1

NCERT Discrete - 11.9.2.6

EE23BTECH11212 - Manugunta Meghana Sai*

NCERT Maths 11.9.2 Q6 If the sum of certain number of terms in a AP 25,22,19,... is 116. Find the last term.

Solution:

Symbol	Value	Description
<i>x</i> (0)	25	first term of AP
d	-3	common difference
x(n)	(25-3n)u(n)	<i>n</i> -th term of AP
y(n)	116	sum of terms

TABLE 0
INPUT PARAMETERS

$$x(n) = (25 - 3n)u(n) \tag{1}$$

Applying Z transform:

$$x(z) = \frac{25}{1 - z^{-1}} - \frac{3z^{-1}}{(1 - z^{-1})^2}$$

$$= \frac{25 - 28z^{-1}}{(1 - z^{-1})^2}$$
(2)

Region of Convergence or R.O.C:

$$|z| > 1 \tag{4}$$

For AP, the sum of first n+1 terms can be written as:

$$y(n) = x(n) * u(n)$$
 (5)

Applying Z transform on both sides

$$Y(z) = X(z)U(z) \tag{6}$$

$$=\frac{25}{(1-z^{-1})^2}-\frac{3z^{-1}}{(1-z^{-1})^3}\tag{7}$$

Using contour integration to find inverse Z transform:

$$y(n) = \frac{1}{2\pi j} \oint_C Y(z) z^{n-1} dz$$

$$= \frac{1}{2\pi j} \oint_C \left[\frac{25}{(1-z^{-1})^2} - \frac{3z^{-1}}{(1-z^{-1})^3} \right] z^{n-1} dz$$
 (9)

The sum of the terms of the sequence is computed using the residue theorem, expressed as R_i , which represents the residue of the Z-transform at z = 1 for the expression Y(z).

$$R_i = R_1 + R_2 (10)$$

 R_1 and R_2 are residues calculated at the poles of the Z-transform.

$$R_1 = \frac{1}{(2-1)!} \left. \frac{d(25z^{n+1})}{dz} \right|_{z=1} \tag{11}$$

$$= 25(n+1) \tag{12}$$

$$R_2 = \frac{1}{(3-1)!} \left. \frac{d^2(-3z^{n+1})}{dz^2} \right|_{z=1}$$
 (13)

$$= \frac{-3}{2}(n+1)(n) \tag{14}$$

The sum of terms is given by R_i :

$$25(n+1) + \frac{-3}{2}n(n+1) = 116 \tag{15}$$

Solving the equation gives:

$$n = 7 \tag{16}$$

$$n = 8.667$$
 (17)

Since n can take only integer values, n = 8.667 is rejected. Upon substituting the value of n in equation (1):

$$x(7) = 4 \tag{18}$$

Hence the last term of the given AP is 4.

