SWE on sphere formulation in SWEET

Martin Schreiber

2020-03-23

This documents describes the particular SWE on sphere implementation in SWEET.

1 Vorticity-divergence formulation

We use the vorticity-divergence formulation (See Williamson et al. paper on SWE test cases) with the divergence given by

$$\delta = \nabla \cdot \vec{v}$$

and the relative vorticity by

$$\xi = \vec{k} \cdot (\nabla \times \vec{v})$$

with $\vec{v}=(u,v)$ the velocity vector. The vorticity-divergence formulation is then given by

$$\begin{split} \frac{\partial}{\partial t} \Phi &= -\nabla \cdot (\Phi \vec{v}) \\ \frac{\partial}{\partial t} \xi &= -\nabla \cdot ((\xi + f) \, \vec{v}) \\ \frac{\partial}{\partial t} \delta &= \vec{k} \cdot \nabla \times ((\xi + f) \, \vec{v}) - \nabla^2 \left(\Phi + \frac{\vec{v} \cdot \vec{v}}{2} \right) \end{split}$$

2 Spherical harmonics

We use state variables in physical space without a tilde, e.g. x, and variables in spectral space denoted with a tilde such as \tilde{x} . Let the function converting data from spectral to physical space be given by

$$x = s2p(\tilde{x})$$

and from physical to spectral space by

$$\tilde{x} = p2s(x)$$
.

The Laplace operator is then provided by

$$\nabla^2(u) = lap(u).$$

We also exploit the feature of the SHTNS library to compute the divergence and vorticity in spectral space for given velocities in physical space and denote this function by

$$(\tilde{\xi}, \tilde{\delta}) = vel2vd(u, v)$$

and vice versa

$$(u, v) = vd2vel(\tilde{\xi}, \tilde{\delta}).$$

3 Linear shallow-water equations

$3.1 l_{erk}$

- 1. Vorticity/divergence:
 - (a) Compute the velocity based on the vorticity and divergence: $(u,v)=vd2vel(\tilde{\xi},\tilde{\delta})$
 - (b) Evaluate temporary vector $(u^*, v^*) = f\vec{v}$ in physical space
 - (c) Compute vorticity and divergence updates $(\tilde{\xi}', \tilde{\delta}') = vel2vd(u^t, v^t)$
 - (d) Assign vorticity update: $\frac{\partial}{\partial t}\tilde{\xi}=-\tilde{\delta}'$
 - (e) Assign divergence tendency: $\frac{\partial}{\partial t}\tilde{\delta}=\tilde{\xi}'-lap(\tilde{\Phi})$
- 2. Geopotential:
 - (a) Assign geopotential tendency: $\frac{\partial}{\partial t}\tilde{\Phi} = -\overline{\Phi}\tilde{\delta}$

$3.2 \quad lc_erk_lg_erk$

3.2.1 lc erk

- 1. Vorticity/divergence:
 - (a) Compute the velocity based on the vorticity and divergence: $(u, v) = vd2vel(\tilde{\xi}, \tilde{\delta})$
 - (b) Evaluate temporary vector $(u^*, v^*) = f\vec{v}$ in physical space
 - (c) Compute vorticity and divergence updates $(\tilde{\xi}', \tilde{\delta}') = vel2vd(u^t, v^t)$
 - (d) Assign vorticity update: $\frac{\partial}{\partial t}\tilde{\xi}=-\tilde{\delta}'$
 - (e) Assign divergence tendency: $\frac{\partial}{\partial t}\tilde{\delta} = \tilde{\xi}'$
- 2. Geopotential:
 - (a) Zero geopotential tendency: $\frac{\partial}{\partial t}\tilde{\Phi}=0$

3.2.2 lg erk

1. Vorticity/divergence:

(a) Zero vorticity update: $\frac{\partial}{\partial t}\tilde{\xi} = 0$

(b) Assign divergence tendency: $\frac{\partial}{\partial t}\tilde{\delta}=-lap(\tilde{\Phi})$

2. Geopotential:

(a) Assign geopotential tendency: $\frac{\partial}{\partial t}\tilde{\Phi}=-\overline{\Phi}\tilde{\delta}$

4 Nonlinear shallow-water equations

4.1 ln erk

Next, we discuss the full non-linear time tendency computation. The different steps for the time integration are given as follows:

1. Vorticity/divergence:

(a) Compute the velocity based on the vorticity and divergence: $(u,v)=vd2vel(\tilde{\xi},\tilde{\delta})$

(b) Convert ξ from spectral to physical space: $\xi = s2p(\tilde{\xi})$

(c) Evaluate temporary vector $(u^*, v^*) = (\xi + f)\vec{v}$ in physical space

(d) Compute vorticity and divergence updates $(\tilde{\xi}', \tilde{\delta}') = vel2vd(u^t, v^t)$

(e) Assign vorticity update: $\frac{\partial}{\partial t}\tilde{\xi} = -\tilde{\delta}'$

(f) Convert geopotential $\Phi = s2p(\tilde{\Phi})$

(g) Compute $e = \Phi + \frac{\vec{v} \cdot \vec{v}}{2}$

(h) Assign divergence tendency: $\frac{\partial}{\partial t}\tilde{\delta}=\tilde{\xi'}-lap(p2s(e))$

2. Geopotential:

(a) Prepare divergence $(u^t, v^t) = (u\Phi, v\Phi)$

(b) Compute divergence $(\tilde{\xi}^*, \tilde{\delta}^*) = vel2vd(u^t, v^t)$

(c) Assign geopotential tendency: $\frac{\partial}{\partial t}\tilde{\Phi} = -\tilde{\delta}^*$

5 Semi-Lagrangian shallow-water equations

For the Lagrangian formulation we use the total derivative

$$\frac{d}{dt}() = \frac{\partial}{\partial t}() + \vec{v} \cdot \nabla().$$

This leads to a formulation splitting the equation into linear parts, Lagrangian-treated parts and the remaining (typically) non-linear terms

$$\frac{\partial}{\partial t}U = LU + \vec{v} \cdot \nabla U + N^*(U).$$

5.1 Non-linear geopotential update

For the geopotential, we can write it as

$$\frac{\partial}{\partial t}\Phi = -\nabla \cdot (\Phi \vec{v}).$$

As usual, this is split into the linearized form $\Phi = \overline{\Phi} + \Phi'$, yielding

$$\begin{split} \frac{\partial}{\partial t} \Phi' &= -\nabla \cdot \left(\left(\overline{\Phi} + \Phi' \right) \vec{v} \right) \\ &= -\overline{\Phi} \nabla \cdot \vec{v} - \nabla \cdot \left(\Phi' \vec{v} \right) \\ &= -\overline{\Phi} \nabla \cdot \vec{v} - \vec{v} \cdot \left(\nabla \Phi' \right) - \left(\nabla \cdot \vec{v} \right) \Phi' \\ \frac{d}{dt} \Phi' &= \underbrace{-\overline{\Phi} \delta}_{\text{linear}} - \underbrace{\left(\nabla \cdot \vec{v} \right) \Phi'}_{\text{non-linear advection}} \\ &= -\delta \Phi' \end{split}$$

- 1. (Step SLPHI) geopotential
 - (a) Convert states to spectral space: $\delta = s2p(\tilde{\delta})$ and $\Phi' = s2p(\tilde{\Phi}')$
 - (b) Assign geopotential tendency: $\frac{\partial}{\partial t}\tilde{\Phi}=-p2s\left(\delta\Phi'\right)$

5.2 Coriolis effect in non-linear treatment

We can also treat the Coriolis effect as part of the nonlinearities. Hence, we add the lc_erk contributions to $N^*(U)$.

5.3 Coriolis in trajectory

An alternative approach is to treat the Coriolis effect as part of the trajectory.