

Embedding Model for CXR

Emory Health Datathon

Large End-to-end
Task-specific
Model

- Need large training set
- Require computational resource
- More overhead for data transfer

Foundation Model

Predict Pathology

- Smaller training set
- Small model (LR, SVM, MLP, ...)
- Easier data transfer

Large End-to-end Task-specific Model

- Need large training set
- Require computational resource
- More overhead for data transfer

Foundation Model

Access via online API

Predict Pathology

- Smaller training set
- Smaller model (LR, SVM, MLP, ...)
- Easier data transfer

Advantages of Foundation Model Embedding

- Smaller dataset good for rare pathologies and limited expert annotation
- Smaller model faster to build, less computation and energy consumption
- Easier data transfer facilitates collaboration
- Better accessibility to AI promote equity in data and computational resource

But, is it **good** or **bad** for reducing bias?

- 1. CXR embedding predict findings
 - Standard approach plus subgroup analysis
 - Performance gap exists ?
- 2. CXR embedding predict findings
 - For gender/race, train/val on group1, test on group2
 - Need better balancing?
- 3. CXR embedding \rightarrow group 1 or group 2
 - Direct prediction of gender/race
 - Potential spurious correlation?

Dataset and Model

- Input 1376, 2 hidden layer MLP (512, 256)
- Binary classifier
- Time: testing 0.0002s/image, training time is 7.5 minutes (10 epochs) on A10G GPU

MIMIC-CXR

- 1. CXR embedding predict findings
 - Standard approach plus subgroup analysis
 - Performance gap exists?
- 2. CXR embedding predict findings
 - ► For gender/race, train/val on group1, test on group2
 - Need better balancing?
- 3. CXR embedding → group 1 or group 2
 - Direct prediction of gender/race
 - Potential spurious correlation ?

Exp. 1: CXR→Findings, **Subgroup Analysis**

Cardiomegaly

Similar to
Biocomputing
2021
TPR for Black >
TPR for White

AUC for Black > AUC for White

Exp. 1: CXR→Findings, **Subgroup Analysis**

- 1. CXR embedding predict findings
 - Standard approach plus subgroup analysis
 - Performance gap exists ?
- 2. CXR embedding predict findings
 - For gender/race, train/val on group1, test on group2
 - Need better balancing?
- 3. CXR embedding → group 1 or group 2
 - Direct prediction of gender/race
 - Potential spurious correlation?

Exp. 2: CXR→Findings, **Train group1 Test group2**

Cardiomegaly, Black/White

Cardiomegaly, Male/Female

Consistant to PNAS 2020, AUC FF > MF

- 1. CXR embedding predict findings
 - Standard approach plus subgroup analysis
 - Performance gap exists ?
- 2. CXR embedding predict findings
 - ► For gender/race, train/val on group1, test on group2
 - Need better balancing?
- 3. CXR embedding \rightarrow group 1 or group 2
 - Direct prediction of gender/race
 - Potential spurious correlation?

Exp. 3: CXR→Gender/Race

Predict Gender AUROC = 0.99

Predict Race (Black/White) AUROC = 0.93

Consistant to Gichoya et al. 2022, AUROC ~0.98

Summary - Team 11 -4 The GEMs

- Embedding + small model
 - Much faster training and inference
 - Similar demographic bias results compared to conventional approach
 - Observed disease-specific bias

Future Work

- Head-to-head comparison foundation embedding +
 MLP vs direct training using DenseNet121/ResNet34
- ▶ Try new/rare findings/diseases e.g. CTD-ILD, LAM
- ► Try a collaboration scenario: e.g. MIMIC-CXR + CheXpert predict on Emory CXR or using synthetic data
- Performance gaps: biased diagnosis or underrepresentation?
- Methods to mitigate bias with embedding + MLP: e.g. balancing, adversarial training

Thank You!

Team 11 - 4: The GEMs

Foundation Model for CXR

Emory Health Datathon, Team 11 The GEMs

Clinical Relevance

- Embedding + small model
- Much faster training and inference
- Similar demographic bias results compared to
- conventional approach
- Observed disease-specific bias

Approach

- ▶ Embedding + small model
 - Much faster training and inference
 - Similar demographic bias results compared to conventional approach
 - Observed disease-specific bias

Exp. 1: CXR→Findings, **Subgroup Analysis**

AUC for Black > AUC for White

Exp. 3: CXR→Gender/Race

Predict Race (Black/White)

Exp. 2: CXR→Findings, **Train group1 Test group2**

Future Work

- Head-to-head comparison foundation embedding + MLP vs direct training using DenseNet121/ResNet34
- ▶ Try new/rare findings/diseases e.g. CTD-ILD, LAM
- ▶ Try a collaboration scenario: e.g. MIMIC-CXR + CheXpert predict on Emory CXR or using synthetic data
- Performance gaps: biased diagnosis or underrepresentation?
- Methods to mitigate bias with embedding + MLP: e.g. balancing, adversarial training