

Circuitos Digitais (116351) – 1º Experimento

PORTAS LÓGICAS AND, OR E NOT

OBJETIVO: Fornecer ao aluno um contato inicial com o painel. São apresentadas as portas **AND**, **OR** e **NOT** e os conceitos de atraso em portas lógicas e nível de ruído em circuitos digitais.

1. INTRODUÇÃO TEÓRICA

Sistemas digitais são aqueles cujas variáveis assumem valores discretos, ou compreendidos entre certos níveis de tensão fixos. Esta noção deve ser familiar para a maioria de nós, pois ultimamente esse tipo de sistema vem ganhando importância crescente em todas as áreas tecnológicas e até mesmo em nossas atividades diárias.

1.1. CIRCUITOS DIGITAIS

Os sistemas digitais são implementados na prática principalmente por meio de circuitos eletrônicos. A informação é nesse caso representada por tensões que podem assumir apenas dois níveis. Tais sistemas são ditos binários.

Considere por exemplo o circuito da **Figura 1**, que tem duas entradas e uma saída, e se destina a apresentar como resposta uma função lógica dos sinais (tensões) nas entradas. Seu funcionamento é o seguinte:

Figura 1 - Circuito digital com diodos

- I) As tensões Va e Vb só podem assumir dois níveis: cerca de 0 volt ou cerca de 5 volts.
- II) Se uma tensão de 0 volt for aplicada a qualquer das entradas, o diodo correspondente conduzirá, e a tensão V_S valerá praticamente 0 volt.
- III) Se ambas as tensões estiverem em 5 volts (ou acima), nenhuma corrente circulará em R e, portanto Vs será de 5 volts.

Observe que o nível baixo de Vs não é exatamente 0 volt, e certamente varia quando se tem Va em zero ou Vb em zero, ou ambos, pois os dois diodos não são idênticos. Entretanto, essa pequena indefinição não nos impede de distinguir o nível baixo do nível alto. Num circuito complexo, como o de um computador, diversos fatores causam flutuações, o que igualmente não chega a ser um problema, a menos que as flutuações sejam grandes a ponto de inverterem o nível de algum sinal. Essa

característica, denominada **imunidade a ruído**, é uma das maiores vantagens dos circuitos digitais sobre os analógicos.

Devido a sua natureza, os circuitos digitais são interpretados em termos de variáveis e funções lógicas. Existem duas convenções em uso. Na chamada **lógica positiva**, o nível alto de tensão é associado ao nível lógico 1 (verdadeiro), e o nível baixo ao nível lógico 0 (falso). Na **lógica negativa** o ocorre o contrário. No circuito da **Figura 1**, por exemplo, podemos representar as tensões Va, Vb e Vs pelas variáveis lógicas A, B e S respectivamente. Nesse caso, dentro da convenção de lógica positiva, temos S = 1 se e somente se A = 1 e B = 1. O circuito executa, portanto, a operação **AND**. Caso fosse adotada a lógica negativa, teríamos S = 0 se e somente se A = 0 e B = 0. O circuito executa a operação **OR**. A convenção de lógica positiva é quase sempre a preferida na prática e será usada neste conjunto de experiências.

1.2. CIRCUITOS TTL

Existem diversos tipos de circuitos capazes de executar funções lógicas. Os circuitos integrados que usaremos pertencem à família de circuitos TTL (*Transistor-Transistor-Logic*) Os circuitos TTL são alimentados com uma tensão de 5 volts, e os níveis lógicos são definidos como mostra a **Figura 2**. Observe a diferença entre os níveis de entrada e de saída. O fabricante garante que a saída de um circuito TTL estará entre 0 e 0,4 volts, quando no nível lógico 0. Por outro lado, ele garante também que qualquer tensão entre 0 e 0,8 volts aplicada a uma entrada será interpretada como nível lógico 0. Consequentemente, há um intervalo de 400 mV de **margem de ruído** para o nível lógico 0. Significa que um ruído de até 400 mV pode ser adicionado à saída de um circuito sem perturbar o funcionamento dos circuitos ligados àquela saída. No nível lógico 1 a situação é parecida.

Figura 2 – Níveis lógicos de entrada e saída da família TTL, na convenção de lógica positiva

Veja, no entanto, que existe uma separação entre os níveis alto e baixo na entrada que é uma região de **indefinição**. Para ser corretamente interpretado, um sinal não deve permanecer nesta região a não ser durante uma rápida transição. Sinais negativos, ou excedendo 5,5 volts podem causar destruição do circuito integrado.

1.3. PORTAS AND, OR E NOT

Circuitos destinados a executar operações lógicas são denominados **portas**. As operações lógicas básicas são AND, OR e NOT, definidas conforme as tabelas abaixo. Essas tabelas são chamadas **tabelas da verdade**. Elas simplesmente descrevem o resultado da operação sobre cada combinação possível de operandos.

As tabelas abaixo mostram também as notações algébricas correspondentes.

T-L-I- I AND				 Т	Labala II O	D	T-1-1- T	II NOT
	1	1	1	1	1	1		
	1	0	0	1	0	1		
	0	1	0	0	1	1	1	0
	0	0	0	0	0	0	0	1
	A	В	S=A.B	Α	В	S=A+B	A	S=A

A expressão A.B lê-se "A e B", A+B lê-se "A ou B" e Ā lê-se "não A" ou "A barra". É comum omitir-se o ponto na notação da operação AND; pode-se escrever (e ler) S=AB.

As portas que realizam estas operações são respectivamente as portas AND, OR e NOT (E, OU e INVERSORA; sendo a última também chamada de NÃO ou NEGAÇÃO). Os símbolos usados em esquemas estão desenhados na **Figura 3**. Observe que as portas AND e OR podem ter mais do que dois terminais de entrada, sendo que o significado dessa extensão é óbvio. A porta NOT só tem um terminal de entrada.

Portas AND
$$A = ABC$$
 $B = ABC$ $B =$

Figura 3 – Símbolos lógicos das portas AND, OR e NOT

As portas são implementadas com circuitos integrados (CI's), e cada CI contém em geral mais de uma porta. O CI número 7408, por exemplo, da família TTL, tem 14 pinos. Dois entre eles destinam-se a alimentação (VCC e GND), e os 12 restantes dão acesso a 4 portas AND de 2 entradas, que podem ser usadas independentemente (veja **Figura 4**).

Figura 4 – Identificação dos terminais do CI 7408

Consulte sempre o Manual (*Datasheet*) do CI para obter detalhes da utilização e pinagem correta do chip eu você estiver usando. O Google pode ser uma boa fonte de consulta.

As portas são interconectadas para executar as mais diversas operações lógicas. A **Figura 5** mostra como a operação OR pode ser implementada apenas com portas AND e NOT. Similarmente, a operação AND também pode ser implementada apenas com portas OR e NOT. Por outro lado, não é possível implementar uma porta NOT com portas AND e OR.

A	В	Ā	$\bar{\mathbf{B}}$	$ar{ ext{A}}.ar{ ext{B}}$	$\overline{\overline{\mathrm{A}}.\overline{\mathrm{B}}}$	A+B
0	0	1	1	1	0	0
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	0	1	1

Figura 5 – Implementação da operação OR com portas AND e NOT

Tabela IV – A comprovação de que $\overline{\overline{A}}.\overline{\overline{B}}=A+B$ é feita comparando-se suas tabelas da verdade

É possível demonstrar que qualquer operação lógica pode ser realizada apenas com portas AND e NOT, ou apenas com portas OR e NOT. Conjuntos de portas com esta propriedade de "autossuficiência" são ditos universais.

A interpretação puramente lógica dos circuitos digitais é conveniente por sua simplicidade. Entretanto, não devemos esquecer completamente da natureza física das portas representadas pelos símbolos lógicos. Uma consideração muito importante é o atraso de propagação das portas, isto é, o tempo necessário para que sua saída mude depois que uma entrada mudou. Quando diversas portas são ligadas em cascata, o atraso total de propagação é igual à soma dos atrasos em cada porta. Na família TTL, as portas têm um atraso típico da ordem de 10 ns (nano-segundo = 10^{-9} segundo). Desse modo, a porta OR da **Figura 3** e o circuito da **Figura 5** são idênticos do ponto de vista lógico, mas têm atrasos de propagação diferentes: cerca de 10 ns e 30 ns, respectivamente.

Os atrasos de propagação estabelecem um limite superior para a frequência de operação de qualquer sistema digital.

1.4. PAINEL DE EXPERIMENTOS DIGITAIS

Além dos circuitos integrados, usaremos o painel de experiências que contém várias funcionalidades extras, úteis em experiências com circuitos digitais.

1.4.1. Chaves

As chaves existentes no painel possuem 2 posições possíveis. Destina-se à aplicação manual de sinais digitais em um circuito. No entanto, esses dispositivos mecânicos geram um efeito indesejável principalmente em circuitos digitais, o ruído de comutação (bouncing).

Figura 6 – Chave de 2 posições com 2 saídas e um circuito de debouncing

Quando uma chave mecânica fecha, o contato não se estabiliza imediatamente. Pode haver comutações microscópicas durante um intervalo de 10 a 50 milissegundos produzindo vários pulsos em forma de ruído. Se a chave fosse ligada diretamente a um circuito digital, estes pulsos poderiam causar funcionamento errôneo. O circuito biestável, mostrado na **Figura 6**, formado pelas 2 portas NAND elimina esse problema. O painel já contém um circuito de *debouncing* conectados a cada chave.

Cuidar que existem painéis no LINF que possuem chaves de 3 posições! Onde a posição central desconecta a chave do circuito.

1.4.2. Sinal de Relógio (*Clock*)

O painel digital dispõe ainda de um pino de sinal de *clock*, forma de onda mostrada na **Figura** 7, que é utilizado para sincronizar eventos digitais em circuitos.

Figura 7 – Sinal de Clock (Relógio)

1.4.3. LEDs e Display de 7 segmentos

O painel possui um módulo com 8 LEDs para visualização de sinais digitais e dois displays de LEDs de 7 segmentos, que reproduzem algarismos decimais ou hexadecimais segundo um código binário. Serão vistos com detalhes em experimentos posteriores.

1.5. Ponta lógica

A ponta lógica é um instrumento de teste e depuração de circuitos digitais. É semelhante ao módulo de LEDs, porém, com um refinamento. Além de indicar níveis estacionários, a ponta detecta e alarga pulsos mais estreitos que 50 ms. Dessa forma, um pulso muito estreito faz o LED indicador da ponta lógica piscar durante um tempo (50 ms) suficiente para percepção pelo olho humano.

2. PARTE EXPERIMENTAL

- 2.1. Ligue um LED à saída de uma chave. Verifique se ele acende e apaga corretamente quando a chave é acionada.
- 2.2. Monte o circuito e teste o correto funcionamento das 4 porta lógicas AND presentes no CI 74LS08 e das 4 portas OR do CI 74LS32 preenchendo a tabela abaixo. Coloque nas colunas Sn da tabela o valor da tensão nas 4 saídas dos chips medidas com o multímetro.

Α	В	S1	S2	S3	S4	
0	0					A
0	1					- S = AB
1	0] B—
1	1					

Α	В	S1	S2	S3	S4	
0	0					A S A A B
0	1					S = A+B
1	0					B
1	1					

Comente o porquê da diversidade de valores obtidos.

2.3. **Pós-Experimento 1**: Projete (**Pré-Projeto 1**) e implemente uma porta OR usando apenas portas AND e NOT. Desenhe o esquema e preencha a tabela da verdade. Fotografe a montagem final.

A	В	S	Esquema
0	0		
0	1		
1	0		
1	1		

2.4. **Pós-Experimento 2**: Projete (**Pré-Projeto 2**) e implemente uma porta AND usando apenas portas OR e NOT. Desenhe o esquema e preencha a tabela da verdade. Fotografe a montagem final.

A	В	S	Esquema
0	0		
0	1		
1	0		
1	1		

2.5. **Pós-Experimento 3**: A finalidade deste item é investigar a existência dos atrasos de propagação em portas. Monte o circuito da **Figura 11**, onde a chave de 1 posição corresponde ao *push-buttom* existente no painel digital.

Figura 11 - Verificação do atraso de propagação

Enquanto se tiver A = 0, tem-se B = 1 e S = 0. Suponha agora que a chave é pressionada, de forma a fazer A = 1. Devido ao atraso nas 5 portas NOT's, a entrada B ainda permanecerá no nível lógico 1 durante cerca de 50 ns. Após decorrerem os primeiros 10 ns, tempo necessário para a porta AND responder, a saída S irá, também, para o nível 1 e permanecerá aí até 10 ns após a entrada B finalmente passar para 0. Consequentemente, um pulso com largura de aproximadamente 50 ns terá aparecido na saída. Com a ponta lógica ligada, este pulso será detectado e o LED piscará de forma perceptível. É fácil ver que no retorno de A para o nível 0 **não** será produzido nenhum pulso em S.

Verifique o funcionamento deste circuito. Se a ponta lógica não for capaz de detectar pulsos de 50 ns, aumente-os para 70 ns, usando 7 portas NOT's no lugar de 5. Filme o funcionamento do circuito.

Será que algum pulso seria produzido na saída se fosse usado um número par de NOT's?

3. SUMÁRIO

São apresentados os circuitos digitais da família TTL e o painel lógico de experimentos. As portas AND, OR e NOT são usadas em montagens elementares, com o objetivo de verificar seu funcionamento lógico, tensões de saída e os atrasos de propagação.

4. EQUIPAMENTOS E MATERIAIS

- Painel digital;
- Protoboard;
- Ponta lógica;
- Multímetro:
- Fios conectores;
- Portas lógicas AND (7408), OR(7432) e NOT(7404);

5. TESTE DE AUTO-AVALIAÇÃO

1. Com relação aos níveis lógicos TTL de entrada e saída, assinale a alternativa correta:

a) ENTRADA: 0 a 0,4 V e 2,0 a 5,5 V SAÍDA: 0 a 0,8 V e 2,4 a 5,0 V b) ENTRADA: 0 a 0,8 V e 2,0 a 5,5 V SAÍDA: 0 a 0,4 V e 2,4 a 5,0 V c) ENTRADA: 0 a 0,4 V e 2,4 a 5,0 V SAÍDA: 0 a 0,8 V e 2,0 a 5,5 V d) ENTRADA: 0 a 0,8 V e 2,4 a 5,0 V SAÍDA: 0 a 0,4 V e 2,0 a 5,5 V

2. Assinale os conjuntos universais dentre os conjuntos abaixo:

- a) AND, OR e NOT
- b) AND e OR
- c) AND e NOT
- d) OR e NOT
- e) NOT
- 3. Preencha a tabela da verdade do circuito abaixo:

A	В	C	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

4. Com relação a pulsos em S de correntes de atrasos de propagação, estabeleça uma associação um a um entre as colunas da esquerda e da direita:

() Produz um pulso I quando A passa de 0 para 1.

- () Não produz pulso em nenhuma transição.

