What does it mean to reduct the dimensionality?

The intuition

ISOMAP Algorithm

Input:

 \boldsymbol{X} (high dimension) and a **distance function** $d(x_i, x_j)$, we choose the Euclidean distance

1) Construct weighted graph

Find nearest neighbors \mathcal{N}_i of each point x_i

K-nearest neighbors $\Rightarrow |\mathcal{N}_i| = k$ Fixed radius $\Rightarrow \mathcal{N}_i = \{j \mid ||x_j - x_i|| \le r\}$

Join nearest neighbors via edges weighted by the distances

$$w_{ij} = ||x_j - x_i||, \forall j \in \mathcal{N}_i$$
 (local distances)

triangle inequality holds

2) Obtain (squared) distance matrix ${\it D}$ computing the shortest path distances d_{sp} between all pairs of points using Dijkstra's or Floyd's algorithm (geodesic distances)

Why we should choose k carefully?

3) Apply metric MDS with D as input to get X (low dimension), an embedding that preserves the geodesic distances

Embedding problem:

Given the distance matrix $D \in \mathbb{R}^{n \times n}$, $d_{ij} = \|x_i - x_j\|$ Recover the points $(x_i)_{i=1...n} \in \mathbb{R}^d$

This problem is called (metric) multi-dimensional scaling

Generally:

Given the objects $x_1, ..., x_n \in X$ Find an embedding $\Phi: X \to \mathbb{R}^d$ such that $\|\Phi(x_i) - \Phi(x_i)\| = d_{ij}$

For general distance matrices D, we cannot achieve such an embedding without **distorting the data**

Classic MDS

Given a Euclidean distance matrix D we can express the entries s_{ij} of the **Gram matrix** $S = (\langle x_i, x_j \rangle)_{ij=1...n}$ in terms of entries of D:

$$d_{ij}^{2} = ||x_{i} - x_{j}||^{2} = \langle x_{i} - x_{j}, x_{i} - x_{j} \rangle = \langle x_{i}, x_{i} \rangle + \langle x_{j}, x_{j} \rangle - 2\langle x_{i}, x_{j} \rangle$$

$$s_{ij} = \langle x_i, x_j \rangle = \frac{1}{2} (\langle x_i, x_i \rangle + \langle x_j, x_j \rangle - d_{ij}^2) =$$

$$= \frac{1}{2} (d(0, x_i)^2 + d(0, x_j)^2 - d_{ij}^2) = \frac{1}{2} (d_{1i}^2 + d_{1j}^2 - d_{ij}^2)$$

Because S it is positive definite, we can decompose S in the form $S = XX^t$ where $X \in \mathbb{R}^{n \times d}$. The rows of X are what we are looking for, we set the embedding of point x_i as the i-th row of X

To find X we compute the eigenvalue decomposition $S=V\Lambda V^t$ and we define ${\bf X}=V\sqrt{\Lambda}$. Tipically, we want to fix some dimension $d\leq n$, so we set V_d to be the first d columns of V and Λ_d the $d\times d$ diagonal matrix with the first d eigenvalues on the diagonal, then we set ${\bf X}=V_d\sqrt{\Lambda_d}$

Metric MDS

If the distance matrix D is not Euclidean we will not be able to recover an exact embedding. Instead, we define a **stress function**, for example:

$$stress(embedding) = \frac{\sum_{ij} (\|x_i - x_j\| - d_{ij})^2}{\sum_{ij} \|x_i - x_j\|}$$

Then we try to find an embedding $x_1, ..., x_n$ with small stress by a standard non-convex optimization algorithm, like gradient descent.

ISOMAP (global)

LLE (local)

ISOMAP

Proven asymptotic convergence

Distances between all pairs of points are required \Rightarrow O(N^3) complexity
Global method requires more computation
Improvement: <u>Landmark-ISOMAP</u> (uses a subset of points ("landmarks") to estimate geodesic distances

Not effective in the presence of non-convexities i.e. "holes" in manifold

ISOMAP on the MNIST digits dataset

Isomap projection of the digits (time 3.19s)

