Commissioning Training CF210

Carbo-Fill Carbonator

- Introduction
- Saturation
- Working Principle
- Operation
- Foamy products
- Beer processing
- Technical information

Carbonisation

$$CO_2(g) \leftrightarrows CO_2(I)$$

Solubility depends on temperature and pressure

lower T (°C) → higher solubility

higher P (bar) → higher solubility

Other influences on CO₂ solubility

Ingredients, e.g. sugar or wort

Beverages

CO₂ solubility changes per Brix about 1%, e.g. a sugar content of 8 Brix results in 8% lower CO₂ solubility than in water

Beer

CO₂ solubility changes per 3° Plato about 1%, e.g. a original wort of 9° Plato results in 3% lower CO₂ solubility than in water

Saturation

The **saturation** is being performed by a sinter tube, a metal cylinder with very small holes

Working principle

Saturation content of the product based on temperature and pressure in the saturation vessel

Filling product due to pressure difference between the vessel and the surrounding atmosphere

Post mix and pre-mix processing

Working principle

Filling and closing compartment

Saturation vessel

Touch screen control panel.

Behind back panel: electrical cabinet

Behind front panel: water bath cooler

Working principle

Dosing or hot fill connections

Sintered CO₂ injector

Sight glass

Filling head

Measuring CO₂

Commonly used method to determine the CO2 content is based on Henry's Law. Determine pressure and temperature in bottle after shaking.

Influence on the measurements

- Headspace
- Material of the bottle
- Filling parameters
- Etc.

Operation

Carbo-Fill is operated by a touch-screen.

Main menu

Processing – carbonisation parameters

		Processing		
CF210	Project name: Description:	1 2 3 VI SI B Recipes		
	Alarm description:	Reset STOP		

Processing – carbonisation parameters

Processing – carbonisation parameters

Processing – recipes

Processing – overview

Processing – trends

Cleaning

Cleaning

Cleaning – programs

Empty machine:

Emptying tank

Rinse machine:

Emptying tank, flushing tank with tap water, emptying tank

Cleaning – programs

Clean machine complete:

Emptying tank, flushing tank with tap water and empties again, flushes with manually pored (hot) cleaning fluid and empties again, rinses with water and empties again.

Service

Foamy products

Examples: Beer, Dairy drinks, Beverages

How to prevent foam in general

- Prevent big changes in pressure and temperature.
- Prevent high product flows.
- Prevent contact with oxygen.
- Give the product time to settle down.

Foamy products

How to prevent foam in the saturation vessel:

- Pressure on CO2 supply regulator approximately 1 bar higher than desired pressure level.
- Cool down the vessel by cooling it down with water.
- Optional: remove the inner tube of the saturation vessel.

Foamy products

How to prevent foam in the bottle

- Use low filling speeds.
- Increase Level Out time and Sniff time.
- Use the shield on filling tube.
- Use clean bottles.
- Use cold bottles.

Beer processing

Beer processing procedure

- 1. Fill the saturation vessel with water and cool it down to 4 degrees.
- 2. Empty the vessel with N2.
- 3. Remove Oxygen by flushing the system with CO2.
- 4. Fill the saturation vessel slowly with beer.

Beer processing

- 5. Cool the beer to the desired temperature.
- 6. Stabilise the beer for 5 minutes.
- 7. Open the CO2 supply slowly.
- 8. Increase the CO2 pressure by steps of 0.1 bars and let the beer stabilise for 5 minutes after each step.
- 9. Saturate the beer.
- 10. Fill the bottles.

Beer processing - example filling and carbonisation parameters:

Temperature	8.0	°C
Pressure	1.5	bar
Filling time	36.0	S
Sniff time	22.0	S
Clear Overflow time	1.5	S
Flushing time	2.0	S
Pressurizing time	2.0	S
Level out time	6.0	S
Filling speed valve	2.5	turn
CO2 supply pressure	2.6	bar

Technical information

Utilities

Utility	Flow/Amount	Pressure	Temperature	Connection type	Remarks
Main water supply		Max 2.5 bar	Max 20 °C	Serto Hose ferrule	Protect against water hammering
CO ₂		Max 3,5 bar		Serto Hose ferrule	Add a manometer; 6 bar
N2 (optional)		Max 3.5 bar		Serto Hose ferrule	Add a manometer; 6 bar
Compressed air		4-7 bar		Serto Hose ferrule	
Drains			Max 70 °C	Serto Hose ferrule	Open connection. Do not combine
Electricity	220-240V / 50- 60 Hz, grounded				

Technical information

Utilities

- CO₂ gas supply with a, non-flow restricting, pressure regulator (max. 3,5 bar)
- N₂ supply (optional) with pressure regulator (max. 3,5 bar).

DO NOT USE A FLOW REGULATOR

Maintenance

The following parts are subjected to wear

- Inner parts valves
- Seals filling head

Thank you!

[Name engineer]
[e-mail engineer]
support@omve.com