH ₂) _n COOR ₆	alkyl	aryl	alkyl
aryl	(CH ₂) _n COOR ₆	alkyl	aryl	aryl
aryl	(CH ₂) _n COOR ₆	alkyl	aryl	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	alkyl	aryl	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COOR ₆	H
aryl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COOR ₆	alkyl
aryl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COOR ₆	
aryl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COOR ₆	aryl
aryl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆

<u> </u>				
aryl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n OR ₆	alkyl
aryl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n OR ₆	aryl
aryl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	alkyl	(CH ₂) _n OR ₆	(CH ₂) nOR ₆
aryl	(CH ₂) _n COOR ₆	aryl	Н	H H
aryl	(CH ₂) nCOOR ₆	aryl	Н	alkyl
aryl	(CH ₂) _n COOR ₆	aryl	Н	
aryl	(CH ₂) nCOOR ₆	aryl	H	aryl
aryl	(CH ₂) nCOOR ₆	aryl	Н	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	aryl	alkyl	(CH ₂) _n OR ₆
aryl	(CH ₂) _n COOR ₆	aryl	alkyl	H
aryl	(CH ₂) _n COOR ₆	aryl		alkyl
aryl	(CH ₂) _n COOR ₆	aryl	alkyl	aryl
aryl	(CH ₂) _n COOR ₆	aryl	alkyl	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	aryl	alkyl	(CH ₂) _n OR ₆
aryl	(CH ₂) nCOOR ₆		aryl	H
aryl	(CH ₂) _n COOR ₆	aryl	aryl	alkyl
aryl	(CH ₂) _n COOR ₆	aryl	aryl	aryl
aryl	(CH ₂) _n COOR ₆	aryl	aryl	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	aryl	aryl	(CH ₂) _n OR ₆
aryl		aryl	(CH ₂) _n COOR ₆	Н
aryl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n COOR ₆	alkyl
	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n COOR ₆	aryl
aryl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n COOR ₆	(CH ₂) _n OR ₆
aryl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	Н
aryl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	alkyl
aryl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	aryl
aryl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	(CH ₂) _n COOR ₆
aryl	(CH ₂) _n COOR ₆	aryl	(CH ₂) _n OR ₆	(CH ₂) _n OR ₆

The invention also relates to a method for the preparation of radiolabeled biomolecules comprising:

- a) contacting a chelating agent of the invention with a carbonyl moiety of the formula [M(CO)₃]⁺, wherein M is rhenium (Re) or technetium (Tc), under conditions for forming a chelator-carbonyl complex; and
- b) contacting the complex with a biomolecule for 10 obtaining a radiolabeled biomolecule. This method is in particular useful for labeling biomolecules that are sensitive to temperature and extreme pH.

This method can for example be performed with a kit, comprising a first vial with the chelating agent of the invention, optionally a first reaction vial for contacting the chelating agent with the carbonyl moiety, a second vial with the biomolecule and optionally a second reaction vial for reacting the biomolecule with the chelator-carbonyl complex obtained in the first step of the reaction.

In an alternative embodiment the invention provides a method for the preparation of radiolabeled biomolecules 10 comprising:

- a) contacting a chelating agent of the invention with a biomolecule for obtaining a chelator-biomolecule.; and
- b) contacting the chelator-biomolecule with a carbonyl moiety of the formula [M(CO)₃]⁺, wherein M is
 15 rhenium (Re) or technetium (Tc) under conditions for forming a radiolabeled biomolecule.

A kit for performing this method comprises for example a first vial with the chelating agent of the invention, optionally a first reaction vial for reacting the chelating agent with the biomolecule, a second vial with the carbonyl moiety and optionally a second reaction vial for reacting the chelator-biomolecule obtained in the first step of the reaction with the carbonyl.

The invention will be further illustrated in the 25 example that follows.

EXAMPLE

Introduction

The bifunctional pyrazolyl-polyamines, pyrazolyl30 polythioether, pyrazolyl amino-thioether ligands, pyrazolylaminophosphines and pyrazolyl-thioetherphosphines contain
different donor atom sets to stabilize the metal and have

different functional groups in different positions to which seeking molecules such as, for example, monoclonal antibodies, peptides, oligonucleotides and glycoproteins, can be coupled. They can also have different substituents and 5 alkyl chains in different positions of the backbone for tuning the physico-chemical properties of the molecules.

A general overview is given in Figure 1, showing possible combinations for metal fragments of the type $[M(CO)_3]^+$ (M = Re, Tc, Mn). The five different types of 10 bifunctional tridentate pyrazolyl-containing ligands, which are subject of this invention are depicted schematically in Figure 2.

The present invention will be further illustrated in the Figures 3-6, which are solely intended to clarify the 15 invention. This family of ligands led to thermodynamically stable complexes and the versatility of the backbone is an important factor for tuning the physico-chemical properties of the compounds and obviously its pharmacokinetics. In Figure 6, some of the Re and Tc complexes referred as 20 examples are schematically represented.

Materials and methods

1. Synthesis of 2-[2-(pyrazol-1-yl)ethylimino]ethylamine $(pz(CH_2)_2NH(CH_2)_2NH_2)$ (1) (see Figure 3)

A solution of 1-(2-bromoethyl)pyrazole [6d] (12 mmol) 25 in tetrahydrofuran was added dropwise to a solution of ethylenediamine (0.24 mol) in water. The mixture was refluxed for 4 hours. The THF was removed under vacuum and the water phase was washed with dichloromethane. After drying under vacuum resulted a yellow oil which was formulated as 30 pz(CH₂)₂NH₂(CH₂)₂NH₂(1).

Yield: 50%

 1 H-NMR (D_{2} O): 7.53 (d, H(3)pz, 1H); 7.45 (d, H(5)pz, 1H); 6.23 (t, H(4)pz, 1H); 4.14 (t, CH2, 2H); 2.91 (t, CH₂, 2H); 2.77 (t, CH₂, 2H); 2.62 (t, CH₂, 2H).

5 2. Synthesis pz(CH₂)₂N[(CH₂)₃COOH](CH₂)₂NH₂ (4) (see Figure 3) 2.1. BOC-ON protection

A solution of 1 (1.1 g; 7 mmol) in DMF (20 ml) was cooled to 0°C and a solution of BOC-ON (1,7 g; 7 mmol) in DMF (20 ml) was added dropwise. The reaction mixture was stirred 10 for 3 hours at 0°C. The solvent was removed under vacuum and the solid residue was dissolved in water and washed with chloroform 3 times, yielding 2 as an oil. Yield: 68%. ¹H-NMR (D₂O): 7.55 (d, H(3)pz, 1H); 7.47 (d, H(5)pz, 1H); 6.24 (t, H(4)pz, 1H); 4.38 (t, CH₂, 2H); 3.40 (t, CH₂, 2H); 3.20 (t, 15 CH₂, 2H); 2.99 (t, CH₂, 2H); 1.25 (s, CH₃, 9H).

2.2. Alkylation with ethyl 4-bromobutyrate, hydrolysis and deprotection

Compound 2 (757 mg; 3 mmol) was dissolved in 10 ml of 20 acetonitrile. Potassium carbonate (829 mg; 6 mmol) and a catalytic amount of potassium iodide were added to the solution, and ethyl 4-bromobutyrate (858 ml, 16 mmol) was added dropwise. After refluxing for 3 days, the supernatant was separated by filtration and vacuum dried leading to 3.

- 25 This compound (733 mg, 2 mmol) was dissolved in an aqueous solution of NaOH (800 mg, 20 mmol) and reacted for one day at room temperature. The solution was then neutralized with HCl 1N and vacuum dried. The solid residue was dissolved in methanol, the precipitating salts were filtered off, and the 30 solvent was removed under vacuum, yielding a yellow/brown oil
- 30 solvent was removed under vacuum, yielding a yellow/brown oil formulated as 4. Yield: (50%).

¹H-NMR (D₂O): 7.78 (d, H(3)pz, 1H); 7.64 (d, H(5)pz, 1H); 6.42 (t, H(4)pz, 1H); 4.36 (t, CH₂, 2H); 3.10 (t, CH₂, 2H); 3.02 (t, CH₂, 2H); 2.86 (t, CH₂, 2H); 2.64 (t, CH₂, 2H); 2.15 (t, CH₂, 2H); 1.68 (q, CH₂, 2H).

32

5

- 3. Synthesis (4-carboxylic)pz(CH_2) $_2NH$ (CH_2) $_2NH_2$ (7) (see Figure 3)
- 3.1. Ethyl N-2-hydroxyethyl-4-pyrazolecarboxylate (5)

 Compound 5 was prepared using the classical approach
- 10 for preparing pyrazoles [7]. Ethyl 2-formyl-3-oxopropionate (2.80 g; 20 mmol) was dissolved in 20 ml of ethanol and cooled to 0°C. 2-Hydroxyethylhydrazine (1.44 g; 20 mmol) was dissolved in 100 ml of ethanol and was added dropwise to the solution of ethyl 2-formyl-3-oxopropionate. The reaction
- 15 mixture was left overnight at room temperature. The solvent was vacuum removed yielding a yellow oil. Yield: 95%

 ¹H-NMR (CDCl₃): 7.93 (s, H(3)pz, 1H); 7.91 (s, H(5)pz, 1H);

 4.30-4.22 (m, CH₂+OCH₂, 5H); 3.99 (t, CH₂, 2H); 1.30 (t, CH₃, 3H).

20

3.2. Ethyl N-(2-p-toluenesulfonylethyl)-4pyrazolecarboxylate (6)

Ethyl N-2-hydroxyethyl-4-pyrazolecarboxylate (5)

- (2.76 g, 15 mmol) and p-toluenesulfonylchloride (2.85 g, 15 mmol) were suspended in a solution of acetone (15 ml) and water (15 ml) and cooled to 0°C. A solution of NaOH (0.6 g, 15 mmol) in water (10 ml) was added dropwise for 15 min. The mixture was then allowed to reach the room temperature and was vigorously stirred overnight. The acetone was evaporated 30 and the aqueous solution was extracted 3 times with
- 30 and the aqueous solution was extracted 3 times with chloroform, yielding a yellow oil. Yield: 60%

¹H-NMR (CDCl₃): 7.82 (s, H(3)pz, 1H); 7.76 (s, H(5)pz, 1H); 7.61 (d, H(ph), 2H); 7.26 (d, H(ph), 2H); 4.35 (q, OCH₂, 2H); 4.24 (t, CH₂, 2H); 2.15 (s, CH₃, 3H) 1.33 (t, CH₂, 2H).

Compound 7 was prepared as follows. Ethylenediamine 5 (16 ml; 0.24 mol) was dissolved in a solution of NaOH (9.6 g; 0.24 mol) in water (20 ml). A solution of Ethyl N-(2-p-toluenesulfonylethyl)-4-pyrazolecarboxylate (6) (4.06 g; 12 mmol) in THF (10 ml) was added dropwise to the ethylenediamine solution. The reaction mixture was refluxed

10 for 24 hours. After that, the solvent was vacuum removed and the product was purified by column chromatography in silicagel (eluent:methanol-NH₃/methanol (50:50)), yielding a dark yellow solid. Yield: 50%.

 1 H-NMR (D₂O): δ 7.80 (s, H(3)pz, 1H); 7.64 (s, H(5)pz, 1H); 15 4.27 (t, CH₂, 2H); 3.24 (t, CH₂, 2H); 3.11-3.00 (m, 2CH₂, 4H). IV (KBr) (ν /cm⁻¹): 1690 (C=O).

4. Synthesis of $3,5-Mepz(CH_2)_2N[(CH_2)_3GlyGlyOEt)](CH_2)_2NH_2$ (13) (Figure 4)

20 4.1. BOC-ON protection (9)

Compound 8 (3.41 g, 18.71 mmol) [4c] was dissolved in THF (25 mL) and cooled to a temperature between -10° C and 0° C. BOC-ON (4.60 g, 18.71 mmol) in THF (20 ml) was added dropwise and the reaction mixture was stirred for 2 h at 0° C, resulting in the complete conversion of 8 as monitored by TLC ($R_f = 0.5$, 100% MeOH). The reaction mixture was then warmed to room temperature and partitioned between a saturated aqueous Na₂CO₃ solution and dichloromethane. The organic layer was separated, dried over anhydrous MgSO₄, filtered, 30 and concentrated under reduced pressure to afford the product 9 in quantitative yield (by 1 H-NMR), as a highly viscous

colorless oil. This product was used in the next step without further purification.

¹H-NMR (CDCl₃): δ 5.76 (s, pyrazol, 1H), 5.08 (s br., NH, 1H), 4.04 (t, CH₂, 2H), 3.18 (m, CH₂, 2H), 2.99 (t, CH₂, 2H), 5 2.72 (t, CH₂, 2H), 2.18 (s, CH₃, 3H), 2.20 (s, CH₃, 3H), 1.40 (s, C(CH₃)₃, 9H).

4.2. Synthesis of $3.5-\text{Me}_2\text{pz}(\text{CH}_2)_2\text{N}[(\text{CH}_2)_3\text{COOH}](\text{CH}_2)_2\text{NHBOC}$ (11)

To a stirred solution of the crude product 9 (1.02 g) 10 in CH_3CN (15 mL), ethyl 4-bromobutyrate (1.4 g, 7.20 mmol), K_2CO_3 (1.00 g, 7.20 mmol) and a catalytic amount of KI were added. The obtained suspension was allowed to react under vigorous stirring for 11 days, being the reaction monitored by TLC (R_f product = 0.4, 10% MeOH/ CH_2Cl_2). After elimination

- 15 of the white solids in suspension by filtration, the solvent was evaporated in vacuum and a pale-yellow viscous oil was obtained. The crude product was chromatographed on an appropriate column of silica gel with 75-100% ethyl acetate/hexane (gradient) to afford 10 as a pale-yellow
- 20 viscous oil, which solidifies on standing for several days at room temperature. Yield: 0.73 g (51% yield).

A solution of 10 (4.6 g, 11.60 mmol) in THF (190 mL) and aqueous NaOH (8.3 mL of a 14 N NaOH solution, 116.0 mmol) was refluxed for 8 h. The reaction was monitored by TLC ($R_{\rm f}$

- 25 product = 0.2, 10% MeOH/CH₂Cl₂). After neutralization with HCl 4N (pH 6-7), the THF/H₂O solution was evaporated to dryness under reduced pressure. The crude product was chromatographed on an appropriate column of silica gel with 10-50% MeOH/CHCl₃ (gradient) to afford 11 as an highly
- 30 viscous colorless oil, which crystallizes on standing after several days. Yield: 2.82 g (66%).

Compound 10: $^{1}\text{H-NMR}$ (CDCl₃): δ 5.75 (s, pyrazol, 1H), 4.09 (q, CH₂, 2H), 3.98 (s br., CH₂, 2H), 3.08 (s br., CH₂, 2H), 2.78 (s br., CH₂, 2H), 2.45-2.51 (m, CH₂, 4H), 2.23 (s, CH₃, 3H), 2.18 (m, CH₃, CH₂, 5H), 1.63 (s br., CH₂, 2H), 1.41 5 (s, C(CH₃)₃, 9H), 1.23 (t, CH₃, 3H).

Compound 11: ¹H-NMR (CDCl₃): δ 5.81 (s, pyrazol, 1H), 4.93(s br., NH, 1H) 4.12 (t br., CH₂, 2H), 3.04 (q br., CH₂, 2H), 2.86 (t br., CH₂, 2H), 2.58-2.64 (m, CH₂, 4H), 2.42 (t, CH₂, 2H), 2.24 (s, CH₃, 3H), 2.19 (s, CH₃, 3H), 1.79 (m, CH₂, 10 2H), 1.40 (s, C(CH₃)₃, 9H).

Compound 3,5-Me₂pz(CH₂)₂N[(CH₂)₃CONHGlyGlyOEt](CH₂)₂NH₂ (13) was prepared as follows (see Figure 4).

To a solution of 11 (1.51 g, 4.09 mmol) in CH_3CN (48 mL) were added GlyGly ethyl ester hydrochloride (0.57 g, 4.09 15 mmol), triethylamine (1.24g, 12.27 mmol), and HBTU (1.55 g, 4.09 mmol). The reaction mixture was stirred 20 h at room temperature under nitrogen. The reaction was monitored by TLC (R_f product = 0.8, 20% MeOH/ CH_2Cl_2). The solvent was evaporated and the crude product obtained was purified by 20 chromatography on an appropriate silica gel column with 3-5% MeOH/ $CHCl_3$ (gradient) to afford 12 as a viscous colorless oil. Yield: 1.23 g (59%).

A solution of 3,5-Me₂pz(CH₂)₂N[(CH₂)₃CONHGlyGlyOEt] (CH₂)₂NHBOC (12) (1.23 g, 2.41 mmol) in CH₂Cl₂/TFA (25 mL / 25 4.1 mL) was allowed to react for 2 h. The reaction was monitored by TLC ($R_f = 0.4$, 20% MeOH/CH₂Cl₂). The solvent and the TFA were evaporated under reduced pressure and a highly viscous pale-yellow oil was obtained. This oil was dissolved in water, neutralized with NaOH 1N (pH 7-8) and the solvent evaporated to dryness. TLC: $R_f = 0.2$, 20% MeOH/CH₂Cl₂ The compound was further purified by chromatography on an appropriate silica gel column with 20-40% MeOH/CHCl₃

(gradient) to afford 13 as a viscous colorless oil. Yield: 0.97 g (98 %).

Compound 12: ¹H-NMR (CDCl₃): δ 8.66 (s br., NH, 1H), 7.00 (s br., NH, 1H), 5.80 (s, pyrazol, 1H), 4.91 (s br., NH, 5 1H) 4.15 (q., CH₂, 2H), 4.04 (s br., CH₂, 2H), 3.97 (d, CH₂, 2H), 3.90 (d, CH₂, 2H), 2.89 (s br., CH₂, 2H), 2.69 (s br., CH₂, 2H), 2.51 (s br., CH₂, 2H), 2.39 (s br., CH₂, 2H), 2.30 (s br., CH₂, 2H), 2.20 (s, CH₃, 3H), 2.18 (s, CH₃, 3H), 1.74 (s br., CH₂, 2H), 1.38 (s, C(CH₃)₃, 9H), 1.23 (t, CH₃, 3H).

10 Compound 13: $^{1}\text{H-NMR}$ (CD3OD): δ 5.84 (s, pyrazol, 1H), 4.17 (q, CH₂, 2H), 4.06 (t, CH₂, 2H), 3.91 (d, CH₂, 4H), 2.97 (t, CH₂, 2H), 2.71-2.80 (m, CH₂, 4H), 2.51 (t, CH₂, 2H), 2.25 (s, CH₃, 3H), 2.15 (s, CH₃, 3H), 2.12 (t, CH₂, 2H), 1.66 (m, CH₂, 2H), 1.25 (t, CH₃, 3H).

15

- 5. Synthesis of 3,5-Mepz(CH₂)₂S(CH₂)₂S(CH₂)COOEt (16) (Figure 5)
- 5.1 Synthesis of 3,5-Mepz $(CH_2)_2S(CH_2)_2OH$ (14)
- 0.70 ml (10 mmol) of HSCH₂CH₂OH were mixed with 0.40 g (10 mmol) of NaOH, in water, and the solution was refluxed for 5 min. To this solution, 2.78 g (10 mmol) of N-(2-p-toluenesulfonylethyl)-3,5-dimethylpyrazole dissolved in tetrahydrofuran (THF) were added dropwise at room temperature, followed by gentle reflux for 3 hr. The mixture was extracted with chloroform from which, after drying under vacuum, were recovered 1.62g of 14 as a yellow oil (8.10 mmol, 81%).

Compound 14: 1 H-NMR (CDCl₃): 5.67 (s, pz-H, 1H); 4.39 (s, OH, 1H); 4.03 (t, CH₂, 2H); 3.60 (t, CH₂, 2H); 2.83 (t, 30 CH₂, 2H); 2.50 (t, CH₂, 2H); 2.14 (s, CH₃, 3H); 2.09 (s, CH₃, 3H).

5.2 Synthesis of 3,5-Mepz(CH_2)₂S(CH_2)₂Br (15)

0.19 ml (2 mmol) of PBr_3 were added to $\bf 14$ (0.40 g, 2 mmol) dissolved in chloroform, and the resulting solution was refluxed for 24 hours under N_2 . The mixture was treated with

5 20 ml of 10% NaHCO $_3$ solution. The organic phase was separated and chloroform removed under vacuum, yielding 0.329 g of 15 as a yellow oil (1.25 mmol, 63%).

¹H-NMR (CD_{Cl3}): 5.82 (s, pz-H, 1H); 4.15 (t, CH₂, 2H); 3.36 (t, CH₂, 2H); 3.00 (t, CH₂, 2H); 2.70 (t, CH₂, 2H); 2.26 (s, CH₃, 3H); 2.23 (s, CH₃, 3H).

Under N_2 , dry ethanol was added to metallic sodium (0.15 g, 4.56 mmol), and the mixture was stirred at room temperature until complete conversion to sodium ethoxide. To this mixture an ethanolic solution of ethyl 2-mercaptoacetate

- 15 (0.50 ml, 4.56 mmol) was added dropwise, followed by addition of 1.20 g (4.56 mmol) of 3,5-Mepz(CH_2) $_2S(CH_2)_2Br$ (15) in ethanol. The reaction mixture was stirring overnight at room temperature. After this time, the solvent was removed under vacuum and the resulting oil was dissolved in chloroform.
- 20 After washing with water, the organic phase was dried under vacuum yielding 1.00 g of 16 as a yellow oil (3.3 mmol, 72.4%).

Compound 16: ¹H-NMR (CDCl₃): 5.82 (s, pz-H, 1H); 4.14 (m, CH₂, CH₂-COO, 4H); 3.25 (s, CH₂, 2H); 2.92 (t, CH₂, 2H); 2.75 (t, CH₂, 2H); 2.57 (t, CH₂, 2H); 2.2 (s, CH₃, 3H); 2.16 (s, CH₃, 3H); 1.25 (t, CH₃, 3H).

6. Re and Tc compounds (see Figure 6)

6.1. Synthesis of $[Re(CO)_3(\kappa^3-pz(CH_2)_2NH(CH_2)_2NH_2)]Br(17a)$

30 100 mg (0.130 mmol) of $(NEt_4)_2[ReBr_3(CO)_3]$ were mixed with 20 mg (0.130 mmol) of the compound 1 $(pz(CH_2)_2NH(CH_2)_2NH_2)$ in water, and the solution was refluxed

for 2 hours. The volume was then reduced under vacuum, and the mixture was left at 4°C until a white solid precipitated. Yield: >90% by $^{1}\text{H-NMR}$

¹H-NMR (D₂O): 7.82 (d, H(3)pz, 1H); 7.76 (d, H(5)pz, 1H);
5 6.54 (s br, NH, 1H); 6.39 (t, H(4)pz, 1H); 4.86 (s, largo, NH₂, 1H); 4.43 (m, CH₂, 1H); 4.16 (m, CH₂, 1H); 3.94 (s, largo, NH₂, 1H); 3.50 (m, CH₂, 1H); 2.87 (m, CH₂, 1H); 2.71 (m, CH₂, 2H); 2.48 (m, CH₂, 1H); 2.08 (m, CH₂, 1H).

10 6.2. Synthesis of $[^{99m}Tc(CO)_3(\kappa^3-pz(CH_2)_2NH(CH_2)_2NH_2)]+(17b)$

100 μl of a solution of compound 1

(pz(CH₂)₂NH(CH₂)₂NH₂) 10⁻⁴ M was added to 1 ml of a solution of [^{99m}Tc(OH)₃(CO)₃]+ (1-2 mCi) in phosphate buffer. The solution was incubated for 30 min at 100°C and then analyzed by HPLC.

15 The radiochemical purity was >90%.

6.3. Synthesis of $[Re(CO)_3(\kappa^3-(4-carboxylic acid)pz(CH_2)_2NH_2)]Br(18a)$

100 mg (0.130 mmol) of (NEt₄)₂[ReBr3(CO)₃] were mixed 20 with 26 mg (0.130 mmol) of compound **7**, in water, and the solution was refluxed for 2 hours. The volume was then reduced under vacuum, and the mixture was left at 4°C until a white solid precipitated.

Yield: >90% by ¹H-NMR

- 25 ¹H-NMR (D₂O): δ 8.22 (s, H(3)pz, 1H); 8.20 (s, H(5)pz, 1H); 6.62 (s, largo, NH, 1H); 4.94 (s, largo, NH₂, 1H); 4.43 (m, CH₂, 1H); 4.25 (m, CH₂, 1H); 4.05 (s, largo, NH₂, 1H); 3.52 (m, CH₂, 1H); 2.92 (m, CH₂, 1H); 2.76 (m, CH₂, 2H); 2.53 (m, CH₂, 1H); 2.14 (m, CH₂, 1H).
- 30 IV (KBr) (v/cm^{-1}) : 2010 (C=O); 1885 (C=O); 1690 (C=O ligando)

6.4. Synthesis of $[Re(CO)_3(\kappa^3-3,5-Me_2pz(CH_2)_2N(CH_2)_2(glygly)]$ NH₂)]Br (19a)

100 mg (0.130 mmol) of $(NEt_4)_2[ReBr_3(CO)_3]$ were mixed with 53 mg (0.130 mmol) of the ligand 13, in water, and the 5 solution was refluxed overnight.

Yield: 100% by 1H-NMR

¹H-NMR (D₂O): δ 6.04 (s, H(4)pz, 1H); 5.05 (s, br, NH₂, 1H); 4.36-4.31 (m, CH₂, 1H); 4.16-4.04 (m, CH₂, 1H); 3.88 (s, NHCH₂CO, 2H); 3.84 (s, NHCH₂CO, 2H); 3.65 (s, br, NH₂, 1H);

10 3.53 (m, CH₂, 1H); 3.30 (m, CH₂, 2H); 2.86 (m, CH₂, 1H); 2.74 (m, CH₂, 2H); 2.57 (m, CH₂, 1H); 2.40 (m, CH₂, 1H); 2.31 (m, CH₂, 1H); 2.73 (s, CH₃, 3H); 2.16 (s, CH₃, 3H); 2.10 (m, CH₂, 1H); 1.95 (m, CH₂, 1H).

15 6.5. Synthesis of $[^{99m}Tc(CO)_3(\kappa^3-3, 5-Me_2pz(CH_2)_2N(CH_2)_2]$ $(glygly)NH_2)]^+$ (19b)

100 ml of a solution of 13 (10^{-3} M) was added to 1 ml of a solution of $[^{99m}Tc(OH)_3(CO)_3]^+$ (1-2 mCi) in phosphate buffer. The solution was incubated for 1h at $100^{\circ}C$ and then 20 analysed by HPLC. The radiochemical purity was >90%.

7. Synthesis of pyrazolyl-aminophosphines (figure 7)

The preparation of the pyrazolyl-aminophosphines of the invention involves alkylation of 1-(2- $^{\circ}$

- 25 aminoethyl)pyrazoles with (2-bromoethyl)phosphonic acid diethyl esther, yielding a pyrazole-amino-phosphonate derivative (compound a). Reduction of compound a with lithium aluminium hydride (LAH) affords a primary phoshine (compound b) which is then converted to the final chelator (compound c)
- 30 by treatment with formaldehyde in acidic medium (Katti et al., J. Am. Chem. Soc. 122, 1554 (2000).

8. Synthesis of pyrazolyl-thioetherphosphines (figure 8)

The preparation of pyrazolyl-thioetherphosphines of the invention involves reaction of 1-(2-mercaptoethyl)pyrazoles with (2-bromoethyl)phosphonic acid diethyl esther yielding a pyrazole-thioether-phosphonate derivative (compound d) (Katti et al., Angew. Chem. Int. Ed. 38, 2020 (1999). Reduction of compound d with lithium aluminium hydride, followed by treatment of the resulting primary phoshine (compound e) with formaldehyde in acidic medium affords the final chelator (compound f).

REFERENCES

- [1] a) Alberto et al WO 98/48848,
 - b) Alberto et al., WO 00/50086,
- 15 c) Alberto et al., WO 01/00637
 - d) Alberto et al, US 6, 344,178 B1
 - [2] a) Hilger et al, US 6, 488,909 B1.
 - [3] a) Alberto et al, Polyhedron 17 (1998) 1303
 - b) Alberto et al., J. Med. Chem. 41 (1998) 4429
- 20 c) Alberto et al, J. Am. Chem. Soc. 121 (1999) 6076
 - d) Alberto et al, J. Nucl. Med. 40 (1999) 1913
 - e) Schibli et al, Nucl. Med. and Biol. 26 (1999) 711
 - f) Alberto et al, Bioconjugate Chem. 11 (2000) 414
 - g) Alberto et al, Bioconjugate Chem. 11 (2000) 345
- 25 h) Alberto et al., Chem. Eur. Journal 7 (2001) 1868
 - i) Alberto et al, Angew. Chem. Int. Ed. 40 (2001) 3062
 - j) Alberto et al, Bioconjugate Chem. 13 (2002) 750.
 - [4] a) Santos et al, J. Am. Chem. Soc. 122 (2000) 11240
 - b) Santos et al., Inorg. Chem. 40 (2001) 5147
- 30 c) Santos et al, J. Chem. Soc. Dalton Trans. (2002) 4714.
 - [5] a) Valliant et al, Inorg Chem. Commun. 41 (2002) 628
 - b) Valliant et al, Inorg Chem. 41 (2002) 6417

WO 2004/091669 PCT/US2004/011685

[6] a) Sorrell et al, Inorg. Chem. 22 (1983) 1883

5

- b) Driessen et al. J. Chem. Soc. Dalton Trans. (1992) 481
- c) Parkin et al., Inorg. Chem. 35 (1996) 2415
- d) Ballesteros et al., Bioorganic and Medicinal Chem. 7 (1999) 517.
 - e) Bouwman et al., Inorg. Chim. Acta (2000) 183
- [7] Holzer et al, J. Heterocyclic Chem. 130 (1993) 865