9 - Lexicalized and Probabilistic Parsing

CS 6320

Outline

- PP Attachment Problem
- Probabilistic CFG
- Problems with PCFG
- Probabilistic Lexicalized CFG
- The Collins Parser
- Evaluating parsers
- Example

PP-attachment Problem

I buy books for children

```
I buy (books for children)
Or
I buy (for children) (books)
```

Semantic selection

I ate a pizza with anchovies.

I ate a pizza with friends.

I ate (a pizza with anchovies).

I ate (a pizza) (with friends).

Parse tree for "pizza with anchovies"

Parse tree for "pizza with friends"

More than one PP

I saw the man in the house with the telescope.

```
I saw (the man (in the house (with the telescope)).
```

- I saw (the man (in the house) (with the telescope))
- I saw (the man) (in the house (with the telescope)).
- I saw (the man) (in the house) (with the telescope).

Accuracy for "most probable attachment" for a preposition

Prep.	%of tot	al % V
of	13.47%	6.17%
to	13.27%	80.14%
in	12.42%	73.64%
for	6.87%	82.44%
on	6.21%	75.51%
with	6.17%	86.30%
from	5.37%	75.90%
at	4.09%	76.63%
as	3.95%	86.51%
by	3.53%	88.02%
into	3.34%	89.52%
that	1.74%	65.97%
about	1.45%	70.85%
over	1.30%	86.83%

Accuracy on UPenn-II Treebank: 81.73%

Semantic information

- Identify the correct meaning of the words
- Use this information to decide which is the most probable parse
- Ex.: eat pizza with friends

Pragmatic and discourse information

- To achieve 100% accuracy, we need this kind of information
- Examples
 - Buy a car with a steering wheel you need knowledge about how the cars are made
 - I saw that car in the picture you need also surrounding discourse

[McLauchlan 2001 – Maximum Entropy Models and Prepositional Phrase Ambiguity]

Probabilistic Context-Free Grammars

- N a set of **non-terminal symbols** (or **variables**)
- Σ a set of **terminal symbols** (disjoint from N)
- R a set of **rules** or productions, each of the form $A \rightarrow \beta$ [p], where A is a non-terminal,
 - β is a string of symbols from the infinite set of strings $(\Sigma \cup N)*$, and p is a number between 0 and 1 expressing $P(\beta|A)$
- S a designated start symbol

$$A \rightarrow \beta[p]$$

$$P(A \rightarrow \beta)$$

$$P(A \rightarrow \beta|A)$$

$$P(RHS/LHS)$$

$$\sum P(A \rightarrow \beta) = 1$$

$$\beta$$

Probabilistic Context-Free Grammar

PCFG assigns a probability to each parse-tree T

$$P(T,S) = \prod_{n \in T} p(r(n))$$

$$P(T,S) = P(T)P(S \mid T)$$
but
$$P(S \mid T) = 1$$

$$P(T,S) = P(T)$$

$$\hat{T}(S) = \underset{Ts.t.S = \text{yield}(T)}{\operatorname{arg max}} P(T \mid S)$$

$$\hat{T}(S) = \underset{Ts.t.S = \text{yield}(T)}{\operatorname{arg max}} \frac{P(T, S)}{P(S)}$$

$$\hat{T}(S) = \underset{Ts.t.S = \text{yield}(T)}{\operatorname{arg max}} P(T, S)$$

$$\hat{T}(S) = \underset{Ts.t.S = \text{yield}(T)}{\operatorname{arg max}} P(T)$$

Probabilistic Context-Free Grammars

Grammar		Lexicon
$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$
$S \rightarrow Aux NP VP$	[.15]	$Noun \rightarrow book [.10] \mid flight [.30]$
$S \rightarrow VP$	[.05]	meal [.15] money [.05]
$NP \rightarrow Pronoun$	[.35]	flights [.40] dinner [.10]
<i>NP</i> → <i>Proper-Noun</i>	[.30]	$Verb \rightarrow book [.30] \mid include [.30]$
$NP \rightarrow Det Nominal$	[.20]	<i>prefer</i> ;[.40]
$NP \rightarrow Nominal$	[.15]	$Pronoun \rightarrow I[.40] \mid she[.05]$
$Nominal \rightarrow Noun$	[.75]	me [.15] you [.40]
$Nominal \rightarrow Nominal Noun$	[.20]	$Proper-Noun \rightarrow Houston [.60]$
$Nominal \rightarrow Nominal PP$	[.05]	<i>NWA</i> [.40]
$VP \rightarrow Verb$	[.35]	$Aux \rightarrow does [.60] \mid can [40]$
$VP \rightarrow Verb NP$	[.20]	$Preposition \rightarrow from [.30] \mid to [.30]$
$VP \rightarrow Verb NP PP$	[.10]	on [.20] near [.15]
$VP \rightarrow Verb PP$	[.15]	through [.05]
$\mathit{VP} o \mathit{Verb} \mathit{NP} \mathit{NP}$	[.05]	
$VP \rightarrow VP PP$	[.15]	
$PP \rightarrow Preposition NP$	[1.0]	

Figure 14.1 A PCFG that is a probabilistic augmentation of the \mathcal{I}_1 miniature English CFG grammar and lexicon of Fig 13.1. These probabilities were made up for pedagogical purposes and are not based on a corpus (since any real corpus would have many more rules, so the true probabilities of each rule would be much smaller).

Probabilistic Context-Free Grammars

ž.	R	ules	P		Rı	ıles	P
S	\rightarrow	VP	.05	S	\rightarrow	VP	.05
VP	\rightarrow	Verb NP	.20	VP	\rightarrow	Verb NP NP	.10
NP	\longrightarrow	Det Nominal	.20	NP	\longrightarrow	Det Nominal	.20
Nominal	\rightarrow	Nominal Noun	.20	NP	\rightarrow	Nominal	.15
Nominal	\rightarrow	Noun	.75	Nominal	\rightarrow	Noun	.75
				Nominal	\rightarrow	Noun	.75
Verb	\longrightarrow	book	.30	Verb	\longrightarrow	book	.30
Det	\rightarrow	the	.60	Det	\longrightarrow	the	.60
Noun	\longrightarrow	dinner	.10	Noun	\longrightarrow	dinner	.10
Noun	\rightarrow	flights	.40	Noun	\rightarrow	flights	.40

Figure 14.2 Two parse trees for an ambiguous sentence. The transitive parse on the left corresponds to the sensible meaning "Book a flight that serves dinner", while the ditransitive parse on the right corresponds to the nonsensical meaning "Book a flight on behalf of 'the dinner".

Probabilistic Context Free Grammars

	Rı	ıles	P			F	tules	P
S	\rightarrow	Aux NP VP	.15		S	\rightarrow	Aux NP VP	.15
NP	\rightarrow	Pro	.40	l	NP	\rightarrow	Pro	.40
VP	\rightarrow	V NP NP	.05		VP	\rightarrow	V NP	.40
NP	\rightarrow	Nom	.05		NP	\rightarrow	Nom	.05
NP	\rightarrow	PNoun	.35		Nom	\rightarrow	PNoun Nom	.05
Nom	\rightarrow	Noun	.75		Nom	\rightarrow	Noun	.75
Aux	\rightarrow	Can	.40		Aux	\rightarrow	Can	.40
NP	\rightarrow	Pro	.40		NP	\rightarrow	Pro .	.40
Pro	\rightarrow	you	.40		Pro	\rightarrow	you	.40
Verb	\rightarrow	book	.30		Verb	\rightarrow	book	.30
PNoun	\rightarrow	TWA	.40		Pnoun	\rightarrow	TWA	.40
Noun	\rightarrow	flights	.50		Noun	\rightarrow	flights	.50

Two parse trees for an ambiguous sentence. Parse (a) corresponds to the meaning "Can you book flights on behalf of TWA", parse (b) to "Can you book flights which are run by TWA".

Probabilistic Context Free Grammars

$$P(T_{l}) = .15 * .40 * .05 * .05 * .35 * .75 * \\ * .40 * .40 * .40 * .30 * \\ * .40 * .50 \\ = 1.5 \times 10^{-6} \\ P(T_{r}) = .15 * .40 * .40 * .05 * .05 * \\ .75 * .40 * .40 * .40 * .30 * \\ .40 * .50 \\ = 1.7 \times 10^{-6} \\ \text{Note:} \\ P(S) = \sum_{T \in \tau(S)} P(T, S) \\ = \sum_{T \in \tau(S)} P(T)$$

- Probabilities of a sentence is the sum of probabilities of all parse trees.
- Useful for Language Modeling

Probabilistic CKY Parsing

Figure 14.3 The probabilistic CKY algorithm for finding the maximum probability parse of a string of *num_words* words given a PCFG grammar with *num_rules* rules in Chomsky normal form. *back* is an array of backpointers used to recover the best parse. The *build_tree* function is left as an exercise to the reader.

Probabilistic CKY Parsing

S	$\rightarrow NP VP$.80	Det	$\rightarrow t$	the	.40
NP	\rightarrow Det N	.30	Det	\rightarrow α	а	.40
VP	$\rightarrow VNP$.20	N	\longrightarrow 1	meal	.01
V	\rightarrow includes	.05	N	$\rightarrow j$	flight	.02

Figure 14.4 The beginning of the probabilistic CKY matrix. Filling out the rest of the chart is left as Exercise 14.4 for the reader.

Learning PCFG Probabilities

Treebank contains parse trees for a large corpus

$$P(\alpha \to \beta \mid \alpha) = \frac{\text{Count}(\alpha \to \beta)}{\sum_{\gamma} \text{Count}(\alpha \to \gamma)} = \frac{\text{Count}(\alpha \to \beta)}{\text{Count}(\alpha)}$$

1. Assumption that production probabilities are independent does not hold.

Often the choice of how a node expands depends on the location of that node in the parse tree.

Ex: syntactic subjects are often realized with pronouns, whereas direct objects use more non-pronominal noun-phrases.

NP → Pronoun

NP → Det Noun

72		Non-Pronoun
Subject	91%	9%
Subject Object	34%	66%

$$NP \rightarrow DT NN .28$$

$$NP \rightarrow PRP$$
 .25

would be erroneous

- 2.1 PCFG are insensitive to the words they expand; In reality the lexical information about words plays an important role in selecting correct parse trees.
- (a) I ate pizza with anchovies.
- (b) I ate pizza with friends.
- In (a) $NP \rightarrow NP PP$ (NP attachment)
 - (b) $VP \rightarrow NP PP$ (VP attachment)

PP attachment depends on the semantics of PP head noun.

2.2 Lexical preference of verbs (Subcategorization)

Moscow sent more than 100,000 soldiers into Afghanistan. NP *into Afghanistan* attaches to *sent* not to *soldiers*.

This is because the verb *send* subcategorizes for destination, expressed by preposition *into*.

- 2.3 Coordination Ambiguities
- (a) (dogs in houses) and (cats)
- (b) dogs in (houses and cats)
 - (a) is preferred because dogs and cats are semantic siblings i.e., animals.

Coordination Ambiguities

Figure 14.7 An instance of coordination ambiguity. Although the left structure is intuitively the correct one, a PCFG will assign them identical probabilities since both structures use exactly the same rules. After Collins (1999).

Figure 14.5 Two possible parse trees for a **prepositional phrase attachment ambiguity.** The left parse is the sensible one, in which "into a bin" describes the resulting location of the sacks. In the right incorrect parse, the sacks to be dumped are the ones which are already "into a bin", whatever that might mean.

Figure 14.6 Another view of the preposition attachment problem. Should the PP on the right attach to the VP or NP nodes of the partial parse tree on the left?

Figure 14.10 A lexicalized tree, including head tags, for a WSJ sentence, adapted from Collins (1999). Below we show the PCFG rules that would be needed for this parse tree, internal rules on the left, and lexical rules on the right.

- Lexical heads play an important role since the semantics of the head dominates the semantics of that phrase.
- Annotate each non-terminal phrasal node in a parse tree with its lexical head.

"Workers dumped sacks into a bin."

 A lexicalized grammar shows lexical preferences between heads and their constituents. Probabilities are added to show the likelihood of each rule/head combination.

```
VP(dumped) \rightarrow VBD(dumped)NP(sacks)PP(into)[3\times10^{-10}]

VP(dumped) \rightarrow VBD(dumped)NP(cats)PP(into)[8\times10^{-11}]

VP(dumped) \rightarrow VBD(dumped)NP(hats)PP(into)[4\times10^{-10}]

VP(dumped) \rightarrow VBD(dumped)NP(sacks)PP(above)[1\times10^{-12}]
```

 Since it is not possible to store all possibilities, one solution is to cluster some of the cases based on their semantic category.
 E.g., hats and sacks are inanimated objects.
 E.g., dumped prefers preposition into over above.

A lexicalized tree from Collins (1999)

An incorrect parse of the sentence from Collins (1999)

$$p(VP \to VBD \ NP \ PP \ | VP, dumped)$$

$$= \frac{C(VP(dumped) \to VBD \ NP \ PP)}{\sum_{\beta} C(VP(dumped) \to \beta)}$$

$$= \frac{6}{9} = 0.67$$

$$p(VP \to VBD \ NP \ | VP, dumped)$$

$$= \frac{C(VP(dumped) \to VBD \ NP)}{\sum_{\beta} C(VP(dumped) \to \beta)}$$

$$= \frac{0}{9} = 0$$

Head probabilities.
 The mother head is dumped and the head of PP is into.

$$p(into \mid PP, dumped)$$

$$= \frac{C(X(dumped) \rightarrow ... PP(into)...)}{\sum_{\beta} C(X(dumped) \rightarrow ... PP...)}$$

$$= \frac{2}{9} = 0.22$$

The mother head is *sacks* and the head of *PP* is *into*.

$$p(into | PP, sacks)$$

$$= \frac{C(X(sacks) \rightarrow ... PP(into)...)}{\sum_{\beta} C(X(sacks) \rightarrow ... PP...)}$$

$$= \frac{0}{0}$$

Thus the head probabilities predict that *dumped* is more likely to be modified by *into* that is *sacks*.

- Modern parsers (Charniak, Collins, etc.) make simplifying assumptions about relating the heads of phrases to the heads of their constituents.
- In PCFG the probability of a node n being expanded by a rule r is conditioned only by the syntactic category of node n. Idea: add one more conditioning factor: the headword of the node h(n).

```
p(r(n)|n, h(n))
```

is the conditional probability of expanding rule r given the syntactic category of n and lexical information h(n).

```
p(r|VP, dumped)
r \text{ is VP} \rightarrow \text{VBD NP PP}
```

- How to compute the probability of a head? Two factors are important:
 - syntactic category of a node
 - neighboring heads

$$p(h(n) = word_i \mid n, h(m(n)))$$

where h(m(n)) is the head of the node's mother.

$$p(head(n) = sacks | n = NP, h(m(n)) = dumped)$$

is the probability that an *NP* whose mother node is dumped has the head sacks.

This probability captures the depending information between dumped and sacks.

Update the formula for computing the probability of a parse.

$$P(T,S) = \prod_{n \in T} p(r(n) | n, h(n)) \times p(h(n) | n, h(m(n)))$$

An example:

Consider an incorrect parse tree for "Workers dumped sacks into a bin," and compare it with the previous correct one.

How to Calculate Probabilities

 $P(VP(dumped, VBD) \rightarrow VBD(dumped, VBD) \ NP(sacks, NNS) \ PP(into, P))$

can be estimated as

$$\frac{Count(VP(dumped,VBD) \rightarrow VBD(dumped,VBD) \ NP(sacks,NNS) \ PP(into,P))}{Count(VP(dumped,VBD))}$$

However, this is difficult due to small number of times such a specific rule applies.

Instead, make independence assumptions.

 $P(VP(dumped, VBD) \rightarrow VBD(dumped, VBD) \ NP(sacks, NNS) \ PP(into, P))$

Note: Modern statistical parsers differ in which independent assumptions they make.

The Collins Parser

 $LHS \rightarrow L_n L_{n-1} ... L_1 HR_1 ... R_{n-1} R_n$ $P(VP(dumped, VBD) \rightarrow STOP \ VBD(dumped, VBD) \ NP(sacks, NNS) \ PP(into, P)STOP)$

- 1) Generate the head VBD(dumped,VBD) with probability P(H|LHS) = P(VBD(dumped,VBD) | VP(dumped,VBD))
- 2) Generate the left dependent (which is STOP, since there isn't one) with probability P(STOP| VP(dumped, VBD) VBD(dumped, VBD))
- 3) Generate right dependent NP(sacks,NNS) with probability P_r (NP(sacks,NNS| VP(dumped,VBD), VBD(dumped,VBD))
- 4) Generate the right dependent PP(into,P) with probability $P_r(PP(into,P) \mid VP(dumped,VBD), VBD(dumped,VBD))$
- 5) Generate the right dependent STOP with probability $P_r(STOP \mid VP(dumped, VBD), VBD(dumped, VBD))$

The Collins Parser

 $P(VP(dumped, VBD) \rightarrow VBD(dumped, VBD) \ NP(sacks, NNS) \ PP(into, P))$

```
P_{H}(VBD|VP, dumped) \times P_{L}(STOP|VP, VBD, dumped) \\ \times P_{R}(NP(sacks, NNS)|VP, VBD, dumped) \\ \times P_{R}(PP(into, P)|VP, VBD, dumped) \\ \times P_{R}(STOP|VP, VBD, dumped)
```

 $\frac{\text{Count}(VP(dumped,VBD) \text{ with } NNS(sacks) \text{ as a daughter somewhere on the right)}}{\text{Count}(VP(dumped,VBD))}$

References

Chart parsing

- Caraballo, S. and Charniak, E. New figures of merit for best-first probabilistic chart parsing. Computational Linguistics 24 (1998), 275-298
- Charniak, E., Goldwater, S. and Johnson, M. Edge-based best-first chart parsing. In *Proceedings of the Sixth Workshop on Very Large Corpora*. 1998, 127-133
- Charniak, E. A Maximum-Entropy-Inspired Parser Proceedings of NAACL -2000
- Maximum entropy
 - Berger, A.L., Pietra, S.A.D. and Pietra, V.J.D. A maximum entropy approach to natural language processing. *Computational Linguistics 22* 1 (1996), 39-71.
 - Ratnaparkhi, A. Learning to parse natural language with maximum entropy models. *Machine Learning 34* 1/2/3 (1999), 151-176.
- Charniak's parser on web:
 - ftp://ftp.cs.brown.edu/pub/nlparser/