Regularizing Black-box Models for Improved Interpretability

Gregory Plumb, Maruan Al-Shedivat, Eric Xing, and Ameet Talwalkar CMU

Summary

- Most work on interpretable machine learning has focused on designing either inherently interpretable models, which typically trade-off accuracy for interpretability, or post-hoc explanation systems, which lack guarantees about their explanation quality.
- We propose an alternative to these approaches by directly regularizing a black-box model for interpretability at training time.
- By doing this, we find that we can substantially improve the explanation fidelity and stability metrics while slightly improving accuracy.

Figure 1: Neighborhood Fidelity of LIME-generated explanations (lower is better) vs. predictive error of several models. The values in blue denote regularization weight.

Standard Approaches for Producing Explanations

- by-design approaches modify the model structure to produce both predictions and explanations, but often sacrifice accuracy.
- **post-hoc** approaches produce explanations for a black-box pre-trained model, but cannot guarantee explanation quality.

We blend these two approaches, by regularizing a black-box model at training time to improve its post-hoc interpretability.

Why Local Explanations?

- They answer the question "What could I have done differently to get the desired result?"
- They can be quite flexible because we can choose what "local" means.

Local Explanations with Semantic Features

- Semantic features have an inherent meaning.
- Local explanations approximate the model, f, across some neighborhood, N_x , around a point, x, with an interpretable function, g.
- Neighborhood Fidelity (NF) Metric[3, 2]:

$$F(f, g, N_x) := \mathbb{E}_{x' \sim N_x} [(g(x') - f(x'))^2]$$
 (1)

Local Explanations with Non-Semantic Features

- Here, we cannot assign meaning to the difference between x and x', so it does not make sense to explain the difference between f(x) and f(x').
- Local explanations identify which parts of the input are influential on a prediction [5]
- Stability (S) Metric [1]:

$$S(f, e, N_x) := \mathbb{E}_{x' \sim N_x}[||e(x, f) - e(x', f)||_2^2] \quad (2)$$

Regularizers

- Computing Eq. 1 or Eq. 2 is too expensive.
- Approximate them with either Alg. 1 or Alg. 2.

Table 1: Unregularized model vs. the same model trained with ExpO-Fidelity on two of the UCI regression problems. Results are shown across 10 trials (standard error is in parenthesis).

Dataset	Regularizer	MSE	LIME-NF	LIME-S	MAPLE-NF	MAPLE-S
autompgs	None	0.14 (0.03)	0.041 (0.012)	0.0011 (0.0006)	0.0160 (0.0088)	0.0150 (0.0099)
	Fidelity	0.13 (0.02)	0.011 (0.003)	0.0001 (0.0003)	0.0014 (0.0006)	0.0017 (0.0005)
communities	None	0.49 (0.05)	0.110 (0.012)	0.022 (0.003)	0.16 (0.02)	1.2 (0.2)
	Fidelity	0.46 (0.03)	0.079 (0.007)	0.005 (0.001)	0.13 (0.01)	0.8 (0.4)

Algorithm 1 ExpO-Fidelity Regularizer input f_{θ} , x, N_{x}^{reg} , m

- 1: Sample points: $x_1', \ldots, x_m' \sim N_x^{\mathrm{reg}}$
- 2: Compute predictions:

$$\hat{y}_j(\theta) = f_{\theta}(x_j') \text{ for } j = 1, \dots, m$$

3: Produce a local linear explanation:

$$\beta_x(\theta) = \underset{\beta}{\operatorname{arg\,min}} \sum_{j=1}^m (\hat{y}_j(\theta) - \beta^\top x_j')^2$$

output $rac{1}{m}\sum_{j=1}^m (\hat{y}_j(heta) - eta_x(heta)^ op x_i')^2$

Algorithm 2 ExpO-Stability Regularizer input f_{θ} , x, N_x^{reg} , m

1: Sample points: $x_1', \ldots, x_m' \sim N_x^{\mathrm{reg}}$

2: Compute predictions:

$$\hat{y}_j(\theta) = f_{\theta}(x_j'), \text{ for } j = 1, \dots, m$$

output
$$rac{1}{m}\sum_{j=1}^m (\hat{y}_j(heta) - f_{ heta}(x))^2$$

Experiments with Semantic Features

- We test ExpO-Fidelity on seven regression problems from the UCI collection as well as SUPPORT2, an in-hospital mortality classification problem.
- We use LIME [3] and MAPLE [2] as explainers.
- We set $N_x = N_x^{reg} = \mathcal{N}(x, 0.1)$ and standardize all features.

Across these datasets, ExpO improved the interpretability metrics by at least 25% and had a small positive impact on accuracy. A sample of the results are in Table 1.

Experiments with Non-Semantic Features

- We test ExpO-Stability by creating saliency maps [4] on MNIST.
- The stability metric decreased from 6.94 to 0.0008 with $N_x = Uniform[x-0.05,x+0.05]$
- The saliency maps now focus on the presence or absence of certain pen strokes (Figure 2).

Figure 2: Original MNIST images (left) and saliency maps of an unregularized (middle) and regularized (right) models.

What Else is in the Paper?

- A comparison of sample-based local interpretability to classic approaches such as Taylor Approximations and the Lipschitz Constant
- A discussion of how N_x , N_x^{reg} , and the explainer's definition of "local" are connected.
- Theory demonstrating that the effects of this regularization generalize to unseen points.

References

[1] D. Alvarez-Melis and T. Jaakkola.

Towards robust interpretability with self-explaining neural networks.

In Advances in Neural Information Processing Systems, pages 7785–7794, 2018.

[2] G. Plumb, D. Molitor, and A. S. Talwalkar.

Model agnostic supervised local explanations.

In Advances in Neural Information Processing Systems, pages 2516–2525, 2018.

[3] M. T. Ribeiro, S. Singh, and C. Guestrin.

Why should i trust you?: Explaining the predictions of any classifier.

In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages 1135–1144. ACM, 2016.

[4] K. Simonyan, A. Vedaldi, and A. Zisserman.

Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[5] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. arXiv preprint arXiv:1703.01365, 2017.