Università degli studi di Catania Corso di laurea Triennale in Fisica Prova scritta di Meccanica Analitica Appello del 04.02.2022

Sia dato un sistema mobile in un piano verticale liscio Π , costituito da un semidisco omogeneo Γ di centro Q, raggio R, base AB, massa M e baricentro G. L'estremo A della base é vincolato a muoversi su una guida rettilinea orizzontale s di Π (asse \vec{x} in figura). Il piano Π é posto in rotazione attorno ad una sua retta verticale r (asse \vec{y} in figura) con velocitá angolare uniforme ω , e sia O il punto di intersezione fra le rette r ed s. Utilizzando $\{O, \vec{x}, \vec{y}\}$ come riferimento relativo, e $\{X, \vartheta\}$ come variabili lagrangiane, essendo X l'ascissa di A e ϑ l'angolo che la base AB forma con l'asse verticale discendente passante per A. Sul disco Γ , agisce la forza elastica

$$\{F = -k(Q - O), Q\}, \quad \text{con} \quad k = \alpha M \omega^2,$$

essendo α un parametro adimensionale reale positivo. Supponendo che tutti i vincoli siano realizzati senza attrito, si chiede di determinare nel riferimento relativo:

- 1. Tutte le possibili configurazioni di equilibrio relativo al variare di $\alpha>0$ e, discuterne la stabilitá e/o instabilitá solo nel caso $0<\alpha\leq 1$.
- 2. Scrivere le equazioni del moto, e gli eventuali integrali primi.
- 3. Dire se esistono moti traslatori del semidisco Γ , ed, in caso affermativo, determinare la specifica soluzione del moto, al variare del parametro α , assumendo come condizioni iniziali X(0) = R e $\dot{X}(0) = 0$.

