

# ACME Example Oracle Database Consolidation to ExaDB-CC

**Solution Definition** 

3 July, 2023 | Version 1.0

# **Contents**

| Document Control                                           | 3  |
|------------------------------------------------------------|----|
| 1.1 Version Control                                        | 3  |
| 1.2 Team                                                   | 3  |
| 1.3 Document Purpose                                       | 3  |
| Business Context                                           | 3  |
| 1.4 Executive Summary                                      | 3  |
| 1.5 Workload Business Value                                | 3  |
| Workload Requirements and Architecture                     | 4  |
| 2.1 Overview                                               | 4  |
| 2.2 Functional Requirements                                | 4  |
| 2.3 Non-Functional Requirements                            | 5  |
| 2.3.1 Environments                                         | 5  |
| 2.3.2 High Availability and Disaster Recovery Requirements | 5  |
| 2.3.3 Security Requirements                                | 5  |
| 2.4 Future State Architecture                              | 5  |
| 2.4.1 Mandatory Security Best Practices                    | 5  |
| 2.4.2 OCI Secure Landing Zone Architecture                 | 7  |
| 2.4.3 Physical Architecture                                | 12 |
| 2.4.4 Database Consolidation                               | 14 |
| Annex                                                      | 20 |
| 3.1 Security Guidelines                                    | 20 |
| 3.1.1 Oracle Security, Identity, and Compliance            | 20 |
| 3.1.2 Compliance and Regulations                           | 20 |
| 3.2 Additional Resources                                   | 20 |

# **Document Control**

## 1.1 Version Control

Guide:

| Version | Authors | Date | Comments            |  |
|---------|---------|------|---------------------|--|
| 1.0     |         |      | Initial publication |  |

#### 1.2 Team

| Name          | Email                  | Role            | Company |
|---------------|------------------------|-----------------|---------|
| <name></name> | <name>@acme.com</name> | Cloud Architect | ACME    |

# 1.3 Document Purpose

This document provides a high-level solution definition for the Oracle solution and aims at describing the current state, and to-be state for ACME's Consolidation to ExaDB-CC project.

The document may refer to a 'Workload', which summarizes the full technical solution for a customer during a single engagement. The Workload is described in the chapter Workload Requirements and Architecture.

# **Business Context**

ACME, A Company Making Everything, is a manufacturing company with customers all over the world.

## 1.4 Executive Summary

ACME has three mission critical applications with Oracle database on aging Exadata that is running out of support and needs to be upgraded or replaced. It has decided to consolidate the Oracle databases to ExaDB-CC.

# 1.5 Workload Business Value

By consolidating the Oracle databases to the ExaDB-CC platform, ACME aims to achieve the following benefits:

- Reduced Costs
- Improved Security
- Ensured Availability
- Assured Performance
- Simplified Administration

# **Workload Requirements and Architecture**

## 2.1 Overview

The workload described in this document consists in migrating Oracle databases running in two separate ACME data centers on Exadata machines to two new ExaDB-CC quarter rack systems also distributed in this fashion.

The environments include Production, Disaster Recovery or Standby and other non-Production databases.

The following diagram show the current on-premises Exadata deployment:



# 2.2 Functional Requirements

The workload is database only therefore functionally the platform only provides the services to accommodate Oracle Databases and their associated complementary functions like clustering, storage, networking and compute.

The solution implemented with ExaDB-CC allows ACME to meet advanced requirements in the following areas:

- Higher data availability for business continuity
- Consolidation of more than 40 Databases
- Increased resource management to match SLO (service level objective)

All the applications are typical multi-tier web application made of three main layers: Presentation, Application and Data Layers. Applications are Java Based running on top of Weblogic application servers. High availability is ensured by a load balancer that distributes the load over several Weblogic servers.

Presentation and Application layers are not part of this migration and will stay as-is, only the Database layer is addressed in this document.

# 2.3 Non-Functional Requirements

#### 2.3.1 Environments

| Name       | Size of Prod | Location | DR  | Scope    |
|------------|--------------|----------|-----|----------|
| Production | 100%         | DC1      | Yes | Workload |
| DR         | 100%         | DC2      | No  | Workload |
| NonProd    | 100%         | DC1,2    | No  | Workload |

#### 2.3.2 High Availability and Disaster Recovery Requirements

## 2.3.2.1 High Availability

| Service Name     | KPI    | Unit    | Value |
|------------------|--------|---------|-------|
| Production DB    | Uptime | percent | 99.95 |
| NonProduction DB | Uptime | percent | 95    |

#### 2.3.2.2 Disaster Recovery

| Service Name  | KPI | Unit    | Value |
|---------------|-----|---------|-------|
| Production DB | RTO | minutes | 30    |
| Production DB | RPO | minutes | 10    |

#### 2.3.2.3 Backup and Restore

| Service Name  | KPI          | Unit  | Value |
|---------------|--------------|-------|-------|
| Production DB | Frequency    | /day  | 2     |
| Production DB | BckpTime (F) | hours | 4     |
| Production DB | BckpTime (I) | hours | 1     |
| Production DB | Retention    | days  | 60    |

# 2.3.3 Security Requirements

The solution provided must address the following security requirements expressed by ACME:

- Data encryption must be implemented using customer provided keys
- Use of a Key Management System (KMS) to store the encryption keys

## 2.4 Future State Architecture

# 2.4.1 Mandatory Security Best Practices

The safety of the ACME's Oracle Cloud Infrastructure (OCI) environment and data is the ACME's priority.

To following table of OCI Security Best Practices lists the recommended topics to provide a secure foundation for every OCI implementation. It applies to new and existing tenancies and should be implemented before the Workload defined in this document will be implemented.

Workload related security requirements and settings like tenancy structure, groups, and permissions are defined in the respective chapters.

Any deviations from these recommendations needed for the scope of this document will be documented in chapters below. They must be approved by ACME.

ACME is responsible for implementing, managing, and maintaining all listed topics.

| CATEGORY                       | TOPIC                            | DETAILS                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User<br>Management             | IAM Default<br>Domain            | Multi-factor Authentication (MFA) should be enabled and enforced for every non-federated OCI user account.                                                                                                                                                                                                                                                              |
|                                |                                  | <ul> <li>For configuration details see Managing Multi-Factor Authentication.</li> <li>In addition to enforce MFA for local users, Adaptive Security will be enabled to track the Risk Score of each user of the Default Domain.</li> </ul>                                                                                                                              |
|                                | OCI<br>Emergency                 | <ul> <li>For configuration details see Managing Adaptive Security and Risk Providers.</li> <li>A maximum of <b>three</b> non-federated OCI user accounts should be present with the following requirements:</li> </ul>                                                                                                                                                  |
|                                | Users                            | Username does not match any username in the Customer's Enterprise<br>Identity Management System                                                                                                                                                                                                                                                                         |
|                                |                                  | <ul> <li>Are real humans.</li> <li>Have a recovery email address that differs from the primary email address.</li> <li>User capabilities has Local Password enabled only.</li> <li>Has MFA enabled and enforced (see IAM Default Domain).</li> </ul>                                                                                                                    |
|                                | OCI<br>Administrators            | Daily business OCI Administrators are managed by the Customer's Enterprise Identity Management System. This system is federated with the IAM Default Domain following these configuration steps:                                                                                                                                                                        |
|                                |                                  | <ul> <li>Federation Setup</li> <li>User Provisioning</li> <li>For configuration guidance for major Identity Providers see the OCI IAM Identity Domain tutorials.</li> </ul>                                                                                                                                                                                             |
|                                | Application<br>Users             | Application users like OS users, Database users, or PaaS users are not managed in the IAM Default Domain but either directly or in dedicated identity domains. These identity domains and users are covered in the Workload design. For additional information see Design Guidance for IAM Security Structure.                                                          |
| Cloud<br>Posture<br>Management | OCI Cloud<br>Guard               | OCI Cloud Guard will be enabled at the root compartment of the tenancy home region. This way it covers all future extensions, like new regions or new compartments, of your tenancy automatically. It will use the Oracle Managed Detector and Responder recipes at the beginning and can be customized by the Customer to fulfil the Customer's security requirements. |
|                                |                                  | <ul> <li>For configuration details see Getting Started with Cloud Guard.         Customization of the Cloud Guard Detector and Responder recipes to fit with the Customer's requirements is highly recommended. This step requires thorough planning and decisions to make.     </li> </ul>                                                                             |
|                                | OCI<br>Vulnerability<br>Scanning | <ul> <li>For configuration details see Customizing Cloud Guard Configuration In addition to OCI Cloud Guard, the OCI Vulnerability Scanning Service will be enabled at the root compartment in the home region. This service provides vulnerability scanning of all Compute instances once they are created.</li> </ul>                                                 |
|                                | Service                          | For configuration details see Vulnerability Scanning                                                                                                                                                                                                                                                                                                                    |

For configuration details see Vulnerability Scanning.

| CATEGORY               | TOPIC               | DETAILS                                                                                                                                                                                                                                                |
|------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring             | SIEM<br>Integration | Continuous monitoring of OCI resources is key for maintaining the required security level (see Regulations and Compliance for specific requirements). See Design Guidance for SIEM Integration to implement integration with the existing SIEM system. |
| Additional<br>Services | Budget<br>Control   | OCI Budget Control provides an easy to use and quick notification on changes of the tenancy's budget consumption. It will be configured to quickly identify unexpected usage of the tenancy.                                                           |

For configuration details see Managing Budgets

## 2.4.2 OCI Secure Landing Zone Architecture

The design considerations for an OCI Cloud Landing Zone have to do with OCI and industry architecture best practices, along with ACME specific architecture requirements that reflect the Cloud Strategy (hybrid, multi-cloud, etc). An OCI Cloud Landing zone involves a variety of fundamental aspects that have a broad level of sophistication. A good summary of a Cloud Landing Zone has been published in the OCI User Guide.

#### 2.4.2.1 Naming Convention

A naming convention is an important part of any deployment to ensure consistency as well as security within your tenancy. Hence we jointly agree on a naming convention, matching Oracle's best practices and ACME requirements.

Oracle recommends the following Resource Naming Convention:

- The name segments are separated by "-"
- Within a name segment avoid using and "."
- Where possible intuitive/standard abbreviations should be considered (e.g. "shared" compared to "shared.cloud.team")
- · When referring to the compartment full path, use ":" as a separator, e.g. cmp-shared:cmp-security

Some examples of naming are given below:

- cmp-shared
- cmp-<workload>
- cmp-networking

The patterns used are these:

- <resource-type>-<environment>-<location>-<purpose>
- <resource-type>-<entity/sub-entity>-<environment>-<function/department>-<project>-<custom>
- <resource-type>-<environment>-<location>-<purpose>

Abbreviations per resource type are listed below. This list may not be complete.

| Resource Type              | Abbreviation | Example                                                            |
|----------------------------|--------------|--------------------------------------------------------------------|
| Bastion Service            | bst          | bst- <location>-<network></network></location>                     |
| Block Volume               | blk          | blk- <location>-<project>-<purpose></purpose></project></location> |
| Compartment                | cmp          | cmp-shared, cmp-shared-security                                    |
| Customer Premise Equipment | cpe          | cpe- <location>-<destination></destination></location>             |
| DNS Endpoint Forwarder     | dnsepf       | dnsepf- <location></location>                                      |
| DNS Endpoint Listener      | dnsepl       | dnsepl- <location></location>                                      |

| Resource Type                      | Abbreviation  | Example                                                                                          |
|------------------------------------|---------------|--------------------------------------------------------------------------------------------------|
| Dynamic Group                      | dgp           | dpg-security-functions                                                                           |
| Dynamic Routing Gateway            | drg           | drg-prod- <location></location>                                                                  |
| Dynamic Routing Gateway Attachment | drgatt        | drgatt-prod- <location>-<source_vcn>-<destination_vcn></destination_vcn></source_vcn></location> |
| Fast Connect                       | fc# <# := 1n> | fc0- <location>-<destination></destination></location>                                           |
| File Storage                       | fss           | fss-prod- <location>-<project></project></location>                                              |
| Internet Gateway                   | igw           | igw-dev- <location>-<project></project></location>                                               |
| Jump Server                        | js            | js- <location>-xxxxx</location>                                                                  |
| Load Balancer                      | lb            | lb-prod- <location>-<project></project></location>                                               |
| Local Peering Gateway              | lpg           | lpg-prod- <source_vcn>-<destination_vcn></destination_vcn></source_vcn>                          |
| NAT Gateway                        | nat           | nat-prod- <location>-<project></project></location>                                              |
| Network Security Group             | nsg           | nsg-prod- <location>-waf</location>                                                              |
| Managed key                        | key           | key-prod- <location>-<project>-database01</project></location>                                   |
| OCI Function Application           | fn            | fn-security-logs                                                                                 |
| Object Storage Bucket              | bkt           | bkt-audit-logs                                                                                   |
| Policy                             | рсу           | pcy-services, pcy-tc-security-administration                                                     |
| Region Code, Location              | xxx           | fra, ams, zch # three letter region code                                                         |
| Routing Table                      | rt            | rt-prod- <location>-network</location>                                                           |
| Secret                             | sec           | sec-prod-wls-admin                                                                               |
| Security List                      | sl            | sl- <location></location>                                                                        |
| Service Connector Hub              | sch           | sch- <location></location>                                                                       |
| Service Gateway                    | sgw           | sgw- <location></location>                                                                       |
| Subnet                             | sn            | sn- <location></location>                                                                        |
| Tenancy                            | tc            | tc                                                                                               |
| Vault                              | vlt           | vlt- <location></location>                                                                       |
| Virtual Cloud Network              | vcn           | vcn- <location></location>                                                                       |
| Virtual Machine                    | vm            | vm-xxxx                                                                                          |
|                                    |               |                                                                                                  |

## 2.4.2.2 Security and Identity Management

This chapter covers the Security and Identity Management definitions and resources which will be implemented for ACME.

#### 2.4.2.2.1 Universal Security and Identity and Access Management Principles

- Groups will be configured at the tenancy level and access will be governed by policies configured in OCI.
- Any new project deployment in OCI will start with the creation of a new compartment. Compartments follow a hierarchy, and the compartment structure will be decided as per the application requirements.
- It is also proposed to keep any shared resources, such as Object Storage, Networks, etc. in a shared services
  compartment. This will allow the various resources in different compartments to access and use the resources
  deployed in the shared services compartment and user access can be controlled by policies related to specific
  resource types and user roles.
- Policies will be configured in OCI to maintain the level of access/control that should exist between resources in different compartments. These will also control user access to the various resources deployed in the tenancy.
- The tenancy will include a pre-provisioned Identity Cloud Service (IDCS) instance (the primary IDCS instance) or, where applicable, the Default Identity Domain. Both provide access management across all Oracle cloud services for laaS, PaaS, and SaaS cloud offerings.

• The primary IDCS or the Default Identity Domain will be used as the access management system for all users administrating (OCI Administrators) the OCI tenant.

#### 2.4.2.2.2 Authentication and Authorization for OCI

The provisioning of respective OCI administration users will be handled by ACME.

#### 2.4.2.2.1 User Management

Only OCI Administrators are granted access to the OCI Infrastructure. As a good practice, these users are managed within the pre-provisioned and pre-integrated Oracle Identity Cloud Service (primary IDCS) or, where applicable, the OCI Default Identity Domain, of OCI tenancy. These users are members of groups. IDCS Groups can be mapped to OCI groups while Identity Domains groups do not require any mapping. Each mapped group membership will be considered during login.

#### **Local Users**

The usage of OCI Local Users is not recommended for the majority of users and is restricted to a few users only. These users include the initial OCI Administrator created during the tenancy setup and additional emergency administrators.

Local Users are considered Emergency Administrators and should not be used for daily administration activities!

No additional users are to be, nor should be, configured as local users.

ACME is responsible to manage and maintain local users for emergency use cases.

#### **Federated Users**

Unlike Local Users, Federated Users are managed in the Federated or Enterprise User Management system. In the OCI User list Federated Users may be distinguished by a prefix that consists of the name of the federated service in lower case, a '/' character followed by the user name of the federated user, for example:

## oracleidentityservicecloud/user@example.com

Providing the same attributes (OCI API Keys, Auth Tokens, Customer Secret Keys, OAuth 2.0 Client Credentials, and SMTP Credentials) for Local and *Federated Users* federation with third-party Identity Providers should only be done in the preconfigured primary IDCS or the Default Identity Domain where applicable.

All users have the same OCI-specific attributes (OCI API Keys, Auth Tokens, Customer Secret Keys, OAuth 2.0 Client Credentials, and SMTP Credentials).

OCI Administration users should only be configured in the pre-configured primary IDCS or the Default Identity Domain where applicable.

**Note:** Any federated user can be a member of 100 groups only. The OCI Console limits the number of groups in a SAML assertion to 100 groups. User Management in the Enterprise Identity Management system will be handled by ACME.

#### **Authorization**

In general, policies hold permissions granted to groups. Policy and Group naming follows the Resource Naming Conventions.

#### **Tenant Level Authorization**

The policies and groups defined at the tenant level will provide access to administrators and authorized users, to manage or view resources across the entire tenancy. The tenant-level authorization will be granted to tenant administrators only.

These policies follow the recommendations of the CIS Oracle Cloud Infrastructure Foundations Benchmark v1.2.0, recommendations 1.1, 1.2, 1.3.

#### **Service Policy**

A Service Policy is used to enable services at the tenancy level. It is not assigned to any group.

#### **Shared Compartment Authorization**

Compartment-level authorization for the cmp-shared compartment structure uses the following specific policies and groups.

Apart from tenant-level authorization, authorization for the cmp-shared compartment provides specific policies and groups. In general, policies will be designed so that lower-level compartments are not able to modify the resources of higher-level compartments.

Policies for the cmp-shared compartment follow the recommendations of the CIS Oracle Cloud Infrastructure Foundations Benchmark v1.2.0, recommendations 1.1, 1.2, 1.3.

#### **Compartment Level Authorization**

Apart from tenant-level authorization, compartment-level authorization provides compartment structure-specific policies and groups. In general, policies will be designed so that lower-level compartments are not able to modify the resources of higher-level compartments.

## **Authentication and Authorization for Applications and Databases**

Application (including Compute Instances) and Database User management are completely separate and done outside of the primary IDCS or Default Identity Domain. The management of these users is the sole responsibility of ACME using the application, compute instance, and database-specific authorization.

#### 2.4.2.2.3 Security Posture Management

#### **Oracle Cloud Guard**

Oracle Cloud Guard Service will be enabled using the pcy-service policy and with the following default configuration. Customization of the Detector and Responder Recipes will result in clones of the default (Oracle Managed) recipes.

Cloud Guard default configuration provides a number of good settings. It is expected that these settings may not match ACME's requirements.

#### **Targets**

In accordance with the CIS Oracle Cloud Infrastructure Foundations Benchmark, v1.2.0, Chapter 3.15, Cloud Guard will be enabled in the root compartment.

#### **Detectors**

The Oracle Default Configuration Detector Recipes and Oracle Default Activity Detector Recipes are implemented. To better meet the requirements, the default detectors must be cloned and configured by ACME.

## **Responder Rules**

The default Cloud Guard Responders will be implemented. To better meet the requirements, the default detectors must be cloned and configured by ACME.

#### **Vulnerability Scanning Service**

In accordance with the CIS Oracle Cloud Infrastructure Foundations Benchmark, v1.2.0, OCI Vulnerability Scanning will be enabled using the pcy-service policy.

Compute instances that should be scanned *must* implement the *Oracle Cloud Agent* and enable the *Vulnerability Scanning plugin*.

#### **OCI OS Management Service**

Required policy statements for OCI OS Management Service are included in the pcy-service policy.

By default, the OS Management Service Agent plugin of the Oracle Cloud Agent is enabled and running on current Oracle Linux 6, 7, 8, and 9 platform images.

#### 2.4.2.2.4 Monitoring, Auditing, and Logging

In accordance with the CIS Oracle Cloud Infrastructure Foundations Benchmark, v1.2.0, Chapter 3 Logging and Monitoring the following configurations will be made:

- OCI Audit log retention period set to 365 days.
- At least one notification topic and subscription to receive monitoring alerts.
- Notification for Identity Provider changes.
- Notification for IdP group mapping changes.
- Notification for IAM policy changes.
- Notification for IAM group changes.
- Notification for user changes.
- Notification for VCN changes.
- Notification for changes to route tables.
- Notification for security list changes.
- Notification for network security group changes.
- Notification for changes to network gateways.
- VCN flow logging for all subnets.
- Write level logging for all Object Storage Buckets.
- Notification for Cloud Guard detected problems.
- Notification for Cloud Guard remedied problems.

For IDCS or OCI Identity Domain Auditing events, the respective Auditing API can be used to retrieve all required information.

#### 2.4.2.2.5 Data Encryption

All data will be encrypted at rest and in transit. Encryption keys can be managed by Oracle or the customer and will be implemented for identified resources.

#### 2.4.2.2.5.1 Key Management

All keys for OCI Block Volume, OCI Container Engine for Kubernetes, OCI Database, OCI File Storage, OCI Object Storage, and OCI Streaming are centrally managed in a shared or a private virtual vault will be implemented and placed in the compartment cmp-security.

#### **Object Storage Security**

For Object Storage security the following guidelines are considered.

- Access to Buckets -- Assign least privileged access for IAM users and groups to resource types in the object-family (Object Storage Buckets & Object)
- **Encryption at rest** -- All data in the Object Storage is encrypted at rest using AES-256 and is on by default. This cannot be turned off and objects are encrypted with a master encryption key.

#### **Data Residency**

It is expected that data will be held in the respective region and additional steps will be taken when exporting the data to other regions to comply with the applicable laws and regulations. This should be reviewed for every project onboard into the tenancy.

#### 2.4.2.2.6 Operational Security

#### **Security Zones**

Whenever possible OCI Security Zones will be used to implement a security compartment for Compute instances or Database resources. For more information on Security Zones refer to the *Oracle Cloud Infrastructure User Guide* chapter on Security Zones.

## **Remote Access to Compute Instances or Private Database Endpoints**

To allow remote access to Compute Instances or Private Database Endpoints, the OCI Bastion will be implemented for defined compartments.

To be able to use OCI services for OS management, Vulnerability Scanning, Bastion Service, etc. it is highly recommended to implement the Oracle Cloud Agent as documented in the *Oracle Cloud Infrastructure User Guide* chapter Managing Plugins with Oracle Cloud Agent.

## 2.4.2.2.7 Network Time Protocol Configuration for Compute Instance

Synchronized clocks are a necessity for securely operating environments. OCI provides a Network Time Protocol (NTP) server using the OCI global IP number 169.254.169.254. All compute instances should be configured to use this NTP service.

#### 2.4.2.2.8 Regulations and Compliance

ACME is responsible for setting the access rules to services and environments that require stakeholders' integration into the tenancy to comply with all applicable regulations. Oracle will support in accomplishing this task.

# 2.4.3 Physical Architecture

Two Exadata Cloud at Customer X9M-2 (ExaDB-CC) quarter racks will be deployed in the two customer data centers, as shown below:



The Control Plane of this Exadata Cloud at Customer is in the OCI Public Cloud (home region). The control plane is a sophisticated cloud software suite for order management, subscription billing, identity management, UI and REST API services, network connectivity, security controls, infrastructure, and lifecycle management.

# Exadata Cloud@Customer - Management Flow



#### 2.4.4 Database Consolidation

## 2.4.4.1 Oracle Database Consolidation Planning Process

- Use Database consolidation questionnaire to collect database information.
- Example: Oracle database version, source OS, NLS characterset, database life cycle (production, test, dev), database security zone (PCI vs non-PCI), Business Criticality, etc.
- Size the target ExaDB-CC platform based on source databases' utilization information.
- Design RAC VM cluster, RDBMS homes, CDBs.
- Create PDB to CDB mapping for all source databases to be consolidated.

# 2.4.4.2 Source DB Inventory

|             |              |          |             |                   |                   |              | DB CPU      |             |           |          |           |             |           |
|-------------|--------------|----------|-------------|-------------------|-------------------|--------------|-------------|-------------|-----------|----------|-----------|-------------|-----------|
| Data Center | DB Name      | APP Name | Environment | Source DB Version | Target DB Charset | DB Size (GB) | (cpu_count) | Memory (GB) | RAC [Y/N] | DR [Y/N] | PCI (Y/N) | Criticality | Target MT |
| DC1         | DC1C1AP1DB11 | AP1      | PRD         | 19.6.0.0.0        | AL32UTF8          | 15,385       | 24          | 112.0       | Υ         | Υ        | N         | 5           | Υ         |
|             | DC1C1AP2DB11 | AP2      | PRD         | 19.6.0.0.0        | AL32UTF8          | 4,326        | 12          | 8.0         | Υ         | Υ        | N         | 5           | Υ         |
|             | DC1C1AP3DB11 | AP3      | PRD         | 12.1.0.0.0        | AL32UTF8          | 1,807        | 12          | 54.0        | Υ         | Υ        | N         | 5           | Υ         |
| DC2         | DC2C1AP1DB21 | AP1      | DR          | 19.6.0.0.0        | AL32UTF8          | 15,385       | 24          | 112.0       | Υ         | N        | N         | 5           | Υ         |
|             | DC2C1AP2DB21 | AP2      | DR          | 19.6.0.0.0        | AL32UTF8          | 4,326        | 12          | 8.0         | Υ         | N        | N         | 5           | Υ         |
|             | DC2C1AP3DB21 | AP3      | DR          | 12.1.0.0.0        | AL32UTF8          | 1,807        | 12          | 54.0        | Υ         | N        | N         | 5           | Υ         |
|             | DC2C3AP1DB31 | AP1      | UAT         | 19.6.0.0.0        | AL32UTF8          | 4,350        | 8           | 77.8        | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP1DB32 | AP1      | UAT         | 19.6.0.0.0        | AL32UTF8          | 3,927        | 8           | 78.0        | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP1DB33 | AP1      | UAT         | 19.6.0.0.0        | AL32UTF8          | 3,951        | 24          | 71.2        | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP1DB34 | AP1      | UAT         | 19.6.0.0.0        | AL32UTF8          | 1,115        | 8           | 71.0        | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP1DB38 | AP1      | UAT         | 19.6.0.0.0        | AL32UTF8          | 3,001        | 24          | 82.0        | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP1DB39 | AP1      | UAT         | 19.6.0.0.0        | AL32UTF8          | 5,454        | 12          | 37.2        | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP2DB31 | AP2      | UAT         | 19.6.0.0.0        | AL32UTF8          | 1,137        | 8           | 5.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP2DB32 | AP2      | UAT         | 19.6.0.0.0        | AL32UTF8          | 508          | 8           | 5.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP2DB33 | AP2      | UAT         | 19.6.0.0.0        | AL32UTF8          | 944          | 12          | 8.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP2DB34 | AP2      | UAT         | 19.6.0.0.0        | AL32UTF8          | 711          | 8           | 5.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP2DB38 | AP2      | UAT         | 19.6.0.0.0        | AL32UTF8          | 358          | 4           | 6.2         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP2DB39 | AP2      | UAT         | 19.6.0.0.0        | AL32UTF8          | 150          | 8           | 5.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP3DB31 | AP3      | UAT         | 12.1.0.0.0        | AL32UTF8          | 453          | 8           | 7.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP3DB32 | AP3      | UAT         | 12.1.0.0.0        | AL32UTF8          | 266          | 8           | 7.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP3DB33 | AP3      | UAT         | 12.1.0.0.0        | AL32UTF8          | 199          | 8           | 8.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP3DB34 | AP3      | UAT         | 12.1.0.0.0        | AL32UTF8          | 106          | 8           | 7.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP3DB38 | AP3      | UAT         | 12.1.0.0.0        | AL32UTF8          | 1,350        | 8           | 7.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C3AP3DB39 | AP3      | UAT         | 12.1.0.0.0        | AL32UTF8          | 705          | 8           | 7.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP1DB41 | AP1      | DEV         | 19.8.0.0.0        | AL32UTF8          | 1,559        | 4           | 13.0        | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP2DB41 | AP2      | DEV         | 19.8.0.0.0        | AL32UTF8          | 165          | 4           | 4.8         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP1DB42 | AP1      | DEV         | 19.8.0.0.0        | AL32UTF8          | 344          | 4           | 6.3         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP2DB42 | AP2      | DEV         | 19.8.0.0.0        | AL32UTF8          | 165          | 4           | 4.8         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP1DB43 | AP1      | TST         | 19.8.0.0.0        | AL32UTF8          | 703          | 4           | 13.0        | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP2DB43 | AP2      | TST         | 19.8.0.0.0        | AL32UTF8          | 583          | 4           | 4.8         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP1DB44 | AP1      | TST         | 19.8.0.0.0        | AL32UTF8          | 1,183        | 4           | 12.2        | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP2DB44 | AP2      | TST         | 19.8.0.0.0        | AL32UTF8          | 498          | 4           | 5.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP1DB45 | AP1      | INT         | 19.8.0.0.0        | AL32UTF8          | 337          | 4           | 6.2         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP2DB45 | AP2      | INT         | 19.8.0.0.0        | AL32UTF8          | 114          |             | 5.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP1DB46 | AP1      | BLD         | 19.8.0.0.0        | AL32UTF8          | 354          |             | 6.3         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP2DB46 | AP2      | BLD         | 19.8.0.0.0        | AL32UTF8          | 111          | 4           | 4.8         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP1DB47 | AP1      | DEV         | 19.8.0.0.0        | AL32UTF8          | 1,397        | 4           | 6.3         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP2DB47 | AP2      | DEV         | 19.8.0.0.0        | AL32UTF8          | 134          | 4           | 5.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C4AP1DB48 | AP1      | TST         | 19.8.0.0.0        | AL32UTF8          | 3,197        |             | 13.0        | Υ         | N        | N         | 4           |           |
|             | DC2C4AP2DB48 | AP2      | TST         | 19.8.0.0.0        | AL32UTF8          | 364          |             | 5.0         | Υ         | N        | N         | 4           |           |
|             | DC2C5AP1DB51 | AP1      | PRF         | 19.8.0.0.0        | AL32UTF8          | 16,094       |             | 80.5        | Υ         | N        | N         | 4           |           |
|             | DC2C5AP2DB51 | AP2      | PRF         | 19.8.0.0.0        | AL32UTF8          | 7,255        |             | 8.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C5AP3DB51 | AP3      | PRF         | 12.1.0.0.0        | AL32UTF8          | 480          |             | 7.0         | Υ         | N        | N         | 4           | Υ         |
|             | DC2C5AP1DB52 | AP1      | TRN         | 19.8.0.0.0        | AL32UTF8          | 5,875        | 24          | 71.2        | Υ         | N        | N         | 4           | Υ         |
|             | DC2C5AP2DB52 | AP2      | TRN         | 19.8.0.0.0        | AL32UTF8          | 907          |             | 8.0         | Υ         | N        | N         | 4           |           |
|             | DC2C5AP3DB52 | AP3      | TRN         | 12.1.0.0.0        | AL32UTF8          | 1,191        | 4           | 11.0        | Υ         | N        | N         | 4           | Υ         |

## 2.4.4.3 Database Consolidation Requirements

- Prefer to separate database of different environments for PDB consolidation. However, BLD and DEV can go together, so does TST and INT (Integration).
- Production environment will be run as MAA Gold (RAC + Data Guard), while other environments will run as MAA Silver.
- Prefer to have different grid clusters for PROD, DR, UAT, DEV + TEST, PRF + TRN

# 2.4.4.4 Database Consolidation Results

Below is the summary of consolidation result in consideration of the above requirements.

# 2.4.4.4.1 PDB Consolidation

|           |            |                   |              |          |             | CDD      | CDD      | CDD       |
|-----------|------------|-------------------|--------------|----------|-------------|----------|----------|-----------|
| CDB       | DP Vesion  | Charset           | PDB Name     | ADD Name | Environment | CDB      | CDB      | CDB       |
| CDB A D12 | DB Vesion  |                   |              |          | Environment |          | RAM (GB) | Disk (GB) |
| CPRAP12   | 19.6.0.0.0 | AL32UTF8          | DC1C1AP1DB11 |          | PRD         | 16       | 240      | 19,711    |
| CDD A DO  | 424000     | A 1 2 2 1 1 T F O | DC1C1AP2DB11 |          | PRD         |          | 400      | 4 007     |
| CPRAP3    | 12.1.0.0.0 | AL32UTF8          | DC1C1AP3DB11 | AP3      | PRD         | 4        | 108      | 1,807     |
| CDTAP1    | 19.8.0.0.0 | AL32UTF8          | DC2C4AP1DB41 | AP1      | DEV         | 6        | 107      | 9,074     |
|           |            |                   | DC2C4AP1DB42 | AP1      | DEV         |          |          |           |
|           |            |                   | DC2C4AP1DB43 |          | TST         |          |          |           |
|           |            |                   | DC2C4AP1DB44 | AP1      | TST         |          |          |           |
|           |            |                   | DC2C4AP1DB45 |          | INT         |          |          |           |
|           |            |                   | DC2C4AP1DB46 |          | BLD         |          |          |           |
|           |            |                   | DC2C4AP1DB47 |          | DEV         |          |          |           |
|           |            |                   | DC2C4AP1DB48 | AP1      | TST         |          |          |           |
| CDTAP2    | 19.8.0.0.0 | AL32UTF8          | DC2C4AP2DB41 | AP2      | DEV         | 4        | 55       | 2,133     |
|           |            |                   | DC2C4AP2DB42 | AP2      | DEV         |          |          |           |
|           |            |                   | DC2C4AP2DB43 | AP2      | TST         |          |          |           |
|           |            |                   | DC2C4AP2DB44 | AP2      | TST         |          |          |           |
|           |            |                   | DC2C4AP2DB45 |          | INT         |          |          |           |
|           |            |                   | DC2C4AP2DB46 | AP2      | BLD         |          |          |           |
|           |            |                   | DC2C4AP2DB47 | AP2      | DEV         |          |          |           |
|           |            |                   | DC2C4AP2DB48 | AP2      | TST         |          |          |           |
| CPRAP12   | 19.6.0.0.0 | AL32UTF8          | DC2C1AP1DB21 | AP1      | DR          | 4        | 240      | 19,711    |
|           |            |                   | DC2C1AP2DB21 | AP2      | DR          |          |          |           |
| CPRAP3    | 12.1.0.0.0 | AL32UTF8          | DC2C1AP3DB21 | AP3      | DR          | 2        | 108      | 1,807     |
| CUAAP1    | 19.6.0.0.0 | AL32UTF8          | DC2C3AP1DB31 | AP1      | UAT         | 8        | 584      | 21,797    |
|           |            |                   | DC2C3AP1DB32 | AP1      | UAT         |          |          |           |
|           |            |                   | DC2C3AP1DB33 | AP1      | UAT         |          |          |           |
|           |            |                   | DC2C3AP1DB34 | AP1      | UAT         |          |          |           |
|           |            |                   | DC2C3AP1DB38 | AP1      | UAT         |          |          |           |
|           |            |                   | DC2C3AP1DB39 | AP1      | UAT         |          |          |           |
| CUAAP2    | 19.6.0.0.0 | AL32UTF8          | DC2C3AP2DB31 | AP2      | UAT         | 4        | 48       | 3,806     |
|           |            |                   | DC2C3AP2DB32 | AP2      | UAT         |          |          |           |
|           |            |                   | DC2C3AP2DB33 | AP2      | UAT         |          |          |           |
|           |            |                   | DC2C3AP2DB34 | AP2      | UAT         |          |          |           |
|           |            |                   | DC2C3AP2DB38 | AP2      | UAT         |          |          |           |
|           |            |                   | DC2C3AP2DB39 | AP2      | UAT         |          |          |           |
| CUAAP3    | 12.1.0.0.0 | AL32UTF8          | DC2C3AP3DB31 | AP3      | UAT         | 4        | 60       | 3,078     |
|           |            |                   | DC2C3AP3DB32 | AP3      | UAT         |          |          |           |
|           |            |                   | DC2C3AP3DB33 | AP3      | UAT         |          |          |           |
|           |            |                   | DC2C3AP3DB34 | AP3      | UAT         |          |          |           |
|           |            |                   | DC2C3AP3DB38 | AP3      | UAT         |          |          |           |
|           |            |                   | DC2C3AP3DB39 |          | UAT         |          |          |           |
| CPFAP12   | 19.8.0.0.0 | AL32UTF8          | DC2C5AP1DB51 |          | PRF         | 16       | 177      | 23,348    |
|           |            |                   | DC2C5AP2DB51 | AP2      | PRF         |          |          | -,-       |
| CPFAP3    | 12.1.0.0.0 | AL32UTF8          | DC2C5AP3DB51 |          | PRF         | 4        | 14       | 480       |
| CTRAP12   | 19.8.0.0.0 | AL32UTF8          | DC2C5AP1DB52 |          | TRN         | 4        |          | 6,782     |
|           |            |                   | DC2C5AP2DB52 | AP2      | TRN         | <u> </u> |          | -,        |
| CTRAP3    | 12.1.0.0.0 | AL32UTF8          |              | AP3      | TRN         | 2        | 22       | 1,191     |

#### 2.4.4.4.2 CDB to VM Cluster Consolidation

The following section gives an overview of the CDB list in each VM Cluster with sizing information:

| VM Cluster   | CDB     | Cluster oCPU | Cluster RAM (GB) | Cluster Disk (GB) |
|--------------|---------|--------------|------------------|-------------------|
| vmcls-prod   | CPRAP12 | 20           | 364              | 21,518            |
|              | CPRAP3  |              |                  |                   |
| vmcls-devtst | CDTAP1  | 10           | 178              | 11,207            |
|              | CDTAP2  |              |                  |                   |
| vmcls-dr     | CPRAP12 | 6            | 364              | 21,518            |
|              | CPRAP3  |              |                  |                   |
| vmcls-uat    | CUAAP1  | 16           | 780              | 28,682            |
|              | CUAAP2  |              |                  |                   |
|              | CUAAP3  |              |                  |                   |
| vmcls-prf    | CPFAP12 | 26           | 340              | 31,802            |
|              | CPFAP3  |              |                  |                   |
|              | CTRAP12 |              |                  | _                 |
|              | CTRAP3  |              |                  | _                 |

#### 2.4.4.4.3 VM Clusters

An ExaDB-CC can host up to eight independent VM clusters (for quarter rack and above). One cluster can be considered a domain where the databases will be consolidated based on criteria to be defined.

Each VM cluster runs a single version of the Oracle Grid infrastructure (GI) to be chosen by the customer among the most recent. Each cluster can run different versions of Oracle Homes. Each independent VM clusters has OCPU assigned during the deploy phase of the VM cluster, so, we can assign different number of OCPU to different VM clusters and environments. ACME calls his different environments as "Config", for example Production is "Config 1" and it will have assigned 20 OCPU during the provisioning of the virtual cluster and it will be placed in DC 1.

| Name                  | OCPUs | Location | Oracle MAA |
|-----------------------|-------|----------|------------|
| Production "Config 1" | 20    | DC 1     | Gold       |
| DR "Config 2"         | 6     | DC 2     | Gold       |
| UAT "Config 3"        | 16    | DC 2     | Silver     |
| Dev & Test "Config 4" | 10    | DC 1     | Silver     |
| PFR & TRN "Config 5"  | 26    | DC 2     | Silver     |



# 2.4.4.4 VM Cluster to ExaDB-CC Mapping

The following section gives an overview of the VM Cluster list in each ExaDB-CC Infrastructure:

| Data Center | ExaDB-CC    | VM Cluster   | Rack oCPU | Rack RAM (GB) | Rack Disk (GB) |
|-------------|-------------|--------------|-----------|---------------|----------------|
| DC1         | dc1-exacc01 | vmcls-prod   | 30        | 542           | 32,724         |
|             |             | vmcls-devtst |           |               |                |
| DC2         | dc2-exacc01 | vmcls-dr     | 48        | 1,412         | 82,001         |
|             |             | vmcls-uat    |           |               |                |
|             |             | vmcls-prf    |           |               |                |

# 2.4.4.4.5 Source Database to ExaDB-CC Mapping

The following section gives an overview of the mapping of all resources in both ExaDB-CC with VM cluster and CDB/PDB without sizing information:

| Data Center | ExaDB-CC    | VM Cluster   | CDB     | DB Vesion  | Charset  | PDB Name     | APP Name | Environment |
|-------------|-------------|--------------|---------|------------|----------|--------------|----------|-------------|
| DC1         | dc1-exacc01 | vmcls-prod   | CPRAP12 | 19.6.0.0.0 | AL32UTF8 | DC1C1AP1DB11 | AP1      | PRD         |
|             |             |              |         |            |          | DC1C1AP2DB11 | AP2      | PRD         |
|             |             |              | CPRAP3  | 12.1.0.0.0 | AL32UTF8 | DC1C1AP3DB11 | AP3      | PRD         |
|             |             | vmcls-devtst | CDTAP1  | 19.8.0.0.0 | AL32UTF8 | DC2C4AP1DB41 | AP1      | DEV         |
|             |             |              |         |            |          | DC2C4AP1DB42 | AP1      | DEV         |
|             |             |              |         |            |          | DC2C4AP1DB43 | AP1      | TST         |
|             |             |              |         |            |          | DC2C4AP1DB44 | AP1      | TST         |
|             |             |              |         |            |          | DC2C4AP1DB45 | AP1      | INT         |
|             |             |              |         |            |          | DC2C4AP1DB46 | AP1      | BLD         |
|             |             |              |         |            |          | DC2C4AP1DB47 | AP1      | DEV         |
|             |             |              |         |            |          | DC2C4AP1DB48 | AP1      | TST         |
|             |             |              | CDTAP2  | 19.8.0.0.0 | AL32UTF8 | DC2C4AP2DB41 | AP2      | DEV         |
|             |             |              |         |            |          | DC2C4AP2DB42 | AP2      | DEV         |
|             |             |              |         |            |          | DC2C4AP2DB43 | AP2      | TST         |
|             |             |              |         |            |          | DC2C4AP2DB44 | AP2      | TST         |
|             |             |              |         |            |          | DC2C4AP2DB45 | AP2      | INT         |
|             |             |              |         |            |          | DC2C4AP2DB46 | AP2      | BLD         |
|             |             |              |         |            |          | DC2C4AP2DB47 | AP2      | DEV         |
|             |             |              |         |            |          | DC2C4AP2DB48 | AP2      | TST         |
| DC2         | dc2-exacc01 | vmcls-dr     | CPRAP12 | 19.6.0.0.0 | AL32UTF8 | DC2C1AP1DB21 | AP1      | DR          |
|             |             |              |         |            |          | DC2C1AP2DB21 | AP2      | DR          |
|             |             |              | CPRAP3  | 12.1.0.0.0 | AL32UTF8 | DC2C1AP3DB21 | AP3      | DR          |
|             |             | vmcls-uat    | CUAAP1  | 19.6.0.0.0 | AL32UTF8 | DC2C3AP1DB31 | AP1      | UAT         |
|             |             |              |         |            |          | DC2C3AP1DB32 | AP1      | UAT         |
|             |             |              |         |            |          | DC2C3AP1DB33 | AP1      | UAT         |
|             |             |              |         |            |          | DC2C3AP1DB34 | AP1      | UAT         |
|             |             |              |         |            |          | DC2C3AP1DB38 | AP1      | UAT         |
|             |             |              |         |            |          | DC2C3AP1DB39 | AP1      | UAT         |
|             |             |              | CUAAP2  | 19.6.0.0.0 | AL32UTF8 | DC2C3AP2DB31 | AP2      | UAT         |
|             |             |              |         |            |          | DC2C3AP2DB32 | AP2      | UAT         |
|             |             |              |         |            |          | DC2C3AP2DB33 | AP2      | UAT         |
|             |             |              |         |            |          | DC2C3AP2DB34 | AP2      | UAT         |
|             |             |              |         |            |          | DC2C3AP2DB38 | AP2      | UAT         |
|             |             |              |         |            |          | DC2C3AP2DB39 | AP2      | UAT         |
|             |             |              | CUAAP3  | 12.1.0.0.0 | AL32UTF8 | DC2C3AP3DB31 | AP3      | UAT         |
|             |             |              |         |            |          | DC2C3AP3DB32 | AP3      | UAT         |
|             |             |              |         |            |          | DC2C3AP3DB33 | AP3      | UAT         |
|             |             |              |         |            |          | DC2C3AP3DB34 | AP3      | UAT         |
|             |             |              |         |            |          | DC2C3AP3DB38 | AP3      | UAT         |
|             |             |              |         |            |          | DC2C3AP3DB39 | AP3      | UAT         |
|             |             | vmcls-prf    | CPFAP12 | 19.8.0.0.0 | AL32UTF8 | DC2C5AP1DB51 | AP1      | PRF         |
|             |             |              |         |            |          | DC2C5AP2DB51 | AP2      | PRF         |
|             |             |              | CPFAP3  | 12.1.0.0.0 | AL32UTF8 | DC2C5AP3DB51 | AP3      | PRF         |
|             |             |              | CTRAP12 | 19.8.0.0.0 | AL32UTF8 | DC2C5AP1DB52 | AP1      | TRN         |
|             |             |              |         |            |          | DC2C5AP2DB52 | AP2      | TRN         |
|             |             |              | CTRAP3  | 12.1.0.0.0 | AL32UTF8 | DC2C5AP3DB52 | AP3      | TRN         |

## **Annex**

# 3.1 Security Guidelines

#### 3.1.1 Oracle Security, Identity, and Compliance

Oracle Cloud Infrastructure (OCI) is designed to protect customer workloads with a security-first approach across compute, network, and storage – down to the hardware. It's complemented by essential security services to provide the required levels of security for your most business-critical workloads.

- Security Strategy To create a successful security strategy and architecture for your deployments on OCI, it's helpful to understand Oracle's security principles and the OCI security services landscape.
- The security pillar capabilities pillar capabilities reflect fundamental security principles for architecture, deployment, and maintenance. The best practices in the security pillar help your organization to define a secure cloud architecture, identify and implement the right security controls, and monitor and prevent issues such as configuration drift.

#### 3.1.1.1 References

- The Best Practices Framework for OCI provides architectural guidance about how to build OCI services in a secure fashion, based on recommendations in the Best practices framework for Oracle Cloud Infrastructure.
- Learn more about Oracle Cloud Security Practices.
- For detailed information about security responsibilities in Oracle Cloud Infrastructure, see the Oracle Cloud Infrastructure Security Guide.

# 3.1.2 Compliance and Regulations

Cloud computing is fundamentally different from traditionally on-premises computing. In the traditional model, organizations are typically in full control of their technology infrastructure located on-premises (e.g., physical control of the hardware, and full control over the technology stack in production). In the cloud, organizations leverage resources and practices that are under the control of the cloud service provider, while still retaining some control and responsibility over other components of their IT solution. As a result, managing security and privacy in the cloud is often a shared responsibility between the cloud customer and the cloud service provider. The distribution of responsibilities between the cloud service provider and customer also varies based on the nature of the cloud service (laaS, PaaS, SaaS).

#### 3.2 Additional Resources

- Oracle Cloud Compliance Oracle is committed to helping customers operate globally in a fast-changing business
  environment and address the challenges of an ever more complex regulatory environment. This site is a primary
  reference for customers on Shared Management Model with Attestations and Advisories.
- Oracle Security Practices Oracle's security practices are multidimensional, encompassing how the company develops and manages enterprise systems, and cloud and on-premises products and services.
- Oracle Cloud Security Practices documents.
- Contract Documents for Oracle Cloud Services.
- OCI Shared Security Model
- OCI Cloud Adoption Framework Security Strategy
- OCI Security Guide
- OCI Cloud Adoption Framework Security chapter