ТЕМА 2. ОСНОВЫ ПРОЕКТИРОВАНИЯ БД

Процесс проектирования БД представляет собой последовательность переходов от неформального словесного описания информационной структуры предметной области к формализованному описанию объектов предметной области в терминах некоторой модели. Выделяют следующие этапы проектирования:

- 1. Системный анализ и словесное описание информационных объектов предметной области.
- 2. Проектирование инфологической модели предметной области частично формализованное описание объектов предметной области в терминах некоторой семантической модели, например, в терминах ER-модели.
- 3. Даталогическое или логическое проектирование БД, то есть описание БД в терминах принятой даталогической модели данных.
- 4. Физическое проектирование БД, то есть выбор эффективного размещения БД на внешних носителях для обеспечения наиболее эффективной работы приложения.

Если мы учтем, что между вторым и третьим этапами необходимо принять решение, с использованием какой стандартной СУБД будет реализовываться наш проект, то условно процесс проектирования БД можно представить последовательностью выполнения пяти соответствующих этапов (см. рис. 6.2).

Системный анализ предметной области

Системный анализ предполагает проведение подробное словесное описание объектов предметной области и реальных связей, которые присутствуют между описываемыми объектами.

- В общем случае существуют два подхода к выбору состава и структуры предметной области:
- Функциональный подход применяется, когда заранее известны функции некоторой группы лиц и комплексов задач, для обслуживания информационных потребностей которых создается рассматриваемая БД. В этом случае можно четко выделить минимальный необходимый набор объектов предметной области, которые должны быть описаны.
- Предметный подход информационные потребности будущих пользователей БД жестко не фиксируются, они могут быть многоаспектными и весьма динамичными. Невозможно точно выделить минимальный набор объектов предметной области. В описание предметной области в этом случае включаются такие объекты и взаимосвязи, которые наиболее характерны и наиболее существенны для нее.

Системный анализ должен заканчиваться подробным описанием информации об объектах предметной области, которая требуется для решения конкретных задач и которая должна храниться в БД, формулировкой конкретных задач, которые будут решаться с использованием данной БД с кратким описанием алгоритмов их решения, описанием выходных документов, которые должны генерироваться в системе, описанием входных документов, которые служат основанием для заполнения данными БД.

Инфологическое моделирование

Инфологическая модель должна включать такое формализованное описание предметной области, которое легко будет "читаться" не только специалистами по базам данных. И это описание должно быть настолько емким, чтобы можно было оценить глубину и корректность проработки проекта БД, и конечно, как говорилось раньше, оно не должно быть привязано к конкретной СУБД. Выбор СУБД — это отдельная задача, для корректного ее решения необходимо иметь проект, который не привязан ни к какой конкретной СУБД.

Инфологическое проектирование предполагает представление семантики предметной области в модели БД на основе теоретико-графовых нотаций.

Предложено несколько моделей данных (семантическими моделями):

- функциональную модель данных;
- модель "сущность-связь";
- модель потоков данных;
- UML и т.д.

Модель "сущность-связь"

В основе ER-модели лежат следующие базовые понятия:

– Сущность, с помощью которой моделируется класс однотипных объектов. Сущность имеет имя, уникальное в пределах моделируемой системы. Предполагается, что в системе существует множество экземпляров данной сущности. Объект, которому соответствует понятие сущности, имеет свой набор атрибутов — характеристик, определяющих свойства данного представителя класса. Набор атрибутов, однозначно идентифицирующий конкретный экземпляр сущности, называют ключевым.

Одно из общепринятых графических обозначений сущности — прямоугольник, в верхней части которого записано имя сущности, а ниже перечисляются атрибуты, причем ключевые атрибуты помечаются, например, подчеркиванием или специальным шрифтом (рис. 7.1):

Рис. 7.1. Пример определения сущности в модели ER

Между сущностями могут быть установлены связи — бинарные ассоциации, показывающие, каким образом сущности соотносятся или взаимодействуют между собой.

Рис. 7.2. Пример отношения "один-ко-многим" при связывании сущностей "Студент" и "Преподаватель"

Связи делятся на три типа по множественности: один-к-одному (1:1), один-ко-многим (1:М), многие-ко-многим (М:М). Связь один-к-одному означает, что экземпляр одной сущности связан только с одним экземпляром другой сущности. Связь 1: М означает, что один экземпляр сущности, расположенный слева по связи, может быть связан с несколькими экземплярами сущности, расположенными справа по связи. Связь "один-к-одному" (1:1) означает, что один экземпляр одной сущности связан только с одним экземпляром другой сущности, а связь "многие-

ко-многим" (М:М) означает, что один экземпляр первой сущности может быть связан с несколькими экземплярами второй сущности, и наоборот, один экземпляр второй сущности может быть связан с несколькими экземплярами первой сущности.

Между двумя сущностями может быть задано сколько угодно связей с разными смысловыми нагрузками

Рис. 7.3. Пример моделирования связи "многие-ко-многим"

Связь любого из этих типов может быть обязательной, если в данной связи должен участвовать каждый экземпляр сущности, необязательной — если не каждый экземпляр сущности должен участвовать в данной связи. Необязательность связи обозначается пустым кружочком на конце связи, а обязательность перпендикулярной линией, перечеркивающей связь.

Рис. 7.4. Пример обязательной и необязательной связи между сущностями

ЕR-модели допускается принцип категоризации сущностей: вводится понятие подтипа сущности, то есть сущность может быть представлена в виде двух или более своих подтипов — сущностей, каждая из которых может иметь общие атрибуты и отношения и/или атрибуты и отношения, которые определяются однажды на верхнем уровне и наследуются на нижнем уровне. Все подтипы одной сущности рассматриваются как взаимоисключающие, и при разделении сущности на подтипы она должна быть представлена в виде полного набора взаимоисключающих подтипов.

Сущность, на основе которой строятся подтипы, называется супертипом. Любой экземпляр супертипа должен относиться к конкретному подтипу. Для графического изображения принципа категоризации или типизации сущности вводится специальный графический элемент, называемый узел-дискриминатор

Рис. 7.5. Диаграмма подтипов сущности ТЕСТ

В результате построения модели предметной области в виде набора сущностей и связей получаем связный граф. В полученном графе необходимо избегать циклических связей — они выявляют некорректность модели.