Олимпиадное программирование Занятие 16. DFS. Топологическая сортировка. Конденсация

Труфанов Павел Николаевич

Неявные графы

Решим следующую задачу: имеется прямоугольное поле, где каждая клеточка либо свободна, либо занята. В какой-то свободной клетке стоит человек, который может ходить в свободные клетки, соседние с ним по стороне. Найдите количество свободных клеток, до которых он сможет добраться.

Неявные графы

Представим граф: вершины – свободные клетки, а ребра - между соседними по стороне свободными клетками. Только мы сможем решить задачу, даже не храня граф. Такой граф называется неявным, в нем можно явно не строить структуру графа, все вершины и ребра описаны некоторыми правилами.

Топологическая сортировка

Дан ориентированный граф без циклов. Требуется выписать вершины графа в таком порядке, чтобы для каждого ребра u->v выполнялось, что вершина u находится в этом списке раньше вершины v.

Можно доказать, что такое всегда возможно в графе без циклов. Если в графе есть циклы - проверяем одним dfs-ом.

Топологическая сортировка

Построим времена входа-выхода. Утверждение: для любого ребра (u, v) верно, что tout[u] > tout[v].

```
void dfs(int v) {
    used[v] = true;
    for (int u : gr[v]) {
        if (!used[u]) {
            dfs(u):
    ans.push_back(v);
reverse (ans)
```

Применение 1

Допустим есть n объектов. Про некоторые пары объектов a_i, b_i мы знаем, что $a_i < b_i$. Среди объектов сохраняется транзитивность. Известно, что нет противоречащих сравнений a, b, c, a < b < c < a. Выпишите любую корректную сортировку данных объектов.

Применение 2

Дан ориентированный граф без циклов. В каждой вершине записано число. Для каждой вершины найдите минимальное достижимое из нее число.

Конденсация

Компонентной сильной связности в ориентированном графе мы назовем такое множество вершин, что из каждой можно добраться в каждую, и никакую вершину в это множество добавить нельзя.

Конденсация графа - требуется получить новый граф, где каждая его вершина компонента сильной связности старого графа, и мы оставляем только те ребра, которые соединяют вершины разных компонент.

Свойства конденсации

Получившийся граф ацикличен. Между парой вершин может быть больше одного ребра.

Код

Код задачи 1991 informatics.mccme.ru "Конденсация графа"

Нажми на меня

Пример применения

Дан ориентированный граф с циклами. В каждой вершине записано число. Для каждой вершины найдите минимальное достижимое из нее число.

Идеи применения

В задаче возможны разные свойств вершин и ребер внутри и вне компонент сильной связности. Примеры задач для решения: 112751, 113094

До встречи!

FOXFORD.RU

Онлайн-школа Фоксфорд

