Xpath

Descendant selectors

h1	//h1	?
div p	//div//p	?
ul > li	//ul/li	?
ul > li > a	//ul/li/a	
div > *	//div/*	
:root	/	?
:root > body	/body	

Attribute selectors

#id	//[@id="id"]	?
.class	//[ത്രclass="class"] <i>kinda</i>	
<pre>input[type="submit"]</pre>	//input[@type="submit"]	
a#abc[for="xyz"]	//a[@id="abc"][@for="xyz"]	?
a[rel]	//a[@rel]	
a[href^='/']	//a[starts-with(@href, '/')]	?
a[href\$='pdf']	//a[ends-with(@href, '.pdf')]	
a[href~='://']	//a[contains(ଗ୍ରhref, '://')]	

Order selectors

ul > li:first-child	//ul/li[1]	?
ul > li:nth-child(2)	//ul/li[2]	
ul > li:last-child	//ul/li[last()]	

li#id:first-child	//li[@id="id"][1]	
a:first-child	//a[1]	
a:last-child	//a[last()]	
Siblings		
h1 ~ ul	//h1/following-sibling::ul	3
h1 + ul	//h1/following-sibling::ul[1]	
h1 ~ #id	//h1/following-sibling::[@id="id"]	
jQuery		
\$('ul > li').parent()	//ul/li/	[2]
<pre>\$('li').closest('section')</pre>	//li/ancestor-or-self::section	
<pre>\$('a').attr('href')</pre>	//a/@href	?
\$('span').text()	//span/text()	
Other things		
h1:not([id])	//h1[not(@id)]	[2]
Text match	<pre>//button[text()="Submit"]</pre>	?
Text match (substring)	<pre>//button[contains(text(), "Go")]</pre>	
Arithmetic	//product[@price > 2.50]	
Has children	//ul[*]	
Has children (specific)	//ul[li]	
Or logic	//a[@name or @href]	[2]
Union (joins results)	//a //div	?

Class check

Xpath doesn't have the "check if part of space-separated list" operator, so this is the workaround (Source):

```
//div[contains(concat(' ',normalize-space(@class),' '),' foobar ')]
```

Expressions

Prefixes

Begin your expression with any of these.

// anywhere	//hr[@class='edge']
./ relative	./a
/ root	/html/body/div

Axes

Separate your steps with /. Use two (//) if you don't want to select direct children.

/ child	//ul/li/a
// descendant	//[@id="list"]//a

Steps

A step may have an element name (div) and predicates ([...]). Both are optional.

```
//div
//div[@name='box']
//[@id='link']
```

They can also be these other things.

Predicates

Predicates ([...])

Restricts a nodeset only if some condition is true. They can be chained.

```
//div[true()]
//div[@class="head"]
//div[@class="head"][@id="top"]
```

Operators

Use comparison and logic operators to make conditionals.

```
# Comparison
//a[@id = "xyz"]
//a[@id != "xyz"]
//a[@price > 25]
```

```
# Logic (and/or)
//div[@id="head" and position()=2]
//div[(x and y) or not(z)]
```

Using nodes

You can use nodes inside predicates.

```
# Use them inside functions
//ul[count(li) > 2]
//ul[count(li[@class='hide']) > 0]
```

```
# This returns `` that has a `` child
   //ul[li]
```

Indexing

Use [] with a number, or last() or position().

```
//a[1]  # first <a>
//a[last()]  # last <a>
//ol/li[2]  # second 
//ol/li[position()=2]  # same as above
//ol/li[position()>1]  # :not(:first-child)
```

Chaining order

Order is significant, these two are different.

Nesting predicates

This returns <section> if it has an <h1> descendant with id='hi'.

```
//section[//h1[@id='hi']]
```

Functions

Node functions

Boolean functions

```
not(expr) # button[not(starts-with(text(), "Submit"))]
```

String functions

```
contains()  # font[contains(@class,"head")]
starts-with()  # font[starts-with(@class,"head")]
ends-with()  # font[ends-with(@class,"head")]

concat(x,y)
substring(str, start, len)
substring-before("01/02", "/") #=> 01
substring-after("01/02", "/") #=> 02
translate()
normalize-space()
string-length()
```

Type conversion

```
string()
number()
boolean()
```

Axes

Using axes

Steps of an expression are separated by /, usually used to pick child nodes. That's not always true: you can specify a different "axis" with ::.

```
//ul/li # ul > li
//ul/child::li # ul > li (same)
//ul/following-sibling::li # ul ~ li
//ul/descendant-or-self::li # ul li
//ul/ancestor-or-self::li # $('ul').closest('li')
```

Child axis

This is the default axis. This makes //a/b/c work.

```
# both the same
  //ul/li/a
  //child::ul/child::a
```

```
# both the same
# this works because `child::li` is truthy, so the predicate succeeds
   //ul[li]
   //ul[child::li]
```

```
# both the same
  //ul[count(li) > 2]
  //ul[count(child::li) > 2]
```

Descendant-or-self axis

// is short for the descendant-or-self:: axis.

```
# both the same
  //div//h4
  //div/descendant-or-self::h4
```

```
# both the same
  //ul//[last()]
  //ul/descendant-or-self::[last()]
```

Other axes

There are other axes you can use.

Axis	Abbrev	Description
ancestor		
ancestor-or-self		
attribute	۵	@href is short for attribute::href
child		div is short for child::div
descendant		
descendant-or-self	//	<pre>// is short for /descendant-or-self::node()/</pre>
namespace		
self		. is short for self::node()
parent	••	is short for parent::node()
following		
following-sibling		
preceding		
preceding-sibling		

Unions

Use | to join two expressions.

//a | //span

```
//*
                   # all elements
count(//*)
                   # count all elements
(//h1)[1]/text()
                   # text of the first h1 heading
                   # find a with an <span> inside it
//li[span]
                    # ...expands to //li[child::span]
//ul/li/..
                    # use .. to select a parent
# Find a <section> that directly contains h1#section-name
  //section[h1[@id='section-name']]
# Find a <section> that contains h1#section-name
# (Same as above, but use descendant-or-self instead of child)
  //section[//*[@id='section-name']]
# like jQuery's $().closest('.box')
  ./ancestor-or-self::[@class="box"]
# Find <item> and check its attributes
  //item[@price > 2*@discount]
```

References

Xpath test bed (whitebeam.org)