Bayesian vs Frequentist Accumulation Curve CIs

April 21, 2018

Accumulation Curve CI

The credibility intervals for different machine-learning models and Burden/Pharmacophore descripters. First with the prior being dependent on the ordered indexing of the compounds selected: Beta(.01, 0.01 + .0005 * u), where i is the number of compounds selected.

For the Burden Descriptors

```
modelType <- c("Tree", "RF", "SVM", "NNet", "KNN", "PLSLDA")</pre>
u <- 1:500
int.list.burd.Bayes <- list(length = ncol(probs.Burd) - 1)</pre>
for (i in 2:7) {
 hit.vec <- probs.Burd$Observed
  probs <- probs.Burd[, i]</pre>
  order.idx <- order(probs, decreasing = T)</pre>
  probs <- probs[order.idx]</pre>
  hit.vec <- hit.vec[order.idx]
  m <- length(probs)
  int.mat <- matrix(ncol = 3, nrow = m)</pre>
  colnames(int.mat) <- c("NHits", "LB", "UB")</pre>
  a <- hit.vec + .01
  b \leftarrow 1 - hit.vec + .01 + .0005*u
  sum.samp <- vector(length = 10000)</pre>
  for(j in 1:500) {
    int.mat[j, 1] <- sum(hit.vec[1:j])</pre>
    sum.samp <- sum.samp + rbeta(10000, a[j], b[j])</pre>
    int.mat[j, 2] <- quantile(sum.samp, probs = .025)</pre>
    int.mat[j, 3] <- quantile(sum.samp, probs = .975)</pre>
  }
  par(mfrow = c(1, 1))
  plot(int.mat[, 1], type = "l", ylim = c(0, 100),
       main = paste("Burden: ", colnames(probs.Burd)[i]), ylab = "Number of Hits",
       xlab = "Number of Compounds Selected")
  lines(int.mat[, 2], type = "1", lty = "dashed", col = "red")
  lines(int.mat[, 3], type = "1", lty = "dashed", col = "red")
  int.list.burd.Bayes[[i-1]] <- int.mat</pre>
```

Burden: Tree

Burden: RF

Burden: SVM

Burden: NNet

Burden: KNN

Burden: PLSLDA

For the Pharmocophores

```
int.list.phar.Bayes <- list(length = ncol(probs.Phar) - 1)</pre>
for (i in 2:7) {
  hit.vec <- probs.Phar$Observed
  probs <- probs.Phar[, i]</pre>
  order.idx <- order(probs, decreasing = T)</pre>
  probs <- probs[order.idx]</pre>
  hit.vec <- hit.vec[order.idx]</pre>
  m <- length(probs)</pre>
  int.mat <- matrix(ncol = 3, nrow = m)</pre>
  colnames(int.mat) <- c("NHits", "LB", "UB")</pre>
  a <- hit.vec + .01
  b <- 1 - hit.vec + .01 + .0005*u
  sum.samp <- vector(length = 10000)</pre>
  for(j in 1:500) {
    int.mat[j, 1] <- sum(hit.vec[1:j])</pre>
    sum.samp <- sum.samp + rbeta(10000, a[j], b[j])</pre>
    int.mat[j, 2] <- quantile(sum.samp, probs = .025)</pre>
    int.mat[j, 3] <- quantile(sum.samp, probs = .975)</pre>
```

Pharmacophores: Tree

Pharmacophores: RF

Pharmacophores: SVM

Pharmacophores: NNet

Pharmacophores: KNN

Pharmacophores: PLSLDA

And then the frequentist runs

Burden

```
int.list.burd.Freq <- list(length = ncol(probs.Burd) - 1)</pre>
for(i in 2:ncol(probs.Burd)) {
  probs <- probs.Burd[, i]</pre>
  hit.vec <- probs.Burd$Observed
  order.idx <- order(probs, decreasing = T)</pre>
  probs <- probs[order.idx]</pre>
  hit.vec <- hit.vec[order.idx]</pre>
  m <- length(probs)</pre>
  \mbox{\# Matrix containing the number of hits and lower and upper bounds for 95\%}
  # confidence intervals for each number of tests
  int.mat <- matrix(ncol = 3, nrow = m)</pre>
  colnames(int.mat) <- c("NHits", "LB", "UB")</pre>
  for(j in 1:m) {
    int.mat[j, 1] <- sum(hit.vec[1:j])</pre>
    int.mat[j, 2:3] \leftarrow j * CPInt(x = sum(hit.vec[1:j]), p.vec = probs[1:j])
  int.list.burd.Freq[[i-1]] <- int.mat</pre>
}
```

```
# Plotting the accumulation curves and confidence band for each modeling method
par(mfrow = c(2, 3))
for (i in seq_along(int.list.burd.Freq)) {
  plot(int.list.burd.Freq[[i]][, 1], type = "l", ylim = c(0, 75),
        main = colnames(probs.Burd)[i+1], ylab = "Number of Hits",
        xlab = "Number of Compounds Selected")
  lines(int.list.burd.Freq[[i]][, 2], type = "l", lty = "dashed", col = "red")
  lines(int.list.burd.Freq[[i]][, 3], type = "l", lty = "dashed", col = "red")
}
```


Pharmacophore

 ${\it\# Confidence\ intervals\ for\ the\ accumulation\ curves\ for\ Pharmamocophores\ descriptors\ Models}$

```
int.list.phar.Freq <- list(length = ncol(probs.Burd) - 1)
for(i in 2:ncol(probs.Phar)) {
  probs <- probs.Phar[, i]
  hit.vec <- probs.Phar$Observed

  order.idx <- order(probs, decreasing = T)
  probs <- probs[order.idx]
  hit.vec <- hit.vec[order.idx]

  m <- length(probs)
  int.mat <- matrix(ncol = 3, nrow = m)
  colnames(int.mat) <- c("NHits", "LB", "UB")</pre>
```

```
for(j in 1:m) {
   int.mat[j, 1] <- sum(hit.vec[1:j])
   int.mat[j, 2:3] <- j * CPInt(x = sum(hit.vec[1:j]), p.vec = probs[1:j])
}
   int.list.phar.Freq[[i-1]] <- int.mat
}

par(mfrow = c(2, 3))
for (i in seq_along(int.list.phar.Freq)) {
   plot(int.list.phar.Freq[[i]][, 1], type = "l", ylim = c(0, 75),
        main = colnames(probs.Burd)[i+1], ylab = "Number of Hits",
        xlab = "Number of Compounds Selected")
   lines(int.list.phar.Freq[[i]][, 2], type = "l", lty = "dashed", col = "red")
   lines(int.list.phar.Freq[[i]][, 3], type = "l", lty = "dashed", col = "red")
}</pre>
```



```
av.dist.5 <- vector(length = 4)
names(av.width) <- c("BF", "PF", "BB", "PB")</pre>
for (1 in 1:4) {
  overlap.count <- 0
  total.count <- 0
  width <- 0
  dist.5 <- 0
  for (i in 1:6) {
    for (k in 1:500) {
      for (j in i:6) {
        if ((intervals[[1]][[i]][k, 3] > intervals[[1]][[j]][k, 2] &
             intervals[[1]][[i]][k, 2] < intervals[[1]][[j]][k, 2]) |
             (intervals[[1]][[j]][k, 3] > intervals[[1]][[i]][k, 2] &
             intervals[[1]][[j]][k, 2] < intervals[[1]][[i]][k, 2])) {
          overlap.count <- overlap.count + 1</pre>
        total.count <- total.count + 1</pre>
      width <- width + intervals[[1]][[i]][k, 3] - intervals[[1]][[i]][k, 2]</pre>
      dist.5 \leftarrow dist.5 + abs((intervals[[1]][[i]][k, 3] + intervals[[1]][[i]][k, 2])/(k*2) - .5)
  }
  sig.difs[l] <- 1 - overlap.count/total.count</pre>
  av.width[l] <- width/(6*500)
  av.dist.5[1] <- dist.5/(6*500)
}
sig.difs
##
                                          PR
          BF
                     PF
                                BB
## 0.3989524 0.4296190 0.6037143 0.5868571
av.width
##
          BF
                     PF
                                BB
                                          PΒ
## 21.924483 20.939654 4.860216 4.941814
av.dist.5
## [1] 0.3027097 0.3259283 0.3111292 0.3335081
df <- data.frame(rbind(sig.difs, av.width, av.dist.5))</pre>
df <- round(df, 2)
df \leftarrow df[, c(1,3,2,4)]
rownames(df) <- c("Fraction of Signficant Differences", "Average Interval Width", "Average Distance from
colnames(df) <- c("Frequentist", "Bayes", "Frequentist", "Bayes")</pre>
kable(df, format = "latex", align = "c", booktabs = T, caption = "Summary measures of all point wise co
sig.difs.freq <- (sig.difs[1] + sig.difs[2])/2</pre>
sig.difs.bayes <- (sig.difs[3] + sig.difs[4])/2</pre>
```

Table 1: Summary measures of all point wise confidence/credible intervals

	Burden Numbers		Pharmacophores	
	Frequentist	Bayes	Frequentist	Bayes
Fraction of Signficant Differences	0.40	0.60	0.43	0.59
Average Interval Width	21.92	4.86	20.94	4.94
Average Distance from .5	0.30	0.31	0.33	0.33