The effects of specialization in research trajectories

Nicolas Robinson-Garcia

May 7, 2019

Main research question and objectives

How having specific scientific profiles affect individuals' research careers?

- Identification of scientific profiles
- Comparisons between profiles and length of scientific careers, productivity, impact, gender... (to be discussed)

Rationale

- Construction of predicting models of contributorship based on bibliometric indicators
- 2 Validation of such models
- 3 Prediction of contributorship for a set of individuals for their complete publication history
- 4 Profiling of individuals
- **5** Comparisons

Methodological notes

- Steps 1 and 2 use Plos contributorship data (old dataset)
- Steps 3-5 use complete publication history of a selection of authors
- Analysis is done by fields using high level NOWT Classification of seven subject categories (based on paper references):
 - Medical & Life Sciences
 - Natural Sciences
 - Multidisciplinary
 - Social & Behavioral Sciences
 - Law, Arts & Humanities
 - Engineering
 - Language, Information & Communication

Variables

- Author position
- Number of authors
- Number of pubs. of an author at the time of the publication
- Academic age at the time of the publication
- Document type: Article or review
- Contribution types as dummy variables
- Number of contribution per author

Some descriptives: General counts

Fie	elds	Publicat	tions	Authors	
Med & Life Sci			71083	 }	348710
Natural Sci			4731	19994	
Multidisciplinary			1746	9054	
Soc & Behav Sci			1618	5538	
Engineering			132		547
Law, A & Hum		64		291	
Lang, Inform & Comm			55		181

Some descriptives: Publication overlap between fields

Some descriptives: Differences on distribution of labor

Some descriptives: Differences on distribution of labor

F

Step 1. Bayesian networks

Machine learning technique aiming at identifying relation between variables

- No a priori assumptions on the relation of variables is made.
- The algorithm is run separately for each field
- We use bootstrapping and run the algorithm 50 times per field to maintain only stronger linkes between variables
- The method allows cross-validation and estimation of classification errors

Some examples: Law, Arts & Humanities

Some examples: Engineering

Cross-validation: Classification errors

Eng	A & Hum	Lang	Med & Life	Mult	Nat S
0.04	0.11	0	0.02	0.02	0.01
0.04	0.07	0.05	0.02	0.01	0.00
0.05	0.06	0.08	0.01	0.01	0.00
0.05	0.09	0.10	0.02	0.01	0.01
0.04	0.10	0.08	0.02	0.02	0.01
			0.03		0.01
0.07	0.14	0.05	0.01	0.01	0.01
	0.04 0.04 0.05 0.05 0.04	0.04 0.11 0.04 0.07 0.05 0.06 0.05 0.09 0.04 0.10	0.04 0.07 0.05 0.05 0.06 0.08 0.05 0.09 0.10 0.04 0.10 0.08	0.04 0.11 0 0.02 0.04 0.07 0.05 0.02 0.05 0.06 0.08 0.01 0.05 0.09 0.10 0.02 0.04 0.10 0.08 0.02 0.03 0.03	0.04 0.11 0 0.02 0.02 0.04 0.07 0.05 0.02 0.01 0.05 0.06 0.08 0.01 0.01 0.05 0.09 0.10 0.02 0.01 0.04 0.10 0.08 0.02 0.02 0.03 0.03

Next steps

- Create ideal table conditioning bibliometric variables to show the expected contribution of authors by field, career, experience and position.
- Select a set of authors and predict contribution for their complete publication history.
- 3 Profiling of authors: Archetypal analysis? Clustering techniques?
- Comparisons between profiles based on (for starters) career length, productivity and impact

Target journal: PNAS

Authors: Nicolas, Rodrigo, Cassidy, Vincent and Tina