ST2132 Cheatsheet

for midterms, by ning

Baye's Rule

Suppose that B_1, B_2, \dots, B_n are partitions of the sample space Ω . Then for any event A,

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{j=1}^{n} P(A|B_j)P(B_j)}$$

Expectation

The expectation of a random variable X is defined as follows for the discrete and continuous case respectively,

$$E[X] = \sum_{i} x_{i} p(x_{i})$$
$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Moment Generating Functions

The moment generating function (MGF) of a random variable X is,

$$M(t) = \mathbf{E}[e^{tX}]$$

and the r^{th} moment of a random variable is $\mathrm{E}[X^r]$ if it exists.

Variance

The variance σ^2 of a random variable X, then the variance of X is,

$$Var(X) = E[(X - E[X])^{2}]$$

And

$$Var(a+bX) = b^2 Var(X)$$

Sample Variance

The unbiased sample variance S^2 is

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

The biased sample variance $\hat{\sigma}^2$ is

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Covariance

If X and Y are jointly distributed random variables with means μ_X and μ_Y respectively, then the covariance of X and T is,

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

If X and Y are independent, then

$$Cov(X, Y) = E[XY] - E[X] E[Y]$$

If X and Y are positively associated, then the covariance will be positive, and vice versa.

Correlation

Additionally, the correlation ρ can be expressed as,

$$\rho = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

 $-1 \le \rho \le 1$ and $\rho = \pm 1 \iff P(Y = a + bX) = 1$ for some constants a, b.

Mean Square Error

If the true value of a quantity being measured is denoted x_0 , then the measurement X can be modelled as,

$$X = x_0 + \beta + \epsilon$$

where β is the constant error and ϵ is the random component of the error. And

$$E[\epsilon] = 0$$

$$Var(\epsilon) = \sigma^{2}$$

$$E[X] = x_{0} + \beta$$

$$Var(X) = \sigma^{2}$$

The mean squared error is then

$$MSE = \beta^2 + \sigma^2$$

Bias and Standard Error

The bias of an estimator is given by $E[\hat{\theta}] - \theta_0$. The standard error is the standard deviation of the sampling distribution.

Bernoulli Distribution

The Bernoulli distribution is defined over the parameter $p \in [0, 1]$. Its PMF is

$$P(X = x) = \begin{cases} 1 - p & \text{if } x = 0\\ p & \text{if } x = 1 \end{cases}$$

The MGF is $1 - p + pe^t$. The mean and variance are p and p(1 - p) respectively. The fisher information is 1/(pq).

Binomial Distribution

The binomial distribution is defined over two parameters, $n \in \{0, 1, 2, \dots\}$ and $p \in [0, 1]$. Its PMF is

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

The MGF is $(1-p+pe^t)^n$. The mean and variance are np and np(1-p) respectively. The fisher information is $\frac{n}{p(1-p)}$ for a fixed n.

Poisson Distribution

The poisson distribution is defined over the parameter $\lambda > 0$. Its PMF is

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

The MGF is $e^{\lambda(e^t-1)}$. The mean and variance are both λ . The fisher information is $1/\lambda$.

Geometric Distribution

The geometric distribution is defined over the parameter $k \in \mathbb{Z}^+$. Its PMF is

$$P(X = k) = p(1 - p)^{k-1}$$

The MFG is $pe^t/(1-(1-p)e^t)$. The mean and variance are 1/p and $(1-p)/p^2$ respectively.

Gamma Distribution

The gamma distribution is defined over two parameters, $\alpha>0,\,\lambda>0.$ Its PDF is

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$$

The MGF is $\left(1 - \frac{t}{\lambda}\right)^{-\alpha}$ for $t < \lambda$. The mean and variance are α/λ and α/λ^2 respectively.

Normal Distribution

The normal distribution is defined over two parameters, $-\infty < \mu < \infty, \ \sigma > 0$. Its probability density function is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}, -\infty < x < \infty$$

The MGF is $e^{\mu t + \sigma^2 t^2/2}$. Its mean and variance are μ and σ^2 respectively. The normal distribution is symmetric about μ , such that $f(\mu - x) = f(\mu + x)$.

Standard Normal Distribution

 $Z \sim N(0,1)$ is the standard normal. Its CDF is commonly denoted Φ and its density ϕ . To 'standardise' a normal distribution X to Z, note that

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

χ^2 Distribution

For the standard random variable Z, the distribution of $Y = Z^2$ is called the chi-square distribution with 1 degree of freedom, χ_1^2 .

 χ_1^2 is a special case of the gamma distribution, where $\alpha = \lambda = 1/2$, i.e. $\chi_1^2 = \Gamma(1/2, 1/2)$.

Then, if Y_1, Y_2, \dots, Y_n are independent χ_1^2 random variables, the distribution of $W = Y_1 + Y_2 + \dots + Y_n$ is the chi^2 random variable with n degrees of freedom, χ_-^2 .

The density of $\chi_n^2 \sim \Gamma(n/2, 1/2)$ is given by

$$f(x) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{(n/2)-1} e^{x/2}$$

t Distribution

For the standard normal random variable Z and $U \sim \chi_n^2$, where Z and U are independent, the distribution of $Z/\sqrt{U/n}$ is the t distribution with n degrees of freedom. Its PDF is

$$f(t) = \frac{\Gamma[(n+1)/2]}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-(n+1)/2}$$

F Distribution

If $U \sim \chi_n^2$ and $V \sim \chi_m^2$, then the distribution of $W = \frac{U/n}{V/m}$ is the F distribution with n and m degrees of freedom, $F_{n,m}$. Its PDF is

$$f(x) = \frac{\Gamma[(n+m)/2]}{\Gamma(m/2)\Gamma(n/2)} \left(\frac{n}{m}\right)^{n/2} x^{n/2-1} \left(1 + \frac{n}{m}x\right)^{-(n+m)/2}$$

for x > 0. Also, if $T \sim t_n$ then $T^2 \sim F_{1,n}$

Central Limit Theorem

Let X_1, X_2, \cdots be a sequence of independent random variables having mean 0 and variance σ^2 and the common distribution function F and MGF m defined in a neighbourhood of zero. If

$$S_n = \sum_{i=1}^n X_i$$

then

$$\lim_{x \to \infty} P\left(\frac{S_n}{\sigma\sqrt{n}} \le x\right) = \Phi(x)$$

A more useful result is as follows: if X_1, X_2, \cdots, X_n are i.i.d. random variables with large n, then

$$\bar{X} \sim N(\mu, \sigma^2/n)$$

Linear Functions of a Random Variable Let Y = g(X). To find $f_Y(y)$,

$$F_Y(y) = P(Y \le y)$$

$$= P(g(X) \le y)$$

$$= P(X \le g^{-1}(y))$$

$$= F_X(g^{-1}(y))$$

$$f_Y(y) = \frac{d}{dy} F_X(g^{-1}(y))$$

$$= \frac{dg^{-1}}{dy} f_X(g^{-1}(y))$$

Non-linear Functions of Random Variables

Let $Y = g(\vec{X})$, where $\vec{X} := (X_1, X_2, \cdots)$ with mean vector $\vec{\mu}$. Then, in order to find the mean and variance of Y, first take the Taylor expansion of $g(\vec{X})$,

$$V = q(\vec{X})$$

$$\approx g(\mu) + (X_1 - \mu_1) \frac{\partial g(\mu)}{\partial x_1} + (X_2 - \mu_2) \frac{\partial g(\mu)}{\partial x_2} + \cdots$$

Then, $E[Y] \approx g(\mu)$, and

$$Var(Y) \approx Var(g(\mu) + (X_1 - \mu_1) \cdots$$

Consider for example, $\vec{X} := (X_1, X_2)$. Then

$$Var(X) pprox \sigma_{X_1}^2 \left(rac{\partial g(\mu)}{\partial x_1}
ight)^2 +$$

$$\sigma_{X_2}^2 \left(rac{\partial g(\mu)}{\partial x_2}
ight)^2 +$$

$$2\sigma_{XY} \left(rac{\partial g(\mu)}{\partial x_1}
ight) \left(rac{\partial g(\mu)}{\partial x_2}
ight)$$

Simple Random Sampling

Simple random sampling without replacement means that each sample is not independent of another. While the mean of the simple random sample is still unbiased, that is $\mathrm{E}[\bar{X}] = \mu$,

$$Cov(X_i, X_i) = -\sigma^2/(N-1)$$

for two different simple random samples, i.e. $i \neq j$. The variance of the sample mean then becomes

$$Var(\bar{X}) = \frac{\sigma^2}{n} \left(\frac{N-n}{N-1} \right)$$

The variance of the sample total is

$$Var(T) = N^{2} \left(\frac{\sigma^{2}}{n}\right) \frac{N-n}{N-1}$$

For both expressions above, however, σ is unknown and must be estimated. Therefore, we have also the unbiased estimates for $Var(\bar{X})$ and Var(T)

$$s_{\bar{X}}^2 = \frac{s^2}{n} \left(1 - \frac{n}{N} \right)$$
$$s_T^2 = N^2 s_{\bar{X}}^2$$

where $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ is the unbiased sample variance.

Method of Moments Estimators

The method of moments estimates the parameter θ by finding expressions for it in terms of the lowest possible order moments and then substituting sample moments into these expressions.

Maximum Likelihood Estimators

The MLE estimator finds an estimate of the parameter θ_0 which maximises the probability of having observed the sample. The likelihood function is

$$L(\theta) = \prod_{i=1}^{n} f(x_i | \theta)$$

Often, this function is difficult to maximise. Since log is a monotonic increasing function, we may simplify this problem by finding the maximum of the loglikelihood function instead

$$l(\theta) = \sum_{i=1}^{n} \log f(x_i | \theta)$$

Consistency

Let $\hat{\theta}_n$ be an estimate of a parameter θ_0 based on a sample of size n. $t \hat{het} a_n$ is said to be consistent in probability if $\hat{\theta}_n$ converges in probability to θ_0 as n approaches infinity. That is, for $\epsilon > 0$,

$$P(|\hat{\theta}_n - \theta_0| > \epsilon) \to 0 \text{ as } n \to \infty$$

Fisher Information

The fisher information, $I(\theta)$ is defined as

$$I(\theta) = E \left[\frac{\partial}{\partial \theta} \log f(X|\theta) \right]^{2}$$
$$= -E \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f(X|\theta) \right]$$

Large Sample Theory for MLE

Let $\hat{\theta}$ denote the MLE of θ_0 . The probability distribution of

$$\sqrt{nI(\theta_0)}(\hat{\theta}-\theta_0)$$

tends to a standard normal distribution. Therefore, the asymptotic variance of the MLE is

$$\frac{1}{nI(\theta)} = -\frac{1}{E[l''(\theta_0)]}$$

Approximate Confidence Intervals

Confidence intervals can be approximated through the large sample theory for MLE by taking $\sqrt{nI(\theta_0)}(\hat{\theta} - \theta_0) \to N(0, 1)$, as $n \to \infty$.

$$P\left(-z(\alpha/2) \le \sqrt{nI(\hat{\theta})}(\hat{\theta} - \theta_0) \le z(\alpha/2)\right) \approx 1 - \alpha$$