Arithmetic series example

Table of Contents

Sequence and series definition	. 1
Finite series	. 2
Infinite series	
References	

This is an example to implement an arithmetic series in Matlab code. This example was devloped during the summer school 2017 for Jade University in Wilhelmshaven by Gerardo M. Chavez-Campos, for more information visit sagitario.itmorelia.edu.mx/gmarx/summerJade.

Sequence and series definition

A **Sequence** is a list of things (usually numbers) that are in order. A sequence is usually defined by a **Rule**, this is a way or equation to find each term [1]. Thus, in order to be able of determine (11 _n, 11 _n) the **Rule** is written as a formula, where 11 is any term.

Now lets find a way to determine automatically each term ($^{[l]}n$) for the next sequence: 3, 5, 7, 9, ... and so forth,

```
for n=1:5
    u=2*n+1
end

u =
    3

u =
    5

u =
    7

u =
    9

u =
    11
```

Finite series

Now let U_m be a sequence. Then the finite sum S_m (partial sum) of V_m order is:

```
S_n = u_1 + u_2 + u_3 + \dots + u_n
```

and can be implemented in matlab as shown below.

```
for n=1:5
      Un(n)=2*n+1;
end
Sum=sum(Un)

Sum =
      35
```

Another way to calculate S_n is with the following code:

Infinite series

References

- 1. [1] Math is Fun www.mathisfun.com
- 2. <u>sagitario.itmorelia.edu.mx/gmarx/summerJade</u>

Published with MATLAB® R2014b