$12a_{0679} (K12a_{0679})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{15} + 2u^{14} + \dots + b - 1, \ u^{18} + 3u^{17} + \dots + 2a - 4, \ u^{19} + 3u^{18} + \dots - 6u - 2 \rangle \\ I_2^u &= \langle -7u^{12}a + 12u^{12} + \dots - 4a - 9, \ u^{10}a + u^{11} + \dots + a - 1, \\ u^{13} - u^{12} + 10u^{11} - 9u^{10} + 37u^9 - 29u^8 + 62u^7 - 40u^6 + 46u^5 - 22u^4 + 12u^3 - 3u^2 + u - 1 \rangle \\ I_3^u &= \langle b + u - 2, \ 3a + 2u - 3, \ u^2 + 3 \rangle \\ I_4^u &= \langle b - u, \ a - 1, \ u^2 + 1 \rangle \end{split}$$

$$I_1^v = \langle a, b+1, v+1 \rangle$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 50 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{15} + 2u^{14} + \dots + b - 1, \ u^{18} + 3u^{17} + \dots + 2a - 4, \ u^{19} + 3u^{18} + \dots - 6u - 2 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{18} - \frac{3}{2}u^{17} + \dots + \frac{7}{2}u + 2 \\ -u^{15} - 2u^{14} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{18} + \frac{3}{2}u^{17} + \dots - \frac{9}{2}u - 2 \\ u^{16} + 2u^{15} + \dots - u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{18} - \frac{3}{2}u^{17} + \dots + \frac{7}{2}u + 1 \\ -u^{16} - 2u^{15} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{18} + \frac{3}{2}u^{17} + \dots - \frac{7}{2}u - 1 \\ -u^{14} - 2u^{13} + \dots + u + 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= 2u^{18} + 6u^{17} + 36u^{16} + 86u^{15} + 264u^{14} + 506u^{13} + 1022u^{12} + 1566u^{11} + 2248u^{10} + 2704u^9 + 2794u^8 + 2526u^7 + 1806u^6 + 1106u^5 + 464u^4 + 122u^3 - 16u^2 - 28u - 20$$

Crossings	gs u-Polynomials at each crossing	
c_1,c_{11}	$u^{19} + 7u^{18} + \dots + 13u + 1$	
c_2, c_6, c_7 c_{12}	$u^{19} - u^{18} + \dots + u + 1$	
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	$u^{19} - 3u^{18} + \dots - 6u + 2$	

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{19} + 17y^{18} + \dots + 37y - 1$
c_2, c_6, c_7 c_{12}	$y^{19} - 7y^{18} + \dots + 13y - 1$
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	$y^{19} + 27y^{18} + \dots + 24y - 4$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.273151 + 0.815941I		
a = -0.390307 - 0.220948I	1.82620 - 1.77807I	-6.92820 + 2.34039I
b = -0.608791 + 0.652934I		
u = -0.273151 - 0.815941I		
a = -0.390307 + 0.220948I	1.82620 + 1.77807I	-6.92820 - 2.34039I
b = -0.608791 - 0.652934I		
u = 0.077265 + 0.786380I		
a = -0.374812 - 0.399284I	1.76915 - 1.42092I	-5.09647 + 5.54292I
b = -0.419169 + 0.348987I		
u = 0.077265 - 0.786380I		
a = -0.374812 + 0.399284I	1.76915 + 1.42092I	-5.09647 - 5.54292I
b = -0.419169 - 0.348987I		
u = -0.246012 + 1.236810I		
a = -1.197950 + 0.527520I	5.58686 + 10.56180I	-7.44680 - 7.73425I
b = 0.428066 - 0.067299I		
u = -0.246012 - 1.236810I		
a = -1.197950 - 0.527520I	5.58686 - 10.56180I	-7.44680 + 7.73425I
b = 0.428066 + 0.067299I		
u = -0.487418 + 0.522631I		
a = 0.993393 - 0.218685I	-0.06851 + 8.01058I	-10.52385 - 9.28102I
b = 1.221660 + 0.201552I		
u = -0.487418 - 0.522631I		
a = 0.993393 + 0.218685I	-0.06851 - 8.01058I	-10.52385 + 9.28102I
b = 1.221660 - 0.201552I		
u = -0.076466 + 1.310960I		
a = 0.792972 - 0.747592I	8.75335 - 0.83971I	-3.29462 + 2.18721I
b = -0.069397 - 0.530421I		
u = -0.076466 - 1.310960I		
a = 0.792972 + 0.747592I	8.75335 + 0.83971I	-3.29462 - 2.18721I
b = -0.069397 + 0.530421I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.550052 + 0.150551I		
a = 0.41192 + 1.61654I	-1.18097 - 4.60134I	-13.18408 + 3.99244I
b = -0.276507 + 0.224858I		
u = -0.550052 - 0.150551I		
a = 0.41192 - 1.61654I	-1.18097 + 4.60134I	-13.18408 - 3.99244I
b = -0.276507 - 0.224858I		
u = 0.308487		
a = -0.641715	-0.592779	-16.7390
b = 0.245608		
u = -0.01455 + 1.70648I		
a = -0.003380 - 1.097050I	10.80000 - 1.26776I	-5.99488 + 5.70666I
b = -0.23251 - 1.76936I		
u = -0.01455 - 1.70648I		
a = -0.003380 + 1.097050I	10.80000 + 1.26776I	-5.99488 - 5.70666I
b = -0.23251 + 1.76936I		
u = -0.06366 + 1.79454I		
a = -2.87448 + 0.37712I	16.6584 + 11.9628I	-6.98346 - 6.50856I
b = -5.52313 + 0.65502I		
u = -0.06366 - 1.79454I		
a = -2.87448 - 0.37712I	16.6584 - 11.9628I	-6.98346 + 6.50856I
b = -5.52313 - 0.65502I		
u = -0.02020 + 1.81069I		
a = 1.96350 - 0.53377I	-19.1741 - 0.3767I	-3.17814 + 1.98776I
b = 3.85697 - 1.33560I		
u = -0.02020 - 1.81069I		
a = 1.96350 + 0.53377I	-19.1741 + 0.3767I	-3.17814 - 1.98776I
b = 3.85697 + 1.33560I		

$$I_2^u = \langle -7u^{12}a + 12u^{12} + \cdots - 4a - 9, \ u^{10}a + u^{11} + \cdots + a - 1, \ u^{13} - u^{12} + \cdots + u - 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.189189au^{12} - 0.324324u^{12} + \dots + 0.108108a + 0.243243 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.567568au^{12} - 0.0270270u^{12} + \dots + 0.675676a + 0.270270 \\ -0.0810811au^{12} - 0.432432u^{12} + \dots - 0.189189a + 0.324324 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.108108au^{12} + 0.243243u^{12} + \dots + 0.918919a - 0.432432 \\ -0.0810811au^{12} - 0.432432u^{12} + \dots - 0.189189a + 0.324324 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.108108au^{12} - 0.243243u^{12} + \dots - 0.918919a + 0.432432 \\ u^{11} - 2u^{10} + \dots + au + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -4u^{11} + 4u^{10} - 36u^9 + 32u^8 - 116u^7 + 88u^6 - 160u^5 + 96u^4 - 88u^3 + 36u^2 - 12u - 6u^4 - 8u^4 - 8u$$

Crossings	u-Polynomials at each crossing	
c_1,c_{11}	$u^{26} + 13u^{25} + \dots + 385u + 64$	
c_2, c_6, c_7 c_{12}	$u^{26} - u^{25} + \dots - 7u + 8$	
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	$(u^{13} + u^{12} + \dots + u + 1)^2$	

Crossings	Riley Polynomials at each crossing	
c_1,c_{11}	$y^{26} - y^{25} + \dots + 33151y + 4096$	
c_2, c_6, c_7 c_{12}	$y^{26} - 13y^{25} + \dots - 385y + 64$	
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	$(y^{13} + 19y^{12} + \dots - 5y - 1)^2$	

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.083038 + 1.167020I		
a = -0.182812 + 0.329365I	1.55956 + 1.92579I	-8.00122 - 3.82169I
b = -0.28373 + 1.50091I		
u = -0.083038 + 1.167020I		
a = -1.82248 - 0.57547I	1.55956 + 1.92579I	-8.00122 - 3.82169I
b = 0.180439 - 0.168950I		
u = -0.083038 - 1.167020I		
a = -0.182812 - 0.329365I	1.55956 - 1.92579I	-8.00122 + 3.82169I
b = -0.28373 - 1.50091I		
u = -0.083038 - 1.167020I		
a = -1.82248 + 0.57547I	1.55956 - 1.92579I	-8.00122 + 3.82169I
b = 0.180439 + 0.168950I		
u = 0.179330 + 1.269600I		
a = -0.753270 - 0.865498I	7.63579 - 4.78537I	-4.65540 + 3.59229I
b = -0.137976 - 0.536137I		
u = 0.179330 + 1.269600I		
a = 1.148590 + 0.147882I	7.63579 - 4.78537I	-4.65540 + 3.59229I
b = -0.404842 - 0.185728I		
u = 0.179330 - 1.269600I		
a = -0.753270 + 0.865498I	7.63579 + 4.78537I	-4.65540 - 3.59229I
b = -0.137976 + 0.536137I		
u = 0.179330 - 1.269600I		
a = 1.148590 - 0.147882I	7.63579 + 4.78537I	-4.65540 - 3.59229I
b = -0.404842 + 0.185728I		
u = 0.379427 + 0.590112I		
a = -0.841955 - 0.244681I	1.59236 - 2.83275I	-7.00318 + 5.17990I
b = -1.020470 + 0.268374I		
u = 0.379427 + 0.590112I		
a = 0.330450 - 0.407996I	1.59236 - 2.83275I	-7.00318 + 5.17990I
b = 0.615126 + 0.383997I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.379427 - 0.590112I		
a = -0.841955 + 0.244681I	1.59236 + 2.83275I	-7.00318 - 5.17990I
b = -1.020470 - 0.268374I		
u = 0.379427 - 0.590112I		
a = 0.330450 + 0.407996I	1.59236 + 2.83275I	-7.00318 - 5.17990I
b = 0.615126 - 0.383997I		
u = 0.485085		
a = -0.500820 + 1.088090I	-0.173769	-11.9170
b = 0.327558 + 0.106231I		
u = 0.485085		
a = -0.500820 - 1.088090I	-0.173769	-11.9170
b = 0.327558 - 0.106231I		
u = -0.245118 + 0.346982I		
a = 0.833919 + 0.205281I	-3.34890 + 0.88691I	-13.3039 - 7.8258I
b = 1.26442 + 0.90129I		
u = -0.245118 + 0.346982I		
a = 0.69156 + 3.05215I	-3.34890 + 0.88691I	-13.3039 - 7.8258I
b = -0.067874 + 0.176233I		
u = -0.245118 - 0.346982I		
a = 0.833919 - 0.205281I	-3.34890 - 0.88691I	-13.3039 + 7.8258I
b = 1.26442 - 0.90129I		
u = -0.245118 - 0.346982I		
a = 0.69156 - 3.05215I	-3.34890 - 0.88691I	-13.3039 + 7.8258I
b = -0.067874 - 0.176233I		
u = -0.01838 + 1.78025I		
a = 0.031468 - 1.234190I	12.36340 + 2.35177I	-7.64300 - 2.76650I
b = -0.01017 - 1.63025I		
u = -0.01838 + 1.78025I		
a = -3.09176 - 0.79285I	12.36340 + 2.35177I	-7.64300 - 2.76650I
b = -6.07832 - 1.71326I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.01838 - 1.78025I		
a = 0.031468 + 1.234190I	12.36340 - 2.35177I	-7.64300 + 2.76650I
b = -0.01017 + 1.63025I		
u = -0.01838 - 1.78025I		
a = -3.09176 + 0.79285I	12.36340 - 2.35177I	-7.64300 + 2.76650I
b = -6.07832 + 1.71326I		
u = 0.04523 + 1.80316I		
a = -1.62778 - 0.56147I	18.9406 - 5.8171I	-4.43476 + 2.75393I
b = -3.25509 - 1.42971I		
u = 0.04523 + 1.80316I		
a = 2.78489 + 0.06061I	18.9406 - 5.8171I	-4.43476 + 2.75393I
b = 5.37092 - 0.01991I		
u = 0.04523 - 1.80316I		
a = -1.62778 + 0.56147I	18.9406 + 5.8171I	-4.43476 - 2.75393I
b = -3.25509 + 1.42971I		
u = 0.04523 - 1.80316I		
a = 2.78489 - 0.06061I	18.9406 + 5.8171I	-4.43476 - 2.75393I
b = 5.37092 + 0.01991I		

III.
$$I_3^u = \langle b+u-2, \ 3a+2u-3, \ u^2+3 \rangle$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -\frac{2}{3}u + 1 \\ -u + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -2u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -2u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{5}{3}u + 1 \\ -3u + 2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -\frac{2}{3}u - 1 \\ -u - 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ -2u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} \frac{2}{3}u - 1\\ u - 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_7 c_{11}	$(u-1)^2$		
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	$u^2 + 3$		
c_6, c_{12}	$(u+1)^2$		

Crossings	Riley Polynomials at each crossing		
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	$(y-1)^2$		
c_3, c_4, c_5 c_8, c_9, c_{10}	$(y+3)^2$		

Solutions to I_3^u		$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.73205I		
a =	1.00000 - 1.15470I	9.86960	-12.0000
b =	2.00000 - 1.73205I		
u =	-1.73205I		
a =	1.00000 + 1.15470I	9.86960	-12.0000
b =	2.00000 + 1.73205I		

IV.
$$I_4^u = \langle b - u, \ a - 1, \ u^2 + 1 \rangle$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u+1 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
$c_1, c_6, c_{11} \\ c_{12}$	$(u-1)^2$
c_{2}, c_{7}	$(u+1)^2$
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	$u^2 + 1$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	$(y-1)^2$
c_3, c_4, c_5 c_8, c_9, c_{10}	$(y+1)^2$

	Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a =	1.00000	0	-12.0000
b =	1.000000I		
u =	-1.000000I		
a =	1.00000	0	-12.0000
b =	-1.000000I		

V.
$$I_1^v = \langle a, b+1, v+1 \rangle$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7 c_{11}	u-1
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	u
c_6, c_{12}	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	y-1
c_3, c_4, c_5 c_8, c_9, c_{10}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = -1.00000		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$((u-1)^5)(u^{19} + 7u^{18} + \dots + 13u + 1)(u^{26} + 13u^{25} + \dots + 385u + 64)$
c_2, c_7	$((u-1)^3)(u+1)^2(u^{19}-u^{18}+\cdots+u+1)(u^{26}-u^{25}+\cdots-7u+8)$
c_3, c_4, c_5 c_8, c_9, c_{10}	$u(u^{2}+1)(u^{2}+3)(u^{13}+u^{12}+\cdots+u+1)^{2}(u^{19}-3u^{18}+\cdots-6u+2)$
c_6, c_{12}	$((u-1)^2)(u+1)^3(u^{19}-u^{18}+\cdots+u+1)(u^{26}-u^{25}+\cdots-7u+8)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$((y-1)^5)(y^{19} + 17y^{18} + \dots + 37y - 1)$ $\cdot (y^{26} - y^{25} + \dots + 33151y + 4096)$
c_2, c_6, c_7 c_{12}	$((y-1)^5)(y^{19} - 7y^{18} + \dots + 13y - 1)(y^{26} - 13y^{25} + \dots - 385y + 64)$
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	$y(y+1)^{2}(y+3)^{2}(y^{13}+19y^{12}+\cdots-5y-1)^{2}$ $\cdot (y^{19}+27y^{18}+\cdots+24y-4)$