

Experimente mit dem Smartphone

Experimentelle Mechanik Wintersemester 2019/20 Steffen Mittelmann

17.10.2019

Das Smartphone

Sensoren

- Beschleunigungssensor
- Gyroskop
- Magnetfeldsensor
- Drucksensor
- Näherungssensor
- Luftfeuchtigkeitssensor
- Temperatursensor
- Lichtsensor (Kamera)
- GPS
- Bluetooth
- NFC
- ...

17.10.201

Experimentelle Mechanik Wintersemester 2019/20

Institut für Laserund Plasmaphysik Prof. Pretzler

Beschleunigungssensor

 $https:/\!/www.elektronik-kompendium.de/sites/bau/1503041.htm$

https://www.reichelt.de

17.10.2019

Bitte das Smartphone beim Experimentieren nicht zerstören!

17 10 2019

Experimentelle Mechanik Wintersemester 2019/20

Aufzugsexperiment

Beschleunigung im Aufzug

Sensoren: Beschleunigungssensor, Luftdrucksensor (falls vorhanden)

- Das Smartphone ruhig auf dem Boden platzieren
- Datenaufnahme starten und eine Fahrt nach oben und eine nach unten machen
- Berechnung der Geschwindigkeit und Höhe
- Berechnung des "Rucks" (siehe Vorlesung: j<2m/s³)
- Tipp: Sensorrate nicht zu hoch! (≈10 Hz)
- Z.B. <u>Excel</u>, OpenOffice Calc, MATLAB, Octave oder Orign zur Datenauswertung

17.10.2019

Aufzugsexperiment

Beschleunigung: a(t) Sensordaten

Geschwindigkeit: $v(t) = \int a(t)dt$

Skript Experimentelle Mechanik 2019/20 Prof. Pretzler

17.10.2019

Experimentelle Mechanik Wintersemester 2019/20

Institut für Laserund Plasmaphysik Prof. Pretzler

Aufzugsexperiment

Beschleunigung: a(t) Sensordaten

Geschwindigkeit:
$$v(t) = \int a(t)dt$$

$$v_i = \sum_{i=1}^N a_i \cdot \Delta t \qquad \Delta t = t_i - t_{i-1}$$

17 10 2019

Aufzugsexperiment

Beschleunigung: a(t) Sensordaten

Geschwindigkeit: $v(t) = \int a(t)dt$

Position (Höhe): $z(t) = \int v(t)dt$

Skript Experimentelle Mechanik 2019/20 Prof. Pretzler

17.10.2019

Experimentelle Mechanik Wintersemester 2019/20

Institut für Laserund Plasmaphysik Prof. Pretzler

Aufzugsexperiment

Beschleunigung: a(t) Sensordaten

Geschwindigkeit: $v(t) = \int a(t)dt$

Position (Höhe):
$$z(t) = \int v(t)dt$$

$$z_i = \sum_{i=1}^N v_i \cdot \Delta t \qquad \Delta t = t_i - t_{i-1}$$

17.10.2019

Aufzugsexperiment

Beschleunigung: a(t) Sensordaten

Geschwindigkeit: $v(t) = \int a(t)dt$

Position (Höhe): $z(t) = \int v(t)dt$

Ruck:
$$j(t) = \frac{da(t)}{dt}$$

$$j_i = \frac{a_i - a_{i-1}}{t_i - t_{i-1}}$$

17.10.2019

Aufzugsexperiment

Höhenmessung mit Drucksensor

Internationale Höhenformel in Standardatmosphäre

Temperatur: $15^{\circ}C = 288,15K$

 $p(h) = 1013,25hPa \cdot \left(1 - \frac{0,0065 \frac{K}{m} \cdot h}{288,15K}\right)^{5,255}$

Luftdruck: 1013,25 *hPa*

Temperaturgradient: $0,0065 \frac{K}{m}$ $\longrightarrow h = \frac{288,15K}{0,0065 \frac{K}{m}} \cdot \left(1 - \left(\frac{p(h)}{1013,25hPa}\right)^{\frac{1}{5,255}}\right)$

https://de.wikipedia.org/wiki/Barometrische_Höhenformel

17.10.2019

