Sujet1:EPITA-ING1-2011-S1 M. REGRAGUI

PARTIEL ALGEBRE LINEAIRE

Notes de cours et calculatrice autorisées

Exercice 1:

Soit la matrice
$$A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$

- 1. Calculer les valeurs propres de A
- 2. Déterminer le polynôme minimal de A
- 3. La matrice A est -elle diagonalisable?
- 4. Déterminer les sous espaces propres de A

Exercice 2:

Soit le système linéaire
$$Ax = b$$
 où $A = \begin{pmatrix} 2 & 3 & -1 & 1 \\ 4 & 7 & 2 & 4 \\ 2 & 6 & 3 & 2 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ et $b = \begin{pmatrix} -2 \\ 5 \\ 4 \\ 1 \end{pmatrix}$

- Appliquer l'algorithme de Gauss pour résoudre le système linéaire Ax = b (on explicitera les matrices A (k) et G (k) \(\forall k \))
- 2. Donner la factorisation de Gauss A = LU
- 3. En déduire le déterminant de A
- Estimer le nombre d'opérations élémentaires nécessaires pour résoudre ce système par Gauss

Exercice 3:

On considère la matrice
$$A = \begin{pmatrix} 5 & -2 & 2 \\ 6 & -2 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1) Montrer que $A^3 4A^2 + 5A 2I_3 = 0$ où I_3 est la matrice identité
- 2) Trouver les racines du polynôme $P(x) = x^3 4x^2 + 5x 2$
- 3) En déduire A^n pour tout $n \in IN$
- 4) Déterminer A^{-1} en fonction de A^{2} , A et I_{3}