ASSIGNMENT 4

Evaluate the following iterated integrals;

1.
$$\int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^1 \rho^2 \sin \phi d\rho d\phi d\theta$$

2.
$$\int_0^{2\pi} \int_1^2 \int_0^5 e^z r dz dr d\theta$$

3.
$$\int_2^3 \int_0^{3y} \int_1^{y^2} (2x + y + z) dx dy dz$$

4.
$$\int_0^{2\pi} \int_0^1 r \sin\theta dr d\theta$$

5.
$$\int_0^1 \int_0^1 e^{x+1} dy dx$$

6. Let R be the rectangular region in the xy plane bounded by the lines $x=2, x=\frac{5}{2}, y=0$ and $y=\pi$, and let D be the parallel-piped between the graphs z=0 and z=2 on R. Evaluate

$$\iiint_D zx \sin xy dv$$

7. Let R be the triangular region in the xy plane between the graphs of y=0 and y=x for $0 \le x \le 1$, and let D be the solid region between the graphs of the surfaces $z=-y^2$ and $z=x^2$ for (x,y) in R. Evaluate

$$\iiint_D (x+1)dv.$$

Express the following double integral as an iterated integral and evaluate them;

- 8. $\iint_R (x+y)dA$; R is the rectangular region bounded by the lines x=2, x=3, y=4, y=6.
- 9. $\iint_R x dA$; R is the trapezoidal region bounded by the lines x = 3, x = 5, y = 1 and y = x.
- 10. Let R be the region between the polar graphs of $r = \theta$ and $r = 2\theta$ for $0 \le \theta \le 3\pi$. Evaluate $\iint_R (x^2 + y^2) dA$.