Computabilità - 15 Luglio 2020

Soluzioni Formali

Esercizio 1

Problema: Siano A, B $\subseteq \mathbb{N}$. Definire la nozione di riducibilità A \leq _m B. È vero che se A è ricorsivo e B è finito, non vuoto allora A \leq _m B? Dimostrarlo o fornire un controesempio. E senza l'ipotesi di finitezza per B? In caso non valga in generale con B infinito, portare un controesempio e proporre una condizione che permetta di ristabilire la proprietà.

Soluzione:

Definizione di riduzione: Dati A, B $\subseteq \mathbb{N}$, diciamo che A è many-one riducibile a B (A \leq _m B) se esiste una funzione f: $\mathbb{N} \to \mathbb{N}$ totale e calcolabile tale che: $\forall x \in \mathbb{N}$: $x \in A \iff f(x) \in B$

Caso 1: A ricorsivo, B finito non vuoto

Risposta: Sì, è vero.

Dimostrazione: Sia A ricorsivo e B finito non vuoto. Poiché B è finito, B è ricorsivo. Poiché B $\neq \emptyset$, esiste $b_0 \in B$. Poiché B è finito e B $\subseteq \mathbb{N}$, esiste $b_1 \notin B$.

Definiamo f: $\mathbb{N} \to \mathbb{N}$:

```
f(x) = {
    b<sub>0</sub> se x ∈ A
    b<sub>1</sub> se x ∉ A
}
```

Poiché A è ricorsivo, χ_A è calcolabile, quindi $f(x) = b_0 \cdot \chi_A(x) + b_1 \cdot \chi_{\bar{A}}(x)$ è calcolabile.

La verifica della riduzione è immediata:

- $x \in A \Longrightarrow f(x) = b_0 \in B$
- $x \notin A \Longrightarrow f(x) = b_1 \notin B$

Quindi A ≤_m B. ■

Caso 2: A ricorsivo, B infinito

Risposta: Non vale in generale.

Controesempio:

- Sia A = {0} (ricorsivo)
- Sia B = $\{x \in \mathbb{N} : x \text{ è primo}\}\ (infinito, ricorsivo)$

Supponiamo per assurdo che esista f: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che A \leq _m B. Allora:

- $0 \in A \Longrightarrow f(0) \in B$ (f(0) è primo)
- $\forall x \neq 0$: $x \notin A \Longrightarrow f(x) \notin B$ (f(x) non è primo)

Ma questo significa che f può assumere al più un valore primo (f(0)), mentre deve mappare infiniti valori (tutti gli $x \neq 0$) in numeri non primi. Questo è possibile, quindi il controesempio non è corretto.

Controesempio corretto:

- Sia A = \mathbb{N} (ricorsivo)
- Sia B = {2} (finito ma considerato come sottoinsieme proprio)

Non può esistere f: $\mathbb{N} \to \mathbb{N}$ tale che $\forall x: x \in \mathbb{N} \iff f(x) \in \{2\}$, perché richiederebbe f(x) = 2 per tutti gli x, ma allora avremmo anche $f(x) \in \{2\}$ per elementi che dovrebbero essere mappati fuori da B.

Condizione per ristabilire la proprietà: Se B è ricorsivo e A, B $\neq \emptyset$, N, allora A \leq _m B se A è ricorsivo.

Esercizio 2

Problema: Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : \exists y > x. \ y \in W_x\}$, ovvero dire se $A \in \bar{A}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

A contiene gli indici x tali che esiste almeno un elemento y > x nel dominio di φ_x .

Ricorsività:

A non è ricorsivo. Dimostriamo K ≤_m A.

Definiamo q: $\mathbb{N}^2 \to \mathbb{N}$:

La funzione g è calcolabile. Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(x)}(y) = g(x,y)$.

Verifica della riduzione:

- Se $x \in K$, allora $\phi_{s(x)}(x+1) = x+1$, quindi $x+1 \in W_{s(x)} = x+1 > x$, dunque $s(x) \in A$
- Se $x \notin K$, allora $W_{s(x)} = \emptyset$, quindi $\exists y > x$ tale che $y \in W_{s(x)}$, dunque $s(x) \notin A$

Pertanto K ≤_m A, e poiché K non è ricorsivo.

Enumerabilità ricorsiva di A:

A è r.e. Possiamo scrivere la funzione semicaratteristica:

```
SC_A(x) = 1(\mu w. H(x, \pi_1(w), \pi_2(w)) \wedge \pi_1(w) > x)
```

dove π_1 , π_2 sono le funzioni di proiezione per l'encoding di coppie.

Questa funzione è calcolabile: cerchiamo un testimone y > x tale che $\phi_x(y)$ converge in un numero finito di passi.

Enumerabilità ricorsiva di Ā:

```
\bar{A} = \{x \in \mathbb{N} : \forall y > x. y \notin W_x\} = \{x \in \mathbb{N} : W_x \subseteq \{0,1,...,x\}\}
```

Ā non è r.e. Dimostriamo K ≤_m Ā.

Definiamo h: $\mathbb{N}^2 \to \mathbb{N}$:

```
h(x,y) = \{
y \quad \text{se } x \notin K \land y \le x
\uparrow \quad \text{altrimenti}
```

Per il teorema smn, esiste t: $\mathbb{N} \to \mathbb{N}$ tale che $\varphi_{t}(x) = h(x,y)$.

- Se $x \notin K$, allora $W_{t(x)} \subseteq \{0,1,...,x\}$, quindi $t(x) \in \bar{A}$
- Se $x \in K$, allora $W_{t(x)} = \emptyset \subseteq \{0,1,...,x\}$, quindi $t(x) \in \overline{A}$

Questa riduzione non funziona. Utilizziamo un approccio diverso:

Ā non è r.e. perché se lo fosse, insieme ad A essendo r.e., avremmo che A sarebbe ricorsivo, contraddicendo quanto dimostrato.

Conclusione: A non è ricorsivo, A è r.e., Ā non è r.e. ■

Esercizio 3

Problema: Enunciare il secondo teorema di ricorsione ed utilizzarlo per dimostrare che per ogni $k \ge 0$ esistono due indici $x, y \in \mathbb{N}$ tali che x - y = k e $\phi_x = \phi_y$.

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione $f: \mathbb{N} \to \mathbb{N}$ totale e calcolabile, esiste e $\in \mathbb{N}$ tale che $\phi_e = \phi_{-}\{f(e)\}$.

Dimostrazione dell'esistenza degli indici:

Vogliamo dimostrare che $\forall k \geq 0$, $\exists x, y \in \mathbb{N}$ tali che x - y = k e $\phi_x = \phi_y$.

Caso k = 0: Triviale: prendi x = y qualsiasi.

Caso k > 0: Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

$$g(z,w) = \phi_{z+k}(w)$$

Questa funzione è calcolabile: $g(z,w) = \Psi_U(z+k, w)$.

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che:

$$\phi_{s(z)}(w) = g(z,w) = \phi_{z+k}(w)$$

Quindi $\varphi_{s(z)} = \varphi_{z+k}$.

Consideriamo la funzione f(z) = s(z). Per il Secondo Teorema di Ricorsione, esiste $e \in \mathbb{N}$ tale che:

$$\phi_e = \phi_{f(e)} = \phi_{s(e)}$$

Ma abbiamo $\phi_{s(e)} = \phi_{e+k}$, quindi:

$$\phi_e = \phi_{e+k}$$

Ponendo y = e e x = e + k, otteniamo:

•
$$x - y = (e + k) - e = k$$

•
$$\phi_x = \phi_{e} = \phi_{e} = \phi_{v}$$

Conclusione: Per ogni $k \ge 0$, esistono $x, y \in \mathbb{N}$ tali che x - y = k e $\phi_x = \phi_y$.