

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen,

Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Report No.: SZEM171001055104

Fax: +86 (0) 755 2671 0594 Page : 1 of 37

FCC SAR TEST REPORT

Application No.: SZEM1710010551CR **Applicant:** Powervision Tech Inc.

Address of Applicant: Fifth floor, Building NO.33 YUNGU park, No.79 SHUANGYING west road,

Technology Park, Changping District, Beijing

Manufacturer: Powervision Tech Inc.

Address of Manufacturer: Fifth floor, Building NO.33 YUNGU park, No.79 SHUANGYING west road,

Technology Park, Changping District, Beijing

Factory: Powervision Tech Inc.

Address of Factory: Fifth floor, Building NO.33 YUNGU park, No.79 SHUANGYING west road,

Technology Park, Changping District, Beijing

Equipment Under Test (EUT):

EUT Name: Remote Controller

Model No.: PRC10, PRC20

Trade mark: PowerVision

FCC ID: 2AKBMPRC10

Standard(s): FCC 47CFR §2.1093

Date of Receipt: 2018-09-04

Date of Test: 2018-09-05 to 2018-09-05

Date of Issue: 2019-01-21

Test Result: Pass*

Authorized Signature:

Derek Yang

Derele young

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf,—available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions/Terms-en-Ocument.sapx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advested that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM171001055104

Page: 2 of 37

REVISION HISTORY

	Revision Record						
Version	Version Chapter Date Modifier Remark						
01		2019-01-21		Original			

Report No.: SZEM171001055104

Page: 3 of 37

TEST SUMMARY

Frequency Band	Test position	Test mode	Max Report SAR (W/kg)	SAR limit (W/kg)	Verdict
WI-FI (5GHz)	Body	802.11n(HT20)	0.44	1.6	PASS
WI-FI (5GHz) + WI-FI (2.4G)	Body	Simultaneous transmitting	0.92	1.6	PASS

Approved & Released by

Simon Ling

SAR Manager

Tested by

Talkson ii

Jackson Li

SAR Engineer

Report No.: SZEM171001055104

5

4 of 37 Page:

CONTENTS

1	GEN	ERAL INFORMATION	. 5
	1.1	DETAILS OF CLIENT	. 5
	1.2	TEST LOCATION	. 5
	1.3	TEST FACILITY	
	1.4	GENERAL DESCRIPTION OF EUT	
	1.5	TEST SPECIFICATION	
	1.6	RF EXPOSURE LIMITS	. 8
2	SAR	MEASUREMENTS SYSTEM CONFIGURATION	. 9
_			
	2.1	THE SAR MEASUREMENT SYSTEM	
	2.2	ISOTROPIC E-FIELD PROBE EX3DV4	
	2.3 2.4	DATA ACQUISITION ELECTRONICS (DAE) SAM TWIN PHANTOM	
	2.4	ELI PHANTOM	
	2.6	DEVICE HOLDER FOR TRANSMITTERS	
	2.7	MEASUREMENT PROCEDURE	
	2.7.1		
	2.7.2		
	2.7.3		
3	DES	CRIPTION OF TEST POSITION	40
3	DES		
	3.1	THE BODY TEST POSITION	18
4	SAR	SYSTEM VERIFICATION PROCEDURE	19
	4.1 <i>4.1.1</i>	TISSUE SIMULATE LIQUID	
	4.1.1 4.1.2	·	
	4.1.2	SAR SYSTEM CHECK	
	4.2.1		
	4.2.2	·	
	4.2.3		
_	TEC	T RESULTS AND MEASUREMENT DATA	
5	IES		
	5.1	WIFI TEST CONFIGURATION	
	5.1.2		
	5.1.3		
	5.2	MEASUREMENT OF RF CONDUCTED POWER	
	5.2.1		
	5.2.2 5.3	Stand-alone SAR test evaluation	
	5.3.1		
	5.3.1 5.3.2		
_			
6		SUREMENT UNCERTAINTY	
7	EQU	IPMENT LIST	36
8	CAL	IBRATION CERTIFICATE	36
9		TOGRAPHS	
ΑI	PENDI	X A: DETAILED SYSTEM CHECK RESULTS	37
		X B: DETAILED TEST RESULTS	
ΑI	PPENDI	X C: CALIBRATION CERTIFICATE	37
ΑI	PENDI	X D: PHOTOGRAPHS	37

Report No.: SZEM171001055104

Page: 5 of 37

1 General Information

1.1 Details of Client

Applicant:	Powervision Tech Inc.
Address:	Fifth floor, Building NO.33 YUNGU park, No.79 SHUANGYING west road, Technology Park, Changping District, Beijing
Manufacturer:	Powervision Tech Inc.
Address:	Fifth floor, Building NO.33 YUNGU park, No.79 SHUANGYING west road, Technology Park, Changping District, Beijing
Factory:	Powervision Tech Inc.
Address:	Fifth floor, Building NO.33 YUNGU park, No.79 SHUANGYING west road, Technology Park, Changping District, Beijing

1.2 Test Location

Company: SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Address: No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen,

Guangdong, China

Post code: 518057

Telephone: +86 (0) 755 2601 2053
Fax: +86 (0) 755 2671 0594
E-mail: ee.shenzhen@sgs.com

Report No.: SZEM171001055104

Page: 6 of 37

1.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC –Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

• Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

Report No.: SZEM171001055104

Page: 7 of 37

1.4 General Description of EUT

Product Name:	Remote Controller	Remote Controller			
Model No.(EUT):	PRC10, PRC20	PRC10, PRC20			
Trade Mark:	PowerVision				
Product Phase:	production unit				
Device Type :	portable device				
Exposure Category:	uncontrolled environ	ment / general population			
FCC ID:	2AKBMPRC10				
Hardware Version:	V1.0				
Software Version:	V1.0	V1.0			
Antenna Type:	· ·	WIFI 2.4G: Dipole Antenna; WIFI 5G:PCB antenna			
Device Operating Config	gurations :				
Modulation Mode:	WIFI: OFDM	WIFI: OFDM			
	Band	Tx (MHz)	Rx (MHz)		
Frequency Bands:	WIFI 2.4G	2412-2462	2412-2462		
	WIFI5G	5745-5825	5745-5825		
	Model:	PT103450			
Dattam defamation	Normal Voltage :	3.7V			
Battery Information:	Rated Capacity:	1750mAh			
	Manufacturer:	Guangdong Pow-Tech New Power Co., Ltd.			

Declaration of EUT Family Grouping:

Model No.: PRC10, PRC20

Only the model PRC10 was tested, since the electrical circuit design, layout, components used and internal wiring and functions were identical for the above models. The only difference is model number.

Report No.: SZEM171001055104

Page: 8 of 37

1.5 Test Specification

Identity	Document Title
FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
ANSI/IEEE Std C95.1 – 1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
KDB 248227 D01 802.11 Wi-Fi SAR v02r02	SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS
KDB447498 D01 General RF Exposure Guidance v06	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
KDB447498 D03 Supplement C Cross- Reference v01	OET Bulletin 65, Supplement C Cross-Reference
KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04	SAR Measurement Requirements for 100 MHz to 6 GHz
KDB 865664 D02 RF Exposure Reporting v01r02	RF Exposure Compliance Reporting and Documentation Considerations

1.6 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain*Trunk)	1.60 W/kg	8.00 W/kg
Spatial Average SAR** (Whole Body)	0.08 W/kg	0.40 W/kg
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 W/kg	20.00 W/kg

Notes:

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure (i.e. as a result of employment or occupation).

^{*} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

^{**} The Spatial Average value of the SAR averaged over the whole body.

^{***} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Report No.: SZEM171001055104

Page: 9 of 37

2 SAR Measurements System Configuration

2.1 The SAR Measurement System

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate.

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

F-1. SAR Measurement System Configuration

Report No.: SZEM171001055104

Page: 10 of 37

- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

2.2 Isotropic E-field Probe EX3DV4

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 <u>calibration service</u> available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Report No.: SZEM171001055104

Page: 11 of 37

2.3 Data Acquisition Electronics (DAE)

Model	DAE4
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.
Measurement Range-100 to +300 mV (16 bit resolution and range settings: 4mV,400mV)	
Input Offset Voltage	< 5μV (with auto zero)
Input Bias Current	< 50 f A
Dimensions	60 x 60 x 68 mm

2.4 SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	
Wooden Support	SPEAG standard phantom table	

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Report No.: SZEM171001055104

Page: 12 of 37

2.5 ELI Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatible with all SPEAG tissue	
Compatibility simulating liquids (incl. DGBE type)	
Shell Thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm
Difficilisions	Minor axis: 400 mm
Filling Volume	approx. 30 liters
Wooden Support	SPEAG standard phantom table

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

Report No.: SZEM171001055104

Page: 13 of 37

2.6 Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Report No.: SZEM171001055104

Page: 14 of 37

2.7 Measurement procedure

2.7.1 Scanning procedure

Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 30mm*30mm*30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5x5x7 points (≤2GHz) and 7x7x7 points (≥2GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

Report No.: SZEM171001055104

Page: 15 of 37

			≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location		30° ± 1°	20° ± 1°	
		≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area}		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom}		≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface graded	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	t	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume	x, y, z	1	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. \pm 5 %

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: SZEM171001055104

Page: 16 of 37

2.7.2 Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.7.3 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

Conversion factorDiode compression pointDcpi

Device parameters: - Frequency f

- Crest factor cf Media parameters: - Conductivity

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

3

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V\iota = U\iota + U\iota^2 \cdot \epsilon f / d\epsilon p_l$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_t = (V_t / Norm_t \cdot ConvF)^{1/2}$$

H-field probes:

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms

Report No.: SZEM171001055104

Page: 17 of 37

 $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

With Vi = compensated signal of channel i (i = x, y, z)

Normi = sensor sensitivity of channel I

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

σ= conductivity in [mho/m] or [Siemens/m]

ε= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770_{Or} P_{pwe} = H_{tot}^2 \cdot 37.7$$

with Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

Report No.: SZEM171001055104

Page: 18 of 37

3 Description of Test Position

3.1 The Body Test Position

Per KDB inquiry, SAR can test the sides near the antenna, the surface of the device should be tested for SAR compliance with the device touching the phantom. The SAR Exclusion Threshold in KDB 447498 D01 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent device surface is used to determine if SAR testing is required for the adjacent surfaces, with the adjacent surface positioned against the phantom and the surface containing the antenna positioned perpendicular to the phantom.

Report No.: SZEM171001055104

Page: 19 of 37

4 SAR System Verification Procedure

4.1 Tissue Simulate Liquid

4.1.1 Recipes for Tissue Simulate Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients		Frequency (MHz)					
(% by weight)		2450					
Tissue Type		Body					
Water		68.53					
Salt (NaCl)		0.1					
Sucrose	0						
HEC	0						
Bactericide	0						
Tween		31.37					
Salt: 99+% Pure S	odium Chloride	Sucrose: 98+% Pure Sucrose					
Water: De-ionized	I, 16 MΩ⁺ resistivity	HEC: Hydroxyethyl Cellulose					
Tween: Polyoxyet	hylene (20) sorbitan monolaurate						
MSL5GHz is composed of the following ingredients:							
Water: 64-78%							
Mineral oil: 11-18%							
Emulsifiers: 9-15%	%						
Sodium salt: 2-3%	0						

Table 1: Recipe of Tissue Simulate Liquid

Report No.: SZEM171001055104

Page: 20 of 37

4.1.2 Measurement for Tissue Simulate Liquid

The dielectric properties for this Tissue Simulate Liquids were measured by using the Agilent Model 85070E Dielectric Probe in conjunction with Agilent E5071C Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 2.For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

Tissue	Measured Frequency	Target Tissue (±5%)		Measure	d Tissue	Liquid Temp.	Measured
Type	(MHz)	٤r	σ(S/m)	٤r	σ(S/m)	(°C)	Date
5750 Body	5750	48.3 (45.89~50.72)	5.94 (5.64~6.24)	47.096	5.969	22.2	2018/9/5

Table 2: Measurement result of Tissue electric parameters

Report No.: SZEM171001055104

Page: 21 of 37

4.2 SAR System Check

The microwave circuit arrangement for system Check is sketched in F-3. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mW (below 3GHz) or 100mW (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15±0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-3. the microwave circuit arrangement used for SAR system check

Report No.: SZEM171001055104

Page: 22 of 37

4.2.1 Justification for Extended SAR Dipole Calibrations

1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.

- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

Report No.: SZEM171001055104

Page: 23 of 37

4.2.2 Summary System Check Result(s)

Validat	ion Kit	Measured SAR 100mW	SAR 100mW	Measured SAR (normalized to 1W)	Measured SAR (normalized to 1W)	Target SAR (normalized to 1W) (±10%)		Liquid	Measured Date
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg))	
D5GHzV2	Body (5.75GHz)	7.35	2.03	73.50	20.30	74.8 (67.32~82.28)	21 (18.9~23.1)	22.2	2018/9/5

Table 3: SAR System Check Result

4.2.3 Detailed System Check Results

Please see the Appendix A

Report No.: SZEM171001055104

Page: 24 of 37

5 Test results and Measurement Data

5.1 WiFi Test Configuration

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

Duty cycle=5.32/(8.3-2.9)=98.52%

Report No.: SZEM171001055104

Page: 25 of 37

5.1.1.1 5 GHz WiFi SAR Procedures

U-NII-3 Bands

The frequency range covered by these bands is 115 MHz (5.735 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements.

When the same transmitter and antenna(s) are used for U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the lower of those certified for the bands. Unless band gap channels are permanently disabled, they must be considered for SAR testing. The frequency range covered by these bands is 115 MHz (5.735 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to cover the bands, including the band gap channels. When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

Report No.: SZEM171001055104

Page: 26 of 37

OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- 1) The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- 2) If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- 3) If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- 4) When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n. After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.
 - a) The channel closest to mid-band frequency is selected for SAR measurement.
 - b) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 a/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

Report No.: SZEM171001055104

Page: 27 of 37

5.1.2 DUT Antenna Locations

WIFI 2.4G Antenna

Report No.: SZEM171001055104

Page: 28 of 37

WIFI 5G Antenna

Report No.: SZEM171001055104

Page: 29 of 37

The distance between Wi-Fi 5G antenna and the five sides as bellow:

Front side: 15mm; Back side: 15mm; Left side: 114.44mm; Right side: 33mm;

Top side: 16mm; Bottom side: 74.29mm

Report No.: SZEM171001055104

Page: 30 of 37

5.1.3 EUT side for SAR Testing

Freq.	Frequency	Position	Average	Power	Test Separation	Exclusion Threshold	Exclusion	
Band	(MHz)		dBm	mW	(mm)	(mW)	(Y/N)	
		Front side	9.00	7.90	15.00	1.27	N	
	5005	Back side	9.00	7.90	15.00	1.27	N	
Wi-Fi		Left side	9.00	7.90	114.44	740.00	Y	
VVI-F1	5825	Right side	9.00	7.90	33.00	0.58	N	
		Top side	9.00	7.90	16.00	1.19	N	
		Bottom side	9.00	7.90	74.29	338.50	Υ	

(1) The SAR exclusion threshold for distances <50mm is defined by the following equation:

(max. power of channel, including tune-up tolerance, mW) (min. test separation distance, mm) *√ Frequency (GHz) ≤3.0

- (2) The SAR exclusion threshold for distances >50mm is defined by the following equation, as illustrated in KDB 447498 D01 Appendix B:
- a) at 100 MHz to 1500 MHz

[Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm)·(f(MHz)/150)] mW

b) at > 1500 MHz and ≤ 6 GHz

[Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm)·10] mW

Report No.: SZEM171001055104

Page: 31 of 37

5.2 Measurement of RF conducted Power

5.2.1 Conducted Power of WIFI5G

5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Tune up	Average Power (dBm)	SAR Test
		149	5745		9.00	8.83	No
		153	5765		9.00	8.78	No
802.11a	U-NII-3	157	5785	6	9.00	8.86	Yes
		161	5805		9.00	8.57	No
		165	5825		9.00	8.81	No
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Tune up	Average Power (dBm)	SAR Test
		149	5745		9.00	8.67	No
		153	5765		9.00	8.71	No
802.11n-HT20	U-NII-3	157	5785	MCS0	9.00	8.82	No
		161	5805		9.00	8.59	No
		165	5825		9.00	8.49	No

Table 4: Conducted Power of WIFI5G

Mode	Antenna	Channel	Frequency(MHz)	Data Rate(Mbps)	Tune up	Average Power (dBm)	SAR Test
		1	2412		13.00	12.81	NO
802.11b	Ant1	6	2437	1	13.00	11.81	NO
		11	2462		13.00	12.63	NO
		1	2412		13.00	11.97	NO
802.11b	Ant2	6	2437	1	13.00	11.87	NO
		11	2462		13.00	11.91	NO
		1	2412	6	13.00	12.51	NO
802.11g	Ant1	6	2437		13.00	12.06	NO
		11	2462		13.00	12.29	NO
		1	2412		13.00	12.01	NO
802.11g	Ant2	6	2437	6	13.00	12.58	NO
		11	2462		13.00	11.94	NO
802.11n		1	2412		10.60	9.91	NO
HT20	Ant1	6	2437	13	10.60	10.02	NO
MIMO		11	2462		10.60	10.48	NO
802.11n		1	2412		10.60	10.01	NO
HT20	Ant2	6	2437	13	10.60	10.54	NO
MIMO		11	2462		10.60	10.55	NO

Table 5: Conducted Power of WIFI2.4G (The time based average power is calculated by Conducted Peak output power + Duty cycle factor. The maximum duty cycle is not over than 5%)

Report No.: SZEM171001055104

Page: 32 of 37

5.2.2 Stand-alone SAR test evaluation

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

Freq. Band	Frequency (GHz)	Position	Average	Power	Separation (mm)		Exclusion Threshold	Exclusion (Y/N)
			dBm	mW	(11111)			
Wi-Fi	2.45	Extremity	13	19.953	5	5.98	7.5	Υ
Wi-Fi	2.45	Body- worn	13	19.953	10	2.99	3	Υ

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Per FCC KDB 447498D01, the standalone SAR value must be estimated according to the following to determine the simultaneous transmission SAR test exclusion criteria:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg, for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

Report No.: SZEM171001055104

Page: 33 of 37

Estimated SAR Result

From Donal	Frequency	Test	max.		paration m)	Estimated		
Freq. Band	(GHz)		power(dBm)	Body- worn	Extremity	1g SAR (W/kg)	10g SAR (W/kg)	
		Top side	13.00	10	5	0.42	0.33	
		Back side	13.00	10	5	0.42	0.33	
802.11b	2.462	Right side	13.00	10	5	0.42	0.33	
		Left side	13.00	10	5	0.42	0.33	
		Bottom side	13.00	10	5	0.42	0.33	
		Top side	13.00	10	5	0.42	0.33	
		Back side	13.00	10	5	0.42	0.33	
802.11g	2.462	Right side	13.00	10	5	0.42	0.33	
		Left side	13.00	10	5	0.42	0.33	
		Bottom side	13.00	10	5	0.42	0.33	
		Top side	10.60	10	5	0.24	0.19	
000 44=/LIT00)		Back side	10.60	10	5	0.24	0.19	
802.11n(HT20) MIMO_ANT1	2.462	Right side	10.60	10	5	0.24	0.19	
IVIIIVIO_AIVI I		Left side	10.60	10	5	0.24	0.19	
		Bottom side	10.60	10	5	0.24	0.19	
		Top side	10.60	10	5	0.24	0.19	
000 44 (UT00)		Back side	10.60	10	5	0.24	0.19	
802.11n(HT20) MIMO ANT2	2.462	Right side	10.60	10	5	0.24	0.19	
WIIIVIO_ANTZ		Left side	10.60	10	5	0.24	0.19	
		Bottom side	10.60	10	5	0.24	0.19	

Report No.: SZEM171001055104

Page: 34 of 37

5.3 Measurement of SAR Data

5.3.1 SAR Result of WIFI 5G

Test position	Test mode	Test Ch./Freq.	Duty	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Power drift (dB)	Conducted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp.
	Body Test data (Separate 0mm)										
Front side	802.11a	157/5785	98.52%	1.015	0.087	0.00	8.86	9.00	1.033	0.091	22.2
Back side	802.11a	157/5785	98.52%	1.015	0.315	-0.01	8.86	9.00	1.033	0.330	22.2
Right side	802.11a	157/5785	98.52%	1.015	0.419	-0.08	8.86	9.00	1.033	0.439	22.2
Top side	802.11a	157/5785	98.52%	1.015	0.124	-0.02	8.86	9.00	1.033	0.130	22.2

Table 6: SAR of WIFI 5G for Body

Note:

1) Test positions of EUT(the distance between the EUT and the phantom is 0mm for all sides)

2) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B

Mode	Tune-up (dBm)	Tune-up (mW)	Max Reported SAR1-g(W/kg)	Adjusted SAR1-g(W/kg)	SAR test
802.11a	9.00	7.94	0.439	1	Yes
802.11n 20M	9.00	7.94	1	0.439	No

Note: Per KDB248227D01, for Body SAR test of WiFi 5G,when the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

5.3.2Simultaneous SAR test evaluation

Simultaneous Transmission

NO.	Simultaneous Transmission Configuration	Body worn
1	WiFi 5G + WiFi 2.4G (2x2 MIMO)	Yes

Simultaneous SAR evaluation for WiFi 5G + WiFi 2.4G (2x2 MIMO) = 0.439 + 0.24*2 = 0.919 (W/kg)

Report No.: SZEM171001055104

Page: 35 of 37

6 Measurement Uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

Report No.: SZEM171001055104

Page: 36 of 37

7 Equipment list

Test Platform	SPEAG DASY5 Professional
Location	SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch
Description	SAR Test System (Frequency range 300MHz-6GHz)
Software Reference	DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Hardware Reference

Equipment		Manufacturer	Model	Serial Number	Calibration Date	Due date of calibration
	Robot	Staubli	RX90L	F03/5V32A1/A01	NCR	NCR
	ELI V5.0	SPEAG	ELI	1123	NCR	NCR
	DAE	SPEAG	DAE4	1428	2018-01-17	2019-01-16
	E-Field Probe	SPEAG	EX3DV4	3962	2018-01-11	2019-01-10
	Validation Kits	SPEAG	D5GHzV2	1165	2016-12-13	2019-12-12
\boxtimes	Agilent Network Analyzer	Agilent	E5071C	MY46523590	2018-03-13	2019-03-12
	Dielectric Probe Kit	Agilent	85070E	US01440210	NCR	NCR
\boxtimes	RF Bi-Directional Coupler	Agilent	86205-60001	MY31400031	NCR	NCR
	Signal Generator	Agilent	N5171B	MY53050736	2018-03-13	2019-03-12
	Preamplifier	Mini-Circuits	ZHL-42W	15542	NCR	NCR
\boxtimes	Preamplifier	Compliance Directions Systems Inc.	AMP28-3W	073501433	NCR	NCR
	Power Meter	Agilent	E4416A	GB41292095	2018-03-13	2019-03-12
	Power Sensor	Agilent	8481H	MY41091234	2018-03-13	2019-03-12
	Power Sensor	R&S	NRP-Z92	100025	2018-03-13	2019-03-12
	Attenuator	SHX	TS2-3dB	30704	NCR	NCR
	Coaxial low pass filter	Mini-Circuits	VLF-2500(+)	NA	NCR	NCR
	Coaxial low pass filter	Microlab Fxr	LA-F13	NA	NCR	NCR
	50 Ω coaxial load	Mini-Circuits	KARN-50+	00850	NCR	NCR
	DC POWER SUPPLY	SAKO	SK1730SL5A	NA	NCR	NCR
\boxtimes	Speed reading thermometer	MingGao	T809	NA	2018-03-19	2019-03-18
\boxtimes	Humidity and Temperature Indicator	KIMTOKA	KIMTOKA	NA	2018-03-19	2019-03-18

Note: All the equipments are within the valid period when the tests are performed.

8 Calibration certificate

Please see the Appendix C

9 Photographs

Please see the Appendix D

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM171001055104

Page: 37 of 37

Appendix A: Detailed System Check Results

Appendix B: Detailed Test Results

Appendix C: Calibration certificate

Appendix D: Photographs

---END---

Report No.: SZEM171001055104

Appendix A

Detailed System Check Results

1. System Performance Check

System Performance Check 5750MHz Body

Date: 2018-09-05

Test Laboratory: SGS-SAR Lab

System Performance Check 5.75GHz Body

DUT: D5GHzV2; Type: D5GHzV2; Serial: 1165

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: MSL5000; Medium parameters used: f = 5750 MHz; $\sigma = 5.969$ S/m; $\varepsilon_r = 47.096$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

• Probe: EX3DV4 - SN3962; ConvF(4.59, 4.59, 4.59); Calibrated: 2018-01-11;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = -2.0, 23.0

• Electronics: DAE4 Sn1428; Calibrated: 2018-01-17

• Phantom: ELI V5.0; Type: ELI; Serial: 1123

• DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=100mW, f=5750 MHz/Area Scan (10x10x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 20.0 W/kg

Body/d=10mm, Pin=100mW, f=5750 MHz/Zoom Scan (4x4x1.4mm, graded),

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 51.65 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 35.6 W/kg

SAR(1 g) = 7.35 W/kg; SAR(10 g) = 2.03 W/kg

Maximum value of SAR (measured) = 18.4 W/kg

0 dB = 18.4 W/kg = 12.65 dBW/kg

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM171001055104

Appendix B

Detailed Test Results

1.WIFI	
WIFI5GHz for Body	

Date: 2018-09-05

Test Laboratory: SGS-SAR Lab

PEGBS20 WIFI 802.11a 157CH Right side 0mm

DUT: PEGBS20; Type: Remote Controller; Serial: N/A

Communication System: UID 0, WI-FI(5GHz) (0); Frequency: 5785 MHz; Duty Cycle: 1:1

Medium: MSL5000; Medium parameters used: f = 5785 MHz; $\sigma = 5.989$ S/m; $\varepsilon_r = 46.916$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3962; ConvF(4.59, 4.59, 4.59); Calibrated: 2018-01-11;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = -2.0, 23.0
- Electronics: DAE4 Sn1428; Calibrated: 2018-01-17
- Phantom: ELI V5.0; Type: ELI; Serial: 1123
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.06 W/kg

Configuration/Body/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.592 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 2.60 W/kg

SAR(1 g) = 0.419 W/kg; SAR(10 g) = 0.143 W/kg

Maximum value of SAR (measured) = 1.01 W/kg

0 dB = 1.01 W/kg = 0.04 dBW/kg

Report No.: SZEM171001055104

Appendix C

Calibration certificate

1. Dipole
D5GHzV2 - SN 1165(2016-12-13)
2. DAE
DAE4- SN 1428(2018-01-17)
3. Probe
EX3DV4-SN 3962(2018-01-11)

国际互认 校准 CALIBRATION CNAS L0570

Client

SGS(Boce)

Certificate No:

Z16-97244

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN: 1165

Calibration Procedure(s)

FD-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

December 13, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) To and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
ReferenceProbe EX3DV4	SN 7307	19-Feb-16(SPEAG,No.EX3-7307_Feb16)	Feb-17
DAE4	SN 771	02-Feb-16(CTTL-SPEAG,No.Z16-97011)	Feb-17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17
NetworkAnalyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan-17

Name Function Signature

Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Qi Dianyuan SAR Project Leader

Approved by: Lu Bingsong Deputy Director of the laboratory

Issued: December 15, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97244 Page 2 of 14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	4.72 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.64 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	76.6 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.18 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.9 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97244 Page 3 of 14

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.17 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		1444

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.03 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.4 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.28 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.8 mW /g ± 22.2 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.2 ± 6 %	5.37 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	10000	12.

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.00 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.0 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.27 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	22.7 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97244 Page 4 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.9 ± 6 %	5.44 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		1 Can

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.58 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.6 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.14 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.3 mW /g ± 22.2 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.9 ± 6 %	5.74 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	()	

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.10 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	81.1 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.28 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.9 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97244 Page 5 of 14

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.7 ± 6 %	5.91 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		1

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.47 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	74.8 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.10 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.0 mW /g ± 22.2 % (k=2)

Certificate No: Z16-97244 Page 6 of 14 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	49.1Ω - 6.49jΩ	
Return Loss	- 23.6dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$54.1\Omega + 1.72j\Omega$	
Return Loss	- 27.5dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	52.4Ω - 3.51jΩ	
Return Loss	- 27.6dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	45.7Ω - 4.04jΩ	
Return Loss	- 24.2dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$54.9\Omega + 0.69j\Omega$	
Return Loss	- 26.5dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	53.3Ω - 3.65jΩ	
Return Loss	- 26.4dB	

Certificate No: Z16-97244 Page 7 of 14

General Antenna Parameters and Design

Electrical Delay (one direction)	1.313 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

CANCEL CONTRACTOR AND CONTRACTOR	
Manufactured by	SPEAG
	S. C.

Certificate No: Z16-97244 Page 8 of 14

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1165

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Date: 12.12.2016

Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.724 mho/m; ϵ r = 36.26; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.172 mho/m; ϵ r = 35.54; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.371 mho/m; ϵ r = 35.17; ρ = 1000 kg/m3,

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(5.32,5.32,5.32); Calibrated: 2016/2/19, ConvF(4.52,4.52,4.52); Calibrated: 2016/2/19, ConvF(4.45,4.45,4.45); Calibrated: 2016/2/19,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2016/2/2
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.25 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.92 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 35.1 W/kg

SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

Certificate No: Z16-97244 Page 9 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.79 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 34.1 W/kg

SAR(1 g) = 8 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

0 dB = 19.7 W/kg = 12.94 dBW/kg

Certificate No: Z16-97244 Page 10 of 14

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1165

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Date: 12.13.2016

Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; $\sigma = 5.442$ mho/m; $\epsilon r = 47.93$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5600 MHz; $\sigma = 5.74$ mho/m; $\epsilon r = 48.92$; $\rho = 1000$ kg/m3, Medium parameters used: $\epsilon r = 5750$ MHz; $\epsilon r = 5.91$ mho/m; $\epsilon r = 48.73$; $\epsilon r = 1000$ kg/m3.

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(4.48,4.48,4.48); Calibrated: 2016/2/19, ConvF(3.72,3.72,3.72); Calibrated: 2016/2/19, ConvF(3.91,3.91,3.91); Calibrated: 2016/2/19,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2016/2/2
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 50.01 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.14 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.54 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

Certificate No: Z16-97244 Page 12 of 14

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.53 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.1 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

0 dB = 18.2 W/kg = 12.60 dBW/kg

Certificate No: Z16-97244

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

国际互认 校准 CALIBRATION CNAS L0570

Client:

SGS(Boce)

Certificate No: Z18-97013

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 1428

Calibration Procedure(s)

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

January 17, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	27-Jun-17 (CTTL, No.J17X05859)	June-18

Name

Function

Signature

Calibrated by:

Yu Zongying

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: January 19, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z18-97013

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209

E-mail: cttl@chinattl.com

Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1 \mu V$,

full range =

-100...+300 mV

1LSB = Low Range: 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors X		Y	Z	
High Range	405.185 ± 0.15% (k=2)	404.989 ± 0.15% (k=2)	405.005 ± 0.15% (k=2)	
Low Range	3.98842 ± 0.7% (k=2)	3.97098 ± 0.7% (k=2)	4.01027 ± 0.7% (k=2)	

Connector Angle

Connector Angle to be used in DASY system 163° ± 1 °
--

Certificate No: Z18-97013 Page 3 of 3 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2209

Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com Http://www.chinattl.cn

SGS(Boce)

Certificate No: Z17-97271

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3962

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

January 11, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Power sensor NRP-Z91	101547	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Power sensor NRP-Z91	101548	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Reference10dBAttenuato	r 18N50W-10dB	13-Mar-16(CTTL,No.J16X01547)	Mar-18
Reference20dBAttenuato	r 18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18
Reference Probe EX3DV	4 SN 7464	12-Sep-17(SPEAG,No.EX3-7464_Sep17)	Sep-18
DAE4	SN 1524	13-Sep-17(SPEAG, No.DAE4-1524_Sep17	7) Sep -18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700	경기 보기하다 시간 사람들은 수가 없었다.	27-Jun-17 (CTTL, No.J17X05858)	Jun-18
Network Analyzer E50710	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan -18
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	A THE
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	and ,

Issued: January 13, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z17-97271

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z17-97271 Page 2 of 11

Probe EX3DV4

SN: 3962

Calibrated: January 11, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3962

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.42	0.47	0.44	±10.0%
DCP(mV) ^B	100.3	102.5	94.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	CW	X	0.0	0.0	1.0	0.00	154.3	±2.5%
			Y	0.0	0.0	1.0		162.9
		Z	0.0	0.0	1.0		153.1	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3962

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.19	10.19	10.19	0.40	0.75	±12.1%
835	41.5	0.90	9.96	9.96	9.96	0.16	1.25	±12.1%
1750	40.1	1.37	8.54	8.54	8.54	0.21	1.15	±12.1%
1900	40.0	1.40	8.26	8.26	8.26	0.26	1.00	±12.1%
2300	39.5	1.67	8.03	8.03	8.03	0.35	0.80	±12.1%
2450	39.2	1.80	7.62	7.62	7.62	0.41	0.88	±12.1%
2600	39.0	1.96	7.52	7.52	7.52	0.42	0.92	±12.1%
5250	35.9	4.71	5.68	5.68	5.68	0.35	1.55	±13.3%
5600	35.5	5.07	4.89	4.89	4.89	0.40	1.50	±13.3%
5750	35.4	5.22	5.05	5.05	5.05	0.40	1.60	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3962

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.37	10.37	10.37	0.40	0.85	±12.1%
835	55.2	0.97	9.98	9.98	9.98	0.17	1.43	±12.1%
1750	53.4	1.49	8.49	8.49	8.49	0.22	1.12	±12.1%
1900	53.3	1.52	8.09	8.09	8.09	0.20	1.17	±12.1%
2300	52.9	1.81	7.90	7.90	7.90	0.34	1.17	±12.1%
2450	52.7	1.95	7.78	7.78	7.78	0.34	1.25	±12.1%
2600	52.5	2.16	7.61	7.61	7.61	0.44	0.96	±12.1%
5250	48.9	5.36	5.22	5.22	5.22	0.45	1.45	±13.3%
5600	48.5	5.77	4.45	4.45	4.45	0.50	1.60	±13.3%
5750	48.3	5.94	4.59	4.59	4.59	0.50	1.45	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Certificate No: Z17-97271 Page 9 of 11

Conversion Factor Assessment

f=835 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3962

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	152.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

	Dipole D5GHz	zV2 SN 11	65						
5250MHz Head Liquid									
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ					
2016-12-13	-23.6	/	49.1	1					
2017-12-12	-24.2	2.54%	51.7	2.6Ω					
2018-12-11	-23.9	1.27%	51.1	2.0Ω					
	5250MHz B	ody Liquic	d						
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ					
2016-12-13	-24.2	/	45.7	1					
2017-12-12	-24.7	2.07%	49.1	3.4Ω					
2018-12-11	-24.9	2.89%	49.5	3.8Ω					
	5600MHz H	ead Liquid	d						
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ					
2016-12-13	-27.5	/	54.1	1					
2017-12-12	-28.3	2.91%	56.4	2.3Ω					
2018-12-11	-28.6	4.00%	56.7	2.6Ω					
	5600MHz B	ody Liquid	d						
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ					
2016-12-13	-26.5	/	54.9	1					
2017-12-12	-27.3	3.02%	58	3.1Ω					
2018-12-11	-27.6	4.15%	58.2	3.3Ω					
	5750MHz H	ead Liquid	d						
Date of Measurement	Return Loss(dB)	Δ %	Impedance (Ω)	ΔΩ					
2016-12-13	-27.6	/	52.4	1					
2017-12-12	-28.5	3.26%	54.1	1.7Ω					
2018-12-11	-28.7	3.99%	54.6	2.2Ω					
	5750MHz Body Liquid								
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ					
2016-12-13	-26.4	/	53.3	1					
2017-12-12	-27.1	2.65%	55.9	2.6Ω					
2018-12-11	-27.5	4.17%	56.3	3.0Ω					

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM171001055104

Appendix D

Photographs

- 1. SAR measurement System
- 2. Photographs of Tissue Simulate Liquid
- 3. Photographs of EUT test position
- 4. EUT Constructional Details

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM171001055104

1. SAR measurement System

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM171001055104

2. Photographs of Tissue Simulate Liquid

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM171001055104

3. Photographs of EUT test position

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

Report No.: SZEM171001055104

4. EUT Constructional Details

