Clustering Exercise Using ALS Patient Data

KJ MoChroi DSC 630 Winter 2022 Bellevue University

In [5]:

create correlation matrix
corr_matrix = als_df.corr()

1. Remove any data that is not relevant to the patient's ALS condition.

First I will import the data, look at it, and remove any unnecesary columns. This method is based on (Applied Predictive Analytics) page 119.

```
In [1]:
          # Libraries
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import matplotlib.cm as cm
          import seaborn as sns
          from sklearn.preprocessing import StandardScaler
          from sklearn.datasets import make blobs
          from sklearn.cluster import KMeans
          from sklearn.metrics import silhouette_samples, silhouette_score
          from sklearn.decomposition import PCA
In [2]:
          als df = pd.read csv("als data.csv")
In [3]:
          als_df.head()
            ID Age_mean Albumin_max Albumin_median Albumin_min Albumin_range ALSFRS_slope ALSFRS
Out[3]:
         0
            1
                      65
                                   57.0
                                                   40.5
                                                                38.0
                                                                           0.066202
                                                                                        -0.965608
             2
                                   45.0
                                                   41.0
                                                                39.0
                                                                           0.010453
                      48
                                                                                        -0.921717
         2
             3
                      38
                                   50.0
                                                   47.0
                                                                45.0
                                                                           0.008929
                                                                                        -0.914787
                                   47.0
                      63
                                                   44.0
                                                                41.0
                                                                           0.012111
                                                                                        -0.598361
             5
                      63
                                   47.0
                                                   45.5
                                                                42.0
                                                                           0.008292
                                                                                        -0.444039
        5 rows × 101 columns
In [4]:
          als_df.drop(['ID', 'SubjectID'], axis=1, inplace=True)
        For this next section I will compare the correlations to see if there are redundant variables to remove
```

```
In [6]:
# this function highlights high correlation values
def high_corr(val):
    color = 'yellow' if (val > 0.9 or val < -0.9) else ''
    return 'background-color: {}'.format(color)

corr_matrix.style.applymap(high_corr)</pre>
```

Out[6]:	Age_mean	Albumin_max	Albumin_median	Albumin_min	Albumin_ra
Age_mean	1.000000	-0.276195	-0.349024	-0.297121	0.053
Albumin_max	-0.276195	1.000000	0.780141	0.596662	0.223
Albumin_median	-0.349024	0.780141	1.000000	0.761269	-0.091
Albumin_min	-0.297121	0.596662	0.761269	1.000000	-0.369
Albumin_range	0.053197	0.223350	-0.091822	-0.369015	1.000
ALSFRS_slope	-0.015301	0.037438	0.059234	0.112154	-0.226
ALSFRS_Total_max	0.049054	0.113349	0.153280	0.158924	-0.142
ALSFRS_Total_median	0.057733	0.090439	0.128122	0.172940	-0.166
ALSFRS_Total_min	0.041025	0.058077	0.099099	0.188007	-0.188
ALSFRS_Total_range	0.038163	-0.072609	-0.099966	-0.151358	0.264
ALT.SGPTmax	-0.130050	0.091963	0.101377	0.034264	0.015
ALT.SGPTmedian	-0.189788	0.137417	0.187458	0.162226	-0.051
ALT.SGPTmin	-0.142516	0.085657	0.147607	0.173052	-0.072
ALT.SGPTrange	-0.058298	0.008734	0.000620	-0.033994	0.109
AST.SGOTmax	-0.030284	0.060325	0.048049	0.007431	0.005
AST.SGOTmedian	-0.024973	0.096926	0.124172	0.109144	-0.047
AST.SGOTmin	-0.002730	0.032387	0.080313	0.114516	-0.071
AST.SGOTrange	-0.010642	0.004965	-0.014476	-0.036657	0.105
Bicarbonate_max	0.165844	0.125698	0.107236	0.025970	-0.01(
Bicarbonate_median	0.191592	0.066279	0.046939	0.007117	0.015
Bicarbonate_min	0.169390	-0.028314	-0.040693	-0.029353	0.058
Bicarbonate_range	0.062786	0.008282	-0.007052	-0.016733	0.160
Blood.Urea.NitrogenBUNmax	0.218799	0.064980	-0.002630	-0.033055	300.0
Blood.Urea.NitrogenBUNmedian	0.286131	-0.027990	-0.054270	-0.066050	0.006
Blood.Urea.NitrogenBUNmin	0.183931	-0.059244	-0.028821	0.026912	-0.026
Blood.Urea.NitrogenBUNrange	0.142506	0.010039	-0.073901	-0.083650	0.171
bp_diastolic_max	0.005481	0.084957	0.114683	0.075712	-0.011
bp_diastolic_median	0.013110	0.084578	0.156109	0.137294	-0.03(
bp_diastolic_min	0.017555	0.071161	0.136431	0.161045	-0.015

	Age_mean	Albumin_max	Albumin_median	Albumin_min	Albumin_ra
bp_diastolic_range	0.046004	-0.074635	-0.086270	-0.095153	0.160
bp_systolic_max	0.327372	-0.009723	-0.029938	-0.052392	0.007
bp_systolic_median	0.317989	-0.005592	-0.001736	-0.005762	0.019
bp_systolic_min	0.258714	0.045570	0.049809	0.049491	0.019
bp_systolic_range	0.196450	-0.123900	-0.144217	-0.138054	0.167
Calcium_max	0.008545	0.155105	0.150450	0.131857	-0.018
Calcium_median	-0.010566	0.286746	0.336714	0.293908	0.004
Calcium_min	0.006702	0.094279	0.128773	0.169644	-0.004
Calcium_range	0.024142	-0.012157	-0.053379	-0.057257	0.138
Chloride_max	-0.091505	0.035649	0.037558	0.017007	-0.102
Chloride_median	-0.141916	-0.009322	0.029715	0.031809	-0.11(
Chloride_min	-0.160119	-0.072399	-0.006120	0.059682	-0.087
Chloride_range	0.101587	-0.025731	-0.082791	-0.068252	0.204
Creatinine_max	0.053231	0.098292	0.110474	0.099011	-0.020
Creatinine_median	0.041418	0.050303	0.090986	0.117553	-0.012
Creatinine_min	0.010950	0.009317	0.040177	0.139861	-0.012
Creatinine_range	0.086564	0.026042	0.010782	-0.067427	0.156
Gender_mean	-0.168238	0.161496	0.241774	0.225021	-0.06(
Glucose_max	0.120487	0.010767	0.009631	-0.012418	-0.012
Glucose_median	0.133152	0.026261	0.026086	0.009595	-0.00(
Glucose_min	-0.007844	-0.018847	0.056898	0.090714	-0.038
Glucose_range	0.132036	-0.028908	-0.056251	-0.062965	0.119
hands_max	0.173512	-0.001439	-0.007101	0.015838	-0.072
hands_median	0.185773	-0.023482	-0.028485	0.015642	-0.09€
hands_min	0.179134	-0.033976	-0.028484	0.036182	-0.10(
hands_range	-0.013099	-0.041942	-0.055227	-0.071624	0.187
Hematocrit_max	-0.034760	0.091769	0.036835	-0.019991	0.026
Hematocrit_median	-0.041498	0.090150	0.042328	-0.012497	0.022
Hematocrit_min	-0.057266	0.094050	0.054505	0.028419	0.004
Hematocrit_range	0.070984	-0.059026	-0.117044	-0.146325	0.231
Hemoglobin_max	-0.181186	0.159079	0.205137	0.189739	-0.024
Hemoglobin_median	-0.206245	0.152803	0.238150	0.239787	-0.054
Hemoglobin_min	-0.189124	0.102448	0.202851	0.298236	-0.105
Hemoglobin_range	0.056863	-0.044372	-0.107180	-0.146709	0.202

	Age_mean	Albumin_max	Albumin_median	Albumin_min	Albumin_ra
leg_max	-0.047906	0.139818	0.179596	0.167852	-0.073
leg_median	-0.029621	0.134157	0.166601	0.175830	-0.083
leg_min	-0.041440	0.091300	0.130834	0.174243	-0.126
leg_range	0.039065	-0.008516	-0.015230	-0.037524	0.185
mouth_max	-0.055647	0.050458	0.099309	0.115960	-0.145
mouth_median	-0.054257	0.064704	0.109045	0.144995	-0.145
mouth_min	-0.034408	0.062803	0.108634	0.176298	-0.165
mouth_range	0.038895	-0.116434	-0.153355	-0.196108	0.223
onset_delta_mean	-0.039550	-0.003759	0.048405	0.025833	0.038
onset_site_mean	-0.090055	0.006648	0.027399	0.054884	-0.045
Platelets_max	0.037074	-0.104745	-0.141115	-0.189825	0.091
Platelets_median	0.002051	-0.115375	-0.137441	-0.104450	0.057
Platelets_min	0.006589	-0.109240	-0.122950	-0.076696	0.05€
Potassium_max	0.040688	-0.004157	-0.009839	-0.002625	-0.003
Potassium_median	0.144203	-0.004223	0.012496	0.018269	-0.023
Potassium_min	0.034911	-0.028865	0.006738	0.071035	-0.02€
Potassium_range	0.053625	-0.041060	-0.062979	-0.047411	0.163
pulse_max	-0.077080	0.014157	0.000910	-0.037239	0.048
pulse_median	-0.066583	-0.009456	-0.001371	-0.002951	0.031
pulse_min	-0.033929	-0.002595	-0.001306	0.007479	0.035
pulse_range	0.012406	-0.081420	-0.089154	-0.100420	0.229
respiratory_max	-0.071695	0.056793	0.058894	0.061554	-0.088
respiratory_median	-0.055059	0.090280	0.104120	0.107924	-0.102
respiratory_min	-0.055515	0.081607	0.108920	0.158138	-0.138
respiratory_range	0.064244	-0.127569	-0.156803	-0.161566	0.193
Sodium_max	0.028854	0.051798	0.049189	0.014051	-0.004
Sodium_median	0.005432	0.013677	0.007380	0.046761	0.030
Sodium_min	-0.039712	-0.040877	-0.017818	0.074240	0.020
Sodium_range	0.080449	-0.048029	-0.069380	-0.086457	0.177
trunk_max	0.071736	0.080261	0.097823	0.095974	-0.08€
trunk_median	0.089325	0.057346	0.084183	0.113639	-0.11(
trunk_min	0.065092	0.042903	0.072317	0.134409	-0.124
trunk_range	0.036559	-0.064183	-0.088370	-0.114685	0.211
Urine.Ph_max	-0.001532	0.075413	0.056894	0.034555	-0.011

	Age_mean	Albumin_max	Albumin_median	Albumin_min	Albumin_ra
Urine.Ph_median	0.002561	-0.046885	-0.042497	-0.001877	0.038
Urine.Ph_min	-0.008615	-0.138430	-0.118506	-0.049783	0.022

According to the correlation matrix above, there are two redundant variables. I will remove 'Hematocrit max' and 'Hematocrit min' and I will leave 'Hematocrit median' in the dataframe.

```
In [7]:
          als df.drop(['Hematocrit max', 'Hematocrit min'], axis=1, inplace=True)
 In [8]:
          # Any missing data?
          als_df.isna().sum().sum()
 Out[8]:
        2. Apply a standard scalar to the data.
 In [9]:
          # create object
          scalar = StandardScaler()
In [10]:
          # standardization
          als_scaled = scalar.fit_transform(als_df)
In [11]:
          als scaled
         array([[ 0.91713698, 3.08941722, -1.30078105, ..., -0.88037551,
Out[11]:
                  0.46305355, 1.86853157],
                [-0.57487867, -0.62201561, -1.11240084, ..., 0.1926645]
                 -1.13720768, -0.41915124],
                [-1.45253494, 0.92441474, 1.14816173, ..., -0.88037551,
                 -1.13720768, -0.41915124],
                [-0.6626443, -0.31272954, 0.01788044, ..., 2.33874452,
                  0.46305355, -0.41915124],
                [-1.54030057, 0.61512867, 0.01788044, ..., -0.88037551,
                 -1.13720768, -0.41915124],
                [-0.57487867, 0.3058426, 0.39464087, ..., -1.95341552,
                 -1.13720768, -0.41915124]])
```

3. Create a plot of the cluster silhouette score versus the number of clusters in a K-means cluster.

The following code was sourced from a tutorial online that can be found at the following website: https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html#sphx-glr-auto-examples-cluster-plot-kmeans-silhouette-analysis-py

```
In [12]: X = als_scaled
    range_n_clusters = [2, 3, 4, 5, 6,7, 8, 9, 10]
    for n_clusters in range_n_clusters:
```

```
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set ylim([0, len(X) + (n clusters + 1) * 10])
# Initialize the clusterer with n clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n clusters=n clusters, random state=10)
cluster_labels = clusterer.fit_predict(X)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
silhouette avg = silhouette score(X, cluster labels)
print(
    "For n clusters =",
   n clusters,
   "The average silhouette score is :",
   silhouette_avg,
)
# Compute the silhouette scores for each sample
sample silhouette values = silhouette samples(X, cluster labels)
y_lower = 10
for i in range(n clusters):
   # Aggregate the silhouette scores for samples belonging to
   # cluster i, and sort them
   ith cluster silhouette values = sample silhouette values[cluster labels == i]
   ith cluster silhouette values.sort()
   size_cluster_i = ith_cluster_silhouette_values.shape[0]
   y_upper = y_lower + size_cluster_i
    color = cm.nipy_spectral(float(i) / n_clusters)
    ax1.fill betweenx(
        np.arange(y_lower, y_upper),
        ith cluster silhouette values,
        facecolor=color,
        edgecolor=color,
        alpha=0.7,
    )
    # Label the silhouette plots with their cluster numbers at the middle
    ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
   # Compute the new y lower for next plot
   y lower = y upper + 10 # 10 for the 0 samples
ax1.set title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
```

```
ax1.set ylabel("Cluster label")
    # The vertical line for average silhouette score of all the values
    ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
    ax1.set_yticks([]) # Clear the yaxis labels / ticks
    ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
    # 2nd Plot showing the actual clusters formed
    colors = cm.nipy spectral(cluster labels.astype(float) / n clusters)
    ax2.scatter(
        X[:, 0], X[:, 1], marker=".", s=30, lw=0, alpha=0.7, c=colors, edgecolor="k"
    # Labeling the clusters
    centers = clusterer.cluster centers
    # Draw white circles at cluster centers
    ax2.scatter(
         centers[:, 0],
         centers[:, 1],
        marker="o",
         c="white",
         alpha=1,
         s=200,
        edgecolor="k",
    )
    for i, c in enumerate(centers):
         ax2.scatter(c[0], c[1], marker="\frac{k}{0}" % i, alpha=1, s=50, edgecolor="k")
    ax2.set title("The visualization of the clustered data.")
    ax2.set_xlabel("Feature space for the 1st feature")
    ax2.set ylabel("Feature space for the 2nd feature")
    plt.suptitle(
         "Silhouette analysis for KMeans clustering on sample data with n clusters = %d"
        % n clusters,
        fontsize=14,
        fontweight="bold",
    )
plt.show()
For n_clusters = 2 The average silhouette_score is: 0.08038173811738773
For n clusters = 3 The average silhouette score is: 0.07040893083421151
For n clusters = 4 The average silhouette score is : 0.05210973554529861
For n_clusters = 5 The average silhouette_score is : 0.05712969619618897
For n clusters = 6 The average silhouette score is : 0.04047689865763422
For n_clusters = 7 The average silhouette_score is: 0.04361954954738954
For n clusters = 8 The average silhouette score is : 0.04426670836990529
```

For n_clusters = 9 The average silhouette_score is : 0.03746952706901966 For n_clusters = 10 The average silhouette_score is : 0.036686234733113124

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

Silhouette analysis for KMeans clustering on sample data with n_clusters = 5

Silhouette analysis for KMeans clustering on sample data with n_clusters = 6

Silhouette analysis for KMeans clustering on sample data with n_clusters = 7

Silhouette analysis for KMeans clustering on sample data with n_clusters = 8

Silhouette analysis for KMeans clustering on sample data with n_c lusters = 9

Silhouette analysis for KMeans clustering on sample data with n_c lusters = 10


```
In [13]: # An alternative approach: WCSS and Elbow Plot
    wcss=[]
    for i in range(1,10):
        kmeans = KMeans(i)
```

```
kmeans.fit(X)
wcss_iter = kmeans.inertia_
wcss.append(wcss_iter)

number_clusters = range(1,10)
plt.plot(number_clusters,wcss)
plt.title('The Elbow title')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:881: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks th an available threads. You can avoid it by setting the environment variable OMP_NUM_THREA DS=9.

```
warnings.warn(
Out[13]: Text(0, 0.5, 'WCSS')
```


4. Use the plot created in (3) to choose on optimal number of clusters for K-means. Justify your choice.

After reviewing both the silhouette scores and the elbow plot, both of these metrics indicate that the best choice for k is k=2. The silhouette score, though very low for all values of k, was the highest for k=2. Furthermore, the "elbow" of the elbow plot is also at k=2.

5. Fit a K-means model to the data with the optimal number of clusters chosen in part (4).

```
In [14]: kmeans = KMeans(n_clusters=2)
kmeans.fit(X)
label = kmeans.fit_predict(X)
```

6. Fit a PCA transformation with two features to the scaled data.

```
In [15]: pca_2 = PCA(n_components=2)
    pca_2.fit(X)
    X_pca_2 = pca_2.transform(X)
```

7. Make a scatterplot the PCA transformed data coloring each point by its cluster value.

```
In [16]:
           plt.figure(figsize=(10,7))
           sns.scatterplot(x=X_pca_2[:,0], y=X_pca_2[:,1], hue=label, palette = ['green', 'blue'])
          <AxesSubplot:>
Out[16]:
           10.0
            7.5
            5.0
            2.5
            0.0
          -2.5
          -5.0
          -7.5
                              -5
                                                                  5
                                                                                   10
                                                Ó
```

8. Summarize your results and make a conclusion.

In conclusion, when doing a k-means clustering unsupervised learning algorithm on the ALS dataframe, you will find that k=2 is the optimal number of clusters. This can be seen from the silhouette scores for each value of k, with k=2 being the highest, and also from the elbow plot which has an elbow at k=2. After doing a PCA transform to reduce the number of variables, we are able to two-dimensionally plot the resultant clusters via scatterplot.