```
In [4]:
```

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import csv
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
```

In [3]:

```
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

Data

importing raw data

```
In [5]:
```

```
data=pd.read_csv('data.csv')
```

In [8]:

```
data.shape
```

Out[8]:

(242, 12)

In [10]:

```
data.columns
```

Out[10]:

In [11]:

```
data.head()
```

Out[11]:

	ID	NAME	FATHER NAME	DEPARTMENT	WORKHOUR	OVERTIME	EXP	LEAVES	L
0	1	GIAN DASS	GANESH	CUTTING /BENDING/PRESS	6	4	4	5	_
1	2	GOVIND	DEVISRAN	CUTTING /BENDING/PRESS	5	4	5	2	
2	3	PARVIND KUMAR	FEKU PRASAD	CUTTING /BENDING/PRESS	6	2	7	7	
3	4	DEVENDRA SINGH	KEDAR NATH SINGH	CUTTING /BENDING/PRESS	4	2	7	7	
4	5	SURENDRA SAV	RAMESHWAR SAV	CUTTING /BENDING/PRESS	7	1	8	7	
4								>	•

In [12]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 242 entries, 0 to 241
Data columns (total 12 columns):

	· · · · · · · · · · · · · · · · · · ·		
#	Column	Non-Null Count	Dtype
0	ID	242 non-null	int64
1	NAME	242 non-null	object
2	FATHER NAME	241 non-null	object
3	DEPARTMENT	242 non-null	object
4	WORKHOUR	242 non-null	int64
5	OVERTIME	242 non-null	int64
6	EXP	242 non-null	int64
7	LEAVES	242 non-null	int64
8	LAST_TRAINING	242 non-null	int64
9	ERROR	242 non-null	int64
10	OUTPUT	242 non-null	int64
11	PERFORMANCE_RATING	242 non-null	int64

dtypes: int64(9), object(3)
memory usage: 22.8+ KB

Analysis of department wise performance

In [13]:

```
dept = data.iloc[:,[3,11]].copy()
dept_per = dept.copy()
```

In [14]:

print(dept)

		DEPARTMENT	PERFORMANCE_RATING
0	CUTTING	/BENDING/PRESS	8
1	CUTTING	/BENDING/PRESS	7
2	CUTTING	/BENDING/PRESS	4
3	CUTTING	/BENDING/PRESS	5
4	CUTTING	/BENDING/PRESS	5
		• • •	•••
237		ADMIN	7
238		ADMIN	9
239		ADMIN	6
240		ADMIN	4
241		ADMIN	10

[242 rows x 2 columns]

In [15]:

Finding out the mean performance of all the departments and plotting its bar graph using
dept_per.groupby(by='DEPARTMENT')['PERFORMANCE_RATING'].mean()

Out[15]:

DEPARTMENT

ADMIN 6.932203
CUTTING /BENDING/PRESS 6.931034
PACKING 7.677419
PAINTING / COATING 7.375000
WELDING (MIG & SPOT) 7.590361

Name: PERFORMANCE_RATING, dtype: float64

In [16]:

```
plt.figure(figsize=(10,4.5))
sns.barplot(dept_per['DEPARTMENT'],dept_per['PERFORMANCE_RATING'])
```

Out[16]:

<AxesSubplot:xlabel='DEPARTMENT', ylabel='PERFORMANCE_RATING'>

In [17]:

```
# Analyze each department separately
dept_per.groupby(by='DEPARTMENT')['PERFORMANCE_RATING'].value_counts()
```

Out[17]:

DEPARTMENT ADMIN	PERFORMANCE_RATING 8	13
	7	10
	5	8
	9	8
	4	7
	6	7
	10	5
	3	1
CUTTING /BENDING/PRESS	7	6
	5	5
	6	5
	8	5
	9	4
	4	2
	10	2
PACKING	9	7
	6	6
	8	5
	7	4
	5	3
	10	3
	11	2
	4	1
PAINTING / COATING	6	8
	8	8
	9	7
	10	5
	4	4
	7	4
	5	3
	11	1
WELDING (MIG & SPOT)	9	19
·	6	15
	8	12
	5	11
	10	9
	7	8
	4	4
	11	4
	12	1
Name: PERFORMANCE RATING	G. dtyne: int64	

Name: PERFORMANCE_RATING, dtype: int64

In [19]:

```
# Creating a new dataframe to analyze each department separately
department = pd.get_dummies(dept_per['DEPARTMENT'])
performance = pd.DataFrame(dept_per['PERFORMANCE_RATING'])
dept_rating = pd.concat([department,performance],axis=1)
```

In [20]:

```
# Plotting a separate bar graph for performance of each department using seaborn
plt.figure(figsize=(15,10))
plt.subplot(2,3,1)
sns.barplot(dept_rating['PERFORMANCE_RATING'],dept_rating['CUTTING /BENDING/PRESS'])
plt.subplot(2,3,2)
sns.barplot(dept_rating['PERFORMANCE_RATING'],dept_rating['WELDING ( MIG & SPOT)'])
plt.subplot(2,3,3)
sns.barplot(dept_rating['PERFORMANCE_RATING'],dept_rating['PAINTING / COATING'])
plt.subplot(2,3,4)
sns.barplot(dept_rating['PERFORMANCE_RATING'],dept_rating['PACKING'])
plt.subplot(2,3,5)
sns.barplot(dept_rating['PERFORMANCE_RATING'],dept_rating['ADMIN'])
```

Out[20]:

<AxesSubplot:xlabel='PERFORMANCE_RATING', ylabel='ADMIN'>

data processing

In [22]:

```
# Encoding all the ordinal columns and creating a dummy variable for them to see if there a
enc = LabelEncoder()
for i in (3,4,5,6,7,10):
    data.iloc[:,i] = enc.fit_transform(data.iloc[:,i])
data.head()
```

Out[22]:

	ID	NAME	FATHER NAME	DEPARTMENT	WORKHOUR	OVERTIME	EXP	LEAVES	LAS
0	1	GIAN DASS	GANESH	1	4	4	4	5	
1	2	GOVIND	DEVISRAN	1	3	4	5	2	
2	3	PARVIND KUMAR	FEKU PRASAD	1	4	2	7	7	
3	4	DEVENDRA SINGH	KEDAR NATH SINGH	1	2	2	7	7	
4	5	SURENDRA SAV	RAMESHWAR SAV	1	5	1	8	7	
4									•

Feature Selection

We need correlation coefficient as there are quite a few columns

Standardisation and Label Encoding is also used for feature transformation

A separate analysis considering all the predictors was carried out but it resulted in decreasing the accuracy . Similarly , PCA also reduces the accuracy

In [23]:

Finding out the correlation coeffecient to find out which predictors are significant. data.corr()

Out[23]:

	ID	DEPARTMENT	WORKHOUR	OVERTIME	EXP	LEAVES
ID	1.000000	-0.577188	-0.048497	0.023424	-0.072897	-0.047634
DEPARTMENT	-0.577188	1.000000	0.043459	-0.008815	0.024531	-0.037105
WORKHOUR	-0.048497	0.043459	1.000000	-0.031573	-0.014640	-0.043082
OVERTIME	0.023424	-0.008815	-0.031573	1.000000	0.073703	-0.015628
EXP	-0.072897	0.024531	-0.014640	0.073703	1.000000	0.053857
LEAVES	-0.047634	-0.037105	-0.043082	-0.015628	0.053857	1.000000
LAST_TRAINING	0.071122	-0.113342	-0.123842	0.155282	0.022048	0.045013
ERROR	0.026583	0.084165	0.100366	-0.035068	-0.012677	-0.061970
OUTPUT	-0.064155	0.118631	-0.107647	-0.083927	0.002438	-0.055417
ERFORMANCE_RATING	-0.061300	0.139422	0.071949	0.002023	0.149605	-0.297207

In [24]:

Dropping the first columns as it is of no use for analysis.
data.drop(['ID'],inplace=True,axis=1)

In [116]:

data.head()

Out[116]:

	NAME	FATHER NAME	DEPARTMENT	WORKHOUR	OVERTIME	EXP	LEAVES	LAST_TI
0	GIAN DASS	GANESH	1	4	4	4	5	
1	GOVIND	DEVISRAN	1	3	4	5	2	
2	PARVIND KUMAR	FEKU PRASAD	1	4	2	7	7	
3	DEVENDRA SINGH	KEDAR NATH SINGH	1	2	2	7	7	
4	SURENDRA SAV	RAMESHWAR SAV	1	5	1	8	7	
4								>

In [280]:

```
# Here we have selected only the important columns
y = data.PERFORMANCE_RATING
#X = data.iloc[:,0:-1] All predictors were selected it resulted in dropping of accuracy.
X = data.iloc[:,[3,4,8,9,10]] # Taking only variables with correlation coeffecient greater
X.head(10)
```

Out[280]:

	WORKHOUR	OVERTIME	ERROR	OUTPUT	PERFORMANCE_RATING
0	4	4	1	37	8
1	3	4	1	24	7
2	4	2	4	6	4
3	2	2	0	8	5
4	5	1	0	14	5
5	3	1	0	48	8
6	4	1	4	27	7
7	0	5	1	24	5
8	5	5	1	24	7
9	5	2	3	23	6

In [281]:

```
# Splitting into train and test for calculating the accuracy
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=10)
```

In [282]:

```
# Standardization technique is used
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

In [283]:

```
X_train.shape
```

Out[283]:

(169, 5)

In [284]:

```
X_test.shape
```

Out[284]:

(73, 5)

Logistic Regression

```
In [285]:
```

```
# Training the model
from sklearn.linear_model import LogisticRegression
model_logr = LogisticRegression()
model_logr.fit(X_train,y_train)
```

Out[285]:

LogisticRegression()

In [286]:

```
# Predicting the model
y_predict_log = model_logr.predict(X_test)
```

In [287]:

```
# Finding accuracy, precision, recall and confusion matrix
print(accuracy_score(y_test,y_predict_log))
print(classification_report(y_test,y_predict_log))
```

0.6027397260273972

	precision	recall	f1-score	support
4	1.00	0.50	0.67	6
5	0.64	0.88	0.74	8
6	0.80	0.86	0.83	14
7	0.75	0.30	0.43	10
8	0.44	0.88	0.58	8
9	0.53	0.71	0.61	14
10	0.25	0.11	0.15	9
11	1.00	0.25	0.40	4
accuracy			0.60	73
macro avg	0.68	0.56	0.55	73
weighted avg	0.64	0.60	0.57	73

In [288]:

```
confusion_matrix(y_test,y_predict_log)
```

Out[288]:

```
array([[ 3,
          3, 0, 0, 0, 0,
                            0,
                               0],
                            0,
      [ 0,
          7, 1, 0, 0,
                        0,
                               0],
                        0,
      [ 0,
          1, 12,
                 1,
                     0,
                            0,
                               0],
          0,
       0,
              2,
                 3, 5,
                        0,
                            0,
                               0],
                               0],
      [ 0,
          0, 0, 0, 7,
                        1, 0,
           0, 0, 0, 4, 10, 0,
      [ 0,
                               0],
                               0],
      [ 0,
              0, 0, 0, 8, 1,
           0,
      [ 0,
          0, 0, 0, 0, 3, 1]], dtype=int64)
```

In []:

```
### K- Nearest Neighbour
```

```
In [317]:
```

```
# Training the model
from sklearn.neighbors import KNeighborsClassifier
model_knn = KNeighborsClassifier(n_neighbors=10,metric='euclidean') # Maximum accuracy for
model_knn.fit(X_train,y_train)
```

Out[317]:

KNeighborsClassifier(metric='euclidean', n_neighbors=10)

In [318]:

```
# Predicting the model
y_predict_knn = model_knn.predict(X_test)
```

In [319]:

```
# Finding accuracy, precision, recall and confusion matrix
print(accuracy_score(y_test,y_predict_knn))
print(classification_report(y_test,y_predict_knn))
```

0.4383561643835616

	precision	recall	f1-score	support
4	1.00	0.67	0.80	6
5	0.50	0.75	0.60	8
6	0.57	0.57	0.57	14
7	0.50	0.10	0.17	10
8	0.30	0.88	0.45	8
9	0.33	0.36	0.34	14
10	0.33	0.11	0.17	9
11	0.00	0.00	0.00	4
accuracy			0.44	73
macro avg	0.44	0.43	0.39	73
weighted avg	0.45	0.44	0.40	73

In [320]:

```
confusion_matrix(y_test,y_predict_knn)
```

Out[320]:

support vector machine

```
In [289]:
```

```
# Training the model
from sklearn.svm import SVC
rbf_svc = SVC(kernel='rbf', C=100, random_state=10).fit(X_train,y_train)
```

In [290]:

```
# Predicting the model
y_predict_svm = rbf_svc.predict(X_test)
```

In [291]:

```
# Finding accuracy, precision, recall and confusion matrix
print(accuracy_score(y_test,y_predict_svm))
print(classification_report(y_test,y_predict_svm))
```

0.9452054794520548

	precision	recall	f1-score	support
4	1.00	1.00	1.00	6
5	1.00	0.88	0.93	8
6	0.93	1.00	0.97	14
7	1.00	1.00	1.00	10
8	1.00	1.00	1.00	8
9	1.00	1.00	1.00	14
10	0.75	1.00	0.86	9
11	1.00	0.25	0.40	4
accuracy			0.95	73
macro avg	0.96	0.89	0.89	73
weighted avg	0.96	0.95	0.94	73

In [292]:

```
confusion_matrix(y_test,y_predict_svm)
```

Out[292]:

```
array([[ 6, 0, 0, 0, 0, 0, 0],
         7, 1, 0, 0,
     [ 0,
                       0, 0,
                             0],
         0, 14, 0, 0, 0, 0, 0],
     [ 0,
     [0, 0, 0, 10, 0, 0, 0],
                             0],
     [0, 0, 0, 0, 8, 0,
                          0,
     [ 0, 0, 0, 0, 0, 14,
                          0,
                             0],
                         9,
                             0],
     [0, 0, 0, 0, 0, 0,
     [ 0, 0, 0, 0, 0, 3, 1]], dtype=int64)
```

Decision Tree with grid search CV

```
In [293]:
```

```
# Training the model
from sklearn.tree import DecisionTreeClassifier
classifier_dtg=DecisionTreeClassifier(random_state=42,splitter='best')
parameters=[{'min_samples_split':[2,3,4,5],'criterion':['gini']},{'min_samples_split':[2,3,
model_griddtree=GridSearchCV(estimator=classifier_dtg, param_grid=parameters, scoring='accu
model_griddtree.fit(X_train,y_train)
Out[293]:
GridSearchCV(cv=10, estimator=DecisionTreeClassifier(random_state=42),
             param_grid=[{'criterion': ['gini'],
                           'min_samples_split': [2, 3, 4, 5]},
                          {'criterion': ['entropy'],
                           'min_samples_split': [2, 3, 4, 5]}],
             scoring='accuracy')
In [294]:
model_griddtree.best_params_
Out[294]:
{'criterion': 'gini', 'min_samples_split': 2}
In [295]:
# Predicting the model
y_predict_dtree = model_griddtree.predict(X_test)
In [296]:
# Finding accuracy, precision, recall and confusion matrix
print(accuracy_score(y_test,y_predict_dtree))
print(classification_report(y_test,y_predict_dtree))
1.0
                            recall f1-score
              precision
                                               support
           4
                   1.00
                              1.00
                                        1.00
                                                      6
           5
                   1.00
                              1.00
                                        1.00
                                                      8
           6
                   1.00
                              1.00
                                        1.00
                                                     14
           7
                   1.00
                              1.00
                                        1.00
                                                     10
           8
                   1.00
                              1.00
                                        1.00
                                                     8
           9
                   1.00
                              1.00
                                        1.00
                                                     14
                                                     9
          10
                   1.00
                              1.00
                                        1.00
          11
                   1.00
                              1.00
                                        1.00
                                                     4
                                        1.00
                                                     73
    accuracy
   macro avg
                   1.00
                              1.00
                                        1.00
                                                     73
```

73

1.00

1.00

weighted avg

1.00

```
In [297]:
confusion_matrix(y_test,y_predict_dtree)
Out[297]:
                               0,
array([[ 6,
            0, 0, 0, 0,
                            0,
                                    0],
       [0, 8, 0, 0,
                        0,
                            0,
                                0,
                                    0],
       [ 0,
            0, 14, 0,
                                   0],
                        0,
                            0,
                               0,
            0, 0, 10, 0, 0,
       [ 0,
                              0,
                                   0],
       [ 0, 0, 0, 0, 8, 0, 0,
                                   0],
       [ 0, 0, 0, 0, 0, 14,
                               0,
                                    0],
       [ 0, 0, 0, 0, 0,
                              9, 0],
                           0,
       [0, 0, 0, 0, 0, 0,
                               0, 4]], dtype=int64)
Random Forest with Grid Search CV
In [299]:
# Training the model
from sklearn.ensemble import RandomForestClassifier
classifier_rfg=RandomForestClassifier(random_state=33,n_estimators=23)
parameters=[{'min_samples_split':[2,3,4,5],'criterion':['gini','entropy'],'min_samples_leaf
model_gridrf=GridSearchCV(estimator=classifier_rfg, param_grid=parameters, scoring='accurac
model_gridrf.fit(X_train,y_train)
Out[299]:
GridSearchCV(cv=10,
            estimator=RandomForestClassifier(n_estimators=23, random_state=
33),
            param_grid=[{'criterion': ['gini', 'entropy'],
                         'min_samples_leaf': [1, 2, 3],
                         'min_samples_split': [2, 3, 4, 5]}],
            scoring='accuracy')
In [300]:
model_gridrf.best_params_
Out[300]:
{'criterion': 'gini', 'min_samples_leaf': 1, 'min_samples_split': 4}
In [301]:
# Predicting the model
y_predict_rf = model_gridrf.predict(X_test)
```

```
In [302]:
```

```
# Finding accuracy, precision, recall and confusion matrix
print(accuracy_score(y_test,y_predict_rf))
print(classification_report(y_test,y_predict_rf))
```

0.958904109589041

	precision	recall	f1-score	support
4	1.00	1.00	1.00	6
5	1.00	1.00	1.00	8
6	1.00	1.00	1.00	14
7	1.00	1.00	1.00	10
8	1.00	1.00	1.00	8
9	1.00	1.00	1.00	14
10	0.75	1.00	0.86	9
11	1.00	0.25	0.40	4
accuracy			0.96	73
macro avg	0.97	0.91	0.91	73
weighted avg	0.97	0.96	0.95	73

In [303]:

```
confusion_matrix(y_test,y_predict_rf)
```

Out[303]:

ANN(ARTIFICIAL NEURAL NETWORK)

In [312]:

```
# Training the model
from sklearn.neural_network import MLPClassifier
model_mlp = MLPClassifier(hidden_layer_sizes=(100,100,100),batch_size=10,learning_rate_init
model_mlp.fit(X_train,y_train)
```

Out[312]:

```
MLPClassifier(batch_size=10, hidden_layer_sizes=(100, 100, 100),
learning_rate_init=0.01, max_iter=2000, random_state=10)
```

In [313]:

```
# Predicting the model
y_predict_mlp = model_mlp.predict(X_test)
```

```
In [314]:
```

```
# Finding accuracy, precision, recall and confusion matrix
print(accuracy_score(y_test,y_predict_mlp))
print(classification_report(y_test,y_predict_mlp))
```

0.9452054794520548

	precision	recall	f1-score	support
4	1.00	0.83	0.91	6
5	0.89	1.00	0.94	8
6	1.00	1.00	1.00	14
7	1.00	1.00	1.00	10
8	1.00	1.00	1.00	8
9	1.00	1.00	1.00	14
10	0.75	1.00	0.86	9
11	1.00	0.25	0.40	4
accuracy			0.95	73
macro avg	0.95	0.89	0.89	73
weighted avg	0.96	0.95	0.94	73

In [315]:

```
confusion_matrix(y_test,y_predict_mlp)
```

Out[315]:

```
array([[ 5,
                             0,
                                0],
           1, 0, 0,
                      0,
                         0,
                      0,
           8, 0, 0,
                         0,
                             0,
                                0],
      [ 0,
           0, 14,
      [ 0,
                  0,
                      0,
                         0,
                             0,
                                0],
           0, 0, 10,
                             0,
                                0],
      [ 0,
                      0, 0,
                      8, 0,
                             0,
           0, 0, 0,
      [ 0,
                                0],
              0, 0,
                      0, 14,
      [ 0,
           0,
                             0,
                                0],
           0, 0, 0, 0, 0,
                            9,
      [ 0,
                                0],
      [ 0,
           0, 0, 0, 0, 3, 1]], dtype=int64)
```

In [321]:

```
# Exporting the trained model
import joblib
joblib.dump(model_gridrf,'data.ml')
```

Out[321]:

['data.ml']

In []: