Question 1		Syllabus outcomes and marking guide
	Sample answer	P7, PE5, HE4
(a)	$\frac{d}{dx}(x^2\sin^{-1}x) = 2x\sin^{-1}x + \frac{x^2}{\sqrt{1-x^2}}.$	• Gives the correct answer 2
	41-7	Demonstrates the correct use of the product rule
		PE3
(b)	If $(x+3)$ is a factor of $P(x)$ then $P(-3)=0$.	• Gives the correct answer
	$P(x) = 2x^3 - 5kx + 9$	Demonstrates the correct use of the
	$P(-3) = 2(-3)^3 - 5k(-3) + 9$	factor theorem.
	= -54 + 15k + 9 = 0	OR Correctly uses long division
	15k = 45	
	k = 3.	P4, PE6
(c)	$x = \frac{(-3)(5) + (3)(-2)}{5 - 2}, y = \frac{5(5) + 2(-2)}{5 - 2}$	• Gives the correct answer
	$=\frac{-15-6}{3}$ $=\frac{25-4}{3}$	Demonstrates a correct method of finding ar
	,	external ratio
	x = -7. y = 7.	
	\therefore point P is $(-7,7)$.	THE DEC
(d)	$x+y=5 \Rightarrow y=-x+5 \qquad m_1=-1$	 H5, PE6 One mark for substituting their values of m
` ,	$2y = 3x + 5 \Rightarrow y = \frac{3}{2}x + \frac{5}{2}$ $m_2 = \frac{3}{2}$	 into the correct equation. One mark for finding the correct answer to the nearest degree.
	$ m_1-m_2 $	the nearest degree.
	$\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	
	$\left -1-\frac{3}{5}\right $	
	$=\frac{\left -\frac{1-\frac{3}{2}}{1-\frac{3}{2}}\right }{1-\frac{3}{2}}$	
	$\left \begin{array}{c} 1 - \frac{5}{2} \end{array} \right $	
	= 5.	
	$\therefore \theta = 79^{\circ} \text{ (nearest degree)}.$	
(c)	Number of arrangements = $\frac{11!}{2!2!}$	PE3 Gives the correct answer
` .	= 9 979 200.	
		H5
(f)	$\int_{0}^{4} \frac{dx}{\sqrt{x^{2} + 9}} = \left[\ln(x + \sqrt{x^{2} + 9}) \right]_{0}^{4}$	Gives the correct answer or correct numerical expression
	$= [\ln(4 + \sqrt{4^2 + 9})] - [\ln(0 + \sqrt{9})]$	Gives the correct substitution of limits in the correct integral
	$= [\ln(4 + \sqrt{25})] - \ln 3$	Gives the correct integral from table of
	$= \ln(4+5) - \ln 3$	standard integrals
	= ln9 - ln3	
	$= \ln \frac{9}{3}$	
	<u>3</u>	
	- In 3	l

Question 2	
Sample answer	Syllabus outcomes and marking guide
(a) $2x^{2} -7x +15$ $x^{2} + 2x - 1 \overline{\smash)2x^{4} -3x^{3} -x^{2} +2x +1}$ $\underline{2x^{4} +4x^{3} -2x^{2}}$ $-7x^{3} +x^{2} +2x$ $\underline{-7x^{3} -14x^{2} +7x}$ $\underline{15x^{2} -5x +1}$ $\underline{15x^{2} +30x -15}$ $-35x +16$	 PE3 Gives the correct answer for Q(x) and R(x) Performs the correct long division. OR Gives R(x) and Q(x) correctly from a long division containing a minor error. Demonstrates a significant understanding or long division.
$Q(x) = 2x^{2} - 7x + 15 \text{ and } R(x) = -35x + 16.$ b) $\frac{1 - \tan^{2}A}{1 + \tan^{2}A} = \frac{1 - \tan^{2}A}{\sec^{2}A}$ $= \frac{1}{\sec^{2}A} - \frac{\tan^{2}A}{\sec^{2}A}$ $= \cos^{2}A - \sin^{2}A$ $= \cos 2A.$	H5 Gives a correct proof
c) $\frac{d\left(\frac{x+2}{\sqrt{x-1}}\right) = 0, x \neq 1}{dx\left(\frac{x-2}{\sqrt{x-1}}\right) = 0, x \neq 1}$ $\frac{(\sqrt{x-1})(1) - (x+2) \times \frac{1}{2}(x-1)^{\frac{1}{2}}}{x-1} = 0$ $\sqrt{x-1} - \frac{x+2}{2\sqrt{x-1}} = 0$	Gives the correct answer
2(x-1) - (x+2) = 0 $x-2-2 = 0$ $x = 4.$	

Question 2 (Continued) Sample answer	Syllabus outcomes and marking guide
(d) $\int_{2}^{5} \frac{x+1}{\sqrt{x-1}} dx \qquad u = x-1$ $x+1 = u+2$ $= \int_{1}^{4} \frac{u+2}{u^{\frac{1}{2}}} du \qquad du = dx$ $x = 2, u = 1$ $= \int_{1}^{4} \left(u^{\frac{1}{2}} + 2u^{-\frac{1}{2}}\right) du$ $= \left[\frac{2}{3}u^{\frac{3}{2}} + 4u^{\frac{1}{2}}\right]_{1}^{4}$ $= \left[\frac{2}{3}(4)^{\frac{3}{2}} + 4(4)^{\frac{1}{2}}\right] - \left[\frac{2}{3}(1)^{\frac{3}{2}} + 4(1)^{\frac{1}{2}}\right]$ $= \frac{16}{3} + 8 - 4\frac{2}{3}$ $= 8\frac{2}{3}.$	 HE6 Gives the correct answer

Sample answer

Syllabus outcomes and marking guide

$$(a) \qquad \frac{x}{x^2 - 4} \le 0$$

$$x^2 - 4 \neq 0$$
$$(x - 2)(x + 2) \neq 0$$

$$x \neq 2, x \neq -2$$
.

$$\therefore \frac{(x^2-4)^2x}{x^2-4} \le 0$$

$$(x^2-4)x \le 0$$

 $x(x-2)(x+2) \le 0$

$$x < -2$$
 or $0 \le x < 2$.

PE3

- Gives a correct expression for the cubic,
 i.e. x(x-2)(x+2) ≤ 0.
 OR
- Makes significant progress in solving

$$\frac{x}{x^2-4} \le 0$$
 by considering when $x^2-4>0$

- Multiplies by $(x^2-4)^2$.

(b) (i)
$$f(x) = \cos^{-1} 2x + \sin^{-1} 2x$$

 $f'(x) = \frac{-2}{-1} + \frac{2}{-1}$

$$f'(x) = \frac{-2}{\sqrt{1 - (2x)^2}} + \frac{2}{\sqrt{1 - (2x)^2}}$$
$$= 0.$$

HE4

- (ii) Since f'(x) = 0, $\therefore y = f(x)$ is a horizontal straight line.

$$f(0) = \cos^{-1}(0) + \sin^{-1}(0)$$
$$= \frac{\pi}{2}.$$

Domain $-1 \le 2x \le 1$.

$$\therefore y = \frac{\pi}{2}, -\frac{1}{2} \le x \le \frac{1}{2}.$$

HF4

- Draws a horizontal line at $y = \frac{\pi}{2}$, incorrect domain.

Question 3 (Continued) Sample answer Syllabus outcomes and marking guide $f(x) = x \ln x$ H3. H6 (c) **(i)** One mark for showing the stationary point $f'(x) = x \left(\frac{1}{x}\right) + 1 \ln x$ $= 1 + \ln x$. One mark for showing the stationary point is a minimum turning point. To find the stationary point, let f'x = 0. $\ln x + 1 = 0$ $\ln x = -1$ $x=e^{-1}$ \therefore the stationary point is $\left(\frac{1}{e}, -\frac{1}{e}\right)$. $f''(x) = \frac{1}{x} > 0$ for $x = \frac{1}{e}$. $\therefore \left(\frac{1}{e}, -\frac{1}{e}\right) \text{ is a minimum turning point.}$ (ii) (iii) У PE3 (d) If the roots are $\alpha - d$, α and $\alpha + d$, then (i) $(\alpha-d) + \alpha + (\alpha+d) = -\frac{b}{a}$ $3\alpha = -\frac{b}{a}$ $3\alpha = -\frac{12}{2}$

 $\alpha = -2$.

Question 3	(Continued) Sample answer	Syllabus outcomes and marking guide
(ii)	$(\alpha - d)(\alpha)(\alpha + d) = -\frac{d}{a}$ $\alpha(\alpha^2 - d^2) = \frac{20}{2}$ $-2(4 - d^2) = 10$ $4 - d^2 = -5$	PE3 • Gives a correct answer of either 3 or -3
	$d^2 = 9$ d = 3 or d = -3.	

Sample answer

Syllabus outcomes and marking guide

(a)
$$\left(5x^2 - \frac{1}{2x}\right)^{12}$$

$$T_{r+1} = {}^{12}C_r \times (5x^2)^{12-r} \times (-1)^r \times \left(\frac{1}{2}\right)^r \times x^{-r}$$
$$= (-1)^r \times {}^{12}C_r \times \frac{5^{12-r}}{2^r} \times x^{24-2r} \times x^{-r}.$$

For
$$x^9$$
, $24 - 3r = 9$

$$r=5$$
.

 \therefore coefficient of x^9 is

$$(-1)^5 \times {}^{12}C_5 \times \frac{5^7}{2^5} = \frac{-792 \times 78 \ 125}{32}$$

= -1 933 593 $\frac{3}{4}$.

- Gives the correct answer in any form 3
- Gives the correct expression for $T_{r+1} \dots 1$

(b)

 $\angle BTD = \angle DTC$ (given).

 $\angle TCD = \angle BTA$ (alternate segment theorem).

 $\angle TDA = \angle DTC + \angle TCD$ (exterior angle of $\triangle DCT = \text{sum of interior opposite angles}$).

- $\therefore \angle TDA = \angle DTA$.
- $\therefore \triangle ATD$ is isosceles.
- $\therefore AT = AD.$

HE₂

- Demonstrates a correct proof with reasons......3
- Demonstrates significant progress towards a correct proof which includes reasons.
 OR

(c) (i) $v = 2 + Ae^{-kt}$ $\frac{dv}{dt} = -k(Ae^{-kt})$

$$=-k(\nu-2)$$

 $=k(2-\nu).$

• Shows the correct working 1

(ii) When t = 0, v = 50

$$v = 2 + Ae^{-kt}$$

$$50 = 2 + Ae^0$$
.

$$\therefore A = 48.$$

- H3, HE3

Question 4	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(iii)	When $t = 1$, $v = 35$ $v = 2 + 48e^{-kt}$	H3, HE3 • Gives the correct answer
	$35 = 2 + 48e^{-k}$ $e^{-k} = \frac{33}{48}$	• Gives a correct value for e^{-k} , e.g. $\frac{33}{48}$
	$-k = \ln \frac{33}{48}$ $k = 0.374693$ ∴ $k = 0.3747$ (4 decimal places).	
(iv)	 If t is large, e^{-kt} becomes very small and approaches 0. ∴ v = 2 + 0. ∴ terminal speed = 2 m sec⁻¹. 	H3, HE3 • Gives the correct answer
(v)	5% more than terminal speed is 2.1 m sec ⁻¹ . $\therefore 2.1 = 2 + 48e^{-0.3747t}$ $-0.3747t = \ln \frac{1}{480}$ $t = 16.4766 \dots$	PE6, H3, HE3 • Gives a correct answer
	∴ time taken is 16.48 seconds (2 decimal places).	

T.

Question	5
----------	---

Sample answer

Syllabus outcomes and marking guide

(a) (i)
$$R\cos(2t+\alpha) = R\cos 2t\cos \alpha - R\sin 2t\sin \alpha$$

= $\sqrt{3}\cos 2t - \sin 2t$.

 $\therefore R\cos\alpha = \sqrt{3}. R\sin\alpha = 1.$

$$\tan\alpha = \frac{1}{\sqrt{3}} \ .$$

$$\therefore \alpha = \frac{\pi}{6} \qquad \left(0 < \alpha < \frac{\pi}{2}\right).$$

$$\sin\alpha=\frac{1}{2}\;.$$

$$\therefore R = 2.$$

$$\therefore \sqrt{3}\cos 2t - \sin 2t = 2\cos\left(2t + \frac{\pi}{6}\right).$$

PE6

$$(ii) \quad \sqrt{3}\cos 2t - \sin 2t = 0$$

$$2\cos\left(2t+\frac{\pi}{6}\right)=0$$

$$\cos\left(2t + \frac{\pi}{6}\right) = 0$$

$$2t + \frac{\pi}{6} = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2} \dots$$

$$t = \left(-\frac{\pi}{12} + \frac{\pi}{4}\right), \left(-\frac{\pi}{12} + \frac{3\pi}{4}\right), \left(-\frac{\pi}{12} + \frac{5\pi}{4}\right) \dots$$

$$= \frac{\pi}{6}, \frac{4\pi}{6}, \frac{7\pi}{6} \dots$$

 $t = \frac{3n+1}{6}\pi$, where n = 0, 1, 2, 3...

PE2. PE6

- Gives at least 2 correct positive values for t.
 OR
- Makes substantial progress towards finding the correct multiple values of t 1

(b) (i)
$$x = 5 + \sqrt{3}\cos 2t - \sin 2t$$

$$\dot{x} = -2\sqrt{3}\sin 2t - 2\cos 2t$$

$$\bar{x} = -4\sqrt{3}\cos 2t + 4\sin 2t$$

$$= -4(\sqrt{3}\cos 2t - \sin 2t)$$

$$-4(x-5) = -4(5 + \sqrt{3}\cos 2t - \sin 2t - 5)$$

= -4(\sqrt{3}\cos 2t - \sin 2t)
= \bar{x}.

 \therefore acceleration = -4(x-5).

HE3

• One mark for using differentiation to obtain the correct expression for \bar{x} .

2

 One mark for using substitution to prove the required result.

(ii) $\bar{x} = -4(x-5)$

$$x = 5 + \sqrt{3}\cos 2t - \sin 2t$$

$$= 5 + 2\cos\left(2t + \frac{\pi}{6}\right) \qquad \text{from part (a)}.$$

 \therefore the motion is simple harmonic, about the position x = 5, with amplitude = 2.

End-points: 5 + 2 = 7, 5 - 2 = 3.

LIE2

Question 5	(Continued)	
	Sample answer	Syllabus outcomes and marking guide
(iii)	Let $x = 5$ $5 + \sqrt{3}\cos 2t - \sin 2t = 5$ $\sqrt{3}\cos 2t - \sin 2t = 0$ $2\cos\left(2t + \frac{\pi}{6}\right) = 0 \text{from}$ $\therefore t = \frac{\pi}{6} \text{from}$ The particle first passes through $\frac{\pi}{6}$	
	the particle first passes through : $t = \frac{\pi}{6}$ seconds.	t = 5 at time
When LHS RHS $\therefore S_1$ Assura $= 1^2$ $= \frac{1}{3}k$ $= \frac{1}{3}($ $= \frac{1}{3}($	ider the statement S_n : $3^2 + + (2n-1)^2 = \frac{1}{3}n(2n-1)$	 One mark for correctly substituting \$\frac{1}{2}k(2k-1)(2k+1)\$ into the correct form of the result where \$n = k+1\$. One mark for using correct algebraic manipulation to obtain \$\frac{1}{3}(k+1)(2k+1)(2k+3)\$. One mark for giving a correct conclusion statement about proof by induction.

= RHS of S_{k+1} .

all positive integers, n.

Hence, if S_n is true for a particular positive integer, k, it is also true for k + 1. But S_n is true for n = 1. Therefore, S_n is true for

Questi	ion 6		
		Sample answer	Syllabus outcomes and marking guide
(a)	(i)	$\bar{x} = \sqrt{3x + 4},$ but $\bar{x} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$ $\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = (3x + 4)^{\frac{1}{2}}$	HES • Correctly applies the formula $\bar{x} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$ to obtain the requested result
		$\frac{1}{2}v^2 = \frac{2}{3}(3x+4)^{\frac{3}{2}} \times \frac{1}{3} + c.$ $v^2 = \frac{4}{9}(3x+4)^{\frac{3}{2}} + c.$	
	(ii)	At $x = 0$, $v = 0$ (given) $0 = \frac{4}{9}(3 \times 0 + 4)^{\frac{3}{2}} + c.$	HE7 • Gives the correct answer
		$\therefore c = \frac{32}{9}.$	 HE7
	(iii)	At $x = 0$, $\dot{x} = v = 0$ $\ddot{x} = \sqrt{3 \times 0 + 4}$ = 2. Also $\ddot{x} = \sqrt{3x + 4}$ > 0 (for all $x > 0$). The particle starts from rest at 0 with an acceleration of 2 m s ⁻² in a positive direction. The acceleration remains always positive. Hence the motion is always in a positive direction.	Gives a correct explanation based on the acceleration of the particle
(b)	(i)	Probability of both long hair and grey eyes $= 0.2 \times 0.45$ $= 0.09.$	H5 • Gives the correct answer
	(ii)	P(3 with long hair and grey eyes) = ${}^{10}C_3 \times (0.09)^3 \times (0.91)^7$	• Gives the correct answer based on their answer to (i)
		= 0.0452 = 0.045 (correct to 3 decimal places).	Correctly substitutes their answer to (i) into the binomial probability result

(Continued)

Sample answer

Syllabus outcomes and marking guide

(c) (i)

From the graphs, the curves intersect close to x = 1.5. OR

$$f(x) = \ln x - (2 - x).$$

Consider f(1.5) = -0.09... < 0.

$$f(1.6) = +0.07... > 0.$$

 \therefore curves intersect near x = 1.5.

HE7

(ii) Let
$$f(x) = \ln x - (2-x)$$

 $f(x) = \ln x - 2 + x$
 $f'(x) = \frac{1}{x} + 1$
 $f(1.5) = \ln 1.5 - 0.5$
 $f'(1.5) = 1\frac{2}{3}$
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ (Newton's method)

=
$$1.5 - \frac{\ln 1.5 - 0.5}{1\frac{2}{3}}$$

= $1.5567...$
= 1.56 (correct to 2 decimal places).

HE7

- States correct expressions for f(x), f'(x) and correctly evaluates f(1.5), f'(1.5).

(d) (i) $V = \pi \int_{a}^{b} y^{2} dx$ $= \pi \int_{0}^{\frac{\pi}{4}} (1 + \sqrt{2} \cos x)^{2} dx$ $= \pi \int_{0}^{\frac{\pi}{4}} (1 + 2\sqrt{2} \cos x + 2 \cos^{2} x) dx.$

Note: $2\cos^2 x = 1 + \cos 2x$

$$= \pi \int_{0}^{\frac{\pi}{4}} (1 + 2\sqrt{2}\cos x + 1 + \cos 2x) dx$$
$$= \pi \int_{0}^{\frac{\pi}{4}} (2 + 2\sqrt{2}\cos x + \cos 2x) dx.$$

HE₆

Question 6	(Continued) Sample answer	Syllabus outcomes and marking guide
(ii)	$= \pi \left[2x + 2\sqrt{2}\sin x + \frac{1}{2}\sin 2x \right]_0^{\frac{\pi}{4}}$ $= \pi \left[\frac{\pi}{2} + 2\sqrt{2} \times \frac{1}{\sqrt{2}} + \frac{1}{2} \times 1 - 0 \right]$ $= \frac{\pi}{2}(\pi + 5).$ $\therefore \text{ volume of a solid} = \frac{\pi}{2}(\pi + 5) \text{ unit}^3.$	 HE6 One mark for writing a correct primitive expression. One mark for substituting the limits of integration into their primitive to obtain a correct value.

Sample answer Syllabus outcomes and marking guide P6 $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ (a) Applies the correct working to $=\lim_{x\to c}\frac{x^3-c^3}{x-c}$ Partially applies the correct working to $= \lim_{x \to c} \frac{(x-c)(x^2+xc+c^2)}{x-c}$ $=\lim_{x\to c}(x^2+xc+c^2)$ $f'(c) = 3c^2.$ $\therefore f'(a) = 3a^2.$ (b) For every group of 6 at the large table, there is a PE₃ corresponding group of 4 at the small table. Gives the correct answer.....2 .. number of arrangements Gives the correct number of ways in which $= {}^{10}C_6 \times 5! \times 3!$ people can be grouped at the tables $\binom{^{10}C_6}{^{6}}$ or $\binom{^{10}C_4}{^{6}}$. = 151 200.Using their result for the number of groupings, finds the correct number of arrangements for sitting at the circular

(Continued)

Sample answer

Syllabus outcomes and marking guide

(iii) Note 1: $\binom{2n}{C_0}^2 = \binom{2n}{C_n}^2$, $\binom{2n}{C_1}^2 = \binom{2n}{C_{2n-1}}^2$, etc. Note 2: The left side of the identity in (ii) has an **odd** number of terms. The middle term occurs where r = n (e.g. 0, 1, 2, 3, 4).

$$\begin{array}{c} \vdots \\ \vdots \\ (^{2n}C_0)^2 - (^{2n}C_1)^2 + (^{2n}C_2)^2 + \dots + (-1)^n (^{2n}C_n)^2 + \dots \\ \dots + (^{2n}C_{2n-2})^2 - (^{2n}C_{2n-1})^2 + (^{2n}C_{2n})^2 \\ = \left(2(^{2n}C_0)^2 - 2(^{2n}C_1)^2 + 2(^{2n}C_2)^2 - \dots \\ + 2(-1)^n (^{2n}C_n)^2\right) - (-1)^n (^{2n}C_n)^2 \\ = (-1)^n (^{2n}C_n) \qquad \text{from part (ii).} \\ \vdots \\ \left(2\sum_{r=0}^n (-1)^r (^{2n}C_r)^2\right) - (-1)^n (^{2n}C_n)^2 \\ = (-1)^n (^{2n}C_n). \end{array}$$

On rearranging,

$$\begin{split} \sum_{r=0}^{\infty} (-1)^r (^{2n}C_r)^2 &= \frac{1}{2} \times (-1)^n (^{2n}C_n) \\ &+ \frac{1}{2} \times (-1)^n (^{2n}C_n)^2 \\ &= \frac{1}{2} \times (-1)^n \times ^{2n}C_n (1 + ^{2n}C_n) \\ &= \frac{1}{2} (-1)^n ^{2n}C_n (1 + ^{2n}C_n). \end{split}$$

HE7

- One mark for showing that the terms on the left of the identity in (ii) can be written as twice the sum of the first n terms, minus the nth term.
- One mark for rearranging the identity to obtain the given result.