TP3 de Probabilités 2: GIS3

Benjamin Arras*

Ouvrir l'interface RStudio en tapant rstudio dans la console.

Exercices: Simulation: Loi normale

Rappel

On dit qu'un vecteur aléatoire $X=(X_1,X_2)$ de \mathbb{R}^2 est distribué selon une loi normale bivariée de vecteur moyenne m_X et de matrice de covariance K_X (avec $\det K_X \neq 0$) si la loi de ce vecteur admet une densité donnée par, pour tout $(x_1,x_2) \in \mathbb{R}^2$

$$f_{(X_1, X_2)}(x_1, x_2) = \frac{1}{2\pi \left| \det K_X \right|^{\frac{1}{2}}} \exp \left(-\frac{\langle x - m_X; K_X^{-1}(x - m_X) \rangle}{2} \right),$$

où $m_X = (m_1, m_2), x = (x_1, x_2)$ et K_X est définie par

$$K_X = \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_1, X_2) & \operatorname{Var}(X_2) \end{pmatrix}.$$

On se propose dans la suite de simuler selon une normale normale bivariée étant donnés son vecteur moyenne et sa matrice de covariance. Ainsi, simuler le tirage de 50 couples gaussiens indépendants

1. de vecteur moyenne (0,0) et de matrice de covariance donnée par

$$K_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

par la méthode de Box-Muller (vue en TDs).

2. de vecteur moyenne (0,0) et de matrice de covariance donnée par

$$K_2 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

On pourra soit utiliser la fonction rmvnorm() soit utiliser l'égalité en loi $Z_2 =_d (K_2)^{\frac{1}{2}} Z_1$ où Z_1 est un vecteur aléatoire de loi normale bivariée de vecteur moyenne (0,0) et de matrice de covariance K_1 et Z_2 un vecteur aléatoire de loi normale bivariée de vecteur moyenne (0,0) et de matrice de covariance K_2 . Comparer.

^{*}Université de Lille; benjamin.arras@univ-lille.fr

3. de vecteur moyenne (0,0) et de matrice de covariance donnée par

$$K_3 = \begin{pmatrix} 4 + \varepsilon & 2 \\ 2 & 4 + \varepsilon \end{pmatrix}.$$

pour $\varepsilon=1,\,0.1,\,0.01$. On pourra soit utiliser la fonction rmvnorm() soit utiliser l'égalité en loi $Z_3=_d(K_3)^{\frac{1}{2}}Z_1$ où Z_1 est un vecteur aléatoire de loi normale bivariée de vecteur moyenne (0,0) et de matrice de covariance K_1 et Z_3 un vecteur aléatoire de loi normale bivariée de vecteur moyenne (0,0) et de matrice de covariance K_3 . Comparer.

A chaque fois, tracer le nuage des points $(X_1^i, X_2^i)_{1 \le i \le 50}$.

Exercices: Estimation ponctuelle

Soit $X_1 \dots X_n$ un échantillon de la loi $\mathcal{N}(\theta, 1)$ où $\theta \in \mathbb{R}$ est un paramètre inconnu. Taper dans la console la commande suivante

$$theta \leftarrow \text{rnorm}(1)$$
.

La valeur theta va jouer le rôle de paramètre inconnu à estimer dans la suite de cet exercice.

1. Calculer l'espérance et la variance de la variable aléatoire

$$\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k, \quad n \ge 1.$$

- 2. Effectuer un tirage de $X_1 \dots X_n$ avec n=50. On note x_1, \dots, x_n les valeurs observées et \overline{x}_n la valeur de \overline{X}_n correspondante. Compte tenu de la question précédente, proposer une valeur issue de x_1, \dots, x_n pour θ .
- 3. Effectuer un nouveau tirage de X_1, \ldots, X_n avec n=50 et proposer une nouvelle valeur pour θ . Comparer les deux valeurs proposées à la valeur exacte de θ que vous trouverez dans le Workspace. Recommencer l'expérience avec n=500, n=5000 et n=50000.

Exercices: Urne de Polya

L'expérience est la suivante. A l'instant 0, une urne contient une boule rouge et une boule verte et on effectue une succession de tirages définis par la règle suivante : on tire une boule de l'urne au hasard et on la remet dans l'urne en ajoutant une boule de même couleur (on dispose d'un réservoir avec une infinité de boules des deux couleurs). On note R_n le nombre de boules rouges au temps $n \geq 0$. On a vu en DS que pour tout $n \geq 0$ et pour tout $k \in \{1, \ldots, n+1\}$ on a

$$\mathbb{P}\left(R_n = k\right) = \frac{1}{n+1}.$$

- 1. Effectuer une simulation de $(R_n)_{0 \le n \le 30}$
- 2. Soient $(R_{30}^j)_{1 \le j \le 1000}$ des variables aléatoires indépendantes de même loi que R_{30} . Effectuer un tirage de ces variables aléatoires et illustrer, à l'aide de moyen graphique approprié, le fait que R_{30} est uniformément distribuée sur $\{1, \ldots, 31\}$.
- 3. On admet que la proportion de boules rouges dans l'urne converge en loi vers une loi uniforme sur [0, 1]. Illustrer ce résultat.