<u>Feststellungsprüfung Mathematik</u> <u>Analytische Geometrie</u>

Arbeitszeit: 90 Minuten Musterprüfung

Hilfsmittel: Taschenrechner, Merkhilfe der Mathematik

In allen Aufgaben ist ein kartesisches Koordinatensystem des \mathbb{R}^3 vorausgesetzt.

- $\textbf{1.0} \text{ Gegeben sind die Gerade } g \colon \overrightarrow{X} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \text{mit } \lambda \in \mathbb{R} \text{ und die Ebene E: } x_1 + 2x_2 x_3 1 = 0$
- 1.1 Zeigen Sie, dass die Gerade g auf der Ebene E liegt.
- **1.2** Die Punkte A(1/1/2) und $B(3/b_2/b_3)$ liegen auf der Gerade g. Bestimmen Sie die Koordinaten b_2 und b_3 .
- **1.3** Mit dem Punkt C(3/-2/-2), der nicht auf der Gerade g aber in der Ebene E liegt, wird das Dreieck ABC bestimmt. Berechnen Sie den Flächeninhalt des Dreiecks.
- **1.4** Das Dreieck ABC ist die Grundfläche einer Pyramide mit der Spitze $R(2/r_2/4)$. Bestimmen Sie das Volumen der Pyramide in Abhängigkeit von r_2 .
- **1.5** Berechnen Sie r_2 so, dass die Länge der Höhe der Pyramide $\sqrt{6}$ LE beträgt.
- **2.0** Gegeben sind der Punkt A(0/1/2) und die Punktmenge $B_{\tau}(1/2\tau/3\tau)$ mit $\tau \in \mathbb{R}$.
- **2.1** Geben Sie die Gleichung der Gerade g an, auf der alle Punkte B_{τ} liegen. (Hinweis: Betrachten Sie τ als Parameter)
- **2.2** Bestimmen Sie τ so, dass B_{τ} und A die kürzeste Entfernung haben.
- **2.3** Bestimmen Sie eine Normalengleichung der Ebene E, in der der Punkt A und alle Punkte B_{τ} liegen. (mögliches Ergebnis: E: $x_1 3x_2 + 2x_3 1 = 0$)
- **2.4** Gegeben ist weiterhin die Ebene F: $x_2 + x_3 4 = 0$. Bestimmen Sie eine Gleichung der

Schnittgerade s der Ebenen E und F. (Teilergebnis: Richtungsvektor
$$\vec{u}_s = \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$$
)

- **2.5** Berechnen Sie den Schnittwinkel φ der Ebenen E und F.
- 2.6 Berechnen Sie den Abstand des Punktes A von der Ebene F.
- **2.7** Gegeben ist weiterhin die Ebene H: $x_1 + 7x_2 x_3 2 = 0$. Bestimmen Sie die Schnittmenge $\{E \cap F \cap H\}$ und zeigen Sie mit einer Skizze die daraus resultierende gegenseitige Lage der drei Ebenen.

	FESTSTELLUNGSPRÜFUNG IN MATHEMATIK MUSTERPRÜFUNG (TEIL 2 GEOMETRIE)	
	Arbeitszeit: 90 Minuten	
		ittel: Taschenrechner TI / Externe
BE		In allen Aufgaben wird ein kartesisches Koordinatensystem des P^3 vorausgesetzt.
6	1.	Gegeben sind im P^3 die drei Vektoren $\vec{a} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 4 \\ -2 \\ -10 \end{pmatrix}$ und $\vec{c} = \begin{pmatrix} 1 \\ 4 \\ -5 \end{pmatrix}$.
	1.1	a) Nennen Sie drei Eigenschaften eines Vektors des P 3 . b) Beweisen Sie, dass die Vektoren \vec{a} und \vec{b} in keiner dieser Vektoreigenschaften übereinstimmen.
	1.2	Zeigen Sie, dass die drei Vektoren \vec{a}, \vec{b} und \vec{c} eine Basis des Υ^3 bilden.
4	2.	Gegeben ist die Schar von Ebenen $E_a: 2x_1 + x_2 - 2x_3 = a \mod a \in \Upsilon$ und der Punkt P(-1 2 -3). Bestimmen Sie a so, dass P den positiven Abstand 2 von E_a hat.
	3.	Gegeben sind die Gerade $g: \overline{X} = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ und die Punkte $A(2 1 3)$ und $B(2 5 3)$.
8	3.1	Die Ebene E enthält die Punkte A und B und verläuft parallel zu g. a) Bestimmen Sie jeweils eine Gleichung von E in Parameter- und Koordinatenform. b) Beschreiben Sie die Lagen von g und E jeweils zum Koordinatensystem. c) Welchen Abstand hat g von E? Begründen Sie Ihre Antwort!
8	3.2	Der Punkt T liegt auf der Geraden g und bildet zusammen mit den Punkten A und B ein bei T rechtwinkliges Dreieck.
		a) Bestimmen Sie die Koordinaten von T.
		b) Errechnen Sie den Flächeninhalt des Dreiecks ABT.
		c) Bestimmen Sie einen Punkt P, der von A, B und T den gleichen Abstand hat.
4	3.3	Das Dreieck ABT mit T(2 3 5) rotiert um die Seite [AB]. Dabei entsteht ein Doppelkegel. Bestimmen Sie dessen Volumen.
	4.	Die Punkte P, Q, R und S bilden die Eckpunkte einer dreiseitigen Pyramide mit der Spitze S. Die Punkte M_1 und M_2 sind die Mittelpunkte der Strecken [PQ] und [PR], die Punkte M_3 und M_4 sind die Mittelpunkte der Strecken [QS] und [RS].
4	4.1	Beweisen Sie (ohne Verwendung von Koordinaten) mit Hilfe einer Skizze, dass $\overline{M_1M_2}=\overline{M_3M_4}$ gilt.
6	4.2	Die Punkte P, Q, R und S erhalten jetzt Koordinaten: P(6 0 -2), Q (-2 4 -2), R(0 -2 -2) und S(2 2 3).
		a) Bestimmen Sie den Rauminhalt der Pyramide PQRS.
		b) Berechnen Sie das Maß des Winkels α zwischen der Grundfläche der Pyramide und der x_1 - x_3 -Ebene auf 2 Dezimale gerundet.
40		