МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ КАФЕДРА МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ И АНАЛИЗА ДАННЫХ

Румянцев Андрей Кирилович

Статистическое оценивание параметров линейной регрессии с выбросами при наличии группирования наблюдений

Дипломная работа

Научный руководитель: зав. кафедрой ММАД, канд. физ.-мат. наук, доцент Бодягин Игорь Александрович

Допущена к защите
«__» ____ 2019 г.
Зав. кафедрой ММАД,
канд. физ.-мат наук, доцент И.А. Бодягин

Содержание

\mathbf{B}	ВЕД	ЕНИЕ	2
1	Ста	тистическое оценивание параметров линейной регрессии	
	с вы	ыбросами при наличии группирования наблюдений	3
	1.1	Метод секущих	5
	1.2	Переклассификая выборки	6
	1.3	Альтернативные оценки параметров модели	7
	1.4	Полиномиальная регрессия	8
2	Kon	ипьютерные эксперименты	10
	2.1	Сравнительный анализ построенной оценки с альтернативной.	10
		2.1.1 Эксперимент с изменением объема выборки	10
		2.1.2 Эксперимент с полиномиальной регрессией	11
	2.2	Эксперименты с изменением уровня переклассификации выборки	12
	2.3	Сравнение вариаций с оценками без переклассификации	13
За	аклю	рчение	15
C	писо	к Литературы	16
П	рило	жение	17

ВВЕДЕНИЕ

В математической статистике широко используется регрессионная модель. Существует несколько подходов для оценки параметров регрессии, но далеко не все устойчивы к возникновениям аномальных наблюдений, то есть таких наблюдений, которые не подчиняются общей модели. В реальной жизни аномальные наблюдения возникают постоянно. Такие наблюдения могут возникать по разным причинам: из-за ошибки измерения, из-за необычной природы входных данных. По этой причине большинство методов просто неприменимо. В прошлом веке в работах Хьюбера была заложена теория робастного оценивания.

Такие случаи, когда зависимые переменные наблюдаются с выбросами или с пропусками, хорошо исследованы [3]. Более сложный случай, когда вместо содержащих выбросы значений зависимой переменной наблюдаются номера классов(интервалов), в которые попадают эти наблюдения [11]. Темой курсового проекта было "Статистическое оценивание параметров линейной регрессии с выбросами при наличии группирования наблюдений".

Целью преддипломной практики было продолжение исследования и улучшение оценок, построенных в курсовом проекте.

1 Статистическое оценивание параметров линейной регрессии с выбросами при наличии группирования наблюдений

В ходе курсового проекта рассматривается модель линейной регрессии:

$$y_{i} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \dots \\ \beta_{n} \end{pmatrix} \times \begin{pmatrix} 1 \\ x_{i1} \\ \dots \\ x_{in} \end{pmatrix}^{T} + \varepsilon_{i}, \tag{1}$$

$$y_i = f(x_i, \beta) + \varepsilon_i, \tag{2}$$

$$f(x_i, \beta) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_n x_{in}, \tag{3}$$

Здесь y_i – зависимая переменная, $x_i = (x_{i1}, x_{i2}, \dots, x_{in})$ – вектор регрессоров, $\{\beta_k, k = \overline{0,n}\}$ – коэффициенты линейной регрессии, а ε_i – случайная ошибка i-го эксперимента, распределение которой подчиняется нормальному закону с нулевым математическим ожиданием и дисперсией σ^2 , N-объем выборки. Каждый y_i принадлежит нормальному распределению:

$$y_i = f(x_i, \beta) + \varepsilon_i \sim \mathcal{N}(f(x_i, \beta), \sigma^2).$$
 (4)

Предполагается, что выборка содержит выбросы, описываемые следующими соотношениями.

$$y_i^{\widetilde{\varepsilon}} = (\xi_i)y_i + (1 - \xi_i)\eta_i, \tag{5}$$

где ξ_i принимает значение, равное 1, с вероятностью $1-\widetilde{\varepsilon}$ и значение, равное 0, с вероятностью $\widetilde{\varepsilon}$:

$$\begin{cases}
P\{\xi_i = 0\} = \widetilde{\varepsilon}, \\
P\{\xi_i = 1\} = 1 - \widetilde{\varepsilon},
\end{cases}$$
(6)

 η_i -случайная величина из некоторого вообще говоря неизвестного распределения.

Параметр ξ_i имеет следующий содержательный смысл: если $\xi_i=0$, то вместо истинного значения мы наблюдаем выброс, если $\xi_i=1$, то наблюдается истинное значение. Переменную $\widetilde{\varepsilon}$ будем называть долей аномальных наблюдений. Величины ξ_i, x_i и η_i являются независимыми.

Пусть множество значений функции регрессии, т.е множество \mathbb{R} , разбито на k непересекающихся полуинтервалов:

$$\mathbb{R} = (-\infty, a_1] \bigcup (a_1, a_2] \bigcup \cdots \bigcup (a_{k-1}, +\infty). \tag{7}$$

Полученные полуинтервалы будем обозначать: ν_0, \dots, ν_{k-1} .

Предполагается, что каждый раз вместо истинного значения зависимой переменной y_i наблюдается только номер интервала, в который это наблюдение попало. Тогда для каждого y_i будем наблюдать лишь номер полуинтервала μ_i , в который он попал.

$$\mu_i = j$$
, если $y_i \in \nu_j$. (8)

В таком случае принято говорить, что имеет место группирование наблюдений, а сами наблюдения называются группироваными [3].

В курсовом проекте решается задача статистического оценивания параметров модели $\{\beta_k, k=\overline{0,n}\}$ по известным группированным наблюдениям с аномалиями.

Для этого построим функцию правдоподобия:

$$l(\beta, \sigma^{2}, \mu_{1}, \dots, \mu_{N}) = \sum_{i=1}^{N} \ln(P(y_{i} \in \nu_{\mu_{i}})) =$$

$$= \sum_{i=1}^{N} \ln \begin{cases} \frac{1}{2} (\operatorname{erf}(\frac{a_{j+1} - f(x_{i}, \beta)}{\sqrt{2}\sigma}) - \operatorname{erf}(\frac{a_{j} - f(x_{i}, \beta)}{\sqrt{2}\sigma})), & i = \overline{1, k - 2} \\ \frac{1}{2} (1 + \operatorname{erf}(\frac{a_{1} - f(x_{i}, \beta)}{\sqrt{2}\sigma})), & i = 0 \\ \frac{1}{2} (1 + \operatorname{erf}(\frac{a_{k-1} - f(x_{i}, \beta)}{\sqrt{2}\sigma})), & i = k - 1 \end{cases}$$

$$(9)$$

где:

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$
 (11)

Для максимизирования функции правдоподобия решим систему уравнений:

$$\frac{\delta l}{\delta \beta} = 0, \tag{12}$$

где:

$$\frac{\delta l}{\delta \beta} = \frac{\delta \sum_{i=1}^{N} \ln P(y_i \in \nu_{\mu_i})}{\delta \beta} = \frac{\delta \sum_{i=1}^{N} \ln \left(\frac{1}{2} (\operatorname{erf}(\frac{a_{\mu_i+1} - f(x_i,\beta)}{\sqrt{2}\sigma}) - \operatorname{erf}(\frac{a_{\mu_i} - f(x_i,\beta)}{\sqrt{2}\sigma}))\right)}{\delta \beta} = \frac{\delta \sum_{i=1}^{N} \left(\left(1 - (\delta_{\mu_i 0} + \delta_{\mu_i k-1})\right) \frac{\left(\operatorname{erf}'(\frac{a_{\mu_i+1} - f(x_i,\beta)}{\sqrt{2}\sigma}) - \operatorname{erf}'(\frac{a_{\mu_i} - f(x_i,\beta)}{\sqrt{2}\sigma})\right)}{\left(\operatorname{erf}(\frac{a_{\mu_i+1} - f(x_i,\beta)}{\sqrt{2}\sigma}) - \operatorname{erf}(\frac{a_{\mu_i} - f(x_i,\beta)}{\sqrt{2}\sigma})\right)} + (\delta_{\mu_i 0} + \delta_{\mu_i k-1}) \frac{\operatorname{erf}'(\frac{a_{\mu_i} - f(x_i,\beta)}{\sqrt{2}\sigma})}{\left(1 + \operatorname{erf}(\frac{a_{\mu_i} - f(x_i,\beta)}{\sqrt{2}\sigma})\right)} \right) (-1) \frac{\delta f(x_i,\beta)}{\delta \beta}) = (13)$$

$$= -\sum_{i=1}^{N} {1 \choose x_{i1}} \times \left((1 - (\delta_{\mu_{i}0} + \delta_{\mu_{i}k-1})) \frac{(\operatorname{erf}'(\frac{a_{\mu_{i}+1} - f(x_{i},\beta)}{\sqrt{2}\sigma}) - \operatorname{erf}'(\frac{a_{\mu_{i}} - f(x_{i},\beta)}{\sqrt{2}\sigma}))}{(\operatorname{erf}(\frac{a_{\mu_{i}+1} - f(x_{i},\beta)}{\sqrt{2}\sigma}) - \operatorname{erf}(\frac{a_{\mu_{i}} - f(x_{i},\beta)}{\sqrt{2}\sigma}))} + (\delta_{\mu_{i}0} + \delta_{\mu_{i}k-1}) \frac{\operatorname{erf}'(\frac{a_{\mu_{i}} - f(x_{i},\beta)}{\sqrt{2}\sigma})}{(1 + \operatorname{erf}(\frac{a_{\mu_{i}} - f(x_{i},\beta)}{\sqrt{2}\sigma}))}\right).$$

 δ_{ij} - символ Кронекера.

Уравнение (12) решается методом секущих.

Так как для второй производной l получится довольно сложное выражение, то будем приближать ее с помощью выражения:

$$\frac{\delta}{\delta\beta_{j}} \frac{\delta l(\beta_{1}^{(k)}, \dots, \beta_{n}^{(k)})}{\delta\beta} \approx \frac{\frac{\delta l(\beta_{1}^{(k)}, \dots, \beta_{j}^{(k)}, \dots, \beta_{n}^{(k)})(\beta^{(k)})}{\delta\beta} - \frac{\delta l(\beta_{1}^{(k)}, \dots, \beta_{j}^{(k-1)}, \dots, \beta_{n}^{(k)})(\beta^{(k)})}{\delta\beta}}{\beta_{j}^{(k)} - \beta_{j}^{(k-1)}}.$$
(14)

1.1 Метод секущих

Так как мы не можем привести систему $\frac{\delta l}{\delta \beta}=0$ к виду, удобному для итерации, то нам придется искать ее нули с помощью метода секущих. Введем вектор ошибки $\check{\varepsilon}^{(k)}=\beta^*-\beta^{(k)}$. Тогда для его определения имеем:

$$\frac{\delta l(\beta^{(k)} + \check{\varepsilon}^{(k)})}{\delta \beta} = 0. \tag{15}$$

Строя разложение левой части по формуле Тейлора и ограничиваясь лишь линейными членами[8], будем иметь систему:

$$\frac{\delta}{\delta\beta} \frac{\delta l(\beta^{(k)})}{\delta\beta} \Delta \beta^{(k)} = -\frac{\delta l(\beta^{(k)})}{\delta\beta}.$$
 (16)

Если матрица $\frac{\delta}{\delta\beta}\frac{\delta l(\beta^{(k)})}{\delta\beta}$ невырожденная (а в нашем случае она диагональная), то из этой системы можно единственным образом найти $\Delta\beta^{(k)}$ и построить приближение:

$$\beta^{(k+1)} = \beta^{(k)} + \Delta \beta^{(k)}. \tag{17}$$

1.2 Переклассификая выборки

Теперь имеем нули производной функции l, а также ее значения на границе отрезка [a,b]. Переберем эти значения и таким образом найдем значение вектора $\hat{\beta}$, где она достигает своего максимального значения.

Для уменьшения влияния выбросов будем использовать переклассификацию выборки методом K ближайших соседей. Идея заключается в том, что аномальные наблюдения с большей вероятностью попадают не в те интервалы, в которые попадают истинные наблюдения. При этом переклассификация может помочь отнести аномальные наблюдения к истинным классам и улучшить качество оценивания.

На первом этапе для каждого вектора x_i имели класс μ_i : т.е. пару (x_i, μ_i) . Далее выполним переклассификацию выборки. Для этого построим новую выборку такого же объема N. Пройдемся по каждому элементу (x_i, μ_i) выборки и для этого наблюдения построим новое:

$$(x_i, \check{\mu}_i), \tag{18}$$

где $\check{\mu}_i$ получен по методу K-соседей.

$$\check{\mu}_i = \arg\max_j \sum_{k \in V_i, \ k \neq i} \delta_{\check{\mu}_k j} , \qquad (19)$$

где V_i множество индексов l первых K векторов x_l , отсортированных по возрастанию расстояния до вектора x_i .

После переклассификации выборки, применим к ней функцию правдоподобия из уравнений (9), только теперь с использованием новых классов $\check{\mu}_i$ вместо μ_i . Аналогично максимизируем ее и найдем новую оценку параметров $\hat{\beta}$.

1.3 Альтернативные оценки параметров модели

Рассмотрим альтернативный метод оценивания параметров модели регрессии, основанный на замене группированных наблюдений серединами соответствующих интервалов. Такой метод встречается в литературе, например в [9].

Метод заключается в следующем: пусть имеется μ_i - номер полуинтервала, в который попало очередное наблюдение y_i . Ему соответствует полуинтервал ν_{μ_i} (из (8)), т.е. полуинтервал:

$$y_i \in (a_{\nu_{\mu_i}}, a_{\nu_{\mu_i}+1}], i = \overline{1, N}$$
 (20)

(считаем что $a_1 < y_i < a_{k-1}, i = \overline{1, N}$, т.е $1 \le \mu_i \le k - 2$).

Найдем центральную точку этого интервала, т.е. точку

$$\check{y}_i = \frac{a_{\nu_{\mu_i}} + a_{\nu_{\mu_i} + 1}}{2}.$$
(21)

Построим для всех значений функции регрессии y_i значения \check{y}_i . Будем использовать в качестве значений функции регрессии полученные значения \check{y}_i , а в качестве регрессоров x_i и построим МНК оценки параметров β .

Теперь имеет три вида оценок: оценки максимального правдоподобия, оценки максимального правдоподобия с переклассификацией, МНК по серединам интервалов.

1.4 Полиномиальная регрессия

Введем теперь модель полиномиальной регрессии.

$$y_{i} = \beta_{0} + \beta_{1} x_{i1}^{1} + \beta_{2} x_{i2}^{2} + \dots + \beta_{n} x_{in}^{n} + \varepsilon_{i}, i = \overline{1, N},$$

$$y_{i} = \sum_{l=1}^{n} x_{il}^{l-1} + \varepsilon_{i}, i = \overline{1, N},$$

$$y_{i} = f(x_{i}, \beta) + \varepsilon_{i},$$

$$f(x_{i}, \beta) = \beta_{0} + \beta_{1} x_{i1}^{1} + \beta_{2} x_{i2}^{2} + \dots + \beta_{n} x_{in}^{n}$$

$$(22)$$

В случае полиномиальной регрессии также справедливо:

$$y_i = f(x_i, \beta) + \varepsilon_i \sim \mathcal{N}(f(x_i, \beta), \sigma^2).$$
 (23)

Поскольку оценки строились путём максимизирования функции:

$$l(\beta, \sigma^2, \nu_0, \dots, \nu_{k-1}) = \sum_{i=1}^N \ln(P(y_i \in \nu_{\mu_i})) =$$
 (24)

$$= \sum_{i=1}^{N} \ln \begin{cases} \frac{1}{2} (\operatorname{erf}(\frac{a_{j+1} - f(x_{i}, \beta)}{\sqrt{2}\sigma}) - \operatorname{erf}(\frac{a_{j} - f(x_{i}, \beta)}{\sqrt{2}\sigma})), & i = \overline{1, k - 2} \\ \frac{1}{2} (1 + \operatorname{erf}(\frac{a_{1} - f(x_{i}, \beta)}{\sqrt{2}\sigma})), & i = 0 \\ \frac{1}{2} (1 + \operatorname{erf}(\frac{a_{k-1} - f(x_{i}, \beta)}{\sqrt{2}\sigma})), & i = k - 1 \end{cases}$$
(25)

а функция правдоподобия максимизировалась путём решения системы уравнений:

$$\frac{\delta l}{\delta \beta} = 0, \tag{26}$$

которая примет вид:

$$\frac{\delta l}{\delta \beta} = \frac{\delta \sum_{i=1}^{N} \ln P(y_i \in \nu_{\mu_i})}{\delta \beta} = \frac{\delta \sum_{i=1}^{N} \ln \left(\frac{1}{2} \left(\operatorname{erf}\left(\frac{a_{\mu_i+1}-f(x_i,\beta)}{\sqrt{2}\sigma}\right) - \operatorname{erf}\left(\frac{a_{\mu_i}-f(x_i,\beta)}{\sqrt{2}\sigma}\right) \right) \right)}{\delta \beta} = \frac{\delta \sum_{i=1}^{N} \ln \left(\left(1 - \left(\delta_{\mu_i 0} + \delta_{\mu_i k-1}\right) \right) \frac{\left(\operatorname{erf}\left(\frac{a_{\mu_i+1}-f(x_i,\beta)}{\sqrt{2}\sigma}\right) - \operatorname{erf}\left(\frac{a_{\mu_i}-f(x_i,\beta)}{\sqrt{2}\sigma}\right) \right)}{\left(\operatorname{erf}\left(\frac{a_{\mu_i+1}-f(x_i,\beta)}{\sqrt{2}\sigma}\right) - \operatorname{erf}\left(\frac{a_{\mu_i}-f(x_i,\beta)}{\sqrt{2}\sigma}\right) \right)} + (\delta_{\mu_i 0} + \delta_{\mu_i k-1}) \frac{\operatorname{erf}\left(\frac{a_{\mu_i}-f(x_i,\beta)}{\sqrt{2}\sigma}\right)}{\left(1 + \operatorname{erf}\left(\frac{a_{\mu_i}-f(x_i,\beta)}{\sqrt{2}\sigma}\right)\right)} \right) \left(-1\right) \frac{\delta f(x_i,\beta)}{\delta \beta} = (27)$$

$$= -\sum_{i=1}^{N} {1 \choose x_{i1}^{1}} \times \left((1 - (\delta_{\mu_{i}0} + \delta_{\mu_{i}k-1})) \frac{(\operatorname{erf}'(\frac{a_{\mu_{i}+1} - f(x_{i},\beta)}{\sqrt{2}\sigma}) - \operatorname{erf}'(\frac{a_{\mu_{i}} - f(x_{i},\beta)}{\sqrt{2}\sigma}))}{(\operatorname{erf}(\frac{a_{\mu_{i}+1} - f(x_{i},\beta)}{\sqrt{2}\sigma}) - \operatorname{erf}(\frac{a_{\mu_{i}} - f(x_{i},\beta)}{\sqrt{2}\sigma}))} + (\delta_{\mu_{i}0} + \delta_{\mu_{i}k-1}) \frac{\operatorname{erf}'(\frac{a_{\mu_{i}} - f(x_{i},\beta)}{\sqrt{2}\sigma})}{(1 + \operatorname{erf}(\frac{a_{\mu_{i}} - f(x_{i},\beta)}{\sqrt{2}\sigma}))} \right),$$

то построенные оценки также применимы и для полиномиальной регрессии.

Также как и в случае линейной регрессии считаем, что выборка содержит выбросы, т.е., аналогично:

$$y_i^{\widetilde{\varepsilon}} = (\xi_i)y_i + (1 - \xi_i)\eta_i, \tag{28}$$

здесь y_i задаются формулой (22).

2 Компьютерные эксперименты

2.1 Сравнительный анализ построенной оценки с альтернативной

2.1.1 Эксперимент с изменением объема выборки

В следующем эксперименте был произведен сравнительный анализ вариаций ОМП-оценок с МНК оценками в зависимости от объема выборки.

Объем выборки N изменялся от $N_1 = 100$ до $N_2 = 500$, при этом выборка дополнялась, а не генерировалась новая. Использовалась модель линейной регрессии. Доля выбросов была постоянна и равнялась $\tilde{\varepsilon} = 0.08$. Параметры регрессии были постоянными и равнялись $\beta = (90,4)^T$. Регрессоры x_i были из равномерного распределения U(-5,5), ошибки эспериментов $\varepsilon_i \sim \mathcal{N}(0,16)$.

Таблица 1: Параметры модели и оценок

Параметры программы		
Переменная	значение	
Размер выборки N	от 100 до 500	
Доля выбросов $\widetilde{arepsilon}$	0.08	
Параметры регрессии	(90,4)	
$\mid eta \mid$		
Регрессоры x_i	$\sim U(-5,5)$	
$arepsilon_i$	$\sim \mathcal{N}(0, 16)$	
η_i	$\sim \mathcal{N}(100, 100)$	
Величина К	10	

Рис. 1: Сравнение вариаций оценок

При сравнении графиков вариаций (рис.1) можно сделать вывод, что ОМП дают лучший результат,

2.1.2 Эксперимент с полиномиальной регрессией

Был проведен эксперимент с полиномиальной регрессией. Использовались те же параметры модели (таблица 3), объем выборки N изменялся от 100 до 1000:

Рис. 2: Вариации оценок в случае полиномиальной регрессии

Оба метода имели схожее поведение при изменении объема выборки, но построенные оценки максимального правдоподобия стабильно показывали лучший результат.

2.2 Эксперименты с изменением уровня переклассификации выборки

В ходе преддипломной практики были построены эксперименты с изменением величины K для метода K-ближайших соседей, используемого в переклассификации.

Объем выборки N был постоянным: N=500. Использовалась модель линейной регрессии. Доля выбросов была постоянна и равнялась $\widetilde{\varepsilon}=0.08$. Параметры регрессии были постоянными и равнялись $\beta=(90,4)^T$. Регрессоры x_i были из равномерного распределения U(-5,5), ошибки эспериментов $\varepsilon_i \sim \mathcal{N}(0,16)$. Величина K менялась от 10 до 40.

Таблица 2: Параметры модели и оценок экспериментов с переклассификацией выборки

Параметры программы		
Переменная	значение	
Размер выборки <i>N</i>	500	
Доля выбросов $\widetilde{arepsilon}$	0.08	
Параметры регрессии	(90,4)	
β	,	
Регрессоры x_i	$\sim U(-5,5)$	
$arepsilon_i$	$\sim \mathcal{N}(0, 16)$	
η_i	$\sim \mathcal{N}(100, 100)$	
Величина К	от 10 до 40	

Рис. 3: Зависимость вариаций от K – числа соседей, используемого в переклассификации выборки

В результате получилось, что при увеличении константы К точность оценки параметров растёт.

2.3 Сравнение вариаций с оценками без переклассификации

Были проведены эксперименты для сравнения эмпирической вариации оценок максимального правдоподобия, когда использовалась вышеописанная переклассификация и когда не использовалась. При этом на каждой итерации выборка увеличивалась.

Объем выборки N изменялся от $N_1 = 100$ до $N_2 = 400$, при этом выборка дополнялась, а не генерировалась новая. Использовалась модель линейной регрессии. Доля выбросов была постоянна и равнялась $\tilde{\varepsilon} = 0.08$. Параметры регрессии были постоянными и равнялись $\beta = (90,4)^T$. Регрессоры x_i были из равномерного распределения U(-5,5), ошибки эспериментов $\varepsilon_i \sim \mathcal{N}(0,16)$. В методе, где использовалась переклассификация, величина K выбиралась: K = 10.

Таблица 3: Параметры модели и оценок экспериментов

Параметры программы		
Переменная	значение	
Размер выборки <i>N</i>	от 100 до 400	
Доля выбросов $\widetilde{arepsilon}$	0.08	
Параметры регрессии	(90,4)	
β		
Регрессоры x_i	$\sim U(-5,5)$	
$arepsilon_i$	$\sim \mathcal{N}(0, 16)$	
η_i	$\sim \mathcal{N}(100, 100)$	
В методе, с	10	
переклассификацией		
величина K		

Рис. 4: Сравнение вариаций оценок когда используется и не используется переклассификация

Заключение

В ходе преддипломной практики был проведен аналитический обзор литературы методов статистического анализа данных при наличии классифицированных наблюдений с искажениями. В результате был реализован альтернативный метод - метод наименьших квадратов по центрам интервалов.

Был проведен сравнительный анализ альтернативного метода с оценками максимального правдоподобия. Оценки максимального правдоподобия с переклассификацией выборки показали наилучшие результаты.

Над оценками максимального правдоподобия с переклассификацией выборки были осуществлены эксперименты, в которых изменялась константа K для метода K— соседей (см. п. 2.2). Выяснилось, что увеличение константы K повышает точность аппроксимации.

Реализованные методы максимального правдоподобия с переклассификацией и МНК по серединам интервалов были обобщены на случай полиномиальной регрессии.

По проведенным экспериментам видно, что ОМП с переклассификацией показывают не хуже результаты, чем альтернативные оценки. Можно добиться более точных результатов аппроксимации, если хорошо подобрать параметры оценок.

Список литературы

- [1] Хьюбер Дж П. Робастность в статистике:nep. с англ. М.:Мир, 1984.- $304~\mathrm{c}$.
- [2] Харин Ю.С., Зуев Н.М., Жук Е.Е. Теория вероятностей, математическая и прикладная статистика: учебник Минск: БГУ, 2011.-463 с.
- [3] Е. С Агеева, чл.-корр. НАН Беларуси Ю.С. Харин Состоятельность оценки максимального правдопобия параметров множественной регрессии по классифицированным наблюдениям
- [4] John Fox, Sanford Weisberg Robust Regression October 8, 2013
- [5] А.В. Омельченко *Робастное оценивание параметров полиномиальной регрессии второго порядка* Харьковский национальный университет радиоэлектроники, Украина, 2009
- [6] Özlem Gürünlü Alma Comparison of Robust Regression Methods in Linear Regression Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 9, 409 421 c.
- [7] Sergei Winitzki A handy approximation for the error function and its inverse.
- [8] Мандрик П.А., Репников В.И., Фалейчик Б.В., *Численные методы* [Электронный ресурс].
- [9] Paolo Giordani Linear regression analysis for interval-valued data based on the Lasso technique – Department of Statistical Sciences Sapienza University of Rome
- [10] Masahiro Inuiguchi, Tetsuzo Tanino, interval linear regression methods based on minkowski difference a bridge between traditional and interval linear regression models. – KYBERNETIKA, volume 42, 2006, number 4, pages 423 - 440
- [11] Nelson, W., Hahn, G.J. *Technometrics*. volume 14, 1972, pages 247–269.

Приложение

all_results_classic = []
all_results_naive = []

```
Метод наименьших квадратов по центрам интервалов
   \verb|class ApproximationGEMModelNaive(ApproximationGEMModelRedesigned)|:
       def fit(self):
           self.classify()
           def ex_generator(mu_data):
               for i in range(0, self.endogen.size):
                   if mu_data[i] is None:
                       continue
                   a_mu_i_plus_1 = mu_data[i] * Defines.INTERVAL_LENGTH
                   a_mu_i = mu_data[i] * Defines.INTERVAL_LENGTH - Defines.INTERVAL_LENGTH
                   yield (a_mu_i_plus_1 + a_mu_i) / 2
           naive_ex_data_positive = np.fromiter(ex_generator(self._np_freq_positive), float)
           naive_ex_data_negative = np.fromiter(ex_generator(self._np_freq_negative), float)
           naive_ex_data_full = np.append(naive_ex_data_positive, naive_ex_data_negative)
           z, resid, rank, sigma = np.linalg.lstsq(self.exogen, naive_ex_data_full, rcond=None)
           return z
   Моделирование полиномиальной регрессии:
def modulate_polynomial_regression(regression_sample_quintity, regression_outlier_percentage):
   regression_parameters = ACCURATE_RESULT
   _x_points = np.zeros(shape=[regression_sample_quintity, len(regression_parameters)])
   _y_points = np.zeros(shape=regression_sample_quintity)
   def np_random_polynomial(size):
        res = np.zeros(size)
       for i in range(0, size):
           _{res}[i] = random.uniform(-5, 5) ** (i + 1)
       return _res
   for i in range(0, regression_sample_quintity):
        _x_points[i] = np.append(np.ones(1), np_random_polynomial(len(ACCURATE_RESULT) - 1))
       if random.random() > regression_outlier_percentage / 100:
           _y_points[i] = (_x_points[i] * ACCURATE_RESULT) + np.random.normal(0, 4)
           _y_points[i] = np.random.normal(100.0, 15.0, size=1)
   return _x_points, _y_points
   Моделирование линейной регрессии:
   def modulateRegression(regression_sample_quintity, regression_outlier_percentage):
   regression_parameters = ACCURATE_RESULT
   _x_points = np.zeros(shape=[regression_sample_quintity, len(regression_parameters)])
   _y_points = np.zeros(shape=regression_sample_quintity)
   for i in range(0, regression_sample_quintity):
       if random.random() > regression_outlier_percentage / 100:
           _x_points[i] = np.append(np.ones(1), np.random.uniform(-5, 5, size=len(regression_parameters) - 1))
           _y_points[i] = (_x_points[i] * regression_parameters) + np.random.normal(0, 4)
           _x_points[i] = np.append(np.ones(1), np.random.uniform(-5, 5, size=len(regression_parameters) - 1))
           _y_points[i] = np.random.normal(100.0, 15.0, size=1)
   return _x_points, _y_points
   Метод наименьших квадратов по центрам интервалов:
def fit_data_naive_classic():
   sample_sizes = []
```

for sample_size in range(SAMPLE_SIZE_MIN, SAMPLE_SIZE_MAX+1, SAMPLE_SIZE_STEP):

```
successful_fit = False
        while not successful_fit:
           x_points, y_points = modulateRegression(sample_size, OUTLIER_PERCENTAGE)
           approx_model = groupingEstimates.GEM(x_points, y_points)
           approx_model_naive = groupingEstimatesNaive.GEM_N(x_points, y_points)
           try:
               result = approx_model.fit()
                print("GEM {}".format(result))
               result_naive = approx_model_naive.fit()
                print("GEM_N {}".format(result_naive))
                successful_fit = True
                all_results_classic.append(result)
                all_results_naive.append(result_naive)
                sample_sizes.append(sample_size)
           except KeyboardInterrupt:
               print("stopping...")
               np.save(NP_DATA_PATH + "gem_res_classic", all_results_classic)
               np.save(NP_DATA_PATH + "gem_res_naive", all_results_naive)
               np.save(NP_DATA_PATH + "gem_sizes", sample_sizes)
               quit()
           except Exception as e:
               print(e)
   np.save(NP_DATA_PATH + "gem_res_classic", all_results_classic)
   np.save(NP_DATA_PATH + "gem_res_naive", all_results_naive)
   np.save(NP_DATA_PATH + "gem_sizes", sample_sizes)
   График с разным объемом выборки:
def plot_with_different_sample_size():
   sample_sizes = []
   all_results_with_classification = []
   all_results_without_classification = []
   x_points = None
   y_points = None
   for sample_size in range(SAMPLE_SIZE_MIN, SAMPLE_SIZE_MAX+1, SAMPLE_SIZE_STEP):
        successful_fit = False
        while not successful_fit:
           x_points_t, y_points_t = modulateRegression(sample_size, OUTLIER_PERCENTAGE)
           if x_points is None or y_points is None:
               x_points = x_points_t
               y_points = y_points_t
           else:
               x_points = np.append(x_points, x_points_t, axis=0)
               y_points = np.append(y_points, y_points_t, axis=0)
           approx_model = groupingEstimates.GEM(x_points, y_points)
           try:
               result = approx_model.fit()
               print("GEM {}".format(result))
                result_without = approx_model.fit_without_reclassification()
               print("GEM_without {}".format(result_without))
                successful_fit = True
                all_results_with_classification.append(result)
                all_results_without_classification.append(result_without)
               sample_sizes.append(sample_size)
           except KeyboardInterrupt:
               print("stopping...")
               np.save(NP_DATA_PATH + "gem_res_with", all_results_with_classification)
                np.save(NP_DATA_PATH + "gem_res_without", all_results_without_classification)
               np.save(NP_DATA_PATH + "gem_sizes_with_without", sample_sizes)
               quit()
           except Exception as e:
               print(e)
   np.save(NP_DATA_PATH + "gem_res_with", all_results_with_classification)
   np.save(NP_DATA_PATH + "gem_res_without", all_results_without_classification)
   np.save(NP_DATA_PATH + "gem_sizes_with_without", sample_sizes)
```

График с разным уровнем переклассификации:

```
def plot_with_different_reclassification_level():
    reclassification_levels = []
    all_results_with_classification = []
    recl_level_min = 10
    recl_level_max = 40
    x_points, y_points = modulateRegression(500, OUTLIER_PERCENTAGE)
    for recl_level in range(recl_level_min, recl_level_max + 1, 2):
        GroupingEstimatesDefines.RECLASSIFICATION_LEVEL = recl_level
        successful_fit = False
        while not successful_fit:
             approx_model = groupingEstimates.GEM(x_points, y_points)
                 result = approx_model.fit()
                 print("GEM {}".format(result))
                 successful_fit = True
                 all_results_with_classification.append(result)
                 reclassification_levels.append(recl_level)
             except KeyboardInterrupt:
                 print("stopping...")
                 np.save(NP_DATA_PATH + "gem_with_dif_level_results", all_results_with_classification)
                 np.save(NP_DATA_PATH + "gem_with_dif_level_levels", reclassification_levels)
                 quit()
             except Exception as e:
                 print(e)
    np.save(NP_DATA_PATH + "gem_with_dif_level_results", all_results_with_classification)
np.save(NP_DATA_PATH + "gem_with_dif_level_levels", reclassification_levels)
```