Problem Set 3

Problem Set 3

due: 2025-09-22

Question 1: Let G be a group and let $H, K \subseteq G$ be subgroups of G. Suppose that H and K are both normal in G, and that $H \cap K = \{1\}$. Recall that HK is a subgroup of G. Prove that the natural map $H \times K \to HK$ given by $(h, k) \mapsto h \cdot k$ is a group isomorphism.

Recall that the group structure on the cartesian product is given for $(h, k), (h', k') \in H \times K$ by:

$$(h,k)\cdot(h',k')=(hh',kk'), \quad (h,k)^{-1}=(h^{-1},k^{-1}) \text{ and } 1_{H\times K}=(1_H,1_K);$$

this is the direct product of G and H.

Question 2: Let $\varphi: G \to H$ be a surjective group homomorphism, and suppose that $N \subseteq H$ is a normal subgroup of H. Prove that $\varphi^{-1}(H) = \{g \in G \mid \varphi(g) \in H\}$ is a normal subgroup of G.

Question 3: Suppose that G and G' are groups, let H, K be subgroups of G, and let H', K' be subgroups of G'. Assume that

- H normalizes K and H' normalizes K'.
- $G = \langle K, H \rangle = KH$ and $G' = \langle K', H' \rangle = K'H'$.
- $K \cap H = \{1\}$ and $K' \cap H' = \{1\}$.
- there are group isomorphisms $\varphi: H \xrightarrow{\sim} H'$ and $\psi: K \xrightarrow{\sim} K'$.

Since H normalizes K, for $h \in H$ we know that the restriction of Inn_h to K determines an automorphism of K; similarly, for $h' \in H'$, $\mathrm{Inn}_{h'}$ determines an automorphism of K'.

We finally suppose

• for $h \in H$ and $k \in K$ we have $\psi(\operatorname{Inn}_h k) = \operatorname{Inn}_{\varphi(h)} \psi(k)$.

Then there is a group isomorphism $\Phi: G \to G'$ given for (k,h) = KH = G by the rule

$$\Phi(k,h) = \psi(k)\varphi(h) \in K'H' = G'$$

.

Question 4: For a prime number p, write $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ and let

$$H_p = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} | a,b,c \in \mathbb{F}_p \right\}$$

so that H_p is a subgroup of $\mathrm{GL}_3(\mathbb{F}_p)$ of order p^3 . (You should at least think through why this is so, though you needn't submit the details).

a. Prove that H_2 is isomorphic to $D_8=D_{2\cdot 4}$, the dihedral group with 8 elements.

Hint: find $\sigma, \tau \in H_2$ with $o(\sigma) = 4$, $o(\tau) = 2$ which have the property that $\tau \sigma \tau = \sigma^{-1}$. Then $H_2 = \langle \sigma \rangle \cdot \langle \tau \rangle$. Now use the solution to Question 3.

b. Show that H_p is a p-Sylow subgroup of $GL_3(\mathbb{F}_p)$.

Question 5: Let G be a finite group, let p be a prime number, and let $P \in \mathrm{Syl}_p(G)$. Let

$$H=N_G(P)=\left\{g\in G\mid \operatorname{Inn}_q P=P\right\}$$

be the normalizer of P in G. Prove that $N_G(H)=H$. (In words: the normalizer of a Sylow p-subgroup is self-normalizing).

Question 6: Suppose that F is a field.

- a. Show that the ideals of F are $\{0\}$ and F.
- b. Deduce that if R is any commutative ring (with $0_R \neq 1_R$), then any homomorphism

$$\varphi: F \to R$$

is injective.

Question 7: Let $D \in \mathbb{Z}$ and suppose that D is square-free - i.e. for any prime number $p, p^2 \nmid D$. If $D \equiv 1 \pmod 4$ let

$$\omega = \frac{1 + \sqrt{D}}{2}$$

and show that $\mathbb{Z}[\omega]=\{a+b\omega\mid a,b\in\mathbb{Z}\}$ forms a subring of $\mathbb{C}.$