Application of Machine Learning to the Simulated Method of Moments in Financial Agent-Based Models Estimation Bachelor's Thesis

Eric Žíla

Institute of Economic Studies Faculty of Social Sciences Charles University

September 7, 2021

Introduction

- 2 Simulated Method of Moments Extension
- 3 Results
- 4 Conclusion

- Introduction
- 2 Simulated Method of Moments Extension
- 3 Results
- 4 Conclusion

Motivation

- Financial agent-based models as an alternative to traditional capital asset pricing models (CAPMs)
- More realistic assumptions
- Stylised facts of financial data
- Complexity of agent-based models and their estimation

- Extension of the generalised method of moments (GMM)
- Necessary choice of a set of moments
 - e.g. mean, variance, kurtosis, auto-correlation, ...
- Minimisation of the distance between their sample counterparts computed using empirical data and simulated data

$$h(\theta) = m^{emp} - m^{sim}(\theta)$$
$$J(\theta) = h(\theta)' W h(\theta)$$
$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg min}} J(\theta)$$

where m^{emp} is a vector of empirical moments, m^{sim} is a vector of simulated moments, θ is a vector of estimated parameters, W is a positive semi-definite (weighting) matrix, Θ is a parameter search space

Criticism for arbitrariness of the moment set selection

Introduction

Objectives

- Offer a more consistent approach to the moment set selection when using the SMM
- Improve estimation performance of the estimator by selecting a more optimal moment set
- Enable various implementations of the SMM

- 2 Simulated Method of Moments Extension
- 3 Results
- 4 Conclusion

Machine Learning Extension

- Intuitively follows stepwise regression
- Decisions based on adjusted RMSE averaged over parameters

$$RMSE(\hat{\theta}_i) = \sqrt{\frac{(\hat{\theta}_i - \theta_i)^2 + \hat{\sigma}_i^2}{|\theta_i|}}$$

Forward stepwise moment selection (FSMS)

- Iterative expansion of an initially empty set of moments
- Addition of one moment in each selection round

Backward stepwise moment elimination (BSME)

- Iterative restriction of an initially full set of moments
- Removal of one moment in each elimination round

Initialisation

```
Available set: \{m_{mean}, m_{variance}, m_{kurtosis}\}
Base set: \{\}
```

Introduction

First selection round

```
Available set: \{m_{mean}, m_{variance}, m_{kurtosis}\}
Tried sets: \{m_{mean}\}, \{m_{variance}\}, \{m_{kurtosis}\}
Base set: \{\}
```

After first selection round

Available set: $\{m_{mean}, m_{variance}, m_{kurtosis}\} \Rightarrow \{m_{mean}, m_{kurtosis}\}$

Base set: $\{\} \Rightarrow \{m_{variance}\}$

Introduction

Second selection round

```
Available set: \{m_{mean}, m_{kurtosis}\}
Tried sets: \{m_{mean}, m_{variance}\}, \{m_{variance}, m_{kurtosis}\}
                   Base set: \{m_{variance}\}
```


After second selection round

Available set:
$$\{m_{mean}, m_{kurtosis}\} \Rightarrow \{m_{kurtosis}\}$$

Base set:
$$\{m_{variance}\} \Rightarrow \{m_{mean}, m_{variance}\}$$

Third selection round

```
Available set: \{m_{kurtosis}\}
```

Tried sets:
$$\{m_{mean}, m_{variance}, m_{kurtosis}\}$$

Base set:
$$\{m_{mean}, m_{variance}\}$$

After third selection round

Available set:
$$\{m_{kurtosis}\} \Rightarrow \{\}$$

 $\{m_{mean}, m_{variance}\} \Rightarrow \{m_{mean}, m_{variance}, m_{kurtosis}\}$ Base set:

Moment Set

- Constructed theoretically to reflect desired model behaviour
- Franke and Westerhoff (2012) benchmark set of 9 moments
 - o r_t : auto-correlation at lag 1; $|r_t|$: mean, Hill estimator, auto-correlation at lags $\{1, 5, 10, 25, 50, 100\}$
- Chen and Lux (2018) benchmark sets of 4 moments
 - r_t : variance, excess kurtosis, auto-correlation at lag 1; r_t^2 : auto-correlation at lag 1
- Chen and Lux (2018) benchmark sets of 15 moments
 - o r_t : variance, excess kurtosis, auto-correlation at lag 1; $|r_t|$: auto-correlation at lags $\{1, 5, 10, 15, 20, 25\}$; r_t^2 : auto-correlation at lags $\{1, 5, 10, 15, 20, 25\}$
- Full set of 19 moments provided to the algorithms

- 1 Introduction
- 2 Simulated Method of Moments Extension
- 3 Results
- 4 Conclusion

Introduction

Candidate Models

- Random walk with a drift
 - 1 estimated parameter
- Random walk with a structural break
 - 2 estimated parameters
- Cox-Ingersoll-Ross (1985) model
 - 3 estimated parameters
- Franke and Westerhoff (2011) model
 - three parameter sets of an increasing size
 - 7 estimated parameters in the largest set

Franke and Westerhoff (2011)—Parameter Set 3: BSME

- 2 Simulated Method of Moments Extension
- 3 Results
- **4** Conclusion

Introduction

- Problem of finding a more consistent approach to moment set selection for the SMM
- Design of two machine learning algorithms allowing automatic selection of the moment set
- Both algorithms provide a severe performance boost over benchmark sets from the literature for all candidate models

000

- Sylvain Barde. Direct Comparison of Agent-Based Models of Herding in Financial Markets. Journal of Economic Dynamics and Control, 73:329-353, 2016.
- Zhenxi Chen and Thomas Lux. Estimation of Sentiment Effects in Financial Markets: A Simulated Method of Moments Approach. Computational Economics, 52(3):711-744, 2018.
- Reiner Franke and Frank Westerhoff. Structural Stochastic Volatility in Asset Pricing Dynamics: Estimation and Model Contest. Journal of Economic Dynamics and Control, 36:1193-1211, 2012.
- Reiner Franke and Frank Westerhoff. Why a Simple Herding Model May Generate the Stylized Facts of Daily Returns: Explanation and Estimation. Journal of Economic Interaction and Coordination. 11 (1):1-34, 2016.
- Dennis Kristensen and Yongseok Shin. Estimation of Dynamic Models With Nonparametric Simulated Maximum Likelihood. Journal of Econometrics, 167:76-94, 2012.
- Francesco Lamperti. An Information Theoretic Criterion for Empirical Validation of Simulation Models. Econometrics and Statistics, 5:83-106, 2018.
- Donovan Platt. A Comparison of Economic Agent-Based Model Calibration Methods. Journal of Economic Dynamics and Control, 113, 2020.
- Donovan Platt. Bayesian Estimation of Economic Simulation Models Using Neural Networks. Computational Economics, forthcoming, 2021.

Random Walk With a Drift: FSMS

Random Walk With a Drift: BSME

Random Walk With a Structural Break: FSMS

Random Walk With a Structural Break: BSME

Cox-Ingersoll-Ross (1985) Model: FSMS

Cox-Ingersoll-Ross (1985) Model: BSME

Franke and Westerhoff (2011) Model—Parameter Set 1: FSMS

Franke and Westerhoff (2011) Model—Parameter Set 1: BSME

Franke and Westerhoff (2011) Model—Parameter Set 2: FSMS

Franke and Westerhoff (2011) Model—Parameter Set 2: BSME

Benchmark Moment Sets

Moment function	FW9	CHL4	CHL15
$m_1 = E(r_t^2)$	-	✓	✓
$m_2 = E(r_t^4)$	-	\checkmark	\checkmark
$m_3 = E(r_t r_{t-1})$	\checkmark	\checkmark	\checkmark
$m_4 = E(r_t)$	\checkmark	-	-
$m_5 = Hill(r_t , 5)$	\checkmark	-	-
$m_6 = E(r_t r_{t-1})$	\checkmark	-	\checkmark
$m_7 = E(r_t r_{t-5})$	\checkmark	-	\checkmark
$m_8 = E(r_t r_{t-10})$	\checkmark	-	\checkmark
$m_9 = E(r_t r_{t-15})$	-	-	\checkmark
$m_{10} = E(r_t r_{t-20})$	-	-	\checkmark
$m_{11} = E(r_t r_{t-25})$	\checkmark	-	\checkmark
$m_{12} = E(r_t r_{t-50})$	\checkmark	-	-
$m_{13} = E(r_t r_{t-100})$	\checkmark	-	-
$m_{14} = E(r_t^2 r_{t-1}^2)$	-	\checkmark	\checkmark
$m_{15} = E(r_t^2 r_{t-5}^2)$	-	-	\checkmark
$m_{16} = E(r_t^2 r_{t-10}^2)$	-	-	\checkmark
$m_{17} = E(r_t^2 r_{t-15}^2)$	-	-	\checkmark
$m_{18} = E(r_t^2 r_{t-20}^2)$	-	-	\checkmark
$m_{19} = E(r_t^2 r_{t-25}^2)$	-	-	\checkmark

Random Walk With a Drift

$$x_t = x_{t-1} + d + \varepsilon_t$$
$$\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$$

- Baseline model to test elementary functionality
- 1 estimated parameter [d]

Random Walk With a Structural Break

$$egin{aligned} x_t &= x_{t-1} + d_t + arepsilon_t \ &arepsilon_t \sim \mathcal{N}(0, \sigma_t^2) \ \\ d_t, \sigma_t &= egin{cases} d_1, \sigma_1 & ext{if } t \leq au \ d_2, \sigma_2 & ext{if } t > au \end{cases} \end{aligned}$$

- Extension of the random walk with a drift
- Selection following Lamperti (2018) and Platt (2020, 2021)
- Parametrization from Platt (2021)
- 2 estimated parameters $[d_1, d_2]$

Cox-Ingersoll-Ross (1985) Model

$$dx_t = \beta(\alpha - x_t)dt + \sigma\sqrt{x_t}dW_t$$

- Model of short-term interest rates
- Replicates stylised facts from financial markets
- Selection following Kristensen and Shin (2012)
- Parametrization from Kristensen and Shin (2012)
- 3 estimated parameters $[\alpha, \beta, \sigma]$

Franke and Westerhoff (2011) model

$$\begin{aligned} p_{t+1} &= p_t + \frac{\mu}{2} \left[(1+x_t)\phi(p^* - p_t) + (1-x_t)\chi(p_t - p_{t-1}) + \varepsilon_t \right] \\ &\varepsilon_t \sim \mathcal{N}(0, \sigma_t^2) \quad \sigma_t^2 = \frac{(1+x_t)^2 \sigma_f^2 + (1-x_t)^2 \sigma_c^2}{2} \\ x_{t+1} &= x_t + (1-x_t) \min\{1, \nu exp(s_t)\} - (1+x_t) \min\{1, \nu exp(-s_t)\} \\ s_t &= \alpha_0 + \alpha_x x_t + \alpha_d (p_t - p^*)^2 \end{aligned}$$

- Selection following Barde (2016) and Platt (2021)
- Parametrization from Franke and Westerhoff (2016)
- Three sets of parameters, the largest one with 7 parameters