Online Shopper Intention

By Thompson Pham

Introduction & Background

01

- E-commerce buying and selling of goods and services over the internet.
- Rapid growth of online shopping
- Understanding consumer behavior and predicting purchasing patterns importance

Distribution

- Predominate left skew of most attributes
- Reflects the majority of classification of negative instance

mean of continuous numerica	il reacures:
Administrative	2.315166
Administrative_Duration	80.818611
Informational	0.503569
Informational_Duration	34.472398
ProductRelated	31.731468
ProductRelated_Duration	1194.746220
BounceRates	0.022191
ExitRates	0.043073
PageValues	5.889258
SpecialDay	0.061427
OperatingSystems	2.124006
Browser	2.357097
Region	3.147364
TrafficType	4.069586
dtype: float64	

Variance of continuous numerical features Administrative 1.103425e+01 Administrative Duration 3.125085e+04 Informational 1.613297e+00 Informational Duration 1.981036e+04 ProductRelated 1.978070e+03 ProductRelated Duration 3.662130e+06 2.351117e-03 BounceRates ExitRates 2.361624e-03 PageValues 3.447868e+02 SpecialDay 3.956808e-02 OperatingSystems 8.305129e-01 Browser 2.949039e+00 Region 5.767640e+00 TrafficType 1.620199e+01 dtype: float64

Mean and Variance

- Mean collaborate with distribution, excluding ProductRealated_Duration
- High variance → users completing transaction
- Concern: Noise, overfitting, complexity

Correlation

Variance

Interesting:
Attributes which
had high variance
has high
correlation

Highlight

- 0.8

- 0.6

- 0.0

Good: Pagevalues, ExitRates, and BounceRates

Bad: Multicollinearity & less interpretable attributes

Models

Accuracy: 87.31%

Accuracy: 88.93%

Decision Tree

Accuracy: 88.85%

Accuracy: 89.13%

Receiver Operating Characteristic (ROC) Curves 1.0 0.8 True Positive Rate 0.2 -Logistic Regression (AUC = 0.66) Decision Tree (AUC = 0.77) Random Forest (AUC = 0.72) Gradient Boosting (AUC = 0.77) 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate

DT & GB

Highest AUC (0.77) Moderately well at seperating class 1 and class 2

Logistic RegressionLowest AUC (0.66)
More prone to
misclassify class 1
as class 0

Confusion Matrix

- DT edges over RF(misclassification less pronounced)
- Number of misclassifications (top right & bottom left), reflect accuracy

Conclusion

Best:

Gradient Boosting - Balance of accuracy and predictive performance

Alternative:

Decision Tree - Marginally less accurate, but scalable

Citations

Slide Template: Slidesgo

Sources

"Online Shoppers Purchasing Intention Dataset." UCI Machine Learning Repository, archive.ics.uci.edu/dataset/468/online+shoppers+purc hasing+intention+dataset. Accessed 8 May 2024.