Module 2A003 : Méthodes mathématiques pour la mécanique Examen du 29 Février 2016

Durée de l'épreuve : 2 heures.

Tout document interdit, travail strictement personnel.

La rigueur et la clarté de la rédaction seront prises en compte dans la note finale.

Exercice 1

On considère l'espace vectoriel $E = \mathbb{R}^3$ et (e_1, e_2, e_3) trois vecteurs de E formant une base. On note φ l'application linéaire définie par $\varphi(e_1) = e_3$, $\varphi(e_2) = -e_1 + e_2 + e_3$ et $\varphi(e_3) = e_3$.

- 1. Écrire la matrice A de φ dans la base (e_1, e_2, e_3) .
 - Déterminer le rang de A et déduire ensuite la dimension du noyau de A.
 - L'application φ est-elle un automorphisme? Justifier votre réponse.
 - Déterminer $Ker(\varphi)$ et $Im(\varphi)$ et donner une interprétation géométrique.
- 2. On pose $f_1 = e_1 e_3$, $f_2 = e_1 e_2$, $f_3 = -e_1 + e_2 + e_3$.
 - Les vecteurs f_1 , f_2 , f_3 forment-ils une base de \mathbb{R}^3 ?
 - Calculer $\varphi(f_1)$, $\varphi(f_2)$, $\varphi(f_3)$ en fonction de (f_1, f_2, f_3) .
 - Écrire la matrice B de φ dans la base (f_1, f_2, f_3) . Calculer B^2 et en déduire la nature de l'application φ .
 - Montrer que $E = Ker(\varphi) \bigoplus Im(\varphi)$.

3. On pose
$$P = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$
.

- Que représente P?
- Vérifier que P est inversible et calculer P^{-1} .
- Quelle relation lie A, B, P et P^{-1} ?

Corrigé

1.

$$A = \left(\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{array}\right)$$

On calcule det(A)=0 donc $rang A\neq 3$. On observe que le déterminant d'ordre 2

$$\left|\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right| = -1$$

est non nul. Alors rang(A) = 2 et donc dim(KerA) = 3 - 2 = 1

- L'application φ associée à A a les mêmes propriétés :

 $rang(\varphi) = 2$ et $dim(Ker(\varphi)) = 1$. φ n'est ni injective, ni surjective donc elle n'est pas bijective, donc elle n'est pas un automorphisme.

- $Ker\varphi = \{(x, y, z) \in \mathbb{R}^3 \text{ tel que } \varphi(x, y, z) = 0\}$. Ceci équivaut à :

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

d'où y = 0 et x + z = 0. $Ker\varphi = Vect\{(1, 0, -1)\}$, donc le noyau est une droite.

- $Im(\varphi)=\{(x,y,z)\in\mathbb{R}^3 \text{ tel que } \exists (a,c,b)\in\mathbb{R}^3 avec \varphi(a,b,c)=(x,y,z)\}$. Ceci équivaut à :

$$A \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

admet au moins une solution. En résolvant le système on trouve :

$$\begin{cases}
-b &= x \\
b &= y \\
a+c+b &= z
\end{cases}$$

donc $Im(\varphi) = \{(x, -x, z), x, z \in \mathbb{R}\} = Vect\{(1, -1, 0), (0, 0, 1)\}$ ce qui représente un plan.

2. - On vérifie d'abord que les vecteurs forment une famille libre. Pour cela on peut vérifier avec la définition ou on calcule le déterminant

$$\left| \begin{array}{ccc} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{array} \right| = -1$$

Le déterminant est non nul ce qui justifie le fait que la famille est libre. $Vect\{f_1, f_2, f_3\}$ est un sous- espace de dimension 3 de \mathbb{R}^3 , donc $\mathbb{R}^3 = Vect\{f_1, f_2, f_3\}$. Par conséquent la famille est aussi génératrice donc (f_1, f_2, f_3) est une base de \mathbb{R}^3 .

_

$$\varphi(f_1) = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 dans la base (e_1, e_2, e_3)

donc

$$\varphi(f_1) = 0.$$

$$\varphi(f_2) = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \text{ dans la base } (e_1, e_2, e_3)$$

donc

$$\varphi(f_2) = e_1 - e_2 = f_2.$$

$$\varphi(f_2) = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \text{ dans la base } (e_1, e_2, e_3)$$

donc

$$\varphi(f_3) = -e_1 + e_2 + e_3 = f_3.$$

- La matrice B est

$$B = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- On observe que $B^2=B$ ce qui veut dire que $\varphi\circ\varphi=\varphi$ donc φ est un projecteur.
- φ étant un projecteur $E = Ker(\varphi) \bigoplus Im(\varphi)$ (voir cours). On peut aussi démontrer directement que l'intersection de $Ker(\varphi)$ et $Im(\varphi)$ est vide.
- 3. P représente la matrice de passage de la base (e_1, e_2, e_3) vers la base (f_1, f_2, f_3) .
 - On a déjà calculé $det(P) \neq 0$ donc P est inversible.

$$-P^{-1} = \frac{1}{\det(P)}^{t}(comP) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$-B = P^{-1}AP$$

Exercice 2

Soit $M_3(\mathbb{R})$ l'ensemble des matrices carrées de taille 3 à coefficients réels. Soit :

$$A = \left(\begin{array}{ccc} 2 & 0 & 4\\ 3 & -4 & 12\\ 1 & -2 & 5 \end{array}\right)$$

- 1. Calculer le polynôme caractéristique de A et trouver les valeurs propres de A.
- 2. Déterminer si A est diagonalisable. Si oui, trouver une base de vecteurs propres.
- 3. Soit $B \in M_3(\mathbb{R})$ telle que BA = AB. Montrer que si u est un vecteur propre de A, alors u est aussi un vecteur propre de B.
- 4. Soit $B \in M_3(\mathbb{R})$ telle que $B^2 = A$. Monter que BA = AB et en déduire, à l'aide des questions précédentes, toutes les valeurs propres possibles de la matrice B.
- 5. Déterminer l'ensemble I des matrices $B \in M_3(\mathbb{R})$ telles que $B^2 = A$ et calculer $\sum_{B \in I} B$.

Corrigé

1. Le polynôme caractéristique de A est

$$\varphi(\lambda) = det(A - \lambda I) = \lambda(\lambda - 1)(2 - \lambda)$$

Les valeurs propres de A sont les racines de $\varphi(\lambda)$:

$$\lambda_1 = 0$$
, $\lambda_2 = 1$, $\lambda_3 = 2$

2. A est diagonalisable car elle a trois valeurs propres distinctes (théroème fondamental de la diagonalisatio). Les vecteurs propres assocciés aux valeurs propres forment une base. Calculons les vecteurs propres. Pour la valeur propre $\lambda_1 = 0$, on cherche $v_1 = (x, y, z)$ tel que :

$$\begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} x = -2z \\ y = 3/2z, z \in \mathbb{R} \end{cases}$$

Par conséquent, $v_1 = (-4, 3, 2)$, et l'espace propre assoccié est $E_1 = Vect\{v_1\}$. Pour la valeur propre $\lambda_2 = 1$, on cherche $v_2 = (x, y, z)$ tel que :

$$\begin{pmatrix} 1 & 0 & 4 \\ 3 & -5 & 12 \\ 1 & -2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} x = 4z \\ y = 0, z \in \mathbb{R} \end{cases}$$

Par conséquent, $v_2 = (-4, 0, 1)$ et l'espace propre assoccié est $E_2 = Vect\{v_2\}$. De la même manière on trouve $v_3 = (2, 1, 0)$ et $E_3 = Vect\{v_3\}$. 3. Soit $B \in M_3(\mathbb{R})$ telle que BA = AB et u est un vecteur propre de A. Alors il existe $\lambda \in \mathbb{R}$ valeur propre assocciée à u, donc

$$Au = \lambda u$$

Alors,

$$B(Au) = B(\lambda u)$$

Mais B(Au) = (BA)u = (AB)u = A(Bu). Par ailleurs, $B(\lambda u) = \lambda(Bu)$. Des trois égalités on trouve :

$$A(Bu) = \lambda(Bu)$$

ce qui veut dire que Bu est vecteur propre associé à la valeur propre λ , il appartient donc à l'espace vectoriel associé à la valeur propre λ . Cet espace est de dimension 1 (voir la question 2) donc Bu est colinéaire à u. Par conséquent, il existe $\alpha \in \mathbb{R}$ tel que

$$Bu = \alpha u$$

ce qui veut dire que u est vecteur propre pour B.

4. Soit $B \in M_3(\mathbb{R})$ telle que $B^2 = A$. On calcule $BA = B(B^2) = B^3$. De même, $AB = (B^2)B = B^3$, ce qui démontre que AB = BA.

À l'aide des questions précédentes, on a déduit que si u est vecteur propre de A, associé à λ alors u est vecteur propre de B associé à α et l'égalité $B^2 = A$ implique

$$\alpha^2 = \lambda$$

Les valeurs propres possibles de B sont donc $\{0, \pm 1, \pm \sqrt{2}\}$

5. Déterminer l'ensemble I des matrices $B \in M_3(\mathbb{R})$ telles que $B^2 = A$ et calculer $\sum_{B \in I} B$.

Indication: Vous prenez toutes les matrices possibles et vous faites la somme des matrices écrites dans la base des vecteurs propres (sous forme diagonale).

Exercice 3

On considère l'équation différentielle suivante, où y = y(x) est la fonction inconnue :

$$(x^2+1)\frac{dy}{dx} = 4xy + 4x\sqrt{y} \tag{1}$$

- 1. De quel type d'équation différentielle s'agit-il? Préciser le degré et s'il s'agit d'une équation linéaire ou non-linéaire.
- 2. On veut résoudre l'équation précédente à l'aide d'un changement de variable approprié, du type $z(x)=(y(x))^{\alpha}$.

– Préciser la valeur de la constante α que l'on doit choisir pour ne plus avoir de terme non linéaire et montrer que la nouvelle variable inconnue z(x) est solution de l'équation différentielle :

$$(x^2+1)\frac{dz}{dx} - 2xz = 2x\tag{2}$$

- Donner la solution générale de l'équation homogène associée à (2). Trouver une solution particulière de l'équation non-homogène (2). En déduire la solution générale de (2).
- Résoudre (2) par une méthode différente que l'on précisera.
- Préciser la condition que z(x) doit vérifier et déterminer ensuite les valeurs possibles de la constante dont z dépend pour que la solution soit définie.
- Déduire ensuite la solution générale y(x) de l'équation (1).
- 3. Donner la solution du problème de Cauchy formé par l'équation (1) et la condition initiale y(0) = 0. Représenter graphiquement cette solution.

Corrigé

- 1. Il s'agit d'une équation non linéaire, d'ordre 1 de type Bernoulli avec a = 1/2.
- 2. On prend $\alpha = 1/2$ et on fait le changement de variable $z(x) = \sqrt{y(x)}, z > 0$. On en déduit :

$$y = z^2 \Longleftrightarrow \frac{dy}{dx} = 2z\frac{dz}{dx}$$

et en remplaçant dans l'équation (1):

$$(x^2 + 1)2z\frac{dz}{dx} = 4xz^2 + 4xz$$

et pour $z \neq 0$:

$$(x^2+1)\frac{dz}{dx} - 2xz = 2x$$

On peut intégrer par séparation des variables :

$$\frac{dz}{z+1} = \frac{2x}{x^2+1}$$

En intégrant on trouve :

$$z = c(x^2 + 1) - 1, z > 0 \iff c > 0$$

Pour $c \in]1, +\infty[$ on a $c(x^2+1)-1>0$ et $y(x)=(c(x^2+1)-1)^2$, définie sur \mathbb{R} . Pour $c \in]0,1]$, on a $c(x^2+1)-1>0$ pour $x \in \left]\sqrt{\frac{1-c}{c}}, +\infty\right[\cup\left]-\infty, \sqrt{\frac{1-c}{c}}\right[$ et $y(x)=(c(x^2+1)-1)^2$. Les fonctions nulles étant solutions , on peut raccorder les solutions précédentes aux fonctions nulles pour obtenir des solutions sur \mathbb{R} . 3. Si y(0) = 0 alors $(c-1)^2 = 0$, donc c = 1, donc $y(x) = x^4$.