VOLTERRA SERIES & KERNEL REGRESSION

Prof. Alexander Huth 10/26/2017

NONLINEAR PROBLEM

VOLTERRA SERIES

y = \sum_{n=1}^P\sum_{\tau_1
^p\cdots \sum_{\tau_n=1}^p
h_n(\tau_1, \dots, \tau_n) \proc
^n x_j

* For a finite Volterra series of order P, consider every nonlinear combination of up to P variables

$$y = \sum_{n=1}^{P} \sum_{\tau_1=1}^{p} \cdots \sum_{\tau_n=1}^{p} h_n(\tau_1, \dots, \tau_n) \prod_{j=1}^{n} x_j$$

VOLTERRA SERIES

y = h_{1,0} x_1 + h_{0,1} x_2 x_1 x_2 + h_{2,0} x_1^2 + h_ x_2^2 + h_{2,2} x_1^2 x_2^2

 st A finite Volterra series of order P considers every nonlinear combination of up to P variables

$$y = h_{1,0}x_1 + h_{0,1}x_2 + h_{1,1}x_1x_2 + h_{2,0}x_1^2 + h_{0,2}x_2^2 + h_{2,2}x_1^2x_2^2 + \dots$$

VOLTERRA SOLUTION!

VOLTERRA SERIES

- * (btw, Volterra series is just a different linearized model...)
- * (but it's one that can capture any nonlinear function!)

VOLTERRA SERIES

- * Volterra series have <u>nightmarish</u> numbers of parameters
- * Suppose X's are 16x16 image patches (i.e. p=256)
- * How many coefficients (h's) are there in a 5th-order Volterra model? (~1 billion!)

FORGET FEATURES, USE SAMPLES!

* Please do not actually forget features

- * Let's say the y for a new sample is some a combination of the y's from old samples
- * Example: image patches

* Kernel function: $k(a,b) = \phi(a)^{\top}\phi(b)$

tells you how similar a and b are in some "Reproducing kernel Hilbert space", ${\cal H}$

 $\label{eq:hatff} $$ \left(\frac{f} = \underbrace{f} \right) \left(\frac{H}{f} \right) \left(\frac$

* Representer theorem:

$$\hat{f} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \left[||Y - f(X)||_2^2 + \lambda ||f||_{\mathcal{H}}^2 \right]$$

then:
$$\hat{f}(z) = \sum_{i=1}^{n} \alpha_i k(z, X_i)$$

i.e. the function value for a new datapoint, z, is a linear combination (with weights alpha) of the kernel similarities between z and existing datapoints in X

\hat{\alpha} = \underset{\alpha} {\mbox{argmin}} \left[|| Y - K \alpha|| _2^2 + \lambda \alpha^\top K \alpha \right]

* How do we find the alphas?

$$\hat{\alpha} = \underset{\alpha}{\operatorname{argmin}} \left[||Y - K\alpha||_2^2 + \lambda \alpha^\top K\alpha \right]$$

where:
$$K_{ij} = k(X_i, X_j)$$

* How do we find the alphas?

$$\hat{\alpha} = (K + \lambda I)^{-1} Y$$

(this is called **KERNEL RIDGE REGRESSION**)

- * Ok fine. But what the heck is k?!?
- * Possibility 1: linear kernel!

$$k(a,b) = a^{\mathsf{T}}b$$

* Possibility 1: linear kernel!

remember:
$$\hat{f}(z) = \sum_{i=1}^{n} \alpha_i k(z, X_i)$$

 $\label{eq:Rightarrow} $$ \Pr = (X X^{to} \ \ \)^{-1}Y$

 $\label{eq:linear_condition} $$ \Pr \left(x \right) = z X^{top} \\ \left(x \right) = z X^{t$

$$k(a,b) = a^{\top}b \quad \Rightarrow K = XX^{\top}$$

$$\Rightarrow \hat{\alpha} = (XX^{\top} + \lambda I)^{-1}Y$$

$$\Rightarrow \hat{f}(z) = zX^{\top}\hat{\alpha} = zX^{\top}(XX^{\top} + \lambda I)^{-1}Y$$

* Possibility 1: linear kernel!

remember:
$$\hat{f}(z) = \sum_{i=1}^{n} \alpha_i k(z, X_i)$$

 $\Pi = (X X^{to} \ 1)^{-1}Y$

 $\label{eq:Rightarrow} $$ \Pr{f}(z) = z X^{top} $$ \hat{x} = z X^{top} (XX^{top} + z X^{top}) $$$

$$k(a,b) = a^{\top}b \quad \Rightarrow K = XX^{\top}$$

$$\Rightarrow \hat{\alpha} = (XX^{\top} + \lambda I)^{-1}Y$$

$$\Rightarrow \hat{f}(z) = zX^{\top}\hat{\alpha} = zX^{\top}(XX^{\top} + \lambda I)^{-1}Y$$

what if we just called this part "beta"?

 $phi_p(x) = (x_1, x_2, x_1 x_2, x_1^p x_2^p)$

* Possibility 2: $\phi_p(x) = (x_1, x_2, x_1 x_2, \dots, x_1^p x_2^p)$

remember: $k(a,b) = \phi(a)^{\top}\phi(b)$

* Possibility 2: $\phi_p(x) = (x_1, x_2, x_1 x_2, \dots, x_1^p x_2^p)$

remember:
$$k(a,b) = \phi(a)^{\top}\phi(b)$$

Volterra series model! But with only n parameters!

* Possibility 3: Radial basis function (RBF)

$$k(a,b) = e^{-||a-b||_2^2/(2\sigma^2)}$$

* Possibility 3:
Radial basis
function (RBF)

KERNEL EFFICIENCY

- * What's the cost of kernel regression?
- * Compare kernel ridge vs. non-kernel ridge

PROJECT!

- * Goal is to apply or explore something / anything we've talked about in this class
 - * could be using real data (e.g. fit some kind of model to this dataset)
 - * could be theory/methods (e.g. find a better way to do something)

PROJECT!

- * Proposal due next Thursday (11/2):
 - * ~1-2 paragraphs describing what you plan to do. Email to <u>huth@cs.utexas.edu</u> before class
- * Writeup (3-4 pages explaining background & what you did) due Dec. 5
- * In-class presentations (5-10 minutes)
 Dec. 5 & 7

PROJECT!

- * Sources of data (among many more):
 - * CRCNS: https://crcns.org/data-sets
 - * Allen Inst.: http://www.brain-map.org
 - * Study Forrest: http://studyforrest.org/

NEXT TIME

* Neural networks! (well, at least perceptrons)