CLASS QUIZ SOLUTIONS: JANUARY 11: HYPERBOLIC FUNCTIONS

MATH 153, SECTION 55 (VIPUL NAIK)

1. Performance review

11 people took this 5-question quiz. The score distribution was as follows:

- Score of 1: 3 people
- Score of 2: 4 people.
- Score of 3: 1 person
- Score of 4: 1 person
- Score of 5: 2 people

The answers by question number are:

- (1) Option (B): 6 people
- (2) Option (E): 6 people
- (3) Option (D): 4 people
- (4) Option (C): 8 people
- (5) Option (C): 4 people

2. Solutions

- (1) What is the limit $\lim_{x\to\infty} (\cosh x)/e^x$?
 - (A) 0
 - (B) 1/2
 - (C) 1
 - (D) 2
 - (E) The limit does not exist.

Answer: Option (B)

Explanation: We have:

$$\lim_{x \to \infty} \frac{\cosh x}{e^x} = \lim_{x \to \infty} \frac{e^x + e^{-x}}{2e^x} = \frac{1}{2} + \lim_{x \to \infty} \frac{e^{-2x}}{2} = \frac{1}{2}$$

The key thing to note is that as $x \to \infty$, e^{-2x} tends to 0.

Performance review: 6 out of 11 people got this. 2 chose (A), 3 chose (E).

Historical note (last year): 21 out of 28 students got this correct. 3 people chose (C), 3 people chose (E), and 1 person chose (A).

- (2) What is the limit $\lim_{x\to-\infty} (\cosh x)/e^x$?
 - (A) 0
 - (B) 1/2
 - (C) 1
 - (D) 2
 - (E) The limit does not exist.

Answer: Option (E)

Explanation: We have

$$\lim_{x\to -\infty}\frac{\cosh x}{e^x}=\lim_{x\to -\infty}\frac{e^x+e^{-x}}{2e^x}=\frac{1}{2}+\lim_{x\to -\infty}\frac{e^{-2x}}{2}$$

As $x \to -\infty$, $e^{-2x} \to \infty$, so the overall limit is undefined.

Alternatively, we can note that as $x \to -\infty$, $\cosh x \to +\infty$ and $e^x \to 0$, so the quotient goes off to infinity.

Performance review: 6 out of 11 got this. 4 chose (A), 1 chose (B).

Historical note (last year): 24 out of 28 people got this correct. 3 people chose (C) and 1 person chose (B).

- (3) Consider the function y = f(x) where $f(x) := \arctan(\sinh x)$. Which of the following does $\cosh x$ necessarily equal?
 - (A) $\sin y$
 - (B) $\cos y$
 - (C) $\cot y$
 - (D) $\sec y$
 - (E) $\csc y$

Answer: Option (D)

Explanation: We have the relationship $\tan y = \sinh x$. Squaring and adding 1 to both sides, we get:

$$\sec^2 y = \cosh^2 x$$

Now, we note that cosh is always positive, and for $y \in (-\pi/2, \pi/2)$, which it must be to be arctan of something, sec y is also positive. Thus, taking square roots on both sides yields:

$$\sec y = \cosh x$$

Performance review: 4 out of 11 got this. 3 chose (C), 2 chose (B), 1 each chose (A) and (E). Historical note (last year): 19 out of 28 people got this correct. 8 people chose (C) and 1 person chose (A).

- (4) Consider the function y = f(x) where $f(x) := \arctan(\sinh x)$ (same as in the previous question). The function is a one-to-one increasing function on its domain. What are its domain and range?
 - (A) The domain and range are both equal to \mathbb{R}
 - (B) The domain and range are both equal to the open interval $(-\pi/2, \pi/2)$
 - (C) The domain equals \mathbb{R} and the range equals the open interval $(-\pi/2, \pi/2)$
 - (D) The domain equals the open interval $(-\pi/2, \pi/2)$ and the range equals \mathbb{R}
 - (E) The domain equals the open interval $(-\pi/2, \pi/2)$ and the range equals the closed interval $[-\pi/2, \pi/2]$

Answer: Option (C)

Explanation: The sinh function has domain and range both \mathbb{R} . The arctan function has domain \mathbb{R} and range $(-\pi/2, \pi/2)$. Thus, the composite has domain \mathbb{R} (any real input is permisible) and range equal to $(-\pi/2, \pi/2)$.

Performance review: 8 out of 11 got this. 3 chose (D).

Historical note (last year): 24 out of 28 people got this correct. 3 people chose (D) and 1 person chose (B).

- (5) sinh is a one-to-one function with domain and range both equal to \mathbb{R} . Hence, it must have an inverse function with domain and range both equal to \mathbb{R} . What is this inverse function?
 - (A) $x \mapsto (\ln(x) \ln(-x))/2$
 - (B) $x \mapsto (1/2) \ln(x^2 + 1)$
 - (C) $x \mapsto \ln[x + \sqrt{x^2 + 1}]$
 - (D) $x \mapsto \ln[x \sqrt{x^2 + 1}]$
 - (E) $x \mapsto \ln[\sqrt{x^2 + 1} x]$

Answer: Option (C)

Explanation: If $x = \sinh t$, then $\cosh^2 t = x^2 + 1$. Taking square roots, and using that cosh is always positive, we get $\cosh t = \sqrt{x^2 + 1}$. Thus, $\exp(t) = \sinh(t) + \cosh(t) = x + \sqrt{x^2 + 1}$. Taking ln both sides, we get $t = \ln[x + \sqrt{x^2 + 1}]$.

Performance review: 4 out of 11 got this. 3 each chose (A) and (D), 1 chose (B).

Historical note (last year): 15 out of 28 people got this correct. 1 person appears to have missed the question because it was printed on the back side page. 6 people chose (B), 3 people chose (A), 2 people chose (E), and 1 person chose (D).