FOCT 2.728-74

Группа Т52

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ

Резисторы, конденсаторы

Unified system for design documentation. Graphical symbols in diagrams. Resistors, capacitors

MKC 01.080.40 31.040

31.060

Дата введения 1975-07-01

Постановлением Государственного комитета стандартов Совета Министров СССР от 26 марта 1974 г. N 692 дата введения установлена 01.07.75

ВЗАМЕН <u>ГОСТ 2.728-68</u>, <u>ГОСТ 2.729-68</u> в части п.12 и <u>ГОСТ 2.747-68</u> в части подпунктов 24, 25 таблицы

ИЗДАНИЕ (апрель 2010 г.) с Изменениями N 1, 2, утвержденными в августе 1980 г., июле 1991 г., (ИУС N 11-80, 10-91)

1. Настоящий стандарт устанавливает условные графические обозначения (обозначения) резисторов и конденсаторов на схемах, выполняемых вручную или автоматизированным способом во всех отраслях промышленности.

Стандарт полностью соответствует СТ СЭВ 863-78 и СТ СЭВ 864-78.

2. Обозначения резисторов общего применения приведены в табл.1.

^{*} Письмом Росстандарта от 08.04.2019 г. N 6091-ИК/03 разъясняется, что "В таблице N 1 ГОСТ 2.728-74 допущена опечатка в отношении единиц измерения мощности, следует читать не "В", а "Вт". - Примечание изготовителя базы данных.

Наименование	Обозначение
1. Резистор постоянный Примечание. Если необходимо указать величину номинальной мощности рассеяния резисторов, то для диапазона от 0,05 до 5 В допускается использовать следующие обозначения резисторов, номинальная мощность рассеяния которых равна:	
0,05 B	— <u> </u>
0,125 B	→ <u></u>
0,25 B	─ □─
0,5 B	
1 B	— —
2 B	
5 B	—
2. Резистор постоянный с дополнительными отводами:	

7. Резистор переменный сдвоенный	
Примечание к пп.4-7. Если необходимо уточнить характер регулирования, то следует применять обозначения регулирования по <u>ГОСТ 2.721-74</u> ; например, резистор переменный:	
а) с плавным регулированием	-
б) со ступенчатым регулированием	
Для указания разомкнутой позиции используют обозначение, например, резистор с разомкнутой позицией и ступенчатым регулированием	<u> </u>
в) с логарифмической характеристикой регулирования	

- г) с обратно логарифмической (экспоненциальной) характеристикой регулирования
- Jesp
- д) регулируемый с помощью электродвигателя

- 8. Резистор переменный с замыкающим контактом, изображенный:
 - а) совмещенно

б) разнесенно

Примечания:

1. Точка указывает положение подвижного контакта резистора, в котором происходит срабатывание замыкающего контакта. При этом замыкание происходит при движении от точки, а размыкание - при движении к точке.

- 2. При разнесенном способе замыкающий контакт следует изображать.
- 3. Точку в обозначениях допускается не зачернять.

9. Резистор подстроечный

Примечания:	
1. Неиспользуемый вывод допускается не изображать	- = - =
2. Для подстроечного резистора в реостатном включении допускается использовать следующее обозначение	- - <u></u> -
10. Резистор переменный с подстройкой	
Примечание. Приведенному обозначению соответствует следующая эквивалентная схема:	
<u></u>	
11. Тензорезистор:	
а) линейный	— //
б) нелинейный	
12. Элемент нагревательный	————

(Измененная редакция, Изм. N 1, 2).

Обозначения функциональных потенциометров, предназначенных для генерирования нелинейных непериодических функций

3. Обозначения функциональных потенциометров, предназначенных для генерирования нелинейных непериодических функций, приведены в табл.2.

Наименование

Обозначение

1. Потенциометр функциональный однообмоточный (например, с профилированным каркасом)

Примечание. Около изображения подвижного контакта допускается записывать аналитическое выражение для генерирования квадратичной зависимости

2. Потенциометр функциональный однообмоточный с несколькими дополнительными отводами, например, с тремя

Примечания:

изображающие 1. Линии, дополнительные отводы, должны делить длинную сторону обозначения отрезки, на приблизительно пропорциональные линейным (или угловым) размерам соответствующих участков потенциометра

- 2. Линия, изображающая подвижный контакт, должна занимать промежуточное положение относительно линий дополнительных отводов
- 3. Потенциометр функциональный многообмоточный, например, двухобмоточный, изображенный:
 - а) совмещенно
 - б) разнесенно

Примечание. Предполагается, что многообмоточный функциональный конструктивно потенциометр выполнен таким образом, что все обмотки находятся на общем каркасе, a подвижный контакт электрически контактирует одновременно со всеми обмотками

4. Потенциометр функциональный многообмоточный, например, трехобмоточный с двумя дополнительными отводами от каждой обмотки, изображенный:

б) разнесенно

Примечание к пп.3 и 4. При разнесенном изображении применяют следующие условности:

- а) подвижный контакт следует показывать на обозначении каждой обмотки потенциометра;
- б) линии механической связи между обозначениями подвижных контактов не изображают;
- в) линию электрической связи, изображающую цепь подвижного контакта, допускается изображать только на одной из обмоток, например, двухобмоточный потенциометр с последовательно соединенными обмотками

или

Примечание. Обозначения, установленные в табл.2, следует применять для потенциометров, у которых подвижный контакт перемещается между двумя фиксированными (начальным и конечным) положениями. При этом конструктивное исполнение потенциометра может быть любым: линейным, кольцевым или спиральным (многооборотные потенциометры).

Обозначения функциональных кольцевых замкнутых потенциометров, предназначенных для циклического генерирования нелинейных функций

4. Обозначения функциональных кольцевых замкнутых потенциометров, предназначенных для циклического генерирования нелинейных функций, приведены в табл.3.

Наименование

Обозначение

1. Потенциометр функциональный кольцевой замкнутый однообмоточный (например, с профилированным каркасом) с одним подвижным контактом и двумя отводами

Примечание. Около изображения подвижного контакта допускается записывать аналитическое выражение для генерируемой функции, например, синусный потенциометр

- 2. Потенциометр функциональный кольцевой замкнутый однообмоточный с несколькими подвижными контактами, например, с тремя:
 - а) механически не связанными

б) механически связанными

3. Потенциометр функциональный кольцевой замкнутый однообмоточный с изолированным участком

Примечание. На изолированном участке электрический контакт между обмоткой и подвижным контактом отсутствует

4. Потенциометр функциональный кольцевой замкнутый однообмоточный с короткозамкнутым участком

Примечания:

- 1. На короткозамкнутом участке потенциометра сопротивление равно нулю.
- 2. Кольцевой сектор, соответствующий короткозамкнутому участку, допускается не зачернять
- 5. Потенциометр функциональный кольцевой замкнутый многообмоточный, например, двухобмоточный с двумя отводами от каждой обмотки, изображенный:

Примечание. Все угловые размеры в обозначениях (углы между линиями отводов, между подвижными механически связанными контактами, размеры и расположение секторов изолированных или короткозамкнутых участков) должны быть приблизительно равны соответствующим угловым размерам в конструкции потенциометров.

Обозначения конденсаторов

5. Обозначения конденсаторов приведены в табл.4

Наименование	Обозначение
1. Конденсатор постоянной емкости	1
Примечание. Для указания поляризованного конденсатора используют обозначение	+ L
1а. Конденсатор постоянной емкости с обозначенным внешним электродом	+
2. Конденсатор электролитический:	
а) поляризованный	+
б) неполяризованный	=
Примечание. Знак "+" допускается опускать, если это не приведет к неправильному пониманию схемы.	
3. Конденсатор постоянной емкости с тремя выводами (двухсекционный), изображенный:	

б) с выводом от корпуса

8. Конденсатор переменной емкости

9. Конденсатор переменной емкости многосекционный, например, трехсекционный

10. Конденсатор подстроечный

11. Конденсатор дифференциальный

11а. Конденсатор переменной емкости двухстаторный (в каждом положении подвижного электрода C=C)

Примечание к пп.8-11а. Если необходимо указать подвижную обкладку (ротор), то ее следует изображать в виде дуги, например

12. Вариконд

(Измененная редакция, Изм. N 1).

Условные графические обозначения резисторов и конденсаторов для схем, выполнение которых при помощи печатающих устройств ЭВМ установлено стандартами Единой системы конструкторской документации

6. Условные графические обозначения резисторов и конденсаторов для схем, выполнение которых при помощи печатающих устройств ЭВМ установлено стандартами Единой системы конструкторской документации, приведены в табл.5.

Наименование	Обозначение	Отпечатанное обозначение
1. Резистор постоянный, изображенный:		
а) в горизонтальной цепи	——	R:
б) в вертикальной цепи		 • R •
2. Конденсатор постоянной емкости, изображенный:		
а) в горизонтальной цепи	⊣ ⊢	:::
б) в вертикальной цепи	<u>+</u>	:
3. Конденсатор электролитический поляризованный, изображенный:	NO CASO WASH	75 NEW 21/05/K

Примечание. Линии электрической связи - по <u>ГОСТ 2.721-74</u>. (Измененная редакция, Изм. N 2).

Размеры условных графических обозначений

7. Размеры условных графических обозначений приведены в табл.6. Все геометрические элементы условных графических обозначений следует выполнять линиями той же толщины, что и линии электрической связи.

Наименование	Обозначение
1. Резистор постоянный	***
2. Резистор постоянный с дополнительными отводами:	
а) одним	2 min
б) с двумя	<u>3</u> δ
3. Резистор переменный	45°
4. Резистор переменный с двумя подвижными контактами	36
5. Резистор подстроечный	* ***
6. Потенциометр функциональный	20

Потенциометр функциональный кольцевой замкнутый: а) однообмоточный б) многообмоточный, например, двухобмоточный Потенциометр функциональный кольцевой замкнутый с изолированным участком 9. Конденсатор постоянной емкости 10. Конденсатор электролитический 11. Конденсатор опорный

Электронный текст документа подготовлен АО "Кодекс" и сверен по: официальное издание Единая система конструкторской документации. Обозначения условные графические в схемах: Сб. ГОСТов. -

М.: Стандартинформ, 2010