FIB-1

In the following single neuron, the neuron has three inputs $x=(x_1,x_2,x_3)$ that receives only binary signals (either 0 or 1). The number of all possible input patterns this node can receive is _____

Figure 1: Single unit with three inputs.

Please fill in your answer here 1

Number Correct Answer

Range - Min: 7.9999 Max: 8.00001

FIB-2

Suppose we are minimizing $f(x) = x^4$ with respect to x. We initialize x to be 2. We perform gradient descent with learning rate 0.1. After the first iteration, x will become _____ (please specify your answer with a number of up to 2 decimal places)

Please provide your answer here 1

Number Correct Answer

Range - Min: -1.21 Max: -1.19

FIB-3

You are given a collection of 6 training data points of three features (x_1, x_2, x_3) and their one-hot encoding of class labels (y_1, y_2, y_3) which are packed as follows:

$$\mathbf{X} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 0 & 6 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \\ 5 & 7 & -2 \\ -1 & 4 & 0 \end{bmatrix}, \mathbf{Y} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \text{class1} \\ \text{class2} \\ \text{class3} \\ \text{class2} \\ \text{class3} \end{bmatrix}.$$

- (i) Predict the class label of $(x_1, x_2, x_3) = (1, -2, 3)$ using the linear regression model with a bias term. My prediction for the class label is class 1 (enter 1, 2, or 3?).
- (ii) Predict the class label of $(x_1, x_2, x_3) = (1, -2, 3)$ using the full polynomial model of third order. My prediction for the class label is class 2 (enter 1, 2, or 3?).

Please provide your answer below

- 1) **1**
- 2) 2

Number	Correct Answer
1	Choice of: 1 <u>2</u> 3
2	Choice of: 1 2 <u>3</u>

We partition a data set into training, validation and test data. Which of the following statement is correct?

Seq	eq Answer Choice	
a)	Training data and test data may overlap in one experiment.	
b)	Test data and validation data may overlap in one experiment.	
C)	We use validation data to select parameters.	
d)	Test data are unseen during training.	
e)	a) and b)	
f)	b) and c)	
g)	c) and d)	/

What are valid evaluation metrics for machine learning?

Seq	Answer Choice Co		
a)	Equal error rate		
b)	False positive rate		
c)	False negative rate		
d)	Validation dataset		
e)	b) and c)		
f)	a), b), c), and d)		
g)	a), b), c)	\checkmark	

To build a classifier to classify people by gender from their images, which of the following dataset is most suitable?

Seq	Answer Choice	
a)	Images with labels of people's nationality.	
b)	Images with no labels.	
c)	Images with labels of people's age.	
d)	Images of people labeled as male or female.	\checkmark

A set of linear equations is written as $\mathbf{X}\mathbf{w} = \mathbf{y}$, where $\mathbf{X} \in \mathcal{R}^{5x3}$, $\mathbf{w} \in \mathcal{R}^{3x1}$, and $\mathbf{y} \in \mathcal{R}^{5x1}$. How many simultaneous equations are there in this set of equations?

Seq	Answer Choice	Correct
a)	1	
b)	2	
c)	3	
d)	5	
e)	6	

If we run K-means algorithms multiple times with different initializations, we always get the same result.

Correct Answer Choice

True

A vector function has the mapping of $\mathbf{f}(\mathbf{x})$: $\mathbb{R}^3 \to \mathbb{R}^2$. The gradient of this function with respect to \mathbf{x} is a matrix of partial derivatives, which is a 2×3 matrix.

Correct Answer Choice

True

The ReLU function is given as f(a) = max(0,a). The output of ReLU is discrete data.

Correct Answer Choice

True

Increasing the maximum depth of a decision tree will in general increase the bias of the resulting trained decision tree.

Correct Answer Choice

True

We build a classifier to classify emails into regular mails and spam. As such, the classifier is making a deductive reasoning.

Correct Answer Choice

True

To perform k-means clustering on a set of unlabeled data, one possible way is to randomly group the set of unlabeled data into k clusters as an initialization.

Correct Answer Choice

True