

Mangrove Indonesia: Konservasi Berbasis Ilmu dan Blockchain

Kelompok 1

Almar Reza Maulana
David Rohmannudin
Megawati Ananda Putri
Nurazlina
M Safi'i
Risty Bewinda Aferanti
Rezki Alfian
Sela febria Arbiyani

Introduction

Mangrove adalah ekosistem hutan pesisir yang tumbuh di zona intertidal, seperti muara sungai, laguna, atau pantai, dengan vegetasi yang beradaptasi terhadap salinitas tinggi (10–35 ppt), tanah berlumpur anaerobik, dan genangan air laut periodik.

Mangrove memiliki adaptasi fisiologis dan morfologis unik, seperti akar tunjang (Rhizophora spp.), akar napas (pneumatophores pada Avicennia spp.), dan vivipari untuk reproduksi di lingkungan salin.

23%
Total Mangrove
Global

3,7 Juta Hektare

Indonesia memiliki hutan mangrove terbesar di dunia

Papua

1,63 juta hektare

Sumatra

892.835 hektare

Kalimantan

630.913 hektare

Sulawesi

115.560 hektare

Jawa

119.327 hektare

Bali dan Nusa Tenggara

14.298 hektare

Data dari sumber KLHK

Introduction: Manfaat Ekologi dan Ekonomi

Proteksi Keanekaraga Sekuestrasi Ekonomi Karbon pesisir man Hayati Lokal

Akar mangrove abrasi mengurangi akibat pantai gelombang dan badai, melindungi infrastruktur pesisir

Mangrove menyimpan karbon dioksida (CO₂) dalam biomassa dan sedimen menjadikannya ekosistem blue carbon paling efisien.

Mangrove menyediakan habitat bagi spesies ikan, krustasea, burung, reptil, dan serta berfungsi sebagai nursery ground untuk spesies laut komersial.

Mangrove mendukung pencaharian mata melalui perikanan, ekowisata, dan kayu berkelanjutan

Introduction: Jenis Mangrove

Indonesia memiliki sekitar 45 spesies mangrove sejati (true mangroves), mencakup 60% dari total spesies global.

Rhizophora spp.

Memiliki akar tunjang untuk menahan sedimen dan erosi, dominan di zona intermediet (salinitas 10–30 ppt). Sering digunakan dalam proyek restorasi karena pertumbuhannya cepat.

Avicennia spp.

Dicirikan oleh akar napas (pneumatophores) untuk mengambil oksigen di tanah anaerobik, tahan salinitas tinggi (>30 ppt), umum di zona proksimal.

Sonneratia spp.

Tumbuh di zona proksimal dengan paparan air laut konstan, berperan dalam menahan gelombang dan mendukung biodiversitas laut.

Bruguiera spp.

Memiliki akar lutut untuk stabilitas di tanah berlumpur, ditemukan di zona intermediet hingga distal.

Introduction: Level Habitat Mangrove

Introduction: Level Habitat Mangrove

Salinitas <10 ppt, dihuni Xylocarpus granatum dan tumbuhan asosiasi seperti Nypa fruticans.

Salinitas 10–30 ppt, didominasi Rhizophora spp. dan Bruguiera spp., dengan akar tunjang atau lutut untuk stabilitas.

Salinitas 30–35 ppt, dihuni Avicennia marina dan Sonneratia alba, tahan terhadap genangan air laut konstan.

Deforestasi

Konversi lahan untuk tambak udang dan pembangunan

Kurangnya Pendanaan

Penebangan untuk kayu bakar dan keterbatasan dana

Polusi

Limbah industri dan domestik merusak kualitas air

Tantangan Konservasi

Kurangnya transparansi dalam pengelolaan kredit karbon.

Kenaikan Air Laut

Kenaikan permukaan air laut (1-2 mm/tahun) mengancam zona proksimal

Variabel Data: Formula Pengukuran

Karbon Terserap Kepadatan Pohon Indeks Kualitas Habitat Indeks Konservasi mangrove Degradasi Mangrove Blockchain

Variabel Data: Formula Pengukuran Karbon Terserap

Karbon terserap dihitung untuk mengestimasi kontribusi mangrove terhadap mitigasi perubahan iklim:

$$C = A \times D \times Fc$$

C: Total karbon terserap (ton CO₂)

A : Luas lahan mangrove (ha, contoh: 50 ha di Aceh Jaya)

D : kepadatan karbon (500-100 ton/ha, environmental_impact.csv).

Fc: Faktor konversi CO2

Contoh : Untuk 50 ha di Aceh Jaya, C = 50 x 500 x 3.67 = 91.750 CO2 Fc diperoleh dari 1 ton C dikali rasio Mr CO2 dan C, diperoleh Fc =3.67 ton Carbon

Variabel Data: Formula Pengukuran Kepadatan Pohon

Kepadatan pohon dihitung untuk mengevaluasi kesehatan vegetasi mangrove:

$$D_t = \frac{N_t}{A}$$

Dt : Kepadatan pohon

Nt: Jumlah Pohon

A : Luas Area (ha, dari Area_Ha atau Biodiversity_Monitoring csv)

Variabel Data : Formula Pengukuran Indeks Kualitas Habitat

Indeks kualitas habitat dihitung untuk mengevaluasi kesehatan ekosistem mangrove :

$$I_h = \frac{S_c + D_t + Q_w}{3}$$

Sc : Species_Count (dinormalisasi ke skala 0–100, maksimum 45 spesies).

Dt : Tree_Density (dinormalisasi ke skala 0–100, maksimum 250 pohon/ha)

Qw : Water_Quality (Good = 100, Moderate = 50, Poor = 0).

Variabel Data: Formula Pengukuran Indeks Konservasi Mangrove

Indeks konservasi mangrove dihitung untuk mengevaluasi keberhasilan proyek:

$$I_c = \frac{A + P + B_d}{3}$$

A : Luas area (ha, dari Area_Ha).

P : Jumlah peserta (Participants dari Community_Engagement.csv)

Bd : Manfaat ekonomi (juta IDR, dari Benefit_Distributed).

Variabel Data : Formula Pengukuran Degradasi Mangrove

Indeks konservasi mangrove dihitung untuk mengevaluasi keberhasilan proyek:

$$D_r = \frac{A_d}{A_t} \cdot 100$$

Ad: Luas terdegradasi (ha, estimasi dari pemantauan satelit)

At : Luas total mangrove (ha, dari Area_Ha)

Variabel Data: Formula Pengukuran Efisiensi Blockchain

Efisiensi blockchain dihitung untuk mengevaluasi integritas transaksi:

$$E_b = \frac{T_v}{T_t} \cdot 100$$

Tu : Jumlah transaksi tervalidasi (Validation_Status = Approved dari Conservation_Validators.csv).

Tt : Luas total mangrove (ha, dari Area_Ha)

Variabel Data: Tabel Mangrove_Conservation_Records.csv

Variabel	Penjelasan	Contoh
Conservation_ID	Kode unik untuk mengidentifikasi proyek konservasi mangrove	C001
Location	Nama kabupaten/kota tempat proyek, menentukan konteks geografis	Aceh Jaya
Area_Ha	Luas area konservasi dalam hektare, indikator kapasitas sekuestrasi karbon	50 ha
Carbon_Credits	Jumlah kredit karbon yang dihasilkan, mewakili 1 ton CO₂ per kredit	250 kredit
Date_Recorded	Tanggal pencatatan data, penting untuk pelacakan temporal dan audit	15 Jan 2024

Fungsi: Mencatat informasi utama tentang proyek konservasi mangrove

Variabel Data: Tabel Blockchain_Transactions.csv

Variabel	Penjelasan	Contoh
Transaction_ID	Kode unik untuk mengidentifikasi proyek konservasi mangrove	T001
Conservation_ID	Kode proyek konservasi terkait, menghubungkan transaksi dengan proyek spesifik	C001
Block_Hash	Identifikasi unik blok dalam blockchain, memastikan keamanan dan integritas data	0x1a2b3c4d
Carbon_Credits_Transferred	Jumlah kredit karbon yang ditransfer	250
Transaction_Date	Tanggal pencatatan data, penting untuk pelacakan temporal dan audit	16 Jan 2024

Fungsi: Mencatat transaksi kredit karbon untuk transparansi dan mencegah manipulasi.

Variabel Data: Tabel Conservation_Validators.csv

Variabel	Penjelasan	Contoh
Validator_ID	Kode unik untuk validator proyek	V001
Conservation_ID	Kode proyek konservasi terkait	C001
Validator_Name	Nama individu/entitas yang memvalidasi	Ahmad Syah
Validation_Status	Status validasi (Approved/Pending)	Approved
Date_Validated	Tanggal validasi	17 Jan 2024

Fungsi: Memastikan kredit karbon memenuhi standar ilmiah melalui validasi blockchain.

Variabel Data: Tabel Community_Members.csv

Variabel	Penjelasan	Contoh
Member_ID	Kode unik untuk anggota komunitas	M001
Name	Nama anggota	Andi Saputra
Role	Peran dalam proyek konservasi	Farmer
Contact_Number	Nomor kontak	8123456789
Join_Date	Tanggal bergabung	1 Jan 2024

Fungsi: Mencatat kontribusi komunitas untuk distribusi manfaat yang adil.

Variabel Data: Tabel Carbon_Market_Prices.csv

Variabel	Penjelasan	Contoh
Price_ID	Kode unik untuk catatan harga	P001
Date	Tanggal pencatatan harga	15 Jan 2024
Price_Per_Credit_IDR	Harga per kredit karbon dalam Rupiah	150.000 IDR
Market_Region	Wilayah pasar	Asia
Volume_Traded	Jumlah kredit karbon yang diperdagangkan	1000

Fungsi: Merekam harga pasar kredit karbon untuk stabilitas dan transparansi

Variabel Data: Tabel Conservation_Activities.csv

Variabel	Penjelasan	Contoh
Activity_ID	Kode unik untuk aktivitas konservasi	A001
Conservation_ID	Kode proyek konservasi terkait	C001
Activity_Type	Jenis aktivitas	Monitoring
Date_Performed	Tanggal pelaksanaan	20 Jan 2024

Fungsi: Digunakan untuk lacak kemajuan proyek

Variabel Data: Tabel Funding_Sources.csv

Variabel	Penjelasan	Contoh
Fund_ID	Kode unik untuk sumber pendanaan	F001
Conservation_ID	Kode proyek konservasi terkait	C001
Source_Name	Nama sumber pendanaan	Yayasan Hijau
Amount_IDR	Jumlah dana dalam Rupiah	50 juta IDR
Date_Funded	Tanggal pendanaan	18 Jan 2024

Fungsi: Membantu pastikan dana transparan via blockchain.

Variabel Data: Tabel Local_Partners.csv

Variabel	Penjelasan	Contoh
Partner_ID	Kode unik untuk mitra lokal	P001
Conservation_ID	Kode proyek konservasi terkait	C001
Partner_Name	Nama organisasi mitra	WALHI Aceh
Contact_Person:	Nama kontak utama	Rina Andriani
Contribution_IDR	Kontribusi finansial dalam Rupiah	25 juta IDR

Fungsi: Menunjukkan keterlibatan masyarakat.

Variabel Data: Tabel Environmental_Impact.csv

Variabel	Penjelasan	Contoh
Impact_ID	Kode unik untuk catatan dampak lingkungan	1001
Conservation_ID	Kode proyek konservasi terkait	C001
Impact_Type	Jenis dampak	Carbon Storage
CO2_Sequestration_Tonnes	Jumlah CO₂ diserap	500 ton
Date_Assessed	Tanggal penilaian	20 Jan 2024

Fungsi: Mendukung klaim kredit karbon dan co-benefits (biodiversitas, pengendalian erosi).

Variabel Data: Tabel Land_Tenure_Records.csv

Variabel	Penjelasan	Contoh
Tenure_ID	Kode unik untuk catatan kepemilikan lahan	T101
Conservation_ID	Kode proyek konservasi terkait	C001
Land_Type	Jenis lahan	KLHK
Owner	Pemilik lahan	500 ton
Legal_Document	Dokumen hukum	HGU-001
Boundary_Defined	Status batas lahan	Yes

Fungsi: Memastikan legalitas lahan untuk mencegah sengketa.

Variabel Data: Tabel Regulatory_Permits.csv

Variabel	Penjelasan	Contoh
Permit_ID	Kode unik untuk izin regulasi	P001
Conservation_ID	Kode proyek konservasi terkait	C001
Permit_Type	Jenis izin	UKL-UPL
Authority	Pihak berwenang	KLHK
Approval_Date	Tanggal izin disetujui/diajukan	10 Jan 2024
Permit_Status	Status izin	Approved

Fungsi: Memastikan proyek sesuai aturan pemerintah.

Variabel Data: Tabel Community_Engagement.csv

Variabel	Penjelasan	Contoh
Engage_ID	Kode unik untuk aktivitas keterlibatan komunitas	E101
Conservation_ID	Kode proyek konservasi terkait	C001
Activity_Type	Jenis aktivitas	Workshop
Participants	Jumlah peserta	10
Benefit_Distributed	Manfaat finansial (Rupiah)	5 juta IDR
Engagement_Date	Tanggal aktivitas	25 Jan 2024

Fungsi: Transparansi distribusi manfaat komunitas.

Variabel Data: Tabel Blockchain_Data_Compliance.csv

Variabel	Penjelasan	Contoh
Data_ID	Kode unik untuk catatan kepatuhan data	D001
Conservation_ID	Kode proyek konservasi terkait	C001
Data_Type	Jenis data	Geographic
Consent_Obtained	Status persetujuan data	Yes
Encryption_Level	Tingkat enkripsi	High
Access_Level	Tingkat akses	Public

Fungsi: Mencatat kepatuhan data di blockchain, seperti kredit karbon atau dana, untuk transparansi.

Variabel Data: Tabel Biodiversity_Monitoring.csv

Variabel	Penjelasan	Contoh
Bio_ID	Kode unik untuk pemantauan biodiversitas	B101
Conservation_ID	Kode proyek konservasi terkait	C001
Species_Count	Jumlah spesies flora dan fauna	15
Tree_Density	Kepadatan pohon mangrove per hektare	200 pohon/ha
Water_Quality	Kualitas air	Good
Assessment_Date	Tanggal pemantauan	22 Jan 2024

Fungsi: Mendukung Co-benefits biodiversitas.

Implementasi: Best Practice Teluk Bintuni

REHABILITASI MANGROVE DI TELUK BINTUNI

Proyek rehabilitasi mangrove di Teluk Bintuni, Papua, dikelola oleh Kementerian Lingkungan Hidup dan Kehutanan (KLHK) bersama masyarakat lokal, telah memulihkan 10.000 hektare mangrove sejak 2020 dengan menggunakan teknologi GIS dan blockchain, menghasilkan 5.000 kredit karbon pada 2024. Selain itu juga meningkatkan survival rate hingga 85% dan mendukung ekonomi lokal melalui ekowisata dan perikanan.

Implementasi: Best Practice Teluk Bintuni

GIS membantu memetakan area mangrove, memantau perubahan luas hutan, dan mengidentifikasi ancaman seperti deforestasi.

Sistem pencatatan digital yang meningkatkan transparansi, akuntabilitas, dan efisiensi dalam pengelolaan proyek konservasi dan perdagangan kredit karbon.

Implementasi: KPI Measurement Teluk Bintuni

Luas Area Rehabilitasi

Peningkatan luas mangrove minimal 10% per tahun (misalnya, dari 10.000 ha menjadi 11.000 ha, sesuai Area_Ha dari Mangrove_Conservation_Records.csv)

Karbon Terserap

Target 500-1.000 ton CO₂/ha/tahun, diukur dengan metode loss on ignition (Environmental_Impact.csv)

Keanekaragaman Spesies

Peningkatan species richness minimal 5 spesies/tahun (Biodiversity_Monitoring.csv)

Partisipasi Masyarakat

Minimal 50 peserta lokal per proyek (Community_Engagement.csv)

Legalitas Lahan

100% lahan memiliki dokumen hukum (Land_Tenure_Records.csv)

Implementasi: Rules of Thumb Teluk Bintuni

- Penanaman mangrove dilakukan pada zona intertidal dengan salinitas 10–30 ppt untuk memastikan survival rate >80%
- Gunakan Rhizophora mucronata untuk zona intermediet karena pertumbuhannya cepat dan akar tunjangnya kuat.
- Melibatkan masyarakat adat untuk proyek
- Lakukan pemantauan berkala setiap 6 bulan menggunakan drone untuk memastikan kepadatan vegetasi
- Pastikan data konservasi dienkripsi dengan tingkat High untuk keamanan

Implementasi: Regulasi Pemerintah Case Teluk Bintuni

Permen LHK No. P.33/2016: Fokus rehabilitasi & masyarakat lokal

UU No. 32/2009: Izin lingkungan untuk konservasi

Perpres No. 98/2021: Nilai **Ekonomi Karbon** (target 30% dari ekosistem laut)

Implementasi: Best Practice Aceh

GIS membantu memetakan area mangrove, memantau perubahan luas hutan, dan mengidentifikasi ancaman seperti deforestasi.

Proyek restorasi mangrove pasca-tsunami di Aceh menggunakan Rhizophora mucronata karena pertumbuhannya cepat dan kemampuan menahan erosi

Implementasi: KPI Measurement Aceh

Tingkat Kelangsungan Hidup

Minimal 85% untuk Rhizophora spp. setelah 2 tahun penanaman, diukur melalui survei lapangan.

Kepadatan Pohon

Target 150-250 pohon/ha

Peningkatan Spesies

Minimal 3 spesies mangrove tambahan per proyek dalam 5 tahun

© Keterlibatan Komunitas

Minimal 10 peserta per kegiatan penanaman

Implementasi: Rules of Thumb Aceh

- Pilih Avicennia marina untuk zona proksimal dengan salinitas >30 ppt untuk memastikan adaptasi optimal.
- Kombinasikan Rhizophora dan Avicennia untuk meningkatkan resiliensi ekosistem terhadap perubahan iklim
- Lakukan pemantauan kepadatan pohon setiap 6 bulan menggunakan teknologi GIS
- Gunakan bibit dari sumber lokal untuk meningkatkan survival rate dan mendukung biodiversitas regional

Implementasi: Regulasi Pemerintah Case Aceh

Kepmen LHK No. SK.130/2020 Rekomendasi penggunaan Rhizophora & Avicennia untuk rehabilitasi pesisir.

Perda Aceh No. 6/2023 Konservasi spesies lokal untuk mendukung ekowisata.

Permen LHK No. P.70/2017 Wajib pemetaan spesies untuk menjamin kecocokan ekologis.

Implementasi: Best Practice Riau

RESTORASI MANGROVE BERBASIS ZONASI EKOLOGI DI RIAU

Proyek restorasi Riau mangrove menerapkan pemetaan zonasi ekologis dengan teknologi GIS untuk menentukan lokasi penanaman yang tepat, yaitu Avicennia marina di zona proksimal dan Rhizophora mucronata di zona intermediet. Pendekatan ini berhasil mencapai tingkat kelangsungan hidup tanaman (survival rate) sebesar 90%. Berdasarkan data pemantauan keanekaragaman hayati, kondisi lingkungan menunjukkan kualitas air yang baik dan kepadatan pohon sebesar 220 pohon per hektare, mencerminkan kondisi pertumbuhan yang optimal.

GIS membantu memetakan area mangrove, memantau perubahan luas hutan, dan mengidentifikasi ancaman seperti deforestasi.

Proyek mangrove di Riau menanam Avicennia marina di zona proksimal dan Rhizophora mucronata di zona intermediet, mencapai survival rate 90%

Implementasi: KPI Measurement Riau

Zonasi Akurat

100% penanaman sesuai zona ekologis, diverifikasi melalui pemetaan GIS.

Kualitas Air

Minimal 70% zona memiliki Water_Quality "Good" atau "Moderate"

Kepadatan Vegetasi

Minimal 150 pohon/ha di zona intermediet

Keanekaragaman Hayati

Minimal 10 spesies flora dan fauna per zona

Implementasi: Rules of Thumb Riau

- Hindari penanaman Nypa fruticans di zona dengan salinitas >10 ppt.
- Gunakan teknologi drone untuk pemetaan zonasi ekologis
- Lakukan pengukuran Water_Quality setiap 3 bulan

Implementasi: Regulasi Pemerintah Case Riau

Permen LHK No. P.70/2017 Wajib pemetaan spesies untuk menjamin kecocokan ekologis.

UU No. 5/1990 Konservasi **Sumber Daya Alam Hayati** untuk perlindungan zona habitat mangrove.

Perpres No. 73/2021 Mengatur rehabilitasi mangrove nasional.

Implementasi: Best Practice Banten

Pengembangan Ekowisata Mangrove Berbasis Masyarakat di Banten

Proyek ekowisata mangrove di Banten melibatkan partisipasi aktif masyarakat lokal dan berhasil menghasilkan pendapatan sebesar 500 juta IDR per tahun. Berdasarkan data Community_Engagement.csv, manfaat ekonomi didistribusikan secara adil, dengan rata-rata 5 juta IDR diterima oleh setiap anggota komunitas, menunjukkan dampak positif restorasi terhadap peningkatan kesejahteraan masyarakat.

Implementasi: Best Practice Banten

Satelit digunakan untuk memetakan luas dan lokasi mangrove di Banten

Mengajak Masyarakat O

Proyek ekowisata mangrove di Banten melibatkan masyarakat lokal, menghasilkan pendapatan 500 juta IDR/tahun

Implementasi: KPI Measurement Banten

Luas Konservasi

Peningkatan 5% luas mangrove per provinsi hingga 2030

Partisipasi Masyarakat

Minimal 50 peserta lokal per proyek

Pendapatan Ekowisata

Target 300 juta IDR/tahun per proyek

Legalitas Lahan

100% lahan memiliki batas jelas

Implementasi: Rules of Thumb Banten

Memprioritaskan Papua dan Sumatra untuk rehabilitasi

Melibatkan masyarakat adat di Community Land

Menggunakan teknologi satelit untuk pemantauan setiap 6 bulan.

Implementasi: Regulasi Pemerintah Case Banten

Perpres No. 73/2021 Mengatur rehabilitasi mangrove nasional.

Permen LHK No. P.23/2021 Mengatur ekowisata mangrove.

UU No. 41/1999 Kehutanan untuk mensyaratkan legalitas lahan.

Implementasi: Best Practice Kalimantan Barat

RESTORASI MANGROVE INKLUSIF DI KALIMANTAN BARAT

Proyek restorasi mangrove di Kalimantan Barat melibatkan masyarakat adat untuk menanam 5.000 hektare, didukung oleh UNDP dan teknologi blockchain. Data menunjukkan distribusi manfaat yang adil, dengan rata-rata 8 juta rupiah per orang.

Implementasi: Best Practice Kalimantan Barat

Implementasi: KPI Measurement Kalimantan Barat

Pengurangan Deforestasi

Maksimal 2% kerusakan mangrove per tahun.

Kualitas Air

Minimal 80% zona dengan Water_Quality "Good" atau "Moderate"

Pendanaan

Minimal 50 juta IDR/proyek

© Keterlibatan Komunitas

Minimal 10 kegiatan pelatihan/tahun

Implementasi: Rules of Thumb Kalimantan Barat

Lakukan pelatihan berkala

Gunakan teknologi satelit untuk memantau deforestasi setiap 3 bulan.

Pastikan izin lingkungan

Implementasi: Regulasi Pemerintah Case Kalimantan Barat

Perpres No. 98/2021 Mengatur perdagangan kredit karbon

Permen LHK No. P.33/2016 Mengatur mitigasi polusi di mangrove

UU No. 41/1999 Kehutanan untuk mensyaratkan legalitas lahan.

Implementasi: Best Practice Kalimantan Barat 2

Implementasi: Best Practice Kalimantan Barat 2

Teknologi apa
yang dipakai ?

Blockchain

Implementasi: KPI Measurement Kalimantan Barat 2

Kredit Karbon Terverifikasi

Minimal 90% kredit karbon tervalidasi

Transaksi Blockchain

100% transaksi tanpa double counting

Manfaat Komunitas

Minimal 5 juta IDR/peserta

Keamanan Data

100% data Personal dan Transaction dienkripsi

Implementasi: Rules of Thumb Kalimantan Barat 2

Validasi kredit karbon setiap 6 bulan.

Libatkan minimal 10 komunitas lokal per proyek

Implementasi: Regulasi Pemerintah Case Kalimantan Barat 2

Perpres No. 98/2021 Mengatur perdagangan kredit karbon dengan blockchain

Permen LHK No. P.21/2021 Mensyaratkan transparansi data

UU No. 32/2009 Mensyaratkan izin lingkungan

KESIMPULAN

Hutan mangrove di Indonesia dengan luas terbesar di dunia memiliki peran sebagai pelindung pesisir, penyerap karbon, dan pendukung biodiversitas. Penggunaan teknologi GIS dan blockchain dalam konservasi mangrove dapat memastikan transparansi dalam pendanaan, kredit karbon, keterlibatan masyarakat, legalitas lahan, dan distribusi manfaat yang adil, mendukung keberlanjutan lingkungan dan ekonomi lokal, seperti yang terbukti dalam banyak implementasi yang dilakukan di Bintan, Aceh, Riau, Kalimantan dan wilayah lainnya.

