

Problem Data 'Crowd' Knowledge & Tools Model for Prediction

A path to becoming an Al expert & winning data science competitions

DARIUS BARUŠAUSKAS @ OXIPIT

kaggle

A platform for predictive modeling competitions.

"We're making data science into a sport."

Problem:

Predict outcomes of basketball matches

Expected result:

Beat the odds & profit in gambling markets

Solution:

- Gather enough data
- Define the problem in mathematical way
- Apply data science skills & create predictive models

March Machine Learning Mania 2017

Predict the 2017 NCAA Basketball Tournament 442 teams • 5 months ago

#	∆pub	Team Name	Score 2
1	_	Andrew Landgraf	0.438575
2	_	skellert	0.449816
3	_	Monte McNair	0.453737
4	_	Erik	0.461005
5	_	djscott1909	0.461073
6	_	SachinKashyap	0.464925
7	_	octonion	0.466444
8	_	Bracket Hacker	0.467004
9	_	Team Derek	0.467550
10	_	James Trotman	0.467759
11	_	Don't know what I'm doing	0.467948
12	_	Zach	0.468622
13	_	Naus	0.470295
14	_	ShedrickBridgeforth	0.470566
15	_	Ayala	0.470798
16	_	EVBettor	0.471954
17	_	Brian E	0.472076
18	_	PEC	0.472089
19	_	raddar	0.472186

Kaggle:

- Submit a model and get feedback of its performance
- Compete with other people
- Get rewarded based on your results

raddar

Co-Founder & Data Scientist at oxipit.ai Vilnius, Lithuania Joined 2 years ago · last seen in the past day

in http://www.oxipit.ai

Home

Competitions (33)

Kernels (48)

Discussion (426)

Datasets (0)

Edit Profile

Highest Rank

2

Competitions Grandmaster

Current Rank

of 66,112

Highest Rank

5

Intel & MobileODT Cervical...

Predicting Red Hat Busines...

BNP Paribas Cardif Claims ...

1st of 2926

1st

of 848

1st

of 2271

Kernels Expert

58

of 100,197

 \odot

57

votes

36

votes

29

votes

Highest Rank

29

0.98 xgboost on sparse mat...

⊕ · a year ago

Variables shifting distributi... ⊕ · 10 months ago

ID is not shuffled - potentia...

⊕ · 5 months ago

Discussion Master

5 of 39,001

42

200

#1 Dexter's Lab winning sol...

♦ 2 years ago

25

Proper validation framewor...

Abhishek's features

• 7 months ago

144

votes

142 votes

85

votes

Kaggle – What's so fun about it?

- Real-time standings competitive spirit of a game
- Cooperate with anyone to learn from each other
- Improve or learn new skills from shared scripts in forums
- Overall profile rankings on past competition performance – added value to data science profiles
- Friendly and helping community
- And of course nice prizes for top finishers ©

#	∆1w	Team Name * in the money	Kernel	Team Members	Score ②	Entries	Last
1	-	* raddar			0.995124	169	5mo
2	-	* Victor		9	0.994862	220	5mo
3	_	* Joshua Havelka		9	0.994596	182	5mo
4	_	menny		•	0.994010	84	5mo
5	_	No Hat			0.993830	28	5mo
6	-	Mickey		9	0.993813	183	5mo
7	_	A Series Of Unlikely Explanations			0.993721	98	5mo
8	-	idle_speculation		9	0.993574	6	5mo
9	4 3	Nickel		2	0.993554	64	5mo
10	* 1	BM (aka BatMan)			0.993544	103	5mo
11	_	SK		11	0.993534	10	5mo
12	▼ 2	Darragh			0.993518	43	5mo
13	^ 1	Mikhail		9	0.993438	28	5mo
14	▼ 1	KazAnova Faron SRK			0.993401	102	5mo

Data Science

Typical Kaggle problems

- Regression
- Classification
- Segmentation
- Recommendation
- Time series
- Optimization

Python, R, Both, or Other platforms for Analytics, Data Science, Machine Learning

Python vs R vs Other for Analytics & Data Science, 2014-17

Tools

- ML python and/or R
- DL python

Getting started? pick python

Kaggle 80%-90% python

Growth of major programming languages

0%

2012

2014

Time

2016

2018

How to get started

- Over 1000 playground datasets
- Over 250 competition datasets
- Pick a few which you find interesting

Featured	All	Mine	Upvoted	Q Search datasets
714			IMDB 5000 Movie Dataset 5000+ movie data scraped from IMDB website chuansun76 · updated a year ago film	44,515 downloads 80 comments
656	× × × × × × ×	dx.	European Soccer Database 25k+ matches, players & teams attributes for European F Hugo Mathien · updated 10 months ago • association football,	
621			Credit Card Fraud Detection Anonymized credit card transactions labeled as fraudule Andrea - updated 10 months ago	31,774 downloads nt or genuine 66 comments
540	MAN	 	Human Resources Analytics Why are our best and most experienced employees leavi ludoben - updated 9 months ago • employment	30,206 downloads 91 comments
375		UCI ML	Iris Species Classify iris plants into three species in this classic datas UCI Machine Learning · updated a year ago botany	16,358 downloads set 89 comments
282	•		Pokemon with stats 721 Pokemon with stats and types Alberto Barradas - updated a year ago popular culture, game	11,487 downloads 37 comments es and toys, video games

Learn from existing code

- People are rewarded for sharing working code
- Good code is up-voted
- Easy to fork, run & edit the code

Kaggle provides an environment to run your code online

```
This script has been released under the Apache 2.0 open source license.
                                                                                                 Download Code
@author: Faron
import pandas as pd
import numpy as np
import xgboost as xgb
DATA_DIR = "../input"
ID COLUMN = 'Id'
                                         ntrain = train.shape[0]
TARGET_COLUMN = 'Response'
                                          train_test = pd.concat((train, test)).reset_index(drop=True).reset_index(drop=False)
                                          train_test['0_\_(\mathcal{V})_/_1'] = train_test[ID_COLUMN].diff().fillna(9999999).astype(int)
CHUNKSIZE = 50000
                                          train_test['0_\ ('Y)_/-2'] = train_test[ID_COLUMN].iloc[::-1].diff().fillna(9999999).astype(int)
NROWS = 250000
                                          train_test = train_test.sort_values(by=['StartTime', 'Id'], ascending=True)
TRAIN NUMERIC = "{0}/train nume
TRAIN_DATE = "{0}/train_date.cs
                                          train_test['0_'\_(")_/"_3"] = train_test[ID_COLUMN].diff().fillna(9999999).astype(int)
                                          train\_test['0\_^{-}(")\_/^{-}4'] = train\_test[ID\_COLUMN].iloc[::-1].diff().fillna(9999999).astype(int)
TEST_NUMERIC = "{0}/test_numeri
TEST_DATE = "{0}/test_date.csv"
                                          train_test = train_test.sort_values(by=['index']).drop(['index'], axis=1)
                                          train = train_test.iloc[:ntrain, :]
FILENAME = "etimelhoods"
                                          features = np.setdiff1d(list(train.columns), [TARGET_COLUMN, ID_COLUMN])
train = pd.read_csv(TRAIN_NUMEF
test = pd.read_csv(TEST_NUMERIC
                                          y = train.Response.ravel()
                                          train = np.array(train[features])
train["StartTime"] = -1
test["StartTime"] = -1
                                          print('train: {0}'.format(train.shape))
                                          prior = np.sum(y) / (1.*len(y))
                                          xgb_params = {
for tr, te in zip(pd.read_csv(1
                                              'seed': 0,
chunksize=CHUNKSIZE)):
                                               'colsample bytree': 0.7,
    feats = np.setdiff1d(tr.col
                                               'silent': 1,
                                               'subsample': 0.7,
    stime_tr = tr[feats].min(a)
                                               'learning rate': 0.1,
    stime te = te[feats].min(a)
                                               'objective': 'binary:logistic',
                                               'max depth': 4,
    train.loc[train.Id.isin(tr.
                                               'num_parallel_tree': 1,
    test.loc[test.Id.isin(te.Id
                                              'min_child_weight': 2,
                                               'eval_metric': 'auc',
    nrows += CHUNKSIZE
                                               'base score': prior
    if nrows >= NROWS:
        break
                                         dtrain = xgb.DMatrix(train, label=y)
                                          res = xgb.cv(xgb params, dtrain, num boost round=10, nfold=4, seed=0, stratified=True,
                                                      early_stopping_rounds=1, verbose_eval=1, show_stdv=True)
                                          cv mean = res.iloc[-1, 0]
                                          cv_std = res.iloc[-1, 1]
                                          print('CV-Mean: {0}+{1}'.format(cv_mean, cv_std))
                                                                                         show less
```

Learn from notebooks

- Visualize data with notebooks
- They tell stories how people approach problems
- Easy to reproduce

Kaggle provides an environment to write your own notebooks

```
hdTrain<-hdTrain[,c.Jaccard.ST_PT := calcJacCoef(search_term,product_title),by = 1:nrow(hdTrain)]
#Create averages for annotating the plot
avg3C<-round(mean(hdTrain[,c.Jaccard.ST_PT]),2)
avgJCGroup<-hdTrain %>% group_by(relevance) %>% summarise(groupMean=round(mean(c.Jaccard.ST_PT),2))
   ggplot(aes(x=factor(relevance),y=c.Jaccard.ST_PT)) +
   geom_jitter(alpha=0.05) +
   geom_boxplot(color = "yellow", outlier.colour = NA, fill = NA)+
   geom_text(data = avg]CGroup, aes(x = factor(relevance), y = grpMean, label = grpMean), size = 5, vjust = 0,colour="gr
    labs(title="Average Jaccard Coefficient by Relevance Score", x="relevance", y="Jaccard Coefficent"
```


Bring in attributes.csv

There are 2044648 rows in the attributes.csv file. These relate to 86263 unique pro relevance by those products in the attributes and those that are not.

Compare relevance by product uid

and has Attribute.name==mfg brand name

Compare relevance by product uid in attributes file

Learn from discussions

- Get involved in discussions to learn which methods work
- Friendly community for newcomers in data science field

People get rewarded for contributing to informative discussions

Essential things to know to have a competitive model

- Cross-validation
- Bagging
- Ensembling

March Machine Learning Mania 2017

Predict the 2017 NCAA Basketball Tournament 442 teams • 5 months ago

#	∆pub	Team Name	Score ②
1	_	Andrew Landgraf	0.438575
2	_	skellert	0.449816
3	_	Monte McNair	0.453737
4	_	Erik	0.461005
5	_	djscott1909	0.461073
6	_	SachinKashyap	0.464925
7	_	octonion	0.466444
8	_	Bracket Hacker	0.467004
9	_	Team Derek	0.467550
10	_	James Trotman	0.467759
11	_	Don't know what I'm doing	0.467948
12	_	Zach	0.468622
13	_	Naus	0.470295
14	_	ShedrickBridgeforth	0.470566
15	_	Ayala	0.470798
16	_	EVBettor	0.471954
17	_	Brian E	0.472076
18	_	PEC	0.472089
19	_	raddar	0.472186

How does it all work?

3. Submit model predictions on "unseen" data and get quick response in public leaderboard standings

4. Final standings based on Private test predictions

Cross-validation – the basics

Using CV results

Public leaderboard – don't be fooled

Random forest example – tuning number of trees with no proper validation

Model	Public test score	Private test score
Number trees 200	0.812	0.815
Number trees 300	0.814	0.819
Number trees 400	0.816	0.820
Number trees 500	0.814	0.821
Number trees 450	0.817	0.819
Number trees 430	0.818	0.816
many attempts later	Maximum public LB score	Seems good right? – often NO!
Number trees 437	<mark>0.820</mark>	<mark>0.814</mark>

#500 < #400 => test if #450 is good? => public LB score confirms it! => spurious results

Rule of thumb – the less submissions you make, less likely you have overfitted to LB solution!

Should I even trust public leaderboard?

Bootstrap aggregating – in short: bagging

Numeric features

Feature transformations to consider:

- Scaling min/max, N(0,1), root/power scaling, log scaling, Box-Cox, quantiles
- Rounding (too much precision might be noise!)
- Interactions {+,-,*,/}
- Row counters #0's, #NA's, #negatives
- Row stats (if makes sense) min, max, median, skewness...
- Row similarity scoring cosine similarity
- Clustering
- ...

Sometimes numeric features are categorical or even ordinal by nature - always consider that!

Tree methods are *almost* invariant to **scaling.**

Linear models & neural networks need careful raw data treatment!

Ways to deal with categorical features

- One hot encoding create bag-of-words (bag the size of unique categories) and assign 0/1's for each representing column. Will fail on new categories.
- Label encoding label each category into $\mathbb N$ space. Will fail for new categories

Features with many categories - rows:categories ratio 20:1 or less

- Count encoding count number of each category and use counter as a value.
 Iterate counter for each CV fold
- Hash encoding mapping categories to reduced category space and do one hot encoding. Produces good results but may be sub-optimal.
- Category embedding use a function (autoencoder) to map each category to Euclidian space
- Likelihood encoding apply label average (likelihood) for each category

Categorical features – interactions!

- If interactions are natural for a problem ML only does approximations! => sub-optimal
- Always test your method with all explicitly created possible 2-way interactions

- Interactions feature selection may be important due to exploding feature space (20 categorical features => 20*19/2 interactions!)
- If 2-way interactions help go even further (3-way, 4-way, ...)

Interaction example

X1	X2	X1*X2
BMW	6	BMW-6
AUDI	9	AUDI-9
BMW	4	BMW-4
AUDI	13	AUDI-13
BMW	7	BMW-7
BMW	21	BMW-21

Likelihood encoding

Imagine having categorical feature with 100k different values on 1M dataset – one hot encoding each category => dimensionality curse for any model

How not to do it!

X1	Label	X1m
"BMW"	0	0.5
"BMW"	1	0.5
"BMW"	1	0.5
"BMW"	0	0.5
"BMW"	NA	0.5

Label information of each row was transferred into independent variable X1m – label now has indirect dependence to itself - label leakage introduced!

Likelihood encoding

How to do it? Might work but risky

X1	Label	X1m
"BMW"	0	0.666 + rand(0,sigma)
"BMW"	1	0.333 + rand(0,sigma)
"BMW"	1	0.333 + rand(0,sigma)
"BMW"	0	0.666 + rand(0,sigma)
"BMW"	NA	0.5

Problem: selecting optimum sigma value is problematic and depends on how much you regularize your model

Holdout set might help but not always

Likelihood encoding

X1	Label	X1m
"BMW"	0	CV out-of-fold prediction
"BMW"	1	CV out-of-fold prediction
"BMW"	1	CV out-of-fold prediction
"BMW"	0	CV out-of-fold prediction
"BMW"	NA	CV predictions average

Nested cross-validation and high number of CV folds for your model is highly recommended Additional CV calculations are done within each model CV fold. Tricky and prone to errors method.

Problem: some degree of loss of information due to CV scheme

Good option for larger datasets

ML Methods

- Regularized GLMs (underperforming but good ensembling material)
- XGBoost (top pick for traditional data)
- LightGBM (top pick for traditional data)
- Keras (NN's are always good with good pre-processing)
- LinearSVM (non-linear is resource hungry and usually not worth it)
- Vowpal Wabbit (extremely fast online learning algorithms)
- Random forests (used to be popular, underperforming to GBM's now)

To achieve maximum, each method requires good understanding of how they work and how they should be tuned

Tuning parameters

Naive approach: apply grid search on all parameter space

- Zero effort and no supervision
- Enormous parameters' space
- Very time consuming

Bayesian optimization methods: trade-off between expert and grid-search approach

- Zero effort and no supervision
- Grid space reduced on previous iterations' results (mimic expert decisions)
- Time consuming (still)

Competitive advantage

- Get good score in public LB as fast as possible (if you intend to team up with experienced people)
- Fail fast & often / agile sprint / fast iterations
- Use many different methods and remember to save all your models (both CV and test runs)
- Invest into having generic modelling scripts for every method time saver long-term
- Debug, Debug nothing worse is finding a silly preprocessing error at the last day of the competition
- Write reproducible code setting seeds before any RNG tasks
- Learn to write efficient code (vectorization, parallelization; use C, FORTRAN, etc. based libs)
- Learn how to look at the data and do feature engineering
- Get access to reasonable hardware (8CPU threads, 32GB RAM minimum); AWS is always an option

Competitive advantage – data flow pipeline

Ideally you would want to have a framework which could be applied to any competition; It should be:

- Data friendly (sparse/dense data, missing values, larger than memory)
- Problem friendly (classification, regression, clustering, ranking, etc.)
- Memory friendly (garbage collection, avoid using swap partition, etc.)
- Automated (runs unsupervised from data reading to generating submission files)

Good framework can save hours of repetitive work when going from one competition to another

Success formula (personal opinion)

50% - feature engineering

30% - model diversity

10% - luck

10% - proper ensembling:

- Voting
- Averaging
- Bagging
- Boosting
- Binning
- Blending
- Stacking

Although 10%, but it is the key what separates top guys from the rest

Logistic Regression Stacking with Extremely	4.772	6.949 4.718
KNN-Classifier with 5 neighbors	6.828	7.460
Extremely Randomized Trees 500 estimators	6.317	6.666
Random Forests 500 estimators	6.156	6.546
MODEL	PUBLIC MAE	PRIVATE MAE

Ensembling added efficiency +30%

Ensembling by voting

Common application – recommendation models

```
1111111100 = 80% accuracy
0111011101 = 70% accuracy
1000101111 = 60% accuracy
```

Majority vote

```
1111111101 = 90\% accuracy
```

Ensembling by averaging

Let's say we have N classifiers: X1, X2, ..., XN

We want to make a single prediction using weighted average: B1*X1+B2*X2+B3*X3+...+BN*XN

Solve the problem using CV predictions with optimization algorithms optim(B1*X1+B2*X2+B3*X3+...+BN*XN) with starting weights Bi=1/N

Structure of stacked models

- Weaker models often struggle to compensate fine-tuned model's weaknesses
- "More is better" motivates create monster ensembles of sub-optimal models
- Model selection for stacker > fine-tuning

Model selection for ensemble

Having more models than necessary in ensemble may hurt.

Lets say we have a library of created models. Usually greedy-forward approach works well:

- Start with a few well-performing models' ensemble
- Loop through each other model in a library and add to current ensemble
- Determine best performing ensemble configuration
- Repeat until metric converged

During each loop iteration it is wise to consider only a subset of library models, which could work as a regularization for model selection.

Repeating procedure few times and bagging results reduces the possibility of overfitting by doing model selection.

Rule of thumb: data first, ML later

- 1. Create few simple models first having a good dataflow pipeline early is very convenient
- 2. Data exploration and visualization. Might be boring and frustrating, but pays off well. Excel is underrated in this aspect☺
- 3. Think of how to make **smart** features; avoid using linear combinations, {/,*} is superior
- 4. Winners usually find something that most people struggle to see in data. Not many people look at the data at all!

Score progress over duration of a competition

Feature engineering - summary

Feature engineering is hard and is the most creative part in Kaggle – not many enjoy it

Typical feature transformations:

- Multiplication & ratios of numeric features
- Log, Box-Cox transformations
- PCA, t-SNE outputs
- Percentile ranks
- Interactions of categorical features (A,B => "AB"), multiple levels of interactions
- Lag & lead features (for timetable data)
- Target likelihood ratios of categorical features
- One-hot encoding/label encoding of categorical features
- •

Having strong explicit features in simple models often beat monster ensembles with no feature engineering (personal experience ©)

Final remarks

- Kaggle is a playground for hyper-optimization and stacking for business any solution in 10% rankings is sufficient.
- Teaming up is important simple average of i.e. 9th and 10th place finishes can sometimes beat 1st place solution.
- No winning solution go straight to production due to their complexity or occasional leakages.
- Sponsors benefit from forum discussions and provided data visualizations.

oxipit.ai

- Deep Learning solutions for medical imaging
- One of the first pioneers in the field worldwide