

Description

The NEC μ PD416 is a 16,384-word by 1-bit dynamic MOS Random-access Memory. It is designed for memory applications where very low cost and large bit storage are important design objectives.

The μPD416 is fabricated using a double-poly-layer, N-channel, silicon-gate process which affords high storage cell density and high performance. The use of dynamic circuitry throughout, including the sense amplifiers, assures minimal power dissipation.

Multiplexed address inputs permit the μ PD416 to be packaged in the standard 16-pin dual-in-line package. The 16-pin package provides the highest system bit densities and is available in either ceramic or plastic. Noncritical clock timing requirements allow use of the multiplexing technique while maintaining high performance.

Features

	•			
Device	Access Time	R/W Cycle	RMW Cycle	
μ PD416-2	200ns	375ns	375ns	
μ PD416-3	150ns	320ns	320ns	
μPD416-5	120ns	320ns	320ns	_/

Pin Configuration

A, [3 4 5 6	15 14	A ₆ A ₃ A ₄ A ₅
V _{DD} [Ŀ	9	5 v _{cc}

Pin Identification

	Pin	
No.	Symbol	Function
1	V _{BB}	- 5V power supply
2	D _{IN}	Data-in
3	WRITE	Read/write
4	RAS	Row address strobe
5-7, 10-13	A ₀ -A ₈	Address inputs
8	V _{DD}	+ 12V power supply
9	V _{CC}	+ 5V power supply
14	D _{OUT}	Data-out
15	CAS	Column address strobe
16	GND	Ground

Absolute Maximum Ratings*

Operating Temperature, TOPR	0°C to +70°C		
Storage Temperature, T _{STG}	-55°C to +150°C		
All Output Voltages, V _O ①	-0.5V to +20V		
All Input Voltages, V _I ①	-0.5V to +20V		
Supply Voltages V _{DD} , V _{CC} , GND ①	-0.5V to +20V		
Supply Voltages V _{DD} , V _{CC} ②	-1.0V to +15V		
Short-circuit Output Current	50mA		
Power Dissipation, Pp	1w		
Notes: ① Relative to V _{BB} . ② Relative to GND			

*COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described

operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{DD} = +12V \pm 10\%$; $V_{BB} = -5V \pm 10\%$; $V_{CC} = +5V \pm 10\%$; GND = 0V

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input Capacitance (A ₀ -A ₆), D _{IN}	C ₁₁		4	5	рF	
input Capacitance RAS, CAS, WRITE	C ₁₂		8	10	pF .	
Output Capacitance (D _{OUT})	C _O		5	7	pF	

Operational Description

Addressing

The 14 address bits required to decode 1 of 16,384-bit locations are multiplexed on to the 7 address pins and then latched on the chip with the use of the row address strobe (RAS), and the column address strobe (CAS). The 7-bit row address is first applied and RAS is then brought low. After the RAS hold time has elapsed, the 7-bit column address is applied and CAS is brought low. Since the column address is not needed internally until a time of t_{CRD} max after the row address, this multiplexing operation imposes no penalty on access time as long as CAS is applied no later than t_{CRD} max. If this time is exceeded, access time will be defined from CAS instead of RAS.

Data I/O

For a write operation, the input data is latched on the chip by the negative going edge of WRITE or CAS, whichever occurs later. If WRITE is active before CAS, this is an "early-write" cycle and data-out will remain in the high impedance state throughout the cycle. For a read, write, or read-modify-write cycle, the data output will contain the data in the selected cell after the access time. Data-out will assume the high impedance state anytime that CAS goes high.

Page Mode

The page mode feature allows the μ PD416 to be read or written at multiple column addresses for the same row address. This is accomplished by maintaining a low on RAS and strobing the new column address with CAS. This eliminates the set-up and hold times for the row address resulting in faster operation.

Refresh

Refresh of the memory matrix is accomplished by performing a memory cycle at each of the 128-row addresses every 2 milliseconds or less. Because data-out is not latched, RAS-only cycles can be used for a simple refresh operation.

Chip Selection

Either RAS and/or CAS can be decoded for chip-select function. Unselected chip outputs will remain in the high impedance state.

Power Sequencing

In order to assure long-term reliability, V_{BB} should be applied first during power-up and removed last during power-down.

Block Diagram

AC Characteristics

 $T_A = 0^{\circ}C \text{ to } + 70^{\circ}C; V_{DD} = +12V \pm 10\%;$ V_{CC} = +5V ± 10%; V_{BB} = -5V ± 10%; GND = 0V

		Limits μPD416-2 μPD416-3			μPD416-5				
Bauan - 4	Sumba'	Min	Max	µPD416-3		Min Mex		Unit	Test Conditions
	Symbol		MAX		.mex		mex		
In the Cycle Time	t _{RC}	375		320		320		ns	②
	t _{RWC}	375		375		320		ns	②
Page Mode Cycle Time	t _{PC}	225		170		160		ns	
Access Time from RAS	t _{RAC}		200		150		120	ns	3 4
Access Time from CAS	t _{CAC}		135		100		80	ns	4 5
Output Buffer Turn-off Delay	t _{OFF}	0	50	0	40	0	35	ns	6
Transition Times (rise and fall)	t _T	3	50	3	35	3	35	ns	②
RAS Precharge Time	t _{RP}	120		100		100		ns	
RAS Pulse Width	t _{RAS}	200	32,000	150	32,000	120	10,000	ns	
RAS Hold Time	t _{RSH}	135		100		80		กร	
CAS Pulse Width	t _{CAS}	135	10,000	100	10,000	80	10,000	ns	
RAS to CAS Delay Time	I _{RCD}	25	65	20	50	15	40	ns	8
CAS to RAS Pre- charge Time	t _{CRP}	- 20		-20		0		ns	
Row Address Set-up Time	t _{ASR}	0		0		0		ns	
Row Address Hold Time	t _{RAH}	25		20		15		ns	
Column Address Set-up Time	tasc	- 10		-10		~10		ns	
Column Address Hold Time	t _{CAH}	55		45		40		ns	
Column Address Hold Time Refer- enced to RAS	t _{AR}	120		95		80		ns	
Read Command Set-up Time	t _{ACS}	0		0		0		ns	
Read Command Hold Time	t _{RCH}	a		0		0		ns	
Write Command Hold Time	t _{WCH}	55		45		40		ns	
Write Command Hold Time Refer- enced to RAS	twcn	120		95		80		ns	
Write Command Pulse Width	twp	55		45		40		ns	
Write Command to RAS Lead Time	t _{RWL}	70		50		50		กร	
Write Command to CAS Lead Time	t _{CWL}	70		50		50		ns	
Data-in Set-up Time	tos	0		0		0		ns	9
Data-in Hold Time	t _{DH}	55		45		40		ns	9
Data-in Hold Time Referenced to RAS	t _{DHR}	120		95		80		ns	
CAS Precharge Time (for page mode cycle only)	t _{CP}	80		60		60		ns	
Refresh Period	t _{REF}		2		2		2	ms	
Write Command Set-up Time	twcs	- 20		- 20)	ns	10
CAS to WRITE Delay	t _{CWD}	95		70		80)	ns	
RAS to WRITE Delay	t _{RWD}	160		120		120)	ns	10

Notes:
 AC measurements assume $t_T = 5$ ns.
 The specifications for t_{RC} (min) and t_{RWC} (min) are used only to indicate cycle time at

• It is specimeator is on tage (timin) and tage; (timin) are used only or include cycle sine at which proper operation over the full temperature range (0°C ≤ T_A ≤ "0°C) is assured.
③ Assumes that fa_{CD} ≤ fa_{CD} (max). If fa_{CD} is greater than the maximum recommended value shown in this table, fa_{CD} will increase by the amount that fa_{CD} exceeds the values shown.

Measured with a load equivalent to 2 TTL loads and 100pF.

Assumes that $f_{RCD} \ge f_{RCD}$ (max), $f_{RCD} = f_{RCD} = f_{R$

V_{IHC} (min) or V_{IH} (min) and V₈ (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IHC} or V_{IH} and V_{IL} . Operation within the t_{RCD} (max) limit ensures that t_{RAC} (max) can be met. t_{RCD} (max) is

② Operation within the I_{BCD} (max) limit ensures that I_{BAC} (max) can be met. I_{BCD} (max) is specified as a reference point only If I_{BCD} is greater than the specified I_{BCD} (max) limit, access time is controlled exclusively <u>by I_{CAC}</u>.
③ These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in delayed write or read-modify-write cycles.
⑤ W_{VCS}, 'C_{VMD} and I_{BMD} are not restrictive operating parameters. They are included in the data sheet as electrical tharacteristics only If I_{WCS} ⊆ V_{VCS} (min), the cycle is an early write cycle and the data-out pin will remain open circuit (high impedance); if ≥ I_{RMD} (min), the cycle is a nearly write cycle is a nearly write cycle in a read-write cycle and the data-out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied the condition of the data-out (at access least its independent of the condition of the data-out (at access least its independent of the condition of the data-out (at access least its independent.)

DC Characteristics

T_A = 0°C to +70°C; ① V_{DD} = +12V ± 10%; V_{CC} = +5V ± 10%; V_{BB} = -5V ± 10%; GND = 0V

			Limits			Test
Parameter	Symbol	Min	Тур	Mex	Unit	Conditions
Supply Voltage	V _{DD}	10.8	12.0	13.2	٧	2
Supply Voltage	ν _{cc}	4.5	5.0	5.5	٧	2 3
Supply Voltage	GND	0	0	0	٧	2
Supply Voltage	V _{BB}	- 4.5	- 5.0	- 5.5	٧	2
Input High Voltage (Logic 1), RAS, CAS, WRITE	V _{IHC}	2.7		7.0	٧	2
Input High Voltage (Logic 1), (all inputs except RAS, CAS, WRITE)	V _{IH}	2.4		7.0	٧	2
Input Low Voltage (Logic 0), (all inputs)	VIL	1.0		0.8	٧	2
Operating V _{DD} Current	I _{DD1}			35	mA	RAS, CAS, cycling; t _{RC} = t _{RC} min ③
Standby V _{DD} Current	I ₀₀₂			1.5	mA	RAS = V _{IHC} ; D _{OUT} = high impedance
Refresh V _{DD} Current (µPD416-5)	I _{DD3}			27	mA	RAS cycling; CAS = V _{IHC} ;
Refresh V _{DD} Current (all speeds except µPD416-5)	I _{D03}		_	25	mA	t _{RC} = 375ns ④
Page Mode V _{DD} Current	I _{D04}			27	mA	RAS = V _{IL} ; CAS cycling; t _{PC} = 225ns ④
Operating V _{CC} Current	Icci				μ Α	RAS, CAS cycling; t _{RC} = 375ns ⑤
Standby V _{CC} Current	I _{CC2}	-10		10	μА	RAS = V _{IHC} ; D _{OUT} = high impedance
Refresh V _{CC} Current	Iccs	- 10		10	μΑ	RAS cycling; CAS = V _{IHC} t _{RC} = 375ns
Page Mode V _{CC} Current	I _{CC4}				Aμ	RAS = V _{IL} ; CAS cycling; t _{PC} = 225ns ⑤
Operating V _{BB} Current	I _{BB1}			200	μ Α	RAS, CAS cycling; t _{RC} = 375ns
Standby V _{BB} Current	I _{BB2}			100	μΑ	RAS = V _{IHC} ; D _{OUT} = high impedance
Refresh V _{BB} Current	l _{BB3}			200	μΑ	RAS cycling; CAS = V _{IHC} t _{RC} = 375ns
Page Mode V _{BB} Current	I _{BB4}			200	μА	RAS = V _{IL} ; CAS cycling; t _{PC} = 225ns
Input Leakage (any input)	I _{I(L)}	- 10		10	μА	V _{BB} = -5V; 0V > V _{IN} · +7V; all other pins not under test = 0V
Output Leakage	I _{O(L)}	- 10		10	μ A	D _{OUT} is disabled; 0V ≤ V _{OUT} ≤ +5.5V
Output High Voltage (Logic 1)	V _{OH}	2.4	1		v	I _{OUT} = -5mA ③
Output Low Voltage (Logic 0)	VOL			0.4	٧	t _{OUT} = 4.2mA

Noten: ① T_a is specified here for operation at frequencies to $t_{RC} \ge t_{RC}$ (min). Operation at higher cycle rates with reduced ambient temperatures and high power dissipation is permissible, provided AC operating parameters are met. See Figure 1 for derating curve.

All voltages referenced to GND

① Output voltage will swing from GND to V_{CC} when activated with no current loading. For purposes of maintaining data in standby mode, V_{CC} may be reduced to GND without affecting refresh operations or data retention. However, the VOH (min) specification is not

 $I_{\rm DDI},I_{\rm DO3},$ and $I_{\rm DD4}$ depend on cycle rate. See Figures 2, 3 and 4 for $I_{\rm DD}$ limits at other cycle rates.

 $L_{\rm CC}$) and $L_{\rm CL}$ depend upon output loading. During readout of high-level data $V_{\rm CC}$ is connected through a low impedance (135 Ω typ) to data-out. At all other times $I_{\rm CC}$ consists (3) of leakage currents only. www.DataSheet4U.com

Timing Waveforms

Read Cycle

Write Cycle

Read-Write/Read-Modify-Write Cycle

RAS-only Refresh Cycle

Page Mode Read Cycle

Page Mode Write Cycle

Derating Curves

Figure 1. Maximum Ambient Temperature versus Cycle Rate for Extended Frequency Operation

Note: T_A (max) for operation at cycling rates greater than 2.66MHz ($t_{CYC} < 375$ ns) is determined by T_A (max) [°C] = 70 - 9.0 x (cycle rate [MHz] - 2.66). For $\mu PD416$ -5, it is T_A (max) [°C] = 70 - 9.0 x (cycle rate [MHz] - 3.125).

Figure 3. Maximum I_{DD3} versus Cycle Rate for Device Operation at Extended Frequencies

Figure 2. Maximum I_{DD1} versus Cycle Rate for Device Operation at Extended Frequencies

Figure 4. Maximum I_{DD4} versus Cycle Rate for Device Operation in Page Mode

Package Outlines

For information, see Section 9.

Plastic, μPD416C Ceramic, μPD416D