EXPLORE DATA SCIENCE ACADEMY

EDSA APPLE PRICES CHALLENGE

PROBLEM STATEMENT

Collection Cleaning Exploratory Model Building Model Deployment

Step 1: Data Collection

Durban Fresh Produce Market

Step 2: Data Cleaning

- No NAN Values
- No infinity Values

Step 3: Exploratory Data Analysis

Univariate Analysis

Multivariate Analysis

Univariate analysis

Summarised Visuals

Summarised Visuals

Team_TS4_DSFT • 2021

Skewness and Kurtosis

Skewness and Kurtosis

Multivariate Analysis

Relationship between months and

Let's visualize the correlations using a heat map

Correlation Heatmap

Correlations between all our features and our target variable

Dummy Variabe Encoding

- In regression analysis, a dummy variable is one that takes only the value 0 or 1 to indicate the absence or presence of some categorical feature.
- Dummy variable encoding has our dataset transformed from 15 columns to 36

Variable Selection by Variance Thresholds

- Variable selected as a result of variable selection by variance thresholds
- A threshold of 3%
- The result was a decrease of variables, 36 to 15

The Models

BUILDING THE RANDOM FOREST MODEL

BUILDING THE XGBOOST MODEL

BUILDING A LASSO REGRESSION MODEL

The RMSE Criterion for Model Selection

- How RMSE and R-squared help with model selection
- The RMSE results of the candidate models
- Ridge Regression: 1.4949277683692117
- Lasso Regression: 1.5024482644764312
- XGBoost: 0.6911297404630196
- Random Forest: 0.7119468540737508
- Decision Tree: 1.0036835219554507
- Linear regression: 1.4877286227636732

Optimal Regression Model Selection

As expected, the lasso and the ridge models fell short as compared to the XGBoost, Random Forest even the Linear regression slightly.

The Optimal Model

- The optimal model is XGBOOST
- This model is Extreme Gradient Boosting
- Key advantages of XGBOOST

Conclusion

- We started with a dataset of 64376 and 15 columns.
- RMSE was used as a criterion to for selecting the optimal model for use in our prediction of average prices per kilogram
- The Optimal mode we find is XGBoost model.

MEET OUR TEAM MEMBERS

Thato Bogopane

Namhla Sokapase

Sibongile Maluleka

Mahlomola Mothogoane

Katlego Mathole

