О КОНСТАНТЕ ЭЙЛЕРА-МАСКЕРОНИ

Ю.Ю. МАЧИС

В работе рассматривается формула для классической константы Эйлера-Маскерони, не содержащая логарифма. Предлагается соответствующее асимптотическое разложение. Приведены новые ряды, быстро сходящиеся к константе.

Библиография: 4 названия.

1. Введение и формулировка результатов. Константа Эйлера-Маскерони

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \right) \approx 0,577\dots$$

 самая загадочная среди важнейших математических констант. Хотя уже опреденены миллиарды ее точных десятичных знаков, все еще недоказана трансцендентность или хотя бы ирациональность.

В литературе имеется множество формул, связанных с константой γ или определяющих ее (см. [1], [2]), однако они не являются столь же простыми по структуре и легко запоминаемыми, как, скажем, формулы для π или e:

$$\frac{\pi}{4} = \lim_{n \to \infty} \left(1 - \frac{1}{3} + \frac{1}{5} - \dots + \frac{1}{4n+1} \right),$$

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right).$$

В данной заметке обращается внимание на формулу

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{n^2} \right),\tag{1}$$

имеющую совершенно прозрачную структуру и не содержащую привычного при определении γ логарифма, а также на уточнения этой формулы (многоточие между слагаемыми, соответствующие здесь и далее заменяет слагаемые всем идущим подряд натуральным числам).

Доказательство (1) очевидно. Поскольку

$$2\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)-2\ln n\xrightarrow[n\to\infty]{}2\gamma,$$

то, вычитая отсюда соотношение

$$1 + \frac{1}{2} + \dots + \frac{1}{n^2} - \ln n^2 \xrightarrow[n \to \infty]{} \gamma,$$

получаем требуемое:

$$1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{n^2} \xrightarrow[n \to \infty]{} \gamma.$$
 (2)

Впрочем, тот же прием позволяет получить асимптотическое разложение для γ без логарифма. Берем асимптотическое разложение [3, с. 793]

$$\gamma = 1 + \frac{1}{2} + \dots + \frac{1}{n-1} - \ln n + \frac{1}{2n} + \frac{1}{12n^2} - \frac{1}{120n^4} + \frac{1}{252n^6} - \frac{1}{240n^8} + \dots$$

и заменяем в нем n на n^2 :

$$\gamma = 1 + \frac{1}{2} + \dots + \frac{1}{n^2 - 1} - \ln n^2 + \frac{1}{2n^2} + \frac{1}{12n^4} - \frac{1}{120n^8} + \dots$$

Вычитая из удвоенного предыдущего разложения последнее, имеем:

$$\gamma = 1 + \frac{1}{2} + \dots + \frac{1}{n-1} - \frac{1}{n} - \frac{1}{n+1} - \dots - \frac{1}{n^2 - 1} + \frac{1}{n} - \frac{1}{3n^2} - \frac{1}{15n^4} + \frac{1}{126n^6} + \dots,$$

или

$$\gamma = \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \dots - \frac{1}{n^2 - 1} - \frac{1}{n^2}\right) - \frac{1}{n} + \frac{2}{3n^2} - \frac{1}{10n^4} + \frac{1}{126n^6} + \dots$$

Разумеется, при необходимости последовательность в (2) можно видоизменять, например,

$$1 + \frac{1}{2} + \dots + \frac{1}{n-1} + \frac{1}{n} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{n^2 + n} \xrightarrow[n \to \infty]{} \gamma,$$

$$1 + \frac{1}{2} + \dots + \frac{1}{n-1} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{n^2 + n} \xrightarrow[n \to \infty]{} \gamma,$$

чем мы будем пользоваться в дальнейшем.

Нетрудно получить для γ двусторонние оценки без логарифмов (ср. [3]). Поскольку последовательность

$$1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln(n+1)$$

возрастает, а последовательность

$$1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n$$

убывает, то

$$1 + \frac{1}{2} \dots + \frac{1}{n} - \ln(n+1) < \gamma,$$
 (3)

$$1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n > \gamma, \tag{4}$$

поэтому

$$1 + \frac{1}{2} + \dots + \frac{1}{n^2 - 1} - \ln n^2 < \gamma, \tag{5}$$

$$1 + \frac{1}{2} + \dots + \frac{1}{(n+1)^2} - \ln(n+1)^2 > \gamma.$$
 (6)

Выячитая (5) из удвоенного (4), потом (6) из удвоенного (3), получаем

$$1 + \dots + \frac{1}{n} - \left(\frac{1}{n+1} + \dots + \frac{1}{n^2 - 1}\right) < \gamma < 1 + \dots + \frac{1}{n} - \left(\frac{1}{n+1} + \dots + \frac{1}{(n+1)^2}\right).$$

Разность между верхней и нижней границей здесь составлает $\sim 2/n$, а порядок последних слагаемых $1/n^2$. Это наводит на мысль, что границы можно сблизить, увеличив нижнюю и уменьшив верхнюю. Эту надежду реализует следующий результат.

Теорема 1. Последовательность

$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{n^2 + n - 1} - \frac{1}{n^2 + n}$$
 (7)

возрастает, а последовательность

$$b_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n+1} - \frac{1}{n+2} - \dots - \frac{1}{n^2 + n - 1}$$
 (8)

убывает, причем

$$a_n < \gamma < b_n$$
, $0 < \gamma - a_n < \frac{1}{n(n+1)}$, $0 < b_n - \gamma < \frac{1}{n(n+1)}$.

Итак, a_n (как и b_n) аппроксимирует γ с ошибкой $\sim 1/n^2$. Но поскольку $\Delta a_{n-1} \sim 1/3n^3$, (т.е. $1/(3n^3)$); здесь и далее после косой черты / не будем писать скобки, подразумевая, что все последующие множители принадлежат знаменителю дроби), то a_n постараемся увеличить до некоторой последовательности c_n так, чтобы Δc_{n-1} оставалось положительным, а новая последовательность c_n также, возрастая, стремилась к γ . Поскольку $1/(n^2+n)-1/(n^2-n)\sim -2/n^3$, то следует испытать последовательность $d_n=a_n+1/6(n^2+n)$. Однако тут же убеждаемся, что в действительности $\Delta d_{n-1}<0$, и d_n убывает. Поэтому берем c_n чуть-чуть меньше, $c_n=a_n+1/(6n^2+6n+1)$, и удостоверяемся, что $\Delta c_{n-1}>0$.

Теорема 2. Последовательность

$$d_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \frac{1}{n+1} - \ldots - \frac{1}{n^2 + n - 1} - \frac{1}{n^2 + n} + \frac{1}{6n^2 + 6n + 1}$$

возрастает, а последовательность

$$c_n = 1 + \ldots + \frac{1}{n} - \frac{1}{n+1} - \ldots - \frac{1}{n^2 + n - 1} - \frac{1}{n^2 + n} + \frac{1}{6n^2 + 6n}$$

убывает, причем

$$c_n < \gamma < d_n, \ 0 < \gamma - c_n < \frac{1}{6(n^2 + n)(6n^2 + 6n + 1)}, \ 0 < d_n - \gamma < \frac{1}{6(n^2 + n)(6n^2 + 6n + 1)}.$$

Следствие. Верны оценки

$$\frac{1}{6n^2+6n+1} < \gamma - \left(1 + \frac{1}{2} + \ldots + \frac{1}{n} - \frac{1}{n+1} - \frac{1}{n+2} - \ldots - \frac{1}{n^2+n-1} - \frac{1}{n^2+n}\right) < \frac{1}{6n^2+6n}. \tag{9}$$

При $n \ge 2$ они вытекают из теоремы 2, а при n=1 очевидны:

$$\frac{1}{13} < \gamma - 0.5 = 0.077... < \frac{1}{12}.$$

Приведем соответствующие результаты для привычной аппроксимации константы γ . В [1, формула (53)] указана оценка

$$\frac{1}{2n+2} < 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n < \frac{1}{2n},$$

более точные оценки см. в [3]:

$$\frac{1}{2n+1} < 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n - \gamma < \frac{1}{2n} \quad (n \ge 1),$$

$$\frac{1}{2n+0.34} < 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n - \gamma < \frac{1}{2n+0.(3)} \quad (n \ge 8).$$

Абсолютная погрешность последней оценки составляет $1/600n^2$, в то время как абсолютная погрешность оценки (9) меньше $1/72n^2(n+1)^2$.

2. Доказательство результатов

Доказательство теоремы 1. Докажем, что $\Delta a_{n-1} > 0$ при $n \ge 2$.

$$\Delta a_{n-1} = a_n - a_{n-1} = \sum_{k=1}^n \frac{1}{k} - \sum_{k=n+1}^{n^2+n} \frac{1}{k} - \sum_{k=1}^{n-1} \frac{1}{k} + \sum_{k=n}^{n^2-n} \frac{1}{k}$$

$$= \frac{2}{n} - \left(\frac{1}{n^2 - n + 1} + \frac{1}{n^2 - n + 2} + \dots + \frac{1}{n^2 + n}\right)$$

$$= \frac{2}{n} + \frac{1}{n^2 - n} - \frac{1}{n^2} - \sum_{k=1}^{n} \left(\frac{1}{n^2 - k} + \frac{1}{n^2 + k}\right)$$

$$= \frac{1}{n^2(n-1)} + \sum_{k=1}^{n} \left(\frac{2}{n^2} - \frac{2n^2}{n^4 - k^2}\right) = \frac{1}{n^2(n-1)} - \sum_{k=1}^{n} \frac{2k^2}{n^2(n^4 - k^2)}.$$
(10)

Так как $\sum_{k=1}^{n} k^2 = n(n+1)(2n+1)/6$, то

$$\Delta a_{n-1} > \frac{1}{n^2(n-1)} - \sum_{k=1}^n \frac{2k^2}{n^2(n^4 - n^2)} = \frac{1}{n^2(n-1)} - \frac{2n-1}{3n^3(n-1)} = \frac{1}{3n^3} > 0.$$

Далее, $b_n = a_n + 1/(n^2 + n)$, и поскольку сумма \sum в соотношении (10) положительна, то

$$\Delta b_{n-1} = \Delta a_{n-1} + \frac{1}{n^2 + n} - \frac{1}{n^2 - n} < \frac{1}{n^2(n-1)} - \frac{2}{n(n-1)(n+1)} = -\frac{1}{n^2(n+1)} < 0.$$

Итак, a_n стремится к γ возрастая, а b_n – убывая, поэтому

$$a_n < \gamma < b_n$$
, $\gamma - a_n < b_n - a_n = \frac{1}{n(n+1)}$, $b_n - \gamma < b_n - a_n = \frac{1}{n(n+1)}$.

Теорема 1 доказана.

Доказательство теоремы 2. Нам нужно доказать, что при $n \ge 2$

$$\Delta c_{n-1} = \Delta a_{n-1} + \frac{1}{6n^2 + 6n + 1} - \frac{1}{6n^2 - 6n + 1} > 0,$$

$$\Delta d_{n-1} = \Delta a_{n-1} + \frac{1}{6(n^2 + n)} - \frac{1}{6(n^2 - n)} < 0.$$

Порядок суммы \sum в соотношении (10) равен $O(1/n^3)$. При помощи простого преобразования несложно добиться, чтобы порядок остаточной суммы стал $O(1/n^5)$:

$$\sum_{k=1}^n \left[\frac{2k^2}{n^2(n^4-k^2)} - \frac{2k^2}{n^2(n^4-n^2)} + \frac{2k^2}{n^2(n^4-n^2)} \right] = -\sum_{k=1}^n \frac{2k^2(n^2-k^2)}{n^2(n^4-k^2)(n^4-n^2)} + \frac{2}{n^2(n^4-n^2)} \sum_{k=1}^n k^2.$$

Следовательно, (10) превращается в

$$\Delta a_{n-1} = \frac{1}{n^2(n-1)} + \sum_{k=1}^{n} \frac{2k^2(n^2 - k^2)}{n^2(n^4 - k^2)(n^4 - n^2)} - \frac{2}{n^4(n^2 - 1)} \cdot \frac{n(n+1)(2n+1)}{6},$$

а после несложных выкладок в

$$\Delta a_{n-1} = \frac{1}{3n^3} + \sum_{k=1}^{n} \frac{2k^2(n^2 - k^2)}{n^2(n^4 - k^2)(n^4 - n^2)}.$$
 (11)

Поскольку

$$\sum_{k=1}^{n} 2k^{2}(n^{2} - k^{2}) = 2n^{2} \sum_{k=1}^{n} k^{2} - 2 \sum_{k=1}^{n} k^{4} = 2n^{2} \cdot \frac{n(n+1)(2n+1)}{6}$$
$$-2 \cdot \frac{n(n+1)(6n^{3} + 9n^{2} + n - 1)}{30} = \frac{n(n+1)(4n^{3} - 4n^{2} - n + 1)}{15}, \quad (12)$$

согласно формулам сумм степеней натуральных чисел то сумма \sum больше

$$\sum_{k=1}^{n} \frac{2k^2(n^2 - k^2)}{15n^2(n^4 - 1)(n^4 - n^2)} = \frac{4n^3 - 4n^2 - n + 1}{15n^3(n - 1)(n^4 - 1)} = \frac{4n^2 - 1}{15n^3(n^4 - 1)}.$$

Следовательно.

$$\Delta c_{n-1} > \frac{1}{3n^3} + \frac{4n^2 - 1}{15n^3(n^4 - 1)} - \frac{12n}{36n^4 - 24n^2 + 1},$$

$$15n^3(n^4 - 1)(36n^4 - 24n^2 + 1)\Delta c_{n-1} > 5(n^4 - 1)(36n^4 - 24n^2 + 1)$$

$$+ (4n^2 - 1)(36n^4 - 24n^2 + 1) - 180n^4(n^4 - 1) = 24n^6 - 127n^4 + 148n^2 - 6,$$

и $\Delta c_{n-1}>0$, ибо последний многочлен положителен, поскольку его можно записать в виде $24n^2(n^2-4)^2+65(n^2-4)+6(4n^2-1)$.

С другой стороны, сумма \sum в соотношении (11) меньше

$$\sum_{k=1}^{n} \frac{2k^2(n^2 - k^2)}{n^2(n^4 - n^2)^2},$$

а учитывая (12), меньше чем $4n^2/15n^5(n^2-1)$. Следовательно,

$$\Delta d_{n-1} < \frac{1}{3n^3} + \frac{4}{15n^3(n^2 - 1)} - \frac{1}{3n(n^2 - 1)} = -\frac{1}{15n^3(n^2 - 1)} < 0.$$

Теорема 2 доказана. 3. Заключительные замечания

Отметим, что теоремы 1 и 2 для достаточно больших n легко доказать разлагая функции в ряды, однако в случае малых n возникают определенные трудности.

Разумеется, формулы (1) или (2) можно уточнять при помощи асимптотических рядов, если только это окажется полезным при расчетах (например, при вычислении многих точных знаков константы γ) или интересным в теоретическом отношении. Легко написать и сответсвующие ряды, сходящиеся к γ . Например, поскольку $a_n \to \gamma$, то $\gamma = a_1 + \sum_{n=2}^{\infty} \Delta a_{n-1}$, и по формуле (10) имеем ряд

$$\gamma = \frac{1}{2} + \sum_{n=2}^{\infty} \left(\frac{2}{n} - \frac{1}{n^2 - n + 1} - \frac{1}{n^2 - n + 2} - \dots - \frac{1}{n^2 + n} \right),$$

а согласно формуле (11) – ряд

$$\gamma = \frac{1}{2} + \sum_{n=2}^{\infty} \left[\frac{1}{3n^3} + \sum_{k=1}^{n} \frac{2k^2(n^2 - k^2)}{n^2(n^4 - k^2)(n^4 - n^2)} \right],$$

сходящиеся со скоростью ряда $\sum 1/n^3$. Если этот ряд сложить с тождеством

$$0 = \sum_{n=2}^{\infty} \frac{1}{6n(n+1)} - \frac{1}{6n(n-1)} - \frac{1}{12n^2(n+1)^2} + \frac{1}{12n^2(n-1)^2} - \frac{1}{3n^3} + \frac{1}{3n^3(n^2-1)^2},$$

то получаем возрастающий ряд

$$\gamma = \frac{1}{2} + \frac{1}{12} - \frac{1}{48} + \sum_{n=2}^{\infty} \left[\frac{1}{3n^3(n^2 - 1)} + \sum_{k=1}^{n} \frac{2k^2(n^2 - k^2)}{n^2(n^4 - k^2)(n^4 - n^2)} \right]$$

с первым членом 9/16=0,5625, сходящийся к γ со скоростью ряда $\sum 1/n^5$. Впрочем, нетрудно написать аналогичные ряды, еще быстрее сходящиеся к γ .

Ю.Ю. Мачис

Институт математики и информатики, Академийос 4, г. Вильнюс 08663, Литва E-mail:jmacys@ktl.mii.lt

Список цитированной литературы

- 1. E.W. Weisstein, "Euler–Mascheroni constant". *Math-World. A Wolfram Web Resource*. http://en.mathworld.wolfram.com/Euler-MascheroniConstant.html [retrieved 2010.06.01].
- 2. "Euler-Mascheroni constant". Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Euler-Mascheroni constant [retrieved 2010.05.31].
- 3. Г.М. Фихтенгольц, Kypc дифференциального и интегрального исчисления, II, Физматлит, M., 2001.
- 4. J.J. Mačys, "On the Euler–Mascheroni constant". *Matematika ir matematinis modeliavimas* (ISSN 1822-2757), 4(2008), 1–6 [in Lithuanian].