Variable Compleja I Tema 6: Integral curvilínea

Integral de Cauchy

Integral de Cauchy

- 2 Curvas en el plano
 - Nociones básicas
 - Arcos y caminos
- 3 Integral curvilínea
 - Definición
 - Propiedades
- 4 Existencia de primitiva

Definición de la integral de Cauchy

Definición

En lo que sigue fijamos $a, b \in \mathbb{R}$ con a < b

Integral de una función continua $f:[a,b] \to \mathbb{C}$

$$\int_{a}^{b} f(t) dt \stackrel{\text{def}}{=} \int_{a}^{b} \operatorname{Re} f(t) dt + i \int_{a}^{b} \operatorname{Im} f(t) dt$$

 $C[a,b] = \{ \text{ funciones continuas de } [a,b] \text{ en } \mathbb{C} \}$ espacio de Banach (complejo) con la norma:

$$||f||_{\infty} \stackrel{\text{def}}{=} \max \{|f(t)| : t \in [a,b]\}$$
 $\forall f \in C[a,b]$

Tenemos un funcional $\Phi: C[a,b] \to \mathbb{C}$ definido por:

$$\Phi(f) = \int_{a}^{b} f(t) dt \qquad \forall f \in C[a, b]$$

000 Propiedades de la integral con respecto al integrando

 $\int_{-1}^{6} f(t)dt = \int_{-1}^{6} (-Tuf(t) + iRef(t))dt = \int_{-1}^{6} Tuf(t)dt + i\int_{-1}^{6} Ref(t)dt = i\left(\int_{-1}^{6} Tuf(t)dt + \int_{-1}^{6} Ref(t)dt\right) = i\int_{-1}^{6} f(t)dt$

Linealidad

El funcional Φ es lineal, es decir, para $f,g \in C[a,b]$ y $\lambda,\mu \in \mathbb{C}$ se tiene:

$$\int_{a}^{b} (\lambda f(t) + \mu g(t)) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

Continuidad

El funcional Φ es continuo. Más concretamente, para toda $f \in C[a,b]$ se tiene:

$$\left| \int_a^b f(t) \, dt \right| \leqslant \int_a^b |f(t)| \, dt \leqslant (b-a) \, ||f||_{\infty}$$

Sean X, 4 espacios normados $\phi: X \to Y$ lineal Equivalen:

2) o es unificant. 4) o es continua en cero 3) ϕ es continua 5) ϕ es a catada en $B_{\times}(bola unidad (errada) = 11.0 \tau) = 11.0 \tau = 11.0$

$$\underline{Dow}: \int_{0}^{b} (f(t) + g(t))dt = \int_{0}^{b} Re(f(t) + g(t))dt + i \int_{0}^{t} Tw(g(t) + f(t))dt = \int_{0}^{b} f(t)dt + \int_{0}^{t} Reg(t)dt + i \int_{0}^{t} Twg(t)dt + i \int_{0}^{t} Twg(t)dt = \int_{0}^{b} f(t)dt + \int_{0}^{b} g(t)dt + \int_{0}^{t} g(t)dt$$

Teorema Fundamental del Cálculo

I intervalo no trivial, $f \in \mathcal{C}(I)$ y $a \in I$. La función $F: I \to \mathbb{C}$ dada por:

$$F(x) = \int_{a}^{x} f(t) dt \qquad \forall x \in I$$

es derivable en I con F'(x) = f(x) para todo $x \in I$.

Dem: F derivable and Ref of Img son derivables

ental caso F'(x) = (ReF)'(x) + (ImF)'(x)

$$ReF(x) = Re(\int_{a}^{x} f(t)dt) = \int_{a}^{x} Ref(t)dt$$
 $Ref(x) = Re(\int_{a}^{x} f(t)dt) = \int_{a}^{x} Ref(t)dt$
 $Ref(x) = Ref(t)dt$
 $Ref(t) = Ref(t)dt$

$$TuF(x) = Tu(\int_{\alpha}^{x} \xi(t) dt) = \int_{\alpha}^{x} Tu \xi(t) dt$$

Propiedad de la integral con respecto al intervalo

Notación para lo que sigue

Intervalo no trivial: $I \subset \mathbb{R}$

 $\mathcal{C}(I)$ espacio vectorial complejo de todas las funciones continuas de I en \mathbb{C} Para $f \in \mathcal{C}(I)$ usamos la integral de f con límites arbitrarios $a,b \in I$ con las definiciones usuales. Concretamente, si a < b definimos:

$$\int_{a}^{a} f(t) dt = 0 \quad \text{y} \quad \int_{b}^{a} f(t) dt = -\int_{a}^{b} f(t) dt$$

Aditividad

La integral es aditiva: para cualesquiera $f \in \mathcal{C}(I)$ y $a,b,c \in I$ se tiene:

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$

Teorema Fundamental del Cálculo y consecuencias

Teorema Fundamental del Cálculo

I intervalo no trivial, $f\in\mathcal{C}(I)$ y $a\in I.$ La función $F:I\to\mathbb{C}$ dada por:

$$F(x) = \int_{a}^{x} f(t) dt \qquad \forall x \in I$$

es derivable en I con F'(x) = f(x) para todo $x \in I$.

Consecuencias

• Regla de Barrow. Si $f \in \mathcal{C}(I)$ y $G: I \to \mathbb{C}$ es una primitiva de f, es decir, G es derivable en I con G'(x) = f(x) para todo $x \in I$, entonces:

$$\int_{a}^{b} f(t) dt = G(b) - G(a) \quad \forall a, b \in I$$

• Fórmula de cambio de variable. Sean I,J intervalos no triviales, $\varphi: J \to I$ una función de clase C^1 y $f \in \mathcal{C}(I)$. Si $\alpha,\beta \in J$, verifican que $a = \varphi(\alpha)$ y $b = \varphi(\beta)$, entonces:

$$\int_{a}^{b} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(s)) \varphi'(s) ds$$

Curvas en el plano

Primeras nociones sobre curvas

- Curva: función continua $\varphi : [a,b] \to \mathbb{C}$ donde $a,b \in \mathbb{R}$, a < b
- $\varphi^* = \{ \varphi(t) : t \in [a,b] \}$ es la imagen de la curva φ
- $\bullet \ \phi(a)$ es el
 origen de ϕ y $\ \phi(b)$ es el extremo de
 ϕ
- \bullet La curva ϕ es cerrada cuando $\ \phi(a) = \phi(b)$

Suma de dos curvas

 $\varphi: [a,b] \to \mathbb{C} \ \text{y} \ \psi: [c,d] \to \mathbb{C} \ \text{curvas tales que} \ \varphi(b) = \psi(c)$

La curva suma $\gamma = \varphi + \psi : [a, b+d-c] \to \mathbb{C}$ viene dada por:

$$\gamma(t) = \begin{cases} \varphi(t) & \text{si } a \leq t \leq b \\ \psi(c+t-b) & \text{si } b \leq t \leq b+d-c \end{cases}$$

$$\gamma^* = \varphi^* \cup \psi^*; \quad \gamma(a) = \varphi(a); \quad \gamma(b+d-c) = \psi(d)$$

Suma de dos curvas

Observaciones sobre la suma de dos curvas

• Sean $\varphi:[a,b]\to\mathbb{C}$ y $\psi:[c,d]\to\mathbb{C}$ curvas con $\varphi(b)=\psi(c)$, y sea $\gamma=\varphi+\psi:[a,b+d-c]\to\mathbb{C}$ la curva suma. Entonces:

$$\gamma|_{[a,b]} = \varphi$$
 y $\gamma|_{[b,b+d-c]} = \psi \circ \tau$

donde $\tau(t) = c + t - b \ \forall t \in [b, b + d - c]$ τ es la traslación que lleva el intervalo [b, b + d - c] al intervalo [c, d]

• Caso b=c. Tenemos $\varphi:[a,b]\to\mathbb{C}$ y $\psi:[b,d]\to\mathbb{C}$ con $\varphi(b)=\psi(b)$. La curva suma $\gamma=\varphi+\psi:[a,d]\to\mathbb{C}$ verifica:

$$\gamma|_{[a,b]} = \phi \qquad \quad \mathrm{y} \qquad \quad \gamma|_{[b,d]} = \psi$$

• Recíprocamente: $\gamma \colon [a,d] \to \mathbb{C}$ curva arbitraria y $b \in]a,d[$. Entonces:

$$\gamma = \gamma \big|_{[a,b]} + \gamma \big|_{[b,d]}$$

• Volviendo al caso general, tenemos:

$$\varphi + \psi = \gamma = \gamma \big|_{[a,b]} + \gamma \big|_{[b,b+d-c]} = \varphi + (\psi \circ \tau)$$

Asociatividad de la suma de curvas

Asociatividad

La suma de curvas tiene la propiedad asociativa, es decir: si ϕ_1,ϕ_2,ϕ_3 son curvas tales que el extremo de ϕ_1 es el origen de ϕ_2 y el extremo de ϕ_2 es el origen de ϕ_3 , entonces:

$$\left(\phi_1+\phi_2\right)+\phi_3=\phi_1+\left(\phi_2+\phi_3\right)$$

Esto permitirá usar cómodamente sumas de n curvas con $n\in\mathbb{N}$ arbitrario

Partición de un intervalo

Partición de un intervalo [a,b]: conjunto finito $P \subset [a,b]$ tal que $a,b \in P$

Los puntos de una partición se numeran siempre de menor a mayor: si $P = \{t_0, t_1, \dots, t_n\}$ es una partición de [a, b], se entiende siempre que $a = t_0 < t_1 < \dots < t_n = b$. Para recordarlo escribimos:

$$P = \{ a = t_0 < t_1 < \dots < t_n = b \}$$

Observaciones sobre sumas de n curvas con $n \in \mathbb{N}$, n > 2

Para $k=1,2,\ldots,n$ sea $\varphi_k:[a_k,b_k]\to\mathbb{C}$ una curva y supongamos que $\varphi_k(b_k)=\varphi_{k+1}(a_{k+1})$ para $k=1,2,\ldots,n-1$. Tenemos la curva suma:

$$\gamma = \varphi_1 + \varphi_2 + \ldots + \varphi_n = \sum_{k=1}^n \varphi_k$$

- $\gamma: [a,b] \to \mathbb{C}$ donde $a = a_1$ y $b = a + \sum_{k=1}^{n} (b_k a_k)$
- Tomando $t_0 = a$ y $t_k = a + \sum_{j=1}^{n} (b_j a_j)$ para $k = 1, 2, \dots, n$, tenemos una partición $P = \{a = t_0 < t_1 < \dots < t_n = b\}$ del intervalo [a, b] tal que, para $k = 1, 2, \dots, n$ se tiene:

$$\gamma\big|_{[t_{k-1},t_k]}=\varphi_k\circ\tau_k$$

donde $\mathfrak{\tau}_k$ es la traslación que lleva $[t_{k-1},t_k]\,$ a $\,[a_k,b_k]\,$

$$\bullet \ \gamma^* = \bigcup_{k=0}^{n} \varphi_k^* \ ; \qquad \gamma(a) = \varphi_1(a_1) \ ; \qquad \gamma(b) = \varphi_n(b_n)$$

Sumas finitas de curvas. Curva opuesta

Descomposición de una curva como suma

Toda partición $P = \{a = t_0 < t_1 < \dots < t_n = b\}$ de un intervalo [a,b] permite expresar cualquier curva $\gamma : [a,b] \to \mathbb{C}$ como suma de n curvas:

$$\gamma = \sum_{k=1}^n \gamma \big|_{[t_{k-1},t_k]}$$

Curva opuesta

Dada una curva $\varphi:[a,b]\to\mathbb{C}$, la curva opuesta de φ es la curva $-\varphi:[a,b]\to\mathbb{C}$ definida por

$$(-\varphi)(t) = \varphi(a+b-t) \qquad \forall \ t \in [a,b]$$
$$(-\varphi)^* = \varphi^*; \qquad (-\varphi)(a) = \varphi(b); \qquad (-\varphi)(b) = \varphi(a)$$

 $(-\phi)^* = \phi^*;$ $(-\phi)(a) = \phi(b);$ $(-\phi)(b) = \phi(a)$ Ejemplo: las sumas $\phi + (-\phi)$ y $(-\phi) + \phi$ tienen sentido y son curvas cerradas, $\phi(a)$

Arcos

Definición de arco

Llamaremos arco a toda curva de clase C¹

$$\sigma: [a,b] \to \mathbb{C}$$
 derivable en $[a,b]$ con $\sigma' \in C[a,b]$

Entonces, la curva opuesta $(-\sigma):[a,b]\to\mathbb{C}$ también es un arco

Ejemplos de arcos

• Para $z, w \in \mathbb{C}$, el segmento de origen z y extremo w es el arco $[z, w] = \sigma : [0, 1] \to \mathbb{C}$ definido por Combinación convexa

$$\sigma(t) = (1-t)z + tw \qquad \forall t \in [0,1]$$

$$-[z,w] = [w,z]$$

 $[z,w]^* = [w,z]^* \subset \mathbb{C} \;$ es el "segmento" de extremos z y w

• Para $z \in \mathbb{C}$ y $r \in \mathbb{R}^+$, la circunferencia de centro z y radio r es el arco $C(z,r) = \varphi : [-\pi,\pi] \to \mathbb{C}$ definido por

$$\varphi(t) = z + re^{it} \qquad \forall t \in [-\pi, \pi]$$

Su imagen $C(z,r)^*=\{w\in\mathbb{C}:|w-z|=r\}\subset\mathbb{C}$ es la "circunferencia" de centro z y radio r

Caminos

Integral de Cauchy

Definición de camino

Un camino es una suma de arcos, es decir,

una curva de la forma
$$\gamma = \sum_{k=1}^{n} \sigma_k$$
, donde, $\sigma_1, \sigma_2, \dots \sigma_n$ son arcos

Toda suma de caminos es un camino

Puede no ser un arco.

Caracterización

Para una curva $\gamma:[a,b]\to\mathbb{C}$, las siguientes afirmaciones son equivalentes:

- (i) γ es un camino
- (ii) Existe una partición $P = \{a = t_0 < t_1 < \dots < t_n = b\}$ del intervalo [a,b]tal que, para $k \in \{1, 2, ..., n\}$, la restricción de γ al intervalo $[t_{k-1}, t_k]$ es una función de clase C¹

Ejemplo de camino

Dados $n \in \mathbb{N}$ y $z_0, z_1, \dots, z_n \in \mathbb{C}$, llamamos poligonal de vértices

$$[z_0, z_1, \dots, z_n] \stackrel{\text{def}}{=} \sum_{k=1}^n [z_{k-1}, z_k]$$

Definición de la integral curvilínea

Integral sobre un arco

Sea $\sigma:[a,b]\to\mathbb{C}$ un arco y $f:\sigma^*\to\mathbb{C}$ una función continua.

La integral de f sobre el arco σ viene dada por

$$\int_{\mathbf{\sigma}} f(z) dz \stackrel{\text{def}}{=} \int_{a}^{b} f(\mathbf{\sigma}(t)) \, \mathbf{\sigma}'(t) dt$$

Integral sobre un camino

Sea $\gamma \colon [a,b] \to \mathbb{C}$ un camino y $f \colon \gamma^* \to \mathbb{C}$ una función continua. Consideremos una partición $P = \{a = t_0 < t_1 < \ldots < t_n = b\}$ de [a,b] tal que, para $k = 1,2,\ldots,n$, la función $\gamma_k = \gamma\big|_{[t_{k-1},t_k]}$ sea de clase C^1 .

La integral de f sobre el camino γ viene dada por:

$$\int_{\gamma} f(z) \, dz = \sum_{k=1}^{n} \int_{\gamma_{k}} f(z) \, dz = \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} f(\gamma_{k}(t)) \gamma_{k}'(t) \, dt$$

Esta definición es correcta:

la suma del segundo miembro no depende de la partición ${\cal P}$ que usemos

Observaciones y notación

Expresión más cómoda para la integral sobre un camino

Sea $\gamma = \sum_{k=1}^{n} \sigma_k$ un camino expresado como suma de arcos.

Para toda función continua $f: \gamma^* \to \mathbb{C}$ se tiene:

$$\int_{\gamma} f(z) dz = \sum_{k=1}^{n} \int_{\sigma_k} f(z) dz$$

Notación para las propiedades de la integral

Dado un camino γ , consideramos el espacio de Banach

 $C(\gamma^*)$ de todas las funciones continuas del compacto γ^* en $\mathbb{C}\,,$ con norma

$$||f||_{\infty} = \max\{|f(z)| : z \in \gamma^*\}$$
 $\forall f \in C(\gamma^*)$

Propiedades de la integral curvilínea (I)

Linealidad

Si γ es un camino, $f,g \in C(\gamma^*)$ y $\lambda, \mu \in \mathbb{C}$, se tiene:

$$\int_{\gamma} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz$$

Longitud de un camino

La longitud de un arco $\sigma:[c,d]\to\mathbb{C}$ se define por: $l(\sigma)=\int_c^d |\sigma'(t)|dt$

Por ejemplo, para $z,w\in\mathbb{C}\,$ y $\,r\in\mathbb{R}^{+}\,$ se tiene:

$$l([z, w]) = |w - z|$$
 y $l(C(z,r)) = 2\pi r$

La longitud de un camino $\gamma = \sum_{k=1}^{n} \sigma_k$ (suma de arcos), será:

$$l(\gamma) = \sum_{k=1}^{n} l(\sigma_k)$$

Propiedades de la integral curvilínea (II)

Continuidad

Dado un camino γ , se tiene: $\left|\sum_{k=\Delta}^{\infty}\int_{\mathcal{O}_{k}}^{g(z)}dz\right| = \left|\sum_{k=\Delta}^{\infty}\int_{\mathcal{O}_{k}}^{g_{k}}(g_{k}(z))g_{k}'(z)dz\right| \leq \sum_{k=\Delta}^{\infty}\left|\int_{\mathcal{O}_{k}}^{g_{k}}(g_{k}(z))g_{k}'(z)dz\right| \leq \sum_{k=\Delta}^{\infty}\left|\int_{\mathcal{O}_{k}}^{g_{k}}(g_{k}(z))g_{k}'(z)dz\right| \leq \sum_{k=\Delta}^{\infty}\left|\int_{\mathcal{O}_{k}}^{g_{k}}(g_{k}(z))g_{k}'(z)dz\right| \leq \left|I(\gamma)\right| \|f\|_{\infty} \qquad \forall f \in C(\gamma^{*}) \leq \sum_{k=\Delta}^{\infty}\int_{\mathcal{O}_{k}}^{g_{k}}(g_{k}(z))g_{k}'(z)dz\right| \leq \left|I(\gamma)\right| \|f\|_{\infty}$

$$\left| \int_{\gamma} f(z) dz \right| \leq l(\gamma) \|f\|_{\infty} \qquad \forall f \in C(\gamma^*) \leq \sum_{i=1}^{\infty} \int_{0}^{\infty} |g(\sigma_i(z))| |\sigma_i(z)| dz \leq C(\gamma^*)$$

luego la integral sobre γ es un funcional lineal continuo en $C(\gamma^*) \leq \sum_{k=1}^{\infty} k \cdot \int_{0}^{\infty} |G_k(t)| = k \cdot \sum_{k=1}^{\infty} R(G_k)_{0} (x)$

Consecuencia de la linealidad y la continuidad

Sea γ un camino y $f_n \in C(\gamma^*)$ para todo $n \in \mathbb{N} \cup \{0\}$.

Si la serie $\sum_{n\geqslant 0} f_n$ converge uniformemente en γ^* , entonces:

$$\int_{\gamma} \left(\sum_{n=0}^{\infty} f_n(z) \right) dz = \sum_{n=0}^{\infty} \int_{\gamma} f_n(z) dz$$

Propiedades de la integral curvilínea (III)

Aditividad

• Si γ , φ son caminos y el extremo de γ es el origen φ , para toda función $f \in C((\gamma + \varphi)^*) = C(\gamma^* \cup \varphi^*)$, se tiene:

$$\int_{\gamma+\varphi} f(z) dz = \int_{\gamma} f(z) dz + \int_{\varphi} f(z) dz$$

• Para todo camino γ y toda función $f \in C\left(\gamma^*\right) = C\left((-\gamma)^*\right)$ se tiene:

$$\int_{-\gamma} f(z) dz = -\int_{\gamma} f(z) dz$$

Regla de Barrow para la integral curvilínea

Regla de Barrow

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C} \ , \ \ f \in \mathcal{C}(\Omega)$$

Supongamos que f tiene primitiva, es decir,

$$\exists F \in \mathcal{H}(\Omega) : F'(z) = f(z) \quad \forall z \in \Omega$$

Si un camino $\gamma:[a,b]\to\mathbb{C}$ verifica que $\gamma^*\subset\Omega$, entonces:

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a))$$

Nota

Si Ω es un abierto de $\mathbb C$ y un camino $\gamma:[a,b]\to\mathbb C$ verifica que $\gamma^*\subset\Omega$, diremos que γ es un camino en Ω .

Existencia de primitiva

Teorema: Caracterización de la existencia de primitiva

$$\emptyset
eq \Omega = \Omega^{\circ} \subset \mathbb{C} \ , \ f \in \mathcal{C}(\Omega)$$

Las siguientes afirmaciones son equivalentes:

- f tiene primitiva: $\exists F \in \mathcal{H}(\Omega) : F'(z) = f(z) \quad \forall z \in \Omega$
- Para todo camino cerrado γ en Ω se tiene que $\int_{\gamma} f(z) dz = 0$.

Lema de construcción de primitivas

$$\emptyset
eq \Omega = \Omega^{\circ} \subset \mathbb{C} \ , \ f \in \mathcal{C}(\Omega)$$

Sea $F: \Omega \to \mathbb{C}$ una función verificando la siguiente condición: para cada $a \in \Omega$ existe $r \in \mathbb{R}^+$ tal que $D(a,r) \subset \Omega$ y

$$F(z) = F(a) + \int_{[a,z]} f(w) dw \qquad \forall z \in D(a,r)$$

Entonces $F \in \mathcal{H}(\Omega)$ y $F'(z) = f(z) \ \forall z \in \Omega$.