Erasure

For most languages, types are not needed at run-time.

Consider this type erasure function.

$$erase(x) = x$$

 $erase(\lambda x : T_1.t_2) = \lambda x.erase(t_2)$
 $erase(t_1 t_2) = erase(t_1) erase(t_2)$

By careful design, we have:

$$t \rightarrow t' \implies \textit{erase}(t) \rightarrow \textit{erase}(t').$$

But also

$$erase(t)
ightarrow m' \implies \exists t' \mid t
ightarrow t' \land erase(t') = m'$$

Proved by induction on evaluation derivations.

Curry Style language definition

The approach we have followed:

- Start with terms representing desired behaviours (syntax).
- Formalize those behaviours using evaluation rules (semantics).
- Use a typing system to reject undesired behaviours (typing).

This is often called a **Curry-Style** language definition, because semantics are given priority over typing.

i.e., we can remove the typing and still have a functional system.

Church Style language definition

A different approach is as follows:

- Start with terms representing desired behaviours (syntax).
- Identify the well-typed terms using typing rules (typing).
- Give semantics only to well-typed terms (semantics).

Under Church-Style language design, typing is given priority.

- Questions like "How does an ill-typed term behave?" don't occur, because ill-typed term cannot even be evaluated!
- Historically:
 - ► Explicitly typed languages have normally been presented Church-Style.
 - ► Implicitly typed languages have normally been presented Curry-Style.
- Thus Church-style is sometimes confused with explicit typing (and vice-versa for Curry).

Atomic Types

PLs provides a set of atomic types, often including:

- Booleans (\mathbb{B}), Natural Numbers (\mathbb{N}), Integers (\mathbb{Z}), Characters, Strings, etc.
- **Do not confuse** floats for Real Numbers (\mathbb{R}) ! We will avoid all talk of both floats and reals in this course.

These are sometimes known as **primitives**. These are normally accompanied by a set of **primitive operations**, such as:

• +, -, \times , ==, &&, ||, etc.

Adding these is very easy, with the only difficulty appearing when we try to add *partial* functions.

Atomic Type Semantics

Augment language with a set A of **uninterpreted** base types.

Extends λ_{\rightarrow} (9-1)

New syntactic forms

types: base type

Helpful in the following examples:

$$(\lambda x : A.x) : A \Rightarrow A$$

$$(\lambda f : A \Rightarrow A.\lambda x : A.f (f x)) : (A \Rightarrow A) \Rightarrow A \Rightarrow A$$

Statements

What does := return?

Statements

What does := return? It doesn't, but it has a **side-effect** on *memory*.

So: how do we type side-effects?

Let us first do "sequencing". Easiest done by first introducing a *Unit* type.

Unit Type Semantics

Sequencing

In languages with side effects, want to "execute" some commands.

Solution? Make commands return value unit.

Sequencing of commands is then denoted;

As usual, can add it to language as a new term, or make it derived.

As a New Term

Grammar:

$$\langle t \rangle ::= ...$$

 $| \langle t \rangle ; \langle t \rangle$

Evaluation rules:

$$rac{t_1
ightarrow t_1'}{t_1;\,t_2
ightarrow t_1';\,t_2}$$
 unit; $t_2
ightarrow t_2$ (E

(E-Seq)

Typing rule

$$\frac{\Gamma \vdash t_1 : \textit{Unit} \qquad \Gamma \vdash t_2 : T_2}{\Gamma \vdash (t_1; t_2) : T_2}$$

Derived Form Approach

As smaller languages mean smaller proofs...

$$t_1; t_2 \stackrel{def}{=} (\lambda x : Unit.t_2) t_1$$
 (1)

Which throws away the value associated to $\it t_1$ (in call-by-value semantics), and yields $\it t_2$

Surface vs Core Language

Derived forms are everywhere in modern programming languages, where they are often called **syntactic sugar**.

- They allow the programmer to use the language more easily by providing abstractions of the language used by the compiler.
- Ultimately, however, programs must be desugared before object code generation.
 - ► Higher-level constructs are replaced with equivalent terms in the core language.
- This forms the distinction between:
 - ▶ The external language, or that of the programmer.
 - ► The **internal language**, or what the compiler (eventually) works with.

Sequencing is a Derived Form

Definition

 $\lambda^{\mathcal{E}}$ as the simply typed λ -Calculus, enriched with Unit, unit, t_1 ; t_2 , E-Seq, E-SeqNext, and T-Seq.

Definition

 $\lambda^{\mathcal{I}}$ as the simply typed λ -Calculus, Unit type and unit term only.

Define $e \in \lambda^{\mathcal{E}} \to \lambda^{\mathcal{I}}$ as a meta-level **elaboration function**. It replaces all instances of t_1 ; t_2 with $(\lambda x : Unit.t_2) t_1$.

THEOREM [Sequencing is a Derived Form] For each term t of $\lambda^{\mathcal{E}}$, we have:

$$t \xrightarrow{\mathcal{E}} t' \iff e(t) \xrightarrow{\mathcal{I}} e(t')$$
$$\Gamma \vdash^{\mathcal{E}} t : T \iff \Gamma \vdash^{\mathcal{I}} e(t) : T$$

Ascription Semantics

This is most useful once we introduce **polymorphism**, but is already useful as **documentation**.

Let Bindings: naming sub-expressions

Semantically, we want (let $x = t_1$ in t_2) to evaluate to a substitution of x for t_1 in t_2 .

Let semantics

Intuitively, we want:

let
$$x = t_1$$
 in $t_2 \stackrel{\text{def}}{=} (\lambda x : T_1.t_2) t_1$

But where does T_1 come from?

Best to think of let-in as a fusion of λ and application. We have t_1 in our hands, use it!

- Have two options:
 - Regard elaboration as a transformation on typing derivations.
 - Decorate terms with the results of typechecking.

So: evaluation semantics of let bindings can be desugared, but the typing behaviour *must* be built into the inner language.