[2024-1 Robotics]

Chapter 4. Forward Kinematics

Gyunghoon Park

School of ECE, University of Seoul

Kinematics?

4.0. Introduction to Chapter

Kinematics defines the relation between

- \blacktriangleright the joint coordinate θ , and
- ▶ the position/orientation of the end-effector frame, $x_{\rm EE}$.

Types of kinematics?

- ▶ Forward kinematics (FK) (in this chapter): $\theta \rightarrow x_{\rm EE}$
- ▶ Inverse kinematics (IK) (in Chapter 6): $x_{\rm EE} o heta$
- ▶ Velocity kinematics (in Chapter 5): $(\theta, \dot{\theta}) \rightarrow \dot{x}_{\rm EE}$

Kinematics delivers

- ▶ a structural information on the robot,
- ▶ not a force-acceleration relation.

Example: 3R manipulator

4.0. Introduction to Chapter

Note: The forward kinematics of the robot implies $\theta_i \to (x, y, \phi)$.

Figure 4.1: Forward kinematics of a 3R planar open chain. For each frame, the \hat{x} -and \hat{y} -axis is shown; the \hat{z} -axes are parallel and out of the page.

Forward kinematics of 3R manipulator

4.0. Introduction to Chapter

The forward kinematics of 3R planar robot:

$$x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2) + L_3 \cos(\theta_1 + \theta_2 + \theta_3),$$

$$y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2) + L_3 \sin(\theta_1 + \theta_2 + \theta_3),$$

$$\phi = \theta_1 + \theta_2 + \theta_3$$

We may want to express in a simpler form, such as

homogeneous transformation
$$T_{04} = \begin{bmatrix} R_{04} & p_{04} \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4}$$

Two ways of expressing the forward kinematics:

- ► Denavit-Hartenberg parameters (D-H parameters) = An usual approach
- ▶ Product of exponentials = Interest of this book

Method 1: Compute $T_{i-1,i}$

4.0. Introduction to Chapter

We may have T_{04} by computing

$$T_{04}=$$
 homogeneous transformation that represents $\{4\}$ in $\{0\}$
$$=T_{01}T_{12}T_{23}T_{34}$$

where each homogeneous transformation $T_{i-1,i}$ is derived by

$$T_{01} = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & 0\\ \sin \theta_1 & \cos \theta_1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad T_{12} = \cdots$$

Note:

- **Each** $T_{i-1,i}$ is related only with θ_i
- ightharpoonup Computation of $T_{i-1,i}$ is not that elegant, and also boring...

Method 2: A closer look at $T=e^{[\mathcal{S}]\theta}$

4.0. Introduction to Chapter

Consider the following example where $\{b\}$ moves to $\{c\}$:

$$T_{sb} = \begin{bmatrix} \cos 30^{\circ} & -\sin 30^{\circ} & 0 & 1\\ \sin 30^{\circ} & \cos 30^{\circ} & 0 & 2\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad T_{sc} = \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} & 0 & 2\\ \sin 60^{\circ} & \cos 60^{\circ} & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(Cont'd)

4.0. Introduction to Chapter

On the other hand, the screw axis $\mathcal{S} = (\omega, v)$ in $\{\mathrm{s}\}$ is computed by

- lacktriangledown $\omega=(0,0,1)$: The angular velocity about \hat{z}_s
- $\mathbf{v} = (v_1, v_2, 0)$: The linear velocity of a point currently at the origin of $\{s\}$ in the $\{s\}$ frame
- \Rightarrow the configuration of the final frame $\{c\}$ can be represented as

$$T_{sc} = e^{[\mathcal{S}]\theta} T_{sb}, \quad \text{or} \quad e^{[\mathcal{S}]\theta} = T_{sc} T_{sb}^{-1}$$

Why pre-multiplication? (The order is important!)

Note:

- ▶ The screw axis S above is defined in $\{s\}$.
- ▶ In the forward kinematics problem, T_{sc} will be of interest (Why?)

Method 2: Use the screw axis $S = (\omega, v)$

4.0. Introduction to Chapter

Revisit the same example for the 3R manipulator:

Figure 4.1: Forward kinematics of a 3R planar open chain. For each frame, the xand v-axis is shown: the x-axes are parallel and out of the page.

► Step 1: If $\theta_1 = \theta_2 = \theta_3 = 0$, then we have

$$T_{04} = M := \begin{bmatrix} 1 & 0 & 0 & L_1 + L_2 + L_3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \text{if } \theta_1 = \theta_2 = \theta_3 = 0$$

(Cont'd)

4.0. Introduction to Chapter

Step 2: If $\theta_1 = \theta_2 = 0$ and Joint 3 is rotated (i.e., $\theta_3 \neq 0$), then the spatial twist S_3 is given by

$$S_3 = (\omega_3, v_3) = (0, 0, 1, 0, -(L_1 + L_2), 0)$$

where

- $\omega_3 = (0,0,1)$: The angular velocity in $\{0\}$
- $v_3 = (0, -(L_1 + L_2), 0)$: The linear velocity of a point at the origin of $\{0\}$ in $\{0\}$
- ... We have an homogeneous transformation in the constrained case

$$T_{04} = e^{[S_3]\theta_3} M$$
, if $\theta_1 = \theta_2 = 0$

(Cont'd)

4.0. Introduction to Chapter

▶ Step 3: If $\theta_1 = 0$ and Joints 2 & 3 are rotated (i.e., $\theta_2 \neq 0$ and $\theta_3 \neq 0$), then the spatial twist S_2 is given by

$$\mathcal{S}_2 = (\omega_3, v_3) = (0, 0, 1, 0, -L_1, 0) \quad \Rightarrow \quad T_{04} = e^{[\mathcal{S}_2]\theta_2} e^{[\mathcal{S}_3]\theta_3} M, \quad \text{if } \theta_1 = 0$$

▶ Step 4: If all the joints are rotated, then the spatial twist S_1 is given by

$$S_1 = (\omega_1, v_1) = (0, 0, 1, 0, 0, 0), \quad \Rightarrow \quad T_{04} = e^{[S_1]\theta_1} e^{[S_2]\theta_2} e^{[S_3]\theta_3} M.$$

Conclusion: After Step 4,

we have an homogeneous transformation T_{04} with no condition on θ_i :

$$T_{04} = e^{[S_1]\theta_1} e^{[S_2]\theta_2} e^{[S_3]\theta_3} M.$$

Generalize the screw-based method: Product of Exponentials

4.1. Product of Exponentials

The homogeneous transformation $T \in SE(3)$ from $\{s\}$ to $\{b\}$:

$$T = e^{[\mathcal{S}_n]\theta_n} M, \qquad \text{if } \theta_1 = \dots = \theta_{n-2} = \theta_{n-1} = 0$$

$$= e^{[\mathcal{S}_{n-1}]\theta_{n-1}} (e^{[\mathcal{S}_n]\theta_n} M), \qquad \text{if } \theta_1 = \dots = \theta_{n-2} = 0$$

$$\vdots$$

$$= e^{[\mathcal{S}_1]\theta_1} \dots e^{[\mathcal{S}_{n-1}]\theta_{n-1}} (e^{[\mathcal{S}_n]\theta_n} M) \qquad \text{with NO condition on } \theta_i!$$

where the last term is the very homogeneous transformation we want to find.

Example 4.1: 3R spatial open chain

4.1. Product of Exponentials

Find the homogeneous transformation T from $\{s\}$ to $\{b\}$ in the following configuration:

Figure 4.3: A 3R spatial open chain.

Note: The screw axis S_i in this example are given by

$$S_1 = (0, 0, 1, 0, 0, 0), \quad S_2 = (0, -1, 0, 0, 0, -L_1), \quad S_3 = (1, 0, 0, 0, -L_2, 0)$$

Example 4.2: 3R planar open chain

4.1. Product of Exponentials

Figure 4.1: Forward kinematics of a 3R planar open chain. For each frame, the x- and ŷ-axis is shown; the ẑ-axes are parallel and out of the page.

i	ω_i	v_i
1	(0,0,1)	(0,0,0)
2	(0, 0, 1)	$(0, -L_1, 0)$
3	(0,0,1)	$(0,-(L_1+L_2),0)$

Example 4.3: 6R spatial open chain

4.1. Product of Exponentials

i	ω_i	v_i
1	(0,0,1)	(0,0,0)
2	(0, 1, 0)	(0, 0, 0)
3	(-1,0,0)	(0,0,0)
4	(-1,0,0)	(0, 0, L)
5	(-1,0,0)	(0, 0, 2L)
6	(0, 1, 0)	(0, 0, 0)

Introduction to D-H convention

Appendix C. Denavit-Hartenberg Parameters

Another way of finding T_{0n} is to post-multiply $T_{i-1,i}$ as

$$T_{0n}(\theta_1, \dots, \theta_n) = T_{01}(\theta_1) T_{12}(\theta_2) \cdots T_{n-1,n}(\theta_n)$$

where $T_{i-1,i}$ denotes the relative displacement btw. $\{i-1\}$ and $\{i\}$, related only with θ_i .

Note:

- ▶ There are many ways of determining the frame.
- $ightharpoonup T_{i-1,i}$ would be dependent of selection of each frame.
- ▶ If we FIX the rule for selecting the frame, then?

A basic rule of assigning a frame on the joint

Supplementary material (정슬, 로봇공학)

Each frame is selected such that the z-axis is aligned to the moving axis.

- ► Revolute joint (left)
- Prismatic joint (right)

(Cont'd)

Supplementary material (정슬, 로봇공학)

정슬, *로봇공학* (5판), p. 102.

- $ightharpoonup z_i$ -axis: Set as the moving axis (related to θ_{i+1})
- $ightharpoonup x_i$ -axis: Perpendicular to both z_{i-1} and z_i -axes
- $ightharpoonup y_i$ -axis: Taken by following the right-handed rule.

A basic rule for assigning a frame $\{i\}$ from $\{i-1\}$

Appendix C. Denavit-Hartenberg Parameters

Figure C.1: Illustration of the Denavit-Hartenberg parameters.

- ▶ Rule 1: Set $\hat{\mathbf{z}}_i$ -axis to coincide with the joint axis i
- ▶ Rule 2: Find the line segment that orthogonally intersects both \hat{z}_{i-1} and \hat{z}_i axes.
- ▶ Rule 3: Connect the joint axes i-1 and i by a mutually perpendicular line
- ▶ Rule 4: The $\hat{\mathbf{x}}$ -axis is chosen to be in the direction of the mutually perpendicular line, pointing from the axis i-1 to the axis i.

D-H convention 1: Classical version (in Korean)

Supplementary Material: 정슬, 로봇공학

- Link length a_i : z_i 축과 z_{i-1} 축 사이의 최단 거리
- lackbox Link twist $lpha_i$: $\{\mathrm{i}\}$ 좌표에서 z_i 축과 z_{i-1} 축 사이의 비틀림각
- Link offset d_i : x_i 축과 x_{i-1} 축 사이의 최단 거리.
- lacktriangle Joint angle $heta_i$: $\{i-1\}$ 좌표에서 \mathbf{z}_{i-1} 축을 중심으로 회전한 각

Note: Be careful with indexing!

D-H convention 2: Modified version

Appendix C. Denavit-Hartenberg Parameters

Figure C.1: Illustration of the Denavit-Hartenberg parameters.

- ▶ Link length a_{i-1} of link i-1: The length of the mutually perpendicular line
- ▶ Link twist α_{i-1} : The angle from $\hat{\mathbf{z}}_{i-1}$ to $\hat{\mathbf{z}}_i$, measured about $\hat{\mathbf{x}}_{i-1}$.
- ▶ Link offset d_i : The distance from the intersection of $\hat{\mathbf{x}}_{i-1}$ and $\hat{\mathbf{z}}_i$ to the origin of $\{i\}$.
- ▶ Joint angle ϕ_i : The angle from $\hat{\mathbf{x}}_{i-1}$ to $\hat{\mathbf{x}}_i$, measured about $\hat{\mathbf{z}}_i$ -axis.

Note: Be careful with indexing!

Link frame transformation described by D-H parameters

Appendix C. Denavit-Hartenberg Parameters

▶ The textbook follows a modified D-H convention (where $\{i-1\}$ frame is related with the (i-1)-th axis), resulting in

$$T_{i-1,i} = \text{Rot}(\hat{\mathbf{x}}, \alpha_{i-1}) \text{Trans}(\hat{\mathbf{x}}, a_{i-1}) \text{Trans}(\hat{\mathbf{z}}, d_i) \text{Rot}(\hat{\mathbf{z}}, \phi_i)$$

(associated with the textbook) that means,

- 1. Rotating the frame $\{i-1\}$ about its $\hat{\mathbf{x}}$ -axis by α_{i-1}
- 2. Translating the frame along its \hat{x} -axis by a_{i-1}
- 3. Translating the frame along its $\hat{\mathbf{z}}$ -axis by d_i
- 4. Rotating the frame about its \hat{z} -axis by ϕ_i .
- ▶ The supplementary material follows a classical D-H convention (where $\{i-1\}$ frame is related with the i-th axis), with

$$T_{i-1,i} = \text{Rot}(\hat{\mathbf{z}}, \theta_i) \text{Trans}(\hat{\mathbf{z}}, d_i) \text{Trans}(\hat{\mathbf{x}}, a_i) \text{Rot}(\hat{\mathbf{x}}, \alpha_i)$$

Example 2-21 (for classical D-H convention)

Supplementary Material: 정슬, 로봇공학

예제 2.21

다음 그림은 두 조인트가 선운동하는 조인트로 구성되어 있다. D-H 변수들을 구해 보자. 먼저 실제 변수는 d_1 , d_2 가 된다.

그림 2.50 2축 로봇의 좌표 설정 예 1

조인트	θ_i	$lpha_i$	d_i	a_{i}
1	0	90	d_1	0
2	0	0	d_2	0

Example 2-22 (for classical D-H convention)

Supplementary Material: 정슬, 로봇공학

예제 2.22

다음 그림은 조인트 1, 2가 회전운동하는 조인트로 구성되어 있다. D-H 변수들을 구해 보자. 먼저 실제 변수는 θ_1 , θ_2 가 된다.

그림 2.51 2축 로봇의 좌표 설정 예 2

조인트	θ_i	α_i	d_i	a_i
1	θ_1	90	d_1	0
2	θ_2	0	0	d_2

Example C.1 (for modified D-H convention)

Appendix C. Denavit-Hartenberg Parameters

Figure 4.3: A 3R spatial open chain.

i	α_{i-1}	a_{i-1}	d_i	ϕ_i
1	0	0	0	θ_1
2	90°	L_1	0	$\theta_2 - 90^{\circ}$
3	-90°	L_2	0	θ_3

Example C.2 (for modified D-H convention)

Appendix C. Denavit-Hartenberg Parameters

Universal Robot Description Format (URDF)?

- 4.2. The Universal Robot Description Format
 - ▶ An XML file format that explains the kinematics/dynamics info. on a robot
 - ▶ Usually used with the Robot Operating System (ROS)
 - Applicable to any tree-structured robot
 - ▶ Will be discussed later with URDF files...

Figure 4.10: A five-link robot represented as a tree, where the nodes of the tree are the links and the edges of the tree are the joints.