Лабораторная работа 1.2.5

"Исследование вынужденной регулярной прецессии гироскопа"

Белов Михаил Б01-302

3 ноября 2023 г.

Аннотация:

Цель лабораторной работы заключается в исследовании вынужденной прецессии гироскопа, установлении зависимости скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа, определении скорости вращения ротора гироскопа и сравнении её со скоростью, рассчитанной по скорости прецессии.

Теоретические сведения:

Уравнение движения твёрдого тела можно записать в виде:

$$\frac{d\overrightarrow{P}}{\frac{dt}{dt}} = \overrightarrow{F} (1)$$

$$\frac{d\overrightarrow{L}}{dt} = \overrightarrow{M} (2)$$

- (1) уравнение здесь выражает закон движения центра масс тела.
- (2) уравнение моментов.

Момент импульса твёрдого тела в его главных осях х, у, z равен:

$$\overrightarrow{L} = \overrightarrow{i} \cdot I_x \cdot \omega_x + \overrightarrow{j} \cdot I_y \cdot \omega_y + \overrightarrow{k} \cdot I_z \cdot \omega_z$$
 (3)

Быстро вращающееся тело, для которого $I_z\cdot\omega_z>>I_x\cdot\omega_x, I_y\cdot\omega_y$ принято называть гироскопом. Гороскоп называется уравновешенным, если его центр масс неподвижен.

В силу (2):

$$\Delta \overrightarrow{L} = \int \overrightarrow{M} \cdot dt \ (4)$$

из (4) следует, что
$$|\Delta \overrightarrow{L}| << |\overrightarrow{L}|$$

с этим связана устойчивость, которую приобретает движение гироскопа после приведения его в быстрое вращение.

Если
$$L\Omega << L\omega_0$$
, то $|d\overrightarrow{L}| = L \cdot d\phi = L\Omega dt$ и верно, что $d\overrightarrow{L} = \overrightarrow{\Omega} \times \overrightarrow{L}$

Под действием \overrightarrow{M} внешних сил ось гироскопа медленно вращается относительно оси у с угловой скоростью Ω . Такое движение называется регулярной перцессией гироскопа. Для гироскопа массой m_r , у которого ось собственного вращения наклонена на угол α от вертикальной оси, скорость прецессии, происходящей вокруг вертикальной оси под действием силы тяжести, равна:

$$\Omega = \frac{M_{tp}}{I_z \omega_o \cdot \sin \alpha} = \frac{m_g rgl \cdot \sin \alpha}{I_z \omega_o \cdot \sin \alpha} = \frac{m_g rgl \cdot}{I_z \omega_o \cdot}, (8)$$

где l - расстояние от точки подвеса до центра масс.

Скорость прецессии в этом случае:

$$\Omega = \frac{m_g rgl \cdot}{I_z \omega_o \cdot}, (9)$$

где m - ьасса груза, l - расстояние от подвеса до точки крепления груза на оси гироскопа.

Период колебаний T_0 :

$$T_0 = 2\pi \cdot \sqrt{\frac{I_0}{f}}$$

Для определения момента инерции ротора необходимо подвесить вместо него на провлоке цилиндр известного момента инерции и посчитать момент инерции ротора по формуле:

$$I_0 = I_c \cdot \frac{T_0^2}{T_c^2}$$

Методика измерений:

 Γ ироскоп, установленный в горизонтальное положение, вращается относительно горизонтлаьной оси. На один из концов горизонтальной оси вешают груз, после чего гироскоп начинает медленно вращатся относительно вертикальной оси с угловой скоростью регулярной прецессии Ω и опускаться под действием трения.

Рис. 3. Схема экспериментальной установки

Результаты измерений:

Результаты замеров регулярной прецессиии скорости опускания для различных масс грузов:

№	момент сил		число об.	время прец.	Скор. прец.	Ср. скор. прец.	Скор. опускания	Момент сил
Nº	тр, грамм	1, мм	N, шт	Т, сек	Ω, радиан/сек	$\overline{\Omega}$, радиан/сек	v, мм/сек	M,
1	342	119	11	324	0,213	0,213	0,076	0,397
2	342	119	11	325	0,213		0,076	0,397
3	342	119	11	325	0,213		0,076	0,397
6	274	119	9	332	0,170	0,172	0,074	0,318
7	274	119	9	331	0,171		0,075	0,318
8	274	119	9	325	0,174		0,076	0,318
11	220	119	8	366	0,137	0,137	0,067	0,255
12	220	119	8	366	0,137		0,067	0,255
13	220	119	8	366	0,137		0,067	0,255
16	179	119	7	392	0,112	0,112	0,063	0,208
17	179	119	8	450	0,112		0,055	0,208
18	179	119	7	396	0,111		0,062	0,208
21	142	119	5	352	0,089	0,089	0,070	0,165
22	142	119	5	352	0,089		0,070	0,165
23	142	119	5	352	0,089		0,070	0,165
26	117	119	4	346	0,072	0,073	0,071	0,136
27	117	119	4	346	0,073		0,071	0,136
28	117	119	4	346	0,073		0,071	0,136

Измерение момента инерции ротора:

m_c	R_c ,	t_c	N_c	T_c	I_c ,
1,6167	0,039	80	20	4	0,0012
m_0 ,	R_0 ,	t_0 ,	N_0	T_0	I_0 ,
1,083		63	20	3,15	0,00076

Погрешности можно посчитать по формулам:

Погрешность скорости прецессии:

$$\delta\Omega_{syst} = \Omega \cdot \epsilon_T$$

$$\delta\Omega_{rnd} = \sqrt{\frac{\sum_{i=1}^{n}(\Omega_{i} - \overline{\Omega})}{n(n-1)}}$$

$$\delta\Omega = \sqrt{\delta\Omega_{syst}^2 + \delta\Omega_{rnd}^2}$$

Ω	0,213	0,172	0,137	0,112	0,089	0,073	0,058	0,048	0,035
$\delta\Omega$	0,270	0,240	0,001	0,270	0,003	0,002	0,001	0,001	0,001

Погрешность момента инерции ротора:

$$\delta I_0 = I_0 \cdot \sqrt{\epsilon_{I_c}^2 + 4 \cdot \epsilon_{I_0}^2 + 4 \cdot \epsilon_{T_c}^2} \approx 0,00005$$

Частота вращения гироскопа:

Необходимо сравнить два способа расчёта частоты вращения гироскопа: из регулярной прецессии и через осциллограф.

Частоту вращения нироскопа можно посчитать по формуле:

$$\omega = \frac{mg \cdot l}{I_0 \cdot \Omega},$$

то есть частоту можно выяснить из графика зависимости скорости регулярной прецессии от массы груза:

Погрешность можно вычислить по формуле:

$$\delta\omega = \omega \cdot \sqrt{(\frac{\delta(\frac{m}{\Omega})}{\frac{m}{\Omega}})^2 + (\frac{\delta m}{m})^2 + (\frac{\delta l}{l})^2 + (\frac{\delta I}{I})^2},$$

где $\frac{m}{\Omega}$ – угол наклона графика, погрешность которого вычилсяется по МНК по формуле:

$$\delta(\tfrac{m}{\Omega}) = \sqrt{\tfrac{1}{n-1} \cdot \left(\tfrac{< m^2 >}{< \Omega^2 >} - \left(\tfrac{m}{\Omega} \right)^2 \right)}$$

Таким образом получаем:

ω , Hz	$\delta\omega$, Hz
409,1	54,1

Также частоту вращения гироскопа можно измерить с помощью осциллографа. Отключим питание мотора гироскопа и посмотрим как будет уменьшаться со временем частота вращения гироскопа:

А начальное значение частоты будет $\omega = 389~{\rm Hz}.$

Обсуждение результатов и вывод:

Таким образом мы исследовали вынужденную прецессию гироскопа и её зависимоть от величины момента внешних сил. Так же по скорости прецесии мы вычислили частоту вращения гироскопа. Получившаяся частота $\omega=(409,1\pm54,1)Hz$ близка к частоте, измеренной осциллографом.