Desbalance de Clases Machine Learning

Ignacio Sarmiento-Barbieri

Universidad de La Plata

Agenda

1 Classification

2 Misclassification RatesROC curve

3 Desbalance de Clases

Classification

- ▶ We observe (y_i, X_i) i = 1, ..., n
- ► Probabilities
 - Logit
 - Random Forests
 - **>** ...
 - Networks
- ► Classification

$$\hat{Y}_i = 1[\hat{p}_i > c] \tag{1}$$

Deep Learning: Recap

▶ Neural networks are linear combinations of inputs that are passed through nonlinear activation functions called nodes (or, in reference to the human brain, neurons).

Deep Learning: Recap

▶ Neural networks are linear combinations of inputs that are passed through nonlinear activation functions called nodes (or, in reference to the human brain, neurons).

Activation Functions

- ► Activation functions

 - ightharpoonup sigmoid $(x) = \frac{1}{1 + \exp(-x)}$.
 - ► $tanh(x) = \frac{1 exp(-2x)}{1 + exp(-2x)}$.
 - ightharpoonup Others like: cos(x), Radial basis function (RBF), Softplus, Hard tanh, etc...
 - ► Radial basis function (RBF): $exp\left(\frac{1}{\sigma^2}||W-x||^2\right)$
 - ▶ Softplus: $log(1 + e^x)$
 - ightharpoonup Hard tanh: max(-1, min(1, x))
- ► Hidden unit design remains an active area of research, and many useful hidden unit types remain to be discovered

Output Functions

- ▶ The choice of cost function is tightly coupled with the choice of output unit.
- ▶ Most of the time, we simply use the distance between the data distribution and the model distribution.
 - ► Linear $y = \beta_0 + \sum_{k=1}^K \beta_k h_k \to \mathbb{R}$
 - ▶ Sigmoid (Logistic) \rightarrow classification $\{0,1\}$
 - ightharpoonup Softmax ightharpoonup classification multiple categories

Example: Default

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Agenda

Classification

- 2 Misclassification Rates
 - ROC curve

3 Desbalance de Clases

$$\begin{array}{cccc} & \hat{y}_i & & \\ & 0 & 1 \\ & 0 & \text{TN} & \text{FP} \\ y_i & 1 & \text{FN} & \text{TP} \end{array}$$

▶ We have two types of error associated with this that we can use as a measure of performance

$$False \ Positive \ Rate = \frac{False \ Positives}{Negatives}$$

$$True \ Positive \ Rate = \frac{True \ Positives}{Positives}$$

$$(2)$$

- ► Another names they receive:
 - ► False positive rate: Type I error, 1-Specificity
 - ► True positive rate: 1- Type II error, power, sensitivity.

Sarmiento-Barbieri (Uniandes)

$$y_i$$
0 1
0 TN FP
 y_i 1 FN TP

- Another measures of performance using the predicted classes
 - ▶ Positive predicted values, also called: Precision, 1- false discovery proportion

$$Positive\ Predicted\ Values = \frac{True\ Positives}{PredictedPositives} \tag{3}$$

Negative predicted values

$$Negative Predicted Values = \frac{True \ Negatives}{Predicted Negatives}$$
 (4)

Sarmiento-Barbieri (Uniandes)

Accuracy

$$egin{array}{cccc} \hat{y}_i & 0 & 1 \ & 0 & ext{TN} & ext{FP} \ y_i & 1 & ext{FN} & ext{TP} \end{array}$$

► Accuracy: the fraction of predictions our model got right.

$$Accuracy = \frac{TP + TN}{TP + TN + FN + FP} \tag{5}$$

Sarmiento-Barbieri (Uniandes)

F1 Score

$$\begin{array}{cccc}
\hat{y}_i & & & \\
0 & 1 & \\
0 & \text{TN} & \text{FP} \\
y_i & 1 & \text{FN} & \text{TP}
\end{array}$$

► The F1 Score is the harmonic mean of precision and recall. It is a way to combine both metrics into a single, useful metric.

$$F1 = 2\frac{Precision \times Recall}{Precision + Recall}$$
 (6)

► The F1 score is particularly useful when you need to balance precision and recall, and there is an uneven class distribution (large number of actual negatives).

$$\begin{array}{cccc} & \hat{y}_i & & \\ & 0 & 1 \\ & 0 & \text{TN} & \text{FP} \\ y_i & 1 & \text{FN} & \text{TP} \end{array}$$

- ▶ A classification rule, or cutoff, is the probability *p* at which you predict
 - $\hat{y}_i = 0 \text{ if } p_i < c$
 - $\hat{y}_i = 1 \text{ if } p_i > c$
- ▶ Bayes classifier c = 0.5
- ► Changing *c* changes predictions, changes FP and FN
- ▶ There is a trade-off: reducing one error increases the other

- ▶ ROC curve: Receiver operating characteristic curve
- ▶ ROC curve illustrates the trade-off of the classification rule
- ► Gives us the ability
 - Measure the predictive capacity of our model
 - Compare between models

ROC Curve

Example: Default

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Agenda

Classification

2 Misclassification RatesROC curve

3 Desbalance de Clases

Desbalance de Clases: Motivation

- ► Al modelar clases discretas, las frecuencias relativas de las clases pueden tener un impacto significativo en la efectividad del modelo.
- ▶ Se produce un desequilibrio cuando una o más clases tienen proporciones muy bajas en los datos de entrenamiento en comparación con las otras clases.
- ▶ Ejemplos: Default, Pobreza, Tasa de Positividad de Covid, etc.
- Existen varias estrategias a utilizar y vamos a explorarla en el siguiente ejemplo

Example: Fraud

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/