In [4]: # import all the necessary libraries. As we will be using linear regression
#here so we will be importing Linear regression from sklearn

import pandas as pd #For data related tasks
import matplotlib.pyplot as plt #for data visualization
import quandl #Stock market API for fetching Data
from sklearn.linear_model import LinearRegression

```
In [5]: # We are using quandl as the data source here by which we are extracting the value
quandl.ApiConfig.api_key = 'eoX1ZJFGKFXMLo7z3oav'
stock_data = quandl.get('NSE/TCS', start_date='2018-12-01', end_date='2018-12-31'
```

In [6]: # print the data received from quandL API.
print(stock_data)

	0pen	High	Low	Last	Close	Total Trade Quantity	
\ D=+=							
Date	1004 00	1000 00	1000 20	1004 00	1002 40	1610576 0	
2018-12-03 2018-12-04	1984.00	1990.00	1968.30	1984.00	1982.40	1610576.0 3270615.0	
2018-12-04	1983.00	2019.40	1971.00	2009.85	2010.85	2501539.0	
2018-12-05	2006.00 1998.00	2018.00 2017.00	1985.00 1979.60	2003.90 1990.00	2006.75 1992.70	2321216.0	
2018-12-06	1985.05	2003.90	1973.00	1999.85	1992.70	1680420.0	
2018-12-07	1975.00	2003.90	1960.00	1961.00	1975.80	2010786.0	
2018-12-10	1970.00	2011.00	1961.00	1997.05	2000.00	2942014.0	
2018-12-11	2001.10	2010.00	1984.95	2016.50	2006.00	2219993.0	
2018-12-12	2024.00	2022.00	1974.50	1981.95	1982.60	3748429.0	
2018-12-13	1983.00	1998.95	1975.25	1989.00	1989.75	2473761.0	
2018-12-14	1999.00	2004.90	1985.00	1992.90	1994.30	1227921.0	
2018-12-17	1991.90	2004.30	1976.40	1987.90	1987.85	1768742.0	
2018-12-18	1984.80	1984.80	1960.05	1970.80	1968.45	2498833.0	
2018-12-13	1953.80	1974.90	1946.00	1955.00	1954.05	1940277.0	
2018 12 20	1948.00	1950.00	1886.55	1905.00	1895.80	3729956.0	
2018 12 21	1905.80	1938.90	1905.00	1922.00	1918.50	1864116.0	
2018 12 24	1921.80	1921.80	1870.25	1892.00	1889.20	2446614.0	
2018-12-27	1909.00	1941.70	1872.10	1909.10	1908.95	4968201.0	
2018-12-28	1915.00	1920.00	1893.00	1897.00	1896.05	2239130.0	
2018-12-31	1908.00	1909.00	1886.15	1894.75	1893.05	1879740.0	
5.1	Turnover	(Lacs)					
Date	2	1060 00					
2018-12-03		1868.00					
2018-12-04		5568.23					
2018-12-05	50131.23						
2018-12-06 2018-12-07		6373.71					
2018-12-07	33463.26						
2018-12-10	39990.73 59636.36						
2018-12-11	58636.26 44663.42						
2018-12-12	44663.42 74802.38						
2018 12 13	74802.38 49094.42						
2018 12 14		4482.95					
2018-12-18		5137.11					
2018 12 18		9198.05					
2018 12 13		7945.10					
2018 12 20		1360.52					
2018 12 21	35878.57						
2018 12 24		46112.98					
2018 12 20		5411.46					
2018-12-28		2708.38					
2018-12-31		5647.72					
	-						

```
In [7]: # converting the quandl received data into pandas dataframe
          dataset = pd.DataFrame(stock_data)
          ##Now we convert into csv
 In [8]:
          dataset.to_csv('TCS.csv')
          ## We have to read our CSV
 In [9]:
          data = pd.read_csv('TCS.csv')
In [10]: # see the first few data rows
          data.head()
Out[10]:
                   Date
                          Open
                                  High
                                         Low
                                                 Last
                                                        Close
                                                              Total Trade Quantity Turnover (Lacs)
           0 2018-12-03
                        1984.00
                                1990.0
                                       1968.3
                                              1984.00
                                                      1982.40
                                                                       1610576.0
                                                                                      31868.00
           1 2018-12-04 1983.00
                                2019.4
                                      1971.0
                                              2009.85
                                                      2010.85
                                                                       3270615.0
                                                                                      65568.23
           2 2018-12-05 2006.00
                                2018.0
                                      1985.0
                                              2003.90
                                                      2006.75
                                                                                      50131.23
                                                                       2501539.0
           3 2018-12-06 1998.00
                                2017.0 1979.6
                                              1990.00
                                                      1992.70
                                                                       2321216.0
                                                                                      46373.71
           4 2018-12-07 1985.05 2003.9 1973.0 1999.85 1995.20
                                                                       1680420.0
                                                                                      33463.26
In [11]: #check NULL values
          data.isnull().sum()
Out[11]:
          Date
                                    0
          0pen
                                    0
          High
                                    0
          Low
                                    0
          Last
                                    0
          Close
                                    0
          Total Trade Quantity
                                    0
          Turnover (Lacs)
                                    0
          dtype: int64
```

In [12]: #Lets see some correalations between data

```
import seaborn as sns
plt.figure(1 , figsize = (17 , 8))
cor = sns.heatmap(data.corr(), annot = True)
```



```
In [13]: # Now we have to divide data in Dependent and Independent variable
    # We can see Date column in useul for our prediction but for simplicity we have to
    # Now we have to predict open price so this column is out dependent variable becan

x = data.loc[:,'High':'Turnover (Lacs)']
y = data.loc[:,'Open']
```

In [14]: # get top recrods from the dataset x.head()

Out[14]:

	High	Low	Last	Close	Total Trade Quantity	Turnover (Lacs)
0	1990.0	1968.3	1984.00	1982.40	1610576.0	31868.00
1	2019.4	1971.0	2009.85	2010.85	3270615.0	65568.23
2	2018.0	1985.0	2003.90	2006.75	2501539.0	50131.23
3	2017.0	1979.6	1990.00	1992.70	2321216.0	46373.71
4	2003.9	1973.0	1999.85	1995.20	1680420.0	33463.26

```
In [15]: # Now we have to split data in training and testing
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.1,random_state)
```