A Cut Into Classical Planning

Alain Mahieu, Dimitri Rusin

Knowledge-Based Systems Group RWTH Aachen University mail@domain.tld

ProSeminar KI

Outline

Introduction

Definition Representation

Finding a plan

SATPlan

Graphplan

General

Forward Expansion (FE)

Backward Search (BS)

Conclusion

The Human wants the machine (agent) to imitate her.

Examples:

- Humans make coffee by following a step-by-step plan: Get a cup, press the big START button on the coffee machine, add some sugar, ...
- ► Humans travel on holiday by following a step-by-step plan: Buy a train ticket to Berlin by July 17, get on the train to Berlin at 8 am, check in at the hotel by 12 am, ...

The Human wants the machine (agent) to imitate her.

Examples:

- Humans make coffee by following a step-by-step plan: Get a cup, press the big START button on the coffee machine, add some sugar, ...
- ► Humans travel on holiday by following a step-by-step plan: Buy a train ticket to Berlin by July 17, get on the train to Berlin at 8 am, check in at the hotel by 12 am, ...

Outline

Introduction

Definition

Representation

Finding a plan

SATPlan

Graphplan

General

Forward Expansion (FE)

Backward Search (BS)

Conclusion

State-Transition System

State-Transition System

 $\Sigma = (S,A,E,\gamma)$

- S is a set of states
- A is a set of actions
- E is a set of Events
- $ightharpoonup \gamma$ is a state-transition function

Classical planning deals with planning problems under certain restrictions:

Restrictions

- A1: S is a finite set of states
- ▶ A2: Σ is fully observable
- ▶ A3: ∑ is deterministic
- ► A4: The planner handles only restricted goals

Classical planning deals with planning problems under certain restrictions:

Restrictions

- A1: S is a finite set of states
- ▶ A2: ∑ is fully observable
- ► A3: ∑ is deterministic
- ► A4: The planner handles only restricted goals

Classical planning deals with planning problems under certain restrictions:

Restrictions

A1: S is a finite set of states

► A2: ∑ is fully observable

▶ A3: ∑ is deterministic

► A4: The planner handles only restricted goals

Classical planning deals with planning problems under certain restrictions:

Restrictions

- A1: S is a finite set of states
- ► A2: ∑ is fully observable
- ► A3: ∑ is deterministic
- A4: The planner handles only restricted goals

Restrictions

- ▶ A5: ∑ is static
- ▶ A6: Sequential plans
- ► A7: Implicit time
- ► A8: Offline planning

Restrictions

▶ A5: ∑ is static

A6: Sequential plans

► A7: Implicit time

► A8: Offline planning

Restrictions

▶ A5: ∑ is static

A6: Sequential plans

▶ A7: Implicit time

► A8: Offline planning

Restrictions

▶ A5: ∑ is static

A6: Sequential plans

▶ A7: Implicit time

► A8: Offline planning

Planning Problem

Planning Problem

$$P = (\Sigma, s_0, g)$$

- $ightharpoonup \Sigma$ is the planning domain
- s₀ is the initial state
- g is the goal state or set of goal states

<u>Problem:</u> Is there a sequence of actions that will lead from the initial state to the goal state?

Outline

Introduction

Definition

Representation

Finding a plan

SATPlan

Graphplan

General

Forward Expansion (FE)

Backward Search (BS)

Conclusion

PDDL

PDDL

- Planning Domain Description Language
- Describes the parts of the state-transition system
- Provides a generalized description for planning Problems
- Main input language at International Planning Competitions

states

- Conjunction of fluents
- Fluents: ground, functionless atoms
- Unique names imply distinct objects

Example 1

$$at(r_1, l_1) \wedge loaded(r_1, c_1)$$

states

- Conjunction of fluents
- Fluents: ground, functionless atoms
- Unique names imply distinct objects

Example 1

$$at(r_1, l_1) \wedge loaded(r_1, c_1)$$

states

- Conjunction of fluents
- Fluents: ground, functionless atoms
- Unique names imply distinct objects

Example 1

$$at(r_1, l_1) \wedge loaded(r_1, c_1)$$

states

- Conjunction of fluents
- Fluents: ground, functionless atoms
- Unique names imply distinct objects

Example 1

$$at(r_1, l_1) \wedge loaded(r_1, c_1)$$

Action schemas

Action Schemas

- List of object names
- Preconditions
- Effects

Action move

```
Action(move(r_1, l_1, l_2))
```

 $Precondition: at(r_1, l_1) \wedge robot(r_1) \wedge location(l_1) \wedge location(l_2)$

Effect : $\neg at(r_1, l_1) \wedge at(r_1, l_2)$

Action schemas

Action Schemas

- List of object names
- Preconditions
- Effects

Action move

```
Action(move(r_1, l_1, l_2))
```

 $Precondition: at(r_1, l_1) \wedge robot(r_1) \wedge location(l_1) \wedge location(l_2)$

Effect : $\neg at(r_1, l_1) \wedge at(r_1, l_2)$

Example: Cargo-transport $Init(at(r_1, l_1) \land at(c_1, l_1) \land robot(r_1) \land cargo(c_1) \land location(l_1) \land location(l_2))$ $Goal(at(c_1, l_2))$


```
Action(load(r, c, l))
Precon: at(r, l) \land at(c, l) \land robot(r) \land cargo(c) \land loaction(l)
Effect: \neg at(c, l) \land loaded(r, c))
Action(unload(r, c, l))
Precon: at(r, l) \land loaded(r, c) \land robot(r) \land cargo(c) \land location(l)
Effect : \neg loaded(r, c) \wedge at(c, l)
Action(move(r, from, to))
Precon: at(r, from) \land robot(r) \land location(from) \land location(to)
Effect : \neg at(r, from) \wedge at(r, to)
```

Actions affect predicates

Solution-Plan

```
load(r_1, c_1, l_1)

move(r_1, l_1, l_2)

unload(r_1, c_1, l_2)
```

Outline

Introduction

Definition Representation

Finding a plan SATPlan

Graphplan
General
Forward Expansion (FE)
Backward Search (BS)

Conclusion

SAT-Problem

SAT-Problem

Given a formula φ .

Does there exist a model that satisfies φ ?

steps to follow

- Translate the classical planning problem into a satisfiability problem
- Determine if there exists a plan by solving the satisfiability problem with a satisfiability decision procedure.
- Extract the plan from the assignments determined by the satisfiability decision procedure

states

- still ground, functionless atoms
- additionally negations are allowed

example

$$at(r_1, l_1) \wedge loaded(r_1, c_1)$$

solutions with second location

$$\mu_1 = (at(r_1, l_1) \leftarrow true, loaded(r_1, c_1) \leftarrow true, at(r_1, l_2) \leftarrow false)$$

$$\mu_2 = (at(r_1, l_1) \leftarrow true, loaded(r_1, c_1) \leftarrow true, at(r_1, l_2) \leftarrow true)$$

state-transitions

- Add a timestep i to every predicate
- An action itself is a predicate now
- The action implies preconditions and effects

Example

```
move(r_1, l_1, l_2, s_1) \Rightarrow (at(r_1, l_1, s_1) \land \neg at(r_1, l_2, s_1) \land \neg at(r_1, l_1, s_2) \land at(r_1, l_2, s_2))
```


Formulas

- ▶ Initial state: $\bigwedge_{f \in s_0} f_0 \land \bigwedge_{f \notin s_0} \neg f_0$
- ▶ Goal state: $\bigwedge_{f \in g^+} f_n \land \bigwedge_{f \in g^-} f_n$
- ▶ Actions: $a_i \Rightarrow \left(\bigwedge_{p \in precond(a)} p_i \land \bigwedge_{e \in effects(a)} e_{i+1} \right)$

Formulas

- ▶ Initial state: $\bigwedge_{f \in s_0} f_0 \land \bigwedge_{f \notin s_0} \neg f_0$
- ▶ Goal state: $\bigwedge_{f \in g^+} f_n \land \bigwedge_{f \in g^-} f_n$
- ▶ Actions: $a_i \Rightarrow \left(\bigwedge_{p \in precond(a)} p_i \land \bigwedge_{e \in effects(a)} e_{i+1} \right)$

Formulas

- ▶ Initial state: $\bigwedge_{f \in s_0} f_0 \land \bigwedge_{f \notin s_0} \neg f_0$
- ▶ Goal state: $\bigwedge_{f \in g^+} f_n \land \bigwedge_{f \in g^-} f_n$
- ► Actions: $a_i \Rightarrow \left(\bigwedge_{p \in precond(a)} p_i \land \bigwedge_{e \in effects(a)} e_{i+1} \right)$

Formulas

Explanatory frame axioms:

$$\begin{pmatrix}
\neg f_i \land f_{i+1} \Rightarrow \left(\bigvee_{a \in A \mid f_i \in effects^+(a)} a_i \right) \right) \land \\
\left(f_i \land \neg f_{i+1} \Rightarrow \left(\bigvee_{a \in A \mid f_i \in effects^-(a)} a_i \right) \right)$$

▶ Complete exclusion axioms: $\neg a_i \lor \neg b_i$

Formulas

Explanatory frame axioms:

$$\begin{pmatrix}
\neg f_i \land f_{i+1} \Rightarrow \left(\bigvee_{a \in A \mid f_i \in effects^+(a)} a_i \right) \right) \land \\
\left(f_i \land \neg f_{i+1} \Rightarrow \left(\bigvee_{a \in A \mid f_i \in effects^-(a)} a_i \right) \right)$$

▶ Complete exclusion axioms: $\neg a_i \lor \neg b_i$

Example: Cargo-transport

Init-Goal

- ► (init) $at(r_1, l_1, 0) \wedge at(c_1, l_1, 0) \wedge \neg at(r_1, l_2, 0) \wedge ...$
- (goal) $at(c_1, l_2, 3) \land \neg at(r_1, l_1, 2) \land ...$

Actions

- ► move1 move $(r_1, l_1, l_2, 0) \Rightarrow$ $(at(r_1, l_1, 0) \land at(r_1, l_2, 1) \land \neg at(r_1, l_1, 1))$
- ► move2 move $(r_1, l_2, l_1, 0) \Rightarrow$ $(at(r_1, l_2, 0) \land at(r_1, l_1, 1) \land \neg at(r_1, l_2, 1))$
- **.**..

Example

Example: Cargo-transport

Explanatory frame axioms

- $ightharpoonup \neg at(r_1, l_1, 0) \land at(r_1, l_1, 1) \Rightarrow move(r_1, l_2, l_1, 0)$
- ► $\neg at(r_1, l_2, 0) \land at(r_1, l_2, 1) \Rightarrow move(r_1, l_1, l_2, 0)$
- ► $at(r_1, l_1, 0) \land \neg at(r_1, l_1, 1) \Rightarrow move(r_1, l_1, l_2, 0)$
- ► $at(r_1, l_2, 0) \land \neg at(r_1, l_2, 1) \Rightarrow move(r_1, l_2, l_1, 0)$
- **.**..

Example

Example: Cargo-transport

Complete exclusion axioms

- ► $\neg move(r_1, l_1, l_2, 0) \lor \neg move(r_1, l_2, l_1, 0)$
- **.**..

Solution

► $load(r_1, c_1, l_1, 0), move(r_1, l_1, l_2, 1), unload(r_1, c_1, l_2, 2)$

Outline

Introduction

Definition

Finding a plan

SATPlan

Graphplan

General Forward Expansion (FE) Backward Search (BS)

Conclusion

Outline

Introduction
Definition
Representation

Finding a plan

SATPlan

Graphplan

General

Forward Expansion (FE) Backward Search (BS)

Conclusion

The Planning Graph is Graphplan's main data structure.

- Layered graph in which one layer corresponds to one time step in the plan
- ▶ Layer *i* consists of one set of actions that are applicable at layer *i* and one set of literals that *could* be true at layer *i*.
- For every positive and negative literal p, we add the persistence action α_p with precondition p and effect p.

Forward Graph Expansion vs. Backward Search

Mutex Links

Literals

Actions

Goals

Backtracking

Forward Graph Expansion vs. Backward Search

Forward Graph Expansion

Mutex Links

Literals

Actions

Backtracking

Goals

Forward Graph Expansion vs. Backward Search

Forward Graph Expansion

Mutex Links

Backward Search

Literals

Goals

Actions

Backtracking

Outline

Introduction
Definition
Representation

Finding a plan

SATPlan

Graphplan

Genera

Forward Expansion (FE)

Backward Search (BS)

Conclusion

Notation:

 $\begin{array}{l} \textit{Literals: } \textit{at}(r, l_1) \longrightarrow \textit{Arl}_1, \\ \textit{at}(c_1, l_2) \longrightarrow \textit{Ac}_1 l_2, \\ \textit{loaded}(r, c_1) \longrightarrow \textit{Lrc}_1, \\ \textit{etc...} \\ \textit{Actions: } \textit{move}(r, l_1, l_2) \longrightarrow \textit{Mrl}_1 l_2, \end{array}$

Actions: $move(r, l_1, l_2) \longrightarrow Mrl_1l_2$, $unload(r, c_1, l_1) \longrightarrow Urc_1l_1$,

etc...

Cargo Transport (CT) problem:

 $Init(Arl_1, Ac_1l_1, Ac_2l_1)$ $Goal(Ac_1l_2, Ac_2l_2)$

Mutex Links for Actions:

Two actions a_1 and a_2 are mutex in P_i if and only if (iff) one of the following conditions holds:

- ► Interference: action a₁ deletes a positive effect or a precondition of action a₂ or vice versa (Dependence)
- ► Competing Needs: precondition of a_1 is mutex with a precondition with a_2 or vice versa

Notation: $(a_1, a_2) \in \mu A_i$

Mutex Links for Actions:

Two actions a_1 and a_2 are mutex in P_i if and only if (iff) one of the following conditions holds:

- ► Interference: action a₁ deletes a positive effect or a precondition of action a₂ or vice versa (Dependence)
- ► Competing Needs: precondition of a_1 is mutex with a precondition with a_2 or vice versa

Notation: $(a_1, a_2) \in \mu A_i$

Mutex Links for Actions:

Two actions a_1 and a_2 are mutex in P_i if and only if (iff) one of the following conditions holds:

- ► Interference: action a₁ deletes a positive effect or a precondition of action a₂ or vice versa (Dependence)
- ► Competing Needs: precondition of a_1 is mutex with a precondition with a_2 or vice versa

Notation: $(a_1, a_2) \in \mu A_i$

Mutex Links for Actions:

Two actions a_1 and a_2 are mutex in P_i if and only if (iff) one of the following conditions holds:

- ► Interference: action a₁ deletes a positive effect or a precondition of action a₂ or vice versa (Dependence)
- ► Competing Needs: precondition of a_1 is mutex with a precondition with a_2 or vice versa

Notation: $(a_1, a_2) \in \mu A_i$

Mutex Links for Literals:

Two literals p_1 and p_2 are mutex in P_i iff no nonmutex pair of actions (a_1, a_2) exists such that a_1 produces p_1 and a_2 produces p_2 .

Notation: $(p_1, p_2) \in \mu P_i$. We set $\mu P_0 = \emptyset$.

Mutex Links for Literals:

Two literals p_1 and p_2 are mutex in P_i iff no nonmutex pair of actions (a_1, a_2) exists such that a_1 produces p_1 and a_2 produces p_2 .

Notation: $(p_1, p_2) \in \mu P_i$. We set $\mu P_0 = \emptyset$.

Mutex Links for Literals:

Two literals p_1 and p_2 are mutex in P_i iff no nonmutex pair of actions (a_1, a_2) exists such that a_1 produces p_1 and a_2 produces p_2 .

Notation: $(p_1, p_2) \in \mu P_i$. We set $\mu P_0 = \emptyset$.

When a planning graph does not grow anymore, it has a reached its fixed point.

Given any planning graph G. Then there is a smallest k such that all of the following conditions hold:

- ► Fixed Proposition Layer: number of propositions at layer *k* is equal to number of propositions at any layer *i* > *k*
- ► Fixed Prop. Mutex Links: number of mutual links at layer k is equal to number of mutual links at any layer i > k

When a planning graph does not grow anymore, it has a reached its fixed point.

Given any planning graph G. Then there is a smallest k such that all of the following conditions hold:

- ► Fixed Proposition Layer: number of propositions at layer *k* is equal to number of propositions at any layer *i* > *k*
- ► Fixed Prop. Mutex Links: number of mutual links at layer k is equal to number of mutual links at any layer i > k

When a planning graph does not grow anymore, it has a reached its fixed point.

Given any planning graph G. Then there is a smallest k such that all of the following conditions hold:

- ► Fixed Proposition Layer: number of propositions at layer k is equal to number of propositions at any layer i > k
- ► Fixed Prop. Mutex Links: number of mutual links at layer k is equal to number of mutual links at any layer i > k

Outline

Introduction
Definition
Representation

Finding a plan

SATPlan

Graphplan

General

Forward Expansion (FE

Backward Search (BS)

Conclusion

pics/logo,laure

pics/logoblaured

pics/logoblaured

Layered Solution Plan:

- contains sets of nonmutex actions that correspond to a specific layer in the graph
- has a strict order of elements, i.e. each set of nonmutex actions has to performed sequentially (but the order within one set is arbitrary)
- ▶ the layered solution plan to the example problem instance:

```
\Pi = (\pi_1, \pi_2, \pi_3) = \{\{Lrc_1l_1, Lrc_2l_1\}, \{Mrl_1l_2\}, \{Urc_1l_2, Urc_2l_2\}\}.
```

Graphplan and SATPlan have assets and drawbacks.

	Asset	Drawback
Graphplan	▶ data structure	 no good heuristics (e.g. for choosing producers in BS)
SATPlan	 permanently new SAT solvers coming up, hot research 	 number of clauses might be unfeasible to ground

CP systems are deployed in critical situations.

- Satellite launch
- Hubble Space Telescope
- etc...