

<u>Gameboard</u>

Maths

Radians-problems involving area 5ii

Radians-problems involving area 5ii

Figure 1 shows a sector OAB of a circle, centre O and radius $8\,\mathrm{cm}$. The angle AOB is $46\,^\circ$.

Figure 1: Sector *AOB*.

Part A Convert angle to radians

Express $46\,^\circ$ in radians, correct to 3 significant figures.

Part B Arc length

Find the length of the arc AB.

Part C Area of sector

Find the area of the sector OAB.

Used with permission from UCLES A-level Maths papers, 2003-2017.

<u>Gameboard</u>

Maths

Radians-problems involving area 2ii

Radians-problems involving area 2ii

Figure 1 shows two congruent triangles, BCD and BAE, where ABC is a straight line. In triangle BCD, $BD=8\,\mathrm{cm}$, $CD=11\,\mathrm{cm}$ and angle $CBD=65\,^\circ$. The points E and D are joined by an arc of a circle with centre B and radius $8\,\mathrm{cm}$.

Figure 1: Diagram of the triangles.

Find angle BCD. Give your answer in radians, correct to 3 significant figures.

Find the angle EBD, giving your answer in radians correct to 3 significant figures.

Part C Area of shaded segment

Hence find the area (in ${
m cm}^2$) of the shaded segment bounded by the chord ED and the arc ED, giving your answer correct to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 29 - Radians & Small Angle</u>
<u>Approximations</u>

<u>Gameboard</u>

Maths

Radians-problems involving area 1ii

Radians-problems involving area 1ii

A sector OAB of a circle of radius r cm has angle θ radians. The length of the arc of the sector is 12 cm and the area of the sector is 36 cm 2 (see **Figure 1**).

Part A First equation

By considering the length of the arc of the sector, write down an equation involving r and θ , where one side of the equation is a numerical constant.

The following symbols may be useful: r, theta

Part B Second equation

By considering the area of the sector, write down another equation involving r and θ , where one side of the equation is a numerical constant.

The following symbols may be useful: r, theta

Part C Values of r and θ

Hence show that $r = 6 \, \mathrm{cm}$ and find the value of θ .

Part D Area of segment

Find the area of the segment bounded by the arc AB and the chord AB. Give your answer to $3 \, \text{s.f.}$

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 29 - Radians & Small Angle</u>
<u>Approximations</u>

<u>Gameboard</u>

Radians and Trig Functions 2i

Radians and Trig Functions 2i

Maths

Figure 1 shows part of the curve $y = \cos 2x$, where x is in radians. The point A is the minimum point of this part of the curve.

Figure 1: The graph of $y = \cos 2x$.

Part A Period

State the period of $y = \cos 2x$.

The following symbols may be useful: pi, t

Part B Coordinates of A

What is the x coordinate of A?

The following symbols may be useful: pi, x

What is the y-coordinate of A?

The following symbols may be useful: pi, y

Part C The inequality $\cos 2x \leqslant \frac{1}{2}$

Solve the inequality $\cos 2x \leqslant \frac{1}{2}$ for $0 \leqslant x \leqslant \pi$, giving your answer as a range of angles x.

Give the exact lower bound, in the form x > a or $x \ge a$.

The following symbols may be useful: \langle , \langle =, \rangle , \rangle =, pi, x

Give the exact upper bound, in the form x < b or $x \le b$.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle =$, pi, x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 29 - Radians & Small Angle

Approximations

<u>Gameboard</u>

Maths

Radians and Trig Functions 2ii

Radians and Trig Functions 2ii

This question is about solving the equation $2\cos x = \tan 2x$ for $0 \le x \le \pi$.

Part A The equation $2\cos x = \tan 2x$

Write down the exact values of $\cos\frac{\pi}{6}$ and $\tan\frac{\pi}{3}$ (where the angles are in radians).

•
$$\cos \frac{\pi}{6} =$$

•
$$\tan \frac{\pi}{3} = \boxed{}$$

To verify that $x=\frac{\pi}{6}$ is a solution of the equation $2\cos x=\tan 2x$, consider the two sides of the equation separately:

• When
$$x=\frac{\pi}{6}$$
, $2\cos x=$

• When
$$x=\frac{\pi}{6}$$
, $\tan 2x=$

The left hand side and right hand side are equal when $x=\frac{\pi}{6}$. Hence, $x=\frac{\pi}{6}$ is a solution of the equation $2\cos x=\tan 2x$.

Items:

Part B Sketch

Sketch, on a single diagram, the graphs of $y=2\cos x$ and $y=\tan 2x$, for x (radians) such that $0\leqslant x\leqslant \pi$.

Choose the correct graph from the three options below.

Figure 1: Options A, B and C.

	Λ
	А

 \bigcirc C

Part C Other solutions

Hence state, in terms of π , the two other values of x between 0 and π satisfying the equation $2\cos x = \tan 2x$.

Give the exact value of the root with the smaller value of x.

The following symbols may be useful: pi, x

Give the exact value of the root with the larger value of x.

The following symbols may be useful: pi, x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 29 - Radians & Small Angle</u>
<u>Approximations</u>

<u>Gameboard</u>

Maths

Radians and Trig Functions 1i

Radians and Trig Functions 1i

A curve has equation $y = \sin{(ax)}$, where a is a positive constant and x is in radians.

Part A Period

State the period of $y = \sin{(ax)}$, giving your answer in an exact form in terms of a.

The following symbols may be useful: a, pi, t

Part B $\sin(ax) = k$

Given that $x = \frac{1}{5}\pi$ and $x = \frac{2}{5}\pi$ are the two smallest positive solutions of $\sin{(ax)} = k$, where k is a positive constant, find the values of a and k.

Find the value of a.

The following symbols may be useful: a

Find the value of k.

The following symbols may be useful: k

Part C $\sin{(ax)} = \sqrt{3}\cos{(ax)}$

Given instead that $\sin{(ax)} = \sqrt{3}\cos{(ax)}$, find the two smallest positive solutions for x, giving your answers in an exact form in terms of a.

Give the smallest positive solution.

The following symbols may be useful: a, pi, x

Give the second smallest positive solution.

The following symbols may be useful: a, pi, x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 29 - Radians & Small Angle

Approximations

<u>Gameboard</u>

Maths

Small Angle Approximations 1ii

Small Angle Approximations 1ii

$$f(x) = \frac{\sin x + \tan(2x)}{\tan x + 2}$$

Part A Small angle approximation

Use the small angle approximation to write an approximate expression to second order for f(x), valid when x is small.

The following symbols may be useful: f, x

Part B Estimation

Use your expression to estimate the value of f(0.1) to 4 significant figures.

Part C Percentage error

What is the percentage error in this estimate? Give your answer to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 29 - Radians & Small Angle</u> <u>Approximations</u>

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Home</u> <u>Gameboard</u>

Maths

Small Angle Approximations 1i

Small Angle Approximations 1i

The small angle approximation is used when measuring distances in astronomy.

The two stars Alpha Centauri A and Alpha Centauri B are in a binary pair (they orbit one another). The distance between them is an average of 11 Astronomical Units, and they are an average of 4.4 light years from Earth.

$$1 \,\mathrm{AU} = 1 \,\mathrm{Astronomical} \,\,\mathrm{Unit} = 149 \,597 \,870 \,700 \,\mathrm{m}$$

$$1\,\mathrm{ly} = 1\,\mathrm{Light}\,\,\mathrm{Year} = 9.4607 \times 10^{15}\,\mathrm{m}$$

Assume that a telescope is pointing straight at Alpha Centauri A with the geometry shown in Figure 1.

Use the small angle approximation to estimate θ , the angular separation between the stars as seen by the telescope. Give your answer to 2 significant figures.

Part A Radians

Give the answer in radians.

Part B Degrees

Give the answer in degrees.

Part C Arc Seconds

Give the answer in Arc Seconds. (Where 1 arc second is one $\left(\frac{1}{3600}\right)^{\rm th}$ of a degree.)

Used with permission from UCLES A-level Maths papers, 2003-2017.