

"The Influence of Education in Reducing the HIV Epidemic"

MATH 333 Differential Equations
April 30
Helen, Isahelen, Yi, and Alexis

HIV in Uganda

Prevalence of HIV among adults aged 15 to 49, 2016 By WHO region

Data Source: World Health Organization
Map Production: Information Evidence and Research (IER)
World Health Organization

SIRE Model

Susceptible, Infected, Removed, Educated

ABC Program:

- Abstinence
- Being faithful
- Use of Condoms

Schematics of SIRE model

$$S' = -\beta SI + b(S+I) - dS$$
, $I' = \beta SI - \gamma I$, $R' = \gamma I$,

SIRE

$$S' = -\alpha_{1}ES - \alpha_{2}ES - \alpha_{3}ES - \beta_{1}SI + b(S + S_{A} + S_{B} + S_{C} + I) - dS,$$

$$S'_{A} = \alpha_{1}ES - \beta_{2}S_{A}I - dS_{A} \quad (\alpha_{1} = 0.02),$$

$$S'_{B} = \alpha_{2}ES - \beta_{3}S_{B}I - dS_{B} \quad (\alpha_{2} = 0.08),$$

$$S'_{C} = \alpha_{3}ES - \beta_{4}S_{C}I - dS_{C} \quad (\alpha_{3} = 0.8),$$

$$I' = \beta_{1}SI + \beta_{2}S_{A}I + \beta_{3}S_{B}I + \beta_{4}S_{C}I - \gamma I,$$

$$R' = \gamma I,$$

$$E' = \frac{I}{I + S + S_{A} + S_{B} + S_{C}}rE(1 - E),$$

SIRE Parameters

- The time period is from 1996-2007 (12 years)
- The researchers assumed that the rates b, d, r, β_1 , β_2 , β_3 , β_4 , and γ are all constant
- Using UN&WHO data they assigned:
 - \bullet b=0.055 (entering rate)
 - d=0.0176 (natural death rate)
 - y=0.14 (death rate due to HIV)
- Then they assigned β_2 , β_3 , and β_4 in terms of β_1 , with $0.0001 \le \beta_1 \le 0.1$
 - $\beta_2 = 0.01\beta_1$
- Lastly, they assigned $0.2 \le r \le 2$

Initial conditions

$$S(0) = 8.37$$

$$S_{A}(0)=0$$

$$S_B(0)=0$$

$$S_C(0) = 0$$

$$I(0) = 1.16$$

$$R(0) = 0.11$$

$$E(0) = 0.30$$

Year	Susceptible	Infected	Removed	Education
1997	9.99	1.046	0.1195	600/1,200
1998	10.42	1.021	0.1205	
1999	10.72	0.975	0.121	
2000	10.96	0.921	0.1215	700/1,200
2001	11.27	0.879	0.120	717/1,200
2002	11.61	0.824	0.118	
2003	12.05	0.807	0.113	
2004	12.47	0.773	0.104	
2005	12.82	0.756	0.089	778/1,200
2006	13.25	0.755	0.084	
2007	14.22	0.754	0.079	

Table 1. Historical data table (population numbers in millions).

Figure 2. Susceptible population, in millions: model prediction (solid line) and data (*).

Figure 3. Infected population, in millions: model prediction (solid line) and data (*).

Figure 4. Number of HIV related deaths, in millions: model pre diction (solid line) and data (*).

Figure 5. Education influence: model prediction (solid line) and data (*).

SIRE Model Simulation

Switch to MATLAB

Conclusions

- The SIRE model generally captures the effect of education in reducing HIV in Uganda.
- Include more factors
 - Age
 - Gender
 - Stage of Disease
- Future Directions:
 - Include data after 2007 to further optimize the model
 - Expand the model to other countries
 - Change "Education" to other diseases and factors
 - Immunization
 - Malaria: access to mosquito nets

