Chapter 2 §4. Monomial Ideals and Dickson's Lemma. An ideal $I \subset k[x_1, \ldots, x_n]$ is a monomial ideal if it is generated by a set of monomials $\{x^{\alpha} : \alpha \in A\}$. In this case we will denote I by $\langle x^{\alpha} : \alpha \in A \rangle$. It is clear that the set

(2.4.0.1)
$$\{f \in k[x_1, \dots, x_n]: \text{ every term of } f \text{ is divisible by some } x^\alpha, \alpha \in A\}$$

is equal to $\langle x^{\alpha} : \alpha \in A \rangle$, because the set (2.4.0.1) is an ideal both contained in and containing $\langle x^{\alpha} : \alpha \in A \rangle$. In particular, a monomial x^{β} is in $\langle x^{\alpha} : \alpha \in A \rangle$ if and only if it is divisible by one of the generating monomials x^{α} of I. If I is such a monomial ideal, the *signature* of I is the subset

(2.4.0.2) signature(
$$I$$
) = { $\beta \in \mathbf{Z}_{>0}^n : x^{\beta} \in I$ }.

It is the union of the sets $\beta + \mathbf{Z}_{\geq 0}^n$, where $x^{\beta} \in I$, and so has a very special form which we illustrate below for n = 2 and $A = \{(2, 5), (3, 4), (4, 2)\}.$

A polynomial $f = \sum_{i=1}^{m} a_i x^{\beta(i)}$ with $a_i \in k$ is in the ideal $I = \langle x^{\alpha} : \alpha \in A \rangle$ if and only if $\{\beta(1), \dots, \beta(m)\} \subset \text{signature}(I)$.

Notation. For $\gamma \in \mathbf{Z}_{\geq 0}^n$ let $Q_{\gamma} = \gamma + \mathbf{Z}_{\geq 0}^m$. Then the above discussion has shown that

(2.4.0.4) signature
$$(\langle x^{\alpha} : \alpha \in A \rangle) = \bigcup_{\alpha \in A} Q_{\alpha} = \bigcup_{\beta \in \text{signature}(I)} Q_{\beta}$$
, where $I = \langle x^{\alpha} : \alpha \in A \rangle$.

The main result of this section is

Theorem 2.4.0.5. (Dickson's Lemma). A monomial ideal has a finite basis. In particular, if $I = \langle x^{\alpha} : \alpha \in A \rangle$, there is a finite subset $\{\alpha(1), \ldots, \alpha(s)\} \subset A$ for which

$$\langle x^{\alpha(1)}, \dots, x^{\alpha(s)} \rangle = \langle x^{\alpha} \colon \alpha \in A \rangle.$$

Comment. Since monomial ideals are completely determined by their signatures, we could prove this result by showing that

$$(2.4.0.7) Q_{\alpha(1)} \cup \cdots \cup Q_{\alpha(s)} = \bigcup_{\alpha \in A} Q_{\alpha}$$

for some $\{\alpha(1), \ldots, \alpha(s)\} \subset A$, where $Q_{\beta} = \beta + \mathbf{Z}_{\geq 0}^n$. The proof we give, however, will be more closely tied to the language of ideals.

Proof. \square We begin the proof of Dickson's Lemma by showing that every monomial ideal I of $k[x_1, \ldots, x_n]$ is finitely generated.

The proof is by induction on the number of variables n. If n=1, then I is the ideal in $k[x_1]$ generated by the monomials x_1^{α} , where $\alpha \in A \subset \mathbf{Z}_{\geq 0}$. Let $\alpha_0 = \inf A$. Since A is a subset of nonnegative integers, it is well ordered and $\alpha_0 \in A$. $x_1^{\alpha_0} \in I$ and divides each x_1^{α} with $\alpha \in A$; so $I = \langle x_1^{\alpha_0} \rangle$ and Dickson's Lemma is established when n=1.

Assume n > 1 and for notation write the variables as x_1, \ldots, x_{n-1}, y and the exponents as (α, j) , where $\alpha \in \mathbf{Z}_{>0}^{n-1}$ and $j \in \mathbf{Z}$. The monomials in $k[x_1, \ldots, x_{n-1}, y]$ can be written in the form $x^{\alpha}y^j$.

Suppose $I \subset k[x_1, \ldots, x_{n-1}, y]$ is a monomial ideal. Let J be the ideal in $k[x_1, \ldots, x_{n-1}]$ generated by the monomials x^{α} for which $x^{\alpha}y^{m} \in I$ for some $m \in \mathbb{Z}_{\geq 0}$. J is a monomial ideal in $k[x_1, \ldots, x_{n-1}]$; so by the inductive hypothesis, $J = \langle x^{\alpha(1)}, \ldots, x^{\alpha(s)} \rangle$ for some choice of $\alpha(i)$, where for each i there is an $x^{\alpha(i)}y^{m_i} \in I$. Choose such m_i 's and let $m = \max_{1 \leq i \leq s} m_i$.

Now for each q with $0 \le q \le m$ let J_q be the ideal in $k[x_1, \ldots, x_{n-1}]$ generated by the x^{β} for which $x^{\beta}y^q \in I$. J_q has a finite generating set by the inductive assumption, say $J_q = \langle x^{\alpha_q(1)}, \ldots, x^{\alpha_q(s_k)} \rangle$.

I now claim that the monomials in the sets

$$\{x^{\alpha_0(1)}, \dots, x^{\alpha_0(s_0)}\}, \qquad \text{from } J_0$$

$$\{x^{\alpha_1(1)}y, \dots, x^{\alpha_1(s_1)}y\}, \qquad \text{from } J_1y$$

$$\{x^{\alpha_2(1)}y^2, \dots, x^{\alpha_2(s_2)}y^2\}, \qquad \text{from } J_2y^2$$

$$\dots$$

$$\{x^{\alpha_{m-1}(1)}y^{m-1}, \dots, x^{\alpha_{m-1}(s_{m-1})}y^{m-1}\} \text{ from } J_{m-1}y^{m-1}, \text{ together with }$$

$$\{x^{\alpha(1)}y^m, \dots, x^{\alpha(s)}y^m\} \qquad \text{from } Jy^m$$

generate I. Let L be the ideal they generate. These monomials clearly belong to I; so $L \subset I$. To establish that $I \subset L$ it suffices to show that each monomial $x^{\beta}y^{j}$ of I is in L. There are two cases: j < m and $j \geq m$.

Case I: Suppose $x^{\beta}y^{j} \in I$ and j < m. Then $x^{\beta} \in J_{j}$ and is consequently in the ideal generated by $\{x^{\alpha_{j}(1)}, \dots, x^{\alpha_{j}(s_{j})}\}$. This means that $x^{\beta} = \sum_{k=1}^{s_{j}} f_{k}(\mathbf{x}) x^{\alpha_{j}(k)}$ for a suitable choice of $f_{k}(\mathbf{x}) \in k[x_{1}, \dots, x_{n-1}]$ (here $\mathbf{x} = (x_{1}, \dots, x_{n-1})$). But then $x^{\beta}y^{j} = \sum_{k=1}^{s_{j}} f_{k}(\mathbf{x}) (x^{\alpha_{j}(k)}y^{j}) \in L$ is in the ideal generated by the monomials (2.4.0.8).

Case II: If $x^{\beta}y^{j} \in I$ and $j \geq m$, then $x^{\beta} \in J$; so x^{β} is in the ideal generated by $\{x^{\alpha(1)}, \dots, x^{\alpha(s)}\}$ and, following an argument like that in Case I, $x^{\beta}y^{m}$ is in the ideal generated by $\{x^{\alpha(1)}y^{m}, \dots, x^{\alpha(s)}y^{m}\}$ and hence in the ideal generated by the terms (2.4.0.8). Thus every monomial in I is in L; so $I \subset L$ as we desired to show.

We have shown that I is finitely generated. To complete the proof it remains to show that we can choose a finite set of generators whose exponents lie in the original list A. First, switch back to calling the variables x_1, x_2, \ldots, x_n . We have produced a finite set $\{x^\gamma \colon \gamma \in W\}$, with W finite, which generates I. Now (2.4.0.1) states that every term of any $f \in I$ is divisible by some x^α with $\alpha \in A$. In particular, each x^γ is so divisible, say by $x^{\alpha(\gamma)}$. But then the set $\{\alpha(\gamma) \colon \gamma \in W\}$ will satisfy the role required of $\{\alpha(1), \ldots, \alpha(s)\}$ in the statement of the theorem .

Example 2.4.0.9.0. Suppose in $\mathbb{R}[x,y]$ we order the variables $\{x,y\}$ and then order the monomials by using the weight matrix $\begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$. That is $x^ay^b > x^cy^d$ if and only if either (i) -a+b > -c+d or if (ii) -a+b = -c+d and a>c. With this ordering $\Sigma^2_{\geq 0}$ is linearly ordered and the ordering is stable in the sense that if (a,b)>(c,d) and $(p,q)\in\Sigma^2_{\geq 0}$, then (a+p,b+q)>(c+p,b+q). This ordering is not a well ordering, however, because $1>x>x^2>x^3>\cdots$.

With respect to Example 2.4.0.9.0, there is a corollary of Dickson's lemma:

Corollary 2.4.0.9. Suppose > is a relation on $\mathbb{Z}_{>0}^n$ satisfying:

- (i) > is a linear ordering on $\mathbb{Z}_{>0}^n$.
- (ii) > is stable for addition. That is, if $\alpha < \beta$ then $\alpha + \gamma < \beta + \gamma$ for all $\gamma \in \mathbb{Z}_{>0}^n$.

In this case > well orders $\mathbf{Z}_{>0}^n$ if and only if $\alpha \geq 0$ for all $\alpha \in \mathbf{Z}_{>0}^n$.

Proof. $\Box(\Rightarrow)$: Suppose > is a well ordering and let α be the smallest element of $\mathbb{Z}_{\geq 0}^n$. If $0 > \alpha$, property (ii) with γ replaced by α , implies that $\alpha = \alpha + 0 > \alpha + \alpha = 2\alpha$. Thus 2α is even smaller than the would be smallest element α and this contradiction shows that there is no α for which $0 > \alpha$.

 (\Leftarrow) : Let A be a nonempty subset of $\mathbf{Z}_{\geq 0}^n$. To show that > is a well ordering we must show that any such A contains a smallest element. Let I be the monomial ideal $\langle x^{\alpha} : \alpha \in A \rangle$ and using Dickson's lemma (which doesn't require any ordering in its proof) let $\{\alpha(1),\ldots,\alpha(s)\}$ be a finite subset of A for which $\langle x^{\alpha(1)},\ldots,x^{\alpha(s)}\rangle=I$. Since > totally orders $\mathbf{Z}_{\geq 0}^n$, we can,by relabeling if necessary, assume that $\alpha(1)<\alpha(2)<\cdots<\alpha(s)$. Let $\alpha\in A$. Since x^{α} is a monomial in I, it is divisible by some element $x^{\alpha(i)}$ in the set of generating monomials $\{x^{\alpha(1)},\ldots,x^{\alpha(s)}\}$, say $x^{\alpha(i)}$. This means that $\alpha=\alpha(i)+\gamma$ for some $\gamma\in\mathbf{Z}_{\geq 0}^n$. But then

$$\gamma \geq 0 \Rightarrow \alpha = \alpha(i) + \gamma \geq \alpha(i) + 0 = \alpha(i) > \alpha(1)$$

shows that $\alpha > \alpha(1)$. Since $\alpha \in A$ was arbitrary this shows that $\alpha(1)$ is the minimal element of A.

Exercises for Chapter 2 §4

§**2.4.1.**

Let $I \subset k[x_1, ..., x_n]$ be an ideal with the property that for every $f = \sum_{\alpha} c_{\alpha} x^{\alpha} \in I$, every monomial x^{α} appearing in f is also in I. Show that I is a monomial ideal.

Solution. Let J be the ideal generated by those monomials x^{α} which appear in the above manner in some $f \in I$. It is always true that $I \subseteq J$. The above mentioned property of I guarantees that $J \subseteq I$; so J = I and I is a monomial ideal, the ideal generated by those monomials which appear in any of the expansions $f = \sum_{\alpha} c_{\alpha} x^{\alpha}$, $f \in I$.

§2.4.2.

Complete the proof of

Lemma 3. Let I be a monomial ideal, and let $f \in k[x_1, \ldots, x_n]$. Then the following are equivalent:

- (i) $f \in I$.
- (ii) Every term of f lies in I.
- (iii) f is a k-linear combination of the monomials in I.

Proof. It is trivial that $(iii) \Rightarrow (ii) \Rightarrow (ii) \Rightarrow (i)$. To establish that $(i) \Rightarrow (iii)$ it suffices to show that if $f = \sum_{\alpha} c_{\alpha} x^{\alpha} \in I$ then $c_{\alpha} \neq 0 \Rightarrow x^{\alpha} \in I$. We know the following (easily established) fact: As a monomial ideal, the ideal $I = \langle x^{\beta} : \beta \in B \rangle$ for some $B \subset \mathbf{Z}^{n}_{\geq 0}$ consists of those $f = \sum_{\alpha} c_{\alpha} x^{\alpha}$ for which $c_{\alpha} \neq 0 \Rightarrow x^{\alpha}$ is divisible by some x^{β} , $\beta \in B$. An immediate consequence is that if $f = \sum_{\alpha} c_{\alpha} x^{\alpha} \in I$ then each such $x^{\alpha} = x^{\alpha - \beta} \cdot x^{\beta} \in I$ fo some $\beta \in B$. As a consequence f is a k-linear combination of the monomials in I.

§2.4.3.

 $\overline{\text{Let }} I = \langle x^6, x^2y^3, xy^7 \rangle \subset k[x, y].$

- (a) In the (m, n)-plane, plot the set of exponent vectors (m, n) of monomials $x^m y^n$ appearing in elements of I.
- (b) If we apply the division algorithm to an element $f \in k[x, y]$, using the generators of I as divisors, what terms can appear in the remainder?

Solution. We answer both of these questions together. Go back to (2.3.11) for further discussion of the answer. Ideal generated by F; division by F, where $F = (x^6, x^2y^3, xy^7)$.

- marks set of exponent vectors (a)
- * marks remainder exponents (b)

§**2.4.4.**

Let $I \subset k[x,y]$ be the monomial ideal spanned over k by the monomials x^{β} corresponding to β in the shaded region below:

(a) Use the method given in the proof of Dickson's Lemma to find an ideal basis for I. Solution. We compute these terms following the definitions at (2.4.0.8).

$$J=x^3k[x]$$
 which is $\langle x^3 \rangle$; m is 6.
 $J_0=J_1=J_2=J_3=x^6k[x]$ which is $\langle x^6 \rangle$.
 $J_4=J_5=x^5k[x]$ which is $\langle x^5 \rangle$.

From this we get that $I=\langle x^6,x^6y,x^6y^2,x^6y^3,x^5y^4,x^5y^5,x^3y^6\rangle.$

(b) Is your basis as small as possible, or can some β 's be deleted from your basis, yielding a smaller set that generates the same ideal?

Solution. The underlined terms can be deleted in $\{x^6, x^6y, x^6y^2, x^6y^3, x^5y^4, x^5y^5, x^3y^6\}$.

§2.4.5.

Suppose that $I = \langle x^{\alpha} : \alpha \in A \rangle$ is a monomial ideal, and let S be the set of all exponents that occur as monomials of I. For any monomial order >, prove that the smallest element of S with respect to > must lie in A.

Solution. Let γ be the smallest exponent of any monomial in I taken with respect to the well order >. x^{γ} is known to be divisible by x^{α} for some $\alpha \in A$. That is $\gamma = \alpha + \tau$ for some $\tau \in \mathbf{Z}_{\geq 0}^n$. It is also known that $0 = (0, \ldots, 0)$ is the >-smallest element of $\mathbf{Z}_{\geq 0}^n$; so from $\tau \geq 0$ we get $\alpha + \tau \geq 0 + \alpha = \alpha$. This in turn gives $\gamma = \alpha + \tau \geq \alpha$. Both γ and α are exponents of monomials in I, and since γ is in addition the smallest such exponent we must have $\gamma \leq \alpha$. From this it follows that γ , the smallest element of S, S and S are S and S are exponents of monomials in S and S are exponents of S and S are exponents

§2.4.6.

Let $I = \langle x^{\alpha} : \alpha \in A \rangle$ be a monomial ideal, and assume that we have a finite basis $I = \langle x^{\beta(1)}, \dots, x^{\beta(s)} \rangle$. In the proof of Dickson's Lemma, we observed that each $x^{\beta(j)}$ is divisible by $x^{\alpha(j)}$ for some $\alpha(j) \in A$. Prove that $I = \langle x^{\alpha(1)}, \dots, x^{\alpha(s)} \rangle$.

Solution. Let $J = \langle x^{\alpha(1)}, \dots, x^{\alpha(s)} \rangle$. It is clear that $I \subset J$ from the abovementioned division relations. On the otherhand since $\{x^{\alpha(1)}, \dots, x^{\alpha(s)}\} \subset \{x^{\alpha} : \alpha \in A\}$ it follows that $J \subset I$. It follows that J = I.

§2.4.7.

Prove that Dickson's Lemma is equivalent to the following statement: given a subset $A \subset \mathbf{Z}_{\geq 0}^n$, there are finitely many elements $\alpha(1), \ldots, \alpha(s) \in A$ such that for every $\alpha \in A$, there exists some i and some $\gamma \in \mathbf{Z}_{\geq 0}^n$ such that $\alpha = \alpha(i) + \gamma$.

Solution. Consider the proposition: Dickson's Lemma \Leftrightarrow above statement.

Proof. $\square(\Rightarrow)$: Let by Dickson's Lemma $\{\alpha(1),\ldots,\alpha(s)\}$ be a finite subset of A such that

$$\langle x^{\alpha(1)}, \dots, x^{\alpha(s)} \rangle = \langle x^{\alpha} : \alpha \in A \rangle = I.$$

If $\alpha \in A$ we know that x^{α} is a monomial in $\langle x^{\alpha(1)}, \dots, x^{\alpha(s)} \rangle$ and hence divisible by some $x^{\alpha(j)}$. That is, $\alpha = \alpha(j) + \gamma$ for some $\gamma \in \mathbb{Z}_{>0}^n$ which proves the statement above.

 (\Leftarrow) : Suppose the above statement is true and that $A \subset \mathbf{Z}_{\geq 0}^n$. Suppose that $\alpha(1), \ldots, \alpha(s)$ are chosen to satisfy the conditons of the above statement. I claim that

$$\langle x^{\alpha(1)}, \dots, x^{\alpha(s)} \rangle = \langle x^{\alpha} \colon \alpha \in A \rangle.$$

Indeed, if x^{β} is any monomial in $\langle x^{\alpha} : \alpha \in A \rangle$ then x^{β} is known to be divisible by some x^{α} , $\alpha \in A$. This means that $\beta = \alpha + \delta$ for some $\delta \in \mathbf{Z}_{\geq 0}^n$. Then if i and γ are chosen to match the conditions in the statement, $\beta = \alpha + \delta = \alpha(i) + (\gamma + \delta)$ and since $\delta + \gamma \in \mathbf{Z}_{\geq 0}^n$ it follows that $x^{\alpha(i)}$ divides x^{β} . This means that x^{β} is in the ideal generated by the $x^{\alpha(j)}$'s and these latter terms form a finite set of monomial generators for $\langle x^{\alpha} : \alpha \in A \rangle$ as well as being members of A. The existence of such a finite set of $\alpha(i)$'s is the statement of Dickson's Lemma.

§**2.4.8.**

A basis $\{x^{\alpha(1)}, \dots, x^{\alpha(s)}\}$ for a monomial ideal I is minimal if no $x^{\alpha(i)}$ divides another $x^{\alpha(j)}$ for $i \neq j$.

- (a) Prove that every monomial ideal has a minimal basis.
- (b) Show that every monomial ideal has a unique minimal basis.

Solution. First use Dickson's Lemma to choose a finite basis $\{x^{\alpha(1)}, \ldots, x^{\alpha(s)}\}$ and then delete any monomial in this basis which is a multiple of another monomial in the basis. The result is still a basis and it is minimal. Next consider two minimal bases for the monomial ideal I:

$$\{x^{\alpha(1)}, \dots, x^{\alpha(s)}\}\$$
and $\{x^{\delta(1)}, \dots, x^{\delta(t)}\}.$

Since $x^{\alpha(1)}$ is a monomial in I it follows that it must be divisible by (at least) one monomial from the basis $\{x^{\delta(1)},\ldots,x^{\delta(t)}\}$, say $x^{\delta(1)}$. For the same reason $x^{\delta(1)}$ is divisible by one of the $x^{\alpha(i)}$'s, but because $\{x^{\alpha(1)},\ldots,x^{\alpha(s)}\}$ is a minimal basis there is only one candidate: $x^{\delta(1)}$ is divisible by $x^{\alpha(1)}$. It follows that $x^{\alpha(1)}=x^{\delta(1)}$. Taking up $x^{\alpha(2)}$ we can argue similarly that it is equal to precisely one of the $x^{\delta(i)}$'s, say $x^{\delta(2)}$ and continuing in this manner it follows that these two minimal bases for I are identical.

§**2.4.9**.

If $I = \langle x^{\alpha(1)}, \dots, x^{\alpha(s)} \rangle$ is a monomial ideal, prove that a polynomial f is in I if and only if the remainder of f on division by $(x^{\alpha(1)}, \dots, x^{\alpha(s)})$ is zero.

Proof. $\square(\Leftarrow)$: Division yields an expression $f = a_1 x^{\alpha(1)} + \dots + a_s x^{\alpha(s)} + r$ where no term in the remainder r is a multiple of the leading term in any of the divisors. In this case this amounts to saying that none of the $x^{\alpha(i)}$'s divides any of the terms in r. In particular, if the remainder is zero, f is clearly a $k[x_1, \dots, x_n]$ linear combination of the $x^{\alpha(i)}$'s. That is, $f \in I$.

(⇒): If f is in I it follows from the division expression that $r \in I$. But since none of the terms in r is divisible by any of the $x^{\alpha(i)}$'s, it must be that r = 0.

§2.4.10.

Suppose we have the polynomial ring $k[x_1, \ldots, x_n, y_1, \ldots, y_m]$. Let us define a monomial order $>_{mixed}$ on this ring that mixes lex order for x_1, \ldots, x_n with grlex order for y_1, \ldots, y_m . If we write monomials in the n+m variables as $x^{\alpha}y^{\beta}$, where $\alpha \in \mathbf{Z}_{>0}^n$ and $\beta \in \mathbf{Z}_{>0}^m$, then we define

$$x^{\alpha}y^{\beta} >_{mixed} x^{\gamma}y^{\delta} \iff x^{\alpha} >_{lex} y^{\gamma} \text{ or } x^{\alpha} = x^{\gamma} \text{ and } y^{\beta} >_{grlex} y^{\delta}.$$

Use the corollary to Dickson's Lemma to prove that $>_{mixed}$ is a monomial order. This is an example of what is called a *product order*. It is clear that many other monomial orders can be created by this method.

Solution. We must show (i) that $>_{mixed}$ is a total order, i.e. orders $\mathbf{Z}^n_{\geq 0} \times \mathbf{Z}^m_{\geq 0}$ as a chain. (ii) that it is stable for addition. (iii) that $(0_n, 0_m)$ is the minimal element of $\mathbf{Z}^n_{>0} \times \mathbf{Z}^m_{>0}$ in the $>_{mixed}$ order.

- (i) That it is a total order is easy. Either $x^{\alpha}y^{\beta} >_{mixed} x^{\gamma}y^{\delta}$ or $x^{\alpha}y^{\beta} <_{mixed} x^{\gamma}y^{\delta}$ or $x^{\alpha}y^{\beta} = x^{\gamma}y^{\delta}$.
- (ii) That it is stable under addition is equally easy to establish and really obvious because both lex and grlex are stable under addition which in this case is componentwise addition.
- (iii) Comparing $x^{\alpha}y^{\beta}$ with $x^{0_n}y^{0_m}$, there are three possibilities: (1) either $x^{\alpha}>_{lex}x^{0_n}$ and then necessarily $x^{\alpha}y^{\beta}>_{mixed}x^{0_n}y^{0_m}$, or (2) $\alpha=0_n$ and $y^{\beta}>_{grlex}y^{0_m}$ from which $x^{\alpha}y^{\beta}>_{mixed}x^{0_n}y^{0_m}$, or (3) $\alpha=0_n$ and $\beta=0_m$ and then $x^{\alpha}y^{\beta}=x^{0_n}y^{0_m}$. In any case it is true that $(0_n,0_m)$ is the minimal element of $\mathbf{Z}^n_{>0}\times\mathbf{Z}^m_{>0}$ in the $>_{mixed}$ order.

§**2.4.11.**

In this exercise we will investigate a special case of a weight order. Let $\mathbf{u} = (u_1, \dots, u_n)$ be a vector in \mathbf{R}^n such that u_1, \dots, u_n are positive and linearly independent over \mathbf{Q} . We say that \mathbf{u} is an independent weight vector. Then, for $\alpha, \beta \in \mathbf{Z}_{>0}^n$, define

$$\alpha >_{\mathbf{u}} \beta \iff \mathbf{u} \cdot \alpha > \mathbf{u} \cdot \beta$$
,

where the centered dot is the usual dot product of vectors. We call $>_{\mathbf{u}}$ the weight order determined by \mathbf{u} .

(a) Use the corollary to Dickson's Lemma to prove that $>_{\mathbf{u}}$ is a monomial order. Hint: Where does your argument use the linear independence of u_1, \ldots, u_n ?

Solution. If $\mathbf{u} \cdot \alpha = \mathbf{u} \cdot \beta$, then $\mathbf{u} \cdot (\alpha - \beta) = 0$ or $u_1(\alpha_1 - \beta_1) + \cdots + u_n(\alpha_n - \beta_n) = 0$. The linear independence of the u_i 's over \mathbf{Z} then implies that $\alpha_i - \beta_i = 0$, $1 \le i \le n$. For this reason the map $\alpha \mapsto \mathbf{u} \cdot \alpha$ of $\mathbf{Z}_{\ge 0}^n$ into $\mathbf{R}_{\ge 0}$ is an injection. The $>_{\mathbf{u}}$ -order is obtained by "lifting" the usual order on $\mathbf{R}_{\ge 0}$ back to $\mathbf{Z}_{\ge 0}^n$. This establishes that (i) $>_{\mathbf{u}}$ is a total ordering of $\mathbf{Z}_{\ge 0}^n$. (iii) Since every component of \mathbf{u} is positive it follows that $\mathbf{u} \cdot \alpha \ge 0$ for all $\alpha \in \mathbf{Z}_{\ge 0}^n$ and thus that 0_n is the minimum element in $\mathbf{Z}_{\ge 0}^n$ for the $>_{\mathbf{u}}$ -order. (ii) Finally, this lifting also preserves translation: If $\gamma \in \mathbf{Z}_{>0}^n$, then

$$\alpha >_{\mathbf{u}} \beta \Leftrightarrow \mathbf{u} \cdot \alpha > \mathbf{u} \cdot \beta \Rightarrow \mathbf{u} \cdot (\alpha + \gamma) > \mathbf{u} \cdot (\beta + \gamma) \Leftrightarrow \alpha + \gamma >_{\mathbf{u}} \beta + \gamma.$$

Using the corollary to Dickson's Lemma these facts establish that $>_{\mathbf{u}}$ is a monomial order.

(b) Show that $\mathbf{u} = (1, \sqrt{2})$ is an independent weight vector, so that $>_{\mathbf{u}}$ is a weight order on $\mathbf{Z}^2_{>0}$.

Solution. This is a simple consequence of the algebraic independence of 1 and $\sqrt{2}$.

(c) Show that $\mathbf{u} = (1, \sqrt{2}, \sqrt{3})$ is an independent weight vector, so that $\mathbf{z}_{\mathbf{u}}$ is a weight order on $\mathbf{Z}_{\geq 0}^3$.

Solution. Here again this is a simple consequence of the algebraic independence of 1, $\sqrt{2}$, and $\sqrt{3}$.

§2.4.12.

Another important weight order is constructed as follows. Let $\mathbf{u} = (u_1, \dots, u_n)$ be in $\mathbf{Z}_{\geq 0}^n$, and fix a monomial order $>_{\sigma}$ (such as $>_{lex}$ or $>_{grevlex}$) on $\mathbf{Z}_{\geq 0}^n$. Then, for $\alpha, \beta \in \mathbf{Z}_{\geq 0}^n$, define $\alpha >_{\mathbf{u},\sigma} \beta$ if and only if

$$\mathbf{u} \cdot \alpha > \mathbf{u} \cdot \beta$$
 or $\mathbf{u} \cdot \alpha = \mathbf{u} \cdot \beta$ and $\alpha >_{\sigma} \beta$.

We call $>_{\mathbf{u},\sigma}$ the weight order determined by \mathbf{u} and σ .

(a) Use the corollary to Dickson's Lemma to show that $>_{\mathbf{u},\sigma}$ is a monomial order.

Solution. (i) That it is a total order is clear. $>_{\mathbf{u},\sigma}$ uses the ordinary $>_{\mathbf{u}}$ -order but since the components of \mathbf{u} are nonnegative integers we no longer have that they are algebraically independent and there may be ties. To break these ties we appeal to the monomial order $>_{\sigma}$. (iii) It is also clear that 0_n is the smallest element of $\mathbf{Z}_{\geq 0}^n$ in this order. (ii) That it is stable under addition is also easy to establish: If $\gamma \in \mathbf{Z}_{\geq 0}^+$ and $\alpha >_{\mathbf{u},\sigma} \beta$, there are two cases.

Case 1: $\mathbf{u} \cdot \alpha > \mathbf{u} \cdot \beta$. In this case $\mathbf{u} \cdot (\alpha + \gamma) > \mathbf{u} \cdot (\beta + \gamma)$ and, accordingly, $\alpha + \gamma >_{\mathbf{u},\sigma} \beta + \gamma$.

Case 2: $\mathbf{u} \cdot \alpha = \mathbf{u} \cdot \beta$ and $\alpha >_{\sigma} \beta$. In this case $\mathbf{u} \cdot (\alpha + \gamma) = \mathbf{u} \cdot (\beta + \gamma)$ and $\alpha + \gamma >_{\sigma} \beta + \gamma$. Accordingly, $\alpha + \gamma >_{\mathbf{u},\sigma} \beta + \gamma$.

(b) Find $\mathbf{u} \in \mathbf{Z}_{>0}^n$ so that the weight order $>_{\mathbf{u},lex}$ is the gradlex order $>_{gradlex}$.

Solution. I don't know what the gradlex order is. If $\mathbf{u} = (1, 1, ..., 1)$, then $>_{\mathbf{u}, lex}$ is the greex order. Perhaps this is what was intended.

(c) In the definition of $>_{\mathbf{u},\sigma}$, the order $>_{\sigma}$ is used to break ties, and it turns out that ties will *always* occur in this case. More precisely, prove that given $\mathbf{u} \in \mathbf{Z}^n_{\geq 0}$, there are $\alpha \neq \beta$ in $\mathbf{Z}^n_{\geq 0}$ such that $\mathbf{u} \cdot \alpha = \mathbf{u} \cdot \beta$. Hint: Consider the linear equation $u_1 a_1 + \cdots + u_n a_n = 0$ over \mathbf{Q} . Show that there is a nonzero integer solution (a_1, \ldots, a_n) , and then show that $(a_1, \ldots, a_n) = \alpha - \beta$ for some $\alpha, \beta \in \mathbf{Z}^n_{\geq 0}$.

Solution. The hint really steals the problem here. Too bad they gave it! If $\mathbf{u} \cdot \alpha = \mathbf{u} \cdot \beta$, then $\overrightarrow{a} = (a_1, \ldots, a_n) = \alpha - \beta$ satisfies $\mathbf{u} \cdot \overrightarrow{a} = 0$. Call this last equation (#). If $u_1 = 0$ then $\overrightarrow{a} = (1, 0, 0, \ldots, 0)$ is a solution to (#). More generally, if $u_i = 0$ for some i, then $a_j = [j = i]$ or δ_{ij} is a solution to (#). If no $u_i = 0$, then $\overrightarrow{a} = (u_2, -u_1, 0, \ldots, 0)$ is a solution to (#). It is then easy to find a $\beta, \alpha = \beta - \overrightarrow{a} \in \mathbf{Z}^n_{\geq 0}$ whose $\mathbf{v}_{u,\sigma}$ comparison requires "the breaking of a tie".

(d) A useful example of a weight order is the elimination order introduced by Bayer and Stillman (1987b). Fix an integer $1 \le i \le n$ and let $u_j = [j \le i]$, that is, $\mathbf{u} = (1, \dots, 1, 0, \dots, 0)$ where there are i 1's and n-i 0's. Then the i-th elimination order $>_i$ is the weight order $>_{\mathbf{u},grevlex}$. Prove that $>_i$ has the following property: If x^{α} is a monomial in which one of x_1, \dots, x_i appears, then $x^{\alpha} >_i x^{\beta}$ for any monomial involving only x_{i+1}, \dots, x_n . Elimination orders play an important role in elimination theory, which we will study in the next chapter.

Solution. Suppose x^{α} is a monomial in which one of x_1, \ldots, x_i appears, and that x^{β} is a monomial involving only x_{i+1}, \ldots, x_n . Then $\alpha \cdot \mathbf{u}_i \geq 1$ whereas $\beta \cdot \mathbf{u}_i = 0$ Thus there is no tie in the first test of $>_i$ and $x^{\alpha} > x^{\beta}$.

§2.4.13. Monomial Orders on $\mathbb{Z}_{\geq 0}^n$. The following is detailed in L. Robbiano (1986), On the theory of graded structures, J. Symbolic Comp. 2, 139-170.

If > is a monomial order on $\mathbb{Z}^n_{\geq 0}$, then there exists a finite sequence of weight orders with associated vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_\ell$ such that

$$>$$
 is the product order $>_{\mathbf{u}_1,\dots,\mathbf{u}_\ell}$.

Thus to test $\alpha > \beta$, first test $\alpha >_{\mathbf{u}_1} \beta$. Break ties by using $>_{\mathbf{u}_2}$. If there is still a tie use $>_{\mathbf{u}_3}$ and so on until a decision is reached. **Caution.** These \mathbf{u}_j 's are in \mathbf{R}^n . Their components need not be positive. They cannot be arbitrary, however, because with arbitrary components the ordering induced on $\mathbf{Z}^n_{\geq 0}$ might not be a well ordering. I can in fact be more explicit. Let the \mathbf{u}_i 's be written out in component form as the rows of a matrix W with real entries which I shall call the weight matrix for a particular monomial ordering. The first row of W is \mathbf{u}_1 , the second \mathbf{u}_2 , and so on. A $\ell \times n$ -matrix W with real entries is the weight matrix for a monomial ordering if it meets three conditions: (i) The first nonzero element in each column must be positive. This guarantees that the ordering is a well ordering. (ii) When the rows are regarded as real valued functions on \mathbf{R}^n through the dot product, they separate the points of $\mathbf{Z}^n_{\geq 0}$. (iii) They are linearly independent. This last condition is only to avoid too many duplicate weightings. Condition (ii) is of course satisfied if the rows span \mathbf{R}^n .

The lex order. To implement this using weight vectors in the above manner. Let $\mathbf{w}_i = (0, \dots, 0, 1, 0, \dots, 0)$ with a 1 in the *i*-th component. Then

$$>_{lex}$$
 is the product order $>_{\mathbf{w}_1,\mathbf{w}_2,...,\mathbf{w}_n}$.

The grlex order. Let $\mathbf{u} = (1, 1, \dots, 1)$. Then using the preceding notation

$$>_{grlex}$$
 is the product order $>_{\mathbf{u},\mathbf{w}_1,\mathbf{w}_2,\dots,\mathbf{w}_{n-1}}$.

The grevlex order. Using the preceding notation

$$>_{qrevlex}$$
 is the product order $>_{\mathbf{u},-\mathbf{w}_n,-\mathbf{w}_{n-1},\ldots,-\mathbf{w}_2}$.

Implementation in Mathematica 3.01. Mathematica implements these weightings in a number of its commands, viz. GroebnerBasis, PolynomialReduce, and the simple listing, MonomialList. There follows a listing of some Mathematica commands and their outputs.

$$\begin{array}{c} Poly = x^3 + y^3 + z^3 + x^2 + x^2$$

$$(1 + x + x^2 + x^3 + y + xy + x^2y + y^2 + xy^2 + y^3 + z + xz + x^2z + yz + xyz + y^2z + z^2 + xz^2 + yz^2 + z^3)$$

grevlex with x > y > z

MonomialList[Poly, $\{x,y,z\}$,MonomialOrder-> $\{\{1,1,1\},\{0,0,-1\},\{0,-1,0\}\}$]

$$\{x^3, x^2y, xy^2, y^3, x^2z, xyz, y^2z, xz^2, yz^2, z^3, x^2, xy, y^2, xz, yz, z^2, x, y, z, 1\}$$

```
# grlex with x > y > z
MonomialList[Poly,{x,y,z},MonomialOrder->{{1,1,1},{1,0,0},{0,1,0}}]

{x^3, x^2y, xy^2, y^3, x^2z, xyz, y^2z, xz^2, yz^2, z^3, x^2, xy, y^2, xz, yz, z^2, x, y, z, 1}
# lex with x > y > z
MonomialList[Poly,{x,y,z},MonomialOrder->{{1,0,0},{0,1,0},{0,0,1}}]

{x^3, x^2y, x^2z, x^2, xy^2, xyz, xy, xz^2, xz, x, y^3, y^2z, y^2, yz^2, yz, y, z^3, z^2, z, 1}
# 1-st elimination order of Bayer and Stillman (?) with x > y > z
MonomialList[Poly,{x,y,z},MonomialOrder->{{1,0,0},{1,1,1},{0,0,-1}}]

{x^3, x^2y, x^2z, x^2, xy^2, xyz, xz^2, xy, xz, x, y^3, y^2z, yz^2, z^3, y^2, yz, z^2, y, z, 1}
# 2-nd elimination order of Bayer and Stillman (?) with x > y > z
MonomialList[Poly,{x,y,z},MonomialOrder->{{1,1,0},{1,1,1},{0,-1,0}}]

# 2-nd elimination order of Bayer and Stillman (?) with x > y > z
MonomialList[Poly,{x,y,z},MonomialOrder->{{1,1,0},{1,1,1},{0,-1,0}}]
```