

Face Recognition

Objectives

- What is Face Recognition?
- The techniques used in face recognition.
- What are the future of face recognition?
- Applications of face recognition

What is Object Recognition?

What is Object Recognition?

- Object recognition is the ability to recognize an object.
- Object recognition consists of recognizing, identifying, and locating objects within a picture with a given degree of confidence.
- This might be after the object has been previously seen or recognizing it from photographs.
- It is the ability to perceive an object's physical properties (such as shape, color, and texture) and apply semantic attributes to the object

Object Recognition

Object Recognition Steps

- Feature extraction: Which features should be detected, and how can they be detected reliably?
- Feature-model matching: How can features in images be matched to models in the database?
- Hypotheses formation: How can a set of likely objects based on the feature matching be selected, and how can probabilities be assigned to each possible object?
- Object verification: How can object models be used to select the most likely object from the set of probable objects in a given image?

Face Recognition

Face Recognition

- Facial recognition is a way of identifying or confirming an individual's identity using their face.
- Facial recognition systems can be used to identify people in photos,
 videos, or in real-time.
- Facial recognition is a category of biometric security
 - Voice recognition
 - Fingerprint recognition
 - Iris recognition.

How does it work?

- Step 1: Face detection: detects and locates the image of a face
- Step 2: Face analysis: image of the face is captured and analyzed
- Step 3: Converting the image to data: the face capture process transforms analog information (a face) into a set of digital information (data) based on the person's facial features.
- Step 4: Finding a match: Your faceprint is then compared against a database of other known faces

How does it work?

- Step 2: Face analysis
 - Reads the geometry of your face.
 - Key factors include:
 - The distance between your eyes.
 - The depth of your eye sockets
 - The distance from forehead to chin
 - The shape of your cheekbones, and the contour of the lips, ears, and chin.
 - The aim is to identify the facial landmarks that are key to distinguishing your face.

The Approach

- Type 1: Holistic Matching Methods: The approach covers face recognition as a two-dimensional recognition problem. Example: Eigenfaces, Principal Component Analysis, Linear Discriminant Analysis, and independent component analysis
- Type 2: Feature-based Methods: In this method, local features such as eyes, nose, and mouth are first of all extracted and their locations and local statistics are fed into a structural classifier.
- Type 3: Hybrid Methods: use a combination of both holistic and feature extraction methods

 $A_1A_2A_3$

START

 $B_1B_2B_3$

STOP

 $C_1C_2C_3$

Considering three replications of face Images A, B, and C as

C1, C2, C3)

Calculate the image distance between the mean input image s (I-avg) and the average distance (d) of each

image from the mean If $\sqrt{(I-avg)} - d)^2$ < dspace, then the test image is recognized, Else, it is not.

(A1, A2, A3, B1, B2, B3,

Images' vectors $a_{11}, a_{12},...a_{1n}, a_{21}, a_{22}...a_{2n}, a_{31}, a_{32}...a_{3n}, b_{11}, b_{12},...b_{1n}, b_{21}, b_{22}...b_{2n}, b_{31},$ b_{11} , b_{12} ,... b_{1n} , b_{21} , b_{22} ,... c_{2n} , c_{3n} , c_{3n} , c_{3n} , c_{3n} , c_{2n} , c_{2n} , c_{2n} , c_{2n} , c_{3n} , forms Distance $Avg = \sum_{i=1}^{n} (am_i + bm_i + cm_i) / N$ Avg = Mean of the vectors for m = 1 to 3 PCA Steps Distance of each image Averaging the (ami - avg + bmi - avg + cmi - avg) / Nimages' distances $_{avg}A$ $_{\rm avg}{
m B}$ $_{\mathrm{avg}}\mathbf{C}$ Average of each class Creating face space Determination of $D_{\text{space}} = \sum_{i=1}^{n} (a_{\text{max}} + b_{\text{max}} + c_{\text{max}}) / N$ threshold value For identifying a test image (I),

Pre- Processing Flowchart

Trainning of face images

Recognition

Eigenfaces- Face Recognition

Summary

Applications

- Prevent Retail Crime.
- Unlock Phones.
- Smarter Advertising.
- Find Missing Persons.
- Help the Blind.
- Protect Law Enforcement.
- Aid Forensic Investigations.
- Identify People on Social Media Platforms.

Summary

- What is Face Recognition?
- The techniques used in face recognition.
- What is a feature of face recognition?
- Applications of face recognition