Chapter 13

Exercise 13A

- **1** a $m_{KL} = \frac{1}{3}$
 - **b** $m_{MN} = \frac{1}{3}$
 - **c** Lines KL and MN are parallel, because they have the same gradients.
- **2 a** $m_{AB} = -\frac{7}{3}$
 - **b** $P(0, \frac{2}{3})$
 - **c** $y = -\frac{2}{3}x + 3$
- 3 $y = -\frac{3}{2}x 1$
- **4** $m_{TU} = 2$, $m_{VW} = 2$
- 5 $m_{PQ} = \frac{4}{3}$, $m_{RS} = \frac{4}{3}$, hence PQ||RS. $m_{OR} = \frac{3}{4}$, $m_{PS} = \frac{3}{4}$, hence QR||RS.
- **6** $a = -\frac{3}{2}$
- 7 a = 4

Exercise 13B

- **1 a** $m_{AB} = 1, m_{BC} = \frac{4}{3}$. A, B, C are not collinear.
 - **b** $m_{DE} = -2$, $m_{EF} = -2$. D, E, F are
 - c $m_{GH}=\frac{1}{2}, m_{HJ}=\frac{1}{2}.$ G, H, J are collinear.
 - **d** $m_{KL} = -3$, $m_{LM} = -2$. K, L, M are not collinear.
- **2** k = 7
- **3** The fly walked over point (3, 0), but not over point (3, -1).
- 4 $m_{AB} = \frac{5}{3}$, $m_{BS} = \frac{5}{3}$. Team 1 will make it to the station.
 - $m_{CD} = \frac{2}{3}$, $m_{CS} = \frac{10}{3}$. Team 2 will not make it to the station.

Exercise 13C

- 1 a $m = -\frac{3}{2}$
 - **b** $m = \frac{3}{4}$
 - **c** m = -2
 - **d** $m = -\frac{1}{7}$

e m = -1

 \bigoplus

- **f** $m = \frac{1}{3}$
- **g** m = 5
- **h** m is undefined
- $2 m_{\perp} = -\frac{2}{9}$
- 3 $y = -\frac{2}{3}x + 2$
- **4** $m_{ST} = \frac{3}{4}$, $m_{\perp} = -\frac{4}{3}$, M(-2, -2)
- 5 $m_{CE} = -\frac{3}{4}$, $m_{DE} = \frac{4}{3}$, $m_{CE} \times m_{DE} = -1$
- **6** $m_{PO} = m_{RS} = \frac{12}{5}$
 - $m_{QR} = m_{PS} = -\frac{5}{12}$
 - $m_{PO} \times m_{PS} = -1$
 - $m_{OR} \times m_{RS} = -1$
 - $\overline{PQ} = \overline{QR} = \overline{RS} = \overline{SP} = 13$
- 7 $m_1 = \frac{2}{5}$, $m_2 = -\frac{5}{2}$, $m_1 \times m_2 = -1$
- 8 a = -5
- **9** $m_{AC} = -\frac{1}{5}$, $m_{BD} = 5$, $m_{AC} \times m_{BD} = -1$
- **10 a** A(4, 0)
 - **b** B(2, 4)
 - c $\overline{AB} = 2\sqrt{5}$
- **11** y = 4

Exercise 13D

- **1 a** m = 1
 - **b** $m = \frac{\sqrt{3}}{3}$
 - **c** m = -1
 - **d** $m = -\sqrt{3}$
 - e m is undefined.
 - **f** $m = -\frac{\sqrt{3}}{3}$
 - $\mathbf{g} \quad m = 0$
 - **h** $m = \sqrt{3}$
- **2 a** $\theta = 78.7^{\circ}$
 - **b** $\theta = 18.4^{\circ}$
 - $\theta = 116.6^{\circ}$
 - **d** $\theta = 158.2^{\circ}$
 - **e** $\theta = 60.3^{\circ}$
 - **f** $\theta = 114.4^{\circ}$

- 3 $\theta = 18.4^{\circ}$
- **4** $\theta = 153.4^{\circ}$
- $\mathbf{5} \quad \theta_{\widehat{AOB}} = 45^{\circ}$
- **6** $\theta = 45^{\circ}$
- 7 $\theta = 90^{\circ}$
- **8** $\theta_1 = 56.3$ $\theta_2 = 120.96$ $\theta_3 = 177.26$

Exercise 13F

- 1 a y = -3x + 15
 - **b** y = x 1
 - $\mathbf{c} = P(4, 3)$
 - **d** $m_{PO} = -1$, $m_{BC} = -1$, hence PQ||BC.
- 2 $\frac{3}{2}y + x = 7$
- 3 a JL: 2y + x = -9
 - **b** KP : y 2x = 3
 - **c** P(-3, -3)
- **4 a** AP: 7y + x = 10, BQ: y + 7x = 6
 - **b** $N(\frac{2}{3}, \frac{4}{3})$
 - c $CR : y + x = 2; \frac{4}{3} + \frac{2}{3} = 2$, hence CR passes through N.
- **5** C(9, 15)
- **6** AM: 2y x = -5; BN: y + 2x = 0; CP: 3y + x = -5 Centroid:(1, -2)
- 7 The coordinates of the centroid are the mean of the coordinates of the vertices.
- **8** Orthocentre: (-9, -8)
- 9 $m_{AB} = -1$, $m_{BC} = 1$, $m_{AB} \times m_{BC} = -1$, hence $\overline{AB} \perp \overline{BC}$ and the triangle is right-angled at B.

Orthocentre is at (-4, 0), which corresponds to vertex B.

