# 의약품 제조와 AI

김 화 종



### 강의 목표



- ▶ 데이터 기반 의약품 품질관리의 중요성
- > 공정,설비,원료,제품의 품질관리 이해
- ▶ AI를 이용한 제조 품질관리
- ▶ 파이썬, 데이터 분석, 머신러닝 이해 및 적용

# 목차 1



- I. 의약품 품질관리와 AI
  - 제조 공정 품질관리와 AI 적용, 규제와 AI의 역할,
- 2.AI 원리 이해
  - 머신러닝의 동작 원리 이해
- 3. 파이썬 프로그래밍
  - (실습) 파이썬 문법 기초, numpy, pandas
- 4. 머신러닝 개요
  - 머신러닝 모델 구축 주요 개념, (실습) 머신러닝 모델 구현
- 5. 제조 데이터 처리
  - 데이터 수집과 데이터 전처리, 차원축소와 특성 엔지니어링, (실습) 데이터 전처리 실습
- 6. 탐색적 분석
  - 데이터 시각화, 통계적 분석, (실습) Matplotlib과 Seaborn
- 7. 클러스터링
  - 최적의 클러스터 수 선정, (실습) 거리기반 클러스터링

# 목차 2



- 8. 머신러닝 모델
  - 주요 머신러닝 알고리즘과 특징 이해, 손실 함수, 옵티마이저, 성능 지표 이해
  - 하이퍼파라미터 튜닝과 모델 최적화, (실습) 다양한 머신러닝 모델 성능 비교
- 9. 딥러닝 모델
  - MLP, CNN, RNN, Transformer, Graph, 이미지 분석, 전이학습, (실습) 신경망 구현 및 응용
- 10. 시계열 예측
  - 생산량 예측, 리드타임 예측, (실습) 시계열 예측 모델
- II. 예지 보수(Predictive Maintenance)
  - 설비 및 부품 장애 예측, (실습) 예측 모델
- 12. 패턴 인식과 이상 탐지
  - 시계열 패턴인식, 공정 이상 탐지, (실습) 이상 탐지 모델
- 13. 객체 검출
  - 제조 환경의 객체 검출 (object detection), (실습) 결함 예측 (defect detection)
- I4. 연속 공정과 AI
  - 연속 공정 데이터 분석과 최적 제어, 데이터 무결성, QbD

# 의약품 품질관리와 AI

#### Al Burden



#### Bio Burden → Document Burden → Digital Burden → Al Burden









### AI 도입 목적



- 시간과 비용 절감 및 품질 개선
  - ▶ 제품기획,시험,설비구축,수요예측,생산,운영,마케팅,SCM,피드백 분석 등 전 과정에 AI 적용중
  - ▶ 개발 시간과 비용 (원료,설비,운영,에너지,인력 등) 감소
  - ▶ 제품의 품질 향상
- 거의 모든 산업에 적용
  - ▶ 신약개발 → 임상시험 → 의약품생산 → 시판후관리 에 적용

# **Terminology**



- GMP, QbD (quality by design), continuouse manufacturing
- digital transformation (DT), industry 4.0, biopharma 4.0
- internet of thing (IOT), big data
- cloud, edge computing
- Al model, machine Learning, deep learning, LLM
- data integrity, data quality
- data security, data governance
- predictive maintenance
- smart factory, digital twin
- process design, optimization, control

# **FDA Discussion Paper**



https://www.fda.gov/media/165743/download



# 주요 내용



#### ▶ 필요성

- To produce quality drugs without excessive regulatory oversight
- A need for more flexibility in manufacturing
- Al for measurement, modeling, and control in pharmaceutical manufacturing

#### ▶ 대상

New Drug Application (NDA), Abbreviated New Drug Application (ANDA), or Biologics License Application (BLA).

# Al in Drug Discovery



In-silico Al models are widely used for drug discovery and development



#### K-MELLODDY



Federated Learning based AI model for drug discovery



# Al in Bio Manufacturing



- Predicting the impact of raw material variability
- Monitoring and control of bioreactors
- Process analytical technology
- Deviation management and change control
- Optimizing process design for scale up
- Predictive maintenance of equipments and utilities
- Predict in-process product quality and improve yields
- Visual inspection





# Industry 4.0





Industry 4.0 for pharmaceutical manufacturing: Preparing for the smart factories of the future, International Journal of Pharmaceutics Volume 602, 1 June 2021, 120554

#### BioPharma 4.0



#### Digitization $\rightarrow$ Automation $\rightarrow$ A







- 문서의 디지털화
   관리의 자동화
- 오류 최소화
- GMP 대응

- 분석의 자동화
  - 실시간 분석

- Deviation 예측
- 이상치, 품질 예측
- 시설.장치 예지 보수

### AI 도입 이슈



- ▶ AI 도입의 어려움
  - ▶ 성공했다는 결과만 기사화되고 어떻게 구축했는지 알려주지 않는다
  - 구축 기술을 이해하기 힘들다
  - ▶ AI 모델을 만들고 평가하기 위한 **데이터 확보**가 어렵다
- ▶ 기업마다 여건이 다르다
  - ▶ 다른 성공 사례를 그대로 도입할 수 없다
  - ▶ 시설, 방법, 목적, 구축기술 등이 다르다
  - ▶ 바이오 의약품 제조 공정은 특히 복잡하다
- ▶ 규제 산업에서의 AI 도입
  - ▶ AI 모델에 대한 명확하고 객관적인 평가 기준이 없다
  - ▶ AI의 장점(시간, 비용, 품질)을 위해 AI 도입은 필수적 트렌드

#### AI 도입의 어려움



- ▶ 관성의 법칙
  - ▶ 기존 사업 영역과 사업 방식을 바꾸기 어렵다
  - ▶ 변화 선택에 따른 실패/책임에 대한 두려움이 크다
- 내부 역량의 한계
  - ▶ 기존 업무를 병행하며 새로운 기술을 배우고 적용하기 어렵다
  - ▶ AI 관련 지식 부족
- ▶ 외부 기관/전문가와의 협업 능력
  - ▶ 스스로 변신하기 어려운 부분은 AI 전문가와의 지속적 협업 필요
  - ▶ 관련 기업과 협력하는 능력이 필수
- ▶ 데이터의 가치를 놓친다
  - 이미 보유한 데이터의 이해,이 데이터로부터 어떤 가치를 얻을지를 파악하지 못한다

# Al in manufacturing 분야



- Process Design and Scale-up
  - 최적의 프로세스 설계 파라미터 도출
- Process Monitoring and Fault Detection
  - ▶ 장비 장애, 부품, 생산품의 품질 예측
- Advanced Process Control (APC)
  - ▶ 센서 데이터 기반으로 최적의 제어
- Trend Monitoring
  - ▶ 고객 불만,개선 피드백 분석

#### **Advanced Process Control**



- 기존의 방식으로는 동시에 여러 입력 변수의 변화를 예측하기 어려웠다.
- ▶ APC 는 센서 데이터를 AI 모델로 처리하여 원하는 결과를 얻 기 위해 동적인 제어가 가능
- ▶ 향후 physics informed (또는 chemistry informed) AI 모델을 적용 하여 성능을 더 개선될 것

# **Smart Monitoring and Maintenance**



- 재고 관리, 예지 보수, 장애 예측 등이 가능하다
- ▶ 이미지 분석을 이용한 패키징, 라벨, vial 불량 예측
- ▶ 사람이 같이 개입하는 augmented Intelligence로 분류 성능을 높 인다

# Al is a Digital Reflex



#### For QC Application

#### 전통적 방식





#### **Digital Reflex**



- 문서, 규격 기반
- 경험, 노하우 중심
- Rule centric

- 데이터 기반
- 이상징후 빠른 대응
- Al centric

#### Al Risk



- Al Error
  - ▶ 입력 데이터 오류에 의한 AI 오류
- Al misuse
  - ▶ 전문성 없이 단순히 AI 결과를 잘못 채택
- Al bias
  - ▶ 데이터의 편향성,사회적 편향성이 AI 모델에도 반영될 수 있다
- Lack of transparency
  - ▶ AI의 구축, 활용, 설명에 대한 불명확성 (traceability와 explainability)으로 이해와 신뢰가 떨어지고 오류를 파악하기 어렵다
- Privacy and security
- ▶ Gaps in accountability : 여러 관계자의 책임 분산
- Obstacles to implementation

#### **Al Limitation**



- ▶ AI가 규제 과학을 대체할 수 없다
  - ▶ AI는 현미경, x-ray같은 훌륭한 **도구**이다
- ▶ AI는 논리적으로 동작하지 않는다
  - ▶ 반사운동 같이 입력 신호에 반응하는 것
  - ▶ 학습 데이터가 AI의 성능을 좌우한다
- ▶ AI는 설명력이 없다
  - 단계별로, 우리가 납득할 수 있는 답을 얻을 뿐

### AI 대응



- ▶ AI가 잘 하는 영역
  - ▶ 예측,생성,추천,최적화 작업
  - ▶ 속도도 빠르고, 지치지도 않고, 복제도 쉽다
- ▶ AI의 한계 영역
  - ▶ 감성적 능력 emotive capability
  - ▶ 창의성 creativity
  - ▶ 규제의 객관성

#### AI 도입과 규제



- ▶ DX/AI는 모든 산업 영역의 모든 단계에서 도입될 것
  - ▶ 신약개발,기획,마케팅,생산,피드백등
- 모델 개발과 검증 데이터 확보가 관건
  - ▶ <u>목적 지향 데이터 수집</u>
  - ▶ <u>다수 기관의 데이터 기반 협력 방안 필요</u>
- ▶ 구축, 평가, 규제를 위한 새로운 **지수** 발굴 필요
  - ▶ 규제는 합격 여부를 판정하는 것

# AI 원리 이해

### AI의 정의



- ▶ AI (인공 지능)
  - ▶ "컴퓨터가 마치 **지능이 있는 것처럼** 똑똑하게 동작하는 것"
  - 거의 모든 산업에서 이미 활용 중
- ▶ AI 구현 방법
  - 문법을 배워서 말을 할 줄 아는 능력을 구현?
  - 2. 전문가 지식이나 룰(공식)을 코딩한 "전문가 시스템(expert system)"?
  - 3. 데이터를 보고 스스로 학습하는 "머신러닝" 방식!







# 머신러닝 (machine learning)



- ▶ 현재 실용적으로 널리 사용되는 AI 구현 기술
  - ▶ 데이터를 보고 **스스로** 학습한다
- ▶ 사람의 지식이 개입되지 않는, <u>end-to-end 방식</u>으로 동작
  - ▶ 논리적인 해석이나 중간 값 확인을 필요로 하지 않는다
  - ▶ 사람은 **학습하는 기계**를 발명한 것





### AI의 정의



#### ▶ AI란

- ▶ "컴퓨터가 마치 **지능이 있는 것처럼** 똑똑하게 동작하는 것"을 말한다
- ▶ 내비게이터, 음악, 영화, 상품 추천, 예지정비 등
- ▶ AI가 특정한 기술을 사용해야만 하는 것이 아니다.예를 들어 신경망 (딥러닝)을 사용해야만 하는 것은 아니다
- ▶ AI를 구현하는 기술
  - 사람처럼 "생각하는 능력"을 구현하려고 시도했고 언어학, 기호학 기반의 접근을 했으나 성공하지 못했다
  - ▶ 전문가의 지식을 코딩하는 "전문가 시스템"도 성공하지 못했다
- ▶ 머신러닝 기반AI
  - ▶ 현재 동작하는 AI는, 데이터를 보고 스스로 학습하여 성능이 점차 개 선되는 <u>"머신러닝" 방식의 AI이다</u>

## DX/AI 도입 목적



- ▶ 현안 문제 해결
  - ▶ 가격/수요/판매/재고/물류/비용 예측, 경영 최적화, 안전, 장애관리, 예지보수, 자산관리, 빠른 제품시험, 제품설계, 지식관리, RPA 등
- ▶ 고객 요구 개선
  - ▶ 콜센터개선, 상담/거래 챗봇, 클레임 신속 분류/대응, 부품 준비, 마케팅 등 채널 분석, 타겟 마케팅 등
- ▶ 벤치마킹
  - ▶ 경쟁사 분석, 대체 상품 분석, 차별성 분석 등
- ▶ 혁신 제품/서비스 개발
  - ▶ 고객 분석,시장 분석,트렌드 분석,신약개발,의약품 제조 프로세스

#### AI 기본 기능



#### ▶ 예측 모델 (predictive model)

- ▶ 입력 데이터(X)를 보고 목적값(y)을 예측
- ▶ 회귀 예측 (regression)
  - ▶ 수요예측, 재고예측, 판매예측, 잔여수명예측, 성능예측,약효예측 등 **수치 예측**
- ▶ 분류 예측 (classification)
  - ▶ 사진판독, 양불판정, 기기 이상진단, 질병 예측, 단백질 결합 예측 등 <u>카테고리</u> <u>예측</u>

#### ▶ 생성 모델 (generative model)

- 어떤 조건에 맞는 텍스트, 이미지, 음악, 프로그램 코드, 약물후보 등을 생성하는 모델
- chatGPT, BioNeMo

## AI 활용 기능



#### ▶ 최적화 (optimization)

- 최적의 제어변수 선택
- ▶ 최적 운영환경 선택
- ▶ 최적 설계 (기구,약 제형 설계 등)

#### ▶ 추천 (recommendation)

- ▶ 상품추천, 영화 추천, 음악 추천, 약 처방, 네비게이터,자율운전 등
- ▶ 군집화 (clustering)
  - ▶ 특성이 유사한 샘플들을 그루핑하는 작업
  - ▶ 모든 연구는 군집화에서 시작된다

#### → AI (머신러닝)는 위 다섯가지 중 하나의 작업을 수행한다

# AI(ML) 적용 범위



- .. 기획 (서비스/제품)
- 2. 수요 조사 (이용자 분석)
- 3. 설계 (매뉴얼 관리)
- 4. 시험 (시간 단축)
- 5. 최적 제어 (비용과 효율 개선)
- 6. 장애 예측 (장비, 부품, 제품 품질 관리(QC))
- 7. 수요 예측, 생산 계획, 재고 예측, 물류 최적화 (SCM)
- 8. 마케팅,서비스/제품 추천 (CX)
- 9. 피드백 분석 (QA)

# AI(ML) 이용자 니즈



- ▶ 외부 고객의 니즈 (서비스/제품에 대한)
  - 비용과 시간 절감
  - ▶ **안전성** (UI 개선)
    - ▶ 오동작(실수)을 커버하는 인터페이스
  - ▶ **편리성** (UX 개선)
    - ▶ 설명이 필요 없는 인터페이스
  - ▶ **즐거움** (CX 개선)
    - Wants → Likes → Stickness
- ▶ 내부 고객의 니즈 (ML 솔류션에 대한)
  - ▶ 활용시의 **실제적인 효과** (정확도 개선, 비용과 시간 절감)
  - 도입 및 운영의 편리성 (데이터 입력의 편리성 등)
  - ▶ **투자비용** (개발비, 장비, 교육비 등)

## DX 추진 특징



- ▶ DX 도입 진입장벽이 낮아지고 있다
  - ▶ 네트워크 비용, 클라우드를 이용한 고속 연산 비용 감소
  - ▶ 공개 소프트웨어 사용으로 코딩의 진입 장벽이 낮아졌다
  - ▶ 기업간 경쟁이 치열하다
  - ▶ 그러나 **어디서, 어떻게 시작**해야 할지가 어렵다
- ▶ DX 추진 방법은 기업마다 다르다
  - ▶ 기업마다 비즈니스 모델, 보유한 데이터가 다르다
  - ▶ 의사결정자, 관리자, 실무자의 **이해도**가 서로 다르다

# AI 활용 방법



- ▶ AI 모델 직접 구현
  - ▶ 파이썬 프로그래밍
  - ▶ sklearn, tensorflow, keras, pytorch 등 패키지 활용
- ▶ AI 툴 이용
  - chatGPT (openAl)
  - gemini (Google)
  - Llama (Meta)
  - DALL-E (openAl)
  - Midjourney

## Al Impact



- ▶ 보고, 듣고, 쓰고, 말하는 지적 능력이 인간 수준을 넘었다
- ▶ 그림 그리기, 프로그래밍, **신약개발** 등으로 확대







## **At Crossing Point**





## **Paradigm Shift**



#### Logic-driven



- Natural Science
  - Physics, Chemistry, Biology, Mathmatics
- Experience-centric
- Knowledge-based

2012~2022



#### Data-driven



- Data Science
  - End-to-end model
- Al-centric
  - Machine Learning

## DX의 범위



BM 비즈니스혁신
AI 지능화
ICT 자동화

## DX의 구성



DX 비즈니스 모델 비즈니스혁신 AI 머신러닝 (지능화) 클라우드 빅데이터 IOT ICT 전자 통신 컴퓨터 데이터 (자동화) 디바이스 모바일 알고리즘 데이터 수집 센서 인터넷 서버 처리 신호처리 5**G** 분석 보안

### 자동화와 지능화



#### 자동화

- ▶ 프로그래머가 코딩한 **로직대로** 동작한다
- ▶ 정해진 알고리즘(플로우 차트)대로 업무를 빠르고 정확하게 수행
- ▶ 개발자(사람)의 지식과 경험이 성능을 좌우

#### ▶ 지능화

- ▶ 데이터를 보면서 모델(소프트웨어)의 성능이 점차 개선된다
- ▶ 학습에 사용하는 데이터의 양과 <u>다양성</u>에 따라서 성능이 향상
- 개발자 역할은 모델을 잘 만들고 좋은 데이터를 공급하는 것

#### DX 관련 기술 1



- ▶ 인공지능(AI)
  - 지능이 있는 것처럼 똑똑하게 일을 처리하는 소프트웨어
- ▶ 머신러닝(Machine Learning)
  - ▶ 컴퓨터가 데이터를 많이 볼수록 성능을 점차 개선하는 방법
- ▶ 빅데이터(Big Data) 분석
  - ▶ 대량의, 그리고 다양한 데이터 분석으로 일반적인(통계적인) 분석으로는 찾지 못하던 **새로운 insight**를 얻는 것
- ▶ 클라우드(Cloud)
  - ▶ 데이터 및 컴퓨팅 파워를 한 곳에 집중하여 비용 효율적으로 빅데이터 분석과 AI 구현을 가능하게 하는 기술
- ▶ IOT (Internet of Thing, 사물인터넷)
  - 사물에 센서, 통신 기능을 추가하여 빅데이터 수집을 용이하게 하는 기술

#### DX 관련 기술 2



- ▶ 데이터마이닝
  - ▶ 기 구축된 데이터베이스에서 **새로운** 지식을 얻는 것
- ▶ 비즈니스 인텔리전스
  - ▶ 데이터 분석을 통해 새로운 **비즈니스** 전략을 얻는 것
- ▶ 통계분석
  - ▶ 샘플 데이터로부터 전체 데이터의 속성을 파악하는 것

▶ 가설, 검정, 추정, 오차범위, 신뢰구간 등을 사용하며 수학적(논리적)

증명을 필요로 한다





# 빅데이터 분석







#### 통계 분석



- ▶ 표본(sample)으로부터 모집단(population)의 특성을 설명하는 것
- 수학적 설명을 위해서 오차범위, 신뢰구간, 가설, 검증 등을 필 요로 한다



## 동일한 평균, 표준편차, 상관계수





## 동일한 평균, 표준편차, 상관계수





## Robots



























#### defect detection



- ▶ 사람이 찾기 어려운 작은 결함을 찾는다
- ▶ 이미지 기반 작업 공정 실시간





#### Data, Data, Data









#### Federated Learning

#### Gboard



#### **MACHINE LEARNING LEDGER**

#### **CHESTRATION FOR DRUG DISCOVERY**

**JUNE 2019 - MAY 2022** 















# 파이썬 프로그래밍

## 파이썬 실행 환경



- ▶ 쥬피터 노트북 (Jupyter notebook)
  - ▶ PC에서는 Anaconda 설치
  - ▶ 구글 코랩 사용 colab
    - ▶ Chrome으로 접속
    - ▶ 구글 계정 가입(gmail) 구글 드라이브 사용
  - ▶ github.com 가입
- ▶ 쥬피터 노트북 특징
  - ▶ 모든 작업을 셀 단위로 수행
  - ▶ 코드 셀 프로그램 영역
  - ▶ 마크다운 셀 도큐먼트 영역

## 코랩 실행 환경





#### 쥬피터 팁



- ▶ 각 셀은 프로그램 코드 또는 마크업 문서 중 하나로 사용
  - ▶ 셀을 실행하려면 Shift + Enter 를 입력한다 (셀 실행후 커서가 다음 셀로 이동)
  - ▶ 셀을 Ctrl + Enter로 실행하면 셀 실행 후에 현재의 셀에 남아 있는다
- ▶ colab에서 셀에 대한 명령어 (ctrl + m + ...)
  - h : help
  - a : 위에 셀 추가 (above)
  - b : 아래에 셀 추가 (below)
  - d : 셀 삭제 (delete)
  - m : 문서 모드로 전환 (mark up)
  - y : code 모드로 전환
  - o : 출력 보이기/안보이기 (output)
  - '-' : 셀 둘로 나누기
  - 'shift' 두 개 이상의 셀 선택 후에 (ctrl + 클릭으로) : 셀 합치기

#### 파이썬 기초 문법



- ▶ 기본 변수
  - ▶ 정수,소수,문자열,논리값을 표현한다
- ▶리스트
  - ▶ 임의의 데이터를 목록을 만들어 담을 수 있다.[]로 표현된다
- ▶ 튜플
  - ▶ 상수화된 리스트이다. 값의 변경이 불가하다.()로 표현된다
- ▶ 사전(dictionary)
  - ▶ 모든 항목이 항상 "키(key)"와 "값(value)" 짝으로 구성. { }로 표현된다
- ▶ 논리 흐름
  - ▶ 조건의 만족을 논리적으로 판단한다 if, else, elif 사용
  - ▶ 반복을 위하여 for, while을 사용한다
- ▶ 함수
  - ▶ 사용자가 임의의 기능을 정의할 수 있다. def를 사용

## 기호 사용



- []
  - ▶ 리스트를 표현, x = [1,2,3]
  - ▶ 인덱싱을 표현, z = x[0]
- **)** 
  - ▶ 튜플을 표현
  - ▶ 함수 호출시 인자를 입력, x = function(a,b,c)
- **\** { }
  - ▶ 사전(dictionary)을 표현
  - ▶ 집합(set) 을 표시

#### 판다스



- ▶ 데이터프레임(DataFrame)을 사용하기 위한 파이썬 패키지
  - ▶ 데이터프레임은 2차원 테이블 구조로 "액셀"과 같은 용도로 사용된 다
  - ▶ (참고) I차원의 데이터를 다루기 위해서는 리스트가 사용된다
- 데이터 프레임 생성 방법
  - ▶ 딕셔너리로부터 만드는 방법
  - ▶ 배열, 리스트, 튜플로부터 만드는 방법
  - ▶ csv 파일을 읽어 만드는 방법
  - ▶ 액셀 파일을 읽어 만드는 방법

#### Series

- ▶ 데이터프레임에서 한 컬럼을 취하면 시리즈가 된다
- ▶ 시리즈는 리스트처럼 I차원 데이터인데, 인덱스가 붙어 있다

#### 데이터 프레임 생성



## 딕셔너리에서 데이터프레임을 만드는 예

df = pd.DataFrame(x)

|   | city | population | temp  |
|---|------|------------|-------|
| 0 | 서울   | 990        | True  |
| 1 | 부산   | 350        | True  |
| 2 | 대구   | 250        | True  |
| 3 | 대전   | 154        | True  |
| 4 | 광주   | 150        | False |

## 주요 함수



- ▶ 인덱스 설정
  - set\_index() 사용 인데스 원상복구: reset\_index() 사용
- 데이터프레임 합치기 (디폴트로 행 방향으로 합친다-샘플 추가)
  - ▶ concat() 사용
- ▶ 원하는 행 찾기, loc, iloc()
  - loc(): 특정 인덱스에 해당하는 샘플을 얻는다
  - iloc(): 정수형 순서 번호로 샘플을 얻는다
- ▶ 특정 컬럼을 기준으로 순서 정렬하기
  - df.sort\_values(['인구'])
- ▶ 데이터프레임 저장¶
  - to\_csv(): csv 파일로 저장
  - to\_excel(): 액셀 파일로 저장
  - 한글이 깨지는 경우 encoding='utf-8', 'cp949','euc-kr' 등의 옵션 사용

## 주요 함수



- ▶ 파일을 읽어 데이터프레임 만들기
  - ▶ read\_csv(): csv 파일을 데이터프레임으로 읽기
  - ▶ read\_excel(): 액셀, xlsx 파일을 데이터프레임으로 읽기merge
- ▶ 특정 열(컬럼)을 기준으로 두 데이터프레임 합치기
  - (참고) 같은 인덱스를 기준으로 합칠때는 join()을 사용한다
- groupby
  - ▶ 데이터프레임을 특정 조건에 맞는 그룹을 세분화하여 처리한다
  - ▶ 내부적으로 여러개의 데이터프레임으로 나누어진다

#### numpy



#### numpy

- 데이터프레임은 테이블 구조의 데이터를 편리하게 조작하기 위해서 사용한다
- 숫자만으로 구성된 데이터를 대상으로 "연산"을 하기 위해서는 어레이 (array)로 표현되어야 한다
  - 어레이를 ndarray(n-dimensional array)라고도 부른다
- 어레이를 사용하기 위해 넘파이 라이브러리를 사용한다

#### ▶ 리스트, 데이터프레임, 어레이의 차이

- 리스트는 데이터를 1차원 "목록"으로 만들어 조작하는 용도 (추가, 삭제, 변형 등)
- 데이터프레임은 2차원 테이블 구조의 데이터를 만들고 조작하는 용도
- 어레이는 연산을 위해 숫자만으로 구성된, 수학의 매트릭스와 같은 용도

## 주요 함수



- arange
  - ▶ range 타입의 "범위" 데이터를 생성한 후 이를 어레이로 만들어준다
- reshape
  - ▶ 어레이의 구조(shape)를 바꾼다
- savetxt()
  - ▶ 어레이를 csv 파일로 저장한다
- loadtxt()
  - ▶ csv 파일을 어레이로 읽기 (데이터프레임으로 읽지 않음)
  - 대용량 데이터인 경우, 데이터프레임으로 읽는 것보다 속도가 빠르다

### 함수 정의



#### ▶ 함수 사용

- 반복 사용되는 작업은 함수로 만들면 편리하게 다시 사용할 수 있다
- 함수를 정의할 때 def를 사용한다
- 함수를 호출할 때 인자(arguments)를 넘겨줄 수 있다
- 함수 실행 결과로 어떤 값을 받으려면 return 문을 사용한다

#### ▶ lambda, 익명 함수 정의

• def, return을 사용하지 않고 간단히 함수를 정의할 수 있다

#### ▶ map, 리스트에 함수 적용하기

- map의 첫번째 인자에는 함수를, 두번째 인자에는 데이터를 넣는다
- map은 리스트 외에도 튜플, 배열에 대해서도 사용할 수 있다
- lambda를 사용하여 함수 내용을 직접 정의할 수도 있다 list(map(lambda i: i\*10, data)

#### ▶ apply, 시리즈나 데이터프레임에 함수 적용

• apply는 리스트, 튜플, 배열에는 사용할 수 없다

#### 파일 다루기



- ▶ 파일 열기 open(), with로 열기
- ▶ csv, xlsx 파일 다루기
- ▶ zip 파일 다루기
- ▶ 폴더 내 파일 목록 다루기 (glob, listdir)
- ▶ 폴더/파일 생성과 삭제
- ▶ read\_csv 옵션
  - nrows=1000 # 상위 1000줄만 읽기
  - skiprows = 3 # 처음 3행 건너뛰기
  - skipfooter = 1000 # 맨 뒤의 1000행은 읽지 않기
  - usecols= (0,2,4) # 해당 컬럼만 읽기

#### 폴더 다루기



- 액셀 한글 인코딩
  - ▶ 문자의 인코딩은 기본적으로 utf-8 을 사용하나 한글의 경우 다른 인 코딩으로 저장되는 경우가 있다
    - ▶ encoding = 'cpc949', 'euc-kr'을 선택해야 하는 경우도 있다
- ▶ 현재 폴더 위치 보기
  - ▶ getcwd()를 사용한다 (current working directory)
- ▶ 폴더의 파일 목록 얻기
  - ▶ glob() 사용: 파일 타입을 편리하게 지정할 수 있다
  - ▶ listdir() 사용: 경로를 지정할 수 있다
- ▶ os 패키지에서 제공하는 함수
  - ▶ 폴더 생성 mkdir(), 폴더 위치 이동 chdir()
  - ▶ 파일 이름 변경 rename(), 파일 삭제 remove(), 폴더 삭제 rmdir()

# 머신러닝개요

#### 머신러닝 모델



- 수치를 예측하는 회귀, 카테고리를 예측하는 분류, 최적의 추 천 등을 수행하는 소프트웨어
- ▶ 데이터를 보고 학습하여 점차 성능이 개선된다



## 지도 및 비지도학습



- ▶ 지도 학습(supervised learning)
  - ▶ 정답이 있고 이를 예측하는 학습
  - ▶ 정답을 목적변수 (target variable) 또는 레이블(label)이라고 부른다.
- ▶ 비지도 학습 (unsupervised learning)
  - ▶ 정답이 없이 데이터에 내포된 의미(insight)를 찾는 것
  - ▶ 탐색적 분석,시각화,연관분석,클러스터링(군집화) 등
  - ▶ 주성분분석(PCA), 차원축소, t-SNE
  - > 언어 모델 등에서 대량의 텍스트를 이용한 사전 학습 등
  - ▶ 표현학습 (representation learning, 임베딩 학습) 등
    - ▶ 생성 모델은 표현학습을 통해서 이미지, 텍스트 등을 표현하는 방법을 미리 사전학습해야 한다

#### 머신러닝 모델



- 머신러닝에서는 모델을 만드는 것이 핵심이다.
  - 스팸 메일을 찾아내는 모델
  - 수익 예측 모델
  - ▶ 도난 카드 사용 검출 모델
- 수식은 가장 명확한 모델이다
  - ▶ 그러나 현실의 복잡한 현상은 수식으로 모델링하기 어렵다
  - ▶ 데이터 기반의 모델이 필요하다 **머신러닝 모델**
- 모델은 구조와 파라미터로 구성된다.
  - ▶ 모델 구조:모델의 동작 방식 (선형모델,트리모델,신경망 모델 등)
  - ▶ 모델 파라미터: 모델이 잘 동작하도록 학습된 가중치(weight)
    - y = ax + b
    - ▶ 위의 입출력 관계는 **모델 구조**이고, a, b 는 **모델 파라미터**임

#### 머신러닝 모델 구현



- ▶ 데이터 전처리
  - ▶ 모델의 성능을 높이기 위해서 결측치 처리, 이상치 처리, 스케일링, 카테고리 인코딩 등을 수행하는 것
- ▶ 훈련/검증 데이터
  - 모델을 만드는 데는 훈련 데이터를, 성능을 검증하는 데는 검증 데이 터를 사용한다



#### 훈련과 검증



- ▶ 모델이 데이터를 이용하여 학습하는 과정을 훈련 (training)이 라고 한다.
- 모델 파라미터 값 (예를 들어 선형 회귀에서 가중치의 값)의 초 기값은 랜덤한 값을 준다
- ▶ 모델을 훈련시킨 후에는 모델이 제대로 동작하는지 검증하기 위해서 검증데이터를 사용한다

#### 머신러닝 프로세스





결측치 처리 오류값 처리 스케일링 데이터 변환 . 카테고리 변환 . 로그, 역수 변환 특성공학 . 차원축소 . PCA 선형모델 로지스틱회귀 SVM 결정트리 랜덤포레스트 그라디언트부스트 KNN, Bayes CNN RNN

클러스터링 설명적 분석 . EDA, 시각화 회귀 예측 분류 예측 추천

# 머신러닝 모델 비교



| 머신러닝 유형 |           | 알고리즘                                        | 특징                                              |
|---------|-----------|---------------------------------------------|-------------------------------------------------|
| 지도학습    | 선형 계열     | 선형 모델, SVM<br>로지스틱회귀                        | 곱셈과 덧셈으로 점수를 구하고 이를<br>이용하여 회귀와 분류 예측           |
|         | 신경망       | MLP, CNN, RNN, Transformer<br>Graph Network | 매트릭스 연산을 기반으로 점수를<br>계산하며 활성화 함수 도입             |
|         | 트리 계열     | 결정 트리, 랜덤포레스트,<br>그라디언트부스팅                  | True/False 선택을 반복하여 회귀와<br>분류 예측 수행. 스케일링이 필요없다 |
|         | 기타        | kNN, 베이즈                                    | 특성 공간상의 거리를 기준, 또는<br>조건부 확률을 기준으로 예측           |
| 비지도학습   | 클러스터링     | k-means, DBSCAN                             | 특성 공간상 거리 또는 유사도를<br>기준으로 샘플을 그루핑               |
|         | 데이터<br>변환 | 스케일링, 로그변환,<br>카테고리 인코딩                     | 모델의 성능을 높이 위한 데이터<br>전처리                        |
|         | 차원 축소     | PCA, t-SNE                                  | 계산량을 줄이고 모델 성능을 향상,<br>또는 시각화를 위한 차원 축소         |

### 강화 학습



- Reinforcement Learning
- ▶ 샘플 입력마다 정답(label)이 있지 않지만 최종적으로 달성해야 할 목표를 알려주고 보상을 통해 학습 방법을 학습시킨다
- ▶ 게임과 같이 룰이 있고 시뮬레이션이 가능한 경우에만 동작





### 결정트리



- ▶ 분류 모델
  - ▶ 하위 그룹에 가능하면 같은 종류의 샘플이 모이도록 한다
- ▶ 회귀 모델
  - ▶ 하위 그룹의 샘플의 분산(variance)이 적도록 나눈다



# 머신러닝 모델 종류



| 머신러닝 유형 |           | 알고리즘                                        | 특징                                              |
|---------|-----------|---------------------------------------------|-------------------------------------------------|
| 지도학습    | 선형 계열     | 선형 모델, SVM<br>로지스틱회귀                        | 곱셈과 덧셈으로 점수를 구하고 이를<br>이용하여 회귀와 분류 예측           |
|         | 신경망       | MLP, CNN, RNN, Transformer<br>Graph Network | 매트릭스 연산을 기반으로 점수를<br>계산하며 활성화 함수 도입             |
|         | 트리 계열     | 결정 트리, 랜덤포레스트,<br>그라디언트부스팅                  | True/False 선택을 반복하여 회귀와<br>분류 예측 수행. 스케일링이 필요없다 |
|         | 기타        | kNN, 베이즈                                    | 특성 공간상의 거리를 기준, 또는<br>조건부 확률을 기준으로 예측           |
|         | 클러스터링     | k-means, DBSCAN                             | 특성 공간상 거리 또는 유사도를<br>기준으로 샘플을 그루핑               |
| 비지도학습   | 데이터<br>변환 | 스케일링, 로그변환,<br>카테고리 인코딩                     | 모델의 성능을 높이 위한 데이터<br>전처리                        |
|         | 차원 축소     | PCA, t-SNE                                  | 계산량을 줄이고 모델 성능을 향상,<br>또는 시각화를 위한 차원 축소         |

# 제조데이터처리