

5. Análise de Projetos de Investimento

5.1 Cálculo financeiro

- 5.1.1 Como calcular valores atuais e futuros: Capitalização e atualização
- 5.1.2 Inflação e taxas reais
- 5.1.3 Taxas de juro nominais e efetivas
- **5.1.4** Anuidades e perpetuidades

5.2 Análise da rentabilidade de projetos de investimento

- 5.2.1 Cash-Flows
- 5.2.2 Taxa de atualização
- 5.2.3 O Valor Atual Líquido (VAL)
- 5.2.4 A Taxa Interna de Rendibilidade (TIR)
- 5.2.5 O Período de Recuperação do Investimento (Payback)
- 5.2.6 Índice de Rendibilidade (IR)

u.c. Gestão

5.1 Cálculo financeiro

Um investimento...

 Consiste numa aplicação atual de recursos, visando obter benefícios futuros:

```
-R - R - R + B + B + B ... + B
```

- Os benefícios e os gastos de recursos podem corresponder a dinheiro
 — fluxos financeiros (CASH FLOWS) ou a investimentos de caráter
 social, como os feitos pelo Estado, p.ex. na educação, saúde ou vias de
 comunicação.
- Podem ainda ser aplicações em ativos financeiros (ex: compra de ações para rendimento) ou reais (terrenos, edifícios, equipamento,...).

5.1.1 Como calcular valores atuais e futuros: capitalização e atualização

Suponha que tem 1.000€ e pretende depositá-los no banco. O que vai acontecer?

Ao depositar os 1.000€ no banco, estes ficam a render a uma dada taxa de juro.

Ao fim de 1 ano há 2 hipóteses:

- a) <u>Levantar o juro</u> ficando apenas o capital inicial deixar nessa conta só o montante inicial, levantando os juros todos os anos (juros simples)
- b) <u>Acumular o juro</u> ao capital depositá-los numa conta a prazo em que os juros vencidos ficam a acumular nessa conta gerando mais juros (juros compostos)

u.c. Gestão

Capital ou depósito inicial = 1000€; j = taxa de juro (anual) = 5%

Fluxo<0 = pagamento ; Fluxo>0 = recebimento

3

Juros Simples

Período	0	1	2	3	 n
Fluxos	-1.000 €	+50 €	+50 €	+50 €	 +1.050€
Fórmula	-C ₀	j × C _o	j × C _o	j × C _o	 $jC_0+C_0=(1+j)C_0$

Juros Compostos - Neste caso há capitalização

Período	0	1	2	3	n
Fluxos	-1.000 €	0	0	0	 1.000(1+0,05) ⁿ
Fórmula	-C _o	0	0	0	 $C_n = C_0 (1+j)^n$

Capitalização versus Atualização

Questão de teste:

Um capital aplicado à taxa anual de 2% em regime de juros compostos gerou ao fim de quatro anos o valor acumulado de 108 243,216€. Qual o valor do capital inicialmente aplicado?

- a)99 000€
- b)98 000€
- c) 102 000€
- d) 100 000€

5.1.2 Inflação e taxas reais

Suponha que lhe prometem 1.000 € para daqui a um ano

- Há 2 hipóteses a considerar, porque daqui a 1 ano:
 - Pode vir a comprar o mesmo que compraria hoje com os 1.000€
 Neste caso não há... INFLAÇÃO.
 - Pode não vir a comprar o mesmo que compraria hoje com os 1.000€
 - ➤ Neste caso há... INFLAÇÃO.

u.c. Gestão 7

Análise a preços correntes e constantes

Exemplo:

Os 1 000 € daqui a um ano são 1 000 € a preços correntes do ano 1.

Se a taxa de inflação prevista para esse ano for de 1,5%, o valor real desses 1000 €, i.e. o valor a preços constantes (preços de hoje, ano 0) será igual a :

1 000 € / (1+0,015) = 985,22 €

O que significa o valor obtido?

Taxas de Juro: Nominal e Real

- Taxa de juro nominal (j_n) usa-se em avaliação de projetos a preços correntes, não é corrigida do efeito da inflação (i).
- Taxa de juro real (j_r) usa-se em avaliação de projetos a preços constantes =
 Taxa nominal expurgada do efeito da inflação.

Exemplo:

Se a taxa de juro nominal (j_n) = 2% e a a taxa de inflação (i) for 1,5%, qual será a taxa de juro real (j_r)?

Resposta:

- Se $(1+j_n) = (1+i) \times (1+j_r) => (1+2\%) = (1+1,5\%) \times (1+j_r)$
- => $\mathbf{j_r} = (1+\mathbf{j_n})/(1+\mathbf{i})-1 = (1,02/1,015)-1=0,492\%$.

Cálculo aproximado da taxa de juro real: $j_r = j_n - i = 2\% - 1.5\% = 0.5\%$

u.c. Gestão

Questão:

Se a taxa de juro nominal (j_n) for 2% e a a taxa de inflação (i) for 1,5%, e tendo calculado anteriormente a taxa de juro real como 0,492%, 1.000€ recebidos hoje capitalizam ao fim de 1 ano:

- a) em termos nominais (ou seja, a preços correntes)?
- b) em termos reais (ou seja, a preços constantes do ano 0) ?

5.1.3 Taxas de juro nominais e efetivas

Nas taxas há ainda a considerar a equivalência entre taxas de diferentes períodos inferiores ao ano.

Nesse caso, usa-se também a designação <u>nominal</u> para significar que os juros de pagamentos ou recebimentos infra-anuais são calculados <u>proporcionalmente</u> à taxa nominal anual.

A taxa mensal correspondente à taxa anual nominal (TAN) de 12% é: $j_m = 12\%/12 = 1\%$

A taxa mensal equivalente a à taxa anual efetiva (TAE) de 12% é: $j_m = (1+j_a)^{1/12} - 1 = 1,12^{1/12} - 1 = 0,95\%$.

TAEG = Taxa Anual Efetiva Global (inclui encargos como seguros de vida e taxas adicionais associadas ao empréstimo)

u.c. Gestão

Equivalência entre taxas de juro de diferentes períodos inferiores ao ano

• Equivalência de taxas de juro: duas taxas de juro referidas a períodos diferentes de capitalização dizem-se equivalentes se, aplicadas a iguais capitais, produzem o mesmo resultado em igual período tempo.

Ex: A aplicação de 100€ a uma taxa anual nominal de 20%, com capitalização de juros semestral, é equivalente a uma aplicação à taxa anual efetiva de 21%.

Equivalência entre taxas de juro (efetivas) de diferentes períodos inferiores ao ano

- Equivalência de taxas de juro em regime de juros compostos
- Considerando o <u>caso de 1 ano</u> e respectivos k subperíodos, a equivalência de taxas é dada pela seguinte igualdade:

$$(1+j_k)^k=1+j_a$$

j_a é a taxa de juro anual,
 k é o numero de subperíodos no ano,
 j_k é a taxa do sub-período k

Ex: k=12 e taxa mensal j_{12} ou j_m k=4 e taxa trimestral j_4 ou j_t k=2 e taxa semestral j_2 ou j_s

u.c. Gestão

Equivalência entre taxas de juro (efetivas) de diferentes períodos inferiores ao ano

 Considerando o <u>caso de outros períodos</u> e respectivos k subperíodos, a equivalência de taxas é dada pela seguinte igualdade:

$$(1+j_k)^k=(1+j_x)^1$$

 j_x é a taxa de juro do período x, k é o numero de subperíodos no período X, j_k é a taxa do sub-período k

Taxas de Juro Equivalentes

Questões:

- 1. Calcule a Taxa trimestral (j_t) equivalente a $j_m=1\%$ ao mês
- 2. Um banco cobra juros à taxa de 3% ao trimestre: Qual a taxa de juro anual efetiva **TAE**?
- 3. Se o banco cobra juros à TAE de 12% (j_e =0,12) calcule a taxa trimestral equivalente.

u.c. Gestão

5.1.4 Anuidades e perpetuidades

Anuidades

Numa situação em que se obtém um empréstimo num período e temos:

- => Rendas (+) ou Pagamentos (-) Constantes = A (anuidade)
- => Durante **n períodos** (<u>n</u> é o nº de anos, trimestres, meses ...)
- => Com r taxa atualização (anual, trimestral, mensal,)

Como se atualizam os Cash Flows ?

O cálculo do Valor Atual (VA) de todos os Cash Flows = $\sum A_t/(1+r)^t$

Т	0	1	2	 n
Empréstimo	Е			
Pagamentos		A /(1+r)¹	A/(1+r) ²	A/(1+r) ⁿ

Série em Progressão Geométrica com razão [1/(1+r)]

Soma=	1ºtermo-último termo x razão
Soma-	1-razão

Ex: Aquisição de um automóvel ou de uma habitação

$$VA = A \frac{\frac{1}{1+r} - \frac{1}{(1+r)^{n}} \times \frac{1}{1+r}}{1 - \frac{1}{1+r}} = A \frac{\frac{(1+r)^{n} - 1}{(1+r)^{n+1}}}{\frac{1+r - 1}{1+r}} =$$

Valor Atual de uma anuidade

(sem crescimento)

$$= A \frac{(1+r)^{n}-1}{(1+r)^{n+1}} \times \frac{1+r}{r} = A \frac{(1+r)^{n}-1}{(1+r)^{n} \times r}$$

Factor de anuidade (r, n)

Valor atual de uma perpetuidade (sem crescimento)

$$C = A \frac{\frac{1}{1+r} - \frac{1}{\infty} \times \frac{1}{1+r}}{1 - \frac{1}{1+r}} = A \frac{1}{1+r} \times \frac{1+r}{r} = A \times \frac{1}{r}$$

Factor de perpetuidade (r, ∞)

u.c. Gestão

Anuidades e perpetuidades com rendas crescentes a

uma taxa g < r:

Anuidade

$$VA = A \times \left(\frac{1}{r-g} - \frac{(1+g)^n}{(1+r)^n(r-g)}\right)$$

Perpetuidade

Questões:

- 1. Quer comprar um apartamento e para isso necessita de um empréstimo de 250 000 €. Se as mensalidades de pagamento forem constantes, a taxa de juro média for de 1% ao mês (TAN=12%) e o prazo for de 30 anos, qual o valor de cada mensalidade a pagar ao banco?
- 1. Exercício extraído de Brealey, Myers e Allen (2007), "Princípios de Finanças Empresariais", 8ª. ed., Ed.McGraw-Hill:

'Possui um oleoduto que gerará 2 milhões de euros de fluxos de tesouraria durante o próximo ano. Os custos de operação do oleoduto são negligenciáveis e a sua durabilidade muito grande. Infelizmente, o volume do petróleo transportado tem diminuído e prevê-se que os fluxos de tesouraria diminuam 4% ao ano. A taxa de atualização é de 10%. Qual é o VA dos fluxos de tesouraria do oleoduto se se assumir que os fluxos de tesouraria durarão para sempre?'

u.c. Gestão

5.2 Análise da rentabilidade de projetos de investimento

5.2.1 Cash Flows

Um investimento é ...

 Uma sequência de fluxos financeiros (cash flows) distribuídos por diversos períodos:

Período	0	1	2	3	 n
	CF_0	CF_1	CF ₂		 CF _n

- O primeiro ou primeiros cash flows são normalmente negativos:
 - despesas de investimento em terrenos, edifícios, equipamentos, licenças e patentes ou, até, em fundo de maneio, como a constituição e reforço de stocks de matérias primas ou mercadorias.
- No final do tempo de vida do projeto, o valor destas despesas que seja recuperável dará origem ao valor residual do investimento.

Valor Residual do Investimento

- A venda no fim do tempo de vida do projeto (ano n) de um dado ativo fixo origina geralmente um ganho ou perda extraordinária.
- Se a empresa for lucrativa este valor vai ter impacto fiscal sobre a diferença entre o Valor de Venda e o Valor Contabilístico
- O VALOR RESIDUAL (VR) = CASH FLOW_n gerado pela "venda" de um imobilizado no final do tempo de vida do projeto

```
VR = Valor Mercado<sub>n</sub> –
- (Valor Mercado<sub>n</sub> – Valor Contabilístico<sub>n</sub>) * Taxa imposto
```

Em que:

Valor Mercado_n = Valor esperado de venda do ativo no ano n Valor Contabilístico = Valor de compra – Amortizações Acumuladas

Se a empresa for lucrativa

Valor Mercado - Valor Contabilístico =>

Ganho ou Perda (Mais ou Menos valias) =>

efeito fiscal: Pagamento adicional ou redução do valor de imposto a pagar

u.c. Gestão

Cash Flows de Exploração

- Os Cash Flows durante a fase de exploração (passada a fase inicial de investimento) serão habitualmente positivos se o projeto for lucrativo.
- Os Cash Flows de exploração correspondem a:
 - = Resultados Antes de Juros e Impostos × (1 tx. imposto) + Amortizações e Depreciações

Com

Resultados Antes de Juros e Impostos (RAJI)= EBIT (Earnings before interest and tax)

= RESULTADOS OPERACIONAIS

Considera-se aqui o EBIT x (1-t), resultado operacional líquido de impostos, em vez de EBT x (1-t) = Resultado Líquido do Período, para não deduzir os custos financeiros de financiamento que aparecem como taxa de juro na taxa de atualização dos cash flows. Isso é coerente com o facto de se considerar o montante total do investimento e não só a parte financiada por capitais próprios

Exercício - Mapa de Cash-Flows (unidade: 1000 €)

- 1.Uma empresa investiu 100 mil € numa nova máquina para os próximos 4 anos
- 2. Esta é amortizável em 5 anos e pode ser vendida ao fim de 4 anos por 10 mil € (valor comercial).
- 3. Sabe-se que as vendas anuais adicionais serão de 150 mil € durante todo o projeto.
- 4. Os custos operacionais anuais adicionais com pessoal, fse e matéria prima serão de 100 mil €, acrescidos dos custos com amortizações (depreciações).
- 5. A taxa de imposto a pagar pela empresa é de 25%.

Rubrica / Período	0	1	2	3	4
1 Despesas de Investimento					
2. + Valor Residual do Investimento					
3. Cash Flow do Investimento (=1+2)					
4. Vendas					
5 Custos Operacionais (RH, fse, m.pr)					
6 Depreciações					
7. Resultado Operacional (EBIT)					
8. EBIT x (1 - t)					
9. CF Exploração=EBIT(1-t)+Depr					
10. CFlow Total = CF Inv. + CF Expl.					

u.c. Gestão 233

Quando temos um EBIT negativo, e vamos calcular EBIT x (1 - t) como procedemos?

Exemplo: Para t=25% e EBIT = -30000

R: a) tratando-se de uma empresa, o pressuposto geral é que com resultado (EBIT) negativo não há imposto, ou seja ele é ZERO => EBIT x (1-t) = -30 000 (é também a situação de um projeto desligado de qualquer empresa já existente).

Com aquele valor nulo do imposto, o RL é igual ao resultado antes de impostos (negativo), a que se soma, como sempre, o valor positivo das amortizações (depreciações).

b) Se o EBIT é negativo, mas se se trata de um projeto implementado por uma **empresa lucrativa**, ou seja que apesar do projeto, o seu EBIT mantem-se positivo, então para calcular o EBIT líquido do projeto e o seu cash flow, o imposto tem que ser calculado e neste caso ele é negativo. EBIT x $(1-t) = -30\ 000x(1-25\%) =$

 \Rightarrow =-30 000+7 500 = -22 500 que é melhor do que -30 000 Calculamos o imposto para um valor negativo, somando depois as amortizações (depreciações). Pagará menos impostos. Há obviamente um contributo positivo para o cash flow do projeto porque essa diferença corresponde a um benefício fiscal que contará assim positivamente no projeto.

5.2.2 Taxa de atualização

Na Avaliação de Projetos de Investimento estamos confrontados com a necessidade de comparar Fluxos financeiros aplicados numa fase inicial (hip. ano 0), com Fluxos gerados nos anos seguintes (anos 1, 2, 3, 4, ...)

 $\mathbf{C}_{\mathbf{t}}$ - é um fluxo de caixa positivo ou negativo num dado ano \mathbf{t}

r - A taxa de rendimento pretendida (não a taxa de inflação) = 5%.

Quanto vale hoje (VA = VALOR atual), um fluxo C₁ de 105€ obtido no ano 1?

$$VA = C_1/(1+5\%) = 100$$

É equivalente ter hoje 100€ ou 105€ ao fim de 1 ano.

 C_1 atualizado à taxa de 5% = 105/1,05 = 100 = $C_1 \times 1/(1+5\%)$ Fator de atualização = $1/(1+r)^1 = 1/(1,05)^1$

u.c. Gestão

Avaliação de Projetos e Atualização

Exemplo

And	0	1	2	3	4				
Cash Flows C _t	-100	40	50	60	80				
Fator de atualização F _t (r = 5%)	valor atual de u	valor atual de uma unidade obtido no ano t com a taxa de atualização $r = F_t = 1/(1+r)^t$							
1/(1+r) ^t	1/(1,05)0	1/(1,05)1	1/(1,05)2	1/(1,05)3	1/(1,05)4				
1/1,05 ^t	1	0,952381	0,907029	0,863838	0,822702				
Valor Atual (t)= C _t ×F _t	-100	38,09524	45,35147	51,83026	65,8162				
Valor Atual VA	Soma dos ca	Soma dos cash flows futuros atualizados sem incluir o investimento inicial							
Valor Atual Líquido	So	ma de $C_0 + VA = \sum_{i=1}^{n} C_i$	C _t atualizados	5	101,0932				

Taxas de Atualização

- As taxas de atualização são em geral NOMINAIS, aplicadas a CASH FLOWS a preços correntes
- Quando os Cash Flows são reais ou a preços constantes, utilizam-se Taxas de atualização reais

Taxas de Atualização /RISCO/Rendimento:

Considerando o mesmo capital, o que preferiam?

- a. um depósito a prazo em vosso nome, a levantar daqui a um ano, com uma taxa de juro de 2%;
 - b. idêntico valor em ações, para venderem daqui a um ano, com um rendimento esperado também de 2%?
- 2. E se em b) o rendimento esperado for de 10%?

u.c. Gestão

Ainda as taxas de atualização ...

- Em conclusão, a determinação das taxas de atualização deve ter em conta o risco associado ao investimento
- As taxas de atualização exprimem o custo de oportunidade do capital ou seja o rendimento que o investidor pretende tendo em conta o risco do investimento.
- Se:
 - A taxa de juro sem risco (obrigações do tesouro) = 2%
 - Se o risco inerente a um projeto x = 5%
 - Então a taxa de atualização deveria ser $r = j_{sr} + Pr = 7\%$
 - J_{sr} taxa de juro sem risco (obrigações do tesouro)
 - Pr prémio de risco

A taxa de atualização é o custo de oportunidade do capital. O investidor exige receber pelo menos a taxa que obteria em investimentos alternativos com o mesmo grau de risco.

A taxas de atualização de um projeto financiado exclusivamente por capital próprio deve corresponder à soma de:

- + rendimento esperado de activos sem risco (rendimentos previsíveis a priori com precisão, como a remuneração dos títulos de dívida do Estado, geralmente mais elevada que a dos depósitos bancários)
- + com um prémio de risco inerente à atividade económica em causa e ao risco financeiro associado ao grau de endividamento da empresa.

Quando, como é comum, houver financiamento também com capital alheio, Dívida, a taxa de atualização deve incorporar também a taxa de juro da dívida líquida de impostos, uma vez que as empresas podem deduzir aos resultados os juros pagos e com isso pagar menos impostos.

Nesse caso a taxa de atualização deve ser igual ao custo médio ponderado do capital, sendo a ponderação dada pelas percentagens dos dois tipos de capital, calculadas ao valor de mercado.

u.c. Gestão

Custo médio ponderado do capital

(CMPC ou WACC – Weighted Average Cost of Capital, em inglês):

Taxa de atualização com financiamento misto (Capital Próprio CP e Dívida D) =

= custo do capital próprio r_{CP} x % capital próprio

custo do capital alheio líquido de impostos (taxa de juro dos empréstimos) $r_D \times (1-t) \times \%$ capital alheio

Nota: t é a taxa de imposto.

CMPC - WACC.

Exercício:

- a) Qual a taxa de atualização a utilizar num projeto de investimento por uma empresa que se financia em valores de mercado a 70% de capital próprio (Equity) e 30% em capital alheio (Debt), sendo o custo médio da dívida (juros) de 6% e a rentabilidade esperada pelos acionistas (custo do capital próprio) de 7%? (Nota: assuma que a empresa é lucrativa e paga uma taxa de imposto de 30%).
- b) E se o risco deste novo projeto for maior que o da atividade principal da empresa, situando-se em 10 p.p. (pontos percentuais) acima da taxa de juro sem risco dos títulos do Estado, que paga um juro de 2%?

u.c. Gestão

5.2.3 - O VAL - Valor Atual Líquido

VAL (r) =
$$\sum_{k=0}^{n} \frac{CF_k}{(1+r)^k}$$

Se VAL (r) > 0 => **PROJECTO RENTÁVEL** a essa taxa de atualização r

Entre dois projetos A e B $Se VAL_A > VAL_B$ P_A preferível a P_B

Questão:

Que tipo de **depósito bancário e de juros** sugere o projeto abaixo?

A taxa de atualização como limiar de rentabilidade: exemplo de cálculo do VAL com três taxas diferentes

Taxa e período	r	0	1	2	3	Σ = VAL
CF's		-1000	100	100	1100	
CF's/(1+r) ^j	10%	-1000	90.91	82.64	826.45	0.00
CF's/(1+r) ^j	5%	-1000	95.24	90.70	950.22	136.16
CF's/(1+r) ^j	15%	-1000	86.96	75.61	723.27	-114.16

u.c. Gestão

A comparação e ordenação de projetos iniciados em diferentes momentos de tempo tem que ter ser feita consistentemente

Ano	2010	2011	2012	2013	2014
Projeto A	-1000	300	420	500	
Projeto B		-500	250	300	
Projeto C			-600	340	420

r= 10 %

VAL A (10%)= -1000+300/(1+0.1)+420/(1+0.1)^2+500/(1+0.1)^3

VAL B (10%)=-500/(1+0.1)+250/(1+0.1)^2+300/(1+01)^3

VAL C (10%)=-600/(1+0.1)^2+340/(1+0.1)^3+420/(1+0.1)^4

5.2.4 - A TIR - Taxa Interna de Rentabilidade

$$\sum_{k=0}^{n} \frac{CF_k}{(1+r)^k} = 0$$

- TIR \rightarrow é a taxa \mathbf{r} de atualização para a qual o VAL = 0
- Calcula-se iterativamente.
- Aceitar um projeto com VAL(r)>0 é equivalente a aceitá-lo quando TIR>r.

Problemas no cálculo e na utilização da TIR

1º Pode existir mais do que uma TIR. É o caso, p. ex., da existência de cashflows negativos intermédios ou finais (investimentos não convencionais).

Ex:

 C_{o}

 C_1

 C_2

TIR's

-4.000 25.000 -25.00 25% e 400%

$$-4.000+25.000/(1+0.25)-25.000/(1+0.25)^2=0$$

$$-4.000+25.000/(1+4)-25.000/(1+4)^2=0$$

36

35

2º Pode não existir TIR

Ex: C_0 C_1 C_2 1.000 -3.000 2.500

3º A TIR é inadequada para projetos mutuamente exclusivos (i.e., em que só podemos fazer um deles)

EXEMPLO:

	CF ₀	CF _{1 a 10}	VAL _{5%}	
CF _A	-40.000	8.000	21.774	$TIR_A=15\%$
CF _B	-20.000	5.000	18.608	$TIR_B=21\%$
CF _{A-B}	-20.000	3.000	3.165	$TIR_{A-B}=8\%$

→VAL_A > VAL_B
→A melhor que B a menos que se consiga aplicar o dinheiro excedente A-B num projeto com rentabilidade maior do que 8%

u.c. Gestão

5.2.5 PRI - Período de Recuperação do Investimento atualizado (Payback period)

Tempo necessário para que os cash flows atualizados gerados pelo projeto igualem (recuperem) o capital investido inicialmente.

$$\sum_{i=0}^{PB} CF_i/(1+r)^i = 0$$

CF_i = cash flow do período i PB = nº de períodos do "Payback" r = taxa de atualização

Período(anos)	0	1	2	3	4	5	6
Cash Flows							
atualizados	-1000	200	300	400	420	500	700
C.F. acumulados até t	-1000	-800	-500	-100	320	820	1520

5.2.6 IR - Índice de Rendibilidade

$$IR = \frac{VA \left(= \sum_{1}^{n} CF_{k} / (1+r)^{k}\right)}{Inv. inicial} = \frac{VAL + Inv. Inicial}{Inv. Inicial}$$

(critério de aceitação: ser >1)

Problema idêntico ao da TIR: Investimentos Mutuamente Exclusivos

Projeto de Investimento	C _o	C ₁	r	VAL	IR VA/C _o
А	-1	3,3	10%	2 = -1 + 3,3/1,1	3,00
В	-10	22	10%	10 = -10 +22/1,1	2,00
B-A	-9	18,7	10%	8 = -9 + 18,7/1,1	1,89

u.c. Gestão

Bibliografia

Análise de Projetos de Investimento: conceitos fundamentais

Soares, João O.

Folhas da unidade curricular de Gestão

I.S.T. – Universidade de Lisboa, 2015