TMA-301

B. TECH. (CSE) (THIRD SEMESTER) END SEMESTER EXAMINATION, 2018

DISCRETE MATHEMATICS

Time: Three Hours

Maximum Marks: 100

- Note:(i) This question paper contains five questions with alternative choice.
 - (ii) All questions are compulsory.
 - (iii) Instructions on how to attempt a question are mentioned against it.
- (iv) Each part carries ten marks. Total marks assigned to each question are twenty.
 - 1. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Explain the following with example:
 - (i) Tautologies
 - (ii) Disjunction
 - (iii) Contradiction
 - (iv) Validity

(b) If p,q and r are any three statements, then construct the truth table:

(i)
$$(p \rightarrow q) \land (q \rightarrow r) \leftrightarrow (p \leftrightarrow r)$$

(ii)
$$(p \Rightarrow (q \land r)) \equiv \Rightarrow \neg (p \lor q)$$

(c) Show that:

(i)
$$p \land (q \lor r') \equiv (p \land q) \lor (p \land r)$$

(ii)
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

2. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)

- (a) In a class of 42 students, each play at least one of the three games: Cricket, Hockey and Football. It is found that 14 play Cricket, 20 play Hockey and 24 play Football, 3 play both Cricket and Football, 2 play both Hockey and Football and none play all the three games. Find the number of students who play Cricket but not Hockey.
- (b) Using Principle of Mathematical induction prove that $3^{2n+2} 8n 9$ is divisible by 8.
- (c) If ${}^{n}P_{r} = 3,024$ and ${}^{n}C_{r} = 126$, find the value of n and r.

(3)

TMA-301

- 3. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Let A be the set of non-zero integer and let R be the relation on $A \times A$ defined by $(a,b)R(c,d) \Leftrightarrow a+d=b+c$. Show that R is an equivalence relation.
 - (b) Define the following:
 - (i) Hasse diagrams
 - (ii) Partial order relation
 - (iii) Composition of function
 - (iv) Into function
 - (c) Let $f: \mathbb{R}^+ \to \mathbb{R}^+$ and $g: \mathbb{R}^+ \to \mathbb{R}^+$ be function defined by $f(x) = \sqrt{x}$ and g(x) = 3x + 1 for all $x \in \mathbb{R}^+$, find $f \circ g$ and $g \circ f$.
 - 4. Attempt any two questions of choice from (a),
 - (b) and (c). (2×10=20 Marks)
 - (a) Solve the recurrence relation $a_n 7a_{n-2} + 6a_{n-3} = 0$ with initial conditions $a_0 = 8$, $a_1 = 6$, $a_2 = 22$.
 - (b) Solve the recurrence relation $a_n 2a_{n-1} 3a_{n-2} = 0$, $n \ge 2$ by the generating function method with initial conditions, $a_0 = 3$, $a_1 = 1$.

P. T. O.

F. No. : c-50

F. No. : c-50

(c) Find the particular solution of the recurrence relation:

$$a_{n+2} - 4a_{n+1} + 4a_n = .2^n.$$

5. Attempt any two questions of choice from (a),

(b) and (c). (2×10=20 Marks)

(a) Prove that the set Q+ of positive rational number forms an abelian group with respect to the operation * defined as

$$a*b=\frac{ab}{2}.$$

- (b) Define the following:
 - (i) Group
 - (ii) Cosets
- (iii) Ring
 - (c) Let L be a complemented distribution lattice. Then prove that De Morgan's laws:

(i)
$$(a \lor b)' = a' \land b'$$

mind diw bedim accomb emissions . .

(ii) $(a \wedge b)' = a' \vee b'$ hold in L for all $a, b \in L$, where a' denote complement of a. mile and the many of the country of

I - post - as paror tones