## Lecture 6: Introduction to Causal Inference

Hammad Shaikh

#### Motivation

 Economic questions can often be simplified to studying the causal relationship between two variables

- Correlation between the variables is a good starting point
  - Examining scatter plot can be misleading

- Anecdotal evidence is common and arguably most influential
  - Not scientific!

 Econometrics: study causal relationship between economic variables using statistical methods

## Framework for Causal Inference

•  $Y_i = \text{Outcome of interest (wages)}$ 

- $T_i = \text{Treatment of interest (attend college)}$   $T_i \in \{0,1\} = T_i = T(i \text{ attend college}) = \{0, \text{false}\}$
- Individual causal effect:  $Y_{i,T_i=1} Y_{i,T_i=0}$ 
  - Not possible to compute

- Average treatment effect:  $E(Y_{i,T_i=1} Y_{i,T_i=0})$ 
  - Estimate ATE using  $\bar{Y}_{T=1} \bar{Y}_{T=0}$ Biased from selection into TE [01]

# Problem With Using Scatter Plots





• Simple linear regression: 
$$Y_i = \beta X_i + \epsilon_i$$

ullet Argue OLS estimator is biased if  $\epsilon$  related to X

$$y = \beta_0 + \beta_1 \times + \xi_1$$
  $\beta_1 = \frac{\Delta y}{\Delta x} = \frac{\zeta}{2}$ 

## Randomized Control Trials



• Experiments are ideal to study causal relationships



- Units are randomly assigned the treatment variable
  - $\bullet$  Binary treatment:  $\mathsf{T}=0$  (control) and  $\mathsf{T}=1$  (treatment)

- ullet Control group (T = 0) and treatment group (T = 1) are statistically identical prior to treatment assignment
- ullet Unbiased estimate of ATE is  $ar{Y}_{\mathcal{T}=1} ar{Y}_{\mathcal{T}=0}$ 
  - No selection bias as now  $\epsilon \perp \!\!\! \perp T$

## Problem With Experiments

- Experiments are expensive or unethical
  - Expensive to hire teachers
  - Unethical to decide whether someone goes to college

- Difficult to conduct large scale experiments
  - Hard to generalize results from small sample studies

- Need to obtain causal connection from observational data
  - Econometrics can help!

No control

# Multiple Regression Review



• 
$$Y_i = \beta_0 + \beta_1 T_i + \beta_2 X_{2i} + \ldots + \beta_k X_{ki} + \epsilon_i$$
 Same  $X_{2i} \cdot \cdot \cdot \cdot | X_i$ 

ullet Control for variables related to both  $Y_i$  and  $T_i$ 

- Selection on observables:  $T_i$  is essentially random after controlling for  $X_{2i}, \ldots, X_{ki}$ 
  - Conditional independence assumption (CIA):  $T_i \perp \!\!\! \perp \epsilon_i$  after accounting for  $X_{2i}, \ldots, X_{ki}$

• Problem: CIA usually doesn't hold in practice

## Causal Inference from Observational Data

 Question: Is academic probation effective in encouraging students to continue with university and improving their performance?

• Institutional background: Academic probation is CGPA < 1.5

Prob Status: = I ( i MPA < 1.5)

• How to determine causal effect of probation on outcomes?

## Academic Probation and First Year CGPA

Lindo et al. (2010) uses U of T data:



# Academic Probation and Dropout



Effects of academic probation on leaving university by gender





Probation increases droport rate by 2% for men avg.

# Y- Wluge grad, T- HS Scholarship, X = Score Regression Discontinuity Design

• Treatment assignment  $T_i$  depends on "running variable"  $X_i$ 

- $T_i = T_i(X_i) = I(X_i \ge c)$ 
  - Treatment is discontinuous at  $X_i = c$



- $Y_i = \beta_0 + \beta_1 T_i + \beta_2 X_i + \epsilon_i$ 
  - Can constrain data such that  $X_i \in [x \delta, x + \delta]$

$$\hat{Y}_{i,\tau=0} = \hat{b}_0 + \hat{b}_2 \times i + \hat{b}_1 \times i = \hat{b}_0 + \hat{b}_1 + \hat{b}_2 \times i = \hat{b}_0 + \hat{b}_2 \times i = \hat{b}_0 + \hat{b}_1 + \hat{b}_2 \times i = \hat{b}_0 + \hat{b$$

- OLS estimate  $\hat{b}_1$  has causal interpretation
  - Estimates ATE at cutoff  $X_i = c$