베이지안 구조 시계열 모형의 예측력 향상을 위한 연구

중앙대학교 통계학과 김동현

(지도교수: 성병찬)

목차

<u>1. 서론</u>

2. 주요 시계열 모형

- 2.1. ETS 모형
- 2.2. ARIMA 모형
- 2.3. BSTS 모형

3. BSTS 모형 성질 및 예측 결과

- 3.1. BSTS 모형 성질
- 3.2. 예측 결과

4. 결론 및 참고문헌

- 1990년대 이후 시계열 예측 분야에서는 지수평활모형(ETS)의 다양한 형태가 등장하기 시작했다.
- 특히, 지수평활모형은 자동화 예측 기능으로써 빅데이터 시계열 예측에 편리함을 더해주었다.
- 베이지안 구조 시계열(BSTS: Bayesian Structural Time Series) 모형은 지수평활모형의 일반적 형태로 알려져 있다.
- 그러나 상대적으로 자동화 예측을 포함한 예측 분야의 활용성 연구가 매우 부족하다.
- 본 연구는 베이지안 구조 시계열 모형의 예측력 개선을 위한 것이다.

〈연구목표〉

- BSTS 모형과 ETS 모형의 비교
- ② ETS 결과(모형 형태, Prior)를 이용한 BSTS 모형 예측
- ❸ 표본 개수가 적을 때의 예측력 비교
- 4 시계열 길이에 따른 예측력 비교

<u>2.1. ETS 모형</u>

- 지수평활법
 - 최근 자료에 큰 가중치를 부여하고 과거 자료로 갈수록 가중치를 지수적으로 줄여나가는 방법
 - ▶ 계산 방법이 쉬우며 많은 자료를 저장하지 않아도 된다는 장점이 있다.
- ETS 모형
- ▶ 추세(Trend)와 계절성(Seasonal) 성분으로 이루어진 지수평활법에 오차(Error)가 더해진 모형
- \triangleright 혁신 상태 공간 모형(ISSM : Innovation State Space Model)이라고도 부르는데, 모든 식에서 같은 오차 과정 ϵ_t 를 사용하기 때문이다.

덧셈	오차 모델		
추세		계절성	
	N	A	M
N	$y_t = \ell_{t-1} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$ $s_t = s_{t-m} + \gamma \varepsilon_t$	$y_t = \ell_{t-1} s_{t-m} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \alpha \varepsilon_t / s_{t-m}$ $s_t = s_{t-m} + \gamma \varepsilon_t / \ell_{t-1}$
A	$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$ $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$ $b_t = b_{t-1} + \beta \varepsilon_t$	$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$ $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$ $b_t = b_{t-1} + \beta \varepsilon_t$ $s_t = s_{t-m} + \gamma \varepsilon_t$	$\begin{aligned} y_t &= (\ell_{t-1} + b_{t-1}) s_{t-m} + \varepsilon_t \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t / s_{t-m} \\ b_t &= b_{t-1} + \beta \varepsilon_t / s_{t-m} \\ s_t &= s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + b_{t-1}) \end{aligned}$
A_d	$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$ $b_t = \phi b_{t-1} + \beta \varepsilon_t$	$y_t = \ell_{t-1} + \phi b_{t-1} + s_{t-m} + \varepsilon_t$ $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$ $b_t = \phi b_{t-1} + \beta \varepsilon_t$ $s_t = s_{t-m} + \gamma \varepsilon_t$	$\begin{aligned} y_t &= (\ell_{t-1} + \phi b_{t-1}) s_{t-m} + \varepsilon_t \\ \ell_t &= \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t / s_{t-m} \\ b_t &= \phi b_{t-1} + \beta \varepsilon_t / s_{t-m} \\ s_t &= s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + \phi b_{t-1}) \end{aligned}$

2.2. ARIMA 모형

- ARIMA 모형
 - ▶ 비정상 시계열에 대하여 차분(Differencing)을 통해 정상 시계열로 만들어 ARMA 모형으로 만든 모형
 - ▶ 단순히 AR 모형이나 MA 모형으로 적합할 때 많은 모수를 포함하여 추정 효율성을 감소시킬 수 있는 문제를 해결할 수 있다.
- ARIMA 모형식 : ARIMA(p, d, q)

$$(1 - \phi_1 B - \dots - \phi_p B^p)(1 - B)^d y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) \epsilon_t$$

• 계절성 ARIMA 모형식 : $ARIMA(p,d,q)(P,D,Q)_m$

$$\begin{split} \phi_p(B) \Phi_P(B^m) (1-B)^d (1-B^m)^D y_t &= c + \theta_q(B) \Theta_Q(B^m) \epsilon_t \\ \phi_p(B) &= 1 - \phi_1 B - \dots - \phi_p B^p, \quad \Phi_P(B^m) = 1 - \Phi_1 B^m - \dots - \Phi_P B^{Pm} \\ \theta_q(B) &= 1 + \theta_1 B + \dots + \theta_q B^q, \quad \Theta_Q(B^m) = 1 + \Theta_1 B^m + \dots + \Theta_Q B^{Qm} \end{split}$$

Part 2:3/7

2.3. BSTS 모형

- BSTS 모형
 - ➤ 구조 시계열(STS: Structural Time Series) 모형에 베이지안 이론이 추가된 모형
- 베이지안(Bayesian)
 - ➤ 추세(Trend), 기울기(Slope), 계절성(Seasonality) 등 구성요소의 오차 분산(Error Variance)을 추정할 때 마르코프 연쇄 몬테칼로(MCMC: Markov Chain Monte Carlo) 알고리즘(Algorithm)을 이용한다.
- 마르코프 연쇄 몬테칼로(MCMC: Markov Chain Monte Carlo)
 - ➤ 몬테칼로(Monte Carlo)는 샘플링(Sampling) 목적에서 나온 표현이며, 반복적인 무작위 샘플링에 의존한다는 뜻이다.
 - ▶ 마르코프 연쇄(Markov Chain)는 샘플을 얻는 방법에 대한 표현이며, 샘플링을 시행할 때 이전 상태에 의존한다는 뜻이다.
 - → MCMC 알고리즘을 통해 각 구성요소에 대한 표본을 생성하는 것

- 구조 시계열(STS: Structural Time Series) 모형
 - ➤ 시계열 데이터로 구성된 상태 공간 모형(SSM : State Space Model)
 - ➤ 직접 관측할 수 없는 상태에 대해 여러 가정과 실제 데이터를 사용하여 예측 가능하며, 칼만필터(Kalman Filter) 방법을 사용한다.

$$y_t = Z_t^T \alpha_t + \epsilon_t, \epsilon_t \sim N(0, H_t) \cdots (\boldsymbol{a})$$

$$\alpha_t = T_t \alpha_t + R_t \eta_t, \eta_t \sim N(0, Q_t) \cdots (\boldsymbol{b})$$

- (a) : 관측 방정식(Observation Equation)
 - \triangleright y_t : 관측된 데이터, α_t : 관측되지 않은 잠재(Latent) 상태
- (b): 상태 방정식(State Equation), 전이 방정식(Transition Equation)
 - ➤ 잠재 상태가 시간에 따라 어떻게 변화하는지 설명하는 방정식
- \triangleright 모형의 행렬들인 Z_t, T_t, R_t 는 일반적으로 0과 1처럼 알려진 값과 알려져 있지 않은 모수들을 포함한다.
- ➤ SSM은 모듈 형식으로, 추세, 기울기, 계절성 등 상태 요소들을 모형에 추가하여 유연성 있는 분석을 가능하게 한다.
- ➤ 모형 종류: ① Local Level(LL) 모형
 - ② Local Linear Trend(LLT) 모형
 - ③ Semi-local Linear Trend(SLT) 모형

① Local Level(LL) 모형

$$y_t = \mu_t + \varepsilon_t, \varepsilon_t \sim N(0, \sigma^2)$$

$$\mu_{t+1} = \mu_t + \eta_t, \eta_t \sim N(0, \tau^2)$$

- Z_t, T_t, R_t 가 모두 스칼라(Scalar) 형태로 값이 1이고, $\alpha_t = \mu_t$ 인 모형
- ETS(A, N, N)의 형태와 유사하며, 계절성이 존재하면 ETS(A, N, A)의 형태와 유사하다.
- $\tau^2 = 0$ 이면, μ_t 는 상수(Constant)이므로 데이터는 IID Gaussian Noise가 되며, \bar{y} 가 y_{t+1} 의 최적 추정량이다.
- $\sigma^2 = 0$ 이면, 데이터는 랜덤워크(Random Walk)를 따르며, y_t 가 y_{t+1} 의 최적 추정량이다.
- 두 분산이 모두 양수이면, 과거 데이터가 두 분산의 비율에 따라 결정되는 지수 비율로 잊혀지는 지수평활이 y_{t+1} 의 최적 추정량이다.

② Local Linear Trend(LLT) 모형

$$y_{t} = \mu_{t} + \varepsilon_{t}, \varepsilon_{t} \sim N(0, \sigma^{2})$$

$$\mu_{t+1} = \mu_{t} + \delta_{t} + \eta_{\mu,t}, \eta_{\mu,t} \sim N(0, \sigma_{\mu,t}^{2})$$

$$\delta_{t+1} = \delta_{t} + \eta_{\delta,t}, \eta_{\delta,t} \sim N(0, \sigma_{\delta,t}^{2})$$

$$\tau_{t+1} = -\sum_{s=1}^{S-1} \tau_{t} + \eta_{\tau,t}, \eta_{\tau,t} \sim N(0, \sigma_{\tau,t}^{2})$$

- LL 모형 형태와 유사하지만 δ_t 항이 추가되었으며, 추세에 기울기(Slope)가 추가된 형태의 모형
- *ETS*(*A*, *A*, *N*)의 형태와 유사하다.
- $\sigma_{\mu,t}^2$ 와 $\sigma_{\delta,t}^2$ 는 서로 독립이며, μ_t = 확률적 수준(Stochastic Level), δ_t = 확률적 기울기(Stochastic Slope)를 나타낸다.
- 확률적 요인을 사용하면 시간에 따라 서서히 변하는 기울기를 가지는 추세를 표현할 수 있다.
- 계절성이 추가된다면 계절 성분을 모형에 추가하면 되며, 더미 변수(Dummy Variable)를 사용하여 표현할 수 있다.
- 계절성이 추가된 LLT 모형은 *ETS(A, A, A)*의 형태와 유사하다.

- 3 Semi-local Linear Trend(SLT) 모형
- LL 모형에서 상태는 랜덤워크(Random Walk)에 따라 진화하며, 분산이 $t = \infty$ 까지 계속 증가한다.
- LLT 모형에서는 훨씬 더 변동성이 큰데, 단기적인 상태에서의 지역적 유연성(Local Flexibility)이 장기적인 상태에서는 극단적인 변화로 바뀐다. 이러한 문제를 해결하기 위해 랜덤워크를 정상적인 AR Process로 바꿀 수 있다.

$$\mu_{t+1} = \rho \mu_t + \eta_t, \eta_t \sim N(0, \sigma_\eta^2), |\rho| < 1$$

- 위 모형은 정상적 분포 $\mu_{\infty} \sim N(0, \frac{\sigma_{\eta}^2}{1-\rho^2})$ 를 가지며, 불확실성이 먼 미래에 유한한 점근점으로 커진다는 것을 의미한다.
- 프로세스 수준에 대해 랜덤워크를 유지하면서 기울기의 랜덤워크를 정상적인 AR(1) Process로 대체하여 LLT 모형을 수정한다.

$$y_t = \mu_t + \varepsilon_t, \varepsilon_t \sim N(0, \sigma^2)$$

$$\mu_{t+1} = \mu_t + \delta_t + \eta_{\mu,t}, \eta_{\mu,t} \sim N(0, \sigma_{\mu,t}^2)$$

$$\delta_{t+1} = D + \rho(\delta_t - D) + \eta_{\delta,t}, \eta_{\delta,t} \sim N(0, \sigma_{\delta,t}^2)$$

- $ETS(A, A_d, N)$ 의 형태와 유사하며, 계절성이 존재하면 $ETS(A, A_d, A)$ 와 유사하다.
- D는 추세 성분의 장기적 기울기 모수이며, δ_t 는 이 기울기로 되돌아간다.
- δ_t 는 장기 추세(Long Term Trend)에서 단기적인 자기회귀(AR) 편차를 가질 수 있으며, 메모리는 ho로 결정된다.

〈사용 프로그램 및 데이터〉

• 프로그래밍 언어: R

• 데이터: Mcomp 패키지(버전 2.8, 2018)에서 제공하는 3,003개의 시계열 자료로 구성된 M3 Competition

〈데이터 구성 형태〉

Interval	Micro	Industry	Macro	Finance	Demog	Other	Total
Yearly	146	102	83	58	245	11	645
Quarterly	204	83	336	76	57	0	756
Monthly	474	334	312	145	111	52	1,428
Other	4	0	0	29	0	141	174
Total	828	519	731	308	413	204	3,003

3.1. BSTS 모형 성질

- BSTS 모형 적합 과정
 - ① M3 Competition 데이터에 대해 ETS 모형을 우선 적합하고, 그에 대응하는 BSTS 모형을 적합하였다.
 - \triangleright BSTS 모형은 덧셈 오차(Additive Error) 형태만을 보이므로 ETS(A, Z, Z) 형태로 적합하였다.
 - \triangleright 예시 : ETS(A, A, A) -> LLT Model with Seasonality
 - \triangleright 적합 가능한 ETS 모형 : ETS(A, N, N), ETS(A, A, N), $ETS(A, A_d, N)$, ETS(A, N, A), ETS(A, A, A), $ETS(A, A_d, A)$
 - ② 위에서 적합한 BSTS 모형에 대해 MCMC 시뮬레이션을 10,000번 시행하고, 관측 방정식의 관측 데이터 y_t 를 정규분포(Gaussian)로 설정하였다.
 - ③ MCMC를 통해 각 상태 요소(Component)에 대한 표본(Sample) 추출이 완료되면, 초기 부분은 사후분포를 정확히 나타내지 못할 수도 있기에 버리는 부분(Burn-in Period)은 1 ~ 5,000번째 값들로 설정하였다. 즉, 사용한 표본은 5,001 ~ 10,000번째 값들이다.
 - ④ 예측은 최종적으로 선택된 표본들의 평균(Mean) 값으로 사용하였다.

3.1. BSTS 모형 성질

Monthly Data : M650(Industry) Series

ETS(A, N, A)	BSTS: LL Model with Seasonalit
$y_{t} = l_{t-1} + s_{t-12} + \epsilon_{t}$ $l_{t} = l_{t-1} + 0.9994\epsilon_{t}$ $s_{t} = s_{t-12} + 0.0001\epsilon_{t}$ $\epsilon_{t} \sim N(0, 180.50^{2})$	$y_{t} = \mu_{t} + \tau_{t} + \epsilon_{t}$ $\mu_{t+1} = \mu_{t} + \eta_{\mu,t}$ $\tau_{t+1} = -\sum_{s=1}^{11} \tau_{t} + \eta_{\tau,t}$
	$\epsilon_t \sim N(0, 37.56^2)$ $\eta_{\mu,t} \sim N(0, 167.65^2)$ $\eta_{\tau,t} \sim N(0, 6.39^2)$

2 Quarterly Data: Q509(Macro) Series

ETS(A, A, A)	BSTS: LLT Model with Seasonal
$y_{t} = l_{t-1} + b_{t-1} + s_{t-4} + \epsilon_{t}$ $l_{t} = l_{t-1} + b_{t-1} + 0.0003\epsilon_{t}$ $b_{t} = b_{t-1} + 0.0001\epsilon_{t}$ $s_{t} = s_{t-4} + 0.0001\epsilon_{t}$ $\epsilon_{t} \sim N(0, 30.72^{2})$	$y_t = \mu_t + \tau_t + \epsilon_t$ $\mu_{t+1} = \mu_t + \delta_t + \eta_{\mu,t}$ $\delta_{t+1} = \delta_t + \eta_{\delta,t}$ $\tau_{t+1} = -\sum_{s=1}^{3} \tau_t + \eta_{\tau,t}$
	$\epsilon_t \sim N(0, 27.77^2)$ $\eta_{\mu,t} \sim N(0, 4.51^2)$ $\eta_{\delta,t} \sim N(0, 2.78^2)$ $\eta_{\tau,t} \sim N(0, 5.58^2)$

- ETS 모형과 비교한 BSTS 모형 성질
- ① 모든 식에서 같은 오차 ε_t 를 사용하는 ETS 모형과 달리 BSTS 모형은 각 구성요소마다 오차를 사용한다.
- ② ETS 모형식 ETS(A, A, A)에서 y_t 를 포함한 관측 방정식에서는 기울기(Slope)를 포함하고 있으나, BSTS 모형식에서는 포함하지 않는다.
- ③ ETS 모형식에서는 평활모수(Smoothing Parameter)를 사용하지만, BSTS 모형식에서는 사용하지 않는다.

Part 3: 4/11

<u>3.2. 예측 결과</u>

• 예측 결과 비교에 사용한 모형

No.	모형	설명
0	ETS 모형	• BSTS 모형이 덧셈 오차(Additive Error) 형태만을 보이므로 ETS(A, Z, Z) 형태로 적합
2	ARIMA 모형	• R forecast 패키지(버전 8.21.1, 2023)에서 제공하는 'auto.arima()' 함수를 사용하여 ARIMA 모형 적합
3	BSTS 모형	• $ETS(A,Z,Z)$ 모형에 대응하는 BSTS 모형 적합
4	Hybrid 모형	 ETS 모형과 BSTS 모형을 합친 Hybrid 모형 목적: BSTS 모형을 활용해 더 높은 예측 성능을 도출해내기 위함 예측값 = ¹/₂ (ETS 모형 예측값 + BSTS 모형 예측값)
6	BSTS 모형 (Prior 지정)	 ETS(A, Z, Z) 모형에 대응하는 BSTS 모형에 Prior를 지정하여 적합 목적: 기존 BSTS 모형에서 예측 성능을 더 향상시키기 위함
6	Hybrid 모형 (Prior 지정)	 ETS 모형과 Prior를 지정한 BSTS 모형을 합친 Hybrid 모형 목적: 기존 Hybrid 모형에서 예측 성능을 더 향상시키기 위함 예측값 = ¹/₂ (ETS 모형 예측값 + Prior를 지정한 BSTS 모형 예측값)

<u>3.2. 예측 결과</u>

- 오차 분산 Prior를 지정한 BSTS 모형
 - 앞서 설명한 BSTS 모형 적합 과정에서 MCMC 시뮬레이션을 시행하기 전에 Prior를 지정하는 하나의 과정이 추가된다.
 - ➤ 각 상태 요소(Component)의 분산에 대해 Prior를 ETS 모형의 오차 분산과 평활모수를 바탕으로 하여 지정하였다.
 - > 오차 분산 Prior 지정시 사용되는 분포는 역감마분포(Inverse Gamma Distribution)이다.
- ❖ 예시: Monthly Data M650(Industry) Series

ETS(A, N, A)	BSTS: LL Model with Seasonality
$y_t = l_{t-1} + s_{t-12} + \epsilon_t$	$y_t = \mu_t + \tau_t + \epsilon_t$
$l_t = l_{t-1} + \alpha \epsilon_t$ $s_t = s_{t-12} + \gamma \epsilon_t$	$\mu_{t+1} = \mu_t + \eta_{\mu,t}$
$s_t - s_{t-12} + \gamma \epsilon_t$	$\tau_{t+1} = -\sum_{t=0}^{T} \tau_t + \eta_{\tau,t}$
$\epsilon_t \sim N(0, \sigma^2)$	S = 1
	$\epsilon_t \sim N(0, \sigma^2)$
	$\eta_{\mu,t} \sim N(0, (\alpha\sigma)^2)$
	$\eta_{\tau,t} \sim N(0, (\gamma \sigma)^2)$

<u>3.2. 예측 결과</u>

• 예측 결과 비교에 사용한 Error 지표

Error	정의	수식
MAPE	Mean Absolute Percentage Error	$\frac{1}{n} \sum_{i=1}^{n} \frac{ y_i - \widehat{y}_i }{y_i} \times 100$
sMAPE	symmetric Mean Absolute Percentage Error	$\frac{1}{n} \sum_{i=1}^{n} \frac{ y_i - \hat{y_i} }{\frac{1}{2} (y_i + \hat{y_i})} \times 100$
MASE	Mean Absolute Scaled Error	$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{ y_i - \widehat{y_i} }{\frac{1}{n-1} \sum_{i=2}^{n} y_i - y_{i-1} } \right) = \frac{\sum_{i=1}^{n} y_i - \widehat{y_i} }{\frac{n}{n-1} \sum_{i=2}^{n} y_i - y_{i-1} }$
sMAE	scaled Mean Absolute Error	$\frac{1}{n} \sum_{i=1}^{n} \frac{ y_i - \hat{y}_i }{\frac{1}{n} y_i} = \frac{1}{n} \sum_{i=1}^{n} \frac{ y_i - \hat{y}_i }{\bar{y}}$

<u>3.2. 예측 결과</u>

● 표본 개수가 적을 때 예측 결과

• Case 1: 0 < n ≤ 20 (데이터 개수: 504개)

Model	MAPE	sMAPE	MASE	sMAE
ETS	17.5930 (3)	14.3111 (5)	2.5894 (6)	0.2402 (3)
ARIMA	18.9671 (6)	14.8303 (6)	2.5828 (5)	0.2529 (6)
BSTS	17.7933 (4)	13.9070 (4)	2.4925 (2)	0.2408 (5)
BSTS(Prior)	17.8101 (5)	13.8837 (3)	2.4896 (1)	0.2403 (4)
Hybrid	17.4650 (1)	13.8808 (2)	2.4930 (3)	0.2370 (2)
Hybrid(Prior)	17.4709 (2)	13.8664 (1)	2.4960 (4)	0.2367 (1)

- ➤ BSTS 모형은 ETS 모형 대비 sMAPE, MASE 관점에서 예측 성능이 높게 나타났으며, Prior를 지정한 경우에는 기존보다 전반적으로 예측 성능이 개선되었다.
- ➤ Hybrid 모형은 기존 BSTS 모형 대비 예측 성능이 전반적으로 높게 나타났으며, Prior를 지정한 경우에는 전반적으로 예측 성능을 더 높여주었다.

<u>3.2. 예측 결과</u>

● 표본 개수가 적을 때 예측 결과

• Case 2:20 < n ≤ 40 (데이터 개수:397개)

Model	MAPE	sMAPE	MASE	sMAE
ETS	21.5929 (5)	15.7095 (5)	1.8397 (5)	0.2396 (5)
ARIMA	23.1232 (6)	15.8089 (6)	1.8888 (6)	0.2543 (6)
BSTS	21.5867 (4)	15.4055 (4)	1.7916 (4)	0.2368 (4)
BSTS(Prior)	21.5235 (3)	15.2528 (1)	1.7813 (1)	0.2352 (2)
Hybrid	21.3057 (2)	15.2839 (3)	1.7881 (3)	0.2353 (3)
Hybrid(Prior)	21.2993 (1)	15.2599 (2)	1.7868 (2)	0.2348 (1)

- ➤ BSTS 모형은 ETS 모형에 비해 모든 Error 관점에서 예측 성능이 높게 나타났으며, Prior를 지정한 경우에는 기존 BSTS 모형의 예측 성능을 더 향상시켰다.
- ➤ Hybrid 모형은 기존 BSTS 모형 대비 예측 성능이 좋았으며, Prior를 지정한 경우에는 기존 Hybrid 모형에서 예측 성능을 더 높여주었다.

♥ BSTS 모형은 표본 개수가 적을 때 전반적으로 예측 성능이 높게 나타났으며, Prior를 지정한 경우에는 예측 성능이 향상되었다.

<u>3.2. 예측 결과</u>

❷ 주기별 예측 결과

• Case 1: All Data

Model	MAPE	sMAPE	MASE	sMAE
ETS	17.6936 (3)	13.0667 (3)	1.4252 (5)	0.1662 (3)
ARIMA	18.7217 (6)	13.5683 (6)	1.4541 (6)	0.1772 (6)
BSTS	17.8610 (4)	13.4807 (5)	1.4182 (4)	0.1721 (5)
BSTS(Prior)	17.9196 (5)	13.2042 (4)	1.4059 (3)	0.1698 (4)
Hybrid	17.4048 (1)	12.9241 (2)	1.3926 (2)	0.1658 (2)
Hybrid(Prior)	17.5240 (2)	12.8705 (1)	1.3911 (1)	0.1652 (1)

- ➤ BSTS 모형은 ETS 모형 대비 MASE 관점에서 예측 성능이 높게 나타났고, Prior를 지정한 경우에는 기존보다 예측 성능이 전반적으로 개선되었다.
- ➤ Hybrid 모형은 다른 모형들에 비해 예측 성능이 좋게 나타났으며, Prior를 지정한 Hybrid 모형은 예측 성능을 더 높여주어 대부분의 오차 지표에서 1위를 차지하였다.

Part 3:10/11

<u>3.2. 예측 결과</u>

❷ 주기별 예측 결과

• Case 2: Yearly Data

Model	MAPE	sMAPE	MASE	sMAE
ETS	21.0164 (3)	17.0027 (5)	2.8598 (5)	0.3052 (1)
ARIMA	22.0507 (6)	17.1040 (6)	2.9594 (6)	0.3377 (6)
BSTS	21.4057 (5)	16.4817 (4)	2.8120 (4)	0.3183 (5)
BSTS(Prior)	21.3878 (4)	16.4637 (1)	2.8037 (3)	0.3173 (4)
Hybrid	20.9596 (2)	16.4816 (3)	2.7890 (2)	0.3085 (3)
Hybrid(Prior)	20.9460 (1)	16.4668 (2)	2.7877 (1)	0.3079 (2)

• Case 3: Quarterly Data

Model	MAPE	sMAPE	MASE	sMAE
ETS	12.1527 (3)	9.6843 (4)	1.1701 (4)	0.1194 (3)
ARIMA	13.2409 (6)	10.0061 (6)	1.1888 (6)	0.1265 (6)
BSTS	12.3941 (5)	9.8118 (5)	1.1714 (5)	0.1218 (5)
BSTS(Prior)	12.2342 (4)	9.6444 (3)	1.1619 (3)	0.1201 (4)
Hybrid	12.0428 (2)	9.5901 (2)	1.1450 (1)	0.1179 (2)
Hybrid(Prior)	11.9974 (1)	9.5458 (1)	1.1462 (2)	0.1174 (1)

Case 4: Monthly Data

Model	MAPE	sMAPE	MASE	sMAE
ETS	20.6976 (3)	14.1389 (3)	0.8649 (5)	0.1439 (3)
ARIMA	21.8046 (6)	14.9605 (5)	0.8675 (6)	0.1485 (5)
BSTS	20.7263 (4)	15.1583 (6)	0.8632 (4)	0.1489 (6)
BSTS(Prior)	20.9471 (5)	14.6790 (4)	0.8491 (3)	0.1456 (4)
Hybrid	20.1745 (1)	14.1250 (2)	0.8433 (2)	0.1424 (2)
Hybrid(Prior)	20.4555 (2)	14.0431 (1)	0.8401 (1)	0.1417 (1)

- BSTS 모형은 주기가 짧을수록 예측 성능이 높게 나타났으며, Prior를 지정한 경우에는 주기가 길어질수록 ETS, ARIMA 모형 대비 예측 성능이 떨어지는 기존 BSTS 모형에 비해 예측 성능이 전반적으로 개선되었다.
- → Hybrid 모형은 전반적으로 예측 성능이 가장 높았으며, Prior를 지정한 경우에는 예측 성능이 더욱 향상되었다.

<u>3.2. 예측 결과</u>

③ 미래 예측시점에 따른 적합 결과 비교 모형: ETS, ARIMA, BSTS, Hybrid

• Case 1: Yearly Data

• Case 2: Quarterly Data

Case 3: Monthly Data

○ 미래 예측시점이 길어질수록, Hybrid 모형의 예측 성능이 가장 높게 나타났다.

① BSTS 모형 성질

- ETS 모형에 있는 평활모수(Smoothing Parameter)를 사용하지 않으며, 상태 공간 모형의 형태를 지니고 있기에 추세, 계절성 등 각 상태 요소를 자유롭게 추가할 수 있다.
- 각 요소마다 오차가 존재하므로 Prior를 사용하게 되며, 이를 통해 사후분포(Posterior Distribution)를 개선할 수 있다.

② 예측 결과

- 시계열 자료의 개수가 많지 않은 경우에는 BSTS 모형이 다른 모형에 비해 예측이 가장 잘 되었으며, Prior를 지정하면 기존 BSTS 모형보다 예측 성능이 개선되었다.
- 주기가 짧을수록 BSTS 모형이 예측이 가장 잘 되었으며, Prior를 지정하면 기존 BSTS 모형보다 예측 성능이 개선되었다.
- 예측 성능을 높이기 위해 사용한 Hybrid 모형은 미래 예측시점이 길어질수록 예측 성능이 가장 높게 나타났으며, 다른 부문에서도 전반적으로 예측 성능이 가장 높게 나타났다.
- Prior를 지정한 Hybrid 모형은 기존 Hybrid 모형 대비 예측 성능을 더욱 향상시켜 가장 적합이 잘 되었음을 확인하였다.

3 향후 과제

- M3 Competition 데이터를 활용하여 예측 성능을 비교해보았다. 본 연구에서 사용한 데이터가 아닌 다양한 변수가 존재하는 데이터를 사용하여 BSTS 모형에 회귀효과 구성요소를 추가할 수 있다는 점을 활용하면 예측 성능을 향상시킬 수 있을 것으로 보인다.
- 본 연구에서는 ETS 모형에 대응하는 BSTS 모형을 적합하였으나, 자동으로 최적의 모형을 적합할 수 있도록 설정하면 예측 성능이 더 향상시킬 수 있을 것으로 보인다.

- 성병찬, & 이승경. (2011). 비관측요인모형을 이용한 한국의 국내총생산 분석. 한국데이터정보과학회지, 22(5), 829-837.
- 이우리. (2016). 시계열 분석과 예측 이해와 응용 (2판). 탐진.
- 조신섭, 손영숙, & 성병찬. (2019). SAS/ETS와 R을 이용한 시계열 분석 (5판). 율곡출판사.
- Hyndman, R. J. (2022. 10. 12). Package 'Mcomp'. Retrieved from https://cran.r-project.org/web/packages/Mcomp/Mcomp.pdf
- Hyndman, R. J. (2023. 7. 18). Forecast comparisons using the Mcomp package. Retrieved from https://pkg.robjhyndman.com/Mcomp/articles/Comparisons.html
- Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice (2nd ed.). OTexts.
- Proietti, T. (2004). Forecasting with Structural Time Series Models. A Companion to Economic Forecasting (pp. 105-132). Wiley.
- Rocca, J. (2019. 2. 25). Introduction to Markov chains. Retrieved from https://towardsdatascience.com/brief-introduction-to-markov-chains-2c8cab9c98ab
- Rocca, J. (2019. 7. 1). Bayesian inference problem, MCMC and variational inference. Retrieved from https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29
- Scott, S. L., & Varian, H. (2013). Predicting the Present with Bayesian Structural Time Series. International Journal of Mathematical Modelling and Numerical Optimisation, 5(1-2), 4-23.
- Scott, S. L. (2017. 7. 11). Fitting Bayesian structural time series with the bsts R package. Retrieved from https://www.unofficialgoogledatascience.com/2017/07/fitting-bayesian-structural-time-series.html
- Scott, S. L. (2022. 11. 7). Package 'bsts'. Retrieved from https://cran.r-project.org/web/packages/bsts/bsts.pdf

