Math 397

Homework 3

Name: Gianluca Crescenzo

Exercise 3. Let $\{X_k, d_k\}_{k \ge 1}$ be a sequence of metric spaces with uniformly bounded metrics. Let:

$$X:=\prod_{k\geqslant 1} X_k$$

denote the product.

(i) Show that:

$$D: X \times X \rightarrow [0, \infty); \quad D(x, y) := \sum_{k=1}^{\infty} 2^{-k} d_k(x_k, y_k)$$

defines a metric on X.

(ii) Consider the special case when $X_k\{0,2\}$ and $d_k(x,y) = |x-y|$ for every $k \ge 1$. We get the abstract Cantor set:

$$\Delta := \prod_{k\geqslant 1} \{0,2\}; \quad D(x,y) := \sum_{k=1}^{\infty} 3^{-k} |x_k - y_k|.$$

Prove that D(x, z) = D(y, z) implies x = y.

Proof. See attached homework. (Sorry for not typing it up, seems overly tedious). \Box

Exercise 4. Let $(V, \|\cdot\|)$ be a normed space, and suppose $E \subseteq V$. Show that the following are equivalent:

- (i) E is bounded, that is, $diam(E) < \infty$;
- (ii) $\sup_{v \in E} ||v|| < \infty$;
- (iii) There is an r > 0 with $E \subseteq B(0, r)$.

Proof. $((i) \Rightarrow (ii))$ Let diam $(E) < \infty$. Note that $||v - w|| \le |||v|| - ||w|||$ implies:

$$\sup_{v,w\in E}\|v-w\|\leqslant \sup_{v,w\in E}|\|v\|-\|w\||.$$

But this is equivalent to:

$$\sup_{v \in E} \|v\| - \inf_{w \in E} \|w\| \leqslant \alpha.$$

Whence $\sup_{v \in E} ||v|| \le \alpha + \inf_{w \in E} ||w|| < \infty$.

 $((ii) \Rightarrow (iii))$ Let $\sup_{v \in E} ||v||$ be finite. Then there exists r > 0 such that $\sup_{v \in E} ||v|| = r$. So for all $v \in E$, $||v|| \leq r$, which implies $v \in B(0, r)$. Thus $E \subseteq B(0, r)$.

 $((iii) \Rightarrow (i))$ Suppose there exists r > 0 with $E \subseteq B(0,r)$. We have:

$$\begin{aligned} \operatorname{diam}(E) &= \sup_{x,y \in E} \|x - y\| \\ &\leqslant \sup_{x,y \in B(0,r)} \|x - y\| \\ &= 2r \\ &< \infty. \end{aligned}$$

Exercise 6. In any metric space show that open balls are open, closed balls are closed, and spheres are closed. Moreover, in a normed space, show that $\partial U(v,r) = \partial B(v,r) = S(v,r)$.

Proof. Let $x \in X$ and $\epsilon > 0$. Let $y \in U(x, \epsilon)$. Consider the open ball $U(y, \epsilon - d(x, y))$. If $z \in U(y, \epsilon - d(x, y))$, then $d(y, z) < \epsilon - d(x, y)$. So we have that $\epsilon > d(x, y) + d(y, z) \ge d(x, z)$. This gives $z \in U(x, \epsilon)$ establishing $U(y, \epsilon - d(x, y)) \subseteq U(x, \epsilon)$. Thus open balls are open.

Now let $y \in B(x, \epsilon)^c = \{x_0 \mid d(x, x_0) > \epsilon\}$. Consider the open ball $U(y, d(x, y) - \epsilon)$. If $z \in U(y, d(x, y) - \epsilon)$, then $d(y, z) < d(x, y) - \epsilon$. So we have:

$$egin{aligned} \epsilon &< d(x,y) - d(y,z) \ &\leqslant d(x,z) + d(z,y) - d(y,z) \ &= d(x,z). \end{aligned}$$

This gives $z \in U(x, \epsilon)$, establishing $U(y, d(x, y) - \epsilon) \subseteq B(x, \epsilon)^c$. Since $B(x, \epsilon)^c$ is open, $B(x, \epsilon)$ is closed.

Note that $S(x,\epsilon)^c = B(x,\epsilon)^c \cup U(x,\epsilon)$. Since $S(x,\epsilon)^c$ is the union of open sets, it is open. Thus $S(x,\epsilon)$ is closed.

Lastly, we can see that:

$$\partial U(x,\epsilon) = \overline{U(x,\epsilon)} \setminus U(x,\epsilon)^o$$

$$= B(x,\epsilon) \setminus B(x,\epsilon)^o$$

$$= \overline{B(x,\epsilon)} \setminus B(x,\epsilon)^o$$

$$= \partial B(x,\epsilon).$$

$$S = B(x,\epsilon) \setminus U(x,\epsilon)$$

$$= \overline{U(x,\epsilon)} \setminus U(x,\epsilon)^o$$

$$= \partial U(x,\epsilon).$$

Exercise 7. Let (X,d) be a metric space and suppose $A \subseteq X$. Show that the following are equivalent:

- (i) $\overline{A} = X$;
- (ii) $(\forall U \in \tau_X) : U \cap A \neq \emptyset$;
- (iii) $(\forall x \in X)(\forall \epsilon > 0) : U(x, \epsilon) \cap A \neq \emptyset$;
- (iv) $(\forall x \in X)(\forall \epsilon > 0)(\exists a \in A) : d(x, a) < \epsilon$.

Proof. $(i) \Rightarrow (ii)$ Suppose we can find some $U \in \tau_X$ with $U \cap A = \emptyset$. If U = X or $U = \emptyset$, then clearly $\overline{A} \neq X$. Otherwise, we have $A \subseteq U^c \subsetneq X$. Since A is contained in a closed set, we have $\overline{A} \subseteq U^c \subsetneq X$. Thus $\overline{A} \neq X$.

 $(ii) \Rightarrow (iii)$ Let $U \in \tau_X$ be arbitrary. If $U \cap A \neq \emptyset$, then we can find some $y \in U \cap A$. Since $\mathcal{B} = \{U(x,\epsilon) \mid x \in X, \epsilon > 0\}$ is a basis, we have $y \in U(x,\epsilon) \subseteq U$. Thus $y \in U(x,\epsilon) \cap A$, so $U(x,\epsilon) \cap A \neq \emptyset$.

 $(iii) \Rightarrow (iv)$ Since $U(x,\epsilon) \cap A \neq \emptyset$, there exists some $a \in U(x,\epsilon) \cap A$. Thus $d(x,a) < \epsilon$.

 $(iv) \Rightarrow (i)$ We can inductively find a sequence $(a_n)_n$ in A with $d(x, a_n) < \frac{1}{n}$. Whence $(a_n)_n \to x$. Given $\epsilon > 0$, find N large so that $d(a_N, x) < \epsilon$. Then $a_N \in U(x, \epsilon) \cap A$. Thus $x \in \overline{A}$.

Exercise 9. Show that c_0 with $\|\cdot\|_u$ is separable.

Proof. Let $z \in c_0$. Then $z = \sum_{k=1}^{\infty} \alpha_k e_k$. Let $\epsilon > 0$. Fix $t_k \in \mathbf{C}_{\mathbf{Q}}$ with $|\alpha_k - t_k| < \epsilon$. Let $y = \sum_{k=1}^{\infty} t_k e_k$. We have:

$$||x - y||_u = \left\| \sum_{k=1}^{\infty} \alpha_k e_k - \sum_{k=1}^{\infty} t_k e_k \right\|_u$$
$$= \left\| \sum_{k=1}^{\infty} (\alpha_k - t_k) e_k \right\|_u$$
$$= \sup_{k=1}^{\infty} |\alpha_k - t_k|$$
$$< \epsilon.$$

Exercise 10. Let \mathfrak{C} denote the Cantor set. Show that \mathfrak{C} is nowhere dense.

Proof. Suppose towards contraction $\overline{\mathbb{C}}^o \neq \emptyset$. Then there is some $x \in \overline{\mathbb{C}}^o$. We can find an $\epsilon > 0$ with $(x - \epsilon, x + \epsilon) \subseteq \mathbb{C}$. In particular, $(x - \epsilon, x + \epsilon) \subseteq C_n$ for all $n \geqslant 1$. Find m sufficiently large so that $\epsilon > \frac{1}{3^m}$ and consider $(x - \epsilon, x + \epsilon) \subseteq C_m$. We have that $C_m = \bigsqcup_{j=1}^{2^m} C_{m,j}$ with length $(C_{m,j}) = \frac{1}{3^m}$. But the length of $(x - \epsilon, x + \epsilon)$ is 2ϵ , which is impossible. It must be that \mathbb{C} is nowhere dense. \square