${\it Class 12-Chemistry-JEE-Mains-Formulas}$

October 18, 2025

Chapter	$\mathbf{Concept}$	Formula / Key Point
Solid State	Types of Solids	Crystalline (long-range order), Amorphous (no order)
	Unit Cell Parameters	Edge length (a), angles (α, β, γ)
	Packing Efficiency	SC = 52%, $BCC = 68%$, $FCC = 74%$
	Density of Unit Cell	$\rho = \frac{ZM}{N_A a^3}$
Solutions	Molarity (M)	$M = \frac{\text{moles solute}}{\text{liters of solution}}$
	Molality (m)	$m = \frac{\text{moles solute}}{\text{kg of solvent}}$
		$X_A = \frac{n_A}{\sum n_i}$
	Vapour Pressure Lowering (Raoult's Law)	$P_{\rm solution} = X_{\rm solvent} P_{\rm solvent}^0$
	Boiling Point Elevation	$\Delta T_b = K_b m$
	Freezing Point Depression	$\Delta T_f = K_f m$
	Osmotic Pressure	$\Pi = MRT$
	Van't Hoff Factor	$i = \frac{\text{observed colligative effect}}{\text{calculated colligative effect}}$
Electrochemistry	Electrode Potential	$E = E^{\circ} - \frac{0.0591}{n} \log Q \text{ (Nernst Equation at 25°C)}$
	Gibbs Free Energy and Cell Potential	$\Delta G = -nFE$
	_	_

Chapter	Concept	Formula / Key Point
	Relation with Equilibrium Constant	$E^{\circ} = \frac{0.0591}{n} \log K$
	Electrolytic Conductance	$\kappa = \frac{1}{R} \frac{l}{A}$
	Molar Conductance	$\Lambda_m = \frac{\kappa \times 1000}{C}$
Chemical Kinetics	Rate Law	$Rate = k[A]^m[B]^n$
	Order of Reaction	Sum of powers in rate law $(m+n)$
	First Order Reaction	$[A] = [A] * 0e^{-kt}, t * 1/2 = \frac{0.693}{k}$
	— Arrhenius Equation	$k = Ae^{-\frac{E_a}{RT}}$
Surface Chemistry	— Adsorption Isotherm	Langmuir Isotherm: $\frac{x}{m} = \frac{abP}{1+bP}$
	— Catalysis	Homogeneous & Heterogeneous catalysis; Activation energy lowering
The p-Block Elements	Group 13 (Boron Family)	Oxidation states: $+3$ and $+1$; Borax formula: Na2B4O7 · 10H2O
	Group 14 (Carbon Family)	Oxidation states: +4 and +2; Catenation strongest in Carbon
	Group 15 (Nitrogen Family)	Oxidation states: -3 to $+5$; Nitric acid, ammonia important compounds
	Group 16 (Oxygen Family)	Oxidation states: -2, +4, +6; Sulfur allotropes, SO2, SO3
	Group 17 (Halogens)	Oxidation states: -1 to +7; Reactivity decreases down group
	Group 18 (Noble Gases)	Mostly inert; Compounds like XeF4 exist
The d-Block Elements	General Characteristics —	Variable oxidation states; Form colored ions

Chapter	Concept	Formula / Key Point
	Electronic Configuration	$(n-1)d^{1-10} ns^{0-2}$
	Magnetic Moment	$\mu = \sqrt{n(n+2)}$ BM (n = number of unpaired electrons)
	Complex Formation	Ligand coordination; Coordination number 4 or 6 common
The Coordination Compounds	— Coordination Number	Number of ligand bonds to central atom
	Werner's Theory	Primary & secondary valency
	Crystal Field Splitting	\$ _0\$ (octahedral), \$ _t\$ (tetrahedral)
	Color & Magnetic Properties	— Due to d-orbital splitting and electron arrangement
The Organic Chemistry	IUPAC Nomenclature	Rules for naming organic compounds
	Isomerism	Structural, geometrical, optical
	— Functional Groups	Alcohol (-OH), Aldehyde (-CHO), Ketone (>C=O), Carboxylic Acid (-COOH), etc.
	Reaction Types	Addition, Substitution, Elimination, Rearrangement
The Haloalkanes & Haloarenes	Reactions	Nucleophilic substitution, elimination
The Alcohols, Phenols & Ethers	Properties	H-bonding, acidity of phenols > alcohols
	Reactions	Dehydration, oxidation, esterification
The Organic Compounds Containing Nitrogen	Amines	Basicity, substitution reactions
	— Diazonium Salts	— Preparation, reactions in azo dye synthesis