Lógica de predicados. Semántica _{Lógica}

Contenidos

- Introducción
 - Significado de las Fórmulas

Interpretación

Contenidos

- Introducción
 - Significado de las Fórmulas

Interpretación

3

Semántica: Visión Intuitiva

4

Semántica: Visión Intuitiva

Términos

- Representan elementos del Universo. Conviene que cualquier elemento tenga al menos un nombre (una forma de referenciarlo):
 - Se modifica TERM para que todo elemento del universo tenga algún nombre.
 - Mostraremos qué objetos del universo son representados por cada término cerrado: Símbolo de función aplicado a algún nombre de elemento del universo.

Fórmulas

- Representan **lo que se dice** de los elementos del Universo.
 - Algunas pueden ser verdaderas o falsas (sentencias fórmulas cerradas) en una estructura dada.
 - Mostraremos cómo averiguar si una sentencia es

Semántica de los Términos

Nombres (ctes) para elementos del Universo

- Constantes: Las constantes c_1, c_2, \dots son nombres para los elementos distinguidos del universo.
 - Se usan en cualquier fórmula y en cualquier contexto de uso.
- Constantes del Lenguaje Extendido: Una representación "habitual" de un elemento del universo con un techo \bar{x} , es un nombre para ese elemento del universo.
 - Ejemplo: $\overline{1}$ es una constante (sintaxis) para el número 1 que es un elemento de un universo dado.
 - Se usan para interpretar las fórmulas con variables.

Lenguaje extendido para una estructura

Def 2.3.12.

Sea $\mathcal M$ una estructura.

El lenguaje extendido para \mathcal{M} , notado $\mathcal{L}(\mathcal{M})$, se obtiene del lenguaje \mathcal{L} del tipo de \mathcal{M} agregando símbolos de constante para todos los elementos de $|\mathcal{M}|$.

Al símbolo de constante asociado a $a \in |\mathcal{M}|$ lo denotamos como \bar{a} .

7

Contenidos

- Introducción
 - Significado de las Fórmulas

Interpretación

Interpretación de términos cerrados de $\mathcal{L}(\mathcal{M})$ en \mathcal{M}

Def 2.4.1

Sea

$$\mathcal{M} = \langle A, R_1, \dots, R_n, F_1, \dots, F_m, \{C_i | 1 \leq i \leq k\} \rangle$$
 con tipo $\langle r_1, \dots, r_n; a_1, \dots, a_m; k \rangle$

La interpretación de los términos cerrados de $\mathcal{L}(\mathcal{M})$ en \mathcal{M} es una función $\underline{}^{\mathcal{M}}: \mathtt{TERM}_C \to |\mathcal{M}|$ que satisface:

- $c_i^{\mathcal{M}} = C_i$ para todo $1 \le i \le k$
- $\bar{a}^{\mathcal{M}} = a$ para todo $a \in |\mathcal{M}|$
- $f_i(t_1,\ldots,t_{a_i})^{\mathcal{M}}=F_i(t_1^{\ \mathcal{M}},\ldots,t_{a_i}^{\ \mathcal{M}})$ para $i=1,\ldots,m$

9

Interpretación de Términos Cerrados

Ejemplo

Sea $\mathcal{M}=\langle\mathbb{Z},\mathsf{Primo},+,-,0,1\rangle$ con tipo $\langle 1;2,1;2\rangle$. La interpretación de los términos cerrados de $\mathcal{L}(\mathcal{M})$ en \mathcal{M} es una función $\underline{}^{\mathcal{M}}:\mathsf{TERM}_C\to\mathbb{Z}$ que satisface:

- $c_1{}^{\mathcal{M}} = 0$
- $\bar{n}^{\mathcal{M}} = n$ para todo $n \in \mathbb{Z}$
- $f_1(t_1, t_2)^{\mathcal{M}} = t_1^{\mathcal{M}} + t_2^{\mathcal{M}}$
- $\bullet \ f_2(t_1)^{\mathcal{M}} = -t_1^{\mathcal{M}}$

Interpretación de Términos Cerrados

Ejemplo

Sea $\mathcal{M}=\langle\mathbb{Z}, \mathsf{Primo}, +, -, 0, 1\rangle$ con tipo $\langle 1; 2, 1; 2\rangle$. ¿Qué valores representan los términos $f_1(f_2(c_1), c_2)$ y $f_2(f_1(c_1, c_2))$

Interpretación de Términos Cerrados

Ejemplo

Sea $\mathcal{M}'=\left\langle \mathbb{R}, \operatorname{Irracional}, \times, -, 0, \sqrt{2} \right\rangle$ con tipo $\langle 1; 2, 1; 2 \rangle$. ¿Qué valores representan los términos $f_1(f_2(c_1), c_2)$ y $f_2(f_1(c_1, c_2))$?

$$\begin{aligned} f_1(f_2(c_1),c_2)^{\mathcal{M}} &=\\ &=\\ f_2(c_1)^{\mathcal{M}} \times c_2^{\mathcal{M}} &=\\ &-c_1^{\mathcal{M}} \times \sqrt{2}\\ &=\\ &-0 \times \sqrt{2}\\ &=\\ &0. \end{aligned}$$

$$\begin{array}{ccc} f_2(f_1(c_1,c_2))^{\mathcal{M}'} \\ & = \\ -f_1(c_1,c_2)^{\mathcal{M}'} \\ & = \\ -(c_1^{\mathcal{M}'} \times c_2^{\mathcal{M}'}) \\ & = \\ -(0 \times \sqrt{2}) \\ & = \\ 0. \end{array}$$

Semántica de las fórmulas

- Buscamos indicar la verdad o falsedad de una fórmula con respecto a una estructura dada
- Solamente nos preocupamos de estudiar las sentencias
- Veremos los casos de las sentencias al uso directo de términos cerrados, las asociadas a conectivos proposicionales, y las asociadas a cuantificadores

La interpretación de las sentencias de $\mathcal{L}(\mathcal{M})$ en \mathcal{M} es una función $v^{\mathcal{M}}: \mathtt{SENT} \to \{0,1\}$ que satisface:

$$v^{\mathcal{M}}\left(t_{1}='t_{2}\right)=\begin{cases} 1 & \text{si }t_{1}^{\ \mathcal{M}}=t_{2}^{\ \mathcal{M}}\\ 0 & \text{si }t_{1}^{\ \mathcal{M}}\neq t_{2}^{\ \mathcal{M}} \end{cases}$$

$$v^{\mathcal{M}}\left(P_{j}(t_{1},\ldots,t_{r_{j}})\right)=\\ \begin{cases} 1 & \text{si }\left\langle t_{1}^{\ \mathcal{M}},\ldots,t_{r_{j}}^{\ \mathcal{M}}\right\rangle \in R_{j}\\ 0 & \text{si }\left\langle t_{1}^{\ \mathcal{M}},\ldots,t_{r_{j}}^{\ \mathcal{M}}\right\rangle \notin R_{j} \end{cases}$$

$$v^{\mathcal{M}}\left(\bot\right)=0$$

$$v^{\mathcal{M}}\left((\neg\alpha)\right)=1-v^{\mathcal{M}}\left(\alpha\right)\\ v^{\mathcal{M}}\left((\alpha\wedge\beta)\right)=\min\left\{v^{\mathcal{M}}\left(\alpha\right),v^{\mathcal{M}}\left(\beta\right)\right\}\\ v^{\mathcal{M}}\left((\alpha\vee\beta)\right)=\max\left\{v^{\mathcal{M}}\left(\alpha\right),v^{\mathcal{M}}\left(\beta\right)\right\}\\ v^{\mathcal{M}}\left((\alpha\vee\beta)\right)=\max\left\{1-v^{\mathcal{M}}\left(\alpha\right),v^{\mathcal{M}}\left(\beta\right)\right\}\\ v^{\mathcal{M}}\left((\alpha\to\beta)\right)=1\Leftrightarrow v^{\mathcal{M}}\left(\alpha\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left((\alpha\leftrightarrow\beta)\right)=\min\left\{v^{\mathcal{M}}\left(\alpha\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left((\beta\times\alpha)\right)=\min\left\{v^{\mathcal{M}}\left(\alpha\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left((\beta\times\alpha)\right)=\max\left\{v^{\mathcal{M}}\left(\alpha\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left((\beta\times\alpha)\right)=\max\left\{v^{\mathcal{M}}\left(\alpha\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left((\beta\times\alpha)\right)=\max\left\{v^{\mathcal{M}}\left(\alpha\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left((\beta\times\alpha)\right)=\max\left\{v^{\mathcal{M}}\left(\alpha\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left((\beta\times\alpha)\right)=\max\left\{v^{\mathcal{M}}\left(\alpha\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left((\beta\times\alpha)\right)=\max\left\{v^{\mathcal{M}}\left(\alpha\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left((\beta\times\alpha)\right)=\max\left\{v^{\mathcal{M}}\left(\alpha\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left((\beta\times\alpha)\right)=\max\left\{v^{\mathcal{M}}\left(\alpha\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left(\beta\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left(\beta\right)=v^{\mathcal{M}}\left(\beta\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left(\beta\right)=v^{\mathcal{M}}\left(\beta\right)=v^{\mathcal{M}}\left(\beta\right)\\ v^{\mathcal{M}}\left(\beta\right)=v^{\mathcal{M}}\left(\beta\right)=v^{\mathcal{M}}\left(\beta\right)$$

Ejemplo

Sea $\mathcal{M}=\langle\mathbb{Z},\mathsf{Primo},+,-,0,1\rangle$ con tipo $\langle 1;2,1;2\rangle$. La interpretación de las sentencias de $\mathcal{L}(\mathcal{M})$ en \mathcal{M} debe satisfacer:

 $\bullet \ v^{\mathcal{M}}\left(P_1(t_1)\right) = \begin{cases} 1 & \text{si } {t_1}^{\mathcal{M}} \text{ es primo} \\ 0 & \text{si } {t_1}^{\mathcal{M}} \text{ no es primo} \end{cases}$

15

Ejemplo

Sea $\mathcal{M}=\langle\mathbb{Z}, \mathsf{Primo}, +, -, 0, 1\rangle$ con tipo $\langle 1; 2, 1; 2\rangle$. ¿Qué valor de verdad tienen las sentencias $f_1(f_2(c_1), c_2) =' c_2$ y $P_1(f_1(f_2(c_1), c_2))$?

$$\begin{aligned} & v^{\mathcal{M}}\left(f_1(f_2(c_1), c_2) =' c_2\right) = 1 \\ & \Leftrightarrow \left(f_1(f_2(c_1), c_2)^{\mathcal{M}} = c_2^{\mathcal{M}} \right) \\ & f_1(f_2(c_1), c_2)^{\mathcal{M}} \\ & = f_2(c_1)^{\mathcal{M}} + c_2^{\mathcal{M}} \\ & = -c_1^{\mathcal{M}} + 1 \\ & = -0 + 1 \\ & = 1 \\ & = c_2^{\mathcal{M}}. \end{aligned}$$

 $\begin{aligned} f_1(f_2(c_1), c_2)^{\mathcal{M}} \\ &= f_2(c_1)^{\mathcal{M}} + c_2^{\mathcal{M}} \\ &= -c_1^{\mathcal{M}} + 1 \\ &= -0 + 1 \end{aligned}$

= 1.

 $\overset{v^{\mathcal{M}}}{\hookrightarrow} \left(P_1(f_1(f_2(c_1),c_2))\right) = 1$

 $f_1(f_2(c_1), c_2)^{\mathcal{M}}$ es primo

√ 1 _c

1 es primo.

1 = 1.

Sea $\mathcal{M}=\langle\mathbb{Z},\mathsf{Primo},+,-,0,1\rangle$ con tipo $\langle 1;2,1;2\rangle$. ¿Qué valor de verdad tienen las sentencias $(\forall x)P_1(x)$ y $(\exists x)f_2(x)='x$?

$$\begin{split} v^{\mathcal{M}}\left((\forall x)P_1(x)\right) &=\\ \min\left\{v^{\mathcal{M}}\left(P_1(\bar{n})\right)\mid n\in\mathbb{Z}\right\} \\ &= \text{(Considere el 20148)}\\ 0. \end{split}$$

$$\begin{array}{c} v^{\mathcal{M}}\left((\exists x)f_2(x)='x\right)\\ =\\ \max\left\{v^{\mathcal{M}}\left(f_2(\bar{n})='\bar{n}\right)\mid n\in\mathbb{Z}\right\}\\ = \text{(Considere el 0)}\\ 1. \end{array}$$

Ejemplo

Sea $\mathcal{M}=\langle\mathbb{Z},\operatorname{Primo},+,-,0,1\rangle$ con tipo $\langle 1;2,1;2\rangle$. ¿Qué valor de verdad tienen las sentencias $(\forall x)P_1(x)$ y $(\exists x)f_2(x)='x$?

$$\begin{split} v^{\mathcal{M}}\left((\exists x)f_2(x)='x\right)&=1\\ \Leftrightarrow\\ \max\left\{v^{\mathcal{M}}\left(f_2(\bar{n})='\bar{n}\right)\mid n\in\mathbb{Z}\right\}&=1\\ \Leftrightarrow\\ (\bar{\exists}n\in\mathbb{Z})v^{\mathcal{M}}\left(f_2(\bar{n})='\bar{n}\right)&=1\\ \Leftrightarrow\\ (\bar{\exists}n\in\mathbb{Z})f_2(\bar{n})^{\mathcal{M}}&=\bar{n}^{\mathcal{M}}\\ \Leftrightarrow\\ (\bar{\exists}n\in\mathbb{Z})-n&=n\\ \Leftarrow&\text{(Considere el 0)}\\ -0&=0. \end{split}$$

Ejemplo

Sea $\mathcal{M}=\langle\mathbb{Z}, \mathsf{Primo}, +, -, 0, 1\rangle$ con tipo $\langle 1; 2, 1; 2\rangle$. ¿Qué valor de verdad tiene la sentencia $(\exists x_1)P_1(x_1)$?

$$\begin{array}{c} v^{\mathcal{M}}\left((\exists x_1)P_1(x_1)\right)\\ =\\ \max\left\{v^{\mathcal{M}}\left(P_1(\bar{n})\right)\mid n\in\mathbb{Z}\right\}\\ =\\ 1 \end{array}$$

Ejemplo

Sea $\mathcal{M}=\langle \mathbb{Z}, \mathsf{Primo}, +, -, 0, 1 \rangle$ con tipo $\langle 1; 2, 1; 2 \rangle$. ¿Qué valor de verdad tiene la sentencia $(\exists x_1) P_1(f_1(c_2, f_2(x_1)))$?

$$\begin{array}{c} v^{\mathcal{M}}\left((\exists x_1)P_1(f_1(c_2,f_2(x_1)))\right) \\ = \\ \max\left\{v^{\mathcal{M}}\left(P_1(f_1(c_2,f_2(\bar{n})))\right) \mid n \in \mathbb{Z}\right\} \\ = \\ 1. \end{array}$$

Ejemplo

Sea $\mathcal{M}=\langle \mathbb{Z}, \mathsf{Primo}, +, -, 0, 1 \rangle$ con tipo $\langle 1; 2, 1; 2 \rangle$. ¿Qué valor de verdad tiene la sentencia $(\forall x_2)(P_1(x_2) \to \neg P_1(f_1(x_2,c_2)))$?

$$\begin{split} v^{\mathcal{M}}\left((\forall x_2)(P_1(x_2) \underset{=}{\rightarrow} \neg P_1(f_1(x_2,c_2)))\right) \\ & \min\left\{v^{\mathcal{M}}\left(P_1(\bar{n}) \rightarrow \neg P_1(f_1(\bar{n},c_2))\right) \mid n \in \mathbb{Z}\right\} \\ & \min\left\{\max\left\{1-v^{\mathcal{M}}\left(P_1(\bar{n})\right), v^{\mathcal{M}}_{=}\left(\neg P_1(f_1(\bar{n},c_2))\right)\right\} \mid n \in \mathbb{Z}\right\} \\ & \min\left\{\max\left\{1-v^{\mathcal{M}}\left(P_1(\bar{n})\right), 1 \underset{=}{=} v^{\mathcal{M}}\left(P_1(f_1(\bar{n},c_2))\right)\right\} \mid n \in \mathbb{Z}\right\} \\ & \min\left\{1-\min\left\{v^{\mathcal{M}}\left(P_1(\bar{n})\right), v^{\mathcal{M}}_{=}\left(P_1(f_1(\bar{n},c_2))\right)\right\} \mid n \in \mathbb{Z}\right\} \\ & \max\left\{\min\left\{v^{\mathcal{M}}\left(P_1(\bar{n})\right), v^{\mathcal{M}}\left(P_1(f_1(\bar{n},c_2))\right)\right\} \mid n \in \mathbb{Z}\right\} \end{split}$$

Ejemplo

Sea $\mathcal{M}=\langle\mathbb{Z}, \operatorname{Primo}, +, -, 0, 1\rangle$ con tipo $\langle 1; 2, 1; 2\rangle$. ¿Qué valor de verdad tiene la sentencia $(\forall x_2)(P_1(x_2) \to \neg P_1(f_1(x_2,c_2)))$?

$$\begin{split} v^{\mathcal{M}}\left(P_1(\bar{2})\right) &= 1 \text{ y } v^{\mathcal{M}}\left(P_1(f_1(\bar{2},c_2))\right) = 1 \\ &\Rightarrow \\ v^{\mathcal{M}}\left(P_1(\bar{2})\right) &= 1 \text{ y } v^{\mathcal{M}}\left(\neg P_1(f_1(\bar{2},c_2))\right) = 0 \\ &\Rightarrow \\ v^{\mathcal{M}}\left(P_1(\bar{2}) \to \neg P_1(f_1(\bar{2},c_2))\right) &= 0 \\ &\Rightarrow \\ \min\left\{v^{\mathcal{M}}\left(P_1(\bar{n}) \to \neg P_1(f_1(\bar{n},c_2))\right) \mid n \in \mathbb{Z}\right\} = 0 \\ &\Rightarrow \\ v^{\mathcal{M}}\left((\forall x_2)(P_1(x_2) \to \neg P_1(f_1(x_2,c_2)))\right) = 0. \end{split}$$

Uso de variables.

Ejemplo: Relación de equivalencia

- $R \subseteq A \times A$ es una relación de equivalencia si se cumple:
 - 1. aRa
 - 2. $aRb \Rightarrow bRa$
 - 3. $aRb \ y \ bRc \Rightarrow aRc$
- Lo que significa que:
 - 1. $(\bar{\forall} a \in A)aRa$
 - 2. $(\forall a, b \in A)(aRb \Rightarrow bRa)$
 - 3. $(\bar{\forall} a, b, c \in A)(aRb \text{ y } bRc \Rightarrow aRc)$

Sobre las variables

Intuiciones

- Sólo se interpretaron los términos cerrados y las sentencias.
- Las variables ligadas permiten modelar las ideas de "todos" y "alguno".
- El comportamiento de las variables libres depende del contexto: se comportan como parámetros cuyos valores posibles cumplen determinadas condiciones.
- Cuando no hay condiciones, ese parámetro puede tomar cualquier valor del universo.

Clausura universal de una fórmula

Intuición

Antes de interpretar términos, nos aseguraremos que estén cerrados.

Antes de interpretar fórmulas, nos aseguraremos que sean sentencias.

Def 2.4.3.

$$\begin{aligned} \text{Sean } \alpha \in \text{FORM y } \mathrm{FV}(\alpha) &= \{z_1, \dots, z_k\}. \\ \text{Se define } \mathit{cl}(\alpha) &= (\forall z_1) \dots (\forall z_k) \alpha. \end{aligned}$$

Uso de ⊧

Def 2.4.4.

- Sea $\alpha \in$ SENT. Entonces $\mathcal{M} \models \alpha$ sii $v^{\mathcal{M}}(\alpha) = 1$
- Sea $\alpha \in \text{FORM}$. Entonces $\mathcal{M} \models \alpha$ sii $v^{\mathcal{M}}\left(\textit{cl}(\alpha)\right) = 1$
- Sea $\Gamma\subseteq {\sf FORM}$. Entonces $\mathcal{M}\models \Gamma$ sii $\mathcal{M}\models \varphi$ para todo $\varphi\in \Gamma$
- Sea $\alpha \in \text{FORM}$. Entonces $\models \alpha$ sii para toda estructura $\mathcal M$ del tipo adecuado $\mathcal M \models \alpha$
- Sea $\alpha \in \mathtt{SENT}, \Gamma \subseteq \mathtt{SENT}$. Entonces $\Gamma \models \alpha$ sii para toda estructura $\mathcal M$ del tipo adecuado, si $\mathcal M \models \Gamma$ entonces $\mathcal M \models \alpha$

Nomenclatura

- 1. \mathcal{M} es *modelo* de α si $\mathcal{M} \models \alpha$
- 2. \mathcal{M} es modelo de Γ si $\mathcal{M} \models \Gamma$
- 3. α es verdadera si $\models \alpha$
- 4. α es consecuencia semántica de Γ si $\Gamma \models \alpha$
- 5. α es satisfecha por $a_1,\ldots,a_k\in |\mathcal{M}|$ si $\mathcal{M}\models \alpha[\bar{a}_1,\ldots,\bar{a}_k/z_1,\ldots,z_k]$ (con $\mathrm{FV}(\alpha)=\{z_1,\ldots,z_k\},k>0$)
- 6. α es satisfactible en $\mathcal M$ si existen $a_1,\dots,a_k\in |\mathcal M|$ que la satisfacen
- 7. α es satisfactible si existe algún $\mathcal M$ tal que α es satisfactible en $\mathcal M$

Propiedades de F

La relación \(\text{refleja} el significado intuitivo de los conectivos y los cuantificadores en las sentencias.

Lema 2.4.5

```
Sean \alpha, \beta \in SENT, \gamma \in FORM, FV(\gamma) \subseteq \{x\}.
Entonces.
\mathcal{M} \models (\alpha \land \beta)
                                         sii \mathcal{M} \models \alpha \vee \mathcal{M} \models \beta
\mathcal{M} \models (\alpha \lor \beta)
                                       sii \mathcal{M} \models \alpha o \mathcal{M} \models \beta
\mathcal{M} \models (\neg \alpha)
                                         sii \mathcal{M} \nvDash \alpha
\mathcal{M} \models (\alpha \rightarrow \beta)
                                         sii (si \mathcal{M} \models \alpha entonces \mathcal{M} \models \beta)
\mathcal{M} \models (\alpha \leftrightarrow \beta)
                                       sii (\mathcal{M} \models \alpha \text{ sii } \mathcal{M} \models \beta)
\mathcal{M} \models (\forall x) \gamma
                                         sii para todo a \in |\mathcal{M}|, \mathcal{M} \models \gamma[\bar{a}/x]
                                         sii existe a \in |\mathcal{M}| tal que \mathcal{M} \models \gamma[\bar{a}/x]
\mathcal{M} \models (\exists x) \gamma
```

2.4.5 Demostración

 $\mathcal{M} \models \alpha \land \beta$ $\Leftrightarrow (\mathsf{Def.} \models)$ $v^{\mathcal{M}} (\alpha \land \beta) = 1$ $\Leftrightarrow (\mathsf{Def.} \ v^{\mathcal{M}}(_))$ $v^{\mathcal{M}} (\alpha) = 1 \ \mathsf{y} \ v^{\mathcal{M}} (\beta) = 1$ $\Leftrightarrow (\mathsf{Def.} \models)$ $\mathcal{M} \models \alpha \ \mathsf{y} \ \mathcal{M} \models \beta.$

$$\mathcal{M} \models \neg \alpha$$
 $\Leftrightarrow (\mathsf{Def.} \models)$
 $v^{\mathcal{M}}(\neg \alpha) = 1$
 $\Leftrightarrow (\mathsf{Def.} \ v^{\mathcal{M}}())$
 $v^{\mathcal{M}}(\alpha) = 0$
 $\Leftrightarrow (\mathsf{Def.} \models)$
 $\mathcal{M} \not\models \alpha$

 \forall

$$\begin{array}{c} \mathcal{M}\models (\forall x)\alpha\\ \Leftrightarrow (\mathsf{Def.}\models)\\ \min\big\{v^{\mathcal{M}}\left(\alpha[\bar{a}/x]\right)\mid a\in |\mathcal{M}|\big\}=1\\ \Leftrightarrow \mathsf{Aritm\acute{e}tica}\\ \mathsf{para\ todo\ } a\in |\mathcal{M}|, \mathcal{M}\models \alpha[\bar{a}/x]. \end{array}$$

2.4.5 Demostración

$$\mathcal{M} \models (\alpha \rightarrow \beta) \text{ sii } (\mathcal{M} \models \alpha \Rightarrow \mathcal{M} \models \beta)$$

ightarrow Directo

$$\begin{array}{c} \mathcal{M} \models \alpha \rightarrow \beta \\ \Rightarrow \text{(Def. } \models \text{)} \\ v^{\mathcal{M}} \left(\alpha \rightarrow \beta \right) = 1 \\ \Rightarrow \text{(Def. } v^{\mathcal{M}}(_) \text{)} \\ v^{\mathcal{M}} \left(\alpha \right) = 0 \text{ o } v^{\mathcal{M}} \left(\beta \right) = 1 \end{array}$$

Caso $v^{\mathcal{M}}(\beta) = 1$

 $v^{\mathcal{M}}(\beta) = 1$

 \Rightarrow (Def. \models) $\mathcal{M} \models \beta$

 $\mathcal{M} \models \alpha \Rightarrow \mathcal{M} \models \beta$

Caso $v^{\mathcal{M}}\left(lpha ight) =0$

$$\Rightarrow$$
 (Def. \models) $\mathcal{M} \not\models \alpha$

$$\mathcal{M} \models \alpha \stackrel{'}{\Rightarrow} \mathcal{M} \models \beta$$

$$\mathsf{Luego}, \mathcal{M} \models \alpha \Rightarrow \mathcal{M} \models \beta.$$

ightarrow Reciproco

$$\begin{split} \mathcal{M} \models \alpha \\ \Rightarrow \text{(Hip.)} \\ \mathcal{M} \models \beta \\ \Rightarrow \text{(Def. } \models) \\ v^{\mathcal{M}} \left(\beta\right) = 1 \\ \Rightarrow \text{(} Aritm.) \\ \max\{1 - v^{\mathcal{M}}(\alpha), v^{\mathcal{M}}(\beta)\} \\ \Rightarrow \text{(Def. } v^{\mathcal{M}}(\beta) \end{split}$$

$$egin{aligned} \max\{1-v^{\mathcal{M}}(lpha),v^{\mathcal{M}}(eta)\}=1 \ &\Rightarrow (\mathsf{Def.}\ v^{\mathcal{M}}()) \ v^{\mathcal{M}}\left(lpha
ightarrow eta)=1 \ &\Rightarrow (\mathsf{Def.}\ ar{\models}) \ \mathcal{M} \ ar{\models} \ lpha
ightarrow eta. \end{aligned}$$

Pruebas groseramente incorrectas

$$\begin{split} \mathcal{M} \models P_1(x_1) \land \alpha \\ \Leftrightarrow \\ v^{\mathcal{M}} \left(P_1(x_1) \land \alpha \right) &= 1 \\ \Leftrightarrow \\ v^{\mathcal{M}} \left(P_1(x_1) \right) &= 1 \\ \text{y } v^{\mathcal{M}} \left(\alpha \right) &= 1 \\ \Leftrightarrow \\ \mathcal{M} \models P_1(x_1) \text{ y } \mathcal{M} \models \alpha. \end{split}$$

$$\begin{split} \mathcal{M} &\nvDash P_1(x_1) \to \alpha \\ \Leftrightarrow \\ v^{\mathcal{M}} \left(P_1(x_1) \to \alpha \right) = 0 \\ \Leftrightarrow \\ v^{\mathcal{M}} \left(P_1(x_1) \right) = 1 \\ \text{y } v^{\mathcal{M}} \left(\alpha \right) = 0 \\ \Leftrightarrow \\ \mathcal{M} &\models P_1(x_1) \text{ y } \mathcal{M} \nvDash \alpha. \end{split}$$

Error

FALTA LA CLAUSURA!

Prueba correcta

Sea $\alpha \in SENT$.

$$\begin{array}{c} \mathcal{M} \models P_1(x_1) \land \alpha \\ \Leftrightarrow (\mathsf{Clausura}) \\ \mathcal{M} \models (\forall x_1)(P_1(x_1) \land \alpha) \\ \Leftrightarrow (2.4.5) \\ (\bar{\forall} a \in |\mathcal{M}|) \mathcal{M} \models P_1(\bar{a}) \land \alpha \\ \Leftrightarrow (2.4.5) \\ (\bar{\forall} a \in |\mathcal{M}|) (\mathcal{M} \models P_1(\bar{a}) \ y \ \mathcal{M} \models \alpha) \\ \Leftrightarrow (????) \\ (\bar{\forall} a \in |\mathcal{M}|) \mathcal{M} \models P_1(\bar{a}) \ y \ (\bar{\forall} a \in |\mathcal{M}|) \mathcal{M} \models \alpha \\ \Leftrightarrow (2.4.5) \\ \mathcal{M} \models (\forall x_1) P_1(x_1) \ y \ \mathcal{M} \models (\forall x_{78}) \alpha \\ \Leftrightarrow (\mathsf{Clausura}) \\ \mathcal{M} \models P_1(x_1) \ y \ \mathcal{M} \models \alpha. \end{array}$$

 $\begin{array}{ccccc} P_1(\bar{a}) & \wedge & \alpha & \text{es} \\ \text{verdadero} & \text{para} \\ \text{cualquier} & a \in |\mathcal{M}| \\ \text{sii} & \text{en} & \text{cualquier} \\ a \in |\mathcal{M}| & P_1(\bar{a}) \\ \text{es} & \text{verdadero} \\ \text{y} & \text{en} & \text{cualquier} \\ a \in |\mathcal{M}| & \alpha & \text{es} \\ \text{verdadero}. \end{array}$

Lema 2.4.5 (otra escritura)

Contrarecíprocos

Sean
$$\alpha, \beta \in$$
 SENT. Entonces,
$$\mathcal{M} \nvDash (\alpha \wedge \beta) \quad \text{sii } \mathcal{M} \nvDash \alpha \text{ o } \mathcal{M} \nvDash \beta \\ \mathcal{M} \nvDash (\alpha \vee \beta) \quad \text{sii } \mathcal{M} \nvDash \alpha \text{ y } \mathcal{M} \nvDash \beta \\ \mathcal{M} \nvDash (\neg \alpha) \quad \text{sii } \mathcal{M} \models \alpha \\ \mathcal{M} \nvDash (\alpha \rightarrow \beta) \quad \text{sii } \mathcal{M} \models \alpha \\ \mathcal{M} \nvDash (\alpha \rightarrow \beta) \quad \text{sii } \mathcal{M} \models \alpha \text{ y } \mathcal{M} \nvDash \beta \\ \mathcal{M} \nvDash (\alpha \leftrightarrow \beta) \quad \text{sii } (\mathcal{M} \nvDash \alpha \text{ sii } \mathcal{M} \models \beta) \\ \mathcal{M} \nvDash (\forall x) \alpha \quad \text{sii existe } a \in |\mathcal{M}| \text{ tal que } \mathcal{M} \nvDash \alpha[\bar{a}/x] \\ \mathcal{M} \nvDash (\exists x) \alpha \quad \text{sii para todo } a \in |\mathcal{M}|, \mathcal{M} \nvDash \alpha[\bar{a}/x]$$

Propiedades Simples del Cálculo de Predicados

¿Qué propiedades podemos probar para los elementos de FORM?

- Todas aquellas que valían para PROP:
 - todas las fórmulas que son instancias de tautologías son verdaderas en cualquier estructura \mathcal{M} .
 - Luego, todas las propiedades de los conectivos que probamos para las fórmulas de PROP valen.
- Vamos a probar propiedades de los cuantificadores.

eq y Generalización de las leyes de De Morgan

Def eq

Dados $\alpha, \beta \in FORM$, decimos α eq β sii $\models \alpha \leftrightarrow \beta$

Teorema 2.5.1. (Leyes de De Morgan generalizadas)

$$\neg(\forall x)\alpha \quad \text{eq } (\exists x)\neg\alpha$$

$$\neg(\exists x)\alpha \quad \text{eq } (\forall x)\neg\alpha$$

$$(\forall x)\alpha \quad \text{eq } \neg(\exists x)\neg\alpha$$

$$(\exists x)\alpha \quad \text{eq } \neg(\forall x)\neg\alpha$$

Leyes de De Morgan generalizadas

Consideraciones previas

- No hay ninguna suposición sobre las fórmulas involucradas, por lo que se asume que pueden tienen variables libres: $FV(\alpha) = \{z_1, \dots, z_n\}$.
- Esto hace que se deban hacer las clausuras antes de comenzar las demostraciones.
- Lo que hace que se deban manejar varias constantes en el proceso de demostración.

$\neg(\forall x)\alpha \text{ eq } (\exists x)\neg\alpha$

Dem.

$$\neg(\forall x)\alpha \text{ eq } (\exists x)\neg\alpha \\ \Leftrightarrow (\text{Por def. de eq}) \\ \models \neg(\forall x)\alpha \leftrightarrow (\exists x)\neg\alpha \\ \Leftrightarrow (\text{Def. }) \models \\ (\bar{\forall}\mathcal{M})\mathcal{M} \models \neg(\forall x)\alpha \leftrightarrow (\exists x)\neg\alpha \\ \Leftrightarrow (\text{Clausura}) \\ (\bar{\forall}\mathcal{M})\mathcal{M} \models (\forall z_1,\ldots,z_n)(\neg(\forall x)\alpha \leftrightarrow (\exists x)\neg\alpha) \\ \Leftrightarrow (\text{2.4.5 aplicado n veces}) \\ (\bar{\forall}\mathcal{M})((\bar{\forall}a_1,\ldots,a_n)\in |\mathcal{M}|)\mathcal{M} \models (\neg(\forall x)\alpha \leftrightarrow (\exists x)\neg\alpha)(\bar{a_1},\ldots,\bar{a_n}) \\ \Leftrightarrow (\text{computando la sustitución}) \\ (\bar{\forall}\mathcal{M})((\bar{\forall}a_1,\ldots,a_n)\in |\mathcal{M}|)\mathcal{M} \models \\ (\neg(\forall x)\alpha(\bar{a_1},\ldots,\bar{a_n}) \leftrightarrow (\exists x)\neg\alpha(\bar{a_1},\ldots,\bar{a_n}))) \\ \Leftrightarrow (\text{2.4.5})$$

37

Algunas complicaciones y algunas mejoras

Dos Complicaciones:

- \bullet Por fuera siempre queda $\bar{\forall} \mathcal{M}$
- Se arrastran constantes que surgen de la clausura.

Una mejora para el $ar{orall}\mathcal{M}$:

 Práctica común y aceptada en matemáticas, cuando no hay suposiciones adicionales sobre el elemento. Si las hubiera, hay que considerarlas...

Una mejora para las ctes.:

- El problema es acarrear las ctes. del lenguaje extendido durante toda la demostración.
- Una posible solución es separa la prueba en dos partes: probarlo para sentencias y luego usar esa prueba para probar el caso general.

$\neg(\forall x)\alpha$ eq $(\exists x)\neg\alpha$ (sentencias)

Dem.

Suponemos $\mathrm{FV}\left(\alpha\right)\subseteq\{x\}.$

Hay que probar que:

$$(\bar{\forall}\mathcal{M})\mathcal{M} \models \neg(\forall x)\alpha \leftrightarrow (\exists x)\neg\alpha$$

Tomando ${\mathcal M}$ arbitrario con tipo adecuado, hay que probar que:

$$\mathcal{M} \models \neg(\forall x)\alpha \leftrightarrow (\exists x)\neg \alpha$$

Aplicando 2.4.5 se obtiene que hay que probar:

$$\mathcal{M} \models \neg(\forall x)\alpha \Leftrightarrow \mathcal{M} \models (\exists x)\neg \alpha$$
 (1)

La prueba de (1) es la siguiente:

$$\mathcal{M} \models \neg(\forall x)\alpha \Leftrightarrow (2.4.5)$$

$$\mathcal{M} \nvDash (\forall x)\alpha \Leftrightarrow (2.4.5)$$

$$(\bar{\exists}a) \in |\mathcal{M}|\mathcal{M} \nvDash \alpha(\bar{a}) \Leftrightarrow (2.4.5)$$

$$(\bar{\exists}a) \in |\mathcal{M}|\mathcal{M} \models \neg\alpha(\bar{a}) \Leftrightarrow (2.4.5)$$

 $\mathcal{M} \models \exists x \neg \alpha$

Por lo tanto (1). Luego:

$$\mathcal{M} \models \neg(\forall x)\alpha \Leftrightarrow \mathcal{M} \models (\exists x)\neg \alpha$$

$$\Leftrightarrow (2.4.5)$$

$$\mathcal{M} \models \neg(\forall x)\alpha \leftrightarrow (\exists x)\neg \alpha$$

$$\Leftrightarrow (\mathsf{Dado\ que}\ \mathcal{M}\ \mathsf{es\ arbitrario})$$

$$(\bar{\forall}\mathcal{M})\mathcal{M} \models \neg(\forall x)\alpha \leftrightarrow (\exists x)\neg \alpha$$

39

$\neg(\forall x)\alpha$ eq $(\exists x)\neg\alpha$ (Caso general)

Dem.

probar:

Suponemos

$$\mathrm{FV}\left(\alpha\right)\subseteq\{z_{1},\ldots,z_{n},x\}.$$
 Hay que probar que:

$$(\bar{\forall}\mathcal{M})\models(\forall x)\alpha\leftrightarrow(\exists x)\neg\alpha$$

adecuado, hay que probar que: $\mathcal{M} \models (\forall x)\alpha \leftrightarrow (\exists x)\neg \alpha$

Tomando \mathcal{M} arbitrario con tipo

$$\mathcal{M}\models(\forall z_1,\ldots,z_n)(\forall x)\alpha\leftrightarrow\\(\exists x)\neg\alpha$$

Aplicando 2.4.5 n veces y sust.

$$\begin{split} (\bar{\forall} a_1, \dots, a_n \in |\mathcal{M}|)\mathcal{M} \models \\ (\forall x) \alpha(\bar{a_1}, \dots, \bar{a_n}) \leftrightarrow \\ (\exists x) \neg \alpha(\bar{a_1}, \dots, \bar{a_n}) \end{split}$$

Considerando a_1, \dots, a_n arbitrarios en $|\mathcal{M}|$, lo que queda por probar es:

$$\begin{aligned} \mathcal{M} \models (\forall x) \alpha(\bar{a_1}, \dots, \bar{a_n}) \leftrightarrow \\ (\exists x) \neg \alpha(\bar{a_1}, \dots, \bar{a_n}) \text{ (1)} \end{aligned}$$

instanciación del caso "sentencias", dado que $\alpha(\bar{a_1},\ldots,\bar{a_n})$ es una fórmula sólo

Observar que (1) es una

x libre y \mathcal{M} es uno concreto.

Propiedades de los cuantificadores

Teorema 2.5.2. Orden de los cuantificadores

$$(\forall x)(\forall y)\alpha \quad \text{eq } (\forall y)(\forall x)\alpha \\ (\exists x)(\exists y)\alpha \quad \text{eq } (\exists y)(\exists x)\alpha \\ (\forall x)\alpha \quad \text{eq } \alpha \text{, si } x \notin \mathrm{FV}(\alpha) \\ (\exists x)\alpha \quad \text{eq } \alpha \text{, si } x \notin \mathrm{FV}(\alpha)$$

Propiedades de los cuantificadores

Teorema 2.5.6. Cambio de variables

Sean x, z tales que $x, z \notin FV(\alpha)$.

En estas condiciones, se cumplen las siguientes propiedades:

$$\begin{array}{ll} (\forall x)\alpha[x/y] & \operatorname{eq}\ (\forall z)\alpha[z/y] \\ (\exists x)\alpha[x/y] & \operatorname{eq}\ (\exists z)\alpha[z/y] \end{array}$$

Informalmente

Sea z tal que $z \notin \mathrm{FV}\,(\alpha)$.

En estas condiciones, se cumplen las siguientes propiedades:

$$(\forall x)\alpha(x) \quad \text{eq } (\forall z)\alpha(z)$$

$$(\exists x)\alpha(x) \quad \text{eq } (\exists z)\alpha(z)$$

Más propiedades

Teorema 2.5.3. Distributividad generalizada

$$(\forall x)(\alpha \wedge \beta) \ \operatorname{eq} \ (\forall x)\alpha \wedge (\forall x)\beta \\ (\exists x)(\alpha \vee \beta) \ \operatorname{eq} \ (\exists x)\alpha \vee (\exists x)\beta \\ (\forall x)(\alpha \vee \beta) \ \operatorname{eq} \ (\forall x)\alpha \vee \beta \\ (\exists x)(\alpha \wedge \beta) \ \operatorname{eq} \ (\exists x)\alpha \wedge \beta \\ (\forall x)(\alpha \rightarrow \beta) \ \operatorname{eq} \ (\exists x)\alpha \rightarrow \beta \\ (\exists x)(\alpha \rightarrow \beta) \ \operatorname{eq} \ (\forall x)\alpha \rightarrow \beta \\ (\forall x)(\alpha \rightarrow \beta) \ \operatorname{eq} \ (\forall x)\alpha \rightarrow \beta \\ (\forall x)(\alpha \rightarrow \beta) \ \operatorname{eq} \ \alpha \rightarrow (\forall x)\beta \\ (\exists x)(\alpha \rightarrow \beta) \ \operatorname{eq} \ \alpha \rightarrow (\exists x)\beta \\ \end{cases} , \ \operatorname{si} \ x \notin \operatorname{FV}(\beta) \\ (\exists x)(\alpha \rightarrow \beta) \ \operatorname{eq} \ \alpha \rightarrow (\exists x)\beta \\ \end{cases} , \ \operatorname{si} \ x \notin \operatorname{FV}(\beta)$$

Más propiedades

Distributividad generalizada

$$\models (\forall x)\alpha \lor (\forall x)\beta \to (\forall x)(\alpha \lor \beta)$$
$$\models (\exists x)(\alpha \land \beta) \to (\exists x)\alpha \land (\exists x)\beta$$

OJO!!! No valen:

- $\bullet \models (\forall x)(\alpha \lor \beta) \to (\forall x)\alpha \lor (\forall x)\beta$
- $\bullet \models (\exists x) \alpha \land (\exists x) \beta \rightarrow (\exists x) (\alpha \land \beta)$

Propiedades de la sustitución

- 1. Si $z \notin FV(t)$ entonces t[c/x] = t[z/x][c/z]
- 2. Si z no ocurre en α entonces $\alpha[c/x] = \alpha[z/x][c/z]$
- 3. Sea t libre para x en α y β , y β libre para α en α . Entonces, $\alpha[\beta/\$][t/x] = \alpha[t/x][\beta[t/x]/\$]$

Teorema 2.5.6 de sustitución

Sean $s,t,t'\in \text{TERM},\ \alpha,\beta,\varphi\in \text{FORM}$ tq. t y t' están libres para x en α , y α y β están libres para \$ en φ . Entonces:

Más propiedades

Sean $\alpha, \beta, \varphi \in FORM$ tales que $\models \alpha \leftrightarrow \beta$ (sin importar si α y β están libres para \$ en φ). Entonces

$$\models \varphi[\alpha/\$] \leftrightarrow \varphi[\beta/\$]$$

Sean $\alpha, \beta \in \text{FORM}$ tales que $\models \alpha \leftrightarrow \beta$. Entonces $(\forall x) \alpha \text{ eq } (\forall x) \beta \\ (\exists x) \alpha \text{ eq } (\exists x) \beta$

47

Sustitución

Ejemplo

$$(\forall x)\alpha(x)\vee(\forall x)\beta(x,z)\\ \text{eq}\\ (\forall x)(\alpha(x)\vee(\forall x)\beta(x,z))\\ \text{eq}\\ (\forall x)(\alpha(x)\vee(\forall y)\beta(y,z))\\ \text{eq}\\ (\forall x)(\forall y)(\alpha(x)\vee\beta(y,z)).$$

Forma normal prenexa

Def 2.5.7

Sea $\alpha \in \text{FORM}$. Decimos que α está en forma (normal) prenexa sii α es una fórmula abierta precedida de cero o más cuantificadores.

Ejemplo

$$(\forall x)(\exists y)(\forall z)(\forall w)(f(z,w) =' x \to f(w,z) =' y)$$
$$(\forall y)(\forall z)(\exists x)(P(y,z) \to (P(y,x) \land P(x,z)))$$
$$(\forall x)(\forall y)(\forall z)((P(x,y) \land P(y,z)) \to P(x,z))$$

Forma normal prenexa

Teorema 2.5.8. Existencia de forma normal prenexa

Para toda $\alpha \in \text{FORM}$ existe β tal que β está en forma normal prenexa y α eq β .

Relativización

¿Cómo traducimos la siguiente oración?

$$(\forall \varepsilon > 0)(\exists n)(\forall m > n)|f(n) - f(m)| < \varepsilon$$

Hay convenciones para los tipos de las variables:

- $\varepsilon \in \mathbb{R}$
- $n, m \in \mathbb{N}$

Una primera "traducción" sería:

$$(\forall \varepsilon)(\varepsilon > 0 \to (\exists n \in \mathbb{N})(\forall m \in \mathbb{N})$$
$$(m > n \to |f(n) - f(m)| < \varepsilon))$$

Relativización

$$(\forall \varepsilon)(\varepsilon>0 \to (\exists n \in \mathbb{N})(\forall m \in \mathbb{N})\\ (m>n \to |f(n)-f(m)|<\varepsilon))$$

Hay dos propiedades implícitas: "ser un natural" y "ser un real". Como $\mathbb{N}\subset\mathbb{R}$, consideramos $\mathfrak{R}=\langle\mathbb{R},\mathbb{N},>,F,0\rangle$, donde F(a,b)=|f(a)-f(b)|.

Ahora "ser un natural" se traduce usando un nuevo predicado \bar{N} :

$$\begin{array}{c} (\forall \varepsilon)(\varepsilon>0 \rightarrow (\exists n)\bar{N}(n) \wedge (\forall m) \\ (\bar{N}(m) \rightarrow (m>n \rightarrow \varepsilon > F(n,m)))) \end{array}$$

Cuantificadores Relativizados

Se definen cuantificadores relativizados:

$$(\forall n \in \bar{N})\alpha := (\forall n)(\bar{N}(n) \to \alpha)$$
$$(\exists n \in \bar{N})\alpha := (\exists n)(\bar{N}(n) \land \alpha)$$

Propiedades

$$\mathcal{M} \models (\forall x \in A)\alpha \text{ sii para todo } a \in A$$
 se cumple
$$\mathcal{M} \models \alpha[\bar{a}/x]$$

 $\mathcal{M}\models (\exists x\in \bar{A})\alpha \text{ sii existe } a\in A \text{ tal que } \mathcal{M}\models \alpha[\bar{a}/x]$