Exercises 4: Kernel density estimation

Kernel density estimates

Histograms

You're already familiar with the simplest nonparametric density estimate, which is the histogram! Suppose, for simplicity's sake, that we're trying to estimate a density of a random variable $X \sim F$ on the unit interval. Formally speaking, a histogram is a collection of bins B_j , $j \in 1, \ldots m$, where

$$B_j = \left[\frac{j-1}{m}, \frac{j}{m}\right] .$$

Suppose we have a sample $x_1, ..., x_n$ from F. Let h = 1/m be the bin width, and let y_j be the number of observations in B_j . The histogram estimator $\hat{f}(x)$ of the density at point x is

$$\hat{f}(x) = \sum_{j=1}^{m} \frac{\hat{\pi}_j}{h} I(x \in B_j),$$

where $\hat{\pi}_k = y_j/n$ is the fraction of observations in bin B_j , and I(A) is the indicator function of the event A.

Let x and m be fixed. Let B_i be the bin containing x. Show that

$$\mathrm{E}\{\hat{f}(x)\} = \pi_j/h$$
 and $\mathrm{var}\{\hat{f}(x)\} = \frac{\pi_j(1-\pi_j)}{nh^2}$,

where $\pi_j = \int_{B_j} f(u) du$.