Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/001863

International filing date: 23 February 2005 (23.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: EP

Number: PCT/EP/04/07957

Filing date: 16 July 2004 (16.07.2004)

Date of receipt at the International Bureau: 08 June 2005 (08.06.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

Europäisches Patentamt

European Patent Office

PCT/EP2005/001863

Office européen des brevets

03.06.2005

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten internationalen Patentanmeldung überein.

The attached documents are exact copies of the international patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet international spécifiée à la page suivante.

Den Haag, den The Hague, La Haye, le

2 0. 04. 2005

ean Patent Office bert de Best

Der Präsident des Europäischen Patentamts Im Auftrag For the President of the European Patent Office Le Président de l'Office europeen des brevets p.o.

Patentanmeldung Nr. Patent application no.

Demande de brevet n°

PCT/EP 04/007957

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation -

Anmeldung Nr.: Application no.:

PCT/EP 04/007957

Demande nº:

Anmelder: Applicant(s): 1. BASF Plant Science GmbH - Ludwigshafen, Deutschland

2. ZANK, Thorsten - Mannheim, Deutschland (nur US) Demandeur(s):

3. BAUER, Jörg - Ludwigshafen, Deutschland (nur US)

Bezeichnung der Erfindung:

Title of the invention:

Titre de l'invention:

Verfahren zur Herstellung merhfach ungesättigter Fettsäuren in transgenen

Organismen

Anmeldetag:

Date of filing: Date de dépôt:

16. Juli 2004 (16.07.2004)

In Anspruch genommene Priorität(en)

Priority(ies) claimed

Priorité(s) revendiquée(s)

Staat: State: Pays:

Deutschland

Tag:

Date:

Date:

01. August 2003

(01.08.2003)

Aktenzeichen:

File no. Numéro de dépôt:

10335992.3

Bemerkungen:

Remarks:

Remarques:

Weitere Anmelder:

- 4. CIRPUS, Petra Mannheim, Deutschland (nur US)
- 5. ABBADI, Amine Hamburg, Deutschland (nur US)
- 6. HEINZ, Ernst Hamburg, Deutschland (nur US)
- 7. QIU, Xiao Saskatoon, Kanada (nur US)
- 8. VRINTEN, Patricia Saskatoon, Kanada (nur US)
- 9. SPERLING, Petra Hamburg, Deutschland (nur US)
- 10. DOMERGUE, Frederic Hamburg, Deutschland (nur US)
- 11. MEYER, Astrid Hamburg, Deutschland (nur US)
- 12. KIRSCH, Jelena Hamburg, Deutschland (nur US)

Weitere Prioritätsanspruche:

Deutschland	24. September 2003 (24.09.2003)	10344557.9
Deutschland	10. Oktober 2003 (10.10.2003)	10347869.8
Deutschland	18. Dezember 2003 (18.12.2003)	10359593.7
Deutschland	27. Februar 2004 (27.02.2004)	102004009457.8
Deutschland	13. März 2004 (13.03.2004)	102004012370.5
Deutschland	14. Mai 2004 (14.05.2004)	102004024014.0

Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Δ-5-Elongaseaktivität codieren. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die für Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem Organismus exprimiert werden. Besonders vorteilhaft sind Nukleinsäuresequenzen, die für eine Δ-6-Desaturase-, eine Δ-5-Desaturase-, Δ-4-Desaturase-, Δ-12-Desaturase- und/oder Δ-6-Elongaseaktivität codieren. Vorteilhaft stammen diese Desaturasen und Elongasen aus Thalassiosira, Euglena oder Ostreococcus. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von Ölen und/oder Triacylglyceriden mit einem erhöhten Gehalt an langkettigen mehrfach ungesättigten Fettsäuren.

Die vorliegende Erfindung betrifft außerdem in einer bevorzugten Ausführungsform ein Verfahren zur Herstellung von ungesättigten ω-3 Fettsäuren sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren, besonders von ω -3 Fettsäuren mit mehr als drei Doppelbindungen. Die Erfindung betrifft die Herstellung eines transgenen Organismus bevorzugt einer transgenen 20 Pflanze oder eines transgenen Mikroorganismus mit erhöhtem Gehalt an ungesättigten ω -3-Fettsäuren, Ölen oder Lipiden mit ω -3-Doppelbindungen aufgrund der Expression der im erfindungsgemäßen Verfahren verwendeten Elongasen und Desaturasen vorteilhaft in Verbindung mit ω -3-Desaturasen z.B. einer ω -3-Desaturase aus Pilzen der Familie Pythiaceae wie der Gattung Phytophtora beispielsweise der Gattung und 25 Art Phytophtora infestans oder einer ω-3-Desaturase aus Algen wie der Familie der Prasinophyceae z.B. der Gattung Ostreococcus speziell der Gattung und Art Ostreococcus tauri oder Diatomeen wie der Gattung Thalassiosira speziell der Gattung und Art Thalassiosira pseudonana.

- Die Erfindung betrifft weiterhin die Nukleinsäuresequenzen, Nukleinsäurekonstrukte, Vektoren und Organismen enthaltend die erfindungsgemäßen Nukleinsäuresequenzen, Vektoren enthaltend die Nukleinsäuresequenzen und/oder die Nukleinsäurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsäuresequenzen, Nukleinsäurekonstrukte und/oder Vektoren.
- 35 Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung. Außerdem betrifft die Erfindung ungesättigte Fettsäuren sowie Triglyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren und deren Verwendung.
- Fettsäuren und Triacylglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich.

15

20

30

35

Je nachdem, ob es sich um freie gesättigte und ungesättigte Fettsäuren oder um Triacylglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet. Mehrfachungesättigte Fettsäuren wie Linol- und Linolensäure sind für Säugetiere essentiell, da sie nicht von diesen selbst hergestellt werden können. Deshalb stellen mehrfach ungesättigte ω -3-Fettsäuren und ω -6-Fettsäuren einen wichtigen Bestandteil der tierischen und menschlichen Nahrung dar.

Mehrfach ungesättigte langkettige ω -3-Fettsäuren wie Eicosapentaensäure (= EPA, C20:5^{Δ 5,8,11,14,17}) oder Docosahexaensäure (= DHA, C22:6 Δ 4,7,10,13,16,19</sup>) sind wichtige Komponenten der menschlichen Ernährung aufgrund ihrer verschiedenen Rollen in der Gesundheit, die Aspekte wie die Entwicklung des kindlichen Gehirns, der Funktionalität des Auges, der Synthese von Hormonen und anderer Signalstoffe, sowie die Vorbeugung von Herz-Kreislauf-Beschwerden, Krebs und Diabetes umfassen (Poulos, A Lipids 30:1-14, 1995; Horrocks, LA und Yeo YK Pharmacol Res 40:211-225, 1999). Es besteht aus diesem Grund ein Bedarf an der Produktion mehrfach ungesättigter langkettiger Fettsäuren.

Aufgrund der heute üblichen Zusammensetzung der menschlichen Nahrung ist ein Zusatz von mehrfach ungesättigten ω -3-Fettsäuren, die bevorzugt in Fischölen vorkommen, zur Nahrung besonders wichtig. So werden beispielsweise mehrfach ungesättigte Fettsäuren wie Docosahexaensäure (= DHA, C22:6 $^{\Delta4,7,10,13,16,19}$) oder Eisosapentaensäure (= EPA, C20:5 $^{\Delta5,8,11,14,17}$) Babynahrung zur Erhöhung des Nährwertes zugesetzt. Der ungesättigten Fettsäure DHA wird dabei ein positiver Effekt auf die Entwicklung und Aufrechterhaltung von Gehirnfunktionen zugeschrieben.

Im folgenden werden mehrfach ungesättigte Fettsäuren als PUFA, PUFAs, LCPUFA
25 oder LCPUFAs bezeichnet (<u>poly unsaturated fatty acids</u>, <u>PUFA</u>, mehrfach ungesättigte
Fettsäuren; <u>long chain poly unsaturated fatty acids</u>, <u>LCPUFA</u>, langkettige mehrfach
ungesättigte Fettsäuren).

Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder Schizochytrium oder aus Öl–produzierenden Pflanzen wie Soja, Raps, Algen wie Crypthecodinium oder Phaeodactylum und weiteren gewonnen, wobei sie in der Regel in Form ihrer Triacylglyceride (= Triglyceride = Triglycerole) anfallen. Sie können aber auch aus Tieren wie z.B. Fischen gewonnen werden. Die freien Fettsäuren werden vorteilhaft durch Verseifung hergestellt. Sehr langkettige mehrfach ungesättigte Fettsäuren wie DHA, EPA, Arachidonsäure (= ARA, C20:4^{Δ5,8,11,14}), Dihomo-γ-linolensäure (C20:3^{Δ8,11,14}) oder Docosapentaensäure (DPA, C22:5^{Δ7,10,13,16,19}) werden in Ölfruchtpflanzen wie Raps, Soja, Sonnenblume, Färbersaflor nicht synthetisiert. Übliche natürliche Quellen für diese Fettsäuren sind Fische wie Hering, Lachs, Sardine, Goldbarsch, Aal, Karpfen, Forelle, Heilbutt, Makrele, Zander oder Thunfisch oder Algen.

Je nach Anwendungszweck werden Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt. So werden z.B. in der humanen Ernährung Lipide mit ungesättigten Fett-

10

15

säuren speziell mehrfach ungesättigten Fettsäuren bevorzugt. Den mehrfach ungesättigten ω-3-Fettsäuren wird dabei ein positiver Effekt auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit der Prävention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser ω-3-Fettsäuren zur Nahrung kann das Risiko einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden. Auch entzündliche speziell chronisch entzündliche Prozesse im Rahmen immunologischer Erkrankungen wie rheumatroider Arthritis lassen sich durch ω-3-Fettsäuren positiv beeinflussen. Sie werden deshalb Lebensmitteln speziell diätischen Lebensmitteln zugegeben oder finden in Medikamenten Anwendung. ω-6-Fettsäuren wie Arachidonsäure haben bei diesen rheumatischen Erkrankungen aufgrund unserer üblichen Nahrungsmittelzusammensetzung eher einen negativen Effekt auf diese Krankheiten.

ω-3- und ω-6-Fettsäuren sind Vorläufer von Gewebshormonen, den sogenannten Eicosanoiden wie den Prostaglandinen, die sich von der Dihomo-γ-linolensäure, der Arachidonsäure und der Eicosapentaensäure ableiten, den Thromoxanen und Leukotrienen, die sich von der Arachidonsäure und der Eicosapentaensäure ableiten. Eicosanoide (sog. PG₂-Serie), die aus ω-6-Fettsäuren gebildet werden fördern in der Regel Entzündungsreaktionen, während Eicosanoide (sog. PG₃-Serie) aus ω-3-Fettsäuren geringe oder keine entzündungsfördernde Wirkung haben.

Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen 20 gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ -9-Desaturase beschrieben. In WO 93/11245 wird eine Δ -15-Desaturase in WO 94/11516 wird eine Δ -12-Desaturase beansprucht. Weitere 25 Desaturasen werden beispielsweise in EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144–20149, Wada et al., Nature 347, 1990: 200–203 oder Huang et al., Lipids 34, 1999: 649-659 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als 30 membrangebundene Proteine nur sehr schwer zu isolieren und zu charakterisieren sind (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enzymaktivität mittels Edukt- und Produktanalyse unter-35 sucht wird. Δ-6-Desaturasen werden in WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO00/21557 und WO 99/27111 beschrieben und auch die Anwendung zur Produktion in transgenen Organismen beschrieben wie in WO98/46763 WO98/46764, WO9846765. Dabei wird auch die Expression verschiedener Desaturasen wie in WO99/64616 oder WO98/46776 und Bildung polyungesättigter Fettsäuren 40 beschrieben und beansprucht. Bzgl. der Effektivität der Expression von Desaturasen und ihren Einfluss auf die Bildung polyungesättigter Fettsäuren ist anzumerken, dass durch Expression einer einzelnen Desaturase wie bisher beschrieben lediglich geringe

30

35

Gehalte an ungesättigten Fettsäuren/Lipiden wie z.B. γ -Linolensäure und Stearidonsäure erreicht wurden. Weiterhin wurde in der Regel ein Gemisch aus ω -3- und ω -6-Fettsäuren erhalten.

Besonders geeignete Mikroorganismen zur Herstellung von PUFAs sind Mikroorganismen wie Mikroalgen wie Phaeodactylum tricornutum, Porphiridium-Arten. 5 Thraustochytrien-Arten, Schizochytrien-Arten oder Crypthecodinium-Arten, Ciliaten, wie Stylonychia oder Colpidium, Pilze, wie Mortierella, Entomophthora oder Mucor und/oder Moosen wie Physcomitrella, Ceratodon und Marchantia (R. Vazhappilly & F. Chen (1998) Botanica Marina 41: 553-558; K. Totani & K. Oba (1987) Lipids 22: 1060-1062; M. Akimoto et al. (1998) Appl. Biochemistry and Biotechnology 73: 269-278). 10 Durch Stammselektion ist eine Anzahl von Mutantenstämmen der entsprechenden Mikroorganismen entwickelt worden, die eine Reihe wünschenswerter Verbindungen, einschließlich PUFAs, produzieren. Die Mutation und Selektion von Stämmen mit verbesserter Produktion eines bestimmten Moleküls wie den mehrfach ungesättigten Fettsäuren ist jedoch ein zeitraubendes und schwieriges Verfahren. Deshalb werden, 15 wann immer möglich wie oben beschrieben gentechnologische Verfahren bevorzugt. Mit Hilfe der vorgenannten Mikroorganismen lassen sich jedoch nur begrenzte Mengen der gewünschten mehrfach ungesättigten Fettsäuren wie DPA, EPA oder ARA herstellen. Wobei diese in der Regel je nach verwendeten Mikroorganismus als Fettsäuregemische aus beispielsweise EPA, DPA und ARA anfallen. 20

Für die Synthese von Arachidonsäure, Eicosapentaensäure (EPA) und Docosahexaensäure (DHA) werden verschiedene Synthesewege diskutiert (Figur. 1). So erfolgt die Produktion von EPA bzw. DHA in marinen Bakterien wie Vibrio sp. oder Shewanella sp. nach dem Polyketid-Weg (Yu, R. et al. Lipids 35:1061-1064, 2000; Takeyama, H. et al. Microbiology 143:2725-2731, 1997).

Ein alternative Strategie verläuft über die wechselnde Aktivität von Desaturasen und Elongasen (Zank, T.K. et al. Plant Journal 31:255-268, 2002; Sakuradani, E. et al. Gene 238:445-453, 1999). Eine Modifikation des beschriebenen Weges über $\Delta 6$ -Desaturase, $\Delta 6$ -Elongase, $\Delta 5$ -Desaturase, $\Delta 5$ -Elongase, $\Delta 4$ -Desaturase ist der Sprecher-Syntheseweg (Sprecher 2000, Biochim. Biophys. Acta 1486:219-231) in Säugetieren. Anstelle der $\Delta 4$ -Desaturierung erfolgt hier ein weiterer Elongationsschritt auf C_{24} , eine weitere $\Delta 6$ -Desaturierung und abschliessend eine β -Oxidation auf die C_{22} -Kettenlänge. Für die Herstellung in Pflanzen und Mikroorganismen ist der sogenannte Sprecher-Syntheseweg (siehe Figur 1) allerdings nicht geeignet, da die Regulationsmechanismen nicht bekannt sind.

Die polyungesättigten Fettsäuren können entsprechend ihrem Desaturierungsmuster in zwei große Klassen, in ω -6- oder ω -3-Fettsäuren eingeteilt werden, die metabolisch und funktionell unterschiedlich Aktivitäten haben (Fig. 1).

Als Ausgangsprodukt für den ω -6-Stoffwechselweg fungiert die Fettsäure Linolsäure (18: $2^{\Delta 9,12}$), während der ω -3-Weg über Linolensäure (18: $3^{\Delta 9,12,15}$) abläuft. Linolensäure

10

25

30

35

40

wird dabei durch Aktivität einer ω -3-Desaturase gebildet (Tocher et al. 1998, Prog. Lipid Res. 37, 73-117; Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113).

Säugetiere und damit auch der Mensch verfügen über keine entsprechende Desaturaseaktivität (Δ -12- und ω -3-Desaturase) und müssen diese Fettsäuren (essentielle Fettsäuren) über die Nahrung aufnehmen. Über die Abfolge von Desaturase- und Elongase-Reaktionen werden dann aus diesen Vorstufen die physiologisch wichtigen polyungesättigten Fettsäuren Arachidonsäure (= ARA, $20:4^{\Delta5.8,11,14}$), eine ω -6-Fettsäure und die beiden ω -3-Fettsäuren Eicosapentaen- (= EPA, $20:5^{\Delta5.8,11,14,17}$) und Docosahexaensäure (DHA, $22:6^{\Delta4,7,10,13,17,19}$) synthetisiert. Die Applikation von ω -3-Fettsäuren zeigt dabei die wie oben beschrieben therapeutische Wirkung bei der Behandlung von Herz-Kreislaufkrankheiten (Shimikawa 2001, World Rev. Nutr. Diet. 88, 100-108), Entzündungen (Calder 2002, Proc. Nutr. Soc. 61, 345-358) und Arthridis (Cleland und James 2000, J. Rheumatol. 27, 2305-2307).

Aus ernährungsphysiologischer Sicht ist es deshalb wichtig bei der Synthese mehrfach ungesättigter Fettsäuren eine Verschiebung zwischen dem ω-6-Syntheseweg und dem ω-3-Syntheseweg (siehe Figur 1) zu erreichen, so dass mehr ω-3-Fettsäuren hergestellt werden. In der Literatur wurden die enzymatischen Aktivitäten verschiedener ω-3-Desaturasen beschrieben, die C_{18:2}-, C_{22:4}- oder C_{22:5}-Fettsäuren desaturieren (siehe Figur 1). Keine der biochemisch beschriebenen Desaturasen setzt jedoch ein breites
Substratspektrum des ω-6-Synthesewegs zu den entsprechenden Fettsäuren des ω-3-Syntheseweg um.

Es besteht daher weiterhin ein großer Bedarf an einer ω -3-Desaturase, die zur Herstellung von ω -3-polyungesättigte Fettsäuren geeignet ist. Alle bekannten pflanzlichen und cyanobakteriellen ω -3-Desaturasen desaturieren C_{18} -Fettsäuren mit Linolsäure als Substrat, können aber keine C_{20} - oder C_{22} -Fettsäuren desaturieren.

Von dem Pilz Saprolegnia dicilina ist eine ω -3-Desaturase bekannt [Pereira et al. 2004, Biochem. J. 378(Pt 2):665-71], die C₂₀-mehrfach ungesättigte Fettsäuren desaturieren kann. Von Nachteil ist jedoch, dass diese ω -3-Desaturase keine C₁₈- oder C₂₂-PUFAs, wie den wichtigen Fettsäuren C_{18:2}-, C_{22:4}- oder C_{22:5}-Fettsäuren des ω -6-Syntheseweg desaturieren kann. Ein weiterer Nachteil dieses Enzyms ist, dass es keine Fettsäuren desaturieren kann, die an Phospholipide gebunden sind. Es werden nur die CoA-Fettsäureester umgesetzt.

Die Verlängerung von Fettsäuren durch Elongasen um 2 bzw. 4 C-Atome ist für die Produktion von C₂₀- bzw. C₂₂-PUFAs von entscheidender Bedeutung. Dieser Prozess verläuft über 4 Stufen. Der erste Schritt stellt die Kondensation von Malonyl-CoA an das Fettsäure-Acyl-CoA durch die Ketoacyl-CoA-Synthase (KCS, im weiteren Text als Elongase bezeichnet). Es folgt dann ein Reduktionschritt (Ketoacyl-CoA-Reduktase, KCR), ein Dehydratationsschritt (Dehydratase) und ein abschliessender Reduktionsschritt (enoyl-CoA-Reduktase). Es wurde postuliert, dass die Aktivität der Elongase die Spezifität und Geschwindigkeit des gesamten Prozesses beeinflussen (Millar and Kunst, 1997 Plant Journal 12:121-131).

In der Vergangenheit wurden zahlreiche Versuche unternommen, Elongase Gene zu erhalten. Millar and Kunst, 1997 (Plant Journal 12:121-131) und Millar et al. 1999, (Plant Cell 11:825-838) beschreiben die Charakterisierung von pflanzlichen Elongasen zur Synthese von einfachungesättigten langkettigen Fettsäuren (C22:1) bzw. zur Synthese von sehr langkettigen Fettsäuren für die Wachsbildung in Pflanzen (C28-C32). Beschreibungen zur Synthese von Arachidonsäure und EPA finden sich beispielsweise in WO0159128, WO0012720, WO02077213 und WO0208401. Die Synthese von mehrfachungesättigter C24 Fettsäuren ist beispielsweise in Tvrdik et al 2000, JCB 149:707-717 oder WO0244320 beschrieben.

- Zur Herstellung von DHA (C22:6 n-3) in Organismen, die diese Fettsäure natürlicherweise nicht produzieren, wurde bisher keine spezifische Elongase beschrieben. Bisher wurden nur Elongasen beschrieben, die C₂₀- bzw. C₂₄-Fettsäuren bereitstellen. Eine Δ-5-Elongase-Aktivität wurde bisher noch nicht beschrieben.
- Höhere Pflanzen enthalten mehrfach ungesättigte Fettsäuren wie Linolsäure (C18:2)
 und Linolensäure (C18:3). ARA, EPA und DHA kommen im Samenöl höherer Pflanzen gar nicht oder nur in Spuren vor (E. Ucciani: Nouveau Dictionnaire des Huiles Végétales. Technique & Documentation Lavoisier, 1995. ISBN: 2-7430-0009-0). Es wäre jedoch vorteilhaft, in höheren Pflanzen, bevorzugt in Ölsaaten wie Raps, Lein, Sonnenblume und Soja, LCPUFAs herzustellen, da auf diese Weise große Mengen qualitativ hochwertiger LCPUFAs für die Lebensmittelindustrie, die Tierernährung und für pharmazeutische Zwecke kostengünstig gewonnen werden können. Hierzu müssen vorteilhaft über gentechnische Methoden Gene kodierend für Enzyme der Biosynthese von LCPUFAs in Ölsaaten eingeführt und exprimiert werden. Dies sind Gene, die beispielsweise für Δ-6-Desaturasen, Δ-6-Elongasen, Δ-5-Desaturasen oder Δ-4-
- Desaturasen codieren. Diese Gene können vorteilhaft aus Mikroorganismen und niederen Pflanzen isoliert werden, die LCPUFAs herstellen und in den Membranen oder Triacylglyceriden einbauen. So konnten bereits Δ -6-Desaturase-Gene aus dem Moos Physcomitrella patens und Δ -6-Elongase-Gene aus P. patens und dem Nematoden C. elegans isoliert.
- Erste transgene Pflanzen, die Gene kodierend für Enzyme der LCPUFA-Biosynthese enthalten und exprimieren und LCPUFAs produzieren wurden beispielsweise in DE 102 19 203 (Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen) erstmals beschrieben. Diese Pflanzen produzieren allerdings LCPUFAs in Mengen, die für eine Aufarbeitung der in den Pflanzen enthaltenen Öle noch weiter optimiert werden müssen.
 - Um eine Anreicherung der Nahrung und/oder des Futters mit diesen mehrfach ungesättigten Fettsäuren zu ermöglichen, besteht daher ein großer Bedarf an einem einfachen, kostengünstigen Verfahren zur Herstellung dieser mehrfach ungesättigten Fettsäuren speziell in eukaryontischen Systemen.
- 40 Es bestand daher die Aufgabe weitere Gene bzw. Enzyme, die für die Synthese von LCPUFAs geeignet sind, speziell Gene, die eine Δ -5-Elongase-, eine Δ -5-Desaturase-,

10

 Δ -4-Desaturase-, Δ -12-Desaturase- oder Δ -6-Desaturaseaktivität aufweisen, für die Herstellung von mehrfach ungesättigten Fettsäuren zur Verfügung zu stellen. Eine weitere Aufgabe dieser Erfindung war die Bereitstellung von Genen bzw. Enzymen, die eine Verschiebung von den ω -6-Fettsäuren zu den ω -3-Fettsäuren hin ermöglichen. Weiterhin bestand die Aufgabe ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus vorteilhaft in einem eukaryontischen Organismus bevorzugt in einer Pflanze oder einem Mikroorganismus zu entwickeln. Diese Aufgabe wurde durch das erfindungsgemäße Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

$$R^{1} = CH_{2} + CH_{2} + CH_{3}$$

$$CH = CH$$

$$CH_{2} + CH_{3} + CH_{3}$$

$$CH_{3} + CH_{3} + CH_{3}$$

$$CH_{2} + CH_{3} + CH_{3}$$

$$CH_{3} + CH_{3} + CH_{3}$$

$$CH_{3} + CH_{3} + CH_{3}$$

$$CH_{4} + CH_{3} + CH_{3}$$

$$CH_{5} + CH_{5} + CH_{5} + CH_{5}$$

$$CH_{5} + CH_{5} + CH_{5} + CH_{5}$$

$$CH_{5} + CH_{5} + CH_{5} + CH_{5} + CH_{5}$$

$$CH_{5} + CH_{5} + CH_{5} + CH_{5} + CH_{5} + CH_{5}$$

in transgenen Organismen mit einem Gehalt von mindestens 1 Gew.-% dieser Verbindungen bezogen auf den Gesamtlipidgehalt des transgenen Organismus, dadurch gekennzeichnet, dass es folgende Verfahrensschritte umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -9-Elongase- und/oder eine Δ -6-Desaturase-Aktivität codiert, und
 - b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -8-Desaturase- und/oder eine Δ -6-Elongase-Aktivität codiert, und
 - c) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -5-Desaturase-Aktivität codiert, und
- 20 d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Elongase-Aktivität codiert, und
 - e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -4-Desaturase-Aktivität codiert, und

wobei die Variablen und Substituenten in der Formel I die folgende Bedeutung haben:

25 R¹ = Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

15

20

25

$$H_{2}C-O-R^{2}$$
 $H_{C}-O-R^{3}$
 $H_{2}C-O$
(II)

- R² = Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C₂-C₂₄- Alkylcarbonyl-,
- R³ = Wasserstoff-, gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl-, oder R² oder R³ unabhängig voneinander einen Rest der allgemeinen Formel Ia:

$$\begin{array}{c|c} O & CH_2 & CH_2 \\ \hline \end{array} \begin{array}{c} CH_2 & CH_2 \\ \hline \end{array} \begin{array}{c} CH_2 & CH_3 \\ \hline \end{array} \begin{array}{c} CH_3 & CH$$

10 n = 2, 3, 4, 5, 6, 7 oder 9, m = 2, 3, 4, 5 oder 6 und p = 0 oder 3, gelöst.

R¹ bedeutet in der allgemeinen Formel I Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $H_{C}-O-R^{3}$ (II)
 $H_{2}C-O-f$

Die oben genannten Reste von R¹ sind immer in Form ihrer Thioester an die Verbindungen der allgemeinen Formel I gebunden.

 R^2 bedeutet in der allgemeinen Formel II Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C_2 - C_2 -Alkylcarbonyl-,

Als Alkylreste seien substituiert oder unsubstituiert, gesättigt oder ungesättigte C_2 - C_2 -Alkylcarbonyl-Ketten wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Hepta-

decylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- or n-Tetracosanylcarbonyl- genannt, die ein oder mehrere Doppelbindungen enthalten. Gesättigte oder ungesättigte C₁₀-C₂₂-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Hepta-5 decylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-., die ein oder mehrere Doppelbindungen enthalten, sind bevorzugt. Besonders bevorzugt sind gesättigte und/oder ungesättigte C_{10} – C_{22} –Alkylcarbonylreste wie C_{10} –Alkylcarbonyl-, C_{11} –Alkylcarbonyl-, C₁₂-Alkylcarbonyl-, C₁₃-Alkylcarbonyl-, C₁₄-Alkylcarbonyl-, C₁₆-Alkylcarbonyl-, C₁₈-10 Alkylcarbonyl-, C20-Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte C₁₆-C₂₂-Alkylcarbonylreste wie C₁₆-Alkylcarbonyl-, C₁₈-Alkylcarbonyl-, C₂₀-Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Diese vorteilhaften Reste können zwei, drei, vier, fünf oder sechs Doppel-15 bindungen enthalten. Die besonders vorteilhaften Reste mit 20 oder 22 Kohlenstoffatomen in der Fettsäurekette enthalten bis zu sechs Doppelbindungen, vorteilhaft drei, vier, fünf oder sechs Doppelbindungen, besonders bevorzugt fünf oder sechs Doppelbindungen. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

20 R³ bedeutet in der allgemeinen Formel II Wasserstoff-, gesättigtes oder ungesättigtes C₂-C₂4-Alkylcarbonyl.

Als Alkylreste seien substituiert oder unsubstituiert, gesättigt oder ungesättigte C2-C24-Alkylcarbonyl-Ketten wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-,n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, 25 n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- or n-Tetracosanylcarbonyl- genannt, die ein oder mehrere Doppelbindungen enthalten. Gesättigte oder ungesättigte C₁₀-C₂₂-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, 30 n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten, sind bevorzugt. Besonders bevorzugt sind gesättigte und/oder ungesättigte C₁₀–C₂₂–Alkylcarbonylreste wie C₁₀–Alkylcarbonyl-, C₁₁–Alkylcarbonyl-, 35 C₁₂—Alkylcarbonyl-, C₁₃—Alkylcarbonyl-, C₁₄—Alkylcarbonyl-, C₁₆—Alkylcarbonyl-, C₁₈— Alkylcarbonyl-, C20-Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder unge sättigte C₁₆-C₂₂-Alkylcarbonylreste wie C₁₆-Alkylcarbonyl-, C₁₈-Alkylcarbonyl-, C₂₀-Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen 40 enthalten. Diese vorteilhaften Reste können zwei, drei, vier, fünf oder sechs Doppelbindungen enthalten. Die besonders vorteilhaften Reste mit 20 oder 22 Kohlenstoffatomen in der Fettsäurekette enthalten bis zu sechs Doppelbindungen, vorteilhaft drei,

40

vier, fünf oder sechs Doppelbindungen, besonders bevorzugt fünf oder sechs Doppelbindungen. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

Die oben genannten Reste von R¹, R² and R³ können mit Hydroxyl- und/oder Epoxygruppen substituierte sein und/oder können Dreifachbindungen enthalten.

Vorteilhaft enthalten die im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigten Fettsäuren mindestens zwei vorteilhaft drei, vier, fünf oder sechs Doppelbindungen. Besonders vorteilhaft enthalten die Fettsäuren vier fünf oder sechs Doppelbindungen. Im Verfahren hergestellte Fettsäuren haben vorteilhaft 18-, 20- oder 22-C-Atome in der Fettsäurekette, bevorzugt enthalten die Fettsäuren 20 oder 22 Kohlenstoffatome in der Fettsäurekette. Vorteilhaft werden gesättigte Fettsäuren mit den im Verfahren verwendeten Nukleinsäuren wenig oder gar nicht umgesetzt. Unter wenig ist zu verstehen, das im Vergleich zu mehrfach ungesättigten Fettsäuren die gesättigten Fettsäuren mit weniger als 5 % der Aktivität, vorteilhaft weniger als 3 %, besonders vorteilhaft mit weniger als 2 %, ganz besonders bevorzugt mit weniger als 1; 0,5; 0,25 oder 0,125 % umgesetzt werden. Diese hergestellten Fettsäuren können als einziges Produkt im Verfahren hergestellt werden oder in einem Fettsäuregemisch vorliegen.

Bei den im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen handelt es sich um isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase- und/oder Δ -4-Desaturaseaktivität codieren.

Vorteilhaft werden im erfindungsgemäßen Verfahren Nukleinsäuresequenzen, die für Polypeptide mit Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturaseaktivität codieren, verwendet ausgewählt aus der Gruppe bestehend aus:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, 25 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, 30 SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ 35 ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 dargestellten Sequenz, oder
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18,

10

15

20

25

30

35

SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 dargesteilten Aminosäuresequenzen ableiten lassen, oder

- c) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27. SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37. SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Identität auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 codieren und eine Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongaseoder Δ-4-Desaturaseaktivität aufweisen.
- Vorteilhaft bedeuten die Substituenten R² oder R³ in den allgemeinen Formeln I und II unabhängig voneinander gesättigtes oder ungesättigtes C₁₈-C₂₂-Alkylcarbonyl-, besonders vorteilhaft bedeuten sie unabhängig voneinander ungesättigtes C₁₈-, C₂₀- oder C₂₂-Alkylcarbonyl- mit mindestens zwei Doppelbindungen.

Eine bevorzugte Ausführungsform des Verfahrens ist dadurch gekennzeichnet, dass eine Nukleinsäuresequenz zusätzlich in den Organismus eingebracht wird, die für Polypeptide mit ω -3-Desaturase-Aktivität codiert, ausgewählt aus der Gruppe bestehend aus:

- 5 a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Sequenz, oder
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 codieren und eine ω3-Desaturaseaktivität aufweisen.

In einer weiteren bevorzugten Ausführungsform ist das Verfahren dadurch gekennzeichnet, dass eine Nukleinsäuresequenz zusätzlich in den Organismus eingebracht wird, die für Polypeptide mit Δ-12-Desaturaseaktivität codiert, ausgewählt aus der Gruppe bestehend aus:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Sequenz, oder
- 20 b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturaseaktivität aufweisen.

Diese vorgenannten Δ -12-Desaturasesequenzen können allein oder in Kombination mit den ω 3-Desaturasesequenzen mit den im Verfahren verwendeten Nukleinsäuresequenzen, die für Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen codieren verwendet werden.

Tabelle 1 gibt die Nukleinsäuresequenzen, den Herkunftsorganismus und die Sequenz-ID-Nummer wieder.

Nr.	Organismus	Aktivität	Sequenznummer
1.	Euglena gracilis	Δ-8-Desaturase	SEQ ID NO: 1
2.	Isochrysis galbana	∆-9-Elongase	SEQ ID NO: 3
3.	Phaeodactylum tricornutum	Δ-5-Desaturase	SEQ ID NO: 5
4.	Ceratodon purpureus	Δ-5-Desaturase	SEQ ID NO: 7
5.	Physcomitrella patens	Δ-5-Desaturase	SEQ ID NO: 9
6.	Thraustrochytrium sp.	Δ-5-Desaturase	SEQ ID NO: 11
7.	Mortierella alpina	Δ-5-Desaturase	SEQ ID NO: 13
8.	Caenorhabditis elegans	Δ-5-Desaturase	SEQ ID NO: 15
9.	Borago officinalis	Δ-6-Desaturase	SEQ ID NO: 17
10.	Ceratodon purpureus	Δ-6-Desaturase	SEQ ID NO: 19
11.	Phaeodactylum tricornutum	Δ-6-Desaturase	SEQ ID NO: 21
12.	Physcomitrella patens	Δ-6-Desaturase	SEQ ID NO: 23
13.	Caenorhabditis elegans	Δ-6-Desaturase	SEQ ID NO: 25
14.	Physcomitrella patens	Δ-6-Elongase	SEQ ID NO: 27
15.	Thraustrochytrium sp.	Δ-6-Elongase	SEQ ID NO: 29
16.	Phytophtora infestans	Δ-6-Elongase	SEQ ID NO: 31
17.	Mortierella alpina	Δ-6-Elongase	SEQ ID NO: 33
18.	Mortierella alpina	Δ-6-Elongase	SEQ ID NO: 35
19.	Caenorhabditis elegans	Δ-6-Elongase	SEQ ID NO: 37
20.	Euglena gracilis	Δ-4-Desaturase	SEQ ID NO: 39
21.	Thraustrochytrium sp.	Δ-4-Desaturase	SEQ ID NO: 41
22.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 43
23.	Thalassiosira pseudonana	Δ-6-Elongase	SEQ ID NO: 45
24.	Crypthecodinium cohnii	Δ-5-Elongase	SEQ ID NO: 47
25.	Crypthecodinium cohnii	Δ-5-Elongase	SEQ ID NO: 49
26.	Oncorhynchus mykiss	Δ-5-Elongase	SEQ ID NO: 51
27.	Oncorhynchus mykiss	Δ-5-Elongase	SEQ ID NO: 53
28.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 59

Nr.	Organismus	Aktivität	Sequenznummer
29.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 61
30.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 63
31.	Thraustrochytrium aureum	∆-5-Elongase	SEQ ID NO: 65
32.	Ostreococcus tauri	∆-5-Elongase	SEQ ID NO: 67
33.	Ostreococcus tauri	Δ-6-Elongase	SEQ ID NO: 69
34.	Prímula farinosa	Δ-6-Desaturase	SEQ ID NO: 71
35.	Primula vialii	Δ-6-Desaturase	SEQ ID NO: 73
36.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 75
37.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 77
38.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 79
39.	Ostreococcus tauri	Δ-6-Elongase	SEQ ID NO: 81
40.	Thraustrochytrium sp.	Δ-5-Elongase	SEQ ID NO: 83
41.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 85
42.	Phytophtora infestans	ω-3-Desaturase	SEQ ID NO: 87
43.	Ostreococcus tauri	Δ-6-Desaturase	SEQ ID NO: 89
44.	Ostreococcus tauri	Δ-5-Desaturase	SEQ ID NO: 91
45.	Ostreococcus tauri	Δ-5-Desaturase	SEQ ID NO: 93
46.	Ostreococcus tauri	Δ-4-Desaturase	SEQ ID NO: 95
47.	Thalassiosira pseudonana	Δ-6-Desaturase	SEQ ID NO: 97
48.	Thalassiosira pseudonana	Δ-5-Desaturase	SEQ ID NO: 99
49.	Thalassiosira pseudonana	Δ-5-Desaturase	SEQ ID NO: 101
50.	Thalassiosira pseudonana	Δ-4-Desaturase	SEQ ID NO: 103
51.	Thalassiosira pseudonana	ω-3-Desaturase	SEQ ID NO: 105
52.	Ostreococcus tauri	Δ-12-Desaturase	SEQ ID NO: 107
53.	Thalassiosira pseudonana	Δ-12-Desaturase	SEQ ID NO: 109
54.	Ostreococcus tauri	Δ-6-Elongase	SEQ ID NO: 111
55.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 113
56.	Xenopus laevis (BC044967)	Δ-5-Elongase	SEQ ID NO: 117
57.	Ciona intestinalis (AK112719)	Δ-5-Elongase	SEQ ID NO: 119

Nr.	· Organismus	Aktivität	Sequenznummer
58.	Euglena gracilis	Δ-5-Elongase	SEQ ID NO: 131
59.	Euglena gracilis	Δ-5-Elongase	SEQ ID NO:133
60.	Arabidopsis thaliana	Δ-5-Elongase	SEQ ID NO: 135
61.	Arabidopsis thaliana	Δ-5-Elongasė	SEQ ID NO: 137
62.	Phaeodactylum tricornutum	Δ-6-Elongase	SEQ ID NO: 183

Die im Verfahren hergestellten mehrfach ungesättigten Fettsäuren sind vorteilhaft in Membranlipiden und/oder Triacylglyceriden gebunden, können aber auch als freie Fettsäuren oder aber gebunden in Form anderer Fettsäureester in den Organismen vorkommen. Dabei können sie als "Reinprodukte" oder aber vorteilhaft in Form von Mischungen verschiedener Fettsäuren oder Mischungen unterschiedlicher Glyceride vorliegen. Die in den Triacylglyceriden gebundenen verschieden Fettsäuren lassen sich dabei von kurzkettigen Fettsäuren mit 4 bis 6 C-Atomen, mittelkettigen Fettsäuren mit 8 bis 12 C-Atomen oder langkettigen Fettsäuren mit 14 bis 24 C-Atomen ableiten, bevorzugt sind die langkettigen Fettsäuren besonders bevorzugt sind die langkettigen Fettsäuren LCPUFAs von C₁₈-, C₂₀- und/oder C₂₂-Fettsäuren.

Im erfindungsgemäßen Verfahren werden vorteilhaft Fettsäureester mit mehrfach ungesättigten C_{18} -, C_{20} - und/oder C_{22} -Fettsäuremolekülen mit mindestens zwei Doppelbindungen im Fettsäureester, vorteilhaft mit mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäureester, besonders vorteilhaft von mindestens fünf oder sechs Doppelbindungen im Fettsäureester hergestellt und führen vorteilhaft zur Synthese von Linolsäure (=LA, $C18:2^{\Delta 9,12}$), γ-Linolensäure (= GLA, $C18:3^{\Delta 6,9,12}$), Stearidonsäure (= SDA, $C18:4^{\Delta 6,9,12,15}$), Dihomo-γ-Linolensäure (= DGLA, $20:3^{\Delta 8,11,14}$), ω-3-Eicosatetraensäure (= ETA, $C20:4^{\Delta 5,8,11,14}$), Arachidonsäure (ARA, $C20:4^{\Delta 5,8,11,14}$), Eicosapentaensäure (EPA, $C20:5^{\Delta 5,8,11,14,17}$), ω-6-Docosapentaensäure ($C22:5^{\Delta 4,7,10,13,16}$), ω-6-Docosatetraensäure ($C22:4^{\Delta 7,10,13,16}$), ω-3-Docosapentaensäure (= DPA, $C22:5^{\Delta 7,10,13,16,19}$), Docosahexaensäure (= DHA, $C22:6^{\Delta 4,7,10,13,16,19}$) oder deren Mischungen, bevorzugt ARA, EPA und/oder DHA. Ganz besonders bevorzugt werden, ω-3-Fettsäuren wie EPA und/oder DHA hergestellt.

Die Fettsäureester mit mehrfach ungesättigten C₁₈-, C₂₀- und/oder C₂₂-Fettsäuremolekülen können aus den Organismen, die für die Herstellung der Fettsäureester verwendet wurden, in Form eines Öls oder Lipids beispielsweise in Form von Verbindungen wie Sphingolipide, Phosphoglyceride, Lipide, Glycolipide wie Glycosphingolipide, Phospholipide wie Phosphatidylethanolamin, Phosphatidylcholin, Phosphatidylserin, Phosphatidylglycerol, Phosphatidylinositol oder Diphosphatidylglycerol, Monoacylglyceride, Diacylglyceride, Triacylglyceride oder sonstige Fettsäureester wie die AcetylCoenzymA-Ester, die die mehrfach ungesättigten Fettsäuren mit mindestens zwei, drei, vier, fünf oder sechs bevorzugt fünf oder sechs Doppelbindungen enthalten, isoliert werden, vorteilhaft werden sie in der Form ihrer Diacylglyceride, Triacylglyceride und/oder in Form des Phosphatidylcholin isoliert, besonders bevorzugt in der Form der

Triacylglyceride. Neben diesen Estern sind die mehrfach ungesättigten Fettsäuren auch als freie Fettsäuren oder gebunden in anderen Verbindungen in den Organismen vorteilhaft den Pflanzen enthalten. In der Regel liegen die verschiedenen vorgenannten Verbindungen (Fettsäureester und frei Fettsäuren) in den Organismen in einer ungefähren Verteilung von 80 bis 90 Gew.-% Triglyceride, 2 bis 5 Gew.-% Diglyceride, 5 bis 10 Gew.-% Monoglyceride, 1 bis 5 Gew.-% freie Fettsäuren, 2 bis 8 Gew.-% Phospholipide vor, wobei sich die Summe der verschiedenen Verbindungen zu 100 Gew.-% ergänzt.

Im erfindungsgemäßen Verfahren werden die hergestellten LCPUFAs mit einem Gehalt von mindestens 3 Gew.-%, vorteilhaft von mindestens 5 Gew.-%, bevorzugt 10 von mindestens 8 Gew.-%, besonders bevorzugt von mindestens 10 Gew.-%, ganz besonders bevorzugt von mindestens 15 Gew.-% bezogen auf die gesamten Fettsäuren in den transgenen Organismen vorteilhaft in einer transgenen Pflanze hergestellt. Dabei werden vorteilhaft C₁₈- und/oder C₂₀-Fettsäuren, die in den Wirtsorganismen vorhanden sind, zu mindestens 10 %, vorteilhaft zu mindestens 20 %, beson-15 ders vorteilhaft zu mindestens 30 %, ganz besonders vorteilhaft zu mindestens 40 % in die entsprechenden Produkte wie DPA oder DHA, um nur zwei beispielhaft zu nennen, umgesetzt. Vorteilhaft werden die Fettsäuren in gebundener Form hergestellt. Mit Hilfe der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren lassen sich diese ungesättigten Fettsäuren an sn1-, sn2- und/oder sn3-Position der vorteilhaft herge-20 stellten Triglyceride bringen. Da im erfindungsgemäßen Verfahren von den Ausgangsverbindungen Linolsäure (C18:2) bzw. Linolensäure (C18:3) mehrere Reaktionsschritte durchlaufen werden, fallen die Endprodukte des Verfahrens wie beispielsweise Arachidonsäure (ARA), Eicosapentaensäure (EPA), ω-6-Docosapentaensäure oder DHA nicht als absolute Reinprodukte an, es sind immer auch geringe Spuren der 25 Vorstufen im Endprodukt enthalten. Sind in dem Ausgangsorganismus bzw. in der Ausgangspflanze beispielsweise sowohl Linolsäure als auch Linolensäure vorhanden, so liegen die Endprodukte wie ARA, EPA oder DHA als Mischungen vor. Die Vorstufen sollten vorteilhaft nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 15 Gew.-%, besonders bevorzugt nicht als 10 Gew.-%, ganz besonders bevorzugt nicht mehr als 30 5 Gew.-% bezogen auf die Menge des jeweilige Endprodukts betragen. Vorteilhaft werden in einer transgenen Pflanze als Endprodukte nur ARA, EPA oder nur DHA im erfindungsgemäßen Verfahren gebunden oder als freie Säuren hergestellt. Werden die Verbindungen ARA, EPA und DHA gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindesten 1:1:2 (EPA:ARA:DHA), vorteilhaft von mindestens 35 1:1:3, bevorzugt von 1:1:4, besonders bevorzugt von 1:1:5 hergestellt.

Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, enthalten vorteilhaft 6 bis 15 % Palmitinsäure, 1 bis 6 % Stearinsäure; 7 – 85 % Ölsäure; 0,5 bis 8 % Vaccensäure, 0,1 bis 1 % Arachinsäure, 7 bis 25 % gesättigte Fettsäuren, 8 bis 85 % einfach ungesättigte Fettsäuren und 60 bis 85 % mehrfach ungesättigte Fettsäuren jeweils bezogen auf 100 % und auf den Gesamtfettsäuregehalt der Organismen. Als vorteilhafte mehrfach ungesättigte Fettsäure sind in den Fettsäureester bzw. Fettsäuregemische bevorzugt mindestens

35

0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 oder 1 % bezogen auf den Gesamtfettsäuregehalt an Arachidonsäure enthalten. Weiterhin enthalten die Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, vorteilhaft Fettsäuren ausgewählt aus der Gruppe der Fettsäuren Erucasäure (13-

- Docosaensäure), Sterculinsäure (9,10-Methylene octadec-9-enonsäure), Malvalinsäure (8,9-Methylen Heptadec-8-enonsäure), Chaulmoogrinsäure (Cyclopentendodecansäure), Furan-Fettsäure (9,12-Epoxy-octadeca-9,11-dienonsäure), Vernonsäure (9,10-Epoxyoctadec-12-enonsäure), Tarinsäure (6-Octadecynonsäure),6-Nonadecynonsäure, Santalbinsäure (t11-Octadecen-9-ynoic acid), 6,9-
- Octadecenynonsäure, Pyrulinsäure (t10-Heptadecen-8-ynonsäure), Crepenyninsäure (9-Octadecen-12-ynonsäure), 13,14-Dihydrooropheinsäure, Octadecen-13-ene-9,11-diynonsäure, Petroselensäure (cis-6-Octadecenonsäure), 9c,12t-Octadecadiensäure, Calendulasäure (8t10t12c-Octadecatriensäure), Catalpinsäure (9t11t13c-Octadecatriensäure), Eleosterinsäure (9c11t13t-Octadecatriensäure), Jacarinsäure
- Octadecatriensäure), Eleosterinsäure (9c11t13t-Octadecatriensäure), Jacarinsäure (8c10t12c-Octadecatriensäure), Punicinsäure (9c11t13c-Octadecatriensäure), Parinarinsäure (9c11t13t15c-Octadecatetraensäure), Pinolensäure (all-cis-5,9,12-Octadecatriensäure), Laballensäure (5,6-Octadecadienallensäure), Ricinolsäure (12-Hydroxyölsäure) und/oder Coriolinsäure (13-Hydroxy-9c,11t-Octadecadienonsäure). Die vorgenannten Fettsäuren kommen in den nach dem erfindungsgemäßen Verfahren
- 20 hergestellten Fettsäureester bzw. Fettsäuregemischen in der Regel vorteilhaft nur in Spuren vor, das heißt sie kommen bezogen auf die Gesamtfettsäuren zu weniger als 30 %, bevorzugt zu weniger als 25 %, 24 %, 23 %, 22 % oder 21 %, besonders bevorzugt zu weniger als 20 %, 15 %, 10 %, 9 %, 8 %, 7%, 6 % oder 5%, ganz besonders bevorzugt zu weniger als 4 %, 3 %, 2 % oder 1 % vor. In einer weiteren 25 bevorzugten Form der Erfindung kommen diese vorgenannten Fettsäuren bezogen auf
- die Gesamtfettsäuren zu weniger als 0,9%; 0,8%; 0,7%; 0,6%; oder 0,5%, besonders bevorzugt zu weniger als 0,4%; 0,3%; 0,2%; 0,1% vor. Vorteilhaft enthalten die nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemische weniger als 0,1 % bezogen auf die Gesamtfettsäuren und/oder keine Buttersäure, kein Cholesterin, keine Clupanodonsäure (= Docosapentaensäure, C22:5^{Δ4,8,12,15,21}) sowie keine Nisinsäure (Tetracosahexaensäure, C23:6^{Δ3,8,12,15,18,21}).

Durch die erfindungsgemäßen Nukleinsäuresequenzen bzw. im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen kann eine Steigerung der Ausbeute an mehrfach ungesättigten Fettsäuren von mindestens 50 %, vorteilhaft von mindestens 80 %, besonders vorteilhaft von mindestens 100 %, ganz besonders vorteilhaft von mindestens 150 % gegenüber den nicht transgenen Ausgangsorganismus beispielsweise einer Hefe, einer Alge, einem Pilz oder einer Pflanze wie Arabidopsis oder Lein beim Vergleich in der GC-Analyse siehe Beispiele erreicht werden.

Auch chemisch reine mehrfach ungesättigte Fettsäuren oder Fettsäurezusammensetzungen sind nach den vorbeschriebenen Verfahren darstellbar. Dazu werden die
Fettsäuren oder die Fettsäurezusammensetzungen aus dem Organismus wie den
Mikroorganismen oder den Pflanzen oder dem Kulturmedium, in dem oder auf dem die
Organismen angezogen wurden, oder aus dem Organismus und dem Kulturmedium in

bekannter Weise beispielsweise über Extraktion, Destillation, Kristallisation, Chromatographie oder Kombinationen dieser Methoden isoliert. Diese chemisch reinen Fettsäuren oder Fettsäurezusammensetzungen sind für Anwendungen im Bereich der Lebensmittelindustrie, der Kosmetikindustrie und besonders der Pharmaindustrie vorteilhaft.

Als Organismus für die Herstellung im erfindungsgemäßen Verfahren kommen prinzipiell alle Organismen wie Mikroorganismen, nicht-humane Tiere oder Pflanzen in Frage.

Als Pflanzen kommen prinzipiell alle Pflanzen in Frage, die in der Lage sind Fettsäuren zu synthetisieren wie alle dicotylen oder monokotylen Pflanzen, Algen oder Moose. Vorteilhaft Pflanzen sind ausgewählt aus der Gruppe der Pflanzenfamilien Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae, Euglenaceae, Prasinophyceae oder Gemüsepflanzen oder Zierpflanzen wie Tagetes in Betracht.

Beispielhaft seien die folgenden Pflanzen genannt ausgewählt aus der Gruppe: Adelotheciaceae wie die Gattungen Physcomitrella z.B. die Gattung und Arten 20 Physcomitrella patens, Anacardiaceae wie die Gattungen Pistacia, Mangifera, Anacardium z.B. die Gattung und Arten Pistacia vera [Pistazie], Mangifer indica [Mango] oder Anacardium occidentale [Cashew], Asteraceae wie die Gattungen Calendula, Carthamus, Centaurea, Cichorium, Cynara, Helianthus, Lactuca, Locusta, Tagetes, Valeriana z.B. die Gattung und Arten Calendula officinalis [Garten-Ringelblume], Carthamus 25 tinctorius [Färberdistel, safflower], Centaurea cyanus [Kornblume], Cichorium intybus [Wegwarte], Cynara scolymus [Artichoke], Helianthus annus [Sonnenblume], Lactuca sativa, Lactuca crispa, Lactuca esculenta, Lactuca scariola L. ssp. sativa, Lactuca scariola L. var. integrata, Lactuca scariola L. var. integrifolia, Lactuca sativa subsp. romana, Locusta communis, Valeriana locusta [Salat], Tagetes lucida, Tagetes erecta 30 oder Tagetes tenuifolia [Studentenblume], Apiaceae wie die Gattung Daucus z.B. die Gattung und Art Daucus carota [Karotte], Betulaceae wie die Gattung Corylus z.B. die Gattungen und Arten Corylus avellana oder Corylus colurna [Haselnuss], Boraginaceae wie die Gattung Borago z.B. die Gattung und Art Borago officinalis [Borretsch], Brassicaceae wie die Gattungen Brassica, Camelina, Melanosinapis, Sinapis, Araba-35 dopsis z.B. die Gattungen und Arten Brassica napus, Brassica rapa ssp. [Raps], Sinapis arvensis Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolia, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Camelina sativa, Melanosinapis communis [Senf], Brassica oleracea [Futterrübe] oder Arabidopsis thaliana, Bromeliaceae wie die Gattungen Anana, Bromelia (Ananas) z.B. die 40 Gattungen und Arten Anana comosus, Ananas ananas oder Bromelia comosa [Ananas], Caricaceae wie die Gattung Carica wie die Gattung und Art Carica papaya [Papaya], Cannabaceae wie die Gattung Cannabis wie die Gattung und Art Cannabis

10

15

sative [Hanf], Convolvulaceae wie die Gattungen Ipomea, Convolvulus z.B. die Gattungen und Arten Ipomoea batatus, Ipomoea pandurata, Convolvulus batatas, Convolvulus tiliaceus, Ipomoea fastigiata, Ipomoea tiliacea, Ipomoea triloba oder Convolvulus panduratus [Süßkartoffel, Batate], Chenopodiaceae wie die Gattung Beta wie die Gattungen und Arten Beta vulgaris, Beta vulgaris var. altissima. Beta vulgaris var. Vulgaris, Beta maritima, Beta vulgaris var. perennis, Beta vulgaris var. conditiva oder Beta vulgaris var. esculenta [Zuckerrübe], Crypthecodiniaceae wie die Gattung Crypthecodinium z.B. die Gattung und Art Cryptecodinium cohnii, Cucurbitaceae wie die Gattung Cucubita z.B. die Gattungen und Arten Cucurbita maxima, Cucurbita mixta, Cucurbita pepo oder Cucurbita moschata [Kürbis], Cymbellaceae wie die Gattungen Amphora, Cymbella, Okedenia, Phaeodactylum, Reimeria z.B. die Gattung und Art Phaeodactylum tricornutum, Ditrichaceae wie die Gattungen Ditrichaceae, Astomiopsis, Ceratodon, Chrysoblastella, Ditrichum, Distichium, Eccremidium, Lophidion, Philibertiella, Pleuridium, Saelania, Trichodon, Skottsbergia z.B. die Gattungen und Arten Ceratodon antarcticus, Ceratodon columbiae, Ceratodon heterophyllus, Ceratodon purpurascens, Ceratodon purpureus, Ceratodon purpureus ssp. convolutus, Ceratodon purpureus ssp. stenocarpus, Ceratodon purpureus var. rotundifolius, Ceratodon ratodon, Ceratodon stenocarpus, Chrysoblastella chilensis, Ditrichum ambiguum. Ditrichum brevisetum, Ditrichum crispatissimum, Ditrichum difficile, Ditrichum falcifolium, Ditrichum flexicaule, Ditrichum giganteum, Ditrichum 20 heteromallum, Ditrichum lineare, Ditrichum lineare, Ditrichum montanum, Ditrichum montanum, Ditrichum pallidum, Ditrichum punctulatum, Ditrichum pusillum, Ditrichum pusillum var. tortile, Ditrichum rhynchostegium, Ditrichum schimperi, Ditrichum tortile, Distichium capillaceum, Distichium hagenii, Distichium inclinatum, Distichium macounii, Eccremidium floridanum, Eccremidium whiteleggei, Lophidion strictus, Pleuridium 25 acuminatum, Pleuridium alternifolium, Pleuridium holdridgei, Pleuridium mexicanum, Pleuridium ravenelii, Pleuridium subulatum, Saelania glaucescens, Trichodon borealis, Trichodon cylindricus oder Trichodon cylindricus var. oblongus, Elaeagnaceae wie die Gattung Elaeagnus z.B. die Gattung und Art Olea europaea [Olive], Ericaceae wie die Gattung Kalmia z.B. die Gattungen und Arten Kalmia latifolia, Kalmia angustifolia, 30 Kalmia microphylla, Kalmia polifolia, Kalmia occidentalis, Cistus chamaerhodendros oder Kalmia lucida [Berglorbeer], Euglenaceae wie die Gattungen Ascoglena, Astasia, Colacium, Cyclidiopsis, Euglena, Euglenopsis, Hyalaphacus, Khawkinea, Lepocinclis, Phacus, Strombomonas, Trachelomonas z.B. die Gattung und Art Euglena gracilis; Euphorbiaceae wie die Gattungen Manihot, Janipha, Jatropha, Ricinus z.B. die 35 Gattungen und Arten Manihot utilissima, Janipha manihot,, Jatropha manihot., Manihot aipil, Manihot dulcis, Manihot manihot, Manihot melanobasis, Manihot esculenta [Manihot] oder Ricinus communis [Rizinus], Fabaceae wie die Gattungen Pisum, Albizia, Cathormion, Feuillea, Inga, Pithecolobium, Acacia, Mimosa, Medicajo, Glycine, Dolichos, Phaseolus, Soja z.B. die Gattungen und Arten Pisum sativum, Pisum 40 arvense, Pisum humile [Erbse], Albizia berteriana, Albizia julibrissin, Albizia lebbeck, Acacia berteriana, Acacia littoralis, Albizia berteriana, Albizzia berteriana, Cathormion berteriana, Feuillea berteriana, Inga fragrans, Pithecellobium berterianum, Pithecellobium fragrans, Pithecolobium berterianum, Pseudalbizzia berteriana, Acacia julibrissin, Acacia nemu, Albizia nemu, Feuilleea julibrissin, Mimosa julibrissin, Mimosa speciosa, 45

Sericanrda julibrissin, Acacia lebbeck, Acacia macrophylla, Albizia lebbek. Feuilleea lebbeck, Mimosa lebbeck, Mimosa speciosa [Seidenbaum], Medicago sativa, Medicago falcata, Medicago varia [Alfalfa] Glycine max Dolichos soja, Glycine gracilis, Glycine hispida, Phaseolus max, Soja hispida oder Soja max [Sojabohne], Funariaceae wie die Gattungen Aphanorrhegma, Entosthodon, Funaria, Physcomitrella, Physcomitrium 5 z.B. die Gattungen und Arten Aphanorrhegma serratum, Entosthodon attenuatus, Entosthodon bolanderi. Entosthodon bonplandii, Entosthodon californicus, Entosthodon drummondii, Entosthodon jamesonii, Entosthodon leibergii, Entosthodon neoscoticus, Entosthodon rubrisetus. Entosthodon spathulifolius, Entosthodon tucsoni, Funaria americana, Funaria bolanderi, Funaria calcarea, Funaria californica, Funaria calves-10 cens, Funaria convoluta, Funaria flavicans, Funaria groutiana, Funaria hygrometrica, Funaria hygrometrica var. arctica, Funaria hygrometrica var. calvescens, Funaria hygrometrica var. convoluta, Funaria hygrometrica var. muralis, Funaria hygrometrica var. utahensis, Funaria microstoma, Funaria microstoma var. obtusifolia, Funaria muhlenbergii, Funaria orcuttii, Funaria plano-convexa, Funaria polaris, Funaria 15 ravenelii, Funaria rubriseta, Funaria serrata, Funaria sonorae, Funaria sublimbatus, Funaria tucsoni, Physcomitrella californica, Physcomitrella patens, Physcomitrella readeri, Physcomitrium australe, Physcomitrium californicum, Physcomitrium collenchymatum, Physcomitrium coloradense, Physcomitrium cupuliferum, Physcomitrium drummondii, Physcomitrium eurystomum, Physcomitrium flexifolium, Physcomitrium 20 hookeri, Physcomitrium hookeri var. serratum, Physcomitrium immersum, Physcomitrium kellermanii, Physcomitrium megalocarpum, Physcomitrium pyriforme, Physcomitrium pyriforme var. serratum, Physcomitrium rufipes, Physcomitrium sandbergii, Physcomitrium subsphaericum, Physcomitrium washingtoniense, Geraniaceae wie die Gattungen Pelargonium, Cocos, Oleum z.B. die Gattungen und Arten Cocos nucifera, 25 Pelargonium grossularioides oder Oleum cocois [Kokusnuss], Gramineae wie die Gattung Saccharum z.B. die Gattung und Art Saccharum officinarum, Juglandaceae wie die Gattungen Juglans, Wallia z.B. die Gattungen und Arten Juglans regia, Juglans ailanthifolia, Juglans sieboldiana, Juglans cinerea, Wallia cinerea, Juglans bixbyi, Juglans californica, Juglans hindsii, Juglans intermedia, Juglans jamaicensis, Juglans 30 major, Juglans microcarpa, Juglans nigra oder Wallia nigra [Walnuss], Lauraceae Wie die Gattungen Persea, Laurus z.B. die Gattungen und Arten Laurus nobilis [Lorbeer], Persea americana, Persea gratissima oder Persea persea [Avocado], Leguminosae wie die Gattung Arachis z.B. die Gattung und Art Arachis hypogaea [Erdnuss], Linaceae wie die Gattungen Linum, Adenolinum z.B. die Gattungen und Arten Linum 35 usitatissimum, Linum humile, Linum austriacum, Linum bienne, Linum angustifolium, Linum catharticum, Linum flavum, Linum grandiflorum, Adenolinum grandiflorum, Linum lewisii, Linum narbonense, Linum perenne, Linum perenne var. lewisii, Linum pratense oder Linum trigynum [Lein], Lythrarieae wie die Gattung Punica z.B. die Gattung und Art Punica granatum [Granatapfel], Malvaceae wie die Gattung Gossypi-40 um z.B. die Gattungen und Arten Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, Gossypium herbaceum oder Gossypium thurberi [Baumwolle], Marchantiaceae wie die Gattung Marchantia z.B. die Gattungen und Arten Marchantia berteroana, Marchantia foliacea, Marchantia macropora, Musaceae wie die Gattung Musa z.B. die Gattungen und Arten Musa nana, Musa acuminata, Musa paradisiaca, 45

Musa spp. [Banane], Onagraceae wie die Gattungen Camissonia, Oenothera z.B. die Gattungen und Arten Oenothera biennis oder Camissonia brevipes [Nachtkerze], Palmae wie die Gattung Elacis z.B. die Gattung und Art Elaeis guineensis [Ölpalme], Papaveraceae wie die Gattung Papaver z.B. die Gattungen und Arten Papaver orientale, Papaver rhoeas, Papaver dubium [Mohn], Pedaliaceae wie die Gattung Sesamum z.B. die Gattung und Art Sesamum indicum [Sesam], Piperaceae wie die Gattungen Piper, Artanthe, Peperomia, Steffensia z.B. die Gattungen und Arten Piper aduncum, Piper amalago, Piper angustifolium, Piper auritum, Piper betel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofractum, Artanthe adunca, Artanthe elongata, Peperomia elongata, Piper elongatum, Steffensia elongata. [Cayennepfeffer], 10 Poaceae wie die Gattungen Hordeum, Secale, Avena, Sorghum, Andropogon, Holcus, Panicum, Oryza, Zea (Mais), Triticum z.B. die Gattungen und Arten Hordeum vulgare, Hordeum jubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon Hordeum aegiceras, Hordeum hexastichon., Hordeum hexastichum, Hordeum irregulare, Hordeum sativum, Hordeum secalinum [Gerste], Secale cereale [Roggen], Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida [Hafer], Sorghum bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgare, Andropogon drummondii, Holcus bicolor, Holcus sorghum, Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum, Sorghum cernuum, Sorghum dochna, Sorghum drummondii, Sorghum durra, Sorghum guineense, Sorghum lanceolatum, Sorghum nervosum, Sorghum saccharatum, Sorghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgare, Holcus halepensis, Sorghum miliaceum, Panicum militaceum [Hirse], Oryza sativa, Oryza latifolia [Reis], Zea mays [Mais] Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum oder Triticum vulgare [Weizen], Porphyridiaceae wie die 25 Gattungen Chroothece, Flintiella, Petrovanella, Porphyridium, Rhodella, Rhodosorus, Vanhoeffenia z.B. die Gattung und Art Porphyridium cruentum, Proteaceae wie die Gattung Macadamia z.B. die Gattung und Art Macadamia intergrifolia [Macadamia], Prasinophyceae wie die Gattungen Nephroselmis, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus z.B. die Gattungen und Arten Nephroselmis 30 olivacea, Prasinococcus capsulatus, Scherffelia dubia, Tetraselmis chui, Tetraselmis suecica, Mantoniella squamata, Ostreococcus tauri, Rubiaceae wie die Gattung Coffea z.B. die Gattungen und Arten Cofea spp., Coffea arabica, Coffea canephora oder Coffea liberica [Kaffee], Scrophulariaceae wie die Gattung Verbascum z.B. die Gattungen und Arten Verbascum blattaria, Verbascum chaixii, Verbascum densiflorum, 35 Verbascum lagurus, Verbascum longifolium, Verbascum lychnitis, Verbascum nigrum, Verbascum olympicum, Verbascum phlomoides, Verbascum phoenicum, Verbascum pulverulentum oder Verbascum thapsus [Königskerze], Solanaceae wie die Gattungen Capsicum, Nicotiana, Solanum, Lycopersicon z.B. die Gattungen und Arten Capsicum annuum, Capsicum annuum var. glabriusculum, Capsicum frutescens [Pfeffer], 40 Capsicum annuum [Paprika], Nicotiana tabacum, Nicotiana alata, Nicotiana attenuata. Nicotiana glauca, Nicotiana langsdorffii, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [Tabak], Solanum tuberosum [Kartoffel], Solanum melongena [Aubergine] Lycopersicon esculentum, Lycopersicon lycopersicum., Lycopersicon pyriforme, Solanum integrifolium oder Solanum lycopersi-45

cum [Tomate], Sterculiaceae wie die Gattung Theobroma z.B. die Gattung und Art Theobroma cacao [Kakao] oder Theaceae wie die Gattung Camellia z.B. die Gattung und Art Camellia sinensis [Tee].

Vorteilhafte Mikroorganismen sind beispielweise Pilze ausgewählt aus der Gruppe der Familien Chaetomiaceae, Choanephoraceae, Cryptococcaceae, Cunninghamellaceae, Demetiaceae, Moniliaceae, Mortierellaceae, Mucoraceae, Pythiaceae, Sacharomycetaceae, Saprolegniaceae, Schizosacharomycetaceae, Sodariaceae oder Tuberculariaceae.

Beispielhaft seien die folgenden Mikroorganismen genannt ausgewählt aus der Gruppe: Choanephoraceae wie den Gattungen Blakeslea, Choanephora z.B. die 10 Gattungen und Arten Blakeslea trispora, Choanephora cucurbitarum, Choanephora infundibulifera var. cucurbitarum, Mortierellaceae wie der Gattung Mortierella z.B. die Gattungen und Arten Mortierella isabellina, Mortierella polycephala, Mortierella ramanniana, Mortierella vinacea, Mortierella zonata, Pythiaceae wie den Gattungen Phytium, Phytophthora z.B. die Gattungen und Arten Pythium debaryanum, Pythium 15 intermedium, Pythium irregulare, Pythium megalacanthum, Pythium paroecandrum, Pythium sylvaticum. Pythium ultimum, Phytophthora cactorum, Phytophthora cinnamomi, Phytophthora citricola, Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, Phytophthora erythroseptica, Phytophthora lateralis, Phytophthora megasperma, Phytophthora nicotianae, Phytophthora nicotianae var. 20 parasitica, Phytophthora palmivora, Phytophthora parasitica, Phytophthora syringae, Saccharomycetaceae wie den Gattungen Hansenula, Pichia, Saccharomyces, Saccharomycodes. Yarrowia z.B. die Gattungen und Arten Hansenula anomala, Hansenula californica, Hansenula canadensis, Hansenula capsulata, Hansenula ciferrii, Hansenula glucozyma, Hansenula henricii, Hansenula holstii, Hansenula 25 minuta, Hansenula nonfermentans, Hansenula philodendri, Hansenula polymorpha, Hansenula saturnus, Hansenula subpelliculosa, Hansenula wickerhamii, Hansenula wingei, Pichia alcoholophila, Pichia angusta, Pichia anomala, Pichia bispora, Pichia burtonii, Pichia canadensis, Pichia capsulata, Pichia carsonii, Pichia cellobiosa, Pichia ciferrii, Pichia farinosa, Pichia fermentans, Pichia finlandica, Pichia glucozyma, Pichia 30 guilliermondii, Pichia haplophila, Pichia henricii, Pichia holstii, Pichia jadinii, Pichia lindnerii, Pichia membranaefaciens, Pichia methanolica, Pichia minuta var. minuta, Pichia minuta var. nonfermentans, Pichia norvegensis, Pichia ohmeri, Pichia pastoris, Pichia philodendri, Pichia pini, Pichia polymorpha, Pichia quercuum, Pichia rhodanensis, Pichia sargentensis, Pichia stipitis, Pichia strasburgensis, Pichia subpelliculosa, 35 Pichia toletana, Pichia trehalophila, Pichia vini, Pichia xylosa, Saccharomyces aceti, Saccharomyces bailii, Saccharomyces bayanus, Saccharomyces bisporus, Saccharomyces capensis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces cerevisiae var. ellipsoideus, Saccharomyces chevalieri, Saccharomyces delbrueckii, Saccharomyces diastaticus, Saccharomyces drosophilarum, Saccharomy-40 ces elegans, Saccharomyces ellipsoideus, Saccharomyces fermentati, Saccharomyces florentinus, Saccharomyces fragilis, Saccharomyces heterogenicus, Saccharomyces hienipiensis, Saccharomyces inusitatus, Saccharomyces italicus, Saccharomyces

30

35

40

kluyveri, Saccharomyces krusei, Saccharomyces lactis, Saccharomyces marxianus, Saccharomyces microellipsoides, Saccharomyces montanus, Saccharomyces norbensis. Saccharomyces oleaceus, Saccharomyces paradoxus, Saccharomyces pastorianus, Saccharomyces pretoriensis, Saccharomyces rosei, Saccharomyces rouxii, Saccharomyces uvarum, Saccharomycodes ludwigii, Yarrowia lipolytica, 5 Schizosacharomycetaceae such as the genera Schizosaccharomyces e.g. the species Schizosaccharomyces japonicus var. japonicus, Schizosaccharomyces japonicus var. versatilis, Schizosaccharomyces malidevorans, Schizosaccharomyces octosporus, Schizosaccharomyces pombe var. malidevorans, Schizosaccharomyces pombe var. pombe, Thraustochytriaceae such as the genera Althornia, Aplanochytrium, Japono-10 chytrium, Schizochytrium, Thraustochytrium e.g. the species Schizochytrium aggregatum, Schizochytrium limacinum, Schizochytrium mangrovei, Schizochytrium minutum, Schizochytrium octosporum, Thraustochytrium aggregatum, Thraustochytrium amoeboideum, Thraustochytrium antacticum, Thraustochytrium arudimentale, Thraustochytrium aureum, Thraustochytrium benthicola, Thraustochytrium globosum, Thrausto-15 chytrium indicum, Thraustochytrium kerguelense, Thraustochytrium kinnei, Thraustochytrium motivum, Thraustochytrium multirudimentale, Thraustochytrium pachydermum, Thraustochytrium proliferum, Thraustochytrium roseum, Thraustochytrium rossii, Thraustochytrium striatum oder Thraustochytrium visurgense.

Weitere vorteilhafte Mikroorganismen sind beispielweise Bakterien ausgewählt aus der Gruppe der Familien Bacillaceae, Enterobacteriacae oder Rhizobiaceae.

Beispielhaft seien die folgenden Mikroorganismen genannt ausgewählt aus der Gruppe: Bacillaceae wie die Gattung Bacillus z.B die Gattungen und Arten Bacillus acidocaldarius, Bacillus acidoterrestris, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus amylolyticus, Bacillus brevis, Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus sphaericus subsp. fusiformis, Bacillus galactophilus, Bacillus globisporus, Bacillus globisporus subsp. marinus, Bacillus halophilus, Bacillus lentimorbus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus polymyxa, Bacillus psychrosaccharolyticus, Bacillus pumilus, Bacillus sphaericus, Bacillus subtilis subsp. spizizenii, Bacillus subtilis subsp. subtilis oder Bacillus thuringiensis; Enterobacteriacae wie die Gattungen Citrobacter, Edwardsiella, Enterobacter, Erwinia, Escherichia, Klebsiella, Salmonella oder Serratia z.B die Gattungen und Arten Citrobacter amalonaticus, Citrobacter diversus, Citrobacter freundii, Citrobacter genomospecies, Citrobacter gillenii, Citrobacter intermedium, Citrobacter koseri, Citrobacter murliniae, Citrobacter sp., Edwardsiella hoshinae, Edwardsiella ictaluri, Edwardsiella tarda, Erwinia alni, Erwinia amylovora, Erwinia ananatis, Erwinia aphidicola, Erwinia billingiae, Erwinia cacticida, Erwinia cancerogena, Erwinia carnegieana, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera, Erwinia carotovora subsp. wasabiae, Erwinia chrysanthemi, Erwinia cypripedii, Erwinia dissolvens, Erwinia herbicola, Erwinia mallotivora, Erwinia milletiae, Erwinia nigrifluens, Erwinia nimipressuralis, Erwinia persicina, Erwinia psidii, Erwinia pyrifoliae, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Escherichia

adecarboxylata, Escherichia anindolica, Escherichia aurescens, Escherichia blattae, Escherichia coli, Escherichia coli var. communior, Escherichia coli-mutabile, Escherichia fergusonii, Escherichia hermannii, Escherichia sp., Escherichia vulneris, Klebsiella aerogenes, Klebsiella edwardsii subsp. atlantae, Klebsiella ornithinolytica, Klebsiella oxytoca, Klebsiella planticola, Klebsiella pneumoniae, Klebsiella pneumoniae subsp. 5 pneumoniae, Klebsiella sp., Klebsiella terrigena, Klebsiella trevisanii, Salmonella abony, Salmonella arizonae, Salmonella bongori, Salmonella choleraesuis subsp. arizonae, Salmonella choleraesuis subsp. bongori, Salmonella choleraesuis subsp. cholereasuis, Salmonella choleraesuis subsp. diarizonae, Salmonella choleraesuis subsp. houtenae, Salmonella choleraesuis subsp. indica, Salmonella choleraesuis 10 subsp. salamae, Salmonella daressalaam, Salmonella enterica subsp. houtenae, Salmonella enterica subsp. salamae, Salmonella enteritidis, Salmonella gallinarum, Salmonella heidelberg, Salmonella panama, Salmonella senftenberg, Salmonella typhimurium, Serratia entomophila, Serratia ficaria, Serratia fonticola, Serratia grimesii. Serratia liquefaciens, Serratia marcescens, Serratia marcescens subsp. marcescens, 15 Serratia marinorubra, Serratia odorifera, Serratia plymouthensis, Serratia plymuthica, Serratia proteamaculans, Serratia proteamaculans subsp. quinovora, Serratia quinivorans oder Serratia rubidaea; Rhizobiaceae wie die Gattungen Agrobacterium, Carbophilus, Chelatobacter, Ensifer, Rhizobium, Sinorhizobium z.B. die Gattungen und Arten Agrobacterium atlanticum, Agrobacterium ferrugineum, Agrobacterium gelatino-20 vorum, Agrobacterium larrymoorei, Agrobacterium meteori, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubi, Agrobacterium stellulatum, Agrobacterium tumefaciens, Agrobacterium vitis, Carbophilus carboxidus, Chelatobacter heintzii, Ensifer adhaerens, Ensifer arboris, Ensifer fredii, Ensifer kostiensis, Ensifer kummerowiae, Ensifer medicae, Ensifer meliloti, Ensifer saheli, Ensifer terangae, Ensifer 25 xinjiangensis, Rhizobium ciceri Rhizobium etli, Rhizobium fredii, Rhizobium galegae, Rhizobium gallicum, Rhizobium giardinii, Rhizobium hainanense, Rhizobium huakuii, Rhizobium huautlense, Rhizobium indigoferae, Rhizobium japonicum, Rhizobium leguminosarum, Rhizobium loessense, Rhizobium loti, Rhizobium lupini, Rhizobium mediterraneum, Rhizobium meliloti, Rhizobium mongolense, Rhizobium phaseoli, 30 Rhizobium radiobacter, Rhizobium rhizogenes, Rhizobium rubi, Rhizobium sullae, Rhizobium tianshanense, Rhizobium trifolii, Rhizobium tropici, Rhizobium undicola, Rhizobium vitis, Sinorhizobium adhaerens, Sinorhizobium arboris, Sinorhizobium fredii. Sinorhizobium kostiense, Sinorhizobium kummerowiae, Sinorhizobium medicae, Sinorhizobium meliloti, Sinorhizobium morelense, Sinorhizobium saheli oder Sinorhizo-35 bium xinjiangense.

Weitere vorteilhafte Mikroorganismen für das erfindungsgemäße Verfahren sind beispielweise Protisten oder Diatomeen ausgewählt aus der Gruppe der Familien Dinophyceae, Turaniellidae oder Oxytrichidae wie die Gattungen und Arten: Crypthecodinium cohnii, Phaeodactylum tricornutum, Stylonychia mytilus, Stylonychia pustulata, Stylonychia putrina, Stylonychia notophora, Stylonychia sp., Colpidium campylum oder Colpidium sp.

35

40

Vorteilhaft werden im erfindungsgemäßen Verfahren transgene Organismen wie Pilze wie Mortierella oder Traustochytrium, Hefen wie Saccharomyces oder Schizosaccharomyces, Moose wie Physcomitrella oder Ceratodon, nicht-humane Tiere wie Caenorhabditis, Algen wie Nephroselmis, Pseudoscourfielda, Prasinococcus. Scherffelia, Tetraselmis, Mantoniella, Ostreococcus, Crypthecodinium oder Phaeo-5 dactylum oder Pflanzen wie zweikeimblättrige oder einkeimblättrige Pflanzen verwendet. Besonders vorteilhaft werden Organismen im erfindungsgemäßen Verfahren verwendet, die zu den Öl-produzierenden Organismen gehören, das heißt die für die Herstellung von Ölen verwendet werden, wie Pilze wie Mortierella oder Thraustochytrium, Algen wie Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia, 10 Tetraselmis, Mantoniella, Ostreococcus, Crypthecodinium, Phaeodactylum oder Pflanzen, insbesondere Pflanzen bevorzugt Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Erdnuss, Raps, Canola, Sonnenblume, Saflor (Carthamus tinctoria), Mohn, Senf, Hanf, Rizinus, Olive, Sesam, Calendula, Punica, Nachtkerze, Königskerze, Distel, Wildrosen, Haselnuss, Mandel, Macadamia, Avoca-15 do, Lorbeer, Kürbis, Lein, Soja, Pistazien, Borretsch, Bäume (Ölpalme, Kokosnuss oder Walnuss) oder Feldfrüchte, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa oder Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten sowie ausdauernde Gräser und Futterfeldfrüchte. Bevorzugte 20 erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Erdnuss, Raps, Canola, Sonnenblume, Saflor, Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Nachtkerze, Kürbis, Lein, Soja, Borretsch, Bäume (Ölpalme, Kokosnuss). Besonders bevorzugt sind C18:2- und/oder C18:3-Fettsäure reiche Pflanzen wie Sonnenblume, Färberdistel, Tabak, Königskerze, Sesam, Baumwolle, Kürbis, Mohn, Nachtkerze, 25 Walnuss, Lein, Hanf, Distel oder Färberdistel. Ganz besonders bevorzugt sind Pflanzen wie Färberdistel, Sonnenblume, Mohn, Nachtkerze, Walnuss, Lein oder Hanf.

Für das erfindungsgemäße beschriebene Verfahren ist es vorteilhaft in den Organismus zusätzlich zu den unter Verfahrensschritt (a) bis (d) eingebrachten Nukleinsäuren sowie den ggf. eingebrachten Nukleinsäuresequenzen, die für die ω -3-Desaturasen codieren, zusätzlich weitere Nukleinsäuren einzubringen, die für Enzyme des Fettsäure- oder Lipidstoffwechsels codieren.

Im Prinzip können alle Gene des Fettsäure– oder Lipidstoffwechsels vorteilhaft in Kombination mit der(den) erfinderischen Δ-5-Elongase(n), Δ-6-Elongase(n) und/oder ω-3-Desaturase(n) [im Sinne dieser Anmeldung soll der Plural den Singular und umgekehrt beinhalten] im Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren verwendet werden vorteilhaft werden Gene des Fettsäure– oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]–Desaturase(n), Acyl-ACP–Thioesterase(n), Fettsäure–Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferasen, Fettsäure–Synthase(n), Fettsäure–Hydroxylase(n), Acetyl-Coenzym A–Carboxylase(n), Acyl-Coenzym A–Oxidase(n), Fettsäure–Desaturase(n), Fettsäure–Acetylenasen, Lipoxygenasen, Triacylglycerol–Lipasen, Allenoxid–Synthasen, Hydroperoxid–Lyasen oder Fettsäure–Elongase(n) in

10

15

20

25

40

Kombination mit der Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase verwendet. Besonders bevorzugt werden Gene ausgewählt aus der Gruppe der ∆-4-Desaturasen. Δ -5-Desaturasen, Δ -6-Desaturasen, Δ -8-Desatuasen, Δ -9-Desaturasen, Δ -12-Desaturasen, Δ-6-Elongasen oder Δ-9-Elongasen in Kombination mit den vorgenannten Genen für die Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase verwendet, wobei einzelne Gene oder mehrere Gene in Kombination verwendet werden können.

Die erfindungsgemäßen Δ-5-Elongasen haben gegenüber den humanen Elongasen oder Elongasen aus nicht-humanen Tieren wie denen aus Oncorhynchus, Xenopus oder Ciona die vorteilhafte Eigenschaft, dass sie C22-Fettsäuren nicht zu den entsprechenden C24-Fettsäuren elongieren. Weiterhin setzen sie vorteilhaft keine Fettsäuren mit einer Doppelbindung in Δ -6-Position um, wie sie von den humanen Elongasen oder den Elongasen aus nicht-humanen Tieren umgesetzt werden. Besonders vorteilhafte Δ -5-Elongasen setzen bevorzugt nur ungesättigte C $_{20}$ -Fettsäuren um. Diese vorteilhaften Δ -5-Elongasen weisen einige putative Transmembran-Helixes (5 – 7) auf. Vorteilhaft werden nur C_{20} -Fettsäuren mit einer Doppelbindung in Δ -5-Position umgesetzt, wobei ω-3-C₂₀ Fettsäuren bevorzugt werden (EPA). Weiterhin haben sie in einer bevorzugten Ausführungsform der Erfindung die Eigenschaft, dass sie neben der Δ-5-Elongaseaktivität vorteilhaft keine oder nur eine relativ geringe Δ -6-Elongaseaktivität aufweisen. Im Gegensatz dazu weisen die humanen Elongasen oder nicht-humanen Tier-Elongasen eine annäherend gleiche Aktivität gegenüber Fettsäuren mit einer Δ -6oder Δ -5-Doppelbindung auf. Diese vorteilhaften Elongasen werden als sogenannte monofunktionelle Elongasen bezeichnet. Die humanen Elongasen oder die nichthumanen Tierelongasen werden dem gegenüber als multifunktionelle Elongasen bezeichnet, die neben den vorgenannten Substraten auch monoungesättigte C16- und C_{18} -Fettsäuren beispielsweise mit Δ -9- oder Δ -11-Doppelbindung umsetzen. Vorteilhaft setzen die monofunktionellen Elongasen in einem Hefefütterungstext, in dem als Substrat EPA den Hefen zugesetzt wurde, mindestens 15 Gew.-% des zugesetzten EPAs zu Docosapentaensäure (DPA, C22:5^{Δ7,10,13,16,19}), vorteilhaft mindestens 20 Gew.-%, besonders vorteilhaft mindestens 25 Gew.-% um. Wird als Substrat γ-Linolensäure (= GLA, C18:3^{A6,9,12}) gegeben, so wird diese vorteilhaft gar nicht elongiert. 30 Ebenfalls wird auch C18:3^{A5,9,12} nicht elongiert. In einer anderen vorteilhaften Ausführungsform werden weniger als 60 Gew.-% des zugesetzten GLA zu Dihomo-ylinolensäure (= C20:3^{AB,11,14}) umgesetzt, vorteilhaft weniger als 55 Gew.-%, bevorzugt weniger als 50 Gew.-%, besonders vorteilhaft weniger als 45 Gew.-%, ganz besonders vorteilhaft weniger als 40 Gew.-%. In einer weiteren ganz bevorzugten Ausführungs-35 form der erfindungsgemäßen Δ -5-Elongaseaktivität wird GLA nicht umgesetzt.

Die Figuren 27 und 28 geben die gemessenen Substratspezifitäten der verschiedenen Elongasen wieder. In Figur 27 sind die Spezifitäten der multifunktnonellen Elongasen von Xenopus laevis (Fig. 27 A), Ciona intestinalis (Fig. 27 B) und Oncorhynchus mykiss (Fig. 27 C) wiedergegeben. Alle diese Elongasen setzen ein breites Spektrum an Substraten um. Dies kann im erfindungsgemäßen Verfahren zu Nebenprodukten führen, die durch weitere enzymatische Aktivitäten umgesetzt werden müssen. Diese Enzyme sind deshalb im erfindungsgemäßen Verfahren weniger bevorzugt. Die

bevorzugten monofunktionellen Elongasen und ihre Substratspezifität werden in Figur 28 wiedergegeben. Figur 28 A zeigt die Spezifität der Ostreococcus tauri Δ -5-Elongase. Dies setzt nur Fettsäuren mit einer Doppelbindung in Δ -5-Position um. Vorteilhaft werden nur C20-Fettsäuren umgesetzt. Eine ähnlich hohe Substratspezifität weist die Δ -5-Elongase von Thalassiosira pseudonana (Fig. 28. C) auf. Sowohl die Δ -6-Elongase von Ostreococcus tauri (Fig. 28 B) als auch die von Thalassiosira pseudonana (Fig. 28 D) setzen vorteilhaft nur Fettsäuren mit einer Doppelbindung in Δ -6-Position um. Vorteilhaft werden nur C18-Fettsäuren umgesetzt. Auch die Δ -5-Elongasen aus Arabidopsis thaliana und Euglena gracilis zeichnen sich durch ihre Spezifität aus.

Vorteilhafte erfindungsgemäße Δ -6-Elongasen zeichnen sich ebenfalls durch eine hohe 10 Spezifität aus, das heißt bevorzugt werden C₁₈-Fettsäuren elongiert. Vorteilhaft setzen sie Fettsäuren mit einer Doppelbindung in Δ -6-Position um. Besonders vorteilhafte Δ -6-Elongasen setzen vorteilhaft C₁₈-Fettsäuren mit drei oder vier Doppelbindungen im Molekül um, wobei diese eine Doppelbindung in Δ-6-Position enthalten müssen. Weiterhin haben sie in einer bevorzugten Ausführungsform der Erfindung die Eigen-15 schaft, dass sie neben der Δ -6-Elongaseaktivität vorteilhaft keine oder nur eine relativ geringe Δ-5-Elongaseaktivität aufweisen. Im Gegensatz dazu weisen die humanen Elongasen oder nicht-humanen Tier-Elongasen eine annäherend gleiche Aktivität gegenüber Fettsäuren mit einer Δ -6- oder Δ -5-Doppelbindung auf. Diese vorteilhaften Elongasen werden als sogenannte monofunktionelle Elongasen bezeichnet. Die 20 humanen Elongasen oder die nicht-humanen Tierelongasen werden, wie oben beschrieben, dem gegenüber als multifunktionelle Elongasen bezeichnet, die neben den vorgenannten Substraten auch monoungesättigte C₁₆- und C₁₈-Fettsäuren beispielsweise mit Δ -9- oder Δ -11-Doppelbindung umsetzen. Vorteilhaft setzen die monofunktionellen Elongasen in einem Hefefütterungstext, in dem als Substrat EPA 25 den Hefen zugesetzt wurde, mindestens 10 Gew.-% der zugesetzten α-Linolensäure (= ALA, C18:3^{Δ9,12,15}) bzw. mindestens 40 Gew.-% der zugesetzten γ-Linolensäure (= GLA, C18:3^{26,9,12}), vorteilhaft mindestens 20 Gew.-% bzw. 50 Gew.-%, besonders vorteilhaft mindestens 25 Gew.-% bzw. 60 Gew.-% um. Besonders vorteilhaft wird auch C18:4^{Δ6,9,12,15} (Stearidonsäure) elongiert. SDA wird dabei zu mindestens 40 Gew.-30 [°] %, vorteilhaft zu mindestens 50 Gew.-%, besonders vorteilhaft zu mindestens 60 Gew.-%, ganz besonders vorteihaft zu mindestens 70 Gew.-% umgesetzt. Besonders vorteilhafte Δ -6-Elongasen zeigen keine oder nur eine sehr geringe Aktivität (weniger als 0,1 Gew-% Umsatz) gegenüber den folgenden Substraten: C18:1^{Δ6}, C18:1^{Δ9}, $\text{C18:1}^{\Delta11},\,\text{C20:2}^{\Delta11,14},\,\text{C20:3}^{\Delta11,14,17},\,\text{C20:3}^{\Delta8,11,14},\,\text{C20:4}^{\Delta5,8,11,14},\,\text{C20:5}^{\Delta5,8,11,14,17}\,\text{oder}$ 35 C22:4^{Δ7,10,13,16}

Die Figuren 29 und 30 sowie die Tabelle 18 geben die gemessenen Substratspezifitäten der verschiedenen Elongasen wieder.

Die erfindungsgemäße ω-3-Desaturase hat gegenüber den bekannten ω-3-Desaturase die vorteilhafte Eigenschaft, dass sie ein breites Spektrum an ω-6-Fettsäuren desaturieren kann, bevorzugt werden C₂₀- und C₂₂-Fettsäuren wie C_{20:2}-, C_{20:3}-, C_{20:4}-, C_{22:4}- oder C_{22:5}-Fettsäuren desaturiert. Aber auch die kürzeren C₁₈-Fettsäuren wie C_{18:2}-

35

40

oder $C_{18:3}$ -Fettsäuren werden vorteilhaft desaturiert. Durch diese Eigenschaften der ω -3-Desaturase ist es vorteilhaft möglich das Fettsäurespektrum innerhalb eines Organismus vorteilhaft innerhalb einer Pflanze oder einem Pilz von den ω -6-Fettsäuren zu den ω-3-Fettsäuren hin zu verschieben. Bevorzugt werden von der erfindungsgemäßen ω-3-Desaturase C₂₀-Fettsäuren desaturiert. Innerhalb des Organismus werden 5 diese Fettsäuren aus dem vorhandenen Fettsäurepool zu mindestens 10%, 15%, 20%, 25% oder 30% zu den entsprechenden ω-3-Fettsäuren umgesetzt. Gegenüber den C_{18} -Fettsäuren weist die ω -3-Desaturase eine um den Faktor 10 geringere Aktivität auf, das heißt es werden nur ca. 1,5 bis 3% der im Fettsäurepool vorhandenen Fettsäuren zu den entsprechenden ω-3-Fettsäuren umgesetzt. Bevorzugtes Substrat der erfin-10 dungsgemäßen ω-3-Desaturase sind die in Phospholipiden gebundenen ω-6-Fettsäuren. Figur 19 zeigt deutlich am Beispiel der Desaturierung von Dihomo-ylinolensäure $[C_{20:4}^{\Delta8,11,14}]$, dass die ω -3-Desaturase bei der Desaturierung vorteilhaft nicht zwischen an sn1- oder sn2-Position gebundenen Fettsäuren unterscheidet. Sowohl an sn1- oder sn2-Position in den Phospholipide gebundene Fettsäuren werden 15 desaturiert. Weiterhin ist vorteilhaft, dass die ω -3-Desaturase eine breite Palette von Phospholipiden wie Phosphatidylcholin (= PC), Phosphatidylinositol (= PIS) oder Phosphatidylethanolamin (= PE) umsetzt. Schließlich lassen sich auch Desaturierungsprodukte in den Neutrallipiden (= NL), das heißt in den Triglyceriden finden.

Die erfingungsgemäßen Δ -4-Desaturasen, Δ -5-Desaturasen und Δ -6-Desaturasen haben gegenüber den bekannten Δ -4-Desaturasen, Δ -5-Desaturasen und Δ -6-Desaturasen den Vorteil, dass sie Fettsäuren gebunden an Phospholipide oder CoA-Fettsäureester, vorteilhaft CoA-Fettsäureester umsetzen können.

Vorteilhaft setzen die im erfingungsgemäßen Verfahren verwendeten Δ-1225 Desaturasen Ölsäure (C18:1^{Δ9}) zu Linolsäure (C18:2^{Δ9,12}) oder C18:2^{Δ6,9} zu C18:3^{Δ6,9,12}
(= GLA) um. Vorteilhaft setzen die verwendeten Δ-12-Desaturasen Fettsäuren gebunden an Phospholipide oder CoA-Fettsäureester, vorteilhaft gebunden an CoA-Fettsäureester um.

Durch die enzymatische Aktivität der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ-5-Elongase-, Δ-6-Elongase- und/oder ω-3-Desaturaseaktivität codieren, vorteilhaft in Kombination mit Nukleinsäuresequenzen, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels wie weiteren Polypeptiden mit Δ-4-, Δ-5-, Δ-6-, Δ-8-, Δ-12-Desaturase- oder Δ-5-, Δ-6-oder Δ-9-Elongaseaktivität codieren, können unterschiedlichste mehrfach ungesättigte Fettsäuren im erfindungsgemäßen Verfahren hergestellt werden. Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten Organismen wie den vorteilhaften Pflanzen lassen sich Mischungen der verschiedenen mehrfach ungesättigten Fettsäuren oder einzelne mehrfach ungesättigte Fettsäuren wie EPA oder ARA in freier oder gebundener Form herstellen. Je nachdem welche Fettsäurezusammensetzung in der Ausgangspflanze vorherrscht (C18:2- oder C18:3-Fettsäuren) entstehen so Fettsäuren, die sich von C18:2-Fettsäuren ableiten, wie GLA, DGLA oder ARA oder, die sich von C18:3-Fettsäuren ableiten, wie SDA, ETA oder EPA. Liegt in der für das Verfahren

verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18:2^{A9,12}) vor, so können als Produkte des Verfahrens nur GLA, DGLA und ARA entstehen, die als freie Fettsäuren oder gebunden vorliegen können. Ist in der im Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur α-Linolensäure (= ALA, C18:3^{Δ9,12,15}) beispielsweise wie in Lein, so können als Produkte des Verfahrens nur SDA, ETA, EPA 5 und/oder DHA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können. Durch Modifikation der Aktivität des an der Synthese beteiligten Enzyms Δ -5-Elongase vorteilhaft in Kombination mit der Δ -4-, Δ -5-, Δ -6-, Δ -12-Desaturase und/oder Δ -6-Elongase, oder der Δ -4-, Δ -5-, Δ -8-, Δ -12-Desaturase, und/oder A-9-Elongase lassen sich gezielt in den vorgenannten Organismen vorteil-10 haft in den vorgenannten Pflanzen nur einzelne Produkte herstellten. Durch die Aktivität der Δ –6–Desaturase und Δ –6–Elongase entstehen beispielsweise GLA und DGLA bzw. SDA und ETA, je nach Ausgangspflanze und ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder deren Mischungen. Werden die Δ -5-Desaturase, die Δ -5-Elongase und die Δ -4-Desaturase zusätzlich in die Organismen 15 vorteilhaft in die Pflanze eingebracht, so entstehen zusätzlich ARA, EPA und/oder DHA. Dies gilt auch für Organismen in die vorher die Δ -8-Desaturase und Δ -9-Elongase eingebracht wurde. Vorteilhaft werden nur ARA, EPA oder DHA oder deren Mischungen synthetisiert, abhängig von der in im Organismus bzw. in der Pflanze vorliegenden Fettsäure, die als Ausgangssubstanz für die Synthese dient. Da es sich 20 um Biosyntheseketten handelt, liegen die jeweiligen Endprodukte nicht als Reinsubstanzen in den Organismen vor. Es sind immer auch geringe Mengen der Vorläuferverbindungen im Endprodukt enthalten. Diese geringen Mengen betragen weniger als 20 Gew.-%, vorteilhaft weniger als 15 Gew.-%, besonders vorteilhaft weniger als 10 Gew.-%, ganz besonders vorteilhaft weniger als 5, 4, 3, 2 oder 1 Gew.-% bezogen auf 25 das Endprodukt DGLA, ETA oder deren Mischungen bzw. ARA, EPA, DHA oder deren Mischungen vorteilhaft EPA oder DHA oder deren Mischungen.

Das von der erfindungsgemäßen Nukleinsäure kodierte Protein zeigt ein hohe Spezifität für die beiden Vorstufen C18: $4^{\Delta6,9,12,15}$ - und C20: $5^{\Delta5,8,11,14,17}$ -Fettsäuren zur Synthese von DHA (Vorstufen und Synthese von DHA siehe Figur 1). Das von SEQ NO: 53 kodierte Protein hat damit eine Spezifität für $\Delta6$ - und $\Delta5$ -Fettsäuren mit zusätzlich einer $\omega3$ -Doppelbindung (Figur 2). Die Δ -5-Elongase hat eine keto-Acyl-CoA-Synthase-Aktivität, die vorteilhaft Fettsäurereste von Acyl-CoA-Estern um 2 Kohlenstoffatome verlängert.

Mittels der Δ -5-Elongase-Gene, der Δ 5-Desaturase aus Phaeodacylum sowie der Δ 4-Desaturase aus Euglena konnte die Synthese von DHA in Hefe (Saccharomyces cerevisiae) nachgewiesen werden (Figur 3).

Neben der Produktion der Ausgangsfettsäuren für die erfindungsgemäße Δ-5-Elongase, Δ-6-Elongase und/oder ω-3-Desaturase direkt im Organismus können die Fettsäuren auch von außen gefüttert werden. Aus Kostengründen ist die Produktion im Organismus bevorzugt. Bevorzugt Substrate der ω-3-Desaturase sind die Linolsäure (C18:2^{Δ9,12}), die γ-Linolensäure (C18:3^{Δ6,9,12}), die Eicosadiensäure (C20:2^{Δ11,14}), die

10

15

Dihomo-γ-linolensäure (C20: $3^{\Delta8,11,14}$), die Arachidonsäure (C20: $4^{\Delta5,8,11,14}$), die Docosatetraensäure (C22: $4^{\Delta7,10,13,16}$) und die Docosapentaensäure (C22: $5^{\Delta4,7,10,13,15}$).

Zur Steigerung der Ausbeute im beschriebenen Verfahren zur Herstellung von Ölen und/oder Triglyceriden mit einem vorteilhaft erhöhten Gehalt an mehrfach ungesättigten Fettsäuren ist es vorteilhaft die Menge an Ausgangsprodukt für die Fettsäuresynthese zu steigern, dies kann beispielsweise durch das Einbringen einer Nukleinsäure in den Organismus, die für ein Polypeptid mit Δ-12-Desaturase codiert, erreicht werden. Dies ist besonders vorteilhaft in Öl-produzierenden Organismen wie der Familie der Brassicaceae wie der Gattung Brassica z.B. Raps; der Familie der Elaeagnaceae wie die Gattung Elaeagnus z.B. die Gattung und Art *Olea europaea* oder der Familie Fabaceae wie der Gattung Glycine z.B. die Gattung und Art *Glycine max*, die einen hohen Ölsäuregehalt aufweisen. Da diese Organismen nur einen geringen Gehalt an Linolsäure aufweisen (Mikoklajczak et al., Journal of the American Oil Chemical Society, 38, 1961, 678 - 681) ist die Verwendung der genannten Δ-12-Desaturasen zur Herstellung des Ausgangsprodukts Linolsäure vorteilhaft.

Im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren stammen vorteilhaft aus Pflanzen wie Algen beispielsweise Algen der Familie der Prasinophyceae wie aus den Gattungen Heteromastix, Mammella, Mantoniella, Micromonas, Nephroselmis, Ostreococcus, Prasinocladus, Prasinococcus, Pseudoscourfielda, Pycnococcus, Pyramimonas. Scherffelia oder Tetraselmis wie den Gattungen und Arten Heteromastix 20 Iongifillis, Mamiella gilva, Mantoniella squamata, Micromonas pusilla, Nephroselmis olivacea, Nephroselmis pyriformis, Nephroselmis rotunda, Ostreococcus tauri, Ostreococcus sp. Prasinocladus ascus, Prasinocladus lubricus, Pycnococcus provasolii, Pyramimonas amylifera, Pyramimonas disomata, Pyramimonas obovata, Pyramimonas orientalis, Pyramimonas parkeae, Pyramimonas spinifera, Pyramimonas sp., Tetrasel-25 mis apiculata, Tetraselmis carteriaformis, Tetraselmis chui, Tetraselmis convolutae, Tetraselmis desikacharyi, Tetraselmis gracilis, Tetraselmis hazeni, Tetraselmis impellucida, Tetraselmis inconspicua, Tetraselmis levis, Tetraselmis maculata, Tetraselmis marina, Tetraselmis striata, Tetraselmis subcordiformis. Tetraselmis suecica, Tetraselmis tetrabrachia, Tetraselmis tetrathele, Tetraselmis verrucosa, 30 Tetraselmis verrucosa fo. rubens oder Tetraselmis sp. oder aus Algen der Familie Euglenaceae wie aus den Gattungen Ascoglena, Astasia, Colacium, Cyclidiopsis, Euglena, Euglenopsis, Hyalophacus, Khawkinea, Lepocinclis, Phacus, Strombomonas oder Trachelomonas wie die Gattungen und Art Euglena acus, Euglena geniculata, Euglena gracilis, Euglena mixocylindracea, Euglena rostrifera, Euglena viridis, 35 Colacium stentorium, Trachelomonas cylindrica oder Trachelomonas volvocina. Vorteilhaft stammen die verwendeten Nukleinsäuren aus Algen der Gattungen Euglena, Mantoniella oder Ostreococcus.

Weitere vorteilhafte Pflanzen sind Algen wie Isochrysis oder Crypthecodinium, Algen/
40 Diatomeen wie Thalassiosira oder Phaeodactylum, Moose wie Physcomitrella o-

25

30

35

40

der Ceratodon oder höheren Pflanzen wie den Primulaceae wie Aleuritia, Calendula stellata, Osteospermum spinescens oder Osteospermum hyoseroides, Mikroorganismen wie Pilzen wie Aspergillus, Thraustochytrium, Phytophthora, Entomophthora, Mucor oder Mortierella, Bakterien wie Shewanella, Hefen oder Tieren wie Nematoden wie Caenorhabditis, Insekten, Fröschen, Seegurken oder Fischen. Vorteilhaft stammen 5 die erfindungsgemäßen isolierten Nukleinsäuresequenzen aus einem Tier aus der Ordnung der Vertebraten. Bevorzugt stammen die Nukleinsäuresequenzen aus der Klasse der Vertebrata; Euteleostomi, Actinopterygii; Neopterygii; Teleostei; Euteleostei. Protacanthopterygii, Salmoniformes; Salmonidae bzw. Oncorhynchus oder Vertebrata, Amphibia, Anura, Pipidae, Xenopus oder Evertebrata wie Protochordata, Tunicata, 10 Holothuroidea, Cionidae wie Amaroucium constellatum, Botryllus schlosseri, Ciona intestinalis, Molgula citrina, Molgula manhattensis, Perophora viridis oder Styela partita. Besonders vorteilhaft stammen die Nukleinsäuren aus Pilzen, Tieren oder aus Pflanzen wie Algen oder Moosen, bevorzugt aus der Ordnung der Salmoniformes wie der Familie der Salmonidae wie der Gattung Salmo beispielsweise aus den Gattungen 15 und Arten Oncorhynchus mykiss, Trutta trutta oder Salmo trutta fario, aus Algen wie den Gattungen Mantoniella oder Ostreococcus oder aus den Diatomeen wie den Gattungen Thalassiosira oder Phaeodactylum oder aus Algen wie Crypthecodinium.

Vorteilhaft werden im erfindungsgemäßen Verfahren die vorgenannten Nukleinsäuresequenzen oder deren Derivat oder Homologe, die für Polypeptide codieren, die noch die enzymatische Aktivität der durch Nukleinsäuresequenzen codierten Proteine besitzen. Diese Sequenzen werden einzeln oder in Kombination mit den für die Δ-12-Desaturase, Δ-4-Desaturase, Δ-5-Desaturase, Δ-6-Desaturase, Δ-5-Elongase, Δ-6-Elongase und/oder ω-3-Desaturase codierenden Nukleinsäuresquenzen in Expressionskonstrukte cloniert und zum Einbringen und zur Expression in Organismen verwendet. Diese Expressionskonstrukte ermöglichen durch ihre Konstruktion eine vorteilhafte optimale Synthese der im erfindungsgemäßen Verfahren produzierten mehrfach ungesättigten Fettsäuren.

Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des Gewinnens einer Zelle oder eines ganzen Organismus, der die im Verfahren verwendeten Nukleinsäuresequenzen enthält, wobei die Zelle und/oder der Organismus mit einer erfindungsgemäßen Nukleinsäuresequenz, die für die Δ-12-Desaturase, Δ-4-Desaturase, Δ-5-Desaturase, Δ-6-Desaturase, Δ-5-Elongase, Δ-6-Elongase und/oder ω-3-Desaturase codiert, einem Genkonstrukt oder einem Vektor wie nachfolgend beschrieben, allein oder in Kombination mit weiteren Nukleinsäuresequenzen, die für Proteine des Fettsäure- oder Lipidsstoffwechsels codieren, transformiert wird. Bei einer weiteren bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Öle, Lipide oder freien Fettsäuren aus dem Organismus oder aus der Kultur. Bei der Kultur kann es sich beispielsweise um eine Fermentationskultur beispielsweise im Falle der Kultivierung von Mikroorganismen wie z.B. Mortierella, Thalassiosira, Mantoniella, Ostreococcus, Saccharomyces oder Thraustochytrium oder

um eine Treibhaus oder Feldkultur einer Pflanze handeln. Die so hergestellte Zelle oder der so hergestellte Organismus ist vorteilhaft eine Zelle eines Öl-produzierenden Organismus wie einer Ölfruchtpflanze wie beispielsweise Erdnuss, Raps, Canola, Lein, Hanf, Erdnuss, Soja, Safflower, Hanf, Sonnenblumen oder Borretsch.

- Unter Anzucht ist beispielsweise die Kultivierung im Falle von Pflanzenzellen, -gewebe oder -organe auf oder in einem Nährmedium oder der ganzen Pflanze auf bzw. in einem Substrat beispielsweise in Hydrokultur, Blumentopferde oder auf einem Ackerboden zu verstehen.
- "Transgen" bzw. "Rekombinant" im Sinne der Erfindung bedeutet bezüglich zum
 10 Beispiel einer Nukleinsäuresequenz, einer Expressionskassette (= Genkonstrukt) oder
 einem Vektor enthaltend die erfindungsgemäße Nukleinsäuresequenz oder einem
 Organismus transformiert mit den erfindungsgemäßen Nukleinsäuresequenzen,
 Expressionskassette oder Vektor alle solche durch gentechnische Methoden zustandegekommenen Konstruktionen, in denen sich entweder
- 15 a) die erfindungsgemäße Nukleinsäuresequenz, oder
 - b) eine mit der erfindungsgemäßen Nukleinsäuresequenz funktionell verknüpfte genetische Kontrollsequenz, zum Beispiel ein Promotor, oder
 - c) (a) und (b)

20

25

30

35

sich nicht in ihrer natürlichen, genetischen Umgebung befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitution, Addition, Deletion, Inversion oder Insertion eines oder mehrerer Nukleotidreste sein kann. Natürliche genetische Umgebung meint den natürlichen genomischen bzw. chromosomalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommende Expressionskassette - beispielsweise die natürlich vorkommende Kombination des natürlichen Promotors der erfindungsgemäßen Nukleinsäuresequenzen mit den entsprechenden Δ -12-Desaturase-, Δ -4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desaturase-, ω-3-Desaturase-, Δ -9-Elongase-, Δ -6-Elongase- und/oder Δ -5-Elongasegenen — wird zu einer transgenen Expressionskassette, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mutagenisierung geändert wird. Entsprechende Verfahren sind beispielsweise beschrieben in US 5,565,350 oder WO 00/15815.

Unter transgenen Organismus bzw. transgener Pflanze im Sinne der Erfindung ist wie vorgenannt zu verstehen, dass die im Verfahren verwendeten Nukleinsäuren nicht an

10

15

20

25

30

35

ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden. Transgen bedeutet aber auch wie genannt, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Organismen sind Pilze wie Mortierella oder Phytophtora, Moose wie Physcomitrella, Algen wie Mantoniella, Euglena, Crypthecodinium oder Ostreococcus, Diatomeen wie Thalassiosira oder Phaeodyctylum oder Pflanzen wie die Ölfruchtpflanzen.

Als Organismen bzw. Wirtsorganismen für die im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die Expressionskassette oder den Vektor eignen sich prinzipiell vorteilhaft alle Organismen, die in der Lage sind Fettsäuren speziell ungesättigte Fettsäuren zu synthetisieren bzw. für die Expression rekombinanter Gene geeignet sind. Beispielhaft seien Pflanzen wie Arabidopsis, Asteraceae wie Calendula oder Kulturpflanzen wie Soja, Erdnuss, Rizinus, Sonnenblume, Mais, Baumwolle, Flachs, Raps, Kokosnuss, Ölpalme, FärberSaflor (Carthamus tinctorius) oder Kakaobohne, Mikroorganismen wie Pilze beispielsweise die Gattung Mortierella, Thraustochytrium, Saprolegnia, Phytophtora oder Pythium, Bakterien wie die Gattung Escherichia oder Shewanella, Hefen wie die Gattung Saccharomyces, Cyanobakterien, Ciliaten, Algen wie Mantoniella, Euglena, Thalassiosira oder Ostreococcus oder Protozoen wie Dinoflagellaten wie Crypthecodinium genannt. Bevorzugt werden Organismen, die natürlicherweise Öle in größeren Mengen synthetisieren können wie Pilze wie Mortierella alpina, Pythium insidiosum, Phytophtora infestans oder Pflanzen wie Soja, Raps, Kokosnuss, Ölpalme, FärberSaflor, Flachs, Hanf, Rizinus, Calendula, ... Erdnuss, Kakaobohne oder Sonnenblume oder Hefen wie Saccharomyces cerevisiae, besonders bevorzugt werden Soja, Flachs, Raps, FärberSaflor, Sonnenblume, Calendula, Mortierella oder Saccharomyces cerevisiae. Prinzipiell sind als Wirtsorganismen neben den vorgenannten transgenen Organismen auch transgene Tiere vorteilhaft nicht-humane Tiere geeignet beispielsweise C. elegans, Ciona intestinalis oder Xenopus laevis.

Nutzbare Wirtszellen sind weiterhin genannt in: Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).

Verwendbare Expressionsstämme z.B. solche, die eine geringere Proteaseaktivität aufweisen sind beschrieben in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128.

Hierzu gehören Pflanzenzellen und bestimmte Gewebe, Organe und Teile von 40 Pflanzen in all ihren Erscheinungsformen, wie Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe und Zellkulturen, das von der eigentlichen transgenen Pflanze abgeleitet ist und/oder dazu verwendet werden kann, die transgene Pflanze hervorzubringen.

Transgene Pflanzen, die die im erfindungsgemäßen Verfahren synthetisierten mehrfach ungesättigten Fettsäuren enthalten, können vorteilhaft direkt vermarktet werden 5 ohne dass die synthetisierten Öle, Lipide oder Fettsäuren isoliert werden müssen. Unter Pflanzen im erfindungsgemäßen Verfahren sind ganze Pflanzen sowie alle Pflanzenteile, Pflanzenorgane oder Pflanzenteile wie Blatt, Stiel, Samen, Wurzel, Knollen, Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe, Zellkulturen, die 10 sich von der transgenen Pflanze abgeleiten und/oder dazu verwendet werden können, die transgene Pflanze hervorzubringen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen, Epidermis- und Samenzellen, Endosperm oder Embyrogewebe. Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den Organismen vorteilhaft Pflanzen in Form ihrer Öle, Fett, Lipide und/oder freien 15 Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte mehrfach ungesättigten Fettsäuren lassen sich durch Ernten der Organismen entweder aus der Kultur, in der sie wachsen, oder vom Feld ernten. Dies kann über Pressen oder Extraktion der Pflanzenteile bevorzugt der Pflanzensamen erfolgen. Dabei können die Öle, Fette, Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen 20 ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Pflanzenteile speziell die Samen leichter aufschließen lassen, werden sie vorher zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend wird das Lösungsmittel wieder entfernt. Im Falle von Mikroorganismen werden diese 25 nach Ernte beispielsweise direkt ohne weitere Arbeitsschritte extrahiert oder aber nach Aufschluss über verschiedene dem Fachmann bekannte Methoden extrahiert. Auf diese Weise können mehr als 96 % der im Verfahren hergestellten Verbindungen isoliert werden. Anschließend werden die so erhaltenen Produkte weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst beispielsweise die Pflanzenschleime und 30 Trübstoffe entfernt. Die sogenannte Entschleimung kann enzymatisch oder beispielsweise chemisch/physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behandlung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die 35 noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einer Bleichung mit beispielsweise Bleicherde oder Aktivkohle unterzogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf noch desodoriert.

Vorzugsweise sind die durch dieses Verfahren produzierten PUFAs bzw. LCPUFAs C₁₈-, C₂₀- oder C₂₂-Fettsäuremoleküle vorteilhaft C₂₀- oder C₂₂-Fettsäuremoleküle mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise drei, vier, fünf oder sechs Doppelbindungen. Diese C₁₈-, C₂₀- oder C₂₂-Fettsäuremoleküle lassen sich aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isolieren.

Geeignete Organismen sind beispielsweise die vorstehend erwähnten. Bevorzugte Organismen sind transgene Pflanzen.

Eine Ausführungsform der Erfindung sind deshalb Öle, Lipide oder Fettsäuren oder Fraktionen davon, die durch das oben beschriebene Verfahren hergestellt worden sind, besonders bevorzugt Öl, Lipid oder eine Fettsäurezusammensetzung, die PUFAs umfassen und von transgenen Pflanzen herrühren.

Diese Öle, Lipide oder Fettsäuren enthalten wie oben beschrieben vorteilhaft 6 bis 15 % Palmitinsäure, 1 bis 6 % Stearinsäure; 7 – 85 % Ölsäure; 0,5 bis 8 % Vaccensäure, 0,1 bis 1 % Arachinsäure, 7 bis 25 % gesättigte Fettsäuren, 8 bis 85 % einfach ungesättigte Fettsäuren und 60 bis 85 % mehrfach ungesättigte Fettsäuren jeweils 10 bezogen auf 100 % und auf den Gesamtfettsäuregehalt der Organismen. Als vorteilhafte mehrfach ungesättigte Fettsäure sind in den Fettsäureester bzw. Fettsäuregemische bevorzugt mindestens 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 oder 1 % bezogen auf den Gesamtfettsäuregehalt an Arachidonsäure enthalten. Weiterhin enthalten die Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren 15 hergestellt wurden, vorteilhaft Fettsäuren ausgewählt aus der Gruppe der Fettsäuren Erucasäure (13-Docosaensäure), Sterculinsäure (9,10-Methylene octadec-9enonsäure), Malvalinsäure (8,9-Methylen Heptadec-8-enonsäure), Chaulmoogrinsäure (Cyclopenten-dodecansäure), Furan-Fettsäure (9,12-Epoxy-octadeca-9,11dienonsäure), Vernonsäure (9,10-Epoxyoctadec-12-enonsäure), Tarinsäure (6-20 Octadecynonsäure),6-Nonadecynonsäure, Santalbinsäure (t11-Octadecen-9-ynoic acid), 6,9-Octadecenynonsäure, Pyrulinsäure (t10-Heptadecen-8-ynonsäure), Crepenyninsäure (9-Octadecen-12-ynonsäure), 13,14-Dihydrooropheinsäure, Octadecen-13ene-9,11-diynonsäure, Petroselensäure (cis-6-Octadecenonsäure), 9c,12t-Octadecadiensäure, Calendulasäure (8t10t12c-Octadecatriensäure), Catalpinsäure 25 (9t11t13c-Octadecatriensäure), Eleosterinsäure (9c11t13t-Octadecatriensäure), Jacarinsäure (8c10t12c-Octadecatriensäure), Punicinsäure (9c11t13c-Octadecatriensäure), Parinarinsäure (9c11t13t15c-Octadecatetraensäure), Pinolensäure (all-cis-5,9,12-Octadecatriensäure), Laballensäure (5,6-Octadecadienallensäure), Ricinolsäure (12-Hydroxyölsäure) und/oder Coriolinsäure (13-Hydroxy-9c,11t-30 Octadecadienonsäure). Die vorgenannten Fettsäuren kommen in den nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemischen in der Regel vorteilhaft nur in Spuren vor, das heißt sie kommen bezogen auf die Gesamtfettsäuren zu weniger als 30 %, bevorzugt zu weniger als 25 %, 24 %, 23 %, 22 % oder 21 %, besonders bevorzugt zu weniger als 20 %, 15 %, 10 %, 9 %, 8 %, 7%, 6 % oder 5%, ganz besonders bevorzugt zu weniger als 4 %, 3 %, 2 % oder 1 % vor. In einer weiteren bevorzugten Form der Erfindung kommen diese vorgenannten Fettsäuren bezogen auf die Gesamtfettsäuren zu weniger als 0,9%; 0,8%; 0,7%; 0,6%; oder 0,5%, besonders bevorzugt zu weniger als 0,4%; 0,3%; 0,2%; 0,1% vor. Vorteilhaft enthalten die nach dem erfindungsgemäßen Verfahren hergestellten Fettsäurees-40 ter bzw. Fettsäuregemische weniger als 0,1 % bezogen auf die Gesamtfettsäuren

und/oder keine Butterbuttersäure, kein Cholesterin, keine Clupanodonsäure (=

10

15

20

25

30

Docosapentaensäure, C22: $5^{\Delta 4,8,12,15,21}$) sowie keine Nisinsäure (Tetracosahexaensäure, C23: $6^{\Delta 3,8,12,15,18,21}$).

Vorteilhaft enthalten die erfindungsgemäßen Öle, Lipide oder Fettsäuren mindestens 0,5%, 1%, 2%, 3%, 4% oder 5%, vorteilhaft mindestens 6%, 7%, 8%, 9% oder 10%, besonders vorteilhaft mindestens 11%, 12%, 13%, 14% oder 15% ARA oder mindestens 0,5%, 1%, 2%, 3%, 4% oder 5%, vorteilhaft mindestens 6%, oder 7%, besonders vorteilhaft mindestens 8%, 9% oder 10% EPA und/oder DHA bezogen auf den Gesamtfettsäuregehalt des Produktionsorganismus vorteilhaft einer Pflanze, besonders vorteilhaft einer Ölfruchtpflanze wie Soja, Raps, Kokosnuss, Ölpalme, Färbersafflor, Flachs, Hanf, Rizinus, Calendula, Erdnuss, Kakaobohne, Sonnenblume oder den oben genannten weiteren ein- oder zweikeimblättrigen Ölfruchtpflanzen.

Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids, der Fettsäuren und/oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika. Die erfindungsgemäßen Öle, Lipide, Fettsäuren oder Fettsäuregemische können in der dem Fachmann bekannten Weise zur Abmischung mit anderen Ölen, Lipiden, Fettsäuren oder Fettsäuregemischen tierischen Ursprungs wie z.B. Fischölen verwendet werden. Auch diese Öle, Lipide, Fettsäuren oder Fettsäuregemische, die aus pflanzlichen und tierischen Bestandteilen bestehen, können zur Herstellung von Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika verwendet werden.

Unter dem Begriff "Öl", "Lipid" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure(n) enthält. Bevorzugt ist, dass das Öl, Lipid oder Fett einen hohen Anteil an mehrfach ungesättigten freien oder vorteilhaft veresterten Fettsäure(n), insbesondere Linolsäure, γ-Linolensäure, Dihomoγ-linolensäure, Arachidonsäure, α-Linolensäure, Stearidonsäure, Eicosatetraensäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure hat. Vorzugsweise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30 %, mehr bevorzugt ist ein Anteil von 50 %, noch mehr bevorzugt ist ein Anteil von 60 %, 70 %, 80 % oder mehr. Zur Bestimmung kann z.B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl, Lipid oder Fett kann verschiedene andere gesättigte oder ungesättigte Fettsäuren, z.B. Calendulasäure, Palmitin-, Palmitolein-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangsorganismus der Anteil der verschiedenen Fettsäuren in dem Öl oder Fett schwanken.

Bei den im Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens zwei Doppelbindungen enthalten, handelt es sich wie oben beschrieben beispielsweise um Sphingolipide, Phosphoglyceride, Lipide, Glycolipide, Phospholipide, Monoacylglycerin, Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester.

Aus den so im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigte
40 Fettsäuren mit vorteilhaft mindestens fünf oder sechs Doppelbindungen lassen sich
die enthaltenden mehrfach ungesättigten Fettsäuren beispielsweise über eine Alkali-

10

15

behandlung beispielsweise wäßrige KOH oder NaOH oder saure Hydrolyse vorteilhaft in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und anschließender Ansäuerung über z.B. H₂SO₄. Die Freisetzung der Fettsäuren kann auch direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen.

Die im Verfahren verwendeten Nukleinsäuren können nach Einbringung in einem Organismus vorteilhaft einer Pflanzenzelle bzw. Pflanze entweder auf einem separaten Plasmid liegen oder vorteilhaft in das Genom der Wirtszelle integriert sein. Bei Integration in das Genom kann die Integration zufallsgemäß sein oder durch derartige Rekombination erfolgen, dass das native Gen durch die eingebrachte Kopie ersetzt wird, wodurch die Produktion der gewünschten Verbindung durch die Zelle moduliert wird, oder durch Verwendung eines Gens in trans, so dass das Gen mit einer funktionellen Expressionseinheit, welche mindestens eine die Expression eines Gens gewährleistende Sequenz und mindestens eine die Polyadenylierung eines funktionell transkribierten Gens gewährleistende Sequenz enthält, funktionell verbunden ist. Vorteilhaft werden die Nukleinsäuren über Multiexpressionskassetten oder Konstrukte zur multiparallelen Expression in die Organismen vorteilhaft zur multiparallelen samenspezifischen Expression von Genen in die Pflanzen gebracht.

Moose und Algen sind die einzigen bekannten Pflanzensysteme, die erhebliche
Mengen an mehrfach ungesättigten Fettsäuren, wie Arachidonsäure (ARA) und/oder Eicosapentaensäure (EPA) und/oder Docosahexaensäure (DHA) herstellen. Moose enthalten PUFAs in Membranlipiden während Algen, algenverwandte Organismen und einige Pilze auch nennenswerte Mengen an PUFAs in der Triacylglycerolfraktion akkumulieren. Daher eignen sich Nukleinsäuremoleküle, die aus solchen Stämmen isoliert werden, die PUFAs auch in der Triacylglycerolfraktion akkumulieren, besonders vorteilhaft für das erfindungsgemäße Verfahren und damit zur Modifikation des Lipidund PUFA-Produktionssystems in einem Wirt, insbesondere Pflanzen, wie Ölfruchtpflanzen, beispielsweise Raps, Canola, Lein, Hanf, Soja, Sonnenblumen, Borretsch. Sie sind deshalb vorteilhaft im erfindungsgemäßen Verfahren verwendbar.

Als Substrate der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ-12-Desaturase-, Δ-5-Desaturase-, Δ-4-Desaturase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-9-Elongase-, Δ-5-Elongase-, Δ-6-Elongase- und/oder ω-3-Desaturase-Aktivität codieren, und/oder den weiteren verwendeten Nukleinsäuren wie den Nukleinsäuren, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenase(n), Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid-Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure-Elongase(n) codieren eignen sich vorteilhaft C₁₆-, C₁₈- oder C₂₀-Fettsäuren. Bevorzugt werden die

im Verfahren als Substrate umgesetzten Fettsäuren in Form ihrer Acyl-CoA-Ester und/oder ihrer Phospholipid-Ester umgesetzt.

Zur Herstellung der erfindungsgemäßen langkettigen PUFAs müssen die mehrfach ungesättigten C₁₈-Fettsäuren zunächst durch die enzymatische Aktivität einer Desaturase zunächst desaturiert und anschließend über eine Elongase um mindestens zwei 5 Kohlenstoffatome verlängert werden. Nach einer Elongationsrunde führt diese Enzymaktivität zu C20-Fettsäuren, und nach zwei Elongationsrunden zu C22-Fettsäuren. Die Aktivität der erfindungsgemäßen Verfahren verwendeten Desaturasen und Elongasen führt vorzugsweise zu C₁₈-, C₂₀- und/oder C₂₂-Fettsäuren vorteilhaft mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier, fünf oder 10 sechs Doppelbindungen, besonders bevorzugt zu C20- und/oder C22-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier, fünf oder sechs Doppelbindungen, ganz besonders bevorzugt mit fünf oder sechs Doppelbindungen im Molekül. Nachdem eine erste Desaturierung und die Verlängerung stattgefunden hat, können weitere Desaturierungs- und Elongierungsschritte wie 15 z.B. eine solche Desaturierung in Δ -5- und Δ -4-Position erfolgen. Besonders bevorzugt als Produkte des erfindungsgemäßen Verfahrens sind Dihomo-γ-linolensäure, Arachidonsäure, Eicosapentaensäure, Docosapetaensäure und/oder Docosahesaensäure. Die C₂₀-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure können durch die erfindungsgemäße enzymatische Aktivität in Form der freien Fettsäure oder 20 in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide, Phosphoglyceride, Monoacylglycerin, Diacylglycerin oder Triacylglycerin, verlängert werden.

Der bevorzugte Biosyntheseort von Fettsäuren, Ölen, Lipiden oder Fette in den vorteilhaft verwendeten Pflanzen ist beispielsweise im allgemeinen der Samen oder Zellschichten des Samens, so dass eine samenspezifische Expression der im Verfahren verwendeten Nukleinsäuren sinnvoll ist. Es ist jedoch naheliegend, dass die Biosynthese von Fettsäuren, Ölen oder Lipiden nicht auf das Samengewebe beschränkt sein muss, sondern auch in allen übrigen Teilen der Pflanze - beispielsweise in Epidermiszellen oder in den Knollen - gewebespezifisch erfolgen kann.

- Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismus wie Hefen wie Saccharomyces oder Schizosaccharomyces, Pilze wie Mortierella, Aspergillus, Phytophtora, Entomophthora, Mucor oder Thraustochytrium Algen wie Isochrysis, Mantoniella, Euglena, Ostreococcus, Phaeodactylum oder Crypthecodinium verwendet, so werden diese Organismen vorteilhaft fermentativ angezogen.
- Durch die Verwendung der erfindungsgemäßen Nukleinsäuren, die für eine Δ-5-Elongase codieren, können im Verfahren die hergestellten mehrfach ungesättigten Fettsäuren mindestens um 5 %, bevorzugt mindestens um 10 %, besonders bevorzugt mindestens um 20 %, ganz besonders bevorzugt um mindestens 50 % gegenüber dem Wildtyp der Organismen, die die Nukleinsäuren nicht rekombinant enthalten, erhöht werden.

15

20

25

Durch das erfindungsgemäße Verfahren können die hergestellten mehrfach ungesättigten Fettsäuren in den im Verfahren verwendeten Organismen prinzipiell auf zwei Arten erhöht werden. Es kann vorteilhaft der Pool an freien mehrfach ungesättigten Fettsäuren und/oder der Anteil der über das Verfahren hergestellten veresterten mehrfach ungesättigten Fettsäuren erhöht werden. Vorteilhaft wird durch das erfindungsgemäße Verfahren der Pool an veresterten mehrfach ungesättigten Fettsäuren in den transgenen Organismen erhöht.

Werden im erfindungsgemäßen Verfahren als Organismen Mikroorganismen verwendet, so werden sie je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente wie Eisen-, Mangan-, Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0°C und 100°C, bevorzugt zwischen 10°C bis 60°C unter Sauerstoffbegasung angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden, das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann batch weise, semi batch weise oder kontinuierlich erfolgen. Nährstoffe können zu Beginn der Fermentation vorgelegt oder semikontinuierlich oder kontinuierlich nachgefüttert werden. Die hergestellten mehrfach ungesättigten Fettsäuren können nach dem Fachmann bekannten Verfahren wie oben beschrieben aus den Organismen isoliert werden. Beispielsweise über Extraktion, Destillation, Kristallisation, ggf. Salzfällung und/oder Chromatographie. Die Organismen können dazu vorher noch vorteilhaft aufgeschlossen werden.

Das erfindungsgemäße Verfahren wird, wenn es sich bei den Wirtsorganismen um Mikroorganismen handelt, vorteilhaft bei einer Temperatur zwischen 0°C bis 95°, bevorzugt zwischen 10°C bis 85°C, besonders bevorzugt zwischen 15°C bis 45°C durchgeführt.

Der pH-Wert wird dabei vorteilhaft zwischen pH 4 und 12, bevorzugt zwischen pH 6 und 9, besonders bevorzugt zwischen pH 7 und 8 gehalten...

Das erfindungsgemäße Verfahren kann batchweise, semi-batchweise oder kontinuierlich betrieben werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 35 1994)) zu finden.

Das zu verwendende Kulturmedium hat in geeigneter Weise den Ansprüchen der jeweiligen Stämme zu genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods für General Bacteriology" der merican Society für Bacteriology (Washington D. C., USA, 1981) enthalten.

Diese erfindungsgemäß einsetzbaren Medien umfassen wie oben beschrieben gewöhnlich eine oder mehrere Kohlenstoffquellen, Stickstoffquellen, anorganische Salze, Vitamine und/oder Spurenelemente.

Bevorzugte Kohlenstoffquellen sind Zucker, wie Mono-, Di- oder Polysaccharide. Sehr gute Kohlenstoffquellen sind beispielsweise Glucose, Fructose, Mannose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose. Man kann Zucker auch über komplexe Verbindungen, wie Melassen, oder andere Nebenprodukte der Zucker-Raffinierung zu den Medien geben. Es kann auch vorteilhaft sein, Gemische verschiedener Kohlenstoffquellen zuzugeben. Andere mögliche Kohlenstoffquellen sind Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnussöl und/oder Kokosfett, Fettsäuren wie z.B. Palmitinsäure, Stearinsäure und/oder Linolsäure, Alkohole und/oder Polyalkohole wie z. B. Glycerin, Methanol und/oder Ethanol und/oder organische Säuren wie z.B. Essigsäure und/oder Milchsäure.

Stickstoffquellen sind gewöhnlich organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispielhafte Stickstoffquellen umfassen Ammoniak in flüssiger- oder gasform oder Ammoniamsalze, wie Ammoniamsulfat, Ammoniamchlorid, Ammoniamphosphat, Ammoniamcarbonat oder Ammoniamnitrat, Nitrate, Harnstoff, Aminosäuren oder komplexe Stickstoffquellen, wie Maisquellwasser, Sojamehl, Sojaprotein, Hefeextrakt, Fleischextrakt und andere. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

Anorganische Salzverbindungen, die in den Medien enthalten sein können, umfassen die Chlorid-, Phosphor- oder Sulfatsalze von Calcium, Magnesium, Natrium, Kobalt, Molybdän, Kalium, Mangan, Zink, Kupfer und Eisen.

Als Schwefelquelle für die Herstellung von schwefelhaltigen Feinchemikalien, insbesondere von Methionin, können anorganische schwefelhaltige Verbindungen wie beispielsweise Sulfate, Sulfite, Dithionite, Tetrathionate, Thiosulfate, Sulfide aber auch organische Schwefelverbindungen, wie Mercaptane und Thiole, verwendet werden.

Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikalium-30 hydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden.

Chelatbildner können zum Medium gegeben werden, um die Metallionen in Lösung zu halten. Besonders geeignete Chelatbildner umfassen Dihydroxyphenole, wie Catechol oder Protocatechuat, oder organische Säuren, wie Citronensäure.

Die erfindungsgemäß zur Kultivierung von Mikroorganismen eingesetzten Fermentationsmedien enthalten üblicherweise auch andere Wachstumsfaktoren, wie Vitamine oder Wachstumsförderer, zu denen beispielsweise Biotin, Riboflavin, Thiamin, Folsäure, Nikotinsäure, Panthothenat und Pyridoxin gehören. Wachstumsfaktoren und Salze stammen häufig von komplexen Medienkomponenten, wie Hefeextrakt,

10

15

20

25

35

40

Melassen, Maisquellwasser und dergleichen. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genaue Zusammensetzung der Medienverbindungen hängt stark vom jeweiligen Experiment ab und wird für jeden spezifischen Fall individuell entschieden. Information über die Medienoptimierung ist erhältlich aus dem Lehrbuch "Applied Microbiol. Physiology, A Practical Approach" (Hrsg. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) S. 53-73, ISBN 0 19 963577 3). Wachstumsmedien lassen sich auch von kommerziellen Anbietern beziehen, wie Standard 1 (Merck) oder BHI (Brain heart infusion, DIFCO) und dergleichen.

Sämtliche Medienkomponenten werden, entweder durch Hitze (20 min bei 1,5 bar und 121°C) oder durch Sterilfiltration, sterilisiert. Die Komponenten können entweder zusammen oder nötigenfalls getrennt sterilisiert werden. Sämtliche Medienkomponenten können zu Beginn der Anzucht zugegen sein oder wahlfrei kontinuierlich oder chargenweise hinzugegeben werden.

Die Temperatur der Kultur liegt normalerweise zwischen 15°C und 45°C, vorzugsweise bei 25°C bis 40°C und kann während des Experimentes konstant gehalten oder verändert werden. Der pH-Wert des Mediums sollte im Bereich von 5 bis 8,5, vorzugsweise um 7,0 liegen. Der pH-Wert für die Anzucht lässt sich während der Anzucht durch Zugabe von basischen Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder sauren Verbindungen wie Phosphorsäure oder Schwefelsäure kontrollieren. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z. B. Fettsäurepolyglykolester, eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe, wie z. B. Antibiotika, hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen, wie z.B. Umgebungsluft, in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Die so erhaltenen, insbesondere mehrfach ungesättigte Fettsäuren enthaltenden, 30 Fermentationsbrühen haben üblicherweise eine Trockenmasse von 7,5 bis 25 Gew.-%.

Die Fermentationsbrühe kann anschließend weiterverarbeitet werden. Je nach Anforderung kann die Biomasse ganz oder teilweise durch Separationsmethoden, wie z. B. Zentrifugation, Filtration, Dekantieren oder einer Kombination dieser Methoden aus der Fermentationsbrühe entfernt oder vollständig in ihr belassen werden. Vorteilhaft wird die Biomasse nach Abtrennung aufgearbeitet.

Die Fermentationsbrühe kann aber auch ohne Zellabtrennung mit bekannten Methoden, wie z. B. mit Hilfe eines Rotationsverdampfers, Dünnschichtverdampfers, Fallfilmverdampfers, durch Umkehrosmose, oder durch Nanofiltration, eingedickt beziehungsweise aufkonzentriert werden. Diese aufkonzentrierte Fermentationsbrühe kann schließlich zur Gewinnung der darin enthaltenen Fettsäuren aufgearbeitet werden.

Die im Verfahren gewonnenen Fettsäuren eignen sich auch als Ausgangsmaterial für die chemische Synthese von weiteren Wertprodukten. Sie können beispielsweise in Kombination miteinander oder allein zur Herstellung von Pharmaka, Nahrungsmittel, Tierfutter oder Kosmetika verwendet werden.

- 5 Ein weiterer erfindungsgemäßer Gegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -5-Elongase codieren, wobei die durch die Nukleinsäuresequenzen codierten Δ -5-Elongasen C₂₀-Fettsäuren mit mindestens vier Doppelbindungen im Fettsäuremolekül umsetzen; die vorteilhaft letztlich in Diacylglyceride und/oder Triacylglyceride eingebaut werden.
- Vorteilhafte isolierte Nukleinsäuresequenzen sind Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Elongaseaktivität codieren und die eine Aminosäuresequenz enthalten ausgewählt aus der Gruppe einer Aminosäuresequenz mit der in SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141 oder SEQ ID NO: 142 dargestellten Sequenz.
- Weitere vorteilhafte isolierte Nukleinsäuresequenzen sind Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Elongaseaktivität codieren und die eine Kombination der Aminosäuresequenzen enthalten ausgewählt aus der Gruppe:
 - a) SEQ ID NO: 115 und SEQ ID NO: 139, SEQ ID NO: 115 und SEQ ID NO: 140 oder SEQ ID NO: 139 und SEQ ID NO: 140; oder
- 20 b) SEQ ID NO: 116 und SEQ ID NO: 141, SEQ ID NO: 116 und SEQ ID NO: 142 oder SEQ ID NO: 141 und SEQ ID NO: 142; oder
 - c) SEQ ID NO: 115, SEQ ID NO: 139 und SEQ ID NO: 140 oder SEQ ID NO: 116, SEQ ID NO: 141 und SEQ ID NO: 142.
- Die in den Sequenzen SEQ ID NO: 115 (NXXXHXXMYXYYX), SEQ ID NO: 116

 (HHXXXXWAWW), SEQ ID NO: 139 (LHXXHH), SEQ ID NO: 140 (TXXQXXQF), SEQ ID NO: 141 (DTXFMV) und SEQ ID NO: 142 (TQAQXXQF) wiedergegebenen Sequenzen stellen konservierte Bereiche der verschiedenen Elongasen wieder. Tabelle 2 gibt die Bedeutung der in den genannten Nukleinsäuresequenzen enhaltenen mit X bezeichneten Aminosäuren wieder (Spalte 3). Auch die bevorzugten Aminosäuren in den verschiedenen Positionen sind der Tabelle zu entnehmen (Spalte 3). Spalte 1 gibt die SEQ ID NO wieder, Spalte 2 die Position in der Sequenz.

Tabelle 2: Bedeutung der mit X bezeichneten Aminosäure in den Konsensus-Sequenzen.

SEQ ID NO:	Position des X in der Sequenz	Aminosäure	bevorzugte Aminosäure
115 (NXXXHXXMYXYYX)	2	Ser, Cys, Leu, Gly	Cys, Leu
115	3	Thr, Phe, Ile, Ser, Val, Trp, Gly	Phe, Trp
115	4	Val, Ile	Val, lle
115	6	Val, Ile, Thr	Val, lle
115	7	lle, Phe, Val, Leu, Cys	Cys, Val
115	10	Ser, Gly, Tyr, Thr, Ala	Thr, Ser
115	13	Phe, Met, Thr, Leu, Ala, Gly	Leu
116 (HHXXXXWAWW)	3	Ala, Ser, Thr	Ala, Ser besonders bevor- zugt Ala
116	4	Thr, Met, Val, Leu, lle, Ser	Leu, Thr besonders bevor- zugt Leu
116	5	Val, Thr, Met, Leu, lle	lle, Ser besonders bevor- zugt lle
116	6	Val, Met, Leu, Ile, Ala, Pro, Ser, Phe	lle, Ser besonders bevor- zugt lle
139 LHXXHH	3	Val, Tyr, lle	Val, Thr
139	4	Tyr, Phe	Туг

15

SEQ ID NO:	Position des X in der Sequenz	Aminosäure	bevorzugte Aminosäure
140 TXXQXXQF	2	Asn, Asp, Thr, Gln, Met, Ser, Ala	Gln
140	3	Thr, Cys, Leu, Met, Ala, Ile, Val, Phe	Ala, Met
140	5	Met, Ile, Leu	Met
140	6	Val, Ile, Leu, Thr, Phe	Leu
141 DTXFMV	3	Leu, Ile, Val, Tyr, Phe, Ala	Phe .
142 TQAQXXQF	5	Met, Ile, Leu	Met, Leu besonders bevor- zugt Met
142	6	Val, Ile, Leu, Thr, Phe	Leu

Besonders vorteilhafte Δ -5-Elongasen enthalten mindestens eine der Sequenzen SEQ ID NO: 116, SEQ ID NO: 141 und/oder SEQ ID NO: 142.

Besonders vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63; SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 114, SEQ ID NO: 132 oder SEQ ID NO: 134 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63; SEQ ID NO: 65, SEQ ID NO: 67,

20

25

SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 codieren und eine Δ -5-Elongaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -6-Elongaseaktivität codieren, ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 69, SEQ ID NO: 81, SEQ ID NO: 111 oder SEQ ID NO: 183 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 112 oder SEQ ID NO: 184 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 69, SEQ ID NO: 81, SEQ ID NO: 111 oder SEQ ID NO: 183 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 112 oder SEQ ID NO: 184 codieren und eine Δ-6-Elongaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit ω -3-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten
 genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten
 Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäure 30 sequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 aufweisen und eine ω-3 Desaturaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -6-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

35 a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 89 oder in SEQ ID NO: 97 dargestellten Sequenz,

- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 90 oder SEQ ID NO: 98 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 89 oder SEQ ID NO: 97 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 90 oder SEQ ID NO: 98 codieren und eine Δ-6-Desaturaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -5-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID
 NO: 99 oder in SEQ ID NO: 101 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 99 oder in SEQ ID NO: 101 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 codieren und eine Δ-5-Desaturaseaktivität aufweisen.
- 20 Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-4-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 95 oder in SEQ ID NO: 103 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen
 Codes von der in SEQ ID NO: 96 oder SEQ ID NO: 104 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 95 oder SEQ ID NO: 103 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 96 oder SEQ ID NO: 104 codieren und eine Δ-4-Desaturaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -12-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder in SEQ ID NO: 109 dargestellten Sequenz,

- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Homologie auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturaseaktivität aufweisen.

Ein weiterer Erfindungsgegenstand sind Genkonstrukte, die die erfindungsgemäßen Nukleinsäuresequenzen SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63; SEQ ID NO: 65, SEQ ID 10 NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, 15 SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 enthalten, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist. Zusätzlich können weitere Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäu-20 re-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) im Genkonstrukt enthalten sein. Vorteilhaft sind zusätzlich 25 Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe der Δ -4-Desaturase, Δ -5-Desaturase, Δ -6-Desaturase, Δ -8-Desatuase, Δ -9-Desaturase, Δ -12-Desaturase, Δ -6-Elongase, Δ -9-Elongase oder ω -3-Desaturase enthalten.

Vorteilhaft stammen alle die im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen aus einem eukaryontischen Organismus wie einer Pflanze, einem Mikroorganismus oder einem Tier. Bevorzugt stammen die Nukleinsäuresequenzen aus der Ordnüng Salmoniformes, Xenopus oder Ciona, Algen wie Mantoniella, Crypthecodinium, Euglena oder Ostreococcus, Pilzen wie der Gattung Phytophtora oder von Diatomeen wie den Gattungen Thalassiosira oder Phaeodactylum.

Die im Verfahren verwendeten Nukleinsäuresequenzen, die für Proteine mit ω -3-Desaturase-, Δ -4-Desaturase-, Δ -5-Desaturase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -9-Desaturase-, Δ -12-Desaturase-, Δ -5-Elongase-, Δ -6-Elongase- oder Δ -9-Elongase-Aktivität codieren, werden vorteilhaft allein oder bevorzugt in Kombination in einer Expressionskassette (= Nukleinsäurekonstrukt), die die Expression der Nukleinsäuren in einem Organismus vorteilhaft einer Pflanze oder einem Mikroorganismus ermöglicht,

eingebracht. Es kann im Nukleinsäurekonstrukt mehr als eine Nukleinsäuresequenz einer enzymatischen Aktivität wie z.B. einer Δ -12-Desaturase, Δ -4-Desaturase, Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase enthalten sein.

Zum Einbringen werden die im Verfahren verwendeten Nukleinsäuren vorteilhaft einer 5 Amplifikation und Ligation in bekannter Weise unterworfen. Vorzugsweise geht man in Anlehnung an das Protokoll der Pfu-DNA-Polymerase oder eines Pfu/Taq-DNA-Polymerasegemisches vor. Die Primer werden in Anlehnung an die zu amplifizierende Sequenz gewählt. Zweckmäßigerweise sollten die Primer so gewählt werden, dass das Amplifikat die gesamte kodogene Sequenz vom Start- bis zum Stop-Kodon umfasst. 10 Im Anschluss an die Amplifikation wird das Amplifikat zweckmäßigerweise analysiert. Beispielsweise kann die Analyse nach gelelektrophoretischer Auftrennung hinsichtlich Qualität und Quantität erfolgen. Im Anschluss kann das Amplifikat nach einem Standardprotokoll gereinigt werden (z.B. Qiagen). Ein Aliquot des gereinigten Amplifikats steht dann für die nachfolgende Klonierung zur Verfügung. Geeignete Klonie-15 rungsvektoren sind dem Fachmann allgemein bekannt. Hierzu gehören insbesondere Vektoren, die in mikrobiellen Systemen replizierbar sind, also vor allem Vektoren, die eine effiziente Klonierung in Hefen oder Pilze gewährleisten, und die stabile Transformation von Pflanzen ermöglichen. Zu nennen sind insbesondere verschiedene für die T-DNA-vermittelte Transformation geeignete, binäre und co-integrierte Vektorsysteme. 20 Derartige Vektorsysteme sind in der Regel dadurch gekennzeichnet, dass sie zumindest die für die Agrobakterium-vermittelte Transformation benötigten vir-Gene sowie die T-DNA begrenzenden Sequenzen (T-DNA-Border) beinhalten. Vorzugsweise umfassen diese Vektorsysteme auch weitere cis-regulatorische Regionen wie Promotoren und Terminatoren und/oder Selektionsmarker, mit denen entsprechend transfor-25 mierte Organismen identifiziert werden können. Während bei co-integrierten Vektorsystemen vir-Gene und T-DNA-Sequenzen auf demselben Vektor angeordnet sind, basieren binäre Systeme auf wenigstens zwei Vektoren, von denen einer vir-Gene, aber keine T-DNA und ein zweiter T-DNA, jedoch kein vir-Gen trägt. Dadurch sind letztere Vektoren relativ klein, leicht zu manipulieren und sowohl in E.-coli als auch in 30 Agrobacterium zu replizieren. Zu diesen binären Vektoren gehören Vektoren der Serien pBIB-HYG, pPZP, pBecks, pGreen. Erfindungsgemäß bevorzugt verwendet werden Bin19, pBI101, pBinAR, pGPTV und pCAMBIA. Eine Übersicht über binäre Vektoren und ihre Verwendung gibt Hellens et al, Trends in Plant Science (2000) 5, 446-451. Für die Vektorpräparation können die Vektoren zunächst mit Restriktionsen-35 donuklease(n) linearisiert und dann in geeigneter Weise enzymatisch modifiziert werden. Im Anschluss wird der Vektor gereinigt und ein Aliquot für die Klonierung eingesetzt. Bei der Klonierung wird das enzymatisch geschnittenen und erforderlichenfalls gereinigten Amplifikat mit ähnlich präparierten Vektorfragmenten mit Einsatz von Ligase kloniert. Dabei kann ein bestimmtes Nukleinsäurekonstrukt bzw. Vektor- oder 40 Plasmidkonstrukt einen oder auch mehrere kodogene Genabschnitte aufweisen. Vorzugsweise sind die kodogenen Genabschnitte in diesen Konstrukten mit regulatorischen Sequenzen funktional verknüpft. Zu den regulatorischen Sequenzen gehören insbesondere pflanzliche Sequenzen wie die oben beschriebenen Promotoren und

Terminatoren. Die Konstrukte lassen sich vorteilhafterweise in Mikroorganismen, insbesondere Escherichia coli und Agrobacterium tumefaciens, unter selektiven Bedingungen stabil propagieren und ermöglichen einen Transfer von heterologer DNA in Pflanzen oder Mikroorganismen.

- Unter der vorteilhaften Verwendung von Klonierungsvektoren können die im Verfahren 5 verwendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsäurekonstrukte in Organismen wie Mikroorganismen oder vorteilhaft Pflanzen eingebracht werden und damit bei der Pflanzentransformation verwendet werden, wie denjenigen, die veröffentlicht sind in und dort zitiert sind: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); F.F. White, 10 Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsqb.: Kung und R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225)). Die im Verfahren ver-15 wendeten Nukleinsäuren, die erfinderischen Nukleinsäuren und Nukleinsäurekonstrukte und/oder Vektoren lassen sich damit zur gentechnologischen Veränderung eines breiten Spektrums an Organismen vorteilhaft an Pflanzen verwenden, so dass diese bessere und/oder effizientere Produzenten von PUFAs werden.
- Es gibt eine Reihe von Mechanismen, durch die eine Veränderung des erfindungs-20 gemäßen Δ -12-Desaturase-, Δ -5-Elongase-, Δ -6-Elongase, Δ -5-Desaturase-, Δ -4-Desaturase-, Δ -6-Desaturase- und/oder ω -3-Desaturase-Proteins sowie der weiteren im Verfahren verwendeten Proteine wie die Δ -12-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase- oder Δ -4-Desaturase-Proteine möglich ist, so dass die Ausbeute, Produktion und/oder Effizienz der Produk-25 tion der vorteilhaft mehrfach ungesättigten Fettsäuren in einer Pflanze bevorzugt in einer Ölfruchtpflanze oder einem Mikroorganismus aufgrund dieses veränderten Proteins direkt beeinflusst werden kann. Die Anzahl oder Aktivität der Δ-12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Proteine oder -Gene 30 kann erhöht werden, so dass größere Mengen der Genprodukte und damit letztlich größere Mengen der Verbindungen der allgemeinen Formel I hergestellt werden. Auch eine de novo Synthese in einem Organismus, dem die Aktivität und Fähigkeit zur Biosynthese der Verbindungen vor dem Einbringen des/der entsprechenden Gens/Gene fehlte, ist möglich. Entsprechendes gilt für die Kombination mit weiteren Desaturasen 35 oder Elongasen oder weiteren Enzymen aus dem Fettsäure- und Lipidstoffwechsel. Auch die Verwendung verschiedener divergenter, d.h. auf DNA-Sequenzebene unterschiedlicher Seguenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promotoren zur Genexpression, die eine andere zeitliche Genexpression z.B. abhängig vom Reifegrad eines Samens oder Öl-speichernden Gewebes ermöglicht. 40

Durch das Einbringen eines Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase-

10

15

und/oder Δ -4-Desaturase-Genes in einen Organismus allein oder in Kombination mit anderen Genen in eine Zelle kann nicht nur den Biosynthesefluss zum Endprodukt erhöht, sondern auch die entsprechende Triacylglycerin-Zusammensetzung erhöht oder de novo geschaffen werden. Ebenso kann die Anzahl oder Aktivität anderer Gene, die am Import von Nährstoffen, die zur Biosynthese einer oder mehrerer Fettsäuren, Ölen, polaren und/oder neutralen Lipiden nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicherkompartiments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs, wie im folgenden beschrieben, weiter gesteigert wird. Durch Optimierung der Aktivität oder Erhöhung der Anzahl einer oder mehrerer Δ-12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Gene, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Gene, die am Abbau dieser Verbindungen beteiligt sind, kann es möglich sein, die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus Organismen und vorteilhaft aus Pflanzen zu steigern.

Die im erfindungsgemäßen Verfahren verwendeten isolierten Nukleinsäuremoleküle codieren für Proteine oder Teile von diesen, wobei die Proteine oder das einzelne Protein oder Teile davon eine Aminosäuresequenz enthält, die ausreichend homolog zu einer Aminosäuresequenz ist, die in den Sequenzen SEQ ID NO: 2, SEQ ID NO: 4, 20 SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID 25 NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ 30 ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 dargestellt ist, so dass die Proteine oder Teile davon noch eine Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Aktivität aufweisen. 35 Vorzugsweise haben die Proteine oder Teile davon, die von dem Nukleinsäuremolekül/den Nukleinsäuremolekülen kodiert wird/werden, noch seine wesentliche enzymatische Aktivität und die Fähigkeit, am Stoffwechsel von zum Aufbau von Zellmembranen oder Lipidkörperchen in Organismen vorteilhaft in Pflanzen notwendigen Verbindungen oder am Transport von Molekülen über diese Membranen teilzunehmen. Vorteilhaft 40 sind die von den Nukleinsäuremolekülen kodierten Proteine zu mindestens etwa 50 %, vorzugsweise mindestens etwa 60 % und stärker bevorzugt mindestens etwa 70 %, 80 % oder 90 % und am stärksten bevorzugt mindestens etwa 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % oder mehr

25

30

35

40

identisch zu den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID 5 NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID 10 NO: 104, SEQ ID NO: 106 SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 dargestellten Aminosäuresequenzen. Im Sinne der Erfindung ist unter Homologie oder homolog, Identität oder 15 identisch zu verstehen.

Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für das Vergleichen verschiedener Sequenzen stehen dem Fachmann eine Reihe von Programmen, die auf verschiedenen Algorithmen beruhen zur Verfügung. Dabei liefern die Algorithmen von Needleman und Wunsch oder Smith und Waterman besonders zuverlässige Ergebnisse. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151–153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm GAP über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Diese Einstellungen wurden, falls nicht anders angegeben, immer als Standardeinstellungen für Sequenzvergleiche verwendet wurden.

Unter wesentlicher enzymatischer Aktivität der im erfindungsgemäßen Verfahren verwendeten Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -4-Desaturase ist zu verstehen, dass sie gegenüber den durch die Sequenz mit SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 97, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO:

10

NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 und deren Derivate codierten Proteinen/Enzymen im Vergleich noch mindestens eine enzymatische Aktivität von mindestens 10 %, bevorzugt 20 %, besonders bevorzugt 30 % und ganz besonders 40 % aufweisen und damit am Stoffwechsel von zum Aufbau von Fettsäuren, Fettsäureester wie Diacylglyceride und/oder Triacylglyceride in einem Organismus vorteilhaft einer Pflanze oder Pflanzenzelle notwendigen Verbindungen oder am Transport von Molekülen über Membranen teilnehmen können, wobei C₁₈-, C₂₀- oder C₂₂-Kohlenstoffketten im Fettsäuremolekül mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier, fünf oder sechs Stellen gemeint sind.

Vorteilhaft im Verfahren verwendbare Nukleinsäuren stammen aus Bakterien, Pilzen, Diatomeen, Tieren wie Caenorhabditis oder Oncorhynchus oder Pflanzen wie Algen oder Moosen wie den Gattungen Shewanella, Physcomitrella, Thraustochytrium,
 Fusarium, Phytophthora, Ceratodon, Mantoniella, Ostreococcus, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium, speziell aus den Gattungen und Arten Oncorhynchus mykiss, Xenopus laevis, Ciona intestinalis, Thalassiosira pseudonona, Mantoniella squamata, Ostreococcus sp., Ostreococcus tauri, Euglena gracilis, Physcomitrella patens, Phytophtora infestans, Fusarium
 graminaeum, Cryptocodinium cohnii, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Thraustochytrium sp., Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricornutum, Caenorhabditis elegans oder besonders vorteilhaft aus Oncorhynchus mykiss, Euglena gracilis, Thalassiosira pseudonana oder Crypthecodinium cohnii.

Alternativ können im erfindungsgemäßen Verfahren Nukleotidsequenzen verwendet 25 werden, die für eine Δ -12-Desaturase, ω -3-Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -4-Desaturase codieren und die an eine Nukleotidsequenz, wie in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, 30 SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 40 oder SEQ ID NO: 183 dargestellt, vorteilhaft unter stringenten Bedingungen hybridisieren.

Die im Verfahren verwendeten Nukleinsäuresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Organismen wie Mikroorganismen oder Pflanzen ermöglicht, eingebracht.

Dabei werden die Nukleinsäuresequenzen, die für die Δ -12-Desaturase, ω -3-5 Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ-5-Elongase oder Δ-4-Desaturase codieren, mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktionell verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je 10 nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert und/oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder 15 anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette (= Expressionskonstrukt = Genkonstrukt) kann aber auch einfacher aufgebaut sein, das heißt es wurden keine 20 zusätzlichen Regulationssignale vor die Nukleinsäuresequenz oder dessen Derivate inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilseguenzen (= Promotor mit Teilen der erfindungs-25 gemäßen Nukleinsäuresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte 30 Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Die Δ-12-Desaturase-, ω-3-Desaturase-, Δ-4-Desaturase-, Δ5-Desaturase-, Δ-6-Desaturase-, Δ-8–Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- und/oder Δ-9-Elongase-Gene können in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Vorteilhaft liegt nur jeweils eine Kopie der Gene in der 35 Expressionskassette vor. Dieses Genkonstrukt oder die Genkonstrukte können zusammen im Wirtsorganismus exprimiert werden. Dabei kann das Genkonstrukt oder die Genkonstrukte in einem oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber im Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Gen-40 konstrukt vorliegen.

Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhaft-

erweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

- Eine weitere Ausführungsform der Erfindung sind ein oder mehrere Genkonstrukte, die 5 eine oder mehrere Sequenzen enthalten, die durch SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, 10 SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89. SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, 15 SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105 SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 oder dessen Derivate definiert sind und für Polypeptide gemäß SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, 20 SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, 25 SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88. SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 30 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 kodieren. Die genannten Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturase-Proteine führen dabei vorteilhaft zu einer Desaturierung oder Elongierung von Fettsäuren, wobei das Substrat vorteilhaft ein, zwei, drei, 35 vier, fünf oder sechs Doppelbindungen aufweist und vorteilhaft 18, 20 oder 22 Kohlenstoffatome im Fettsäuremolekül aufweist. Gleiches gilt für ihre Homologen, Derivate oder Analoga, die funktionsfähig mit einem oder mehreren Regulationssignalen, vorteilhafterweise zur Steigerung der Genexpression, verbunden sind.
- Vorteilhafte Regulationssequenzen für das neue Verfahren liegen beispielsweise in Promotoren vor, wie dem cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder λ-PL-Promotor und werden vorteilhaft- erweise in Gram-negativen Bakterien angewendet. Weitere vorteilhafte Regulations-

35

40

sequenzen liegen beispielsweise in den Gram-positiven Promotoren amy und SPO2, in den Hefe- oder Pilzpromotoren ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren CaMV/35S [Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, 5 B33, nos oder im Ubiquitin- oder Phaseolin-Promotor vor. In diesem Zusammenhang vorteilhaft sind ebenfalls induzierbare Promotoren, wie die in EP-A-0 388 186 (Benzylsulfonamid-induzierbar), Plant J. 2, 1992:397-404 (Gatz et al., Tetracyclininduzierbar), EP-A-0 335 528 (Abzisinsäure-induzierbar) oder WO 93/21334 (Ethanoloder Cyclohexenol-induzierbar) beschriebenen Promotoren. Weitere geeignete 10 Pflanzenpromotoren sind der Promotor von cytosolischer FBPase oder der ST-LSI-Promotor der Kartoffel (Stockhaus et al., EMBO J. 8, 1989, 2445), der Phosphoribosytpyrophosphatamidotransferase-Promotor aus Glycine max (Genbank-Zugangsnr. U87999) oder der in EP-A-0 249 676 beschriebene nodienspezifische Promotor. Besonders vorteilhafte Promotoren sind Promotoren, welche die Expression in Ge-15 weben ermöglichen, die an der Fettsäurebiosynthese beteiligt sind. Ganz besonders vorteilhaft sind samenspezifische Promotoren, wie der ausführungsgemäße USP Promotor aber auch andere Promotoren wie der LeB4-, DC3, Phaseolin- oder Napin-Promotor. Weitere besonders vorteilhafte Promotoren sind samenspezifische Promotoren, die für monokotyle oder dikotyle Pflanzen verwendet werden können und 20 in US 5,608,152 (Napin-Promotor aus Raps), WO 98/45461 (Oleosin-Promotor aus Arobidopsis), US 5,504,200 (Phaseolin-Promotor aus Phaseolus vulgaris), WO 91/13980 (Bce4-Promotor aus Brassica), von Baeumlein et al., Plant J., 2, 2, 1992:233-239 (LeB4-Promotor aus einer Leguminose) beschrieben sind, wobei sich diese Promotoren für Dikotyledonen eignen. Die folgenden Promotoren eignen sich beispielsweise für Monokotyledonen lpt-2- oder lpt-1-Promotor aus Gerste (WO 25 95/15389 und WO 95/23230), Hordein-Promotor aus Gerste und andere, in WO 99/16890 beschriebene geeignete Promotoren.

Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen, wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls möglich und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z.B. beschrieben in WO 99/16890.

Um einen besonders hohen Gehalt an PUFAs vor allem in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samenspezifisch in Ölsaaten exprimiert werden. Hierzu können Samen-spezifische Promotoren verwendet werden, bzw. solche Promotoren die im Embryo und/oder im Endosperm aktiv sind. Samenspezifische Promotoren können prinzipiell sowohl aus dikotolydonen als auch aus monokotolydonen Pflanzen isoliert werden. Im folgenden sind vorteilhafte bevorzugte Promotoren aufgeführt: USP (= unknown seed protein) und Vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet., 1991, 225(3)], Napin (Raps) [US 5,608,152], Acyl-Carrier Protein (Raps) [US 5,315,001 und WO 92/18634], Oleosin (Arabidopsis thaliana) [WO 98/45461 und WO 93/20216], Phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980], Leguminosen B4 (LegB4-Promotor) [Bäumlein et al., Plant J.,

10

15

20

25

30

35

2,2, 1992], Lpt2 und lpt1(Gerste) [WO 95/15389 u. WO95/23230], Samen-spezifische Promotoren aus Reis, Mais u. Weizen [WO 99/16890], Amy32b, Amy 6-6 und Aleurain [US 5,677,474], Bce4 (Raps) [US 5,530,149], Glycinin (Soja) [EP 571 741], Phosphoenol-Pyruvatcarboxylase (Soja) [JP 06/62870], ADR12-2 (Soja) [WO 98/08962], Isocitratlyase (Raps) [US 5,689,040] oder α -Amylase (Gerste) [EP 781 849].

Die Pflanzengenexpression lässt sich auch über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.

Um eine stabile Integration der Biosynthesegene in die transgene Pflanze über mehrere Generation sicherzustellen, sollte jede der im Verfahren verwendeten Nukleinsäuren, die für die Δ -12-Desaturase, ω -3-Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase und/oder Δ-4-Desaturase codieren, unter der Kontrolle eines eigenen bevorzugt eines unterschiedlichen Promotors exprimiert werden, da sich wiederholende Sequenzmotive zu Instabilität der T-DNA bzw. zu Rekombinationsereignissen führen können. Die Expressionskassette ist dabei vorteilhaft so aufgebaut, dass einem Promotor eine geeignete Schnittstelle zur Insertion der zu exprimierenden Nukleinsäure folgt vorteilhaft in einem Polylinker anschließend gegebenenfalls ein Terminator hinter dem Polylinker liegt. Diese Abfolge wiederholt sich mehrfach bevorzugt drei-, vier- oder fünfmal, so dass bis zu fünf Gene in einem Konstrukt zusammengeführt werden und so zur Expression in die transgene Pflanze eingebracht werden können. Vorteilhaft wiederholt sich die Abfolge bis zu dreimal. Die Nukleinsäuresequenzen werden zur Expression über die geeignete Schnittstelle beispielsweise im Polylinker hinter den Promotor inseriert. Vorteilhaft hat jede Nukleinsäuresequenz ihren eigenen Promotor und gegebenenfalls ihren eigenen Terminator. Derartige vorteilhafte Konstrukte werden beispielsweise in DE 10102337 oder DE 10102338 offenbart. Es ist aber auch möglich mehrere Nukleinsäuresequenzen hinter einem Promotor und ggf. vor einem Terminator zu inserieren. Dabei ist die Insertionsstelle bzw. die Abfolge der inserierten Nukleinsäuren in der Expressionskassette nicht von entscheidender Bedeutung, das heißt eine Nukleinsäuresequenz kann an erster oder letzter Stelle in der Kassette inseriert sein, ohne dass dadurch die Expression wesentlich beeinflusst wird. Es können in der Expressionskassette vorteilhaft unterschiedliche Promotoren wie beispielsweise der USP-, LegB4 oder DC3-Promotor und unterschiedliche Terminatoren verwendet werden. Es ist aber auch möglich nur einen Promotortyp in der Kassette zu verwenden. Dies kann jedoch zu unerwünschten Rekombinationsereignissen führen.

Wie oben beschrieben sollte die Transkription der eingebrachten Gene vorteilhaft durch geeignete Terminatoren am 3'-Ende der eingebrachten Biosynthesegene (hinter dem Stoppcodon) abgebrochen werden. Verwendet werden kann hier z.B. der OCS1

35

40

Terminator. Wie auch für die Promotoren, so sollten hier für jedes Gen unterschiedliche Terminatorsequenzen verwendet werden.

Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Organismen eingebracht werden sollen. Es ist möglich und vorteilhaft, in die Wirtsorganismen Regulationsgene, wie Gene für Induktoren, Repressoren oder 5 Enzyme, welche durch ihre Enzymaktivität in die Regulation eines oder mehrerer Gene eines Biosynthesewegs eingreifen, einzubringen und darin zu exprimieren. Diese Gene können heterologen oder homologen Ursprungs sein. Weiterhin können vorteilhaft im Nukleinsäurekonstrukt bzw. Genkonstrukt weitere Biosynthesegene des Fettsäure-10 oder Lipidstoffwechsels enthalten sein oder aber diese Gene können auf einem weiteren oder mehreren weiteren Nukleinsäurekonstrukten liegen. Vorteilhaft werden als Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ein Gen ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[≈ acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-15 Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenase(n), Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid-Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure-Elongase(n) oder deren Kombinationen verwendet. Besonders vorteilhafte Nukleinsäuresequenzen sind Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der 20 Gruppe der Acyl-CoA:Lysophospholipid-Acyltransferase, ω-3-Desaturase, Δ-4-Desaturase, Δ -5-Desaturase, Δ -6-Desaturase, Δ -8-Desatuase, Δ -9-Desaturase, Δ -12-Desaturase, Δ -5-Elongase, Δ -6-Elongase und/oder Δ -9-Elongase.

Dabei können die vorgenannten Nukleinsäuren bzw. Gene in Kombination mit anderen Elongasen und Desaturasen in Expressionskassetten, wie den vorgenannten, kloniert werden und zur Transformation von Pflanzen Mithilfe von Agrobakterium eingesetzt werden.

Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Die Expressionskassetten können prinzipiell direkt zum Einbringen in die Pflanze verwendet werden oder aber in einen Vektoren eingebracht werden.

Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im Verfahren verwendeten Nukleinsäuren, die für die Δ -12-Desaturasen, ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen oder Δ -4-Desaturasen codieren, oder ein Nukleinsäurekonstrukt, die die verwendeten Nukleinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäure- oder Lipidstoffwechsels wie den Acyl-

CoA:Lysophospholipid-Acyltransferasen, ω-3-Desaturasen, Δ-4-Desaturasen, Δ-5-Desaturasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -9-Desaturasen, Δ -12-Desaturasen, ω3-Desaturasen, Δ-5-Elongasen, Δ-6-Elongasen und/oder Δ-9-Elongasen. Wie hier verwendet, betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein 5 "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (z.B. Bakterienvektoren mit bakteriellem Replikationsursprung). 10 Andere Vektoren werden vorteilhaft beim Einbringen in die Wirtszelle in das Genom einer Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden hier als "Expressions-15 vektoren" bezeichnet. Gewöhnlich haben Expressionsvektoren, die für DNA-Rekombinationstechniken geeignet sind, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll jedoch diese anderen Expressionsvektorformen, wie virale Vektoren, die ähnliche Funktionen 20 ausüben, umfassen. Ferner soll der Begriff Vektor auch andere Vektoren, die dem Fachmann bekannt sind, wie Phagen, Viren, wie SV40, CMV, TMV, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA, umfassen.

Die im Verfahren vorteilhaft verwendeten rekombinanten Expressionsvektoren umfassen die unten beschriebenen Nukleinsäuren oder das oben beschriebene 25 Genkonstrukt in einer Form, die sich zur Expression der verwendeten Nukleinsäuren in einer Wirtszelle eignen, was bedeutet, dass die rekombinanten Expressionsvektoren eine oder mehrere Regulationssequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu exprimierenden Nukleinsäuresequenz funktionsfähig verbunden ist, umfasst. In einem rekombinanten Expressionsvektor 30 bedeutet "funktionsfähig verbunden", dass die Nukleotidsequenz von Interesse derart an die Regulationssequenz(en) gebunden ist, dass die Expression der Nukleotidsequenz möglich ist und sie aneinander gebunden sind, so dass beide Sequenzen die vorhergesagte, der Sequenz zugeschriebene Funktion erfüllen (z.B. in einem In-vitro-Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht wird). Der Begriff "Regulationssequenz" soll Promotoren, 35 Enhancer und andere Expressionskontrollelemente (z.B. Polyadenylierungssignale) umfassen. Diese Regulationssequenzen sind z.B. beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), oder siehe: Gruber und Crosby, in: Methods in Plant Molecular Biology and 40 Biotechnolgy, CRC Press, Boca Raton, Florida, Hrsgb.: Glick und Thompson, Kapitel 7, 89-108, einschließlich der Literaturstellen darin. Regulationssequenzen umfassen solche, welche die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, welche die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen unter bestimmten Bedingungen steuern. Der Fachmann weiß,

dass die Gestaltung des Expressionsvektors von Faktoren, wie der Auswahl der zu transformierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw., abhängen kann.

Die verwendeten rekombinanten Expressionsvektoren können zur Expression von Δ -12-Desaturasen, ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-5 Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ -4-Desaturasen in prokaryotischen oder eukaryotischen Zellen gestaltet sein. Dies ist vorteilhaft, da häufig Zwischenschritte der Vektorkonstruktion der Einfachheithalber in Mikroorganismen durchgeführt werden. Beispielsweise können die Δ -12-Desaturase-, ω-3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, 10 Δ -5-Desaturase-, Δ -5-Elongase- und/oder Δ -4-Desaturase-Gene in bakteriellen Zellen, Insektenzellen (unter Verwendung von Baculovirus-Expressionsvektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M.A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8:423-488; van den Hondel, C.A.M.J.J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, 15 J.W. Bennet-& L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego; und van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F., et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al., 1999, Marine Biotechnology.1, 3:239-251), Ciliaten der Typen: Holotrichia, 20 Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmaniella und Stylonychia, insbesondere der Gattung Stylonychia lemnae, mit Vektoren nach einem Transformationsverfahren, wie beschrieben in WO 98/01572, sowie bevorzugt in Zellen vielzelliger Pflanzen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency 25 Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.:583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, Kapitel 6/7, S.71-119 (1993); F.F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. 30 Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225 (und darin zitierte Literaturstellen)) exprimiert werden. Geeignete Wirtszellen werden ferner erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Der rekombinante Expressionsvektor kann alternativ, zum Beispiel unter Verwendung von T7-Promotor-Regulationssequenzen und T7-Polymerase, in 35 vitro transkribiert und translatiert werden.

Die Expression von Proteinen in Prokaryoten erfolgt meist mit Vektoren, die konstitutive oder induzierbare Promotoren enthalten, welche die Expression von Fusionsoder nicht-Fusionsproteinen steuern. Typische Fusions-Expressionsvektoren sind u.a. pGEX (Pharmacia Biotech Inc; Smith, D.B., und Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.

20

25

30

35

Beispiele für geeignete induzierbare nicht-Fusions-E. coli-Expressionsvektoren sind u.a. pTrc (Amann et al. (1988) Gene 69:301-315) und pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89). Die Zielgenexpression vom pTrc-Vektor beruht auf der
Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor. Die Zielgenexpression aus dem pET 11d-Vektor beruht auf der Transkription von einem T7-gn10-lac-Fusions-Promotor, die von einer coexprimierten viralen RNA-Polymerase (T7 gn1) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen
bereitgestellt, der ein T7 gn1-Gen unter der Transkriptionskontrolle des lacUV 5-Promotors birgt.

Andere in prokaryotischen Organismen geeignete Vektoren sind dem Fachmann bekannt, diese Vektoren sind beispielsweise in E. coli pLG338, pACYC184, die pBR-Reihe, wie pBR322, die pUC-Reihe, wie pUC18 oder pUC19, die M113mp-Reihe, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, \(\lambda\gamma\)11 or pBdCI, in Streptomyces pIJ101, pIJ364, pIJ702 oder pIJ361, in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667.

Bei einer weiteren Ausführungsform ist der Expressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYeDesaturasec1 (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie den filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge, oder in: More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego]. Weitere geeignete Hefevektoren sind beispielsweise pAG-1, YEp6, YEp13 oder pEMBLYe23.

Alternativ können die Δ -12-Desaturasen, ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ -4-Desaturasen in Insektenzellen unter Verwendung von Baculovirus-Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (z.B. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al. (1983) Mol. Cell Biol.. 3:2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170:31-39).

Die oben genannten Vektoren bieten nur einen kleinen Überblick über mögliche geeignete Vektoren. Weitere Plasmide sind dem Fachmann bekannt und sind zum Beispiel beschrieben in: Cloning Vectors (Hrsgb. Pouwels, P.H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Weitere geeignete Expres-

25

30

35

sionssysteme für prokaryotische und eukaryotische Zellen siehe in den Kapiteln 16 und 17 von Sambrook, J., Fritsch, E.F., und Maniatis, T., Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

- Bei einer weiteren Ausführungsform des Verfahrens können die Δ-12-Desaturasen, ω-3-Desaturasen, Δ-9-Elongasen, Δ-6-Desaturasen, Δ-8-Desaturasen, Δ-6-Elongasen, Δ-5-Desaturasen, Δ-5-Elongasen und/oder Δ-4-Desaturasen in einzelligen Pflanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechnology 1 (3):239-251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen.
- 10 Spermatophyten, wie Feldfrüchten) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J., und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl.
- Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, S. 15-38.

Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen, welche die Genexpression in Pflanzenzellen steuern können und funktionsfähig verbunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadenylierungssignale sind diejenigen, die aus Agrobacterium tumefaciens-T-DNA stammen, wie das als Octopinsynthase bekannte Gen 3 des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835ff.) oder funktionelle Äquivalente davon, aber auch alle anderen in Pflanzen funktionell aktiven Terminatoren sind geeignet.

Da die Pflanzengenexpression sehr oft nicht auf Transkriptionsebenen beschränkt ist, enthält eine Pflanzen-Expressionskassette vorzugsweise andere funktionsfähig verbunden Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive-Sequenz, welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Protein/RNA-Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711).

Die Pflanzengenexpression muss wie oben beschrieben funktionsfähig mit einem geeigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zelloder gewebespezifische Weise durchführt. Nutzbare Promotoren sind konstitutive Promotoren (Benfey et al., EMBO J. 8 (1989) 2195-2202), wie diejenigen, die von Pflanzenviren stammen, wie 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (siehe auch US 5352605 und WO 84/02913) oder Pflanzenpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco.

Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des Genproduktes in sein entsprechendes Zellkompartiment notwendig sind (siehe eine

10

15

Übersicht in Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 und darin zitierte Literaturstellen), beispielsweise in die Vakuole, den Zellkern, alle Arten von Plastiden, wie Amyloplasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, die Mitochondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen.

Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.

Auch Prometoren, die auf biotische oder abiotische Stressbedingungen reagieren, sind geeignete Promotoren, beispielsweise der pathogeninduzierte PRP1-Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), der hitzeinduzierbare hsp80-Promotor aus Tomate (US 5,187,267), der kälteinduzierbare Alpha-Amylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinII-Promotor (EP-A-0 375 091).

Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in Geweben und Organen herbeiführen, in denen die Fettsäure-, Lipid- und Ölbio-20 synthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich entwickelnden Embryos. Geeignete Promotoren sind der Napingen-Promotor aus Raps (US 5,608,152), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67), der Oleosin-Promotor aus Arabidopsis (WO 98/45461), der Phaseolin-Promotor aus Phaseolus vulgaris (US 5,504,200), der Bce4-Promotor aus 25 Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9) sowie Promotoren, welche die samenspezifische Expression in Monokotyledonen-Pflanzen, wie Mais, Gerste, Weizen, Roggen, Reis usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der lpt2- oder lpt1-Gen-Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 30 beschriebenen (Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, dem Reis-Oryzin-Gen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen-Glutelin-Gen, dem Mais-Zein-Gen, dem Hafer-Glutelin-Gen, dem Sorghum-Kasirin-Gen, dem Roggen-Secalin-Gen).

Insbesondere kann die multiparallele Expression der im Verfahren verwendeten Δ-12-Desaturasen, ω-3-Desaturasen, Δ-9-Elongasen, Δ-6-Desaturasen, Δ-8-Desaturasen, Δ-6-Elongasen, Δ-5-Desaturasen, Δ-5-Elongasen und/oder Δ-4-Desaturasen gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt durch Kombination mehrerer Expressionskassetten auf einem Konstrukt. Auch können

25

30

35

40

mehrere Vektoren mit jeweils mehreren Expressionskassetten transformiert und auf die Wirtszelle übertragen werden.

Ebenfalls besonders geeignet sind Promotoren, welche die plastidenspezifische Expression herbeiführen, da Plastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren, wie der virale RNA-Polymerase-Promotor, sind beschrieben in WO 95/16783 und WO 97/06250, und der clpP-Promotor aus Arabidopsis, beschrieben in WO 99/46394.

Vektor-DNA lässt sich in prokaryotische oder eukaryotische Zellen über herkömmliche Transformations- oder Transfektionstechniken einbringen. Die Begriffe "Transformati-10 on" und "Transfektion", Konjugation und Transduktion, wie hier verwendet, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (z.B. DNA) in eine Wirtszelle, einschließlich Calciumphosphat- oder Calciumchlorid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion, Lipofektion, natürliche Kompetenz, chemisch vermittelter Transfer, Elektroporation oder Teilchen-15 beschuss, umfassen. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen, einschließlich Pflanzenzellen, lassen sich finden in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen 20 Labor-Handbüchern, wie Methods in Molecular Biology, 1995, Bd. 44, Agrobacterium protocols, Hrsgb: Gartland und Davey, Humana Press, Totowa, New Jersey.

Wirtszellen, die im Prinzip zum Aufnehmen der erfindungsgemäßen Nukleinsäure, des erfindungsgemäßen Genproduktes oder des erfindungsgemäßen Vektors geeignet sind, sind alle prokaryotischen oder eukaryotischen Organismen. Die vorteilhafterweise verwendeten Wirtsorganismen sind Mikroorganismen, wie Pilze oder Hefen oder Pflanzenzellen vorzugsweise Pflanzen oder Teile davon. Pilze, Hefen oder Pflanzen werden vorzugsweise verwendet, besonders bevorzugt Pflanzen, ganz besonders bevorzugt Pflanzen, wie Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Raps, Nachtkerze, Hanf, Diestel, Erdnuss, Canola, Lein, Soja, Saflor, Sonnenblume, Borretsch, oder Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölplame, Kokosnuss) sowie ausdauernde Gräser und Futterfeldfrüchte. Besonders bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Soja, Erdnuss, Raps, Canola, Lein, Hanf, Nachtkerze, Sonnenblume, Saflor, Bäume (Ölpalme, Kokosnuss).

Ein weiterer erfindungsgemäßer Gegenstand sind wie oben beschrieben isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ -5-Elongase-Aktivität codieren, wobei die durch die Nukleinsäuresequenzen codierten Elongase C_{16} - und C_{18} - Fettsäuren mit einer Doppelbindung und vorteilhaft mehrfach ungesättigte C_{18} -Fettsäuren mit einer

10

25

30

 $\Delta 6$ -Doppelbindung und mehrfach ungesättigte C_{20} -Fettsäuren mit einer $\Delta 5$ -Doppelbindung umsetzt. C_{22} -Fettsäuren werden nicht elongiert.

Vorteilhafte isolierte Nukleinsäuresequenzen sind Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-Elongaseaktivität codieren und die eine Aminosäuresequenz enthalten ausgewählt aus der Gruppe einer Aminosäuresequenz mit der in SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141 oder SEQ ID NO: 142 dargestellten Sequenz.

Weitere vorteilhafte isolierte Nukleinsäuresequenzen sind Nukleinsäuresequenzen, die für Polypeptide mit Δ -5-Elongaseaktivität codieren und die eine Kombination der Aminosäuresequenzen enthalten ausgewählt aus der Gruppe:

- a) SEQ ID NO: 115 und SEQ ID NO: 139, SEQ ID NO: 115 und SEQ ID NO: 140 oder SEQ ID NO: 139 und SEQ ID NO: 140; oder
- SEQ ID NO: 116 und SEQ ID NO: 141, SEQ ID NO: 116 und SEQ ID NO: 142 oder SEQ ID NO: 141 und SEQ ID NO: 142; oder
- 15 c) SEQ ID NO: 115, SEQ ID NO: 139 und SEQ ID NO: 140 oder SEQ ID NO: 116, SEQ ID NO: 141 und SEQ ID NO: 142.

Bevorzugte Nukleinsäuresequenzen, die für Polypeptide mit Δ -5-Elongaseaktivität codieren enthalten vorteilhaft die vorgenannten Aminosäuresequenzen. Diese werden in Tabelle 2 näher beschrieben.

- 20 Besonders vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt aus der Gruppe:
 - a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 114, SEQ ID NO: 132 oder SEQ ID NO: 134 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäu-

15

20

reebene mit SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 114, SEQ ID NO: 132 oder SEQ ID NO: 134 aufweisen und eine Δ -5-Elongaseaktivität aufweisen.

Weitere Erfindungsgegenstände sind die im folgenden aufgezählten Nukleinsäuresequenzen, die für Δ -6-Elongasen, ω -3-Desaturasen, Δ -6-Desaturasen, Δ -5-Desaturasen, Δ -4-Desaturasen oder Δ -12-Desaturasen codieren.

Weitere vorteilhafte isolierte Nukleinsäuresequenzen sind Sequenzen ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 69, SEQ ID NO: 81, SEQ ID NO: 111 oder SEQ ID NO: 183 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 112 oder SEQ ID NO: 184 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 69, SEQ ID NO: 81, SEQ ID NO: 111 oder SEQ ID NO: 183 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 112 oder SEQ ID NO: 184 codieren und eine Δ-6-Elongaseaktivität aufweisen.

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit ω -3-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105
 25 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäure-30 sequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 aufweisen und eine ω-3-Desaturaseaktivität aufweisen.

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -6-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

35 a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 89 oder in SEQ ID NO: 97 dargestellten Sequenz,

- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 90 oder SEQ ID NO: 98 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 89 oder SEQ ID NO: 97 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 90 oder SEQ ID NO: 98 codieren und eine Δ-6-Desaturaseaktivität aufweisen.

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -5-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

- 10 a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 99 oder in SEQ ID NO: 101 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 dargestellten Aminosäuresequenz ableiten lassen, oder
- Derivate der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 99 oder in SEQ ID NO: 101 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 codieren und eine Δ-5-Desaturaseaktivität aufweisen.
- 20 Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-4-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 95 oder in SEQ ID NO: 103 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen
 Codes von der in SEQ ID NO: 96 oder SEQ ID NO: 104 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 95 oder SEQ ID NO: 103 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 96 oder SEQ ID NO: 104 codieren und eine Δ-6-Desaturaseaktivität aufweisen.

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -12-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:

a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder in SEQ ID NO: 109
 dargestellten Sequenz,

15

20

- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Homologie auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturaseaktivität aufweisen.

Die oben genannte erfindungsgemäßen Nukleinsäuren stammen von Organismen, wie nicht-humanen Tieren, Ciliaten, Pilzen, Pflanzen wie Algen oder Dinoflagellaten, die PUFAs synthetisieren können.

Vorteilhaft stammen die isolierten oben genannten-Nukleinsäuresequenzen aus der Ordnung Salmoniformes, Xenopus oder Ciona, den Diatomeengattungen Thalassiosira oder Crythecodinium oder aus der Familie der Prasinophyceae wie der Gattung Ostreococcus oder der Familie Euglenaceae wie der Gattung Euglena oder Pythiaceae wie der Gattung Phytophtora stammt.

Ein weiterer erfindungsgemäßer Gegenstand sind wie oben beschrieben isolierte Nukleinsäuresequenz, die für Polypeptide mit ω -3-Desaturase-Aktivität codieren, wobei die durch die Nukleinsäuresequenzen codierten ω -3-Desaturasen C_{18} -, C_{20} - und C_{22} -Fettsäuren mit zwei, drei, vier oder fünf Doppelbindungen und vorteilhaft mehrfach ungesättigte C_{18} -Fettsäuren mit zwei oder drei Doppelbindungen und mehrfach ungesättigte C_{20} -Fettsäuren mit zwei, drei oder vier Doppelbindungen umsetzt. Auch C_{22} -Fettsäuren mit vier oder fünf Doppelbindungen werden desaturiert.

Zu den erfindungsgemäßen Gegenständen gehören außerdem, wie oben beschrieben, isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ-12-Desaturasen, Δ-4Desaturasen, Δ-5-Desaturasen und Δ-6-Desaturasen codieren, wobei die durch diese Nukleinsäuresequenzen codierten Δ-12-Desaturasen, Δ-4-Desaturasen, Δ-5-Desaturasen oder Δ-6-Desaturasen C₁₈-, C₂₀- und C₂₂-Fettsäuren mit ein, zwei, drei, vier oder fünf Doppelbindungen und vorteilhaft mehrfach ungesättigte C₁₈-Fettsäuren mit ein, zwei oder drei Doppelbindungen wie C18:1^{Δ9}, C18:2^{Δ9,12}oder C18:3 ^{Δ9,12,15}, mehrfach ungesättigte C₂₀-Fettsäuren mit drei oder vier Doppelbindungen wie C20:3^{Δ8,11,14} oder C20:4^{Δ8,11,14,17} oder mehrfach ungesättigte C₂₂-Fettsäuren mit vier oder fünf Doppelbindungen wie C22:4^{Δ7,10,13,16} oder C22:5^{Δ7,10,13,16,19} umsetzen. Vorteilhaft werden die Fettsäuren in den Phospholipiden oder CoA-Fettsäureestern desaturiert, vorteilhaft in den CoA-Fettsäureester.

Der Begriff "Nukleinsäure(molekül)", wie hier verwendet, umfasst in einer vorteilhaften Ausführungsform zudem die am 3'- und am 5'-Ende des kodierenden Genbereichs gelegene untranslatierte Sequenz: mindestens 500, bevorzugt 200, besonders bevorzugt 100 Nukleotide der Sequenz stromaufwärts des 5'-Endes des kodierenden Bereichs und mindestens 100, bevorzugt 50, besonders bevorzugt 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des kodierenden Genbereichs. Ein "isoliertes"

10

Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure vorliegen. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, welche die Nukleinsäure in der genomischen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (z.B. Sequenzen, die sich an den 5'- und 3'-Enden der Nukleinsäure befinden). Bei verschiedenen Ausführungsformen kann das isolierte Δ-12-Desaturase-, ω-3-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturasemolekül zum Beispiel weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb an Nukleotidsequenzen enthalten, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nukleinsäure stammt flankieren.

Die im Verfahren verwendeten Nukleinsäuremoleküle, z.B. ein Nukleinsäuremolekül mit einer Nukleotidsequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, 15 SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, 20 SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 oder eines Teils 25 davon, kann unter Verwendung molekularbiologischer Standardtechniken und der hier bereitgestellten Sequenzinformation isoliert werden. Auch kann Mithilfe von Vergleichsalgorithmen beispielsweise eine homologe Sequenz oder homologe, konservierte Sequenzbereiche auf DNA oder Aminosäureebene identifiziert 30 werden. Diese können als Hybridisierungssonde sowie Standard-Hybridisierungstechniken (wie z.B. beschrieben in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) zur Isolierung weiterer im Verfahren nützlicher Nukleinsäuresequenzen verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz der SEQ ID NO: 1, SEQ ID NO: 35 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15. SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID 40' NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID. NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID

NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 oder einen Teil davon, durch Polymerasekettenreaktion isolieren, wobei Oligonukleotidprimer, die auf der Basis dieser Sequenz oder von Teilen davon, verwendet werden (z.B. kann ein Nukleinsäuremolekül, umfassend die vollständigen Sequenz oder einen Teil davon, durch Polymerasekettenreaktion unter Verwendung von Oligonukleotidprimern isoliert werden, die auf der Basis dieser gleichen Sequenz erstellt worden sind). Zum Beispiel lässt sich mRNA aus Zellen isolieren (z.B. durch 10 das Guanidiniumthiocyanat-Extraktionsverfahren von Chirgwin et al. (1979) Biochemistry 18:5294-5299) und cDNA mittels Reverser Transkriptase (z.B. Moloney-MLV-Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Transkriptase, erhältlich von Seikagaku America, Inc., St.Petersburg, FL) herstellen. Synthetische Oligonukleotidprimer zur Amplifizierung mittels Polymerasekettenreaktion lassen sich auf der Basis einer der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, 15 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID 20 NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID 25 NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 gezeigten Sequenzen oder Mithilfe der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 30 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28. SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48. SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, 35 SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID 40 NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 dargestellten Aminosäuresequenzen erstellen. Eine erfindungsgemäße Nukleinsäure kann unter Verwendung von cDNA oder alternativ von genomischer DNA als Matrize und geeigneten Oligonukleotidprimern gemäß Standard-PCR-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert 45 werden und mittels DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die

einer Desaturase-Nukleotidsequenz entsprechen, können durch Standard-Syntheseverfahren, beispielsweise mit einem automatischen DNA-Synthesegerät, hergestellt werden.

Homologe der verwendeten Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder 5 Δ-4-Desaturase-Nukleinsäuresequenzen mit der Sequenz SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID 10 NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID 15 NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 bedeutet beispielsweise allelische Varianten mit mindestens etwa 50 oder 60 %, vorzugsweise mindestens etwa 60 oder 70 %, stärker bevorzugt mindestens 20 etwa 70 oder 80 %, 90 % oder 95 % und noch stärker bevorzugt mindestens etwa 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % oder mehr Identität bzw. Homologie zu einer in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID 25 NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID. NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID 30 NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID 35 NO: 183 gezeigten Nukleotidsequenzen oder ihren Homologen, Derivaten oder Analoga oder Teilen davon. Weiterhin sind isolierte Nukleinsäuremoleküle einer Nukleotidsequenz, die an eine der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ -ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID 40 NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID

NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, 5 SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 gezeigten Nukleotidsequenzen oder einen Teil davon hybridisieren, z.B. unter stringenten Bedingungen hybridisiert. Unter einem Teil gemäß der Erfindung ist dabei zu verstehen, dass mindestens 25 Basenpaare (= bp), 50 bp, 75 bp, 100 bp, 125 bp oder 150 bp, bevorzugt mindestens 175 bp, 200 bp, 225 bp, 250 bp, 275 bp oder 300 bp, 10 besonders bevorzugt 350 bp, 400 bp, 450 bp, 500 bp oder mehr Basenpaare für die Hybridisierung verwendet werden. Es kann auch vorteilhaft die Gesamtsequenz verwendet werden. Allelische Varianten umfassen insbesondere funktionelle Varianten, die sich durch Deletion, Insertion oder Substitution von Nukleotiden aus/in der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, 15 SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, 20 SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 25 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 dargestellten Sequenz erhalten lassen, wobei aber die Absicht ist, dass die Enzymaktivität der davon herrührenden synthetisierten Proteine für die Insertion eines oder mehrerer Gene vorteilhafterweise beibehalten wird. Proteine, die noch die enzymatische Aktivität der Δ-12-Desaturase, ω-3-30 Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -4-Desaturase besitzen, das heißt deren Aktivität im wesentlichen nicht reduziert ist, bedeutet Proteine mit mindestens 10 %, vorzugsweise 20 %, besonders bevorzugt 30 %, ganz besonders bevorzugt 40 % der ursprünglichen Enzymaktivität, verglichen mit dem durch SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, 35 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID 40 NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ 45

ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 kodierten Protein. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für das Vergleichen verschiedener Sequenzen stehen dem Fachmann eine Reihe von Programmen, die auf verschiedenen Algorithmen beruhen zur Verfügung. Dabei liefern die Algorithmen von Needleman und Wunsch oder Smith und Waterman besonders zuverlässige Ergebnisse. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit (Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 10 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm GAP über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Die falls nicht 15 anders angegeben als Standardeinstellungen immer für Sequenzvergleiche verwendet wurden.

Homologen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, 20 SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, 25 SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 bedeuten beispielsweise auch 30 bakterielle, Pilz- und Pflanzenhomologen, verkürzte Sequenzen, einzelsträngige DNA oder RNA der kodierenden und nicht-kodierenden DNA-Sequenz.

Homologen der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, 40
SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO:

35

40

113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 bedeutet auch Derivate, wie beispielsweise Promotorvarianten. Die Promotoren stromaufwärts der angegebenen Nukleotidsequenzen können durch einen oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) modifiziert werden, ohne dass jedoch die Funktionalität oder Aktivität der Promotoren gestört wird. Es ist weiterhin möglich, dass die Aktivität der Promotoren durch Modifikation ihrer Sequenz erhöht ist oder dass sie vollständig durch aktivere Promotoren, sogar aus heterologen Organismen, ersetzt werden.

Die vorgenannten Nukleinsäuren und Proteinmoleküle mit Δ-12-Desaturase-, ω-3-10 Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ -5-Elongase- und/oder Δ -4-Desaturase-Aktivität, die am Stoffwechsel von Lipiden und Fettsäuren, PUFA-Cofaktoren und Enzymen oder am Transport lipophiler Verbindungen über Membranen beteiligt sind, werden im erfindungsgemäßen Verfahren zur Modulation der Produktion von PUFAs in transgenen Organismen 15 vorteilhaft in Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Sojabohne, Erdnuss, Baumwolle, Linum Arten wie Öl- oder Faserlein, Brassica-Arten, wie Raps, Canola und Rübsen, Pfeffer, Sonnenblume, Borretsch, Nachtkerze und Tagetes, Solanacaen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Maniok, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume 20 (Ölpalme, Kokosnuss) und ausdauernden Gräsern und Futterfeldfrüchten, entweder direkt (z.B. wenn die Überexpression oder Optimierung eines Fettsäurebiosynthese-Proteins einen direkten Einfluss auf die Ausbeute, Produktion und/oder Effizienz der Produktion der Fettsäure aus modifizierten Organismen hat) verwendet und/oder können eine indirekt Auswirkung haben, die dennoch zu einer Steigerung der Ausbeu-25 te, Produktion und/oder Effizienz der Produktion der PUFAs oder einer Abnahme unerwünschter Verbindungen führt (z.B. wenn die Modulation des Stoffwechsels von Lipiden und Fettsäuren, Cofaktoren und Enzymen zu Veränderungen der Ausbeute, Produktion und/oder Effizienz der Produktion oder der Zusammensetzung der ge-30 wünschten Verbindungen innerhalb der Zellen führt, was wiederum die Produktion einer oder mehrerer Fettsäuren beeinflussen kann).

Die Kombination verschiedener Vorläufermoleküle und Biosyntheseenzyme führt zur Herstellung verschiedener Fettsäuremoleküle, was eine entscheidende Auswirkung auf die Zusammensetzung der Lipide hat. Da mehrfach ungesättigte Fettsäuren (= PUFAs) nicht nur einfach in Triacylglycerin sondern auch in Membranlipide eingebaut werden.

Besonders zur Herstellung von PUFAs, beispielsweise Stearidonsäure, Eicosapentaensäure und Docosahexaensäure eignen sich Brasicaceae, Boraginaceen, Primulaceen, oder Linaceen. Besonders vorteilhaft eignet sich Lein (Linum usitatissimum) zur Herstellung von PUFAS mit dem erfindungsgemäßen Nukleinsäuresequenzen vorteilhaft, wie beschrieben, in Kombination mit weiteren Desaturasen und Elongasen.

10

15

20

25

30

Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäuren und ihre Bindung an sn-Glycerin-3-Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Acetoacetyl-ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydratisierungsreaktionen umgewandelt wird, so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F.C. Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D.C., S. 612-636 und darin enthaltene Literaturstellen; Lengeler et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York, und die enthaltene Literaturstellen, sowie Magnuson, K., et al. (1993) Microbiological Reviews 57:522-542 und die enthaltenen Literaturstellen). Die so hergestellten an Phospholipide gebundenen Fettsäuren müssen anschließend wieder für die weitere Elongationen aus den Phospholipiden in den FettsäureCoA-Ester-Pool überführt werden. Dies ermöglichen Acyl-CoA:Lysophospholipid-Acyltransferasen. Weiterhin können diese Enzyme die elongierten Fettsäuren wieder von den CoA-Estern auf die Phospholipide übertragen. Diese Reaktionsabfolge kann gegebenenfalls mehrfach durchlaufen werden.

Vorläufer für die PUFA-Biosynthese sind beispielsweise Ölsäure, Linol- und Linolensäure. Diese C₁₈-Kohlenstoff-Fettsäuren müssen auf C₂₀ und C₂₂ verlängert werden, damit Fettsäuren vom Eicosa- und Docosa-Kettentyp erhalten werden. Mithilfe der im Verfahren verwendeten Desaturasen wie der Δ -12-, ω 3-, Δ -4-, Δ -5-, Δ -6- und Δ -8-Desaturasen und/oder der Δ -5-, Δ -6-, Δ -9-Elongasen können Arachidonsäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure vorteilhaft Eicosapentaensäure und/oder Docosahexaensäure hergestellt werden und anschließend für verschiedene Zwecke bei Nahrungsmittel-, Futter-, Kosmetik- oder pharmazeutischen Anwendungen verwendet werden. Mit den genannten Enzymen können C20- und/oder C22-Fettsäuren mit mindestens zwei vorteilhaft mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül, vorzugsweise C20- oder C22-Fettsäuren mit vorteilhaft vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül 35 hergestellt werden. Die Desaturierung kann vor oder nach Elongation der entsprechenden Fettsäure erfolgen. Daher führen die Produkte der Desaturaseaktivitäten und der möglichen weiteren Desaturierung und Elongation zu bevorzugten PUFAs mit höherem Desaturierungsgrad, einschließlich einer weiteren Elongation von C20 zu C22-Fettsäuren, zu Fettsäuren wie y-Linolensäure, Dihomo-y-linolensäure, Arachidonsäure, 40 Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Substrate der verwendeten Desaturasen und Elongasen im erfindungsgemäßen Verfahren sind C16-, C18oder C20-Fettsäuren wie zum Beispiel Linolsäure, γ-Linolensäure, α-Linolensäure, Dihomo-y-linolensäure, Eicosatetraensäure oder Stearidonsäure. Bevorzugte Sub-

10

15

20

25

30

strate sind Linolsäure, γ -Linolensäure und/oder α -Linolensäure, Dihomo- γ -linolensäure bzw. Arachidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Die synthetisierten C_{20} - oder C_{22} -Fettsäuren mit mindestens zwei, drei, vier, fünf oder sechs Doppelbindungen in der Fettsäure fallen im erfindungsgemäßen Verfahren in Form der freien Fettsäure oder in Form ihrer Ester beispielsweise in Form ihrer Glyceride an.

Unter dem Begriff "Glycerid" wird ein mit ein, zwei oder drei Carbonsäureresten verestertes Glycerin verstanden (Mono-, Di- oder Triglycerid). Unter "Glycerid" wird auch ein Gemisch an verschiedenen Glyceriden verstanden. Das Glycerid oder das Glyceridgemisch kann weitere Zusätze, z.B. freie Fettsäuren, Antioxidantien, Proteine, Kohlenhydrate, Vitamine und/oder andere Substanzen enthalten.

Unter einem "Glycerid" im Sinne des erfindungsgemäßen Verfahrens werden ferner vom Glycerin abgeleitete Derivate verstanden. Dazu zählen neben den oben beschriebenen Fettsäureglyceriden auch Glycerophospholipide und Glyceroglycolipide. Bevorzugt seien hier die Glycerophospholipide wie Lecithin (Phosphatidylcholin), Cardiolipin, Phosphatidylglycerin, Phosphatidylserin und Alkylacylglycerophospholipide beispielhaft genannt.

Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transportiert und in das Triacylglycerin-Speicherlipid eingebaut werden. Ein weiterer wichtiger Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyltransferase (siehe Frentzen, 1998, Lipid, 100(4-5):161-166).

Veröffentlichungen über die Pflanzen-Fettsäurebiosynthese, Desaturierung, den Lipidstoffwechsel und Membrantransport von fetthaltigen Verbindungen, die Betaoxidation, Fettsäuremodifikation und Cofaktoren, Triacylglycerin-Speicherung und -Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln: Kinney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19:149-166; Ohlrogge und Browse, 1995, Plant Cell 7:957-970; Shanklin und Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Voelker, 1996, Genetic Engeneering, Hrsgb.: JK Setlow, 18:111-13; Gerhardt, 1992, Prog. Lipid R. 31:397-417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res. 34:267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13(1):1-16.

Die im Verfahren hergestellten PUFAs, umfassen eine Gruppe von Molekülen, die höhere Tiere nicht mehr synthetisieren können und somit aufnehmen müssen oder die höhere Tiere nicht mehr ausreichend selbst herstellen können und somit zusätzlich aufnehmen müssen, obwohl sie leicht von anderen Organismen, wie Bakterien, synthetisiert werden, beispielsweise können Katzen Arachidonsäure nicht mehr synthetisieren.

40

Unter Phospholipiden im Sinne der Erfindung sind zu verstehen Phosphatidylcholin, Phosphatidylethanolamin, Phosphatidylserin, Phosphatidylglycerin und/oder Phosphatidylinositol vorteilhafterweise Phosphatidylcholin. Die Begriffe Produktion oder Produktivität sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (Verbindungen der Formel I), das in einer bestimmten 5 Zeitspanne und einem bestimmten Fermentationsvolumen gebildet wird (z.B. ka Produkt pro Stunde pro Liter). Es umfasst auch die Produktivität innerhalb einer Pflanzenzelle oder einer Pflanze, das heißt den Gehalt an den gewünschten im Verfahren hergestellten Fettsäuren bezogen auf den Gehalt an allen Fettsäuren in dieser Zelle oder Pflanze. Der Begriff Effizienz der Produktion umfasst die Zeit, die zur 10 Erzielung einer bestimmten Produktionsmenge nötig ist (z.B. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff Ausbeute oder Produkt/Kohlenstoff-Ausbeute ist im Fachgebiet bekannt und umfasst die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d.h. die Feinche-15 mikalie). Dies wird gewöhnlich beispielsweise ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Erhöhen der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe Biosynthese oder Biosyntheseweg sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Ver-20 bindung, durch eine Zelle aus Zwischenverbindungen, beispielsweise in einem Mehrschritt- und stark requlierten Prozess. Die Begriffe Abbau oder Abbauweg sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle) beispielsweise in einem Mehrschritt- und 25 stark regulierten Prozess. Der Begriff Stoffwechsel ist im Fachgebiet bekannt und umfasst die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden. Der Stoffwechsel einer bestimmten Verbindung (z.B. der Stoffwechsel einer Fettsäure) umfasst dann die Gesamtheit der Biosynthese-, Modifikations- und Abbau-30 wege dieser Verbindung in der Zelle, die diese Verbindung betreffen.

Bei einer weiteren Ausführungsform kodieren Derivate des erfindungsgemäßen Nukleinsäuremoleküls wieder gegeben in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 Proteine mit mindestens 40 %, vorteilhaft etwa 50 oder 60 %, vorzugsweise mindestens etwa 60 oder 70 % und stärker bevorzugt mindestens etwa 70 oder 80 %, 80 bis 90 %, 90 bis 95 % und am stärksten bevorzugt mindestens etwa 96 %, 97 %, 98 %, 99 % oder mehr Homologie (= Identität) zu einer vollständigen Aminosäuresequenz der SEQ ID NO: 44, SEQ ID NO: 64, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID

NO: 68, SEQ ID NO: 70, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 132, SEQ ID NO: 134 oder SEQ ID NO: ... 5 184. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im 10 GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm BestFit über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Die falls nicht anders 15 angegeben als Standardeinstellungen immer für Sequenzvergleiche verwendet wurden.

Die Erfindung umfasst zudem Nukleinsäuremoleküle, die sich von einer der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID 20 NO: 75, SEQ ID NO: 77; SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 gezeigten Nukleotidsequenzen 25 (und Teilen davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit die gleiche Δ -12-Desaturase, ω -3-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase, Δ -6-Elongase oder Δ -5-Elongase codieren wie diejenige, die von den in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, 30 SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO:85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 gezeigten Nukleotidsequenzen kodiert 35 wird.

Zusätzlich zu den in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81,
40 SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 gezeigten Δ-12-

Desaturasen, ω -3-Desaturasen, Δ -5-Elongasen, Δ -6-Desaturasen, Δ -5-Desaturasen, Δ -4-Desaturasen oder Δ -6-Elongasen erkennt der Fachmann, dass DNA-Sequenzpolymorphismen, die zu Änderungen in den Aminosäuresequenzen der Δ -12-Desaturase, ω -3-Desaturase, Δ -5-Elongase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase und/oder Δ -6-Elongase führen, innerhalb einer Population existieren 5 können. Diese genetischen Polymorphismen im Δ -12-Desaturase-, ω -3-Desaturase-, Δ -5-Elongase-, Δ -6-Desaturase-, Δ -5-Desaturase-, Δ -4-Desaturase- und/oder Δ -6-Elongase-Gen können zwischen Individuen innerhalb einer Population aufgrund von natürlicher Variation existieren. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz des Δ-12-Desaturase-, ω-3-10 Desaturase-, Δ-5-Elongase-, Δ-6-Desaturase-, Δ-5-Desaturase-, Δ-4-Desaturaseund/oder Δ-6-Elongase-Gens. Sämtliche und alle dieser Nukleotidvariationen und daraus resultierende Aminosäurepolymorphismen in der Δ-12-Desaturase, ω-3-Desaturase, Δ -5-Elongase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase und/oder Δ -6-Elongase, die das Ergebnis natürlicher Variation sind und die funktionelle Aktivität 15 von nicht verändern, sollen im Umfang der Erfindung enthalten sein.

Für das erfindungsgemäße Verfahren vorteilhafte Nukleinsäuremoleküle können auf der Grundlage ihrer Homologie zu den hier offenbarten Δ-12-Desaturase-, ω-3-Desaturase-, Δ-5-Elongase-, Δ-6-Desaturase-, Δ-5-Desaturase-, Δ-4-Desaturaseund/oder Δ -6-Elongase-Nukleinsäuren unter Verwendung der Sequenzen oder eines 20 Teils davon als Hybridisierungssonde gemäß Standard-Hybridisierungstechniken unter stringenten Hybridisierungsbedingungen isoliert werden. Dabei können beispielsweise isolierte Nukleinsäuremoleküle verwendet werden, die mindestens 15 Nukleotide lang sind und unter stringenten Bedingungen mit dem Nukleinsäuremolekülen, die eine Nukleotidsequenz der SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 25 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 30 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 umfassen, hybridisieren. Es können auch Nukleinsäuren mindestens 25, 50, 100, 250 oder mehr Nukleotide verwendet werden. Der Begriff "hybridisiert unter stringenten Bedingungen", wie hier verwendet, soll Hybridisierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60 % homolog zueinander sind, gewöhnlich 35. . aneinander hybridisiert bleiben. Die Bedingungen sind vorzugsweise derart, dass Sequenzen, die mindestens etwa 65 %, stärker bevorzugt mindestens etwa 70 % und noch stärker bevorzugt mindestens etwa 75 % oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und lassen sich in Current Protocols in Molecular Biology, John 40 Wiley & Sons, N. Y. (1989), 6.3.1-6.3.6., finden. Ein bevorzugtes, nicht einschränkendes Beispiel für stringente Hybridisierungsbedingungen sind Hybridisierungen in 6 x Natriumchlorid/Natriumcitrat (sodium chloride/sodiumcitrate = SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 x SSC, 0,1 % SDS bei 50 bis

65°C. Dem Fachmann ist bekannt, dass diese Hybridisierungsbedingungen sich ie nach dem Typ der Nukleinsäure und, wenn beispielsweise organische Lösungsmittel vorliegen, hinsichtlich der Temperatur und der Konzentration des Puffers unterscheiden. Die Temperatur unterscheidet sich beispielsweise unter "Standard-Hybridisierungsbedingungen" je nach dem Typ der Nukleinsäure zwischen 42°C und 5 58°C in wässrigem Puffer mit einer Konzentration von 0,1 bis 5 x SSC (pH 7,2). Falls organisches Lösungsmittel im obengenannten Puffer vorliegt, zum Beispiel 50 % Formamid, ist die Temperatur unter Standardbedingungen etwa 42°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:DNA-Hybride zum Beispiel 0,1 x SSC und 20°C bis 45°C, vorzugsweise zwischen 30°C und 45°C. Vorzugsweise sind die 10 Hybridisierungsbedingungen für DNA:RNA-Hybride zum Beispiel 0,1 x SSC und 30°C bis 55°C, vorzugsweise zwischen 45°C und 55°C. Die vorstehend genannten Hybridisierungstemperaturen sind beispielsweise für eine Nukleinsäure mit etwa 100 bp (= Basenpaare) Länge und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid bestimmt. Der Fachmann weiß, wie die erforderlichen Hybridisierungsbedingungen 15 anhand von Lehrbüchern, wie dem vorstehend erwähnten oder aus den folgenden Lehrbüchern Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989; Hames und Higgins (Hrsgb.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (Hrsgb.) 1991, "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University 20 Press, Oxford, bestimmt werden können.

Zur Bestimmung der prozentualen Homologie (= Identität) von zwei Aminosäuresequenzen (z.B. einer der Sequenzen der SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, 25 SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 114, SEQ ID NO: 132, SEQ ID NO: 134 oder SEQ ID NO: 184) oder von zwei Nukleinsäuren (z.B. SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, 30 SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99. SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 35 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183) werden die Sequenzen zum Zweck des optimalen Vergleichs untereinander geschrieben (z.B. können Lücken in die Sequenz eines Proteins oder einer Nukleinsäure eingefügt werden, um ein optimales Alignment mit dem anderen Protein oder der 40 anderen Nukleinsäure zu erzeugen). Die Aminosäurereste oder Nukleotide an den entsprechenden Aminosäurepositionen oder Nukleotidpositionen werden dann verglichen. Wenn eine Position in einer Sequenz durch den gleichen Aminosäurerest oder das gleiche Nukleotid wie die entsprechende Stelle in der anderen Sequenz belegt wird, dann sind die Moleküle an dieser Position homolog (d.h. Aminosäure- oder

Nukleinsäure-"Homologie", wie hier verwendet, entspricht Aminosäure- oder Nukleinsäure-"Identität"). Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl an identischen Positionen, die den Sequenzen gemeinsam sind (d.h. % Homologie = Anzahl der identischen Positionen/Gesamtanzahl der Positionen x 100). Die Begriffe Homologie und Identität sind damit als Synonym anzusehen. Die verwendeten Programme bzw. Algorithmen sind oben beschrieben.

Ein isoliertes Nukleinsäuremolekül, das für eine Δ -12-Desaturase, ω -3-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase, Δ -5-Elongase und/oder Δ -6-Elongase kodiert, die zu einer Proteinsequenz der SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66. 10 SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO: 110, SEQ ID NO: 114, SEQ ID NO: 132, SEQ ID NO: 134 oder SEQ ID NO: 184 15 homolog ist, kann durch Einbringen einer oder mehrerer Nukleotidsubstitutionen, additionen oder -deletionen in eine Nukleotidsequenz der SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ.ID NO: 87, 20 SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107. SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 erzeugt werden, so dass eine oder mehrere Aminosäuresubstitutionen, additionen oder -deletionen in das kodierte Protein eingebracht werden. Mutationen 25 können in eine der Sequenzen der SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, 30 SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 durch Standardtechniken, wie stellenspezifische Mutagenese und PCR-vermittelte Mutagenese, eingebracht werden. Vorzugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nicht-essentiellen Aminosäureresten 35 hergestellt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest gegen einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z.B. 40 Lysin, Arginin, Histidin), sauren Seitenketten (z.B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z.B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin, Cystein), unpolaren Seitenketten, (z.B. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryptophan), beta-verzweigten Seitenketten (z.B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z.B. Tyrosin, Phenylalanin, Tryp-

tophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einer Δ-12-Desaturase, ω-3-Desaturase, Δ-6-Desaturase, Δ-5-Desaturase, Δ-4-Desaturase, Δ-5-Elongase oder Δ-6-Elongase wird somit vorzugsweise durch einen anderen Aminosäurerest aus der gleichen Seitenkettenfamilie ausgetauscht. Alternativ können bei 5 einer anderen Ausführungsform die Mutationen zufallsgemäß über die gesamte oder einen Teil der Δ -12-Desaturase, ω -3-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -4-Desaturase, Δ-5-Elongase oder Δ-6-Elongase kodierenden Sequenz eingebracht werden, z.B. durch Sättigungsmutagenese, und die resultierenden Mutanten können nach der hier beschriebenen Δ-12-Desaturase-, ω-3-Desaturase-, Δ-6-Desaturase-, Δ-6-Desatu 10 5-Desaturase-, Δ-4-Desaturase-, Δ-5-Elongase- oder Δ-6-Elongase--Aktivität durchmustert werden, um Mutanten zu identifizieren, die die Δ -12-Desaturase-, ω -3-Desaturase-, Δ-6-Desaturase-, Δ-5-Desaturase-, Δ-4-Desaturase-, Δ-5-Elongase- oder Δ-6-Elongase-Aktivität beibehalten haben. Nach der Mutagenese einer der Sequenzen SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59. 15 SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 20 131, SEQ ID NO: 133 oder SEQ ID NO: 183 kann das kodierte Protein rekombinant exprimiert werden, und die Aktivität des Proteins kann z.B. unter Verwendung der hier beschriebenen Tests bestimmt werden.

Weitere Erfindungsgegenstände sind transgene nicht-humane Organismen, die die erfindungsgemäßen Nukleinsäuren SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 87, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO: 113, SEQ ID NO: 131, SEQ ID NO: 133 oder SEQ ID NO: 183 enthalten oder ein Genkonstrukt oder einen Vektor, die diese erfindungsgemäßen Nukleinsäuresequenzen enthalten. Vorteilhaft handelt es sich bei dem nicht-humanen Organismus um einen Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze, besonders bevorzugt um eine Pflanze.

Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als beschränkend aufgefasst werden sollten. Der Inhalt sämtlicher in dieser Patentanmeldung zitierten Literaturstellen, Patentanmeldungen, Patente und veröffentlichten Patentanmeldungen ist hier durch Bezugnahme aufgenommen.

Beispiele

Beispiel 1: Allgemeine Klonierungsverfahren:

Die Klonierungsverfahren wie z.B. Restriktionsspaltungen, Agarose-Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylon Membranen, Verknüpfen von DNA-Fragmenten, Transformation von Escherichia coli Zellen, Anzucht von Bakterien und die Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) beschrieben durchgeführt.

Beispiel 2: Sequenzanalyse rekombinanter DNA:

Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA74, 5463-5467). Fragmente resultierend aus einer Polymerase Kettenreaktion wurden zur Vermeidung von Polymerasefehlern in zu exprimierenden Konstrukten sequenziert und überprüft.

15 Beispiel 3: Klonierung von Genen aus Oncorhynchus mykiss

Durch Suche nach konservierten Bereichen in den Proteinsequenzen entsprechend der in der Anmeldung aufgeführten Elongase-Gene wurden zwei Sequenzen mit entsprechenden Motiven in der Sequenzdatenbank von Genbank identifiziert.

Gen-Name	Genbank No	Aminosäuren
OmELO2	CA385234, CA364848, CA366480	264
OmELO3	CA360014, CA350786	295

Gesamt-RNA von Oncoryhnchus mykiss wurde mit Hilfe des RNAeasy Kits der Firma
Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA wurde mit Hilfe von oligo-dTCellulose poly-A+ RNA (mRNA) isoliert (Sambrook et al., 1989). Die RNA wurde mit
dem Reverse Transcription System Kit von Promega revers transcribiert und die
synthetisierte cDNA in den lambda ZAP Vektor (lambda ZAP Gold, Stratagene)
kloniert. Entsprechend Herstellerangaben wurde die cDNA zur Plasmid-DNA entpackt.
Die cDNA-Plasmid-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden verwendet.

Beispiel 4: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen

Für die Klonierung der zwei Sequenzen zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Primer	Nukleotidsequenz		
5' f* OmELO2	5' aagcttacataatggcttcaacatggcaa (SEQ ID NO: 179)		
3' r* OmELO2	5' ggatccttatgtcttcttgctcttcctgtt (SEQ ID NO: 180)		
5' f OmELO3	5' aagcttacataatggagacttttaat (SEQ ID NO: 181)		
3' r OmELO3	5' ggatccttcagtccccctcactttcc (SEQ ID NO: 182)		
* f: forward, r: reverse	•		

5 Zusammensetzung des PCR-Ansatzes (50 μL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

10 0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C
Denaturierungstemperatur: 1 min 94°C
Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

15

20

25

30

Das PCR Produkt wurde für 2 h bei 37 °C mit den Restriktionsenzymen HindIII und BamHI inkubiert. Der Hefe-Expressionsvektor pYES3 (Invitrogen) wurde in gleicherweise inkubiert. Anschliessend wurde das 812 bp bzw. 905 bp große PCR Produkt sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und Elongase cDNA ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pYES3-OmELO2 und pYES3-OmELO3 wurden durch Sequenzierung verifiziert und in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde pYES3 parallel transformiert. Anschliessend wurden die Hefen auf Komplett-Minimalmedium ohne Tryptophan mit 2 % Glucose ausplattiert. Zellen, die auf ohne Tryptophan im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES3, pYES3-OmELO2 (SEQ ID NO: 51) und pYES3-OmELO3 (SEQ ID NO: 53). Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

Beispiel 5: Klonierung von Expressionsplasmiden zur Samen-spezifischen

Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnitt-

5 stellen am 5' und 3'-Ende des kodierenden Sequenz eingefügt:

PSUN-OmELO2

Forward: 5'-GCGGCCGCATAATGGCTTCAACATGGCAA (SEQ ID NO: 175)
Reverse: 3'-GCGGCCGCTTATGTCTTCTTGCTCTTCCTGTT (SEQ ID NO: 176)
PSUN-OMELO3

10 Forward: 5'-GCGGCCGCataatggagacttttaat (SEQ ID NO: 177)
Reverse: 3'-GCGGCCGCtcagtccccctcactttcc (SEQ ID NO: 178)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

15 5,00 μL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

20 Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-OmELO2 und pSUN-OmELO3 wurde durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and

40

transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3', SEQ ID NO: 174). Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Beispiel 6: Lipidextraktion aus Hefen und Samen:

Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen, Algen, Ciliaten oder 15 auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion des gewünschten Produktes (d.h. von Lipiden oder einer Fettsäure) untersucht wird. Diese 20 Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs-Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., 25 (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., und Cabral, J.M.S. (1992) Recovery processes for biological 30 Materials, John Wiley and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).

Neben den oben erwähnten Verfahren werden Pflanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22):12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141-145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) u.d.T.: Progress in the Chemistry of Fats and Other Lipids CODEN.

10

15

20

40

Zusätzlich zur Messung des Endproduktes der Fermentation ist es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte, um die Gesamteffizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z.B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums, Analyse der Produktion üblicher Metabolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P.M. Rhodes und P.F. Stanbury, Hrsgb., IRL Press, S. 103-129; 131-163 und 165-192 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.

Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethylester; GC-MS, Gas-Flüssigkeitschromatographie-Massenspektrometrie; TAG, Triacylglycerin; TLC, Dünnschichtchromatographie).

Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren, Lipide 33:343-353).

Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden.

- Das Sediment wird in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen
- Pflanzenmaterial wird zunächst mechanisch durch Mörsern homogenisiert, um es einer Extraktion zugänglicher zu machen.

erhältlich sind (d.h. Sigma), definiert werden.

Dann wird 10 min auf 100°C erhitzt und nach dem Abkühlen auf Eis erneut sedimentiert. Das Zellsediment wird mit 1 M methanolischer Schwefelsäure und 2 % Dimethoxypropan 1h bei 90°C hydrolysiert und die Lipide transmethyliert. Die resultierenden Fettsäuremethylester (FAME) werden in Petrolether extrahiert. Die extrahierten FAME werden durch Gasflüssigkeitschromatographie mit einer Kapillarsäule (Chrompack,

WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0,32 mm) und einem Temperaturgradienten von 170°C auf 240°C in 20 min und 5 min bei 240°C analysiert. Die Identität der Fettsäuremethylester wird durch Vergleich mit entsprechenden FAME-Standards (Sigma) bestätigt. Die Identität und die Position der Doppelbindung kann durch geeignete chemische Derivatisierung der FAME-Gemische z.B. zu 4,4-Dimethoxyoxazolin-Derivaten (Christie, 1998) mittels GC-MS weiter analysiert werden.

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES3, pYES3-OmELO2 und pYES3-OmELO3 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 10 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium 10 und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1N methonolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organi-. 15 schen Phasen je einmal mit 2 ml 100 mM NaHCO3, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für 20 die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma).

Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 7: Funktionelle Charakterisierung von OmELO2 und OmELO3:

Omelo2 zeigt keine Elongase-Aktivität, während für Omelo3 eine deutliche Aktivität mit verschiedenen Substraten nachgewiesen werden konnte. Die Substratspezifität der Omelo3 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 2). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Alle transgene Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der Omelo3-Reaktion. Dies bedeutet, dass das Gen Omelo3 funktional exprimiert werden konnte.

Figur 2 zeigt, dass die OmElo3 eine Substratspezifität aufweist, die mit hoher Spezifität zur Verlängerung von $\Delta 5$ - und $\Delta 6$ -Fettsäuren mit einer $\omega 3$ -Doppelbindung führt. Es konnte in geringerer Spezifität des weiteren auch $\omega 6$ -Fettsäuren (C18 und C20)

10

15

20

35

elongiert werden. Stearidonsäure (C18:4 ω 3) und Eicosapentaensäure (C20:5 ω 3) stellen die besten Substrate für die OmElo3 dar (bis zu 66 % Elongation).

Beispiel 8: Rekonstitution der Synthese von DHA in Hefe

Die Rekonstitution der Biosynthese von DHA (22:6 ω3) wurde ausgehend von EPA (20:5 ω3) bzw. Stearidonsäure (18:4 ω3) durch die Coexpression der OmElo3 mit der Δ-4-Desaturase aus *Euglena gracilis* bzw. der Δ-5-Desaturase aus *Phaeodactylum tricornutum* und der Δ-4-Desaturase aus *Euglena gracilis* durchgeführt. Dazu wurden weiterhin die Expressionsvektoren pYes2-EgD4 und pESCLeu-PtD5 konstruiert. Der o.g. Hefestamm, der bereits mit dem pYes3-OmElo3 (SEQ ID NO: 55) transformiert ist, wurde weiter mit dem pYes2-EgD4 bzw. gleichzeitig mit pYes2-EgD4 und pESCLeu-PtD5 transformiert. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium-Agarplatten mit 2% Glucose, aber ohne Tryptophan und Uracil im Falle des pYes3-OmELO/pYes2-EgD4-Stammes und ohne Tryptophan, Uracil und Leucin im Falle des pYes3-OmELO/pYes2-EgD4+pESCLeu-PtD5-Stammes. Die Expression wurde wie oben angegeben durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 120 h bei 15°C inkubiert.

Figur 3 zeigt die Fettsäureprofile von transgenen Hefen, die mit 20:5 ω 3 gefüttert wurden. In der Kontroll-Hefe (A), die mit dem pYes3-OmElo3-Vektor und dem leeren Vektor pYes2 transformiert wurden, wurde 20:5 ω 3 sehr effizient zu 22:5 ω 3 elongiert (65% Elongation). Die zusätzliche Einführung der Eg Δ -4-Desaturase führte zu der Umsetzung von 22:5 ω 3 zu 22:6 ω 3 (DHA). Die Fettsäure-Zusammensetzung der transgenen Hefen ist in Figure 5 wiedergegeben. Nach der Co-Expression von OmElo3 und EgD4 konnte bis zu 3% DHA in Hefen nachgewiesen werden.

In einem weiteren Co-Expressionsexperiment wurden OmElo3, EgD4 und eine Δ5Desaturase aus *P. tricornutum* (PtD5) zusammen exprimiert. Die transgenen Hefen wurden mit Stearidonsäure (18:4 ω3) gefüttert und analysiert (Figur 4). Die FettsäureZusammensetzung dieser Hefen ist in Figur 5 aufgeführt. Durch OmElo3 wurde die gefütterte Fettsäure 18:4 ω3 zu 20:4 ω3 elongiert (60% Elongation). Letztere wurde durch die PtD5 zu 20:5 ω3 desaturiert. Die Aktivität der PtD5 betrug 15%. 20:5 ω3
konnte weiterhin durch die OmElo3 zu 22:5 ω3 elongiert werden. Im Anschluß wurde die neu synthetisierte 22:5 ω3 zu 22:6 ω3 (DHA) desaturiert. In diesen Experimenten konnte bis zu 0,7% DHA erzielt werden.

Aus diesen Experimenten geht hervor, dass die in dieser Erfindung verwendeten Sequenzen OmElo3, EgD4 und PtD5 für die Produktion von DHA in eukaryotischen Zellen geeignet sind.

30

35

Beispiel 9: Erzeugung von transgenen Pflanzen

a) Erzeugung transgener Rapspflanzen (verändert nach Moloney et al., 1992, Plant Cell Reports, 8:238-242)

Zur Erzeugung transgener Rapspflanzen können binäre Vektoren in Agrobacterium tumefaciens C58C1:pGV2260 oder Escherichia coli genutzt (Deblaere et al, 1984, 5 Nucl. Acids. Res. 13, 4777-4788). Zur Transformation von Rapspflanzen (Var. Drakkar, NPZ Nordeutsche Pflanzenzucht, Hohenlieth, Deutschland), wird eine 1:50 Verdünnung einer Übernachtkultur einer positiv transformierten Agrobakterienkolonie in Murashige-Skoog Medium (Murashige und Skoog 1962 Physiol. Plant. 15, 473) mit 3 % Saccharose (3MS-Medium) benutzt. Petiolen oder Hypokotyledonen frisch 10 gekeimter steriler Rapspflanzen (zu je ca. 1 cm²) werden in einer Petrischale mit einer 1:50 Agrobakterienverdünnung für 5-10 Minuten inkubiert. Es folgt eine 3-tägige Colnkubation in Dunkelheit bei 25°C auf 3MS-Medium mit 0,8 % Bacto-Agar. Die Kultivierung wird nach 3 Tagen mit 16 Stunden Licht / 8 Stunden Dunkelheit weitergeführt und in wöchentlichem Rhythmus auf MS-Medium mit 500 mg/l Claforan (Cefota-15 xime-Natrium), 50 mg/l Kanamycin, 20 mikroM Benzylaminopurin (BAP) und 1,6 g/l Glukose weitergeführt. Wachsende Sprosse werden auf MS-Medium mit 2 % Saccharose, 250 mg/l Claforan und 0,8 % Bacto-Agar überführt. Bilden sich nach drei Wochen keine Wurzeln, so wurde als Wachstumshormon 2-Indolbuttersäure zum 20 Bewurzeln zum Medium gegeben.

Regenerierte Sprosse werden auf 2MS-Medium mit Kanamycin und Claforan erhalten, nach Bewurzelung in Erde überführt und nach Kultivierung für zwei Wochen in einer Klimakammer oder im Gewächshaus angezogen, zur Blüte gebracht, reife Samen geerntet und auf Elongase-Expression wie Δ -5-Elongase- oder Δ -6-Elongaseaktivität oder ω -3-Desaturaseaktivität mittels Lipidanalysen untersucht. Linien mit erhöhten Gehalten an C20- und C22 mehrfachungesättigten Fettsäuren können so identifiziert werden.

b) Herstellung von transgenen Leinpflanzen

Die Herstellung von transgenen Leinpflanzen können zum Beispiel nach der Methode von Bell et al., 1999, In Vitro Cell. Dev. Biol.-Plant. 35(6):456-465 mittels particle bombartment erzeugt werden. In der Regel wurde eine Agrobakterien-vermittelte Transformation zum Beispiel nach Mlynarova et al. (1994), Plant Cell Report 13: 282-285 zur Leintransformation verwendet.

Beispiel 10: Klonierung von Δ5-Elongase-Genen aus Thraustochytrium aureum ATCC34304 und Thraustochytrium ssp.

Durch Vergleiche der verschiedenen in dieser Anmeldung gefundenen Elongase-Proteinsequenzen konnten konservierte Nukleinsäurebereiche definiert werden (Histidin-Box: His-Val-X-His-His, Tyrosin-Box: Met-Tyr-X-Tyr-Tyr). Mit Hilfe dieser Sequenzen wurde eine EST-Datenbank von T. aureum ATCC34304 und Thraustochytrium ssp. nach weiteren Δ -5-Elongasen durchsucht. Folgende neue Sequenzen konnten gefunden werden:

Gen-Name	Nukleotide	Aminosäuren
BioTaurELO1	. 828 bp	275
TL16y2	831	276

Gesamt-RNA von T. aureum ATCC34304 und Thraustochytrium ssp. wurde mit Hilfe des RNAeasy Kits der Firma Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA wurde mit Hilfe des PolyATract Isolierungssystems (Promega) mRNA isoliert. Die mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse transkribiert und entsprechend der Herstellerangaben Adaptoren ligiert. Die cDNA-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden mittels 5'- und 3'-RACE (rapid amplification of cDNA ends) verwendet.

10 Beispiel 11: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Primer	Nukleotidsequenz
5' f* BioTaurELO1	5' gacataatgacgagcaacatgag (SEQ ID NO: 170)
3' r* BioTaurELO1	5' cggcttaggccgacttggccttggg (SEQ ID NO: 171)
5'f*TL16y2	5' agacataatggacgtcgtcgagcagcaatg (SEQ ID NO: 172)
3'r*TL16y2	5' ttagatggtcttctgcttcttgggcgcc (SEQ ID NO: 173)
3'r*TL16y2 * f: forward, r: reverse	5' ttagatggtettetgettettgggegee (SEQ ID NO: 173)

15

25

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

20 1,25 μL je Primer (10 pmol/μL)

0,50 µL pfu-Polymerase

Die Advantage-Polymerase von Clontech wurde eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

15

Die PCR Produkte BioTaurELO1 (siehe SEQ ID NO: 65) und TL16y2 (siehe SEQ ID NO: 83) wurde für 30 min bei 21 °C mit dem Hefe-Expressionsvektor pYES2.1-TOPO (Invitrogen) inkubiert gemäss Herstellerangaben. Das PCR-Produkt wird dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) in den Vektor ligiert.

- Nach der Inkubation erfolgte dann die Transformation von E. coli DH5α Zellen. Entsprechende Klone wurden durch PCR identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert.
- Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1, pYES2.1-BioTaurELO1 und pYES2.1-TL16y2. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

Beispiel 12: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende des kodierenden Sequenz eingefügt:

PSUN-BioTaurELO1

Forward: 5'-GCGGCCGCATAATGACGAGCAACATGAGC (SEQ ID NO: 166)

25 Reverse: 3'-GCGGCCGCTTAGGCCGACTTGGCCTTGGG (SEQ ID NO: 167)

PSUN-TL16y2

Forward: 5'-GCGGCCGCACCATGGACGTCGTCGAGCAGCAATG (SEQ ID NO: 168)

Reverse: 5'-GCGGCCGCTTAGATGGTCTTCTGCTTCTTGGGCGCCC

30 (SEQ ID NO: 169)

Zusammensetzung des PCR-Ansatzes (50 μL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

35 1,25 μL je Primer (10 pmol/μL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

10

15

20

25

30

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C
Denaturierungstemperatur: 1 min 94°C
Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschließend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-BioTaurELO1 und pSUN-TL16y2 wurden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz, P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRl- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3', SEQ ID NO: 165). Das PCR-Fragment wurde mit EcoRI/SalI nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP. Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

35

40

Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 13: Funktionelle Charakterisierung von BioTaurELO1 und TL16y2:

Die Substratspezifität der BioTaurELO1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 6). Figur 6 zeigt die Fütterungsexperimente zur Bestimmung der Funktionalität und Substratspezifität mit Hefe-

10

15

20

stämmen, die entweder den Vektor pYes2.1 (Kontrolle = Control) oder den Vektor pYes2.1-BioTaurELO1 (= BioTaur) mit der Δ -5-Elongase enthalten. In beiden Ansätzen wurde 200 uM γ -Linolensäure und Eicosapentaensäure dem Hefeinkubationsmedium zugesetzt und 24 h inkubiert. Nach Extraktion der Fettsäuren aus den Hefen wurden diese transmethyliert und gaschromatographisch aufgetrennt. Die aus den beiden gefütterten Fettsäuren entstandenen Elongationsprodukte sind durch Pfeile markiert.

Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Alle transgene Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der BioTaurELO1-Reaktion. Dies bedeutet, dass das Gen BioTaurELO1 funktional exprimiert-werden konnte.

Figur 6 zeigt, dass die BioTaurELO1 eine Substratspezifität aufweist, die mit hoher Spezifität zur Verlängerung von $\Delta5$ - und $\Delta6$ -Fettsäuren mit einer $\omega3$ -Doppelbindung führt. Des weiteren konnten auch $\omega6$ -Fettsäuren (C18 und C20) elongiert werden. Es werden γ -Linolensäure (C18:3 $\omega6$) mit 65,28 %, Stearidonsäure (C18:4 $\omega3$) mit 65.66 % und Eicosapentaensäure (C20:5 $\omega3$) mit 22,01 % Konversion umgesetzt. Die Substratspezifitäten der verschiedenen Fütterungsexperimente sind in Tabelle 3 dargestellt (siehe am Ende der Beschreibung).

Die Konversionsrate von GLA bei Fütterung von GLA und EPA betrug 65,28 %. Die Konversionsrate von EPA bei gleicher Fütterung von GLA und EPA betrug 9,99 %. Wurde nur EPA gefüttert, so betrug die Konversionsrate von EPA 22,01 %. Auch Arachidonsäure (= ARA) wurde bei Fütterung umgesetzt. Die Konversionsrate betrug 14,47 %. Auch Stearidonsäure (= SDA) wurde umgesetzt. In diesem Fall betrug die Konversionsrate 65,66 %.

Die Funktionalität und Substratspezifität von TL16y2 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden. Tabelle 4 zeigt die Fütterungsexperimente. Die Fütterungsversuche wurden in gleicherweise durchgeführt wie für BioTaurELO1 beschrieben. Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TL16y2-Reaktion (Fig. 11). Dies bedeutet, dass das Gen TL16y2 funktional exprimiert werden konnte.

. 5

10

15

Tabelle 4: Expression von TL16y2 in Hefe.

Flächen	der gaschroma	tograph	ischen A	Analyse	in %				
Plasmid	Fettsäure	C18:3 (n-6)	C18:4 (n-3)	C20:3 (n-6)	C20:4 (n-6)	C20:4 (n-3)	C20:5 (n-3)	C22:4 (n-6)	C22:5 (n-3)
pYES	250 uM EPA						13,79		
TL16y2	250 uM EPA						25,81		2,25
pYES	50 uM EPA						5,07		
TL16y2	50 uM EPA						2,48		1,73
pYES	250 uMGLA	8,31							
TL16y2	250 uM GLA	3,59		10,71					
pYES	250 uM ARA				16,03				
TL16y2	250 uM ARA				15,2		3,87		
pYES	250 uM SDA		26,79			0,35			
TL16y2	250 uM SDA		7,74			29,17			

Die in Tabelle 4 wiedergegebenen Ergebnisse zeigen mit TL16y2 gegenüber der Kontrolle folgende prozentuale Umsätze: a) % Umsatz EPA (250 uM): 8 %, b) % Umsatz EPA (50 uM): 41 %, c) % Umsatz ARA: 20,3 %, d) % Umsatz SDA: 79, 4% und e) % Umsatz GLA: 74,9 %.

TL16y2 zeigt damit Δ 5-, Δ 6- und Δ 8-Elongaseaktivität. Dabei ist die Aktivität für C18-Fettsäuren mit Δ 6-Doppelbindung am höchsten. Abhängig von der Konzentration an gefütterten Fettsäuren werden dann C20-Fettsäuren mit einer Δ 5- bzw. Δ 8-Doppelbindung verlängert.

Beispiel 14: Klonierung von Genen aus Ostreococcus tauri

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ -5-Elongaseaktivität oder Δ -6-Elongaseaktivität konnten zwei Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden.

Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren
OtELO1, (Δ-5-Elongase)	SEQ ID NO: 67	300
OtELO2, (Δ-6-Elongase)	SEQ ID NO: 69	292

OtElo1 weist die höchste Ähnlichkeit zu einer Elongase aus Danio rerio auf (GenBank AAN77156; ca. 26 % Identität), während OtElo2 die größte Ähnlichkeit zur Physcomitrella Elo (PSE) [ca. 36 % Identität] aufweist (Alignments wurden mit dem tBLASTn-Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 – 410) durchgeführt.

Die Klonierung wurde wie folgt durchgeführt:

40 ml einer Ostreococcus tauri Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei ~20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtElo-DNAs wurde jeweils mit 1 μl aufgetauten Zellen, 200 μM dNTPs, 2,5 U Taq-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt:
15 Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Beispiel 15: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Elongasen aus Ostreococcus tauri wurden die offenen Leserahmen der jeweiligen DNAs stromabwärts des Galactose-induzierbaren
 GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei pOTE1 und pOTE2 erhalten wurden.

Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pOTE1 bzw. pOTE2 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der Ot-Elongasen wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert.

5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft.

Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.

Beispiel 16: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurden mittels PCR Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen wurden von den 5'- und 3-Bereich von OtElo1 und OtElo2 abgeleitet.

Zusammensetzung des PCR-Ansatzes (50 µL):

10 5.00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

15 Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR: Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

20 Anzahl der Zyklen: 35

25

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-OtELO1 und pSUN-OtELO2 wurde durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P.,
(1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadeny-lierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J.,
Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfrag-

15

20

25

30

ment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz:

5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCCGGATCTGCTGGCTATGAA-3', SEQ ID NO: 164).

Das PCR-Fragment wurde mit EcoRl/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

10 Beispiel 17: Expression von OtELO1 und OtELO2 in Hefen

Hefen, die wie unter Beispiel 15 mit den Plasmiden pYES3, pYES3-OtELO1 und pYES3-OtELO2 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 18: Funktionelle Charakterisierung von OtELO1 und OtELO2:

Die Substratspezifität der OtElo1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab.5). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo1-Reaktion. Dies bedeutet, dass das Gen OtElo1 funktional exprimiert werden konnte.

Tabelle 4 zeigt, dass die OtElo1 eine enge Substratspezifität aufweist. Die OtElo1 konnte nur die C20-Fettsäuren Eicosapentaensäure (Figur 7) und Arachidonsäure (Figur 8) elongieren, bevorzugte aber die ω -3-desaturierte Eicosapentaensäure.

Tabelle 5:

Fettsäuresubstrat	Umsatz (in %)
16:0	-
16:1 ^{Δ9}	-
18:0	-
18:1 ^{∆9}	-
18:1 ^{Δ11}	-
18:2 ^{∆9,12}	-
18:3 ^{∆6,9,12}	-
18:3 ^{∆5,9,12}	-
20:3 ^{Δ8,11,14}	-
20:4 ^{Δ5,8,11,14}	10,8 ± 0,6
20:5 45,8,11,14,17	46,8 ± 3,6
22:4 ^{Δ7,10,13,16}	-
22:6 ^{Δ4,7,10,13,16,19}	

5

Tabelle 5 zeigt die Substratspezifität der Elongase OtElo1 für C20 polyungesättigte Fettsäuren mit einer Doppelbindung in $\Delta 5$ Position gegenüber verschiedenen Fettsäuren.

Die Hefen, die mit dem Vektor pOTE1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3)

± Standardabweichung wieder.

Die Substratspezifität der OtElo2 (SEQ ID NO: 81) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 6). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo2-Reaktion. Dies bedeutet, dass das Gen OtElo2 funktional exprimiert werden konnte.

Tabelle 6:

5

Fettsäuresubstrat	Umsatz (in %)
16:0	<u> </u>
16:1 ^{∆9}	_
16:3 ^{△7,10,13}	-
18:0	. •
. 18:1 ^{∆6}	-
18:1 ^{△9}	-
18:1 ^{∆11}	-
18:2 ^{A9,12}	•
18:3 ^{∆6,9,12}	15,3±
18:3 ^{Δ5,9,12}	-
18:4 ^{△6,9,12,15}	21,1±
20:2 ^{Δ11,14}	· •
20:3 ^{A8,11,14}	•
20:4 ^{Δ5,8,11,14}	-
. 20:5 ^{\(\Delta 5,8,11,14,17\)}	=
22:4 ^{Δ7,10,13,16}	•
22:5 ^{Δ7,10,13,16,19}	-
22:6 ^{Δ4,7,10,13,16,19}	-

Tabelle 6 zeigt die Substratspezifität der Elongase OtElo2 gegenüber verschiedenen Fettsäuren.

Die Hefen, die mit dem Vektor pOTE2 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ± Standardabweichung wieder.

20

25

Die enzymatische Aktivität, die in Tabelle 6 wiedergegeben wird, zeigt klar, dass OTELO2 eine Δ -6-Elongase ist.

Beispiel 19: Klonierung von Genen aus Thalassiosira pseudonana

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ-5-Elongaseaktivität oder Δ-6-Elongaseaktivität konnten zwei Sequenzen mit entsprechenden Motiven in einer Thalassiosira pseudonana Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren
TpELO1 (Δ5-Elongase)	43	358
TpELO2 (Δ5-Elongase)	59	358
TpELO3 (Δ6-Elongase)	45	272

Eine 2 L Kultur von T. pseudonana wurde in f/2 Medium (Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In *Culture of Marine Invertebrate Animals* (Eds. Smith, W.L. and Chanley, M.H.), Plenum Press, New York, pp 29–60.) für 14 d (= Tage) bei einer Lichtstärke von 80 E/cm² angezogen. Nach Zentrifugation der Zellen wurde RNA mit Hilfe des RNAeasy Kits der Firma Quiagen (Valencia, CA, US) nach Herstellerangaben isoliert. Die mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse transkribiert und entsprechend den Herstellerangaben Adaptoren ligiert. Die cDNA-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden mittels 5'- und 3'-RACE (rapid amplification of cDNA ends) verwendet.

Beispiel 20: Klonierung von Expressionsplasmiden zur heterologen Expression in -Hefen

Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der TpElo-DNAs wurde jeweils mit 1 µL cDNA, 200 µM dNTPs, 2,5 U *Advantage*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 µl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Gen-Name und SEQ ID NO:	Primersequenz
TpELO1 (Δ5-Elongase), SEQ ID NO: 59	F:5'-accatgtgctcaccaccgccgtc (SEQ ID NO: 158)
	R:5'- ctacatggcaccagtaac (SEQ ID NO: 159)
TpELO2 (Δ5-Elongase), SEQ ID NO: 85	F:5'-accatgtgctcatcaccgccgtc (SEQ ID NO: 160)
	R:5'-ctacatggcaccagtaac (SEQ ID NO: 161)
TpELO3 (Δ6-Elongase), SEQ ID NO:45	F:5'-accatggacgcctacaacgctgc (SEQ ID NO: 162)
	R:5'- ctaagcactcttcttcttt (SEQ ID NO: 163)

^{*}F=forward primer, R=reverse primer

Die PCR Produkte wurde für 30 min bei 21 °C mit dem Hefe-Expressionsvektor pYES2.1-TOPO (Invitrogen) gemäß Herstellerangaben inkubiert. Das PCR-Produkt 5 wird dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) in den Vektor ligiert. Nach der Inkubation erfolgte dann die Transformation von E. coli DH5α Zellen. Entsprechende Klone wurden durch PCR identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch 10 Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert. Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1, pYES2.1-TpELO1, pYES2.1-TpELO2 und pYES2.1-TpELO3. Nach der Selektion wurden je zwei 15 Transformaten zur weiteren funktionellen Expression ausgewählt.

Beispiel 21: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wird mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:.

PSUN-TPELO1

Forward: 5'-GCGGCCGCACCATGTGCTCACCACCGCCGTC (SEQ ID NO: 152)

Reverse: 3'-GCGGCCGCCTACATGGCACCAGTAAC (SEQ ID NO: 153)

PSUN-TPELO2 ·

Forward: 5'-GCGGCCGCACCATGTGCTCATCACCGCCGTC (SEQ ID NO: 154)

Reverse: 3'-GCGGCCGCCTACATGGCACCAGTAAC (SEQ ID NO: 155)

PSUN-TPELO3

5 Forward: 5'-GCGGCCGCaccatggacgcctacaacgctgc (SEQ ID NO: 156)
Reverse: 3'-GCGGCCGCCTAAGCACTCTTCTTT (SEQ ID NO: 157)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

10 5,00 μL 2mM dNTP.

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

15 Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

30

35

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert.
 Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert.
 Anschliessend werden die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschließend werden Vektor und PCR-Produkte ligiert.
 Dazu wird das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-TPELO1, pSUN-TPELO2 und pSUN-TPELO3 werden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRl- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment

wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert.

(Primersequenz: 5'—
GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC
5 GGATCTGCTGGCTATGAA-3'; SEQ ID NO: 151).

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

10 Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 22: Expression von TpELO1, TpELO2 und TpELO3 in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2, pYES2-TpELO1, pYES2-TpELO2 und pYES2-TpELO3 transformiert wurden, wurden folgendermaßen analysiert:

- Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 15 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit 20 Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-25 Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.
- Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.
- 35 Beispiel 23: Funktionelle Charakterisierung von TpELO1 und TpELO3:

Die Substratspezifität der TpElo1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 9). Die gefütterten Substrate sind in großen Mengen

in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TpElo1-Reaktion. Dies bedeutet, dass das Gen TpElo1 funktional exprimiert werden konnte.

Tabelle 7 zeigt, dass die TpElo1 eine enge Substratspezifität aufweist. Die TpElo1 konnte nur die C20-Fettsäuren Eicosapentaensäure und Arachidonsäure elongieren, bevorzugte aber die ω-3-desaturierte Eicosapentaensäure.

Die Hefen, die mit dem Vektor pYES2-TpELO1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Tabelle 7: Expression von TpELO1 in Hefe. In den Spalten 1 und 3 sind die Kontrolreaktionen für die Spalten 2 (gefüttert 250 μ M 20:4 Δ 5,8,11,14) und 4 (gefüttert 250 μ M 20:5 Δ 5,8,11,14,17) wiedergegeben.

	Expression	Expression	Expression	Expression
Fettsäuren	1	2	3	4 .
16:0	18.8	17.8	25.4	25.2
16:1 ^{∆9}	28.0	29.8	36.6	36.6
18:0	5.2	5.0	6.8	6.9
18:1 ^{∆9}	25.5	23.6	24.6	23.9
20:4 ^{\(\Delta 5,8,11,14\)}	22.5	23.4	-	-
22:4 \$\Delta 7,10,13,16	-	0.4	-	-
20:5 ^{\Delta 5,8,11,14,17}	-	-	6.6	6.5
22:5 ^{Δ7,10,13,16,19}		us.	-	0.9
% Umsatz	0	1.7	0	12.2

- Die Substratspezifität der TpElo3 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 10). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TpElo3-Reaktion. Dies bedeutet, dass das Gen TpElo3 funktional exprimiert werden konnte.
- Tabelle 8 zeigt, dass die TpElo3 eine enge Substratspezifität aufweist. Die TpElo3 konnte nur die C18-Fettsäuren γ -Linolensäure und Stearidonsäure elongieren, bevorzugte aber die ω -3-desaturierte Stearidonsäure.

Die Hefen, die mit dem Vektor pYES2-TpELO3 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Tabelle 8: Expression von TpELO3 in Hefe. Spalte 1 zeigt das Fettsäureprofil von Hefe ohne Fütterung. Spalte 2 zeigt die Kontrollreaktion. In den Spalten 3 bis 6 wurden γ-Linolensäure, Stearidonsäure, Arachidonsäure und Eicosapentaensäure gefüttert (250 μM jeder Fettsäure).

Fettsäuren	1	2	3	4	5	6
16:0	17.9	20.6	17.8	16.7	18.8	18.8
16:1 ^{∆9}	41.7	18.7	27.0	33.2	24.0	31.3
18:0	7.0	7.7	6.4	6.6	5.2	6,0
18:1 ^{∆9}	33.3	16.8	24.2	31.8	25.5	26.4
18:2 ^{△9,12}	-	36.1	-	-	-	_
18:3 ^{∆6,9,12}	-	-	6.1	-	-	
18:4 ^{Δ6,9,12,15}	-	-	-	1.7	-	
20:2 ^{∆11,14}	-	0	-	-	-	
20:3 ^{Δ8,11,14}	-	-	18.5	-	-	
20:4 ^{Δ8,11,14,17}	-	-	-	10.0	-	
20:4 ^{\Delta 5,8,11,14}	-	-	-	-	22.5	
22:4 ^{Δ7,10,13,16}	-	-	-	-	0	
20:5 ^{\Delta 5,8,11,14,17}	-	-	-	-	-	17.4
22:5 ^{Δ7,10,13,16,19}	-	-	-	-	-	0
% Umsatz	0	0	75	85	0	0

10 Beispiel 24: Klonierung eines Expressionsplasmides zur heterologen Expression der Pi-omega3Des in Hefen

Der Pi-omega3Des Klon wurde für die heterologe Expression in Hefen über PCR mit entsprechenden Pi-omega3Des spezifischen Primern in den Hefe-Expressionsvektor pYES3 kloniert. Dabei wurde ausschließlich der für das Pi-omega3Des Protein kodierende offene Leseraster des Gens amplifiziert und mit zwei Schnittstellen für die Klonierung in den pYES3 Expressionsvektor versehen:

Forward Primer: 5'-TAAGCTTACATGGCGACGAAGGAGG (SEQ ID NO: 149)
Reverse Primer: 5'-TGGATCCACTTACGTGGACTTGGT (SEQ ID NO: 150)

Zusammensetzung des PCR-Ansatzes (50 µL):

5 5,00 μL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL des 5'-ATG sowie des 3'-Stopp Primers)

0,50 µL Advantage-Polymerase

10 Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C
Denaturierungstemperatur: 1 min 94°C
Elongationstemperatur: 2 min 72°C

15 Anzahl der Zyklen: 35

Das PCR Produkt wurde für 2 h bei 37 °C mit den Restriktionsenzymen HindIII und BamHI inkubiert. Der Hefe-Expressionsvektor pYES3 (Invitrogen) wurde in gleicherweise inkubiert. Anschließend wurde das 1104 bp große PCR Produkt sowie der Vektor durch Agarose-Geleiektrophorese aufgetrennt und die entsprechenden DNA-

- 20 Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschließend wurden Vektor und Desaturase-cDNA ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pYES3-Pi-omega3Des wurde durch Sequenzierung überprüftt und in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde pYES3 parallel transformiert. Anschliessend wurden die Hefen auf Komplett-Minimalmedium ohne Tryptophan mit 2 % Glucose ausplattiert. Zellen, die auf ohne Tryptophan im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES3, pYES3-Pi-omega3Des. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.
- 30 Beispiel 25: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:.

35 PSUN-Pi-omega3Des

Reverse: 3'-GCGGCCGCTTACGTGGACTTGGTC (SEQ ID NO: 147)

Forward: 5'-GCGGCCGCatGGCGACGAAGGAGG (SEQ ID NO: 148)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5 5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

10 Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte wurden für 4 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert.

- Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschließend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert.
- 20 Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pSUN-Piomega3Des wurde durch Sequenzierung verifiziert.

Beispiel 26: Expression von Pi-omega3Des in Hefen

Hefen, die wie unter Beispiel 24 mit dem Plasmid pYES3 oder pYES3- Pi-omega3Des transformiert wurden, wurden folgendermaßen analysiert:

- Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei
- 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-
- 35 Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-

15

20

Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert. Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

10 Beispiel 27: Funktionelle Charakterisierung von Pi-omega3Des:

Die Substratspezifität der Pi-omega3Des konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 12 bis 18). Die gefütterten Substrate liegen in großen Mengen in allen transgenen Hefen vor, wodurch die Aufnahme dieser Fettsäuren in die Hefen bewiesen ist. Die transgenen Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der Pi-omega3Des-Reaktion. Dies bedeutet, dass das Gen Pi-omega3Des funktional exprimiert werden konnte.

Figur 12 gibt die Desaturierung von Linolsäure (18:2 ω -6-Fettsäure) zu α -Linolensäure (18:3 ω -3-Fettsäure) durch die Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 12 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 12 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C18:2 $^{\Delta 9,12}$ -Fettsäure (300 μ M) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

In Figur 13 ist die Desaturierung von γ -Linolensäure (18:3 ω -6-Fettsäure) zu Stearidonsäure (18:4 ω -3-Fettsäure) durch Pi-omega3Des wiedergegeben.

- Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 13 A) oder dem Vektor pYes3-Piomega3Des (Figur 13 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von γ-C18:3^{Δ6,9,12}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.
- Figur 14 gibt die Desaturierung von C20:2-ω-6-Fettsäure zu C20:3-ω-3-Fettsäure durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 14 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 14 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:2^{Δ11,14}-Fettsäure (300 μM) kultiviert.
 Anschließend wurden die FAMEs über GLC analysiert.

Figur 15 gibt die Desaturierung von C20:3-ω-6-Fettsäure zu C20:4-ω-3-Fettsäure durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch

15

35

saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 15 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 15 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:3^{Δ8,11,14}-Fettsäure (300 µM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

5 In Figur 16 wird die Desaturierung von Arachidonsäure (C20:4-ω-6-Fettsäure) zu Eicosapentaensäure (C20:5-ω-3-Fettsäure) durch die Pi-omega3Des gezeigt.

Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 16 A) oder dem Vektor pYes3-Piomega3Des (Figur 16 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:4^{Δ5,8,11,14}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

Figur 17 gibt die Desaturierung von Docosatetraensäure (C22:4-ω-6-Fettsäure) zu Docosapentaensäure (C22:5-ω-3-Fettsäure) durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 17 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 17 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C22:4^{Δ7,10,13,16}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

Die Substratspezifität der Pi-omega3Des gegenüber verschiedenen Fettsäuren ist
20 Figur 18 zu entnehmen. Die Hefen, die mit dem Vektor pYes3-Pi-omega3Des transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt einen Mittelwert aus drei Messungen wieder. Die Umsetzungsraten (%
25 Desaturation) wurden mit der Formel:
[Produkt]/[Produkt]+[Substrat]*100 errechnet.

Wie unter Beispiel 9 beschrieben kann auch die Pi-omega3Des zur Erzeugung transgener Pflanzen verwendet werden. Aus den Samen dieser Pflanzen kann dann die Lipidextraktion wie unter Beispiel 6 beschrieben erfolgen.

30 Beispiel 28: Klonierung von Desaturasegenen aus Ostreococcus tauri

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe von konservierten Motiven (His-Boxen, Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113) konnten fünf Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

15

25

Gen-Name	SEQ ID	Aminosäuren	Homologie
OtD4	SEQ ID NO: 95	536	∆-4-Desaturase
OtD5.1	SEQ ID NO: 91	201	Δ-5-Desaturase
OtD5.2	SEQ ID NO: 93	237	Δ-5-Desaturase
OtD6.1	SEQ ID NO: 89	456	Δ-6-Desaturase
OtFad2	SEQ ID NO: 107	361	Δ-12-Desaturase

Die Alignments zur Auffindung von Homologien der einzelnen Gene wurden mit dem tBLASTn-Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 – 410) durchgeführt.

5 Die Klonierung erfolgte wie folgt:

40 ml einer *Ostreococcus tauri* Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtDes-DNAs wurde jeweils mit 1 μl aufgetauten Zellen, 200 μM dNTPs, 2,5 U *Taq*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Folgende Primer wurden für die PCR eingesetzt:

OtDes6.1 Forward: 5'ggtaccacataatgtgcgtggagacggaaaataacg3' (SEQ ID NO: 145)

OtDes6.1 Reverse: 5'ctcgagttacgccgtctttccggagtgttggcc3' (SEQ ID NO: 146)

20 Beispiel: 29 Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Desaturase OtDes6.1 (= Δ -6-Desaturase) aus Ostreococcus tauri wurde der offenen Leserahmen der DNA stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei der entsprechenden pYES2.1-OtDes6.1 Klon erhalten wurde. In entsprechender Art und Weise können weitere Desaturase-Gene aus Ostreococcus kloniert werden.

10

15

25

30

Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pYES2.1-OtDes6.1 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der OtDes6.1 Desaturase wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft. Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.

Beispiel: 30 Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu werden mittels PCR NotI-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen werden von den 5'- und 3-Bereich der Desaturasen abgeleitet.

20 Zusammensetzung des PCR-Ansatzes (50 μL):

5,00 µL Template cDNA
5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂
5,00 µL 2mM dNTP
1,25 µL je Primer (10 pmol/µL)
0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert. Anschliessend werden die PCR Produkte sowie der Vektor durch Agarose-

30

35

Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend werden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide werden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz, P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid 10 (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region 15 des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-

GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC
 GGATCTGCTGGCTATGAA—3', SEQ ID NO: 144).
 Das PCR—Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor
 pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana,
 Raps, Tabak und Leinsamen verwendet.

Beispiel: 31 Expression von OtDes6.1 in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2 und pYES2-OtDes6.2 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-

Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters.
 439(3):215-218.

Beispiel: 32 Funktionelle Charakterisierung von Desaturasen aus Ostreococcus:

Die Substratspezifität von Desaturasen kann nach Expression in Hefe (siehe Beispiele Klonierung von Desaturase-Genen, Hefeexpression) durch die Fütterung mittels verschiedener Hefen ermittelt werden. Beschreibungen für die Bestimmung der einzelnen Aktivitäten finden sich in WO 93/11245 für Δ15–Desaturasen, WO 94/11516 für Δ12–Desaturasen, WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO0021557 und WO 99/27111 für Δ6-Desaturasen, Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566 für Δ4-Desaturasen, Hong et al. 2002, Lipids 37,863-868 für Δ5-Desaturasen.

Tabelle 9 gibt die Substratspezifität der Desaturase OtDes6.1 gegenüber verschiedenen Fettsäuren wieder. Die Substratspezifität der OtDes6.1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden. Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtDes6.2-Reaktion (Fig. 20). Dies bedeutet, dass das Gen OtDes6.1 funktional exprimiert werden konnte.

Die Hefen, die mit dem Vektor pYES2-OtDes6.1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ±

30 Standardabweichung wieder. Die Aktivität entspricht der Konversionsrate errechnet nach [Substrat/(Substrat+Produkt)*100].

Tabelle 9 zeigt, dass die OtDes6.1 eine Substratspezifität für Linol- und Linolensäure (18:2 und 18:3) aufweist, da mit diesen Fettsäuren die höchsten Aktivitäten erreicht werden. Die Aktivität für Ölsäure (18:1) und Palmitoleinsäure (16:1) ist dagegen deutlich geringer. Die bevorzugte Umsetzung von Linol- und Linolensäure zeigt die Eignung dieser Desaturase für die Herstellung von polyungesättigten Fettsäuren.

Substrate	Aktivität in %
16:1 ^{∆9}	5,6
18:1 ^{Δ9}	13,1
18:2 ^{Δ9,12}	68,7
18:3 ^{Δ9,12,15}	64,6

Figur 20 zeigt die Umsetzung von Linolsäure durch OtDes6.1. Die Analyse der FAMEs erfolgte über Gaschrommatographie. Das gefütterte Substrat (C18:2) wird zu γ-C18:3 umgesetzt. Sowohl Edukt als auch das entstandene Produkt sind durch Pfeile markiert.

In Figur 21 wird die Umsetzung von Linolsäure (= LA) und α-Linolensäure (= ALA) in 10 Gegenwart von OtDes6.1 zu y-Linolensäure (= GLA) bzw. Stearidonsäure (= STA) wiedergegeben (Figur 21 A und C). Weiterhin zeigt Figur 21 die Umsetzung von Linolsäure (= LA) und α -Linolensäure (= ALA) in Gegenwart der Δ -6-Desaturase OtDes6.1 zusammen mit der Δ-6-Elongase PSE1 aus Physcomitrella patens (Zank et al. 2002, Plant J. 31:255-268) und der Δ-5-Desaturase PtD5 aus Phaeodactylum 15 tricornutum (Domerque et al. 2002, Eur. J. Biochem. 269, 4105-4113) zu Dihomo-ylinolensäure (= DHGLA) und Arachidonsäure (= ARA, Figur 21 B) bzw. zu Dihomostearidonsäure (= DHSTA) bzw. Eicosapentaensäure (= EPA, Figur 21 D). Figur 21 zeigt deutlich, dass die Reaktionsprodukte GLA und STA der Δ-6-Desaturase OtDes6.1 in Gegenwart der Δ-6-Eiongase PSE1 fast quantitativ zu DHGLA bzw. DHSTA elongiert 20 wird. Die nachfolgende Desaturierung durch die Δ -5-Desaturase PtD5 erfolgt ebenfalls reibungslos zu ARA bzw. EPA. Es werden ca. 25 – 30% des Elongaseprodukts desaturiert (Figur 21 B und D).

115

Die folgenden Tabelle 10 gibt eine Übersiche über die klonierten Ostreococcus Desaturasen wieder:

	Ostreococcus tauri Desaturasen						
Name	bp	aa	Homologie	Cyt. B5	His-Box1	His-Box2	His-Box3
			Δ-4- Desatu-	Linco	LICANUL		0)/51111150
OtD4	1611	536	rase	HPGG	HCANH	WRYHHQVSHH	QVEHHLFP
			∆-5-				
OtD5.1	606	201	Desaturase	-	-	-	QVVHHLFP
			Δ-5-				
OtD5.2	714	237	Desaturase	-	-	WRYHHMVSHH	QIEHHLPF
			Δ-6-				
OtD6.1	1443	480	Desaturase	HPGG	HEGGH	WNSMHNKHH	QVIHHLFP
			Δ-12-				
OtFAD2	1086	361	Desaturase	-	HECGH	WQRSHAVHH	HVAHH

Beispiel: 33 Klonierung von Desaturasegenen aus Thalassiosira pseudonana

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe von konservierten Motiven (His-Boxen, siehe Motive) konnten sechs Sequenzen mit entsprechenden Motiven in einer Thalassiosira pseudonana Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren	Homologie
TpD4	SEQ ID NO: 103	503	Δ-4-Desaturase
TpD5-1	SEQ ID NO: 99	476	Δ-5-Desaturase
TpD5-2	SEQ ID NO: 101	482	Δ-5-Desaturase
TpD6	SEQ ID NO: 97	484	Δ-6-Desaturase
TpFAD2	SEQ ID NO: 109	434	Δ-12-Desaturase
TpO3	SEQ ID NO: 105	418	ω-3-Desaturase

10

Die Klonierung erfolgte wie folgt:

40 ml einer *Thalassiosira pseudonana* Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die

10

25

entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der TpDes-DNAs wurde jeweils mit 1 µl aufgetauten Zellen, 200 µM dNTPs, 2,5 U *Taq*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 µl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Beispiel: 34 Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Desaturasen aus *Thalassiosira pseudonana* wird der offenen Leserahmen der jeweiligen DNA stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei der entsprechenden pYES2.1-Klone erhalten werden.

Der Saccharomyces cerevisiae-Stamm 334 wird durch Elektroporation (1500 V) mit den Vektoren pYES2.1-TpDesaturasen transformiert. Als Kontrolle wird eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wird. Die Selektion der transformierten Hefen erfolgt auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion werden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der Tp-Desaturasen werden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren werden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft. Die Expression wird durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen werden für weitere 96 h bei 20°C inkubiert.

Beispiel: 35 Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

30 Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu werden mittels PCR Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen werden von den 5'- und 3-Bereich der Desaturasen abgeleitet.

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5,00 µL 2mM dNTP

5 1,25 μL je Primer (10 pmol/μL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

10

25

30

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert.

Anschliessend werden die PCR Produkte sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend werden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide

20 werden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des OCS-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-

35 GTCGACCGGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA—3'; SEQ ID NO: 143)

15

20

25

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

5 Beispiel: 36 Expression von Tp-Desaturasen in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2 und pYES2-TpDesaturasen transformiert werden, werden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen werden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten werden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu werden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren werden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend werden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben werden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse sind wie folgt: Die Ofentemperatur wird von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgt durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel: 37 Funktionelle Charakterisierung von Desaturasen aus Thalassiosira pseudonana:

Die Substratspezifität von Desaturasen kann nach Expression in Hefe (siehe Beispiele Klonierung von Desaturase-Genen, Hefeexpression) durch die Fütterung mittels verschiedener Hefen ermittelt werden. Beschreibungen für die Bestimmung der einzelnen Aktivitäten finden sich in WO 93/11245 für Δ15–Desaturasen, WO 94/11516 für Δ12–Desaturasen, WO 93/06712, US 5,614,393, US5614393, WO 96/21022,
WO0021557 und WO 99/27111 für Δ6-Desaturasen, Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566 für Δ4-Desaturasen, Hong et al. 2002, Lipids 37,863-868 für Δ5-Desaturasen.

Die Aktivität der einzelnen Desaturasen wird aus der Konversionsrate errechnet nach der Formel [Substrat/(Substrat+Produkt)*100].

Die folgenden Tabellen 11 und 12 geben eine Übersicht über die clonierten Thalassiosira pseudonana Desaturasen wieder.

5 Tabelle 11: Länge und charakteristische Merkmale der clonierten Thalassiosira Desaturasen.

Desaturase	cDNA (bp)	Protein (aa)	Cyt. B5	His-Box1	His-Box2	His-Box3
TpD4	1512	503	HPGG	HDGNH	WELQHMLGHH	QIEHHLFP
TpD5-1	1431	476	HPGG	HDANH	WMAQHWTHH	QVEHHLFP
TpD5-2	1443	482	HPGG	HDANH	WLAQHWTHH	QVEHHLFP
TpD6	1449	484	HPGG	HDFLH	WKNKHNGHḤ	QVDHHLFP
TpFAD2	1305	434	-	HECGH	HAKHH	HVAHHLFH
(d12)						
TpO3	1257	419	-	HDAGH	WLFMVTYLQH H	HVVHHLF

Tabelle 12: Länge, Exons, Homolgie und Identitäten der clonierten Desaturasen.

	GDN				
Des.	A (bp)	Exon 1	Exon 2	First Blast Hit	Hom./Iden.
TpD4	2633	496-1314	1571-2260	Thrautochitrium D4-	56% / 43%
				des	
TpD5-1	2630	490-800	900-2019	Phaeodactylum D5-	74% / 62%
				des	
TpD5-2	2643	532-765	854-2068	Phaeodactylum D5-	72% / 61%
				des	
TpD6	2371	379-480	630-1982	Phaeodactylum D6-	83% / 69%
ł				des	
TpFAD2	2667	728-2032	-	Phaeodactylum FAD2	76% / 61%
TpO3	2402	403-988	1073-1743	Chaenorhabdidis	49% / 28%
				Fad2	

10 Analog zu den vorgenannten Beispielen lassen sich auch die Δ -12-Desaturasegene aus Ostreococcus und Thalassiosira clonieren.

Beispiel 38 Klonierung von Elongase Genen aus Xenopus laevis und Ciona intestinalis

Durch Suche nach konservierten Bereichen (siehe Konsensus-Sequenzen, SEQ ID NO: 115 und SEQ ID NO: 116) in den Proteinsequenzen in Gendatenbanken (Genbank) mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ-5-Elongaseaktivität oder Δ-6-Elongaseaktivität konnten weitere Elongasesequenzen aus anderen Organismen identifiziert und isoliert werden. Aus X. laevis bzw. aus C. intestinalis konnten mit entsprechenden Motiven jeweils weitere Sequenzen identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	Organismus	Genbank-Nr.	SEQ ID NO:	Aminosäuren
ELO(XI)	Xenopus laevis	BC044967	117	303
ELO(Ci)	Ciona intestinalis	AK112719	119	290

10

20

25

Der cDNA Klon von X. laevis wurde vom NIH (National Institut of Health) bezogen [Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative, Dev. Dyn. 225 (4), 384-391 (2002)].

Der cDNA Klon von C. inetstinalis wurde von der Universität von Kyto bezogen [Satou,Y., Yamada,L., Mochizuki,Y., Takatori,N., Kawashima,T., Sasaki,A., Hamaguchi,M., Awazu,S., Yagi,K., Sasakura,Y., Nakayama,A., Ishikawa,H., Inaba,K. and Satoh,N. "A cDNA resource from the basal chordate Ciona intestinalis" JOURNAL Genesis 33 (4), 153-154 (2002)].

Beispiel 39: Klonierung von Expressionsplasmiden zur heterologen Expression in -Hefen

Die Amplifizierung der Elongase-DNAs wurde jeweils mit 1 μL cDNA, 200 μM dNTPs, 2,5 U Advantage-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Gen-Name und SEQ ID NO:	Primersequenz
ELO(XI) SEQ ID NO: 121	F:5'- AGGATCC <u>ATG</u> GCCTTCAAGGAGCTCACATC
SEQ ID NO: 122	R:5'- CCTCGAG <u>TCA</u> ATGGTTTTTGCTTTTCAATG- CACCG
ELO(Ci), SEQ ID NO: 123	F:5'- TAAGCTT <u>ATG</u> GACGTACTTCATCGT
SEQ ID NO: 124	R:5'- TCAGATCT <u>TTA</u> ATCGGTTTTACCATT

^{*}F=forward primer, R=reverse primer

Die PCR Produkte wurde für 30 min bei 21 °C mit dem Hefe-Expressionsvektor - pYES2.1-TOPO (Invitrogen) gemäß Herstellerangaben inkubiert. Das PCR-Produkt wird dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen)

5 nach Herstellerangaben in den Vektor ligiert. Nach der Inkubation erfolgte dann die Transformation von E. coli DH5α Zellen. Entsprechende Klone wurden durch PCR - identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert. Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1, pYES2.1-ELO(XI) und pYES2.1-ELO(Ci). Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

15 Beispiel 40: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu werden mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:.

20 pSUN-ELO(XI)

Forward: 5'-GCGGCCGCACCATGGCCTTCAAGGAGCTCACATC

(SEQ ID NO: 125)

Reverse: 3'-GCGGCCGCCTTCAATGGTTTTTGCTTTTCAATGCACCG

(SEQ ID NO: 126)

25 pSUN-ELO(Ci)

Forward: 5'-GCGGCCGCACCATGGACGTACTTCATCGT

(SEQ ID NO: 127)

Reverse: 3'-GCGGCCGCTTTAATCGGTTTTACCATT

(SEQ ID NO: 128)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5 5,00 μL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

10 Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

25

30

35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurden die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-ELO(XI) und pSUN-ELO(Ci) wurden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP [Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994]. pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRl- Fragment inseriert wurde. Das Polyadeny-lierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert.

Primersequenz: 5'-

GTCGACCCGCGACTAGTGGGCCCTCTAGACCCGGGGGATCC

GGATCTGCTGGCTATGAA-3' (SEQ ID NO: 129).

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP. Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

5 Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 41: Expression von ELO(XI) und ELO(Ci) in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2, pYES2-ELO(XI) und pYES2-ELO(Ci) transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 10 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organi-15 schen Phasen je einmal mit 2 ml 100 mM NaHCO3, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für 20 die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit

einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8): 761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 42: Funktionelle Charakterisierung von ELO(XI) und ELO(Ci):

- Die Substratspezifität der ELO(XI) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 22). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der ELO(XI)-Reaktion. Dies bedeutet, dass das Gen ELO(XI) funktional exprimiert werden konnte.
- Tabelle 13 zeigt, dass die ELO(XI) eine breite Substratspezifität aufweist. Es werden sowohl C18 als auch C20 Fettsäuren verlängert, wobei ein Bevorzugung von $\Delta 5$ und $\Delta 6$ -desaturierten Fettsäuren zu beobachten ist.

Die Hefen, die mit dem Vektor pYES2-ELO(XI) transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

5 Tabelle 13: Expression von ELO(XI) in Hefe. Beschrieben ist die Umsetzungsrate (Konversionsrate) verschiedener Edukte (gefüttert jeweils 250 μM).

Edukte	Konversion der Edukte durch ELO(XI) in %
16:0	3
16:1 ^{△9}	0
18:0	2
18:1 ^{△9}	0
18:2 ^{Δ9,12}	3
18:3 ^{Δ6,9,12}	12
18:3 ^{Δ5,9,12}	13
18:3 ^{Δ9,12,15}	3
18:4 ^{Δ6,9,12,15}	20
20:3 ^{Δ8,11,14}	5
20:3 ^{Δ11,14,17}	13
20:4 ^{Δ5,8,11,14}	15
20:5 ^{\(\Delta 5, 8, 11, 14, 17\)}	10 ·
22:4 ^{△7,10,13,16}	0
22:6 ^{Δ4,7,10,13,16,19}	0

Die Substratspezifität der ELO(Ci) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 23). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der ELO(Ci)-Reaktion. Dies bedeutet, dass das Gen ELO(Ci) funktional exprimiert werden konnte.

Tabelle 14: Expression von ELO(Ci) in Hefe. Beschrieben ist die Umsetzungsrate (Konversionsrate) verschiedener Edukte (gefüttert jeweils 250 µM).

Edukte	Konversion der Edukte durch ELO(Ci) in %
16:0	0
16:1 ^{Δ9}	0
18:0	0
18:1 ^{Δ9}	0
18: ^{2Δ9,12}	23
18:3 ^{Δ6,9,12}	10
18:3 ^{Δ5,9,12}	38
18:3 ^{Δ9,12,15}	25
18:4 ^{Δ6,9,12,15}	3
20:3 ^{Δ8,11,14}	10
20:3 ^{Δ11,14,17}	. 8
20:4∆5,8,11,14	10
20:5∆5,8,11,14,17	15
22:4∆7,10,13,16	0
22:644,7,10,13,16,19	0

Tabelle 14 zeigt, dass die ELO(Ci) eine breite Substratspezifität aufweist. Es werden sowohl C18 als auch C20 Fettsäuren verlängert, wobei ein Bevorzugung von $\Delta 5$ - und $\Delta 6$ -desaturierten Fettsäuren zu beobachten ist.

Die Hefen, die mit dem Vektor pYES2-ELO(Ci) transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Beispiel 43: Klonierung von Genen aus Ostreococcus tauri

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der hierin beschriebenen Elongase-Gene mit Δ-5-Elongaseaktivität oder Δ-6-Elongaseaktivität konnten je zwei Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren	
OtELO1, (Δ-5-Elongase)	SEQ ID NO: 67	300	
OtELO1.2, (Δ-5-Elongase)	SEQ ID NO: 113	300	
OtELO2, (Δ-6-Elongase)	SEQ ID NO: 69	292	
OtELO2.1, (Δ-6-Elongase)	SEQ ID NO: 111	292	

OtElo1 und OtElo1.2 weisen die höchste Ähnlichkeit zu einer Elongase aus Danio rerio auf (GenBank AAN77156; ca. 26 % Identität), während OtElo2 und OtElo2.1 die größte Ähnlichkeit zur Physcomitrella Elo (PSE) [ca. 36 % Identität] aufweisen (Alignments wurden mit dem tBLASTn-Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 – 410) durchgeführt.

Die Klonierung der Elongasen wurde wie folgt durchgeführt:

40 ml einer Ostreococcus tauri Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtElo-DNAs wurde jeweils mit 1 μl aufgetauten Zellen, 200 μM dNTPs, 2,5 U Taq-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

10

25

Beispiel 44: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Elongasen aus *Ostreococcus tauri* wurden die offenen Leserahmen der jeweiligen DNAs stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei pOTE1, pOTE1.2, pOTE2 und pOTE2.1 erhalten wurden.

Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pOTE1, pOTE1.2, pOTE2 bzw. pOTE2.1 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der Ot-Elongasen wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 µM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD600 von 0,05 angeimpft. Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.

20 Beispiel 45: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurden mittels PCR Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen wurden von den 5'- und 3-Bereich von OtElo1, OtElo1.2, OtElo2 und OtElo2.1 abgeleitet.

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

30 5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

35 Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert. Anschließend wurden die PCR Produkte sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-OtELO1, pSUN-OtELO1.2, pSUN-OtELO2 und pSUN-OtELO2.2 wurden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP [Hajdukiewicz,P, Svab, Z, Maliga, P., 10 (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994]. pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid 15 (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfrag-20 ment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert.

Primersequenz:

25

5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCCGGATCTGCTGGCTATGAA-3'). (SEQ ID NO: 130)

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP. Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

30 Beispiel 46: Expression von OtElo1, OtElo1.2, OtElo2 und OtELO2.2 in Hefen

Hefen, die wie unter Beispiel 15 mit den Plasmiden pYES3, pYES3-OtELO1, pYES3-OtELO1.2, pYES3-OtELO2 und pYES3-OtELO2.2 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit

25

30

35

Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C (halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

15 Beispiel 47: Funktionelle Charakterisierung von OtElo1, OtElo1.2, OtElo2 und OtElo2.1:

Die Substratspezifität der OtElo1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 15). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo1-Reaktion. Dies bedeutet, dass das Gen OtElo1 funktional exprimiert werden konnte.

Tabelle 15 zeigt, dass OtElo1 bzw. OtElo1.2 eine enge Substratspezifität aufweist. OtElo1 bzw. OtElo1.2 konnte nur die C20-Fettsäuren Eicosapentaensäure (Figur 24A, 24B) und Arachidonsäure (Figur 25A, 25B) elongieren, bevorzugte aber die ω-3-desaturierte Eicosapentaensäure.

Tabelle 15 zeigt die Substratspezifität der Elongase OtElo1 und OtElo1.2 für C20 polyungesättigte Fettsäuren mit einer Doppelbindung in $\Delta 5$ Position gegenüber verschiedenen Fettsäuren.

Die Hefen, die mit dem Vektor pOTE1 bzw. pOTE1.2 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Die Substratspezifität der OtElo2 (SEQ ID NO: 81) OtElo2.1 (SEQ ID NO: 111) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 16). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo2-Reaktion. Dies bedeutet, dass die Gene OtElo2 und OtElo2.1 funktional exprimiert werden konnte..

Tabelle 15:

Fettsäuresubstrat	Umsatz (in %) OtElo1	Umsatz (in %) OtElo1.2
16:0	-	-
16:1 ^{△9}	•	-
18:0	-	-
18:1 ^{△9}		
18:1 ^{∆11}		-
18:2 ^{Δ9,12}	-	-
18:3 ^{△6,9,12}	-	
18:3 ^{∆5,9,12}	-	_
20:3 ^{Δ8,11,14}	-	-
20:4 ^{Δ5,8,11,14}	10,8 ± 0,6	38,0
20:5 ^{\(\Delta 5,8,11,14,17\)}	46,8 ± 3,6	68,6
22:4 ^{Δ7,10,13,16}	•	-
22:6 ^{Δ4,7,10,13,16,19}	-	-

Tabelle 16 zeigt die Substratspezifität der Elongase OtElo2 und OtElo2.1 gegenüber verschiedenen Fettsäuren. OtElo2.1 zeigt eine deutlich höhere Aktivität.

- Die Hefen, die mit dem Vektor pOTE2 bzw. pOTE2.1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.
- Die enzymatische Aktivität, die in Tabelle 16 wiedergegeben wird, zeigt klar, dass 10 OtElo2 bzw. OtElo2.1 eine Δ-6-Elongase ist.

Tabelle 16:

Fettsäuresubstrat	Umsatz (in %) OtElo2	Umsatz (in %)OtELO2.2
16:0	•	-
16:1 ^{∆9}	•	-
16:3 ^{Δ7,10,13}	-	-
18:0	-	-
18:1 ^{∆6}	-	-
18:1 ^{Δ9}	-	-
18:1 ^{∆11}	-	-
18:2 ^{∆9,12}	-	a
18:3 ^{△6,9,12}	15,3	55,7
18:3 ^{Δ5,9,12}	-	•
18:4 ^{Δ6,9,12,15}	21,1	70,4
20:2 ^{Δ11,14}	-	-
20:3 ^{Δ8,11,14}	•	=
20:4 ^{Δ5,8,11,14}	-	•
20:5 ^{Δ5,8,11,14,17}	-	••••••••••••••••••••••••••••••••••••••
22:4 ^{Δ7,10,13,16}	-	-
22:5 ^{Δ7,10,13,16,19}	-	• .
22:6 ^{Δ4,7,10,13,16,19}	-	-

Figur 24 A – D zeigt die Elongation von Eicosapentaensäure durch OtEio1 (B) bzw. OtEio1.2 (D). Die Kontrollen (A, C) zeigen nicht das Produkt der Elongation (22:5ω3).

5

Figur 25 A – D zeigt die Elongation von Arachidonsäure durch OtElo1 (B) bzw. OtElo1.2 (D). Die Kontrollen (A, C) zeigen nicht das Produkt der Elongation (22:4ω6).

Beispiel 48: Klonierung von Elongase-Genen aus Euglena gracilis und Arabidopsis thaliana

10 Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ -5-Elongaseaktivität oder Δ -6-Elongaseaktivität konnten Sequenzen aus Arabidopsis thaliana bzw. Euglena gracilis

10

15

25 ·

30

mit entsprechenden Motiven in Sequenzdatenbanken (Genbank, Euglena EST Bank) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren	
EGY1019 (E. gracilis)	SEQ ID NO: 131	262	
EGY2019 (E. gracilis)	SEQ ID NO: 133	262	
At3g06460 (A. thaliana)	SEQ ID NO: 135	298	
At3g06470 (A. thaliana)	SEQ ID NO: 137	278	

Die Klonierung der Elongasen aus Euglena gracilis wurden wie folgt durchgeführt:

Der Euglena gracilis Stamm 1224-5/25 wurde erhalten von der Sammlung für Algenkulturen Göttingen (SAG). Zur Isolierung wurde der Stamm in Medium II (Calvayrac R and Douce R, FEBS Letters 7:259-262, 1970) für 4 Tage bei 23 °C unter einem Licht-/ Dunkelintervall von 8 h / 16 h (35 mol s-1 m-2 Lichtstärke) angezogen.

Gesamt-RNA von einer viertägigen Euglena Kultur wurde mit Hilfe des RNAeasy Kits der Firma Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA wurde mit Hilfe von oligo-dT-Cellulose poly-A+ RNA (mRNA) isoliert (Sambrook et al., 1989). Die RNA wurde mit dem Reverse Transcription System Kit von Promega revers transcribiert und die synthetisierte cDNA in den lambda ZAP Vektor (lambda ZAP Gold, Stratagene) kloniert. Entsprechend der Herstellerangaben wurde die cDNA zur Plasmid-DNA entpackt und Klone wurden zur Zufallssequenzierung ansequenziert. Aus der Gesamt-RNA wurde mit Hilfe des PolyATract Isolierungssystems (Promega) mRNA isoliert. Die mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse transkribiert und entsprechend der Herstellerangaben wurden die Adaptoren ligiert. Die cDNA-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden mittels 5'- und 3'-RACE (rapid amplification of cDNA ends) verwendet.

20 Die Klonierung der Elongasen aus Arabidopsis thaliana wurde wie folgt durchgeführt:

Ausgehend von der genomischen DNA wurden für die beiden Gene Primer entsprechend am 5'- und 3'-Ende des offenen Leserahmens abgeleitet.

Zur Isolierung von Gesamt-RNA aus *A. thaliana* wurde nach Chrigwin *et al.*, (1979) verfahren. Blätter von 21 Tage alten Pflanzen wurden in flüssigem Stickstoff zermörsert, mit Aufschlusspuffer versetzt und für 15 min bei 37 °C inkubiert. Nach Zentrifugation (10 min, 4 °C, 12000xg) wurde die RNA im Überstand mit 0,02 Volumen 3 M Natriumacetat pH 5,0 und 0,75 Volumen Ethanol bei –20 °C für 5 h präzipitiert. Die RNA wurde dann nach einem weiteren Zentrifugationsschritt in 1 mL TES pro g Ausgangsmaterial aufgenommen, einmal mit einem Volumen Phenol-Chloroform und einmal mit einem Volumen Chloroform extrahiert und die RNA mit 2,5 M LiCl gefällt. Nach anschliessendem Zentrifugieren und Waschen mit 80 %igem Ethanol wurde die RNA in Wasser resuspendiert. Entsprechend Sambrook et al. 1989 wurde die cDNA

synthetisiert und RT-PCR mit den abgeleiteten Primer durchgeführt. Die PCR-Produkte wurden nach Herstellerangaben in den Vektor pYES2.1-TOPO (Invitrogen) kloniert.

- Beispiel 49: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:
- Zur Charakterisierung der Funktion der Elongasen aus A. thalina wurden die offenen Leserahmen der jeweiligen DNAs stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei pAt60 und pAt70 erhalten wurden.
- Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pAt60 bzw. pAt70 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2.1 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.
- Für die Expresssion der At-Elongasen wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert.
 - 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft. Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die
- Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.
 - Beispiel 50: Expression von pAt60 und pAt70 in Hefen
 - Hefen, die wie unter Beispiel 5 mit den Plasmiden pYES2.1, pAt60 bzw. pAt70 transformiert wurden, wurden folgendermaßen analysiert:
- Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 mi 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organi-
 - Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-
- Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 51: Funktionelle Charakterisierung von pAt60 und pAt70

Die Substratspezifität der Elongasen At3g06460 bzw. At3g06470 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 17, Fig. 26). Die gefütterten Substrate sind in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der Gene At3g06460 bzw. At3g06470. Dies bedeutet, dass diese Gene funktional exprimiert werden konnte.

Tabelle 17: Elongation von EPA durch die Elongasen At3g06460 bzw. At3g06470. Messung der Hefeextrakte nach Fütterung mit 250 uM EPA.

Gen	Gefütterte	Fettsäure	Gehalt anC20:	5n-3 Gehalt an C22:5n-3
At3g06460	EPA (C20:	5n-3)	20.8	0,6
At3g06460	EPA (C20:	5n-3)	25,4	1,1
Konversionsra	te von EPA	At3g0	6460: 3,0 %	At3g06470: 4,1 %

15

20

5

10

Figur 26 gibt die Elongation von 20:5n-3 durch die Elongasen At3g06470 wieder.

Beispiel 52: Klonierung einer Elongase aus Phaeodactylum tricornutum

Ausgehend von konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ -6-Elongaseaktivität wurden degenerierte Primer hergestellt und mit diesen eine *Phaeodactylum* cDNA Bank mittels PCR durchsucht. Folgende Primer-Sequenzen wurden eingesetzt:

Primer-Name	Sequenz 5'-3' Orientierung	Korrespondierende Aminosäuren
Phaelo forward1	AA(C/T)CTUCTUTGGCTUTT(C/T)TA (SEQ ID NO. 185)	NLLWLFY
Phaelo reverse1	GA(C/T)TGUAC(A/G)AA(A/G)AA(C/T)TGUG C(A/G)AA (SEQ ID NO. 186)	FAQFFVQS

35

Nukleotidbasen in Klammern bedeuten, dass eine Mischung von Oligonukleotiden mit jeweils der einen oder anderen Nukleotidbase vorliegen.

Herstellung der Phaeodactylum cDNA Bank:

Eine 2 L Kultur von P. tricornutum UTEX 646 wurde in f/2 Medium (Guillard, R.R.L. 5 1975. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals (Eds. Smith, W.L. and Chanley, M.H.), Plenum Press, New York, pp 29-60.) für 14 d (= Tage) bei einer Lichtstärke von 35 E/cm² angezogen. Gefrorene Zellen wurden nach Zentrifugation in der Gegenwart von flüssigem Stickstoff zu einem feinen Pulver gemahlen und mit 2 mL Homogenisierungspuffer (0,33 M Sorbitol, 0,3 M 10 NaCl, 10 mM EDTA, 10 mM EGTA, 2% SDS, 2% Mercaptoethanol in 0,2 M Tris-Cl ph 8,5) resuspendiert. Nach Zugabe von 4 mL Phenol und 2 mL Chloroform wurde 15 min kräftig bei 40-50 °C geschüttelt. Anschliessend wurde zentrifugiert (10 min x 10000g) und die wässerige Phase schrittweise mit Chloroform extrahiert. Nukleinsäuren wurden dann durch Zugabe von 1/20 Volumen 4 M Natriumhydrogencarbonatiösung gefällt und 15 zentrifugiert. Das Pellet wurde in 80 mM Tris-borat pH 7,0 und 1 mM EDTA aufgenommen und die RNA mit 8 M Lithiumclorid gefällt. Nach Zentrifugation und Waschen mit 70%igem Ethanol wurde das RNA-Pellet mit Rnase-freiem Wasser aufgenommen. Poly(A)-RNA wurde mit Dynabeads (Dynal, Oslo, Norwegen) nach Herstellerangaben 20 isoliert und die Erst-Strang-cDNA-Synthese mit MLV-Rtase von Roche (Mannheim) durchgeführt. Die Zweit-Strang-Synthese erfolgte dann mittels DNA Polymerase I und Klenow Fragment, gefolgt von einem RnaseH Verdau. Die cDNA wurde mit T4 DNA Polymerase behandelt und anschliessend EcoRI/Xhol Adaptoren (Pharmacia, Freiburg) mittels T4 Ligase angehängt. Nach Xhol Verdau, Phosphorylierung und Geltrennung wurden Fragmente grösser als 300 bp entsprechend der Herstellerangaben in 25 den lambda ZAP Express Phagen ligiert (Stratagene, Amsterdam, Niederlande). Nach Massenexcision der cDNA-Bank und Plasmid-Rückgewinnung wurde die Plasmid-Bank in E. coli DH10B Zellen transformiert und zur PCR-Sichtung eingesetzt.

Mittels den oben genannten degenerierten Primern konnte das PCR-Fragment mit der Sequenznummer SEQ ID NO: 187 generiert werden.

Dieses Fragment wurde mit Digoxigenin markiert (Roche, Mannheim) und als Sonde für die Sichtung der Phagen-Bank verwendet.

Mit Hilfe der Sequenz SEQ ID NO: 187 konnte die Gensequenz SEQ ID NO: 183 erhalten werden, die das Volllängen-RNA-Molekül der $\Delta 6$ -Elongase von Phaeodacty-lum darstellt:

Beispiel 53: Klonierung von Expressionsplasmiden zur heterologen Expression in -Hefen

Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292)

neben dem Startcodon trugen. Die Amplifizierung der PtELO6-DNA wurde jeweils mit 1 µL cDNA, 200 µM dNTPs, 2,5 U Advantage-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 µl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Gen-Name und SEQ ID NO:	Primersequenz
PtELO6 (SEQ ID NO: 183)	F:5'-GCGGCCGCACATAATGATGGTACCTTCAAG (SEQ ID NO: 188)
	R:3'- GAAGACAGCTTAATAGACTAGT (SEQ ID NO: 189)

^{*}F=forward primer, R=reverse primer

- Die PCR Produkte wurden für 30 min bei 21 °C mit dem Hefe-Expressionsvektor -10 pYES2.1-TOPO (Invitrogen) gemäß Herstellerangaben inkubiert. Das PCR-Produkt (siehe SEQ ID NO: 192) wurde dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) in den Vektor ligiert. Nach der Inkubation erfolgte dann die Transformation von E, coli DH5α Zellen. Entsprechende Klone wurden durch PCR identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequen-15 zierung verifiziert. Die korrekte Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert. Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden 20 Plasmide pYES2.1 und pYES2.1-PtELO6. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.
 - Beispiel 54: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen
- 25 Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wird mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:.

PSUN-PtELO6

Forward: 5'-GCGGCCGCACCATGATGGTACCTTCAAGTTA (SEQ ID NO: 190)

30 Reverse: 3'-GAAGACAGCTTAATAGGCGGCCGC (SEQ ID NO: 191)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

5 1,25 μL je Primer (10 pmol/μL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C
Denaturierungstemperatur: 1 min 94°C
Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

10

25

30

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert.

Anschliessend werden die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschließend werden Vektor und PCR-Produkte ligiert. Dazu wird das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmide pSUN-PtELO wird durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadeny-lierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert.

(Primersequenz: 5'—
35 GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC
GGATCTGCTGGCTATGAA—3'; SEQ ID NO: 151).

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeich-

15

20

25

30

35

nung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 55: Expression von PtElo in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2 und pYES2-PtELO6 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 56: Funktionelle Charakterisierung von PtELO6:

In Figur 29 ist die Umsetzung von C18:3^{Δ6,9,12} und C18:4^{Δ6,9,12,15} wiedergegeben. Die Substrate werden um je zwei Kohlenstoffatome elongiert es entstehen jeweils die Fettsäuren C20:3^{Δ8,11,14} bzw. C20:4^{Δ8,11,14,17}. Die Substratspezifität von PtELO6 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 30). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der PtElo6-Reaktion. Dies bedeutet, dass das Gen PtELO6 funktional exprimiert werden konnte.

Tabelle 18 zeigt, dass die PtElo6 eine enge Substratspezifität aufweist. PtELO6 konnte nur die C18-Fettsäuren Linolsäure, Linolensäure, γ-Linolensäure und Stearidonsäure elongieren, bevorzugte aber die ω-3-desaturierte Stearidonsäure (siehe auch Figur 30).

Fütterungsexperiment: Fettsäuren (fett) wurden jeweils mit 250 µM zugegeben. Die unterstrichenen Fettsäuren wurden neu gebildet.

Tabelle 18: Substratspezifität der PtElo6

gefütterte Fetts	äure:	+ 18:2	+ 18:3	+ 18:3	+ 18:4
16:0	16,2	18,2	15,2	20	04:48
16:1	50,6	20,5	22,8	33,5	34,2
18:0	5,4	6,3	6,2	5,2	12,4
18:1	27,7	14,6	19,6	19,3	16,7
18:2		40			
18:3			32,9		
18:3				12,3	
18:4					4,5
20:2		0,4			
20:3			3,4		
20:3			·	<u>9,7</u>	
20:4					<u>14,5</u>
% Elongation	0,0	0,99	9,37	44,09	76,32

- 5 Folgende Fettsäuren wurden gefüttert, aber nicht umgesetzt:
 - 18:1⁴⁶, 18:1⁴⁹, 18:1⁴¹
 - 20:2^{Δ11,14}, 20:3^{Δ11,14,17}, 20:3^{Δ8,11,14}, 20:4^{Δ5,8,11,14}, 20:5^{Δ5,8,11,14,17}
 - 22·4^{Δ7,10,13,16}

Die Hefen, die mit dem Vektor pYES2-PtELO6 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. So wurden die Ergebnisse, die in den Figuren 29 und 30 sowie in der Tabelle 16 dargestellt wurden, ermittelt.

Äquivalente:

Der Fachmann erkennt oder kann viele Äquivalente der hier beschriebenen erfindungsgemäßen spezifischen Ausführungsformen feststellen, indem er lediglich Routineexperimente verwendet. Diese Äquivalente sollen von den Patentansprüchen umfasst sein.

Umsetzungsraten der gefütterten Fettsäuren. Die Konversionsraten wurden berechnet nach der Formel: [Konversionsrate]= [Produkt]/[[Substrat]+[Produkt]*100. Tabelle 3:

3ioTaur-1	Klone Fläc	BioTaur-Klone Fläche in % der GC-Analyse	der GC-Aı	nalyse										
Clone	Fett- säure	C16:0	C16:1 (n-7)	C18:0	C18:1 (n-9)	C18:3 (n-6)	C18:4 (n-3)	C20:3 (n-6)	C20:4 (n-6)	C20:4 (n-3)	C20:5 (n-3)	C22:4 (n-6)	C22:4 (n-3)	C22:5 (n-3)
Vector	keine	21.261	41.576	4.670	25.330		-							
BioTaur	Keine	20.831	37.374	4.215	26.475									
Vector	GLA + EPA	22.053	23.632	5.487	17.289	11.574					13.792			
BioTaur	GLA + EPA	20.439	25.554	6.129	19.587	3.521		6.620			10.149			1.127
Vector	EPA	20.669	28.985	6.292	21.712						16.225			
BioTaur	EPA	20.472	26.913	6.570	23.131						11.519			3.251
Vector	АВА	23.169	23.332	6.587	12.735				27.069	·				
BioTaur	ABA	20.969	31.281	5.367	21.351				9.648			1.632		
Vector	SDA	18.519	12.626	6.642	6.344		47.911							
BioTaur	SDA	19.683	15.878	7.246	8.403		13.569			25.946			0.876	

10

15

20

25

Patentansprüche

1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

$$\begin{array}{c|c} O & CH_2 & CH_2 & CH_3 \\ \hline \\ CH = CH & CH_2 & CH_3 \\ \hline \end{array}$$
 (I)

in transgenen Organismen mit einem Gehalt von mindestens 1 Gew.-% dieser Verbindungen bezogen auf den Gesamtlipidgehalt des transgenen Organismus, dadurch gekennzeichnet, dass es folgende Verfahrensschritte umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -9-Elongase- oder eine Δ -6-Desaturase-Aktivität codiert, und
- b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-8-Desaturase- oder eine Δ-6-Elongase-Aktivität codiert, und
- Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Desaturase-Aktivität codiert, und
- d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Elongase-Aktivität codiert, und
- e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-4-Desaturase-Aktivität codiert, und

wobei die Variablen und Substituenten in der Formel I die folgende Bedeutung haben:

R¹ = Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

$$H_{2}C-O-H^{2}$$
 $HC-O-H^{3}$ (II)
 $H_{2}C-O-f$

35

- R² = Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl-,
- R³ = Wasserstoff-, gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl-, oder R² oder R³ unabhängig voneinander einen Rest der allgemeinen Formel la:

$$\begin{array}{c|c}
CH_2 & CH_2 \\
\hline
CH=CH & CH_2 \\
\hline
CH_2 & CH_3
\end{array}$$
(la)

n = 2, 3, 4, 5, 6, 7 oder 9, m = 2, 3, 4, 5 oder 6 und p = 0 oder 3.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Nukleinsäuresequenzen, die für Polypeptide mit Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturaseaktivität codieren, ausgewählt sind aus der Gruppe bestehend aus:
- einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, 15 a) SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27. SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, 20 SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ 25 ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 dar-30 gestellten Sequenz, oder
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38,

10

15

20

25

30

SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 dargestellten Aminosäure-sequenzen ableiten lassen, oder

Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID

c)

NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47. SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 183 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Identität auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ JD NO: 88. SEQ ID NO: 92. SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 184 codieren und eine Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-

4-Desaturaseaktivität aufweisen.

40

20

25

- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zusätzlich in den Organismus eine Nukleinsäuresequenz eingebracht wird, die für Polypeptide mit ω3-Desaturasaktivität codiert, ausgewählt aus der Gruppe bestehend aus:
- einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten
 Sequenz, oder
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 codieren und eine ω3-Desaturasaktivität aufweisen.
- Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass zusätzlich in den Organismus eine Nukleinsäuresequenz eingebracht wird, die für Polypeptide mit Δ-12-Desaturasaktivität codiert, ausgewählt aus der Gruppe bestehend aus:
 - a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder SEQ ID
 NO: 109 dargestellten Sequenz, oder
 - Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 110 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codieren und eine Δ-12-Desaturasaktivität aufweisen.
 - 5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die Substituenten R² oder R³ unabhängig voneinander gesättigtes oder ungesättigtes C₁₈-C₂₂-Alkylcarbonyl- bedeuten.
 - 6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die Substituenten R² oder R³ unabhängig voneinander ungesättigtes C₁₈-, C₂₀- oder C₂₂-Alkylcarbonyl- mit mindestens zwei Doppelbindungen bedeuten.
- 7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass der transgene Organismus ein transgener Mikroorganismus oder eine transgene Pflanze ist.

- 8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass der transgene Organismus eine Öl-produzierende Pflanze, eine Gemüsepflanze oder Zierpflanze ist.
- 9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass die transgene Organismus eine transgene Pflanze ausgewählt aus der Gruppe der Pflanzenfamilien: Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae oder Prasinophyceae ist.
 - 10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I aus dem Organismus in Form ihrer Öle, Lipide oder freien Fettsäuren isoliert werden.
- 15 11. Verfahren nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I in einer Konzentration von mindestens 5 Gew.-% bezogenen auf den gesamten Lipidgehalt des transgenen Organismus isoliert werden.
- Öl, Lipide oder Fettsäuren oder eine Fraktion davon, hergestellt durch das
 Verfahren nach einem der Ansprüche 1 bis 11.
 - 13. Öl-, Lipid- oder Fettsäurezusammensetzung, die PUFAs hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 11 umfasst und von transgenen Pflanzen stammt.
- 14. Verfahren zur Herstellung von Ölen, Lipiden oder Fettsäurezusammen25 setzungen durch Mischen von Öl, Lipide oder Fettsäuren gemäß Anspruch 12
 oder Öl-, Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 13 mit tierischen Ölen, Lipiden oder Fettsäuren.
- Verwendung von Öl, Lipide oder Fettsäuren gemäß Anspruch 12 oder Ol-,
 Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 13 oder Ölen, Lipiden oder Fettsäurezusammensetzungen hergestellt gemäß Anspruch 14 in
 Futter, Nahrungsmitteln, Kosmetika oder Pharmazeutika.
- Isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ-5-Elongaseaktivität codiert und die eine Aminosäuresequenz enthält ausgewählt aus der Gruppe einer Aminosäuresequenz mit der in SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141 oder SEQ ID NO: 142 dargestellten Sequenz.

15

20

25

30

- 17. Isolierte Nukleinsäuresequenz gemäß Anspruch 16, dadurch gekennzeichnet, dass die Nukleinsäuresequenz, die für Polypeptide mit Δ-5-Elongaseaktivität codiert, eine Kombination der Aminosäuresequenzen enthält ausgewählt aus der Gruppe:
- 5 a) SEQ ID NO: 115 und SEQ ID NO: 139, SEQ ID NO: 115 und SEQ ID NO: 140 oder SEQ ID NO: 139 und SEQ ID NO: 140; oder
 - b) SEQ ID NO: 116 und SEQ ID NO: 141, SEQ ID NO: 116 und SEQ ID NO: 142 oder SEQ ID NO: 141 und SEQ ID NO: 142; oder
 - c) SEQ ID NO: 115, SEQ ID NO: 139 und SEQ ID NO: 140 oder SEQ ID NO: 116, SEQ ID NO: 141 und SEQ ID NO: 142.
 - 18. Isolierte Nukleinsäuresequenzen gemäß Anspruch 16 oder 17, die für Polypeptide mit Δ-5-Elongaseaktivität codieren, dadurch gekennzeichnet, dass die Nukleinsäuresequenz ausgewählt ist aus der Gruppe:
 - a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 114, SEQ ID NO: 132 oder SEQ ID NO: 134 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 131 oder SEQ ID NO: 133 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 44, SEQ ID NO: 46, SEQ D NO: 48, SEQ ID NO: 50, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 114, SEQ ID NO: 132 oder SEQ ID NO: 134 codieren und eine Δ-5-Elongaseaktivität aufweisen.

10

20

25

30

- 19. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-6-Elongaseaktivität codieren, ausgewählt aus der Gruppe:
 - a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 69, SEQ ID NO: 81, SEQ ID NO: 111 oder SEQ ID NO: 183 dargestellten Sequenz,
 - Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 112 oder SEQ ID NO: 184 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 69, SEQ ID NO: 81, SEQ ID NO: 111 oder SEQ ID NO: 183 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 112 oder SEQ ID NO: 184 codieren und eine Δ-6-Elongaseaktivität aufweisen.
- 20. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit ω-3 15 Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Sequenz,
 - Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 aufweisen und eine ω-3-Desaturaseaktivität aufweisen.
 - 21. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-6-Desaturaseaktivität codieren, ausgewählt aus der Gruppe:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 89 oder in SEQ ID NO: 97 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 90 oder SEQ ID NO: 98 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 89 oder SEQ ID NO: 97 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 90 oder SEQ ID NO: 98 codieren und eine Δ-6-Desaturaseaktivität aufweisen.

C)

35

Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-5-22. Desaturaseaktivität codieren, ausgewählt aus der Gruppe: einer Nukleinsäuresequenz mit der in SEQ ID NO: 91, SEQ ID NO: 93, a) SEQ ID NO: 99 oder in SEQ ID NO: 101 dargestellten Sequenz. Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten gene-5 b) tischen Codes von der in SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 dargestellten Aminosäuresequenz ableiten lassen, oder Derivate der in SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 99 oder in c) SEQ ID NO: 101 dargestellten Nukleinsäureseguenz, die für Poly-10 peptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 100 oder in SEQ ID NO: 102 codieren und eine Δ-5-Desaturaseaktivität aufweisen. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit ∆-4-23. Desaturaseaktivität codieren, ausgewählt aus der Gruppe: 15 einer Nukleinsäuresequenz mit der in SEQ ID NO: 95 oder in a) SEQ ID NO: 103 dargestellten Sequenz, Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten geneb) tischen Codes von der in SEQ ID NO: 96 oder SEQ ID NO: 104 dargestellten Aminosäuresequenz ableiten lassen, oder 20 Derivate der in SEQ ID NO: 95 oder SEQ ID NO: 103 dargestellten Nuk-C) leinsäuresequenz, die für Polypeptide mit mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 96 oder SEQ ID NO: 104 codieren und eine Δ-4-Desaturaseaktivität aufweisen. Isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ-12-Desaturasaktivität 24. 25 codieren, ausgewählt aus der Gruppe bestehend aus: einer Nukleinsäuresequenz mit der in SEQ ID NO: 107 oder SEQ ID a) NO: 109 dargestellten Sequenz, oder Nukleinsäureseguenzen, die sich als Ergebnis des degenerierten geneb) 30 tischen Codes von der in SEQ ID NO: 108 oder SEQ ID NO: 110 dargestellten Aminosäuresequenz ableiten lassen, oder

Derivate der in SEQ ID NO: 107 oder SEQ ID NO: 109 dargestellten

ren und eine Δ-12-Desaturasaktivität aufweisen.

Nukleinsäuresequenz, die für Polypeptide mit mindestens 50 % Identität auf Aminosäureebene mit SEQ ID NO: 108 oder SEQ ID NO: 110 codie-

- 25. Isolierte Nukleinsäuresequenz nach den Ansprüchen 16 bis 24, wobei die Sequenz von einer Alge, einem Pilz, einem Mikroorganismus, einer Pflanze oder einem nicht-humanen Tier stammt.
- Isolierte Nukleinsäuresequenz nach den Ansprüchen 16 bis 25, wobei die
 Sequenz aus der Ordnung Salmoniformes, den Diatomeengattungen Thalassiosira oder Crythecodinium oder aus der Familie der Prasinophyceae, Euglenaceae oder Pythiaceae stammt.
 - 27. Aminosäuresequenz, die von einer isolierten Nukleinsäuresequenz nach einem der Ansprüche 16 bis 26 codiert wird.
- 10 28. Genkonstrukt, enthaltend eine isolierte Nukleinsäure nach einem der Ansprüche 16 bis 26, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist.
- Genkonstrukt nach Anspruch 28, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n).
 - 30. Genkonstrukt nach Anspruch 28 oder 29, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe der Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-9-Desaturase-, Δ-12-Desaturase-, Δ-6-Elongase- oder Δ-9-Elongase.
 - 31. Vektor, enthaltend eine Nukleinsäure nach den Ansprüchen 16 bis 26 oder ein Genkonstrukt nach den Ansprüchen 28 bis 30.
- Transgener nicht-humaner Organismus, enthaltend mindestens eine Nukleinsäure nach den Ansprüchen 16 bis 26, ein Genkonstrukt nach den Ansprüchen 28 bis 30 oder einen Vektor nach Anspruch 31.
 - 33. Transgener nicht-humaner Organismus nach Anspruch 32, wobei der Organismus ein Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze ist.
- 35 34. Transgener nicht-humaner Organismus nach Anspruch 32 oder 33, wobei der Organismus eine Pflanze ist.

10

15

Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen

Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit Δ-5-Elongaseaktivität codieren. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die für Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem Organismus exprimiert werden. Besonders vorteilhaft sind Nukleinsäuresequenzen, die für eine Δ-6-Desaturase-, eine Δ-5-Desaturase-, Δ-4-Desaturase- und/oder Δ-6-Elongaseaktivität codieren. Vorteilhaft stammen diese Desaturasen und Elongasen aus Thalassiosira, Euglena oder Ostrocöccus. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von Ölen und/oder Triacylglyceriden mit einem erhöhten Gehalt an langkettigen mehrfach ungesättigten Fettsäuren.

Die vorliegende Erfindung betrifft außerdem in einer bevorzugten Ausführungsform ein Verfahren zur Herstellung von ungesättigten ω-3 Fettsäuren sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren. besonders von ω-3 Fettsäuren mit mehr als drei Doppelbindungen. Die Erfindung betrifft die Herstellung eines transgenen Organismus bevorzugt einer transgenen 20 Pflanze oder eines transgenen Mikroorganismus mit erhöhtem Gehalt an ungesättigten w-3-Fettsäuren. Ölen oder Lipiden mit w-3-Doppelbindungen aufgrund der Expression der im erfindungsgemäßen Verfahren verwendeten Elongasen und Desaturasen vorteilhaft in Verbindung mit ω-3-Desaturasen z.B. einer ω-3-Desaturase aus Pilzen der Familie Pythiaceae wie der Gattung Phytophtora beispielsweise der Gattung und 25 Art Phytophtora infestans oder einer ω-3-Desaturase aus Algen wie der Familie der Prasinophyceae z.B. der Gattung Ostreococcus speziell der Gattung und Art Ostreococcus tauri oder Diatomeen wie der Gattung Thalassiosira speziell der Gattung und Art Thalassiosira pseudonana.

- Die Erfindung betrifft weiterhin die Nukleinsäuresequenzen, Nukleinsäurekonstrukte, Vektoren und Organismen enthaltend die erfindungsgemäßen Nukleinsäuresequenzen, Vektoren enthaltend die Nukleinsäuresequenzen und/oder die Nukleinsäurekonstrukte sowie transgene Organismen enthalten die vorgenannten Nukleinsäuresequenzen, Nukleinsäurekonstrukte und/oder Vektoren.
- Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung. Außerdem betrifft die Erfindung ungesättigte Fettsäuren sowie Triglyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren und deren Verwendung.

Figur 1: Verschiedene Synthese-Wege zur Biosynthese von DHA (Docosahexaensäure)

Figur 2: Substratspezifität der Δ-5-Elongase (SEQ ID NO: 53) gegenüber verschiedenen Fettsäuren

Figur 3: Rekonstitution der DHA-Biosynthese in Hefe ausgehend von 20:5ω3.

Figur 4: Rekonstitution der DHA-Biosynthese in Hefe ausgehend von 18:4ω3.

Fettsäure-Zusammensetzung (in Mol %) transgener Hefen, die mit den Vektoren pYes3-OmELO3/pYes2-EgD4 oder pYes3-OmELO3/pYes2-EgD4+pESCLeu-PtD5 transformiert worden waren. Die Hefezellen wurden in Minimalmedium ohne Tryptophan und Uracil / und Leucin in Gegenwart von 250 μM 20:5^{Δ5,8,11,14,17} bzw. 18:4^{Δ6,9,12,15} kultiviert. Die Fettsäuremethylester wurden durch saure Methanolyse aus Zellsedimenten gewonnen und über GLC analysiert. Jeder Wert gibt den Mittelwert (n=4) ± Standardabweichung wieder.

	pYes3-OmELO/pYes2-EgD4	pYes3-OmELO/pYes2-EgD4 EgD4 + pESCLeu-PtD5
Fettsäuren	Fütterung mit 20:5 ^{25,8,11,14,17}	Fütterung mit 18:4 ^{Δ6,9,12,15}
16:0	9,35 ± 1,61	7,35 ± 1,37
16:1 ^{Δ9}	$14,70 \pm 2,72$	10,02 ± 1,81
18:0	5,11 ± 1,09	4,27 ± 1,21
18:1 ^{Δ9}	19,49 ± 3,01	10,81 ± 1,95
18:1 ^{∆11}	$18,93 \pm 2,71$	11,61 ± 1,48
18:4 ^{Δ6,9,12,15}	-	7,79 ± 1,29
20:1 ^{Δ11}	$3,24 \pm 0,41$	1,56 ± 0,23
20:1 ^{Δ13}	11,13± 2,07	$4,40 \pm 0,78$
20:4 ^{Δ8,11,14,17}	-	$30,05 \pm 3,16$
20:5 ^{Δ5,8,11,14,17}	6,91± 1,10	$3,72 \pm 0,59$
22:4 ^{Δ10,13,16,17}	· -	5,71 ± 1,30
22:5 ^{Δ7,10,13,16,19}	8,77 ± 1,32	$1,10 \pm 0,27$
22:6 ^{Δ4,7,10,13,16,19}	$2,73 \pm 0,39$	$0,58 \pm 0,10$

Figur 10: Expression von TpELO3 in Hefe.

Figur 11: Expression von Thraustochytrium ∆5-Elongase TL16/pYES2.1 in Hefe.

Figur 12: Desaturierung von Linolsäure (18:2 ω -6-Fettsäure) zu α -Linolensäure (18:3 ω -3-Fettsäure) durch Pi-omega3Des.

Figur 13: Desaturierung von γ -Linolensäure (18:3 ω -6-Fettsäure) zu Stearidonsäure (18:4 ω -3-Fettsäure) durch Pi-omega3Des.

Figur 14: Desaturierung von C20:2 ω -6-Fettsäure zu C20:3 ω -3-Fettsäure durch Pi-omega3Des.

Figur 15: Desaturierung von C20:3-ω-6-Fettsäure zu C20:4-ω-3-Fettsäure durch Pi-omega3Des.

Figur 16: Desaturierung von Arachidonsäure (C20:4-ω-6-Fettsäure) zu Eicosapentaensäure (C20:5-ω-3-Fettsäure) durch die Pi-omega3Des.

Figur 17: Desaturierung von Docosatetraensäure (C22:4-ω-6-Fettsäure) zu Docosapentaensäure (C22:5-ω-3-Fettsäure) durch Pi-omega3Des.

Figur 18: Substratspezifität der Pi-omega3Des gegenüber verschiedenen Fettsäuren

% Desaturierung

19/30

Figur 20: Umsetzung von Linolsäure (Pfeil) zu γ -Linolensäure (γ -18:3) durch Ot-Des6.1.

Absorption mAU

Retentionszeit

Figur 21: Umsetzung von Linolsäure und α-Linolensäure (A und C), sowie Rekonstitution des ARA- bzw. EPA-Syntheseweges in Hefe (B und D) in Gegenwart von OtD6.1.

Figur 22: Expression von ELO(XI) in Hefe.

Figur 23:

Figur 24: Elongation von Eicosapentaensäure durch OtElo1 (B) bzw. OtElo1.2 (D). Die Kontrollen (A, C) zeigen nicht das Produkt der Elongation (22:5ω3).

Figur 25: Elongation von Arachidonsäure durch OtElo1 (B) bzw. OtElo1.2 (D). Die Kontrollen (A, C) zeigen nicht das Produkt der Elongation (22:4ω6).

Figur 26: Elongation von 20:5n-3 durch die Elongasen At3g06470.

Absorption in mA

Figur 27: Substratspezifität der Xenopus Elongase (A), Ciona Elongase (B) und Oncorhynchus Elongase (C)

Figur 28: Substratspezifität der Ostreococcus Δ -5-Elongase (A), der Ostreococcus Δ -6-Elongase (B), der Thalassiosira Δ -5-Elongase (C) und Thalassiosira Ostreococcus Δ -6-Elongase (D)

Figur 29: Expression der Phaeodactylum tricornutum Δ-6-Elongase (PtELO6) in Hefe. A) zeigt die Elongation der C18:3^{Δ6,9,12} Fettsäure und B) die Elongation der C18:4^{Δ6,9,12,15} Fettsäure

Figur 30: Figur 30 zeigt die Substratspezifität von PtELO6 in Bezug auf die gefütterten Substrate.

PtELO6 Spezifität

SEQUENCE LISTING

<110> BASF Plant Science	e GmbH	Gmb1	Science	Plant.	1	BASE	<110>
--------------------------	--------	------	---------	--------	---	------	-------

<120> Verfahren zur Herstellung von mehrfach ungsättigten Fettsäuren in transgenen Organismen

<130>	PF547	756													
<140> <141>	2003		1												
<160>	192														
<170>	Pater	ntIn	vers	ion	3.1										
<210> <211> <212> <213>	1 1266 DNA Eugle	ena g	raci	lis											
<220> <221> <222> <223>	CDS (1). Delta			uras	se										
<400> atg aa Met Ly 1	1 g tca s Ser	aag Lys	cgc Arg 5	caa Gln	gcg Ala	ctt Leu	ccc Pro	ctt Leu 10	aca Thr	att Ile	gat Asp	gga Gly	aca Thr 15	aca Thr	48
tat ga Tyr As	t gtg p Val	tct Ser 20	gcc Ala	tgg Trp	gtc Val	aat Asn	ttc Phe 25	cac His	cct Pro	ggt Gly	ggt Gly	gcg Ala 30	gaa Glu	att Ile	96
ata ga Ile Gl	g aat u Asn 35	tac Tyr	caa Gln	gga Gly	agg Arg	gat Asp 40	gcc Ala	act Thr	gat Asp	gcc Ala	ttc Phe 45	atg Met	gtt Val	atg Met	144
cac tc His Se 50	t caa r Gln	gaa Glu	gcc Ala	ttc Phe	gac Asp 55	aag Lys	ctc Leu	aag Lys	cgc Arg	atg Met 60	Pro	aaa Lys	atc Ile	aat Asn	192
ccc ag Pro Se 65	t tct r Ser	gag Glu	ttg Leu	cca Pro 70	ccc Pro	cag Gln	gct Ala	gca Ala	gtg Val 75	aat Asn	gaa Glu	gct Ala	caa Gln	gag Glu 80	240
gat tt Asp Ph	c cgg e Arg	aag Lys	ctc Leu 85	cga Arg	gaa Glu	gag Glu	ttg Leu	atc Ile 90	gca Ala	act Thr	GJA	atg Met	ttt Phe 95	gat Asp	288
gcc tc Ala Se	c ccc r Pro	ctc Leu 100	tgg Trp	tac Tyr	tca Ser	tac Tyr	aaa Lys 105	atc Ile	agc Ser	acc Thr	aca Thr	ctg Leu 110	Gly	ctt Leu	336
gga gt Gly Va															384
ggg gc	a Val	ttg Leu	ctt Leu	61 ³ 333	atg Met 135	cac His	tat Tyr	caa Gln	cag Gln	atg Met 140	GJ Y	tgg Trp	ctt Leu	tct Ser	432
cat ga His As 145	c att p Ile	tgc Cys	cac His	cac His 150	Gln	act Thr	ttc Phe	aag Lys	aac Asn 155	cgg	aac Asn	tgg Trp	aac Asn	aac Asn 160	480

ctc Leu	gtg Val	gga Gly	ctg Leu	gta Val 165	ttt Phe	Gly	aat Asn	ggt Gly	ctg Leu 170	caa Gln	ggt Gly	ttt Phe	tcc Ser	gtg Val 175	aca Thr	528
tgc Cys	tgg Trp	aag Lys	gac Asp 180	aga Arg	cac His	aat Asn	gca Ala	cat His 185	cat His	tcg Ser	gca Ala	acc Thr	aat Asn 190	gtt Val	caa Gln	576
Gly	cac His	gac Asp 195	cct Pro	gat Asp	att Ile	gac Asp	aac Asn 200	ctc Leu	ccc Pro	ctc Leu	tta Leu	gcc Ala 205	tgg Trp	tct Ser	gag Glu	624
gat Asp	gac Asp 210	gtc Val	aca Thr	cgg Arg	gcg Ala	tca Ser 215	ccg Pro	att Ile	tcc Ser	cgc Arg	aag Lys 220	ctc Leu	att Ile	cag Gln	ttc Phe	672
cag Gln 225	cag Gln	tat Tyr	tat Tyr	ttc Phe	ttg Leu 230	gtc Val	atc Ile	tgt Cys	atc Ile	ttg Leu 235	ttg Leu	cgg Arg	ttc Phe	att Ile	tgg Trp 240	720
tgt Cys	ttc Phe	cag Gln	agc Ser	gtg Val 245	ttg Leu	acc Thr	gtg Val	cgc Arg	agt Ser 250	ctg Leu	aag Lys	gac Asp	aga Arg	gat Asp 255	aac Asn	768
caa Gln	ttc Phe	tat Tyr	cgc Arg 260	tct Ser	cag Gln	tat Tyr	aag Lys	aag Lys 265	gag Glu	gcc Ala	att Ile	ggc Gly	ctc Leu 270	gcc Ala	ctg Leu	816
cat His	tgg Trp	aca Thr 275	ttg Leu	aag Lys	gcc Ala	ctg Leu	ttc Phe 280	cac His	tta Leu	ttc Phe	ttt Phe	atg Met 285	ccc	agc Ser	atc Ile	864
ctc Leu	aca Thr 290	tcg Ser	ctg Leu	ttg Leu	gta Val	ttt Phe 295	ttc Phe	gtt Val	tcg Ser	gag Glu	ctg Leu 300	gtt Val	ggc	Gly	ttc Phe	912
ggc Gly 305	att Ile	gcg Ala	atc Ile	gtg Val	gtg Val 310	ttc Phe	atg Met	aac Asn	cac His	tac Tyr 315	cca Pro	ctg Leu	gag Glu	aag Lys	atc Ile 320	960
GJÀ āāā	gac Asp	tcg Ser	gtc Val	tgg Trp 325	gat Asp	GJĀ āāc	cat	gga Gly	ttc Phe 330	tcg Ser	gtt Val	Gly	cag Gln	atc Ile 335	His	1008
gag Glu	acc Thr	atg Met	aac Asn 340	Ile	cgg	cga Arg	GJA aaa	att Ile 345	atc Ile	aca Thr	gat Asp	tgg Trp	ttt Phe 350	ttc Phe	gga Gly	1056
			Tyr			gag Glu		His					Leu			1104
		Leu				agc Ser 375	Tyr									1152
cac His 385	Asn	ctg Leu	ccg Pro	tat Tyr	cgg Arg 390	aac Asn	ccg Pro	ctg Leu	ccc Pro	cat His	Glu	ggg Gly	ttg Leu	gtc Val	atc Ile 400	1200
					Ala	gtg Val		Āla		Met					Pro	1248
	. Gly . ggg			Lev		L										1266

- 3 <210> 2 <211> 421 <212> PRT <213> Euglena gracilis <400> 2 Met Lys Ser Lys Arg Gln Ala Leu Pro Leu Thr Ile Asp Gly Thr Thr Tyr Asp Val Ser Ala Trp Val Asn Phe His Pro Gly Gly Ala Glu Ile 25 Ile Glu Asn Tyr Gln Gly Arg Asp Ala Thr Asp Ala Phe Met Val Met His Ser Gln Glu Ala Phe Asp Lys Leu Lys Arg Met Pro Lys Ile Asn Pro Ser Ser Glu Leu Pro Pro Gln Ala Ala Val Asn Glu Ala Gln Glu Asp Phe Arg Lys Leu Arg Glu Glu Leu Ile Ala Thr Gly Met Phe Asp Ala Ser Pro Leu Trp Tyr Ser Tyr Lys Ile Ser Thr Thr Leu Gly Leu 105 Gly Val Leu Gly Tyr Phe Leu Met Val Gln Tyr Gln Met Tyr Phe Ile 120 Gly Ala Val Leu Leu Gly Met His Tyr Gln Gln Met Gly Trp Leu Ser 130 His Asp Ile Cys His His Gln Thr Phe Lys Asn Arg Asn Trp Asn Asn Leu Val Gly Leu Val Phe Gly Asn Gly Leu Gln Gly Phe Ser Val Thr
 - Cys Trp Lys Asp Arg His Asn Ala His His Ser Ala Thr Asn Val Gln
 - Gly His Asp Pro Asp Ile Asp Asn Leu Pro Leu Leu Ala Trp Ser Glu 200 195
 - Asp Asp Val Thr Arg Ala Ser Pro Ile Ser Arg Lys Leu Ile Gln Phe 215 220 210
 - Gln Gln Tyr Tyr Phe Leu Val Ile Cys Ile Leu Leu Arg Phe Ile Trp 235 240 225

Cys	Phe	Gln	Ser	Val 245	Leu	Thr	Val	Arg	Ser 250	Leu	Lys	Asp	Arg	Asp 255	Asn		
Gln	Phe	Tyr	Arg 260	Ser	Gln	Tyr	Lys	Lys 265	Glu	Ala	Ile	Gly	Leu 270	Ala	Leu		
His	Trp	Thr 275	Leu	Lys	Ala	Leu	Phe 280	His	Leu	Phe	Phe	Met 285	Pro	Ser	I le		
Leu	Thr 290	Ser	Leu	Leu	Val	Phe 295	Phe	Val	Ser	Glu	Leu 300	Val	Gly	Gly	Phe		
Gly 305	Ile	Ala	Ile	Val	Val 310	Phe	Met	Asn	His	Tyr 315	Pro	Leu	Glu	Lys	Ile 320		
Gly	Asp	Ser	Val	Trp 325	Asp	Gly	His	Gly	Phe 330	Ser	Val	Gly	Glri	Ile 335	His		
Glu	Thr	Met	Asn 340	Ile	Arg	Arg	Gly	Ile 345	Ile	Thr	Asp	Trp	Phe 350	Phe	Gly	·	
Gly	Leu	Asn 355	Tyr	Gln	Ile	Glu	His 360	His	Leu	Trp	Pro	Thr 365	Leu	Pro	Arg		
His	Asn 370		Thr	Ala	Val	Ser 375		Gln	Val	Glu	Gln 380	Leu	Cys	Gln	Lys		
His 385		Leu	Pro	Tyr	Arg 390		Pro	Leu	Pro	His 395	Glu	Gly	Leu	Val	Ile 400		
Leu	Leu	Arg	Tyr	Leu 405		val	Ph∈	e Ala	Arg 410		Ala	. Glu	Lys	Gln 415	Pro		
Ala	Gly	· Lys	Ala 420		Į.												
<21 <21 <21 <21	.1> .2>	3 777 DNA Isoc	:hrys	is g	galba	ına											
<22					ıgas e	è											
ato	0> g gcc : Ala	cto	c gca ı Ala	a aac a Ası 5	gad 1 Asi	gcg Ala	g gga	a gaq y Gli	g cgo 1 Aro	c ato	c tgg e Trj	g gcg p Ala	g gct a Ala	gtg a Val	g acc L Thr		48
gad As _l	c cco	g gaa o Glu	a ato 1 Ile 20	c cto	e atu ı Ile	e Gli	c aco	c tto r Pho 25	e Se	g tac c Ty:	t tt	g cta u Lei	a cto ı Leı 30	aaa 1 Lys	a ccg s Pro		96

ctg Leu	ctc Leu	cgc Arg 35	aat Asn	tcc Ser	GJA aaa	ctg Leu	gtg Val 40	gat Asp	gag Glu	aag Lys	aag Lys	ggc Gly 45	gca Ala	tac Tyr	agg Arg	:	144
acg Thr	tcc Ser 50	atg Met	atc Ile	tgg Trp	tac Tyr	aac Asn 55	gtt Val	ctg Leu	ctg Leu	gcg Ala	ctc Leu 60	ttc Phe	tct Ser	gcg Ala	ctg Leu	:	192
agc Ser 65	ttc Phe	tac Tyr	gtg Val	acg Thr	gcg Ala 70	acc Thr	gcc Ala	ctc Leu	GJA Ggc	tgg Trp 75	gac Asp	tat Tyr	ggt Gly	acg Thr	80 Gja Ggc	:	240
gcg Ala	tgg Trp	ctg Leu	egc Arg	agg Arg 85	caa Gln	acc Thr	ggc	gac Asp	aca Thr 90	ccg Pro	cag Gln	ccg Pro	ctc Leu	ttc Phe 95	cag Gln		288
tgc Cys	ccg Pro	tcc Ser	ccg Pro 100	gtt Val	tgg Trp	gac Asp	tcg Ser	aag Lys 105	ctc Leu	ttc Phe	aca Thr	tgg Trp	acc Thr 110	gcc Ala	aag Lys		336
gca Ala	ttc Phe	tat Tyr 115	tac Tyr	tcc Ser	aag Lys	tac Tyr	gtg Val 120	gag Glu	tac Tyr	ctc Leu	gac Asp	acg Thr 125	gcc Ala	tgg Trp	ctg Leu		384
agg Arg	gtc Val 130	tcc Ser	ttt Phe	ctc Leu	cag Gln	gcc Ala 135	ttc Phe	cac His	cac His	ttt Phe	ggc Gly 140	gcg Ala	ccg Pro	tgg Trp	gat Asp		432
gtg Val 145	tac Tyr	ctc Leu	Gly	att Ile	cgg Arg 150	ctg Leu	cac His	aac Asn	gag Glu	ggc Gly 155	gta Val	tgg Trp	atc Ile	ttc Phe	atg Met 160		480
ttt Phe	ttc Phe	aac .Asn	tcg Ser	ttc Phe 165	att Ile	cac His	acc Thr	atc Ile	atg Met 170	Tyr	acc Thr	tac Tyr	tac Tyr	ggc Gly 175	ctc Leu		528
acc Thr	gcc Ala	gcc Ala	ggg Gly 180	Tyr	aag Lys	t t c Phe	aag Lys	gcc Ala 185	Lys	ccg Pro	ctc Leu	atc Ile	acc Thr 190	Ala	atg Met		576
cag Gln	ato Ile	tgc Cys 195	Gln	ttc Phe	gtg Val	ggc	ggc Gly 200	Phe	ctg Leu	ttg Leu	gto Val	tgg Trp 205	Asp	tac Tyr	atc		624
aac Asr	gto Val 210	. Pro	tgo Cys	ttc Phe	aac Asn	tcg Ser 215	Asp	aaa Lys	ggg Gly	r aag Lys	ttg Leu 220	Phe	ago Ser	tgg Trp	gct Ala		672
tto Phe 225	e Ası	tat 1 Tyr	gca Ala	tac Tyr	gto Val 230	. Gl	tcg Y Sei	g gto : Val	tto Phe	ttg Leu 235	ı Lev	tto Phe	tgo Cys	cac His	ttt Phe 240		720
tto Phe	tac Ty	caq r Glr	g gad n Asp	aac Asr 245	ı Let	g gca ı Ala	a acq a Thi	g aaq r Lys	g aaa s Lys 250	s Sei	g gcc c Ala	aag Lys	g gcg s Ala	g gg a Gly 259	aag Lys		768
	g cto Le		∄														777

<210> 4

<211> 258 <212> PRT <213> Isochrysis galbana

<400> 4

Met	Ala	Leu	Ala	Asn	Asp	Ala	Gly	Glu	Arg	Ile	Trp	Ala	Ala	Val	Thr
1				5	_				10					15	

- Asp Pro Glu Ile Leu Ile Gly Thr Phe Ser Tyr Leu Leu Leu Lys Pro 20 25 30
- Leu Leu Arg Asn Ser Gly Leu Val Asp Glu Lys Lys Gly Ala Tyr Arg 35 40
- Thr Ser Met Ile Trp Tyr Asn Val Leu Leu Ala Leu Phe Ser Ala Leu 50 60
- Ser Phe Tyr Val Thr Ala Thr Ala Leu Gly Trp Asp Tyr Gly Thr Gly 65 70 75 80
- Ala Trp Leu Arg Arg Gln Thr Gly Asp Thr Pro Gln Pro Leu Phe Gln 85 90 95
- Cys Pro Ser Pro Val Trp Asp Ser Lys Leu Phe Thr Trp Thr Ala Lys 100 105 110
- Ala Phe Tyr Tyr Ser Lys Tyr Val Glu Tyr Leu Asp Thr Ala Trp Leu 115 120 125 .
- Arg Val Ser Phe Leu Gln Ala Phe His His Phe Gly Ala Pro Trp Asp 130 135 140
- Val Tyr Leu Gly Ile Arg Leu His Asn Glu Gly Val Trp Ile Phe Met 145 150 155 160
- Phe Phe Asn Ser Phe Ile His Thr Ile Met Tyr Thr Tyr Tyr Gly Leu 165 170 175
- Thr Ala Ala Gly Tyr Lys Phe Lys Ala Lys Pro Leu Ile Thr Ala Met 180 185 190
- Gln Ile Cys Gln Phe Val Gly Gly Phe Leu Leu Val Trp Asp Tyr Ile 195 200 205
- Asn Val Pro Cys Phe Asn Ser Asp Lys Gly Lys Leu Phe Ser Trp Ala 210 215 220
- Phe Asn Tyr Ala Tyr Val Gly Ser Val Phe Leu Leu Phe Cys His Phe 225 230 235 240
- Phe Tyr Gln Asp Asn Leu Ala Thr Lys Lys Ser Ala Lys Ala Gly Lys 245 250 255

Gln Leu

<210> <211> 1410 <212> DNA <213> Phaeodactylum tricornutum <220> <221> CDS <222> (1)..(1410) <223> Delta-5-Desaturase <400> 5 atg gct ccg gat gcg gat aag ctt cga caa cgc cag acg act gcg gta Met Ala Pro Asp Ala Asp Lys Leu Arg Gln Arg Gln Thr Thr Ala Val 10 96 gcg aag cac aat gct gct acc ata tcg acg cag gaa cgc ctt tgc agt Ala Lys His Asn Ala Ala Thr Ile Ser Thr Gln Glu Arg Leu Cys Ser 25 . ctg tct tcg ctc aaa ggc gaa gaa gtc tgc atc gac gga atc atc tat 144 Leu Ser Ser Leu Lys Gly Glu Glu Val Cys Ile Asp Gly Ile Ile Tyr 40 gac ctc caa tca ttc gat cat ccc ggg ggt gaa acg atc aaa atg ttt 192 Asp Leu Gln Ser Phe Asp His Pro Gly Gly Glu Thr Ile Lys Met Phe 240 ggt ggc aac gat gtc act gta cag tac aag atg att cac ccg tac cat Gly Gly Asn Asp Val Thr Val Gln Tyr Lys Met Ile His Pro Tyr His acc gag aag cat ttg gaa aag atg aag cgt gtc ggc aag gtg acg gat 288 Thr Glu Lys His Leu Glu Lys Met Lys Arg Val Gly Lys Val Thr Asp 336 ttc gtc tgc gag tac aag ttc gat acc gaa ttt gaa cgc gaa atc aaa Phe Val Cys Glu Tyr Lys Phe Asp Thr Glu Phe Glu Arg Glu Ile Lys cga gaa gtc ttc aag att gtg cga cga ggc aag gat ttc ggt act ttg 384 Arg Glu Val Phe Lys Ile Val Arg Arg Gly Lys Asp Phe Gly Thr Leu 120 432 gga tgg ttc ttc cgt gcg ttt tgc tac att gcc att ttc ttc tac ctg Gly Trp Phe Phe Arg Ala Phe Cys Tyr Ile Ala Ile Phe Phe Tyr Leu 135 130 cag tac cat tgg gtc acc acg gga acc tct tgg ctg ctg gcc gtg gcc 480 Gln Tyr His Trp Val Thr Thr Gly Thr Ser Trp Leu Leu Ala Val Ala 1.55 145 150 tac gga atc tcc caa gcg atg att ggc atg aat gtc cag, cac gat gcc 528 Tyr Gly Ile Ser Gln Ala Met Ile Gly Met Asn Val Gln His Asp Ala aac cac ggg gcc acc tcc aag cgt ccc tgg gtc aac gac atg cta ggc Asn His Gly Ala Thr Ser Lys Arg Pro Trp Val Asn Asp Met Leu Gly 185 ctc ggt gcg gat ttt att ggt ggt tcc aag tgg ctc tgg cag gaa caa 624 Leu Gly Ala Asp Phe Ile Gly Gly Ser Lys Trp Leu Trp Gln Glu Gln cac tgg acc cac cac gct tac acc aat cac gcc gag atg gat ccc gat His Trp Thr His His Ala Tyr Thr Asn His Ala Glu Met Asp Pro Asp 215 210

						atg Met										720
cat His	ccc Pro	gct Ala	cgt Arg	acc Thr 245	tgg Trp	cta Leu	cat His	cgc Arg	ttt Phe 250	caa Gln	gca Ala	ttc Phe	ttt Phe	tac Tyr 255	atg Met	768
ccc Pro	gtc Val	ttg Leu	gct Ala 260	gga Gly	tac Tyr	tgg Trp	ttg Leu	tcc Ser 265	gct Ala	gtc Val	ttc Phe	aat Asn	cca Pro 270	caa Gln	att Ile	816
						Gly ggc										864
aac Asn	gct Ala 290	ttc Phe	att Ile	cac His	tcg Ser	cga Arg 295	cgc Arg	aag Lys	tat Tyr	gcg Ala	gtt Val 300	ttc Phe	tgg Trp	cgg	gct Ala	912
gtg Val 305	tac Tyr	att Ile	gcg Ala	gtg Val	aac Asn 310	gtg Val	att Ile	gct Ala	ccg Pro	ttt Phe 315	tac Tyr	aca Thr	aac Asn	tcc Ser	ggc Gly 320	, 960
ctc Leu	gaa Glu	tgg Trp	tcc Ser	tgg Trp 325	cgt Arg	gtc Val	ttt Phe	gga Gly	aac Asn 330	atc Ile	atg Met	ctc Leu	atg Met	ggt Gly 335	gtg Val	1008
Ala	Glu	Ser	Leu 340	Ala	Leu	gcg Ala	Val	Leu 345	Phe	Ser	Leu	Ser	His 350	Asn	Phe	1056
Glu	Ser	Ala 355	Asp	Arg	Asp	Pro	Thr 360	Ala	Pro	Leu	Lys	Lys 365	Thr	Gly		1104
Pro	Val 370	Asp	Trp	Phe	Lys	aca Thr 375	Gln	Val	Glu	Thr	Ser 380	Cys	Thr	Tyr	Gly	1152
gga Gly 385	ttc Phe	ctt Leu	tcc Ser	ggt Gly	tgc Cys 390	ttc Phe	acg Thr	gga Gly	ggt Gly	ctc Leu 395	Asn	ttt Phe	cag Gln	gtt Val	gaa Glu 400	1200
cac His	cac His	ttg Leu	ttc Phe	Pro 405	Arg	atg Met	agc Ser	agc Ser	gct Ala 410	tgg Trp	tat Tyr	Pro	tac Tyr	att Ile 415	gcc Ala	1248
ccc Pro	aag Lys	gtc Val	cgc Arg 420	Glu	att Ile	tgc Cys	gcc Ala	aaa Lys 425	His	Gly	gtc Val	cac His	tac Tyr 430	Ala	tac Tyr	1296
tac Tyr	ccg Pro	tgg Trp 435	Ile	cac His	caa Gln	aac Asn	Phe 440	Leu	tcc Ser	acc Thr	gtc Val	cgc Arg 445	Tyr	atg Met	cac His	1344
gcg Ala	gcc Ala 450	Gly	acc Thr	: Gly	gcc Ala	aac Asn 455	Trp	cgc Arg	cag Gln	atg Met	gcc Ala 460	Arg	gaa Glu	aat Asn	ccc Pro	1392
_	Thr	_	Arg													1410

<210> 6 <211> 469 <212> PRT <213> Phaeodactylum tricornutum

<400> 6

Met Ala Pro Asp Ala Asp Lys Leu Arg Gln Arg Gln Thr Thr Ala Val 1 5 10 15

Ala Lys His Asn Ala Ala Thr Ile Ser Thr Gln Glu Arg Leu Cys Ser 20 25 . 30

Leu Ser Ser Leu Lys Gly Glu Glu Val Cys Ile Asp Gly Ile Ile Tyr 35 40 45

Asp Leu Gln Ser Phe Asp His Pro Gly Gly Glu Thr Ile Lys Met Phe 50 55 60

Gly Gly Asn Asp Val Thr Val Gln Tyr Lys Met Ile His Pro Tyr His 65 70 75 80

Thr Glu Lys His Leu Glu Lys Met Lys Arg Val Gly Lys Val Thr Asp 85 90 95

Phe Val Cys Glu Tyr Lys Phe Asp Thr Glu Phe Glu Arg Glu Ile Lys 100 ... 105 110

Arg Glu Val Phe Lys Ile Val Arg Arg Gly Lys Asp Phe Gly Thr Leu 115 120 125

Gln Tyr His Trp Val Thr Thr Gly Thr Ser Trp Leu Leu Ala Val Ala 145 150 155

Tyr Gly Ile Ser Gln Ala Met Ile Gly Met Asn Val Gln His Asp Ala 165 170 175

Asn His Gly Ala Thr Ser Lys Arg Pro Trp Val Asn Asp Met Leu Gly 180 185 190

Leu Gly Ala Asp Phe Ile Gly Gly Ser Lys Trp Leu Trp Gln Glu Gln 195 200 205

His Trp Thr His His Ala Tyr Thr Asn His Ala Glu Met Asp Pro Asp 210 215 220

Ser Phe Gly Ala Glu Pro Met Leu Leu Phe Asn Asp Tyr Pro Leu Asp 225 230 235

His Pro Ala Arg Thr Trp Leu His Arg Phe Gln Ala Phe Phe Tyr Met 245 250 255

Pro Val Leu Ala Gly Tyr Trp Leu Ser Ala Val Phe Asn Pro Gln Ile 260 265 270

Leu Asp Leu Gln Gln Arg Gly Ala Leu Ser Val Gly Ile Arg Leu Asp 275 280 285

Asn Ala Phe Ile His Ser Arg Arg Lys Tyr Ala Val Phe Trp Arg Ala 290 295 300

Val Tyr Ile Ala Val Asn Val Ile Ala Pro Phe Tyr Thr Asn Ser Gly 305 310 315

Leu Glu Trp Ser Trp Arg Val Phe Gly Asn Ile Met Leu Met Gly Val 325 330 335

Ala Glu Ser Leu Ala Leu Ala Val Leu Phe Ser Leu Ser His Asn Phe 340 345 350

Glu Ser Ala Asp Arg Asp Pro Thr Ala Pro Leu Lys Lys Thr Gly Glu 355 360 365

Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 370 380

Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 385 390 395 400

His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr Pro Tyr Ile Ala 405 410 415

Pro Lys Val Arg Glu Ile Cys Ala Lys His Gly Val His Tyr Ala Tyr 420 . 425 430

Tyr Pro Trp Ile His Gln Asn Phe Leu Ser Thr Val Arg Tyr Met His 435 440445

Leu Thr Gly Arg Ala

<210> 7

<211> 1344

<212> DNA

<213> Ceratodon purpureus

<220>

<221> CDS

<222> (1)..(1344)

<223> Delta-5-Desaturase

<400> 7

atg Met 1	gta Val	tta Leu	cga Arg	gag Glu 5	caa Gln	gag Glu	cat His	gag Glu	cca Pro 10	ttc Phe	ttc Phe	att Ile	aaa Lys	att Ile 15	gat Asp	48	
gga Gly	aaa Lys	tgg Trp	tgt Cys 20	caa Gln	att Ile	gac Asp	gat Asp	gct Ala 25	gtc Val	ctg Leu	aga Arg	tca Ser	cat His 30	cca Pro	Gly ggt	96	
ggt Gly	agt Ser	gca Ala 35	att Ile	act Thr	acc Thr	tat Tyr	aaa Lys 40	aat Asn	atg Met	gat Asp	gcc Ala	act Thr 45	acc Thr	gta Val	ttc Phe	1,44	:
cac His	aca Thr 50	ttc Phe	cat His	act Thr	ggt Gly	tct Ser 55	aaa Lys	gaa Glu	gcg Ala	tat Tyr	caa Gln 60	tgg Trp	ctg Leu	aca Thr	gaa Glu	192	!
ttg Leu 65	aaa Lys	aaa Lys	gag Glu	tgc Cys	cct Pro 70	aca Thr	caa Gln	gaa Glu	cca Pro	gag Glu 75	atc Ile	cca Pro	gat Asp	att Ile	aag Lys 80	240)
gat Asp	gac Asp	cca Pro	atc Ile	aaa Lys 85	gga Gly	att Ile	gat Asp	gat Asp	gtg Val 90	aac Asn	atg Met	gga Gly	act Thr	ttc Phe 95	aat Asn	288	3 -
att Ile	tct Ser	gag Glu	aaa Lys 100	cga Arg	tct Ser	gcc Ala	caa Gln	ata Ile 105	aat Asn	aaa Lys	agt Ser	ttc Phe	act Thr 110	gat Asp	cta Leu	336	5
Arg	Met	Arg 115	Val	Arg	gca Ala	Glu	Gly 120	Leu	Met	Asp	Gly	Ser 125	Pro	Leu	Phe	384	1
tac Tyr	att Ile 130	Arg	aaa Lys	att Ile	ctt Leu	gaa Glu 135	aca Thr	atc Ile	ttc Phe	aca Thr	att Ile 140	ctt Leu	ttt Phe	gca Ala	ttc _. Phe	432	2
tac Tyr 145	Leu	caa Gln	tac Tyr	cac His	aca Thr 150	tat Tyr	tat Tyr	ctt Leu	cca Pro	tca Ser 155	Ala	att Ile	cta Leu	atg Met	gga Gly 160	480	0
gtt Val	gcg Ala	tgg Trp	caa Gln	caa Gln 165	. Leu	gga Gly	tgg Trp	tta Leu	atc Ile 170	His	gaa Glu	tto Phe	gca Ala	cat H i s 175	cat His	52:	8
Gln	Leu	Ph∈	180	Asn	Arg	Tyr	Тух	Asn 185	Asp	Leu	Ala	. Ser	190	Phe	gtt Val	57	
Gly	Asn	195	Leu S	Glr	Gly	Phe	Sex 200	: Ser	· Gly	Gly	Trp	205	Glu	Glr	cac His	62	4
aat Asr	gtg Val 210	. His	cac His	gca Ala	gcc Ala	aca Thr 215	Ası	gtt Val	gtt Val	gga . Gly	Arg 220	, Asi	gga Gly	gat Asp	ctt Leu	67	2
gat Asp 225	Lev	gto Val	c cca L Pro	tto Phe	tate Tyr 230	Ala	aca Thi	a gto r Val	g gca . Ala	gaa Glu 235	ı His	cto Lev	aac Asr	aat Asr	tat Tyr 240	72	.0
tct Sei	caq Glr	g gat n Asp	tca Sei	tgg Trj 24	. Val	ato Met	act Thi	t cta r Lei	tto Phe 250	a Arg	a tgg g Trg	g Caa	a cat n His	gtt Val 259	cat His	76	8
tg: Tr:	g aca o Thi	a tto Pho	e ato Mei 260	t Le	a cca	tto Phe	c cto e Len	c cgt u Arg 26	J Lev	tcq 1 Se	g tgg c Trp	g Cti p Le	t cti 1 Lei 270	ı Glı	g tca n Ser	81	.6

atc Ile	att Ile	ttt Phe 275	gtt Val	agt Ser	cag Gln	atg Met	cca Pro 280	act Thr	cat His	tat Tyr	tat Tyr	gac Asp 285	tat Tyr	tac Tyr	aga Arg	864
aat Asn	act Thr 290	gcg Ala	att Ile	tat Tyr	gaa Glu	cag Gln 295	gtt Val	ggt Gly	ctc Leu	tct Ser	ttg Leu 300	cac His	tgg Trp	gct Ala	tgg Trp	912
tca Ser 305	ttg Leu	ggt Gly	caa Gln	ttg Leu	tat Tyr 310	ttc Phe	cta Leu	ccc Pro	gat Asp	tgg Trp 315	tca Ser	act Thr	aga Arg	ata Ile	atg Met 320	960
ttc Phe	ttc Phe	ctt Leu	gtt Val	tct Ser 325	cat His	ctt Leu	gtt Val	gga Gly	ggt Gly 330	ttc Phe	ctg Leu	ctc Leu	tct Ser	cat His 335	gta Val	1008
gtt Val	act Thr	ttc Phe	aat Asn 340	cat His	tat Tyr	tca Ser	gtg Val	gag Glu 345	aag Lys	ttt Phe	gca Ala	ttg Leu	agc Ser 350	tcg Ser	aac Asn	1056
atc Ile	atg Met	tca Ser 355	aat Asn	tac Tyr	gct Ala	tgt Cys	ctt Leu 360	caa Gln	atc Ile	atg Met	acc Thr	aca Thr 365	aga Arg	aat Asn	atg Met	1104
aga Arg	cct Pro 370	gga Gly	aga Arg	ttc Phe	att Ile	gac Asp 375	tgg Trp	ctt Leu	tgg Trp	gga Gly	ggt Gly 380	Leu	aac Asn	tat Tyr	cag Gln	1152
att Ile 385	gag Glu	cac His	cat His	ctt Leu	ttc Phe 390	cca Pro	acg Thr	atg Met	cca Pro	cga Arg 395	His	aac Asn	ttg Leu	aac Asn	act Thr 400	1200
gtt Val	atg Met	cca	ctt Leu	gtt Val 405	Lys	gag Glu	ttt Phe	gca Ala	gca Ala 410	Ala	aat Asn	ggt Gly	tta Leu	cca Pro 415	ıyr	1248
atg Met	gtc Val	gac Asp	gat Asp 420	Tyr	ttc Phe	aca Thr	gga Gly	ttc Phe 425	Trp	ctt Leu	gaa Glu	att Ile	gag Glu 430	Gin	ttc Phe	1296
cga Arc	aat Asn	: att 11e 435	Ala	aat Asr	gtt Val	gct Ala	gct Ala 440	Lys	ttg Lev	act Thr	aaa Lys	aag Lys 445	ITe	gcc Ala	: tag	1344
<21 <21 <21 <21	L1> L2>	8 447 PRT Cera	atodo	on pu	ırpur	reus										
<40	>00	8														
Me i	. Va	l Lei	ı Arç	g Gli 5	ı Glr	ı Glu	ı His	s Glı	1 Pro	o Phe	∋ Pho	e Ile	E Lys	15 15	e Asp	
Gl;	y Ly:	s Tr	р Су: 20	s Glı	n Ile	e Ası	o Ası	o Ala 25	a Vai	l Le	u Ar	g Se:	r Hi:	s Pr	o Gly	
G1;	y Se:	r Al 35	a Il	e Th	r Th	т Ту:	r Ly: 40	s As:	n Me	t As	p Al	a Th 45	r Th	r Va	l Phe	
Hi	s Th 50		e Hi	s Th	r Gl	Y Se 55		s Gl	u Al	а Ту	r Gl 60	n Tr	p Le	u Th	r Glu	

Leu 65	Lys	Lys	Glu	Cys	Pro ' 70	Thr	Gln	Glu	Pro	Glu 75	Ile	Pro	Asp	Ile :	Lys 80
Asp	Asp	Pro	Ile	Lys 85	Gly	Ile	Asp	Asp	Val 90	Asn	Met	Gly	Thr	Phe . 95	Asn
Ile	Ser	Glu	Lys 100	Arg	Ser	Ala	Gln	Ile 105	Asn	Lys	Ser	Phe	Thr 110	Asp	Leu
Arg	Met	Arg 115	Val	Arg	Ala	Glu	Gly 120	Leu	Met	Asp	Gly	Ser 125	Pro	Leu	Phe
Tyr	Ile 130	Arg	Lys	Ile	Leu	Glu 135	Thr	Ile	Phe	Thr	Ile 140	Leu	Phe	Ala	Phe
туr 145	Leu	Gln	Tyr	His.	Thr 150	Tyr	Tyr	Leu	Pro	Ser 155	Ala	Ile	Leu	Met	Gly 160
Val	Ala	Trp	Gln	Gln 165	Leu	Gly	Trp	Leu	Ile 170	His	Glu	Phe	Ala	His 175	His
Gln	Leu	Phe	Lys 180	Asn	Arg	Tyr	Tyr	Asn 185	Asp	Leu	Ala	Ser	Tyr 190	Phe	Val
Gly	Asn	Phe 195		Gln	Gly	Phe	Ser 200	Ser	Gly	Gly	Trp	Lys 205	Glu	Gln	His
Asn	Val 210		His	Ala	Ala	Thr 215	Asn	Val	Val	Gly	Arg 220	Asp	Gly	Asp	Leu
Asp 225		. Val	. Pro) Phe	Tyr 230	Ala	Thr	Val	Ala	Glu 235		Leu	Asn	Asn	Tyr 240
				Trp 245					250)				255	
Trp	Thi	: Phe	260	: Leu)	Pro	Phe	Leu	Arg 265		ı Ser	Trp	Leu	Leu 270	Gln	Ser
I1∈	e Ile	e Phe 275		l Ser	Gln	Met	Pro 280		His	Tyr	Tyr	Asp 285	Tyr	Ťyr	Arg
Asr	290		a Ile	e Tyr	· Glu	Gln 295		. Gly	/ Let	ı Ser	300	. His	Trp	Ala	Trp
Se:		u Gly	y Gli	n Leu	310		e Lev	ı Pro	o Asj	Try 315	Ser	Thr	Arg	Ile	Met 320
Phe	≘ Pho	e Le	u Va	1 Ser 325		Leu	ı Val	l Gly	y Gl:		≥ Leu	Leu	. Ser	His 335	Val

340	Val Glu Ly 345	ys Phe Ala Leu S	Ser Ser Asn 350
Ile Met Ser Asn Tyr Ala Cys 355	Leu Gln I 360	le Met Thr Thr 365	Arg Asn Met
Arg Pro Gly Arg Phe Ile Asp 370 375		rp Gly Gly Leu : 380	Asn Tyr Gln
Ile Glu His His Leu Phe Pro	Thr Met P	ro Arg His Asn	Leu Asn Thr 400
Val Met Pro Leu Val Lys Glu 405	Phe Ala A	la Ala Asn Gly 10	Leu Pro Tyr 415
Met Val Asp Asp Tyr Phe Thr 420	Gly Phe T 425	rp Leu Glu Ile	Glu Gln Phe 430
Arg Asn Ile Ala Asn Val Ala 435	a Ala Lys L 440	eu Thr Lys Lys 445	Ile Ala
<210> 9 <211> 1443 <212> DNA <213> Physcomitrella pates	ns		
<220> <221> CDS <222> (1)(1443) <223> Delta-5-Desaturase			
<221> CDS <222> (1)(1443)	p Thr Ala (ggg ctc gtg cct Gly Leu Val Pro 10	tct gac gaa 48 Ser Asp Glu 15
<221> CDS <222> (1)(1443) <223> Delta-5-Desaturase <400> 9 atg gcg ccc cac tct gcg ga Met Ala Pro His Ser Ala As	p Thr Ala (Gly Leu Val Pro 10 ggt ccc gaa caa	Ser Asp Glu 15 gag caa act 96
<221> CDS <222> (1)(1443) <223> Delta-5-Desaturase <400> 9 atg gcg ccc cac tct gcg ga Met Ala Pro His Ser Ala As 1 5 ttg agg cta cga acg tcg aa Leu Arg Leu Arg Thr Ser As	t tca aag g n Ser Lys g 25	Gly Leu Val Pro 10 ggt ccc gaa caa Gly Pro Glu Gln agc cgc cac aac	Ser Asp Glu 15 gag caa act 96 Glu Gln Thr 30 acc cca gca 144
<pre><221> CDS <222> (1)(1443) <223> Delta-5-Desaturase <400> 9 atg gcg ccc cac tct gcg ga Met Ala Pro His Ser Ala As</pre>	t tca aag g n Ser Lys g 25 a gat gtc g u Asp Val g 40 g ggc aaa	Gly Leu Val Pro 10 ggt ccc gaa caa Gly Pro Glu Gln agc cgc cac aac Ser Arg His Asn 45	Ser Asp Glu 15 gag caa act 96 Glu Gln Thr 30 acc cca gca 144 Thr Pro Ala aca agc tgg 192
<pre><221> CDS <222> (1)(1443) <223> Delta-5-Desaturase <400> 9 atg gcg ccc cac tct gcg ga Met Ala Pro His Ser Ala As 1</pre>	t tca aag g t tca aag g n Ser Lys g 25 a gat gtc g u Asp Val g g ggc aaa g p Gly Lys g g agt ctc	Gly Leu Val Pro 10 ggt ccc gaa caa Gly Pro Glu Gln agc cgc cac aac Ser Arg His Asn 45 gtc tac gat gtc Val Tyr Asp Val 60 atc cac gta aaa	Ser Asp Glu 15 gag caa act 96 Glu Gln Thr 30 acc cca gca 144 Thr Pro Ala aca agc tgg 192 Thr Ser Trp gca ggg cag 240
<pre><221> CDS <222> (1)(1443) <223> Delta-5-Desaturase <400> 9 atg gcg ccc cac tct gcg ga Met Ala Pro His Ser Ala As 1</pre>	t tca aag g t tca aag g n Ser Lys 25 a gat gtc u Asp Val 40 g ggc aaa p Gly Lys gc agt ctc ly Ser Leu	Gly Leu Val Pro 10 ggt ccc gaa caa Gly Pro Glu Gln agc cgc cac aac Ser Arg His Asn 45 gtc tac gat gtc Val Tyr Asp Val 60 atc cac gta aaa Ile His Val Lys 75 cac ccc ctt tat	Ser Asp Glu 15 gag caa act 96 Glu Gln Thr 30 acc cca gca 144 Thr Pro Ala aca agc tgg 192 Thr Ser Trp gca ggg cag 240 Ala Gly Gln 80 gtc agg aaa 288

gac a Asp I	ŗĀ2 gad	ttt Phe 115	aag Lys	aaa Lys	gca Ala	Thr :	ctg Leu 120	gag Glu	tat Tyr	gca Ala	gat Asp	gcc Ala 125	gaa Glu	aat Asn	gaa Glu	384
Asp 1	ttc Phe 130	tat Tyr	ttg Leu	gtt Val	gtg Val	aag Lys 135	caa Gln	cga Arg	gtt Val	gaa Glu	tct Ser 140	tat Tyr	ttc Phe	aag Lys	agt Ser	432
aac a Asn 1	aag Lys	ata Ile	aac Asn	ccc Pro	caa Gln 150	att Ile	cat His	cca Pro	cat His	atg Met 155	atc Ile	ctg Leu	aag Lys	tca Ser	ttg Leu 160	480
ttc Phe	att Ile	ctt Leu	Gly ggg	gga Gly 165	tat Tyr	ttc Phe	gcc Ala	agt Ser	tac Tyr 170	tat Tyr	tta Leu	gcg Ala	ttc Phe	ttc Phe 175	tgg Trp	528
tct Ser	tca Ser	agt Ser	gtc Val 180	ctt Leu	gtt Val	tct Ser	ttg Leu	ttt Phe 185	ttc Phe	gca Ala	ttg Leu	tgg Trp	atg Met 190	Gly ggg	ttc Phe	576
ttc Phe	gca Ala	gcg Ala 195	gaa Glu	gtc Val	ggc Gly	gtg Val	tcg Ser 200	att Ile	caa Gln	cat His	gat Asp	gga Gly 205	aat Asn	cat His	ggt Gly	624
tca Ser	tac Tyr 210	act Thr	aaa Lys	tgg Trp	cgt Arg	ggc Gly 215	ttt Phe	gga Gly	tat Tyr	atc Ile	atg Met 220	gga Gly	gcc Ala	tcc Ser	cta Leu	672
gat Asp 225	cta Leu	gtc Val	gga Gly	gcc Ala	agt Ser 230	agc Ser	ttc Phe	atg Met	tgg Trp	aga Arg 235	cag Gln	caa Gln	cac His	gtt Val	gtg Val 240	720
gga Gly	cat His	cac	tcg Ser	ttt Phe 245	aca Thr	aat Asn	gtg Val	gac Asp	aac Asn 250	Tyr	gat Asp	cct Pro	gat Asp	att Ile 255	Arg	768
gtg Val	aaa Lys	gat Asp	cca Pro 260	Asp	gtc Val	agg Arg	agg Arg	gtt Val 265	Ala	acc Thr	aca Thr	caa Gln	cca Pro 270	Arg	caa Gln	816
tgg Trp	tat Tyr	cat His	s Ala	g tat a Tyr	cag Glr	cat His	atc 11e 280	: Tyr	ctg Leu	gca Ala	gta Val	tta L Leu 285	TAI	. Gly	act Thr	864
cta Leu	gct Ala 290	a Le	t aaq	g agi s Sei	t att	ttt Phe 295	Let	a gat 1 Asp	gat Asp	tto Phe	cti Lei 300	ı Ala	tac Tyr	tto Phe	aca Thr	912
gga Gly 305	Se:	a at	t gg e Gl	y Pr	t gto o Val	L LYS	gtg Val	g gcg L Ala	, aaa Lys	a ato Met 315	= un:	c ccc r Pro	cto Lev	gaq 1 Gl	ttc Phe 320	960
aac Asn	ate	c tt e Ph	c tt e Ph	t ca e Gl 32	n Gly	a aag / Lys	r cto Lev	g cta ı Lev	tat Ty:	c Ale	g tt a Ph	c tac e Ty	e atq	tte Phe 33	c gtg e Val 5	1008
ttg Leu	cc Pr	a tc o Se	t gt r Va 34	l Ty	r Gl	t gtt y Val	cae L Hi:	c tco s Sei 34!	r GI	a gg y Gl	a ac y Th	t tto r Pho	e Lei 35	1 AT	a cta a Leu	1056
tat Ty1	gt Va	g gc 1 Al 35	a Se	t ca r Gl	g ct n Le	c ati u Ile	ac Th	r Gl	t tg y Tr	g at p Me	g tt t Le	a gc u Al 36	a Pn	t ct e Le	t ttt u Phe	1104
ca: Gli	a gt n Va 37	1 Al	a ca .a Hi	it gt .s Va	c gt 1 Va	g ga 1 As; 37	o As	t gt p Va	t gc l Al	a tt a Ph	t co e Pr	o Th	a cc r Pr	a ga o Gl	a ggt u Gly	1152

									10	,						
385 ggg	aag Lys	gtg Val	aag Lys	gga Gly	gga Gly 390	tgg Trp	gct Ala	gca Ala :	atg Met	cag Gln 395	gtt Val	gca Ala	aca Thr	act Thr	acg Thr 400	1200
gat Asp	ttc Phe	agt Ser	cca Pro	cgc Arg 405	tca Ser	tgg Trp	ttc Phe	Trp	ggt Gly 410	cat His	gtc Val	tct Ser	gga Gly	gga Gly 415	tta Leu	1248
aac Asn	aac Asn	caa Gln	att Ile 420	gag Glu	cat His	cat His	ctg Leu	ttt Phe 425	cca Pro	gga Gly	gtg Val	tgc Cys	cat His 430	gtt Val	cat His	1296
tat Tyr	cca Pro	gcc Ala 435	att Ile	cag Gln	cct Pro	att Ile	gtc Val 440	gag Glu	aag Lys	acg Thr	tgc Cys	aag Lys 445	gaa Glu	ttc Phe	gat Asp	1344
gtg Val	cct Pro 450	tat Tyr	gta Val	gcc Ala	tac Tyr	cca Pro 455	act Thr	ttt Phe	tgg Trp	act Thr	gcg Ala 460	ttg Leu	aga Arg	gcc Ala	cac His	1392
ttt Phe 465	gcg Ala	cat His	ttg Leu	aaa Lys	aag Lys 470	gtt Val	gga Gly	ttg Leu	aca Thr	gag Glu 475	ttt Phe	cgg Arg	ctc Leu	gat Asp	ggc Gly 480	1440
tga																1443
<21 <21 <21 <21	1> 2> 3>	10 480 PRT Phys 10	comi	trel	la p	aten:	s			•						
	Ala		His	Ser 5	Ala	Asp	Thr	Ala	Gly 10	Leu	. Val	Pro	Ser	Asp 15	Glu	
Leu	a Arg	. Leu	Arg 20	Thr	Ser	` Asn	Ser	Lys 25	Gly	Pro	Glu	Gln	Glu 30	. Glr	Thr	
Lev	Lys	Lys 35	Tyr	Thr	Leu	ı Glu	Asp 40	Val	Ser	· Arg	J His	Asn 45	. Thr	Pro	Ala	
Ası	50	Tr) Lev	ı Val	. Ile	e Trp 55	Gly	r Lys	val	. Туз	Ası 60	val	. Thi	s Sei	Trp	
I1: 65	e Pro	o Ası	n His	s Pro	70	/ Gly	r Sei	r Lev	ı Ile	e Hi: 75	s Val	L Lys	s Ala	a Gly	Gln 80	
Ası	o Se:	r Thi	r Gli	n Lei 85	ı Phe	e Asp	Sei	с Туг	Hi:	s Pr	o Lei	тул	r Vai	95	J Lys	
Me	t Le	u Ala	a Ly: 10:		r Cy:	s Ile	e Gl	y Glu 10	ı Le	u Va	l Pr	o Se	r Al:	a Gl	y Asp	
As	p Ly	s Ph 11		s Ly	s Al	a Th	r Le		а Ту	r Al	a As	p Al.	a Gl [.] 5	u As	n Glu	

Asn Lys Ile Asn Pro Gln Ile His Pro His Met Ile Leu Lys Ser Leu 145 150 155 160

Phe Ile Leu Gly Gly Tyr Phe Ala Ser Tyr Tyr Leu Ala Phe Phe Trp 165 170 175

Ser Ser Ser Val Leu Val Ser Leu Phe Phe Ala Leu Trp Met Gly Phe . 180 185 190

Phe Ala Ala Glu Val Gly Val Ser Ile Gln His Asp Gly Asn His Gly 195 200 205

Ser Tyr Thr Lys Trp Arg Gly Phe Gly Tyr Ile Met Gly Ala Ser Leu 210 215 220

Asp Leu Val Gly Ala Ser Ser Phe Met Trp Arg Gln Gln His Val Val 225 230 235

Gly His His Ser Phe Thr Asn Val Asp Asn Tyr Asp Pro Asp Ile Arg 245 250 255

Val Lys Asp Pro Asp Val Arg Arg Val Ala Thr Thr Gln Pro Arg Gln 260 265 270

Trp Tyr His Ala Tyr Gln His Ile Tyr Leu Ala Val Leu Tyr Gly Thr 275 280 285

Leu Ala Leu Lys Ser Ile Phe Leu Asp Asp Phe Leu Ala Tyr Phe Thr 290 295 300

Gly Ser Ile Gly Pro Val Lys Val Ala Lys Met Thr Pro Leu Glu Phe 305 310 315

Asn Ile Phe Phe Gln Gly Lys Leu Leu Tyr Ala Phe Tyr Met Phe Val 325 330 335

Leu Pro Ser Val Tyr Gly Val His Ser Gly Gly Thr Phe Leu Ala Leu 340 345 350

Tyr Val Ala Ser Gln Leu Ile Thr Gly Trp Met Leu Ala Phe Leu Phe 355 360 365

Gln Val Ala His Val Val Asp Asp Val Ala Phe Pro Thr Pro Glu Gly 370 375 380

Gly Lys Val Lys Gly Gly Trp Ala Ala Met Gin Val Ala Thr Thr Thr 385 390 395 400

Asp Phe Ser Pro Arg Ser Trp Phe Trp Gly His Val Ser Gly Gly Leu 405 410 415

Asn A	Asn	Gln	Ile 420	Glu	His	Hi:	s Le	u P 4	he .25	Pro	Gly	Va.	1 C	ys i	His ` 430	Val	Hi	s	
Tyr I	Pro	Ala 435	Ile	Glr	Pro	o Il	e Va 44	il G	lu	Lys	Thr	СУ	s I	ys (145	Glu	Phe	As	g.	
Val :	Pro 450	Tyr	Val	. Ala	а Ту:	r Pr 45	o Ti 5	nr F	?he	Trp	Thr	A1 46	a I 0	Leu	Arg	Ala	H	s	
Phe . 465	Ala	His	Lev	Ly:	5 Ly 47	s Va 0	1 G:	ly I	Leu	Thr	Glu 475	Ph	ne 2	Arg	Leu	Asp	G:	Ly 30	
<210 <211 <212 <213	> >	11 1320 DNA Thra		roch	ytri	mr										·			
<220 <221 <222 <223	.> !>	CDS (1).	. (1	320)															
<400 atg Met 1	~~~	220	g Gl	c ag y Se 5	c ga r Gl	ag gg lu G	gc c	gc rg	agc Ser	gcç Ala	gc Al	g cạ a A	gc rg	gag Glu	atg Met	acg Thr 15	g 9 r A	cc la	48
gag Glu	gcg	aa As	c gg n Gl 20	y As	c as	ag c ys A	gg a rg I	aa .ys	acg Thr 25	att Ile	ct Le	g a u I	tc 1e	gag Glu	ggc 30	gto Val	2 C	tg eu	96
tac Tyr	gac Asp	gc Al 35	a Th	g aa ir As	ac t	tt a he L	ys I	cac His 10	ccg Pro	gg Gl	gg y Gl	t t y S	.cg er	atc Ile 45	atc Ile	aa As	c t	tc Phe	144
ttg Leu	acc Th:	ga c Gl	g gg u Gl	'A C	ag g lu A	cc g la G 5	gc 9 1y 7	gtg Val	gac	gc Al	g ac a Th	ır G	ag 31n 30	gcg Ala	tac Tyr	cg Ar	g (gag Glu	192
ttt Phe 65	ca Hi	t ca s Gl	g cg n Ai	gg t cg S	er G	gc a ly I 0	ag (gcc Alà	gad	c aa o Ly	g ta s Ty 79	Yr 1	tc Leu	aag Lys	tce Sei	g ct Le	·u	ccg Pro 80	240
aag Lys	ct Le	g ga u As	at go	eg t la S	er I	ys (rtg 7al	gag Glu	tc: Se:	g cg r Ar 90	g P	ic t	tcg Ser	gco ·Ala	aaa Lys	a ga s Gl 95	·u	cag Gln	288
gcg	g cg a Ar	g Ai	g A	ac g sp A	cc a la N	itg a Met 5	icg Thr	cgc Arg	ga As 10	b ll	ıc g	cg q la i	gcc Ala	ttt Phe	cge Are	دی و	ag lu	gag Glu	336
ct: Le:	gʻt u Va	1 A	cc g la G 15	ag g lu G	igg t	ac Tyr :	tt Phe	gac Asp 120	Pr	g to o Se	g a er I	tc le	ccg Pro	7 ca Hi: 12	s Me	g at t I	tt le	tac Tyr	384
cg:	c gt g Va 13	il V	tg g al G	ag a	itc (gtg Val	gcg Ala 135	Ctc	tt 1 Ph	c go	cg c la L	eu	tcg Ser 140	. hu	c tg e Tr	p L	tc eu	atg Met	432
tc: Se:	c aa r Ly	ag g /s A	cc t la S	cg (er 1	ecc (acc Thr	tcg Ser	Cto	g gt u Va	g c	tg g eu G	gc	gtg Val	g gt L Va	g at 1 Me	g a	ac sn	ggc Gly	480

145				150					155					16	0	
att gc Ile Al	g ca a Gl:	n Gl/ g gg¢	cgc Arg 165	tgc Cys	ggc Gly	tgg Trp	gtc Val	atg Met 170	cac His	gag Glu	atg Met	ggc	cac His 175	Gl	A. a	528
tcg tt Ser Ph	c ac e Th	g ggg r Gly 180	y Val	atc Ile	tgg Trp	ctc Leu	gac Asp 185	gac Asp	cgg Arg	atg Met	tgc Cys	gag Glu 190	ttc Phe	t t Ph	ic ne	576
tac gg Tyr Gl	c gt y Va	l Gl	tgc Y Cys	ggc	atg Met	agc Ser 200	GJA āāā	cac His	tac Tyr	tgg Trp	aag Lys 205	aac Asn	cag Gln	ca Hi	ac Ls	624
agc aa Ser Ly 21	/s Hi	ac ca Is Hi	c gcc s Ala	gcg Ala	ccc Pro 215	aac Asn	cgc Arg	ctc Leu	gag Glu	cac His 220	ASD	gtc Val	gat Asp	ct Le	eu eu	672
aac ac Asn Th 225	eg ct nr Le	g cc eu Pr	c ctç o Lev	gtc Val 230	Ala	ttt Phe	aac Asn	gag Glu	cgc Arg 235	Val	gtg Val	cgc	aag Lys		tc al 40	720
aag co Lys P	cg gg ro Gi	ga to ly Se	g cto r Let 249	ı Lev	gcg Ala	cto	tgg Trp	ctg Leu 250	ALC	gtg Val	cag Glr	gcg Ala	tac Tyr 255	. –	tc eu	768
ttt g Phe A	cg co la P	cc gt ro Va 26	ıl Se:	g tgo c Cys	ctg Leu	cto Lev	atc 11e 265	GTĀ	ctt Lev	r GJ7	tgg Tr	Thr 270	. 1100	t 1 T	ac yr	816
ctg c Leu H	is P	cg cg ro Ai 75	gc ta g Ty	c ato	g cto Lev	r cgc Arg 280	y Thr	aag Lys	cgg Arg	g cad	ato Mei 28	L GT	g tto 1 Pho	e V	rtc Mal	864
tgg a Trp I 2	tc t le P	tc go	eg eg La Ar	c tao g Ty:	att r Ile 299	e Gly	tgg Y Trp	tto Phe	tc: Se:	g cto r Le 30	u Me	g ggg	gc y Al	t c a I	etc Leu	912
ggc t Gly 1 305	ac tryr s	cg c Ser P	cg gg	c ac y Th 31	r Se	g gte r Va	c ggg	g ato	ta t Ty 31	r re	g tg u Cy	c tc s Se	g tt r Ph		ggc Sly 320	960
ctc (Leu (ggc t Gly (gc a Cys I	tt ta le Ty 32	r Il	t tt e Ph	c ct e Le	g cag u Gli	g tto n Pho 33	e Al	c gt a Va	c ag 1 Se	c ca r Hi	c ac s Th 33		cac His	1008
ctg (Leu)	ccg g Pro 7	Val T	cc as hr As 40	ac co sn Pr	g ga o Gl	g ga u As	с са р Gl: 34	n re	g ca u Hi	c to s Tr	g ct p Le	c ga u Gl 35	.uy	r i	gcg Ala	1056
gcc (Ala	Asp 1	cac a His T 355	icg gi hr Va	ig aa al As	ic at in Il	t ag e Se 36	er Th	c aa r Ly	g to s Se	c to er Ti	gg ct p Le 36	eu ve	c ac	g	tgg Trp	1104
Trp	atg Met 370	tcg a Ser 1	ac c Asn L	tg aa eu As	ac tt sn Ph 37	ie G.	ig at In Il	c ga e Gl	ig Ca .u Hi	LS n.	ac ct is Le 80	c tt eu Pl	c co ne Pi	cc ro	acg Thr	1152
gcg Ala 385	ccg Pro	cag (Gln)	tc c he A	rg Pl	cc as ne Ly 90	ag ga /s Gi	aa at lu Il	c ag e Se	er P	ct co ro A: 95	gc gt rg Va	tc ga al G	ag go Lu A	cc la	ctc Leu 400	1200
ttc Phe	aag Lys	cgc Arg	cac a His A 4	ac c sn L 05	tc co eu Pi	eg 'ta ro T	ac ta yr Ty	r As	ac c sp L 10	tg c eu P	cc t ro T	ac ac yr Ti	ur 2	gc er 15	gcg Ala	1248
gtc Val	tcg Ser	acc Thr	acc t Thr F	tt g he A	cc a	at c sn L	tt ta eu T	at to	cc g er V	tc g al G	gc c	ac t is S	cg g er V	tc al	ggc Gly	1296

420

425

430

gcc gac acc aag aag cag gac tga Ala Asp Thr Lys Lys Gln Asp 435 1320

<210> 12 <211> 439

<212> PRT

<213> Thraustrochytrium

<400> 12

Met Gly Lys Gly Ser Glu Gly Arg Ser Ala Ala Arg Glu Met Thr Ala 1 5 10 15

Glu Ala Asn Gly Asp Lys Arg Lys Thr Ile Leu Ile Glu Gly Val Leu 20 25 30

Tyr Asp Ala Thr Asm Phe Lys His Pro Gly Gly Ser Ile Ile Asm Phe 35 40 45

Leu Thr Glu Gly Glu Ala Gly Val Asp Ala Thr Gln Ala Tyr Arg Glu 50 55 60

Phe His Gln Arg Ser Gly Lys Ala Asp Lys Tyr Leu Lys Ser Leu Pro 65 70 75 80

Lys Leu Asp Ala Ser Lys Val Glu Ser Arg Phe Ser Ala Lys Glu Gln 85 90 95

Ala Arg Arg Asp Ala Met Thr Arg Asp Tyr Ala Ala Phe Arg Glu Glu 100 105 110

Leu Val Ala Glu Gly Tyr Phe Asp Pro Ser Ile Pro His Met Ile Tyr 115 120 125

Arg Val Val Glu Ile Val Ala Leu Phe Ala Leu Ser Phe Trp Leu Met 130 135 140

Ser Lys Ala Ser Pro Thr Ser Leu Val Leu Gly Val Val Met Asn Gly 145 150 150 155

Ile Ala Gln Gly Arg Cys Gly Trp Val Met His Glu Met Gly His Gly 165 170 175

Ser Phe Thr Gly Val Ile Trp Leu Asp Asp Arg Met Cys Glu Phe Phe 180 185 190

Tyr Gly Val Gly Cys Gly Met Ser Gly His Tyr Trp Lys Asn Gln His 195 200 205

Ser Lys His His Ala Ala Pro Asn Arg Leu Glu His Asp Val Asp Leu 210 215 220

Asn Thr Leu Pro Leu Val Ala Phe Asn Glu Arg Val Val Arg Lys Val 230

Lys Pro Gly Ser Leu Leu Ala Leu Trp Leu Arg Val Gln Ala Tyr Leu

Phe Ala Pro Val Ser Cys Leu Leu Ile Gly Leu Gly Trp Thr Leu Tyr

Leu His Pro Arg Tyr Met Leu Arg Thr Lys Arg His Met Glu Phe Val 280

Trp Ile Phe Ala Arg Tyr Ile Gly Trp Phe Ser Leu Met Gly Ala Leu 295

Gly Tyr Ser Pro Gly Thr Ser Val Gly Met Tyr Leu Cys Ser Phe Gly

Leu Gly Cys Ile Tyr Ile Phe Leu Gln Phe Ala Val Ser His Thr His 325

Leu Pro Val Thr Asn Pro Glu Asp Gln Leu His Trp Leu Glu Tyr Ala

Ala Asp His Thr Val Asn Ile Ser Thr Lys Ser Trp Leu Val Thr Trp 355 365

Trp Met Ser Asn Leu Asn Phe Gln Ile Glu His His Leu Phe Pro Thr

Ala Pro Gln Phe Arg Phe Lys Glu Ile Ser Pro Arg Val Glu Ala Leu

Phe Lys Arg His Asn Leu Pro Tyr Tyr Asp Leu Pro Tyr Thr Ser Ala 410

Val Ser Thr Thr Phe Ala Asn Leu Tyr Ser Val Gly His Ser Val Gly 425

Ala Asp Thr Lys Lys Gln Asp 435

<210> 13

<211> 1341 <212> DNA <213> Mortierella alpina

<220>

<400 atg Met 1)> 1 gga Gly	.3 acg Thr	gac Asp	caa Gln 5	gga Gly	aaa Lys	acc Thr	ttc Phe	acc Thr 10	tgg Trp	gaa Glu	gag Glu	ctg Leu	gcg Ala 15	gcc Ala	48
cat His	aac Asn	acc Thr	aag Lys 20	gac Asp	gac Asp	cta Leu	ctc Leu	ttg Leu 25	gcc Ala	atc Ile	cgc Arg	ggc Gly	agg Arg 30	gtg Val	tac Tyr	96
gat Asp	gtc Val	aca Thr 35	aag Lys	ttc Phe	ttg Leu	agc Ser	cgc Arg 40	cat His	cct Pro	ggt Gly	gga Gly	gtg Val 45	gac Asp	act Thr	ctc Leu	144
ctg Leu	ctc Leu 50	gga Gly	gct Ala	ggc Gly	cga Arg	gat Asp 55	gtt Val	act Thr	ccg Pro	gtc Val	ttt Phe 60	gag Glu	atg Met	tat Tyr	cac His	. 192
gcg Ala 65	ttt Phe	GJA aaa	gct Ala	gca Ala	gat Asp 70	gcc Ala	att Ile	atg Met	aag Lys	aag Lys 75	tac Tyr	tat Tyr	gtc Val	ggt Gly	aca Thr 80	240
ctg Leu	gtc Val	tcg Ser	aat Asn	gag Glu 85	ctg Leu	ccc Pro	atc Ile	ttc Phe	ccg Pro 90	gag Glu	cca Pro	acg Thr	gtg Val	ttc Phe 95	cac His	288
aaa Lys	acc Thr	atc Ile	aag Lys 100	acg Thr	aga Arg	gtc Val	gag Glu	ggc Gly 105	tac Tyr	ttt Phe	acg Thr	gat Asp	cgg Arg 110	aac Asn	att Ile	336
gat Asp	ccc Pro	aag Lys 115	aat Asn	aga Arg	cca Pro	gag Glu	atc Ile 120	tgg Trp	gga Gly	cga Arg	tac Tyr	gct Ala 125	ctt Leu	atc Ile	ttt Phe	384
gga Gly	tcc Ser 130	ttg Leu	atc Ile	gct Ala	tcc Ser	tac Tyr 135	tac Tyr	gcg Ala	cag Gln	ctc Leu	ttt Phe 140	gtg Val	cct Pro	ttc Phe	gtt Val	432
gtc Val 145	gaa Glu	cgc Arg	aca Thr	tgg Trp	ctt Leu 150	cag Gln	gtg Val	gtg Val	ttt Phe	gca Ala 155	Ile	atc Ile	atg Met	gga Gly	ttt Phe 160	480
gcg Ala	tgc . Cys	gca Ala	. caa . Gln	gtc Val 165	Gly	ctc Leu	aac Asn	cct Pro	ctt Leu 170	His	gat Asp	gcg Ala	tct Ser	cac His 175	Phe	528
tca Ser	gtg Val	acc Thr	cac His	Asn	ccc Pro	act Thr	gtc Val	tgg Trp 185	Lys	att	ctg Leu	gga Gly	gcc Ala 190	Thr	cac His	576
gac Asr	ttt Phe	ttc Phe 195	Asn	gga Gly	gca Ala	tcg Ser	tac Tyr 200	Leu	gtg Val	tgg Trp	atg Met	tac Tyr 205	Gln	. cat	atg Met	624
cto Lei	ggc Gly 210	, His	cac His	ccc Pro	tac Tyr	acc Thr 215	Asr	att Ile	gct Ala	gga Gly	gca Ala 220	. Ast	ccc Pro	gac Asp	gtg Val	672
tcg Sei 225	Thr	tct Ser	gag Glu	g ccc n Pro	gat Asp 230	Val	. cgt	cgt Arg	ato JIle	t aag Lys 235	Pro	aac Ası	c caa n Glr	aag Lys	tgg Trp 240	720
tt: Phe	gto Val	aac L Ası	c cac n His	ato 11e 245	e Asr	cac Glr	cac His	ato Met	ttt Phe 250	e Val	cet L Pro	tto Phe	ctç Le	tac 1 Ty: 25	gga Gly	768
ct; Le:	g cto 1 Lev	g gcg ı Ala	y tto a Phe	aaq Lys	g gto s Val	g cgc L Arg	att	cag e Glr	g gad 1 Asp	e ato	c aad e Asi	ati	t ttg e Le	j tad i Ty	ttt Phe	816

260)	265	270
gtc aag acc aat Val Lys Thr Asn 275	gac gct att cgt Asp Ala Ile Arg 280	gtc aat ccc atc tcg Val Asn Pro Ile Ser 285	aca tgg cac 864 Thr Trp His
act gtg atg tto Thr Val Met Phe 290	tgg ggc ggc aag Trp Gly Gly Lys 295	gct ttc ttt gtc tgg Ala Phe Phe Val Trp 300	tat cgc ctg 912 Tyr Arg Leu
att gtt ccc ctg Ile Val Pro Leu 305	g cag tat ctg ccc 1 Gln Tyr Leu Pro 310	ctg ggc aag gtg ctg Leu Gly Lys Val Leu 315	ctc ttg ttc 960 Leu Leu Phe 320
acg gtc gcg gad Thr Val Ala Asg	e atg gtg tcg tct p Met Val Ser Ser 325	tac tgg ctg gcg ctg Tyr Trp Leu Ala Leu 330	acc ttc cag 1008 Thr Phe Gln 335
gcg aac cac gtt Ala Asn His Val 340	l Val Glu Glu Val	cag tgg ccg ttg cct Gln Trp Pro Leu Pro 345	gac gag aac 1056 Asp Glu Asn 350
ggg atc atc cas Gly Ile Ile Glr 355	a aag gac tgġ gca n Lys Asp Trp Ala 360	gct atg cag gtc gag Ala Met Gln Val Glu 365	act acg cag 1104 Thr Thr Gln
gat tac gca cac Asp Tyr Ala His 370	c gat tcg cac ctc s Asp Ser His Leu 375	tgg acc agc atc act Trp Thr Ser Ile Thr 380	ggc agc ttg 1152 Gly Ser Leu
aac tac cag gc Asn Tyr Gln Ala 385	t gtg cac cat ctg a Val His His Leu 390	ttc ccc aac gtg tcg Phe Pro Asn Val Ser 395	cag cac cat 1200 Gln His His 400
tat ccc gat at Tyr Pro Asp Il	t ctg gcc atc atc e Leu Ala Ile Ile 405	aag aac acc tgc agc Lys Asn Thr Cys Ser 410	gag tac aag 1248 Glu Tyr Lys 415
gtt cca tac ct Val Pro Tyr Le 42	u Val Lys Asp Thr	ttt tgg caa gca ttt Phe Trp Gln Ala Phe 425	gct tca cat 1296 Ala Ser His 430
ttg gag cac tt Leu Glu His Le 435	g cgt gtt ctt gga eu Arg Val Leu Gly 440	ctc cgt ccc aag gaa Leu Arg Pro Lys Glu 445	Glu
<210> 14 <211> 446 <212> PRT <213> Mortier	rella alpina		
<400> 14			
Met Gly Thr As 1	sp Gln Gly Lys Thr 5	Phe Thr Trp Glu Glu	ı Leu Ala Ala 15
His Asn Thr Ly 20		ı Leu Ala Ile Arg Gly 25	y Arg Val Tyr 30
Asp Val Thr Ly 35	ys Phe Leu Ser Arg 40	g His Pro Gly Gly Va 45	l Asp Thr Leu
Leu Leu Gly Al 50	la Gly Arg Asp Val	l Thr Pro Val Phe Gl 60	u Met Tyr His

- Ala Phe Gly Ala Ala Asp Ala Ile Met Lys Lys Tyr Tyr Val Gly Thr 65 70 75 80
- Leu Val Ser Asn Glu Leu Pro Ile Phe Pro Glu Pro Thr Val Phe His 85 90 95
- Lys Thr Ile Lys Thr Arg Val Glu Gly Tyr Phe Thr Asp Arg Asn Ile 100 105 110
- Asp Pro Lys Asn Arg Pro Glu Ile Trp Gly Arg Tyr Ala Leu Ile Phe 115 120 125 .
- Gly Ser Leu Ile Ala Ser Tyr Tyr Ala Gln Leu Phe Val Pro Phe Val 130 135 140
- Val Glu Arg Thr Trp Leu Gln Val Val Phe Ala Ile Ile Met Gly Phe 145 150 155
- Ala Cys Ala Gln Val Gly Leu Asn Pro Leu His Asp Ala Ser His Phe 165 170 175
- Ser Val Thr His Asn Pro Thr Val Trp Lys Ile Leu Gly Ala Thr His 180 185 190
- Asp Phe Phe Asn Gly Ala Ser Tyr Leu Val Trp Met Tyr Gln His Met 195 200 205
- Leu Gly His His Pro Tyr Thr Asn Ile Ala Gly Ala Asp Pro Asp Val . 210 215 220
- Ser Thr Ser Glu Pro Asp Val Arg Arg Ile Lys Pro Asn Gln Lys Trp 225 230 235
- Phe Val Asn His Ile Asn Gln His Met Phe Val Pro Phe Leu Tyr Gly 245 250 255
- Leu Leu Ala Phe Lys Val Arg Ile Gln Asp Ile Asn Ile Leu Tyr Phe 260 265 270
- Val Lys Thr Asn Asp Ala Ile Arg Val Asn Pro Ile Ser Thr Trp His 275 280 285
- Thr Val Met Phe Trp Gly Gly Lys Ala Phe Phe Val Trp Tyr Arg Leu 290 295 300
- Ile Val Pro Leu Gln Tyr Leu Pro Leu Gly Lys Val Leu Leu Leu 9he 305 310 315
- Thr Val Ala Asp Met Val Ser Ser Tyr Trp Leu Ala Leu Thr Phe Gln 325 330 335

1114	Asn	His	Val 340	Val	Glu	Glu '	Val	Gln 345	Trp 1	Pro	Leu	Pro	Asp 350	Glu	Asn	
Gly	Ile	Ile 355	Gln	Lys	Asp	Trp	Ala 360	Ala	Met (Gln	Val	Glu 365	Thr	Thr	Gln	
Asp	туr 370	Ala	His	Asp	Ser	His 375	Leu	Trp	Thr	Ser	Ile 380	Thr	Gly	Ser	Leu	
Asn 385		Gln	Ala	Val	His 390	His	Leu	Phe	Pro .	Asn 395	Val	Ser	Gln	His	His 400	
Tyr	Pro	Asp	Ile	Leu 405	Ala	Ile	Ile	Lys	Asn 410	Thr	Cys	Ser	Glu	Tyr 415	Lys	
Val	Pro	Tyr	Leu 420	Val	Lys	Asp	Thr	Phe 425	Trp	Gln	Ala	Phe	Ala 430	Ser	His	
Leu	Glu	His 435		Arg	Val	Leu	Gly 440	Leu	Arg	Pro	Lys	Glu 445	Glu			
<21	.1> .2>	15 1344 DNA Caen			ic e	l ecrai	.									
<21		Cucii	orna	Darr	72 C	regu	.13									
<22 <22 <22	:0> :1> :2>	CDS (1). Delt	.(13	44)					•							·
<22 <22 <22 <22	20> 21> 22> 23>	CDS (1). Delt	.(13 a-5-	44) Desa	tura caa	se	cat	gag Glu	cca Pro	ttc Phe	ttc Phe	att Ile	aaa Lys	att Ile 15	gat Asp	48
<22 <22 <22 <22 <4(ato	10> 21> 22> 23> 00> g gta	CDS (1). Delt 15 a tta Leu a tgg	.(13 a-5- .cga .Arg	44) Desa gag Glu 5 caa Glr	tura caa Gln	se gag Glu	cat His	Glu gct	Pro 10 gtc	Phe	Phe aga	Ile tca	Lys . cat	11e 15	gat Asp ggt	48 96
<22 <22 <22 <22 <40 ato Met 1	0> 21> 22> 23> 00> gta val	CDS (1). Delt 15 a tta Leu a tgg	.(13 a-5- cga Arg tgt Cys 20	44) Desa gag Glu 5 caa Gln	caa Gln att	gag Glu gac Asp	cat His gat Asp	Glu gct Ala 25	Pro 10 gtc Val	Phe ctg Leu gat	Phe aga Arg	Ile tca Ser	Lys cat His 30	11e 15 cca Pro	: Asp . ggt	
<22 <22 <22 <22 <40 ato Met 1 ggs Gly	20> 21> 22> 23> 00> gta Val a aaa y Lys	CDS (1). Delt 15 a tta a tta a tgg a Trg t gca a 35	.(13 a-5cga .Arg .Cys .20 .att	44) Desa gag Glu 5 caa Gln act	tura caa Gln att Ile	gag Glu gac Asp tat	cat His gat Asp aaa Lys 40	Glu gct Ala 25 aat Asn	Pro 10 gtc Val atg Met	Phe ctg Leu gat Asp	Phe aga Arg gcc Ala	tca Ser act Thr 45	Lys cat His 30 acc	11e 15 cca Pro	ggt Gly	96
<22 <22 <22 <22 <40 ato Met 1 gg: Gl: ca Hi.	20> 21> 22> 23> 00> 24	CDS (1). Delt 15 a tta c tgg c Trg t gca r Ala 35 a ttc r Phe	.(13a-5cga .cga .cys .cys .cys .cys .cos .cut	44) Desa gag Glu 5 caa Gln cact Thr	caa Gln att Ile acc Thr	gag Glu gac Asp tat Tyr	cat His gat Asp aaa Lys 40	get Ala 25 Asn Glu Glu Get	Pro 10 gtc Val atg Met gcg Ala	Phe ctg Leu gat Asp tat Tyr	aga Arg gcc Ala caa Glr 60	tca tca Ser act Thr 45 tgg	cat His 30 Cac Thr	cca Pro gta Val	ggt ggt Gly ttc. Phe	96 144 192
<22 <22 <22 <22 <40 ato Met 1 gg: G1; tte 65	20> 21> 22> 23> 00> gta val a aaa y Lys t agt y Ses c acs s Th	CDS (1). Delt 15 a tta 1 Leu 1 tgg 1 Trg 1 t a tgg 1 Trg 1 t a tta 2 Trg 1 t a tta 2 Trg 2 Trg 4 tta 3 5 a tta 4 tta 5 Trg 6 Trg 6 Trg 7 Ala 8 Trg 8 T	.(13 a-5	44) Desa gagg Glu 5 caas Gln act Thr	caa Gln att Ile acc Thr Gly	gag Glu gac Asp tat Tyr tct Ser 55	cat His gat Asp aaa Lys 40 aaa Lys	Glu gct Ala 25 aat Asn Gugaa	gtc Val atg Met gcg Ala	ctg Leu gat Asp tat Tyr	aga Arg Caa Caa Glr 60	tca Ser act Thr 45 tgg	cat His 30 acc Thr Ctg	gta Yal aca Thi	ggt Gly ttc Phe Ggaa Glu agaa Lys	96 144 192

					26	;						
	100		1	L05					110			
cgt atg cga Arg Met Arg 115	gtt cgt Val Arg	gca gaa Ala Glu	gga c Gly I 120	ett a Leu 1	atg : Met :	gat Asp	Gly	tct Ser 125	cct Pro	ttg Leu	ttc Phe	384
tac att aga Tyr Ile Arg 130	aaa att Lys Ile	ctt gaa Leu Glu 135	aca a Thr l	itc (ttc Phe	Thr	att Ile 140	ctt Leu	ttt Phe	gca Ala	ttc Phe	432
tac ctt caa Tyr Leu Gln 145	tac cac Tyr His	aca tat Thr Tyr 150	tat o Tyr I	ctt (Leu 1	Pro	tca Ser 155	gct Ala	att Ile	cta Leu	atg Met	gga Gly 160	480
gtt gcg tgg Val Ala Trp	caa caa Gln Gln 165	ttg gga Leu Gly	tgg t Trp I	Leu :	atc Ile 170	cat His	gaa Glu	ttc Phe	gca Ala	cat His 175	cat His	528
cag ttg ttc Gln Leu Phe	aaa aac Lys Asn 180	aga tac Arg Tyr	Tyr A	aat Asn 185	gat Asp	ttg Leu	gcc Ala	agc Ser	tat Tyr 190	ttc Phe	gtt Val	576
gga aac ttt Gly Asn Phe 195	tta caa Leu Gln	gga ttc Gly Phe	tca (Ser (200	tct (Ser	ggt Gly	Gly	tgg Trp	aaa Lys 205	gag Glu	cag Gln	cac His	624
aat gtg cat Asn Val His 210	cac gca His Ala	gcc aca Ala Thr 215	aat (Asn '	gtt Val	gtt Val	gga Gly	cga Arg 220	gac Asp	gga Gly	gat Asp	ctt Leu	672
gat tta gtc Asp Leu Val 225	cca ttc Pro Phe	tat gct Tyr Ala 230	aca (gtg Val	gca Ala	gaa Glu 235	cat His	ctc Leu	aac Asn	aat Asn	tat Tyr 240	720
tct cag gat Ser Gln Asp	tca tgg Ser Trp 245	gtt atg Val Met	act Thr	Leu	ttc Phe 250	aga Arg	tgg Trp	caa Gln	cat His	gtt Val 255	cat His	768
tgg aca ttc Trp Thr Phe	atg tta Met Leu 260	cca ttc Pro Phe	Leu	cgt Arg 265	ctc Leu	tcg Ser	tgg Trp	ct t Leu	ctt Leu 270	cag Gln	tca Ser	816
atc att ttt Ile Ile Phe 275	Val Ser	cag atg Gln Met	cca Pro 280	act Thr	cat His	tat Tyr	tat Tyr	gac Asp 285	tat Tyr	tac Tyr	aga Arg	864
aat act gcg Asn Thr Ala 290	att tat Ile Tyr	gaa cag Glu Gln 295	Val	ggt Gly	ctc Leu	tct Ser	ttg Leu 300	cac His	tgg Trp	gct Ala	tgg Trp	912
tca ttg ggt Ser Leu Gly 305	caa ttg Gln Leu	tat tto Tyr Phe 310	cta Leu	ccc Pro	gat Asp	tgg Trp 315	tca Ser	act Thr	aga Arg	ata Ile	atg Met 320	960
ttc ttc ctt Phe Phe Leu	gtt tct Val Ser 325	His Lev	gtt Val	gga Gly	ggt Gly 330	ttc Phe	ctg Leu	ctc Leu	tct Ser	cat His 335	Val	1008
gtt act ttc Val Thr Phe	aat cat Asn His 340	tat tca Tyr Ser	gtg Val	gag Glu 345	aag Lys	ttt Phe	gca Ala	ttg Leu	agc Ser 350	Ser	aac Asn	1056
atc atg tca Ile Met Ser 355	Asn Tyr	gct tgt Ala Cys	ctt Leu 360	caa Gln	atc Ile	atg Met	acc Thr	aca Thr 365	Arg	aat Asn	atg Met	1104
aga cct gga Arg Pro Gly	aga tto Arg Phe	att gad Elle Asp	tgg	ctt Leu	tgg Trp	gga Gly	ggt	ctt Leu	aac Asn	tat Tyr	cag Gln	1152

380 375 370 att gag cac cat ctt ttc cca acg atg cca cga cac aac ttg aac act 1200 Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Thr 395 390 1248 gtt atg cca ctt gtt aag gag ttt gca gca gca aat ggt tta cca tac Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asn Gly Leu Pro Tyr atg gtc gac gat tat ttc aca gga ttc tgg ctt gaa att gag caa ttc 1296 Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe 425 420 cga aat att gca aat gtt gct gct aaa ttg act aaa aag att gcc tag Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala 440 <210> 16 <211> 447 <212> PRT <213> Caenorhabditis elegans <400> 16 Met Val Leu Arg Glu Gln Glu His Glu Pro Phe Phe Ile Lys Ile Asp Gly Lys Trp Cys Gln Ile Asp Asp Ala Val Leu Arg Ser His Pro Gly Gly Ser Ala Ile Thr Thr Tyr Lys Asn Met Asp Ala Thr Thr Val Phe 40 His Thr Phe His Thr Gly Ser Lys Glu Ala Tyr Gln Trp Leu Thr Glu 55 Leu Lys Lys Glu Cys Pro Thr Gln Glu Pro Glu Ile Pro Asp Ile Lys Asp Asp Pro Ile Lys Gly Ile Asp Asp Val Asn Met Gly Thr Phe Asn Ile Ser Glu Lys Arg Ser Ala Gln Ile Asn Lys Ser Phe Thr Asp Leu 105 Arg Met Arg Val Arg Ala Glu Gly Leu Met Asp Gly Ser Pro Leu Phe 125 120 Tyr Ile Arg Lys Ile Leu Glu Thr Ile Phe Thr Ile Leu Phe Ala Phe 130 Tyr Leu Gln Tyr His Thr Tyr Tyr Leu Pro Ser Ala Ile Leu Met Gly Val Ala Trp Gln Gln Leu Gly Trp Leu Ile His Glu Phe Ala His His 170

435

Gln Leu Phe Lys Asn Arg Tyr Tyr Asn Asp Leu Ala Ser Tyr Phe Val 185 Gly Asn Phe Leu Gln Gly Phe Ser Ser Gly Gly Trp Lys Glu Gln His Asn Val His His Ala Ala Thr Asn Val Val Gly Arg Asp Gly Asp Leu 215 Asp Leu Val Pro Phe Tyr Ala Thr Val Ala Glu His Leu Asn Asn Tyr Ser Gln Asp Ser Trp Val Met Thr Leu Phe Arg Trp Gln His Val His 245 Trp Thr Phe Met Leu Pro Phe Leu Arg Leu Ser Trp Leu Leu Gln Ser 260 265 Ile Ile Phe Val Ser Gln Met Pro Thr His Tyr Tyr Asp Tyr Tyr Arg 280 285 Asn Thr Ala Ile Tyr Glu Gln Val Gly Leu Ser Leu His Trp Ala Trp Ser Leu Gly Gln Leu Tyr Phe Leu Pro Asp Trp Ser Thr Arg Ile Met 315 Phe Phe Leu Val Ser His Leu Val Gly Gly Phe Leu Leu Ser His Val 330 Val Thr Phe Asn His Tyr Ser Val Glu Lys Phe Ala Leu Ser Ser Asn Ile Met Ser Asn Tyr Ala Cys Leu Gln Ile Met Thr Thr Arg Asn Met 355 360 Arg Pro Gly Arg Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln 375 Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Thr 395 Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asn Gly Leu Pro Tyr 405 Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe 420 Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala

440

<210><211><211><212><213>	> 1 > D	683 NA	o of	fici	nali	s										
<220: <221: <222: <223:	> C > (.(13 -6-D	88) esat	uras	e										-
<400: tatc		7 ta c	cctc	ccaa	a ga	gagt	agtc	att	tttc	atc	a at Me 1	g gc t Al	t go .a Al	t ca .a Gl	a atc n Ile 5	56
aag (aaa Lys	tac Tyr	att Ile	acc Thr 10	tca Ser	gat Asp	gaa Glu	ctc Leu	aag Lys 15	aac Asn	cac His	gat Asp	aaa Lys	ccc Pro 20	gga Gly	104
gat Asp	cta Leu	tgg Trp	atc Ile 25	tcg Ser	att Ile	caa Gln	ggg Gly	aaa Lys 30	gcc Ala	tat Tyr	gat Asp	gtt Val	tcg Ser 35	gat Asp	tgg Trp	152
gtg Val	aaa Lys	gac Asp 40	cat His	cca Pro	ggt Gly	Gly ggc	agc Ser 45	ttt Phe	ccc Pro	ttg Leu	aag Lys	agt Ser 50	ctt Leu	gct Ala	ggt Gly	200
Gln	gag Glu 55	gta Val	act Thr	gat Asp	gca Ala	ttt Phe 60	gtt Val	gca Ala	ttc Phe	cat His	cct Pro 65	gcc Ala	tct Ser	aca Thr	tgg Trp	248
aag Lys 70	aat Asn	ctt Leu	gat Asp	aag Lys	ttt Phe 75	ttc Phe	act Thr	Gl ^A āāā	tat Tyr	tat Tyr 80	ctt Leu	aaa Lys	gat Asp	tac Tyr	tct Ser 85	296
gtt Val	tct Ser	gag Glu	gt t Val	tct Ser 90	aaa Lys	gat Asp	tat Tyr	agg Arg	aag Lys 95	ctt Leu	gtg Val	ttt Phe	gag Glu	ttt Phe 100	tct Ser	344
aaa Lys	atg Met	ggt Gly	ttg Leu 105	tat Tyr	gac Asp	aaa Lys	aaa Lys	ggt Gly 110	cat His	att Ile	atg Met	ttt Phe	gca Ala 115	act Thr	ttg Leu	392
tgc Cys	ttt Phe	ata Ile 120	gca Ala	atg Met	ctg Leu	ttt Phe	gct Ala 125	atg Met	agt Ser	gtt Val	tat Tyr	130 Gly aga	gtt Val	ttg Leu	ttt Phe	440
tgt Cys	gag Glu 135	ggt Gly	gtt Val	ttg Leu	gta Val	cat His 140	ttg Leu	ttt Phe	tct Ser	GJA aaa	tgt Cys 145	ttg Leu	atg Met	GJA aaa	ttt Phe	488
ctt Leu 150	tgg Trp	att Ile	cag Gln	agt Ser	ggt Gly 155	tgg Trp	att Ile	gga Gly	cat His	gat Asp 160	Ala	GJÀ aaa	cat His	tat Tyr	atg Met 165	536
gta Val	gtg Val	tct Ser	gat Asp	tca Ser 170	agg Arg	ctt Leu	aat Asn	aag Lys	ttt Phe 175	Met	ggt Gly	att Ile	ttt Phe	gct Ala 180	Ala	584
aat Asn	tgt Cys	ctt Leu	tca Ser 185	gga Gly	ata Ile	.agt Ser	att Ile	ggt Gly 190	Trp	tgg Trp	aaa Lys	tgg Trp	aac Asn 195	. His	aat Asn	632
gca Ala	cat His	cac His	att	gcc Ala	tgt Cys	aat Asn	agc Ser	ctt Lev	gaa Glu	tat Tyr	gac Asp	cct Pro	gat Asp	tta Leu	caa Gln	680

								3	,						
2	200					205					210				
tat ata o Tyr Ile i 215	cca t Pro I	ttc (Phe I	ctt Leu	Val	gtg Val 220	tct Ser	tcc Ser	aag Lys	ttt Phe	ttt Phe 225	ggt Gly	tca Ser	ctc Leu	acc Thr	728
tct cat Ser His	ttc (Phe (tat (Tyr (Glu	aaa Lys 235	agg Arg	ttg Leu	act Thr	ttt Phe	gac Asp 240	tct Ser	tta Leu	tca Ser	aga Arg	ttc Phe 245	776
ttt gta Phe Val	agt ' Ser '	Tyr	caa Gln 250	cat His	tgg Trp	aca Thr	ttt Phe	tac Tyr 255	cct Pro	att Ile	atg Met	tgt Cys	gct Ala 260	gct Ala	824
agg ctc Arg Leu	Asn :	atg Met 265	tat Tyr	gta Val	caa Gln	tct Ser	ctc Leu 270	ata Ile	atg Met	ttg Leu	ttg Leu	acc Thr 275	aag Lys	aga Arg	872
aat gtg Asn Val	tcc Ser 280	tat Tyr	cga Arg	gct Ala	cag Gln	gaa Glu 285	ctc Leu	ttg Leu	gga Gly	tgc Cys	cta Leu 290	gtg Val	ttc Phe	tcg Ser	920
att tgg Ile Trp 295	tac Tyr	ccg Pro	ttg Leu	ctt Leu	gtt Val 300	tct Ser	tgt Cys	ttg Leu	cct Pro	aat Asn 305	tgg Trp	ggt Gly	gaa Glu	aga Arg	968
att atg Ile Met 310	ttt Phe	gtt Val	att Ile	gca Ala 315	agt Ser	tta Leu	tca Ser	gtg Val	act Thr 320	gga Gly	atg Met	caa Gln	caa Gln	gtt Val 325	1016
cag ttc Gln Phe	tcc Ser	ttg Leu	aac Asn 330	cac His	ttc Phe	tct Ser	tca Ser	agt Ser 335	gtt Val	tat Tyr	gtt Val	gga Gly	aag Lys 340	cct Pro	1064
aaa ggg Lys Gly	aat Asn	aat Asn 345	tgg Trp	ttt Phe	gag Glu	aaa Lys	caa Gln 350	Thr	gat Asp	Gly aaa	aca Thr	ctt Leu 355	Asp	att Ile	1112
tct tgt Ser Cys	cct Pro 360	cct Pro	tgg Trp	atg Met	gat Asp	tgg Trp 365	Phe	cat His	ggt	gga Gly	ttg Leu 370	Gln	ttc Phe	caa Gln	1160
att gag Ile Glu 375	cat His	cat His	ttg Leu	ttt Phe	ecc Pro 380	Lys	atg Met	cct Pro	aga Arg	tgc Cys 385	: Asn	ctt Leu	agg Arg	aaa Lys	1208
atc tcg Ile Ser 390	ccc Pro	tac Tyr	gtg Val	atc Ile 395	Glu	tta Leu	tgc Cys	aag Lys	aaa Lys 400	His	aat Asn	ttg Lev	cet Pro	tac Tyr 405	1256
aat tat Asn Tyr	gca Ala	tct Ser	ttc Phe 410	Ser	aag Lys	gcc Ala	aat Asr	gaa Glu 415	ı Met	g aca Thi	e cto Lev	aga Arg	a aca Thr 420	Leu	1304
agg aac Arg Asn	aca Thr	gca Ala 425	Leu	cag Glm	gct Ala	agg Arg	gat Asg 430) Ile	a acc	aag Lys	g ccg s Pro	t cto Lev 435	ı Pro	g aag b Lys	1352
aat ttg Asn Leu	gta Val 440	Trp	gaa Glu	gct Ala	ctt Lei	cac His	Thi	cat His	z ggt s Gly	ta: Y	a aat	ctaco	cctt		1398
agttcat	gta	ataa	tttg	gag a	ttai	gtat	c to	ccta	tgtt	t gt	gtcti	tgtc	ttg	gttctac	1458
ttgttgg	gagt	catt	gcaa	act t	gtc	ttta	at g	gttt	atta	g at	gttt	ttta _.	ata	tatttta	1518
gaggttt	tgc	tttc	atct	ccc a	atta	ctgai	tg a	ataa	ggag	t tg	cata	ttgt	caa	ttgttgt	1578

31 gctcaatatc tgatattttg gaatgtactt tgtaccactg tgttttcagt tgaagctcat 1638 gtgtacttct atagactttg tttaaatggt tatgtcatgt tattt <210> 18 <211> 448 <212> PRT <213> Borago officinalis <400> 18 Met Ala Ala Gln Ile Lys Lys Tyr Ile Thr Ser Asp Glu Leu Lys Asn 10 His Asp Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr 25 Asp Val Ser Asp Trp Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu Lys Ser Leu Ala Gly Gln Glu Val Thr Asp Ala Phe Val Ala Phe His 50 Pro Ala Ser Thr Trp Lys Asn Leu Asp Lys Phe Phe Thr Gly Tyr Tyr Leu Lys Asp Tyr Ser Val Ser Glu Val Ser Lys Asp Tyr Arg Lys Leu 90 Val Phe Glu Phe Ser Lys Met Gly Leu Tyr Asp Lys Lys Gly His Ile Met Phe Ala Thr Leu Cys Phe Ile Ala Met Leu Phe Ala Met Ser Val 115 Tyr Gly Val Leu Phe Cys Glu Gly Val Leu Val His Leu Phe Ser Gly

1683

Cys Leu Met Gly Phe Leu Trp Ile Gln Ser Gly Trp Ile Gly His Asp 150 145

Ala Gly His Tyr Met Val Val Ser Asp Ser Arg Leu Asn Lys Phe Met 170 165

Gly Ile Phe Ala Ala Asn Cys Leu Ser Gly Ile Ser Ile Gly Trp Trp 190 185

Lys Trp Asn His Asn Ala His His Ile Ala Cys Asn Ser Leu Glu Tyr 195 200

Asp Pro Asp Leu Gln Tyr Ile Pro Phe Leu Val Val Ser Ser Lys Phe 215

32 Phe Gly Ser Leu Thr Ser His Phe Tyr Glu Lys Arg Leu Thr Phe Asp Ser Leu Ser Arg Phe Phe Val Ser Tyr Gln His Trp Thr Phe Tyr Pro 245 Ile Met Cys Ala Ala Arg Leu Asn Met Tyr Val Gln Ser Leu Ile Met 265 Leu Leu Thr Lys Arg Asn Val Ser Tyr Arg Ala Gln Glu Leu Leu Gly 280 Cys Leu Val Phe Ser Ile Trp Tyr Pro Leu Leu Val Ser Cys Leu Pro Asn Trp Gly Glu Arg Ile Met Phe Val Ile Ala Ser Leu Ser Val Thr 310 Gly Met Gln Gln Val Gln Phe Ser Leu Asn His Phe Ser Ser Val Tyr Val Gly Lys Pro Lys Gly Asn Asn Trp Phe Glu Lys Gln Thr Asp 345 Gly Thr Leu Asp Ile Ser Cys Pro Pro Trp Met Asp Trp Phe His Gly 360 Gly Leu Gln Phe Gln Ile Glu His His Leu Phe Pro Lys Met Pro Arg 370 375 Cys Asn Leu Arg Lys Ile Ser Pro Tyr Val Ile Glu Leu Cys Lys Lys 390 His Asn Leu Pro Tyr Asn Tyr Ala Ser Phe Ser Lys Ala Asn Glu Met 410 Thr Leu Arg Thr Leu Arg Asn Thr Ala Leu Gln Ala Arg Asp Ile Thr Lys Pro Leu Pro Lys Asn Leu Val Trp Glu Ala Leu His Thr His Gly 440 <210> 19 <211> 1563 <212> DNA <213> Ceratodon purpureus <220> <221> CDS

<400> 19

<222> (1)..(1563)

<223> Delta-6-Desaturase

									J	•						
atg Met 1	gtg Val	tcc Ser	cag Gln	ggc Gly 5	ggc	ggt Gly	ctc Leu	tcg Ser	cag Gln 10	ggt Gly	tcc Ser	att Ile	gaa Glu	gaa Glu 15	aac Asn	48
att Ile	gac Asp	gtt Val	gag Glu 20	cac His	ttg Leu	gca Ala	acg Thr	atg Met 25	ccc Pro	ctc Leu	gtc Val	agt Ser	gac Asp 30	ttc Phe	cta Leu	96
aat Asn	gtc Val	ctg Leu 35	gga Gly	acg Thr	act Thr	ttg Leu	ggc Gly 40	cag Gln	tgg Trp	agt Ser	ctt Leu	tcc Ser 45	act Thr	aca Thr	ttc Phe	144
gct Ala	ttc Phe 50	aag Lys	agg Arg	ctc Leu	acg Thr	act Thr 55	aag Lys	aaa Lys	cac His	agt Ser	tcg Ser 60	gac Asp	atc Ile	tcg Ser	gtg Val	192
gag Glu 65	gca Ala	caa Gln	aaa Lys	gaa Glu	tcg Ser 70	gtt Val	gcg Ala	cgg Arg	Gly aaa	cca Pro 75	gtt Val	gag Glu	aat Asn	att Ile	tct Ser 80	240
caa Gln	tcg Ser	gtt Val	gcg Ala	cag Gln 85	ccc Pro	atc Ile	agg Arg	cgg Arg	agg Arg 90	tgg Trp	gtg Val	cag Gln	gat Asp	aaa Lys 95	aag Lys	288
ccg Pro	gtt Val	act Thr	tac Tyr 100	agc Ser	ctg Leu	aag Lys	gat Asp	gta Val 105	gct Ala	tcg Ser	cac His	gat Asp	atg Met 110	ccc Pro	cag Gln	336
gac Asp	tgc Cys	tgg Trp 115	att Ile	ata Ile	atc Ile	aaa Lys	gag Glu 120	aag Lys	gtg Val	tat Tyr	gat Asp	gtg Val 125	agc Ser	acc Thr	ttc Phe	384
gct Ala	gag Glu 130	Gln	cac His	cct Pro	gga Gly	ggc Gly 135	acg Thr	gtt Val	atc Ile	aac Asn	acc Thr 140	tac Tyr	ttc Phe	gga Gly	cga Arg	432
gac Asp 145	Ala	aca Thr	gat Asp	gtt Val	ttc Phe 150	tct Ser	act Thr	ttc Phe	cac His	gca Ala 155	tcc Ser	acc Thr	tca Ser	tgg Trp	aag Lys 160	480
att Ile	ctt Leu	cag Gln	aat Asn	ttc Phe 165	Tyr	atc Ile	Gly	aac Asn	ctt Leu 170	Val	agg Arg	gag Glu	gag Glu	ccg Pro 175	Thr	528
ttg Leu	gag Glu	ctg Leu	Leu	Lys	gag Glu	Tyr	Arg	Glu	Leu	aga Arg	gcc Ala	ctt Leu	ttc Phe 190	ttg Leu	aga Arg	576
gaa Glu	cag Glr	ctt Lev 195	ı Phe	aag Lys	agt Ser	tcc Ser	aaa Lys 200	Ser	tac Tyr	tac Tyr	ctt Leu	ttc Phe 205	rys	act Thr	ctc Leu	624
ata Ile	aat Asr 210	val	tcc Ser	att	gtt Val	gcc Ala 215	Thr	ago Ser	: att	gcg Ala	ata Ile 220	ato : Ile	agt Ser	ctg Leu	tac Tyr	672
aag Lys 225	s Ser	tao Tyi	cgg Arg	gcg Ala	g gtt Val 230	. Lev	tta Lev	tca Ser	gcc Ala	agt Ser 235	Leu	, atç ı Met	Gly	ttg Leu	ttt Phe 240	720
att Ile	caa e Glr	a cag n Gli	ı Cys	gga Gl _y 245	TIE	y ttg Lev	tct Sei	cac His	gat Asp 250	Phe	cta Lei	a cac n His	cat His	cag Glr 255	gta Val	768
tt! Phe	gag Gli	g aca ı Thi	a cgo r Aro 260	Tr	g cto D Lev	aat 1 Asr	gao Asp	gtt Val 265	L Val	E ggd	tat Tyi	gtç Val	gtc . Val 270	. Gly	aac Asn	816

									•	•						
gtt Val	gtt Val	ctg Leu 275	gga Gly	ttc Phe	agt Ser	gtc Val	tcg Ser 280	tgg Trp	tgg Trp	aag Lys	acc Thr	aag Lys 285	cac His	aac Asn	ctg Leu	864
cat .His	cat His 290	gct Ala	gct Ala	ccg Pro	aat Asn	gaa Glu 295	tgc Cys	gac Asp	caa Gln	aag Lys	tac Tyr 300	aca Thr	ccg Pro	att Ile	gat Asp	912
gag Glu 305	gat Asp	att Ile	gat Asp	act Thr	ctc Leu 310	ccc Pro	atc Ile	att Ile	gct Ala	tgg Trp 315	agt Ser	aaa Lys	gat Asp	ctc Leu	ttg Leu 320	960
gcc Ala	act Thr	gtt Val	gag Glu	agc Ser 325	aag Lys	acc Thr	atg Met	ttg Leu	cga Arg 330	gtt Val	ctt Leu	cag Gln	tac Tyr	cag Gln 335	cac His	1008
cta Leu	ttc Phe	ttt Phe	ttg Leu 340	gtt Val	ctt Leu	ttg Leu	acg Thr	ttt Phe 345	gcc Ala	cgg Arg	gcg Ala	agt Ser	tgg Trp 350	cta Leu	ttt Phe	1056
tgg Trp	agc Ser	gcg Ala 355	gcc Ala	ttc Phe	act Thr	ctc Leu	agg Arg 360	ccc Pro	gag Glu	ttg Leu	acc Thr	ctt Leu 365	ggc	gag Glu	aag Lys	1104
ctt Leu	ttg Leu 370	gag Glu	agg Arg	gga Gly	acg Thr	atg Met 375	gct Ala	ttg Leu	cac His	tac Tyr	att Ile 380	tgg Trp	ttt Phe	aat Asn	agt Ser	1152
gti Val 385	gcg Ala	ttt Phe	tat Tyr	ctg Leu	ctc Leu 390	ccc Pro	gga Gly	tgg Trp	aaa Lys	cca Pro 395	gtt Val	gta Val	tgg Trp	atg Met	gtg Val 400	1200
gtc Val	agc Ser	gag Glu	ctc Leu	atg Met 405	tct Ser	ggt Gly	ttc Phe	ctg Leu	ctg Leu 410	gga Gly	tac Tyr	gta Val	ttt Phe	gta Val 415	ctc Leu	1248
agt Ser	cac His	aat Asn	gga Gly 420	Met	gag Glu	gtg Val	tac Tyr	aat Asn 425	acg Thr	tca Ser	. aag Lys	gac Asp	Phe 430	val	aat Asn.	1296
gcc	cag Gln	att Ile 435	Ala	tcg Ser	act Thr	cgc Arg	gac Asp 440	Ile	aaa Lys	gca Ala	r Glà r aaa	gtg Val 445	. Phe	aat Asr	gat Asp	1344
Trr	ttc Phe 450	Thr	Gly	ggt Gly	Leu	Asn	Arg	Gln	Ile	Glu	cat His 460	His	cta Lev	ı tttı ı Phe	cca Pro	1392
acç Thr 465		cec Pro	agg Arg	g cac g His	aac Asn 470	Leu	aat Asn	aaa Lys	att : Ile	tct Ser 475	: Pro	cac His	gtg Val	g gag L Glu	act Thr 480	1440
tt <u>c</u> Lei	g tgo ı Cys	aag Lys	g aag Lys	g cat s His 485	: Gly	cto Lev	g gto l Val	tac Tyr	gaa Glu 490	ı Ası	gtg O Val	g ago L Sei	ato Met	g gct Ala 49	tcg a Ser	1488
Gl ⁷	act Thr	tac Tyi	c Arg	y Val	ttg Lei	g aaa 1 Lys	a aca s Thi	t ctt Let 505	і ГУ:	g gad s Asj	c gtt p Val	gco l Ala	c gat a Asi 510	o Ali	gct Ala	1536
tca Sei	a cad	c cag s Gl: 51	n Gla	g ctt n Lei	gct Ala	gcg Ala	g agt a Sei 520	:	a							1563
-2.	105	20														•

<210> 20 <211> 520 <212> PRT <213> Ceratodon purpureus

<400> 20

Met Val Ser Gln Gly Gly Gly Leu Ser Gln Gly Ser Ile Glu Glu Asn
1 5 10 15

Ile Asp Val Glu His Leu Ala Thr Met Pro Leu Val Ser Asp Phe Leu 20 25 30

Asn Val Leu Gly Thr Thr Leu Gly Gln Trp Ser Leu Ser Thr Thr Phe 35 40 45

Ala Phe Lys Arg Leu Thr Thr Lys Lys His Ser Ser Asp Ile Ser Val 50 60

Glu Ala Gln Lys Glu Ser Val Ala Arg Gly Pro Val Glu Asn Ile Ser 65 70 75 80

Gln Ser Val Ala Gln Pro Ile Arg Arg Trp Val Gln Asp Lys Lys 85 90 95

Pro Val Thr Tyr Ser Leu Lys Asp Val Ala Ser His Asp Met Pro Gln 100 105 110

Asp Cys Trp Ile Ile Ile Lys Glu Lys Val Tyr Asp Val Ser Thr Phe 115 120 125

Ala Glu Gln His Pro Gly Gly Thr Val Ile Asn Thr Tyr Phe Gly Arg 130 135

Asp Ala Thr Asp Val Phe Ser Thr Phe His Ala Ser Thr Ser Trp Lys 145 150 155 160

Ile Leu Gln Asn Phe Tyr Ile Gly Asn Leu Val Arg Glu Glu Pro Thr 165 170 175

Leu Glu Leu Leu Lys Glu Tyr Arg Glu Leu Arg Ala Leu Phe Leu Arg 180 185 190

Glu Gln Leu Phe Lys Ser Ser Lys Ser Tyr Tyr Leu Phe Lys Thr Leu 195 200 205

Ile Asn Val Ser Ile Val Ala Thr Ser Ile Ala Ile Ile Ser Leu Tyr 210 215 220

Lys Ser Tyr Arg Ala Val Leu Leu Ser Ala Ser Leu Met Gly Leu Phe 225 230 235 240

Ile Gln Gln Cys Gly Trp Leu Ser His Asp Phe Leu His His Gln Val 245 250 255

- Phe Glu Thr Arg Trp Leu Asn Asp Val Val Gly Tyr Val Val Gly Asn 260 270
- Val Val Leu Gly Phe Ser Val Ser Trp Trp Lys Thr Lys His Asn Leu 275 280 285
- His His Ala Ala Pro Asn Glu Cys Asp Gln Lys Tyr Thr Pro Ile Asp 290 295 300
- Glu Asp Ile Asp Thr Leu Pro Ile Ile Ala Trp Ser Lys Asp Leu Leu 305 310 315 320
- Ala Thr Val Glu Ser Lys Thr Met Leu Arg Val Leu Gln Tyr Gln His 325 330
- Leu Phe Phe Leu Val Leu Leu Thr Phe Ala Arg Ala Ser Trp Leu Phe 340 345 350
- Trp Ser Ala Ala Phe Thr Leu Arg Pro Glu Leu Thr Leu Gly Glu Lys 355 360 365
- Leu Leu Glu Arg Gly Thr Met Ala Leu His Tyr Ile Trp Phe Asn Ser 370 380
- Val Ala Phe Tyr Leu Leu Pro Gly Trp Lys Pro Val Val Trp Met Val 385 390 395 400
- Val Ser Glu Leu Met Ser Gly Phe Leu Leu Gly Tyr Val Phe Val Leu 405 410 415
- Ser His Asn Gly Met Glu Val Tyr Asn Thr Ser Lys Asp Phe Val Asn 420 425 430
- Ala Gln Ile Ala Ser Thr Arg Asp Ile Lys Ala Gly Val Phe Asn Asp 435 440 445
- Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu His His Leu Phe Pro 450 455 460
- Thr Met Pro Arg His Asn Leu Asn Lys Ile Ser Pro His Val Glu Thr 465 470 475 480
- Leu Cys Lys Lys His Gly Leu Val Tyr Glu Asp Val Ser Met Ala Ser 485 490 495
- Gly Thr Tyr Arg Val Leu Lys Thr Leu Lys Asp Val Ala Asp Ala Ala 500 505 510
- Ser His Gln Gln Leu Ala Ala Ser 515 520

<210 <211 <212 <213	> >	21 1434 DNA Phaec	odact	ylum	tri	corn	utum	ı									
<220 <221 <222 <223	> >	CDS (1). Delta			uras	e											
<400 atg Met 1	aac	21 aaa Lys	gga Gly	2 GJA aaa	gac Asp	gct Ala	cgg Arg	gcc Ala	tcg Ser 10	aag Lys _.	ggc Gly	tca Ser	acg Thr	gcg Ala 15	gct Ala		48
cgc	aag Lys	atc Ile	agt Ser 20	tgg Trp	cag Gln	gaa Glu	gtc Val	aag Lys 25	acc Thr	cac His	gcg Ala	tct Ser	ccg Pro 30	gag Glu	gac Asp		96
gcc Ala	tgg	atc Ile 35	att Ile	cac His	tcc Ser	aat Asn	aag Lys 40	gtc Val	tac Tyr	gac Asp	gtg Val	tcc Ser 45	aac Asn	tgg Trp	cac His		144
gaa Glu	cat His	ccc Pro	gga Gly	ggc Gly	gcc Ala	gtc Val 55	att Ile	ttc Phe	acg Thr	cac His	gcc Ala 60	ggt Gly	gac Asp	gac Asp	atg Met		192
acg Thr 65	gad	att Ile	ttc Phe	gct Ala	gcc Ala 70	ttt Phe	cac His	gca Ala	ccc Pro	gga Gly 75	tcg Ser	cag Gln	tcg Ser	ctc Leu	atg Met 80		240
aag Lys	aag Lys	ttc Phe	tac Tyr	att Ile 85	ggc Gly	gaa Glu	ttg Leu	ctc Leu	ccg Pro 90	gaa Glu	acc Thr	acc Thr	ggc	aag Lys 95	gag Glu	•	288
ccg Pro	Ca; Gl:	g caa n Glm	atc Ile 100	gcc Ala	ttt Phe	gaa Glu	aag Lys	ggc Gly 105	tac Tyr	cgc Arg	gat Asp	ctg Leu	cgc Arg 110	tcc Ser	aaa Lys		336
ctc Leu	ate	c ato e Met 115	Met	ggc Gly	.atg Met	ttc Phe	aag Lys 120	tcc Ser	aac Asn	aag Lys	tgg Trp	ttc Phe 125	tac Tyr	gtc Val	tac Tyr		384
aag Lys	tg Cy 13	c ctc s Leu 0	agc Ser	aac Asn	Met	gcc Ala 135	att Ile	tgg Trp	gcc Ala	gcc Ala	gcc Ala 140	tgt Cys	gct Ala	ctc Leu	gtc Val		432
ttt Phe 145	$\mathbf{T}_{\mathbf{Y}}$	c tco r Sei	gac Asp	cgc Arg	ttc Phe 150	Trp	gta Val	cac His	ctg Leu	gcc Ala 155	Ser	gcc Ala	gtc Val	atg Met	ctg Leu 160		480
gga Gly	ac Th	a tto	ttt Phe	cag Gln 165	Gln	tcg Ser	gga Gly	tgg Trp	ttg Leu 170	Ala	cac His	gac Asp	ttt Phe	ctg Leu 175	His		528
cac His	ca G1	g gto n Val	tto L Phe 180	Thr	aag Lys	cgc Arg	aag Lys	cac His 185	Gly	gat Asp	ctc Leu	gga Gly	gga Gly 190	Leu	ttt Phe		576
tgg Trp	gg Gl	g aad y Asi 19	ı Lev	atg Met	cag Gln	ggt Gly	tac Tyr 200	Ser	gta Val	cag Gln	tgg Trp	tgg Trp 205	. Lys	aac Asn	aag Lys		624
cac His	aa As 21	c gga n Gly 0	a cac / His	cac His	gcc Ala	gtc Val 215	. Pro	aac Asr	cto Leu	cac His	tgc Cys 220	Ser	tcc Ser	gca Ala	gtc Val		672

gcg c Ala G 225	caa 31n	gat Asp	Gly ggg	gac Asp	ccg Pro 230	gac Asp	atc Ile	gat Asp	acc Thr	atg Met 235	ccc Pro	ctt Leu	ctc Leu	gcc Ala	tgg Trp 240	720
tcc g Ser V	gtc Val	cag Gln	caa Gln	gcc Ala 245	cag Gln	tct Ser	tac Tyr	cgg Arg	gaa Glu 250	ctc Leu	caa Gln	gcc Ala	gac Asp	gga Gly 255	aag Lys	768
gat t Asp S	tcg Ser	ggt Gly	ttg Leu 260	gtc Val	aag Lys	ttc Phe	atg Met	atc Ile 265	cgt Arg	aac Asn	caa Gln	tcc Ser	tac Tyr 270	ttt Phe	tac Tyr	816
ttt c	ccc Pro	atc Ile 275	ttg Leu	ttg Leu	ctc Leu	gcc Ala	cgc Arg 280	ctg Leu	tcg Ser	tgg Trp	ttg Leu	aac Asn 285	gag Glu	tcc Ser	ttc Phe	864
aag t Lys (tgc Cys 290	gec Ala	ttt Phe	GJĀ āāā	ctt Leu	gga Gly 295	gct Ala	gcg Ala	tcg Ser	gag Glu	aac Asn 300	gct Ala	gct Ala	ctc Leu	gaa Glu	912
ctc a Leu I 305	aag Lys	gcc Ala	aag Lys	ggt Gly	ctt Leu 310	cag Gln	tac Tyr	ccc Pro	ctt Leu	ttg Leu 315	gaa Glu	aag Lys	gct Ala	ggc	atc Ile 320	960
ctg (Leu l	ctg Leu	cac His	tac Tyr	gct Ala 325	tgg Trp	atg Met	ctt Leu	aca Thr	gtt Val 330	tcg Ser	tcc Ser	ggc Gly	ttt Phe	gga Gly 335	cgc Arg	1008
ttc Phe :	tcg Ser	ttc Phe	gcg Ala 340	tac Tyr	acc Thr	gca Ala	ttt Phe	tac Tyr 345	ttt Phe	cta Leu	acc Thr	gcg Ala	acc Thr 350	gcg Ala	tcc Ser	1056
tgt (Cys (gga Gly	ttc Phe 355	ttg Leu	ctc Leu	gcc Ala	att Ile	gtc Val 360	ttt Phe	Gly	ctc Leu	Gly	cac His 365	aac Asn	Gly	atg Met	1104
gcc ; Ala '	acc Thr 370	tac Tyr	aat Asn	gcc Ala	gac Asp	gcc Ala 375	cgt Arg	ccg Pro	gac Asp	ttc Phe	tgg Trp 380	aag Lys	ctc Leu	caa Gln	gtc Val	1152
acc Thr 385	acg Thr	act Thr	cgc Arg	aac Asn	gtc Val 390	acg Thr	ggc	gga Gly	cac His	ggt Gly 395	ttc Phe	ccc Pro	caa Gln	gcc Ala	ttt Phe 400	1200
gtc Val	gac Asp	tgg Trp	ttc Phe	tgt Cys 405	Gly	Gly	ctc Leu	cag Gln	tac Tyr 410	Gln	gtc Val	gac Asp	cac His	cac His 415	Leu	1248
ttc Phe	ccc Pro	agc Ser	ctg Leu 420	Pro	cga Arg	cac His	aat Asn	ctg Leu 425	Ala	aag Lys	aca Thr	cac His	gca Ala 430	Leu	gtc Val	1296
gaa Glu	tcg Ser	ttc Phe 435		aag Lys	gag Glu	tgg Trp	ggt Gly 440	Val	cag Gln	tac Tyr	cac His	gaa Glu 445	Ala	gac Asp	ctt Leu	1344
gtg Val	gac Asp 450	Gly	acc Thr	atg Met	gaa Glu	gtc Val 455	Leu	cac His	cat His	ttg Leu	ggc Gly 460	Ser	gtg Val	gcc Ala	ggc Gly	1392
gaa Glu 465	ttc Phe	gtc Val	gtg Val	gat Asp	ttt Phe 470	Val	. cgc Arg	gat Asp	gga Gly	Pro 475	Ala	atg Met	taa			1434

. . . .

<210> 22 <211> 477 <212> PRT <213> Phaeodactylum tricornutum

<400> 22

Met Gly Lys Gly Gly Asp Ala Arg Ala Ser Lys Gly Ser Thr Ala Ala 1 5 10 15

Arg Lys Ile Ser Trp Gln Glu Val Lys Thr His Ala Ser Pro Glu Asp 20 25 30

· Ala Trp Ile Ile His Ser Asn Lys Val Tyr Asp Val Ser Asn Trp His
35 40 45

Glu His Pro Gly Gly Ala Val Ile Phe Thr His Ala Gly Asp Asp Met 50 55 60

Thr Asp Ile Phe Ala Ala Phe His Ala Pro Gly Ser Gln Ser Leu Met 65 70 75 80

Lys Lys Phe Tyr Ile Gly Glu Leu Leu Pro Glu Thr Thr Gly Lys Glu 85 90 95

Pro Gln Gln Ile Ala Phe Glu Lys Gly Tyr Arg Asp Leu Arg Ser Lys 100 105 110

Leu Ile Met Met Gly Met Phe Lys Ser Asn Lys Trp Phe Tyr Val Tyr 115 120 125

Lys Cys Leu Ser Asn Met Ala Ile Trp Ala Ala Ala Cys Ala Leu Val 130 135 140

Phe Tyr Ser Asp Arg Phe Trp Val His Leu Ala Ser Ala Val Met Leu 145 150 155

Gly Thr Phe Phe Gln Gln Ser Gly Trp Leu Ala His Asp Phe Leu His 165 170 175

His Gln Val Phe Thr Lys Arg Lys His Gly Asp Leu Gly Gly Leu Phe 180 . 190

Trp Gly Asn Leu Met Gln Gly Tyr Ser Val Gln Trp Trp Lys Asn Lys 195 200 205

His Asn Gly His His Ala Val Pro Asn Leu His Cys Ser Ser Ala Val 210 215 220

Ala Gln Asp Gly Asp Pro Asp Ile Asp Thr Met Pro Leu Leu Ala Trp 225 230 235 240

Ser Val Gln Gln Ala Gln Ser Tyr Arg Glu Leu Gln Ala Asp Gly Lys 245 250 255 Asp Ser Gly Leu Val Lys Phe Met Ile Arg Asn Gln Ser Tyr Phe Tyr 265

Phe Pro Ile Leu Leu Ala Arg Leu Ser Trp Leu Asn Glu Ser Phe

Lys Cys Ala Phe Gly Leu Gly Ala Ala Ser Glu Asn Ala Ala Leu Glu 295

Leu Lys Ala Lys Gly Leu Gln Tyr Pro Leu Leu Glu Lys Ala Gly Ile 315 310

Leu Leu His Tyr Ala Trp Met Leu Thr Val Ser Ser Gly Phe Gly Arg 330 325

Phe Ser Phe Ala Tyr Thr Ala Phe Tyr Phe Leu Thr Ala Thr Ala Ser

Cys Gly Phe Leu Leu Ala Ile Val Phe Gly Leu Gly His Asn Gly Met

Ala Thr Tyr Asn Ala Asp Ala Arg Pro Asp Phe Trp Lys Leu Gln Val 375 380 370

Thr Thr Thr Arg Asn Val Thr Gly Gly His Gly Phe Pro Gln Ala Phe 390

Val Asp Trp Phe Cys Gly Gly Leu Gln Tyr Gln Val Asp His His Leu 405 410

Phe Pro Ser Leu Pro Arg His Asn Leu Ala Lys Thr His Ala Leu Val 425 420

Glu Ser Phe Cys Lys Glu Trp Gly Val Gln Tyr His Glu Ala Asp Leu

Val Asp Gly Thr Met Glu Val Leu His His Leu Gly Ser Val Ala Gly

Glu Phe Val Val Asp Phe Val Arg Asp Gly Pro Ala Met

<210> 23 <211> 1578

<212> DNA

<213> Physcomitrella patens

<220>

<221> CDS <222> (1)..(1578)

<223> Delta-6-Desaturase

<400> 23

atg Met 1	gta Val	ttc Phe	gcg Ala	ggc Gly 5	ggt Gly	gga Gly	ctt Leu	cag Gln	cag Gln 10	Gly	tct Ser	ctc Leu	gaa Glu	gaa Glu 15	aac Asn	48
atc Ile	gac Asp	gtc Val	gag Glu 20	cac His	att Ile	gcc Ala	agt Ser	atg Met 25	tct Ser	ctc Leu	ttc Phe	agc Ser	gac Asp 30	ttc Phe	ttc Phe	96
agt Ser	tat Tyr	gtg Val 35	tct Ser	tca Ser	act Thr	gtt Val	ggt Gly 40	tcg Ser	tgg Trp	agc Ser	gta. Val	cac His 45	agt Ser	ata Ile	caa Gln	144
cct Pro	ttg Leu 50	aag Lys	cgc Arg	ctg Leu	acg Thr	agt Ser 55	aag Lys	aag Lys	cgt Arg	gtt Val	tcg Ser 60	gaa Glu	agc Ser	gct Ala	gcc Ala	192
gtg Val 65	caa Gln	tgt Cys	ata Ile	tca Ser	gct Ala 70	gaa Glu	gtt Val	cag Gln	aga Arg	aat Asn 75	tcg Ser	agt Ser	acc Thr	cag Gln	gga Gly 80	240
act Thr	gcg Ala	gag Glu	gca Ala	ctc Leu 85	gca Ala	gaa Glu	tca Ser	gtc Val	gtg Val 90	aag Lys	ccc Pro	acg Thr	aya Arg	cga Arg 95	agg Arg	288
tca Ser	tct Ser	cag Gln	tgg Trp 100	aag L ys	aag Lys	tcg Ser	aca Thr	cac His 105	ccc Pro	cta Leu	tca Ser	gaa Glu	gta Val 110	gca Ala	gta Val	336
cac His	aac Asn	aag Lys 115	cca Pro	agc Ser	gat Asp	tgc Cys	tgg Trp 120	att Ile	gtt Val	gta Val	aaa Lys	aac Asn 125	aag Lys	gtg Val	tat Tyr	384
gat Asp	gtt Val 130	tcc Ser	aat Asn	ttt Phe	gcg Ala	gac Asp 135	gag Glu	cat His	ccc Pro	gga Gly	gga Gly 140	tca Ser	gtt Val	att Ile	agt Ser	432
act Thr 145	tat Tyr	ttt Phe	gga Gly	cga Arg	gac Asp 150	ggc	aca Thr	gat Asp	gtt Val	ttc Phe 155	tct Ser	agt Ser	ttt Phe	cat His	gca Ala 160	480
gct Ala	tct Ser	aca Thr	tgg Trp	aaa Lys 165	Ile	ctt Leu	caa Gln	gac Asp	ttt Phe 170	Tyr	att Ile	ggt Gly	gac Asp	gtg Val 175	gag Glu	528
agg Arg	gtg Val	gag Glu	ccg Pro 180	act Thr	cca Pro	gag Glu	ctg Leu	ctg Leu 185	aaa Lys	gat Asp	ttc Phe	cga Arg	gaa Glu 190	atg Met	aga Arg	576
gct Ala	ctt Leu	ttc Phe 195	Leu	agg Arg	gag Glu	caa Gln	ctt Leu 200	Phe	aaa Lys	agt Ser	tcg Ser	aaa Lys 205	Leu	tac Tyr	tat Tyr	624
gtt Val	atg Met 210	Lys	ctg Leu	ctc Leu	acg Thr	aat Asn 215	Val	gct Ala	att Ile	ttt Phe	gct Ala 220	. Ala	agc Ser	att Ile	gca Ala	-672
ata Ile 225	Ile	tgt Cys	tgg Trp	agc Ser	aag Lys 230	Thr	att Ile	tca Ser	gcg Ala	gtt Val 235	Leu	gct Ala	tca Ser	gct Ala	tgt Cys 240	720
atg Met	atg : Met	gct	ctg Leu	tgt Cys 245	Phe	caa Gln	cag Gln	tgc Cys	gga Gly 250	Trp	cta Lev	tcc Ser	cat His	gat Asp 255	ttt Phe	768
ctc Leu	cac His	aat	cag Gln 260	Val	ttt Phe	gag Glu	aca Thr	cgc Arg 265	Trr	ctt Leu	aat Asr	gaa Glu	gtt Val 270	. Val	Gly ggg	816

tat Tyr	gtg Val	atc Ile 275	ggc ggc	aac Asn	gcc Ala	gtt Val	ctg Leu 280	Gly ggg	ttt Phe	agt Ser	aca Thr	ggg Gly 285	tgg Trp	tgg Trp	aag Lys	864
gag Glu	aag Lys 290	cat His	aac Asn	ctt Leu	cat His	cat His 295	gct Ala	gct Ala	cca Pro	aat Asn	gaa Glu 300	tgc Cys	gat Asp	cag Gln	act Thr	912
tac Tyr 305	caa Gln	cca Pro	att Ile	gat Asp	gaa Glu 310	gat Asp	att Ile	gat Asp	act Thr	ctc Leu 315	ccc Pro	ctc Leu	att Ile	gcc Ala	tgg Trp 320	960
agc Ser	aag Lys	gac Asp	ata Ile	ctg Leu 325	gcc Ala	aca Thr	gtt Val	gag Glu	aat Asn 330	aag Lys	aca Thr	ttc Phe	ttg Leu	cga Arg 335	atc Ile	1008
ctc Leu	caa Gln	tac Tyr	cag Gln 340	cat His	ctg Leu	ttc Phe	ttc Phe	atg Met 345	ggt Gly	ctg Leu	tta Leu	ttt Phe	ttc Phe 350	gcc Ala	cgt Arg	1056
ggt Gly	agt Ser	tgg Trp 355	ctc Leu	ttt Phe	tgg Trp	agc Ser	tgg Trp 360	aga Arg	tat Tyr	acc Thr	tct Ser	aca Thr 365	gca Ala	gtg Val	ctc Leu	1104
tca Ser	cct Pro 370	Val	gac Asp	agg Arg	Leu	ttg Leu 375	gag Glu	aag Lys	gga Gly	act Thr	gtt Val 380	ctg Leu	ttt Phe	cac His	tac Tyr	1152
ttt Phe 385	tgg Trp	ttc Phe	gtc Val	Gly ggg	aca Thr 390	gcg Ala	tgc Cys	tat Tyr	ctt Leu	ctc Leu 395	cct Pro	ggt Gly	tgg Trp	aag Lys	cca Pro 400	1200
tta Leu	gta Val	tgg Trp	atg Met	gcg Ala 405	gtg Val	act Thr	gag Glu	ctc Leu	atg Met 410	tcc Ser	ggc	atg Met	ctg Leu	ctg Leu 415	ggc	1248
ttt Phe	gta Val	ttt Phe	gta Val 420	ctt Leu	agc Ser	cac His	aat Asn	ggg Gly 425	atg Met	gag Glu	gtt Val	tat Tyr	aat Asn 430	tcg Ser	tct Ser	1296
aaa Lys	gaa Glu	ttc Phe 435	Val	agt Ser	gca Ala	cag Gln	atc Ile 440	Val	tcc Ser	aca Thr	. cgg · Arg	gat Asp 445	atc Ile	aaa Lys	gga Gly	1344
aac . Asn	ata Ile 450	Phe	aac Asn	gac Asp	tgg Trp	ttc Phe 455	Thx	ggt Gly	ggc	ctt Leu	aac Asn 460	Arg	caa Gln	ata Ile	gag Glu	1392
cat His 465	His	ctt Leu	ttc Phe	cca Pro	aca Thr 470	Met	ccc Pro	agg Arg	cat His	aat Asn 475	tta Leu	aac Asn	aaa Lys	ata Ile	gca Ala 480	1440
cct Pro	aga Arg	gtg Val	gag Glu	gtg Val 485	Phe	tgt Cys	aag Lys	aaa Lys	. cac : His 490	: Gly	ctg Leu	gtg Val	tac Tyr	gaa Glu 495	. Asp	1488
gta Val	. tct Ser	att Ile	gct Ala 500	Thr	ggc	act Thr	tgc Cys	aag Lys 505	: Val	tto Lev	g aaa 1 Lys	gca Ala	Leu 510	. ГА	gaa Glu	1536
·gto Val	gcg Ala	gag Glu 515	ı Ala	gcg Ala	gca Ala	gag Glu	Glr 520	ı His	gct Ala	aco Thi	acc Thr	agt Ser 525	:	ı		1578

<210> 24 <211> 525 <212> PRT <213> Physcomitrella patens

<400> 24

Met Val Phe Ala Gly Gly Gly Leu Gln Gln Gly Ser Leu Glu Glu Asn . . . 1 5 10 15

Ile Asp Val Glu His Ile Ala Ser Met Ser Leu Phe Ser Asp Phe Phe 20 25 30

Ser Tyr Val Ser Ser Thr Val Gly Ser Trp Ser Val His Ser Ile Gln 35 40 45

Pro Leu Lys Arg Leu Thr Ser Lys Lys Arg Val Ser Glu Ser Ala Ala 50 55 60

Val Gln Cys Ile Ser Ala Glu Val Gln Arg Asn Ser Ser Thr Gln Gly 65 70 75 80

Thr Ala Glu Ala Leu Ala Glu Ser Val Val Lys Pro Thr Arg Arg Arg 85 90 95

Ser Ser Gln Trp Lys Lys Ser Thr His Pro Leu Ser Glu Val Ala Val 100 105 110

His Asn Lys Pro Ser Asp Cys Trp Ile Val Val Lys Asn Lys Val Tyr 115 120 125

Asp Val Ser Asn Phe Ala Asp Glu His Pro Gly Gly Ser Val Ile Ser 130 135 . 140

Thr Tyr Phe Gly Arg Asp Gly Thr Asp Val Phe Ser Ser Phe His Ala 145 150 150 155

Ala Ser Thr Trp Lys Ile Leu Gln Asp Phe Tyr Ile Gly Asp Val Glu 165 170 175

Arg Val Glu Pro Thr Pro Glu Leu Leu Lys Asp Phe Arg Glu Met Arg 180 185 190

Ala Leu Phe Leu Arg Glu Gln Leu Phe Lys Ser Ser Lys Leu Tyr Tyr 195 200 205

Val Met Lys Leu Leu Thr Asn Val Ala Ile Phe Ala Ala Ser Ile Ala 210 220

Ile Ile Cys Trp Ser Lys Thr Ile Ser Ala Val Leu Ala Ser Ala Cys 225 230 235 240

Met Met Ala Leu Cys Phe Gln Gln Cys Gly Trp Leu Ser His Asp Phe 245 250 255

- Leu His Asn Gln Val Phe Glu Thr Arg Trp Leu Asn Glu Val Val Gly 260 265 270
- Tyr Val Ile Gly Asn Ala Val Leu Gly Phe Ser Thr Gly Trp Trp Lys 275 280 285
- Glu Lys His Asn Leu His His Ala Ala Pro Asn Glu Cys Asp Gln Thr 290 295 300
- Tyr Gln Pro Ile Asp Glu Asp Ile Asp Thr Leu Pro Leu Ile Ala Trp 305 310 315
- Ser Lys Asp Ile Leu Ala Thr Val Glu Asn Lys Thr Phe Leu Arg Ile 325 330 335
- Leu Gln Tyr Gln His Leu Phe Phe Met Gly Leu Leu Phe Phe Ala Arg 340 345 350
- Gly Ser Trp Leu Phe Trp Ser Trp Arg Tyr Thr Ser Thr Ala Val Leu 355 360 365
- Ser Pro Val Asp Arg Leu Leu Glu Lys Gly Thr Val Leu Phe His Tyr 370 375 380
- Phe Trp Phe Val Gly Thr Ala Cys Tyr Leu Leu Pro Gly Trp Lys Pro 385 390 395 400
- Leu Val Trp Met Ala Val Thr Glu Leu Met Ser Gly Met Leu Leu Gly 405 410 415
- Phe Val Phe Val Leu Ser His Asn Gly Met Glu Val Tyr Asn Ser Ser 420 425 430
- Lys Glu Phe Val Ser Ala Gln Ile Val Ser Thr Arg Asp Ile Lys Gly 435 440 445
- Asn Ile Phe Asn Asp Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu 450 455 460
- His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Lys Ile Ala 465 470 475 480
- Pro Arg Val Glu Val Phe Cys Lys Lys His Gly Leu Val Tyr Glu Asp 485 490 495
- Val Ser Ile Ala Thr Gly Thr Cys Lys Val Leu Lys Ala Leu Lys Glu 500 505 510
- Val Ala Glu Ala Ala Glu Gln His Ala Thr Thr Ser 515 520 525

<210: <211: <212: <213:	> 1 > [25 1332 DNA Caeno	rhab	diti	s el	egan:	s										
<220 <221 <222 <223	> (>	CDS (1) Delta			uras	e											
<400 atg Met 1	atc	25 gtc Val	gac Asp	aag Lys 5	aat Asn	gcc Ala	tcc Ser	ejā aāā	ctt Leu 10	cga Arg	atg Met	aag Lys	gtc Val	gat Asp 15	ggc Gly		48
aaa Lys	tgg Trp	ctc Leu	tac Tyr 20	ctt Leu	agc Ser	gag Glu	gaa Glu	ttg Leu 25	gtg Val	aag Lys	aaa Lys	cat His	cca Pro 30	gga Gly	gga Gly		96 ·
gct Ala	gtt Val	att Ile 35	gaa Glu	caa Gln	tat Tyr	aga Arg	aat Asn 40	tcg Ser	gat Asp	gct Ala	act Thr	cat His 45	att Ile	ttc Phe	cac His	•	1:44
gct Ala	ttc Phe 50	cac His	gaa Glu	gga Gly	tct Ser	tct Ser 55	cag Gln	gct Ala	tat Tyr	aag Lys	caa Gln 60	ctt Leu	gac Asp	ctt Leu	ctg Leu		192
aaa Lys 65	aag Lys	cac His	gga Gly	gag Glu	cac His 70	gat Asp	gaa Glu	ttc Phe	ctt Leu	gag Glu 75	aaa Lys	caa Gln	ttg Leu	gaa Glu	aag Lys 80		240
aga Arg	ctt Leu	gac Asp	aaa Lys	gtt Val 85	gat Asp	atc Ile	aat Asn	gta Val	tca Ser 90	gca Ala	tat Tyr	gat Asp	gtc Val	agt Ser 95	gtt Val		288
gca Ala	caa Glr	gaa Glu	aag Lys 100	aaa Lys	atg Met	gtt Val	gaa Glu	tca Ser 105	ttc Phe	gaa Glu	aaa Lys	cta Leu	cga Arg 110	cag Gln	aag Lys		336
ctt Leu	cat	gat Asp 115	Asp	gga Gly	tta Leu	atg Met	aaa Lys 120	gca Ala	aat Asn	gaa Glu	aca Thr	tat Tyr 125	ttc Phe	ctg Leu	ttt Phe		384
aaa Lys	gcg Ala 130	g att a Ile)	tca Ser	aca Thr	ctt Leu	tca Ser 135	Ile	atg Met	gca Ala	ttt Phe	gca Ala 140	ttt Phe	tat Tyr	ctt Leu	cag Gln		432
tat Tyr 145	Let	: gga ı Gly	tgg Trp	tat Tyr	att Ile 150	Thr	tct Ser	gca Ala	tgt Cys	tta Leu 155	Leu	gca Ala	ctt Leu	gca Ala	tgg Trp 160		480
caa Gln	caa Gli	a tto n Phe	gga Gly	tgg Trp 165	Leu	aca Thr	cat His	gag Glu	ttc Phe 170	Суз	cat His	caa Gln	cag Gln	cca Pro 175	Thr		528
aag Lys	aa As	c aga n Arg	e cct Pro 180	Leu	aat Asn	gat Asp	act Thr	att Ile 185	Ser	.tto Lev	ttc Phe	ttt Phe	ggt Gly 190	Asn	ttc Phe		576
tta Lev	ca Gl:	a gga n Gly 199	/ Phe	tca Ser	aga Arg	gat JAsp	tgg Trp 200	Trp	ı aaç Lys	gad Asi	c aag p Lys	cat His 205	: Asr	act Thr	cat His		624
Cac His	gc Al 21	t gco a Ala 0	c aca a Thi	a aat C Asr	gta Val	att Ile 215	asp	cat His	gad Asp	ggt Gly	t gat y Asp 220) Ile	gac Asp	ttg Lev	gca Ala		672

cca Pro 225	ctt Leu	ttc Phe	gca Ala	ttt Phe	att Ile 230	cca Pro	gga Gly	gat Asp	ttg Leu	tgc Cys 235	aag Lys	tat Tyr	aag Lys	gcc Ala	agc Ser 240	720
ttt Phe	gaa Glu	aaa Lys	gca Ala	att Ile 245	ctc Leu	aag Lys	att Ile	gta Val	cca Pro 250	tat Tyr	caa Gln	cat His	ctc Leu	tat Tyr 255	ttc Phe	768
acc Thr	gca Ala	atg Met	ctt Leu 260	cca Pro	atg Met	ctc Leu	cgt Arg	ttc Phe 265	tca Ser	tgg Trp	act Thr	ggt Gly	cag Gln 270	tca Ser	gtt Val	816
caa Gln	tgg Trp	gta Val 275	ttc Phe	aaa Lys	gag Glu	aat Asn	caa Gln 280	atg Met	gag Glu	tac Tyr	aag Lys	gtc Val 285	tat Tyr	caa Gln	aga Arg	864
aat Asn	gca Ala 290	ttc Phe	tgg Trp	gag Glu	caa Gln	gca Ala 295	aca Thr	att Ile	gtt Val	gga Gly	cat His 300	tgg Trp	gct Ala	tgg Trp	gta Val	912
ttc Phe 305	tat Tyr	caa Gln	ttg Leu	ttc Phe	tta Leu 310	tta Lėu	cca Pro	aca Thr	tgg Trp	cca Pro 315	ctt Leu	cgg Arg	gtt Val	gct Ala	tat Tyr 320	960
ttc Phe	att Ile	att Ile	tca Ser	caa Gln 325	atg Met	Gly	gga Gly	ggc Gly	ctt Leu 330	ttg Leu	att Ile	gct Ala	cac His	gta Val 335	gtc Val	1008
act Thr	ttc Phe	aac Asn	cat His 340	aac Asn	tct Ser	gtt Val	gat Asp	aag Lys 345	tat	cca Pro	gcc Ala	aat Asn	tct Ser 350	cga Arg	att Ile	1056
tta Leu	aac Asn	aac Asn 355	Phe	gcc Ala	gct Ala	ctt Leu	caa Gln 360	Ile	ttg Leu	acc Thr	aca Thr	cgc Arg 365	Asn	atg Met	act Thr	1104
cca Pro	tct Ser 370	Pro	ttc Phe	att Ile	gat Asp	tgg Trp 375	Leu	tgg Trp	ggt Gly	gga Gly	ctc Leu 380	Asn	tat Tyr	cag Gln	atc Ile	1152
gag Glu 385	His	cac His	ttg Leu	ttc Phe	cca Pro 390	Thr	atg Met	cca Pro	cgt Arg	tgc Cys 395	Asn	ctg Leu	aat Asn	gct Ala	.tgc Cys 400	1200
gtg Val	aaa Lys	tat Tyr	gtg Val	aaa Lys 405		tgg Trp	tgc Cys	aaa Lys	gag Glu 410	Asn	aat Asn	ctt Leu	cct Pro	tac Tyr 415	Leu	1248
gto Val	gat Asp	gac Asp	tac Tyr 420	Phe	gac Asp	gga Gly	tat Tyr	gca Ala 425	Met	aat Asn	ttg Lev	g caa 1 Glm	caa Glr 430	ı Lev	aaa Lys	1296
aat Asr	ato Met	gct Ala 435	Glu	cac His	att Ile	caa Glr	get Ala 440	ı Lys	gct Ala	gcc Ala	taa i	L				1332
<2: <2:	LO> L1> L2>	26 443 PRT Caer	norha	abdit	 :is e	elega	ans									
<40)O>	26				٠										•

Met Val Val Asp Lys Asn Ala Ser Gly Leu Arg Met Lys Val Asp Gly 1 5 10 15

- Lys Trp Leu Tyr Leu Ser Glu Glu Leu Val Lys Lys His Pro Gly Gly 20 25 30
- Ala Val Ile Glu Gln Tyr Arg Asn Ser Asp Ala Thr His Ile Phe His 35 40 45
- Ala Phe His Glu Gly Ser Ser Gln Ala Tyr Lys Gln Leu Asp Leu Leu 50 55
- Lys Lys His Gly Glu His Asp Glu Phe Leu Glu Lys Gln Leu Glu Lys 65 70 75 80
- Arg Leu Asp Lys Val Asp Ile Asn Val Ser Ala Tyr Asp Val Ser Val 85 90 95
- Ala Gln Glu Lys Lys Met Val Glu Ser Phe Glu Lys Leu Arg Gln Lys 100 00 00 00 00 00
- Leu His Asp Asp Gly Leu Met Lys Ala Asn Glu Thr Tyr Phe Leu Phe 115 120 125
- Lys Ala Ile Ser Thr Leu Ser Ile Met Ala Phe Ala Phe Tyr Leu Gln 130 140
- Tyr Leu Gly Trp Tyr Ile Thr Ser Ala Cys Leu Leu Ala Leu Ala Trp 145 150 155 160
- Gln Gln Phe Gly Trp Leu Thr His Glu Phe Cys His Gln Gln Pro Thr 165 170 175
- Lys Asn Arg Pro Leu Asn Asp Thr Ile Ser Leu Phe Phe Gly Asn Phe 180 · · 185 190
- Leu Gln Gly Phe Ser Arg Asp Trp Trp Lys Asp Lys His Asn Thr His 195 200 205
- His Ala Ala Thr Asn Val Ile Asp His Asp Gly Asp Ile Asp Leu Ala 210 220
- Pro Leu Phe Ala Phe Ile Pro Gly Asp Leu Cys Lys Tyr Lys Ala Ser 225 230 235 240
- Phe Glu Lys Ala Ile Leu Lys Ile Val Pro Tyr Gln His Leu Tyr Phe 245 250 255
- Thr Ala Met Leu Pro Met Leu Arg Phe Ser Trp Thr Gly Gln Ser Val 260 265 270
- Gln Trp Val Phe Lys Glu Asn Gln Met Glu Tyr Lys Val Tyr Gln Arg 275 280 285

Asn	Ala 290	Phe	qrp	Glu		Ala 295	Thr	Ile	Val	Gly	His 300	Trp	Ala	Trp	Val		
Phe 305	Tyr	Gln	Leu	Phe	Leu 310	Leu	Pro	Thr	Trp	Pro 315	Leu	Arg	Val	Ala	туг 320		
Phe	Ile	lle	Ser	Gln 325	Met	Gly	Gly	Gly	Leu 330	Leu	Ile	Ala	His	Val 335	Val		
Thr	Phe	Asn	His 340	Asn	Ser	Val	Asp	Lys 345	Tyr	Pro	Ala	Asn	Ser 350	Arg	Ile		
Leu	Asn	Asn 355	Phe	Ala	Ala	Leu	Gln 360	Ile	Leu	Thr	Thr	Arg 365	Asn	Met	Thr		
Pro	Ser 370	Pro	Phe	Ile	Asp	Trp 375	Leu	Trp	Gly	Gly	Leu 380	Asn	Tyr	Gln	Ile	-	
Glu 385		His	Leu	Phe	Pro 390	Thr	Met	Pro	Arg	Cys 395	Asn	Leu	Asn	Ala	Cys 400		
Val	Lys	Tyr	Val	Lys 405	Glu	Trp	Cys	Lys	Glu 410	Asn	Asn	Leu	Pro	Tyr 415	Leu	•	
Val	. Asp	Asp	Tyr 420		Asp	Gly	Tyr	Ala 425		Asn	Leu	Gln	Gln 430	Leu	Lys		
Asr	Met	Ala 435	Glu	His	Ile	Gln	Ala 440		Ala	. Ala							
<21 <21	.2>	27 873 DNA Phys	comi	trel	la p	aten	 S									٠	
<22 <22			.(87 :a-6-		ıgase	ı											
·ate	00> g gag t Glu	27 g gto ı Va	gtg L Val	, gag Glu 5	g aga 1 Arg	ttc Phe	tac Tyr	ggt Gly	gaq Gli	g ttg ı Lei	g gat 1 Asg	Gly	raag Lys	gto Val	tcg Ser		48
ca Gl:	g ggo n Gly	gte Y Va	g aat L Asr 20	gca Ala	a tt <u>o</u> a Lev	ctg Leu	ggt Gly	z agt y Sei 25	t tti	t ggg a Gl	g gto y Val	g gag L Glu	tto Lev 30	g acq ı Thı	gat Asp		96
ac Th	g cc r Pr	c ac o Th: 35	t aco	aaa Lys	a ggo	ttg Lev	Pro 40	c cto	c gt u Va	t gad l Asj	c agi p Se:	t cco r Pro 45	aca Thr	e ccc	atc Ile		144
gt Va	c cto 1 Le 50	c gg u Gl	t gti y Val	tct L Sei	gta Val	a tac L Tyr 55	tt: Le	g ac u Th	t at r Il	t gte e Va	c at 1 Il 60	t gga e Gl	A GJ7 F GG6	g cti / Lei	t ttg ı Leu		192

Leu Gin Ala Leu Val Leu Val His Asn Leu Phe Cys Phe Ala Leu Ser 85 100 100 100 100 100 100 100 1		Trp 65	Ile	Lys	Ala	agg Arg	Asp 70	Leu	Lys	Pro	Arg	75	Ser	GIU	Pro	hue	80 Tea	2	240
Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln Ala Ile Tyr Arg Tyr 100 tot ctc tot tgg ggc aat gca tac aat cot aaa cat aaa gag atg gcg att Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala Ile 115 ctg gta tac ttg ttc tac atg tct aag tac gtg gaa ttc atg gat acc Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr 130 gtt atc atg ata ctg aag cgc agc acc agg caa ata agc ttc ctc cac Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His 145 gtt tat cat cat tct tca att tcc ctc att tgg tgg gct att gct cat Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His 165 cac gct cct ggc ggt gaa gca tat tgg tct gcg gct ctg acc tca gga His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly 180 gtg cat gtt ctc atg tat gcg tat tac ttc ttg gct gcc tgc ctc cga Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 195 agt agc cca ag tta aaa aat aag tac ctt ttt ttg gcg agg tac ttg Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 210 aca caa ttc caa atg ttc cag ttt atg ctg acc tta ggc att Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Sile 240 tac gac atg aaa acg aat gcg ca tat cca caa tgg ctg act tac Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile 245 ttg ttc tac tac atg atc tcg ttg ctg ttt ctt ttc ggc aat ttt tac Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 gta caa aaa tac atc aaa acc ct ttg acg aaa caa aag gga gct tac Ala Caa aaa ttc tac aaa acc ct ttg acg aaa caa aag gga gct aaa Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 act gag tga Thr Glu 290 <210> 28 2210 28 285 Act gag aaa caa aaa ga acc ct ttga caa aaa gag ga dct aaa Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 280 2210 2210 2210 228 2210 2290 2210 2210 2210 228 2290 2210 2290 2210 2210 2290 2210		ctc Leu	caa Gln	gct Ala	ttg Leu	Val	ctt Leu	gtg Val	cac His	aac Asn	Leu	ttc Phe	tgt Cys	ttt Phe	gcg Ala	Leu	agt Ser	2	88
Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala lie 115 ctg gta tac ttg ttc tac atg tct aag tac gtg gaa ttc atg gat acc Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr 130 gtt atc atg ata ctg aag cgc agc acc agg caa ata agc ttc ctc cac Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His 145 gtt tat cat cat tct tca att tcc ctc att tgg tgg gct att gct cat Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His 165 cac gct cct ggc ggt gaa gca tat tgg tct ggc gct ctg acc tca gga His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly 185 gtg cat gtt ctc atg tat gcg tat tac ttc ttg gct gcc ttg acc tca gag Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 195 agt agc cca aag tta aaa aat aag tac ctt ttt tgg ggc agg tac ttg Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 215 acc aca ttc caa atg ttc cag ttt atg ctg aac tta gtg cag gct tac Trr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 230 tac gac atg aaa acg aat gcg cca tat cca caa tgg ctg atc aag att Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile 245 ttg ttc tac tac atg atc tcg ttg ctg ttt ctt ttc ggc agt ttt tac Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Gly Asn Phe Tyr 260 gta caa aaa tac atc aaa cc tcg ctg ctg atc aag att Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile 245 ttg ttc tac tac atg atc tcg ttg ctg ttt ctt ttc ggc agt ttac Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Gly Asn Phe Tyr 270 gta caa aaa tac atc aaa cc tct gac gga aag caa aag gag gct aaa Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 act gag tga Thr Glu 290 <210> 2210> 28 <210> 2210> 28 <210> 2210> 28 <211> 220 <212> PRT <213> Physcomitrella patens		ctg Leu	tat Tyr	atg Met	Cys	gtg Val	ggc Gly	atc Ile	gct. Ala	Tyr	cag Gln	gct Ala	att Ile	acc Thr	ı,rp	cgg. Arg	tac Tyr	3	336
Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr 130 gtt atc atg ata ctg aag cgc agc acc agg caa ata agc ttc ctc cac Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His 150 gtt tat cat cat tct tca att tcc ctc att tgg tgg gct att gct cat Val Tyr His His Ser ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His 165 cac gct cct ggc ggt gaa gca tat tgg tct gcg gct ctg aac tca gga His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly 190 gtg cat gtt ctc atg tat gcg tat tac ttc ttg gct gcc tgc ctt cga Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 195 agt agc cca aag tta aaa aat aag tac ctt ttt tgg ggc agg tac ttg Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 210 aca caa ttc caa atg ttc caa gtt atg ctg acc tta gtg gc agg tac ttg Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 230 tac gac atg aaa acg aat gcg cca tat cca caa ttg gtg acg gt tac Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ilys Ile 125 ttg ttc tac tac atg atc ctc gt ttg ctg ttt ctt ttc ggc aat ttt tac Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 gta caa aaa tac atc aac acc ct tga gag aag caa aag gga gcd acc ttg ctg ctg ctg ctg ctg ctg ctg ctg c		tct Ser	ctc Leu	Trp	ggc Gly	aat Asn	gca Ala	tac Tyr	Asn	cct Pro	aaa Lys	cat His	aaa Lys	Glu	atg Met	gcg Ala	att Ile	3	384
The first case at the case of the ser of the		ctg Leu	Val	tac Tyr	ttg Leu	ttc Phe	tac Tyr	Met	tct Ser	aag Lys	tac Tyr	gtg Val	Glu	ttc Phe	atg Met	gat Asp	acc Thr	4	432
Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His 165 cac gct cct ggc ggt gaa gca tat tgg tct gcg gct ctg aac tca gga His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly 180 gtg cat gtt ctc atg tat gcg tat tac ttc ttg gct gcc tgc ctt cga Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 200 agt agc cca aag tta aaa aat aag tac ctt ttt tgg ggc agg tac ttg Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 210 aca caa ttc caa atg ttc cag ttt atg ctg aac tta gtg cag gct tac Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 225 tac gac atg aaa acg aat gcg cca tat cca caa tgg ctg atc aag att Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile 245 ttg ttc tac tac atg atc tcg ttg ctg ttt ctt ttc ggc aat ttt tac Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 gta caa aaa tac atc aaa ccc tct tgac gga aag caa aag gga ct tac Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 gta caa aaa tac atc aaa ccc tct gac gga aag caa aag gga gct aaa Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 act gag tga Thr Glu 290 <210> 2210> 228 <211> 2210> 228 <2210> 2210 228 <2210> 228 <2210> 228 <2210> 228 <2210> 228 <2210> 228 <2210> 227 220 227 220 227 227 228 227 228 227 2290 <212> 228 <2210> 228 <2210> 228 <2210> 2290 <2210> 228 <2210> 2290 <2210> 2290 <2210> 2212 PRT <2213> Physcomitrella patens	•	Val	atc Ile	atg Met	ata Ile	ctg Leu	Lys	cgc Arg	agc Ser	acc Thr	agg Arg	Gln	ata Ile	agc Ser	ttc Phe	ctc Leu	His	•	480
His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Ash Ser Gly 180 gtg cat gtt ctc atg tat gcg tat tac ttc ttg gct gcc ttgc ctt cga Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 200 agt agc cca aag tta aaa aat aag tac ctt ttt tgg ggc agg tac ttg Ser Ser Pro Lys Leu Lys Ash Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 210 aca caa ttc caa atg ttc cag ttt atg ctg act tta gtg cag gct tac Thr Gln Phe Gln Met Phe Gln Phe Met Leu Ash Leu Val Gln Ala Tyr 220 tac gac atg aaa acg aat gcg cca tat cca caa tgg ctg atc aag att Tyr Asp Met Lys Thr Ash Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile 255 ttg ttc tac tac atg atc tcg ttg ctg ttt ctt ttc ggc aat ttt tac Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Ash Phe Tyr 260 gta caa aat ac atc aaa ccc tct gac gga aag caa aag gga gct aaa Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 act gag tga Thr Glu 28 <210> 28 <210> 28 <211> 290 <212> PRT <2213> Physcomitrella patens		gtt Val	tat Tyr	cat His	cat His	Ser	tca Ser	att Ile	tcc Ser	ctc Leu	Ile	tgg Trp	tgg Trp	gct Ala	att Ile	Ala	cat His	!	528
Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 195 agt agc cca aag tta aaa aat aag tac ctt ttt tgg ggc agg tac ttg Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 210 aca caa ttc caa atg ttc cag ttt atg ctg aac tta gtg cag gct tac Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 225 tac gac atg aaa acg aat gcg cca tat cca caa tgg ctg atc aag att Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile 245 ttg ttc tac tac atg atc tcg ttg ctg ttt ctt ttc ggc aat ttt tac Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 gta caa aaa tac atc aaa ccc tct gac gga aag caa aag gga gct aaa Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 act gag tga Thr Glu 290 <210> 28 <210> 28 <211> 290 212 PRT <213> Physcomitrella patens		cac His	gct Ala	cct	Gly	Gly	gaa Glu	gca Ala	tat Tyr	Trp	tct Ser	gcg Ala	gct Ala	ctg Leu	Asn	tca Ser	gga Gly		576
Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 220		gtg Val	cat His	Val	Leu	atg Met	tat Tyr	gcg Ala	Tyr	Tyr	ttc Phe	ttg Leu	gct Ala	Ala	. Cys	ctt Leu	cga Arg		624
Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 240 tac gac atg aaa acg aat gcg cca tat cca caa tgg ctg atc aag att Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile 255 ttg ttc tac tac atg atc tcg ttg ctg ttt ctt ttc ggc aat ttt tac Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 gta caa aaa tac atc aaa ccc tct gac gga aag caa aag gga gct aaa Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 act gag tga Thr Glu 290 <210> 28 <211> 290 <212> PRT <213> Physicomitrella patens		agt Ser	Ser	Pro	aag Lys	tta Leu	aaa Lys	Asn	Lys	tac Tyr	ctt Leu	ttt Phe	Trp	Gly	agg Arg	tac Tyr	ttg Leu		672
Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu IIe Lys 11e 245 ttg ttc tac tac atg atc tcg ttg ctg ttt ctt ttc ggc aat ttt tac Leu Phe Tyr Tyr Met IIe Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 gta caa aaa tac atc aaa ccc tct gac gga aag caa aag gga gct aaa Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 act gag tga Thr Glu 290 <210> 28 <211> 290 <212> PRT <213> Physcomitrella patens		Thr	Glr	tto Phe	caa Glr	atg Met	Phe	Glr	r ttt L Phe	. atg . Met	ctg Leu	Asr	Leu	gtg Val	g cag . Gln	gct Ala	JAX.		720
Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 gta caa aaa tac atc aaa ccc tct gac gga aag caa aag gga gct aaa Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 act gag tga Thr Glu 290 <210> 28 <211> 290 <212> PRT <213> Physcomitrella patens		tac Tyr	gac Asp	ato Met	, aas Lys	Thr	Asn	gc <u>c</u> Ala	r cca	tat Tyr	Pro	Glr	tgg Trp	tev Lev	g ato	Lys	; Ile		768
Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 act gag tga Thr Glu 290 <210> 28 <211> 290 <212> PRT <213> Physcomitrella patens		ttg Lev	tto Phe	tao Ty	r Tyi	. Met	gato : Ile	tco Sei	g ttg Lei	ı Lev	ı Phe	ctt Lev	tto 1 Phe	e Gl7	/ Asr	ı Pne	tac Tyr		816
Thr Glu 290 <210> 28 <211> 290 <212> PRT <213> Physcomitrella patens		gta Val	a caa Gli	т Гу:	з Туз	c ato	aaa Lys	e cc	Sei	: Asp	gga Gly	a aaq Y Lys	g caa s Glr	і Гуз	s GT7	a gci / Ala	aaa Lys		864
<211> 290 <212> PRT <213> Physcomitrella patens	•		c Gli	ı	a.														873
		<2: <2:	11> 12>	290 PRT		itre	lla 1	pate:	ns										
							•						•						

- Met Glu Val Val Glu Arg Phe Tyr Gly Glu Leu Asp Gly Lys Val Ser 1 5 10 15
- Gln Gly Val Asn Ala Leu Leu Gly Ser Phe Gly Val Glu Leu Thr Asp 20 25 30
- Thr Pro Thr Thr Lys Gly Leu Pro Leu Val Asp Ser Pro Thr Pro Ile 35 40 45
- Val Leu Gly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu 50 60
- Trp Ile Lys Ala Arg Asp Leu Lys Pro Arg Ala Ser Glu Pro Phe Leu 65 70 75 80
- Leu Gln Ala Leu Val Leu Val His Asn Leu Phe Cys Phe Ala Leu Ser 85 90 95
- Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln Ala Ile Thr Trp Arg Tyr 100 105 110
- Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala Ile 115 . 120 . 125
- Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr 130 135 140
- Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His 145 150 155 160
- Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His 165 170 175
- His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly 180 185 190
- Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 195 200 205
- Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 210 215 220
- Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 225 230 235 240
- Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile 245 250 255
- Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 265 270

Val (Lys 1 275	Tyr :	Ile 1	Lys :	Pro :	Ser : 280	Asp (Gly	Lys (Gln :	Lys (285	3ly .	Ala 1	Lys		
Thr	Glu 290																
<210 <211 <212 <213	> 1 > D	049 NA	stoc	hytr	ium												
<220 <221 <222 <223	.> C	DS 43). elta			ase				·								
<400 gaat)> 2 tcgg	.9 rca c	gaga	අප්ධර්	g cg	gago	:ggag	acc	tcgg:	acca	cg a N 1	let M	tg g et G	ag c	cg ro	5	54
ctc Leu 5	gac Asp	agg Arg	tac Tyr	agg Arg	gcg Ala 10	ctg Leu	gcg Ala	gag Glu	ctc Leu	gcc Ala 15	gcg Ala	agg Arg	tac Tyr	gcc Ala	agc Ser 20	10)2
tcg Ser	gcg Ala	gcc Ala	ttc Phe	aag Lys 25	tgg Trp	caa Gln	gtc Val	acg Thr	tac Tyr 30	gac Asp	gcc Ala	aag Lys	gac Asp	agc Ser 35	ttc Phe	15	50
gtc Val	GJÅ āāā	ccc Pro	ctg Leu 40	gga Gly	atc Ile	cgg Arg	gag Glu	ccg Pro 45	ctc Leu	Gly ggg	ctc Leu	ctg Leu	gtg Val 50	Gly	tcc Ser	19	98
gtg Val	gtc Val	ctc Leu 55	tac Tyr	ctg Leu	agc Ser	ctg Leu	ctg Leu 60	gcc Ala	gtg Val	gtc Val	tac Tyr	gcg Ala 65	ctg Leu	cgg Arg	aac Asn	2	46
tac Tyr	ctt Leu 70	Gly ggc	ggc	ctc Leu	atg Met	gcg Ala 75	ctc Leu	cgc Arg	agc Ser	gtg Val	cat His 80	aac Asn	ctc Leu	ggg Gly	ctc Leu	2	94
tgc Cys 85	ctc Leu	ttc Phe	tcg Ser	ggc	gcc Ala 90	gtg Val	tgg Trp	atc Ile	tac Tyr	acg Thr 95	agc Ser	tac Tyr	ctc Leu	atg Met	atc Ile 100	. 3	42
cag Gln	gat Asp	Gly aaa	cac His	ttt Phe 105	Arg	agc Ser	ctc Leu	gag Glu	gcg Ala 110	Ala	acg Thr	tgc Cys	gag Glu	ccg Pro 115	ctc Leu	3	90
aag Lys	cat His	ccg Pro	cac His	Phe	cag Gln	ctc Leu	atc Ile	agc Ser 125	Leu	ctc Leu	ttt Phe	gcg Ala	ctg Leu 130	Ser	aag Lys	4	38
ato Ile	tgg Trp	gag Glu 135	Trp	ttc Phe	gac Asp	acg Thr	gtg Val	. Leu	cto Lev	ato Ile	gtc Val	aag Lys 145	GIA	aac Asn	aag Lys	4	86
cto Lev	c cgc Arg 150	Phe	ctg Lev	cac His	gtc Val	ttg Lev	His	cac His	gco Ala	acg Thr	acc Thr	Phe	tgg	ctc Leu	tac		34
gco Ala 165		gac Asp	cac His	ato	ttt Phe 170	Leu	tc <u>c</u> Ser	tco Ser	ato	aag Lys 175	TY2	ggc Gly	gto Val	gcg Ala	gtc Val 180	Ş	82

aat got tto ato cac acc gto atg tac gog cac tac tto Asn Ala Phe Ile His Thr Val Met Tyr Ala His Tyr Phe 185 190	
103	cgc cca ttc 630 Arg Pro Phe 195
ccg aag ggc ttg cgc ccg ctt att acg cag ttg cag atc Pro Lys Gly Leu Arg Pro Leu Ile Thr Gln Leu Gln Ile 200 205	gtc cag ttc 678 Val Gln Phe 210
att ttc agc atc ggc atc cat acc gcc att tac tgg cac Ile Phe Ser Ile Gly Ile His Thr Ala Ile Tyr Trp His 215 220 225	Tyr Asp Cys
gag ccg ctc gtg cat acc cac ttt tgg gaa tac gtc acg Glu Pro Leu Val His Thr His Phe Trp Glu Tyr Val Thr 230 235 240	g ccc tac ctt 774 r Pro Tyr Leu
ttc gtc gtg ccc ttc ctc atc ctc ttt ttc aat ttt tac Phe Val Val Pro Phe Leu Ile Leu Phe Phe Asn Phe Tyr 245 250 255	c ctg cag cag 822 c Leu Gln Gln 260
tac gtc ctc gcg ccc gca aaa acc aag aag gca tag cca Tyr Val Leu Ala Pro Ala Lys Thr Lys Lys Ala 265 270	acgtaaca 868
gtagaccagc agcgccgagg acgcgtgccg cgttatcgcg aagcac	gaaa taaagaagat 928
catttgattc aacgaggcta cttgcggcca cgagaaaaaa aaaaaaa	•
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa	aaaa aaaaaaaaaa 1048
c	1049
<210> 30	
<211> 271 <212> PRT <213> Thraustochytrium	
<212> PRT	
<212> PRT <213> Thraustochytrium	u Leu Ala Ala 15
<212> PRT <213> Thraustochytrium <400> 30 Met Met Glu Pro Leu Asp Arg Tyr Arg Ala Leu Ala Gl	15
<pre><212> PRT <213> Thraustochytrium <400> 30 Met Met Glu Pro Leu Asp Arg Tyr Arg Ala Leu Ala Gl 1</pre>	r Tyr Asp Ala 30 .
<pre><212> PRT <213> Thraustochytrium <400> 30 Met Met Glu Pro Leu Asp Arg Tyr Arg Ala Leu Ala Gl 1</pre>	Tyr Asp Ala 30 To Leu Gly Leu
<pre><212> PRT <213> Thraustochytrium <400> 30 Met Met Glu Pro Leu Asp Arg Tyr Arg Ala Leu Ala Gl 1</pre>	Tyr Asp Ala 30 To Leu Gly Leu 3 a Val Val Tyr
<pre><212> PRT <213> Thraustochytrium <400> 30 Met Met Glu Pro Leu Asp Arg Tyr Arg Ala Leu Ala Gl 1</pre>	Tyr Asp Ala 30

Cys Glu P 1	Pro Leu 115	Lys His	Pro	His 120	Phe	Gln	Leu	Ile	Ser 125	Leu	Leu	Phe		
Ala Leu S 130	Ser Lys	Ile Trp	Glu 135	Trp	Phe	Asp	Thr	Val 140	Leu	Leu	Ile	Val		
Lys Gly A	Asn Lys	Leu Arg 150		Leu [.]	His	Val	Leu 155	His	His	Ala	Thr	Thr 160		
Phe Trp I	Leu Tyr	Ala Ile 165	qaA	His	Ile	Phe 170	Leu	Ser	Ser	Ile	Lys 175	Tyr		
Gly Val 2	Ala Val 180	Asn Ala	Phe	Ile	His 185	Thr	Val	Met	Tyr	Ala 190	His	Tyr		
Phe Arg	Pro Phe 195	Pro Lys	Gly	Leu 200	Arg	Pro	Leu	Ile	Thr 205	Gln	Leu	Gln		
Ile Val (210	Gln Phe	Ile Phe	Ser 215	Ile	Gly	Ile	His	Thr 220	Ala	Ile	Tyr	Trp		
His Tyr 2 225	Asp Cys	Glu Pro		Va1	His	Thr	His 235	Phe	Trp	Glu	Tyr	Val 240		
Thr Pro	Tyr Leu	Phe Val 245	. Val	Pro	Phe	Leu 250	Ile	Leu	Phe	Phe	Asn 255	Phe		
Tyr Leu	Gln Gln 260		Leu	Ala	Pro 265	Ala	Lys	Thr	Lys	Lys 270	Ala			
<211> 8 <212> D <213> P	1 37 DNA Phytopht	hora in:	Eesta	ns										
<222> (1)(83	7) Elongas	9											
<400> 3 atg tcg Met Ser 1	31 act gag Thr Glu	cta ct Leu Le 5	g cag u Gln	ago Ser	tac Tyr	tac Tyr 10	gcg	tgg Trp	gcc Ala	aac Asn	gcc Ala 15	acg Thr		48
gag gcc Glu Ala	aag ctg Lys Leu 20	rctg ga Leu As	c tgg p Trp	gtc Val	gac Asp 25	cct Pro	gag Glu	Gly ggc	ggc Gly	tgg Trp 30	aag Lys	gtg Val		96
cat cct His Pro	atg gca Met Ala 35	gac ta Asp Ty	c ccc r Pro	cta Leu 40	gcc Ala	aac Asr	tto Phe	tco Ser	ago Ser 45	gtc Val	tac Tyr	gcc Ala	:	144
atc tgc Ile Cys 50	gtc gga Val Gly	a tac tt / Tyr Le	g cto u Lei 55	tto Phe	gta Val	ato L Ile	tto Phe	60 G17	ace Thr	gcc Ala	cto Leu	, atg Met	:	192

aaa atg gga Lys Met Gly 65	gtc ccc Val Pro	gcc atc Ala Ile 70	aag ac Lys Th	ır Ser	cca Pro : 75	tta Leu	cag Gln	ttt Phe	gtg Val	tac Tyr 80	240
aac ccc atc Asn Pro Ile	caa gtc Gln Val 85	att gcc Ile Ala	tgc to Cys Se	et tat er Tyr 90	atg Met	tgc Cys	gtg Val	gag Glu	gcc Ala 95	gcc Ala	288
atc cag gcc Ile Gln Ala	tac cgc Tyr Arg 100	aac ggc Asn Gly	tac ac Tyr Th	nr Ala	gcc Ala	ccg Pro	tgc Cys	aac Asn 110	gcc Ala	ttt Phe	336
aag tcc gac Lys Ser Asp 115	gac ccc Asp Pro	gtc atg Val Met	ggc aa Gly As 120	ac gtt sn Val	ctg Leu	tac Tyr	ctc Leu 125	ttc Phe	tat Tyr	ctc Leu	3,84
tcc aag atg Ser Lys Met 130	ctc gac Leu Asp	ctg tgc Leu Cys 135	Asp Th	ca gtc hr Val	ttc Phe	atț Ile 140	atc Ile	cta Leu	gga Gly	aag Lys	432
aag tgg aaa Lys Trp Lys 145	cag ctt Gln Leu	tcc atc Ser Ile 150	ttg ca Leu Hi	ac gtg is Val	tac Tyr 155	cac His	cac His	ctt Leu	acc Thr	gtg Val 160	480
ctt ttc gtc Leu Phe Val	tac tat Tyr Tyr 165	Val Thr	ttc co	gc gcc rg Ala 170	gct Ala	cag Gln	gac Asp	Gly ggg	gac Asp 175	tca Ser	528
tat gct acc Tyr Ala Thi	: atc gtc : Ile Val 180	r ctc aac Leu Asn	Gly P	tc gtg he Val 85	cac His	acc Thr	atc Ile	atg Met 190	tac Tyr	act Thr	576
tac tac tto Tyr Tyr Phe 199	e Val Sei	gcc cac Ala His	acg co Thr A	gc aac rg Asn	att Ile	tgg Trp	tgg Trp 205	aag Lys	aag Lys	tac Tyr	624
ctc acg cgo Leu Thr Arg 210	att caq y Ile Gli	g ctt ato n Leu Ile 215	Gln P	tc gtg he Val	acc Thr	atg Met 220	aac Asn	gtg Val	cag Gln	G]A gac	672
tac ctg acc Tyr Leu Th: 225	tac tci r Tyr Sei	t cga cag r Arg Glr 230	tgc c 1 Cys P	ca ggc ro Gly	atg Met 235	cct Pro	ect Pro	aag Lys	gtg Val	ccg Pro 240	720
ctc atg ta Leu Met Ty	c ctt gte r Leu Vai 24	l Tyr Val	g cag t l Gln S	ca ctc Ser Leu 250	ttc Phe	tgg Trp	ctc Leu	ttc Phe	atg Met 255	aat Asn	768
ttc tac at Phe Tyr Il	t cgc gc e Arg Al 260	g tac gto a Tyr Val	l Phe G	gc ccc ly Pro 865	aag Lys	aaa Lys	ccg Pro	gcc Ala 270	. Val	gag Glu	816
gaa tcg aa Glu Ser Ly 27	s Lys Ly		a .								837
<210> 32 <211> 278 <212> PRT <213> Phy		a infest	ans								
<400> 32				•							
Met Ser Th 1	r Glu Le 5	u Leu Gl	n Ser 1	ryr Tyr 10		Trp	Ala	Asn	ı Ala 15	1 Thr	

Glu Ala Lys Leu Leu Asp Trp Val Asp Pro Glu Gly Gly Trp Lys Val 20 25 30

His Pro Met Ala Asp Tyr Pro Leu Ala Asn Phe Ser Ser Val Tyr Ala 35 40 45

Ile Cys Val Gly Tyr Leu Leu Phe Val Ile Phe Gly Thr Ala Leu Met 50 60

Lys Met Gly Val Pro Ala Ile Lys Thr Ser Pro Leu Gln Phe Val Tyr 65 70 75 80

Asn Pro Ile Gln Val Ile Ala Cys Ser Tyr Met Cys Val Glu Ala Ala . 85 90 95

Ile Gln Ala Tyr Arg Asn Gly Tyr Thr Ala Ala Pro Cys Asn Ala Phe.
100 105 110

Lys Ser Asp Asp Pro Val Met Gly Asn Val Leu Tyr Leu Phe Tyr Leu 115 120 125

Ser Lys Met Leu Asp Leu Cys Asp Thr Val Phe Ile Ile Leu Gly Lys 130 135 140

Lys Trp Lys Gln Leu Ser Ile Leu His Val Tyr His His Leu Thr Val 145 150 155 160

Leu Phe Val Tyr Tyr Val Thr Phe Arg Ala Ala Gln Asp Gly Asp Ser 165 170 175

Tyr Ala Thr Ile Val Leu Asn Gly Phe Val His Thr Ile Met Tyr Thr 180 185 190

Tyr Tyr Phe Val Ser Ala His Thr Arg Asn Ile Trp Trp Lys Lys Tyr 195 200 205

Leu Thr Arg Ile Gln Leu Ile Gln Phe Val Thr Met Asn Val Gln Gly 210 215 220

Tyr Leu Thr Tyr Ser Arg Gln Cys Pro Gly Met Pro Pro Lys Val Pro 225 230 235 240

Leu Met Tyr Leu Val Tyr Val Gln Ser Leu Phe Trp Leu Phe Met Asn 245 250 255

Phe Tyr Ile Arg Ala Tyr Val Phe Gly Pro Lys Lys Pro Ala Val Glu 260 265 270

Glu Ser Lys Lys Leu 275

```
<210>
       33
      954
<211>
<212> DNA
<213> Mortierella alpina
<220>
<221> CDS
<222> (1)..(954)
<223> Delta-6-Elongase
<400> 33
atg gcc gcc gca atc ttg gac aag gtc aac ttc ggc att gat cag ccc
Met Ala Ala Ile Leu Asp Lys Val Asn Phe Gly Ile Asp Gln Pro
                                    10
ttc gga atc aag ctc gac acc tac ttt gct cag gcc tat gaa ctc gtc
Phe Gly Ile Lys Leu Asp Thr Tyr Phe Ala Gln Ala Tyr Glu Leu Val
                                                                     144
acc gga aag too atc gac too the gto the cag gag ggo gto acg oct
Thr Gly Lys Ser Ile Asp Ser Phe Val Phe Gln Glu Gly Val Thr Pro
                                              - 45
                                                                     192
ctc tcg acc cag aga gag gtc gcc atg tgg act atc act tac ttc gtc
Leu Ser Thr Gln Arg Glu Val Ala Met Trp Thr Ile Thr Tyr Phe Val
gtc atc ttt ggt ggt cgc cag atc atg aag agc cag gac gcc ttc aag
                                                                      240
Val Ile Phe Gly Gly Arg Gln Ile Met Lys Ser Gln Asp Ala Phe Lys
ete aag eee ete tte ate ete cae aac tte ete etg aeg ate geg tee
                                                                      288
Leu Lys Pro Leu Phe Ile Leu His Asn Phe Leu Leu Thr Ile Ala Ser
                                     90
gga tog ctg ttg ctc ctg ttc atc gag aac ctg gtc ccc atc ctc gcc
                                                                      336
Gly Ser Leu Leu Leu Phe Ile Glu Asn Leu Val Pro Ile Leu Ala
                                                                      384
aga aac gga ctt ttc tac gcc atc tgc gac gac ggt gcc tgg acc cag
Arg Asn Gly Leu Phe Tyr Ala Ile Cys Asp Asp Gly Ala Trp Thr Gln
                                                                      432
ege etc gag etc etc tac tac etc aac tac etg gtc aag tac tgg gag
Arg Leu Glu Leu Leu Tyr Tyr Leu Asn Tyr Leu Val Lys Tyr Trp Glu
     130
 ttg gcc gac acc gtc ttt ttg gtc ctc aag aag aag cct ctt gag ttc
                                                                      480
 Leu Ala Asp Thr Val Phe Leu Val Leu Lys Lys Lys Pro Leu Glu Phe
                      150
 145
 ctg cac tac ttc cac cac tcg atg acc atg gtt ctc tgc ttt gtc cag
                                                                      528
 Leu His Tyr Phe His His Ser Met Thr Met Val Leu Cys Phe Val Gln
 ett gga gga tac act tea gtg tee tgg gte eet att ace ete aac ttg
                                                                      576
 Leu Gly Gly Tyr Thr Ser Val Ser Trp Val Pro Ile Thr Leu Asn Leu
                                  185
             180
                                                                      624 .
 act gtc cac gtc ttc atg tac tac tac tac atg cgc tcc gct gcc ggt
 Thr Val His Val Phe Met Tyr Tyr Tyr Tyr Met Arg Ser Ala Ala Gly
         195
                             200
 gtt cgc atc tgg tgg aag cag tac ttg acc act ctc cag atc gtc cag
 Val Arg Ile Trp Trp Lys Gln Tyr Leu Thr Thr Leu Gln Ile Val Gln
     210
                          215
```

ttc Phe 225	gtt Val	ctt Leu	gac Asp	ctc Leu	gga Gly 230	ttc Phe	atc Ile	tac Tyr	ttc Phe	tgc Cys 235	gcc Ala	tac Tyr	acc Thr	tac Tyr	ttc Phe 240	720
gcc Ala	ttc Phe	acc Thr	tac Tyr	ttc Phe 245	ccc Pro	tgg Trp	gct Ala	ccc Pro	aac Asn 250	gtc Val	ggc Gly	aag Lys	tgc Cys	gcc Ala 255	ggt Gly	768
acc Thr	gag Glu	ggt Gly	gct Ala 260	gct Ala	ctc Leu	ttt Phe	ggc	tgc Cys 265	gga Gly	ctc Leu	ctc Leu	tcc Ser	agc Ser 270	tat Tyr	ctc Leu	816
ttg Leu	ctc Leu	ttt Phe 275	atc Ile	aac Asn	ttc Phe	tac Tyr	cgc Arg 280	att Ile	acc Thr	tac Tyr	aat Asn	gcc Ala 285	aag Lys	gcc Ala	aag Lys	864
gca Ala	gcc Ala 290	aag Lys	gag Glu	cgt Arg	gga Gly	agc Ser 295	aac Asn	ttt Phe	acc Thr	ccc Pro	aag Lys 300	act Thr	gtc Val	aag Lys	tcc Ser	912
ggc Gly 305	Gly	tcg Ser	ccc Pro	aag Lys	aag Lys 310	ccc Pro	tcc Ser	aag Lys	agc Ser	aag Lys 315	cac His	atc Ile	taa			954
<21	1> 2>	PRT	iere	lla ·	alpii	na										
<40	0.>	34														
Met 1	Ala	Ala	Ala	Ile 5	Leu	Asp	Lys	Val	Asn 10	Phe	Gly	Ile	qaA	Gln 15	Pro	
Phe	Gly	Ile	Lys 20	Leu	Asp	Thr	Tyr	Phe 25	Ala	Gln	Ala	Tyr	Glu 30	Leu	Val	
Thr	Gly	, L ys 35	Ser	Ile	Asp	Ser	Ph∈ 40	. Val	Phe	Gln	. Glu	Gly 45	val	Thr	Pro	
Leu	Ser 50	Thr	Gln	Arg	Glu	Val	Ala	. Met	Trp	Thr	· Ile	Thr	Туг	Phe	. Val	. `
.Va] 65	. Ile	Phe	e Gly	Gly	Arg 70	Gln	ı Il∈	e Met	. Lys	Ser 75	Gln	a Asp	Ala	Phe	Lys 80	
Let	Lys	s Pro	Leu	Phe 85	: Ile	. Lev	. His	s Asn	Phe 90	Let	ı Lev	ı Thi	: I1	Ala 95	. Ser	·
Gl	/ Sei	: Lei	100		. Lev	ı Ph∈	e Ile	e Glu 109		ı Leı	ı Val	L Pro	110		ı Ala	
Arg	j Ası	n Gly 115		ı Phe	≘ Туг	Ala	120		s Ası) Ası	o Gl	/ Ala		o Thi	c Gln	
Ar	g Le		ı Lei	ı Let	1 ТУ1			u Ası	a Ty	c Le	ı Va:		з Ту:	r Try	, Glu	

Leu 145	Ala	Asp	Thr	Val	Phe 150	Leu	Val	Leu	Lys	Lys 155	Lys	Pro	Leu	Glu	Phe 160			
Leu	His	Tyr	Phe	His 165	His	Ser	Met	Thr	Меt 170	Val	Leu	Cys	Phe	Val 175	Gln			
Leu	Gly	Gly	Туг 180	Thr	Ser	Val	Ser	Trp 185	Val	Pro	Ile	Thr	Leu 190	Asn	Leu			
Thr	Val	His 195	Val	Phe	Met	Tyr	туr 200	Tyr	Tyr	Met	Arg	Ser 205	Ala	Ala	Gly			
Val	Arg 210	Ile	Trp	Trp	Lys	Gln 215	Tyr	Leu	Thr	Thr	Leu 220	Gln	Ile	Val	Gln			
Phe 225	Val	Leu	Asp	Leu	Gly 230	Phe	Ile	Tyr	Phe	Cys 235	Ala	Tyr	Thr	Tyr	Phe 240 ·			
Ala	Phe	Thr	Tyr	Phe 245	Pro	Trp	Ala	Pro	Asn 250		Gly	Lys	Cys	Ala 255	Gly			
Thr	Glu	Gly	Ala 260		Leu	Phe	Gly	Cys 265		Leu	Leu	Ser	Ser 270	Tyr	Leu			
Leu	Leu	Phe 275		Asn	Phe	Tyr	Arg 280		Thr	Tyr	Asn	Ala 285	Lys	Ala	Lys			
Ala	Ala 290		Glu	Arg	Gly	Ser 295		. Phe	Thr	Pro	Lys 300	Thr	Val	Lys	Ser	_	1_	
Gly 305		y Ser	Pro	Lys	Lys 310		Ser	: Lys	Ser	: Lys 315		Ile						
<21 <21 <21 <21	.1> .2>	35 957 DNA Mort	iere:	ella	alpi	na												
<22 <22	20> 21> 22> 23>		(95 ta-6-	57) -Elor	ıgase	1											٠	
ato	00> g gag c Gl	35 g tc: u Se:	g at: r Il:	t gcg a Ala 5	g cca	tto Phe	c cto	c cca	a tca o Sea 10	a aaq	g ato s Me	g ccg : Pro	g caa	a gat n Ası 15	ctg p Leu			48
tt: Ph	c at	g ga t As	c ct p Le	t gco u Ala	c aco	gci Ala	t at a Il	e gg e Gly 25	t gt y Va	c cg	g gco	c gcg a Ala	g cco a Pro 30	ta o Ty:	t gtc r Val			96
ga As	t cc p Pr	t ct o Le 35	c ga u Gl	g gco u Ala	e geç a Ala	g cte	g gt u Va 40	l Al	c ca a Gl	g gc n Al	c ga a Gl	g aaq u Ly: 45	g tad	c at	c ccc e Pro	•		144

acg Thr	att Ile 50	gtc Val	cat His	cac His	Thr .	egt Arg 55	GJÀ aaa	ttc Phe	ctg Leu	gtc Val	gcg 60	gtg Val	gag Glu	tcg Ser	cct Pro	192	
ttg Leu 65	gcc Ala	cgt Arg	gag Glu	ctg Leu	ccg Pro 70	ttg Leu	atg Met	aac Asn	ccg Pro	ttc Phe 75	cac His	gtg Val	ctg Leu	ttg Leu	atc Ile 80	240	
gtg Val	ctc Leu	gct Ala	tat Tyr	ttg Leu 85	gtc Val	acg Thr	gtc Val	ttt Phe	gtg Val 90	Gly ggc	atg Met	cag Gln	atc Ile	atg Met 95	aag Lys	288	
aac Asn	ttt Phe	gag Glu	cgg Arg 100	ttc Phe	gag Glu	gtc Val	aag Lys	acg Thr 105	ttt Phe	tcg Ser	ctc Leu	ctg Leu	cac His 110	aac Asn	ttt Phe	336	
tgt Cys	ctg Leu	gtc Val 115	tcg Ser	atc Ile	agc Ser	gcc Ala	tac Tyr 120	atg Met	tgc Cys	ggt Gly	eja aaa	atc Ile 125	ctg Leu	tac Tyr	gag Glu	384	:
gct Ala	tat Tyr 130	cag Gln	gcc Ala	aac Asn	tat Tyr	gga Gly 135	ctg Leu	ttt Phe	gag Glu	aac Asn	gct Ala 140	gct Ala	gat Asp	cat His	acc Thr	432	2
ttc Phe 145	Lys	ggt Gly	ctt Leu	cct Pro	atg Met 150	gcc Ala	aag Lys	atg Met	atc Ile	tgg Trp 155	Leu	ttc Phe	tac Tyr	ttc Phe	tcc Ser 160	480)
aag Lys	atc Ile	atg Met	gag Glu	ttt Phe 165	Val	gac Asp	acc Thr	atg Met	atc Ile 170	atg Met	gtc Val	ctc Leu	aag Lys	aag Lys 175	Asn	528	3
aac Asn	cgc Arg	cag Glr	ato Ile 180	tcc Ser	ttc Phe	ttg Leu	cac His	gtt Val 185	Tyr	cac His	cac His	agc Ser	tcc Ser 190	TTE	ttc Phe	576	5
acc Thr	ato	týc Trp 195	Trr	ttg Leu	gtc Val	acc	ttt Phe 200	Val	gca Ala	. ccc	aac Asr	ggt Gly 205	GLU	gcc Ala	tac Tyr	624	4
tto Phe	tct Ser 210	: Ala	gcg A Ala	j ttg Leu	aac Asn	tcg Ser 215	Phe	ato Ile	cat His	gtg Val	g ato 1 Ile 220	e Met	tac Tyr	ggc Gly	tac Tyr	67:	2
tac Ty: 225	: Phe	tto Lei	j tog 1 Sej	g gco r Ala	ttg Leu 230	Gly	tto Phe	aag Lys	g cag s Glr	g gtg 1 Va. 235	l Se	g tto	e ato	aag Lys	Phe 240	72	0
tac Ty:	c ato	ace Thi	g cgo	g Ser 245	Gln	atç Met	g aca	cag Glr	tto n Phe 250	S CA:	c ato	g ato	g tog c Sei	g gto Val 259	c cag L Gln	76	8
tc:	t tc r Se:	c tg r Tr	g ga p As 26	o Met	g tac Tyr	gco Ala	a to	1 aas Lys 26	s Va.	ct l Le	t gg u Gl	c cgo	g Pro	2 GT	a tac y Tyr	81	.6
CC: Pr	c tt o Ph	c tt e Ph 27	e Il	c acq e Th:	g gct r Ala	cto Le	g cti u Lei 280	ı Tr	g tto p Pho	c ta e Ty	c at r Me	g tg t Tr 28	p Th	c ato	g ctc t Leu	86	;4
Gl gg	t ct y Le 29	u Ph	c ta e Ty	c aa r As	c tti n Phe	ta Ty:	r Ar	a aa g Ly	g aa s As	c gc n Al	c aa a Ly 30	s Le	g gc u Al	c aa a Ly	g cag s Gln	91	.2
gc Al 30	a Ly	g gc s Al	c ga a As	c gc p Al	t gcd a Ala 310	a Ly	g ga s Gl	g aa u Ly	g gc s Al	a ag a Ar 31	g Ly	g tt 's Le	g ca u Gl	g ta n	a	. 95	57

- <210> 36 <211> 318 <212> PRT
- <213> Mortierella alpina

<400> 36

Met Glu Ser Ile Ala Pro Phe Leu Pro Ser Lys Met Pro Gln Asp Leu

Phe Met Asp Leu Ala Thr Ala Ile Gly Val Arg Ala Ala Pro Tyr Val

Asp Pro Leu Glu Ala Ala Leu Val Ala Gln Ala Glu Lys Tyr Ile Pro

Thr Ile Val His His Thr Arg Gly Phe Leu Val Ala Val Glu Ser Pro

Leu Ala Arg Glu Leu Pro Leu Met Asn Pro Phe His Val Leu Leu Ile

Val Leu Ala Tyr Leu Val Thr Val Phe Val Gly Met Gln Ile Met Lys

Asn Phe Glu Arg Phe Glu Val Lys Thr Phe Ser Leu Leu His Asn Phe

Cys Leu Val Ser Ile Ser Ala Tyr Met Cys Gly Gly Ile Leu Tyr Glu

Ala Tyr Gln Ala Asn Tyr Gly Leu Phe Glu Asn Ala Ala Asp His Thr

Phe Lys Gly Leu Pro Met Ala Lys Met Ile Trp Leu Phe Tyr Phe Ser

Lys Ile Met Glu Phe Val Asp Thr Met Ile Met Val Leu Lys Lys Asn 170

Asn Arg Gln Ile Ser Phe Leu His Val Tyr His His Ser Ser Ile Phe 185 180

Thr Ile Trp Trp Leu Val Thr Phe Val Ala Pro Asn Gly Glu Ala Tyr 200

Phe Ser Ala Ala Leu Asn Ser Phe Ile His Val Ile Met Tyr Gly Tyr

Tyr Phe Leu Ser Ala Leu Gly Phe Lys Gln Val Ser Phe Ile Lys Phe

Tyr Ile Th		Ser Gln 245	Met T	hr G	ln E 2	Phe 0	ys 1	Met 1	Met (Ser 7	Val (Gln		
Ser Ser Ti	rp Asp	Met Tyr	Ala M	Met I	ys (265	/al I	Leu (Gly .	Arg	Pro (270	Gly	Tyr .		
Pro Phe Pl	he Ile 75	Thr Ala		Leu 1 280	(rp l	Phe 7	Fyr :	Met	Trp 285	Thr 1	Met	Leu		
Gly Leu P	he Tyr	Asn Phe	Tyr 2 295	Arg I	Lys i	Asn A	Ala	Lys 300	Leu	Ala :	Lys	Gln		
Ala Lys A 305	la Asp	Ala Ala 310		Glu I	Lys i		Arg 315	Lys	Leu	Gln				
<210> 37 <211> 86 <212> DN <213> Ca	7 IA	oditis (elegan	s										
<220> <221> CD <222> (1 <223> De	.) (867		e											
<400> 37 atg gct c Met Ala G	ag cat	ccg ct Pro Le 5	c gtt u Val	caa Gln	cgg Arg	ctt Leu 10	ctc Leu	gat Asp	gtc Val	aaa Lys	ttc Phe 15	gac Asp	4.8	3
acg aaa d Thr Lys A	ga ttt Arg Phe 20	gtg gc Val Al	t att a Ile	gct Ala	act Thr 25	cat His	Gly ggg	cca Pro	aag Lys	aat Asn 30	ttc Phe	cct Pro	96	5
gac gca g Asp Ala (gaa ggt Glu Gly 35	cgc aa Arg Ly	g ttc s Phe	ttt Phe 40	gct Ala	gat Asp	cac His	ttt Phe	gat Asp 45	gtt Val	act Thr	att Ile	144	1
cag gct t Gln Ala S 50	Ser Ile	ctg ta Leu Ty	r Met	gtc Val	Val	Val	Phe	Gly	Thr	aaa Lys	tgg Trp	ttc Phe	193	2
atg cgt a Met Arg 2 65	aat cgt Asn Arg	caa co Gln Pr 70	o Phe	caa Gln	ttg Leu	act Thr	att Ile 75	cca Pro	ctc Leu	aac Asn	atc Ile	tgg Trp 80	24	0
aat ttc Asn Phe	atc ctc Ile Leu	gcc gc Ala Al 85	a ttt a Phe	tcc Ser	atc Ile	gca Ala 90	gga Gly	gct Ala	gtc Val	aaa Lys	atg Met 95	acc Thr	28	8
cca gag Pro Glu	ttc ttt Phe Phe 100	Gly Th	c att r Ile	gcc Ala	aac Asn 105	aaa Lys	gga Gly	att Ile	gtc Val	gca Ala 110	tcc Ser	tac Tyr	. 33	6
tgc aaa Cys Lys	gtg ttt Val Phe 115	gat ti Asp Pl	c acg ne Thr	aaa Lys 120	gga Gly	gag Glu	aat Asn	gga Gly	tac Tyr 125	Trp	gtg Val	tgg Trp	38	4
ctc ttc Leu Phe 130	atg gct Met Ala	tcc a	aa ctt ys Leu 135	Phe	gaa Glu	ctt Leu	gtt Val	gac Asp 140	Thr	atc : Ile	ttc Phe	ttg Leu	43	2

									04	_						
gtt Val 145	ctc Leu	cgt Arg	aaa Lys	cgt Arg	cca Pro 150	ctc Leu	atg Met	ttc Phe	ctt Leu	cac His 155	tgg Trp	tat Tyr	cac His	cat His	att Ile 160	480
ctc Leu	acc Thr	atg Met	atc Ile	tac Tyr 165	gcc Ala	tgg Trp	tac Tyr	tct Ser	cat His 170	cca Pro	ttg Leu	acc Thr	cca Pro	gga Gly 175	ttc Phe	528
aac Asn	aga Arg	tac Tyr	gga Gly 180	att Ile	tat Tyr	ctt Leu	aac Asn	ttt Phe 185	gtc Val	gtc Val	cac His	gcc Ala	ttc Phe 190	atg Met	tac Tyr	576
tct Ser	tac Tyr	tac Tyr 195	ttc Phe	ctt Leu	cgc Arg	tcg Ser	atg Met 200	aag Lys	att Iļe	cgc Arg	gtg Val	cca Pro 205	gga Gly	ttc Phe	atc Ile	624
gcc Ala	caa Gln 210	gct Ala	atc Ile	aca Thr	tct Ser	ctt Leu 215	caa Gln	atc Ile	gtt Val	caa Gln	ttc Phe 220	atc Ile	atc Ile	tct Ser	tgc Cys	672 ·
gcc Ala 225	Val	ctt Leu	gct Ala	cat His	ctt Leu 230	ggt Gly	tat Tyr	ctc Leu	atg Met	cac His 235	ttc Phe	acc Thr	aat Asn	gcc Ala	aac Asn 240	720
tgt Cys	gat Asp	ttc Phe	gag Glu	cca Pro 245	tca Ser	gta Val	ttc Phe	aag Lys	ctc Leu 250	gca Ala	gtt Val	ttc Phe	atg Met	gac Asp 255	aca Thr	768
aca Thr	tac Tyr	ttg Leu	gct Ala 260	Leu	ttc Phe	gtc Val	aac Asn	ttc Phe 265	ttc Phe	ctc Leu	caa Gln	tca Ser	tat Tyr 270	gtt Val	ctc Leu	816
cgc	gga Gly	gga Gly 275	Lys	gac Asp	aag Lys	tac Tyr	aag Lys 280	Ala	gtg Val	cca Pro	aag Lys	aag Lys 285	Lys	aac Asn	aac Asn	864
taa	a.								•							867
<2:	10> 11> 12> 13>	38 288 PRT Caer	norha	ıbd i t	is e	lega	ıns									
<4	00>	38														
Me: 1	t Ala	a Gli	r His	Pro 5				ı Arg				Val	. Lys	Phe 15	a Asp	
Th	r Ly:	s Ar	g Phe 20	e Val	l Ala	a Ile	≥ Ala	25	r His	Gly	y Pro	o Lys	30	n Phe	e Pro	
As	p Al	a G1 ¹ 35	u Gly	y Arg	g Ly:	s Phe	e Phe 40	∋ Ala	a Asj) His	s Phe	e Asp 45	va.	l Th	r Ile	
Gl	n Al 50	a Se	r Il	e Le	и Ту:	r Me	t Va	l Va	l Va	l Phe	≘ Gl; 60	y Thi	r Ly:	s Tr	p Phe	
Ме 65		g As	n Ar	g Gl	n Pro		e Gl	n Le	u Th	r Il 75	e Pr	o Let	u As	n Il	e Trp 80	
As	n Ph	e Il	e Le	u Al 85	a Al	a Ph	e Se	r Il	e Al 90	a Gl	y Al	a Vai	l Ly	s Me 95	t Thr	

Pro	Glu	Phe	Phe 100	Gly	Thr	Ile	Ala	Asn 105	Lys	Gly	Ile	Val	Ala 110	Ser	Tyr		
Cys	Lys	Val 115	Phe	Asp	Phe	Thr	Lys 120	Gly	Glu	Asn	Gly	Tyr 125	Trp	Val	Trp		
Leu	Phe 130	Met	Ala	Ser	Lys	Leu 135	Phe	Glu	Leu	Val	Asp 140	Thr	Ile	Phe	Leu		
Val 145	Leu	Arg	Lys	Arg	Pro 150	Leu	Met	Phe	Leu	His 155	Trp	туг	His	His	Ile 160	•	
Leu	Thr	Met	Ile	туг 165	Ala	Trp	Tyr	Ser	His 170	Pro	Leu	Thr	Pro	Gly 175	Phe		
Asn	Arg	Tyr	Gly 180	Ile	Tyr	Leu	Asn	Phe 185	Val	Val	His	Ala	Phe 190	Met	Tyr		
Ser	Tyr	туr 195		Leu	Arg	Ser	Met 200		Ile	Arg	Val	Pro 205	Gly	Phe	Ile		
Ala	Gln 210		Ile	Thr	Ser	Leu 215	Gln	Ile	Val	Gln	Phe 220	Ile	Ile	Ser	Cys		
Ala 225	Val	Leu	Ala	His	Leu 230		Tyr	Leu	Met	His 235	Phe	Thr	Asn	Ala	Asn 240		
Cys	Asp	Phe	Glu	Pro 245		Val	Phe	Lys	Leu 250	Ala	Val	. Phe	Met	Asp 255	Thr		
Thr	Tyr	Leu	Ala 260		. Phe	Val	. Asn	Phe 265		Leu	. Glr	ser	Tyr 270	Val	Leu		
Arg	Gly	Gly 275		Asp	Lys	Tyr	Lys 280		. Val	. Pro	Lys	285	Lys	Asr	Asn		*
<21				grac	:ilis	3											
<22	1>	(1).	(16 ca-4-	526) -Desa	atura	ise											
ato	00> g ttg Lei	ate	g cto l Le	g tt! ı Phe 5	e Glj	aat Y'Asi	t tto n Pho	e tai	t gto r Vai	c aaq l Ly:	g ca s Gl:	a ta n Ty:	c tco r Sei	caa Gli 15	a aag n Lys		48
aac Ası	ggo a Gla	c aaq	g cco	g gag o Gli	g aad 1 Asi	e gga	a gc	c aco	c cci	t gag	g aa u As	c ggan	a gcg y Ala	g aa a Ly	g ccg s Pro		96

20 25 30

			20					∠ ⊃					50				
caa Gln	cct Pro	tgc Cys 35	gag Glu	aac Asn	Gly	acg Thr	gtg Val 40	gaa Glu	aag Lys	cga Arg	gag Glu	aat Asn 45	gac Asp	acc Thr	gcc Ala	144	Ł
aac Asn	gtt Val 50	cgg Arg	ccc Pro	acc Thr	cgt Arg	cca Pro 55	gct Ala	gga Gly	ccc Pro	ccg Pro	ccg Pro 60	gcc Ala	acg Thr	tac Tyr	tac Tyr	192	2
gac Asp 65	tcc Ser	ctg Leu	gca Ala	gtg Val	tcg Ser 70	GJA aaa	cag Gln	ggc Gly	aag Lys	gag Glu 75	cgg Arg	ctg Leu	ttc Phe	acc Thr	acc Thr 80	240)
gat Asp	gag Glu	gtg Val	agg Arg	cgg Arg 85	cac His	atc Ile	ctc Leu	ccc Pro	acc Thr 90	gat Asp	ggc Gly	tgg Trp	ctg Leu	acg Thr 95	Cys Cys	288	3
cac His	gaa Glu	gga Gly	gtc Val 100	tac Tyr	gat Asp	gtc Val	act Thr	gat Asp 105	ttc Phe	ctt Leu	gcc Ala	aag Lys	cac His 110	cct Pro	ggt Gly	336	ร์
Gly ggc	ggt Gly	gtc Val 115	atc Ile	acg Thr	ctg Leu	ggc Gly	ctt Leu 120	gga Gly	agg Arg	gac Asp	tgc Cys	aca Thr 125	atc Ile	ctc Leu	atc Ile	384	4.
gag Glu	tca Ser 130	tac Tyr	cac His	cct Pro	gct Ala	ggg Gly 135	cgc Arg	ccg	gac Asp	aag Lys	gtg Val 140	atg Met	gag Glu	aag Lys	tac Tyr	43:	2
cgc Arg 145	att Ile	ggt Gly	acg Thr	ctg Leu	cag Gln 150	gac Asp	ccc Pro	aag Lys	acg Thr	ttc Phe 155	tat Tyr	gct Ala	tgg Trp	gga	gag Glu 160	48	0
tcc Ser	gat Asp	ttc Phe	tac Tyr	cct Pro 165	gag Glu	ttg Leu	aag Lys	cgc Arg	cgg Arg 170	Ala	ctt Leu	gca Ala	agg Arg	ctg Leu 175	Lys	52	8
gag Glu	gct Ala	ggt Gly	cag Gln 180	Ala	cgg Arg	egc Arg	ggc	ggc Gly 185	Leu	ggg Gly	gtg Val	aag Lys	gcc Ala 190	Leu	ctg Leu	. 57	6.
gtg Val	ctc Leu	acc Thr 195	Leu	tto Phe	ttc Phe	gtg Val	tcg Ser 200	Trp	tac Tyr	atg Met	tgg Trp	gtg Val 205	Ala	cac His	aag Lys	. 62	4
tcc Ser	Phe 210	Leu	tgg Trp	gec Ala	gcc Ala	gtc Val 215	Trp	ggc Gly	tto Phe	gcc Ala	ggc Gly 220	Sex	cac His	gto Val	GJA G33	67	2
ctg Leu 225	Ser	ato Ile	caç Glr	g cac n His	gat Asp 230	Gly	aac Asn	cac His	ggc Gly	gcg Ala 235	. Phe	ago Ser	cgc Arg	aac Asr	aca Thr 240	72	20
ctg Lev	gto Val	aac L Asr	cgo Arg	cto Lev 245	ı Ala	gly gaa	tgc Trp	ggg Gly	ato Met 250	: Asr	ttg Leu	g ato	Gl7	gcç Ala 255	g tcg a Ser	76	8 8
tco Ser	acq Thi	g gtg Val	g tgg L Trj 260	o Gli	g tac ı Tyr	cag Glr	cac His	gto yal 265	L Ile	e Gly	c cac y His	cac His	caq Glr 270	n Ty	acc Thr	81	L6
aac Asr	cto Lei	gtg 1 Val 279	l Se:	g gad r Asi	c acg Thi	g cta : Lev	tto Phe 280	e Sei	c to	g cci u Pro	t gag o Glu	g aad 1 Asi 289	ı Ası	t cc; p Pr	g gac o Asp	86	54
gto Val	tto L Pho	c tc e Se:	c age	c tac r Ty	c ccg	g cto Lev	ato Me	g cgo	g Me	g cad	c ccc s Pro	g gat o Asi	ac;	g gc	g tgg a Trp	91	12

	290					295					300					
cag Gln 305	ccg Pro	cac His	cac His	cgc Arg	ttc Phe 310	cag Gln	cac His	ctg Leu	ttc Phe	gcg Ala 315	ttc Phe	cca Pro	ctg Leu	ttc Phe	gcc Ala 320	960
ctg Leu	atg Met	aca Thr	atc Ile	agc Ser 325	aag Lys	gtg Val	ctg Leu	acc Thr	agc Ser 330	gat Asp	ttc Phe	gct Ala	gtc Val	tgc Cys 335	ctc Leu	1008
agc Ser	atg Met	aag Lys	aag Lys 340	Gly ggg	tcc Ser	atc Ile	gac Asp	tgc Cys 345	tcc Ser	tcc Ser	agg Arg	ctc Leu	gtc Val 350	cca Pro	ctg Leu	1056
gag Glu	GJA aaa	cag Gln 355	ctg Leu	ctg Leu	ttc Phe	tgg Trp	360 Gly ggg	gcc Ala	aag Lys	ctg Leu	gcg Ala	aac Asn 365	ttc Phe	ctg Leu	ttg Leu	1104
cag Gln	att Ile 370	gtg Val	ttg Leu	cca Pro	tgc Cys	tac Tyr 375	ctc Leu	cac His	GJA āāā	aca Thr	gct Ala 380	atg Met	ggc Gly	ctg Leu	gcc Ala	1152
ctc Leu 385	ttc Phe	tct Ser	gtt Val	gct Ala	cac His 390	ctt Leu	gtg Val	tcg Ser	GJA āāā	gag Glu 395	tac Tyr	ctc Leu	gcg Ala	atc Ile	tgc Cys 400	1200
ttc Phe	atc Ile	atc Ile	aac Asn	cac His 405	atc Ile	agc Ser	gag Glu	tct Ser	tgt Cys 410	gag Glu	ttt Phe	atg Me t	aat Asn	aca Thr 415	agc Ser	1248
ttt Phe	caa Gln	acc Thr	gcc Ala 420	gcc Ala	cgg Arg	agg Arg	aca Thr	gag Glu 425	atg Met	ctt Leu	cag Gln	gca Ala	gca Ala 430	cat His	cag Gln	1296
gca Ala	gcg Ala	gag Glu 435	Ala	aag Lys	aag Lys	gtg Val	aag Lys 440	ccc Pro	acc Thr	cct Pro	cca Pro	ccg Pro 445	Asn	gat Asp	tgg Trp	1344
gct Ala	gtg Val 450	Thr	cag Gln	gtc Val	caa Gln	tgc Cys 455	Cys	gtg Val	aat Asn	tgg Trp	aga Arg 460	Ser	Gly	ggc Gly	gtg Val	1392
ttg Leu 465	Ala	aat Asn	cac His	ctc Leu	tct Ser 470	Gly	ggc	ttg Leu	aac Asn	cac His 475	Gln	atc Ile	gag Glu	cat His	cat His 480	1440
ctg Leu	ttc Phe	ccc Pro	agc Ser	atc Ile 485	Ser	cat His	gcc	aac Asn	tac Tyr 490	Pro	acc Thr	atc : Ile	gcc Ala	cct Pro 495	∨a⊥	1488
gtg Val	aag Lys	gag Glu	gtg Val 500	. Cys	gag Glu	gag Glu	tac Tyr	ggg Gly 505	Leu	r ccg	tac Tyr	aag Lys	aat Asn 510	. Tyr	gtc Val	1536
ac <u>c</u> Thr	tto Phe	tgg Trg 515	Asp	gca Ala	gto Val	tgt Cys	ggc Gl ₃ 520	Met	gtt Val	cag Glr	g cac n His	cto Lev 525	ı Arg	ttg Leu	g atg 1 Met	1584
G17 gat	gct Ala 530	Pro	e CCG	g gtg Val	, cca	a acç Thr 535	Ası	ggg Gly	gao Asi	aaa Lys	a aag 5 Lys 540	s Sei	a taa	L		1626
٠٥.	٠.٠	40														

<210> 40 <211> 541 <212> PRT <213> Euglena gracilis

<400> 40

Met Leu Val Leu Phe Gly Asn Phe Tyr Val Lys Gln Tyr Ser Gln Lys 1 5 10

Asn Gly Lys Pro Glu Asn Gly Ala Thr Pro Glu Asn Gly Ala Lys Pro 20 25 30

Gln Pro Cys Glu Asn Gly Thr Val Glu Lys Arg Glu Asn Asp Thr Ala 35 40 . 45

Asn Val Arg Pro Thr Arg Pro Ala Gly Pro Pro Pro Ala Thr Tyr Tyr 50 55 60

Asp Ser Leu Ala Val Ser Gly Gln Gly Lys Glu Arg Leu Phe Thr Thr 65 70 75 80

Asp Glu Val Arg Arg His Ile Leu Pro Thr Asp Gly Trp Leu Thr Cys 85 90 95

His Glu Gly Val Tyr Asp Val Thr Asp Phe Leu Ala Lys His Pro Gly 100 105

Gly Gly Val Ile Thr Leu Gly Leu Gly Arg Asp Cys Thr Ile Leu Ile 115 120 125

Glu Ser Tyr His Pro Ala Gly Arg Pro Asp Lys Val Met Glu Lys Tyr 130 135 140

Arg Ile Gly Thr Leu Gln Asp Pro Lys Thr Phe Tyr Ala Trp Gly Glu 145 150 155 · 160

Ser Asp Phe Tyr Pro Glu Leu Lys Arg Arg Ala Leu Ala Arg Leu Lys 165 170 175

Glu Ala Gly Gln Ala Arg Arg Gly Gly Leu Gly Val Lys Ala Leu Leu 180 185

Val Leu Thr Leu Phe Phe Val Ser Trp Tyr Met Trp Val Ala His Lys 195 200 205

Ser Phe Leu Trp Ala Ala Val Trp Gly Phe Ala Gly Ser His Val Gly 210 215 220

Leu Ser Ile Gln His Asp Gly Asn His Gly Ala Phe Ser Arg Asn Thr 225 230 235

Leu Val Asn Arg Leu Ala Gly Trp Gly Met Asp Leu Ile Gly Ala Ser 245 250 255

Ser Thr Val Trp Glu Tyr Gln His Val Ile Gly His His Gln Tyr Thr 260 265 270

- Asn Leu Val Ser Asp Thr Leu Phe Ser Leu Pro Glu Asn Asp Pro Asp 275 280 285
- Val Phe Ser Ser Tyr Pro Leu Met Arg Met His Pro Asp Thr Ala Trp 290 295 300
- Gln Pro His His Arg Phe Gln His Leu Phe Ala Phe Pro Leu Phe Ala 305 310 315
- Leu Met Thr Ile Ser Lys Val Leu Thr Ser Asp Phe Ala Val Cys Leu 325 330 335
- Ser Met Lys Lys Gly Ser Ile Asp Cys Ser Ser Arg Leu Val Pro Leu 340 345 ... 350
- Glu Gly Gln Leu Leu Phe Trp Gly Ala Lys Leu Ala Asn Phe Leu Leu 355 360 365
- Gln Ile Val Leu Pro Cys Tyr Leu His Gly Thr Ala Met Gly Leu Ala 370 375 380
- Leu Phe Ser Val Ala His Leu Val Ser Gly Glu Tyr Leu Ala Ile Cys 385 390 395 400
- Phe Ile Ile Asn His Ile Ser Glu Ser Cys Glu Phe Met Asn Thr Ser 405 410 415
- Phe Gln Thr Ala Ala Arg Arg Thr Glu Met Leu Gln Ala Ala His Gln 420 425 430
- Ala Ala Glu Ala Lys Lys Val Lys Pro Thr Pro Pro Pro Asn Asp Trp 435 440 445
- Ala Val Thr Gln Val Gln Cys Cys Val Asn Trp Arg Ser Gly Gly Val 450 455 460
- Leu Ala Asn His Leu Ser Gly Gly Leu Asn His Gln Ile Glu His His 465 470 475 480
- Leu Phe Pro Ser Ile Ser His Ala Asn Tyr Pro Thr Ile Ala Pro Val 485 490 490
- Val Lys Glu Val Cys Glu Glu Tyr Gly Leu Pro Tyr Lys Asn Tyr Val 500 505
- Thr Phe Trp Asp Ala Val Cys Gly Met Val Gln His Leu Arg Leu Met 515 520 525
- Gly Ala Pro Pro Val Pro Thr Asn Gly Asp Lys Lys Ser 530 535 540

<210: <211: <212: <213:	> 1 > I	11 548 ONA Chrau	stoc	hytr	ium											
<220: <221: <222: <223:	> (CDS (1) Delta	•		uras	ė										
<400 atg Met 1	aco	11 gtc Val	Gly	ttt Phe 5	gac Asp	gaa Glu	acg Thr	Val	act Thr 10	atg Met	gac Asp	acg Thr	gtc Val	cgc Arg 15	aac Asn	48
cac His	aac Asn	atg Met	ccg Pro 20	gac Asp	gac Asp	gcc Ala	tgg Trp	tgc Cys 25	gcg Ala	atc Ile	cac His	Gly	acc Thr 30	gtg Val	tac Tyr	96
gac Asp	atc Ile	acc Thr 35	aag Lys	ttc Phe	agc Ser	aag Lys	gtg Val 40	cac His	ccc Pro	ggc	GJÀ āāā	gac Asp 45	aţc Ile	atc Ile	atg Met	144
ctg Leu	gcc Ala 50	gct Ala	ggc Gly	aag Lys	gag Glu	gcc Ala 55	acc Thr	atc Ile	ctg Leu	ttc Phe	gag Glu 60	acc Thr	tac Tyr	cac His	atc Ile	192
aag Lys 65	ggc	gtc Val	ccg Pro	gac Asp	gcg Ala 70	gtg Val	ctg Leu	cgc Arg	aag Lys	tac Tyr 75	aag Lys	gtc Val	ggc Gly	aag Lys	ctc Leu 80	240
ccc Pro	cag Gln	ggc	aag Lys	aag Lys 85	ggc Gly	gaa Glu	acg Thr	agc Ser	cac His 90	atg Met	ccċ Pro	acc Thr	GJÀ aaa	ctc Leu 95	gac Asp	288
tcg Ser	gcc Ala	tcc Ser	tac Tyr 100	tac Tyr	tcg Ser	tgg Trp	gac Asp	agc Ser 105	gag Glu	ttt Phe	tac Tyr	agg Arg	gtg Val 110	ctc Leu	cgc Arg	336
gag Glu	cgc	gtc Val	gcc Ala	aag Lys	aag Lys	ctg Leu	gcc Ala 120	gag Glu	ccc. Pro	Gly	ctc Leu	atg Met 125	cag Gln	cg c Arg	gcg Ala	· 384
cgc Arg	ato Met	: Glu	ctc Leu	tgg Trp	gcc Ala	aag Lys 135	gcg Ala	atc Ile	ttc Phe	ctc Leu	ctg Leu 140	Ala	ggt	ttc Phe	tgg . Trp	432
ggc Gly 145	Sei	ctt Leu	tac Tyr	gcc Ala	atg Met 150	tgc Cys	gtg Val	cta Leu	gac Asp	ecg Pro 155	cac His	ggc	ggt Gly	gcc Ala	atg Met 160	480
gta Val	gc: Ala	gcc a Ala	gtt Val	acg Thr 165	Leu	ggc	gtg Val	ttc Phe	gct Ala 170	. Ala	ttt Phe	gtc Val	gga Gly	act Thr 175	Cys	528
atc Ile	caq Gl:	g cac n His	gac Asp 180	Gly	agc Ser	.cac His	Gly	gcc Ala 185	Phe	tcc Ser	aag Lys	tcg Ser	cga Arg 190	Phe	atg Met	576
aac Asn	aa Ly	g gcg s Ala 195	ı Ala	ggc Gly	tgg Trp	acc Thr	Lev 200	ı Asp	ato Met	g ato	: Gl ⁷	gcg Ala 205	Ser	gcg Ala	atg Met	624
acc Thr	tg Tr	g gaq p Glu	g atg 1 Met	caç Glr	cac His	gtt Val	ctt Leu	ggc Gly	cac His	cac His	ccg Pro	tac Tyr	aco Thr	aac Asr	ctc Leu	672

69 220 215 210 atc gag atg gag aac ggt ttg gcc aag gtc aag ggc gcc gac gtc gac 720 Ile Glu Met Glu Asn Gly Leu Ala Lys Val Lys Gly Ala Asp Val Asp 230 ccg aag aag gtc gac cag gag agc gac ccg gac gtc ttc agt acg tac 768 Pro Lys Lys Val Asp Gln Glu Ser Asp Pro Asp Val Phe Ser Thr Tyr 245 250 ccg atg ctt cgc ctg cac ccg tgg cac cgc cag cgg ttt tac cac aag Pro Met Leu Arg Leu His Pro Trp His Arg Gln Arg Phe Tyr His Lys 260 265 ttc cag cac ctg tac gcc ccg ttt atc ttt ggg tct atg acg att aac 864 Phe Gln His Leu Tyr Ala Pro Phe Ile Phe Gly Ser Met Thr Ile Asn 275 280 aag gtg att too cag gat gto ggg gtt gtg otg ogc aag ogc otg tto 912 . Lys Val Ile Ser Gln Asp Val Gly Val Val Leu Arg Lys Arg Leu Phe 295 cag atc gac gcc aac tgc cgg tat ggc agc ccc tgg tac gtg gcc cgc 960 Gln Ile Asp Ala Asn Cys Arg Tyr Gly Ser Pro Trp Tyr Val Ala Arg 310 ttc tgg atc atg aag ctc ctc acc acg ctc tac atg gtg gcg ctt ccc 1008 Phe Trp Ile Met Lys Leu Leu Thr Thr Leu Tyr Met Val Ala Leu Pro 325 atg tac atg cag ggg cct gct cag ggc ttg aag ctt ttc ttc atg gcc 1056 Met Tyr Met Gln Gly Pro Ala Gln Gly Leu Lys Leu Phe Phe Met Ala 1104 cac ttc acc tgc gga gag gtc ctc gcc acc atg ttt att gtc aac cac His Phe Thr Cys Gly Glu Val Leu Ala Thr Met Phe Ile Val Asn His 360 1152 atc atc gag ggc gtc agc tac gct tcc aag gac gcg gtc aag ggc gtc Ile Ile Glu Gly Val Ser Tyr Ala Ser Lys Asp Ala Val Lys Gly Val atg gct ceg ceg cgc act gtg cac ggt gtc acc ceg atg cag gtg acg 1200 Met Ala Pro Pro Arg Thr Val His Gly Val Thr Pro Met Gln Val Thr 400 385 390 caa aag gcg ctc agt gcg gcc gag tcg gcc aag tcg gac gcc gac aag 1248 Gln Lys Ala Leu Ser Ala Ala Glu Ser Ala Lys Ser Asp Ala Asp Lys acg acc atg atc ccc ctc aac gac tgg gcc gct gtg cag tgc cag acc 1296 Thr Thr Met Ile Pro Leu Asn Asp Trp Ala Ala Val Gln Cys Gln Thr 425 1344 tet gtg aac tgg get gtc ggg tcg tgg ttt tgg aac cac ttt tcg. ggc. Ser Val Asn Trp Ala Val Gly Ser Trp Phe Trp Asn His Phe Ser Gly 440 1392 ggc ctc aac cac cag att gag cac cac tgc ttc ccc caa aac ccc cac Gly Leu Asn His Gln Ile Glu His His Cys Phe Pro Gln Asn Pro His 460 450 455 1440 acg gtc aac gtc tac atc tcg ggc atc gtc aag gag acc tgc gaa gaa Thr Val Asn Val Tyr Ile Ser Gly Ile Val Lys Glu Thr Cys Glu Glu

tac ggc gtg ccg tac cag gct gag atc agc ctc ttc tct gcc tat ttc Tyr Gly Val Pro Tyr Gln Ala Glu Ile Ser Leu Phe Ser Ala Tyr Phe 1488

70 495 485 490 aag atg ctg tcg cac ctc cgc acg ctc ggc aac gag gac ctc acg gcc 1536 Lys Met Leu Ser His Leu Arg Thr Leu Gly Asn Glu Asp Leu Thr Ala 505 500 1548 tgg tcc acg tga Trp Ser Thr 515 <210> 42 <211> 515 <212> PRT <213> Thraustochytrium <400> 42 Met Thr Val Gly Phe Asp Glu Thr Val Thr Met Asp Thr Val Arg Asn 5 His Asn Met Pro Asp Asp Ala Trp Cys Ala Ile His Gly Thr Val Tyr Asp Ile Thr Lys Phe Ser Lys Val His Pro Gly Gly Asp Ile Ile Met 40 Leu Ala Ala Gly Lys Glu Ala Thr Ile Leu Phe Glu Thr Tyr His Ile Lys Gly Val Pro Asp Ala Val Leu Arg Lys Tyr Lys Val Gly Lys Leu Pro Gln Gly Lys Lys Gly Glu Thr Ser His Met Pro Thr Gly Leu Asp Ser Ala Ser Tyr Tyr Ser Trp Asp Ser Glu Phe Tyr Arg Val Leu Arg 105 100 Glu Arg Val Ala Lys Lys Leu Ala Glu Pro Gly Leu Met Gln Arg Ala 120 115 Arg Met Glu Leu Trp Ala Lys Ala Ile Phe Leu Leu Ala Gly Phe Trp 135 Gly Ser Leu Tyr Ala Met Cys Val Leu Asp Pro His Gly Gly Ala Met 150 Val Ala Ala Val Thr Leu Gly Val Phe Ala Ala Phe Val Gly Thr Cys 170 165

Ile Gln His Asp Gly Ser His Gly Ala Phe Ser Lys Ser Arg Phe Met

Asn Lys Ala Ala Gly Trp Thr Leu Asp Met Ile Gly Ala Ser Ala Met 200

195

- Ile Glu Met Glu Asn Gly Leu Ala Lys Val Lys Gly Ala Asp Val Asp 225 230 235
- Pro Lys Lys Val Asp Gln Glu Ser Asp Pro Asp Val Phe Ser Thr Tyr . 245 250 255
- Pro Met Leu Arg Leu His Pro Trp His Arg Gln Arg Phe Tyr His Lys 260 265 270
- Phe Gln His Leu Tyr Ala Pro Phe Ile Phe Gly Ser Met Thr Ile Asn 275 280 285
- Lys Val Ile Ser Gln Asp Val Gly Val Val Leu Arg Lys Arg Leu Phe 290 295 300
- Gln Ile Asp Ala Asn Cys Arg Tyr Gly Ser Pro Trp Tyr Val Ala Arg 305 310 315
- Phe Trp Ile Met Lys Leu Thr Thr Leu Tyr Met Val Ala Leu Pro 325 330 335
- Met Tyr Met Gln Gly Pro Ala Gln Gly Leu Lys Leu Phe Phe Met Ala 340 345 350
- His Phe Thr Cys Gly Glu Val Leu Ala Thr Met Phe Ile Val Asn His 355 360 365
- Ile Ile Glu Gly Val Ser Tyr Ala Ser Lys Asp Ala Val Lys Gly Val 370 380
- Met Ala Pro Pro Arg Thr Val His Gly Val Thr Pro Met Gln Val Thr 385 390 395 400
- Gln Lys Ala Leu Ser Ala Ala Glu Ser Ala Lys Ser Asp Ala Asp Lys 405 410 415
- Thr Thr Met Ile Pro Leu Asn Asp Trp Ala Ala Val Gln Cys Gln Thr 420 425 430
- Ser Val Asn Trp Ala Val Gly Ser Trp Phe Trp Asn His Phe Ser Gly
 435 440 445
- Gly Leu Asn His Gln Ile Glu His His Cys Phe Pro Gln Asn Pro His 450 455 460
- Thr Val Asn Val Tyr Ile Ser Gly Ile Val Lys Glu Thr Cys Glu Glu 465 470 475 480

Tyr	Gly	Val	Pro	Tyr	Gln	Ala	Glu	Ile	Ser	Leu	Phe	Ser	Ala	Tyr	Phe
				485					490					495	

Lys Met Leu Ser His Leu Arg Thr Leu Gly Asn Glu Asp Leu Thr Ala 500 505 510

Trp Ser Thr

	515															
<210> <211> <212> <213>	960 DNA	lassic	sira	pse	udon	ana										
				ase												
<400> atg g Met V 1	43 tg ttg al Le	g tac ı Tyr	aat Asn 5	gtg Val	gcg Ala	caa Gln	gtg Val	ctg Leu 10	ctc Leu	aat Asn	GJA āāā	tgg Trp	acg Thr 15	gtg Val		48
tat g Tyr A	ıcg at la Il	t gtg e Val 20	gat Asp	gcg Ala	gtg Val	atg Met	aat Asn 25	aga Arg	gac Asp	cat His	ccg Pro	ttt Phe 30	att Ile	gga Gly		96
agt a Ser A	iga ag Arg Se 35	t ttg r Leu	gtt Val	GJA aaa	gcg Ala	gcg Ala 40	ttg Leu	cat His	agt Ser	Gly ggg	agc Ser 45	tcg Ser	tat Tyr	gcg Ala		144
Val 1	gg gt Trp Va 50	t cat l His	tat Tyr	tgt Cys	gat Asp 55	aag Lys	tat Tyr	ttg Leu	gag Glu	ttc Phe 60	ttt Phe	gat Asp	acg Thr	tat Tyr	•	192
ttt a Phe 1 65	atg gt Met Va	g ttg l Leu	agg Arg	ggg Gly 70	aaa Lys	atg Met	gac Asp	cag Gln	atg Met 75	gta Val	ctt Leu	ggt Gly	gaa Glu	gtt Val 80		240
ggt g Gly (ggc ag Gly Se	t gtg r Val	tgg Trp 85	tgt Cys	ggc Gly	gtt Val	gga Gly	tat Tyr 90	atg Met	gat Asp	atg Met	gag Glu	aag Lys 95	atg Met		288 ·
ata d Ile 1	cta ct Leu Le	c agc u Ser 100	Phe	gga Gly	gtg Val	cat His	cgg Arg 105	tct Ser	gct Ala	cag Gln	gga Gly	acg Thr 110	Gly	aag Lys		336
gct ' Ala :	ttc ac Phe Th 11	ır Asn	aac Asn	gtt Val	acc Thr	aat Asn 120	Pro	cat His	ctc Leu	acg Thr	ctt Leu 125	cca Pro	cct Pro	cat His		384
Ser '	aca aa Thr Ly 130	a aca /s Thr	aaa Lys	aaa Lys	cag Gln 135	Val	tcc Ser	ttc Phe	ctc Leu	cac His 140	Ile	tac Tyr	cac His	cac His		432
acg Thr 145	acc at Thr I	a gcg Le Ala	ı tgg L Trp	gca Ala 150	Trp	tgg Trp	atc Ile	gcc Ala	ctc Leu 155	Arg	ttc Phe	tcc Ser	Pro	ggt Gly 160		480
gga Gly	gac at Asp I	t tac le Tyr	ttc Phe	ggg Gly	gca Ala	ctc Leu	ctc Leu	aac Asn	tcc Ser	ato	atc Ile	cac	gto Val	ctc Leu		528

73 175 170 165 576 atg tat tee tac tac gee ett gee eta etc aag gte agt tgt eea tgg Met Tyr Ser Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp 1.85 180 aaa cga tac ctg act caa gct caa tta ttg caa ttc aca agt gtg gtg 624 Lys Arg Tyr Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val 200 gtt tat acg ggg tgt acg ggt tat act cat tac tat cat acg aag cat Val Tyr Thr Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His 215 210 gga gcg gat gag aca cag cct agt tta gga acg tat tat ttc tgt tgt 720 Gly Ala Asp Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys 235 230 gga gtg cag gtg ttt gag atg gtt agt ttg ttt gta ctc ttt tcc atc 768 Gly Val Gln Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile 250 ttt tat aaa cga tcc tat tcg aag aag aac aag tca gga gga aag gat 816 Phe Tyr Lys Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp 864 agc aag aag aat gat gat ggg aat aat gag gat caa tgt cac aag gct Ser Lys Lys Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala 275 280 atg aag gat ata tog gag ggt gog aag gag gtt gtg ggg cat goa gog 912 Met Lys Asp Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala 290 aag gat got gga aag ttg gtg got acg aga gta agg tgt aag gtg taa 960 Lys Asp Ala Gly Lys Leu Val Ala Thr Arg Val Arg Cys Lys Val 315 310 305 <210> 44 <211> 319 <212> PRT <213> Thalassiosira pseudonana <400> 44 Met Val Leu Tyr Asn Val Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly Lys Met Asp Gln Met Val Leu Gly Glu Val 65

Gly Gly Ser Val Trp Cys Gly Val Gly Tyr Met Asp Met Glu Lys Met

Ile Leu Leu Ser Phe Gly Val His Arg Ser Ala Gln Gly Thr Gly Lys 105

Ala Phe Thr Asn Asn Val Thr Asn Pro His Leu Thr Leu Pro Pro His 120

Ser Thr Lys Thr Lys Lys Gln Val Ser Phe Leu His Ile Tyr His His

Thr Thr Ile Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly

Gly Asp Ile Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu 170 175

Met Tyr Ser Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp 185

Lys Arg Tyr Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val 200

Val Tyr Thr Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His 215

Gly Ala Asp Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys 230

Gly Val Gln Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile 245

Phe Tyr Lys Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp

Ser Lys Lys Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala

Met Lys Asp Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala 295

Lys Asp Ala Gly Lys Leu Val Ala Thr Arg Val Arg Cys Lys Val

<210> 45

<211> 819

<212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS <222> (1)..(819)

<223> Delta-5-Elongase

<400 atg Met 1	gac	acc	Tyr	aac Asn 5	gct Ala	gca Ala	atg Met	gat Asp	aag Lys 10	atc Ile	ggt Gly	gcc Ala	Ala	atc Ile 15	atc Ile	48
gat Asp	tgg Trp	tct Ser	gat Asp 20	ccc Pro	gat Asp	gga Gly	aag Lys	ttc Phe 25	cgt Arg	gcc Ala	gat Asp	aga Arg	gag Glu 30	gac Asp	tgg Trp	96
tgg Trp	ctc Leu	tgc Cys 35	gac Asp	ttc Phe	cgt Arg	agc Ser	gcc Ala 40	atc Ile	acc Thr	atc Ile	gcc Ala	ctc Leu 45	atc Ile	tac Tyr	atc Ile	144
gcc Ala	ttc Phe 50	gtc Val	atc Ile	ctc Leu	ggt Gly	tcc Ser 55	gcc Ala	gtc Val	atg Met	caa Gln	tcc Ser 60	ctc Leu	ccc Pro	gca Ala	atg Met	192
gat Asp 65	ccc Pro	tac	ccc Pro	atc Ile	aaa Lys 70	ttc Phe	ctc Leu	tac Tyr	aac Asn	gtc Val 75	tcc Ser	caa Gln	atc Ile	ttc Phe	ctt Leu 80	240
tgt Cys	gcc Ala	tac Tyr	atg Met	act Thr 85	gtc Val	gag Glu	gcg Ala	gga Gly	ttt Phe 90	ttg Leu	gcc Ala	tac Tyr	cgc Arg	aat Asn 95	gga Gly	288
tat Tyr	acc Thr	gtc Val	atg Met 100	cct Pro	tgc Cys	aat Asn	cat His	ttc Phe 105	aat Asn	gtg Val	aat Asn	gat Asp	cct Pro 110	ccc Pro	gtg Val	336
gcg Ala	aat Asn	ctt Leu 115	ctt Leu	tgg Trp	ttg Leu	ttt Phe	tat Tyr 120	att Ile	tcc Ser	aag Lys	gtg Val	tgg Trp 125	gac Asp	ttt Phe	tgg Trp	384
gat Asp	acc Thr 130	att Ile	ttc Phe	att Ile	gtg Val	ttg Leu 135	GJA aaa	aag Lys	aag Lys	tgg Trp	cgt Arg 140	GIn	tta Leu	tct Ser	ttc Phe	432
ttg Leu 145	His	gta Val	tac Tyr	cat His	cac His 150	acc Thr	acc Thr	atc Ile	ttt Phe	cta Leu 155	ttc Phe	tat Tyr	tgg Trp	ctg Leu	aat Asn 160	480
gcc Ala	aat Asn	gtc Val	ttg Leu	tac Tyr 165	Asp	ggt Gly	gac Asp	atc Ile	ttc Phe 170	ctt Leu	acc Thr	atc Ile	ttg Leu	ctc Leu 175	aat Asn	528
gga Gly	ttc Phe	ato Ile	cac His 180	acg Thr	gtg Val	atg Met	tac Tyr	acg Thr 185	. Tyr	tac Tyr	ttc Phe	Ile	tgt Cys 190	Met	cat His	576
acc Thr	aaa Lys	gat Asp 195	Ser	aag Lys	acg Thr	ggc	aag Lys 200	Ser	ctt Leu	cct Pro	ata Ile	tgg Trp 205	'Trp	aag Lys	tcg Ser	624
agt Ser	ttg Lev 210	t Thr	g gcg	ttt Phe	cag Gln	tto Lev 219	ı Lev	g caa L Glr	tto Phe	act Thr	ato 11e 220	e Met	ato Met	agt Ser	cag Gln	672
gct Ala 225	Tha	tac Tyi	c ctt	gto Val	tto Phe 230	His	Gly	g tgt Z Cys	gat S Asp	aag Lys 235	: Val	g tog L Ser	g ctt Leu	cgt Arg	atc Ile 240	720
acq Thi	g att	gtg Val	g tac L Tyr	ttt Phe	e Val	r tco L'Sei	ctt Lei	ttq ı Le	g agt 1 Sei 250	: Leu	tto Phe	e tto	c ctt	ttt Phe 255	gct Ala	768
caq Gl:	g tto n Phe	tt:	t gtg e Val	g caa l Gli	a tca n Ser	a tao	c ato	g gca	a cco	aaa b Lys	a aag s Lys	g aaq s Ly:	g aag s Lys	g agt s Sei	gct Ala	816

260 265 270

tag <210> 46 <211> 272 <212> PRT <213> Thalassiosira pseudonana <400> 46 Met Asp Ala Tyr Asn Ala Ala Met Asp Lys Ile Gly Ala Ala Ile Ile Asp Trp Ser Asp Pro Asp Gly Lys Phe Arg Ala Asp Arg Glu Asp Trp Trp Leu Cys Asp Phe Arg Ser Ala Ile Thr Ile Ala Leu Ile Tyr Ile 35 Ala Phe Val Ile Leu Gly Ser Ala Val Met Gln Ser Leu Pro Ala Met 50 Asp Pro Tyr Pro Ile Lys Phe Leu Tyr Asn Val Ser Gln Ile Phe Leu Cys Ala Tyr Met Thr Val Glu Ala Gly Phe Leu Ala Tyr Arg Asn Gly. Tyr Thr Val Met Pro Cys Asn His Phe Asn Val Asn Asp Pro Pro Val 100 Ala Asn Leu Leu Trp Leu Phe Tyr Ile Ser Lys Val Trp Asp Phe Trp Asp Thr Ile Phe Ile Val Leu Gly Lys Lys Trp Arg Gln Leu Ser Phe Leu His Val Tyr His His Thr Thr Ile Phe Leu Phe Tyr Trp Leu Asn 155 . Ala Asn Val Leu Tyr Asp Gly Asp Ile Phe Leu Thr Ile Leu Leu Asn Gly Phe Ile His Thr Val Met Tyr Thr Tyr Tyr Phe Ile Cys Met His Thr Lys Asp Ser Lys Thr Gly Lys Ser Leu Pro Ile Trp Trp Lys Ser 200

Ser Leu Thr Ala Phe Gln Leu Leu Gln Phe Thr Ile Met Met Ser Gln

Ala 1 225	Phr	Tyr	Leu		Phe 1 230	His (31y	Cys i	Asp	Lys ' 235	Val	Ser :	Leu :	Arg	Ile 240	
Thr	Ile	Val	Tyr	Phe 245	Val :	Ser 1	Leu	Leu	Ser 250	Leu	Phe	Phe	Leu	Phe 255	Ala	
Gln	Phe	Phe	Val 260	Gln	Ser	Tyr :	Met	Ala 265	Pro	Lys	Lys	Lys	Lys 270	Ser	Ala	
<210 <211 <212 <213	> ? > 1	47 936 ONA Cryp	theco	odini	.um c	ohni	i									·
	.> (:>		.(936 a-5-E		jase			•	•							,
<400 atg Met 1	tct	47 gcc Ala	ttc Phe	atg Met 5	act Thr	ctc Leu	cca Pro	cag Gln	gct Ala 10	ctc Leu	tcc Ser	gat Asp	gtg Val	acc Thr 15	tcg Ser	. 48
gcc Ala	ttg Leu	gtc Val	acg Thr 20	ctg Leu	gga Gly	aag Lys	gat Asp	gtc Val 25	tcc Ser	agc Ser	cct Pro	tca Ser	gct Ala 30	ttt Phe	caa Gln	96
gct Ala	gto Val	act Thr	ggc Gly	ttc Phe	tgc Cys	agg Arg	gag Glu 40	cag Gln	tgg Trp	GJA āāā	att Ile	ccg Pro 45	aca Thr	gta Val	ttc Phe	144
tgc Cys	ctg Leu 50	Gly	tac Tyr	ttg Leu	gcc Ala	atg Met 55	gtc Val	tac Tyr	gcg Ala	gcc Ala	aga Arg 60	aga Arg	ccc Pro	ctc Leu	ccg Pro	192
cag Gln 65	Cac	gg Gly	tac Tyr	atg Met	gtt Val 70	gcg Ala	gtg Val	gac Asp	cgt Arg	tgc Cys 75	ttc Phe	gct Ala	gct Ala	tgg Trp	aac Asn 80	240
ttg Leu	gct Ala	t cto	tct Ser	gtc Val	ttc Phe	agc Ser	act Thr	tgg Trp	ggc Gly 90	ttc Phe	tac Tyr	cac His	atg Met	gct Ala 95	gtc Val	288
ej aaa	cto Le	ta u Ty	c aac r Asn 100	Met	aca Thr	gag Glu	acg Thr	agg Arg 105	GIA	ttg Leu	caa Glr	tto Phe	acc Thr 110	TTE	tgc Cys	336
ggt Gly	tc: Se:	g ac r Th 11	t ggg r Gly 5	gag Glu	ctc Leu	gtg Val	Glr 120	n Asn	ctt Leu	cag Glr	g act	ggc Gly	Pro	acc Thr	gct Ala	384
ctg Leu	gc Al 13	a Le	c tgo u Cys	cto Lev	tto Phe	tgc Cys	Phe	c ago	aaq Lys	g ato	2 CCC 2 Pro 14(Glu	ttg Leu	ato Met	gac : Asp	432
acc Thr 145	. Va	g tt l Ph	t cto e Le	ato Ile	c ctg Lev 150	ı Lys	gco Ala	a Lys	aag Ly:	g gto s Val	LAr	tto Phe	ttg Lev	ı Glı	g tgg n Trp 160	480
tao Tyi	c ca Hi	c ca s Hi	t gco s Ala	c aca a Thi	r Val	atg L Met	cto Le	c tto u Phe	tg Cy 17	s Tr	g Cto p Le	c gco u Ala	c cto a Leu	gc; 1 Ala 17	g acg a Thr 5	528

									1	•						
gag Glu	tac Tyr	act Thr	cct Pro 180	ggc Gly	ttg Leu	tgg Trp	ttt Phe	gcg Ala 185	gcg Ala	acg Thr	aac Asn	tac Tyr	ttc Phe 190	gtg Val	cac His	576
tcc Ser	atc Ile	atg Met 195	tac Tyr	atg Met	tac Tyr	ttc Phe	ttc Phe 200	ctc Leu	atg Met	acc Thr	ttc Phe	aag Lys 205	tcg Ser	gcc Ala	gcg Ala	624
aag Lys	gtg Val 210	gtg Val	aag Lys	ccc Pro	atc Ile	gcc Ala 215	cct Pro	ctc Leu	atc Ile	aca Thr	gtt Val 220	atc Ile	cag Gln	att Ile	gct Ala	672
cag Gln 225	atg Met	gtc Val	tgg Trp	Gly	ctc Leu 230	atc Ile	gtç Val	aac Asn	ggc Gly	atc Ile 235	gcc Ala	atc Ile	acc Thr	acc Thr	ttc Phe 240	720
ttc Phe	acg Thr	act Thr	ggt Gly	gcc Ala 245	tgc Cys	cag Gln	atc Ile	cag Gln	tct Ser 250	gtg Val	act Thr	gtg Val	tat Tyr	tcg Ser 255	gcc Ala	768
atc Ile	atc Ile	atg Met	tac Tyr 260	gct Ala	tcg Ser	tac Tyr	ttc Phe	tac Tyr 265	ctg Leu	ttc Phe	tcc Ser	cag Gln	ctc Leu 270	ttc Phe	ttc Phe	816
gag Glu	gcc Ala	cat His 275	ggt Gly	gcc Ala	gct Ala	Gly	aag Lys 280	aac Asn	aag Lys	aag Lys	aag Lys	ttg Leu 285	acc	cgc Arg	gag Glu	864
ctc Leu	tct Ser 290	Arg	aaa Lys	atc Ile	tcg Ser	gag Glu 295	gct Ala	ctc Leu	ctg Leu	aac Asn	acc Thr 300	ggt Gly	gac Asp	gag Glu	gtt Val	912
	Lys			aag Lys												936
<21 <21 <21 <21	1> 2>	48 311 PRT Cryp	thec	odin	ium	cohr	iii									
<40	0>	48														
Met 1	. Ser	Ala	. Phe	Met 5	Thr	Leu	Pro	Gln	Ala 10	. Leu	ser	Asp	Val	. Thr 15	Ser	
Ala	. Lev	ı Val	L Tha 20	r Leu	Gly	y Lys	s Asp	Val 25	. Ser	Sei	Pro	Ser	30	a Phe	e Gln	
Ala	. Val	L Thi 35	Gly	y Phe	э Суз	s Arg	g Glu 40	ı Glı	ı Tr	Gly	/ Ile	Pro 45	Thr	. Va	l Phe	
Суз	s Lei 50	ı Gly	у Ту:	r Leu	ı Alá	a Me	t Vai	L Tyi	: Ala	a Ala	Arg 60	J Arg	g Pro	o Lei	ı Pro	
Gli 65	n Hi:	s Gl	у Ту	r Met	z Va: 70	l Al	a Va	l Ası	o Ari	g Cy: 75	s Phe	e Ala	a Ala	a Tr	p Asn 80	
Lei	ı Al	a Le	u Se	r Vai 85	l Ph	e <i>S</i> e:	r Th	r Tr	90 g1	y Ph	е Ту:	r Hi	s Me	E Al	a Val	

79 Gly Leu Tyr Asn Met Thr Glu Thr Arg Gly Leu Gln Phe Thr Ile Cys 105 Gly Ser Thr Gly Glu Leu Val Gln Asn Leu Gln Thr Gly Pro Thr Ala Leu Ala Leu Cys Leu Phe Cys Phe Ser Lys Ile Pro Glu Leu Met Asp Thr Val Phe Leu Ile Leu Lys Ala Lys Lys Val Arg Phe Leu Gln Trp Tyr His His Ala Thr Val Met Leu Phe Cys Trp Leu Ala Leu Ala Thr 170 Glu Tyr Thr Pro Gly Leu Trp Phe Ala Ala Thr Asn Tyr Phe Val His 185 Ser Ile Met Tyr Met Tyr Phe Phe Leu Met Thr Phe Lys Ser Ala Ala 200 Lys Val Val Lys Pro Ile Ala Pro Leu Ile Thr Val Ile Gln Ile Ala 215 Gln Met Val Trp Gly Leu Ile Val Asn Gly Ile Ala Ile Thr Thr Phe Phe Thr Thr Gly Ala Cys Gln Ile Gln Ser Val Thr Val Tyr Ser Ala Ile Ile Met Tyr Ala Ser Tyr Phe Tyr Leu Phe Ser Gln Leu Phe Phe Glu Ala His Gly Ala Ala Gly Lys Asn Lys Lys Lys Leu Thr Arg Glu 280 Leu Ser Arg Lys Ile Ser Glu Ala Leu Leu Asn Thr Gly Asp Glu Val 295 Ser Lys His Leu Lys Val Asn <210> 49 <211> 927 <212> DNA <213> Crypthecodinium cohnii <220> <221> CDS <222> (1)..(927) <223> Delta-5-Elongase

<400> 49

atg Met 1	gct Ala	tcc Ser	tac Tyr	caa Gln 5	caa Gln	gca Ala	ttc Phe	Ser	gaa Glu 10	ttg Leu	gct Ala	aga Arg	gct Ala	ttg Leu 15	tcc Ser	48
act Thr	ttg Leu	aac Asn	cac His 20	gac Asp	ttc Phe	tcc Ser	agc Ser	gtc Val 25	gag Glu	cca Pro	ttc Phe	aaa Lys	gtc Val 30	gtg Val	acg Thr	96
cag Gln	ttc. Phe	tgc Cys 35	agg Arg	gac Asp	cag Gln		gcg Ala 40	atc Ile	ccg Pro	aca Thr	gtc Val	ttt Phe 45	tgc Cys	atc Ile	ggt Gly	144
tac Tyr	ttg Leu 50	gca Ala	atg Met	gtc Val	tac Tyr	gcc Ala 55	acg Thr	cga Arg	aga Arg	cct Pro	atc Ile 60	gcg Ala	aag Lys	cac His	ccc Pro	192
tac Tyr 65	atg Met	tct Ser	ctc Leu	gtg Val	gat Asp 70	cgc Arg	tgc Cys	ttt Phe	gcg Ala	gcc Ala 75	tgg Trp	aac Asn	ttg Leu	ggc	ctc Leu 80	240
tcg Ser	ctc Leu	ttc Phe	agt Ser	tgc Cys 85	tgg Trp	ggc Gly	ttc Phe	tac Tyr	cac His 90	atg Met	gca Ala	gtg Val	gga Gly	ctc Leu 95	tcc Ser	288
cac His	acc Thr	act Thr	tgg Trp 100	aat Asn	ttc Phe	Gly ggg	ctc Leu	cag Gln 105	ttc Phe	acc Thr	atc Ile	tgc Cys	ggc Gly 110	agc Ser	acc Thr	336
acg Thr	gag Glu	ctt Leu 115	Val	aat Asn	ggc Gly	ttc Phe	cag Gln 120	aag Lys	ggc Gly	ccg Pro	gcg Ala	gcc Ala 125	ctc Leu	gcc Ala	ctc Leu	384
atc Ile	ctg Leu 130	Phe	tgc Cys	ttc Phe	tcc Ser	aag Lys 135	atc	ccg Pro	gag Glu	ttg Leu	ggc Gly 140	' Asp	acc Thr	gtc Val	ttc Phe	432
ttg Leu 145	Ile	ttg Leu	aag Lys	gga Gly	aag Lys 150	aag Lys	gtc Val	cgc Arg	ttc Phe	ttg Leu 155	Glr	ı tgg ı Trp	tac Tyr	cac His	cac His 160	480
acg Thr	acc Thr	gtg Val	, ato Met	cto Leu 165	Phe	tgt Cys	tgg Trp	atg Met	gcc Ala 170	Leu	geç Ala	g act a Thr	gag Glu	tac Tyr 175	rnr	528
cct	gga Gly	ttç Lev	tgg Trg 180	Phe	gcg Ala	gcc Ala	acc Thr	aac Asn 185	тут	tto Phe	gto Val	g cac L His	tcc Ser 190	. 176	atg Met	576
tac Tyı	ato Met	tac Ty:	: Phe	tto Phe	cto Lev	atg Met	acc Thi	: Phe	aaq Lys	g acc	g gco	e geo a Ala 205	F GTZ	ato Ile	atc e Ile	624
aaq Lys	g ccc s Pro 210	o Ile	e geg e Ala	g cct a Pro	cto Lev	ato 1 Ile 215	Th	c ato	e Ile	caç e Gli	g ate n Il 22	e Sei	c cag r Gli	g ato 1 Me	g gtc t Val	672
tg: Tr: 22	o Gl	tt: Y Le	g gte u Va	c gte 1 Va	g aad 1 Asi 230	n Ala	ato	e Ala	e gto a Vai	ggg 1 Gl ₁ 23	y Th	c tto	c tto e Pho	e ac	r Thr 240	720
G1;	c aa y As	c tg n Cy	c ca s Gl	g at n Il 24	e Gl	g gca n Ala	a gt	g ac	a gt r Va 25	l Ty	c tc r Se	c gc r Al	c ate a Il	e yt e Va 25	g atg 1 Met 5	768
ta Ty	c gc r Al	c tc a Se	c ta r Ty 26	r Ph	c ta e Ty	c cto	e tt ı Ph	c gg e G1 26	y Gl	g ct n Le	c tt u Ph	c tt e Ph	c ga e Gl 27	u Al	c cag a Gln	816

									0	•						
ggt t Gly S	Ser	gct Ala 275	gga Gly	aag Lys	gac Asp	Lys	aag Lys 280	aag (Lys)	ttg Leu	gcc Ala	cga Arg	gag Glu 285	ctg Leu	agc Ser	cga Arg	864
aag g Lys V	gtc Val 290	tcg Ser	cgg Arg	gct Ala	ctc Leu	aca Thr 295	gca Ala	acg ! Thr	ggc	gaa Glu	gag Glu 300	gtg Val	tcg Ser	aag Lys	cac His	912
atg a Met 1 305				tga												927
<210: <211: <212: <213:	> 3 > F	50 808 PRT Cryp	chec	odin:	ium c	ohni	L i .									
<400	> 5	50														
Met .	Ala	Ser	Tyr	Gln 5	Gln	Ala	Phe	Ser	Glu 10 ·	Leu	Ala	Arg	Ala	Leu 15	Ser	
Thr	Leu	Asn	His 20	Asp	Phe	Ser	Ser	Val 25	Glu	Pro	Phe	Lys	Val 30	Val	Thr	
Gln	Phe	Cys 35	Arg	Asp	Gln	Trp	Ala 40	Ile	Pro	Thr	Val	Phe 45	Cys	Ile	Gly	
Tyr	Leu 50	Ala	Met	. Val	. Tyr	Ala 55	Thr	Arg	Arg	Pro	11e 60	. Ala	Lys	His	Pro	٠
Tyr 65	Met	. Ser	Leu	ı Val	Asp 70	Arg	Cys	Phe	Ala	Ala 75	Tr) Asn	Leu	ı Gly	Leu 80	
Ser	Leu	ı Ph∈	e Ser	Cys 85	s Trp	Gly	Phe	Tyr		: Met	: Ala	a Val	Gl ₂	/ Leu 95	. Ser	
His	Thr	Thi	r Tri		n Phe	e Gly	Leu	Gln 105	Phe	e Thi	r Ile	e Cys	Gl ₃	y Ser)	Thr	
Thr	Glu	1 Le:		l Ası	n Gly	/ Phe	Gln 120	Lys	Gly	/ Pro	o Ala	a Ala 125	Lei	ı Ala	a Leu	
Ile	Le:		e Cy	s Ph	e Sei	13:		e Pro	Glı	ı Le	u G1; 14	y As <u>r</u> O	Th:	r Vai	L Phe	
Leu 145		e Le	u Ly	s Gl	y Ly: 15		s Val	l Arg	, Ph	e Le	u G1 5	n Tr	э Ту	r Hi	s His 160	
Thr	Th	r Va	l Me	t Le 16		е Су:	s Trị	o Met	2 Al 17	a Le O	u Al	a Th:	r Gl	и Ту 17	r Thr 5	
Pro	G1;	y Le	u Tr 18		e Al	a Al	a Th	r Ası 189	л Ту 5	r Ph	ie Va	l Hi	s Se 19	r Il 0	e Met	

Tyr	Met	Tyr 195	Phe	Phe	Leu	Met	Thr 200	Phe	Lys	Thr	Ala	Ala 205	Gly	Ile	Ile .	
Lys	Pro 210	Ile	Ala	Pro	Leu	Ile 215	Thr	Ile	Ile	Gln	Ile 220	Ser	Gln	Met	Val	
Trp 225	Gly	Leu	Val	Val	Asn 230	Ala	Ile	Ala	Val	Gly 235	Thr	Phe	Phe	Thr	Thr 240	
Gly	Asn	Cys	Gln	Ile 245	Gln	Ala	Val	Thr	Val 250	Tyr	Ser	Ala	Ile	Val 255	Met	
Tyr	Ala	Ser	Тух 260	Phe	Tyr	Leu	Phe	Gly 265	Gln	Leu	. Phe	Phe	Glu 270	Ala	Gln	
Gly	Ser	Ala 275		Lys	Asp	Lys	Lys 280		Leu	Ala	Arg	Glu 285	. Leu	Ser	Arg	
Lys	Val 290		Arg	Ala	Leu	Thr 295		Thr	· Gly	Glu	300	Val	. Ser	Lys	His	
Met 305	. Lys	Val	Asn	L												
<21 <21	.0> .1> .2> .3>	51 795 DNA Onco	orhyr	ichus	, myk	iss										
<22 <22		CDS (1). Delt			ngase)										
ate	00> g gci t Ala	51 t tca a Se	a aca	a tgg r Trj 5	g caa o Glr	ago n Sen	gti val	t ca l Gl	g tc n Se 10	c at r Me	g cg t Ar	c ca g Gl:	g tgg n Trj	g at p Ile 15	tta e Leu	48
ga Gl	g aa u As	t gg: n Gl:	a ga y Asj 20	t aaa o Ly:	a agg	g aca	a gad r Asj	c cc o Pr 25	a tg o Tr	g ct p Le	a ct u Le	g gt u Va	c tad 1 Ty: 30	c tco r Se:	c cct r Pro	96
at Me	g cc t Pr	a gt o Va 35	g gc l Al	c at a Il	t ata e Il	a tt e Ph	c ct e Le 40	c ct u Le	c ta u Ty	t ct r Le	t gg u Gl	t gt y Va 45	1 Va	c tg l Tr	g gct p Ala	144
G1 gg	g cc y Pr 50	о ГХ	g ct s Le	g at u Me	g aa t Ly	a cg s Ar 55	c ag g Ar	g ga	a cc u Pr	a gt o Va	t ga l As 60	p Le	c aa u Ly	g gc s Al	t gta a Val	192
ct Le 65	u Il	t gt e Va	c ta l Ty	c aa r As	c tt n Ph 70	e Al	c at a Me	g gt t Vá	c to	c ctrs Le	eu Se	t gt er Va	c ta il Ty	c at r Me	g ttc t Phe 80	240
ca Hi	t ga .s Gl	g tt u Ph	c tt e Le	g gt u Va 85	1 Th	g to r Se	c tt r Le	g ct u Le	g to eu Se 90	er A	ac ta an Ty	ic ag /r Se	it ta er Ty	c ct r Le 95	g tgt u Cys	288

									-	•						
caa Gln	cct Pro	gtg Val	gat Asp 100	tac Tyr	agc Ser	act Thr	agt Ser	cca Pro 105	ctg Leu	gcg Ala	atg Met	agg Arg	atg Met 110	gcc Ala	aaa Lys	336
gta Val	tgc Cys	tgg Trp 115	tgg Trp	ttt Phe	ttc Phe	ttc Phe	tcc Ser 120	aag Lys	gtc Val	ata Ile	gaa Glu	ttg Leu 125	gct Ala	gac Asp	acg Thr	384
gtg Val	ttc Phe 130	ttc Phe	atc Ile	ctg Leu	agg Arg	aag Lys 135	aag Lys	aac Asn	agt Ser	cag Gln	ctg Leu 140	act Thr	ttc Phe	ctg Leu	cat His	432
gtc Val 145	tat Tyr	cac His	cat His	ggc Gly	acc Thr 150	atg Met	atc Ile	ttc Phe	aac Asn	tgg Trp 155	tgg Trp	gca Ala	ej aaa	gtc Val	aag Lys 160	480
tat Tyr	ctg Leu	gct Ala	gga Gly	ggc Gly 165	caa Gln	tcg Ser	ttc Phe	ttc Phe	atc Ile 170	GJA āāc	ctg Leu	ctc Leu	aat Asn	acc Thr 175	ttt Phe	528
gtg Val	cac His	atc Ile	gtg Val 180	atg Met	tac Tyr	tct Ser	tac Tyr	tac Tyr 185	gga Gly	ctg Leu	gct Ala	gcc Ala	ctg Leu 190	GJA aaa	cct Pro	576
cac His	acg Thr	cag Gln 195	aag Lys	tac Tyr	tta Leu	tgg Trp	tgg Trp 200	aag Lys	cgc Arg	tat Tyr	ctg Leu	acc Thr 205	tca Ser	ctg Leu	cag Gln	624
ctg Leu	ctc Leu 210	cag Gln	ttt Phe	gtc Val	ctg Leu	ttg Leu 215	acc Thr	act Thr	cac His	act Thr	ggc Gly 220	tac Tyr	aac Asn	ctc Leu	ttc Phe	672
act Thr 225	Glu	tgt Cys	gac Asp	ttc Phe	ccg Pro 230	Asp	tcc Ser	atg Met	aac Asn	gct Ala 235	Val	gtg Val	ttt Phe	gcc Ala	tac Tyr 240	720
tgt Cys	gtc Val	agt Ser	ctc Leu	att Ile 245	gct Ala	ctc Leu	ttc Phe	agc Ser	aac Asn 250	ttc Phe	tac Tyr	tat Tyr	cag Gln	agc Ser 255	Tyr	768
				Ser	aag Lys											795
<21 <21 <21 <21	.1>	52 264 PRT Onco	orhyn	nchus	s myk	iss:										
<40	0>	52														
Met 1	: Ala	a Ser	Thr	Tr 5	Glr	ı Ser	. Va	l Glr	Ser 10	Met	: Arg	g Glr	ı Trg	7 Ile 15	e Leu	
Glı	ı Ası	n Gl	y Asg 20) Ly:	s Arg	Th:	: Ası	p Pro 25	Tr	Let	ı Le	ı Vai	1 Ty:	r Sei	r Pro	
Me	: Pr	o Va. 35	l Ala	a Il	e Ile	e Phe	e Le	u Le	נעד ג	c Lei	u Gl	y Va. 45	l Vai	l Trj	o Ala	
Gl	y Pro	э Ьу:	s Lei	ı Me	t Ly:	s Arq 55	g Ar	g Glı	ı Pro	o Va	1 As 60	p Le	u Ly:	s Al	a Val	

									04	٠					
Leu 65	Ile	Val	Tyr	Asn	Phe 70	Ala	Met	Val	Cys	Leu 75	Ser	Val	Tyr	Met	Phe 80
His	Glu	Phe	Leu	Val 85	Thr	Ser	Leu	Leu	Ser 90	Asn	Tyr	Ser	Tyr	Leu 95	Cys
Gln	Pro	Val	Asp 100	TYr	Ser	Thr	Ser	Pro 105	Leu	Ala	Met	Arg	Met 110	Ala	Lys
Val	Cys	Trp 115	Trp	Phe	Phe	Phe	Ser 120	Lys	Val	Ile	Glu	Leu 125	Ala	Asp	Thr
Val	Phe 130	Phe	Ile	Leu	Arg	Lys 135	Гуs	Asn	Ser	Gln	Leu 140	Thr	Phe	Leu	His
Val 145	Tyr	His	His	Gly	Thr 150	Met	Ile	Phe	Asn	Trp 155	Trp	Ala	Gly	Val	Lys 160
Tyr	Leu	Ala	Gly	Gly 165		Ser	Phe	Phe	Ile 170	Gly	Leu	Leu	Asn	Thr 175	Phe
Val	His	Ile	val 180		Tyr	Ser	Tyr	Tyr 185	Gly	Leu	Ala	Ala	Leu 190	Gly	Pro
His	Thr	Glr 195		Tyr	Leu	Trp	Trp 200		Arg	Tyr	Leu	Thr 205	Ser	Leu	Gln
Leu	. Leu 210		n Phe	val	. Leu	Lev 215		Thr	His	Thr	Gly 220	Tyr	Asn	. Leu	Phe
Thr 225		ı Cys	s As <u>ı</u>) Phe	230		Ser	: Met	: Asn	Ala 235	. Val	Val	. Phe	Ala	Tyr 240
Cys	va]	L Se:	r Lei	1 Ile 249		ı Lei	ı Phe	s Sei	250	n Phe	• Туг	туг	Glr	Ser 255	Tyr
Leu	ı Ası	n Ar	g Ly: 26		r Lys	s Ly:	s Thi	:							
<2: <2:	LO> L1> L2> L3>	53 885 DNA Onc		nchu	s my!	kiss									
<2: <2:	20> 21> 22> 23>	(1)	(8	85) -Elo	ngas	e									
<4	00>	53	, (- +- +-	+ aa	t ts	+ a=	a ct	a aa	c at	a ta	c at	a ga	c tc	a to	g atg

atg gag act ttt aat tat aaa cta aac atg tac ata gac tca tgg atg
Met Glu Thr Phe Asn Tyr Lys Leu Asn Met Tyr Ile Asp Ser Trp Met

1 5 10 15

									85)						
ggt Gly	ccc Pro	aga Arg	gat Asp 20	gag Glu	cgg Arg	gta Val	GIn	gga Gly 25	tgg Trp	ctg Leu	ctt Leu	ctg Leu	gac Asp 30	aac Asn	tac Tyr	96
cct Pro	cca Pro	acc Thr 35	ttt Phe	gca Ala	cta Leu	aca Thr	gtc Val 40	atg Met	tac Tyr	ctg Leu	ctg Leu	atc Ile 45	gta Val	tgg Trp	atg Met	144
GJA aaa	ccc Pro 50	aag Lys	tac Tyr	atg Met	aga Arg	cac His 55	aga Arg	cag Gln	ccg Pro	gtg Val	tct Ser 60	tgc Cys	cgg Arg	ggt Gly	ctc Leu	192
ctc Leu 65	ttg Leu	gtc Val	tac Tyr	aat Asn	ctg Leu 70	ggc	ctc Leu	acg Thr	atc Ile	ttg Leu 75	tcc Ser	ttc Phe	tat Tyr	atg Met	ttc Phe 80	240
tat Tyr	gag Glu	atg Met	gtg Val	tct Ser 85	gct Ala	gtg Val	tgg Trp	cac His	90 GJA āāā	gat Asp	tat Tyr	aac Asn	ttc Phe	ttt Phe 95	tgc Cys	288
caa Gln	gac Asp	aca Thr	cac His	Ser	gca Ala	gga Gly	gaa Glu	acc Thr 105	gat Asp	acc Thr	aag Lys	atc Ile	ata Ile 110	aat Asn	gtg Val	336
ctg Leu	tgg Trp	tgg Trp 115	Tyr	tac Tyr	ttc Phe	tcc Ser	aag Lys 120	ctc Leu	ata Ile	gag Glu	ttt Phe	atg Met 125	. ASE	acc Thr	ttc Phe	384
ttc Phe	ttc Phe 130	Ile	ctg Lev	cgg Arg	aag Lys	aac Asn 135	aac Asn	cat His	caa Gln	ato	acc Thr 140	Pne	ctg Lev	cac His	atc Ile	432
tac Tyr 145	His	cat His	gct Ala	agc Ser	atg Met	Leu	aac Asn	atc	tgg Trp	tgg Trp 155	Phe	gto Val	ato L Met	aac Asr	tgg Trp 160	480
gtg Val	g ccc	tgt Cys	z ggt s Gly	cac His 165	s Ser	tac Tyr	ttt Phe	ggt Gly	gcc Ala 170	Sei	cto Lev	g aad ı Ası	c ago n Sei	tto Phe 175	atc Ile	528
cat His	gto Val	ctq Le	g ato u Me	t Ty	tct Ser	tac Tyr	tat Tyr	ggg Gly 185	Lei	tct 1 Sei	gc:	t gte a Va	c cc l Pr 19) AI	ttg Leu	576
cg; Ar	g cco	ta Ty	r Le	a tgg u Tr	g tgg o Trg	aaq Lys	g aaa Lys 200	z Tyı	ato	c aca	a ca r Gl	a gt n Va 20	7 67	g cto n Leo	g att u Ile	624
ca Gl:	g tte n Ph	e Ph	t tt e Le	g ac	c atq r Mei	g tco : Sei 21!	r Gli	g acq n Thi	g ata	a tg e Cy	t gc s Al 22	a Va	c at 1 Il	t tg e Tr	g cca p Pro	672
tg Cy 22	s As	t tt p Ph	c cc e Pr	c ag o Ar	a ggg g Gl; 23	y Tr	g ct o Le	g ta u Ty:	t tt r Ph	c ca e Gl 23	n 11	a tt e Ph	c ta le Ty	t gt r Va	c atc 1 Ile 240	720
ac Th	a ct r Le	t at u Il	t go e Al	c ct. a Le 24	u Ph	c tc e Se	a aa r As	c tt n Ph	c ta e Ty 25	r Il	t ca e Gl	g ac n Th	t ta r Ty	c aa T Ly 25	g aaa s Lys 5	768
ca Hi	c ct s Le	t gt u Vâ	t to	er Gl	a aa n Ly	g aa s Ly	g ga s Gl	g ta u Ty 26	r Hi	t ca s Gl	ig aa .n As	at gg sn Gl	go to Ly Se 27	er va	t gct l Ala	816
to Se	a tt er Le	eu As	at gg sn Gl	gc ca Ly Hi	ıt gt .s Va	g aa l As	t gg n Gl 28	y Va	g ac	a co ir Pi	c ac	ır G.	aa ad lu Tl 85	c at ur Il	t aca le Thr	864

		aaa Lys		
<210	0> 1>	54 295		

<212> PRT <213> Oncorhynchus mykiss

<400> 54

Met Glu Thr Phe Asn Tyr Lys Leu Asn Met Tyr Ile Asp Ser Trp Met 10

Gly Pro Arg Asp Glu Arg Val Gln Gly Trp Leu Leu Asp Asn Tyr 25

Pro Pro Thr Phe Ala Leu Thr Val Met Tyr Leu Leu Ile Val Trp Met

Gly Pro Lys Tyr Met Arg His Arg Gln Pro Val Ser Cys Arg Gly Leu

Leu Leu Val Tyr Asn Leu Gly Leu Thr Ile Leu Ser Phe Tyr Met Phe

Tyr Glu Met Val Ser Ala Val Trp His Gly Asp Tyr Asn Phe Phe Cys

Gln Asp Thr His Ser Ala Gly Glu Thr Asp Thr Lys Ile Ile Asn Val 105

Leu Trp Trp Tyr Tyr Phe Ser Lys Leu Ile Glu Phe Met Asp Thr Phe 115

Phe Phe Ile Leu Arg Lys Asn Asn His Gln Ile Thr Phe Leu His Ile

Tyr His His Ala Ser Met Leu Asn Ile Trp Trp Phe Val Met Asn Trp

Val Pro Cys Gly His Ser Tyr Phe Gly Ala Ser Leu Asn Ser Phe Ile 165

His Val Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Ala Val Pro Ala Leu 185

Arg Pro Tyr Leu Trp Trp Lys Lys Tyr Ile Thr Gln Val Gln Leu Ile 200

Gln Phe Phe Leu Thr Met Ser Gln Thr Ile Cys Ala Val Ile Trp Pro 220

Cys Asp Phe Pro Arg Gly Trp Leu Tyr Phe Gln Ile Phe Tyr Val Ile 225 230 235 240	
Thr Leu Ile Ala Leu Phe Ser Asn Phe Tyr Ile Gln Thr Tyr Lys Lys 245 250 255	
His Leu Val Ser Gln Lys Lys Glu Tyr His Gln Asn Gly Ser Val Ala 260 265 270	
Ser Leu Asn Gly His Val Asn Gly Val Thr Pro Thr Glu Thr Ile Thr 275 280 285	
His Arg Lys Val Arg Gly Asp 290 295	
<210> 55 <211> 6753 <212> DNA <213> Oncorhynchus mykiss	
<220> <221> CDS <222> (513)(1397) <223> Delta-5-Elongase	
<400> 55 acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt	60
cctcgtcctc accggtcgcg ttcctgaaac gcagatgtgc ctcgcgccgc actgctccga	120
acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac	180
ctggccccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga	240
ttagtttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat	300
taacagatat ataaatgcaa aaactgcatt aaccacttta actaatactt tcaacatttt	360
cggtttgtat tacttcttat tcaaatgtaa taaaagtatc aacaaaaaat tgttaatata	420
cctctatact ttaacgtcaa ggagaaaaaa ccccggatcg gactactagc agctgtaata	480
cgactcacta tagggaatat taagcttaca ta atg gag act ttt aat tat aaa Met Glu Thr Phe Asn Tyr Lys 1 5	533
cta aac atg tac ata gac tca tgg atg ggt ccc aga gat gag cgg gta Leu Asn Met Tyr Ile Asp Ser Trp Met Gly Pro Arg Asp Glu Arg Val 10 15 20	581
cag gga tgg ctg ctt ctg gac aac tac cct cca acc ttt gca cta aca Gln Gly Trp Leu Leu Asp Asn Tyr Pro Pro Thr Phe Ala Leu Thr 25 30 35	629
gtc atg tac ctg ctg atc gta tgg atg ggg ccc aag tac atg aga cac Val Met Tyr Leu Leu Ile Val Trp Met Gly Pro Lys Tyr Met Arg His 40 45 50	677
aga cag ccg gtg tct tgc cgg ggt ctc ctc ttg gtc tac aat ctg ggc Arg Gln Pro Val Ser Cys Arg Gly Leu Leu Val Tyr Asn Leu Gly 60 65 70	725

ctc Leu	acg Thr	atc Ile	ttg Leu 75	tcc Ser	ttc Phe	tat Tyr	atg Met	ttc Phe 80	tat Tyr	gag Glu	atg Met	gtg Val	tct Ser 85	gct Ala	gtg Val	773
tgg Trp	cac His	90 Gly ggg	gat Asp	tat Tyr	aac Asn	ttc Phe	ttt Phe 95	tgc Cys	caa Gln	gac Asp	aca Thr	cac His 100	agt Ser	gca Ala	gga Gly	821
gaa Glu	acc Thr 105	gat Asp	acc Thr	aag Lys	atc Ile	ata Ile 110	aat Asn	gtg Val	ctg Leu	tgg Trp	tgg Trp 115	tac Tyr	tac Tyr	ttc Phe	tcc Ser	869
aag Lys 120	ctc Leu	ata Ile	gag Glu	ttt Phe	atg Met 125	gat Asp	acc Thr	ttc Phe	ttc Phe	ttc Phe 130	atc Ile	ctg Leu	cgg Arg	aag Lys	aac Asn 135	917
aac Asn	cat His	caa Gln	atc Ile	acg Thr 140	ttt Phe	ctg Leu	cac His	atc Ile	tac Tyr 145	cac His	cat His	gct Ala	agc Ser	atg Met 150	ctc Leu	965
aac Asn	atc Ile	tgg Trp	tgg Trp 155	ttc Phe	gtç Val	atg Met	aac Asn	tgg Trp 160	gtg Val	ccc Pro	tgt Cys	ggt Gly	cac His 165	tcc Ser	tac Tyr	1013
ttt Phe	ggt Gly	gcc Ala 170	tcc Ser	ctg Leu	aac Asn	agc Ser	ttc Phe 175	atc Ile	cat His	gtc Val	.ctg Leu	atg Met 180	tac Tyr	tct Ser	tac Tyr	1061
tat Tyr	ggg Gly 185	ctc Leu	tct Ser	gct Ala	gtc Val	ccg Pro 190	gcc Ala	ttg Leu	cgg Arg	ccc Pro	tat Tyr 195	cta Leu	tgg Trp	tgg Trp	aag Lys	1109
aaa Lys 200	Tyr	atc Ile	aca Thr	caa Gln	gta Val 205	cag Gln	ctg Leu	att Ile	cag Gln	ttc Phe 210	Phe	ttg Leu	acc Thr	atg Met	tcc Ser 215	1157
cag Gln	acg Thr	ata Ile	tgt Cys	gca Ala 220	Val	att Ile	tgg Trp	cca Pro	tgt Cys 225	Asp	ttc Phe	ccc	aga Arg	ggg Gly 230	tgg Trp	1205
ctg Leu	tat Tyr	tto Phe	cag Gln 235	Ile	ttc Phe	tat Tyr	gtc Val	atc Ile 240	Thr	. ctt Leu	att Ile	gcc Ala	ctt Leu 245	Phe	tca Ser	1253
aac Asr	ttc Phe	tac Tyr 250	Ile	cag Gln	act Thr	tac Tyr	aag Lys 255	Lys	cac	ctt Leu	gtt Val	tca Ser 260	Gln	aag Lys	aag Lys	1301
gag Glu	tat Tyr 265	His	cag Glr	r aat 1 Asr	ggc Gly	tct Ser 270	· Val	gct Ala	tca Ser	ttg Lev	aat Asr 275	ı Gly	cat His	gtg Val	aat Asn	1349
gg Gl ₃ 280	/ Val	g aca Thr	e ccc	acg Thr	gaa Glu 285	t Thr	att	aca Thr	cac His	agg Arg 290	J Lys	gtg Val	g agg L Arg	1 GJ7 1 335	gac Asp 295	1397
tga	aagga	atcc	acta	gtaa	acg g	accad	cagt	g to	jctg	gaatt	cto	gcaga	atat	ccag	gcacagt	1457
gg	ggco	gct	cgaç	gtota	ıga g	ggc	ctto	g aa	ıggta	aagc	c tat	cacat	aac	cct	ctcctcg	1517
gt	ctcga	atte	tace	gcgta	acc g	gtca	atcat	ic ac	cat	cacca	a ttg	gagti	ctaa	acco	cgctgat	1577
cc.	tagag	gggc	cgca	atcai	tgt a	aatta	agtta	at gt	cac	gctt	a cai	ttca	egcc	ctc	ccccac	1637
at	ccgct	tcta	acco	gaaaa	agg a	aagga	agtta	ag ac	caac	ctga	a gto	ctag	gtcc	cta	tttattt	1697
tt	ttata	agtt	atgi	ctagi	tat 1	taaga	aacgi	tt a	tta	tatt	t caa	aatt	tttc	ttt	ttttct	1757

gtacagacgc	gtgtacgcat	gtaacattat	actgaaaacc	ttgcttgaga	aggttttggg	1817
acgctcgaag	gctttaattt	gcaagctgcg	gccctgcatt	aatgaatcgg	ccaacgcgcg	1877
gggagaggcg	gtttgcgtat	tgggcgctct	teegetteet	cgctcactga	ctegetgege	1937
teggtegtte	ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	acggttatcc	1997
acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	aaagcccagg	2057
aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	teegeeeece	tgacgagcat	2117
cacaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	aagataccag	2177
gegttteece	ctggaagctc	cctcgtgcgc	tctcctgttc	cgaccctgcc	gcttaccgga	2237
tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	ctcatagctc	acgctgtagg	2297
tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	acccccgtt	2357
cagecegace	gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	ggtaagacac	2417
gacttatcgc	cactggcagc	agccactggt	aacaggatta	gcagagcgag	gtatgtaggc	2477
ggtgctacag	agttcttgaa	gtggtggcct	aactacggct	acactagaag	gacagtattt	2537
ggtatctgcg	ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	ctcttgatcc	2597
ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	gcaagcagca	gattacgcgc	2657
agaaaaaaag	g gatctcaaga	agatcctttg	atcttttcta	. cggggtctga	cgctcagtgg	2717
aacgaaaact	cacgttaagg	gattttggtc	atgagattat	: caaaaaggat	cttcacctag	2777
atccttttaa	a attaaaaatg	aagttttaaa	tcaatctaaa	gtatatatga	gtaaacttgg	2837
tctgacagtt	t accaatgctt	aatcagtgag	gcacctatct	cagegatetg	, totatttcgt	2897
tcatccatag	g ttgcctgact	cecegtegtg	tagataacta	a cgatacggga	gegettacea	2957
tetggecee	a gtgctgcaat	: gataccgcga	gacccacgct	caccggctco	agatttatca	3017
gcaataaac	c agccagccgg	g aagggccgag	cgcagaagt	g gtcctgcaac	tttatccgcc	3077
tccatccag	t ctattaatto	g ttgccgggaa	gctagagta	a gtagttcgc	agttaatagt	3137
ttgcgcaac	g ttgttgccat	tgctacaggo	atcgtggtg	t cacgetegte	gtttggtatg	3197
gcttcattc	a gctccggtto	c ccaacgatca	aggcgagtt	a catgatccc	c catgttgtgc	3257
aaaaaagcg	g ttagctcct	t eggteeteeg	g ategttgte	a gaagtaagt	t ggccgcagtg	3317
ttatcactc	a tggttatgg	c agcactgca	t aattetett	a ctgtcatgo	c atccgtaaga	3377
tgcttttct	g tgactggtg	a gtactcaac	c aagtcattc	t gagaatagt	g tatgcggcga	3437
ccgagttgc	t ettgecegg	c gtcaacacg	g gataatacc	g cgccacata	g cagaacttta	3497
aaagtgcto	a tcattggaa	a acgttcttc	g gggcgaaaa	c tctcaagga	t cttaccgctg	3557
ttgagatco	a gttcgatgt	a acccactcg	t gcacccaac	t gatcttcag	c atcttttact	3617
		•			a aaagggaata	3677
agggcgaca	ac ggaaatgtt	g aatactcat	a ctcttcctt	t ttcaatatt	a ttgaagcatt	3737
tatcagggt	t attgtctca	t gagcggata	c atatttgaa	it gtatttaga	a aaataaacaa	3797

ataggggttc	cgcgcacatt	tccccgaaaa	gtgccacctg	acgtctaaga	aaccattatt	3857
atcatgacat	taacctataa	aaataggcgt	atcacgaggc	cctttcgtct	tcaagaaatt	3917
cggtcgaaaa	aagaaaagga	gagggccaag	agggagggca	ttggtgacta	ttgagcacgt	3977
gagtatacgt	gattaagcac	acaaaggcag	cttggagtat	gtctgttatt	aatttcacag	4037
gtagttctgg	tccattggtg	aaagtttgcg	gcttgcagag	cacagaggcc	gcagaatgtg	4097 ·
ctctagattc	cgatgctgac	ttgctgggta	ttatatgtgt	gcccaataga	aagagaacaa	4157
ttgacccggt	tattgcaagg	aaaatttcaa	gtcttgtaaa	agcatataaa	aatagttcag	4217
gcactccgaa	atacttggtt	ggcgtgtttc	gtaatcaacc	taaggaggat	gttttggctc	4277
tggtcaatga	ttacggcatt	gatategtee	aactgcacgg	agatgagtcg	tggcaagaat	4337
accaagagtt	cctcggtttg	ccagttatta	aaagactcgt	atttccaaaa	gactgcaaca	4397
tactactcag	tgcagcttca	cagaaacctc	attcgtttat	tcccttgttt	gattcagaag	4457
caggtgggac	aggtgaactt	ttggattgga	actcgatttc	tgactgggtt	ggaaggcaag	4517
agagccccga	gagettacat	tttatgttag	ctggtggact	gacgccagaa	aatgttggtg	4577
atgcgcttag	attaaatggc	gttattggtg	ttgatgtaag	cggaggtgtg	gagacaaatg	4637
gtgtaaaaga	ctctaacaaa	atagcaaatt	tcgtcaaaaa	tgctaagaaa	taggttatta	4697
ctgagtagta	tttatttaag	tattgtttgt	gcacttgccc	tagcttatcg	atgataagct	4757
gtcaaagatg	, agaattaatt	ccacggacta	tagactatac	tagatactcc	gtctactgta	4817
cgatacactt	ccgctcaggt	ccttgtcctt	taacgaggcc	: ttaccactct	tttgttactc	4877
tattgatcca	a gctcagcaaa	ggcagtgtga	tctaagattc	: tatcttcgcg	atgtagtaaa	4937
actagctaga	a ccgagaaaga	gactagaaat	gcaaaaggca	cttctacaat	ggetgecate	4997
attattatco	gatgtgacgc	tgcagcttct	caatgatatt	: cgaatacgct	ttgaggagat	5057
acagcctaat	atccgacaaa	. ctgttttaca	gatttacgat	: cgtacttgtt	acccatcatt	5117
gaattttgaa	a catoogaaco	tgggagtttt	ccctgaaaca	a gatagtatat	ttgaacctgt	5177
ataataata	t atagtetage	gctttacgga	agacaatgta	a tgtatttcgg	tteetggaga	5237
aactattgc	a tctattgcat	aggtaatctt	gcacgtcgca	a teceeggtte	: attttctgcg	5297
tttccatct	t gcacttcaat	agcatatctt	: tgttaacgaa	a gcatctgtgc	ttcattttgt	5357
agaacaaaa	a tgcaacgcga	gagcgctaat	: ttttcaaaca	a aagaatctga	gctgcatttt	5417
tacagaaca	g aaatgcaacg	g cgaaagcgct	attttacca	a cgaagaatct	gtgcttcatt	5477
tttgtaaaa	c aaaaatgcaa	a cgcgacgaga	a gcgctaatt	t ttcaaacaaa	a gaatctgagc	5537
tgcatttt	a cagaacagaa	atgcaacgc	g agagegeta	t tttaccaaca	a aagaatctat	5597
acttcttt	t tgttctacaa	a aaatgcatco	c cgagagcgc	t atttttctaa	a caaagcatct	5657
tagattact	t tttttctcci	ttgtgcgct	tataatgca	g totottgata	a actttttgca	5717
ctgtaggtc	c gttaaggtta	a gaagaaggc	t actttggtg	t ctattttct	c ttccataaaa	5777
aaagcctga	c tccacttcc	c gcgtttact	g attactagc	g aagctgcgg	g tgcattttt	5837

caaga	taaa	g gc	atcc	ccga	tta	tatt	cta	tacc	gatg	tg g	attg	cgca	t ac	tttg	tgaa
cagaa	agtg	a ta	gcgt	tgat	gat	tctt	cat	tggt	caga	aa a	ttat	gaac	g gt	ttct	tcta
ttttg	tctc	t at	atac	tacg	tat	agga	aat	gttt	acat	tt t	cgta	ttgt	t tt	cgat	tcac
tctat	gaat	a gt	tctt	acta	caa	tttt	ttt	gtct	aaag	ag t	taata	ctag	a ga	taaa	cata
aaaaa	tgta	g ag	gtcg	agtt	tag	atgo	aag	ttca	.agga	gc 9	jaaag	gtgg	a tg	ggta	ggtt
atata	ıggga	t at	agca	caga	gat	atat	agc	aaag	agat	ac 1	tttg	agca	a to	rtttg	rtgga
agcgg	rtatt	c go	aatg	ggaa	gct	ccac	ccc	ggtt	gata	at o	cagaa	aago	:C C	aaaa	acag
gaaga	ttgt	a ta	agca	aata	ttt	aaat	tgt	aaac	gtta	at a	attt	gtta	a aa	ttc	gegtt
aaatt	tttg	rt ta	aatc	agct	cat	ttt	taa	cgaa	tago	ccc s	gaaat	cggc	a aa	atco	cctta
taaat	caaa	a ga	aatag	accg	aga	atago	ggtt	gagt	gttg	gtt (ccagt	ttco	ca ac	caaga	agtcc
actat	taaa	ıg a	acgto	gact	cca	aacgi	tcaa	aggg	gcgaa	aaa	agggt	ctat	cc ag	gggc	gatgg
ccca	ctaco	ıt ga	aacca	atcac	: cc	taato	caag	ttt	ttgg	3 99	tcgag	ggtgo	cc g1	taaag	gcagt
aaato	ggaa	ag g	gtaaa	acgga	tg:	cccc	catt	taga	agcti	tga	cggg	gaaa	gc c	ggcg	aacgt
ggcg	agaaa	ag g	aaggg	gaaga	aa	gcga	aagg	agc	3999	gct	aggg	cggt	aa a	aagt	gtagg
ggtc	acgct	g g	gcgta	aacca	cc.	acac	ccgc	cgc	gctt	aat	gggg	cgct	ac a	gggc	gcgtg
ggga	tgato	cc a	ctag	t	-										
<210 <211 <212 <213	> 29 > P	95 RT	hync	hus :	nyki	ss									
<400															
Met 1	Glu '	Thr		Asn ' 5	Tyr	Lys	Leu	Asn	Met 10	Tyr	Ile	Asp	Ser	Trp 15	Met
Gly	Pro	Arg	Asp 20	Glu .	Arg	Val	Gln	Gly 25	Trp	Leu	Leu	Leu	Asp 30	Asn	Tyr
Pro	Pro	Thr 35	Phe	Ala	Leu	Thr	Val 40	Met	Tyr	Leu	Leu	Ile 45	Val	Trp	Met
Gly	Pro 50	Lys	Tyr	Met	Arg	His 55	Arg	Gln	Pro	Val	Ser 60	Суѕ	Arg	Gly	Leu
Leu 65	Leu	Val	Tyr	Asn	Leu 70	Gly	Leu	Thr	Ile	Leu 75	Ser	Phe	Tyr	Met	Phe 80
Tyr	Glu	Met	Val	Ser 85	Ala	Val	Trp	His	Gly 90	Asp	Tyr	Asn	Phe	Phe 95	Cys

Gln Asp Thr His Ser Ala Gly Glu Thr Asp Thr Lys Ile Ile Asn Val 100 105 110

Leu	Trp	Trp 115	Tyr	Tyr	Phe	Ser	Lys 120	Leu	Ile	Glu	Phe	Met 125	qaA	Thr	Phe		
Phe	Phe 130	Ile	Leu	Arg	Lys	Asn 135	Asn	His	Gln	Ile	Thr 140	Phe	Leu	His	Ile		
Tyr 145	His	His	Ala	Ser	Met 150	Leu	Asn	Ile	Trp	Trp 155	Phe	Val	Met	Asn	Trp 160		
Val	Pro	Cys	Gly	His 165	Ser	Tyr	Phe	Gly	Ala 170	Ser	Leu	Asn	Ser	Phe 175	Ile		
His	Val	Leu	Met 180	Tyr	Ser	Tyr	Tyr	Gly 185	Leu	Ser	Ala	Val	Pro 190	Ala	Leu		
Arg	Pro	Tyr 195	Leu	Trp	Trp	Lys	Lys 20 0	Tyr	Ile	Thr	Gln	Val 205	Gln	Leu	Ile		
Gln	Phe 210	Phe	Leu	Thr	Met	Ser 215	Gln	Thr	Ile	Cys	Ala 220	Val	Ile	Trp	Pro		
Cys 225	Asp	Phe	Pro	Arg	Gly 230	Trp	Leu	Tyr	Phe	Gln 235	Ile	Phe	Tyr	Val	I1e 240		
Thr	Leu	Ile	Ala	Leu 245	Phe	Ser	Asn	Phe	Tyr 250		Gln	Thr	Tyr	Lys 255	Lys		
His	Leu	Val	Ser 260		Lys	Lys	Glu	Tyr 265		Gln	. Asn	Gly	Ser 270	Val	Ala		
Ser	Leu	Asn 275		His	Val	Asn	. Gly 280		Thr	Pro	Thr	Glu 285	Thr	Ile	Thr		
His	Arg 290	_	Val	. Arg	Gly	Asp 295										.•	
<21 <21 <21 <21	.1> .2>	57 6645 DNA Onco		chus	s myk	iss											
<22	1> 12>	(513	-	(1304 -Elor	l) ngase	ì.											
<40)0> rgatt	57 :aga	age	egece	gag c	gggt	gaca	ag co	ctc	cgaa	g ga	agaci	tctc	ctc	gtgcgt		60
															geteega	:	120
						•									cagtaac	:	180
ctç	ggcc	ccac	aaa	cctt	caa a	atgaa	acga	at ca	aaat	taac	a ac	cata	ggat	gata	aatgcga	;	240

ttagt	tttt	t ag	jectt	atti	t ct	ggggt	caat	taa	tcag	cga a	agcg	atga	tt ti	ttga	tctat	300
taaca	agata	at at	aaat	cgcaa	a aa	actgo	att	aac	cact	tta :	acta	atac	tt to	caac	atttt	360
cggt	ttgta	at ta	actto	etta	t tc	aaat	gtaa	taa	aagt	atc	aaca	aaaa	at t	gtta	atata	420
cctc	tatad	et ti	caac	gtca	a gg	agaaa	aaaa	ccc	cgga	tcg	gact	acta	gc a	gctg	taata	480
cgac	tcaci	ta ta	aggg	aata	t ta	agct	taca		atg Met 1	gct Ala	tca Ser	Thr	tgg Trp 5	caa Gln	agc Ser	533
gtt Val	Gln	tcc o Ser 1	atg (Met .	cgc Arg	cag Gln	Trp	att Ile 15	tta Leu	gag Glu	aat Asn	Gly	gat Asp 20	aaa Lys	agg Argʻ	aca Thr	581
gac Asp	cca Pro 25	tgg Trp	cta Leu	ctg Leu	Val	tac Tyr 30	tcc Ser	cct Pro	atg Met	Pro	gtg Val 35	gcc Ala	att Ile	ata Ile	ttc ` Phe	629
ctc Leu 40	ctc Leu	tat Tyr	ctt Leu	ggt Gly	gtg Val 45	gtc Val	tgg Trp	gct Ala	GJĀ āāā	ccc Pro 50	aag Lys	ctg Leu	atg Met	aaa Lys	cgc Arg 55	677
agg Arg	gaa Glu	cca Pro	gtt Val	gat Asp 60	ctc Leu	aag Lys	gct Ala	gta Val	ctc Leu 65	att Ile	gtc Val	tac Tyr	aac Asn	ttc Phe 70	gcc Ala	725
atg Met	gtc Val	tgc Cys	ctg Leu 75	tct Ser	gtc Val	tac Tyr	atg Met	ttc Phe 80	cat His	gag Glu	ttc Phe	ttg Leu	gtc Val 85	acg Thr	tcc Ser	773
ttg Leu	ctg Leu	tct Ser 90	aac Asn	tac Tyr	agt Ser	tac Tyr	ctg Leu 95	tgt Cys	caa Gln	cct Pro	gtg Val	gat Asp 100	tac Tyr	agc Ser	act Thr	821
agt Ser	cca Pro 105	ctg Leu	gcg Ala	atg Met	agg Arg	atg Met 110	gcc Ala	aaa Lys	gta Val	tgc Cys	tgg Trp 115	tgg Trp	ttt Phe	ttc Phe	ttc Phe	869
tcc Ser 120	aag Lys	gtc Val	ata Ile	gaa Glu	ttg Leu 125	gct Ala	gac Asp	acg Thr	gtg Val	ttc Phe 130	ttc Phe	atc Ile	ctg Leu	agg Arg	aag Lys 135	.917
aag Lys	aac Asn	agt Ser	cag Gln	ctg Leu 140	act Thr	ttc Phe	ctg Leu	cat His	gtc Val 145	tat Tyr	cac His	cat His	ggc Gly	acc Thr 150	atg Met	965
atc Ile	ttc Phe	aac Asn	tgg Trp 155	tgg Trp	gca Ala	ejä aaa	gtc Val	aag Lys 160	Tyr	ctg Leu	gct Ala	gga Gly	ggc Gly 165	caa Gln	tcg Ser	1013
ttc Phe	ttc Phe	atc Ile 170	ggc Gly	ctg Leu	ctc Leu	aat Asn	acc Thr 175	Phe	gtg Val	cac His	atc Ile	gtg Val 180	Met	tac Tyr	tct Ser	1061
tac Tyr	tac Tyr 185	Gly	ctg Leu	gct Ala	gcc Ala	ctg Leu 190	Gly	cct Pro	cac His	acg Thr	cag Gln 195	. Lys	tac Tyr	tta Leu	tgg Trp	1109
tgg Trp 200	Lys	cgc	tat Tyr	ctg Leu	acc Thr 205	Ser	ctg Leu	r caç ı Glr	g cto Leu	r cto Leu 210	ı Glr	ttt Phe	gtc Val	ctg Leu	ttg Leu 215	1157
acc Thr	act Thr	cac His	act Thr	ggc Gly 220	туг	aac Asn	cto Lev	tto Phe	act Thi	Gl:	g tgt ı Cys	gac Asp	tto Phe	ccg Pro 230	gac Asp	1205

tcc atg aac gct gtg gtg ttt gcc tac t Ser Met Asn Ala Val Val Phe Ala Tyr (235 240	gt gtc agt ctc att gct ctc 1253 Cys Val Ser Leu Ile Ala Leu 245	3
ttc agc aac ttc tac tat cag agc tac of the Ser Asn Phe Tyr Tyr Gln Ser Tyr 1 250 255	etc aac agg aag agc aag aag 1301 Leu Asn Arg Lys Ser Lys Lys 260	L
aca taaggatcca ctagtaacgg ccgccagtgt Thr	gctggaattc tgcagatatc 1354	1
catcacactg geggeegete gageatgeat eta	gagggee gcateatgta attagttatg 1414	4
tcacgcttac attcacgccc tcccccaca tcc	gctctaa ccgaaaagga aggagttaga 1474	4
caacctgaag tctaggtccc tatttatttt ttt	atagtta tgttagtatt aagaacgtta 1534	4
tttatatttc aaatttttct ttttttctg tac	agacgcg tgtacgcatg taacattata 1594	4
ctgaaaacct tgcttgagaa ggttttggga cgc	tcgaagg ctttaatttg cggccctgca 1654	4
ttaatgaatc ggccaacgcg cggggagagg cgg	tttgcgt attgggcgct cttccgcttc 1714	4
ctcgctcact gactcgctgc gctcggtcgt tcg	gctgcgg cgagcggtat cagctcactc 177	4
aaaggcggta atacggttat ccacagaatc agg	ggataac gcaggaaaga acatgtgagc 183	4
aaaaggccag caaaagccca ggaaccgtaa aaa	ggccgcg ttgctggcgt ttttccatag 189	4
geteegeece eetgaegage atcacaaaaa teg	acgctca agtcagaggt ggcgaaaccc 195	4
gacaggacta taaagatacc aggegtttee cee	tggaagc tecetegtge geteteetgt 201	4
tocgaccotg cogottaccg gatacctgtc cgo	etttete eettegggaa gegtggeget 207	4
ttctcatage teacgetgta ggtateteag tto	ggtgtag gtcgttcgct ccaagctggg 213	4
ctgtgtgcac gaaccccccg ttcagcccga ccg	ctgegee ttateeggta actategtet 219	4
tgagtccaac ccggtaagac acgacttatc gcc	actggca gcagccactg gtaacaggat 225	4
tagcagagcg aggtatgtag gcggtgctac aga	gttettg aagtggtgge ctaactacgg 231	. 4
ctacactaga aggacagtat ttggtatctg cg	tctgctg aagccagtta ccttcggaaa 237	4
aagagttggt agctcttgat ccggcaaaca aac	caccgct ggtagcggtg gtttttttgt 243	4
ttgcaagcag cagattacgc gcagaaaaaa agg	gatotoaa gaagatoott tgatotttto 249)4
tacggggtct gacgctcagt ggaacgaaaa cto	cacgttaa gggattttgg tcatgagatt 255	54
atcaaaaagg atcttcacct agatcctttt aa	attaaaaa tgaagtttta aatcaatcta 261	L4
aagtatatat gagtaaactt ggtctgacag tt	accaatgc ttaatcagtg aggcacctat 267	74
ctcagcgatc tgtctatttc gttcatccat ag	ttgcctga ctccccgtcg tgtagataac 273	34
tacgatacgg gagegettae catetggeee ca	gtgctgca atgataccgc gagacccacg 279	94
ctcaccggct ccagatttat cagcaataaa cc	agccagcc ggaagggccg agcgcagaag 285	54
tggtcctgca actttatccg cctccattca gt	ctattaat tgttgccggg aagctagagt 291	14
aagtagttcg ccagttaata gtttgcgcaa cg	ttgttggc attgctacag gcatcgtggt 29	74
gtcactctcg tegtttggta tggettcatt ca	gctccggt tcccaacgat caaggcgagt 303	34

tacatgatcc	cccatgttgt	gcaaaaaagc	ggttagctcc	ttcggtcctc	cgatcgttgt	3094
	ttggccgcag					3154
	ccatccgtaa					3214
	tgtatgcggc					3274
	agcagaactt					3334
	atcttaccgc					3394
	gcatctttta					3454
	aaaaagggaa					3514
	gtaataactg					3574
catgcattta	cttataatac	agttttttag	ttttgctggc	cgcatcttct	caaatatgct	3634
teccageetg	cttttctgta	acgttcaccc	tctaccttag	catcccttcc	ctttgcaaat	3694
agtectette	caacaataat	aatgtcagat	cctgtagaga	ccacatcatc	cacggttcta	3754
tactgttgac	ccaatgcgtc	tcccttgtca	tctaaaccca	caccgggtgt	cataatcaac	3814
caatcgtaac	cttcatctct	tccacccatg	tctctttgag	caataaagcc	gataacaaaa	3874
tctttgtcgc	tcttcgcaat	gtcaacagta	cccttagtat	attctccagt	agatagggag	3934
cccttgcatg	acaattctgc	taacatcaaa	aggcctctag	gttcctttgt	tacttcttct	3994
gccgcctgct	tcaaaccgct	aacaatacct	gggcccacca	. caccgtgtgc	attcgtaatg	4054
tetgeceatt	: ctgctattct	gtatacacco	gcagagtact	gcaatttgac	tgtattacca	4114
atgtcagcaa	attttctgtc	ttcgaagagt	: aaaaaattgt	: acttggcgga	taatgccttt	4174
agcggcttaa	ctgtgccctc	: catggaaaaa	tcagtcaaga	tatccacatg	tgtttttagt	4234
aaacaaattt	tgggacctaa	tgcttcaact	: aactccagta	attccttggt	ggtacgaaca	4294
tccaatgaag	g cacacaagtt	: tgtttgcttt	tegtgcatga	a tattaaatag	r cttggcagca	4354
acaggactag	g gatgagtago	agcacgttco	ttatatgtag	g ctttcgacat	gatttatctt	4414
cgtttcctg	aggtttttgt	totgtgcagt	tgggttaaga	a atactgggca	a atttcatgtt	4474
tcttcaaca	c tacatatgcg	g tatatataco	c aatctaagto	tgtgctcctt	cettegttet	4534
tecttetgt	t cggagattad	cgaatcaaa	a aaatttcaaa	a gaaaccgaaa	a tcaaaaaaaa	4594
gaataaaaa	a aaaatgatga	a attgaattg	a aaagctagc	t tatcgatgat	aagctgtcaa	4654
agatgagaa	t taattccac	g gactataga	c tatactaga	t actccgtcta	a ctgtacgata	4714
cactteege	t caggtcctt	g tcctttaac	g aggccttac	c actettttg	t tactctattg	4774
atccagete	a gcaaaggca	g tgtgatcta	a gattctatc	t tegegatgt	a gtaaaactag	4834
ctagaccga	g aaagagact	a gaaatgcaa	a aggcacttc	t acaatggct	g ccatcattat	4894
tatccgatg	t gacgctgca	g cttctcaat	g atattcgaa	t acgctttga	g gagatacagc	4954
ctaatatcc	g acaaactgt	t ttacagatt	t acgatcgta	c ttgttaccc	a tcattgaatt	5014
ttgaacatc	c gaacctggg	a gttttccct	g aaacagata	g tatatttga	a cctgtataat	5074

```
aatatatagt ctagcgcttt acggaagaca atgtatgtat ttcggttcct ggagaaacta
                                                                     5134
ttgcatctat tgcataggta atcttgcacg tcgcatcccc ggttcatttt ctgcgtttcc
                                                                     5194
atcttgcact tcaatagcat atctttgtta acgaagcatc tgtgcttcat tttgtagaac
                                                                     5254
aaaaatgcaa cgcgagagcg ctaatttttc aaacaaagaa tctgagctgc atttttacag
                                                                     5314
aacagaaatg caacgcgaaa gcgctatttt accaacgaag aatctgtgct tcatttttgt
                                                                     5374
aaaacaaaaa tgcaacgcga cgagagcgct aatttttcaa acaaagaatc tgagctgcat
                                                                     5434
                                                                     5494
ttttacagaa cagaaatgca acgcgagagc gctattttac caacaaagaa tctatacttc
ttttttgttc tacaaaaatg catcccgaga gcgctatttt tctaacaaag catcttagat
                                                                     5554
tacttttttt ctcctttgtg cgctctataa tgcagtctct tgataacttt ttgcactgta
                                                                     5614
ggtccgttaa ggttagaaga aggctacttt ggtgtctatt ttctcttcca taaaaaaagc
                                                                     5674
ctgactccac ttcccgcgtt tactgattac tagcgaagct gcgggtgcat tttttcaaga
                                                                     5734
taaaggcatc cccgattata ttctataccg atgtggattg cgcatacttt gtgaacagaa
                                                                     5794
                                                                     5854
agtgatageg ttgatgatte tteattggte agaaaattat gaaeggttte ttetattttg
tototatata ctacgtatag gaaatgttta cattttcgta ttgttttcga ttcactctat
                                                                     5914
gaatagttot tactacaatt tttttgtota aagagtaata ctagagataa acataaaaaa
                                                                     5974
tgtagaggtc gagtttagat gcaagttcaa ggagcgaaag gtggatgggt aggttatata
                                                                     6034
gggatatagc acagagatat atagcaaaga gatacttttg agcaatgttt gtggaagcgg
                                                                     6094
                                                                     6154
tattogcaat gggaagetee accccggttg ataatcagaa aagccccaaa aacaggaaga
ttgtataagc aaatatttaa attgtaaacg ttaatatttt gttaaaattc gcgttaaatt
                                                                     6214
                                                                     6274
tttgttaaat cagctcattt tttaacgaat agcccgaaat cggcaaaatc ccttataaat
                                                                     6334
caaaagaata gaccgagata gggttgagtg ttgttccagt ttccaacaag agtccactat
                                                                     6394
 taaagaacgt ggactccaac gtcaaagggc gaaaaagggt ctatcagggc gatggcccac
 tacgtgaacc atcaccctaa tcaagttttt tggggtcgag gtgccgtaaa gcagtaaatc
                                                                     6454
 ggaagggtaa acggatgccc ccatttagag cttgacgggg aaagccggcg aacgtggcga
                                                                     6514
 gaaaggaagg gaagaaagcg aaaggagcgg gggctagggc ggtgggaagt gtaggggtca
                                                                     6574
 cgctgggcgt aaccaccaca cccgccgcgc ttaatggggc gctacagggc gcgtggggat
                                                                     6634
                                                                      6645
 gatccactag t
```

Met Ala Ser Thr Trp Gln Ser Val Gln Ser Met Arg Gln Trp Ile Leu 1 5 10 15

Glu Asn Gly Asp Lys Arg Thr Asp Pro Trp Leu Leu Val Tyr Ser Pro 20 25 30

<210> 58

<211> 264

<212> PRT

<213> Oncorhynchus mykiss

<400> 58

- Met Pro Val Ala Ile Ile Phe Leu Leu Tyr Leu Gly Val Val Trp Ala 4.0
- Gly Pro Lys Leu Met Lys Arg Arg Glu Pro Val Asp Leu Lys Ala Val
- Leu Ile Val Tyr Asn Phe Ala Met Val Cys Leu Ser Val Tyr Met Phe
- His Glu Phe Leu Val Thr Ser Leu Leu Ser Asn Tyr Ser Tyr Leu Cys
- Gln Pro Val Asp Tyr Ser Thr Ser Pro Leu Ala Met Arg Met Ala Lys 100
- Val Cys Trp Trp Phe Phe Phe Ser Lys Val Ile Glu Leu Ala Asp Thr 120 115 .
- Val Phe Phe Ile Leu Arg Lys Lys Asn Ser Gln Leu Thr Phe Leu His 135
- Val Tyr His His Gly Thr Met Ile Phe Asn Trp Trp Ala Gly Val Lys 155
- Tyr Leu Ala Gly Gly Gln Ser Phe Phe Ile Gly Leu Leu Asn Thr Phe 170
- Val His Ile Val Met Tyr Ser Tyr Tyr Gly Leu Ala Ala Leu Gly Pro 180
- His Thr Gln Lys Tyr Leu Trp Trp Lys Arg Tyr Leu Thr Ser Leu Gln 200
- Leu Leu Gln Phe Val Leu Leu Thr Thr His Thr Gly Tyr Asn Leu Phe
- Thr Glu Cys Asp Phe Pro Asp Ser Met Asn Ala Val Val Phe Ala Tyr 230
- Cys Val Ser Leu Ile Ala Leu Phe Ser Asn Phe Tyr Tyr Gln Ser Tyr 250 · 245
- Leu Asn Arg Lys Ser Lys Lys Thr 260
- <210> 59

- <211> 1077 <212> DNA <213> Thalassiosira pseudonana

<220>

<221> CDS <222> (1)..(1077) <223> Delta-5-Elongase

		_														
<400)> 5	9								202	aca	tee	ctc	cta	aca	48
Met 1	Cys	Ser	Ser	Pro 5	Pro	Ser	Gln	Ser	Lys 10	Thr	Thr	Ser	Leu	cta Leu 15	Ala	20
cgg Arg	tac Tyr	acc Thr	acc Thr 20	gcc Ala	gcc Ala	ctc Leu	ctc Leu	ctc Leu 25	ctc Leu	acc Thr	ctc Leu	aca Thr	aca Thr 30	tgg Trp	tgc Cys	96
cac His	ttc Phe	gcc Ala 35	ttc Phe	cca Pro	gcc Ala	gcc Ala	acc Thr 40	gcc Ala	aca Thr	ccc Pro	Gly	ctc Leu 45	acc Thr	gcc Ala	gaa Glu	144
atg Met	cac His 50	tcc Ser	tac Tyr	aaa Lys	gtc Val	cca Pro 55	ctc Leu	ggt Gly	ctc Leu	acc Thr	gta Val 60	ttc Phe	tac Tyr	ctg Leu	ctg Leu	192
agt Ser 65	cta Leu	ccg Pro	tca Ser	cta Leu	aag Lys 70	tac Tyr	gtt Val	acg Thr	gac Asp	aac Asn 75	tac Tyr	ctt Leu	gcc Ala	aaa Lys	aag Lys 80	240
tat Tyr	gat Asp	atg Met	aag Lys	tca Ser 85	ctc Leu	cta Leu	acg Thr	gaa Glu	tca Ser 90	atg Met	gtg Val	ttg Leu	tac Tyr	aat Asn 95	gtg Val	288
gcg Ala	caa Gln	gtg Val	ctg Leu 100	ctc Leu	aat Asn	Gly ggg	tgg Trp	acg Thr 105	gtg Val	tat Tyr	gcg Ala	att Ile	gtg Val 110	gat Asp	gcg Ala	336
gtg Val	atg Met	aat Asn 115	aga Arg	gac Asp	cat His	ccg Pro	ttt Phe 120	att Ile	gga Gly	agt Ser	aga Arg	agt Ser 125	ttg Leu	gtt Val	Gl ^A aaa	384
gcg Ala	gcg Ala 130	ttg Leu	cat His	agt Ser	GJA aaa	agc Ser 135	tcg Ser	tat Tyr	gcg Ala	gtg Val	tgg Trp 140	Val	cat His	tat Tyr	tgt Cys	432
gat Asp 145	Lys	tat Tyr	ttg Leu	gag Glu	ttc Phe 150	ttt Phe	gat Asp	acg Thr	tat Tyr	ttt Phe 155	Met	gtg Val	ttg Leu	agg Arg	ggg Gly 160	480
aaa Lys	atg Met	gac Asp	cag Gln	gtc Val 165	Ser	ttc Phe	ctc Leu	cac His	atc Ile 170	Tyr	cac His	Cac	acg Thr	acc Thr 175	Ile	528
gcg Ala	tgg Trp	gca Ala	tgg Trp 180	Trp	atc Ile	gcc Ala	ctc Leu	cgc Arg 185	Phe	tcc Ser	ccc Pro	ggt	gga Gly 190	gac Asp	att Ile	576
tac Tyr	ttc Phe	ggg 195	Ala	. ctc . Leu	ctc Leu	aac Asn	Ser 200	Ile	ato Ile	cac His	gtc Val	cto Lev 205	Met	tat Tyr	tcc Ser	624
tac Tyr	tac Tyr 210	Ala	ctt Leu	gcc Ala	cta Leu	cto Lev 215	Lys	gto Val	agt Ser	tgt Cys	cca Pro 220	Tr	aaa Lys	a cga s Arg	tac Tyr	672
cto Lev 225	Thr	caa Glr	gct Ala	caa Glr	tta Leu 230	Leu	caa Glr	tto Phe	aca Thr	agt Ser 235	: Val	g gtg L Val	gtt Val	tat Tyr	acg Thr 240	720
GJ7 āāç	tgt Cys	ace Thi	. GJ? a aar	tat Tyl	act Thr	cat His	tac Tyr	tat Tyr	cat His	ace Thi	g aaq r Lys	g cat s His	gga Gly	a gcg / Ala	gat Asp	768

250 255 245 gag aca cag cct agt tta gga acg tat tat ttc tgt tgt gga gtg cag 816 Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 265 260 gtg ttt gag atg gtt agt ttg ttt gta ctc ttt tcc atc ttt tat aaa 864 Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 280 cga tcc tat tcg aag aag aac aag tca gga gga aag gat agc aag aag 912 Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 290 295 960 aat gat gat ggg aat aat gag gat caa tgt cac aag gct atg aag gat Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 305 310 315 1008 ata tog gag ggt gog aag gag gtt gtg ggg cat gca gcg aag gat gct Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala 330 325 1056 gga aag ttg gtg gct acg gcg agt aag gct gta aag agg aag gga act Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 345 340 1077 cgt gtt act ggt gcc atg tag Arg Val Thr Gly Ala Met 355 <210> 60 <211> 358 <212> PRT <213> Thalassiosira pseudonana Met Cys Ser Ser Pro Pro Ser Gln Ser Lys Thr Thr Ser Leu Leu Ala Arg Tyr Thr Thr Ala Ala Leu Leu Leu Thr Leu Thr Thr Trp Cys His Phe Ala Phe Pro Ala Ala Thr Ala Thr Pro Gly Leu Thr Ala Glu 40 Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 55 Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 85 Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 1.05 Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly 120

- Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys 130 135 140
- Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 145 150 155
- Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 165 170 175
- Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 180 185 190
- Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 195 200 205
- Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 210 215 220
 - Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr 225 230 235 240
 - Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 245 250 255
 - Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 260 265 270
 - Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 275 280 285
 - Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 290 295 300
 - Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 305 310 315 320
 - Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala 325 330 335
 - Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350$
 - Arg Val Thr Gly Ala Met 355
 - <210> 61
 - <211> 933
 - <212> DNA
 - <213> Thalassiosira pseudonana
 - <220>

<221> CDS <222> (1)..(933) <223> Delta-5-Elongase <400> 61 48 atg cac tee tac aaa gte eea ete ggt ete ace gta tte tac etg etg Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 10 96 agt cta ccg tca cta aag tac gtt acg gac aac tac ctt gcc aaa aag Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 25 tat gat atg aag toa ctc cta acg gaa toa atg gtg ttg tac aat gtg 144 Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 40 gcg caa gtg ctg ctc aat ggg tgg acg gtg tat gcg att gtg gat gcg Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 192 50 240 gtg atg aat aga gac cat ccg ttt att gga agt aga agt ttg gtt ggg Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly geg geg tig cat agt ggg age teg tat geg gig igg git cat tat igt 288 Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys 85 gat aag tat ttg gag ttc ttt gat acg tat ttt atg gtg ttg agg ggg 336 Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 105 1.00 aaa atg gac cag gtc tcc ttc ctc cac atc tac cac cac acg acc ata 384 Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 120 432 geg tgg gea tgg tgg ate gee ete ege tte tee eee ggt gga gae att Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 135 tac ttc ggg gca ctc ctc aac tcc atc atc cac gtc ctc atg tat tcc 480 Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 145 150 528 tac tac gcc ctt gcc cta ctc aag gtc agt tgt cca tgg aaa cga tac Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 576 ctg act caa gct caa tta ttg caa ttc aca agt gtg gtg gtt tat acg Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Tyr Thr 185 ggg tgt acg ggt tat act cat tac tat cat acg aag cat gga gcg gat 624 Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 672 gag aca cag cct agt tta gga acg tat tat ttc tgt tgt gga gtg cag Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 210 720 gtg ttt gag atg gtt agt ttg ttt gta ctc ttt tcc atc ttt tat aaa Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 230 235 768 cga tcc tat tcg aag aag aac aag tca gga gga aag gat agc aag aag Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys

255 250 245 aat gat gat ggg aat aat gag gat caa tgt cac aag gct atg aag gat 816 Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 260 265 ata tog gag ggt gcg aag gag gtt gtg ggg cat gca gcg aag gat gct 864 Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala 280 gga aag ttg gtg gct acg gcg agt aag gct gta aag agg aag gga act 912 Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 290 295 933 cgt gtt act ggt gcc atg tag Arg Val Thr Gly Ala Met 305 <210> 62 <211> 310 <212> PRT <213> Thalassiosira pseudonana <400> 62 . Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 100 Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 135 Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 155 150 Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 170 165

Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr 180 185 190	
Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 195 200 205	
Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 210 215 220	
Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 225 230 235 240	
Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 245 250 255	
Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 260 265 270	
Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala 275 280 285	
Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 290 295 300	
Arg Val Thr Gly Ala Met 305 310	
<210> 63 <211> 933 <212> DNA <213> Thalassiosira pseudonana	
<220> <221> CDS <222> (1)(933) <223> Delta-5-Elongase	
<pre><400> 63 atg cac tcc tac aaa gtc cca ctc ggt ctc acc gta ttc tac ctg ctg Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 1 5 10 15</pre>	48
agt cta ccg tca cta aag tac gtt acg gac aac tac ctt gcc aaa aag Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 20 25 30	96
tat gat atg aag toa oto ota acg gaa toa atg gtg ttg tao aat gtg Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 35 40 45	144
gcg caa gtg ctg ctc aat ggg tgg acg gtg tat gcg att gtg gat gcg Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 50 55 60	192
gtg atg aat aga gac cat ccg ttt att gga agt aga agt ttg gtt ggg Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly	240

			104		
65	70		75	80	
gcg gcg ttg Ala Ala Leu	cat agt ggg His Ser Gly 85	agc tcg tat Ser Ser Tyr	gcg gtg tgg gtt Ala Val Trp Val 90	cat tat tgt 288 His Tyr Cys 95	8
gat aag tat Asp Lys Tyr	ttg gag ttc Leu Glu Phe 100	ttt gat acg Phe Asp Thr 105	tat ttt atg gtg Tyr Phe Met Val	ttg agg ggg 338 Leu Arg Gly 110	6
aaa atg gac Lys Met Asp 115	cag gtc tcc Gln Val Ser	ttc ctc cac Phe Leu His 120	atc tac cac cac Ile Tyr His His 125	acg acc ata 38- Thr Thr Ile	4
gcg tgg gca Ala Trp Ala 130	tgg tgg atc Trp Trp Ile	gcc ctc cgc Ala Leu Arg 135	ttc tcc ccc ggt Phe Ser Pro Gly 140	gga gac att 433 Gly Asp Ile	2
tac ttc ggg Tyr Phe Gly 145	gca ctc ctc Ala Leu Leu 150	aac tcc atc Asn Ser Ile	atc cac gtc ctc Ile His Val Leu 155	atg tat tcc 48 Met Tyr Ser 160	0
tac tac gcc Tyr Tyr Ala	ctt gcc cta Leu Ala Leu 165	ctc aag gtc Leu Lys Val	agt tgt cca tgg Ser Cys Pro Trp 170	aaa cga tac 52 Lys Arg Tyr 175	8:
ctg act caa Leu Thr Gln	gct caa tta Ala Gln Leu 180	ttg caa ttc Leu Gln Phe 185	aca agt gtg gtg Thr Ser Val Val	gtt tat acg 57 Val Tyr Thr 190	16
ggg tgt acg Gly Cys Thr 195	ggt tat act Gly Tyr Thr	cat tac tat His Tyr Tyr 200	cat acg aag cat His Thr Lys His 205	Gly Ala Asp	14
gag aca cag Glu Thr Gln 210	cct agt tta Pro Ser Leu	gga acg tat Gly Thr Tyr 215	tat ttc tgt tgt Tyr Phe Cys Cys 220	gga gtg cag 67 Gly Val Gln	72
gtg ttt gag Val Phe Glu 225	atg gtt agt Met Val Ser 230	Leu Phe Val	ctc ttt tcc atc Leu Phe Ser Ile 235	ttt tat aaa 72 Phe Tyr Lys 240	30
cga tcc tat Arg Ser Tyr	tcg aag aag Ser Lys Lys 245	aac aag tca Asn Lys Ser	gga gga aag gat Gly Gly Lys Asp 250	agc aag aag 76 Ser Lys Lys 255	68
aat gat gat Asn Asp Asp	ggg aat aat Gly Asn Asn 260	gag gat cas Glu Asp Glr 265	tgt cac aag gct Cys His Lys Ala G	atg aag gat 81 Met Lys Asp 270	16
ata tcg gag Ile Ser Glu 275	Gly Ala Lys	g gag gtt gtg s Glu Val Val 280	g ggg cat gca gcg L Gly His Ala Ala 285	Lys Asp Ala	64
gga aag ttg Gly Lys Leu 290	gtg gct acg Val Ala Thr	g gcg agt aag Ala Ser Lys 295	g gct gta aag agg s Ala Val Lys Arg 300	g aag gga act 91 g Lys Gly Thr	12
	ggt gcc atg Gly Ala Met 310	=		93	33
<210> 64 <211> 310 <212> PRT <213> Thal	Lassiosira ps	seudonana			

<400> 64

Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 1 5 . 10 . 15

Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 20 25 30

Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 35 40 45

Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 50 60

Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly 65 70 75 80

Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys 85 90 95

Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 100 105 110

Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 115 120 125

Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 130 135 140

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 145 150 155 160

Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 165 170 175

Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr 180 185 190

Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 195 200 205

Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 210 215 220

Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 225 230 235

Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 245 250 255

Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 260 265 270

Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala 275 280 285	
Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 290 295 300	
Arg Val Thr Gly Ala Met 305 310	
<210> 65 <211> 825 <212> DNA <213> Thraustochytrium aureum	
<220> <221> CDS <222> (1)(825) <223> Delta-5-Elongase	
<pre><400> 65 atg acg agc aac atg agc gcg tgg ggc gtc gcc gtc gac cag acg cag Met Thr Ser Asn Met Ser Ala Trp Gly Val Ala Val Asp Gln Thr Gln 1 5 10 15</pre>	48
cag gtc gtc gac cag atc atg ggc ggc gcc gag ccg tac aag ctg aca Gln Val Val Asp Gln Ile Met Gly Gly Ala Glu Pro Tyr Lys Leu Thr 20 25 30	96
gaa ggg cgc atg acg aac gtc gag acg atg ctg gcg atc gag tgc ggc Glu Gly Arg Met Thr Asn Val Glu Thr Met Leu Ala Ile Glu Cys Gly 35 40 45	144
tac gcc gcc atg ctg ctg ttc ctg acc ccg atc atg aag cag gcc gag Tyr Ala Ala Met Leu Leu Phe Leu Thr Pro Ile Met Lys Gln Ala Glu 50 55 60	192
aag ccc ttc gag ctc aag tcc ttc aag ctc gcc cac aac ctg ttc ctg Lys Pro Phe Glu Leu Lys Ser Phe Lys Leu Ala His Asn Leu Phe Leu 65 70 75 80	240
ttc gtc ctg tcc gcc tac atg tgc ctc gag acc gtc cgc cag gcc tac Phe Val Leu Ser Ala Tyr Met Cys Leu Glu Thr Val Arg Gln Ala Tyr 85 90 95	288
ctt gcg ggc tac tcg gtg ttc ggc aac gac atg gag aag ggc agc gag Leu Ala Gly Tyr Ser Val Phe Gly Asn Asp Met Glu Lys Gly Ser Glu 100 105 110	336
ccg cac gcg cac ggc atg gcc caa atc gtg tgg atc ttt tac gtg tcc Pro His Ala His Gly Met Ala Gln Ile Val Trp Ile Phe Tyr Val Ser 115 120	384
aag gcg tac gag ttc gtg gac acg ctg atc atg atc ctg tgc aaa aag Lys Ala Tyr Glu Phe Val Asp Thr Leu Ile Met Ile Leu Cys Lys Lys 130 135	432
ttc aac cag gtc tcc gtc ctg cac gtg tac cac cac gcc acc atc ttt Phe Asn Gln Val Ser Val'Leu His Val Tyr His His Ala Thr Ile Phe 145 150 155	480
gct atc tgg ttt atg atc gcc aag tac gcc ccg ggc ggc gac gca tac Ala Ile Trp Phe Met Ile Ala Lys Tyr Ala Pro Gly Gly Asp Ala Tyr	528

									. •	•						
				165					170					175		
ttt Phe	agc Ser	gtc Val	atc Ile 180	ctg Leu	aac Asn	tcg Ser	ttc Phe	gtg Val 185	cac His	acc Thr	gtc Val	atg Met	tac Tyr 190	gcg Ala	tac Tyr	576
tac Tyr	ttc Phe	ttc Phe 195	tcg Ser	tcg Ser	cag Gln	ggc Gly	ttc Phe 200	eja aaa	ttc Phe	gtc Val	aag Lys	ccg Pro 205	atc Ile	aag Lys	ccg Pro	624
tac Tyr	atc Ile 210	acc Thr	tcg Ser	ctg Leu	cag Gln	atg Met 215	acg Thr	cag Gln	ttc Phe	atg Met	gcg Ala 220	atg Met	ctc Leu	gtg Val	cag Gln	672
tcg Ser 225	ctg Leu	tac Tyr	gac Asp	tac Tyr	ctt Leu 230	tac Tyr	ccg Pro	tgc Cys	gac Asp	tac Tyr 235	ccg Pro	cag Gln	Gly	ctc Leu	gtc Val 240	720
aag Lys	ctc Leu	ctc Leu	ggc Gly	gtg Val 245	tac Tyr	atg Met	ctc Leu	acc Thr	ctg Leu 250	ctt Leu	gcg Ala	ctc Leu	ttc Phe	ggc Gly 255	aac Asn	768
ttt Phe	ttc Phe	gtg Val	cag Gln 260	agc Ser	tac Tyr	ctc Leu	aag Lys	aag Lys 265	tcg Ser	aac Asn	aag Lys	ccc Pro	aag Lys 270	gcc Ala	aag Lys	816
	gcc Ala	taa									•					825
<21 <21		66 274														
<21 <21	3>	PRT Thra	usto:	chyt:	rium	aur	eum									
<21 <21 <40	3> 0>	PRT Thra 66		_				Gly	Val	Δla	Va]	Asc	Gln	Thr	Gln	
<21 <21 <40	3> 0>	PRT Thra 66		_				Gly	Val 10	Ala	. Val	Asp	Gln	. Thr 15	Gln	
<21 <21 <40 Met 1	3> 0> Thr	PRT Thra 66 Ser	Asn	Met 5	Ser	Ala	Trp	Gly Gly 25	10					15		
<21 <21 <40 Met 1	3> 0> Thr	PRT Thra 66 Ser Val	Asn Asp 20	Met 5 Gln	Ser	Ala Met	Trp Gly	Gly 25	10 Ala	Glu	ı Pro	Тух	· Lys 30	15 Leu		
<21 <21 <40 Met 1 Gln	3> 0> Thr Val	PRT Thra 66 Ser Val Arg 35	Asn Asp 20	Met 5 Gln Thr	Ser Ile	Ala Met	Trp Gly Glu 40	Gly 25 Thr	10 Ala	Glu Leu	ı Pro	Tyr Ile 45	Lys 30	15 Leu Cys	Thr	
<21 <21 <40 Met 1 Gln Glu	3> 0> Thr Val	PRT Thra 66 Ser Val Arg 35	Asn Asp 20 Met	Met 5 Gln Thr	Ser Ile Asn	Ala Met Val	Gly Glu 40	Gly 25 Thr	Ala Met	Glu Leu	i Pro i Ala i Ala e Met	Tyr Ile 45	Lys 30 Glu	15 Leu Cys	Thr Gly	
<21 <21 <40 Met 1 Glm Glm Tyr Lys 65	3> 0> Thr Val Gly Ala 50	PRT Thra 66 Ser Val Arg 35 Ala	Asn Asp 20 Met	Met 5 Gln Thr	Ser Ile Asn Leu	Ala Met Val Phe 55	Gly Glu 40 Leu	Gly 25 Thr Thr	10 Ala Met	Glu Leu Ile Ala 75	Ala Met 60	Tyr 11e 45 Lys	Lys 30 Glu Glr Let	15 Leu Cys	Thr Gly	
<21 <21 <40 Met 1 Glm Glu Tyr Lys 65	3> 0> Thr Val Gly Ala 50 Pro	PRT Thra 66 Ser Val Arg 35 Ala Phe	Asn Asp 20 Met	Met 5 Gln Thr Leu Leu 85	Ser Ile Asn Leu Lys 70	Ala Met Val Phe 55 Ser	Gly Glu 40 Leu Phe	Gly 25 Thr Thr	10 Ala Met	Glu Leu Ile 75	Pro Ala Met 60 A His	Tyr 11e 45 : Lys : Asr	Lys 30 Glu Glr Leu	Leu Cys Ala Phe Ala 95	Thr Gly Glu E Leu 80	

Lys	Ala 130	Tyr	Glu	Phe	Val	Asp 135	Thr	Leu	Ile	Met	Ile 140	Leu	Cys	Lys	Lys	
Phe 145	Asn	Gln	Va1	Ser	Val 150	Leu	His	Val	Tyr	His 155	His	Ala	Thr	Ile	Phe 160	
Ala	Ile	Trp	Phe	Met 165	Ile	Ala	Lys	Tyr	Ala 170	Pro	Gly	Gly	Asp	Ala 175	Tyr	
Phe	Ser	Val	Ile 180	Leu	Asn	Ser	Phe	Val 185	His	Thr	Val	Met	Tyr 190	Ala	Tyr	
Tyr	Phe	Phe 195	Ser	Ser	Gln	G1y	Phe 200	Gly	Phe	Val	Lys	Pro 205	Ile	Lys	Pro	
Tyr	Ile 210		Ser	Leu	Gln	Met 215	Thr	Gln	Phe	Met	Ala 220	Met	Leu	Val	Gln	
Ser 225	Leu	Tyr	Asp	Tyr	Leu 230	Tyr	Pro	Cys	Asp	Tyr 235	Pro	Gln	Gly	Leu	Val 240	
Lys	Leu	Leu	Gly	Val 245		Met	Leu	Thr	Leu 250	Leu	Ala	Leu	Phe	Gly 255	Asn	
Phe	. Phe	Val	Gln 260	Ser	Tyr	Leu	Lys	Lys 265	Ser	Asn	Lys	Pro	Lys 270	Ala	Lys	
Ser	Ala	ı														•
<23	1> 2>	67 903 DNA Ostr	eoco:	ccus	: tau	ri.							•			
<22 <22	20> 21> 22> 23>		.(90 :a-5-		ıgase	ı										
ato	00> g ago t Sei	67 gcc Ala	tco Ser	ggt Gl ₃ 5	gcg Ala	r ctg Leu	g Cto Lev	g ccc	gcg Ala	rato Ile	gcg Ala	tto Phe	gcc Ala	gcg Ala	tac Tyr	48
gc; Ala	g tad a Ty:	c gcg	acq Thi	g tao Tyi	gco Ala	tac 1 Tyr	gco Ala	ttt a Phe 25	gag Glu	ı tgg ı Tr <u>ı</u>	y tcg Sei	g cad His	gcg Ala 30	g aat i Asr	ggc Gly	96
at Il	c gad e Asj	c aad p Asi 35	gto n Val	gao L Ası	e geg o Ala	g cgo	g gag g Glv 40	g tgg ı Trg	g ato o Ile	ggt Gl	Y Ala	cto Lev 45	tco Ser	g ttg Lei	g agg 1 Arg	144
ct Le	c cc	g gc	g ato	gc Ala	g acq a Thi	g aco	g ato	g tac	c cto	y tto ı Le	g tto 1 Phe	tgo Cys	c cts	g gto ı Val	gga LGly	192

109 60 50 ccg agg ttg atg gcg aag cgc gag gcg ttc gac ccg aag ggg ttc atg 240 Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met ctg gcg tac aat gcg tat cag acg gcg ttc aac gtc gtc gtg ctc ggg 288 Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Leu Gly atg ttc gcg cga gag atc tcg ggg ctg ggg cag ccc gtg tgg ggg tca Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 105 acc atg ccg tgg agc gat aga aaa tcg ttt aag atc ctc ctc ggg gtg 384 Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 120 tgg ttg cac tac aac aac caa tat ttg gag cta ttg gac act gtg ttc 432 Trp Leu His Tyr Asn Asn Gln Tyr Leu Glu Leu Leu Asp Thr Val Phe 135 480 atg gtt gcg cgc aag aag acg aag cag ttg agc ttc ttg cac gtt tat Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 150 155 · 528 cat cac gcc ctg ttg atc tgg gcg tgg tgg ttg gtg tgt cac ttg atg His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 576 gec acg aac gat tgt atc gat gec tac ttc ggc gcg gcg tgc aac tcg Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 185 ttc att cac atc gtg atg tac tcg tat tat ctc atg tcg gcg ctc ggc 624 Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly att cga tgc ccg tgg aag cga tac atc acc cag gct caa atg ctc caa 672 Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 720 tte gte att gte tte geg cae gee gtg tte gtg etg egt cag aag cae Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 225 230 tgc ccg gtc acc ctt cct tgg gcg caa atg ttc gtc atg acg aac atg 768 Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 250 ctc gtg ctc ttc ggg aac ttc tac ctc aag gcg tac tcg aac aag tcg 816 Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 265 864 cgc ggc gac ggc gcg agt tcc gtg aaa cca gcc gag acc acg cgc gcg Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 903 ccc agc gtg cga cgc acg cga tct cga aaa att gac taa Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp

<210> 68 <211> 300 <212> PRT

<213> Ostreococcus tauri

<400> 68

- Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr 1 5 10 15
- Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly
- Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 35
- Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 50 60
- Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met 65 70 75 80
- Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Val Leu Gly 85 90
- Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 105 110
- Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 115 120 125
- Trp Leu His Tyr Asn Asn Gln Tyr Leu Glu Leu Leu Asp Thr Val Phe 130 135 140
- Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 150 150
- His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 170 175
- Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 185 190
- Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly 195 200 205
- Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 210 220
- Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 225 230 235 240
- Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 245 250 255
- Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 260 265 270

Arg Gly Asp Gl 275	ly Ala Ser	Ser Val 280	Lys P	ro Ala	Glu T 2	hr Thr 2 85	Arg P	ala	
Pro Ser Val An 290	rg Arg Thr	Arg Ser 295	Arg L	ys Ile	Asp 300				
<210> 69 <211> 879 <212> DNA <213> Ostreo	coccus taur	si.							
<220> <221> CDS <222> (1)(<223> Delta-									
<400> 69 atg agt ggc t Met Ser Gly L 1	ta cgt gca eu Arg Ala 5	ccc aac Pro Asn	Phe I	ta cac Leu His 10	aga t Arg E	etc tgg Phe Trp	aca Thr 15	aag 48 Lys	
tgg gac tac g Trp Asp Tyr A 2	cg att tcc la Ile Ser	aaa gtc Lys Val	gtc t Val E 25	ttc acg Phe Thr	tgt g Cys 1	gcc gac Ala Asp 30	agt Ser	ttt 96 Phe	
cag tgg gac a Gln Trp Asp I 35	tc ggg cca lle Gly Pro	gtg agt Val Ser 40	tcg a	agt acg Ser Thr	Ala E	cat tta His Leu 45	ccc Pro	gcc 144 Ala	
att gaa too o Ile Glu Ser F 50	ect acc cca Pro Thr Pro	ctg gtg Leu Val 55	act a	agc ctc Ser Leu	ttg Leu 60	ttc tac Phe Tyr	tta Leu	gtc 192 Val	
aca gtt ttc t Thr Val Phe I 65	ttg tgg tat Leu Trp Tyr 70	ggt cgt Gly Arg	tta i	acc agg Thr Arg 75	agt Ser	tca gac Ser Asp	aag Lys	aaa 240 Lys 80	
att aga gag d Ile Arg Glu I	cct acg tgg Pro Thr Trp 85	tta aga Leu Arg	Arg	ttc ata Phe Ile 90	ata Ile	tgt cat Cys His	aat Asn 95	gcg 288 Ala	į
ttc ttg ata g	gtc ctc agt Val Leu Ser 100	ctt tac Leu Tyr	atg Met 105	tgc ctt Cys Leu	ggt	tgt gtg Cys Val 110	gcc Ala	caa 336 Gln	;
gcg tat cag Ala Tyr Gln 1	aat gga tat Asn Gly Tyr	act tta Thr Lev 120	ı Trp	ggt aat Gly Asr	gaa Glu	ttc aag Phe Lys 125	gcc Ala	acg 384 Thr	ı
gaa act cag Glu Thr Gln 130	ctt gct ctc Leu Ala Leu	tac att Tyr Ile 135	t tac e Tyr	att ttt	tac Tyr 140	gta agt Val Ser	aaa Lys	ata 432 Ile	2
tac gag ttt Tyr Glu Phe 145	gta gat act Val Asp Th: 15	r Tyr Il	t atg e Met	ctt ctc Leu Leu 155	ı Lys	aat aac Asn Asn	ttg Leu	cgg 480 Arg 160)
caa gta agt Gln Val Ser	ttc cta ca Phe Leu Hi 165	c att ta s Ile Ty	t cac r His	cac ago His Ser 170	e acg	att tco Ile Ser	ttt Phe 175	att 528 Ile	В
tgg tgg atc Trp Trp Ile	att gct cg Ile Ala Ar	g agg gc g Arg Al	t ccg a Pro	ggt gg	t gat Y Asp	gct tac Ala Tyr	ttc Phe	agc 57	6

									71	2						
			180					185					190			
gcg Ala	gcc Ala	ttg Leu 195	aac Asn	tca Ser	tgg Trp	gta Val	cac His 200	gtg Val	tgc Cys	atg Met	tac Tyr	acc Thr 205	tat Tyr	tat Tyr	cta Leu	624
tta Leu	tca Ser 210	acc Thr	ctt Leu	att Ile	gga Gly	aaa Lys 215	gaa Glu	gat Asp	cct Pro	aag Lys	cgt Arg 220	tcc Ser	aac Asn	tac Tyr	ctt Leu	672
tgg Trp 225	tgg Trp	ggt Gly	cgc Arg	cac His	cta Leu 230	acg Thr	caa Gln	atg Met	cag Gln	atg Met 235	ctt Leu	cag Gln	ttt Phe	ttc Phe	ttc Phe 240	720
aac Asn	gta Val	ctt Leu	caa Gln	gcg Ala 245	ttg Leu	tac Tyr	tgc Cys	gct Ala	tcg Ser 250	ttc Phe	tct Ser	acg Thr	tat Tyr	ccc Pro 255	aag Lys	768
ttt Phe	ttg Leu	tcc Ser	aaa Lys 260	att Ile	ctg Leu	ctc Leu	gtc Val	tat Tyr 265	atg Met	atg Met	agc Ser	ctt Leu	ctc Leu 270	Gly aac	ttg Leu	816
ttt Phe	GJĀ āāā	cat His 275	ttc Phe	tac Tyr	tat Tyr	tcc Ser	aag Lys 280	cac His	ata Ile	gca Ala	gca Ala	gct Ala 285	aag Lys	ctc Leu	cag Gln	864
	aaa Lys 290	Gln		tga												879
<21 <21 <21 <21	1> : 2> :	70 292 PRT Ostr	eoco	ccus	tau	ri										
<40	0>	70														
Met 1	Ser	Gly	Leu	Arg 5	Ala	Pro	Asn	Phe	Leu 10	His	Arg	Phe	Trp	Thr 15	Lys	
Trp	Asp	Tyr	Ala 20	Ile	Ser	Lys	Val	Val 25	Phe	Thr	Cys	Ala	Asp 30	Ser	Phe	
Gln	Trp	Asp 35	·Ile	Gly	Pro	Val	Ser 40	Ser	Ser	Thr	Ala	His 45	Leu	Pro	Ala	
Ile	Glu 50	Ser	Pro	Thr	Pro	Leu 55	Val	Thr	Ser	Leu	Leu 60	Phe	Tyr	Leu	Val	
Thr 65	. Val	Phe	Leu	Trp	Tyr 70	Gly	Arg	Leu	Thr	Arg 75	Ser	Ser	Asp	Lys	Lys 80	
					, 0											
Ile	e Arg	Glu	. Pro	Thr 85	Trp	,Leu	Arg	Arg	Phe 90	Ile	: Ile	Cys	His	Asn 95	Ala	
				85 Leu					90 : Cys					95 Ala		·

Glu	Thr 130	Gln	Leu	Ala	Leu	туr 135	Ile	Tyr	Ile	Phe	Tyr 140	Val	Ser	Lys	Ile	
Tyr 145	Glu	Phe	Val	Asp	Thr 150	Tyr	Ile	Met	Leu	Leu 155	Lys	Asn	Asn	Leu	Arg 160	
Gln	Va1	Ser	Phe	Leu 165	His	Ile	Tyr	His	His 170	Ser	Thr	Ile	Ser	Phe 175	Ile	
Trp	Trp	Ile.	Ile 180	Ala	Arg	Arg	Ala	Pro 185	Gly	Gly	Asp	Ala	Tyr 190	Phe	Ser	
Ala	Ala	Leu 195	Asn	Ser	Trp	Val	His 200	Val	Cys	Met	Tyr	Thr 205	Tyr	Tyr	Leu	
Leu	Ser 210	Thr	Leu	Ile	Gly	Lys 215	Glu	Asp	Pro	Lys	Arg 220	Ser	Asn	Tyr	Leu	
Trp 225	Trp	Gly	Arg	His	Leu 230	Thr	Gln	Met	Gln	Met 235	Leu	Gln	Phe	Phe	Phe 240	
Asn	Val	Leu	Gln	Ala 245	Leu	Tyr	Cys	Ala	Ser 250	Phe	Ser	Thr	Tyr	Pro .255	Lys	
Phe	Leu	Ser	Lys 260	Ile	Leu	Leu	Val	Tyr 265	Met	Met	Ser	Leu	Leu 270	Gly	Leu	
Phe	Gly	His 275	Phe	Туг	Tyr	Ser	Lys 280	His	Ile	Ala	Ala	Ala 285	Lys	Leu	Gln	
Lys	Lys 290	Gln	Gln													
<21 <21 <21 <21	1> : 2> :	71 1362 DNA Prim	ıla :	fari	nosa											
<22: <22: <22: <22:	1> 0 2>	CDS (1). Delta			tura:	se	,									
	gct	71 aac Asn														48
		ctg Leu					Lys									96
		caa Gln														144

114 35 40 ggc act gcc cct ctc atg gcc ctt gca gga cac gac gtg acc gat gct 192 Gly Thr Ala Pro Leu Met Ala Leu Ala Gly His Asp Val Thr Asp Ala ttc ctc gcg tac cat ccc cct tcc act gcc cgt ctc ctc cct cct ctc 240 Phe Leu Ala Tyr His Pro Pro Ser Thr Ala Arg Leu Leu Pro Pro Leu 288 tot acc aac etc ett ett caa aac eac tee gte tee eec acc tee tea Ser Thr Asn Leu Leu Gln Asn His Ser Val Ser Pro Thr Ser Ser 90 336 gac tac egc aaa etc etc gac aac tte cat aaa cat gge ett tte egc Asp Tyr Arg Lys Leu Leu Asp Asn Phe His Lys His Gly Leu Phe Arg 105 384 gcc agg ggc cac act gct tac gcc acc ttc gtc ttc atg ata gcg atg Ala Arg Gly His Thr Ala Tyr Ala Thr Phe Val Phe Met Ile Ala Met 120 432 ttt cta atg agc gtg act gga gtc ctt tgc agc gac agt gcg tgg gtc Phe Leu Met Ser Val Thr Gly Val Leu Cys Ser Asp Ser Ala Trp Val 135 cat ttg gct agc ggc gga gca atg ggg ttc gcc tgg atc caa tgc gga 480 His Leu Ala Ser Gly Gly Ala Met Gly Phe Ala Trp Ile Gln Cys Gly 150 tgg ata ggt cac gac tct ggg cat tac cgg att atg tct gac agg aaa 528 Trp Ile Gly His Asp Ser Gly His Tyr Arg Ile Met Ser Asp Arg Lys 165 tgg aac tgg ttc gcg caa atc cta agc aca aac tgc ctc cag ggg att 576 Trp Asn Trp Phe Ala Gln Ile Leu Ser Thr Asn Cys Leu Gln Gly Ile agt atc ggg tgg tgg aag tgg aac cat aat gcg cac cac atc gct tgc Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys 200 aat ago etg gat tac gac ecc gac etc eag tat atc ect ttg etc gte 672 Asn Ser Leu Asp Tyr Asp Pro Asp Leu Gln Tyr Ile Pro Leu Leu Val 210 gtc tcc ccc aag ttc ttc aac tcc ctt act tct cgt ttc tac gac aag 720 Val Ser Pro Lys Phe Phe Asn Ser Leu Thr Ser Arg Phe Tyr Asp Lys aag ctg aac ttc gac ggc gtg tcg agg ttt ctg gtt tgc tac cag cac 768 Lys Leu Asn Phe Asp Gly Val Ser Arg Phe Leu Val Cys Tyr Gln His 250 tgg acg ttt tat ccg gtc atg tgt gtc gct agg ctg aac atg ctc gcg 816 Trp Thr Phe Tyr Pro Val Met Cys Val Ala Arg Leu Asn Met Leu Ala cag toa ttt ata acg ctt ttc tcg agt agg gag gtg tgc cat agg gcg . 864 Gln Ser Phe Ile Thr Leu Phe Ser Ser Arg Glu Val Cys His Arg Ala 285 275 caa gag gtt ttc gga ctt gcc gtg ttt tgg gtt tgg ttt ccg ctt tta 912 Gln Glu Val Phe Gly Leu Ala Val Phe Trp Val Trp Phe Pro Leu Leu

ctt tct tgt tta cct aat tgg ggc gag agg att atg ttt ttg ctt gcg Leu Ser Cys Leu Pro Asn Trp Gly Glu Arg Ile Met Phe Leu Leu Ala

										•						
305					310					315					320	
agc Ser	tat Tyr	tcc Ser	gtt Val	acg Thr 325	GJA aaa	ata Ile	caa Gln	cac His	gtg Val 330	cag Gln	ttc Phe	agc Ser	ttg Leu	aac Asn 335	cat His	1008
ttt Phe	tct Ser	tcg Ser	gac Asp 340	gtc Val	tat Tyr	gtg Val	ggc Gly	ccg Pro 345	cca Pro	gta Val	Gly ggt	aat Asn	gac Asp 350	tgg Trp	ttc Phe	1056
aag Lys	aaa Lys	cag Gln 355	act Thr	gcc Ala	GJA aaa	aca Thr	ctt Leu 360	aac Asn	ata Ile	tcg Ser	tgc Cys	ccg Pro 365	gcg Ala	tgg Trp	atg Met	1104
gat Asp	tgg Trp 370	ttc Phe	cat His	Gly	GJA aaa	tta Leu 375	cag Gln	ttt Phe	cag Gln	gtc Val	gag Glu 380	cac His	cac His	ttg Leu	ttt Phe	1152
ccg Pro 385	Arg	atg Met	ect Pro	agg Arg	ggt Gly 390	cag Gln	ttt Phe	agg Arg	aag Lys	att Ile 395	tct Ser	cct Pro	ttt Phe	gtg Val	agg Arg 400	1200
gat Asp	ttg Leu	tgt Cys	aag Lys	aaa Lys 405	cac His	aac Asn	ttg Leu	cct Pro	tac Tyr 410	aat Asn	atc Ile	gcg Ala	tct Ser	ttt Phe 415	act Thr	1248
aaa Lys	gcg Ala	aat Asn	gtg Val 420	ttt Phe	acg Thr	ctt Leu	aag Lys	acg Thr 425	Leu	aga Arg	aat Asn	acg Thr	gcc Ala 430	Tie	gag Glu	1296
gct Ala	. cgg . Arg	gac Asp 435	Leu	tct Ser	aat Asn	ccg Pro	ctc Leu 440	cca	aag Lys	aat Asn	atg Met	gtg Val 445	Trp	gaa Glu	gct Ala	1344
		Thr		GJY												1362
<21 <21 <21	.1> L2>	72 453 PRT Prin	nula	fari	.nosa	L										
<40	00>	72														
Met 1	: Alá	a Ası	ı Lys	s Ser 5	Pro	Pro	Asn	Pro	10	s Thr	Gly	туг	: Ile	Thr 15	ser	
Se:	r Ası) Lei	20 1 Lys	s Sei	T His	s Asr	ı Lys	25	a Gly	/ Asg) Let	ı Try	30	e Sei	r Ile	
Hi.	s Gl	y Gl: 35	n Vai	l Tyi	c Asj	o Vai	L Sei 40	: Se:	r Trj	o Ala	a Ala	a Let 45	ı Hi:	s Pro	o Gly	
G1:	y Th 50	r Al	a Pr	o Le	u Me	t Ala 55	a Let	ı Al	a Gl	y Hi:	s As _] 60	o Vai	l Th	r As	p Ala	
Ph 65		u Al	а Ту	r Hi	s Pr 70		o Sei	r Th	r Al	a Ar	g Le	u Le	u Pr	o Pr	o Leu 80	
Se	r Th	r As	n Le	u Le 85	u Le	u Gl	n As:	n Hi	s Se 90	r Va	l Se	r Pr	o Th	r Se 95	r Ser	

- Asp Tyr Arg Lys Leu Leu Asp Asn Phe His Lys His Gly Leu Phe Arg 100 105 110
- Ala Arg Gly His Thr Ala Tyr Ala Thr Phe Val Phe Met Ile Ala Met 115 120 125
- Phe Leu Met Ser Val Thr Gly Val Leu Cys Ser Asp Ser Ala Trp Val 130 135 140
- His Leu Ala Ser Gly Gly Ala Met Gly Phe Ala Trp Ile Gln Cys Gly 145 150 155
- Trp Ile Gly His Asp Ser Gly His Tyr Arg Ile Met Ser Asp Arg Lys
 165 170 175
- Trp Asn Trp Phe Ala Gln Ile Leu Ser Thr Asn Cys Leu Gln Gly Ile 180 185 190
- Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys 195 200 205
- Asn Ser Leu Asp Tyr Asp Pro Asp Leu Gln Tyr Ile Pro Leu Leu Val 210 220
- Val Ser Pro Lys Phe Phe Asn Ser Leu Thr Ser Arg Phe Tyr Asp Lys 225 230 235
- Lys Leu Asn Phe Asp Gly Val Ser Arg Phe Leu Val Cys Tyr Gln His $245 \\ \hspace{1.5cm} 250 \\ \hspace{1.5cm} 255$
- Trp Thr Phe Tyr Pro Val Met Cys Val Ala Arg Leu Asn Met Leu Ala 260 265 270
- Gln Ser Phe Ile Thr Leu Phe Ser Ser Arg Glu Val Cys His Arg Ala 275 280 285
- Gln Glu Val Phe Gly Leu Ala Val Phe Trp Val Trp Phe Pro Leu Leu 290 295 300
- Leu Ser Cys Leu Pro Asm Trp Gly Glu Arg Ile Met Phe Leu Leu Ala 305 310 315
- Ser Tyr Ser Val Thr Gly Ile Gln His Val Gln Phe Ser Leu Asn His 325 330 335
- Phe Ser Ser Asp Val Tyr Val Gly Pro Pro Val Gly Asn Asp Trp Phe 340 345 350
- Lys Lys Gln Thr Ala Gly Thr Leu Asn Ile Ser Cys Pro Ala Trp Met 355 360 365

	Trp 370	Phe	His	Gly	Gly	Leu 375	Gln :	Phe (Gln '	Val	Glu : 380	His :	His	Leu	Phe	
Pro 385	Arg	Met	Pro		Gly 390	Gln	Phe .	Arg :	Lys	Ile 395	Ser	Pro	Phe	Val	Arg 400	
Asp	Leu	Cys	Lys	Lys 405	His	Asn	Leu	Pro	Tyr 410	Asn	Île	Ala	Ser	Phe 415	Thr	
Lys	Ala	Asn	Val 420	Phe	Thr	Leu	Lys	Thr 425	Leu	Arg	Asn	Thr	Ala 430	Ile	Glu	
Ala	Arg	Asp 435	Leu	ser	Asn	Pro	Leu 440	Pro	Lys	Asn	Met	Val 445	Trp	Glu	Ala	
Leu	Lys 450	Thr	Leu	Gly												
<210 <210 <210 <210	1> : 2> :	73 1362 DNA Prim	ıla v	vial:	Li											
	1> (2>	(1).														
<22	3>	Delta	a-6-1	Desa	curas	se										•
<40	0>		aaa	tct	cca	cca	aac Asn	ccc Pro	aaa Lys 10	aca Thr	ggt Gly	tac Tyr	att Ile	acc Thr 15	agc Ser	48
<40 atg Met 1	0> gct Ala	73 aac	aaa Lys aaa	tct Ser 5	cca Pro	cca Pro	Asn	Pro	Lys 10 gga	Thr	Gly	Tyr tgg	Ile	Thr 15 tca	ser atc	48 96
<40 atg Met 1 tca ser	0> gct Ala gac Asp	73 aac Asn	aaa Lys aaa Lys 20	tct Ser 5 ggg Gly	cca Pro cac His	cca Pro aac Asn	Asn aaa Lys tcc	gca Ala 25	Lys 10 gga Gly	gac Asp	cta Leu	Tyr tgg Trp	ata Ile 30	tca ser	atc Ile	
<40 atg Met 1 tca Ser cac	0> gct Ala gac Asp ggg	73 aac Asn ctg Leu	aaa Lys aaa Lys 20 gta Val	tct ser 5 ggg Gly tac Tyr	cca Pro cac His gac Asp	cca Pro aac Asn gtg Val	aaa Lys tcc Ser 40	gca Ala 25 tcg Ser	Lys 10 gga Gly tgg Trp	gac Asp gcc Ala	cta Leu ggc Gly	Tyr tgg Trp ctt Leu 45 gta	ata Ile 30 cac His	tca ser ccg Pro	atc Ile ggg Gly	96
<400 atg Met 1 tca Ser cac His	0> gct Ala gac Asp ggg ggg y Sec	73 aac Asn ctg Leu gag Glu 35	aaa Lys aaa Lys 20 gta Val	tct ser 5 ggg Gly tac Tyr	cca Pro cac His gac Asp	cca Pro aac Asn gtg Val gcc Ala 55	aaa Lys tcc Ser 40 ctc Leu	gca Ala 25 tcg Ser gca Ala	Lys 10 gga Gly tgg Trp gga Gly	gac Asp gcc Ala cac His	cta Leu ggc Gly gac Asp 60	tgg Trp ctt Leu 45 gta Val	ata Ile 30 cac His	tca Ser ccg Pro	atc Ile ggg Gly gct Ala	96 144
<400 atg Met 1 tca Ser cac His ggc Gly ttt Phe 65	0> gct Ala gac Asp ggg Gly ser S	73 aac Asn ctg Leu gag Glu 35 gcc	aaa Lys aaa Lys 20 gta Val ccc Pro	tct Ser 5 ggg Gly tac Tyr ctc Leu	cca Pro cac His gac Asp atg	cca Pro aac Asn gtg Val gcc Ala 55	Asn aaaa Lys tcc Ser 40 ctc Leu tct	gca Ala 25 tcg ser gca Ala acc Thr	Lys 10 gga Gly tgg Trp gga Gly gcc Ala	gac Asp gcc Ala cac His cgc Arg 75 gtc	ggc gac Asp 60 ctc	tgg Trp ctt Leu 45 gta Val	ata 11e 30 cac His	tca Ser ccg Pro	atc Ile ggg Gly gct Ala ctc Leu 80 ctc Ser	96 144 192
<400 atg Met 1 tca Ser cac His ggCy ttt Phe 65 tcc Ser	0> gct Ala gac gac Asp gg Gly Ser So ctast Lev	73 aac Asn ctg Leu gagg Glu 35 cala agcg Ala	aaa Lys aaa Lys 20 gta Val ccc Pro	tct Ser 5 ggg Gly tac Tyr ctc Leu 85 ctc	cca Pro cac His gac Asp atgt ccto 70	cca Pro aac Asn gtg Val gcc Ala 55 cct Pro	aaa Lys tcc Ser 40 ctc Leu tct Ser	gca Ala 25 tcg Ser gca Ala acc Thr	Lys 10 gga Gly tgg Trp gga Gly gcc Ala tcc Ser 90 cat	gac Asp gcc Ala cac His cgc Arg 75 gtc Val	ggc Gly gac Asp 60 ctc Leu tcc	tgg Trp ctt Leu 45 gta Val ctc Pro	ata Ile ata Ile 30 cac His acc Thr cct Pro	tca Ser ccg Pro	atc Ile ggg Gly gct Ala ctc Leu 80 ctc Ser	96 144 192 240

									11	8							
		115					120					125					
Phe :	cta Leu 130	acg Thr	agc Ser	gtg Val	Thr	gga Gly 135	gtc Val	ctt Leu	tgc Cys	agc Ser	gac Asp 140	agt Ser	gcg Ala	tgg Trp	gtc Val		432
cat His 145	ctg Leu	gct Ala	agc Ser	Gly	gca Ala 150	gca Ala	atg Met	Gly aga-	ttc Phe	gcc Ala 155	tgg Trp	atc Ile	cag Gln	tgc Cys	gga Gly 160		480
tgg Trp	ata Ile	ggt Gly	cac His	gac Asp 165	tct Ser	ejà aaa	cat His	tac Tyr	cgg Arg 170	att Ile	atg Met	tct Ser	gac Asp	agg Arg 175	aaa Lys		528
tgg Trp	aac Asn	tgg Trp	ttc Phe 180	gcg Ala	cag Gln	gtc Val	ctg Leu	agc Ser 185	aca Thr	aac Asn	tgc Cys	ctc Leu	cag Gln 190	GJA aaa	atc Ile		576
agt Ser	atc Ile	ggg Gly 195	tgg Trp	tgg Trp	aag Lys	tgg Trp	aac Asn 200	cat His	aac Asn	gcc Ala	cac His	cac His 205	att Ile	gct Ala	tgc Cys		624
aat Asn	agc Ser 210	ctg Leu	gac Asp	tac Tyr	gac Asp	ccc Pro 215	gac Asp	ctc Leu	cag Gln	tat Tyr	atc Ile 220	cct Pro	ttg Leu	ctc Leu	gtg Val		672
gtc Val 225	tcc Ser	ccc Pro	aag Lys	ttc Phe	ttc Phe 230	aac Asn	tcc Ser	ctt Leu	act Thr	tct Ser 235	cgt Arg	ttc Phe	tac Tyr	gac Asp	aag Lys 240		720
aag Lys	ctg Leu	aat Asn	ttc Phe	gac Asp 245	Gly	gtg Val	tca Ser	agg Arg	ttt Phe 250	ctg Leu	gtt Val	tgc Cys	tac Tyr	cag Gln 255	cac His	r	768
tgg Trp	acg Thr	ttt Phe	tat Tyr 260	cca Pro	gtc Val	atg Met	tgt Cys	gtc Val 265	gct Ala	agg Arg	cta Leu	aac Asn	atg Met 270	atc Ile	gca Ala		816
cag Gln	tcg Ser	ttt Phe 275	Ile	acg Thr	ctt Leu	ttc Phe	tcg Ser 280	Ser	agg Arg	gag Glu	gtg Val	ggt Gly 285	His	agg Arg	gcg Ala		864
caa Gln	gag Glu 290	Ile	ttc Phe	gga Gly	ctt Leu	gct Ala 295	Val	ttt Phe	tgg Trp	gtt Val	Trp 300) Phe	ccg Pro	ctc Leu	ctg Leu		912
ctc Leu 305	Ser	tgc Cys	: tta : Leu	cct Pro	aat Asn 310	Trp	agc Ser	gag Glu	agg Arg	att Ile 315	Met	ttt: Phe	ctg Leu	cta Leu	gcg Ala 320		960
agc Ser	tat Tyr	tco Ser	gtt Val	acg Thr	Gly	ata Ile	cag Glr	r cac n His	gtg Val	. Glr	tto Phe	ago e Ser	ttg Leu	aac Asn 335	cat His		1008
ttt Phe	tct Ser	tco Ser	g gad : Asp 340	val	tac Tyr	gtg Val	. GJ7	2 CC9 7 Pro 345	Pro	gta Val	ı gct	aac a Asr	gac Asp 350	Tr	ttc Phe		1056
aag Lys	aaa Lys	a cag s Glr 35	ı Thi	gct Ala	. Glł	g aca Thi	Let 360	ı Asr	ata 1 Ile	a tcç e Sej	g tgo Cys	s ecg s Pro	Ala	tgg Tr	g atg Met		1104
gac Asp	tgg Trg 370	, Phe	cat His	e Gli	ggg Gly	ttg 7 Lei 37	ı Glı	g ttt n Phe	caq e Gl:	g gto n Val	gaq 1 Gl: 38	u His	cac His	ttq Le	g ttt ı Phe		1152
ccg Pro	Arg	g ato	g cc	t agg	g Gly	caq 7 Gli	y tti n Phe	t agg	g aaq g Ly:	g att	tc Se:	t cct	t ttt D Phe	gtg Val	g agg l Arg		1200

385					390					395					400	
gat Asp	ttg Leu	tgt Cys	aag Lys	aaa Lys 405	cac His	aac Asn	ttg Leu	cct Pro	tac Tyr 410	aat Asn	atc Ile	gcg Ala	tct Ser	ttt Phe 415	act Thr	1248
aaa Lys	gca Ala	aac Asn	gtg Val 420	ttg Leu	acg Thr	ctt Leu	aag Lys	acg Thr 425	ctg Leu	aga Arg	aat Asn	acg Thr	gcc Ala 430	att Ile	gag Glu	1296
gct Ala	cgg Arg	gac Asp 435	ctc Leu	tct Ser	aat Asn	ccg Pro	acc Thr 440	cca Pro	aag Lys	aat Asn	atg Met	gtg Val 445	tgg Trp	gaa Glu	gcc Ala	1344
gtc Val					tag											1362
<210 <211 <212 <213	> 2 > 1	74 453 PRT Prim	ıla '	vial:	i i	•										
<400)>	74														
Met 1	Ala	Asn	Lys	Ser 5	Pro	Pro	Asn	Pro	Lys 10	Thr	Gly	Tyr	Ile	Thr 15	Ser	
Ser	Asp	Leu	Lys 20	Gly	His	Asn	Lys	Ala 25	Gly	Asp	Leu	Trp	Ile 30	Ser	Ile	
His	Gly	Glu 35	Val	Tyr	Asp	Val	Ser 40	Ser	Trp	Ala	Gly	Leu 45	His	Pro	Gly	
Gly	Ser 50	Ala	. Pro	Leu	Met	Ala 55	Leu	Ala	. Gly	His	Asp 60	Val	Thr	: Asp	Ala	
Phe 65	Leu	Ale	Tyr	His	70	Pro	Ser	Thr	Ala	Arg 75	J Leu	Lev	Pro) Pro	Leu 80	
Ser	Thi	: Asr	r Leu	Leu 85	ı Lev	ı Glm	Asn	His	Ser 90	Val	Ser	Pro	Thi	5 Ser 95	: Ser	
Asp	TYI	- Arg	J Lys 100		ı Let	ı His	. Asr	105		. Lys	s Ile	e Gly	/ Met	= Phe	e Arg	
Ala	a Arg	Gly 115		s Thi	c Ala	а Туг	Ala 120	a Thi	r Ph∈	e Vai	l Ile	e Me	z Il	e Vai	l Met	
Phe	e Le		r Sei	r Vai	l Th	r Gly 13!		l Lei	u Cys	s Se:	r As _l	ည Se : 0	r Al	a Tr	o Val	
His 145		u Al	a Se:	r Gl	y Al		a Mei	t Gl	y Phe	e Al. 15	a Tr	p Il	e Gl	n Cy	s Gly 160	
Tr	o Il	e Gl	y Hi	s As 16		r Gl	y Hi	з Ту	r Ar		e Me	t Se	r As	p Ar 1:7	g Lys 5	

- Trp Asn Trp Phe Ala Gln Val Leu Ser Thr Asn Cys Leu Gln Gly Ile 180 185 190
- Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys 195 200 205
- Asn Ser Leu Asp Tyr Asp Pro Asp Leu Gln Tyr Ile Pro Leu Leu Val 210 215 220
- Val Ser Pro Lys Phe Phe Asn Ser Leu Thr Ser Arg Phe Tyr Asp Lys 225 230 235
- Lys Leu Asn Phe Asp Gly Val Ser Arg Phe Leu Val Cys Tyr Gln His 245 250 255
- Trp Thr Phe Tyr Pro Val Met Cys Val Ala Arg Leu Asn Met Ile Ala 260 265 270
- Gln Ser Phe Ile Thr Leu Phe Ser Ser Arg Glu Val Gly His Arg Ala 275 280 285
- Gln Glu Ile Phe Gly Leu Ala Val Phe Trp Val Trp Phe Pro Leu Leu 290 295 300
- Leu Ser Cys Leu Pro Asn Trp Ser Glu Arg Ile Met Phe Leu Leu Ala 305 310 315 320
- Ser Tyr Ser Val Thr Gly Ile Gln His Val Gln Phe Ser Leu Asn His 325 330 335
- Phe Ser Ser Asp Val Tyr Val Gly Pro Pro Val Ala Asn Asp Trp Phe 340 345 350
- Asp Trp Phe His Gly Gly Leu Gln Phe Gln Val Glu His His Leu Phe 370 375 380
- Pro Arg Met Pro Arg Gly Gln Phe Arg Lys Ile Ser Pro Phe Val Arg 385 390 395 400
- Asp Leu Cys Lys Lys His Asn Leu Pro Tyr Asn Ile Ala Ser Phe Thr 405 410 415
- Lys Ala Asn Val Leu Thr Leu Lys Thr Leu Arg Asn Thr Ala Ile Glu 420 425 430
- Ala Arg Asp Leu Ser Asn Pro Thr Pro Lys Asn Met Val Trp Glu Ala 435 440 445

Val His Thr His Gly 450

<210> 75 <211> 903 <212> DNA <213> Ostreococcus tauri <220> <221> CDS <222> (1)..(903) <223> Delta-5-Elongase <400> 75 atg age gee tee ggt geg etg etg eee geg ate geg tee gee geg tae 48 Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Ser Ala Ala Tyr geg tac geg acg tac gec tac gec ttt gag tgg teg cac geg aat ggc 96 Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly 25 20 atc gac aac gtc gac gcg cgc gag tgg atc ggt gcg ctg tcg ttg agg 144 Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 35 ctc ccg gcg atc gcg acg acg atg tac ctg ttg ttc tgc ctg gtc gga 192 Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 55 ccg agg ttg atg gcg aag cgc gag gcg ttc gac ccg aag ggg ttc atg 240 Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met ctg gcg tac aat gcg tat cag acg gcg ttc aac gtc gtc gtg ctc ggg 288 Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Leu Gly 85 atg ttc gcg cga gag atc tcg ggg ctg ggg cag ccc gtg tgg ggg tca 336 Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 ace atg ccg tgg age gat aga aaa tcg ttt aag ate ete ete ggg gtg 384 Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 120 115 tgg ttg cac tac aac aac aaa tat ttg gag cta ttg gac act gtg ttc 432 Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe 135 atg gtt gcg cgc aag aag acg aag cag ttg agc ttc ttg cac gtt tat 480 Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 155 150 528 cat cac gcc ctg ttg atc tgg gcg tgg tgg ttg gtg tgt cac ttg atg His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 gcc acg aac gat tgt atc gat gcc tac ttc ggc gcg gcg tgc aac tcg 576 Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 ttc att cac atc gtg atg tac tcg tat tat ctc atg tcg gcg ctc ggc Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly

									_						
	195					200					205				
att cga Ile Arg 210	Cys	ccg Pro	tgg Trp	aag Lys	cga Arg 215	tac Tyr	atc Ile	acc Thr	cag Gln	gct Ala 220	caa Gln	atg Met	ctc Leu	caa Gln	672
ttc gtc Phe Val 225	att Ile	gtc Val	ttc Phe	gcg Ala 230	cac His	gcc Ala	gtg Val	ttc Phe	gtg Val 235	ctg Leu	cgt Arg	cag Gln	aag Lys	cac His 240	720
tgc ccq Cys Pro	g gtc Val	acc Thr	ctt Leu 245	cct Pro	tgg Trp	gcg Ala	caa Gln	atg Met 250	ttc Phe	gtc Val	atg Met	acg Thr	aac Asn 255	atg Met	768
ctc gte Leu Va	g ctc l Leu	ttc Phe 260	GJA āāā	aac Asn	ttc Phe	tac Tyr	ctc Leu 265	aag Lys	gcg Ala	tac Tyr	tcg Ser	aac Asn 270	aag Lys	tcg Ser	816
cgc gg Arg Gl	c gac y Asp 275	Gly	gcg Ala	agt Ser	tcc Ser	gtg Val 280	aaa Lys	cca Pro	gcc Ala	gag Glu	acc Thr 285	acg Thr	cgc Arg	gcg. Ala	864
ccc ag Pro Se 29	r Val	cga Arg	cgc Arg	acg Thr	cga Arg 295	tct Ser	cga Arg	aaa Lys	att Ile	gac Asp 300	taa				903
<210> <211> <212> <213>		eoco	ccus	tau	ri										
<400>	76	_			•	*	D	71-	. Tla	. λ1≘	Ser	Δla	Δla	ጥህት	
Met Se 1	r Ale	a Ser	5 5	Ата	. Leu	. Deu	, PLO	10		, ALG	DCI		15	1	
Ala Ty	r Ala	Thr 20	Tyr	Ala	. Tyr	Ala	Phe 25	Glu	ı Trp) Ser	His	Ala 30	Asr	Gly	
Ile As	sp As: 35	n Val	l Asp	Ala	Arg	g Glu 40	ı Trç	ıle	e∙Gly	y∙Alā	a Leu 45	. Ser	Lev	ı Arg	
Leu P: 5		a Ile	e Ala	Thr	Thr 55	Met	туг	: Lei	ı Le	9 Phe	e Cys	Leu	. Val	l Gly	
Pro A	rg Le	u Me	t Ala	1 Lys 70	arç	g Gl	ı Alá	a Phe	e Ası 75	o Pro	o Lys	Gly	y Pho	e Met 80	
Leu A	la Ty	r As	n Ala 85	а Туг	c Gli	n Thi	r Ala	90	e As	n Va	l Vai	L Vai	l Le ¹ 95	u Gly	
Met P	he Al	a Ar 10		ı Il	e Se:	r Gl	y Le 10	u Gl	y Gl	n Pr	o Va	11:	o G1;	y Ser	.
Thr M	et Pr		p Se:	r As	p Ar	g Ly 12		r Ph	e Ly	s Il	e Le	ı Le	u Gl	y Val	•

Met 145	Val	Ala	Arg	Lys	Lys 150	Thr	Lys	Gln	Leu	Ser 155	Phe	Leu	His	Val	Tyr 160	
His	His	Ala	Leu	Leu 165	Ile	Trp	Ala	Trp	Trp 170	Leu	Val	Cys	His	Leu 175	Met	
Ala	Thr	Asn	Asp 180	Cys	Ile	Asp	Ala	туг 185	Phe	Gly	Ala	Ala	Cys 190	Asn	Ser	
Phe	Ile	His 195	Ile	Val	Met	Tyr	Ser 200	Tyr	Tyr	Leu	Met	Ser 205	Ala	Leu	Gly	
Ile	Arg 210		Pro	Trp	Lys	Arg 215	Tyr	Ile	Thr	Gln	Ala 220	Gln	Met	Leu	Gln	
Phe 225	Val	Ile	Val	Phe	Ala 230	His	Ala	Val	Phe	Val 235	Leu	Arg	Gln	Lys	His 240	
Cys	Pro	Val	Thr	Leu 245	Pro	Trp	Ala	Gln	Met 250	Phe	Val	Met	Thr	Asn 255	Met	
Leu	Val	Leu	Phe 260		Asn	Phe	Tyr	Leu 265		Ala	Tyr	Ser	Asn 270	Lys	Ser	
Arg	Gly	Asp 275		· Ala	Ser	Ser	Val 280		Pro	Ala	Glu	Thr 285		Arg	Ala	
Pro	Ser 290		Arg	, Arg	Thr	Arg 295		· Arg	Lys	Ile	300					
<21 <21 <21 <21	.1> .2>	77 903 DNA Osta	reoc	occus	s tau	ıri										
<22 <22 <22 <22	1>		(90 ta-5		ngase	à										
ato)0> g ago : Se:	a ac	c tc a Se	c ggt r Gly 5	y Ala	g cto Lei	g cto 1 Lem	g cco	e geç o Ala 10	g ato	gcg Ala	y tto a Phe	gco Ala	gcg Ala 15	g tac a Tyr	48
gcq Ala	g tag	c gc r Al	g ac a Th 20	r Ty:	gco r Ala	tao Ty	e ge	tti a Phe 25	t gag e Glu	g tgg ı Tr:	y tcg p Sei	g cad	gcg Ala 30	g aat a Asi	t ggc n Gly	96
ato Ile	ga e As	c aa p As 35	n Va	c ga 1 As	c gcg p Ala	g cgo	g ga g G1 40	g tg: u Tr:	g ato p Ilo	c gg! e Gl;	t gc y Ala	g cto a Leo 45	g tcg ı Se	g tt:	g agg u Arg	144
cto	c cc	g gc o Al	g at a Il	c gc e Al	g acq	g ac	g at	g ta	c ct r Le	g tt: u Le:	g tt u Ph	c tgo	c cto	g gt	c gga l Gly	192

	50					J J										
ccg Pro 65	agg Arg	ttg Leu	atg Met	gcg Ala	aag Lys 70	cgc Arg	gag Glu	gcg Ala	ttc Phe	gac Asp 75	ccg Prò	aag Lys	ej aaa	ttc Phe	atg Met 80	240
ctg Leu	gcg Ala	tac Tyr	aat Asn	gcg Ala 85	tat Tyr	cag Gln	acg Thr	gcg Ala	ttc Phe 90	aac Asn	gtc Val	gtc Val	gtg Val	ctc Leu 95	GJÀ āāā	288
atg Met	ttc Phe	gcg Ala	cga Arg 100	gag Glu	atc Ile	tcg Ser	GJA āāā	ctg Leu 105	Gly ggg	cag Gln	ccc Pro	gtg Val	tgg Trp 110	GJA aaa	tca Ser	336
acc Thr	atg Met	ccg Pro 115	tgg Trp	agc Ser	gat Asp	aga Arg	aaa Lys 120	tcg Ser	ttt Phe	aag Lys	atc Ile	ctc Leu 125	ctc Leu	GJĀ āāā	gtg Val	384
tgg Trp	ttg Leu 130	cac His	tac Tyr	aac Asn	aac Asn	aaa Lys 135	tat Tyr	ttg Leu	gag Glu	cta Leu	ttg Leu 140	gac Asp	act Thr	gtg Val	ttc Phe	432
atg Met 145	gtt Val	gcg Ala	cgc Arg	aag Lys	aag Lys 150	acg Thr	aag Lys	cag Gln	ttg Leu	agc Ser 155	ttc Phe	ttg Leu	cac His	gtt Val	tat Tyr 160	480
cat His	cac His	gcc Ala	ctg Le u	ttg Leu 165	atc Ile	tgg Trp	gcg Ala	tgg Trp	tgg Trp 170	ttg Leu	gtg Val	tgt Cys	cac His	ttg Leu 175	atg Met	528
gcc Ala	acg Thr	aac Asn	gat Asp 180	tgt Cys	atc Ile	gat Asp	gcc Ala	tac Tyr 185	ttc Phe	ggc Gly	gcg Ala	gcg Ala	tgc Cys 190	aac Asn	tcg Ser	576
ttc Phe	att Ile	cac His 195	Ile	gtg Val	atg Met	tac Tyr	tcg Ser 200	Tyr	tat Tyr	ctc Leu	atg Met	tcg Ser 205	Ala	ctc Leu	ggc	524
att Ile	cga Arg 210	Cys	ccg	tgg Trp	aag Lys	cga Arg 215	Tyr	atc	acc Thr	cag Gln	gct Ala 220	Gln	. atg . Met	ctc Leu	caa Gln	672
ttc Phe 225	Val	att	gtc Val	tto Phe	gcg Ala 230	. His	gco Ala	gtg Val	tto Phe	gtg Val 235	. Leu	cgt Arg	cag Glr	aag Lys	cac His 240	720
tgc Cys	ccg Pro	gto Val	acc Thr	Leu	cct Pro	Tr) Ala	Glr	Met	. Ph∈	gto Val	ato Met	acg Thr	aac Asr 255	atg Met	768
cto Lev	gtg Val	r cto Lev	tto Phe 260	e Gl	g aac g Asr	tto Phe	tao Ty:	t cto Lev 265	r FAs	gcg Ala	g tac a Tyr	tcg Ser	aac Asr 270	ı Lys	tcg Ser	816
cgc Arg	. GJ7	gad Asg 275	Gl3	gcg Ala	g agt a Sei	tco Sea	gtg Val 280	Lys	e cca	a gco	gag Glu	aco Thi 289	r Thi	g cgo	g gcg g Ala	864
Pro	ago Sei 290	· Val	g cga L Arg	a cgo g Aro	acq Thi	g cga Ara 29	g Se	t cga	a aaa g.Ly:	a att	t gad e Ası 300	,	a		٠	903

<210> 78 <211> 300 <212> PRT <213> Ostreococcus tauri

<400> 78

Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr 1 5 10 15

Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly 20 25 30

Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 35 40 45

Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 50 55 60

Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met 65 70 . 75 80

Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Val Leu Gly
85 90 95

Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 105 110

Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val . 115 120 125

Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe 130 135 140

Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 150 155 160

His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 170 175

Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 185 190

Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly 195 200 205

Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 210 215 220

Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 225 230 235

Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 245 250 255

Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 260 265 270

Arg Gly As		Ser Ser	Val Lys 280	Pro A	la Glu	Thr Th 285	ır Arg	Ala
Pro Ser Va 290	l Arg Arg	Thr Arg 295	Ser Arg	Lys I	le Asp 300			
<210> 79 <211> 903 <212> DNA <213> Ost		tauri						
	; (903) .ta-5-Elong	jase						·.
<400> 79 atg agc gc Met Ser Al	ec tee ggt a Ser Gly 5	gcg ctg Ala Leu	ctg ccc Leu Pro	gcg a Ala 1	atc gcg [le Ala	tcc go Ser A	cc gcg la Ala 15	tac 48 Tyr
gcg tac go Ala Tyr Al	eg acg tac la Thr Tyr 20	gcc tac Ala Tyr	gcc ttt Ala Phe 25	gag t Glu	tgg tcg Irp Ser	cac go His A	la Asn	ggc 96 Gly
atc gac as Ile Asp As	sn Val Asp	gcg cgc Ala Arg	gag tgg Glu Trj 40	g atc g p Ile (ggt gcg Gly Ala	ctg to Leu S 45	cg ttg er Leu	agg 144 Arg
ctc ccg go Leu Pro Al 50	cg atc gcg la Ile Ala	acg acg Thr Thr 55	atg ta Met Ty	ctg (r Leu)	ttg ttc Leu Phe 60	tgc c Cys L	tg gtc eu Val	gga 192 Gly
ccg agg to Pro Arg Lo	tg atg gcg eu Met Ala	aag cgc Lys Arg 70	gag gc Glu Al	a Phe	gac ccg Asp Pro 75	aag g Lys G	gg ttc ly Phe	atg 240 Met 80
ctg gcg to Leu Ala T	ac aat gcg yr Asn Ala 85	tat cag Tyr Gln	acg gc Thr Al	g ttc a Phe . 90 .	aac gtc Asn Val	gtc g Val V	tg ctc al Leu 95	ggg 288 Gly
atg ttc g Met Phe A	cg cga gag la Arg Glu 100	atc tcg	ggg ct Gly Le 10	u Gly	cag ccc Gln Pro	Val 1	gg ggg Tp Gly	tca 336 Ser
Thr Met P	cg tgg ago ro Trp Ser 15	gat aga Asp Arg	aaa to Lys Se 120	g ttt r Phe	aag atc Lys Ile	ctc c Leu I 125	tc ggg eu Gly	gtg 384 Val
tgg ttg c Trp Leu H 130	ac tac aac is Tyr Asr	aac caa Asn Glr 135	ı Tyr Le	g gag u Glu	cta tto Leu Leu 140	Asp 1	act gtg Thr Val	ttc 432 Phe
atg gtt g Met Val A 145	cg cgc aaq la Arg Lys	g aag acg s Lys Thi 150	g aag ca : Lys Gl	g ttg .n Leu	agc tto Ser Phe 155	ttg o	cac gtt His Val	tat 480 Tyr 160
cat cac g His His A	cc ctg tto la Leu Lev 16	ı Ile Tr	g geg to p Ala Tr	g tgg p Trp 170	ttg gtg Leu Val	g tgt (L Cys I	cac tto His Lev 179	1 Met
gcc acg a Ala Thr A	ac gat tg: Asn Asp Cy:	t atc gai s Ile Asp	t gcc ta p Ala Ty	ac ttc yr Phe	ggc gcg	g gcg (a Ala (tgc aad Cys Asr	c tcg 576 n Ser

190 185 624 ttc att cac atc gtg atg tac tcg tat tat ctc atg tcg gcg ctc ggc Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly 205 200 att cga tgc ccg tgg aag cga tac atc acc cag gct caa atg ctc caa 672 Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln ttc gtc att gtc ttc gcg cac gcc gtg ttc gtg ctg cgt cag aag cac 720 Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 230 225 tgc ccg gtc acc ctt cct tgg gcg caa atg ttc gtc atg acg aac atg 768 Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 250 245 ctc gtg ctc ttc ggg aac ttc tac ctc aag gcg tac tcg aac aag tcg 816 Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser cgc ggc gac ggc gcg agt tcc gtg aaa cca gcc gag acc acg cgc gcg Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 864 280 903 ccc agc gtg cga cgc acg cga tct cga aaa att gac taa Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 295 290 <210> 80 300 <211> <212> PRT <213> Ostreococcus tauri <400> 80 Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Ser Ala Ala Tyr Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 40 Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 55 Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Leu Gly Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 105 Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 120

	Leu 130	His	Tyr	Asn	Asn	Gln 135	Tyr	Leu	Glu	Leu	Leu 140	Asp	Thr	Val	Phe		
Met 145	Va1	Ala	Arg	Lys	Lys 150	Thr	Lys	Gln	Leu	Ser 155	Phe	Leu	His	Val	Tyr 160		
	His	Ala	Leu	Leu 165	Ile	Trp	Ala	Trp	Trp 170	Leu	Val	Cys	His	Leu 175	Met		
Ala	Thr	Asn	Asp 180	Cys	Ile	Asp	Ala	Tyr 185	Phe	Gly	Ala	Ala	Cys 190	Asn	Ser		
Phe		His 195	Ile	Val	Met	Tyr	Ser 200	Tyr	Tyr	Leu	Met	Ser 205	Ala	Leu	Gly		
Ile	Arg 210		Pro	Trp	Lys	Arg 215	Tyr	Ile	Thr	Ġln	Ala 220	Gln	Met	Leu	Gln		
Phe 225	Val	Ile	Val	Phe	Ala 230	His	Ala	Val	Phe	Val 235	Leu	Arg	Gln	Lys	His 240		
Cys	Pro	Val	Thx	Leu 245	Pro	Trp	Ala	G1n	Met 250		Val	Met	Thr	Asn 255	Met	•	
Leu	Val	Leu	Phe 260		Asn	Phe	Tyr	Leu 265		Ala	Tyr	· Ser	Asn 270	Lys	Ser		
Arg	Gly	Asp 275		· Ala	. Ser	Ser	Val 280	. Lys	Pro	Ala	. Glu	Thr 285	Thr	Arg	Ala		
Pro	Ser 290		. Arg	Arg	Thr	Arg 295		Arg	Lys	: Ile	Asp 300)					
<21 <21 <21 <21	.1> .2>	81 879 DNA Ostr	reoco	occus	s tav	ıri											
<22	!1> !2>		(87 ta-6-		ngase	è											
ato)0> g agg z Se:	t aa	c tta y Lem	a cg 1 Are 5	t gca g Ala	a cco	aa Asi	e tti n Phe	t tta e Len 10	a cad	c aga	a tto g Pho	: tgg ≥ Tr <u>r</u>	g aca Thi 15	a aag Lys	. 48	ł
tg: Tr:	g ga o As	c tac p Ty:	20	g at a Il	t tco	c aaa	a gto	c gto 1 Va: 25	tto l Pho	c acg	g tg r Cy	t gco s Ala	gao a Asi 30	agt Se:	ttt r Phe	96	ï
caq Gl:	g tg	g ga p As	c ate	c gg e Gl	g cc	a gt o Va	g ag l Se	t to r Se	g ag r Se	t ac	g gc r Al	g ca a Hi	t tta s Le	a cc	gcc Ala	144	ţ

40 35 att gaa too cot acc coa ctg gtg act agc ctc ttg ttc tac tta gtc 192 Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val 55 240 aca gtt ttc ttg tgg tat ggt cgt tta acc agg agt tca gac aag aaa Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys 70 att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg 288 Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala 85 90 ttc ttg ata gtc ctc agt ctt tac atg tgc ctt ggt tgt gtg gcc caa 336 Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln 100 105 384 gcg tat cag aat gga tat act tta tgg ggt aat gaa ttc aag gcc acg Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr 120 432 gaa act cag ctt gct ctc tac att tac att ttt tac gta agt aaa ata Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile 135 tac gag ttt gta gat act tac att atg ctt ctc aag aat aac ttg cgg 480 Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg 145 150 caa gta aga ttc cta cac act tat cac cac agc acg att tcc ttt att 528 Gln Val Arg Phe Leu His Thr Tyr His His Ser Thr Ile Ser Phe Ile 170 165 tgg tgg atc att gct cgg agg gct ccg ggt ggt gat gct tac ttc agc 576 Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser gcg gcc ttg aac tca tgg gta cac gtg tgc atg tac acc tat tat cta 624 Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu 200 tta tca acc ctt att gga aaa gaa gat cct aag cgt tcc aac tac ctt 672 Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu 215 210 tgg tgg ggt cgc cac cta acg caa atg cag atg ctt cag ttt ttc ttc 720 Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe 230 aac gta ctt caa gog ttg tac tgc gct tcg ttc tct acg tat ccc aag 768 Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys 250 ttt ttg tcc aaa att ctg ctc gtc tat atg atg agc ctt ctc ggc ttg 816 Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Cly Leu ttt ggg cat ttc tac tat tcc aag cac ata gca gca gct aag ctc cag 864 Phe Gly His Phe Tyr Tyr Ser Lys His Ile Ala Ala Ala Lys Leu Gln 280 879 aaa aaa cag cag tga Lys Lys Gln Gln

<212> PRT

<213> Ostreococcus tauri

<400> 82

Met Ser Gly Leu Arg Ala Pro Asn Phe Leu His Arg Phe Trp Thr Lys

Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe 20 25 30

Gln Trp Asp Ile Gly Pro Val Ser Ser Ser Thr Ala His Leu Pro Ala 35 40 45

Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val 50 55 60

Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys 65 70 75 80

Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala 85 90 95

Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln 100 105 . 110

Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr 115 120 125

Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile 130 135 140

Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg 145 150 155 160

Gln Val Arg Phe Leu His Thr Tyr His His Ser Thr Ile Ser Phe Ile 165 170 175

Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser 180 185 190

Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu 195 200 205

Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu 210 215 220

Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe 225 235 240

Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys

Phe L	eu S		560 -ys :	Ile I	Ĺeu	Leu \	Val '	Tyr 1 265	Met :	Met :	Ser :	Leu :	Leu 270	Gly :	Leu	
Phe G		lis I 175	Phe '	Tyr (Tyr	Ser :	Lys 1 280	His :	Ile	Ala .	Ala .	Ala : 285	Lys	Leu	Gln	
Lys L	ys (3ln (3ln													
<210><211><211><212><213>	> 83 > DI	NA	stoc	hytr	ium	sp.										
<220: <221: <222: <223:	> CI				ase											
<400 atg (Met)	cac	ata	gtc Val	gag Glu 5	cag Gln	caa Gln	tgg Trp	cgc Arg	cgc Arg 10	ttc Phe	gtg Val	gac Asp	gcc Ala	gtg Val 15	gac Asp	. 48
aac Asn	gga Gly	atc Ile	gtg Val 20	gag Glu	ttc Phe	atg Met	gag Glu	cat His 25	gag Glu	aag Lys	ccc Pro	aac Asn	aag Lys 30	ctg Leu	aac Asn	96
gag Glu	Gly ggc	aag Lys 35	ctc Leu	ttc Phe	acc Thr	tcg Ser	acc Thr 40	gag Glu	gag Glu	atg Met	atg Met	gcg Ala 45	ctt Leu	atc Ile	gtc Val	144
Gly Gly	tac Tyr 50	ctg Leu	gcg Ala	ttc Phe	gtg Val	gtc Val 55	ctc Leu	G1Y ggg	tcc Ser	gcc Ala	ttc Phe 60	atg Met	aag Lys	gcc Ala	ttt Phe	192
gtc Val 65	gat Asp	aag Lys	cct Pro	ttc Phe	gag Glu 70	ctc Leu	aag Lys	ttc Phe	ctc	aag Lys 75	ctc Leu	gtg Val	cac His	aac Asn	atc Ile 80	240
ttc Phe	ctc Leu	acc Thr	ggt Gly	ctg Leu 85	tcc Ser	atg Met	tac Tyr	atg Met	gcc Ala 90	acc Thr	gag Glu	tgc Cys	gcg Ala	cgc Arg 95	cag Gln	288
gca Ala	tac Tyr	ctc Leu	ggc Gly 100	Gly	tac Tyr	aag Lys	ctc Leu	ttt Phe 105	Gly	aac Asn	ccg Pro	atg Met	gag Glu 110	rrys	ggc	336
acc Thr	gag Glu	tcg Ser 115	His	gcc Ala	Pro	g ggc	atg Met	: Ala	aac Asi	ato n Ile	ato : Ile	tac Tyr 125	, TTE	tto Phe	tac Tyr	384
gtg Val	agc Ser 130	aag Lys	ttc Phe	ctc Leu	gaa Glu	a tto 1 Phe 135	Leu	gac Asp	aco Thi	c gtc r Val	tto Phe	e Met	ato : Ile	c cto e Lev	ggc Gly	432
aag Lys 145	Lys	tgg Trp	aac Lys	g cag Glr	cto Lei 150	ı`Ser	ttt Phe	cto e Lev	cae Hi:	c gto s Val	L Tyı	cac His	cac His	e geg s Ala	g agc a Ser 160	480
atc Ile	agc Ser	tto Phe	ato	tgg Trp	g gg	c ato	ato	c gcc e Alá	c cg	c tto g Phe	gcg a Ala	g cco	ggt Gl	r ggd y Gl	gac y Asp	528

175 170 165 ged tad the tet ace ate etc aac age age gtg cat gte gtg etc tac 576 Ala Tyr Phe Ser Thr Ile Leu Asn Ser Ser Val His Val Val Leu Tyr 185 gge tac tac gec teg acc acc etc gge tac acc tte atg ege ecg etg 624 Gly Tyr Tyr Ala Ser Thr Thr Leu Gly Tyr Thr Phe Met Arg Pro Leu 200 195 ege eeg tae att ace ace att eag etc acg eag tte atg gee atg gte 672 Arg Pro Tyr Ile Thr Thr Ile Gln Leu Thr Gln Phe Met Ala Met Val 215 210 gtc cag tcc gtc tat gac tac tac aac ccc tgc gac tac ccg cag ccc 720 Val Gln Ser Val Tyr Asp Tyr Tyr Asn Pro Cys Asp Tyr Pro Gln Pro 230 ctc gtc aag ctg ctc ttc tgg tac atg ctc acc atg ctc ggc ctc ttc 768 Leu Val Lys Leu Leu Phe Trp Tyr Met Leu Thr Met Leu Gly Leu Phe 245 ggc aac ttc ttc gtg cag cag tac ctc aag ccc aag gcg ccc aag aag 816 Gly Asn Phe Phe Val Gln Gln Tyr Leu Lys Pro Lys Ala Pro Lys Lys 265 260 831 cag aag acc atc taa Gln Lys Thr Ile 275 <210> 84 <211> 276 <212> PRT <213> Thraustochytrium sp. <400> 84 Met Asp Val Val Glu Gln Gln Trp Arg Arg Phe Val Asp Ala Val Asp Asn Gly Ile Val Glu Phe Met Glu His Glu Lys Pro Asn Lys Leu Asn Glu Gly Lys Leu Phe Thr Ser Thr Glu Glu Met Met Ala Leu Ile Val 40 Gly Tyr Leu Ala Phe Val Val Leu Gly Ser Ala Phe Met Lys Ala Phe 55 Val Asp Lys Pro Phe Glu Leu Lys Phe Leu Lys Leu Val His Asn Ile Phe Leu Thr Gly Leu Ser Met Tyr Met Ala Thr Glu Cys Ala Arg Gln Ala Tyr Leu Gly Gly Tyr Lys Leu Phe Gly Asn Pro Met Glu Lys Gly 105 Thr Glu Ser His Ala Pro Gly Met Ala Asn Ile Ile Tyr Ile Phe Tyr 120

Val S	Ser 130	Lys	Phe	Leu	Glu	Phe 135	Leu	Asp	Thr	Val	Phe 140	Met	Ile	Leu	Gly	
Lys I 145	Ļys	Trp	Lys	Gln	Leu 150	Ser	Phe	Leu	His	Val 155	Tyr	His	His	Ala	Ser 160	
Ile S	Ser	Phe	Ile	Trp 165	Gly	Ile	Ile	Ala	Arg 170	Phe	Ala	Pro	Gly	Gly 175	Asp	
Ala	Tyr	Phe	Ser 180	Thr	Ile	Leu	Asn	Ser 185	Ser	Val	His	Val	Val 190	Leu	Tyr	
Gly (Tyr	Tyr 195	Ala	Ser	Thr	Thr	Leu 200	Gly	Tyr	Thr	Phe	Met 205	Arg	Pro	Leu	
Arg	Pro 210	Tyr	Ile	Thr	Thr	Ile 215	Gln	Leu	Thr	Gln	Phe 220	Met	Ala	Met	Val	
Val 225	Gln	Ser	Val	Tyr	Asp 230	Tyr	Tyr	Asn	Pro	Cys 235	Asp	Tyr	Pro	Gln	Pro 240	
Leu	Val	Lys	Leu	Leu 245		Trp	Tyr	Met	Leu 250	Thr	Met	Leu	Gly	Leu 255	Phe	
Gly	Asn	Phe	Phe 260		Gln	Gln	Tyr	Leu 265	Lys	Pro	Lys	Ala	Pro 270	Lys	Lýs	
Gln	Lys	Thr 275		è												
<210 <211 <212 <213	1> 2>	85 1077 DNA Tha]		losi	ra ps	eudo	nana									
<220 <221 <222 <223	1> 2>		(10 ta-5-		ngase	è										
<400 atg Met 1	tac	85 tca Sea	a cca r Pro	a cc o Pro 5	g ccg	g tca Sei	a caa c Gli	a tco n Se:	c aaa r Lys 10	a aca 5 Th:	a aca	a tco r Sei	c cto c Leu	cta Lev 15	a gca 1 Ala	48
cgg Arg	tac Tyr	c acc	c acer The	c gc r Al	c gco a Ala	c cto a Le	c cto u Len	c cto u Le ^o 25	c cto u Le	c ac	c ct r Le	c aca u Th	a acc r Thr 30	tgg Tr	g tgc o Cys	96
cac His	Phe	gc Al.	c tt a Ph	c cc e Pr	a gco o Ala	a Al	c ace a Thi	c gc r Al	c aca	a cc r Pr	c gg o Gl	c ct y Le 45	c aco u Thi	c gc	c gaa a Glu	144
atg Met	cac Hi	c tc s Se	c ta r Ty	c aa r Ly	a gto s Va	c cc l Pr	a ct o Le	c gg u Gl	t ct y Le	c ac u Th	c gt r Va	a tt 1 Ph	c tac e Tyi	c ct r Le	g ctg u Leu	192

134 60 55 50 agt cta ccg tca cta aag tac gtt acg gac aac tac ctt gcc aaa aag 240 Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 75 70 tat gat atg aag tca ctc ctg acg gaa tca atg gtg ttg tac aat gtg 288 Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val gcg caa gtg ctg ctc aat ggg tgg acg gtg tat gcg att gtg gat gcg 336 Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 105 gtg atg aat aga gac cat cct ttt att gga agt aga agt ttg gtt ggg 384 Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly 115 432 geg geg ttg cat agt ggg age teg tat geg gtg tgg gtt cat tat tgt Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys 140 135 gat aag tat ttg gag ttc ttt gat acg tat ttt atg gtg ttg agg ggg 480 Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 150 aaa atg gac cag gtc tcc ttc ctc cac atc tac cac cac acg acc ata 528 Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 165 geg tgg gea tgg tgg atc gec etc ege tte tee eec gge gga gac att 576 Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 185 180 tac ttc ggg gca ctc ctc aac tcc atc atc cac gtc ctc atg tat tcc 624 Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 200 tac tac gcc ctt gcc cta ctc aag gtc agt tgt cca tgg aaa cga tac 672 Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 215 720 ttg act caa gct caa tta ttg caa ttc aca agt gtg gtg gtt tat acg Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr 235 230 768 ggg tgt acg ggt tat act cat tac tat cat acg aag cat gga gcg gat Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 250 816 gag aca cag cct agt tta gga acg tat tat ttc tgt tgt gga gtg cag Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln gtg ttt gag atg gtt agt ttg ttt gta ctc ttt tcc atc ttt tat aaa 864 Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 285 280 912 cga tcc tat tcg aag aag aac aag tca gga gga aag gat agc aag aag Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 295 aat gat gat ggg aat aat gag gat caa tgt cac aag gct atg aag gat 960 Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 320 310 315

ata tog gag ggt gcg aag gag gtt gtg ggg cat gca gcg aag gat gct Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala

135 330 335 325 gga aag ttg gtg gct acg gcg agt aag gct gta aag agg aag gga act 1056 Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 340 1077 cgt gtt act ggt gcc atg tag Arg Val Thr Gly Ala Met 355 <210> 86 <211> 358 <212> PRT <213> Thalassiosira pseudonana <400> 86 Met Cys Ser Pro Pro Pro Ser Gln Ser Lys Thr Thr Ser Leu Leu Ala 10 Arg Tyr Thr Thr Ala Ala Leu Leu Leu Thr Leu Thr Trp Cys 20 His Phe Ala Phe Pro Ala Ala Thr Ala Thr Pro Gly Leu Thr Ala Glu Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 55 Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 75 Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly 120 Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 150 . Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 165 Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile

185

205

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 200

Tyr	туr 210	Ala	Leu	Ala	Leu	Leu 215	Lys	Val	Ser	Cys	Pro 220	Trp	Lys	Arg	Ty:	r		
Leu 225	Thr	Gln	Ala	Gln	Leu 230	Leu	Gln	Phe	Thr	Ser 235	Val	Val	Val	Tyr	Th 24	r 0		
Gly	Cys	Thr	Gly	Tyr 245	Thr	His	Tyr	Tyr	His 250	Thr	Lys	His	Gly	Ala 255	As	Þ		
Glu	Thr	Gln	Pro 260	Ser	Leu	Gly	Thr	Tyr 265	Tyr	Phe	Cys	Cys	Gly 270	Val	Gl	n		
Val	Phe	Glu 275	Met	Val	Ser	Leu	Phe 280	Val	Leu	Phe	Ser	Ile 285	Phe	Tyr	Ly	's		
Arg	Ser 290		Ser	Lys	Lys	Asn 295	Lys	Ser	Gly	Gly	Lys 300	Asp	Ser	Lys	Ly	<i>'</i> S		
Asn 305		Asp	Gly	· Asn	Asn 310		Asp	Gln	Cys	ніs 315	Lys	Ala	Met	Lys	32	5p 0		
Ile	Ser	Glu	Gly	Ala 325		Glu	Val	Val	330 Gly	His	Ala	Ala	Lys	Asp 335) A.	la		
Gly	r Lys	. Leu	Val 340		Thr	Ala	Ser	Lys 345	Ala	. Val	. Lys	: Arg	1.ys	Gl ₃	(T	hr		
Arç	y Val	355 355	r Gly	, Ala	. Met	:					•							
<23	LO> L1> L2> L3>	87 1086 DNA Phys	5 toph(thora	ı ini	Eesta	ans											
<23 <23			(1) ga-3		atura	ase												
ati	00> g gc t Al	87 g ac a Th	g aa r Ly	g gae s Gl	g gc	g ta a Ty	t gt r Va	g tto l Pho	e cc e Pro 10	c ac o Th	t cto r Le	g ac	g ga r Gl	g at u Il 15	е т	·Å2 rad		48
cg Ar	g to g Se	g ct r Le	a cc u Pr 20	o Ly	a ga s As	p Cy	t tt s Ph	c ga e Gli 25	g gc u Al	t tc a Se	g gt r Va	g cc l Pr	t ct o Le 30	u Se	g c	etc Leu		96
ta Ty	c ta r Ty	c ac r Th	c gt r Va	g cg l Ar	t tg g Cy	t ct s Le	g gt u Va 40	.1 II	c gc e Al	g gt a Va	g gc 1 Al	t ct a Le 45	u in	c tt	c (ggt 31y	:	14
ct	c aa	ıc ta	ic go	t cg	c gc	t ct	g cc	c ga	g gt	c ga	g ag	c tt	c tg	g go	ct (ctg Leu	,	19:

137 55 50 gac gcc gca ctc tgc acg ggc tac atc ttg ctg cag ggc atc gtg ttc 240 Asp Ala Ala Leu Cys Thr Gly Tyr Ile Leu Leu Gln Gly Ile Val Phe 70 tgg ggc ttc ttc acg gtg ggc cac gat gcc ggc cac ggc gcc ttc tcg 288 Trp Gly Phe Phe Thr Val Gly His Asp Ala Gly His Gly Ala Phe Ser ege tae eac etg ett aac tte gtg gtg gge act tte atg eac teg etc 336 Arg Tyr His Leu Leu Asn Phe Val Val Gly Thr Phe Met His Ser Leu 105 110 atc etc acg ecc ttc gag tcg tgg aag etc acg cac egt cac cac cac 384 Ile Leu Thr Pro Phe Glu Ser Trp Lys Leu Thr His Arg His His His aag aac acg ggc aac att gac cgt gac gag gtc ttc tac ccg caa cgc 432 Lys Asn Thr Gly Asn Ile Asp Arg Asp Glu Val Phe Tyr Pro Gln Arg 135 480 aag gcc gac gac cac ccg ctg tct cgc aac ctg att ctg gcg ctc ggg Lys Ala Asp Asp His Pro Leu Ser Arg Asn Leu Ile Leu Ala Leu Gly 150 528 gea geg tgg etc gec tat ttg gtc gag ggc ttc cet ect egt aag gtc Ala Ala Trp Leu Ala Tyr Leu Val Glu Gly Phe Pro Pro Arg Lys Val 170 576 aac cac ttc aac ccg ttc gag cct ctg ttc gtg cgt cag gtg tca gct Asn His Phe Asn Pro Phe Glu Pro Leu Phe Val Arg Gln Val Ser Ala 180 624 gtg gta atc tot ott otc gcc cac ttc ttc gtg gcc gga ctc tcc atc Val Val Ile Ser Leu Leu Ala His Phe Phe Val Ala Gly Leu Ser Ile 205 200 672 tat ctg ago ctc cag ctg ggo ctt aag acg atg gca atc tac tac tat Tyr Leu Ser Leu Gln Leu Gly Leu Lys Thr Met Ala Ile Tyr Tyr 215 720 gga cet gtt ttt gtg ttc ggc agc atg ctg gtc att acc acc ttc cta Gly Pro Val Phe Val Phe Gly Ser Met Leu Val Ile Thr Thr Phe Leu 230 768 cac cac aat gat gag gag acc cca tgg tac gcc gac tcg gag tgg acg His His Asn Asp Glu Glu Thr Pro Trp Tyr Ala Asp Ser Glu Trp Thr 245 tac gtc aag ggc aac ctc tcg tcc gtg gac cga tcg tac ggc gcg ctc 816 Tyr Val Lys Gly Asn Leu Ser Ser Val Asp Arg Ser Tyr Gly Ala Leu 265 att gac aac ctg agc cac aac atc ggc acg cac cag atc cac cat ctt 864 Ile Asp Asn Leu Ser His Asn Ile Gly Thr His Gln Ile His His Leu 280 ttc cct atc att ccg cac tac aaa ctc aag aaa gcc act gcg gcc ttc 912 Phe Pro Ile Ile Pro His Tyr Lys Leu Lys Lys Ala Thr Ala Ala Phe 300

cac cag gct ttc cct gag ctc gtg cgc aag agc gac gag cca att atc

His Gln Ala Phe Pro Glu Leu Val Arg Lys Ser Asp Glu Pro Ile Ile

aag get tte tte egg gtt gga egt ete tae gea aac tae gge gtt gtg Lys Ala Phe Phe Arg Val Gly Arg Leu Tyr Ala Asn Tyr Gly Val Val

310

960

1008

138 335 330 325 gac cag gag gcg aag ctc ttc acg cta aag gaa gcc aag gcg gcg acc 1056 Asp Gln Glu Ala Lys Leu Phe Thr Leu Lys Glu Ala Lys Ala Ala Thr 345 1086 gag gcg gcc aag acc aag tcc acg taa Glu Ala Ala Ala Lys Thr Lys Ser Thr 355 <210> 88 <211> 361 <212> PRT <213> Phytophthora infestans <400> 88 Met Ala Thr Lys Glu Ala Tyr Val Phe Pro Thr Leu Thr Glu Ile Lys Arg Ser Leu Pro Lys Asp Cys Phe Glu Ala Ser Val Pro Leu Ser Leu 25 Tyr Tyr Thr Val Arg Cys Leu Val Ile Ala Val Ala Leu Thr Phe Gly 40 Leu Asn Tyr Ala Arg Ala Leu Pro Glu Val Glu Ser Phe Trp Ala Leu 55 Asp Ala Ala Leu Cys Thr Gly Tyr Ile Leu Leu Gln Gly Ile Val Phe 70 Trp Gly Phe Phe Thr Val Gly His Asp Ala Gly His Gly Ala Phe Ser 85 Arg Tyr His Leu Leu Asn Phe Val Val Gly Thr Phe Met His Ser Leu 105 Ile Leu Thr Pro Phe Glu Ser Trp Lys Leu Thr His Arg His His His .120 Lys Asn Thr Gly Asn Ile Asp Arg Asp Glu Val Phe Tyr Pro Gln Arg 135 Lys Ala Asp Asp His Pro Leu Ser Arg Asn Leu Ile Leu Ala Leu Gly 150 Ala Ala Trp Leu Ala Tyr Leu Val Glu Gly Phe Pro Pro Arg Lys Val 165 Asn His Phe Asn Pro Phe Glu Pro Leu Phe Val Arg Gln Val Ser Ala 185

Val Val Ile Ser Leu Leu Ala His Phe Phe Val Ala Gly Leu Ser Ile

200

195

Tyr	Leu 210	Ser	Leu	Gln	Leu	Gly 215	Leu	Lys	Thr	Met	Ala 220	Ile	Tyr	Tyr	Tyr	
Gly 225	Pro	Val	Phe	Val	Phe 230	Gly	Ser	Met	Leu	Val 235	Ile	Thr	Thr	Phe	Leu 240	
His	His	Asn	Asp	Glu 245	Glu	Thr	Pro	Trp	туr 250	Ala	Asp	Ser	Glu	Trp 255	Thr	
Tyr	Val	Lys	Gly 260	Asn	Leu	Ser	Ser	Val 265	Asp	Arg	Ser	Tyr	Gly 270	Ala	Leu	
Ile	Asp	Asn 275	Leu	Ser	His	Asn	Ile 280	Gly	Thr	His	Gln	Ile 285	His	His	Leu	
Phe	Pro 290	Ile	Ile	Pro	His	Tyr 295	Lys	Leu	Lys	Lys	Ala 300	Thr	Ala	Ala	Phe	
His 305	Gln	Ala	Phe	Pro	Glu 310		Val	Arg	Lys	Ser 315	Asp	Glu	Pro	Ile	Ile 320	
Lys	Ala	Phe	Phe	Arg 325		Gly	Arg	Leu	туr 330	Ala	. Asn	Tyr	Gly	Val 335	Val	
Asŗ	Gln	. Glu	Ala 340		Leu	Phe	Thr	Leu 345		Glu	. Ala	Lys	Ala 350	. Ala	Thr	
Glu	ı Ala	Ala 355		Lys	Thr	. Lys	Sex 360									
		89 1371 DNA Osti	ceoco	occus	s tau	ıri										
<22	20> 21> 22> 23>		(13 ta-6		atura	ıse										
ato	00> g tg: t Cy:	a att	g gag 1 Gli	g acg u Thi	g gaa r Gl	a aal u Asi	t aad 1 Asi	c gat n As <u>r</u>	= ggg 5 Gly 10	g at y Il	c cc e Pr	e acc	g gto Val	g gaq l Glu 15	g atc ı Ile	48
gc Al	g tt a Ph	c ga e As	c gg p Gl 20	t ga y Gl	g cg	g ga	g cg u Ar	g gcg g Ala 25	g ga	g gc u Al	a aa a As:	c gtg n Val	g aag 1 Ly: 30	s Le	g tcc ı Ser	96
gc Al	g ga a Gl	g aa u Ly 35	s Me	g ga t Gl	g cc u Pr	g gc o`Al	g gc a Al 40	a Le	g gc u Al	g aa a Ly	g ac	g tto r Pho 45	c gc e Al	g ag a Ar	g cgg g Arg	144
ta	c gt	c gt	g at	c ga	g gg	g gt	g ga	g ta	c ga r As	t gt	g ac	g ga r Asi	t tt p Ph	t aa e Lv	g cac s His	192

140 55 50 ccg gga gga acg gtt att ttc tat gcg ttg tca aac acc ggg gcg gac Pro Gly Gly Thr Val Ile Phe Tyr Ala Leu Ser Asn Thr Gly Ala Asp 75 gcg acg gaa gcg ttc aag gag ttt cat cat cgg tcg aga aag gcg agg 288 Ala Thr Glu Ala Phe Lys Glu Phe His His Arg Ser Arg Lys Ala Arg 85 aaa gee ttg geg geg ete eeg tet ega eeg gee aag aeg gee aag gtg 336 Lys Ala Leu Ala Ala Leu Pro Ser Arg Pro Ala Lys Thr Ala Lys Val 100 gac gac gcg gag atg ctc caa gat ttc gcc aag tgg cgg aaa gaa ttg 384 Asp Asp Ala Glu Met Leu Gln Asp Phe Ala Lys Trp Arg Lys Glu Leu 1.20 gag aga gat gga ttc ttc aag ccc tct ccg gcg cac gtg gcg tat cgc 432 Glu Arg Asp Gly Phe Phe Lys Pro Ser Pro Ala His Val Ala Tyr Arg 135 ttc gcc gag ctc gcg gcg atg tac gct ctc ggg acg tac ctg atg tac 480 Phe Ala Glu Leu Ala Ala Met Tyr Ala Leu Gly Thr Tyr Leu Met Tyr 150 gct cga tac gtc gtc tcc tcg gtg ctc gtg tac gct tgc ttt ttc ggc Ala Arg Tyr Val Val Ser Ser Val Leu Val Tyr Ala Cys Phe Phe Gly 528 165 576 gec ega tge ggt tgg gtg cag cae gag gge gga cae age teg etg aeg Ala Arg Cys Gly Trp Val Gln His Glu Gly Gly His Ser Ser Leu Thr 185 180 ggc aac att tgg tgg gac aag cgc atc cag gcc ttc aca gcc ggg ttc 624 Gly Asn Ile Trp Trp Asp Lys Arg Ile Gln Ala Phe Thr Ala Gly Phe 205 200 ggt ctc gcc ggt agc ggc gac atg tgg aac tcg atg cac aac aag cat 672 Gly Leu Ala Gly Ser Gly Asp Met Trp Asn Ser Met His Asn Lys His 215 cac gcg acg cct caa aag gtt cgt cac gac atg gat ctg gac acc acc 720 His Ala Thr Pro Gln Lys Val Arg His Asp Met Asp Leu Asp Thr Thr 225 230 768 ccc gcg gtg gcg ttc ttc aac acc gcg gtg gaa gac aat cgt ccc cgt Pro Ala Val Ala Phe Phe Asn Thr Ala Val Glu Asp Asn Arg Pro Arg 245 ggc ttt agc aag tac tgg ttg cgc ctt cag gcg tgg acc ttc atc ccc 816 Gly Phe Ser Lys Tyr Trp Leu Arg Leu Gln Ala Trp Thr Phe Ile Pro 260 864 gtg acg tee gge ttg gtg ete ett tte tgg atg ttt tte ete eac ece Val Thr Ser Gly Leu Val Leu Leu Phe Trp Met Phe Phe Leu His Pro 280 275 912 tee aag get tig aag ggt gge aag tae gaa gag tig gtg tgg atg ete Ser Lys Ala Leu Lys Gly Gly Lys Tyr Glu Glu Leu Val Trp Met Leu 290 960 gec geg cae gte ate ege aeg tgg aeg ate aag geg gtg aee gga tte

Ala Ala His Val Ile Arg Thr Trp Thr Ile Lys Ala Val Thr Gly Phe

acc gcg atg cag tcc tac ggc tta ttt ttg gcg acg agc tgg gtg agc Thr Ala Met Gln Ser Tyr Gly Leu Phe Leu Ala Thr Ser Trp Val Ser 1008

310

141 335 330 325 ggc tgc tat ctg ttt gca cac ttc tcc acg tcg cac acg cac ctg gat 1056 Gly Cys Tyr Leu Phe Ala His Phe Ser Thr Ser His Thr His Leu Asp 345 gtg gtg ccc gcg gac gag cat ctc tcc tgg gtt cga tac gcc gtc gat 1104 Val Val Pro Ala Asp Glu His Leu Ser Trp Val Arg Tyr Ala Val Asp 360 cac acg atc gac atc gat ccg agt caa ggt tgg gtg aac tgg ttg atg 1152 His Thr Ile Asp Ile Asp Pro Ser Gln Gly Trp Val Asn Trp Leu Met 370 gge tac ctc aac tgc caa gtc atc cac cac ctc ttt ccg agc atg ccg 1200 Gly Tyr Leu Asn Cys Gln Val Ile His. His Leu Phe Pro Ser Met Pro 395 390 1248 cag ttc cgc cag ccc gag gta tct cgc cgc ttc gtc gcc ttt gcg aaa Gln Phe Arg Gln Pro Glu Val Ser Arg Arg Phe Val Ala Phe Ala Lys 405 aag tgg aac ctc aac tac aag gtc atg acc tac gcc ggt gcg tgg aag 1296 Lys Trp Asn Leu Asn Tyr Lys Val Met Thr Tyr Ala Gly Ala Trp Lys 425 420 gca acg ctc gga aac ctc gac aac gtg ggt aag cac tac tac gtg cac 1344 Ala Thr Leu Gly Asn Leu Asp Asn Val Gly Lys His Tyr Tyr Val His 440 435 1371 ggc caa cac tcc gga aag acg gcg taa Gly Gln His Ser Gly Lys Thr Ala 455 <210> 90 <211> 456 <212> PRT <213> Ostreococcus tauri <400> 90 Met Cys Val Glu Thr Glu Asn Asn Asp Gly Ile Pro Thr Val Glu Ile Ala Phe Asp Gly Glu Arg Glu Arg Ala Glu Ala Asn Val Lys Leu Ser Ala Glu Lys Met Glu Pro Ala Ala Leu Ala Lys Thr Phe Ala Arg Arg Tyr Val Val Ile Glu Gly Val Glu Tyr Asp Val Thr Asp Phe Lys His Pro Gly Gly Thr Val Ile Phe Tyr Ala Leu Ser Asn Thr Gly Ala Asp Ala Thr Glu Ala Phe Lys Glu Phe His His Arg Ser Arg Lys Ala Arg

Lys Ala Leu Ala Ala Leu Pro Ser Arg Pro Ala Lys Thr Ala Lys Val

- Asp Asp Ala Glu Met Leu Gln Asp Phe Ala Lys Trp Arg Lys Glu Leu 115 120 125
- Glu Arg Asp Gly Phe Phe Lys Pro Ser Pro Ala His Val Ala Tyr Arg 130 135 140
- Phe Ala Glu Leu Ala Ala Met Tyr Ala Leu Gly Thr Tyr Leu Met Tyr 145 150 155 160
- Ala Arg Tyr Val Val Ser Ser Val Leu Val Tyr Ala Cys Phe Phe Gly
 165 170 175
- Ala Arg Cys Gly Trp Val Gln His Glu Gly Gly His Ser Ser Leu Thr 180 185 190
- Gly Asn Ile Trp Trp Asp Lys Arg Ile Gln Ala Phe Thr Ala Gly Phe 195 200 205
- Gly Leu Ala Gly Ser Gly Asp Met Trp Asn Ser Met His Asn Lys His 210 220
- His Ala Thr Pro Gln Lys Val Arg His Asp Met Asp Leu Asp Thr Thr 225 230 235
- Pro Ala Val Ala Phe Phe Asn Thr Ala Val Glu Asp Asn Arg Pro Arg 245 250 255
- Gly Phe Ser Lys Tyr Trp Leu Arg Leu Gln Ala Trp Thr Phe Ile Pro 260 265 270
- Val Thr Ser Gly Leu Val Leu Leu Phe Trp Met Phe Phe Leu His Pro 275 280 285
- Ser Lys Ala Leu Lys Gly Gly Lys Tyr Glu Glu Leu Val Trp Met Leu 290 295 300
- Ala Ala His Val Ile Arg Thr Trp Thr Ile Lys Ala Val Thr Gly Phe 305 310 315 320
- Thr Ala Met Gln Ser Tyr Gly Leu Phe Leu Ala Thr Ser Trp Val Ser 325 330 335
- Gly Cys Tyr Leu Phe Ala His Phe Ser Thr Ser His Thr His Leu Asp 340 345 350
- Val Val Pro Ala Asp Glu His Leu Ser Trp Val Arg Tyr Ala Val Asp 355 360 365
- His Thr Ile Asp Ile Asp Pro Ser Gln Gly Trp Val Asn Trp Leu Met 370 380

Gly T 385	yr	Leu	Asn (Gln 390	Val :	[le	His	His	Leu 395	Phe	Pro	Ser 1	Met	Pro 400	
Gln F	?he	Arg		Pro 405	Glu	Val	Ser	Arg	Arg 410	Phe	Val	Ala	Phe	Ala 415	Lys	
Lys 1	Irp	Asn	Leu 420	Asn	Tyr	Lys `	Val	Met 425	Thr	Tyr	Ala	Gly	Ala 430	Trp	Lys	
Ala 7	Thr	Leu 435	Gly	Asn	Leu		Asn 440	Val.	Gly	Lys	His	Tyr 445	Tyr	Val	His	
	Gln 450	His	Ser	Gly	Lys	Thr 455	Ala									
<210: <211: <212: <213:	> >	91 606 DNA Ostr	eocod	ccus	tau	ci										
	.> :>		.(600 a-5-1		tura	se										
<400 atg Met 1	tac	91 ggt Gly	ttg Leu	cta Leu 5	tcg Ser	ctc Leu	aag Lys	tcg Ser	tgc Cys 10	ttc Phe	gtc Val	gac Asp	gat Asp	ttc Phe 15	aac Asn	48
gcc Ala	tac Tyr	tto Phe	tcc Ser 20	gga Gly	cgc Arg	atc Ile	ggc Gly	tgg Trp 25	gtc Val	aag Lys	gtg Val	atg Met	aag Lys 30	ttc Phe	acc Thr	96
cgc Arg	GJ7 aad	gag Glu 35	gcg Ala	atc Ile	gca Ala	ttt Phe	tgg Trp 40	Gly ggc	acc Thr	aag Lys	ctc Leu	ttg Leu 45	tgg Trp	gcc	gcg Ala	144
tat Tyr	tac Ty:	c cto	gcg Ala	tto Leu	ccg Pro	cta Leu 55	aag Lys	ato Met	tcg Ser	cat His	cgg Arg 60	.ccg	ctc Leu	G17 ggs	gaa Glu	192
ctc Leu 65	cto	e gea u Ala	a ctc a Leu	tgg Trp	g gcc Ala 70	gtc Val	acc Thr	gaç Glu	g tto 1 Phe	gtc Va] 75	acc L Thr	: gga	tgg Trp	Let	ttg Leu 80	240
. gcg Ala	t to Ph	c ato	g tto t Phe	caa Glr 85	a gto n Val	gcc L Ala	cac His	gto Val	gto L Vai 90	r GJ7 s ago	gag Gli	g gtt 1 Val	cac His	Pho 95	ttc Phe	288
acc Thr	ct Le	c ga u As	c gcg o Ala 100	a Lys	g aad s Asi	c cgc n Arg	gto Va	g aad 1 Asi 10	a Lei	g gga	a tg: y Tr:	o Gli	a gag / Glu 110	I AT	a cag a Gln	336
ctc Leu	at Me	g tc t Se 11	r Se	c gcg	g ga a Ası	t tto p`Phe	gc Ala 12	a Hi	c gga s Gl	a tc y Se:	d aag r Lys	y tti s Phe 12:	s .L.L.E	g ac	g cac r His	384
ttc Phe	to Se	c gg	a ggo y Gly	y Le	a aa u As	tac n Tyi	ca Gl:	a gt n Va	c gt 1 Va	с са l Ні	c ca s Hi	t cto s Le	e tto u Phe	c cc e Pr	g ggc o Gly	432

	130					135					140					
gtc Val 145	tgc Cys	cac His	gtg Val	cac His	tat Tyr 150	ccc Pro	gcg Ala	ctc Leu	Ala	cca Pro 155	att Ile	att Ile	aag Lys	gcg Ala	gca Ala 160	480
gct Ala	gag Glu	aag Lys	cac His	ggc Gly 165	ctc Leu	cac His	tac Tyr	cag Gln	att Ile 170	tac Tyr	ccc Pro	acg Thr	ttt Phe	tgg Trp 175	tcc Ser	528
gcc Ala	ctg Leu	cgc Arg	gcg Ala 180	cac His	ttc Phe	cgg Arg	cac His	ctc Leu 185	gcc Ala	aac Asn	gtc Val	ggc	cgc Arg 190	gcc Ala	gcg Ala	576
tac Tyr	gta Val	ccg Pro 195	tcc Ser	ctc Leu	caa Gln	acc Thr	gtc Val 200	gga Gly	tga							606
<210 <210 <210 <210	1>. : 2> :	92 201 PRT Ostr	eoco	ccus	taur	ri										
<40	0>	92														
Met 1	Tyr	Gly	Leu	Leu 5	Ser	Leu	Lys	Ser	Cys 10	Phe	Val	Asp	Asp	Phe 15	Asn	
Ala	Tyr	Phe	Ser 20	Gly	Arg	Ile	Gly	Trp 25	Val	Lys	Val	Met	Lys 30	Phe	Thr	
Arg	Gly	Glu 35	ı Ala	lle	Ala	Phe	Trp 40	Gly	Thr	Lys	Leu	Leu 45	Trp	Ala	Ala	
Tyr	туr 50	: Leu	ı Ala	ı Leu	. Pro	Leu 55	Lys	Met	Ser	His	Arg 60	Pro	Leu	. Gly	Glu	
Leu 65	ı Lev	ı Ala	a Leu	ı Trp	Ala 70	Val	Thr	Glu	Phe	Val	. Thr	Gly	Trp	Leu	Leu 80	
Alā	a Phe	e Met	: Phe	e Gln 85	ı Val	Ala	His	; Val	. Val 90	. Gl ₃	/ Glu	ı Val	. His	Phe 95	Phe	
Thi	: Lei	ı Ası	p Ala		a Asn	Arg	, Val	Asn 105	ı Leu	ı Gly	y Trg	Gly	/ Glu 110	ı Ala	Gln	
Leı	ı Me	t Se		r Ala	a Asr	Phe	e Ala 120	a His	s Glγ	/ Se:	r Lys	Phe 125	e Tri	Thi	His	
Ph	e Se: 13		y Gl	y Let	ı Ası	1 Ty:		n Val	l Val	l Hi	s His 140	s Lei D	ı Phe	e Pro	o Gly	
Va 14		s Hi	s Va	l Hi:	s Ty:	r Pro	o Al	a Lei	u Ala	a Pr 15	o Il. 5	e Il	e Ly:	s Ala	a Ala 160	
Al	a Gl	u Ly	s Hi	s Gl:		ı Hi	s Ty	r Gl	n Il 17	е Ту 0	r Pr	o Th	r Ph	e Tr	o Ser 5	

Ala	Leu	Arg	Ala	His	Phe	Arg	His	Leu	Ala	Asn	Val	G1y	Arg	Ala	Ala
		-	180					185					190		

Tyr	Val	Pro	Ser	Leu	Gln	Thr	Val	Gly
_		195					200	

<210> .93 <211> 714 <212> DNA <213> Ostreococcus tauri <220> <221> CDS <222> (1)(714) <223> Delta-5-Desaturase	
<pre><400> 93 atg gtg agc cat cac tcg tac tgt aac gac gcg gat ttg gat cag Met Val Ser His His Ser Tyr Cys Asn Asp Ala Asp Leu Asp Gln 1 5 10</pre>	gat 48 Asp
gtg tac acc gca ctg ccg ctc ctg cgc ctg gac ccg tct cag gag Val Tyr Thr Ala Leu Pro Leu Leu Arg Leu Asp Pro Ser Gln Glu 20 25 30	ttg 96 Leu
aag tgg ttt cat cga tac cag gcg ttt tac gcc ccg ctc atg tgg Lys Trp Phe His Arg Tyr Gln Ala Phe Tyr Ala Pro Leu Met Trp 35 40 45	ccg 144 Pro
ttt ttg tgg ctc gcg gcg cag ttt ggc gac gcg cag aac atc ctg Phe Leu Trp Leu Ala Ala Gln Phe Gly Asp Ala Gln Asn Ile Leu 50 55 60	atc 192
gac cga gcg tcg ccg ggc gtc gcg tac aag gga ttg atg gcg aac Asp Arg Ala Ser Pro Gly Val Ala Tyr Lys Gly Leu Met Ala Asr 65 70 75	gag 240 Glu 80
gtc gcg ctg tac gtt ctc ggt aag gtt tta cac ttt ggt ctt ctc Val Ala Leu Tyr Val Leu Gly Lys Val Leu His Phe Gly Leu Leu 85 . 90	ctc 288 Leu
ggc gtt cct gcg tac ttg cac gga ttg tcc aac gcg atc gtt cca Gly Val Pro Ala Tyr Leu His Gly Leu Ser Asn Ala Ile Val Pro 100 105 110	a ttc 336 o Phe
ttg gcg tac ggc gca ttc ggc tcc ttc gtc ctg tgc tgg ttc ttc	atc 384 E Ile
gtc agc cat aac ctc gaa gcg ctg aca ccc gtt aac ctt aac aag Val Ser His Asn Leu Glu Ala Leu Thr Pro Val Asn Leu Asn Lys 130 135 140	g tcc 432 s Ser
acg aag aac gac tgg ggg gcg tgg cag atc gag aca tcg gcg tc Thr Lys Asn Asp Trp Gly Ala Trp Gln Ile Glu Thr Ser Ala Se: 145 150 155	t tgg 480 r Trp 160
ggc aac gcg ttc tgg agc ttc ttc tct gga ggt ctg aac ctg ca Gly Asn Ala Phe Trp Ser Phe Phe Ser Gly Gly Leu Asn Leu Gl 165 170	n lle
gag cac cac ctc ttc ccg ggc atg gcg cac aac ctg tac ccg aa Glu His His Leu Phe Pro Gly Met Ala His Asn Leu Tyr Pro Ly	g atg 576 s Met

									1-4	U							
			180					185					190				
gtg Val	ccg Pro	atc Ile 195	atc Ile	aag Lys	gac Asp	gag Glu	tgt Cys 200	gcg Ala	aaa Lys	gcg Ala	Gly	gtt Val 205	cgc Arg	tac Tyr	acc. Thr	624	
ggt Gly	tac Tyr 210	ggt Gly	ggc ggc	tac Tyr	Thr	ggc Gly 215	ctg Leu	ctc Leu	ccg Pro	atc Ile	acc Thr 220	ege Arg	gac Asp	atg Met	ttc Phe	672	
tcc Ser 225	tac Tyr	ctc Leu	cat His	aag Lys	tgt Cys 230	ggc	cga Arg	acg Thr	gcg Ala	aaa Lys 235	cta Leu	gcc Ala	taa			714	
<210 <211 <212 <213	L> 2 2> 1	94 237 PRT Ostre	30C0C	cus	taur	i											
<400		94															
Met 1	Val	Ser	His	His 5	Ser	Tyr	Cys	Asn	Asp 10	Ala	Asp	Leu	Asp	Gln 15	Asp		
Val	Tyr	Thr	Ala 20	Leu	Pro	Leu	Leu	Arg 25	Leu	Asp	Pro	Ser	Gln 30	Glu	Leu		
Lys	Trp	Phe 35	His	Arg	Tyr	Gln	Ala 40	Phe	Tyr	Ala	Pro	Leu 45	Met	Trp	Pro		
Phe	Leu 50	Trp	Leu	Ala	Ala	Gln 55	Phe	Gly	Asp	Ala	Gln 60	. Asn	Ile	Leu	Ile		
Asp 65	Arg	Ala	. Ser	Pro	Gly 70	Val	Ala	туr	Lys	Gly 75	Leu	Met	Ala	. Asn	Glu 80		
Val	Ala	. Leu	Tyr	Val 85	Leu	Gly	· Lys	Val	Leu 90	. His	Phe	gly	/ Leu	ь Leu 95	Leu		
Gly	Val	. Pro	Ala 100		Leu	. His	: Gly	Leu 105	. Ser	Asr	n Ala	i Il∈	2 Val	Pro	Phe		
Leu	ı Ala	115		Ala	Phe	: Gly	Ser 120		val	. Lei	а Суя	129	Phe	Phe	e Ile		
Va]	. Sei 130		s Asr	. Leu	ı Glu	135		ı Thr	: Pro	val	l Ası 140	ı Lev	ı Asr	ı Lys	s Ser		
Th:		s Ası	n Asp	Trg	Gl ₃ 150		a Trp	Glr	ı Ile	e Gl: 15	ı Th:	r Se:	r Ala	a Sei	160		
Gl	y Ası	n Ala	a Phe	e Tri	Sei	Phe	e Phe	e Sei	170	y Gl;	A re	u As:	n Lei	u Gli 17!	n Ile		
Glı	u Hi	s Hi	s Let 180		e Pro	o Gly	y Mei	L Ala		s As	n Le	и Ту	r Pr	0 LY:	s Met		

Val		Ile : L95	Ile :	Lys .	Asp (Cys 200	Ala i	Lys .	Ala	Gly	Val . 205	Arg	Tyr	Thr	
Gly	Tyr (210	Gly (Gly '	Tyr	Thr	Gly 215	Leu	Leu	Pro	Ile	Thr 220	Arg	Asp	Met	Phe	
Ser 225	Tyr l	Leu :	His		Cys 230	Gly	Arg	Thr	Ala	Lys 235	Leu	Ala				
<210 <211 <212 <213	> 1 > D	611 NA	0000	cus	taur	·i										
<220 <221 <222 <223	.> C:		(161 1-4-E		uras:	se										
<400 atg Met 1)> 9 tac Tyr	ctc	gga Gly	cgc Arg 5	ggc Gly	cgt Arg	ctc Leu	gag Glu	agc Ser 10	G1y ggg	acg Thr	acg Thr	cga Arg	ggg Gly 15	atg Met	48
atg Met	cgg Arg	acg Thr	cac His 20	gcg Ala	cgg Arg	cga Arg	ccg Pro	tcg Ser 25	acg Thr	acg Thr	tcg Ser	aat Asn	ccg Pro 30	tg c Cys	gcg Ala	96
cgg Arg	tca Ser	cgc Arg 35	gtg Val	cgt Arg	aag Lys	acg Thr	acg Thr 40	gag Glu	cga Arg	tcg Ser	ctc Leu	gcg Ala 45	cga Arg	gtg Val	cga Arg	144
cga Arg	tcg Ser 50	acg Thr	agt Ser	gag Glu	aag Lys	gga Gly 55	agc Ser	gcg Ala	ctc Leu	gtg Val	ctc Leu 60	gag Glu	cga Arg	gag Glu	agc Ser	192
gaa Glu 65	cgg Arg	gag Glu	aag Lys	gag Glu	gag Glu 70	gga Gly	gly	aaa Lys	gcg Ala	cga Arg 75	gcg Ala	gag Glu	gga Gly	ttg Leu	cga Arg 80	240
ttc Phe	caa Gln	cgc Arg	ccg Pro	gac Asp 85	gtc Val	gcc Ala	gcg Ala	ccg Pro	90 GJA āāā	gga Gly	gcg Ala	gat Asp	cct	tgg Trp 95	aac Asn	288
gac Asp	gag Glu	aag Lys	tgg Trp 100	Thr	aag Lys	acc Thr	aag Lys	tgg Trp 105	Thr	gta Val	ttc Phe	aga Arg	gac Asp 110) var	gcg Ala	336
tac Tyr	gat Asp	ctc Leu 115	Asp	cct	ttc Phe	ttc Phe	gct Ala 120	. Arg	cac His	ccc Pro	gga Gly	gga Gly 125	Ası	tgg Trp	ctc Leu	384
ctg Leu	aac Asn 130	Leu	gcc Ala	gtç Val	. Gly	cga Arg 135	Asp	tgo Cys	acc Thr	gcg Ala	cto Lev 140	1 ITE	gaa Gli	a tco 1 Ser	tat Tyr	432
cac His 145	ttg Leu	cga	r cca	gaç Glu	g gtg 1 Val 150	. Ala	g aco	g gct Ala	cgt Arg	tto Phe 155	a Aro	a ato g Met	cto Lei	g cco	aaa Lys 160	480
cto	gag Glu	gat Asp	ttt Phe	ccc Pro	gto Val	gaç L Glu	g gco ı Ala	e gto a Val	J CCC	c aag	g tco	c ccg	g ag	a ccg	g aac o Asn	528

175 170 165 gat teg eeg tta tac aac aac att ege aac ega gte ege gaa gag ete Asp Ser Pro Leu Tyr Asn Asn Ile Arg Asn Arg Val Arg Glu Glu Leu 180 ttc cca gag gag gga aag aat atg cac aga cag ggc ggc gac cac ggc 624 Phe Pro Glu Glu Gly Lys Asn Met His Arg Gln Gly Gly Asp His Gly 200 gac ggt gac gat tot ggg ttt cgc cgc ctt ttg ctt atg ccg tgt acc 672 Asp Gly Asp Asp Ser Gly Phe Arg Arg Leu Leu Met Pro Cys Thr 220 210 215 720 Tyr Ser Leu Pro Gly Val Pro Phe Arg Leu Pro Pro Arg Val Ser Arg 235 ggg cgt gga ttg gtc tca cga ttc agg cac tgc gcc aac cac ggc gcg 768 Gly Arg Gly Leu Val Ser Arg Phe Arg His Cys Ala Asn His Gly Ala 250 245 atg tot cot tog cog goo gtt aac ggc gtc ctc ggt ttg acg aac gat 816 Met Ser Pro Ser Pro Ala Val Asn Gly Val Leu Gly Leu Thr Asn Asp ctc atc ggc ggc tcg tcc ttg atg tgg aga tat cac cac caa gtc agc Leu Ile Gly Gly Ser Ser Leu Met Trp Arg Tyr His His Gln Val Ser 275 cac cac att cat tgc aac gac aac gcc atg gat caa gac gtg tac acg His His Ile His Cys Asn Asp Asn Ala Met Asp Gln Asp Val Tyr Thr 912 295 290 geg atg cca tta ttg cgt ttc gac gct cgc cgg ccc aag tcc tgg tac 960 Ala Met Pro Leu Leu Arg Phe Asp Ala Arg Arg Pro Lys Ser Trp Tyr 310 1008 cat ege tte cag cag tgg tac atg ttt tta geg tte eeg ttg ttg cag His Arg Phe Gln Gln Trp Tyr Met Phe Leu Ala Phe Pro Leu Leu Gln 330 gtt gcc ttc caa gtc gga gac att gcc gca ctg ttc acg cgt gat acc 1056 Val Ala Phe Gln Val Gly Asp Ile Ala Ala Leu Phe Thr Arg Asp Thr 345 gaa ggc gct aag ctt cac ggg gcg acg acg tgg gag ctt acc acg gtt 1104 Glu Gly Ala Lys Leu His Gly Ala Thr Thr Trp Glu Leu Thr Thr Val 360 365 355 gtc ctc ggt aag att gtg cac ttc ggt ctt ttg ttg ggg ccg ttg atg 1152 Val Leu Gly Lys Ile Val His Phe Gly Leu Leu Gly Pro Leu Met aac cac gcg gtg agt tot gtt ttg ctg ggg atc gtc ggt ttc atg gcg 1200 Asn His Ala Val Ser Ser Val Leu Leu Gly Ile Val Gly Phe Met Ala 395 tgc caa ggt ata gtt ctg gcg tgc acg ttt gct gtg agt cac aat gtc 1248 Cys Gln Gly Ile Val Leu Ala Cys Thr Phe Ala Val Ser His Asn Val 410 405 gcg gag gcg aag ata cct gag gac acc gga gga gaa gcc tgg gag aga 1296 Ala Glu Ala Lys Ile Pro Glu Asp Thr Gly Gly Glu Ala Trp Glu Arg gat tgg ggt gtc cag cag ttg gtg act agc gcc gac tgg ggt gga aag 1344 Asp Trp Gly Val Gln Gln Leu Val Thr Ser Ala Asp Trp Gly Gly Lys

									• •	•						
		435					440					445				
ata Ile	ggt Gly 450	aac Asn	ttc Phe	ttc Phe	acg Thr	ggt Gly 455	ggc Gly	ctc Leu	aac Asn	ttg Leu	caa Gln 460	gtt Val	gag Glu	cac His	cac His	1392
ttg Leu 465	ttt Phe	ccg Pro	gcg Ala	att Ile	tgc Cys 470	ttc Phe	gtc Val	cac His	tac Tyr	ccg Pro 475	gac Asp	atc Ile	gcg Ala	aag Lys	atc Ile 480	1440
gtg Val	aag Lys	gaa Glu	gaa Glu	gcg Ala 485	gcc Ala	aag Lys	ctc Leu	aac Asn	atc Ile 490	cct Pro	tac Tyr	gcg Ala	tct Ser	tac Tyr 495	agg Arg	1488
act Thr	ctt Leu	cct Pro	ggt Gly 500	att Ile	ttc .Phe	gtc Val	caa Gln	ttc Phe 505	tgg Trp	aga Arg	ttt Phe	atg Met	aag Lys 510	gac Asp	atg Met	1536
ggc	acg Thr	gct Ala 515	gag Glu	caa Gln	att Ile	ggt Gly	gaa Glu 520	gtt Val	cca Pro	ttg Leu	ccg Pro	aag Lys 525	att Ile	ccc Pro	aac Asn	1584
ccg Pro	cag Gln 530	ctc Leu	gcg Ala	ccg Pro	aag Lys	ctc Leu 535	gct Ala	tag								1611
<21 <21	1> 2> 3>	PRT Ostr	eoco	ccus	tau	ri									٠	
<40	0>	96														
Met 1	Tyr	Leu	Gly	Arg 5	Gly	Arg	Leu	Glu	Ser 10	Gly	Thr	Thr	Arg	Gly 15	Met	
Met	: Arg	Thr	His 20	Ala	. Arg	Arg	Pro	Ser 25	Thr	Thr	Ser	Asn	Pro 30	Cys	Ala	
Arg	ser	35	y Val	. Arg	, Lys	Thr	Thr 40	Glu	ı Arg	, Ser	: Leu	ı Ala 45	Arg	Val	. Arg	
Arg	g Sei 50	r Thi	s Sei	Glu	ı Lys	61y 55	ser,	: Ala	ı Lev	ı Val	L Leu 60	ı Glu	Arg	Glu	ı Ser	
Glı 65	ı Ar	g Glı	ı Lys	s Glu	1 Glu 70	ı Gly	r Gly	/ Lys	s Ala	a Arg 75	g Ala	a Glu	Gly	Leu	arg 80	
Phe	e G1:	n Ar	g Pro	Ası 85	y Val	L Alá	a Ala	a Pro	o Gly 90		y Ala	a Asp	Pro	o Tri 95	o Asn	
Asj	p Gl	u Ly	s Tr		r Lys	s Thi	r Lys	s Tri		r Vai	l Ph	e Arg	ASI 11(o Vai	l Ala	
ТУ	r As	p Le 11		p Pro	o Pho	e Phe	e Ala 120		g Hi	s Pr	o Gl	y Gly 125	y Ası	o Tr	p Leu	
Le	u As 13		u Al	a Va	l Gl	y Ar		р Су:	s Th	r Al	a Le 14	u Ile O	e Glı	u Se	r Tyr	,

нie	Leu	Arg	Pro	Glu '	Val	Ala	Thr	Ala	Arg	Phe	Arg	Met	Leu	Pro	Lys
145		3			150					155					160
Leu	Glu	Asp	Phe	Pro 165	Val	Glu	Ala	Val	Pro 170	Lys	Ser	Pro	Arg	Pro 175	Asn
Asp	Ser	Pro	Leu 180	Tyr	Asn	Asn	Ile	Arg 185	Asn	Arg	Val	Arg	Glu 190	Glu	Leu
Phe	Pro	Glu 195	Glu	Gly	Lys	Asn	Met 200	His	Arg	Gln	Gly	Gly 205	Asp	His	Gly
Asp	Gly 210	Asp	Asp	Ser	Gly	Phe 215	Arg	Arg	Leu	Leu	Leu 220	Met	Pro	Cys	Thr
Tyr 225	Ser	Leu	Pro	Gly	Val 230	Pro	Phe	Arg	Leu	Pro 235	Pro	Arg	Val	Ser	Arg 240
Gly	Arg	Gly	Leu	Val 245	Ser	Arg	Phe	Arg	His 250		Ala	Asn	His	Gly 255	Ala
Met	Ser	Pro	Ser 260	Pro	Ala	Val	Asn	G1y 265	Val	Leu	G1ÿ	Leu	Thr 270	Asn	qaA
Leu	·Ile	Gly 275		Ser	Ser	Leu	Met 280	Trp	Arg	Tyr	His	His 285	Gln	Val	Ser
His	His 290	Ile	His	Cys	Asn	Asp 295		Ala	. Met	. Asp	Gln 300	qaA`	Val	Tyr	Thr
Ala 305		Pro	Leu	Leu	Arg 310	Phe	Asp	Ala	. Arg	Arg 315	Pro	Lys	Ser	Trp	Tyr 320
His	Arg	Phe	Gln	Gln 325		Tyr	Met	. Phe	330	ı Ala	Phe	Pro	Leu	Leu 335	. Gln·
Val	. Ala	. Phe	Gln 340		Gly	· Asr) Ile	Ala 345	a Ala	a Leu	. Phe	Thr	: Arg 350	Asp	Thr
Glu	ı Gly	7 Ala 355		Leu	. His	Gl	7 Ala 360		Thi	r Trg	o Glu	1 Leu 365	Thr	Thr	Val
Va]	L Let 370		, ras	: Ile	· Val	His 375		e Gl	/ Lei	u Lei	1 Let 380	ı Gly	/ Pro	Lev	1 Met
Asi 385		s Alá	a Val	. Ser	Ser 390		l Lei	ı Lei	ı Gl	y Ile 395		l Gly	y Phe	e Met	Ala 400

Cys Gln Gly Ile Val Leu Ala Cys Thr Phe Ala Val Ser His Asn Val 405 410 415

Ala Glu Ala	Lys Ile 420	Pro Glu	Asp Th	hr Gly 25	Gly Gl	u Ala T 4	rp Glu 30	Arg	
Asp Trp Gly		Gln Leu	. Val Tl 440	hr Ser	Ala As	p Trp 0 445	Sly Gly	Lys	
Ile Gly Asn 450	Phe Phe	Thr Gly 455		eu Asn	Leu Gl 46	n Val 0	Glu His	His	
Leu Phe Pro	Ala Ile	Cys Phe	· Val H	is Tyr	Pro As 475	sp Ile A	Ala Lys	Ile 480	
Val Lys Glu	Glu Ala 485		: Leu A	sn Ile 490	Pro Ty	yr Ala S	Ser Tyr 495	Arg	
Thr Leu Pro	Gly Ile 500	Phe Val		he Trp	Arg Ph	ne Met :	Lys Asp 510	Met	
Gly Thr Ala		lle Gl	y Glu V 520	/al Pro	Leu Pr	ro Lys 525	Ile Pro	Asn	
Pro Gln Le	ı Ala Pro	Lys Le							
<210> 97 <211> 145 <212> DNA <213> Tha		ca pseud	onana						
<220> <221> CDS <222> (1)	(1455)								
<223> Del	ta-6-Des	aturase							
<223> Del <400> 97 atg gga aa Met Gly Ly	a gga gg	a gac go	a gcc : a Ala .	gca gct Ala Ala 10	acc a Thr L	lag cgt Lys Arg	agt gg Ser Gl 15	y Ala	48
<400> 97 atg gga aa Met Gly Ly	a gga gg s Gly Gl 5	a gac go y Asp Al	a Ala . g cag o Gln	Ala Ala 10 aag tac	Thr L	gg cag	Ser GI 15 gag gt	y Ala g aag	48 96
<400> 97 atg gga aa Met Gly Ly 1	a gga gg s Gly Gl 5 sg gcg ga su Ala Gl 20 sc acc cc	a gac go y Asp Al g aag co u Lys Pr	a Ala . g cag o Gln	Ala Ala 10 aag tac Lys Tyr 25 tgg gta	act to Thr T	gg cag Trp Gln	gag gt Glu Va 30	g aag l Lys a gtc	
<400> 97 atg gga aa Met Gly Ly 1 ttg aaa tt Leu Lys Le aag cac at Lys His II	a gga gg s Gly Gl 5 sg gcg ga su Ala Gl 20 sc acc cc ac Thr Pr	a gac go y Asp Al g aag co u Lys Pr c gac ga co Asp As	g cag co Gln at gcc sp Ala 40 ac gac yr Asp	Ala Ala 10 aag tac Lys Tyr 25 tgg gta Trp Val	a Thr L cact t cThr T a gtc c l Val H c ggt g c Gly G	gg cag Trp Gln cac caa His Gln 45	gag gt Glu Va 30 aac aa Asn Ly	g aag l Lys a gtc s Val	96
<400> 97 atg gga aa Met Gly Ly 1 ttg aaa tt Leu Lys Le aag cac at Lys His II 35 tac gac gt Tyr Asp Va	a gga gg s Gly Gl 5 s g gcg ga su Ala Gl 20 sc acc co e Thr Pr	a gac go y Asp Al g aag co u Lys Pr c gac ga o Asp As c tgg ta n Trp Tr	g cag co Gln at gcc sp Ala 40 ac gac yr Asp	Ala Ala 10 aag tac Lys Tyr 25 tgg gta Trp Val cac ccc His Pro	a Thr L a gtc c Val H c ggt g	gg cag Frp Gln cac caa His Gln 45 gga gcc Gly Ala	gag gt Glu Va 30 aac aa Asn Ly gtg gt Val Va	g aag l Lys a gtc s Val g ttc l Phe	96 144

				85					90					90		
ccg Pro	gag Glu	agt Ser	gtg Val 100	gag Glu	cat His	aag Lys	gat Asp	caa Gln 105	aga Arg	cag Gln	ttg Leu	gat Asp	ttc Phe 110	gag Glu	aag Lys	336
gga Gly	tat Tyr	cgt Arg 115	gat Asp	tta Leu	cgg Arg	gcc Ala	aag Lys 120	ctt Leu	gtc Val	atg Met	atg Met	ggg Gly 125	atg Met	ttc Phe	aag Lys	384
tcg Ser	agt Ser 130	aag Lys	atg Met	tat Tyr	tat Tyr	gca Ala 135	tac Tyr	aag Lys	tgc Cys	tcg Ser	ttc Phe 140	aat Asn	atg Met	tgc Cys	atg Met	432
tgg Trp 145	ttg Leu	gtg Val	gcg Ala	gtg Val	gcc Ala 150	atg Met	gtg Val	tac Tyr	tac Tyr	tcg Ser 155	gac Asp	agt Ser	ttg Leu	gca Ala	atg Met 160	480
cac His	att Ile	gga Gly	tcg Ser	gct Ala 165	ctc Leu	ttg Leu	ttg Leu	gga Gly	ttg Leu 170	ttc Phe	tgg Trp	cag Gln	cag Gln	tgt Cys 175	gga Gly	528
tgg Trp	ctt Leu	gcg Ala	cac His 180	gac Asp	ttt Phe	ctt Leu	cac His	cac His 185	caa Gln	gtc Val	ttt Phe	aag Lys	caa Gln 190	cga Arg	aag Lys	576
tac Tyr	gga Gly	gat Asp 195	ctc Leu	gtt Val	ggc Gly	atc Ile	ttt Phe 200	tgg Trp	gga Gly	gat Asp	ctc Leu	atg Met 205	cag Gln	Glà àaà	ttc Phe	624
tcg Ser	atg Met 210	cag Gln	tgg Trp	tgg Trp	aag Lys	aac Asn 215	aag Lys	cac His	aat Asn	Gly	cac His 220	His	gct Ala	gtt Val	ccc Pro	672
aac Asn 225	ttg Leu	cac His	aac Asn	tct Ser	tcc Ser 230	ttg Leu	gac Asp	agt Ser	cag Gln	gat Asp 235	Gly	gat Asp	ccc Pro	gat Asp	att Ile 240	720
gat Asp	acc Thr	atg Met	cca Pro	ctc Leu 245	ctt Leu	gct Ala	tgg Trp	agt Ser	ctc Leu 250	. Lys	cag Gln	gct Ala	cag Gln	agt Ser 255	Phe	768
aga Arg	gag Glu	atc Ile	aat Asn 260	Lys	gga Gly	aag Lys	gac Asp	agt Ser 265	Thr	ttc Phe	gto Val	aag Lys	tac Tyr 270	. Ala	atc Ile	816
. aaa Lys	tto Phe	cag Gln 275	Ala	ttc Phe	aca Thr	tac Tyr	tto Phe 280	Pro	atc Ile	cto Lev	cto Lev	ttg Lev 285	ı Ala	cgc Arg	atc Ile	864
tct Ser	tgg Trg 290		aat Asr	gaa Glu	tcc Ser	Phe 295	Lys	act Thr	gca Ala	tto Phe	300 Gl) gga	/ Let	gga Gly	gct Ala	gcc Ala	912
tcg Ser 305	: G1:	g aat 1 Asr	gco n Alá	aag Lys	tto Lev 310	ı Glu	, ttg Lei	g gag ı Glu	aaç Lys	g cgt s Arg 319	a GT	a ctt / Lei	caq ıGlı	g tad n Tym	c cca r Pro 320	960
ctt	"ttg 1 Le:	g gag ı Glı	g aaq ı Ly:	g ctt 5 Leu 325	ı Gl	a ato	e acc	c ctt r Leu	cat His	s Ty	c act	t tgg	g ato	t Phe	c gtc e Val 5	1008
cto	tci 1 Se:	t tco r Sei	gga Gly 34	y Phe	gga Gly	a agg	g tgg g Trj	g tct p Sea 345	: Le	ı Pro	a ta o Ty:	t tco	c ater Ile	e Me	g tat t Tyr	1056
tto Pho	tto Pho	c act	t gc r Ala	c aca a Thi	t Cy:	tco Sei	tc: Se:	g gga r Gly	a ct / Le	t tto u Pho	c ct	c gca u Ala	a tt a Le	g gt u Va	c ttt l Phe	1104

153 365 360 355 gga ttg gga cac aac ggt atg tca gtg tac gat gcc acc acc cga cct 1152 Gly Leu Gly His Asn Gly Met Ser Val Tyr Asp Ala Thr Thr Arg Pro 380 gac ttc tgg caa ctc caa gtc acc act aca cgt aac atc att ggt gga 1200 Asp Phe Trp Gln Leu Gln Val Thr Thr Thr Arg Asn Ile Ile Gly Gly 395 1248 cac ggc att ccc caa ttc ttt gtg gat tgg ttc tgc ggt gga ttg caa His Gly Ile Pro Gln Phe Phe Val Asp Trp Phe Cys Gly Gly Leu Gln 410 1296 tac caa gtg gat cac cac ctc ttc ccc atg atg cct aga aac aat atc Tyr Gln Val Asp His His Leu Phe Pro Met Met Pro Arg Asn Asn Ile 425 1344 gcg aaa tgc cac aag ctt gtg gag tca ttc tgt aag gag tgg ggt gtg Ala Lys Cys His Lys Leu Val Glu Ser Phe Cys Lys Glu Trp Gly Val 440 1392 aag tac cat gag gcc gat atg tgg gat ggt acc gtg gaa gtg ttg caa Lys Tyr His Glu Ala Asp Met Trp Asp Gly Thr Val Glu Val Leu Gln 460 455 cat ctc tcc aag gtg tcg gat gat ttc ctt gtg gag atg gtg aag gat His Leu Ser Lys Val Ser Asp Asp Phe Leu Val Glu Met Val Lys Asp 1440 470 1455 ttc cct gcc atg taa Phe Pro Ala Met <210> 98 <211> 484 <212> PRT <213> Thalassiosira pseudonana <400> 98 Met Gly Lys Gly Gly Asp Ala Ala Ala Ala Thr Lys Arg Ser Gly Ala Leu Lys Leu Ala Glu Lys Pro Gln Lys Tyr Thr Trp Gln Glu Val Lys Lys His Ile Thr Pro Asp Asp Ala Trp Val Val His Gln Asn Lys Val 35 40 Tyr Asp Val Ser Asn Trp Tyr Asp His Pro Gly Gly Ala Val Val Phe 50 55 Thr His Ala Gly Asp Asp Met Thr Asp Ile Phe Ala Ala Phe His Ala Gln Gly Ser Gln Ala Met Met Lys Lys Phe Tyr Ile Gly Asp Leu Ile Pro Glu Ser Val Glu His Lys Asp Gln Arg Gln Leu Asp Phe Glu Lys

105

- Gly Tyr Arg Asp Leu Arg Ala Lys Leu Val Met Met Gly Met Phe Lys 115 120 125
- Ser Ser Lys Met Tyr Tyr Ala Tyr Lys Cys Ser Phe Asn Met Cys Met 130 140
- Trp Leu Val Ala Val Ala Met Val Tyr Tyr Ser Asp Ser Leu Ala Met 145 150 155 160
- His Ile Gly Ser Ala Leu Leu Leu Gly Leu Phe Trp Gln Gln Cys Gly 165 170 175
- Trp Leu Ala His Asp Phe Leu His His Gln Val Phe Lys Gln Arg Lys 180 185 190
- Tyr Gly Asp Leu Val Gly Ile Phe Trp Gly Asp Leu Met Gln Gly Phe 195 200 205
- Ser Met Gln Trp Trp Lys Asn Lys His Asn Gly His His Ala Val Pro 210 215 220
- Asn Leu His Asn Ser Ser Leu Asp Ser Gln Asp Gly Asp Pro Asp Ile 225 230 235 240
- Asp Thr Met Pro Leu Leu Ala Trp Ser Leu Lys Gln Ala Gln Ser Phe 245 250 255
- Arg Glu Ile Asn Lys Gly Lys Asp Ser Thr Phe Val Lys Tyr Ala Ile 260 265 270
- Lys Phe Gln Ala Phe Thr Tyr Phe Pro Ile Leu Leu Leu Ala Arg Ile 275 280 285
- Ser Trp Leu Asn Glu Ser Phe Lys Thr Ala Phe Gly Leu Gly Ala Ala 290 295 300
- Ser Glu Asn Ala Lys Leu Glu Leu Glu Lys Arg Gly Leu Gln Tyr Pro 305 310 315 320
- Leu Leu Glu Lys Leu Gly Ile Thr Leu His Tyr Thr Trp Met Phe Val 325 330 335
- Leu Ser Ser Gly Phe Gly Arg Trp Ser Leu Pro Tyr Ser Ile Met Tyr 340 345 350
- Phe Phe Thr Ala Thr Cys Ser Ser Gly Leu Phe Leu Ala Leu Val Phe 355 360 365
- Gly Leu Gly His Asn Gly Met Ser Val Tyr Asp Ala Thr Thr Arg Pro 370 375 380

Asp 385	Phe	Trp	Gln	Leu	Gln 390	Val	Thr	Thr '	Thr	Arg 395	Asn	Ile	Ile	Gly	Gly 400	
His	Gly	Ile	Pro	Gln 405	Phe	Phe	Val	Asp	Trp 410	Phe	Cys	Gly	Gly	Leu 415	Gln	
Tyr	Gln	Val	Asp 420	His	His	Leu	Phe	Pro 425	Met	Met	Pro	Arg	Asn 430	Asn	Ile	
Ala	Lys	Cys 435	His	Lys	Leu	Val	Glu 440	Ser	Phe	Cys	Lys	Glu 445	Trp	Gly	Val	
Lys	Туг 450	His	Glu	Ala	Asp	Met 455	Trp	Asp	Gly	Thr	Val 460	Glu	Val	Leu	Gln	
His 465	Leu	Ser	Lys	Val	Ser 470	Asp	Asp	Phe	Leu	Val 475	Glu	Met	Val	Lys	Asp 480	
Phe	Pro	Ala	Met													
<21 <21 <21 <21	1> 2>	99 1431 DNA Thal		osir	a ps	eudo	nana						·			
	1> 2>	CDS (1). Delt		31) Desa	tura	se										
<22 <22 <22 <40	1> 2> 3>	(1). Delt	.a-5-	Desa	gat	ato	: tcc	cgc Arg	atc Ile 10	cgc Arg	aac Asn	cgc Arg	atc Ile	ccc Pro 15	acc Thr	48
<22 <22 <22 <40 ato	1> 2> 3>	(1). Delt	aac Asr	gco Ala 5	gat Asp	ato	Ser	Arg	Ile 10	Arg	Asn gac	Arg	gcc	15 acc	caa	48 96
<22 <22 <22 <22 <40 attg Met 1 aaaa Lys	1> 2> 3> 00> g ccc	(1). Delt 99 : ccc p Pro	aaco Asr	gcon Ala 5 gtt Val	gat Asp gcc	atc	gcc Ala	gac Asp 25	11e 10 aac Asn	aac Asn	gac Asp	arg ccc Pro	gcc Ala 30	15 acc Thr	caa Gln	
<22 <22 <22 <40 ate Met 1 aaa Lys	1> 2> 3> 00> g ccc c Pro	(1). Delt 99 : ccc > Pro i ggt : Gly ccg i Ar ; 35	aaco Asr aco Y Thi 20	gcc n Ala 5 c gtt val	gati Asp	ato	gcc Ala	arg gac Asp 25 aag Lys	aac Asn ggc Gly	aac Asn aac Asn	gac Asp gac Glu	ccc Pro	gcc Ala 30 gtc Val	acc Thr	caa Gln aac Asn	96
<22 <22 <40 atometric aaa Lys tco Second	1> 2> 3> 00> c Produce acases Three ground the ground t	(1). Delt 99 cooperate ggt Gly cogg LAre 35	a according The	gcon Ala 5 c gtt c Val c cto r Lei t gao	gat Asp Ala Ala Lys	total total series seri	e Ser gcc Ala ctc Leu 40 c gao	gac Asp 25 aag Lys	aac Asn ggc Gly gtc	aac Asn aac Asn tatt	gac gac Asp gag Glu cct Fro 60	ccc Pro gtc Val 45 Gly	gcc Ala 30 gtc Val . gga . Gly	accontrol accontrol accontrol accontrol accontrol accontrol accontrol accontrol according to the accontrol according to the a	caa Gln aac Asn	96 144
<22 <22 <22 <40 ate Met 1 aaa Lys tcc Set ggGl; Va 65	1> 2> 3> 00> 1 occurs a acas Three grows T	(1). Delt 99 ccc a ggt cGl Arc 35 a at r Il	a according This tack take Ty:	Desa gco n Ala 5 c gtt r Val c cto r Len t gao r Asi e Gl;	gat Ass Ala Ala Lys att Tle Tle To	atcollectors service Alace 55	c gcc c gcc c Ala c ctc Leu 40 c gao a Asp	gac Asp 25 aag Lys ttt	aac Asn ggc Gly gtc Val	aac Asn Asn His	gac Asp Glu Glu Cott Fro 60 Cage Glr	Arg	gcc Ala 30 gtc Val gga Gly	according accord	caa Gln aac Asn yatt Val	96 144 192

100 105 110

			100					105					TTO			
cga Arg	Glu	atc Ile 115	aaa Lys	tca Ser	gaa Glu	Val	ttc Phe 120	aag Lys	atc Ile	gta Val	cgt Arg	cgc Arg 125	GJÀ āāā	cgt Arg	gag Glu	384
ttc Phe	ggc Gly 130	aca Thr	aca Thr	ggc Gly	Tyr	ttc Phe 135	ctc Leu	cgt Arg	gcc Ala	ttt Phe	ttc Phe 140	tac Tyr	atc Ile	gct Ala	ctc Leu	432
ttc Phe 145	ttc Phe	acc Thr	atg Met	caa Gln	tac Tyr 150	act Thr	ttc Phe	gcc Ala	aca Thr	tgc Cys 155	acc Thr	acc Thr	ttc Phe	acc Thr	acc Thr 160	480
tac Tyr	gat Asp	cac His	tgg Trp	tat Tyr 165	cag Gln	agt Ser	ggt Gly	gta Val	ttc Phe 170	atc Ile	gca Ala	att Ile	gtg Val	ttt Phe 175	ggt Gly	528
att Ile	tca Ser	cag Gln	gca Ala 180	ttc Phe	att Ile	G1A aaa	ttg Leu	aat Asn 185	gtc Val	cag Gln	cac His	gat Asp	gcc Ala 190	aat Asn	cac His	576
ĠĮĄ ġġa	gct Ala	gcc Ala 195	agt Ser	aag Lys	cgt Arg	ccc Pro	tgg Trp 200	gtg Val	aat Asn	gac Asp	ttg Leu	ttg Leu 205	gga Gly	ttt Phe	gga Gly	624
acg Thr	gat Asp 210	ttg Leu	att Ile	gga Gly	tct Ser	aac Asn 215	aaa Lys	tgg Trp	aat Asn	tgg Trp	atg Met 220	Ala	cag Gln	cat His	tgg Trp	672
act Thr 225	His	cac His	gct Ala	tac Tyr	act Thr 230	aac Asn	cat His	agt Ser	gag Glu	aag Lys 235	Asp	ccc Pro	gat Asp	agc Ser	ttc Phe 240	720
agc Ser	tcg Ser	gaa Glu	. cct Pro	atg Met 245	Phe	gca Ala	ttc Phe	aat Asn	gac Asp 250	Tyr	ccc	att	gga Gly	cac His 255	ccg Pro	768
aag Lys	aga Arg	aag Lys	tgg Trp 260	Trp	cat His	agg Arg	ttc Phe	.cag Gln 265	Gly	ggg Gly	tac Tyr	tto Phe	ctc Leu 270	Pne	atg Met	816
ctt Lev	gga Gly	Lev 275	ı Tyr	tgg Trp	ctc Leu	tcg Ser	act Thr 280	· Val	. ttc . Phe	aat Asr	ccg Pro	Glr 285	1 Phe	att Ile	gat Asp	864
ctt Lei	cgt Arg 290	g Gli	a cgt n Arg	. Gl ⁷	gct Ala	. cag . Gln 295	Tyz	gtc Val	. Gl7	att	caa Glr 300	n Met	g gaç : Glu	g aat 1 Asr	gat Asp	912
tto Pho 305	e Ile	gto Val	c aag l Lys	agg Arg	agg Arg 310	LY:	tac Tyr	gco Ala	gtt Val	gca L Ala 315	a Le	g agg	g ato	g ato Met	tac Tyr 320	960
at:	t tad	c tte	g aac u Asr	2 att 1 Ile 325	val	ago L Ser	Pro	tto Phe	ato Mei 330	: Ası	c aa n As:	t gg n Gl	t ttg y Lei	g ago 1 Sei 33!	tgg Trp	1008
tc Se:	t acc	c tt r Ph	t gga e Gly 340	y Ile	e ato	atç e Met	j tt: Le:	g ato n Mer 34!	t Gl	a ato	c ag e Se	c ga r Gl	g ag u Se: 35	r Lei	c act u Thr	1056
ct Le	c ag u Se	t gt r Va 35	1 Le	c tto u Pho	c tcg e Se	g tto r`Len	tc Se 36	r Hi	c aa s As:	c tt	c at e Il	c aa e As 36	n Se	g ga r As	t cgt p Arg	1104
ga As	t cc p Pr	t ac o Th	g gc	t ga a As	c tto p Ph	c aaa e Ly:	a aa s Ly	g ac s Th	c gg r Gl	a ga y Gl	a ca u Gl	a gt n Va	g tg 1 Cy	c tg s Tr	g ttc p Phe	1152

									15	l						
	370					375					380					
aag Lys 385	tcg Ser	cag Gln	gtg Val	gag Glu	act Thr 390	tcg Ser	tct Ser	acc Thr	tat Tyr	3 9 2 G J A a a a	Gly	ttt Phe	att Ile	tcc Ser	gga Gly 400	1200
tgt Cys	ctt Leu	acg Thr	gga Gly	gga Gly 405	ctc Leu	aac Asn	ttt Phe	cag Gln	gtg Val 410	gaa Glu	cat His	cat His	ctc Leu	ttt Phe 415	ccc Pro	1248
cgt Arg	atg Met	agc Ser	agt Ser 420	gct Ala	tgg Trp	tat Tyr	cct Pro	tac Tyr 425	att Ile	gca Ala	cct Pro	acg Thr	gtt Val 430	cgt Arg	gag Glu	1296
gtt Val	tgc Cys	aag Lys 435	aag Lys	cac His	GJÀ aaa	gtg Val	aac Asn 440	tac Tyr	gct Ala	tat Tyr	tat Tyr	cct Pro 445	tgg Trp	att Ile	GJA aaa	1344
cag Gln	aat Asn 450	ttg Leu	gta Val	tca Ser	aca Thr	ttc Phe 455	aaa Lys	tac Tyr	atg Met	cat His	cgc Arg 460	gct Ala	ggt Gly	agt Ser	gga Gly	1392
gcc Ala 465	aac Asn	tgg Trp	gag Glu	ctc Leu	aag Lys 470	ccg Pro	ttg Leu	tct Ser	gga Gly	agt Ser 475	gcc Ala	taa				1431
<210 <211 <212 <213	L> 2> 3>	100 476 PRT Thal	assi	osir	a ps	eudo	nana									·
			Asn	Ala 5	Asp	Ile	Ser	Arg	Ile 10	Arg	Asn	Arg	Ile	Pro 15	Thr	
Lys	Thr	Gly	Thr 20	· Val	Ala	Ser	Ala	Asp 25	Asn	. Asr	a Asp	Pro	Ala 30	. Thr	Gln	
Ser	Val	. Arg 35	Thi	. Leu	. Lys	Ser	Leu 40	. Lys	: Gly	Asr	n Glu	. Val 45	Val	. Ile	Asn	
Gly	Thr 50	: Ile	≘ Туі	c Asp) Ile	Ala 55	a Asp	Phe	e Val	. His	Fro 60	Gly	· Gly	g Glu	. Val	
Val 65	. Lys	s Phe	e Phe	e Gly	7 Gly 70	y Ası	n Asp	val	L Thi	75	≘ Glr	тут	: Asr	n Met	: Ile 80	
His	Pro	o Ty:	r Hi	s Thi 85	c Gly	/ Lys	s His	s Lei	ı Gl: 90	ı Ly:	s Met	Lys	s Ala	a Va: 95	l Gly	
Lys	va	l Va	1 As		o Gli	n Se:	r Ası	р Ту: 10:	r Ly: 5	s Ph	e Ası	Th:	110	o Phe	e Glu	
Arg	g Gl	u Il 11		s Se:	r Gl	u į Va	1 Pho	e Ly: 0	s Il	e Va	l Ar	g Ar	g Gl: 5	y Ar	g Glu	
Phe	e Gl 13		x Th	r Gl	у Ту	r Ph 13		u Ar	g Al	a Ph	e Pho 14		r Il	e Al	a Leu	

Phe 145	Phe	Thr	Met	Gln	Tyr 3	Thx	Phe .	Ala	Thr	Cys 155	Thr '	Thr	Phe	Thr	Thr 160
Tyr	Asp	His	Trp	Tyr 165	Gln :	Ser	Gly	Val	Phe 170	Ile	Ala	Ile	Val	Phe 175	Gly
Ile	Ser	Gln	Ala 180	Phe	Ile	Gly	Leu	Asn 185	Val	Gln	His	Asp	Ala 190	Asn	His
Gly	Ala	Ala 195	Ser	Lys	Arg	Pro	Trp 200	Val	Asn	Asp	Leu	Leu 205	Gly	Phe	Gly
Thr	Asp 210	Leu	Ile	Gly	Ser	Asn 215	Lys	Trp	Asn	Trp	Met 220	Ala	Gln	His	Trp
Thr 225	His	His	Ala	Tyr	Thr 230	Asn	His	Ser	Glu	Lys 235	Asp	Pro	Asp	Ser	Phe 240
Ser	Ser	Glu	Pro	Met 245	Phe	Ala	Phe	Asn	Asp 250	Tyr	Pro	Ile	Gly	His 255	Pro
Lys	Arg	. TÀS	260		His	Arg	Phe	Gln 265	Gly	Gly	Tyr	Phe	Leu 270	Phe	Met
Leu	Gly	Leu 275		Trp	Leu	Ser	Thr 280	Val	Phe	Asn	Pro	Gln 285	Phe	Ile	Asp
· Leu	290		n Arg	Gly	Ala	Gln 295		Val	Gly	Ile	Gln 300	Met	Glu	Asn	Asp
Phe 305		≥ Val	l Lys	arg	Arg 310	Lys	Tyr	Ala	. Val	. Ala 315	. Leu	Arg	Met	Met	Tyr 320
Il€	э Туг	. Le	ı Ası	11e 325	val	Ser	Pro	Phe	330	: Asn	. Asn	Gly	Leu	335	Trp
Sei	c Thi	r Ph	e Gly 340		e Ile	Met	. Lev	Met 345	: Gl	/ Ile	e Ser	Glu	350	Leu)	Thr
Lei	ı Se:	r Va 35		ı Phe	e Ser	Leu	ser 360		: Ası	n Phe	e Ile	Asn 365	sei	Asp	Arg
As _j	p Pro		r Al	a Ası	o Phe	Lys 379		s Thi	c Gly	y Glu	1 Glr 380	ı Val	L Cys	s Trg	Phe
38 Ly		r Gl	n Va	l G1:	u Thr 390) .	r Sei	r Th	ר ייצי	r Gl ₃ 39	y Gl	/ Phe	a Il	e Sei	Gly 400
СХ	s Le	u Th	ır Gl	У Gl; 40		ı As:	n Ph	e Gl	n Va 41	1 Gl: 0	u His	s His	s Le	u Phe 41!	e Pro

Arg I	Met	Ser	Ser 420	Ala	Trp	Tyr	Pro	Tyr 425	Ile	Ala	Pro	Thr	Val 430	Arg	Glu	
Val (Cys	Lys 435	Lys	His	Gly	Val	Asn 440	Tyr	Ala	Tyr	Tyr	Pro 445	Trp	Ile	Gly	
	Asn 450	Leu	Val	Ser	Thr	Phe 455	Lys	Tyr	Met	His	Arg 460	Ala	Gly	Ser	Gly	
Ala 465	Asn	Trp	Glu	Leu	Lys 470	Pro	Leu	Ser	Gly	ser 475	Ala	-				
<210 <211 <212 <213	> : > !	101 1449 ONA Thala	assio	osira	a pse	eudoi	nana									
<220 <221 <222 <223	.> (;>		.(144 a-5-1		turas	se										
<400 atg Met 1	cca	101 ccc Pro	aac Asn	gcc Ala 5	gag Glu	gtc Val	aaa Lys	aac Asn	ctc Leu 10	 cgt Arg	tca Ser	cgt Arg	tcc Ser	atc Ile 15	cca Pro	48
acg Thr	aag Lys	aag Lys	tcc Ser 20	agt Ser	tca Ser	tcg Ser	tca Ser	tcc Ser 25	acc Thr	gcg Ala	aac Asn	gac Asp	gat Asp 30	ccg Pro	gct Ala	96
acc Thr	caa Gln	ser 35	acc Thr	tca Ser	cct Pro	gtg Val	aac Asn 40	cga Arg	acc Thr	ctc Leu	aag Lys	tct Ser 45	ttg Leu	aat Asn	gga Gly	144
aac Asn	gaa Glu 50	ata Ile	gct Ala	att Ile	gac Asp	ggt Gly 55	gtc Val	atc Ile	tat Tyr	gat Asp	att Ile 60	gat Asp	ggc	ttt Phe	gtc Val	192
cat His 65	Pro	gga Gly	gly	. gag Glu	gtt Val 70	Il∈	agc Ser	Phe	Phe	gga Gly 75	, Gly	aac Asn	gat Asp	gtg Val	act Thr 80	240
gta Val	cag Glr	tac Tyr	aaa Lys	ato Met 85	att : Ile	cat His	ccg Pro	tat Tyr	cat His	aat Asr	agt Ser	aag Lys	cat His	cto Leu 95	gag Glu	288
aag Lys	ato Met	g aga	a gcc g Ala 100	. Val	gga . Gly	aag Lys	g att	gca Ala 105	Ası	tac Tyr	tcc Ser	aca Thr	gag Glu 110	ı Tyr	aag Lys	336
tto Phe	gad Asj	aca o Th:	r Pro	ttt Phe	gaa Glu	cga Arg	g gag g Glu 120	ı Ile	aaa Lys	tco Sei	c gaa c Glu	gtg Val	L Phe	aaa a Lys	atc : Ile	384
gto Val	cg Ar 13	g Ar	a gga g Gly	a cgt / Arg	gaa g Glu	tto 1`Phe 13!	e Gly	t aca y Thi	a aca	a gga c Gly	a tat y Ty: 14(: Phe	c cto	cgt 1 Arg	gcc g Ala	432
tto Phe	tt Ph	c ta e Ty	c ato	gci a Ala	cto a Lei	tto Phe	e Phe	aco a Thi	c ato	g caa	a tao n Ty:	c acc	tto Phe	e gco	aca Thr	480

										•						
145					150					155					160	
tgc (act Thr	acc Thr	ttc Phe	acc Thr 165	acc Thr	tac Tyr	gat Asp	cat His	tgg Trp 170	tat Tyr	caa Gln	agt Ser	ggt Gly	gta Val 175	ttc Phe	528
atc Ile	gc c Ala	att Ile	gtg Val 180	ttt Phe	ggt Gly	atc Ile	tca Ser	caa Gln 185	gct Ala	ttc Phe	att Ile	GJA aaa	ttg Leu 190	aat Asn	gta Val	576
caa Gln	cat His	gat Asp 195	gcc Ala	aat Asn	cac His	gga Gly	gct Ala 200	gct Ala	agc Ser	aaa Lys	cga Arg	cct Pro 205	tgg Trp	gtg Val	aat Asn	624
gat Asp	ctc Leu 210	ctt Leu	gga Gly	tct Ser	gga Gly	gct Ala 215	gat Asp	ctc Leu	atc Ile	ggt Gly	gga Gly 220	tgc Cys	aaa Lys	tgg Trp	aac Asn	672
tgg Trp 225	ttg Leu	gct Ala	cag Gln	cat His	tgg Trp 230	act Thr	cat His	cat His	gcg Ala	tat Tyr 235	acc Thr	aat Asn	cac His	gct Ala	gat Asp 240	720
aaa Lys	gat Asp	cct Pro	gat Asp	agc Ser 245	ttt Phe	agt Ser	tcc Ser	gag Glu	ccg Pro 250	gtc Val	ttc Phe	aac Asn	ttt Phe	aac Asn 255	gat Asp	768
tat Tyr	ccc Pro	att Ile	ggt Gly 260	His	ccc Pro	aaa Lys	aga Arg	aag Lys 265	tgg Trp	tgg Trp	cat His	agg Arg	ttc Phe 270	caa Gln	GJA āāā	816
ctc Leu	tac Tyr	ttc Phe 275	cta Leu	atc Ile	atg Met	ctg Leu	agt Ser 280	ttc Phe	tat Tyr	tgg Trp	gta Val	tcg Ser 285	met	gta Val	ttc Phe	864
aac Asn	cca Pro 290	caa Gln	gtt Val	atc Ile	gac Asp	ctc Leu 295	Arg	cat His	gct Ala	gga Gly	gct Ala 300	. Ата	tac Tyr	gtt Val	gga Gly	912
ttt Phe 305	Gln	atg Met	gag Glu	, aac . Asn	gac Asp 310	Phe	ato Ile	gtc Val	aaa Lys	cgg Arg 315	, Arg	aag Lys	tat Tyr	gca Ala	atg Met 320	960
gca Ala	ctt Leu	cgt Arc	gca Ala	atg Met 325	туг	tto Phe	tat Tyr	tto Phe	aac Asn 330	ı Ile	tat Tyr	tgt Cys	ccg Pro	g att o Ile 335	· Val	1008
aac Asn	aat Asn	gga Gl	ttg Lev 340	ı Thr	tgg Trp	tc <u>c</u> Ser	g aca Thi	a gtt Val	. Gl	ato / Ile	ato	cto Lev	tta Lev 350	a atg 1 Met)	gga Gly	1056
gtt Val	ago Ser	gaa Glu 359	ı Se:	r Phe	ato Met	g cto Lev	tco Sei 360	c Gly	t cta / Lei	a tto 1 Phe	gta e Val	a cto L Let 369	ı Se:	a cac r His	aac Asn	1104
ttt Phe	gaa Glu 370	ı Ası	t tc n Se:	c gaa r Gli	a cgt 1 Arg	gat g Ası 37!	o Pro	t acc	r Sei	r gag	g tai u Tyi 380	r Ar	c aa g Ly	g act s Thi	ggt Gly	1152
gag Glu 385	ı Glr	a gta	a tg l Cy	t tg: s Tr]	y tto Phe 390	e Ly:	g te s Se	t caa	a gt n Va	g ga 1 Gl 39	u Th	t tc r Se:	t tc r Se	t acc	tac Tyr 400	1200
GJ7 aas	a ggt / Gly	at / Il	c gt e Va	t gc 1 Ala 40	a Gl	g tg Y Cy	t ct s Le	c ac u Th	t gg r Gl 41	A GT	a ct y Le	c aa u As:	c tt n Ph	t caa e Gli 41	a gtg n Val 5	1248
gag Glu	g cat	ca s Hi	t tt s Le	g tt	c cc	g ag o Ar	g at g Me	g ag t Se	c ag r Se	t gc r Al	t tg a Tr	g ta p Ty	t cc r Pr	t tt	c atc e Ile	1296

430 425 420 gcg ccg aag gtt aga gag att tgt aag aag cat gga gtt aga tac gct 1344 Ala Pro Lys Val Arg Glu Ile Cys Lys Lys His Gly Val Arg Tyr Ala 440 1392 tac tat ccg tac atc tgg cag aac ttg cat tct acc gtg agt tac atg Tyr Tyr Pro Tyr Ile Trp Gln Asn Leu His Ser Thr Val Ser Tyr Met 460 455 cat ggg acg gga acg gga gct aga tgg gag ctt cag ccg ttg tct gga 1440 His Gly Thr Gly Thr Gly Ala Arg Trp Glu Leu Gln Pro Leu Ser Gly 470 1449 agg gcg tag Arg Ala <210> 102 <211> 482 <212> PRT <213> Thalassiosira pseudonana <400> 102 Met Pro Pro Asn Ala Glu Val Lys Asn Leu Arg Ser Arg Ser Ile Pro Thr Lys Lys Ser Ser Ser Ser Ser Ser Thr Ala Asn Asp Asp Pro Ala 25 Thr Gln Ser Thr Ser Pro Val Asn Arg Thr Leu Lys Ser Leu Asn Gly Asn Glu Ile Ala Ile Asp Gly Val Ile Tyr Asp Ile Asp Gly Phe Val 50 His Pro Gly Gly Glu Val Ile Ser Phe Phe Gly Gly Asn Asp Val Thr 75 70 Val Gln Tyr Lys Met Ile His Pro Tyr His Asn Ser Lys His Leu Glu 90 Lys Met Arg. Ala Val Gly Lys Ile Ala Asp Tyr Ser Thr Glu Tyr Lys 105 Phe Asp Thr Pro Phe Glu Arg Glu Ile Lys Ser Glu Val Phe Lys Ile 115 120 Val Arg Arg Gly Arg Glu Phe Gly Thr Thr Gly Tyr Phe Leu Arg Ala Phe Phe Tyr Ile Ala Leu Phe Phe Thr Met Gln Tyr Thr Phe Ala Thr 155 Cys Thr Thr Phe Thr Tyr Asp His Trp Tyr Gln Ser Gly Val Phe 175 170

- Ile Ala Ile Val Phe Gly Ile Ser Gln Ala Phe Ile Gly Leu Asn Val 180 185 190
- Gln His Asp Ala Asn His Gly Ala Ala Ser Lys Arg Pro Trp Val Asn 195 . 200 205
- Asp Leu Leu Gly Ser Gly Ala Asp Leu Ile Gly Gly Cys Lys Trp Asn 210 220
- Trp Leu Ala Gln His Trp Thr His His Ala Tyr Thr Asn His Ala Asp 225 230 235 240
- Lys Asp Pro Asp Ser Phe Ser Ser Glu Pro Val Phe Asn Phe Asn Asp 245 250 255
- Tyr Pro Ile Gly His Pro Lys Arg Lys Trp Trp His Arg Phe Gln Gly 265 270
- Leu Tyr Phe Leu Ile Met Leu Ser Phe Tyr Trp Val Ser Met Val Phe 275 280 285
- Asn Pro Gln Val Ile Asp Leu Arg His Ala Gly Ala Ala Tyr Val Gly 290 295 300
- Phe Gln Met Glu Asn Asp Phe Ile Val Lys Arg Arg Lys Tyr Ala Met 305 310 315 320
- Ala Leu Arg Ala Met Tyr Phe Tyr Phe Asn Ile Tyr Cys Pro Ile Val 325 330 335
- Asn Asn Gly Leu Thr Trp Ser Thr Val Gly Ile Ile Leu Leu Met Gly 340 345 350
- Val Ser Glu Ser Phe Met Leu Ser Gly Leu Phe Val Leu Ser His Asn 355 360 365
- Phe Glu Asn Ser Glu Arg Asp Pro Thr Ser Glu Tyr Arg Lys Thr Gly 370 375 380
- Glu Gln Val Cys Trp Phe Lys Ser Gln Val Glu Thr Ser Ser Thr Tyr 385 390 395 400
- Gly Gly Ile Val Ala Gly Cys Leu Thr Gly Gly Leu Asn Phe Gln Val 405 410 415
- Glu His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr Pro Phe Ile 420 425 430
- Ala Pro Lys Val Arg Glu Ile Cys Lys His Gly Val Arg Tyr Ala 435 440 445

Tyr '	Tyr 1 450	Pro !	tyr 1	lle 7		31n <i>F</i> 455	Asn i	Leu	His	Ser	Thr 460	Val :	Ser '	ryr)	Met	
His 465	Gly '	rhr (Gly :		3ly 2 470	Ala A	Arg '	Trp	Glu	Leu 475	Gln	Pro :	Leu	Ser	Gly 480	
Arg .	Ala															
<210 <211 <212 <213	> 1 > D	03 512 NA hala	ssio	sira	pse	udon	ana									
					uras	:e										
<400 atg Met 1	tac	.03 aac Asn	ggc Gly	aac Asn 5	ctc Leu	cca Pro	gca Ala	tcc Ser	acc Thr 10	gca Ala	cag Gln	ctc Leu	aag Lys	tcc Ser 15	acc Thr	48
tcg Ser	aag Lys	ccc Pro	cag Gln 20	cag Gln	caa Gln	cat His	gag Glu	cat His 25	cgc Arg	acc Thr	atc Ile	tcc Ser	aag Lys 30	tcc Ser	gag Glu	96
ctc Leu	gcc Ala	caa Gln 35	cac His	aac Asn	acg Thr	ccc Pro	aaa Lys 40	tca Ser	gca Ala	tgg Trp	tgt Cys	gcc Ala 45	gtc Val	cac His	tcc Ser	144
act Thr	ccc Pro 50	gcc Ala	acc Thr	gac Asp	cca Pro	tcc Ser 55	cac His	tcc Ser	aac Asn	aac Asn	aaa Lys 60	caa Gln	cac His	gca Ala	cac His	192
cta Leu 65	gtc Val	ctc Leu	gac Asp	att Ile	acc Thr 70	gac Asp	ttt Phe	gcg Ala	tcc Ser	egc Arg 75	cat His	cca Pro	G1A aaa	gga Gly	gac Asp 80	240
ctc Leu	atc Ile	ctc Leu	ctc Leu	gct Ala 85	tcc Ser	ggc Gly	aaa Lys	gac Asp	gcc Ala 90	tcg Ser	gtg Val	ctg Leu	ttt Phe	gaa Glu 95	aca Thr	288 .
Tyr	His	Pro	Arg 100	Gly	Val	Pro	Thr	Ser 105	Leu	ı Ile	e Gir	aag Lys	110	Gin	111e	336
gga Gly	gtg Val	atg Met 115	Glu	gag Glu	gag Glu	gcg Ala	ttt Phe 120	a Arg	gat g Asp	tog Ser	ttt Phe	tac Tyr 125	Ser	tgg Trp	act Thr	384
Asr	5er 130	Asp	Phe	Tyr	Thr	Val 135	Leu	ı Lys	s Arg	g Arg	7 Va. 140) L Val	. Glu	Arg	ttg Leu	432
gag Glu 145	ı Glu	agg Arg	Gly ggg	r Leu	gac Asp 150	Arg	agg Arg	g gga	a tog y Sei	g aaa r Lys 15	s GT1	g att ı Il∈	tgg Trp	g ato	aag Lys 160	480
gct Ala	ttq a Lei	tto Phe	tto Lev	tto Lev	gtt Val	gga LGly	tti Phe	tgg Tr	y tao p Ty:	t Cy:	t tt s Le	g tac u Tyr	aaq Lys	g ato Mei	g tat Tyr	528

						164	4						
		165			:	170					175		
act acg tc Thr Thr Se	g gat r Asp 180	atc ga Ile As	at cag sp Gln	tac Tyr	ggt Gly 185	att (gcc Ala	att Ile	Ala	tat Tyr 190	tct Ser	att Ile	576
gga atg gg Gly Met Gl 19	y Thr	ttt go Phe A	cg gca la Ala	ttc Phe 200	atc Ile	ggc Gly	acg Thr	tgt Cys	att Ile 205	caa Gln	cac His	gat Asp	624
gga aat ca Gly Asn Hi 210	c ggt s Gly	gca t Ala P	tc gct he Ala 215	cag Gln	aac Asn	aag Lys	Leu	ctc Leu 220	aac Asn	aag Lys	ttg Leu	gct Ala	672
ggg tgg ac Gly Trp Th 225	g ttg Ir Leu	Asp M	tg att et Ile 30	ggt Gly	gcg Ala	agt Ser	gcg Ala 235	ttt Phe	acg Thr	tgg Trp	gag Glu	ctt Leu 240	720
cag cac at Gln His Me	g ctg et Leu	ggg c Gly H 245	at cat is His	cca Pro	tat Tyr	acg Thr 250	aat Asn	gtg Val	ttg Leu	gat Asp	ggg Gly 255	gtg Val	768
gag gag ga Glu Glu Gl	ig agg lu Arg 260	aag g Lys G	ag agg lu Arg	Gly	gag Glu 265	gat Asp	gtt Val	gct Ala	ttg Leu	gaa Glu 270	gaa Glu	aag Lys	816
gat cag ga Asp Gln As 2	at ttt sp Phe 75	gaa g Glu V	tt gcc al Ala	aca Thr 280	tcc Ser	gga Gly	cga Arg	tta Leu	tat Tyr 285	cat His	att Ile	gat Asp	864
gcc aat g Ala Asn Va 290	ta cgt al Arg	tat g Tyr 0	gt tcg Sly Ser 295	. Val	tgg Trp	aat Asn	gtc Val	atg Met 300	agg Arg	ttt Phe	tgg Trp	gct Ala	912
atg aag g Met Lys V 305	tc att al Ile	Thr N	atg gga Met Gly 310	tat Tyr	atg Met	atg Met	gga Gly 315	tta Leu	cca Pro	atc Ile	tac Tyr	Phe 320	960
cat gga g His Gly V	ta ctg al Leu	agg g Arg 0 325	gga gti Gly Val	gga L Gly	ttg Leu	ttt Phe 330	gtt Val	att	Gly	cat His	ttg Leu 335	gcg Ala	1008
tgt gga g Cys Gly G	ag ttg lu Leu 340	Leu 2	gcg acq Ala Th	g atg r Met	ttt Phe 345	att Ile	gtg Val	aat Asn	cac His	gtc Val 350	TIE	gag Glu	1056
ggt gtg a Gly Val S 3	gt tat er Tyr 55	gga a	acg aa Thr Ly	g gat s Asp 360	Leu	gtt Val	ggt	ggt Gly	gcg Ala 365	Ser	cat His	gta Val	1104
gat gag a Asp Glu I 370	ag aag ys Lys	att att	gtc aa Val Ly 37	s Pro	a acg	act Thr	gta Val	tto Lev 380	ı Gly	gat Asp	aca Thr	cca Pro	1152
atg gta a Met Val I 385	iag act ys Thi	Arg	gag ga Glu Gl 390	g gca u Ala	a ttg a Leu	aaa Lys	ago Ser 395	Ası	ago n Ser	aat Asr	aac Asr	aac Asn 400	1200
aag aag a Lys Lys I	rad dda	gag Glu 405	aag aa Lys As	c tc: n Se:	g gta r Val	cca Pro 410	Sei	gti Vai	t cca	tto Phe	aac Asr 415	ı Asp	1248
tgg gca (Trp Ala i	gca gto Ala Vai 420	l Gln	tgc ca Cys Gl	g ac	c tco r Ser 425	. Val	g aat L Asi	t tgg	g tct p Sei	2 CC2 2 Pro 430	2 GT	tca Ser	1296
tgg ttc '	tgg aa Frp As	t cac n His	ttt to Phe Se	t gg r Gl	λ GJ7 a aas	a cto / Leu	tc 1 Se:	t ca r Hi	t cag s Gl:	g ati	t gag e Gl	g cat ı His	1344

165 445 440 435 cac ttg ttc ccc agc att tgt cat aca aac tac tgt cat atc cag gat 1392 His Leu Phe Pro Ser Ile Cys His Thr Asn Tyr Cys His Ile Gln Asp 455 gtt gtg gag agt acg tgt gct gag tac gga gtt ccg tat cag agt gag 1440 Val Val Glu Ser Thr Cys Ala Glu Tyr Gly Val Pro Tyr Gln Ser Glu 475 470 agt aat ttg ttt gtt gct tat gga aag atg att agt cat ttg aag ttt 1488 Ser Asn Leu Phe Val Ala Tyr Gly Lys Met Ile Ser His Leu Lys Phe 490 485 1512 ttg ggt aaa gcc aag tgt gag tag Leu Gly Lys Ala Lys Cys Glu 500 <210> 104 <211> 503 <212> PRT <213> Thalassiosira pseudonana <400> 104 Met Cys Asn Gly Asn Leu Pro Ala Ser Thr Ala Gln Leu Lys Ser Thr Ser Lys Pro Gln Gln Gln His Glu His Arg Thr Ile Ser Lys Ser Glu Leu Ala Gln His Asn Thr Pro Lys Ser Ala Trp Cys Ala Val His Ser Thr Pro Ala Thr Asp Pro Ser His Ser Asn Asn Lys Gln His Ala His Leu Val Leu Asp Ile Thr Asp Phe Ala Ser Arg His Pro Gly Gly Asp Leu Ile Leu Leu Ala Ser Gly Lys Asp Ala Ser Val Leu Phe Glu Thr 90 Tyr His Pro Arg Gly Val Pro Thr Ser Leu Ile Gln Lys Leu Gln Ile 105 Gly Val Met Glu Glu Glu Ala Phe Arg Asp Ser Phe Tyr Ser Trp Thr 115 120 Asp Ser Asp Phe Tyr Thr Val Leu Lys Arg Arg Val Val Glu Arg Leu 130 135

Glu Glu Arg Gly Leu Asp Arg Arg Gly Ser Lys Glu Ile Trp Ile Lys

Ala Leu Phe Leu Leu Val Gly Phe Trp Tyr Cys Leu Tyr Lys Met Tyr

170

- Thr Thr Ser Asp Ile Asp Gln Tyr Gly Ile Ala Ile Ala Tyr Ser Ile 180 185 190
- Gly Met Gly Thr Phe Ala Ala Phe Ile Gly Thr Cys Ile Gln His Asp 195 200 205
- Gly Asn His Gly Ala Phe Ala Gln Asn Lys Leu Leu Asn Lys Leu Ala 210 215 220
- Gly Trp Thr Leu Asp Met Ile Gly Ala Ser Ala Phe Thr Trp Glu Leu 225 230 235 240
- Gln His Met Leu Gly His His Pro Tyr Thr Asn Val Leu Asp Gly Val 245 250 255
- Glu Glu Glu Arg Lys Glu Arg Gly Glu Asp Val Ala Leu Glu Glu Lys 260 265
- Asp Gln Asp Phe Glu Val Ala Thr Ser Gly Arg Leu Tyr His Ile Asp 275 280 285
- Ala Asn Val Arg Tyr Gly Ser Val Trp Asn Val Met Arg Phe Trp Ala 290 295 300
- Met Lys Val Ile Thr Met Gly Tyr Met Met Gly Leu Pro Ile Tyr Phe 305 310 315
- His Gly Val Leu Arg Gly Val Gly Leu Phe Val Ile Gly His Leu Ala 325 330 335
- Cys Gly Glu Leu Leu Ala Thr Met Phe Ile Val Asn His Val Ile Glu 340 345 350
- Gly Val Ser Tyr Gly Thr Lys Asp Leu Val Gly Gly Ala Ser His Val 355 360 365
- Asp Glu Lys Lys Ile Val Lys Pro Thr Thr Val Leu Gly Asp Thr Pro 370 375 380
- Met Val Lys Thr Arg Glu Glu Ala Leu Lys Ser Asn Ser Asn Asn Asn 385 390 395 400
- Lys Lys Lys Gly Glu Lys Asn Ser Val Pro Ser Val Pro Phe Asn Asp 405 410 415
- Trp Ala Ala Val Gln Cys Gln Thr Ser Val Asn Trp Ser Pro Gly Ser 420 425 430
- Trp Phe Trp Asn His Phe Ser Gly Gly Leu Ser His Gln Ile Glu His
 435 440 445

His :	Leu 450	Phe	Pro	Ser :		Cys 1 455	His	Thr	Asn	Tyr	Cys 460	His	Ile	Gln	Asp	
Val 465	Val	Glu	Ser		Cys 470	Ala	Glu	Tyr	Gly	Val 475	Pro	Tyr	Gln	Ser	Glu 480	
Ser	Asn	Leu		Val 485	Ala	Tyr	Gly	Lys	Met 490	Ile	Ser	His	Leu	Lys 495	Phe	
Leu	Gly	Lys	Ala 500	Lys	Cys	Glu					•					
<210 <211 <212 <213	.> 1 2> I	105 1257 ONA Thala	assio	sira	pse	eudor	Iana									
<220 <221 <222 <223	L> (2>		. (125 a-3-I	57) Desat	uras	se										
<40(atg Met 1	tac	105 aga Arg	tta Leu	aca Thr 5	tcc Ser	acc Thr	ttc Phe	ctc Leu	atc Ile 10	gca Ala	. ttg . Leu	gca Ala	ttc Phe	tcc Ser 15	tcc Ser	48
tcc Ser	atc Ile	aat Asn	gcc Ala 20	ttc Phe	tct Ser	cca Pro	caa Gln	cgg Arg 25	r cca	cca Pro	cgt Arg	act Thr	atc Ile 30	acc Thr	aaa Lys	96
agt Ser	aaa Lys	gtc Val 35	caa Gln	agc Ser	acc Thr	gtg Val	cta Leu 40	ccc Pro	ata Ile	ccg Pro	acc Thr	aag Lys 45	gat Asp	gat Asp	ctg Leu	144
aac Asn	ttt Phe 50	ctc Leu	caa Gln	cca Pro	caa Gln	ctc Leu 55	gat Asp	gag Glu	g aat 1 Asr	gat As <u>r</u>	Leu 60	tac Tyr	cto Lev	gac Asp	gat Asp	192
gtc Val 65	aac Asn	act Thr	cca Pro	cca Pro	aga Arg 70	gca Ala	ggt Gly	aco Thi	c ato	ate Mei 75	g aag t Lys	ato Met	tto Lev	g ccg ı Pro	80 80	240
gaa Glu	acg Thr	ttc Phe	aac Asn	att Ile 85	gat Asp	aca Thr	gca Ala	a act	t tca r Sei 90	a tt: r Le:	g ggt u Glj	tao Ty	e tti	gg1 e Gly 95	t atg y Met	288
gat Asp	ato Met	g gca Ala	a gcg a Ala 100	val	gta Val	tcg Ser	tc: Se:	c atometer to a total	t Th	g tt r Le	g cta u Lei	a aat 1 Ast	t gct n Ala 11	3 TT	t gta e Val	336
act Thr	t tcg	g gat c Asp 115	o Glr	tac Tyr	cat His	get Ala	ct Lei 12	u Pr	a ct o Le	t cc u Pr	t cto o Leo	c ca i Gl: 12	n Al	a gc	a aca a Thr	384
gte Val	g at: 1 Il: 130	e Pro	c tti o Phe	caç e Glr	g cta n Len	ı ttç ı Len 139	ı Al	t gg a Gl	g tt y Ph	c gc e Al	c ate a Me 14	t Tr	b Cλ	t at s Me	g tgg t Trp	432
tg:	c at	t gg e Gl	a cad y Hi:	c gat s Asp	gc Al	t gga a Gly	a ca y Hi	t to s Se	t ac r Th	t gt r Va	t tc l Se	g aa r Ly	g ac s Th	a aa r Ly	g tgg s Trp	480

									10	0						
145					150					155					160	
atc Ile	aac Asn	cga Arg	gtc Val	gtt Val 165	ggt Gly	gaa Glu	gtg Val	gct Ala	His	tct Ser	gtt Val	gtt Val	tgt Cys	ctc Leu 175	acg Thr	528
ccg Pro	ttc Phe	gtg Val	cct Pro 180	tgg Trp	cag Gln	atg Met	tcg Ser	cat His 185	agg Arg	aaa Lys	cac His	cat His	ttg Leu 190	aat Asn	cac His	576
aat Asn	cat His	att Ile 195	gaa Glu	aag Lys	gac Asp	tac Tyr	tct Ser 200	cat His	aag Lys	tgg Trp	tac Tyr	agt Ser 205	egc Arg	gac Asp	gag Glu	624
ttt Phe	gat Asp 210	gat Asp	atc Ile	cca Pro	caa Gln	ctc Leu 215	tat Tyr	aag Lys	aca Thr	ttt Phe	ggc Gly 220	tac Tyr	aac Asn	cca Pro	aga .Arg	672
atg Met 225	Met	caa Gln	ctt Leu	cca Pro	ttc Phe 230	ctc Leu	tac Tyr	ttc Phe	atg Met	tat Tyr 235	ctt Leu	gca Ala	ttg Leu	gga Gly	att Ile 240	720
cca Pro	gat Asp	ggt Gly	ggg ggg	cat His 245	gtt Val	gtg Val	ttc Phe	tac Tyr	gga Gly 250	aga Arg	atg Met	tgg Trp	gaa Glu	gga Gly 255	gtg Val	768
tca Ser	ttg Leu	cag Gln	aag Lys 260	Lys	ttt Phe	gat Asp	gct Ala	gct Ala 265	att Ile	tct Ser	gtg Val	gcc Ala	gta Val 270	ser	tgt Cys	816
gca Ala	act Thr	gct Ala 275	. Gly	tcg Ser	ctt Leu	tgg Trp	atg Met 280	Asn	atg Met	ggt Gly	aca Thr	gca Ala 285	Asp	ttc Phe	acg Thr	864
gtg Val	gta Val 290	. Cys	atg Met	gtt Val	cct Pro	tgg Trp 295	Leu	gtt Val	cta Leu	tcg Ser	tgg Trp 300	rrr	cto Lev	tto Phe	atg Met	912
gta Val 305	Tha	tac Tyr	ctt Lev	cag Gln	cat His	His	tca Ser	gaa Glu	gac Asp	gga Gly 315	Lys	r cta : Lev	tac Tyr	act Thi	gat Asp 320	960
gaa Glu	ace Thi	g tti Phe	aca Thi	a ttt r Phe 325	e Glu	aag Lys	: Gly	gcc Ala	tto Phe	e Glu	g acc ı Thr	gtg Vai	gat L Asi	egt Arg 33!	t tcg g Ser	1008
tac Tyr	Gly	c aaq Y Lys	g tto s Lev 34	ı Ile	c aac a Asr	cga Arg	ato Met	tcc Ser 345	His	cac His	ato Met	ato Me	g gad S Asj 350	5 GT	t cac Y His	1056
gtg Va	g gtg l Va	g cad 1 Hi: 35	s Hi	c tto s Lei	g tto 1 Phe	ttt Phe	gaa Glu 360	ı Arç	gta g Val	a cct L Pro	t cad	tae 5 Ty: 36	r Ar	a tt. g Le	a gag u Glu	1104
gca Ala	a gc a Al	a Th	c ga r Gl	a gci u Ala	t cti a Le	t gtg ı Val 37	l Ly:	a gga	a ato	g ga t Asj	t gaa p Gl: 38	u Th	g gg	a ca y Gl	g aaa n Lys	1152
са Ні: 38	s Le	g ta u Ty	c aa r Ly	a tao s Ty:	c at r Il 39	e As	t ac p Th	t cci r Pro	ga As	t tt p Ph 39	e As	t gc n Al	c ga a Gl	g at u Il	t gtc e Val 400	1200
aa As	c gg n Gl	a tt y Ph	t cg e Ar	c ga g As 40	p As	t tg n Tr	g tt p Ph	c ct e Le	t gt ı Va 41	1 G1	a ga u Gl	g ga u Gl	g aa u As	c at n I1 41	c aaa e Lys .5	1248
_	g ga g Gl	_	ıg													1257

- <210> 106 <211> 418
 <212> PRT
 <213> Thalassiosira pseudonana <400> 106 Met Tyr Arg Leu Thr Ser Thr Phe Leu Ile Ala Leu Ala Phe Ser Ser 1.0 Ser Ile Asn Ala Phe Ser Pro Gln Arg Pro Pro Arg Thr Ile Thr Lys Ser Lys Val Gln Ser Thr Val Leu Pro Ile Pro Thr Lys Asp Asp Leu 45 35 Asn Phe Leu Gln Pro Gln Leu Asp Glu Asn Asp Leu Tyr Leu Asp Asp Val Asn Thr Pro Pro Arg Ala Gly Thr Ile Met Lys Met Leu Pro Lys Glu Thr Phe Asn Ile Asp Thr Ala Thr Ser Leu Gly Tyr Phe Gly Met 90 . Asp Met Ala Ala Val Val Ser Ser Met Thr Leu Leu Asn Ala Ile Val 105 Thr Ser Asp Gln Tyr His Ala Leu Pro Leu Pro Leu Gln Ala Ala Thr 120 115 Val Ile Pro Phe Gln Leu Leu Ala Gly Phe Ala Met Trp Cys Met Trp Cys Ile Gly His Asp Ala Gly His Ser Thr Val Ser Lys Thr Lys Trp 155 Ile Asn Arg Val Val Gly Glu Val Ala His Ser Val Val Cys Leu Thr 170 Pro Phe Val Pro Trp Gln Met Ser His Arg Lys His His Leu Asn His Asn His Ile Glu Lys Asp Tyr Ser His Lys Trp Tyr Ser Arg Asp Glu 205 Phe Asp Asp Ile Pro Gln Leu Tyr Lys Thr Phe Gly Tyr Asn Pro Arg
 - Met Met Gln Leu Pro Phe Leu Tyr Phe Met Tyr Leu Ala Leu Gly Ile 225 230 235 240

				•												
Pro	Asp	GlY	Gly	His 245	Val	Val	Phe	Tyr	Gly 250	Arg	Met	Trp	Glu	Gly 255	Val .	
Ser	Leu	Gln	Lys 260	Lys	Phe	Asp	Ala	Ala 265	Ile	Ser	Val	Ala	Val 270	Ser	Cys	
Ala	Thr	Ala 275	Gly	Ser	Leu	Trp	Met 280	Asn	Met	Gly	Thr	Ala 285	Asp	Phe	Thr .	
Val	Val 290	Cys	Met	Val	Pro	Trp 295	Leu	Val	Leu	Ser	Trp 300	Trp	Leu	Phe	Met	
Val 305	Thr	Tyr	Leu	Gln	His 310	His	Ser	Glu	Asp	Gly 315	Lys	Leu	Tyr	Thr	Asp 320	
Glu	Thr	Phe	Thr	Phe 325		Lys	Gly	Ala	Phe 330	Glu	Thr	Val	Asp	Arg 335	Ser	
Tyr	Gly	Lys	Leu 340		Asn	Arġ	Met	Ser 345	His	His	Met	Met	Asp 350	Gly	His	
Val	Val	His 355		Leu	Phe	Phe	Glu 360		Val	Pro	His	Tyr 365	Arg	Leu	Glu	
Ala	Ala 370		Glu	ı Ala	Leu	Val 375	Lys	: Gly	Met	: As <u>r</u>	380	ı Thr	Gly	Glr.	. Lys	
His 385	Leu 5	. Тут	Lys	; Tyr	: Ile 390		Thi	Pro	Asr	9 Phe	e Asr	n Ala	a Glu	ı Ile	val 400	
Ası	ı Gly	/ Phe	a Arg	g Asg 405		Tr) Phe	e Lev	val 410	L Gl	u Glu	ı Glu	ı Ası	1 Ile 419	e Lys	
Ar	g Glı	1														
<2 <2	10> 11> 12> 13>	107 108 DNA Ost:		occus	s ta	ıri						,				
<2 <2	20> 21> 22> 23>			086) 2-De	satu	rase										
- 1-	00> g ca t Gl	~ ~=	~~	g gt y Va 5	g cg 1 Ar	a aa g As	c at n Il	t cc .e Pr	g aa o As 10	in Gl	ig tg Lu Cy	c tt s Ph	t ga ie Gl	g ac u Th	g gga r Gly	48
ca Hi	t ct s Le	t ga u Gl	a ag u Ar	a co	c tg	p Ar	t to	c gg er Gl	c cg	d C7	gt gg ys Gl	ly Ai	g ga	t co p Pr	c ggt	96

20 .25 30

			20				•	25					30			
tcg Ser	aat Asn	tgg Trp 35	ggc Gly	gct Ala	ggc Gly	ttc Phe	cgc Arg 40	ttt Phe	ttt Phe	tcg Ser	ctc Leu	aag Lys 45	eja aaa	ttt Phe	tgg Trp	144
tgg Trp	ccg Pro 50	gcg Ala	tgg Trp	tgg Trp	gcg Ala	tac Tyr 55	gcg Ala	ttc Phe	gtg Val	acg Thr	Gly Ggg	acg Thr	gcg Ala	gcc Ala	act Thr	192
ggg Gly 65	tgt Cys	tgg Trp	gtc Val	gcc Ala	gcg Ala 70	cac His	gag Glu	tgc Cys	Gly ggg	cac His 75	Gly	gcg Ala	ttc Phe	agc Ser	gat Asp 80	240
aac Asn	aag Lys	acg Thr	ttg Leu	caa Gln 85	gat Asp	gcg Ala	gtt Val	gga Gly	tac Tyr 90	gtg Val	ttg Leu	cac His	tcg Ser	ttg Leu 95	ctc Leu	288
ttg Leu	gtg Val	ccg Pro	tac Tyr 100	ttt Phe	tct Ser	tgg Trp	cag Gln	cga Arg 105	tca Ser	cac His	gcg Ala	gtg Val	cat His 110	cac His	tcg Ser	336
agg Arg	acg Thr	aat Asn 115	cac His	gtt Val	ctt Leu	gag Glu	ggc Gly 120	gag Glu	acg Thr	cac His	gtg Val	ccg Pro 125	gcg Ala	cgc Arg	ttg Leu	384
Gly	acg Thr 130	gaa Glu	gac Asp	gcc Ala	aac Asn	gtc Val 135	gtg Val	ttc Phe	aag Lys	ctt Leu	cgc Arg 140	gaa Glu	ttg Leu	atc Ile	ggt Gly	432
gaa Glu 145	Gly	ccg Pro	ttc Phe	acg Thr	ttt Phe 150	ttc Phe	aac Asn	ctc Leu	gtc Val	ggc Gly 155	val	ttc Phe	gcg Ala	ctc Leu	gga Gly 160	480
tgg Trp	ccg Pro	att Ile	tac Tyr	ttg Leu 165	ctc Leu	acc Thr	Gly	gcg Ala	agc Ser 170	GTA	gga Gly	ccg Pro	gtg Val	ege Arg 175	GIY	528
aac Asr	acg Thr	aac Asr	cac His 180	ttc Phe	tta Leu	CCC Pro	ttc Phe	atg Met 185	Gly	gag Glu	, aaa 1 Lys	ggt Gly	aag Lys 190	His	gcg Ala	576
cto Lev	j tto i Phe	e cce Pro	G13	aag / Lys	tgg Trp	gcg Ala	aag Lys 200	Lys	gtg Val	tgç Tr	g cag o Gln	tct Ser 205	ASE	ato Ile	: ggc	624
gt! Va:	t gtt l Val 210	L Ala	gto a Val	c ctg l Lev	ı Gly	gcg Ala 215	Leu	gcg Ala	gct Ala	tgg Tr	g gcg p Ala 220	1 Ala	g cac A His	e ago s Ser	Gly ggg	672
at: 11: 22:	e Ala	aca a Thi	a gte r Val	g ato l Met	g gca : Ala 230	Lev	tac Tyr	gto Val	ggd LGly	23!	о Туг	c ato	g gto Val	g aco l Thi	aac Asn 240	720
tt Ph	t tgg e Trj	g cto o Le	c gt u Va	c ttg l Le 24	1 Ту1	ace Thr	g tgg Trg	tta Lei	250	n Hl	c aco	c gad r Asj	gti y Val	t gad l Asp 259	gtg Val	768
cc Pr	g ca o Hi:	c tt s Ph	c ga e Gl 26	u Gl	gaq Y Ası	gat p Asp	tgg Tr	Ası 26!	n Le	g gt u Va	с аая 1 Ьу:	g ggg s Gl	g gc y Ala 27	a Pno	c atg e Met	816
ac Th	g at	c ga e As 27	p Ar	g Pr	g tac	r ggd	c cca y Pro 28	o Va	t tt l Ph	t ga e As	t tt p Ph	c tt e Le 28	u Hı	c ca s Hi	c cgc s Arg	864
at Il	c gg .e Gl	c ag y Se	c ac r Th	g ca r Hi	c gt	c gc	g cad a Hi	c ca s Hi	c at s Il	c aa e As	c ac n Th	a cc r Pr	a tt o Ph	c cc e Pr	g cat o His	912

	290					295					300					
tac Tyr 305	aag Lys	gct Ala	caa Gln	atg Met	gcg Ala 310	acg Thr	gat Asp	gcg Ala	Leu	aag Lys 315	gag Glu	gcg Ala	tat Tyr	CCC Pro	gac Asp 320	960
ctc Leu	tac Tyr	ctt Leu	tac Tyr	gat Asp 325	cca Pro	act Thr	ccg Pro	atc Ile	gcg Ala 330	acc Thr	gct Ala	acg Thr	tgg Trp	cgc Arg 335	gtg Val	1008
Gl ^A aaa	agc Ser	aag Lys	tgc Cys 340	atc Ile	gcc Ala	gtc Val	gtg Val	aag Lys 345	aag Lys	gga Gly	gac Asp	gaa Glu	tgg Trp 350	gtg Val	ttc Phe	-1056
acg Thr	gat Asp	aag Lys 355	caa Gln	ctc Leu	ccg Pro	gtc Val	gcg Ala 360	gcg Ala	tga							1086
<21 <21 <21 <21	1> 2>	108 361 PRT Ostr	eoco	ccus	taux	ri										
<40	0>	108														
Met 1	Gln	. Glu	Gly	Val 5	Arg	Asn	Ile	Pro	Asn 10	Glu	Cys	Phe	Glu	Thr 15	Gly	
His	Leu	Glu	Arg 20	Pro	Trp	Arg	Ser	Gly 25	Arg	Cys	Gly	Arg	Asp 30	Pro	Gly	
Ser	Asr	Trp 35	Gly	· Ala	Gly	Phe	Arg 40	Phe	Phe	Ser	Leu	Lys 45	Gly	Phe	Trp	
Tr	> Pro	o Alá	ı Trp	Trp	Ala	Tyr 55	Ala	Phe	Val	Thr	Gly 60	Thr	Ala	Ala	Thr	
G1 ₅ 65	y Cys	s Tri	o Val	. Ala	Ala 70	. His	Glu	. Cys	Gly	His 75	Gly	· Ala	Phe	Ser	Asp 80	
Ası	ı Ly:	s Thi	r Lei	ı Glr 85	ı Asp) Ala	ı Val	. Gly	туг 90	Val	. Leu	His	Ser	: Lev 95	ı Leu	
Le	ı Va	l Pr	o Ty:		e Ser	Trg	Glm	Arg 105		His	: Ala	ı Val	. His	s His	s Ser	
Ar	g Th	r As 11		s Vai	l Leu	ı Glı	ı Gly 120		ı Thr	His	val	l Pro 129	Ala	a Arg	j Leu	
Gl:	y Th 13		u As	p Al:	a Asr	n Vai 13!		L Phe	e Lys	Lei	1 Arg	g Gli D	ı Lei	ı Ile	e Gly	
G1 14		y Pr	o Ph	e Th	r Ph		e Ası	ı Le	u Val	1 Gly 15	y Vai	l Ph	e Ala	a Le	u Gly 160	
Tr	p Pr	o I1	е Ту	r Le 16		u Th	r Gl	y Al	a Se:		y Gl	y Pr	o Va	1 Ar	g Gly 5	

Asn	Thr	Asn	His 180	Phe	Leu	Pro	Phe	Met 185	Gly	Glu	Lys	Gly	Lys 190	His	Ala	
Leu	Phe	Pro 195	Gly	Lys	Trp	Ala	Lys 200	Lys	Val	Trp	Gln	Ser 205	Asp	Ile	Gly	
Val	Val 210	Ala	Val	Leu	Gly	Ala 215	Leu	Ala	Ala	Trp	Ala 220	Ala	His	Ser	Gly	
Ile 225	Ala	Thr	Val	Met	Ala 230	Leu	Tyr	Val	Gly	Pro 235	Tyr	Met	Val	Thr	Asn 240	
Phe	Trp	Leu	Val	Leu 245	Tyr	Thr	Trp	Leu	Gln 250	His	Thr	Asp	Val	Asp 255	Val	
Pro	His	Phe	Glu 260	Gly	Asp	Asp	Trp	Asn 265	Leu	Val	Lys	Gly	Ala 270	Phe	Met	
Thr	Ile	Asp 275		Pro	Tyr	Gly	Pro 280		Phe	Asp	Phe	Leu 285	His	His	Arg	
Ile	Gly 290			· His	Va1	Ala 295	His	His	Ile	Asn	Thr 300	Pro	Phe	Pro	His	
Tyr 305		: Ala	Gln	ı Met	: Ala 310		. Ast) Ala	. Leu	Lys 315	Glu	Ala	Tyr	Pro	Asp 320	
Leu	туг	: Lev	ı Tyr	Asp 325		Thr	Pro) Il∈	Ala 330	Thr	: Ala	Thr	Trp	Arg 335	Val	
Gly	/ Sei	: Lys	340		e Alā	ı Val	. Val	l Lys 345	Lys	Gl3	y Asp	Glu	Trp 350	Val	. Phe	
Thi	: Ası	р Ly : 35:		n Lei	ı Pro	o Vai	L Ala 36	a Ala	1							
<23 <23		130 DNA	5	iosi	ra p:	seud	onan	a								
<2: <2:	22>		(1	305) 2-De	satu	rase										
a +-	~ ~~	109 a aa y Ly	~ ~~	a gg y Gl 5	a ag y Ar	a tc g'Se	a gt r Va	a ac il Th	c cg r Ar 10	c gc g Al	t ca a Gl	a ac n Th	a gcar r Ala	a ga a Gl 15	a aag u Lys	48
tc Se	a go r Al	a ca a Hi	c ac	c at r Il	c ca e Gl	a ac n Th	c tt	c ac le Th	c ga r As	c gg p Gl	y Ar	a tg g Tr	g gt p Va	c tc 1 Se	c ccc r Pro	96

174 25 tac aac ccc ctc gca aaa gat gca cct gaa ctc ccc tcc aag ggt gaa 144 Tyr Asn Pro Leu Ala Lys Asp Ala Pro Glu Leu Pro Ser Lys Gly Glu 40 atc aag gcg gtc atc ccc aaa gag tgc ttc gaa cga agc tac ctc cac 192 Ile Lys Ala Val Ile Pro Lys Glu Cys Phe Glu Arg Ser Tyr Leu His 55 tec atg tac tte gte etc egt gae ace gte atg gee gtg gee tge gee 240 Ser Met Tyr Phe Val Leu Arg Asp Thr Val Met Ala Val Ala Cys Ala 70 tac atc gcc cac tca acg ctc tcc acc gat att ccc tcc gag tta ctg 288 Tyr Ile Ala His Ser Thr Leu Ser Thr Asp Ile Pro Ser Glu Leu Leu 90 age gtg gae gea etc aaa tgg tte etc gga tgg aac ace tae gee ttt Ser Val Asp Ala Leu Lys Trp Phe Leu Gly Trp Asn Thr Tyr Ala Phe 110 105 100 tgg atg ggg tgc att ctc acc gga cac tgg gtc cta gcc cat gaa tgt 384 Trp Met Gly Cys Ile Leu Thr Gly His Trp Val Leu Ala His Glu Cys 120 gga cat ggt gca ttc tct ccc tct cag acg ttt aat gac ttt tgg ggg 432 Gly His Gly Ala Phe Ser Pro Ser Gln Thr Phe Asn Asp Phe Trp Gly 130 tto att atg cat cag gog gtg ttg gtt cog tat tto goc tgg cag tac 480 Phe Ile Met His Gln Ala Val Leu Val Pro Tyr Phe Ala Trp Gln Tyr 150 tet cat gcg aag cat cat cga cgt acc aac aat atg gat ggg gag 528 Ser His Ala Lys His His Arg Arg Thr Asn Asn Ile Met Asp Gly Glu 165 576 ago cat gtg coo aat ato goo aag gaa atg gga ttg aac gag aag aat, Ser His Val Pro Asn Ile Ala Lys Glu Met Gly Leu Asn Glu Lys Asn 185 gag cgc agt gga gga tat gcc gcc att cat gag gct att gga gat gga 624 Glu Arg Ser Gly Gly Tyr Ala Ala Ile His Glu Ala Ile Gly Asp Gly 200 195 672 ece ttt geg atg ttt caa ate ttt get cae ttg gtg ate ggg tgg ect Pro Phe Ala Met Phe Gln Ile Phe Ala His Leu Val'Ile Gly Trp Pro 210 720 att tac ttg atg gga ttt gct tcc act gga cgt ctc ggt cag gat ggg Ile Tyr Leu Met Gly Phe Ala Ser Thr Gly Arg Leu Gly Gln Asp Gly aag gaa ctt cag gct gga gag atc atc gac cat tac cgt cct tgg agt 768 Lys Glu Leu Gln Ala Gly Glu Ile Ile Asp His Tyr Arg Pro Trp Ser 250 aag atg ttc ccc acc aag ttg cga ttc aaa att gct ctt tcg aca ctt 816 Lys Met Phe Pro Thr Lys Leu Arg Phe Lys Ile Ala Leu Ser Thr Leu 265 260 gga gtg att gcc gcc tgg gtt ggg ttg tac ttt gct gca caa gag tat Gly Val Ile Ala Ala Trp Val Gly Leu Tyr Phe Ala Ala Gln Glu Tyr 275

gga gtc ttg ccc gtg gtt ctt tgg tac att ggc cca ctc atg tgg aat

Gly Val Leu Pro Val Val Leu Trp Tyr Ile Gly Pro Leu Met Trp Asn

			• •	•						
290		295		300						
cag gcg tgg Gln Ala Trp 305	ctt gtg ctc Leu Val Leu 310	tac act Tyr Thr	tgg ctt Trp Leu	cag cac Gln His 315	aat gat Asn Asp	ccc tcc Pro Ser 320	960			
gtg cct caa Val Pro Gln	tat gga agt Tyr Gly Ser 325	gac gaa Asp Glu	tgg aca Trp Thr 330	tgg gtc Trp Val	aag gga Lys Gly	gct ttg Ala Leu 335	1008			
tcg acg att Ser Thr Ile	gat cgc ccg Asp Arg Pro 340	tat ggt Tyr Gly	atc ttt Ile Phe 345	gac ttc Asp Phe	ttc cat Phe His 350	cac aag His Lys	1056			
att gga agc Ile Gly Ser 355	act cac gta Thr His Val	gct cat Ala His 360	cat ttg His Leu	ttc cac Phe His	gag atg Glu Met 365	cca ttt Pro Phe	1104			
tac aag gcg Tyr Lys Ala 370	gat gtg gct Asp Val Ala	act gcg Thr Ala 375	tcg atc Ser Ile	aag ggt Lys Gly 380	ttc ttg Phe Leu	gag ccg Glu Pro	1152			
aag gga ctt Lys Gly Leu 385	tac aac tat Tyr Asn Tyr 390	Asp Pro	acg cct Thr Pro	tgg tat Trp Tyr 395	gtg gcc Val Ala	atg tgg Met Trp 400	1200			
agg gtg gcc Arg Val Ala	aag act tgt Lys Thr Cys 405	cat tat His Tyr	att gag Ile Glu 410	Asp Val	gat gga Asp Gly	gtt cag Val Gln 415	1248			
tat tat aag Tyr Tyr Lys	agt ttg gag Ser Leu Glu 420	gat gtg Asp Val	cct tto Pro Let 425	g aag aag 1 Lys Lys	gat gcc Asp Ala 430	aag aag Lys Lys	1296			
tct gat tag Ser Asp							1305			
<210> 110 <211> 434 <212> PRT <213> Thalassiosira pseudonana										
<400> 110										
Met Gly Lys 1	s Gly Gly Ar 5	g Ser Val	l Thr Ar 10	g Ala Glr	Thr Ala	Glu Lys 15				
Ser Ala His	s Thr Ile Gl 20	n Thr Phe	e Thr As	p Gly Arg	g Trp Val 30	. Ser Pro				
Tyr Asn Pro	o Leu Ala Ly	s Asp Al 40	a Pro Gl	u Leu Pro	Ser Lys 45	s Gly Glu				
Ile Lys Al	a Val Ile Pr	o Lys Gl 55	u Cys Pł	ne Glu Ar 60	g Ser Tyı	r Leu His				
Ser Met Ty 65	r Phe Val Le 70		p Thr Va	al Met Al 75	a Val Ala	a Cys Ala 80				
Tyr Ile Al	a His Ser Th 85	ır Leu Se	er Thr As	sp Ile Pr)	o Ser Glı	u Leu Leu 95				

- Ser Val Asp Ala Leu Lys Trp Phe Leu Gly Trp Asn Thr Tyr Ala Phe 100 105 110
- Trp Met Gly Cys Ile Leu Thr Gly His Trp Val Leu Ala His Glu Cys 115 120 125 .
- Gly His Gly Ala Phe Ser Pro Ser Gln Thr Phe Asn Asp Phe Trp Gly
- Phe Ile Met His Gln Ala Val Leu Val Pro Tyr Phe Ala Trp Gln Tyr 145 150 155 160
- Ser His Ala Lys His His Arg Arg Thr Asn Asn Ile Met Asp Gly Glu 165 170 175
- Ser His Val Pro Asn Ile Ala Lys Glu Met Gly Leu Asn Glu Lys Asn 180 185 190
- Glu Arg Ser Gly Gly Tyr Ala Ala Ile His Glu Ala Ile Gly Asp Gly
 195 200 205
- Pro Phe Ala Met Phe Gln Ile Phe Ala His Leu Val Ile Gly Trp Pro 210 215 220
- Ile Tyr Leu Met Gly Phe Ala Ser Thr Gly Arg Leu Gly Gln Asp Gly 225 230 235 240
- Lys Glu Leu Gln Ala Gly Glu Ile Ile Asp His Tyr Arg Pro Trp Ser 245 250 255
- Lys Met Phe Pro Thr Lys Leu Arg Phe Lys Ile Ala Leu Ser Thr Leu 260 265 270
- Gly Val Ile Ala Ala Trp Val Gly Leu Tyr Phe Ala Ala Gln Glu Tyr 275 280 285
- Gly Val Leu Pro Val Val Leu Trp Tyr Ile Gly Pro Leu Met Trp Asn 290 300 .
- Gln Ala Trp Leu Val Leu Tyr Thr Trp Leu Gln His Asn Asp Pro Ser 305 310 315
- Val Pro Gln Tyr Gly Ser Asp Glu Trp Thr Trp Val Lys Gly Ala Leu 325 330 335
- Ser Thr Ile Asp Arg Pro Tyr Gly Ile Phe Asp Phe Phe His His Lys
- The Gly Ser Thr His Val Ala His His Leu Phe His Glu Met Pro Phe 355 360 365

																		•
ТУ	: L у		Ala	Asp `	Val		Thr 375	Ala	Ser	Ile	Lys	Gly 380	Phe	Leu	Glu	Pro		
19:		ly I	Leu	Tyr	Asn	Tyr 390	Asp	Pro	Thr	Pro	Trp 395	Tyr	Val	Ala	Met	Trp 400		
Ar	g Va	al A	Ala		Thr 405	Cys	His	Tyr	Ile	Glu 410	Asp	Val	Asp	Gly	Val 415	Gln		
ТУ	r Ty	yr 1	Ĺys	Ser 420	Leu	Glu	Asp	Val	Pro 425	Leu	Lys	Lys	Asp	Ala 430	Lys	Lys		
Se	r A	sp																
<2 <2	10> 11> 12> 13>	. D	11 79 NA stre	eococ	cus	taux	ci											
<2 <2		· (. (879 a-6-1		gase												
at	:00> :g a :t S	at	11 ggc Gly	tta Leu	cgt Arg 5	gca Ala	ccc Pro	aac Asn	ttt Phe	tta Leu 10	cac His	aga Arg	ttc Phe	tgg Trp	aca Thr 15	aag Lys		48
t <u>c</u> Ti	rp A	ac Asp	tac Tyr	gcg Ala 20	att Ile	tcc Ser	aaa Lys	gtc Val	gtc Val 25	ttc Phe	acg Thr	tgt Cys	gcc Ala	gac Asp 30	agt Ser	ttt Phe		96
G.	ag t	gg	gac Asp 35	atc Ile	G1Å aaa	cca Pro	gtg Val	agt Ser 40	tcg Ser	agt Ser	acg Thr	gcg Ala	cat His 45	tta Leu	ccc Pro	gcc Ala		144
af I	le (gaa 31u 50	tcc Ser	cct Pro	acc Thr	cca Pro	ctg Leu 55	gtg Val	act Thr	agc Ser	Cto	ttg Lev 60	ttc Phe	tac Tyr	: tta : Leu	gtc Val	C	192
a T	hr 1	gtt Val	ttc Phe	ttg Leu	tgg Trp	tat Tyr 70	ggt Gly	cgt Arg	tta Leu	acc Thr	agg Arg 75	g agt g Sei	tca Ser	gac Asr	aag Lys	aaa Lys 80		240
a I	tt a le A	aga Arg	gag	cct Pro	acg Thr 85	tgg Trp	tta Lev	aga Arg	aga Arg	tto Phe 90	ata Ile	a ata e Ile	tgt Cys	cat His	aat Asn 95	gcg Ala		288
t P	tc he i	ttg Leu	ata	gtc Val	. Leu	agt Ser	ctt Let	tac ı Tyı	Met 105	: Cys	ct: Le	t ggt u Gly	tgt Y Cys	gt9 Va: 110	l Alĉ	caa Gln		336
g A	cg la	tat Tyr	caç Glr 115	Asr	Gl ⁷	tat Y Tyr	act Th	tta Lei 120	ı Trr	ggt Gly	aa As	t gaa n Gl	a tto u Pho 125	F LA:	g gcc s Ala	acg Thr		384
g	aa lu	act Thr	caç Gli	g ctt n Lei	gct Ala	cto Let	tae 1 Ty:	c at	t tac	e att	tt Ph	t ta e Ty	c gta r Val	a ag l Se:	t aaa r Lys	a ata s Ile		432

140 135 130 480 tac gag ttt gta gat act tac att atg ctt ctc aag aat aac ttg cgg Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg 150 155 caa gta agt ttc cta cac att tat cac cac agc acg att tcc ttt att 528 Gln Val Ser Phe Leu His Ile Tyr His His Ser Thr Ile Ser Phe Ile 165 tgg tgg atc att gct cgg agg gct ccg ggt ggt gat gct tac ttc agc 576 Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser 185 180 gcg gcc ttg aac tca tgg gta cac gtg tgc atg tac acc tat tat cta 624 Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu 200 tta tca acc ctt att gga aaa gaa gat cct aag cgt tcc aac tac ctt 672 Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu 215 tgg tgg ggt cgc cac cta acg caa atg cag atg ctt cag ttt ttc ttc 720 Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe Phe 235 230 768 aac gta ctt caa gcg ttg tac tgc gct tcg ttc tct acg tat ccc aag Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys 250 ttt ttg tcc aaa att ctg ctc gtc tat atg atg agc ctt ctc ggc ttg 816 Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Leu Gly Leu 265 260 ttt ggg cat ttc tac tat tcc aag cac ata gca gca gct aag ctc cag 864 Phe Gly His Phe Tyr Tyr Ser Lys His Ile Ala Ala Lys Leu Gln 280 879 aaa aaa cag cag tga Lys Lys Gln Gln 290 <210> 112 <211> 292 <212> PRT <213> Ostreococcus tauri <400> 112 Met Ser Gly Leu Arg Ala Pro Asn Phe Leu His Arg Phe Trp Thr Lys Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe 20 Gln Trp Asp Ile Gly Pro Val Ser Ser Ser Thr Ala His Leu Pro Ala 35 Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys

- Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala
- Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln 105
- Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr
- Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile
- Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg
- Gln Val Ser Phe Leu His Ile Tyr His His Ser Thr Ile Ser Phe Ile 165
- Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser . 180
- Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu
- Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu
- Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe 230
- Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys
- Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Leu Gly Leu 260
- Phe Gly His Phe Tyr Tyr Ser Lys His Ile Ala Ala Ala Lys Leu Gln
- Lys Lys Gln Gln 290
- <210> 113 <211> 903 <212> DNA

- <213> Ostreococcus tauri
- <220>
- <221> CDS
- <222> (1)..(903)
- <223> Delta-5-Elongase

Met	aac	13 gcc Ala	tcc Ser	ggt Gly 5	gcg Ala	ctg Leu	ctg Leu	ccc Pro	gcg Ala 10	atc Ile	gcg Ala	ttc Phe	gcc Ala	gcg Ala 15	tac Tyr	48
1 gcg Ala	tac Tyr	gcg Ala	acg Thr 20	tac	gcc Ala	tac Tyr	gcc Ala	ttt Phe 25	gag	tgg Trp	tcg Ser	cac His	gcg Ala 30	aat Asn	ggc Gly	96
atc Ile	gac Asp	aac Asn 35	atc	gac Asp	gcg Ala	cgc Arg	gag Glu 40	tgg Trp	atc Ile	ggt Gly	gcg Ala	ctg Leu 45	tcg Ser	ttg Leu	agg Arg	144.
ctc Leu	ccg Pro 50	gcg Ala	atc Ile	gcg Ala	acg Thr	acg Thr 55	atg Met	tac Tyr	ctg Leu	ttg Leu	ttc Phe 60	tgc Cys	ctg Leu	gtc Val	gga Gly	192
ccg Pro 65	agg Arg	ttg Leu	atg Met	gcg Ala	aag Lys 70	cgc Arg	gag Glu	gcg Ala	ttc Phe	gac Asp 75	ccg Pro	aag Lys	GJ ⁷ âāā	ttc Phe	atg Met 80	240
ctg Leu	gcg Ala	tac Tyr	aat Asn	gcg Ala 85	tat Tyr	cag Gln	acg Thr	gcg Ala	ttc Phe 90	aac Asn	gtc Val	gtc Val	gtg Val	ctc Leu 95	Gly ggg	288
atg Met	ttc Phe	gcg Ala	cga Arg 100	gag Glu	atc Ile	tcg Ser	G17 gga	ctg Leu 105	GJA āāā	cag Gln	ccc Pro	gtg Val	tgg Trp 110	GTA	tca Ser	336
acc Thr	atg Met	ccg Pro 115	Trp	agc Ser	gat Asp	aga Arg	aaa Lys 120	Ser	ttt Phe	aag Lys	atc Ile	ctc Leu 125	Leu	GJA aaa	gtg Val	384
tgg Trp	ttg Leu 130	His	tac Tyr	aac Asn	aac Asn	aaa Lys 135	Тух	ttg Leu	gag Glu	cta Leu	ttg Leu 140	Asp	act Thr	gtg Val	ttc Phe	432
atg Met 145	. Val	gcg Ala	cgc Arg	aag Lys	aag Lys 150	Thr	aag Lys	r cag Gln	ttg Leu	agc Ser 155	. Pue	ttg Leu	cac His	gtt Val	tat Tyr 160	480
cat His	cac His	gco Ala	ctg Lev	ttg Lev 165	ı Ile	tgg Trp	gcg Ala	j tgg A Trp	tgg Trp	Leu	g gtg . Val	tgt Cys	cac His	ttg Lev 175	g atg 1 Met	528
gcc	acg Thr	aac Ası	gat n Asp 180	суя	ato	gat Asp	gcc Ala	tac Tyr 185	. Phe	ggc Gly	gcç Alá	a Ala	tgo a Cys 190	ASI	tcg Ser	576
tto Phe	atte Ile	cac Hi:	s Ile	gto Val	g ato L Met	tac Tyi	tcg Ser 200	r Tyi	tat Tyi	cto Lev	c ato 1 Met	tcs Sex 205	c Ala	g cto a Leo	ggc ggc	624
at Il	e Arg	д Су:	s CC	g tgg o Trj	g aag p Lys	g cga s Arg 219	A.L.A.	c ato	aco e Th:	c caq r Gli	g gct n Ala 220	ונט ב	a atq n Me	g cto t Le	c caa u Gln	672
tt Ph	e Va	c at l Il	t gte e Va	c tto l Pho	c gcg e Ala 230	a Hi:	c gc	c gt a Va	g tt l Ph	c gt e Va 23	1 Le	g cg u Ar	t cae	g aa n Ly	g cac s His 240	720
Сў Сў	c cc s Pr	g gt o Va	c ac l Th	c ct r Le 24	u Pro	t tg	g gc	g ca a Gl:	a at n Me 25	t Ph	c gt e Va	c at 1 Me	g ac t Th	g aa r As 25	c atg n Met 5	768
ct Le	c gt u Va	g ct l Le	c tt u Ph	c gg e Gl	g aa y As:	c tt n Ph	c ta e Ty	c ct r Le	c aa u Ly	g gc s Al	g ta a Ty	c tc r Se	g aa r As	c aa n Ly	g tcg s Ser	816

270 265 260 cgc ggc gac ggc gcg agt tec gtg aaa cca gcc gag acc acg cgc gcg 864 Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 280 903 ccc age gtg ega ege acg ega tet ega aaa att gae taa Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 295 <210> 114 <211> 300 <212> PRT <213> Ostreococcus tauri <400> 114 Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly 20 Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 40 35 Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Leu Gly 85 Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 120 Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe 135 Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 150 His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 185 Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly 200

<220>

Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 215 220 Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 235 Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 250 Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 265 Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 280 Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 295 <210> 115 <211> 13 <212> PRT <213> Konsensus <220> <221> MISC_FEATURE <222> (1)..(13) <223> Xaa in der Sequenz an der Position 2, 3, 4, 6, 7, 8 und 9 hat die in Tabelle A wiedergegebene Bedeutung. <400> 115 Asn Xaa Xaa Kaa His Xaa Xaa Met Tyr Xaa Tyr Tyr Xaa <210> 116 <211> 10 <212> PRT <213> Konsensus <220> <221> MISC_FEATURE <222> (1)..(10) <223> Xaa an der Position 3, 4, 5 und 6 in der Sequenz hat die in Tabel le A wiedergegebene Bedeutung. <400> 116 His His Xaa Xaa Xaa Xaa Trp Ala Trp Trp 5

<221> CDS <222> (1)..(909) <223> Delta-5-Elongase

<400 atg Met	> 1 gcc Ala	17 ttc Phe	aag Lys	gag Glu	ctc Leu	aca Thr	tca Ser	agg Arg	Ala	gtg Val	ctc Leu	ctg Leu	tat Tyr	Asp	gaa Glu	48
tgg	att Ile	aaa	gat	gct	gat	cct	agg Arg	gtt Val	10 gaa Glu	gac Asp	tgg Trp	cca Pro	ctc Leu	15 atg Met	tcc Ser	96
	cct		20					25					30			144
Ser	Pro	Ile 35	Leu	Gln	Thr	Ile	Ile 40	Ile	Gly	Ala	Tyr	11e 45	Tyr	Pne	Val	
aca Thr	tca Ser 50	ttg Leu	ggc	cca Pro	agg Arg	atc Ile 55	atg Met	gag Glu	aac Asn	agg Arg	aag Lys 60	ccg Pro	ttt Phe	gct Ala	ctg Leu	192
aag Lys 65	gag Glu	atc Ile	atg Met	gca Ala	tgt Cys 70	tac Tyr	aac Asn	tta Leu	ttc Phe	atg Met 75	gtt Val	ctg Leu	ttt Phe	tct Ser	gtg Val 80	240
tac Tyr	atg Met	tgc Cys	tat Tyr	gag Glu 85	ttt Phe	ctc Leu	atg Met	tcg Ser	ggc 90	tgg Trp	gct Ala	act Thr	gga Gly	tat Tyr 95	tcc Ser	288
ttt Phe	aga Arg	tgt Cys	gac Asp 100	att Ile	gtt Val	gac Asp	tac Tyr	tct Ser 105	cag Gln	tca Ser	cct Pro	cag Gln	gcg Ala 110	tta Leu	cgg Arg	336
atg Met	gcc Ala	tgg Trp 115	Thr	tgc Cys	tgg Trp	ctc Leu	ttc Phe 120	tat Tyr	ttt Phe	tca Ser	aag Lys	ttc Phe 125	att Ile	gaa Glu	tta Leu	384
tta Leu	gac Asp 130	act Thr	gtt Val	ttc Phe	ttt Phe	gtg Val 135	Leu	cgt Arg	aag Lys	aag Lys	aac Asn 140	Ser	cag Gln	att Ile	aca Thr	432
ttc Phe 145	ctg Leu	cac His	gto Val	tat Tyr	cac His 150	cac His	tcc Ser	att	atg Met	cct Pro 155	Trp	acg Thr	tgg Trp	tgg Trp	ttt Phe 160	480
gga Gly	gtc Val	aaa Lys	ttt Phe	gct Ala 165	Pro	ggt	ggt Gly	ttg Leu	ggc Gly 170	aca Thr	ttc Phe	cat His	gca Ala	ctg Leu 175	var	528
aac Asn	tgt Cys	gtg Val	gto . Val	. His	gtt Val	ato Ile	atg Met	tac Tyr 185	Ser	tac Tyr	tac Tyr	GTA	cto Lev 190	ı Ser	gcc Ala	576
t tg Leu	r ejä 1. aaa	Pro	Ala	tac Tyr	cag Glr	aag Lys	tac Tyr 200	Leu	j tgg i Trp	tgg Tr	g aaa D Lys	aag Lys 205	TA3	atg Met	acg Thr	624
t ct Ser	ato : Ile 210	Glr	a cto 1 Lev	g acc	cag Glr	tto Phe 21	e Lev	g ato 1 Met	g gtt : Val	act Thi	t ttt r Phe 220	s Hra	ato Ile	e Gly	cag Gln	672
tto Phe 225	Ph∈	tto Phe	c ato	g gaç t Glu	g aat 1 Asr 23(т Су:	c ccq	g tad	c cag c Glr	tai Ty: 23!	r Pro	c gto val	tto L Phe	c ttg e Lev	tat Tyr 240	720
gta Va:	att l Ile	tg: Tr	g cto	g tad u Tyi	c Gly	y tto y Ph	c gti e Vai	t tto l Pho	c tta e Lei	a ato	c tto e Le	g tto u Pho	c cto	c aad u Asi	ttc n Phe	768

250 245 tgg ttc cac gct tac atc aaa gga cag agg ctg ccg aaa gcc gtc caa 816 Trp Phe His Ala Tyr Ile Lys Gly Gln Arg Leu Pro Lys Ala Val Gln 265 aat ggc cac tgc aag aac aac aac caa gaa aac act tgg tgc aag 864 Asn Gly His Cys Lys Asn Asn Asn Gln Glu Asn Thr Trp Cys Lys 280 275 aac aaa aac cag aaa aac ggt gca ttg aaa agc aaa aac cat tga 909 Asn Lys Asn Gln Lys Asn Gly Ala Leu Lys Ser Lys Asn His 290 295 <210> 118 <211> 302 <212> PRT <213> Xenopus laevis <400> 118 Met Ala Phe Lys Glu Leu Thr Ser Arg Ala Val Leu Leu Tyr Asp Glu Trp Ile Lys Asp Ala Asp Pro Arg Val Glu Asp Trp Pro Leu Met Ser Ser Pro Ile Leu Gln Thr Ile Ile Ile Gly Ala Tyr Ile Tyr Phe Val Thr Ser Leu Gly Pro Arg Ile Met Glu Asn Arg Lys Pro Phe Ala Leu Lys Glu Ile Met Ala Cys Tyr Asn Leu Phe Met Val Leu Phe Ser Val 70 Tyr Met Cys Tyr Glu Phe Leu Met Ser Gly Trp Ala Thr Gly Tyr Ser Phe Arg Cys Asp Ile Val Asp Tyr Ser Gln Ser Pro Gln Ala Leu Arg 105 Met Ala Trp Thr Cys Trp Leu Phe Tyr Phe Ser Lys Phe Ile Glu Leu Leu Asp Thr Val Phe Phe Val Leu Arg Lys Lys Asn Ser Gln Ile Thr 135 Phe Leu His Val Tyr His His Ser Ile Met Pro Trp Thr Trp Phe 1.45 Gly Val Lys Phe Ala Pro Gly Gly Leu Gly Thr Phe His Ala Leu Val 165 Asn Cys Val Val His Val Ile Met Tyr Ser Tyr Tyr Gly Leu Ser Ala 185 180

	ro Ala 95	Tyr (Gln 1		Tyr 200	Leu '	Trp '	rp	Lys	Lys ' 205	Tyr	Met	Thr	
Ser Ile G 210	ln Leu	Thr		Phe 215	Leu	Met	Val	Thr	Phe 220	His	Ile	Gly	Gln	
Phe Phe P	he Met		Asn 230	Cys	Pro	Tyr	Gln	Tyr 235	Pro	Val	Phe	Leu	Tyr 240	
Val Ile T	rp Leu	Tyr 245	Gly	Phe	Val	Phe	Leu 250	Ile	Leu	Phe	Leu	Asn 255	Phe	
Trp Phe H	is Ala 260	Tyr	Ile	Lys	Gly	Gln 265	Arg	Leu	Pro	Lys	Ala 270	Val	Gln	
Asn Gly H 2	lis Cys 175	Lys	Asn	Asn	Asn 280	Asn	Gln	Glu	Asn	Thr 285	Trp	Суѕ	Lys	
Asn Lys A	Asn Gln	Lys	Asn	Gly 295	Ala	Leu	Lys	Ser	Lys 300	Asn	His			
<210> 11 <211> 87 <212> DN <213> Ci	70	testi	inali	s								*		
<220> <221> CI <222> (1 <223> De	1)(87	_	gase											
<221> CI <222> (1 <223> De	1)(87 elta-5- 19	Elong	cat	ttc	tta Leu	gga Gly	ttc Phe 10	tac Tyr	gaa Glu	tgg Trp	acg Thr	ctg Leu 15	act Thr	48
<221> CI <222> (1 <223> De <400> 11 atg gac (1)(87 elta-5- 19 gta ctt Val Leu	Elong cat His 5	cgt Arg	ttc Phe	Leu	Gly	Phe 10 cct	Tyr	Glu	Trp	Thr	Leu 15	ctt	4 8 96
<221> CI <222> (1 <223> De <400> 1: atg gac g Met Asp 1 1 ttc gcg g Phe Ala 2 cct aca pro Thr	1)(87 elta-5- 19 gta ctt Val Let gac ccc Asp Pro	Elong Cat His S Caga Arg	cgt Arg gtg Val	ttc Phe gca Ala	Leu aaa Lys	tgg Trp 25	Phe 10 cct Pro	Tyr tta Leu	Glu ata Ile	Trp gaa Glu gtt	aac Asn 30	Leu 15 ccc Pro	ctt Leu	
<221> CI <222> (1 <223> De <400> 1: atg gac g Met Asp 1 1 ttc gcg g Phe Ala 2 cct aca pro Thr	1)(87 elta-5- 19 gta ctt Val Leu gac ccc Asp Pro 20 att gct Ile Ala 35	Elong Cat His Cat Cat Arg Cat	cgt Arg gtg Val gtg Val	ttc Phe gca Ala ttg Leu	aaa Lys ctg Leu 40	tgg Trp 25 tac Tyr	Phe 10 cct Pro ctg Leu	Tyr tta Leu gcg Ala	Glu ata Ile ttt Phe	gaa Glu gtt Val 45	aac Asn 30 ctg Leu	Leu 15 ccc Pro tat	ctt Leu att Ile	96
<221> CI <222> (1 <223> De <400> 11 atg gac g Met Asp 1 1 ttc gcg g Phe Ala 1 cct aca Pro Thr ggg ccg Gly Pro	1)(87 elta-5- 19 gta ctt Val Leu gac ccc Asp Pro 20 att gct Ile Ala 35 cgt ttt Arg Pho	Elong Cat His Cat Arg Arg Latt Alle Atg Atg	cgt Arg gtg Val gtg Val cga Arg	ttc Phe gca Ala ttg Leu aaa Lys 55	aaa Lys ctg Leu 40 aga Arg	tgg Trp 25 tac Tyr	Phe 10 cct. Pro ctg Leu cca. Pro	tta Leu gcg Ala gtt Val	ata Ile ttt Phe Asp 60	gaa Glu gtt Val 45 ttt Phe	aac Asn 30 ctg Leu ggt	Leu 15 ccc Pro tat Tyr tta	ctt Leu att Ile ttc Phe	96 144
<221> CI <222> (1 <223> De <400> 1: atg gac g Met Asp 1 ttc gcg g Phe Ala 2 cct aca pro Thr ggg ccg Gly Pro 50 ctc cct Leu Pro	1)(87 elta-5- 19 ggta ctt Val Lev gac ccc Asp Pro 20 att gct 35 cgt ttt Arg Pho gga ta: Gly Ty:	cat His 5 cga Arg att alle Met aac	gtg Val gtg Val cga Arg	ttc Phe gca Ala ttg Leu aaa Lys 55 gct	Leu aaa Lys ctg Leu 40 aga Arg	tgg Trp 25 tac Tyr gca Ala ygtt	Phe 10 cct Pro ctg Leu cca Pro gca Ala	tta Leu gcg Ala gtt val tta Leu 75	ata Ile ttt Phe Gac Asp 60 aat	gaa Glu gtt Val 45 ttt Phe	aacc Asn 30 ctg Leu ggt tat Tyr	Leu 15 ccc Pro tat Tyr tta	ctt Leu att Ile ttc Phe	96 144 192

110 100 105 aac get gta tgg tgg tat tat gta tee aag ata ata gag ttg ttt gat 384 Asn Ala Val Trp Trp Tyr Tyr Val Ser Lys Ile Ile Glu Leu Phe Asp 120 act gtg ttg ttc act cta cgc aaa cga gac cga caa gta act ttc ctt 432 Thr Val Leu Phe Thr Leu Arg Lys Arg Asp Arg Gln Val Thr Phe Leu 135 cat gtt tat cac cat tot acc atg ccc ctg ttg tgg tgg att ggg gca 480 His Val Tyr His His Ser Thr Met Pro Leu Leu Trp Trp Ile Gly Ala 150 aag tgg gtg cct ggt ggg caa tca ttt gtt ggc atc ata ctg aac tcc 528 Lys Trp Val Pro Gly Gly Gln Ser Phe Val Gly Ile Ile Leu Asn Ser 170 agt gtt cat gtt atc atg tat acg tac tat gga ttg tca gcc ttg ggg 576 Ser Val His Val Ile Met Tyr Thr Tyr Tyr Gly Leu Ser Ala Leu Gly cct cac atg cag aag ttt cta tgg tgg aag aaa tat atc aca atg ttg 624 Pro His Met Gln Lys Phe Leu Trp Trp Lys Lys Tyr Ile Thr Met Leu 200 672 caa ctg gtt caa ttt gtt ctt gcc atc tac cat act gct cga tca ttg Gln Leu Val Gln Phe Val Leu Ala Ile Tyr His Thr Ala Arg Ser Leu 215 720 tac gtt aaa tgt ccc tcg cct gtt tgg atg cac tgg gca ctt atc ttg Tyr Val Lys Cys Pro Ser Pro Val Trp Met His Trp Ala Leu Ile Leu 235 230 768 tac gct ttc tca ttc att ttg ctt ttc tca aac ttc tac atg cat gcc Tyr Ala Phe Ser Phe Ile Leu Leu Phe Ser Asn Phe Tyr Met His Ala 250 816 tat atc aag aaa tca aga aaa ggg aaa gag aat ggc agt cga gga aaa Tyr Ile Lys Lys Ser Arg Lys Gly Lys Glu Asn Gly Ser Arg Gly Lys 265 864 ggt ggt gta agt aat gga aag gaa aag ctg cac gct aat ggt aaa acc Gly Gly Val Ser Asn Gly Lys Glu Lys Leu His Ala Asn Gly Lys Thr 280 . 870 gat taa Asp <210> 120 <211> 289 <212> PRT <213> Ciona intestinalis <400> 120 Met Asp Val Leu His Arg Phe Leu Gly Phe Tyr Glu Trp Thr Leu Thr 5 10 Phe Ala Asp Pro Arg Val Ala Lys Trp Pro Leu Ile Glu Asn Pro Leu 20 30 Pro Thr Ile Ala Ile Val Leu Leu Tyr Leu Ala Phe Val Leu Tyr Ile 40

- Gly Pro Arg Phe Met Arg Lys Arg Ala Pro Val Asp Phe Gly Leu Phe 50 55 60
- Leu Pro Gly Tyr Asn Phe Ala Leu Val Ala Leu Asn Tyr Tyr Ile Leu 65 70 75 80
- Gln Glu Val Val Thr Gly Ser Tyr Gly Ala Gly Tyr Asp Leu Val Cys 85 90 95
- Thr Pro Leu Arg Ser Asp Ser Tyr Asp Pro Asn Glu Met Lys Val Ala 100 105 110
- Asn Ala Val Trp Trp Tyr Tyr Val Ser Lys Ile Ile Glu Leu Phe Asp 115 120 125
- Thr Val Leu Phe Thr Leu Arg Lys Arg Asp Arg Gln Val Thr Phe Leu 130 135 140
- His Val Tyr His His Ser Thr Met Pro Leu Leu Trp Trp Ile Gly Ala 145 150 155 160
- Lys Trp Val Pro Gly Gly Gln Ser Phe Val Gly Ile Ile Leu Asn Ser 165 170 175
- Ser Val His Val Ile Met Tyr Thr Tyr Tyr Gly Leu Ser Ala Leu Gly 180 185 190
- Pro His Met Gln Lys Phe Leu Trp Trp Lys Lys Tyr Ile Thr Met Leu 195 200 205
- Gln Leu Val Gln Phe Val Leu Ala Ile Tyr His Thr Ala Arg Ser Leu 210 215 220
- Tyr Val Lys Cys Pro Ser Pro Val Trp Met His Trp Ala Leu Ile Leu 225 230 235
- Tyr Ala Phe Ser Phe Ile Leu Leu Phe Ser Asn Phe Tyr Met His Ala 245 250 255
- Tyr Ile Lys Lys Ser Arg Lys Gly Lys Glu Asn Gly Ser Arg Gly Lys 260 265 270
- Gly Gly Val Ser Asn Gly Lys Glu Lys Leu His Ala Asn Gly Lys Thr 275 280 285

Asp

<210> 121 <211> 30

```
<212> DNA
<213> Primer
<220>
<221> misc_feature <222> (1)..(30)
<223>
<400> 121
                                                                                   30
aggatecatg geetteaagg ageteacate
<210> 122
<211> 35
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(35)
<223>
<400> 122
                                                                                    35
cctcgagtca atggtttttg cttttcaatg caccg
<210> 123
<211> 25
<212> DNA
 <213> Primer
 <220>
 <221> misc_feature
 <222> (1)..(25)
 <223>
 <400> 123
                                                                                    25
 taagcttatg gacgtacttc atcgt
 <210> 124
<211> 26
<212> DNA
<213> Primer
 <220>
 <221> misc_feature <222> (1)..(26)
 <223>
 <400> 124
                                                                                     26
 tcagatcttt aatcggtttt accatt
 <210> 125
 <211> 34
  <212> DNA
  <213> Primer
  <220>
  <221> misc_feature
  <222> (1)..(34)
  <223>
```

<212> DNA

```
<400> 125
                                                                        34
gcggccgcac catggccttc aaggagctca catc
<210> 126
<211> 38
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(38)
<223>
<400> 126
                                                                         38
gcggccgcct tcaatggttt ttgcttttca atgcaccg
<210> 127
<211> 29
<212> DNA
<213> Primer
<220>
<221> misc_feature <222> (1)..(29)
<223>
<400> 127
                                                                         29
geggeegeac catggaegta etteategt
<210> 128
 <211> 27
 <212> DNA
 <213> Primer
 <220>
 <221> misc_feature
        (1)..(27)
 <222>
 <223>
 <400> 128
                                                                         27
 gcggccgctt taatcggttt taccatt
 <210> 129
<211> 60
 <212> DNA
 <213> Primer
 <220>
 <221> misc_feature
 <222> (1)..(60)
 <223>
 <400> 129
 gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa 60
  <210> 130
  <211> 60
```

```
<213> Primer
<220>
<221> misc_feature
<222> (1)..(60)
<223>
<400> 130
gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
                                                                    60
<210> 131
<211> 789
<212> DNA
<213> Euglena gracilis
<220>
<221> CDS
<222> (1)..(789)
<223> Delta-5-Elongase
<400> 131
                                                                    48
atg ctg ggg gcc atc gcg gac gtc gtg ctc cgg ggg ccc gcc gca ttc
Met Leu Gly Ala Ile Ala Asp Val Val Leu Arg Gly Pro Ala Ala Phe
cac tgg gac cet gec acc acc eeg ete gea teg ate gte age eee tgt
                                                                    96
His Trp Asp Pro Ala Thr Thr Pro Leu Ala Ser Ile Val Ser Pro Cys
            20
gtg gcc tcc gtg gcg tac ctg ggg gcc atc ggg ctg ctg aag cgc cgc
                                                                    144
Val Ala Ser Val Ala Tyr Leu Gly Ala Ile Gly Leu Leu Lys Arg Arg
act gga ccg gag gtc cgc tcc aag ccc ttc gag ctg cta cac aac ggg
                                                                    192
Thr Gly Pro Glu Val Arg Ser Lys Pro Phe Glu Leu Leu His Asn Gly
240
Leu Leu Val Gly Trp Ser Leu Val Val Leu Leu Gly Thr Leu Tyr Gly
                    70
gcg ttc cag cgc gtg cag gag gac ggc cgg ggg gtg cag gcc ctc ctg
                                                                    288
Ala Phe Gln Arg Val Gln Glu Asp Gly Arg Gly Val Gln Ala Leu Leu
                85
 tgc acc cag cgg cca cca tct cag atc tgg gac ggc ccg gtg ggg tac
                                                                    336
Cys Thr Gln Arg Pro Pro Ser Gln Ile Trp Asp Gly Pro Val Gly Tyr
                                105
 ttc acg tac ctc ttc tac ctc gcg aag tac tgg gag ctg gcg gac act
                                                                    384
 Phe Thr Tyr Leu Phe Tyr Leu Ala Lys Tyr Trp Glu Leu Ala Asp Thr
                            120
                                                                    432
 gtc atc ctc gcc ctc cgc cag aag ccc acc atc ccc ctc cac gtc tac
 Val Ile Leu Ala Leu Arg Gln Lys Pro Thr Ile Pro Leu His Val Tyr
                                            140
 cat cac gcc gtc atg ctg ttc atc gtg tgg tcg tgg ttc gcg cac ccc
                                                                    480
 His His Ala Val Met Leu Phe Ile Val Trp Ser Trp Phe Ala His Pro
                                        155
                     150
 tgg ctc gag ggg agc tgg tgg tgc tcc ctg gtc aac tct ttc atc cac
                                                                    528
 Trp Leu Glu Gly Ser Trp Trp Cys Ser Leu Val Asn Ser Phe Ile His
                                     170
                 165
```

acg Thr	gtg Val	atg Met	tac Tyr 180	tcg Ser	tac Tyr	tac a Tyr '	Thr	ctg Leu 185	acg Thr	gtg Val	gtt Val	Gly	atc Ile 190	aac Asn	cct Pro	576
tgg Trp	tgg Trp	aag Lys 195	aag Lys	tgg Trp	atg Met	acc (acc Thr 200	atg Met	cag Gln	atc Ile	Ile	cag Gln 205	ttc Phe	atc Ile	acg Thr	624
ggc Gly	tgc Cys 210	gtg Val	tac Tyr	gtc Val	atg Met	gcg Ala 215	ttc Phe	ttc Phe	Gly	cta Leu	tat Tyr 220	tat Tyr	gcc Ala	ejà aaa	gcg Ala	672
ggc Gly 225	tgc Cys	acc Thr	tcc Ser	aac Asn	gtg Val 230	tac Tyr	act Thr	gcc Ala	tgg Trp	ttc Phe 235	tcg Ser	atg Met	Gly ggg	gtc Val	aac Asn 240	720
ctc Leu	agc Ser	ttt Phe	ctg Leu	tgg Trp 245	ctc Leu	ttc Phe	gct Ala	Leu	ttc Phe 250	ttc Phe	cgc Arg	cgg Arg	tca Ser	tac Tyr 255	agc Ser	768
			cgg Arg 260			tag										789
<21 <21 <21 <21	1> 2>	132 262 PRT Eugl	ena (grac:	ilis											
<40	0>	132														•
Met 1	Leu	Gly	Ala	Ile 5	Ala	Asp	Val	Va1	Leu 10	Arg	Gly	Pro	Ala	Ala 15	Phe	
His	Trp	Asp	Pro 20	Ala	Thr	Thr	Pro	Leu 25	Ala	Ser	Ile	Val	Ser 30	Pro	Cys	
Va1																
	. Ala	Ser 35	· Val	Ala	Tyr	Leu	Gly 40	Ala	Ile	Gly	' Leu	Leu 45	Lys	Arg	Arg	
		35				Leu Ser 55	40					45				
Thr	Gl ₃ 50	35 Pro	o Glu	Val	Arg	Ser	40 Lys	Pro	Phe	Glu	Leu 60	45 Leu	His	Asn	Gly	
Thr Let 65	: Gl ₃ 50 1 Let	35 Pro	Glu Gly	Val	Arg Ser 70	Ser 55	40 Lys Val	Pro	Phe Leu	Glu Leu 75	Leu 60	Leu Thr	His	Asn Tyr	Gly Gly 80	
Thr Let 65	Gly 50 Let Pho	35 / Pro l Val	Glu Gly n Arg	Val	Arg	Ser 55 Leu	Lys Val	Yal	Phe Leu Arg 90	Glu Leu 75	Leu 60 Gly Val	Leu Thr	His Leu	Asn Tyr Leu 95	Gly 80	
Thr Lev 65 Ala	Gly 50 1 Let 2 Pho 5 Th:	35 / Pro l Val e Glr	Glu Gly n Arg n Arg 100	Val	Arg	Ser 55 Leu Glu	Lys Val Asr	Val	Phe Leu Arg 90	Glu 75 Gly Asp	Leu 60 Gly Val	Leu Thr Gln	Leu Ala Val	Tyr Leu 95 LGly	Gly 80	

145	Val Me	et Leu 150	Phe :	Ile V	al T	rp S	er 5 .55	rp	Phe I	Ala 1	His :	Pro 160	
Trp Leu Glu		er Trp 65	Trp (Cys S	Ser L 1	eu V	al i	Asn :	Ser	Phe	Ile 175	His	
Thr Val Met			TYr '	Thr I	Leu T	hr V	7al '	Val	Gly	Ile 190	Asn	Pro	
Trp Trp Lys 195	Lys T	rp Met	Thr (Sln 1	île	Ile	Gln 205	Phe	Ile	Thr	
Gly Cys Val		al Met			Phe G	Sly I	Leu	Tyr 220	Tyr	Ala	Gly	Ala	
Gly Cys Thr	Ser A			Thr A	Ala 1	rp)			Met	Gly	Val	Asn 240	
225 Leu Ser Phe			Phe	Ala :	Leu !			Arg	Arg	Ser	Туr 255		
Lys Pro Ser	: Arg I	145 Lys Glu			•		•				200		
<210> 133	260												
<211> 789 <212> DNA <213> Eugl	lena gi	racilis											
<220> <221> CDS <222> (1) <223> Del	(789) :a-5 - E												
<221> CDS <222> (1)	g gcc y Ala	longase	gac	gtc Val	gtg Val	ctc Leu 10	cgg Arg	GJA āāā	ccc Pro	gcc Ala	gca Ala 15	ttc Phe	48
<221> CDS <222> (1) <223> Del <400> 133 atg ctg gg Met Leu Gl	g gee y Ala	longase atc gcg Ile Ala 5	gac Asp	Val	Val	Leu 10 gca	Arg	GLy atc	Pro gtc	agc	15 ccc	tgt	4 8 96
<221> CDS <222> (1) <223> Del <400> 133 atg ctg gg Met Leu Gl; 1	g gcc y Ala c cct p Pro 20 c gtg r Val	atc gcg Ile Ala 5 gcc acc Ala Thr	gac Asp acc Thr	ccg Pro	ctc Leu 25	Leu 10 gca Ala	tcg Ser	atc Ile	gtc Val	agc Ser 30	15 ccc Pro	tgt Cys cgc	
<221> CDS <222> (1) <223> Del <400> 133 atg ctg gg Met Leu Gl 1 cac tgg ga His Trp As gtg gcc tc Val Ala Se	g gcc y Ala c cct p Pro 20 c gtg r Val	atc gcg Ile Ala 5 gcc acc Ala Thr gcg tac Ala Tyr	gac Asp acc Thr ctg	ccg Pro ggg Gly 40	ctc Leu 25 gcc Ala	Leu 10 gca Ala atc Ile	tcg Ser ggg Gly	atc Ile ctg Leu	gtc Val ctg Leu 45	agc Ser 30 aag Lys	15 CCC Pro	aaa cac cAc rar	96
<pre><221> CDS <222> (1) <223> Del </pre> <pre><400> 133 atg ctg gg Met Leu Gl; 1 cac tgg ga His Trp As gtg gcc tc Val Ala Se 35 act gga cc Thr Gly Pr</pre>	g gcc y Ala c cct p Pro 20 c gtg r Val g gag o Glu	atc gcg Ile Ala 5 gcc acc Ala Thr gcg tac Ala Tyr	gac Asp acc Thr ctg	ccg Pro ggg Gly 40 aag Lys	ctc Leu 25 gcc Ala ccc Pro	Leu 10 gca Ala atc Ile ttc Phe	tcg Ser ggg Gly gag Glu	atc Ile ctg Leu ctg	gtc Val ctg Leu 45	agc Ser 30 aag Lys cac	ccc Pro cgc Arg	dad GJA cac CAs	96 144

tgc Cys	acc Thr	cag Gln	cgg Arg 100	cca Pro	cca Pro	tct Ser	cag Gln	atc Ile 105	tgg Trp	gac Asp	ggc Gly	ccg Pro	gtg Val 110	Gly ggg	tac Tyr	336
ttc Phe	acg Thr	tac Tyr 115	ctt Leu	ttc Phe	tac Tyr	ctc Leu	gcg Ala 120	aag Lys	tac Tyr	tgg Trp	gag Glu	ctg Leu 125	gtg Val	gac Asp	act Thr	384
gtc Val	atc Ile 130	ctc Leu	gcc Ala	ctc Leu	cgc Arg	cag Gln 135	aag Lys	ccc Pro	acc Thr	atc Ile	ccc Pro 140	ctc Leu	cac His	gtc Val	tac Tyr	432
cat His 145	cac His	gcc Ala	gtc Val	atg Met	ctg Leu 150	ttc Phe	att Ile	gtg. Val	tgg Trp	tcg Ser 155	tgg Trp	ttc Phe	gcg Ala	cac His	ccc Pro 160	480
tgg Trp	ctc Leu	gag Glu	GJλ āāā	agc Ser 165	tgg Trp	tgg Trp	tgc Cys	tcc Ser	ctg Leu 170	gtc Val	aac Asn	tct Ser	ttc Phe	atc Ile 175	cac His	528
acg Thr	gtg Val	atg Met	tac Tyr 180	tcg Ser	tat Tyr	tac Tyr	acc Thr	ctg Leu 185	acg Thr	gtg Val	gtt Val	ggc	atc Ile 190	aac Asn	cct Pro	576
tgg Trp	tgg Trp	aag Lys 195	aag Lys	tgg Trp	atg Met	acc Thr	acc Thr 200	atg Met	cag Gln	atc Ile	atc Ile	cag Gln 205	ttc Phe	atc Ile	acg Thr	624
ggc	tgc Cys 210	gtg Val	tac Tyr	gtc Val	acg Thr	gcg Ala 215	ttc Phe	ttc Phe	ggc	cta Leu	tac Tyr 220	Tyr	gcc Ala	Gly	gcg Ala	672
ggc Gly 225	tgc Cys	acc Thr	tcc Ser	aac Asn	gtg Val 230	tac Tyr	act Thr	gcc Ala	tgg Trp	ttc Phe 235	Ser	atg Met	ggg	gtc Val	aac Asn 240	720
ctc Leu	ago Ser	ttt Phe	ctg Leu	tgg Trp 245	Leu	ttc Phe	gct Ala	ctt Leu	ttc Phe 250	Phe	cgc Arg	arg	tcg Ser	tac Tyr 255	Ser	768
	cct Pro			Lys					٠							789
<21 <21	.0> .1> .2> .3>	134 262 PRT Eug]	lena	grad	cilis	;										
<4(00>	134														
Me	. Le	ı Gly	/ Ala	a Ile	e Ala	a Asp	Val	l Val	L Leu 10	ı Ar	g Gl	y Pro	o Ala	a Ala 15	a Phe	>
Hi	s Tr	p Ası	p Pro 20	o Ala	a Thi	r Thi	r Pro	o Lei 25	u Ala	a Se	r Il	e Vai	1 Se: 30	r Pr	o Cys	
Va	l Al	a Se: 35	r Va	l Al	a Tyr	r Lei	Gl; 40	y Al	a Il	e Gl	y Le	u Le [.] 45	u Ly	s Ar	g Arg	
Th	r Gl	y Pr	o Gl	u Va	l Ar	g Se: 55	r Ly	s Pr	o Ph	e Gl	u Le 60	u Le	u Hi	s As	n Gly	

Leu Leu Val Gly Trp Ser Leu Val Val Leu Leu Gly Thr Leu Tyr Gly 70 Ala Tyr Gln Arg Val Gln Glu Asp Gly Arg Gly Val Gln Ala Leu Leu Cys Thr Gln Arg Pro Pro Ser Gln Ile Trp Asp Gly Pro Val Gly Tyr 105 Phe Thr Tyr Leu Phe Tyr Leu Ala Lys Tyr Trp Glu Leu Val Asp Thr Val Ile Leu Ala Leu Arg Gln Lys Pro Thr Ile Pro Leu His Val Tyr 135 His His Ala Val Met Leu Phe Ile Val Trp Ser Trp Phe Ala His Pro 155 150 145 Trp Leu Glu Gly Ser Trp Trp Cys Ser Leu Val Asn Ser Phe Ile His Thr Val Met Tyr Ser Tyr Tyr Thr Leu Thr Val Val Gly Ile Asn Pro 180 Trp Trp Lys Lys Trp Met Thr Thr Met Gln Ile Ile Gln Phe Ile Thr 200 Gly Cys Val Tyr Val Thr Ala Phe Phe Gly Leu Tyr Tyr Ala Gly Ala 215 Gly Cys Thr Ser Asn Val Tyr Thr Ala Trp Phe Ser Met Gly Val Asn 230 235 225 Leu Ser Phe Leu Trp Leu Phe Ala Leu Phe Phe Arg Arg Ser Tyr Ser 250 Lys Pro Ser Arg Lys Glu 260 <210> 135 <211> 897 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (1)..(897) <223> Delta-5-Elongase <400> 135 atg gca tot gtt tac toc acc cta acc tac tgg ctc gtc cac cac ccc Met Ala Ser Val Tyr Ser Thr Leu Thr Tyr Trp Leu Val His His Pro

Т	Ъľ	Ile	Ala	Asn 20	Phe	Thr	Trp	Thr	Glu 25	Gly	Glu	aca Thr	Leu	30 GTA	ser	Thr	96
g V	rtt 7al	ttc Phe	ttt Phe 35	gtc Val	ttt Phe	gtc Val	gtc Val	gtc Val 40	tcc Ser	ctt Leu	tac Tyr	ctc Leu	tcc Ser 45	gcc Ala	aca Thr	ttc Phe	144
I	tc Leu	ctc Leu 50	cga Arg	tac Tyr	acc Thr	gtc Val	gat Asp 55	tca Ser	ctc Leu	ccc Pro	aca Thr	ctc Leu 60	ggt Gly	ccc Pro	cgc Arg	att Ile	192
I	etc Leu 55	aaa Lys	cca Pro	atc Ile	aca Thr	gcc Ala 70	gtt Val	cac His	agc Ser	ctc Leu	att Ile 75	ctc Leu	ttc Phe	ctc Leu	ctc Leu	tcc Ser 80	240
t	ta Leu	acc Thr	atg Met	gcc Ala	gtt Val 85	ggt Gly	tgc Cys	act Thr	ctc Leu	tcc Ser 90	cta Leu	atc Ile	tct Ser	tcc Ser	tcg Ser 95	gac Asp	288
I	ccg Pro	aag Lys	gcg Ala	cgt Arg 100	ctc Leu	ttc Phe	gac Asp	gcc Ala	gtt Val 105	tgt Cys	ttc Phe	ccc Pro	ctc Leu	gac Asp 110	gtg Val	aaa Lys	336
1	cct Pro	aag Lys	gga Gly 115	Pro	ctt Leu	ttc Phe	ttt Phe	tgg Trp 120	gct Ala	caa Gln	gtc Val	ttt Phe	tac Tyr 125	ctc Leu	tcg Ser	aag Lys	384
	atc Ile	ctt Leu 130	Glu	ttc Phe	gta Val	gac Asp	aca Thr 135	ctt Leu	ctc Leu	atc Ile	ata Ile	ctc Leu 140	aac Asn	aaa Lys	tca Ser	atc Ile	432
-	caa Gln 145	Arg	cto Lev	tcg Ser	ttc Phe	ctc Leu 150	cac His	gtc Val	tac Tyr	cac His	cac His 155	gca Ala	acg Thr	gtt Val	gtg Val	att Ile 160	480
	ttg Leu	tgc Cys	tac Tyr	cto Lev	tgg Trp 165	Leu	cga Arg	aca Thr	cgt Arg	caa Gln 170	Ser	atg Met	ttt Phe	cct Pro	gtt Val 175	GTA	528
	ctc Leu	gtç Val	r tto . Lei	g aac 1 Asr 180	ı Ser	acg Thr	gtc Val	cat His	gtg Val 185	. Ile	atç Met	tac Tyr	Gly ggg	tac Tyr 190	TYI	ttc Phe	576
	cto	tgc Cys	gct 8 Ala 19	a Ile	= gga ≥ Gly	tcg Ser	agg Arg	ccc Pro 200	Lys	tgg .Tr	g aag D Lys	g aag E Lys	tto Lev 209	ı vaı	acg Thr	aat Asn	624
	ttt Phe	caa Glr 210	n Me	g gti t Vai	caq l Gl	ttt n Phe	gct Ala 215	Phe	Gl7 GgG	e ato / Met	: GJ7 a aad	g tta y Lev 220	ı GTZ	a gco / Ala	gct Ala	tgg Trp	672
	ato Met 225	: Le	c cc	a gaq o Gl	g cat u His	tat Tyr 230	. Phe	Gl7 Gg	g tcg / Sei	g ggt c Gly	t tge y Cy: 23!	s Ala	e ggg	g att / Ile	tgg Tr	aca Thr 240	720
	gtt Val	tai L Ty:	t tt r Ph	c aa e As	t gg n Gl	y Val	g ttt L Phe	act Thi	gci Ala	t tc: a Se: 25	r Le	a ttq u Lei	g`gci	t cto a Leo	e tto u Pho 25!	tac Tyr	768
	aac Ası	e tt n Ph	c ca e Hi	c tc s Se 26	r Ly	g aad s Asi	tat n Tyi	gaq Gl	g aa u Ly 26	s Th	t ác r Th	a ac	g to r Se	g cc r Pr 27	o Le	g tat u Tyr	816
	aaq Ly	g at s Il	c ga e G1 27	u Se	c tt r Ph	t ata	a tti e Pho	at 28	e Hi	c gg s Gl	a ga y Gl	g ag	g tg g Tr 28	p Al	a aa a As	t aaa n Lys	864

gcg att aca tta ttt tcc aag aaa aac gat taa Ala Ile Thr Leu Phe Ser Lys Lys Asn Asp 290 295

<210> 136 <211> 298

<212> PRT

<213> Arabidopsis thaliana

<400> 136

Met Ala Ser Val Tyr Ser Thr Leu Thr Tyr Trp Leu Val His His Pro

Tyr Ile Ala Asn Phe Thr Trp Thr Glu Gly Glu Thr Leu Gly Ser Thr 25

Val Phe Phe Val Phe Val Val Ser Leu Tyr Leu Ser Ala Thr Phe 40

Leu Leu Arg Tyr Thr Val Asp Ser Leu Pro Thr Leu Gly Pro Arg Ile 55

Leu Lys Pro Ile Thr Ala Val His Ser Leu Ile Leu Phe Leu Leu Ser 70

Leu Thr Met Ala Val Gly Cys Thr Leu Ser Leu Ile Ser Ser Ser Asp 90

Pro Lys Ala Arg Leu Phe Asp Ala Val Cys Phe Pro Leu Asp Val Lys 105

Pro Lys Gly Pro Leu Phe Phe Trp Ala Gln Val Phe Tyr Leu Ser Lys 125 120 115

Ile Leu Glu Phe Val Asp Thr Leu Leu Ile Ile Leu Asn Lys Ser Ile 135

Gln Arg Leu Ser Phe Leu His Val Tyr His His Ala Thr Val Val Ile 155

Leu Cys Tyr Leu Trp Leu Arg Thr Arg Gln Ser Met Phe Pro Val Gly 170

Leu Val Leu Asn Ser Thr Val His Val Ile Met Tyr Gly Tyr Tyr Phe 185 180

Leu Cys Ala Ile Gly Ser Arg Pro Lys Trp Lys Lys Leu Val Thr Asn 200

Phe Gln Met Val Gln Phe Ala Phe Gly Met Gly Leu Gly Ala Ala Trp 215

Met Le 225	eu P	ro G	lu I	His	Tyr 230	Phe (Gly	Ser	Gly	Cys 235	Ala	Gly	Ile '	Frp	Thr 240	
Val Ty	yr P	he A		Gly 245	Val	Phe '	Thr	Ala	Ser 250	Leu	Leu	Ala	Leu	Phe 255	Tyr	
Asn Pi	ne H		Ser 260	Lys	Asn	Tyr	Glu	Lys 265	Thr	Thr	Thr	Ser	Pro 270	Leu	Tyr	
Lys I		lu S 75	Ser	Phe	Ile		Ile 280	His	Gly	Glu	Arg	Trp 285	Ala	Asn	Lys	
Ala I	le T 90	hr I	Leu	Phe	Ser	Lys 295	Lys	Asn	qzA		,					
<210><211><211><212><213>	83 10	37 IA	dops	is t	chali	iana										
<220><221><222><223>	CI	L)			gase											
<400> atg g Met A		37 tca Ser	att Ile	tac Tyr 5	tcc Ser	tct Ser	tta Leu	acc Thr	tac Tyr 10	tgg Trp	cto Lev	gtt Val	aac Asn	cac His 15	ccc Pro	48
tac a Tyr 1	itc [le	tcc Ser	aat Asn 20	ttt Phe	act Thr	tgg Trp	atc Ile	gaa Glu 25	ggt	gaa Glu	aco Thr	cta Leu	ggc Gly 30	tcc Ser	acc Thr	96
gtc t Val I	?he	ttc Phe 35	gta Val	tcc Ser	gtc Val	gta Val	gto Val 40	tcc Ser	gtt Val	tac Tyr	cto Lei	tcc Ser 45	gcc Ala	acg Thr	ttc Phe	144
ctc (Leu !	ctc Leu 50	cga Arg	tcc Ser	gcc	ato Ile	gat Asp 55	tca Ser	cto Leu	cca Pro	a tca Sei	a cto Leo 60	c agt ı Ser	cca Pro	cgt Arg	atc Ile	192
ctc Leu 65	aaa Lys	ccg Pro	atc Ile	aca Thr	gcc Ala	gtc Val	Cac	ago Ser	cta Lev	a ato 110 75	c ct	c tgt u Cys	cto Leu	cto Lev	tcc Ser 80	240
tta Leu	gtc Val	atg Met	gcc Ala	gto Val	E ggt	tgo Cys	act Th	t cto r Lei	tca Se: 90	a at	a ac e Th	c tca r Sei	a tct Ser	cac His	gcg Ala	288
tct Ser	tca Ser	gat Asp	ccg Pro	Me	g gcg E Ala	g cgt a Arg	tto Pho	c ctt e Lei 10	1 Hl	c gc s Al	g at a Il	t tgo e Cy:	ttt s Phe 11(. Pr	gtc Val	336
gac Asp	gtt Val	aaa Lys 115	Pro	aa Asi	c gga n Gl	a ccg y Pro	ct Le 12	u Ph	c tt e Ph	c tg e Tr	g gc p Al	t car a Gli 12	n va.	tto L Pho	c tac e Tyr	384
ctc Leu	tcg Ser 130	aag Lys	ato Ile	e ct	c ga u Gl	g tto u Pho 13!	e Gl	a ga y As	c ac p Th	g at r Il	c ct e Le 14	u II	c ata e Il	a cte	c ggc u Gly	432

aaa Lys 145	tca Ser	atc Ile	caa Gln	cgg Arg	cta Leu 150	tcc Ser	ttc Phe	ctc Leu	cac His	gtg Val 155	tac Tyr	cac His	cac His	gcg Ala	acg Thr 160	480
gtt Val	gtg Val	gtc Val	atg Met	tgt Cys 165	tat Tyr	ctc Leu	tgg Trp	ctc Leu	cga Arg 170	act Thr	cgc Arg	caa Gln	tcg Ser	atg Met 175	ttt Phe	528
ccg Pro	att Ile	gcg Ala	ctc Leu 180	gtg Val	acg Thr	aat Asn	tcg Ser	acg Thr 185	gta Val	cac His	gtc Val	atc Ile	atg Met 190	tac Tyr	ggt Gly	576
tac Tyr	tac Tyr	ttc Phe 195	ctc Leu	tgc Cys	gcc Ala	gtt Val	gga Gly 200	tcg Ser	agg Arg	ccc Pro	aag Lys	tgg Trp 205	aag Lys	aga Arg	ttg Leu	624
gtg Val	acg Thr 210	gat Asp	tgt Cys	cag Gln	att Ile	gtt Val 215	cag Gln	ttt Phe	gtt Val	ttc Phe	agt Ser 220	ttc Phe	GJA GGG	tta Leu	tcc Ser	672
ggt Gly 225	Trp	atg Met	ctc Leu	cga Arg	gag Glu 230	cac His	tta Leu	ttc Phe	GJA aaa	tcg Ser 235	ggt Gly	tgc Cys	acc Thr	G1A aaa	att Ile 240	720
tgg Trp	gga Gly	tgg Trp	tgt Cys	ttc Phe 245	Asn	gct Ala	gca Ala	ttt Phe	aat Asn 250	gct Ala	tct Ser	ctt Leu	ttg Leu	gct Ala 255	ctc Leu .	768
ttt Phe	tcc Ser	aac Asn	ttc Phe 260	His	tca Ser	aag Lys	aat Asn	tat Tyr 265	gtc Val	aag Lys	aag Lys	cca Pro	acg Thr 270	Arg	gag Glu	816
	ggg		Lys													837
<23 <23	LO> L1> L2> L3>	138 278 PRT Arak	oidor	osis	thal	iana	L									
<4	>00	138														
Me 1	t Ala	a Sei	r Ile	∋ T yi 5	r Ser	Ser	: Le	ı Thi	Tyr 10	Tr) Le	ı Val	l Ası	n His 15	Pro	
ту	r Il	e Se:	r Ası 20	n Pho	e Thi	r Try) Ile	e Gli 25	ı Gly	Gl:	ı Thi	r Le	30	y Se	r Thr	
Va	l Ph	e Ph		1 Se	r Vai	l Val	L Va 40	l Se	r Val	. Ту:	r Le	u Se: 45	r Al	a Th	r Phe	
Le	u Le 50		g Se	r Al	a Il	e Ası 55	ρ Se	r Le	u Pro	se:	r Le	u Se	r Pr	o Ar	g Ile	
Le 65		s Pr	o Il	e Th	r Al 70	a Va	l Hi	s Se	r Lei	ı Il 75	e Le	u Cy	s Le	u Le	u Ser 80	
Le																

Ser Ser Asp Pro Met Ala Arg Phe Leu His Ala Ile Cys Phe Pro Val 105 100

Asp Val Lys Pro Asn Gly Pro Leu Phe Phe Trp Ala Gln Val Phe Tyr 120 115

Leu Ser Lys Ile Leu Glu Phe Gly Asp Thr Ile Leu Ile Ile Leu Gly 135

Lys Ser Ile Gln Arg Leu Ser Phe Leu His Val Tyr His His Ala Thr 150

Val Val Val Met Cys Tyr Leu Trp Leu Arg Thr Arg Gln Ser Met Phe 165

Pro Ile Ala Leu Val Thr Asn Ser Thr Val His Val Ile Met Tyr Gly 185 180

Tyr Tyr Phe Leu Cys Ala Val Gly Ser Arg Pro Lys Trp Lys Arg Leu 200

Val Thr Asp Cys Gln Ile Val Gln Phe Val Phe Ser Phe Gly Leu Ser , 215

Gly Trp Met Leu Arg Glu His Leu Phe Gly Ser Gly Cys Thr Gly Ile 230

Trp Gly Trp Cys Phe Asn Ala Ala Phe Asn Ala Ser Leu Leu Ala Leu 250 245

Phe Ser Asn Phe His Ser Lys Asn Tyr Val Lys Lys Pro Thr Arg Glu 265

Asp Gly Lys Lys Ser Asp

<210> 139

<211> 6 <212> PRT <213> Konsensus

<220>

<221> MISC_FEATURE

<222> (1)..(6)

<223> Xaa in der Position 3 und 4 in der Sequenz hat die in Tabelle A w iedergegebene Bedeutung.

<400> 139

Leu His Xaa Xaa His His

<210> 140 <211> 8

```
<212> PRT
<213> Konsensus
<220>
<221> MISC_FEATURE
<222>
       (1)..(8)
<222> (1)..(8)
<223> Xaa an der Position 2, 3, 5 und 6 in der Sequenz hat die in Tabel
       le A wiedergegebene Bedeutung.
<400> 140
Thr Xaa Xaa Gln Xaa Xaa Gln Phe
<210> 141
<211>
<212> PRT
<213> Konsensus
<220>
<221> MISC_FEATURE
<222> (1)..(6)
<223> Xaa an Postion 3 in der Sequenz hat die in Tabelle A wiedergegebe
       ne Bedeutung.
<400> 141
Asp Thr Xaa Phe Met Val
                5
<210> 142
 <211> 8
<212> PRT
 <213> Konsensus
 <220>
 <221> MISC_FEATURE
 <222>
       (1)..(8)
 <223> Xaa an Postion 5 und 6 in der Sequenz hat die in Tabelle A wieder
        gegebene Bedeutung.
 <400> 142
 Thr Gln Ala Gln Xaa Xaa Gln Phe
 <210> 143
 <211>
       60
 <212> DNA
 <213> Primer
 <220>
 <221> misc_feature
 <222>
        (1)..(60)
 <223>
 gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
                                                                        60
```

<210> 144

```
<211> 60
<212> DNA
<213> Primer
<220>
<221> misc_feature <222> (1)..(60)
 <223>
 <400> 144
 gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
                                                                              60
 <210> 145
 <211> 36
 <212> DNA
 <213> Primer
 <220>
 <221> misc_feature <222> (1)..(36)
 <223>
 <400> 145
ggtaccacat aatgtgcgtg gagacggaaa ataacg
                                                                              36
 <210> 146
<211> 33
<212> DNA
  <213> Primer
  <220>
  <221> misc_feature
  <222> (1)..(33)
  <223>
  <400> 146
                                                                               33
  ctcgagttac gccgtctttc cggagtgttg gcc
  <210> 147
  <211> 24
<212> DNA
<213> Primer
  <220>
  <221> misc_feature <222> (1)..(24)
  <223>
  <400> 147
                                                                                24
  gcggccgctt acgtggactt ggtc
   <210> 148
<211> 24
   <212> DNA
   <213> Primer
   <220>
   <221> misc_feature
   <222> (1)..(24)
   <223>
```

```
<400> 148
                                                                             24
gcggccgcat ggcgacgaag gagg
<210> 149
<211> 25
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(25)
<223>
<400> 149
                                                                             25
taagcttaca tggcgacgaa ggagg
<210> 150
<211> 24
<212> DNA
<213> Primer
<220>
<221> misc_feature
 <222> (1)..(24)
 <223>
 <400> 150
                                                                              24
 tggatccact tacgtggact tggt
 <210> 151
<211> 60
<212> DNA
 <213> Primer
 <220>
 <221> misc_feature <222> (1)..(60)
 <223>
 <400> 151
 gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
                                                                              60
 <210> 152
<211> 31
        152
 <212> DNA
 <213> Primer
 <220>
 <221> misc_feature
 <222>
        (1)..(31)
 <223>
  <400> 152
                                                                               31
  gcggccgcac catgtgctca ccaccgccgt c
  <210> 153
<211> 26
```

```
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(26)
<223>
<400> 153
                                                                                    26
gcggccgcct acatggcacc agtaac
<210> 154
<211> 31
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(31)
<223>
 <400> 154
                                                                                     31
 geggeegeac catgtgetea teacegeegt e
 <210> 155
 <211> 26
 <212> DNA
 <213> Primer
 <220>
 <221> misc_feature
 <222> (1)..(26)
 <223>
 <400> 155
                                                                                     26
 geggeegeet acatggeace agtaac
 <210> 156
<211> 31
<212> DNA
<213> Primer
  <220>
  <221> misc_feature
  <222> (1)..(31)
  <223>
  <400> 156
                                                                                      31
  geggeegeac catggaegee tacaaegetg e
  <210> 157
  <211> 27
<212> DNA
<213> Primer
  <220>
  <221> misc_feature <222> (1)..(27)
  <223>
```

<400> gcggccg	cet aageactett ettettt	27
<210> <211> <212> <213>	23 DNA	
<220> <221> <222> <223>	misc_feature (1)(23)	
<400> accatg	158 tgct caccaccgcc gtc	23
<210><211><212><212><213>	18 DNA	
<220> <221> <222> <223>	misc_feature (1)(18)	
<400> ctacat	159 ggca ccagtaac	18
<210><211><211><212><213>	23	
	misc_feature (1)(23)	
<400> accat	160 gtgct catcaccgcc gtc	23
<210> <211> <212> <213>	DNA	
<220><221><222><223>	misc_feature (1)(18)	
<400> ctaca	161 tggca ccagtaac	18
<210> <211>	23	

```
<213> Primer
<220>
<221> misc_feature
<222> (1)..(23)
<223>
<400> 162
                                                                           23
accatggacg cctacaacgc tgc
<210> 163
<211> 19
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(19)
<223>
<400> 163
                                                                            19
ctaagcactc ttcttcttt
 <210> 164
<211> 60
 <212> DNA
 <213> Primer
 <220>
 <221> misc_feature
 <222> (1)..(60)
 <223>
 <400> 164
 gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
                                                                            60
 <210> 165
 <211> 60
 <212> DNA
 <213> Primer
 <220>
  <221> misc_feature
  <222> (1)..(60)
  <223>
  <400> 165
  gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
  <210> 166
  <211> 29
<212> DNA
<213> Primer
  <220>
  <221> misc_feature
  <222> (1)..(29)
  <223>
```

```
<400> 166
                                                                            29
gcggccgcat aatgacgagc aacatgagc
<210> 167
<211>
      29
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(29)
<223>
<400> 167
                                                                            29
gcggccgctt aggccgactt ggccttggg
<210> 168
<211> 34
<212> DNA
<213> Primer
<220>
<221> misc_feature <222> (1)..(34)
<223>
<400> 168
                                                                            34
gcggccgcac catggacgtc gtcgagcagc aatg
 <210> 169
 <211> 36
<212> DNA
<213> Primer
 <220>
 <221> misc_feature <222> (1)..(36)
 <223>
 <400> 169
                                                                             36
 gcggccgctt agatggtctt ctgcttcttg ggcgcc
 <210> 170
 <211> 23
 <212> DNA
 <213> Primer
 <220>
 <221> misc_feature
  <222>
        (1)..(23)
  <223>
  <400> 170
                                                                              23
  gacataatga cgagcaacat gag
  <210> 171
  <211> 25
  <212> DNA
  <213> Primer
```

```
<220>
<221> misc_feature
<222> (1)..(25)
<223>
<400> 171
                                                                             25
cggcttaggc cgacttggcc ttggg
<210> 172
<211> 30
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(30)
<223>
<400> 172
                                                                              30
agacataatg gacgtcgtcg agcagcaatg
<210> 173
<211> 28
 <212> DNA
 <213> Primer
 <220>
 <221> misc_feature
 <222> (1)..(28)
 <223>
 <400> 173
                                                                              28
 ttagatggtc ttctgcttct tgggcgcc
 <210> 174
 <211> 60
<212> DNA
<213> Primer
 <220>
 <221> misc_feature
         (1)..(60)
 <222>
 <223>
 gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
                                                                             60
 <210> 175
  <211> 29
  <212> DNA
  <213> Primer
  <220>
  <221> misc_feature
  <222>
        (1)..(29)
  <223>
  <400> 175
```

```
29
geggeegeat aatggettea acatggeaa
<210> 176
<211> 32
<212> DNA
<213> Primer
<220>
<221> misc_feature <222> (1)..(32)
<223>
<400> 176
                                                                                   32
geggeegett atgtettett getetteetg tt
<210> 177
<211> 26
<212> DNA
<213> Primer
<220>
<221> misc_feature
 <222> (1)..(26)
 <223>
 <400> 177
                                                                                   26
 gcggccgcat aatggagact tttaat
 <210> 178
 <211> 28
<212> DNA
<213> Primer
 <220>
 <221> misc_feature <222> (1)..(28)
 <223>
 <400> 178
                                                                                    28
 geggeegete agteceeet caetttee
 <210> 179
<211> 29
<212> DNA
  <213> Primer
  <220>
  <221> misc_feature
  <222>
         (1)..(29)
  <223>
  <400> 179
                                                                                     29
  aagettacat aatggettea acatggeaa
  <210> 180
  <211> 30
  <212> DNA
  <213> Primer
```

<220> <221> misc_fe <222> (1)(3 <223>		
<400> 180 ggatccttat gto	cttettge tetteetgtt	30
<210> 181 <211> 26 <212> DNA <213> Primer		
<220> <221> misc_f <222> (1)(<223>		
<400> 181 aagcttacat aa	atggagact tttaat	26
<210> 182 <211> 27 <212> DNA <213> Primer	-	
<220> <221> misc_1 <222> (1) <223>		
<400> 182 ggatccttca g	teececte actitee	27
<210> 183 <211> 993 <212> DNA <213> Phaeo	dactylum tricornutum	
<221> CDS	a(939) a-6-Elongase	
<400> 183 ggtcttttgt g	ggtagctatc gtcatcacac gcaggtcgtt gctcactatc gtgatccgta	60
tattgaccgt ç	gcacttgtgt aaaacagaga tatttcaaga gt atg atg gta cct Met Met Val Pro . 1	114
tca agt tat Ser Ser Tyr 5	gac gag tat atc gtc atg gtc aac gac ctt ggc gac tct Asp Glu Tyr Ile Val Met Val Asn Asp Leu Gly Asp Ser 10 15 20	162
att ctg agc Ile Leu Ser	tgg gcc gac cct gat cac tat cgt gga cat acc gag gga Trp Ala Asp Pro Asp His Tyr Arg Gly His Thr Glu Gly 25 30 35	210
tgg gag ttc Trp Glu Phe	act gac ttt tct gct gct ttt agc att gcc gtc gcg tac Thr Asp Phe Ser Ala Ala Phe Ser Ile Ala Val Ala Tyr	258

			40					45					50				
ctc (Leu 1	ctg Leu	ttt Phe 55	gtc Val	ttt Phe	gtt Val	gga Gly	tct Ser 60	ctc Leu	att Ile	atg Met	agt Ser	atg Met 65	gga Gly	gtc Val	ccc Pro	306	
Ala	att Ile 70	gac Asp	cct Pro	tat Tyr	ccg Pro	ctc Leu 75	aag Lys	ttt Phe	gtc Val	tac Tyr	aat Asn 80	gtt Val	tca Ser	cag Gln	att Ile	354	
atg Met 85	ctt Leu	tgt Cys	gct Ala	tac Tyr	atg Met 90	acc Thr	att Ile	gaa Glu	gcc Ala	agt Ser 95	ctt Leu	cta Leu	gct Ala	tat Tyr	cgt Arg 100	402	
aac Asn	ggc	tac Tyr	aca Thr	ttc Phe 105	tgg Trp	cct Pro	tgc Cys	aac Asn	gat Asp 110	tgg Trp	gac Asp	ttt Phe	gaa Glu	aag Lys 115	ccg Pro	450	
cct Pro	atc Ile	gct Ala	aag Lys 120	ctc Leu	ctc Leu	tgg Trp	ctc Leu	ttt Phe 125	tac Tyr	gtt Val	tcc Ser	aaa Lys	att Ile 130	tgg Trp	gat Asp	498	
ttt Phe	tgg Trp	gac Asp 135	acc Thr	atc Ile	ttt Phe	att Ile	gtt Val 140	ctc Leu	eja aaa	aag Lys	aag Lys	tgg Trp 145	Arg	caa Gln	ctt Leu	546	i
tcc Ser	ttc Phe 150	ctg Leu	cac His	gtc Val	tac Tyr	cat His 155	cac His	acc Thr	acc Thr	atc Ile	ttt Phe 160	Leu	ttc Phe	tac Tyr	tgg Trp	594	L
ttg Leu 165	aat Asn	gca Ala	cat His	gta Val	aac Asn 170	Phe	gat Asp	ggt Gly	gat Asp	att Ile 175	Pne	cto Lev	acc Thr	atc : Ile	gtc Val 180	642	3
ttg Leu	aac Asn	ggt	tto Phe	atc : Ile 185	His	acc Thr	gtc Val	atg Met	tac Tyr 190	unr	tac Tyr	tac Tyr	tto Phe	att Ile 195	: Cys	69	C
atg Met	cac	acc Thr	aag Lys 200	: Val	cca Pro	gag Glu	acc Thr	ggc Gly 205	Lys	tco Ser	tto Lev	g cco	210	= 17.	tgg Trp	73	8
aaa Lys	tct Ser	: agt : Sei 21!	c Let	g aca ı Thi	a ago	ato Met	g cag Glr 220	ı Leu	gtç Val	Glı Glı	y tto 1 Pho	e Ile 22	5 1.11	g ato	g atg : Met	78	6
acg Thr	cac Glr 230	ı Ala	t ato a Ile	c ato	g ato	tto Lev 235	TA)	e aag Lys	Gly g ggd	z tgi / Cy:	t gc s Al 24	a Al	t cc	c cat o His	agc Ser	83	4
cgg Arg 245	va.	g gte L Va	g aca l Thi	a to r Se	g tad r Ty: 25	r Lei	g gti ı Va	t tac l Tyr	ati	t tte E Le 25	u se	g ct r Le	c tt u Ph	t at e Il	t ttg e Leu 260	88	12
t to Phe	gc Ala	c ca a Gl	g tt n Ph	c tt e Ph 26	e Va	c ag	c tc. r Se	a tad	c ct r Le 27	u Ly	g cc s Pr	g aa	g aa s Ly	g aa s Ly 27	g aag s Lys 5	93	3 C
	a gc		a gc	gaaa	tttg	ggt	ctac	gtt i	aaaa	caat	ta c	gtta	ıcaaa	a		9-	7 9
aaa	aaaa	aaaa	aaa	a												9	9:
<2	10> 11> 12>	184 278 PRT	3														

<213> Phaeodactylum tricornutum

<400> 184

Met Met Val Pro Ser Ser Tyr Asp Glu Tyr Ile Val Met Val Asn Asp 1 5 10 15

Leu Gly Asp Ser Ile Leu Ser Trp Ala Asp Pro Asp His Tyr Arg Gly 20 25 30

His Thr Glu Gly Trp Glu Phe Thr Asp Phe Ser Ala Ala Phe Ser Ile 35 40 45

Ala Val Ala Tyr Leu Leu Phe Val Phe Val Gly Ser Leu Ile Met Ser 50 55

Met Gly Val Pro Ala Ile Asp Pro Tyr Pro Leu Lys Phe Val Tyr Asn 65 70 75 80

Val Ser Gln Ile Met Leu Cys Ala Tyr Met Thr Ile Glu Ala Ser Leu 85 90 95

Leu Ala Tyr Arg Asn Gly Tyr Thr Phe Trp Pro Cys Asn Asp Trp Asp 100 105 110

Phe Glu Lys Pro Pro Ile Ala Lys Leu Leu Trp Leu Phe Tyr Val Ser 115 120 125

Lys Ile Trp Asp Phe Trp Asp Thr Ile Phe Ile Val Leu Gly Lys Lys 130 135 140

Trp Arg Gln Leu Ser Phe Leu His Val Tyr His His Thr Thr Ile Phe 145 150 155 160

Leu Phe Tyr Trp Leu Asn Ala His Val Asn Phe Asp Gly Asp Ile Phe 165 170 175

Leu Thr Ile Val Leu Asn Gly Phe Ile His Thr Val Met Tyr Thr Tyr

Tyr Phe Ile Cys Met His Thr Lys Val Pro Glu Thr Gly Lys Ser Leu 195 200 205

Pro Ile Trp Trp Lys Ser Ser Leu Thr Ser Met Gln Leu Val Gln Phe 210 215 220

Ile Thr Met Met Thr Gln Ala Ile Met Ile Leu Tyr Lys Gly Cys Ala 225 230 235 240

Ala Pro His Ser Arg Val Val Thr Ser Tyr Leu Val Tyr Ile Leu Ser 245 250 255

212	
Leu Phe Ile Leu Phe Ala Gln Phe Phe Val Ser Ser Tyr Leu Lys Pro 260 265 270	
Lys Lys Lys Thr Ala 275	
<210> 185 <211> 20 <212> DNA <213> Primer	
<220> <221> misc_feature <222> (1)(20) <223> N in den Positionen 3 und 18 bedeutet C oder T.	
<400> 185 aanctuctut ggctuttnta	20
<210> 186 <211> 23 <212> DNA <213> Primer	
<pre><220> <221> misc_feature <222> (1)(23) <223> N in den Positionen 3 und 15 bedeutet C oder T. N in den Posi en 9, 12 und 21 bedeutet A oder G.</pre>	tion
<400> 186 gantguacna anaantgugc naa	23
<210> 187 <211> 446 <212> DNA <213> PCR-Fragment	
<220> <221> misc_feature <222> (1)(446) <223> PCR-Fragment	
<400> 187 aagctcctct ggctctttta cgtttccaaa atttgggatt tttgggacac catctttatt	60
gtteteggga agaagtggeg teaactttee tteetgeaeg tetaecatea caecaceate	120
tttetettet aetggttgaa tgeaeatgta aactttgatg gtgatatttt eeteaceate	180
gtettgaaeg gttteateca caeegteatg taeaegtaet aetteatttg catgeacaee	240
aaggtcccag agaccggcaa atccttgccc atttggtgga aatctagttt gacaagcatg	300
cagetggtge agtteateae gatgatgaeg caggetatea tgatettgta caagggetgt	360
gctgctcccc atagccgggt ggtgacatcg tacttggttt acattttgtc gctctttatt	420
ttgttcgccc agttctttgt cagctc	446

```
<210> 188
<211> 30
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222>
      (1)..(30)
<223>
<400> 188
                                                                    30
gcggccgcac ataatgatgg taccttcaag
<210> 189
<211> 22
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(22)
<223>
<400> 189
                                                                    22
gaagacagct taatagacta gt
<210> 190
<211> 31
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(31)
<223>
 <400> 190
                                                                   31
 geggeegeae catgatggta cetteaagtt a
 <210> 191
<211> 24
 <212> DNA
 <213> Primer
 <220>
 <221> misc_feature
 <222> (1)..(24)
 <223>
 <400> 191
                                                                     24
 gaagacagct taataggcgg ccgc
 <210> 192
 <211> 859
 <212> DNA
 <213> PCR-Produkt
 <400> 192
 gcggccgcac ataatgatgg taccttcaag ttatgacgag tatatcgtca tggtcaacga
```

ccttggcgac	tctattctga	gctgggccga	ccctgatcac	tatcgtggac	ataccgaggg	120
atgggagttc	actgactttt	ctgctgcttt	tagcattgcc	gtcgcgtacc	tcctgtttgt	180
ctttgttgga	tctctcatta	tgagtatggg	agtccccgca	attgaccctt	atccgctcaa	240
gtttgtctac	aatgtttcac	agattatgct	ttgtgcttac	atgaccattg	aagccagtct	300
tctagcttat	cgtaacggct	acacattctg	gccttgcaac	gattgggact	ttgaaaagcc	360
gcctatcgct	aagctcctct	ggctctttta	cgtttccaaa	atttgggatt	tttgggacac	420
catctttatt	gttctcggga	agaagtggcg	tcaactttcc	ttcctgcacg	tctaccatca	480
caccaccatc	tttctcttct	actggttgaa	tgcacatgta	aactttgatg	gtgatatttt	540
cctcaccatc	gtcttgaacg	gtttcatcca	caccgtcatg	tacacgtact	acttcatttg	600
catgcacacc	aaggtcccag	agaccggcaa	atccttgccc	atttggtgga	aatctagttt	660
gacaagcatg	cagctggtgc	agttcatcac	gatgatgacg	caggetatca	tgatcttgta	720
caagggctgt	gctgctcccc	atagccgggt	ggtgacatcg	tacttggttt	acattttgtc	780
gctctttatt	ttgttcgccc	agttctttgt	cagctcatac	ctcaagccga	agaagaagaa	840
gacagettaa	tagactagt					859