General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TH X- 65612

EXPOSURE OF ATMOSPHERIC EXPLORER SATELLITES TO VAN ALLEN BELT RADIATION

MISSIONS C, D, AND E

E. G. STASSINOPOULOS

N7 Accession Remarks 45

(PAGES) 56/2

(NASA CIL OR YMX OR AD NUMBER)

(CATEGORY)

JULY 1971

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

EXPOSURE OF ATMOSPHERIC EXPLORER SATELLITES TO VAN ALLEN BELT RADIATION

Missions C, D, and E

A special study to determine the particle flux densities anticipated for the AE missions as a function of nominal orbit parameters

by

E.G.Stassinepeules

NASA-Geddard Space Flight Center Space Sciences Directorate Laboratory for Space Physics Theoretical Studies Branch

July 1971

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

EXPOSURE OF ATMOSPHERIC EXPLORER SATELLITES TO VAN ALLEN BELT RADIATION

MISSIONS C, D, AND E

Foreword:

At the request of the AE Project Office a study was conducted to determine the particle flux densities anticipated for the AE missions as a function of nominal orbit parameters.

This data was needed in order to select electronic circuit designs that would be able to perform satisfactorily in the predicted radiation environment.

In this context it should be noted that the results represent isotropic intensities, supposedly for all values of the integral proton and electron spectra.

The information contained in the present report supersedes all older data, especially the data released earlier this year in connection with and prior to the "Extreme Ultraviolet Photometer Experiment" contract award for Dr. D. Heath.

INTRODUCTION:

High inclination circular and elliptical trajectories (i>55°) or low inclination elliptical orbits of large conentricity traverse the terrestrial radiation belts twice during each revolution. The vehicle thus executes a transverse motion in L-space, passing successively through a region of low L-values (1.0 £ 1 £ 2.0) and of high L-values (2.0 £ 1 £ 6.6), commonly referred to as the inner zone and the outer zone. The AE-C, D, E trajectories (for details see Appendix A) perform in a very similar way.

The three specified AE missions lie all within a two-year interval of time approximately coinciding with the next solar minimum. This means that conditions prevailing then in the rediction belts will nost likely be similar to those that prevailed during the last solar minimum, namely 1904, with the exception of the artificial electrons that populated the inner zone from 1962/7 to about 1968. Since the electron fluxes are calculated with Vette's AE2 model, which describes the environment as it existed back in 1964, it is reasonable to assume that the outer zone predictions given in this report will be a good approximation for 1974. Of course, to obtain valid 1974 predictions for the inner zone, the artificial component had to be removed; this was done by decaying the fluxes exponentially up to 1967/6, when it is felt, that natural background levels were reached. Orbital flux integrations for high energy protons

were performed with Vette's current models AP1, AP6, AP7.

Low energy protons were calculated with King's AP5 model.

All are static models, including the AE2, which do not consider temporal variations. For the protons this is a valid representation because experimental measurements have shown that no significant changes with time have occurred. With the exception of the fringe areas of the proton belt, that is, at very low altitudes and at the outer edges of the trapping region, the possible error introduced by the static approximation lies well within the uncertainty factor of 2, attached to the models.

Consequently, the proton models may be applied to any epoch without the need for an updating process.

Appendix A contains other pertinent background information with regard to units, field models, trajectory generation and conversion, etc. At this point, we wish to emphasize again that our calculations are only approximations; we strongly recommend that all pers ns to receive parts of this report be advised about the uncertainty in our data.

The results were obtained for the basic elliptical orbit of the AE mission at the individual inclinations specified for each mission. By placing the initial injection point, that is, the location of the first perigee position, arbitrarily at (0,0) longitude and latitude, we may have biased the flux predictions. It is conceivable that a rotation of the first perigee in the plane of the orbit and a relocation, let us say diametrically opposite, may produce substantially different results. So far, we have not had an opportunity to test this hypothesis.

RESULTS: ANALYSIS AND DISCUSSION

Our calculations for the E-C,D,E are summarized in Tables 1 to 9, separately for protons and for electrons. A graphical superposition of the spectral distribution is given in Figure 1 for electrons and Figure 2 and 2A for protons, and a selected set of integral energies are plotted versus inclination in Figure 3, for both types of particles. Classification of orbit - integrated spectra as hard or soft is relative, based on an overall evaluation of near earth space in terms of circular trajectories between equatorial and polar orbits.

On some preliminary graphs discontinuities appeared in the high energy proton spectra. These "breaks" occurred because the complete proton environment is being described by three (formerly four) independent maps or grids, each valid only over a limited energy range; for certain critical orbital configurations the discontinuities are then produced when moving from one energy range to another. They are caused, in part, by the exponential energy parameter of the model which in many instances had to be exerapolated to make up for lacking data and, in part, to insufficient experimental measurements over some areas of B/L-space; furthermore, the discontinuities reflect the fact that the available data cannot be completely matched at their overlap. In order to overcome such spectral breaks, a continuous weighted mean curve was drawn, connecting

the adjacent segments; it should be regarded as an approximate spectral distribution. In doing this, the APL results (30 < E(Mev) < 50) had to be totally ignored sometimes.

A similar break occurs in the low energy spectrum, at the interface between the AP5 and the AP6 models. It appears that for the specific orbits under consideration, the AP5 underestimates the predicted vehicle encountered fluxes, maybe by as much as a factor of 4. This, however, may be partially due to the elliptical for models.

Figures 1 and 2 indicate a slight hardening of the spectra for lower inclinations in addition to an increase in the average daily fluxes. The electron spectra may be classified as moderately hard for near earth space missions, while the protons rate a "hard" classification for energies E>3 MeV but a "very hard" one when a threshold energy of E>50 MeV is considered. Figure 3 bears out these findings. Figures 4 to 9 are computer plots depicting the characteristic electron and proton spectra of the three trajectories, individually.

In Figure 10 the percentage of total lifetime T spent by the vehicle in the inner zone (T^{i}) and in the outer zone (T^{e}) is given, with the percent duration spent outside the trapped particle radiation belt (L > 6.6), denoted by T^{e} (T-external).

For any mission (j) then:

$$T_j = T_j^1 + T_j^0 + T_j^0 = 100%$$

Evidently, the low inclination AE-E spends its entire lifetime in the inner zone. When inclination is raised to i = 65° for the AE-C, the vehicle spends the largest proportion of its lifetime in the outer zone while it briefly visits regions of space outside the Van Allen belts. In this stage the satellite performs a complete sweep through magnetic L-space, which constitutes the transverse motion mentioned in the second paragraph, executed twice during each revolution (orbit). Finally, the AE-D at i = 80° would spend about 16% of its entire lifetime outside the radiation belts while remaining for shorter periods of time in the inner and outer zones than the AE-C.

The following related points are submitted for consideration in connection with the lifetime distribution over distinct regions of space:

- a. Lasting solar cycle effects are more severely experienced in the <u>outer zone</u> (significant changes in the trapped electron population from solar minimum to solar maximum).
- b. Energetic artificial electrons from high altitude nuclear explosions (Starfish) have displayed a remarkable longevity, but only in the inner zone; there they contaminated the environment for over 5 years, while they rapidly decayed to background levels in the outer zone (within weeks to months). A planned or

accidental explosion of another atomic device with the appropriate yield and at the right latitude and altitude may, very likely, produce conditions similar to those experienced with "Starfish", transforming the inner zone again into a radiation hotbed.

c. Transient solar flare effects (high energy solar proton fluxes), may be especially hazardous and damaging in regions external to the trapped particle belts.

In Figure 11 the percentage of total lifetime spent in fluxfree regions of space T^{ff} is given, where the term "flux-free"
applies to all regions of space where trapped-particle intensities
are less than one electron or proton per quare centimeter per
second, having energies E>.5 Mev and E>5 Mev, respectively.

This, of course, includes regions outside the Van Allen belts.

Predictably, the high energy proton population, which occupies
a smaller volume of the radiation belt, affords a much larger
T^{ff} than the electrons. As inclination rises the flux-free
time increases for both types of particles, but at a much higher
rate for the protons, because of the smaller volume occupied by
these particles.

If T is included as a decisive mission criterion into planning, a prior evaluation and comparison of the radiation hazards due

to the predicted electron and proton fluxes is essential, either in regard to the entire mission or in regard to specific important functions or requirements. For, while the proton intensities are on the average two orders of magnitude smaller than the electrons, and while they apparently do afford more flux-free time between i = 20° and i = 81°, their greater mass and harder spectra may prove more damaging to the mission than the more numerous electrons with their less flux-free time.

Figures 12 to 17 are additional computer plots for the three AE trajectories showing the vehicle encountered instantaneous peak electron (E .5 Mev) and proton (E 5 Mev) intensities per orbit for a sequence of about 22 revolutions. On all graphs a periodic pattern emerges that indicates a daily cycle of about 11 orbits which may shift slightly in the plotting. This is due to the relative orbit period, which determines the precession of the trajectory. The pattern may change with time as the dynamics of the elliptical orbit and the external perturbations alter the flight path.

It is evident that inclination affects the peaks very little for both types of particles. There is relatively no significant variation in the peak-levels over a daily cycle, contrary to circular orbits, which experience flux-less intervals of time, occasionally lasting several revolutions.

Finally, for each of the three flight paths, two more computer plots are included, Figures 18 to 23, one for protons and one for electrons, depicting the characteristic averaged instantaneous intensities of the trajectory in terms of constant L-bands of .l earth radius width; the percent of total lifetime spent in each L-interval is shown on the same graph by the contour marked with x's.

APPENDIX A

General Background Information

For the specified trajectories, orbit tapes were generated with an integration stepsize of one minute and for sufficiently long flighttime, so as to insure an adequate sampling of the ambient environment; on account of their period, which determine the rate of orbit-precession, the following elliptical flight paths of 48-hour duration were produced:

Inclination	Perigee	Apogee	Mission
23°	150 km	4000 km	AE-E
65°	n	11	£E-C
80°	n	11	AE-D

The orbits were subsequently converted from geocentric polar into magnetic B-L coordinates with McIlwain's INVAR program of 1965 and the field routine ALLMAG by Stassinopoulos and Mead, utilizing the POGO (10/68) geomagnetic field model by Cain and Langel, calculated for the epoch 1974.0 (B is the field strength at a given point and L is the geocentric distance to the intersect of the field line, through that point, with the geomagnetic equator).

Orbital flux integrations were performed with Vette's current models of the environment, the AE2 for electrons and the AP1, AP6, AP7 for high energy pretens, and the AP5 for low energy protons.

All are static models which do not

consider temporal variations. See the text of the report for further details on this matter.

The results, relating to omnidirectional, vehicle encountered, integral, trapped particle fluxes, are presented in graphical and tabular form with the fellowing unit convention:

- 1. Daily averages : total trajectory integrated flux averaged into particles/cm²day;
- 2. Tetals per orbit : non-averaged, single-orbit integrated flux in particles/cm²orbit;
- 3. Peaks per orbit : highest orbit-encountered instantaneous flux in particles/cm2sec;

where 1 orbit = 1 revolution.

Please note: We wish to emphasize the fact that the data presented in this report are only approximations. We do not believe the results to be any better than a factor of 2 for the protons and a factor of 3 for the electrons. It is advisable to inform all potential users about this uncertainty in the data.

AVERAGED FLUXES ON THIS TABLE ARE IN UNITS OF PARTICLES/CM**2/DAY *** NCN-AVERAGED FLUXES ARE IN UNITS OF PARTICLES/CM**2/SECALL FLUXES ON THIS TABLE ARE FOR ENERGIES ENERGY IS SPECIFIED. AS IN SPECTRUM)

2.148 * VEHICLE ... AE-E ORBITAL FLUX STUDY FOR COMPOSITE PROTON ENVIRONMENT * GRIDS API, AF7, AP6, APS * DATE OF RUN = YEAR 1571, CAY (138 INCLINATOR 23 * PERIGO = 2,148 * VEHICLE

HIGH ENERGY

	SPECTRUM IN	* DE	COMPOSITE ORBI	3IT SPECTRUM	EXP	XPOSUPE INDEX	
ENERGY RANGES (MEV)	AVERAGED TOTAL FLUX (PER CAY)	SPECTRUM (PER CENT)	ENERGY GRTR. THAN (MEV)	AVERAGED INTEG.FLUX (PER DAY)	INTENSITY RANGES (PT/CM**2/SEC	EXPO (HE)	TION OF OSURE FS)
3-5	7.029E. 1	58,038	-	NOT VALID		-	1.050
5-15	2.999E 10	2		1 33 3€ 1	*EC-1	15	68
15-30			5	.302E	E1-19E		mi
30-50		•	7	. S72E 1	• E2-1•E		CA
20-160			•	. 386E 9	-1 .E	2.	75
>100	2.131E 38	• •		. 888E C	1.64-1.65		VO.
			13	1145 0	5-07		958
			15				
FOTAL =	100335 11	100.00	21		TOTAL =	48.0	000
			21	4			
			24	.135E			
			27	. 911E C			
			30	.192E 6			
			35	.577E 0			
				* 524E €			
			45	E.			
			- 99	. 525E 0			
			39	.259E 0			
			02	.936E C			
			960	.634E 0			
			8	•369€ €			
			100				

200

FARTICLES/CW##2/SEC AVERAGED FLUXES ON THIS TABLE ARE IN UNITS OF PARTICLES/CN**2/DAY *** NON-AVERAGED FLUXES ARE IN UNITS OF ALL FLUXES ON THIS TABLE ARE FOR ENERGIES FOR WHERE ENERGY IS SPECIFIED, AS IN SPECTRUM) AVERAGED FLUXES ON THIS TABLE ARE IN UNITS OF PARTICLES/CM*#2/DAY

11 JABITAL FLUX STUDY FOR COMPOSITE PROTON ENVIRONMENT * CRICS AFI, AP7, AP6, APE * DATE OF RUN = YEAR 1971, DAY 0138
INCLINATO= 65 * PERIG.= 150 * APDG.= 4000 KM * . B&L GRBIT TAPE TO 6160 * PERIOD = 2,148 * VEHICLE

HIGH ENERGY

	*
	27
	2
	TENC
	2
	bo
2	
2	
α	C
0	AVEDACE
m.	4
4	u
	>
1	ч
44	
C	
4	
CCMFCS1TE OREIT SPECTRUM	FNEDGY
-	DC
5	u
2	4
×	-
0	
4	
	5
	ü
	-
	DECT
ti:	Q
0	U
×	
-,	
-	
	C
5	SF
œ	A
-	0
SPECTRUM IN X DE	AVEDAGED
9	9
0)	
	Y.
	FNFDGY
	4
	R

F XPOSTRE INDEX

RANGES (MEV)	AVERAGED TOTAL FLUX (PER DAY)	SPECTEUM (PER CENT)	,	GRIR.IHAN (MEV)	AVERACED INTEG*FLUX (PER DAY)	INTENSITY RANGES (PT/CM**2/SEC)	EXPOSURE (HRS)	TCTAL NC. OF ACCUMULATED FARTICLES (ESS)
, t	4.41GE 10			-	NOT VALID	0*E 0-1*E0	23,317	2.992E 04
5-15	1.753F 10	27.735		F:		1.50-1.61	2,333	.552E 0
1 F- 30	1.1785-00	-		-8		3 - F - F	1.650	*963E
30-50	1. F14F 08	0.287		7	0 4	1.E2-1.E3	1.367	1.990E 06
20-100		0.083		6	u	1.63-1.64	2,317	4.059E 07
>100	9	0.107		11	3.030E 09	1.64-1.65	4.300	35
				13	LL!	1.ES-CVER	12,733	3.736E 10
				15	w			
TOTAL =	6.320E 10	100.00		18	-724E-0		48,000	3.802E 10
				21	ш			
				24	0 3			
				27	0 3			
				30	3.0176.98			
				35	0 3			
				- 40	C			
				45	w			
				5.0	0 35			
				09	0			
				70	II.			
				90	ш			
				00	u			
				100	6.756F 07			

AVERAGED FLUXES ON THIS TABLE ARE IN UNITS OF PARTICLES/CN**270 AY *** . NON-AVERAGED FLUXES ARE IN UNITS OF PARTICLES/CN**27SEC

DRBITAL FLUX STUDY FOR COMPOSITE FRETEN ENVIRONMEDIALINATOR 80 * PERIGO 153 * APOCA 4000

	SPECTRUM IN X DE	DE	ITE	OREIT SPECTRUM	SUdx	LEF INCEX	
ENERGY RANGES TI (MEV)	AVERAGEC IDIAL FLUX ((PER DAY)	SPECTFUM (PER CENT)	ENEPGY GRIR.THAN	AVERAGED INTEC.FLUX (PEP DAY)	TRIENSTIV RANGES (PTZCMX +2ZSEC)	DURATICN CF FXPCSLRE (HKS)	TETAL NC. OF ACCUMULATED FARTICLES (E)
200	40127E 10	70.020					
S-15		27.657	- m	- PE 94 .			NS
16-30	-C87E	1.845		.766₽ 1	- F - 1 - F		1007
30-50		0.240	7	0 3850.	1	36	0 0101.
001-00	-672E	0.670	0	SF 0	1 1 11 0	4	.936E 0
0014	20 - SP 07	0.101		C BOLK.	0.1-14.	C. E.	.491F
			r	0 40 0P.	三人口一と日。	in it	*475E
DIAL =	5.853E 10	100.00	0 4	A.952E 08	= IDIOI	49-300	LI P
			17	27EE 3			1 2000
			46.	61 6E 0			
			7.2	5735 0			
			40	767F 0			
			ir,	300			
			07	20 3E 0			
			45	21 2E 0			
			65	54F 0			
			00	472F 0			
			7.0	A 36F A			
			04	E16F 0			
			00	647E 0			
			0.1	. 03.8E			

154

0 DECAY DATE = YEAR 1967. , MONTH 6. , DAY * DATE OF PUN = YFAR 1971 . DAY 0138 (VETTES AE2) FLUXES EXPONENTIALLY DECAYED WITH DECAY -FACTOR DI = VETTE TRLE *** JRBITAL FLUX STUDY WITH COMPESITE ELECTECH ENVIRONMENT*

AVERAGED FLUXES ON THIS TABLE ARE IN UNITS OF PAPTICLES/CM**2/DAY *** NON-AVERAGED FLUXES ARE IN UNITS OF PARTICLES/CM**2/SECALL FLUXES ON THIS TABLE ARE FOR ENERGIES ES. SMEY (EXCEPT WHERE ENERGY IS SPECIFIED, AS IN SPECIFIED.)

VEHICLE 2.140 * BEL ORBIT TAPE TO 6160 * PERIOD = * AFOG. = 4000 KM * * PERIG. = 150 6 INCL INAT .=

ENFRGY		the second of th			THE R. P. LEWIS CO., LANSING, MICH. 400, LANSI		
(MEV)	AVERAGED TOTAL FLUX (PER DAY)	SPECTFUM (PER CENT)	GRIR.THAN (MEV)	AVERAGED INTEG.FLUX (PER DAY)	INTENSITY RANGES (EL./CM**2./SEC)	EXPCSURE (HRS)	ACCUMULATED
					000		000
5.1	A COE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 0	. 287E 1	ERO FLU		.081F 0
1-2	BECE	4	0.50	1 3	E 2- 1	0.550	6.353E 05
2-3	. 54 EF 1	1.25	1.	.4165 1	*E3-1.E	.86	#313E 0
3-4	.673F C	.0.36	0	.605E 1	-E4-1.€	2 .3	*311E 0
4-5	€677F €	Co 11	1.22	* 88 2E 1	*E 5-1 *E	0	*155E-1
5-E	.114F C	C. 03	10	. 577E 1	*E6-1.E	20	*579E 1
6-7	3 3435°	C. C1	1.	* 674F 1	-E 7-1 .E	33	*456E 1
GT .7	.1EIE C	03.0	0.	.75EE 1	*E8-IN		
			ch.	. 97 ee .			
OTAL =	1.562E 12	100.00	.5		TOTAL =	48.017	4.844E 11
-			7	. 3000.	The same of the sa		
			0.	· 399E 0			
			04	0 3			
			4	. 411E 0			
			1.	. 297E 0			
			0	. 416E D			
			Ci.	. 821E-0			
			10	1.332F 09			
			1.	. 573E 0			
			0.	. 394E 0			
			101	· SEGE O			
			5	. 100E o			
1			47	. 056E 0			
			0.	· 269E 0			
			(V.	. 721E 0			
			6.53	0 B 0			
1	-		47	. 5155 0			
			0	.151E 0			

0 CREITAL FLUX STUDY WITH COMPCSITE ELECTRON ENVIRONMENT* (VETTES AF2) * DATE OF DUN = YEAR 1671, DAY 0138 FLUXES EXPONENTIALLY DECAYED. WITH DECAY-FACTOR DI = VEITE TR.E *** DECAY DATE = YEAR 1967, WONTH 6, DAY

-							
	SPECTRUM IN	× CE	CEMPOSITE ORAI	MUST SPECTEUM	PAXP	SUPE INDEX	
ENERGY RANGES	AVERAGED TOTAL FLUX (PER DAY)	SDECTRUM (PER CENT)	ENERGY GRTR.THAN (NFV)	AVERA INTEG.	INTENSITY PANGES (FL/CM**2/SFC)	DURATION OF EXDOSURE (HRS)	TOTAL NC. OF ACCUMULATED PARTICLES (E).5
	9.2425 11	29 00		315	ZEDO EL IIV	<	1000
5-1	.302E	7.08	N	ti.	.F0-1.		4.436F 04
-2	2.515E 10	2.44	.0	71E	. F 2-1, E	05	. 893E C
5-3	48 SE	0.63	1.	988	Li.	5.7	.159F 0
4-		0.17	0	07E	*E4-1 . E	0	*54 SE 0
4-5		5000	CA	W 00.	*E5-1*E	4	*335E 1
9-9	• 364E	0.01		5 K Z E	.E 4-1.E	*	\$ 3066 ª
	. 51 BE 6	9.	1.	2085	*E7-1.E		0.
GT.7	1.656E 07	0.00	0.	W 1	PER-INE	0.0	
TOTAL =	1.031E 12	100.00	0000	4.549FF 00	TCTAL =	48.017	2.142E 11
			. (145			
			0 1	450			
				000			
			0 1	11 1			
				0 4 0			
			00	E			
			y U	J L C			
			4.75	72E			
			0.	22E			
			0	45F			
			4	E 22 C			
1			.7	54E			
			0.	74F			
			N	200			
			6.50	2 * 5			
			. 7	02			
				1			

0 . DAY * DATE OF RUN = YEAR 1971, DAY 0137 .9 (VETTES AE2) * DATE OF RUN = YEAR 1971, 3LE *** CECAY DATE = YEAR 1967, * MONTH PROBITAL FLUX STUDY WITH COMPOSITE ELECTRON ENVIRONMENT* (VETTES FLUXES EXPONENTIALLY DECAYED WITH DECAY-FACTOR DI = VETTE TBLE *** AVERAGED FLUXES ON THIS TABLE ARE IN UNITS OF PARTICLES/CM**2/DAY *** NON-AVERAGED FLUXES ARE IN UNITS OF PARTICLES/CM**2/SECALL FLUXES ON THIS TABLE ARE FOR ENERGIES E>. SMEV (EXCEPT WHERE ENERGY IS SPECIFIED, AS IN SPECTRUM)

2.148 * VEHICLE = * PERIG.= 150 * APOG.= 4000 KM * BEL ORBIT TAPE TD 6160 * PERIOD = 80 INCLINAT .=

ENERGY AVERA		x DE	COMPOSITE ORBIT	RBIT SPECTRUM	EXPOS	EXPOSURE INDEX	
	AVERAGED OTAL FLUX (PER DAY)	SPECTRUM (PER CENT)	ENERGY GRTR. THAN (MEV)	AVERAGED INTEG.FLUX (PER DAY)	INTENSITY PANGES (EL/CM**2/SEC)	DURATION OF EXPOSURE (HRS)	TOTAL NO. OF ACCUMULATED PARTICLES (E>.5)
05 8-658F	8E 11	89.80	0.0	9.641F 11	ZERO FLUX	10.5	2.019E 03
	-	6.96		.648	1.60-1.62	0.567	4.319E 04
1-2 2.302E	2E 10	2.39	0.50	lu.	1.62-1.63	0.583	
2-3 5-9496		0.62	0.75	44E 1	1.63-1.64	3.97	
3-4 1-60	60 3E 09	0.17	1.00	3.120E 10	1.54-1.65		7.955F 08
30000	90 30	0.05	1.25	2.160F 10	1.65-1.66	7.57	
5-6 1-254E	4E 08	0.01	1.50	1.522F 10	6-1	10.5	1.848E 11
6-7 3.6035	3E 07	00.00	1.75	1.107F 10	.E7-1	0.0	0.0
GT.7 1.529E	9E 07	00.00	2.00	8.178E 0G	1.FE-INFIN	0.0	0.0
	-		2.25	5.808F 09			
TOTAL = 9.641E	1E 11	100.00	2.50	4.261F 09	TOTAL =	48.017	1.967E 11
	-		2.75				
			3.00				
	-		3.25	1.611E 09			
			3.50	1.166E 09			
			3.75	8.633F 08			
			4.00	6.264F 08			
-			4.25	C3F			
			4.50				
			4.75	37S			
			2.00	1.7675 08			
-			5.25	30E			
			5.50	350			
			5.75	7.046F C7			
			00.9	.132E			
			6.25				
			6.50	2.784E 07			
			6.75	2.C26F n7			
			7.00	1.529E 07			

AVERAGED FLUXES ON THIS TABLE ARE IN JUITS OF PARTICLES/CM**2/DAY *** NCN-AVERAGED FLUXES ARE IN UNITS OF PARTICLES/CM**2/SEC ALL FLUXES ON THIS TABLE ARE FUR ENERGIES 2/5 MEV (EXCEPT WHERE ENERGY IS SPECIFIED, AS IN SPECTRUM)

2.148 # VEHICLE =. ORBITAL FLUX STUDY FUR COMPOSITE PROTEN FAVIPANMENT * GRIDS API, AF7, AP6, AP5 * DATE OF RUN = YEAR 1971, CAY 6138 INCLINATO 23 * PERIGO = 2.148 * VEHICLE * APJG.= 40(9 KM * BEL ORBIT TAPE TO 6169 * INCLINATOR 23 # PERIGOR 150

LOW ENERGY

ה	SPECTRUM IN % DE	* OF	COMPUSITE ORBIT	3IT SPECTRUM	EXPO	EXPOSURE INDEX	
	AVERACED	SPECTRUM	ENERGY	AVERAGED	INTENSITY	DURATION OF	TOTAL NO. OF
S		(PER CENT)	GRTR. THAN	EG	RANGES	-EXPOSURE	w
(MEV)	(PER DAY)		(MEV)	(PER DAY)	(PT/CM**2/SEC)	(HRS)	PARTICLES (E>+1
·10- ·50	1.336E 10		.10	8.343E 10	0.60-1.60	11.533	1.148E 04
059-1010	1.600E 10		.30	4	1.E0-1.E1	0.067	1.029E 03
1010-2009				6x707E 10	1.E1-1.E2	0.250	4 291E 04
2000-3000	1.239E 10		0.20	6.125E 1C	1.E2-1.E3	0.833	1.639E 06
3000-000	7.864E ng		26.	5.593E-10	1 s E 3 - 1 s E 4	2,083	3 554E 07
4.30-5.CO	4.993F 39	096.9	1.10	5.107E 1C	1.64-1.65	4.633	7.610E 08
			1.30	4.564E 19	1.E5-0VER	28.617	11 9001E 11
			1.50	4.259E 10			
TOTAL =	7.174E 19	120.00	1.75	3.802E 10		40,000	11-960941
			2.03	3.394E 10			
			2.25	3.030E 10			
			2.50	2.704E 10			
			2.75	2.414E 10			
			3,00	2.155E 10			
			3.25	6			
			3.51				
			3.75	.533E 1			
			()**	1.369E 10			
			4.25	*222E 1			
			4.53	1.391E 10			
			4.75	9.737E 69		-	
			5.60	3.693E C9			

AVERAGED FLUXES ON THIS TABLE ARE IN LN'TS OF PARTICLES/CW**2/DAY *** NON-AVERAGED FLUXES ARE IN UNITS OF PARTICLES/CW**2/SECALL FLUXES ON THIS TABLE ARE FOR ENERGIES ENS MEY (EXCEPT WHERE ENERGY IS SPECIFIED, AS IN SPECIFIUM) AVERAGED FLUXES ON THIS TABLE ARE IN LN. TS OF PARTICLES/CM##2/DAY

JABITAL FLUX STUDY FOR COMFOSITE FRETEN ENVIRONMENT * GRICS AFI. APT. APE. APE * DATE OF RUN = YEAR 1571, DAY 3138
INCLINATO = 65 * PERICO = 150 * AFOGO KM * REL DERIT TAPE TO 6160 * PERIOD = 2.148 * VFHICLE =, AE-C

LOW ENFECY

		COMPOSITE OREIT	ELL SPECIFOR	EXFO	XFOSTRE INDEX	
ENFRGY AVERAGED RANGES TOTAL FLUX (SPECTEUM .	ENERGY	AVERAGED INTEGREDA	INTENSITY	CUPATICN CF	TCTAL NC. OF
(PER DAY)	٠	(MEV)	(PER DAY)		(HES)	AFTICLES
.1050 -5.£49E 10	64.225	•10	4	0.60-1.60	14.767	4.636F 04
1.575E	18,310	05.	53E 1	*E0-1	0.0	.0
1	12,302	•50	85 1	1-1-	10	.515E 0
	7.586	.70	-	1 . 1		260
5.015E	4.649	06.	1 36	**	.71	.277E 0
4.00-5.00 3.158E 09	2.928	1.10	CA	1.54-1.65	* C.	.146F 0
		1.30	29E 1	5-CVE	. 21	.265E 1
		1.50	BE 1			
TOTAL = 1-679E 11	100.00	1,75	715 1	TOTAL =	48.000	2.267E 11
		2.00	1 39			
		2.25	Q.			
		2.50	4 = 1			
		2.75	5E 1			
		3.00	7E 1			
		3.25	105			
		3.50	-			
		3.75	2E 0			
		4.00	BE O			
		4.25	0 38			
		4.50	400			
		4.75	BOE 9			
		5.00	0 4			

AVERAGED FILLYES IN THIS TARLE ARE FOR ENERGIES FOR MERE FINERGY IS SPECIFIED, AS IN SPECTPUM)

11 DRRITAL FLUX STUDY FOR COMPISITY PRETEN ENVIRONMENT * CRIES AFI, APT, APE, APE, APE OF RUN = YEAR 1574 , DAY 0138
INCLINATOF EN * PERIGO = 2,148 * VEHICLE

LOW ENERGY

FANCES TOTAL RLUX (PER CENT) GRIP-ITAN INFECFLUX (PTRALES TOTAL NES TOTAL NE	AVERAGED SOFCTEUN ENERGY AVERACED INTENSITY DUBATICAL (PEF DAY) F. F. T. F. LUX (PER CENT) (PEP DAY) F. F. T. T. LUX (PER CENT) (PEP DAY) F. F. T. T. LUX (PER CENT) F. F. T. T. LUX F. F. T. T. LUX F. F. T. LUX F. T. LUX F. F. T. LUX F. F. T. LUX F. T. LU							
C	### PANGES CATRATHAN INTEC.FLUX PRANGES EXPOSIGNE		SPECTEUN	ENERGY	AVERAGED	IS NET N		TAL NC
C	C C C C C C C C C C	TOTAL FLUX	(PER CENT)	GRTR. THAN	NTEG.FLU	RANG	EXPOSURE	CUMULATED
1. F70F 10 19:309	1.670F 10 E4.703	(PEF		(MEV)	D FR	PT/CM* *2/SEC		RTICLES
1.6756 10 19.356	1.675 10 10 10 10 10 10 10 10 10 10 10 10 10		;			1	-	
1.875 10 19:354 30 6.5576 10 11.77-1.79 0.0217 5:976 0 0.027 7 666 0 0.027 7 666 0 0.027 7 666 0 0.027 7 666 0 0.027 7 666 0 0.027 7 666 0 0.027 7 666 0 0.023 7 666 0 0.023 7 666 0 0.023 7 666 0 0.023 7 665 0	1.675F 10 1.675F 10 1.757F 10 1.775F	. 50 S. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	7000	01.	·0765 1	*# C- 1.	0 * 5 0	* 384E 0
1.5778	1.6215 10 12.278	· 10 10 10 010	485.00	. 30	. 55 7E I	B.1-0-	. 31	.970E 0
7.66er 00 7.539 2.669 00 2.655 2.669 00 2.655 1.80 2.637 10 11.83 1.850 0.833 7.858 10 11.85-1.85 0.8433 7.858 10 11.85 10 11.	7.66 C	10251	12.578	.50	.167F 1	14	* 08	.760E 0
1.000 2.600 0.433 7.650F 0 2.650F 10 1.10 3.746E 10 1.10 2.632E 10 2.75 1.613E 10	1.010E 13. 10C.00 2.650E 00 2.650E 10 1.10 3.756E 10 1.10 2.630E 10 1.10 2.75 2.75 1.10 2.75 2.75 1.10 2.75	7º EKOF	7.539	.70	.337F 1	* 52-1.E	* 16	. BEEF 0
1.010F 1. 10C.00 2.69F 10 1.E4-1.E5 0.967 1.295F 0 1.010F 1.010F 1.010F 1.010F 1.010F 1.010F 10	1.10 3.005 10 1.006 1	4.690E	4.603	00.	.746E 1	*E 3 . 1 . E	.43	.650F 0
1.50 2.630E 10 1.FG-20E 26.250 2.138E 10 1.FG-00E 26.250 2.138E 10 2.650E 10	1.50 2.630E 10 1.55 C.52E 10 1.50 C.52E 10 1	2.CE1E	2000		. 20 gE 1	3.1-43.	* 96	.295F 0
1.50 2.630E 10 TOTAL = 48.000 2.140E 1 2.630E 10 TOTAL = 48.000 2.140E 1 2.50 1.611E 10 2.50 1.6	1.50 2.630E 10 1.75 2.313E 10 2.75 2.33E 10 2.75 1.613E 10 2.75 1.631E 10 3.75 1.631E 10 3.75 1.631E 10 3.75 1.631E 10 4.00 8.094E 00 4.00 8.094E 00 4.75 5.740E 00 5.70 5.132E 00			1.30	.932F 1	SE S-GVE	6.25	.138E 1
2.75 2.313E 10 707AL = 48.900 2.140E 1 2.25 11.613E 10 2.35 11.613E 10 2.35 11.613E 10 2.35 11.613E 10 2.35 10	1.010F 11 10C.00 TOTAL = 48.00			1.50	.630E 1			
7	7	1.0195 1	100.00		-31 3E -1	AL	8.00	.140E 1
######################################	######################################			2.00	. 044F 1			
				2.25	. 813E 1			
	4 C 4 C C C C 4 C C C C C C C C C C C C			2.50	eile 1			
## ## ## ## ## ## ## ## ## ## ## ## ##	## ## ## ## ## ## ## ## ## ## ## ## ##	The state of the s		2.75	. 434F 1			
######################################	# C C C C C C C C C C C C C C C C C C C			3.00	. 277E 1			
0.059E 0 8.059E 0 7.15E 0 0 1045 6 0 135E 0	0.059E 8.798E 0.059E 0.059E 0.046E 0.133E 0.133E			3,25	. 130E .			
0.050E 0.050E 0.050E 0.050E 0.050E 0.050E	0.059E 0.059E 0.050E 0.050E 0.050E 0.050E				1 3510.			
6.794F 0 7.215F 0 6.440F 0 5.740F 0	6.33E 0			3.75	0 B050.			
7.216F O 6.440F O 5.740F O	7.316F 6.440F 5.740F 5.133F			4.00	. 794F G			
75 6.440F 0	75 6.440F 0			4.25	O HAIE.			
5.740E 0	5.740E 0			4.50	0 =044.			
.00 E.133E 0	.no 5.133E o			4.75	. 740E 0			
					.133E 0			

Indination (degrees)

FOLDOUT PRAME Z

RONMENT	23DEGR 1	50KM RE-E		Figure
				1
				=
				1
	1 -			1
				-
]
				-
				-
				-
]
				4.85%
`				
			· · · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * * * * * * * * *
				-
				-
W W W W W		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	X X X X X X X X X X X X X X X X X X X	7.000

FOLDOUT FRAME 2

23DEGR		HIGH DAT	A SET 3	Fig
				=
				=
				1
	-			
				=
			17:	
			14 70	
	1			
XXXX	* * * * * * * * * * * * * * * * * * *	XXXXX	X X X X X X X	X X X X X 1 1 1 X 7.00

FOLDOUT FRAME

