

# **BUSINESS PROBLEM**

Syria Tel is losing revenue due to preventable customer churn. To combat this, we aim to proactively identify at-risk subscribers using behavioral patterns and spending tiers, enabling targeted retention strategies to curb attrition.

## **PROJECT OBJECTIVES**

Identify the current churn rate.

- + Identify What patterns precede churn.
- + Identify the best retention strategies..
- + Identify which service erodes more revenue to Churn.

## **DATA UNDERSTANDING**

#### **Dataset Summary**

The dataset contains 3,333 customer records and 21 features. There are no missing values or duplicate entries, indicating that the data is clean. The features include a mix of categorical, numerical, and Boolean variables. The target variable is churn, which is a binary outcome indicating whether a customer has churned (True) or not (False).

#### **Why Class Imbalance Matters**

A model may achieve high accuracy by predicting most customers as "not churned". We'll focus on Precision, Recall, F1-Score, and ROC-AUC for evaluation.

## **DATA CLEANING & PREPARATION**

Before modeling, we applied several key steps to prepare the data for analysis:

- Dropped Uninformative Columns:
   phone number: a unique identifier with no predictive value.
   state: high cardinality leading to model complexity and potential overfitting.
   area code: low correlation with churn and limited behavioral insight.
- Categorical Encoding:
   Converted international plan and voice mail plan from 'yes'/'no' to 1/0.
- Target Variable Transformation:
   Encoded churn (True/False) to 1/0 using Label Encoder.
- Column Name Standardization:

   Lowercased all names.
   Trimmed whitespaces.
   Replaced spaces with underscores.
- Final Dataset:

   3,333 rows, 20 features.
   No missing or duplicate values.

## **EXPLORATORY DATA ANALYSIS**

## **Target Variable Distribution**

Bar plot showing churn distribution with percentages (84.1% not churned, 15.9% churned)



## **Key Points:**

Significant class imbalance: 15.9% of customers have churned.

Imbalance necessitates resampling techniques during model training to avoid model bias.

# **CUSTOMER BEHAVIOR INSIGHTS (UNIVARIATE & BIVARIATE ANALYSIS)**

#### **Key Usage Patterns (Univariate)**

- Most features show balanced (normal) distributions.
- · Voicemail usage is low many users have zero messages.
- International and customer service calls are right-skewed, most users make few, but some make many.
- Area codes cluster into two main groups.

#### **Churn vs. Behavior (Bivariate)**

- International Plan → Higher churn
- Voice Mail Plan → Lower churn
- More customer service calls → More churn
- More voicemail messages → Less churn

#### **Usage & Charges**

- Churners tend to have higher usage (day, evening, night, international) and higher charges.
- Call counts don't differ much, but charges do usage intensity matters.
- Account length is slightly shorter for churners, but not a strong factor.

#### **Regional Insights (State-level)**

- States like New Jersey, California, and Texas show above-average churn rates.
- Geography may influence churn due to competition, infrastructure, or regional preferences.
- These insights help in targeted business strategy, even if state is dropped in modeling.

## RELATIONSHIP BETWEEN CUSTOMER SERVICE CALLS CHARGES AND CHURN RATE

- 0 to 3 service calls: 11.3% churn rate
- 4 service calls: 45.8% churn rate
- 5 service calls: 60.6% churn rate
- 6 service calls: 63.6% churn rate
- 7 service calls: 55.6% churn rate
- 8 service calls: 50% churn rate
- 9 and above service calls: 100% churn rate



## **CHURN RATE BY SERVICE PLAN**

We looked at how churn differs for two customer plans:

#### **International Plan**

Customers with an international plan churn more often than those without.

This may point to lower satisfaction among international plan users.

#### **Voice Mail Plan**

Customers with a voice mail plan churn less than those without.

This could mean that value-added services help improve retention.





## DATA PREPARATION FOR MODELING

Before building our churn prediction model, we refined the dataset to improve accuracy and prevent technical issues:

#### **Final Data Cleanup**

- Dropped non-informative features:
   phone\_number (just an ID)
   state, area code (low or misleading predictive value)
- Standardized data:

Encoded international\_plan and voice\_mail\_plan as 1/0

Encoded target churn as 1/0

Cleaned column names for consistency

#### **Addressing Multicollinearity**

To avoid model confusion from overlapping data, we removed highly correlated features using VIF (Variance Inflation Factor):

Dropped 7 Features:

Charges like total\_day\_charge, total\_charge etc were redundant with minute values hence we dropped them number\_vmail\_messages overlaps heavily with voice\_mail\_plan hence dropped as well charge\_bin — derived from total\_charge, adds no new value hence had to be dropped

Remaining 13 features are clean, independent, and ready for modeling.

Balanced the Target Variable

Original churn rate: ~14.5%

After using SMOTE, churn vs. no-churn is now 50/50 in the training set.

# **OUR FINAL MODEL: Advanced Random Forest**

| METRIC    | SCORE | INTERPRETATION                                        |
|-----------|-------|-------------------------------------------------------|
| Recall    | 77%   | Identifies 7/10 churns                                |
| Precision | 81%   | 2 in 10 alarms are false alarms                       |
| ROC-AUC   | 93.1% | Strong separation between churns and loyal customers. |

## **Threshold Tuning Insight**

By adjusting our prediction threshold to 23%, we identified 5% more churners while only slightly increasing false alerts.

## **FEATURE IMPORTANCE**

#### **What Actually Predicts Churn?**

Our Advanced Random Forest model ranked features by importance. Top contributors included:

- Total day minutes (15.3%)
- Customer service calls (13.6%)
- International plan (8.6%)
- Spender type(8.0%(
- Evening minutes (6.6%)



## RECOMMENDATIONS

- -Run localized campaigns in high-churn states (Washington, Texas) with deeper investigation into region specific issues like service quality, network coverage or billing concerns.
- Develop onboarding programs for new customers and loyalty program for long term customers to reduce early drop-offs and late disengagement.
- Proactively monitor customers with 3+ support calls and prioritize them for resolution. Train customer service team to resolve issues on the first contact to prevent frustration.
- Reassess the value proposition of the international plan. This could involve improving call quality, reducing costs, or bundling with other perks to increase satisfaction.
- Introduce spending caps or usage notifications for customers who pay more especially during daytime & International calls to help manage expectations and reduce bill shock as these users are more likely to churn.
  - Have a higher budget for areas with a high churn rate for marketing.

## **LIMITATIONS**

- SMOTE may cause overfitting, affecting real-world performance.
- Model scope was limited to three algorithms without deeper tuning.
- Some churn patterns lack context, needing more customer behavior data.
- Geographic churn trends weren't deeply explored, missing regional insights.
- Call data lacked quality indicators, limiting support-related analysis.

# THANK YOU

For any inquiries, please contact me at:

gedimwas@gmail.com

Username: Gerald Mwangi