

Global fits to D^0 CPV parameters using an HFAG like fit

R. Andreassen¹, A. Davis¹, M.D. Sokoloff¹

Inversity of Cincinnati

Abstract

The new $D^0 \to K\pi$ result from LHCb provides a credibly powerful constraint on mixing parameters. This note describes a fit in the style of HFAG to combine our result with previous measurements.

Contents

1	Introduction	1
2	Chi-square calculation	1
3	Fit variants	2
4	Measurements Used	4
5	Results 5.1 No CP Violation Allowed	
6	Conclusion	7

1 Introduction

- To fully understand the global impact of the updated WS $D^0 \to K\pi$ analysis, a combination
- of global results of the neutral D system is necessary. We present an HFAG-like fit for the
- underlying parameters |q/p|, ϕ , x and y using the updated 2011+2012 LHCb $D^0 \to K\pi$
- 5 results.

6 2 Chi-square calculation

The purpose of our fit is to combine the errors on several different measurements of the same parameters, where each measurement may have a different relation to the underlying true mixing parameters (eg measuring (x'^2, y') in place of (x, y)), and where the numbers in each measurement may be strongly correlated. To do so we construct an overall χ^2 for all the results:

$$\chi^2 = \vec{\epsilon}^T \sigma^{-1} \vec{\epsilon} \tag{1}$$

where the elements of $\vec{\epsilon}$ are given by $\epsilon_i = m_i - p_i$. Here \vec{m} is the list of measured values from experiments, and \vec{p} is a set of "proposed" values for the mixing parameters; we use MINUIT to vary \vec{p} so as to minimise χ^2 . Finally, σ is an $N \times N$ matrix where N is the number of measurements, with $\sigma_{ij} = e_i c_{ij} e_j$. Here e_i is the reported error on measurement i, and i, and i is the correlation coefficient between measurements i and i.

Notice that, if the measurements are uncorrelated, then σ reduces to a diagonal matrix where the elements are the squares of the measurement errors. In this case χ^2 is simply the sum $\sum_i \epsilon_i^2/e_i^2$, that is, each element is the difference between a measurement and the corresponding prediction, divided by the error on the measurement, squared. In other words, if there are no correlations we recover the usual chi-square goodness-of-fit metric.

3 Fit variants

25

27

33

34

35

36

37

38

39

40

41

- 23 In full generality, we wish to fit for no less than seven underlying related mixing parameters:
- x and y, the normalised mass and width differences
 - R_D^+ and R_D^- , the ratios of rates
 - δ , the strong phase difference
 - |q/p| and ϕ , the magnitude and phase of the indirect CP violation.

The observed inputs, however, are not all direct measurements of these quantities. From $D^0 \to K_S \pi \pi$ we get direct measurements of x, y, |q/p| and $\phi; D^0 \to K \pi$ results also yield R_D^{\pm} directly, although sometimes quoted as $R_D = \frac{1}{2}(R_D^+ + R_D^-)$ and $A_D = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-}$. However, we also measure the derived parameters $x'^{2(\pm)}, y'^{(\pm)}, y_{CP}$, and A_Γ , defined as:

$$x' = x\cos\delta + y\sin\delta \tag{2}$$

$$y' = y\cos\delta - x\sin\delta \tag{3}$$

$$x'^{\pm} = \left(\frac{1 \pm A_M}{1 \mp A_M}\right)^{1/4} \left(x'\cos\phi \pm y'\sin\phi\right) \tag{4}$$

$$y'^{\pm} = \left(\frac{1 \pm A_M}{1 \mp A_M}\right)^{1/4} (y'\cos\phi \mp x'\sin\phi) \tag{5}$$

$$2y_{CP} = (|q/p| + |p/q|) y \cos \phi - (|q/p| - |p/q|) x \sin \phi$$
 (6)

$$2A_{\Gamma} = (|q/p| - |p/q|) y \cos \phi - (|q/p| + |p/q|) x \sin \phi \tag{7}$$

(8)

where the helper quantity A_M is given by

$$A_M = \frac{|q/p|^2 - |p/q|^2}{|q/p|^2 + |p/q|^2}.$$
 (9)

To calculate $\vec{\epsilon}$, then, we take in a vector of proposed mixing parameters from MINUIT, calculate the resulting observable parameters from the equations above, and subtract the actually observed numbers.

In addition to the fully-general fit allowing all these variables to float, there are some variants imposing different no-CPV constraints:

- No CP violation. In this fit we set |q/p| = 1, $\phi = 0$, and $R_D^+ = R_D^-$, and fit only for x, y, δ , and R_D .
- No direct CP violation. With no direct CP violation, $R_D^+ = R_D^-$; in addition, the four parameters x, y, ϕ and |q/p| are related (in the limit that CPV is small) by the

constraint

42

46

47

48

49

50

51

52

$$|q/p| = 1 - \frac{y}{x} \tan \phi \tag{10}$$

$$\phi = \tan^{-1} \left(\frac{1 - |q/p|^2}{1 + |q/p|^2} \frac{x}{y} \right) \tag{11}$$

Thus we have two variants on this fit:

- 2a Here we allow |q/p| to float and calculate ϕ from the constraint.
- **2b** We allow ϕ to float and calculate |q/p| from the constraint.
 - All CPV allowed. As A_D is quite small, the contribution of a new physics phase to ϕ is far below our current sensitivity; consequently the constraint above is a reasonable approximation. We therefore run three variants of the all-CPV-allowed scenario:
 - **3a** All parameters float, no constraint.
 - **3b** ϕ is calculated from |q/p| as above, rather than allowed to float. R_D^+ and R_D^- are both free, as before.
 - **3c** As in 3b, but with |q/p| calculated from the constraint and ϕ allowed to float.

In addition, we do a fit not allowing direct CP violation, in which the free parameters are the underlying x_{12} , y_{12} , and ϕ . These parameters are related (in the limit of no direct CP violation) to |q/p|, x, y and ϕ (no subscripts!) as follows:

$$x = \frac{1}{\sqrt{2}}\operatorname{sg}(\cos\phi_{12})\sqrt{x_{12}^2 - y_{12}^2 + |x_{12}^2 + y_{12}^2| - 4x_{12}^2y_{12}^2\sin^2(\phi_{12})}$$
 (12)

$$y = \frac{1}{\sqrt{2}} \sqrt{y_{12}^2 - x_{12}^2 + |x_{12}^2 + y_{12}^2| - 4x_{12}^2 y_{12}^2 \sin^2(\phi_{12})}$$
 (13)

$$|q/p| = \left(\frac{x_{12}^2 + y_{12}^2 + 2x_{12}y_{12}\sin(\phi_{12})}{x_{12}^2 + y_{12}^2 - 2x_{12}y_{12}\sin(\phi_{12})}\right)^{1/4}$$
(14)

$$\phi = -\frac{1}{2} \frac{\sin(2\phi_{12})}{\cos(2\phi_{12}) + \frac{y_{12}^2}{x_{12}^2}}.$$
 (15)

Our approach in this fit is to allow MINUIT to believe that the parameters x_{12} , y_{12} , and ϕ_{12} are free, but interpret them internally as giving rise to the non-underlying parameters x, y, ϕ , and |q/p|, and use these values in the calculation of χ^2 , as outlined for the other fits.

¹See Kagan and Sokoloff, http://arxiv.org/abs/0907.3917.

$_{\scriptscriptstyle{50}}$ 4 Measurements Used

- Of all of the current measurements available, only a few are resonable for certain fits.
- Table 1 lists all the possible measurements pertaining to fits excluding CP Violation.
- Table ?? corresponds to measurements allowing only direct CP violation, and Table ?? lists all measurements pertaining to both direct and indirect CP violation allowed.

Table 1: No CPV allowed inputs

Result	Value	Correlation Coefficients
HFAG ycp	$0.00866 \pm 0.00155 \pm 0$	
LHCb $x'^2(K\pi)$	$5.5e - 05 \pm 4.2e - 05 \pm 2.6e - 05$	
LHCb $y'(K\pi)$	$0.00481 \pm 0.00085 \pm 0.00053$	
LHCb R_D	$0.003568 \pm 5.8e - 05 \pm 3.3e - 05$	
HFAG $x(K_S^0\pi\pi)$	$0.00419 \pm 0.00211 \pm 0$	
HFAG $y(K_S^0\pi\pi)$	$0.00456 \pm 0.00186 \pm 0$	
CLEO $\cos(\delta)(K\pi)$	$0.81 \pm 0.2 \pm 0.06$	
CLEO $\sin(\delta)(K\pi)$	$-0.01 \pm 0.41 \pm 0.04$	
$CDF R_D$	$0.00304 \pm 0.00055 \pm 0$	
CDF $x'^2(K\pi)$	$-0.00012 \pm 0.00035 \pm 0$	
CDF $y'(K\pi)$	$0.0085 \pm 0.0076 \pm 0$	
Belle R_D	$0.00364 \pm 0.00017 \pm 0$	
Belle $x'^2(K\pi)$	$0.00018 \pm 0.00022 \pm 0$	
Belle $y'(K\pi)$	$0.0006 \pm 0.004 \pm 0$	
BaBar R_D	$0.00303 \pm 0.00016 \pm 0.0001$	
BaBar $x'^2(K\pi)$	$-0.00022 \pm 0.0003 \pm 0.00021$	
BaBar $y'(K\pi)$	$0.0097 \pm 0.0044 \pm 0.0031$	

61

5 Results

- The results are split into subsections depending on the type of CP Violation allowed.
- 67 Additionally, results are presented using a variety of different combinations of the available
- data. Figure 1 shows all variations for the no CPV allowed fits. Figure 3 shows the results
- 69 for a subset of variations on All CPV allowed fits.

5.1 No CP Violation Allowed

Table 4 lists the results from the No CP Violation allowed global fit. As $A_{\Gamma}=0$ in the

the case of No CPV, the data is not included in this fit. Additionally, we take subsets of

Table 2: No Direct CPV allowed inputs

Result	Value	Correlation Coefficients
$\overline{\text{HFAG } y_{CP}}$	$0.00866 \pm 0.00155 \pm 0$	
HFAG A_{Γ}	$-0.00022 \pm 0.00161 \pm 0$	
LHCb $A_{\Gamma}(KK)$	$-0.00035 \pm 0.00062 \pm 0.00012$	
LHCb $A_{\Gamma}(\pi\pi)$	$0.00033 \pm 0.00106 \pm 0.00014$	
LHCb R_D	$0.003568 \pm 5.8e - 05 \pm 3.3e - 05$	
LHCb $y'^+(K\pi)$	$0.00446 \pm 0.00089 \pm 0.00057$	
LHCb $x'^{2+}(K\pi)$	$7.7e - 05 \pm 4.6e - 05 \pm 2.9e - 05$	
LHCb $y'^-(K\pi)$	$0.00517 \pm 0.00089 \pm 0.00058$	
LHCb $x'^{2-}(K\pi)$	$3.2e - 05 \pm 4.7e - 05 \pm 3e - 05$	
Belle $x(K_S^0\pi\pi)$	$0.00811 \pm 0.00334 \pm 0$	
Belle $y(K_S^0\pi\pi)$	$0.00309 \pm 0.00281 \pm 0$	
Belle $ q/p $	$0.95 \pm 0.22 \pm 0.1$	
Belle ϕ	$-0.035 \pm 0.19 \pm 0.09$	
CLEO $\cos(\delta)(K\pi)$	$0.81 \pm 0.2 \pm 0.06$	
CLEO $\sin(\delta)(K\pi)$	$-0.01 \pm 0.41 \pm 0.04$	
CLEO R_D	$0.00533 \pm 0.00107 \pm 0.00045$	
CLEO $x'^2(K\pi)$	$0.0006 \pm 0.0023 \pm 0.0011$	
CLEO $y'(K\pi)$	$0.042 \pm 0.02 \pm 0.01$	
$CDF R_D$	$0.00304 \pm 0.00055 \pm 0$	
CDF $x'^2(K\pi)$	$-0.00012 \pm 0.00035 \pm 0$	
CDF $_{y}prime(K\pi)$	$0.0085 \pm 0.0076 \pm 0$	
Belle R_D	$0.00364 \pm 0.00018 \pm 0$	
Belle $x'^{2-}(K\pi)$	$6e - 05 \pm 0.00034 \pm 0$	
Belle $y'^-(K\pi)$	$0.002 \pm 0.0054 \pm 0$	
Belle $x'^{2+}(K\pi)$	$0.00032 \pm 0.00037 \pm 0$	
Belle $y'^+(K\pi)$	$-0.0012 \pm 0.0058 \pm 0$	
BaBar R_D	$0.00303 \pm 0.000189 \pm 0$	
BaBar $x'^{2-}(K\pi)$	$-0.0002 \pm 0.0005 \pm 0$	
BaBar $y'^-(K\pi)$	$0.0096 \pm 0.0075 \pm 0$	
BaBar $x'^{2+}(K\pi)$	$-0.00024 \pm 0.00052 \pm 0$	
BaBar $y'^+(K\pi)$	$0.0098 \pm 0.0078 \pm 0$	
BaBar $x(K_S^0\pi\pi)$	$0.0016 \pm 0.0023 \pm 0.0012$	
BaBar $y(K_S^0\pi\pi)$	$0.0057 \pm 0.002 \pm 0.0013$	

the data which do not include results from Belle, BaBar and CDF in order to explore the change in $\chi^2/{\rm ndf}$ of the global fit.

(a) Two dimensional error ellipses for x and y using all available measurements.

- (b) Two dimensional error ellipses for x and y from fit excluding Belle and BaBar $K\pi$ results.
- (c) Two dimensional error ellipses for x and y from fit excluding Belle, BaBar and CDF measurements.

Figure 1: Two dimensional error ellipses of x and y from fit for No CPV. Exclusion of the Belle and BaBar results drastically change the slope of the error ellipses. The differing colors represent the 1-5 σ contours.

5 5.2 No Direct CP Violation Allowed

Table 5 lists the results of the global fit of no direct CP violation. The final three columns of the table represent the effect of the inclusion of the preliminary LHCb A_{Γ} result in the global fit. The inclusion of this result does not change the central values or errors

79 substantially.

5.3 All CP Violation Allowed

Table 6 lists the results of the global All CP Violation allowed fit. Again, the latter columns list the differing subsets of the data to explore the variation in global χ^2/ndf .

The most noticable difference between all fits is the evaluation of x, which varies quite a bit with the inclusion of differing datasets.

55 6 Conclusion

By utilizing a global, HFAG-like fit, we constrain to be $|q/p| = xxxxx \pm yyyyy$ and $\phi = zzzzzzz \pm qqqqqqqqqqqqqq$, in the case of all CPV allowed. Allowing only direct CPV, $|q/p| = xxxxx \pm yyyyy$ and $\phi = zzzzzzz \pm qqqqqqqqqqqq$. These measurements represent the most precise determination of the CP violating parameters of the netural D meson system

Table 3: All CPV allowed inputs

Result	Value	Correlation Coefficients
		Correlation Coefficients
HFAG y_{CP}	$0.00866 \pm 0.00155 \pm 0$	
HFAG A_{Γ}	$-0.00022 \pm 0.00161 \pm 0$	
LHCb $A_{\Gamma}(KK)$	$-0.00035 \pm 0.00062 \pm 0.00012$	
LHCb $A_{\Gamma}(\pi\pi)$	$0.00033 \pm 0.00106 \pm 0.00014$	
LHCb $x'^{2+}(K\pi)$	$5.5e - 05 \pm 4.2e - 05 \pm 2.6e - 05$	
LHCb $y'^+(K\pi)$	$0.00481 \pm 0.00085 \pm 0.00053$	
LHCb R_D^+	$0.003568 \pm 5.8e - 05 \pm 3.3e - 05$	
LHCb $x'^{2-}(K\pi)$	$5.5e - 05 \pm 4.2e - 05 \pm 2.6e - 05$	
LHCb $y'^-(K\pi)$	$0.00481 \pm 0.00085 \pm 0.00053$	
LHCb R_D^-	$0.003568 \pm 5.8e - 05 \pm 3.3e - 05$	
Belle $x(K_S^0\pi\pi)$	$0.0081 \pm 0.003 \pm 0.0015$	
Belle $y(K_S^0\pi\pi)$	$0.0037 \pm 0.0025 \pm 0.0012$	
Belle $ q/p $	$0.86 \pm 0.3 \pm 0.1$	
Belle ϕ	$-0.244 \pm 0.31 \pm 0.09$	
CLEO $\cos(\delta)(K\pi)$	$0.81 \pm 0.2 \pm 0.06$	
CLEO $\sin(\delta)(K\pi)$	$-0.01 \pm 0.41 \pm 0.04$	
CLEO R_D	$0.00533 \pm 0.00107 \pm 0.00045$	
CLEO $x'^2(K\pi)$	$0.0006 \pm 0.0023 \pm 0.0011$	
CLEO $y'(K\pi)$	$0.042 \pm 0.02 \pm 0.01$	
$CDF R_D$	$0.00304 \pm 0.00055 \pm 0$	
CDF $x'^2(K\pi)$	$-0.00012 \pm 0.00035 \pm 0$	
CDF $y'(K\pi)$	$0.0085 \pm 0.0076 \pm 0$	
Belle R_D^-	$0.0036 \pm 0.0002 \pm 0$	
Belle $x'^{2-}(K\pi)$	$6e - 05 \pm 0.00034 \pm 0$	
Belle $y'^-(K\pi)$	$0.002 \pm 0.0054 \pm 0$	
Belle R_D^+	$0.00368 \pm 0.0002 \pm 0$	
Belle $x'^{2+}(K\pi)$	$0.00032 \pm 0.00037 \pm 0$	
Belle $y'^+(K\pi)$	$-0.0012 \pm 0.0058 \pm 0$	
BaBar R_D^-	$0.00303 \pm 0.0002 \pm 0.0001$	
BaBar $x'^{2-}(K\pi)$	$-0.0002 \pm 0.00041 \pm 0.00029$	
BaBar $y'^-(K\pi)$	$0.0096 \pm 0.0064 \pm 0.0045$	
BaBar R_D^+	$0.00303 \pm 0.0002 \pm 0.0001$	
BaBar $x'^{2+}(K\pi)$	$-0.00024 \pm 0.00043 \pm 0.0003$	
BaBar $y'^+(K\pi)$	$0.0098 \pm 0.0061 \pm 0.0043$	
BaBar $x(K_S^0\pi\pi)$	$0.0016 \pm 0.0023 \pm 0.0012$	
BaBar $y(K_S^0\pi\pi)$	$0.0057 \pm 0.002 \pm 0.0013$	

	All Results	No Belle, BaBar	No Belle, BaBar, CDF
$x(\times 10^{-3})$	3.677 ± 1.815	4.497 ± 1.912	4.515 ± 1.919
$y(\times 10^{-3})$	6.504 ± 1.006	6.856 ± 1.040	6.876 ± 1.041
$\delta_{K\pi}(\times 10^{-1})$	2.210 ± 2.638	3.3407 ± 2.131	3.253 ± 2.141
$R_D(\times 10^{-3})$	3.497 ± 0.041	3.552 ± 0.046	3.552 ± 0.047
χ^2/ndf	34.5065/13	14.8181/7	4.04354/4

Table 4: Output values of No CPV allowed global fit. Different columns list subsets of allowed data.

	All Measurements	No Belle, BaBar	No Belle, BaBar, $A_{\Gamma \text{ LHCb}}$	No Belle, BaBar, CDF, $A_{\Gamma \text{ LHCb}}$
$x(\times 10^{-3})$	5.111 ± 1.779	4.843 ± 1.782	4.845 ± 1.782	4.844 ± 1.787
$y(\times 10^{-3})$	6.891 ± 1.033	6.797 ± 1.029	6.797 ± 1.030	6.809 ± 1.031
$\delta_{K\pi}(\times 10^{-1})[\text{rad}]$	3.529 ± 1.897	3.187 ± 2.021	3.188 ± 2.021	3.084 ± 2.040
$R_D(\times 10^{-3})$	3.583 ± 0.046	3.555 ± 0.046	3.556 ± 0.046	3.556 ± 0.047
$ q/p (\times 10^{-1})$	9.931 ± 0.125	9.935 ± 0.135	9.929 ± 0.131	9.930 ± 0.130
χ^2/ndf	14.6697/25	19.0559/13	19.3925/15	8.61793/12

Table 5: Output values of No Direct CPV allowed global fit. Different columns list subsets of allowed data.

	All Measurements	No Belle, BaBar	No Belle, BaBar, $A_{\Gamma \text{ LHCb}}$	No Belle, BaBar, CDF, $A_{\Gamma \text{ LHCb}}$
$x(\times 10^{-3})$	3.703 ± 1.637	4.817 ± 1.688	4.772 ± 1.685	4.601 ± 1.664
$y(\times 10^{-3})$	6.424 ± 0.925	6.868 ± 0.984	6.908 ± 0.963	6.956 ± 0.867
$\delta_{K\pi}(\times 10^{-1})[\mathrm{rad}]$	1.983 ± 2.452	3.246 ± 1.935	3.329 ± 1.891	3.250 ± 1.756
$\phi(\times 10^{-1})[\text{rad}]$	-0.645 ± 1.193	-0.623 ± 1.055	-0.651 ± 1.046	-1.534 ± 1.712
$R_D^-(\times 10^{-3})$	3.507 ± 0.042	3.568 ± 0.049	3.567 ± 0.049	3.582 ± 0.055
$R_D^+(\times 10^{-3})$	3.500 ± 0.037	3.547 ± 0.044	3.548 ± 0.043	3.533 ± 0.046
$ q/p (\times 10^{-1})$	9.601 ± 0.706	9.513 ± 0.823	9.474 ± 0.800	8.880 ± 1.082
χ^2/ndf	50.4281/26	18.8317/11	19.1817/14	7.72181/9

Table 6: Output of the All CP Violation allowed global fit. Different Columns list differing subsets of data included in the fit.

- (a) Two dimensional error ellipses for x and y from fit excluding Belle and BaBar $K\pi$ results. Does not include latest A_{Γ} result of LHCb.
- (b) Two dimensional error ellipses for x and y from fit excluding Belle and BaBar $K\pi$ results. Include latest A_{Γ} result of LHCb.

- (c) Two dimensional error ellipses for x and y from fit excluding Belle, BaBar and CDF $K\pi$ results. Does not include latest A_{Γ} result of LHCb.
- (d) Two dimensional error ellipses for x and y from fit excluding Belle, BaBar and CDF $K\pi$ results. Include latest A_{Γ} result of LHCb.

Figure 2: Two dimensional error ellipses of fit for All CPV including differing sets of data for x vs y. The biggest differences come from including the CDF result, which elongates the error ellipses. The differing colors represent the 1-5 σ contours.

- (a) Two dimensional error ellipses for x and y from fit excluding Belle and BaBar $K\pi$ results. Does not include latest A_{Γ} result of LHCb.
- (b) Two dimensional error ellipses for x and y from fit excluding Belle and BaBar $K\pi$ results. Include latest A_{Γ} result of LHCb.

1.5

|q/p|

- (c) Two dimensional error ellipses for x and y from fit excluding Belle, BaBar and CDF $K\pi$ results. Does not include latest A_{Γ} result of LHCb.
- (d) Two dimensional error ellipses for x and y from fit excluding Belle, BaBar and CDF $K\pi$ results. Include latest A_{Γ} result of LHCb.

Figure 3: Two dimensional error ellipses of fit for All CPV including differing sets of data for ϕ vs q/p. The biggest differences come from including the CDF result, which elongates the error ellipses. The differing colors represent the 1-5 σ contours.