Лекции по математической статистике. 5 семестр. МОиАИС.

Якунцев Никита, Андрей Сотников, Никита Хатеев $4\ {\rm hos6ps}\ 2014\ {\rm r}.$

$\boldsymbol{\cap}$	ержани	
$\mathbf{L} : \mathbf{O} \mathbf{\Pi}$	рижани	\mathbf{a}
ООД	Charantin	\sim

0.1	Лекция 1																														2
-----	----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

0.1Лекция 1

Закон больших чисел

Под законом больших чисел в широком смысле понимается общий принцип, согласно которому совокупное действие большого числа случайных факторов приводит к неслучайному результату. При большом количестве случайных величин средний результат их совокупного влияния может быть предсказан с высокой степенью определенности.

Под законом больших чисел в узком смысле понимается ряд математических теорем, в каждой из которых для тех или иных условий устанавливается факт приближения средних характеристик большого числа испытаний к некоторым постоянным.

Неравенство Маркова

Если случайная величина $X \geq 0$ и имеет конечное M(x) , то $\forall A>0$ справедливо неравенство $P(X>A) \leq \frac{MX}{A}$ Доказательство для дискретной случайной величины:

$$MX = \sum_{i=1}^n x_i p_i$$
 отбросим первые k слагаемых: $\sum_{i=1}^k x_i p_i \ge 0$; $\sum_{i=k+1}^n x_i p_i \le MX$

$$\sum_{i=k+1}^{n} A_i p_i \le MX \Rightarrow \sum_{i=k+1}^{n} p_i \le \frac{MX}{A} \Rightarrow P(X > A) \le \frac{MX}{A}$$

Следствие: $P(x \le A) \ge 1 - \frac{MX}{A}$

Неравенство Чебышева

Для любой случайной величины, имеющей конечной математическое ожидания и дисперсию справедливо, что $P(|X - MX| > \varepsilon) \leq \frac{DX}{\varepsilon^2}$

Доказательство:

 $Y=(X-MX)^2; A=arepsilon^2$ запишем неравенство Маркова $P((X-MX)^2>arepsilon)\leq rac{M(X-MX)^2}{arepsilon^2}=0$ $\frac{DX}{arepsilon^2}\Rightarrow$ извлекаем корень и получаем неравенство.

Следствие: $P(|X - MX| \le \varepsilon) \ge 1 - \frac{DX}{\varepsilon^2}$

Теорема Чебышева

Если случайные величины $X_1, X_2...X_n$ независимые и имеют конечные дисперсии, ограниченные одной и той же константой C, то при неограниченном увеличении n среднее арифметическое этих случайных величин сходится по вероятности к среднему арифметическому математических ожиданий.

$$\lim_{x \to \infty} P(|\frac{X_1 + X_2 + \dots + X_n}{n} - \frac{MX_1 + MX_2 + \dots + MX_n}{n}| < \varepsilon) = 1; \forall \varepsilon > 0$$

$$\frac{X_1+X_2+...+X_n}{n} \xrightarrow[n \to \infty]{P} \frac{MX_1+MX_2+...+MX_n}{n} \text{ сходится по вероятности.}$$
 Доказательство:
$$X = \frac{X_1+X_2+...+X_n}{n}; MX = \frac{MX_1+MX_2+...+MX_n}{n}$$

$$DX = \frac{1}{n^2}(DX_1+DX_2+...+DX_n) \leq \frac{nC}{n^2} = \frac{C}{n}$$

$$P(|X-MX| \leq \varepsilon) \geq 1 - \frac{DX}{\varepsilon^2} \geq 1 - \frac{C}{n\varepsilon^2}$$

$$\lim_{x \to \infty} P(|\frac{X_1+X_2+...+X_n}{n} - \frac{MX_1+MX_2+...+MX_n}{n}| < \varepsilon) \geq 1 - \frac{C}{n\varepsilon^2}, \text{ т.к } 1 - \frac{C}{n\varepsilon^2} \to 1, \text{ то}$$

$$\lim_{x \to \infty} P(|\frac{X_1+X_2+...+X_n}{n} - \frac{MX_1+MX_2+...+MX_n}{n}| < \varepsilon) = 1$$
 Следствия

1. Если все случайные величины X_i имеют одно и тоже математическое ожидание $NX_i=a$ $\lim_{x\to\infty}P(|\frac{X_1+X_2+...+X_n}{n}-a|<\varepsilon)=1$

2. Теорема Бернулли

Частость события в n повторных независимых испытаниях, в каждом из которых она может произойти с вероятностью P при неограниченном увеличении числа испытаний стремится к вероятности этого события

Доказательство:

$$\lim_{\substack{x\to\infty\\ x\to\infty}} P(|\frac{X_1+X_2+\ldots+X_n}{n}-\frac{MX_1+MX_2+\ldots+MX_n}{n}|<\varepsilon)=1$$

$$\frac{X_1+X_2+\ldots+X_n}{n} - \text{частость}; \ \frac{MX_1+MX_2+\ldots+MX_n}{n} - \text{вероятность}$$

$$x_i=1, \text{ если событие проявилось в } i\text{-ом испытании}$$

$$x_i=0, \text{ иначе}$$
 Частость: $\frac{m}{n}$, где m - кол-во встречаний; n - общее кол-во