

Estatística

Sérgio Manuel Salazar dos Santos, Nº: 1020881

22 de Dezembro de 2019

Conteúdo

.1	Introdu	ção	1
.2	O conju	unto de dados	1
.3	Metodo	ologia Estatística	4
	.3.1	Indice de Confiançã tempo médio TEE	4
	.3.2	Verificar diferença de valores num intervalo	4
	.3.3	Verificar diferenças entre as regiões	5
.4	Resulta	dos e interpretação	6
.5	Conclus	sões	6

Resumo

Este trabalho consiste no estudo de Estatística das Entregas Expresso em duas regiões **A** e **B**, as variaveis em estudo é o tempo de demora das entregas e a variavel de numero de encomendas entregues num determinado unidade de tempo [u.t.]. Nestas situações foram retiradas 120 e 90 amostras nas duas regiões respectivamente. A primeira é uma distribuição continua, o tempo, e a segunda uma distribuição discreta.

As materias abordadas vai ser Amostragem, Estimação de parâmetros e Testes de Hipóteses

.1 Introdução

As variáveis consideradas são:

- Regiao (REG): variável nominal com dois niveis Regiao A Região B
- Tempo de entrega (TEE), por encomenda: Variável expressa em u.t.
- Número de encomendas entregues (NEE) por u.t.

Admitindo que a amostra disponível é uma amostra aleatória representativa das populações.

Neste relatorio esta-se a trabalhar com duas grandezas precisamente o tempo (TEE) e quantidade por u.t (NEE), temos recolhidos 120 registos **TEE** na qual pela regra de sturges c = int(1+3.3log(n)), determina-se que é necesario sete [7] classes.

Podemos obter a amplitude de cada classe h = b - a e sua marca $x_i = \frac{a+b}{2}$.

.2 O conjunto de dados

 X_{i_A} - "Variavel aleatoria que representa o tempo de demora na Região **A** da entrega de uma encomenda Expresso em u.t." i=1,2,3,....,120

 X_{i_B} - "Variavel aleatoria que representa o tempo de demora na Região **B** da entrega de uma encomenda Expresso em u.t." i=1,2,3,....,120

Abaixo o resultado da tabela TEE:

h_i	CLASSE	MARCA	n_{i_A}	n_{i_B}	$\frac{n_{i_A}}{h_i}$	$\frac{n_{i_B}}{h_i}$	f_{i_A}	f_{i_B}	F_{i_A}	F_{i_B}
4	[5,10[7,5	8	1	2	0,25	0,0667	0,0083	0,0667	0,0083
4	[10,15[12,5	16	18	4	4,5	0,1333	0,15	0,2	0,1583
4	[15,20[17,5	40	28	10	7	0,3333	0,2333	0,5333	0,3917
4	[20,25[22,5	25	41	6,25	10,25	0,2083	0,3417	0,7417	0,7333
4	[25,30[27,5	26	22	6,5	5,5	0,2167	0,1833	0,9583	0,9167
4	[30,35[32,5	4	8	1	2	0,0333	0,0667	0,9917	0,9833
5	[35,40]	37,5	1	2	0,2	0,4	0,0083	0,0167	1	1
			n=120	n=120						

 n_i - frequência absoluta f_i - frequência relativa F_i - frequência acumulada

Recorrendo ao excell obeteve-se os seguintes resultados:

Média aritmetica dados classificados

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{c} x_i n_i = \sum_{i=1}^{c} x_i f_i$$

 Variância de uma amostra dados classificados
 $s^2 = \frac{1}{n-1} \sum_{i=1}^{c} (x_i - \bar{x})^2 n_i$

Estatística	X_A	X_B
Mínimo	7,5	7,5
$Q_1:1^o$ Quartil	17,5	17,5
m_d : mediana	17,5	22,5
$Q_3:3^o$ Quartil	27,5	27,5
Máximo	37,5	37,5
\bar{X} : Média	20,0417	21,5417
s: desvio-padrão	6,4494	6,0909
m_o : moda	17,5	22,5
Tamanho amostral [n]	120	120

Figura 1: TEE

A mediana pode ser obtida pela frequencia acumulativa quando esta é igual a 50%, ou seja, $F_i(Mediana) = 0.5$

Linearização mediana TEE

Regiao A:
 Regiao B:

$$0.2 \implies 12.5$$
 $0.3917 \implies 17.5$
 $0.5333 \implies 17.5$
 $0.7333 \implies 22.5$
 \therefore
 \therefore

 Midiana A =
 Midiana B =

 $12.5 + 0.9 \times (17.5-12.5) = 17$
 $17.5 + 0.317 \times (22.5-17.5) = 19.085$

 com:
 com:

 skew = $-0,1051$ e kurt = $-0,4016$
 skew = $0,1119$ e kurt = $-0,1835$

Na prática, considera-se que a qualidade da aproximação é suficientemente boa quando $n \ge 30$. Pode-se tomar que $\delta \cong s$.

$$\begin{cases} \mu & \Longrightarrow \\ \delta & \bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \sim N(\mu; \frac{\delta^2}{n}) \\ \bar{x}_{A_0} = 20,0417 & \bar{x}_{B_0} = 21,5417 \\ \delta_A = 6,4494 & \delta_B = 6,0909 \end{cases}$$

Tratamento dos dados da Segunda Variavel Aleatótia

 Y_{i_A} - "Variavel aleatoria que representa o numero de encomendas entregues pela Expresso na Regiao **A** por u.t." i=1,2,3,,90

 Y_{iB} - "Variavel aleatoria que representa a numero de encomendas entregues pela Expresso na Regiao **B** por u.t." i=1,2,3,,90

Abaixo o resultado da tabela NEE:

Y_i	n_{i_A}	n_{i_B}	f_{i_A}	f_{i_B}	F_{i_A}	F_{i_B}
3	6	3	0,0667	0,0333	0,0667	0,0333
4	8	6	0,0889	0,0667	0,1556	0,1
5	19	13	0,2111	0,1444	0,3677	0,2444
6	15	7	0,1667	0,0778	0,5333	0,3222
7	13	19	0,1444	0,2111	0,6778	0,5333
8	11	15	0,1222	0,1667	0,8	0,7
9	6	8	0,0667	0,0889	0,8667	0,7889
10	5	11	0,0556	0,1222	0,9222	0,9111
11	4	3	0,0444	0,0333	0,9667	0,9444
12	0	2	0	0,0222	0,9667	0,9667
13	2	1	0,0222	0,0111	0,9889	0.9778
14	1	0	0,0111	0	1	0,9778
15	0	1	0	0,0111	1	0,9889
16	0	1	0	0,0111	1	1

Estatística	Y_A	Y_B
Mínimo	3	3
$Q_1:1^o$ Quartil	5	6
m_d : mediana	6	7
$Q_3:3^o$ Quartil	8	9
Máximo	14	16
\bar{Y} : Média	6,6111	7,5111
s : desvio-padrão	2,3112	2,5140
m_o : moda	5	7
Tamanho amostral [n]	90	90

Figura 2: NEE

Na Região **A** a Média > Mediana > Moda com skew = 0.74553 e kurt = 0.49789 Na Região **B** a Média > Mediana = Moda com skew = 0.67659 e kurt = 1.01076

$$\begin{cases} \mu & \Longrightarrow \\ \delta & \\ \bar{y}_{A_0} = 6,6111 & \bar{y}_{B_0} = 7,5111 \\ \delta_A = 2,3112 & \delta_B = 2,5140 \end{cases}$$

$$\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n} \sim N(\mu; \frac{\delta^2}{n})$$

.3 Metodologia Estatística

.3.1 Indice de Confiançã tempo médio TEE

Estimação do tempo médio para as regiões A e B com um indice de confiança de 95%.

$$IC_{1-\alpha} = [A, B]$$
; para $1 - \alpha = 0.95$, $\alpha = 0.05$, $\frac{\alpha}{2} = 0.025$
Zona critica $Z_c = Z_{1-\frac{\alpha}{2}} = \Phi^{-1}(0.975) \cong 1.96$
 $P(A \le \mu \le B) = 1 - \alpha$
 $\triangle = Z_c \times \frac{\delta}{\sqrt{n}}$
 $A = \bar{x} - \triangle$ and $B = \bar{x} + \triangle$
 \therefore
 $IC_{A_{0.95}} = [18.8877, 21.1956]$ and $IC_{B_{0.95}} = [20.4519, 22.6314]$

Pode-se estimar que o tempo médio [μ] de entrega na população esta dentro dos intervalos acima mencionados com 95% de confiança.

.3.2 Verificar diferença de valores num intervalo

Verificar se os dados permitem afirmar que existe diferença significativa entre a % de períodos com menos de 6 entregas por u.t. na região A e na região B. Responda com base num intervalo de confiança de 97%.

Destribuição discreta:

$$\begin{split} \bar{y}_{A_0} &= 6,6111 & \bar{y}_{B_0} = 7,5111 & n = 90 \\ \delta_A &= 2,3112 & \delta_B = 2,5140 \\ \\ \left\{ \begin{array}{l} \mu \\ \delta \end{array} \right. & \Longrightarrow & \bar{Y} = \frac{\sum_{i=1}^n Y_i}{n} \sim N(\mu; \frac{\delta^2}{n}) \\ \\ P(Y_A < 6) &= P(Y_A \leqslant 5) = F_{i_B}(5) \cong 0,3677 & \text{e} \quad P(Y_B < 6) = P(Y_B \leqslant 5) = F_{i_B}(5) \cong 0,2444 \\ \hat{P}_A - \hat{P}_B \sim N\left(p_A - p_B; \frac{p_A q_A}{n_A} + \frac{p_B q_B}{n_B}\right) & \triangle = z_{(1 - \frac{\alpha}{2})} \sqrt{\frac{\hat{p}_A \hat{q}_A}{n_A} + \frac{\hat{p}_B \hat{q}_B}{n_B}} & q = (1 - p) \\ IC_{97\%}(\hat{P}_A - \hat{P}_B) &= [(\hat{p}_A - \hat{p}_B) - \triangle; (\hat{p}_A - \hat{p}_B) + \triangle] \\ \hat{P}_A - \hat{P}_B \sim N\left(0, 1233; 0,02788\right) & z_{(1 - \frac{\alpha}{2})} = \phi^{-1}(0,985) = 2,1701 \end{split}$$

Recorrendo a calculadaora casio fx - 9860GII:

$$\triangle = InvNorm(0.985)\sqrt{\frac{0.3677(1-0.3677)}{90} + \frac{0.2444(1-0.2444)}{90}} \cong 0.3677$$

$$\therefore IC_{97\%}(\hat{P}_A - \hat{P}_B) = [(\hat{p}_A - \hat{p}_B) - 0.3624; (\hat{p}_A - \hat{p}_B) + 0.3624]$$

.3.3 Verificar diferenças entre as regiões

Testar se a região (REG) tem um efeito estatisticamente significativo sobre TEE e NEE ao nível de diferença de médias. Considrere uma significância à sua escolha inferior ou igual a 5%. Use o critério do valor de prova para fundamentar a decisão.

$$\begin{cases} H_0: & \mu_A - \mu_B = 0 \\ H_1: & \mu_A - \mu_B < 0 \end{cases}$$

Condição TEE:

$$\begin{cases} \mu = 0 \\ \delta = s \end{cases} \implies \bar{X}_A - \bar{X}_B \sim N\left(0, \frac{\delta_A^2}{n_A} + \frac{\delta_B^2}{n_B}\right)$$

$$z_0 = \frac{\bar{x}_A - \bar{x}_B}{\sqrt{\frac{\delta_A^2}{n_A} + \frac{\delta_B^2}{n_B}}} \qquad RC_z =]-\infty, -z_{1-\alpha}] \qquad pvalue = P(Z < z_0)$$

$$z_0 = \frac{\bar{x}_A - \bar{x}_B}{\sqrt{\frac{\delta_A^2}{n_A} + \frac{\delta_B^2}{n_B}}} \qquad RC_z =]-\infty, -z_{1-\alpha}] \qquad pvalue = P(Z < z_0)$$

Condição REE:

.4 Resultados e interpretação

fazer tabela só com resultados

.5 Conclusões

A Destribuição normal tem a Média = Mediana = Moda, devido a ter uma destribuição simetrica, quando estamos a analizar valores discretos isto não acontece devido a não ser simetrico podendo ter varios casos diferentes, e quanto menor o numero de amostras da população maior a dificuldade de se poder inferir e estimar valores.

Falar da skew e curt.

Lista de Figuras

1	TEE .																				2
2	NEE .																				3
П	1																				

¹Apontamentos Estatistica