veehicle selection

```
In [16]: import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn import preprocessing, svm from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression
```

In [2]: df=pd.read_csv(r"C:\Users\anu\Downloads\fiat500_VehicleSelection_Dataset.csv")
df

Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

```
In [3]: df=df[['age_in_days','km']]
df.columns=['age','km']
```

In [4]: df.head(10)

Out[4]:

	age	km
0	882	25000
1	1186	32500
2	4658	142228
3	2739	160000
4	3074	106880
5	3623	70225
6	731	11600
7	1521	49076
8	4049	76000
9	3653	89000

```
In [5]: sns.lmplot(x ="age", y= "km", data = df,order = 2, ci = None)
Out[5]: <seaborn.axisgrid.FacetGrid at 0x598c863350>
             200000
             150000
          色
             100000
              50000
                  0
                            1000
                                       2000
                                                  3000
                                                             4000
                                             age
In [6]: df.describe()
Out[6]:
                      age
                                   km
               1538.000000
                            1538.000000
         count
               1650.980494
                           53396.011704
                           40046.830723
           std
               1289.522278
           min
                366.000000
                            1232.000000
          25%
                670.000000
                           20006.250000
               1035.000000
                           39031.000000
          50%
               2616.000000
                           79667.750000
          max 4658.000000 235000.000000
In [7]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1538 entries, 0 to 1537
         Data columns (total 2 columns):
             Column Non-Null Count Dtype
                      1538 non-null
         0
                                      int64
             age
                      1538 non-null
             km
                                      int64
         dtvpes: int64(2)
        memory usage: 24.2 KB
In [8]: df.fillna(method = 'ffill',inplace = True)
         C:\Users\anu\AppData\Local\Temp\ipykernel_5596\1930596415.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-v
         ersus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)
           df.fillna(method = 'ffill',inplace = True)
In [9]: X = np. array(df['age']).reshape(-1, 1)
         Y = np.array(df['km']).reshape(-1, 1)
```

df.dropna(inplace = True)

C:\Users\anu\AppData\Local\Temp\ipykernel_5596\1791587065.py:1: SettingWithCopyWarning:

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-v

ersus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

A value is trying to be set on a copy of a slice from a DataFrame

In [10]: df.dropna(inplace = True)

```
In [11]: X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.25)
    regr = LinearRegression()
    regr.fit(X_train, Y_train)
    print(regr.score(X_test, Y_test))
```

0.7105842248847445

```
In [12]: y_pred=regr.predict(X_test)
plt.scatter(X_test, Y_test,color='b')
plt.plot(X_test,y_pred,color='k')
plt.show()
```



```
In [13]: df500 = df[:][:500]
sns.lmplot(x ="age",y ="km", data = df500,order = 1,ci = None)
```

Out[13]: <seaborn.axisgrid.FacetGrid at 0x598c8e6510>


```
In [14]: df500.fillna(method = 'ffill',inplace = True)
X = np. array(df500['age']).reshape(-1, 1)
y = np.array(df500['km']).reshape(-1, 1)
df500.dropna(inplace = True)
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
regr = LinearRegression()
regr.fit(X_train,y_train)
print("Regression:",regr.score(X_test,y_test))
y_pred=regr.predict(X_test)
plt.scatter(X_test,y_test,color = 'b')
plt.plot(X_test,y_pred,color = 'k')
plt.show()
```

Regression: 0.6624184900025549


```
In [15]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model = LinearRegression()
    model.fit(X_train,y_train)
    y_pred = model.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: 0.6624184900025549

In []: