

SELF-DRIVING cars using GTA and DEEP LEARNING

SELF-DRIVING cars using GTA and DEEP LEARNING

- It's hard, but possible
- Many approaches, and techniques
- Occupanies, People

What is Self-driving?

"A self-driving car, that is, a ground vehicle that is capable of sensing its environment and moving safely with little or no human input."

~ Wikipedia

Waymo

Waymo

Waymo

- Many approaches, and techniques
- Occupanies, People

Tasks

- Vision: Camera, wide street to driver monitoring
- **Perception & Localization:** What's around us
- Motion: IMU, gyroscopes, and accelerometers
- The car: Speedometer, GPS, maps

- Vision: Camera, wide street to driver monitoring
- **Perception & Localization:** What's around us
- Motion: IMU, gyroscopes, and accelerometers
- The car: Speedometer, GPS, maps

- Vision: Camera, wide street to driver monitoring
- **Perception & Localization:** What's around us
- **Motion:** IMU, gyroscopes, and accelerometers
- The car: Speedometer, GPS, maps

- Vision: Camera, wide street to driver monitoring
- **Perception & Localization:** What's around us
- Motion: IMU, gyroscopes, and accelerometers

SELF-DRIVING cars using GTA and DEEP LEARNING

Could have been **ANY** game

- Its mod-able
- Open world, and realistic
- Fewer humans to hit, but...
- Fun, fun, fun

Demo

GTA

- Speed
- Steering Angle
- Throttle & Brake

GTA

- A ScriptHookV script
 - Car State
 - Speed
 - Steering Angle
 - Throttle & Brake Power
- Very flexible and easy, can get back fuel & oil levels. Engine health, rotation, location, and much-much more

Demo

Demo

GTA

- **Trips** end to end travelling from point A to point B. Typically 10 minutes of travel, recorded at 7 fps.
 - Various driving conditions, like day/night, rain or sunshine and time of day
 - Drivers and cars, various drivers including Franklin, Michael and Trevor (If he is sober) was used..
 - Segments Each trip gets broken down into 1 min segments to simplify training
 - **Video** Each segment has frames (800x600 RGB)
 - Ontrol Each frame has a correlated car state saved, including the steering angle, power applied to the brake and throttle.

Demo

SELF-DRIVING cars using GTA and DEEP LEARNING

Deep learning

Deep learning

- Transfer learning
- Regression

- Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
 - ResNet
 - AlexNet

Demo

Demo

Architecture

Ubuntu (Nvidia Jetson)

Screen Subscriber

Car State Subscriber

Control Client

ZMQ

Screen Publisher

Car State Publisher

Windows (Dell)

Control Server

The Plan

Before we start

- **Disclaimers**, I am not a...
 - Python developer
 - Al expert
 - Gamer
- All code and examples will be available to download
- Almost all the examples are Jupyter notebooks

Before we start

- Setup
 - Dell Latitude
 - Jetson Nano
- Based on JetBot
 - Road following
 - Object detection
 - Collision avoidance
- Architecture
 - Distributed (ZMQ)
 - Over-engineered (sorry)

Summary

- Machines can learn what humans can do
- Simple pattern

- Many other applications like
- Fruit sorting and picking
- Security systems

