Содержание

1	Пре	дельные теоремы и законы больших чисел	2
2	Bap	иационные ряды и их характеристики	2
	2.1	Генеральная и выборочная совокупности, объём выборки	2
	2.2	Варианционный ряд, варианта, частота. Виды вариационных ря-	
		дов. Гистограмма, полигон	2
	2.3	Формулы числовых характеристик. Эмперическая функция рас-	
		пределения (ЭФР). Свойства ЭФР	4
	2.4	Эмперическая функция распределения ЭФР. Свойства ЭФР	5
3	Оце	нки параметров распределения	6
	3.1	Понятия статистики, оценки, выборочной характеристики	6
	3.2	Несмещённые, состоятельные и эффективные оценки	6
	3.3	Теорема о несмещённой состоятельной оценке мат. ожидания .	7
	3 4		8

1 Предельные теоремы и законы больших чисел

2 Вариационные ряды и их характеристики

2.1 Генеральная и выборочная совокупности, объём выборки.

Рассмотрим постановку задачи математической статистики: по результатам наблюдения за некоторой случайной величиной ξ требуется сделать выводы о неизветном законе распределения этой величины $\mathcal{L}(x,\Theta)$ либо о неизвестных парамерах Θ_1,\ldots,Θ_n известного распределения.

Пусть ξ — случайная величина с некоторой (теоретической) функцией распределения $F_{\xi}(x) = P\{\xi < x\}, \quad x \in R.$

Определение:

Совокупность n независимых одинаково распределённых случайных величин $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ называется выборкой (выборочной совокупностью), извлечённой из распределения случайной величины ξ .

Определение:

Под генеральной совокупностью понимается множество всех возможных значений случайной величины ξ .

Определение:

Объёмом совокупности называется количество всех её элементов, объё выборки или выборочной совокупности обозачается n, генеральной совокупности — N.

2.2 Варианционный ряд, варианта, частота. Виды вариационных рядов. Гистограмма, полигон.

Определение:

Пусть x_1, x_2, \dots, x_n — выборка из генеральной совокупности значений.

Вариационным рядом называется последовательность $x_1^*, x_2^*, \dots, x_n^*$ элементов выборки расположенных в порядке неубывания, т.е. $x_1^* \le x_2^* \le \dots \le x_n^*$.

 x_i^* — варианта.

 n_i — частота появления варинты x_i^* в выборке.

Определение:

Точечным вариационным рядом называется:

x_i	x_1	x_2	 x_m
n_i	n_1	n_2	 n_m

 x_i — варианта, n_i — частота соответствуующей варианты.

m — количество групп (различных вариант (вариант в таблице)).

$$n = \sum_{i=1}^m n_i$$
, где n_i — объём выборки.

Для графического представления точечных вариационных рядов используется полигон частот — ломанная с вершинами в точках (x_i, n_i) .

Определение:

Интервальным вариационным рядом называется:

x_i	$[x_1, x_2]$	$(x_2, x_3]$	 $(x_m, x_{m+1}]$
n_i	n_1	n_2	 n_m

 x_i — варианты, n_i — частота.

m — количество групп (интервалов).

$$n=\sum_{i=1}^m n_i$$
, где n_i — объём выборки.

Для графического представления интервальных вариационных рядов используется гистограмма частот — фигура, составленная из прямоугольников, одной стороной которых служат интервалы $(x_i, x_{i+1}]$, а длина второй равна n_i .

2.3 Формулы числовых характеристик. Эмперическая функция распределения (ЭФР). Свойства ЭФР.

Определение:

Выборочным средним называется величина:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X_i}.$$

Если данные представлены в виде точечного или интервального вариационного ряда, то для вычисления используют формулу:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i * n_i,$$

где m — количество групп в точечном или интервалов в интервальном вариационном ряду, n_i — частота, т.е. количество элементов выборки, принадлежащихх i-той группе или i-тому интервалу, x_i — варианта для точечного ряда и середина i-того интервала для интервального ряда.

Определение:

Выборочной дисперсией (смещённой) называется величина:

$$S^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{X}_i - \overline{x})^2.$$

Она характеризует среднее из квадратов отклонений наблюдаемой величины от выборочного среднего. Величина $S=\sqrt{S^2}$ называется выборочным средним

квадратическим отклонением (смещённым) величин выборки от выборочного среднего.

Если данные представлены в виде точечного или интервального вариационного ряда, то для вычисления используют формулу:

$$S^{2} = \frac{1}{n} \sum_{i=1}^{m} (x_{i} - \overline{x})^{2} n_{i}.$$

или

$$S^2 = \left(\frac{1}{n} \sum_{i=1}^m x_i^2 n_i\right) - \overline{x}^2.$$

Здесь m — количество групп в точечном или интервалов в интервальном вариационных рядах, n_i — частота. т.е. количество элементов выборки, принадежащих i-той группе или i-тому интервалу, x_i — варианта для точечного ряда и середина i-того интервала для интервального ряда.

Определение:

Выборочной дисперсией (несмещённой) называется величина:

$$\overline{\sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{X}_i \overline{x})^2.$$

Аналогично, величина $\overline{\sigma} = \sqrt{\overline{\sigma}^2}$ называется выборочным несмещённым средним квадратическим отклонением.

Очевидно, что смещённая и несмещённая выборочные дисперсии связаны формулой:

$$\overline{\sigma}^2 = \frac{n}{n-1}S^2.$$

2.4 Эмперическая функция распределения ЭФР. Свойства ЭФР.

Эмперическая функция распределения ЭФР

Эмперической функцией распределения (ЭФР) называется функция

$$\tilde{F}_n(x) = \frac{1}{n} \sum_{i=1}^n e(x - \mathbf{X}_i),$$

где e(x) = 1, при x > 0 e(x) = 0, при $x \le 0$.

Таким образом, если \mathbf{X}_i , то e(x)=1, если $\mathbf{X}_i\geq x$, то e(x)=0, а сумма $e(x-\mathbf{X}_i)$ будет равна количеству элементов выборки, которые приняли значение, строго меньше некоторого $x\in R$.

Пусть x_1, x_2, \ldots, x_n — реализация выборки $\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n$, т.е. наблюдавшиеся значения случайной величины ξ .

Обозначим $\mu(x)$ — число элементов выборки, строго меньших $x \in R$. Тогда эмпирическая функция распределения $\tilde{F}_n(x)$ может быть определена как

$$\tilde{F}_n(x) = \frac{\mu(x)}{n}.$$

Свойства ЭФР:

- 1. $0 \le \tilde{F}_n(x) \le 1$, t.k. $0 \le \mu(x) \le n$;
- 2. неубывающая непрерывная слева функция;
- 3. $\tilde{F}_n(x)$ ступенчатая функция для всех типов распределений;
- 4. $\tilde{F}_n(x)$ сходится по распределению к $F_{\xi}(x)$.

3 Оценки параметров распределения

3.1 Понятия статистики, оценки, выборочной характеристики.

Определение:

Пусть $g(t_1,\ldots,t_n)$ — непрерывная функция. Оценкой Θ назовём $\tilde{\Theta}=g(\mathbf{X}_1,\ldots,\mathbf{X}_2)$ Если $g(\mathbf{X}_1,\ldots,\mathbf{X}_n)=T$ некоторая функция, то T — статистика.

Определение:

Выборочными характеристиками называются функции от наблюдений (точечные оценки), приближённо оценивающие соответствующие числовые характеристики случайной величины.

3.2 Несмещённые, состоятельные и эффективные оценки

Определение:

Оценка $\tilde{\Theta}_n$ называется несмещённой оценкой параметра Θ , если $M(\tilde{\Theta}_n)=\Theta$.

Определение:

Оценка $\tilde{\Theta}_n$ называется состоятельной оценкой параметра Θ , если $\tilde{\Theta}_n$ сходится по вероятности к Θ .

Определение:

Оценка $\tilde{\Theta}_n$ называется эффективной, или оптимальной, или наилучшей несмещённой оценкой с минимальной дисперсией (НОМД), если $M(\tilde{\Theta}_n) = \Theta$ и $D(\tilde{\Theta}_n) = \inf_{\tilde{\Theta}_n^*} D\tilde{\Theta}_n^*$.

3.3 Теорема о несмещённой состоятельной оценке мат. ожидания

Пусть $\xi \sim L(x,\Theta), \, L(x,\Theta)$ — закон распределения известен с точностью до параметра.

$$\overline{\Theta} = (\Theta_1, \dots, \Theta_n)$$

По результатам $\mathbf{X}_1,\dots,\mathbf{X}_n$ наблюдений за ξ требуется построить оценку $\Theta.$

Теорема:

Пусть $\mathbf{X}_1,\dots,\mathbf{X}_n \sim L_\xi(x,\Theta)$, где ξ — случайная величина с $M\xi=a<+\infty$ $D\xi=\sigma^2$. Тогда выборочное среднее $\overline{x}=\frac{1}{n}\sum_{i=1}^n x_i$ является несмещённой и состоятельной оценкой $M\xi$.

Доказательство:

$$M\overline{x} = M\left(\frac{1}{n}\sum_{i=1}^{n}x_i\right) = \frac{1}{n}\sum_{i=1}^{n}Mx_i =$$

 $=|x_i$ — н. о. р. случайной величины $\Rightarrow Mx_i=M\xi \quad orall i|=rac{1}{n}\sum_{i=1}^n M\xi=0$

$$=\frac{1}{n}*n*a=a\Rightarrow \overline{x}$$
 — несмещённое

Состоятельность $\forall \epsilon > 0 \quad P\{|\overline{x} - a| < \epsilon\} \rightarrow_{n \rightarrow \infty} 1$

По неравенству Чебышёва:

$$orall \epsilon > 0$$
 $P\{|\overline{x} - a| < \epsilon\} \ge 1 - \frac{D\overline{x}}{\epsilon^2} = 1 - \frac{1}{\epsilon^2} D\left(\frac{1}{n} \sum_{i=1}^n x_i\right) =$ $= \left|\text{н. o. p. } Dx_i = \sigma^2\right| =$

$$= 1 - \frac{1}{n^2} \epsilon^2 D\xi = 1 - \frac{n\sigma^2}{n^2 \epsilon^2} = 1 - \frac{\sigma^2}{n\epsilon^2} \to_{n \to \infty} 1 - 0$$

Т.к. $P(A) \leq 1 \quad \forall A$, то $\lim_{n \to \infty} P\{|\overline{x} - a| < \epsilon\} = 1 \Rightarrow \overline{x}$ — состоятельная.