Contents

1	复形																
	1.1	单纯复形	 														

复形

1.1 单纯复形

单纯形 令 u_0, u_1, \ldots, u_k 是 \mathbb{R}^d 中的点. 一个点 $x = \sum_{i=0}^k \lambda_i u_i$ 被称为 u_i 的**仿射组合**,如果 $\sum \lambda_i = 1$. 仿射组合的几何被称为 **仿射包**. k+1 个点如果满足 $u_i - u_0$ $(1 \le i \le k)$ 是线性无关的,那么说它们是**仿射无关**的. 在 \mathbb{R}^d 中最多有 d 个线性无关的向量,所以最多有 d+1 个放射无关的点.

仿射组合 $x = \sum \lambda_i u_i$ 的所有系数如果满足 $\lambda_i \geq 0$,那么说这是一个**凸组合**. 凸组合的集合被称为**凸包**. k+1 个仿射无关点的凸包被称为 k-单纯形,记为 $\sigma = [u_0, u_1, \ldots, u_k]$.