Информационные технологии. Лекция 06

Студент группы 2305 Макурин Александр 27 марта 2023

$$t_{\text{np.p.}} = 2\alpha t_{\alpha} + \beta t_{\beta} + \varepsilon$$

 $t_{\text{пр.р.}}$ — общее время принятия решения. α , β — коэффициенты сложности. t_{α} — время доставки сигнала. t_{β} — время принятия решения. ε — время работы манипулятора (механики).

Можно представить работу КФС делиберативной архитектуры в виде следующей схемы:

ЛВУ — локальное вычислительное устройство — на нём происходит обработка данных с сенсоров. СУ — система управления.

$$t_{\alpha} = \alpha' t_{\mathrm{JIBY}_{\alpha}} + \alpha'' t_{\mathrm{CY}_{\alpha}}$$

$$t_{\beta} = \alpha' t_{\mathrm{JIBY}_{\beta}} + \alpha'' t_{\mathrm{CY}_{\beta}}$$

При $\Delta t = \mathrm{const}$ возможен следующий переход (от верхнего к нижнему):

В Gazebo время идёт как на верхнем графике: $\Delta t = \mathrm{const.}$

На нижнем графике, очевидно, $\Delta t \neq {\rm const.}$ Такой случай называется дискретно-событийным моделированием.

Когда $\lim t_{\text{пр.р.}} < \Delta t$ — всё хорошо. Но в идеальном мире $\Delta t \to 0$ ($\overline{\Delta t} \to 0$).

Возможен обратный переход от дискретно-событийного моделирования к дискретному по времени посредством разделения участка между двумя событиями на более мелкие:

$$\overline{\Delta t} = \text{const}, \ \overline{\Delta t} < \Delta t, \ \Delta t = t_1 - t_0$$

 Δt нужно выбрать максимально малым.

В реальности: $\lim t_{\text{пр.р.}} \geq \Delta t$.

$$\widetilde{f}(S^t, x_i, \{S^{t-1}\}) = \overline{f}(S^{t+\varepsilon}...) \to S^t$$

Необходимо разработать систему, стабилизирующуюся ещё на ЛВУ — т. е. способную принимать локальные решения:

$$E\overline{f}^{t+\varepsilon_1},...,\overline{f}^{t+\varepsilon_k} = ES^t$$

E — математическое ожидание.

Гипотеза: можно взять такую Δt , что поведение состояния системы на отрезке можно будет представить линейной функцией.

Фильтр Калмана:

• Предсказание:

1. Локализация: $S^{t-} = \alpha_1 S^{t-1} + \alpha_2 U^{t-1}$

2. GPS: $p^{t-} = \beta p^{t-1} \beta^T + \Omega$

 S^{t-} — прогнозируемое состояние системы. p^{t-} — анализ состояния. $\alpha_1, \alpha_2, \beta$ — гиперпараметры (прошлых состояний среды и внешних воздействий). Ω — белый Гауссовский шум.

• Корректировка:

3.
$$K^t = p^{t-}H^T(Hp^{t-}H^T + R)^{-1}$$

4.
$$S^t = S^{t-} + K^t (A^t - HS_t^-)$$

5.
$$p^t = (I - K^t H)p^{t-1}$$

H — матрица отношений измеренного и реального состояний $\frac{S}{p}$. Чем меньше, тем лучше. R — шум (влияние одного параметра на другие). Позволяет объединить данные с разных датчиков. A^t — внешние данные. Если A^t — B^t — B^t 0, то состояние зависит только от внутреннего состояния системы. |H| = |S|.

Пример H:

Корреляция — зависимость одного столбца от другого.

$$\begin{split} &f(S^t, x, \{S^{t-1}\}) \\ &\overline{t_{\text{пр.р.}}} = \sum t_{\text{пр.р.}}^{\text{дат.}} + \varepsilon \\ &\overline{t_{\text{пр.р.}}} \rightarrow mint_{\text{пр.р.}}^{\text{дат.}} \end{split}$$

$$S_{e_i} = \cup I^{\text{\tiny AAT.}} + \nu$$

 $S_{e_i}^{\mbox{\tiny дат.1}} \cap S_{e_i}^{\mbox{\tiny дат.2}} = \emptyset \Rightarrow$ датчики друг с другом не контактируют

 βt_{β} можно разбить на t_{est} (время интеллектуального анализа данных) и t_f (время формирования плана).

Взаимодействие двух систем:

В более тривиальном случае (марсоход/типичный беспилотник):

