Clase 3

Pachá

June 30, 2016

Modelo de Regresión Básico

- · Mínimos cuadrados es una herramienta de estimación.
- · Para realizar inferencia se desarrolla un modelo probabilístico de regresión lineal

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- · Aquí ε_i se asume iid $N(0, \sigma^2)$.
- Note que $E[Y_i | X_i = x_i] = \mu_i = \beta_0 + \beta_1 x_i$
- · Note que $Var(Y_i | X_i = x_i) = \sigma^2$.
- · La estimación por ML de β_0 y β_1 coincide con la estimación por OLS

$$\hat{\beta}_1 = Cor(Y, X) \frac{Sd(Y)}{Sd(X)}$$
 $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$

- $E[Y \mid X = x] = \beta_0 + \beta_1 x$ $Var(Y \mid X = x) = \sigma^2$

Interpretación de los coeficientes

Intercepto

· β_0 es el valor esperado del output cuando el input es 0

$$E[Y|X = 0] = \beta_0 + \beta_1 \times 0 = \beta_0$$

- · Note que esto no siempre es de interés, por ejemplo cuando X=0 es imposible o está fuera del rango de los datos (e.g. Si X corresponde a presión sanguínea, estatura, etc.)
- · Considere que

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i = \beta_0 + a\beta_1 + \beta_1 (X_i - a) + \varepsilon_i = \tilde{\beta}_0 + \beta_1 (X_i - a) + \varepsilon_i$$

Entonces, si desplazamos X en a unidades cambia el intercepto pero no la pendiente, menudo a se fija en \tilde{X} tal que el intercepto se interpreta como la respuesta esperada en el valor promedio de X.

Pendiente

 \cdot β_1 es el cambio esperado en el output cuando el input cambia en una unidad

$$E[Y \mid X = x + 1] - E[Y \mid X = x] = \beta_0 + \beta_1(x + 1) - (\beta_0 + \beta_1 x) = \beta_1$$

· Considere el impacto de cambiar las unidades (medición) de *X*

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i = \beta_0 + \frac{\beta_1}{a} (X_i a) + \varepsilon_i = \beta_0 + \tilde{\beta}_1 (X_i a) + \varepsilon_i$$

- · Entonces, la multiplicación de X por un factor a resulta en que se divide el coeficiente por el mismo
- · Si queremos predecir el output dado un valor del input, digamos X, el modelo de regresión predice

$$\hat{\beta}_0 + \hat{\beta}_1 X$$

Ejemplo

· Si X es la estatura en m e Y es el peso en kg. Entonces β_1 es kg/m. Convirtiendo X en cm implica multiplicar X por 100cm/m. Para obtener β_1 en las unidades correctas, tenemos que dividir por 100cm/m y así se tendrán las unidades correctas.

$$Xm \times \frac{100cm}{m} = (100X)cm \text{ y } \beta_1 \frac{kg}{m} \times \frac{1m}{100cm} = \left(\frac{\beta_1}{100}\right) \frac{kg}{cm}$$

Modelo Lineal Univariado

Los Datos de Galton

Francis Galton (1882 - 1911) sentó las bases de la Econometría estudiando la estatura de padres e hijos. Los datos de su estudio están disponibles en la instalación de R. El gráfico de estatura de padres versus estatura de hijos es el siguiente:

Ejercicios

- · Usar la estatura de los padres para predecir la de los hijos
- · Encontrar una relación entre ambas estaturas
- · Encontrar la variación de la estatura de los hijos que no depende de la estatura de los padres (variación residual)
- · Los supuestos que se necesitan para generalizar más allá de los datos
- · Por qué los hijos de padres muy altos tienden a ser más bajos (regresión a la media)

Análisis de los datos

- · Datos recolectados y analizados por Francis Galton en 1885.
- · Galton fue un científico que creó los conceptos de correlación y regresión.
- · Veremos la distribución marginal de los datos.
- · La corrección por género se obtiene multiplicando la estatura de las mujeres por 1,08.

```
library(reshape); long <- melt(galton)
g <- ggplot(long, aes(x = value, fill = variable))
g <- g + geom_histogram(colour = "black", binwidth=1)
g <- g + facet_grid(. ~ variable)
g</pre>
```


Encontrando la media usando mínimos cuadrados

· Veamos un poco los datos

2

[1] 928

```
head(galton, n=10) #primeras 10 observaciones (medidas en pulgadas)
```

```
##
      child parent
## 1
       61.7
               70.5
       61.7
               68.5
## 2
## 3
       61.7
               65.5
## 4
       61.7
               64.5
## 5
       61.7
               64.0
       62.2
               67.5
##
   6
       62.2
               67.5
##
   7
## 8
       62.2
               67.5
## 9
       62.2
               66.5
## 10 62.2
               66.5
dim(galton) #tamaño muestral = 928 ; variables = 2
```

· Considere solo la estatura de los hijos. ¿Cómo se describe la media?

- · Una definición es que siendo Y_i la estatura del hijo i para $i=1,\ldots,n$ con n=928 entonces la media es el valor de μ que minimiza la ecuación $\sum_{i=1}^{n}(Y_i-\mu)^2$
- · Se tiene que $\mu = \bar{Y}$.

Regresión

Sin constante

```
Y_i = \beta_1 X_i + \varepsilon_i
```

```
lm(child ~ parent -1, data = galton)

##
## Call:
## lm(formula = child ~ parent - 1, data = galton)
##
## Coefficients:
## parent
## 0.9965
```

Con constante

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

```
lm(child ~ parent, data = galton)
```

```
##
## Call:
## lm(formula = child ~ parent, data = galton)
##
## Coefficients:
## (Intercept) parent
## 23.9415 0.6463
```

Sin constante (centrando los datos)

$$(Y_i - \bar{Y}) = \beta_1(X_i - \bar{X}) + \varepsilon_i$$
$$\tilde{Y}_i = \beta_0 \beta_1 \tilde{X}_i + \varepsilon_i$$

```
lm(I(child - mean(child)) ~ I(parent - mean(parent)) -1, data = galton)
```

Con constante (centrando los datos)

```
(Y_i - \bar{Y}) = \beta_0 + \beta_1 (X_i - \bar{X}) + \varepsilon_i\tilde{Y}_i = \beta_0 \beta_1 \tilde{X}_i + \varepsilon_i
```

```
lm(I(child - mean(child)) ~ I(parent - mean(parent)) -1, data = galton)
##
## Coll
```

Observaciones

- · La primera regresión (sin constante) sobreestima el efecto de *X* sobre *Y* pues se fuerza que el intercepto sea cero
- · No es coincidente que las últimas tres regresiones entreguen un idéntico valor de β_1 .
- · Lo anterior se debe a que al no incluir el "-1" en el código en R, no estamos forzando que el intercepto sea cero y por ende no estamos sesgando el efecto de *X* sobre *Y*.
- En las dos últimas regresiones se observa que el intercepto al centrar los datos (es decir, al cambiar la unidad de medición y hacer que el "0" la variable sea el promedio de dicha variable) sea un valor muy pequeño corresponde a un hecho atribuible a los datos y no a que se fuerza la estimación.

Gráfico

Ajuste de la mejor recta de regresión

- · Sea Y_i la estatura del hijo i^{th} y X_i la estatura del padre i^{th} .
- · Considere la recta con mejor ajuste $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$.
- · La ecuación de mínimos cuadrados es

$$\sum_{i=1}^{n} [Y_i - (\beta_0 + \beta_1 X_i)]^2.$$

Resultados

· El modelo de mínimos cuadrados ajusta la recta $Y = \beta_0 + \beta_1 X$ a través de los pares ordenados (X_i, Y_i) e Y_i es el output que se obtiene de la recta $Y = \hat{\beta}_0 + \hat{\beta}_1 X$ con

$$\hat{\beta}_1 = Cor(Y,X) \frac{Sd(Y)}{Sd(X)} \quad \hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}.$$

- · $\hat{\beta}_1$ se expresa en unidades de Y/X, $\hat{\beta}_0$ se expresa en unidades de Y. · La recta de regresión pasa por (\bar{X}, \bar{Y}) .

- · La pendiente de la recta de regresión con X como output e Y como input es $Cor(Y,X) \frac{Sd(X)}{Sd(Y)}$.
- · La pendiente es la misma que se obtiene que si se centraran los datos $(X_i \bar{X}, Y_i \bar{Y})$ y se estimara una regresión que pasa por (0,0).
- · Si se normalizan los datos $\left(\frac{X_i \bar{X}}{Sd(X)}, \frac{Y_i \bar{Y}}{Sd(Y)}\right)$, la pendiente es Cor(Y, X).

En síntesis

Es interesante notar que las estimaciones del programa coinciden con el cálculo siguiendo las fórmulas por definición.

```
y <- galton$child
x <- galton$parent
beta1 <- cor(y, x) * sd(y) / sd(x)
beta0 <- mean(y) - beta1 * mean(x)
rbind(c(beta0, beta1), coef(lm(y ~ x)))</pre>
```

```
## (Intercept) x
## [1,] 23.94153 0.6462906
## [2,] 23.94153 0.6462906
```

La regresión desde el origen conserva la pendiente si primero centramos los datos

```
yc <- y - mean(y)
xc <- x - mean(x)
beta1 <- sum(yc * xc) / sum(xc ^ 2)
c(beta1, coef(lm(y ~ x))[2])</pre>
```

```
## x
## 0.6462906 0.6462906
```

Si se normalizan los datos la pendiente es igual al coeficiente de correlación

```
yn <- (y - mean(y))/sd(y)
xn <- (x - mean(x))/sd(x)
c(cor(y, x), cor(yn, xn), coef(lm(yn ~ xn))[2])</pre>
```

```
## xn
## 0.4587624 0.4587624 0.4587624
```

Mejor recta de regresión:

Modelo Lineal Multivariado

Extensión del caso univariado

· El modelo lineal generalizado extiende el modelo lineal simple (SLR) agregando términos linealmente al modelo. Típicamente $X_{1i} = 1$ (se incluye un intercepto).

$$Y_i = \beta_1 X_{1i} + \beta_2 X_{2i} + \ldots + \beta_p X_{pi} + \epsilon_i = \sum_{k=1}^p X_{ik} \beta_j + \epsilon_i.$$

· La estimación por OLS (y también la estimación por ML bajo supuestos de iid y errores Gaussianos) minimiza

$$\sum_{i=1}^n \left(Y_i - \sum_{k=1}^p X_{ki} \beta_j \right)^2.$$

· Lo importante es la linealidad de los coeficientes, entonces

$$Y_i = \beta_1 X_{1i}^2 + \beta_2 X_{2i}^2 + \ldots + \beta_p X_{pi}^2 + \varepsilon_i.$$

también es un modelo lineal (aunque los regresores sean términos cuadráticos).

Interpretación de los coeficientes

$$E[Y|X_1 = x_1, ..., X_p = x_p] = \sum_{k=1}^{p} x_k \beta_k$$

$$E[Y|X_1 = x_1 + 1, ..., X_p = x_p] = (x_1 + 1)\beta_1 + \sum_{k=2}^p x_k \beta_k$$

$$E[Y|X_1 = x_1 + 1, ..., X_p = x_p] - E[Y|X_1 = x_1, ..., X_p = x_p]$$

$$= (x_1 + 1)\beta_1 + \sum_{k=2}^p x_k \beta_k + \sum_{k=1}^p x_k \beta_k = \beta_1$$

Un coeficiente de regresión multivariada es el cambio esperado en el output ante un cambio en una unidad en el regresor correspondiente, manteniendo todos los demás regresores fijos.

Tasas de hambre en la población infantil

Instancia de trabajo

```
#link descarga
url <- "http://apps.who.int/gho/athena/data/GHO/WHOSIS_000008.csv"
file <- "hunger.csv"

if(!file.exists(file)) {
    print("descargando")
    download.file(url, file, method="curl")
}

hunger <- read.csv("hunger.csv")
hunger <- hunger[hunger$Sex!="Both sexes",]</pre>
```

Sin controlar por género:

```
lm1 <- lm(hunger$Numeric ~ hunger$Year)
plot(hunger$Year,hunger$Numeric,pch=20,col="blue")</pre>
```


Controlando por género (azul = niñas, verde = niños):

```
plot(hunger$Year,hunger$Numeric,pch=20)
#azul=niñas verde=niños
points(hunger$Year,hunger$Numeric,pch=20,col=((hunger$Sex=="Male")*1+3))
```


Modelo univariado

Sin controlar por género:

$$Hu_i = b_0 + b_1 Y_i + e_i$$

 b_0 = % de hambre en el año 0

 b_1 = disminución del % de hambre por año

 e_i = todas las variables no medidas

```
lm1 <- lm(hunger$Numeric ~ hunger$Year)
plot(hunger$Year,hunger$Numeric,pch=20,col="blue")
lines(hunger$Year,lm1$fitted,lwd=3,col="red")</pre>
```


Controlando por género:

$$HuF_i = bf_0 + bf_1YF_i + ef_i$$

 bf_0 = % de hambre en las niñas en el año 0

 bf_1 = disminución del % de hambre por año en las niñas

 ef_i = todas las variables no medidas

$$HuM_i = bm_0 + bm_1 YM_i + em_i$$

 bm_0 = % de hambre en los niños en el año 0

 bm_1 = disminución del % de hambre por año en las niños

 em_i = todas las variables no medidas

```
lmM <- lm(hunger$Numeric[hunger$Sex=="Male"] ~ hunger$Year[hunger$Sex=="Male"])
lmF <- lm(hunger$Numeric[hunger$Sex=="Female"] ~ hunger$Year[hunger$Sex=="Female"])
plot(hunger$Year, hunger$Numeric, pch=20)
points(hunger$Year, hunger$Numeric, pch=20, col=((hunger$Sex=="Male")*1+3))
lines(hunger$Year[hunger$Sex=="Male"],lmM$fitted,col="green",lwd=3)
lines(hunger$Year[hunger$Sex=="Female"],lmF$fitted,col="blue",lwd=3)</pre>
```


Modelo multivariado

Las dos rectas anteriores tienen la misma pendiente. Vamos a estimar el siguiente modelo:

$$Hu_i = b_0 + b_1 M_i + b_2 Y_i + e_i^*$$

 b_0 = % de hambre en las niñas en el año 0

$$M_i = \begin{cases} 1 & \text{si es niño} \\ 0 & \text{si es niña} \end{cases}$$

 $b_0 + b_1 = \%$ de hambre en las niños en el año 0

 b_2 = disminución del % de hambre por año en niños o niñas

 e_i^* = todas las variables no medidas

```
ImBoth <- lm(hunger$Numeric ~ hunger$Year + hunger$Sex)
plot(hunger$Year, hunger$Numeric, pch=20)
points(hunger$Year, hunger$Numeric, pch=20, col=((hunger$Sex=="Male")*1+3))</pre>
```

```
abline(c(lmBoth$coeff[1],lmBoth$coeff[2]),col="blue",lwd=3)
abline(c(lmBoth$coeff[1] + lmBoth$coeff[3],lmBoth$coeff[2] ),col="green",lwd=3)
```


$$Hu_i = b_0 + b_1 M_i + b_2 Y_i + b_3 (M_i \cdot Y_i) + e_i^+$$

 b_0 = % de hambre en las niñas en el año 0

$$M_i = \begin{cases} 1 & \text{si es niño} \\ 0 & \text{si es niña} \end{cases}$$

 $b_0 + b_1 = \%$ de hambre en las niños en el año 0

 b_2 = disminución del % de hambre por año en niños o niñas

 $b_2 + b_3$ = disminución del % de hambre por año en los niños

 e_i^+ = todas las variables no medidas

```
lmBoth <- lm(hunger$Numeric ~ hunger$Year + hunger$Sex + hunger$Sex*hunger$Year)
plot(hunger$Year,hunger$Numeric,pch=20)
points(hunger$Year,hunger$Numeric,pch=20,col=((hunger$Sex=="Male")*1+3))
abline(c(lmBoth$coeff[1],lmBoth$coeff[2]),col="blue",lwd=3)
abline(c(lmBoth$coeff[1] + lmBoth$coeff[3],lmBoth$coeff[2] +lmBoth$coeff[4]),col="green",lwd=3)</pre>
```


Resultados

coefficients(lmBoth)

##	(Intercept)	hunger\$Year
##	595.83543620	-0.28958348
##	hunger\$SexMale	<pre>hunger\$Year:hunger\$SexMale</pre>
##	64.74249171	-0.03139868