```
In [477...
          #Task 1
          import pandas as pd
          import numpy as np
          PLdf = pd.read_csv('PLvacation.csv', header=1)
          GBdf = pd.read_csv('GBvacation.csv', header=1)
          USAdf = pd.read_csv('USAvacation.csv', header=1)
          PLdf['datetime']=pd.to_datetime(PLdf['Miesiac'])
          PLdf.drop('Miesiac',axis=1,inplace=True)
          GBdf['datetime']=pd.to_datetime(GBdf['Miesiąc'])
          GBdf.drop('Miesiac',axis=1,inplace=True)
          USAdf['datetime']=pd.to datetime(USAdf['Miesiac'])
          USAdf.drop('Miesiac',axis=1,inplace=True)
In [478...
          PLdf.rename(columns={'vacation: (Polska)': "PL"}, inplace=True)
          GBdf.rename(columns={'vacation: (Wielka Brytania)': "GB"}, inplace=True)
          USAdf.rename(columns={'vacation: (Stany Zjednoczone)': "USA"}, inplace=True)
In [479...
          frames = [PLdf, GBdf, USAdf]
          df=pd.merge(PLdf, GBdf, on=('datetime'))
          df=pd.merge(df, USAdf, on=('datetime'))
          columns_titles = ["datetime","PL","GB","USA"]
          df=df.reindex(columns=columns_titles)
          df
Out[479...
```

	datetime	PL	GB	USA
0	2004-01-01	42	38	87
1	2004-02-01	100	32	76
2	2004-03-01	66	35	71
3	2004-04-01	90	33	66
4	2004-05-01	82	33	80
•••				
214	2021-11-01	37	24	48
215	2021-12-01	69	42	61
216	2022-01-01	70	31	52
217	2022-02-01	86	27	53
218	2022-03-01	47	22	50

219 rows × 4 columns

```
In [480...
           import matplotlib.pyplot as plt
           df.plot(x='datetime')
```

<AxesSubplot:xlabel='datetime'>

Out[480...


```
In [481... df.describe()
```

```
PL
                                       GB
                                                  USA
Out[481..
           count
                   219.000000
                               219.000000
                                            219.000000
                    45.794521
                                24.543379
                                             58.301370
            mean
              std
                    17.214213
                                 14.441330
                                             14.830249
                    10.000000
                                13.000000
                                             26.000000
             min
             25%
                    33.000000
                                 17.000000
                                             49.000000
             50%
                    42.000000
                                20.000000
                                             56.000000
                    54.000000
                                             67.000000
             75%
                                24.500000
```

100.000000

100.000000

```
In [482...
     df["PL"].hist()
     df["GB"].hist()
     df["USA"].hist()
```

100.000000

Out[482... <AxesSubplot:>

max


```
In [483...
    plt=df['PL'].plot.density()
    df['GB'].plot.density()
```

```
df['USA'].plot.density()
plt.legend('PL GB USA'.split())
```

Out[483... <matplotlib.legend.Legend at 0x2264698eb50>


```
In [492...
#Task 2
SLdf = pd.read_csv('StLouis.csv', header=4)
SLdf
```

Out[492		Date	Value	Anomaly
	0	193804	57.6	0.3
	1	193805	65.6	-1.4
	2	193806	74.4	-2.0
	3	193807	81.6	1.3
	4	193808	82.1	3.5
	•••			
1	001	202109	74.9	4.0
1	002	202110	63.9	4.4
1	003	202111	46.7	0.6
1	004	202112	47.0	11.4
1	005	202201	29.4	-1.9

1006 rows × 3 columns

```
import matplotlib.pyplot as plt
SLdf.plot(x='datetime', y='Value')
```

```
Out[488... <AxesSubplot:xlabel='datetime'>
```



```
In [489... SLdf["Value"].hist()
```

Out[489... <AxesSubplot:>


```
In [490... SLdf["Value"].plot.density()
```

Out[490... <AxesSubplot:ylabel='Density'>

In [491... | SLdf.describe()

Out[491		Value	Anomaly
	count	1006.000000	1006.000000
	mean	57.054225	-0.146521
	std	17.513775	5.882679
	min	14.900000	-144.700000
	25%	41.000000	-2.200000
	50%	58.750000	0.000000
	75%	73.875000	2.400000
	max	87.500000	14.900000