ITDSIU21095 RA LAB2

October 8, 2022

Student name: Đinh Vũ Ngọc Linh

Student ID: ITDSIU21095

1 Problem 1:

```
[1]: import pandas as pd, numpy as np import matplotlib.pyplot as plt import seaborn as sns import scipy.stats as stats import statsmodels.api as sm import statsmodels.formula.api as smf
```

1.0.1 a.

```
[2]: df = pd.read_csv('1.19.txt', sep = '\s+')
    df.head()
# Y = GPA
# X = ACT
```

```
[2]: Y X
0 3.897 21
1 3.885 14
2 3.778 28
3 2.540 22
4 3.028 21
```

```
[3]: X = df['X']
Y = df['Y']
X_bar = np.mean(X)
Y_bar = np.mean(Y)
X_err = X - X_bar
Y_err = Y - Y_bar
print(X_bar, Y_bar)
X_err.head()
```

24.725 3.0740500000000006

```
[3]: 0 -3.725
       -10.725
    1
    2
          3.275
     3
         -2.725
     4
         -3.725
    Name: X, dtype: float64
[4]: A = np.sum(X_err*Y_err)
     B = np.sum(X_err**2)
    print(A,'\n',B)
    92.40565
     2379.925
[5]: b1 = A / B
     b0 = Y_bar - b1*X_bar
     print(b1, b0)
    0.038827126905259614 2.1140492872674566
[6]: X_hat = 28
     n = len(X)
     Y_hat = b0 + b1* X_hat
     resid = Y - Y_hat
     print(np.sum(resid))
     print((np.sum((resid - np.mean(resid))**2)))
    print(np.var(resid, ddof=1)*(n-1))
    -15.259060873767076
    49.405453699999995
    49.4054537
[7]: SSE = np.sum((Y - Y_hat)**2)
     MSE = SSE / (n-2)
    print(MSE, "\n", SSE)
    0.43513371347099783
     51.34577818957774
[8]: s2_{Yh} = MSE * (1/n + ((X_hat-X_bar)**2)/sum(((X-X_hat)**2)))
     s_Yh = np.sqrt(s2_Yh)
     print(s2_Yh,'\n',s_Yh)
    0.004898838859112428
     0.06999170564511503
[9]: t = stats.t.ppf(q = 1-0.05/2, df=n-2)
     t
```

[9]: 1.9802722492407059

```
[10]: L = Y_hat - t * s_Yh
U = Y_hat + t * s_Yh
print('L =',L)
print('U =',U)
```

L = 3.0626062082486802U = 3.339811472980771

95 percent interval estimate of the mean freshman GPA for students whose ACT test score is 28 that is between 3.06 and 3.34

1.0.2 b.

```
[11]: s2_pred = MSE + s2_Yh
s_pred = np.sqrt(s2_pred)
s_pred
```

[11]: 0.6633494948593164

```
[12]: L2 = Y_hat - t * s_pred
    U2 = Y_hat + t * s_pred
    print('L =', L2)
    print('U =', U2)
```

L = 1.8875962443969811U = 4.51482143683247

Mary Jones freshman GPA using a 95 percent prediction interval that is between 1.9 and 4.5

1.0.3 c.

The prediction interval is larger than the confidence interval and that is expected because the variance of the prediction interval is larger and therefore the interval should be wider.

1.0.4 d.

```
[13]: W2 =2* stats.f.ppf(q = 1- 0.05,dfn = 2, dfd=n-2)
W2
```

[13]: 6.146180682334335

```
[14]: W = np.sqrt(W2)
```

[14]: 2.4791491851710608

```
[15]: L3 = Y_hat - A * s_Yh
U3 = Y_hat + A * s_Yh
```

```
print('L =',L3)
print('U =',U3)
```

```
L = -3.2664202141307976

U = 9.668837895360248
```

Confident band when Xh = 28: 3.027688960595906 and 3.3747287206335455

No, the confident band is a bit wider at this point Xh = 28 than the confident interval in part (a) because it is not just presenting the confidence intervals at a single Xh, it is presenting the confidence intervals for entire regression line.

2 Problem 2:

2.0.1 a.

```
[16]: df1 = pd.read_csv('CHO1PR28.txt', sep='\s+', header=None, names=['crime_rate', \[ \] \\ \dots'percentage'])
df1.head()
# Y = crime rate
# X = percentage
```

```
[16]:
         crime_rate percentage
                               74
      0
                8487
      1
                8179
                               82
      2
                8362
                               81
      3
                8220
                               81
      4
                6246
                               87
```

```
[17]: X1 = df1['percentage']
    Y1 = df1['crime_rate']
    X1_bar = np.mean(X1)
    Y1_bar = np.mean(Y1)
    X1_err = X1 - X1_bar
    Y1_err = Y1 - Y1_bar
    print(X1_bar, Y1_bar)
    X1_err.head()
```

print(A,B)

92.40565 2379.925

```
[19]: b1_2 = A1 / B1
b0_2 = Y1_bar - b1_2*X1_bar
print(b1_2, b0_2)
```

-170.57518863868833 20517.599945150243

```
[20]: model = smf.ols('Y1 ~ X1', data=df1)
results = model.fit()
results.summary()
```

[20]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	Y1	R-squared:	0.170
Model:	OLS	Adj. R-squared:	0.160
Method:	Least Squares	F-statistic:	16.83
Date:	Sat, 08 Oct 2022	Prob (F-statistic):	9.57e-05
Time:	22:49:06	Log-Likelihood:	-770.43
No. Observations:	84	AIC:	1545.
Df Residuals:	82	BIC:	1550.
Df Model:	1		

Covariance Type: nonrobust

========		========		========	========	========		
	coef	std err	t	P> t	[0.025	0.975]		
Intercept X1	2.052e+04 -170.5752	3277.643 41.574	6.260 -4.103	0.000	1.4e+04 -253.280	2.7e+04 -87.871		
Omnibus: Prob(Omnibus) Skew: Kurtosis:	ıs):	0	.329 Jarq .360 Prob	in-Watson: ue-Bera (JE (JB): . No.	3):	1.495 2.229 0.328 1.01e+03		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.01e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
[21]: sns.relplot(x='percentage', y='crime_rate', data=df1)
# z = np.linspace(20, 120, 20)
```

```
sns.lineplot(x=X1, y=b0_2+b1_2*X1, color='red')
plt.show()
```


2.0.2 b.

```
print(MSE_1, SSE_1)
```

5552111.771860177 455273165.2925345

```
[24]: s2_b1_2= MSE_1/ B1
s_b1_2 = np.sqrt(s2_b1_2)
s_b1_2
```

[24]: 41.57432781088715

```
[25]: t1 = stats.t.ppf(q = 1- 0.02/2, df=n1-2)
t1
```

[25]: 2.3726873452471393

[26]: -4.1028970910750235

Thus, $|t_star| = 4.102 > t = 2.372$, so we conclude Ha.

2.0.3 c.

548736107.5595237

[28]: 0.17032402457104745

The coefficient of determination R-square is 0.1703

2.0.4 d.

[29]: 1.9893185569368186

L= -253.2797704450606 U= -87.87060683231607 We can conclude that the 95% confidence interval on the slope is from -253.28 to -87.87.

With confidence coefficient .95, we estimate that the mean Crime rate purity increases by somewhere between -253.28 and -87.87 for every each point increase in n the percentage of individuals in the county having at least a high-school diploma

2.0.5 e.

```
[31]: Xh_2 = 75
Y1_hat2 = b0_2 + b1_2* Xh_2
Y1_hat2
```

[31]: 7724.460797248617

```
[32]: SSE_2 = np.sum((Y1 - Y1_hat2)**2)
MSE_2 = SSE_2 / (n1-2)
print(MSE_2, SSE_2)
```

7077162.462351341 580327321.91281

```
[33]: s2_Yh_1= MSE_2 * (1/n1 + ((Xh_2-X1_bar)**2)/sum(((X1-X1_bar)**2)))
s_Yh_1 = np.sqrt(s2_Yh_1)
print(s2_Yh_1,'\n',s_Yh_1)
```

112729.75474445238 335.752520086525

```
[34]: t_2 = stats.t.ppf(q = 1- 0.05/2, df=n-2)
t_2
```

[34]: 1.9802722492407059

```
[35]: L_2 = Y1_hat2 - t_2*s_Yh_1
U_2 = Y1_hat2 + t_2*s_Yh_1
print('L =',L_2)
print('U =',U_2)
```

L = 7059.579399108639 U = 8389.342195388595

With the 95% confidence interval for the mean Crime rate purity when the percentage of individuals in the county having at least a high-school diploma is 75% that is between 7059.58 and 8389.34

For the population of all medium-sized counties in which 75% of individuals in the county having at least a high-school diploma, we are 95% certain that the mean Crime rate purity was between 7059 and 8389