

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Réf : DE-EX-01

Indice:3

Date: 02/12/2019

Page: 1/2

EPREUVE D'EVALUATION

Année Universitaire : 2021/2022	Date de l'Examen: 23/11/2021
Nature : ☑DC ☐ Examen ☐ DR	Durée: □1h☑1h30min □ 2h
Diplôme : □Mastère ☑ Ingénieur	Nombre de pages :02
Section: □GCP□GCV□GEA☑GCR□GM	Enseignante : Mr. Abdelhakim KHLIFI
Niveau d'étude : □1ère ☑2ème □3èmeannée	Documents Autorisés :□ Oui⊠Non
Matière : Communications Numériques	Remarque: Calculatrice autorisée

Exercice 1 : (6 points)

- Donnez les objectifs à atteindre lors de la conception d'une chaine de communication numérique
- 2. Donnez les critères de choix d'un bon code en ligne.
- 3. Dans un tableau, comparez les codes NRZ bipolaire, NRZ unipolaire, RZ-1/2
- 4. Déterminer, avec démonstration, l'expression de la densité spectrale de puissance du codage RZ-1/2 unipolaire. En déduire celle du code Manchester. Conclure.

Exercice 2: (14 points)

On désire étudier la performance d'un signal NRZ unipolaire. Ce signal est transmis à travers un canal BBAG. La densité spectrale de puissance du bruit vaut 2.94 × 10⁻¹³ W/Hz. Une mesure du rapport Signal sur Bruit à la sortie du filtre de réception est donnée par la valeur 12 dB. La source est considérée non équiprobable.

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Indice:3

Date: 02/12/2019

Réf: DE-EX-01

Page: 2/2

EPREUVE D'EVALUATION

On suppose que le critère de Nyquist est respecté. La bande du système $B=3.78\,MHz$ et la facteur roll-off $\alpha = 0.4$.

- 1. Schématiser la chaine de transmission numérique complète.
- 2. Ecrire l'expression du signal reçu y(t) à la sortie du filtre de réception. Analysez cette expression.
- 3. Donnez, avec démonstration, l'expression de la probabilité d'erreur P_e en fonction de A, σ , p_1 et λ le seuil de détection.
- 4. Donnez, avec démonstration, l'expression du seuil de décision optimal λ_{opt} qui minimise la probabilité d'erreur en fonction A, σ et p_1 .
- 5. Sachant que $\lambda_{opt} = 3 \ mV$, calculer la probabilité p_1 .
- 6. Calculer dans ce cas la probabilité d'erreur P_e .
- 7. Maintenant, la puissance d'émission est augmentée d'ordre 20%. Recalculer dans ce cas la probabilité d'erreur P_e. Conclure.
- Donnez des solutions pour diminuer la probabilité d'erreur P_e .
- Schématiser, sur une période T, le filtre de réception . Quel est son rôle ?
- 10. Quel est l'intérêt de diagramme de l'œil.
- 11. Tracez le digramme de l'œil du signal reçu dans les cas suivants :
 - a. Canal parfait
 - b. Canal à bande limitée
- 12. Quels sont les conditions à respecter pour un filtre de Nyquist idéal. Est-il réalisable dans la pratique ? Justifiez votre réponse.

<u>Annexe</u>

$$erfc(x) = 2.Q(\sqrt{2}x)$$

Eb Dsp = Ple = 2,9 h x 10 w (18)
$$erfc(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{+\infty} e^{-z^{2}} dz$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{x}^{+\infty} e^{-\frac{(y-m)^{2}}{2\sigma^{2}}} dy$$
$$\frac{d(erfc(u))}{du} = \frac{-2}{\sqrt{\pi}} e^{-u^{2}} U$$
$$\sigma^{2} = \frac{N_{0}}{2T_{b}}$$

DSP d'un code en ligne sans mémoire

$$\gamma_x(f) = \frac{\sigma_a^2}{T} + \frac{m_a^2}{T^2} \sum_k \delta\left(f - \frac{k}{T}\right)$$

$$\mathcal{T} = \mathcal{N} = \frac{N_0}{2Tb}$$

21