Section 1.3: Vector Equations

- A matrix with only one column is called a **column vector**, or simply a **vector**.
- An example of a vector with two entries, where w_1 and w_2 are any real numbers, is:

$$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

- The set of all vectors with 2 entries is denoted by \mathbb{R}^2 .
- The \mathbb{R} stands for the real numbers that appear as entries in the vector, and the exponent 2 indicates that each vector contains 2 entries.
- Two vectors in \mathbb{R}^2 are equal if and only if their corresponding entries are equal.
- Given two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 , their **sum** is the vector $\mathbf{u} + \mathbf{v}$ obtained by adding the corresponding entries of \mathbf{u} and \mathbf{v} .
- Given a vector \mathbf{u} and a real number \mathbf{c} , the <u>scalar multiplication</u> of \mathbf{u} by \mathbf{c} is the vector $\mathbf{c}\mathbf{u}$ obtained by multiplying each entry in \mathbf{u} by \mathbf{c} .
- Consider a rectangular coordinate system in the plane. Because each point in the plane is determined by an ordered pair of numbers, we can identify a geometric point (a, b) with the column vector $\begin{bmatrix} a \\ b \end{bmatrix}$.
- We may regard \mathbb{R}^2 as the set of all points in the plane
- The vector whose entries are all zero is called the **<u>zero vector</u>** and is denoted by **0**.
- For all \mathbf{u} , \mathbf{v} , \mathbf{w} , in \mathbb{R}^2 and scalars c and d:
 - 1. u + v = v + u
 - 2. (u+v) + w = u + (v+w)
 - 3. u + 0 = 0 + u = u
 - 4. u + (-u) = 0
 - 5. c(u+v) = cu + cv
 - 6. (c+d)u = cu + du
 - 7. c(du) = (cd)u
 - 8. 1u = u
- The vector $y = c_1v_1 + \cdots + c_pv_p$ is called a <u>linear combination</u>.
- A vector Equation

$$x_1a_1 + \dots + x_na_n = b$$

has the same solution set as the linear system whose augmented matrix is

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n & b \end{bmatrix}$$

• If v_1, \ldots, v_p are in \mathbb{R}^2 , then the set of all linear combinations of v_1, \ldots, v_p is denoted by $Span\{v_1, \ldots, v_p\}$ and is called the **subset of** \mathbb{R}^2 **spanned by** v_1, \ldots, v_p .

CALU Fall 2021 RDK