Basics of Corrosion

Performance Metals

- Sacrificial anode manufacturer
- Specialize in aluminum alloy anodes
- All products made in the USA (Berks county, PA)
- ISO9001/2001 Certified Quality System
- Also traditional die-casting company supplying aluminum and zinc die-castings to wide range of industries

Atomic Structure

Atoms consist of:

- - Neutrons
- Atoms concentrations:

 Nucleus:

 Protor

 Neu'

 Elec'

 Atr

 b' Atom is electrically balanced - equal electrons and

Iron Atom

26 Protons, 26 Neutrons - 26 Electrons

Metals Can Dissolve

- Atoms of metal dissolve into water
- Give up electrons to form positively charged ions
- Leave electrons behind
- Gives metal a negative charge

Equilibrium Potential

Corrosion

- Each metal generates
- Each metal generates different voltage
 Tendency to corrode depends on position depends on position on **GALVANIC SERIES**
 - Lower the voltage (more negative) - the more active more likely to corrode.

Simple Electrochemical Corrosion

- Electrochemical process of deterioration of metal
- Reverting to oxide
- Positive (Cathodic) and negative (Anodic) areas form on surface
- Metal dissolves from anodic areas
- Circuit is competed by ions traveling between anode and cathode areas
- Relatively slow process

Corrosion Mechanism

Galvanic Corrosion

 What happens when two dissimilar metals are in contact in water?

Galvanic Corrosion

Whenever two metals are immersed in a liquid they form a battery and one starts to corrode:

e.g. The steel corrodes to protect the copper!
This is a much faster process

Solution -Sacrificial Anodes

- The solution:
- Add a more "active" material
 - Sacrificial Anode
- Protects the steel and copper

Solution #2 – Impressed Current System

- Same principal:
- Instead of anode a dc power source (battery) provides the protective voltage

What is Electrolysis?

- Process by which water is broken down into Hydrogen and Water by the application of an a direct current
 - At anode: $2H_2O=> 4e^- + 4H^+ + O_2$ (gas)
 - At cathode: $4H_2O + 4e^- => 2H_2$ (gas) + $4OH^-$
 - In the electrolyte: $4H^+ + 4OH^- \Rightarrow 4H_2O$
 - Add together:

$$2H_2O => 2H_2 (gas) + O_2 (gas)$$

Under and Overprotection

- To protect a metal it's potential must be reduced by 250mV (after anode is added)
- Less means some anodic corrosion is still occurring
- More can increase anode usage and/or cause damage to aluminum or wood components
- Aluminum is "amphoteric"
 - Corrosion occurs if voltage reduced below –1200mV
 - Production of Hydrogen bubbles can lift paint and Chlorine gas can attack aluminum
- Wood can be damaged by corrosion products (OH- ions) – alkalis attack lignin

Sacrificial Anode Materials

Historically, zinc has been used, because it works as an anode in its natural state.

However there is a better material – Aluminum/Indium alloy

Aluminum anode alloy gives bigger "driving" voltage. E.g. when protecting aluminum - (.35V) compared with (.28V) for zinc

Sacrificial Anode Materials

Magnesium is the most active – Why not use that?

Danger of "over-protecting" aluminum

Aluminum is "amphoteric" and if driven below -1.2V will corrode due to formation of alkalis

Advantages of Aluminum

- More active than zinc –1.1V vs. 1.03V
- Navall@y[™]
- Longer life Extra 25% 30% life compared with zinc. 5 times magnesium!
 - Zinc capacity 368 AH/lb
 - Aluminum 1150 AH/lb
- But density:
 - Zinc.25 lb/cu in
 - Aluminum .10 lb/cu in
- Relative life AH/cu in
 - Zinc 92
 - Aluminum 115 (+25%)

Advantages of Aluminum

Suitable for salt and freshwater

- In freshwater zinc coats over with zinc hydroxide and stops working after approx. two months
- This can occur in saltwater too particularly when polluted
- Aluminum anodes stay active
- Remains active if exposed to air
 - If zinc anodes are removed from water they coat over
 - Aluminum anodes will reactivate when re-immersed

Raytheon Towed Sonar Array

Advantages of Aluminum

Environmentally friendly (Zinc causes pollution)

Density 40% of that of zinc

Anode Dos and Don'ts

Do:

- Change when 50% corroded
- Make sure of good electrical contact
- Replace annually (especially if zinc)

Don't

- Do not paint
- Do not mix anode types aluminum will protect zinc
- Do not use zinc anodes to protect aluminum components
- Do not use magnesium anodes on aluminum in salt water

Factors Affecting Corrosion

- Conductivity
 - salt vs. fresh water
 - Pollution (increases conductivity)
- Presence of oxygen
 - Oxygen Depletion (Stainless Steel)
 - Flow rate
 - Temperature
 - Stress

Factors Affecting Corrosion - Conductivity

- Corrosion increases with conductivity
- Very pure water almost non-conducting
- Salt water 10 times as conductive as river water
- Due to presence of Na+ and CI- ions (salt)
 - 30 feet diameter salt water pipe equivalent to #10 copper conductor (.102")
- Pollutants contribute ions and increase conductivity (e.g. acid rain)

Factors Affecting Corrosion – Presence of Oxygen

- Oxygen provides OH- ions
 - $-O_2 + 2H_2O + 4 e^- => 4(OH^-)$
- These ions provide a necessary part of electrolytic current flow
- OH- ions combine with metal ions to form Hydroxides
- Hydroxides can coat metal and stifle corrosion – Copper, Zinc (Not Steel)

Factors Affecting Corrosion – Oxygen Depletion

- Stainless Steel Exception to rule!
- Stainless contains Nickel and Chromium
- Forms thin protective oxide layer ("passive")
- Needs continual supply of dissolved oxygen
- Film is fragile in presence of Chlorine Ions (Salt water)

Factors Affecting Corrosion – Oxygen Depletion

- Under seals, strut
 bearings or barnacles
 (no oxygen) film breaks
 down metal becomes
 "active" pitting or
 crevice corrosion
 results
- Monel and Titanium can pit but much more corrosion resistant

Factors Affecting Corrosion – Flow Rate

- Flow rate can increase corrosion rate
- Copper alloys affected
 - Silicon Bronze
 - Manganese Bronze (in truth a Brass) more resistant (but susceptible to dezincification)
- Stainless Steel Exception
 - flow contributes oxygen forms oxide layer.
- Propeller tips can show corrosion

Factors Affecting Corrosion — Temperature

 Corrosion rate doubles for every 10 degree C (18 degree F) rise in temperature

Factors Affecting Corrosion — Stress

- Metal components under stress or with residual stress will corrode more rapidly
- Forged fasteners will often corrode around the head where most upsetting occurs
- Wrought metals are more prone than castings
- Welding can increase internal stresses

Dealloying

Dealloying

- Brass (Manganese Bronze) is alloy of Copper and Zinc
- Zinc (if more than 15%) corrodes by galvanic action with Copper
- Aluminum Bronze Aluminum Corrodes (if more than 10%)

Stray Current Corrosion (Electrolytic Corrosion)

- Stray Current (Electrolytic) Corrosion caused by connection to a dc source of electricity
- Can be very serious driving potential may be 12V compared with Galvanic potentials of 0.3V (36 times the rate)

Stray Current Corrosion

- Anodic areas need to be as large as possible compared to the Cathodic areas
 - Current flow is concentrated into surface area of anode
 - E.g. steel screw in copper will disappear quickly whereas in aluminum it will be protected

 Consider a steel screw (anodic) holding a copper plate (cathodic)

 Now consider a bronze screw (cathodic) holding a steel plate (anodic)

Notes on Use of Aluminum

- Marine grades 5000 or 6000 series
- Anodizing will improve appearance
- Note: is active on Galvanic scale so do NOT use bronze, brass or monel unless insulated
- Recommend use of 316 stainless fasteners etc.
- Beware of overprotection

Notes on Use of Brass

- Alloy of Copper and Zinc
- Suffers from de-zincification
- Use dezincification resistant brass, CZ132
- Must be cathodically protected
- Note: Manganese Bronze is a brass

Notes on Use of Bronze

- Alloy of Copper and Tin traditionally
- No Zinc or Nickel
- Extremely resistant to corrosion
- Best and most widely used Silicon Bronze (1-3% silicon)

Notes on Use of Cupronickels

- Excellent material with excellent strength and corrosion resistance
- Good resistance to biofouling
- Cathodic protection not needed and will allow biofouling if used

Sacrificial Anode Wear

Patented Wear Indicator

U.S. Patent No. 6,932,891 B2

- Filed May 4, 2004
- Issued August 23, 2005
- Summary:
 - An apparatus for indicating when a predetermined portion of a sacrificial anode has been corroded comprises a detector embedded within the interior of the sacrificial anode initially at a predetermined distance from an exposed exterior surface of the sacrificial anode. The detector detects the absence of sacrificial anode material when the predetermined portion has corroded and generates a detection signal. A monitoring system communicates with the detector for receiving detection signals and generates an indicator signal when a detection signal is received. An indicator in communication with the monitoring system receives indicator signals and generates an alarm when an indicator signal is received.

Basic Patent - Original Anode

Basic Patent - Worn Anode

Indicator appears as a "Red Spot" in the surface of the anode.

Recreational Anode Example

ERFORMANCE

Anode Examples

Range

Anode Examples

- Power Series
 - Finned for extra surface area.

Anode Examples

Strap Anodes

