

Iterative Solvers

Stationary Methods

- Richardson
- Gauss-Seidel relaxation
- Jacobi relaxation

Krylov Methods

- Conjugate Gradient (CG)
- Generalized Minimum Residual (GMRES)
- Biconjugate Gradient Stabilized (BiCG-stab)
- Etc.

Stationary Methods

Matrix Splitting

$$A = M - N$$

Update solution

$$M x_{k+1} = N x_k + b$$

 $x_{k+1} = M^{-1} (N x_k + b)$

Jacobi Relaxation

Matrix Splitting

Jacobi Relaxation

Update solution

$$M = D$$

 $N = D - A$
 $x_{k+1} = M^{-1} (N x_k + b)$

Simplified Form

$$x_{k+1} = x_k + D^{-1} (b - A x_k)$$

Krylov Methods

Krylov subspace

$$K_N(A, v) = \text{span } \{v, Av, A^2v, A^3v, ... A^{N-1}v\}$$

Select "best" solution in Krylov subspace

$$r_0 = b - A^*x_0$$

Compute "best" u_k in $K_N(A, r_0)$
 $x_k = x_0 + u_k$

GMRES

- Generalized Minimum Residual Method
 - "Best" = smallest residual

Compute u_k in $K_N(A, r_0)$ such that $\|b - A(x0 + u_k)\|$ is minimized

- Cost grows rapidly with N
 - Pick small N and restart (e.g. N = 10)

CG

- Conjugate Gradient Method
 - "Best" = smallest residual in the A-norm

Compute u_k in $K_N(A, r_0)$ such that $\|b - A(x0 + u_k)\|_A$ is minimized, where $\|v\|_A = v^T A v$

- Matrix must be S.P.D.
 - Symmetric and Positive-Definite

CG

- Search directions are conjugate
- Finite termination
 - In exact arithmetic

Iterative Solver Performance

What is a Preconditioner?

- Approximate inverse
 - Helps steer solver in the right direction
 - Better approximation → Faster Convergence

 $M \approx A^{-1}$

Diagonal Preconditioner

- Simplest preconditioner
 - Inverse of matrix diagonal
 - Always cheap, sometimes effective

Α

Diagonal Preconditioner


```
#include <cusp/krylov/cg.h>
#include <cusp/precond/smoothed_aggregation.h>
...

// set stopping criteria
// iteration_limit = 100
// relative_tolerance = 1e-6
cusp::default_monitor<float> monitor(b, 100, 1e-6);

// setup preconditioner
cusp::precond::diagonal<float, cusp::device_memory> M(A);

// solve A * x = b to default tolerance with preconditioned CG
cusp::krylov::cg(A, x, b, monitor, M);
```

Diagonal Preconditioner

- Always cheap, sometimes effective
 - Example: poorly scaled matrix

Solving with no preconditioner	Solving with diagonal preconditioner $(M = D^-1)$	
Solver will continue until residual norm 5e-06	Solver will continue until residual norm 5e-06	
Iteration Number Residual Norm	Iteration Number Residual Norm	
0 5.000000e+00	0 5.000000e+00	
1 1.195035e+01	1 5.148771e+01	
2 1.147768e+01	2 4.341677e+01	
3 1.544747e+01	3 3.299794e+01	
4 1.735989e+01	4 1.074329e+01	
5 1.160256e+01	5 2.807501e+00	
6 1.550610e+01	6 1.739602e+00	
7 2.534706e+01	7 1.538450e+00	
/	8 4.079266e-01	
89 4.568771e-05	9 7.029972e-02	
90 3.513509e-05	10 2.436168e-02	
91 3.462404e-05	11 6.656054e-03	
92 3.977090e-05	12 1.284295e-03	
93 2.056327e-06	13 1.432453e-06	
Successfully converged after 93 iterations	Successfully converged after 13 iterations	

Identity Preconditioner

Equivalent to no preconditioner

 1
 7
 0
 0

 0
 2
 8
 0

 5
 0
 2
 9

 0
 6
 0
 4

Α

 1
 0
 0
 0

 0
 1
 0
 0

 0
 0
 1
 0

 0
 0
 0
 1

M

Multigrid

- Hierarchy of grids and transfer operators
 - Smooth error can be represented on coarse grid

Algebraic Multigrid

- Construct grids from matrix
 - No geometry
- Wide variety of methods
 - Classical AMG
 - Aggregation-based AMG

Algebraic Multigrid


```
#include <cusp/krylov/cg.h>
#include <cusp/precond/smoothed_aggregation.h>
...

// set stopping criteria
// iteration_limit = 100
// relative_tolerance = 1e-6
cusp::default_monitor<float> monitor(b, 100, 1e-6);

// setup preconditioner
cusp::precond::smoothed_aggregation<int, float, cusp::device_memory> M(A);

// solve A * x = b to default tolerance with preconditioned CG
cusp::krylov::cg(A, x, b, monitor, M);
```

Algebraic Multigrid

Can be extremely effective

Solving with no pre	econditioner	Solving with smoothed aggregation preconditioner	
Iteration Number	Residual Norm	Iteration Number Residual Norm	
0	2.560000e+02	0	2.560000e+02
1	2.039984e+03	1	4.373383e+03
2	2.023926e+03	2	2.359818e+03
3	2.056031e+03	3	1.211452e+03
4	2.368466e+03	4	6.210880e+02
5	2.289376e+03	5	3.169577e+02
6	2.265133e+03	6	1.569394e+02
7	2.325146e+03	7	8.138102e+01
512	3.064404e-04	20	6.011106e-03
513	2.943765e-04	21	2.555795e-03
514	2.796355e-04	22	1.083367e-03
515	2.690365e-04	23	4.799830e-04
516	2.472412e-04	24	2.213949e-04
Successfully conver	ged after 516 iterations.	Successfully converge	ed after 24 iterations.

Parallel Preconditioners

- Diagonal
- Multigrid
- Polynomial
- Approximate-Inverse
- Ongoing development in Cusp

References

Iterative Methods for Sparse Linear Systems

Yousef Saad

http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf (online)

A Multigrid Tutorial

William L. Briggs

https://computation.llnl.gov/casc/people/henson/mgtut/ps/mgtut.pdf