Learning and Control using Gaussian Processes Towards bridging machine learning and controls for physical systems

Achin Jain, Truong X. Nghiem, Manfred Morari, Rahul Mangharam

University of Pennsylvania

April 11, 2018

Gaussian Processes

► A Gaussian Process is a collection of random variables that are jointly Gaussian and is fully characterized by its mean and covariance

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))]$$

example with two observations:

 $m(\mathbf{x}) = 0$

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{x}')^T \Sigma(\mathbf{x} - \mathbf{x}')\right)$$
$$(y_1, y_2) \sim \mathcal{N}(\mathbf{0}, K), \quad K = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1), k(\mathbf{x}_1, \mathbf{x}_2) \\ k(\mathbf{x}_2, \mathbf{x}_1), k(\mathbf{x}_2, \mathbf{x}_2) \end{bmatrix}$$

Training Gaussian Processes

ightharpoonup suppose we want to identify the model f in

$$y = f(\mathbf{x}) + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma_n^2)$$

- lacktriangle we observe n points from this model $\{\mathbf x_i,y_i\}_{i=1}^n$
- our goal is to identify μ , Σ and σ_n^2 such that

$$(y_1,y_2,\ldots,y_n) \sim \mathcal{N}(\mu,\Sigma+\sigma_n^2 I)$$

ightharpoonup we can parametrize the function f by

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

lacktriangle we optimize parameters θ in m, k and σ_n^2 by maximizing the log likelihood

$$\log(p(\mathbf{y} \mid X, \theta)) = -\frac{1}{2}\mathbf{y}^{T}(K + \sigma_{n}^{2}I)^{-1}\mathbf{y} - \frac{1}{2}\log|K + \sigma_{n}^{2}I| - \frac{n}{2}\log 2\pi$$

Prediction using Gaussian Processes

 \blacktriangleright once we optimize m, k and σ_n^2 , we can predict on new observations X_{\star}

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{y}_{\star} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(X) \\ m(X_{\star}) \end{bmatrix}, \begin{bmatrix} K(X,X) + \sigma_n^2 I & K(X,X_{\star}) \\ K(X_{\star},X) & K(X_{\star},X_{\star}) \end{bmatrix} \right)$$

 $\mathbf{y}_{\star}|\mathbf{y}$ is normally distributed with mean and variance

$$\bar{\mathbf{y}}_{\star} = m(X_{\star}) + K(X_{\star}, X)(K + \sigma_n^2 I)^{-1}(\mathbf{y} - m(X_{\star}))$$
$$\sigma_{\mathbf{y}_{\star}}^2 = K(X_{\star}, X_{\star}) - K(X_{\star}, X)(K + \sigma_n^2 I)^{-1}K(X, X_{\star})$$

Gaussian Process Model

$$\underbrace{P_t}_{Y \in \mathbb{R}^n} = f_P(\underbrace{P_{t-l}, \dots, P_{t-1}, w_{t-m}, \dots, w_t, u_{t-p}, \dots, u_t})_{X \in \mathbb{R}^n \times d}$$

$$x_t = [P_{t-l}, \dots, P_{t-1}, w_{t-m}, \dots, w_t, u_{t-p}, \dots, u_t]$$

$$P_t \sim \mathcal{N}\left(\bar{P}_t, \sigma_t^2\right)$$

$$\bar{P}_t = \mu(x_t) + K_{\star}K^{-1}(Y - \mu(X))$$

$$\sigma_t^2 = K_{\star\star} - K_{\star}K^{-1}K_{\star}^T$$

$$K_{\star} = [k(x_t, x_1), \dots, k(x_t, x_N)], K_{\star\star} = k(x_t, x_t)$$

Learning Problem

weather

- ▶ outside temp. X^{d_1}
- ▶ outside humidity X^d₂
- ▶ solar radiation X^d₃

building

- power consumption Y
 - lacktriangle internal gains X^{d_4}

control

- ▶ cooling temp. X^{c1}
- ▶ supply air temp. X^{c2}
- ► chilled water temp. X^{c3}

The goal is to predict the zone temperature for multiple steps ahead

$$\begin{pmatrix} \mathbf{Y}_{k+1} \\ \mathbf{Y}_{k+2} \\ \vdots \\ \mathbf{Y}_{k+N} \end{pmatrix} = f(\underbrace{\mathbf{X}_{k}^{d}, \dots, \mathbf{X}_{k+N-1}^{d}, \mathbf{Y}_{k}, \dots, \mathbf{Y}_{k-\delta}}_{\text{disturbance}}, \underbrace{\mathbf{X}_{k}^{c}, \dots, \mathbf{X}_{k+N-1}^{c}}_{\text{autoregression}})$$

Blackbox models

$$y_t = f(\underbrace{y_{t-l}, \dots, y_{t-1}}_{\text{autoregression}}, \underbrace{w_{t-m}, \dots, w_t}_{\text{disturbance}}, \underbrace{u_{t-p}, \dots, u_t}_{\text{control variables}})$$

$$y_t = f(y_{t-1}, \dots, y_{t-1}, w_{t-m}, \dots, w_t, u_{t-p}, \dots, u_t)$$

Blackbox models

$$P_t = f_P(P_{t-l},\ldots,P_{t-1},w_{t-m},\ldots,w_t,u_{t-p},\ldots,u_t)$$

$$T_t^i = f_T^i(T_{t-l'},\ldots,T_{t-1},w_{t-m'},\ldots,w_t,u_{t-p'},\ldots,u_t)$$

$$i \in \{1,\ldots,\mathsf{number of zones}\}$$

$$\begin{aligned} & \underset{u_{t}, \dots, u_{N-1}}{\text{minimize}} & & \sum_{t=0}^{N-1} (P_{t} - P_{\text{ref}})^{2} \\ & \text{subject to} & & P_{t} = f_{P}(P_{t-l}, \dots, P_{t-1}, w_{t-m}, \dots, w_{t}, u_{t-p}, \dots, u_{t}) \\ & & & T_{t}^{i} = f_{T}^{i}(T_{t-l'}^{i}, \dots, T_{t-1}^{i}, w_{t-m'}, \dots, w_{t}, u_{t-p'}, \dots, u_{t}) \\ & & & & T_{\min} \leq T_{t}^{i} \leq T_{\max} \\ & & & u_{\min} \leq u_{t} \leq u_{\max} \\ & & & t \in \{0, \dots, N-1\} \end{aligned}$$

Why can't we use black-box models for control?

$$P_t = f(\underbrace{P_{t-l}, \dots, P_{t-1}}_{\text{autoregression}}, \underbrace{w_{t-m}, \dots, w_t}_{\text{disturbance}}, \underbrace{u_{t-p}, \dots, u_t}_{\text{tontrol variables}})$$

$$\begin{aligned} & \underset{u_{t}, \dots, u_{N-1}}{\text{minimize}} & & \sum_{t=0}^{N-1} (P_{t} - P_{\text{ref}})^{2} \\ & \text{subject to} & & P_{t} = f_{P}(P_{t-l}, \dots, P_{t-1}, w_{t-m}, \dots, w_{t}, u_{t-p}, \dots, u_{t}) \\ & & & T_{t}^{i} = f_{T}(T_{t-l'}^{i}, \dots, T_{t-1}^{i}, w_{t-m'}, \dots, w_{t}, u_{t-p'}, \dots, u_{t}) \\ & & & T_{\min} \leq T_{t}^{i} \leq T_{\max} \\ & & u_{\min} \leq u_{t} \leq u_{\max} \\ & & t \in \{0, \dots, N-1\} \end{aligned}$$

Model Predictive Control

$$\begin{split} & \underset{u_{t}, \dots, u_{N-1}}{\text{minimize}} & \sum_{\tau=0} (\bar{P}_{t+\tau} - P_{\text{ref}})^{2} + \lambda \sigma_{P, t+\tau}^{2} \\ & \text{subject to} & \bar{P}_{t+\tau} = \mu(x_{t+\tau}) + K_{\star}K^{-1}(Y - \mu(X)) \\ & \sigma_{P, t+\tau}^{2} = K_{\star\star} - K_{\star}K^{-1}K_{\star}^{T} \\ & \bar{T}_{t+\tau} = \mu(x_{t+\tau}) + K_{\star}K^{-1}(Y - \mu(X)) \\ & \sigma_{T, t+\tau}^{2} = K_{\star\star} - K_{\star}K^{-1}K_{\star}^{T} \\ & u_{\min} \leq u_{t+\tau} \leq u_{\max} \\ & \tau \in \{0, \dots, N-1\} \\ & \Pr(T_{\min} \leq T_{t+\tau} \leq T_{\max}) \geq 1 - \epsilon \end{split}$$

Data-driven MPC

$$\begin{split} & \underset{u_{t}, \dots, u_{N-1}}{\operatorname{minimize}} & \sum_{\tau=0}^{N-1} (\bar{P}_{t+\tau} - P_{\mathrm{ref}})^{2} + \lambda \sigma_{P, t+\tau}^{2} \\ & \\ & \bar{P}_{t+\tau} = \mu(x_{t+\tau}) + K_{\star}K^{-1}(Y - \mu(X)) \\ & \sigma_{P, t+\tau}^{2} = K_{\star\star} - K_{\star}K^{-1}K_{\star}^{T} \\ & \bar{T}_{t+\tau} = \mu(x_{t+\tau}) + K_{\star}K^{-1}(Y - \mu(X)) \\ & \sigma_{T, t+\tau}^{2} = K_{\star\star} - K_{\star}K^{-1}K_{\star}^{T} \\ & \\ & Pr(T_{\min} \leq T_{t+\tau} \leq T_{\max}) \geq 1 - \epsilon \\ & u_{\min} \leq u_{t+\tau} \leq u_{\max} \\ & \tau \in \{0, \dots, N-1\} \end{split}$$

Physics-based MPC

$$\begin{aligned} & \underset{u_{t},...,u_{N-1}}{\text{minimize}} & & \sum_{\tau=0} \left(P_{t+\tau}(x_{t+\tau}) - P_{\text{ref}}\right)^{2} \\ & \text{subject to} & & x_{t+\tau} = Ax_{t+\tau-1} + Bu_{t+\tau-1} + B_{w}w_{t+\tau-1} \\ & & B = B_{u} + B_{xu}[x_{t+\tau-1}] + B_{wu}[w_{t+\tau-1}] \\ & & T_{\min} \leq T_{t+\tau}(x_{t+\tau}) \leq T_{\max} \\ & & u_{\min} \leq u_{t+\tau} \leq u_{\max} \\ & & \tau \in \{0, \dots, N-1\} \end{aligned}$$

Optimal Experiment Design

Goal

Learn the hyperparameters θ in $y\sim\mathcal{GP}(m(x),k(x);\theta)$ as fast as possible as we add new samples.

Formal Definition

$$\begin{split} H(\theta|\mathcal{D}) &= -\int p(\theta|\mathcal{D}) \log(p(\theta|\mathcal{D})) d\theta \\ \arg\max_x H(\theta|\mathcal{D}) &- \mathbb{E}_{y \sim \mathcal{N}\left(\bar{y}(x), \sigma^2(x)\right)} H(\theta|\mathcal{D}, x, y) \end{split}$$

Equivalent Definition

$$\begin{split} \arg\max_x H(y|x,\mathcal{D}) - \mathbb{E}_{\theta \sim p(\theta|\mathcal{D})} H(y|x,\theta) \\ \text{using } H(\theta) - H(\theta|y) = H(y) - H(y|\theta), \text{ and} \\ p(y|x,\mathcal{D}) = \int p(y|x,\theta,\mathcal{D}) p(\theta|\mathcal{D}) d\theta \approx \mathcal{N}\left(\tilde{y}(x), \tilde{\sigma}^2(x)\right) \end{split}$$

Optimal Experiment Design

Goal

Learn the hyperparameters θ in $y\sim\mathcal{GP}(m(x),k(x);\theta)$ as fast as possible as we add new samples.

Equivalent Definition

$$\begin{split} \arg\max_x H(y|x,\mathcal{D}) - \mathbb{E}_{\theta \sim p(\theta|\mathcal{D})} H(y|x,\theta) \\ \text{using } H(\theta) - H(\theta|y) = H(y) - H(y|\theta), \text{ and} \\ p(y|x,\mathcal{D}) = \int p(y|x,\theta,\mathcal{D}) p(\theta|\mathcal{D}) d\theta \approx \mathcal{N}\left(\tilde{y}(x),\tilde{\sigma}^2(x)\right) \end{split}$$

Sequential sampling for OED

$$\begin{aligned} & \underset{u_t}{\text{maximize}} & & \tilde{\sigma}^2(x_t)/\sigma^2(x_t) \\ & \text{subject to} & & x_t \!=\! [y_{t-l}, \dots, y_{t-1}, u_{t-m}, \dots, u_t, w_{t-p}, \dots, w_t] \\ & & & u_t \in \mathcal{U} \end{aligned}$$

$\mathsf{OED} + \mathsf{Evolving}$ Gaussian Processes

Sequential sampling for OED

```
\begin{array}{ll} \underset{x}{\text{maximize}} & \text{information gain / variance}(x) \\ \text{subject to} & \text{operation constraints}(x) \end{array}
```

Optimal subset of data selection

```
\underset{x_j|(x_j,y_j)\in\mathcal{D}\setminus\mathcal{S}}{\operatorname{maximize}} \quad \text{information gain } / \text{ variance}(x)
```

Sequential sampling for OED based on Information Gain

Initialization

if initial $\mathcal{D} := (X, Y)$ then

Compute $\theta_{\text{MLE}} = \arg \max_{\theta \text{MLE}} \Pr(Y|X,\theta)$ Assign priors $\theta_0 \sim \mathcal{N}\left(\theta_{\text{MLE}}, \sigma_{\text{init}}^2\right)$

else

Assign priors $\theta_0 \sim \mathcal{N}\left(\mu_{\text{init}}, \sigma_{\text{init}}^2\right)$ end if

Sampling

while $t < t_{\rm max}$ do Calculate features x_t in (??) as a function of u_t Solve (??) to calculate optimal u_t^* Apply u_t^* to the system and measure y_t $\mathcal{D} = \mathcal{D} \cup (x_t, y_t)$ Update $\theta_t = \arg \max_{\theta \text{MAP}} \Pr(Y|X, \theta_{t-1})$ end while

$Optimization \ for \ Sequential \ Experiment \ Design$

```
maximize<sub>u<sub>t</sub></sub> information gain(x_t)
subject to x_t = [P_{t-l}, \dots, P_{t-1}, w_{t-m}, \dots, w_t, u_{t-p}, \dots, \mathbf{u}_t]
22^{\circ} \text{C} \leq \text{cooling set-point} \leq 27^{\circ} \text{C},
12^{\circ} \text{C} \leq \text{supply air set-point} \leq 14^{\circ} \text{C}.
```

 $3.7^{\circ} C < \text{chilled water set-point} < 9.7^{\circ} C$

rate of change in chilled water set-point $\leq 2^{\circ}C/15min$.

Evolving Gaussian Processes

Optimal subset of data selection

$$\underset{x_j \mid (x_j, y_j) \in \mathcal{D} \setminus \mathcal{S}}{\text{maximize}} \quad \tilde{\sigma}^2(x_j) / \sigma^2(x_j)$$

