

Intel® IoT & Wearable Overview

Nandkishor (Nandu) Sonar Intel® Corporation March-2015

Projects Submitted #IntelMaker

Social 3,191 Media Mentions

meetup Meetup 770 Attendees

51K Monthly

IoT Zone

IoT Developers Trained

1,741

1,054 Roadshow Attendees

Visitors to

3,222 Roadshow Registrations

Roadshow Locations

Intel® Galileo and Edison™

Students Hobbyist Maker

Pro-Maker & Entrepreneur

Consumer IoT

Light Ind.
IoT

No extended temp or life

Hardware	Intel® Galileo and Edison Module + Derivatives		
	Expansion Boards		
Software	Yocto Project Poky Linux* + Various Runtimes, IDE & Developer Tools		
Cloud	Developer cloud solution and partner-based solutions for scale		
Support	Managed on-line community, trouble ticketing, drawings, schematics, datasheets, code libraries, webinars, etc.		
Ecosystem	ISVs, Incubators, Crowd Source funders & SIs		

Intel Galileo Development Board

- Designed for students, makers and electronics enthusiasts / hobbyist
- General Embedded headless applications and Gateways

Board I/O: Compatible with Arduino Uno

- 20 digital I/O pins including 6 pins 10-bit PWM
- 6 analog inputs
- 2 UART (RX/TX)
- 1 I2C
- 1 ICSP 6-pin header (SPI)
- USB device connector (Host)
- Micro USB device connector (client)
- SD Card connector
- DC power jack (7V 15V DC input)

Intel Edison module

- Desingened to be wireless with compute performance and low power!
- For inventors, entrepreneurs, and consumer product designers to rapidly prototype.

Board

- 22nm 2 core Intel® Atom™ Core™ @ 500MHz
- 1 Intel® Quark™ MCU @ 100MHz
- 35.5 × 25.0 × 3.9 mm
- 1 GB RAM (LPDDR3, 2ch @ 800 MT/s)
- 4 GB eMMC
- Wi-Fi (a/b/g/n) + BT 4.0 + antenna
- 40 GPIOs: UART, I2C, SPI, I2S, PWM, USB 2.0, SD card, clock out, GPIO

Software

- Default OS: Yocto* 1.6 Linux*
- Right now: 3.10.17 kernel
- OTA upgradable
- libmraa: IO abstraction layer
- UPM: sensor libraries

Intel Edison Development Boards: Arduino* expansion

Board I/O: Compatible with Arduino* Uno (except only 4 PWM instead of 6 PWM)

- 20 digital I/O pins including 4 pins as PWM outputs
- 6 analog inputs
- 1 UART (RX/TX)
- 1 I2C
- 1 ICSP 6-pin header (SPI)
- Micro USB device connector
- Micro USB device (connected to UART)
- SD Card connector
- DC power jack (7V 15V DC input)

Board to board Press-fit connection (Hirose DF40)

Intel Edison Development Boards: Breakout board

61mm x 29mm x 12mm (2.4 x 1.1 x 0.5 inches)

Board I/O:

- Exposes native 1.8V I/O of the Edison module
- 0.1" grid I/O array of through-hole solder points
- USB OTG with USB Micro Type-AB connector
- USB OTG power switch
- Battery Charger
- USB to device UART bridge with USB Micro Type-B connector

Grove* Starter Kit Plus - Intel IoT Edition

- 1 Base Shield v2
- 2 Grove Buzzer V1.1
- 3 Grove Button
- 4 Grove-LED v1.3
- 5 Grove Sound Sensor V1.2
- 6 Grove Rotary Angle Sensor
- 7 Grove-Touch Sensor
- 8 Grove Smart Relay
- 9 Grove-Light Sensor
- 10 Grove Temperature Sensor_V1.1
- 11 26AWG Grove Cable
- 12 Mini Servo
- 13 9V to Barrel Jack Adapter 126mm
- 14 DIP LED Blue-Blue
- 15 DIP LED Green-Green
- 16 DIP LED Red-Red
- 11 Grove LCD RGB Backlight

Target audience and developer path

	Visual Developer	Arduino* Developer	JavaScript Developer	C / C++ Developer	Wind River (Galileo only)
Target Audience	Beginner	Maker	Intermediate	Advanced	Advanced Professional
OS / Boot Image	Yocto Project Poky Linux*	Yocto Project Poky Linux* (SPI)	Yocto Project Poky Linux*	Yocto Project Poky Linux*	VxWorks*
IDE Dev Env	Wyliodrin* Web	Arduino* IDE Win / Mac/ Linux	XDK Win/ Mac/ Linux Intel® XDK	Eclipse* Win/ Mac / Linuxeclipse	WR Eclipse* Win / Linux
Programming Language	Visual Python	ARDUINO Arduino* Sketch C++	JavaScript (Node JS)	C/ C++	C/C++
Tools/ Libraries	Wyliodrin*	Arduino* Libraries	Intel® XDK	ISS	Work Bench / ISS
Cloud	IoT Cloud Analytics Widget	IoT Cloud Analytics	IoT Cloud Analytics Mashery/ 3 rd party	IoT Cloud Analytics Mashery/ 3 rd Party	WR Cloud

Intel® IoT Developer Kit

A complete solution for creating IoT applications targeted for Intel® IoT platforms such as Intel® Galileo board and Intel® Edison board.

- Multiple IDEs (XDK, Eclipse, Wyliodrin*, Arduino*)
- Cloud analytics & data management
- Mashery IoT Restful APIs
- Multiple Programming Languages (JavaScript, C/C++, Arduino* Sketches, Visual programming)
- APIs that shields H/W complexity (libmraa)
- · Sensor libraries with API bindings (UPM)
- Open & Standard Yocto Project Poky Linux* OS
- Supports full range of Linux tools and libraries
- Full x86 support (Scale from Intel® Quark™ SoC to Intel® Core™ processor)
- Intel® Galileo (Gen1/ Gen 2), Intel® Edison

libmraa

I/O abstraction library to facilitate easy access to GPIO, I2C, SPI, PWM and UART

C API

```
mraa_gpio_context gpio; // Pointer to GPIO context
gpio = mraa_gpio_init(8); // Create GPIO context for pin 8
mraa_gpio_dir(gpio, MAA_GPIO_OUT); // Set GPIO direction to output
mraa_gpio_write(gpio, 1); // Write to GPIO
mraa_gpio_close(gpio); // Close GPIO if we are the owner
```

C++ API

```
Maa::Aio* a0;
a0 = new mraa::Aio(0); // Create AIO object for pin0
std::cout << a0->read() << std::endl;</pre>
```

Python API

```
from mraa import * # Import mraa library
x = Gpio(8) # Create a GPIO object for pin 8
x.dir(DIR_OUT) # Set GPIO direction to output
x.write(1) # Write to GPIO
x = "memory is not my problem!"
```

JS (node.js) API


```
var m = require("mraa") # Import mraa module
var x = new m.Gpio(8) # Create GPIO pin 8 object
x.dir(m.DIR_OUT) # Set GPIO direction to output
x.write(1) # Write to GPIO
```

UPM (Useful Packages for Mraa)

Sensor library using libmraa for easy sensor access

Example of UPM Modules

Temperature Sensor

```
// Create the temperature sensor object using AIO pin 0
upm::GroveTemp* temp = new upm::GroveTemp(0);
// Print the value of temprature reading in deg. centigrade
std::cout << temp->value() << std::endl;</pre>
```

Atmospheric Pressure Sensor

```
// Create an object of type GY65(bmp085) on i2c bus 0
upm::GY65 *sensor = new upm::GY65(0, 0x77);
//print temp. pressure & Altitude
std::cout << sensor->getTemperature() << std::endl;
std::cout << sensor->getPressure() << std::endl;
std::cout << sensor->getAltitude() << std::endl;</pre>
```

Intel® IoT Analytics - www.enableiot.com

- RESTful API
- iotkit-agent (UDP / TCP)


```
#! /usr/bin/env python
import socket
import sys
UDP PORT = 41234
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.sendto('{"n":"' + component +
'", "v":"' + value + '"}', ('localhost', UDP PORT))
                         (intel) Edison
                         What will you make?
```

(intel)

Resources

- Intel® Edison: http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
- IoT Developer Zone : https://software.intel.com/en-us/iot
- libmraa: https://github.com/intel-iot-devkit/mraa
- UPM: https://github.com/intel-iot-devkit/upm
- Documentation:
 - 1) Libmraa: http://iotdk.intel.com/docs/master/mraa/
 - 2) UPM: http://iotdk.intel.com/docs/master/upm
 - 3) NodeJS: https://www.npmjs.org/package/mraa
 - 4) Python: http://iotdk.intel.com/docs/master/mraa/python
 - 5) Cloud Analytics: https://software.intel.com/en-us/intel-iot-developer-kit-cloud-based-analytics-user-guide

Next steps

- 1. Visit Hackfest Github: https://github.com/srware/wearable-technology-show-2015
- 2. Develop & exhibit your demo Ensure your IoT/ Wearable solution should be:
 - ✓ Innovative
 - ✓ Business viable / sustainable.
 - ✓ Using Intel® Edison key features (performance, Wi-Fi / BTLE connectivity, small size).
- 3. Wed-11-Mar @ 15:00 every team will get 5 minutes to exhibit the demo.
- 4. Win awesome prizes on Wed-11-Mar ~16:00 🏆 🏆 💢 😽 🚾 FOR IT !

We'd Love To See You Again...Maker Fairs/Hackfests

Event	When	Where
Make 'n' break Hackathon	28-29 March	Bucharest
Maker Faire Paris	2-3 May	Paris
Maker Fare Dublin	25 July	Dublin
Maker Faire Rome	16-18 October	Rome
CodeMotion	9-12 April	Milan

We'd Love To See You Again...IoT Events

Event	When	Where
Intel IoT Roadshow	Mar 14 - 15	Milan
CeBIT	Mar 16 - 20	Hannover
Internet of Things Conference	Mar 23 - 26	Hannover
Machine to Machine and Objets Connecte	1 – 2 April	La Defense, Paris
Intel IoT Roadshow	June 12 – 13	London
Hannover Messe	April 13-17	Hannover

Thanks!

Backup

