Diabetic Retinopathy Diagnosis using Machine Learning

Metis Project **3** May **6**, **2020** Sonali Dasgupta



# Prevalence and Diagnosis

- Around 100 million people have diabetic retinopathy
- Dynamic disease
- Human error in diagnostic capabilities
- Target audience: physicians and optometrists/ ophthalmologists

#### **DIABETIC RETINOPATHY**

#### NORMAL RETINA



#### DIABETIC RETINOPATHY



Data
Source
and
Process

Acquisition:
UCI Machine
Learning
Repository

Storage: PostgreSQL

Select model

Visualization

## Features Considered

Assessment quality (qual)

Retinal abnormality (abnorm)

Microaneurysms (MA)

Exudates (EX)

Distance from macula to optic disc (dist)

Diameter of optic disc (OD)

AM/FM classification of image (AM/FM)

Class

### Model Selection

| Model               | ROC-AUC<br>score |
|---------------------|------------------|
| Logistic Regression | 0.673            |
| Random Forest       | 0.696            |
| Ensemble            | 0.685            |





#### Results

This model predicts whether a patient has diabetic retinopathy or not with 63% accuracy

F1.5 score: 0.570

 Microaneurysms and exudate presence in the retina are important predictors of diabetic retinopathy

## Future Work



Image analysis and expanding to other datasets if available



Additional datasets with other patient measurements

### Sources

- <a href="https://www.sciencenews.org/article/future-ai-may-diagnose-eye-problems">https://www.sciencenews.org/article/future-ai-may-diagnose-eye-problems</a>
- <a href="https://www.blaineeyeclinic.com/vision-care-minnesota/diabetic-eye-care/">https://www.blaineeyeclinic.com/vision-care-minnesota/diabetic-eye-care/</a>

Appendix

### Determining Features to Include



## Confusion Matrices: LR & RF





## Logistic Regression Feature Importance Graph

