Ejercicios

Módulo 7

En los ejercicios siguientes, todas las bases son bases ordenadas.

En los ejercicios 1 a 7 calcule el vector coordenado de v con respecto a la base B dada para el espacio vectorial V.

1.
$$V \text{ es } \mathbb{R}^2, \quad B = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \quad \mathbf{v} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}.$$

2.
$$V \text{ es } \mathbb{R}^3, \quad B = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}, \quad \mathbf{v} = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix}.$$

3.
$$V \text{ es } \mathbb{R}^3, \quad B = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \right\}, \quad \mathbf{v} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}.$$

4.
$$V \text{ es } \mathbb{P}_1, \quad B = \{1+x, -1+2x\}, \quad \mathbf{v} = 3+4x.$$

5.
$$V \text{ es } \mathbb{P}_2, \quad B = \{1, x-1, x^2-1\}, \quad \mathbf{v} = 1 + 2x - x^2.$$

6.
$$V \text{ es } \mathbb{P}_2$$
, $B = \{1 - x + x^2, 1 + x, 1 + x^2\}$, $\mathbf{v} = 3 - 2x + 4x^2$.

7.
$$V \operatorname{es} M_{22}, \quad B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\} \quad \mathbf{v} = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}.$$

En los ejercicios 8 a 10, sean

$$B_1 = \left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}, \quad B_2 = \left\{ \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}, \quad B_3 = \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\}, \quad B_4 = \left\{ \begin{pmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{\sqrt{3}} \end{pmatrix} \right\}$$

bases para \mathbb{R}^2 .

8. Halle las matrices de transición

a. de
$$B_1$$
 y B_2 .

b. de
$$B_2$$
 y B_3 .

c. de
$$B_1$$
 y B_3 .

Multiplique las matrices de a y b en ambas formas. ¿Está alguno de estos productos relacionado con la matriz de c?

- 9. Sea $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Exprese $(\mathbf{x})_{B_1}$. Usando las matrices del ejercicio 8, calcule $(\mathbf{x})_{B_2}$, $(\mathbf{x})_{B_3}$.
- 10. Calcule las matrices de transición de B_2 a B_4 y de B_4 a B_2 .

En los ejercicios 11 a 13 calcule el vector \mathbf{v} si el vector de coordenadas $[\mathbf{v}]_B$ está dado con respecto a la base B de V.

11.
$$V \text{ es } \mathbb{R}^2, \quad B = \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}, \quad (\mathbf{v})_B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

12.
$$V \text{ es } \mathbb{P}_2, \quad B = \{1 - x, 1, 1 + x + x^2\}, \quad (\mathbf{v})_B = \begin{bmatrix} -1\\1\\2 \end{bmatrix}.$$

13.
$$V \text{ es } \mathbb{P}_3, \quad B = \left\{-1 + x^2, \ 2 + 2x + x^3, \ 1 + 2x - x^2 + 3x^3, \ 2x^2 + 3x^3\right\}, \quad (\mathbf{v})_B = \begin{bmatrix} 2\\1\\-1\\3 \end{bmatrix}.$$

- 14. Sean $B_1 = \{(1, 3), (-1, 2)\}, B_2 = \{(0, 1), (-2, 3)\}$ bases para \mathbb{R}^2 , y sean $\mathbf{v} = (3, 4), \mathbf{w} = (-4, 5)$.
 - a. Determine los vectores de coordenadas de \mathbf{v} y \mathbf{w} con respecto a la base B_2 .
 - b. Determine la matriz de transición $P_{B_1 \leftarrow B_2}$ de la base B_2 en la base B_1 .
 - c. Determine los vectores de coordenadas de \mathbf{v} y \mathbf{w} con respecto de B_1 utilizando $P_{B_1 \leftarrow B_2}$.
 - d. Determine los vectores de coordenadas de **v** y **w** con respecto de *S* de manera directa.
 - e. Determine la matriz de transición $P_{B_2 \leftarrow B_1}$ de la base B_1 en la base B_2 .
 - f. Determine los vectores de coordenadas de \mathbf{v} y \mathbf{w} con respecto de B_2 utilizando $P_{B_2 \leftarrow B_1}$. Compare las respuestas con las del literal a.

15. Sean
$$B_1 = \{1 + x^2, -2 + x, 3 + x\}$$
 y $B_2 = \{x + 2x^2, 3 + x^2 + x, x\}$ bases para \mathbb{P}_2 . Sean $\mathbf{v} = 6 - 4x + 8x^2$ y $\mathbf{w} = 9 - x + 7x^2$. Responda los literales del ejercicio 14.

16. Sean
$$B_1 = \{\mathbf{v}_1, \mathbf{v}_2\}$$
 y $B_2 = \{\mathbf{w}_1, \mathbf{w}_2\}$ bases para \mathbb{P}_1 , donde $\mathbf{w}_1 = x$, $\mathbf{w}_2 = 1 + x$. Si la matriz de transición de B_1 a B_2 es
$$\begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$$
, determine B_1 .

17. Sean
$$B_1 = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}$$
 y $B_2 = \{ \mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3 \}$ bases para \mathbb{R}^3 , donde $\mathbf{v}_1 = (1, 0, 1)$, $\mathbf{v}_2 = (1, 1, 0)$, $\mathbf{v}_3 = (0, 0, 1)$. Si la matriz de transición de B_2 en B_1 es $\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$, determine B_2 .

Ejercicios del módulo 7

- 18. Sean $B_1 = \{\mathbf{v}_1, \mathbf{v}_2\}$ y $B_2 = \{\mathbf{w}_1, \mathbf{w}_2\}$ bases para \mathbb{R}^2 , donde $\mathbf{v}_1 = (1, 2)$, $\mathbf{v}_2 = (0, 1)$. Si la matriz de transición de B_2 en B_1 es $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, determine B_2 .
- 19. Suponga que los ejes x e y en el plano se rotan un ángulo θ en sentido antihorario generando nuevos ejes x', y'.
 - a. Determine las coordenadas x, y de los vectores \mathbf{i} y \mathbf{j} rotados.
 - b. Demuestre que la matriz de cambio de coordenadas está dada por $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$.

En los ejercicios 20 a 24 determine si el conjunto de vectores dado es LI o LD.

- 20. En \mathbb{P}_2 : 3+2x, $1-x+x^2$, $2x-x^2$.
- 21. En \mathbb{P}_2 : -2+2x, $2x+x+12x^2$, $x+4x^2$.
- 22. $\operatorname{En} M_{22} : \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 7 \\ 9 & 6 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 4 & -2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix}.$
- 23. En \mathbb{P}_n : $\{p_1, p_2, ..., p_{n+1} : p_i(0) = 0, i = 1, ..., n+1\}.$
- 24. En M_{mn} : { $A_1, A_2, ..., A_{mn}$: la primera componente de cada matriz es cero}.