Mestrado Integrado em Engenharia Informática

Redes de Computadores

Ano Letivo 2019/2020 • Exame de Recurso • 3 Fevereiro 2020

Duração Total: 120 Minutos

INSTRUÇÕES

- Salvo indicações alternativas expressas pelo docente na sala, o único material permitido é material de escrita, cartão de identificação com fotografia, uma garrafa de água e um pacote de lenços de papel.
- Os alunos responderão às questões do enunciado na própria folha do enunciado.
- Depois de terminarem, os alunos devem sair ordeiramente e em silêncio da sala após permissão do docente, deixando o teste em cima da mesa. Os testes serão recolhidos pelo docente.
- Nenhum aluno poderá abandonar a sala sem que tenham passado pelo menos 30 minutos depois do início do teste e sem que o docente na sala não tenha procedido à confirmação da sua identidade e rubricado o teste.
- Nenhum aluno poderá abandonar a sala nos últimos 15 minutos do tempo disponível para realização do teste por forma a causar a menor disrupção possível. Os alunos que ficarem para os últimos 15 minutos deverão abandonar a sala apenas no final do tempo total e após indicação do docente, deixando o teste em cima da mesa.

GRUPO I (10x5%, 60 minutos)

Classifique cada uma das quatro afirmações (A1, B2, C3 e D4) em cada questão como verdadeira ou falsa. Em cada questão, cada afirmação mal classificada anulará a pontuação duma afirmação bem classificada, não havendo transporte de pontuações negativas entre questões ou grupos.

- 1. Uma tarefa básica do nível da ligação de dados (segundo nível da pilha OSI) é transferir PDUs (*Protocol Data Units*) entre nós adjacentes, sendo que:
- **A1** Quando os PDUs transmitidos entre nós deste nível da pilha não são tratados nos encaminhadores a uma velocidade adequada podem ficar retidos em filas de espera antes de serem reenviados para o próximo nó.
- **B2** As metodologias de partilha do meio de transmissão com deteção de colisões são utilizadas tanto em tecnologias de redes-com-fios (cabladas) como em tecnologias de redes-sem-fios (Wi-Fi).
- **C3** Este nível protocolar define mecanismos e funcionalidades em processos de comunicação direta entre interfaces por forma a serem suportados vários tipos de protocolos de comunicação de nível de rede.
- **D4** É costume utilizarem-se mecanismos de controlo de fluxo e recuperação de erros no nível de ligação de dados quando suportados sobre tecnologias de nível físico sem partilha do meio de transmissão.

de dados qua	ndo suportados	sobre tecnolog	gias de nivel fisi	co sem partilha	do meio de tra	ınsmissão.	
Verdadeiras:							
Falsas:							

- 2. Em tecnologias de partilha de meio de transmissão sem fios Wi-Fi (IEEE 802.11):
- **A1** Uma estação pronta a enviar dados, assim que deteta o meio sem comunicações ativas, pode enviar dados durante um tempo máximo específico que lhe é reservado para o efeito, independentemente de haver colisões ou não durante o processo.
- **B2** Nas tramas de dados, os bits *toDS* e *fromDS* definem a utilização que os quatro campos de endereçamento têm.
- C3 A variante 802.11n permite um alcance máximo e um débito de informação máximo superiores aos conseguidos com a variante 802.11b, mesmo sem a utilização de múltiplas antenas.
- **D4** Todas as tramas contêm quatro endereços MAC, cada um ocupando 48 bits e, no modo infraestrutura, o valor dos quatro endereços são sempre relevantes.

Verdadeiras:		_		
Falsas:				

				nissão com fios l				
A1				ção depende do v	alor temporal	máximo que é	usado para	
		ses no meio de						
B2	Ao contrário dos endereços de rede IPv4, os endereços MAC IEEE 302.3 são de natureza lógica, i.e.,							
	dependem do endereçamento da rede a que o interface está ligado. O paradigma de controlo de acesso e de utilização do meio permite comunicações fiáveis ao nível de							
C3						nicações fiávei	s ao nível de	
				tetadas e evitada		1/1 '. 1 '	c ~	
D4			comunicarem	entre si se funcio	onarem ambos	a debitos de in	normação	
	exatamente i	guais.						
	Verdadeiras:			l				
	Falsas:			-				
4. 1	No nível protoc	colar de rede (te	erceiro nível da	a pilha OSI):				
				ão de circuitos (ou circuitos vii	rtuais) é mais f	iável (menos	
		,		nédios) que a cor		,	`	
	pacotes (ou r	edes de datagra	mas) porque n	nais facilmente p	ermite control	o de fluxo e de	congestão.	
В2		•		s na mesma rede			aces em redes	
				na tecnologia de 1	<u> </u>			
C3	-			s lógicos sem qu	alquer ligação	semântica aos	endereços	
		otocolares infer		~ 1	1 1 1 .		1/ 1	
D4		-		ão de pacotes (or		-		
	em termos do circuitos virt		temas finais (<i>n</i>	osts) do que o pa	aradigma por c	comutação de c	ircuitos (ou	
		uais).						
	Verdadeiras:			-				
	Falsas:			l		ı		
5. 1	No nível de red	le da pilha prot	ocolar TCP/IP:	:				
				e de dados passar	no mesmo sis	tema interméd	io mais do	
	que uma vez	devido à utiliza	ação do campo	de Time to Live	(TTL) no cabe	eçalho de todos	os pacotes.	
В2				e Protocol (ICM				
				podem ser fragr				
C3				P utiliza tabelas				
				odem conter, sim		entradas result	antes de	
				tes de definições		1 .	1	
D4	•			P permite que un	-	-		
				e a decisão de en cote passar tendo				
	sub-rede, de		por onde o pae	ote pussur tendo	ciii consideraç	quo o endereço	de rede, ou	
	Verdadeiras:		B2	C3				
	Falsas:	A1		65	D4			
	Taisas.	Al			D 4			
		ento de redes IF						
A1			espaço de ende	reçamento aprox	imadamente 8	32 menor do qu	e o espaço de	
	endereçamen		. 1.	. 1 1 1	<u> </u>	, 1 1	1	
B2		-		rminada rede cla	sse C, tem, pa	ra todas as sub-	-redes, a	
C 2		ara de sub-ende	,	ua não nada san u	tilizada nar na	nhum interface	ID _v A	
_				e não pode ser u os a zero na parte				
54		-		es/ <i>hosts</i> indica o	-			
		sts de todas as			ciivio do pacol	e para todos os	,	
L	Verdadeiras:	15 45 15445 45	1000 (070)					
				l				
	Falsas:							

Núm	ero:		Nome:	
7. N	lo serv	iço de entre	ga de pacote	es em redes IPv4:
				ser vistos como fragmentos. Um pacote IPv4 que não tenha sofrido
				na realidade, como um único fragmento final com <i>Fragment Offset</i> =0.
В2	Um pa	cote IPv4,	depois de se	r fragmentado, só deve ser reconstruído no sistema final com o interface
	com o	endereço d	e destino, ai	nda que fosse tecnicamente possível o pacote ser reconstruído num
				sistema final se apercebesse.
C3				lum pacote IPv4 pode acontecer no próprio sistema inicial com o
			ndereço de c	
D4			•	ote IPv4 para um sistema que tenha um interface com o mesmo
		,		eço de destino contido no pacote. No caso do endereço de destino no
				adcast da rede ou sub-rede, então o pacote é entregue a todos os
			ede ou sub-r	ede.
	Verdac	leiras:		
	F	alsas:		
8 ('onside	re o protoco	olo ARP (4d	dress Resolution Protocol) da pilha protocolar TCP/IP:
				nível de ligação de dados mas a informação contida numa tabela ARP
	-		-	ereços de todas as redes IPv4 a que está ligado.
в2				s <i>hosts</i> assumem papéis iguais neste protocolo, ainda que alguns <i>hosts</i>
				s de rede de forma dinâmica.
С3	Este p	rotocolo pe	rmite que nu	ıma rede local IPv4 se descubra o endereço MAC de destino a partir do
			igem do pac	
D4			_	broadcast em IPv4 (i.e., envio para todos os interfaces/hosts da rede ou
	sub-re	de) é usado	nos pedidos	s ARP.
	Verdad	leiras:		
	F	alsas:		
9. C	onside	re os equipa	amentos mai	s comuns de interligação no nível de ligação de dados:
				stão definidas múltiplas redes virtuais (VLANs) o tráfego é isolado entre
				é equivalente a ter <i>routers</i> físicos distintos, um por cada VLAN.
В2	Os con	nutadores (switches) ap	rendem quais os interfaces/hosts que interligam analisando os endereços
				nas tramas recebidas em todas as suas portas (links).
C3	-	_		adores (switches) e vários hubs em árvore para assim poder interligar
				s sem precisar de usar um encaminhador/router IP.
D4				iga várias portas (<i>links</i>) numa topologia em estrela que emula o
			uma topolog	gia clássica com mecanismo de <i>token</i> partilhado.
	Verdac	leiras:		
	F	alsas:		
10 N	lo cont	evto genério	o das redes-	_sem_fics:
				1), o problema dos nós expostos ocorre porque um ou mais nós podem
				(Access Point) em simultâneo.
В2				ormação entre dois nós específicos é feita dinamicamente tendo em
				re a potência do sinal e a potência do ruído.
С3				stiverem ao alcance livre (sem obstáculos) um do outro existe sempre
	interfe	erência múti	ıa, mesmo q	ue operem em canais diferentes.
D4				res de dados pode ser suportada por encaminhamento indireto através
	de um	home agen	t mas este m	nodo é pouco escalável para esse home agent.
	Verdac	leiras:		
	F	alsas:		

GRUPO II (15%+15%+10%+10%, 60 minutos)

Tenha em consideração a figura 1 que ilustra o equipamento duma instituição Y que é necessário interligar através de IPv4 à Internet. A instituição possui dos departamentos diferentes, A e B. Os equipamentos referidos como H1, H2 e H3 são hosts no departamento A e os equipamentos referidos como H4, H5 e H6 são hosts do departamento B. Os switches S1 e S2 implementam duas redes virtuais de nível dois, uma para cada departamento. Os routers R3 e R4 servem para interligar as duas sub-redes dos departamentos e também para interligar a instituição Y à Internet. A ligação série entre os routers é uma ligação dedicada.

1. Tendo em consideração que a instituição Y tem apenas disponível uma rede classe B para o endereçamento de todos os equipamentos, defina um esquema de endereçamento que maximize, no futuro, o número possível de *hosts* em cada sub-rede departamental (escolha um endereço IPv4 classe B a seu gosto):

End. Rede:			Máscara Subnetting:	
Host/Router	End. Sub-rede	E	ndereço Interface	Endereço Completo (formato CIDR)
H1		eth1		
H2		eth1		
Н3		eth1		
H4		eth1		
H5		eth1		
Н6		eth1		
R3		eth1		
R3		ser1		
R4		eth1		
R4		ser1		

2. Sabendo que os dois departamentos têm que ter interligação entre si e à Internet, complete as tabelas de encaminhamento manual/estático IPv4 para H1, R3 e R4 (a ordem das entradas numa tabela é irrelevante; escreva os endereços no formato CIDR):

Tabela de encaminhamento de R3

Rede/Sub-rede Destino	Próximo <i>Hop</i>	Interface de saída
0.0.0.0	128.20.0.6/30	ser2
128.20.0.4/30	128.20.0.5/30	ser2

Número:	Nome:	
	11011101	

Tabela de encaminhamento de R4

Rede/Sub-rede Destino	Próximo <i>Hop</i>	Interface de saída
0.0.0.0	128.20.0.6/30	ser2
128.20.0.4/30	128.20.0.4/30	ser2

Tabela de encaminhamento de H1

Rede/Sub-rede Destino	Próximo <i>Hop</i>	Interface de saída
		_
		_
		_

3. Suponha que S1 e S2 são reinicializados (tabelas de comutação ficam vazias) e em seguida o host H6 envia um pacote IPv4 para o host H1 que responde de imediato com um pacote IP para H6. Complete a tabela seguinte com os eventos que acontecem em S1 e S2 (as entradas devem estar por ordem temporal). Considere que os eventos possíveis são: receber trama na porta X (Rec), gravar informação na tabela de comutação (Save) ou enviar trama nas portas X, Y, etc. (Send). Parta do princípio que o endereço MAC de H1 é "H1:eth1", o de H6 é "H6:eth1" e assim por diante.

Comutador	Evento	Porta Entrada	Portas Saída	MAC Origem
S2	Rec	3	•	H6:eth1
S2	Save	3	-	H6:eth1
_				
				_
				_

4. Sabendo que o MTU (*Maximum Transmission Unit*) da rede entre **R3** e **R4** é de 1210 bytes, **R3** tem que fragmentar um pacote IPv4 que recebeu de **H1**, com um total de 2392 bytes, por forma a enviar os fragmentos para **H6**, via **R4**. Sabendo que pacote IPv4 original recebido de **H1** tem o seguinte cabeçalho (o símbolo "?" indica que o valor destes campos é irrelevante) preencha os campos incompletos:

Ver = 4 HL = [Type of Service = ?		Total Length = 2392			
Identification	n = []	Flags=[]	Fragment Offset = []	
Time To Live = 10	Protocol = ?		Header Checksum = ?			
	Source IP Address =]			
Destination IP Address = []						

Preencha também os campos incompletos dos cabeçalhos necessários dos pacotes IP que sejam resultantes do processo de fragmentação do pacote original e que serão enviados a **R4**:

Campo Flags do cabeçalho do pacote IPv4 (3 bits):

Octets: 2

Frame

Control

2

Duration

6

Address

6

Address

6

Address

- Primeiro bit é reservado (valor irrelevante);
- Segundo bit é o DF (Don't Fragment) bit e se for 1 indica que o pacote não pode ser fragmentado;
- Terceiro bit é o MF (*More Fragment*) bit e se for 1 indica que o fragmento não é o último.

Campo **Fragment Offset** é de 13 bits e indica o *offset*, em palavras de 8 bytes, do fragmento em relação aos dados do pacote original.

4 bits 4 bits 8 bits 16 bits HL Type of Service Version **Total Length** Identification Flags Fragment Offset Time To Live Protocol Header Checksum Source IP Address **Destination IP Address** Options + Padding (if any) DATA Formato do pacote IPv4

Formato da trama MAC IEEE 802.11

Sequence

Control

6

Address

2

QoS

Control

4

HΤ

Control

0 - 7951

Frame

Body

4

FCS