Couche Liaison de Données Méthodes d'accès

UE LU3IN033 Réseaux 2023-2024

Bruno Baynat Bruno.Baynat@sorbonne-universite.fr

Programme de l'UE LU3IN033

11 Web & DNS

- **8** Routage
- 7 DHCP & NAT
- 6 Paquet IP & ICMP
- 5 Adressage IP & ARP

Application

Transport

Réseau

Liaison

Physique

10 TCP (suite)

9 UDP & TCP

4 Réseaux locaux

3 Méthodes d'accès

2 Couche physique

1 Introduction

Plan du cours

- Types de réseaux
 - point-à-point
 - à diffusion
- Topologie
 - physique
 - logique
- Méthodes d'accès
 - statiques
 - à répartition en fréquence
 - à répartition dans le temps
 - dynamiques
 - à allocation déterministe : polling, jeton
 - à allocation aléatoire : Aloha, CSMA/CD, CSMA/CA
- Normes IEEE 802
 - Ethernet (CSMA/CD): 802.3
 - Wifi (CSMA/CA): 802.11

Liaison de données

Transmission / propagation

- Au niveau liaison de données, les informations échangées entre les machines sont structurées en trames
- L'envoi d'une trame est constitué de deux phénomènes qui se déroulent en parallèle
 - la transmission (ou l'émission)

la propagation

Types de réseaux

Réseaux point à point

- Chaque lien connecte
 - deux stations
 - hôtes
 - routeurs
 - qui exécutent un protocole liaison de données en mode point à point
 - EX: HDLC, PPP, ...
- Topologie adaptée aux réseaux longue distance (WAN)

Réseaux à diffusion naturelle

- Plusieurs stations partagent un même support de transmission
 - chaque trame émise par une station est susceptible d'être reçue par toutes les autres stations connectées au support
- Topologie adaptée aux réseaux locaux (LAN)
 - Ethernet, WiFi, Bluetooth, ...

Topologies des LANs

• Bus

Anneau

• Etoile

Hybride

Topologie physique vs logique

Topologie physique

Topologie logique

 La topologie physique décrit la façon dont les stations sont physiquement connectées

- La topologie logique décrit la façon dont l'information circule entre les stations
- Exemple d'un concentrateur (*hub*) : bus logique sur une étoile physique

Partage du support de transmission

- Support de transmission partagé
 - Plusieurs stations sont connectées au même support
 - Les transmissions sont reçues par l'ensemble des stations
 - Des transmissions simultanées entraînent des collisions
 - Les collisions brouillent les communications et les rendent inintelligibles
 - → Nécessité d'un arbitrage

- Méthodes de contrôle d'accès
 - Ensemble de règles régissant le partage du support
 - en déterminant qui peut l'utiliser à un instant donné
 - en évitant au maximum les collisions
 - en étant le plus équitable possible

Méthodes d'accès

Méthodes d'accès

- Méthodes de contrôle d'accès
 - Algorithmes (centralisés/distribués) qui définissent quelle(s) est la (les) station(s) qui peut (peuvent) transmettre à un instant donné
 - Prennent en compte la topologie logique du réseau
 - Permettent un partage équitable de la bande passante entre
 - toutes les stations du réseau
 - toutes les stations souhaitant émettre
- Classification
 - Méthodes d'accès statique
 - le partage s'effectue de façon invariante dans le temps
 - Méthodes d'accès dynamique
 - les ressources de communication sont allouées en fonction des besoins

Méthodes d'accès statique

AMRF : Accès multiple à Répartition en Fréquence AMRT : Accès Multiple À Répartition dans le temps

- FDMA: Frequency-Division Multiple Access
- La bande passante est divisée en sousbandes de fréquences
 - une sous-bande allouée par station
 - toutes les stations peuvent transmettre simultanément
- Méthode peu efficace si stations inactives
- Redécoupage de la BP si ajout ou retrait de stations

- TDMA: Time-Division Multiple Access
- Le temps est divisé en intervalles de temps (time-slots)
 - un time-slot alloué par station à tour de rôle
 - les stations utilisent toute la bande passante pendant leur time-slot
- Méthode peu efficace si stations inactives
- Redécoupage du cycle si ajout ou retrait de stations

Méthodes statiques et LANs

- Les méthodes d'accès statique sont efficaces si
 - le nombre de stations actives est invariable dans le temps
 - chaque communication a un débit constant
- Les méthodes d'accès statique ne sont donc pas adaptées aux LANs dans lesquels
 - le nombre de stations actives varie constamment dans le temps
 - les stations génèrent un trafic sporadique
- Pour les LANs : nécessité de mettre en place des méthodes d'accès dynamiques
 - allocation des ressources variable dans le temps
 - aux machines qui en ont besoin

Méthodes d'accès dynamiques

- Méthodes d'accès dynamique
 - à allocation déterministe
 - Le polling : Bluetooth
 - Le jeton
 - non adressé
 - adressé
 - à allocation aléatoire
 - Aloha
 - Carrier Sense Multiple Access (CSMA)
 - persistant, non-persistant, p-persistant
 - with Collision Detection (CSMA/CD): Ethernet (802.3)
 - with Collision Avoidance (CSMA/CA): Wifi (802.11)

Le polling

- Polling
 - Méthode centralisée
 - station primaire : « maître »
 - stations secondaires : « esclaves »
 - Le maître interroge (« poll ») les esclaves à tour de rôle
 - Les esclaves répondent
 - positivement avec les données à transmettre le cas échéant
 - négativement sinon
- Deux variantes du polling selon l'ordre du polling
 - Roll-call polling (Bluetooth)
 - topologie logique : étoile
 - Hub polling
 - topologie logique : anneau

Le polling

Le jeton

- Méthode distribuée
 - Pas de station primaire ou secondaire
- Un jeton circule sur l'anneau (logique)
 - une seule copie sur le réseau
 - deux états possibles
 - libre
 - occupé
- Topologies physiques concernées
 - Anneau : jeton non adressé
 - circule selon l'anneau (dans un sens)
 - Bus : jeton adressé
 - chaque station connaît
 - son prédécesseur sur l'anneau virtuel
 - son successeur sur l'anneau virtuel
 - le jeton est adressé d'une station à la suivante

Jeton non adressé

Jeton adressé

Le jeton non adressé

- Une station qui désire transmettre
 - attend de recevoir le jeton à l'état « libre »
 - change l'état du jeton à l'état « occupé »
 - inclue ses données dans le jeton ainsi que
 - l'adresse de la destination (au début)
 - l'adresse de la source (au début)
 - un bit d'acquittement initialement non positionné (à la fin)
- Chaque station qui voit passer le jeton
 - inspecte l'état du jeton
 - si occupé
 - si l'adresse destination est la sienne
 - » elle prélève une copie de la trame
 - » elle change le bit d'acquittement
 - » et passe le jeton au nœud suivant
 - si l'adresse source est la sienne
 - elle retire la trame de l'anneau
 - et libère le jeton à l'état libre
 - si libre
 - elle transmet si elle le désire

Méthodes d'accès dynamique à allocation aléatoire

- Les méthodes d'accès statiques assurent qu'une machine qui possède le droit d'émettre (le poll ou le jeton) est la seule à pouvoir émettre
 - → pas de collisions possibles
- Lorsque l'accès est aléatoire, deux stations peuvent se retrouver à émettre en même temps
 - → collisions possibles : les trames émises par les deux stations qui sont rentrées en collision sont corrompues
- Comment détecter les collisions ?
- Comment réagir ?

Méthodes d'accès dynamique à allocation aléatoire

Slotted Aloha

- Une station peut émettre dès qu'elle le souhaite sans aucune précaution
- Après transmission, la station attend le retour d'un acquittement
- En cas d'échec, la station réémettra sa trame au terme d'un délai aléatoire
- Au bout de N retransmissions successives, la station abandonne

- Même principe sauf que
 - le temps est découpé en intervalles temps (correspondant à la durée de transmission d'une trame)
 - les stations ne peuvent émettre qu'en début d'intervalle

• Efficacité: 36%

• Efficacité: 18%

Méthodes d'accès dynamique à allocation aléatoire

Carrier Sense Multiple Access

- CSMA reprend la méthode Pure Aloha avec une écoute préalable du canal
 - La station n'émet que si le canal est libre
- Plusieurs variantes selon la décision prise par la station souhaitant émettre si le canal est occupé
 - CSMA persistant
 - écoute persistante du canal
 - dès qu'il devient libre, émettre
 - CSMA non persistant
 - si canal occupé, faire une nouvelle tentative au bout d'un temps aléatoire
 - CSMA p-persistant
 - écoute persistante du canal
 - dès qu'il devient libre,
 - avec une probabilité p, émettre
 - avec une probabilité (1-p), attendre un délai aléatoire et se remettre en écoute

CSMA/CD

Carrier Sense Multiple Access / Collision Detection

- CSMA/CD est
 - la méthode utilisée par Ethernet
 - standardisée par la norme IEEE 802.3
- CSMA/CD
 - reprend les principes du CSMA : écoute préalable avant émission
 - en y ajoutant la détection de collision (CD)
 - une station qui émet, continue à écouter le canal pendant sa transmission
 - elle détecte les collisions en comparant le signal émis à celui qu'elle reçoit
 - si le signal reçu correspond au signal émis \rightarrow pas de collision
 - si le signal reçu est différent du signal émis ightarrow collision
 - en cas de détection de collision
 - la station arrête d'émettre
 - attend un délai aléatoire avant de tenter une retransmission

- Si le temps de transmission est trop court
 - le signal de S2 parvient à S1 alors qu'elle a cessé d'émettre
 - collision non détectée

- Une station doit émettre suffisamment longtemps afin d'être toujours en train d'émettre lorsque le signal le signal d'une autre station lui parvient...
- ... mais combien de temps ?

- Période de vulnérabilité
 - durée pendant laquelle une trame émise pourra subir une collision avec une autre trame
 - égale au temps de propagation maximum sur le support
- Fenêtre de collision
 - temps au bout duquel une station est sûre que la trame qu'elle est en train d'émettre ne subira pas de collision
 - égale à 2 fois le temps de propagation maximum sur le support

 Pour qu'une collision soit détectée à coup sûr une station doit donc émettre pendant une durée au moins égale à celle de la fenêtre de collision

$$t_t \ge 2 t_{p max}$$

• S3 ne transmet pas et ne peut donc interpréter le signal reçu comme résultant d'une collision

- Séquence de brouillage : jam sequence
 - Signal émis afin d'informer toutes les stations d'une collision (y compris celles qui n'étaient pas en transmission)

CSMA/CD: définitions

- Période de vulnérabilité
 - intervalle de temps pendant lequel une trame en cours de transmission peut entrer en collision
 - égale au temps de propagation entre les 2 stations les plus éloignées sur le support
- Fenêtre de collision (slot-time)
 - délai maximum qui s'écoule avant qu'une station en cours de transmission détecte une collision
 - délai au bout duquel une station est certaine d'avoir réussi sa transmission
 - égale à deux fois le temps de propagation maximum sur le support
- Séquence de brouillage (jam sequence)
 - signal indécodable envoyé par une station dès qu'elle détecte une collision, afin d'en informer toutes les stations du réseau
- Délai inter-trame (interframe gap)
 - silence minimum entre 2 trames successives
 - permet un partage équitable de la bande passante

CSMA/CD: procédures

- 1. Initialisation du compteur de retransmissions à 0
- 2. Transmission d'une trame
 - si le support est occupée
 - attendre qu'il le devienne
 - dès que le support est libre
 - commencer à transmettre (pendant une durée au moins égale à $2t_{pmax}$) en continuant à écouter le support pendant toute la durée de la transmission
 - si collision détectée : procédure de résolution de collision (3)
 - si aucune collision détectée pendant toute la durée de la transmission : remettre à 0 le compteur de retransmissions
- Résolution de collision
 - transmission d'un signal de brouillage (jam sequence)
 - incrémenter le compteur de retransmissions
 - si le nombre maximal de retransmission (16) est atteint
 - abandon de la transmission
 - sinon
 - calculer la durée du « retrait exponentiel »
 - attendre cette durée avant de retourner à la procédure de transmission (2)

Algorithme du retrait exponentiel

- Algorithme Exponential Backoff
- Calcul du délai d'attente aléatoire avant retransmission
 - après la 1^{ère} collision : délai aléatoire égal à 0 ou 1 (= 2¹–1) unité de temps (slot-time)
 - après la 2^{ème} collision : délai aléatoire compris entre 0 et 3 (= 2²-1) unités de temps (slot-time)
 - après la 3^{ème} collision : délai aléatoire compris entre 0 et 7 (= 2³-1) unités de temps (slot-time)
 - après i collisions (i < 16) : délai aléatoire compris entre 0 et 2^{min(i, 10)}–1 unités de temps (slot-time)
 - après 16 collisions : abandon de la transmission
- Objectifs
 - lorsqu'une collision est détectée, l'intervalle de tirage du délai aléatoire est doublé de façon à réduire (de moitié) la probabilité qu'une nouvelle collision se produise...
 - ... jusqu'à une certaine limite pour éviter de surcharger le réseau

Trame Ethernet

64 bits 48 bits 48 bits 16 bits 32 bits

préambule adresse destination adresse source type données CRC

46 – 1500 octets

- Champ Préambule
- Champs Adresse source et Adresse destination
 - adresse MAC codée sur 48 bits (6 octects)
 - notation hexadécimale (Ex : F0:18:98:59:AE:32)
 - les 3 premiers octets identifient le constructeur (Ex : F0:18:98 → Apple)
- Champ Type
 - indique ce que la trame encapsule (Ex : $0x0800 \rightarrow paquet IPv4$)
- Champ Données
 - taille comprise entre 46 et 1500 octets
- Champ CRC (Cyclic Redundancy Check)
 - Polynome générateur $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$

Exemple de trace

- Trame Ethernet donnée sans préambule ni CRC
- Adresse MAC destination: 08:00:20:87:B0:44
- Adresse MAC source : 08:00:11:08:C0:63
- Type: $0x0800 \rightarrow la$ trame encapsule un paquet IPv4

CSMA/CD: les limites

- CSMA/CD nécessite que chaque station
 - puisse savoir si la trame qu'elle a émise a subi ou non une collision
 - de façon à la retransmettre en cas de collision
 - pour au final être « sûre » qu'elle est arrivée à destination
- Le mécanisme de détection de collision (par écoute pendant la transmission) ne fonctionne que si une trame émise sans collision est reçue par toutes les stations du réseau
- CSMA/CD n'est donc pas adapté aux réseaux sans fil

Méthodes d'accès dans les réseaux sans fil

- Puisqu'on ne peut pas détecter les collisions dans les réseaux sans fil, le mieux que l'on puisse faire est d'essayer de les éviter
 - CD (Collision Detection) est remplacé par CA (Collision Avoidance)
- Une écoute préalable évite toujours des collisions inutiles
 - CSMA est utilisé
- Puisque les collisions ne peuvent être détectée, une station qui émet une trame ne peut savoir si elle a correctement été reçue par la destination
 - Les trames de données doivent être acquittées

CSMA/CA

Source

- 1. Si le canal est libre
 - attendre un temps DIFS (Data Inter-Frame Spacing)
 - si pendant ce temps le canal reste libre, transmettre la trame
- 2. Si le canal est ou devient occupé
 - attendre que le canal redevienne libre pendant une durée DIFS
 - démarrer un temporisateur (backoff timer) et se placer en écoute du canal
 - décrémenter le temporisateur tant que le canal reste libre
 - dès que le canal est occupé, mettre le temporisateur en pause et ne le relancer que lorsque le canal devient libre pendant une durée égale à DIFS
 - transmettre à l'expiration du temporisateur
- 3. Attendre le retour d'un ACK (un certain temps)
 - si ACK reçu, transmission réussie
 - si pas d'ACK reçu, augmenter l'intervalle de tirage des valeurs du temporisateur et retransmettre la trame
- Récepteur
 - Si la trame est reçue sans erreur
 - attendre un temps SIFS (Short Inter-Frame Spacing)
 - envoyer un ACK

Temporisateurs et priorités

- La durée d'un SIFS est inférieure à la durée d'un DIFS de façon à donner la priorité aux acquittements
 - Exemple du wifi (802.11b) : SIFS = 10 μ s < DIFS = 50 μ s

Algorithme du retrait exponentiel

- Délai aléatoire d'attente = random(0, CW) * SlotTime
 - CW est la taille de la fenêtre de contention
 - CW ∈ [CWmin, CWmax]
 - random(0, CW) est une variable aléatoire uniforme comprise entre 0 et
 CW-1
- Lors de la première tentative de transmission
 - CW = CWmin
- En cas d'échec
 - CW est doublée jusqu'à ce que CW atteigne CWmax
- Exemple du wifi (802.11b)
 - SlotTime= 20 μs
 - CWmin= 31
 - CWmax=1023

Normes IEEE

OSI vs IEEE

OSI **IEEE** réseau à diffusion naturelle réseau point à point LLC Transfert fiable et Liaison de données efficace de trames MAC Contrôle d'accès Physique Physique au support

La couche liaison de données selon l'IEEE

- 2 sous-couches
 - LLC : Logical Link Control
 - MAC: Medium Access Control
- Sous-couche MAC
 - définit la méthode de contrôle d'accès au support
 - évite les collisions
 - partage équitable de la BP
- Sous-couche LLC
 - fournit la plupart des fonctions de la couche liaison de données
 - contrôle d'erreur et contrôle de flux

Les normes IEEE 802.*

Encapsulation IEEE

802.3 vs Ethernet

Conclusion

- Les réseaux locaux utilisent des supports à diffusion naturelle
 - Toutes les stations sont connectées au même support
 - Une trame émise par une station est reçue par toutes les autres
- Nécessité de contrôler l'accès au support
 - Pour éviter les collisions (contentions d'accès)
 - Pour partager la bande passante équitablement
- Les politiques d'accès peuvent être
 - Dynamiques dans les LANs
 - A allocation déterministe ou aléatoire
- Les normes IEEE 802 ont introduit 2 sous-couches : MAC et LLC
 - MAC (Medium Access Control) : contrôle d'accès
 - LLC (Logical Link Control) : contrôles d'erreur et de flux
- La norme 802.3 standardise le CSMA/CD et le format des trames
 - Ethernet est la version commerciale apparue avant sa normalisation par l'IEEE
- La norme 802.11 standardise le CSMA/CA utilisé par le Wifi

A faire

- Cours 3
 - à relire attentivement
- Devoir 3 sur Moodle
 - date de rendu : dimanche 24 septembre