5G PHY Layer Processing – Transport Block Segmentation

Rohit Budhiraja

Simulation-Based Design of 5G Wireless Standards (EE698H)

Agenda for today

- Discuss transport block segmentation
 - Section 5.2.2 of 36.218
- Very very briefly LDPC encoding
 - Reference Chap 4.1.7.3 of 5G NR by SassanA for LDPC

Recap – 5G MAC-PHY interface at BS and UE

- MAC layer will pass data and control to PHY layer to process
- Control information MCS index,
- PHY has a transport block (data payload) which needs to be
 - First encoded at a particular rate and
 - Later mapped using 4/16/64/256-QAM
- Data payload in 5G language- Physical Downlink Shared Channel (PDSCH)
- Control information in 5G language Physical Downlink Control Channel (PDCCH)

Transport block segmentation

- Maximum input code block size which 5G LDPC encoder can process $(= K_{cb}) 8448/3840$
- Transport block size can be greater than LDPC code block size
 - Maximum Transport block size (for MCS-26 and 275 RBs)- 319874
- ullet TB should be segmented if TB length + 24-bit TB-CRC = $B > K_{cb}$

CRC for segmented code blocks

- Why not limit the maximum input code block size of LDPC encoder to largest TB size
 - Decoding complexity increases with increase in code block length
 - To reduce the encoding/decoding time by running multiple LDPC encoders/decoders in parallel
- CRC is computed for each segmented code block along with transport block
 - Allows error detection at the segmented code-block level and request for their retransmission
- Why do we need CRC for transport block when each segmented code-block has a CRC
 - Duplication of efforts?
 - Different polynomials for transport block CRC and segmented code-block CRC
 - Allows detection of any residual errors

Transport block segmentation (1)

- Maximum input code block size which 5G LDPC encoder can process $(= K_{cb}) 8448/3840$
- Transport block (TB) size can be greater than LDPC code block size
 Maximum TB block size (for MCS-27 and 275 RBs)- 319784,
- ullet TB should be segmented if TB length + 24-bit TB-CRC = B > K_{cb}

Transport block segmentation (2)

- C = total number of segmented code-blocks
- If C = 1, 24-bit TB-CRC is only used
- If C>1, an additional CB-CRC of length (L=24) is attached to each codeblock

Wrong way of segmenting a transport block (1)

- Consider this system configuration which we use throughout today's class
 - Assume a user is allocated 70 resource blocks over a slot of 14 symbols
 - MCS-16 (16-QAM), which has a code rate of 658/1024 = 0.642
- MAC will send a transport block of size 28168 bits
 - Will calculate later

• B = 28192 bits that include 28168 data bits and 24 bits transport block CRC (TB-CRC)

Wrong way of segmenting a transport block (2)

- Segment it into 3 code blocks of size 8448 bits and one of size $28192-8448\times 3=2848$ bits
 - Coding gain is less
- Segmentation block ensures that a transport block is divided into equal size code-blocks
- BLER performance is limited by the smallest transport block size
 - Coding gain is less

Segmentation details - as in the standard

• Total number of code-blocks C is determined as below:

$$\begin{array}{ll} \text{if } (B>K_{cb}) & L=24, \quad C=\lceil B/(K_{cb}-L)\rceil, B'=B+C\times L \\ \text{if } (B\leq K_{cb}) & L=0, \quad C=1, B'=B \end{array}$$

• B' is effective payload length. Our example

$$C = \lceil B/(K_{cb} - L) \rceil = \lceil 28192/(8448 - 24) \rceil = 4$$

 $B' = B + C \times L = 28192 + 4 \times 24 = 28288$

• Each code block size : $K' = \lceil B'/(C) \rceil = \frac{28288}{4} = 7072$. Not done like this.