Pages 184-185 Exercices - Dérivées

Pour les exercices 123 à 126, f, g et h sont des fonctions définies sur R. Calculer la dérivée de ces trois fonctions.

$$f(x) = \sqrt{x^2 + 2}$$
, $g(x) = (3x + 1)^3$ et $h(x) = \frac{1}{(x^4 + 3)^2}$

124
$$f(x) = \frac{1}{(x^2 + x + 1)^3}$$
, $g(x) = \frac{1}{(e^x + 3)^4}$ et $h(x) = \sqrt{e^x + 1}$

125
$$f(x) = 3(1-x)^3$$
, $g(x) = (1-5e^x)^2$ et $h(x) = e^{1+x+x^2}$

126
$$f(x) = (2e^x - 1)^3$$
, $g(x) = \frac{1}{e^{-x} + 3}$ et $h(x) = \frac{e^{2x}}{e^{2x} + 3}$

127 Soit f la fonction définie sur \mathbb{R} par $f(x) = x\sqrt{x^2 + 4}$. Démontrer que pour tout réel x, $f'(x) = \frac{2(x^2 + 2)}{\sqrt{x^2 + 4}}$.

132 Soit *f* la fonction définie sur \mathbb{R} par $f(x) = 5e^{0.2x^2 + 0.5x}$. Déterminer une équation de la tangente à la courbe représentative de la fonction f au point d'abscisse 0.

134 Une question ouverte

Soit a et b des nombres réels. On considère la fonction fdéfinie sur [0; +\infty [par $f(x) = \frac{a}{1 + e^{-bx}}$.

La courbe \mathscr{C}_f représentant la fonction f est donnée ci-dessous. Elle passe par le point A(0 ; 0,5). La tangente à la courbe \mathscr{C}_f au point A passe par le point B(10; 1).

136 Soit f la fonction définie sur \mathbb{R} par $f(x) = (e^{1-0.5x} - 1)^2$. On note \mathscr{C} la courbe représentative de la fonction f.

- **1. a.** Déterminer les limites de la fonction f en $+\infty$ et en $-\infty$.
- **b.** En déduire que la courbe \mathscr{C} admet une asymptote.
- **2. a.** Calculer f'(x) et étudier son signe sur \mathbb{R} .
- **b.** Construire le tableau de variation de la fonction f sur \mathbb{R} .

128 FORMEL Soit fla fonction définie sur \mathbb{R} par $f(x) = \frac{3}{\sqrt{x^2 + 2}}$

Avec un logiciel de calcul formel, on a dérivé la fonction f et obtenu le résultat ci-dessous.

Retrouver ce résultat par le calcul.

129 Soit *f* la fonction définie sur $[0; +\infty[$ par $f(x) = \frac{1}{x+1}$ Calculer f'(x) puis f''(x) pour tout réel x de $[0; +\infty[$.

- **130** Reprendre l'exercice 129 avec $f(x) = \frac{1}{(1+x)^3}$.
- **131** Reprendre l'exercice 129 avec $f(x) = (2 3x)e^{1-x}$.

133 Soit f la fonction définie sur \mathbb{R} par $f(x) = xe^{x^2}$. Sur la figure ci-dessous, on a représenté la courbe \mathscr{C}_f représentative de la fonction f ainsi que ses tangentes d_1 et d_2 aux

Les tangentes d_1 et d_2 sont-elles parallèles ? Justifier.

135 Capacité 10, p. 175

Soit f la fonction définie sur \mathbb{R} par $f(x) = 3 + xe^{1-x}$.

On note \mathscr{C}_f la courbe représentative de la fonction f.

- **1.** Calculer la limite de f en $-\infty$.
- **2. a.** Montrer que pour tout réel x, $f(x) = 3 + \frac{xe}{x}$.
- **b.** Calculer la limite de f en $+\infty$. Quelle conséquence graphique peut-on en déduire?
- 3. a. Montrer que pour tout réel x, $f'(x) = (1 x)e^{1 x}$.
- **b.** Dresser le tableau de variation de f sur \mathbb{R} .

137 GALC Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \frac{x^2 + 2x + 3}{x^2 + 2}$$
 et % sa courbe représentative.

- **1. a.** Justifier que la courbe $\mathscr C$ admet une asymptote dparallèle à l'axe des abscisses.
- **b.** Avec la calculatrice, représenter \mathscr{C} et d.

Conjecturer la position de \mathscr{C} par rapport à d.

- c. Démontrer cette conjecture.
- **2. a.** Calculer f'(x) pour tout réel x.
- **b.** Dresser le tableau de variation de f sur \mathbb{R} .

- **1.** Déterminer la limite de la fonction f en $+\infty$.
- **2.** Calculer f'(x) pour tout réel x de]-3; $+\infty$ [.
- **3.** Construire le tableau de variation de la fonction *f*.

140 Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = 0.25x^4 + 0.5x^2 - 2x + 1.$$

On note f' la fonction dérivée de f sur \mathbb{R} et f'' la fonction dérivée de f' sur \mathbb{R} .

- **1.** Calculer les limites de f en $-\infty$ et en $+\infty$.
- **2.** Calculer f'(x), puis f''(x) pour tout réel x.
- 3. Justifier chaque donnée du tableau de variation de la fonction f' ci-dessous.

x	-∞	1	+∞
f'(x)		0	→ +∞

- **4. a.** Déterminer le signe de f'(x) sur \mathbb{R} .
- **b.** En déduire le tableau de variation de f sur \mathbb{R} .

142 On a mesuré expérimentalement, sur une durée fixée, le taux d'évolution du nombre de bactéries d'un type donné présentes dans un milieu à différentes températures.

On considère que la fonction f définie sur l'intervalle [-5; 43] par $f(t) = (-1.4t + 59)e^{0.2t - 4.75}$ modélise ce taux d'évolution (en pourcentage) en fonction de la température (en degré Celsius) pour des valeurs comprises entre -5°C et 43°C.

- Calculer f'(t) pour tout réel t de [-5; 43].
- Pour quelle température le taux d'évolution de ce type de bactéries est-il maximal?
- Résoudre l'inéquation f(t) < 0 dans l'intervalle [−5 ; 43]. Quelle information sur le développement de ce type de bactéries ce résultat fournit-il?

LE SAVIEZ-VOUS

On peut classer les bactéries selon les températures auxquelles elles se développent.

MÉTHODE À L'ORAL 🥠 🔊

- **139** On considère les fonctions f, g et h définies sur]3; $+\infty$ [$par f(x) = \frac{2x+1}{x-3}$, $g(x) = x+3\cos(x)$ et $h(x) = e^{3-x}$.
- **1.** Est-ce que les limites de ces fonctions en $+\infty$ se calculent par la même méthode? Exposer oralement la méthode à suivre pour calculer chacune de ces limites.
- 2. Expliquer comment on détermine la limite de la fonction f en 3.
- **3.** Pour la fonction h_i expliquer comment calculer sa fonction dérivée.

141 Une guestion ouverte

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = x^4 - x^3 + x^2 - 3x + 1.$$

Déterminer les variations de la fonction f sur \mathbb{R} .

143 PYTHON 🔁 La taille d'une population de rongeurs exprimée en centaines d'individus, est modélisée par la fonction f définie sur l'intervalle [0 ; +∞[par

 $f(t) = \frac{3e^{0.5t}}{e^{0.5t} + 2}, \text{ où } t \text{ représente}$

MATHS & SVT

le temps écoulé depuis l'année 2015, exprimé en années.

- a. Calculer f(0) et interpréter ce résultat.
- b. Montrer que: $f(t) = 3 \frac{6}{e^{0.5t} + 2}$
- c. En déduire la limite de f quand t tend vers +∞.
- a. Montrer que pour tout réel t de [0; +∞[,

$$f'(t) = \frac{3e^{0.5t}}{\left(e^{0.5t} + 2\right)^2}$$

- b. Établir le tableau de variation de f sur [0; +∞[.
- 3. Recopier et compléter le programme ci-dessous afin que la fonction rongeur retourne l'année à partir de laquelle il y aura plus de 250 rongeurs.

```
from math import*
def rongeur():
   t=0
   p=1
       t=t+1
        p=3*exp(0.5*t)/(exp(0.5*t)+2)
    return(....)
```