Master 2 2023-2024

OPTIMIZATION FOR MACHINE LEARNING

TD 1: GRADIENT DYNAMICS AND CONVEXITY

The exercises difficulty is indicated by the number of stars. Exercises marked with \emptyset are beyond the scope of this class and aren't expected to be done or prepared.

LYAPUNOV ENERGIES FOR THE GRADIENT FLOW

Here we assume that
$$f \in \Gamma_0(H) \cap C^1(H)$$
, and that $u \in C^1([0, +\infty[; H) \text{ is a trajectory solution of}$
 $(\forall t > 0) \quad \dot{u}(t) + \nabla f(u(t)) = 0, \quad u(0) = u^0.$ (1)

We will say that a function $\mathcal{E}: H \to \mathbb{R}$ is a LYAPUNOV ENERGY if $t \mapsto \mathcal{E}(u(t))$ is decreasing.

(*) Exercise 1 (Nonexpansive dynamic). Let $u, v : [0, +\infty[\rightarrow H \text{ be two solutions of the continuous Gradient Descent dynamic (1), starting from two distinct points <math>u(0)$ and v(0). Show that this dynamic is nonexpansive:

$$(\forall t > 0)(\forall h \ge 0) \quad ||u(t+h) - v(t+h)|| \le ||u(h) - v(h)||.$$

To prove this, you can study the variations of $t \mapsto (1/2) \|u(t+h) - v(t+h)\|^2$.

Correction:

$$\frac{d}{dt}(1/2)\|u(t+h) - v(t+h)\|^2 = \langle \dot{u}(t+h) - \dot{v}(t+h), u(t+h) - v(t+h) \rangle$$

$$= -\langle \nabla f(u(t+h)) - \nabla f(v(t+h)), u(t+h) - v(t+h) \rangle$$

$$< 0 \text{ because } \nabla f \text{ is monotone.}$$

We therefore just proved that this function is decreasing, which means that at any t it is smaller than its value at t = 0. Which is what we wanted.

(*) Exercise 2 (Getting closer to the solution). Let $x^* \in \operatorname{argmin} f \neq \emptyset$. Show that $\mathcal{E}(x) = (1/2)\|x - x^*\|^2$ is a Lyapunov energy.

Correction:

$$(\mathcal{E} \circ x)'(t) = \frac{d}{dt}(1/2)\|x(t) - x^*\|^2 = \langle \dot{x}(t), x(t) - x^* \rangle = \langle \nabla f(x(t)), x^* - x(t) \rangle$$

$$\leq f(x^*) - f(x(t)) \text{ because } f \text{ is convex}$$

$$\leq 0 \text{ because } f(x^*) = \inf f \leq f(x(t)).$$