

Lossless Decomposition

by

Dr. Pratik Roy

Introduction

- \square Let R be a relation schema and let R₁ and R₂ form a decomposition of R.
- \square Decomposition is a **lossless decomposition** if there is no loss of information by replacing R with two relation schemas R₁ and R₂.
- \square Loss of information occurs if it is possible to have an instance of a relation r(R) that includes information that cannot be represented if instead of the instance of r(R) we must use instances of r₁(R₁) and r₂(R₂).

Introduction

□ Decomposition is lossless if, for all legal database instances, relation r contains the same set of tuples as the result of the following SQL query:

```
select *
from (select R<sub>1</sub> from r)
natural join
(select R<sub>2</sub> from r)
```

$$\Pi_{R_1}(r) \bowtie \Pi_{R_2}(r) = r$$

If we project r onto R_1 and R_2 , and compute the natural join of the projection results, we get back exactly r.

Decomposition is **lossy** if when we compute the natural join of the projection results, we get a proper superset of the original relation.

$$r \subset \Pi_{R_1}(r) \bowtie \Pi_{R_2}(r)$$

Loss of information via a bad decomposition

ID	name	street	treet city	
57766 57766	Kim Kim	Main North	Perryridge Hampton	75000 67000
98776	Kim	Main	Perryridge	75000
98776	Kim	North	Hampton	67000

- □ Decomposition is lossy.
- ☐ More tuples but less information

Nonadditive (Lossless) Join Property of Decomposition

- □No spurious tuples are generated when a NATURAL JOIN operation is applied to the relations resulting from the decomposition.
- □Lossless join property is always defined with respect to a specific set F of dependencies.
- **Definition:** A decomposition $D = \{R_1, R_2, ..., R_m\}$ of R has the **lossless** (nonadditive) join property with respect to the set of dependencies F on R if, for every relation state r of R that satisfies F, the following holds, where * is the NATURAL JOIN of all the relations in D:

*
$$(\pi_{R_1}(r), ..., \pi_{R_m}(r)) = r.$$

- □Loss in lossless refers to loss of information, not to loss of tuples.
- \square If a decomposition does not have the lossless join property, we may get additional spurious tuples after the PROJECT (π) and NATURAL JOIN (*) operations are applied.
- ☐ These additional tuples represent erroneous or invalid information.

Testing for Nonadditive Join Property

□Algorithm

- Input: A universal relation R, a decomposition $D = \{R_1, R_2, ..., R_m\}$ of R, and a set F of functional dependencies.
- 1. Create an initial matrix S with one row i for each relation R_i in D, and one column j for each attribute A_i in R.
- 2. Set $S(i, j) := b_{ii}$ for all matrix entries.

Testing for Nonadditive Join Property

Repeat the following loop until a complete loop execution results in no changes to S:

```
for each functional dependency X \rightarrow Y in F
  for all rows in S that have the same symbols in the columns corresponding
    to attributes in X
      make the symbols in each column that correspond to an attribute in Y
      be the same in all these rows as follows:
      If any of the rows has an a symbol for the column, set the other rows
      to that same a symbol in the column.
      If no a symbol exists for the attribute in any of the rows, choose one of the b symbols that appears in one of the rows for the attribute and set
      the other rows to that same b symbol in the column.
```


Testing for Nonadditive Join Property

5. If a row is made up entirely of **a** symbols, then the decomposition has the nonadditive join property; otherwise, it does not.

Nonadditive join test for n-ary decompositions

```
R = \{ Ssn, Ename, Pnumber, Pname, Plocation, Hours \}  EMP_PR D = \{ R_1, R_2 \}  R_1 = EMP\_LOCS = \{ Ename, Plocation \}  OJ R_2 = EMP\_PROJ1 = \{ Ssn, Pnumber, Hours, Pname, Plocation \}
```

 $F = \{Ssn \rightarrow Ename; Pnumber \rightarrow \{Pname, Plocation\}; \{Ssn, Pnumber\} \rightarrow Hours\}$

	Ssn	Ename	Pnumber	Pname	Plocation	Hours
R_1	b ₁₁	a ₂	b ₁₃	b ₁₄	a ₅	b ₁₆
R_2	a ₁	b_{22}	a_3	a_4	a ₅	a ₆

No changes to matrix after applying functional

dependencies Decomposition of EMP_PROJ into EMP_PROJ1 and EMP_LOCS fails test.

Nonadditive join test for n-ary decompositions

EMP

Ssn Ename

PROJECT

Pnumber	Pname	Plocation
---------	-------	-----------

WORKS_ON

Ssn	Pnumber	Hours
-----	---------	-------

 $R = \{Ssn, Ename, Pnumber, Pname, Plocation, Hours\}$

$$R_1 = EMP = \{Ssn, Ename\}$$

$$R_2 = PROJ = \{Pnumber, Pname, Plocation\}$$

$$R_3 = WORKS_ON = \{Ssn, Pnumber, Hours\}$$

$$D = \{R_1, R_2, R_3\}$$

 $F = \{Ssn \rightarrow Ename; Pnumber \rightarrow \{Pname, Plocation\}; \{Ssn, Pnumber\} \rightarrow Hours\}$

	Ssn	Ename	Pnumber	Pname	Plocation	Hours
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a ₄	a ₅	b ₂₆
R_3	a ₁	b ₃₂	a ₃	b ₃₄	b ₃₅	a ₆

(Original matrix S at start of algorithm)

	Ssn	Ename	Pnumber	Pname	Plocation	Hours
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a ₄	a ₅	b ₂₆
R_3	a ₁	b ₈₂ a ₂	a ₃	b34 a4	Ъ ₃₅ а ₅	a ₆

(Matrix S after applying the first two functional dependencies; last row is all "a" symbols so we stop)

Decomposition of EMP_PROJ into EMP, PROJECT, and WORKS_ON satisfies test. Decomposition of EMP_PROJ that has the lossless join property.

Nonadditive Join Test for Binary Decompositions

- ☐There is a special case of a decomposition called a binary decomposition.
 - Decomposition of a relation R into two relations.
- \square A decomposition D = {R₁, R₂} of R has the lossless (nonadditive) join property with respect to a set of functional dependencies F on R if at least one of the following functional dependencies is in F⁺:
 - R1 \cap R2 \rightarrow R1
 - R1 \cap R2 \rightarrow R2
- \square If $R_1 \cap R_2$ forms a superkey for either R_1 or R_2 , the decomposition of R is a lossless decomposition.

Nonadditive Join Test for Binary Decompositions

☐Consider the schema
in_dep (ID, name, salary, dept_name, building, budget)
☐We decompose into instructor and department schemas:
instructor (ID, name, dept_name, salary)
department (dept_name, building, budget)
☐ Consider the intersection of these two schemas, which is dept_name.
□Dept_name → dept name, building, budget
□Decomposition is lossless.

Example

□Let R (A, B, C, D) be a relational schema with the following functional dependencies:

$$A \rightarrow B$$
, $B \rightarrow C$, $C \rightarrow D$ and $D \rightarrow B$

Check whether the decomposition of R into (A, B), (B, C), (B, D) is lossless or lossy.

Lossless Decomposition

- \square Lossless join decomposition is a decomposition of a relation R into relations R₁, R₂ such that if we perform natural join of relation R₁ and R₂, it will return the original relation R.
- ☐ This is effective in removing redundancy from databases while preserving the original data.
- □By lossless decomposition it becomes feasible to reconstruct the relation R from decomposed tables R₁ and R₂ by using Joins.

Closure of Attribute Sets

```
\BoxLet \alpha be a set of attributes. We call the set of all attributes functionally
 determined by \alpha under a set F of functional dependencies the closure of
 \alpha under F. We denote it by \alpha^+.
\square Algorithm to compute \alpha^+
        result := \alpha;
        repeat
               for each functional dependency \beta \rightarrow \gamma in F do
                begin
                       if \beta \subseteq result then result := result \cup \gamma;
                end
        until (result does not change)
```


Consider the relation scheme R = {E, F, G, H, I, J, K, L, M, M} and the set of functional dependencies

What is the key for R?

Consider a schema R(A,B,C,D) and functional dependencies A->B and C->D. Decomposition of R into $R_1(AB)$ and $R_2(CD)$ is not lossless.

R = (A, B, C, D, E). We decompose it into $R_1 = (A, B, C)$, $R_2 = (A, D, E)$. The set of functional dependencies is: $A \rightarrow BC$, $CD \rightarrow E$, $B \rightarrow D$, $E \rightarrow A$. Show that this decomposition is a lossless-join decomposition.

Same R and F. $R_1 = (A, B, C)$, $R_2 = (C, D, E)$. Show that this decomposition is not a lossless-join decomposition.

- \square R = (B, O, I, S, Q, D).
- $\square I \rightarrow B$, IS $\rightarrow Q$, B $\rightarrow O$, S $\rightarrow D$

- ☐ Find the candidate key for R.
- ☐Give a lossless-join decomposition of R into BCNF.