Lecture 06 Linear regression

Review: Key Points

Chapter 7: Scatterplots, Correlation

- Scatterplots (direction, form, strength, outliers)
- x- and y-variables: explanatory/independent vs. response/dependent variables
- Correlation: strength and direction
- Assumptions and conditions:
 - ✓ Quantitative variables condition
 - ✓ Straight enough condition
 - ✓ No outliers condition
- Non-parametric correlations: Kendall's tau, Spearman's rho
- Correlation ≠ Causation
- Correlation table/matrix

We need more than correlation!

- Correlation only tells us the strength of a linear relationship.
- Correlation doesn't tell us what the line is.
- We need a linear model!!

Simple regression

- Mathematical model for describing a linear relationship between an explanatory variable, x, and a response variable, y.
- It is a straight line that describes how y changes with x.
- It can be used to predict the value of y for a given value of x.

Least squares: The Line of "Best Fit"

Least squares: The Line of "Best Fit"

- Line of "best fit": the sum of the squared residuals (distance) is smallest
- $\arg\min \sum (y \hat{y})^2 = \sum d_i^2$: Least squares line

c.f., deviation = Observed value (y) – mean (\overline{y})

How different they are?

Linear Model

$$\hat{y}=b_0+b_1x.$$

- *b*: coefficients
- *b*₁: slope
- b_0 : intercept

Slope,
$$b_1 = r \frac{s_y}{s_x}$$

- Correlations do not have units, but slopes have units.
- Standard deviation as a ruler!

Intercept,
$$b_0 = \overline{y} - b_1 \overline{x}$$

Example: Sleep Study

Sleep deprivation and study can have more errors

Errors	7	8	11	13	14	У
Hours without sleep	8	12	16	20	24	X

$$\bar{x} = 16, s_x = 6.32$$
 $\bar{y} = 10.6, s_y = 3.05$
 $r = 0.985$

$$b_1 = r \frac{s_y}{s_x} = 0.985 \times \frac{3.05}{6.32} = 0.475$$

$$b_0 = \bar{y} - b\bar{x} = 10.6 - 0.475 \times 16 = 3$$

Least-squares regression line: $\hat{y} = b_0 + b_1 x = 3 + 0.475 x$

Example: Sleep Study

Properties

- In general the slope has units "y-units per x-units". Here errors per hour without sleep.
- The y-intercept is not always meaningful.
- The least-squares regression line always passes through the point, (\bar{x}, \bar{y}) .
- If both the variables are standardized, the regression line is given by $\hat{z}_y = rz_x$

Least-squares regression line: $\hat{y} = b_0 + b_1 x = 3 + 0.475 x$

Examining the residuals

- Residuals are defined as:
- $e = y \hat{y}$

Examining the residuals

- Residuals are defined as:
- $e = y \hat{y}$
- In least square regression, the sum of the residuals is always zero.
- The residuals are the variation in the data that has not been modeled.
 - ❖ DATA = MODEL + RESIDUAL

$$\hat{\mathbf{y}} = b_0 + b_1 x$$

$$y = b_0 + b_1 x + e$$

- A residual plot is a scatter plot of the residuals against x or \hat{y} .
- When studying the residual plot we hope to see NO pattern.

Examining the residuals: Sleep study

Errors	7	8	11	13	14
Hours without sleep	8	12	16	20	24

```
>> residuals = y-(3+0.475*x);
>> sum(residuals)

ans =
   2.6645e-15

>> scatter(x, residuals)
```

- The sum of the residuals is zero.
- should be the most boring scatterplot you've ever seen!
- shouldn't have any interesting features, direction or shape
- should stretch horizontally, with about same amount of scatter throughout
- No bends, no outliers

Residual standard deviation

- \bullet S_e
- tells us how much the points spread around the regression line.

$$s_e = \sqrt{\frac{\sum e^2}{n-2}}$$

- Revisit: Correlation assumptions and conditions
 - ✓ Quantitative variables condition
 - ✓ Straight enough condition
 - ✓ No outliers condition
- In regression, one more condition:
 - ✓ Does the Plot Thicken? Condition
 - Equal variance assumption
 - The spread around the line should not increase as x or the predicted values increase.

Regression Assumptions and Conditions

- Quantitative Variable Condition
- Straight Enough Condition
- No Outlier Condition
- Does the Plot Thicken? Condition

Examining residual plots:

- No bends (Straight Enough Condition)
- No outlier (Outlier Condition): "examine points with large residuals"
- No changes in the spread (Does the Plot Thicken? Condition)

Assessing regression model: R²

- Correlation: strength and direction
- To evaluate how well a regression model does, direction won't matter that much.
- R²: ranges between 0 and 1
- tells us the fraction of the data's variation accounted for by the model

•
$$R^2 = 1 - \frac{Sum\ of\ squared\ residuals}{Sum\ of\ squared\ deviation\ from\ the\ mean} = 1 - \frac{\sum (y - \hat{y})^2}{\sum (y - \bar{y})^2}$$

- In the linear model, R^2 is same with r^2 .
- $1-r^2$: the fraction of the original variation left in the residuals
- How big should R² be? It depends! Data type, field, etc.
- What is more important between b and R^2 ? It depends! Data type, field, research question, etc.

Predicting in the Other Direction

- Predicting y with x and predicting x with y are different!
- What we're minimizing when predicting y with x? $\sum (y \hat{y})^2 = \sum (y (b_0 + b_1 x))^2$
- What we need to minimize when predicting x with y, then?

- where ${b'}_1 = r \frac{s_x}{s_y}$, compared to $b_1 = r \frac{s_y}{s_x}$
- What if we're using standardized values (z-scores) in regression?
 - They are same!

Key Points

Chapter 8: Linear Regression

- residual = Observed value (y) Predicted value (\hat{y})
- Line of "best fit": arg min $\sum (y \hat{y})^2 = \sum d_i^2$: Least squares line
- $\hat{y}=b_0+b_1x$. Slope, $b_1=r\frac{s_y}{s_x}$ Intercept, $b_0=\overline{y}-b_1\overline{x}$
- Residuals $e = y \hat{y}$
- DATA = MODEL + RESIDUAL: $y = b_0 + b_1x + e$
- Residual plot should show no interesting pattern.
- $R^2 = 1 \frac{Sum\ of\ squared\ residuals}{Sum\ of\ squared\ deviation\ from\ the\ mean} = 1 \frac{\sum (y \hat{y})^2}{\sum (y \bar{y})^2}$. In the linear model, R^2 is same with r^2 .
- Predicting y with x and predicting x with y are different!

