

mædmax at School Learning Selection in Equational Reasoning

Sarah Winkler University of Innsbruck

4th Conference on Artificial Intelligence and Theorem Proving 10 April 2019

output:

YES if $\mathcal{E}_0 \vDash s \approx t$ or NO otherwise

- ▶ input: set of equations \mathcal{E}_0 and goal $s \approx t$
- ▶ output: YES if $\mathcal{E}_0 \vDash s \approx t$ or NO otherwise

maedmax

equational theorem proving tool based on maximal ordered completion

- lacktriangle input: set of equations \mathcal{E}_0 and goal spprox t
- ▶ output: YES if $\mathcal{E}_0 \vDash s \approx t$ or NO otherwise

maedmax

equational theorem proving tool based on maximal ordered completion (maedmax: equational deduction maximized)

▶ input: set of equations \mathcal{E}_0 and goal $s \approx t$

▶ output: YES if $\mathcal{E}_0 \vDash s \approx t$ or NO otherwise

maedmax

equational theorem proving tool based on maximal ordered completion (maedmax: equational deduction maximized)

S. Winkler and G. Moser.

Maedmax: A Maximal Ordered Completion Tool. In *Proc. 9th IJCAR*, LNCS 10900, pp. 472-480, 2018.

Content

Maximal Ordered Completion

Learning Experiments

Equation Selection

Proof Progress

Conclusion

$$(\mathcal{E},\mathcal{G})$$

o initialize equations and goals $(\mathcal{E},\mathcal{G})$ to $(\mathcal{E}_0,\,\{spprox t\})$

- o initialize equations and goals $(\mathcal{E},\mathcal{G})$ to $(\mathcal{E}_0,~\{spprox t\})$
- ${\color{red} {\bf 1}}$ get terminating rewrite system ${\mathcal R}$ from ${\mathcal E}$

- o initialize equations and goals $(\mathcal{E}, \mathcal{G})$ to $(\mathcal{E}_0, \{s \approx t\})$
- ${ t 1}$ get terminating rewrite system ${\mathcal R}$ from ${\mathcal E}$
- check for joinable goal or saturation

- o initialize equations and goals $(\mathcal{E},\mathcal{G})$ to $(\mathcal{E}_0,\ \{spprox t\})$
- ${\color{red} {\bf 1}}$ get terminating rewrite system ${\mathcal R}$ from ${\mathcal E}$
- check for joinable goal or saturation

- o initialize equations and goals $(\mathcal{E},\mathcal{G})$ to $(\mathcal{E}_0,~\{spprox t\})$
- ${ t 1}$ get terminating rewrite system ${\mathcal R}$ from ${\mathcal E}$
- check for joinable goal or saturation

- o initialize equations and goals $(\mathcal{E},\mathcal{G})$ to $(\mathcal{E}_0,\ \{s\approx t\})$
- f 1 get terminating rewrite system $\cal R$ from $\cal E$
- check for joinable goal or saturation
- add some critical pairs $S_{\mathcal{E}} \subseteq \mathsf{CP}_{>}(\mathcal{R} \cup \mathcal{E})$ and $S_{\mathcal{G}} \subseteq \mathsf{CP}_{>}(\mathcal{R} \cup \mathcal{E}, \mathcal{G})$

- o initialize equations and goals $(\mathcal{E},\mathcal{G})$ to $(\mathcal{E}_0,~\{spprox t\})$
- f I get terminating rewrite system $\cal R$ from $\cal E$
- check for joinable goal or saturation
- add some critical pairs $S_{\mathcal{E}} \subseteq \mathsf{CP}_{>}(\mathcal{R} \cup \mathcal{E})$ and $S_{\mathcal{G}} \subseteq \mathsf{CP}_{>}(\mathcal{R} \cup \mathcal{E}, \mathcal{G})$, repeat from 1

- o initialize equations and goals $(\mathcal{E},\mathcal{G})$ to $(\mathcal{E}_0,~\{spprox t\})$
- f 1 get terminating rewrite system $\cal R$ from $\cal E$
- check for joinable goal or saturation
- add some critical pairs $S_{\mathcal{E}} \subseteq \mathsf{CP}_{>}(\mathcal{R} \cup \mathcal{E})$ and $S_{\mathcal{G}} \subseteq \mathsf{CP}_{>}(\mathcal{R} \cup \mathcal{E}, \mathcal{G})$, repeat from 1

Critical Choice Points

Critical Choice Points

Selecting things

- lacktriangle selection of $S_{\mathcal{E}}$ and $S_{\mathcal{G}}$ is highly critical
- lacktriangle on average only 15% of selected equations and goals used for proof
- ▶ learn better choice criteria

Critical Choice Points

Estimating proof progress

- heuristic proof progress estimate: if stuck
 - add additional (old) equations
 - or ultimately restart
- ▶ learn better estimate

it's all about the next (small) thing

Content

Maximal Ordered Completion

Learning Experiments

Equation Selection

Proof Progress

Conclusion

Features

- ▶ state: number of iterations, equations, and goals
- equation:
 - ▶ hand-crafted: polarity, size, size difference, age, orientability, linearity, duplicatingness, # of matches and critical pairs on $\mathcal E$

Features

- state: number of iterations, equations, and goals
- equation:
 - ▶ hand-crafted: polarity, size, size difference, age, orientability, linearity, duplicatingness, # of matches and critical pairs on $\mathcal E$
 - ▶ term structure: \sim 200 *pq*-gram counts

N. Augsten, M. Böhlen, and J. Gamper. **The** *pq***-gram distance between ordered labeled trees.** ACM Transactions on Database Systems, 35(1):1–36, 2010.

Features

- state: number of iterations, equations, and goals
- equation:
 - ▶ hand-crafted: polarity, size, size difference, age, orientability, linearity, duplicatingness, # of matches and critical pairs on $\mathcal E$
 - ▶ term structure: \sim 200 pq-gram counts

$$f(i(f(i(x), y)), i(x)) \approx i(y)$$

Features

- state: number of iterations, equations, and goals
- equation:
 - ► hand-crafted: polarity, size, size difference, age, orientability, linearity, duplicatingness, # of matches and critical pairs on E
 - ▶ term structure: \sim 200 pq-gram counts

$$f(i(f(i(x),y)),i(x)) \approx i(y)$$

Features

- state: number of iterations, equations, and goals
- equation:
 - ▶ hand-crafted: polarity, size, size difference, age, orientability, linearity, duplicatingness, # of matches and critical pairs on $\mathcal E$
 - ▶ term structure: \sim 200 pq-gram counts

Example (pq-Grams)

$$f(i(f(i(x), y)), i(x)) \approx i(y)$$

▶ abstract symbol names to arities, variables to X

Features

- state: number of iterations, equations, and goals
- equation:
 - ▶ hand-crafted: polarity, size, size difference, age, orientability, linearity, duplicatingness, # of matches and critical pairs on $\mathcal E$
 - ▶ term structure: \sim 200 pq-gram counts

$$f(i(f(i(x), y)), i(x)) \approx i(y)$$

- ▶ abstract symbol names to arities, variables to X
- ► add dummy nodes

Features

- state: number of iterations, equations, and goals
- equation:
 - hand-crafted: polarity, size, size difference, age, orientability, linearity, duplicatingness, # of matches and critical pairs on $\mathcal E$
 - ▶ term structure: \sim 200 pq-gram counts

$$f(i(f(i(x), y)), i(x)) \approx i(y)$$

- ▶ abstract symbol names to arities, variables to X
- add dummy nodes
- ▶ pq-grams: "go p-1 down, q right"

Features

- state: number of iterations, equations, and goals
- equation:
 - hand-crafted: polarity, size, size difference, age, orientability, linearity, duplicatingness, # of matches and critical pairs on $\mathcal E$
 - ▶ term structure: \sim 200 pq-gram counts

Example (pq-Grams)

$$f(i(f(i(x), y)), i(x)) \approx i(y)$$

- ► abstract symbol names to arities, variables to *X*
- add dummy nodes
- ▶ pq-grams: "go p-1 down, q right"
- for p = 2, q = 1 obtain

2.*.1

Features

- state: number of iterations, equations, and goals
- equation:
 - hand-crafted: polarity, size, size difference, age, orientability, linearity, duplicatingness, # of matches and critical pairs on $\mathcal E$
 - ▶ term structure: \sim 200 pq-gram counts

$$f(i(f(i(x), y)), i(x)) \approx i(y)$$

- ▶ abstract symbol names to arities, variables to X
- add dummy nodes
- ▶ pq-grams: "go p-1 down, q right"
- for p = 2, q = 1 obtain 2.*.1, 2.1.1

Features

- state: number of iterations, equations, and goals
- equation:
 - hand-crafted: polarity, size, size difference, age, orientability, linearity, duplicatingness, # of matches and critical pairs on $\mathcal E$
 - ▶ term structure: \sim 200 pq-gram counts

$$f(i(f(i(x), y)), i(x)) \approx i(y)$$

- ▶ abstract symbol names to arities, variables to X
- add dummy nodes
- ▶ pq-grams: "go p-1 down, q right"
- for p = 2, q = 1 obtain 2.*.1, 2.1.1, 2.1.*

Features

- state: number of iterations, equations, and goals
- equation:
 - hand-crafted: polarity, size, size difference, age, orientability, linearity, duplicatingness, # of matches and critical pairs on $\mathcal E$
 - ▶ term structure: \sim 200 pq-gram counts

$$f(i(f(i(x), y)), i(x)) \approx i(y)$$

- ▶ abstract symbol names to arities, variables to X
- add dummy nodes
- ▶ pq-grams: "go p-1 down, q right"
- for p = 2, q = 1 obtain 2.*.1, 2.1.1, 2.1.*, 1.*.2, 1.2.*, 2.*.1, 2.1.X, 2.X.*, 1.*.X, 1.X.*, 1.*.X, 1.X.* and 1.*.X, 1.X.*

Features

- state: number of iterations, equations, and goals
- equation:
 - hand-crafted: polarity, size, size difference, age, orientability, linearity, duplicatingness, # of matches and critical pairs on $\mathcal E$
 - ▶ term structure: \sim 200 pq-gram counts

$$f(i(f(i(x), y)), i(x)) \approx i(y)$$

- ▶ abstract symbol names to arities, variables to X
- add dummy nodes
- ▶ pq-grams: "go p-1 down, q right"
- for p = 2, q = 1 obtain 2.*.1, 2.1.1, 2.1.*, 1.*.2, 1.2.*, 2.*.1, 2.1.X, 2.X.*, 1.*.X, 1.X.*, 1.*.X, 1.X.* and 1.*.X, 1.X.*
- count up to arity 3

Features

- state: number of iterations, equations, and go
- equation:
 - hand-crafted: polarity, size, size different linearity, duplicatingness, # of matches
 - term structure: \sim 200 pg-gram counts

Example (pg-Grams)

$$f(i(f(i(x),y)),i(x))\approx i(y)$$

•	abstract sy
	variables to

- add dumm
 - pq-grams.
- for p=2, 2.*.1, 2.1.1 2.*.1, 2.1.
 - 1.*.X, 1.X.

3

polarity

0

- 2.2.1 16 0 17 2.*.1
- 18 211
- 2.1.0 19 20 1.*.X
- 21 1.X.*
- 2.2.1 121 0
- 122 2.*.1 0 2.1.1 123
- 124 2.1.0 1.*.X 125
- 126 1.X.*
- count up to

classify equation as positive (useful) if occurs in proof, negative otherwise

classify equation as positive (useful) if occurs in proof, negative otherwise

Data collection

- run mædmax in different strategies, recording selections
- check classification of all selected literals upon successful proof
- only 15% positives: duplicate positives for balancing

classify equation as positive (useful) if occurs in proof, negative otherwise

Data collection

- ▶ run mædmax in different strategies, recording selections
- ▶ check classification of all selected literals upon successful proof
- only 15% positives: duplicate positives for balancing

Classifier

random forest of 100 trees and maximal depth 14

▶ fast evaluation, in tests slightly better recall than SVC, extra trees

classify equation as positive (useful) if occurs in proof, negative otherwise

Data collection

- run mædmax in different strategies, recording selections
- ▶ check classification of all selected literals upon successful proof
- only 15% positives: duplicate positives for balancing

Classifier

random forest of 100 trees and maximal depth 14

▶ fast evaluation, in tests slightly better recall than SVC, extra trees

Setup

- evaluate data with Python Scikit
- export random forest to json, load into mædmax (OCaml)

 \blacktriangleright start with random selection \mathcal{M}_0

Results

	solved	useful	
\mathcal{M}_0	206	8%	

- \blacktriangleright start with random selection \mathcal{M}_0
- lacktriangleright collect selections \mathcal{S}_0 running \mathcal{M}_0 with 3 different strategies

Results

	solved	useful	$ S_i $
\mathcal{M}_0	206	8%	114 <i>K</i>

- \triangleright start with random selection \mathcal{M}_0
- lacktriangleright collect selections \mathcal{S}_0 running \mathcal{M}_0 with 3 different strategies
- build classifier

Results

	solved	useful	$ \mathcal{S}_i $	precision	recall	f1
\mathcal{M}_0	206	8%	114 <i>K</i>	0.86	0.94	0.9

- \blacktriangleright start with random selection \mathcal{M}_0
- lacktriangleright collect selections \mathcal{S}_0 running \mathcal{M}_0 with 3 different strategies
- ▶ build classifier: \mathcal{M}_1 selects literals e with $P_{\text{positive}}(e) > 0.4$

Results

	solved	useful	$ \mathcal{S}_i $	precision	recall	f1
\mathcal{M}_0	206	8%	114 <i>K</i>	0.86	0.94	0.9
\mathcal{M}_1	409	14%		'		

- \blacktriangleright start with random selection \mathcal{M}_0
- lacktriangleright collect selections \mathcal{S}_0 running \mathcal{M}_0 with 3 different strategies
- ▶ build classifier: M_1 selects literals e with $P_{positive}(e) > 0.4$
- ▶ selections S_1 : run M_1 with 3 different strategies, add to S_0

Results

	solved	useful	$ \mathcal{S}_i $	precision	recall	f1
\mathcal{M}_0	206	8%	114 <i>K</i>	0.86	0.94	0.9
\mathcal{M}_1	409	14%	358 <i>K</i>	•		

- \triangleright start with random selection \mathcal{M}_0
- lacktriangleright collect selections \mathcal{S}_0 running \mathcal{M}_0 with 3 different strategies
- ▶ build classifier: M_1 selects literals e with $P_{positive}(e) > 0.4$
- lacktriangle selections \mathcal{S}_1 : run \mathcal{M}_1 with 3 different strategies, add to \mathcal{S}_0
- **.** . . .

Results

	solved	useful	$ \mathcal{S}_i $	precision	recall	f1
\mathcal{M}_0	206	8%	114 <i>K</i>	0.86	0.94	0.9
\mathcal{M}_1	409	14%	358 <i>K</i>	0.77	0.83	0.8
\mathcal{M}_2	423	15%	528 <i>K</i>	0.76	0.83	0.79
\mathcal{M}_3	433	14%	704 <i>K</i>	0.78	0.8	0.79

- \blacktriangleright start with random selection \mathcal{M}_0
- \blacktriangleright collect selections S_0 running \mathcal{M}_0 with 3 different strategies
- **b** build classifier: \mathcal{M}_1 selects literals e with $P_{\text{positive}}(e) > 0.4$
- lacktriangle selections \mathcal{S}_1 : run \mathcal{M}_1 with 3 different strategies, add to \mathcal{S}_0
- **.** . . .

Results		LIII	ie spent o	II Selection	Trises from C	070 (rando		5-10/0
		solved	useful	$ \mathcal{S}_i $	precision	recall	f1	
	\mathcal{M}_0	206	8%	114 <i>K</i>	0.86	0.94	0.9	
	\mathcal{M}_1	409	14%	358 <i>K</i>	0.77	0.83	0.8	

time sport on selection rises from 0% (random) to 9 10%

- \blacktriangleright start with random selection \mathcal{M}_0
- lacktriangleright collect selections \mathcal{S}_0 running \mathcal{M}_0 with 3 different strategies
- ▶ build classifier: M_1 selects literals e with $P_{positive}(e) > 0.4$
- lacktriangle selections \mathcal{S}_1 : run \mathcal{M}_1 with 3 different strategies, add to \mathcal{S}_0
- **.** . . .

Results

	solved	useful	$ \mathcal{S}_i $	precision	recall	f1
\mathcal{M}_0	206	8%	114 <i>K</i>	0.86	0.94	0.9
\mathcal{M}_1	409	14%	358 <i>K</i>	0.77	0.83	0.8
\mathcal{M}_2	423	15%	528 <i>K</i>	0.76	0.83	0.79
\mathcal{M}_3	433	14%	704 <i>K</i>	0.78	0.8	0.79

- ▶ run on 897 UEQ problems in TPTP, 60s timeout
- ▶ other baselines: size solves 575, fifo 366, best 609

- \blacktriangleright start with random selection \mathcal{M}_0
- lacktriangleright collect selections \mathcal{S}_0 running \mathcal{M}_0 with 3 different strategies
- **b** build classifier: \mathcal{M}_1 selects literals e with $P_{\mathsf{positive}}(e) > 0.4$
- \blacktriangleright selections \mathcal{S}_1 : run \mathcal{M}_1 with 3 different strategies, add to \mathcal{S}_0
- **.** . . .

combination with old strategy solves 625

Results

	solved	useful	$ \mathcal{S}_i $	precision	recall	f1
\mathcal{M}_0	206	8%	114 <i>K</i>	0.86	0.94	0.9
\mathcal{M}_1	409	14%	358 <i>K</i>	0.77	0.83	0.8
\mathcal{M}_2	423	15%	528 <i>K</i>	0.76	0.83	0.79
\mathcal{M}_3	433	14%	704 <i>K</i>	0.78	0.8	0.79

- ▶ run on 897 UEQ problems in TPTP, 60s timeout
- ▶ other baselines: size solves 575, fifo 366, best 609

- \blacktriangleright start with random selection \mathcal{M}_0
- \blacktriangleright collect selections S_0 running \mathcal{M}_0 with 3 different strategies
- build classifier: \mathcal{M}_1 selects literals e with $P_{\text{positive}}(e) > 0.4$
- lacktriangle selections \mathcal{S}_1 : run \mathcal{M}_1 with 3 different strategies, add to \mathcal{S}_0
- **.** . . .

Results

	solved	useful	$ \mathcal{S}_i $	precision	recall	f1
\mathcal{M}_0	206	8%	114 <i>K</i>	0.86	0.94	0.9
\mathcal{M}_1	409	14%	358 <i>K</i>	0.77	0.83	0.8
\mathcal{M}_2	423	15%	528 <i>K</i>	0.76	0.83	0.79
\mathcal{M}_3	433	14%	704 <i>K</i>	0.78	0.8	0.79

- ▶ run on 897 UEQ problems in TPTP, 60s timeout
- ▶ other baselines: size solves 575, fifo 366, best 609
- ► feature importance: 60% pq-grams, 40% hand crafted most useful: literal size, # active literals, # matches and CPs

State features

- ▶ size of \mathcal{E} ▶ # SMT checks
- ▶ cost of last maxSMT check
- ▶ memory used ▶ # CPs with R \blacktriangleright # facts in \mathcal{E} reducible by last \mathcal{R}
- **.**..

State features

- ▶ size of \mathcal{E} ▶ # SMT checks ▶ cost of last maxSMT check
- ▶ memory used \blacktriangleright # CPs with $\mathcal R$ \blacktriangleright # facts in $\mathcal E$ reducible by last $\mathcal R$

▶ . . .

Data collection

collect TSTP proofs from mædmax, E, Vampire

State features

- ▶ size of \mathcal{E} ▶ # SMT checks ▶ cost of last maxSMT check
- ▶ memory used \blacktriangleright # CPs with $\mathcal R$ \blacktriangleright # facts in $\mathcal E$ reducible by last $\mathcal R$
- ▶ . . .

- collect TSTP proofs from mædmax, E, Vampire
- ▶ add proof tracking mode to mædmax: given input proof P, check progress wrt P in every iteration

State features

- ▶ size of \mathcal{E} ▶ # SMT checks ▶ cost of last maxSMT check
- ▶ memory used \blacktriangleright # CPs with $\mathcal R$ \blacktriangleright # facts in $\mathcal E$ reducible by last $\mathcal R$
- ▶ . . .

- collect TSTP proofs from mædmax, E, Vampire
- add proof tracking mode to mædmax:
 given input proof P, check progress wrt P in every iteration
 (progress: unseen literals to passive set, passive literals to active set)

State features

- ▶ size of \mathcal{E} ▶ # SMT checks ▶ cost of last maxSMT check
- ▶ memory used \blacktriangleright # CPs with $\mathcal R$ \blacktriangleright # facts in $\mathcal E$ reducible by last $\mathcal R$
- ▶ . . .

- collect TSTP proofs from mædmax, E, Vampire
- add proof tracking mode to mædmax:
 given input proof P, check progress wrt P in every iteration
 (progress: unseen literals to passive set, passive literals to active set)
- store difference of proof state vectors between two iterations, along with progress classification

State features

- ▶ size of \mathcal{E} ▶ # SMT checks ▶ cost of last maxSMT check
- ▶ memory used ▶ # CPs with \mathcal{R} ▶ # facts in \mathcal{E} reducible by last \mathcal{R}
- ▶ . . .

- collect TSTP proofs from mædmax, E, Vampire
- add proof tracking mode to mædmax: given input proof P, check progress wrt P in every iteration (progress: unseen literals to passive set, passive literals to active set)
- store difference of proof state vectors between two iterations, along with progress classification
- ▶ get data of about 20K iterations

Classifier

- ▶ random forest of 100 trees and maximal depth 10
- ▶ binary classification: progress or no progress

Classifier

- random forest of 100 trees and maximal depth 10
- binary classification: progress or no progress

Evaluation

- cross-validated precision and recall of 0.72
- ▶ manually design new decision tree based on most influential features: gain 1.5% new problems with best strategy

Classifier

- random forest of 100 trees and maximal depth 10
- binary classification: progress or no progress

Evaluation

- cross-validated precision and recall of 0.72
- ▶ manually design new decision tree based on most influential features: gain 1.5% new problems with best strategy

Overall gain

+4.5% solved problems combining new selection classifier with old selection, and adding new progress estimate

What worked

▶ a bit more

What did not work

▶ taking symbol names into account: TPTP problems too diverse?

What worked

▶ a bit more

What did not work

taking symbol names into account: TPTP problems too diverse?

What's next

- more data
- more/other features
 - more state features?
 - ▶ longer pq-grams, or vertical ENIGMA features?
- more experiments
 - how to combine with previous selection strategy?
 - use proof progress estimate also for restarts?
- ...