A Fiscal Decomposition of Unexpected Inflation: Cross-Country Estimates and Theory

Livio C. Maya

November 2022

Introduction: The Fiscal Sources of Unexpected Inflation

- Connection between fiscal policy and inflation
- Key Equilibrium Condition: The Valuation Equation of Public Debt

 $\frac{\text{Market Value of Debt (Bond Prices)}}{\text{Price Level}} = \text{Intrinsic Value (Discounting, Surpluses)}.$

- Unexpected inflation must accompany news about:
 - Bond prices
 - Real surpluses
 - Real discounting
- If unexpected inflation exists, it must nowcast/forecast some of these variables
- What are these forecasts? How do they change across countries? How can theory explain them?

Introduction: Exercises, Motivation, Results

- Motivation. Valuation equation requires very weak assumptions (no bubbles!)
 - Stylized facts to discipline theory
 - Relevance for policy: is unexpected inflation "fiscal"?
 - Fixed country: +1% inflation ⇒ +1% deficit/debt?
 - Cross country: +1% inflation in A relative to B ⇒ +1% deficit/debt in A compared to B?
 - Fiscal role to monetary policy?
- This paper. Estimates for multiple countries and conditions for NK models to reproduce them
 - Estimate a Bayesian-VAR for 25 countries to measure the following decompositions:
 - Unexpected Inflation: "What does +1% unexpected inflation forecast?"
 - Unexpected Demand: "What does +1% unexpected inflation and +1% GDP growth forecast?"
 - Unexpected Surpluses: "What does -1% unexpected discounted surpluses forecast?"
 - 2. Estimate New-Keynesian model by GMM to reproduce BVAR decompositions

Introduction: Exercises, Motivation, Results

- Motivation. Valuation equation requires very weak assumptions (no bubbles!)
 - Stylized facts to discipline theory
 - Relevance for policy: is unexpected inflation "fiscal"?
 - Fixed country: +1% inflation ⇒ +1% deficit/debt?
 - Cross country: +1% inflation in A relative to B ⇒ +1% deficit/debt in A compared to B?
 - Fiscal role to monetary policy?
- This paper. Estimates for multiple countries and conditions for NK models to reproduce them
 - 1. Estimate a Bayesian-VAR for 25 countries to measure the following decompositions:
 - Unexpected Inflation: "What does +1% unexpected inflation forecast?"
 - Unexpected Demand: "What does +1% unexpected inflation and +1% GDP growth forecast?"
 - Unexpected Surpluses: "What does -1% unexpected discounted surpluses forecast?"
 - 2. Estimate New-Keynesian model by GMM to reproduce BVAR decompositions

Introduction: Related Literature

- Monetary-Fiscal Interaction.
 - Cagan (1956), Sargent and Wallace (1981), Hall and Sargent (1997), Hall and Sargent (2011), Jiang et al. (2019), Corsetti et al. (2019), Sunder-Plassmann (2020), Du et al. (2020), Akhmadieva (2022)
- Fiscal Theory of the Price Level. Leeper (1991), Sims (1994), Woodford (1995), Cochrane (1998), Cochrane (2005), Sims (2011), Leeper and Leith (2016), Bassetto and Cui (2018), Cochrane (2022c), Brunnermeier et al. (2022), Cochrane (2022a), Cochrane (2022b)
 - Analysis of multiple countries
 - Estimated NK model with productivity shocks
- Empirical Finance (Drivers of Unexpected Returns)
 Campbell and Shiller (1988), Cochrane (1992), Campbell and Ammer (1993), Chen and Zhao (2009),
 Cochrane (2008), Jiang et al. (2019).
 - Unexpected return on basket of public debt

The Fiscal Decomposition of Unexpected Inflation

Fiscal Decomposition: The Valuation Equation

- Environment with discrete time + single good (price P_t) + households and government
- One-period nominal public bonds (price Q_t)
- In each period, the government:
 - redeems bonds B_{t-1} for currency
 - soaks up currency through primary surpluses $P_t s_t$ and bond sales $Q_t B_t$
- Market clearing + No Currency Holdings M = 0:

$$B_{t-1} = P_t s_t + Q_t B_t$$

Fiscal Decomposition: The Valuation Equation

- **Ex-post** real discounting $\beta_t = Q_t(P_{t+1}/P_t)$ $\beta_{t,t+k} = \prod_{\tau=t}^{t+k} \beta_{\tau}$
- Iterate law of motion forward:

$$\frac{B_{t-1}}{P_t} = \sum_{k=0}^{p} \beta_{t,t+k-1} s_{t+k} + \beta_{t,t+p} \frac{B_{t+p}}{P_{t+p+1}}$$

- **EXECUTE:** $\lim_{\tau \to \infty} \beta_{t,\tau} \frac{B_{\tau}}{P_{\tau+1}} = 0$
- Valuation equation of public debt:

$$\boxed{\frac{B_{t-1}}{P_t} = \sum_{k=0}^{\infty} E_t \left[\beta_{t,t+k-1} S_{t+k} \right]}$$

"A prince who should enact that a certain proportion of his taxes should be paid in a paper money of a certain kind might thereby give a certain value to this paper money" - Adam Smith

Fiscal Decomposition: In the Simplest Environment

- End-of-period real debt v_t
- Linearized flow condition + valuation equation

$$\underbrace{\frac{1}{\beta} v_{t-1} + \frac{v}{\beta} \left(i_{t-1} - \pi_t \right)}_{B_{t-1}/P_t} = \mathbf{S}_t + v_t \qquad = \sum_{k=0}^{\infty} \beta^k E_t \mathbf{S}_{t+k} - \frac{v}{\beta} \sum_{k=1}^{\infty} \beta^k E_t r_{t+k}$$

■ Take innovations $\Delta E_t = E_t - E_{t-1}$

$$\Delta E_t \pi_t \; = \; -\frac{\beta}{v} \, \sum_{k=0}^{\infty} \beta^k \Delta E_t s_{t+k} \; + \sum_{k=0}^{\infty} \beta^k \Delta E_t r_{t+k}$$

Fiscal Decomposition: In the Simplest Environment

- End-of-period real debt v_t
- Linearized flow condition + valuation equation

$$\underbrace{\frac{1}{\beta} \mathbf{v}_{t-1} + \frac{\mathbf{v}}{\beta} \left(\mathbf{i}_{t-1} - \mathbf{\pi}_{t} \right)}_{\mathbf{B}_{t-1}/P_{t}} = \mathbf{S}_{t} + \mathbf{v}_{t} \qquad = \sum_{k=0}^{\infty} \beta^{k} \mathbf{E}_{t} \mathbf{S}_{t+k} - \frac{\mathbf{v}}{\beta} \sum_{k=1} \beta^{k} \mathbf{E}_{t} \mathbf{r}_{t+k}$$

■ Take innovations $\Delta E_t = E_t - E_{t-1}$:

$$\Delta E_{t} \pi_{t} = -\frac{\beta}{v} \sum_{k=0}^{\infty} \beta^{k} \Delta E_{t} s_{t+k} + \sum_{k=0}^{\infty} \beta^{k} \Delta E_{t} r_{t+k}$$

Fiscal Decomposition: Generalizing

- GDP Growth
- Nominal, inflation-linked and dollar-denominated bonds
- Long-term bonds

$$\frac{\text{Bond Price in Home Currency} \times \text{Bonds}}{\text{Price Level}} = \sum_t \frac{\text{Surplus-to-GDP} \times \Delta \text{GDP}}{\text{Discounting}}$$

$$\frac{\mathbf{v}_{t-1}}{\beta} + \frac{\mathbf{v}}{\beta} \sum_{j} \delta_{j} \left(\mathbf{r} \mathbf{x}_{j,t} + \mathbf{i}_{j,t-1} + \Delta \mathbf{h}_{j,t} - \pi_{j,t} \right) = \sum_{k=0}^{\infty} \beta^{k} \mathbf{E}_{t} \mathbf{s}_{t+k} + \frac{\mathbf{v}}{\beta} \sum_{k=0}^{\infty} \beta^{k} \mathbf{E}_{t} \mathbf{g}_{t+k} - \frac{\mathbf{v}}{\beta} \sum_{k=1}^{\infty} \sum_{j} \delta_{j} \beta^{k} \mathbf{E}_{t} \mathbf{r}_{j,t+k}$$

Details Currency Table

Fiscal Decomposition of Unexpected Inflation

Ex-post real return $r_{j,t} = rx_{j,t} + i_{j,t-1} + \Delta h_{j,t} - \pi_{j,t}$

$$\Delta E_{t} \pi_{t} = \underbrace{\left[\Delta E_{t} r x_{t} + \sum_{j \neq N} \frac{\delta_{j}}{\delta} \Delta E_{t} r_{j,t}\right]}_{\beta} - \frac{\beta}{\delta v} \underbrace{\left[\sum_{k=0}^{\infty} \beta^{k} \Delta E_{t} S_{t+k} + \frac{v}{\beta} \sum_{k=0}^{\infty} \beta^{k} \Delta E_{t} g_{t+k} - \frac{v}{\beta} \sum_{k=1}^{\infty} \sum_{j} \delta_{j} \beta^{k} \Delta E_{t} r_{j,t+k}\right]}_{\beta}$$

Innovation to Bond Prices

Innovation to Discounted Surpluses

$$\equiv d(rx) + d(r_0) - d(s) - d(g) + d(r)$$

Fiscal Decomposition: VAR-Based Measures

General VAR system

$$X_t = AX_{t-1} + Ke_t$$
 $e_t \sim N(0, \Omega)$

et can be reduced form or structural

How to measure terms of decomposition?

- Innovation to endogenous variables j periods ahead $\Delta E_t X_{t+i} = A^j K e_t$
- Therefore:

$$\sum_{j=0}^{\infty} \beta^{j} \Delta E_{t} X_{t+j} = \sum_{j=0}^{\infty} (\beta A)^{j} K e_{t} = (I - \beta A)^{-1} K e_{t}$$

How to build decomposition scenarios?

- Suppose we are interested in $\Delta E_t X_t = x$ (e.g. $\Delta E_t \pi_t = 1$)
- Start by calculating the expected value of shocks e_t conditional on $\Delta E_t X_t = x$

$$E[e \mid \Delta E_t X_t = x] = \Omega K' (K \Omega K')^{-1} x$$

• And then calculate the terms of the decomposition using $e_t = E[e \mid \Delta E_t X_t = x]$

Bayesian-VAR: Data and Model

• Annual data on observables x_t^{OBS}

$$egin{aligned} x_t^{ extit{OBS}} = egin{bmatrix} i_t & ext{(Nominal Interest)} \\ \pi_t & ext{(CPI Inflation)} \\ v_t^b & ext{(Par-Value Debt-to-GDP)} \\ g_t & ext{(GDP growth)} \\ \Delta h_t & ext{(Δ Real Exchange to US Dollar)} \end{bmatrix}$$

- 25 countries (samples starting at 1945, 1960, 1973, 1998)
- General VAR

$$X_t = AX_{t-1} + Ke_t$$

Decompose $X'_t = [x_t^{OBS'} x_t^{NOT'}]$

$$x_t^{OBS} = a \ x_{t-1}^{OBS} + e_t$$

 $x_t^{NOT} = b \ x_{t-1}^{OBS} + c \ x_{t-1}^{NOT} + k \ e_t$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$x_t^{OBS} = a x_{t-1}^{OBS} + e_t$$

- United States: Estimate model by OLS (stable!)
- Others: Estimate model with a Bayesian Linear Regression Bayesian Prior Hyperparameters

$$a^{BAY} = (X'X + \lambda^{-1})^{-1}(X'X a^{OLS} + \lambda^{-1} a^{PRIOR})$$

- 2. Public finance data do not respect law of motion of public deb
 - \circ Define surplus from the law of motion: $\mathbf{s}_t = \frac{\mathbf{v}_{t-1}}{\beta} \mathbf{v}_t + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r \mathbf{x}_{j,t} + i_{j,t-1} + \Delta h_{j,t} \pi_{j,t}
 ight)
 ight]$
- 3. No data on the market value of debt, only its par value (v_t^b) Public Finances Mode
 - Model for market vs par value (Cox (1985)): $v_t = v_t^b + rac{v}{\beta} \sum_j \delta_j \left(q_{j,t} q_{j,t-1}^b\right)$
- 4. No data on bond prices Geometric Term Structure
 - Geometric maturity structure + constant risk premia: $q_{j,t} = (\omega_j \beta) E_t q_{j,t+1} i_j$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$x_t^{OBS} = a x_{t-1}^{OBS} + e_t$$

- United States: Estimate model by OLS (stable!)
- Others: Estimate model with a Bayesian Linear Regression Bayesian Prior Hyperparameters

$$a^{BAY} = (X'X + \lambda^{-1})^{-1}(X'X a^{OLS} + \lambda^{-1} a^{PRIOR})$$

- 2. Public finance data do not respect law of motion of public debt
 - $\quad \text{ Define surplus from the law of motion: } \qquad \mathbf{s_t} = \frac{\mathbf{v}_{t-1}}{\beta} \mathbf{v}_t + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r \mathbf{x}_{j,t} + \mathbf{i}_{j,t-1} + \Delta \mathbf{h}_{j,t} \pi_{j,t} \right) \right]$
- 3. No data on the market value of debt, only its par value (v_t^b) Public Finances Model
 - Model for market vs par value (Cox (1985)): $v_t = v_t^b + \frac{v}{\beta} \sum_j \delta_j \left(q_{j,t} q_{j,t-1}^b \right)$
- 4. No data on bond prices Geometric Term Structure
 - \circ Geometric maturity structure + constant risk premia: $q_{j,t} = (\omega_j \beta) E_t q_{j,t+1} i_j$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$x_t^{OBS} = a x_{t-1}^{OBS} + e_t$$

- United States: Estimate model by OLS (stable!)
- Others: Estimate model with a Bayesian Linear Regression Bayesian Prior Hyperparameters

$$a^{BAY} = (X'X + \lambda^{-1})^{-1}(X'X a^{OLS} + \lambda^{-1} a^{PRIOR})$$

- 2. Public finance data do not respect law of motion of public debt
 - $\quad \text{ Define surplus from the law of motion: } \qquad \mathbf{s_t} = \frac{\mathbf{v}_{t-1}}{\beta} \mathbf{v}_t + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r x_{j,t} + i_{j,t-1} + \Delta h_{j,t} \pi_{j,t} \right) \right]$
- 3. No data on the market value of debt, only its par value (v_t^b) Public Finances Model
 - Model for market vs par value (Cox (1985)): $\mathbf{v}_t = \mathbf{v}_t^b + \frac{\mathbf{v}}{\beta} \sum_j \delta_j \left(q_{j,t} q_{j,t-1}^b\right)$
- 4. No data on bond prices Geometric Term Structure
 - Geometric maturity structure + constant risk premia: $q_{j,t} = (\omega_j \beta) E_t q_{j,t+1} i_j$

1. Explosive debt dynamics in 1960-2020 implies unstable OLS VARs

$$x_t^{OBS} = a x_{t-1}^{OBS} + e_t$$

- United States: Estimate model by OLS (stable!)
- Others: Estimate model with a Bayesian Linear Regression Bayesian Prior Hyperparameters

$$a^{BAY} = (X'X + \lambda^{-1})^{-1}(X'X a^{OLS} + \lambda^{-1} a^{PRIOR})$$

- 2. Public finance data do not respect law of motion of public debt
 - $\quad \text{ Define surplus from the law of motion: } \qquad \mathbf{s_t} = \frac{\mathbf{v}_{t-1}}{\beta} \mathbf{v}_t + \frac{\mathbf{v}}{\beta} \left[-g_t + \sum_j \delta_j \left(r x_{j,t} + i_{j,t-1} + \Delta h_{j,t} \pi_{j,t} \right) \right]$
- 3. No data on the market value of debt, only its par value (v_t^b) Public Finances Model
 - Model for market vs par value (Cox (1985)): $\mathbf{v}_t = \mathbf{v}_t^b + \frac{\mathbf{v}}{\beta} \sum_j \delta_j \left(q_{j,t} q_{j,t-1}^b\right)$
- 4. No data on bond prices Geometric Term Structure
 - Geometric maturity structure + constant risk premia: $q_{j,t} = (\omega_j \beta) E_t q_{j,t+1} i_{j,t}$

Bayesian-VAR: Unexpected Inflation Decomposition

- "Given 1% unexpected inflation, how do we change expectations over surplus, discounting, bond prices?"
- Reduced-form shock $e_t = E[e \mid \Delta E_t \pi_t = 1]$

Country	$\Delta E_t \pi_t =$	$\Delta E_t \pi_t = \Delta E_t (Bond Prices)$				$-\Delta E_t$ (Disc Surpluses)			
		Ī	$d(r_0)$	d(rx)	Ι	-d(s)	-d(g)	d(r)	
United States	1	Ι	0	*-0.8	Τ	0.6	0.2	1.0	
1960 Sample									
Canada	1	1	* -0.1	* -1.6	-1	0.6	* 1.2	0.9	
Denmark	1		* -0.3	-0.3		0.4	0	1.2	
Japan	1		0	* -0.5		* 1.6	-0.4	0.3	
Norway	1		0	* -0.4		0.6	0.5	0.3	
Sweden	1		-0.2	* -0.9		-0.3	* 1.0	* 1.4	
United Kingdom	1		* 0.5	* -0.7		* 2.9	* 1.0	* -2.7	
1973 Sample									
Australia	1	1	* 0.1	* -0.8	-1	* 2.1	0.7	-1.1	
New Zealand	1		-0.1	* -0.9		0.4	* 0.9	0.7	
South Korea	1		0	* -0.5		* 1.9	0.2	-0.6	
Switzerland	1		0	* -0.7		0.9	* 0.9	-0.1	

Country	$\Delta E_t \pi_t =$	1	ΔE_t (Bon	d Prices)		$-\Delta E_t$	(Disc Surp	luses)
		Ī	$d(r_0)$	d(rx)	Ī	-d(s)	-d(g)	d(r)
1998 Sample								
Brazil	1	1	-0.3	* -0.2	-	-1.5	1.1	1.9
Chile	1		-3.8	-1.3		9.0	-5.7	2.9
Colombia	1		1.5	* -1.0		1.4	-1.1	0.2
Czech Republic	1	ı	* -0.2	* -0.4		-2.3	2.4	1.4
Hungary	1		* -0.6	* -0.9		-1.0	1.6	1.9
India	1		* 0.2	* -0.5		1.5	0.1	-0.3
Indonesia	1		* -2.6	* -1.1		1.7	* 2.6	0.4
Israel	1		-0.1	* -0.8		-0.6	* 1.5	0.9
Mexico	1		0	* -0.7		1.4	0	0.3
Poland	1		* -0.5	* -1.2		0.9	-0.4	* 2.1
Romania	1		-0.4	* -1.0		2.2	0.4	-0.3
South Africa	1		0.4	* -0.5		1.6	0.3	-0.7
Turkey	1		0.4	* -0.4		-1.2	-0.2	* 2.3
Ukraine	1	1	0	* -0.8		0.7	0.4	* 0.7

Advanced Markets

Emerging Markets

Decomposition 2 Proposition

Bayesian-VAR: Unexpected Inflation Decomposition - Takeaways

$$d(rx) < 0 \qquad -d(g) > 0$$

$$d(r) > 0 \qquad -d(s) < 0$$

- ullet $\Delta E\pi$ accounted for by discounted surpluses
- Surplus-to-GDP, GDP growth and real discounting...
 - ...account for unexpected inflation alone in 0/25
 - ...have a positive contribution in 18+/25
- Is inflation "fiscal"? Yes, but not only.
- Is inflation "fiscal" cross-country? Not at all.
- Bond price dynamics reduce $\Delta E\pi$ in 25/25

Bayesian-VAR: Unexpected Inflation Decomposition - Takeaways

$$d(rx) < 0$$
 $-d(g) > 0$
 $d(r) > 0$ $-d(s) < 0$

- $\Delta E\pi$ accounted for by discounted surpluses
- Surplus-to-GDP, GDP growth and real discounting...
 - ...account for unexpected inflation alone in 0/25
 - ...have a positive contribution in 18+/25
- Is inflation "fiscal"? Yes, but not only.
- Is inflation "fiscal" cross-country? Not at all.
- Bond price dynamics reduce $\Delta E\pi$ in 25/25

Bayesian-VAR: Unexpected Demand Decomposition

- Environments of "strong aggregate demand": high inflation, high GDP and high surpluses.
- "Given +1% unexpected inflation and +1% GDP growth, how do we change forecast?"
- Reduced-form shock $e_t = E[e \mid \Delta E_t \pi_t = 1, \Delta E_t g_t = 1]$

Country	$\Delta E_t \pi_t =$	$\Delta E_t(B)$	ond Prices)	$-\Delta E$	$-\Delta E_t$ (Disc Surpluses)			
		d(r ₀)	d(rx)	-d(s)	-d(g)	d(r)		
United States	1	0	* -1.4	1.0	* -1.3	* 2.8		
1960 Sample								
Canada	1	* -0.2	* -2.9	0.8	0.3	* 3.0		
Denmark	1	* -0.4	* -1.1	3.0	* -2.9	2.3		
Japan	1	0	* -1.2	* 2.4	* -2.1	* 1.8		
Norway	1	0	* -0.9	1.8	* -1.7	1.8		
Sweden	1	* -0.5	* -1.7	0.5	-0.4	* 3.1		
United Kingdom	1	0.1	* -3.2	* 3.7	-0.4	0.8		
1973 Sample								
Australia	1	0	* -2.1	2.6	-0.5	1.0		
New Zealand	1	* -0.3	* -1.3	1.1	-0.3	1.9		
South Korea	1	* -0.1	* -1.0	* 4.4	* -1.9	-0.4		
Switzerland	1	0	* -1.3	* 1.3	0.6	0.4		

Country	$\Delta E_t \pi_t =$	ΔE_t (Bon	d Prices)	-Δ	E _t (Disc Surp	luses)
		d(r ₀)	d(rx)	-d(s)	-d(g)	d(r)
1998 Sample						
Brazil	1	* -0.6	* -0.2	-2.9	0.2	4.3
Chile	1	* -18.4	* -3.7	36.4	-34.9	21.7
Colombia	1	-1.3	* -1.2	12.3	-8.6	-0.3
Czech Republic	1	* -0.5	* -0.8	-1.0	0.9	2.4
Hungary	1	* -1.3	* -1.1	-12.2	6.5	9.2
India	1	0.1	-0.4	2.0	-0.8	0
Indonesia	1	* -9.9	0.1	* 12.6	-0.2	-1.6
Israel	1	* -2.1	* -0.8	3.4	-0.7	1.1
Mexico	1	* -1.9	* -1.2	* 5.6	-2.1	0.6
Poland	1	* -1.0	* -1.5	0.6	-1.3	* 4.3
Romania	1	* -2.1	* -0.7	* 8.7	-1.7	-3.2
South Africa	1	0.3	-0.6	* 32.2	* -11.6	* -19.3
Turkey	1	-0.7	* -0.4	-1.2	-0.6	* 3.9
Ukraine	1	0	0.5	* 4.1	* -2.1	-1.4

Advanced Markets

Emerging Markets

Bayesian-VAR: Unexpected Demand Decomposition - Takeaways

$$d(rx) < 0$$
 $-d(g) < 0$
 $d(r) > 0$ $-d(s) > 0$

- Higher inflation follows from...
 - higher discounting (monetary policy) in 19/25
 - lower surplus-GDP ratios, current or in the future in 21/25
- (Level) Surpluses increase in 23/25
- COVID inflation: decline in {s}?

Bayesian-VAR: Unexpected Demand Decomposition - Takeaways

$$d(rx) < 0$$
 $-d(g) < 0$
 $d(r) > 0$ $-d(s) > 0$

- Higher inflation follows from...
 - higher discounting (monetary policy) in 19/25
 - lower surplus-GDP ratios, current or in the future in 21/25
- (Level) Surpluses increase in 23/25
- COVID inflation: decline in {s}?

Bayesian-VAR: Unexpected Demand Decomposition - Takeaways

United States - IRF

$$d(rx) < 0$$
 $-d(g) < 0$
 $d(r) > 0$ $-d(s) > 0$

- Higher inflation follows from...
 - higher discounting (monetary policy) in 19/25
 - lower surplus-GDP ratios, current or in the future in 21/25
- (Level) Surpluses increase in 23/25
- COVID inflation: decline in {s}?

Bayesian-VAR: Unexpected Surpluses Decomposition

- Unexpected inflation forecasts lower discounted surpluses. Is the converse true?
- "Given -1% discounted surpluses, how do we change forecast?" Reduced-form shock $e_t = E[e \mid \Delta E_t \text{ Disc Surpluses} = -1]$
- ΔE_t {Disc Surpluses} = ΔE_t {Bond Prices} ΔE_t {Real Return on Public Debt}

Country	$\Delta E_t \pi_t =$	$= \mid \Delta E_t (Bond Prices)$			$-\Delta E_t$ (Disc Surpluses)			
		Ī	$d(r_0)$	d(rx)	Ι	-d(s)	-d(g)	d(r)
United States	* 0.4	ı	0	* -0.6	ī	0.2	0	* 0.8
1960 Sample								
Canada	* 0.2	1	* -0.1	* -0.8		-0.1	0	* 1.2
Denmark	* 0.2		* -0.2	* -0.6		0.2	* -0.6	* 1.4
Japan	* 0.5		0	* -0.5		0.7	-0.2	* 0.5
Norway	* 0.4		0	* -0.6		-0.3	-0.1	* 1.4
Sweden	* 0.2		* -0.3	* -0.5		-0.1	0.1	* 1.0
United Kingdom	* 0.1		-0.1	* -0.8		0.2	-0.1	0.9
1973 Sample								
Australia	* 0.2	1	0	* -0.8		-0.3	0	* 1.3
New Zealand	* 0.3		* -0.1	* -0.5		-0.3	0.4	* 0.9
South Korea	* 0.5	1	0	* -0.5		1.5	-0.2	-0.3
Switzerland	* 0.3		0	* -0.7		0.3	0.2	* 0.5

Country	$\Delta E_t \pi_t =$	ΔE_t (Bor	d Prices)	$-\Delta E_t$ (Disc Surpluses)			
	ĺ	$d(r_0)$	d(rx)	-d(s)	-d(g)	d(r)	
1998 Sample							
Brazil	* 0.4	* -0.4	* -0.1	* -2.4	0.3	* 3.1	
Chile	0	* -0.9	* -0.1	0.6	-0.4	0.9	
Colombia	0	* -0.9	* -0.1	* 1.7	-0.7	0	
Czech Republic	* 0.4	* -0.2	* -0.4	-1.0	8.0	1.1	
Hungary	* 0.2	* -0.4	* -0.3	-4.1	2.6	* 2.6	
India	* 0.5	0	* -0.5	0.6	0.1	0.2	
Indonesia	0	* -0.9	-0.1	0.5	0.2	0.3	
Israel	* 0.1	* -0.6	* -0.3	-0.9	0.1	* 1.8	
Mexico	* 0.1	* -0.7	* -0.2	* 1.4	-0.4	0.1	
Poland	* 0.2	* -0.4	* -0.3	-0.2	0.1	* 1.0	
Romania	* 0.1	* -0.9	0	* 1.6	-0.2	-0.4	
South Africa	* 0.2	* -0.5	* -0.3	-0.2	0.3	0.9	
Turkey	* 0.1	* -0.8	* -0.1	-0.1	0.1	* 1.0	
Ukraine	* 0.4	0	* -0.6	0	* 0.3	* 0.6	

Advanced Markets

Emerging Markets

Bayesian-VAR: Unexpected Surpluses Decomposition

- Unexpected inflation forecasts lower discounted surpluses. Is the converse true?
- "Given -1% discounted surpluses, how do we change forecast?" Reduced-form shock $e_t = E[e \mid \Delta E_t \text{ Disc Surpluses} = -1]$
- ΔE_t {Disc Surpluses} = ΔE_t {Bond Prices} ΔE_{π} = ΔE_t {Real Return on Public Debt}

Country	$\Delta E_t \pi_t =$		ΔE_t (Bond Prices)		$-\Delta E_t$ (Disc Surpluses)			
		Ī	$d(r_0)$	d(rx)	Ι	-d(s)	-d(g)	d(r)
United States	* 0.4	ı	0	* -0.6	T	0.2	0	* 0.8
1960 Sample								
Canada	* 0.2	1	* -0.1	* -0.8	-	-0.1	0	* 1.2
Denmark	* 0.2		* -0.2	* -0.6		0.2	* -0.6	* 1.4
Japan	* 0.5		0	* -0.5		0.7	-0.2	* 0.5
Norway	* 0.4		0	* -0.6		-0.3	-0.1	* 1.4
Sweden	* 0.2		* -0.3	* -0.5		-0.1	0.1	* 1.0
United Kingdom	* 0.1		-0.1	* -0.8		0.2	-0.1	0.9
1973 Sample								
Australia	* 0.2	1	0	* -0.8		-0.3	0	* 1.3
New Zealand	* 0.3	1	* -0.1	* -0.5		-0.3	0.4	* 0.9
South Korea	* 0.5		0	* -0.5		1.5	-0.2	-0.3
Switzerland	* 0.3		0	* -0.7		0.3	0.2	* 0.5

Country	$\Delta E_t \pi_t =$	$\Delta E_t(Be)$	ond Prices)	$-\Delta E_t$ (Disc Surpluses)			
		d(r ₀)	d(rx)	-d(s)	-d(g)	d(r)	
1998 Sample							
Brazil	* 0.4	* -0.4	* -0.1	* -2.4	0.3	* 3.1	
Chile	0	* -0.9	* -0.1	0.6	-0.4	0.9	
Colombia	0	* -0.9	* -0.1	* 1.7	-0.7	0	
Czech Republic	* 0.4	* -0.2	* -0.4	-1.0	0.8	1.1	
Hungary	* 0.2	* -0.4	* -0.3	-4.1	2.6	* 2.6	
India	* 0.5	0	* -0.5	0.6	0.1	0.2	
Indonesia	0	* -0.9	-0.1	0.5	0.2	0.3	
Israel	* 0.1	* -0.6	* -0.3	-0.9	0.1	* 1.8	
Mexico	* 0.1	* -0.7	* -0.2	* 1.4	-0.4	0.1	
Poland	* 0.2	* -0.4	* -0.3	-0.2	0.1	* 1.0	
Romania	* 0.1	* -0.9	0	* 1.6	-0.2	-0.4	
South Africa	* 0.2	* -0.5	* -0.3	-0.2	0.3	0.9	
Turkey	* 0.1	* -0.8	* -0.1	-0.1	0.1	* 1.0	
Ukraine	* 0.4	0	* -0.6	0	* 0.3	* 0.6	

Advanced Markets

Emerging Markets

Bayesian-VAR: Taking Stock

BVAR:
$$X_t = AX_{t-1} + Ke_t$$

		ΔE (Bond Prices)		-ΔE (Discounted Surpluses)					
	$\Delta E_t \pi_t =$	$\int_{j\neq N} \delta_j \Delta E_t r_{j,t}$	$\Delta E_t r x_t$	$-\sum_{k}\beta^{k}\Delta E_{t}s_{t+k}$	$-\sum_k \beta^k \Delta E_t g_{t+k}$	$\sum_{k} \beta^{k} \Delta E_{t} r_{t+k}$			
Unexpected Inflation	1	< 0		mostly > 0	mostly > 0	mostly > 0			
Unexpected Demand	1	< 0		> 0	< 0	> 0			
Unexpected Surplus	0.3	-0.7				> 0			

Theory: The New Keynesian Model

The New-Keynesian Model

- BVAR decompositions not structural
- Closed-economy New-Keynesian model
- **Trend Shocks.** Production function $\mathcal{T}_t A_t N$

Trend component: $\log \mathcal{T}_t = \log \mathcal{T}_{t-1} + u_{g,t}$ AR(1) component: $a_t = \rho_a a_{t-1} + \varepsilon_{a,t}$

 $y_{t} = E_{t}y_{t+1} - \gamma (i_{t} - E_{t}\pi_{t+1}) + E_{t}u_{g,t}$ $\pi_{t} = \beta E_{t}\pi_{t+1} + \kappa y_{t} - \kappa_{a} a_{t}$ $g_{t} = \Delta y_{t} + u_{g,t}$ $i_{t} = \phi_{\pi} \pi_{t} + \phi_{g} g_{t} + u_{i,t}$ $s_{t} = \tau_{\pi} \pi_{t} + \tau_{g} g_{t} + u_{s,t}$ $\beta(v_{t} + s_{t}) = v_{t-1} + v \sum_{j} \delta_{j} [rx_{j,t} + i_{j,t-1} + \Delta h_{j,t} - \pi_{j,t}]$ $q_{j,t} = (\omega_{j}\beta) E_{t}q_{j,t+1} - i_{j,t}$ $rx_{j,t} = (\omega_{j}\beta) q_{j,t} - q_{j,t-1} - i_{j,t-1}$

- Structural shocks: $\varepsilon = [\varepsilon_a \ \varepsilon_q \ \varepsilon_i \ \varepsilon_s]$
- Method of moments:

$$\mathsf{Min}_{\Psi} \quad {}_{lpha_1} \left\| \mathcal{D}_{\mathsf{VAR}} - \mathcal{D}_{\mathsf{NK}}(\Psi) \right\| + {}_{lpha_2} \left\| \mathcal{M} - \mathcal{M}_{\mathsf{NK}}(\Psi) \right\|$$

The New-Keynesian Model: Measuring the Fiscal Decomposition

- In the NK model, flow equation of public debt holds, so does fiscal decomposition
- Solution to NK model

$$X_t = AX_{t-1} + K\varepsilon$$

but ε is now structural

■ So given innovation $\Delta E_t X_t = x$ (e.g. $\Delta E_t \pi_t$ = 1), we compute

$$\varepsilon_t = E[\ \varepsilon \ | \ \Delta E_t X_t = x \],$$

calculate the IFRs and the terms of the decomposition

The New-Keynesian Model: Reproducing the Unexpected Inflation Decomposition

Simple version of the model. Target: unexpected inflation decomposition ($\Delta E_t \pi_t = 1$)

- **Result.** AR(1) productivity shocks $\varepsilon_{a,t}$ alone reproduce the US unexpected inflation decomposition
- **Result.** Monetary, fiscal and trend shocks do not, even if combined.

Target: United States. AR(1) productivity shocks. All others.

The New-Keynesian Model: Reproducing the Unexpected Inflation Decomposition

Simple version of the model. Target: unexpected inflation decomposition ($\Delta E_t \pi_t = 1$)

- **Result.** AR(1) productivity shocks $\varepsilon_{a,t}$ alone reproduce the US unexpected inflation decomposition
- **Result.** Monetary, fiscal and trend shocks do not, even if combined.

Target: United States. AR(1) productivity shocks. All others.

The New-Keynesian Model: Reproducing the Unexpected Inflation Decomposition

$$1 = \Delta E_t \pi_t = d(rx) - d(s) - d(g) + d(r)$$

Story: negative productivity shock

$$E[\ \varepsilon_a \mid \Delta E_t \pi_t = 1\] = -0.85$$

- Persistent shock: $\rho_a = 0.96$ -d
 - $\rho_a=0.96 \qquad -d(g)>0$
- Procyclical surpluses: $\tau_g = 1.5$ -d(s) > 0
- Strong Taylor rule: $\phi_\pi = 0.6$
 - d(rx) < 0
 - d(r) > 0

Marginal Costs

vs B-VAR IRF

The New-Keynesian Model: Complete Model

Targets: three decompositions + second moments

• **Result.** Trend shocks are necessary to reproduce unexpected demand decomposition.

Structural Shocks Target: United States - Unexpected Inflation Demand Surpluses

The New-Keynesian Model: Complete Model

Targets: three decompositions + second moments

• **Result.** Trend shocks are necessary to reproduce unexpected demand decomposition.

Structural Shocks Target: United States - Unexpected Inflation Demand Surpluses

Parameters

The New-Keynesian Model: Complete Model

Targets: three decompositions + second moments

Result. Trend shocks are necessary to reproduce unexpected demand decomposition.

Structural Shocks Target: United States - Unexpected Inflation Demand Surpluses

Paramete

The New-Keynesian Model: Complete Model

Targets: three decompositions + second moments

• **Result.** Trend shocks are necessary to reproduce unexpected demand decomposition.

Structural Shocks Target: United States - Unexpected Inflation Demand Surpluses

Parameters

The New-Keynesian Model: Reproducing the Unexpected Demand Decomposition

$$1 = \Delta E_t \pi_t = d(rx) - d(s) - d(g) + d(r)$$

- High Marginal Costs + Positive Growth?
- Protracted productivity growth

$$E[\varepsilon_a \mid .] = 1.49$$
 $E[\varepsilon_a \mid .] = -0.76$

Marginal costs high relative to trend

$$\pi_t = \beta \textbf{\textit{E}}_t \pi_{t+1} + \kappa \textbf{\textit{y}}_t - \kappa_a \textbf{\textit{a}}_t \qquad \textbf{\textit{a}}_t \quad < 0$$

$$g_t = \Delta y_t + \frac{u_{q,t}}{u_{q,t}} \qquad \qquad u_{q,t} > 0$$

IRF to $\Delta E_t g_t =$ 1, $\Delta E_t \pi_t =$ 1

The New-Keynesian Model: Reproducing the Unexpected Surplus Decomposition

$$1 = \Delta E_t \pi_t = d(rx) - d(s) - d(g) + d(r)$$

Shock	Deco	mpos	sition
	Surplus		Inflation
ε_a	-0.40		-0.72
ε_g	0.05		-0.13
ε_i	-0.01	<	-0.12

Expected Structural Shocks

Why discount rates?

Monetary policy

Figure: Disc Surp Variance

The New-Keynesian Model: Reproducing the Unexpected Surplus Decomposition

$$1 = \Delta E_t \pi_t = d(rx) - d(s) - d(g) + d(r)$$

Shock	Dec	ompos	sition
	Surplus		Inflation
ε_a	-0.40		-0.72
$\varepsilon_{m{q}}$	0.05		-0.13
ε_i	-0.01	<	-0.12

Expected Structural Shocks

Why discount rates?

Monetary policy

Figure: Disc Surp Variance

The New-Keynesian Model: Unexpected Inflation Decomp. (Cross-Country)

- Can cross-country differences in policy rules explain differences in unexpected inflation forecasts?
- **Estimation.** Solve optimization problem to all countries; keep productivity parameters constant

(b)
$$-d(g)$$
 ($R^2 = 0.35$)

(c) d(r) ($R^2 = 0.6$)

The New-Keynesian Model: Some Comparative Statics

1. (Discretionary Monetary Policy) $\sigma_i \uparrow \Longrightarrow$ Unexpected inflation forecasts higher bond prices

2. (Central Bank Dual Mandate) $\phi_q \uparrow \Longrightarrow \text{No "agg. demand" inflation; } \Delta E \pi = 1 \text{ forecasts lower growth}$

Comparative Statics: $\sigma_i \phi_q$

Parameters

Mode

The New-Keynesian Model: Some Comparative Statics

- 1. (Discretionary Monetary Policy) $\sigma_i \uparrow \Longrightarrow$ Unexpected inflation forecasts higher bond prices
- 2. (Central Bank Dual Mandate) $\phi_g \uparrow \Longrightarrow$ No "agg. demand" inflation; $\Delta E \pi = 1$ forecasts lower growth

Comparative Statics: $\sigma_i \phi_q$

Parameters

Mode

The New-Keynesian Model: The Open Economy

$$y_{t} = E_{t}y_{t+1} - \gamma \left[i_{t} - E_{t}\pi_{H,t+1} + \alpha(\bar{\omega} - 1) E_{t}\Delta z_{t+1}\right] + E_{t}u_{g,t+1}$$

$$\pi_{H,t} = \beta E_{t}\pi_{H,t+1} + \kappa y_{t} - \kappa_{a} a_{t} - \kappa_{z} z_{t}$$

$$\gamma_{\alpha} z_{t} = y_{t} - y_{t}^{*}$$

$$\pi_{t} = \pi_{H,t} + \alpha \Delta z_{t}$$

 $h_t = (1 - \alpha) z_t$

- **Home**: small and open ($\alpha = 0.45$)
- Foreign: large and "closed"
- Same United States parameters:
 - \circ Variance decomposition \checkmark ($arepsilon_a = -0.6$, $arepsilon_a^* = -0.7$)
 - "Aggregate Demand" shock ✓
- Terms of trade dynamics and marginal costs:
 - ε_a and ε_a^* : same impact on Home's MC
 - Foreign Mon. Shocks: opposite $\Delta E_t \pi^*$ and $\Delta E_t \pi$

Shock to Foreign's Productivity Interest

The New-Keynesian Model: The Open Economy

$$\begin{aligned} y_t &= E_t y_{t+1} - \gamma \left[i_t - E_t \pi_{H,t+1} + \alpha (\bar{\omega} - 1) E_t \Delta z_{t+1} \right] + E_t u_{g,t+1} \\ \pi_{H,t} &= \beta E_t \pi_{H,t+1} + \kappa y_t - \kappa_a a_t - \kappa_z z_t \\ \gamma_{\alpha} z_t &= y_t - y_t^* \\ \pi_t &= \pi_{H,t} + \alpha \Delta z_t \end{aligned}$$

■ Complete markets

 $h_t = (1 - \alpha) z_t$

- **Home**: small and open ($\alpha = 0.45$)
- Foreign: large and "closed"
- Same United States parameters:
 - \circ Variance decomposition \checkmark ($arepsilon_a = -0.6$, $arepsilon_a^* = -0.7$)
 - "Aggregate Demand" shock \(\sqrt{} \)
- Terms of trade dynamics and marginal costs:
 - ε_a and ε_a^* : same impact on Home's MC
 - Foreign Mon. Shocks: opposite $\Delta E_t \pi^*$ and $\Delta E_t \pi$

Shock to Foreign's Productivity Interest

Conclusion

- Unexpected inflation forecasts lower discounted surpluses
 - Lower surpluses or higher discounting? Depends on the country
 - Unexpected inflation is partially "fiscal", but not cross-country
- Unexpected demand inflation justified in part by lower future surpluses
- Unexpected discounted surpluses driven by discount rates
- New-Keynesian models reproduce BVAR decompositions
 - Relevance of productivity shocks
 - Relevance of policy rules

References

Akhmadieva, V. (2022). Fiscal adjustment in a panel of countries 1870–2016. *Journal of Comparative Economics*, 50(2):555–568.

Bassetto, M. and Cui, W. (2018). The fiscal theory of the price level in a world of low interest rates. *Journal of Economic Dynamics and Control*, 89:5–22.

Cagan, P. (1956). The Monetary Dynamics of Hyperinflation. In *Studies in the Quantity Theory of Money*, pages 25–117. University of Chicago Press, milton friedman edition.

Campbell, J. Y. and Ammer, J. (1993). What Moves the Stock and Bond Markets? A Variance Decomposition for

Brunnermeier, M. K., Merkel, S., and Sannikov, Y. (2022). The Fiscal Theory of the Price Level With a Bubble.

Long-Term Asset Returns. *The Journal of Finance*, 48(1):3–37.

Campbell, J. Y. and Shiller, R. J. (1988). The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors. *The Review of Financial Studies*, 1(3):195–228.

Chen, L. and Zhao, X. (2009). Return Decomposition. *Review of Financial Studies*, 22(12):5213–5249.

Cochrane, J. H. (1992). Explaining the Variance of Price-Dividend Ratios. *The Review of Financial Studies*, 5(2):243–280.

Cochrane, J. H. (1998). A Frictionless View of U.S. Inflation. *NBER Macroeconomics Annual*, 13:323–384.

Cochrane, J. H. (2005). Money as stock. *Journal of Monetary Economics*, 52(3):501–528.

Cochrane, J. H. (2008). The Dog That Did Not Bark: A Defense of Return Predictability. *The Review of Financial Studies*, 21(4):1533–1575.

Cochrane, J. H. (2022a). The fiscal roots of inflation. *Review of Economic Dynamics*, 45:22–40.

Cochrane, J. H. (2022b). A fiscal theory of monetary policy with partially-repaid long-term debt. Review of

Appendix: Debt Instruments and Growth

Return

- **Real market value** debt-to-GDP v_t , surplus-to-GDP s_t and GDP growth q_t (stationarity!)
- Bonds (j, n) promisses one unit of currency j after n periods
 - Nominal bonds
 - Real bonds (currency denomination = final goods)
 - US Dollar bonds

Constant structure $\{\delta_i\}$, $\{\omega_i^n\}$

- Bond price $Q_{j,t}^n$, excess return $rx_{j,t}$ 1+ return_{j,t} = 1 + $rx_{j,t}$ + $i_{j,t-1} = \frac{\sum_n Q_{j,t-1}^n B_{j,t-1}^n}{\sum_n Q_{j,t-1}^n B_{j,t-1}^n}$ (one-period bonds $\implies rx = 0$)
- Debt law of motion:

$$\frac{\mathbf{v}_{t-1}}{\beta} + \frac{\mathbf{v}}{\beta} \left[-\mathbf{g}_t + \sum_j \delta_j \left(r \mathbf{x}_{j,t} + \mathbf{i}_{j,t-1} + \Delta h_{j,t} - \pi_{j,t} \right) \right] = \mathbf{v}_t + \mathbf{s}_t$$

Appendix: Debt Instruments and Growth

Return

Law of motion:

$$\sum_{j} \mathcal{E}_{j,t} B_{j,t-1}^{1} = P_{t}^{s} S_{t} + \sum_{j} \mathcal{E}_{j,t} \sum_{n=2}^{\infty} Q_{j,t}^{n-1} \left(B_{j,t}^{n-1} - B_{j,t-1}^{n} \right),$$

• $V_{j,t} = \sum_{n=0}^{\infty} Q_{j,t}^n B_{j,t}^n$ (end-of-period market value of debt)

$$\sum_{j} (1 + rx_{j,t} + i_{j,t-1}) \mathcal{E}_{j,t} \mathcal{V}_{j,t-1} = P_t^s S_t + \sum_{j} \mathcal{E}_{j,t} \mathcal{V}_{j,t}$$

■ $V_{j,t} = V_{j,t}/P_{j,t}Y_t$ (real value of *j*-indexed debt)

$$V_{t-1} \sum_{j} \frac{(1 + rx_{j,t} + l_{j,t-1})(1 + \Delta h_{j,t})}{(1 + \pi_{j,t})(1 + g_t)} \delta_j = s_t + V_t.$$

Appendix: Public Debt Currency Denomination

Return

Symbol	Description	Nominal Debt	Real Debt	Dollar Debt
j	Index Symbol	N	R	D
	Notation	δ , ω	$\delta_{ extsf{R}}$, $\omega_{ extsf{R}}$	$\delta_{ extsf{D}}$, $\omega_{ extsf{D}}$
P _i	Price per Good	Р	1	P _t ^{US}
$\dot{\mathcal{E_i}}$	Nominal Exchange Rate	1	Р	Dollar NER
H_j	Real Exchange Rate	1	1	Dollar RER
π_i	Log Variation in Price	π	0	$\pi_t^{ extsf{US}}$
Δh_j	Log Real Depreciation	0	0	Δh_t

Table: Public Debt Denomination

Appendix: Bayesian Prior

Return

Complete model (with US variables):

$$x_{t}^{OBS} = a x_{t-1}^{OBS} + b u_{t-1}^{OBS} + e_{t}$$

 $u_{t}^{OBS} = a_{u} u_{t-1}^{OBS} + e_{u,t}$

- Group $\theta = [\text{vec}(a)' \text{ vec}(b)']'$
- $\blacksquare \; \Sigma \sim \mathsf{IW}(\Phi; d) \qquad \theta | \Sigma \sim \mathsf{N}(\bar{\theta}, \Sigma \otimes \Omega)$
- \blacksquare $\Phi = Identity and <math>d = 7$ sets a loose prior
- $\bar{\theta}$ sets the mean of the prior for a to be OLS estimate of a_u

$$\operatorname{\mathsf{cov}} \left(a_{ij}, a_{kl} \mid \Sigma \right) = \begin{cases} \lambda^2 \frac{\Sigma_{ij}}{\Phi_{jj}} & \text{ if } j = l \\ 0 & \text{ otherwise.} \end{cases} \qquad \operatorname{\mathsf{cov}} \left(b_{ij}, b_{kl} \mid \Sigma \right) = \begin{cases} (\xi \lambda)^2 \frac{\Sigma_{ij}}{\Phi_{u,jj}} & \text{ if } j = l \\ 0 & \text{ otherwise.} \end{cases}$$

Set
$$\xi = (1/3)$$

Appendix: Hyperparameters + Debt Structure

Return

Country	v (%)	δ _N (%)	δ _R (%)	δ _D (%)	Avg. Term (Years)	λ	$\sigma(\Delta E_t \pi)$ (%)
United States	60	93	7	0	5	10	1.9
Advanced - 1960 Sample							
Canada	71	92	5	3	6.5	0.21	1.0
Denmark	37	84	0	16	5.6	0.18	1.2
Japan	98	100	0	0	5.5	0.01	2.2
Norway	35	99	0	1	3.7	0.19	1.5
Sweden	46	69	16	14	4.8	0.16	1.5
United Kingdom	61	76	24	0	12.3	0.17	2.0
Advanced - 1973 Sample							
Australia	24	90	10	0	7.2	0.18	1.5
New Zealand	41	82	6	13	4.3	0.15	2.0
South Korea	21	97	0	3	4	0.15	2.8
Switzerland	43	100	0	0	6.9	0.23	1.0

(a) Advanced Economies

Country	v (%)	δ _N (%)	δ _R (%)	δ _D (%)	Avg. Term (Years)	λ	$\sigma(\Delta E_t \pi)$ (%)
Emerging - 1998 Sample							
Brazil	70	70	25	5	2.6	0.12	1.4
Chile	14	10	57	33	12.8	0.27	1.0
Colombia	41	45	23	32	5.6	0.13	0.8
Czech Republic	31	91	0	9	5.6	0.15	1.1
Hungary	68	76	0	23	4.1	0.14	1.3
India	73	90	3	7	10.1	0.25	1.1
Indonesia	43	44	0	56	9.2	0.21	1.2
Israel	77	43	34	23	6.6	0.13	1.3
Mexico	45	65	10	26	5.5	0.15	1.0
Poland	47	79	1	20	4.2	0.10	1.3
Romania	28	50	0	50	4.8	0.10	1.9
South Africa	41	70	20	10	12.9	0.25	1.0
Turkey	43	47	23	30	3.6	0.13	2.1
Ukraine	43	100	0	0	9.1	0.07	5.7

(b) Emerging Economies

Appendix: Public Finances Model

Return

■ Convert par to market value of debt (Cox and Hirschhorn (1983))

$$\mathcal{V}_{j,t} = \mathcal{V}_{j,t}^b imes rac{ ext{market price of debt}}{ ext{book price of debt}} = \mathcal{V}_{j,t}^b imes rac{Q_{j,t}}{Q_{j,t}^b}.$$

Linearized average interest follows

$$i_{j,t}^b = \omega_j i_{j,t-1}^b + (1 - \omega_j) i_{j,t} = (1 - \omega_j) \sum_{k=0}^{\infty} \omega_j^k i_{j,t-k}$$

since government rolls over share ω_i of public debt in steady state

Linearized book price of debt:

$$q_{j,t}^b = (\omega_j \beta) E_t q_{j,t+1}^b - i_{j,t}^b$$

Appendix: Public Finances Model

Chart 1B
Market Value of U.S. Government Debt as a Share of GDP
Percent of GDP

150

Market value of gross federal debt

Par value of privately held gross federal debt

25

(b) Emerging Economies

Appendix: Geometric Term Structure

Return Decomposition 2

■ To each currency portfolio j, fixed geometric maturity structure:

$$B_{j,t}^n = \omega_j B_{j,t}^{n-1}$$

■ Total return on currency-*j* portfolio:

$$1+r\mathsf{x}_{j,t}+i_{j,t-1}=\frac{1+\omega_jQ_{j,t}}{Q_{i,t-1}}\qquad\Longrightarrow\qquad \boxed{\mathsf{rx}_{j,t}+i_{j,t-1}=(\omega_j\beta)q_{j,t}-q_{j,t-1}}$$

Assume constant risk premia $E_t r x_{i,t+1} = 0$

$$\boxed{\mathbf{q}_{j,t} = (\omega_j \beta) E_t q_{j,t+1} - i_{j,t}} = -\sum_{k=0}^{\infty} (\omega_j \beta)^k E_t i_{j,t+k}$$

Appendix: Second Decomposition

Return

■ From geometric maturity structure Geometric Term Structure

$$\Delta E_t r x_{j,t} = -\sum_{i=0}^{\infty} (\omega_j \beta)^k \left[\Delta E_t r_{j,t+k} + \Delta E_t \pi_{j,t+k} - \Delta E_t \Delta h_{j,t+k} \right]$$

Replace on the original fiscal decomposition

 $\Delta E_{t}\pi_{t} = \left[-\sum_{k=1} (\omega\beta)^{k} \Delta E_{t}\pi_{t+k} - \frac{\delta_{D}}{\delta} \sum_{k=0}^{\infty} (\omega_{D}\beta)^{k} \Delta E_{t}\pi_{t+k}^{US} \right] \\ - \frac{\beta}{\delta v} \left[\sum_{k=0}^{\infty} \beta^{k} \Delta E_{t}S_{t+k} + \frac{v}{\beta} \sum_{k=0}^{\infty} \beta^{k} \Delta E_{t}g_{t+k} - \frac{v}{\beta} \sum_{k=1}^{\infty} \sum_{j} \delta_{j}\beta^{k} (1 - \omega^{k}) \Delta E_{t}r_{j,t+k} - \frac{\delta_{D}v}{\beta} \sum_{k=0}^{\infty} (\omega_{D}\beta)^{k} \Delta E_{t}\Delta h_{t+k} \right]$ Innovation to Real Variables

$$\equiv -d_2(\pi) - d_2(\pi^{US}) - d_2(s) - d_2(g) + d_2(r) + d_2(\Delta h)$$

Innovation to Nominal Variables

Appendix: Second Decomposition

Return

Country	$\Delta E_t \pi_t =$	$E_t \pi_t = -\Delta E_t$ (Future Inflation)				$\pm \Delta E_t$ (Real Variables)			
		İ	$-d_2(\pi)$	$-d_2(\pi^{US})$	I	$-d_2(s)$	$-d_2(g)$	$d_2(r)$	$d_2(\Delta h)$
United States	1	ı	*-1.12		ı	0.57	0.23	*1.32	(
Advanced - 1960 Sample									
Canada	1	1	*-1.53	*-0.07	- 1	0.62	*1.22	0.78	-0.03
Denmark	1	П	*-0.49	*-0.20		0.42	-0.04	1.23	0.08
Japan	1		*-1.14	0		*1.60	-0.38	*0.91	
Norway	1		*-0.70	0		0.60	0.47	0.64	
Sweden	1		*-1.02	-0.10		-0.34	*0.98	*1.54	-0.0
United Kingdom	1		*-2.34	0		*2.89	*0.97	-0.52	
Advanced - 1973 Sample									
Australia	1	1	*-1.47	0	- 1	*2.09	*0.66	-0.27	
New Zealand	1		*-1.02	*-0.08		0.40	*0.87	1.04	-0.2
South Korea	1	1	*-0.74	*-0.03		*1.91	0.17	-0.33	0.0
Switzerland	1	П	*-0.79	0		0.90	*0.91	-0.02	

Country	$\Delta E_t \pi_t =$	$-\Delta E_t$ (Futu	ire Inflation)	$\pm \Delta E_t$ (Real Variables)				
		$-d_2(\pi)$	-d ₂ (π ^{US})	$-d_2(s)$	$-d_2(g)$	$d_2(r)$	$d_2(\Delta h)$	
Emerging - 1998 Sample								
Brazil	1	*-0.11	0	-1.46	1.05	1.46	0.07	
Chile	1	-0.76	-2.75	8.95	-5.71	-0.35	1.62	
Colombia	1	*-0.61	-0.04	1.39	-1.09	0.02	1.34	
Czech Republic	1	-0.02	-0.05	-2.31	2.42	0.98	-0.03	
Hungary	1	*-0.69	*-0.15	-0.98	1.60	1.83	*-0.61	
India	1	*-1.05	*0.09	1.54	0.05	0.41	-0.04	
Indonesia	1	*-0.79	*-1.33	1.69	*2.61	0.26	-1.4	
Israel	1	*-0.54	0.10	-0.55	*1.51	0.61	-0.13	
Mexico	1	*-0.60	0.17	1.41	0.03	0.52	-0.52	
Poland	1	*-0.59	*-0.21	0.87	-0.39	*1.43	-0.11	
Romania	1	*-1.14	*-0.53	2.24	0.42	-0.54	0.55	
South Africa	1	0.05	-0.01	1.58	0.25	-0.79	-0.03	
Turkey	1	*-0.76	*-0.40	-1.18	-0.15	*3.35	0.14	
Ukraine	1	-0.29	0	0.65	*0.41	0.23		

(a) Advanced Economies

(b) Emerging Economies

Appendix: Variance Decomposition

Return

Proposition. The variance decomposition

$$1 = \frac{\mathsf{cov}_{\pi} \bigg[d(rx) \bigg]}{\mathsf{var} \left[\Delta E_{t} \pi_{t} \right]} + \frac{\mathsf{cov}_{\pi} \bigg[d(r_{0}) \bigg]}{\mathsf{var} \left[\Delta E_{t} \pi_{t} \right]} - \frac{\mathsf{cov}_{\pi} \bigg[d(s) \bigg]}{\mathsf{var} \left[\Delta E_{t} \pi_{t} \right]} - \frac{\mathsf{cov}_{\pi} \bigg[d(g) \bigg]}{\mathsf{var} \left[\Delta E_{t} \pi_{t} \right]} + \frac{\mathsf{cov}_{\pi} \bigg[d(r) \bigg]}{\mathsf{var} \left[\Delta E_{t} \pi_{t} \right]}$$

is equivalent to the innovations decomposition applied to VAR shock $Proj(e \mid \Delta E_t \pi_t = 1)$

$$1 = \Delta E_t \pi_t \equiv d(rx) + d(r_0) - d(s) - d(g) + d(r)$$

Proof:

$$\begin{split} \mathbf{1} &= -\beta \underbrace{ \mathbf{1}_s'(I - \beta A)^{-1} K \Omega K' \mathbf{1}_\pi}^{\text{cov} \left[\Delta E_t \pi_t, \sum_k \beta^k \Delta E_t s_{t+k} \right]} \underbrace{ \underbrace{ \text{var}(\Delta E_t \pi_t)^{-1}}_{\text{var}(\Delta E_t \pi_t)^{-1}} + \mathbf{1}_r' (I - \beta A)^{-1} K \Omega K' \mathbf{1}_\pi \left(\mathbf{1}_\pi' K \Omega K' \mathbf{1}_\pi \right)^{-1}}_{\text{e} - \beta \mathbf{1}_s' (I - \beta A)^{-1} K \text{ Proj}(e_t \mid \Delta E_t \pi_t = 1) + \mathbf{1}_r' (I - \beta A)^{-1} K \text{ Proj}(e_t \mid \Delta E_t \pi_t = 1). \end{split}$$

Appendix: NK Model Parameters

Equations NK Complete

Comparative Statics

Parameter	Value
β	0.98
γ	0.4
arphi	3
$\overset{\cdot}{ heta}$	0.25
α	0.45
$\bar{\omega}$	γ^{-1}

Table: Fixed Parameters

Parameter	Simple	Complete
$ ho_a$	0.96	0.84
$ ho_{ extsf{g}}$		0.29
$ ho_{i}$		0
$ ho_{s}$		0.39
ϕ_{π}	0.60	0.95
$\phi_{m{g}}$		0.61
$ au_{\pi}$		0.12
$ au_{m{g}}$	1.51	0.05
σ_a	1	1
$\sigma_{m{g}}$		1.79
σ_{i}		0.53
$\sigma_{ t S}$		0

Table: Estimated Parameters

Appendix: Why Trend Shocks? The Growth Component

Return

- Empirical decompositions: often $d(g) \neq 0$
- But in the absence of trend shocks:

$$g_t = (1-L)y_t = \mathbf{1}'_y(1-L)a(L)e_t \equiv \mathbf{1}'_yb(L)e_t$$

- Stationary model $a(L)^{-1}X_t = e_t \implies$ the roots of $a(L)^{-1}$ are outside the unit circle
- Therefore $||a(1)|| < \infty$ and b(1) = 0
- Finally, note that

$$d(g) \propto \mathbf{1}_y' b(eta) e_t pprox \mathbf{1}_y' b(1) e_t = 0$$

With trend shocks:

$$g_t = (1 - L)y_t + u_{g,t}$$

Appendix: FTPL vs Spiral Threat

Return

■ In NK models, private sector equations do not determine $\Delta E_t \pi_t$.

$$y_{t} = E_{t}y_{t+1} - \gamma \left(\overline{i} - E_{t}\pi_{t+1}\right)$$
$$\pi_{t} = \beta E_{t}\pi_{t+1} + \kappa y_{t}$$

In FTPL models, the valuation equation of public debt determines unexpected inflation

$$\Delta E_t \pi_t = \Delta E_t r x_t - \sum_{k=0}^{\infty} \beta^k \Delta E_t s_{t+k} + \sum_{k=1}^{\infty} \beta^k \Delta E_t r_{t+k}$$

■ In Spiral Threat models, fiscal decomposition determines $\Delta E_t s_t$, not $\Delta E_t \pi_t$

$$i_t = i_t^* + \phi(\pi_t - \pi_t^*)$$
 $\phi > 1$ \Longrightarrow $\Delta E_t \pi_t = \Delta E_t \pi_t^*$

Observational Equivalence Theorem: FTPL and Spiral Threat generate the same set of equilibria

Appendix: Estimated Moments

NK Simple NK Complete

Moments	Data	Model	Moments	Data	Model
σ_i/σ_q	1.00	1.16	$ cor(\pi, i) $	0.54	0.84
σ_π/σ_g	1.01	1.24	$cor(\pi, g)$	-0.24	-0.25
$\sigma_{\Delta extsf{v}}/\sigma_{ extsf{g}}$	1.43	0.90	cor(g, i)	0.16	0.27
a-cor(i)	0.92	0.75	$cor(i, \Delta v)$	0.02	-0.60
$a\text{-}cor(\pi)$	0.69	0.79	$cor(\pi, \Delta v)$	-0.29	-0.42
a-cor (g)	0.27	0.25	$cor(g, \Delta v)$	-0.39	-0.36
a -cor(Δv)	0.50	-0.13			

Table: Second Moment Fit - Complete Model ($lpha_2=0.05$)

Appendix: Simple Model - US Data vs Model

Appendix: "Agg Demand" Shock - US Data vs Model

