2015-2016 学年第 1 学期考试试题 (A)卷

参考答案和评分标准

课程名称	《离散结构》	课教师签名	
出题教师签名。	何小亚	审题教师签名	
考试方式 (闭))卷 适用专	₹业 2014 级计算机	1科学与技术
考试时间	(120) 分钟		

一、单选题(每小题1分,共10分)

- 1. 下列语句中为命题的是(A)。
 - A. 暮春三月, 江南草长。B. 风景好美啊! C. 您贵庚? D. 请勿吸烟!
- 2. 下面哪个联结词运算不可交换? (B)
 - $A. \land B. \rightarrow C. \lor D. \uparrow$
- 3. 下列公式中,(D)是永真式。
 - A. \neg $(p \rightarrow q) \land q$ B. $q \rightarrow p$ C. $p \leftrightarrow q$ D. $p \rightarrow q \lor p$
- 4. 设谓词 M(x):x 是人,F(x):x 吃饭,则(A)符号化为 \forall x(M(x)→F(x))。 A.没有不吃饭的人 B.有人不吃饭 C.所有人不吃饭 D.有人吃饭
- 5. 设 A={{1,2}}, B={2,3}, 下列正确的选项是(D)。 A.P(A)={Φ,{1},{2},{1,2}} B.A⊕B={1,3} C.{1,2}⊆A D.Φ⊆B
- 6. 集合 A={1,2,...,10}上的关系 R={<x,y>|x,y∈A∧x+y=10}具有(B)。 A.自反性 B.对称性 C.反自反性 D.传递性
- 7. 实数集 R 到 R 的双射是 (B)。
 - A.f(x)= e^{x} B.f(x)=2x+1 C.f(x)=|x| D.f(x)=sinx
- 8. 给定下列序列,可构成无向简单图的度数序列的是(D)。
 - A.1,1,2,2,3 B. 0,1,3,3,3 C. 1,3,4,4,5 D. 1,1,2,2,2
- 9. 无向图中顶点间的连通关系一定不满足(B)。
 - A.自反性 B.反自反性 C.对称性 D.传递性
- 10.5 个顶点的无向完全图 K_5 的边数等于(C)。
- A.0 B.5 C. 10 D.20
- 二、填空题(每小题2分,共20分)

- 1. 设 p:我去教室, q:我有课,命题"我去教室,仅当我有课时"符号化为 $p \rightarrow q$ 。
- 2. 设个体域 $A=\{a,b\}$,公式 $\exists xQ(x)$ 消去量词后为 $Q(a)\lor Q(b)$ 。
- 3. 设A={ $x|x \le 3 \land x \in N$ }, B={ $x|x=2k \land k \in N$ }, C={1,2,3,4,5}, 则 A \oplus (C-B)= {0,2,5} 。
- 4. 设R是非空集合A上的二元关系,若A具有自反性、<u>对称性和传递性</u>,则称R是A上的等价关系。
- 5. 设A={1,2,3}上的等价关系R= $I_A \cup \{<1,2>,<2,1>\}$ (I_A 是A上的恒等关系),则A在R下的商集为 {{1,2},{3}}
- 6. 设 $A={a,b,c},B={1,2},$ 令f:A→B,则不同的映射的个数为 8 。
- 7. 设 D=〈V, E〉为有向图, V={a,b,c,d}, E={<b,a>,<b,c>,<b,d>,<d,a>,<d,c>},则 D 是 弱 (强、弱、单向)连通图。
- 8. 握手定理:任何图中,所有顶点的 度数 之和等于 边数 的 2 倍。
- 9. 一棵树有 2 个 2 度顶点, 3 个 3 度顶点,则其树叶片数等于____。
- 10. 无向图是二部图当且仅当图中无 奇数 长度的回路。

三、计算题(40分)

- 1. 利用真值表求命题公式: $(p \lor \neg q) \rightarrow r$ 的成真赋值及主析取范式。(6分)
- 2. 设解释 I 为: (a)个体域 D={2, 3, 6}; (b) 一元谓词 F(x): $x \le 3$, G(x): $x \ge 5$, 在 I 下求下列公式的真值: $\forall x (F(x) \land G(x))$ 。(6 分)
- 3. 在 1 到 100 的整数中, 求: (1) 同时能被 2, 3, 5 整除的数的个数; (2) 不能被 2 或 3 或 5 整除的数的个数。(8 分)
- 4. 设 $A=\{1,2,3\}$ 上的关系 $R=\{\langle x,y\rangle \mid x+y=4,x,y\in A\}$,(1)写出 R 的所有序偶;(2)写出 R 的关系矩阵;(3)求闭包 r(R)、s(R)、t(R)。(7 分)

5. 左下边的无向图是否为二部图?若是,写出它的互补顶点子集 V_1 、 V_2 ;

是否为欧拉图?若是,写出一条欧拉回路;是否为哈密顿图?若是,写出一条哈密顿回路;是否为平面图?若是,请画出它的一个平面嵌入。(7分)

6. 求右上带权图的最小生成树及权数。(6分)

1.

p	q	r	$\neg q$	$p \lor \neg q$	$(p \lor \neg q) \rightarrow r$
0	0	0	1	1	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	1	0	1	1
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	0	1	0
1	1	1	0	1	1

----2

成真赋值:001,010,011,101,111

----4

主析取范式: $(\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land r) \lor (p \land q \land r)$

2.
$$\forall x (F(x) \land G(x)) \Leftrightarrow (F(2) \land G(2)) \land (F(3) \land G(3)) \land (F(6) \land G(6))$$
-----2
$$\Leftrightarrow (1 \land 0) \land (1 \land 0) \land (0 \land 1)$$

$$\Leftrightarrow 0$$
-----6

- 3. 设1到100的整数中分别被2, 3, 5整除的数的集合为A, B, C,
- (1) 同时能被 2, 3, 5 整除的数的个数为: $|A \cap B \cap C| = \lfloor 100/[2,3,5] \rfloor = 3$
- (2) 能被 2 和 3 整除的数的个数为: $|A \cap B| = \lfloor 100/[2,3] \rfloor = 16$ 能被 2 和 5 整除的数的个数为: $|A \cap C| = \lfloor 100/[2,5] \rfloor = 10$ 能被 3 和 5 整除的数的个数为: $|B \cap C| = \lfloor 100/[3,5] \rfloor = 6$ -----5

又 $|A| = \lfloor 100/2 \rfloor = 50$, $|B| = \lfloor 100/3 \rfloor = 33$, $|C| = \lfloor 100/5 \rfloor = 20$ ------6 所以不能被 2 或 3 或 5 整除的数的个数为:

$$|\overline{A} \cap \overline{B} \cap \overline{C}| = |\overline{A \cup B \cup C}| = 100 - (50 + 33 + 20 - 16 - 10 - 6 + 3) = 26$$

----8

4. (1)
$$R = \{\langle 1, 3 \rangle, \langle 3, 1 \rangle, \langle 2, 2 \rangle\}$$

(3)
$$r(R) = \{\langle 1,3 \rangle, \langle 3,1 \rangle, \langle 1,1 \rangle, \langle 2,2 \rangle, \langle 3,3 \rangle\}$$

 $s(R) = \{\langle 1,3 \rangle, \langle 3,1 \rangle, \langle 2,2 \rangle\}$
 $t(R) = \{\langle 1,3 \rangle, \langle 3,1 \rangle, \langle 1,1 \rangle, \langle 2,2 \rangle, \langle 3,3 \rangle\}$ ------7

5.

6.

四、证明题(每小题10分,共20分)

- 1. 设 f:B \rightarrow C,g:A \rightarrow B,证明:如果 f、g 是双射,则复合函数 f og 也是双射。
- 2. 已知 n 阶无向简单图 G 中,有 r 个奇数度数顶点,证明: 若 n 是奇数,则 G 的补图也有 r 个奇数度数顶点; 若 n 是偶数,则 G 的补图有 n-r 个奇数度数顶点。
- 1. 证明: $\forall z \in C$, 因为f是满射, 必存在 $y \in B$, 使得f(y)=z. -----2

对于这个y,又因为g是满射,必存在 $x \in A$,使得g(x) = y. -----4 因此,有 $x \in A$,使得 $z = f(y) = f(g(x)) = f \circ g(x)$ f og也是满射。 ------5

 $\forall x_1, x_2 \in A, x_1 \neq x_2$,因为g是单射,所以g(x₁) \neq g(x₂), --7

又f是单射,所以 $f(g(x_1)) \neq f(g(x_2))$,即 $f \circ g(x_1) \neq f \circ g(x_2)$

f **o**g也是单射。

故f **o**g是双射。 ------10

2. 证明: 设v是n阶无向简单图G和它的补图中对应的任意顶点,它在G和G的补图中的度数分别为d和d`,由于n阶无向完全图的每个顶点的度数为n-1,所以

$$d+d^=n-1$$

当n为奇数时,则d`与d奇偶性相同,所以若G有r个奇度顶点时,G的补图也有r个奇度顶点; -----8

当n为偶数时,则d`与d奇偶性相反,所以G若有r个奇度顶点,那么G的补图应有n-r个奇度顶点. -----10

五、应用题(10分)

给定有向图 D 如下, 求: (1) v_1 的出度和入度; (2) v_1 到 v_4 长度为 3 的通路条数; (3) v_1 到 v_1 长度为 4 的回路条数; (4) D 的可达矩阵。

- (1) v_1 的出度: $d^+(v_1)=3$; 入度 $d^-(v_1)=2$
- (2) D 的邻接矩阵为

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad ; \qquad A^2 = \begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad ; \qquad A^3 = \begin{bmatrix} 3 & 2 & 4 & 2 \\ 2 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A^4 = \begin{bmatrix} 5 & 3 & 7 & 4 \\ 3 & 2 & 4 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} ------6$$

ν₁到 ν₄长度为 3 的通路条数: 2

(3) v₁到 v₁长度为 4 的回路条数: 5

(4)
$$B = A + A^2 + A^3 + A^4 = \begin{bmatrix} 11 & 7 & 14 & 7 \\ 7 & 4 & 9 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$
, D的可达矩阵:

$$P = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
 ------10