

Mateus Lucas Cruz Brandt 2024/1 CEAVI Engenharia de Software Orientada a Serviços

Contextualização

Mensageria

Abordagem fundamental no desenvolvimento de sistemas distribuídos, permitindo comunicação eficiente entre diferentes componentes ou serviços

Em um ambiente distribuído, onde diversos elementos do sistema podem estar em máquinas diferentes, a mensageria desempenha um papel crucial na troca de informações assíncronas

Problema

Desacoplamento em Sistemas

À medida que os sistemas escalam em tamanho e complexidade, surge a necessidade crítica de desacoplamento. Este desafio se manifesta em duas dimensões principais: temporal e arquitetônica.

Temporal

Total: 25 segundos

Arquitetural

Como mensageria resolve?

Comunicação Assíncrona

Permite que os sistemas se comuniquem de forma assíncrona, ou seja, os componentes não precisam estar ativos simultaneamente para trocar informações

Desacoplamento

Sistemas podem ser desacoplados, o que significa que os produtores e consumidores de mensagens não precisam estar cientes uns dos outros. Isso proporciona flexibilidade e escalabilidade ("GoF/Observer")

Confiança e Resiliência

Ajuda a construir sistemas mais resilientes, uma vez que as mensagens podem ser armazenadas temporariamente e reprocessadas em caso de falhas

Escalabilidade

Permite a escalabilidade horizontal, uma vez que novos componentes podem ser adicionados sem afetar diretamente os existentes, facilitando a adaptação a cargas de trabalho variáveis

Como mensageria resolve?

8 kafka

Visão Geral

O Apache Kafka é uma plataforma de streaming distribuída, projetada para lidar com grandes volumes de dados em tempo real.

Como funciona

Tópicos

Os dados são organizados em tópicos (filas). Onde cada mensagem é um par chave-valor.

Produtores

São aplicações responsáveis por alimentar os tópicos. Podem escrever para um ou mais tópicos.

Consumidores

São aplicações que "escutam" tópicos. Podem processar mensagem a mensagem ou então em lotes. Também são responsáveis por gerenciar quais as mensagens que já foram consumidas

Como funciona

Brokers

São os "servidores" responsáveis por gerenciar os dados do Kafka

Partições

Cada tópico está dividido em partições. Elas permitem escala horizontal.

Réplicas

Para auxiliar na segurança de dados, cada partição pode ter réplicas. A réplica principal, escreve nas demais. Se uma das réplicas cair, uma nova principal é eleita

Como funciona

ZooKeeper

Responsável por gerenciar e coordenar os brokers.

Grupos de consumidor

Consumidores podem ser gerenciados em grupos para organizar o consumo de mensagem. Permite escala horizontal de consumidores

Escalabilidade

Kafka permite escala tanto horizontal quanto vertical. Novos brokers podem ser adicionados para aumentar capacidade, e partições para distribuir carga entre brokers.

Vantagens

Escalabilidade

Alta taxa de transferência e baixa latência

Persistência

Tolerância a falhas

Flexibilidade na modelagem de dados

Processamento de "streams"

Integração no ecossistema Apache

Gerenciamento de versões dos tópicos

Desvantagens

Complexidade de configuração

Overhead de gerenciamento

Armazenamento e recursos necessários

Latência de entrega não garantida

Complexidade de desenvolvimento

Curva de aprendizado

Tamanho mínimo do cluster

Caso de Uso

Consumindo mais de 1 bilhão de mensagens por dia no Ifood

Empresas que usam

Powered By

