Übung 04

Bestandsmanagement unter Unsicherheit

Aufgabe 1: Bestandsgrößen im Zeitverlauf

Ein Händler für hochwertige Espressomaschinen nutzt zur Steuerung seines Lagers eine (s,q)-Politik mit kontinuierlicher Überwachung. Die Politik ist wie folgt definiert:

- Bestellpunkt (Meldebestand) s: 80 Maschinen
- Bestellmenge q: 200 Maschinen
- Wiederbeschaffungszeit L: 2 Wochen (deterministisch)

Der Händler startet in Woche 0 mit den folgenden Beständen:

- Physischer Bestand I_0^P : 100 Maschinen
- Bestellbestand (offene Bestellungen) I_0^O : 0 Maschinen

Wöchentliche Nachfragen (deterministisch für diese Aufgabe):

Woche (t)	1	2	3	4	5	6
Nachfrage d_t	40	35	50	40	55	60

Ihre Aufgaben:

1. **Tabelle ausfüllen:** Füllen Sie die folgende Tabelle aus. Verfolgen Sie alle Bestandsgrößen über den Zeitraum von 6 Wochen. Eine Bestellung wird am Ende der Woche ausgelöst, in der der disponible Bestand den Meldebestand s erreicht oder unterschreitet. Der Wareneingang erfolgt dann genau L=2 Wochen später zu Beginn der Woche.

Woche (t)	Nach-frage d_t	Disp. Bestand (Anfang)	Bestel- lung? (Menge)	Disp. Bestand (Ende)	Phys. Bestand (Ende)	Bestellbe- stand (Ende)	Fehlbe- stand (Ende)
0	-	-	-	100	100	0	0
1	40	100	?	?	?	?	?
2	35	?	?	?	?	?	?
3	50	?	?	?	?	?	?
4	40	?	?	?	?	?	?
5	55	?	?	?	?	?	?
6	60	?	?	?	?	?	?

Lösung:

Tipps und wichtige Formeln

Reihenfolge der Ereignisse

Beachten Sie die korrekte Reihenfolge der Aktionen innerhalb jeder Woche:

- 1. Wareneingang: Zu Beginn der Woche kommt eine eventuell vor L=2 Wochen getätigte Bestellung an. Dadurch steigt der physische Bestand und der Bestellbestand sinkt.
- 2. **Nachfrage-Erfüllung:** Die Nachfrage der aktuellen Woche wird bedient. Dies senkt den physischen und den disponiblen Bestand.
- 3. **Bestellentscheidung:** Am **Ende der Woche** wird geprüft, ob eine neue Bestellung ausgelöst werden muss.

Die wichtigsten Formeln

- Disponibler Bestand (I^D): Die entscheidende Größe für die Bestellung. Er repräsentiert die Summe aus physischem und bestelltem Bestand. I_t^D (vor Bestellung) = $I_{t-1}^D(\operatorname{Ende}) d_t$
- Bestellentscheidung: Prüfe am Ende der Woche: I_t^D (vor Bestellung) $\leq s$?
 - Wenn **Ja**: Löse eine Bestellung über die Menge q aus. Der disponible Bestand erhöht sich **sofort**: $I_t^D(\text{Ende}) = I_t^D(\text{vor Bestellung}) + q$
 - ▶ Wenn **Nein**: Der disponible Bestand bleibt für das Ende der Woche unverändert.
- Physischer Bestand (I^P) :
 - + $I_t^P(\text{Ende}) = I_{t-1}^P(\text{Ende}) + \text{Wareneingang}_t d_t$ (kann nicht negativ werden)
- Bestellbestand (I^O) :
 - + $I_t^O(\text{Ende}) = I_{t-1}^O(\text{Ende}) \text{Wareneingang}_t + \text{Neue Bestellung}_t$

Die Logik ist wie folgt:

- 1. Disponibler Bestand (Anfang): Ist der disponible Bestand vom Ende der Vorwoche.
- 2. **Bestellung?:** Prüfe am Ende der Woche: Disponibler Bestand (Anfang) Nachfrage <= s? Wenn ja, löse Bestellung über q aus.
- 3. Disponibler Bestand (Ende): Disponibler Bestand (Anfang) Nachfrage.
- 4. **Physischer Bestand / Fehlbestand:** Physischer Bestand (Anfang) + Wareneingang Nachfrage.
- 5. Bestellbestand: Bestellbestand (Anfang) + Neue Bestellung Wareneingang.

```
Berechnung Schritt für Schritt:
Woche 1: Meldebestand unterschritten (60 <= 80). Bestellung ausgelöst.
Woche 3: Wareneingang von 200 Stück.
Woche 5: Meldebestand unterschritten (80 <= 80). Bestellung ausgelöst.

Vervollständigte Tabelle:
Woche (t) Nachfrage $d_t$ Disp. Bestand (A) Bestellung? (E) Disp.
Bestand (E) Phys. Bestand (E) Bestellbestand (E) Fehlbestand (E)

1 40 100 200
260 60 200 0
```

	2		35		260		0
225		25		200		0	
	3		50		225		0
175		175		Θ		0	
	4		40		175		0
135		135		9		0	
	5		55		135		200
280		80		200		0	
	6		60		280		0
220		20		200		0	

Aufgabe 2: Sicherheitsbestand und Servicegrade

Ein Online-Händler für ein populäres Smartphone-Modell möchte seinen Lagerbestand optimieren. Die wöchentliche Nachfrage ist annähernd normalverteilt mit einem **Mittelwert von 60 Stück** und einer **Standardabweichung von 20 Stück**. Die Wiederbeschaffungszeit vom Hersteller beträgt konstant **3 Wochen**. Der Händler nutzt eine Politik der kontinuierlichen Überprüfung.

Ihre Aufgaben:

- 1. **Mittelwert und Standardabweichung:** Berechnen Sie den Mittelwert und die Standardabweichung der Nachfrage während der Wiederbeschaffungszeit (dem Risikozeitraum).
- 2. **Bestellpunkt und Sicherheitsbestand:** Der Händler strebt einen α -Servicegrad (Zyklus-Servicegrad) von 95% an. Das bedeutet, die Wahrscheinlichkeit eines Fehlbestands während eines Bestellzyklus soll nur 5% betragen. Welcher Bestellpunkt (reorder point) s muss gewählt werden? Wie hoch ist der resultierende Sicherheitsbestand?
- 3. Erwartete Fehlmenge: Gegeben der Bestellpunkt s aus Teil 2: Berechnen Sie die erwartete Fehlmenge pro Bestellzyklus E(B). Nutzen Sie dafür die in der Vorlesung vorgestellte standardisierte Einheiten-Verlustfunktion $G_u(z)$. Die benötigten Werte für $G_u(z)$ finden Sie in den Tabellen der Vorlesung oder in den Lösungn zu dieser Aufgabe.
- 4. **Servicegrad:** Wenn der Händler eine feste Bestellmenge von q=450 Stück verwendet, welchen β -Servicegrad (Mengen-Servicegrad) erreicht er mit seiner Politik?

Lösung:

Tipps und wichtige Formeln

1. Nachfrage während der Wiederbeschaffungszeit (WBZ)

Der Risikozeitraum ist die Wiederbeschaffungszeit L. Wir müssen die Kennzahlen der Nachfrageverteilung für diesen längeren Zeitraum berechnen. Für unabhängige Perioden gilt:

- Erwartungswert der Nachfrage während WBZ: $\mu_L = L \cdot \mu_{\text{w\"{o}chentlich}}$
- Varianz der Nachfrage während WBZ: $\sigma_L^2 = L \cdot \sigma_{\text{w\"{o}chentlich}}^2$
- Standardabweichung der Nachfrage während WBZ: $\sigma_L = \sqrt{L \cdot \sigma_{ ext{w\"ochentlich}}}$

2. Bestellpunkt und Sicherheitsbestand

Der Bestellpunkt s deckt die erwartete Nachfrage während der WBZ ab und enthält zusätzlich einen Puffer für Unsicherheit.

- Bestellpunkt (s): $s = \mu_L + SS$
- Sicherheitsbestand (SS): $SS = z \cdot \sigma_L$
- Sicherheitsfaktor (z): Dieser Wert hängt vom gewünschten α -Servicegrad (Zyklus-Servicegrad) ab und wird aus der Standardnormalverteilung abgelesen.

3. Erwartete Fehlmenge (E(B))

Dies ist die durchschnittliche Anzahl an Einheiten, die pro Zyklus aufgrund von zu hoher Nachfrage nicht geliefert werden können.

- Formel: $E(B) = \sigma_L \cdot G_n(z)$
- Standardisierte Verlustfunktion ($G_u(z)$): $G_u(z) = \phi(z) z(1 \Phi(z))$
 - $\phi(z)$: Dichtefunktion der Standardnormalverteilung.
 - $\Phi(z)$: Kumulative Verteilungsfunktion der Standardnormalverteilung.

4. β -Servicegrad (Fill Rate)

Dieser Servicegrad misst den prozentualen Anteil der Gesamtnachfrage, der direkt aus dem Lager bedient wird.

- Formel: $\beta = 1 \frac{E(B)}{q}$
- 1. Nachfrage während der WBZ:
 - Erwartungswert (mu_L): 180.00 Stück
 - Standardabweichung (sigma_L): 34.64 Stück
- 2. Bestellpunkt für alpha = 95.0%:
 - Benötigter z-Wert (Sicherheitsfaktor): 1.645
 - Sicherheitsbestand: 1.645 * 34.64 = 56.98 Stück
 - Bestellpunkt s: 180.00 + 56.98 = 236.98 Stück (gerundet: 237.0)
 - -> Der Meldebestand sollte auf 237.0 Stück gesetzt werden.
- 3. Erwartete Fehlmenge pro Zyklus E(B):
 - phi(z=1.645) = 0.1031
 - E(B) = 34.64 * (0.1031 1.645 * 0.05) = 0.7238 Stück

- 4. Resultierender beta-Servicegrad:
 - beta = 1 (0.7238 / 450) = 0.9984 oder 99.84%

Aufgabe 3: Diskrete Nachfrage und Faltung

Ein Comic-Laden verkauft eine beliebte wöchentliche Manga-Ausgabe. Die tägliche Nachfrage ist nicht normalverteilt, sondern folgt dieser diskreten Verteilung:

Nachfrage (D) pro Tag	0 Hefte	1 Heft	2 Hefte	3 Hefte
Wahrscheinlichkeit P(D)	0.3	0.4	0.2	0.1

Die Wiederbeschaffungszeit beträgt genau 2 Tage.

Ihre Aufgaben:

- 1. Wahrscheinlichkeitsverteilung: Leiten Sie die Wahrscheinlichkeitsverteilung für die Gesamtnachfrage Y_2 über den Risikozeitraum von 2 Tagen her. (Tipp: Nutzen Sie die Faltung der Verteilung mit sich selbst).
- 2. **Fehlbestandswahrscheinlichkeit:** Wenn der Ladenbesitzer einen Bestellpunkt von s=4 Heften festlegt, wie hoch ist die Wahrscheinlichkeit, dass es zu einem Fehlbestand kommt (d.h. der α -Servicegrad *nicht* eingehalten wird)?
- 3. **Erwartete Fehlmenge:** Berechnen Sie die erwartete Fehlmenge E(B) für den Bestellpunkt s=4.

Lösung:

Tipps und wichtige Formeln

1. Faltung von Wahrscheinlichkeitsverteilungen

Wenn Sie die Verteilung der Summe von zwei unabhängigen, diskreten Zufallsvariablen D_1 und D_2 (hier die Nachfrage an zwei aufeinanderfolgenden Tagen) finden wollen, müssen Sie deren Verteilungen "falten". Für die Gesamtnachfrage $Y_2 = D_1 + D_2$ berechnen Sie die Wahrscheinlichkeit $P(Y_2 = k)$ wie folgt: $P(Y_2 = k) = \sum_j P(D_1 = j) \cdot P(D_2 = k - j)$

Beispiel: Um die Wahrscheinlichkeit für eine Gesamtnachfrage von 2 zu finden (k=2), summieren Sie die Wahrscheinlichkeiten aller möglichen Kombinationen auf, die 2 ergeben: $P(Y_2=2)=P(D_1=0,D_2=2)+P(D_1=1,D_2=1)+P(D_1=2,D_2=0)$ Da die Tage unabhängig sind, ist $P(D_1=a,D_2=b)=P(D=a)\cdot P(D=b)$.

2. Fehlbestandswahrscheinlichkeit (1 $-\alpha$)

Ein Fehlbestand tritt ein, wenn die Nachfrage während der Wiederbeschaffungszeit (Y_2) den Bestellpunkt (s) übersteigt. $P(\text{Fehlbestand}) = P(Y_2 > s)$

3. Erwartete Fehlmenge (E(B))

Die erwartete Fehlmenge ist die Summe aller möglichen Fehlmengen, gewichtet mit ihren jeweiligen Eintrittswahrscheinlichkeiten. $E(B) = \sum_y \max(0,y-s) \cdot P(Y_2=y)$ Sie müssen also für jeden möglichen Nachfragewert y die Fehlmenge (y-s) berechnen (falls diese positiv ist) und mit der Wahrscheinlichkeit $P(Y_2=y)$ multiplizieren.

1. Wahrscheinlichkeitsverteilung der Gesamtnachfrage über 2 Tage (Y2):

Wir müssen alle möglichen Kombinationen der Nachfrage an Tag 1 (D_1) und Tag 2 (D_2) betrachten. Die Gesamtnachfrage ist $Y_2 = D_1 + D_2$. Die möglichen Werte für Y_2 reichen von 0 (0+0) bis 6 (3+3).

- P(Y2 = 0): $P(D_1 = 0, D_2 = 0) = 0.3 \cdot 0.3 = 0.09$
- P(Y2 = 1): $P(D_1=0,D_2=1)+P(D_1=1,D_2=0)=(0.3\cdot 0.4)+(0.4\cdot 0.3)=0.12+0.12=0.24$
- P(Y2 = 2): $P(D_1 = 0, D_2 = 2) + P(D_1 = 1, D_2 = 1) + P(D_1 = 2, D_2 = 0) = (0.3 \cdot 0.2) + (0.4 \cdot 0.4) + (0.2 \cdot 0.3) = 0.06 + 0.16 + 0.06 = 0.28$
- P(Y2 = 3): $P(D_1 = 0, D_2 = 3) + P(D_1 = 1, D_2 = 2) + P(D_1 = 2, D_2 = 1) + P(D_1 = 3, D_2 = 0) = (0.3 \cdot 0.1) + (0.4 \cdot 0.2) + (0.2 \cdot 0.4) + (0.1 \cdot 0.3) = 0.03 + 0.08 + 0.08 + 0.03 = 0.22$
- P(Y2 = 4): $P(D_1=1,D_2=3)+P(D_1=2,D_2=2)+P(D_1=3,D_2=1)=(0.4\cdot0.1)+(0.2\cdot0.2)+(0.1\cdot0.4)=0.04+0.04+0.04=0.12$
- P(Y2 = 5): $P(D_1 = 2, D_2 = 3) + P(D_1 = 3, D_2 = 2) = (0.2 \cdot 0.1) + (0.1 \cdot 0.2) = 0.02 + 0.02 = 0.04$
- **P(Y2 = 6):** $P(D_1 = 3, D_2 = 3) = 0.1 \cdot 0.1 = 0.01$

Zusammenfassung der Verteilung für Y2:

$$Y_2$$
 0 1 2 3 4 5 6 $P(Y_2)$ 0.09 0.24 0.28 0.22 0.12 0.04 0.01

2. Wahrscheinlichkeit eines Fehlbestands für s=4:

Ein Fehlbestand tritt auf, wenn die Nachfrage Y_2 den Bestellpunkt s=4 übersteigt. $P(\text{Fehlbestand}) = P(Y_2 > 4) = P(Y_2 = 5) + P(Y_2 = 6)$ P(Fehlbestand) = 0.04 + 0.01 = 0.05 oder 5%.

Der α -Servicegrad wäre demnach 1-0.05=0.95 oder 95%.

3. Erwartete Fehlmenge E(B) für s=4:

Die Fehlmenge B ist $\max(0,Y_2-s)$. Wir berechnen den Erwartungswert, indem wir jede mögliche Fehlmenge mit ihrer Wahrscheinlichkeit multiplizieren.

- Wenn $Y_2 \le 4$, ist die Fehlmenge 0.
- Wenn $Y_2=5$, ist die Fehlmenge 5-4=1. Die Wahrscheinlichkeit dafür ist $P(Y_2=5)=0.04$.
- Wenn $Y_2=6$, ist die Fehlmenge 6-4=2. Die Wahrscheinlichkeit dafür ist $P(Y_2=6)=0.01$.

$$E(B) = \sum \max(0,y-s) \cdot P(Y_2=y) \ E(B) = (1 \cdot P(Y_2=5)) + (2 \cdot P(Y_2=6)) \ E(B) = (1 \cdot 0.04) + (2 \cdot 0.01) = 0.04 + 0.02 = 0.06$$

Die erwartete Fehlmenge pro Bestellzyklus beträgt 0.06 Hefte.