Contenido

- 1. Introducción
- 2. Regresión
 - a) Regresión univariable
 - b) Regresión multivariable
- 3. Clasificación
 - a) Regresión logística
 - b) Máquinas de vectores soporte (SVM)
 - Forma dual de la optimización (regresión y SVM)
 - c) Funciones Kernel
 - d) Clasificación multiclase
- 4. Segmentación
- 5. Reducción de dimensionalidad
- 6. Deep learning (introducción)

- Representación gráfica multivariable
- Codificación 1-hot
- Normalización de variables
- Descomposición en Valores Singulares
 - Matrices de covarianza y Gramm
 - Autovalores y autovectores
 - Definición de la SVD
 - Obtención de la SVD
 - Aplicación a la solución de la Normal Equation

Regresión multivariable Ejemplo en el sector eléctrico

- En otra zona en la que opera la empresa los datos disponibles de los clientes para hacer la predicción de su consumo de energía son los siguientes:
 - 1. Ingresos anuales (€)
 - 2. Número de habitantes en la vivienda (promedio anual de personas)
 - 3. Potencia contratada (kW)
 - 4. Tipo de vivienda (piso, adosado, casa)
 - 5. Superficie de la vivienda (m²)
 - 6. Horas de ocupación en invierno (horas/día)
 - 7. Horas de ocupación en verano (horas/día)
 - 8. Edad (años)
 - 9. Estado civil (soltero, casado, separado, viudo)
 - Nivel de estudios alcanzado (sin estudios, primaria, secundaria, bachiller, grado, máster, doctor)

2. Determinación de features

Muestra \mathcal{M} (dataset)

n elementos

i-ésimo elemento

Caracterizado por d features (rasgos):

• $x^{(i)}$: vector fila con d features

Valor del objetivo (target) : • $y^{(i)}$: consumo anual de electricidad

2. Determinación de features

	Ingresos (k€)	Habitantes	Potencia (kW)	Tipo Vivienda	Superficie (m²)	Horas invierno	Horas	Edad	Estado civil	Estudios	Consumo (MW-h)
i	$x_1^{(i)}$	$x_2^{(i)}$	$x_3^{(i)}$	$x_4^{(i)}$	$x_5^{(i)}$	$x_6^{(i)}$	$x_7^{(i)}$	$x_8^{(i)}$	$x_9^{(i)}$	$x_{10}^{(i)}$	$y^{(i)}$
1	68.4	2	7.5	Ad.	136	6.5	4.1	26.3	Sep.	Mas.	9.81
2	38.1	3	4.8	Piso	101	17.1	6.5	23.1	Cas.	Bac.	12.4
3	39.2	3	4.6	Casa	82	15.6	7.1	75.3	Viud.	Bac.	1.63
4	31.8	4	3.9	Piso	72	16.7	7.2	21.7	Sol.	Sec.	8.17
5	58.1	2	5.5	Piso	132	13.2	5.2	32.4	Cas.	Sec.	4.87
:	:	÷	÷	:	÷	i	÷	÷	:	÷	:

- Representación gráfica multivariable
- Codificación 1-hot
- Normalización de variables
- Descomposición en Valores Singulares
 - Matrices de covarianza y Gramm
 - Autovalores y autovectores
 - Definición de la SVD
 - Obtención de la SVD
 - Aplicación a la solución de la Normal Equation

- Representación gráfica multivariable
- Codificación 1-hot
- Normalización de variables
- Descomposición en Valores Singulares
 - Matrices de covarianza y Gramm
 - Autovalores y autovectores
 - Definición de la SVD
 - Obtención de la SVD
 - Aplicación a la solución de la Normal Equation

2. Determinación de *features*

- Estructurados
 - Numéricos
 - Continuos
 - Discretos
 - Categóricos
 - Ordinales
 - Nominales
- Series temporales
- Imagen
- Vídeo
- Audio
- Texto

2. Determinación de *features*

Range of potential Al value impact by data type

https://www.mckinsey.com/~/media/mckinsey/featured%20insights/artificial%20intelligence/notes%20from%20the%20ai%20frontier%20applic ations%20and%20value%20of%20deep%20learning/notes-from-the-ai-frontier-insights-from-hundreds-of-use-cases-discussion-paper.ashx

2. Determinación de features

Numérica

- Continua
 - Ingresos; promedio de habitantes; superficie; horas invierno; horas verano; edad
- Discreta
 - Potencia
- Categórica
 - Ordinal (con orden; tiene sentido la media)
 - Estudios
 - Nominal (sin orden; no tiene sentido la media)
 - Tipo de vivienda; estado civil
 - 1-hot encoding

1-hot encoding

Tipo de vivienda	Piso	Adosado	Casa		
Piso	1	0	0		
Adosado	0	1	0		
Casa	0	0	1		

Estado civil	Soltero	Casado	Separado	Viudo
Soltero	1	0	0	0
Casado	0	1	0	0
Separado	0	0	1	0
Viudo	0	0	0	1

1-hot encoding

Cliente	Ingresos (k€)	Habitantes	Potencia (kW)	Piso	Adosado	Casa	Superficie (m²)	Horas invierno	Horas verano	Edad	Soltero	Casado	Separado	Viudo	Estudios	Consumo (MW-h)
i	$x_1^{(i)}$	$x_2^{(i)}$	$x_3^{(i)}$	$x_4^{(i)}$	$x_5^{(i)}$	$x_6^{(i)}$	$x_7^{(i)}$	$x_8^{(i)}$	$x_9^{(i)}$	$x_{10}^{(i)}$	$x_{11}^{(i)}$	$x_{12}^{(i)}$	$x_{13}^{(i)}$	$x_{14}^{(i)}$	$x_{15}^{(i)}$	$y^{(i)}$
1	68.4	2	7.5	0	1	0	136	6.5	4.1	26.3	0	0	1	0	6	9.81
2	38.1	3	4.8	1	0	0	101	17.1	6.5	23.1	0	1	0	0	4	12.4
3	39.2	3	4.6	0	0	1	82	15.6	7.1	75.3	0	0	0	1	4	1.63
4	31.8	4	3.9	1	0	0	72	16.7	7.2	21.7	1	0	0	0	3	8.17
5	58.1	2	5.5	1	0	0	132	13.2	5.2	32.4	0	1	0	0	3	4.87
:	ŧ	÷	:	ŧ	:	:	:	ŧ	÷	:	:	:	ŧ	÷	÷	:

3. Formulación de hipótesis

$$h_w(x) = w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

$$X = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \cdots & x_d^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_2^{(n)} & x_2^{(n)} & \cdots & x_d^{(n)} \end{bmatrix} \quad w = \begin{bmatrix} w_1 & w_2 & \cdots & w_d \end{bmatrix}$$

4. Elección de la función de coste

$$J(h_w(x), y) = \frac{1}{n} \sum_{i=1}^{n} (h_w(x^{(i)}) - y^{(i)})^2$$

$$Xw^{T} - y = \begin{bmatrix} w_{1}x_{1}^{(1)} + w_{2}x_{2}^{(1)} + \dots + w_{d}x_{d}^{(1)} - y^{(1)} \\ w_{1}x_{1}^{(2)} + w_{2}x_{2}^{(2)} + \dots + w_{d}x_{d}^{(2)} - y^{(2)} \\ \vdots \\ w_{1}x_{1}^{(n)} + w_{2}x_{2}^{(n)} + \dots + w_{d}x_{d}^{(n)} - y^{(n)} \end{bmatrix}$$

4. Elección de la función de coste

$$(X - y)^{T}(Xw^{T} - y) = \sum_{i=1}^{n} \left(w_{1}x_{1}^{(i)} + w_{2}x_{2}^{(i)} + \dots + w_{d}x_{d}^{(i)} - y^{(1)} \right)^{2}$$

$$J(h_w(x), y) = \frac{1}{n} (X - y)^T (Xw^T - y)$$

$$J(h_w(x), y) = \frac{1}{n} (X - y)^T (Xw^T - y) + \lambda ||w||_2^2$$

5. Optimización mediante Normal Equation

$$\nabla J(h_w(x), y) = 0$$

$$\nabla \left[\frac{1}{n} (X - y)^T (X w^T - y) + \lambda ||w||_2^2 \right] = 0$$

$$\nabla J(h_w(x), y) = \frac{2}{n} (wX^TX - y^TX) + 2\lambda w = 0$$

$$w^* = y^T X (X^T X + n\lambda I_d)^{-1}$$

5. Optimización mediante Gradient Descent

$$\begin{bmatrix} w_1^{(t+1)} \\ \vdots \\ w_d^{(t+1)} \end{bmatrix} \leftarrow \begin{bmatrix} w_1^{(t)} \\ \vdots \\ w_d^{(t)} \end{bmatrix} - \alpha \begin{bmatrix} \frac{\partial J(h_w(x), y)}{\partial w_1} \\ \vdots \\ \frac{\partial J(h_w(x), y)}{\partial w_d} \end{bmatrix}$$

$$w^{(t+1)^T} \leftarrow w^{(t)^T} - \alpha \nabla I$$

$$w^{(t+1)^T} \leftarrow w^{(t)^T} - \alpha \left(\frac{2}{n} (wX^TX - y^TX) + 2\lambda w \right)$$

6. Evaluación del resultado

- Representación gráfica multivariable
- Codificación 1-hot
- Normalización de variables
- Descomposición en Valores Singulares
 - Matrices de covarianza y Gramm
 - Autovalores y autovectores
 - Definición de la SVD
 - Obtención de la SVD
 - Aplicación a la solución de la Normal Equation

Coste escala logarítmica

$$J(h_w(x), y) = \frac{1}{n} \sum_{i=1}^{n} (h_w(x^{(i)}) - y^{(i)})^2$$

$$J(h_w(x), y) = \frac{1}{n} \sum_{i=1}^{n} \left(w_1 x_1^{(i)} + w_2 x_2^{(i)} - y^{(i)} \right)^2$$

Orden de magnitud: $O_m(\cdot)$

$$O_m(w_1) = \frac{O_m(y)}{O_m(x_1)}; O_m(w_2) = \frac{O_m(y)}{O_m(x_2)}; O_m(J) = \left(O_m(y)\right)^2$$

$$\frac{10^3}{10^0}; O_m(w_2) = \frac{O_m(y)}{O_m(x_2)}; O_m(J) = \left(O_m(y)\right)^2$$

$$\frac{10^3}{10^0}; O_m(w_2) = \frac{O_m(y)}{O_m(x_2)}; O_m(J) = \left(O_m(y)\right)^2$$

$$\frac{\partial J}{\partial w_1} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial}{\partial w_1} \left(w_1 x_1^{(i)} + w_2 x_2^{(i)} - y^{(i)} \right)^2$$

$$\frac{\partial J}{\partial w_1} = \frac{2}{n} \sum_{i=1}^{n} x_1^{(i)} \left(w_1 x_1^{(i)} + w_2 x_2^{(i)} - y^{(i)} \right)$$

$$\frac{\partial J}{\partial w_2} = \frac{2}{n} \sum_{i=1}^{n} x_2^{(i)} \left(w_1 x_1^{(i)} + w_2 x_2^{(i)} - y^{(i)} \right)$$

$$\begin{bmatrix} w_1^{(t+1)} \\ w_2^{(t+1)} \end{bmatrix} \leftarrow \begin{bmatrix} w_1^{(t)} \\ w_2^{(t)} \end{bmatrix} - \alpha \begin{bmatrix} \frac{\partial J(h_w(x), y)}{\partial w_1} \\ \frac{\partial J(h_w(x), y)}{\partial w_2} \end{bmatrix}$$

$$\begin{bmatrix} \Delta w_1^{(t)} \\ \Delta w_2^{(t)} \end{bmatrix} = -\alpha \begin{bmatrix} \frac{\partial J(h_w(x), y)}{\partial w_1} \\ \frac{\partial J(h_w(x), y)}{\partial w_2} \end{bmatrix}$$

$$O_m\left(\Delta w_1^{(t)}\right) = O_m(\alpha)O_m\left(\frac{\partial J}{\partial w_1}\right) = O_m(\alpha)O_m(x_1)O_m(y)$$

$$\frac{10^2}{10^{-1}} \frac{10^{-1}}{10^3} \frac{10^{-1}}{10^3} \frac{10^{-1}}{10^3}$$

$$O_m \left(\frac{\Delta w_1^{(t)}}{w_1} \right) = \frac{O_m(\alpha) O_m(x_1) O_m(y)}{\frac{O_m(y)}{O_m(x_1)}} = O_m(\alpha) O_m(x_1)^2$$

$$\frac{10^2}{W_1} = \frac{O_m(\alpha) O_m(x_1) O_m(y)}{\frac{O_m(y)}{O_m(x_1)}} = O_m(\alpha) O_m(x_1)^2$$

$$O_m\left(\Delta w_2^{(t)}\right) = O_m(\alpha)O_m\left(\frac{\partial J}{\partial w_2}\right) = O_m(\alpha)O_m(x_2)O_m(y)$$

$$10^4 \qquad 10^{-1} \qquad 10^5 \qquad 10^{-1} \qquad 10^2 \qquad 10^3$$

$$O_m \left(\frac{\Delta w_2^{(t)}}{w_2} \right) = \frac{O_m(\alpha) O_m(x_2) O_m(y)}{\frac{O_m(y)}{O_m(x_2)}} = O_m(\alpha) O_m(x_2)^2$$

$$\frac{10^4}{w_2} = O_m(\alpha) O_m(x_2) O_m(y)$$

$$\frac{10^{-1}}{(10^2)^2}$$

$$\frac{O_m \left(\frac{\Delta w_1^{(t)}}{w_1}\right)}{O_m \left(\frac{\Delta w_2^{(t)}}{w_2}\right)} = \frac{O_m(\alpha)O_m(x_1)^2}{O_m(\alpha)O_m(x_2)^2}$$

$$\frac{O_m \left(\frac{\Delta w_2^{(t)}}{w_2}\right)}{10^3}$$

$$\frac{O_m\left(\frac{\Delta w_1^{(t)}}{w_1}\right)}{O_m\left(\frac{\Delta w_2^{(t)}}{w_2}\right)} = \frac{\left(\frac{O_m(x_1)}{O_m(x_2)}\right)^2}{\left(\frac{O_m(x_2)}{w_2}\right)^2} = 10^{-4}$$

Coste escala logarítmica

$$\lambda = 100$$

$$\frac{x-\mu}{\sigma}$$

 χ

z-score Media nula Varianza unitaria

$$x' = \frac{x - \mu_{x}}{\sigma_{x}}$$

Media nula

$$x' = \frac{x - \mu_{\chi}}{\max(x) - \min(x)}$$

Reescalado min-max

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Reescalado por rango

$$x' = \frac{x - \mu_{\chi}}{rango(\chi)}$$