

COMPLIANT

8-Channel, Dual 4-Channel, Triple 2-Channel (Triple SPDT) Multiplexers

DESCRIPTION

The DG4051A, DG4052A and DG4053A are high precision CMOS analog multiplexers. The DG4051A is an 8-channel multiplexer, the DG4052A is a dual 4-channel multiplexer and the DG4053A is a triple 2-channel multiplexer or triple SPDT.

Designed to operate from a + 2.7 V to + 12 V single supply or from a \pm 2.5 V to \pm 5 V dual supplies, the DG4051A, DG4052A and DG4053A are fully specified at + 3 V, + 5 V and ± 5 V. All control logic inputs have guaranteed 2.0 V logic high limit when operating from + 5 V or ± 5 V supplies and 1.4 V when operating from a + 3 V supply.

Channel leakage is typically in the range of 10 pA, and switch charge injection is less than 0.5 pC. Coupled with very low switch capacitance, these devices are ideal for high precision signal switching and multiplexing.

All switches conduct equally well in both directions, offering rail to rail analog signal switching and can be used both as multiplexers as well as de-multiplexers.

The DG4051A, DG4052A and DG4053A operating temperature is specified from - 40 °C to + 125 °C and are available in 16 pin TSSOP and the ultra compact 1.8 mm x 2.6 mm miniQFN16 packages.

FEATURES

- + 2.7 V to + 12 V single supply operation ± 2.5 V to ± 5 V dual supply operation
- Fully specified at + 3 V, + 5 V, ± 5 V
- 100 Ω maximum on-resistance
- Low voltage, 2.5 V CMOS/TTL compatible
- Low charge injection (< 0.5 pC typ.)
- High 3 dB bandwidth: 330 MHz to 700 MHz
- Low switch capacitance (C_{s(off)} 3 pF typ.)
- Excellent isolation and crosstalk performance (typ. 47 dB at 100 MHz)
- 16 pin SOIC, TSSOP and miniQFN package (1.8 mm x 2.6 mm)
- Fully specified from 40 °C to + 85 °C and 40 °C to + 125 °C
- Compliant to RoHS directive 2002/95/EC

APPLICATIONS

- Instruments
- Healthcare and medical equipments
- Touch panel
- Automated test equipment
- Automation and control
- High precision data acquisition
- Communication system

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

ENABLE = LO, all switches are controlled by addr pins ENABLE = HI, all switches are off

Document Number: 69828 S10-1383-Rev. E. 21-Jun-10 www.vishav.com

Vishay Siliconix

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

 $\begin{array}{ll} \mbox{Device Marking: Exx for DG4051A} \\ \mbox{(miniQFN16)} & \mbox{Fxx for DG4052A} \\ \mbox{Gxx for DG4053A} \\ \mbox{xx = Date/Lot Traceability Code} \end{array}$

TRUTH '	TABLE					
Enable		Select Inputs				
Input	С	В	Α	DG4051A	DG4052A	DG4053A
Н	Х	X	Х	All Switches Open	All Switches Open	All Switches Open
L	L	L	L	X to X0	X to X0, Y to Y0	X to X0, Y to Y0, Z to Z0
L	L	L	Н	X to X1	X to X1, Y to Y1	X to X1, Y to Y0, Z to Z0
L	L	Н	L	X to X2	X to X2, Y to Y2	X to X0, Y to Y1, Z to Z0
L	L	Н	Н	X to X3	X to X3, Y to Y3	X to X1, Y to Y1, Z to Z0
L	Н	L	L	X to X4	X to X0, Y to Y0	X to X0, Y to Y0, Z to Z1
L	Н	L	Н	X to X5	X to X1, Y to Y1	X to X1, Y to Y0, Z to Z1
L	Н	Н	L	X to X6	X to X2, Y to Y2	X to X0, Y to Y1, Z to Z1
L	Н	Н	Н	X to X7	X to X3, Y to Y3	X to X1, Y to Y1, Z to Z1

ORDERING INFORMATION							
Temp Range Package Part Number							
DG4051A, DG4052A, DG4053	A						
40.00 1. 405.008	16-Pin TSSOP	DG4051AEQ-T1-E3 DG4052AEQ-T1-E3 DG4053AEQ-T1-E3					
- 40 °C to 125 °C ^a	16-Pin miniQFN	DG4051AEN-T1-E4 DG4052AEN-T1-E4 DG4053AEN-T1-E4					

Notes:

a. - 40 °C to 85 °C datasheet limits apply.

Parameter		Limit	Unit	
V+ to V-		14		
GND to V-		7	V	
Digital Inputs ^a , V _S , V _D		(V-) - 0.3 to (V+) + 0.3 or 30 mA, whichever occurs first	1	
Continuous Current (Any terminal)		30	mA	
Peak Current, S or D (Pulsed 1 ms,	10 % duty cycle)	100	T IIIA	
Storage Temperature		- 65 to 150	°C	
Dannar Diagingstianh	16-Pin TSSOP ^c	450	mW	
Power Dissipation ^b	16-Pin miniQFN ^{d, e}	525	111100	
b	16-Pin TSSOP	178	2004	
Thermal Resistance ^b	16-Pin miniQFN ^e	152	°C/W	

- a. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 5.6 mW/°C above 70 °C. d. Derate 6.6 mW/°C above 70 °C.
- e. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

SPECIFICATIONS FOR DUAL SUPPLIES											
		Test Conditions Unless Otherwise Specified				- 40 °C t	o 125 °C	- 40 °C	to 85 °C		
Parameter	Symbol	V _{CC} = + 5 V. V _{EE} = - 5 V		Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit	
Analog Switch		, , ,									
Analog Signal Range ^e	V _{ANALOG}			Full		- 5	5	- 5	5	V	
On-Resistance	R _{ON}	$I_S = 1 \text{ mA}, V_D = -3 \text{ N}$	/, 0 V, + 3 V	Room Full	66		100 125		100 118		
On-Resistance Match	ΔR _{ON}	I _S = 1 mA, V _D =	= ± 3 V	Room Full	3		6 10		6 8	Ω	
On-Resistance Flatness	R _{FLATNESS}	I _S = 1 mA, V _D = -3 V, 0 V, +3 V		Room Full	12		16 20		16 18		
Switch Off	I _{S(off)}	V+ = 5.5 V, V- = - 5.5 V,		Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5		
Leakage Current	I _{D(off)}	$V_D = \pm 4.5 \text{ V}, V_S =$	=∓ 4.5 V	Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	nA	
Channel On Leakage Current	I _{D(on)}	V+ = 5.5 V, V- = -5.5 V, $V_S = V_D = \pm 4.5 \text{ V}$		Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5		
Digital Control							•		•	l	
Input Current, V _{IN} Low	I _{IL}	V _{IN(A, B, C and E} under test = 0		Full	0.01	- 1	1	- 1	1	μΑ	
Input Current, V _{IN} High	I _{IH}	V _{IN(A, B, C and E} under test = 2		Full	0.01	- 1	1	- 1	1	μΑ	
Input Capacitance ^e	C _{IN}	f = 1 MHz	<u> </u>	Room	3.4					pF	
Dynamic Characteristi	ics						•	l .	•	l	
Off Isolation	OIRR		f = 10 MHz	Room	67						
On isolation	Olliti	$R_L = 50 \Omega$, $C_L = 1 pF$	f = 100 MHz	Room	46					dB	
Channel-to-Channel	X _{TALK}	<u>.</u>	f = 10 MHz	Room	67					ub	
Crosstalk			f = 100 MHz	Room	47						
	5,47	D 50.0	DG4051A	Room	330					 ,,,,	
Bandwith, 3 dB	BW	$R_L = 50 \Omega$	DG4052A	Room	450					MHz	
			DG4053A	Room	730						

Vishay Siliconix

		Test Conditions Unless Otherwise Specified				- 40 °C to 125 °C - 40 °C to 85 °C			to 85 °C	
Parameter	Symbol	V _{CC} = $+ 5 \text{ V}$, V _{EE} V _{IN(A, B, C and ENABLE)}	= - 5 V	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Dynamic Characteristic	cs									
Transition Time	t _{TRANS}			Room Full	36		110 127		110 117	
Enable Turn-On Time	t_{ON}	$R_L = 300 \Omega, C_L = 100 \Omega$	= 35 pF	Room Full	31		108 119		108 114	ns
Enable Turn-Off Time	t _{OFF}	see figure 1,	2, 3	Room Full	29		92 103		92 98	115
Break-Before-Make Time Delay	t _D			Room Full		1		1		
Charge Injection ^e	Q	$V_g = 0 \text{ V}, R_g = 0 \Omega, C_L = 1 \text{ nF}$		Room	0.25					рC
Off Isolation ^e	OIRR	$R_L = 50 \Omega, C_L = 1 pF$ f = 100 kHz		Room	< - 90					
Channel-to-Channel Crosstalk ^e	X _{TALK}			Room	< - 90					dB
Source Off	C _{S(off)}	f = 1 MHz	DG4051A	Room	3					
Capacitance ^e			DG4052A	Room	3					
			DG4053A	Room	3					
			DG4051A	Room	12					
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz	DG4052A	Room	7					pF
			DG4053A	Room	4					
Channel On	_		DG4051A	Room	17					
Capacitance ^e	$C_{D(on)}$	f = 1 MHz	DG4052A	Room	13					
·			DG4053A	Room	11					
Total Harmonic Distortion ^e	THD	Signal = 5 V_{RMS} , 20 Hz to 20 kHz, R_L = 600 Ω		Room	0.28					%
Power Supplies										
Power Supply Current	l+	V _{CC} = + 5 V, V _{EE} = - 5 V V _{IN(A, B, C and ENABLE)} = 0 or 5 V		Room Full	0.05		1 10		1 10	
Negative Supply Current	l-			Room Full	- 0.05	- 1 - 10		- 1 - 10		μΑ
Ground Current	I _{GND}			Room Full	- 0.05	- 1 - 10		- 1 - 10		

		Test Conditions Unless Otherwise Sp				- 40 °C t	o 125 °C	- 40 °C	to 85 °C	
		$V_{CC} = +5 \text{ V}, V_{EE} =$	0 V							
Parameter	rameter Symbol $V_{IN(A, B, C \text{ and } ENABLE)} = 2.0 \text{ V}, 0.8 \text{ V}^a$		Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit	
Analog Switch										
Analog Signal Range ^e	V_{ANALOG}			Full		0	5	0	5	V
On-Resistance	R _{ON}	$I_S = 1 \text{ mA}, V_D = 0 \text{ V}, +$	3.5 V	Room Full	107		165 205		165 194	
On-Resistance Match	ΔR_{ON}	$I_S = 1 \text{ mA}, V_D = + 3.$.5 V	Room Full	3.2		8 13		8 11	Ω
On-Resistance Flatness	R _{FLATNESS}	$I_S = 1 \text{ mA}, V_D = 0 \text{ V}, -1 \text{ mA}$	+ 3 V	Room Full	19		26 30		26 28	
Switch Off	I _{S(off)}	V+ = + 5.5 V, V- = 0		Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	
Leakage Current	I _{D(off)}	$V_D = 1 \text{ V}/4.5 \text{ V}, V_S = 4.9$	5 V/1 V	Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	nA
Channel On Leakage Current	I _{D(on)}	V+ = +5.5 V, V- = 0 $V_D = V_S = 1 V/4.5$		Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	
Digital Control										
Input Current, V _{IN} Low	ΙL	V _{IN(A, B, C and ENABLE)} under test = 0.8 V		Full	0.01	- 1	1	- 1	1	
Input Current, V _{IN} High	I _H	V _{IN(A, B, C and ENABLE)} under test = 2.0 V		Full	0.01	- 1	1	- 1	1	μΑ
Dynamic Characteristics										
Transition Time	t _{TRANS}	$R_L = 300 \Omega, C_L = 35 pF$		Room Full	38		121 143		121 134	
Enable Turn-On Time	t _{ON}			Room Full	38		110 126		110 119	no
Enable Turn-Off Time	t _{OFF}	See Figure 1, 2, 3	3	Room Full	38		103 118		103 111	ns ns
Break-Before-Make Time Delay	t _D			Room Full		1		1		
Charge Injection ^e	Q	$V_g = 0 \text{ V}, R_g = 0 \Omega, C_L$	= 1 nF	Full	0.5					рC
Off Isolation ^e	OIRR	D 5000 1.	. C	Room	< - 90					
Channel-to-Channel Crosstalk ^e	X _{TALK}	$R_L = 50 \Omega, C_L = 1 I_L$ f = 100 kHz	pr	Room	< - 90					dB
			DG4051A	Room	3					
Source Off Capacitance ^e	$C_{S(off)}$	f = 1 MHz	DG4052A	Room	3					
			DG4053A	Room	4					
	_	_	DG4051A	Room	13					
Drain Off Capacitance ^e	$C_{D(off)}$	_	DG4052A	Room	8					pF
			DG4053A	Room	5					
Channel On	0	_	DG4051A	Room	18					
Capacitance ^e	C _{D(on)}	f = 1 MHz DG409		Room Room	14					4
Power Supplies			DG4055A	HOOIII	11					
Power Supply Current	l+			Room Full	0.05		1 10		1 10	
Negative Supply Current	l-	V _{IN(A, B, C and ENABLE)} = 0	V or 5 V	Room Full	- 0.05	- 1 - 10	-	- 1 - 10		μΑ
Ground Current	I _{GND}				- 0.05	- 1 - 10		- 1 - 10		

Vishay Siliconix

	Test Conditions				- 40 °C to 125 °C - 40 °C to 85 °C					
		Unless Otherwise								
Parameter	Symbol	$V_{CC} = +3 \text{ V}, V_{E}$ $V_{IN(A, B, C \text{ and ENABLE})}$		Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch		int(rt, b, o and britishe)	<u> </u>		.,,,,,		1			
Analog Signal Range ^e	V _{ANALOG}			Full		0	3	0	3	V
On-Resistance	R _{ON}	I _S = 1 mA, V _D :	= 1.5 V	Room Full	175		265 310		265 298	Ω
Switch Off	I _{S(off)}	V+ = + 3.3 V, V		Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	
Leakage Current	I _{D(off)}	$V_D = 0.3 \text{ V}/3.0 \text{ V}, V_S$		Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	nA
Channel On Leakage Current	I _{D(on)}	$V_{+} = + 3.3 V, V_{D} = V_{S} = 0.3 V$		Room Full	± 0.02	- 1 - 50	1 50	- 1 - 5	1 5	
Digital Control										
Input Current, V _{IN} Low	ΙL	V _{IN(A, B, C} and E under test = 0	NABLE) 0.6 V	Full	0.01	- 1	1	- 1	1	μΑ
Input Current, V _{IN} High	I _H	V _{IN(A, B, C and ENABLE)} under test = 1.4 V		Full	0.01	- 1	1	- 1	1	μΑ
Dynamic Characteristics	i									
Transition Time	t _{TRANS}	R_L = 300 Ω , C_L = 35 pF see figure 1, 2, 3		Room Full	81		172 218		172 194	
Enable Turn-On Time	t _{ON}			Room Full	71		151 183		151 167	- ns
Enable Turn-Off Time	t _{OFF}			Room Full	69		138 161		138 151	
Break-Before-Make Time Delay	t_D			Room Full		1		1		
Charge Injection ^e	Q	$V_g = 0 \text{ V}, R_g = 0 \Omega$	C _L = 1 nF	Room	0.5					рС
Off Isolation ^e	OIRR	R _L = 50 Ω, C _L	– 1 nF	Room	< - 90					
Channel-to-Channel Crosstalk ^e	X _{TALK}	f = 100 kH		Room	< - 90					dB
			DG4051A	Room	4					
Source Off Capacitance ^e	$C_{S(off)}$	f = 1 MHz	DG4052A	Room	3					
			DG4053A	Room	4					
_	•		DG4051A	Room	14					_
Drain Off Capacitance ^e	$C_{D(off)}$	f = 1 MHz	DG4052A	Room	8					pF
			DG4053A	Room	5 19					ŀ
Channel On	C	f _ 1 M⊔-	DG4051A	Room Room	14					ŀ
Capacitance ^e	$C_{D(on)}$	f = 1 MHz DG4052A DG4053A		Room	11					-
Power Supplies										
Power Supply Current	l+				0.05		1 10		1 10	
Negative Supply Current	 -	V _{IN(A, B, C} and ENABLE) = 0 V or 3 V	Room Full	- 0.05	- 1 - 10		- 1 - 10		μΑ
Ground Current	I _{GND}				- 0.05	- 1 - 10		- 1 - 10		

Notes:

- a. V_{IN} = input voltage to perform proper function.
- b. Room = 25 °C, Full = as determined by the operating temperature suffix.
 c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- e. Guaranteed by design, not subject to production test.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

On-Resistance vs. V_D and Single Supply Voltage

On-Resistance vs. Analog Voltage and Temperature at $V_{CC} = +3 \text{ V}$, $V_{EE} = 0 \text{ V}$

On-Resistance vs. Analog Voltage and Temperature at V_{CC} = + 5 V, V_{EE} = - 5 V

On-Resistance vs. V_D and Dual Supply Voltage

On-Resistance vs. Analog Voltage and Temperature at $V_{CC} = + 5 V$, $V_{EE} = 0 V$

Supply Current vs. Input Switching Frequency

Vishay Siliconix

VISHAY.

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Leakage Current vs. Temperature

Switching Time vs. Temperature

DG4052A Insertion Loss, Off-Isolation, Crosstalk vs. Frequency at \pm 5 V Supply

Leakage Current vs. Temperature

DG4051A Insertion Loss, Off-Isolation, Crosstalk vs. Frequency at ± 5 V Supply

DG4053A Insertion Loss, Off-Isolation, Crosstalk vs. Frequency at ± 5 V Supply

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

DG4052A Charge Injection vs. Analog Voltage

DG4051A Charge Injection vs. Analog Voltage

DG4053A Charge Injection vs. Analog Voltage

TEST CIRCUITS

Figure 1. Transition Time

TEST CIRCUITS

Figure 2. Enable Switching Time

TEST CIRCUITS

V_{A,B,C} 0 V 50 %

V_{X0} or V_{Y0} or V_{Z0} 80 %

Figure 3. Break-Before-Make

Figure 4. Charge Injection

TEST CIRCUITS

Figure 5. Insertion Loss

Figure 6. Off Isolation

Figure 7. Crosstalk

Figure 8. Source, Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppq?69828.

Thin miniQFN16 Case Outline

DIMENSIONS		MILLIMETERS (1)		INCHES			
DIMENSIONS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.50	0.55	0.60	0.020	0.022	0.024	
A1	0	-	0.05	0	-	0.002	
A3		0.15 ref.		0.006 ref.			
b	0.15	0.20	0.25	0.006	0.008	0.010	
D	2.50	2.60	2.70	0.098	0.102	0.106	
е		0.40 BSC		0.016 BSC			
Е	1.70	1.80	1.90	0.067	0.071	0.075	
L	0.35	0.40	0.45	0.014	0.016	0.018	
L1	0.45	0.50	0.55	0.018	0.020	0.022	
N (3)	16			16			
Nd ⁽³⁾	4			4			
Ne ⁽³⁾		4		4			

Notes

- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.

ECN: T16-0226-Rev. B, 09-May-16

DWG: 6023

TSSOP: 16-LEAD

	DIMENSIONS IN MILLIMETERS						
Symbols	Min	Nom	Max				
A	-	1.10	1.20				
A1	0.05	0.10	0.15				
A2	-	1.00	1.05				
В	0.22	0.28	0.38				
С	-	0.127	-				
D	4.90	5.00	5.10				
E	6.10	6.40	6.70				
E1	4.30	4.40	4.50				
е	-	0.65	-				
L	0.50	0.60	0.70				
L1	0.90	1.00	1.10				
у	-	-	0.10				
θ1	0°	3°	6°				
ECN: S-61920-Rev D 23	R-Oct-06						

ECN: S-61920-Rev. D, 23-Oct-06

DWG: 5624

Document Number: 74417 www.vishay.com 23-Oct-06 1

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

RECOMMENDED MINIMUM PADS FOR MINI QFN 16L

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.