Week 12

Juan Patricio Carrizales Torres Section 4: Proofs involving sets

October 09, 2021

If one wants to prove A = B, it is necessary to show both set inclusions $A \subseteq B$ and $B \subseteq A$, namely, some arbitrary $x \in A$ if and only if $x \in B$. In the case that either $A = \emptyset$ or $B = \emptyset$, their respective set inclusions follow vacuously.

NOTE. Assume all sets discussed belong to some Universal set.

Problem 40. Let A and B be sets. Prove that $A \cup B = (A - B) \cup (B - A) \cup (A \cap B)$.

Proof. First we show that $A \cup B \subseteq (A - B) \cup (B - A) \cup (A \cap B)$. Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. Without loss of generality, let $x \in A$. We consider two cases. Case 1. $x \in A$ and $x \in B$. Then $x \in A \cap B$ and so $x \in (A - B) \cup (B - A) \cup (A \cap B)$. Case 2. $x \in A$ and $x \notin B$. Then $x \in A - B$ and so $x \in (A - B) \cup (B - A) \cup (A \cap B)$. Hence, $A \cup B \subseteq (A - B) \cup (B - A) \cup (A \cap B)$.

We then show that $(A-B)\cup(B-A)\cup(A\cap B)\subseteq A\cup B$. Let $x\in(A-B)\cup(B-A)\cup(A\cap B)$. Then, $x\in A-B$, $x\in B-A$ or $x\in A\cap B$. In all cases either $x\in A$ or $x\in B$. Therefore, $x\in A\cup B$ and so $(A-B)\cup(B-A)\cup(A\cap B)\subseteq A\cup B$.

Problem 41. In result 21, it was proved for sets A and B that $A \cup B = A$ if and only if $B \subseteq A$. Provide another proof of this result by giving a direct proof of the implication "If $A \cup B = A$, then $B \subseteq A$ " and a proof by contrapositive of its converse.

Proof. First assume that $A \cup B = A$. Then $A \cup B \subseteq A$ and $A \subseteq A \cup B$. Note that by definition, $B \subseteq A \cup B$. Since $B \subseteq A \cup B$ and $A \cup B \subseteq A$, it follows that $B \subseteq A$.

For the converse, assume that $A \cup B \neq A$. Then either $A \cup B \not\subseteq A$ or $A \not\subseteq A \cup B$. Note that the former leads to a contradiction, thus we only consider that $A \cup B \not\subseteq A$. Then there is some $y \in A \cup B$ such that $y \not\in A$. Therefore, $y \in B$. Since $y \not\in A$ and $y \in B$, it follows that $B \not\subseteq A$.

Problem 42. Let A and B be sets. Prove that $A \cap B = A$ if and only if $A \subseteq B$.

Proof. Assume that $A \not\subseteq B$. Then, there is some $x \in A$ such that $x \not\in B$. Hence $x \not\in A \cap B$. Since $x \not\in A \cap B$ and $x \in A$, it follows that $A \not\subseteq A \cap B$ and so $A \neq A \cap B$.

For the converse, assume that $A \cap B \neq A$. Then either $A \not\subseteq A \cap B$ or $A \cap B \not\subseteq A$. Note that the former leads to a contradiction, thus we only consider $A \not\subseteq A \cap B$. Then, there is some $y \in A$ such that $y \not\in A \cap B$. Hence, $y \not\in B$. Since $y \in A$ and $y \not\in B$, it follows that $A \not\subseteq B$.

Problem 43. (a) Give and example of three sets A, B and C such that $A \cap B = A \cap C$ but $B \neq C$.

Solution a. Let $A = \{1\}$, $B = \{1, 2\}$ and $C = \{1, 3\}$. Then, $A \cap B = A \cap C = \{1\}$.

(b) Give an example of three sets A, B and C such that $A \cup B = A \cup C$ but $B \neq C$.

Solution b. Let $A = \{1, 2, 3\}$, $B = \{2\}$ and $C = \{3\}$. Then, $A \cup B = A \cup C = \{1, 2, 3\}$

(c) Let A, B and C be sets. Prove that if $A \cap B = A \cap C$ and $A \cup B = A \cup C$, then B = C.

Proof. Assume $B \neq C$. Then, either $B \nsubseteq C$ or $C \nsubseteq B$. Without loss of generality, let $B \nsubseteq C$. This means that there is some $y \in B$ such that $y \notin C$. We consider the following cases.

Case 1. $y \in A$. Since $y \in A$, $y \in B$ and $y \notin C$, it follows that $y \in A \cap B$ and $y \notin A \cap C$, and so $A \cap B \not\subseteq A \cap C$. Hence, $A \cap B \neq A \cap C$.

Case 2. $y \notin A$. Since $y \notin A$, $y \in B$ and $y \notin C$, it follows that $y \in A \cup B$ and $y \notin A \cup C$, and so $A \cup B \not\subseteq A \cup C$. Therefore, $A \cup B \neq A \cup C$.

Problem 44. Prove that if A and B are sets such that $A \cup B \neq \emptyset$, then $A \neq \emptyset$ or $B \neq \emptyset$.

Proof. Let
$$A = \emptyset$$
 and $B = \emptyset$. Then, $A \cup B = \emptyset \cup \emptyset = \emptyset$.

Problem 45. Let $A = \{n \in \mathbb{Z} : n \equiv 1 \pmod{2}\}$ and $B = \{n \in \mathbb{Z} : n \equiv 3 \pmod{4}\}$. Prove that $B \subseteq A$.

Proof. Let some $x \in B$. Then, $x \in \mathbb{Z}$ and $x \equiv 3 \pmod{4}$, and so x = 4m + 3 for some integer m. Note that x = 4m + 3 = 4m + 2 + 1 = 2(2m + 1) + 1. Since $2m + 1 \in \mathbb{Z}$, it follows that $2 \mid (x - 1)$ and so $x \equiv 1 \pmod{2}$. So $x \in A$. Therefore, $B \subseteq A$.

Problem 46. Let A and B be sets. Prove that $A \cup B = A \cap B$ if and only if A = B.

Proof. First assume $A \neq B$. We show that $A \cup B \neq A \cap B$. Then, either $A \not\subseteq B$ or $B \not\subseteq A$, say the former. Thus, there is some $a \in A$ such that $a \notin B$. Therefore, $a \in A \cup B$ and $a \notin A \cap B$. Hence $A \cup B \neq A \cap B$.

For the converse, suppose A=B. Therefore, $A\cup B=A\cap B=A=B$.

Problem 47. Let $A = \{n \in \mathbb{Z} : n \equiv 2 \pmod{3}\}$ and $B = \{n \in \mathbb{Z} : n \equiv 1 \pmod{2}\}$. (a) Describe the elements of the set A - B.

Solution a. If $x \in A$, then $x \in \mathbb{Z}$ and $x \equiv 2 \pmod{3}$, and so x = 3m + 2 where $m \in \mathbb{Z}$. If $x \in B$, then $x \in \mathbb{Z}$ and $x \equiv 1 \pmod{2}$, and so x = 2q + 1 where $q \in \mathbb{Z}$ (the odd integers). Note that x = 3m + 2 is odd when m is odd, and it is even when m is even. The set A - B contains all integers x such that $x \equiv 2 \pmod{3}$ and x is even. Thus, $A - B = \{n \in \mathbb{Z} : n = 3m + 2, \text{ where } m \text{ is an even integer}\}$. Since m is an even integer, it follows that m = 2b for some integer b. Then, 3m + 2 = 3(2b) + 2 = 6b + 2. Therefore, $A - B = \{n \in \mathbb{Z} : n = 6b + 2, \text{ where } b \in \mathbb{Z}\}$

(b) Prove that if $n \in A \cap B$, then $n^2 \equiv 1 \pmod{12}$.

Proof. Assume $n \in A \cap B$. Then, $n \in \mathbb{Z}$, $n \equiv 2 \pmod{3}$ and $n \equiv 1 \pmod{2}$. This means that n = 3q + 2 and n is odd. Thus, q is odd and so q = 2m + 1 for some $m \in \mathbb{Z}$. Then, n = 3(2m + 1) + 2 = 6m + 3 + 2 = 6m + 5 and so

$$n^{2} - 1 = (6m + 5)^{2} - 1$$
$$= 36m^{2} + 60m + 25 - 1$$
$$= 12(3m^{2} + 5m + 2)$$

Since $3m^2 + 5m + 2 \in \mathbb{Z}$, it follows that $12 \mid (n^2 - 1)$ and so $n^2 \equiv 1 \pmod{12}$.

Problem 48. Let $A = \{n \in \mathbb{Z} : 2 \mid n\}$ and $B = \{n \in \mathbb{Z} : 4 \mid n\}$. Let $n \in \mathbb{Z}$. Prove that $n \in A - B$ if and only if n = 2k for some odd integer k.

Proof. First, let $n \in A - B$. Then, $n \in \mathbb{Z}$, $2 \mid n$ and $4 \nmid n$. Then, n is even and so n = 2k where $k \in \mathbb{Z}$. Since $4 \nmid n$, it follows that k must not be even. Thus, k is odd.

For the converse, assume n=2k for some odd integer k. Then, k=2m+1 where $m \in \mathbb{Z}$ and so n=2(2m+1)=4m+2. Since n=2(2m+1), it follows that $2 \mid n$ and so $n \in A$. Also, since n=4m+2, it follows that $4 \nmid n$ and so $n \notin B$. Hence, $n \in A-B$.

Problem 49. Prove for every two sets A and B that $A = (A - B) \cup (A \cap B)$.

Proof. First we prove that $A \subseteq (A - B) \cup (A \cap B)$. Let $x \in A$. We consider two cases. Case 1. $x \in B$. Since $x \in A$ and $x \in B$, it follows that $x \in A \cap B$. Thus, $x \in (A - B) \cup (A \cap B)$. Case 2. $x \notin B$. Since $x \in A$ and $x \notin B$, it follows that $x \in A - B$. Hence, $x \in (A - B) \cup (A \cap B)$. Therefore, $A \subseteq (A - B) \cup (A \cap B)$

We then prove that $(A - B) \cup (A \cap B) \subseteq A$. Let $y \in (A - B) \cup (A \cap B)$. Then, either $y \in A - B$ or $y \in A \cap B$. Both cases imply that $y \in A$. Therefore, $(A - B) \cup (A \cap B) \subseteq A$. Hence, $A = (A - B) \cup (A \cap B)$.

Problem 50. Prove for every two sets A and B that A - B, B - A and $A \cap B$ are pairwise disjoint.

Proof. Let $x \in A - B$. Then, $x \in A$ and $x \notin B$. Therefore, $x \notin B - A$ and $x \notin A \cap B$. Hence, $(A - B) \cap (B - A) = \emptyset$ and $(A - B) \cap (A \cap B) = \emptyset$.

Let $y \in B-A$. Then, $y \in B$ and $y \notin A$. Therefore, $y \notin A \cap B$ and so $(B-A) \cap (A \cap B) = \emptyset$. Thus, A-B, B-A and $A \cap B$ are pairwise disjoint.