Работа 1 Моделирование процессов дискретизации

Порядок выполнения работы

1. Установите амплитуды частотных составляющих в соответствии с заданием (табл. 1) и зафиксируйте форму исходного сигнала и его спектр.

Таблица 1.

№ варианта	A_1	A_2	A_3	A_4	A_5	A_6
0	0,05	0,10	0,15	0,20	0,25	0,30
1	0,10	0,15	0,20	0,25	0,05	0,30
2	0,15	0,20	0,25	0,05	0,10	0,30
3	0,20	0,25	0,05	0,10	0,15	0,30
4	0,25	0,05	0,10	0,15	0,20	0,30
5	0,15	0,25	0,10	0,20	0,05	0,30
6	0,05	0,15	0,25	0,10	0,20	0,30
7	0,20	0,05	0,15	0,25	0,10	0,30
8	0,10	0,20	0,05	0,15	0,25	0,30

2. Установите частоту дискретизации и скважность в соответствии с заданием (табл. 2) и вид модуляции АИМ-1. Установите одинаковую длину оси частот на спектрограммах сигнала-переносчика, дискретизированного и восстановленного сигналов такой, чтобы на спектрограмме дискретизированного сигнала отображались 1-я и 2-я гармоники частоты дискретизации и продукты дискретизации вокруг них¹.

Зафиксируйте форму и спектр сигнала переносчика, дискретизированного и восстановленного сигналов. Оцените искажения восстановленного сигнала.

Таблица 2.

									1
№ варианта	0	1	2	3	4	5	6	7	8
Частота дискрети- зации, кГц	192	128	80	120	60	160	64	96	48
Скважность Q	4	3	4	4	4	4	4	4	4

3. Установите частоту дискретизации в соответствии с заданием (табл. 3), скважность Q=4 и вид модуляции АИМ-1.

Таблица 3.

№ варианта	0	1	2	3	4	5	6	7	8
Частота дискрети- зации, кГц	10	8	20	12	30	24	15	40	16

Установите одинаковую длину оси частот на спектрограммах сигналапереносчика и дискретизированного сигнала такой, чтобы на спектрограмме сигнала-переносчика отображались 1-я и 2-я гармоники частоты дискретизации. Длину оси частот на спектрограмме восстановленного сигнала установите равной 30 кГц.

Зафиксируйте спектр дискретизированного сигнала, а также спектр и форму восстановленного сигнала. Оцените искажения восстановленного сигнала (искажения дискретизации 1-го рода).

4. Ограничьте полосу пропускания фильтра приёмника половиной частоты дискретизации.

¹ Спектр сигнала должен занимать не менее 2/3 поля.

Зафиксируйте спектр и форму восстановленного сигнала. Оцените искажения восстановленного сигнала.

Рассчитайте частоты продуктов дискретизации, попавших в полосу пропускания фильтра приёмника. Результаты занесите в табл. 4

Таблица 4.

№ п/п	Механизм образования помехи	Частота помехи, кГц
1		
2		
•••		

5. Определите, какие составляющие спектра исходного сигнала не удовлетворяют теореме Котельникова для установленного значения частоты дискретизации и приводят к возникновению искажений. Ограничьте спектр исходного сигнала, задав нулевые значения амплитуд этих составляющих.

Зафиксируйте спектр дискретизированного сигнала, а также спектр и форму восстановленного сигнала. Оцените искажения восстановленного сигнала.

6. Восстановите параметры фильтра приёмника. Установите амплитуды частотных составляющих в соответствии с табл. 1, частоту дискретизации в соответствии с табл. 2 и вид модуляции АИМ-1.

Установите одинаковую длину оси частот на спектрограммах сигналапереносчика и дискретизированного сигнала такой, чтобы на спектрограмме дискретизированного сигнала отображались с 1-ой по 8-ю гармоники частоты дискретизации и продукты дискретизации вокруг них.

Меняя значение скважности Q в соответствии с заданием (значения Q_1 и Q_2 см. в табл. 5), зафиксируйте спектры сигнала-переносчика и дискретизированного сигналов, а также форму и спектр восстановленного сигнала.

Таблица 5.

									1
№ варианта	0	1	2	3	4	5	6	7	8
Q_1	5	6	8	8	8	8	6	8	8
Q_2	4	3	4	4	4	4	4	4	4

Таблица 6.

F (кГц)		1	5	9	13	17	21
A((F)						
	$S_p(F)$						
$Q_1 = _{\}$	<u>A(F)</u>						
	$S_p(F)$						
	$S_p(F)$						
$Q_2 = _{\}$	<u>A(F)</u>						
	$\frac{A(F)}{S_p(F)}$						
	$S_p(F)$						
$Q_3 = 2$	<u>A(F)</u>						
	$\frac{A(F)}{S_p(F)}$						

Занесите в табл. 6 значения амплитуд частотных составляющих принятого сигнала $S_p(F)$. Оцените полученные результаты.

Оцените искажения восстановленного сигнала.

7. Установите вид модуляции АИМ-2.

На осциллограмме дискретизированного сигнала включите отображение сигнала АИМ-2, заменив множитель 0 на 1.

Меняя значение скважности Q, зафиксируйте форму и спектр дискретизированного и восстановленного сигналов.

Заполните табл. 7, используя значения $Q \cdot S_p(F)$.

Таблица 7.

F (кГц)	1	5	9	13	17	21	$\frac{Q \cdot S_p(21)}{Q \cdot S_p(1)}$
A(F)							*
$Q_2 = Q \cdot S_p(F)$							
$Q_3=2$ $Q \cdot S_p(F)$							
$\begin{array}{ccc} Q_2 = & Q \cdot S_p(F) \\ \hline Q_3 = 2 & Q \cdot S_p(F) \\ \hline Q_4 = 1 & Q \cdot S_p(F) \end{array}$							

^{*} – здесь A(21) / A(1).

Оцените искажения восстановленного сигнала (искажения дискретизации 2-го рода).

Сравните результаты, полученные в п.п. 6 и 7.

Контрольные вопросы

- 1. Что такое «дискретизация»?
- 2. Почему для передачи непрерывного сигнала в цифровой форме необходима его дискретизация?
 - 3. Из каких соображений выбирается частота дискретизации?
 - 4. В чём состоит отличие в форме сигналов АИМ-1 и АИМ-2?
 - 5. Поясните отличия спектров АИМ-1 и АИМ-2.
- 6. Что является причинами возникновения искажений дискретизации 1-го рода?
- 7. Как влияет длительность управляющих прямоугольных импульсов на энергию и искажения восстановленных сигналов при АИМ-1 и АИМ-2?
 - 8. В чём состоит назначение ФНЧ в тракте АИМ на передаче?
 - 9. В чём состоит назначение ФНЧ в тракте АИМ на приёме?