Modeling approach(es) for multivariate binary response

Steve and Jonathan

2019-09-23

► Longitudinal (2003 - 2015) NUHDSS covering Korogocho and Viwandani

- ► Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - ► Slum area

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year

- ► Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - ▶ Gender

- ► Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - ▶ Gender
 - Ethnicity

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size
 - ► Wealth index

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - ► Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size
 - ► Wealth index
 - ► Household expenditure

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size
 - Wealth index
 - Household expenditure
- Response(s): Three WASH variables were created as per WHO definition

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - ► Slum area
 - Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size
 - Wealth index
 - Household expenditure
- Response(s): Three WASH variables were created as per WHO definition
 - Drinking water source

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size
 - Wealth index
 - Household expenditure
- Response(s): Three WASH variables were created as per WHO definition
 - Drinking water source
 - Toilet facility type

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size
 - Wealth index
 - Household expenditure
- Response(s): Three WASH variables were created as per WHO definition
 - Drinking water source
 - ► Toilet facility type
 - Garbage disposal method

Objective

► The aim is to investigate the contribution of demographic, social and economic factors to improved water, sanitation and hygiene (WASH) among the urban poor.

Problems

- ► How do we account for the repeated measurements within the households across the years?
 - Model the wash variables separately
 - Pick one of the WASH indicator and treat the remaining two as fixed covariates
- ► The two approaches are not accounting for the unmeasured variations and correlation among the WASH variables

Problems

- ► How do we account for the repeated measurements within the households across the years?
 - Model the wash variables separately
 - Pick one of the WASH indicator and treat the remaining two as fixed covariates
- ► The two approaches are not accounting for the unmeasured variations and correlation among the WASH variables
- ▶ But we need some understanding of data generation process

Problems

- ► How do we account for the repeated measurements within the households across the years?
 - Model the wash variables separately
 - Pick one of the WASH indicator and treat the remaining two as fixed covariates
- ► The two approaches are not accounting for the unmeasured variations and correlation among the WASH variables
- But we need some understanding of data generation process
 - Some simulations

Data exploration

- ▶ WASH variables (services) are binary (0 = unimproved and 1
 - = improved)
 - Each household was surveyed once per year
 - For some HH, the services have improved or unimproved for different years
- Aggregated by year, all HH have varying wealth_index

Simulations

Assumptions

- ► Use year as the grouping variable
- ► Each household has its own year effect on the intercepts (random-intercept)

Model

$$y_{ijk} = \beta 0_{jk} + \beta 1_{jk} x_i + \epsilon_{ik}$$

 \triangleright y_{ijk} is the simulated value of the ith household in the jth year of the kth service

- \triangleright y_{ijk} is the simulated value of the ith household in the jth year of the kth service
 - i goes from 1 to the number of households

- y_{ijk} is the simulated value of the ith household in the jth year of the kth service
 - i goes from 1 to the number of households
 - $ightharpoonup j=1,2,\cdots,30$ indexes the number of years

- y_{ijk} is the simulated value of the ith household in the jth year of the kth service
 - i goes from 1 to the number of households
 - $j = 1, 2, \dots, 30$ indexes the number of years
 - k = 1, 2, 3 indexes the number of services

- y_{ijk} is the simulated value of the ith household in the jth year of the kth service
 - i goes from 1 to the number of households
 - $j = 1, 2, \dots, 30$ indexes the number of years
 - k = 1, 2, 3 indexes the number of services
- $\beta 0_{jk}$ is the random-intercept effect of the jth year of the kth service on the response

- y_{ijk} is the simulated value of the ith household in the jth year of the kth service
 - i goes from 1 to the number of households
 - $j = 1, 2, \dots, 30$ indexes the number of years
 - k = 1, 2, 3 indexes the number of services
- $\beta 0_{jk}$ is the random-intercept effect of the jth year of the kth service on the response

 $ightharpoonup eta 1_{jk}$ is the random-slope effect of the jth year of the kth service on the response

- $ightharpoonup eta 1_{jk}$ is the random-slope effect of the jth year of the kth service on the response
 - $\blacktriangleright \ \beta 1_{jk} \sim \textit{MVN}(\mu 1_k, \Sigma_{tk})$

- $ightharpoonup eta_{jk}$ is the random-slope effect of the jth year of the kth service on the response
- $ightharpoonup \epsilon_{ik}$ is the household-level random effect (residual error term) of the kth service

- \triangleright $\beta 1_{jk}$ is the random-slope effect of the jth year of the kth service on the response
- $ightharpoonup \epsilon_{ik}$ is the household-level random effect (residual error term) of the kth service
 - $ightharpoonup \epsilon_{ik} \sim MVN(\mathbf{0}, \Sigma_{tk})$

- $ightharpoonup eta_{jk}$ is the random-slope effect of the jth year of the kth service on the response
 - $ightharpoonup eta 1_{jk} \sim MVN(\mu 1_k, \Sigma_{tk})$
- $ightharpoonup \epsilon_{ik}$ is the household-level random effect (residual error term) of the kth service
 - $ightharpoonup \epsilon_{ik} \sim MVN(\mathbf{0}, \Sigma_{tk})$
- x_i is the ith predictor value

- \triangleright $\beta 1_{jk}$ is the random-slope effect of the jth year of the kth service on the response
 - $ightharpoonup eta 1_{jk} \sim MVN(\mu 1_k, \Sigma_{tk})$
- $ightharpoonup \epsilon_{ik}$ is the household-level random effect (residual error term) of the kth service
 - $ightharpoonup \epsilon_{ik} \sim MVN(\mathbf{0}, \Sigma_{tk})$
- \triangleright x_i is the ith predictor value
- y_{ijk} drawn from binomial distribution, with probability, $p_k = plogis(y_{ijk})$

Results

► See the results are here