FÍSICA II – ICF-190 RESPUESTAS GUÍA Nº 1

1.-

a)
$$\frac{Q_1}{Q_2} = -\frac{3\sqrt{2}}{4}$$

b)
$$\frac{Q_1}{Q_2} = \frac{\sqrt{2}}{2}$$

$$-\frac{kq_1Q}{a^2}\hat{i} + \frac{3\sqrt{3}q_1Q}{2a^2}\hat{j}$$

3.
$$\vec{F}_{lequierda} = -\frac{8q^2H}{4r^2}i \quad ; \quad \vec{F}_{centro} = 0i \quad ; \quad \vec{F}_{derecha} = \frac{8q^2H}{4r^2}i$$

4.-

b)
$$\vec{F}_a = q(\vec{E}_b + \vec{E}_c) = F_a \hat{i}$$

c) trayectoria recta paralela eje x

5.- a)
$$E=0$$
 en $x=2L$; b) $F=0$ en $x=2L$

6.-
$$f \frac{dkqh}{(r^2 + h^2)^2} k$$

a)

7.-

$$E = \frac{\sqrt{3}kq}{r^2}$$

Facultad de Ingeniería y Ciencias Departamento de Ciencias Físicas

9.- Demostración

10.- Demostración

11.- a)
$$dq = a x dx$$
, c) $Q_{nota} = 0 C$

12.- a)
$$dq = \lambda R d\theta$$
, b) $Q_{nota} = 2\pi \lambda R$

13.-
a)
$$dq = \sigma r dr d\theta$$
; b) $dq = 2\pi \sigma r dr$; c) $dq = \frac{1}{2} \sigma R^2 d\theta$; d) $q = \sigma \pi R^2$

14.- a)
$$dq = ar^2 dr d\theta$$
; b) $dq = 2\pi a r^2 dr$; c) $dq = \frac{1}{3} a R^3 d\theta$; d) $q = \frac{2}{3} \pi a R^3$

15.-
$$Q_{neta} = \sigma \pi (R_b^2 - R_a^2) C$$

16.- a)
$$Q = \frac{\pi \rho}{6} R^3$$
, b) $Q = \frac{4\pi \rho}{3} R^3$

$$Q_{neta} = \frac{7\rho\pi R^3}{6}$$

$$Q_{neta} = \frac{\pi a R^3 L^2}{3}$$

19.-
$$\vec{F} = 8.99 \times 10^8 \hat{i} N$$

$$\vec{E} = -\frac{\lambda}{2\pi\varepsilon_0 r} \,\hat{j}$$

21.-
$$\vec{E} = \frac{\sigma}{2\varepsilon_0} \left(1 - \frac{b}{\sqrt{R^2 + b^2}} \right) \hat{k}$$

22.-
$$\vec{E}(z) = \frac{\lambda' L z}{\pi \varepsilon_0 \left(L^2 + 4z^2\right) \sqrt{\frac{L^2}{2} + z^2}} \hat{k}$$

Se ha elegido el eje z solidario con la perpendicular que pasa por el centro del cuadrado

$$\vec{E} = -\frac{k\lambda_0 \pi}{2R} \,\hat{j}$$

24.-
$$\vec{E} = -1.63 \times 10^3 \hat{k} \ N/C$$

Se ha elegido el eje z solidario con la varilla

Facultad de Ingeniería y Ciencias Departamento de Ciencias Físicas

25.- Demostración

a)
$$Q_{neta} = 0.05\lambda \ C \,, \quad \text{b)} \ \vec{E}(4\ cm) = \frac{2.1\lambda}{\varepsilon_0} \, \hat{j} \ , \quad \vec{E}(12\ cm) = \frac{0.27\lambda}{\varepsilon_0} \, \hat{j} \,,$$

$$\vec{E}(4.5\ cm) = \frac{1.72\lambda}{\varepsilon_0} \, \hat{j} \,$$

27.- a)
$$Q_{neta} = 0 C$$
, b) $\vec{E} = -\frac{A}{8\pi\varepsilon_0} \ln\left(\frac{b}{a}\right) \hat{i}$

28.-
$$\vec{E}(0) = -0.23 \times 10^6 \,\hat{j} \, \frac{V}{m} \; ; \quad \vec{F}(0) = -0.69 \,\hat{j} \; N$$