New supertaggers for the ERG for the DELPH-IN summit

Olga Zamaraeva & Carlos Gómez-Rodríguez

Department of Informatics/CITIC, Universidade da Coruña

July 17 2022

New supertaggers for the ERG

or the DELPH-IN

Introduction

Baseline

New experiments

Baseline

New experiments

- Supertagging is like POS tagging:
 - Sequence-to-sequence statistical problem
 - ▶ input seq: sentence or text
 - output seq: tags corresponding to each token*
 - usually with more fine-grained tags
 - e.g. lexical types in HPSG grammars

Supertagging is useful for e.g.>0

for the ERG
for the DELPH-IN

Introduction

Baseline

New experiments

- word sense disambiguation
- parse ranking
- improving parsing speed

Introduction

- Without tagging:
 - many tokens can be mapped to more than one lexical entry/type
- Tagging helps eliminate unlikely possibilities
 - less things for the parser to go through

4 D > 4 A > 4 B > 4 B > B -

Introduction

Baseline

New experiments

- Supertagging can mean discarding all possibilities but one
- ▶ If a wrong lexical type is predicted:
 - the chances of getting the parse right are 0

Prior work on supertagging for HPSG

for the ERG
for the DELPH-IN

Introduction

Baseline

- model training tok tagset size speed-up factor grammar N-gram (Prins and van Noord 2004) Alpino (Dutch) 24 mln 1365 HMM (Blunsom 2007) ERG (English) 113K 615 8.5 MEMM (Dridan 2009) ERG (English) 158K 676
 - ▶ Dridan (2009):
 - ▶ 92% accuracy on in-domain data
 - ► 74.6% out of domain (up to 80.8% with additional training data)
 - Recent related work on CCG (Liu et al. 2021):
 - ▶ 95.5% accuracy in domain
 - ▶ 81% and 92.4% on two out-of-domain datasets

New experiments with ERG 2020

Supertagging (no ubertagging)

► Single tag accuracy (top 1)

► Tagset: 1127

Not yet integrated into any parser

$dataset^{11}$	description	sent	tok	${\rm train}~{\rm tok}^{12}$	MaxEnt	SVM	neural
cb	technical essay	769	17,244	0	88.96	89.53	91.94
ecpr	e-commerce	1207	11,550	24,934	91.80	91.99	95.09
jh*,tg*,ps*, ron*	travel brochures	2102	34,098	147,166	90.45	91.21	95.44
petet	textual entailment	602	7135	1578	92.88	95.31	96.93
vm32	phone customer service	1034	8730	86,630	93.57	94.29	95.62
ws213-214	Wikipedia	1613	29,697	161,623	91.31	92.02	93.66
wsj23	Wall Street Journal	1000^{13}	22,987	959,709	94.27	94.72	96.05
all	all test sets as one	8,327	131,441	1,381,645	91.57	92.28	94.46
all	average	8,327	131,441	1,381,645	91.89	92.72	94.96
speed (sen/sec)	average	8,327	131,441	1,381,645	1024	7414	125

for the ERG

for the DELPH-IN

Introduction

Baseline

New experiments

- ► NCRF++ library (Yang and Zhang 2018)
 - ▶ fast for POS but not CCG/HPSG supertagging
- almost out of the box:
 - unknown label handling added

Parameter	value	default/tuned		
Istm layers	2	tuned		
hidden dim.	800	tuned		
word embeddings	glove840B	pretrained		
word emb. dim.	300	N/A		
char emb. dim.	50	tuned		
momentum	0	default		
dropout	0.5	default		
12	1^{-8}	default		

for the ERG
for the DELPH-IN

Introduction

Baselin

New experiments

References

We can have more accurate supertaggers for ERG

New supertaggers for the ERG

for the DELPH-IN

Introductio

Baselin

New experiments

- ▶ We can have more accurate supertaggers for ERG
- scikit-learn SVM (Pedregosa et al. 2011) might be the practical model to integrate into ACE for sentence-by-sentence processing

New supertaggers for the ERG

for the DELPH-IN

Introductio

Baselin

New experiments

- We can have more accurate supertaggers for ERG
- scikit-learn SVM (Pedregosa et al. 2011) might be the practical model to integrate into ACE for sentence-by-sentence processing
 - Neural models even more accurate but need faster implementation

New supertaggers for the ERG

for the DELPH-IN

Introductio

Baselin

New experiments

- ▶ We can have more accurate supertaggers for ERG
- scikit-learn SVM (Pedregosa et al. 2011) might be the practical model to integrate into ACE for sentence-by-sentence processing
 - Neural models even more accurate but need faster implementation
 - ► Any takers? :)

References

- Philip Blunsom, 2007, Structured classification for multilingual natural language processing, PhD thesis, University of Melbourne.
- Rebecca Dridan, 2009. Using lexical statistics to improve HPSG parsing, PhD thesis, University of Saarland
- Yufang Liu, Tao Ji, Yuanbin Wu, and Man Lan. 2021. Generating ccg categories. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 13443-13451.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830.
- RP Prins and GJM van Noord. 2004. Reinforcing parser preferences through tagging. Traitement Automatique des Langues, 3:121-139.
- Jie Yang and Yue Zhang. 2018. NCRF++: An open-source neural sequence labeling toolkit. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, URL http://aclweb.org/anthology/P18-4013.