# **Chemistry 3P51 – Fall 2013 Quantum Chemistry**

Lecture No. 6 Sep 16<sup>th</sup>, 2013

1

#### **Objectives**

- To learn the requirements of a wave-function to be valid and the concept of "well-behaved" function.
- To introduce the concept of expectation values show examples of how they are computed based on given wave-functions.
- To motivate the particle-in-a-box system by means of conjugated polyenes.
- To show the general strategy involved in the solution of the Schrödinger equation for a particle in a box and discuss such solution.

### Requirements for a valid wave-function

- 1. The wave-function must be continuous.
- 2. The wave-function must be single-valued.

That is, there should not be two different values of probability density for finding the particle near the same point.

**3.** The wave-function should have **continuous derivatives** everywhere

$$\frac{\partial \psi}{\partial x}, \frac{\partial^2 \psi}{\partial x^2}, \frac{\partial^3 \psi}{\partial x^3}, \dots, \frac{\partial^n \psi}{\partial x^n}$$

except, perhaps, at certain special points (at the nuclei or physical boundaries of the system)

**4.** The wave-function should be **square-integrable**. In other words, **normalizable** 

Functions satisfying 1 to 3 are usually termed as well-behaved. 3

#### The wave-function must be continuous



### The wave-function must be single-valued



5

# The wave-function should have continuous derivatives everywhere



 $\partial \psi / \partial x$  is continuous

 $\partial \psi / \partial x$  is discontinuous at x = a

#### The wave-function should be square-integrable





 $\psi(x)$  is not normalizable because  $|\psi(x)|^2$  is infinite at  $\pm \infty$ 

7

### Expectation values

- Based on the probabilistic interpretation of the wave-function, we introduce the expectation value, expected value or average value
- The average value of an observable A, when the system is an state is given by

$$\langle A \rangle_{\varphi}(t) = \frac{\int_{-\infty}^{\infty} \varphi^{*}(x,t) \hat{A}(x,t) \varphi(x,t) dx}{\int_{-\infty}^{\infty} \varphi^{*}(x,t) \varphi(x,t) dx}$$

where *A* is the operator representing the observable A.

 The average value depends on the state, and in general depends on time

### Example of expectation values

 Later we will see that the n<sup>th</sup> state of the particle-in-a-box system represented by the following wave-function



The average position of the particle, when at the n<sup>th</sup> state is given by

$$\langle x \rangle_{\psi_n} = \frac{\int_0^L \psi_n^*(x) \hat{x} \psi_n(x)}{\int_0^L \psi_n^*(x) \psi_n(x)} = \frac{L}{2}$$

### Example of expectation values

The average linear momentum of the particle, when at the n<sup>th</sup> state, is given by

$$\langle p \rangle_{\psi_n} = \frac{\int_0^L \psi_n^*(x) \hat{p} \psi_n(x)}{\int_0^L \psi_n^*(x) \psi_n(x)} = 0$$

 Therefore the particle in a box is on average at the middle point of the box and has on average zero linear momentum.

#### Application problem No.1: Conjugated poleyenes

- A system of  $\pi$ -electrons in a linear conjugated poleyne can be thought of as a system of non-interacting electrons in a one-dimensional box



- **Assumption 1.** The  $\pi$ -electrons do not interact with one another, but they obey the Pauli exclusion principle.
- **Assumption 2.** The length L of the "box" is equal to the total length of the poleyne chain plus two radii of an  $sp^2$  C atom

#### Example of the 1,3-butadine molecule



From standard reference tables:

$$R(C-C) = 1.54 \text{ Å}$$
  
 $R(C=C) = 1.34 \text{ Å}$   
 $r(sp^2C) = 0.73 \text{ Å}$ 

Using these values we find

$$L = 0.73 + 1.34 + 1.54 + 1.34 + 0.73 = 5.68 \text{ Å}$$

$$V(x) = \begin{cases} 0; & 0 \le x \le L \\ +\infty; & \text{otherwise} \end{cases}$$

# Solving the Schrödinger equation for a particle in a box

· The potential for the system under discussion is given by

$$V(x) = \begin{cases} 0; & 0 \le x \le L \\ +\infty; & \text{otherwise} \end{cases}$$

- Due to the piece-wise nature of the potential, the Schrödinger equation associated to this potential can be studied in three regions.
- Region I:  $-\infty < x < 0 \rightarrow \psi_1(x)$ Region II:  $0 \le x \le L \rightarrow \psi_2(x)$ Region III:  $L < x < +\infty \rightarrow \psi_2(x)$
- In regions I and III the potential is "infinitely high". Therefore the probability of finding the particle in those regions is zero

$$\psi_1(x) = \psi_3(x) = 0$$

13

### Solving the Schrödinger equation for a particle in a box

· For region II the Schrödinger equation looks like

$$-\frac{\hbar^2}{2m}\frac{d^2\psi_2}{dx^2}(x) + 0\cdot\psi_2(x) = E\psi_2(x)$$

which can be re-written as

$$\frac{d^2\psi_2}{dx^2}(x) + k^2\psi_2(x) = 0 \quad ; \quad k^2 = \frac{2mE}{\hbar^2}$$

The general solution to this second order differential equation is

$$\psi_2(x) = A\sin(kx) + B\cos(kx)$$

 In order to determine the constants A and B we need to enforce conditions on the wave-function to make it well-behaved

## Solving the Schrödinger equation for a particle in a box

 In order to make the wave-function continuous, the following conditions should be satisfied

$$\psi_2(0) = \psi_1(0) = 0 \quad \Rightarrow \quad B = 0$$
  
$$\psi_2(L) = \psi_3(L) = 0 \quad \Rightarrow \quad A\sin(kL) = 0$$

- The second condition implies that either A = 0 or sin(kL) = 0. The former cannot be, otherwise would imply there is no wave-function in region II; which would imply having probability zero of finding the particle in region II!
- Therefore sin(kL) = 0, which implies

$$k = \frac{n\pi}{L}$$

• The only part left to be determined is A; which is computed by normalizing the wave-function.

# Normalizing the wave-function for a particle in a box

· So far we have that the wave-function has the form

$$\psi(x) = \begin{cases} 0 ; & x < 0 \\ A \sin\left(\frac{n\pi x}{L}\right) ; & 0 \le x \le L \\ 0 ; & x > L \end{cases}$$

• In order to determine the unknown A we normalize the wavefunction. That is,

$$\int_{-\infty}^{+\infty} \left| \psi(x) \right|^2 dx = 1$$

# Normalizing the wave-function for a particle in a box

· The previous integral leads to the following development

$$\int_{-\infty}^{+\infty} |\psi(x)|^2 dx = \int_{-\infty}^{0} |\psi_1(x)|^2 dx + \int_{0}^{L} |\psi_2(x)|^2 dx + \int_{0}^{+\infty} |\psi_3(x)|^2 dx$$

$$= \underbrace{0}_{\text{Region I}} + \underbrace{A^2 \int_{0}^{L} \sin^2\left(\frac{n\pi x}{L}\right) dx}_{\text{Region II}} + \underbrace{0}_{\text{Region III}}$$

$$= A^2 \left(\frac{L}{2}\right)$$

· Therefore, the normalization constant is

$$A = \sqrt{\frac{2}{L}}$$

17

### Normalized wave-function and eigenvalues for a particle in a box

The normalized wave-function for a particle in a box is then

$$\psi_{n}(x) = \begin{cases} 0 ; & x < 0 \\ \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right) ; & 0 \le x \le L \\ 0 ; & x > L \end{cases}$$

· From slides 11 and 12 of this lecture we conclude

$$k^{2} = \frac{2mE}{\hbar^{2}}$$
;  $k = \frac{n\pi}{L}$   $\Rightarrow E_{n} = \frac{\pi^{2}\hbar^{2}}{2mL^{2}}n^{2} = \frac{h^{2}}{8mL^{2}}n^{2}$ 

 Notice that the energy levels are an integer multiple of a "basic energy" for the system. That is, energy is quantized!

### Energy level diagram for a particle in a box



# Wave-functions and probability densities for a particle in a box

