

Ch 01. DBMS 개요와 MariaDB 소개

이것이 MariaDB다

Contents

❖핵심 개념

- ■데이터베이스 DBMS □ □ □ □

- ■SQL □ □ □ □
- ■MariaDB □ □

1.1.1 데이터 베이스의 정의와 특징

- •데이터베이스□ □□

 - •
- 여러 사람이 공유하고 사용할 목적으로 통합 관리되는 데이터의 집합

1.1.1 데이터 베이스의 정의와 특징

■데이터베이스/ DBMS/ 사용자 / 응용프로그램의 관계

1.1.1 데이터 베이스의 정의와 특징

■많이 쓰이는 DBMS

DBMS	제작사	운영체제	최신 버전 (2019년 초 기준)	기타
MariaDB	MariaDB	Unix, Linux, Windows	10.3/10.4	오픈 소스(무료)
MySQL	Oracle	Unix, Linux, Windows, Mac	8.0	오픈 소스(무료), 상용
PostgreSQL	PostgreSQL	Unix, Linux, Windows, Mac	11	오픈 소스(무료)
Oracle	Oracle	Unix, Linux, Windows	18c	상용 시장 점유율 1위
SQL Server	Microsoft	Windows	2017	
DB2	IBM	Unix, Linux, Windows	10	메인프레임 시장 점유율 1위
Access	Microsoft	Windows	2017	PC용
SQLite	SQLite	Android, iOS	3.x	모바일 전용, 오픈 소스(무료)

[표 1-1] 많이 사용되는 DBMS

- 1.1.1 데이터 베이스의 정의와 특징
 - ■데이터베이스 또는 DBMS의 특징
 - 데이터의 무결성
 - -오류가 없는 무결성 (Integrity)
 - » 데이터베이스 안의 데이터는 어떤 경로를 통해 들어왔든 데이터에 오류가 없어야 함
 - 제약 조건 (Constraint)을 통해 무결성 구현
 - » 반드시 있어야 하는 데이터
 - » 중복되지 않는 데이터

- 1.1.1 데이터 베이스의 정의와 특징
 - ■데이터베이스 또는 DBMS의 특징
 - 데이터의 독립성
 - 데이터 베이스와 응용 프로그램은 독립적인 관계여야 함
 - 데이터베이스의 크기 변경, 데이터 파일의 저장소를 변경한 경우에도 기존에 작성된 응용 프로그램은 전혀 영향을 받지 않아야 함

- 1.1.1 데이터 베이스의 정의와 특징
 - ■데이터베이스 또는 DBMS의 특징
 - · 보안 (Security)
 - 데이터베이스 안의 데이터에 대한 접근성
 - 데이터를 소유한 사람이나 데이터의 접근이 허가된 사람만이 데이터에 접근 가능
 - 접근할 때도 사용자의 계정에 따라 다른 권한
 - -최근 더욱 중요해진 데이터베이스의 이슈
 - » 고객 정보의 유출 사고가 빈번한 상황

- 1.1.1 데이터 베이스의 정의와 특징
 - ■데이터베이스 또는 DBMS의 특징
 - 데이터 중복의 최소화
 - -동일한 데이터의 중복 저장 방지함
 - 데이터베이스에 통합 -하나의 테이블로 저장/관리
 - 응용 프로그램 제작 및 수정 쉬워짐
 - -데이터 베이스 이용
 - » 통일된 방식으로 응용 프로그램 작성 가능
 - » 유지보수 쉬워짐

- 1.1.1 데이터 베이스의 정의와 특징
 - ■데이터베이스 또는 DBMS의 특징
 - 데이터 안전성 향상
 - DBMS가 자체적으로 제공하는 백업/ 복원 기능 이용해 데이터 손실 시 복원/복구

- 1.1.2 데이터 베이스의 발전
 - ■오프라인으로 관리
 - 종이에 수입/지출을 기록해왔던 과거의 데이터 형태
 - 현재에도 소수의 회사에서는 수기 기록 존재

- ■파일시스템의 사용
 - 메모장이나 엑셀의 형태 이용함 데이터 적으면 빠름
 - 응용 프로그램 하나 당 데이터 파일 하나 필요
 - 데이터 수정할 때 데이터 불일치 위험

- 1.1.2 데이터 베이스의 발전
 - 데이터베이스 관리 시스템 (DBMS)
 - DataBase Management System
 - 대량의 데이터를 보다 효율적으로 관리, 운영하기 위해 사용 (파일시스템의 단점 보완)
 - · 데이터의 집합인 '데이터베이스'를 잘 관리/운영하기 위한 시스템 또는 소프트웨어

- 1.1.2 데이터 베이스의 발전
 - 데이터베이스 관리 시스템 (DBMS)
 - SQL(Structured Query Language)
 - DBMS에 데이터를 구축하고 관리, 활용하기 위해 사용되는 언어
 - DBMS를 통해 중요한 정보들을 입력하고 관리, 추출하는데 사용함

1.1.3 DBMS 분류

- 계층형 DBMS란?
 - Hierarchical DBMS
 - 처음으로 나온 DBMS 개념 1960년대에 시작
 - 각 계층은 트리Tree 형태 1:N 관계
 - 문제점
 - 처음 구축한 이후 구조 변경이 까다로움
 - _접근의 유연성이 부족
 - » 주어진 조건에서는 매우 빠른 검색
 - » 임의의 검색 어려움

1.1.3 DBMS 분류

■ 계층형 DBMS의 구조

1.1.3 DBMS 분류

- 망형 DBMS란?
 - DBMSNetwork DBMS
 - 계층형 DBMS의 문제점 개선 -1970년대 시작
 - 1:1, 1:N, N:M (다대다) 관계 지원
 - 효과적이고 빠른 데이터 추출 가능
 - 복잡한 내부 포인터 사용
 - 프로그래머가 이 모든 구조를 이해해야만 프로그 램의 작성이 가능하다는 단점이 여전히 존재

1.1.3 DBMS 분류

■ 망형 DBMS의 구조

[그림 1-5] 망형 구조

1.1.3 DBMS 분류

- Relational DBMS, RDBMS
- 현재 사용되는 DBMS중 가장 많은 부분 차지
- 1969년 E.F.Codd가 수학 모델에 근거해 고안
- · RDBMS의 핵심 개념
 - 데이터베이스는 테이블이라 불리는 최소 단위로 구성
 - 테이블은 하나 이상의 열로 구성

1.1.3 DBMS 분류

■ 관계형 DBMS의 구조

[그림 1-6] 관계형 구조

1.1.3 DBMS 분류

- 관계형 DBMS에서 Table의 개념
 - RDBMS의 가장 기본적이고 중요한 구성
 - 데이터를 효율적으로 저장하기 위한 구조
 - 여러 개의 테이블로 나누어 저장
 - -불필요한 공간의 낭비 줄이고 데이터의 저장 효율 성 보장
 - 테이블의 관계 (Relation)
 - 기본 키 (Primary Key)와 외래 키(Foreign Key 를 사용해 관계 맺어줌
 - » 두 테이블을 부모와 자식의 관계로 묶어 줌
 - -추후에 SQL (Structured Query Language, 구조화된 질의 언어)의 조인 (JOIN) 기능 이용

1.1.3 DBMS 분류

- 관계형 DBMS의 장단점
 - RDBMS의 장점
 - 업무가 변화될 경우 쉽게 변화에 순응할 수 있는 구조
 - -유지보수 측면에서도 편리한 특징
 - 대용량 데이터의 관리와 데이터 무결성 (Integrity)의 보장
 - RDBMS의 단점
 - -시스템 자원을 많이 차지해 시스템이 전반적으로 느려짐
 - 하드웨어의 급속한 발전으로 인해 보완됨

- 1.1.4. SQL 개요
 - SQL의 특징
 - DBMS 제작 회사와 독립적
 - 제작 회사는 표준 SQL에 맞춰서 DBMS 개발
 - 표준 SQL은 대부분의 DBMS 제품에서 공통 호환
 - 다른 시스템으로 이식성이 좋음
 - SQL 표준은 DBMS간에 상호 호환성이 뛰어나 다른 시스템으로 이식이 쉬움

1.1.4. SQL 개요

- SQL의 특징
 - 표준이 계속 발전 중
 - -SQL-86, SQL-89, SQL-92, SQL:1999, SQL:2003, SQL:2008, SQL:2011...
 - -지금도 개선 중 (연구와 보완)
 - 대화식 언어
 - -SQL은 질의 후 바로 결과 얻는 대화식 언어
 - Cf) 기존 프로그래밍 언어의 경우 프로그램 작성, 컴파일 및 디버깅, 실행이라는 과정을 거쳐야만 그 결과를 얻음

- 1.1.4. SQL 개요
 - SQL의 특징
 - 분산형 클라이언트/서버 구조
 - _클라이언트에서 질의
 - -서버에서 그 질의를 받아 처리
 - 다시 클라이언트에게 전달하는 구조
 - 주의할 점
 - -모든 DBMS의 SQL 문이 완벽하게 동일하지 않음
 - 자신의 제품에 특화 시킨 SQL이 존재

- 1.1.4. SQL 개요
 - SQL의 특징
 - 특화된 SQL 과 표준화된 SQL

[그림 1-7] 표준 SQL과 각 회사의 SQL

- 1.2.1. MariaDB의 변천사
 - MariaDB의 개발까지..
 - MariaDB사에서 제작한 RDBMS 소프트웨어
 - 오픈 소스 (Open Source) 로 제공
 - 소스를 공개한 소프트웨어
 - 누구나 무료로 다운로드해 사용 가능
 - -소스도 무료제공
 - -소스를 고쳐 소프트웨어를 더 발전시키는 것 가능

- 1.2.1. MariaDB의 변천사
 - MariaDB의 개발까지..
 - MySQL의 역사
 - 1995년 발표 AB사에서 오픈 소스로 제작
 - 2005년 MySQL 5.0 버전 출시
 - » 안정적인 대용량 데이터베이스로 자리잡음
 - 2008년 썬 마이크로시스템즈사에서 MySQL AB 사 인수- MySQL 5.1 버전 출시
 - 2010년 오라클사가 썬 마이크로시스템즈사 인수
 - 2010년 MySQL 5.5 ,2013년 MySQL 5.6, 2015년 MySQL 5.7 ,2018년 MySQL 8.0 발표

1.2.1. MariaDB의 변천사

- MariaDB의 개발까지..
 - 2009년 몬티 와이드니어스가 Monty Program AB사(현재는 MariaDB Corporation AB의 자회사)를 설립하고 MariaDB 개발 시작
 - MySQL은 2010년 오라클 인수 후 상용 라이선스 취득 해야 상용 사용 가능
 - MariaDB는 어떤 환경에서도 제한 없이 사용
 - · MySQL과 호환성 대부분 유지
 - 대부분의 Linux 운영체제에서는 MySQL 대신에 MariaDB를 표준으로 채택

1.2.1. MariaDB의 변천사

■ MariaDB의 역사

출시일자	MariaDB 버전	대응 MySQL 버전	기타
2009년 10월	5.1		몬티 와이드니어스가 개발을 시작함
2010년 4월	5.2		
2011년 7월	5.3		
2012년 2월	5.5	5.5	현재(2019년 초) 5.5.62 버전까지 발표됨
2012년 10월	10.0	5.6	현재(2019년 초) 10.0.37 버전까지 발표됨
2014년 6월	10.1	5.7	현재(2019년 초) 10.1.37 버전까지 발표됨
2016년 4월	10.2		현재(2019년 초) 10.2.19 버전까지 발표됨
2017년 4월	10.3	8.0	현재(2019년 초) 10.3.11 버전까지 발표됨
2018년 11월	10.4		알파 버전 현재(2019년 초) 10.4.1(Beta) 버전이 발표됨

[표 1-2] MariaDB의 변천사

Thank You!

이것이 MariaDB다

