Exercises chapter 10

Andreas Slåttelid

Exercise 10.1

In this exercise we are dealing with a term-insurance, meaning that $S = \{*, \dagger\}$, we have stochastic interest rates, which follows a Vasicke model, furthermore, the risk-premium is given by $\gamma = 0$, meaning that we will have the same model under P as under Q, the contractual information provided is:

We clarify, what the survival-probability is:

$$p(t,s) = \exp\left(-\int_{t}^{s} \mu_{*\dagger}(u)du\right)$$
$$= \exp(-0.009[s-t])$$

The desired Vasicek model is in this case given by:

$$dr_t = a(b - r_t)dt + \sigma dW_t^Q$$

Furthermore it's said that premiums are paid continiously, giving us the following policy-functions:

$$a_*(t) = \begin{cases} 0, & t < 0 \\ -\pi t, & t \in [0, T) \\ -\pi T, & t \ge T \end{cases} \quad a_{*\dagger}(t) = \begin{cases} B, & t \in [0, T) \\ 0, & else \end{cases}$$

and

$$\dot{a}_*(t) = -\pi \mathbb{1}_{[0,T)}(t)$$

We start off by stating the general formula for reserves in continous-time:

$$V_{i}^{+}(t,A) = \sum_{j} \frac{v(T)}{v(t)} p_{ij}^{x}(t,T) \Delta a_{j}(T) + \sum_{j} \int_{t}^{T} \frac{v(s)}{v(t)} p_{ij}^{x}(t,s) da_{j}(s) + \sum_{k \neq j} \int_{t}^{T} \frac{v(s)}{v(t)} p_{ij}^{x}(t,s) \mu_{jk}^{x}(s) a_{jk}(s) ds$$

Furthermore, we define:

$$V_i^+(t, r_t) = \mathbb{E}_Q[V_i^+(t, A)|\mathcal{F}_t]$$

we also have:

$$P(t,T) = \mathbb{E}_{Q}[e^{-\int_{t}^{T} r_{u} du} | \mathcal{F}_{t}]$$

We have i = * and $j \in \{*, \dagger\}$, this gives us:

$$V_*^+(t, r_t) = -\pi \int_t^T P(t, s) p_{**}^x(t, s) ds + B \int_t^T P(t, s) p_{**}^x(t, s) \mu_{*\dagger}^x(s) ds$$

Since we are dealing with the Vasicek model, we have that it belongs to a class called: Affine term structures, which in simplicity means that the zero-coupon bond price P(t,T) have an explicit form:

$$P(t,T) = e^{-A(T-t)r_t + B(T-t)}$$

Where:

$$A(h) = \frac{1 - e^{-ah}}{h}$$
 and $B(h) = \left(b + \frac{\gamma\sigma}{a} - \frac{\sigma^2}{2a^2}\right) [A(h) - h] - \frac{\sigma^2}{4a} A(h)^2$

Now by the equivalence principle we have, that the fair premium π is given by:

$$0 = V_*^+(0, A) = \mathbb{E}_Q[V_*^+(0, r_0)]$$

Hence:

$$0 = -\pi \int_0^T P(0, s) p_{**}^x(0, s) ds + B \int_0^T P(0, s) p_{**}^x(0, s) \mu_{*\dagger}^x(s) ds$$

$$\downarrow \downarrow$$

$$\pi = \frac{B \int_0^T P(0, s) p_{**}^x(0, s) \mu_{*\dagger}^x(s) ds}{\int_0^T P(0, s) p_{**}^x(0, s) ds}$$