

产品规格书

MJIOT-AMB-01 WIFI 模块外观

目录

1. 产品概述	<u></u>	4
1.1 特点	<u> </u>	5
1.2 主要	更参数	6
2. 接口定义		7
3. 外型与尺	[寸	8
4. 性能描述	<u></u>	9
4.1. M	CU	9
4.2. 存	· · · · · · · · · · · · · · · · · · ·	g
4.2	2.1. 内置 SRAM FLASH 与 ROM	9
4.3. I		11
4.4. 建	建议工作环境	11
5. RF 参数		11
6. 功耗		12
7. 数字管脚	□I/O 电气特性	13
8. 模块安装	注意事项	15
9. AT 指令 i	透传模式使用 MJIOT-AMB-01 模块	16
10. MJIOT-AI	MB-01 模块 JTAG/CMSIS-DAP 调试	17
11. MJIOT-AI	MB-01 外围硬件参考设计	18
12. 公司介约	绍	19
13. 联系我们	77	10

1. 产品概述

MJIOT-AMB-01 是一个高度集成的单芯片低功耗 802.11n 无线局域网(WLAN)网络控制器.它集成一个 ARM-CM3 内核,无线局域网 MAC,WLAN 基带和射频 RF 在一颗单芯片。它可以提供了一个可配置的一些 GPIO 用于配置不同的应用和控制。瑞昱 RTL8710AF 内部集成了内存和 flash 可以完成所有的 wifi 协议栈功能,还提供应用程序开发所需要的的内存和 flash。

图 1 瑞昱 RTL8710AF 结构图

MJIOT-AMB-01 是一个完整且自成体系的 WiFi 网络解决方案,能够独立运行,也可以作为从机搭载于其他主机 MCU 运行。MJIOT-AMB-01 在作为设备中唯一的应用处理器时,使用我们提供的sdk,根据客户的需求定制方案,不仅可以降到整个产品的价格,也可以方便后续的维护升级。

另外一种情况是,MJIOT-AMB-01 负责无线上网接入承担 WiFi 适配器的任务时,可以将其添加到任何基于微控制器的设计中,连接简单易行,只需通过 I2C/UART/spi 硬件接口,使用我们提供的AT 指令即可实现物联网产品的开发。

MJIOT-AMB-01 强大的片上处理和存储能力,使其可通过 GPIO 口集成传感器及其他应用的特定设备,实现了最低前期的开发和运行中最少地占用系统资源。

1.1 特点

- ❖ 支持 802.11 b/g/n 模式, g 模式最高传输速率 54Mbps, n 模式最高传输速率 150Mbps
- ❖ 内置低功耗 32 位 ARM-CM3 CPU
- ❖ 内置 TCP/IP 协议栈
- ❖ 内置 PLL、稳压器和电源管理组件
- ❖ WiFi @ 2.4 GHz , 支持 WPA/WPA2 安全模式
- ❖ 支持 freeRtos 嵌入式操作系统, LWIP 网络协议栈
- ❖ 支持 J-Link/JTAG/CMSIS-DAP 调试
- ❖ 支持两路高速串口(最高波特率 4M b/s) 和一个 log 串口,支持可编程时钟同步和发送接收 FIFO
- ❖ 一个 SPI 接口,支持 SPI 主从模式和 DMA、主模式波特率最高 10.4MHz,从模式波特率最高 2.6MHz.UART(最高 4M)
- ❖ 一个 I2C、支持 SPI 主从模式和 DMA, 最高访问速度是 3.4Mb/s
- ❖ 支持最多 17 个 GPIO
- ❖ 支持 8 个时钟是 32.768KHz 的定时器
- ❖ 支持 STA/AP/STA+AP 工作模式
- ❖ 支持 Smart Config 功能(包括 Android 和 iOS 设备)
- ❖ 802.11b 模式下+ 17 dBm 的输出功率
- ❖ 待机状态消耗功率小于 1.0 mW (DTIM3)
- ❖ 工作温度范围: -20℃ 85℃

1.2 主要参数

表 1 介绍了该模组的主要参数。

表 1 参数表

类别	参数	说明		
无线参数	无线标准	802.11 b/g/n		
无线参数	频率范围	2.4GHz-2.5GHz (2400M-2483.5M)		
	封装尺寸	QFN48		
	CPU	ARM Cortex M3 (83MHz)		
	ROM/RAM/Flash	1MB / 512KB /1MB		
	PWM	最大支持 4 个		
	SPI	最大支持 1 个		
11	UART	2 个高速串口(波特率最高 4Mbps), 1 个低速串口		
Hardware	I2C	最大支持 1 个		
Paramaters	GPIO	最大支持 17 个		
	工作电压	3.0~3.6V (建议 3.3V)		
	工作温度	-20°~85°		
	存储温度	常温		
	封装大小	24mm*16mm*0.8mm		
	无线网络模式	station/softAP/SoftAP+station		
	数据吞吐量	802.11g 最大为 54Mbps , 802.11g 最大为 150Mbps		
	安全机制	WPA/WPA2		
	加密类型	WEP/TKIP/AES		
Software	升级固件	本地串口烧录 / 云端升级 / 主机下载烧录		
Parameters	软件开发	支持客户自定义服务器		
-	网络协议	TCP/UDP/HTTP/FTP/SNTP/MQTT/SMTP		
	用户配置	AT+ 指令集, 云端服务器, Android/iOS APP		
	SDK	开源,支持 win 和 linux		

2. 接口定义

图 2 MJIOT-AMB-01 管脚图

注意:默认的命名规则为 GAO 意为 GPIOA 的第 2 个管脚.

MJIOT-AMB-01 管脚功能定义

JTAG UART Group I2C Group SPI Group WL_LED WKDT GPIO INT Default State SCHMT PIN name GPIO INT GPIOA_0 UART2 IN PH 0 GPIOA 4 UART2_OUT PH D_SBY0 PH GPIOA_5 UART_LOG_OUT GPIOB_0 HI GPIOB_1 UART_LOG_IN WL_LED0 D_SLP0 PH I2C3 SCL 0 HI GPIOB_2 GPIOB_3 I2C3 SDA GPIO_INT PH GPIOC 0 UARTO_IN SPIO_CSO ΗI GPIO_INT GPIOC_1 **UARTO CTS** SPIO_CLK HI 0 GPIOC_2 GPIOC_3 UARTO_RTS SPIO_MOSI HI UARTO OUT SPIO MISO GPIO INT ΗI 0 GPIOC_4 SPIO_CS1 GPIO_INT HI GPIOE_0 JTAG_TRST PH 0 GPIOE_1 JTAG_TDI PH 0 GPIOE 2 JTAG TDO
GPIOE 3 JTAG TMS
GPIOE 4 JTAG CLK PH 0 PH PH 0

NOTE1: PH = Pull-High, HI = High-impedance

NOTE2: Others' pull control can be done by register setting.

3. 外型与尺寸

MJIOT-AMB-01 贴片式模组的外观尺寸为 24mm * 16mm * 3mm (如图 3 所示)。

图 3 MJIOT-AMB-01 模组外观

¥.K

图 4 MJIOT-AMB-01 模组尺寸平面面图

4. 性能描述

4.1. MCU

瑞昱 RTL8710AF 是一个低功耗单芯片。它集成了一个 ARM Cortex M3 MCU、802.11n 无线网络控制器等于一体。它还提供了一些可配置的 GPIO 等外设。

4.2. 存储描述

4.2.1. 内置 SRAM FLASH 与 ROM

MJIOT-AMB-01 自身内置了存储控制器,包含 ROM, FLASH 和 SRAM。基于 SDK , 用户可用剩余 SRAM 空间为: SRAM size > 48kB 。

内部集成的 ROM(1Mb)

MJWL-AMB-0 内部集成 1Mb 只读存取提供高速度、低内存泄漏,最高时钟 83MHz。提供以下功能:

- > 启动代码和单片机的初始化
- > 默认 UART 驱动程序
- > 非 flash 启动的功能和驱动程序
- ▶ 外围 LIBS
- > 安全函数库

内部集成的 SRAM(512Kb)

- > 448kb SRAM 的集成提供指令,数据,和缓冲区的使用。最高时钟速度是到 83.3MHz。
- 额外的 64kb 快速访问数据存储器提供的固件数据段。地址范围 0x1fff-0000 ~ 0x1FFF FFFF。

内部集成 FLASH(1Mb)

图 5 MJIOT-AMB-01 Flash 内存布局图

4.3. 工作温度

表 7 最大大额定值

额定值	条件	值	单位
存储温度		-40 to 125	°C
最大焊接温度		260	°C
供电压	IPC/JEDEC J-STD-	+3.0 to +3.6	V

4.4. 建议工作环境

表 8 建议工作环境

工作环境	名称	最小值	典型值	最大值	单位
工作温度		-20	32	85	℃
供电电压	VDD	3.0	3.3	3.6	V

注意:如无特殊说明,测试条件为: VDD = 3.3 V,温度为 20 ℃。

5. RF 参数

表 9 RF 参数

参数	典型	单位	
输入频率	2412-	2483.5	MHz
输入电阻	5	Ω	
	802.11b	>17	dBm
输出功率	802.11g	>15	dBm
	802.11n(HT20)	>14	dBm
	11M	≤-76	dBm
接收灵敏度	54M	≤-65	dBm
	65M(HT20)	≤-64	dBm

6. 功耗

表 10 功耗

模式	最小值	典型值	最大值	单位
Deep Sleep Mode①		15		mA
Deep Standby Mode②		0.9		mA
Sleep Mode③		10		uA
正常待机		30		mA

注①: Deep Sleep Mode 深度睡眠模式关闭包括 Cortex-M3 内核的电源域,系统,时钟、SRAM和调节器。外设关闭除了唤醒源服务:一个唤醒引脚和一个低精度定时器唤醒系统。除了用来保持唤醒引脚的没有关闭,其他所有的寄存器都关闭。重新启动系统后唤醒。

注②: Deep Standby Mode 深待机模式关闭包括 Cortex-M3 内核、系统时钟、SRAM 和调节器。除了唤醒源为 4 个 GPIO 和定时器唤醒系统以外其他外设关闭。只有大约 200 个字节的寄存器保持唤醒使用,其他寄存器都关掉。系统重新启动后,唤醒。

注③:Sleep Mode 睡眠模式关闭包括 Cortex-M3 内核的电源域,和系统时钟。系统不需要重新启动后唤醒。

表 12 低功耗模式资源使用比较

	System Status during Power Save								
	Cortex M3 core	M3 System Power SRAM Register Regulator digital Periphe							
Deep Sleep	Х	Х	0	Х	Х	Х	0	Δ	
Deep Standby	Х	Х	0	Х	Х	Х	0	Δ	
Sleep	Δ	Δ	0	0	0	0	0	0	
Active	0	0	0	0	0	0	0	0	

表 13 低功耗模式唤醒对比

	Wakeup source	Wak	eup Proce	edure Re	quired
	Wakeup Source	System restart	Wlan init	Wlan connect	Peripheral init
Deep Sleep	1 gpio / general purpose timer	Yes	Yes	Yes	Yes
Deep Standby	4 gpio / system timer	Yes	Yes	Yes	Yes
Sleep	gpio (interrupt) / system timer / general purpose timer / wlan	No	No	No	No
Active	N/A	No	No	No	No

7. 数字管脚 I/O 电气特性

Table 12. Typical Digital IO DC Parameters (3.3V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input-High Voltage	LVTTL	2.0	y -		V
V _{IL}	Input-Low Voltage	LVTTL	1	8. -	0.8	V
V _{OH}	Output-High Voltage	LVTTL	2.4		-	V
V _{OL}	Output-Low Voltage	LVTTL	12	32	0.4	V
V _{T+}	Schmitt-trigger High Level		1.78	1.87	1.97	V
V _{T-}	Schmitt-trigger Low Level		1.36	1.45	1.56	٧

表 14 3.3v 电压特性

Table 13. Typical Digital IO DC Parameters (1.8V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input-High Voltage	CMOS	0.65x V _{CC}	1	-	V
V _{IL}	Input-Low Voltage	CMOS	-	-	0.35x V _{cc}	V
V _{OH}	Output-High Voltage	CMOS	V _{cc} -0.45	-	-	V
V _{OL}	Output-Low Voltage	CMOS	19-	-	0.45	V
V _{T+}	Schmitt-trigger High Level		1.02	1.09	1.14	V
V _{T-}	Schmitt-trigger Low Level		0.67	0.73	0.8	V
I _{IL}	Input-Leakage Current	V _{IN} =1.8V or 0	-10	±1	10	μΑ

表 15 1.8v 电压特性

8. 模块安装注意事项

MJIOT-AMB-01 采用板载 PCB 天线,对模块周边环境有要求。建议如下:天线周边 6-9mm 之内不要放置影响天线的元器件;天线下方 3-5mm 之内不要放置影响天线的元器件,若有铺地需做净空处理;模块下方尽量不要放置元件及高频信号走线。

使用注意事项 (Precautions for use)

- 1 , 天线周边 6-9mm 之内不要放置影响天线的元器件。 Do not place antenna elements within the antenna 6-9mm。
- 2 , 天线下方 3-5mm 之内不要放置影响天线的元器件 , 若有铺地需做净空处理。 Within the antenna below the 3-5mm do not place antenna components, if there is a need to do floor clearance processing。
- 3 , 模块下方尽量不要放置元件及高频信号走线。
 Try not to place the components under the module and high frequency signal line.

图 6 模块安装参考图

9. AT 指令 透传模式使用 MJIOT-AMB-01 模块

图 8 模块透传模式接线图

Transparent transmission mode diagram

10.MJIOT-AMB-01 模块 JTAG/CMSIS-DAP 调试

图 7 模块 JTAG/CMSIS-DAP 调试接线图

JTAG/SWD debug diagram

11.MJIOT-AMB-01 外围硬件参考设计

12.公司介绍

公司总部位于深圳,是一家集研发、生产和销售为一体的,以技术和服务为导向的物联网科技公司。公司创始人及主要团队成员拥有丰富的物联网行业背景,专注于研发具有核心竞争力的 WIFI 模块以及物联网产品,提供端到端的 IoT 整体解决方案。 在"互联网+"的政策支持与行业发展的背景下,敏俊物联相信下一个互联网时代即将到来, 一个物物相联的世界即将在全球实现。敏俊物联将凭借自身扎实的技术能力、拼搏的企业精神、 奉献的公司态度,为推动建立工业 4.0 助力! 万物互联,智慧地球,这是人类的梦想,也是敏俊物联的理想。

13.联系我们

地址:深圳市宝安区新安街道甲岸工业园

联系人: 李先生

电话:13168726632

文件版本 01 (2017-02-01)

第 19 页 共 19 页

版权所有⑥深圳市敏俊物联科技有限责任公司