Exercici 15 Demostreu que si p es un nombre natural primer, aleshores, per a $1 \le k \le p-1$, p divideix el nombre combinatori $\frac{p!}{k!(p-k)!}$. Es certa aquesta propietat si p no es primer?

Solucio 15

Suposarem que p no divideix $\frac{p!}{k!(p-k)!}$ i arribarem a una contradiccio, si p no divideix $\frac{p!}{k!(p-k)!}$ tenim que $\exists q,r\in\mathbb{N}$ amb 0< r< q tals que $pq+r=\frac{p!}{k!(p-k)!}$ si multimpliquem a tots dos costats de la igualtat ens queda k!(p-k)!pq+k!(p-k)!r=p! i per tant p|k!(p-k)!pq+k!(p-k)!r i com $p|k!(p-k)!pq \Longrightarrow p|k!(p-k)!r$ ara com tenim que p es primer sabem que o be p|k! o be p|(p-k)! o be p|r si p|k! tenim que p|1 o p|2 o ... p|k i totes aquestes opcions son impossibles al ser $k\neq 0$ i k< p. I analogament es procedeix a demostrar que p no pot dividir (p-k)! i per tant ens queda que $p|r\Longrightarrow \exists c$ tal que pc=r, substituint a la diviso natural incial ens queda que $pq+pc=\frac{p!}{k!(p-k)!}=p(q+c)$ pero aixo implica que $p|\frac{p!}{k!(p-k)!}$, que contradiu la nostra suposcio inicial i per tant $p|\frac{p!}{k!(p-k)!}$. Si p no es primer no es certa agafant com a contraexemple p=6 i k=2 tenim que $\frac{6!}{2!(6-2)!}=15$, i clarament 6 no divideix a 15.