Automotive MLCC

General Specifications

GENERAL DESCRIPTION

AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 25 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers.

HOW TO ORDER

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive					
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. sed to control supply of product to Automotive customers.					
Design	Minimum ceramic thickness of 0.020"	Minimum Ceramic thickness of 0.029" (0.74mm) on all X7R product.					
Dicing	Side & End Margins = 0.003" min	Side & End Margins = 0.004" min Cover Layers = 0.003" min					
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan stricter criteria.					
Visual/Cosmetic Quality	Standard process and inspection	100% inspection					
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.					

All Tests have Accept/Reject Criteria 0/1

Automotive MLCC

NP0/X7R Dielectric

FLEXITERM FEATURES

a) Bend Test

The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional	Soft Term
0603	>2mm	>5
0805	>2mm	>5
1206	>2mm	>5

a) Temperature Cycle testing FLEXITERM® has the ability to withstand at least 1000 cycles between -55°C and +125°C

Automotive MLCC-NP0

SIZE	04	02		06	03				0805				1206					
Soldering	Reflov	v/Wave		Reflov	//Wave			R	eflow/Wa	/e				Reflov	v/Wave			
WVDC	25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	500V	
100 10pF	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J	
120 12	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J	
150 15		С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J	
180 18		С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J	
220 22	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J	
270 27	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J	
330 33	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J	
390 39	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J	
470 47			G	G	G	G	J	J	J	N	N	J	J	J	J	J	J	
510 51			G	G	G	G	J	J	J	N	N	J	J	J	J			
560 56			G	G	G	G	J	J	J	N	N	J	J	J	J			
680 68			G	G	G	G	J	J	J	N	N	J	J	J	Į J			
820 82			G	G	G	G	J	J	J	N	N	J	J	J	J			
101 100			G	G	G	G	J	J	J	N	N	J	J	J	J	ļ		
121 120			G	G	G		J	J	J	N	N	J	J	J	J	-		
151 150 181 180			G	G	G G		J	J	J	N	N N	J	J	J	J	-		
221 220			G	G	G		J	J	J	N N	N	J	J	J	J			
271 270			G	G	G		J	J	J	N	N	J	J	J	J			
331 330			G	G	G		J	J	J	N	N	J	J	J	J	-		
391 390			G	G	G		J	J	J	IN	IN	J	J	J	J	 		
471 470			G	G			J	J	1			J	J	1	1 1			
561 560			G	G			J	j	j			J	J	J	1 1			
681 680			G	G			J	Ĵ	Ĵ			J	J	.i	J	 		
821 820							J	J	J			.i	.i	.i	l J			
102 1000							Ĵ	Ĵ	Ĵ			J	J	J	ij			
122 1200	İ		İ	İ														
152 1500																		
182 1800																		
222 2200																		
272 2700																		
332 3300																		
392 3900																		
472 4700																		
103 10nF																		
WVDC	25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	500V	
Size	04	02		06	03				0805					12	206			

Letter	Α	С	E	G	J	K	М	N	Р	Q	Χ	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER	EMBOSSED									

Automotive MLCC - X7R

SIZE		0402					060	3					0	805						120	6				12	210		1	812	2220)
Soldering	Refl	ow/W	/ave			Ref	flow/\	Wave					Reflo	w/Wa	ve				Re	flow/	Wave				Reflo	w On	ly	Reflo	w Only	Ref	ow (Only
WVDC	16V	25V	50V	10V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
221 Cap 220	С	С	С											С																		\Box
271 (pF) 270	С	С	С																													\Box
331 330	С	С	С																													\Box
391 390	С	С	С																													\Box
471 470	С	С	С																													П
561 560	С	С	С																													П
681 680	С	С	С																													П
821 820	С	С	С																													П
102 1000	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	К	К	К	К	К			П
182 1800	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	K	K	K	K	К			\Box
222 2200	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	К	K	K	K	K	К			\Box
332 3300	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
472 4700	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
103 Cap 0.01	С			G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			\Box
123 (F) 0.012	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			\Box
153 0.015	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			\Box
183 0.018	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
223 0.022	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
273 0.027	С			G	G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
333 0.033	С			G	G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
473 0.047				G	G	G	G				J	J	J	N	N	N	J	J	J	М	М	М		K	K	K	K	K	K			
563 0.056				G	G	G	G				J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K			
683 0.068				G	G	G	G				J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K			
823 0.082				G	G	G	G				J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K			
104 0.1				G	G	G	G				J	J	М	N			J	J	J	М	Р	Р		K	K	K	М	K	K			\square
124 0.12				G							J	J	N	N			J	J	М	М	Q	Q		K	K	K	Р	K	K			\square
154 0.15				G							М	N	N	N			J	J	М	М	Q	Q		K	K	K	Р	K	K			\square
224 0.22				G							М	N	N	N			J	М	М	Q	Q	Q		М	М	М	Р	М	М			ш
334 0.33											N	N	N	N			J	М	Р	Q				Р	Р	Р	Q	Х	Х			ш
474 0.47											N	N	N	N			М	М	Р	Q				Р	Р	Р	Q	X	Х			ш
684 0.68											N	N	N				М	Q	Q	Q				Р	Р	Q	X	X	Х			ш
105 1											N	N	N				М	Q	Q	Q				Р	Q	Q	Х	X	Х		Z	Z
155 1.5											N	N					Q	Q	Q	Q				Р	Q	Z	Z	X	Х		Z	Z
225 2.2											N	N					Q	Q	Q	Q				Х	Z	Z	Z	Z	Z		Z	Z
335 3.3																	Q	Q	Q					Х	Z	Z	Z	Z			Z	Z
475 4.7																	Q	Q	Q					Х	Z	Z	Z	Z			Z	Z
106 10																								Z	Z	Z		Z		Z	Z	Z
226 22	46)	O.E.V.	EO) (40) (201	05)	E0) (100:	000: 1	0.50: :	46)	0.57.	EOV:	4.00:	000:	0.50: /	400	O.E.V.	EO) :	100	1000	0.50: :	E00: :	16):	05)	E0) (100	E0) :	100);	Z	E0) 1	1001
WVDC	16V		50V	10V	16V	[25V			200V	250V	16V	25V			200V	250V	16V	25V	50V			[250V	500V	16V			1100V		100V	25V		_
Size		0402					060	3					U	805						120	O				- 12	210		1	812		2220)

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z			
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79			
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)			
	DADED						EMBOSSED									

Automotive MLCC - X8R

Capacitance Range

S	IZE	06	03	0	805	12	06		
Solo	dering	Reflow	/Wave	Reflo	w/Wave	Reflow	//Wave		
WVDC	WVDC	25V	50V	25V	50V	25V	50V		
271	Cap 270	G	G						
331	(pF) 330	G	G	J	J				
471	470	G	G	J	J				
681	680	G	G	J	J				
102	1000	G	G	J	J	J	J		
152	1500	G	G	J	J	J	J		
182	1800	G	G	J	J	J	J		
222	2200	G	G	J	J	J	J		
272	2700	G	G	J	J	J	J		
332	3300	G	G	J	J	J	J		
392	3900	G	G	J	J	J	J		
472	4700	G	G	J	J	J	J		
562	5600	G	G	J	J	J	J		
682	6800	G	G	J	J	J	J		
822	8200	G	G	J	J	J	J		
103	Cap 0.01	G	G	J	J	J	J		
123	(F) 0.012	G	G	J	J	J	J		
153	0.015	G	G	J	J	J	J		
183	0.018	G	G	J	J	J	J		
223	0.022	G	G	J	J	J	J		
273	0.027	G	G	J	J	J	J		
333	0.033	G	G	J	J	J	J		
393	0.039	G	G	J	J	J	J		
473	0.047	G	G	J	J	J	J		
563	0.056	G		N	N	М	М		
683	0.068	G		N	N	M	М		
823	0.082			N	N	M	М		
104	0.1			N	N	M	М		
124	0.12			N	N	M	M		
154	0.15			N	N	М	М		
184	0.18			N		М	М		
224	0.22			N		M	М		
274	0.27					М	М		
334	0.33				1	М	М		
394	0.39					M			
474	0.47				1	M			
684	0.68								
824	0.82								
105	1								
WVDC	WVDC	25V	50V	25V	50V	25V 50V			
S	IZE	06	03	0	805	1206			

	Letter	Α	С	E	G	J	K	М	N	Р	Q	Χ	Υ	Z
	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
T	hickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
									EMBC	SSED				