COGS 17 WEEK 4 WINTER 2024, A04

THE EYE

- Fovea -- Small central area of high concentration of Cones only, for HIGH DETAILS
- Retina -- Senses light, send information to the brain through >>
- Optic nerve
- Blind Spot -- No Receptors here

THE RETINA

- •Receptors -- Rods & Cones
- Bipolar cells -- Postsynaptic to Receptors
- •Ganglions -- Axons of the Ganglion Cells form the Optic Nerve
- •Interneurons -- perpendicular to pathway, influence above neurons
- Pigment Epithelium -- Non-neural cells, feed & recycle nutritions from receptors;

helps reflect/maximize light

ISOMERIZATION

- •Converting light into a neural signal
- Photopigment -- Made of Opsin & Retinal
- •11-Cis Retinal absorbs photon of light, changes shape >> detaches from Opsin >>
- Activates second messengers in receptor >> ion gates closing >> modifying GRADED release of NT
- Photopigment regeneration -- using Enzymes from Pigment Epithelium, requires time

VISUAL RECEPTORS

- •Rods -- being larger, have MORE
 photopigment but only 1 kind >>
 DO NOT code color; high
 sensitivity; poor acuity;
 excellent for motion detection
- •Cones -- smaller, have 3 kinds of
 photopigments >> DO code color;
 low sensitivity; excellent
 acuity; poor for motion detection
- Receptors show Spontaneous firing,
 Graded notentials release

Graded potentials, release
Inhibitory NT

BIPOLAR CELLS

Postsynaptic to Receptors, showSpontaneous firing, GradedPotentials, release Excitatory NT

GANGLION CELLS

Postsynaptic to Bipolars, showAction Potentials, releaseExcitatory NT

INTERNEURONS

- Horizontal Cells -- Graded
 Potentials, mostly Inhibitory
 NT, modify interface of
 Receptors and Bipolars
- Amacrine Cells -- Graded
 Potentials, mostly Inhibitory
 NT, modify interface of Bipolars and Ganglions

RECEPTORS ARE TURNED OFF BY LIGHT

CONNECTIVITY PATTERNS

 Play a critical role in information transmission functions

CONVERGENCE

- •Receptors converge (via their Bipolars) onto Ganglion cells
- Rods -- High Convergence, avg.120:1 Ganglion
- ●Cones -- **Low** Convergence, avg. 6:1 Ganglion
- ●In Fovea: **Very Low**, often only 1:1 Ganglion

CONVERGENCE

- Helps to account for acuity and sensitivity differences between rods & cones
- Also, Rods are LARGER and have more Photopigment than Cones do, and this also contributes to sensitivity

RECEPTIVE FIELDS

- •Set of Receptors whose activity influences the activity of a "Target" cell
- •Size and type of a Target's RF is determined
 by patterns of Convergence and Lateral
 influences
- •Example 1: Ganglion along path from converging Rods has large RF, while Ganglion along path from Cones has small RF
- •Example 2: Some Ganglions, LGN, and V1 cells have Center-Surround RFs

LATERAL INHIBITION

- •A neuron's response to a stimulus is **inhibited** by the excitation of a **neighboring** neuron
- •Mainly to exaggerate differences
- •Example: simultaneous contrast

SIMULTANEOUS CONTRAST

VISUAL CROSSOVER

- Each Optic Nerve, from each eye, divides and goes to both sides of the brain
- •Info from Left Visual Field =>
 Retina on right side of RIGHT
 eye => right LGN => right Visual
 Cortex
- •Info from Right Visual Field =>
 Retina on left side of RIGHT eye
 => crossover at the Optic Chiasm
 => right LGN => right Visual
 Cortex
- Info from cortex exchange across corpus callosum

VISUAL CORTEX

- •Cells in all 6 layers that respond to same "preferred" stimulus
- •E.g. lines of a particular Orientation
- ●Hypercolumn -- One set of orientation column w/same Receptive Field
- •All cells within a given Hypercolumn have same Receptive Field
- •One hypercolumn includes columns set of full orientations, plus Blobs for color processing

VISUAL PATHWAYS

- ParvocellularPathway (Who/WhatPathway, VentralPathway) -- Foridentifying stimuli
- Magnocellular
 Pathway
 (Where/How Pathway,
 Dorsal Pathway) For visual-spatial
 mapping

PARVOCELLULAR PATHWAY

- Specialized for color & detail
- Begins at Cones in and nearFovea
- Mostly Parvocellular (small)Ganglions, with small RFs
- •Basic pathway: Retina >> Top 4
 Layers of LGN in Thalamus >>
 V1 >> V2 >> V3 >> V4 (all in
 occipital
 - lobe) >>Inferior Temporal Cortex

MAGNOCELLULAR PATHWAY

- Specialized for detecting motion, locating objects, navigating & manipulating environment including gross outline
- Begins at Rods & Cones in periphery of Retina
- Basic pathway: Some of info to Superior Colliculus of Midbrain (e.g. for "Blindsight"), then to LGN;

Most go directly to LGN >> All info >> V1 >> V2 >> Medial Temporal Cortex >> Medial Superior Temporal Cortex >> Posterior Parietal Cortex

QUESTIONS?

```
Office Hours: Mon 5-6 pm
```

```
To get the section slides:
```

https://github.com/JasonC1217/COGS17_A04_Wi24

OR:

