# **EUCLID Definition Study Status**



- 1. Mission overview
- 2. Industrial Definition Studies
- 3. Euclid study status
- 4. Summary

### **EUCLID Product Tree**





### **EUCLID Launcher**



- Launcher: Soyuz ST2-1B from Kourou
- Direct injection into tranfer orbit
  - Transfer time: 30 days
- Launch vehicle capacity:
  - 2160 kg (incl. adapter)
  - 3.86 m diameter fairing
- Launch: 2019
- Mission science operation duration: 6.0 years





## **EUCLID Ground Segment**



- Mission Operation Centre
  - at ESOC (Darmstadt, Germany)
- Science Operation Center
  - at ESAC (Villafranca, Spain)
- Ground Stations:
  - Cebreros and Malargue antennas
  - Daily science communication:
    - ~ 850 Gbits in K band (26 GHz)
  - Command and control in X band



### **EUCLID Space Segment**



#### The payload module consists of:

- A single telescope
- A visible imager (VIS),
- A near-IR instrument (NISP)

#### The service module consists of:

- S/C Structure
- Thermal control subsystem
- Propulsion subsystem
- Attitude and Orbit Control subsystem
- Communication subsystem
- Power subsystem
- Data handling subsystem



## **EUCLID** telescope optical design





→ Optical design imposed by ESA based on Consortium input

### **VIS Instrument**



| Name    | UNIT                             | Function                                                                                        |
|---------|----------------------------------|-------------------------------------------------------------------------------------------------|
|         |                                  |                                                                                                 |
| VI-FPA  | VIS Focal Plane Assembly         | Detection of visible light for imaging                                                          |
| VI-RSU  | VIS Shutter                      | Close VIS optical path for read out  Close VIS optical path for dark and flat field calibration |
| VI-CU   | VIS Calibration Unit             | Illuminate the FPA with Flat Field for calibration                                              |
| VI-CDPU | Control and Data Processing Unit | Control Instrument Perform data processing Interface with Spacecraft for data handling          |
| VI-PMCU | Power and Mechanism Control Unit | Control Units                                                                                   |
| VI-FH   | Flight Harness                   | Connection of units                                                                             |

113 kg mass allocation; 252 W max power allocation

### **VIS Instrument**



VI-FPA

36 CCD's (153 K)





VI-PMCU
(Power Mgt & Control Unit)



VI-CDPU (Command & Data Processing Unit)



European Space Agency

### **NISP Instrument**





### **NISP Instrument**





### **EUCLID** mission operation concept



- Survey mission with 6 years nominal science operation duration.
- The wide extragalactic sky survey covers 15 000 deg2
- The deep survey covers 40 deg2 around ecliptic poles
- The 3 axis stabilized spacecraft is operated in step and stare mode (around the S/C sun axis) to observe galactic latitudes > 30 degrees.)





Euclid Workshop - Bologna - 2011-09-07 | Euclid Definition Study Status

European Space Agency

### **EUCLID** mission operation concept



- -For each field, 3 dithers are performed at Spacecraft level leading to a total of 4 dither observations.
- -For each dither observation, 3 photometric exposures are acquired in the 3 photometric bands by rotating the NI-FWA and 1 spectro exposure is acquired.
- In spectroscopy, a different combination of 2 spectral band and 2 dispersion directions is used for each of the 4 dither observations.
- A VIS exposure is acquired in parallel with each spectroscopy exposure to avoid any disturbances from NI-FWA and NI-GWA actuations.

- The VIS shutter is kept closed during photometry.



# **EUCLID Definition Study Status**



- 1. Mission overview
- 2. Industrial Definition Studies
- 3. Euclid study status
- 4. Summary

## **EUCLID Organization**





### **EUCLID Definition Studies**





### Industrial Definition Studies



#### Phase A1: Optimization of EUCLID mission

- System Requirements and Functional Specification
- Space Segment Concept
- Analysis of optimized mission concept
- Mission Definition Review (held on November 2010)

#### Phase A2: Consolidation of EUCLID Space Segment Design

- Payload Module Design
- Spacecraft and Service Module Design
- <u>Development and Verification Approach</u>
- Programmatic and Cost
- → Preliminary Requirement Review (held on June 2011)

# **EUCLID** spacecraft preliminary design



### **Astrium concept**



# **EUCLID** spacecraft preliminary design





## **EUCLID** spacecraft preliminary designs



#### **ASTRIUM** concept

#### Telescope

- Primary Mirror: SiC
- Cold Telescope (T~150K)
- Passive Thermal Control

#### **AOCS**

- Fine pointing: Cold Gas + FGS & Gyro
- Slews: Cold Gas + Star Tracker & Gyro

#### **THALES** concept

#### Telescope

- Primary Mirror: Zerodur
- Cold Telescope (T~240K)
- Active Thermal Control

#### **AOCS**

- Fine pointing: Cold Gas + FGS & Gyro
- Slews: Reaction Wheel + Star Tracker & Gyro

### **Requirements Document Tree**





# **EUCLID Definition Study Status**



- 1. Mission overview
- 2. Industrial Definition Studies
- 3. Euclid study status
- 4. Summary

# Preliminary Requirement Review (PRR)



A Euclid Preliminary Requirement Review (PRR) was held in June 2011 with the aim to confirm:

- The adequacy and completeness of the science requirements and breakdown to space segment requirements.
- The technical feasibility of the space segment,
- The verification program feasibility of the space segment.

### **Euclid PRR recommendations**



- The Euclid Preliminary Requirements Review Board acknowledged the significant progress achieved by Industry and the Euclid Consortium in the definition of the Euclid space segment.
- The Board considered that the current definition of the space segment hardware does not feature fundamental feasibility or technology readiness issues.
- However, the definition has not yet stabilised and requires further consolidation work.
- → The Board therefore recommended to the study team to extend the Phase A work and achieving a stable and consolidated definition.

### **Phase A finalization**



#### ESA, the Euclid Consortium, and Industry are now implementing the PRR board recommendations, i.e.

- On requirements baseline,
  - Finalise and approve the current evolution of the Science Requirements Document,
  - Flow down the L2 requirements formulation at spacecraft, instrument and data processing level,
  - Consolidate the Euclid performance budget and the reference mission operation concept.
- On spacecraft design,
  - Consolidate and optimize with respect to mass the spacecraft and instruments design,
  - Consolidate the interfaces between the spacecraft and the instruments,
  - Quantify the achievable performance of the space segment concepts
- On lower level specifications
  - Finalise the spacecraft requirements (MRD)
  - Finalise the payload element requirements (PERD)
  - Establish the ground based data processing requirements (GDPR)
- On performance
  - Verify the end to end performance of the Euclid mission.

### **Euclid next steps**



- An Instrument Design Consolidation Review (IDCR) will be held at ESTEC mid-November.
- The ESA study team will releases a Phase A close out report to the PRR Board at the end of November 2011 based on IDCR output and Industry Phase A extension output.
- If Euclid is selected, industrial studies will continue to Phase B1, concentrating on the spacecraft development preparation (preparation of the sub-system bid packages).
- The Euclid Consortium will verify the end to end science performance of the mission by January 2012.
- If ESA Science Programme Committee adopts the Euclid mission in February 2012, ESA will release the invitation to tender for Phase B2/CD in Spring 2012.
- → The industrial implementation phase of Euclid could start in September 2012 for a launch in 2019.

# **EUCLID Definition Study**



- 1. Mission overview
- 2. Industrial Definition Studies
- 3. Euclid study status
- 4. Summary

### Summary



- The Euclid Preliminary Requirements Review Board acknowledged the significant progress by the Euclid Consortium in the definition of the Euclid VIS and NISP instruments.
- The ASTRIUM and TAS industrial teams have each identified a Euclid space segment concept that does not feature fundamental feasibility or technology readiness issues.
- ESA, Industry and the Euclid Consortium study teams are now consolidating the definition
  of the Euclid space segment. A Phase A close out report will be issued at the end of
  November 2011.
- If SPC selects and then adopts the Euclid mission in February 2012, ESA will release the ITT for Phase B2/CD in Spring 2012 and the industrial implementation phase will start in September 2012.



P. GondoinPhilippe.Gondoin@esa.int