clear, clc % очистка рабочей области и командного окна

tic % запуск таймера

N=1000000; % количество проб

m=0; % счетчик появлений события A

for j=1:N

num=randsample(15,3); % случайная выборка 3 номеров из 15 % проверка события, что среди отобранных есть хотя бы одна книга в переплете

if length(find(num<=5))>0 m=m+1; end end

Pz=m/N % оценка вероятности события

Tm=toc

Ответ: оценка была повторена трижды. Получены значения:

- 1) Pz = 0.7370. Tm = 27.6653 секунд.
- 2) Pz = 0.7353. Tm = 27.3975 секунд.
- 3) Pz = 0.7369. Tm = 27.6252 секунд. Средняя оценка Pz = 0.7364.

<u>Задача 49</u>. Вероятности появления каждого из двух независимых событий A1 и A2 соответственно равны p1 и p2. Найти вероятность появления только одного из этих событий.

Точный ответ: $P = p1 \cdot q2 + q1 \cdot p2$. При p1 = 0.7 и p2 = 0.2 получим $P = 0.7 \cdot 0.8 + 0.3 \cdot 0.2 = 0.62$.

Пояснения к алгоритму: построим алгоритм численного решения задачи для любых значений p1 и p2 и напишем скрипт

% Гмурман Задача 49

clear, clc % очистка рабочей области и командного окна

tic % запуск таймера

N=1000000; % количество проб

p1=0.7; p2=0.2;

m=0; % счетчик появлений события A

for **j=1:N**

z1=rand; z2=rand;

if (z1<p1 && z2>p2) | (z1>p1 && z2<p2) m=m+1; end

end

Pz=m/N % оценка вероятности события

Tm=toc

Ответ: Pz = 0.6202. Tm = 0.0343 секунд.

<u>Задача 52</u>. Вероятность одного попадания в цель при одном залпе из двух орудий равна 0,38. Найти вероятность поражения цели при одном выстреле

первым из орудий, если известно, что для второго орудия эта вероятность равна 0,8.

Точный ответ: p1 = 0.7.

Пояснения к решению: задача является примером тех задач, которые нельзя решить прямым численным методом статистических испытаний (Монте-Карло).

Это видно из ее аналитического решения: обозначим A — попадание в цель из 1-го орудия, B — попадание в цель из 2-го орудия, C — одно попадание при залпе из двух орудий. Известны вероятность p (B) = 0,8 и вероятность p (C) = 0,38.

С использованием операций пересечения и объединения событий событие C можно выразить через события A и B: $C = A \cdot \Box B + \Box A \cdot B$. Здесь знак \Box означает операцию отрицания. События A и B независимые.

Поэтому с помощью формул сложения и умножения вероятностей найдем вероятность события C: $p(C) = p(A) \cdot p(\neg B) + p(\neg A) \cdot p(B)$, или $p(C) = p(A) \cdot (1 - p(B)) + 1 - p(A) \cdot p(B)$.

Из этого равенства найдем искомую вероятность p(A)

$$p(A) = (p(C) - p(B)) / (1 - 2 \cdot p(B))$$

Подставим числовые значения и вычислим

$$p(A) = (0.38 - 0.8) / (1 - 2 \cdot 0.8) = 0.7$$

Вероятность p(A) получена как результат преобразований и решения алгебраического уравнения. Построить алгоритм прямой имитации условий задачи — выстрелов из орудий — нельзя.

Численный метод статистических испытаний можно применить, но лишь в сочетании с другим численным методом — поиска подходящего значения p(A). Введем более компактные обозначения: p1 = p(A), p2 = p(B), P = p(C) = 0.38, q1 = 1 - p1, q2 = 1 - p2 = 0.2.

Структура алгоритма включает этапы:

- 1. Задаемся стартовым значением p1, например, p1* = 0,5.
- 2. Методом Монте-Карло по N испытаниям получаем оценку $p (C) = P^*$.
- 3. Сравниваем значения Р и Р*.

Если разница $|P - P^*| < eps$ — допустимой погрешности, то останавливаем вычисления: оценка $p1 = p1^*$.

Иначе: выбираем приращение dp1 в зависимости от величины и знака разности $P - P^*$. Изменяем p1 \leftarrow p1 + dp1 и возвращаемся к выполнению п.2.

Очевидно, что такой алгоритм потребует для решения значительно больше времени. Поэтому для задач, которые можно без больших усилий и

специальных приемов решить аналитически, именно аналитическое решение является наилучшим.

Для задач, которые аналитически не поддаются решению, можно рекомендовать приведенный выше алгоритм или другие алгоритмы, в которых метод Монте-Карло является одним из составных элементов поиска решения.

Ниже приведен скрипт, программно реализующий описанный выше алгоритм. Оценка вероятности P^* методом Монте-Карло выделена в отдельную процедуру — функцию МК1. Поиск оптимального значения $p1^*$ выполнен методом дихотомии по критерию близости оценок P^* к P=0,38.

```
% Гмурман Задача 52
clear, clc % очистка рабочей области и командного окна
tic % запуск таймера
P=0.38; epsilon=0.00001; dp=0.25;
p11=0; p12=0.5; p13=1; dP=0.5; k=0;
while abs(dP) > epsilon
  k=k+1; % счетчик итераций
  Pz1=MK1(p11); Pz2=MK1(p12); Pz3=MK1(p13);
  Pz=[Pz1,Pz2,Pz3];
  dP=Pz-P;
             dp=dp/2;
 if dP(1,1) * dP(1,2) < 0
   p12=(p11+p12)/2; p11=p12-dp; p13=p12+dp;
 end
 if dP(1,2) * dP(1,3) < 0
   p12=(p12+p13)/2; p11=p12-dp; p13=p12+dp;
 end
 if (dP > 0 \mid dP < 0) p11=p11+epsilon; p13=p13-epsilon; end
end
p1=[p11 p12 p13] % три наилучшие оценки p1*
Рг % три ближайших к Р значений оценок Р*
Tm=toc % время поиска решения
k % число итераций поиска
function Pz=MK1(p1);
% метод Монте-Карло имитация одного залпа из 2-х орудий
N=1000000; m=0; % количество проб
p2=0.8; x1=rand(N,1); x2=rand(N,1);
for j=1:N
% условие попадания в одном залпе только одного орудия
  if (x1(j,1) < p1 & x2(j,1) > p2) \mid (x1(j,1) > p1 & x2(j,1) < p2) = m+1; end
end
Pz=m/N; % оценка вероятности попадания только одного орудия
     Ombem: p1 = 0.7003 \quad 0.7003 \quad 0.7003.
```

$$Pz = 0.3800 \quad 0.3801 \quad 0.3796$$
 $Tm = 2,4617$ секунд. $k = 33$

Поскольку из трех значений Pz ближайшим к заданному P = 0.38 является первое значение, то и наилучшей оценкой p1 является p1*=0.7003.

<u>Задача 53</u>. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. Найти вероятность того, что из двух проверенных изделий только одно стандартное.

Точный ответ: $p1=0.9\cdot 0.1+0.1\cdot 0.9=0.18$. % Гмурман Задача 53 clear, clc % очистка рабочей области и командного окна tic % запуск таймера p=0.9; N=100000000; m=0; x=rand(2,N); for j=1:N if $(x(1,j) p) \mid (x(1,j) > p \&\& x(2,j) < p)$ m=m+1; end end Pz=m/N Tm=toc

Ответ: Pz = 0.1800 Tm = 0,2057 секунд.

<u>Задача 58</u>. Брошены три игральные кости. Найти вероятности следующих событий: а) на каждой из выпавших граней появится пять очков; б) на всех выпавших гранях появится одинаковое число очков.

```
Точный ответ: pa = 1/6 \cdot 1/6 \cdot 1/6 = 1/216 = 0,00463; pb = 6 \cdot 1/6 \cdot 1/6 \cdot 1/6 = 6/216 = 0,02778. % Гмурман Задача 59 clear, clc % очистка рабочей области и командного окна tic % запуск таймера p=0.9; N=10000000; ma=0; mb=0; x=randi([1,6],3,N); for j=1:N if (x(1,j)==5) && (x(2,j)==5) && (x(3,j)==5) ma=ma+1; end if (x(1,j)==x(2,j)) && (x(2,j)==x(3,j)) mb=mb+1; end end Pa=ma/N Pb=mb/N Tm=toc
```

Ответ: Pa = 0.0046 Pb = 0.0278 Tm = 0,6316 секунд.