МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информационные технологии»

Тема: Введение в анализ данных

Студент гр. 3343	 Пивоев Н. М.
Преподаватель	 Иванов Д. В.

Санкт-Петербург

Цель работы

Ознакомиться с базовыми возможности машинного обучения, начать изучение анализа данных, используя scikit-learn, написать программу на языке Python по обучению модели.

Задание

Вы работаете в магазине элитных вин и собираетесь провести анализ существующего ассортимента, проверив возможности инструмента классификации данных для выделения различных классов вин.

Для этого необходимо использовать библиотеку sklearn и встроенный в него набор данных о вине.

1) Загрузка данных:

Реализуйте функцию load_data(), принимающей на вход аргумент train_size (размер обучающей выборки, по умолчанию равен 0.8), которая загружает набор данных о вине из библиотеки sklearn в переменную wine. Разбейте данные для обучения и тестирования в соответствии со значением train_size, следующим образом: из данного набора запишите train_size данных из data, взяв при этом только 2 столбца в переменную X_train и train_size данных поля target в y_train. В переменную X_test положите оставшуюся часть данных из data, взяв при этом только 2 столбца, а в y_test — оставшиеся данные поля target, в этом вам поможет функция train_test_split модуля sklearn.model_selection (в качестве состояния рандомизатора функции train_test_split необходимо указать 42).

В качестве результата верните X_train, y_train, X_test, y_test.

Пояснение: X_{train} , X_{test} - двумерный массив, y_{train} , y_{test} . — одномерный массив.

2) Обучение модели. Классификация методом k-ближайших соседей:

Реализуйте функцию train_model(), принимающую обучающую выборку (два аргумента - X_train и y_train) и аргументы n_neighbors и weights (значения по умолчанию 15 и 'uniform' соответственно), которая создает экземпляр классификатора KNeighborsClassifier и загружает в него данные X_train, y_train с параметрами n_neighbors и weights.

В качестве результата верните экземпляр классификатора.

3) Применение модели. Классификация данных

Реализуйте **функцию** predict(), принимающую обученную модель классификатора и тренировочный набор данных (X_test), которая выполняет классификацию данных из X_test.

В качестве результата верните предсказанные данные.

4) Оценка качества полученных результатов классификации.

Реализуйте функцию estimate(), принимающую результаты классификации и истинные метки тестовых данных (y_test), которая считает отношение предсказанных результатов, совпавших с «правильными» в y_test к общему количеству результатов. (или другими словами, ответить на вопрос «На сколько качественно отработала модель в процентах»).

В качестве результата верните полученное отношение, округленное до 0,001. В отчёте приведите объяснение полученных результатов.

Пояснение: так как это вероятность, то ответ должен находиться в диапазоне [0, 1].

5) Забытая предобработка:

После окончания рабочего дня перед сном вы вспоминаете лекции по предобработке данных и понимаете, что вы её не сделали...

Реализуйте функцию scale(), принимающую аргумент, содержащий данные, и аргумент *mode* - тип скейлера (допустимые значения: 'standard', 'minmax', 'maxabs', для других значений необходимо вернуть None в качестве результата выполнения функции, значение по умолчанию - 'standard'), которая обрабатывает данные соответствующим скейлером.

В качестве результата верните полученные после обработки данные.

В отчёте приведите (чек-лист преподавателя):

- описание реализации 5и требуемых функций
- исследование работы классификатора, обученного на данных разного размера
 - о приведите точность работы классификаторов, обученных на данных от функции load_data со значением аргумента train_size из списка: 0.1, 0.3, 0.5, 0.7, 0.9
 - оформите результаты пункта выше в виде таблицы
 - о объясните полученные результаты
- исследование работы классификатора, обученного с различными значениями n_neighbors
 - о приведите точность работы классификаторов, обученных со значением аргумента n_n из списка: 3, 5, 9, 15, 25
 - в качестве обучающих/тестовых данных для всех классификаторов возьмите результат load_data с аргументами по умолчанию (учтите, что для достоверности результатов обучение и тестирование классификаторов должно проводиться на одних и тех же наборах)
 - о оформите результаты в виде таблицы
 - о объясните полученные результаты
- исследование работы классификатора с предобработанными данными
 - о приведите точность работы классификаторов, обученных на данных предобработанных с помощью скейлеров из списка: StandardScaler, MinMaxScaler, MaxAbsScaler
 - в качестве обучающих/тестовых данных для всех классификаторов возьмите результат load_data с аргументами по умолчанию учтите, что для достоверности сравнения результатов классификации обучение должно проводиться на одних и тех же данных, поэтому предобработку следует производить после разделения на обучающую/тестовую выборку.

- оформите результаты в виде таблицы
- 。 объясните полученные результаты

Выполнение работы

Программа состоит из пяти функций:

 $load_data(train_size=0.8)$ — загружает данные о вине из $load_wine()$ и составляет на основе данных обучающую и тестовую выборку в пропорции с введённым аргументом.

 $train_model(X_train, y_train, n_neighbors=15, weights='uniform')$ — обучает модель, созданную на основе классификатора KNeighborsClassifier c napamempamu n neighbors u weights; обучающих данных X train u metor y train.

 $predict(clf, X_test)$ — предсказывает данные тренировочного набора X_test используя обученную модель clf.

 $estimate(res, y_test)$ — определяет качество обученной модели, сравнивая полученные данные res с правильными y_test . Для сравнения используется функция $accuracy\ score$, возвращающая результат в пределах [0,1].

scale(data, mode='standard') — обрабатывает тренировочные данные на основе выбранного *скейлера*.

Таблица 1. Результаты исследования работы классификатора для данных разного размера.

Paзмер train_size	Точность классификатора
0.1	0.379
0.3	0.8
0.5	0.843
0.7	0.815
0.9	0.722

Можно сделать следующие выводы:

- 1. При маленьких значениях обучающих данных модель имеет плохую точность.
- 2. При больших значениях обучающих данных модель точность модели начинает снижаться.

3. Максимальная точность достигается при балансе размеров обучающих и тестировочных данных.

Таблица 2. Результаты исследования работы классификатора для различных значений *n neighbors*.

Pазмер <i>n_neighbors</i>	Точность классификатора
3	0.861
5	0.833
9	0.861
15	0.861
25	0.833

Можно сделать вывод, что точность классификатора практически не зависит от размеров $n_neighbors$, ведь для разных значений она практически совпадает.

Можно предположить, что ещё большее количество соседей приведёт к снижению точности, потому что границы классификации станут менее чёткими.

Таблица 3. Результаты исследования работы классификатора для разных скейлеров.

Скейлер	Точность классификатора
StandardScaler	0.889
MinMaxScaler	0.806
MaxAbsScaler	0.75

Можно сделать вывод, что стандартный скейлер показал наилучшую точность, а *MinMaxScaler* и *MaxAbsScaler* оказались не так точны. Скорее всего это произошло, потому что они чувствительны к выбросам.

Выводы

Таким образом, в ходе выполнения лабораторной работы было начато изучение возможностей машинного обучения и анализа данных, а также был написана программа на языке Python по обучению модели.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
from sklearn.datasets import load wine
from sklearn.model selection import train test split
def load data(train size=0.8):
   wine = load wine()
              return
train size=train size, test size=1-train size, random state=42)
from sklearn.neighbors import KNeighborsClassifier
def
         train model(X train,
                                  y train, n neighbors=15,
weights='uniform'):
   return
                     KNeighborsClassifier(n neighbors=n neighbors,
weights=weights).fit(X train, y train)
def predict(clf, X test):
   return clf.predict(X test)
from sklearn.metrics import accuracy_score
def estimate(res, y test):
   return round(accuracy_score(res, y_test), 3)
from sklearn import preprocessing
def scale(data, mode='standard'):
   if mode == 'standard':
       sc = preprocessing.StandardScaler().fit transform(data)
   elif mode == 'minmax':
       sc = preprocessing.MinMaxScaler().fit transform(data)
   elif mode == 'maxabs':
       sc = preprocessing.MaxAbsScaler().fit transform(data)
   else:
       sc = None
   return sc
```