Consignes:

Écrivez vos nom et prénom avant de commencer une nouvelle double feuille.

Tracez et laissez une marge de 1 cm environ à gauche de chaque page.

Encadrez la réponse définitive sous forme de formule.

Documents, Calculatrice et Téléphone: non autorisés.

Attention : aucun échange ne sera autorisé entre étudiants (stylo, règle, effaceur, etc.)

Soignez votre écriture : cela facilitera la lecture et accélèrera la correction.

Durée: 2h

Exercice (10 pts): mouvement d'une grue de levage

On s'intéresse à une grue de levage mobile sur camion. Durant la manœuvre de chargement ou de déchargement, le camion est immobile.

On définit le référentiel $\Re (O \ \overrightarrow{x_0} \ \overrightarrow{y_0} \ \overrightarrow{z_0})$, où $\overrightarrow{y_0}$ pointe vers la droite du camion. La colonne rotative, délimitée par les points O et O', a un mouvement de rotation autour de z_0 d'angle $\theta_1 = (\overrightarrow{x_0} \quad \overrightarrow{x_1}) = (\overrightarrow{y_0} \quad \overrightarrow{y_1})$. On définit alors le référentiel $\Re'(0' \quad \overrightarrow{x_1} \quad \overrightarrow{y_1} \quad \overrightarrow{z_1})$. Le bras coulissant, délimité par 0' et M, est de longueur variable, notée r. Il tourne autour de l'axe \overline{y} avec un angle $\theta_2 = (\overrightarrow{z_1} \quad \overrightarrow{z_2}) = (\overrightarrow{x_1} \quad \overrightarrow{x_2})$. On définit ainsi le référentiel $\Re''(M \quad \overrightarrow{x_2} \quad \overrightarrow{y_2} \quad \overrightarrow{z_2})$.

Conseil : dessinez sur un brouillon les projections en 2D des angles θ_1 et θ_2 et des vecteurs associés avant de répondre aux questions 3 et 4.

Questions:

- 1. Donner la chaine cinématique
- 2. En déduire les expressions des vecteurs vitesses de rotation $(\overrightarrow{\Omega_e} \ \overrightarrow{\Omega_r} \ \overrightarrow{\Omega_a})$
- 3. Écrire les vecteurs $(\overrightarrow{x_1} \quad \overrightarrow{y_1} \quad \overrightarrow{z_1})$ en fonction de $(\overrightarrow{x_0} \quad \overrightarrow{y_0} \quad \overrightarrow{z_0})$
- 4. Écrire les vecteurs $(\overrightarrow{x_2} \quad \overrightarrow{y_2} \quad \overrightarrow{z_2})$ en fonction de $(\overrightarrow{x_1} \quad \overrightarrow{y_1} \quad \overrightarrow{z_1})$
- 5. Calculer la vitesse d'entrainement de M
- 6. Calculer la vitesse relative de M
- 7. Calculer l'accélération d'entrainement de M
- 8. Calculer l'accélération de Coriolis de M
- 9. Calculer l'accélération relative de M

Exercice (10 pts): mouvement d'un disque dans un cylindre

Un disque plein et homogène, de masse m, de rayon R_2 , d'épaisseur e, roule sans glisser à l'intérieur d'un cylindre creux, fixe, de centre O et de rayon R_1 . Le contact se fait en I.

Attention: le poids $\vec{P} = -mg\overrightarrow{u_z}$ intervient ici dans le mouvement.

La position du centre C du disque est repérée par l'angle $\theta_1 = (-\overrightarrow{u_z} \ \overrightarrow{u_{R_1}})$, la distance $\|\overrightarrow{OC}\|$ étant constante

Soit M un point quelconque du disque. Sa position est repérée par le rayon r $(0 \le r \le R_2)$ et l'angle absolu $\theta_2 = (\overrightarrow{u_y} \ \widehat{u_{R_2}})$.

On note l'axe de symétrie du disque, la droite $\Delta = (C, \overrightarrow{u_x})$ et sa parallèle $\Delta' = (I, \overrightarrow{u_x})$ passant par l. On suppose que Δ reste parallèle à l'axe du cylindre : le disque reste dans le plan $(\overrightarrow{u_y}, \overrightarrow{u_z})$.

Le bras [OC] exerce une force $\vec{F} = F \overrightarrow{u_{R_1}}$ sur le disque en son centre C, afin de le garder en contact avec le cylindre creux. Celui-ci exerce sur le disque une réaction $\vec{R} = R_N \overrightarrow{u_{R_1}} + R_T \overrightarrow{u_{\theta_1}}$ en I.

Questions:

- 1. Calculer J_{Δ} le moment d'inertie du disque par rapport à $\Delta=(\mathcal{C},\overrightarrow{u_{\chi}})$, (intégrale triple)
- 2. En déduire $J_{\Delta t}$ le moment d'inertie du disque par rapport à $\Delta' = (I, \overrightarrow{u_x})$ (Huyghens)
- 3. Démontrer la condition de non glissement $(R_1-R_2)\dot{\theta}_1+R_2\dot{\theta}_2=0$
- 4. Exprimer l'énergie cinétique $E_{\mathcal{C}}$ pour le disque en rotation autour de $\Delta'=(I,\overrightarrow{u_x})$
- 5. Calculer $\overrightarrow{V_C}$, la vitesse de C, en utilisant Varignon
- 6. En déduire l'énergie cinétique E_C pour le disque en rotation autour de $\Delta = (C, \overrightarrow{u_x})$
- 7. Exprimer les moments cinétiques $\sigma_{\!\scriptscriptstyle \Delta}$ et $\sigma_{\!\scriptscriptstyle \Delta}$,
- 8. Écrire le Théorème du Moment Cinétique et donner les moments des forces extérieures
- 9. En déduire l'équation horaire dans le cas où θ_1 est petit.