6 Linear Model Selection and Regularization

Andrew Liang

10/7/2020

Notes

Subset Selection

Best Subset

- 1. Fit M_0 , the null model, with no predictors. (only predicts sample mean for each observation).
- 2. For $k = 1, 2, \dots, p$:
 - Fit all $\binom{p}{k}$ models that contain exactly k predictors
 - Choose the best among the $\binom{p}{k}$ models and call it M_k . Best is defined as having smallest RSS, or equivalently largest R^2
- 3. Select single best model among M_0, \ldots, M_p using CV prediction error, $C_p(AIC)$, BIC, or adjusted R^2
- Suffers from computational limitations, as the number of possible models grows rapidly as p increases (2^p models)

Forward Stepwise Selection

- 1. Fit M_0 , the null model, with no predictors.
- 2. For $k = 0, \dots, p 1$:
 - Consider all p-k models that augment the predictors in M_k with one additional predictor
 - Choose best among p-k models (M_{k+1})
- 3. Select single best model among M_0, \ldots, M_p using CV prediction error, $C_p(AIC)$, BIC, or adjusted R^2
- Much less computationally expensive compared to best subset
- However, not guaranteed to find best subset model
- Can be applied in high-dimensional setting (n < p)

Backward Stepwise Selection

- 1. Fit M_p , the full model, with all predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - Consider all k models that contain all but one of the predictors in M_k , for a total of k-1 predictors
 - Choose best among k models (M_{k-1})
- 3. Select single best model among M_0, \ldots, M_p using CV prediction error, $C_p(AIC)$, BIC, or adjusted R^2

- Also not guaranteed to find best model
- REQUIRES that n is larger than p

Best subset, forward, and backward selection generally give similar but not identical models

Choosing the Optimal Model

Techniques for adjusting the training error for the model size are available

- 1. C_p
 - for a fitted least squares model containing d predictors and the variance of the error $\hat{\sigma}^2$, C_p estiamte of test MSE is:

$$C_p = \frac{1}{n}(RSS + 2d\hat{\sigma}^2)$$

- penalty increases as number of predictors in model increases
- choose model with lowest C_p value
- 2. AIC
 - defined for models fit by maximum likelihood (least squares)

$$AIC = \frac{1}{n\hat{\sigma}^2} (RSS + 2d\hat{\sigma}^2)$$

- proportional to C_p
- 3. BIC (similar to C_p and AIC, but from a Bayesian POV)

$$BIC = \frac{1}{n\hat{\sigma}^2}(RSS + 2log(n)d\hat{\sigma}^2)$$

- replaces $2d\hat{\sigma}^2$ with $log(n)d\hat{\sigma}^2$
- since log(n) > 2 for any n > 7, BIC generally places heavier penalty on models with many predictors
- 4. Adjusted \mathbb{R}^2

$$AdjustedR^{2} = 1 - \frac{RSS/(n-d-1)}{TSS/(n-1)}$$

- unlike previous penalties, we want to choose model with highest adjusted R^2
- despite popularity, is not as statistically motivated as the previous penalties

Shrinkage Methods

- fit model using all predictors and regularizes coefficients/shrinks coefficients towards zero
 - reduces variance

Ridge Regression

wants to minimize:

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{n} \beta_j^2 = RSS + \lambda \sum_{j=1}^{n} \beta_j^2$$

- $\lambda \sum_{j=1}^{n} \beta_j^2$ is the shrinkage penalty $\lambda \geq 0$ is the tuning parameter
- - as $\lambda \to \infty$, the model coefficients approaches zero (except for model intercept β_0)
- selecting λ value is important (can use CV)
- best to apply ridge after predictors have been standardized (due to potential scaling issues):

$$\tilde{x_{ij}} = \frac{x_{ij}}{\sqrt{\left(\frac{1}{n}\sum_{i=1}^{n}(x_{ij} - \overline{x}_j)^2\right)}}$$