Лабораторная работа №4

Линейная алгебра

Чемоданова Ангелина Александровна

Содержание

1	Введение		5	
	1.1	Цели и задачи	. 5	
2	Выг	полнение лабораторной работы	6	
	2.1	Поэлементные операции над многомерными массивами	6	
	2.2	Транспонирование, след, ранг, определитель и инверсия матрицы	8	
	2.3	Вычисление нормы векторов и матриц, повороты, вращения	9	
	2.4	Матричное умножение, единичная матрица, скалярное произведение	11	
	2.5	Факторизация. Специальные матричные структуры	12	
	2.6	Общая линейная алгебра	19	
		Самостоятельная работа	19	
3	Выв	воды	26	
Сп	писок литературы			

Список иллюстраций

2.1	матрицы
2.2	Поэлементные операции сложения и произведения элементов
۷,۷	матрицы
2.3	Использование возможностей пакета Statistics для работы со
۵.5	средними значениями
2.4	Использование библиотеки LinearAlgebra для выполнения
۷.٦	определённых операций
2.5	Использование библиотеки LinearAlgebra для выполнения
2.0	определённых операций
2.6	Использование библиотеки LinearAlgebra для выполнения
2.0	определённых операций
2.7	Использование LinearAlgebra.norm(x)
2.8	Использование LinearAlgebra.norm(x)
2.9	Вычисление нормы для двумерной матрицы
	Вычисление нормы для двумерной матрицы
	Примеры матричного умножения, единичной матрицы и
	скалярного произведения
2.12	Примеры матричного умножения, единичной матрицы и
	скалярного произведения
2.13	Решение систем линейный алгебраических уравнений Ax = b
2.14	Пример вычисления LU-факторизации и определение составного
	типа факторизации для его хранения
2.15	Пример вычисления LU-факторизации и определение составного
	типа факторизации для его хранения
2.16	Пример решения с использованием исходной матрицы и с
	использованием объекта факторизации
2.17	Пример вычисления QR-факторизации и определение составного
	типа факторизации для его хранения
	Примеры собственной декомпозиции матрицы А
	Примеры собственной декомпозиции матрицы А
2.20	Примеры работы с матрицами большой размерности и специальной
	структуры
2.21	Примеры работы с матрицами большой размерности и специальной
	структуры
	Пример добавления шума в симметричную матрицу
2.23	Пример явного объявления структуры матрицы

2.24 Использование пакета BenchmarkTools	18
2.25 Примеры работы с разряженными матрицами большой размерности	19
2.26 Решение системы линейных уравнений с рациональными	
элементами без преобразования в типы элементов с плавающей	
запятой	19
2.27 Решение задания "Произведение векторов"	20
2.28 Решение задания "Системы линейных уравнений"	20
2.29 Решение задания "Системы линейных уравнений"	21
2.30 Решение задания "Системы линейных уравнений"	21
2.31 Решение задания "Операции с матрицами"	22
2.32 Решение задания "Операции с матрицами"	22
2.33 Решение задания "Операции с матрицами"	23
2.34 Решение задания "Операции с матрицами"	23
2.35 Решение задания "Линейные модели экономики"	24
2.36 Решение задания "Линейные модели экономики"	24
2.37 Решение задания "Линейные модели экономики"	25

1 Введение

1.1 Цели и задачи

Цель работы

Основной целью работы является изучение возможностей специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры[1].

Задание

- 1. Используя Jupyter Lab, повторите примеры.
- 2. Выполните задания для самостоятельной работы[2].

2 Выполнение лабораторной работы

2.1 Поэлементные операции над многомерными

массивами

Для матрицы 4×3 рассмотрим поэлементные операции сложения и произведения её элементов (рис. 2.1 - рис. 2.2):

Рис. 2.1: Поэлементные операции сложения и произведения элементов матрицы

Рис. 2.2: Поэлементные операции сложения и произведения элементов матрицы

Для работы со средними значениями можно воспользоваться возможностями пакета Statistics (рис. 2.3):

Рис. 2.3: Использование возможностей пакета Statistics для работы со средними значениями

2.2 Транспонирование, след, ранг, определитель и инверсия матрицы

Для выполнения таких операций над матрицами, как транспонирование, диагонализация, определение следа, ранга, определителя матрицы и т.п. можно воспользоваться библиотекой (пакетом) LinearAlgebra (рис. 2.4 - рис. 2.6):

Рис. 2.4: Использование библиотеки LinearAlgebra для выполнения определённых операций

Рис. 2.5: Использование библиотеки LinearAlgebra для выполнения определённых операций

Рис. 2.6: Использование библиотеки LinearAlgebra для выполнения определённых операций

2.3 Вычисление нормы векторов и матриц, повороты, вращения

Для вычисления нормы используется LinearAlgebra.norm(x) (рис. 2.7 - рис. 2.8):

```
# Создание дектора X:
    X = [2, 4, -5]

3-element Vector(Int64):
2
4
-5

# Вычисление едклидодой нормы:
norm(X)

6.708283932499369

# Вычисление p-нормы:
p = 1
norm(X,p)

Julia

11.0

# Расстопние между дбуля декторами X и Y:
X = [2, 4, -5];
Y = [1, -1, 3];
norm(X-Y)

Julia

9.486832980595138
```

Рис. 2.7: Использование LinearAlgebra.norm(x)

Рис. 2.8: Использование LinearAlgebra.norm(x)

Вычислим нормы для двумерной матрицы (рис. 2.9 - рис. 2.10):

Рис. 2.9: Вычисление нормы для двумерной матрицы

Рис. 2.10: Вычисление нормы для двумерной матрицы

2.4 Матричное умножение, единичная матрица, скалярное произведение

Выполним примеры матричного умножения, единичной матрицы и скалярного произведения (рис. 2.11 - рис. 2.12):

Рис. 2.11: Примеры матричного умножения, единичной матрицы и скалярного произведения

Рис. 2.12: Примеры матричного умножения, единичной матрицы и скалярного произведения

2.5 Факторизация. Специальные матричные структуры

Рассмотрим несколько примеров. Для работы со специальными матричными структурами потребуется пакет LinearAlgebra.

Решение систем линейный алгебраических уравнений Ax = b (рис. 2.13):

Рис. 2.13: Решение систем линейный алгебраических уравнений Ax = b

Julia позволяет вычислять LU-факторизацию и определяет составной тип факторизации для его хранения (рис. 2.14 - рис. 2.15):

```
# LU-faceopusacuum:
Alu = lu(A)

LU(Float64), Matrix(Float64), Vector(Int64)}
L factor:
3x9 Matrix(Float64);
1.0 0.0 0.0
0.236441 1.0 0.0
0.236441 1.0 0.0
0.236441 1.0 0.0
0.333 Natrix(Float64);
0.737313 0.14656 0.915475
0.737313 0.14656 0.915475
0.0 0.79 0.79984 -0.6395186
0.0 0.0 0.119667

# Mampuqa nepecmano8ox:
Alu.P

Alu.P

# Bexmop nepecmanodox:
Alu.P

# Bexmop nepecmanodox:
Alu.P

# Bexmop nepecmanodox:
Alu.P
```

Рис. 2.14: Пример вычисления LU-факторизации и определение составного типа факторизации для его хранения

Рис. 2.15: Пример вычисления LU-факторизации и определение составного типа факторизации для его хранения

Исходная система уравнений Ax = b может быть решена или с использованием исходной матрицы, или с использованием объекта факторизации (рис. 2.16):

Рис. 2.16: Пример решения с использованием исходной матрицы и с использованием объекта факторизации

Julia позволяет вычислять QR-факторизацию и определяет составной тип факторизации для его хранения (рис. 2.17):

```
# (Rr-permopusaquar:
Aqr = qr(A)

LinearAlgebra.QRCompattMY(Float64, Matrix(Float64))
Q factor: 3×3 LinearAlgebra.QRCompattMY(Float64, Matrix(Float64))
R factor:
3×3 Matrix(Float64):
-0.994591 -0.683612 -1.16564
0.0 -0.994597 -0.68959745
0.0 0.0 0.9992472

# Mampuua Q:
Aqr.Q

# Mampuua R:
Aqr.R

# Mampuua R:
Aqr.R

3×3 Matrix(Float64):
-0.994591 -0.683612 -1.16564
0.0 -0.996997145
0.0 0.0 0.9992472

# Mampuua R:
Aqr.R

# Mampuua R:
Aqr.R

# Mampuua R:
Aqr.Q

# Mampuua R:
Aqr.Q * Aqr.Q

# Mampuua R:
Aqr.Q * Aqr.Q

# Mampuua R:
Aqr.Q * Aqr.Q * Aqr.Q

# Mampuua R:
Aqr.Q * Aqr.Q
```

Рис. 2.17: Пример вычисления QR-факторизации и определение составного типа факторизации для его хранения

Примеры собственной декомпозиции матрицы А (рис. 2.18 - рис. 2.19):

Рис. 2.18: Примеры собственной декомпозиции матрицы А

```
#Co6cmdentage dexmaps:
AsymEig.vectors

Julia

3x3 Matrix(Float64):
-0.624328 0.531884 -0.572856
-0.246421 -0.829792 -0.500722
0.741277 0.171451 -0.648933

# Проберяем, что получится единичная матрица:
inv(AsymEig)*Asym

Julia

3x3 Matrix(Float64):
1.0 6.21725e-15 -3.19744e-14
-7.99361e-15 1.0 -1.24345e-14
-1.77656e-14 -2.66454e-15 1.0
```

Рис. 2.19: Примеры собственной декомпозиции матрицы А

Далее рассмотрим примеры работы с матрицами большой размерности и специальной структуры (рис. 2.20 - рис. 2.21):

```
# Матрица 1000 х 1000:
     n = 1000
A = randn(n,n)
1000×1000 Matrix{Float64}:
  0.425318 1.22091 -0.849322
0.532148 -0.9663445 1.14957
-0.996531 0.404782 -1.32305
-0.289675 1.06816 -1.07935
                                                            ... 0.038386 -1.36644
0.0143723 -0.77164
-0.011747 -1.32671
                                                                                                        0.148296
-2.45213
-2.46619
                                                                 -0.916511
                                                                                      0.636577
  0.449
1.89516
-1.64042
                                                                   0.33811
0.248673
0.56485
                                                                                    1.31405
0.790506
-0.228502
                       0.509505
                                         0.961422
                                                                                                          0.685894
 0.449 0.509565

1.89516 0.137476

-1.64042 -0.602952

-0.167493 -0.476201

-1.5806 -1.04554

-0.653765 2.06532
                                                                                   -1.18736 0.139803
-0.317519 -1.66068
0.0909651 0.186939
                                        -0.119808
                                                                   1.17856
                                                                   1.30654
  -0.0924705 1.02043
-0.356041 -1.40266
-0.69457 -0.380283
                                         -0.65733
                                                                 0.305228
                                                                                      1.48423
                                                                                                          0.498798
                                                                                    -1.52783
-0.572094
                                                                                                         -1.12308
1.14134
   0.142481
                     1.04664
                                          -0.340014
                                                                   1.04413
                                                                                                          1.69761
   1.32621
                     -0.942717
                                           0.406584
                                                                   -1.252
                                                                                       -2.08874
                                                                                                         -1.40599
  -0.785725 -0.306074
-0.949094 -0.610857
1.22951 -0.0202556 0.0874981
0.531804 -1.53585 -1.08785
                                                                -1.00452
                                                             0.181619 0.711781 -1.08036
```

Рис. 2.20: Примеры работы с матрицами большой размерности и специальной структуры

```
1000×1000 Matrix{Float64}:
 0.850636
1.75306
-1.84585
               1.75306 -1.84585
-0.136689 1.55435
1.55435 -2.6461
                                             -0.910708
 -0.848472
               -0.42742
                             -2.61159
                                              -0.753267
                                                             0.705361
                                                                         -1.36016
 1.50371
2.30978
-1.42366
                                              -0.0936283 -0.299328
                                                                          0.723578
                                                            -0.31106
0.302629
 -1.23758
                 0.383195 -0.538402
                                               0.358255
                                                           -0.848562
                                                                          -0.381213
 -2.17664
-0.841459
               0.492679
1.70555
                                                           0.422633
-0.54081
                             -0.889353
                                              -0.198953
  0.0330194 0.766703
                                              0.662512
  1.19361
                 0.6615
                              0.283538
                                                           -0.86253
                                                                          1.50714
              -0.168534
                                                           -2.93415
-0.302665
-1.81686
  1.80279
                              3.24526
                                              -0.221696
                                                                          -1.71958
 -0.310273
-0.910708
              -2.4851
-3.87908
  -0.136933
                                             -1.81686
                                                                          0.524999
                                                           0.524999 -2.16073
  2.27867
                                              1.3869
   # Проверка, является ли матрица симметричн
issymmetric(Asym)
```

Рис. 2.21: Примеры работы с матрицами большой размерности и специальной структуры

Пример добавления шума в симметричную матрицу (матрица уже не будет симметричной) (рис. 2.22):

```
# Добавление шума:

Asym_noisy = copy(Asym)

Asym_noisy[1,2] += Seps()

# Проберка, является ли матрица симметричной:
issymmetric(Asym_noisy)

Julia
```

Рис. 2.22: Пример добавления шума в симметричную матрицу

B Julia можно объявить структуру матрица явно, например, используя Diagonal, Triangular, Symmetric, Hermitian, Tridiagonal и SymTridiagonal (рис. 2.23):

```
Asym_explicit = Symmetric(Asym_noisy)
1000×1000 Symmetric{Float64, Matrix{Float64}}:
  0.850636
1.75306
-1.84585
                       1.75306 -1.84585 ... -0.910708 -0.136933
-0.136689 1.55435 -0.596485 -0.791896
1.55435 -2.6461 2.11498 -1.23921
                                                                           -0.596485 -0.791896
2.11498 -1.23921
-0.753267 0.705361
  -0.848472
                        -0.42742
                                              -2.61159
                                                                                                                      -1.36016
                                                                     -0.753267 0.705361

-0.0936283 -0.299328

... 1.27479 -0.31106

1.60639 0.302629

0.588255 -0.848562

-0.198953 0.422633

-0.610607 -0.54081
  1.50371
2.30978
                           1.7017 0.360662
0.501434 -1.84291
                                                                                                                       0.723578
                      1.7017 0.360662
0.501434 -1.84291 ...
-0.261772 -0.266711
0.383195 -0.538402
  -1.42366
                                                                                                                      -0.568203
 -1.23758
                                                                                                                      -0.381213
  0.0330194 0.766703 0.216643
-0.114326 -1.40181 -0.286361
-7.10677e-5 0.753181 -0.666509
                                                                          0.662512 3.16748
                                                                        -0.68189 -1.82442 -3.15223
-1.75376 0.356444 0.596603
1.00072 -0.86253 1.50714
  1.19361 0.6615
1.80279 -0.168534
                                                0.283538
                                                3.24526
                                                                          -0.221696 -2.93415
                                                                                                                      -1.71958
 -0.310273 -0.188534 3.24526

-0.310273 -0.289092 0.667093

-0.910708 -0.596485 2.11498

-0.136933 -0.791896 -1.23921

2.27867 -1.38756 -3.53998
                                                                      -1.81686
1.3869
```

Рис. 2.23: Пример явного объявления структуры матрицы

Далее для оценки эффективности выполнения операций над матрицами большой размерности и специальной структуры воспользуемся пакетом BenchmarkTools (рис. 2.24):

Рис. 2.24: Использование пакета BenchmarkTools

Далее рассмотрим примеры работы с разряженными матрицами большой размерности. Использование типов Tridiagonal и SymTridiagonal для хранения

трёхдиагональных матриц позволяет работать с потенциально очень большими трёхдиагональными матрицами (рис. 2.25):

```
# Τρέχθυαzοκαльная матрица 1000000 x 1000000:

n = 1000000;
A = SymTridiagonal(randn(n), randn(n-1))

# Оценка эффективности выполнения операции по нахождению
# codocondenных значений:
@btime eigmax(A)

783.488 ms (44 allocations: 183.11 MiB)

6.5601813712800485
```

Рис. 2.25: Примеры работы с разряженными матрицами большой размерности

2.6 Общая линейная алгебра

В примере показано, как можно решить систему линейных уравнений с рациональными элементами без преобразования в типы элементов с плавающей запятой (для избежания проблемы с переполнением используем BigInt) (рис. 2.26):

```
# Матрица с рациональными элементами:
Arational = Matrix{Rational{BigInt}}(rand(1:10, 3, 3))/10
# Ейинчиный дектор:
x = fill(1, 3)
# Задаём дектор b:
b = Arational*x
# Решение исходного ураднения получаем с помощью функции \
# (убеждаемся, что x - единичный дектор):
Arationalb
# LU-pasnowenue:
lu(Arational)

LU{Rational{BigInt}, Matrix{Rational{BigInt}}, Vector{Int64}}
L factor:
3x3 Matrix{Rational{BigInt}}:
1 0 0
3//8 1 0
7//8 -1//5 1
U factor:
3x3 Matrix{Rational{BigInt}}:
4//5 4//5 3//5
0 1//2 7//40
0 0 11//100
```

Рис. 2.26: Решение системы линейных уравнений с рациональными элементами без преобразования в типы элементов с плавающей запятой

2.7 Самостоятельная работа

Выполнение задания "Произведение векторов" (рис. 2.27):

```
      Самостоятельное выполнение

      Произведение вектор v. Умножьте вектор v скалярно сам на себя и сохраните результат в dot_v:

      # Задаем бектор v v = [1, 3, 5]

      # Скалярное произбедение dot_v = dot(v, v)

      2) Умножьте v матрично на себя (внешнее произведение), присвоив результат переменной outer_v:

      # Матричное (бнешнее) произбедение outer_v = v * v*

      3x3 Matrix(Int64):

      1 3 5 5 3 9 15 5 15 25
```

Рис. 2.27: Решение задания "Произведение векторов"

Выполнение задания "Системы линейных уравнений" (рис. 2.28 - рис. 2.30):

Рис. 2.28: Решение задания "Системы линейных уравнений"

Рис. 2.29: Решение задания "Системы линейных уравнений"

Рис. 2.30: Решение задания "Системы линейных уравнений"

Выполнение задания "Операции с матрицами" (рис. 2.31 - рис. 2.34):

```
      Операции с матрицами

      1) Приведите приведённые ниже матрицы к диагональному виду:

      A = [1 -2; -2 1]

      eigen_A = eigen(A) # CoEcodennue значения и бектори

      diag_matrix = Diagonal(eigen_A.values) # Диагональная матрица

      2×2 Diagonal(Float64, Vector(Float64)):

      -1.0 :

      3.0

8 = [1 -2; -2 3]

eigen_B = eigen(B) # CoEcodennue значения и бекторы
diag_matrix = Diagonal(eigen_B.values) # Диагональная матрица

      2×2 Diagonal(Float64, Vector(Float64)):
- 0.256668 :
- 4.23667

      C = [1 -2 0; -2 1 2; 0 2 0]

      eigen_C = eigen(C) # CoEcodennue значения и бекторы

      diag_matrix = Diagonal(eigen_C.values) # Диасональная матрица

      Julia

      3×3 Diagonal(Float64, Vector(Float64)):
- 2.14134 .
- 0.51538 .
- 3.6262
```

Рис. 2.31: Решение задания "Операции с матрицами"

Рис. 2.32: Решение задания "Операции с матрицами"

Рис. 2.33: Решение задания "Операции с матрицами"

Рис. 2.34: Решение задания "Операции с матрицами"

Выполнение задания "Линейные модели экономики" (рис. 2.35 - рис. 2.37):

Рис. 2.35: Решение задания "Линейные модели экономики"

Рис. 2.36: Решение задания "Линейные модели экономики"

Рис. 2.37: Решение задания "Линейные модели экономики"

3 Выводы

В результате выполнения данной лабораторной работы мы изучили возможности специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры.

Список литературы

- 1. JuliaLang [Электронный ресурс]. 2025 JuliaLang.org contributors. URL: https://julialang.org/ (дата обращения: 09.15.2025).
- 2. Julia 1.11 Documentation [Электронный pecypc]. 2025 JuliaLang.org contributors. URL: https://docs.julialang.org/en/v1/ (дата обращения: 09.15.2025).