Power Budget and PCB

Components	Quantity	Maximum power consumption				
		Voltage(V)	Current(mA)	Power(mW)		
GY87	1	5	3.9	19.5		
APC220	1	5	30	150		
DS18S20	1	5	1.5	7.5		
Atmega 328	1	5	16	80		
LED	1	2	3	6		
GPS Module	1	3.3	67	221.1		
DHT11	1	5	2.5	12.5		
SD-Card module	1	5	50	250		
Resistor(1kΩ)	1	3	3	9		
Resistor(4.7kΩ)	1	5	1.06	5.3		
Total	10			760.9		

Quick Recap!

- Configuration of XBee using XCTU
- Programming XBees for transmitting and receiving data.
- Using functions to make the code understandable

How to Power up?

- Generally, Arduino Nano is connected to the laptop's USB port providing it with a 5V power source.
- How do we power up our electronic components in mid-air?

How to Power up?

- Generally, Arduino Nano is connected to the laptop's USB port providing it with a 5V power source.
- How do we power up our electronic components in mid-air?
- BATTERIES!!!

Battery Types

AAA battery

Nominal => 1.2 V - 1.6V 400 - 2000 mAh

AA battery

Nominal => 1.5 V - 3.7V 500 - 1200 mAh

Zinc - carbon, alkaline, lithium Ion, lithium polymer, lead acid and nickel cadmium batteries etc

How to Select a battery?

- Primarily, we will have to know how much power will the electronic components in the satellite totally consume.
- We come up with the **POWER BUDGET** to select the suitable battery for the electronic system.
- Power budget will include the total current consumed, voltage required per component, current capacity and power capacity.

Datasheet

DATASHEET: document that has all the data from its dimensions, electrical specifications to its performance specification. Basically a complete biography of a

component.

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
	ΤΛ	operational	- 4 0		+ 8 5	°C	
Operating temperature		full accuracy	racy 0		+ 6 5	-0	
Supply voltage	V no	ripple max. 50mVpp	1.8	2.5	3 . 6	V	
			1.62	2.5	3.6	V	
Supply current @ 1 sample / sec. 25°C	IDDLOW	ultra low power mode		3		μΑ	
	Indistri	standard mode		5		μА	
	Iddhr	high resolution mode		7		μΑ	
	IDDUHR	Ultra high res. mode		12		μА	
	I DDAR	Advanced res. mode		32		μΑ	
Peak current	I peak	during conversion		650		μΑ	
Standby current	IDDSBM	@ 25°C		0.1	4 1	μΑ	
Relative accuracy pressure Von=3.3V		950 1050 hPa @ 25 °C		±0.12	2	h P a	
				±1.0		m	
		700 900hPa		±0.12		hPa	
		25 40 °C		±1.0		m	

Power Budget

Module	Current (mA)	Voltage(V)	Power(W)	Duty Cycle(hr)	Power consumption (Wh)	Current consumption (mAh)
name	Supply current	Supply voltage	Voltage x current	Duration of use	Duration x power	Duration x current

Voltage Regulator:

Are used to maintain a constant voltage. In SATCAN we will use it to maintain a constant 3.3 V.

Boost Converter:

It will amplify the voltage value according to the input voltage. We will use it here to amplify the given input voltage.

Power Budget

POWER BUDGET

Module	Current (mA)	Voltage (V)	Power (W)	Duty cycle (hr)	Power cons (mWh)	Current cons (mAh)
BMP180	0.005	3.3	0.009042	2	0.018084	0.00548
XBee	33	5	165	2	330	66
SD card module	80	5	400	2	800	160
Arduino nano	20	6	120	2	240	40
Total					1370.01808 4	266.00548

- PCB printed circuit board
- Printing the designed circuit in board.
 This cannot be changed once printed.
- For designing a PCB a good knowledge about sensors and its characteristics.
- Like dimensions, number of pins and type of communication.

- Softwares for making PCB Autodesk Eagle, Altium, Proteus, Tinkercad and Fritzing etc.
- Two parts: Schematic and Board
- Schematic: where you make your circuits with all your components connected
- Board: where you measure the dimensions of the board size and components and place them accordingly and place the connections so that they don't overlap

Software used in EAGLE **PCB** Boost converter XBee ARDUINO_NANO1 OO Arduino Nano BATTERY GND GND BMP180 SD card Voltage REGULATOR regulator **TOP SIDE**

That wraps up the basics of electronics that goes into any electronic project, including the SATCAN. But there is more than just electronics!

What will we see next?

- How to design the parachute for satellite.
- Glimpse of designing satellite body.
 - o How to make it stable?
 - How to choose your materials?
 - Can we 3D print our satellite?

THANK YOU