# EE 230 - Analog Lab - 2021-22/I (Autumn)

# **Experiment 3: BJT Voltage Amplifiers (CE and CC)**

(Ver 2, Aug 10,2021)

# Part A - Common-Emitter Amplifier

## **Learning Objectives**

- 1. Understanding the basic parameters that characterize a single-stage BJT voltage amplifier (midband gain, frequency response, input resistance and output resistance).
- 2. Understanding the benefits of negative feedback and the trade-offs involved.
- 3. Understanding the benefits of multistage amplifiers in improving voltage amplifier parameters.

# 1.1 Common-Emitter Amplifier: Biasing Circuit

Circuit diagram of the Common-Emitter amplifier is shown below.



Fig 1 Common-Emitter Amplifier (Biasing circuit)

# **Analysis**

For this part (biasing circuit) the component values are: Vcc = 12 V;  $R_1 = 10 \text{ k}\Omega$ ,  $R_2 = 2.2 \text{ k}\Omega$ ,  $R_E = 1 \text{ k}\Omega$ ,  $R_C = 1.2 \text{ k}\Omega$ . Analyse the circuit and determine the currents  $I_B$ ,  $I_C$  and the node voltages  $V_B$ ,  $V_C$  and  $V_E$ . Assume  $\beta = 200$ . Comment on the mode of the BJT.

Hint: Apply Thevenin's theorem at the base terminal for the analysis.

#### 1.1.1 NGSPICE Simulation (using BC547 model)

Using NGSPICE simulations determine the operating point of the given CE amplifier. Use the model of BC547A given below. Verify the results you obtained through analysis.

.model bc547a NPN IS=10f BF=200 ISE=10.3f IKF=50m NE=1.3

- + BR=9.5 VAF=80 IKR=12m ISC=47p NC=2 VAR=10 RB=280 RE=1 RC=40
- + tr=0.3u tf=0.5n cje=12p vje=0.48 mje=0.5 cjc=6p vjc=0.7 mjc=0.33 kf=2f

### 1.2 Common-Emitter Amplifier (with bypass Capacitor CE): Midband Voltage Gain

### A) Case 1: $R_S = 0$ , $R_L = 100 kΩ$



Fig 2 Full Common-Emitter Amplifier (with  $V_{\text{in}}$  and  $R_{\text{L}}$ )

For this part the component values are: Vcc=12~V;  $R_1$ = $10~k\Omega$ ,  $R_2$ = $2.2~k\Omega$ ,  $R_E$ = $1~k\Omega$ ,  $R_C$ = $1.2~k\Omega$ .  $R_S$ =0,  $R_L$ = $100~k\Omega$ ,  $C_1$ = $10~\mu F$ ,  $C_2$ = $10~\mu F$ ,  $C_E$ = $100~\mu F$ . Assume  $V_{in}$ = $10~\sin \omega t~mV$ 

### Analytical Results (for Voltage Gain)

For the given circuit parameters, calculate the midband voltage gain (for  $R_L = \infty$ ).

### 1.2.1 NGSPICE Simulation

Through NGSPICE simulation determine the midband gain of the CE amplifier. Compare your simulation results with your analytical results.

### 1.3 Common-Emitter Amplifier (with bypass Capacitor C<sub>E</sub>): Frequency Response

Optional - Analytical Results (for f<sub>L</sub> and f<sub>H</sub>)

Use the analytical results for  $f_L$  (lower 3-dB frequency) and  $f_H$  (upper 3-dB frequency) and calculate estimates for  $f_L$  and  $f_H$  values.

#### 1.3.1 NGSPICE Simulation

Use .ac command to do ac analysis to obtain the amplitude frequency response of the CE amplifier. Find out the two points which are 3 dB lower than the mid-band flat region. Directly measure from the amplitude response the coordinates of  $f_H$  and  $f_L$  (ampl and freq).

Obtain bandwidth (= $(f_H - f_L)$ ). Also evaluate the product of midband gain and bandwidth.

## 1.4 Common-Emitter Amplifier (with bypass Capacitor CE): Effect of RL on the Midband Gain

Optional - Analytical Results (for the R<sub>out</sub> of the CEAmp)

Based on your analytical estimate of  $R_{out}$  of the CE amp, calculate the amplitude of  $V_{out}$ .

#### 1.4.1 NGSPICE Simulation

For the CE amplifier of Fig.2, obtain the midband voltage gain for the following two values of R<sub>L</sub>.

Case (i):  $R_L = 12 \text{ k}\Omega$ Case (ii):  $R_L = 1.2 \text{ k}\Omega$ 

# 1.5 Common-Emitter Amplifier (with bypass Capacitor CE): Effect of Rs on the Midband Gain

Optional - Analytical Results (for the Rin of the CE Amp)

Based on your analytical estimate of  $R_{in}$  of the CE amp, calculate the amplitude of  $V_{out}$ .

#### 1.5.1 NGSPICE Simulation

For the CE amplifier of Fig.2, obtain the midband voltage gain for the following two values of R<sub>s</sub>.

Case (i):  $R_S = 10 \text{ k}\Omega$ Case (ii):  $R_S = 2.2 \text{ k}\Omega$ 

## 1.6 Common-Emitter Amplifier (without bypass Capacitor CE): Midband Gain

For the subsequent parts of CE amp (i.e. with capacitor  $C_E$  open), assume  $V_{in} = 1 \sin \omega t V$ 

#### **Analytical Results**

For the case with the bypass capacitor  $C_E$  open, calculate the voltage gain (for  $R_L = \infty$ ).

# 1.6.1 NGSPICE Simulation

Using NGSPICE simulations to determine the midband gain of the given CE amplifier assuming the bypass capacitor  $C_E$  is open. Compare your simulation results with your analytical results.

## 1.7 Common-Emitter Amplifier (without bypass Capacitor C<sub>E</sub>): Frequency Response

Optional - Analytical Results (for f<sub>L</sub> and f<sub>H</sub>)

Use the analytical results for  $f_L$  (lower 3-dB frequency) and  $f_H$  (upper 3-dB frequency) and calculate estimates for  $f_L$  and  $f_H$  values.

#### 1.6.1 NGSPICE Simulation

Using .ac command to do ac analysis and obtain the amplitude frequency response for the case of unbypassed  $R_E$ . Find out the two points which are 3 dB lower than the mid-band flat region. Directly measure from the amplitude response the coordinates of  $f_H$  and  $f_L$  (ampl and freq).

Evaluate the bandwidth  $(=(f_H - f_L)$  of this amplifier. Also, evaluate the product of midband gain and bandwidth.

Compare the above results (bandwidth and Gain-Bandwidth product) with that of the CE amp with  $R_{\rm E}$  bypassed with  $C_{\rm E}$ . Comment on the results

# Part B - Common-Collector Amplifier

### 2.1 Common-Collector Amplifier: Biasing Circuit

Circuit diagram of a Common-Collector (CC) amplifier is shown in Fig.3. We shall study this amplifier first as a buffer and then use it in cascade with the earlier CE amplifier



Fig. 3 Common-Collector (CC) amplifier – biasing

## **Analysis**

For this part (biasing circuit) the component values are: Vcc=12~V;  $R_B=1~M\Omega$ ,  $R_E=10~k\Omega$ . Analyse the circuit and determine the currents  $I_B$ ,  $I_E$  and the node voltages  $V_B$ , and  $V_E$ . Assume  $\beta=200$ ,  $V_{BE}=0.7~V$ . Comment on the mode of the BJT.

#### 2.1.1 NGSPICE Simulation

Using NGSPICE simulations determine the operating point of the above CC amplifier. Use the model of BC547A. Verify the results you obtained through analysis.

### 2.2 Common-Collector Amplifier: Midband Gain

Complete circuit diagram (with  $V_{in}$ , and  $R_L$ ) of the CC amplifier is shown in Fig.4. Circuit parameters:  $Vcc=12\ V$ ;  $R_B=1\ M\Omega$ ,  $R_E=10\ k\Omega$ ,  $C_1=C_2=10\mu F$ . Assume  $R_S=0$  and  $R_L$  to be infinite. Analyse the circuit and determine the currents  $I_B$ ,  $I_E$  and the node voltages  $V_B$ , and  $V_E$ . Assume  $\beta=200$ . Take  $V_{in}=1\ sin\ \omega t\ V$ .

# Analytical Results (for midband Voltage Gain)

For the given circuit parameters, calculate the midband voltage gain (for  $R_L = \infty$ ).



Fig. 4 Common-Collector (CC) amplifier

#### 2.2.1 NGSPICE Simulation

Through NGSPICE simulation determine the midband gain of the CC amplifier. Compare your simulation results with your analytical results.

# 2.3 Common-Collector Amplifier: Freq Response

Optional - Analytical Results (for f<sub>L</sub> and f<sub>H</sub>)

Use the analytical results for  $f_L$  (lower 3-dB frequency) and  $f_H$  (upper 3-dB frequency) and calculate estimates for  $f_L$  and  $f_H$  values.

#### 2.3.1 NGSPICE Simulation

Use **.ac** command to do ac analysis to obtain the amplitude frequency response of the CC amplifier. Find out the two points which are 3 dB lower than the mid-band flat region. Directly measure from the amplitude response the coordinates of  $f_H$  and  $f_L$  (ampl and freq).

Obtain bandwidth ( $=(f_H - f_L)$ ). Also evaluate the product of midband gain and bandwidth.

# 2.4 Common-Collector Amplifier: Effect of R<sub>L</sub> on Midband Gain

Optional - Analytical Results (for the R<sub>out</sub> of the CC Amp)

Take  $V_{in} = 1 \sin \omega t V$ .

Based on your analytical estimate of  $R_{out}$  of the CC amp, calculate the amplitude of  $V_{out}$  for different  $R_L$  values:

Case (i):  $R_L = 10 \text{ k}\Omega$ Case (ii):  $R_L = 1 \text{ k}\Omega$ 

Case (iii):  $R_L = 100 \Omega$ 

#### 243.1 NGSPICE Simulation

For the CC amplifier of Fig.4, obtain the midband voltage gain for the following three values of R<sub>L</sub>.

Case (i):  $R_L = 10 \text{ k}\Omega$ Case (ii):  $R_L = 1 \text{ k}\Omega$ Case (iii):  $R_L = 100 \Omega$ 

# 2.5 Common-Collector Amplifier: Effect of Rs on Midband Gain

 $\underline{Optional\ -\ Analytical\ Results\ (for\ the\ R_{\underline{in}}\ of\ the\ CC\ Amp)}$ 

Take  $V_{in} = 1 \sin \omega t V$ .

Based on your analytical estimate of  $R_{in}$  of the CC amp, calculate the amplitude of  $V_{out}$  for different  $R_L$  values:

Case (i):  $R_S = 1 M\Omega$ Case (ii):  $R_S = 560 k\Omega$ Case (iii):  $R_S = 100 k\Omega$ 

#### 2.5.1 NGSPICE Simulation

For the CC amplifier of Fig.4, obtain the midband voltage gain for the following three values of R<sub>s</sub>.

Case (i):  $R_S = 1 M\Omega$ Case (ii):  $R_S = 560 k\Omega$ Case (iii):  $R_S = 100 k\Omega$ 

#### Part C – Two-stage Amplifier (CE and CC)

## 3.1 Two-stage Amplifier (CE and CC): Biasing Circuit

The circuit diagram of the two-stage amplifier (obtained by cascading the CE amplifier of Part A cascaded with a modified version of the CC amplifier of Part B) is shown in Fig.5.



Fig. 5 Two-stage amplifier (CE and CC)

# Component values of the CE amp

 $\begin{aligned} &Vcc = 12 \ V; \ R_1 = 10 \ k\Omega, \ R_2 = 2.2 \ k\Omega, \ R_E = 1 \ k\Omega, \ R_C = 1.2 \ k\Omega. \\ &R_S = 0, \ C_1 = 10 \ \mu F, \ C_E = 100 \ \mu F. \end{aligned}$ 

#### Component values of the CC amp

Vcc = 12 V,  $R_{E2}$  = 10 kΩ,  $R_L$  = 10 kΩ,  $C_2$  = 10 μF.

Estimate the dc currents ( $I_{B2}$  and  $I_{E2}$ ) and the voltage at the emitter terminal of  $Q_2$  (CC amp).

#### 3.1.1 NGSPICE Simulation

Verify the dc currents ( $I_{B2}$  and  $I_{E2}$ ) and voltage at the emitter terminal of  $Q_2$ .

# 3.2 Two-stage Amplifier (CE and CC): Midband Gain

# Theoretical Results for the midband gain

Assuming that there is no loading by the CC amp, the overall gain of the two-stage amplifier will be  $(A_{vCE})$ .  $(A_{vCC})$ , for reasonable  $R_L$  values (say > 1 k $\Omega$ ).

### 3.2.1 NGSPICE Simulation

Verify the theoretical results obtained in Sec 3.2 through NGSPICE simulations.

#### 3.3 Two-stage Amplifier (CE and CC): Frequency Response

Analysis of the frequency response of the two-stage amplifier is generally quite complex.

## 3.3.1 NGSPICE Simulation

Using NGSPICE simulations determine the  $f_L$  and  $f_H$  of the two-stage amplifier.

#### 3.4 Two-stage Amplifier (CE and CC): Effect of RL on Midband Gain

We can argue that the midband gain of the two-stage amplifier will not be affected for reasonable values of  $R_L$  (say > 1 k $\Omega$ ).

#### 3.4.1 NGSPICE Simulation

Obtain the effect of midband gain of the two-stage amplifier on a few  $R_L$  values and check whether the gain is affected for  $R_L > 1 \ k\Omega$ .

## Lab Report

- 1. For Experiment 3, please limit your Lab report to just 4 pages one page for the biasing circuit of Sec 1.1, one page for the midband gain of CE amplifier (with the bypass capacitor  $C_E$ ), one page for the effect of  $R_L$  and  $R_S$  on the midband gain, and the last page for the two-stage CE-CC amplifier (biasing and midband gain).
- 2. In each page, please include one of your NGSPICE programs, and one or two plots or the printed values, as the case may be. Analysis required only for Sec 1.1. Please also add one line of what you learned
- 3. The purpose of asking you to make shorter Lab reports is to make sure that you save some time. However, we assume that you have done all that was asked in the Lab handout (analysis and simulations). These and related topics may be asked in the Quizzes, as well as in the Midsem and Endsem examinations.