INDUSTRIAL MECHANICS WORKBOOK

R. T. Miller

INDUSTRIAL MIECHANICS WORKBOOK

Introduction

Industrial Mechanics Workbook provides tests based on the content of Industrial Mechanics. The tests in Industrial Mechanics Workbook correlate with each chapter in Industrial Mechanics. The corresponding chapter of Industrial Mechanics should be studied before taking the tests. Particular attention should be paid to formulas, illustrations, and italicized terms. A comprehensive Final Exam follows the chapter tests. The Appendix contains all formulas, charts, and tables required to solve all problems in the chapter tests.

Test questions include identification, matching, completion, multiple choice, true-false, and problems. All answers, with solutions as appropriate, are given in *Industrial Mechanics Workbook Instructor's Guide*.

We appreciate the use of technical material and illustrations as noted in this workbook.

The Publisher

© 1999 by American Technical Publishers, Inc. All rights reserved

123456789-99-98765432

Printed in the United States of America

ISBN 0-8269-3691-1

Contents

	Calculations		
1	Test 1 Test 2	••••••	1 5
	Rigging Test 1		0
2	Test 2		
3	Lifting		
	Test 1		17
4	Ladders and Scaffolds Test 1	• • • • • • • • • • • • • • • • • • • •	21
5	Hydraulic Principles Test 1		25
3	Test 2		
6	Practical Hydraulics Test 1 Test 2		
[7]	Pneumatic Principles Test 1		41
8	Practical Pneumatics		
	Test 1 Lubrication	••••••••••	45
9	Test 2		

10	Bearings Test 1	57
	Flexible Belt Drives Test 1	61
12	Mechanical Drives Test 1	65
13	Vibration Test 1	69
14	Alignment Test 1	73
15	Electricity Test 1	77
F	Final Exam	81
A	Appendix	85

Calculations

Industrial Mechanics

equa	noit	1.	A(n) is a means of showing that two numbers or two groups of number equal to the same amount.	ers ar
Plan	2	2.	A(n) figure is a flat figure with no depth.	
Angl	2	3.	A(n) is the intersection of two lines or sides.	
T	F	4.	All circles contain 360°.	
T	F	X	The sum of the three angles of a triangle is always 90°.	
		6.	A quadrilateral always	
			A. has four sides C. both A and B	
11	10		B. contains 360° D. neither A nor B	
alti	tide	7.	The of a prism is the perpendicular distance between the two bases.	
T	F	8.	A right cylinder is a cylinder with the axis perpendicular to the base.	
Sphe	SAF	9.	A(n) is a solid generated by a circle revolving about one of its axes.	
Form	rula	10.	A(n) is a mathematical equation that contains a fact, rule, or principle.	
Are	\	11.	is the number of unit squares equal to the surface of an object.	
bas	2_	12.	The of a triangle is the side upon which the triangle stands.	
Squa	are	13.	A(n) is a quadrilateral with all sides equal and four 90° angles.	
recta	insle	14.	A is a quadrilateral with opposite sides equal and four 90° angles.	
	0		A. square C. rhombus	
A	1		B. rectangle D. rhomboid	
phor	nous	15.	A is a quadrilateral with all sides equal and no 90° angles.	
			A. square C. rhombus	
01	1 6		B. rectangle D. rhomboid	
hhon	biodn	16.	A(n) is a quadrilateral with opposite sides equal and no 90° angles.	
T	F	17.	A formula can be changed to solve for any unknown value if the other values are known	wn.
T	F	18.	A square foot contains 12 sq in.	
(\hat{T})	F	19.	Polyhedra are solids bound by plane surfaces.	

B	20.	A(n)	_ is a regular sol	lid of eigh	t triangles.			
		A. hexahedron B. octahedron			tetrahedron dodecahedron	1		
0	21.	A(n)	_ is a regular sol	lid of twel	ve pentagons.			
		A. hexahedron B. octahedron			tetrahedron dodecahedron			
<u>A</u>	22.	A(n)	_ is a regular sol	id of six s	quares.			
		A. hexahedron B. octahedron			tetrahedron dodecahedron			
totrahed!	23.	A(n)	_ is a regular sol	id of four	triangles.			
1008	24.	The prefix kilo (k) has a prefix e	equivalent	of			
Frystum"	A 5.	A(n) a cutting plane p	of a pyramid of assed parallel to	or cone is the base.	the remaining	portion of a p	yramid or co	ne wit
Lines								
A	X .	Line		A. Shor	test distance b	etween two po	ints	
organization	X.	Straight line		B. Line that is slanted				
The state of the s	3.	Horizontal line		C. Two or more lines that remain the same distance apar				
	4.	Vertical line		D. Line	that is perpen	ndicular to the l	norizon	
B	5.	Inclined line		E. Line	that is paralle	el to the horizon	1	
C	6.	Parallel lines		F. Bound	dary of a surf	ace		
Angles								
E	1.	Complementary		/180°	900	LESS THAN 90°	MORE THAN 90°	
F	2.	Supplementary		1	7 7	- THAN 90		
B	3.	Right		A	B	©	D	
A	4.	Straight		→ a ∠ 90°		180°		
<u>C</u>	5.	Acute		\\ \bar{b}\	$a+b=90^{\circ}$		$a+b=180^{\circ}$	
0	6.	Obtuse		(E)		(F)		

The area of Circle A is 31416×119 **Problems** sq in.

Sq in.

Sq in.

Sq in.

sq in. The circumference of Circle * The circumference of Circle CIRCLE A 3.1416 X 3.5

The piece of $\frac{1}{8}$ " Rolled Steel is to be shear cut to produce $6'' \times 8'' \times 10''$ triangular fins.

sq ft. 96" x 8"=70=144 = The area of each triangular fin is ______ sq in. A total of triangular fins can be produced from the Rolled Steel.

ROLLED STEEL

cu ft of water. The Holding Tank, Storage Tank, and pipe will hold ____ cu ft of water. M. A 2'D solid concrete ball placed in the Storage Tank will displace _____ cu ft of water. 3.1416.23

183.79

Calculations

Name Date

Industrial Med	chanics	
Line	1. A(n) is the boundary of	of a surface.
Right	2. A(n) angle is two lines	s that intersect perpendicular to each other.
Verte	3. The is the point of inte	
	A. centerpoint B. radius	C. vertex D. neither A, B, nor C
horizmia	4. A(n) line is a line that	is perpendicular to the horizon.
	A. horizontal B. vertical	C. inclined D. neither A, B, nor C
	5. An acute angle is an angle that	·
	A contains less than 90° B. contains exactly 90°	C. contains more than 90° D. may contain any number of degrees
T F	There are 60' in one degree.	
T F	A straight angle always contains 90	· .
F F	All lines may be drawn in any posi	tion unless they are horizontal or vertical.
<u>B</u>	9/A is a portion of the c	ircumference of a circle.
	A. vector B. chord	C. segment D. neither A, B, nor C
	6. Concentric circles are two or more	circles with
	A. same diameters and	√ C. different diameters and same centerpoint
	same centerpoints B. same diameters and different centerpoints	D. different diameters and different centerpoints
	Le Eccentric circles are two or more ci	ircles with
	A. same diameters and	C. different diameters and same centerpoint
	same centerpoints B. same diameters and different centerpoints	D. different diameters and different centerpoints
Triangle	A(n) is a three-sided po	olygon with three interior angles.
	The is the side of a rig	
	The angles of a triangle are named	

	,	
35.	The sides of a triangle are named	by letters.
¥6 .	Polygons are named according to	their number of sides.
¥7.	A right triangle has a 3-4-5 relation	onship.
XÌ8.	A(n) is a solid with t	wo bases that are parallel and identical polygons.
1/9.	A(n) is a solid with a	base that is a polygon and sides that are triangles.
X 0.	is the three-dimensional	al size of an object measured in cubic units.
21.	A cubic inch measures	_ or its equivalent.
	A. 1"	C. 1" × 1"
	B. 1" sq	D. neither A, B, nor C
3 2.	An obtuse triangle is a scalene tri	angle with
		C. one angle greater than 90°
	B. one angle of 90°	D. two angles of 90°
¥3.	A polygon is	
		C. both A and B
		D. neither A nor B
24.	A trapezoid is a quadrilateral with	
	A. no B. two	C. opposite D. all
⊘ 5∕	The circumference of a sphere is	
Ж.		C. either A or B
	B. small	D. neither A nor B
% .	In a formula, the sign of a number	r or letter is changed to the opposite sign when transposed.
汉.	Angles are measured in degrees, r	ninutes, and seconds.
36 :	Supplementary angles are two an angles equals 90°.	gles formed by three lines in which the sum of the two
30.	A chord is a line from circumfere	nce to circumference through the centerpoint of a circle.
	•	
26.	Tr sector is a pie snaped piece of	a choic.
Á.	Right rectangular	
Z.	Right triangular	
X	Oblique pentagonal	
	城也然处处 21. 处 处 英 城 双 聚 级 级 近 天	is a solid with a 20 is the three-dimensional 21. A cubic inch measures A. 1" B. 1" sq 22. An obtuse triangle is a scalene triangle and an angle less than 90° B. one angle less than 90° B. one angle of 90° 23. A polygon is A. a many-sided plane figure B. bound by straight lines 24. A trapezoid is a quadrilateral with A. no B. two 25. The circumference of a sphere is A. great B. small 26. In a formula, the sign of a number angles are measured in degrees, respectively. 26. Supplementary angles are two an angles equals 90°.

B

©

Quadrilaterals

- 1. Trapezium
- 2. Trapezoid
- 3. Square
- 4. Rectangle
- **5.** Rhombus
- **K** Rhomboid

A

(D)

Regular Solids

- 1. Tetrahedron
- 2. Hexahedron

3. Octahedron

4. Dodecahedron

5. Icosahedron

Other Regular Solids

Oblate ellipsoid

2. Prolate ellipsoid

X. Torus

Sphere Sphere

Conic Sections

1. Circle

2. Ellipse

Parabola

Hyperbola

Prob	ler	ns	
5	0	1	15

1. The area of Rectangle A is _____ sq in.

RECTANGLE A

3000

2. The Warehouse contains _____ sq ft.

1000

25.13

50.27

The area of Circle A is _____ sq ft.

130

5. The area of Triangle A is _____ sq in.

11,6

The length of Side c of Triangle A is ________.

78.54

The area of Circle B is _____ mm².

31.49

The circumference of Circle B is _____ mm.

615,75

A circle has a 28" diameter. The arc of the circle is _____ sq in.

59374

The Outer Zone contains _____ sq ft.

CIRCLE A

CENTRAL ZONE

Rigging

Industrial Mechanics

Reging	1.	is securing equipment or machinery in preparation for lifting by means of rope, chain, or webbing.
Symplical	2.	A(n)load is a load in which one-half of the load is a mirror image of the other half.
149	3.	A lifting is a thick metal loop (eyebolt) welded or screwed to a machine to allow balanced lifting.
T F	4.	The sling apex is the uppermost point where sling legs meet.
F F	5.	Rope is used for lifting because of its length and flexibility.
	6.	Rope is the length of rope in which a strand makes a complete helical wrap around the core.
Acid	7.	A(n) is any kind of a class of sour substances with a pH value less than 7.
-this mile	×	A(n) is a curved piece of metal around which the rope is fitted to form a loop.
T F	X	A socket is a rope attachment through which a rope end is terminated.
T F	10.	Because a rope is flexible, bending does not subject it to stress.
F	11.	Fiber rope can be made from either natural or synthetic fibers.
	yé.	A is the interlacing of rope to form a permanent connection.
	•	A. hitch B. knot C. bight D. neither A, B, nor C
<u>C</u> .	13.	is a knitted or woven edge of a webbing formed to prevent raveling.
		A. Web ply B. Rebanding C. Selvedge D. Loop eye
temper	J14.	is the process in which metal is brought to a temperature below its critical temperature and allowed to cool slowly.
5 hoar	15.	strength is a metal's resistance to a force applied parallel to its contacted plane.
Allow	16.	A steel is a metallic material formulated from the fusing of two or more metals.
Warriston	17.	wire is a wire rope constructed of strands consisting of more than one size wire staggered in layers.

~ <u> </u>	18. A(n) is	the joining of two rope	ends to form a per	manent connection.
-lastr	19. The web sling any fittings.	is the distance bet	tween the extreme po	oints of a web sling, including
28 400	20. A(n) is	a U-shaped metal link	with the ends drilled	to receive a pin or bolt.
	21. Regarding wire rope	e, a strength safety factor	ofis u	sed for steady or even load
T F		e slings of all grades shaperatures exceeding 150°		emoved from service if the
T F	23. A scaffold hitch is r	nade from a clove hitch	and a bowline knot	•
T F	24. The NACM specific every 48 links.	es that the grade numbe	r or letter of a chai	n must appear at least onc
T F	25. Hitches work by the	pressure of rope being	pressed together.	
Hooks				
F	1. Swivel		9	9
1	2. Gated		S	
	3. Ungated	A	B	©
	4. Mousing			(0)
· ·	5. Eye	(C)		
	6. Clevis			
* AM.	or elevis	(D)	E	F
Rigging Hard	ware Attachments			
Cs	1. Shackle		B	0
	2. Eyebolt		C	E
	3. Chain			Ó
	4. Hook	A	0	
0	5. Thimble			
	6. Rope		-G	(H)
	7. Clip			
	8. Choker fitting	NO.		
H	9. Webbing			

Wine Daw T	· · · · · · · · · · · · · · · · · · ·		.40		
Wire Rope To					
¥->	1. Wedge socket		R	R	
Gar.	2. Open speltered socket		S _a		
	3. Closed speltered socket				
	4. Closed swaged socket	(A)	(B)	©	D
	5. Thimble				
<u>C</u> 0	6. Thimble and link			Д	
	7. Thimble and shackle				
	8. Thimble and hook	E	F	<u>©</u>	H
Webbing					
	1. Tapered eye				
Account.	2. Loop eye length			(A)	
- Contraction of the Contraction	3. Eye width				
	4. Sling width		(C)	B	
	5. Web face				
	6. Selvedge		(G) -	100 mm 200 mm 100 mm 10	
	7. Splice	-	· F)	E -
	8. Warning core			(Θ_{\setminus}
	9. Body			90 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	
	10. Length	-		①——	-
Chain Inspec	tion				
<i>*</i>	1. Bent links		2.3	35	
	2. Cracks	(A)			B
C	3. Stretching		000		
P	4. Excessive wear	(252)	5-5-5	(75)	505
A	5. Gouges	(D)			E

Problems

Refer to appropriate tables in Appendix.

The pieces of $1^3/4^{\prime\prime}$ D round steel weigh ______lb.

2. Three 10' pieces of 1/4" D round steel and one 10' piece of 1" square steel weigh ______ lb.

3. An order for twenty-four $36'' \times 96''$ sheets of $\frac{1}{4}''$ steel plate weighs _____ lb.

4. The loss factor is ______° if the sling angle is 50° from the horizon.

5. The total lifting capacity of a two-leg sling made of $\frac{1}{4}$ ", 6×19 , IPS-FC wire rope with the sling loops constructed of swaged sockets and sling angles of 60° is ______t.

6. The rope bending load rating of a ½" rope traveling over an 8" pulley with a load rating of 1800 lb is _____ lb.

7. The generally accepted safe rope strength to lift 5000 lb with a steady lift is _____.

15.2 b 8. The lifting capacity of a basket hitch using a $1\frac{1}{2}$ " wide Class 5, Type V endless sling without fittings and having a 40° sling angle is ______lb.

25737.6 b 9. The lifting capacity of a round sling basket hitch with a yellow cover and 50° sling angle is

10. Should the used chain be removed from service?

NEW CHAIN

USED CHAIN

Rigging

Name
Description Date

Industrial Me	char	nics
Lifting	1.	is hoisting equipment or machinery by mechanical means.
Asymmetric	1 2.	A(n) load is a load in which one-half of the load is not a mirror image of the other half.
gravity	3.	The is the balancing point of a load.
hortizont	s\4.	The weight center is a weight mass above a pivot point that causes a load to topple because it is too heavy.
sling	5.	A(n) is a line consisting of a strap, chain, or rope used to lift, lower, or carry a load.
	6.	Fiber rope is constructed by twisting
\ \ \ \ \		A. fibers into yarn B. yarn into strands C. strands into rope D. A, B, and C
alkali	7.	A(n) is a bitter substance with a pH value greater than 7.
whipping	8.	is the wrapping placed around all strands of a rope near the area where the rope is cut.
T F	X.	A hitch is the interlacing of rope to temporarily secure it without knotting the rope.
T F	10.	A bowline knot is a knot that forms a loop which slips along the rope from which it is made.
T F	X	A wagoneer's hitch knot is a knot that creates a load-securing loop from the standing part of the rope.
	12.	A timber hitch is
,		A. a binding knot and hitch combination B. used to wrap and drag lengthy material C. either A or B D. neither A nor B
tensile	13.	strength is a measure of the greatest amount of straight-pull stress metal can bear without tearing apart.
bending	14.	strength is a metal's resistance to deflection in the direction in which the load is applied.
outside	15.	The diameter of wire rope is determined by the largest possible dimension.
Seale	16.	wire is wire rope that uses different size wire in different layers.
cabling	17.	is a rope's attempt to rotate and untwist its strand lays while under stress.

lay	18. A(n)	is a complete helica	l wrap of the strands of a	rope.
ere loop	19. A(n)	is a rope splice con	taining a thimble.	
loop eye	20. The body, forming		ength of webbing folded b	ack and spliced to the sling
Wegr	21. A(n)	pad is a leather or w	vebbed pad used to protect	the web sling from damage
	A(n) wound together	sling is a sling conser to make a core.	isting of one or more cont	inuous polyester fiber yarns
Chain		is a series of metal ansmission of mechanica		nother and used for support,
_8	24. Regarding win loads.	re ropes, a strength safe	ty factor of is	s used for shock or uneven
Types	25. Basic web slin	ngs are fabricated in six	configurations, which are	I through VI.
Rope Lay				1 STRANDS TWISTED IN CLOCKWISE ROTATION
Right	1. A(n)	lay is shown at A.		2) STRANDS TWISTED IN
Left	2. A(n)	lay is shown at B.	3 (B)	COUNTERCLOCKWISE ROTATION
Rightlang	3. A(n)	lay is shown at C.	A communication A	3 YARN OR WIRES TWISTED IN
Left lang	4. A(n)	lay is shown at D.	(j (1)	CLOCKWISE ROTATION 4) YARN OR WIRES
·			4 2 2	TWISTED IN COUNTERCLOCKWISE ROTATION
Rope Termin	ology		D	
7	1. Loop			
I	2. Kink			
A	3. Standing part			
	4. Standing end	G /H		/A
F	5. Working part			B
B	6. Whipping	F	(D)	© J
0	7. Bight		110	\mathbf{V}
E	8. Nip		E	
(-	9. Eye loop			
H	10. Working end			
-	The Cartes			

Hoisting Hooks

B

- 1. Foundry
- 2. Choker
- 3. Swivel
- 4. Grab
- 5. Sorting

Basic Sling Combinations

1. Basket

<u>C</u>

2. Bridle

B

3. Choker

D

4. U

5. Vertical (single-leg)

Slings

1. Type I

2. Type II

0

3. Type III

.

4. Type IV

E

5. Type V

6. Type VI

Problems

Refer to appropriate tables in Appendix.

1. The 10' pieces of 1 1/4" D brass weigh

2. Fifteen 10' pieces of 3/4" D round steel and four 10' pieces of 1" square steel weigh

3. Twenty-eight $48'' \times 96''$ sheets of $\frac{1}{4}''$ steel plate weighs lb.

4. The loss factor is _____° if the sling angle is 65° from the horizon.

, 6d36+

5. The total lifting capacity of a two-leg sling made of $\frac{3}{8}$ ", 6 × 19, IPS-FC wire rope with the sling loops constructed of wedged sockets and sling angles of 70° is ______ t.

305

6. The rope bending load rating of a $\frac{1}{2}$ " rope traveling over a 6" pulley with a load rating of 1500 lb is _____ lb.

15000

7. The generally accepted safe rope strength to lift 3000 lb with a steady lift is _

8. The lifting capacity of a basket hitch using a 1 ½" wide Class 5, Type V endless sling without fittings and having a 50° sling angle is _____ lb.

29.976.8169. The lifting capacity of a round sling basket hitch with a tan cover and 45° sling angle is

10. Should the used chain be removed from service?

NEW CHAIN

Lifting

Name

Date

Compared to the co

Industrial Me	chai	nics
Lifting	1.	is the hoisting of equipment or machinery by mechanical means.
В	2.	A is a rope length between the lower block and the upper block of a block and tackle.
		A. piece C. portion B. part D. neither A, B, nor C
	3.	A line is the part of the rope to which force is applied to hold or move a load
٨ ،		A. load C. front B. lead D. back
advantage	. 4.	Mechanical is the ratio of the output force of a device to the input force.
T F	5.	The nominal bending strength of the most heavily loaded rope in a system shall be no les than $2\frac{1}{2}$ times the load applied to that rope.
(T) F	6.	Torque is the twisting (rotational) force of a shaft.
T F		In a bevel gear, the drive gear is the smaller gear.
T F		Ambient temperature is the temperature of the air surrounding a piece of equipment.
Pendant	9.	A(n) is a pushbutton or lever control suspended from a crane or hoisting apparatus
<u></u>	10.	The proper direction for winding the first layer of rope on a drum is determined by the of the rope.
		A. length C. lay B. diameter D. neither A, B, nor C
Forged	11.	The two basic types of eyebolts are formed steel and steel.
T F	12.	As a sling moves from a vertical to an angular position, the capacity of the eyebolt is increased
T F	13.	All crane pulls should be vertical.
eye boldt	14.	A(n) is a bolt with a looped head.
Hock	15.	A(n) is an assembly of hooks, pulleys, and frames suspended by hoisting ropes
Recuira	16.	is passing a rope through a hole or opening or around a series of pulleys.
D 2		A(n) chain is the chain that raises the load.
		A. pull B. lift C. pickup D. hoist

ſ	10	The	hools in the	a haalt assa mbl	ad to the top of	a haisting mach	anism to allow for
	10.	overhead suspens		e nook assemor	ed to the top of	a noising meen	anishi to anow for
		A. main B. overhead			. top . master		
B	19.		noists are g			at weigh from	lb to
		lb.		C	200, 600		
\		A. 100; 300 B. 200; 500			. 300; 600 . neither A, B, n	or C	
pawl	20.	A(n) from turning bac		nanism used to	prevent the ratch	net wheel of a le	ver-operated hoist
presonate	21.	A(n)	hoist is a	power-operated	l hoist operated	by a geared redu	action air motor.
wrap	22.	Drum a hoist or crane.	_ is the rop	pe length requir	red to make one	complete turn ar	ound the drum of
hook Drist	23.	Hoist	_ is the slip	ppage of a hool	k caused by insu	ufficient braking.	
25%			angular lift				for sling
Gantry	25.	A(n)	crane is a	crane with bri	dge beams supp	orted on legs.	
,							
Bevel Gear					A STANDAR	<u>A</u>	va.
<u>H</u>	1.	Slip clutch					
E	2.	Hoist chain			G MANAGE	B	
B	3.	Bearing				C	
	X	Drive gear			8 8	D-	Q.
Q	5.	Endless hand cha	nin		18 +8	E	· ·
	6.	Beveled gears			↓ ₹ ₹	ě	
F	7.	Load			8 2	٩	
<u> </u>	×	Drive gear				F	
Drum Wrap					Washington and American Control of Control o		
R	1.	Underwind left to	right	LEFT LAY ROPE	RIGHT LAY ROPE	RIGHT LAY ROPE	LEFT LAY ROPE
C		Overwind left to		NOFE A		ROPE	ROPE
3		Underwind right					
		Overwind right to		LEFT RIGHT	LEFT ← RIGHT	LEFT RIGHT	LEFT — RIGHT

Safety 1. OSHA A. Publishes the National Electrical Code®, which contains standards for the practical safeguarding of persons and property from the hazards arising 2. ANSI from the use of electricity. **B.** Nongovernmental international organization comprised of national standards 3. ISO institutions of over 90 countries. 4. CMAA C. U.S. standards-developing organization that adopts and co-publishes standards that are written and approved by member organizations. 5. ASME D. U.S. government organization concerned with the development and enforce-6. NFPA ment of safety standards for industrial workers. E. Organization of crane manufacturers that promotes standardization and establishes crane-operating practice standards. Organization that helps establish safe structural design of hoists and cranes and sets safety standards. **Crane Hand Signals** 1. Raise boom 2. Lower boom 3. Raise boom and lower load 4. Lower boom and raise load 5. Trolley travel 6. Multiple trolleys 7. Stop (F) (E) (G) (H)8. Emergency stop 9. Move slowly 10. Bridge travel 11. Hoist (K)12. Lower Jib Cranes 1. Wall-mounted, top-braced 2. Wall-mounted, cantilevered (B)(A) 3. Mast, cantilevered

воом-

MAST (LEG)
-FLOOR

-BRACE

MAST (LEG)

(E)

воом-

(F)

4. Mast, underbraced

5. Mast, top-braced

6. Base-mounted, cantilevered

Hand-Chain I	Hoists
D	1. Hoist chain
E	2. Lower limit of hoist hook travel
	3. Upper limit of hoist hook travel
6 6	4. Hoist hook
5	5. Reach
K	6. Pocket wheel
<u>— A</u>	7. Top hook
<u>H</u>	8. Hand chain
	9. Head room
E	10. Lift
	11. Hand chain drop
Problems 200	1. A force of lb is required to hold a 600 lb load using a three-part reeving system. Under ideal conditions, the lead line at A requires a pull of ' to lift the 100 lb load. Under ideal conditions, the lead line at A requires a force of lb to lift the 100 lb load.
984	4. A force of lb is required to move an 8000 lb load using a 10-part reeving system equipped with rolling-contact bearing pulleys.
1090	5. A(n) lb force is required to move a 1000 lb load using one-part reeving and plain bearing pulleys.
2.56	6. The minimum compressor size required for a pneumatic hoist that requires 110 scfm is HP.
43	The working load capacity of a 40° bridle sling using a 5/8" shoulder nut eyebolt is The working load of a 60° bridle sling using a 1/4" shoulder nut eyebolt is 1b. 2500 × 25 The working load of a 60° bridle sling using a 1/4" shoulder nut eyebolt is lb.
	The working load of a 60° bridle sling using a 14" shoulder nut eyebolt is lb.
14	500 X.25 Talepins

Ladders and Scaffolds

Industrial Med	chanics		
	1. A heavy-duty, industrial, 250 lb	capacity ladder has a Type	rating.
0	A. IA B. I	C. II D. III	
	2. Fixed ladders are installed in a horizontal.	preferred pitch range between	° and 90° from
, 1	A. 45 B. 60	C. 75 D. neither A, B, nor C	
	3. Metal ladders should not be use	d within' of electrical c	ircuits or equipment.
aluminum	4. Most metal ladders are construct	ed of, which is a relati	vely light metal.
T	5. Fiberglass ladders conduct electr	icity when dry.	
T F	6. A fixed ladder is permanently at	tached to a structure.	
Extension	7. A(n) ladder is an a lockable fly section(s).	djustable-height ladder with a fixed	bed section and sliding,
0	8. All scaffolds or mor	e above ground must have guardrails	, midrails, and toeboards.
	9. Guardrails on scaffolds must be installed no less than" or more than" high, with a midrail.		
	A. 24; 30 B. 30; 36	C. 36; 42 D. 42; 48	
A	10. Nails smaller thand	common must not be used to const	ruct scaffolds.
	A. 8 B. 10	C. 12 D. 16	
<u> </u>	11. A safety net must be used anywhere a person is working		
	A. 10 B. 25	C. 40 D. 60	
(T) F	12. The minimum netting mesh size	for bodily fall protection is normal	lv 6" × 6".
T F	13. Border rope for safety nets shall		
T F	14. A person should always face the		
\sim	15. Ladders are designed for use by		
$(T) \sim F$	13. Laudels are designed for use by	only one person amess specifically	designated officiwise.

Cuspension	16.	A(n) scaffold is a scaffol	d supported by overhead wire ropes.
50'	17.	The maximum working height of a hy	ydraulic scissor lift scaffold is'.
2'X10"	18.	Scaffold platform planks consist of _	" nominal structural planks.
Pole	19.	A(n) scaffold is a wood so or ground.	caffold with one or two sides firmly resting on the floor
	20.	Stepladders are commonly	_ in length.
		A. 2'-0" to 6'-0" B. 2'-0" to 8'-0"	C. 4'-0" to 8'-0" D 4'-0" to 10'-0"
	21.	The spacing between rungs of ladders, ±".	except for stepstools, shall be on" centers
1		A. 8; ½ B. 8; ½	C. 12; ½ D. 12; ¼
4	22.	The overlap of the fly section of a 42	extension ladder shall be at least'.
Halyard	23.	The is the rope used for ra	ising and lowering the fly sections of extension ladders.
7"	24.	The minimum distance between the cois".	enter of the rung of a fixed ladder to the building wall
50'	25.	A cage, well, or ladder safety system fixed ladder is greater than 24' but les	must be provided where a single length of climb on a sthan'.
duty	26.	Ladder rating is the weignuse.	ht (in lb) a ladder is designed to support under normal
	27.	A Type stepladder is desi	gned for light-duty, household use.
T F	28.	Fixed ladders are commonly construct	ed of steel or aluminum.
T F	29.	Single ladders are of fixed length have	ing only one section.
T È	30.	A mobile scaffold may be moved with	n a worker on the platform.
Sectional Meta	al-Fı	ramed Scaffolds	
G	1.	Bearer	B
	2.	Hook-on ladder	
	3.	Diagonal brace	
	4.	Cross brace	H
1	100	0 1: 1	

5. Coupling tube 6. Footing base plate 7. Cleat 8. Planking

Pole Scaffolds

- 1. Ledger
- 2. Cross brace
- 3. Diagonal brace
- 4. Planking
- 5. Footing
- 6. Guardrail
- 7. Upright
- 8. Midrail
- 9. Toeboard
- 10. Bearer
- 11. Splice

Ladder Jacks

- 1. Hook
- 2. Ladder jack
- 3. Ladder
- 4. Plank
- Hook

Extension Ladders

- 1. Halyard
- 2. Rungs
- **3.** Tip
- 4. Butt end
- _ _.
- 5. Plastic rail closures
- **6.** Center swivel pulley
- 7. Foot assembly
- 8. Flange
- **9.** Web
- 10. Bed section
- 11. Pawl lock
- 12. Fly section

Pawl Locks

B

- 1. The fly section of the ladder at _____ is held in place.
- 2. The fly section of the ladder at ______ is being lowered.
- 3. The fly section of the ladder at _____ is being raised.

Problems

5' 1"x6" 2" x4"

- 1. An extension ladder has a working height of 16'. The butt end of the ladder is placed ______' from the wall.
- 2. A 54' extension ladder shall have an overlap of at least ______'.
- 3. The braces of a medium-duty single-pole scaffold shall be constructed of _____ material.
- **4.** Rails for light-duty double-pole scaffolds shall be constructed of _____ material.
- 5. The base of a scaffold measures $6' \times 12'$. The maximum height of the scaffold is ________.
- **6.** The minimum base dimension of the Mobile Scaffold is ________.

MOBILE SCAFFOLD

Hydraulic Principles

Name

Date

	5
Ì	

muustriai ivi	tecnanics
Hydrauli	1 is the branch of science that deals with the practical application of water or other liquids at rest or in motion.
Centrifug	force is the outward force produced by a rotating object.
<u>Gas</u>	3. A(n) is a fluid that has neither independent shape nor volume and tends to expand indefinitely.
Pressure	4 is the force per unit area.
Kinetic	is the energy that produces movement.
14.7	6. The weight of the atmosphere at sea level is psi.
inches He	7. A mercury barometer is commonly calibrated in
78.54	8. The area of a circle is% of the area of a square with the same measurement.
T F	9. Area, force, and pressure are the basis of all hydraulic systems.
T F	10. The pressure of the fluid in a vessel is the same at that level regardless of the shape of the vessel.
T F	11. Fluids that are thin and flow easily have a high viscosity.
T F	12. One gallon of fluid equals 321 cu in.
T F	13. The velocity of a fluid decreases as the cross-sectional area of a pipe increases.
Vector	14. A(n) is a quantity that has a magnitude and direction.
Advantage	15. Mechanical is the ratio of the output force of a device to the input force.
Horse power	is a measure of the ability to do work.
	17. One horsepower is the amount of energy required to lift lb 1' in 1 min.
	A. 330 C. 33,000 B. 550 D. 55,000
Work	18 is the energy used when a force is exerted over a distance.
T F	19. Mineral-based oil is the most widely-used hydraulic fluid.
T F	20. Static head pressure is potential energy.

<u>C</u>	21 is the height at which at its supply source.	emospheric pressure forces a fluid above the elevation of
	A. Increase B. Elevation	C. Lift D. neither A, B, nor C
	22. In a hydraulic system,	
	A. pressure provides forceB. flow rate provides speed	C. both A and B D. neither A nor B
T F	23. Volume is the two-dimensional size	of an object measured in cubic units.
T F	24. Flow rate is the volume of fluid flow	w.
T (F)	25. Static energy is the energy of motion	n.

Fluid Pressure

at D.

2. The pressure at B is the same as the pressure at C.

3. The pressure at E is greater than the pressure at D.

4. The pressure at F is the same as the pressure at D.

1. The pressure at A is twice the pressure

n.	nid	,	ONE

20

- 1. The fluid velocity at A is _____ ft/sec. (Velocity is 4x greater in a pipe of ½ dia.)
- 86
- 2. The fluid velocity at B is _____ ft/sec. (Velocity is 4x greater in a pipe of ½ dia.)

T F

The fluid velocity at C is $\frac{1}{4}$ the fluid velocity at A. (Velocity is 4x greater in a pipe of $\frac{1}{2}$ dia.)

Horsepower

2.62

1. The horsepower required to lift Load A is _____ HP.

2.18

2. The horsepower required to lift Load B is ______ HP.

600 × 12 530 × 5

Problems

7,875

1. Tank C has a capacity of ____ cu ft.

16

2. Tank D has a capacity of m³.

109.2

3. The absolute pressure in a system with a gauge pressure of 94.5 psig is _____ psia.

X 3.5

1.23	4.	The area of Piston A is sq in.	1.25" D
81.30 bst	5.	A pressure of psi is required to move a 100 lb force with Piston A.	1,23
75	6.	The amount of fluid required to fully extend a 3.5" D cylinder with an 18" stroke is gal.	173.18°C4 PISTON A
<u>500</u>		A force of lb is produced by a 4 sq in. piston operating at 125 psi.	TORQUE = ? LB-IN.
J. 061	8.	The velocity of a fluid having a flow rate of 4.5 gpm through a 1' section of $\frac{3}{4}$ " D pipe is ft/sec.	3.5"R
3(7)	9.	The torque required to overcome the force at Winch A is lb-in.	RADIUS / J / J / J / S / S / S / S / S / S /
393.75	10.	If the distance in Problem 9 was increased to 5.25", lb-in would be required to overcome the force.	VINCH A
2452"	11.	The area of Surface A on Block A is sq in.	2"
5_	12.	The area of Surface B on Block A is sq ft.	BA
144 cuin	13.	The volume of Block A is cu in.	12"
<u>4X</u>	14.	The velocity in Pipe A is times greater than the velocity in Pipe B.	BLOCK A EQUAL FLOW RATE
3.14	15.	The area of Pipe A is sq in.	2', 4'

PIPE A

PIPE B

Hydraulic Principles

maustriai ivie	cnai	nics	
Hydrostatic;	1.	is the study of liquids at re	est and the forces exerted on them or by them.
quilibrium	2.		orces and torques are balanced by equal and opposite
ary baromete	. × 3.	A mercury is an instrume of mercury.	nt that measures atmospheric pressure using a column
Vacuum	4.	is a pressure lower than at	mospheric pressure.
<u> </u>	5.	Area is always expressed in	_ units.
0		A. square B. cubic	C. either A or B D. neither A nor B
	6.	lift is the lift of fluid in m	otion.
		A. Static B. Dynamic	C. Head D. neither A, B, nor C
T F	7.	Any friction generated in a hydraulic s	ystem becomes a resistance to fluid flow.
T F	8.	The velocity of a fluid is constant as its to another.	s speed or direction of flow changes from one moment
T F	9.	Total energy is a measure of a fluid's	ability to do work.
Velocity	10.	is the distance a fluid trave	ls in a specified time.
fulcrum	11.	A(n) is a support on white between the effort force and the resistation	ch a lever turns or pivots and is located somewhere ince force.
Kinelic	12.	energy is the energy of mo	tion.
torque	13.	is the twisting (rotational)	force of a shaft.
Hydro Dynamic	514.	is the study of the forces e fluid.	xerted on a solid body by the motion or pressure of a
Absolute	15.	The pressure is pressure a	bove a perfect vacuum.
T F	16.	Head is the difference in the level of a	liquid between two points.
T E	17	Fluids that flow with difficulty have a	low viscosity

T F	18. Capacity is expressed in square to	units.
	19 torque is the energy	that a motor develops to keep a load turning.
	20. One horsepower equals	lb/sec.
	21 is the rate or speed of	of doing work.
	A. Energy B. Power	C. Capacity D. Efficiency
	22. The viscosity is a meaning is heated.	easure of the degree to which viscosity changes when a flui
	A. rate B. index	C. time D. temperature
	23. Fluid $\frac{200}{200}$ is the movement points.	ent of fluid caused by a difference in pressure between tw
	24 lift is the height to w above the supply to restore equil	which atmospheric pressure causes a column of fluid to risibrium.
	25. pressure is pressure a inside a closed system.	above atmospheric pressure that is used to express pressure
	26. A pressure gauge reads	psig at normal atmospheric pressure.
	27 head is the head of fi	luid in motion.
	A. Static B. Still	C. Dynamic D. Divergent
	28 is the volume of oil r	moved during each cycle of a pump.
	A. Residue B. Displacement	C. Load D. neither A, B, nor C
	29 is an increase in spee	ed.
	30 is a measure of a cor	nponent's or system's useful output energy.
	A. Rate B. Percentage	C. Efficiency D. Value
Hydrostatics	1. Heat energy	OPEN NALVE

2. Static energy

3. Kinetic energy

4. Pressure energy

Mechanical Advantage

- 1. Gear B will turn in a clockwise direction.
- T F
- **2.** Gear B will turn twice as fast as Gear A.
- T F
- **3.** Gear B will turn with twice as much force as Gear A.

Problems

1. The volume of Cylinder A is ____ cu in.

2. The volume of Cylinder B is _____ mm³.

3. The area of Piston A is _______ mm³.

4. _____ gal. of fluid is required to fully retract the piston in Cylinder A.

- **5.** A fluid particle in a hydraulic system travels 78' from 10:20:05 AM to 10:20:47 AM. The velocity of the fluid particle is ______ ft/sec.
- 6. _____ lb of effort force is required to lift the resistance force of Fulcrum A.
- 7. If the fulcrum in Fulcrum A were moved 2' closer to F₂, and everything else remained the same, _____ lb of effort force would be required to lift F₂.

TORQUE = **8.** The torque required to overcome the force at ? LB-IN. Winch A is _____ lb-in. 9. If the load at Winch A was 120 lb, _ lb-in would be required to over-LOAD come the force. 10. The horsepower required to lift the 3 t load WINCH A is _____ HP. 11. If the 3 t load took 1 min to be lifted the 4' distance, the horsepower required would be HP. T 12. Load A requires more horsepower to be lifted F than Load B.

10 SEC

Practical Hydraulics

Name December de la company d

industrial Med	cnai	nics A
Lieuid	1.	A(n) Liquid is a fluid that can flow readily and assume the shape of its container.
cutaway	2.	A(n) diagram shows the internal details of components and the path of fluid flow.
T F	3.	Graphic symbols show flow paths, connections, and functions of components.
T F	4.	Hydraulic fluids lubricate moving parts of a circuit.
	5.	is the combining of oxygen with elements in oil which break down the basic oil composition.
		A. Foaming B. Pitting C. Oxidation D. Cavitation
Vitting	6.	is localized corrosion that has the appearance of cavities.
т 🕞	7.	Strainer screens are rated in microns and filters are rated in mesh.
T F	X	A flared fitting is a fitting that is connected to a hose whose end is spread outward.
T F	9.	The higher the mesh number of a strainer, the smaller the opening.
Cylinder	10.	A hydraulic is a device that converts hydraulic energy into straight-line (linear) energy.
Squares	11.	For graphic symbols used in hydraulic circuits, generally represent values.
Forming	12.	is excessive air in hydraulic fluid.
- Pash point	13.	The is the temperature at which oil gives off enough gas vapor to ignite briefly when touched with a flame.
<u>C</u>	14.	A filter is positioned in a hydraulic circuit just before the reservoir.
0		A. suction B. pressure C. return-line D. neither A, B, nor C
<u>R</u>	15.	A is a device that transfers heat through a conducting wall from one fluid to another.
		A. fin cooler B. heat exchanger C. both A and B D. neither A nor B
Pipe	16.	A(n) is a hollow cylinder of metal or other material of substantial wall thickness.
T F	17.	Tubes may be connected by soldering, brazing, welding, or compression.

T	F	18.	Positive displaces hydraulic pump.	ment is the mov	ving of a fi	xed amount o	of a substance wit	h each cycle of a
T	F	19.	A spur gear has	straight teeth pa	rallel to the	e shaft axes.		
11000	000	20.	A(n) the parallel port.	valve is a valve	e that is act	ivated or direc	ctly moved by a fl	uid pressure from
Segu	ience	21.	The	is the order in	which a se	ries of operation	ons or movement	s are performed.
glob				valve is an inf	finite-position			raised or lowered
dina	poil	23.	A(n)	seal is used be	etween mov	ing parts to p	revent leakage or	contamination.
hydi	raulic	24.	A(n)	_ motor is a dev	vice that co	nverts hydraul	ic energy into me	chanical energy.
Fer	1045	25.	meta	ls are metals co	ntaining ire	on.		
Diagra	am Colo	or C	oding					
E	<u> </u>	1.	Red	A. Inactive flu	iid			
		2.	Yellow	B. Intermediat	e pressure	that is lower t	han system opera	ting pressure
	3_	3.	Orange	C. Controlled flow by a metering device or lowest working pressure				
1	Ė_	4.	Green	D. Exhaust or	return flow	v to the reserv	voir	
	00	5.	Blue	E. Fluid flowi	ing at syste	m operating p	ressure or highest	working pressure
	A	6.	White	F. Intake flow	to pump o	r drain line fl	ow	
Graph	nic Sym	bols	– Lines					
f		1.	Main line					
	C	2.	Pilot line			***************************************		
	B	3.	Drain line	A		B	©	
	d	4.	Enclosure line					
Linea	r Equiv	alen	ts					
A	}		1 in.	ſ	(A)	25.4	1 mm 2	5,400μ
					(4)	20.4		ο, τουμ

	1. 1 in.
	2. .001 mm
_B	3. .0394 in.
0	4. 10

A	25.4 mm	25,400μ
1 mm	В	1000 μ
1μ	25,400 of an in.	©
D	3.94 x 10 ⁻⁵ in.	.000039 in.

Graphic Symbols – Squares or Rectangles

1. Pressure switch

- 3. Double-acting cylinder
- 4. Directional valve
- 5. Pressure-relief valve

Gears

1. Herringbone

- 2. Helical
- 3. Spur

Pressure Gauge

1. Scale

3. Spring

4. Pointer

5. Siphon connection

6. Pointer gear

7. Bourdon tube

8. Gear linkage

9. Linkage arm

10. Case

Check Valves

- 1. Poppet
- 2. Ball
- 3. Pilot-operated

Problems

1. The minimum bending radius of Tube A is ______ R

2. Add a single-acting spring-return cylinder to Circuit A.

3. Add a manually-actuated, spring-return, 3-way, two-position valve to control the cylinder in Circuit B.

Practical Hydraulics

Name

Date

Indus	trial M	lechanics
		1 is the branch of science that deals with the practical application of water or other liquids at rest or in motion.
		2. A(n) is a closed path through which hydraulic fluid flows or may flow.
		3. A(n) diagram uses drawings or pictures to show the relationship of each component in a circuit.
		4. A(n) is a graphic element which indicates a particular device, etc.
		5 is the temperature at which oil ignites by itself.
		A. Flash point C. Auto-ignition B. Fire point D. neither A, B, nor C
Т	F	6. Strainer screens are rated in mesh and filters are rated in microns.
Т	F	7. Pipe is designated according to its nominal size and wall thickness.
		8. A(n) is a container for storing fluid in a hydraulic system.
		9. A(n) is a mechanical device that causes fluid to flow.
		10 is the process in which microscopic gas bubbles expand in a vacuum and suddenly implode when entering a pressurized area.
		11. A Bourdon tube is a hollow metal tube made of brass or similar material and is
		A. elliptical in cross-sectional area B. bent in a C-shape C. both A and B D. neither A nor B
*		12 is the capability of a material to regain its original shape after being bent, stretched, or compressed.
		A. Plasticity B. Revertance C. Resiliency D. neither A, B, nor C
		13. A(n) is a seal used between machined parts or around pipe joints to prevent the escape of fluids.
		14 energy is the energy of motion.
		15. For graphic symbols used in hydraulic circuits, that are completely shaded generally represent liquid flow

			n graphic diagrams to indicate an adjustable or variable component of on the near side of the shaft.			
		A. Dashed lines B. Solid lines	C. Dotted lines D. Arrows			
_		17. A is a device c particulate matter cannot.	ontaining a porous substance	through which a fluid can pass bu		
		A. funnel B. strainer	C. filter D. mask			
		18. A(n) is a flexib	le tube for carrying fluids und	der pressure.		
		19. The standard flare angle for	hydraulic tube fittings is	° from the centerline.		
T	F	20. Tubes should always be asset	embled in a straight line.			
T	F	21. A ferrule is a metal sleeve u	ased for joining one piece of	tube to another.		
Т	F	22. Vane pumps are the most we ease of repair.	ridely used hydraulic pumps l	pecause of their simple design and		
		23. A(n) is a device	e that controls the pressure, di	rection, or rate of fluid flow.		
		24. A hydraulic is a	device that converts hydraul	ic energy into mechanical energy.		
		25. The container in which fluid	is stored under pressure in a h	ydraulic system is the		
Grapl	hic Syn	nbols - Circles				
		1. Pump				
		2. Motor	A B			
		3. Pressure gauge		,		
		4. Flow meter				
		5. Check valve	©	E		
Graph	iic Syn	nbols – Triangles				
		1. Motor				
		2. Air compressor				
		3. Bidirectional motor	A	B		
		4. Direction of flow				
				-		
			(6)			

Flow Contr	ol Valves				
	_ 1. Factory preset or	ifice			
	2. Globe				
	_ 3. Gate				
	4. Needle				
			(A)		
Filters					
riters	1. Pressure				
	_ 2. Suction		б—¬		
	3. Return-line		_	\longrightarrow	
				V	
		(A)	B	©
Single Actu	ators				
	_ 1. Manual) A [
	2. Pushbutton				
	_ 3. Lever		B	©	D
	4. Foot pedal	•	В	•	(b)
	_ 5. Solenoid				
	_ 6. Mechanical				
	7. Detent				
	_ 8. Air pilot	E	F	G	$oldsymbol{\mathbb{H}}$
	9. Spring				
	10. Oil pilot		4	2	
			1	J	

Problems

1. The minimum bending radius of Hose A is ______ R.

2. Add a pressure-relief valve to Circuit A.

3. Add a solenoid-operated, spring-return, 4-way, two-position directional control valve to control the fluid flow in Circuit B.

CIRCUIT B

Pneumatic Principles

C	hapter	7
Date	10/24/2	est 1

Industrial Med	char	nics
Preumotics	1.	is the branch of science that deals with the transmission of energy using a gas.
Atom	2.	A(n) is the smallest building block of matter than cannot be divided into smaller units without changing its basic character.
Pressure	3.	is the force per unit area.
14,7	4.	Atmospheric pressure at sea level is about psi.
Volume	5.	is the three-dimensional size of an object measured in cubic units.
Absolute	6.	pressure is pressure above a perfect vacuum.
Vacuum	7.	A(n) is pressure lower than atmospheric pressure.
Zero	8.	Absolute is the temperature at which substances possess no heat.
	9.	The temperature in °R is always° greater than the temperature in °F.
		A. 32 C. 460 B. 212 D. 492
	10.	Free air is air at
		A. atmospheric pressure C. both A and B B. ambient temperature D. neither A nor B
T F	11.	Gas can expand to fill the volume and shape of its container.
T F	12.	Gas molecules can be pushed closer together, allowing gas to be compressed.
T F	13.	The pressure in a container varies as the size or shape of the container varies.
Gauge	14.	pressure is the pressure above atmospheric pressure that is used to express pressures inside a closed system.
reciprocati	1 5.	A(n) compressor is a device that compresses gas by means of a piston(s) that moves back and forth in a cylinder.
hymidity	16.	is the amount of moisture in the air.
articulate	17.	A(n) is a fine solid particle which remains individually dispersed in a gas.
		is the change in state from a gas or vapor to a liquid.
istra mentation	19.	is the area of industry that deals with the measurement, evaluation, and control of process variables.

5196 + 49E

0636

•	,		
	20. Atoms combine to form A. protons B. particles	C. molecules D. neither A, B, nor C	
	21. The pressure exerted on Earth'	's surface varies with	
_	A. altitude B. temperature	C. humidity D. A, B, and C	
T F	22. In compression, air temperature closer together.	e decreases as a piston extends and	d the air molecules are forced
f F	23. In an air compressor, multistage greater than 6.	ge compression is required when	n the ratio of compression is
T F	24. The total amount of moisture of the air.	that air is capable of holding var	ies based on the temperature
Saturate	25 air is air that holds	as much moisture as it is capab	le of holding.
States of Ma	TIGHT	LOOSE MOLECULES	
6	1. Solid MOLECU 2. Liquid	ILES MOLECULES	FREE MOLECULES
C	3. Gas		6 80 m
	(A)	B	©
Gas Laws B	Boyle's law 2. Charles' law	PRESSURE	V ₁ = 40 CU FT
A	3. Gav-Lussac's law	VOLUME HELD CONSTANT PRESSURE I CC T ₂ = 570°R	DNSTANT
003		HEAT ADDED A V; ≈ 60 CU FT	HEAT ADDED B
18		P _I = 20 PSIA	GAS NOTE: TEMPERATURE REMAINS CONSTANT CREASED RESSURE
		V ₂ = 30 CU FT PRESSURE INCREASES	VOLUME DECREASES
		P ₂ = 40 PSIA	COMPRESSED GAS

Desiccant Dryers

- 1. Check valves
- 2. Desiccant material
- 3. Reactivating dryer
- 4. Moist air inlet
- 5. Moist air outlet
- 6. Dryer operating
- 7. Purge valve
- 8. Dry air outlet

Fahrenheit/Rankine Temperatures

ı	7
	F
,	

- 1. -460
- **2.** 0
- **3.** 32
- 4. 212
- **5.** 492
- **6.** 672

	°F	°R
WATER BOILS	A	В
WATER FREEZES	©	(D)
ABSOLUTE ZERO	E	F

Problems

- 1. Tank A has a volume of _____ cu ft.
- 2. Tank B has a capacity of _____ gal.

	5420	3. The tempera	ture on the Fahrenheit s	scale equals	°R.	
<i>,</i>	125.77		olume of a gas that occur ft at 85°F.	cupies 120 cu ft at	60°F is Charle	
	111.94	75°F is	essure in a 100 cu ft tan psig when the			-82°
	135cu	6. The final vo	lume of 90 cu ft of air apressed to 30 psia.	at 45 psia is	cu Boyla	*F
	18.1		compression is and of 1.25 psi vacuum an			416 CU IN. CAPACITY 40 PSI
1	106.67	8. The final pre	essure at Tank C is	psia.	CHIL	COMPRESSED
	,47	9. Cylinder A l	nas a capacity of	gal.		TO 156 CU IN.
	[]	10. Fuel Can A	has a volume of	cu ft.		
	1,34	11. Tub A has a	volume of	cu ft.		TANK C
	3.5 cu F	7	5 GAL.	10 GAL.		40 ×416
	CYLIND	ER A	FUEL CAN A	TUB A		
	427	12. The absolute	pressure within Tire A	is psia.		
0				-ATLANTIC OCEAN	uuu	
)			20 80 40 50 TO PSI	TIRE A		
(10 / 545			04		
-	EXT TOO			147		

Practical Pneumatics

Indragtuial	N/I 1
mansurai	Mechanics

system	1. A pneumatic transmits and within an enclosed circuit.	d controls energy through the use of a pressurized gas
Compressor	2. A(n) is a device that takes its pressure.	air from the atmosphere and compresses it to increase
reciporcating	3 pistons move forward and	backward alternately.
Connecting	4. A(n) rod is the rod that co	onnects the crankshaft to the piston.
lobe	5. A(n) is the screw helix of	a rotor.
	A. tongue B. ear	C. leaf D. lobe
B	6. The main header of a pneumatic system the drain pipe.	should have a downward pitch of' toward
	A. 1" per 1'	C. 10" per 10'
	B. 1" per 10'	D. neither A, B, nor C
T F	7. A symbol is a graphic element which	indicates a particular device, etc.
T F	8. Thread-sealing material should be place	ed in the female fitting only.
T F	9. The symbols for most of the component in hydraulic circuits.	ts used in a pneumatic circuit are similar to those used
T F	10. Logic is the science of correct reasoning	ng.
	11. A binary system has value	e(s).
	A. no	C. two
	B. one	D. any number of
	12. A(n) displacement compres	ssor compresses a fixed quantity of air with each cycle.
	A. manual or automatic	C. vertical or horizontal tank
1	B. electric or gasoline	D. neither A, B, nor C
Combenzager	213. A pressure is a displaceme sure changes in a system.	nt control that alters displacement in response to pres-
one	14. A check valve allows flow in only	direction(s).
Vane	15. A(n) compressor is a positional located in an offset rotor.	tive-displacement compressor that has multiple vanes

1 0.		•	
neader	16.	A main is the main air supp in a pneumatic system.	oly line that runs between the receiver and the circuits
tilter	17.	A(n) is a device containing but particulate matter cannot.	g a porous substance through which a fluid can pass
10'	18.	Lubricators should be placed no more the	han' from the lubricated components.
regulator	19.	A pressure is a value that t	restricts and/or blocks downstream air flow.
Solenoil	20.	A(n) is a device that conve	rts electrical energy into a linear, mechanical force.
A	21.	A(n) is a device that sense electrical signal to turn the compressor	es a high- or low-pressure condition and relays an motor ON or OFF.
		A. pressure switch B. unloading valve	C. safety release valve D. neither A, B, nor C
	22.	A(n) is a device that senses a energy.	high-pressure condition and removes the compression
		A. pressure switch B. unloading valve	C. safety release valve D. neither A, B, nor C
	23.	A(n) is a device that prevent to the atmosphere.	ats excessive pressure from building up by venting air
		A. pressure switch B. unloading valve	C. safety release valve D. neither A, B, nor C
T F	24.	An O-ring may be used as a static or a	dynamic seal.
T E	25.	An air motor is an air-driven device that	t converts rotary mechanical energy into fluid energy.
T F	26.	A truth table lists the output condition for every possible input condition.	of a logic element or combination of logic elements
T F	27.	Electric motors are less efficient than air	r motors.
T F	28.	Air motors are lighter than direct replace	ement electric motors.
T F	29.	The most popular air motor is the vane	air motor.
T F	30.	Pneumatic circuits are generally cleaner	than hydraulic circuits.
Circuit	31.	A pneumatic is a combinat perform work.	ion of air-operated components that are connected to
Dosigion	32.	perform work. A(n) is the specific location direction of fluid flow through the valve An air is a device that coenergy. A(n) seal is a seal used as	on of a spool within a valve which determines the e.
Cytholer	33.	An air is a device that co	nverts compressed air energy into linear mechanical
Static	34.	A(n) seal is a seal used as	a gasket to seal nonmoving parts.
dynamic	35. A(n) seal is a seal used between moving parts that prevents leakage or contamination		

Graphic Diagram - Pneumatic System

G I P A A B B

- 1. Motor
- 2. Filter
- 3. Aftercooler
- 4. Separator
- 5. Pressure switch
- 6. Compressor
- 7. Receiver
- 8. Safety relief valve
- 9. Manual shut-off valve

Graphic Diagram – Pneumatic Circuit

172

1. Compressor

A

2. Actuator

C

3. Regulator

o. Rogulatoi

4. Lubricator

5. Filter

6. Directional control valve

Safety Relief Valves

1. Spring

2. System pressure

3. Valve vent port

4. Seat

5. Poppet

7. Vent to atmosphere

Pneumatic System Symbols

O F E G

- 1. Pipe slope in direction of flow
- 2. Liquid separator with automatic drain
- 3. Filter with manual drain
- 4. Lubricator with manual drain
- 5. Gate valve
- 6. Automatic drain
- 7. Quick disconnect

Problems

1. The outlet pressure produced by the intensifier is 1,333.45 psi.

OPERATING PISTON AREA = 19.635 SQ. IN. RAM AREA = 1.767 SQ. IN. INLET PRESSURE = 120 PSI

INTENSIFIER

2. The main header should drop ______" from the receiver to the moisture drop pipe.

	0
Lubrication	Chapter Test 1
Name AS VICIO	Date Date

Industrial Mechanics				
Lub-	ication	1.	is the process of maintainin physical contact.	g a fluid film between solid surfaces to prevent their
(seffi	cient	2.	The of friction is the measu	are of frictional force between two surfaces in contact.
Chem	i-sorpti	0/3,	is a chemical adsorption protective in liquid or gas molecules and solid	ocess in which weak chemical bonds are formed be-
ine	-rt	4.	gases are gases that lack act	tive properties.
T	F	5.	Walking requires friction between the fe	eet and floor in order to move.
Т	F	6.	Lubrication generally involves coating s of friction than the original surfaces.	surfaces with a material that has a higher coefficient
1	F	<i>≥</i> 7.	Friction occurs when an object in conta	ct with another object tries to move.
	D	8.	Lubricants are used to	
			A. reduce friction B. prevent wear	C. prevent corrosion D. A, B, and C
	O	9.	Liquid lubricants include	
			A. animal/vegetable oils B. petroleum fluids	C. synthetic fluids D. A, B, and C
T	F	10.	Animal and vegetable oils are used mos	stly in the food industry.
	F	11.	Petroleum is composed of 12% carbon elements.	and 85% hydrogen, with a small amount of other
T	F	12.	Animal and vegetable oils contain fatty	acids.
	15	13.	Earth's plants release approximately _ each year.	million tons of hydrocarbons into the air
Vis	(osit)	14.	is the measurement of the other.	resistance of a fluid's molecules to move past each
Stien	9/1	15.	Shear is a liquid's ability to	remain as a separator between solids in motion.
Spec	frome	16.	A(n) is a device that vapori	zes elements in the oil sample into light.
T	F	17.	The grease used in a centralized system s	should be one grade softer than is otherwise required.
T	F	18.	Sealed bearings should be relubricated of	on a regularly-scheduled basis.

T F		the material on one side of a surface pushes on the material e with a force perpendicular to the surface.
T F	20. Synthetic lubricants are genera	lly higher priced than petroleum lubricants.
	21. During startup of a machine, of	oil
	A. is cool B. does not flow easily	C. A and B D. neither A nor B
	22 action is the action to its relative molecular attract	by which the surface of a liquid is elevated on a material due
2	A. Submission B. Polymeric	C. Capillary D. neither A, B, nor C
T F	23. Lubrication contamination is th	ne main cause of mechanical system failure.
T F	24. Oil that is contaminated with v	water has a clear appearance.
T F	25. Petroleum is formed by an evo	plutionary process that takes many millions of years.
Lubricant A	 Oxidation inhibitors Rust inhibitors Fatty materials Powdered lead or graphite Viscosity index improvers 	A. prevent rust B. improve film strength C. prevent galling D. separate out water E. provide long bearing or gear life
Q	6. Demulsifiers	F. ease machine movement in cold weather
Oil Groups/A	Application	
<u>B</u>	1. Group A	A. Machine tools
<u> </u>	2. Group B	B. Automotive
<u> </u>	3. Group C	C. Reciprocating engines
F	4. Group D	D. Turbojet engines
	5. Group E	E. Gear trains and transmissions
	6. Group F	

F. Marine propulsions and stationary power turbines

Oil Application Systems

B A E D

- 1. Submersion Splash
- 2. Submersion Chain
- 3. Submersion Ring
- 4. Drip
- 5. Wick
- 6. Centralized

Grease Thickeners

- 1. Aluminum soap
- 2. Calcium soap

3. Lithium soap

- 4. Clay
- 5. Fiber

- **A.** Used for extreme temperatures
- B. Added to resist being thrown off
- C. Offers clarity
- **D.** Is water-resistant
- E. Allows high temperature use

_		
Pro	hl	ems

.333

1. The coefficient of friction of Object A is _____

10 -

2. A 40 lb force is required to overcome the frictional force between a 75 lb object and the surface upon which it is resting. The coefficient of friction is ______.

T F

3. The coefficient of friction of Object B is 5.

Lubrication

Name

Date

Industrial Mechanics

T	F	1. Greater force is required to move a body from a static condition than is required to keep it in a kinetic condition.		
		2lubrication is the condition of lubrication in which the friction between two surfaces in motion is determined by the properties of the surfaces and the properties of the lubricant other than viscosity.		
		A. Area C. Surface B. Material D. neither A, B, nor C		
		3. A(n) lubricant is a lubricant that uses pressurized air to separate two surfaces.		
		A. chemical C. gas B. metal D. neither A, B, nor C		
		4. A petroleum fluid is a fluid consisting of		
T	F	5. The flow rate is the most important property of a lubricant.		
T	F	6. Under basic conditions, as the temperature of oils increases, their viscosity also increases.		
T	F	7. Lubricating oil is given an SAE viscosity rating based on its ability to flow at a specific temperature.		
T	F	8. A 10 weight oil is thicker than a 40 weight oil.		
		9. A solid is a solid that is finely ground in order to be spread.		
		A. disposed C. dispelled B. dispersed D. displaced		
		10. A is the result of a chemical reaction in which two or more small molecules combine to form larger molecules.		
		A. polygon B. polymer C. either A or B D. neither A nor B		
T	F	11. Solid lubricants such as graphite shear easily between sliding surfaces.		
T	F	12. All greases exhibit a dropping point.		
Т	F	13. Water that mixes with lubricants increases the effectiveness of the lubricant.		
		14. Wear particle is the study of wear particles present in lubricating oil.		
		15. Fluid lubricants must create a(n) between material surfaces to prevent contact with each other.		

T	F	16. As temperatures increase	, greases become	softer.	
Т	F	17. Graphite has high shearing	Graphite has high shearing forces.		
Т	F	18. Gas lubricants are comm	only used in low	-friction, high-speed applicati	ons.
		19. Approximately	% of all lubric	ants used today are petroleur	n based.
		20. Oil film thickness	with an inc	crease in oil temperature.	
				*	
Petrole	eum				
		1. Pilot oil well			
		2. Crude oil pumped from v	well	G	(A)
		3. Soil		H	
		4. Porous rock		F	
		5. Nonporous rock		E	
		6. Bedrock		(D)	
		7. Crude oil		© -	
		8. Natural gas		(B) 24 (1) (1)	
		0. Natural gas			
Motor	Regre	asino			
1110101	regie	1. Wipe grease fitting,			
		drain plug, and grease			
		gun nozzle.			LOW-PRESSURE GREASE GUN
		2. Remove drain plug and			
		clean.		E	A
		3. Add grease until grease		BALL BEARING — GREASE	
		is expelled from drain plug port.	MOTOR	FITTING	
			SHAFT	GREASE	T
		4. Run motor to expel ex-		1	B
		cess grease.	REGREASEABLE HOUSING —		
		5. Clean and replace drain		DRAIN	PLUG
		plug.	DRAIN PLUG F	PORT	

Grease Application Methods

1. Grease cup
 2. Grease gun
3 Centralized system

NLGI Grease Grades

Т	F	1. The higher the NLGI number, the stiffer the grease.
Т	F	2. The higher the NLGI number, the more penetration it has.
T	F	3. Grade 1 is softer than Grade 00.
		4. Grade 5 will penetrate approximately one-half as much as Grade
Т	F	5. Grade 000 has three times the penetration of Grade 0.
Т	F	6. Grades 0, 1, and 2 are the most widely used in industry.
T	F	7. For maximum penetration, a higher NLGI grade of grease should be used

8. NLGI Grade _____ has a penetration range from .68" to .80".

NLG	GREASE GRAD	ES
NLGI Grade	Penetration*	Stiffness
000	1.75-1.87	VERY SOFT
00	1.57-1.69	
0	1.32-2.30	
1	1.22-1.33	
2	1.04-1.16	
3	.8698	
4	.6880	
5	.5162	↓
6	.3345	VERY HARD

Coefficients of Friction

T	F	1. Greater force is required to move a body from rest than is required to keep it in motion.
T	F	2. The static condition relating to coefficient of friction refers to the forces required to start a solid object in motion.
		3. The coefficient of friction required to start the movement of a piece of copper resting on an unlubricated copper plate is
		4. The coefficient of friction required to maintain the movement of a piece of copper on an unlubricated copper plate is
		5. A steel object resting on an unlubricated piece of steel weighs 10 lb. A force of lb is required to start it in motion.

COEFFICIENTS OF FRICTION					
B.0 = 4 =! = 1	Unlub	Unlubricated Lubricated*			
Material	Static	Kinetic	Static	Kinetic	
Steel-to-Steel	.8	.4	.16	.02	
Copper-to- Copper	1.5	.3	.08	.02	
Aluminum-to- Aluminum	1.3	_	.3		
Nylon-to-Nylon	.3	.1			
Teflon-to-Teflon	.04	.03			
Graphite-to- Graphite	.1	.06	_	_	

^{*} values are approximations and vary according to lubricant type

Bearings

Chapter

Industrial Mechanics

bearing	1. A(n) or slides in or or	_ is a machine part that supports another part, so n it.	uch as a shaft, which rotates
Fatigue	2. life i	is the maximum useful life of a bearing.	
Axial	3. A(n)	_ load is a load in which the applied force is pa	rallel to the axis of rotation.
Service	4 life i	s the length of service received from a bearing.	
	5. The	is the track on which the balls of a bearing mo	ove.
^	A. cup B. cone	C. race D. neither A, B, nor C	
<u>A</u>		ad conditions, ball bearings generally havee inner race is press fit.	" interference per inch
	A00025 B0025	C025 D25	
T F	7. Doubling the loa	ad on a bearing increases its service life by 6 to	8 times.
T F	8. A better finish o	on a bearing produces less friction.	
J F	9. Ball bearings are	e installed with one ring being a press fit and th	e other ring a push fit.
(Ţ) F	10. Needle bearings	are generally press fit.	
Plain	11. A(n)	_ bearing is a bearing in which the shaft turns a	nd is lubricated by a sleeve.
Spalling	12 is the	e flaking away of metal pieces due to metal fati,	gue.
gropping P		of grease is the temperature at which the oil ins out, leaving just the thickener.	n grease separates from the
misaligned	14. Bearing surfaces of a bearing.	that are appear as worn surfaces or	n one side or opposing sides
galling	15 is a to metals.	bonding, shearing, and tearing away of material	from two contacting, sliding
Thrust	16. dama	age is bearing damage due to axial force.	
Flutting		e elongated and rounded grooves or tracks left by improperly grounded roller during welding.	by the etching of each roller
runout	18. Precision class b	earings are generally marked with their high po-	ints of

	\cap			/		
en	<u> </u>	19.	play is the total amount of axial movemen	nt of a shaft.		
rallin	9	20.	Acontact bearing is a bearing composed and outer ring.	of rolling elements between an inner		
T	F	21.	Plain bearings may support radial and axial loads.			
T	F	32	Bearing installation is generally more difficult than bear	aring removal.		
	F	23.	Bearings should never be struck with a hammer.			
T	F	*	Solid or caked lubricant is a sign that bearings have o	verheated.		
()	F	25.	As the temperature of steel increases, it discolors, turn	ing from silver to blue to black.		
T	Ē	26.	Prelubricated bearings may be heated for installation.			
T	F	27.	Never apply pressure on the outer ring if the inner ring on the inner ring if the outer ring is press fit.	g is press fit and never apply pressure		
40/10	wes	28.	A threaded cup is a tapered bearing gap shaft endplay by controlling the amount of clearance bearing gap.			
taper	<u>all</u>	29.	A(n) bore bearing is a bearing whose bore the back of the bearing.	re varies in diameter from the face to		
Т (F	30.	Roller-contact bearings include ball, roller, and needle	bearings.		
Т	F	31.	. Needle bearings are designed primarily for relatively low radial loads.			
D	F	32.	Babbitt metals are the best metals for light plain bearing	ng loads.		
9	F	33.	False Brinell damage is bearing damage caused by for through the balls or rollers.	ces passing from one ring to the other		
T	F	34.	A machine should never be grounded by connecting a pipe.	wire from the machine to a gas or oil		
Tour		35.	A(n) is the part of a shaft, such as an a bearing.	axle or spindle, that moves in a plain		
Bearing	g Failu	re				
6	5	1.	Dark, discolored metals indicate	A. improper fit or assembly		
	C	2.	Rusting surfaces indicate	B. high temperatures		
	A	3.	Split or fractured rings indicate	C high moisture and/or improper		

Angular Contact Bearing Use

- 1. Face-to-face
- 2. Back-to-back
- 3. Separated face-to-face

Bearing Loads

1. Radial load

2. Axial load

Rolling-Contact Bearings

1. Ball

2. Needle

B

3. Roller

Ball Bearings

- 1. Single-row radial
- 2. Single-row angular-contact
- 3. Double-row radial or axial

Flexible Belt Drives

						-
				4		
				1		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ch	a	ote	r	Ш		
				T	es	t 1

Name

Date

**PROPRIETE TO THE PROPRIETE TO THE PROPRIETE

Industrial Me	echanics echanics
V belt	1. A(n) is an endless power transmission belt with a trapezoidal cross section.
Standard	2 V-belts are designated as A, B, C, D, or E.
High Capcity	3 V-belts are designated as 3V, 5V, or 8V.
puller	4. V-belts run in a(n) (sheave) with a V-shaped groove.
1/20	5. Angular misalignment of a pulley must not exceed°.
T F	6. Too little tension on a belt can cause the belt to slip.
Lockout	7 is the process of preventing the flow of energy from a power source to a piece of equipment.
Tasout	8 is the process of placing a tag on a power source that warns others not to restore energy.
block out	9 is the process of placing a solid object in the path of a power source to prevent accidental energy flow.
T F	10. For optimum efficiency, a V-belt should touch the bottom of the pulley.
T F	11. V-belt forces remain constant as the belt bends around the pulley.
T F	12. A fixed bore pulley is a machine-bored one-piece pulley.
T F	13. Pulleys should be placed as close as possible to the shaft bearing to prevent overhung loads.
<u>A</u>	14 misalignment is a condition where two shafts are parallel but the pulleys are not on the same axis.
	A. Offset B. Non-parallel C. Angular D. neither A, B, nor C
	15. A V-belt is a belt designed to transmit power from the top and bottom of the belt.
	A. ½ C. single D. double
Variable Speed	B. top/bottom D. double A(n) belt drive is a mechanism that transmits motion from one shaft to another and allows the speed of the shafts to be varied.
Sheave	17. A(n) groove gauge is a gauge that has a male form to determine the size of a pulley and a female form to determine the size of a belt.

		,				
ENIMIT	18. A(n) the drive shaft	belt is a belt desig and the driven shaft	ned for posit	ive transmission	and synchronizatio	n between
Pitch	19. Belt	length is the total	length of th	e timing belt me	easured at the belt	pitch line.
hominal		value is a design				
Timing Belt T						
	Trapezoidal					
	2. Double trapezo	oidal				
	3. Curvilinear					
	Modified curvi	linear				
	A	8	7	© ,	D	
Variable-Speed	d Belt Drives					
Low	1. The variable-sp		4		. 1	
B	at	speed.		G		
$\overline{\mathbb{D}}$	2. Spring				\	
	3. Shaft			€\	B)
5	4. V-belt				5.50	
F	5. Pitch diameter		E	8		3
	6. Central sheave					

7. Cone-faced pulley flanges

8. Set screw

Recommended Minimum Pulley Diameters

3.8 in

1. The recommended minimum pulley diameter for a 7½ HP motor running at 1160 rpm is ".

4.4 in

2.2 in.

12 in.

4. The recommended minimum pulley diameter for a 100 HP motor running at 870 rpm is _______".

RECOM	RECOMMENDED MINIMUM PULLEY DIAMETERS*				
Motor UD	Motor Speed**				
Motor HP	870	1160	1750	3500	
1/2	2.2	_	_	_	
3/4	2.4	2.2	_		
1	2.4	2.4	2.2		
11/2	2.4	2.4	2.4	2.2	
2	3.0	2.4	2.4	2.4	
3	3.0	3.0	2.4	2.4	
5	3.8	3.0	3.0	2.4	
71/2	4.4	3.8	3.0	3.0	
10	4.4	4.4	3.8	3.0	
15	5.2	4.4	4.4	3.8	
30	6.8	6.8	5.2	_	
75	10.0	10.0	8.6		
100	12.0	10.0	8.6	_	

^{*} in in.

Pulley Misalignment

A

1. Angular

2. Offset

3. Nonparallel

^{**} in rpm

CHANICS WORKBOOK

84+1.5) X16+16

84+1.5) X16+16

168

84 +1.57 × 164, 095238

101. The belt length for two pulleys 6" and 10" in diameter that are 42" apart at their centers is

2. The belt length required at A is ______".

.75

3. The proper belt deflection at B is ______".

275.5

4. The driven pulley speed at C is _____ rpm.

360

5. The drive pulley speed at D is _____ rpm.

Mechanical Drives

Chapter

Name

Date

Industrial Me	chanics	
geav	1. A(n) is a shafts.	toothed machine element used to transmit motion between rotating
Mechanical	2. A(n) drive	is a system by which power is transmitted from one point to another.
<u>B</u>	3 is the twisti	ng force of a shaft.
	A. Rotation B. Torque	C. Shearing D. Bending
CD	To find lb-in of torque	when lb-ft of torque is known,
	A. add 12 B. subtract 12	C. multiply by 12 D. divide by 12
N O H	5. Horsepower is a unit of	power equal to
	A. 746 W B. 550 lb-ft/sec	C. 33,000 lb-ft/min D. A, B, and C
Drive	6. A(n) gear	s any gear that turns or drives another gear.
ratio	7. A(n) is the	relationship between two quantities of terms.
iller	8. A(n) gear : not change speeds.	is a gear that transfers motion and direction in a gear train, but does
T F	9. The colon is the symbol	l used to indicate a relation between terms.
T F	10. Adding an idler gear be driven gear.	tween a driven and drive gear changes the direction of rotation of the
T E	11. The tooth form of a rac	k gear consists of two flat surfaces.
T F	12. Backlash is the play be	tween mating gear teeth.
Spur	13. A(n) gear i	s a gear that has straight teeth that are parallel to the shaft axis.
	14. Helical gear drive angle	s may be anywhere from 0° to°.
	A. 30 B. 60	C. 90 D. 120
	15. A compound gear train keyed and rotate(s) on o	is or more sets of gears where gear(s) is/are one common shaft.
	A. one; one B. one; two	C. two; one D. two; two

16. A tooth is the shape or geometric form of a tooth in a gear when seen as its side profile.
17 pitch is the ratio of the number of teeth in a gear to the diameter of the gear's pitch circle.
18 depth is the depth of engagement of two gears.
19. A(n) gear is a gear that connects shafts at an angle in the same plane.
20 is the action or process of eating or wearing away gradually by chemical action
21. A(n) fracture is a breaking or tearing of gear teeth.
22. Rack teeth are gear teeth used to produce linear motion.
23. Spur gears are quieter and smoother running than helical gears.
24. Under normal conditions, the maximum operating temperature of a gear drive should not exceed 211°F.
25. Gear manufacturers design certain parts of a gear train to wear out or break sooner than others.

Gears

1. Miter

2. Worm

3. Bevel

4. Hypoid

5. Helical

6. Spur

7. Rack and pinion

8. Herringbone

F

G

Gear Wear

1. Abrasive wear

2. Corrosive wear

3. Electrical pitting

4. Fatigue wear

B

Problems

1. A torque of lb-ft is developed when a 75 lb force is applied at the end of a 3' 5252 X 1.5

lever arm.

2. The available torque supplied by a 1.5 HP, 1750 rpm

3. HP is required to turn Winch A.

0 × 130 10 rpm 4. The speed of a 60 tooth driven gear is rpm when the drive gear has 20 teeth and rotates at 120 rpm.

Clock wise 5. Gear A is rotating in a(n) _____ direction.

6. Gear A is rotating at _____ rpm.

7. A driven gear rotating at 36 rpm requires teeth if the 48 tooth drive gear rotates at

50 TEETH

18 TEETH

24 rpm.

8. The diametral pitch (DP) of Gear C is

DRIVE GEAR B ROTATING AT 100 RPM IN COUNTERCLOCKWISE DIRECTION

DRIVEN GEAR A ROTATING AT ? RPM

GEARS A AND B

GEAR C

12° DRUM ROTATING AT 8 RPM

WINCH A

TORQUE ON DRUM = 1333.33 LB-FT-

PITCH CIRCLE = 4"

100 Ran

Vibration

Chapter 13

Name

Date

Industrial Med	har	nics
Vibration	1.	is a continuous periodic change in displacement with respect to a fixed reference.
	2.	Resonance is the magnification of vibration and its noise by% or more.
		A. 0 C. 20 D. neither A, B, nor C
T F	3.	All objects on earth are constantly experiencing vibration.
T F	4.	Machines vibrate even when in the best operating condition.
T F	5.	A vibration cycle is the complete movement from beginning to end of a vibration.
Alignment	6.	is the location (within tolerance) of an axis of a coupled machine shaft relative to another.
Peak	7.	is the absolute value from a zero point (neutral) to the maximum travel on a waveform.
Waveform	8.	A(n) is a graphic presentation of an amplitude as a function of time. <
2/142	9.	Hertz is a measurement of frequency equal to 1 cps.
Phase	10.	is the position of a vibrating part at a given moment with reference to another vibrating part at a fixed reference point.
386	11.	The peak value of acceleration is measured in units of g peak, where 1 g is equal to ips².
Trons ducer	12.	A(n) is a device that converts a physical quantity into another quantity.
eddy	13.	A(n) current is an electric current that is generated and dissipated in a conductive material in the presence of an electromagnetic field.
$T \qquad (F)$	14.	Vibration may occur only from North to South.
T F	15.	A logarithmic scale is an amplitude or frequency displayed in powers of 100.
domain	16.	Time is the amplitude as a function of time.
isplace ment	17.	is the measurement of the distance (amplitude) an object is vibrating.
order	18.	A(n) is a multiple of a running speed (rpm) frequency.
3	19.	Transducers used to measure radial vibration must be attached within" of the bearing.

50%	20. More than% of all rotary equipment failures are related to vibration.
rms	21 is the square root of the sum of a set of squared instantaneous values.
domain	22. Frequency is the amplitude versus frequency spectrum observed on an FFT and lyzer.
\$\begin{align*} F \\ \end{align*}	23. Vibration significantly reduces the expected life of bearings and rotating shaft seals.
T F	24. A change in the vibration signature of a machine indicates the ending of a defect.
T F	25. Linear amplitude spectra are amplitude signals displayed in powers of 10.
f:lter	26. A(n) is a device that limits vibration signals so only a single frequency or ground of frequencies can pass.
trending	27 is a graphic display used for interpretation of machine characteristics.
Whiv	28. Oil is the buildup and resistance of a lubricant in a rolling-contact bearing that i rotating at excessive speeds.
(T) F	29. Piezoelectric is the production of electricity by applying pressure to a crystal.
T F	30. The magnitude of vibrations felt by humans is extremely small.

Unbalanced Vibrations

1. Coupling unbalance

2. Equal rotor unbalance

3. Opposing forces rotor unbalance

©

Waveform Spectrum

- 1. Vibration waveform
- 2. Peak amplitude
- 3. Peak-to-peak amplitude
- 4. 1 cycle or 1 frequency in time

Vibration Acceleration

1. Time

3. Peak velocity

4. Peak acceleration

5. Peak-to-peak displacement

Displacement

1. Positive upper limit

2. Positive lower limit

3. Displacement

4. Peak-to-peak displacement

Vibration Transducers

A

1. Velocity

B

2. Accelerometer

____C

3. Displacement

Alignment

Industrial Mec	hanics	
Alignment	1 is the location (within tolerance) of one axis of a coupled machine shaft relative
nistlign mont	2 is the condition tolerances.	where the centerlines of two machine shafts are not aligned within
Thermal	3 expansion is the	dimensional change in a substance due to a change in temperature.
coupling	4. A(n) is a device	e that connects the ends of rotating shafts.
	5 is the process of starts when it is not suppose	pressing the start switch of a machine to determine if the machine ed to start.
Δ.	A. Bumping B. Skipping	C. Challenging D. neither A, B, nor C
	6. Shim stock is steel material to	manufactured in various thicknesses, ranging from
	A0005; .125 B005; .125	C0005; .0125 D. neither A, B, nor C
base	7. A(n) plate is a rotating devices.	rigid steel support for firmly coupling and aligning two or more
anchoring	8 is any means of	fastening a mechanism securely to a base or foundation.
Т	9. Dowel effect is corrected b washer.	y using machined washers 2 to 5 times thicker than the original
T F	10. Jack screws are used for m	achine movement only.
T F	11. Runout is a radial variation	from a true circle.
F 6	12. Always choose the combina shim or spacer combination	tion that uses the least amount of shims or spacers where different s can be chosen.
195er	13. Good shim packs are	cut with each size printed on the shim.
12º clock	14. The top position, when using	g a dial indicator, is the position.
Tapar	15. A(n) gauge is a inch or millimeters marked	flat, tapered strip of metal with graduations in thousandths of an along its length.
flat:	16. Axial is the axia	l movement of a shaft due to bearing and bearing housing clearance.

B	17 When using the combinati	on rim-and-face alignment me	thod, offset misalignment in the vertical
		suring the rim of the couplin	
	A. 12:00; 3:00 B. 12.00; 6:00	C. 12:00; 9:00 D. 3:00; 9:00	
<u>D</u>		ion rim-and-face alignment m measuring the rim of the coup	ethod, offset misalignment in the hori- ling at the and
∞ .	A. 12:00; 3:00 B. 12:00; 6:00	C. 12:00; 9:00 D. 3:00; 9:00	
offset	19 misalignment axis.	is a condition where two shall	fts are parallel but are not on the same
Angular	20 misalignment	is a condition where one sha	ft is at an angle to the other shaft.
50ft	21 foot is a cond complete contact with its		more feet of a machine do not make
jack	22. A(n) screw is plate allowing for ease in		lock that is attached to a machine base
T F	23. The objective of proper a	lignment is to align the shafts	s, not the couplings.
T F	24. A spacer is steel material	used for filling spaces 1/4" o	r less.
T F	25. Precut stainless steel shin	ns are recommended for align	ment purposes.
Soft Foot			
<u>B</u>	1. Angular		FOOT PARALLEL BUT NOT ON SAME PLANE AS OTHERS
4	2. Parallel		BASE
	3. Springing	FOULING	(A)
	4. Induced BASE PLATE	PARALLEL TO OTHERS STEPPED SHIMS SOFT	N LAR FOOT ASE LATE
	/-MOTOR	B	UNSUPPORTED FORCES
BASE	BENT, RUSTY, BURRED SHIMS OR PAINT AND DIRT		APPLIED PRESSURES
PLATE	FOUNDATION	d	PUMP
			(D)

1. Offset

- 2. Angular
- 3. Offset and angular

Shaft Runout

- 1. Bent shaft
- 2. Eccentric circular path
- 3. Poorly machined shaft

Dial Indicator Readings

1. The dial indicators at A show a TIR of 1019 ".

2. The dial indicators at B show a TIR of . 034 ".

3. The dial indicators at C show a TIR of _. 628 ".

Anchoring Characteristics

Anchorning (

- 1. Proper anchoring
- 2. Bolt bound
- 3. Excess bolt body
- 4. Bolt bottoms out
- C
- 5. Dowel effect

Alignment Methods

- 1. Straightedge
- 2. Rim-and-face
- 3. Reverse dial
- 5. Reverse diai
- 4. Electronic reverse dial

Electricity

T1	4	Mech	•
man		VIOCE	onice

Static	1.	electricity is the accumulation of charge.
Dinenic	2.	electricity is electron flow from one atom to another.
Valence	3.	A(n) shell is the outermost shell of an atom.
Voltage	4.	is the amount of electrical pressure in a circuit.
Ohm's	5.	law is the relationship between voltage, current, and resistance in a circuit.
Magnet	6.	A(n) is a device that attracts iron and steel because of the molecular alignment of its material.
Direct	7.	current is a flow of electrons in only one direction.
Grounding	8.	is the connection of all exposed noncurrent-carrying metal parts to the earth.
Continuity	9.	A(n) tester is a device that indicates if a circuit is open or closed.
Multimeter	.10.	A(n) is a test tool used to measure two or more electrical values.
ans former	11.	A(n) is an electric device that uses electromagnetism to change voltage from one level to another.
T F	12.	Fuses or circuit breakers may be bimetallic.
T F	13.	A fault current as low as 4 mA to 6 mA will activate a GFCI and interrupt the circuit.
T F	14.	Lightning is the number one cause of fires.
F	15.	Resistance is the opposition to electron flow.
flux	16.	Magnetic lines are the invisible lines of force that make up a magnetic field.
Generator	17.	A(n) is a device that converts mechanical energy into electrical energy.
AC.	18.	current is a flow of electrons that reverses its direction of flow at regular intervals.
istribution	19.	Power is the process of delivering electrical power to where it is needed.
BHZ	20.	The is responsible for enforcing the NEC®.
fuse	21.	A(n) is an overcurrent device with a fusible link that melts and opens the circuit of an overcurrent condition.

ardous ground faults and quickly discontinuing power from the circuit.

Hydrogen Atom

Hazardous Locations

1. Class I

2. Class II

3. Class III

4. Division II

5. Division II

A. Hazardous location in which hazardous substance is not normally present in air in sufficient quantities to cause an explosion or ignite hazardous materials.

B. Sufficient quantities of flammable gases and vapors present in air to cause an explosion or ignite hazardous materials.

√ C. Sufficient quantities of combustible dust are present in air to cause an explosion or ignite hazardous materials.

D. Easily-ignitable fibers or flyings are present in air, but not in a sufficient quantity to cause an explosion or ignite hazardous materials.

E. Hazardous location in which hazardous substance is normally present in air in sufficient quantities to cause an explosion or ignite hazardous materials.

Testing Contactors and Motor Starters

- 1. Connect the voltage tester at A to check the incoming voltage.
- 2. Connect the voltage tester at B to check the control voltage.
- 3. Connect the voltage tester at C to check the output voltage.

Testing Solenoids

- 1. Reading if coil is normal.
- 2. Reading if coil has a broken wire.
- 3. Reading if coil is shorted.

5. _

	•	
Effect of Elec	tric Current	CURRENT-\
A	1. Current in 100 W lamp can electrocute 20 adults	1000 mA
B	2. Heart convulsions; usually fatal	
	3. Painful shock; inability to let go	,
D	4. Safe values	50 mA — B
F	5. No sensation	
		15 mA TO 20 mA — C
		0 mA TO 5 mA — D
		1 mA 1 } (E)
·	cal safety rules that should be practiced by all personnel wor	king with electricity.
2		
3.		`

Final Exam

Name

Create and the control of the

Industrial Mechanics

THE CONTRACT OF THE CONTRACT O	SITCH.	ines				
(T) F	1.	All circles contain 360°.				
T F	2.	Sealed bearings should be relubricated	Sealed bearings should be relubricated on a regularly-scheduled basis.			
T F	3.	Torque is the twisting (rotational) force	of a shaft.			
T F	4.	The velocity of a fluid decreases as the	cross-sectional area of a pipe increases.			
T F	5.	Polygons are named according to their	number of sides.			
liquial	6.	A(n) is a fluid that can flo	w readily and assume the shape of its container.			
bearing	7.	A(n) is a machine part that or slides in or on it.	supports another part, such as a shaft, which rotates			
<u>A</u>	8.	Area is always expressed in	_ units.			
		A. square B. cubic	C. either A or B D. neither A nor B			
(T) F	9.	Angles are measured in degrees, minute	es, and seconds.			
	10.	Lubricants are used to				
**************************************		A. reduce friction B. prevent wear	C. prevent corrosion D. A, B, and C			
terrous	11.	metals are metals containing	; iron.			
F F	12.	Backlash is the play between mating ge	ar teeth.			
12°clock	13.	The top position, when using a dial ind	icator, is the position.			
Lifting	14.	is hoisting equipment or ma	chinery by mechanical means.			
	15.	is a measure of a component	t's or system's useful output energy.			
		A. Rate B. Percentage	C. Efficiency D. Value			
T F	16.	Machines vibrate even when in the best	operating condition.			
Johne	17.	is the three-dimensional size	of an object measured in cubic units.			
B	18.	is the twisting force of a sha	aft.			
		A. Rotation B. Torque	C. Shearing D. Bending			

Symetrical	19.	A(n) load is a load in which one-half of the load is a mirror image half.	of the other	
<u>B</u>	20.	Fixed ladders are installed in a preferred pitch range betweeno and 90° from		
		horizontal. A. 45 B. 60 C. 75 D. neither A, B, nor C		
Alignment	21.	is the location (within tolerance) of one axis of a coupled machine s to that of another.	haft relative	
Kinetic	22.	energy is the energy of motion.		
AC.	23.	current is a flow of electrons that reverses its direction of flow at regu	lar intervals.	
Lubrication	24.	is the process of maintaining a fluid film between solid surfaces to physical contact.	prevent their	
4'	25.	5. Metal ladders should not be used within' of electrical circuits or equal to the control of the circuits of equal to the circuits of equa	uipment.	
	26.	6. A binary system has value(s).		
		A. no B. one C. two D. any number of		
hydraulics	27.	is the branch of science that deals with the practical application of walliquids at rest or in motion.	ater or other	
T F	28.	3. Walking requires friction between the feet and floor in order to move.		
T F	29.	A square foot contains 12 sq in.		
outside	30.). The diameter of wire rope is determined by the largest possible $\frac{\sqrt{2}}{2}$ din	nension.	
	31.	1. One horsepower is the amount of energy required to lift lb 1' in 1	min.	
1		A. 330 C. 33,000 B. 550 D. 55,000		
atom	32.	2. A(n) is the smallest building block of matter than cannot be divided units without changing its basic character.	into smaller	
Standard	33.	3 V-belts are designated as A, B, C, D, or E.		
Cabling .	34.	4 is a rope's attempt to rotate and untwist its strand lays while under	stress.	
formula	35.	5. A(n) is a mathematical equation that contains a fact, rule, or princip	ple.	
14.7	36.	5. The weight of the atmosphere at sea level is psi.		
T F	37.	7. The total amount of moisture that air is capable of holding varies based on the of the air.	temperature	
T F	38.	3. The objective of proper alignment is to align the shafts, not the couplings.		
T F	39.	9. For optimum efficiency, a V-belt should touch the bottom of the pulley.		
T (F)	40.	0. A 10 weight oil is thicker than a 40 weight oil.		
Circuit	41.	1. A(n) is a closed path through which hydraulic fluid flows or may f	flow.	
Static	42.	2 lift is the height to which atmospheric pressure causes a column of	fluid to rise	

T F	1	43.	Bearings should never be struck with a	hammer.		
T F	ì	44.	There are 60' in one degree.			
		45.	Guardrails on scaffolds must be installed no less than" or more thanhigh, with a midrail.			
			A. 24; 30 B. 30; 36	C. 36; 42 D. 42; 48		
T (F		46.	Electric motors are less efficient than ai	ir motors.		
C		47.	Atoms combine to form			
,			A. protons B. particles	C. molecules D. neither A, B, nor C		
Hert	2	48.	is a measurement of frequen	ncy equal to 1 cps.		
barom	ete		A mercury is an instrument of mercury.	t that measures atmospheric pressure using a colum	ın	
T (F		50.	A straight angle always contains 90°.			
T F	ì	51.	Ambient temperature is the temperature	of the air surrounding a piece of equipment.		
		52.	A pressure gauge reads psig	g at normal atmospheric pressure.		
ciprocati	ng	53.	pistons move forward and be	ackward alternately.		
T F)	54.	A switch is open when it allows current	t to flow in a circuit.		
C		×.	A Bourdon tube is a hollow metal tube a A. elliptical in cross-sectional area B. bent in a C-shape			
	<u>\</u>	56.	During startup of a machine, oil			
			A. is cool B. does not flow easily	C. A and B D. neither A nor B		
2ero		<i>5</i> 7.	Absolute is the temperature	e at which substances possess no heat.		
T F	1	58.	A machine should never be grounded by pipe.	y connecting a wire from the machine to a gas or o	il	
offse	<u>+</u>	59.	A machine should never be grounded by connecting a wire from the machine to a gas or oil pipe. misalignment is a condition where two shafts are parallel but are not on the same axis. The is the side of a right triangle opposite the right angle. The higher the mesh number of a strainer, the smaller the opening.			
hypoten	450	60.	The is the side of a right tr	riangle opposite the right angle.		
T F		61.	The higher the mesh number of a strain	er, the smaller the opening.		
isplaceme	ent.	62.	is the measurement of the di	istance (amplitude) an object is vibrating.		
T F		63.	A person should always face the ladder	when ascending or descending.		
T F		64.	A better finish on a bearing produces le	ess friction.		
ter of gra	wity	65.	The is the balancing point of	of a load.		
neumst	105	66.	is the branch of science that	when ascending or descending. ess friction. of a load. deals with the transmission of energy using a gas.		
Ø F			In a bevel gear, the drive gear is the sm			

C	rea	~
92-		

68. A(n) _____ is a toothed machine element used to transmit motion between rotating shafts.

AHS

- 69. Static energy is the energy of motion.
- 70. The _____ is responsible for enforcing the NEC®.

Problems

706.86

1. The area of Circle A is _____ sq in.

2.1818

2. The horsepower required to lift load B is _____ HP.

3. The area of Surface A on Block C is _____ sq in.

540

4. The volume of Block C is ____ cu in.

375

5. _____ lb of effort force is required to lift the resistance force of Fulcrum D.

CIRCLE A

8.727

6. The horsepower required to lift the 6 t load is HP.

542°R

7. The temperature on the Fahrenheit scale equals _____°R.

273.33

8. The driven pulley speed at E is _____ rpm.

x 273.33

4 X820

Appendix

Weight of Steel and Brass Bar Stock	85
Weight of Steel Plate	85
Lead Line Factors	86
Sling Eyebolt Capacity Loss	86
Sling Rope Load Capacity 6 × 19 Classification (2000 lb Ton)	86
Vertical Sling Component Load Capacity 6 × 19 IPS-FC Classification (2000 lb Ton)	86
Sling Angle Loss Factors	86
Rope Bending Efficiency	86
Wire Rope Strength	87
Pole Scaffold Components	87
Sling Vertical Capacities	88
Round Sling Color and Capacity Rating	88
Atmospheric Pressure vs Lift	89
Extension Ladder Section Overlap	89
Choker Hitch Capacities	89
Fluid Weights/Temperature Standards	89
Sling Material Strength Capacities	
Angle Positioning	89
Formulas	00

WEIGHT OF STEEL AND BRASS BAR STOCK*						
Diameter or Thickness**	Round Steel	Square Steel	Brass			
1/4	.167		.181			
1/2	.667	_	.724			
3/4	1.50		1.63			
1	2.67	3.4	2.89			
11/4	4.17		4.52			
11/2	6.01	7.7	6.51			
13⁄4	8.18		8.86			
2	10.68		11.57			
4	42.7	54.4				
5	66.8	85.0				
6	96.1	122.4				
10	267.0	340.0				
12	384.5	489.6				

*	il	n	I	b	ŀ	f	t	

^{**} in in.

WEIGHT OF	WEIGHT OF STEEL PLATE*						
Thickness**	Weight						
1/16	2.55						
1/8	5.1						
3/16	7.65						
1/4	10.2						
5/16	12.75						
3/8	15.3						
1/2	20.4						
5/8	25.5						
3/4	30.6						
1	40.8						
11/4	51.0						
11/2	61.2						
2	81.6						

^{*} in lb/sq ft

^{**} in in.

LEAD LINE FACTORS*						
Parts of Line	Plain Bearing Pulleys	Rolling-Contact Bearing Pulleys				
1	1.09	1.04				
2	.568	.530				
3	.395	.360				
4	.309	.275				
5	.257	.225				
6	.223	.191				
7	.199	.167				
8	.181	.148				
9	.167	.135				
10	.156	.123				
11	.147	.114				
12	.140	.106				
13	.133	.100				
14	.128	.095				
15	.124	.090				

* based	on	equal	number	of	pulleys
---------	----	-------	--------	----	---------

SLING EYEBOLT CAPACITY LOSS					
Sling Angle* Capacity Reduction*					
90	100				
60 – 89	70				
45 – 59	30				
Less than 45	25				

^{*} in degrees

^{**} in %

SLING ROPE LOAD CAPACITY 6 x 19 CLASSIFICATION (2000 LB TON)										
Rope Dia*	Rope Dia* Choker Vertical Load 2-Leg 30° 2-Leg 45° 2-Leg 60°									
1/4	.35	.65	.58	.50	.31					
3 8	.84	1.8	1.68	1.37	.95					
1/2	1.50	2.50	2.96	2.41	1.71					
3 4	3.20	6.0	6.58	5.37	3.80					
1	5.5	10.0	11.56	9.44	6.58					

^{*} in in.

VERTICAL SLING	COMPONENT
LOAD CAPACITY	6 x 19 IPS-FC
CLASSIFICATION*	(2000 LB TON)

Rope Dia**	Spelter/ Swaged	U-Bolt	Wedge	Mechanical Splice
1/4	.54	.43	.43	.49
<u>3</u> 8	1.22	.97	.97	1.09
1/2	2.14	1.71	1.71	1.92
3/4	4.76	3.80	3.80	4.28
1	8.36	6.68	6.68	7.52

^{*} rates include safety factor of 5
** in in.

SLING ANGLE LOSS FACTORS					
Angle from Horizontal*	Loss Factor				
90	1.000				
85	.996				
80	.985				
75	.966				
70	.940				
65	.906				
60	.866				
55	.819				
50	.766				
45	.707				
40	.643				
35	.574				
30	.500				

^{*} in degrees

	WIRE ROPE STRENGTH							
Nominal Diameter*	Classification	Nominal Strength pe	Breaking r 2000 lb Ton					
		IPS**	EIPS†					
	6 x 19 STANDARD HOISTING FIBER CORE	2.74	-					
1/4	6 x 19 STANDARD HOISTING IWRC	_	3.40	STANDARD HOISTING				
	8 x 19 SPECIAL FLEXIBLE HOISTING FIBER CORE	2.35	-	6 x 19 SEALE WITH FIBER CORE				
	18 x 7 NONROTATING	2.51	-	An 888				
	6 x 19 STANDARD HOISTING FIBER CORE	6.10	-					
3 8	6 x 19 STANDARD HOISTING IWRC	_	7.55					
	8 x 19 SPECIAL FLEXIBLE HOISTING FIBER CORE	5.24	-	SPECIAL FLEXIBLE HOISTING 8 x 19 WARRINGTON WITH FIBER CORE				
	18 x 7 NONROTATING	5.59		WITTIBLA CORE				
	6 x 19 STANDARD HOISTING FIBER CORE	10.7	-					
1/2	6 x 19 STANDARD HOISTING IWRC	-	13.3					
	8 x 19 SPECIAL FLEXIBLE HOISTING FIBER CORE	9.23	-	NONROTATING WIRE ROPE				
	18 x 7 NONROTATING	9.85	_	18 x 7 WITH FIBER CORE				

* in in.
** IPS - improved plow steel
† EIPS - extra improved plow steel

	POLE SCAFFOLD COMPONENTS*								
Туре	Poles	Bearers	Ledgers (Stringers)	Braces	Planking	Rails			
Light-duty** single-pole	20' or less -2×4 60' or less -4×4	$3'$ width -2×4 $5'$ width -4×4	20' or less – 1×4 60' or less – $1\frac{1}{4} \times 9$	1 × 4	2×10	2 × 4			
Medium-duty [†] single-pole	60' or less – 4 × 4	2×10	2 × 10	1×6	2×10	2 × 4			
Heavy-duty [‡] single-pole	60' or less – 4 × 4	2×10	2×10	2 × 4	2×10	2 × 4			
Light-duty* double-pole	20' or less -2×4 60' or less -4×4	3' width -2×4 5' width -4×4	20' or less – $1\frac{1}{4} \times 4$ 60' or less – $1\frac{1}{4} \times 9$	1 × 4	2×10	2 × 4			
Medium-duty [†] double-pole	60' or less – 4 × 4	2×10	2×10	1 × 6	2×10	2 × 4			
Heavy-duty [‡] double-pole	60' or less – 4 × 4	2×10	2×10	2 × 4	2 × 10	2 × 4			

^{*} all members except planking are used on edge

^{**} not to exceed 25 lb/sq ft

[†] not to exceed 50 lb/sq ft

	SLING VERTICAL CAPACITIES					
<u>ann de an heil an deile an deile an aire a' de dean de grandelle</u>	Class 5**			Class 7 [†]		
Width*	Types I, II,	Type V	Type VI	Types I, II, III, IV	Type V	Type VI
1	1100	2200		1600	3200	
11/2	1600	3200		2300	4600	
13/4	1900	3800	_	2700	5400	
2	2200	4400	3600	3100	6200	5800
3	3300	6600	_	4700	9400	<u> </u>
31/2	_	_	5800		_	8400
4	4400	8800	6800	6200	12,400	11,000
5	5500	11,000		7800	15,600	
6	6600	13,200	10,000	9300	18,600	16,000

^{*} in in.

[†] minimum certified tensile strength of 9800 lb per in. of width

ROUND SLING COLOR AND CAPACITY RATING*					
Round Sling	Color	Vertical Weight	Choker Weight	Vertical Basket Weight	45° Basket Weight
Size No.					
1	Purple	2600	2100	5200	3700
2	Green	5300	4200	10,600	7500
3	Yellow	8400	6700	16,800	11,900
4	Tan	10,600	8500	21,200	15,000
5	Red	13,200	10,600	26,400	18,700
6	White	16,800	13,400	33,600	23,800
7	Blue	21,200	17,000	42,400	30,000
8	Orange	25,000	20,000	50,000	35,400
9	Orange	31,000	24,800	62,000	43,800
10	Orange	40,000	32,000	80,000	56,600
11	Orange	53,000	42,400	106,000	74,900
12	Orange	66,000	52,800	132,000	93,000

^{*} in lb

^{**} minimum certified tensile strength of 6800 lb per in. of width

ATMOSPHERIC PRESSURE VS LIFT					
Altitude above Sea Level*	Barometer Reading**	Atmospheric Pressure [†]	Theoretical Lift at Standard Temperature of 62°F*		
0	29.92	14.7	34		
1000	28.8	14.2	33		
2000	27.7	13.6	31.5		
3000	26.7	13.1	30.2		
4000	25.7	12.6	29.1		
5000	24.7	12.1	28		
6000	23.8	11.7	27		
7000	22.9	11.2	26		
8000	22.1	10.8	25		
9000	21.2	10.4	24		
10,000	20.4	10.0	23		

ST	SLING MATERIAL STRENGTH CAPACITIES*					
322 38 322 S	Rated Capacities (in Tons) [†]					
6 x 19						
ROPE DIA**	OVERTICAL	CHOKER	BASKET			
1/4	.51	.38	1.0			
5 16	.79	.60	1.6			
3/8						
8	1.1	.85	2.2			
7 16	1.1	.85 1.1	3.0			
<u>7</u> 16						
<u>7</u> 16	1.5	1.1	3.0			
<u>7</u> 16	1.5	1.1	3.0			
7/16 1/2 9/16 5/8	1.5 2.0 2.5	1.1 1.5 1.9	3.0 4.0 5.0			
<u>7</u> 16	1.5 2.0 2.5 3.1	1.1 1.5 1.9 2.3	3.0 4.0 5.0 6.2			

EXTENSION LADDER SECTION OVERLAP			
Ladder Length*	Overlap*		
8 to 36	3		
36 to 48	4		
48 to 60	5		
* in ft			

CHOKER HITCH CAPACITIES				
Angle of Choke* Sling Rated Load Factor				
120 - 180	.75			
90 - 119	.65			
60 - 89	.55			
30 - 59	.40			

^{*} in degrees

FLUID WEIGHTS/TEMPERATURE STANDARDS				
Fluid	Weight*	Temperature**		
Air	4.33×10^{-5}	20°C/68°F @ 29.92 in. Hg		
Gasoline	.0237 – .0249	20°C/68°F		
Kerosene	.0296	20°C/68°F		
Mercury	.49116	0°C/32°F		
Lubricating Oil	.0307 – .0318	15°C/59°F		
Fuel Oil	.0336 – .0353	15°C/59°F		
Water	.0361	4°C/39°F		
Sea Water	.0370	15°C/59°F		

^{*} in lb/cu in.

ANGLE POSITIONING				
Vertical Dimension	Horizontal Dimension*			
8	2			
10	$2\frac{1}{2}$			
12	3			
16	4			
20	5			
24	6			
28	7			
32	8			
36	9			
40	10			
44	11			

^{*} in ft

^{*} improved plow steel/fc
** in in.
† rates include safety factor of 5

^{**} laboratory temperature conditions under which numerical values are defined

FORMULAS				
AREA Circle (Radius) $A = 3.1416 \times r^2$ where $A = \text{area}$ $3.1416 = \text{constant} (\pi)$ $r^2 = \text{radius squared}$	Sphere (Radius) $V = \frac{4\pi r^3}{3}$ where $V = \text{volume}$ $4 = \text{constant}$ $\pi = 3.1416$ $r^3 = \text{radius cubed}$ $3 = \text{constant}$	Converting Celsius to Kelvin °K = 273 + °C where °K = degrees Kelvin 273 = difference between bases °C = degrees Celsius		
Circle (Diameter) $A = .7854 \times D^{2}$ where $A = area$ $.7854 = constant$ $D^{2} = diameter squared$	Sphere (Diameter) $V = \frac{\pi D^3}{6}$ where $V = \text{volume}$ $\pi = 3.1416$ $D^3 = \text{diameter cubed}$ $6 = \text{constant}$	STOCK MATERIAL WEIGHT W = I × w/ft where W = weight (in lb) I = length (in ft) w/ft = weight (in lb/ft)		
Square or Rectangle A = I × w where A = area I = length w = width	Cone $V = \frac{A_b a}{3}$ where $V = \text{volume}$ $A_b = \text{area of base}$ $a = \text{altitude}$ $3 = \text{constant}$	LIFTING CAPACITY LC = vI × I × s where LC = load capacity (in t) vI = vertical load rate (from Vertical Slin Component Load Capacity 6 × 1 IPS-FC Classification table) I = number of sling legs (not more than two s = loss factor (from Sling Angle Loss Factors table)		
Triangle $A = \frac{1}{2}bh$ where $A = \text{area}$ $\frac{1}{2} = \text{constant}$ $b = \text{base}$ $h = \text{height}$	PYTHAGOREAN THEOREM $c = \sqrt{a^2 + b^2}$ where $c = \text{length of hypotenuse}$ $a^2 = \text{length of one side squared}$ $b^2 = \text{length of other side squared}$	ROPE BENDING LOAD RATING $R_{br} = R_{lr} \times R_{eff}$ where $R_{br} = \text{rope}$ bending load rating $R_{lr} = \text{rope}$ load rating $R_{eff} = \text{relative}$ efficiency rating		
VOLUME Cylinder (Radius) $V = \pi r^2 \times I$ where $V = \text{volume}$ $\pi = 3.1416$ $r^2 = \text{radius squared}$ $I = \text{length}$	TEMPERATURE Converting Fahrenheit to Celsius ${}^{\circ}C = \frac{{}^{\circ}F - 32}{1.8}$ where ${}^{\circ}C = \text{degrees Celsius}$ ${}^{\circ}F = \text{degrees Fahrenheit}$ $32 = \text{difference between bases}$ $1.8 = \text{ratio between bases}$	D/d Ratio $R = \frac{D}{d}$ where $R = D/d \text{ ratio}$ $D = \text{ diameter of rope curve (in in.)}$ $d = \text{ diameter of rope (in in.)}$		
Cylinder (Diameter) $V = .7854 \times D^2 \times h$ where V = volume .7854 = constant $D^2 = \text{diameter squared}$ h = height	Converting Celsius to Fahrenheit °F = (1.8 × °C) + 32 where °F = degrees Fahrenheit 1.8 = ratio between bases °C = degrees Celsius 32 = difference between bases	ROPE STRENGTH $R_s = t \times 5$ where $R_s = \text{rope strength (in t)}$ $t = \text{weight (in t)}$ $5 = \text{constant (safety factor)}$		
Rectangular Solid $V = I \times w \times h$ where $V = \text{volume}$ $I = \text{length}$ $w = \text{width}$ $h = \text{height}$	Converting Fahrenheit to Rankine °R = 460 + °F where °R = degrees Rankine 460 = difference between bases °F = degrees Fahrenheit	TONS $T = \frac{w}{2000}$ where $T = \text{weight (in t)}$ $w = \text{weight (in lb)}$ $2000 = \text{constant (to convert lb to t)}$		

FORMULAS				
HOLDING LOADS $L = \frac{w}{p}$ where $L = \text{lead line force (in lb)}$ $w = \text{total load weight including weight of slings, containers, etc. (in lb)}$ $p = \text{number of parts}$	CYLINDER CAPACITY $C = \frac{V}{231}$ where $C = \text{capacity (in gal.)}$ $V = \text{volume (in cu in.)}$ $231 = \text{constant (cu in. of fluid per gal.)}$	RESULTING FORCE WITHIN VESSEL $F_2 = F_1 \times \frac{A_2}{A_1}$ where $F_2 = \text{resulting force (in lb)}$ $F_1 = \text{input force (in lb)}$ $A_2 = \text{area of output pressure (in sq in.)}$ $A_1 = \text{area of input pressure (in sq in.)}$		
MOVING LOADS L = f × w where L = lead line force (in lb) f = lead line factor (from Lead Line Factors table) w = weight of load (in lb)	PRESSURE OF FLUID IN CYLINDER P = w × h where P = pressure at base (in psi) w = weight of fluid (in lb/cu in. from Fluid Weights/Temperature Standards table) h = height (in in.)	EFFICIENCY $Eff_T = Eff_1 \times Eff_2 \times 100$ where $Eff_T = \text{total efficiency (in \%)}$ $Eff_1 = \text{efficiency of component 1}$ $Eff_2 = \text{efficiency of component 2}$ $100 = \text{constant (to convert to percent)}$		
COMPRESSOR SIZE $HP = \frac{scfm}{4}$ where $HP = \text{horsepower}$ $scfm = \text{standard cubic feet per minute}$ $4 = \text{constant}$	FLUID VELOCITY $v = \frac{X_2 - X_1}{t_2 - t_1}$ where $v = \text{velocity (in ft/sec)}$ $x_2 = \text{final position (in ft)}$ $x_1 = \text{initial position (in ft)}$ $t_2 = \text{final time (in sec)}$ $t_1 = \text{initial time (in sec)}$	POWER $P = \frac{F \times d}{t}$ where $P = \text{power (in lb-ft/time)}$ $F = \text{force (in lb)}$ $d = \text{distance (in ft or in.)}$ $t = \text{time (in sec, min, or hr)}$		
WORKING LOAD CAPACITY $L = \frac{c \times wl}{s}$ where $L = \text{working load capacity (in lb)}$ $c = \text{constant (.21 for sling angles less}$ $\text{than } 45^{\circ}; .25 \text{ for sling angles greater}$ $\text{than } 45^{\circ})$ $wl = \text{eyebolt working load limit (in lb)}$ $s = \text{sling angle loss factor (from Sling Angle}$ $\text{Loss Factors table)}$	VELOCITY OF FLUID IN PIPE $V = \frac{I_2}{\frac{A \times I_1}{231}} \times \frac{60}{Q}$ where $V = \text{velocity (in ft/sec)}$ $I_2 = \text{length of pipe (in ft)},$ $I_3 = \text{cross-sectional area of pipe (in sq in.)}$ $I_4 = \text{length of pipe (in in.)}$ $I_3 = \text{constant (cu in. of fluid per gallon)}$ $Q = \text{flow rate (in gpm)}$ $I_4 = \text{constant (sec in 1 min)}$	HORSEPOWER Mechanical $HP = \frac{F \times d}{550 \times t}$ where $HP = \text{horsepower}$ $F = \text{force (in lb)}$ $d = \text{distance (in ft)}$ $550 = \text{constant}$ $t = \text{time (in sec)}$		
ABSOLUTE PRESSURE psia = psig + 14.7 where psia = pounds per square inch absolute psig = pounds per square inch gauge 14.7 = constant (atmospheric pressure at standard conditions)	SPEED OF CYLINDER ROD $s = 231 \times \frac{Q}{.7854} \times D^2$ where $s = \text{speed of extension (in in./min)}$ $231 = \text{constant (cu in. of fluid per gallon)}$ $Q = \text{flow rate (in gpm)}$ $.7854 = \text{constant}$ $D^2 = \text{diameter of cylinder squared}$	Hydraulic $HP = P \times Q \times .000583$ where $HP = \text{horsepower}$ $P = \text{pressure (in psi)}$ $Q = \text{flow rate (in gpm)}$ $.000583 = \text{constant}$		
CYLINDER PRESSURE $P = \frac{F}{A}$ $F = P \times A$ $A = \frac{F}{P}$ where $P = \text{pressure}$ $F = \text{force}$ $A = \text{area}$	FORCE TO OVERCOME RESISTANCE FORCE $F_1 = \frac{F_2 \times d_2}{d_1}$ where $F_1 = \text{effort force (in lb)}$ $F_2 = \text{resistance force (in lb)}$ $d_1 = \text{distance between effort force and fulcrum (in ft)}$ $d_2 = \text{distance between resistance force and fulcrum (in ft)}$	TORQUE $T = \frac{P \times d}{2\pi}$ where $T = \text{torque (in lb-in.)}$ $P = \text{pressure (in psi)}$ $d = \text{motor displacement (in cu in.)}$ $\pi = \text{constant (3.1416)}$		

	FORMULAS	
FINAL PRESSURE $P_2 = \frac{P_1 \times V_1}{V_2}$ where $P_2 = \text{final pressure (in psia)}$ $P_1 = \text{initial pressure (in psia)}$ $V_1 = \text{initial volume (in cubic units)}$ $V_2 = \text{final volume (in cubic units)}$	RATIO OF COMPRESSION $R_c = \frac{P_2}{P_1}$ where R_c = ratio of compression P_2 = final pressure (in psia) P_1 = initial pressure (in psia)	TORQUE $T = F \times D$ where $T = \text{torque (in lb-ft)}$ $F = \text{force (in lb)}$ $D = \text{distance (in in. or ft)}$
FINAL VOLUME $V_2 = \frac{P_1 \times V_1}{P_2}$ where $V_2 = \text{final volume (in cubic units)}$ $P_1 = \text{initial pressure (in psia)}$ $V_1 = \text{initial volume (in cubic units)}$ $P_2 = \text{final pressure (in psia)}$	PRESSURE LOSS $\Delta P = \frac{CQ^2}{1000} \times \frac{14.7}{14.7 + P}$ where $\Delta P = \text{pressure drop (in psi)}$ $C = \text{constant (from Pressure Loss Constants table)}$ $Q = \text{air flow rate (in scfm)}$ $14.7 = \text{constant (atmospheric pressure)}$ $1000 = \text{constant}$ $P = \text{working pressure (in psi)}$	TORQUE OF ROTATING MACHINE $T = \frac{5252 \times HP}{rpm}$ where $T = \text{torque (in lb-ft)}$ $5252 = \text{constant (33,000 lb-ft} + \pi \times 2)$ $HP = \text{horsepower}$ $rpm = \text{revolutions per minute}$
CHARLES' LAW $V_2 = \frac{V_1 \times T_2}{T_1}$ where $V_2 = \text{final volume (in cubic units)}$ $V_1 = \text{initial volume (in cubic units)}$ $T_2 = \text{final temperature (in °R)}$ $T_1 = \text{initial temperature (in °R)}$	BELT LENGTH $L = 2 \times C + 1.57 \times (D+d) + \frac{(D-d)^2}{4 \times C}$ where $L = \text{belt length (in in.)}$ $2 = \text{constant}$ $C = \text{distance between pulley centers (in in.)}$ $1.57 = \text{constant}$ $D = \text{large pulley diameter (in in.)}$ $d = \text{small pulley diameter (in in.)}$ $4 = \text{constant}$	HORSEPOWER REQUIRED TO OVERCOME LOAD $HP = \frac{T \times rpm}{5252}$ where $HP = \text{horsepower}$ $T = \text{torque}$ (in lb-ft) $rpm = \text{revolutions per minute}$ $5252 = \text{constant}$ (33,000 lb-ft + $\pi \times 2$)
GAY-LUSSAC'S LAW $P_2 = \frac{P_1 \times T_2}{T_1}$ where $P_2 = \text{final pressure (in psia)}$ $P_1 = \text{initial pressure (in psia)}$ $T_2 = \text{final temperature (in °R)}$ $T_1 = \text{initial temperature (in °R)}$	DEFLECTION HEIGHT $h = L \times \frac{1}{64}$ " where $h = \text{deflection height (in in.)}$ $L = \text{span length (in in.)}$ $\frac{1}{64}$ " = constant (.0156")	SPEED OF DRIVEN GEAR $N_2 = \frac{T_1 \times N_1}{T_2}$ where N_2 = speed of driven gear (in rpm) T_1 = number of teeth on drive gear N_1 = speed of drive gear (in rpm) T_2 = number of teeth on driven gear
COMBINED GAS LAW $P_2 = \frac{P_1 \times V_1}{T_1} \times \frac{T_2}{V_2}$ where $P_2 = \text{final pressure (in psia)}$ $P_1 = \text{initial pressure (in psia)}$ $V_1 = \text{initial volume (in cubic units)}$ $T_1 = \text{initial temperature (in °R)}$ $T_2 = \text{final temperature (in °R)}$ $V_2 = \text{final volume (in cubic units)}$	DRIVEN PULLEY SPEED $N_d = \frac{PD_m \times N_m}{PD_d}$ where $N_d = \text{driven pulley speed (in rpm)}$ $PD_m = \text{drive pulley diameter (in in.)}$ $N_m = \text{drive pulley speed (in rpm)}$ $PD_d = \text{driven pulley diameter (in in.)}$	COEFFICIENT OF FRICTION $f = \frac{F}{N}$ where $f = \text{coefficient of friction}$ $F = \text{force at which sliding occurs (in lb)}$ $N = \text{object weight (in lb)}$

