

# **LOONGSON**

# 龙芯 2K2000 处理器

数据手册

V1. 05

2025年08月

龙芯中科技术股份有限公司

自主决定命运,创新成就未来





## 阅读指南

《龙芯 2K2000 处理器数据手册》主要介绍龙芯 2K2000 处理器接口结构,特性, 电气规范, 以及硬件设计指导。



## 目 录

| 目 | 录                | Ι  |
|---|------------------|----|
| 图 | 目录               | ΙV |
| 表 | 目录               | V  |
| 1 | 概述               | 1  |
|   | 1.1 体系结构框图       | 2  |
|   | 1.2 芯片分级         | 2  |
|   | 1.3 术语           | 3  |
|   | 1.4 设计相关文档、工具、软件 | 3  |
|   | 1.4.1 设计相关文档     | 3  |
|   | 1.4.2 固件及系统支持    | 3  |
|   | 1.5 文档约定         | 3  |
|   | 1.5.1 信号命名       | 3  |
|   | 1.5.2 信号类型       | 4  |
|   | 1.5.3 数值表示       | 4  |
|   | 1.5.4 寄存器域       | 4  |
| 2 | 引脚定义             | 5  |
|   | 2.1 DDR4 接口      | 5  |
|   | 2.2 PCIE 接口      | 5  |
|   | 2.3 DVO 显示接口     | 6  |
|   | 2.4 HDMI 接口      | 7  |
|   | 2.5 GMAC 网络接口    | 7  |
|   | 2.6 SATA 接口      | 8  |
|   | 2.7 USB 接口       | 9  |
|   | 2.8 HDA 接口       | 9  |
|   | 2.9 SPI 接口       | 10 |
|   | 2.10 I2C 接口      | 10 |
|   | 2.11 UART接口      | 10 |
|   | 2.12 CAN 接口      |    |
|   | 2.13 LPC 接口      | 11 |
|   | 2.14 SDIO接口      |    |
|   | 2.15 EMMC 接口     |    |
|   | 2.16 GPIO接口      |    |
|   | 2.17 PWM 接口      |    |
|   | 2.18 ACPI 接口     |    |
|   | 2.19 JTAG 接口     | 14 |
|   | 2.20 时钟信号        | 14 |







|   | 2.21 RTC 相关信号     | 14 |
|---|-------------------|----|
|   | 2.22 系统相关信号       | 15 |
|   | 2.23 其它引脚         | 15 |
|   | 2.24 外设功能复用表      | 16 |
| 3 | 功能描述              | 17 |
|   | 3.1 DDR4 接口       | 17 |
|   | 3.2 PCIE 接口       | 17 |
|   | 3.3 显示控制          | 18 |
|   | 3.4 SATA 控制器      | 18 |
|   | 3.5 USB接口         | 18 |
|   | 3.6 GMAC 控制器      | 19 |
|   | 3.7 HDA 接口        | 20 |
|   | 3.8 I2S接口         | 20 |
|   | 3.9 SPI 控制器       | 20 |
|   | 3.10 LPC 接口       | 22 |
|   | 3.11 UART 接口      | 23 |
|   | 3. 12 I2C 总线      | 24 |
|   | 3.13 PWM          | 25 |
|   | 3. 14 HPET        | 25 |
|   | 3. 15 RTC         | 25 |
|   | 3.16 ACPI 接口      | 26 |
|   | 3. 17 Watchdog    | 26 |
|   | 3. 18 CAN         | 26 |
|   | 3.19 GPIO         | 26 |
|   | 3. 20 SDIO 控制器    |    |
|   | 3.21 EMMC 控制器     |    |
|   | 3. 22 AVS         | 27 |
|   | 3.23 中断控制器        |    |
|   | 3.24 加解密模块        |    |
| 4 | 时钟                |    |
|   | 4.1 芯片时钟结构        | 28 |
|   | 4.2 系统参考时钟        |    |
|   | 4.3 RTC 时钟        |    |
|   | 4.4 PCIE PHY 参考时钟 |    |
|   | 4.5 USB PHY 参考时钟  |    |
|   | 4.6 SATA PHY 参考时钟 |    |
|   | 4.7 GMAC PHY 参考时钟 |    |
|   | 4.8               |    |







| 5 | 热设计                   | 31 |
|---|-----------------------|----|
|   | 5.1 热参数               | 31 |
|   | 5.2 焊接温度及焊接曲线         | 31 |
| 6 | 电气特性                  | 32 |
|   | 6.1 最大额定工作条件          | 32 |
|   | 6.2 工作电源              | 32 |
|   | 6.3 功耗信息              | 33 |
|   | 6.3.1 NODE_CORE 电压域功耗 | 33 |
|   | 6.3.2 全芯片功耗           | 34 |
|   | 6.4 ESD 防护能力          | 34 |
|   | 6.5 电源时序              | 35 |
|   | 6.5.1 使能 ACPI_EN      | 35 |
|   | 6.5.2 不使能 ACPI_EN     | 40 |
| 7 | 封装信息                  | 42 |
|   | 7.1 封装尺寸              | 42 |
|   | 7.2 信号位置分布            | 43 |
|   | 7.3 芯片引脚排布            | 44 |
| 8 | 产品标识                  | 45 |
| 陈 | †录 A: 芯片引脚列表          | 46 |
| 陈 | †录 B: 芯片引脚内部延迟数据表     | 64 |
| 修 | ኝ订记录                  | 65 |





# 图目录

| 图 1-1 | 龙芯 2K2000 结构图                | 2  |
|-------|------------------------------|----|
| 图 3-1 | SPI 主控制器接口时序                 | 21 |
| 图 3-2 | SPI Flash 标准读时序              | 21 |
| 图 3-3 | SPI Flash 快速读时序              | 22 |
| 图 3-4 | SPI Flash 双向 I/0 读时序         | 22 |
| 图 3-5 | UART 控制器结构                   | 24 |
| 图 4-1 | 芯片时钟结构图                      | 28 |
| 图 5-1 | 焊接回流曲线                       | 31 |
| 图 6-1 | 冷启动上电时序(RTC 掉电)              | 35 |
| 图 6-2 | 热复位时序图                       |    |
| 图 6-3 | S0 到 S3 及 S3 到 S0 时序图        | 38 |
| 图 6-4 | S0 到 S4/S5 及 S4/5 到 S0 状态时序图 | 38 |
| 图 6-5 | 不使能 ACPI 功能时的冷启动上电时序(RTC 掉电) | 40 |
| 图 6-6 | 不使能 ACPI 功能时的热复位时序图          | 41 |
| 图 7-1 | 封装尺寸                         | 42 |
| 图 7-2 | 信号引脚分布顶视图                    | 43 |





## 表目录

| 表 | ₹ 1-1  | 芯片分级表2                  |
|---|--------|-------------------------|
| 表 | ₹ 1-2  | 术语和缩略语表3                |
| 表 | ₹ 2-1  | DDR4 接口5                |
| 表 | ₹ 2-2  | PCIE 接口5                |
| 表 | ₹ 2-3  | DVO 显示接口6               |
| 表 | ₹ 2-4  | HDMI 接口7                |
| 表 | ₹ 2-5  | GMAC 接口7                |
| 表 | ₹ 2-6  | SATA 接口 8               |
| 表 | ₹ 2-7  | USB 接口9                 |
| 表 | ₹ 2-8  | HDA 接口9                 |
| 表 | ₹ 2-9  | SPI 接口10                |
| 表 | ₹ 2-10 | I2C 接口10                |
| 表 | ₹ 2-11 | UART 接口10               |
| 表 | ₹ 2-12 | CAN 接口11                |
| 表 | ₹ 2-13 | LPC 接口11                |
| 表 | ₹ 2-14 | SDIO 接口12               |
| 表 | ₹ 2-15 | eMMC 接口12               |
| 表 | ₹ 2-16 | GPIO接口13                |
| 表 | ₹ 2-17 | PWM 接口13                |
| 表 | ₹ 2-18 | ACPI 接口13               |
| 表 | ₹ 2-19 | JTAG 接口14               |
| 表 | ₹ 2-21 | 时钟信号14                  |
| 表 | ₹ 2-22 | RTC 相关信号                |
| 表 | ₹ 2-23 | 系统相关信号15                |
| 表 | ₹ 2-24 | 其他引脚15                  |
| 表 | ₹ 2-25 | 外设功能复用表16               |
| 表 | ₹ 5-1  | 龙芯 2K2000 的热阻参数 31      |
| 表 | ₹ 5-2  | 回流焊接温度分类表 31            |
| 表 | € 6-1  | 芯片绝对最大额定电压32            |
| 表 | € 6-2  | 推荐的工作电压32               |
| 表 | € 6-3  | NODE CORE 电压域各条件下最大功耗33 |





### 1 概述

龙芯 2K2000 处理器(简称龙芯 2K2000)是一款集成处理器核的通用嵌入式 SOC 芯片,可应用在网络安全、工业控制、电力、轨道交通、移动智能终端、信息教育等领域。其主要特征如下:

- 片内集成 2 个 64 位的三发射超标量 LA364 处理器核,采用 Loong—Arch 指令系统(龙架构),最高频率约 1.4GHz。每个处理器核中含64KB 数据 Cache 和 64KB 的指令 Cache,支持通过目录协议维护 I/0 DMA 访问的 Cache 一致性
- 片内集成共享的 2MB 二级 Cache
- 片内集成 3D GPU,该 GPU 中集成一路 DMA,集成 MMU,支持 4x MSAA,支持内存压缩,支持动态功耗管理
- 支持双路显示(HDMI和DVO)
- 片内集成 72 位 DDR4 控制器 (含 8 位 ECC)
- 3个独立的 x4 PCIE 3.0 接口, 支持多种配置模式
- 2个独立的 RapidIO 接口,与 PCIE 接口复用
- 1 个 4 通道 DMA
- 片内集成 2 个 SATA3. 0 接口
- 片内集成最多 4 个 USB 3.0,最多 9 个 USB2.0,其中 1 个为 OTG (OTG 为可选功能)
- 片内集成 1 个 RGMII 千兆网 PHY 接口, 2 个千兆网口, 支持 TSN 和 MSI 中断
- 片内集成 HDA/I2S 接口
- 片内集成 RTC/HPET 模块
- 片内集成 3 个全功能 UART 接口和 1 个双线 UART 接口
- ▶ 片内集成6个CAN控制器
- 片内集成 6 个 PWM 控制器
- 片内集成1个SDIO控制器
- 片内集成 1 个 eMMC 控制器
- 片内集成2个SPI控制器,支持QSPI
- 片内集成 4 个 I2C 控制器
- 片内集成1个LPC控制器
- 片内集成1个LI0控制器
- 片内集成1个AVS接口
- 支持 ACPI 规范





- 最多 96 个 GPIO 接口
- 安全可信模块
- 片内集成温度传感器
- 集成动态功耗控制模块
- 封装: FC-BGA-883, 27mm x 27 mm, 0.8 mm pitch

#### 1.1 体系结构框图

龙芯 2K2000 的结构如图 1-1 所示。一级交叉开关连接两个处理器核、两个二级 Cache 以及 IO 子网络(Cache 访问路径)。二级交叉开关连接两个二级 Cache、内存控制器、启动模块(SPI 或者 LIO)以及 IO 子网络(Uncache 访问路径)。IO 子网络采用南北桥结构,北桥包含 3 个 PCIE、显示、DMA 和安全模块,通过北桥网络连接一级交叉开关,以减少处理器访问延迟。南桥包括 GMAC、SATA、USB、HDA/I2S、SDIO、eMMC、加解密以及 MISC 模块,通过南桥网络与北桥相连。



图 1-1 龙芯 2K2000 结构图

#### 1.2 芯片分级

表 1-1 芯片分级表

| 芯片标识     | 质量等级 | 封装 | 处理器最高频率 | 工作温度(℃,壳温) |
|----------|------|----|---------|------------|
| LS2K2000 | 商业级  | 塑封 | 1.4GHz  | 0-70       |





#### 1.3 术语

表 1-2 术语和缩略语表

| 术语                                             | 描述                                                | 备注 |  |
|------------------------------------------------|---------------------------------------------------|----|--|
| UEFI                                           | Unified Extensible Firmware Interface             |    |  |
| RGMII                                          | Reduced Gigabit Media Independent Interface       |    |  |
| LPC                                            | Low Pin Count                                     |    |  |
| GPI0                                           | General-purpose input/output                      |    |  |
| ACPI                                           | AdvancedConfigurationandPowerManagement Interface |    |  |
| SPI                                            | Serial Peripheral Interface                       |    |  |
| WDT                                            | Watchdog Timer                                    |    |  |
| HDAudio                                        | High Definition Audio                             |    |  |
| I2C                                            | Inter Integrated Circuit                          |    |  |
| ROM                                            | Read-Only Memory                                  |    |  |
| ECC                                            | Error Correcting Code                             |    |  |
| PCIE Peripheral Component Interconnect express |                                                   |    |  |
| DIMM                                           | Dual Inline-Memory-Modules                        |    |  |
| UDIMM                                          | Unbuffered Dual In-Line Memory Modules            |    |  |
| SODIMM                                         | Small Outline Dual In-line Memory Module          |    |  |
| RDIMM                                          | Registered Dual-Inline-Memory-Modules             |    |  |
| LRDIMM                                         | Load-Reduced Dual-Inline-Memory-Modules           |    |  |
| JTAG                                           | Joint Test Action Group                           |    |  |

## 1.4 设计相关文档、工具、软件

#### 1.4.1 设计相关文档

《用户手册》 《CPU 统一系统架构》 《硬件设计规范》 芯片管脚内部延迟文件

#### 1.4.2 固件及系统支持

- (1) 芯片所支持的固件: 龙芯 PMON、UEFI
- (2) 芯片所支持的操作系统: loongnix、中标麒麟和统信等;

## 1.5 文档约定

## 1.5.1 信号命名

信号名的选取以方便记忆和明确标识功能为原则。低有效信号以 n 结尾,





高有效信号则不带 n。

#### 1.5.2 信号类型

| 代码       | 描述类型 |
|----------|------|
| A        | 模拟   |
| DIFF I/O | 双向差分 |
| DIFF IN  | 差分输入 |
| DIFF OUT | 差分输出 |
| Ι        | 输入   |
| I/0      | 双向   |
| 0        | 输出   |
| OD       | 开漏输出 |
| P        | 电源   |
| G        | 地    |

#### 1.5.3 数值表示

16 进制数表示为'hxxx, 2 进制数表示为'bxx, 其它数字为 10 进制。

功能相同但标号有别的引脚(如 DDR\_DQ0, DDR\_DQ1, ···)使用方括号加数字范围的形式简写(如 DDR\_DQ[63:0])。类似地,寄存器域也采用这种表示方式。

## 1.5.4 寄存器域

寄存器域以[寄存器名]. [域名]的形式加以引用。如 chip\_config0. uart\_split 指芯片配置寄存器 0(chip\_config0)的 uart\_split 域。



## 2 引脚定义

本节对龙芯 2K2000 的引脚进行说明, 其中:

- 1) "上下拉"栏中的"-"代表片内未实现上下拉。
- 2) 对于上下拉的电阻值,除了特殊说明的引脚外,默认阻值为 50K Ω。
- 3)关于引脚在不使用时的情况,已经在描述里进行说明,未说明的信号可以浮空。
  - 4) 引脚复用配置寄存器的相关配置详见用户手册。
  - 5)未在文档中说明的引脚,请与龙芯中科技术股份有限公司联系。

## 2.1 DDR4接口

表 2-1 DDR4 接口

| 衣 Z-1 DDK4 按口            |      |                           |           |     |  |  |
|--------------------------|------|---------------------------|-----------|-----|--|--|
| 信号名称                     | 类型   | 描述                        | 电源        | 上下拉 |  |  |
| DDR_DQ[63:00]            | I/0  | DDR4 SDRAM 数据总线信号         | DDR_1V2   | -   |  |  |
| DDR_CB[7:0]              | I/0  | DDR4 ECC 校验位              | DDR_1V2   | _   |  |  |
| DDR_DQSP[08:00]          | DIFF | DDR4 SDRAM 数据选通           | DDR_1V2   | _   |  |  |
| DDR_DQSN[08:00]          | I/0  | DDRT SDRIM XXIAZE         | DDK_1 V2  |     |  |  |
| DDR_DM[0:8]N_DQSP[09:17] | 10   | DDR4 SDRAM 数据屏蔽           | DDR_1V2   | _   |  |  |
| DDR_A[13:00]             | 0    | DDR4 SDRAM 地址总线信号         | DDR_1V2   | -   |  |  |
| DDR_BA[1:0]              | 0    | DDR4 SDRAM 逻辑 BANK 地址信号   | DDR_1V2   | _   |  |  |
| DDR_WEN                  | 0    | DDR4 SDRAM 写使能信号          | DDR_1V2   | _   |  |  |
| DDR_CASN                 | 0    | DDR4 SDRAM 列地址选择信号        | DDR_1V2   | _   |  |  |
| DDR_RASN                 | 0    | DDR4 SDRAM 行地址选择信号        | DDR_1V2   | _   |  |  |
| DDR_SCSN[1:0]            | 0    | DDR4 SDRAM 片选信号           | DDR_1V2   | -   |  |  |
| DDR_CKE[1:0]             | 0    | DDR4 SDRAM 时钟使能信号         | DDR_1V2   | _   |  |  |
| DDR_CKP[1:0]             | DIFF | DDR4 SDRAM 差分时钟输出信号       | DDR 1V2   | _   |  |  |
| DDR_CKN[1:0]             | OUT  | DDK4 SDKAM 左分的秤制出信与       | DDK_1 V Z |     |  |  |
| DDR_ODT[1:0]             | 0    | DDR4 SDRAM ODT 信号         | DDR_1V2   | -   |  |  |
| DDR_BG[1:0]              | 0    | BankGroup 地址信号            | DDR_1V2   | _   |  |  |
| DDR_ACTN                 | 0    | 行激活信号, 低有效                | DDR_1V2   | _   |  |  |
| DDR_PAR                  | 0    | DDR4 地址奇偶校验输出             | DDR_1V2   | _   |  |  |
| DDR_ALERTN               | Ι    | DDR4 出错警告信号,低有效           | DDR_1V2   | _   |  |  |
| DDR_RESETN               | 0    | DDR4 SDRAM 复位控制信号         | DDR_1V2   | -   |  |  |
| DDR_REXT                 | A    | DDR4 控制器参考电阻,通过 240ohm 接地 | DDR_1V2   | _   |  |  |

## 2.2 PCIE 接口

表 2-2 PCIE 接口

| 信号名称                                    | 类型      | 描述                                                | 电源       | 上下拉 |
|-----------------------------------------|---------|---------------------------------------------------|----------|-----|
| PCIE_REFCLKINP<br>PCIE_REFCLKINN        | DIFF IN | PRG 参考时钟输入(HCSL 标准)                               | PCIE_1V0 | -   |
| RAPIDIO_CLKINP[1:0] RAPIDIO_CLKINN[1:0] | DIFF IN | RIO 参考时钟输入,对应关系为:<br>PCIE_F1: RAPIDIO_CLKINP/N[1] | PCIE_1V0 | _   |





| 信号名称                                                   | 类型       | 描述                                   | 电源       | 上下拉 |
|--------------------------------------------------------|----------|--------------------------------------|----------|-----|
|                                                        |          | PCIE_GO: RAPIDIO_CLKINP/N[0]         |          |     |
| PCIE_REFCLKOUTP[3:0] PCIE_REFCLKOUTN[3:0]              | DIFF OUT | PRG 参考时钟输出(HCSL 标准)                  | PCIE_1VO | _   |
| PCIE_PRG_REFRES                                        | A        | 通过 487ohm(+/-1%) 电阻连至<br>PCIE_1VO 电源 | PCIE_1V0 | _   |
| PCIE_F0 (F1/G0) _TXP[3:0]<br>PCIE_F0 (F1/G0) _TXN[3:0] | DIFF OUT | PCIE 差分数据输出                          | PCIE_1V0 | _   |
| PCIE_F0(F1/G0)_RXP[3:0]<br>PCIE_F0(F1/G0)_RXN[3:0]     | DIFF IN  | PCIE 差分数据输入                          | PCIE_1V0 | _   |
| PCIE_F0(F1/G0)_RSTN                                    | 0        | PCIE 复位                              | IO_3V3   | -   |

## 2.3 DVO 显示接口

表 2-3 DVO 显示接口

| 信号名称            | 类型 | 描述                                                          | 电源     | 上下拉 |
|-----------------|----|-------------------------------------------------------------|--------|-----|
| DVO_CLKP        | 0  | DVO 时钟输出                                                    | I0_3V3 | _   |
| DVO_CLKN        | 0  | DVO 时钟输出,与 DVO*_CLKP 相差 180°,<br>非差分关系                      | I0_3V3 | -   |
| DVO_HSYNC       | 0  | DVO 水平同步                                                    | I0_3V3 | _   |
| DVO_VSYNC       | 0  | DVO 垂直同步                                                    | IO_3V3 | _   |
| DVO_DE          | 0  | DVO 数据有效                                                    | I0_3V3 | -   |
| DVO_DATA[23:00] | 0  | DVO 显示数据<br>[23:16]为 R 数据<br>[15:08]为 G 数据<br>[07:00]为 B 数据 | I0_3V3 | -   |
| HDMI1_HOTPLUG   | Ι  | DVO 通道热插拔检测(可选)                                             | I0_3V3 | 下拉  |
| HDMI1_I2C_SCL   | OD | DVO 通道 I2C 串行时钟(可选)                                         | I0_3V3 | _   |
| HDMI1_I2C_SDA   | OD | DVO 通道 I2C 串行数据(可选)                                         | I0_3V3 |     |

## DVO 接口数据信号与 RGB 对应关系如下:

| DVO 接口信号   | 24 位模式 | 18 位模式 |
|------------|--------|--------|
| DVO_DATA00 | В0     |        |
| DVO_DATA01 | B1     |        |
| DVO_DATA02 | B2     | В0     |
| DVO_DATA03 | В3     | B1     |
| DVO_DATA04 | B4     | B2     |
| DVO_DATA05 | B5     | В3     |
| DVO_DATA06 | B6     | B4     |
| DVO_DATA07 | B7     | B5     |
| DVO_DATA08 | G0     |        |
| DVO_DATA09 | G1     |        |
| DVO_DATA10 | G2     | GO     |
| DVO_DATA11 | G3     | G1     |
| DVO_DATA12 | G4     | G2     |
| DVO_DATA13 | G5     | G3     |
| DVO_DATA14 | G6     | G4     |
| DVO_DATA15 | G7     | G5     |
| DVO_DATA16 | R0     |        |





| DVO 接口信号   | 24 位模式 | 18 位模式 |
|------------|--------|--------|
| DVO_DATA17 | R1     |        |
| DVO_DATA18 | R2     | RO     |
| DVO_DATA19 | R3     | R1     |
| DVO_DATA20 | R4     | R2     |
| DVO_DATA21 | R5     | R3     |
| DVO_DATA22 | R6     | R4     |
| DVO_DATA23 | R7     | R5     |

DVO 接口与 LIO 以及 GPIO 有复用关系,如下表所示。

| 信号名称            | 复用名称 1         | 复用名称 2       | 复用2类型 | 复用 2 信号描述              |
|-----------------|----------------|--------------|-------|------------------------|
| DVO_CLKp        | ND_GPI004      | LIO_RDn      | 0     | LIORDn 输出              |
| DVO_CLKn        | ND_GP1003      | LIO_WRn      | 0     | LIOWRn 输出              |
| DVO_HSYNC       | ND_GPI007      | LIO_DEN      | 0     | LIO 数据使能               |
| DVO_VSYNC       | ND_GPI006      | LIO_DIR      | 0     | LIO 方向控制, 0 代表读, 1 代表写 |
| DVO_DE          | ND_GP1005      | LIO_ADLOCK   | 0     | LIO 地址/数据选择信号          |
| DVO_DATA[15:00] | ND_GPI0[23:08] | LIO_AD[15:0] | I/0   | LIO 双向 AD 信号           |
| DVO_DATA[22:16] | ND_GPI0[30:24] | LIO_A[6:0]   | 0     | LIO 地址低位               |
| DVO_DATA23      | ND_GPIO31      | LIO_CSNO     | 0     | LI0 片选信号 0             |
|                 | ND_GPI0[02:00] | LIO_CSN[3:1] | 0     | LI0 片选信号 1-3           |
|                 |                | LIO_RDY      | I     | LIO 数据准备好              |

## 2.4 HDMI 接口

表 2-4 HDMI 接口

| 信号名称           | 类型       | 信号描述               | 电源       | 上下拉 |
|----------------|----------|--------------------|----------|-----|
| HDMIO_CKN      | DIFF OUT | HDMI 通道时钟负端输出      | IO_3V3   | -   |
| HDMIO_CKP      | DIFF OUT | HDMI 通道时钟正端输出      | I0_3V3   | _   |
| HDMIO_HOTPLUG  | Ι        | HDMI 通道热插拔检测       | IO_3V3   | 下拉  |
| HDMIO_I2C_SCL  | OD       | HDMI 通道 I2C 串行时钟   | IO_3V3   | _   |
| HDMIO_I2C_SDA  | OD       | HDMI 通道 I2C 串行数据   | IO_3V3   | 1   |
| HDMIO_TXN[2:0] | DIFF OUT | HDMI 通道数据负端输出      | IO_3V3   | 1   |
| HDMIO_TXP[2:0] | DIFF OUT | HDMI 通道数据正端输出      | IO_3V3   | 1   |
|                |          | HDMI 通道偏置电压-通过 240 |          |     |
| HDMIO_BIAS     | I/O      | 欧姆电阻上拉到 HDMI_1V8 电 | HDMI_1V8 | _   |
|                |          | 源,最大电流 22mA        |          |     |

## 2.5 GMAC 网络接口

表 2-5 GMAC 接口

| 信号名称          | 类型      | 描述           | 电源     | 上下拉 |
|---------------|---------|--------------|--------|-----|
| GMACPHYO/1_AN | DIFF IO | 千兆网双绞线 A 负端口 | IO_3V3 | -   |
| GMACPHYO/1_AP | DIFF IO | 千兆网双绞线 A 正端口 | IO_3V3 | -   |
| GMACPHYO/1_BN | DIFF IO | 千兆网双绞线 B 负端口 | IO_3V3 | 1   |
| GMACPHYO/1_BP | DIFF IO | 千兆网双绞线 B 正端口 | IO_3V3 | 1   |
| GMACPHYO/1_CN | DIFF IO | 千兆网双绞线 C 负端口 | IO_3V3 | 1   |
| GMACPHYO/1_CP | DIFF IO | 千兆网双绞线 C 正端口 | IO_3V3 | 1   |





| 信号名称                | 类型      | 描述                  | 电源      | 上下拉 |
|---------------------|---------|---------------------|---------|-----|
| GMACPHYO/1_DN       | DIFF IO | 千兆网双绞线 D 负端口        | IO_3V3  | _   |
| GMACPHYO/1_DP       | DIFF IO | 千兆网双绞线 D 正端口        | IO_3V3  | ı   |
| GMACPHYO/1 REXT     | l I     | GMACPHY 外部参考电阻输入,通过 | _       | 1   |
|                     |         | 4.99Kohm/1%电阻连至地    |         |     |
| GMACPHYO/1_LED_100B | 0       | 十/百兆网工作状态指示灯,高有效    | IO_3V3  | Ι   |
| GMACPHYO/1_LED_1KB  | 0       | 千兆网工作状态指示灯,高有效      | IO_3V3  | ı   |
| GMACPHYO/1_LED_ACT  | 0       | 网络收发包状态指示,高有效       | IO_3V3  | ı   |
| GMAC2_TXCK          | 0       | RGMII 发送时钟          | RSM_3V3 | ı   |
| GMAC2_TCTL          | 0       | RGMII 发送控制          | RSM_3V3 | 1   |
| GMAC2_TXD[3:0]      | 0       | RGMII 发送数据          | RSM_3V3 | -   |
| GMAC2_RXCK          | I       | RGMII 接收时钟          | RSM_3V3 | -   |
| GMAC2_RCTL          | I       | RGMII 接收控制          | RSM_3V3 | 1   |
| GMAC2_RXD[3:0]      | Ι       | RGMII 接收数据          | RSM_3V3 | _   |
| GMAC2_MDCK          | 0       | SMA 接口时钟            | RSM_3V3 | _   |
| GMAC2_MDIO          | I/0     | SMA 接口数据            | RSM_3V3 | -   |

## GMAC 接口与 UART 和 GPIO 有复用关系,如下表所示。

| 信号名称              | 复用名称1  | 复用名称 2    | 复用2类型 | 复用 2 信号描述        |
|-------------------|--------|-----------|-------|------------------|
| GMAC2_MDCK        | GPI051 |           | -     | _                |
| GMAC2_MDIO        | GPI050 |           |       |                  |
| GMAC2_RCTL        | GPI044 | UART1_CTS | Ι     | 设备接受数据就绪         |
| GMAC2_RXCK        | GPI053 |           |       |                  |
| GMAC2_RXD0        | GPI040 | UART1_DCD | Ι     | 外部 MODEM 探测到载波信号 |
| GMAC2_RXD1        | GPI041 | UART1_RI  | I     | 外部 MODEM 探测到振铃信号 |
| GMAC2_RXD2        | GPI042 | UART1_DSR | Ι     | 设备初始化完成          |
| GMAC2_RXD3        | GPI043 | UART1_DTR | 0     | 串口初始化完成          |
| GMAC2_TCTL        | GPI049 |           |       |                  |
| GMAC2_TXCK        | GPI052 |           |       |                  |
| GMAC2_TXD0        | GPI045 | UART1_RTS | 0     | 串口数据传输请求         |
| GMAC2_TXD1        | GPI046 | UART1_RXD | Ι     | 串口数据输入           |
| GMAC2_TXD2        | GPI047 | UART1_TXD | 0     | 串口数据输出           |
| GMAC2_TXD3        | GPI048 |           |       |                  |
| GMACPHY1_LED_100B | GPI061 |           |       |                  |
| GMACPHY1_LED_1KB  | GPI062 |           |       | _                |
| GMACPHY1_LED_ACT  | GPI060 |           | _     | _                |

## 2.6 SATA 接口

表 2-6 SATA接口

|               | 表 2-0 SATA 按口 |                               |          |     |  |  |
|---------------|---------------|-------------------------------|----------|-----|--|--|
| 信号名称          | 类型            | 描述                            | 电源       | 上下拉 |  |  |
| SATA_REFCLKP1 | l I           | 差分 25MHz 参考时钟输入(HCSL 标准,内     | SAGE 1VO | -   |  |  |
| SATA_REFCLKN2 |               | 部有备份时钟,通过软件控制)                |          |     |  |  |
| SATA_REFRES   | A             | 通过 487ohm(+/-1%)电阻连至 SAGE_1VO | SAGE_1V0 | _   |  |  |
| SATAO/1_TXP   | DIEE OUT      | <br>SATA 差分数据输出               | IO 1V8   |     |  |  |
| SATAO/1_TXN   | DIFF OUT      | 5/11/ 左刀 致垢制田                 | 10_170   |     |  |  |
| SATAO/1_RXP   | DIFF IN       | SATA 差分数据输入                   | CACE 1VO |     |  |  |
| SATAO/1_RXN   | DIFF IN       | DATA 左汀剱佑制八                   | SAGE_1V0 | _   |  |  |
| SATA_LEDN     | OD            | SATA 工作状态,低表示有数据传输            | I0_3V3   | _   |  |  |





SATA 接口的 SATA LEDn 与 GPIO 有复用关系,如下表所示。

| 信号名称      | 复用名称   | 复用类型 | 复用信号描述    |
|-----------|--------|------|-----------|
| SATA_LEDN | GPI063 | 1/0  | 通用输入输出 63 |

## 2.7 USB接口

表 2-7 USB接口

| 信号名称                             | 类型       | 描述                                          | 电源       | 上下拉 |
|----------------------------------|----------|---------------------------------------------|----------|-----|
| USB20_REFRES[2:0]                | A        | 通过 3Kohm+/- 1%电阻下拉至地                        | RSM_1V8T | _   |
| USB20_DP[8:0]                    | I/0      | USB D+                                      | RSM_A3V3 | _   |
| USB20_DM[8:0]                    | I/0      | USB D-                                      | RSM_A3V3 | _   |
| USB20_OC[3:0]                    | I        | USB 过流检测输入,需注意该信号<br>为高有效                   | RSM_A3V3 | _   |
| USB20_ID                         | Ι        | OTG ID 输入                                   | RSM_1V8T | _   |
| USB20_VBUS                       | A        | OTG VBUS 输入, 5V 供电                          | RSM_A3V3 | _   |
| USB30_RESREF                     | A        | 外部参考电阻,通过 487ohm(+/-<br>1%)电阻连至 RSM_1VOR 电源 | RSM_1VOR |     |
| USB30_RXP[3:0]                   | DIFF IN  | USB3 端口差分接收数据正端                             | RSM_1VOR | -   |
| USB30_RXN[3:0]                   | DIFF IN  | USB3 端口差分接收数据负端                             | RSM_1VOR | _   |
| USB30_TXP[3:0]                   | DIFF OUT | USB3 端口差分发送数据正端                             | RSM_1V8T | _   |
| USB30_TXN[3:0]                   | DIFF OUT | USB3 端口差分发送数据负端                             | RSM_1V8T | _   |
| USB30_REFCLKP1<br>USB30_REFCLKN2 |          | 25MHz 参考时钟输入                                | RSM_1VOR | _   |

注: 1、OTG 为可选功能,使用 USB2 PHY 的 PORT6 端口

2、USB 2.0 控制器对应 USB2 PHY 的 PORT4/5/7/8

3、USB 3.0 控制器对应 USB2 PHY 的 PORTO/1/2/3 和 USB3 PHY 的 PORTO/1/2/3 USB 接口与 GPIO 有复用关系,如下表所示。

| 信号名称      | 复用名称   | 复用类型 | 复用信号描述    |
|-----------|--------|------|-----------|
| USB20_0C0 | GPI028 | I/0  | 通用输入输出 28 |
| USB20_0C1 | GPI029 | I/0  | 通用输入输出 29 |
| USB20_OC2 | GPI030 | I/0  | 通用输入输出 30 |
| USB20_0C3 | GPI031 | I/0  | 通用输入输出 31 |

## 2.8 HDA 接口

表 2-8 HDA 接口

| 信号名称       | 类型 | 描述                   | 电源     | 上下拉 |
|------------|----|----------------------|--------|-----|
| HDA_BITCLK | 0  | HDA BITCLK 输出        | IO_3V3 | _   |
| HDA_SDIO   | Ι  | HDA 数据输入,连接第一个 codec | IO_3V3 | _   |
| HDA_SDI1   | Ι  | HDA 数据输入,连接第二个 codec | IO_3V3 | _   |
| HDA_SDI2   | Ι  | HDA 数据输入,连接第三个 codec | IO_3V3 | _   |
| HDA_SDO    | 0  | HDA 数据输出             | IO_3V3 | _   |
| HDA_SYNC   | 0  | HDA 同步               | I0_3V3 | _   |
| HDA_RESETN | 0  | HDA 复位               | IO_3V3 | _   |

HDA接口与 I2S 以及 GPIO 复用,具体复用关系如下。





| 信号名称       | 复用名称     | 复用类型 | 复用信号描述     |
|------------|----------|------|------------|
| HDA_BITCLK | I2S_BCLK | 0    | I2S bit 时钟 |
| HDA_SDIO   | I2S_DI   | I    | I2S 数据输入   |
| HDA_SDI1   | -        | _    | _          |
| HDA_SDI2   | ı        | _    | _          |
| HDA_SDO    | I2S_D0   | 0    | I2S 数据输出   |
| HDA_SYNC   | I2S_MCLK | 0    | I2S MCLK   |
| HDA_RESETN | I2S_LR   | 0    | I2S 左右声道选择 |
| HDA_BITCLK | GPI021   | I/0  | 通用输入输出 21  |
| HDA_SDIO   | GPI025   | I/0  | 通用输入输出 25  |
| HDA_SDI1   | GPI026   | I/0  | 通用输入输出 26  |
| HDA_SDI2   | GPI027   | I/0  | 通用输入输出 27  |
| HDA_SDO    | GPI024   | I/0  | 通用输入输出 24  |
| HDA_SYNC   | GPI022   | I/0  | 通用输入输出 22  |
| HDA_RESETN | GPI023   | I/0  | 通用输入输出 23  |

## 2.9 SPI 接口

表 2-9 SPI 接口

| 信号名称         | 类型  | 描述             | 电源     | 上下拉 |
|--------------|-----|----------------|--------|-----|
| SPI_SCK      | 0   | SPI 时钟输出       | IO_3V3 | 1   |
| SPI_CSN[3:0] | 0   | SPI 片选 3/2/1/0 | IO_3V3 | _   |
| SPI_SDO      | I/0 | SPI 数据输出       | IO_3V3 | 上拉  |
| SPI_SDI      | I/0 | SPI 数据输入       | IO_3V3 | 上拉  |
| SPI_HOLDN    | I/0 | SPI 地址保持输入输出   | IO_3V3 | -   |
| SPI_WPN      | I/0 | SPI 写保护输出      | IO_3V3 | _   |

SPI1与 SDI0和 GPI0 复用关系见 SDI0 小节介绍。

## 2.10 I2C接口

表 2-10 I2C接口

| 信号名称         | 类型 | 描述     | 电源     | 上下拉 |
|--------------|----|--------|--------|-----|
| I2C[3:0]_SCL | OD | I2C 时钟 | IO_3V3 | _   |
| I2C[3:0] SDA | OD | I2C 数据 | IO 3V3 | _   |

I2C2 和 I2C3 复用关系见 LPC 小节介绍。

## 2.11 UART接口

表 2-11 UART接口

| 信号名称     | 类型 | 描述               | 电源     | 上下拉 |
|----------|----|------------------|--------|-----|
| UART_TXD | 0  | 串口数据输出           | IO_3V3 | _   |
| UART_RXD | I  | 串口数据输入           | IO_3V3 | _   |
| UART_RTS | 0  | 串口数据传输请求         | IO_3V3 | _   |
| UART_DTR | 0  | 串口初始化完成          | IO_3V3 | _   |
| UART_RI  | I  | 外部 MODEM 探测到振铃信号 | IO_3V3 | _   |
| UART_CTS | I  | 设备接受数据就绪         | IO_3V3 | _   |





| 信号名称        | 类型 | 描述               | 电源     | 上下拉 |
|-------------|----|------------------|--------|-----|
| UART_DSR    | I  | 设备初始化完成          | IO_3V3 | _   |
| UART_DCD    | I  | 外部 MODEM 探测到载波信号 | IO_3V3 | _   |
| ND_UART_TXD | 0  | 串口数据输出           | IO_3V3 | _   |
| ND_UART_RXD | I  | 串口数据输入           | IO_3V3 | -   |

龙芯 2K2000 有 3 个独立的全功能串口(UARTO/UART1/UART2)和 1 个双线 UART 接口(ND-UART),ND-UART 为 NODE 上的串口,其他串口通过设置可以工作在 2x4 和 4x2 模式,UARTO 各种模式的管脚对应关系如下。

| 1x8      | 2x4      | 4x2      |
|----------|----------|----------|
| TXD0 (0) | TXD0 (0) | TXD0 (0) |
| RTS0(0)  | RTS0 (0) | TXD5 (0) |
| DTR0 (0) | TXD3 (0) | TXD3 (0) |
| RXDO(I)  | RXDO(I)  | RXDO(I)  |
| CTSO(I)  | CTSO(I)  | RXD5(I)  |
| DSRO(I)  | RXD3(I)  | RXD3(I)  |
| DCD0(I)  | CTS3(I)  | RXD4(I)  |
| RIO(I)   | RTS3 (0) | TXD4 (0) |

UART 接口与 AVS 复用, 具体复用关系如下。

| 信号名称     | 复用名称      | 复用类型 | 复用信号描述 |
|----------|-----------|------|--------|
| UART_TXD |           |      |        |
| UART_RXD |           |      |        |
| UART_RTS |           |      |        |
| UART_DTR |           |      |        |
| UART_RI  | AVS_MDATA | 0    | 输出数据   |
| UART_CTS |           |      |        |
| UART_DSR | AVS_CLOCK | 0    | 输出时钟   |
| UART_DCD | AVS_SDATA | Ι    | 输入数据   |

UART1 和 UART2 的复用关系分别见 GMAC 和 LPC 小节。

## 2.12 CAN 接口

表 2-12 CAN 接口

| 信号名称        | 类型 | 描述            | 电源     | 上下拉 |
|-------------|----|---------------|--------|-----|
| CAN[0:5]_RX | I  | CAN 通道 O 数据接收 | IO_3V3 | -   |
| CAN[0:5]_TX | 0  | CAN 通道 O 数据发送 | IO_3V3 | _   |

CANO-3 接口与 LPC 接口有复用, CAN4-5 接口与 PWM 有复用, 具体复用参见各自小节。

## 2.13 LPC 接口

表 2-13 LPC 接口



| 信号名称        | 类型  | 描述                              | 电源     | 上下拉 |
|-------------|-----|---------------------------------|--------|-----|
| LPC_AD[3:0] | I/0 | LPC 复用的命令、地址、数据信号线 3/2/1/0      | IO_3V3 | 上拉  |
| LPC_CLK     | 0   | LPC 33MHz 时钟输出                  | IO_3V3 | _   |
| LPC_FRAMEN  | I/0 | LPC 总线帧起始、结束信号                  | IO_3V3 | _   |
| LPC_RESETN  | 0   | LPC 总线复位信号                      | IO_3V3 | _   |
| LPC_SERIRQ  | I/0 | LPC 总线 serial IRQ 信号,用于传输串行中断信号 | IO_3V3 | 上拉  |

LPC与UART、CAN、I2C、GPIO有复用,复用关系见下表。

| 信号名称       | 复用名称 1                           | 复用名称 2  | 复用名称3    | 复用名称 4 |
|------------|----------------------------------|---------|----------|--------|
| LPC_ADO    | UART2_DCD (UART9_CTS/UART10_RXD) | CAN3_RX | I2C2_SCL | GPI032 |
| LPC_AD1    | UART2_RI (UART9_RTS/UART10_TXD)  | CAN3_TX | I2C2_SDA | GPI033 |
| LPC_AD2    | UART2_DSR (UART9_RXD)            | CAN2_RX | I2C3_SCL | GPI034 |
| LPC_AD3    | UART2_DTR (UART9_TXD)            | CAN2_TX | I2C3_SDA | GPI035 |
| LPC_CLK    | UART2_TXD                        | CANO_TX |          | GPI039 |
| LPC_FRAMEN | UART2_RTS (UART11_TXD)           | CAN1_TX |          | GPI037 |
| LPC_RESETN | UART2_RXD                        | CANO_RX |          | GPI038 |
| LPC_SERIRQ | UART2_CTS (UART11_RXD)           | CAN1_RX |          | GPI036 |

## 2.14 SDIO接口

表 2-14 SDIO接口

| N = 11 2212 W. |     |             |        |     |  |
|----------------|-----|-------------|--------|-----|--|
| 信号名称           | 类型  | 描述          | 电源     | 上下拉 |  |
| SDIO_CLK       | 0   | SDIO 时钟输出   | IO_3V3 | _   |  |
| SDIO_CMD       | I/0 | SDIO 命令输入输出 | IO_3V3 | _   |  |
| SDIO_DATA[3:0] | I/0 | SDIO 数据信号   | IO_3V3 | _   |  |

SDIO与SPI1、GPIO有复用,复用关系见下表。

| 信号名称       | 复用名称 1 | 复用名称 2          | 复用2类型 | 复用 2 信号描述         |
|------------|--------|-----------------|-------|-------------------|
| SDIO_CLK   | GPI059 | SPI1_SCK        | 0     | SPI 时钟输出          |
| SDIO_CMD   | GPI058 | SPI1_SDO        | 0     | SPI 数据输出          |
| SDIO_DATAO | GPI054 | SPI1_CSn0       | 0     | SPI 片选 0          |
| SDIO_DATA1 | GPI055 | SPI1_CSn2/WPN   | 0     | SPI 片选 2/写保护输出    |
| SDIO_DATA2 | GPI056 | SPI1_CSn3/HOLDN | 0     | SPI 片选 3/地址保持输入输出 |
| SDIO_DATA3 | GPI057 | SPI1_SDI        | I     | SPI 数据输入          |

## 2.15 eMMC 接口

表 2-15 eMMC 接口

| 信号名称           | 类型  | 描述           | 电源         | 上下拉 |
|----------------|-----|--------------|------------|-----|
| EMMC_CLK       | 0   | EMMC 时钟输出    | IO_3V3/1V8 | _   |
| EMMC_CMD       | I/0 | EMMC 命令输入输出  | IO_3V3/1V8 | -   |
| EMMC_DATA[7:0] | I/0 | EMMC 数据输入输出位 | IO_3V3/1V8 | -   |
| EMMC_DS        | Ι   | EMMC 数据选通信号  | IO_3V3/1V8 | _   |

eMMC与GPIO有复用,复用关系见下表。





| 信号名称           | 复用名称        | 复用类型 | 复用信号描述 |
|----------------|-------------|------|--------|
| EMMC_CLK       | GPI020      | 1/0  | 通用输入输出 |
| EMMC_CMD       | GPI019      | 1/0  | 通用输入输出 |
| EMMC_DATA[7:0] | GPIO[17:10] | 1/0  | 通用输入输出 |
| EMMC_DS        | GPI018      | I/0  | 通用输入输出 |

## 2.16 GPIO接口

下表仅列出专用的 4 个 GPIO 引脚信号,不包含 ACPI 和 SE 专用 GPIO,同时其他 GPIO 均为复用信号,可参考其他信号定义。

表 2-16 GPIO接口

| 信号名称        | 类型  | 描述     | 电源     | 上下拉 |
|-------------|-----|--------|--------|-----|
| GPIO[03:00] | I/0 | 通用输入输出 | IO_3V3 | _   |

## 2.17 PWM 接口

表 2-17 PWM 接口

| 信号名称     | 类型 | 描述     | 电源     | 上下拉 |
|----------|----|--------|--------|-----|
| PWM[5:0] | 10 | PWM 输出 | IO_3V3 | _   |

PWM 与 CAN、GPIO 有复用, 复用关系如下。

| 信号名称 | 复用名称 1 | 复用名称 2  | 复用2类型 | 复用 2 信号描述     |
|------|--------|---------|-------|---------------|
| PWMO | GPI004 |         |       |               |
| PWM1 | GPI005 |         |       |               |
| PWM2 | GPI006 | CAN4_TX | 0     | CAN 通道 4 数据发送 |
| PWM3 | GPI007 | CAN4_RX | I     | CAN 通道 4 数据接收 |
| PWM4 | GPI008 | CAN5_TX | 0     | CAN 通道 5 数据发送 |
| PWM5 | GP1009 | CAN5_RX | I     | CAN 通道 5 数据接收 |

## 2.18 ACPI 接口

表 2-18 ACPI 接口

| 信号名称           | 类型 | 描述                                                                                           | 电源       | 上下拉 |
|----------------|----|----------------------------------------------------------------------------------------------|----------|-----|
| ACPI_DOTESTN   | 1  | 测试模式控制(ACPI 电压域)<br>0: 测试模式<br>1: 功能模式                                                       | ACPI_3V3 | -   |
| ACPI_EN        | I  | ACPI 功能使能,板级必须控制,可根据需要设置为0或者1。0:不使能 ACPI 功能,此时除了复位信号(ACPI_SYSRSTN)外,其他电源管理信号无效;1:使能 ACPI 功能; | ACPI_3V3 | 上拉  |
| ACPI_GPIO[7:0] | 10 | ACPI 域 GPIO 端口,用作 GPE 功能,具有唤醒和中断功能,中断类型包括电平/边沿/双沿,极性可设置。不使用时可不接                              | ACPI_3V3 | -   |
| ACPI_PLTRSTN   |    | 平台复位,低有效。建议板级使用该复位信号,ACPI_<br>EN 为 0 时该信号仅受 ACPI_SYSRSTN 控制                                  | ACPI_3V3 | 上拉  |





| ACPI_PWRBTNN  | Ι | 电源开关,低有效。不使用时上拉处理              | ACPI_3V3 | -  |
|---------------|---|--------------------------------|----------|----|
| ACPI_PWROK    | Ι | 电源有效,指示最后一级电源上电成功,高有效。不使用时上拉处理 | ACPI_3V3 | -  |
| ACPI_RSMRSTN  | Ι | ACPI 域复位信号,低有效。必须按照时序要求进行控制    | ACPI_3V3 | -  |
| ACPI_S3/4/5N  | 0 | S3/S4/S5 状态,低有效。不使用时可不接        | ACPI_3V3 | 上拉 |
| ACPI_SUSSTATN | 0 | 低功耗状态,低有效。不使用时可不接              | ACPI_3V3 | 上拉 |
| ACPI_SYSRSTN  | Ι | 系统复位,低有效。必须按照时序要求进行控制          | ACPI_3V3 | -  |
| ACPI_VSBGATE  | 0 | 主电源和 standby 电源切换控制信号。不使用时可不接  | ACPI_3V3 | 1  |
| ACPI_WAKEN    | Ι | PCIE 唤醒,低有效。不使用时上拉处理           | ACPI_3V3 | _  |

## 2.19 JTAG 接口

表 2-19 JTAG接口

| 信号名称           | 类型 | 描述                                                                       | 电源     | 上下拉 |
|----------------|----|--------------------------------------------------------------------------|--------|-----|
| JTAG_TSEL[1:0] | I  | JTAG 选择<br>00: CPU_JTAG<br>01: SE_JTAG<br>10: LA132_JTAG<br>11: GPU_JTAG | IO_3V3 | 下拉  |
| JTAG_TCK       | Ι  | JTAG 时钟                                                                  | IO_3V3 | 下拉  |
| JTAG_TDI       | I  | JTAG 数据输入                                                                | IO_3V3 | _   |
| JTAG_TMS       | Ι  | JTAG 模式                                                                  | IO_3V3 | _   |
| JTAG_TRSTN     | Ι  | JTAG 复位                                                                  | IO_3V3 | 下拉  |
| JTAG_TDO       | 0  | JTAG 数据输出                                                                | IO_3V3 | _   |

## 2.20 时钟信号

表 2-21 时钟信号

| 信号名称        | 类型 | 描述              | 电源     | 上下拉 |
|-------------|----|-----------------|--------|-----|
| SYS_CLKIN   | Ι  | 100MHz 参考时钟     | IO_3V3 | _   |
| SYS_TESTCLK | Ι  | 测试时钟输入,功能模式必须下拉 | IO_3V3 | _   |

## 2.21 RTC 相关信号

表 2-22 RTC 相关信号

| 信号名称   | 类型  | 描述                                 | 电源        | 上下拉 |
|--------|-----|------------------------------------|-----------|-----|
| RTC_XI | I/0 | 32.768KHz 晶体输入,或者外部 32.768KHz 时钟输入 | RTC_core* | -   |
| RTC_XO | I/0 | 32.768KHz 晶体输出接口                   | RTC_core* | _   |

\*: RTC\_core 为内部电源





## 2.22 系统相关信号

表 2-23 系统相关信号

| 信号名称             | 类型 | 描述                                                                   | 电源     | 上下拉                |
|------------------|----|----------------------------------------------------------------------|--------|--------------------|
| SYS_CLKSEL       | I  | eMMC 引脚电压检测结果选择 (VDD 大于 0.85V 时推荐 0)<br>0: 硬件检测结果<br>1: 软件配置         | TO_3V3 | 下拉                 |
| PRG_CLKSEL       | I  | PRG 参考时钟选择<br>0:选择 USB3 输出的 25MHz 参考时钟<br>1:选择 PCIE_REFCLKp/n 作为参考时钟 | 10_3V3 | 下拉                 |
| USB_CLKSEL       | I  | USB 参考时钟选择<br>0: USB 参考时钟为 25MHz 晶体<br>1: USB 参考时钟为 25MHz 差分输入       | I0_3V3 | 下拉                 |
| CHIP_CONFIG[1:0] | I  | PLL 时钟配置输入<br>00: 低频模式<br>01: 高频模式<br>10: 软件模式(DFT)<br>11: bypass 模式 | IO_3V3 | bit0:下拉<br>bit1:下拉 |
| CHIP_CONFIG[3:2] | I  | 启动选择<br>00: LIO<br>01: SPI<br>10: SDIO<br>11: eMMC                   | 10_3V3 | bit2:上拉<br>bit3:下拉 |
| CHIP_CONFIG4/5   | Ι  | 未使用                                                                  | I0_3V3 | 下拉                 |
| CHIP_CONFIG6     | I  | LIO 模式<br>0: 8bit<br>1: 16bit                                        | 10_3V3 | 下拉                 |
| CHIP_CONFIG7     | I  | PCIE_F1/G0 端口模式(为 0 时可通过软件更改模式)<br>模式)<br>0: PCIE<br>1: Rapid IO     | IO_3V3 | 下拉                 |
| CHIP_CONFIG8     | I  | PCIE_ G0 工作模式<br>0: RC 模式<br>1: EP 模式                                | 10_3V3 | 下拉                 |

## 2.23 其它引脚

表 2-24 其他引脚

| 信号名称          | 类型  | 描述                          | 电源     | 上下拉 |
|---------------|-----|-----------------------------|--------|-----|
| VDDG_CPUO/1   | I/0 | NC, 必须悬空                    | -      | _   |
| VDDG_GPUTOP   | I/0 | NC, 必须悬空                    | -      | _   |
| VDDG_GPUVUSPC | I/0 | NC, 必须悬空                    | -      | _   |
| VDDG_SE       | I/0 | NC, 必须悬空                    | _      | _   |
| NMIN          | Ι   | 不可屏蔽中断输入                    | IO_3V3 | 上拉  |
| BBG_GNDSIN    | Ι   | BBGEN 模块-1.1~1.1V 偏置 GND 输入 | _      | _   |
| BBG_GNDSOUT   | 0   | BBGEN 模块-1.1~1.1V 偏置 GND 输出 | _      | _   |
| BBG_VDDSIN    | Ι   | BBGEN 模块-1.1~1.1V 偏置 VDD 输入 | -      | _   |
| BBG_VDDSOUT   | 0   | BBGEN 模块−1.1~1.1V 偏置 VDD 输出 | _      | _   |
| BBG_VNEG      | Ι   | 通过 1uF/4.7V 电容接地            |        | _   |





## 2.24 外设功能复用表

模块层次的功能复用关系如下表所示:

表 2-25 外设功能复用表

| 功能 0            | 功能1      | 功能 2         | 功能3        | 功能4       | 功能 5      | 功能 6    |
|-----------------|----------|--------------|------------|-----------|-----------|---------|
| DDR4            |          |              |            |           |           |         |
| SE              |          |              |            |           |           |         |
| PCIEx4          | 4*PCIEx1 |              |            |           |           |         |
| PCIEx4          | 2*PCIEx1 | SRI0x4       |            |           |           |         |
| PCIEx4          |          | SRI0x4       |            |           |           |         |
| SATA            | GPIO(1)  |              |            |           |           |         |
| USB             | GPIO(4)  |              |            |           |           |         |
| GMACO/1 (w/PHY) | GPIO(3)  |              |            |           |           |         |
| HDMI            |          |              |            |           |           |         |
| DVO             | GPIO(32) | Local<br>Bus |            |           |           |         |
| GMAC2 (RGMII)   | GPIO(14) |              | UART1 (8)  | UART1 (4) | UART1 (2) |         |
|                 |          |              |            |           | UART8 (2) |         |
|                 |          |              |            | UART6 (4) | UART6(2)  |         |
|                 |          |              |            |           | UART7 (2) |         |
| HDA             | GPIO(7)  |              |            | I2S       |           |         |
| SPI0            |          |              |            |           |           |         |
| RTC             |          |              |            |           |           |         |
| I2C0            |          |              |            |           |           |         |
| I2C1            |          |              |            |           |           |         |
| LPC             | GPIO(2)  | CANO         | UART2 (8)  | UART2 (4) | UART2(2)  |         |
|                 | GPIO(2)  | CAN1         |            |           | UART11(2) |         |
|                 | GPIO(2)  | CAN2         |            | UART9 (4) | UART9 (2) | I2C2    |
|                 | GPIO(2)  | CAN3         |            |           | UART10(2) | I2C3    |
|                 |          |              | UARTO (8)  | UARTO(4)  | UARTO (2) |         |
|                 |          |              |            |           | UART5 (2) |         |
|                 |          |              |            | UART3 (4) | UART3 (2) | AVS (3) |
|                 |          |              |            |           | UART4(2)  |         |
|                 |          |              | UART (2)   |           |           |         |
| JTAG (LA364)    |          | JTAG         | JTAG (GPU) | JTAG      | JTAG      |         |
|                 |          |              |            | (LA132)   | (SE)      |         |
|                 | GPIO(4)  |              |            |           |           |         |
| PWMO-1          | GPIO(2)  |              |            |           |           |         |
| PWM2-3          | GPIO(2)  | CAN4         | GPU_UART   |           |           |         |
| PWM4-5          | GPIO(2)  | CAN5         |            |           |           |         |
| eMMC            | GPIO(11) |              |            |           |           |         |
| SDIO            | GPIO(6)  |              | SPI1       |           |           |         |
| ACPI            | GPIO(8)  |              |            |           |           |         |



#### 3 功能描述

#### 3.1 DDR4 接口

芯片集成的内存接口遵守 DDR4 SDRAM 行业标准(JESD79-4)。

内存支持的片选个数为 2,一共含有 21 位的地址总线(即: 17 位的行列地址总线、2 位逻辑 Bank 总线和 2 位逻辑 Bank Group 总线,其中行列地址总线与RASn、CASn 和 Wen 复用)。在具体选择使用不同内存芯片类型时,可以调整 DDR4 控制器参数设置进行支持。其中,行地址(ROW)数为 17,列地址(COL)数为12。

芯片集成的内存控制器具有如下特征:

- 72 位 DDR4 控制器(含8位 ECC),最高支持 DDR2400
- 64/32 位模式支持 ECC
- 支持 64/32/16 位模式
- 支持命令调度
- 接口上命令、读写数据全流水操作;
- 内存命令合并、排序提高整体带宽;
- 配置寄存器读写端口,可以修改内存设备的基本参数;
- 内建动态延迟补偿电路(DCC),用于数据的可靠发送和接收;
- 支持 DDR4 SDRAM, 且参数配置支持 x8、x16 颗粒;
- 控制器与 PHY 频率比 1/2:
- 支持数据传输速率范围为800Mbps-2400Mbps。

## 3.2 PCIE 接口

龙芯 2K2000 有 3 个 PCIE 模块: F0、F1、G0。

F0 模块既可以作为一个 X4/X2/X1 的 PCIE 端口也可以作为 4 个独立的 X1 PCIE 端口:

F1 模块既可以作为一个 X4/X2/X1 的 PCIE 端口也可以作为 2 个独立的 X1 PCIE 端口,作为 X1 端口时,仅 LANEO 和 LANE1 可用,LANE2 和 LANE3 不可用;

GO 模块只能作为一个 X4/X2/X1 的 PCIE 端口。

F0 模块包含  $0\sim3$  号,共 4 个 PCIE 端口。0 号端口可以以 X4/X2/X1 的方式工作, $1\sim3$  号端口仅能以 X1 的方式工作。各模式下,F0 的所有 PCIE 端口最高工作速率为 GEN3(8Gbps),只能工作在 RC 模式。

F1 模块包含 0 和 1 号 PCIE 端口。0 号端口可以以 X4/X2/X1 的方式工作, 1 号





端口仅能以 X1 的方式工作。2X1 模式时, F1 的所有 PCIE 端口最高工作速率为 GEN2(5Gbps)。F1 只能工作在 RC 模式。

G0 模块包含 0 号 PCIE 端口。0 号端口可以以 X4/X2/X1 的方式工作,最高工作 速率为 GEN3 (8Gbps)。G0 允许工作在 RC 或 EP 模式。

GO 有内置的 DMA 控制器,可以在内部总线与 PCIE 总线间进行数据搬运。

#### 3.3 显示控制

龙芯 2K2000 的显示控制器从内存中取帧缓冲和光标信息输出到外部显示接口上。其支持的特性包括:

- 1 路 HDMI (显示通道 0) 和 1 路 DVO (显示通道 1)
- HDMI 分辨率最大支持至 4K @30Hz
- DVO 分辨率最大支持至 1080p@60Hz
- 横向分辨率必须为8的整数倍(比如不支持1366分辨率)
- Tile 模式只支持 1080p 及以下和 4K 分辨率
- Tile4 不支持压缩模式
- Monochrome、ARGB8888 两种模式硬件光标
- 两路硬件光标, 光标像素为 64 x 64 或 32 x 32 可选
- RGB444, RGB555, RGB565, RGB888 四种色深
- 输出抖动和伽马校正
- 支持线性显示缓冲,可切换的双路线性帧缓冲
- 中断和软复位
- 上电序列控制
- 低功耗管理

#### 3.4 SATA 控制器

2个SATA端口,特性如下:

- 支持 SATA 1.5Gbps、SATA2 代 3Gbps 和 SATA3 代 6Gbps 的传输
- 兼容串行 ATA 2.6、AHCI 1.1 和 AHCI 1.3.1 规范

#### 3.5 USB接口

龙芯 2K2000 的 USB 端口特性如下:

- USB 3.0 协议,最高传输速度可达 5Gbps
- 兼容 USB 1.1 、USB 2.0 协议





- 兼容 XHCI Rev1.1 协议
- 支持 4 个 USB3. 0 端口,每个端口都可挂 SS、LS、FS 或 HS 设备
- 支持8个USB2.0端口,每个端口都可挂LS、FS或HS设备
- 支持 S3 休眠唤醒

龙芯 2K2000 的 USB 2.0 端口 6 固定为 OTG 工作模式(OTG 为可选功能),支持特性如下:

- 支持 HNP 与 SRP 协议:
- 内嵌 DMA, 无需占用处理器带宽即可在 OTG 与外部存储之间移动数据;
- 在 device 模式下,为高速设备(480Mbps);
- 在 host 模式下,仅能支持高速设备(480Mbps);
- 在 device 模式下,支持 6 个双向的 endpoint,其中仅有默认的 endpoint0 支持控制传输;
- 在 device 模式下,最多同时支持 4 个 IN 方向的传输;
- 在 host 模式下,支持 12 个 channel,且软件可配置每个 channel 的方向:
- 在 host 模式下, 支持 periodic OUT 传输;
- 除 OTG 外, 所有 USB2.0 端口支持 S3 休眠唤醒。

#### 3.6 GMAC 控制器

龙芯 2K2000 集成了 3 个 GMAC 控制器,即 GMACO/1/2,其中 GMACO/1 内部集成 PHY,GMAC2 通过 RGMII 接口连接外置 PHY,分别为 Device 3 的功能 0/1/2。特性 如下:

- 三路 10/100/1000Mbps 自适应以太网 MAC
- 一路 RGMII 接口, 2 路千兆网口
- 均兼容 IEEE 802.3
- 半双工/全双工自适应
- Timestamp 功能
- 半双工时,支持碰撞检测与重发(CSMA/CD)协议
- 支持 CRC 校验码的自动生成与校验,支持前置符生成与删除
- RGMII 接口支持网络唤醒
- 支持 TSN, 其中: 时间同步协议支持 IEEE 1588V2 和 IEEE 802.1AS-2011; 流量整形协议支持 IEEE 802.1Qav-2009; 时间感知调度协议支持 IEEE 802.1Qbv-2016





## 3.7 HDA 接口

HDA 控制器特性如下:

- 兼容 Rev 1.0a
- 支持 16、18 和 20 位采样精度,支持可变速率
- 最高采样频率 192KHz
- 7.1 频道环绕立体声输出
- 三路音频输入

#### 3.8 I2S接口

龙芯 2K2000 中 I2S 控制器,数据宽度是 32 位,支持 DMA 传输,支持多家公司的 codec 芯片。I2S 控制器支持主或从模式。主模式时由 I2S 控制器产生位时钟信号、左右声道选择时钟信号和数据信号,从模式时 I2S 控制器接收位时钟信号、左右声道选择时钟信号和数据信号。主模式时,codec 系统时钟由控制器提供,从模式时,系统时钟可由控制器或晶振提供。I2S 的功能特性包括:

- 支持 8、16、18、20、24、32 位的音频数据采样位宽。
- 支持8、16、32位的左右声道处理字宽。
- 包含两个缓存 FIFO, FIFO 的缓存容量为 8bytes。
- I2S 的中断处理模式可配,在 I2S 的发送和接收中断功能都使能后,当两个通道的缓存 fifo 为满仍要写以及为空仍要读时,则向 CPU 发出中断信号。
- I2S 可以为 codec 芯片提供系统时钟, 时钟频率可配。
- 支持 master/slave 模式下 I2S 输入
- 支持 master/slave 模式下 I2S 输出
- 支持单声道和立体声道音频数据
- 支持(16、22.05、32、44.1、48)KHz 采样频率
- 支持 DMA 传输模式

### 3.9 SPI 控制器

串行外围设备接口 SPI 总线技术是多种微处理器、微控制器以及外围设备之间的一种全双工、同步、串行数据接口标准。龙芯 2K2000 集成了 2 个 SPI 控制器,特性如下所示:

- 双缓冲接收器
- 极性和相位可编程的串行时钟





- 主模式支持
- 支持到4个的变长字节传输
- 支持系统启动
- 支持标准读、连续地址读、快速读、双路 I/0 等 SPI Flash 读模式
- SPI1 可以配置为 4 线模式, SPI1 通过 PCI 设备的方式访问

龙芯 2K2000 集成的 SPI 控制器仅可作为主控端,所连接的是从设备。对于软件而言,SPI 控制器除了有若干 IO 寄存器外还有一段映射到 SPI Flash 的只读memory 空间。如果将这段 memory 空间分配在 0x1c000000,复位后不需要软件干预就可以直接访问,从而支持处理器从 SPI Flash 启动。

以下列举了 SPI 管脚信号与外设通信的时序图:





图 3-2 SPI Flash 标准读时序





图 3-3 SPI Flash 快速读时序



图 3-4 SPI Flash 双向 I/0 读时序

## 3.10 LPC 接口

龙芯 2K2000 的 LPC 控制器具有以下特性:

- 符合 LPC1.1 规范
- 支持 LPC 访问超时计数器
- 支持 Memory Read/write 访问类型
- 支持 Firmware Memory Read/Write 访问类型(单字节)
- 支持 I/0 read/write 访问类型
- 支持 TPM I/O read/write 访问类型
- 支持 Memory 访问类型地址转换
- 支持 Serial IRQ 规范,支持 17 个中断源





## 3.11 UART 接口

UART 控制器提供与 MODEM 或其他外部设备串行通信的功能,例如与另外一台计算机,以 RS232 为标准使用串行线路进行通信。该控制器在设计上能很好地兼容国际工业标准半导体设备 16550A。

龙芯 2K2000 集成了 13 个 UART 接口和 13 个 UART 控制器,其中,UART0、UART3、UART4、UART5 复用 UART0 接口;UART1、UART6、UART7、UART8 复用 UART1接口;UART2、UART9、UART10、UART11 复用 UART2 接口;ND\_UART 为 node 上的控制器接口。其特性如下:

- 1 个双线 UART、3 个全功能 UART 和流控 TXD, RXD, CTS, RTS, DSR, DTR, DCD, RI
- 在寄存器与功能上兼容 NS16550A
- 两路全双工异步数据接收/发送
- 可编程的数据格式
- 16 位可编程时钟计数器
- 支持接收超时检测
- 带仲裁的多中断系统

UART 控制器有发送和接收模块(Transmitter and Receiver)、MODEM 模块、中断仲裁模块(Interrupt Arbitrator)、和访问寄存器模块(Register Access Control),这些模块之间的关系见下图所示。主要模块功能及特征描述如下:

- 1)发送和接收模块:负责处理数据帧的发送和接收。发送模块是将 FIFO 发送队列中的数据按照设定的格式把并行数据转换为串行数据帧,并通过发送端口送出去。接收模块则监视接收端信号,一旦出现有效开始位,就进行接收,并实现将接收到的异步串行数据帧转换为并行数据,存入 FIFO 接收队列中,同时检查数据帧格式是否有错。UART 的帧结构是通过行控制寄存器(LCR)设置的,发送和接收器的状态被保存在行状态寄存器(LSR)中
- 2) MODEM 模块: MODEM 控制寄存器 (MCR) 控制输出信号 DTR 和 RTS 的状态。 MODEM 控制模块监视输入信号 DCD, CTS, DSR 和 RI 的线路状态,并将这些信号的状态记录在 MODEM 状态寄存器 (MSR) 的相对应位中。
- 3) 中断仲裁模块: 当任何一种中断条件被满足,并且在中断使能寄存器 (IER) 中相应位置 1,那么 UART 的中断请求信号 UAT\_INT 被置为有效状态。为了减少和外部软件的交互,UART 把中断分为四个级别,并且在中断标识寄存器 (IIR) 中标识这些中断。四个级别的中断按优先级级别由高到低的排列顺序为,接收线路状态中断;接收数据准备好中断;传送拥有寄存器为空中断;MODEM 状态中断。



4)访问寄存器模块:当 UART 模块被选中时,CPU 可通过读或写操作访问被地址线选中的寄存器。



图 3-5 UART 控制器结构

#### 3.12 I2C 总线

I2C 总线是由数据线 SDA 和时钟 SCL 构成的串行总线,可发送和接收数据。器件与器件之间进行双向传送,最高传送速率 400kbps。

龙芯 2K2000 集成了 4 个 I2C 接口(I2C0<sup>~</sup>I2C3)及控制器, 4 个 I2C 控制器均可以做主设备(master),可通过引脚与其他 I2C 设备进行数据的交换。其中 I2C2 还可以作为从设备,包含 6 个 8bit 数据寄存器可用于 LA132 的通信接口,主设备还可以访问温度传感器、RTC 计数值,并通过中断寄存器产生中断请求。其特性如下:

- 兼容 SMBUS (100Kbps)
- 与 PHILIPS I2C 标准相兼容
- 履行双向同步串行协议
- 主从设备支持
- 能够支持多主设备的总线
- 总线的时钟频率可编程
- 可以产生开始/停止/应答等操作
- 能够对总线的状态进行探测
- 支持低速和快速模式
- 支持 7 位寻址和 10 位寻址
- 支持时钟延伸和等待状态





#### 3.13 PWM

龙芯 2K2000 中实现了 6 路脉冲宽度调节/计数控制器,以下简称 PWM。每一路 PWM 工作和控制方式完全相同。每路 PWM 有一路脉冲宽度输出信号和一路待测脉冲输入信号。时钟频率为 50MHz,计数寄存器和参考寄存器均 32 位数据宽度。其特性如下:

- 支持定时器功能
- 支持计数器功能
- 支持防死区发生控制

#### 3.14 HPET

HPET (High Precision Event Timer, 高精度事件定时器)定义了一组新的定时器,这组定时器被操作系统使用,用来给线程调度,内核以及多媒体定时器服务器等产生中断。操作系统可以将不同的定时器分配给不同的应用程序使用。通过配置,每个定时器都能独立产生中断。

这组定时器由一个向上累加的主计时器(up-counter)以及一组比较器构成。这个计时器以固定的频率(125MHz)向上累加,因此当软件两次读取计时器的值时,除非遇到计时器溢出,否则第二次读取的值总是比第一次读取的值大。而每个定时器都包含一个match 寄存器以及一个比较器。当 match 寄存器的值与主计时器相等时,那么定时器产生中断。部分定时器可产生周期性中断。

内部包括一个 64 位的主计数器 (main count) 以及三个 32 位的比较器 (comparator)。在这三个比较器中,比较器 0 支持周期性中断 (periodic-capable) 和非周期性中断,其他两个比较器支持非周期性中断。

#### 3, 15 RTC

实时时钟(RTC)单元可以在主板上电后进行配置,当主板断电后,该单元仍然运作,可以仅靠板上的电池供电就正常运行,支持定时开关机功能。RTC单元运行时电流约10微安。

RTC 包含振荡器,结合外部 32.768KHZ 晶体产生工作时钟。该时钟用于时间信息的维护以及产生各种定时和计数中断。可产生 3 个计时中断。

RTC 模块中包含两个计数器,分别为 TOY (Time of Year) 计数器和 RTC 计数器。其中 TOY 计数器按年月日时分秒计数,精度为以 0.1 秒;RTC 计数器以 32.768KHz 时钟计数,宽度为 32 位。





#### 3.16 ACPI 接口

龙芯 2K2000 支持 Advanced Configuration and Power Interface, Version 4.0a(ACPI),提供相应的功耗管理功能。支持 ACPI S3 (待机到内存),ACPI S4 (待机到硬盘),ACPI S5 (软关机),并且支持电源失效检测和自动系统恢复。支持多种唤醒方式(USB,GMAC,电源开关等)。

#### 3.17 Watchdog

龙芯 2K2000 中的看门狗由 32 比特计数器及初始化寄存器组成。

#### 3. 18 CAN

龙芯 2K2000 集成了 6 路 CAN 接口控制器,符合 CAN2. 0 规范。CAN 总线是由发送数据线 TX 和接收数据线 RX 构成的串行总线,可发送和接收数据。器件与器件之间进行双向传送,最高传送速率 1Mbps。支持中断。

#### 3. 19 GPIO

龙芯 2K2000 共有 96 个 GPIO 引脚(不包含 ACPI 和 SE 专用 GPIO), 4 个为专用 GPIO(GPIO[03:00], 默认输出 1), 其余 92 个 (默认输入)与其他功能复用。 96 个 GPIO 中 32 个为 node 上的 GPIO, 其余 64 个为南桥上的 GPIO。其特性有:

- 输入中断功能
- 中断极性、触发类型可设置

#### 3.20 SDIO 控制器

龙芯 2K2000 集成了一个 SDIO 控制器, 用于 SD Memory 和 SDIO 卡的读写。 SDIO 控制器特性如下:

- 兼容 SD 存储卡规格(4.0 版本)
- 兼容 SDIO 卡规格 (4.0 版本)
- 8字(32字节)数据发送/接收 FIF0
- 扩展的 256 位 SD 卡状态寄存器
- 8 位预分频逻辑 (频率=系统时钟/(p+1))
- DMA 数据传输模式
- 专用独立 DMA 通道
- 1 位/4 位 ( 宽总线 ) 的 SD 模式





#### 3.21 eMMC 控制器

龙芯 2K2000 中集成了一个 eMMC 控制器, 其特性如下:

- 兼容 eMMC5.1 版本
- 支持 eMMC 启动
- 8 位预分频逻辑(频率=系统时钟/(p+1))
- DMA 数据传输模式
- 专用独立 DMA 通道
- 1位/4位/8位的总线模式

#### 3. 22 AVS

● AVS 通过 APB 设备进行访问

#### 3.23 中断控制器

- 支持软件设置中断
- 支持电平与边沿触发
- 支持中断屏蔽与使能
- 支持多种中断分发模式

## 3.24 加解密模块

- AES、DES 算法支持
- RSA 算法支持





## 4 时钟

#### 4.1 芯片时钟结构

龙芯 2K2000 由一个 100MHz 单端时钟作为参考时钟,内部共有 6 个独立的 PLL,其中每个 PLL 最多可以提供 3 组频率上相互依赖的时钟输出。芯片时钟结构 如下图所示:



图 4-1 芯片时钟结构图

上述 6 个 PLL 的用途分别为:

- 一个 PLL 用于产生 HDA、node 和 eMMC 时钟, node 时钟经过各自分频供 CPU 核、二级 Cache、一二级交叉开关、IO 子网络、I2S、加解密模块 以及 LA132 使用;
- 一个 PLL 产生 GMAC 控制器、RapidIO、SATA 以及 USB 的时钟;





- 一个 PLL 产生 GPU、DC、VPU、DDR 时钟;
- 一个 PLL 产生 PIXO 和 HDMI PHY 时钟
- 一个 PLL 产生 PIX1 时钟
- 一个展频 PLL 产生 GPU、DDR 和 IO 子网络时钟
- 还有一个 MISC 时钟,直接使用 100MHz 参考时钟通过分频得到。

#### 4.2 系统参考时钟

芯片的系统参考时钟为单端输入时钟 SYS\_CLKIN, 频率为 100MHz。

#### 4.3 RTC 时钟

RTC 时钟频率要求为 32.768KHz。可选择外接晶体或者晶振,芯片内部 RTC 模块可以自适应这两种时钟输入,无需特别控制。

#### 4.4 PCIE PHY 参考时钟

龙芯 2K2000 的 PCIE 有 3 个 PHY, 它们共用内部参考时钟。可以从下面三个时钟源对参考时钟进行选择:

- 1、外部 100MHz 单端参考时钟 SYS CLKIN
- 2、外部 100MHz 差分输入(PCIE REFCLKp/n)
- 3、USB PHY 的 25MHz 参考时钟(USB CLKINp/n)

另外, PCIE F1 作为 RapidIO 使用时由外部提供 156. 25MHz 的差分参考时钟。这种情况下, 其他 PCIE 仍可从以上两种参考时钟进行选择。

## 4.5 USB PHY 参考时钟

USB3 PHY 的参考时钟有以下两种选择方式,通过芯片引脚 USB\_CLKSEL 进行选择:

- 1、外接 25MHz 晶体;
- 2、外接 25MHz 差分输入;

USB2 PHY 的参考时钟可以从下面两个时钟源进行选择:

- 1、系统参考时钟经过 4 分频后得到的 25M 单端时钟;
- 2、USB3 PHY 的 25M 参考时钟。





### 4.6 SATA PHY 参考时钟

SATA PHY 的参考时钟可以从下面三个时钟源进行选择:

- 1、外部 25MHz 差分输入(SATA REFCLKp/n)
- 2、USB3 PHY 的 25M 参考时钟
- 3、内部系统参考时钟经过 4 分频后得到的 25M 差分时钟

### 4.7 GMAC PHY 参考时钟

GMAC PHY 参考时钟有以下两个来源,通过配置寄存器 CFG. 0770[22]进行选择。

- 1、使用 USB3 PHY 的 25MHz 参考时钟 (USB CLKINp/n)
- 2、使用内部 PLL 生成的 GMAC 控制器时钟

### 4.8 频率配置

参考用户手册。



# 5 热设计

### 5.1 热参数

表 5-1 龙芯 2K2000 的热阻参数

| 芯片基底热阻R <sub>th (J-B)</sub> | 0.62 | K/W |
|-----------------------------|------|-----|
| 芯片硅片热阻R <sub>th(J-C)</sub>  | 0.07 | K/W |

### 5.2 焊接温度及焊接曲线

表 5-2 回流焊接温度分类表

| Profi                      | Pb-Free Assembly        |                  |
|----------------------------|-------------------------|------------------|
| Average ramp-u             | p rate (Tsmax to Tp)    | 3° C/second max. |
|                            | Temperature Min (Tsmin) | 150 ° C          |
| Preheat                    | Temperature Max (Tsmax) | 200 ° C          |
| Time (Tsmin to Tsmax) (ts) |                         | 60-180 seconds   |
| Time maintained            | Temperature (TL)        | 217 ° C          |
| above                      | Time (tL)               | 60-150 seconds   |
| Peak Tem                   | perature (Tp)           | 245° C           |
| Time within 5°C of ac      | 20-40 seconds           |                  |
| Ramp                       | 6° C/second max.        |                  |
| Time 25° C to              | o Peak Temperature      | 8 minutes max.   |



图 5-1 焊接回流曲线





# 6 电气特性

# 6.1 最大额定工作条件

表 6-1 芯片绝对最大额定电压

| Power Name |            | D                                                                      | Voltage(V) |         |
|------------|------------|------------------------------------------------------------------------|------------|---------|
| Domain     | in -       |                                                                        | Min.       | Max.    |
| RTC        | RTC_3V     | RTC power                                                              | -0.3       | 3.6     |
| ACDI       | ACPI_3V3   | ACPI IO power                                                          |            | 3.6     |
| ACPI       | ACPI_CORE  | ACPI core power                                                        | -0.3       | 1.2     |
|            | RSM_CORE   | Resume core power                                                      | -0.3       | 1.2     |
|            | RSM_1VOR   | Resume USB3 receive / USB2PHY power                                    | -0.3       | 1.1     |
| RSM        | RSM_1V8T   | Resume USB3 transmit / USB2PHY power                                   | -0.3       | 1.95    |
|            | RSM_3V3    | Resume IO power for GMAC                                               | -0.3       | 3.6     |
|            | RSM_A3V3   | Resume IO power for USB2                                               |            | 3.6     |
|            | SOC_CORE   | SOC core power                                                         |            | 1.3     |
|            | NODE_CORE  | CPU node core power                                                    | -0.3       | 1. 32   |
|            | DDR_1V2    | DDR4 IO power                                                          |            | 1.3     |
|            | PCIE_1V0   | PCIE transceiver power                                                 |            | 1.1     |
|            | SAGE_1VO   | SATA RX CS/GNETPHY receive power                                       |            | 1.1     |
|            | HDMI_1VO   | HDMI data transmit power                                               |            | 1.05    |
| SOC        | HDMI_1V8   | HDMI bias and PLL power                                                | -0.3       | 1.9     |
|            | IO_1V8     | Chip IO power(including power switch, SATA TX, GNETPHY, OTP, OSC, OTP) |            | 1.9     |
|            | IO_3V3     | Chip IO power                                                          | -0.3       | 3.6     |
|            | IO_3V3/1V8 | EMMC 3.3V/1.8V IO power                                                | -0.3       | 3.6/1.9 |
|            | PLL_1V8    | PLL IP power                                                           | -0.3       | 1.9     |

贮存温度: -65℃~150℃

### 6.2 工作电源

表 6-2 推荐的工作电压

| Power  | r Nome Degement on |                   | V          | Imax* |        |       |
|--------|--------------------|-------------------|------------|-------|--------|-------|
| Domain | Name               | Description       | Min.       | Тур.  | Max.   | шах≁  |
| RTC    | RTC_3V             | RTC power         | 2.4        | 3.0   | 3.3    | 10uA  |
| ACPI   | ACPI_3V3           | ACPI IO power     | 3. 13<br>5 | 3. 3  | 3. 465 | 5mA   |
|        | ACPI_CORE          | ACPI core power   | 0.95       | 1.0   | 1.05   | 1mA   |
| RSM    | RSM_CORE           | Resume core power | 0.95       | 1.0   | 1.05   | 250mA |





| Power    | N          | Name Description                                                       |            | 'oltage | (V)    | Turrente |
|----------|------------|------------------------------------------------------------------------|------------|---------|--------|----------|
| Domain   | Name       |                                                                        |            | Тур.    | Max.   | Imax*    |
| RSM_1VOR |            | Resume USB3 receive / USB2PHY power                                    | 0.95       | 1.0     | 1.05   |          |
|          | RSM_1V8T   | Resume USB3 transmit / USB2PHY power                                   | 1. 75      | 1.8     | 1.85   | 140mA    |
|          | RSM_3V3    | Resume IO power for GMAC                                               | 3. 13<br>5 | 3. 3    | 3. 465 | CO. A    |
|          | RSM_A3V3   | Resume IO power for USB2                                               | 3. 13<br>5 | 3. 3    | 3. 465 | 60mA     |
|          | SOC_CORE   | SOC core power                                                         | 1.15       | 1.2     | 1. 25  | 3. 2A    |
|          | NODE_CORE  | CPU node core power                                                    | 1.2        | 1. 25   | 1.3    | 4. 4A    |
|          | DDR_1V2    | DDR4 IO power                                                          | 1.15       | 1.2     | 1. 25  | 420mA    |
|          | PCIE_1V0   | PCIE transceiver power                                                 | 0.95       | 1.0     | 1.05   | 1.1A     |
|          | SAGE_1V0   | SATA RX CS/GNETPHY receive power                                       | 0.95       | 1.0     | 1.05   |          |
|          | HDMI_1VO   | HDMI data transmit power                                               | 0.95       | 1.0     | 1.05   |          |
|          | HDMI_1V8   | HDMI bias and PLL power                                                | 1.75       | 1.8     | 1.85   |          |
| SOC      | 10_1V8     | Chip IO power(including power switch, SATA TX, GNETPHY, OTP, OSC, OTP) | 1. 75      | 1.8     | 1.85   | 320mA    |
|          | PLL_1V8    | PLL IP power                                                           | 1.75       | 1.8     | 1.85   |          |
|          |            |                                                                        | 1.75       | 1.8     | 1.85   |          |
|          | 10_3V3/1V8 | EMMC 3.3V/1.8V IO power                                                | 3. 13<br>5 | 3. 3    | 3. 465 | TBD      |
|          | IO_3V3     | Chip IO power                                                          | 3. 13<br>5 | 3. 3    | 3. 465 | 190mA    |

注:

### 6.3 功耗信息

### 6.3.1 NODE\_CORE 电压域功耗

NODE\_CORE 电压域主要给 2 个 LA364 处理器核及 2MB 二级 Cache 模块供电,下表 6-3 中列出 NODE\_CORE 电压域在各条件下的最大功耗值。表中功耗值在系统级测试平台上测得,DDR 接口速度统一为 1600。 Idle 功耗在双核开启,系统无操作时测得。峰值 功耗在双核运行 spec2000 253 项时测得。

表 6-3 NODE\_CORE 电压域各条件下最大功耗

| NODE CODE           | CPU 频率 | NODE_CORE 电 | 压域(2x LA364, | 2MB L2 Cache) | 最大功耗 /W |
|---------------------|--------|-------------|--------------|---------------|---------|
| NODE_CORE<br>域电压 /V | /GHz   | 売温          | 45℃          | 売温            | 70℃     |
| 現电ഥ / ₹             | / GHZ  | 待机(Idle)    | 峰值(TDP)      | 待机(Idle)      | 峰值(TDP) |
| 1.25                | 1.4    | 1. 10       | 4.61         | 1.26          | 4. 87   |
| 1.10                | 1.2    | 0.65        | 2.85         | 0.80          | 3.02    |
| 0.95                | 1.0    | 0.50        | 2. 13        | 0.57          | 2. 26   |



<sup>\*</sup>测试条件为壳温 85 摄氏度。



#### 6.3.2 全芯片功耗

表 6-4 中列出全芯片在各条件下的最大功耗值,表中功耗值在系统级测试平台上测得,SOC\_CORE 电压域电压统一为 1.0V,DDR 接口速度统一为 1600,外设连接 2 个网口,6 个 U 盘,2 路 SATA 及 3 路 PCIE。Idle 功耗在双核开启,系统无操作时测得。峰值功耗在双核运行 spec2000 253 项时测得。

| ( ) T 工心// 日水川   取入为作 |        |          |         |          |         |  |
|-----------------------|--------|----------|---------|----------|---------|--|
| NODE CODE             | CPU 频率 |          | 全芯片     | 片最大功耗 /W |         |  |
| NODE_CORE<br>域电压 /V   | CPU    | 売温       | 45℃     | 売温       | 70℃     |  |
| 以电压 / V               | / GHZ  | 待机(Idle) | 峰值(TDP) | 待机(Idle) | 峰值(TDP) |  |
| 1. 25                 | 1.4    | 6.30     | 10.11   | 6. 61    | 10. 45  |  |
| 1. 10                 | 1.2    | 5. 78    | 8.40    | 6. 09    | 8. 73   |  |
| 0.95                  | 1.0    | 5. 62    | 7.49    | 5. 80    | 7.86    |  |

表 6-4 全芯片各条件下最大功耗

### 6.4 ESD 防护能力

静电放电敏感度(ESD): 1000V(HBM)。



# 6.5 电源时序

### 6.5.1 **使能 ACPI\_EN**

#### 1) 冷启动上电时序



图 6-1 冷启动上电时序 (RTC 掉电)

注:





- 1. RSM 域内的其他电源(包括 RSM\_1V0R, RSM\_1V8T)时序可根据需要选择与 RSM\_CORE 或者 RSM 3V3/A3V3 相同
- 2. VDD\_SOC&NODE包括: SOC\_CORE, NODE\_CORE, PLL\_1V8
- 3. VDDE SOC包括: IO 3V3, IO 3V3/1V8
- 4. SOC 域内的其他电源(包括 DDR\_1V2, PCIE\_1V0, SAGE\_1V0, HDMI\_1V0, HDMI\_1V8, IO\_1V8) 时序可根据需要选择与 VDD\_SOC&NODE 或者 VDDE\_SOC 相同
- 5. 上图中 ACPI\_CORE 和 ACPI\_3V3 的时序可根据需要进行交换,即 ACPI\_3V3 可早于 ACPI\_CORE 上 电,但是二者不可同时上电
- 6. 上图中 RSM\_CORE 和 RSM\_3V3/A3V3 的时序可根据需要进行交换,即 RSM\_3V3/A3V3 可早于 RSM\_CORE 上电,但是二者不可同时上电
- 7. 上图中 VDD\_SOC&NODE 和 VDDE\_SOC 的时序可根据需要进行交换,即 VDDE\_SOC 可早于 VDD\_SOC&NODE 上电,但是二者不可同时上电
- 8. 表 6-5 对时序的描述对应图 6-1,与上述注解不一致的描述以上述注解为准

表 6-5 上电时序要求(示例)

| はこころか |                             | 表 6-5 上电时序要求(示   |                                       |
|-------|-----------------------------|------------------|---------------------------------------|
| 标记符   | 参数                          | 需求               | 说明                                    |
| t0    | RTC_3V 电源稳定时刻               | н .              |                                       |
| t2    | ACPI_CORE 电源稳定时刻            | 见 t3             |                                       |
| t3    | ACPI_3V3 电源上电时刻             | t3 - t2 > 10us   | ACPI_CORE 要先于 ACPI_3V3 供电             |
| t5    | ACPI RSMRSTn 解复位时刻          | t5 - t3 > 5ms    | ACPI_RSMRSTn 需要在 RTC 和 ACPI 域电源稳      |
|       | Wei I_Komkolli 进交压的31       | t5 - t0 > 4s     | 定之后解复位                                |
| t6    | ACPI_PWRBTNn 按钮按下(信号        | t6 - t5 > 60 us  | ACPI_PWRBTNn 信号在 ACPI_RSMRSTn 解复位     |
| 10    | 变低) 时刻                      | to to 7 00 us    | 之后起作用                                 |
| t7    | ACPI_PWRBTNn 按钮释放(信号        | t7 - t6 > 20ms   | ACPI_PWRBTNn 有效需要保持低电平的时间             |
| 17    | 变高) 时刻                      | ti - to / Zums   | 大于 20ms                               |
| . 0   |                             | 10 170 150       | 在 ACPI_PWRBTNn 退出之后, ACPI_S5n 状态      |
| t8    | ACPI_S5n 状态退出时刻             | t8 - t7≈ 150us   | 才会退出                                  |
| t9    | ACPI_S4n 状态退出时刻             | t9 - t8 ≈ 150us  | ACPI_S4n 在 ACPI_S5n 退出之后退出            |
| t10   | RSM_CORE 供电稳定时刻             |                  |                                       |
| t11   | RSM_3V3/A3V3 供电稳定时刻         | t11 - t10 > 10us | RSM_CORE 要先于 RSM_3V3/A3V3 供电          |
| t12   | ACPI_S3n 状态退出时刻             | t12 - t9 ≈ 60us  | ACPI_S3n 在 ACPI_S4n 退出之后退出            |
| t13   | VDD_SOC&NODE 供电稳定时刻         |                  |                                       |
| t14   | VDDE_SOC 供电稳定时刻             | t14 - t13 > 10us | VDD_SOC&NODE 供电要先于 VDDE_SOC 供电        |
| 41E   | ACDI DWDOV 台具有效时刻           | t15 - t14 > 0    | ACPI_PWROK 信号必须在所有电源稳定之后              |
| t15   | ACPI_PWROK 信号有效时刻           | 113 - 114 / 0    | 有效                                    |
| t16   | ACPI_SUSSTATn 状态退出时刻        | t16 - t15≈7.8 ms | ACPI_SUSSTATn 在 PWROK 之后退出            |
| . 17  | ACDI DITDOT. 初有片叶剂          | +17 +1Co+ 20     | ACPI_PLTRSTn 在 ACPI_SUSSTATn 退出之后     |
| t17   | ACPI_PLTRSTn 解复位时刻          | t17 - t16≈ 30us  | 退出                                    |
| t170  | 输出时钟 PCIE_REFCLKOUT 稳定      | t170 - t14 > 0   | 输出 PCIE_REFCLKOUT 时钟在 VDDE_SOC 上电     |
| 1170  | 时刻                          | 1170 - 114 / 0   | 稳定后输出                                 |
| t100  | ACPI_PWRBTNn/ PWROK/SYSRSTn | t5 - t100 > 60us | ACPI_PWRBTNn/PWROK/SYSRSTn 输入信号需      |
| 1100  | 信号有效时刻                      | 100 / 00us       | 要在 ACPI_RSMRSTn 解复位之前有效               |
| t101  | ACPI_VSBGATE/ACPI_S3n/S4n/S | t101 - t3 < 60us | ACPI_VSBGATE/ACPI_S3n/S4n/S5n/PLTRSTn |
| 1101  | 5n/ PLTRSTn 信号有效时刻          | 1101 - 15 \ 00US | 在 ACPI_3V3 电源稳定之后 60us 内输出有效          |



### 2) 热复位时序



图 6-2 热复位时序图

注: POWER 包括所有的供电。

表 6-6 热复位时序约束

|     | <b>₹</b> 0 0 M 及匝时介约术    |                |                                                |  |  |
|-----|--------------------------|----------------|------------------------------------------------|--|--|
| 标记符 | 参数                       | 需求             | 说明                                             |  |  |
| t1  | ACPI_SYSRSTn 变低的时刻       |                |                                                |  |  |
| t2  | ACPI_SYSRSTn 变高的时刻       | t2 - t1 > 1ms  | ACPI_SYSRSTn 保持为低电平的时间需大于 1ms 才有效              |  |  |
| t3  | ACPI_SYSRSTn 保持为高的<br>时间 | t3 - t2 > 16ms | ACPI_SYSRSTn 变为高电平之后保持一段时间,<br>系统才开始复位         |  |  |
| t4  | ACPI_SUSSTATn 变低的时刻      | t4 - t1≈120us  | ACPI_SUSSTATn 在 ACPI_SYSRSTn 变低 120us 后<br>也变低 |  |  |
| t5  | ACPI_PLTRSTn 变低的时刻       | t5 - t4 ≈90us  | ACPI_PLTRSTn 在 ACPI_SUSSTATn 变低之后 90us<br>变低   |  |  |
| t6  | ACPI_SUSSTATn 变高的时刻      | t6 - t4 > 6ms  | ACPI_SUSSTATn 保持复位的时间大于 6ms                    |  |  |
| t7  | ACPI_PLTRSTn 变高的时刻       | t7 - t6≈ 30us  | ACPI_PLTRSTn 在 ACPI_SUSSTATn 之后 30us 变高        |  |  |

S0 到 S3 及 S3 到 S0 状态的时序如下图所示:





图 6-3 S0 到 S3 及 S3 到 S0 时序图

#### S0 到 S4/S5 及 S4/S5 到 S0 状态的时序如下图所示:



图 6-4 S0 到 S4/S5 及 S4/5 到 S0 状态时序图







- 1. 表中未列出的 ACPI 相关信号 (ACPI PWRBTNN/ACPI SYSRSTN 等) 默认为高电平。
- 2. 唤醒事件包括: 电源按钮、复位按钮、USB、GMAC等。
- 3. 可以使用 ACPI\_S3N 来控制 SOC 域的上电。
- 4. 可以使用 ACPI VSBGATE 来控制 dual 电的切换。

#### 注 2:

- 1. RSM 域内的其他电源(包括 RSM\_1V0R, RSM\_1V8T)时序可根据需要选择与 RSM\_CORE 或者 RSM 3V3/A3V3 相同;
- 2. VDD SOC&NODE 包括: SOC CORE, NODE CORE, PLL 1V8;
- 3. VDDE SOC 包括: IO 3V3, IO 3V3/1V8;
- 4. SOC 域内的其他电源(包括 DDR\_1V2, PCIE\_1V0, SAGE\_1V0, HDMI\_1V0, HDMI\_1V8, IO\_1V8) 时序可根据需要选择与 VDD\_SOC&NODE 或者 VDDE\_SOC 相同;
- 5. 上图中 ACPI\_CORE 和 ACPI\_3V3 的时序可根据需要进行交换,即 ACPI\_3V3 可早于 ACPI\_CORE 上电,但是二者不可同时上电;
- 6. 上图中 RSM\_CORE 和 RSM\_3V3/A3V3 的时序可根据需要进行交换,即 RSM\_3V3/A3V3 可早于 RSM CORE 上电,但是二者不可同时上电;
- 7. 上图中 VDD\_SOC&NODE 和 VDDE\_SOC 的时序可根据需要进行交换,即 VDDE\_SOC 可早于 VDD SOC&NODE 上电,但是二者不可同时上电;
- 8. 表6-7对时序的描述对应图6-3及图6-4,与上述注解不一致的描述以上述注解为准。

表 6-7 S0 到 S3/S4/S5 及 S3/S4/S5 到 S0 状态时序约束

| 标记符   | 参数                       | 需求                            | 说明                                                                                           |
|-------|--------------------------|-------------------------------|----------------------------------------------------------------------------------------------|
| t0    | 软件发起进入低功耗状态<br>的时刻       |                               |                                                                                              |
| t1    | ACPI_VSBGATE 变低时刻        | t1 - t0 ≈120us                | ACPI_VSBGATE 在发起低功耗状态 120us 变低                                                               |
| t2    | ACPI_SUSSTATn 状态进入<br>时刻 | t2 - t1> Tdndly               | ACPI_SUSSTAT 在 ACPI_VSBGATE 有效之后变低,这个时间间隔软件可配。可选的时间长度 (Tdndly)有: 31.25ms、62.5ms、125ms、250ms。 |
| t2a   | 输出时钟无效时刻                 | t2a - t2 > 0<br>t3 - t2a > 0  | 输出时钟在 ACPI_SUSSTATn 变低之后<br>ACPI_PLTRSTn 变低之前无效                                              |
| t3    | ACPI_PLTRSTn 复位时刻        | t3 - t2 ≈ 90us                | ACPI_PLTRSTn 在 ACPI_SUSSTATn 复位之后复位                                                          |
| t4    | ACPI_S3n 状态进入时刻          | t4 - t3≈30us                  | ACPI_S3n 在 ACPI_PLTRSTn 复位之后进入                                                               |
| t5    | ACPI_S4n 状态进入时刻          | t5 - t4 ≈ 60us                | ACPI_S4n 在 ACPI_S3n 进入之后进入                                                                   |
| t6    | ACPI_S5n 状态进入时刻          | t6 - t5 ≈ 30us                | ACPI_S5n 在 ACPI_S4n 进入之后进入                                                                   |
| t100  | 低功耗状态退出唤醒时刻              |                               |                                                                                              |
| t101  | ACPI_S5n 状态退出时刻          | t101 - t100 ≈ 150us           | S5n 在唤醒时刻 150us 退出                                                                           |
| t102  | ACPI_S4n 状态退出时刻          | t102 - t101≈30us<br>t102-t5>0 | S4n 在 S5n 退出之后退出<br>S4n 保持为有效时间由软件配置决定                                                       |
| t103  | ACPI_S3n 状态退出时刻          | t103 - t102≈60us<br>t103-t4>0 | S3n 在 S4n 退出之后退出<br>S4n 保持为有效时间由软件配置决定                                                       |
|       |                          | t103-t100≈360us               | S3n 在唤醒事件后退出                                                                                 |
| t103b | ACPI_VSBGATE 变高时刻        | t103b - t103 > Tupdly         | ACPI_VSBGATE 在 S3n 退出一段时间之后变                                                                 |



| 标记符  | 参数                          | 需求                  | 说明                                                 |
|------|-----------------------------|---------------------|----------------------------------------------------|
|      |                             |                     | 高,这个时间间隔软件可配。可选的时间长                                |
|      |                             |                     | 度(Tupdly)有: 125ms、250ms、500ms、                     |
|      |                             |                     | 1s <sub>°</sub>                                    |
| t104 | ACPI_PWROK 有效时刻             |                     | ACPI_PWROK 需要在所有电源稳定之后有效                           |
| t105 | ACPI_SUSSTATn 状态退出<br>时刻    | t105 - t104 > 7.8ms | ACPI_SUSSTATn 在 ACPI_PWROK 有效之后退出                  |
| t106 | ACPI_PLTRSTn 解复位时刻          | t106 - t105 ≈ 30us  | ACPI_PLTRSTn 在 ACPI_SUSSTATn 退出之后解复位               |
| t2a  | 输出时钟 PCIE_REFCLKOUT<br>无效时刻 |                     | 时钟无效时刻在 ACPI_SUSSTATn 变低之后,<br>在 ACPI_PLTRSTn 变低之前 |
| t107 | 输出时钟 PCIE_REFCLKOUT<br>稳定时刻 |                     | 输出 PCIE_REFCLKOUT 时钟在 VDDE_SOC 上电稳定后输出             |

### 6.5.2 不使能 ACPI\_EN

#### 1) 冷启动上电时序 (不使能 ACPI)



图 6-5 不使能 ACPI 功能时的冷启动上电时序 (RTC 掉电)

#### 注:

1. VDD 包括:

ACPI\_CORE, RSM\_CORE, RSM\_1VOR, RSM\_1V8T, SOC\_CORE, NODE\_CORE, PLL\_1V8, DDR\_1V2, PCIE\_1V0, SAGE\_1V0, HDMI\_1V0, HDMI\_1V8, IO\_1V8

- 2. VDDE 包括:
  - ACPI\_3V3, RSM\_3V3, RSM\_A3V3, IO\_3V3, IO\_3V3/1V8
- 3. 上述 VDD 和 VDDE 的时序可根据需要进行交换,即 VDDE 可早于 VDD 上电,但是二者不可同时上电
- 4. ACPI 相关的除电源复位信号外的其他输入信号拉高
- 5. 在 ACPI\_EN 不使能的情况下,芯片的 ACPI\_SYSRSTn 信号没有去抖动功能,需主板提供去抖动电路。
- 6. 表 6-8 对时序的描述对应图 6-5,与上述注解不一致的描述以上述注解为准





表 6-8 不使能 ACPI 功能时的上电时序要求

| 标记符 | 参数                 | 需求                            | 说明                                                                      |
|-----|--------------------|-------------------------------|-------------------------------------------------------------------------|
| t0  | RTC_3V3 电源稳定时刻     |                               |                                                                         |
| t2  | VDD 电源上电时刻         | t2 - t0 >=0                   | RTC 电源要先于 VDD 电源供电                                                      |
| t3  | VDDE 电源稳定时刻        | t3 - t2 >= 10us               | VDD 电源要先于 VDDE 电源供电                                                     |
| t4  | ACPI_RSMRSTN 解复位时刻 | t4 - t3 > 5ms<br>t4 - t0 > 4s | ACPI_RSMRSTN 需要在所有 VDDE 电源稳定之后解复位<br>ACPI_RSMRSTn 需要在 RTC 电源稳定 4s 之后解复位 |
| t5  | ACPI_SYSRSTn 解复位时刻 | t5 - t4>5ms                   | ACPI_SYSRSTn 需要在 ACPI_RSMRSTn 解复位之<br>后解复位                              |
| t6  | 输出时钟稳定时刻           | t6 - t5 < 10us                | 输出时钟的稳定时刻不晚于 ACPI_SYSRSTn 解复位后 10 us, 其中 PCIE_REFCLKOUT 输出稳定时刻由软件决定     |

### 2) 热复位时序 (不使能 ACPI)



图 6-6 不使能 ACPI 功能时的热复位时序图

#### 注: POWER 包括所有的供电。

表 6-9 不使能 ACPI 功能时的热复位时序约束

| 标记符 | 参数                 | 需求            | 说明                                    |
|-----|--------------------|---------------|---------------------------------------|
| t1  | ACPI_SYSRSTn 变低的时刻 |               |                                       |
| t2  | ACPI_SYSRSTn 变高的时刻 | t2 - t1 > 1ms | ACPI_SYSRSTn 保持为低电平的时间需<br>大于 1ms 才有效 |



# 7 封装信息

#### 7.1 封装尺寸

芯片采用 FC-BGA-883 封装形式,封装尺寸为 27mm x 27mm,pitch 为 0.8mm。详细 封装尺寸见图 7-1 所示。



图 7-1 封装尺寸

扣合力:最大承压 15kg。



# 7.2 信号位置分布



图 7-2 信号引脚分布顶视图



# 7.3 芯片引脚排布

参见附录 A





# 8 产品标识



- a) ●: 定位点;
- b) LS2K2000: 器件识别号;
- c) Cored By™ LA364: 固定码;
- d) CHN YYWW VV: 厂商信息一;
- e) LOONGSON®: 厂商信息二;
- f) 龙芯中科®: 厂商信息三;
- g) AMAAAAAYMNNNN: 厂商信息四、识别号;
- h) □: 二维码(右下角), 与 g)信息相同。



# 附录 A: 芯片引脚列表

| Pin Number | Pin Name      | Туре |
|------------|---------------|------|
| D5         | ACPI DOTESTN  | I    |
| F6         | ACPI EN       | I    |
| A5         | ACPI GPIOO    | 10   |
| B5         | ACPI GPI01    | 10   |
| A4         | ACPI GPI02    | 10   |
| C5         | ACPI GPI03    | 10   |
| B4         | ACPI GPI04    | 10   |
| A2         | ACPI GPI05    | 10   |
| A3         | ACPI GPI06    | 10   |
| C3         | ACPI GPI07    | 10   |
| D4         | ACPI PLTRSTN  | 0    |
| E5         | ACPI PWRBTNN  | I    |
| G6         | ACPI PWROK    | I    |
| F5         | ACPI RSMRSTN  | I    |
| B3         | ACPI S3N      | 0    |
| B2         | ACPI S4N      | 0    |
| D3         | ACPI S5N      | 0    |
| E4         | ACPI SUSSTATN | 0    |
| E3         | ACPI SYSRSTN  | I    |
| E6         | ACPI VSBGATE  | 0    |
| B6         | ACPI WAKEN    | I    |
| C6         | USB CLKSEL    | I    |
| U19        | BBG GNDSIN    | I    |
| V18        | BBG GNDSOUT   | 0    |
| T19        | BBG VDDSIN    | I    |
| V19        | BBG_VDDSOUT   | 0    |
| T18        | BBG_VDEG      | I    |
| B17        | DDR A00       | 0    |
| D17        | DDR A01       | 0    |
| G19        | DDR A02       | 0    |
| E19        | DDR A03       | 0    |
| E18        | DDR A04       | 0    |
| D18        | DDR A05       | 0    |
| F19        | DDR A06       | 0    |
| A21        | DDR A07       | 0    |
| C20        | DDR_A08       | 0    |
|            |               | 0    |
| B20        | DDR_A09       | 0    |
| F17        | DDR_A11       |      |
| D20        | DDR_A11       | 0    |
| G20        | DDR_A12       | 0    |
| D15        | DDR_A13       | 0    |
| B22        | DDR_ACTN      | 0    |
| C21        | DDR_ALERTN    | I    |
| E17        | DDR_BA0       | 0    |
| F18        | DDR_BA1       | 0    |
| G21        | DDR_BG0       | 0    |





| B21 | DDR BG1           | 0        |
|-----|-------------------|----------|
| A15 | DDR CASN          | 0        |
| D21 | DDR_CKEO          | 0        |
| F21 | DDR CKE1          | 0        |
| B18 | DDR_CKNO          | DIFF OUT |
| A19 | DDR_CKN1          | DIFF OUT |
| C18 | DDR_CKPO          | DIFF OUT |
| B19 | DDR_CKP1          | DIFF OUT |
| B15 | DDR_ODTO          | 0        |
| G16 | DDR_ODT0          | 0        |
| A17 | DDR_ODT1          | 0        |
| D16 | DDR_FAR  DDR_RASN | 0        |
| D10 | DDR_RESETN        | 0        |
|     |                   |          |
| C22 | DDR_REXT          | 10       |
| B16 | DDR_SCSN0         | 0        |
| F16 | DDR_SCSN1         | 0        |
| C16 | DDR_WEN           | 0        |
| E24 | DDR_CB0           | 10       |
| D24 | DDR_CB1           | 10       |
| G22 | DDR_CB2           | 10       |
| G23 | DDR_CB3           | 10       |
| G24 | DDR_CB4           | I0       |
| F24 | DDR_CB5           | 10       |
| F23 | DDR_CB6           | I0       |
| F22 | DDR_CB7           | I0       |
| F30 | DDR_DMON_DQSP09   | 10       |
| E29 | DDR_DM1N_DQSP10   | 10       |
| G26 | DDR_DM2N_DQSP11   | 10       |
| B26 | DDR_DM3N_DQSP12   | 10       |
| E23 | DDR_DM8N_DQSP17   | 10       |
| G29 | DDR_DQ00          | 10       |
| F31 | DDR_DQ01          | 10       |
| B31 | DDR_DQ02          | 10       |
| A31 | DDR_DQ03          | 10       |
| H29 | DDR_DQ04          | 10       |
| G30 | DDR_DQ05          | 10       |
| H28 | DDR_DQ06          | 10       |
| C31 | DDR DQ07          | 10       |
| D30 | DDR DQ08          | 10       |
| A30 | DDR DQ09          | 10       |
| D29 | DDR DQ10          | 10       |
| F28 | DDR DQ11          | 10       |
| E30 | DDR DQ12          | 10       |
| F29 | DDR DQ13          | 10       |
| B30 | DDR DQ14          | I0       |
| C29 | DDR_DQ15          | I0       |
| C28 | DDR_DQ16          | 10       |
| D28 | DDR DQ17          | 10       |
| F25 | DDR_DQ17          | 10       |
|     | _                 | 10       |
| E25 | DDR_DQ19          |          |
| F27 | DDR_DQ20          | 10       |





| G27        | DDR DQ21          | 10      |
|------------|-------------------|---------|
| D26        | DDR DQ22          | 10      |
| F26        | DDR DQ23          | 10      |
| A27        | DDR DQ24          | 10      |
| C26        | DDR DQ25          | 10      |
| B24        | DDR_DQ26          | 10      |
| B23        | DDR DQ27          | 10      |
| B28        | DDR DQ28          | 10      |
| B27        | DDR DQ29          | 10      |
| A25        | DDR DQ30          | 10      |
| C24        | DDR DQ31          | 10      |
| E31        | DDR DQSNO0        | 10      |
| A29        | DDR DQSN01        | DIFF IO |
| D27        | DDR DQSN02        | DIFF IO |
| C25        | DDR DQSN03        | DIFF IO |
| D31        | DDR_DQSP00        | DIFF IO |
| B29        | DDR DQSP01        | DIFF IO |
| E27        | DDR_DQSP02        | DIFF IO |
| B25        | DDR_DQSP03        | DIFF IO |
| D14        | DDR DM4N DQSP13   | DIFF IO |
| G12        | DDR DM5N DQSP14   | I0      |
| A9         | DDR DM6N DQSP15   | 10      |
| G8         | DDR DM7N DQSP16   | 10      |
| G14        | DDR DQ32          | 10      |
| E14        | DDR_DQ33          | 10      |
| E13        | DDR_DQ34          | 10      |
| F13        | DDR_DQ35          | 10      |
| G15        | DDR_DQ36          | 10      |
| F15        | DDR_DQ37          | 10      |
| F14        | DDR_DQ38          | 10      |
| D13        | DDR_DQ39          | 10      |
| A13        | DDR_DQ40          | 10      |
| C12        | DDR_DQ41          | 10      |
| E10        | DDR_DQ42          | 10      |
| F11        | DDR DQ43          | 10      |
| B12        | DDR_DQ44          | 10      |
| B13        | DDR_DQ45          | 10      |
| F10        | DDR_DQ46          | 10      |
| E11        | DDR_DQ47          | 10      |
| B11        | DDR_DQ48          | 10      |
| D11        | DDR_DQ49          | 10      |
| B8         | DDR_DQ49          | 10      |
| D9         | DDR_DQ50          | 10      |
|            |                   | 10      |
| C11<br>A11 | DDR_DQ52 DDR_DQ53 | 10      |
| B9         | DDR_DQ54          | 10      |
|            |                   |         |
| C9         | DDR_DQ55          | 10      |
| E9         | DDR_DQ56          |         |
| F8         | DDR_DQ57          | 10      |
| E7         | DDR_DQ58          | 10      |
| F7         | DDR_DQ59          | 10      |





| G9  | DDR DQ60          | 10      |
|-----|-------------------|---------|
| F9  | DDR DQ61          | 10      |
| B7  | DDR DQ62          | 10      |
| D7  | DDR DQ63          | 10      |
| C14 | DDR DQSNO4        | DIFF IO |
| E12 | DDR DQSN05        | DIFF IO |
| C10 | DDR DQSN06        | DIFF IO |
| D8  | DDR DQSN07        | DIFF IO |
| D23 | DDR DQSN08        | DIFF IO |
| B14 | DDR DQSP04        | DIFF IO |
| D12 | DDR_DQSP05        | DIFF 10 |
| B10 | DDR DQSP06        | DIFF IO |
| C8  | DDR DQSP07        | DIFF 10 |
| C23 | DDR DQSP08        | DIFF 10 |
|     | _                 |         |
| J4  | GMAC2_MDCK        | 10      |
| J5  | GMAC2_MDIO        | 10      |
| D1  | GMAC2_RCTL        | 10      |
| D2  | GMAC2_RXCK        | 10      |
| E2  | GMAC2_RXD0        | 10      |
| E1  | GMAC2_RXD1        | 10      |
| F3  | GMAC2_RXD2        | 10      |
| F2  | GMAC2_RXD3        | 10      |
| G4  | GMAC2_TCTL        | 10      |
| G2  | GMAC2_TXCK        | 10      |
| H4  | GMAC2_TXD0        | 10      |
| H1  | GMAC2_TXD1        | 10      |
| H2  | GMAC2_TXD2        | 10      |
| Н3  | GMAC2_TXD3        | 10      |
| AJ4 | GMACPHYO_AN       | DIFF IO |
| AK4 | GMACPHYO_AP       | DIFF IO |
| AK3 | GMACPHYO_BN       | DIFF IO |
| AL3 | GMACPHYO_BP       | DIFF IO |
| AL1 | GMACPHYO_CN       | DIFF IO |
| AK1 | GMACPHYO_CP       | DIFF IO |
| AJ2 | GMACPHYO_DN       | DIFF IO |
| AJ1 | GMACPHYO_DP       | DIFF IO |
| AH2 | GMACPHYO_LED_100B | 0       |
| AH4 | GMACPHYO_LED_1KB  | 0       |
| AF5 | GMACPHYO_LED_ACT  | 0       |
| AH5 | GMACPHYO_REXT     | I       |
| AH6 | GMACPHY1_AN       | DIFF IO |
| АЈ6 | GMACPHY1_AP       | DIFF IO |
| AK5 | GMACPHY1_BN       | DIFF IO |
| AK6 | GMACPHY1_BP       | DIFF IO |
| AL4 | GMACPHY1_CN       | DIFF IO |
| AM4 | GMACPHY1_CP       | DIFF IO |
| AL2 | GMACPHY1 DN       | DIFF IO |
| AM2 | GMACPHY1 DP       | DIFF IO |
| AE6 | GMACPHY1 LED 100B | 10      |
| AF6 | GMACPHY1 LED 1KB  | 10      |
| AE5 | GMACPHY1 LED ACT  | 10      |
| L   |                   |         |





| AH3        | GMACPHY1_REXT            | I        |
|------------|--------------------------|----------|
| AF14       | HDMIO_BIAS               | 10       |
| AJ13       | HDMIO CKN                | DIFF OUT |
| AJ12       | HDMIO CKP                | DIFF OUT |
| AF13       | HDMIO HOTPLUG            | I        |
| AH14       | HDMIO I2C SCL            | OD       |
| AG14       | HDMIO I2C SDA            | OD       |
| AK12       | HDMIO TXNO               | DIFF OUT |
| AM13       | HDMIO TXN1               | DIFF OUT |
| AL14       | HDMIO TXN2               | DIFF OUT |
| AL12       | HDMIO TXPO               | DIFF OUT |
| AL13       | HDMIO TXP1               | DIFF OUT |
| AK14       | HDMIO TXP2               | DIFF OUT |
| AG12       | HDMI1 HOTPLUG            | I        |
| AH13       | HDMI1 I2C SCL            | OD       |
| AG13       | HDMI1 I2C SDA            | OD       |
| AL8        | DVO CLKN                 | 10       |
| AK8        | DVO_CLKP                 | 10       |
| AH7        | DVO_CERT  DVO DATAOO     | 10       |
| AK7        | DVO_DATA01               | 10       |
| AL7        | DVO_DATA02               | 10       |
| AM7        | DVO_DATAO3               | 10       |
| AF8        | DVO_DATAO3               | 10       |
| AG8        | DVO_DATAO4  DVO DATAO5   | 10       |
| AJ8        | DVO_DATAOS  DVO DATAO6   | 10       |
| AK9        | DVO_DATAOO<br>DVO_DATAO7 | 10       |
|            | _                        | 10       |
| AL9<br>AG9 | DVO_DATA08  DVO DATA09   | 10       |
|            | DVO_DATA09  DVO DATA10   | 10       |
| AH9        |                          |          |
| AJ9        | DVO_DATA11               | 10       |
| AM9        | DVO_DATA12               | 10       |
| AF10       | DVO_DATA14               | 10       |
| AG10       | DVO_DATA15               | 10       |
| AH10       | DVO_DATA16               | 10       |
| AJ10       | DVO_DATA16               | 10       |
| AK10       | DVO_DATA17               | 10       |
| AL10       | DVO_DATA18               | 10       |
| AG11       | DVO_DATA19               | 10       |
| AH11       | DVO_DATA20               | 10       |
| AJ11       | DVO_DATA21               | 10       |
| AK11       | DVO_DATA22               | 10       |
| AM11       | DVO_DATA23               | 10       |
| AG7        | DVO_DE                   | IO       |
| AL6        | DVO_HSYNC                | 10       |
| AM5        | DVO_VSYNC                | IO IO    |
| AG2        | HDA_BITCLK               | 10       |
| AE2        | HDA_RESETN               | 10       |
| AF3        | HDA_SDIO                 | 10       |
| AE3        | HDA_SDI1                 | 10       |
| AF2        | HDA_SDI2                 | 10       |
| AG3        | HDA_SDO                  | IO       |





| AF1          | HDA SYNC               | 10       |
|--------------|------------------------|----------|
| AD1          | LPC ADO                | 10       |
| AC4          | LPC AD1                | 10<br>I0 |
| AD3          | LPC_AD1                | 10<br>I0 |
| AD2          | LPC_AD2                | 10<br>I0 |
| AD2<br>AD4   | LPC_ADS                | 10<br>I0 |
| AC5          |                        | 10       |
|              | LPC_FRAMEN             |          |
| AC3          | LPC_RESETN             | 10       |
| AD5          | LPC_SERIRQ             | 10       |
| Y30          | GP1000                 | IO IO    |
| W28          | GPI001                 | 10       |
| W27          | GP1002                 | 10       |
| Y28          | GPI003                 | 10       |
| L28          | I2CO_SCL               | OD       |
| L29          | I2CO_SDA               | OD       |
| K31          | I2C1_SCL               | OD       |
| L30          | I2C1_SDA               | OD       |
| V30          | JTAG_TCK               | I        |
| V31          | JTAG_TDI               | I        |
| W30          | JTAG_TDO               | 0        |
| W29          | JTAG_TMS               | I        |
| W31          | JTAG_TRSTN             | I        |
| Y31          | JTAG_TSELO             | I        |
| Y32          | JTAG_TSEL1             | I        |
| M28          | LIO_CSN1               | 10       |
| M27          | LIO_CSN2               | 10       |
| L31          | LIO_CSN3               | 10       |
| M29          | LIO RDY                | I        |
| M32          | PWMO                   | 10       |
| N31          | PWM1                   | 10       |
| N29          | PWM2                   | 10       |
| N30          | PWM3                   | 10       |
| N28          | PWM4                   | 10       |
| P30          | PWM5                   | 10       |
| F32          | SDIO CLK               | 10       |
| D32          | SDIO CMD               | 10       |
| G31          | SDIO DATAO             | 10       |
| Н30          | SDIO DATA1             | 10       |
| B32          | SDIO DATA2             | 10       |
| C32          | SDIO DATA3             | 10       |
| AC28         | SE CLK SEL             | I        |
| AA31         | SE GPI000              | 10       |
| AA30         | SE_GP1000              | 10<br>I0 |
| AA29         | SE_GP1001              | 10<br>I0 |
| Y27          | SE_GP1002              | 10<br>I0 |
| AA28         | SE_GP1003<br>SE GP1004 | 10<br>I0 |
| AB30         | SE_GP1004<br>SE GP1005 | 10<br>I0 |
| AB30<br>AB28 | SE_GP1005<br>SE GP1006 | 10       |
|              |                        |          |
| AB29         | SE_GPI007              | 10       |
| AB31         | SE_GPI008              | 10       |
| AC29         | SE_GPI009              | 10       |





| AB27 | SE_I2C_SCL               | 10 |
|------|--------------------------|----|
| AC27 | SE I2C SDA               | 10 |
| AC30 | SE_QSPI_FLASH_CLK        | 0  |
| AC31 | SE QSPI FLASH CSN        | 0  |
| AD31 | SE QSPI FLASH IOO        | 10 |
| AD30 | SE QSPI FLASH IO1        | 10 |
| AD29 | SE QSPI FLASH IO2        | 10 |
| AD28 | SE QSPI FLASH IO3        | 10 |
| AE31 | SE RNGO CLK              | 0  |
| AE30 | SE RNGO DATA             | 10 |
| AD32 | SE RNGO OEN              | 0  |
| AF30 | SE RNGO PE               | 0  |
| AF31 | SE_RNG1_CLK              | 0  |
| AF28 | SE_RNG1_CLR SE_RNG1_DATA | 10 |
| -    |                          | 0  |
| AF29 | SE_RNG1_OEN              |    |
| AE28 | SE_RNG1_PE               | 0  |
| AG30 | SE_SPI_CLK               | 0  |
| AH30 | SE_SPI_CSN               | 0  |
| AG29 | SE_SPI_MISO              | I  |
| AG28 | SE_SPI_MOSI              | 0  |
| AH31 | SE_UARTO_RX              | I  |
| AG31 | SE_UARTO_TX              | 0  |
| T31  | SPI_CSN0                 | 10 |
| T30  | SPI_CSN1                 | 10 |
| T28  | SPI_CSN2                 | 10 |
| T32  | SPI_CSN3                 | 10 |
| T29  | SPI_HOLDN                | 10 |
| U30  | SPI_SCK                  | 0  |
| U31  | SPI_SDI                  | 10 |
| U29  | SPI_SDO                  | 10 |
| T27  | SPI_WPN                  | 10 |
| K27  | CHIP_CONFIGO             | I  |
| K28  | CHIP_CONFIG1             | I  |
| K29  | CHIP_CONFIG2             | I  |
| J29  | CHIP_CONFIG3             | I  |
| K30  | CHIP_CONFIG4             | I  |
| J31  | CHIP_CONFIG5             | I  |
| Ј30  | CHIP_CONFIG6             | I  |
| Н32  | CHIP CONFIG7             | I  |
| H31  | CHIP CONFIG8             | I  |
| M31  | NMIN                     | I  |
| AH28 | PIN SE EN                | I  |
| AE27 | PRG CLKSEL               | I  |
| V32  | SYS CLKIN                | I  |
| U28  | SYS CLKSEL               | I  |
| V29  | SYS TESTCLK              | I  |
| P32  | ND UART RXD              | I  |
| P31  | ND UART TXD              | 0  |
| P27  | UART CTS                 | I  |
| R31  | UART DCD                 | I  |
| R28  | UART DSR                 | 10 |
| NZO  | ו וואים                  | 10 |





| P28  | UART DTR               | 0        |
|------|------------------------|----------|
| P29  | UART RI                | 10       |
| R27  | UART RTS               | 0        |
| R30  | UART RXD               | I        |
| R29  | UART TXD               | 0        |
| AJ28 | EMMC CLK               | 10       |
| AH29 | EMMC_CMD               | 10       |
| AK31 | EMMC DATAO             | 10       |
| AJ30 | EMMC_DATA0  EMMC_DATA1 | 10       |
| AK30 | EMMC_DATA1  EMMC_DATA2 | 10       |
| AL31 | EMMC_DATA2  EMMC_DATA3 | 10       |
| AL31 | EMMC_DATA4             | 10       |
| AK32 | EMMC_DATA4  EMMC_DATA5 | 10       |
| AJ31 | EMMC_DATA6             | 10       |
| AJ32 | EMMC_DATAO  EMMC_DATA7 | 10       |
|      | EMMC_DATA7  EMMC_DS    | 10       |
| AJ29 | PCIE FO RSTN           | 0        |
| AH27 |                        | <u> </u> |
| AM27 | PCIE_FO_RXNO           | DIFF IN  |
| AL28 | PCIE_FO_RXN1           | DIFF IN  |
| AM29 | PCIE_FO_RXN2           | DIFF IN  |
| AM30 | PCIE_FO_RXN3           | DIFF IN  |
| AL27 | PCIE_FO_RXPO           | DIFF IN  |
| AK28 | PCIE_F0_RXP1           | DIFF IN  |
| AL29 | PCIE_F0_RXP2           | DIFF IN  |
| AM31 | PCIE_FO_RXP3           | DIFF IN  |
| AG24 | PCIE_FO_TXNO           | DIFF OUT |
| AH25 | PCIE_FO_TXN1           | DIFF OUT |
| AF25 | PCIE_FO_TXN2           | DIFF OUT |
| AG26 | PCIE_FO_TXN3           | DIFF OUT |
| AH24 | PCIE_F0_TXP0           | DIFF OUT |
| AJ25 | PCIE_F0_TXP1           | DIFF OUT |
| AF24 | PCIE_F0_TXP2           | DIFF OUT |
| AH26 | PCIE_F0_TXP3           | DIFF OUT |
| AG27 | PCIE_F1_RSTN           | 0        |
| AL20 | PCIE_F1_RXN0           | DIFF IN  |
| AM21 | PCIE_F1_RXN1           | DIFF IN  |
| AL22 | PCIE_F1_RXN2           | DIFF IN  |
| AM23 | PCIE_F1_RXN3           | DIFF IN  |
| AK20 | PCIE_F1_RXP0           | DIFF IN  |
| AL21 | PCIE_F1_RXP1           | DIFF IN  |
| AK22 | PCIE_F1_RXP2           | DIFF IN  |
| AL23 | PCIE_F1_RXP3           | DIFF IN  |
| AJ19 | PCIE_F1_TXN0           | DIFF OUT |
| AH20 | PCIE_F1_TXN1           | DIFF OUT |
| AJ21 | PCIE_F1_TXN2           | DIFF OUT |
| AH22 | PCIE_F1_TXN3           | DIFF OUT |
| AH19 | PCIE_F1_TXP0           | DIFF OUT |
| AG20 | PCIE_F1_TXP1           | DIFF OUT |
| AH21 | PCIE_F1_TXP2           | DIFF OUT |
| AG22 | PCIE_F1_TXP3           | DIFF OUT |
| AF18 | RAPIDIO_CLKINN1        | DIFF IN  |





| AF19 | RAPIDIO CLKINP1        | DIFF IN  |
|------|------------------------|----------|
| AF27 | PCIE GO RSTN           | 0        |
| AL16 | PCIE GO RXNO           | DIFF IN  |
| AM17 | PCIE GO RXN1           | DIFF IN  |
| AL18 | PCIE GO RXN2           | DIFF IN  |
| AM19 | PCIE GO RXN3           | DIFF IN  |
| AK16 | PCIE GO RXPO           | DIFF IN  |
| AL17 | PCIE GO RXP1           | DIFF IN  |
| AK18 | PCIE GO RXP2           | DIFF IN  |
| AL19 | PCIE GO RXP3           | DIFF IN  |
| AJ15 | PCIE GO TXNO           | DIFF OUT |
| AH16 | PCIE GO TXN1           | DIFF OUT |
| AJ17 | PCIE GO TXN2           | DIFF OUT |
| AH18 | PCIE GO TXN3           | DIFF OUT |
| AH15 | PCIE GO TXPO           | DIFF OUT |
| AG16 | PCIE GO TXP1           | DIFF OUT |
| AH17 | PCIE GO TXP2           | DIFF OUT |
| AG18 | PCIE GO TXP3           | DIFF OUT |
| AL15 | RAPIDIO CLKINNO        | DIFF IN  |
| AM15 | RAPIDIO CLKINPO        | DIFF IN  |
| AE22 | PCIE PRG REFRES        | I        |
| AK24 | PCIE REFCLKINN         | DIFF IN  |
| AL24 | PCIE REFCLKINP         | DIFF IN  |
| AF22 | PCIE REFCLKOUTNO       | DIFF OUT |
| AJ23 | PCIE REFCLKOUTN1       | DIFF OUT |
| AM25 | PCIE REFCLKOUTN2       | DIFF OUT |
| AL26 | PCIE REFCLKOUTN3       | DIFF OUT |
| AF21 | PCIE REFCLKOUTPO       | DIFF OUT |
| AH23 | PCIE REFCLKOUTP1       | DIFF OUT |
| AL25 | PCIE REFCLKOUTP2       | DIFF OUT |
| AK26 | PCIE REFCLKOUTP3       | DIFF OUT |
| C1   | RTC XI                 | I        |
| C2   | RTC_XO                 | 0        |
| AC2  | SATA LEDN              | OD       |
| Y1   | SATA REFCLKN2          | DIFF IN  |
| Y2   | SATA REFCLKP1          | DIFF IN  |
| AA5  | SATA_REFRES            | 10       |
| AA3  | SATAO RXN              | DIFF IN  |
| AA2  | SATAO RXP              | DIFF IN  |
| Y4   | SATAO TXN              | DIFF OUT |
| Y5   | SATAO TXP              | DIFF OUT |
| AB2  | SATA1 RXN              | DIFF IN  |
| AB1  | SATA1 RXP              | DIFF IN  |
| AB4  | SATA1 TXN              | DIFF OUT |
| AB5  | SATA1_TXP              | DIFF OUT |
| R3   | USB20 DM0              | DIFF 10  |
| R6   | USB20_DM0<br>USB20_DM1 | DIFF IO  |
| T2   | USB20_DM1<br>USB20_DM2 | DIFF IO  |
| T5   | USB20_DM3              | DIFF 10  |
| V2   |                        |          |
|      | USB20_DM4              | DIFF IO  |
| W3   | USB20_DM5              | DIFF IO  |





| U3         | USB20 DM6             | DIFF IO  |
|------------|-----------------------|----------|
| V4         | USB20 DM7             | DIFF IO  |
| W5         | USB20 DM8             | DIFF IO  |
| R2         | USB20 DP0             | DIFF IO  |
| R5         | USB20_DF0             | DIFF 10  |
| T1         | USB20_DF2             | DIFF IO  |
| T4         | USB20_DF2             | DIFF 10  |
| V1         | USB20_DF4             | DIFF 10  |
| W2         | USB20_DF4 USB20_DP5   | DIFF 10  |
| U2         | USB20_DF3             | DIFF IO  |
| V5         | USB20_DF6             | DIFF 10  |
| W6         | USB20_DF7             | DIFF 10  |
| P5         | USB20_DF6             | I        |
| AG4        | USB20_1D<br>USB20_0C0 | 10       |
|            |                       |          |
| AH1<br>AF4 | USB20_0C1             | 10       |
|            | USB20_0C2             | 10       |
| AE4        | USB20_0C3             | 10       |
| P6         | USB20_REFRESO         | I        |
| U6         | USB20_REFRES1         | I        |
| Y6         | USB20_REFRES2         | I        |
| P4         | USB20_VBUS            | I        |
| P1         | USB30_REFCLKN2        | DIFF IN  |
| P2         | USB30_REFCLKP1        | DIFF IN  |
| L6         | USB30_RESREF          | IO       |
| N3         | USB30_RXN0            | DIFF IN  |
| M2         | USB30_RXN1            | DIFF IN  |
| L3         | USB30_RXN2            | DIFF IN  |
| K2         | USB30_RXN3            | DIFF IN  |
| N2         | USB30_RXP0            | DIFF IN  |
| M1         | USB30_RXP1            | DIFF IN  |
| L2         | USB30_RXP2            | DIFF IN  |
| J2         | USB30_RXP3            | DIFF IN  |
| N4         | USB30_TXN0            | DIFF OUT |
| M5         | USB30_TXN1            | DIFF OUT |
| K4         | USB30_TXN2            | DIFF OUT |
| K5         | USB30_TXN3            | DIFF OUT |
| N5         | USB30_TXP0            | DIFF OUT |
| M6         | USB30_TXP1            | DIFF OUT |
| L4         | USB30_TXP2            | DIFF OUT |
| K6         | USB30_TXP3            | DIFF OUT |
| AB24       | PLL_1V8               |          |
| AA24       | PLL_VSS               |          |
| H7         | ACPI_3V3              |          |
| L11        | ACPI_3V3              |          |
| M12        | ACPI_CORE             |          |
| M13        | ACPI_CORE             |          |
| D19        | DDR_1V2               |          |
| E16        | DDR_1V2               |          |
| E21        | DDR_1V2               |          |
| F20        | DDR_1V2               |          |
| G17        | DDR_1V2               |          |





| H15  | DDR 1V2    |  |
|------|------------|--|
| H18  | DDR_1V2    |  |
| H20  | DDR 1V2    |  |
| L18  | DDR 1V2    |  |
| L19  | DDR 1V2    |  |
| AE13 | HDMI 1V0   |  |
| AE14 | HDMI 1VO   |  |
| AF15 | HDMI 1V8   |  |
| AE16 | IO 1V8     |  |
| AE17 | IO_1V8     |  |
| AE17 | IO_1V8     |  |
| AA26 | 10_178     |  |
| AA27 | 10_3V3     |  |
|      | 10_3V3     |  |
| AB9  |            |  |
| AC7  | IO_3V3     |  |
|      | IO_3V3     |  |
| AE11 | IO_3V3     |  |
| AE12 | IO_3V3     |  |
| AE7  | IO_3V3     |  |
| AE9  | IO_3V3     |  |
| H26  | IO_3V3     |  |
| J26  | IO_3V3     |  |
| J28  | IO_3V3     |  |
| N26  | I0_3V3     |  |
| N27  | I0_3V3     |  |
| U27  | I0_3V3     |  |
| V26  | I0_3V3     |  |
| V27  | I0_3V3     |  |
| Υ9   | I0_3V3     |  |
| AE26 | IO_3V3/1V8 |  |
| AJ27 | IO_3V3/1V8 |  |
| N19  | NODE_CORE  |  |
| N22  | NODE_CORE  |  |
| N23  | NODE_CORE  |  |
| P20  | NODE_CORE  |  |
| P24  | NODE_CORE  |  |
| R19  | NODE_CORE  |  |
| R22  | NODE_CORE  |  |
| R23  | NODE_CORE  |  |
| T20  | NODE_CORE  |  |
| T21  | NODE_CORE  |  |
| T24  | NODE_CORE  |  |
| U22  | NODE_CORE  |  |
| U23  | NODE_CORE  |  |
| V20  | NODE_CORE  |  |
| V24  | NODE_CORE  |  |
| AE20 | PCIE_1V0   |  |
| AE23 | PCIE_1V0   |  |
| AE25 | PCIE_1V0   |  |
| AF16 | PCIE_1V0   |  |
| AF20 | PCIE_1V0   |  |





| 1,000 | DCIE 1VO | 1 |
|-------|----------|---|
| AG23  | PCIE_1V0 |   |
| L9    | RSM_1VOR |   |
| N9    | RSM_1VOR |   |
| T9    | RSM_1VOR |   |
| J7    | RSM_1V8T |   |
| L7    | RSM_1V8T |   |
| N7    | RSM_1V8T |   |
| P7    | RSM_1V8T |   |
| Н5    | RSM_3V3  |   |
| Н6    | RSM_3V3  |   |
| T7    | RSM_A3V3 |   |
| U9    | RSM_A3V3 |   |
| V7    | RSM_A3V3 |   |
| W7    | RSM_A3V3 |   |
| R9    | RSM_CORE |   |
| M10   | RSM_CORE |   |
| N10   | RSM_CORE |   |
| N11   | RSM_CORE |   |
| G5    | RTC_3V   |   |
| AB10  | SAGE_1VO |   |
| AB6   | SAGE_1V0 |   |
| AF7   | SAGE_1VO |   |
| AG6   | SAGE_1VO |   |
| V9    | SAGE_1VO |   |
| Y7    | SAGE_1VO |   |
| AA11  | SOC_CORE |   |
| AA12  | SOC_CORE |   |
| AA15  | SOC_CORE |   |
| AA17  | SOC_CORE |   |
| AA19  | SOC_CORE |   |
| AA20  | SOC_CORE |   |
| AA22  | SOC_CORE |   |
| AB13  | SOC_CORE |   |
| AB14  | SOC_CORE |   |
| AB16  | SOC_CORE |   |
| AB18  | SOC_CORE |   |
| AB21  | SOC_CORE |   |
| AB22  | SOC_CORE |   |
| L14   | SOC_CORE |   |
| L15   | SOC_CORE |   |
| L22   | SOC_CORE |   |
| L23   | SOC_CORE |   |
| M16   | SOC_CORE |   |
| M17   | SOC_CORE |   |
| M20   | SOC CORE |   |
| M21   | SOC_CORE |   |
| M24   | SOC CORE |   |
| N14   | SOC CORE |   |
| N15   | SOC CORE |   |
| N18   | SOC CORE |   |
| P12   | SOC CORE |   |
|       |          | I |





| ı    |               | ı |
|------|---------------|---|
| P13  | SOC_CORE      |   |
| P16  | SOC_CORE      |   |
| P17  | SOC_CORE      |   |
| R10  | SOC_CORE      |   |
| R11  | SOC_CORE      |   |
| R18  | SOC_CORE      |   |
| T12  | SOC_CORE      |   |
| T13  | SOC_CORE      |   |
| T16  | SOC_CORE      |   |
| T17  | SOC_CORE      |   |
| U10  | SOC_CORE      |   |
| U11  | SOC_CORE      |   |
| U14  | SOC_CORE      |   |
| U15  | SOC_CORE      |   |
| U18  | SOC_CORE      |   |
| V12  | SOC_CORE      |   |
| V16  | SOC_CORE      |   |
| V17  | SOC_CORE      |   |
| W10  | SOC_CORE      |   |
| W11  | SOC_CORE      |   |
| W16  | SOC_CORE      |   |
| W19  | SOC_CORE      |   |
| W22  | SOC_CORE      |   |
| W23  | SOC_CORE      |   |
| Y12  | SOC_CORE      |   |
| Y13  | SOC_CORE      |   |
| Y15  | SOC_CORE      |   |
| Y17  | SOC_CORE      |   |
| Y18  | SOC_CORE      |   |
| Y23  | SOC_CORE      |   |
| P21  | VDDG_CPU0     |   |
| V21  | VDDG_CPU1     |   |
| V14  | VDDG_GPUTOP   |   |
| W14  | VDDG_GPUTOP   |   |
| R14  | VDDG_GPUVUSPC |   |
| R15  | VDDG_GPUVUSPC |   |
| Y20  | VDDG_SE       |   |
| Y21  | VDDG_SE       |   |
| A23  | VSS           |   |
| A28  | VSS           |   |
| A32  | VSS           |   |
| A7   | VSS           |   |
| AA10 | VSS           |   |
| AA13 | VSS           |   |
| AA14 | VSS           |   |
| AA16 | VSS           |   |
| AA18 | VSS           |   |
| AA21 | VSS           |   |
| AA23 | VSS           |   |
| AA4  | VSS           |   |
| AA6  | VSS           |   |
|      |               |   |





| l    | Lyan | 1 |
|------|------|---|
| AA7  | VSS  |   |
| AA9  | VSS  |   |
| AB11 | VSS  |   |
| AB12 | VSS  |   |
| AB15 | VSS  |   |
| AB17 | VSS  |   |
| AB19 | VSS  |   |
| AB20 | VSS  |   |
| AB23 | VSS  |   |
| AB26 | VSS  |   |
| AB3  | VSS  |   |
| AB32 | VSS  |   |
| AB7  | VSS  |   |
| AC26 | VSS  |   |
| AC6  | VSS  |   |
| AD26 | VSS  |   |
| AD27 | VSS  |   |
| AD6  | VSS  |   |
| AE10 | VSS  |   |
| AE15 | VSS  |   |
| AE19 | VSS  |   |
| AE21 | VSS  |   |
| AE24 | VSS  |   |
| AE29 | VSS  |   |
| AE8  | VSS  |   |
| AF11 | VSS  |   |
| AF12 | VSS  |   |
| AF17 | VSS  |   |
| AF23 | VSS  |   |
| AF26 | VSS  |   |
| AF32 | VSS  |   |
| AF9  | VSS  |   |
| AG15 | VSS  |   |
| AG17 | VSS  |   |
| AG19 | VSS  |   |
| AG21 | VSS  |   |
| AG25 | VSS  |   |
| AG5  | VSS  |   |
| AH12 | VSS  |   |
| AH32 | VSS  |   |
| AH8  | VSS  |   |
| AJ14 | VSS  |   |
| AJ16 | VSS  |   |
| AJ18 | VSS  |   |
| AJ20 | VSS  |   |
| AJ22 | VSS  |   |
| AJ24 | VSS  |   |
| AJ26 | VSS  |   |
| AJ3  | VSS  |   |
| AJ5  | VSS  |   |
| AJ7  | VSS  |   |
|      |      |   |





| AK13         | VSS        |  |
|--------------|------------|--|
| AK15         | VSS        |  |
| AK17         | VSS        |  |
| AK17<br>AK19 | VSS        |  |
| AK19<br>AK2  | VSS        |  |
| AK21         | VSS        |  |
| AK23         | VSS        |  |
| AK25         |            |  |
| AK25<br>AK27 | VSS<br>VSS |  |
|              |            |  |
| AK29<br>AL11 | VSS<br>VSS |  |
| AL11         |            |  |
|              | VSS        |  |
| AL5          | VSS        |  |
| AM1          | VSS        |  |
| AM28         | VSS        |  |
| AM3          | VSS        |  |
| AM32         | VSS        |  |
| B1           | VSS        |  |
| C13          | VSS        |  |
| C15          | VSS        |  |
| C17          | VSS        |  |
| C19          | VSS        |  |
| C27          | VSS        |  |
| C30          | VSS        |  |
| C4           | VSS        |  |
| C7           | VSS        |  |
| D10          | VSS        |  |
| D25          | VSS        |  |
| D6           | VSS        |  |
| E15          | VSS        |  |
| E20          | VSS        |  |
| E22          | VSS        |  |
| E26          | VSS        |  |
| E28          | VSS        |  |
| E32          | VSS        |  |
| E8           | VSS        |  |
| F1           | VSS        |  |
| F12          | VSS        |  |
| F4           | VSS        |  |
| G10          | VSS        |  |
| G11          | VSS        |  |
| G13          | VSS        |  |
| G18          | VSS        |  |
| G25          | VSS        |  |
| G28          | VSS        |  |
| G3           | VSS        |  |
| G7           | VSS        |  |
| H10          | VSS        |  |
| H11          | VSS        |  |
| H12          | VSS        |  |
| H13          | VSS        |  |
| 1110         | 100        |  |





| I   |                                       | 1 |
|-----|---------------------------------------|---|
| H14 | VSS                                   |   |
| H16 | VSS                                   |   |
| H17 | VSS                                   |   |
| H19 | VSS                                   |   |
| H21 | VSS                                   |   |
| H22 | VSS                                   |   |
| H23 | VSS                                   |   |
| H24 | VSS                                   |   |
| H25 | VSS                                   |   |
| H27 | VSS                                   |   |
| Н8  | VSS                                   |   |
| Н9  | VSS                                   |   |
| J27 | VSS                                   |   |
| Ј3  | VSS                                   |   |
| Ј6  | VSS                                   |   |
| K1  | VSS                                   |   |
| K26 | VSS                                   |   |
| К3  | VSS                                   |   |
| K32 | VSS                                   |   |
| K7  | VSS                                   |   |
| L10 | VSS                                   |   |
| L12 | VSS                                   |   |
| L13 | VSS                                   |   |
| L16 | VSS                                   |   |
| L17 | VSS                                   |   |
| L20 | VSS                                   |   |
| L21 | VSS                                   |   |
| L24 | VSS                                   |   |
| L26 | VSS                                   |   |
| L27 | VSS                                   |   |
| L5  | VSS                                   |   |
| M11 | VSS                                   |   |
| M14 | VSS                                   |   |
| M15 | VSS                                   |   |
| M18 | VSS                                   |   |
| M19 | VSS                                   |   |
| M22 | VSS                                   |   |
| M23 | VSS                                   |   |
| M26 | VSS                                   |   |
| М3  | VSS                                   |   |
| M30 | VSS                                   |   |
| M4  | VSS                                   |   |
| M7  | VSS                                   |   |
| M9  | VSS                                   |   |
| N12 | VSS                                   |   |
| N13 | VSS                                   |   |
| N16 | VSS                                   |   |
| N17 | VSS                                   |   |
| N20 | VSS                                   |   |
| N21 | VSS                                   |   |
| N24 | VSS                                   |   |
|     | · · · · · · · · · · · · · · · · · · · |   |





| ı   | ı   | 1 |
|-----|-----|---|
| N6  | VSS |   |
| P10 | VSS |   |
| P11 | VSS |   |
| P14 | VSS |   |
| P15 | VSS |   |
| P18 | VSS |   |
| P19 | VSS |   |
| P22 | VSS |   |
| P23 | VSS |   |
| P26 | VSS |   |
| P3  | VSS |   |
| P9  | VSS |   |
| R12 | VSS |   |
| R13 | VSS |   |
| R16 | VSS |   |
| R17 | VSS |   |
| R20 | VSS |   |
| R21 | VSS |   |
| R24 | VSS |   |
| R26 | VSS |   |
| R4  | VSS |   |
| R7  | VSS |   |
| T10 | VSS |   |
| T11 | VSS |   |
| T14 | VSS |   |
| T15 | VSS |   |
| T22 | VSS |   |
| T23 | VSS |   |
| T26 | VSS |   |
| Т3  | VSS |   |
| T6  | VSS |   |
| U12 | VSS |   |
| U13 | VSS |   |
| U16 | VSS |   |
| U17 | VSS |   |
| U20 | VSS |   |
| U21 | VSS |   |
| U24 | VSS |   |
| U26 | VSS |   |
| U4  | VSS |   |
| U5  | VSS |   |
| U7  | VSS |   |
| V10 | VSS |   |
| V11 | VSS |   |
| V13 | VSS |   |
| V15 | VSS |   |
| V22 | VSS |   |
| V23 | VSS |   |
| V28 | VSS |   |
| V3  | VSS |   |
| V6  | VSS |   |
|     |     |   |





| W12 | VSS |  |
|-----|-----|--|
| W13 | VSS |  |
| W15 | VSS |  |
| W17 | VSS |  |
| W18 | VSS |  |
| W20 | VSS |  |
| W21 | VSS |  |
| W24 | VSS |  |
| W26 | VSS |  |
| W4  | VSS |  |
| W9  | VSS |  |
| Y10 | VSS |  |
| Y11 | VSS |  |
| Y14 | VSS |  |
| Y16 | VSS |  |
| Y19 | VSS |  |
| Y22 | VSS |  |
| Y24 | VSS |  |
| Y26 | VSS |  |
| Y29 | VSS |  |
| Ү3  | VSS |  |





# 附录 B: 芯片引脚内部延迟数据表

单独提供,请与龙芯中科技术股份有限公司联系。





#### 修订记录

| 版本号    | 更新内容 |
|--------|------|
| V1. 05 | 发布版本 |

#### 技术支持

可通过邮箱向我司提交芯片手册和产品使用的问题,并获取技术支持。

服务邮箱: <u>service@loongson.cn</u>

#### 声明

本文档版权归龙芯中科技术股份有限公司所有,未经许可不得擅自实施传播等侵害版权人合法权益的行为。 本文档仅提供阶段性信息,可根据实际情况进行更新,恕不另行通知。如因文档使用不当造成的直接或间接损失,本公司不承 担任何责任。

#### 龙芯中科技术股份有限公司

Loongson Technology Corporation Limited 地址:北京市海淀区中关村环保科技示范园龙芯产业园 2 号楼 Building No. 2, Loongson Industrial Park, Zhongguancun Environmental Protection Park, Haidian District, Beijing 电话(Tel): 010-62546668 传真(Fax): 010-62600826

