Pokročilá algoritmizace

barevnost grafu, rovinné grafy, SAT, CNF, DPLL, souvislost barevnosti se SATem

Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Barevnost grafu

 Cíl: Nechť G je libovolný neorientovaný graf. Chceme obarvit jeho vrcholy co nejmenším počtem barev tak, aby platilo, že každé dva vrcholy spojené hranou mají různou barvu.

Barevnost grafu

Nechť G = (V, E) je neorientovaný graf a k přirozené číslo.
Zobrazení

$$b: V \to \{1, 2, ..., k\}$$

nazveme obarvením grafu G pomocí k barev, pokud platí:

$$\forall \{x,y\} \in E : b(x) \neq b(y)$$

Barevnost grafu (také chromatické číslo) G je minimální počet barev potřebný pro obarvení G.

Značí se $\chi(G)$.

Barevnost grafu

 $\chi(G) = 1$ právě tehdy, skládá-li se G z izolovaných vrcholů.

 $\chi(G) = |V|$ pro libovolný úplný graf.

 $\chi(G) \ge 3$ právě tehdy, obsahuje-li G cyklus liché délky.

Rovinný graf, rovinné nakreslení

rovinný graf (planární graf)

Rovinný graf je graf, pro který existuje takové rovinné nakreslení, že se žádné dvě hrany nekříží.

rovinné nakreslení

Rovinné nakreslení je zobrazení b, které každému vrcholu v přiřazuje bod roviny b(v) a hraně $\{i,j\}$ přiřadí oblouk s koncovými body $\sigma(i)$ a $\sigma(j)$. Zobrazení je prosté (různým vrcholům odpovídají různé body roviny) a žádný bod b(v) není nekoncovým bodem žádného oblouku. Graf spolu s takovýmto zobrazením nazveme *topologický graf*.

oblouk

□ **Oblouk** je podmnožina roviny tvaru σ (<0,1>), kde σ : <0,1> \rightarrow \mathbb{R}^2 je nějaké spojité a prosté (až na koncové body) zobrazení intervalu <0,1> do roviny. Body σ (0) a σ (1) se nazývají *koncové body* oblouku.

stěna

Nechť $A \subseteq \mathbb{R}^2$ je nějaká podmnožina roviny. Nazveme ji *souvislou*, pokud pro $\forall x,y \in A$ platí, že existuje oblouk o s koncovými body x a y takový, že $o \subseteq A$. Oblouky příslušné hranám nějakého topologického grafu pak podle této relace souvislosti rozdělují rovinu na třídy ekvivalence, které se nazývají **stěny grafu**.

Rovinný graf, rovinné nakreslení

příklad rovinného nakreslení grafu s křížením hran:

příklad rovinného nakreslení téhož grafu, ale bez křížení hran

(graf je tedy rovinný):

Kuratowského věta

Graf G je rovinný, právě když žádný jeho podgraf není isomorfní dělení grafu K_{3,3} ani dělení grafu K₅.

■ K₅

Dělení grafu je graf, který vznikne z původního grafu opakovanou aplikací dělení hrany. Dělení hrany lze popsat operací % následovně:

$$G\%e = (V \cup \{z\}, (E \setminus \{\{x, y\}\}) \cup \{\{x, z\}, \{z, y\}\})$$

kde $e=\{x,y\}\in E$ je hrana, a $z\notin V$ je nový vrchol (na hranu $\{x,y\}$ tedy "přikreslíme" nový vrchol z).

Eulerův vzorec

Eulerův vzorec

Nechť G=(V,E) je souvislý rovinný graf, a nechť s je počet stěn
 nějakého rovinného nakreslení G, kde se nekříží hrany. Potom platí

$$|V| - |E| + s = 2$$

Důsledek

□ Počet stěn nezávisí na způsobu rovinného nakreslení, kde se nekříží hrany.

Eulerův vzorec

důkaz indukcí:

- \square Pro $|E| = \emptyset$ je potom |V| = 1 a s = 1. Vzorec tedy platí.
- □ Dále rozlišíme dva případy:
 - Graf G neobsahuje cyklus. Potom G je strom a tedy |V| = |E| + 1. Každý strom má pouze jedinou stěnu.
 - Graf G obsahuje cyklus. Existuje tedy nějaká hrana e∈E, která je obsažena v cyklu. G – e je tedy souvislý. Pro tento graf platí podle indukčního předpokladu Eulerův vzorec:

$$|V(G-e)| - |E(G-e)| + s(G-e) = 2.$$

Přidáním hrany e vznikne cyklus který odštěpí novou stěnu. Přidáním 1 hrany tedy vzroste počet stěn o 1. Vzorec tedy platí:

$$|V(G-e)| - (|E(G-e)| + 1) + (s(G-e) + 1) = 2.$$

Barevnost rovinných grafů

- problém: Jaké minimální množství barev je potřeba na obarveni libovolné mapy států tak, aby státy se společnou hranicí neměly stejnou barvu?
- převedeme tento problém na barvení rovinného grafu

Barevnost rovinných grafů

Je zřejmé, že na vyřešení problému potřebujeme alespoň 4 barvy.

- Tento problém byl v roce 1976 s pomocí počítače vyřešen.
- Každý rovinný graf lze obarvit 4 barvami.
 - Je to jeden z prvních výsledků, který byl dokázán s pomocí počítače.
 - Důkaz obsahuje 1936 speciálních případů, které pokrývají všechny možnosti.
- Existuje lineární algoritmus pro obarvení rovinného grafu 5 barvami.

Co je SAT a co nabízí?

- SAT = Boolean SATisfiability problem
- Řeší problém nalezení ohodnocení proměnných v booleovské formuli tak, že je formule splněna.
- Příklad:

$$\exists x_1 x_2 x_3 x_4 \ (x_1 \lor \neg x_2 \lor \neg x_3) \& (x_1 \lor x_2 \lor x_4)$$

Řešení:

Formule je splněna když: $(x_1, x_2, x_3, x_4=TRUE)$

- Vstupem většiny SAT solverů je CNF (Conjunctive Normal Form).
- Nalezení řešení SAT je NP-úplný problém. To znamená, že zatím nejlepší známý algoritmus řeší úlohu v čase O(exp(n)) (tj. není znám polynomiální algoritmus).

CNF (Conjunctive Normal Form)

□ CNF (česky: konjunktivní normální tvar formule

CNF (česky: konjunktivní normální tvar formule) je konjunkce klauzulí, kde klauzule je disjunkce literálů, a kde literál je buď výroková proměnná nebo znegovaná výroková proměnná.

- Příklad CNF: $(x_1 \lor x_3 \lor \neg x_2 \lor x_1) \land (\neg x_1 \lor \neg x_4)$
- Každá výroková formule lze převést na CNF.
 - □ Nejprve převedeme všechny logické spojky na Λ, V a ¬.
 - □ Potom pomocí De Morganových pravidel a roznásobení převedeme na CNF.
 - Existuje algoritmus, který umí převést libovolnou výrokovou formuli na jí ekvivalentní v lineárním čase a navíc výsledná CNF formule zabere lineární prostor vůči vstupní formuli.

Jak fungují SAT solvery - DPLL

 Většina nejrychlejších současných SAT solverů používá algoritmus založený na DPLL (Davis-Putnam-Logemann-Loveland) algoritmu:

```
function DPLL(\Phi : CNF) : boolean
     if Φ neobsahuje žádnou klauzuli then return true;
     if Φ obsahuje prázdnou klauzuli then return false;
     for every unit clause L in Φ
             \Phi := unit-propagate(L, \Phi);
     for every pure literál L in Φ
             \Phi := pure-literal-assign(L, \Phi);
     L := vyber-literál(Φ);
return DPLL(\Phi & L) or DPLL(\Phi & not(L));
```

Jak fungují SAT solvery - DPLL

- unit clause je klauzule, která obsahuje pouze jeden nepřiřazený literál (literál, který ještě nemá hodnotu).
- pure literál je literál, který se v CNF formuli vyskytuje pouze v jedné polaritě (buď jako ¬x nebo jako x).
- unit-propagate(L, Φ) a pure-literal-assign(L, Φ)
 nastaví všem literálům L z Φ stejnou hodnotu podle jejich
 tvaru a zjednoduší výslednou formuli.

Jinými slovy: Funkce nahradí všechny výskyty L za *true* a opačně polarizované L za *false* a následně zjednoduší výslednou formuli Φ tak, že smaže všechny klauzule obsahující *true* a smaže všechny *false* ze všech klauzulí (Pozor! Prázdná klauzule je stále klauzule)

Jak fungují SAT solvery - DPLL

• Příklad: $(x_1) \land (\neg x_2 \lor x_3) \land (\neg x_4 \lor \neg x_5) \land (x_5 \lor x_4 \lor \neg x_1)$

$$\begin{array}{lll} (\textbf{x_1}) \wedge (\neg x_2 \vee x_3) \wedge (\neg x_4 \vee \neg x_5) \wedge (x_5 \vee x_4 \vee \neg x_1) & - \text{unit-propagate } (x_1 \ , \dots \\ (\textbf{TRUE}) \wedge (\neg x_2 \vee x_3) \wedge (\neg x_4 \vee \neg x_5) \wedge (x_5 \vee x_4 \vee \textbf{FALSE}) \\ (\neg \textbf{x_2} \vee x_3) \wedge (\neg x_4 \vee \neg x_5) \wedge (x_5 \vee x_4) & - \text{pure-literal-assign} (\neg x_2 \ , \dots \\ (\textbf{TRUE} \vee x_3) \wedge (\neg x_4 \vee \neg x_5) \wedge (x_5 \vee x_4) & - \text{vyber-literál } \neg x_4 \\ (\neg \textbf{x_4} \vee \neg x_5) \wedge (x_5 \vee \textbf{x_4}) \wedge (\neg \textbf{x_4}) & - \text{unit-propagate } (\neg x_4 \ , \dots \\ (\textbf{TRUE} \vee \neg x_5) \wedge (x_5 \vee \textbf{FALSE}) \wedge (\textbf{TRUE}) \\ (\textbf{x_5}) & - \text{unit-propagate } (x_5 \ , \dots \\ (\textbf{TRUE}) \\ \emptyset \end{array}$$

je formule splněná (x_1 =TRUE, x_2 =FALSE, x_3 =libovolné, x_4 =FALSE, x_5 =TRUE).

CNF neobsahuje žádnou klauzuli => existuje ohodnocení výrokových proměnných takové, že

Proč převádět na SAT?

- Dnes existují desítky výkonných SAT solverů (např. MiniSAT, zChaff, ...), které se každoročně testují na stovkách testovacích příkladů v soutěžích.
- SAT má dlouhodobě standardizovaný a jednoduchý formát,
 Ize tedy snadno používat více různých solverů.
- Existují preprocesory pro SAT, které na některých typech úloh výrazně zvyšují výkonnost (např. SatELite)
- Existují rozšíření, které řeší i složitější úlohy než SAT (např. Paradox, Equinox, některé QBF solvery, ...)

Souvislost SATu a barevnosti

Souvislost SATu a barevnosti

Ke každé boolovské formuli F existuje graf G takový, že pokud je F splnitelná, je barevnost grafu G rovna 3. Navíc jsme tento graf G schopni vygenerovat vůči CNF tvaru formule F v lineárním čase.

 Důsledek: Kdybychom uměli "rychle" (např. polynomiálně) řešit kbarevnost grafu, potom bychom uměli i "rychle" řešit SAT (to ale zatím neumíme) výše uvedenou transformací.

Souvislost SATu a barevnosti

Převod SATu na barvení grafu třemi barvami

Souvislost SATu a barevnosti

