COVID-19 infection prediction

Réalisé par: OLFA SAKET

Encadré par: ARSALEN GHARBI

PLAN

Introduction

IA et lutte contre le coronavirus Covid-19

Réalisation

Conclusion et perspectives

1 Introduction

- En décembre 2019 une nouvelle infection, le **COVID-19**, due à un nouveau coronavirus (SARS-Cov-2) est apparue en Chine à Wuhan.
- En quelques mois le COVID 19 s'est propagée à travers le monde, contaminant des millions de personnes, dont certaines ont été victimes de formes graves, voire mortelles.

Il s'agit d'une pandémie, c'est à dire d'une épidémie mondiale, du fait de l'extension sur tous les continents.

12 IA et lutte contre le coronavirus Covid-19

• Comment le Coronavirus SARS-CoV-2 (maladie COVID-19) peut-il être combattu par l'intelligence artificielle ?

12 IA et lutte contre le coronavirus Covid-19

Prédire si une personne est infectée en fonction des données cliniques disponibles.

□Data visualisation

Objectif : Comprendre au maximum les données dont on dispose pour définir une stratégie de modélisation.

- Identification de la Target
- Nombre de ligne et de colonnes.
- Type de variable.
- Identification des valeurs manquantes.
- Visualisation de la Target .
- Visualisation des relations Features-Target .
- Identification des outliers.

□Preprocessing

- 1. Mettre les données dans un format propice au ML.
- Train / Test
- Encoding
- Cleaning
- → Premier modèl : Evaluation-Diagnostique.
- 2. Améliorer la performance du modèl.
- Feature selection .
- Feature engineering
- Feature scaling
- Suppression des outliers

☐ ☐ Modelling – Optimisation

Objectif: Développer un model de machine learning qui réponde à notre objectif.

- Entrainement des différents modèles
- Optimisation avec GridSearchCV.
- Leanring curve et prise de décision .

- Target : positive- négative (0,1)
- → Problème de classification.
- Exemples des algorithmes de classification:
 - ✓ DecisionTree
 - ✓ Random Forest
 - √ Support vector machine(SVM)
 - √ k-nearest neighbors (KNN)

03 Réalisation: Comparaison des algorithmes

Comparing different supervised machine learning algorithms

Réalisation: Comparaison des algorithmes

SVM

03 Réalisation: Optimsation

[[92 3] [9 7]]	precision	recall	f1-score	support
0 1	0.91 0.70	0.97 0.44	0.94 0.54	95 16
accuracy macro avg weighted avg	0.81 0.88	0.70 0.89	0.89 0.74 0.88	111 111 111

O4 Conclusion et perspectives

- Optimiser encore ce modèle en utilisant le RandomizedSearchCV.
- RandomizedSearchCV permet de faire une GridshearchCV sur tout les hyper paramètres en testant à chaque fois une centaine de configuration .

Merci pour votre attention