

Machine Learning for the Social Sciences

Intro, Review of key concepts

Andrew Peterson 10.04.2018

Université de Genève

ML Concepts: Warm-up /Review

What are the elements of a ML-algorithm?

Elements

- > cost function (can relate to real-world costs...)
- > function class
- regularization penalty

```
(implicit in above: assumptions/ restrictions - linearity, local smoothness, etc...more later)
```

What is the curse of dimensionality?

Curse of dimensionality (KNN example)

> p-dimensional hypercube, uniformly distributed points

Source: Hastie et al. ESL

What size box needed to capture a fraction of all observations, (e.g. to estimate local treatment effect), say r = 0.1?

Curse of dimensionality

- Need edge length: $e_p(r) = r^{\frac{1}{p}}$
-) p=10: need 63% of the range of each input variable to capture 1% data

Curse of dimensionality

Curse of dimensionality

- > Ex 2 (ESL): p-dim unit ball.
- Mean distance to nearest point: In high-dimensions, most data points are closer to edge than another point
 - → High dimensions not always intuitive
-) Implications e.g. matching, robustness, etc.

What is the bias-variance tradeoff? How do we balance?

Bias-Variance

Source: Hastie et al. ESL

Bias-Variance: solution

› Minimize __?_ on cross-validation

Expected prediction error

-) (bad) example:
 - step 1: select relevant words from all texts based on correlation with outcome
 - step 2: Generate predictive model among relevant words using cross-validation
-) NB: validation data \neq test data!

Again, cost function should reflect use: e.g. might care more about false negatives for disease testing, etc.

What is overfitting?

Overfitting

Overfitting is when there are too many parameters so that there is low bias but high variance.

Source: Hastie et al. ESL

Overfitting

- Overfitting is when there are too many parameters so that there is low bias but high variance.
- Overfitting is when the model fails to generalize to the test set. (One way to see the difference: if allow observations to have different error structures more parameters but not higher variance...)
- Some models can "memorize" the training set (e.g. overtraining DNNs...)
- So although limiting model complexity helps prevent overfitting, they are non synonymous.
- > For definitions of model complexity (effective number of parameters, VC-dimension, see ESL ch.7).

Overfitting

- Can arise when the criteria for model selection are not our ultimate evaluation
- › e.g. "conceptual drift", Google Flu example, etc.
- Assumption: functional relationship in validation data same as that in test data.

Overfitting: Another example

Predict values of French GDP/capita, 3 parameters, training data: 2004-2009

(Data from data.oecd.org)

Overfitting: Another example

Predict values of French GDP/capita, training data: 2004-2009

(Data from data.oecd.org)

Overfitting: Solutions

- > complexity penalty
- > limit training
- > training algorithms that prevent overfitting (e.g. SGD, NN dropout, ...)

each of these has consequences, as we will see...

Aside: Stochastic Gradient Descent

- > Estimate gradient from small batch of observations
- > Each step updates parameters towards min cost (hopefully)

> Athey undersells - is more than just computationally efficient

Stochastic Gradient Descent

- > noisy but unbiased steps
- may have benefits: small batches may prevent overfitting (like wearing big boots on a golf course)

Source: Smith & Le, "A Bayesian Perspective on Generalization..."

Stochastic Gradient Descent

So - we can be concerned about overfitting as a result of failing to find global minima in our optimization process, not (just) because there are too many parameters.

Random question

Trump approval ratings especially low. What's the best prediction? (same? higher? lower?)

Source: FiveThirtyEight.com

Shrinkage

- \rightarrow Shrinkage: e.g. regression r^2 on new data \downarrow
- Can do better by shrinking (coef) estimates towards zero (James-Stein)

Source: FiveThirtyEight.com

Shrinkage

anecdotally (internet search results while looking for data to illustrate this point):

Pew poll: Trump's approval rating hits new low I The Hill

President Trump's approval rating has hit a new low, according to a national poll released Thursday.

https://thehill.com/homenews/administration/363834-poll-trump...

Poll: Trump approval rating rebounds | TheHill

President Trump's approval rating has bounced off a previously low point, according to a new poll.

- https://thehill.com/homenews/administration/339215-poll-trump...
- So what? Suggests another aspect of the problem of generalization error.