

## IT Security 2024/2025

## Exercise Sheet 13



## - Anonymization & Secure Multiparty Computation -

Markus Krämer

Publication: 16.01.2024 Deadline: 22.01.2024 10:00



Exercise 1 (Privacy Models, optional). Look at the following table and write your answer into anonymization.txt.

| Name                  | ID | Gender | Adress         | City           | Years | Position   | Illness |
|-----------------------|----|--------|----------------|----------------|-------|------------|---------|
| Dieter                | 1  | m      | Main Street 1  | 53115 Bonn     | 20    | CEO        | Cancer  |
| Flo                   | 2  | m      | Beach Club 7   | 53121 Bonn     | 2     | Worker     | flu     |
| Maren                 | 3  | f      | Main Street 3  | 53115 Bonn     | 17    | Secretary  | flu     |
| Martin                | 4  | m      | Avenue 27      | 53121 Bonn     | 1     | Worker     | flu     |
| Doris                 | 5  | f      | Boulevard 4    | 53115 Bonn     | 18    | accounting | flu     |
| Heinz                 | 6  | m      | Avenue 77      | 53121 Bonn     | 12    | management | flu     |
| Lisa                  | 7  | f      | Main Street 64 | 53332 Bornheim | 8     | Worker     | Cancer  |
| Laura                 | 8  | f      | Avenue 34      | 53489 Sinzig   | 9     | Worker     | Cancer  |
| Horst                 | 9  | m      | Main Street 10 | 53115 Bonn     | 19    | management | Cancer  |
| $\operatorname{Emil}$ | 10 | m      | Beach Club 3   | 53121 Bonn     | 4     | Worker     | flu     |
| Carsten               | 11 | m      | Beach Club 13  | 53121 Bonn     | 14    | management | flu     |
| Yvonne                | 12 | f      | Main Street 3  | 53115 Bonn     | 16    | accounting | Cancer  |

- (1) Define the following terms: Direct identifier, quasi identifier, sensitive attribute
- (2) Name the identifiers, quasi-identifiers and sensitive attributes of the employees table
- (3) Turn it into a k-anonymous table
- (4) Turn it into a *l*-diverse table
- (5) Does your table support t-closeness?

Exercise 2 (Privacy beyond t-closeness, optional). Define the following privacy models and write your answer into privacy-models.txt.

- (1) k-map
- (2)  $k^m$ -anonymity
- (3) Average risk
- (4) Population uniqueness
- (5)  $\delta$ -disclosure privacy

Exercise 3 (True/False Questions, 3 points). Mark these statements as true or false in smc.yml.

- (1) In the prosecutor model honest parties get a reward
- (2) For reaching l-diversity, all l sensitive attributes of a data-set must occur in an equivalence class
- (3) Unsorted matching attacks are possible because vulnerable anonymized data-sets had not been permuted
- (4) In SMC, the number of participating parties is limited to two
- (5) In  $OT_2^1$  Bob gets to know only one message
- (6) In GC, Bob shares his input labels with Alice
- (7) Free-XOR is compatible with half-gates
- (8) GC are secure under the Malicious Model
- (9) In  $GRR_3$  the number of gates is reduced from four to three

Exercise 4 (Garbled Circuits, optional). Get familiar with libraries for garbled circuits. Write your answers into gc-libraries.txt.

- (1) Make yourself familiar with the library Fairplay<sup>1</sup> How is the library working? Explain the parties and how a written program is turned into a working process. Explain the SHDL language.
- (2) Which gate types are supported. Give examples for at least three gate types, written in SHDL.
- (3) What is the Bristol Fashion Format<sup>2</sup>? Which types of gates can be handled? Give an example for each gate type
- (4) Make yourself familiar with the library JIGG<sup>3</sup>. Which parties exist and how are they working together? Which optimizations are supported?

Exercise 5 (Garbled Circuits, 7 points). Implement the boolean circuit in Figure 1.

- (1) Implement the circuit in Fairplay and use the SHDL language. (4P) Submit both files fairplay.Opt.fmt and fairplay.Opt.circuit.
- (2) Implement the circuit in JIGG. Submit it as jigg.txt. (3P)
- (3) Construct a truth table and explain the output of the circuit. Write your answer into truth.txt.

<sup>&</sup>lt;sup>1</sup>https://www.cs.huji.ac.il/project/Fairplay/Fairplay.html

<sup>&</sup>lt;sup>2</sup>https://nigelsmart.github.io/MPC-Circuits/

<sup>&</sup>lt;sup>3</sup>https://github.com/multiparty/jigg



Figure 1: Boolean Circuit