Pandas-styles

```
In [8]:
           from sklearn.datasets import load_boston
           import pandas as pd
 In [9]:
           boston = load_boston()
In [10]:
           df = pd.DataFrame(boston['data'], columns=boston['feature_names'])
           df['price'] = boston['target']
In [11]: hdf = df.head(10)
Out[11]:
                 CRIM
                             INDUS CHAS
                                             NOX
                                                     RM
                                                           AGE
                                                                    DIS RAD
                                                                                TAX PTRATIO
                                                                                                    B LSTAT
              0.00632
                                                                               296.0
                                                                                          15.3 396.90
                        18.0
                                2.31
                                        0.0
                                             0.538 6.575
                                                            65.2 4.0900
                                                                          1.0
                                                                                                         4.98
               0.02731
                         0.0
                                7.07
                                        0.0
                                             0.469
                                                    6.421
                                                           78.9 4.9671
                                                                          2.0
                                                                               242.0
                                                                                          17.8
                                                                                               396.90
                                                                                                         9.14
               0.02729
                                7.07
                                             0.469
                                                                               242.0
                                                                                          17.8 392.83
                         0.0
                                        0.0
                                                   7.185
                                                           61.1 4.9671
                                                                          2.0
                                                                                                         4.03
               0.03237
                         0.0
                                2.18
                                        0.0
                                             0.458
                                                    6.998
                                                            45.8
                                                                 6.0622
                                                                          3.0
                                                                               222.0
                                                                                          18.7
                                                                                               394.63
                                                                                                         2.94
               0.06905
                         0.0
                                2.18
                                        0.0
                                             0.458 7.147
                                                           54.2 6.0622
                                                                          3.0
                                                                              222.0
                                                                                          18.7 396.90
                                                                                                         5.33
               0.02985
                                2.18
                                        0.0
                                             0.458 6.430
                                                           58.7 6.0622
                                                                          3.0
                                                                              222.0
                                                                                          18.7 394.12
                                                                                                         5.2
                         0.0
               0.08829
                        12.5
                                7.87
                                        0.0
                                             0.524
                                                    6.012
                                                                 5.5605
                                                                          5.0
                                                                               311.0
                                                                                          15.2 395.60
                                                                                                        12.43
                                                            66.6
               0.14455
                                                                          5.0
                       12.5
                                7.87
                                        0.0
                                             0.524
                                                   6.172
                                                            96.1
                                                                 5.9505
                                                                               311.0
                                                                                          15.2 396.90
                                                                                                        19.15
               0.21124
                        12.5
                                7.87
                                        0.0
                                             0.524
                                                    5.631
                                                           100.0
                                                                 6.0821
                                                                          5.0
                                                                               311.0
                                                                                               386.63
                                                                                                         29.93
               0.17004 12.5
                                7.87
                                        0.0
                                             0.524
                                                    6.004
                                                           85.9
                                                                 6.5921
                                                                          5.0
                                                                               311.0
                                                                                          15.2 386.71
                                                                                                         17.10
```

In [14]: hdf.style.highlight_max()

Out[14]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	
0	0.006320	18.000000	2.310000	0.000000	0.538000	6.575000	65.200000	4.090000	1.000000	2!
1	0.027310	0.000000	7.070000	0.000000	0.469000	6.421000	78.900000	4.967100	2.000000	2٠
2	0.027290	0.000000	7.070000	0.000000	0.469000	7.185000	61.100000	4.967100	2.000000	2٠
3	0.032370	0.000000	2.180000	0.000000	0.458000	6.998000	45.800000	6.062200	3.000000	2:
4	0.069050	0.000000	2.180000	0.000000	0.458000	7.147000	54.200000	6.062200	3.000000	2:
5	0.029850	0.000000	2.180000	0.000000	0.458000	6.430000	58.700000	6.062200	3.000000	2:
6	0.088290	12.500000	7.870000	0.000000	0.524000	6.012000	66.600000	5.560500	5.000000	3
7	0.144550	12.500000	7.870000	0.000000	0.524000	6.172000	96.100000	5.950500	5.000000	3
8	0.211240	12.500000	7.870000	0.000000	0.524000	5.631000	100.000000	6.082100	5.000000	3
9	0.170040	12.500000	7.870000	0.000000	0.524000	6.004000	85.900000	6.592100	5.000000	3

4

In [15]: hdf.style.background_gradient()

Out[15]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	
0	0.006320	18.000000	2.310000	0.000000	0.538000	6.575000	65.200000	4.090000	1.000000	2!
1	0.027310	0.000000	7.070000	0.000000	0.469000	6.421000	78.900000	4.967100	2.000000	2٠
2	0.027290	0.000000	7.070000	0.000000	0.469000	7.185000	61.100000	4.967100	2.000000	2٠
3	0.032370	0.000000	2.180000	0.000000	0.458000	6.998000	45.800000	6.062200	3.000000	2:
4	0.069050	0.000000	2.180000	0.000000	0.458000	7.147000	54.200000	6.062200	3.000000	2:
5	0.029850	0.000000	2.180000	0.000000	0.458000	6.430000	58.700000	6.062200	3.000000	2:
6	0.088290	12.500000	7.870000	0.000000	0.524000	6.012000	66.600000	5.560500	5.000000	3
7	0.144550	12.500000	7.870000	0.000000	0.524000	6.172000	96.100000	5.950500	5.000000	3
8	0.211240	12.500000	7.870000	0.000000	0.524000	5.631000	100.000000	6.082100	5.000000	3
9	0.170040	12.500000	7.870000	0.000000	0.524000	6.004000	85.900000	6.592100	5.000000	3
4										>

```
In [16]: hdf.style.bar()
```

Out[16]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	
0	0.006320	18.000000	2.310000	0.000000	0.538000	6.575000	65.200000	4.090000	1.000000	2
1	0.027310	0.000000	7.070000	0.000000	0.469000	6.421000	78.900000	4.967100	2.000000	2٠
2	0.027290	0.000000	7.070000	0.000000	0.469000	7.185000	61.100000	4.967100	2.000000	2٠
3	0.032370	0.000000	2.180000	0.000000	0.458000	6.998000	45.800000	6.062200	3.000000	2:
4	0.069050	0.000000	2.180000	0.000000	0.458000	7.147000	54.200000	6.062200	3.000000	2:
5	0.029850	0.000000	2.180000	0.000000	0.458000	6.430000	58.700000	6.062200	3.000000	2:
6	0.088290	12.500000	7.870000	0.000000	0.524000	6.012000	66.600000	5.560500	5.000000	3
7	0.144550	12.500000	7.870000	0.000000	0.524000	6.172000	96.100000	5.950500	5.000000	3
8	0.211240	12.500000	7.870000	0.000000	0.524000	5.631000	100.000000	6.082100	5.000000	3
9	0.170040	12.500000	7.870000	0.000000	0.524000	6.004000	85.900000	6.592100	5.000000	3

In [17]: def odd_green(val):

if val % 2 != 0:
 return 'color: green'
 return ''

In [18]: hdf.style.applymap(odd_green)

Out[18]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	
0	0.006320	18.000000	2.310000	0.000000	0.538000	6.575000	65.200000	4.090000	1.000000	2!
1	0.027310	0.000000	7.070000	0.000000	0.469000	6.421000	78.900000	4.967100	2.000000	2،
2	0.027290	0.000000	7.070000	0.000000	0.469000	7.185000	61.100000	4.967100	2.000000	، 2
3	0.032370	0.000000	2.180000	0.000000	0.458000	6.998000	45.800000	6.062200	3.000000	2:
4	0.069050	0.000000	2.180000	0.000000	0.458000	7.147000	54.200000	6.062200	3.000000	2:
5	0.029850	0.000000	2.180000	0.000000	0.458000	6.430000	58.700000	6.062200	3.000000	2:
6	0.088290	12.500000	7.870000	0.000000	0.524000	6.012000	66.600000	5.560500	5.000000	3
7	0.144550	12.500000	7.870000	0.000000	0.524000	6.172000	96.100000	5.950500	5.000000	3
8	0.211240	12.500000	7.870000	0.000000	0.524000	5.631000	100.000000	6.082100	5.000000	3
9	0.170040	12.500000	7.870000	0.000000	0.524000	6.004000	85.900000	6.592100	5.000000	3
4										•

```
In [20]: def orange10(val):
    if val > 10:
        return 'background-color: orange'
    return ''
```

In [21]: hdf.style.applymap(odd_green).applymap(orange10)

Out[21]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	
0	0.006320	18.000000	2.310000	0.000000	0.538000	6.575000	65.200000	4.090000	1.000000	2!
1	0.027310	0.000000	7.070000	0.000000	0.469000	6.421000	78.900000	4.967100	2.000000	24
2	0.027290	0.000000	7.070000	0.000000	0.469000	7.185000	61.100000	4.967100	2.000000	2،
3	0.032370	0.000000	2.180000	0.000000	0.458000	6.998000	45.800000	6.062200	3.000000	2:
4	0.069050	0.000000	2.180000	0.000000	0.458000	7.147000	54.200000	6.062200	3.000000	2:
5	0.029850	0.000000	2.180000	0.000000	0.458000	6.430000	58.700000	6.062200	3.000000	2:
6	0.088290	12.500000	7.870000	0.000000	0.524000	6.012000	66.600000	5.560500	5.000000	3
7	0.144550	12.500000	7.870000	0.000000	0.524000	6.172000	96.100000	5.950500	5.000000	3
8	0.211240	12.500000	7.870000	0.000000	0.524000	5.631000	100.000000	6.082100	5.000000	3
9	0.170040	12.500000	7.870000	0.000000	0.524000	6.004000	85.900000	6.592100	5.000000	3
4										•

In [22]: hdf.style.applymap(odd_green, subset=['ZN', 'RAD'])

Out[22]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	
0	0.006320	18.000000	2.310000	0.000000	0.538000	6.575000	65.200000	4.090000	1.000000	2!
1	0.027310	0.000000	7.070000	0.000000	0.469000	6.421000	78.900000	4.967100	2.000000	2٠
2	0.027290	0.000000	7.070000	0.000000	0.469000	7.185000	61.100000	4.967100	2.000000	2٠
3	0.032370	0.000000	2.180000	0.000000	0.458000	6.998000	45.800000	6.062200	3.000000	2:
4	0.069050	0.000000	2.180000	0.000000	0.458000	7.147000	54.200000	6.062200	3.000000	2:
5	0.029850	0.000000	2.180000	0.000000	0.458000	6.430000	58.700000	6.062200	3.000000	2:
6	0.088290	12.500000	7.870000	0.000000	0.524000	6.012000	66.600000	5.560500	5.000000	3
7	0.144550	12.500000	7.870000	0.000000	0.524000	6.172000	96.100000	5.950500	5.000000	3
8	0.211240	12.500000	7.870000	0.000000	0.524000	5.631000	100.000000	6.082100	5.000000	3
9	0.170040	12.500000	7.870000	0.000000	0.524000	6.004000	85.900000	6.592100	5.000000	3

```
In [24]: def top20(col):
```

```
is_top20 = col > col.quantile(.8)
return ['font-weight: bold' if v else '' for v in is_top20]
```

In [25]: hdf.style.apply(top20)

Out[25]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	
(0.006320	18.000000	2.310000	0.000000	0.538000	6.575000	65.200000	4.090000	1.000000	2!
	0.027310	0.000000	7.070000	0.000000	0.469000	6.421000	78.900000	4.967100	2.000000	2٠
:	2 0.027290	0.000000	7.070000	0.000000	0.469000	7.185000	61.100000	4.967100	2.000000	2٠
;	3 0.032370	0.000000	2.180000	0.000000	0.458000	6.998000	45.800000	6.062200	3.000000	2:
4	1 0.069050	0.000000	2.180000	0.000000	0.458000	7.147000	54.200000	6.062200	3.000000	2:
!	o .029850	0.000000	2.180000	0.000000	0.458000	6.430000	58.700000	6.062200	3.000000	2:
(6 0.088290	12.500000	7.870000	0.000000	0.524000	6.012000	66.600000	5.560500	5.000000	3
•	7 0.144550	12.500000	7.870000	0.000000	0.524000	6.172000	96.100000	5.950500	5.000000	3
:	0.211240	12.500000	7.870000	0.000000	0.524000	5.631000	100.000000	6.082100	5.000000	3
,	0.170040	12.500000	7.870000	0.000000	0.524000	6.004000	85.900000	6.592100	5.000000	3

In [36]: import qgrid

In [35]: pip install --upgrade qgrid

Collecting agrid

Downloading ggrid-1.3.1.tar.gz (889 kB)

Requirement already satisfied, skipping upgrade: notebook>=4.0.0 in c:\users \danal\anaconda3\lib\site-packages (from qgrid) (6.0.3)

Requirement already satisfied, skipping upgrade: pandas>=0.18.0 in c:\users\d anal\anaconda3\lib\site-packages (from qgrid) (1.0.1)

Requirement already satisfied, skipping upgrade: ipywidgets>=7.0.0 in c:\user s\danal\anaconda3\lib\site-packages (from qgrid) (7.5.1)

Requirement already satisfied, skipping upgrade: ipython-genutils in c:\users \danal\anaconda3\lib\site-packages (from notebook>=4.0.0->qgrid) (0.2.0)

Requirement already satisfied, skipping upgrade: Send2Trash in c:\users\danal \anaconda3\lib\site-packages (from notebook>=4.0.0->qgrid) (1.5.0)

Requirement already satisfied, skipping upgrade: prometheus-client in c:\user s\danal\anaconda3\lib\site-packages (from notebook>=4.0.0->qgrid) (0.7.1)

Requirement already satisfied, skipping upgrade: jupyter-client>=5.3.4 in c:\users\danal\anaconda3\lib\site-packages (from notebook>=4.0.0->qgrid) (5.3.4)

Requirement already satisfied, skipping upgrade: jupyter-core>=4.6.1 in c:\us ers\danal\anaconda3\lib\site-packages (from notebook>=4.0.0->qgrid) (4.6.1)

In []: | qgrid.show_grid(hdf) #This method doesn't work here.