第20讲深度学习怎样提高智能?—神经网络与深度学习

战渡臣

哈尔滨工业大学计算学部教学委员会主任 国家教学名师

人工智能与深度学习

神经网络和深度学习是人工智能研究的一个重要流派

人工智能

能够感知、推理、行动和自适应的程序

机器学习

能够随数据量增加不断改进性能的算法

深度学习

利用多层神经网络从大量数 据中进行学习并提高性能

需要理解: 1神经网络、2卷积、3深度神经网络

深度学习与神经网络

神经网络发展的几个阶段

1958 单层神经网络--感知机基本计算模型,能表示并实现基本

逻辑运算如与、或、非等

1943

神经元--MP模型 抽象模型

神经网络与生物神经网络

生物神经元与生物神经网络

一个神经元:多个树突 (输入)+1个轴突+多个 轴突末梢(输出),轴突 末梢与其他神经元的树突 产生连接,从而传递信号。 连接位置被称为"突触"。

神经元模型

基本神经元模型【示例】

神经元模型

神经元的训练与学习

神经元模型

可依据已有标签的样本训练,获得最优权值

f(y) = y

$$ReLU(x) = \begin{cases} x & if x > 0 \\ 0 & if x \le 0 \end{cases}$$

f(v) 1

f(y) = 0

典型激活函数示例

单层神经网络——感知机

单层感知机

$$y = sgn(\Sigma(x_i^*w_i)) = \begin{cases} 1 & \Sigma(x_i^*w_i) > 0 \\ 0 & \Sigma(x_i^*w_i) = 0 \\ -1 & \Sigma(x_i^*w_i) < 0 \end{cases}$$

$$y = f(\Sigma(x_i^*w_i) - \theta) = \begin{cases} 1 & \Sigma(x_i^*w_i) - \theta > = 0 \\ 0 & \Sigma(x_i^*w_i) - \theta < 0 \end{cases}$$

θ: **阈值 输出为二值**

单层感知机模型

单层神经网络——感知机

用单层神经网络表达二值逻辑运算

X_1	X ₂	$\neg X_2$	$X_1*1+X_2*(-1)$	输出
0	0	1		0
0	1	0	-1	0
1	0	1	1	1
1	1	0	0	0

单层神经网络能够表达二值逻辑与或非运算,但难以表达异或运算。由此需要两层神经网络,但两层神经网络计算更为复杂。神经网络有近似任何函数的能力。

两层神经网络

两层神经网络模型

两层神经网络模型

带偏置的两层神经网络模型

两层神经网络

BP神经网络:一种按照误差反向传播算法训练的多层前馈神经网络

神经网络的训练: 枚举

神经网络的训练: 枚举 (利用误差反向传播机制降低枚举量)

两层神经网络

前馈神经网络与循环神经网络

前馈神经网络 ^{仅向下一层传输计算数据}

循环神经网络/递归神经网络 向下一层传输计算数据,同时也可能本层循环

循环神经网络(RNN:Recurrent Neural Network),如双向循环神经网络(Bidirectional RNN)和长短期记忆网络(Long Short-Term Memory networks,LSTM),递归神经网络(recursive Neural Network)。

多层神经网络

将方程组表达成图的形式

$$y_1 = w_{11}x_1 + w_{12}x_2 + \dots + w_{1n}x_n$$

$$y_2 = w_{21}x_1 + w_{22}x_2 + \dots + w_{2n}x_n$$

.....

$$y_{m} = w_{m1}x_{1} + w_{m2}x_{2} + \dots + w_{mn}x_{n}$$

$$y = Sigmoid(f(y_1, y_2, ..., ym))$$

多层神经网络

什么是卷积

【卷积】的概念与计算

- 【卷积】是一种可作用于每一个元素上的计算。
- 可在一维数据上进行卷积,也可在二维数据上进行卷积,还可在多维数据上进行卷积。
- 有一个【卷积核】,又称为卷积【算子】,可以是3*3,5*5,7*7,...,k*k等大小

什么是卷积

【卷积】计算示例

		-///			
-	-	9	-	-	- (
-	15	12	17	18	-
	13	14	16	16	-
1	15	16	18	19	-
-	21	16	21	20	-
-	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	-	-	-	-

不同的卷积核,不同的作用

【示例】卷积的作用: 图像增强与特征提取

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

模糊

锐化

提取边缘

卷积与特征提取

利用【卷积】提取边缘特征:已知卷积核,进行卷积计算

-1	0	1
-2	0	2
-1	0	1

-1	-2	-1
0	0	0
1	2	1

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

卷积与特征提取

改变卷积的计算方式--提取纹理特征

LBP (Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子,具有旋转不变性和灰度不变性等优点

机器学习中的卷积

依据有标签的样本数据,反求【卷积核】

深度学习--深度神经网络

卷积神经网络: 卷积层—特征提取

卷积

提取特征

深度学习--深度神经网络

卷积神经网络: 池化层—降维处理

【示例】通过池化层,将6*6的特征像素矩阵,降低为2*2的池化特征像素矩阵

1	4	3	3	4	3
4	1	3	4	3	3
4	3	1	4	4	1
3	4	3	3	4	5
3	2	3 5	3	3	5

将左侧像素矩阵划分为四个 区域,可以区域内像素的最 大值作为区域像素值--最大 池化

4	4
6	6

将左侧像素矩阵划分为四个 区域,也可以区域内像素的 平均值作为区域像素值--平 均池化

2.67	3.22
3.67	3.89

深度学习--深度神经网络

计算机如何使用卷积神经网络精准识别图中的动物: 深度神经网络

以卷积、激活函数和池化层为基本结构,多次重复构成深度神经网络

- 卷积神经网络通过逐层处理,提取出对图像分类起关键作用的特征。
- 包括如下处理类型:
- ---卷积;
- ---降采样/池化;
- ---等等

神经网络与深度学习

小结

分类方程组

$$y_{1} = w_{11}x_{1} + w_{12}x_{2} + \dots + w_{1n}x_{n}$$

$$y_{2} = w_{21}x_{1} + w_{22}x_{2} + \dots + w_{2n}x_{n}$$

$$\vdots$$

$$y_{m} = w_{m1}x_{1} + w_{m2}x_{2} + \dots + w_{mn}x_{n}$$

$$y = Sigmoid(f(y_{1}, y_{2}, \dots, y_{m}))$$

神经网络

深度学习,增加神经网络的层数

已知卷积核, 提取特征

已知分类结果,反求 卷积核—机器学习

