ゼミノート #9

Quotient Stacks

七条彰紀

2019年1月30日

目次

1	Definitions	1
1.1	$\mathcal{G} ext{-torsor}$	1
1.2	Quotient Stack	3
2	Aim of This Session	4
3	準備	4
3.1	Definition of $\mathbf{Isom}(X,Y)$	4
3.2	Propositions	5
3.3	Representability of Diagonal Morphism	6
4	証明	7
4.1	Δ is Representable	7
4.2	[X/G] has an Atlas	8

Algebraic stack の具体例として Quotient stack を扱う. この例を通じて特に,「diagonal morphism $\Delta\colon \mathfrak{X}\to \mathfrak{X}\times_S \mathfrak{X}$ が表現可能とはどういうことか」ということを考えたい. 参考文献として [2] 1.3.2, [1] Example 4.8, [3] Example 8.1.12 を参照する.

1 Definitions

1.1 \mathcal{G} -torsor

定義 1.1 (Equivariant Morphism)

一般の site :: \mathbf{C} をとり、 \mathcal{G} を \mathbf{C} 上の sheaf of groups とする. sheaf :: \mathcal{F} と、 \mathcal{G} からの左作用 α : $\mathcal{G} \times \mathcal{F} \to \mathcal{F}$ を組にして (\mathcal{F}, α) と書く、 \mathcal{G} からの左作用を持つ sheaf の間の射 $(\mathcal{F}, \alpha) \to (\mathcal{F}', \alpha')$ とは、sheaf の射

 $f: \mathcal{F} \to \mathcal{F}'$ であって以下が可換図式であるもの.

$$\begin{array}{ccc} \mathcal{G} \times \mathcal{F} & \xrightarrow{\operatorname{id} \times f} \mathcal{G} \times \mathcal{F}' \\ \overset{\alpha}{\downarrow} & & & \downarrow^{\alpha'} \\ \mathcal{F} & \xrightarrow{f} & \mathcal{F}' \end{array}$$

このような射 f は G-equivariant morphism (G 同変写像) と呼ばれる.

定義 **1.2** (*G*-Torsor, [3] 4.5.1, [4] Tag 04UJ)

一般の site :: \mathbf{C} をとり、 \mathcal{G} を \mathbf{C} 上の sheaf of groups とする。 \mathbf{C} 上の \mathcal{G} -torsor とは、 \mathbf{C} 上の sheaf :: \mathcal{P} と 左作用 α : $\mathcal{G} \times \mathcal{P} \to \mathcal{P}$ の組であって、次を満たすもの。

T1 任意の $X \in \mathbf{C}$ について cover of $X :: \{X_i \to X\}$ が存在し, $\mathcal{P}(X_i) \neq \emptyset$. T2 写像

$$\langle \operatorname{pr}_2, \alpha \rangle \colon \mathcal{G} \times \mathcal{P} \to \mathcal{P} \times \mathcal{P}; \quad (p, g) \mapsto (p, \alpha(g, p))$$

は同型. ただし、 $\langle \mathrm{pr}_1, \alpha \rangle$ は $\mathcal{P} \times \mathcal{P}$ の普遍性と $\mathrm{pr}_1, \alpha \colon \mathcal{P} \times \mathcal{G} \to \mathcal{P}$ から得られる射である.

 \mathcal{G} -torsor の射は \mathcal{G} -equivariant morphism である.

 (\mathcal{P},α) が \mathcal{G} -torsor :: (\mathcal{G},m) (ただし $m:\mathcal{G}\times\mathcal{G}\to\mathcal{G}$ は積写像)と同型である時 \mathcal{G} -torsor :: (\mathcal{P},α) は自明 (trivial) であると言う.

注意 1.3

 \mathcal{G} , \mathcal{P} の両方が scheme で表現できる場合には, \mathcal{G} -torsor は principal bundle と呼ばれる.group scheme に対応する representable sheaf が

注意 1.4

任意の $X \in \mathbf{C}$ について $\mathcal{P}(X) \neq \emptyset$ である場合には、条件 T2 は作用 α が単純推移的であることを意味する. すなわち、任意の $p,q \in \mathcal{P}(X)$ についてただ一つの $g \in \mathcal{G}(X)$ が存在し、 $q = g * q = \alpha(g,p)$ となる.

補題 **1.5** ([4] Tag 03AI, [3] 4.5.1)

- (i) \mathcal{G} -torsor :: (\mathcal{P}, α) が自明であることと, \mathcal{P} が global section $^{\dagger 1}$ を持つことと同値.
- (ii) $\mathcal{P}(X) \neq \emptyset$ ならば制限 $\mathcal{P}|_X$ は trivial.
- (iii) 同型 $\mathcal{G}|_X \to \mathcal{P}|_X$ と $\mathcal{P}(X)$ の元は一対一に対応する.

(証明). (\mathcal{P}, α) が自明であると仮定すると、次のように global section が得られる.

$$1 \to \mathcal{G} \cong \mathcal{P}; \quad * \mapsto e$$

ただしeは \mathcal{G} の単位元である.

$$\mathcal{G} \to \mathcal{P}; \quad g \mapsto \alpha(g, p)$$

という射が定義できる. これは定義にある条件 T2 から同型である.

^{†1} 前層の圏 **PSh(C**) の terminal object から \mathcal{P} への射のこと ([4] Tag 06UN). **PSh(C**) の terminal object は自明群で定まる constant sheaf である.

 $s \in \mathcal{P}(X)$ をとれば、scheme の任意の射 $\phi: U \to X$ について

$$1 \to (\mathcal{P}|_X)(U) = \mathcal{P}(U); \quad * \mapsto \phi^* s$$

のように global section :: $1 \to \mathcal{P}|_X$ が定まる.

系 1.6

 \mathcal{G} -torsor の任意の射は同型.

(証明). isomorphism は etale local on the target なので (TODO), 条件 T1 にあるような etale cover $\{\phi_i\colon U_i\to X\}$ を取れば主張は「trivial $(\phi_i)^*\mathcal{G}$ -torsor の射は同型」という命題に帰着される.

 \mathcal{G} の単位元(射 $e: 1 \to \mathcal{G}$ の像)を e と書くことにすると、射 $(\phi_i)^*\mathcal{G} \to (\phi_i)^*\mathcal{G}$ は、 $g \mapsto g \cdot f(e)$ と書ける。 $f(e) \in (\phi_i)^*\mathcal{G}$ も群の元なので逆元が存在する。なので $g' \mapsto g' \cdot f(e)^{-1}$ とすれば逆射が作れる。

1.2 Quotient Stack

定義 1.7 (Quotient Stack, [3] Example 8.1.12)

X :: algebraic space, G :: smooth group scheme over S, acting on X とする. すなわち左作用 α : $G \times X \to X$ が存在するものとする. この時, fibered category :: $[X/G](\to \operatorname{ET}(S))$ を以下で定める.

Object 以下の3つ組.

- S-scheme :: U,
- $G_U(:= G \times_S U)$ -torsor on $ET(U) :: \mathcal{P}$,
- G_U -torsor の射 $\pi: \mathcal{P} \to X_U (:= X \times_S U)$.

Arrow 射 $(U, \mathcal{P}, \pi) \to (U', \mathcal{P}', \pi')$ は二つの射の組 $(f: U \to U', f^{\flat}: \mathcal{P} \to f^*\mathcal{P}')$ であって,以下が可換となるもの.

 π と $f^*\pi'$ の codomain, すなわち X_U と $f^*X_{U'}$ が一致していることに注意.

fibration は $(U, \mathcal{P}, \pi) \mapsto U, (f, f^{\flat}) \mapsto f$ で与えられる.

注意 1.8

任意の $[U \to S] \in \mathbf{Sch}/S$ について, $G_U (:= G \times U)$ は群になる.単位セクション $e_U : 1 \to G_U$, $e : 1 \to G$ の pullback から得られる.積 m_U なども同様.特に射影 $\mathrm{pr}_U : G_U \to U$ は,smooth morphism $:: G \to S$ の pullback なので smooth.

補題 1.9

S:: scheme, X:: algebraic space, G:: smooth group scheme over S, acting on X とする. Quotient stack :: [X/G] は stack in groupoids である.

(証明). stack であることは sheaf の貼り合わせが可能であることに拠る. 詳しくは [3] 4.2.12, [4] Tag 04UK を参照せよ. [X/G] が category fibered in groupoids(CFG) であることを確かめる. これは恒等射上の

[X/G] の射が同型射であることを確かめれば良い.

 $U \in \mathrm{ET}(S)$ を固定し、射 $(\mathrm{id}_U, f^{\flat}): (U, \mathcal{P}, \pi) \to (U, \mathcal{P}', \pi')$ を考える. 定義から、次が可換である.

2 Aim of This Session

定理 2.1

X :: algebraic space, G :: smooth group scheme over S, acting on X とする. Quotient Stack :: [X/G] は Artin stack である.

3 準備

3.1 Definition of $\mathbf{Isom}(X, Y)$

最初に $\mathfrak X$ の cleavage を選択せずとも出来る **Isom** の構成を述べる. 後の注意で特に splitting を選択した 場合の構成も述べておく.

定義 3.1 ($\mathbf{Isom}(X,Y)$)

stack とは限らない fibration :: $\mathfrak{X} \to \mathbf{B}$ と, $U \in \mathbf{B}$ 及び U 上の対象 $X,Y \in \mathfrak{X}$ をとる.この時,CFG over \mathbf{B}/U :: $\mathbf{Isom}(X,Y)$ を以下のように定める.

Object. 以下の 4 つ組.

- \mathbf{B}/U の対象 $f: V \to U$.
- $f \circ f$ cartesian lifting :: $f^*X \to X, f^*Y \to Y$.
- 同型 $\phi \colon f^*X \to f^*Y$.

Arrow. 射

$$(V \xrightarrow{f} U, f^*X \to X, f^*Y \to Y, f^*X \xrightarrow{\phi} f^*Y) \to (W \xrightarrow{g} U, g^*X \to X, g^*Y \to Y, g^*X \xrightarrow{\psi} g^*Y)$$

は,以下の2つからなる.

- \mathbf{B}/U の射 $h: V \to W$ (したがって $q \circ h = f$ が成立),
- 射 $h^*\psi, \phi$ の間の canonical な同型射 $(h^*g^*X \to f^*X, h^*g^*Y \to f^*Y)$.

 $(h^*g^*X \to f^*X, h^*g^*Y \to f^*Y)$ を選択することで、 $h^*g^*X \to X, h^*g^*Y \to Y$ が定まる。また Triangle Lifting により $h^*\psi$ も定まる。以下の図式を参考にすると良い。

fibration は次のように与えられる.

 $\pi\colon \mathbf{Isom}(X,Y) \to \mathbf{B}/U$ Objects: $(f\colon V\to U, f^*X, f^*Y, \phi\colon f^*X\to f^*Y) \mapsto f$ Arrows: $(h\colon V\to W, h^*g^*X\to f^*X, h^*g^*Y\to f^*Y) \mapsto h$

注意 3.2

 $\mathfrak{X} \to \mathbf{B}$ の splitting を選んだ場合には $\mathbf{Isom}(X,Y)$ の定義は次のように簡単に成る.

Object. \mathbf{B}/U の対象 $f\colon V\to U$ と同型 $\phi\colon f^*X\to f^*Y$ の組. Arrow. 射 $(f,\phi)\to (g,\psi)$ は, $g\circ h=f$ を満たす \mathbf{B}/U の射 h.

以下では $\mathbf{Isom}(X,Y)$ が algebraic space(これは sheaf)と同型であるかどうかを考えるので、こちらの定義だけを覚えていても問題はない.

3.2 Propositions

補題 3.3

任意の $U \in \mathbf{B}$ と $X, Y \in \mathfrak{X}(U)$ について、 $\mathbf{Isom}(X,Y)$ は category fibered in sets.

(証明). 恒等射上の射は恒等射しかないことを確かめれば良い. $\mathbf{Isom}(X,Y)$ の射の定義から、恒等射上の射は次の形になっている.

$$(id_U, f^*X \to f^*X, f^*Y \to f^*Y): (f, f^*X, f^*Y, \phi) \to (f, f^*X, f^*Y, \psi)$$

 $f^*X \to f^*X, f^*Y \to f^*Y$ は Triangle Lifting から得られる canonical なものなので、恒等射である.

 $\mathfrak X$:: stack の場合は($\mathfrak X \to \mathbf B$ の splitting を選べば) $\mathbf{Isom}(X,Y)$ は sheaf になる.

補題 3.4

一般の site :: \mathbb{C} と CFG :: $\mathfrak{X} \to \mathbb{C}$ をとる. さらに \mathfrak{X} は split fibered category であるとする. 以下の二つは 互いに同値.

- (i) X は prestack である.
- (ii) 任意の $X,Y \in \mathfrak{X}$ について $\mathbf{Isom}(X,Y)$ の fiber は sheaf である.

(証明). (TODO: 出典)

3.3 Representability of Diagonal Morphism.

注意 3.5

以下, scheme S を固定し、特に断らない限り big etale site :: $\mathrm{ET}(S)$ 上の stack in groupoids のみ考える.

補題 3.6

 $\mathfrak X$:: stack in groupoids on $\mathbf C(=\mathrm{ET}(S))$ とする. この時, $\Delta\colon \mathfrak X\to \mathfrak X\times_S\mathfrak X$ が表現可能であることと,任意 の $U\in \mathbf C$ と任意の $X,Y\in \mathfrak X(U)$ について $\mathbf{Isom}(X,Y)$ が algebraic space であることは同値.

(証明). x,y: $\mathbf{Sch}/U(=U) \to \mathfrak{X}$ を、2-Yoneda Lemma により得られる $X,Y \in \mathfrak{X}(U)$ に対応する射とする \dagger^2 .

以下の図式が pullback diagram であることから分かる.

 pr_U

$$\begin{array}{c|c} \mathbf{Isom}(X,Y) & \xrightarrow{\mathrm{pr}_U} & \mathbf{Sch}/U \\ & \downarrow^{\mathrm{pr}_{\mathfrak{A}}} & & \downarrow^{x \times y} \\ & \mathfrak{A} & \xrightarrow{\Lambda} & \mathfrak{A} \times_S \mathfrak{A} \end{array}$$

任意の射 $\mathbf{Sch}/U \to \mathfrak{X} \times \mathfrak{X}$ が $x \times y$ の形で表されることは、 $\mathfrak{X} \times \mathfrak{X}$ の普遍性から得られる.

まず、射と自然同型を定義する. $\mathbf{Isom}(X,Y)$ から伸びる射は次の関手である. ただし $\xi=(f\colon V\to U,f^*X,f^*Y,\phi\colon f^*X\to f^*Y),\eta=(g\colon W\to U,g^*X,g^*Y,\psi\colon g^*X\to f^*Y)$ とした.

 \mathbf{Sch}/U

 $\mathbf{Isom}(X,Y) \rightarrow$

自然同型 a は次で定める.

^{†2} 例えばxは $f \in \mathbf{Sch}/U$ を cartesian lifting f^*X へ写す.

$$a_{\xi} \colon \quad ((x \times y) \operatorname{pr}_{U})(\xi) \quad \to \quad (\Delta \operatorname{pr}_{\mathfrak{X}})(\xi)$$
$$(f \colon V \to U, f^{*}X, f^{*}X, \alpha) \quad \mapsto \quad (\operatorname{id}_{f^{*}X}, \phi)$$

 $\mathbf{Isom}(X,Y)$ が pullback であることは、 $\mathbf{Isom}(X,Y)$ が普遍性を持つことを通して確かめる. (TODO)

4 証明

4.1 Δ is Representable.

示した補題から、任意の $U \in \mathbb{C}$ と任意の G_U -torsor :: $\mathcal{P}_1, \mathcal{P}_2 \in \mathfrak{X}(U)$ について $\mathbf{Isom}(\mathcal{P}_1, \mathcal{P}_2)$ が algebraic space であることは同値である.これは次のようにして自明な場合に帰着できる.

■ $\mathcal{P}_1, \mathcal{P}_2$ が自明な場合に帰着させる.

補題 4.1 ([3] Exc 5.G)

U :: scheme をとる. sheaf on $\mathrm{ET}(U)$:: \mathcal{F} と etale surjective morphism :: $V \to U$ に対し、 $V \times_U \mathcal{F}$ が algebraic space ならば、 \mathcal{F} は algebraic space.

補題 4.2

 $X,Y \in \mathfrak{X}(U)$ と $v:V \to U$ について

$$V \times_U \mathbf{Isom}(X, Y) \cong \mathbf{Isom}(v^*X, v^*Y).$$

(補題 4.1 の証明). $\mathcal{F}' := (V \times_U \mathcal{F}) \times_V (V \times_U \mathcal{F})$ とおく.

まず diagonal morphism の表現可能性を考える. pullback lemma から次が分かる.

$$(V \times_{U} \mathcal{F}) \times_{V} (V \times_{U} \mathcal{F}) \cong (V \times_{U} \mathcal{F}) \times_{U} \mathcal{F} \cong V \times_{U} (\mathcal{F} \times_{U} \mathcal{F}).$$

このことから、 $\Delta: \mathcal{F} \to \mathcal{F} \times_U \mathcal{F}$ を $V \to Y$ で pullback したものが $\Delta': \mathcal{F}' \to \mathcal{F}' \times \mathcal{F}'$ だと分かる. atlas の存在は次のように分かる. $A \to \mathcal{F}'$ を \mathcal{F}' の atlas とする.

$$\begin{array}{ccc} A & \longrightarrow & \mathcal{F}' & \longrightarrow & \mathcal{F} \\ \downarrow & & \downarrow & \\ V_{\text{etale, suri}} & U \end{array}$$

 $V \to Y$ が etale surjective なので $\mathcal{F}' \to \mathcal{F}$ も etale surjective. 今 $A \to \mathcal{F}'$ が etale surjective なので、併せて $A \to \mathcal{F}$ が etale surjective と分かる.

(補題 4.2 の証明). 定義を変形するだけである.

$$\begin{split} &(V\times_{U}(\mathbf{Isom}(X,Y)))(W)\\ =&V(W)\times_{U(W)}\mathbf{Isom}(X,Y)(W)\\ =&\{(w\colon W\to V,f\colon W\to U,\rho\colon f^{*}X\xrightarrow{\cong}f^{*}Y)\mid u\circ v=f\}\\ =&\{(w\colon W\to V,\rho\colon w^{*}u^{*}X\xrightarrow{\cong}w^{*}u^{*}Y)\}\\ =&\mathbf{Isom}(v^{*}X,v^{*}Y)(V) \end{split}$$

 $\mathcal{P}_1, \mathcal{P}_2$ が自明に成る etale cover :: $\mathcal{V}^{\dagger 3}$ をとり、 $v: V = \bigsqcup_{V \in \mathcal{V}} V \to X$ とすれば、 $v^* \mathcal{P}, v^* \mathcal{P}_2$ は自明な G_U -torsor となる.こうして $\mathcal{P}_1, \mathcal{P}_2$ が自明な場合に議論を帰着させることが出来る.

同型 $G_Y \cong \mathcal{P}_1, G_Y \cong \mathcal{P}_2$ を固定する. これらと π_1, π_2 を合成して

$$\rho_1 \colon G_Y \to X_Y, \quad \rho_2 \colon G_Y \to X_Y$$

を得る.

Isom($(G_Y, \rho_1), (G_Y, \rho_2)$) がどのような sheaf か考える. trivial torsor の任意の自己同型 $\phi \colon G_Y \to G_Y$ は、これが equivariant であることから、 $\phi(e)$ の左からの積になっている。逆に任意の G_Y の元を取れば左からの積が自己同型になるから、集合 $\mathbf{Isom}((G_Y, \rho_1), (G_Y, \rho_2))$ は G_Y の部分集合である。そこで、 $g \in G_Y$ (i.e. $g \colon 1 \to G_Y$) から得られる自己同型 $(\cdot g) \colon G_Y \to G_Y$ が満たすべき条件を考える。

[X/G] の定義から、次が可換である.

 $(\cdot g)$ は equivariant だから、この図式が可換であることは $\rho_1(e)=\rho_2(g)$ と同値である.したがって

Isom(
$$(G_Y, \rho_1), (G_Y, \rho_2)$$
)(V)
={ $g \in G_Y(V) \mid \rho_1(e) = \rho_2(g)$ }
={ $(g, x) \in G_Y(V) \times X_Y(V) \mid (\rho_1(e), \rho_2(g)) = (x, x)$ }

これは次のように、fiber product で表現出来る.

射 $G_Y \to X_Y \times_Y X_Y$ は $g \mapsto (\rho_1(e), \rho_2(g))$ である.この図式が pullback diagram であることは $\mathbf{Isom}((G_Y, \rho_1), (G_Y, \rho_2))$ が algebraic space であることを意味している.

4.2 [X/G] has an Atlas.

射 $a: X \to [X/G]$ を trivial G_X -torsor $:: (G_X, m_X) \in [X/G](X)$ に(2-Yoneda Lemma によって)対応 する射とする.この射 a が atlas であることを示す.a が representable であることは Δ が representable で あることから分かる.a が smooth, surjective であることを示す.

以下の pullback diagram を考える.

$$\begin{array}{ccc} \mathbf{P} & \longrightarrow X \\ \downarrow & \mathrm{p.b.} & \downarrow (G_X, m_X) \\ Y & \xrightarrow{(\mathcal{P}, \pi)} [X/G] \end{array}$$

^{†3} i.e. $\forall V \in \mathcal{V}, \ \mathcal{P}_1(V), \mathcal{P}_2(V) \neq \emptyset.$

ただし $Y \to [X/G]$ は a と同様に $(\mathcal{P},\pi) \in [X/G](Y)$ に対応する射である. \mathcal{P} は作用 $\alpha \colon G_Y \times \mathcal{P} \to \mathcal{P}$ を持つとする.

この時、 ${\bf P}$ は sheaf として ${\cal P}$ と同型である.これは次のように同型が得られる.まず ${\bf P}(U)$ は以下の 3 つの組の集合である.

- $x: U \to X$,
- $y: U \to Y$,
- $\rho: x^*(G_X, m_X) \xrightarrow{\cong} y^*(\mathcal{P}, \pi)).$

ただしx,yについて以下が可換.

$$\begin{array}{ccc} U & \xrightarrow{x} X \\ y \downarrow & & \downarrow \\ Y & \longrightarrow S \end{array}$$

上のような x,y を一つとり, x_0,y_0 と名前を付ける.すると $(y_0)^*G_Y=(x_0)^*G_X$ となる. $\mathbf{P}(U)$ の元 (x,y,ρ) が存在するならば, $x^*X=y^*X_Y$ ゆえに x,y は上の可換図式を満たすことに注意せよ. 次のように同型を定める.

$$\begin{array}{ccc} \mathbf{P}(U) & \to & \mathcal{P}(U) \\ (x, y, \rho) & \mapsto & \rho_U(e) \\ (x_0, y_0, (y_0)^* \alpha(-, p)) & \hookleftarrow & p \end{array}$$

 $(f^*\mathcal{P})(U) = \mathcal{P}(U)$ は f^* の colomit を用いた定義から得られる.

最後に $\mathcal{P} \to Y$ が etale surjective であることを確かめる. $\mathcal{P}(Y_i) \neq \emptyset$ となる Y の cover :: $\{Y_i \to Y\}$ をとる. $\mathcal{P}|_{Y_i}$ は trivial torsor :: G_{Y_i} と同型となる. $\operatorname{pr}_{Y_i}: G_{Y_i} \to Y_i$ は smooth surjective であり、smooth、surjective はどちらも etale local on target な性質なので、 $\mathcal{P} \to Y$ も etale、surjective. (ついでに \mathcal{P} :: algebraic space も分かる.)

参考文献

- [1] Pierre Deligne and David Mumford. The irreducibility of the space of curves of given genus. *Publications Mathématiques de l'Institut des Hautes Études Scientifiques*, Vol. 36, No. 1, pp. 75–109, Jan 1969.
- [2] G. Laumon and L. Moret-Bailly. *Champs algébriques*. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge (A Series of Modern Surveys in Mathematics). Springer Berlin Heidelberg, 1999.
- [3] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.
- [4] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.