3 הרצאה

סיווג קשתות, צמתי הפרדה, רכיבים אי פריקים

סיווג קשתות

בהינתן גרף מכוון ותת עץ (מושרש) שלו מסווגים את קשתות הגרף ל-4 סוגים:

- 1. קשתות עץ
- 2. קשתות קדמיות
- 3. קשתות אחוריות
 - 4. קשתות חוצות

הערה: בגרף לא מכוון נתייחס לקשתות קדמיות וקשתות אחוריות כקשתות אחוריות.

טענה 1. בגרף לא מכוון ועץ שהוא פלט של DFS אין קשתות חוצות

הוכחה. באמצעות למת המסלול הלבן

כלומר, כל גרף לא מכוון ניתן לפרק (לעץ DFS וקבוצת קשתות אחוריות.

צמתי הפרדה

מעתה נעסוק רק בגרפים לא מכוונים וקשירים (בלי הגבלת הכלליות).

אינו קשיר $G[V\setminus \{v\}]$ אונו הפרזה אס אינו קשיר צומת הפרדה). אונו קשיר

דוגמה: צומת 3 בגרף הבא הוא צומת הפרדה (ורק הוא)

מה המשמעות של צמתי הפרדה ? ברשת כבישים ? רשת תקשורת ? רשת חברתית ? אלגוריתם טריוויאלי למציאת צמתי הפרדה:

- v עבור כל צומת .1
- G-ט מחק את (א)
- קשיר G קשיר (ב)

מה הסיבוכיות ? נרצה לעשות יותר טוב. **שאלה:** מי הם צמתי ההפרדה בעצים?

בעץ מושרש, T, נסמן ב- T_v את תת העץ ששורשו הוא v. כלומר תת העץ שמכיל את v ואת כל צאצאיו. בעץ מושרש, דער לא מכוון כאיחוד של עץ DFS וקבוצת קשתות אחוריות. מה יכול לקרות כאשר מוציאים קשת שאינו עלה מהגרף ?

למשל מה יקרה אם נסיר את צומת 5 מהגרף הבא ?

קל להשתכנע שתת העץ 7 ישאר מחובר לגרף בעוד שתת העץ 6 יתנתק מהגרף.

u את ענקפת). (גיד שקשת בגרף מצאצא של u לאב קדמון של u (שניהם לא עצמו) עוקפת את הגדרה 2 (קשת עוקפת).

u את שעוקפת שעוקפת ר- T_v פומת כ- T_v אם אבא א יקרא בן מפריד אם אם אוקפת את צומת עס אבא אוקפת את אוקפת את א

u בעץ בעץ הוא צומת מפריד אם ורק אם יש לו בן מפריד. בפרט שורש העץ הוא צומת מפריד אמ"מ הוא אינו עלה (יש לו יותר מבן אחד)

הוכחה. נזכיר שבגרף אין קשתות חוצות, כמו כן נניח ש-u אינו השורש (ניתן להוכיח נכונות לגבי השורש בנפרד) כיוון ראשון: נניח שמ- T_v אין קשת לאב קדמון של u אזי כל מסלול מהאבא של u ל-u חייב לעבור ב-u. כיוון שני: נניח שלכל בן v של u קיימת קשת עוקפת מu, u נשים לב שהוספת הקשת u סוגרת מעגל שמכיל את הקשת כיוון שני: נניח שלכל בן u של נקבל שוב עץ, נחזור על הפעולה הזאת לכל בן של u ולבסוף נסיר את u מהעץ. קיבלנו שוב עץ ולכן אם נסיר צומת הפרדה.

הגדרה 4. נגדיר

$$L(u) := \min_{vw \in E: v \in T_u} \alpha(w)$$

 T_u כלומר הצומת עם ערך α מינימלי שהוא שכן של

? בגרף הבא בגרף מה ערכי L

T-ם של ב-ער הבנים את קבוצת הכC(u)-ם נסמן

 $\max_{v \in C(u)} L(v) \geq lpha(u)$ אכחנה 1. צומת u הוא צומת עפריד אמ"מ

כלומר, כדי למצוא אלגוריתמית את צמתי ההפרדה כל שעלינו לעשות הוא לחשב את ערכי L. נשים לב שמתקיימת הנוסחה (הרקורסיבית) הבאה:

$$L(u) = \min \begin{cases} \min_{uv \in E} \alpha(v) \\ \min_{v \in C(u)} L(v) \end{cases}$$

L כך שבריצת האלגוריתם נחשב ערכי DFS נעדכן את נעדרים את נעדכן את נעדכן את נעדכן את נעדכן את נעדכן את נעדכן את נעדרים את נעדכן את נעדכן את נעדרים את נעדכן את נעדכן את נעדרים את

- - 2. כל עוד המחסנית לא ריקה

$$u \leftarrow S.top()$$
 (N)

 $(u \in U)$ ע אם את שחוצה uv קשת (ב)

$$U \leftarrow U \cup \{v\}, F \leftarrow F \cup \{uv\}$$
 i.
$$p(v) \leftarrow u \text{ ii.}$$

$$\alpha(v) \leftarrow i \text{ iii.}$$

$$S.push(v) \text{ iv.}$$

(ג) אחרת

$$L(u) \leftarrow \min_{uv \in E} \alpha(v) \quad \text{i.}$$

$$L(p(u)) \leftarrow \min\{L(u), L(p(u))\} \quad \text{ii}$$

$$L(p(u)) \leftarrow \min\{L(u), L(p(u))\}$$
 ii.

$$u \leftarrow S.pop()$$
 iii.

$$\beta(u) \leftarrow i$$
 iv.

$$i \leftarrow i+1$$
 (T)

רכיבים אי פריקים

הגדרה ${f 7}$ (רכיב אי פריק). תת גרף ${f H}$ של ${f G}$ יקרא רכיב אי פריק אס ${f H}$ אינו מכיל צומת מפריד

במילים אחרות, H נשאר קשיר גם אחרי הסרת צומת כלשהו ממנו.

שמכיל מפש G שמכיל אי פריק אי פריק אי פריק של G של של הוא פריק אי פריק אי פריק איר הגדרה G ורכיב אי פריק מקסימלי). רכיב אי פריק אי H את

מעתה כשנדבר על רכיבים אי פריקים נתכוון אך ורק לרכיבים אי פריקים מקסימליים.

דוגמה:

טענה 3. לשני רכיבים אי פריקים H_1 ו- H_2 צומת אחד משותף לכל היותר

הוכחה. נניח בשלילה שישנם שני רכיבים כאלו שחולקים את הצמתים uו-v. נשים לב שלאחר שהסרה של צומת כלשהו כל רכיב בנפרד נשאר קשיר. מעבר לכך הרכיבים עדיין חולקים צומת משותף ולכן הרכיב שמתקבל מאיחוד שני הרכיבים גם הוא אי פריק. סתירה למקסימליות.

טענה 4. הרכיבים האי פריקים מהווים חלוקה של קשתות הגרף

הוכחה. קל לראות שכל קשת מוכלת ברכיב אי פריק אחד לפחות ומטענה 3 נובע שגם לכל היותר

G טענה 5. כל מעגל ב-G מוכל ברכיב פריק של

הוכחה. נובע ישירות מכך שמעגל הוא רכיב אי פריק (לא מקסימלי)

 T_v -טענה 6. עבור צומת הפרדה uע עם בן מפריד v, שאר צמתי הרכיב האי פריק שמכיל את uv ומצאים ב-

הגרף משאר T_v מפריד את u-שים לב ש-ח

נסמן ב-S את קבוצת הבנים המפרידים אז

$T_v \cup \{v\} \setminus igcup_{w \in S; w eq v} T_w$ הוא uv את שמכיל שמכיל האי פריק אמתי הרכיב האי הרכיב אמקנה 1.

נעדכן את המימוש של DFS כך שבריצת האלגוריתם נחשב גם את הרכיבים האי פריקים (נרצה לשמור לכל צומת את מספר הרכיב אליו הוא שייד)

- - 2. כל עוד המחסנית לא ריקה
 - $u \leftarrow S.top()$ (x)
 - $(u \in U)$ ע אחוצה את uv שחוצה קשת (ב)

S'.push(v) ii.

(ג) אחרת

 $v \leftarrow S.pop()$ i. $\beta(v) \leftarrow i$ ii.

 $\frac{u}{v}$ אם $\frac{v}{v}$ בן מפריד של iii.

 $w \leftarrow S'.pop()$.'א

 $w \neq v$ ב'. כל עוד

B(w) = b •

 $w \leftarrow S'.pop() \bullet$

 $b \leftarrow b + 1$ \(\cdot c\)

 $i \leftarrow i+1$ (T)

עץ רכיבים אי פריקים

עבור גרף B נגדיר את גרף הרכיבים האי פריקים, B(G), כגרף הדו צדדי על קבוצות הצמתים B נאשר ב-B נאשר ב-B אמ"מ הרכיב ל רכיב אי פריק ב-B צומת עבור כל צומת הפרדה ב-B. בגרף הנ"ל תהיה קשת B, אמ"מ הרכיב אמ"מ הצומת B.

נשים לב שכל מסלול ב-B(G) מתאים למסלול (יחיד) ב-B(G) ולכן קשיר. כמו כן נשים לב שב-B(G) לא קיימים מעגלים כי זה יגרור שקיים מעגל ב-G שאינו שעובר ביותר מרכיב אי פריק אחד.

עץ הוא B(G) .2 מסקנה

