Introduction'); DROP TABLE Syllabus; --

Secure Systems Engineering Spring 2024

January 30, 2024 Tushar Jois

\$ whoami

Tushar Jois (he/him)

Assistant professor
Electrical engineering
Computer security & privacy

Likes: computers, road trips, board games

Dislikes: mass surveillance, beets, computers

- \$ whoami
- tushar
- \$ who

Survey time!

By show of hands, how many of you...

- Have configured a personal firewall
- Have used a virtual machine
- Have used Wireshark
- Know how to read tcpdump output manually
- Understand how a buffer overflow works
- Have written shellcode for a buffer overflow
- Have written Rust code
- Know what IKE stands for
- Understand how certificate chains work
- Have browsed the Internet using Tor
- Have written a virus or worm
- Have hacked into someone else's system

\$ whoami
tushar
\$ who
successful survey

\$ why

Course goals

- Know core security concepts, both in theory and practice
- Apply the proper defenses to common attacks on systems
- Understand the societal, cultural, and political implications of the field
- Be prepared for research, if you so choose

- Come to class on-time and ready to contribute
- Be prepared to collaborate with your peers on labs and projects
- Complete coursework honestly and with effort
- Respect your classmates, as well as the course staff

Course expectations

Course information

- Required text: None!
 - But, there will be posted readings
- <u>Please</u> do the readings
 - They're helpful especially for the in-class activities
- Course page: https://tjo.is/teaching/sse-sp24/
 - Has the course schedule, which has due dates and links to materials
 - Familiarize yourself with the content of the syllabus (below the schedule)
- Content submission: Blackboard
- Discussion board for assignment questions: Blackboard
- Late work not permitted without an excuse
 - If you have an excuse, please inform the staff in advance for consideration

In-class activity

- Second half of class each week
 - After lecture and a short break
 - Come prepared to contribute to discussion topics and work through hands-on lab problems
- Please bring your laptop to follow along
 - We have a course virtual machine (see course page for link)
 - Let the course staff know ASAP if this is not possible for you
- Submit lab deliverables on time to receive full credit for attendance
- Topics covered will be on the exam
 - Lectures are not the only source of content!

Course project: capture-the-flag

- Your team will
 develop a voting
 machine that is
 intentionally
 vulnerable to attack
- You'll use the vulnerabilities that you learn from the labs and hide it into the voting machine

The case study:

An electronic voting machine

- Another group takes
 your code and
 attempts to figure out
 what the
 vulnerabilities are
- Then, you'll try to exploit them!
- More details to come

Course schedule

Date	Lecture topic	In-class activity	Reading	Deliverables
Jan 30, 2024	Course intro & Unix security basics	Course virtual machine setup	Security Engineering book chapter	Assignment 1 out, due by 10p Feb 12
Feb 6, 2024	Buffer overflows	Intro to GDB & Assignment 1 in-class work	Book chapter (see Blackboard)	
Feb 13, 2024	Rust programming	Lab 1: Hands-on with Rust	Rust Book, chapters 1, 3-6	Assignment 2 out, due by 10p Mar 4
Feb 20, 2024	Practical cryptography	Lab 2: More fun with Rust	Rust Book, chapters 7-11	
Feb 27, 2024	Case study: Transport Layer Security (TLS)	Lab 3: Wireshark & TLS	The Illustrated TLS 1.2 Connection	
Mar 5, 2024	Exam 1	Project introduction & group assignment		Project description out (note due dates)

Course schedule

Date	Lecture topic	In-class activity	Reading	Deliverables
Mar 12, 2024	Case study: electronic voting	Project check-in 1 & in-class work	Blaze law review paper	
Mar 19, 2024	Backdoors in secure systems	Lab 4: Build-a-backdoor	ТВА	Assignment 3 out, due by 10p Apr 8
Mar 26, 2024	Side channels (online lecture)	Project check-in 2 & in-class work	TBA	
Apr 2, 2024	Privacy & anonymity	Lab 5: Signal & Tor	Double Ratchet specification, sections 1, 2; optional: Tor paper	
Apr 9, 2024	Advanced topics	Lab 6: Trusted hardware	DOVE research paper	Submit Project code by 10p Apr 15
Apr 16, 2024	Exam 2	Project check-in 3 & in-class work	(as of 2024-01-26: subject	to change; see latest version

Course schedule

Date	Lecture topic	In-class activity	Reading	Deliverables
Apr 23, 2024	Spring recess (no class)			
Apr 30, 2024	Spring recess (no class)			
May 7, 2024	Project code demos	Project check-in 4 & in-class work		Submit Project presentation slides by 10p May 13
May 14, 2024	Project presentations			

40% Midterm exams (2 total)

Security engineering

Ross Anderson
Professor, University of Cambridge

Security engineering

Airport security

Activity

Unix isolation

Users

```
seed@VM:~$ cat /etc/passwd | grep seed
seed:x:1000:1000:seed,,,:/home/seed:/bin/bash
seed@VM:~$ id
uid=1000(seed) gid=1000(seed) groups=1000(seed)
seed@VM:~$ cat /etc/passwd | grep root
root:x:0:0:root:/root:/bin/bash
root@VM:~# id
uid=0(root) gid=0(root) groups=0(root)
```

Users and groups

- Groups represent a group of users
 - Assigning permissions based on group
 - A user can belong to multiple groups
 - A user's primary group is in /etc/passwd
- Commands for managing users and groups
 - Use groups or id to list your user's groups
 - Use adduser to add a user
 - Use groupadd to add a group
 - Use usermod to add a user to a group
 - Use su to switch to another user

```
seed@VM:~$ groups
seed adm cdrom sudo dip plugdev
lpadmin sambashare

seed@VM:~$ id
uid=1000(seed) gid=1000(seed)
groups=1000(seed),4(adm),24(cdrom)
,27(sudo),30(dip),46(plugdev),113(
lpadmin),128(sambashare)
```

File permissions

- Types of access on files
 - read (r): user can view the contents of the file
 - write (w): user can change the contents of the file
 - execute (x): user can execute or run the file if it is a program or script

- Types of access on directories
 - read (r): user can list the contents of the directory (e.g., using ls)
 - write (w): user can create files and sub-directories inside the directory
 - execute (x): user can enter that directory (e.g., using cd)
- More fine-grained access control with getfacl/setfacl

```
seed@VM:~$ ls -l xyz
-rw-rw-r-- 1 seed seed 0 Aug 26 15:32 xyz

owner
group
user group
name name
world

file information
```

Running commands as root

- Run commands as root with sudo: **s**uper**u**ser **do**
 - Just add sudo to the front of a command that requires privilege
 - By default runs commands as root, but can select the user with -u
 - User needs authorization to use sudo
- Get a full shell as root with sudo -s
 - Not recommended in general

```
seed@VM:~$ cat /etc/sudoers
cat: /etc/sudoers: Permission denied

seed@VM:~$ sudo cat /etc/sudoers
# (snip)
# Allow members of group sudo to execute any command
%sudo ALL=(ALL:ALL) NOPASSWD:ALL
```

User authentication

- Authentication verifies a user identity, based on something...
 - A user knows (a password)
 - A user <u>has</u> (ID card, smartphone)
 - A user <u>is</u> (fingerprint)
- Multi-factor authentication combines these together
- In Unix, authentication is primarily done through a password
 - User metadata stored in /etc/passwd
 - The password itself is stored (hashed) in /etc/shadow

Looking ahead

- Review the course page for the class
 - QR code, on Blackboard, and at https://tjo.is
- Assignment 1 is out
 - We will go over the concepts required next class, but take a look anyway
- Do the reading for next time
 - Chapter is on Blackboard
 - Incredibly helpful for working on Assignment 1!
- Bring your laptop to work on the in-class activity
- Read stuff! Hacker News, Lobste.rs, Ars Technica
- Today's activity: setup the course virtual machine

