Sun Wasan

Machine Learning

```
Logistic Regression model
Predict diabetes by
$ pregnant
$ glucose
$ pressure
$ triceps
$ insulin
```

\$ mass

\$ pedigree

\$ age **Data Overview**

Hide library(mlbench) data("PimaIndiansDiabetes") print(head(PimaIndiansDiabetes))

Code **▼**

	pregnant <db ></db >	glucose <dbl></dbl>	pressure <dbl></dbl>	triceps <dbl></dbl>	insulin <dbl></dbl>	mass <dbl></dbl>	pedigree <dbl></dbl>	age <dbl></dbl>	diabetes <fctr></fctr>
1	6	148	72	35	0	33.6	0.627	50	pos
2	1	85	66	29	0	26.6	0.351	31	neg
3	8	183	64	0	0	23.3	0.672	32	pos
4	1	89	66	23	94	28.1	0.167	21	neg
5	0	137	40	35	168	43.1	2.288	33	pos
3	5	116	74	0	0	25.6	0.201	30	neg

```
Hide
library(tidyverse)
library(caret)
library(tidyr)
df <- PimaIndiansDiabetes</pre>
#train test split
train_test_split <- function(data , size = 0.8){</pre>
  n <- nrow(data)</pre>
  id <- sample(1:n , size = n*size)</pre>
  train_data <- data[id, ]</pre>
  test_data <- data[-id, ]</pre>
  return(list(train_data, test_data))
}
data_split <- train_test_split(df)</pre>
train_data <- data_split[[1]]</pre>
test_data <- data_split[[2]]</pre>
#train model
logis <- train(diabetes ~ . ,</pre>
                 method = 'glm',
                 data = train_data)
res <- predict(logis , test_data)</pre>
cm <- confusionMatrix(res, test_data$diabetes)</pre>
precision <- cm$byClass['Pos Pred Value']</pre>
recall <- cm$byClass['Sensitivity']</pre>
f_measure <- 2 * ((precision * recall) / (precision + recall))</pre>
print(cm)
```

```
Confusion Matrix and Statistics
         Reference
Prediction neg pos
      neg 89 16
      pos 11 38
              Accuracy: 0.8247
                95% CI: (0.7553, 0.8812)
    No Information Rate : 0.6494
    P-Value [Acc > NIR] : 1.198e-06
                 Kappa : 0.6066
 Mcnemar's Test P-Value : 0.4414
           Sensitivity: 0.8900
           Specificity: 0.7037
        Pos Pred Value : 0.8476
        Neg Pred Value : 0.7755
            Prevalence : 0.6494
        Detection Rate : 0.5779
   Detection Prevalence : 0.6818
      Balanced Accuracy : 0.7969
       'Positive' Class : neg
```

```
Hide
paste("F1-Score :",f_measure)
[1] "F1-Score : 0.868292682926829"
```

Visualization by ggplot2

```
Hide
library(ggplot2)
library(tidyverse)
library(patchwork)
library(ggcorrplot)
dummy <- model.matrix( ~., df)[,-1]</pre>
corr <- round(cor(dummy), 2)</pre>
p1 <- ggcorrplot(corr)</pre>
p2 <-ggplot(data.frame(dummy) , aes(glucose , diabetespos))+</pre>
  geom_point()+
  geom_smooth(method = "glm",
              method.args = list(family = "binomial"),
              se = FALSE)
p3 <-ggplot(data.frame(dummy) , aes(mass , diabetespos))+
  geom_point()+
  geom_smooth(method = "glm",
              method.args = list(family = "binomial"), se = FALSE)
p4 <-ggplot(data.frame(dummy) , aes(pregnant , diabetespos))+
  geom_point()+
  geom_smooth(method = "glm",
              method.args = list(family = "binomial"),
              se = FALSE)
p5 <-ggplot(data.frame(dummy) , aes(age , diabetespos))+</pre>
  geom_point()+
  geom_smooth(method = "glm",
              method.args = list(family = "binomial"),
              se = FALSE)
print(p1 | (p2+p3)/(p4+p5))
```


pregnant

age