```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
!wget https://raw.githubusercontent.com/azar-
s91/dataset/master/BankChurners.csv
--2023-05-02 09:57:38--
https://raw.githubusercontent.com/azar-s91/dataset/master/BankChurners
Resolving raw.githubusercontent.com (raw.githubusercontent.com)...
185.199.108.133, 185.199.109.133, 185.199.110.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)
185.199.108.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1210878 (1.2M) [text/plain]
Saving to: 'BankChurners.csv'
BankChurners.csv
                   1.15M --.-KB/s
                                                                   in
0.03s
2023-05-02 09:57:38 (37.9 MB/s) - 'BankChurners.csv' saved
[1210878/1210878]
data = pd.read csv('BankChurners.csv', sep=",")
data.head()
   CLIENTNUM
                Attrition Flag Customer Age Gender Dependent count
  768805383 Existing Customer
                                          45
                                                  М
                                                                   3
                                          49
                                                  F
                                                                   5
1 818770008 Existing Customer
2
  713982108 Existing Customer
                                          51
                                                  М
                                                                   3
3
  769911858 Existing Customer
                                          40
                                                  F
                                                                   4
4 709106358 Existing Customer
                                          40
                                                  М
                                                                   3
  Education Level Marital Status Income Category Card Category
0
      High School
                        Married
                                    $60K - $80K
                                                         Blue
        Graduate
1
                         Single Less than $40K
                                                         Blue
2
        Graduate
                        Married
                                   $80K - $120K
                                                         Blue
3
     High School
                        Unknown
                                Less than $40K
                                                         Blue
      Uneducated
                                    $60K - $80K
                        Married
                                                         Blue
```

	Months_on_book	 Months_Inactive_12_mon	Contacts_Count_12_mon
0	39	 1	3
1	44	 1	2
2	36	 1	0
3	34	 4	1
4	21	 1	Θ

Credit_Lim	it Total_Revolviı	ng_Bal A	Avg_Open_To_Buy				
Total_Amt_Chng_Q4_Q1 \							
0 12691	.0	777	11914.0				
1.335							
1 8256	.0	864	7392.0				
1.541							
2 3418	.0	0	3418.0				
2.594							
3 3313	.0	2517	796.0				
1.405							
4 4716	.0	0	4716.0				
2.175							

Total_Tr	ans_Amt	Total_Trans_Ct	Total_Ct_Chng_Q4_Q1
Avg_Utiliza	tion_Rat	io	
0	$1\overline{1}44$	42	1.625
0.061			
1	1291	33	3.714
0.105			
2	1887	20	2.333
0.000			
3	1171	20	2.333
0.760			
4	816	28	2.500
0.000			

[5 rows x 21 columns]

Рассмотрим распределение клиентов банка по возрасту

```
fig, ax = plt.subplots(figsize=(10,10))
sns.kdeplot(data=data, x="Customer_Age")
```

<Axes: xlabel='Customer_Age', ylabel='Density'>

Расмотрим число карт различного вида:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.histplot(data['Card_Category'], discrete=True)
<Axes: xlabel='Card_Category', ylabel='Count'>
```


fig, ax = plt.subplots(figsize=(10,10))
sns.histplot(data, x="Card_Category", y="Customer_Age", discrete=True)
<Axes: xlabel='Card_Category', ylabel='Customer_Age'>

Рассмотрим зависимость средней используемости карты от некоторых категориальных признаков. Для этого применим график вида скрипка.

```
fig, ax = plt.subplots(figsize=(10,10))
sns.violinplot(x='Card_Category', y='Avg_Utilization_Ratio',
data=data)
```

<Axes: xlabel='Card_Category', ylabel='Avg_Utilization_Ratio'>

Из данного графика можно сделать вывод о том, что наибольшая активность присутствует у карт низкого уровня.

```
fig, ax = plt.subplots(figsize=(10,10))
sns.violinplot(x='Education_Level', y='Avg_Utilization_Ratio',
data=data)
```

<Axes: xlabel='Education_Level', ylabel='Avg_Utilization_Ratio'>

Из данного графика видно, что зависимости между уровнем образования и активностью использования карты нет.

```
sns.kdeplot(data=data, x="Avg_Utilization_Ratio", y="Customer_Age")
<Axes: xlabel='Avg_Utilization_Ratio', ylabel='Customer_Age'>
```


fig, ax = plt.subplots(figsize=(10,10))
sns.heatmap(data.corr(method='pearson'), annot=True, fmt='.2f')
fig.suptitle('Корреляционная матрица')

Text(0.5, 0.98, 'Корреляционные матрицы, построенные различными методами')

Расмотрим зависимости имеющие наибольший коэффициент корреляции:

```
sns.scatterplot(x='Total\_Revolving\_Bal', y='Avg\_Utilization\_Ratio', data=data)
```

<Axes: xlabel='Total_Revolving_Bal', ylabel='Avg_Utilization_Ratio'>

sns.scatterplot(x='Customer_Age', y='Months_on_book', data=data)
<Axes: xlabel='Customer_Age', ylabel='Months_on_book'>

