${\bf MedvedskyPV\ 25112024\text{-}192902}$

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -7.8 \text{ дБ}.$

Ко входу этой цепи подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 10.5 дБм.

Какая мощность рассеивается внутри цепи коррекции?

- 1) 1.7 mBT
- 2) 2 mBT
- 3) 9.4 мВт
- 4) 1.9 mB_T

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11} = -0.57 \text{--} 0.27 \text{i}$.

Найти модуль (в дБ) коэффициента передачи s_{21} .

- 1) -0.6 дБ
- 2) -2.2 дБ
- 3) -1.6 дБ
- 4) -4.4 дБ

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.5	0.482	-133.8	18.353	97.3	0.030	50.5	0.411	-64.2

Требуется выбрать согласованный аттенюатор с *минимальным* затуханием, подключения которого будет *достаточно*, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 2.9 дБ, подключённый к плечу 2;
- 2) аттенюатор с затуханием 1.5 дБ, подключённый к плечу 1;
- 3) аттенюатор с затуханием 2.1 дБ, подключённый к плечу 1;
- 4) аттенюатор с затуханием 2.1 дБ, подключённый к плечу 1.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.513	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
4.3	0.489	171.0	6.548	58.2	0.061	51.1	0.242	-103.9
5.4	0.497	160.1	5.133	47.1	0.076	48.8	0.217	-114.1
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
8.6	0.595	128.1	3.105	14.9	0.118	33.0	0.136	167.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 1), который может обеспечить согласование со стороны плеча 1 на частоте 6.5 $\Gamma\Gamma$ ц.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 2) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 2 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 3 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Рисунок 3 — Различные реализаци и Γ -образной цепи согласования

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\rm h}=6.2~\Gamma\Gamma$ ц и $f_{\rm b}=7~\Gamma\Gamma$ ц, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

- 1) 1.7 дБ
- 2) 1.3 дБ
- 3) 0.2 дБ
- 4) 0.7 дБ