

RECAP

$$v(t) = V_m \sin(\omega t + \theta)$$

$$\omega = \frac{2\pi}{T} \qquad \omega = 2\pi f$$

$$V_{\rm rms} = \sqrt{\frac{1}{T} \int_0^T v^2(t) dt}$$
 $I_{\rm rms} = \sqrt{\frac{1}{T} \int_0^T i^2(t) dt}$

$$P_{\text{avg}} = \frac{V_{\text{rms}}^2}{R}$$

$$V_{rms} = \frac{V_m}{\sqrt{2}}$$

$$I_{\rm rms} = \sqrt{\frac{1}{T} \int_0^T i^2(t) \ dt}$$

$$P_{\rm avg} = I_{\rm rms}^2 R$$

$$I_{rms} = \frac{I_m}{\sqrt{2}}$$

Revision of COMPLEX NUMBERS

Rectangular form

$$z = x - iy$$

Complex conjugate

Polarform

$$|Z|^{2} = x^{2} + y^{2}$$

$$\tan(\theta) = \frac{y}{x}$$

$$Z\angle\theta$$

$$= Z(\cos\theta + i\sin\theta)$$

$$x = |Z|\cos(\theta)$$

$$y = |Z|\sin(\theta)$$

Euler's Ident

$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j} \qquad |e^{j\theta}| = \sqrt{\cos^2(\theta) + \sin^2(\theta)}$$

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$e^{-j\theta} = \cos(\theta) - j\sin(\theta)$$

PHASORS

Voltages and Currents

As vectors in complex plane

VOLTAGES

VOLTAGE PHASORS

Definition of phasor –

$$v_1(t) = V_1 \cos(\omega t + \theta_1)$$

$$\mathbf{V}_1 = V_1 / \theta_1$$

Real part of complex numbers, in polar form

$$v_2(t) = V_2 \sin(\omega t + \theta_2)$$

$$\mathbf{V}_2 = V_2 / \theta_2 - 90^{\circ}$$

$$v_2(t) = V_2 \cos(\omega t + \theta_2 - 90^\circ)$$

$$\sin(\theta) = \cos(\theta - 90^{\circ})$$

CURRENTS

CURRENT PHASORS

$$i_1(t) = I_1 \cos(\omega t + \theta_1)$$

$$\mathbf{I}_1 = I_1 \underline{/\theta_1}$$

$$i_2(t) = I_2 \sin(\omega t + \theta_2)$$

$$\mathbf{I}_2 = I_2 \underline{/\theta_2 - 90^\circ}$$

ADDING AC VOLTAGES using phasors - I

$$v(t) = 10\cos(\omega t) + 5\sin(\omega t + 60^\circ) + 5\cos(\omega t + 90^\circ)$$

STEP 1:

Convert all voltages into cosine function – use trigonometry

$$\sin(\theta) = \cos(\theta - 90^{\circ})$$

$$v(t) = 10\cos(\omega t) + 5\cos(\omega t + 60^{\circ} - 90^{\circ}) + 5\cos(\omega t + 90^{\circ})$$

$$v(t) = 10\cos(\omega t) + 5\cos(\omega t - 30^{\circ}) + 5\cos(\omega t + 90^{\circ})$$

STEP 2:

Write PHASORS for each voltage (or current)

$$v(t) = 10 / 0^{\circ} + 5 / -30^{\circ} + 5 / 90^{\circ}$$

STEP 3:

Convert PHASORS into complex numbers - rectangular form

$$v(t) = 10(\cos 0 + i \sin 0) + 5(\cos(-30) + i \sin(-30)) + 5(\cos(90) + i \sin(90))$$

$$= 10(1+0) + 5(0.866 + i(-0.5)) + 5(0+i(1))$$

$$= 10 + 5 * 0.866 - i(2.5) + 5i$$

$$v(t) = 14.33 + i * 2.5$$

ADDING AC VOLTAGES using phasors - II

$$v(t) = 10\cos(\omega t) + 5\sin(\omega t + 60^{\circ}) + 5\cos(\omega t + 90^{\circ})$$

STEP 3:

Convert PHASORS into rectangular form of complex numbers.

$$v(t) = 14.33 + i * 2.5$$

STEP 4:

Convert from rectangular form back to PHASORS (form) $Z\angle\theta$

We need,
$$Z, \theta$$

$$|Z|^2 = x^2 + y^2$$

$$v(t) = \sqrt{14.33^2 + 2.5^2} \tan^{-1}(2.5/14.33)$$

$$\tan(\theta) = \frac{y}{x}$$

$$x = |Z| \cos(\theta)$$

$$y = |Z| \sin(\theta)$$

STEP 5:

Convert PHASORS back into sinusoidal form

$$v(t) = 14.54\cos(\omega t + 9.89)$$

ADDING using phasors - Practice

Q1)
$$v_1(t) = 10\cos(\omega t) + 10\sin(\omega t)$$

Q2)
$$i_1(t) = 10\cos(\omega t + 30^\circ) + 5\sin(\omega t + 30^\circ)$$

Q3)
$$i_2(t) = 20 \sin(\omega t + 90^\circ) + 15 \cos(\omega t - 60^\circ)$$

ASSIGNMENT

PHASE RELATIONSHIPS

$$v_1(t) = 3\cos(\omega t + 40^\circ)$$

$$V_1 = 3 /40^{\circ}$$

$$v_2(t) = 4\cos(\omega t - 20^\circ)$$

$$V_2 = 4 / -20^{\circ}$$

PHASE RELATIONSHIPS

PHASORS rotate Counter-clockwise!

$$v_1(t) = 3\cos(\omega t + 40^\circ)$$

$$V_1 = 3/40^{\circ}$$

$$v_2(t) = 4\cos(\omega t - 20^\circ)$$

$$V_2 = 4 / -20^{\circ}$$

PHASE RELATIONSHIPS - Practice

3 voltages are given as -

$$v_1(t) = \cos(\omega t - 30^\circ)$$

$$v_1(t) = \cos(\omega t + 30^\circ)$$

$$v_1(t) = \cos(\omega t + 45^\circ)$$

State the phase relationship between each pair of voltages

Acknowledgements

- 1. Allan R. Hambley, 'Electrical Engineering Principles & Applications, Pearson Education, First Impression, 6/e, 2013
- 2. https://en.wikipedia.org/wiki/Phasor