Homework 2

Note: All Log calculations is to base 10.

Problem 1

- 1.1: Convert from W to dbm
 - First we convert from W to mW (1W= 1000mW)
 - Then apply the formula as per given in appendix: power in Dbm= 10 log (P in mW).
 - \blacksquare 1.25*10^-4 = 10 log (0.125) = -9.308 dbm
 - \blacksquare 2.5* 10 ^-4= 10 log (0.25) = -6.020 dbm
 - \bullet 5 * 10^-4= 10 log (0.5) = -3.0302 dbm
 - 1 * 10^-3= 10 log (1) = 0 dbm
 - 2 * 10^-3= 10 log (2)= 3.002 dbm
 - 4 * 10 ^-3= 10 log (4)= 6.0205 dbm
 - 8 * 10 ^-3= 10 log (8) = 9.03 dbm
 - The mW as per the sequence. A linear increase in the power.
- 1.2: from dbm to mW
 - -100 dbm = 10 log (x) mw
 - $= 10^{-10} \text{ mW}$
 - Now 1000W = 10⁶ mW (microwave is high)
 - So 10^-16 times high.

Problem 2

• 2.1

According to long distance propagation model

$$Pr(d) = Pr(d_0) \frac{d^{\alpha}}{d_0^{\alpha}}$$

Take log both sides,

$$\log_{10}(Pr(d)) = \log_{10}\left(\frac{Pr(d_0) d^{\alpha}}{d_0^{\alpha}}\right)$$

Applying Log rules,

$$Pr(d) = 10 \log_{10}(Pr(d_0)) + 10 \log_{10}\left(\frac{d^{\alpha}}{d_0^{\alpha}}\right)$$

So,
$$PL(d) = PL(d_0) + 10 \cdot \alpha \cdot \log_{10}\left(\frac{d}{d_0}\right)$$

• 2.2: Using the formula from 2.1

$$PL(d) = 30 + 10 \cdot 2.6 \log_{10} \left(\frac{2 d_0}{d_0}\right)$$

$$PL(d) = 37.826$$

$$For d = 4 d_0$$

$$PL(d) = 30 + 10 \cdot 2.6 \log_{10} \left(\frac{4 d_0}{d_0}\right)$$

$$PL(d) = 45.653$$

• 2.3

$$PL(d) = PL(d) + 10 \cdot \alpha \cdot \log_{10} \left(\frac{d}{d_0}\right)$$

$$56 = 30 + 10 \cdot 2.6 \cdot \log_{10} \left(\frac{d}{d_0}\right)$$

$$\log_{10} \left(\frac{d}{d_0}\right) = 1$$

$$d = 10 d_0$$

Problem 3

Path Loss from A to B

$$PL(20) = 30 + 25 \cdot \log_{10}(20)$$

$$So, PL(20) = 62.525db$$

Path Loss from B to C

$$PL(30) = 30 + 25\log_{10}(30)$$

$$PL(30) = 66.9275 db$$

Now we calculate the received or the transmission which will be the throughput

$$PL = 10 \log_{10} \left(\frac{Ps}{Pr} \right)$$

$$PL(20) = 10 \log_{10} \left(\frac{29.9}{Pr} \right)$$

So,
$$62.525 = 10 \log_{10} \left(\frac{29.9}{pr} \right)$$

$$6.25 = \log_{10}(29.9) - \log_{10}(Pr)$$

$$Pr(20) = 0.49 db$$

Now
$$f$$
 ind $B - > C$

Now f ind Pr (30)

$$PL(30) = 10 \log_{10}(29.9) - \log_{10}(PR)$$

$$So, Pr(30) = 0.507 db$$

So from A->B we get 0.49 (depending on time 49% active) and from B->C we get 0.507 (50.7% active)

Problem 4 : Github Repo name: arselan

- 4.1
- o Graphs on Github.
- In the DoRxCalc , I combined the DoRxCalc methods of both RandomPropagationLossModel and LogDistancePropagationLossModel.
- 4.2
- As path loss exponent increases, the received power decreases. (Without considering the Absolute value)
- 4.3: Readings from the graph
 - o (i) 200m
 - o (ii) 200m
 - o (iii) 250m
 - o (iv) 200m

Question 5

- So for this question I used the book reference: Wireless Networks, Nitin Vaidya
- For the error correction I used the following approach as described :
 - If at most one bit error then transmitted. If more than one bit error than not transmitted.
 - Calculate data based on min errors
 - **0110 111-> 0010**
 - **1010 101-> 1000**
 - **1110 011-> 1100**
 - **1110 110-> 1110**
 - **1111 100-> 1110**

Citations

- Wireless Networks, Nitin Vaidya
- Lecture Slides
- Piazza help. (Professor Mahima S. and Wei)
- Ns3- RandomPropagationLossModel and LogDistancePropagationLossModel