

Agenda

Introduction

Background Problem Statement

Exploratory Data Analysis

Overview of Datasets Data Cleaning EDA

Preprocessing

Wine Traits embedding & encoding from reviews

Modelling

Conclusion

01

Introduction

Background | Problem Statement

Background

- More than 10,000 varieties of wine globally
- As a consumer, draining task to pick the right wine
- Retailers worried that the negative experience would be bad for business

Problem Statement

Client: A wine retailer

- Develop a wine recommender system that gives suggestions cater to consumer's needs
 - o Mitigate decision fatigue burden

02

Exploratory Data Analysis

Datasets Overview | Data Cleaning | EDA

Datasets

- Wine reviews that were scraped from WineEnthusiast webpage
- List of standardized wine traits descriptors
 - Derived from RoboSomm wine wheels

Datasets

Wine ratings, given by wine tasters, follow the 100-points scale

- 50-59 wines are flawed and undrinkable
- 60-69 wines are flawed and not recommended but drinkable
- 70-79 wines are flawed and taste average
- 80-84 wines are 'above average' to 'good'
- 85-90 wines are 'good' to 'very good'
- 90-94 wines are 'superior' to 'exceptional'
- 95-100 wines are benchmark examples or 'classic'

Data Cleaning

Missing values

- Wine Reviews = Removed
- Wine Traits Descriptor = No issue

Duplicate records

- Wine Reviews = Left untouched
 - Small volume (8% of total dataset)
- Wine Traits Descriptor = No issue

- New York Wines fared poorly in comparison to wines from other states
- Other states wines fared similarly to each other

- Weak Positive correlation (0.354)
- Outliers where expensive wines are rated below cheaper ones

Some key wine traits are present in most of the review descriptions

Top 25 words in terms of Count

Similar wine traits are in the top 25 words when accounting for Term Frequency-Inverse Document Frequency

03

Preprocessing

Wine Traits embedding & encoding from reviews

description

This blend of Sangiovese, Malbec, Cabernet Sauvignon, Petite Sirah and other varieties plays well to type. It shows a wealth of ripe, dusty black fruit that's richly round and soft on the palate, approachable and lightly oaked.

ripe dust fruit rich

traits

light_bodied oak

Wine Traits embedding

- Extract out key words in review descriptions
- Map raw words into level 3 wine trait descriptors (RoboSomm Wine Wheels)
- Append the wine traits terms into a string under a new column

- Snowball Stemmer
- Train Phrases model from gensim

description	desc_wd_count	traits
This blend of Sangiovese, Malbec, Cabernet Sauvignon, Petite Sirah and other varieties plays well to type. It shows a wealth of ripe, dusty black fruit that's richly round and soft on the palate, approachable and lightly oaked.	37	ripe dust fruit rich round soft light_bodied oak

- Scope down the wine traits terms to the top 150
 - Reduce from 653 trait terms
- Perform binary encoding to set the wine traits as a filter criteria

- If specific wine traits are relevant to the wine, the integer under the wine trait term will show as 1
- Otherwise, it will show as 0

04

Modelling

Apply various algorithms from Scikit-Surprise Model Evaluation

surprose

A Python scikit for recommender systems.

- A Python scikit library
 - Build recommender systems that deal with explicit rating data.
- Recommender Algorithms available
 - Basic (Normal, Baseline)
 - k-NN based (KNN Basic, KNN with Means, KNN with ZScore, KNN Baseline)
 - Matrix Factorization based (SVD, NMF)
 - Slope One
 - CoClustering

$$ext{RMSE} = \sqrt{rac{1}{|\hat{R}|} \sum_{\hat{r}_{ui} \in \hat{R}} (r_{ui} - \hat{r}_{ui})^2}.$$

- Root Mean Squared Error (RMSE) is calculated based on comparing the estimated rating to the actual rating for each taster-wine pair
- The lower the RMSE, the better the model performs

$$Precision@k = \frac{|\{Recommended \text{ items that are relevant}\}|}{|\{Recommended \text{ items}\}|}$$

- A wine is considered relevant if actual rating > threshold.
- A wine is considered recommended if
 - a. Estimated rating > Threshold
 - b. Among the k highest estimated ratings (i.e. Top 10 recommendations if k=10)
- The rating threshold for relevant wines is set at 90
 - Closest point to the median score

Andollina	Model	Root Mean Squared Error (RMSE)	Precision@k
Nodelling	Pure Randomized Recommender (Baseline)	n/a	0.36
	KNN Baseline (Tuned)	1.828586	0.751706
	Baseline Predictor	1.921808	0.751706
	KNN Basic	1.853119	0.751706
	KNN Means	1.853373	0.751706
	KNN ZScore	1.853372	0.751706
	KNN Baseline	1.828589	0.751706
	Slope One	1.853719	0.751706
	Co-clustering	1.858452	0.749706
	SVD	1.830108	0.659683
4.	Normal Predictor	2.67958	0.605464
	NonNegative Matrix Factorization	2.123324	0.582563
		<u> -</u>	

Recall the rating threshold for relevant wines is set at 90 (Closest point to median)

Threshold for Relevant wines	89	90	91
Precision@k	0.892143	0.751706	0.633214

- When tuning the rating threshold for relevant wines
 - Threshold = 89, model becomes too lenient
 - Threshold = 91, model becomes too strict

05

Conclusion

Recommendation | Future Work | Streamlit App Experience

Conclusion & Recommendation

Best Recommender System Model

- KNN Baseline (Tuned)
 - Maximum no. of neighbors to account for aggregation = 35
 - Cosine Similarity Measure
- Precision@k = 0.751706 (Highest)
- RMSE = 1.828589 (Lowest)

Conclusion & Recommendation

Name	Estimated Rating	Actual Rating
Charles Smith 2006 Royal City Syrah (Columbia Valley (WA))	91.557454	100
Cayuse 2008 Bionic Frog Syrah (Walla Walla Valley (WA))	91.557454	100
K Vintners 2013 The Hidden Northridge Vineyard Syrah (Wahluke Slope)	91.523150	95
Cayuse 2011 En Chamberlin Vineyard Syrah (Walla Walla Valley (OR))	91.466545	99
Cayuse 2009 En Chamberlin Vineyard Syrah (Walla Walla Valley (OR))	91.466545	99
Alpha Omega 2012 Stagecoach Vineyard Cabernet Sauvignon (Atlas Peak)	91.448946	99
Alpha Omega 2012 ERA Red (Napa Valley)	91.448946	99
Doyenne 2008 Grand Ciel Vineyard Syrah (Red Mountain)	91.429456	95
Williams Selyem 2012 Eastside Road Neighbors Pinot Noir (Russian River Valley)	91.397192	95
Dutton-Goldfield 2013 Dutton Ranch Cherry Ridge Vineyard Syrah (Russian River Valley)	91.397192	95

60% of recommendations are in the highest tier of quality

Future Work

- Collect more data & update database regularly
 - New wines (Items)
 - Ratings from Tasters (Users)

• To re-train the wine recommender regularly with new data

App Workflow

User Inputs

Select wine traits from the dropdown list or leave it blank if indifferent

Output

https://leewanxian-wine-recommender-app-44l3c7.streamlit.app/

Any Questions?

CREDITS: Diese Präsentationsvorlage wurde von **Slidesgo** erstellt, inklusive Icons von **Flaticon**, Infografiken & Bilder von **Freepik**