Определения для подготовки к экзамену, 4 модуль

2018-2019-й учебный год

1. Сформулируйте определение алгебры над полем. Приведите два примера.

Пусть A — векторное пространство над полем \mathbb{F} , снабженное дополнительной операцией умножения: $A \times A \to A$. A называется алгеброй над полем \mathbb{F} , если выполнены следующие свойства:

 $\forall x, y, z \in A \ \forall \alpha, \beta \in \mathbb{F}$:

$$1.(x+y)z = xz + yz$$

$$2.x(y+z) = xy + xz$$

$$3.(\alpha x)(\beta y) = (\alpha \beta)(xy)$$

Примеры:

- 1. \mathbb{C} является двумерной алгеброй над \mathbb{R} (операция комплексное умножение)
- 2. Алгебра многочленов $\mathbb{F}[x]$

2. Сформулируйте определение тензора. Приведите два примера.

Пусть F – поле, V – векторное пространство над F, V^* – сопряженное векторное пространство, $p,q\in\mathbb{N}\cup\{0\}$. Тогда \forall полилинейное отображение

пространство,
$$p,q\in\mathbb{N}\cup\{0\}$$
. Тогда \forall полилинейное отображение $f:\underbrace{V\times\ldots\times V}_p\times\underbrace{V^*\times\ldots\times V^*}_q\to F$ называется тензором типа (p,q) и валентности $p+q$

Примеры:

- $\overline{1}$. Тензор типа (1,0) линейная функция на V, то есть ковектор
- 2. Тензор типа (0,1) линейная функция на V^* , но $V^* \simeq V \Rightarrow$ это вектор

3. Дайте определение эллипса как геометрического места точек. Выпишите его каноническое уравнение. Что такое эксцентриситет эллипса? В каких пределах он может меняться?

Эллипсом называют геометрическое место точек, сумма расстояний от которых до двух данных точек постоянна.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 – каноническое уравнение эллипса

Эксцентриситет эллипса $\varepsilon = \sqrt{1-\frac{b^2}{a^2}},$ где a – большая полуось, b – малая полуось, лежит на полуинтервале [0,1) и служит мерой "сплюснутости" эллипса

4. Дайте определение гиперболы как геометрического места точек. Выпишите ее каноническое уравнение. Что такое эксцентриситет гиперболы? В каких пределах он может меняться?

 Γ иперболой называют геометрическое место точек, модуль разности расстояния от которых до двух данных точек постоянен.

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 – каноническое уравнение гиперболы

Эксцентриситет гиперболы $\varepsilon = \sqrt{1 + \frac{b^2}{a^2}} > 1$ характеризует угол между асимптотами

1

5. Дайте определение параболы как геометрического места точек. Выпишите ее каноническое уравнение.

Параболой называется геометрическое место точек плоскости, равноудаленных от данной точки и от данной прямой.

 $y^2 = 2px$ – каноническое уравнение параболы

6. Сформулируйте теорему о классификации кривых второго порядка.

Для любой кривой второго порядка существует прямоугольная декартова система координат O_{xy} , в которой уравнение этой кривой имеет один из следующих видов:

Элдиптический	тип
OMMUTHACTRAIN	1 1/1 11

1	2	3
эллипс	пустое множество	точка
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, где $a \ge b > 0$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$

Гиперболический тип

4	5
гипербола	пара пересекающихся прямых
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, где $a > 0, b > 0$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$

Параболический тип

6	7	8	9
парабола	пара прямых	пустое множество	прямая
$y^2 = 2px$	$y^2 = d$, где $d > 0$	$y^2 = -d$, где $d > 0$	$y^2 = 0$

7. Дайте определение цилиндрической поверхности.

Рассмотрим кривую γ , лежащую в некоторой плоскости P, и прямую L, не лежащую в P. Цилиндрической поверхностью называют множество всех прямых, параллельных L и пересекающих γ

8. Дайте определение линейчатой поверхности. Приведите три примера.

Линейчатой называют поверхность, образованную движением прямой линии.

Примеры:

- 1. Цилиндр
- 2. Гиперболический параболоид
- 3. Конус

9. Дайте определение полуторалинейной формы. Дайте определение эрмитовой формы.

 $f:V\times V\to\mathbb{C}$ называется полуторалинейной формой на комплексном векторном пространстве, если $\forall x,y,z\in V\ \forall \alpha,\beta\in\mathbb{C}$:

$$1.f(\alpha x + \beta y, z) = \alpha f(x, z) + \underline{\beta} f(y, z)$$

$$2.f(x,\alpha y + \beta z) = \overline{\alpha}f(x,y) + \overline{\beta}f(x,z)$$

Полуторалинейная форма называется эрмитовой, если $f(y,x) = \overline{f(x,y)}$

10. Как меняется матрица эрмитовой формы при замене базиса?

Пусть P – матрица перехода от базиса e_1, \ldots, e_n в V к базису e'_1, \ldots, e'_n в V. Тогда матрица эрмитовой формы преображается по формуле $F' = P^T F P$

11. Дайте определение эрмитова пространства.

Эрмитовым пространством H называется пара, состоящая из конечномерного векторного пространства V над $\mathbb C$ и положительно определенной эрмитовой полуторалинейной формой, то есть на V задана функция (x|y) = f(x,y), такая, что $\forall x,y,z \in V$ выполнено:

- 1. $(x|y) = \overline{(y|x)}$ эрмитовость
- 2. $(\alpha x + \beta y|z) = \alpha(x|z) + \beta(y|z)$
- 3. $(x|x) \ge 0$ и $(x|x) = 0 \Leftrightarrow x = 0$ положительно определенность

12. Что можно сказать про собственные значения унитарного оператора?

Все собственные значения унитарного оператора по модулю=1, то есть они имеют вид $e^{i\varphi}$

13. Дайте определение сопряженного оператора в эрмитовом пространстве. Дайте определение эрмитова оператора.

Линейный оператор φ^* , действующий в эрмитовом пространстве H, называется сопряженным к φ , если $\forall x,y \in H \ (\varphi(x)|y) = (x|\varphi^*(y))$

Оператор φ в эрмитовом пространстве H называется эрмитовым (самосопряженным), если $\varphi^* = \varphi$

14. Как найти матрицу сопряженного оператора в произвольном базисе эрмитова пространства?

Пусть дан линейный оператор φ в конечномерном эрмитовом пространстве с матрицей A. Тогда матрицу A_1 сопряженного линейного пространства φ^* можно вычислить по формуле: $\overline{A_1} = \overline{\Gamma^{-1}} A^T \Gamma$

15. Сформулируйте определение унитарной матрицы. Сформулируйте определение унитарного оператора.

Матрица $A \in M_n(\mathbb{C})$ называется унитарной, если $A^* \cdot A = E$

16. Каков канонический вид унитарного оператора?

Каноническим видом унитарного линейного оператора является диагональный и все

собственные значения по модулю= 1, то есть $\begin{pmatrix} e^{i\varphi_1} & 0 & 0 \\ 0 & \cdot & 0 \\ 0 & 0 & e^{i\varphi_n} \end{pmatrix} = \Sigma$

- 17. Сформулируйте критерий унитарности о̂ператора, и́спользующий его матрицу. Оператор является унитарным⇔его матрица в ОНБ является унитарной
- 18. Сформулируйте утверждение о сингулярном разложении в эрмитовом пространстве.

 $\forall A \in M_{mn}(\mathbb{C})$ может быть представлена в виде $A = P\Sigma V^*$, где P и V – унитарные матрицы, а $\Sigma \in M_{mn}(\mathbb{R})$ и на диагонали $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r \geq 0$

19. Сформулируйте утверждение о полярном разложении в эрмитовом пространстве.

 \forall квадратная матрица из $M_n(\mathbb{C})$ представима в виде A = HP, где H – эрмитова матрица с неотрицательными собственными значениями, а P – унитарная