Teoria degli automi e calcolabilità a.a. 2023/24 Prova scritta 13 gennaio 2025

Esercizio 1 Si consideri il seguente automa con ϵ transizioni:

- 1. Si descriva il linguaggio L accettato da questo automa.
- 2. Si dia un NFA senza transizioni ϵ equivalente.
- 3. Si dia un DFA equivalente.

Soluzione

- 1. Il linguaggio accettato è $\{a^nb^{2m+1}a^k\mid n,m,k\geq 0\}$, ossia il linguaggio denotato dall'espressione regolare $a^\star b(bb)^\star a^\star$.
- 2. Un NFA senza transizioni ϵ equivalente è il seguente:

	a	b
$\rightarrow q_0$	q_0, q_1	q_2, q_3
q_1		q_2, q_3
q_2	q_3	q_1
$\star q_3$	q_3	

3. Un DFA equivalente è il seguente.

	a	b
$\rightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_2,q_3\}$
$\{q_0, q_1\}$	$\{q_0,q_1\}$	$\{q_2,q_3\}$
$\star \{q_2, q_3\}$	$\{q_3\}$	$\{q_1\}$
$\star \{q_3\}$	$\{q_3\}$	Ø
$\{q_1\}$	Ø	$\{q_2, q_3\}$
Ø	Ø	Ø

Esercizio 2 Si consideri $L = \{a^n b^k a^k b \mid n, k \ge 0\}.$

- 1. Si dia una grammatica context-free che genera il linguaggio.
- 2. Si dia un automa a pila, se possibile deterministico, che riconosca il linguaggio (per pila vuota), spiegando su quale idea intuitiva è basato.
- 3. Il linguaggio è regolare? Si giustifichi formalmente la risposta.

Soluzione

1. S ::= AXb $A ::= \epsilon \mid aA$ $X ::= \epsilon \mid bXa$

2. Non è possibile riconoscere L con un automa a pila deterministico, perché il linguaggio contiene due stringhe di cui una prefisso dell'altra, per esempio b e bab. Un automa a pila non deterministico può essere costruito nel modo seguente:

3. Il linguaggio non è regolare, proviamolo con il pumping lemma. Fissato $n \ge 0$, consideriamo per esempio la stringa $b^n a^n b$, che appartiene al linguaggio. Decomponendo la stringa in uvw, con $|uv| \le n$ e |v| > 0, si ha necessariamente che u e v sono formate di sole b. Quindi, per esempio, la stringa $uv^0 w$ ha un numero di b strettamente minore delle a e quindi non appartiene al linguaggio.

Esercizio 3 Si consideri la funzione ricorsiva primitiva che restituisce la somma di due numeri naturali vista a lezione.

$$sum(x, Z) = x$$

$$sum(x, S(y)) = S(sum(x, y))$$

Si diano tutte le possibili computazioni per l'espressione sum(sum(S(Z), Z), sum(Z, S(Z))).

Soluzione Le computazioni possibili sono molte, le descrivo sommariamente sotto; ho dato 10 a chi ne ha descritte almeno due diverse.

- Per la prima sottoespressione l'unica riduzione è $sum(S(Z), Z) \rightarrow_1 S(Z)$.
- Per la seconda sottoespressione l'unica riduzione è $sum(Z, S(Z)) \rightarrow_2 S(sum(Z, Z)) \rightarrow_3 S(Z)$.
- Per l'espressione completa possiamo prima applicare le riduzioni (1) e (2-3) sopra in qualche ordine, ottenendo $sum(S(Z),S(Z)) \to S(sum(S(Z),Z)) \to S(S(Z))$; inoltre, dopo aver applicato la riduzione (2) possiamo anche applicare la seconda clausola a tutta l'espressione, per esempio nell'ordine mostrato sotto:

$$sum(sum(S(Z),Z),sum(Z,S(Z))) \rightarrow_1 sum(S(Z),sum(Z,S(Z))) \rightarrow_2 sum(S(Z),S(sum(Z,Z))) \rightarrow_4 S(sum(S(Z),sum(Z,Z))) \rightarrow_3 S(sum(S(Z),Z)) \rightarrow_1 S(S(Z))$$

Esercizio 4 Siano X un insieme ricorsivamente enumerabile, \mathcal{M}_X un algoritmo che semidecide X, e \mathcal{M}_X^k l'esecuzione di (al più) k passi di tale algoritmo, che se dopo k passi l'algoritmo non è terminato restituisce 0. Si descrivano in pseudocodice, utilizzando se possibile \mathcal{M}_X , altrimenti \mathcal{M}_X^k :

- 1. Un algoritmo che semidecide se, per qualche $x \leq 5, x \in X$.
- 2. Un algoritmo che semidecide se, per tutti gli $x \leq 5, x \in X$.

Soluzione

```
1. k = 0 while (true) for x=0 to 5 if (\mathcal{M}_X^k(x)=1) return 1 k++
2. for x=0 to 5 if \mathcal{M}_X(x)=0) return 0 return 1
```

Esercizio 5 Siano $A = \{x \mid \phi_x(y) \uparrow \text{ per qualche } y \leq 5\} \text{ e } B = \{x \mid \phi_x(y) = 0 \text{ per qualche } y \leq 5\}.$

- 1. Questi due insiemi sono ricorsivi?
- 2. L'insieme A è ricorsivamente enumerabile?
- 3. Si dia, se possibile, una riduzione da A in B.

Soluzione

- 1. No, essendo estensionali e non banali, per il teorema di Rice.
- 2. No, infatti il complementare di A, ossia $\overline{A} = \{x \mid \phi_x(y) \downarrow \text{ per ogni } y \leq 5\}$, è ricorsivamente enumerabile (possiamo eseguire in interleaving l'algoritmo su tutti gli $y \leq 5$, e se tutte le esecuzioni terminano otteniamo risposta positiva), quindi per il teorema di Post A non può esserlo.
- 3. Non è possibile; infatti B è ricorsivamente enumerabile con ragionamento analogo al punto precedente.