a)

1) Variables

x: nombre de lapins *y*: nombre de poules

2) Inéquations

$$x \ge 0$$

$$y \ge 0$$

$$x + y \ge 40$$

$$4x + 2y \le 150$$

$$y \le 3x$$

$$y \ge \frac{1}{2}x + 20$$

3) Polygone de contraintes

4) Sommets

A(15,45)
B(22,31)

$$C\left(\frac{40}{3}, \frac{80}{3}\right)$$

D(10,30)

Sommet B

$$\begin{cases}
4x + 2y = 150 \\
y = \frac{1}{2}x + 20
\end{cases}$$

$$4x + 2\left(\frac{1}{2}x + 20\right) = 150$$

$$4x + x + 40 = 150$$

$$5x + 40 = 150$$

$$5x = 110$$

$$x = 22$$

$$y = \frac{1}{2}(22) + 20 = 31$$

Sommet C
$$\begin{cases} x + y = 40 \\ y = \frac{1}{2}x + 20 \end{cases}$$

$$x + \frac{1}{2}x + 20 = 40$$

$$\frac{3}{2}x + 20 = 40$$

$$\frac{3}{2}x = 20$$

$$x = \frac{40}{3}$$

$$y = \frac{1}{2} \left(\frac{40}{3}\right) + 20 = \frac{80}{3}$$

5) Objectif et fonction objectif

Maximiser le profit : P = 6x + 3y

$$P(A) = 6 \times 15 + 3 \times 45 = 225$$

$$P(B) = 6 \times 22 + 3 \times 31 = 225$$

$$P(C) = 6 \times \frac{40}{3} + 3 \times \frac{80}{3} = 160$$

$$P(D) = 6 \times 10 + 3 \times 30 = 150$$

Tous les points de coordonnées entières situés entre A et B maximisent la situation.

Points qui maximisent : (15,45) (16,43) (17,41) (18,39) (19,37) (20, 35) (21,33) (22,31)

Réponse : Bob et Berthe ont 8 options possibles pour avoir un profit maximal de 225 \$. Les options sont présentées dans le tableau ci-dessous.

Nombre de lapins	Nombre de poules
15	45
16	43
17	41
18	39
19	37
20	35
21	33
22	31

b)

1) Nouvelle inéquation

$$0.7x + 0.5y \le 32$$

2) Nouveau polygone de contraintes

3) Nouveaux sommets

$$E\left(\frac{55}{3}, \frac{115}{3}\right) \\ F\left(\frac{160}{11}, \frac{480}{11}\right)$$

4) Fonction objectif

$$P(E) = 6 \times \frac{55}{3} + 3 \times \frac{115}{3} = 225 \$$$

 $P(F) = 6 \times \frac{160}{11} + 3 \times \frac{480}{11} \approx 218,18 \$$

Les points se situant entre E et B maximisent la situation. Il y a donc des points qui ne font plus parti de la situation. Les points qui maximisent encore la situation sont les suivants :

Nombre de	Nombre de
lapins	poules
19	37
20	35
21	33
22	31