Heating water

Take a mass m of water from 0° C to 100° C.

Because entropy is a function of state we can consider any convenient reversible path.

Consider the following quasistatic process. When water at T is heated to T + dT the heat entering the water reversibly is

$$dQ_R = m c dT$$

where c is the **specific heat capacity**.

The total change in entropy is

$$\Delta S = \int_{i}^{f} \frac{dQ_{R}}{T} = \int_{i}^{f} \frac{mc}{T} dT$$

$$\Delta S = \int_{273}^{373} \frac{mc}{T} dT$$

$$\Delta S = mc \ln \left(\frac{373}{273} \right)$$

Phase change

Convert a mass m of water into steam at 100°C.

At the boiling point T is constant, and so

$$\Delta S = \int_{i}^{f} \frac{dQ}{T} = \frac{Q}{T} = \frac{ml_{V}}{373}$$

where $l_{\rm V}$ is the specific latent heat of vaporisation.

Note:

Phase transformations are only reversible at precisely the transition temperature.

Carnot engine

In a cyclic process $\triangle S(system) = 0$

$$\Delta S(hot \ reservoir) = -\frac{Q_1}{T_1}$$

$$\Delta S(cold\ reservoir) = +\frac{Q_2}{T_2}$$

So the total entropy change of the universe is

$$\Delta S(system + surroundings) = \frac{Q_2}{T_2} - \frac{Q_1}{T_1} = 0$$

Consider an irreversible engine operating between T_1 and T_2 and having the same Q_1 .

The lower efficiency would mean a larger Q_2 , and then

$$\Delta S > 0$$

Free expansion

Since Q = W = 0, $\Delta U = 0$, and if ideal gas $\Delta T = 0$. To calculate $\Delta S(\text{gas})$ choose reversible path $i \to f$. Quasistatic isothermal expansion gives $\Delta U = 0$ again but now $Q = -W \neq 0$.

$$\Delta S(system) = \int_{i}^{f} \frac{dQ}{T} = \frac{1}{T} \int_{i}^{f} -dW = \frac{1}{T} \int_{i}^{f} PdV$$

$$\Delta S(system) = \frac{1}{T} \int_{i}^{f} \frac{nRT}{V} dV = nR \ln \left(\frac{V_f}{V_i} \right)$$

This is necessarily positive since $V_f > V_i$. $\Delta S(\text{system}) > 0$ despite Q=0 in actual process. $\Delta S(\text{surroundings}) = 0$.

 $\Delta S(system+surroundings) > 0$ (irreversible process)

Heat transfer

(a) From system A to B, both at T

$$\Delta S_A = -\frac{\Delta Q}{T}$$

$$\Delta S_B = +\frac{\Delta Q}{T}$$

$$\Delta S(universe) = 0$$

as expected for reversible heat transfer with infinitesimal temperature difference.

(b) From system A at T_A to system B at T_B , with significant temperature differential $T_A > T_B$

$$\Delta S_A = -\frac{\Delta Q}{T_A}$$

$$\Delta S_B = +\frac{\Delta Q}{T_B}$$

$$\Delta S(universe) > 0$$

This process is irreversible due to non-zero temperature differential.