Funciones Trascendentes: Parte II

R.M.

UASD

2 de septiembre de 2025

R.M. UASD
Funciones Trascendentes II 1 / 28

Contenido

- 1 Funciones Trigonométricas Inversas
- 2 Identidades y Razones Trigonométricas
- 3 Derivadas de Funciones Trigonométricas Inversas
- 4 Integrales que resultan en F. T. Inversas
- **5** Funciones Hiperbólicas
- **6** Funciones Hiperbólicas Inversas

R M

- 1 Funciones Trigonométricas Inversas
- 2 Identidades y Razones Trigonométricas

Función Arcoseno (
$$y = \arcsin x = sen^{-1}x$$
)

Es la inversa de $f(x) = \sin x$ restringida al dominio $[-\pi/2, \pi/2]$.

R.M. UASD

Función Arcoseno ($y = \arcsin x = sen^{-1}x$)

Es la inversa de $f(x) = \sin x$ restringida al dominio $[-\pi/2, \pi/2]$.

- Dominio: [-1,1]
- Rango: $[-\pi/2, \pi/2]$

Función Arcocoseno ($y = \arccos x = \cos^{-1} x$)

Función Arcocoseno ($y = \arccos x = \cos^{-1}x$)

Es la inversa de $f(x) = \cos x$ restringida al dominio $[0, \pi]$.

- Dominio: [-1,1]
- Rango: $[0, \pi]$

Función Arcotangente $(y = \arctan x = tan^{-1}x)$

Función Arcotangente ($y = \arctan x = tan^{-1}x$)

Es la inversa de $f(x) = \tan x$ restringida al dominio $(-\pi/2, \pi/2)$.

Función Arcotangente ($y = \arctan x = tan^{-1}x$)

Es la inversa de $f(x) = \tan x$ restringida al dominio $(-\pi/2, \pi/2)$.

- Dominio: $(-\infty, \infty)$
- Rango: $(-\pi/2, \pi/2)$

Función Arcocosecante ($y = csc^{-1}x$)

Función Arcotangente ($y = \arctan x = tan^{-1}x$)

Es la inversa de $f(x) = \tan x$ restringida al dominio $(-\pi/2, \pi/2)$.

- Dominio: $(-\infty, \infty)$
- Rango: $(-\pi/2, \pi/2)$

Función Arcocosecante ($y = csc^{-1}x$)

Arcosecante ($y = \operatorname{arcsec} x$)

- Dominio: $(-\infty, -1] \cup [1, \infty)$
- Rango: $[0, \pi/2) \cup (\pi/2, \pi]$

Arcocotangente $(y = \operatorname{arccot} x)$

- Dominio: $(-\infty, \infty)$
- Rango: $(0,\pi)$

2 Identidades y Razones Trigonométricas

Identidades Pitagóricas

A partir del círculo unitario y el Teorema de Pitágoras, se establecen las siguientes identidades fundamentales:

R.M.

A partir del círculo unitario y el Teorema de Pitágoras, se establecen las siguientes identidades fundamentales:

•
$$\sin^2 \theta + \cos^2 \theta = 1$$

A partir del círculo unitario y el Teorema de Pitágoras, se establecen las siguientes identidades fundamentales:

- $\sin^2 \theta + \cos^2 \theta = 1$
- $tan^2 \theta + 1 = sec^2 \theta$

Identidades Pitagóricas

A partir del círculo unitario y el Teorema de Pitágoras, se establecen las siguientes identidades fundamentales:

- $\sin^2 \theta + \cos^2 \theta = 1$
- $tan^2 \theta + 1 = sec^2 \theta$
- $1 + \cot^2 \theta = \csc^2 \theta$

Identidades Pitag<u>óricas</u>

A partir del círculo unitario y el Teorema de Pitágoras, se establecen las siguientes identidades fundamentales:

- $\sin^2 \theta + \cos^2 \theta = 1$
- $tan^2 \theta + 1 = sec^2 \theta$
- $1 + \cot^2 \theta = \csc^2 \theta$

Estas identidades son cruciales para la demostración de derivadas e integrales de funciones trigonométricas v sus inversas.

Funciones Trascendentes II

R M

Razones Trigonométricas para Ángulos Notables

Para $\pi/4$ (45°): Triángulo isósceles.

$$\sin(\pi/4) = \frac{\sqrt{2}}{2}$$
$$\cos(\pi/4) = \frac{\sqrt{2}}{2}$$

Para $\pi/6$ (30°) y $\pi/3$ (60°): Triángulo equilátero.

$$\sin(\pi/3) = \frac{\sqrt{3}}{2}, \cos(\pi/3) = \frac{1}{2}$$

 $\sin(\pi/6) = \frac{1}{2}, \cos(\pi/6) = \frac{\sqrt{3}}{2}$

- ¶ Funciones Trigonométricas Inversas
- 2 Identidades y Razones Trigonométricas
- 3 Derivadas de Funciones Trigonométricas Inversas

11 / 28

Fórmulas y Demostración

Theorem (Derivada de $\arcsin x$)

Si
$$f(x) = \arcsin x$$
, entonces $f'(x) = \frac{1}{\sqrt{1-x^2}}$.

R.M.

Demostración.

Sea $y = \arcsin x$. Por definición, $\sin y = x$ para $y \in [-\pi/2, \pi/2]$. Derivando implícitamente respecto a x:

$$\frac{d}{dx}(\sin y) = \frac{d}{dx}(x) \implies \cos y \cdot \frac{dy}{dx} = 1$$

Fórmulas y Demostración

Demostración.

Sea $y = \arcsin x$. Por definición, $\sin y = x$ para $y \in [-\pi/2, \pi/2]$. Derivando implícitamente respecto a x:

$$\frac{d}{dx}(\sin y) = \frac{d}{dx}(x) \implies \cos y \cdot \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{\cos y}$$

Usando la identidad $\sin^2 y + \cos^2 y = 1$, tenemos $\cos y = \sqrt{1 - \sin^2 y}$. Como $y \in [-\pi/2, \pi/2]$, $\cos y > 0$, por lo que tomamos la raíz positiva.

$$\frac{dy}{dx} = \frac{1}{\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{1-x^2}}$$

R M

Fórmulas de Derivadas

$$\frac{d}{dx}\big(\operatorname{arcsin}(x)\big) = \frac{1}{\sqrt{1-x^2}}, \quad |x| < 1$$

$$\frac{d}{dx}\big(\operatorname{arccos}(x)\big) = -\frac{1}{\sqrt{1-x^2}}, \quad |x| < 1$$

$$\frac{d}{dx}\big(\operatorname{arctan}(x)\big) = \frac{1}{1+x^2}, \quad x \in \mathbb{R}$$

$$\frac{d}{dx}\big(\operatorname{arccot}(x)\big) = -\frac{1}{1+x^2}, \quad x \in \mathbb{R}$$

$$\frac{d}{dx}\big(\operatorname{arcsec}(x)\big) = \frac{1}{|x|\sqrt{x^2-1}}, \quad |x| > 1$$

$$\frac{d}{dx}\big(\operatorname{arccsc}(x)\big) = -\frac{1}{|x|\sqrt{x^2-1}}, \quad |x| > 1$$

Ejemplos de Derivación

1 Hallar la derivada de $f(x) = \arctan(e^{2x})$.

R.M. UASD

Ejemplos de Derivación

1 Hallar la derivada de $f(x) = \arctan(e^{2x})$.

Solution

Aplicando la regla de la cadena, sea $u = e^{2x}$.

R.M. UASE

1 Hallar la derivada de $f(x) = \arctan(e^{2x})$.

Solution

Aplicando la regla de la cadena, sea $u = e^{2x}$.

$$f'(x) = \frac{1}{1 + (e^{2x})^2} \cdot \frac{d}{dx}(e^{2x}) = \frac{2e^{2x}}{1 + e^{4x}}$$

R.M.

1 Hallar la derivada de $f(x) = \arctan(e^{2x})$.

Solution

Aplicando la regla de la cadena, sea $u = e^{2x}$.

$$f'(x) = \frac{1}{1 + (e^{2x})^2} \cdot \frac{d}{dx}(e^{2x}) = \frac{2e^{2x}}{1 + e^{4x}}$$

2 Derivar $g(x) = x^3 \arcsin(x)$.

Solution

Aplicando la regla de la cadena, sea $u = e^{2x}$.

$$f'(x) = \frac{1}{1 + (e^{2x})^2} \cdot \frac{d}{dx}(e^{2x}) = \frac{2e^{2x}}{1 + e^{4x}}$$

2 Derivar $g(x) = x^3 \arcsin(x)$.

Solution

Aplicando la regla del producto:

$$g'(x) = (3x^2)\arcsin(x) + x^3\left(\frac{1}{\sqrt{1-x^2}}\right) = 3x^2\arcsin(x) + \frac{x^3}{\sqrt{1-x^2}}$$

R M

Calcular la derivada de $h(x) = \arccos(\sqrt{x})$.

Solution

$$h'(x) = -\frac{1}{\sqrt{1 - (\sqrt{x})^2}} \cdot \frac{d}{dx}(\sqrt{x}) = -\frac{1}{\sqrt{1 - x}} \cdot \frac{1}{2\sqrt{x}} = -\frac{1}{2\sqrt{x(1 - x)}}$$

- 2 Identidades y Razones Trigonométricas
- 4 Integrales que resultan en F. T. Inversas

A partir de las reglas de derivación, se obtienen las siguientes integrales indefinidas:

•
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin\left(\frac{u}{a}\right) + C$$

•
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan\left(\frac{u}{a}\right) + C$$

•
$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \operatorname{arcsec}\left(\frac{|u|}{a}\right) + C$$

• Calcular $\int \frac{dx}{\sqrt{25-x^2}}$.

Solution

Aquí, a = 5, u = x. La integral es directa:

$$\int \frac{dx}{\sqrt{5^2 - x^2}} = \arcsin\left(\frac{x}{5}\right) + C$$

$$2 Evaluar \int \frac{dx}{7 + x^2}.$$

Solution

Tenemos $a^2 = 7 \implies a = \sqrt{7} \ y \ u = x$.

$$\int \frac{dx}{(\sqrt{7})^2 + x^2} = \frac{1}{\sqrt{7}} \arctan\left(\frac{x}{\sqrt{7}}\right) + C$$

R.M.

UASD

- ¶ Funciones Trigonométricas Inversas
- 2 Identidades y Razones Trigonométricas

- **6** Funciones Hiperbólicas

Definiciones y Gráficas

Se definen en términos de la función exponencial:

Seno y Coseno Hiperbólico

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

Tangente Hiperbólica

$$tanh x = \frac{\sinh x}{\cosh x}$$

Identidad Hiperbólica Fundamental

$$\cosh^2 x - \sinh^2 x = 1$$

A diferencia de la identidad pitagórica, esta involucra una resta.

Derivadas de Funciones Hiperbólicas

- $\frac{d}{dx}(\sinh x) = \cosh x$
- $\frac{d}{dx}(\cosh x) = \sinh x$ (Nótese la ausencia de signo negativo)
- $\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$

R M

Ejemplos de Derivación Hiperbólica

$$f(x) = \cosh(x^2 + 1) \implies f'(x) = \sinh(x^2 + 1) \cdot 2x$$

2
$$g(x) = \ln(\sinh x) \implies g'(x) = \frac{1}{\sinh x} \cdot \cosh x = \coth x$$

$$h(x) = \tanh(\sqrt{x}) \implies h'(x) = \mathrm{sech}^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}$$

$$4 k(x) = x \sinh x - \cosh x \implies k'(x) = (1 \cdot \sinh x + x \cosh x) - \sinh x = x \cosh x$$

- ¶ Funciones Trigonométricas Inversas
- 2 Identidades y Razones Trigonométricas

- 6 Funciones Hiperbólicas Inversas

Las funciones hiperbólicas inversas pueden expresarse en términos de logaritmos naturales, c

- arsinh $x = \ln(x + \sqrt{x^2 + 1})$
- $\operatorname{arcosh} x = \ln(x + \sqrt{x^2 1}), \quad x > 1$
- $\operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), \quad |x| < 1$

Demostración para arsinh x

Si $y = \operatorname{arsinh} x$, entonces $x = \sinh y = \frac{e^y - e^{-y}}{2}$. Multiplicando por $2e^y$ se obtiene $2xe^y = e^{2y} - 1$, lo cual es una ecuación cuadrática en e^y : $(e^y)^2 - 2x(e^y) - 1 = 0$.

R M

Las funciones hiperbólicas inversas pueden expresarse en términos de logaritmos naturales. c

- arsinh $x = \ln(x + \sqrt{x^2 + 1})$
- $\operatorname{arcosh} x = \ln(x + \sqrt{x^2 1}), \quad x \ge 1$
- $\operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), \quad |x| < 1$

Demostración para arsinh x

Si $y=\operatorname{arsinh} x$, entonces $x=\sinh y=\frac{e^y-e^{-y}}{2}$. Multiplicando por $2e^y$ se obtiene $2xe^y=e^{2y}-1$, lo cual es una ecuación cuadrática en e^y : $(e^y)^2-2x(e^y)-1=0$. La solución para e^y es $e^y=\frac{2x\pm\sqrt{4x^2+4}}{2}=x\pm\sqrt{x^2+1}$. Como $e^y>0$, se elige la raíz positiva: $e^y=x+\sqrt{x^2+1}$.

R.M. UASD

Las funciones hiperbólicas inversas pueden expresarse en términos de logaritmos naturales. c

- arsinh $x = \ln(x + \sqrt{x^2 + 1})$
- $\operatorname{arcosh} x = \ln(x + \sqrt{x^2 1}), \quad x > 1$
- $\operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), \quad |x| < 1$

Demostración para arsinh x

Si $y = \operatorname{arsinh} x$, entonces $x = \sinh y = \frac{e^y - e^{-y}}{2}$. Multiplicando por $2e^y$ se obtiene $2xe^y = e^{2y} - 1$, lo cual es una ecuación cuadrática en e^y : $(e^y)^2 - 2x(e^y) - 1 = 0$. La solución para e^y es $e^y = \frac{2x \pm \sqrt{4x^2 + 4}}{2} = x \pm \sqrt{x^2 + 1}$. Como $e^y > 0$, se elige la raíz positiva: $e^y = x + \sqrt{x^2 + 1}$. Aplicando logaritmo natural: $y = \ln(x + \sqrt{x^2 + 1})$.

Derivadas y Gráficas de F. H. Inversas

$$\frac{d}{dx}(\operatorname{arsinh} x) = \frac{1}{\sqrt{x^2+1}}$$

•
$$\frac{d}{dx}(\operatorname{arsinh} x) = \frac{1}{\sqrt{x^2 + 1}}$$

• $\frac{d}{dx}(\operatorname{arcosh} x) = \frac{1}{\sqrt{x^2 - 1}}$

•
$$\frac{d}{dx}(\operatorname{artanh} x) = \frac{1}{1-x^2}$$

$$f'(x) = \frac{1}{\sqrt{(5x)^2 + 1}} \cdot 5 = \frac{5}{\sqrt{25x^2 + 1}}$$

 $g(x) = \operatorname{arcosh}(\sec x)$, para $\tan x > 0$

$$g'(x) = \frac{1}{\sqrt{\sec^2 x - 1}} \cdot (\sec x \tan x) = \frac{\sec x \tan x}{\sqrt{\tan^2 x}} = \sec x$$

3 $h(x) = \operatorname{artanh}(\cos x)$

$$h'(x) = \frac{1}{1 - \cos^2 x} \cdot (-\sin x) = \frac{-\sin x}{\sin^2 x} = -\csc x$$

4 $k(x) = x \operatorname{arsinh}(x) - \sqrt{1 + x^2}$

$$k'(x) = \left(\operatorname{arsinh}(x) + x \frac{1}{\sqrt{x^2 + 1}}\right) - \frac{2x}{2\sqrt{1 + x^2}} = \operatorname{arsinh}(x)$$

RM U

Integrales que resultan en F. H. Inversas

Las fórmulas de derivación nos llevan a las siguientes integrales:

•
$$\int \frac{du}{\sqrt{u^2 + a^2}} = \operatorname{arsinh}\left(\frac{u}{a}\right) + C = \operatorname{In}\left(u + \sqrt{u^2 + a^2}\right) + C$$

•
$$\int \frac{du}{\sqrt{u^2 - a^2}} = \operatorname{arcosh}\left(\frac{u}{a}\right) + C = \operatorname{In}\left(u + \sqrt{u^2 - a^2}\right) + C$$

•
$$\int \frac{du}{a^2 - u^2} = \frac{1}{a} \operatorname{artanh} \left(\frac{u}{a} \right) + C$$

Estas fórmulas son particularmente útiles en la integración por sustitución trigonométrica y en la resolución de ecuaciones diferenciales.

R.M.
Funciones Trascendentes II

UASD