Verification of Communicating Automata

Amrita Suresh ENS Paris-Saclay

- * Labelled transition systems, or automata communicating via FIFO queues
- * Model distributed behaviour
 - * composition of web services
 - * cyber-physical devices
 - * program behaviours, etc.

[LY19]

The Boundedness Problem

Does the model need an infinitely long channel?

The Boundedness Problem

* Turing-hard for communicating systems

* Therefore, there is a need for underapproximations

Bounded language

* A language is bounded if it is of the form:

u* v* w*... for words u, v, w...

* e.g. (ab)* (cd)* a* is bounded but

(a (ab)* c)* is not

Input-bounded channel

* If the language that enters the channel is bounded

Input-bounded channel

* If the language that enters the channel is bounded

Result I

[BFS20, BFS22a]

* Reachability (and many other verification problems) are decidable for input-bounded systems (where are channels are input-bounded)

Synchronizability

* A synchronous run:

one where the channel size can be zero

Synchronizability

* A synchronizable run:

every run is equivalent to a synchronous run

Result II

* Framework for deciding synchronizability for a variety of definitions [BGF+21]

Other under-approximations

[BFS22b]

* Branch-WSTS

- a large class of systems for which we can decide boundedness and termination

Other under-approximations

* Send-synchronizable systems

- the receptions can be reordered to become synchronous

Other under-approximations

* Reversal-bounded systems

- limit the number of alternations of sending and reception

FUTURE WORK

Half-Duplex systems

* For every pair of processes, at most one of the channels between them is non-empty

Half-Duplex systems

Not half-duplex

Half-Duplex systems

- * For two processes, membership (and some other verification problems are decidable.
- * For three processes, it is Turing-hard.

Application in the realm of channel contracts

- * Half-duplex contracts can be seen as a way of defining reliable contracts [LV11]
- * We obtain determinism and uniform choice
- * Robust in the presence of error-prone communication

Open question I

- * Can we modify the definition for more than 2 processes? [DGGL21]
- * What is class of "reliable" channel contracts for multiparty FIFO systems?

Communicating Session Automata

* Deterministic automata and each control state is uniquely sending or receiving

Not a communicating session automata

Communicating Session Automata

Multiparty compatibility

- * Absence of deadlocks, orphan messages, unspecified receptions
- * Whenever a message can be sent, it should eventually be sent

Multiparty compatibility

- * Captures asynchrony
- * Sufficient condition of existential boundedness
- * Each automaton behaves similarly when you take any larger bound

Open question II

- * Does the unifying framework capture this property?
- * Can we try to extend this class to include mixed states?

Mid-term objectives

* A practical tool for verifying synchronizability (and other underapproximations of communicating automata) in the spirit of earlier works [LY19, BEJQ18]

Mid-term objectives

- * Studying the relationship between k-synchronizability and high-level message sequence charts (HMSCs)
- * Is an HMSC computable from a k-synchronous system?
- * Can we characterize them?

Long-term objectives

- * Adapting existing results to build a bounded modelchecking strategy for general CFSMs (and the same for input-bounded)
- * Using session types to formally model choreography languages and characterize realizability
- * Extending the notions of synchronizability and choreography realizability for other communication models (bags, causally ordered channels, etc.)

References

- * [BEJQ18] Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. On the completeness of verifying message passing programs under bounded asynchrony, CAV 2018.
- * [BFG+21] Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Etienne Lozes, and Amrita Suresh. *A Unifying Framework for Deciding Synchronizability*, CONCUR 2021.
- * [BFS20] Benedikt Bollig, Alain Finkel, and Amrita Suresh. Bounded Reachability Problems Are Decidable in FIFO Machines, CONCUR 2020.
- * [BFS22a] Benedikt Bollig, Alain Finkel, and Amrita Suresh. Bounded Problems Are Decidable in FIFO Machines, LMCS 2022.
- * [BFS22b] Benedikt Bollig, Alain Finkel, and Amrita Suresh. *Branch-Well-Structured Transition Systems and Extensions*, FORTE 2022.

References

- * [BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines, J. ACM 1983.
- * [CF05] Gerald Cécé and Alain Finkel. Verification of Programs with Half-Duplex Communication, Inf Comp 2005.
- * [DGGL21] Cinzia Di Giusto, Loïc Germerie Guizouarn, and Etienne Lozes. *Multiparty Half-Duplex Systems and Synchronous Communications*, ICE 2021.
- * [LV11] Étienne Lozes and Jules Villard. Reliable Contracts for Unreliable Half-Duplex Communications, WS-FM 2011.
- * [LY19] Julien Lange and Nobuko Yoshida. *Verifying Asynchronous Interactions via Communicating Session Automata*, CAV 2019.