

Identification de paramètres et optimisation Cours de Master 2 STIM 2015-2016

Sébastien Adam

28 janvier 2016

- 4 ロ > 4 個 > 4 差 > 4 差 > 差 釣 Q ()

Plan du Cours

- Présentation de l'enseign(ant)ement
- 2 Introduction
- Méthodes des moindres carrés
- Méthodes de descente locale
- 5 Réseaux de neurones
- Méthodes itératives globales
 - Recuit simulé
 - Algorithmes génétiques
 - Essaims particulaires

Principe général

Bilan sur les méthodes vues précédemment

- La forme analytique de la fonction à optimiser doit être connue
- ② Elle doit respecter des propriétés mathématiques de :
 - continuité/différentiabilité pour calculer le gradient voire le Hessien
 - convexité pour garantir la convergence

Or ...

- On ne dispose pas toujours la forme analytique de la fonction (Black-box and derivative-free optimization)
- La dérivée (a fortiori le Hessien) n'est pas toujours exprimable
- Les critères sont rarement convexes

Principe général

Les méthodes présentées aujourd'hui tentent de pallier ces problèmes

- Par :
 - L'exploitation de la valeur du critère en modèle boite noire
 - L'injection d'une part d'aléatoire contrôlé par le but
 - La manipulation d'ensembles de solutions (populations)
 - ▶ La coopération et/ou compétition entre solutions multiples
- On parle parfois d'heuristiques ou de métaheuristiques
- Quelques exemples pour ce cours :
 - ► Hill Climbing la base
 - Recuit simulé simulated annealing
 - Méthodes évolutionnaires genetic algorithms evolutionnary algorithms
 - Essaims particulaires particle swarm optimization
- NB : un autre point commun entre ces méthodes : des analogies "marketing" parfois tirées par les cheveux

S. Adam (Master STIM) Optimisation 28 janvier 2016 4 / 48

Plan du Cours

- Présentation de l'enseign(ant)ement
- 2 Introduction
- Méthodes des moindres carrés
- Méthodes de descente locale
- 5 Réseaux de neurones
- Méthodes itératives globales
 - Recuit simulé
 - Algorithmes génétiques
 - Essaims particulaires

Principe général

Hill Climbing pour la résolution de Problème boîte-noire

- Principe très simple
 - Une solution initiale générée aléatoirement
 - ► Tant que critère d'arrêt non atteint
 - Générer un ensemble de voisins V (par exemple en modifiant la valeur d'un paramètre)
 - Sélectionner le meilleur des voisins
 - Si le voisin sélectionné est meilleur que la solution courante, le garder
 - ★ Sinon, sortir
- Variantes :
 - Stochastic Hill Climbing : sélection aléatoire du voisin parmi ceux améliorant
 - shotgun hill climbing : multiples tentatives de Hill Climbing
- Défaut principal : extrema locaux

4 D > 4 A > 4 B > 4 B > B 9 9 0

Principes

- La méthode tente de pallier les défauts d'un « simple » Hill Climbing
- Objectif : tolérance aux fonctions objectif multi-modales
- Analogie : le processus de recuit utilisé en metallurgie : le refroidissement naturel de certains métaux ne permet pas aux atomes de se placer dans la configuration la plus solide
 - → On alterne cycles de refroidissement / réchauffage
- Historique :
 - Physique : Metropolis en 1953
 - Informatique : Kirkpatrick en 1983 (IBM) Cerny en 1985
- Point commun : la notion de température qui diminue au cours du processus
 - ► Température haute : recherche aléatoire
 - ▶ Température basse : recherche locale
- Nombreuses variantes

S. Adam (Master STIM) Optimisation 28 janvier 2016 8 / 48

Algorithme de principe (minimisation)

- **①** Choisir une initialisation θ_0 de θ
- ② Choisir une température initiale $T_0 > 0$
- Répéter
 - ► Effectuer un déplacement (souvent aléatoire) des paramètres tel que $\theta'_k = f(\theta_k)$
 - Calculer $\delta = J(\theta'_k) J(\theta_k)$
 - ▶ Si $\delta \leq 0$ alors $\theta_{k+1} = \theta'_k$
 - Sinon
 - \star Si $extit{Alea}(0,1) < e^{rac{-\delta}{T}}$ alors $heta_{k+1} = heta_k'$ [critère de Metropolis]
 - \star Sinon $\theta_{k+1} = \theta_k$
 - ► Adapter *T*
- Jusqu'à condition de fin
- 6 Retourner la meilleure configuration trouvée

Remarques

Une solution qui améliore est toujours acceptée. Une solution qui dégrade est \ll parfois \gg acceptée :

- Si la température est élevée
- Si la dégradation est « raisonnable »

S. Adam (Master STIM) Optimisation 28 janvier 2016 10 / 48

Nombreux choix

- Quel θ_0 ?
- Température initiale :

$$\rightarrow T_0 = f(J)$$
?

- Quels déplacements?
- Quel Cooling schedule?
 - Fixe
 - Par paliers (taux)
- Quel critère d'arrêt?
 - Nombre d'itérations (naïf)
 - Taux d'acceptation
 - ▶ Valeurs de δJ
- Un « Outil » de réglage : Le taux d'acceptation

Exemple d'algorithme par paliers

- Engendrer une configuration initiale S0; S := S0
- $T := T_0$
- Répéter
 - nb_moves := 0
 - Pour i := 1 à iter_palier
 - Engendrer un voisin S' de S
 - Calculer $\Delta = f(S') f(S)$
 - Si CritMetropolis(Δ, T), alors

- acceptance rate := i / nb moves
- T := T * coeff
- Jusqu'à <condition fin>
- Retourner la meilleure configuration trouvée

Démo 1D

$$f(x) = \sin((0.3x)\sin(1.3x^2 + 0.00001x^4 + 0.2x + 80))$$

x : valeur rejetée, go valeur acceptée malgré dégradation, ro amélioration

S. Adam (Master STIM) Optimisation 28 janvier 2016 13 / 48

Bilan

- Facile à implémenter (voir code)
- Propriétés de convergence
- Méthode importante historiquement
- Le point intéressant : introduction d'une part d'aléatoire
- Peu utilisée en pratique : difficile à "tuner"

Plan du Cours

- Présentation de l'enseign(ant)emen
- 2 Introduction
- Méthodes des moindres carrés
- 4 Méthodes de descente locale
- 6 Réseaux de neurones
- Méthodes itératives globales
 - Recuit simulé
 - Algorithmes génétiques
 - Essaims particulaires

Principes

- Objectifs :
 - Minimiser itérativement un critère $J(\theta)$ dépendant de plusieurs paramètres
- Historique :
 - ▶ Premiers tests d'EA : 1957, dès la sortie des ordinateurs commerciaux
 - Regain d'intérêt dans les 70's, puis applications dans les 90's
- Analogie
 - Sélection naturelle dans les populations d'individus : Darwin
- Points clefs
 - Population de solutions potentielles
 - Pas d'hypothèse de dérivabilité du critère
 - Modifications aléatoires des solutions mais sous contrôle du but (adaptation)
- Un petit exemple simple combinant RN et AG en vidéo

S. Adam (Master STIM) Optimisation 28 janvier 2016 16 / 48

Schéma général d'un algorithme évolutionnaire évaluation Parents Arrêt? Sélection de Création d'enfants n parents Réduction Operators de variation (Xover + Parents+ évaluation

Eléments vitaux d'un AE

- Le codage des individus (solutions) : le génotype
 - ► Chaîne de bits (problèmes binaires, ou issue d'une quantification)
 - Vecteur de réels
 - Vecteurs d'entiers
 - Graphes
 - Mixtes...
- Un "outil" d'évaluation d'une solution
 - Une forme analytique
 - Une forme analytique non différentiable
 - Une boîte noire
- Un opérateur d'initialisation, le plus aléatoire possible pour une bonne diversité! (trop guider l'algorithme conduit à une convergence prématurée)
- Des opérateurs de variation permettant une bonne exploration de l'espace et l'exploitation des itérations précédentes

S. Adam (Master STIM) Optimisation 28 janvier 2016 18 / 48

Sélection

Utilisée pour :

- former des "couples" de parents : avec remise
- réduire la population : sans remise
- Objectif : maintenir de la diversité, tout en convergeant vers les bonnes solutions

- Notion de pression de sélection
 - ► Trop fort : convergence prématurée
 - ► Trop faible : recherche aléatoire

S. Adam (Master STIM) Optimisation 28 janvier 2016 19 / 48

Sélection par roue de loterie

• Opérateur "historique"

Taille de la zone i : $\frac{J(i)}{\sum_i J(i)}$

• Pression dépendante du paysage de fitness

- Coûteux
- Non parallélisable : si les individus sont distribués, synchro nécessaire.

S. Adam (Master STIM) Optimisation 28 janvier 2016 20 / 48

Sélection par roue de loterie améliorée

- Scaling linéaire : $J_s = aJ_r + b$
 - $\Rightarrow a = \frac{max_s min_s}{max_r min_r}$
 - $b = \frac{\min_{s} \max_{r} \max_{s} \min_{r}}{\max_{r} \min_{r}}$
- Scaling exponential: $f(J) = J^k$, éventuellement $f(J) = J^{k(n)}$
- k < 1: écart réduits : exploration
- k > 1: écarts amplifiés: exploitation
- Idéalement, k doit varier

•
$$k(n) = \left(\tan\left[\left(\frac{n}{N+1}\right)\frac{\pi}{2}\right]\right)^p$$

- Utilisation du ranking :
 - ▶ Taille de la Case i : $(TaillePop + 1 Rang(J(i)))/\sum i$
 - Dépendant de la taille de la population

Sélection par roue de loterie avec sharing

 On peut aussi vouloir se répartir dans l'espace des solutions : le sharing

- On peut intégrer cela dans le fitness : $f(J_i) = \frac{J_i}{m_i}$ avec $mi = \sum_{j=1}^N S(d(x_i, x_j))$ où $S(d) = 1 \left(\frac{d}{\sigma}\right)^{\alpha}$ si $d < \sigma$, 0 sinon
- \bullet σ délimite le voisinage d'un point, α définit la "force" de la pénalité

• Efficace, mais très coûteux $(O(N^2))$

Sélection par roue de loterie avec sharing

- Il existe aussi des approches à base de clustering pour faire du sharing
- Exemple : initialisation de chaque individu comme centre d'un cluster
- Itérations :
 - ightharpoonup Si deux centres sont à une distance $d < d_{min}$: fusion des cluster + calcul du nouveau centre
 - Parcours des individus :
 - * si distance au plus proche centre acceptée $d < d_{max}$, agrégation
 - * sinon, nouveau cluster
- On calcule alors : $f(J_i) = \frac{J_i}{m_i}$ avec $mi = n_c \left(1 \left(\frac{d_{ic}}{2d_{max}}\right)^{\alpha}\right)$
- Avec
 - $ightharpoonup n_c$: nombre d'individu dans le même cluster que l'individu i.
 - $ightharpoonup \alpha$ coefficient de sensibilité
 - \rightarrow d_{ic} : distance entre l'individu et son centre
- Efficace, et moins coûteux (O(NlogN))

Sélection par tournois

- Tournois déterministes
 - ▶ Choix uniforme de *n* individus parmi T, le meilleur est sélectionné
 - Pression sélective croissante avec n (1 : exploration, T :déterministe)
 - Parallélisable, rapide, indépendant du paysage
 - Valeurs classiques : de 2 à 7
- Tournois stochastiques
 - Permet d'ajuster plus finement la pression sélective
 - Le meilleur est pris parmi les n avec une proba $t: t=0.5 \rightarrow$ choix aléatoire, $t=1 \rightarrow$ tournoi binaire
- Tournois "Evolutionnary programming"
 - Permet d'affecter un rang stochastique à chacun des individus d'une population
 - ▶ On fixe le nombre de rangs à affecter : T
 - ▶ Pour chaque individu, tournoi de taille T en tirant T-1 concurrents
 - ightharpoonup rang(i) = T NbIndividusBattus

S. Adam (Master STIM) Optimisation 28 janvier 2016 24 / 48

Opérateurs génétiques

- Deux principaux opérateurs historiques
 - Croisement
 - Mutation

Croisement

- Objectif : partage de bon gènes
- Algorithmes dépendant du codage
- Cas historique binaire : choix aléatoire d'un « locus » + permutations
- Nombreuses variantes : mono-point, multi-points, uniforme ...
- Attention à l'épistasie (correlation entre gènes) : peut être mesurée en comparant différents opérateurs

Croisement entre gènes réels

- Croisement barycentrique :
 - $enfant[x] = (1 \alpha) * p1[x] + \alpha * p2[x]$ avec α entre 0 et 1
 - ▶ l'enfant est entre les parents
- $BLX \alpha$ (BlendingXover) : autorise de sortir de l'intervalle
 - $enfant[x] = (1 \gamma) * p1[x] + \gamma * p2[x]$ avec $\gamma = (1 + 2\alpha)u \alpha$ et u dans [0, 1]
 - $\alpha = 0$: croisement barycentrique.
 - Valeur courante : 0.5
 - ▶ Plus les parents sont proches, plus les enfants seront proches.
- SBX (Simulated Binary Crossover)
 - Proche du crossover monopoint
 - Voir site de Kalyanmoy Deb

4 D > 4 D > 4 E > 4 E > E 900

Opérateurs génétiques

- Deux principaux opérateurs historiques
 - Croisement
 - Mutation

Mutation

- Objectif: sortir des extrema locaux
- Version historique sur gènes binaires : sélection aléatoire d'un gène et modification éventuelle de sa valeur (probabilisée)
- Nombreuses variantes : bruit Gaussien, adaptatives...

Paradigmes évolutionnaires

- Remplacement générationnel :
 - p enfants générés, ils remplacent les p parents
 - ► Nécessite de l'élistisme pour garantir la convergence : le meilleur parent est préservé
- Steady-State :
 - Sélection de 2 individus par tournoi
 - Création d'1 enfant par opérateurs génétiques
 - L'enfant créé remplace le plus mauvais des 2 parents, ou un parent sélectionné par tournoi ou le plus vieux, ou le pire, ou...
 - Pas besoin d'élitisme
- Stratégies d'évolution $(\mu+,\lambda)$
 - sélection de μ parents + mutation pour produire λ enfants (hist)
 - Sélection $(\mu + \lambda)$ -ES : nouvelle pop $= \mu$ meilleurs parmi les $\mu + \lambda$
 - Sélection (μ, λ) -ES : nouvelle pop = μ meilleurs parmi λ
- CMA-ES (Covariance Matrix Adaptation) : meilleur algorithme actuel

S. Adam (Master STIM) Optimisation 28 janvier 2016 28 / 48

Exemple: l'algorithme simpl(ist)e de Goldberg

- Sélection : roue de loterie biaisée
- Individus : chaînes de bits issues de la discrétisation de paramètres
- Croisement : permutation de sous-chaînes
- Mutation : modification aléatoire de gènes

Sur un exemple jouet

- Objectifs :
 - Maximiser $J(\theta) = \theta_1 \theta_2 2|2\theta_1 1| |\theta_2 1|$
 - ▶ Domaine de définition : $(\theta_1, \theta_2) \in [0, 2]^2$

- Choix:
 - Codage binaire des paramètres
 - Opérateurs sur gènes binaires

◆ロ > ◆同 > ◆ き > ◆ き * り Q (

28 janvier 2016

Codage

- Codage binaire :
 - Correspond à une discrétisation de l'espace des paramètres
 - Exemple : 8 bits par paramètres

$$\theta_1 = \frac{b_{17}2^7 + b_{16}2^6 + b_{15}2^5 + b_{14}2^4 + b_{13}2^3 + b_{12}2^2 + b_{11}2^1 + b_{10}2^0}{2^7}$$

$$\theta_2 = \frac{b_{27}2^7 + b_{26}2^6 + b_{25}2^5 + b_{24}2^4 + b_{23}2^3 + b_{22}2^2 + b_{21}2^1 + b_{20}2^0}{2^7}$$

- Les bik sont des variables binaires
- Un individu (solution potentielle) :

 $b_{17}b_{16}b_{15}b_{14}b_{13}b_{12}b_{11}b_{10}b_{27}b_{26}b_{25}b_{24}b_{23}b_{22}b_{21}b_{20}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ め@@

Initialisation

- Tirage aléatoire : exploration
- Exemple avec évaluation :

		θ_1	θ ₂	J(θ ₁ , θ ₂)
1	(10010111 10000100)	1,18	1,03	-0,175
2	(00011011 00011010)	0,21	0,20	-1,33
3	(01011100 01011011)	0,72	0,71	-0,21
4	(11101001 10110110)	1,82	1,42	-0,472
5	(00001011 10000111)	0,08	1,05	-0,784
6	(11101110 10001110)	1,86	1,11	-0,767
7	(00101110 10000101)	0,36	1,04	0,053
8	(11100111 01110110)	1,80	0,92	-0,986
			Σ J =	-4,671
			J min =	-1,33

Sélection pour la génération suivante

 Transformation des valeurs de fonction objectif en adaptation (fitness):

		θ_1	θ ₂	J(θ ₁ , θ ₂)	Adapt
1	(10010111 10000100)	1,18	1,03	-0,175	18,24%
2	(00011011 00011010)	0,21	0,20	-1,33	2,02%
3	(01011100 01011011)	0,72	0,71	-0,21	17,75%
4	(11101001 10110110)	1,82	1,42	-0,472	14,07%
5	(00001011 10000111)	0,08	1,05	-0,784	9,69%
6	(11101110 10001110)	1,86	1,11	-0,767	9,93%
7	(00101110 10000101)	0,36	1,04	0,053	21,45%
8	(11100111 01110110)	1,80	0,92	-0,986	6,85%
			Σ J =	-4,671	100%
			J min =	-1,33	

• Tirage biaisé par l'adaptation : 1, 1, 3, 4, 5, 6, 7, 7

33 / 48

Variations génétiques

- Croisement
 - ▶ formation de couples
 - choix aléatoire d'un point de coupure
 - permutation des deux fins de gènes (situés après le point de coupure)
 - ▶ (1, 7, c6), (1, 5, c2), (3, 7, c12), (4, 6, c9))

• Mutation : Changement de valeur de bits choisis aléatoirement

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

Résultats à l'issue d'une génération

	θ_1	θ_2	$J(\theta_{1}, \theta_{2})$	Adapt
(10010110 10000101)	1,17	1,04	-0,163	13,88%
(00101111 10000100)	0,68	1,03	0,310	22,40%
(1 <u>0</u> 001011 <u>1</u> 0000111)	1,086	1,055	-0,08127	15,35%
(0 <u>0</u> 10111 <u>10000100</u>)	0,18	1,03	-0,4846	8,09%
(01011100 010 <u>0101</u>)	0,719	0,664	-0,2961	11,48%
00101110 100 <u>0011</u>)	0,36	1,086	0,02307	17,23%
(11101001 <u>0001110</u>)	1,82	1,11	-0,7306	3,65%
(11101110 <u>D110110</u>)	1,86	1,42	-0,4968	7,87%
		Σ J =	-1,9193	
		Jmin=	-0,7306	

Améliorations possibles

- Élistisme vs Sauvegarde
- Mutation adaptative = fct(itérations, distrib. gènes, distrib obj.)
- Niches écologiques

Extensions possibles

- Métaheuristiques hybrides
 - ► Lamarckisme : évolutions locales déterministes des gènes (ex : un/des pas de gradient comme opérateur)
 - ▶ Baldwinisme : évaluation sur le potentiel de modifications locales (on regarde ce que donne un gradient, mais on ne le fait pas)
- Programmation génétique, differential evolution $(D = C + \vec{AB})$ où A, B et C sont 3 bons individus. . .
- Démos : http ://www.rennard.org/alife/french/gav.html, http ://math.hws.edu/xJava/GA/

S. Adam (Master STIM) Optimisation 28 janvier 2016 37 / 48

Un problème plus complexe

Soit $G = \{g_i, y_i\}_{i=1,...,n}$ un ensemble de graphes avec $(g, y) \in \mathcal{G} \times Y$. On cherche une fonction $f : \mathcal{G} \to Y$ telle que $f(g) = \hat{y}$

Base réduite : un processus d'optimisation

• Prototypes médians [Jiang 01]: minimisation des distances intra-classes

Un problème plus complexe

Soit $G = \{g_i, y_i\}_{i=1,\dots,n}$ un ensemble de graphes avec $(g, y) \in \mathcal{G} \times Y$. On cherche une fonction $f : \mathcal{G} \to Y$ telle que $f(g) = \hat{y}$

Base réduite : un processus d'optimisation

- Prototypes médians [Jiang 01]: minimisation des distances intra-classes
- Prototypes discriminants [CVIU'11] : optimisation d'un critère d'erreur

← □ ▶ ←

Prototypes de graphes

Graphes d'ensemble Graphes médian d'ensemble

 $smg = arg \min_{g \in S} \sum_{i=1}^{n} d(g, g_i)$

Prototypes de graphes

> Graphes généralisés

> > espace

Graphes médian généralisés

 $gmg = arg \min_{g \in \mathcal{U}} \sum_{i=1}^{n} d(g, g_i)$

Prototypes de graphes

Graphes médian d'ensemble

 $smg = arg \min_{g \in \mathcal{S}} \sum_{i=1}^{n} d(g, g_i)$

Graphes discriminant d'ensemble

Graphes médian généralisés

 $gmg = arg \min_{g \in \mathcal{U}} \sum_{i=1}^{n} d(g, g_i)$

Graphes discriminant généralisés

 $\begin{cases} g dg_i \rbrace = \\ \arg \min_{\{g_i\}_{i=1}^N \subset \mathcal{U}} \Delta \big(\mathcal{T}, \{g_i\}_{i=1}^N \big) \end{cases}$

espace

Graphes généralisés

critère

Prototypes de graphes

espace

Graphes médian d'ensemble

 $smg = arg \min_{g \in \mathcal{S}} \sum_{i=1}^{n} d(g, g_i)$

Graphes discriminant d'ensemble $\begin{cases} \mathit{sdg}_i \rbrace &= \\ \arg\min_{\{g_i\}_{i=1}^N \subset \mathcal{L}} \Delta \big(\mathcal{T}, \{g_i\}_{i=1}^N \big) \end{cases}$

Graphes médian généralisés

 $gmg = arg \min_{g \in \mathcal{U}} \sum_{i=1}^{n} d(g, g_i)$

Graphes discriminant généralisés $\begin{cases} g d g_i \} &= \\ \arg \min_{\{g_i\}_{i=1}^N \subset \mathcal{U}} \Delta \big(\mathcal{T}, \{g_i\}_{i=1}^N \big) \end{cases}$

39 / 48

critère

→ Un problème d'optimisation

Codage

Croisement

Mutation cas GxE

Mutation cas GxG

S. Adam (Master STIM)

Plan du Cours

- Présentation de l'enseign(ant)emen
- 2 Introduction
- Méthodes des moindres carrés
- Méthodes de descente locale
- 5 Réseaux de neurones
- Méthodes itératives globales
 - Recuit simulé
 - Algorithmes génétiques
 - Essaims particulaires

Principes

- Objectifs :
 - ▶ Minimiser itérativement un critère $J(\theta)$
 - ► Ne pas se « bloquer » dans les minimus locaux
- Historique :
 - Russel Eberhart (ingénieur en électricité) et James Kennedy (socio-psychologue) en 1995
 - Spécialiste Français : Maurice Clerc (FT R&D)
- Analogie
 - ▶ Intelligence en essaims (comme les colonies de fourmis) : « le tout est plus que la somme des parties » : émergence de comportements sociaux
- Points clefs
 - Population de solutions (ici des particules)
 - Coopération entre particules régies par des règles simples
 - \rightarrow Pas d'hypothèse sur le critère

Principe de fonctionnement

Les particules se déplacent dans l'espace des paramètres en fonction de (i) leur inertie, (ii) leur mémoire et (iii) leur voisines

$$x_{i,t+1} = x_{i,t} + \chi(v_{i,t+1})$$
 $v_{i,t+1} = \omega.r_0.v_{i,t} + c_1.r_1.(p_{i,best} - x_{i,t}) + c_2.r_2.(p_{i,guide} - x_{i,t})$

45 / 48

- $x_{i,t}$ est la position de la i^{eme} particule à l'instant t
- $v_{i,t}$ est la vitesse de la i^{eme} particule à l'instant t
- $p_{i,best}$ est la meilleure position visitée (mémoire individuelle)
- $p_{i,guide}$ la position d'un guide (mémoire collective)
- r₀, r₁ et r₂ sont des valeurs aléatoires

S. Adam (Master STIM) Optimisation 28 janvier 2016

Principe de fonctionnement

Population de particules

$$v_{i,t+1} = \omega.r_0.v_{i,t} + c_1.r_1.(p_{i,best} - x_{i,t}) + c_2.r_2.(p_{i,guide} - x_{i,t})$$
 $x_{i,t+1} = x_{i,t} + \chi(v_{i,t+1})$

46 / 48

Explications

- c_1r_1 est appelé facteurs individuel (r_1 est aléatoire)
- c_2r_2 est appelé facteurs social (r_2 est aléatoire) : panurgisme
- ullet ω est appelé facteur d'inertie
- La fonction χ () est généralement implémentée comme un simple facteur de turbulence, ou pour éviter une divergence de la vitesse

Réseau social

- Les particules communiquent dans un « voisinage »
- Il existe différents types de voisinnage
 - ► En Anneau : chaque particule est reliée à *n* particules
 - En Rayon : les particules ne communiquent qu'avec une particule centrale
 - ► En Étoile : chaque particule est reliée à toutes les autres

Exemple d'algorithme

```
[Les variables et paramètres de l'algorithme]
N nombre de particules
\overrightarrow{x_i} position de la particule P_i
\overrightarrow{v_i} vitesse de la particule P_i
pbest_i meilleure fitness obtenue pour la particule P_i
\overrightarrow{x}_{pbest}, position de la particule P_i pour la meilleure fitness
\overrightarrow{x}_{abcat} position de la particule ayant la meilleure fitness de toutes
\rho_1, \rho_2 valeurs aléatoires positives
[Initialisations]
Initialiser aléatoirement la population
[Traitement]
Répéter
        Pour i de 1 à N faire
                 Si (\mathcal{F}(\overrightarrow{x_i}) > pbest_i) Alors
                      pbest_i \leftarrow \mathcal{F}(\overrightarrow{x_i})
                      \overrightarrow{x}_{vbest_i} \leftarrow \overrightarrow{x_i}
                 Si (\mathcal{F}(\overrightarrow{x_i}(t)) > abest) Alors
                      gbest \leftarrow \mathcal{F}(\overrightarrow{x_i})
                       \overrightarrow{x}_{abcst} \leftarrow \overrightarrow{x_i}
        Fin Pour
        Pour i de 1 à N faire
                 \overrightarrow{v_i} \leftarrow \overrightarrow{v_i} + \rho_1(\overrightarrow{x}_{pbest_i} - \overrightarrow{x_i}) + \rho_2(\overrightarrow{x}_{qbest} - \overrightarrow{x_i})
                \overrightarrow{x_i} \leftarrow \overrightarrow{x_i} + \overrightarrow{v_i}
        Fin Pour
jusqu'à ce que (le processus converge)
                         Algorithme 2 - Algorithme avec un voisinage en étoile
```

Nombreux choix

- Nombre de particules
- Valeurs de c_1 et c_2
- Le voisinage
- Le facteur d'inertie
- Le critère d'arrêt
- Le voisinage
- Éventuellement une vitesse maximale

◆ロト ◆個 ト ◆注 ト ◆注 ト 注 り Q ②

Nombreux rafinements possibles

- Exemple avec une fonction objectif dynamique
- Exemple avec plusieurs essaims et plusieurs objectifs

