

References: [1] Jonathan Ho et al., "De-noising diffusion probabilistic models", 2020 [2] Alex Nichol et al., "Improved Denoising Diffusion Models", 2021

[3] Prafulla Dhariwal et al., "Diffusion Models Beat GANs on Image Sythesis", 2021

[4] Jonathan Ho et al., "Classifier-free Diffusion Guidance", 2022

[5] Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", 2009

[6] Yann LeCun et al., "MNIST handwritten digit database", 2010

gthe noise Decoding diffusion models

Group 44: Zeljko Antunovic (s233025), Alex Belai (s233423), Lukas Samuel Czekalla (s233561), Nándor Takács (s232458)

Repository

Forward process:

Iteratively transform image into $\mathcal{N}(0,I)$

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) \coloneqq \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$
$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Reverse process:

- Predict image iteratively from $\mathcal{N}(0,I)$
- CNN predicts noise reduction

$$p_{\theta}(x_{0:T}) \coloneqq p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t)$$

$$p_{\theta}(x_{t-1}|x_t) \coloneqq \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

Use reparametrization trick to predict ϵ_{θ}

Training & Sampling:

Algorithm 1 Training

- 1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1,\ldots,T\})$ 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on $\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$ 6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for
- 6: return \mathbf{x}_0

Algorithms taken from [1]

Architecture:

mpling

Guided

8192 samples

- **UNet Architecture**
 - 3 encoder layers
 - 2 ResNet Blocks per layer
 - Optionally 1 attention block per layer
 - Input & Output 2D convolution to match feature dimensions

Attention Blocks:

 Self-attention between feature map pixels

ResNet-Blocks:

- **Group Normalisation**
- Sinusoidal temporal embeddings passed through linear layer and added
- Label embeddings are optional, used for classifier-free guidance

Data:

- Training on MNIST & CIFAR-10
- Images normalized to [-1,1]
- No resizing & data augmentation

Hyperparameters:

- Linear schedule: $\beta_0=10^{-4}$ and $\beta_T=0.02$
- Cosine schedule: s = 0.008
- Diffusion steps: T = 1000

Training:

ining

luat

Eval

Ø

BU

amplii

S

- Optimizer is Adam with $l_r = 10^{-4}$
- Training for 30 epochs on MNIST & 60 epochs on CIFAR-10
- Validation-loss on validation set & FID score on 5 minibatches of validation set
- FID for final model on training & test set for 8192 generated samples
- Training with different ablations
 - Linear & cosine schedule
 - Attention & no-attention layers in network

Classifier-free guided sampling:

- label embeddings added to temporal embeddings
- Trained for 30 epochs, *Adam* optimizer with $l_r = 10^{-4}$

MNIST

Linear schedule

Classifier guided sampling:

 Subtracting gradient w.r.t. input of classifier at each sampling step $\epsilon_{\theta} = \epsilon_{\theta'} - \lambda \nabla \ln(p_c(y|x_t))$

MNIST

3 2 3 3 7 7 7 7

73337777

3 3 3 7 7 7

no attention & $\lambda = 200$

CIFAR-10

Cosine schedule

Cosine schedule

MNIST

8192 samples	Linear schedule +	Linear schedule +	Cosine schedule	Cosine schedule
On MNIST classifier	no attention	attention	+ no attention	+ attention
Train-FID	2.286	2.849	2.105	1.766
Test – FID	2.803	3.490	2.724	2.385

On MNIST classifier + no attention + attention + no attention + attention 49.393 0.114 0.165 14.565 Train - FID0.128 14.508 Test - FID0.153 49.058 t = 250t=250 t=500

CIFAR-10

Linear schedule

