

Recommender Systems

User-Based Collaborative Filtering

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

Cold-start user

Non-personalized recommendation

most recent most popular best rated

What if we know the user?

exploit paths via other users for personalization

more users, better signal?

coincident users, better signal?

similar users, better signal!

	i_1	i ₂	i_3	i ₄
u_1	+1	+1	+1	
u_2	+1			+1
u_3				+1

unary feedback (e.g., click)

	i_1	i ₂	i_3	<i>i</i> ₄
u_1	+1	+1	+1	
u_2	+1			+1
u_3		-1	-1	+1

binary feedback (e.g., like / dislike)

	i_1	i_2	i_3	<i>i</i> ₄
u_1	5	3	3	?
u_2	5			3
u_3		1	2	1

graded feedback (e.g., rate)

Breaking it down

Normalizing ratings

Computing similarities

Selecting neighborhoods

Normalizing ratings

Users rate differently

- Some rate high, others low
- Some use more of the scale than others

Aggregation ignores these differences

Normalization compensates for them

Mean-centering normalization

	i_1	<i>i</i> ₂	i_3	i ₄		
u_1	5	3	3		$\bar{r}_{u_1} = 3.7$	
u ₂	5			3	$\bar{r}_{u_2} = 4.0$	
u_3		1	2	1	$\bar{r}_{u_3} = 1.3$	

Mean-centering normalization

	i_1	<i>i</i> ₂	i ₃	<i>i</i> ₄
u_1	1.3	-0.7	-0.7	
u_2	1.0			-1.0
u_3		-0.3	0.7	-0.3

Selecting neighborhoods

A few options

- All the neighbors
- Random neighbors
- All neighbors above a similarity threshold
- Top-k neighbors ranked by similarity

Computing similarities

In principle, any similarity would do

- Jaccard, Dice index
- Pearson correlation
- Cosine

Empirically, some perform better

Pearson correlation

$$S_{\overrightarrow{u}\overrightarrow{v}} = \frac{cov(\overrightarrow{u}\overrightarrow{v})}{\sigma_{\overrightarrow{u}}\sigma_{\overrightarrow{v}}}$$

$$\approx \frac{\sum_{i \in I_{uv}} (r_{ui} - \bar{r}_u) (r_{vi} - \bar{r}_v)}{\sqrt{\sum_{i \in I_{uv}} (r_{ui} - \bar{r}_u)^2} \sqrt{\sum_{i \in I_{uv}} (r_{vi} - \bar{r}_v)^2}}$$

- Built-in mean-centering normalization
- \circ Computed over ratings in common (I_{uv})

What about little data?

Two users with one common rating

$$\circ |I_{uv}| = 1 \to s_{\overrightarrow{u}\overrightarrow{v}} = 1$$

Solution: weight similarity by confidence

- \circ Simple approach: multiply by $min(|I_{uv}|, 50)/50$
 - $|I_{uv}| < 50$: similarity scaled down by $|I_{uv}|/50$
 - $|I_{uv}| \ge 50$: similarity kept unscaled

From angles to cosines

Cosine is a monotonically decreasing function of the angle for the interval $[0^o, 180^o]$

smaller the angle, larger the cosine

VS.

larger the angle, smaller the cosine

$$s_{\vec{u}\vec{v}} = \cos(\theta_{\vec{u}\vec{v}})$$

$$= \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

$$= \frac{\sum_{i \in I} r_{ui} r_{vi}}{\sqrt{\sum_{i \in I} r_{ui}^2} \sqrt{\sum_{i \in I} r_{vi}^2}}$$

$$s_{\vec{u}\vec{v}} = \frac{4 \times 5 + 4 \times 2}{\sqrt{4^2 + 4^2} \sqrt{5^2 + 2^2}}$$

$$\approx 0.92$$

		<i>i</i> ₁	i ₂	i_3	<i>i</i> ₄	
	u_1	1.3	-0.7	-0.7		
•	<i>u</i> ₂	1.0			-1.0	$s_{\vec{u}_1\vec{u}_2} = +0.58$
•	u_3		-0.3	0.7	-0.3	$s_{\vec{u}_1\vec{u}_3} = -0.17$

$$s_{\vec{u}\vec{v}} = \cos(\theta_{\vec{u}\vec{v}}) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{\sum_{i \in I} r_{ui} r_{vi}}{\sqrt{\sum_{i \in I} r_{ui}^2} \sqrt{\sum_{i \in I} r_{vi}^2}}$$

- \circ In general: $s_{\overrightarrow{u}\overrightarrow{v}} \in [-1,1]$
- \circ With non-negative ratings: $s_{\vec{u}\vec{v}} \in [0,1]$
- With mean-centering (aka adjusted cosine)
 - Equivalent to Pearson... almost!

Cosine vs. Pearson

Cosine has built-in significance weighting

Similarity scaled by ratio

$$|I_u \cap I_v| / |I_u| |I_v|$$

 \circ Similar effect can be obtained by using **overall** σ instead of just σ **over common ratings** in Pearson

How many neighbors?

In theory, the more the better...

- ... if you have a good similarity metric
- Computational cost is also higher

In practice

- More neighbors → more noise
- Fewer neighbors → lower coverage

A few options

- Min / max / average / median rating
- Weighted average (by similarity)
- Supervised aggregation

Common practice

Weighted average: simple and effective

	i_1	<i>i</i> ₂	i_3	<i>i</i> ₄	
u_1	1.3	-0.7	-0.7	?	$\hat{r}_{u_1 i_4} - \bar{r}_{u_1} = \tilde{r}_{u_1 i_4}$
	1.0			-1.0	$r_{u_2 i_4} - \bar{r}_{u_2} = \tilde{r}_{u_2 i_4}$
u_3		-0.3	0.7	-0.3	$r_{u_3 i_4} - \bar{r}_{u_3} = \tilde{r}_{u_3 i_4}$

	i_1	i_2	i_3	<i>i</i> ₄		
u_1	1.3	-0.7	-0.7	3	$\tilde{r}_{u_1i_4}$	
u_2	1.0			(-1.0)	$= \tilde{r}_{u_2 i_4}$	$s_{\vec{u}_1\vec{u}_2} = +0.58$
u_3		-0.3	0.7	-0.3	$=\tilde{r}_{u_3i_4}$	$s_{\vec{u}_1\vec{u}_3} = -0.17$

	i_1	<i>i</i> ₂	<i>i</i> ₃	i_4	
u_1	1.3	-0.7	-0.7	?	$\tilde{r}_{u_1 i_4} = \frac{\sum_{c=1}^{k} s_{\vec{u}_1 \vec{u}_c} \tilde{r}_{u_c i_4}}{\sum_{c=1}^{k} \left s_{\vec{u}_1 \vec{u}_c} \right }$
<i>u</i> ₂	1.0			-1.0	$= \frac{(0.58 \times -1.0) + (-0.17 \times -0.3)}{ -0.58 + -0.17 }$
u_3		-0.3	0.7	(-0.3)	= -0.71

	i_1	i ₂	i_3	<i>i</i> ₄	
u_1	1.3	-0.7	-0.7	?	$\tilde{r}_{u_1 i_4} = -0.71$
u_2	1.0			-1.0	$\hat{r}_{u_1 i_4} = \tilde{r}_{u_1 i_4} + \bar{r}_{u_1}$
u_3		-0.3	0.7	-0.3	= -0.71 + 3.7 = 2.99

Suggested configuration

Reasonable starting point

- ∘ Top-k neighbors ($k \approx 30$)
- Weighted averaging of scores
- Mean-centering normalization
- Cosine similarity

Optimal configuration is application-dependent

How efficient is this?

	i_1	i ₂	i_3	<i>i</i> ₄
u_1	1.3	-0.7	-0.7	? :
u_2	1.0			-1.0
u_3		-0.3	0.7	-0.3

m users $\times n$ items

Cosine between two users: O(n)

Number of potential neighbors: O(m)

Cost per user: O(mn)

	u_1	u ₂	<i>u</i> ₃
u_1	$S_{\vec{u}_1\vec{u}_1}$	$S_{\overrightarrow{u}_1\overrightarrow{u}_2}$	$S_{\vec{u}_1\vec{u}_3}$
		$S_{ec{u}_2ec{u}_2}$	
u_3	$S_{\vec{u}_3}\vec{u}_1$	$S_{\vec{u}_3}\vec{u}_2$	$S_{\vec{u}_3}\vec{u}_3$

m users $\times n$ items

Cosine between two users: O(n)

Number of potential neighbors: O(m)

Cost per user: O(mn)

Cost for all users: $O(m^2n)$

Problem: m and n in the order of 10^7

Some simple optimizations

Can exploit matrix symmetry

Only need to compute one direction

Can exploit matrix sparsity

- Only need to consider users with a common item
- Still a costly operation to perform online
- Should we precompute similarities?

Summary

User-based CF is simple and effective

The oldest CF approach

Lots of configuration knobs

 Similarity functions, neighborhood selection, aggregation functions, rating normalization

Neighborhood selection is a bottleneck