GRAPHS

- Definitions
- Examples
- The Graph ADT

What is a Graph?

• A graph G = (V,E) is composed of:

V: set of *vertices*

E: set of *edges* connecting the *vertices* in **V**

- An edge e = (u,v) is a pair of vertices
- Example:

$$V = \{a,b,c,d,e\}$$

Edge Types

- Directed edge
 - ordered pair of vertices (u,v)
 - first vertex u is the origin
 - second vertex v is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices (u,v)
 - e.g., a flight route
- Directed graph
 - all the edges are directed
 - e.g., route network
- Undirected graph
 - all the edges are undirected
 - e.g., flight network

Applications

• electronic circuits

find the path of least resistance to CS210

• networks (roads, flights, communications)

A typical student day

Terminology

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 - a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - X has degree 5
- Parallel edges
 - h and i are parallel edges
- Self-loop
 - j is a self-loop

Graph Terminology

- adjacent vertices: connected by an edge
- degree (of a vertex): # of adjacent vertices

$$\sum_{v \in V} deg(v) = 2(\# edges)$$

 Since adjacent vertices each count the adjoining edge, it will be counted twice

path: sequence of vertices $v_1, v_2, \dots v_k$ such that consecutive vertices v_i and v_{i+1} are adjacent.

More Graph Terminology

• simple path: no repeated vertices

• cycle: simple path, except that the last vertex is the same as the first vertex

Even More Terminology

• connected graph: any two vertices are connected by some path

- subgraph: subset of vertices and edges forming a graph
- connected component: maximal connected subgraph. E.g., the graph below has 3 connected components.

Another Terminology Slide!

- (free) tree connected graph without cycles
- forest collection of trees

Connectivity

- complete graph - all pairs of vertices are adjacent

$$m = (1/2) \sum_{\mathbf{v} \in \mathbf{V}} \deg(\mathbf{v}) = (1/2) \sum_{\mathbf{v} \in \mathbf{V}} (\mathbf{n} - 1) = \mathbf{n}(\mathbf{n} - 1)/2$$

Each of the n vertices is incident to n - 1 edges, however, we would have counted each edge twice Therefore, intuitively, m = n(n-1)/2.

Therefore, if a graph is *not* complete,
 m < n(n-1)/2

More Connectivity

• For a tree $\mathbf{m} = \mathbf{n} - 1$

• If m < n - 1, G is not connected

$$\begin{array}{c}
\mathbf{n} = 5 \\
\mathbf{m} = 3
\end{array}$$

Spanning Tree

- A spanning tree of G is a subgraph which
 - is a tree
 - contains all vertices of G

• Failure on any edge disconnects system (least fault tolerant)

Euler and the Bridges of Koenigsberg

Can one walk across each bridge exactly once and return at the starting point?

- Consider if you were a UPS driver, and you didn't want to retrace your steps.
- In 1736, Euler proved that this is not possible

Graph Model(with parallel edges)

- Eulerian Tour: path that traverses every edge exactly once and returns to the first vertex
- Euler's Theorem: A graph has a Eulerian Tour if and only if all vertices have even degree

The Graph ADT

- Vertices and edges
 - are positions
 - store elements
- Accessor methods
 - endVertices(e): an array of the two endvertices of e
 - opposite(v, e): the vertex opposite of v on e
 - areAdjacent(v, w): true iff v and w are adjacent
 - replace(v, x): replace element at vertex v with x
 - replace(e, x): replace element at edge e with x
 - Update methods
 - insertVertex(o): insert a vertex storing element o
 - insertEdge(v, w, o): insert an edge (v,w) storing element o
 - removeVertex(v): remove vertex v (and its incident edges)
 - removeEdge(e): remove edge e
 - Iterator methods
 - incidentEdges(v): edges incident to v
 - vertices(): all vertices in the graph
 - edges(): all edges in the graph