Linear Regression Models P8111

Lecture 13

Jeff Goldsmith March 3, 2016

Today's Lecture

- Model selection vs. model checking
- Continue with model checking (regression diagnostics)

Model selection vs. model checking

In a model of the form

$$y|x = f(x) + \epsilon$$

model selection focuses on how you construct $f(\cdot)$; model checking asks whether the ϵ match the assumed form.

Model checking

Two major areas of concern:

- Global lack of fit, or general breakdown of model assumptions
 - ► Linearity
 - ▶ Unbiased, uncorrelated errors $E(\epsilon|x) = E(\epsilon) = 0$
 - Constant variance $Var(y|x) = Var(\epsilon|x) = \sigma^2$
 - ► Independent errors
 - Normality of errors
- Effect of influential points and outliers

Model checking

- Global lack of fit, or general breakdown of model assumptions
 - Residual analysis QQ plots, residual plots against fitted values and predictors
 - ► Adjusted variable plots
- Effect of influential points and outliers
 - ► Measure of leverage, influence, outlying-ness

Some data plots

Some residual plots

Checking Normality assumption

Non-constant variance

What to do ...

- Nothing; just use least squares and bootstrap
- Use weighted LS, GLS (later)
- Use a variance stabilizing transformation

Variance-stabilizing transformation

Suppose *y* is strictly positive, $\mu = E(y|x)$, $Var(y|x) = \sigma^2 g(\mu)$

- Replace y with $y^* = T(y)$ such that $Var(y^*|x)$ is approximately constant
- Delta method says $Var(T(y)) = (T'(\mu))^2 \sigma^2 g(\mu)$

Variance-stabilizing transformation

To get constant variance, we want

$$(T'(\mu))^{2}g(\mu) = k^{2} \text{ (constant)}$$

$$\Rightarrow T'(\mu) = \frac{k}{\sqrt{g(\mu)}}$$

$$\Rightarrow T(\mu) = \int \frac{k}{\sqrt{g(\mu)}} d\mu$$

$$\Rightarrow T(y) = \int \frac{k}{\sqrt{g(y)}} dy$$

So the transformation necessary to stabilize the variance really depends on the variance function itself, e.g. $g(\cdot)$

Variance-stabilizing transformation examples

■ Example 1: If
$$Var(y|x) = \sigma^2 \mu^2$$
, i.e. if $g(y) = y^2$, $T(y) = ?$

■ Example 2: If $Var(y|x) = \sigma^2 \mu$, i.e. if g(y) = y, T(y) = ?

Isolated points

Points can be isolated in three ways

- Leverage point outlier in x
- Outlier outlier in y|x
- Influential point a point that largely affects β
 - ▶ Deletion influence; $|\hat{\beta} \hat{\beta}_{(-i)}|$
 - ► Basically, a high-leverage outlier

Leverage is measured by the hat matrix, outlying-ness by the residual

Quantifying leverage

We measure leverage (the "distance" of x_i from the distribution of x) using

$$h_{ii} = \mathbf{x}_i^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_i$$

where h_{ii} is the $(i, i)^{th}$ entry of the hat matrix.

Leverage

Some notes about the hat matrix

(Note – the trace of the hat matrix generalizes to non-parametric methods, where you don't have a specific number of parameters to count. This is a useful measure of "model size" or "effective degrees of freedom" in these cases.)

Leverage

Some notes about the hat matrix

$$\hat{y_i} = \sum_j h_{ij} y_j$$

These mean that h_{ii} is the weight given to y_i in determining \hat{y}_i

Leverage

What counts as "big" leverage?

- Average leverage is (p + 1)/n
- Typical rules of thumb are 2(p+1)/n or 3(p+1)/n
- Leverage plots can be useful as well

Outliers

- When we refer to "outliers" we typically mean "points that don't have the same mean structure as the rest of the data"
- Residuals give an idea of "outlying-ness", but we need to standardize somehow
- Remember (from last lecture) $Var(\hat{\epsilon}_i) = \sigma^2(1 h_{ii}) \dots$

Outliers

The standardized residual is given by

$$\hat{\epsilon}_i^* = \frac{\hat{\epsilon}_i}{\sqrt{Var(\hat{\epsilon}_i)}} = \frac{\hat{\epsilon}_i}{\hat{\sigma}\sqrt{(1 - h_{ii})}}$$

The Studentized residual is given by

$$t_i = \frac{\hat{\epsilon}_i}{\hat{\sigma}_{(-i)}\sqrt{(1 - h_{ii})}} = \hat{\epsilon}_i^* \left(\frac{n - (p+1)}{n - (p+1) - \hat{\epsilon}_i^{*2}}\right)^{1/2}$$

Studentized residuals follow a $t_{n-(p+1)-1}$ distribution.

Influence

Specifically, deletion influence

- $|\hat{\boldsymbol{\beta}} \hat{\boldsymbol{\beta}}_{(-i)}|$
- Cook's distance is

$$D_{i} = \frac{(\hat{\beta} - \hat{\beta}_{(-i)})^{T} (X^{T} X) (\hat{\beta} - \hat{\beta}_{(-i)})}{(p+1)\hat{\sigma}^{2}}$$

$$= \frac{(\hat{y} - \hat{y}_{(-i)})^{T} (\hat{y} - \hat{y}_{(-i)})}{(p+1)\hat{\sigma}^{2}}$$

$$= \frac{1}{p+1} \hat{\epsilon}_{i}^{2} \frac{h_{ii}}{1 - h_{ii}}$$

Cook's distance plot

Cook's distance plot

Handy R functions

Suppose you fit a linear model in R;

- hatvalues gives the diagonal elements of the hat matrix h_{ii} (leverages)
- rstandard gives the standardized residuals
- rstudent gives the studentized residuals
- cooks.distance gives the Cook's distances

Today's big ideas

■ Model checking

■ Suggested reading: Faraway Ch 7