1-2 Shannon Entropy

Shannon theory

- noiseless channel coding theorem data compression
- noisy channel coding theorem channel capacity
- You'll learn why entropy is defined so.

Model

why infinite?

set of alphabets $\chi = \{a, b, c, \cdots\}$

random variable X = x with probability p(x), $x \in \chi$

information source \rightarrow a sequence of random variables of length n

$$X^n \equiv X_1 X_2 \cdots X_n \ (n \colon \text{length})$$

 X_i 's are i.i.d. (independent and identically distributed)

$$X^n = x^n \equiv x_1 x_2 \cdots x_n$$
 with probability $p(x^n)$

ex)
$$\chi = \{a, b\}, p(a) = 2/3, p(b) = 1/3, n = 2$$

Result

As $n \to \infty$, you can encode the message into nH(X) bits.

$$H(X) \equiv -\sum_{x} p(x) \log p(x)$$
 Shannon entropy

ex)
$$\chi = \{a, b, c, d\}$$

$$p(a) = 1/2$$
, $p(b) = 1/8$, $p(c) = 1/4$, $p(d) = 1/8$

method 1:
$$a \rightarrow 00, b \rightarrow 01, c \rightarrow 10, d \rightarrow 11$$

You need 2n bits.

method 2:
$$a \to 0$$
, $c \to 10$, $b \to 110$, $d \to 111$
$$abcd \to 011010111 \text{ (there is no ambiguity!)}$$
 # of bits per character = $\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 \cdot 2 = \frac{7}{4}$ You need $\frac{7}{4}n$ bits.

Sketch of the proof

$$x^n = x_1 x_2 \cdots x_n, \quad n \to \infty$$
 $x_i \in \{c_1, c_2, ..., c_\alpha, ...\}, \quad p_\alpha \equiv p(c_\alpha)$
typical vs atypical sequences
typical $x^n \colon \# \text{ of } c_1 \approx np_1, \# \text{ of } c_2 \approx np_2, \cdots$
ex) coin tossing
asymptotic equipartition theorem
Almost all x^n s are typical! (as $n \to \infty$)
 $p(\text{typical } x^n) \approx p_1^{np_1} p_2^{np_2} \cdots$ (all identical)
 $\# \text{ of typical sequences} \approx \frac{1}{p(\text{typical } x^n)}$

You encode only typical sequences into nR bits.

R: compression rate

$$p(\text{error}) \to 0 \text{ as } n \to \infty$$

$$nR \approx \log(\# \text{ of typical sequences})$$

$$=-\log\left(p_1^{np_1}p_2^{np_2}\cdots\right)$$

$$\approx -np_1\log p_1 - np_2\log p_2 - \cdots$$

$$= n \left(-\sum_{\alpha} p_{\alpha} \log p_{\alpha} \right)$$

$$= nH(X)$$

Q) Is this optimal? converse theorem