ENS Lyon Training Camp. Day 05.

30 October 2015

Problem A. «Alarm Clock»

Problem A. «Alarm Clock»

- You are given number of segments on a clock
- You need to find the time

Calculate the number of segments

- Check all possible times hh:mm
 - hh: from 0 to 23
 - mm: from 0 to 59

Problem B. «Buffcraft»

Problem B. «Buffcraft»

- You are given the list of buffs
 - direct
 - percentage
- The stats is calculated by: $(b+d_1+\ldots+d_n)\cdot(100+p_1+\ldots+p_m)/100$
- You need to obtain maximum with n + m < k

- You are given n and m
- You need to take the biggest d_i and p_i
- Sort d and p in decreasing order and precalculate prefix sums
- Check all n + m = k, print maximum
- The total time: $O(n \cdot \log(n))$

Problem G. «Grave»

Problem G. «Grave»

- You are given rectangle with rectangular hole
- You need to put rectangle $w \times h$ somewhere

Maximal rectangles:

- New rectangle should fit in one of maximal rectangles
- The total time: O(1)

Problem E. «Ballot Analyzing Device»

Problem E. «Ballot Analyzing Device»

- You are given:
 - The list of candidates
 - The list of filled bulletins
- You need:
 - Sort by the percent of votes
 - Calculate the number of invalid bulletins

- Check the bulletins on incorectness:
 - No marks
 - More than one mark
- Calculate the number of votes for each candidate

Problem F. «Energy Tycoon»

Problem F. «Energy Tycoon»

- You are given:
 - The field $1 \times n$
 - The list of power plants of length 1 or 2
- You need:
 - Plan of power plants construction
 - Calculate the maximum score

- 1 in the end
- 2 in the start
- While there is no conflict

- 1 put always, maybe instead of some 2
- Do not put 2, if there is conflict

Problem G. «Garage»

Problem G. «Garage»

- Given:
 - Garages of size $w \times h$
 - A sandlot of size $W \times H$
- Task:
 - Put as few garages as possible such that no more garages can be added

A «prohibited zone»

• The answer: |(W + w)/(2w)||(H + h)/(2h)|

Problem H. «Aztec Pyramid»

Problem H. «Aztec Pyramid»

h	1	2
δs	_	4
S	1	5
V	1	6

Problem I. «Battleship»

Problem I. «Battleship»

1	2	3	4	5	6	7	8	9	10
36	37	28	39	40	41	42	43	44	11
35	64	65	66	67	68	69	70	45	12
34	63	84	85	86	87	88	71	46	13
33	62	83	96	97	98	89	72	47	14
32	61	82	95	100	99	90	73	48	15
31	60	81	94	93	92	91	74	49	16
30	59	80	79	78	77	76	75	50	17
29	58	57	56	55	54	53	52	51	18
28	27	26	25	24	23	22	21	20	19

The last shot goes to...

1	2	3	4	5	6	7	8	9	10
36	37	28	39	40	41	42	43	44	11
35	64	65	66	67	68	69	70	45	12
34	63	84	85	86	87	88	71	46	13
33	62	83	96	97	98	89	72	47	14
32	61	82	95	100	99	90	73	48	15
31	60	81	94	93	92	91	74	49	16
30	59	80	79	78	77	76	75	50	17
29	58	57	56	55	54	53	52	51	18
28	27	26	25	24	23	22	21	20	19

The rest of ships can be put like:

Problem J. «Deepest Station»

Problem J. «Deepest Station»

The cases

How to put two escalators

Problem K. «Electricity»

Problem K. «Electricity»

- Do we have Type 2?
 - Yes \rightarrow Can we plug it?
 - $\bullet \ \ \mathsf{Yes} \to \mathsf{Plug} \ \mathsf{it}!$
 - No \rightarrow Do we have Type 1?
 - $\bullet \ \ \mathsf{Yes} \to \mathsf{Plug} \ \mathsf{it}!$

Always give priority to power strips with bigger number of sockets

Problem L. «Final Standings»

Problem L. «Final Standings»

- Given:
 - n, the number of drivers
 - p, the total number of points earned by all drivers
 - k, the number of top drivers
 - d, the number of <u>different</u> points earned by the top drivers
- Task:
 - Restore the final standings
 - ...or tell if it is impossible

- The minimum number of points corresponds to this scheme: d, (d-1), ..., 1, 0, ..., 0
- The minimum total number of points: d(d-1)/2
- $p < d(d-1)/2 \rightarrow \text{impossible}$
- $p = d(d-1)/2 \rightarrow \text{follow the scheme}$
- ullet p>d(d-1)/2 o extra points go to the best driver

Questions?