

SCSR1013 DIGITAL LOGIC

MODULE 2a: NUMBER SYSTEMS

2015/2016-1

FACULTY OF COMPUTING

Module 2, Part 1: Content

- Decimal Number
- Binary Number
 - Binary-to-Decimal Conversion
 - Decimal-to-Binary Conversion
- Hexadecimal Numbers
- Octal Number
- Binary Coded Decimal (BCD)
- Digital Codes and Parity
- Digital System Application

Numbering system

- A number system is the set of symbols used to express quantities as the basis for counting, determining order, comparing amounts, performing calculations, and representing value.
- Examples include the Arabic, Babylonian, Chinese,
 Egyptian, Greek, Mayan, and Roman number systems.
- Any positive integer B (B > 1) can be chosen as the base or radix of a numbering system.
- If base is B, then B digits (0, 1, 2, ..., B − 1) are used.

Table 2.1: Example of Numbering System

Base/Radix	Name	Numerals
2	Binary	0, 1
3	Trinary	0, 1, 2
4	Quaternary	0, 1, 2, 3
5	Quinary	0, 1, 2, 3, 4
8	Octal	0, 1, 2, 3, 4, 5, 6, 7
10	Decimal	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
16	Hexadecimal	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
		A, B, C, D, E, F

Positional Numbering Systems

- All numbering system is known as a positional number system, because the value of the number depends on the position of the digits.
- A number written in positional notation can be expanded in power series:

$$N = (c_3 c_2 c_1 c_0 \bullet c_{-1} c_{-2} c_{-3})_B$$

= $(c_3 x B^3) + (c_2 x B^2) + (c_1 x B^1) + (c_0 x B^0) \bullet (c_{-1} x B^{-1}) + (c_2 x B^{-2}) + (c_3 x B^{-3})$

where c_i is the coefficient of B^i and $0 \le c_i \le B-1$.

$$N = (c_3 c_2 c_1 c_0 \cdot c_{-1} c_{-2} c_{-3})_B =$$

$$c_3 \times B^3 + c_2 \times B^2 + c_1 \times B^1 + c_0 \times B^0 + c_{-1} \times B^{-1} + c_{-2} \times B^{-2} + c_{-3} \times B^{-3}$$

Example:

$$N = 4839.72_{10}$$

$$\Box (4_3 8_2 3_1 9_0 . 7_{-1} 2_{-2})_{10}$$

$$(4 \times 10^{3}) + (8 \times 10^{2}) + (3 \times 10^{1}) + (9 \times 10^{0}) + (7 \times 10^{-1}) + (2 \times 10^{-2})$$

$$(4 \times 1000) + (8 \times 100) + (3 \times 10) + (9 \times 1) + (7 \times 0.1) + (2 \times 0.01)$$

$$(4000) + (800) + (30) + (9) + (0.7) + (0.02)$$

□ 4839.72

Terms:

Base
$$b$$
 number: $N = a_{q-1}b^{q-1} + \dots + a_0b^0 + \dots + a_{-p}b^{-p}$

$$b > 1, \quad 0 <= a_i <= b-1$$
Integer part: $a_{q-1}a_{q-2} \dots a_0$
Fractional part: $a_{-1}a_{-2} \dots a_{-p}$
Most significant digit: a_{q-1}
Least significant digit: a_{-p}

Example:

Most significant bit (MSB)

Least significant bit (LSB)

Decimal number

Base/Radix	Name	Numerals		
10	Decimal	0, 1, 2, 3, 4, 5, 6, 7, 8, 9		

Example:

Express decimal 47 as a sum of the values of each digit.

$$47_{10} = (4 \times 10^{1}) + (7 \times 10^{0}) = 40 + 7$$

= 47

10000	1000	100	10	1	0.1	0.01	Decimal values
10 ⁴	10 ³	10 ²	10 ¹	10°	10-1	10-2	positional values

Example: Express 1024.68₁₀ as a sum of values of each digit

1	0	2	4.	6	8	number
10 ³	10 ²	10 ¹	10°	10-1	10-2	positional values

$$1024.68_{10} = (1 \times 10^{3}) + (0 \times 10^{2}) + (2 \times 10^{1}) + (4 \times 10^{0}) + (6 \times 10^{-1}) + (8 \times 10^{-2})$$

$$= (1 \times 1000) + (0 \times 100) + (2 \times 10) + (4 \times 1) + (6 \times 0.1) + (8 \times 0.01)$$

$$= (1000) + (0) + (20) + (4) + (0.6) + (0.08)$$

Express 567.23₁₀ as a sum of values of each digit.

10000	1000	100	10	1	0.1	0.01	Decimal values
10 ⁴	10 ³	10 ²	10 ¹	10°	10-1	10-2	positional values

Solution:

=
$$(5 \times 10^{2}) + (6 \times 10^{1}) + (7 \times 10^{0}) + (2 \times 10^{-1}) + (3 \times 10^{-2})$$

$$= (5 \times 100) + (6 \times 10) + (7 \times 1) + (2 \times 0.1) + (3 \times 0.01)$$

$$= 500 + 60 + 7 + 0.2 + 0.03$$

Binary number

Base/Radix	Name	Numerals	
2	Binary	0, 1	

24	2 ³	2 ²	2 ¹	2 ⁰	2-1	2-2	positional values
100002	10002	1002	102	12	0.12	0.012	binary weight values
16	8	4	2	1	0.5	0.25	decimal values

Example:

$$10011.01_{2} = (1 \times 2^{4}) + (0 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0}) + (0 \times 2^{-1}) + (1 \times 2^{-2})$$

$$= (1 \times 16) + (0 \times 8) + (0 \times 4) + (1 \times 2) + (1 \times 1) + (0 \times 0.5) + (1 \times 0.25)$$

$$= 16 + 2 + 1 + 0.25$$

Exercise 2a.2:

Express 110100.011₂ as a sum of values of each digit.

Solution:

$$= (1 \times 2^{5}) + (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) + (0 \times 2^{0}) + (0 \times 2^{-1}) + (1 \times 2^{-2}) + (1 \times 2^{-3})$$

$$= (1 \times 3^{2}) + (1 \times 1^{6}) + (0 \times 8) + (1 \times 4) + (0 \times 2) + (0 \times 1) + (0 \times 0.5) + (1 \times 0.25) + (1 \times 0.125)$$

$$= (3^{2}) + (1^{6}) + (4^{6}) + (0.2^{6}) + (0.12^{6})$$

Octal number

Base/Radix	Name	Numerals		
		MALITHUE E		
8	Octal	0, 1, 2, 3, 4, 5, 6, 7		

8 ³	8 ²	8 ¹	8°	8-1	8-2	positional values
10008	1008	10 ₈	18	0.18	0.018	octal weighted values
512	64	8	1	0.125	0.0625	decimal values

Example:

$$3706.01_8 = (3 \times 8^3) + (7 \times 8^2) + (0 \times 8^1) + (6 \times 8^0) + (0 \times 8^{-1}) + (1 \times 8^{-2})$$
$$= (3 \times 512) + (7 \times 64) + (0 \times 8) + (6 \times 8) + (0 \times 0.125) + (1 \times 0.0625)$$

Is there any errors?

Base/Radix	Name	Numerals		
8	Octal	0, 1, 2, 3, 4, 5, 6, 7		

83	8 ²	8 ¹	8º	8-1	8-2	positional values
10008	1008	108	18	0.18	0.018	octal weighted values
512	64	8	1	0.125	0.015625	decimal values

Example:

$$3706.01_8 = (3 \times 8^3) + (7 \times 8^2) + (0 \times 8^1) + (6 \times 8^0) + (0 \times 8^{-1}) + (1 \times 8^{-2})$$
$$= (3 \times 512) + (7 \times 64) + (0 \times 8) + (6 \times 1) + (0 \times 0.125) + (1 \times 0.015625)$$

(Correction in module)

Exercise 2a.3:

(No digit 8 in octal number system)

Express 568.23₈ as a sum of values of each digit.

Is there any errors?

Exercise 2a.3:

Express 567.23₈ as a sum of values of each digit.

8 ³	8 ²	8 ¹	80	8-1	8-2	positional values
1000 ₈	1008	108	18	0.18	0.018	octal weighted values
512	64	8	1	0.125	0.015625	decimal values

Solution:

$$= (5 \times 8^{2}) + (6 \times 8^{1}) + (7 \times 8^{0}) + (2 \times 8^{-1}) + (3 \times 8^{-2})$$

$$= (5 \times 64) + (6 \times 8) + (7 \times 1) + (2 \times 0.125) + (3 \times 0.015625)$$

$$= 320 + 48 + 7 + 0.25 + 0.046875$$

Hexadecimal number

Base/Radix	Name	Numerals
16	Hexadecimal	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
		A, B, C, D, E, F

Base 16

- 16 possible symbols
- 0-9 and A-F

Representation of decimal value into hexadecimal value

16 ³	16 ²	16¹	16º	16-1	positional values
100016	10016	1016	116	0.116	hexadecimal weighted values
4096	256	16	1	0.0625	decimal values

Example:

A21C.D₁₆ =
$$(A \times 16^3) + (2 \times 16^2) + (1 \times 16^1) + (C \times 16^0) + (D \times 16^{-1})$$

= $(A \times 4096) + (2 \times 256) + (1 \times 16) + (C \times 1) + (D \times 0.0625)$
= $(10 \times 4096) + (2 \times 256) + (1 \times 16) + (12 \times 1) + (13 \times 0.0625)$

Exercise 2a.4:

Express 567.23₁₆ as a sum of values of each digit.

16 ³	16 ²	16 ¹	16º	16-1	positional values
100016	10016	1016	116	0.116	hexadecimal weighted values
4096	256	16	1	0.0625	decimal values

Solution:

$$= (5 \times 16^{2}) + (6 \times 16^{1}) + (7 \times 16^{0}) + (2 \times 16^{-1}) + (3 \times 16^{-2})$$

$$= (5 \times 256) + (6 \times 16) + (7 \times 1) + (2 \times 0.0625) + (3 \times 0.00390625)$$

$$= 1280 + 96 + 7 + 0.125 + 0.1171875$$

Exercise 2a.4b:

Express 5A7.2F₁₆ as a sum of values of each digit.

16 ³	16 ²	16 ¹	16º	16-1	positional values
100016	10016	1016	116	0.116	hexadecimal weighted values
4096	256	16	1	0.0625	decimal values

Solution:

=
$$(5 \times 16^{2}) + (A \times 16^{1}) + (7 \times 16^{0}) + (2 \times 16^{-1}) + (F \times 16^{-2})$$

= $(5 \times 256) + (10 \times 16) + (7 \times 1) + (2 \times 0.0625) + (15 \times 0.00390625)$
= $1280 + 160 + 7 + 0.125 + 0.05859375$

Convert From Any Base To Decimal

The summation of the equation is the value in decimal.

Note:

- •All examples in previous slide are converting into decimal number without the total.
- Calculate the value in decimal to those example.

Calculate the value in decimal to all previous exercise.

Exercise 2a.2:

Exercise 2a.3:

$$567.23_8 = (320) + (48) + (7) + (0.25) + (0.046875)$$
$$= 375.296875_{10}$$

Exercise 2a.4:

$$567.23_{16} = (1280) + (96) + (7) + (0.125) + (0.1171875)$$
$$= 1383.24219_{10}$$

Exercise 2a.4b:

$$5A7.2F_{16}$$
 = (1280) + (160) + (7) + (0.125) + (0.05859375)
= 1447.18359₁₀

Exercise 2a.5:

Simple Deduction: Binary Number

· Fill in the blank spaces.

	(a)		(b)	(c)
Binary	Decimal	2 <i>x</i>	Binary	Decimal	Binary	Decimal
10	2	2 ¹	1	1	10 1	5
100	4	2 ²	11	3	1010	10
1000	8	23	111	7	10001	17
10000	16	2 ⁴	1111	15	11010	26
100000	32	2 ⁵	11111	31	100011	35

	(a)		(1	b)	(c)
Binary	Decimal	2×	Binary	Decimal	Binary	Decimal
10	2	21	1	1	10 1	5
100	4	2 ²	11	3	1010	10
1000	8	23	111	7	10001	17
10000	16	24	1111	15	11010	26
100000	32	2 ⁵	11111	31	100011	35

Solution:

- Based on the answers that you have calculated in the table, select the correct answer below that best described the deduced observation for (a), (b) and (c).
 - (C) An even number will have a zero as the last bit while an odd number will have a one as the last bit.
 - (a) The power of two is equivalent to the number of zeroes in the binary representation number.
 - (b) A binary number that is equal to $2^x 1$, will consist of all ones.

Module 2

Conversion of Decimal to Other Number Bases

- Apply method of successive division
 - Divide the decimal number by the base of the converted value and get the quotient and remainder.
 - Successively divide the quotients and keep the remainder until the quotient is 0. The answer is the string of remainders (read from bottom to up)

Successive Division:

Successive Division:

Example 2:	42 ₁₀ = 101010	2
42/2	=	
21/2	=	
10/2	= "	
5/2	=	
2/2	=	
1/2	=	

Module 2

Hex, Octal, Binary and Decimal Numbering System

Hexadecimal	Octal	Binary	Decimal
0	0	0000	0
1	1	0001	1
2	2	0010	2
3	3	0011	3
4	4	0100	4
5	5	0101	5
6	6	0110	6
7	7	0111	7
8	10	1000	8
9	11	1001	9
Α	12	1010	10
В	13	1011	11
С	14	1100	12
D	15	1101	13
E	16	1110	14
F	17	1111	15

$$(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)_{16}$$

 $(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)_{10}$

Exercise 2a.6:

$$1447_{10} = _{16}$$

(inverted from exercise 4b)

Module 2

Conversion of Fractions to Other Numbering System

- · Repetitive multiplication
 - Step 1: Multiply the fraction number by base of the required numbering system
 - Step 2: Separate the whole (part of the answer) and the fraction.
 - Step 3:
 Repeat (1) with the new fraction from (2)
 - Stop when the answer of the multiplication = 0
 - Or until reaching the desired fractional point

Example 1:
$$0.3125_{10} = \underline{}_{2}$$
 0.3125×2
 0.625×2
 0.25×2
 0.5×2

Answer:

 0.0101_{2}

Answer:

 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}
 0.0101_{2}

Example 4:
$$0.798_{10} = \underline{\quad \cdot \quad C \ C \ 4 \ 9}$$

$$0.798 \times 16 = \underline{\quad 12}.768 \qquad \Rightarrow 12 = C$$

$$0.768 \times 16 = \underline{\quad 12}.288 \qquad \Rightarrow 12 = C$$

$$0.288 \times 16 = \underline{\quad 4}.608 \qquad \Rightarrow 4$$

$$0.608 \times 16 = \underline{\quad 9}.728 \qquad \Rightarrow 9$$

Or until reaching the desired fractional point

Whole and Fraction Conversion

- Given a number (c₃c₂c₁c₀.c₋₁c₋₂c₋₃)_B
- To convert the number to the base x:
 - Successive division for $c_3c_2c_1c_0$ by x
 - Successive multiplication for $c_{-1}c_{-2}c_{-3}$ by x

Exercise 2a.7:

$$1447.18359_{10} = 5 A 7.2 E F_{16}$$

1447 + 0.18359

Successive Division: (Whole part)

Successive Multiplication: (Fraction part)

$$0.18359 \times 16 = 2.93744 \square 2$$

$$0.93744 \times 16 = 14.99904 \square E$$

$$0.99904 \times 16 = 15.98464 \square F$$

(up to 3 fractional points)

(inverted from exercise 4b)

Binary to Octal & Hex Conversion

- Convert from binary to octal by grouping bits in three starting with the LSB.
 - Each group is then converted to the octal equivalent.
- Convert from binary to hex by grouping bits in four starting with the LSB.
 - Each group is then converted to the hex equivalent.
- Leading zeros can be added to the left of the MSB to fill out the last group.

Binary₂ Octal₈

Grouping bits in 3 starting with the LSB.

Binary₂ □ Hexadecimal₁₆

 $2^n = 16$ n = 4

Grouping bits in 4 starting with the LSB.

Module 2

Binary Fraction to Octal & Hex Conversion

- For fractional binary number, the grouping of bits start from the radix point :
 - Octal: 3-bit group
 - Hexadecimal: 4-bit group
 - Add the necessary number of 0's

- For whole and fraction binary, the process is divided into two steps:
 - Step 1: Group the whole (integer part) portion starting from the radix point and moving to the left. Add the necessary number of 0's to the left.
 - Step 2: Group the fractional portion starting from the radix point and moving to the right. Add the necessary number of 0's to the right.

Whole fraction (Binary₂ \square Octal₈)

Example 3:
$$10001101.1101001_2 = 215.644$$

Part 1: Group of 3 bits starting from the radix point moving to the left.

010

001 101

Part 2: Group of 3 bits starting from the radix point moving to the right.

110

100

100

Whole fraction (Binary₂ □ Hexadecimal₁₆)

Part 1: Group of 4 bits starting from the radix point moving to the left.

1000 1101

8 13 = D

Part 2: Group of 4 bits starting from the radix point moving to the right.

1101 0010

13 = D

Module 2

Octal & Hex to Binary Conversion

- Convert every digit into groups of binary bits:
 - Octal: 3 bits
 - Hexadecimal: 4 bits
- When converting octal to hexadecimal and viceverse, it is advisable to uses binary representative as an intermediate conversion.

6 2 3. 5 3 110 010 011. 101 011

$$623.52_8 = 110010011.101011_2$$

Exercise 2a.8:

Exercise 2a.8:
$$AF90.7B_{16} = 1010111110010000.01111011_{2}$$

Solution:

(Convert each digit into group of 4 bits)

A F 9 0 . 7 B 1010 1111 1001 0000 0111 1011

Summary of Number Systems Conversion Successive Multiplication Octal₈ Fraction Group Convert n = 3Decimal₁₀ Binary₂ Positional number system Convert Group $2^{n} = 16$ Whole Hex₁₆ Successive Division

