A note on the L2-convergence rates of derivatives

Johan Sebastian Ohlendorff

johan.ohlendorff@sund.ku.dk University of Copenhagen

ABSTRACT

In this brief note, ...

1 Main section

Let the $L_2(\nu)$ -norm of a function $f \in L_2(\nu)$ be defined as

$$||f||_{\nu} = \sqrt{\int f^2 d\nu}.\tag{1}$$

Consider a sequence of estimators $\hat{P}_n(t \mid x)$ of $P(t \mid x)$ which are defined on $[0, \tau]$. We assume that $\hat{P}_n(0 \mid x) = P(0 \mid x) = 0$. We let μ_0 denote an appropriate measure for the covariates x. These are assumed to have the $L_2(\mu_0)$ -convergence rate $n^{-\gamma-\varepsilon}$ for Lebesgue almost all $t \in [0, \tau]$ for $\varepsilon > 3\gamma$ and $\gamma > 0$. We are interested in constructing an estimator $p(t \mid x) = P'(t \mid x)$ of the derivative of $P(t \mid x)$, which also has the $L_2(\mu_0 \otimes m)$ -convergence rate $n^{-\gamma}$, where m is the Lebesgue measure on $[0, \tau]$. The precise statement is given in Theorem 1.1.

Let us look at parametric models as an example. If $\left\|\hat{P}_n(t\mid x)-P(t\mid x)\right\|_{\mu_0}=o_P\left(n^{-\frac{1}{2}}\right)$ and $\left\|R_n\right\|_{\mu_0\otimes m}\leq K\left\|R_{1,n}\right\|_{\mu_0\otimes m}\left\|R_{2,n}\right\|_{\mu_0\otimes m},$ where $\left\|R_{1,n}\right\|_{\mu_0\otimes m}=\left\|\hat{p}_n-p\right\|_{\mu_0\otimes m},$ then $\left\|R_n\right\|_{\mu_0\otimes m}=o_P\left(n^{-\frac{1}{2}}\right)$ if $\left\|R_{2,n}\right\|_{\mu_0\otimes m}=o_P\left(n^{-\frac{3}{8}-\varepsilon}\right)$ for some small $\varepsilon>0$ (a little bit slower than parametric rate) $(\gamma+3\gamma=\frac{1}{2},\gamma+z=\frac{1}{2}\Rightarrow z=\frac{3}{8}),$ so it may still be possible to use flexible machine learning.

This is useful if one wishes to obtain convergence rates for a hazard function which one has not explicitly considered such as in a Cox regression. As an example for the Cox:

$$\begin{split} \sqrt{\int \left(\hat{\Lambda}(t\mid x) - \Lambda(t\mid x)\right)^2 \mu_0(x)} &\leq \sqrt{\int \left(\left(\hat{\Lambda}_0(t\mid x) - \Lambda_0(t)\right) \exp\left(\hat{\beta}_n x\right)\right)^2 \mu_0(dx)} \\ &+ \sqrt{\Lambda_0^2(t) \int \left(\exp\left(\hat{\beta}_n x\right) - \exp(\beta x)\right)^2 \mu_0(dx)} \end{split} \tag{2}$$

Under standard regularity conditions, the last term is $O_P\left(n^{-\frac{1}{2}}\right)$ (parametric rate) and the first term is $O_P\left(n^{-\frac{1}{2}}\right)$ (parametric rate). The first may be shown to be $O_P\left(n^{-\frac{1}{2}}\right)$ using empirical process theory (note the theorem also works with bounded in probability). (Granted, we may get a very slow rate of about $O_P\left(n^{-\frac{1}{8}}\right)$.)

Theorem 1.1: Let $\hat{P}_n(t\mid x)$ be a sequence of estimators of $P(t\mid x)$ defined on $[0,\tau]$ fulfilling that $\hat{P}_n(0\mid x) = P(0\mid x) = 0$. Suppose that $P(t\mid x) \in C^2([0,\tau])$ for μ_0 -almost all x and that there exists a constant K>0 such that $p'(t\mid x) \leq K$ for μ_0 -almost all x and $t\in [0,\tau]$. If $\left\|\hat{P}_n(t\mid \cdot) - P(t\mid \cdot)\right\|_{\mu_0} = o_P(n^{-\gamma-\varepsilon})$ for Lebesgue almost all $t\in [0,\tau]$ for $\varepsilon>3\gamma$, then there exists an estimator $\hat{p}_n(t\mid x)$ of $p(t\mid x) = P'(t\mid x)$ such that

$$\left\|\hat{p}_n - p\right\|_{\mu_0 \otimes m} = o_P(n^{-\gamma}). \tag{3}$$

The estimator $\hat{p}_n(t\mid x)$ fulfills on a grid $0=t_1<\ldots< t_{K_n}=\tau$ with some mesh $b(n)=\max_{1\leq k\leq K_n}(t_k-t_{k-1})\to 0$ as $n\to\infty$ and $K_n\to\infty$ as $n\to\infty$ determined by ε such

$$\int_0^{t_k} \hat{p}_n(s \mid x) ds = \hat{P}_n(t_k \mid x). \tag{4}$$

Proof: Consider a partition $0=t_1<\ldots< t_{K_n}=t$ of [0,t] with mesh $b(K_n)=\max_{1\leq k\leq K_n}(t_k-t_{k-1})$. Let $K_n=\lfloor n^z \rfloor$ for some $2\gamma< z<\frac{2}{3}\varepsilon$ and $b(K_n)=\tau \lfloor n^{-z} \rfloor$. Then $K_n\to\infty$ as $n\to\infty$ and $b(K_n)\to0$ as $n\to\infty$. We will show the theorem by constructing an explicit estimator $\hat{p}_n(t\mid x)$ by approximating the derivative via a secant. Let

$$\hat{p}_n(t\mid x) = \sum_{k=1}^{K_n} \mathbb{1}\{t \in (t_k, t_{k+1}]\} \frac{\hat{P}_n(t_{k+1}\mid x) - \hat{P}_n(t_k\mid x)}{t_{k+1} - t_k} \tag{5}$$

Then evidently, we have

$$\int_{0}^{t_{k}} \hat{p}_{n}(s \mid x) ds = \sum_{j=1}^{k-1} \frac{\hat{P}_{n}(t_{k+1} \mid x) - \hat{P}_{n}(t_{k} \mid x)}{t_{k+1} - t_{k}} (t_{k+1} - t_{k}) = \hat{P}_{n}(t_{k} \mid x). \tag{6}$$

Furthermore, let

$$\tilde{p}_n(t\mid x) = \sum_{k=1}^{K_n} \mathbb{1}\big\{t \in \big(t_k, t_{k+1}\big]\big\} \frac{P\big(t_{k+1}\mid x\big) - P(t_k\mid x)}{t_{k+1} - t_k}. \tag{7}$$

By the triangle inequality, we have

$$\left\|\hat{p}_n-p\right\|_{\mu_0\otimes m}\leq \left\|\hat{p}_n-\tilde{p}_n\right\|_{\mu_0\otimes m}+\left\|\tilde{p}_n-p\right\|_{\mu_0\otimes m}. \tag{8}$$

We start with the first term on the right-hand side.

$$\begin{split} \|\hat{p}_n - \tilde{p}_n\|_{\mu_0 \otimes m} &= \left\| \sum_{k=1}^{K_n} \mathbbm{1} \big\{ \cdot \in (t_k, t_{k+1}] \big\} \frac{ \left(\hat{P}_n(t_{k+1} \mid \cdot) - P(t_{k+1} \mid \cdot) \right) - \left(\hat{P}_n(t_k \mid \cdot) - P(t_k \mid \cdot) \right) }{t_{k+1} - t_k} \right\|_{\mu_0 \otimes m} \\ &\leq \sum_{k=1}^{K_n} \left\| \mathbbm{1} \big\{ \cdot \in (t_k, t_{k+1}] \big\} \frac{ \hat{P}_n(t_{k+1} \mid \cdot) - P(t_{k+1} \mid \cdot) - \left(\hat{P}_n(t_k \mid \cdot) - P(t_k \mid \cdot) \right) }{t_{k+1} - t_k} \right\|_{\mu_0 \otimes m} \\ &\leq \sum_{k=1}^{K_n} \frac{1}{\sqrt{t_{k+1} - t_k}} \bigg(\left\| \hat{P}_n(t_{k+1} \mid \cdot) - P(t_{k+1} \mid \cdot) \right\|_{\mu_0} + \left\| \hat{P}_n(t_k \mid \cdot) - P(t_k \mid \cdot) \right\|_{\mu_0} \bigg) \\ &= o \Big(n^{z - \frac{1}{2}(-z)} \Big) o_P(n^{-\gamma - \varepsilon}) = o_P \Big(n^{\frac{3}{2}z - \gamma - \varepsilon} \Big) = o_P(n^{-\gamma}). \end{split}$$

There exists by the mean value theorem a $\xi_{k,x} \in (t_k,t_{k+1})$ such that $\frac{P(t_{k+1} \mid x) - P(t_k \mid x)}{t_{k+1} - t_k} = p(\xi_{k,x} \mid x)$ for μ_0 -almost all x. Furthermore, there exists also a $\xi'_{k,t,x}$ between t and $\xi_{k,x}$ such that $p(t \mid x) - p(\xi_{k,x} \mid x) = (t - \xi_{k,x})p'(\xi'_{k,t,x} \mid x)$. This implies that we can bound the second term on the right-hand side as

$$\begin{split} \|\tilde{p}_{n} - p\|_{\mu_{0} \otimes m} &= \left\| \sum_{k=1}^{K_{n}} \mathbb{1}\{\cdot \in (t_{k}, t_{k+1}]\} p(\xi_{k, \cdot} \mid \cdot) - p(\cdot \mid \cdot) \right\|_{\mu_{0} \otimes m} \\ &= \left\| \sum_{k=1}^{K_{n}} \mathbb{1}\{\cdot \in (t_{k}, t_{k+1}]\} (p(\xi_{k, \cdot} \mid \cdot) - p(\cdot \mid \cdot)) \right\|_{\mu_{0} \otimes m} \\ &= \left\| \sum_{k=1}^{K_{n}} \mathbb{1}\{\cdot \in (t_{k}, t_{k+1}]\} (\cdot - \xi_{k, \cdot}) p'(\xi'_{k, \cdot, \cdot} \mid \cdot) \right\|_{\mu_{0} \otimes m} \\ &\leq K \sum_{k=1}^{K_{n}} (t_{k+1} - t_{k}) \sqrt{t_{k+1} - t_{k}} \\ &= K \sum_{k=1}^{K_{n}} (b(k))^{\frac{3}{2}} = o(n^{z + \frac{3}{2}(-z)}) = o(n^{-\frac{1}{2}z}) = o(n^{-\gamma}). \end{split}$$

so that we have

$$\left\|\hat{p}_n - p\right\|_{\mu_0 \otimes m} = o_P(n^{-\gamma}). \tag{11}$$