6. Generalised multidimensional integrals

We solve the problems together in the exercise sessions. Note that these problems are optional and for learning purposes: solving these does not provide extra points. Actual home assignments (giving you extra points) are given separately.

It is advised to take a look of the problems beforehand. Note that some of the problems might be very challenging, so do not feel bad if you are unable to solve them independently: we will go through the solutions together!

Problems for the session

6.1 Compute
$$\int \int_{\mathbb{R}^2} x^2 e^{-\sqrt{x^2+y^2}} dx dy$$
.

6.2 Let
$$D = \{(x,y) : 0 \le y \le 1 - x, 0 \le x \le 1\}$$
. For which values $\alpha \in \mathbb{R}$ the integral $\int \int_D \frac{1}{(x+y)^{\alpha}} dx dy$ converges?

6.3 Is the generalised integral
$$\int \int_{\mathbb{R}^2} \frac{x^2}{(1+x^2)(x^2+y^2)^{\frac{3}{2}}} dxdy$$
 convergent or divergent?

6.4 Compute
$$\iint_{\mathbb{R}^3} \frac{e^{-(x+2y+2z)^2}}{[1+(2x-2y+z)^2)][1+(2x+y-2z)^2]} dx dy dz.$$

Problems for individual practice

In addition to the problems below, one can get routine by solving similar exercises from the exercise-book "övningar i flerdimensionell analys".

6.1 Compute
$$\int \int_D \frac{1}{1+x^2y^2} dx dy$$
 for $D = \{(x,y) : 1 \le x \le 2, y \ge 0\}$.

6.2 Let
$$D$$
 be a triangle determined by $(0,0)$, $(0,1)$, and $(1,0)$. Show that the integral $\int \int_D (1-x-y)^{\alpha} dx dy$ converges for all values $\alpha > -1$, and determine the value of the integral.

6.3 For which values
$$\alpha \in \mathbb{R}$$
 the integral $\int \int_{\mathbb{R}^2} (x^2 + y^2)^{-\frac{\alpha}{2}} dx dy$ is convergent?

6.4 Is
$$\int \int_D \frac{x^2+1}{x^2(x^2+y^2)^{\frac{3}{2}}} dxdy$$
 for $D = \{(x,y) : x^2+y^2 \le 1\}$ convergent or divergent?

6.5 Compute
$$\iint \int_K e^{x+y+z} dx dy dz$$
, where $K = \{(x, y, z) : 0 \le x, y, z \le 1\}$.

6.6 Compute
$$\int \int \int_K \sqrt{x^2 + y^2 + z^2} dx dy dz$$
, where $K = \{(x, y, z) : x^2 + y^2 + z^2 \le 1, z \ge \sqrt{x^2 + y^2}\}$.

6.7 Compute
$$\int \int \int_K \frac{1}{x^2 + y^2 + z^2} dx dy dz$$
, where $K = \{(x, y, z) : 1 \le x^2 + y^2 + z^2 \le 4\}$.

6.8 Compute
$$\int \int \int_K \frac{z}{1+x^2+y^2} dx dy dz$$
, where $K = \{(x,y,z) : x^2+y^2+z^2 \le 1, z \ge \sqrt{x^2+y^2}\}$.