Theorem: (Subadditivity) let (X, A, µ) be a measure space let $(An)_{n=1}^{\infty}$ be a collection in A. Then m (U An) = = pulan). Proof: Let $E_1 = A$, $\in A$ and for $n \ge a$, let $E_n = A_n \setminus (\bigcup_{i=1}^{n-1} A_i)$ Then Enc An Yne M, and (En) n=1 are pairwise disjoint, and $\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} A_n$, Now, $\mu(\bigcup_{n=1}^{\infty}A_n) = \mu(\bigcup_{n=1}^{\infty}E_n)$ $=\frac{\infty}{2}\mu(En)$ \(\frac{2}{2} \mu (An) \quad \text{by monotonicity}. \) Theorem: | Monotone Convergence Theorem) Let (X, A, µ) be a measure space and let $(An)_{n=1}^{\infty}$ is a collection in Ali) If An C Anti for all nEIN, $\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\lim_{n\to\infty}\mu\left(A_{n}\right)$ (ii) If Anti C An for all ne IN and $\mu(A_1) < \infty$, then $\mu\left(\bigcap_{n=1}^{\infty}A_{n}\right) = \lim_{n\to\infty}\mu\left(A_{n}\right)$ Proof: Let $B_1 = A_1$ and $B_n = A_n \setminus A_{n-1}$ for $n \ge 2$. It is easy to show their, Bred. Then (Bn) n=1 are pairwise disjoint, $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$ and $A_n = \bigcup_{i=1}^{\infty} B_i$, Thus, $\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty}B_{n}\right)=\sum_{n=1}^{\infty}\mu(B_{n})$ $=\lim_{N\to\infty}\frac{\sum_{n=1}^{N}\mu\left(B_{n}\right)}{\mu\left(B_{n}\right)}=\lim_{N\to\infty}\mu\left(\frac{N}{N}B_{n}\right)$

= lim µ(AN)

(ii) the IN, let $Cn = A_1 \setminus An \in A$. Then $Cn \in C_{n+1}$ for all $n \in N$ and

$$\frac{\partial}{\partial x} C_n = \frac{\partial}{\partial x} (A_1 \cap A^c) = A_1 \cap \left(\frac{\partial}{\partial x} A_n^c \right) \\
= A_1 \cap \left(\frac{\partial}{\partial x} A_n \right)^c \\
= A_1 \setminus \left(\frac{\partial}{\partial x} A_n \right)$$

From (i) and because $\mu(A_1) < \infty$,

$$\mu(A_1 \setminus (\bigcap_{n=1}^{\infty} A_n)) = \lim_{n \to \infty} \mu(A_1 \setminus A_n)$$

$$\mu(A_1) - \mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_1 \setminus A_n)$$

$$\Rightarrow \mu\left(\bigcap_{n=1}^{\infty}A_{n}\right)=\lim_{n\to\infty}\mu(A_{n})$$

The Carathéodory Method

We desire to have a measure of length (IR, 19CIR)) such that

(i) $\lambda(I)$:= length of I for all intervals I. (ii) If $A \subset IR$, $x \in IR$, $x + A = \{x + a : a \in A\}$, then $\lambda(x + A) = \lambda(A)$.

Theorem: There is no such measure.

Proof: Assume for a contradiction that there is such a measure λ . Define an equivalence relation "~" on IR by $x \sim y$ iff $x - y \in \mathbb{Q}$.

Note if $x \in \mathbb{R}$, then x is equivalent to some element in [0,1). Let $A \subset [0,1)$ be the set that

consists of exactly one element from each equivalence class,

Write $\mathbb{Q} \cap [D_{1}] = \{rn\}_{n=1}^{\infty}$. $\forall n \in \mathbb{N}, let$ $An = \{x \in [D_{1}]: x \in rn + A \text{ or } x \neq 1 \in rn + A \}$. Note that $rn + A \subset [D_{1}, 2)$. In other words, An is "rn + A mod 1".

Claim: $\bigcup_{n=1}^{\infty} An = [D_{1}]$.

Note if $x \in L_{011}$, then there exists $y \in A$ such that $x \sim y$. So $x - y \in Q \cap (-1, 1)$.

- If $x-y \in G \cap Lo_{11}$, then x-y=rn for some $n \in IN$ so $x=rn+y \in An$.
- Otherwise, if $x-y \in \mathbb{Q} \cap (-1,0)$, then $(x+1)-y \in \mathbb{Q} \cap (0,1)$ so (x+1)-y=rn for some nein, so $x+1=rn+y \in A$, so $x \in A_n$.

Claim: An \cap Am = \emptyset if $n \neq m$.

If $x \in An \cap Am$, then x = rn + a + k where $a \in A$ and $k \in \{0,1\}$ and x = rm + b + l, where $b \in A$, $l \in \{0,1\}$ so $a - b = (rm - rn) + (l - k) \in \mathbb{Q}$ so $a \sim b$ and $a, b \in A$, so a = b. In particular, rn - rm = l - k, so rn = rm and l = k, so n = m.

Claim: $\lambda(An) = \lambda(A)$ for all ne 1N.

Let BnH = (rn+A) n [011) and Bn,a = (-1+rn+A) n [011).

Then $An = B_{n11} \cup B_{n2}$. We claim $B_{n11} \cap B_{n2} = \phi$. If not,

there are $a,b \in A$ such that $r_n + \alpha = -1 + r_n + b \Rightarrow \alpha - b = -1 \in \mathbb{Q}$, so $\alpha \neq b$ and $a \sim b$, $a \neq b$ and a = b, which is absurd, so Bn, 1 Bn, a = 6. Moreover, $\lambda(An) = \lambda(Bn, UBn, z) = \lambda(Bn, z) + \lambda(Bn, z)$ = $\lambda((m+A) \cap Lo_{11}) + \lambda((-1+r_{11}+A) \cap Lo_{11})$. = $\lambda ((rn+A) \cap Lo_{1}) + \lambda ((rn+A) \cap L_{1}a))$ = $\lambda ((rn+A) \wedge [0,2))$. $=\lambda((rn+A))$ $=\lambda(A)$ Finally, note that $| = \lambda ([O_{11}]) = \lambda (\bigcup_{N=1}^{\infty} A_{n}) = \sum_{N=1}^{\infty} \lambda (A_{N}) = \sum_{N=1}^{\infty} \lambda (A_{1})$ but $\lambda(A) \in [0, \infty]$, which is absurd. The problem is P(IR) is too large to define λ . Our goal is to find a way to define a on a suitably large r-algebra. We will use the Carathéodory Method. Definition: An outer measure on X is a map

 $\mu^* : \mathcal{P}(X) \to [0, \infty]$ such that

(i)
$$\mu^*(\phi) = 0$$
.

(ii) If ACBCX, then µ*(A) ≤ µ*(B),

(iii) If $(An)_{n=1}^{\infty}$ is a collection in $\mathcal{P}(X)$. Then μ* (Ü, An) = = μ*(An).

Definition: Let X be nonempty and let $\mathcal{F} \subset \mathcal{P}(X)$ such that \emptyset , $X \in \mathcal{F}$, and let $L: \mathcal{F} \to \mathbb{E}_0, \infty$ be such that $L(\emptyset) = 0$. The Outer measure associated to L, denote μ^* defined by

 $\mu^* = \inf \left\{ \frac{\infty}{N=1} L(Bn) : (Bn)^{\infty} \right\}$ is a collection in \mathcal{F} and $A \subset \bigcup_{n=1}^{\infty} Bn \right\}$

Theorem: μ_{ℓ}^* is an outer measure such that $\mu_{\ell}^*(B) \leq L(B)$ for all $B \in \mathcal{F}$.

More over, if v^* is an outer measure such that $v^*(B) \leq l(B)$ for all $B \in \mathcal{F}$, then $v^*(A) \leq \mu_\ell^*(A)$ for all $A \subset X$.

Proof: Note if BEF then

 $B = B \cup \left(\bigcup_{n=2}^{\infty} \emptyset\right)$ so $\mu_{\ell}^{*}(B) \leq \ell(B) + \ell(\emptyset) + \cdots = \ell(B)$.

Note also $\mu_*^*: \mathcal{F} \to Lo_{100}$ as the set we take the infimum is nonempty and each element of the set is nonnegative, so

0 = u! (b) = l(p) = 0 => u! (b) = 0

Now let $A_1 \subset A_2$. Then $\mu_{\ell}^*(A_1) \leq \mu_{\ell}^*(A_2)$ as

any cover of A2 also covers A1,

To check subadditivity, let $(An)_{n=1}^{\infty}$ be a collection in P(X), and let E>0. For each ne_{IN} , let $\{B_{n,m}\}_{m=1}^{\infty}$ be a collection of \mathcal{F} such that

An
$$C \bigcup_{m=1}^{\infty} B_n, m$$
 and $\sum_{m=1}^{\infty} l(B_n, m) \neq \mu_{\ell}^*(A_n) + \sum_{m=1}^{\infty} I_{\ell}(A_n) + \sum_{m=1}^{\infty} I_{\ell}(B_n, m) \neq \mu_{\ell}^*(A_n) + \sum_{m=1}^{\infty} I_{\ell}(B_n, m)$

whose union contains $\bigcup_{m=1}^{\infty} A_n$ so

$$\mu_{\ell}^*(\bigcup_{m=1}^{\infty} A_n) \leq \sum_{m=1}^{\infty} \sum_{m=1}^{\infty} l(B_n, m)$$

$$\leq \sum_{m=1}^{\infty} \left(\mu_{\ell}^*(A_n) + \sum_{m=1}^{\infty}\right)$$

$$= E + \sum_{m=1}^{\infty} \mu_{\ell}^*(A_n)$$
Thus, as $E \geqslant 0$ was arbitrary,
$$\mu_{\ell}^*(\bigcup_{m=1}^{\infty} A_m) \leq \sum_{m=1}^{\infty} \mu_{\ell}^*(A_n).$$
Now checking the "moreover" part, if V^* is an outer measure. Let $A \subset X$. If $(B_n)_{m=1}^{\infty}$ is a collection of F such that $A \subset \bigcup_{m=1}^{\infty} B_n$ then $V^*(A) \leq V^*(\bigcup_{m=1}^{\infty} B_n)$

$$\leq \sum_{n=1}^{\infty} V^*(B_n) \leq \sum_{n=1}^{\infty} l(B_n)$$
so by taking infimum, $V^*(A) \leq \mu_{\ell}^*(A)$.

Example:

(a) Let $F = 1$ all open intervals of $IR J$ and let I be the usual length. Then the outer measure is called the Lebesgue Outer Measure and is denoted by I . Thus, if I in intervals, I is I in I intervals, I is I in I i

bi ∈ IR u { ∞ }, ai < bi }

Define l: F → [o, ∞] by

Q(Î	T (ai	, bi))	=	: Î] (b	i - 0	ti)						
Then	the	oute	er 1	mea	sure	2	u *	ì5	call	ecl	the	n-di	ir
Lebes													
CEPCS	sque		ンT	Me	15U	16,		1 •					