

An XP Approximation Scheme for AFTP in 2D^a

Lucas de Oliveira Silva Lehilton Lelis Chaves Pedrosa

Instituto de Computação, Unicamp

23rd of July, 2025

^a Supported by the S\u00e3o Paulo Research Foundation (FAPESP) grant 2023/12529-8 and by the National Council for Scientific and Technological Development (CNPq) grants #312271/2023-9, #404315/2023-2.

Freeze-Tag Problem Original

Teorema (Arkin et al. [ABF+02])

Existe um EPTAS para o FTP com distâncias L_p em qualquer espaço de dimensão fixa \mathbb{R}^d .

Teorema (Arkin et al. [ABF+02])

Existe um EPTAS para o FTP com distâncias L_p em qualquer espaço de dimensão fixa \mathbb{R}^d .

O tempo de execução é $O(n \log n) + 2^{O(d(1/\varepsilon)^d \log (1/\varepsilon))}$.

Teorema (Abel et al. [AAY17])

O FTP é NP-difícil para distância L_2 no plano.

Teorema (Abel et al. [AAY17])

O FTP é NP-difícil para distância L₂ no plano.

Teorema (Demaine e Rudoy [DR17])

O FTP é NP-difícil para distâncias L_p , onde p > 1, em 3D.

Teorema (Abel et al. [AAY17])

O FTP é NP-difícil para distância L_2 no plano.

Teorema (Demaine e Rudoy [DR17])

O FTP é NP-difícil para distâncias L_p , onde p > 1, em 3D.

Teorema (Pedrosa e Silva [PdOS23])

O FTP é fortemente NP-difícil para distância L_1 em 3D.

Angular Freeze-Tag Problem

O **Angular Freeze-Tag Problem** surge como um problema de **broadcast** entre satélites em 2018 [FK18]:

Motivação

 Dado o crescimento das constelações de satélites, precisamos de estrategias de transmissão eficientes;

Motivação

- Dado o crescimento das constelações de satélites, precisamos de estrategias de transmissão eficientes;
- Recursos limitados restringem a movimentação dos satélites;

Motivação

- Dado o crescimento das constelações de satélites, precisamos de estrategias de transmissão eficientes;
- Recursos limitados restringem a movimentação dos satélites;
- Grandes distâncias impossibilitam um broadcast simultâneo.

• Assumimos um enxame uniforme;

- Assumimos um enxame uniforme;
- Conjunto $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^2$ de **posições distintas**;

- Assumimos um enxame uniforme;
- Conjunto $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^2$ de **posições distintas**;
- Cada p_i está associado a um satélite com **ângulo inicial** α_i ;

- Assumimos um enxame uniforme;
- Conjunto $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^2$ de **posições distintas**;
- Cada p_i está associado a um satélite com **ângulo inicial** α_i ;
- Inicialmente, apenas p_1 contém **um dado** a ser propagado;

- Assumimos um enxame uniforme;
- Conjunto $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^2$ de **posições distintas**;
- Cada p_i está associado a um satélite com **ângulo inicial** α_i ;
- Inicialmente, apenas p_1 contém **um dado** a ser propagado;
- Apenas os satélites que já receberam o dado podem ajustar suas antenas.

• Conjunto de cronogramas *S*;

- Conjunto de cronogramas *S*;
- O cronograma de cada satélite $p_i \in P$ é composto por uma direção inicial d_i

- Conjunto de cronogramas *S*;
- O cronograma de cada satélite $p_i \in P$ é composto por uma direção inicial d_i

- Conjunto de cronogramas *S*;
- O cronograma de cada satélite p_i ∈ P é composto por uma direção inicial d_i e uma sequência de ângulos S_i = (s_{i,1},..., s_{i,ki}).

Exemplo

Dois Objetivos

 O makespan (M(S)) de uma solução S é o instante em que o último satélite recebe o dado (AFTP);

Dois Objetivos

- O makespan (M(S)) de uma solução S é o instante em que o último satélite recebe o dado (AFTP);
- A energia total (E(S)) é a soma de todas as rotações realizadas por todos os agentes (E-AFTP);

Dois Objetivos

- O makespan (M(S)) de uma solução S é o instante em que o último satélite recebe o dado (AFTP);
- A energia total (E(S)) é a soma de todas as rotações realizadas por todos os agentes (E-AFTP);
- Note que $E(S) \geq M(S)$.

Comparação

Comparação

Seja ${\bf S}$ uma solução tal que ${\bf M}$ ${\bf \acute{e}}$ minimizada.

Comparação

Suponha que $\varepsilon < \theta$:

Seja **S** uma solução tal que **M é minimizada**.

Então,
$$M(S) = \varepsilon$$
 e $E(S) = \frac{n-1}{2} \cdot \varepsilon = O(n \cdot M(S))$.

Resultados Anteriores

Teorema (Fekete e Krupke [FK18])

Existe uma 9-aproximação para o AFTP em 2D, assumindo um limite inferior de $\delta>0$ para a rotação inicial de qualquer satélite que mova sua antena.

Resultados Anteriores

Teorema (Fekete e Krupke [FK18])

Existe uma 9-aproximação para o AFTP em 2D, assumindo um limite inferior de $\delta > 0$ para a rotação inicial de qualquer satélite que mova sua antena.

Teorema (Fekete e Krupke [FK18])

É NP-difícil aproximar o AFTP em 2D dentro de um fator menor que $^{5}/_{3}$.

Teorema

Seja I uma instância do AFTP, **E** um número real e **k** um inteiro positivo.

Teorema

Seja I uma instância do AFTP, **E** um número real e **k** um inteiro positivo.

Então, existe um algoritmo que roda em tempo $(n\frac{Ek}{\delta})^{O(\frac{Ek}{\delta})}$ e

Teorema

Seja I uma instância do AFTP, **E** um número real e **k** um inteiro positivo.

Então, existe um algoritmo que roda em tempo $(n\frac{Ek}{\delta})^{O(\frac{Ek}{\delta})}$ e ou prova que toda solução ótima requer mais de **E** de energia total

Teorema

Seja I uma instância do AFTP, **E** um número real e **k** um inteiro positivo.

Então, existe um algoritmo que roda em tempo $(n\frac{Ek}{\delta})^{O(\frac{Ek}{\delta})}$ e ou prova que toda solução ótima requer mais de **E** de energia total, ou encontra uma solução com makespan no máximo $(1+1/k) \cdot OPT(I)$.

Teorema

Seja I uma instância do AFTP, **E** um número real e **k** um inteiro positivo.

Então, existe um algoritmo que roda em tempo $(n\frac{Ek}{\delta})^{O(\frac{Ek}{\delta})}$ e ou prova que toda solução ótima requer mais de **E** de energia total, ou encontra uma solução com makespan no máximo $(1+1/k) \cdot OPT(I)$.

Teorema

Para todo inteiro positivo k, existe uma (1+1/k)-aproximação para o E-AFTP, que roda em tempo $(n^k_{\overline{\delta}})^{O(\frac{k}{\delta})}$.

Preparação

Seja
$$\mu = \frac{\delta}{4k}$$
:

Preparação

Seja
$$\mu = \frac{\delta}{4k}$$
:

• Uma sequência é μ -discreta se todos os seus valores são múltiplos de μ ;

Preparação

Seja
$$\mu = \frac{\delta}{4k}$$
:

- Uma sequência é μ -discreta se todos os seus valores são múltiplos de μ ;
- Uma solução é μ-discreta se todos as suas sequências são μ-discretas.

Lema Principal

Lemma (Silva [dOS25])

Toda **solução racional** S para I pode ser convertida em uma solução μ -discreta S^{μ} tal que

Lema Principal

Lemma (Silva [dOS25])

Toda **solução racional** S para I pode ser convertida em uma solução μ -discreta S^{μ} tal que $M(S^{\mu}) \leq \left(1 + \frac{1}{k}\right) \cdot M(S)$ e $E(S^{\mu}) \leq \left(1 + \frac{1}{k}\right) \cdot E(S)$.

Ideia da Prova

Ideia da Prova

Usando o Lema

Consideramos apenas soluções μ -discretas cuja energia total não excede $(1+{}^1\!/{\it k})\cdot E!$

 Após cada rotação, a antena de um satélite estará em uma das O (E/μ) orientações possíveis;

- Após cada rotação, a antena de um satélite estará em uma das O(E/µ) orientações possíveis;
- Existem O (E²/μ²) transições válidas por satélite, totalizando O (n · E²/μ²) transições;

- Após cada rotação, a antena de um satélite estará em uma das O (E/μ) orientações possíveis;
- Existem O (E²/μ²) transições válidas por satélite, totalizando O (n · E²/μ²) transições;
- Apenas $O(E/\mu)$ delas podem ser selecionadas;

- Após cada rotação, a antena de um satélite estará em uma das O (E/μ) orientações possíveis;
- Existem O (E²/μ²) transições válidas por satélite, totalizando O (n · E²/μ²) transições;
- Apenas $O(E/\mu)$ delas podem ser selecionadas;
- Total de $\binom{O\left(n\cdot E^2/\mu^2\right)}{O(E/\mu)}$ soluções possíveis, que podem ser checadas em tempo $\left(n\frac{Ek}{\delta}\right)^{O(Ek/\delta)}$.

Trabalhos Futuros

Problemas em Aberto

• Tempo de execução $f(E,k,\delta) \cdot n^{O(1)}$ (**FPT**) ao invés de $g(E,k,\delta) \cdot n^{h(E,k,\delta)}$ (**XP**);

Problemas em Aberto

- Tempo de execução $f(E, k, \delta) \cdot n^{O(1)}$ (**FPT**) ao invés de $g(E, k, \delta) \cdot n^{h(E, k, \delta)}$ (**XP**);
- Dificuldade do E-AFTP:

Problemas em Aberto

- Tempo de execução $f(E, k, \delta) \cdot n^{O(1)}$ (**FPT**) ao invés de $g(E, k, \delta) \cdot n^{h(E, k, \delta)}$ (**XP**);
- Dificuldade do E-AFTP:
- Resultados para 3D.

Fim.

Obrigado a todos pela atenção...

Referências

- [AAY17] Zachary Abel, Hugo A. Akitaya, and Jingjin Yu.
 Freeze tag awakening in 2D is NP-hard.
 In Abstracts from the 27th Fall Workshop on Computational Geometry, pages 105–107, 2017.
- [ABF⁺02] Esther M. Arkin, Michael A. Bender, Sandor P. Fekete, Joseph S. B. Mitchell, and Martin Skutella. The Freeze-Tag Problem: How to Wake up a Swarm of Robots. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 568–577. Society for Industrial and Applied Mathematics, 2002.
- [dOS25] Lucas de Oliveira Silva. Algorithms for the Freeze-Tag and related swarm robotics problems. Master's thesis, Unicamp, 2025.
- [DR17] Erik D. Demaine and Mikhail Rudoy. Freeze tag is hard in 3D. In Abstracts from the 27th Fall Workshop on Computational Geometry, 2017.
- [FK18] Sándor P. Fekete and Dominik Krupke. Beam it up, Scotty: Angular freeze-tag with directional antennas. EuroCG 2018 Berlin, 2018.
- [PdOS23] Lehilton Lelis Chaves Pedrosa and Lucas de Oliveira Silva. Freeze—Tag is NP-Hard in 3D with L_1 distance. In Proceedings of the XII Latin-American Algorithms, Graphs and Optimization Symposium. Elsevier BV, 2023.