QUESTION 1

(1 pts)

Let c be a number in the domain D of a function f(x). What is the difference between an absolute maximum and a local maximum?

- A. The absolute maximum is the largest function value on the entire domain of the function. Whereas the local maximum is the largest function value for some x close to c.
- B. They are the same.
- C. The absolute maximum is the largest function value for some x close to c. Whereas the local maximum is the largest function value on the entire domain of the function.
- D. An absolute maximum is the value of f when $f(x) \ge f(c)$ for some x close to c. The local maximum is the value of f when $f(c) \ge f(x)$ for all x in the entire domain.

QUESTION 2

(1 pts

Use the graph to identify the absolute and local maximum and minimum values of the function.

- A. Absolute maximum at 5, absolute minimum at 2. Local maximum at 3, local minimum at 4.
- B. Absolute maximum at 3, absolute minimum at 1. Local maximum at 2, local minimum at 0.5 and at 1.
- C. Absolute maximum at 5, absolute minimum at 2. Local maximum at 3, local minimum at 2 and at 4.
- D. Absolute maximum at 3, absolute minimum at 1. Local maximum at 2, local minimum at 1.

QUESTION 3

1 pts

We use the Extreme Value Theorem to:

- A. Show that a function is continuous on a closed interval [a, b].
- B. Prove the existence of local maximum and minimum values of a continuous function on a closed interval [a, b].
- C. To show that a function exists on a closed interval [a, b].
- D. Prove the existence of absolute maximum and minimum values of a continuous function on a closed interval [a, b].

	QUESTION 9	(1 pts)
	Suppose that c is a critical number of a continuous function f . Fill in the blank:	
	If f' changes sign from positive to negative at c, then If f' changes sign from negative to positive at c, then	
	A. f has no local maximum.	C. f has an absolute maximum at c .
	f has no local minimum.	f has an absolute minimum at c .
	B. f has a local maximum at c .	D. f has a local minimum at c .
	f has a local minimum at c .	f has a local maximum at c .
Question 10 (1 pts		
	Use the graph to identify the local maximum and minimum values of the function.	

- A. Local minimum at x=3. No Local maximum.
- B. Local minimum and maximum at x = 3.
- C. No local maximum or minimum.
- D. No local minimum, local maximum at x = 3.

