AI의 시작부터 챗GPT의 원리까지

강사님 소개

조태호

인디애나 대학교 의과대학 영상의학과 조교수

- AI와 딥러닝을 활용한 알츠하이머병 진단, 원인 단백질 및 유전자 변이 예측 연구
- '모두의 딥러닝' 저자

저서/번역서

모두의 딥러닝 1판, 2판, 3판 (길벗) 쉽게 시작하는 캐글 데이터 분석 (길벗) 그림으로 배우는 인지과학 딥러닝 워크북 (길벗)

Part1.
AI 가 가져온 혁신, 활용
작동 원리의 이해

AI 가 가져온 혁신, 활용, 작동 원리의 이해

01 AI에게 일자리를 뺏길 것이라는 착각

02 AI 시대의 전과 후, 먼저 활용하는 자가 선점한다

03 AI에게 AI를 만들라고 시켜보았다

○4 해보자 AI : AI가 사과와 자동차를 구분하는 원리, AI가 사과(apple)와 사과(apology)를 구분하는 원리

05 <실습> AI가 문맥을 파악하는 원리

AI에게 일자리를 뺏길 것이라는 착각

기술의 급진적 혁신에 따른 대중의 불안은 **역사적, 보편적** 인 현상

1825년 최초의 철도 개통

"시속 30마일 이상 올라가면 몸이 녹거나 팔다리가 떨어져 나갈 것"

1897년 최초의 전화 발명

"이 사회가 곧 비밀이라고는 없는 투명한 젤리 덩어리처럼 될 것"

- 뉴욕 타임즈

2022년 챗 GPT 등장

"일자리를 빼앗기고 이제, 개를 산책시키거나 에어컨을 고치는 일이나.." -워싱턴포스트

2023. 6. 2

The Washington Post

ChatGPT took their jobs. Now they walk dogs and fix air conditioners.

자율주행 vs 사람주행

자율주행 차가 일으킨 사고율 <u>94% 낮음</u> 일반차는 <u>78만 킬로</u>당 사고 1건 자율주행차는 <u>694만 킬로</u>당 사고 1건

어떻게 AI가 사람을..

그동안 눈앞의 패턴, 통계적 배경의 AI에 익숙. 높은 잣대로 평가. 챗 GPT 등장: AI가 언어와 지식 영역까지 확장

현재 직업의 60% 는 지난 80년 이내에 새로 생긴 직업

David Autor, MIT

- MIT Economics

신기술과 글로벌 GDP 증가율

19세기 <mark>증기기관</mark>: 글로벌 GDP **0.3**% 증가

90년대 <mark>로봇</mark>: 글로벌 GDP **0.4**% 증가

00년대 IT: 글로벌 GDP **0.6%** 증가

인공지능: 글로벌 GDP 16% 증가

- 맥킨지 '지능화로 인한 글로벌 경제성장 전망' 보고서

World Economic Forum

AI로 인해 <mark>8천 5백만</mark> 일자리가 감소하거나 영향을 받을 것.

그러나, 9천 7백만 일자리가 새롭게 추가될 것

Al will displace 85 million jobs but create 97 million new jobs across 26 countries by 2025. - rd.com

AI의 경제적 영향

AI로 인해 향후 GDP는 10년간 **7조 달러**이상 증가할 것 노동 생산성은 매년 **1.5**% 증가할 것

-골드만 삭스 Briggs-Kodnani 보고서

Goldman Sachs

Al의 시대, 먼저 활용하는 자가 선점한다

AI는 의사를 대체하는 것이 아니라

그들을 돕는다.

Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data

How Al-Assisted Medical Diagnosis Increases Assistance and Efficiency

Learn how AI provides trustworthy support to overworked medical practitioners and institutions, lowering workload pressure and enhancing overall efficiency.

How Al Assists in Medical Diagnosis

Published: May 26, 2021

MEDICINE

Al Can Do Paperwork Doctors Hate

With help from artificial intelligence, doctors can focus on patients.

NATALIE DOWZICKY | FROM THE JUNE 2024 ISSUE

AI는 의사를 대체하는 것이 아니라

그들을 돕는다.


```
CTGGGGCTTTACTGATGTCATACCGTCTTGCACGGGGATAGAATGACGGTGCCGGGGCTTTACTGATGTCATACCGTCTTGCACGGGGATAGAATGACGGTGCCCGTGTCTGCTTGCCTCGAAGCA
ATTTCTGAAAGTTACAGACTTCGATTAAAAAGATCGGACTGCGCGTGGGCCCTTTCTGAAAGTTACAGACTTCGATTAAAAAGATCGGACTGCGCGTGGGCCCGGAGAGACATGCGTGGTAGTCA
TTTTTCGACGTGTCAAGGACTCAAGGGAATAGTTTGGCGGGAGCGTTACAGCTTTTCGACGTGTCAAGGACTCAAGGGAATAGTTTGGCGGGAGCGTTACAGCTTCAATTCCCAAAGGTCGCAAGA
CGATAAAATTCAACTACTGGTTTCGGCCTAATAGGTCACGTTTTATGTGAAATATAAAATTCAACTACTGGTTTCGGCCTAATAGGTCACGTTTTATGTGAAATAGAGGGGAACCGGCTCCCAAAT
CCCTGGGTGTTCTATGATAAGTCCTGCTTTATAACACGGGGCGGTTAGGTTAACTGGGTGTTCTATGATAAGTCCTGCTTTATAACACGGGGCGGTTAGGTTAAATGACTCTTCTATCTTATGGTG
ATCCAAGCGCCCGCTAATTCTGTTCTGTTAATGTTCATACCAATACTCACATCCCAAGCGCCCGCTAATTCTGTTCTGTTAATGTTCATACCAATACTCACATCACATTAGATCAAAGGATCCCCG
AGCCCAGTCGCAAGGGTCTGCTGCTGTTGTCGACGCCTCATGTTACTCCTGGACCCAGTCGCAAGGGTCTGCTGCTGTTGTCGACGCCTCATGTTACTCCTGGAATCTACCTGCCCTCCCCTCACC
CAATGATATCGCCCACAGAAAGTAGGGTCTCAGGTATCGCATACGCCGCGCCCATGATATCGCCCACAGAAAGTAGGGTCTCAGGTATCGCATACGCCGCGCCCGGGTCCCAGCTACGCTCAGGAC
GACAGTAGAGAGCTATTGTGTAATTCAGGCTCAGCATTCATCGACCTTTCCTGCAGTAGAGAGCTATTGTGTAATTCAGGCTCAGCATTCATCGACCTTTCCTGTTGTGAATATTGTGCTAATGCA
TCTCGTCCGTAACGATCTGGGGGGCAAAACCGAATATCCGTATTCTCGTCCTATCGTCCGTAACGATCTGGGGGGCAAAACCGAATATCCGTATTCTCGTCCTACGGGTCCACAATGAGAAAGTCC
TGCGCGTGATCGTCAGTLAAGTTAAATTAATTCAGGCTACGGTAAACLTGTAGCGCGTGATCGTCAGTTAAGITAAATTAATTCAGGCTACGGTAAACTTGTAGTGAGCTAAGAATCACGGGAATC
ACGGGTTCGCTACALAT AACEGAATELATAGAGGGAGACTCATCCTCCAT GCGTTGGCTAGAGATGAACTGAATELATAGACTGATCGCCCATTTGGGCGTGGGCACCGCAGATCA
AAAGTGGCAGATTA GA T ( "GA" CAG T A CASS SJAC G A CC. A A T G A A "A G G. C 1 % ( A G , A C A S) EG / CTGTATCCAACAGCGCATCAAACTTCAATAAAT
CCAAAGCGTTGTAGTGGTCTAAGCACCCTGAACAGTGGCGCCCATCGTTAGCAAAGCGTTGTAGTGGTCTAAGCACCCCTGAACAGTGGC^ 2CCATCGTTAGCGTAGTACAACCCTTCCCCCTTG
AGGTGCGACATGGGGCCAGTTAGCCTGCCCTATATCCCTTGCACACGTTCAATGTGCGACATGGGGCCAGTTAGCCTGCCCTATATCCCTTGCACACGTTCAATAAGAGGGGCTCTACAGCGCCCGC
TTTTAAATTAGGATGCCGACCCCATCATTGGTAACTGTATGTTCATAGATATTTAAATTAGGATGCCGACCCCATCATTGGTAACTGTATGTTCATAGATATTTCTTCAGGAGTAATAGCGACA
AGCTGACACGCAAGGGTCAACAATAATTTCTACTATCACCCCGCTGAACGACTCTGACACGCAAGGGTCAACAATAATTTCTACTATCACCCCGCTGAACGACTGTCTTTGCAAGAACCAACTGGG
CTTAGATTCGCGTCCTAACGTAGTGAGGGCCGAGTCATATCATAGATCAGGCATAGATTCGCGTCCTAACGTAGTGAGGGCCGAGTCATATCATAGATCAGGCATGAGAAACCGACGTCGAGTCTA
CACACGAGTTGTAAACAACTTGATTGCTATACTGTAGCTACCGCAAGGATCTCCACGAGTTGTAAACAACTTGATTGCTATACTGTAGCTACCGCAAGGATCTCCTACATCAAAGACTACTGGGCG
ATCTGGATCCGAGTCAGAAATACGAGTTAATGCAAATTTACGTAGACCGGTGACTGGATCCGAGTCAGAAATACGAGTTAATGCAAATTTACGTAGACCGGTGAAAACACGTGCCATGGGTTGCGT
AGACCGTAGTCAGAAGTGTGGCGCGCTATTCGTACCGAACCGGTGGAGTATACACCGTAGTCAGAAGTGTGGCGCGCTATTCGTACCGAACCGGTGGAGTATACAGAATTGCTCTTCTACGACGTA
AGGAGCTCGGTCCCCAATGCACGCCAAAAAAGGAATAAAGTATTCAAACTGCGGAGCTCGGTCCCCAATGCACGCCAAAAAAAGGAATAAAGTATTCAAACTGCGCATGGTCCCTCCGCCGGTGGCA
ACTAAGTTATCCAGATCAAGGTTTGAACGGACTCGTATGACATGTGTGACTGATAAGTTATCCAGATCAAGGTTTGAACGGACTCGTATGACATGTGTGACCTGAACCCGGGAGGAAATGCAGAGAA
CTGTTTCAAGGCCTCTGCTTTGGTATCACTCAATATATTCAGACCAGACAAGTGTTTCAAGGCCTCTGCTTTGGTATCACTCAATATATTCAGACCAGACAAGTGGCAAAATTTCGTGCGCCTCTC
CTAGGTATTCACGCAACCGTCGTAACATGCACTAAGGATAACTAGCGCCAGGGAGGTATTCACGCAACCGTCGTAACATGCACTAAGGATAACTAGCGCCAGGGGGGGCATACTAGGTCCCGGAGCT
AAAGACTACCCTATGGATTCCTTGGAGCGGGGACAATGCAGACCGGTTACGACAGACTACCCTATGGATTCCTTGGAGCGGGGACAATGCAGACCGGTTACGACACAATTATCGGGATCGTCTAGA
GTGTTGGGTCGGGCAAGTCCCCGAAGCTCGGCCAAAAGATTCGCCATGGAACCGTTGGGTCGGGCAAGTCCCCGAAGCTCGGCCAAAAGATTCGCCATGGAACCGTCTGGTCCTGTTAGCGTGTAC
TGTAGAAATACCAGACTGGGGAATTTAAGCGCTTTCCACTATCTGAGCGACTATAGAAATACCAGACTGGGGAATTTAAGCGCTTTCCACTATCTGAGCGACTAAACATCAACAAATGCGTCTACT
CGAATCCGCAGTAGGCAATTACAACCTGGTTCAGATCACTGGTTAATCAGGGAAATCCGCAGTAGGCAATTACAACCTGGTTCAGATCACTGGTTAATCAGGGATGTCTTCATAAGATTATACTTG
CCCCGACGCGACAGCTCTTCAAGGGGCCGATTTTTGGACTTCAGATACGCTAGCCGACGCGACAGCTCTTCAAGGGGCCGATTTTTGGACTTCAGATACGCTAGAATTTAAAGGGTCTCTTACACC
TGCTGCGGCCTGCAGGGACCCCTAGAACTTGCCGCCTACTTGTCTCAGTCTAACTGCGGCCTGCAGGGACCCCTAGAACTTGCCGCCTACTTGTCTCAGTCTAATAACGCGCGAAGCCGTGGGGCA
CGTGACCTTAAGTCGCAGAGCGAGTGATGAATTTGGGACGCTAATATGGGTGATGACCTTAAGTCGCAGAGCGAGTGATGAATTTGGGACGCTAATATGGGTGAATAGAGACTTATATCATCAGGG
```

CATGACGTCGCGGACAACCCAGAATTGTCTTGAGCGATGGTAAGATCTAACCTTGACGTCGCGGACAACCCAGAATTGTCTTGAGCGATGGTAAGATCTAACCTCACTGCCGGGGGAGGCTCATAC CTGGGGCTTTACTGATGTCATACCGTCTTGCACGGGGATAGAATGACGGTGCCGGGGCTTTACTGATGTCATACCGTCTTGCACGGGGGATAGAATGACGGTGCCCGTGTCTGCTTGCCTCGAAGCA ATTTCTGAAAGTTACAGACTTCGATTAAAAAGATCGGACTGCGCGTGGGCCCTTTCTGAAAGTTACAGACTTCGATTAAAAAGATCGGACTGCGCGTGGGCCCGGAGAGACATGCGTGGTAGTCA TTTTTCGACGTGTCAAGGACTCAAGGGAATAGTTTGGCGGGAGCGTTACAGCTTTTCGACGTGTCAAGGACTCAAGGGAATAGTTTGGCGGGAGCGTTACAGCTTCAATTCCCAAAGGTCGCAAGA CGATAAAATTCAACTACTGGTTTCGGCCTAATAGGTCACGTTTTATGTGAAATATAAAATTCAACTACTGGTTTCGGCCTAATAGGTCACGTTTTATGTGAAATAGAGGGGAACCGGCTCCCAAAT CCCTGGGTGTTCTATGATAAGTCCTGCTTTATAACACGGGGCGGTTAGGTTAACTGGGTGTTCTATGATAAGTCCTGCTTTATAACACGGGGCGGTTAGGTTAAATGACTCTTCTATCTTATGGTG ATCCAAGCGCCCGCTAATTCTGTTCTGTTAATGTTCATACCAATACTCACATCCCAAGCGCCCGCTAATTCTGTTCTGTTAATGTTCATACCAATACTCACATCACATTAGATCAAAGGATCCCCG AGCCCAGTCGCAAGGGTCTCCTCTTCTCCACCCTCATGTTACTCCTGGACCCAGTCGCAAGGGTCTGCTGTTGTCGACGCCTCATGTTACTCCTGGAATCTACCTGCCCTCCCCTCACC AGACAACCTAACTAAT#GTCTCTAACGGGGAATTACCTTT#CC# ``ATGCACAACCTAACTAATAGTCTCTAACGGGGAATTACCTTTACCAGTCTCATGCCTCCAATATATCTGCACCGCTT CAATGATATCGCCCACAGAAAGTAGGGTCTCAGGTATCGCATACGCCACGCCCATGATATCGCCCACAGAAAGTAGGGTCTCAGGTATCGCATACGCCGCGCCCGGGTCCCAGCTACGCTCAGGAC GACAGTAGAGAGCTAT GTGTAATTCAGGCTCAGCATTCA CGACCTTTCCTGCAGTAGAGAGCTATTGTGTAATTCAGGCTCAGCATTCATCGACCTTTCCTGTTGTGAATATTGTGCTAATGCA TCTCGTCCGTAACGAT(TCCCCCCAAAACCCAATATCCCTATTC ^CCGAATATCCGTATTCTCGTCCTACGGGTCCACAATGAGAAAGTCC TGCGCGTGATCGTCAGTTAAGTTAAATT#ATTCAGGCTACGG7 TTCAGGCTACGGTAAACTTGTAGTGAGCTAAGAATCACGGGAATC SNP 31x1 40x1 15x1 ACGGGTTCGCTACAGATGAACTGAATTTATACACGGACAACT \CACGGACAACTCATCGCCCATTTGGGCGTGGGCACCGCAGATCA AAAGTGGCAGATTAGGAGTGCTTGATCAGGTTAGCAGGTGGA !TAGCAGGTGGACTGTATCCAACAGCGCATCAAACTTCAATAAAT CCAAAGCGTTGTAGTGGTCTAAGCACCCdTGAACAGTGGCGC \$AACAGTGGCGCCCATCGTTAGCGTAGTACAACCCTTCCCCCTTG AGGTGCGACATGGGGCCAGTTAGCCTGCCCTATATCCCTTGC IATATCCCTTGCACACGTTCAATAAGAGGGGCTCTACAGCGCCGC TTTTTAAATTAGGATGCCGACCCCATCATTGGTAACTGTATG GTAACTGTATGTTCATAGATATTTCTTCAGGAGTAATAGCGACA kernel:10 AGCTGACACGCAAGGGTCAACAATAATTTCTACTATCACCCC 'ACTATCACCCGCTGAACGACTGTCTTTGCAAGAACCAACTGGG output CN CTTAGATTCGCGTCCTAACGTAGTGAGGGCCGAGTCATATCA GAGTCATATCATAGATCAGGCATGAGAAACCGACGTCGAGTCTA CACACGAGTTGTAAACAACTTGATTGCTATACTGTAGCTACU CTGTAGCTACCGCAAGGATCTCCTACATCAAAGACTACTGGGCG ATCTGGATCCGAGTCAGAAATACGAGTTAATGCAAATTTACG 'GCAAATTTACGTAGACCGGTGAAAACACGTGCCATGGGTTGCGT AGACCGTAGTCAGAAGTGTGGCGCGCTATTCGTACCGAACCG GTACCGAACCGGTGGAGTATACAGAATTGCTCTTCTACGACGTA AGGAGCTCGGTCCCCAATGCACGCCAAAAAAGGAATAAAGTA AGGAATAAAGTATTCAAACTGCGCATGGTCCCTCCGCCGGTGGCA 1D CNN Max pool Fully connected CTATTATCCATCCGAACGTTGAACCTACTTCCTCGGCTTATGC CCTCGGCTTATGCTGTCCTCAACAGTATCGCTTATGAATCGCATG ACTAAGTTATCCAGATCAAGGTTTGAACGGACTCGTATGACATGTGTGACTGATAAGTTATCCAGATCAAGGTTTGAACGGACTCGTATGACATGTGTGACTGAACCCGGGAGGAAATGCAGAGAA CTGTTTCAAGGCCTCTGCTTTGGTATCACTCAATATATTCAGACCAGACAAGTGTTTCAAGGCCTCTGCTTTGGTATCACTCAATATATTCAGACCAGACAAGTGGCAAAATTTCGTGCGCCTCTC CTAGGTATTCACGCAACCGTCGTAACATGCACTAAGGATAACTAGCGCCAGGGAGGTATTCACGCAACCGTCGTAACATGCACTAAGGATAACTAGCGCCAGGGGGGGCATACTAGGTCCCGGAGCT AAAGACTACCCTATGGATTCCTTGGAGCGGGGACAATGCAGACCGGTTACGACAGACTACCCTATGGATTCCTTGGAGCGGGGACAATGCAGACCGGTTACGACACAATTATCGGGATCGTCTAGA GTGTTGGGTCGGGCAAGTCCCCGAAGCTCGGCCAAAAGATTCGCCATGGAACCGTTGGGTCGGGCAAGTCCCCGAAGCTCGGCCAAAAGATTCGCCATGGAACCGTCTGGTCCTGTTAGCGTGTAC TGTAGAAATACCAGACTGGGGAATTTAAGCGCTTTCCACTATCTGAGCGACTATAGAAATACCAGACTGGGGAATTTAAGCGCTTTCCACTATCTGAGCGACTAAACATCAACAAATGCGTCTACT CGAATCCGCAGTAGGCAATTACAACCTGGTTCAGATCACTGGTTAATCAGGGAAATCCGCAGTAGGCAATTACAACCTGGTTCAGATCACTGGTTAATCAGGGATGTCTTCATAAGATTATACTTG CCCCGACGCGACAGCTCTTCAAGGGGCCGATTTTTGGACTTCAGATACGCTAGCCGACGCGACAGCTCTTCAAGGGGCCGATTTTTGGACTTCAGATACGCTAGAATTTAAAGGGTCTCTTACACC TGCTGCGGCCTGCAGGGACCCCTAGAACTTGCCGCCTACTTGTCTCAGTCTAACTGCGGCCTGCAGGGACCCCTAGAACTTGCCGCCTACTTGTCTCAGTCTAATAACGCGCGAAGCCGTGGGGCA CGTGACCTTAAGTCGCAGAGCGAGTGATGAATTTGGGACGCTAATATGGGTGATGACCTTAAGTCGCAGAGCGAGTGATGAATTTGGGACGCTAATATGGGTGAATAGAGACTTATATCATCAGGG

AI는 의사를 대체하는 것이 아니라

그들을 돕는다.

AI는 의사를 대체하는 것이 아니라

AI는 과학자를 대체하는 것이 아니라

AI는 과학자를 대체하는 것이 아니라...

단백질 구조 예측 대회 (CASP) 단백질 구조 예측 알고리즘의 정확성 평가

AI는 프로그래머를 대체하는 것이 아니라

반복적인 작업을 자동화하고

코드 최적화를 통해 프로그래머의 시간을 아껴주며

코드 작성 시 다음에 필요한 코드를 예측하며

더 복잡한 문제 해결과 창의적인 계획에 집중하게 해주고

버그를 탐지해 수정을 제안하고

https://em360tech.com/tech-article/will-ai-replace-phtips://aiforsocialgood.ca/blo

AI, 먼저 활용하는 자가 선점한다

역사적으로 새로운 기술은 항상 두려움과 기회를 동시에 가져왔다.

AI로 인해 생기는 새로운 일자리, 새로운 경제적 기회!

AI는 나의 일에 전문성과 스마트함을 더해준다.

AI는 인류 역사상 가장 큰 혁신의 기회

AI에게 AI를 만들어 보라고 시켜 보았다

AI에게 AI를 만들어 보라고 시켜 보았다

"딥러닝 코드를 만들어줘."

"딥러닝 코드를 만들어줘."

```
Copy code
# 필요한 라이브러리를 임포트합니다.
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
# 데이터 로딩
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# 데이터 전처리
x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
# 모델 구성
model = keras.Sequential(
       layers.InputLayer(input_shape=(28, 28, 1)),
       layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
       layers.MaxPooling2D(pool_size=(2, 2)),
       layers.Flatten(),
       layers.Dense(10, activation="softmax"),
# 모델 컴파일
model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metr
# 모델 학습
model.fit(x_train, y_train, epochs=5, batch_size=128)
# 모델 평가
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
```

#필요한 라이브러리를 임포트합니다.

import numpy as np from tensorflow import keras from tensorflow.keras import layers

#데이터 로딩

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

#데이터 전처리

x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)

#모델 구성

#모델 컴파일

model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["acc uracy"])

모델 학습

model.fit(x_train, y_train, epochs=5, batch_size=128)

#모델 평가

score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])

사람 개발자

코드 개발 및 보완 버그 수정, 테스트 실행 코드 주석, 평가, 보고

AI 개발자

코드 개발 및 보완

버그 수정, 테스트 실행

코드 주석, 평가, 보고

근무시간 365일 24시간

일할 공간 필요 없음

연봉 \$480불

방대한 지식을 보유

다국어 지원

화내도 예의 바르게 답함

챗GPT이후 ▶

단순히 프로그래밍하는 것이 아니라, 개념을 <mark>이해</mark>하고 <mark>전략</mark>을 세워야 할 때!

"딥러닝 코드를 만들어줘."

```
# 필요한 라이브러리를 임포트합니다.
from tensorflow import keras
from tensorflow.keras import layers
# 데이터 로딩
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# 데이터 전처리
x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
# 모델 구성
model = keras.Sequential(
       layers.InputLayer(input_shape=(28, 28, 1)),
       layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
       layers.MaxPooling2D(pool_size=(2, 2)),
       layers.Flatten(),
       layers.Dense(10, activation="softmax"),
# 모델 컴파일
model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metr
# 모델 학습
model.fit(x_train, y_train, epochs=5, batch_size=128)
# 모델 평가
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
```

#필요한 라이브러리를 임포트합니다.

import numpy as np from tensorflow import keras from tensorflow.keras import layers

#데이터 로딩

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

#데이터 전처리

x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)

#모델 구성

#모델 컴파일

model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["acc uracy"])

모델 학습

model.fit(x_train, y_train, epochs=5, batch_size=128)

#모델 평가

score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])

"딥러닝 코드를 만들어줘."

```
Copy code
# 필요한 라이브러리를 임포트합니다.
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
# 데이터 로딩
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# 데이터 전처리
x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
# 모델 구성
model = keras.Sequential(
       layers.InputLayer(input_shape=(28, 28, 1)),
       layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
       layers.MaxPooling2D(pool_size=(2, 2)),
       layers.Flatten(),
       layers.Dense(10, activation="softmax"),
# 모델 컴파일
model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metr
# 모델 학습
model.fit(x_train, y_train, epochs=5, batch_size=128)
# 모델 평가
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
```

#필요한 <mark>라이브러리</mark>를 임포트합니다.

import numpy as np from tensorflow import keras from tensorflow.keras import layers

#<mark>데이터</mark> 로딩

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

데이터 <mark>전처리</mark>

x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)

<mark>모델</mark> 구성

모델 <mark>컴파일</mark>

model.compile(loss="sparse categorical crossentropy", optimizer="adam", metrics=["accuracy"])

모델 <mark>학습</mark>

model.fit(x_train, y_train, epochs=5, batch_size=128)

모델 <mark>평기</mark>

score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])

해보자 AI: AI가 사과와 자동차를 구분하는 원리

해보자 AI

선형대수학, 확률 및 통계, 미적분학, 프로그래밍 기초, 데이터 구조 및 알고리즘, 데이터 전처리, 기계 학습 알고리즘, 신경망 이론, 딥러닝 모델...

MIT OpenCourseWare - Al

챗 GPT는 왜 잘되는가

→ "트랜스포머"가 잘 돼서

트랜스포머는 무엇인가

→ 이 세상 모든 단어들 사이의 <mark>관계</mark>를 파악하게 하는 알고리즘

AI가 사과와 자동차를 구분하는 원리

AI가 사과와 자동차를 구분하는 원리

두 벡터 (a1,a2), (b1,b2) 사이의 <mark>내적</mark> 구하기

내적=(a₁·b₁)+(a₂·b₂)

AI가 사과와 자동차를 구분하는 원리

$$(1x2) + (4x5) = 22$$

(4, 0)

$$(1x4) + (4x0) = 4$$

$$(2x4) + (5x0) = 8$$

$$(5x4) + (1x0) = 20$$

해보자 AI: AI가 사과(apple)와 사과(apology)를 구분하는 원리

AI가 사과(apple)와 사과(apology)를 구분하는 원리

AI가 사과(apple)와 사과(apology)를 구분하는 원리

AI가 사과(apple)와 사과(apology)를 구분하는 원리

첫째, 컴퓨터가 알아들을 수 있어야 한다.

둘째, 단어들 사이의 관계를 파악해야 한다.

셋째, 단어들 사이의 관계가 잘못되었으면 수정해야 한다.

https://github.com/taehojo/fastcampus_ai