Supplementary materials for $Small\ sample\ methods\ for$ $cluster\ robust\ variance\ estimation\ and\ hypothesis\ testing\ in$ $fixed\ effects\ models$

July 10, 2016

S1 Proof of Theorem 1

The Moore-Penrose inverse of \mathbf{B}_i can be computed from its eigen-decomposition. Let $b \leq n_i$ denote the rank of \mathbf{B}_i . Let Λ be the $b \times b$ diagonal matrix of the positive eigenvalues of \mathbf{B}_i and \mathbf{V} be the $n_i \times b$ matrix of corresponding eigen-vectors, so that $\mathbf{B}_i = \mathbf{V}\Lambda\mathbf{V}'$. Then $\mathbf{B}_i^+ = \mathbf{V}\Lambda^{-1}\mathbf{V}'$ and $\mathbf{B}_i^{+1/2} = \mathbf{V}\Lambda^{-1/2}\mathbf{V}'$. Now, observe that

$$\ddot{\mathbf{R}}_{i}'\mathbf{W}_{i}\mathbf{A}_{i}\left(\mathbf{I}-\mathbf{H}_{\mathbf{X}}\right)_{i}\boldsymbol{\Phi}\left(\mathbf{I}-\mathbf{H}_{\mathbf{X}}\right)_{i}'\mathbf{A}_{i}'\mathbf{W}_{i}\ddot{\mathbf{R}}_{i} = \ddot{\mathbf{R}}_{i}'\mathbf{W}_{i}\mathbf{D}_{i}\mathbf{B}_{i}^{+1/2}\mathbf{B}_{i}\mathbf{B}_{i}^{+1/2}\mathbf{D}_{i}'\mathbf{W}_{i}\ddot{\mathbf{R}}_{i} = \ddot{\mathbf{R}}_{i}'\mathbf{W}_{i}\mathbf{D}_{i}\mathbf{V}\mathbf{V}'\mathbf{D}_{i}'\mathbf{W}_{i}\ddot{\mathbf{R}}_{i}.$$

$$(1)$$

Because \mathbf{D}_i , and $\mathbf{\Phi}$ are positive definite and \mathbf{B}_i is symmetric, the eigen-vectors \mathbf{V} define an orthonormal basis for the column span of $(\mathbf{I} - \mathbf{H}_{\mathbf{X}})_i$. We now show that $\ddot{\mathbf{U}}_i$ is in the column space of $(\mathbf{I} - \mathbf{H}_{\mathbf{X}})_i$. Let \mathbf{Z}_i be an $n_i \times (r+s)$ matrix of zeros. Let $\mathbf{Z}_k = -\ddot{\mathbf{U}}_k \mathbf{L}^{-1} \mathbf{M}_{\ddot{\mathbf{U}}}^{-1}$, for $k \neq i$ and take $\mathbf{Z} = (\mathbf{Z}_1', ..., \mathbf{Z}_m')'$. Now observe that $(\mathbf{I} - \mathbf{H}_{\mathbf{T}}) \mathbf{Z} = \mathbf{Z}$. It follows that

$$\begin{split} \left(\mathbf{I} - \mathbf{H}_{\mathbf{X}}\right)_i \mathbf{Z} &= \left(\mathbf{I} - \mathbf{H}_{\ddot{\mathbf{U}}}\right)_i \left(\mathbf{I} - \mathbf{H}_{\mathbf{T}}\right) \mathbf{Z} = \left(\mathbf{I} - \mathbf{H}_{\ddot{\mathbf{U}}}\right)_i \mathbf{Z} \\ &= \mathbf{Z}_i - \ddot{\mathbf{U}}_i \mathbf{M}_{\ddot{\mathbf{U}}} \sum_{k=1}^m \ddot{\mathbf{U}}_k' \mathbf{W}_k \mathbf{Z}_k \\ &= \ddot{\mathbf{U}}_i \mathbf{M}_{\ddot{\mathbf{U}}} \left(\sum_{k \neq i} \ddot{\mathbf{U}}_k' \mathbf{W}_k \ddot{\mathbf{U}}\right) \mathbf{L}^{-1} \mathbf{M}_{\ddot{\mathbf{U}}}^{-1} = \ddot{\mathbf{U}}_i. \end{split}$$

Thus, there exists an $N \times (r+s)$ matrix \mathbf{Z} such that $(\mathbf{I} - \mathbf{H}_{\ddot{\mathbf{X}}})_i \mathbf{Z} = \ddot{\mathbf{U}}_i$, i.e., $\ddot{\mathbf{U}}_i$ is in the column span of $(\mathbf{I} - \mathbf{H}_{\mathbf{X}})_i$. Because $\mathbf{D}_i \mathbf{W}_i$ is positive definite and $\ddot{\mathbf{R}}_i$ is a sub-matrix of $\ddot{\mathbf{U}}_i$, $\mathbf{D}_i \mathbf{W}_i \ddot{\mathbf{R}}_i$ is also in the column span of $(\mathbf{I} - \mathbf{H}_{\mathbf{X}})_i$. It follows that

$$\ddot{\mathbf{R}}_{i}^{\prime}\mathbf{W}_{i}\mathbf{D}_{i}\mathbf{V}\mathbf{V}^{\prime}\mathbf{D}_{i}^{\prime}\mathbf{W}_{i}\ddot{\mathbf{R}}_{i} = \ddot{\mathbf{R}}_{i}^{\prime}\mathbf{W}_{i}\mathbf{\Phi}_{i}\mathbf{W}_{i}\ddot{\mathbf{R}}_{i}. \tag{2}$$

Substituting (2) into (1) demonstrates that \mathbf{A}_i satisfies the generalized BRL criterion (Eq. 6 of the main paper).

Under the working model, the residuals from cluster i have mean $\mathbf{0}$ and variance

$$\operatorname{Var}\left(\ddot{\mathbf{e}}_{i}\right) = \left(\mathbf{I} - \mathbf{H}_{\mathbf{X}}\right)_{i} \mathbf{\Phi} \left(\mathbf{I} - \mathbf{H}_{\mathbf{X}}\right)_{i}',$$

It follows that

$$\begin{split} \mathbf{E}\left(\mathbf{V}^{CR2}\right) &= \mathbf{M}_{\mathbf{\ddot{R}}} \left[\sum_{i=1}^{m} \mathbf{\ddot{R}}_{i}^{\prime} \mathbf{W}_{i} \mathbf{A}_{i} \left(\mathbf{I} - \mathbf{H}_{\mathbf{X}} \right)_{i}^{\prime} \mathbf{\Phi} \left(\mathbf{I} - \mathbf{H}_{\mathbf{X}} \right)_{i}^{\prime} \mathbf{A}_{i} \mathbf{W}_{i} \mathbf{\ddot{R}}_{i} \right] \mathbf{M}_{\mathbf{\ddot{R}}} \\ &= \mathbf{M}_{\mathbf{\ddot{R}}} \left[\sum_{i=1}^{m} \mathbf{\ddot{R}}_{i}^{\prime} \mathbf{W}_{i} \mathbf{\Phi}_{i} \mathbf{W}_{i} \mathbf{\ddot{R}}_{i} \right] \mathbf{M}_{\mathbf{\ddot{R}}} \\ &= \mathrm{Var}\left(\hat{\boldsymbol{\beta}} \right) \end{split}$$

S2 Proof of Theorem 2

From the fact that $\ddot{\mathbf{U}}_{i}'\mathbf{W}_{i}\mathbf{T}_{i}=\mathbf{0}$ for i=1,...,m, it follows that

$$\begin{split} \mathbf{B}_{i} &= \mathbf{D}_{i} \left(\mathbf{I} - \mathbf{H}_{\ddot{\mathbf{U}}} \right)_{i} \left(\mathbf{I} - \mathbf{H}_{\mathbf{T}} \right) \mathbf{\Phi} \left(\mathbf{I} - \mathbf{H}_{\mathbf{T}} \right)' \left(\mathbf{I} - \mathbf{H}_{\ddot{\mathbf{U}}} \right)'_{i} \mathbf{D}'_{i} \\ &= \mathbf{D}_{i} \left(\mathbf{I} - \mathbf{H}_{\ddot{\mathbf{U}}} - \mathbf{H}_{\mathbf{T}} \right)_{i} \mathbf{\Phi} \left(\mathbf{I} - \mathbf{H}_{\ddot{\mathbf{U}}} - \mathbf{H}_{\mathbf{T}} \right)'_{i} \mathbf{D}'_{i} \\ &= \mathbf{D}_{i} \left(\mathbf{\Phi}_{i} - \ddot{\mathbf{U}}_{i} \mathbf{M}_{\ddot{\mathbf{U}}} \ddot{\mathbf{U}}'_{i} - \mathbf{T}_{i} \mathbf{M}_{\mathbf{T}} \mathbf{T}'_{i} \right) \mathbf{D}'_{i} \end{split}$$

and

$$\mathbf{B}_{i}^{+} = (\mathbf{D}_{i}^{\prime})^{-1} \left(\mathbf{\Phi}_{i} - \ddot{\mathbf{U}}_{i} \mathbf{M}_{\ddot{\mathbf{U}}} \ddot{\mathbf{U}}_{i}^{\prime} - \mathbf{T}_{i} \mathbf{M}_{\mathbf{T}} \mathbf{T}_{i}^{\prime} \right)^{+} \mathbf{D}_{i}^{-1}.$$
(3)

Let $\Psi_i = \left(\Phi_i - \ddot{\mathbf{U}}_i \mathbf{M}_{\ddot{\mathbf{U}}} \ddot{\mathbf{U}}_i'\right)^+$. Using a generalized Woodbury identity (Henderson and Searle, 1981),

$$\mathbf{\Psi}_i = \mathbf{W}_i + \mathbf{W}_i \ddot{\mathbf{U}}_i \mathbf{M}_{\ddot{\mathbf{U}}} \left(\mathbf{M}_{\ddot{\mathbf{U}}} - \mathbf{M}_{\ddot{\mathbf{U}}} \ddot{\mathbf{U}}_i' \mathbf{W}_i \ddot{\mathbf{U}}_i \mathbf{M}_{\ddot{\mathbf{U}}}
ight)^+ \mathbf{M}_{\ddot{\mathbf{U}}} \ddot{\mathbf{U}}_i' \mathbf{W}_i.$$

It follows that $\Psi_i \mathbf{T}_i = \mathbf{W}_i \mathbf{T}_i$. Another application of the generalized Woodbury identity gives

$$\begin{split} \left(\boldsymbol{\Phi}_{i} - \ddot{\mathbf{U}}_{i}\mathbf{M}_{\ddot{\mathbf{U}}}\ddot{\mathbf{U}}_{i}' - \mathbf{T}_{i}\mathbf{M}_{\mathbf{T}}\mathbf{T}_{i}'\right)^{+} &= \boldsymbol{\Psi}_{i} + \boldsymbol{\Psi}_{i}\mathbf{T}_{i}\mathbf{M}_{\mathbf{T}}\left(\mathbf{M}_{\mathbf{T}} - \mathbf{M}_{\mathbf{T}}\mathbf{T}_{i}'\boldsymbol{\Psi}_{i}\mathbf{T}_{i}\mathbf{M}_{\mathbf{T}}\right)^{+}\mathbf{M}_{\mathbf{T}}\mathbf{T}_{i}'\boldsymbol{\Psi}_{i} \\ &= \boldsymbol{\Psi}_{i} + \mathbf{W}_{i}\mathbf{T}_{i}\mathbf{M}_{\mathbf{T}}\left(\mathbf{M}_{\mathbf{T}} - \mathbf{M}_{\mathbf{T}}\mathbf{T}_{i}'\mathbf{W}_{i}\mathbf{T}_{i}\mathbf{M}_{\mathbf{T}}\right)^{+}\mathbf{M}_{\mathbf{T}}\mathbf{T}_{i}'\mathbf{W}_{i} \\ &= \boldsymbol{\Psi}_{i} \end{split}$$

The last equality follows from the fact that

$$\mathbf{T}_{i}\mathbf{M}_{\mathbf{T}}(\mathbf{M}_{\mathbf{T}} - \mathbf{M}_{\mathbf{T}}\mathbf{T}_{i}'\mathbf{W}_{i}\mathbf{T}_{i}\mathbf{M}_{\mathbf{T}})^{-}\mathbf{M}_{\mathbf{T}}\mathbf{T}_{i}' = \mathbf{0}$$

because the fixed effects are nested within clusters. Substituting into (3), we then have that $\mathbf{B}_i^+ = (\mathbf{D}_i')^{-1} \mathbf{\Psi}_i \mathbf{D}_i^{-1}$. But

$$\mathbf{\tilde{B}}_{i} = \mathbf{D}_{i} \left(\mathbf{I} - \mathbf{H}_{\ddot{\mathbf{U}}} \right)_{i}^{} \mathbf{\Phi} \left(\mathbf{I} - \mathbf{H}_{\ddot{\mathbf{U}}} \right)_{i}^{\prime} \mathbf{D}_{i}^{\prime} = \mathbf{D}_{i} \left(\mathbf{\Phi}_{i} - \ddot{\mathbf{U}}_{i} \mathbf{M}_{\ddot{\mathbf{U}}} \ddot{\mathbf{U}}_{i}^{\prime} \right) \mathbf{D}_{i}^{\prime} = \mathbf{D}_{i} \mathbf{\Psi}_{i}^{+} \mathbf{D}_{i}^{\prime},$$

and so $\mathbf{B}_{i}^{+} = \tilde{\mathbf{B}}_{i}^{+}$. It follows that $\mathbf{A}_{i} = \tilde{\mathbf{A}}_{i}$ for i = 1, ..., m.

S3 Basic difference-in-differences example

Consider a simple difference-in-differences design with m clusters and n=2 time periods. Suppose that the first m_0 clusters remain untreated in the second time period and the remaining $m_1 = m - m_0$ clusters are treated in the second time period. The basic difference-in-differences model for this design is then

$$y_{it} = \alpha_i + \beta_t + \delta T_{it} + e_{it}, \tag{4}$$

where $T_{i1} = 1$ for $i = m_0 + 1, ..., m$, $T_{it} = 0$ otherwise, and δ is the average treatment effect.

Estimating δ by OLS is exactly equivalent to taking first differences and then calculating the mean difference between treated and untreated clusters. Let $d_i = y_{i1} - y_{i0}$ for i = 1, ..., m, $\bar{d}_0 = \sum_{i=1}^{m_0} d_i/m_0$, and $\bar{d}_1 = \sum_{i=m_0+1}^m d_i/m_1$. Then $\hat{\delta} = \bar{d}_1 - \bar{d}_0$. In this simplified representation of the model, it is clear that the null hypothesis $\delta = 0$ may be tested using a simple two-sample t-test on the difference scores, while allowing for unequal variances. The sampling variance of $\hat{\delta}$ can be estimated from the difference scores as

$$V_{\Delta} = \frac{1}{m_0(m_0 - 1)} \sum_{i=1}^{m_0} \left(d_i - \bar{d}_0 \right)^2 + \frac{1}{m_1(m_1 - 1)} \sum_{i=m_0 + 1}^{m} \left(d_i - \bar{d}_1 \right)^2.$$

Under a "working homosked asticity" model, the degrees of freedom corresponding to V_{Δ} are

$$\nu_{\Delta} = \frac{m^2(m_0 - 1)(m_1 - 1)}{m_0^2(m_0 - 1) + m_1^2(m_1 - 1)}$$

(Imbens and Kolesar, 2015).

We shall now consider the variance estimator and degrees of freedom generated by the CR2 correction as applied to the full difference-in-differences model (4), while estimating δ after absorbing the cluster- and period-specific effects. We use the "working independence" model for deriving the CR2 adjustment matrices and degrees of freedom. Following the notation of the main paper, this design has

$$\mathbf{R}_i = \begin{bmatrix} 0 \\ T_{i1} \end{bmatrix} \qquad \mathbf{S}_i = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \mathbf{T}_i = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} I(i=1) & I(i=2) & \cdots & I(i=m) \end{bmatrix}$$

After absorption, $\ddot{\mathbf{R}}_i = \left(T_{i1} - m_1/m\right)/2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}'$, $\mathbf{M}_{\ddot{\mathbf{R}}} = 2m/(m_0m_1)$, and

$$\mathbf{e}_{i} = \frac{d_{i} - \bar{d}_{0}}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 for $i = 1, ..., m_{0},$ $\mathbf{e}_{i} = \frac{d_{i} - \bar{d}_{1}}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, for $i = m_{0} + 1, ..., m$.

If the CR2 adjustment matrices are calculated based on the absorbed model only, then

$$\mathbf{A}_{i} = \left(\mathbf{I}_{i} - \ddot{\mathbf{R}}_{i} \mathbf{M}_{\ddot{\mathbf{R}}} \ddot{\mathbf{R}}_{i}'\right)^{+1/2} = \begin{bmatrix} 1 + a_{i} & -a_{i} \\ -a_{i} & 1 + a_{i} \end{bmatrix}, \tag{5}$$

where

$$\begin{aligned} a_i &= \frac{1}{2} \left(\sqrt{\frac{m_0 m}{m_0 m - m_1}} - 1 \right) \qquad i = 1, ..., m_0 \\ a_i &= \frac{1}{2} \left(\sqrt{\frac{m_1 m}{m_1 m - m_0}} - 1 \right) \qquad i = m_0 + 1, ..., m. \end{aligned}$$

Using these adjustment matrices yields the variance estimator

$$V_{\mathbf{\ddot{R}}} = \frac{1}{m_0(m_0 - m_1/m)} \sum_{i=1}^{m_0} \left(d_i - \bar{d}_0 \right)^2 + \frac{1}{m_1(m_1 - m_0/m)} \sum_{i=m_0+1}^{m} \left(d_i - \bar{d}_1 \right)^2,$$

which will be slightly smaller than V_{Δ} , with Satterthwaite degrees of freedom

$$\nu_{\ddot{\mathbf{R}}} = \frac{\left(\frac{m_0 - 1}{m_0(m_0 - m_1/m)} + \frac{m_1 - 1}{m_1(m_1 - m_0/m)}\right)^2}{\frac{1}{m_0(m_0 - m_1/m)} + \frac{1}{m_1(m_1 - m_0/m)}},$$

which will be slightly larger than ν_{Δ}

Now consider calculating the adjustment matrices using the full design matrix, as recommended in the paper. Theorem 2 implies that the adjustment matrices can be calculated from $\ddot{\mathbf{U}}$, ignoring the cluster-specific effects. We then have

$$\mathbf{A}_{i} = \begin{pmatrix} \mathbf{I}_{i} - \ddot{\mathbf{U}}_{i} \mathbf{M}_{\ddot{\mathbf{U}}} \ddot{\mathbf{U}}_{i}' \end{pmatrix}^{+1/2} = \begin{bmatrix} 1 + b_{i} & -b_{i} \\ -b_{i} & 1 + b_{i} \end{bmatrix}, \tag{6}$$

where

$$b_i = \frac{1}{2} \left(\sqrt{\frac{m_0}{m_0 - 1}} - 1 \right) \qquad i = 1, ..., m_0$$

$$b_i = \frac{1}{2} \left(\sqrt{\frac{m_1}{m_1 - 1}} - 1 \right) \qquad i = m_0 + 1, ..., m.$$

It can be verified that using these adjustment matrices yields a variance estimator that is exactly equivalent to V_{Δ} , with degrees of freedom equal to ν_{Δ} .

S4 Details of simulation study

This section provides further details regarding the design of the simulations reported in Section 4 of the main text. The simulations examined six distinct study designs. Outcomes are measured for n units (which may be individuals, as in a cluster-randomized or block-randomized design, or time-points, as in a difference-in-differences panel) in each of m clusters under one of three treatment conditions. Suppose that there are G sets of clusters, each of size m_g , where the clusters in each set have a distinct pattern of treatment assignments. Let n_{ghi} denote the number of units at which cluster i in group g is observed under condition h, for i = 1, ..., m, g = 1, ..., G, and h = 1, 2, 3. The following six designs were simulated:

- 1. A balanced, block-randomized design, with an un-equal allocation within each block. In the balanced design, the treatment allocation is identical for each block, with G = 1, $m_1 = m$, $n_{11i} = n/2$, $n_{12i} = n/3$, and $n_{13i} = n/6$.
- 2. An unbalanced, block-randomized design, with two different patterns of treatment allocation. Here, $G=2, m_1=m_2=m/2, n_{11i}=n/2, n_{12i}=n/3, n_{13i}=n/6, n_{21i}=n/3, n_{22i}=5n/9, \text{ and } n_{23i}=n/9.$
- 3. A balanced, cluster-randomized design, in which units are nested within clusters and an equal number of clusters are assigned to each treatment condition. Here, G = 3, $m_g = m/3$, and $n_{ghi} = n$ for g = h and zero otherwise.
- 4. An unbalanced, cluster-randomized design, in which units are nested within clusters but the number of clusters assigned to each condition is not equal. Here, G = 3; $m_1 = 0.5m$, $m_2 = 0.3m$, $m_3 = 0.2m$; and $n_{ghi} = n$ for g = h and zero otherwise.
- 5. A balanced difference-in-differences design, with two patterns of treatment allocation (G=2) and clusters allocated equally to each pattern $(m_1 = m_2 = m/2)$. Here, half of the clusters are observed under the first treatment condition only $(n_{11i} = n)$ and the remaining half are observed under all three conditions, with $n_{21i} = n/2$, $n_{22i} = n/3$, and $n_{23i} = n/6$.
- 6. An unbalanced difference-in-differences design, again with two patterns of treatment allocation (G = 2), but where $m_1 = 2m/3$ clusters are observed under the first treatment condition only $(n_{11i} = n)$ and the remaining $m_2 = m/3$ clusters are observed under all three conditions, with $n_{21i} = n/2$, $n_{22i} = n/3$, and $n_{23i} = n/6$.

S5 Additional simulation results

Figure S1: Rejection rates of ad hoc and AHT tests for $\alpha = .005$, by dimension of hypothesis (q) and sample size (m).

Figure S2: Rejection rates of ad hoc and AHT tests for $\alpha = .01$, by dimension of hypothesis (q) and sample size (m).

Figure S3: Rejection rates of ad hoc and AHT tests for $\alpha = .10$, by dimension of hypothesis (q) and sample size (m).

Figure S4: Rejection rates of ad hoc and AHT tests, by study design and dimension of hypothesis (q) for $\alpha = .005$ and m = 15. CR = cluster-randomized design; DD = difference-in-differences design; RB = randomized block design; B = balanced; U = unbalanced.

Figure S5: Rejection rates of ad hoc and AHT tests, by study design and dimension of hypothesis (q) for $\alpha = .01$ and m = 15. CR = cluster-randomized design; DD = difference-in-differences design; RB = randomized block design; B = balanced; U = unbalanced.

Figure S6: Rejection rates of ad hoc and AHT tests, by study design and dimension of hypothesis (q) for $\alpha = .05$ and m = 15. CR = cluster-randomized design; DD = difference-in-differences design; RB = randomized block design; B = balanced; U = unbalanced.

Figure S7: Rejection rates of ad hoc and AHT tests, by study design and dimension of hypothesis (q) for $\alpha = .10$ and m = 15. CR = cluster-randomized design; DD = difference-in-differences design; RB = randomized block design; B = balanced; U = unbalanced.

Figure S8: Rejection rates of ad hoc and AHT tests, by study design and dimension of hypothesis (q) for $\alpha = .005$ and m = 30. CR = cluster-randomized design; DD = difference-in-differences design; RB = randomized block design; B = balanced; U = unbalanced.

Figure S9: Rejection rates of ad hoc and AHT tests, by study design and dimension of hypothesis (q) for $\alpha = .01$ and m = 30. CR = cluster-randomized design; DD = difference-in-differences design; RB = randomized block design; B = balanced; U = unbalanced.

Figure S10: Rejection rates of ad hoc and AHT tests, by study design and dimension of hypothesis (q) for $\alpha = .05$ and m = 30. CR = cluster-randomized design; DD = difference-in-differences design; RB = randomized block design; B = balanced; U = unbalanced.

Figure S11: Rejection rates of ad hoc and AHT tests, by study design and dimension of hypothesis (q) for $\alpha = .10$ and m = 30. CR = cluster-randomized design; DD = difference-in-differences design; RB = randomized block design; B = balanced; U = unbalanced.

Figure S12: Rejection rates of ad hoc and AHT tests, by study design and dimension of hypothesis (q) for $\alpha = .005$ and m = 50. CR = cluster-randomized design; DD = difference-in-differences design; RB = randomized block design; B = balanced; U = unbalanced.

Figure S13: Rejection rates of ad hoc and AHT tests, by study design and dimension of hypothesis (q) for $\alpha = .01$ and m = 50. CR = cluster-randomized design; DD = difference-in-differences design; RB = randomized block design; B = balanced; U = unbalanced.

Figure S14: Rejection rates of ad hoc and AHT tests, by study design and dimension of hypothesis (q) for $\alpha = .05$ and m = 50. CR = cluster-randomized design; DD = difference-in-differences design; RB = randomized block design; B = balanced; U = unbalanced.

Figure S15: Rejection rates of ad hoc and AHT tests, by study design and dimension of hypothesis (q) for $\alpha = .10$ and m = 50. CR = cluster-randomized design; DD = difference-in-differences design; RB = randomized block design; B = balanced; U = unbalanced.

Figure S16: Rejection rates of CR2 AHT test, by treatment effect variance and intra-class correlation for $\alpha = .005$.

Figure S17: Rejection rates of CR2 AHT test, by treatment effect variance and intra-class correlation for $\alpha = .01$.

Figure S18: Rejection rates of CR2 AHT test, by treatment effect variance and intra-class correlation for $\alpha = .05$.

Figure S19: Rejection rates of CR2 AHT test, by treatment effect variance and intra-class correlation for $\alpha = .10$.

References

Henderson, H. V. and Searle, S. R. (1981), 'On deriving the inverse of a sum of matrices', *Siam Review* **23**(1), 53–60.

Imbens, G. W. and Kolesar, M. (2015), Robust Standard Errors in Small Samples: Some Practical Advice. URL: https://www.princeton.edu/mkolesar/papers/small-robust.pdf