Проект

По теме:

Разработка модели для улучшение качества и скорости совершения сделок риелторами

Актуальность задачи

▶ В наше время, все больше и больше людей начинают использовать помощь компьютерных технологий. Те, кто их не использует, оказываются в проигрышном положении. Внедрение машинного обучения в отрасль торговли благоприятно скажется на эффективности и скорости работы в этой области

Цель работы:

▶ Разработать модель, качественно предсказывающую цены домов, основываясь на истории их предложений

В ходе работы я применял метрику r2_score

- ▶ Лист метрик для задач регрессии очень ограничен
- Среди этих метрик среднеквадратичная ошибка и т.
 п., по которым тяжело определить качество модели
- ▶ r2 позволяет легко оценить качество/изменение качества модели.

Этапы работы над задачей

- Предварительная обработка данных
- ▶ Получение дополнительных данных из полей таблицы
- Анализ и очистка данных
- Выбор оптимального алгоритма и подбор параметров
- ▶ Обучение модели и оценка полученного результата

Предварительная обработка данных

```
#Paccмотрим stories
print(data['stories'].unique())

[nan '2.0' '1.0' '3.0' 'One' '2' 'Multi/Split' '4.0' '0.0' '0' 'One Level'
'1' '9.0' '3' '1 Level, Site Built' 'One Story' '3.00' '1.00' '14.0'
```

```
'1' '9.0' '3' '1 Level, Site Built' 'One Story' '3.00' '1.00' '14.0'
'Two' '3+' '1 Story' '5.0' '2 Story' 'Ranch/1 Story' 'Condominium'
'Stories/Levels' '7.0' '2 Level, Site Built' '2 Level' '15'
'3 Level, Site Built' '4' '22.0' '2.00' '6.0' '1.0000' 'Lot' '3 Story'
'Three Or More' '1.5' '1 Level' 'Two Story or More'
'Site Built, Tri-Level' '54.0' '23' 'Farm House' '8.0' '16.0' '1.50' '18'
'9' '21' '8' '12.0' 'Split Level w/ Sub' '11.0' '18.0' '1.5 Stories' '7'
'11' 'Townhouse' '12' '21.0' '16' '1.5 Story/Basement' '28.0'
'Traditional' '2.5 Story' '17' '2.0000' '63.0' 'Acreage'
'Ground Level, One' '6' 'Split Foyer' '2 Stories' '27.0' '19.0' '2.50'
```

replace X
regular expr ✓

Получение дополнительных данных

```
print(data['homeFacts'][0])
print(type(data['homeFacts'][0]))

{'atAGlanceFacts': [{'factValue': '2019', 'factLabel': 'Year built'}, {'factValue': '', 'factLabel': 'Remodeled yea r'}, {'factValue': 'Central A/C, Heat Pump', 'factLabel': 'Heating'}, {'factValue': '', 'factLabel': 'Cooling'}, {'factValue': '', 'factLabel': 'Parking'}, {'factValue': None, 'factLabel': 'lotsize'}, {'factValue': '$144', 'factLabel': 'Price/sqft'}]}

Тип данных: <class 'str'>
```

ast.literal_eval

```
ex = ast.literal_eval(data['homeFacts'][0])
print(ex)|
print('Тип данных: {}'.format(type(ex)))

{'atAGlanceFacts': [{'factValue': '2019', 'factLabel': 'Year built'}, {'factValue': '', 'factLabel': 'Remodeled yea
r'}, {'factValue': 'Central A/C, Heat Pump', 'factLabel': 'Heating'}, {'factValue': '', 'factLabel': 'Cooling'}, {'fa
ctValue': '', 'factLabel': 'Parking'}, {'factValue': None, 'factLabel': 'lotsize'}, {'factValue': '$144', 'factLabe
l': 'Price/sqft'}]}

Тип данных: <class 'dict'>
```

Анализ данных

target dispersion: 2726881339200.9546

data = data[data['beds'] < 10]

Выбор алгоритма и подбор параметров

R2 Xgboost: 0.98586

► R2 GradientBoosting: 0.98248

R2 DecisionTree: 0.96734

R2 Kneighbors: 0.87198

R2 RandomForest: 0.98107

R2 LGBMRegressor: 0.95281

R2 catboost: 0.93742

R2 LinearRegression: 0.20581

Обучение модели и оценка результата

- Gradient Boosting:
- max_depth = 5,
- min_samples_leaf = 2,
- min_samples_split = 2,
- n_estimators = 300

```
print(r2_score(y_test, y_pred))
0.9908028531942629
```

data = X_test.join(pred)
data.head()

	baths	fireplace	sqft	beds	state	stories	PrivatePool	built	rebuilt	heating	cooling	parking	lotsize	price	distance	target
0	3	0	2900	3	0	1	0	2019	2019	1	1	1	8398	138	2	399448.675269
1	3	0	1768	3	1	1	0	1956	1975	1	0	1	7800	396	0	684784.855264
2	2	0	984	2	0	2	0	1924	1962	1	1	1	3675	44	0	45942.627604
3	3	1	3472	4	1	2	0	2004	2004	1	1	1	14375	158	1	560066.571122
4	3	0	2902	4	0	1	1	2000	2002	1	1	1	7967	95	0	271812.836297

Github https://github.com/Brilliance1512/dataproject

