Red Wine Quality

April 22, 2018

```
In [1]: import pandas as pd
                              # for data manipulation and analysis
        import numpy as np
                              # for scientific computing
        import matplotlib.pyplot as plt
                                          # 2D plotting library
        %matplotlib inline
        from sklearn import tree
                                    # sklearn is the machine learning library
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.model_selection import train_test_split #for splitting data into train a
                                                              # seaborn is a visualization lib
        import seaborn as sns
        from sklearn.datasets import load_iris
        from sklearn import tree
        from sklearn.tree import export_graphviz
        import graphviz
                           # for graph visualization
        import pydotplus
        import io
                          #to access files and streams
                                 #for scientific computing
        from scipy import misc
0.1 Importing -Red Wine Quality Dataset
In [2]: wine=pd.read_csv('./Red wine quality.csv',sep=',') #Reading dataset
```

```
df=pd.DataFrame(wine)
                                                                 #dataset converted to dataframe
        df
                                                                 #display dataframe
Out [2]:
              fixed acidity volatile acidity
                                                  citric acid residual sugar
                                                                                 chlorides
                         7.4
                                           0.700
                                                          0.00
                                                                            1.9
        0
                                                                                      0.076
        1
                         7.8
                                           0.880
                                                          0.00
                                                                            2.6
                                                                                      0.098
        2
                         7.8
                                           0.760
                                                          0.04
                                                                            2.3
                                                                                      0.092
        3
                        11.2
                                           0.280
                                                          0.56
                                                                            1.9
                                                                                      0.075
        4
                         7.4
                                           0.700
                                                          0.00
                                                                            1.9
                                                                                      0.076
        5
                         7.4
                                           0.660
                                                          0.00
                                                                            1.8
                                                                                      0.075
        6
                         7.9
                                           0.600
                                                          0.06
                                                                            1.6
                                                                                      0.069
        7
                         7.3
                                           0.650
                                                          0.00
                                                                            1.2
                                                                                      0.065
                         7.8
        8
                                           0.580
                                                          0.02
                                                                            2.0
                                                                                      0.073
        9
                         7.5
                                                                            6.1
                                           0.500
                                                          0.36
                                                                                      0.071
        10
                         6.7
                                           0.580
                                                          0.08
                                                                            1.8
                                                                                      0.097
        11
                         7.5
                                           0.500
                                                          0.36
                                                                            6.1
                                                                                      0.071
```

12	5.6	0.615	0.00	1.6	0.089
13	7.8	0.610	0.29	1.6	0.114
14	8.9	0.620	0.18	3.8	0.176
15	8.9	0.620	0.19	3.9	0.170
16	8.5	0.280	0.56	1.8	0.092
17	8.1	0.560	0.28	1.7	0.368
18	7.4	0.590	0.08	4.4	0.086
19	7.9	0.320	0.51	1.8	0.341
		0.320	0.48		
20	8.9			1.8	0.077
21	7.6	0.390	0.31	2.3	0.082
22	7.9	0.430	0.21	1.6	0.106
23	8.5	0.490	0.11	2.3	0.084
24	6.9	0.400	0.14	2.4	0.085
25	6.3	0.390	0.16	1.4	0.080
26	7.6	0.410	0.24	1.8	0.080
27	7.9	0.430	0.21	1.6	0.106
28	7.1	0.710	0.00	1.9	0.080
29	7.8	0.645	0.00	2.0	0.082
	• • •	• • •	• • •	• • •	
1569	6.2	0.510	0.14	1.9	0.056
1570	6.4	0.360	0.53	2.2	0.230
1571	6.4	0.380	0.14	2.2	0.038
1572	7.3	0.690	0.32	2.2	0.069
1573	6.0	0.580	0.20	2.4	0.075
1574	5.6	0.310	0.78	13.9	0.074
1575	7.5	0.520	0.40	2.2	0.060
1576	8.0	0.300	0.63	1.6	0.081
1577	6.2	0.700	0.15	5.1	0.076
1578	6.8	0.670	0.15	1.8	0.118
1579	6.2	0.560	0.09	1.7	0.053
1580	7.4	0.350	0.33	2.4	0.068
1581	6.2	0.560	0.09	1.7	0.053
1582	6.1	0.715	0.10	2.6	0.053
1583	6.2	0.460	0.29	2.1	0.074
1584	6.7	0.320	0.44	2.4	0.061
1585	7.2	0.390	0.44	2.6	0.066
1586	7.5	0.310	0.41	2.4	0.065
1587	5.8	0.610	0.11	1.8	0.066
1588	7.2		0.33		0.068
		0.660		2.5	
1589	6.6	0.725	0.20	7.8	0.073
1590	6.3	0.550	0.15	1.8	0.077
1591	5.4	0.740	0.09	1.7	0.089
1592	6.3	0.510	0.13	2.3	0.076
1593	6.8	0.620	0.08	1.9	0.068
1594	6.2	0.600	0.08	2.0	0.090
1595	5.9	0.550	0.10	2.2	0.062
1596	6.3	0.510	0.13	2.3	0.076
1597	5.9	0.645	0.12	2.0	0.075

	free	sulfur	dioxide	total	sulfur	dioxide	density	рН	sulphates	\
0			11.0			34.0	0.99780	3.51	0.56	
1			25.0			67.0	0.99680	3.20	0.68	
2			15.0			54.0	0.99700	3.26	0.65	
3			17.0			60.0	0.99800	3.16	0.58	
4			11.0			34.0	0.99780	3.51	0.56	
5			13.0			40.0	0.99780	3.51	0.56	
6			15.0			59.0	0.99640	3.30	0.46	
7			15.0			21.0	0.99460	3.39	0.47	
8			9.0			18.0	0.99680	3.36	0.57	
9			17.0			102.0	0.99780	3.35	0.80	
10			15.0			65.0	0.99590	3.28	0.54	
11			17.0			102.0	0.99780	3.35	0.80	
12			16.0			59.0	0.99430	3.58	0.52	
13			9.0			29.0	0.99740	3.26	1.56	
14			52.0			145.0	0.99860	3.16	0.88	
15			51.0			148.0	0.99860	3.17	0.93	
16			35.0			103.0	0.99690	3.30	0.75	
17			16.0			56.0	0.99680	3.11	1.28	
18			6.0			29.0	0.99740	3.38	0.50	
19			17.0			56.0	0.99690	3.04	1.08	
20			29.0			60.0	0.99680	3.39	0.53	
21			23.0			71.0	0.99820	3.52	0.65	
22			10.0			37.0	0.99660	3.17	0.91	
23			9.0			67.0	0.99680	3.17	0.53	
24			21.0			40.0	0.99680	3.43	0.63	
25			11.0			23.0	0.99550	3.34	0.56	
26			4.0			11.0	0.99620	3.28	0.59	
27			10.0			37.0	0.99660	3.17	0.91	
28			14.0			35.0	0.99720	3.47	0.55	
29			8.0			16.0	0.99640	3.38	0.59	
1569			15.0			34.0	0.99396	3.48	0.57	
1570			19.0			35.0	0.99340	3.37	0.93	
1571			15.0			25.0	0.99514	3.44	0.65	
1572			35.0			104.0	0.99632	3.33	0.51	
1573			15.0			50.0	0.99467	3.58	0.67	
1574			23.0			92.0	0.99677	3.39	0.48	
1575			12.0			20.0	0.99474	3.26	0.64	
1576			16.0			29.0	0.99588	3.30	0.78	
1577			13.0			27.0	0.99622	3.54	0.60	
1578			13.0			20.0	0.99540	3.42	0.67	
1579			24.0			32.0	0.99402	3.54	0.60	
1580			9.0			26.0	0.99470	3.36	0.60	
1581			24.0			32.0	0.99402	3.54	0.60	
1582			13.0			27.0	0.99362	3.57	0.50	

1583	32.0	98.0	0.99578	3.33	0.62
1584	24.0	34.0	0.99484	3.29	0.80
1585	22.0	48.0	0.99494	3.30	0.84
1586	34.0	60.0	0.99492	3.34	0.85
1587	18.0	28.0	0.99483	3.55	0.66
1588	34.0	102.0	0.99414	3.27	0.78
1589	29.0	79.0	0.99770	3.29	0.54
1590	26.0	35.0	0.99314	3.32	0.82
1591	16.0	26.0	0.99402	3.67	0.56
1592	29.0	40.0	0.99574	3.42	0.75
1593	28.0	38.0	0.99651	3.42	0.82
1594	32.0	44.0	0.99490	3.45	0.58
1595	39.0	51.0	0.99512	3.52	0.76
1596	29.0	40.0	0.99574	3.42	0.75
1597	32.0	44.0	0.99547	3.57	0.71
1598	18.0	42.0	0.99549	3.39	0.66

	alcohol	quality
0	9.4	5
1	9.8	5
2	9.8	5
3	9.8	6
4	9.4	5
5	9.4	5
6	9.4	5
7	10.0	7
8	9.5	7
9	10.5	5
10	9.2	5
11	10.5	5
12	9.9	5
13	9.1	5
14	9.2	5
15	9.2	5
16	10.5	7
17	9.3	5
18	9.0	4
19	9.2	6
20	9.4	6
21	9.7	5
22	9.5	5
23	9.4	5
24	9.7	6
25	9.3	5
26	9.5	5
27	9.5	5
28	9.4	5
29	9.8	6

```
. . .
          . . .
                     . . .
          11.5
1569
                       6
1570
          12.4
                       6
1571
          11.1
                       6
          9.5
                       5
1572
1573
          12.5
                       6
1574
          10.5
                       6
1575
          11.8
                       6
1576
          10.8
                       6
1577
          11.9
                       6
1578
          11.3
                       6
1579
          11.3
                       5
          11.9
                       6
1580
1581
          11.3
          11.9
                       5
1582
                       5
1583
          9.8
1584
          11.6
                       7
1585
          11.5
                       6
1586
          11.4
                       6
1587
          10.9
                       6
1588
          12.8
                       6
1589
          9.2
                       5
1590
          11.6
                       6
1591
          11.6
                       6
1592
          11.0
                       6
1593
          9.5
                       6
1594
          10.5
                       5
1595
          11.2
1596
          11.0
                       6
1597
          10.2
1598
          11.0
```

```
In [3]: df.shape #Gives the number of rows and columns in a dataframe
```

Out[3]: (1599, 12)

In [4]: df.head() #gives the first five rows of the dataframe

```
Out[4]:
           fixed acidity volatile acidity citric acid residual sugar chlorides \
        0
                     7.4
                                       0.70
                                                    0.00
                                                                      1.9
                                                                               0.076
        1
                     7.8
                                                    0.00
                                                                      2.6
                                       0.88
                                                                               0.098
        2
                     7.8
                                       0.76
                                                    0.04
                                                                      2.3
                                                                               0.092
        3
                    11.2
                                       0.28
                                                    0.56
                                                                      1.9
                                                                               0.075
                     7.4
                                       0.70
                                                    0.00
                                                                      1.9
                                                                               0.076
```

```
free sulfur dioxide total sulfur dioxide density pH sulphates \0 11.0 34.0 0.9978 3.51 0.56
```

1	25.0	67.0	0.9968	3.20	0.68
2	15.0	54.0	0.9970	3.26	0.65
3	17.0	60.0	0.9980	3.16	0.58
4	11.0	34.0	0.9978	3.51	0.56

	alcohol	quality
0	9.4	5
1	9.8	5
2	9.8	5
3	9.8	6
4	9.4	5

0.2 Data Cleaning Steps

In [5]: df.isnull().any() #To check if any of the columns of the dataframe have null values-#this dataframe has no null values

```
Out[5]: fixed acidity
                                 False
        volatile acidity
                                 False
        citric acid
                                 False
        residual sugar
                                 False
        chlorides
                                 False
        free sulfur dioxide
                                 False
        total sulfur dioxide
                                 False
        density
                                 False
        рΗ
                                 False
        sulphates
                                 False
        alcohol
                                 False
        quality
                                 False
        dtype: bool
```

In [218]: df.duplicated() # To check for duplicated rows in the dataframe-#it can be seen that their are quite a few duplicate rows

```
Out[218]: 0
                   False
          1
                   False
          2
                   False
          3
                   False
          5
                   False
          6
                   False
          7
                   False
          8
                   False
          9
                   False
          10
                   False
          12
                   False
          13
                   False
          14
                   False
          15
                   False
          16
                   False
```

```
17
        False
18
        False
19
        False
20
        False
21
        False
22
        False
23
        False
24
        False
25
        False
26
        False
28
        False
29
        False
30
        False
31
        False
32
        False
        . . .
1566
        False
1568
        False
1569
        False
1570
        False
        False
1571
1572
        False
1573
        False
1574
        False
1575
        False
1576
        False
1577
        False
        False
1578
        False
1579
1580
        False
1582
        False
1583
        False
1584
        False
1585
        False
1586
        False
1587
        False
        False
1588
1589
        False
        False
1590
1591
        False
1592
        False
1593
        False
1594
        False
        False
1595
1597
        False
1598
        False
Length: 1359, dtype: bool
```

```
In [7]: np.dtype(df.chlorides)
        np.dtype(df.quality)
                               #to check the data type of a column
Out[7]: dtype('int64')
In [8]: df.dtypes
                    #gives the data types of all columns in a table
Out[8]: fixed acidity
                                 float64
        volatile acidity
                                 float64
        citric acid
                                 float64
        residual sugar
                                 float64
        chlorides
                                 float64
        free sulfur dioxide
                                 float64
        total sulfur dioxide
                                 float64
                                 float64
                                 float64
        рΗ
        sulphates
                                 float64
        alcohol
                                 float64
        quality
                                   int.64
        dtype: object
In [9]: df.columns #displays names of all the columns in the dataframe
Out[9]: Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
               'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',
               'pH', 'sulphates', 'alcohol', 'quality'],
              dtype='object')
In [10]: df.describe() #Generates descriptive statistics that summarize the
         #central tendency, dispersion and shape of a datasets distribution, excluding NaN val
Out [10]:
                fixed acidity volatile acidity citric acid residual sugar
                  1599.000000
                                     1599.000000 1599.000000
                                                                   1599.000000
         count
                     8.319637
                                        0.527821
                                                      0.270976
                                                                      2.538806
         mean
                     1.741096
                                                                      1.409928
         std
                                        0.179060
                                                      0.194801
         min
                                                                      0.900000
                     4.600000
                                        0.120000
                                                      0.000000
         25%
                     7.100000
                                        0.390000
                                                      0.090000
                                                                      1.900000
         50%
                     7.900000
                                        0.520000
                                                      0.260000
                                                                      2.200000
         75%
                     9.200000
                                        0.640000
                                                      0.420000
                                                                      2.600000
                    15.900000
                                        1.580000
                                                      1.000000
                                                                     15.500000
         max
                  chlorides free sulfur dioxide
                                                   total sulfur dioxide
                                                                               density
                1599.000000
                                      1599.000000
                                                             1599.000000
                                                                          1599.000000
         count
                   0.087467
         mean
                                        15.874922
                                                               46.467792
                                                                             0.996747
         std
                   0.047065
                                        10.460157
                                                               32.895324
                                                                             0.001887
         min
                   0.012000
                                         1.000000
                                                                6.000000
                                                                             0.990070
         25%
                   0.070000
                                         7.000000
                                                               22.000000
                                                                             0.995600
         50%
                   0.079000
                                        14.000000
                                                               38.000000
                                                                             0.996750
         75%
                   0.090000
                                        21.000000
                                                               62.000000
                                                                             0.997835
```

```
0.611000
                                          72.000000
                                                                289.000000
                                                                                1.003690
         max
                                 sulphates
                          pН
                                                 alcohol
                                                               quality
                 1599.000000
                               1599.000000
                                             1599.000000
                                                           1599.000000
         count
         mean
                    3.311113
                                  0.658149
                                               10.422983
                                                              5.636023
         std
                    0.154386
                                  0.169507
                                                1.065668
                                                              0.807569
         min
                    2.740000
                                  0.330000
                                                8.400000
                                                              3.000000
         25%
                    3.210000
                                  0.550000
                                                9.500000
                                                              5.000000
         50%
                    3.310000
                                  0.620000
                                               10.200000
                                                              6.000000
         75%
                    3.400000
                                  0.730000
                                               11.100000
                                                              6.000000
                                  2.000000
                    4.010000
                                               14.900000
                                                              8.000000
         max
In [11]: df.quality.min() # to find the minimum value of the target variable(quality)
Out[11]: 3
In [12]: df.quality.max() # to find the maximum value of the target variable(quality)
Out[12]: 8
Replacing the column values of 'quality' with a new set of values
In [13]: df['quality'].replace((3),1,inplace=True)
         df['quality'].replace((4),2,inplace=True)
         df['quality'].replace((5),3,inplace=True)
         df['quality'].replace((6),4,inplace=True)
         df['quality'].replace((7),5,inplace=True)
         df['quality'].replace((8),6,inplace=True)
In [14]: df
Out[14]:
                                                   citric acid residual sugar
                                                                                   chlorides
                fixed acidity
                                volatile acidity
         0
                          7.4
                                            0.700
                                                           0.00
                                                                             1.9
                                                                                       0.076
         1
                          7.8
                                            0.880
                                                           0.00
                                                                             2.6
                                                                                       0.098
         2
                          7.8
                                            0.760
                                                           0.04
                                                                             2.3
                                                                                       0.092
                          11.2
                                                           0.56
                                                                             1.9
         3
                                            0.280
                                                                                       0.075
                          7.4
                                            0.700
                                                                             1.9
         4
                                                           0.00
                                                                                       0.076
         5
                          7.4
                                            0.660
                                                           0.00
                                                                             1.8
                                                                                       0.075
                          7.9
                                                           0.06
                                                                             1.6
                                                                                       0.069
         6
                                            0.600
         7
                          7.3
                                            0.650
                                                           0.00
                                                                             1.2
                                                                                       0.065
         8
                          7.8
                                                           0.02
                                                                             2.0
                                            0.580
                                                                                       0.073
         9
                          7.5
                                                           0.36
                                                                             6.1
                                            0.500
                                                                                       0.071
                          6.7
                                                           0.08
                                                                             1.8
         10
                                            0.580
                                                                                       0.097
         11
                          7.5
                                            0.500
                                                           0.36
                                                                             6.1
                                                                                       0.071
                          5.6
                                                                             1.6
         12
                                            0.615
                                                           0.00
                                                                                       0.089
         13
                          7.8
                                            0.610
                                                           0.29
                                                                             1.6
                                                                                       0.114
         14
                          8.9
                                            0.620
                                                           0.18
                                                                             3.8
                                                                                       0.176
         15
                          8.9
                                            0.620
                                                           0.19
                                                                             3.9
                                                                                       0.170
                          8.5
                                            0.280
                                                           0.56
                                                                             1.8
                                                                                       0.092
         16
```

17	8.1	0.560	0.	28		1.7	0.368
18	7.4	0.590	0.	08		4.4	0.086
19	7.9	0.320	0.	51			0.341
20	8.9	0.220		48			0.077
21	7.6	0.390		31			0.082
22	7.9	0.430		21			0.106
23	8.5	0.490		11			0.084
24	6.9	0.400		14			0.085
25	6.3	0.390		16			0.080
26 26		0.410					
	7.6			24			0.080
27	7.9	0.430		21			0.106
28	7.1	0.710		00			0.080
29	7.8	0.645	0.	00		2.0	0.082
• • •	• • •	• • •		• •			
1569	6.2	0.510		14			0.056
1570	6.4	0.360		53			0.230
1571	6.4	0.380		14			0.038
1572	7.3	0.690	0.	32		2.2	0.069
1573	6.0	0.580	0.	20		2.4	0.075
1574	5.6	0.310	0.	78	1	3.9	0.074
1575	7.5	0.520	0.	40		2.2	0.060
1576	8.0	0.300	0.	63		1.6	0.081
1577	6.2	0.700	0.	15		5.1	0.076
1578	6.8	0.670	0.	15		1.8	0.118
1579	6.2	0.560	0.	09		1.7	0.053
1580	7.4	0.350	0.	33		2.4	0.068
1581	6.2	0.560		09			0.053
1582	6.1	0.715		10			0.053
1583	6.2	0.460		29			0.074
1584	6.7	0.320		44			0.061
1585	7.2	0.390		44			0.066
1586	7.5	0.310		41			0.065
1587	5.8	0.610		11			0.066
1588	7.2	0.660		33			0.068
1589	6.6	0.725		20			0.073
1590	6.3	0.550		15			0.077
1591	5.4	0.740		09			0.089
1592	6.3	0.740		13			0.003
1593	6.8	0.620		08			0.068
1594	6.2	0.600		08			0.090
1595	5.9	0.550		10			0.062
1596	6.3	0.510		13			0.076
1597	5.9	0.645		12			0.075
1598	6.0	0.310	0.	47		3.6	0.067
_	free sulfur dioxide	total sulfur		· ·	_	_	
0	11.0		34.0	0.99780	3.51	0.5	
7	0F 0		<i>C</i> 7	0.0000	2 00	0.6	

67.0 0.99680 3.20

0.68

25.0

2	15.0	54.0	0.99700	3.26	0.65
3	17.0	60.0	0.99800	3.16	0.58
4	11.0	34.0	0.99780	3.51	0.56
5	13.0	40.0	0.99780	3.51	0.56
6	15.0	59.0	0.99640	3.30	0.46
7	15.0	21.0	0.99460	3.39	0.47
8	9.0	18.0	0.99680	3.36	0.57
9	17.0	102.0	0.99780	3.35	0.80
10	15.0	65.0	0.99590	3.28	0.54
11	17.0	102.0	0.99780	3.35	0.80
12	16.0	59.0	0.99430	3.58	0.52
13	9.0	29.0	0.99740	3.26	1.56
14	52.0	145.0	0.99860	3.16	0.88
15	51.0	148.0	0.99860	3.17	0.93
16	35.0	103.0		3.30	0.75
17	16.0	56.0	0.99680	3.11	1.28
18	6.0	29.0	0.99740	3.38	0.50
19	17.0	56.0		3.04	1.08
20	29.0	60.0	0.99680	3.39	0.53
21	23.0	71.0	0.99820	3.52	0.65
22	10.0	37.0		3.17	0.91
23	9.0	67.0		3.17	0.53
24	21.0	40.0	0.99680	3.43	0.63
25	11.0	23.0	0.99550	3.34	0.56
26	4.0	11.0	0.99620	3.28	0.59
27	10.0	37.0	0.99660	3.17	0.91
28	14.0	35.0	0.99720	3.47	0.55
29	8.0	16.0		3.38	0.59
 1569	 15.0	34.0	0.99396	3.48	 0.57
1570 1571	19.0 15.0	35.0	0.99340 0.99514	3.37	0.93
		25.0		3.44	0.65
1572	35.0		0.99632	3.33	0.51
1573	15.0	50.0	0.99467	3.58	0.67
1574	23.0	92.0	0.99677	3.39	0.48
1575	12.0	20.0	0.99474	3.26	0.64
1576	16.0	29.0	0.99588	3.30	0.78
1577	13.0	27.0	0.99622	3.54	0.60
1578	13.0	20.0	0.99540	3.42	0.67
1579	24.0	32.0	0.99402	3.54	0.60
1580	9.0	26.0	0.99470	3.36	0.60
1581	24.0	32.0	0.99402	3.54	0.60
1582	13.0	27.0	0.99362	3.57	0.50
1583	32.0	98.0	0.99578	3.33	0.62
1584	24.0	34.0	0.99484	3.29	0.80
1585	22.0	48.0	0.99494	3.30	0.84
1586	34.0	60.0	0.99492	3.34	0.85
1587	18.0	28.0	0.99483	3.55	0.66

1588	34.0	102.0	0.99414	3.27	0.78
1589	29.0	79.0	0.99770	3.29	0.54
1590	26.0	35.0	0.99314	3.32	0.82
1591	16.0	26.0	0.99402	3.67	0.56
1592	29.0	40.0	0.99574	3.42	0.75
1593	28.0	38.0	0.99651	3.42	0.82
1594	32.0	44.0	0.99490	3.45	0.58
1595	39.0	51.0	0.99512	3.52	0.76
1596	29.0	40.0	0.99574	3.42	0.75
1597	32.0	44.0	0.99547	3.57	0.71
1598	18.0	42.0	0.99549	3.39	0.66

	alcohol	quality
0	9.4	3
1	9.8	3
2	9.8	3
3	9.8	4
4	9.4	3
5	9.4	3
6	9.4	3
7	10.0	5
8	9.5	5
9	10.5	3
10	9.2	3
11	10.5	3
12	9.9	3
13	9.1	3
14	9.2	3
15	9.2	3
16	10.5	5
17	9.3	3
18	9.0	2
19	9.2	4
20	9.4	4
21	9.7	3
22	9.5	3
23	9.4	3
24	9.7	4
25	9.3	3
26	9.5	3
27	9.5	3
28	9.4	3
29	9.8	4
		• • •
1569	11.5	4
1570	12.4	4
1571	11.1	4
1572	9.5	3

```
1573
         12.5
                      4
1574
         10.5
                      4
1575
         11.8
                      4
1576
         10.8
                      4
                      4
1577
         11.9
1578
         11.3
                      4
1579
         11.3
                      3
1580
         11.9
                      4
1581
         11.3
                      3
1582
         11.9
                      3
1583
          9.8
                      3
1584
         11.6
                      5
                      4
1585
         11.5
                      4
1586
         11.4
1587
         10.9
                      4
                      4
1588
         12.8
1589
          9.2
                      3
1590
         11.6
                      4
1591
         11.6
                      4
1592
         11.0
                      4
1593
          9.5
                      4
1594
         10.5
                      3
1595
         11.2
                      4
1596
         11.0
                      4
1597
         10.2
                      3
1598
         11.0
                      4
```

[1599 rows x 12 columns]

```
In [15]: df.quality.min() #new minimum of target variable
Out[15]: 1
In [16]: df.quality.max() #new maximum of target variable
Out[16]: 6
In [17]: df.shape #to get the number of rows and columns originally
Out[17]: (1599, 12)
In [18]: df=df.drop_duplicates() #to drop the duplicate rows
In [19]: df.shape #to get the number of rows and columns after removing duplicates
Out[19]: (1359, 12)
In [20]: df
```

Out[20]:	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides \
0	7.4	0.700	0.00	1.9	0.076
1	7.8	0.880	0.00	2.6	0.098
2	7.8	0.760	0.04	2.3	0.092
3	11.2	0.280	0.56	1.9	0.075
5	7.4	0.660	0.00	1.8	0.075
6	7.9	0.600	0.06	1.6	0.069
7	7.3	0.650	0.00	1.2	0.065
8	7.8	0.580	0.02	2.0	0.073
9	7.5	0.500	0.36	6.1	0.071
10	6.7	0.580	0.08	1.8	0.097
12	5.6	0.615	0.00	1.6	0.089
13	7.8	0.610	0.29	1.6	0.114
14	8.9	0.620	0.18	3.8	0.176
15	8.9	0.620	0.19	3.9	0.170
16	8.5	0.280	0.56	1.8	0.092
17	8.1	0.560	0.28	1.7	0.368
18	7.4	0.590	0.08	4.4	0.086
19	7.9	0.320	0.51	1.8	0.341
20	8.9	0.220	0.48	1.8	0.077
21	7.6	0.390	0.31	2.3	0.082
22	7.9	0.430	0.21	1.6	0.106
23	8.5	0.490	0.11	2.3	0.084
24	6.9	0.400	0.14	2.4	0.085
25	6.3	0.390	0.16	1.4	0.080
26	7.6	0.410	0.24	1.8	0.080
28	7.1	0.710	0.00	1.9	0.080
29	7.8	0.645	0.00	2.0	0.082
30	6.7	0.675	0.07	2.4	0.089
31	6.9	0.685	0.00	2.5	0.105
32	8.3	0.655	0.12	2.3	0.083
1566	6.7	0.160	0.64	2.1	0.059
1568	7.0	0.560	0.13	1.6	0.077
1569	6.2	0.510	0.14	1.9	0.056
1570	6.4	0.360	0.53	2.2	0.230
1571	6.4	0.380	0.14	2.2	0.038
1572	7.3	0.690	0.32	2.2	0.069
1573	6.0	0.580	0.20	2.4	0.075
1574	5.6	0.310	0.78	13.9	0.074
1575	7.5	0.520	0.40	2.2	0.060
1576	8.0	0.300	0.63	1.6	0.081
1577	6.2	0.700	0.15	5.1	0.076
1578	6.8	0.670	0.15	1.8	0.118
1579	6.2	0.560	0.09	1.7	0.053
1580	7.4	0.350	0.33	2.4	0.068
1582	6.1	0.715	0.10	2.6	0.053
1583	6.2	0.460	0.29	2.1	0.074

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595	6.7 7.2 7.5 5.8 7.2 6.6 6.3 5.4 6.3 6.8 6.2 5.9	0.320 0.390 0.310 0.610 0.660 0.725 0.550 0.740 0.510 0.620 0.600 0.550	0. 0. 0. 0. 0. 0. 0.	44 44 41 11 33 20 15 09 13 08 08		2.4 0.061 2.6 0.066 2.4 0.065 1.8 0.066 2.5 0.068 7.8 0.073 1.7 0.089 2.3 0.076 1.9 0.068 2.0 0.090 2.2 0.062
1597 1598	5.9 6.0	0.645 0.310		12 47		2.0 0.075 3.6 0.067
0 1 2	free sulfur dioxide 11.0 25.0 15.0		dioxide 34.0 67.0 54.0	density 0.99780 0.99680 0.99700	pH 3.51 3.20 3.26	sulphates \ 0.56 0.68 0.65
3 5 6 7	17.0 13.0 15.0 15.0		60.0 40.0 59.0 21.0	0.99800 0.99780 0.99640 0.99460	3.16 3.51 3.30 3.39	0.58 0.56 0.46 0.47
8 9 10 12	9.0 17.0 15.0 16.0		18.0 102.0 65.0 59.0	0.99680 0.99780 0.99590 0.99430	3.36 3.35 3.28 3.58	0.57 0.80 0.54 0.52
13 14 15 16	9.0 52.0 51.0 35.0		29.0 145.0 148.0 103.0	0.99740 0.99860 0.99860 0.99690	3.26 3.16 3.17 3.30	1.56 0.88 0.93 0.75
17 18 19 20	16.0 6.0 17.0 29.0		56.0 29.0	0.99680 0.99740 0.99690 0.99680	3.11 3.38 3.04	1.28 0.50 1.08 0.53
21 22 23	23.0 10.0 9.0		71.0 37.0 67.0	0.99820 0.99660 0.99680	3.52 3.17 3.17	0.65 0.91 0.53
24 25 26 28	21.0 11.0 4.0 14.0		40.0 23.0 11.0 35.0	0.99680 0.99550 0.99620 0.99720	3.34 3.28	0.63 0.56 0.59 0.55
29 30 31 32	8.0 17.0 22.0 15.0		16.0 82.0 37.0 113.0	0.99640 0.99580 0.99660 0.99660	3.38 3.35 3.46	0.59 0.54 0.57 0.66
 1566	24.0		 52.0	0.99494	3.34	0.71

1568	25.0	42.0	0.99629	3.34	0.59
1569	15.0	34.0	0.99396	3.48	0.57
1570	19.0	35.0	0.99340	3.37	0.93
1571	15.0	25.0	0.99514	3.44	0.65
1572	35.0	104.0	0.99632	3.33	0.51
1573	15.0	50.0	0.99467	3.58	0.67
1574	23.0	92.0	0.99677	3.39	0.48
1575	12.0	20.0	0.99474	3.26	0.64
1576	16.0	29.0	0.99588	3.30	0.78
1577	13.0	27.0	0.99622	3.54	0.60
1578	13.0	20.0	0.99540	3.42	0.67
1579	24.0	32.0	0.99402	3.54	0.60
1580	9.0	26.0	0.99470	3.36	0.60
1582	13.0	27.0	0.99362	3.57	0.50
1583	32.0	98.0	0.99578	3.33	0.62
1584	24.0	34.0	0.99484	3.29	0.80
1585	22.0	48.0	0.99494	3.30	0.84
1586	34.0	60.0	0.99492	3.34	0.85
1587	18.0	28.0	0.99483	3.55	0.66
1588	34.0	102.0	0.99414	3.27	0.78
1589	29.0	79.0	0.99770	3.29	0.54
1590	26.0	35.0	0.99314	3.32	0.82
1591	16.0	26.0	0.99402	3.67	0.56
1592	29.0	40.0	0.99574	3.42	0.75
1593	28.0	38.0	0.99651	3.42	0.82
1594	32.0	44.0	0.99490	3.45	0.58
1595	39.0	51.0	0.99512	3.52	0.76
1597	32.0	44.0	0.99547	3.57	0.71
1598	18.0	42.0	0.99549	3.39	0.66

	alcohol	quality
0	9.4	3
1	9.8	3
2	9.8	3
3	9.8	4
5	9.4	3
6	9.4	3
7	10.0	5
8	9.5	5
9	10.5	3
10	9.2	3
12	9.9	3
13	9.1	3
14	9.2	3
15	9.2	3
16	10.5	5
17	9.3	3
18	9.0	2

19	9.2	4
20	9.4	4
21	9.7	3
22	9.5	3
23	9.4	3
24	9.7	4
25	9.3	3
26	9.5	3
28	9.4	3
29	9.8	4
30	10.1	3
31	10.6	4
32	9.8	3
1566	11.2	4
1568	9.2	3
1569	11.5	4
1570	12.4	4
1571	11.1	4
1572	9.5	3
1573	12.5	4
1574	10.5	4
1575	11.8	4
1576	10.8	4
1577	11.9	4
1578	11.3	4
1579	11.3	3
1580	11.9	4
1582	11.9	3
1583	9.8	3
1584	11.6	5
1585	11.5	4
1586	11.4	4
1587	10.9	4
1588	12.8	4
1589	9.2	3
1590	11.6	4
1591	11.6	4
1592	11.0	4
1593	9.5	4
1594	10.5	3
1595	11.2	4
1597	10.2	3
1598	11.0	4

In [21]: df.quality.mode()

Out[21]: 0 3

dtype: int64

In [22]: df.quality.hist()

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x106cb6dd8>

In [23]: df.loc[df['quality'] == 1] #to locate rows with particular values

Out[23]:	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides \
459	11.6	0.580	0.66	2.20	0.074
517	10.4	0.610	0.49	2.10	0.200
690	7.4	1.185	0.00	4.25	0.097
832	10.4	0.440	0.42	1.50	0.145
899	8.3	1.020	0.02	3.40	0.084
1299	7.6	1.580	0.00	2.10	0.137
1374	6.8	0.815	0.00	1.20	0.267
1469	7.3	0.980	0.05	2.10	0.061
1478	7.1	0.875	0.05	5.70	0.082
1505	6.7	0.760	0.02	1.80	0.078

	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	\
459	10.0	47.0	1.00080	3.25	0.57	
517	5.0	16.0	0.99940	3.16	0.63	
690	5.0	14.0	0.99660	3.63	0.54	
832	34.0	48.0	0.99832	3.38	0.86	

```
899
                               6.0
                                                    11.0 0.99892 3.48
                                                                              0.49
        1299
                               5.0
                                                     9.0 0.99476 3.50
                                                                              0.40
        1374
                              16.0
                                                    29.0 0.99471
                                                                   3.32
                                                                              0.51
        1469
                              20.0
                                                    49.0 0.99705 3.31
                                                                              0.55
        1478
                               3.0
                                                    14.0 0.99808 3.40
                                                                              0.52
                               6.0
                                                    12.0 0.99600 3.55
                                                                              0.63
        1505
               alcohol quality
        459
                  9.00
                  8.40
                              1
        517
        690
                 10.70
                              1
        832
                 9.90
                              1
        899
                 11.00
                              1
        1299
                 10.90
                              1
        1374
                 9.80
                              1
        1469
                 9.70
                              1
         1478
                 10.20
                              1
        1505
                 9.95
                              1
In [233]: labels = '3','4','5','2','6','1'
          colors = ['red','green','yellow','blue','orange', 'purple']
          plt.pie(df["quality"].value_counts(), labels=labels, colors=colors, autopct='%0.2f%%
          plt.axis('equal')
          fig = plt.gcf()
          fig.set_size_inches(8,8)
          plt.show()
```


In [228]: df.groupby('quality').count()

Out[228]:		fixed acidit	ty volatil	e acidity	citr	ic acid	residua	l sugar	\	
	quality									
	1	:	10	10		10		10		
	2	į	53	53		53		53		
	3	57	77	577		577		577		
	4	53	35	535		535		535		
	5	16	67	167		167		167		
	6	<u>:</u>	17	17		17		17		
		chlorides i	free sulfur	dioxide	total	sulfur	dioxide	density	рН	\
	quality									
	1	10		10			10	10	10	

2		53				53		53		53	53	
3		577			5	77		577		577	577	
4		535			5	35		535		535	535	
5		167			1	.67		167		167	167	
6		17				17		17		17	17	
	guln	hates		ca	rs	cl	free_sd	total_sd	d	р	sul	\
quality	Sulp	naces	• • •	Ca	15	CI	1166_50	totar_su	u	Р	Sul	`
quarrey 1		10	• • •	10	10	10	10	10	10	10	10	
2		53	• • •	53	53	53	53	53	53	53	53	
3			• • •							577		
		577	• • •	577	577	577	577	577	577		577	
4		535	• • •	535	535	535	535	535	535	535	535	
5		167	• • •	167	167	167	167	167	167	167	167	
6		17	• • •	17	17	17	17	17	17	17	17	
	al	status										
quality												
1	10	10										
2	53	53										
3	577	577										
4	535	535										
5	167	167										
6	17	17										

[6 rows x 23 columns]

In [224]: df.sort_values(['volatile acidity'],ascending=True, inplace=False)

Out[224]:	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	\
948	8.9	0.120	0.45	1.80	0.075	
1286	7.1	0.160	0.44	2.50	0.068	
1566	6.7	0.160	0.64	2.10	0.059	
269	11.5	0.180	0.51	4.00	0.104	
1017	8.0	0.180	0.37	0.90	0.049	
1156	8.5	0.180	0.51	1.75	0.071	
1230	7.7	0.180	0.34	2.70	0.066	
1429	7.9	0.180	0.40	2.20	0.049	
1509	7.9	0.180	0.40	1.80	0.062	
301	11.1	0.180	0.48	1.50	0.068	
1087	7.9	0.190	0.42	1.60	0.057	
1131	5.9	0.190	0.21	1.70	0.045	
291	11.0	0.200	0.48	2.00	0.343	
1459	7.9	0.200	0.35	1.70	0.054	
1145	8.2	0.200	0.43	2.50	0.076	
873	9.1	0.210	0.37	1.60	0.067	
243	15.0	0.210	0.44	2.20	0.075	
354	6.1	0.210	0.40	1.40	0.066	
955	8.5	0.210	0.52	1.90	0.090	

518 10.9 0.210 0.49 2.80 0.088 1490 7.1 0.220 0.39 1.80 0.065 20 8.9 0.220 0.36 1.90 0.064 20 8.9 0.220 0.48 1.80 0.077 530 9.1 0.220 0.24 2.10 0.078 1233 10.2 0.230 0.37 2.20 0.067 454 7.0 0.230 0.37 1.80 0.046 1426 7.7 0.230 0.37 1.80 0.069 1060 11.6 0.230 0.42 1.90 0.069 1060 11.6 0.230 0.57 1.80 0.04 1060 11.6 0.230 0.57 1.80 0.04 1060 11.6 0.230 0.57 1.80 0.04 1040 7.4 0.965 0.00 2.00 0.04 2.0 0.83 7.0									
1490 7.1 0.220 0.36 1.80 0.039 926 8.6 0.220 0.36 1.90 0.064 20 8.9 0.220 0.48 1.80 0.077 530 9.1 0.220 0.24 2.10 0.078 1233 10.2 0.230 0.37 2.20 0.057 454 7.0 0.230 0.40 1.60 0.063 1426 7.7 0.230 0.42 1.90 0.069 1060 11.6 0.230 0.57 1.80 0.074 1040 7.4 0.966 0.20 2.00 0.047 1040 7.4 0.966 0.20 2.20 0.088 735 7.7 0.966 0.10 2.10 0.112 261 7.0 0.975 0.04 2.00 0.087 756 6.3 0.980 0.01 2.00 0.057 1469 7.3 0.980 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
925 8.6 0.220 0.36 1.90 0.064 20 8.9 0.220 0.48 1.80 0.077 1233 10.2 0.230 0.37 2.20 0.057 454 7.0 0.230 0.40 1.60 0.063 1426 7.7 0.230 0.42 1.80 0.046 1106 8.2 0.230 0.57 1.80 0.046 1106 8.2 0.230 0.57 1.80 0.046 1000 11.6 0.230 0.57 1.80 0.046 1040 7.4 0.965 0.00 2.20 0.087 735 7.7 0.960 0.20 2.00 0.047 1040 7.4 0.965 0.00 2.20 0.088 735 7.7 0.965 0.00 2.20 0.087 756 6.3 0.980 0.01 2.00 0.057 1469 7.3 0.980 <td>1143</td> <td>7.0</td> <td>0.220</td> <td>0.</td> <td>30</td> <td>1</td> <td>.80</td> <td>0.</td> <td>065</td>	1143	7.0	0.220	0.	30	1	.80	0.	065
20 8.9 0.220 0.48 1.80 0.077 530 9.1 0.220 0.24 2.10 0.078 454 7.0 0.230 0.40 1.60 0.063 1426 7.7 0.230 0.37 1.80 0.046 1106 8.2 0.230 0.57 1.80 0.069 1060 11.6 0.230 0.57 1.80 0.069 1060 11.6 0.230 0.57 1.80 0.069 1060 11.6 0.230 0.57 1.80 0.069 1060 11.6 0.230 0.57 1.80 0.069 1070 0.966 0.00 2.00 0.047 1040 7.4 0.965 0.00 2.20 0.088 735 7.7 0.965 0.10 2.10 0.112 261 7.0 0.975 0.04 2.00 0.087 756 6.3 0.980 0.32	1490	7.1	0.220	0.	49	1	.80	0.	039
530 9.1 0.220 0.24 2.10 0.078 1233 10.2 0.230 0.37 2.20 0.057 454 7.0 0.230 0.40 1.60 0.063 1426 7.7 0.230 0.42 1.90 0.069 1060 11.6 0.230 0.57 1.80 0.074 1060 11.6 0.230 0.57 1.80 0.074 1040 7.4 0.960 0.20 2.00 0.047 1040 7.4 0.965 0.00 2.20 0.088 735 7.7 0.965 0.01 2.10 0.112 261 7.0 0.975 0.04 2.00 0.087 756 6.3 0.980 0.01 2.00 0.057 1469 7.3 0.980 0.05 2.10 0.061 755 7.2 1.000 0.05 2.10 0.051 1469 7.3 0.986<	925	8.6	0.220	0.	36	1	.90	0.	064
1233 10.2 0.230 0.37 2.20 0.057 454 7.0 0.230 0.40 1.60 0.063 1426 7.7 0.230 0.37 1.80 0.069 1106 8.2 0.230 0.57 1.80 0.074 <td>20</td> <td>8.9</td> <td>0.220</td> <td>0.</td> <td>48</td> <td>1</td> <td>.80</td> <td>0.</td> <td>077</td>	20	8.9	0.220	0.	48	1	.80	0.	077
454 7.0 0.230 0.40 1.60 0.063 1426 7.7 0.230 0.37 1.80 0.046 1106 8.2 0.230 0.42 1.90 0.069 1060 11.6 0.230 0.57 1.80 0.074 1040 7.4 0.965 0.00 2.20 0.088 735 7.7 0.965 0.10 2.10 0.112 261 7.0 0.975 0.04 2.00 0.087 756 6.3 0.980 0.01 2.00 0.057 684 9.8 0.980 0.92 2.30 0.078 756 6.3 0.980 0.05 2.10 0.057 684 9.8 0.980 0.05 2.10 0.061 775 7.2 1.000 0.00 3.00 0.012 234 8.2 1.000	530	9.1	0.220	0.	24	2	.10	0.	078
454 7.0 0.230 0.40 1.60 0.063 1426 7.7 0.230 0.37 1.80 0.046 1106 8.2 0.230 0.42 1.90 0.069 1060 11.6 0.230 0.57 1.80 0.074 1040 7.4 0.965 0.00 2.20 0.088 735 7.7 0.965 0.10 2.10 0.112 261 7.0 0.975 0.04 2.00 0.087 756 6.3 0.980 0.01 2.00 0.057 684 9.8 0.980 0.92 2.30 0.078 756 6.3 0.980 0.05 2.10 0.057 684 9.8 0.980 0.05 2.10 0.061 775 7.2 1.000 0.00 3.00 0.012 234 8.2 1.000	1233	10.2	0.230	0.	37	2	.20	0.	057
1426 7.7 0.230 0.37 1.80 0.046 1106 8.2 0.230 0.42 1.90 0.069 1060 11.6 0.230 0.57 1.80 0.074									
1106 8.2 0.230 0.42 1.90 0.069 1060 11.6 0.230 0.57 1.80 0.074									
1060 11.6 0.230 0.57 1.80 0.074									
1 1									
422 7.7 0.960 0.20 2.00 0.047 1040 7.4 0.965 0.00 2.20 0.088 735 7.7 0.965 0.10 2.10 0.112 261 7.0 0.975 0.04 2.00 0.087 756 6.3 0.980 0.01 2.00 0.057 684 9.8 0.980 0.32 2.30 0.078 1469 7.3 0.980 0.05 2.10 0.061 775 7.2 1.000 0.00 3.00 0.102 234 8.2 1.000 0.09 2.30 0.065 1012 7.7 1.005 0.15 2.10 0.102 861 5.8 1.010 0.66 2.00 0.033 700 10.6 1.020 0.04 1.40 0.045 899 8.3 1.020 0.04 1.40 0.045 899 8.3 1.020						_		٠.	
1040 7.4 0.965 0.00 2.20 0.088 735 7.7 0.965 0.10 2.10 0.112 261 7.0 0.975 0.04 2.00 0.057 756 6.3 0.980 0.01 2.00 0.057 684 9.8 0.980 0.32 2.30 0.078 1469 7.3 0.980 0.05 2.10 0.061 775 7.2 1.000 0.00 3.00 0.102 234 8.2 1.000 0.09 2.30 0.065 1012 7.7 1.005 0.15 2.10 0.102 861 5.8 1.010 0.66 2.00 0.039 1261 6.3 1.020 0.04 1.40 0.045 94 5.0 1.020 0.43 2.90 0.076 94 5.0 1.020 0.43 2.80 0.080 705 8.4 1.025						2		0	
735 7.7 0.965 0.10 2.10 0.112 261 7.0 0.975 0.04 2.00 0.087 756 6.3 0.980 0.01 2.00 0.057 1469 7.3 0.980 0.05 2.10 0.061 775 7.2 1.000 0.00 3.00 0.102 234 8.2 1.000 0.09 2.30 0.065 1012 7.7 1.005 0.15 2.10 0.102 861 5.8 1.010 0.66 2.00 0.039 1261 6.3 1.020 0.00 2.00 0.083 700 10.6 1.020 0.43 2.90 0.076 94 5.0 1.020 0.43 2.90 0.076 94 5.0 1.020 0.43 2.80 0.080 705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040									
261 7.0 0.975 0.04 2.00 0.087 756 6.3 0.980 0.01 2.00 0.057 684 9.8 0.980 0.32 2.30 0.078 1469 7.3 0.980 0.05 2.10 0.061 775 7.2 1.000 0.09 3.00 0.102 234 8.2 1.000 0.09 2.30 0.065 1012 7.7 1.005 0.15 2.10 0.102 861 5.8 1.010 0.66 2.00 0.039 1261 6.3 1.020 0.00 2.00 0.083 700 10.6 1.020 0.43 2.90 0.076 94 5.0 1.020 0.02 3.40 0.084 710 10.6 1.025 0.43 2.80 0.080 705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040									
756 6.3 0.980 0.01 2.00 0.057 684 9.8 0.980 0.32 2.30 0.078 1469 7.3 0.980 0.05 2.10 0.061 775 7.2 1.000 0.09 3.00 0.102 234 8.2 1.000 0.09 2.30 0.065 1012 7.7 1.005 0.15 2.10 0.102 861 5.8 1.010 0.66 2.00 0.039 1261 6.3 1.020 0.00 2.00 0.083 700 10.6 1.020 0.043 2.90 0.076 94 5.0 1.020 0.043 2.90 0.076 899 8.3 1.020 0.02 3.40 0.084 710 10.6 1.025 0.43 2.80 0.080 705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040									
684 9.8 0.980 0.32 2.30 0.078 1469 7.3 0.980 0.05 2.10 0.061 775 7.2 1.000 0.00 3.00 0.102 234 8.2 1.000 0.09 2.30 0.065 1012 7.7 1.005 0.15 2.10 0.102 861 5.8 1.010 0.66 2.00 0.039 1261 6.3 1.020 0.00 2.00 0.083 700 10.6 1.020 0.43 2.90 0.076 94 5.0 1.020 0.04 1.40 0.048 899 8.3 1.020 0.04 1.40 0.048 710 10.6 1.025 0.43 2.80 0.084 710 10.6 1.025 0.43 2.80 0.084 714 7.9 1.040 0.08 2.30 0.067 134 7.9 1.040									
1469 7.3 0.980 0.05 2.10 0.061 775 7.2 1.000 0.00 3.00 0.102 234 8.2 1.000 0.09 2.30 0.065 1012 7.7 1.005 0.15 2.10 0.102 861 5.8 1.010 0.66 2.00 0.039 1261 6.3 1.020 0.00 2.00 0.083 700 10.6 1.020 0.43 2.90 0.076 94 5.0 1.020 0.04 1.40 0.045 899 8.3 1.020 0.02 3.40 0.084 710 10.6 1.025 0.43 2.80 0.080 705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040 0.08 2.30 0.067 134 7.9 1.040 0.024 1.60 0.055 120 7.3 1.070									
775 7.2 1.000 0.00 3.00 0.102 234 8.2 1.000 0.09 2.30 0.065 1012 7.7 1.005 0.15 2.10 0.102 861 5.8 1.010 0.66 2.00 0.039 1261 6.3 1.020 0.04 2.90 0.076 94 5.0 1.020 0.04 1.40 0.045 899 8.3 1.020 0.02 3.40 0.084 710 10.6 1.025 0.43 2.80 0.080 705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040 0.08 2.30 0.067 134 7.9 1.040 0.05 2.20 0.084 553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090									
234 8.2 1.000 0.09 2.30 0.065 1012 7.7 1.005 0.15 2.10 0.102 861 5.8 1.010 0.66 2.00 0.039 1261 6.3 1.020 0.00 2.00 0.083 700 10.6 1.020 0.43 2.90 0.076 94 5.0 1.020 0.04 1.40 0.045 899 8.3 1.020 0.02 3.40 0.084 710 10.6 1.025 0.43 2.80 0.080 705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040 0.08 2.30 0.067 134 7.9 1.040 0.05 2.20 0.084 553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1012 7.7 1.005 0.15 2.10 0.102 861 5.8 1.010 0.66 2.00 0.039 1261 6.3 1.020 0.00 2.00 0.083 700 10.6 1.020 0.43 2.90 0.076 94 5.0 1.020 0.04 1.40 0.048 899 8.3 1.020 0.02 3.40 0.084 710 10.6 1.025 0.43 2.80 0.080 705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040 0.08 2.30 0.067 134 7.9 1.040 0.05 2.20 0.084 553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115									
861 5.8 1.010 0.66 2.00 0.039 1261 6.3 1.020 0.00 2.00 0.083 700 10.6 1.020 0.43 2.90 0.076 94 5.0 1.020 0.04 1.40 0.045 899 8.3 1.020 0.02 3.40 0.084 710 10.6 1.025 0.43 2.80 0.080 705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040 0.08 2.30 0.067 134 7.9 1.040 0.05 2.20 0.084 553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130									
1261 6.3 1.020 0.00 2.00 0.083 700 10.6 1.020 0.43 2.90 0.076 94 5.0 1.020 0.04 1.40 0.045 899 8.3 1.020 0.02 3.40 0.084 710 10.6 1.025 0.43 2.80 0.080 705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040 0.08 2.30 0.067 134 7.9 1.040 0.05 2.20 0.084 553 5.0 1.040 0.05 2.20 0.084 553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.185 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
700 10.6 1.020 0.43 2.90 0.076 94 5.0 1.020 0.04 1.40 0.045 899 8.3 1.020 0.02 3.40 0.084 710 10.6 1.025 0.43 2.80 0.080 705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040 0.08 2.30 0.067 134 7.9 1.040 0.05 2.20 0.084 553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.99 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.185 0.00 4.25 0.097 672 9.8 1.240	861	5.8	1.010	0.	66	2	.00	0.	039
94 5.0 1.020 0.04 1.40 0.045 899 8.3 1.020 0.02 3.40 0.084 710 10.6 1.025 0.43 2.80 0.080 705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040 0.08 2.30 0.067 134 7.9 1.040 0.05 2.20 0.084 553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330	1261	6.3	1.020	0.	00	2	.00	0.	083
899 8.3 1.020 0.02 3.40 0.084 710 10.6 1.025 0.43 2.80 0.080 705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040 0.08 2.30 0.067 134 7.9 1.040 0.05 2.20 0.084 553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.180 0.21 1.90 0.083 690 7.4 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 <td>700</td> <td>10.6</td> <td>1.020</td> <td>0.</td> <td>43</td> <td>2</td> <td>.90</td> <td>0.</td> <td>076</td>	700	10.6	1.020	0.	43	2	.90	0.	076
710 10.6 1.025 0.43 2.80 0.080 705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040 0.08 2.30 0.067 134 7.9 1.040 0.05 2.20 0.084 553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.180 0.21 1.90 0.083 690 7.4 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.80 0.082 1299 7.6 1.580	94	5.0	1.020	0.	04	1	.40	0.	045
705 8.4 1.035 0.15 6.00 0.073 1467 6.7 1.040 0.08 2.30 0.067 134 7.9 1.040 0.05 2.20 0.084 553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.180 0.21 1.90 0.083 690 7.4 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.70 0.081 127 8.1 1.580 0.00 1.80 0.082 1299 7.6 1.580 0.00 2.10 0.137 free sulfur dioxide total sulfur dioxide	899	8.3	1.020	0.	02	3	.40	0.	084
1467 6.7 1.040 0.08 2.30 0.067 134 7.9 1.040 0.05 2.20 0.084 553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.180 0.21 1.90 0.083 690 7.4 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.70 0.081 127 8.1 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 9.425 0.137 free sulfur dioxide total sulfur dioxide density pH sulphates \ 948	710	10.6	1.025	0.	43	2	.80	0.	080
134 7.9 1.040 0.05 2.20 0.084 553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.180 0.21 1.90 0.083 690 7.4 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.70 0.081 127 8.1 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 pH sulphates \ 948 10.0 21.0 0.99552 3.41 0.76 1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0	705	8.4	1.035	0.	15	6	.00	0.	073
553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.180 0.21 1.90 0.083 690 7.4 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.70 0.081 127 8.1 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 2.10 0.137 free sulfur dioxide total sulfur dioxide density pH sulphates \ 948 10.0 21.0 0.99552 3.41 0.76 1286	1467	6.7	1.040	0.	08	2	.30	0.	067
553 5.0 1.040 0.24 1.60 0.050 120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.180 0.21 1.90 0.083 690 7.4 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.70 0.081 127 8.1 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 2.10 0.137 free sulfur dioxide total sulfur dioxide density pH sulphates \ 948 10.0 21.0 0.99552 3.41 0.76 1286	134	7.9	1.040	0.	05	2	.20	0.	084
120 7.3 1.070 0.09 1.70 0.178 199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.180 0.21 1.90 0.083 690 7.4 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.70 0.081 127 8.1 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 2.10 0.137 948 10.0 21.0 0.99552 3.41 0.76 1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0 0.99494 3.34 0.71		5.0				1	.60		
199 6.9 1.090 0.06 2.10 0.061 724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.180 0.21 1.90 0.083 690 7.4 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.70 0.081 127 8.1 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 2.10 0.137 948 10.0 21.0 0.99552 3.41 0.76 1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0 0.99494 3.34 0.71									
724 7.5 1.115 0.10 3.10 0.086 38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.180 0.21 1.90 0.083 690 7.4 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.70 0.081 127 8.1 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 2.10 0.137 free sulfur dioxide total sulfur dioxide density pH sulphates \ 948 10.0 21.0 0.99552 3.41 0.76 1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0 0.99494 3.34 0.71									
38 5.7 1.130 0.09 1.50 0.172 1312 8.0 1.180 0.21 1.90 0.083 690 7.4 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.70 0.081 127 8.1 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 2.10 0.137 free sulfur dioxide total sulfur dioxide density pH sulphates \ 948 10.0 21.0 0.99552 3.41 0.76 1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0 0.99494 3.34 0.71									
1312 8.0 1.180 0.21 1.90 0.083 690 7.4 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.70 0.081 127 8.1 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 2.10 0.137 948 10.0 21.0 0.99552 3.41 0.76 1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0 0.99494 3.34 0.71									
690 7.4 1.185 0.00 4.25 0.097 672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.70 0.081 127 8.1 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 2.10 0.137 free sulfur dioxide total sulfur dioxide density pH sulphates \ 948 10.0 21.0 0.99552 3.41 0.76 1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0 0.99494 3.34 0.71									
672 9.8 1.240 0.34 2.00 0.079 126 8.2 1.330 0.00 1.70 0.081 127 8.1 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 2.10 0.137 free sulfur dioxide total sulfur dioxide density pH sulphates \ 948 10.0 21.0 0.99552 3.41 0.76 1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0 0.99494 3.34 0.71									
126 8.2 1.330 0.00 1.70 0.081 127 8.1 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 2.10 0.137 free sulfur dioxide total sulfur dioxide density pH sulphates \ 948 10.0 21.0 0.99552 3.41 0.76 1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0 0.99494 3.34 0.71									
127 8.1 1.330 0.00 1.80 0.082 1299 7.6 1.580 0.00 2.10 0.137 free sulfur dioxide total sulfur dioxide density pH sulphates \ 948 10.0 21.0 0.99552 3.41 0.76 1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0 0.99494 3.34 0.71									
1299 7.6 1.580 0.0 2.10 0.137 free sulfur dioxide total sulfur dioxide density pH sulphates \ 948 10.0 21.0 0.99552 3.41 0.76 1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0 0.99494 3.34 0.71									
free sulfur dioxide total sulfur dioxide density pH sulphates \ 948									
948 10.0 21.0 0.99552 3.41 0.76 1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0 0.99494 3.34 0.71	1299	7.6	1.580	0.	00	2	.10	0.	137
948 10.0 21.0 0.99552 3.41 0.76 1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0 0.99494 3.34 0.71		from gulfum diamida	+0+01 0-14	diomi di	dona:+	~ 11	a	ho+	`
1286 17.0 31.0 0.99328 3.35 0.54 1566 24.0 52.0 0.99494 3.34 0.71	040		total Sullur		-	_	surp.		\
1566 24.0 52.0 0.99494 3.34 0.71									
209 4.0 23.0 0.99960 3.28 0.97									
	269	4.0		23.0	0.99960	3.28		0.97	

1017	36.0	109.0	0.99007	2.89	0.44
1156	45.0	88.0	0.99524	3.33	0.76
1230	15.0	58.0	0.99470	3.37	0.78
1429	38.0	67.0	0.99600	3.33	0.93
1509	7.0	20.0	0.99410	3.28	0.70
301	7.0	15.0	0.99730	3.22	0.64
1087	18.0	30.0	0.99400	3.29	0.69
1131	57.0	135.0	0.99341	3.32	0.44
291	6.0	18.0	0.99790	3.30	0.71
1459	7.0	15.0	0.99458	3.32	0.80
1145	31.0	51.0	0.99672	3.53	0.81
873	6.0	10.0	0.99552	3.23	0.58
243	10.0	24.0	1.00005	3.07	0.84
354	40.5	165.0	0.99120	3.25	0.59
955	9.0	23.0	0.99648	3.36	0.67
518	11.0	32.0	0.99720	3.22	0.68
1143	16.0	20.0	0.99672	3.61	0.82
1490	8.0	18.0	0.99344	3.39	0.56
925	53.0	77.0	0.99604	3.47	0.87
20	29.0	60.0	0.99680	3.39	0.53
530	1.0	28.0	0.99900	3.41	0.87
1233	14.0	36.0	0.99614	3.23	0.49
454	21.0	67.0	0.99520	3.50	0.63
1426	23.0	60.0	0.99710	3.41	0.71
1106	9.0	17.0	0.99376	3.21	0.54
1060	3.0	8.0	0.99810	3.14	0.70
	• • • •				
422	15.0	60.0	0.99550	3.36	0.44
1040	16.0	32.0	0.99756	3.58	0.67
735	11.0	22.0	0.99630	3.26	0.50
261	12.0	67.0	0.99565	3.35	0.60
756	15.0	33.0	0.99488	3.60	0.46
684	35.0		0.99800		0.48
1469	20.0	49.0	0.99705	3.31	0.55
775	7.0	16.0	0.99586	3.43	0.46
234	7.0	37.0	0.99685	3.32	0.55
1012	11.0	32.0	0.99604	3.23	0.48
861	15.0	88.0	0.99357	3.66	0.60
1261	17.0	24.0	0.99437	3.59	0.55
700	26.0	88.0	0.99840	3.08	0.57
94	41.0	85.0	0.99380	3.75	0.48
899	6.0	11.0	0.99892	3.48	0.49
710	21.0	84.0	0.99850	3.46	0.49
705	11.0	54.0	0.99900	3.37	0.37
1467	19.0	32.0	0.99648	3.52	0.49
134	13.0	29.0	0.99590	3.22	0.57
553	32.0	96.0	0.99340	3.74	0.55
120	10.0	89.0	0.99340		
120	10.0	09.0	0.33020	3.30	0.57

199					2.0			31.0		.99480	3.51	0.43
724					5.0			12.0		.99580	3.54	0.60
38				7	.0			19.0	0 0	.99400	3.50	0.48
1312				14	.0			41.0	0 0	.99532	3.34	0.47
690				5	5.0			14.0	0 0	.99660	3.63	0.54
672				32	2.0		1	51.0	0 0	.99800	3.15	0.53
126				3	3.0			12.0	0 0	.99640	3.53	0.49
127				3	3.0			12.0	0 0	.99640	3.54	0.48
1299				5	5.0			9.0	0 0	.99476	3.50	0.40
		ca	rs	cl	free_sd	total_sd	d	р	sul	al stat	us	
948		2	1	1	1	1	4	2	2	2	1	
1286		2	1	1	1	1	4	2	2	3	1	
1566		3	1	1	1	1	4	2	2	2	1	
269		3	1	1	1	1	4	2	2	2	1	
1017		2	1	1	2	2	4	2	1	3	1	
1156		3	1	1	2	2	4	2	2	2	1	
1230	• • •	2	1	1	1	1	4	2	2	2	1	
1429		2	1	1	2	1	4	2	2	2	0	
1509	• • •	2	1	1	1	1	4	2	2	2	0	
	• • •	2	1	1	1	1	4	2	2	2	1	
301	• • •								2	2		
1087	• • •	2	1	1	1	1	4	2			1	
1131	• • •	1	1	1	3	2	4	2	1	1	0	
291	• • •	2	1	2	1	1	4	2	2	2	0	
1459	• • •	2	1	1	1	1	4	2	2	2	1	
1145	• • •	2	1	1	2	1	4	3	2	2	1	
873	• • •	2	1	1	1	1	4	2	2	2	1	
243		2	1	1	1	1	4	2	2	1	1	
354		2	1	1	2	3	4	2	2	2	1	
955		3	1	1	1	1	4	2	2	2	0	
518		2	1	1	1	1	4	2	2	2	1	
1143		2	1	1	1	1	4	3	2	1	1	
1490		2	1	1	1	1	4	2	2	3	1	
925		2	1	1	3	1	4	2	2	2	1	
20		2	1	1	2	1	4	2	2	1	1	
530		1	1	1	1	1	4	2	2	2	1	
1233		2	1	1	1	1	4	2	1	1	0	
454		2	1	1	1	1	4	2	2	2	0	
1426		2	1	1	1	1	4	2	2	3	1	
1106		2	1	1	1	1	4	2	2	3	1	
1060		3	1	1	1	1	4	2	2	1	1	
			_	_	_	_	_		_	_	_	
422		1	1	1	1	1	4	2	1	 2	0	
1040	• • •	1	1	1	1	1	4	3	2	2	0	
735	• • •	1	1	1	1	1	4	2	1	1	0	
261	• • •	1	1	1	1	1	4	2	2	1	0	
756	• • •	1	1	1	1	1	4	3	1	2	1	
	• • •					2	4	2			0	
684	• • •	2	1	1	2	2	4	2	1	1	U	

1469	 1	1	1	1	1	4	2	2	1	0
775	 1	1	1	1	1	4	2	1	1	0
234	 1	1	1	1	1	4	2	2	1	1
1012	 1	1	1	1	1	4	2	1	1	0
861	 3	1	1	1	2	4	3	2	2	1
1261	 1	1	1	1	1	4	3	2	2	0
700	 2	1	1	2	2	4	2	2	2	1
94	 1	1	1	2	2	4	3	1	2	0
899	 1	1	1	1	1	4	2	1	2	0
710	 2	1	1	1	2	4	2	2	2	0
705	 1	2	1	1	1	4	2	1	1	0
1467	 1	1	1	1	1	4	3	2	2	0
134	 1	1	1	1	1	4	2	2	1	1
553	 1	1	1	2	2	4	3	2	2	0
120	 1	1	1	1	2	4	2	2	1	0
199	 1	1	1	1	1	4	3	1	2	0
724	 1	1	1	1	1	4	3	2	2	0
38	 1	1	1	1	1	4	2	1	1	0
1312	 1	1	1	1	1	4	2	1	2	0
690	 1	1	1	1	1	4	3	2	2	0
672	 2	1	1	2	2	4	2	2	1	0
126	 1	1	1	1	1	4	3	1	2	0
127	 1	1	1	1	1	4	3	1	2	0
1299	 1	1	1	1	1	4	2	1	2	0

<class 'pandas.core.frame.DataFrame'>

In [27]: df.info() # to get the info of all te columns of the dataframe

Int64Index: 1359 entries, 0 to 1598 Data columns (total 12 columns): fixed acidity 1359 non-null float64 volatile acidity 1359 non-null float64 citric acid 1359 non-null float64 residual sugar 1359 non-null float64 1359 non-null float64 chlorides free sulfur dioxide 1359 non-null float64 1359 non-null float64 total sulfur dioxide 1359 non-null float64 density рΗ 1359 non-null float64 sulphates 1359 non-null float64 alcohol 1359 non-null float64 quality 1359 non-null int64

dtypes: float64(11), int64(1) memory usage: 138.0 KB

0.2.1 Grouping column values using bins

```
In [28]: bin1=[1,5,10,15,20]
        label1=[1,2,3,4]
        df['fa']=pd.cut(df['fixed acidity'],bins=bin1,labels=label1)
        print(df[['fixed acidity','fa']])
      fixed acidity fa
               7.4 2
0
1
               7.8 2
2
               7.8 2
3
               11.2 3
5
               7.4 2
6
               7.9 2
7
               7.3 2
               7.8 2
8
9
               7.5 2
10
               6.7 2
               5.6 2
12
13
               7.8 2
               8.9 2
14
15
               8.9 2
               8.5 2
16
17
               8.1 2
18
               7.4 2
19
               7.9 2
               8.9 2
20
21
               7.6 2
               7.9 2
22
               8.5 2
23
24
               6.9 2
25
               6.3 2
26
               7.6 2
               7.1 2
28
29
               7.8 2
30
               6.7 2
               6.9 2
31
               8.3 2
32
. . .
               . . . . . .
               6.7 2
1566
               7.0 2
1568
1569
               6.2 2
               6.4 2
1570
1571
               6.4 2
               7.3 2
1572
               6.0 2
1573
1574
               5.6 2
1575
               7.5 2
1576
               8.0 2
```

```
1578
               6.8 2
               6.2 2
1579
               7.4 2
1580
               6.1 2
1582
1583
               6.2 2
1584
               6.7 2
1585
               7.2 2
1586
               7.5 2
1587
               5.8 2
               7.2 2
1588
               6.6 2
1589
               6.3 2
1590
               5.4 2
1591
               6.3 2
1592
1593
               6.8 2
1594
               6.2 2
1595
               5.9 2
               5.9 2
1597
1598
               6.0 2
[1359 rows x 2 columns]
/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html
 This is separate from the ipykernel package so we can avoid doing imports until
In [29]: print(df[['fixed acidity','fa']].head(5))
   fixed acidity fa
            7.4 2
0
            7.8 2
1
            7.8 2
2
3
            11.2 3
5
            7.4 2
```

6.2 2

volatile acidity va

0.700 2

0

print(df[['volatile acidity','va']])

1577

df['va']=pd.cut(df['volatile acidity'],bins=bin2,labels=label2)

1 2 3 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31	0.880 0.760 0.280 0.660 0.600 0.580 0.580 0.580 0.615 0.610 0.620 0.280 0.280 0.320 0.320 0.320 0.320 0.430 0.490 0.490 0.400 0.390 0.410 0.710 0.645 0.675 0.685	2 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
32 1566 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1582 1583 1584 1585	0.655 0.160 0.560 0.510 0.360 0.380 0.690 0.580 0.310 0.520 0.300 0.700 0.670 0.560 0.350 0.715 0.460 0.320 0.390	2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 2 1

```
1586
                0.310 1
1587
                0.610 2
                0.660 2
1588
1589
                0.725 2
                0.550 2
1590
1591
                0.740 2
1592
                0.510 2
                0.620 2
1593
1594
                0.600 2
1595
                0.550 2
1597
                0.645 2
1598
                0.310 1
```

19

0.51 3

```
/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm This is separate from the ipykernel package so we can avoid doing imports until

```
In [31]: bin3=[-0.25,0.25,0.5,0.75,1]
        label3=[1,2,3,4]
        df['ca']=pd.cut(df['citric acid'],bins=bin3,labels=label3)
        print(df[['citric acid','ca']])
     citric acid ca
0
            0.00 1
1
            0.00 1
2
            0.04 1
3
            0.56 3
5
             0.00 1
6
             0.06 1
7
            0.00 1
8
            0.02 1
9
            0.36 2
10
            0.08 1
12
            0.00 1
13
            0.29 2
14
            0.18 1
15
            0.19 1
16
            0.56 3
17
            0.28 2
18
            0.08 1
```

```
20
             0.48 2
21
             0.31 2
22
             0.21 1
23
             0.11
                   1
24
             0.14 1
25
             0.16
26
             0.24
28
             0.00
                   1
29
             0.00
                   1
30
             0.07
                   1
31
             0.00
                   1
32
             0.12 1
              . . . . . .
. . .
1566
             0.64 3
1568
             0.13
                  1
1569
             0.14 1
1570
             0.53
                   3
1571
             0.14
                   1
1572
             0.32
                   2
1573
             0.20
                   1
1574
             0.78
                   4
1575
             0.40
                   2
1576
             0.63
                   3
1577
             0.15
                   1
1578
             0.15
                   1
1579
             0.09
                   1
1580
             0.33
                   2
1582
             0.10
                   1
1583
             0.29
                   2
1584
             0.44
                   2
1585
                   2
             0.44
1586
             0.41
                   2
1587
             0.11 1
1588
             0.33 2
1589
             0.20
                   1
1590
             0.15
1591
             0.09 1
1592
             0.13
                   1
1593
             0.08
                   1
1594
             0.08
                  1
1595
             0.10
                   1
1597
             0.12
                   1
1598
             0.47 2
```

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html
This is separate from the ipykernel package so we can avoid doing imports until

```
In [32]: df['ca'].isnull().any()
Out[32]: False
In [33]: bin4=[-5,5,10,15,20]
         label4=[1,2,3,4]
         df['rs']=pd.cut(df['residual sugar'],bins=bin4,labels=label4)
         print(df[['residual sugar','rs']])
      residual sugar rs
0
                 1.9 1
                 2.6 1
1
2
                 2.3 1
3
                 1.9 1
5
                 1.8 1
6
                 1.6 1
7
                 1.2 1
8
                 2.0 1
9
                 6.1 2
10
                 1.8 1
12
                 1.6 1
13
                 1.6 1
14
                 3.8 1
15
                 3.9 1
16
                 1.8 1
17
                 1.7 1
18
                 4.4 1
19
                 1.8 1
20
                 1.8 1
21
                 2.3 1
22
                 1.6 1
23
                 2.3 1
24
                 2.4 1
25
                 1.4 1
26
                 1.8 1
28
                 1.9 1
29
                 2.0 1
30
                 2.4 1
31
                 2.5 1
32
                 2.3 1
                 . . . . . .
                 2.1 1
1566
```

```
1568
                1.6 1
1569
                1.9 1
1570
                2.2 1
                2.2 1
1571
1572
                2.2 1
1573
                2.4 1
1574
               13.9 3
1575
                2.2 1
1576
                1.6 1
1577
                5.1 2
                1.8 1
1578
                1.7 1
1579
                2.4 1
1580
1582
                2.6 1
1583
                2.1
                    1
1584
                2.4 1
1585
                2.6 1
1586
                2.4 1
                1.8 1
1587
1588
                2.5 1
1589
                7.8 2
                1.8 1
1590
1591
                1.7 1
1592
                2.3 1
1593
                1.9 1
                2.0 1
1594
1595
                2.2 1
1597
                2.0 1
1598
                3.6 1
```

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html
This is separate from the ipykernel package so we can avoid doing imports until

```
1
           0.098 1
2
           0.092
                  1
3
           0.075
                  1
5
           0.075
                  1
6
           0.069
                  1
7
           0.065
8
           0.073
9
           0.071
                  1
10
           0.097
                  1
12
           0.089
                  1
13
           0.114
                  1
14
           0.176
                  1
15
           0.170
16
           0.092
17
           0.368
                  2
18
           0.086
                  1
19
           0.341
                  2
20
           0.077
                  1
21
           0.082
                  1
22
           0.106
23
           0.084
24
           0.085
           0.080
25
                  1
26
           0.080
                  1
28
           0.080
                  1
29
           0.082
                  1
30
           0.089
31
           0.105
32
           0.083
. . .
             . . . . . .
           0.059
1566
                  1
           0.077
1568
                  1
1569
           0.056
                  1
           0.230
1570
                  2
1571
           0.038
                  1
1572
           0.069
1573
           0.075
1574
           0.074
1575
           0.060
                  1
1576
           0.081
                  1
1577
           0.076
                  1
1578
           0.118
                  1
1579
           0.053
1580
           0.068
1582
           0.053
                  1
1583
           0.074
                  1
           0.061
1584
                  1
1585
           0.066 1
```

```
1586
         0.065 1
1587
         0.066 1
1588
         0.068 1
1589
         0.073 1
         0.077 1
1590
1591
         0.089 1
1592
         0.076 1
1593
         0.068 1
1594
         0.090 1
1595
         0.062 1
1597
         0.075 1
1598
         0.067 1
```

```
/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm This is separate from the ipykernel package so we can avoid doing imports until

free sulfur dioxide free_sd 0 11.0 1 1 25.0 1 2 15.0 1 3 17.0 1 5 13.0 1 6 15.0 1 7 15.0 1 8 9.0 1 9 17.0 1 10 15.0 1 16.0 1 12 9.0 1 13 3 14 52.0 51.0 3 15 2 16 35.0 17 16.0 1 18 6.0 1 17.0 1 19

20	29.0	2
21	23.0	1
22	10.0	1
23	9.0	1
24	21.0	1
25	11.0	1
26	4.0	1
28	14.0	1
29	8.0	1
30	17.0	1
31	22.0	1
32	15.0	1
• • •		
1566	24.0	1
1568	25.0	1
1569	15.0	1
1570	19.0	1
1571	15.0	1
1572	35.0	2
1573	15.0	1
1574	23.0	1
1575	12.0	1
1576	16.0	1
1577	13.0	1
1578	13.0	1
1579	24.0	1
1580	9.0	1
1582	13.0	1
1583	32.0	2
1584	24.0	1
1585	22.0	1
1586	34.0	2
1587	18.0	1
1588	34.0	2
1589	29.0	2
1590	26.0	2
1591	16.0	1
1592	29.0	2
1593	28.0	2
1594	32.0	2
1595	39.0	2
1597	32.0	2
1598	18.0	1

 $/anaconda 3/lib/python 3.6/site-packages/ipykernel_launcher.py: 3: Setting With Copy Warning: \\$

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm This is separate from the ipykernel package so we can avoid doing imports until

```
In [36]: bin7=[5,80,155,230,305]
         label7=[1,2,3,4]
         df['total_sd']=pd.cut(df['total sulfur dioxide'],bins=bin7,labels=label7)
         print(df[['total sulfur dioxide','total_sd']])
      total sulfur dioxide total_sd
0
                       34.0
1
                       67.0
                                    1
2
                       54.0
3
                       60.0
                                    1
5
                       40.0
                                    1
6
                       59.0
                                    1
7
                       21.0
                                    1
8
                       18.0
                                    1
9
                                    2
                      102.0
                       65.0
10
                       59.0
12
                                    1
13
                       29.0
                                    1
14
                      145.0
                                    2
                                    2
15
                      148.0
16
                      103.0
                                    2
17
                       56.0
                                    1
                       29.0
18
19
                       56.0
20
                       60.0
                                    1
21
                       71.0
                                    1
22
                       37.0
                                    1
23
                       67.0
                                    1
24
                       40.0
                                    1
25
                       23.0
                                    1
26
                       11.0
28
                       35.0
                                    1
29
                       16.0
                                    1
30
                       82.0
                                    2
31
                       37.0
                                    1
32
                      113.0
                                    2
                        . . .
1566
                       52.0
                                    1
1568
                       42.0
                                    1
1569
                       34.0
                                    1
1570
                       35.0
```

```
25.0
1571
                                     1
1572
                       104.0
                                      2
1573
                        50.0
                                      1
                        92.0
                                     2
1574
                        20.0
                                      1
1575
1576
                        29.0
                                      1
1577
                        27.0
1578
                        20.0
1579
                        32.0
                                      1
1580
                        26.0
                                      1
                        27.0
                                      1
1582
1583
                        98.0
                                      2
                        34.0
                                      1
1584
1585
                        48.0
                                      1
                        60.0
1586
1587
                        28.0
                                      1
1588
                       102.0
                                      2
                        79.0
1589
                                      1
1590
                        35.0
                                      1
1591
                        26.0
                                      1
1592
                        40.0
                                      1
1593
                        38.0
1594
                        44.0
                                     1
1595
                        51.0
                                     1
1597
                        44.0
                                     1
1598
                        42.0
                                      1
```

[1359 rows x 2 columns]

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm This is separate from the ipykernel package so we can avoid doing imports until

```
5
      0.99780
                4
6
      0.99640
                4
7
      0.99460
                4
8
      0.99680
                4
9
      0.99780
                4
      0.99590
10
                4
12
      0.99430
                4
13
      0.99740
                4
      0.99860
                4
14
15
      0.99860
                4
                4
      0.99690
16
      0.99680
                4
17
18
      0.99740
                4
      0.99690
                4
19
20
      0.99680
                4
21
      0.99820
                4
22
      0.99660
                4
23
      0.99680
                4
24
      0.99680
                4
      0.99550
25
                4
      0.99620
26
                4
      0.99720
28
                4
29
      0.99640
                4
30
      0.99580
                4
31
      0.99660
                4
      0.99660
                4
32
. . .
           . . .
1566
      0.99494
                4
      0.99629
                4
1568
1569
      0.99396
                4
1570
      0.99340
                4
1571
      0.99514
                4
1572 0.99632
                4
1573
     0.99467
                4
1574
     0.99677
1575
      0.99474
                4
1576 0.99588
                4
1577
      0.99622
                4
1578 0.99540
                4
      0.99402
                4
1579
1580
      0.99470
                4
1582
      0.99362
                4
1583
      0.99578
                4
1584
      0.99484
                4
1585
      0.99494
                4
1586
      0.99492
                4
1587
      0.99483
                4
1588 0.99414
```

```
1589 0.99770 4
1590 0.99314 4
1591 0.99402 4
1592 0.99574 4
1593 0.99651 4
1594 0.99490 4
1595 0.99512 4
1597 0.99547 4
1598 0.99549 4

[1359 rows x 2 columns]
```

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm This is separate from the ipykernel package so we can avoid doing imports until

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm This is separate from the ipykernel package so we can avoid doing imports until

```
рН р
0
     3.51 3
1
     3.20 2
2
     3.26 2
3
     3.16 2
     3.51 3
5
     3.30 2
6
7
     3.39 2
     3.36 2
8
9
     3.35 2
     3.28 2
10
12
     3.58 3
13
     3.26 2
14
     3.16 2
15
     3.17 2
```

```
3.30 2
16
17
      3.11
           2
18
     3.38
           2
19
     3.04
           2
20
      3.39 2
      3.52
21
           3
      3.17
22
           2
      3.17
23
           2
24
      3.43
           2
25
     3.34
           2
     3.28
           2
26
28
      3.47
           2
29
      3.38
           2
     3.35
30
           2
31
      3.46 2
32
      3.17 2
      . . . . . .
. . .
1566 3.34 2
1568
     3.34 2
     3.48
           2
1569
     3.37
1570
           2
1571
     3.44
           2
1572 3.33
           2
1573
     3.58
           3
1574 3.39
           2
1575
     3.26
           2
1576
     3.30
           2
1577
     3.54
           3
1578
     3.42
           2
1579
     3.54
           3
1580
     3.36
           2
     3.57
1582
           3
1583
     3.33
           2
     3.29
1584
           2
1585
     3.30
           2
1586
     3.34
           2
1587
     3.55
           3
1588
     3.27
           2
1589
     3.29
           2
1590 3.32 2
1591 3.67
           3
1592
     3.42
           2
1593
     3.42
           2
1594
     3.45
           2
1595
     3.52
           3
1597
     3.57
            3
1598 3.39 2
```

```
[1359 rows x 2 columns]
In [39]: bin10=[0,0.5,1,1.5,2]
         label10=[1,2,3,4]
         df['sul']=pd.cut(df['sulphates'],bins=bin10,labels=label10)
         print(df[['sulphates','sul']])
      sulphates sul
0
            0.56
                   2
            0.68
1
                   2
2
            0.65
                   2
3
            0.58
                   2
5
            0.56
                   2
6
            0.46
                   1
7
            0.47
                   1
8
            0.57
                   2
            0.80
9
                   2
10
            0.54
                   2
12
            0.52
                   2
            1.56
                   4
13
14
            0.88
                   2
            0.93
15
                   2
                   2
16
            0.75
17
            1.28
                   3
18
            0.50
                   1
19
            1.08
                   3
20
            0.53
                   2
21
            0.65
                   2
22
            0.91
                   2
            0.53
                   2
23
24
            0.63
                   2
25
            0.56
                   2
26
            0.59
                   2
28
            0.55
                   2
            0.59
                   2
29
30
            0.54
                   2
                   2
31
            0.57
32
            0.66
. . .
             . . .
1566
            0.71
                   2
1568
            0.59
                   2
1569
            0.57
                   2
1570
            0.93
                   2
            0.65
                   2
1571
1572
            0.51
                   2
                   2
1573
            0.67
            0.48
1574
                   1
```

```
1575
            0.64
                   2
1576
            0.78
                   2
1577
            0.60
                   2
            0.67
1578
            0.60
                   2
1579
            0.60
1580
1582
            0.50
                   1
1583
            0.62
                   2
            0.80
                   2
1584
1585
            0.84
                   2
            0.85
                   2
1586
            0.66
                   2
1587
            0.78
1588
            0.54
                   2
1589
            0.82
1590
                   2
1591
            0.56
                   2
1592
            0.75
                   2
1593
            0.82
                   2
            0.58
                   2
1594
1595
            0.76
                   2
1597
            0.71
                   2
            0.66
1598
```

[1359 rows x 2 columns]

```
/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html
This is separate from the ipykernel package so we can avoid doing imports until

/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm This is separate from the ipykernel package so we can avoid doing imports until

```
alcohol al 0 9.4 1
```

```
1
           9.8 1
2
           9.8
                1
3
           9.8
                1
5
           9.4
                1
6
           9.4
                1
7
          10.0
                1
           9.5
8
                1
         10.5
                2
9
           9.2
10
                1
          9.9
12
                1
13
           9.1
                1
14
           9.2
                1
15
           9.2
                1
16
          10.5
                2
17
           9.3
                1
18
           9.0
                1
19
           9.2
                1
20
           9.4
                1
21
           9.7
                1
22
           9.5
                1
23
           9.4
                1
           9.7
24
                1
25
           9.3
                1
26
           9.5
                1
           9.4
28
                1
29
           9.8
                1
30
          10.1
                2
31
          10.6
                2
32
           9.8 1
. . .
          . . . . . .
1566
         11.2
               2
           9.2
1568
                1
1569
         11.5
                2
1570
         12.4
                3
                2
1571
         11.1
          9.5
1572
                1
1573
         12.5
                3
1574
         10.5
                2
                2
1575
         11.8
1576
         10.8
                2
1577
         11.9
                2
1578
         11.3
                2
1579
         11.3
                2
1580
         11.9
                2
1582
         11.9
                2
1583
           9.8
                1
         11.6
1584
                2
         11.5 2
1585
```

```
1586
         11.4 2
1587
         10.9
         12.8
1588
               3
1589
          9.2 1
         11.6 2
1590
1591
         11.6
1592
         11.0
1593
          9.5
              1
1594
         10.5 2
1595
         11.2 2
1597
         10.2 2
1598
         11.0 2
[1359 rows x 2 columns]
In [41]: df.head()
Out[41]:
            fixed acidity volatile acidity citric acid residual sugar
                                                                           chlorides \
         0
                      7.4
                                        0.70
                                                      0.00
                                                                        1.9
                                                                                 0.076
         1
                      7.8
                                        0.88
                                                      0.00
                                                                        2.6
                                                                                 0.098
         2
                      7.8
                                        0.76
                                                      0.04
                                                                        2.3
                                                                                 0.092
                      11.2
         3
                                        0.28
                                                      0.56
                                                                        1.9
                                                                                 0.075
         5
                      7.4
                                        0.66
                                                      0.00
                                                                        1.8
                                                                                 0.075
            free sulfur dioxide total sulfur dioxide density
                                                                    pH sulphates ... \
                                                          0.9978 3.51
                                                                              0.56 ...
         0
                            11.0
                                                   34.0
         1
                            25.0
                                                   67.0
                                                          0.9968 3.20
                                                                              0.68 ...
         2
                            15.0
                                                   54.0
                                                          0.9970 3.26
                                                                              0.65 ...
         3
                                                                              0.58 ...
                            17.0
                                                   60.0
                                                          0.9980
                                                                  3.16
         5
                            13.0
                                                   40.0
                                                          0.9978 3.51
                                                                              0.56 ...
                ca rs cl free_sd total_sd
                                            d
                                               p sul al
                                            4
         0
             2
                 1
                    1
                       1
                                1
                                         1
                                               3
                                                    2
                                                       1
                                            4
         1
             2
                 1
                    1
                       1
                                1
                                         1
                                               2
                                                    2 1
         2
             2
                    1
                       1
                                1
                                         1
                                            4
                                               2
                                                    2
                 1
                                                      1
         3
                 3
                                1
                                            4
                                               2
                                                    2
             1
                    1
                       1
                                         1
                                                       1
```

[5 rows x 23 columns]

1

2

0.3 Classifying the target variable by grouping values into two distinct values - 0 and

1 4 3

2 1

/anaconda3/lib/python3.6/site-packages/pandas/core/indexing.py:357: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm self.obj[key] = _infer_fill_value(value)

/anaconda3/lib/python3.6/site-packages/pandas/core/indexing.py:537: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm self.obj[item] = s

	quality	status
0	3	0
1	3	0
2	3	0
3 5	4	1
5	3	0
6	3	0
6 7 8	5	1
8	5	1
9	3	0
10	3	0
12	3	0
13	3	0
14	3	0
15	3 3 4 3 3 5 5 3 3 3 3 5 5 3 2 4 4 3 3 3 3 4 3 3 4 3	0
16	5	1
17	3	0
18	2	0
19	4	1
20	4	1
21	3	0
22	3	0
23	3	0
24	4	1
25	3	0
26	3	0
28	3	0
29	4	1
30	3	0
31	4	1
32	3	0
• • •	4	
1566	4	
1568	3	0

```
1569
              4
                      1
1570
              4
                      1
1571
              4
                      1
              3
                      0
1572
              4
1573
                      1
1574
1575
              4
                      1
1576
              4
                      1
1577
              4
                      1
1578
              4
                      1
              3
                      0
1579
              4
1580
                      1
              3
1582
                      0
              3
1583
              5
1584
                      1
1585
              4
                      1
1586
              4
                      1
1587
              4
                      1
              4
                      1
1588
1589
              3
                      0
1590
              4
1591
              4
1592
              4
                      1
1593
              4
                      1
1594
             3
                      0
              4
1595
                      1
1597
              3
                      0
              4
1598
                      1
```

[1359 rows x 2 columns]

1 Data Visualizations

1.0.1 Quality wrt Fixed Acidity

Quality wrt Fixed Acidity

1.0.2 Quality wrt Volatile Acidity

```
plt.subplot(2,2,4)
plt.pie(df.status[df["va"]==4].value_counts(),colors=("blue"), autopct='%0.2f%%')
plt.xlabel('bad')
```

plt.show()

Quality wrt Volatile Acidity

Quality wrt Citric Acid

```
plt.subplot(2,2,4)
plt.pie(df.status[df["ca"]==4].value_counts(),colors=("blue","red"), labels=("bad","go
plt.show()
```


1.0.3 Quality wrt Residual Sugar

1.0.4 Quality wrt Cholrides

1.0.5 Quality wrt free Sulphur dioxide

Quality wrt free Sulphur dioxide

1.0.6 Quality wrt Total Sulphur dioxide

Quality wrt Total Sulphur dioxide

1.0.7 Quality wrt Density

```
22
                                                                                            4
                                                23
                                                                                            4
                                                24
                                                                                            4
                                                25
                                                                                            4
                                                                                            4
                                                26
                                                28
                                                                                            4
                                                29
                                                                                            4
                                                                                            4
                                                30
                                                31
                                                                                            4
                                                32
                                                                                            4
                                                                                        . .
                                                1566
                                                                                            4
                                                1568
                                                                                            4
                                                1569
                                                                                            4
                                                1570
                                                                                            4
                                                1571
                                                                                            4
                                                1572
                                                                                            4
                                                1573
                                                                                            4
                                                1574
                                                                                            4
                                                1575
                                                                                            4
                                                1576
                                                                                            4
                                                1577
                                                                                            4
                                                1578
                                                                                            4
                                                1579
                                                                                            4
                                                1580
                                                                                            4
                                                                                            4
                                                1582
                                                1583
                                                                                            4
                                                                                            4
                                                1584
                                                                                            4
                                                1585
                                                1586
                                                                                            4
                                                1587
                                                                                            4
                                                1588
                                                                                            4
                                                1589
                                                                                            4
                                                1590
                                                                                            4
                                                1591
                                                                                            4
                                                1592
                                                                                            4
                                                1593
                                                1594
                                                                                            4
                                                1595
                                                                                            4
                                                1597
                                                                                            4
                                                1598
                                                                                            4
                                                Name: d, Length: 1359, dtype: category
                                                Categories (4, int64): [1 < 2 < 3 < 4]
In [237]: #plt.subplot(2,2,1)
                                                      #plt.title('Quality wrt Density')
                                                      \#plt.pie(df.status[df["d"] == 1].value\_counts(), colors = ("red", "blue"), \ labels = ("good", labels = (labels = labels = (labels = labels = labels = (labels = labels = labels = (labels = labels = labels = labels = (labels = labels = labels = labels = (labels = labels = labels = labels = labels = labels = (labels = labels = labels = labels = labels = labels = labels = (labels = labels = labels = labels = labels = labels = labels = (labels = labels = labels = labels = labels = labels = labels = (labels = labels = (labels = labels = lab
```

```
#plt.subplot(2,2,2)
#plt.pie(df.status[df["d"]==2].value_counts(),colors=("red","blue"), labels=("good",
#plt.subplot(2,2,3)
#plt.pie(df.status[df["d"]==3].value_counts(),colors=("red","blue"), labels=("good",
plt.subplot(2,2,4)
plt.pie(df.status[df["d"]==4].value_counts(),colors=("red","blue"), labels=("good","lifig = plt.gcf()
fig.set_size_inches(8,8)
plt.show()
```


1.0.8 Quality wrt pH

```
plt.subplot(2,2,3)
plt.pie(df.status[df["p"]==3].value_counts(),colors=("red","blue"), labels=("good","blue")
#plt.subplot(2,2,4)
#plt.pie(df.status[df["p"]==4].value_counts(),colors=("blue","red"), labels=("bad","g
plt.show()
```


1.0.9 Quality wrt Alcohol

plt.show()

1.0.10 Quality wrt Sulphates

bad

Quality wrt Sulphates

1.1 Machine Learning algorithm - Decision Tree

1.1.1 Splitting dataset into-Training set and Testing set

```
In [202]: train,test= train_test_split(df, test_size= 0.15)
In [203]: print("Training size: {}; Test size: {}".format(len(train),len(test)))
Training size: 1155; Test size: 204
In [204]: train.shape
Out [204]: (1155, 24)
In [205]: test.shape
Out[205]: (204, 24)
1.2 Generating Decision Tree
In [206]: c= DecisionTreeClassifier(min_samples_split=100)
In [207]: df.head()
Out [207]:
             fixed acidity volatile acidity citric acid residual sugar
                                                                            chlorides \
          0
                       7.4
                                        0.70
                                                     0.00
                                                                       1.9
                                                                                0.076
```

```
7.8
                               0.88
                                            0.00
                                                              2.6
                                                                        0.098
1
2
             7.8
                               0.76
                                            0.04
                                                                        0.092
                                                              2.3
3
            11.2
                               0.28
                                            0.56
                                                              1.9
                                                                        0.075
5
             7.4
                               0.66
                                            0.00
                                                              1.8
                                                                        0.075
   free sulfur dioxide total sulfur dioxide
                                               density
                                                           pH sulphates
0
                  11.0
                                                 0.9978
                                                         3.51
1
                  25.0
                                         67.0
                                                 0.9968 3.20
                                                                    0.68
                                                                           . . .
2
                                         54.0
                                                 0.9970 3.26
                                                                    0.65
                  15.0
                                                                          . . .
3
                  17.0
                                         60.0
                                                 0.9980 3.16
                                                                    0.58
                                                                          . . .
5
                                         40.0
                  13.0
                                                 0.9978 3.51
                                                                    0.56
     rs cl free_sd total_sd d p sul al status
                                4
0
                   1
                             1
                                   3
                                       2
                                          1
                               4 2
                                       2 1
1
        1
                   1
                                                  0
                             1 4 2
                                       2 1
                                                  0
        1 1
                   1
3
        1
          1
                   1
                             1
                               4 2
                                       2 1
                                                  1
                             1 4 3
        1 1
                   1
                                       2 1
                                                  0
```

[5 rows x 24 columns]

1.3 Feature Selection and Extraction

Use ``imageio.imread`` instead.

```
In [208]: #features=["fixed acidity", "volatile acidity", "citric acid", "residual sugar", "chlor
          #features=["fa", "va", "ca", "rs", "cl", "free_sd", "total_sd", "d", "p", "sul", "al"]
          #features=["fa", "va", "cl", "total_sd", "sul", "al"]
          features=["fixed acidity", "volatile acidity", "chlorides", "total sulfur dioxide", "su
In [209]: x_train=train[features]
          y_train=train["status"]
          x_test=test[features]
          y_test=test["status"]
In [210]: dt= c.fit(x_train,y_train)
In [211]: def show_tree(tree,features,path):
              f=io.StringIO()
              export_graphviz(tree, out_file=f,feature_names=features)
              pydotplus.graph_from_dot_data(f.getvalue()).write_png(path)
              img=misc.imread(path)
              plt.rcParams["figure.figsize"]=(20,20)
              plt.imshow(img)
In [212]: show_tree(dt,features,'dec_tree_01.png')
/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:5: DeprecationWarning: `imread` is
```

`imread` is deprecated in SciPy 1.0.0, and will be removed in 1.2.0.

11 11 11

In [213]: y_pred=c.predict(x_test)

In [214]: y_pred