Yash Gokhale

Andrew ID: ysg

Homework 3: Energy Conversion and Supply

Temperature-entropy diagram for the ideal Rankine cycle.

Figure 1: Ideal Rankine cycle given

In this problem, the vapor enters the turbine at a pressure of 12MPa and leaves the condenser at 45 kPa. The thermal efficiency is given as 0.3.

First step in the problem is to calculate the enthalpies at all the four points:

Based on steam table:

$$h_3 = 2684.9 \frac{kJ}{kg}, s_3 = 5.4924 \left(\frac{kJ}{\frac{kg}{K}}\right)$$

As 3-4 is isentropic:
$$s_4 = 5.4924 \left(\frac{kJ}{\frac{kg}{K}}\right)$$

As the condenser output pressure is given as 0.045 MPa, the values for 0.4 and 0.5 bar in the steam table are averaged to get the value.

Thus, At 4:
$$s_f = \frac{1.0259 + 1.0910}{2} = 1.05845 \left(\frac{kJ}{\frac{kg}{K}}\right); \ s_g = \frac{7.67 + 7.5939}{2} = 7.63195 \left(\frac{kJ}{\frac{kg}{K}}\right)$$

Assuming ideal conditions to calculate

$$x_4 = \frac{s_2 - s_f}{s_a - s_f} = 0.6745$$

Based on this:
$$h_f = \frac{317.58 + 340.49}{2} = 329.035 \frac{kJ}{kg}$$
; $h_{fg} = \frac{2319.2 + 2305.4}{2} = 2312.3 \frac{kJ}{kg}$

$$h_4 = h_f + x_4 * h_{fg} = 329.035 + 0.6745 * 2312.2 = 1888.68 \frac{kJ}{kg}$$

From steam table: $h_1 = 329.035 \, kJ/kg$

To calculate h_2 :

$$v_1 = \frac{1.0265 + 1.03}{2} = 1.02825$$

Using this, h_2 is calculated as follows:

$$h_2 = h_1 + v_1 * (\Delta P) * \frac{10^6}{10^3} \frac{kJ}{kg}$$

Substituting: $h_2 = 329.035 + (1.02825 * 10^{-3}) * (12 - 0.045) * 10^3 = 341.3277 \, kJ/kg$

Thus, the enthalpies obtained are:

Enthalpies	Value (kJ/kg)
h_1	329.035
h_2	341.327
h_3	2684.9
h_4 (Ideal)	1888.68

Calculating the required quantities:

(a) Work output:

$$W_{output} = \eta Q + W_{input}$$

$$Q = h_3 - h_2$$
; $W_{input} = h_2 - h_1$

$$W_{output} = (2684.9 - 341.327) * 0.3 + (341.327 - 329.035) = 715.364 \frac{kJ}{kg}$$

(b)

Heat is supplied to the boiler at the rate of (2.5*10^6) kJ/s

Thus, mass flow rate, $m=\frac{\dot{Q}}{h_3-h_2}$

$$\dot{m} = \frac{2.5*10^6}{2684.9 - 341.328}$$

$$\dot{m}=1066.75\frac{kg}{s}$$

And:

Net Power output of the system = $W_{turbine} * \dot{m}$

$$P_{output} = 715.364 * 1066.75 * 1000 \frac{J}{s} = 763.11 MW$$

Given:

$$T_1 = 295K, C = 9:1, T_3 = 1280 K$$

Based on this, from the thermodynamic tables:

$$h_1 = 295.17 \frac{kJ}{kg}$$
, $Pr_1 = 1.3068$, $h_3 = 1372.24$, $Pr_3 = 310.4$

Consider h_2 :

$$Pr_2 = 9 * Pr_1 = 11.7612$$

This is close to the value of 11.86 from the thermodynamic table at 550K.

Thus, taking the value from $h_2 = 554.74 \frac{kJ}{kg}$

Also, for
$$h_4$$
: $Pr_4 = \frac{Pr_3}{9} = 34.49$

In order to find the fraction of interpolation:

At 430K, Pr=33.72 and h=745.62

Whereas 440K, Pr=35.50 and h=756.44

$$f = \frac{34.49 - 33.72}{35.50 - 33.72} = 0.43$$

$$h_4 = 745.62 + 0.43 * (756.44 - 745.62) = 750.300$$

Based on these calculations:

$$q_{in} = h_3 - h_2 = 817.5$$

$$W_{turbine} = h_3 - h_4 = 621.94$$

$$w_{compressor} = h_2 - h_1 = 259.57$$

$$\eta_{th} = \frac{w_{turbine} - w_{compressor}}{q_{in}} = \frac{621.94 - 259.57}{817.5}$$

$$\eta_{th} = 0.443 \sim 44.3\%$$

Data:

CapEx	275 million \$
Capacity	500 MW
Capacity factor	0.75
Efficiency	0.58
Lifetime	20 years
Operating Cost per kWh electricity	\$0.005/kWh
Fuels Cost per kWh gas	\$0.012/kWh

(A)

Electricity generated in a year= $0.75 * 500 * 24 * 365 = 3.285 * 10^6 MWh$

(B)

Energy consumption of gas=Electricity generated/Efficiency

Energy consumption of gas in a year= $\frac{3.285*10^6}{0.58}$ = 5. 66 * 10⁶ MWh

(C-E)

Fixed costs=Operating cost*Cost of electricity+ Raw Material cost*Cost of gas

Fixed costs=
$$(0.005 * 3.285 * 10^6 + 0.012 * 5.66 * 10^6) * 10^3 = 84.3 million $/year$$

To calculate the annualized cost:

$$P = A * \frac{(i+1)^{N} - 1}{i(i+1)^{N}}$$

If
$$i = 0$$
, $taking \lim_{i \to 0} A * \frac{(i+1)^N - 1}{i(i+1)^N} = A * N$

Tabulating the following cases:

Case	Discount rate	A/P	ACC	Total cost
(C)	0	0.05	13.75 million	98.05
(D)	6	0.087	23.97 million	108.27
(E)	6	0.087	23.97 million	108.27

Based on the total cost calculation, the profit component is incorporated into the total annual cost as follows:

Profit = %Profit * Total annualized cost

Case	Total cost (million)	Profit	Profit cost	Total annual
		Percentage	(million)	cost (million)
(C)	98.05	0	0	98.05

(D)	108.27	0	0	108.27
(E)	108.27	10	10.83	119.1

Based on the total annual cost computed, LCOE can be computed as follows:

$$LCOE = \frac{\textit{Total annual cost}}{\textit{Total annual output}}$$

$$LCOE = \frac{Total\ annual\ cost}{3.285*10^9 kWh}$$

Substituting the same to get the LCOE for parts (C)-(E)

Case	LCOE (\$/kwh)
(C)	0.298
(D)	0.3296
(E)	0.363