MW 22.10.04

Jakieś narzekanie na stan nauki, pogoń za publikacjami, anegdoty

Dawne zastosowania węgla:

- Zgazowywanie węgla (dalej rozwijane w RPA)
- Koksowanie

Przełomy w nauce o materiałach węglowych:

- 1. Fluereny
- 2. Nanorurki
- 3. Grafeny

Węgiel

Węgiel kopalny: kamienny (en.coal) i brunatny (en.lignite)

 $_6C1s^22s^22p^2$

Izotopy: ${}^{1}2C$ (98, 892%), ${}^{1}3C$ (1, 108%)

Hybrydyzacje: $sp^3, \, sp^2 \, sp$

Geneza złóż węgla

Pramateria roślinna -> Torf (56-62%) -> Węgiel brunatny (65-78%) -> Węgiel kamienny (78-92%) -> Antracyt (>92%)

Antracyt jest ważny w produkcji materiałów węglowych ale nie grafitu. W produkcji grafitu wykorzystuje się koks.

Zakłady węglowe - Racibórz, Nowy Sącz.

Model struktury chemicznej węgla bitumicznego

Model struktury węgla wg Wisera - wielki schemat rozgałęzionej cząsteczki >100 atomów

Budowa węgli kamiennych:

- C 78-90%
- H 6-2.5%
- 0 14-3%
- S ~1%
- N ~1,5%

Pak węglowy - same pierścienie aromatyczne (chyba)

Materiały węglowe

Konwencjonalne

Konstrukcyjne materiały węglowe i wyroby węglowe - bloki, włókna, kompozyty.

Porowate materiały węglowe (węgle aktywne) - pyłowe, ziarnowe, monolity, włókna

(Monolity=drobny pył + lepiszcze)

Węgle aktywne - duża powierzchnia właściwa (rzędu $\frac{m^2}{a}$)

Nanostruktury węglowe

Fulereny, nanorurki, grafen, nanocebulki, nanorożki, itd...

Odmiany alotropowe węgla

- Diament (sp3)
- Grafit (sp2)
- Karbin (sp)
- Fuleren (C60, sp2.28 [?])

Rysunek struktury grafitu - ważny. warstwy sąsiednie przesunięte względem siebie

Gęstość grafitu – 2.26 g/cm^3 . Pomiędzy warstwami grafitu działają siły Van-der-Waalsa.

"Takie życie, w takim kraju żyjemy" - o tym, że Polska nie jest potęgą grafenową

Nieoczywiste hybrydyzacje

Mieszane stany atomów węgla (sp3+sp2+sp):

- Antracyt
- Koks

- Węgiel aktywny
- Sadza węglowa
- Węgiel pirolityczny
- Włókna węglowe
- Węgiel amorficzny powstaje m.in. w procesach katalitycznych

Pośrednie stany atomów węgla $(sp^m, 1 < m < 3, m \neq 2)$

- Fulereny
- Nanowłókna węglowe
- Nanorurki węglowe

Struktura heksagonalna grafitu

ponownie rysunek - ponowny przykaz przerysowania, ważne! odległość między warswtami 0.3354nm

Struktura ABAB - stabilna dominująca Struktura ABCABC - metastabilna

Właściwości alotropów węgla

Odmiana alotropowa	Długość wiązania [nm]	Gęstość [g/cm^3]	Temperatura sublimacji $[{}^oC]$
Diament	0.1545	3.52	-
Grafit	0.1421, 0.3354	2.26	3650
C60	0.145, 0.140	1.67	~400

Anizotropia właściwości fizycznych i mechanicznych grafitu

Właściwości		Jednostka	równoległa	prostopadła
Przewodnictwo ci	eplne	W/m K	>2000	10
Rozszerzalność ci	eplna, $lpha$	1/K	10e-6	26.3 e-6

Właściwości	Jednostka	równoległa	prostopadła
Wytrzymałość na rozciąganie	GPa	20	-
Moduł Younga	GPa	1020	36.3
Oporność elektryczna	$m\Omega \cdot cm$	0.1	3000

Procesy termiczne - produkcja materiałów węglowych i grafitowych

. . .