BILLIONAIRES STATISTICS

Project Overview

1. Data Cleaning

In this initial phase, we ensure the dataset's accuracy and reliability through rigorous cleaning, focusing on standardizing column names, handling missing data, addressing duplicates, and managing outliers.

2. Univariate Feature Analysis

Delve into the nuances of individual features in this section, unveiling patterns in demographics, examining wealth distribution across countries/cities, and exploring correlations between economic indicators and the billionaire landscape.

3. Multivariate Feature Relationships Analysis

Gain a deeper understanding of feature relationships through multivariate analysis. Explore correlations between different features and uncover intricate patterns within the dataset.

4. Conclusion - Key Findings

Summarize key findings derived from the exploratory data analysis, highlighting significant patterns and insights.

1. Data Cleaning

This section covers the crucial step of Data Cleaning in the data analytics process.

To skip directly to to particular parts, use the following links:

- 1.1 Libraries / Reading Data
- 1.2 Discovering Data
- 1.3 Structuring Data
- 1.4 Handle Missing Data
- 1.5 Handle Duplicates

1.7 Save The Cleaned Dataframe

1.1 Libraries / Reading Data

```
In [1]: import os
        import warnings
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import matplotlib.patches as mpatches
        import seaborn as sns
        # Set the style for Matplotlib plots
        plt.style.use('ggplot')
        # Suppress warnings for cleaner output
        warnings.filterwarnings("ignore")
       C:\Users\benne\AppData\Local\Temp\ipykernel_18372\3882677250.py:5: DeprecationWarnin
       Pyarrow will become a required dependency of pandas in the next major release of pan
       das (pandas 3.0),
       (to allow more performant data types, such as the Arrow string type, and better inte
       roperability with other libraries)
       but was not found to be installed on your system.
       If this would cause problems for you,
       please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466
         import pandas as pd
In [2]: # Read the raw dataframe
        df = pd.read_csv("data/raw_data.csv")
```

1.2 Discovering Data

```
In [3]: df.head(10)
```

Out[3]:		rank	finalWorth	category	personName	age	country	city	source	in
	0	1	211000	Fashion & Retail	Bernard Arnault & family	74.0	France	Paris	LVMH	Fa
	1	2	180000	Automotive	Elon Musk	51.0	United States	Austin	Tesla, SpaceX	Aut
	2	3	114000	Technology	Jeff Bezos	59.0	United States	Medina	Amazon	Tec
	3	4	107000	Technology	Larry Ellison	78.0	United States	Lanai	Oracle	Tec
	4	5	106000	Finance & Investments	Warren Buffett	92.0	United States	Omaha	Berkshire Hathaway	Fi Inve
	5	6	104000	Technology	Bill Gates	67.0	United States	Medina	Microsoft	Tec
	6	7	94500	Media & Entertainment	Michael Bloomberg	81.0	United States	New York	Bloomberg LP	Enterl
	7	8	93000	Telecom	Carlos Slim Helu & family	83.0	Mexico	Mexico City	Telecom	
	8	9	83400	Diversified	Mukesh Ambani	65.0	India	Mumbai	Diversified	Di
	9	10	80700	Technology	Steve Ballmer	67.0	United States	Hunts Point	Microsoft	Tec

10 rows × 35 columns

In [4]: df.shape

Out[4]: (2640, 35)

In [5]: df.info()

```
RangeIndex: 2640 entries, 0 to 2639
Data columns (total 35 columns):
# Column
                                             Non-Null Count Dtype
--- -----
                                              -----
0
    rank
                                             2640 non-null
                                                            int64
1
    finalWorth
                                             2640 non-null
                                                            int64
 2
                                             2640 non-null
    category
                                                            object
 3
    personName
                                             2640 non-null
                                                            object
4
                                             2575 non-null float64
    age
 5
    country
                                             2602 non-null
                                                            object
                                             2568 non-null
 6
    city
                                                            object
                                             2640 non-null
 7
    source
                                                            object
    industries
                                             2640 non-null
                                                            object
 9
    countryOfCitizenship
                                             2640 non-null
                                                            object
10 organization
                                             325 non-null
                                                            object
11 selfMade
                                             2640 non-null
                                                            bool
12 status
                                             2640 non-null
                                                            object
13 gender
                                             2640 non-null
                                                            object
 14 birthDate
                                             2564 non-null
                                                            object
                                             2640 non-null
15 lastName
                                                            object
                                             2637 non-null
16 firstName
                                                            object
                                             339 non-null
17 title
                                                            object
18 date
                                             2640 non-null
                                                            object
19 state
                                             753 non-null
                                                            object
 20 residenceStateRegion
                                             747 non-null
                                                            object
                                             2564 non-null
 21 birthYear
                                                            float64
 22 birthMonth
                                             2564 non-null float64
 23 birthDay
                                             2564 non-null float64
 24 cpi_country
                                             2456 non-null float64
 25 cpi_change_country
                                             2456 non-null float64
                                             2476 non-null
 26 gdp country
                                                            object
 27 gross_tertiary_education_enrollment
                                                            float64
                                             2458 non-null
 28 gross_primary_education_enrollment_country 2459 non-null float64
 29 life_expectancy_country
                                             2458 non-null float64
 30 tax_revenue_country_country
                                             2457 non-null float64
                                             2458 non-null float64
 31 total_tax_rate_country
 32 population_country
                                             2476 non-null float64
 33 latitude_country
                                             2476 non-null float64
 34 longitude_country
                                             2476 non-null float64
```

dtypes: bool(1), float64(14), int64(2), object(18)

<class 'pandas.core.frame.DataFrame'>

```
In [6]: df.describe()
```

memory usage: 704.0+ KB

	rank	finalWorth	age	birthYear	birthMonth	birthDay	ср
count	2640.000000	2640.000000	2575.000000	2564.000000	2564.000000	2564.000000	24
mean	1289.159091	4623.787879	65.140194	1957.183307	5.740250	12.099844	1
std	739.693726	9834.240939	13.258098	13.282516	3.710085	9.918876	
min	1.000000	1000.000000	18.000000	1921.000000	1.000000	1.000000	
25%	659.000000	1500.000000	56.000000	1948.000000	2.000000	1.000000	1
50%	1312.000000	2300.000000	65.000000	1957.000000	6.000000	11.000000	1
75%	1905.000000	4200.000000	75.000000	1966.000000	9.000000	21.000000	1
max	2540.000000	211000.000000	101.000000	2004.000000	12.000000	31.000000	2

1.3 Structuring Data

Out[6]:

```
In [7]: # Keep column identifiers consistent
         df = df.rename(
             columns={
                 'finalWorth': 'final_worth_usd',
                  'personName': 'person_name', 'countryOfCitizenship': 'country_of_citizenshi
                 'birthDate': 'birth_date',
                  'lastName': 'last_name',
                  'firstName': 'first_name',
                 'residenceStateRegion': 'residence_state_region', 'birthYear': 'birth_year'
                  'birthMonth': 'birth_month',
                 'birthDay': 'birth_day',
                  'gdp_country': 'gdp_country_usd',
                 'gross_tertiary_education_enrollment': 'gross_tertiary_education_enrollment
                 , 'tax_revenue_country_country': 'tax_revenue_country_usd'
In [8]: # Check datatypes for date-columns
         print(type(df['birth_date'][0]))
         print(type(df['date'][0]))
        <class 'str'>
        <class 'str'>
In [9]: # Convert str datatype to datetime object and validate the updated datatype
         df['birth_date'] = pd.to_datetime(df['birth_date'])
         df['date'] = pd.to_datetime(df['date'])
         print(type(df['birth_date'][0]))
         print(type(df['date'][0]))
        <class 'pandas._libs.tslibs.timestamps.Timestamp'>
        <class 'pandas._libs.tslibs.timestamps.Timestamp'>
In [10]: # Dict for replacing bool values in the 'wealth_source' column for better clarity
         replace dict = {
```

```
True: 'Self-Made',
             False: 'Inherited/Unearned'
         df['wealth_source'] = df['wealth_source'].replace(replace_dict)
In [11]: # Convert 'gdp_country_in_dollars' from str to numeric after removing '$' and comma
         df['gdp_country_usd'] = pd.to_numeric(
             df['gdp_country_usd'].str.strip('$').
             str.replace(',', '')
In [12]: # Select only relevant features for the specific data analysis project
         filtered_df = df[[
              'rank', 'final_worth_usd', 'person_name', 'organization', 'title', 'residence_s
              'age', 'country', 'country_of_citizenship', 'city', 'industries', 'wealth_sourc
              'life_expectancy_country', 'gross_tertiary_education_enrollment_country',
             'gross_primary_education_enrollment_country', 'gdp_country_usd', 'total_tax_rat
         ]]
         Convert and Format 'final_worth_usd': Multiply the 'final_worth_usd' column by 1,000,000
         to adapt the unit and create a new column, 'final_worth_usd_formatted,' which represents
         the values in billions for better readability.
In [13]: # Before adapting the unit
         print(filtered_df['final_worth_usd'][6])
        94500
In [14]: filtered_df['final_worth_usd'] = filtered_df['final_worth_usd'].mul(1000000)
In [15]: def readable_numbers(x):
             """ takes a large number and formats it into K,M,B, to make it more readable"""
             x_abs = abs(x)
             if x abs >= 1e9:
                 s = '{:1.1f}B'.format(x * 1e-9)
             elif (x_abs < 1e9) & (x_abs >= 1e6):
                  s = '{:1.1f}M'.format(x * 1e-6)
             else:
                  s = '{:1.1f}K'.format(x * 1e-3)
```

return s

In [16]: filtered_df['final_worth_usd']

```
Out[16]: 0
                  2110000000000
                  180000000000
          2
                  114000000000
          3
                  1070000000000
                  106000000000
                       . . .
          2635
                    1000000000
          2636
                    1000000000
          2637
                    1000000000
          2638
                    1000000000
          2639
                    1000000000
          Name: final_worth_usd, Length: 2640, dtype: int64
         filtered_df['final_worth_usd_formatted'] = filtered_df['final_worth_usd'].apply(rea
In [17]:
In [18]:
         filtered_df[['final_worth_usd', 'final_worth_usd_formatted']].sort_values(by='final
Out[18]:
                final_worth_usd final_worth_usd_formatted
          2639
                    1000000000
                                                     1.0B
          2565
                    1000000000
                                                     1.0B
                                                     1.0B
          2566
                    1000000000
          2567
                                                     1.0B
                    1000000000
          2568
                    1000000000
                                                     1.0B
             4
                  106000000000
                                                   106.0B
                  107000000000
                                                   107.0B
             2
                  114000000000
                                                   114.0B
                  18000000000
                                                   180.0B
             0
                  211000000000
                                                   211.0B
         2640 rows × 2 columns
In [19]: # After converting + formatting
          print(filtered_df['final_worth_usd'][6])
          print(filtered_df['final_worth_usd_formatted'][6])
        94500000000
```

1.4 Handle missing data

Checking for Zero Values

94.5B

Before proceeding with handling missing data, it's crucial to check for zero values, as they could potentially indicate missing or undefined data.

```
In [20]: # Check for zero values in the dataframe
         (df == 0).sum()
Out[20]: rank
                                                          0
         final worth usd
                                                          0
                                                          0
         category
         person_name
                                                          0
          age
                                                          0
                                                          0
          country
          city
                                                          0
          source
                                                          0
                                                          0
          industries
          country_of_citizenship
                                                          0
         organization
                                                          0
         wealth_source
                                                          0
          status
                                                          0
          gender
                                                          0
         birth_date
                                                          0
         last_name
                                                          0
         first_name
                                                          0
         title
                                                          0
          date
                                                          0
          state
                                                          0
          residence_state_region
                                                          0
         birth_year
                                                          0
         birth_month
                                                          0
         birth_day
                                                          0
          cpi_country
                                                          0
                                                          0
          cpi_change_country
                                                          0
          gdp_country_usd
          gross_tertiary_education_enrollment_country
                                                          0
          gross_primary_education_enrollment_country
                                                          0
          life_expectancy_country
                                                          0
         tax_revenue_country_usd
                                                          0
          total_tax_rate_country
          population_country
                                                          0
          latitude_country
                                                          0
          longitude_country
          dtype: int64
```

If there are numeric columns with a substantial number of zeros, it's essential to investigate whether these zeros represent genuine data or if they are indicative of missing information. In the latter case, it's advisable to replace these zeros with NaN values to ensure consistent handling of missing data in subsequent steps. For example:

```
df = df.replace(0, np.nan)
```

This step ensures a thorough examination of zero values and provides a standardized approach for addressing potential missing data. Once this is done, you can proceed with the subsequent steps of handling missing values in your dataset.

```
In [21]: # Function to get an overview of the missing data per column

def get_missing_data_rate(input_df: pd.DataFrame):
    total = input_df.isna().sum().sort_values(ascending=False)
    percent = (input_df.isna().sum() / input_df.isna().count()).sort_values(ascending)
    missing_data = pd.concat([total, percent], axis=1, keys=['Missing Data Total', return missing_data
In [22]: get_missing_data_rate(df)
```

	Missing Data Total	Missing Data Percent
status	0	0.000000
gender	0	0.000000
date	0	0.000000
final_worth_usd	0	0.000000
rank	0	0.000000

Drop columns when more than 15 % of the data is missing

Out[24]:

In [23]: filtered_df = filtered_df.drop(columns=['title', 'organization', 'residence_state_r
In [24]: get_missing_data_rate(filtered_df)

	Missing Data Total	Missing Data Percent
life_expectancy_country	182	0.068939
total_tax_rate_country	182	0.068939
$gross_tertiary_education_enrollment_country$	182	0.068939
$gross_primary_education_enrollment_country$	181	0.068561
population_country	164	0.062121
gdp_country_usd	164	0.062121
city	72	0.027273
age	65	0.024621
country	38	0.014394
rank	0	0.000000
wealth_source	0	0.000000
gender	0	0.000000
final_worth_usd	0	0.000000
industries	0	0.000000
country_of_citizenship	0	0.000000
person_name	0	0.000000
final_worth_usd_formatted	0	0.000000

Handling Remaining Missing Data

When dealing with remaining missing data in your dataset, several options are available:

1. **Drop Rows:**

• You can choose to drop the remaining rows with missing data. This is a straightforward approach but might result in a loss of information.

2. Fill NaN Entries for Categorical Columns:

• For categorical columns, consider filling NaN entries with the mode (the most frequent value) to retain information without significant data loss.

3. Fill NaN Entries for Numerical Columns:

• For numerical columns, filling NaN entries with the mean or median of the specific column is an option. Use the mean if the data is not skewed and does not contain outliers. If skewness or outliers are present, the median is a more robust fill option.

4. Consideration for Outliers:

• It's important to be mindful of outliers in the data. If your dataset contains skewed data or outliers, favor using the median as the NaN-fill option to avoid the influence of extreme values.

5. Avoid Biased Data:

• To ensure the integrity of your analysis and avoid biased results, consider dropping the remaining rows with missing data. This helps maintain the overall quality and fairness of your dataset.

Choose the appropriate strategy based on the nature and characteristics of your data, taking into account the potential impact on the analysis and results.

```
In [25]: # Check rows with missing data
filtered_df[filtered_df.isna().any(axis=1)]
```

Kong	ouc[25].	Ialik	iiiiai_wortii_usu	person_name	age	country	country_or_citizensinp	C		
85 86 1890000000 Eyal Ofer 72.0 Monaco Israel 107 108 15800000000 Karl Albrecht Jr. & family NaN Germany 108 108 15800000000 Beate Heister NaN NaN Germany .		32 33	38000000000	Li Ka-shing	94.0	_	Hong Kong	Ni		
85 86 1890000000 Eyal Ofer 72.0 Monaco Israel 107 108 15800000000 Karl Albrecht Jr. & family NaN Germany 108 108 15800000000 Beate Heister NaN NaN Germany 2609 2540 1000000000 Réal Plourde NaN Canada Canada West 2610 2540 1000000000 Réal Plourde NaN Canada Canada West 2626 2540 1000000000 Masaru Wasami 77.0 NaN Japan 2629 2540 1000000000 Toto Wolff 51.0 Monaco Austria 2630 2540 1000000000 Franziska Wuerbser 35.0 NaN Germany		46 47	29500000000	Lee Shau Kee	95.0	_	Hong Kong	Hong Ko		
107 108 15800000000 Jr. & family NaN Germany 108 108 15800000000 Beate Heister NaN NaN Germany 2609 2540 1000000000 Réal Plourde NaN Canada Canada West Vera Rechulski Santo Domingo Santo Domingo 74.0 Bermuda Brazil 2626 2540 1000000000 Masaru Wasami 77.0 NaN Japan 2629 2540 1000000000 Toto Wolff 51.0 Monaco Austria 2630 2540 1000000000 Franziska Wuerbser 35.0 NaN Germany		85 86	18900000000	Eyal Ofer	72.0	Monaco	Israel	Mor Ca		
2609 2540 1000000000 Réal Plourde NaN Canada Canada West 2610 2540 1000000000 Rechulski Santo Domingo 74.0 Bermuda Brazil 2626 2540 1000000000 Masaru Wasami 77.0 NaN Japan 2629 2540 1000000000 Toto Wolff 51.0 Monaco Austria 2630 2540 1000000000 Franziska Wuerbser 35.0 NaN Germany 256 rows × 17 columns 17 columns 18 columns 18 columns 18 columns 18 columns		107 108	15800000000		NaN	Germany	Germany	N		
2609 2540 1000000000 Réal Plourde NaN Canada Canada West 2610 2540 1000000000 Rechulski Santo Domingo 74.0 Bermuda Brazil 2626 2540 1000000000 Masaru Wasami 77.0 NaN Japan 2629 2540 1000000000 Toto Wolff 51.0 Monaco Austria 2630 2540 1000000000 Franziska Wuerbser 35.0 NaN Germany 256 rows × 17 columns 257 rows × 17 columns 257 rows × 17 columns 258 rows × 17 columns 259 rows × 17 columns 259 rows × 17 columns 250 rows × 17 columns		108 108	15800000000	Beate Heister	NaN	NaN	Germany	Ni		
2610 2540 1000000000 Rechulski Santo Domingo 74.0 Bermuda Brazil 2626 2540 1000000000 Masaru Wasami 77.0 NaN Japan 2629 2540 1000000000 Toto Wolff 51.0 Monaco Austria 2630 2540 1000000000 Franziska Wuerbser 35.0 NaN Germany 256 rows × 17 columns Toto Wolff 35.0 NaN Germany		•••								
2610 2540 1000000000 Rechulski Santo Domingo 74.0 Bermuda Brazil 2626 2540 1000000000 Masaru Wasami 77.0 NaN Japan 2629 2540 1000000000 Toto Wolff 51.0 Monaco Austria 2630 2540 1000000000 Franziska Wuerbser 35.0 NaN Germany 256 rows × 17 columns		2609 2540	1000000000	Réal Plourde	NaN	Canada	Canada	Westmou		
2626 2540 1000000000 Wasami 77.0 NaN Japan 2629 2540 1000000000 Toto Wolff 51.0 Monaco Austria 2630 2540 1000000000 Franziska Wuerbser 35.0 NaN Germany 256 rows × 17 columns		2610 2540	1000000000	Rechulski Santo	74.0	Bermuda	Brazil	Ni		
2630 2540 1000000000 Franziska Wuerbser 35.0 NaN Germany 256 rows × 17 columns		2626 2540	1000000000		77.0	NaN	Japan	Ni		
2630 2540 1000000000 Wuerbser 35.0 Nan Germany 256 rows × 17 columns		2629 2540	1000000000	Toto Wolff	51.0	Monaco	Austria	Na		
		2630 2540	1000000000		35.0	NaN	Germany	Ni		
<pre>In [26]: filtered_df.isna().sum().max()</pre>		256 rows × 17 columns								
	In [26]:	<pre>filtered_df.isna().sum().max()</pre>								
Out[26]: 182	Out[26]:	182								
<pre>In [27]: # Drop remaining NaN-Enry rows filtered_df = filtered_df.dropna(axis=0)</pre>	In [27]:									
<pre>In [28]: # Validate that there's no missing data left filtered_df.isna().sum().max()</pre>	In [28]:									
Out[28]: 0	Out[28]:	0								

rank final_worth_usd person_name age country_country_of_citizenship

C

1.5 Handle Duplicates

Out[25]:

Duplicate entries in a dataset can introduce inconsistencies and skew analysis results. You begin by identifying and detecting duplicate rows in your dataset.

```
# Check for exact duplicated rows in the df
In [29]:
         filtered df.loc[filtered df.duplicated()]
Out[29]:
            rank final_worth_usd person_name age country country_of_citizenship city industrie:
In [30]: # Check for feature-specific duplicated rows based on 'person name' and 'country'
         filtered_df.loc[filtered_df.duplicated(subset=['person_name', 'country'])]
Out[30]:
                rank final_worth_usd person_name age country country_of_citizenship
                                                                                            city
                                             Wang
          2112 2020
                                         Yanging & 76.0
                          1400000000
                                                           China
                                                                                 China
                                                                                          Weihai
                                             family
          2317 2259
                          1200000000
                                              Li Li 59.0
                                                           China
                                                                                 China Shenzhen
In [31]: # Investigate feature-specific duplicates for 'person_name'
         filtered_df.query('person_name == "Li Li" or person_name.str.startswith("Wang Yanqi
Out[31]:
                rank final_worth_usd person_name age country_country_of_citizenship
                                                                                            city
                                             Wang
           785
                 766
                          3700000000
                                         Yanqing & 56.0
                                                                                 China
                                                           China
                                                                                            Wuxi
                                             family
          1045
               1027
                          2900000000
                                              Li Li 57.0
                                                           China
                                                                                 China
                                                                                       Changsha
                                             Wang
                                         Yanging & 76.0
                                                                                 China
          2112 2020
                          1400000000
                                                           China
                                                                                          Weihai
                                             family
          2317 2259
                          1200000000
                                              Li Li 59.0
                                                           China
                                                                                 China Shenzhen
```

After identifying duplicate rows, the next steps involve deciding whether to drop or maintain them, considering the potential consequences of data loss. In this case, it's observed that for 'Wang Yanqing & family' and 'Li Li,' there are entries with slight differences in gender and age, suggesting they might not belong to the same person.

To demonstrate how to drop potentially feature-specific duplicated rows, the following code can be used:

```
In [32]: # Drop potentially feature-specific duplicated rows
    filtered_df_no_duplicates = filtered_df.loc[~filtered_df.duplicated(subset=['person .reset_index(drop=True).copy()

In [33]: # Verify that dropping potentially duplicated rows worked properly
    filtered_df_no_duplicates.query('person_name == "Li Li" or person_name.str.startswi
```

Out[33]:		rank	final_worth_usd	person_name	age	country	country_of_citizenship	city
	731	766	3700000000	Wang Yanqing & family	56.0	China	China	Wuxi
	971	1027	2900000000	Li Li	57.0	China	China	Changsha

1.6 Handle outliers

Handling Outliers in Final Worth Distribution

Outliers, or extreme values, in the final worth distribution of billionaire data can introduce biases and distort the overall analysis. It is essential to address these outliers to ensure the analysis accurately reflects the underlying patterns in the data. One widely employed method is the Interquartile Range (IQR) approach, involving the following steps:

Calculate Percentiles: Compute the 25th (Q1) and 75th (Q3) percentiles of the final worth values in the dataset.

Calculate IQR: Determine the Interquartile Range (IQR) by subtracting Q1 from Q3.

Define Upper and Lower Thresholds: Establish upper and lower thresholds for identifying outliers, typically considering values outside 1.5 times the IQR as potential outliers.

Filter Outliers Using Boolean Masks: Use boolean masks to filter the dataframe, retaining only rows where the final worth is within the defined upper and lower limits.

Analyze Results: Examine the impact of outlier handling on central tendency measures, such as mean and median, to understand the distribution's revised characteristics.

```
In [34]: print(f"Final Worth Mean before handling outliers: {readable_numbers(filtered_df['f print(f"Final Worth Median before handling outliers: {readable_numbers(filtered_df[Final Worth Mean before handling outliers: 4.8B Final Worth Median before handling outliers: 2.4B
In [35]: # List to store all generated plots all_plots = []

In [36]: # Define a function for boxplot creation for better reusability def create_box_plot(input_df, input_title, show_fliers): plt.figure(figsize=(14, 6)) palette = sns.color_palette('bright') boxplot = sns.boxplot( data=input_df, x='final_worth_usd', y='industries', showfliers=show_fliers,
```

```
palette=palette
)
boxplot.set(
    xlabel='Final Worth ($)',
    ylabel='Industry'
)
# Format the x-axis tick labels
boxplot.set_xticklabels([readable_numbers(x) for x in boxplot.get_xticks()])
plt.title(label=input_title, fontsize=18, fontweight='bold')
plt.show()
return boxplot
```

Usually you can check for outliers through a boxplot related to the specific numerical (x) and a dependent categorical (y) feature; But this type of dataset is very susceptible to outliers because of the wide range of billionaires' wealth

In [37]: # Outliers included
boxplot_title_outliers = "Final Worth Distribution by Industry - Outliers included
file_name_1_6_1 = "Final_Worth_Distribution_by_Industry_Outliers_included_M.png"
boxplot_outliers_included = create_box_plot(filtered_df, boxplot_title_outliers, sh
all_plots.append((boxplot_outliers_included, file_name_1_6_1))

To get a better view of the final worth distribution we exclude the outliers

```
In [38]: boxplot_title_no_outliers = "Final Worth Distribution by Industry - Outliers exclud
    file_name_1_6_2 = "Final_Worth_Distribution_by_Industry_Outliers_excluded_M.png"
    boxplot_outliers_excluded = create_box_plot(filtered_df, boxplot_title_no_outliers,
    all_plots.append((boxplot_outliers_excluded, file_name_1_6_2))
```


Here starts the IQR approach

```
In [39]: # Calculate 25th percentile of annual strikes
    percentile25 = filtered_df['final_worth_usd'].quantile(0.25)

# Calculate 75th percentile of annual strikes
    percentile75 = filtered_df['final_worth_usd'].quantile(0.75)

# Calculate interquartile range
    iqr = percentile75 - percentile25

# Calculate upper and lower thresholds for outliers
    upper_limit = percentile75 + 1.5 * iqr
    lower_limit = percentile25 - 1.5 * iqr

    print('Upper limit is: ', readable_numbers(upper_limit))
    print('Lower limit is: ', readable_numbers(lower_limit))
Upper limit is: 8.5B
```

Lower limit is: -2.7B

Boolean masks were used to filter the dataframe so it only contained rows where the number of strikes was less than the lower limit / more than the upper limit

```
In [40]: print(len(filtered_df[filtered_df['final_worth_usd'] < lower_limit]))
    print(len(filtered_df[filtered_df['final_worth_usd'] > upper_limit]))

0
227
In [41]: mask = (filtered_df['final_worth_usd'] >= lower_limit) & (filtered_df['final_worth_upper_limit))
    outliers_handled = filtered_df[mask].copy()
    print(f"Final Worth Mean after handling outliers: {readable_numbers(outliers_handle print(f"Final Worth Median after handling outliers: {readable_numbers(outliers_handle print(f"Final Worth Median after handling outliers: 2.88
    Final Worth Median after handling outliers: 2.28
```

As shown, the data is now less widely dispersed and there are way less outliers than before

In [42]: boxplot_title_outliers_handled = "Final Worth Distribution by Industry - Outliers h
 file_name_1_6_3 = "Final_Worth_Distribution_by_Industry_Outliers_handled_M.png"
 boxplot_outliers_handled = create_box_plot(outliers_handled, boxplot_title_outliers
 all_plots.append((boxplot_outliers_handled, file_name_1_6_3))

1.7 Save The Cleaned Dataframe

Not to be forgotten

While handling outliers using the IQR method is a common practice in exploratory data analysis (EDA), it is important to be aware of its potential drawbacks. Removing outliers can lead to data loss and bias, which will affect the overall representativeness of the analysis. The decision on how to deal with outliers (delete, reassign or leave) should be made carefully, taking into account the specific characteristics of the dataset and the intended use, especially in the context of EDA without subsequent development of predictive machine learning models. Whether outliers are retained, reassigned or removed depends on the type and size of the dataset and the objectives of the analysis. It is crucial to balance the benefits of outlier correction with the potential drawbacks to ensure a thoughtful and context-aware approach.

For future EDA, you should use the original filtered df (without outlier handling), because outliers aren't systematic data errors here that could influence our analysis in a bad way; they are a valuable part of the overall df.

```
In [43]: filtered_df.to_csv("data/cleaned_data.csv", index=False)
In [44]: outliers_handled.to_csv("data/cleaned_data_outliers_handled.csv", index=False)
```

2. Univariate Feature Analysis

Explore the data analytics process of Univariate Feature Analysis in this section.

To skip directly to to particular parts, use the following links:

2.1 Feature: Final Worth | Hist-Chart

```
2.2 Feature: Country | Bar-Plot
2.3 Feature: City | Bar-Plot
2.4 Feature: Industries | BarH-Plot
2.5 Feature: Age | Hist-Chart
2.6 Feature: Gender | Pie-Chart
2.7 Feature: Wealth-Source | Pie-Chart

In [45]: df = pd.read_csv("data/cleaned_data.csv")
```

df_outliers_handled = pd.read_csv("data/cleaned_data_outliers_handled.csv")

```
2.1 Feature: Final Worth | Hist-Chart
```

```
In [46]: # Plot histogram
         hist_chart_2_1 = df_outliers_handled['final_worth_usd'].plot(kind='hist',
                                                                       bins=20,
                                                                       figsize=(6, 4),
                                                                       color='dodgerblue',
                                                                       edgecolor='black',
                                                                       label='Final Worth')
         # Set title and labels
         plt.title("Approximate Distribution of Billionaires' Final Worth($) (2023)",
                   fontsize=14,
                   fontweight="bold")
         plt.xlabel('Final Worth ($)')
         # Set ticks and labels
         ticks = hist_chart_2_1.get_xticks()
         hist chart 2 1.set xticks(ticks)
         hist_chart_2_1.set_xticklabels([readable_numbers(x) for x in ticks])
         # Calculate statistics
         mean_final_worth, median_final_worth, std_final_worth = np.mean(df_outliers_handled
             df_outliers_handled['final_worth_usd']), np.std(df_outliers_handled['final_wort
         # Add vertical lines for statistics
         for stat, color, label in zip(
                 [mean_final_worth, median_final_worth, std_final_worth],
                 ['r', 'g', 'purple'],
                 ['Mean', 'Median', 'Std']):
             hist_chart_2_1.axvline(stat, color=color, linestyle='dashed', label=f'{label}:
         # Display Legend
         hist_chart_2_1.legend()
         file_name_2_1 = "Approximate_Distribution_of_Billionaires_Final_Worth_Worldwide_U.p
```

```
all_plots.append((hist_chart_2_1, file_name_2_1))
plt.show()
```

Approximate Distribution of Billionaires' Final Worth(\$) (2023)

2.2 Feature: Country | Bar-Plot

```
In [47]: len(df['country'].unique())
Out[47]: 65
         country_counts = df['country'].value_counts()
In [48]:
         country_counts
Out[48]: country
         United States
                           750
         China
                           504
          India
                           157
         Germany
                            87
          Russia
                            79
         Portugal
                             1
         Georgia
         Colombia
                             1
         Uzbekistan
                             1
          Armenia
         Name: count, Length: 65, dtype: int64
In [49]: country_counts_top_25 = country_counts.head(25).sort_values(ascending=False)
         # Use a seaborn color palette
         colors = sns.color_palette('viridis', len(country_counts_top_25))
         bar_plot_2_2 = country_counts_top_25.plot(kind='bar',
                                                    figsize=(10, 5),
```

Top 25 Countries Worldwide Absolute Billionaire Distribution (2023)

2.3 Feature: City | Bar-Plot

```
In [51]: city_counts = df['city'].value_counts()
    city_counts
```

```
Out[51]: city
         New York
                        99
         Beijing
                        66
         Shanghai
                        60
         Moscow
                        60
         London
                        59
         Brownsville
                        1
         Montpellier
                        1
         Santa Clara
                        1
         Stuttgart
                         1
         Makati
                        1
         Name: count, Length: 711, dtype: int64
In [52]: city_counts_top_50 = city_counts.head(50)
         # Use a seaborn color palette
         colors = sns.color_palette('viridis', len(city_counts_top_50))
         # Create the bar plot
         bar_plot_2_3 = city_counts_top_50.plot(kind='bar',
                                                figsize=(16, 5),
                                                color=colors,
                                                edgecolor='black',
                                                width=0.8)
         # Add title and Labels
         plt.title("Top 50 Cities Worldwide Absolute Billionaire Distribution (2023)",
                   fontsize=18,
                   fontweight='bold',
                   y=1.02)
         bar_plot_2_3.set_ylabel('Count')
         bar_plot_2_3.set_xlabel('City')
         # Add bar labels with annotations
         for i, count in enumerate(city_counts_top_50):
             bar_plot_2_3.text(i, count + 1, str(count), ha='center', va='bottom', fontsize=
         file_name_2_3 = "Top_50_Cities_Worldwide_Absolute_Billionaire_Distribution_U.png"
         all_plots.append((bar_plot_2_3, file_name_2_3))
         plt.show()
```

Top 50 Cities Worldwide Absolute Billionaire Distribution (2023)

2.4 Feature: Industries | BarH-Plot

```
In [53]: industry_counts = df['industries'] \
              .value_counts().sort_values(ascending=False)
         industry_counts
Out[53]: industries
                                        336
          Finance & Investments
          Technology
                                        290
          Manufacturing
                                        288
          Fashion & Retail
                                        242
          Healthcare
                                        188
          Food & Beverage
                                        187
          Diversified
                                        173
          Real Estate
                                        156
          Energy
                                         93
          Media & Entertainment
                                         84
          Automotive
                                          69
          Metals & Mining
                                          69
          Service
                                          48
          Construction & Engineering
                                         41
          Sports
                                          38
          Logistics
                                          32
          Telecom
                                          28
                                          22
          Gambling & Casinos
          Name: count, dtype: int64
In [54]: # Use a seaborn color palette
         colors = sns.color_palette('husl', len(industry_counts))
         # Create the horizontal bar plot
         barh_plot_2_4 = industry_counts.plot(kind='barh', figsize=(8, 6), color=colors, edg
          plt.title('Absolute Billionaires Industry Distribution Worldwide (2023)',
                    fontsize=16,
                    fontweight='bold',
                    y=1.02)
```

```
barh_plot_2_4.set_xlabel('Count')
barh_plot_2_4.set_ylabel('Industry')

for i, count in enumerate(industry_counts):
    plt.text(count + 1.5, i, str(count), ha='left', va='center')

file_name_2_4 = "Absolute_Billionaires_Industry_Distribution_Worldwide_U.png"
all_plots.append((barh_plot_2_4, file_name_2_4))
plt.show()
```

Absolute Billionaires Industry Distribution Worldwide (2023)

2.5 Feature: Age | Hist-Chart

```
In [55]: # Create the histogram plot
         hist_chart_2_5 = df['age'].plot(kind='hist',
                                          bins=20,
                                          figsize=(8, 4),
                                          color='dodgerblue',
                                          edgecolor='black')
         # Customize the plot
         hist_chart_2_5.set_title('Age Distribution of Billionaires Worldwide (2023)',
                                   fontsize=16,
                                   fontweight='bold',
                                   y=1.02)
         hist_chart_2_5.set_xlabel('Age')
         # Add vertical line for mean age
         mean_age = df['age'].mean()
         hist_chart_2_5.axvline(mean_age,
                                 color='red',
                                 linestyle='dashed',
```

Age Distribution of Billionaires Worldwide (2023)

2.6 Feature: Gender | Pie-Chart

```
In [56]: def create_pie_chart(data_val_counts, col_palette, input_title, feature_name):
             ax = data_val_counts.plot(kind='pie',
                                        autopct='%1.1f%%',
                                        colors=col_palette,
                                        wedgeprops=dict(width=0.4),
                                        textprops=dict(fontsize=11, fontweight='bold'),
                                        startangle=90,
                                        shadow=True,
                                        explode=(0, 0.1),
                                        pctdistance=0.8
             plt.text(0, 0, feature_name, ha='center', va='center', fontsize=12, fontweight=
             # Customize the plot
             plt.title(input_title,
                        fontweight='bold',
                        fontsize=16,
                       y=1.05)
             ax.set_ylabel('')
             # Equal aspect ratio ensures that pie is drawn as a circle.
```

```
ax.axis('equal')
             # Save and show the plot
             plt.show()
             return ax
In [57]: gender_counts = df['gender'].value_counts()
         gender_counts
Out[57]: gender
              2103
                281
         Name: count, dtype: int64
In [58]: colors = ['dodgerblue', 'tomato']
         gender_title = "Relative Gender Distribution of Billionaires Worldwide (2023)"
         file_name_5 = "Relative_Gender_Distribution_of_Billionaires_Worldwide.png"
         pie_chart_gender = create_pie_chart(gender_counts, colors, gender_title, feature_na
         file_name_2_6 = "Relative_Gender_Distribution_of_Billionaires_Worldwide_U.png"
         all_plots.append((pie_chart_gender, file_name_2_6))
```

Relative Gender Distribution of Billionaires Worldwide (2023)

2.7 Feature: Wealth-Source | Pie-Chart

```
feature_name="Wealth-Source")
file_name_2_7 = "Relative_Wealth_Source_Distribution_of_Billionaires_Worldwide_U.pn
all_plots.append((pie_chart_wealth_source, file_name_2_7))
```

Relative Wealth-Source Distribution of Billionaires Worldwide (2023)

3. Multivariate Feature Relationships Analysis

In this section we will go through the data analytics process of Multivariate Analysis to get a better understanding of the Feature-Relationships

To skip directly to to particular parts, use the following links:

- 3.1 Final Worth vs. Age by Gender | Scatterplot
- 3.2 Billionaires Count by Top Countries Worldwide and Wealth Source | Histogram
- 3.3 Billionaires per Industry, Age and Gender | Violin Plot
- 3.4 International Billionaire Average Final Worth by Global Region and Industry | Facet Grid
- 3.5 Worldwide Billionaire Correlations between Economic and Demographic Indicators | Heatmap

3.1 Final Worth vs. Age by Gender | Scatterplot

```
fontweight='bold',
    fontsize=22,
    y=1.05)
scatter_3_1.set(xlabel='Final Worth ($)', ylabel='Age')

scatter_3_1.set_xticklabels([readable_numbers(x) for x in scatter_3_1.get_xticks()]

# Add text annotations for top 5 persons
top_5_billionaires = df.nlargest(5, 'final_worth_usd')
for _, person in top_5_billionaires.iterrows():
    plt.text(person['final_worth_usd'], person['age'], person['person_name'], fonts
        va='bottom')

file_name_3_1 = "Billionaires_Final_Worth_vs_Age_by_Gender_Worldwide_M.png"
all_plots.append((scatter_3_1, file_name_3_1))
plt.show()
```

Billionaires Final Worth vs. Age by Gender Worldwide (2023)

3.2 Billionaires Count by Top Countries Worldwide and Wealth Source | Histogram

```
In [62]: # Create a list of top 20 countries with most billionaires
top_countries = df['country'].value_counts().head(20).index.tolist()
top_countries
```

```
Out[62]: ['United States',
           'China',
           'India',
           'Germany',
           'Russia',
           'United Kingdom',
           'Switzerland',
           'Italy',
           'Singapore',
           'Australia',
           'Brazil',
           'Canada',
           'Japan',
           'France',
           'South Korea',
           'Sweden',
           'Turkey',
           'Thailand',
           'Indonesia',
           'Spain']
In [63]: # Filter the df based on the top 20 countries criteria
          df_top_countries = df[df['country'].isin(top_countries)][['country', 'wealth_source
          df_top_countries
Out[63]:
```

	country	wealth_source
0	France	Inherited/Unearned
1	United States	Self-Made
2	United States	Self-Made
3	United States	Self-Made
4	United States	Self-Made
•••		
2378	China	Self-Made
2379	China	Self-Made
2380	United States	Inherited/Unearned
2381	China	Self-Made
2382	China	Self-Made

2174 rows × 2 columns

Out[64]:	wealth_source	country	Inherited/Unearned	Self-Made	total
	19	United States	213.0	537.0	750
	3	China	15.0	489.0	504
	6	India	90.0	67.0	157
	5	Germany	57.0	30.0	87
	10	Russia	0.0	79.0	79
	18	United Kingdom	22.0	56.0	78
	15	Switzerland	30.0	42.0	72
	8	Italy	31.0	24.0	55
	11	Singapore	17.0	28.0	45
	1	Brazil	26.0	17.0	43
	0	Australia	14.0	29.0	43
	2	Canada	11.0	28.0	39
	9	Japan	8.0	28.0	36
	4	France	19.0	15.0	34
	12	South Korea	15.0	13.0	28
	14	Sweden	13.0	13.0	26
	16	Thailand	11.0	14.0	25
	17	Turkey	11.0	14.0	25
	7	Indonesia	10.0	14.0	24
	13	Spain	14.0	10.0	24

Out[65]:

	country	wealth_source	total
1087	United States	Self-Made	750
448	United States	Self-Made	750
647	United States	Self-Made	750
648	United States	Inherited/Unearned	750
1522	United States	Self-Made	750
•••			
987	Spain	Inherited/Unearned	24
566	Indonesia	Self-Made	24
1948	Indonesia	Inherited/Unearned	24
555	Indonesia	Self-Made	24
49	Indonesia	Self-Made	24

2174 rows × 3 columns

Out[66]: country total 0 United States 750 1 China 504 2 India 157 3 Germany 87 4 Russia 79

```
504
                      157
                        87
                        79
 5 United Kingdom
                        78
 6
         Switzerland
                       72
 7
               Italy
                        55
 8
          Singapore
                       45
 9
           Australia
                       43
10
              Brazil
                       43
11
            Canada
                        39
12
             Japan
                        36
13
             France
                        34
14
        South Korea
                        28
15
            Sweden
                        26
16
             Turkey
                        25
17
           Thailand
                        25
18
          Indonesia
                        24
              Spain
                        24
19
```

```
In [67]:
         # Create the histplot
         plt.figure(figsize=(16, 10))
         hist_plot_3_2 = sns.histplot(
             data=df_wealth_source_merged,
             x="country",
             hue="wealth_source",
             edgecolor=".3",
             multiple='stack',
             linewidth=.5,
             stat='count'
         plt.xticks(rotation=60)
         hist_plot_3_2.set_title("Billionaires Count by Top 20 Countries Worldwide and Wealt
                                  fontsize=24,
                                  fontweight='bold',
                                  y=1.01)
         hist_plot_3_2.set_ylabel("Count")
```

```
hist_plot_3_2.set_xlabel("Country")

# Add labels for total count
for index, row in df_top_country_counts.iterrows():
    country = row['country']
    total_count = row['total']
    plt.text(country, total_count + 1, str(total_count), ha='center', va='bottom')

file_name_3_2 = "Billionaires_Count_by_Top_20_Countries_Worldwide_and_Wealth_Source
all_plots.append((hist_plot_3_2, file_name_3_2))
plt.show()
```

Billionaires Count by Top 20 Countries Worldwide and Wealth Source (2023)

3.3 Billionaires per Industry, Age and Gender | Violin Plot

```
violin_plot_3_3.set_xlabel("Industry")
plt.xticks(rotation=45)

file_name_3_3 = "Relative_Distribution_of_Billionaires_by_Industry_Age_and_Gender_W
all_plots.append((violin_plot_3_3, file_name_3_3))
plt.show()
```

Relative Distribution of Billionaires by Industry, Age and Gender Worldwide (2023)

3.4 International Billionaire Average Final Worth by Global Region and Industry | Facet Grid

```
In [69]: # Dictionary mapping countries to their respective global regions
         country_to_global_region_dict = {
              'France': 'West Europe',
              'United States': 'North America',
              'Mexico': 'North America',
              'India': 'Asia',
              'Spain': 'West Europe',
              'China': 'Asia',
              'Canada': 'North America',
              'Germany': 'West Europe',
              'Switzerland': 'West Europe',
              'Belgium': 'West Europe',
              'Hong Kong': 'Asia',
              'Austria': 'West Europe',
              'Japan': 'Asia',
              'United Kingdom': 'West Europe',
              'Australia': 'Oceania',
              'Indonesia': 'Asia',
              'United Arab Emirates': 'Asia',
              'Russia': 'East Europe',
              'Chile': 'South America',
              'Monaco': 'West Europe',
              'Czech Republic': 'East Europe',
              'Sweden': 'West Europe',
              'Thailand': 'Asia',
              'Uzbekistan': 'Asia',
              'Singapore': 'Asia',
```

```
'Nigeria': 'Africa',
'Israel': 'Asia',
'Italy': 'West Europe',
'South Africa': 'Africa',
'Brazil': 'South America',
'Malaysia': 'Asia',
'South Korea': 'Asia',
'New Zealand': 'Oceania',
'Philippines': 'Asia',
'Taiwan': 'Asia',
'Norway': 'West Europe',
'Egypt': 'Africa',
'Denmark': 'West Europe',
'Eswatini (Swaziland)': 'Africa',
'Colombia': 'South America',
'Netherlands': 'West Europe',
'Poland': 'East Europe',
'Bahamas': 'North America',
'Ukraine': 'East Europe',
'Cayman Islands': 'North America',
'Greece': 'West Europe',
'Turkey': 'Asia',
'Argentina': 'South America',
'Georgia': 'East Europe',
'Portugal': 'West Europe',
'Kazakhstan': 'Asia',
'Algeria': 'Africa',
'Vietnam': 'Asia',
'Latvia': 'East Europe',
'Finland': 'West Europe',
'Bermuda': 'North America',
'Luxembourg': 'West Europe',
'British Virgin Islands': 'North America',
'Cambodia': 'Asia',
'Lebanon': 'Asia',
'Oman': 'Asia',
'Ireland': 'West Europe',
'Cyprus': 'Asia',
'Guernsey': 'West Europe',
'Liechtenstein': 'West Europe',
'Turks and Caicos Islands': 'North America',
'Romania': 'East Europe',
'Qatar': 'Asia',
'Uruguay': 'South America',
'Nepal': 'Asia',
'Slovakia': 'East Europe',
'Morocco': 'Africa',
'Hungary': 'East Europe',
'Tanzania': 'Africa',
'Bahrain': 'Asia',
'Peru': 'South America',
'Andorra': 'West Europe',
'Armenia': 'East Europe',
'NaN': 'Unknown'
```

```
In [70]: # Create a new column 'global_region' by mapping the 'country' column using the pro
    df['global_region'] = df['country'].replace(country_to_global_region_dict)
    # Verify that the replacement worked for every country
    df.query('country == global_region')
```

Out[70]: rank final_worth_usd person_name age country_country_of_citizenship city industries

In [71]: # Group the DataFrame by 'industries' and 'global_region', calculate the mean of 'f
 avg_final_worth_per_global_region = df.groupby(['industries', 'global_region'])['fi
 avg_final_worth_per_global_region

Out[71]:		industries	global_region	final_worth_usd
	0	Automotive	Asia	4.629545e+09
	1	Automotive	North America	1.882500e+10
	2	Automotive	West Europe	6.792308e+09
	3	Construction & Engineering	Africa	7.400000e+09
	4	Construction & Engineering	Asia	1.876923e+09
	•••			
	94	Telecom	Asia	4.200000e+09
	95	Telecom	East Europe	1.700000e+09
	96	Telecom	North America	1.602857e+10
	97	Telecom	Oceania	1.500000e+09
	98	Telecom	West Europe	3.500000e+09

99 rows × 3 columns

```
edgecolor=".3",
                   order=avg_final_worth_per_global_region['industries'].unique()
                   ).set_titles("{col_name}", verticalalignment='bottom')
facet_grid_3_4.set_xticklabels(rotation=45)
facet_grid_3_4.set_axis_labels('Industries', 'Average Final Worth ($)')
# Adjust y-axis tick labels
plt.gca().set_yticklabels([readable_numbers(y) for y in plt.gca().get yticks()])
# Create custom legend handles
handles = [mpatches.Patch(color=color,
                          label=label) for color, label in
           zip(sns.color_palette('Set1', n_colors=18), avg_final_worth_per_global_r
# Add Legend and adjust Layout
plt.legend(handles=handles, title='Industries', bbox_to_anchor=(1.4, 1.05), loc='up
# Set overall title
title = plt.suptitle("Billionaires Average Final Worth by Global Region and Industr
                     y=1.05,
                     fontweight='bold',
                     fontsize=24,
# Set individual subplot titles
facet_grid_3_4.set_titles(col_template="{col_name}", row_template="{row_name}", ver
file_name_3_4 = "Billionaires_Average_Final_Worth_by_Global_Region_and_Industry_Wor
all_plots.append((facet_grid_3_4, file_name_3_4))
plt.show()
```

Billionaires Average Final Worth by Global Region and Industry Worldwide (2023)

3.5 Worldwide Billionaire Correlations between Economic and Demographic Indicators | Heatmap

```
In [73]: # Select numerical columns excluding the 'rank' column and calculate the correlatio
    corr_df = df.select_dtypes(exclude='object').drop('rank', axis=1).corr()
    corr_df
```

Out[73]:		final_worth_usd	age	life_expectancy_cou
	final_worth_usd	1.000000	0.061611	0.024
	age	0.061611	1.000000	0.023
	life_expectancy_country	0.024380	0.023309	1.000
	$gross_tertiary_education_enrollment_country$	0.065300	0.064680	0.528
	$gross_primary_education_enrollment_country$	-0.010040	0.066280	-0.31
	gdp_country_usd	0.035914	-0.074021	-0.044
	total_tax_rate_country	-0.037038	-0.157074	-0.266
	population_country	-0.054723	-0.174421	-0.520

Billionaires Correlations between Economic and Demographic Indicators Worldwide (2023)


```
In [75]: # Iterate through all_plots, where each element is a tuple containing a figure (fig
for fig, file_name in all_plots:
    # Define the base directory for media files
    media_dir = "media/"

# Check if the file_name ends with "U" (indicating univariate analysis) or not
    if file_name.strip(" .png").endswith("U"):
        media_dir += "univariate_analysis"
    else:
        media_dir += "multivariate_analysis"

# Create the directory if it doesn't exist
    os.makedirs(media_dir, exist_ok=True)

# Save the figure to the appropriate directory with a tight bounding box
    fig.figure.savefig(f"{media_dir}/{file_name}", bbox_inches='tight')
```

4. Conclusion - Key Findings

- Wealth Distribution: The dataset includes 2,384 billionaires with a mean net worth of
 4.77 billion (USD), ranging from 1 billion to 211 billion (USD). The top 5 industries
 dominating the billionaire landscape are Finance & Investments, Technology,
 Manufacturing, Fashion & Retail, and Healthcare, collectively representing
 approximately 56.38% of the total billionaires in the dataset
- **Age Distribution:** The age distribution of billionaires ranges from 18 to 101 years, with a mean age of 64.99 years. The majority of billionaires fall between the ages of 56 and 74.

- **Gender Disparity:** Male billionaires significantly outnumber female billionaires, constituting approximately 88.21% of the total billionaires in the dataset.
- **Self-Made Success:** The majority of billionaires are self-made, representing approximately 70.42% of the total billionaires in the dataset.

• Top 5 Countries and Wealth Source Distribution:

- United States: 213 Inherited/Unearned billionaires, 537 Self-Made billionaires, totaling 750 billionaires.
- China: 15 Inherited/Unearned billionaires, 489 Self-Made billionaires, totaling 504 billionaires.
- India: 90 Inherited/Unearned billionaires, 67 Self-Made billionaires, totaling 157 billionaires.
- Germany: 57 Inherited/Unearned billionaires, 30 Self-Made billionaires, totaling 87 billionaires.
- Russia: 0 Inherited/Unearned billionaires, 79 Self-Made billionaires, totaling 79 billionaires.
- Correlation Analysis: Examining numerical correlations reveals some interesting insights:

Net Worth:

- Positive Correlation with Tertiary Education Enrollment and Age: Higher net
 worth tends to correlate with regions where there is a higher percentage of the
 population enrolled in tertiary education. Additionally, there is a slight positive
 correlation with age, suggesting that older individuals may accumulate more
 wealth.
- Negative Correlation with Country Population and Total Tax Rate: The negative
 correlation with country population indicates that billionaires might be more
 concentrated in less populous countries. The negative correlation with the total
 tax rate suggests that billionaires tend to accumulate more wealth in countries
 with lower total tax rates.

Age:

Negative Correlation with Country Population and Total Tax Rate: The negative
correlation with country population suggests that older billionaires may prefer
residing in less populated areas. The negative correlation with the total tax rate
implies that older billionaires might choose countries with lower tax burdens.

Life Expectancy in a Country:

 Positive Correlation with Gross Tertiary Education Enrollment: Countries with higher life expectancies tend to have a higher percentage of the population enrolled in tertiary education. This could indicate a positive correlation between educational opportunities and overall well-being. Negative Correlation with Country Population and Total Tax Rate: Higher life
expectancy correlates with lower country population and lower total tax rates,
suggesting a potential preference for less crowded and fiscally favorable
environments.

Gross Tertiary Education Enrollment:

- Positive Correlation with GDP: Countries with a higher percentage of the
 population enrolled in tertiary education tend to have higher Gross Domestic
 Product (GDP). This could signify a positive relationship between educational
 investment and economic prosperity.
- Negative Correlation with Country Population and Total Tax Rate: The negative
 correlation with country population indicates that regions with more tertiary
 education enrollment might have a lower population density. The negative
 correlation with the total tax rate suggests that these regions may have lower
 tax burdens, potentially attracting individuals seeking financial opportunities.