NOTE ON TYPE THEORIES

KEISUKE HOSHINO

Notation 0.1. We employ the following notations.

- (2,1)-categories are denoted by bf symbols: $\mathbb{C}, \mathbb{A}, \mathbb{E}, \ldots$ or bb symbols: $\mathbb{I}, \mathbb{D}, \mathbb{A}, \ldots$
- **Set** is the category of sets.
- Cat is the large (2,1)-category of categories.
- There is a fully faithful (2,1)-functor disc: Set \hookrightarrow Cat.
- *Cat* is the large 2-category of categories.
- Δ^1 is the 1-simplex seen as a category. \mathbf{C}^{Δ^1} is the arrow category of \mathbf{C} .
- \bullet $\mathbf{C}_{/A}$ and $\mathbf{C}_{A/}$ are over and under categories respectively.
- cod and dom mean codomain and domain respectively. They often have as their type $\mathbf{C}^{\Delta^1} \longrightarrow \mathbf{C}$, $\mathbf{C}_{/A} \longrightarrow \mathbf{C}$, or $\mathbf{C}_{A/} \longrightarrow \mathbf{C}$.
- By a *replete class of morphisms* of \mathbb{C} , we mean a replete full subcategory of \mathbb{C}^{Δ^1} .
 - 1. Dependent type theories in terms of display maps

See also [nLa].

Definition 1.1 (Strict Categories). We write **StrCat** for the (1-)category of categories, and an object in **StrCat** is called a *strict category*. For each strict category \mathbf{C} , we write $\mathsf{Obj}(\mathbf{C})$ for its underlying object. By *object* of \mathbf{C} , we mean an element in $\mathsf{Obj}(\mathbf{C})$.

Remark 1.2. One can see a strict category as a category equipped with its data of *objects*; a *strict category* might be defined as a category \mathbf{C} equipped with a set $\mathsf{Obj}(\mathbf{C})$ and a essentially surjective functor towards \mathbf{C} . They form a full sub-(2,1)-category of Cat^{Δ^1} , which is indeed equivalent to StrCat .

Definition 1.3 (See [KL18, KL21, nLa].). A contextual category T consists of the following data.

- A strict category **T**.
- An object ε of **T** which is a terminal object.
- A class¹ dis_T of display maps such that for each object $\Gamma \in \mathsf{Obj}(\mathbf{T})$, there exists a unique path of display maps $\Gamma \longrightarrow \cdots \longrightarrow \varepsilon$.
- For each display map $A = (\Gamma.A \longrightarrow \Gamma)$ and a morphism $\vec{t} : \Delta \longrightarrow \Gamma$ there is a canonical pullback square

$$\begin{array}{ccc} \Delta.A[\vec{t}/\vec{x}] & \xrightarrow{q(\vec{t},p)} \Gamma.A \\ \downarrow & & \downarrow p \\ \Delta & \xrightarrow{\vec{t}} & \Gamma \end{array}$$

whose left side is a display map, which is denoted by $A[\vec{t}/\vec{x}]$ and called the **substitution** of \vec{t} in A. Moreover, those substitutions are strictly functorial: $A[\vec{t}/\vec{x}][\vec{s}/\vec{y}] = A[\vec{t} \circ \vec{s}/\vec{y}]$ and $q(\vec{t},A) \circ q(\vec{s},A[\vec{t}/\vec{x}]) = q(\vec{t} \circ \vec{s},A)$.

We write CwC for the category of contextual categories and functors preserving those structures.

Notation 1.4. Let **T** be a contextual category.

• A *context* in **T** is an object in **T**.

Date: April 18, 2024.

¹A class of morphisms in a strict category **T** is just a subgraph of the underlying graph of **T**, which is defined by pulling back $\mathbf{T}^{\Delta^1} \longrightarrow \mathbf{T} \times \mathbf{T}$ along $\mathsf{Obj}(\mathbf{T}) \times \mathsf{Obj}(\mathbf{T}) \longrightarrow \mathbf{T} \times \mathbf{T}$.

• A type A over a context Γ in C is a display map $A = (\Gamma.A \longrightarrow \Gamma)$. We write

$$\Gamma \vdash A$$
 type

if A is a type over Γ .

• A term t of a type A over a context Γ is a section of the display map $\Gamma.A \longrightarrow \Gamma$. We write

$$\Gamma \vdash t : A$$

if t is a term of A. Moreover, if we have $\Gamma = \Delta X$, then we also write

$$\Delta, x : X \vdash t(x) : A(x)$$

for this judgement.

• We write

$$\Gamma \vdash A \doteq A'$$
 type and $\Gamma \vdash t \doteq t' : A$

if A and A' are equal as display maps and t and t' are equal as sections. We say types (or terms) are $judgementally\ equal$ if such an equality holds.

- (Biased product of contexts.) Let $\Delta \in \mathbf{C}$ be a context and $\Gamma = \varepsilon.A_0....A_n$ be another context. (Note that such a sequence $A_0, ..., A_n$ of types uniquely exists for any context Γ .) We define $\Delta.\Gamma = \Delta.A_0...A_n$ inductively as follows.
 - $-\Delta.\varepsilon := \Delta.$ There is a canonical projection $p_{-1} : \Delta \longrightarrow \varepsilon.$
 - Suppose we have constructed $\Delta.A_0.\cdots.A_i$ and a projection $p_i: \Delta.A_0.\cdots.A_i \longrightarrow \varepsilon.A_0.\cdots.A_i$. Then we define $\Delta.A_0.\cdots.A_i.A_{i+1}$ and p_{i+1} as the following substitution.

$$\Delta.A_0.\cdots.A_i.A_{i+1} \xrightarrow{p_{i+1}} \varepsilon.A_0.\cdots.A_i.A_{i+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Delta.A_0.\cdots.A_i \xrightarrow{p_i} \varepsilon.A_0.\cdots.A_i$$

• (Morphisms of contexts.) Let Δ, Γ be contexts. A morphism $\vec{t}: \Delta \longrightarrow \Gamma$ can be seen as a tuple of terms. For example, when we have $\Gamma = \varepsilon.A_0.A_1$, the morphism \vec{t} is determined by the following terms t_0, t_1 .

Definition 1.5. Let \mathbb{C} be a contextual category. We say \mathbb{C} has *extensional* Σ -types if for each context Γ and types $\Gamma \vdash A$ type and $\Gamma . A \vdash B$ type, it satisfies the following condition. There exists a type

$$\Gamma.A.B \vdash \Sigma(A, x.B)$$
 type

and terms

$$\Gamma.A.B \vdash \mathtt{pair} : \Sigma(A, x.B) \\ \Gamma.\Sigma(A, x.B) \vdash \mathtt{prl} : A \quad \text{and} \quad \Gamma.\Sigma(A, x.B) \vdash \mathtt{prr} : B[\mathtt{prl}/x]$$

satisfying the following judgemental equalities;

$$\Gamma.\Sigma(A, x.B) \vdash \mathtt{pair} \circ \langle \mathtt{prl}, \mathtt{prr} \rangle \doteq (p \mapsto p)$$

$$\Gamma.A.B \vdash \mathtt{prl} \circ \mathtt{pair} \doteq (x:A,y:B \mapsto x), \quad \Gamma.A.B \vdash \mathtt{prr} \circ \mathtt{pair} \doteq (x:A,y:B \mapsto y)$$

We write \mathbf{CwC}_{Σ} for the full subcategory of \mathbf{CwC} consisting of those with extensional Σ -types.

Definition 1.6. A *display map category* $\mathbf{C} = (\mathbf{C}, \mathbf{dis}_{\mathbf{C}})$ is a pair of a category \mathbf{C} and a replete class $\mathbf{dis}_{\mathbf{C}}$ of morphisms satisfying the following conditions. Arrows in $\mathbf{dis}_{\mathbf{C}}$ are called *display maps* of \mathbf{C} .

• C has a terminal object².

²In some literature, this condition is omitted for the definition of display map category.

• Let $h: \Delta \longrightarrow \Gamma$ and $f: A \longrightarrow \Gamma$ be morphisms in ${\bf C}$ such that f is a display map. Then there is a pullback square

$$\begin{array}{ccc}
 & \longrightarrow & A \\
\downarrow & & \downarrow f \\
\Delta & \longrightarrow & \Gamma
\end{array}$$

in C such that the left side is also a display map.

Definition 1.7. Suppose we are given a display map category \mathbf{C} and an object $\Gamma \in \mathbf{C}$. We define a diplay map category $\mathbf{C}(\Gamma)$ as follows.

- The underlying category is the full subcategory of the over category $\mathbf{C}_{/\Gamma}$ spanned by diplay maps in \mathbf{C} .
- A display map in $\mathbf{C}(\Gamma)$ is a morphism $f \in \mathbf{C}(\Gamma)$ such that dom(f) is a display map in \mathbf{C} .

Proposition 1.8. The above definition indeed gives a display map category.

Definition 1.9. Define the 2-category $\mathfrak{C}w\mathfrak{D}$ of display map categories as follows.

- 0-cells are display map categories.
- 1-cells are functors preserving the terminal object, display maps, and pullbacks of the forms (1).
- A 2-cell $\alpha \colon F \Longrightarrow G \colon \mathbf{C} \longrightarrow \mathbf{D}$ is a natural transformation such that naturality squares at display maps are pullback squares; i.e., for each display map $f \colon A \longrightarrow \Gamma$ in \mathbf{C} , the naturality square

$$FA \xrightarrow{\alpha_A} GA$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F\Gamma \xrightarrow{\alpha_{\Gamma}} G\Gamma$$

is a pullback square in \mathbf{D} .

Definition 1.10. A display map category is *democratic* if for each object $\Gamma \in \mathbf{C}$, there exists a sequence of display maps from Γ to the terminal object. We write $\mathbf{CwD}^{\mathtt{dm}}$ for the full sub 2-category of $\mathfrak{C}w\mathfrak{D}$ spanned by democratic display map categories.

Proposition 1.11.
$$CwD^{dm}$$
 is a $(2,1)$ -category.

Definition 1.12 ([Joy17]). A $clan\ C = (C, fib_C)$ is a display map category satisfying the following conditions. Display maps (i.e., arrows in fib_C) are called fibrations of C.

- For each object $A \in \mathbb{C}$, the unique morphism $A \longrightarrow 1$ towards the terminal object is a fibraion.
- \bullet fib_C is closed under composition and contains all isomorphisms.

We write **Clan** for the full sub 2-category of $\mathfrak{C}w\mathfrak{D}$ spanned by clans. Since clans are always democratic, this is a (2,1)-category.

Theorem 1.13. There exists a biadjunction

$$\mathbf{CwC} \xrightarrow[]{|-|} \mathfrak{C}w\mathfrak{D}$$

that restricts to the following biequivalences;

$$\mathbf{CwC} \overset{|-|}{\overset{}{\underset{\mathsf{cxt}}{\longleftarrow}}} \mathbf{CwD}^{\mathtt{dm}}$$

$$\mathbf{CwC}_{\Sigma} \overset{|-|}{\underset{\mathsf{cxt}}{\longleftarrow}} \mathbf{Clan}$$

In particular, CwD^{dm} and Clan are essentially 1-categories; i.e., setoid enriched categories.

Sketch of proof. There is a canonical way to see a contextual catgory as a display map category. This indeed induces a 2-functor $|-|: \mathbf{CwC} \longrightarrow \mathfrak{C}w\mathfrak{D}$ which is an embedding.

For each display map category \mathbf{D} , we construct a contextual category $\mathsf{cxt}(\mathbf{D})$ as follows.

- Firstly, choose a terminal object 1. Then choose a section Γ .— of the quotient functor $\mathbf{D}(\Gamma)^{\cong} \longrightarrow \pi_0(\mathbf{D}(\Gamma)^{\cong})$ for each $\Gamma \in \mathbf{D}$.
- An object in $\mathsf{cxt}(\mathbf{D})$ is a tuple (A_0, A_1, \dots, A_n) $(n \ge 0)$ such that
 - $-A_0 \in \pi_0(\mathbf{D}(1)).$
 - $-A_{i+1} \in \pi_0(\mathbf{D}(1.A_0.\dots.A_i))$ for each $0 \le i < n$.
- A morphism $(A_0, \dots, A_n) \longrightarrow (B_0, \dots, B_m)$ is a morphism $1.A_0.\dots.A_n \longrightarrow 1.B_0.\dots.B_m$.

 $\mathsf{cxt}(\mathbf{D})$ is independent of the choice of the terminal object and the sections of the quotient functors, up to isomorphism of categories. Moreover, one can check the natural equivalence

$$\mathbf{CwC}(\mathbf{T},\mathsf{cxt}(\mathbf{D})) \simeq \mathfrak{C}w\mathfrak{D}(|\mathbf{T}|,\mathbf{D})$$

of categories, which shows the biadjunction. By definition of $\mathsf{cxt}(\mathbf{D})$, the counit $|\mathsf{cxt}(\mathbf{D})| \to \mathbf{D}$ is an embedding, and it is essentially surjective if and only if \mathbf{D} is democratic. This shows the first biequivalence. The second one is checked by confirming the image of clans under cxt has extensional Σ -types.

2. Logical framework à la Uemura

[Uem23]

Definition 2.1. A representable map category $\mathbf{R} = (\mathbf{R}, \mathbf{rep_R})$ is a clan satisfying the following conditions. Arrows in $\mathbf{rep_R}$ are called representable maps of \mathbf{R} .

- ullet R is finitely complete.
- For each representable map $f: X \longrightarrow Y$, the pullback functor $f^*: \mathbf{R}_{/Y} \longrightarrow \mathbf{R}_{/X}$ has a right adjoint f_* .

References

- [Joy17] A. Joyal. Notes on clans and tribes, 2017, 1710.10238.
- [KL18] K. Kapulkin and P. L. Lumsdaine. The homotopy theory of type theories. Adv. Math., 337:1–38, 2018. doi:10.1016/j.aim.2018.08.003.
- [KL21] K. Kapulkin and P. L. Lumsdaine. The simplicial model of univalent foundations (after Voevodsky). *J. Eur. Math. Soc. (JEMS)*, 23(6):2071–2126, 2021. doi:10.4171/JEMS/1050.
- [nLa] nLab authors. categorical semantics of dependent type theory. https://ncatlab.org/nlab/show/categorical+semantics+of+dependent+type+theory. Revision 74.
- [Uem23] T. Uemura. A general framework for the semantics of type theory. Math. Structures Comput. Sci., 33(3):134–179, 2023. doi:10.1017/s0960129523000208.

 $Email\ address{:}\ {\tt hoshinok@kurims.kyoto-u.ac.jp}$

RESEARCH INSTITUTE OF MATHEMATICAL SCIENCE, KYOTO UNIVERSITY