Quantum Information

M2 Cybersecurity, documents allowed, 50mn

Exercise 1:

1. Write the Identity on two qubits as sum of projectors on the standard basis states (projectors on the vectors $|ab\rangle$ where $a, b \in \{0, 1\}$).

The Fredkin gate is a 3-qubit gate that acts on the basis states as follows : $\forall a, b, c \in \{0, 1\},$

$$|a,b,c\rangle \mapsto |a,b\oplus (a\cdot (b\oplus c)),c\oplus (a\cdot (b\oplus c))\rangle$$

where \oplus denotes the XOR gate (sum mod 2) and \cdot denotes the AND gate (product).

The Fredkin gate is depicted as follows:

- 2. For any $b, c \in \{0, 1\}$, what is the image by the Fredkin gate of the states $|0, b, c\rangle$ and $|1, b, c\rangle$?
- 3. For any arbitrary one-qubit states $|\varphi\rangle = \alpha |0\rangle + \beta |1\rangle$ and $|\varphi'\rangle = \alpha' |0\rangle + \beta' |1\rangle$, what is the image by the Fredkin gate of $|a\rangle \otimes |\varphi\rangle \otimes |\varphi'\rangle$ when a=0 and when a=1?

In the following we want to analyse the circuit represented in Figure 1.

Figure 1: Circuit using the Fredkin gate

4. What is the state of the system immediately after the application of the Fredkin gate?

Let s be the inner product $s = \langle \varphi' | \varphi \rangle$ and $|s|^2 = ss^*$.

- 5. What is the state (density matrix) of the first qubit (the qubit initially in the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$) after the application of the Fredkin gate?
- 6. What is the state of the system immediately after the application of the Hadamard gate? (recall that the Hadamard gate is defined on the basis states by : $|a\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle + (-1)^a |1\rangle)$ for $a \in \{0,1\}$).

The first qubit is measured in the standard basis. Let p_0 be the probability that the classical outcome is 0.

- 7. What is the state of the system after the measurement if the classical result of the measurement is 0?
- 8. Using $|s|^2$, give the probability p_0 that the classical outcome is 0.
- 9. What can be checked using the circuit described in Figure 1? (Hint: consider the case |s| = 1)