Cryogenic Refractive Indices of S-LAH55, S-LAH55V, S-LAH59, S-LAM3, S-NBM51, S-NPH2, S-PHM52, and S-TIH14 Glasses

Kevin H. Miller & Manuel A. Quijada / NASA Goddard Space Flight Center, Greenbelt, MD Douglas B. Leviton / Leviton Metrology Solutions, Inc., Boulder, CO

K.H.M. and D.B.L. with the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA GSFC

Outline of Slides

- Motivation for measurements (TESS mission)
- CHARMS: operation and capabilities
- CHARMS: cryogenic capabilities
- Ohara glass map and nomenclature
- First evidence of intra-melt variability in S-LAH55V
- Optical properties of "high" index prisms
- Optical properties of "middle" index prisms
- CHARMS measurements compared to literature values

Motivation: Transiting Exoplanet Survey Satellite (TESS)

- Planet finder
- 2017 Launch date (Cape Canaveral, FL)
- Highly Elliptical Earth Orbit
- 4 identical cameras 90° X 90° FOV
- 600 1000 nm bandpass

CHARMS: Operation and Capabilities

CHARMS is a minimum deviation refractometer

Five simple steps:

1. Measure the apex angle of the prism

2. Establish the condition of min deviation

3. Measure angle of undeviated beam

4. Measure angle of deviated beam

5. Compute deviation angle; compute index

$$n = \frac{\sin(\frac{\alpha+\delta}{2})}{\sin(\frac{\alpha}{2})}$$

CHARMS: Cryogenic Capabilities

Courtesy of S. Scola

CHARMS: data reduction and presentation style

$$n^{2}(\lambda,T)-1 = \sum_{i=1}^{3} \frac{S_{i}(T) \cdot \lambda^{2}}{\lambda^{2} - \lambda_{i}^{2}(T)}$$

$$AAR = \frac{\sum_{k=1}^{n} |index_{measured} - index_{fit}|}{n}$$

$$S_{i}(T) = \sum_{j=0}^{3} S_{ij} \cdot T^{j}$$

$$\lambda_{i}(T) = \sum_{j=0}^{3} \lambda_{ij} \cdot T^{j}$$

Prism ID	average absolute residual
S-LAH55	4.4E-6
S-LAH55V-1	3.7E-6
S-LAH55V-2	3.6E-6
S-LAH59	3.6E-6
S-TIH14	5.2E-6
S-NPH2	7.1E-6
S-LAM3	3.7E-6
S-NBM51	2.6E-6
S-PHM52	3.5E-6

Ohara Glasses

S-LAH55V: Intra-melt Variability

S-LAH55, S-LAH55V, S-LAH59

Constituent % by weight	S-LAH55	S-LAH59
La ₂ O ₃	40-50 %	20-30 %
Gd_2O_3	2-20 %	30-40%

SLAH55 SLAH55v1 SLAH55v2

1.076

S-TIH14 & S-NPH2

TiO₂: 20—40 %

SiO₂: 30—50 %

Nb₂O₅: 40—50 %

P₂O₅: 20—30 %

S-LAM3, S-NBM51, S-PHM52

Index Comparison: Ohara MINUS CHARMS

Cryogenic Index Comparison: Yamamuro MINUS CHARMS

Conclusions

