COMPUTER SYSTEMS AND ORGANIZATION Adders

Daniel Graham

ENGINEERING

REVIEW

THE IDEA

4-BIT ADDER

Great now let's build it with gates.

ADDING

Let start by building a half adder something that just adds two bits.

Let's build a truth table.

Α	В	A + B	C.out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

We can implement
A + B with an XOR gate
And the C.out (Carry out)
With an AND gate

ADDING

Let start by building a half adder something that just adds two bits.

Let's build a truth table.

Α	В	A + B	C.out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

We can implement
A + B with an XOR gate
And the C.out (Carry out)
With an AND gate

HALF ADDER DEMO

https://tinyurl.com/ygpea8v4

http://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjCAMB0l3BWc0FwCwCY0HYEA4cEMEIURTJyBTAWjDACgwE0QMs21KBmANj06VKGKOSZl2rMGlZ8B01sNEIGAGXAZ5vSnkphtbUQDMAhgBsAzlXJQ1GgZJC62HEZVOXrSSAwDu9lykDRx9-fWEOclDQ8AMwTUDov1il1kcQ5PitPQBOESiYsDyU8GLiXlswsoQK9JrK0vzgyIMfAFkQOXAZEDR9brS2FAYOrqxKPtquQwxhoA

ADDING

We can implement
A + B with an XOR gate
And the C.out (Carry out)
With an AND gate

Half Adder

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A \oplus B$$

 $C_{out} = AB$

← Carries

1111

0111

+ 1011

0010

Half Adder

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\begin{array}{ll} S & = A \oplus B \\ C_{out} & = AB \end{array}$$

9

Full Adder

C_{in}	Α	В	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

1	1	1	1		(Car	ries
	0	1	1	1			
+	1	0	1	1			
	0	0	1	0			

Full Adder

C_{in}	Α	В	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

C.out has been rewritten to reduce the number of gates needed.

DEMO FULL ADDER

https://tinyurl.com/2cfbbshs

http://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjCAMB0l3BWc0FwCwCY0HYEA4cEMEIURTJyBTAWjDACgwE1w1WNsMRPveoeAhExYgAzGIBsPBNLSSOsgd1IMA7jy6buYyBy2R14vdvFTThjROlhJlfrcqWz0rPa1uoR-p59YvGn6sYOw8-

s4OdqYY4d54eOAYCfLBSV4AsuQAnNyOIJL+eXwoR vR88WwcFc4hwWDceJRlASCN4PWt9krObcQ2oX1 eADKdMnIJg7kgAGYAhgA2AM5U5MPt5ckTFVNzS ytlhiO1YaxoE-

47C8urNaHHzcc1HfcdSQnOKYnJCpUt1uA5YzBQH OXTAnQmfgfH6DBDYVzdIxwhHSZE8SDvBiZNEYDH 5C544rCZhNO5pN5fZSrYlkf5geEgT706T2IQibhMqI IQF5VmqIA

RIPPLE CARRY ADDER

Next let's build a full adder

Χ₀ ο-•Z₂

RIPPLE CARRY ADDER

```
1111 ← Carries
0111
+1011
1110
```


- 1. Clocks
- 2. Latches
- 3. Flip Flops

CLOCKS

A clock is something that produces a periodic signal Period is length of time for one clock cycle Example

CLOCKS

Clock frequency Intel Core i-9 3.0GHz

Frequency = 1/ period

Period = 1/frequency

CLOCKS

Clock frequency Intel Core i-9 $3.0 \, \text{GHz}$. = $3*10^9 = 3,000,000,000$ cycles per second Thank is fast.

CLOCKS EDGES

Rising Edge (Also called positive edge)

CLOCKS EDGES

Falling Edge.

We will build a single cycle machine it will complete all the computation in a single cycle

USING RING OSCILLATORS TO GENERATE CLOCKS

A clock is something that produces a periodic signal

Let's walk through an example and assume that Q starts off as 0. Draw wave form that results.

Frequency = 1/(2*t*n)

Where t is time delay of an inverter and n is number of inverters

THE D FLIP FLOP

STORING SINGLE

Goal

- Understand the behavior of a positive edgetriggered D flip-flop.
 - How do we store a bit
 - What happens when the clock changes
 - What does it mean to be a positive edge triggered flip flop
 - What is Q and Q

BUILT SIMULATOR VERSION

Use this link to experiment with the flipflop during lecture. Try different things as see how it works

https://tinyurl.com/2dhk5kvg

http://www.falstad.com/circuit/circuitjs.html?ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmlx AUgoqoQFMBaMMAKDASUPxABZsUQGPD178oFFgHcQXPKIE88VPgMhSZ3HoRGLl2qCwAyvJfN6KzVCADMAhgBsAznWpqASib064vfRAFgPijQSMFIVDAILACygpA6YkrKYIRhLAD21PrKkKSu0BBWIADyAK4ALgAOFRngMil5eeGw8GSECIQo4SABINggAJYAdtXltQLZvLnE+fC5GO2d3QIC-QDG9ulrANYsQA

D FLIP FLOP

Two inputs and Two outputs

Inputs

D – Data in (The single bit that we want the flip flop to store)

Clock – the output wave from the clocks we discussed earlier

Output

Q – The value of the internal state. 1 if the internal state is one and zero if the internal state is 0

Q (bar) – Is the inverse of Q.

STATE OF A D FLIP-FLOP

Let assume that the D flip state is where its internal state is zero

What is the value of Q and Q bar?

SETTING A D FLIP-FLOP TO 1

Now let's set the internal state of the Flip-Flop to 1 by setting D to 1

Notice that the outputs Q and Q (bar) also change.

SETTING A D FLIP-FLOP TO 0

We can set the flip back to zero by setting D to **0**. Notice that Q is now 0 and Q (bar) is now 1.

WHAT ABOUT THE CLOCK

The Clock determines timing. Specifically

- 1. When the values change
- 2. How long the values remain. Let's look at an example. Where goes from 0 to 1

WHAT ABOUT THE CLOCK

WHAT ABOUT THE CLOCK

THE FLIP FLOP HOLD HOLDS THE VALUE FOR A CLOCK CYCLE

What is a register?

Is a memory unit that stores bit for 1 or more or more clock cycles

Examples of things we can store in a register

The number 5 in binary 101 (This would need a three-bit register)

Who could we build a 3-bit register?

Who could we build a 3-bit register? We can build a 3 bit register with three flip-flops

Removed Q (bar) for reability

REGISTER SYMBOLS

3-BIT COUNTER

Let's put it all together and build a 3-bit counter

Circuit that counts from

000,

001,

010,

011,

100,

101,

110,

111

DRAWING 3-BIT COUNTER OVER SERVERAL CYCLES

Draw the Timing Diagram

EXAM QUESTIONS SPRING 2023

11.	[4 points] The register that we discussed in class (the positive-edge-triggered D flip-flop) has inputs D and clock and output Q. If Q is 1 and the clock is transitioning from 1 to 0, which of the following is true? <i>Fill in the circle completely for all that apply</i> .				
	\bigcirc	D must also be 1 (not 0)			
	\bigcirc	D may be 0 or 1			
	\bigcirc	${\tt Q}$ will transition from 1 to 0 with the clock			
	\bigcirc	$\ensuremath{\mathbb{Q}}$ will transition to the value of $\ensuremath{\mathbb{D}}$ when the clock transitions to 0			
12.	- 1	oints] To build a 4-bit counter circuit, we could directly connect the outputs of the circuit to the inputs without the need of a register.			
	\bigcirc	True			
	\bigcirc	False			

11.	. [4 points] The register that we discussed in class (the positive-edge-triggered D flip-flop) has inputs D and clock and output Q. If Q is 1 and the clock is transitioning from 1 to 0, which of the following is true? Fill in the circle completely for all that apply.				
	\bigcirc	D must also be 1 (not 0)			
	\bigcirc	D may be 0 or 1			
	\bigcirc	Q will transition from 1 to 0 with the clock			
	\bigcirc	${\tt Q}$ will transition to the value of ${\tt D}$ when the clock transitions to ${\tt 0}$			
		В			
12.	-	oints] To build a 4-bit counter circuit, we could directly connect the outputs of the circuit to the inputs without the need of a register.			
	\bigcirc	True			
	\bigcirc	False			
		False			

Page 5: Circuits

10. [16 points] In class, we discussed a 4-bit increment circuit below that added 1 to the input.

How can we change this circuit to instead increment by 2, i.e., x += 2? Draw the new circuit below. *Note: you should not use more gates than the original circuit.*

