零死角玩转STM32—M4系列

模拟数字转换器

淘宝: firestm32.taobao.com

论坛: www.chuxue123.com

扫描进入淘宝店铺

主讲内容

01

ADC初始化结构体讲解

参考资料:《零死角玩转STM32》

"ADC—电压采集"章节

ADC_InitTypeDef

```
1 typedef struct {
                                             //ADC 分辨率选择
     uint32 t ADC Resolution;
                                            //ADC 扫描选择
     FunctionalState ADC ScanConvMode;
3
     FunctionalState ADC ContinuousConvMode;
                                           //ADC 连续转换模式选择
     uint32_t ADC_ExternalTrigConvEdge;
                                           //ADC 外部触发极性
                                             //ADC 外部触发选择
     uint32 t ADC ExternalTrigConv;
     uint32 t ADC DataAlign;
                                             //输出数据对齐方式
     uint8 t ADC NbrOfChannel;
                                             //转换通道数目
   ADC InitTypeDef;
```


ADC_Resolution:配置 ADC 的分辨率,可选的分辨率有

12 位、10 位、8 位和6 位。ADC_CR1:RES[1:0]

ScanConvMode: 配置是否使用扫描模式,单通道

DISABLE, 多通道 ENABLE。 ADC_CR1:SCAN

ADC_ContinuousConvMode: 配置连续转换还是单次转

换。ADC_CR1:CONT

ADC_ExternalTrigConvEdge:外部触发极性选择,如果使用外部触发,可以选择触发的极性,可选有禁止触发检测、上升沿触发检测、下降沿触发检测以及上升沿和下降沿均可触发检测。ADC_CR2:EXTEN/JEXTEN

ADC_ExternalTrigConv:外部触发选择,实际上,我们一般使用软件自动触发。ADC_CR2:EXTSEL[3:0]
/ JEXTSEL[3:0]

ADC_DataAlign:转换结果数据对齐模式,可选

ADC_DataAlign_Right 或者 ADC_DataAlign_Left。

ADC_CR2:ALIGN

ADC_NbrOfChannel: AD 转换通道数目。ADC_SQR1

:L[3:0]/ADC_JSQR:JL[1:0]

ADC_CommonInitTypeDef

ADC_Mode: ADC模工作式选择,有独立模式、双重模式

以及三重模式。ADC_CCR:MULTI

ADC_Prescaler: ADC 时钟分频系数选择, ADC 时钟是有 PCLK2 分频而来, 分频系数决定 ADC 时钟频率,可选的分频系数为 2、 4、 6 和 8。 ADC 最大时钟配置为36MHz。ADC CCR:ADCPRE

ADC_DMAAccessMode: DMA 模式设置,只有在双重或者三重模式才需要设置,可以设置三种模式,具体可参考参考手册11.9章节的说明。ADC_CCR:DMA

ADC_TwoSamplingDelay: 2 个采样阶段之前的延迟, 仅适用于双重或三重交错模式。ADC_CCR:DELAY

1-配置规则通道的转换顺序

ADC_RegularChannelConfig

(ADC_TypeDef* ADCx,

uint8_t ADC_Channel,

uint8_t Rank,

uint8_t ADC_SampleTime)

// 使用哪个ADC

// 使用哪个通道

// 通道的转换顺序

// 采样时间

2-使能ADC

ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState)

ADC_CR2:ADON

3-软件触发转换

ADC_SoftwareStartConv(ADC_TypeDef* ADCx)

ADC_CR2:SWSTART

4-单重ADC DMA 请求

ADC_DMARequestAfterLastTransferCmd(ADC_TypeDef* ADCx,

FunctionalState NewState)

ADC_CR2:DDS

ADC_DMACmd(RHEOSTAT_ADC, ENABLE);

ADC_CR2:DMA

5-多重ADC DMA 请求

ADC_MultiModeDMARequestAfterLastTransferCmd(FunctionalState

NewState)

ADC_CCR:DDS, ADC_CCR:DMA

零死角玩转STM32—M4系列

论坛: www.chuxue123.com

淘宝: firestm32.taobao.com

扫描进入淘宝店铺