## Part I Syllabus

| Week                                                                    | Subject                                    |
|-------------------------------------------------------------------------|--------------------------------------------|
| Week 1<br>Week 2<br>Week 3                                              | Introduction                               |
|                                                                         | Network layers & physical resilience       |
|                                                                         | Data link layer – Flow control             |
|                                                                         | Data link layer – Error control            |
|                                                                         | Local area network – Introduction          |
| Week 4 Week 5 Week 7  * No lecture in Week 6 due to Students' Union Day | Local area network – Medium access control |
|                                                                         | Local area network – Wired                 |
|                                                                         | Local area network – WLAN                  |
|                                                                         | Mobile access networks: From 1G to 5G      |
|                                                                         | Network paradigms                          |
| Recess Week (e-learning)                                                | Review and examples                        |



## How to mingle among cocktail



- 1) When to start speaking?
- 2) What to speak?
- 3) Whether/How to react to interruption?



## CE3005/CZ3006 Computer Networks

## Lecture 6 Medium Access Control (MAC) Protocols





## Contents

#### Medium Access Control Protocol

- Ideal MAC Protocol
- MAC Taxonomy

#### ALOHA Protocols

- Slotted ALOHA
- Pure ALOHA

#### CSMA Protocol

- Vulnerable time in CSMA
- CSMA Variants

#### CSMA/CD Protocol

Collision Detection



## Medium Access Control Protocols

- Single shared broadcast channel
- Two or more simultaneous transmissions
  - Collision if node receives two or more signals at the same time
- MAC Protocol
  - Distributed algorithm to share the channel
  - In-band control
    - Coordination and data communications use the same channel
  - Out-of-band control
    - Coordination and data communications use different channels



## Ideal MAC Protocols

### Broadcast Channel of Rate R-bps

- When one node transmits, it can send at rate R
- When M nodes want to transmit, each can send at average rate R/M
- Full decentralized
  - No special node to coordinate transmissions
  - No synchronization of clocks, slots
- Simple
- We call this ideal protocol as "genie-aided" MAC



## MAC Taxonomy





## Random Access Protocols

- When node has packet to send
  - Transmits at full channel data rate of R
  - No a-priori coordination among nodes
- Two or more transmitting nodes
  - Collision
- Design of random MAC has 3 aspects
  - Whether to sense channel before transmission?
  - How to transmit frames?
  - What to do with collisions?



## **ALOHA Protocols**

#### aloha

/อ ่ โอชhə/
exclamation & noun
a Hawaiian word used when greeting or parting from someone.



## Slotted ALOHA

#### Inventor

Norm Abramson

### Assumptions

- All frames of the same size
- Time is divided into equal size slots, time to transmit 1 frame
- Nodes are synchronized
- Nodes start to transmit frames only at beginning of slots
- If 2 or more nodes transmit in slot, all nodes detect collision



| Norman M. Abramson |                                               |
|--------------------|-----------------------------------------------|
|                    |                                               |
| Born               | April 1, 1932 (age 83)  Boston, Massachusetts |
| Nationality        | <u>American</u>                               |
| Fields             | Electrical Engineering and Computer Sciences  |
| Institutions       | University of Hawaii                          |
| Alma mater         | Stanford University Harvard University        |
| Doctoral advisor   | Willis Harman                                 |
| Doctoral students  | Thomas M. Cover Robert A. Scholtz             |
| Notable awards     | IEEE Alexander Graham Bell Medal (2007)       |



## Slotted ALOHA





#### Result of a slot

- Successful (S): only one node transmits
- Collision (C): 2<sup>+</sup> nodes transmits
- Empty (E): no transmission
- If, there are N nodes and in each slot, each node transmits with probability p
  - If a node *i* transmits, the probability that the transmission is successful is  $Pr(S_i) = p (1-p)^{(N-1)}$
  - The probability that a slot is successful is  $Pr(S) = N p (1-p)^{(N-1)}$

### An example of 4-node network

- 4 cases for a successful slot







- Offered load G = Np
  - Expected total number of transmissions in a slot
- Slotted ALOHA efficiency when N is large

$$\lim_{N \to \infty} \Pr(S) = \lim_{N \to \infty} Np(1-p)^{N-1}$$

$$\stackrel{*}{=} \lim_{p \to 0} G(1-p)^{\frac{G}{p}-1}$$

$$= G \cdot \left(\lim_{p \to 0} (1-p)^{1/p}\right)^{G} \cdot \left(\lim_{p \to 0} (1-p)^{-1}\right)$$

$$\stackrel{**}{=} Ge^{-G}$$

\* When  $N \to \infty$ ,  $p \to 0$  as G is bounded

\*\* 
$$\lim_{p\to 0} (1-p)^{\frac{1}{p}} \to \frac{1}{e}$$
 by the definition of  $e$ :  $e = \lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$ 





- Pr(S) is throughput in frames per frame time
- $Pr(S) \le 1/e (\approx 0.37) **$ 
  - 1/e achieved when G = 1
  - At the same time,  $Pr(E) \approx 0.37$ ,  $Pr(C) \approx 0.26$

\*\* Tutorial 3.4



## Pros and Cons of Slotted ALOHA

#### Pros

- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots need to be sync
- Simple

#### Cons

- Collisions
- Empty slots, wasting slots
- Clock synchronization

## Pure ALOHA

 In pure ALOHA, frames are transmitted at completely arbitrary times





## Pure ALOHA

- Simpler, no synchronization
- When frame first arrives
  - Transmit immediately
- Collision probability increases:
  - Frame sent at t<sub>0</sub> collides with other frames sent in [t<sub>0</sub>-1, t<sub>0</sub>+1]



## Aloha Efficiency: Pure ALOHA

**Pure Aloha:** Partial transmission collision can occur (i.e., my 1<sup>st</sup> half of the transmission collides with your 2<sup>nd</sup> half)

Pr( success by given node) = P(node transmit) \*

P( no other node transmits in [t0-1, t0]) \*

P(no other node transmit in [t0, t0+1])

$$= p \times (1-p)^{(N-1)} \times (1-p)^{(N-1)}$$
$$= p (1-p)^{(2N-2)}$$

- So for the network,  $Pr(S) = N p (1-p)^{(2N-2)}$
- For very large N, Pr(S) = Ge-2G,
   where G=Np is the offered load
- Therefore, Pr(S) <= 1/(2e) = 18.4%</p>



## ALOHA Efficiency Comparison





# Carrier-Sense Multiple-Access (CSMA)



## Carrier-Sense Multiple-Access

- To improve performance, avoid transmissions that are certain to cause collisions
- Based on the fact that in LAN propagation time is very small
  - If a frame was sent by a station, all stations knows immediately so they can wait before start sending
  - A station with frames to be sent, should <u>sense the medium</u> for the presence of another transmission (carrier) before it starts its own transmission
  - However, because all stations cannot know immediately, collision is still possible [ignore for now]



## CSMA Variants

#### Different CSMA protocols that determine:

- What a station should do when the medium is idle?
- What a station should do when the medium is busy?

## Three Types of CSMA Protocols

- Non-persistent CSMA
- 1-Persistent CSMA
- P-Persistent CSMA



## Non-persistent CSMA

- A station with frames to be sent, should sense the medium
  - If medium is idle, **transmit**; otherwise, go to 2
  - 2. If medium is busy, (backoff) wait a *random* amount of time and repeat 1
- Non-persistent Stations are deferential (respect others)
- Performance:
  - Random delays reduces probability of collisions because two stations with data to be transmitted would wait for different amount of times.
  - Bandwidth is wasted if waiting time (backoff) is large because medium will remain idle following end of transmission even if one or more stations have frames to send





## 1-Persistent CSMA

- To avoid idle channel time, 1-persistent protocol used
- Station wishing to transmit listens to the medium:
  - If medium idle, **transmit** immediately;
  - 2. If medium busy, **continuously listen** until medium becomes idle; then transmit immediately with probability 1
- 1-persistent stations are selfish
- Performance
  - If two or more stations becomes ready at the same time, **collision guaranteed**





## P-Persistent CSMA

- Time is divided to slots
- Station wishing to transmit listens to the medium:
  - If medium idle,
    - transmit with probability (**p**), OR
    - wait **one time slot** with probability (1 p), then repeat 1.
  - 2. If medium busy, continuously listen until idle and repeat step 1
- Performance (wise guy)
  - Reduces the possibility of collisions like non-persistent
  - Reduces channel idle time like 1-persistent





## Flow Diagrams for CSMA





a. 1-persistent

b. Nonpersistent



c. p-persistent



## CSMA Efficiency



Comparison of the channel utilization versus load for various random access protocols.



## CSMA/CD Protocol



## Collision in CSMA





## Vulnerable Time in CSMA

- Vulnerable time for CSMA is the <u>maximum</u> <u>propagation time</u>
- The longer the propagation delay, the worse the performance of the protocol.





## CSMA/CD (Collision Detection)

### CSMA has channel wastage

- If a collision has occurred, colliding packets are still to be fully transmitted.
- CSMA/CD (Carrier Sense Multiple Access with Collision Detection) overcomes this:
  - While transmitting, the sender is listening to medium for collisions.
  - Sender stops transmission if collision has occurred, reducing channel wastage.
- CSMA/CD is widely used for bus topology LANs (IEEE 802.3, Ethernet)



## How to detect a Collision?

#### Transceiver

 A node monitors the media while transmitting. If the observed power is higher than the transmitted power of its own signal, it means collision occurred.



#### Hub

 If input occurs simultaneously on two ports, it indicates a collision. Hub send a collision presence signal on all ports.

Simultaneous

input on two ports



## CSMA/CD Protocol

- Transmission protocol
  - Use one of the CSMA persistent algorithms
- If a collision is detected by a station during its transmission, it should do the following
  - Abort transmission, and
  - Transmit a jam signal (48 bits) to notify other stations of collision so that they will discard the transmitted frame
  - After sending the jam signal, backoff (wait) for a random amount of time, then
  - Transmit the frame again



## Collision Detection

- Question: How long does it take to detect a collision?
- Answer: In the worst case, twice the maximum propagation delay of the medium

Note: **a = maximum propagation delay** 





## Learning Objectives

#### ALOHA Protocol

- Calculate throughput for ALOHA
- Maximize throughput by <u>differentiation</u>

#### CSMA Protocol

Protocol comparison for three flavors

#### CSMA/CD Protocol

Maximum duration for collision detection

