

SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE

IMBALANCED DATSET

• This dataset is **unbalanced**.

dat	data.head()											
	buying	maint	doors	persons	lug_boot	safety	outcome					
0	vhigh	vhigh	2	2	small	low	unacc					
1	vhigh	vhigh	2	2	small	med	unacc					
2	vhigh	vhigh	2	2	small	high	unacc					
3	vhigh	vhigh	2	2	med	low	unacc					
4	vhigh	vhigh	2	2	med	med	unacc					

Before SMOTE: Counter({'unacc': 839, 'acc': 282, 'good': 48, 'vgood': 40})

IMBALANCED DATSET

- Presence of minority class in the dataset
- Challenges related Imbalanced Dataset
 - Biased predictions
 - · Misleading accuracy
- Some Examples
 - Credit card frauds
 - Manufacturing defects
 - · Rare diseases diagnosis
 - · Natural disasters
 - Enrolment to premier institutes

HOW TO SOLVE THE PROBLEM?

- Balance the classes by Increasing minority or decreasing majority
- Random Under-Sampling
 - · Randomly remove majority class observations
 - Helps balance the dataset
 - Discarded observations could have important information
 - May lead to bias
- Random Over-Sampling
 - Randomly add more minority observations by replication
 - No information loss
 - · Prone to overfitting due to copying same information

Total Observations = 1,000 Fraudulent = 10 or 1% Normal = 990 or 99%

Reduce normal to 90 Fraudulent = 10 or 10%

Total Observations = 1,000 Fraudulent = 10 or 1% Normal = 990 or 99%

Increase fraudulent by 100 Fraudulent 110 or 10%

SMOTE

HOW TO SOLVE THE PROBLEM?

- Synthetic Minority Oversampling Technique
- Creates new "Synthetic" observations
- SMOTE Process
 - · Identify the feature vector and its nearest neighbour
 - Take the difference between the two
 - Multiply the difference with a random number between 0 and 1
 - Identify a new point on the line segment by adding the random number to feature vector
 - Repeat the process for identified feature vectors

HOW TO SOLVE THE PROBLEM?

x belongs to A

- Step 1: Setting the minority class set **A**, for each $x \in A$, the **k-nearest neighbors of x** are obtained by calculating the **Euclidean distance** between **x** and every other sample in set **A**.
- Step 2: The sampling rate N is set according to the imbalanced proportion. For each $x \in A$, N examples (i.e x1, x2, ...xn) are randomly selected from its k-nearest neighbors, and they construct the set A_1 . x belongs to A
- Step 3: For each example $x_k \in A_1$ (k=1, 2, 3...N), the following formula is used to generate a new example:

$$x' = x + rand(0, 1) * | x - x_k$$

in which rand (0, 1) represents the random number between 0 and 1.

SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE

- **Imbalanced classification** involves developing predictive models on classification datasets that have a **severe** class imbalance.
- The challenge of working with imbalanced datasets is that most machine learning techniques will ignore, and in turn have poor performance on, the minority class, although typically it is **performance on the minority class that is most important.**
- One way to solve this problem is to oversample the examples in the minority class.
- The simplest approach involves duplicating examples in the minority class, although these examples don't add any new information to the model.
- This can balance the class distribution but does not provide any additional information to the model.
- An improvement on duplicating examples from the minority class is to **synthesize** new examples from the minority class.
- This is a type of data augmentation for tabular data and can be very effective and is referred to as the Synthetic Minority Oversampling Technique or SMOTE for short.

SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE

- SMOTE works by selecting examples that are close in the **feature space**, **drawing a line between the examples** in the feature space and **drawing a new sample at a point along that line**.
- Specifically, a random example from the minority class is first chosen.
- Then **k** of the nearest neighbors for that example are found (typically k = 5).
- A randomly selected neighbor is chosen and a synthetic example is created at a randomly selected point between the two examples in feature space.

BALANCED DATSET

This dataset is balanced.

dat	data.head()											
	buying	maint	doors	persons	lug_boot	safety	outcome					
0	vhigh	vhigh	2	2	small	low	unacc					
1	vhigh	vhigh	2	2	small	med	unacc					
2	vhigh	vhigh	2	2	small	high	unacc					
3	vhigh	vhigh	2	2	med	low	unacc					
4	vhigh	vhigh	2	2	med	med	unacc					

Before SMOTE: Counter({'unacc': 839, 'acc': 282, 'good': 48, 'vgood': 40})

After SMOTE: Counter({'acc': 839, 'unacc': 839, 'vgood': 839, 'good': 839})

THANKYOU

ARUNKG99@GMAIL.COM

WWW.DOITSKILLS.COM