Número:_____

C1						
1						
2						
3						
4						
234567						
6						
7						
Τ						
(C2					
8						
(C3					
9 F						
F						

LEI -	- 2008/09 Janeiro.2009
	Competências Fundamentais
1.	As arquitecturas sequenciais, ou de ciclo único, caracterizam-se por executarem uma, e uma só, instrução por ciclo do relógio. Uma das consequências desta organização é que cada componente do hardware, por exemplo, ALU, só é utilizada activamente durante uma pequena fracção do ciclo do relógio. As arquitecturas encadeadas (pipeline) permitem uma utilização mais eficiente dos vários componentes. Explique porquê.
2.	A lógica combinatória de um processador sequencial tem uma latência de 100 ps e pode ser decomposta num número arbitrário (n) de sub-blocos, cada com uma latência de 100/n ps. Considerando que a latência dos registos utilizados para armazenar o estado no fim de cada estágio é de 20 ps, qual a máxima frequência do relógio possível para a organização sequencial?
3.	Nas condições do problema anterior, suponha que, devido a dependências de dados e controlo, as versões encadeadas deste processador exigem em média e por estágio do pipeline a injecção de um número de bolhas igual a 10% do número de instruções do programa. Por exemplo, um programa com #I instruções executado num pipeline com 2 estágios necessitaria de 1,2*#I ciclos do relógio, enquanto que num pipeline com 4 estágios necessitaria de 1,4*#I ciclos. Indique, justificando e apresentando todos os cálculos realizados, se este programa executaria mais rapidamente num pipeline com 5 ou 20 estágios.

Nome: _____

4. Pediu-se a um programador para optimizar o código apresentado na coluna esquerda da tabela abaixo. O desafio era que optimizasse o programa escrito em C, aplicando apenas optimizações que um compilador também pudesse utilizar. O resultado é apresentado na coluna da direita. Comente, justificando, se um compilador poderia aplicar autonomamente esta optimização.

```
Antes da optimização

Depois da optimização

int func (int *arr) {
    int sum=0, i;
    for (i=0; i < tamanho (arr); i++)
        sum += arr[i];
    return sum;
}

int func (int *arr) {
    int sum=0, i, 1;
    l = tamanho(arr);
    for (i=0; i < 1; i++)
        sum += arr[i];
    return sum;
}
```

Nome: ______ Número:_____

5. A tabela abaixo apresenta a execução de uma instrução do Y86 ao longo dos cinco estágios da organização PIPE- (note que esta informação respeita a 5 ciclos do relógio, necessários para executar a instrução). Identifique, justificando, de que instrução se trata.

Fetch	D_icode:D_ifun \(\text{M1[PC]} \)
Decode	<pre>E_icode:E_ifun ← D_icode:D_ifun E_valA ← R[%esp] ; E_valB ← R[%esp] E_dstE ← ID(%esp) ; E_dstM ← 8</pre>
Execute	<pre>M_icode ← E_icode M_valE ← E_valB +4 ; M_valA ← E_valA M_dstE ← E_dstE ; M_dstM ← E_dstM</pre>
Memory	W_icode ← M_icode W_valE ← M_valE W_valM ← M4[M_valA] W_dstE ← M_dstE; W_dstM ← M_dstM
Write Back	R[W_dstE] \(\times W_valE \) PC \(\times W_valM \)

6. O código apresentado na coluna esquerda da tabela abaixo foi optimizado da forma apresentada na coluna da direita. Comente a optimização feita, justificando porque se pode esperar melhor desempenho desta 2ª versão.

Antes da optimização	Depois da optimização
<pre>for (j=0; i < N; j++) sum += arr[i];</pre>	<pre>for (j=0; i < N; j+=3) { sum += arr[i]; sum += arr[i+1]; sum += arr[i+2]; }</pre>

Nome: ______ Número:_____

7. Considere o código apresentado na tabela abaixo. Proponha, justificando, uma alteração ao código em C que aumente as possibilidades de optimização por parte do compilador, reduzindo o número de acessos à memória.

```
int func (int *a, int n, int *res) {
  int i=0;
  *res = 0;
  while (i < n) {
    *res *= a[i];
    i++;
  }
  return (*res);
}</pre>
```

L	

Nome: ______ Número: _____

Competências C2

8.	Usando o código apresentado abaixo, identifique para cada ciclo do relógio a ocupação de
	cada estágio do processador, para a versão PIPE do Y86 - versão com atalhos (preencha a
	tabela abaixo). Justifique devidamente a sua resposta, indicando quais os sinais de atalho
	utilizados.

<pre>11:</pre>	irmovl %10, %eax
12:	pushl %eax
<pre>13:</pre>	irmovl %20, %ebx
I4:	popl %ecx
т5•	addl %ebx. %ecx

1	2	3	4	5	6	7	8	9	10	11	12	Observações

Nome:	Número:

Competências C3

9.	Apresenta-se	abaixo	uma	sequência	de	operações	elementares	correspondentes	a	um
	ciclo:									

```
ciclo: load 0(\%ebx, \%eax.0, 4) \rightarrow t.1 addl t.1, %ecx.0 \rightarrow %ecx.1 addl $1, %eax.0 \rightarrow %eax.1 cmpl %eax.1, $1000 \rightarrow cc.1 jl-taken cc.1, ciclo
```

a. Transforme este código aplicando a técnica de loop splitting com grau 2:

b. Suponha que o código gerado na alínea anterior é executado num processador com as unidades funcionais, descritas na tabela abaixo. Apresente o diagrama de ocupação das unidades funcionais para as 2 primeiras iterações do ciclo.

Unidade	Latência	Issue Time
Operações inteiros	1	1
Operações inteiros + saltos	1	1
Leitura de memória (load)	3	1

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Nome:	Número:

Tabela Adicional para exercício 9

1				
2			 	
3			 	
4			 	
5			 	
6			 	
7			 	
8			 	
9			 	
10				
Nome: _			Nú	mero:
	tura de Computado 8/09	ores		
Arquitec LEI – 200	tura de Computado 8/09 dicional para exerc			2º teste e Janeiro
Arquitec LEI – 200 Tabela A	8/09			
Arquitec LEI – 200 Tabela A	8/09			
Arquitec LEI – 200 Tabela A	8/09			
Arquitec LEI – 200 Tabela A	8/09			
Arquitec LEI – 200 Tabela A	8/09			
Arquitec: LEI – 200 Tabela A	8/09			
Arquitec LEI – 200 Tabela A	8/09			
Arquitec: LEI – 200 Tabela A 1 2 3 4 5 6 7	8/09			
Arquitec: LEI – 200 Tabela A 1 2 3 4 5 6 7 8	8/09			
Arquitec: LEI – 200 Tabela A 1 2 3 4 5 6 7	8/09			
Arquitec: LEI – 200 Tabela A 1 2 3 4 5 6 7 8	8/09			
Arquitec: LEI – 200 Tabela A 1 2 3 4 5 6 7 8	8/09			

Tabela Adicional para exercício 8

1	2	3	4	5	6	7	8	9	10	11	12	Observações

Nome:	Numero:

Arquitectura de Computadores LEI – 2008/09 2º teste escrito Janeiro.2009

Tabela Adicional para exercício 8

1	2	3	4	5	6	7	8	9	10	11	12	Observações

Nome:	Número: