```
In [3]: ## import python liabraries
          import seaborn as sns
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
 In [4]: ## read the dataset
          df= pd.read_excel("C:/Users/pv11379/Downloads/Example (2).xlsx")
          ## copy original dataset in data
In [106...
          data=df.copy()
 In [5]: ## dataset top 2 rows with head
          df.head(2)
            Customer Age Sex Groceries Choco-bars Type Satisfied Bulk
 Out[5]:
          0
                                    180
                                                3 White
                   1 36 Male
                                                                   3
                   2 45 Male
                                    180
                                                4 Milk
                                                                    2
 In [6]: ## dataset bottom 2 rows with head
          df.tail(2)
             Customer Age Sex Groceries Choco-bars Type Satisfied Bulk
 Out[6]:
          48
                   49 36 Male
                                     180
                                                 4 White
                                                                    3
          49
                   50 24 Male
                                     180
                                                 2 Dark
                                                                    3
 In [7]: ## dataset information - 50 rows and 8 columns
          df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 50 entries, 0 to 49
        Data columns (total 8 columns):
             Column
                        Non-Null Count Dtype
             Customer 50 non-null
                                        int64
                  50 non-null
50 non-null
                                        int64
            Age
         2 Sex
                                        object
         3 Groceries 50 non-null
                                        int64
           Choco-bars 50 non-null
                                        int64
                   50 non-null
                                        object
         5 Type
         6 Satisfied 50 non-null
                                        int64
                      50 non-null
             Bulk
                                        int64
        dtypes: int64(6), object(2)
        memory usage: 3.3+ KB
In [8]: ## dataset columns details
        column= df.columns
        column
        Index(['Customer ', 'Age ', 'Sex', 'Groceries', 'Choco-bars', 'Type ',
Out[8]:
               'Satisfied ', 'Bulk'],
              dtype='object')
```

convert dataset columns name into lower case

```
In [9]: mod_col=[]
for i in column:
    a=i.lower()
    mod_col.append(a)

In [10]: print(mod_col)

['customer ', 'age ', 'sex', 'groceries', 'choco-bars', 'type ', 'satisfied ', 'bulk']
```

remove spaces in dataset columns

```
mod col1=[]
In [11]:
         for i in mod col:
             b=i.strip()
             mod col1.append(b)
In [12]: print(mod col1)
         ['customer', 'age', 'sex', 'groceries', 'choco-bars', 'type', 'satisfied', 'bulk']
In [13]: ## assign new columns name to dataset
         df.columns=mod col1
In [14]: df.columns
         Index(['customer', 'age', 'sex', 'groceries', 'choco-bars', 'type',
Out[14]:
                'satisfied', 'bulk'],
               dtype='object')
In [15]: df.head(2)
            customer age sex groceries choco-bars type satisfied bulk
Out[15]:
                                               3 White
         0
                      36 Male
                                   180
                                                                   3
                                               4 Milk
                                                              3
                                                                   2
                  2 45 Male
                                   180
```

dataset shape information

```
In [16]: df.shape
    print("dadataset total rows are- ",df.shape[0])
    print("dadataset total columns are- ",df.shape[1])

    dadataset total rows are- 50
    dadataset total columns are- 8

In [17]: ##dataset indexing
    df.index

Out[17]: RangeIndex(start=0, stop=50, step=1)
```

numerical analysis of dataset int columns

In [18]:	df.de:	scribe()						
Out[18]:		customer	age	groceries	choco-bars	satisfied	bulk	
	count	50.00000	50.000000	50.000000	50.00000	50.000000	50.000000	
	mean	25.50000	30.400000	196.200000	3.42000	2.720000	2.580000	
	std	14.57738	8.342172	34.040192	1.12649	1.050559	1.144463	
	min	1.00000	18.000000	150.000000	2.00000	1.000000	1.000000	
	25%	13.25000	23.000000	180.000000	2.00000	2.000000	1.250000	
	50%	25.50000	29.500000	200.000000	3.00000	3.000000	3.000000	
	75%	37.75000	37.750000	220.000000	4.00000	4.000000	3.750000	
	max	50.00000	45.000000	250.000000	5.00000	4.000000	4.000000	
In [19]:]: ##numerical analysis of dataset all columns df.describe(include='all')							

		customer	age	sex	groceries	choco-bars	type	satisfied	bulk
	count	50.00000	50.000000	50	50.000000	50.00000	50	50.000000	50.000000
	unique	NaN	NaN	2	NaN	NaN	3	NaN	NaN
	top	NaN	NaN	Male	NaN	NaN	Dark	NaN	NaN
	freq	NaN	NaN	26	NaN	NaN	26	NaN	NaN
	mean	25.50000	30.400000	NaN	196.200000	3.42000	NaN	2.720000	2.580000
	std	14.57738	8.342172	NaN	34.040192	1.12649	NaN	1.050559	1.144463
	min	1.00000	18.000000	NaN	150.000000	2.00000	NaN	1.000000	1.000000
	25%	13.25000	23.000000	NaN	180.000000	2.00000	NaN	2.000000	1.250000
	50%	25.50000	29.500000	NaN	200.000000	3.00000	NaN	3.000000	3.000000
	75%	37.75000	37.750000	NaN	220.000000	4.00000	NaN	4.000000	3.750000
	max	50.00000	45.000000	NaN	250.000000	5.00000	NaN	4.000000	4.000000

null values in dataset columns

Out[19]:

find out any outliers in groceries

```
In [22]: sns.boxplot(x=df['groceries'])
## no outliers in groceries
```

```
Out[22]: <Axes: xlabel='groceries'>
```



```
In [79]: ## total groceries spends
         print("Total groceries spend is - ",df['groceries'].sum())
         Total groceries spend is - 9810
In [25]: ## sex wise groceries amount
         df.groupby('sex')['groceries'].sum()
         sex
Out[25]:
         Female
                   4780
         Male
                   5030
         Name: groceries, dtype: int64
In [26]: ## sex wise groceries spend bar char
         df.groupby('sex')['groceries'].sum().plot(kind='barh')
         <Axes: ylabel='sex'>
Out[26]:
```



```
In [28]: ## sex wise groceries using seaborn
sns.barplot(x=df['groceries'],y=df['sex'],estimator='sum')
Out[28]: <Axes: xlabel='groceries', ylabel='sex'>
```



```
In [35]: ## sex wise average groceries spend
         sex avg groceries=df.groupby('sex')['groceries'].mean()
         print(round(sex avg groceries),0)
         sex
         Female
                   199.0
         Male
                   193.0
         Name: groceries, dtype: float64 0
In [36]: ## pie chart for sex wise average groceries spend
         plt.pie(sex_avg_groceries.values,labels=sex_avg_groceries.index)
         ([<matplotlib.patches.Wedge at 0x1cda1ac20d0>,
Out[36]:
           <matplotlib.patches.Wedge at 0x1cda307b6d0>],
          [Text(-0.025104995935312163, 1.099713480493482, 'Female'),
           Text(0.025104995935312274, -1.099713480493482, 'Male')])
```



```
In [38]: sns.barplot(x=df['type'],y=df['groceries'],estimator='sum')
Out[38]: <Axes: xlabel='type', ylabel='groceries'>
```



```
In [88]: ##sex and type wise total groceries spend
          df.groupby(['sex','type'])['groceries'].sum()
                 type
         sex
Out[88]:
         Female Dark
                          1860
                 Milk
                          1020
                 White
                          1900
         Male
                 Dark
                          2990
                 Milk
                          1030
                 White
                          1010
         Name: groceries, dtype: int64
         df.groupby(['sex','type'])['groceries'].sum().plot(kind='bar')
In [89]:
         <Axes: xlabel='sex,type'>
Out[89]:
```



```
In [39]: sns.barplot(x=df['sex'],y=df['groceries'],hue=df['type'],estimator='sum')
```

Out[39]: <Axes: xlabel='sex', ylabel='groceries'>

In [42]: ## correlation in dataset
 corrdf= df.corr()
 print(corrdf)

```
age groceries choco-bars
           customer
                                                     satisfied
                                                                     bulk
customer
           1.000000 -0.032389
                              -0.065598
                                            0.136085
                                                      -0.141257 0.078901
                                0.019835
age
          -0.032389 1.000000
                                           -0.118140
                                                       0.038656 -0.097474
groceries -0.065598 0.019835
                                1.000000
                                           -0.021395
                                                       0.163671 0.241078
choco-bars 0.136085 -0.118140
                               -0.021395
                                            1.000000
                                                      -0.295230 0.044640
satisfied -0.141257 0.038656
                                0.163671
                                           -0.295230
                                                      1.000000 -0.048885
bulk
           0.078901 -0.097474
                                0.241078
                                            0.044640
                                                      -0.048885 1.000000
```

C:\Users\pv11379\AppData\Local\Temp\ipykernel_19448\2374362197.py:2: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

corrdf= df.corr()

In [43]: ## heatmap for correlation
sns.heatmap(corrdf,annot=True,cmap='rainbow')
found no any strong correlation in dataset

Out[43]: <Axes: >

In [46]: ## satisfied rating wise count
df['satisfied'].value_counts()

Out[46]: 4 15 2 15 3 13 1 7

Name: satisfied, dtype: int64

```
In [45]: sns.countplot(x=df['satisfied'])
## 4 and 2 rating are highest in ratings
```

Out[45]: <Axes: xlabel='satisfied', ylabel='count'>

In [56]: ## rating wise grooceries spend by male and female
df.groupby(['sex','satisfied'])['groceries'].sum()

```
satisfied
Out[56]:
         Female 1
                               420
                 2
                              1510
                 3
                              1550
                 4
                              1300
         Male
                 1
                               980
                 2
                              1250
                              1000
                 3
                              1800
         Name: groceries, dtype: int64
         df.groupby(['sex','satisfied'])['groceries'].sum().plot(kind='bar')
         <Axes: xlabel='sex,satisfied'>
Out[57]:
```



```
In [67]: ## type wise choco-bar purchased
    df.groupby('type')['choco-bars'].sum().plot(kind='barh')
    ## highest purchased choco-bar is dark chocobar.
```

Out[67]: <Axes: ylabel='type'>

highest rating choco-bar

```
In [105... sns.countplot(x=df['satisfied'],hue=df['type'])
## highest(4) rating in dark choco-bar
Out[105]: <Axes: xlabel='satisfied', ylabel='count'>
```


sex wise ratings given

```
In [76]: sns.countplot(x=df['satisfied'],hue=df['sex'])
## male has given highest rating
Out[76]: <Axes: xlabel='satisfied', ylabel='count'>
```


Top five age who purchased max groceries

```
age_gro=df.groupby('age')['groceries'].sum()
In [107...
          print("top five age category who purchased more groceries are-\n", (age gro.sort values(ascending=False).iloc[0:6]))
          top five age category who purchased more groceries are-
           age
                1060
          20
                 800
          40
                 770
          23
          36
                 740
          29
                 610
          32
                  600
          Name: groceries, dtype: int64
```

```
In [104... age_gro.sort_values(ascending=False).iloc[0:6].plot(kind='bar')
```

Out[104]: <Axes: xlabel='age'>

In []: