(Álgebra de Boole

Operación:

En un conjunto B, una operación * es **binaria** y **cerrada** si se requiere dos elementos de B para realizarla y el resultado es también un elemento de B.

Por ejemplo, si en el conjunto de números naturales consideramos la operación suma, se trata de una operación binaria y cerrada: al sumar dos números naturales, obtenemos otro natural. No sucede lo mismo con la operación resta en el mismo conjunto: 1-2=-1 no es un numero natural.

En un conjunto B una operación ' es **unitaria** (**unaria**) y cerrada si se requiere de un elemento de B para realizarla y el resultado es también un elemento de B.

En el conjunto de números enteros, definimos a' = -a (la operación que para cada número natural nos devuelve su opuesto) es una operación unaria.

Definición axiomática de álgebra de Boole:

Un álgebra booleana es todo sistema formado por un conjunto A en el que hay por al menos dos elementos distintos llamados "0" y "1", dos operaciones binarias definidas en dicho conjunto, llamadas "suma lógica" y "producto lógico" y una operación unitaria llamada "complementación", tal que se verifican los siguientes axiomas:

1) Leye conmutativas

$$\forall a, b \in A: a+b=b+a$$

 $a.b=b.a$

2) Leyes distributivas

$$\forall a,b,c \in A: \quad a.(b+c) = (a.b) + (a.c)$$
$$a+(b.c) = (a+b).(a+c)$$

3) Leyes de neutro o identidad

$$\forall a \in A: \quad a+0=a$$
$$a.1=a$$

4) Leyes del inverso

$$\forall a \in A \quad \exists a' \in A: \quad a+a'=1$$

$$a.a'=0$$

Todo conjunto (A,+,.,',0,1) que cumple estos axiomas es un Álgebra de Boole.

Ejemplos:

1) $A = \{\text{conjunto de todos las proposiciones}\}$

"0"
$$\rightarrow$$
 F₀
"1" \rightarrow T₀
"+" \rightarrow disyunción
"." \rightarrow conjunción
"'" \rightarrow negación
$$\Rightarrow (A,\lor,\land,\lnot,F_0,T_0) \text{ es un álgebra de Boole (considerando} \Leftrightarrow \text{en lugar de =)}$$

- 2) Sea U un conjunto. Luego, $(P(U), \cup, \cap, ', \emptyset, U)$ es un álgebra de Boole.
- 3) Sea A = {0, 1}. Definimos en A las siguientes operaciones:

La sextúpla (A, +, ., ´, 0, 1) tiene estructura de álgebra de Boole.

Notemos que el álgebra de Boole es una estructura más general de las que estudiamos hasta ahora (proposiciones, conjuntos). Así como en lo referente a proposiciones vimos las leyes lógicas y en lo vinculado a conjuntos las leyes de la teoría de conjuntos, en un álgebra de Boole se verifican ciertas leyes (que son una generalización de las ya estudiadas)

Leyes del álgebra de Boole

Sea (A,+,..,0,1) un álgebra de Boole y sean $a,b,c \in A$ entonces se verifica:

1. Leyes de idempotencia

$$a + a = a$$

$$a.a = a$$

2. Leyes de absorción

$$a+(a.b)=a$$

$$a.(a+b)=a$$

3. Leyes de doble contradicción

$$(a')' = a$$

4. Leyes de De Morgan

$$(a+b)'=a'.b'$$

$$(a.b)' = a' + b'$$

5. Leyes asociativas

$$(a+b)+c=a+(b+c)$$
$$(a.b).c=a.(b.c)$$

6. Leyes de dominación

$$a + 1 = 1$$

$$a.0 = 0$$

7. Leyes de complemento

$$0' = 1$$

$$1' = 0$$

La tabla con las leyes se encuentra disponible en Web Campus.

Demostraremos la ley de idempotencia, utilizando sólo las leyes que definen a un álgebra de Boole:

• a+a=a

a = a + 0 por identidad
 = a + a.a' por inverso
 = (a + a)(a + a') por distributiva
 = (a+a).1 por inverso
 = a+ a por identidad

Luego, a + a = a

Enunciado Dual

Si en un enunciado de un axioma o teorema del álgebra de Boole se permutan las operaciones suma y producto lógico y los elementos 0 y 1 se obtiene el enunciado de otro axioma o teorema llamado dual del anterior.

Principio de Dualidad

Si un enunciado es válido en un álgebra de Boole entonces su dual también lo será.

Ejemplo:

$$x + [x.(y+1)] = x$$
 entonces su dual es $x.[x+(y.0)] = x$

Vamos a hacer algunos ejercicios ©

<u>Ejercicio I</u> Dada la siguiente expresión definida en un álgebra de Boole, simplificarla utilizando propiedades: [x(x + y) + z]'.(z'.x)'

Proponemos una manera de realizar la simplificación. No es la única.

$$[x(x + y) + z]'.(z'.x)' = [x + z]'(z + x')$$
 absorción/De Morgan/Doble complementación
 $= (x'.z')(z + x')$ De Morgan
 $= (x'z')z + (x'z')x'$ distributiva

$$= x'(zz') + z'(x'x')$$
 Asociativa/ Conmutativa
 $= x'0 + z'x'$ inverso/idemptencia
 $= 0 + zx'$ dominación
 $= zx'$ neutro

Ejercicio II Sea (B, +,., ', 0, 1) un álgebra de Boole. Demostrar que

$$\forall \, x,y \in B : x+y=0 \, \leftrightarrow x=0, y=0.$$

Tenemos que demostrar una doble implicación:

 \rightarrow) Sabemos que x + y = 0. Veamos que x = 0

x = x + 0 por identidad

$$= x + (x + y)$$
 por hipótesis, $x + y = 0$

$$= (x + x) + y$$
 por asociativa

Luego, x = 0. Como 0 = x + y = 0+y, se sigue que y = 0

$$\leftarrow$$
) Es trivial. Si x =0, y =0 se tiene que x + y = 0 + 0 =0

Observación: el enunciado dual de esta propiedad afirma que x.y = 1 si y sólo si x =1, y=10

Circuitos combinatorios

Sea el álgebra booleana con $S = \{0;1\}$ y tal que

$$x' = \begin{cases} 0 & si \quad x = 1 \\ 1 & si \quad x = 0 \end{cases}$$

$$x_1 \cdot x_2 = \begin{cases} 1 & si \quad x_1 = x_2 = 1 \\ 0 & si \quad no \end{cases}$$

$$x_1 + x_2 = \begin{cases} 0 & si \quad x_1 = x_2 = 0 \\ 1 & si \quad no \end{cases}$$

Un circuito combinatorio es un caso particular de los circuitos eléctricos, en el que las salidas dependen directamente del valor de entrada y no pueden almacenar ningún tipo de información, sólo realizan transformaciones. Se construyen utilizando dispositivos llamados compuertas.

Compuerta NOT

Recibe como entrada x y devuelve como salida x'

Compuerta AND

Recibe como entradas $x_{\rm l}$ y $x_{\rm 2}$ y devuelve como salida $x_{\rm l}.x_{\rm 2}$

Compuerta OR

Recibe como entradas x_1 y x_2 y devuelve como salida $x_1 + x_2$

Ejemplo

Dado el circuito, escribir la expresión booleana que la representa

En este caso, la expresión booleana que representa el circuito es $(x_4 + x_2)'$. X_3

Ejercicio

Determinar un circuito combinatorio correspondiente a la siguiente tabla lógica

x1	x2	f(x1,x2)
1	1	1

1	0	0
0	1	1
0	0	0

Recordemos que el producto devuelve 1 sólo cuando ambos son 1

Entonces, el primer renglón se puede pensar como x1.x2

Y el tercero, como x1'.x2

Y como queremos ambos casos, los sumo.

La expresión booleana asociada con la tabla es x1.x2 + x1'.x2

Decimos que la expresión está dada como suma de productos

Ejercicio

Determinar un circuito combinatorio correspondiente a la siguiente tabla lógica

x1	x2	х3	f(x1,x2,x3)
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	0

Observación: Si identificamos los 0 que devuelve la tabla lógica, recordando que la suma devuelve

0 cuando todos los términos son 0, obtenemos en el ejercicio 1: $(x_1 + x_2) \cdot (x_1 + x_2)$

A esta expresión la llamamos: expresión como producto de sumas