Lineare Algebra I - Vorlesungs-Script

Prof. Andrew Kresh

Inhaltsverzeichnis

L	Bili	nearformen	1
	1.1	Vektorprodukt in \mathbb{R}^3	4
	1.2	Skalarprodukt über \mathbb{C}^n	5
	1.3	Bilinearform	6
	1.4	Bilineare und quadratische Formen	9
		1.4.1 Polarisierungsformel	9
	1.5	Sesquilineare Form	9
	1.6	Volumen	14
		1.6.1 Spat	15
	1.7	Orthogonale und unitäre Endomorphismen	19
	1.8	Beschreibung von $SO(3)$ und $O(3)$	23

1 Bilinearformen

Das kanonische Skalarprodukt (oder: Standardskalarprodukt) von \mathbb{R}^n ist die Abbildung

$$<,>:\mathbb{R}^n x \mathbb{R}^n$$
 $\to \mathbb{R}$ (x,y) $\mapsto < x,y> \in \mathbb{R}$

gegeben durch

$$\langle x, y \rangle := x_1 y_1 + \dots + x_n y_n$$

falls
$$x = (x_1, \dots, x_n)$$
 und $y = (y_1, \dots, y_n)$ sind.

Definition 1 (Konvention). eine 1x1 Matrix wird mit Eintrag indentifiziert

$$(x) \in M(1 \times 1, K) \leftrightarrow x \in K$$

Dann können wir schreiben:

$$\langle x, y \rangle = (x^t)(y)$$

$$x = (x_1, \vdots, x_n), y = (y_1, \vdots,)$$

$$(x_1, \dots, x_n) (y_1, \vdots, y_n) = x_1 y_1 + \dots + x_n y_n)$$

Bemerkung 1 (<, > ist bilinear).

$$< x + x', y > = < x, y > + < x', y >$$

 $< \lambda x, y > = \lambda < x, y >$
 $< x, y + y' > = < x, y > + < x, y' >$
 $< x, \lambda y > = \lambda < x, y >$

symmetrisch:

$$\langle x, y \rangle = \langle y, x \rangle$$

positiv defininit:

$$\langle x, x \rangle \ge 0$$

 $\langle x, x \rangle = \Rightarrow x = 0 \in \mathbb{R}^n$

$$f \ddot{u} r \forall x, y, x', y' \in \mathbb{R}^n, \lambda \in \mathbb{R}$$

Bemerkung 2 (Hintergrund: euklidische Geometrie).

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + \dots + x_n^2}$$

Bemerkung 3 (Eigenschaften von $\|.\|$).

$$||x|| \ge 0$$
, mit $||x|| = 0 \Leftrightarrow x = 0$
 $||\lambda x|| = |\lambda| ||x||$
 $||x + y|| \le ||x|| + ||y||$

Dann definieren wir den Abstand von $x, y \in \mathbb{R}^n$:

$$d(x,y) \in \mathbb{R}$$
$$d(x,y) := \|y - x\|$$

Bemerkung 4. Eigenschaften

$$d(x,y) \ge 0, \operatorname{mit} d(x,y) = 0 \Leftrightarrow x = y$$

$$d(y,x) = d(x,y)$$

$$d(x,z) \le d(x,y) + d(y,z)$$

$$\operatorname{für} x, y, z \in \mathbb{R}^n$$

Wir sind motiviert, Struktiren zu definieren, basierend auf diesen Eigenschaften, so z.B.

- Bilineare Formen (symetrisch, positiv definit)
- Norme
- Metriken

Proof. $\|.\|$ und d: die Dreiecksungleichung folgt aus der Cauchy-Schwarzschen Ungleichung

$$||x + y||^{2} = = \langle x + y, x + y \rangle$$

$$= ||x||^{2} + ||y||^{2} + 2 \langle x, y \rangle \le (?) (||x|| + ||y||)^{2}$$

$$\Leftrightarrow \langle x, y \rangle \le ||x|| ||y||$$

Cauchy-Schwarz'sche Ungleichung: für $x, y \in \mathbb{R}^n$

$$< x, y >^2 \le < x, x > < y, y >$$

mit Gleichheit genau dann, wenn x und y linear abhängig sind.

$$A = \begin{pmatrix} --- & x & --- \\ --- & y & --- \end{pmatrix} \in M(2 \times n, \mathbb{R})$$

A hat Rang ≤ 1

Proof.

$$A \cdot A^t = \begin{pmatrix} \langle x, x \rangle & \langle x, y \rangle \\ \langle x, y \rangle & \langle y, y \rangle \end{pmatrix} \in M(2 \times 2), \mathbb{R}$$
$$\det(A \cdot A^t) = = \langle x, x \rangle \langle y, y \rangle - \langle x, y \rangle^2$$

Es gibt eine Gleichung von Determinanten:

$$A, B \in M(k \times n, K)$$

$$\det(A \cdot B^t) = \sum_{1 \le s_1 < s_2 < \dots < s_k \le n} \det(A^{s_1, \dots, s_k}) \det(B^{s_1, \dots, s_k})$$
 wobei $A^{s_1, \dots, s_k} := (a_i, s_j)_{1 < i, j < k}, B^{s_1, \dots, s_k} = (b_i, s_j)_{1 < i, j < k}$

Beweis-Skizze: Reduktion zum Fall, dass die Zeilen von A und B Standardbasiselemente sind; direkte Berechnung in diesem Fall. Es folgt:

$$\det(A \cdot A^t) = \sum_{1 \le i < j \le n} \det(A^{i,j})^2 \ge 0$$

und ist = $0 \Leftrightarrow \text{alle } 2 \times 2 \text{ Minoren von } A \text{ sind } 0 \Leftrightarrow rang(A) \leq 1$

Korollar 1. Wir können definieren

$$\angle(x,y) := \cos^{-1} \underbrace{\frac{\langle x,y}{\|x\| \|y\|}}_{\in [-1,1] \in \mathbb{R}} \in [0,\pi] \in \mathbb{R}$$

$$f\ddot{u}r$$

$$0 \neq x \in \mathbb{R}^n$$

$$0 \neq y \in \mathbb{R}^n$$

Korollar 2. x,y Vektoren, θ Winkel zwischen den beiden

$$< x, y > = \frac{1}{2} \left(\|x\|^2 + \|y\|^2 - \|y - x\|^2 \right)$$

und deshalb:

$$\cos \theta = \frac{\|x\|^2 + \|y\|^2 - \|y - x\|^2}{2\|x\| \|y\|}$$

⇒ Winkel eines Dreiecks ist nur von den Seitenlängen abhängig.

Beispiel 1.

$$\angle(x,y) = \frac{\pi}{2} \Leftrightarrow < x,y> = 0$$

$$\underbrace{\{y|< x,y> = 0\} = 0}_{\text{Untervektorraum}} \cup \{0 \neq y \in \mathbb{R}^n | \angle(x,y) = \frac{\pi}{2}\}$$

Man nennt x und y senkrecht falls < x, y >= 0

Fazit 1.

$$\begin{array}{ll} <.,.>\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}^n & \text{bilinear form} \\ \|.\|\mathbb{R}^n\to\mathbb{R}_{\geq 0} & \text{Norm} \\ d(.,.)\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}_{> 0} & \text{Metrik} \end{array}$$

$$||x|| = \sqrt{\langle x, x \rangle}$$

$$d(x, y) = ||y - x||$$

$$\langle x, y \rangle = \frac{||x||^2 + ||y||^2 - ||y - x||^2}{2}$$

1.1 Vektorprodukt in \mathbb{R}^3

$$\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x,y) \mapsto x \times y$$

für $y = (y_1, y_2, y_3)$ und $y = (y_1, y_2, y_3)$ ist

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_2, x_1y_2 - x_2y_1)$$

oder:

$$x \times y = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}$$

wobei (e_1, e_2, e_3) die Standardbasis ist. Es ist deshalb klar, dass

$$0 = \det \begin{pmatrix} x_1 & x_2 & x_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = \langle x, x \times y \rangle$$

$$0 = \det \begin{pmatrix} y_1 & y_2 & y_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = \langle y, x \times y \rangle$$

 $x \times y$ liegt auf der Gerade von Vektoren senkrecht zu x und y. weiter:

$$\det \begin{pmatrix} w_1 & w_2 & w_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} = \langle x \times y, x \times y \rangle$$

$$= \|x \times y\|^2 = (x_2 y_3 - x_3 y_2)^2 + (x_3 y_1 - x_1 y_3)^2 + (x_1 y_2 - x_2 y_1)^2$$

$$= \|x\|^2 \|y\|^2 - \langle x, y \rangle^2 = \|x\|^2 \|y\|^2 \left(1 - \frac{\langle x, y \rangle^2}{\|x\|^2 \|y\|^2}\right)$$

$$= \|x\|^2 \|y\|^2 (1 - \cos^2 \angle (x, y)) = \|x\|^2 \|y\|^2 \sin^2 \angle (x, y)$$

Fazit 2. Wenn das Ergebnis = 0, folgt daraus, dass x und y linear abhängig sind. Falls x und y linear unabhängig sind, dann folgt dass $(x \times y, x, y)$ zu derselben Orientierungsklasse gehört wie (e_1, e_2, e_3) . Insgesamt bedeutet dies, dass $x \times y$ folgende Eigenschaften hat:

- ullet ist senkrecht zu x und y
- ist $0 \Leftrightarrow x$ und y sind linear abhängig
- hat Länge $||x|| ||y|| \sin \angle(x, y)$
- ullet und hat die Richtung, die mit x und y die gleiche Orientierungsklassse wie die Standardbasis hat.

1.2 Skalarprodukt über \mathbb{C}^n

Sei $z = (z_1, \dots, z_n)$ und $w = (w_1, \dots, w_n) \in \mathbb{C}^n$

Bemerkung 5. Der Ausdruck macht Sinn.

$$\langle z, w \rangle := z_1 w_1 + \dots + z_n w_n$$

 $\langle z, z \rangle := z_1^2 + \dots + z_n^2$

Dann kann die Länge nicht mehr interpretiert werden, z.B. für $z=(1,i,0,\cdots,0)$ haben wir $< z,z>=1^2+i^2=0$. Isotropische Untervektorräume von \mathbb{C}^n werden nicht in in diesem Kurs behandelt. $(V\subset\mathbb{C}^n$ s.d. $< v,w>=0 \ \forall v,w\in V)$. Für die Physik, die Geometrie usw. ist eine Interpretation in Zusammenhang mit Länge wichtig, deshalb brauchen wir eine neue Definition.

Definition 2 (Das kanonische Skalarprodukt). von \mathbb{C}^n ist gegeben durch

$$< .,.>_c : \mathbb{C}^n \mathbb{C}^n$$
 $\to \mathbb{C}$ (z,w) $\mapsto z_1 \bar{w_1} + \dots + z_n \bar{w_n}$

Eigenschaften 1 (von $<.,>_c$).

$$< z + z', w > =$$
 $< z, w >_c + < z', w >_c$ $< \lambda z, w >_c =$ $\lambda < z, w >_c$ $< z, w + w' >_c =$ $< z, w >_c + < z, w' >_c$ $< z, w >_c + < z, w' >_c$ $\bar{\lambda} < z, w >_c$

für $z, z', w, w' \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$ < ., . >_c ist sesquilinear

$$< w, z>_c =$$
 $\overline{< z, w>_c}$ hermitisch $< z, z>_c \in$ $\mathbb{R}_{\geq 0}$ positiv definit $< z, z>=0 \Leftrightarrow$ $z=0$

Fazit 3. $\langle ..., ... \rangle_c$ ist sesquilinear, hermitisch und positiv definit.

Proof. Bei Bedarf sonstwo nachschauen (Zu viele Zeichen und zu wenig Sinn). Es läuft auf eine Sammlung von Quadraten heraus. \Box

Definition 3 (Norm von \mathbb{C}^n).

Sei $\omega := \operatorname{Im} \langle ., . \rangle$:

$$||z|| = \sqrt{\langle z, z \rangle_c}$$

Bemerkung 6. Sei $w = (x'_1 + xy'_1, \dots, x'_n + iy'_n)$. Dann:

$$\langle z, w \rangle_c = (x_1 + iy_1)(x_1' - iy_1') + \dots + (x_n + iy_n)(x_n' - iy_n')$$

= $(x_1x_1' + y_1y_1' + \dots + x_nx_n' + y_ny_n') + i(x_1'y_1 - x_1y_1' + \dots + x_n'x_y - x_ny_n')$

Auf diese Weise ist $<.,.>_c$ eine Erweiterung von reellen Skalarprodukt.

$$\mathbb{R}^{2n} \to \mathbb{C}^n \mathbb{R}\text{-linear}$$

$$e_1 \mapsto (1, 0, \dots, 0)$$

$$e_2 \mapsto (i, 0, \dots, 0)$$

$$\dots$$

$$e_{2n} \mapsto (0, \dots, 0, i)$$

$$< \dots, \cdot >_c = (< \dots, > \text{von}\mathbb{R}^{2n}) + i(\text{neues})$$

 $\text{Re} < .,.>_c = <.,.> \text{von } \mathbb{R}^{2n}$ unter diesem Isomorpismus.

 $\omega : \mathbb{C}^n \times \mathbb{C}^n \qquad \to \mathbb{R}$ $oder \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$

Eigenschaften 2 (von ω (Imaginärteil des kanonischen Skalarproduktes)). bilinear

schiefsymmetrisch $\omega(w,z) = -\omega(z,w)$

$$\omega(z,z) = 0 \ \forall z \in \mathbb{C}^n \ (\text{oder } \mathbb{R}^{2n})$$

1.3 Bilinearform

Sei K ein Körper und V ein K-Vektorraum.

Definition 4 (Bilinearform). Eine bilineare Form auf V ist eine Abbildung

$$s: V \times V \to K$$

so dass:

$$s(v + v', w) = s(v, w) + s(v', w)$$

$$s(\lambda v, w) = \lambda s(v, w)$$

$$s(v, w) + s(v, w')$$

$$s(v, \lambda w) = \lambda s(v, w)$$

 $\forall v, v', w, w' \in V, \lambda \in K$

Und: s heisst symmetrisch, falls s(w,v)=s(v,w) und schiefsymmetrisch, falls s(w,v)=-s(v,w).

Beispiel 2. • $< .,.> := \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ ist eine symmetrische bilineare Form

- \bullet ω ist eine schiefsymmetrisch bilineare Form
- $(<.,.>_c \text{ nicht})$
- $V = \{ \text{stetige Abbildung}[0,1] \to \mathbb{R} \}$ über \mathbb{R} : $f,g \in V$

$$s(f,g) = \int_0^1 f(x)g(x)dx$$

ist eine symmetrisch bilineare Form auf V

Sei K ein Körper, V ein K-Vektorraum, mit $\dim_K V < \infty$, und $s: V \times V \to K$ eine bilineare Form.

Definition 5. Ist $B = (v_i)_{1 \le i \le n}$ eine Basis von V, so setzen wir

$$M_B(s) := (s(v_i, v_j))_{1 \le i, j \le n} \in M(n \times n, K)$$

die <u>darstellende Matrix</u>

Korollar 3. $f\ddot{u}r \ x, y \in V$

$$x = x_1v_1 + \dots + x_nv_n$$

$$y = y_1v_1 + \dots + y_nv_n$$

und

$$M_B(s) = (a_{ij})_{1 \le i,j \le n}, d.h.a_{ij} = s(v_i, v_j)$$

haben wir:

$$s(x,y) = \sum_{i,j=1}^{n} x_i y_j a_{ij}$$

$$= (x_1 \cdots x_n) \cdot \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

$$= x^t M_B(s) \cdot y$$

Proposition 1. Sei V ein endlich-dim. Vektorraum über K mit Basis $B = (v_i)_{1 \leq i \leq n}$. Es gibt eine Bijektion zwischen der Menge von Bilinearformen und $M(n \times n, K)$, gegeben durch

$$(s: V \times V \to K) \mapsto M_B(s)$$

Beweis 1. Wir schreiben einen Vektor $x \in V$ als (x_1, \dots, x_n) falls $x = x_1v_1 + \dots + x_nv_n$. Ähnlich für y. Dann ist

$$A \in M(n \times n, K) \mapsto V \times V \to K$$

 $(x, y) \mapsto x^t \cdot A \cdot y$

inverses zu der obigen Abbildung.

Bemerkung 7. Sei $(s: V \times V \to K)$ eine bilineare Forum und $A = (a_{ij})_{1 \le i,j \le n}$ die darstellende Matrix. Wir erinnern uns an die Notation

$$\Phi_B: K^n \to V$$
$$e_1 \mapsto v_i$$

Dann:

$$K^{n} \times K^{n} \xrightarrow{\Phi_{B} \times \Phi_{B}} V \times V \xrightarrow{s} K$$

ist gegeben durch

$$(x,y) \mapsto t_x A \cdot y$$

Sei $A = (u_i)_{1 \le i \le n}$ eine andere Basis.

$$K^{n} \xrightarrow{\Phi_{A}} V$$

$$\xrightarrow{T} = \Phi_{B}^{-1} \circ \Phi_{A}$$

$$K^{n} \xrightarrow{\Phi_{B}}$$

Proposition 2. Transforations formel Mit dieser Notation haben wir:

$$M_A(s) = T^t \cdot M_B(s) \cdot T$$

Beweis 2.

$$K^{n} \times K^{n} \xrightarrow{\Phi_{B} \times \Phi_{B}} V \times V \xrightarrow{s} K$$

$$(x, y) \mapsto t_{x} \cdot M_{B}(s) \cdot y$$

Es folgt: (eine Bastelei...)

$$K^{n} \times K^{n} \xrightarrow{\Phi_{A} \times \Phi_{A}} V \times V \xrightarrow{s} K$$

$$T \times T \xrightarrow{\Phi_{B} \Phi_{B}} \uparrow$$

Es folgt aus der oberen Proposition (Vor der Transf.):

$$T^t M_B(s)T = M_a(s)$$

Beispiel 3. $V = K^n$, mit Standardskalaprodukt $\langle ., . \rangle$. Ist $B = (e_1, \dots, e_n)$, so ist

$$\begin{pmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix} = M_{\text{Standardbasis}}(\langle \cdot, \cdot, \cdot \rangle)$$

Sei

$$A = (e_1, e_2 - e_1, e_3 - e_2, \dots, e_n - e_{n-1})$$

=: (u_1, u_2, \dots, u_n)

Direkt aus der Definition:

$$\langle u_i, u_j \rangle = \begin{cases} 1 & i = j = 1 \\ 2 & i = j > 1 \\ -1 & |i - j| = 1 \\ 0 & \text{sonst} \end{cases}$$

oder mit der Transformationsformel

$$T = \begin{pmatrix} 1 & 1 & 0 \\ \dots & & 1 \\ 0 & & 1 \end{pmatrix}$$
 und $T^t E_N T''$

Bemerkung 8. Ist A die darstellende Matrix bezügloich einer Basis, so haben wir:

- symmetrisch $\Leftrightarrow A = A^t$
- schiefsymmetrisch $\Leftrightarrow A = -A^t$

Das stimmt überein mit (vgl. Übungsblatt 3): $A \in M(n \times n)$ ist symmetrisch $\Leftrightarrow A = A^t$. A ist schiefsymmetrisch oder antisymmetrisch (oder alternierend wenn $\operatorname{char}(K) \neq 2) \Leftrightarrow A = -A^t$

1.4 Bilineare und quadratische Formen

Eine quadratische Form $V \to K$ wird zu einer Bilinearform assoziert. Falls $\dim_K V < \infty$: "quadratische Form" bedeutet $q:V \to K$ bezüglich einem Koordinatensystem gegeben als homogenes quadratisches Polynom. Ist $s:V \times V \to K$ eine bilineare Form, dann heisst

$$\begin{array}{ccc} q: V & \longrightarrow K \\ v & \longmapsto q(v) = s(v,v) \end{array}$$

die zu s gehörige quadratische Form.

Beispiel 4. $\langle v, v \rangle = v_1^2 + \dots + v_n^2$ für $v \in K^n$

Für $A = (a_{ij})_{1 \leq i,j \leq n}$ eine symmetrische Matrix mit $s: V \times V \to K$, $(x,y) \mapsto x^t Ay$, haben wir

$$s(x,x) = x^t A x$$

$$= (x_1 \cdots x_n) \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ s_n \end{pmatrix}$$

$$= \sum_{i,j=1}^n a_{ij} x_i x_j$$

$$= \sum_{i=1}^n a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$

Ist $char(K) \neq 2$, so haben wir:

{symm. bilineare Formen in
$$K^n$$
} \leftrightarrow {quadr. Formen auf K^n }
$$s \mapsto q(v) := s(v,v)$$
 \leftrightarrow (Polarisierungsformel)

1.4.1 Polarisierungsformel

Ist s eine symmetrische Bilinearform und q die zu s gehörende quadratische Form über einem Vektorraum V über K mit $\operatorname{char}(K) \neq 2$, dann gilt:

$$s(v, w) = \frac{1}{2} (q(v+w) - q(v) - q(w))$$

$$= \frac{1}{2} (q(v) + q(w) - q(v+w))$$

$$= \frac{1}{4} (q(v+w) - q(v-w))$$

1.5 Sesquilineare Form

Definition 6. Sei V ein komplexer Vektorraum. Eine Abbildung

$$s:V\times V\to\mathbb{C}$$

heisst sesquilinear falls:

$$s(v + v', w) = s(v, w) + s(v', w)$$

$$s(\lambda v, w) = \lambda s(v, w)$$

$$s(v, w) + s(v, w')$$

$$s(v, \lambda w) = \bar{\lambda}s(v, w)$$

für $v, v', w, w' \in V, \lambda \in \mathbb{C}$

Beispiel 5. $< ... > \text{auf } \mathbb{C}^n$

$$s(f,g) = \int_0^1 f(x)g(x)dx$$

$$\text{auf} V := \{\text{stetige Abb.}\}[0,1] \to \mathbb{C}\}$$

Definition 7. Eine sesquilineare Form heisst <u>hermitesch</u>, falls

$$s(w, v) = s(v, w) \ \forall v, w \in V$$

Beispiel 6. $< .,.>_c$ auf \mathbb{C}^n ist hermitesch.

Bemerkung 9. Man spricht von <u>hermiteschen Form</u>, diese sind immer sesquilinear

Definition 8. Sei $\dim_{\mathbb{C}} V < \infty$, und $B := (V_i)_{1 \leq i \leq n}$ eine Basis. Ist s eine sesquilineare Form, so definieren wir

$$M_B(s) := (s(v_i, v_j))_{1 \le i \le n}$$

die <u>darstellende Matrix</u>. Sind $z, w \in V$

$$z = z_1 v_1 + \dots + z_n v_n$$

$$w = w_1 v_1 + \dots + w_n v_n$$

dann haben wir

$$s(z, w) = \sum_{i,j=1}^{n} z_i \overline{w}_j a_{ij} \text{wobei} a_{ij} = s(v_i, v_j)$$

$$= (z_1 \cdots z_n) \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} \overline{w}_1 \\ \vdots \\ \overline{w}_n \end{pmatrix} = z^t M_B(s) \cdot \overline{w}$$

Proposition 3. Sei V ein endlich dim. \mathbb{C} Vektorraum und $B = (v_i)_{1 \leq i \leq n}$. Wir haben eine Bijektion

$$\{sesquilineare\ Form\ auf\ V\}\ \leftrightarrow\ M(n\times n,\mathbb{C})$$

Unter dieser Bijektion haben wir:

$$\{hermitesche Formen\} \leftrightarrow \{A \in M(n \times n, \mathbb{C}) : A^t = \bar{A}\}$$

Man sagt: eine Matrix $A \in M(n \times n, \mathbb{C})$ mit $A^t = \bar{A}$ ist <u>hermitesch</u>.

Satz 1. Transformationsformel Sei $A = (u_1, \dots, u_n)$ eine andere Basis mit Transformationsmatrix T:

TODO: hier einfügen

Dann gilt:

$$M_A(s) = T^t \cdot M_B(s) \cdot \bar{T}$$

 $Mit\ g(v) := s(v,v)\ gilt\ die\ Polarisierungsformel$

$$s(v,w) = \frac{1}{4} \left(q(v+w) - q(v-w) + iq(v+iw) - iq(v-iw) \right)$$

 $\begin{array}{ll} \textbf{Definition 9. Sei} \ K = \mathbb{R} \ \text{oder } \mathbb{C}, \ V \ \text{ein } K\text{-Vektorraum und } s: V \times V \to K \\ \text{eine Billinearform} \begin{cases} \text{symmetrisch} & K = \mathbb{R} \\ \text{hermitesch} & K = \mathbb{C} \end{cases} \text{heisst } \underbrace{\text{positiv definit}}_{}, \text{falls } s(v;v) > 0 \\ \forall 0 \neq v \in V \\ \end{array}$

Beispiel 7. < .,. > ist positiv definit auf \mathbb{R}^n $< .,. >_c$ ist psoitiv definit auf \mathbb{C}^n

Definition 10. Ein Skalarprodukt ist $\begin{cases} \text{positiv definite symetrische bilineare Form} & K = \mathbb{R} \\ \text{eine positiv definite hermetische Form} & K = \mathbb{C} \end{cases}$

Definition 11. Skalarprodukt oft $\langle .,. \rangle$, Norm $||v|| := \sqrt{\langle v,v \rangle}$

Definition 12. Euklidischer Vektorraum Über $\mathbb R$ mit Skalarprodukt

Definition 13. Untärer Vektorraum Vektorraum über $\mathbb C$ mit Skalarprodukt **Beispiel 8.**

$$V = \{f: [0,1] \to \mathbb{R} \text{stetig}\} \text{ mit } \langle f,g \rangle = \int_0^1 f(x)g(x)dx$$

$$V = \{f: [0,1] \to \mathbb{C} \text{stetig}\} \text{ mit } \langle f,g \rangle = \int_0^1 f(x)\overline{g(x)}dx$$

in beiden Fällen

$$||f|| = \sqrt{\int_0^1 |f(x)|^2 dx}$$

" L^2 -Norm"

Bemerkung 10. In einem beliebigen euklidischen bzw. unitären Vektorraum gilt die Cauchy-Schwarz'sche Ungleichtung

$$|\langle v, w \rangle| \le ||v|| \, ||w|| \, \, \forall v, w \in V$$

mit = genau dann, wenn v und w linear abhängig sind.

Beweis 3. (Skizze) klar falls v = 0 oder w = 0, also nehmen wir an, dass $v \neq 0$ und $w \neq 0$ 1. Reduktion: zum Fall ||v|| = ||w|| = 1.

$$v_1 := \frac{v}{\|v\|} w_1 := \frac{w}{\|w\|}$$
$$\|v_1\| = 1 \|w_1\| = 1$$

2. Reduktion: Es reicht aus, zu zeigen: Re < $v, w > \le 1 = genau \ dann \ wenn \ V = W$

$$\begin{split} |\!< v,w> | = & \mu < v,w> \mu \in \mathbb{C}, |\mu| = 1 \\ = & < \mu v,w> \in \mathbb{R}_{\geq} \\ = & \operatorname{Re} < v',w> wobeiv' := \mu v \end{split}$$

Cauchy-Schwarz'sche Ungleichung \leq , Gleicheit: v, w linear unabhängig \Longrightarrow v', w linear unabhängig \Longrightarrow $v' \neq w$

Eigenschaften 3.

$$< v - w, v - w > \ge 0v - w = 0$$

$$< v, v > - < v, w > - < w, v > + < w, w > \ge 0v = w$$

$$1 - < v, v > - \overline{< v, w} > + 1 \ge 0v = w$$

Beispiel 9. Ist $T: V \to \mathbb{R}^n$ oder $T: V \to \mathbb{C}^n$ ein Isomorphismus, dann ist $s: V \times V \to \mathbb{R}$ (bzw. $s: V \times V \to \mathbb{C}$) gegeben durch

$$s(x,y) = \langle T_x, T_y \rangle$$

bzw.

$$s(x,y) = \langle T_x, T_y \rangle_c$$

ein Skalarprodukt.

Definition 14. Sei V ein exklusiver, bzw. unitärer Vektorraum

- $v, w \in V$ heisst orthogonal, falls $\langle v, w \rangle = 0$
- $U,W\subset V$ heissen orthogonal (geschrieben $U\perp V$) falls $U\perp W\ \forall u\in U,$ $w\in W$

- $U \subset W$ das orthagonale Koplement ist $U^{\perp} = \{v \in V : u \perp v \forall u \in U\}$
- v_1, \dots, v_n sind orthogonal, falls $v_i \perp v_j \ \forall i \neq j$
- v_1, \dots, v_n sind orthonormal, falls $v_i \perp v_j \ \forall i \neq j \ \text{und} \ \|v_i\| = 1 \ \forall i$
- $\bullet~V$ ist orthagonale direkte Summe von Untervektorräumen V_1,\cdots,V_r falls

$$V = V_1 \bigoplus \cdots \bigoplus V_r$$
$$V_i \perp V_j \forall i \neq j$$

$$C([-1,1],\mathbb{R}):=\{f:[-1;1]\to\mathbb{R}\mathrm{stetig}\}$$

dann ist $C([-1,1]\mathbb{R})$ die orthogonale direkte Summe von $C([-1,1]\mathbb{R})_{\text{gerade}}$ und $C([-1,1]\mathbb{R})_{\text{ungerade}}$. gerade: f(-x)=f(x) und ungerade: f(-x)=-f(x)

$$f(x) = \underbrace{\frac{f(x) + f(-x)}{2}}_{\text{gerader Teil}} + \underbrace{\frac{f(x) - f(-x)}{2}}_{\text{ungerader Teil}}$$

ggerade, hungerade $\implies gh$ ungerade $\implies < g, h >= \int_{-1}^1 g(x) h(x) = 0$

Bemerkung 11. Ist v_1, \dots, v_n eine orthonormale Familie mit $v_i \neq 0 \forall i$, so gilt

- 1. $(i)(v_1, \dots, v_n)$ ist linear unabhängig $(c_1v_1 + \dots + c_nv_n = 0 \implies c_i < v_i, v_i > + \dots + c_i < v_i, v_i > + \dots + c_n < v_n, v_i > = 0 \implies c_i ||v_i||^2 = 0 \implies c_i = 0)$
- 2. $\left(\frac{v_1}{\|v_i\|}, \cdots, \frac{v_n}{\|v_i\|}\right)$ ist orthonormal

Satz 2. Ist (v_1, \dots, v_n) eine orthonormale Basis von V, so gilt folgendes für beliebiges $v \in V$

$$v = \sum_{i=1}^{n} \langle v_i, v_j \rangle v_i$$

$$v = \sum_{i=1}^{b} c_i v_i$$
 $\langle v, v_j \rangle = \sum_{i=1}^{n} c_i \langle v_i, v_j \rangle$
 $= c_j \langle v_i, v_j \rangle = c_j$

Proposition 4. Sei $K=\mathbb{R}$ oder \mathbb{C} und (V,<.,.>) ein euklidischer bzw. unitärer Vektorraum über K

- 1. Ist $n := \dim_K V < \infty$ und (v_1, \dots, v_d) eine orthonormale Familie von Vektoren von V, so existieren v_{d+1}, \dots, v_n , so dass (v_1, \dots, v_n) eine orthonormale Basis von V ist.
- 2. Ist $U \subset V$ ein endlichdimensionaler Untervektorraum, so gilt $V = U \bigoplus U^{\perp}$, orthonormal direkte Summe.

Beweis 4. Es gibt triviale Fälle: d = n in 1., U = 0 in 2. Auch: der Fall (d = 0) in 1. $\Leftarrow d = 1$: $0 \neq v \in V$ beliebiger Vektor, wir nehmen $b_1 = \frac{v}{\|v\|}$ Beweis durch Induktion nach N mit Induktionsannahme 1. gilt für $n \leq N$ N = 1 okay.

Plan: Wir zeigen IA \implies 2. für $\dim_K U \leq N$ und IA \implies 1. für $n \leq N+1$.

 $IA \xrightarrow{\dim U \leq N} \exists \ orthonormale \ Basis (u_1, \cdots, u_d) \ von \ U \ d := \dim U. \ F\"{u}r \ beliebiges \ v \in V \ gilt:$

$$v - \sum_{i=1}^{n} \langle v_i, v_j \rangle u_i \in U^{\perp}$$

denn

$$\left\langle v - \sum_{i=1}^{n} \langle v_i, u_i \rangle u_i, u_j \right\rangle = \langle v, u_j \rangle - \sum_{i=1}^{n} \langle v, u_j \rangle \langle u_i, u_j \rangle = 0$$

Und: 1. für dim $V \le N + 1$ folgt aus IA und 2. für $U \le N$

$$1 \leq d < n = \dim V \geq N+1$$

$$\implies 1 \leq d \leq N u n d 1 \leq \dim V - d \geq N$$

Sei $U := span(v_1, \dots, v_d)$ Aus 2. haben wir $V = U \bigoplus U^{\perp}$ Nach IA, \exists orthonormale Basis (v_{d+1}, \dots, v_n) von U^{\perp} Es folgt, dass (v_1, \dots, v_n) ist eine orthonormale Basis von V.

Eigenschaften 4. Praktisches Verfahren zu testen ob ein symmetrisch bilineare bzw. hermetische Form ein Skalaprodukt ist (falls $\dim_K V < \infty$). Verfahren:

$$\begin{array}{c|c} U: \text{1-dimensional} & U^\perp \text{: 2-dim} \\ s(e_1,e_1) = 3 & = 24 \end{array}$$

- wählen $U \subset V$ nicht trivialer Untervektorraum (z.B. $U = span(v), 0 \neq v \in V$)
- Berechnen U^{\perp}
- Testen:
 - Ist $V = U \bigoplus U^{\perp}$?
 - Ist die Einschränkung von der Form auf U ein Skalarprodukt?
 - Ist die Einschränkung von der Form auf U^{\perp} ein Skalarprodukt?

Beispiel 10. $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$

$$M := \begin{pmatrix} 3 & 1 & 2 \\ 1 & 3 & -1 \\ 2 & -1 & 2 \end{pmatrix}$$

Wir betrachten die entsprechende Bilinearform

$$(x,y) \mapsto t_x \cdot M \cdot y$$

$$\begin{array}{ll} U = & (e_1) \\ U^{\perp} = & \{(x_1, x_2, x_3 : 3x_1 + x_2 + 2x_3 = 0\} \\ = & ((1, -3, 0), (0, 2, -1)) \end{array}$$

Die darstellende Matrix:

$$s|_{U^{\perp}} \leadsto \begin{pmatrix} 24 & -21 \\ -21 & 18 \end{pmatrix}$$

$$U \cong \mathbb{R}^2$$
 $W = (e_1) \in \mathbb{R}^2$
 $W^{\perp} = \{(x_1, x_2) | 24x_1 - 21x_2 = 0\}$
 $= (21, 24)$

W 1-dim, W^{\perp} 1-dim

$$(s|_{U^{\perp}})(e_1, e_2) = 24$$

(21 24) $\begin{pmatrix} 24 & -21 \\ -21 & 18 \end{pmatrix}$ (21 18) $= -216$

⇒ kein Skalarprodukt

1.6 Volumen

Definition 15. Volumen Skalarprodukt
$$\leadsto$$
 Norm \longleftrightarrow Metrik $K = \mathbb{R} \leadsto \text{Volumen } (\dim V < \infty)$

1.6.1 Spat

Definition 16. Spat u_1, \dots, u_n orthonormale Basis. Dann ist der von (u_1, \dots, u_n) aufgespannte Spat definiert als (wobei $c_i := \text{von } (u_1, \dots, u_n)$ aufgespannten Spat)

$$\left\{ \sum_{i=1}^{n} c_i u_i | 0 \le c_i \le 1 \ \forall i \right\}$$

Vol(Spat):=1

Falls $v_1, \dots, v_n \in V$ beliebig sind, dann hat der von (v_1, \dots, v_n) aufgespannte Spat

$$Vol = \left| \det \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \right| v_i = \sum_{j=1}^n a_{ij} u_i$$

Sei
$$b_i j := \langle v_i, v_j \rangle$$
 und $B := \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix}$ Wir haben $b_{ij} = \sum_{k=1}^n a_{ik} a_{jk}$,

also $B = A \cdot A^t$. Es folgt:

$$Vol = \sqrt{(\det A)^2} = \sqrt{\det B}$$

Vorteile:

- keine Wahl von orthonormaler Basis nötig
- auch sinnvoll für eine Kollektion v_1, \dots, v_m evzl. $m \neq n$

Beispiel 11. m=1

$$\det B = \frac{\|v_1\|^2}{\sqrt{\det B}} = \frac{\|v_1\|^2}{\|v_1\|}$$

Definition 17. Grammsche Determinante Im m-dim Volumen := $\sqrt{G(v_1, \dots, v_m)}$ wobei

$$G(v_1, \cdots, v_m) := \det \left(\langle v_i, v_j \rangle \right)_{1 \le i, j \le m}$$

die sogenannte Grammsche Determinante ist.

Bemerkung 12. Es gilt $G(v_1, \dots, v_m) = 0 \Leftrightarrow v_1, \dots, v_m$ lineare abhängig, weil

$$A = (a_{ij}) \in M(m \times n, \mathbb{R})$$

mit

$$G(v_1, \dots, v_m) = \det(A, A^t) = \sum (m \times m \text{Minor})$$

Bemerkung 13.

$$\operatorname{Vol}(v_1, \cdots, v_m) := \sqrt{G(v_1, \cdots, v_m)}$$

ist 0 falls $\exists i : v_i = 0$ sonst:

$$Vol(v_1, \dots, v_m) = ||v_1|| \dots ||v_m|| Vol(\frac{v_1}{||v_1||}, \dots, \frac{v_m}{||v_m||})$$

Satz 3. Hadamard'sche Ungleichung

$$Vol(v_1, \cdots, v_m) \le ||v_1|| \cdots ||v_m||$$

für $0 \neq v_i \in V$, $i=1,\cdots,m$. Mit Gleichheit genau dann wenn v_1,\cdots,v_m orthogonal sind.

Beweis 5. Durch fallende Induktion nach

$$\max\{|I|:I\subset\{1,\cdots,m\}\,|(v_i)_{i\in I}\ orthogonal\}$$

Fall max $\{\cdots\} = m$ das bedeutet, v_1, \cdots, v_m sind orthogonal. Dann:

$$G(v_1, \dots, v_m) = \det \begin{pmatrix} \|v_1\|^2 & 0 \\ & \ddots & \\ 0 & \|v_m\|^2 \end{pmatrix} = \|v_1\|^2 \dots \|v_m\|^2$$

Die ist der Induktionsanfang.

Sei $r \in \mathbb{N}$, $1 \le r < m$. Induktionsanahme: Ungleichung für den Fall

$$\max\{|I|: (v_i)_{i\in I} \text{ orthogonal}\} > r$$

Sei v_1, \dots, v_m , so dass $\max \{\dots\} = r$. o.B.d.A: v_1, \dots, v_r orthogonal. Wir schreiben:

$$v_m = \underbrace{v_m - \sum_{i=1}^r \frac{\langle v_m, v_i \rangle}{\langle v_i, v_i \rangle} v_i}_{\tilde{v}_m \in \operatorname{span}(v_1, \cdots, v_r)^{\perp}} + \underbrace{\sum_{i=1}^r \frac{\langle v_m, v_i \rangle}{\langle v_i, v_i \rangle} v_i}_{\tilde{v}_m \in \operatorname{span}(v_1, \cdots, v_r)}$$

$$< v_m^{\tilde{v}}, v_m^{\tilde{v}} = 0$$

- $v = \tilde{v} + \tilde{\tilde{v}}$
- \bullet $<\tilde{v},\tilde{\tilde{v}}>=0$
- $||v||^2 = ||\tilde{v}||^2 + ||\tilde{\tilde{v}}||^2$

Das ist eine Orthogonale Projektion Wir haben

$$G(v_1, \cdots, v_m) = G(v_1, \cdots, v_{m-1}, \tilde{v_m})$$

weil (Spalten- und Zeilenumforumgen...). Es folgt:

$$Vol(v_1, \dots, v_m) = Vol(v_1, \dots, v_{m-1}, \tilde{v_m}) \le ||v_1|| \dots ||v_{m-1}|| ||\tilde{v_m}|| < ||v_1|| \dots ||v_{m-1}|| ||\tilde{v_m}||$$

Definition 18. Gram-Schmidt-Orthagonalisierungsverfahren

$$\tilde{v_r} := v_r - \sum_{i=1}^{r-1} \frac{\langle v_r, \tilde{v_i} \rangle}{\langle \tilde{v_i}, \tilde{v_i} \rangle} \tilde{v_i}, \text{ für } 1, 2, \cdots$$

gegeben: eine Kollektion (v_1, \dots, v_n) oder abzählbar unendlich (v_1, v_2, \dots) . Das Verfahren produziert $(\tilde{v_1}, \tilde{v_2}, \dots)$, mit:

$$\begin{array}{lll} (\tilde{v_1}, \tilde{v_2}, \cdots & = & (v_1, v_2, \cdots) \\ (\tilde{v_1}, \cdots, \tilde{v_m}) & = & (v_1, \cdots, v_m) \; \forall m \\ (\tilde{v_1}, \tilde{v_2}, \cdots) & \text{sind orthogonal} \end{array}$$

Beispiel 12. $C([-1,1],\mathbb{R})$ mit $< f,g> = \int_{-1}^{1} f(x)g(x) dx$

$$(1, x, x^{2}, \cdots)$$

$$\xrightarrow{\text{GS}} \frac{\langle x^{2}, 1 \rangle}{\langle 1, 1 \rangle} = \frac{2/3}{2}$$

$$(1, x, x^{2} - \frac{1}{3}, x^{3} - \frac{3}{5} \cdots)$$

Bis auf Normalisierung bekommen wir die Legendre-Polynome.

Metrik:

$$d: V \times V \to \mathbb{R}_{\leq 0}$$

$$d(x, <) = 0 \Leftrightarrow x = y$$

$$d(x, y) = d(y, x)$$

$$d(x, z) \leq d(y, y) + d(y, z)$$

Aber: nicht jede Metrik, nicht einmal jede transinvariante Metrik kommt von einer Norm.

Bemerkung 14. Eine Norm kommt von einer +def, symm Bilinearform

$$\Leftrightarrow ||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2) \forall x, y \in V$$

Definition 19. ausgeartete Bilinearform Eine Bilinearform $s: V \times V \to K$ ist ausgeartet (oder: entartet), falls eine oder beide der induzierten Abbildungen $V \to V^*$ nicht injektiv ist.

$$v \mapsto (w \mapsto s(v, w))$$

 $v \mapsto (w \mapsto s(w, v))$

Bemerkung 15. Falls $\dim_K V < \infty$, dann:

$$v\mapsto (w\mapsto s(v,w))$$
 injektiv
$$v\mapsto (w\mapsto s(w,v))$$
 injektiv
$$v\mapsto (w\mapsto s(w,v))$$
 injektiv
$$v\mapsto (w\mapsto s(w,v))$$
 injektiv
$$v\mapsto (w\mapsto s(w,v))$$
 die darstennelde Matrix ist invertierbar

$$s(v, w) = v^t \cdot A \cdot w$$
$$= (A^t \cdot v)^t$$

j++j

Satz 4. Sei V ein K-Vektorraum, $s:V\times V\to K$ eine symmetrische oder schiefsymmetrische Bilinearform. Für $U\subset V$ Untervektorraum, schreiben wir noch

$$U^{\perp}:=\{v\in V: s(u,v)=0\ \forall u\in U\}$$

$$(s(v, u) = 0 \Leftrightarrow s(u, v) = 0 \text{ weil s symm. bzw. schiefsymm.})$$

Proposition 5. Sei V ein endlich dimensionaler K-Vektorraum und $s: V \times V \to K$ eine nicht ausgeartete symmetrische oder schiefsymmetrische Bilinearform. Sei $U \subset V$ ein Untervektorraum. Dann gilt:

$$\dim U + \dim U^{\perp} = \dim V$$

Beweis 6. Sei $(v_i)_{i=1,\dots n}$ eine Basis mit $n := \dim V$, und A die darstellende Matrix von s bzw. (v_i) . Wir haben dann:

$$s(x,y) = x^t \cdot A \cdot y$$

 $und A^t = \pm A, \det A \neq 0$

$$U^{\perp} = \left\{ x \in V_i | x^t \cdot A \cdot y = 0 \ \forall y \in U \right\} = \left\{ x \in V_i | (x \cdot A)^t \cdot y = 0 \ \forall y \in U \right\}$$

 $Sei\ F: V \rightarrow V\ lin.Abb. \leftrightarrow A.\ Dann:$

$$F(U^{\perp}) = \left\{ Ax | (Ax)^t y = 0 \ \forall y \in U \right\} \qquad = \left\{ Ax | \tilde{x}^t y = 0 \ \forall y \in U \right\}$$

Es folgt: mit

$$B := \begin{pmatrix} | & & | \\ u_1 & \cdots & u_d \\ | & & | \end{pmatrix}$$

 (u_1, \cdots, u_d) Basis von U, dann ist $F(U^{\perp}) = \text{Ker } B$. Jetzt:

$$\dim U^{\perp} = \dim F(U^{\perp}) = \dim \operatorname{Ker} B = n - \dim U$$

Korollar 4. dim $U < \infty$, $s: V \times V \to K$ nicht ausgeartet, (schief-) symm.

$$U \subset \Longrightarrow (U^{\perp})^{\perp} = U$$

Bemerkung 16. Es ist <u>nicht</u> immer der Fall, dass $V=U\bigoplus U'$, weil es ist möglich, dass $U\cup U^\perp\neq 0$. 2 Extremfälle:

- U ist isotropisch $(s|_{U'}$ ist trivial) $\Leftrightarrow U \subset \underbrace{U^{\perp}}_{\dim V \dim U}$
- $s|_U$ ist auch nicht ausgeartet $\Leftrightarrow U \cup U^{\perp} = 0 \Leftrightarrow V = U \bigoplus U^{\perp}$

Aus 1. ist klar:

$$\dim U \leq \frac{1}{2}\dim V \ \forall \mathrm{isotrop} U \subset V$$

1.7 Orthogonale und unitäre Endomorphismen

 $K = \mathbb{R} \text{ oder } \mathbb{C}$

Definition 20. orthogonaler bzw. unitärer Endomorphismus Sei V, \langle, \rangle ein ortho. bzw. unitärer Vektorraum. Ein Endomprhismus $F: V \to V$ heisst orthogonal bzw. unitär falls

$$\langle F(v), F(w) \rangle = \langle v, w \rangle \ \forall v, w \in V$$

Bemerkung 17. Das ist äquivalent zu

$$||F(v)|| = ||v|| \ \forall v \in V$$

Eigenschaften5. orthogonaler bzw. unitärer Endomorphismus Sei ${\cal F}$ ein orthobzw. unitärer Endomorphismus. Dann:

- F ist injektiv
- Falls $\dim_K V < \infty$, F ist bijektiv, und F' ist auch ortho. bzw. unitär
- Für jeden Eigenwert $\lambda \in K$ gilt $|\lambda| = 1$. Eigenvektor v:

$$||v|| = ||F(v)|| = ||\lambda v|| = |\lambda| ||v||$$

Falls $V = \mathbb{R}^n$ oder \mathbb{C}^n mit Standardskalarprodukt

$$\langle v, w \rangle = v^t w \text{bzw}$$
 $\langle v, w \rangle_c = v^t \bar{w}$

Ist F zur Matrix A entsprechend, dann

$$\langle F(v), F(w) \rangle = \langle v, w \rangle \Leftrightarrow (Av)^t Aw = v^t w$$

$$\Leftrightarrow v^t A^t Aw = v^t w \Leftrightarrow A^t A = E_n$$

$$\text{bzw} \Leftrightarrow v^t A^t \bar{A} \bar{w} = v^t \bar{w} \Leftrightarrow A^t \bar{A} = E_n$$

Definition 21. ortho. bzw. unitäre Matrix $O(n):=A\in GL_n(\mathbb{R})$ heisst orthogonal falls $A^tA=E_n$

$$U(n) := A \in GL_n(\mathbb{C})$$
 heisst unitär falls $A^t \bar{A} = E_n$

Not 1.

$$O_n := \{ A \in GL_n(\mathbb{R}) | A \text{ orthogonal} \}$$

 $O_n := \{ A \in GL_n(\mathbb{C}) | A \text{ unitär} \}$

Weil

$$A, B \in O(n) \implies (AB)^t(AB) = B^tA^tAB = B^tB = E_n \implies AB \in O(n)$$

haben wir $O(n) \subset GL_n(\mathbb{R})$ ist eine Untergruppe. Ähnlich: $U(n) \subset GL_n(\mathbb{C})$ ist eine Untergruppe.

Not 2.

$$SO(n) = O(n) \cap SL_n(\mathbb{R})$$

 $SU(n) = U(n) \cap SL_n(\mathbb{C})$

Not 3. ortho. bzw. unitärer Vektorraum

$$O(V) = \{ F \in GL(V) | \text{ortho.} \}$$

$$U(V) = \{ F \in GL(V) | \text{unitar} \}$$

Bemerkung 18.

$$A \in O(n) \implies \det A \in \{\pm 1\}$$

$$A \in U(n) \implies \det A \in \{\pm z \in \mathbb{C} : |Z| = 1\}$$

Eigenschaften 6. Charakterisierungen von ortho. bzw. unitären Matrizen Äquivalente Charakterisierungen von orthogonalen bzw. unitären Matrizen $A \in GL_n(\mathbb{R})$:

A ist orthogonal $\Leftrightarrow A^{-1} = A^t \Leftrightarrow A^t A = E_n \Leftrightarrow AA^t = E_n \Leftrightarrow$ die Spalten von A bilden eine Orthonormalbasis von $\mathbb{R}^n \Leftrightarrow$ die Zeilen von A bilden eine Orthonormalbasis von \mathbb{R}^n .

Ähnlich:

A ist unit $\Rightarrow A^{-1} = \bar{A}^t \Leftrightarrow A^t \bar{A} = E_n \Leftrightarrow \bar{A}A^t = E_n \Leftrightarrow \text{die Spalten von } A$ bilden eine Orthonormalbasis von $\mathbb{C}^n \Leftrightarrow \text{die Zeilen von } A$ bilden eine Orthonormalbasis von \mathbb{C}^n .

Für n=1

$$O(1) = \{\pm 1\}$$
 $U(1) = \{z \in \mathbb{C} : |z| = 1\} \cong S^1$ $SU(1) = \{1\}$

Für n = 2: $(a, b) \in \mathbb{R}^2$, $a^2 + b^2 = 1$

$$O(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\} \cup \left\{ \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\}$$
$$SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \middle| \theta \in \mathbb{R} \right\} \cong S^{1}$$

$$(z, w) \in \mathbb{C}^2, |z|^2 + |w|^2 = 1, (-\bar{w}, \bar{z}) \perp (z, w)$$

$$U(2) = \left\{ \begin{pmatrix} z & -\lambda \bar{w} \\ w & \lambda \bar{z} \end{pmatrix} | (z, w) \in \mathbb{C}^2, \left| z \right|^2 + \left| w \right|^2 = 1, \lambda \in \mathbb{C}, \left| \lambda \right| = 1 \right\} \cong S^3 \times S^1$$

$$SU(2) = \left\{ \begin{pmatrix} z & -\bar{w} \\ w & \bar{z} \end{pmatrix} | (z, w) \in \mathbb{C}^2, |z|^2 + |w|^2 = 1 \right\} \cong S^3$$

SO(3) eine explizite Beschreibung ist möglich (später)

Proposition 6. Sei V ein endlich dimensionaler \mathbb{C} -Vektorraum mit Skalarprodukt \langle , \rangle , und sei $F: V \to V$ ein unitärer Endomorphismus. Dann besitzt V eine Orthonormalbasis von Eigenvektoren von F.

Beweis 7. Durch Indunktion nach dim V. dim V=0,1 trivial. dim $V\geq 2$ Weil $\mathbb C$ algebraisch abgeschlossen ist, gibt es einen Eigenwert $\lambda\in\mathbb C$. Sei $v\in V$ ein Eigenvektor, mit $\|v\|=1$. Weil F untär ist, haben wir $F(v^\perp)=v^\perp$. Wir haben dim $v^\perp=\dim V-1$

$$w \in v^{\perp} \langle v, w \rangle \implies \langle v, w \rangle = 0$$
$$\lambda \langle v, F(w) \rangle = \langle \lambda v, F(w) \rangle = \langle F(v), F(w) \rangle = 0$$
$$\implies F(v^{\perp}) \subset v^{\perp}$$

Aus der Induktionsannahme folgt, dass \exists Orthonormalbasis von v^{\perp} von Eigenvektoren von F. Zusammen mit $v^{V=\operatorname{span} \bigoplus v^{\perp}}$ Orthonormalbasis von V

Korollar 5. Sei $A \in U(n)$. Dann $\exists S \in U(n), \ \theta_1, \cdots, \theta_n \in \mathbb{R}$ so dass

$$SAS^{-1} = \begin{pmatrix} e^{i\theta_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{i\theta_n} \end{pmatrix}$$

Proposition 7. Sei V ein endlich dimensionaler \mathbb{R} -Vektorraum mit Skalarprodukt \langle, \rangle , und sei $F: V \to V$ ein orthogonaler Endomorphismus. Dann besitzt V eine Orthonormalbasis $(v_1^+, \cdots, v_r^+, v_1^-, \cdots, v_s^-, w_1, w_1', \cdots, w_t, w_t')$

- $\bullet \ F(v_i^+) = v_i^+$
- $F(v_i^-) = -v_i^-$
- $F(w_i) = (\cos \theta_i)w_i + (\sin \theta_i)w_i'$
- $F(w_i') = (-\sin\theta w_i) + (\cos\theta_i)w_i'$

 $mit \ \theta_i \in \mathbb{R}, \ 0 < |\theta| < \phi, \ i = 1, \cdots, t$

Beweis 8. Durch Induktion nach $\dim V$: $\dim V = 0, 1, 2$ trivial. $\dim > 2$ (nächstes mal)

$$\dim_{\mathbb{R}} V$$

 $\langle .,. \rangle$ Skalarprodukt

Fazit 5. $F: V \to V$ orthogonaler Endomorphismus $\implies \exists$ orthogonale Basis

+1 oder -1 Eigenvektoren

$$F(\alpha w_i + \beta w_i') = (\alpha \cos \Theta_i - \beta \sin \Theta_i) w_i + (\alpha \sin \Theta_i \beta \cos \Theta_i) w_i', \ \Theta_i \in \mathbb{R}$$

Beweis 9. Fortsetzung Durch Induktion nach dim V, Induktionsanfang: dim $V \le 2$ dim V = 2 bezüglich beliebiger Basis (w_1, w'_1) .

$$V: \begin{pmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{pmatrix} oder \begin{pmatrix} \cos\Theta & \sin\Theta \\ -\sin\Theta & \cos\Theta \end{pmatrix}$$

Matrix 1: w_1, w_2 ist wie oben, Matrix 2: chaakteristisches Polynom $t^2 - 1 = (t-1)(t+1) \rightarrow (+1\text{-Eigenvektor}, -1\text{-Eigenvektor})$

1. Fall: ∃ reeller Eigenwert

$$\lambda \in \mathbb{R}, \ |\lambda| = 1 \ v \in V \ F(v) = \lambda v$$

wir zeigen, dass $F(v^{\perp}) = v^{\perp}$ genau wie im Fall einees unitären Endomorphismus

$$\dim(v^{\perp}) = \dim V - 1 \stackrel{IA}{\leadsto} v^{\perp} : orthonormale \ Basis$$

$$V = (v) \bigoplus v^{\perp}$$

2. Fall: ∄ reeller Eigenwert

$$\implies P_F(t) = \prod_{i=1}^{(\dim V)/2} Q_i(t)$$

 $Q_i(t)$ irreduzibles quadratisches Polynom. Aus dem Satz von Cayley-Hamilton folgt:

$$\implies \exists \overbrace{v}^{\neq 0} \in V, \ imitQ_i(F)v = 0$$

Sei $0 \neq v_0 \in V$ beliebigen Vektor $P_F(F)v_0 = 0$

$$Q_1(F)Q_2(F)\cdots + \underline{\dim V}_2(F)v_0 = 0$$

$$\implies \exists j: Q_j(F)Q_{j+1}(F)\cdots + \underline{\dim V}_2(F)v_0 = 0$$

$$aber Q_{j+1}(F)\cdots Q_{\dim V}2(F)v_0 \neq 0$$

 \implies wir nehmen i:=j und $v:=Q_{j+1}(F)\cdots Q_{\frac{\dim V}{2}(F)v_0}$. Beh: $U:=\mathrm{span}(v,F(v))$ ist ein F-invariante Vektorraum. $Q_i(F)_v=0$ $\implies \exists a,b\in\mathbb{R} \ mit\ F(F(v))=av+bF(V)$. Es folgt: U^\perp ist auch F-invariant. $V=U\bigoplus U^\perp \stackrel{IA}{\leadsto} Basen\ von\ U\ und\ von\ U^\perp$ wie oben. Die Vereinigung dieser Basen ist wie erwünscht.

Korollar 6. Sei $A \in O(n)$. Dann gibt es ein $S \in O(n)$ und $r, s, t \in \mathbb{N}$, $\Theta_1, \dots, \Theta_t \in \mathbb{R}$ mit

$$SAS^{-1} = \begin{pmatrix} E_r & & & 0 \\ & -E_s & & & \\ & & D_{\Theta_1} & & \\ & & & \ddots & \\ 0 & & & D_{\Theta_t} \end{pmatrix}$$

wobei

$$D_{\Theta} := \begin{pmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{pmatrix}$$

Beispiel 13.

$$A := \begin{pmatrix} 0 & 1 & 0 & & 0 \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ 1 & & & & 0 \end{pmatrix} \in U(n)$$

$$A(z_1, \dots, z_n) = (z_2, \dots, z_n, z_1)$$
$$A(1, S, S^2, \dots, S^{n-1}) = (S, S^2, \dots, S^{n-1}, 1)$$
$$S := e^{2\pi i/n} S^n = 1$$

 $\implies (1,S,S^2,\cdots,S^{n-1})$ ist Eigenvektor zum Eigenwert S. Ähnlich: für $0 \le j \le n-1$ haben wir $(1,S^j,S^{2j},\cdots,S^{(n-1)j})$ ist Eigenvektor zum Eigenwert S^j . $1,S,S^2,\cdots,S^{n-1}$ sind paarweise verschieden $\implies (1,S^j,S^{2j},\cdots,S^{(n-1)j})$ ist eine Basis von Eigenvektoren. Normalisierung:

$$\left(\frac{1}{\sqrt{n}}\left(1, S^{j}, S^{2j}, \cdots, S^{(n-1)j}\right)\right)_{j=0,1,\cdots,n-1}$$

ist eine orthonormale Basis von Eigenvektoren

 $(K = \mathbb{C})$ unitärer Endomorpismus von V

Fazit 6. $(K = \mathbb{R})$ orthogonaler Endormophismus von V $\implies V = \bigoplus_{\text{Eigenwerte}\lambda} \operatorname{eig}(F; \lambda)$ orthogonale direkte Summe

Beispiel 14.

$$A = \begin{pmatrix} \frac{3}{13} & \frac{4}{5} & \frac{36}{65} \\ \frac{4}{13} & -\frac{3}{5} & \frac{48}{65} \\ \frac{1}{13} & 0 & -\frac{5}{13} \end{pmatrix} \in O(3)$$

 $\det A = 1 \ 2 \ \text{komplex konjugierte} + 1 \ \text{reller oder 3 reelle Eigenwerte} \implies +1 \\ \text{ist ein Eigenwert.} \ldots \leadsto \text{Eigenvektor} \ (6,3,4) \ \text{zum Eigenwert 1.} \rightarrow \text{v mit} \ \|v\| = 1 \\ v = \frac{1}{\sqrt{61}}(6,3,4) \ \cdots \ v^{\perp} = \text{span} \left((1,-2,0),(2,0,-3)\right) \xrightarrow{\text{Gram-Schmidt}}$

$$(1, -2, 0), (\frac{8}{5}, \frac{4}{5}, -3)$$

Normalisieren:

$$\frac{1}{\sqrt{5}}(1, -2, 0), \sqrt{1}\sqrt{305}(8, 4, -15)$$

Und wir berechnen

$$S := \begin{pmatrix} \frac{6}{\sqrt{61}} & \frac{1}{\sqrt{5}} & \frac{8}{\sqrt{305}} \\ \frac{3}{\sqrt{61}} & -\frac{2}{\sqrt{5}} & \frac{4}{\sqrt{305}} \\ \frac{4}{\sqrt{61}} & 0 & -\frac{15}{\sqrt{305}} \end{pmatrix}$$

bekommen wir

$$\underbrace{S^{-1}}_{=S^t} AS = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{57}{65} & \frac{4\sqrt{61}}{65} \\ 0 & -\frac{4\sqrt{61}}{65} & -\frac{57}{65} \end{pmatrix}$$

1.8 Beschreibung von SO(3) und O(3)

Eigenschaften 7. Sei $A \in SO(3)$. Dann: entweder es gibt 1 reelle und 2 komplex konjugierte Eigenwerte oder 3 reelle Eigenwerte. $\lambda \in \mathbb{C} \implies \lambda \cdot \bar{\lambda} = 1$. Eigenwerte $+1(\times 3) \Leftrightarrow A = E_3$ oder $-1(\times 2) / +1$. Wenn $\not\Leftrightarrow A = E^3$, dann ist dim eig(A, 1) = 1.

$$A : \operatorname{eig}(A, 1)^{\perp} \to \operatorname{eig}(A, 1)^{\perp}$$

ist eine Drehung durch einen Winkel $\Theta \in (0, 2\phi)$. Bezüglich Basis (v_1, v_2, v_3) , $v_1 \in \text{eig}(A, 1), ||v_1|| = 1$ sieht A aus wie

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\Theta & -\sin\Theta \\ 0 & \sin\Theta & \cos\Theta \end{pmatrix}$$

Eigenschaften 8. Sei $A \in O(3)$ Falls det A=1, haben wir $A \in SO(3)$ Falls det A=-1, haben wir $-A \in SO(3)$

Dann bekommen wir die folgende Beschreibung von $A \in O(3)$ mit det A = -1:

- $\bullet \ A = -E_3$
- oder $\dim \operatorname{eig}(A, -1) = 1$ $v_1 \in \operatorname{eig}(A, -1), ||v_1|| = 1$ $A : \operatorname{eig}(A, -1)^{\perp} \to \operatorname{eig}(A, -1)^{\perp}$ ist eine Drehung um den Winkel $\Theta - \pi \in (-\pi, \pi)$ (Spiegelung oder Spiegelung mit Drehung)