SLOS223D - MAY 1999 - REVISED MAY 2001

## Compatible With PC 99 Desktop Line-Out Into 10- $k\Omega$ Load

- Compatible With PC 99 Portable Into 8-Ω Load
- Internal Gain Control, Which Eliminates External Gain-Setting Resistors
- DC Volume Control From 20 dB to −40 dB
- 2-W/Ch Output Power Into 3-Ω Load
- PC-Beep Input
- Depop Circuitry
- Stereo Input MUX
- Fully Differential Input
- Low Supply Current and Shutdown Current
- Surface-Mount Power Packaging 24-Pin TSSOP PowerPAD™

#### (TOP VIEW) 24 GND □ ☐ GND PCB ENABLE □ 2 23 □□ RLINEIN VOLUME □ 3 22 TT SHUTDOWN 4 21 LOUT+ □ ☐ ROUT+ LLINEIN I 5 20 ☐ RHPIN $\square$ $V_{DD}$ LHPIN 6 19 18 7 $PV_{DD}$ PV<sub>DD</sub> □ 8 17 RIN 🞞 ☐ CLK LOUT-9 16 ☐ ROUT− SE/BTL LIN $\square$ 15 10 □ PC-BEEP BYPASS □ 11 14 GND □ 12 13 ☐ GND

**PWP PACKAGE** 

#### description

The TPA0132 is a stereo audio power amplifier in a 24-pin TSSOP thermally enhanced package capable of delivering 2 W of continuous RMS power per channel into 3- $\Omega$  loads. This device minimizes the number of external components needed, which simplifies the design and frees up board space for other features. When driving 1 W into 8- $\Omega$  speakers, the TPA0132 has less than 0.4% THD+N across its specified frequency range.

Included within this device is integrated depop circuitry that virtually eliminates transients that cause noise in the speakers.

Amplifier gain is controlled by means of a dc voltage input on the VOLUME terminal. There are 31 discrete steps covering the range of 20 dB (maximum volume setting) to –40 dB (minimum volume setting) in 2-dB steps. When the VOLUME terminal exceeds 3.54 V, the device is muted. An internal input MUX allows two sets of stereo inputs to the amplifier. In notebook applications, where internal speakers are driven as BTL and the line outputs (often headphone drive) are required to be SE, the TPA0132 automatically switches into SE mode when the SE/BTL input is activated, and this effectively reduces the gain by 6 dB.

The TPA0132 consumes only 10 mA of supply current during normal operation. A shutdown mode is included that reduces the supply current to less than 150  $\mu$ A.

The PowerPAD package (PWP) delivers a level of thermal performance that was previously achievable only in TO-220-type packages. Thermal impedances of approximately  $35^{\circ}$ C/W are readily realized in multilayer PCB applications. This allows the TPA0132 to operate at full power into  $8-\Omega$  loads at ambient temperatures of  $85^{\circ}$ C.

#### **AVAILABLE OPTIONS**

|                | PACKAGED DEVICE |  |  |
|----------------|-----------------|--|--|
| <sup>T</sup> A | TSSOP†<br>(PWP) |  |  |
|                | (FVVF)          |  |  |
| -40°C to 85°C  | TPA0132PWP      |  |  |

<sup>†</sup> The PWP package is available taped and reeled. To order a taped and reeled part, add the suffix R to the part number (e.g., TPA0132PWPR).



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments.



SLOS223D - MAY 1999 - REVISED MAY 2001

#### functional block diagram





#### **Terminal Functions**

| TERMINAL   |                 |     |                                                                                                                                                                                                                                   |  |  |  |
|------------|-----------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| NAME       | NO.             | I/O | DESCRIPTION                                                                                                                                                                                                                       |  |  |  |
| BYPASS     | 11              |     | Tap to voltage divider for internal mid-supply bias generator                                                                                                                                                                     |  |  |  |
| CLK        | 17              | I   | If a 47-nF capacitor is attached, the TPA0132 generates an internal clock. An external clock can override the internal clock input to this terminal.                                                                              |  |  |  |
| GND        | 1, 12<br>13, 24 |     | Ground connection for circuitry. Connected to thermal pad                                                                                                                                                                         |  |  |  |
| LHPIN      | 6               | 1   | Left channel headphone input, selected when SE/BTL is held high                                                                                                                                                                   |  |  |  |
| LIN        | 10              | I   | Common left input for fully differential input. AC ground for single-ended inputs.                                                                                                                                                |  |  |  |
| LLINEIN    | 5               | I   | Left channel line negative input, selected when SE/BTL is held low                                                                                                                                                                |  |  |  |
| LOUT+      | 4               | 0   | Left channel positive output in BTL mode and positive output in SE mode                                                                                                                                                           |  |  |  |
| LOUT-      | 9               | 0   | Left channel negative output in BTL mode and high-impedance in SE mode                                                                                                                                                            |  |  |  |
| PCB ENABLE | 2               | I   | If this terminal is high, the detection circuitry for PC-BEEP is overridden and passes PC-BEEP through the amplifier, regardless of its amplitude. If PCB ENABLE is floating or low, the amplifier continues to operate normally. |  |  |  |
| PC-BEEP    | 14              | I   | The input for PC-Beep mode. PC-BEEP is enabled when a > 1-V (peak-to-peak) square wave is input to PC-BEEP or PCB ENABLE is high.                                                                                                 |  |  |  |
| $PV_{DD}$  | 7, 18           | I   | Power supply for output stage                                                                                                                                                                                                     |  |  |  |
| RHPIN      | 20              | I   | Right channel headphone input, selected when SE/BTL is held high                                                                                                                                                                  |  |  |  |
| RIN        | 8               | I   | Common right input for fully differential input. AC ground for single-ended inputs.                                                                                                                                               |  |  |  |
| RLINEIN    | 23              | I   | Right channel line input, selected when SE/BTL is held low                                                                                                                                                                        |  |  |  |
| ROUT+      | 21              | 0   | Right channel positive output in BTL mode and positive output in SE mode                                                                                                                                                          |  |  |  |
| ROUT-      | 16              | 0   | Right channel negative output in BTL mode and high-impedance in SE mode                                                                                                                                                           |  |  |  |
| SE/BTL     |                 |     | Input and output MUX control. When this terminal is held high, the LHPIN or RHPIN and SE output is selected. When this terminal is held low, the LLINEIN or RLINEIN and BTL output are selected.                                  |  |  |  |
| SHUTDOWN   | 22              | I   | When held low, this terminal places the entire device, except PC-BEEP detect circuitry, in shutdown mode.                                                                                                                         |  |  |  |
| $V_{DD}$   | 19              | I   | Analog V <sub>DD</sub> input supply. This terminal needs to be isolated from PV <sub>DD</sub> to achieve highest performance.                                                                                                     |  |  |  |
| VOLUME     | 3               | ı   | VOLUME detects the dc level at the terminal and sets the gain for 31 discrete steps covering a range of 20 dB to -40 dB for dc levels of 0.15 V to 3.54 V. When the dc level is over 3.54 V, the device is muted.                 |  |  |  |



### TPA0132 2-W STEREO AUDIO POWER AMPLIFIER WITH DC VOLUME CONTROL

SLOS223D - MAY 1999 - REVISED MAY 2001

#### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

#### **DISSIPATION RATING TABLE**

| PACKAGE | $T_{\mbox{A}} \leq 25^{\circ} \mbox{C}$ | DERATING FACTOR | T <sub>A</sub> = 70°C | T <sub>A</sub> = 85°C |
|---------|-----------------------------------------|-----------------|-----------------------|-----------------------|
| PWP     | 2.7 W <sup>‡</sup>                      | 21.8 mW/°C      | 1.7 W                 | 1.4 W                 |

<sup>\$\</sup>frac{1}{2}\$ See the Texas Instruments document, PowerPAD Thermally Enhanced Package Application Report(literature number SLMA002), for more information on the PowerPAD™ package. The thermal data was measured on a PCB layout based on the information in the section entitled Texas Instruments Recommended Board for PowerPAD™ on page 33 of the before mentioned document.

#### recommended operating conditions

|                                                |          | M | IIN | MAX | UNIT |  |
|------------------------------------------------|----------|---|-----|-----|------|--|
| Supply voltage, V <sub>DD</sub>                |          | 4 | 4.5 | 5.5 | V    |  |
| High level input voltage V                     | SE/BTL   |   | 4   |     |      |  |
| High-level input voltage, V <sub>IH</sub>      | SHUTDOWN |   | 2   |     | v    |  |
| Low-level input voltage, V <sub>IL</sub>       | SE/BTL   |   |     | 3   | V    |  |
|                                                | SHUTDOWN |   |     | 0.8 | V    |  |
| Operating free-air temperature, T <sub>A</sub> |          | - | 40  | 85  | °C   |  |

#### electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ , $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

|                     | PARAMETER                                       | TEST CONDITIONS                                      | MIN TYP MAX   | UNIT |
|---------------------|-------------------------------------------------|------------------------------------------------------|---------------|------|
| IVool               | Output offset voltage (measured differentially) | $V_{I} = 0 V$ , $A_{V} = 2 V/V$                      | 25            | mV   |
| PSRR                | Power supply rejection ratio                    | V <sub>DD</sub> = 4 V to 5 V                         | 67            | dB   |
| IIIII               | High-level input current                        | $V_{DD} = 5.5 \text{ V}, \qquad V_{I} = V_{DD}$      | 900           | nA   |
| I <sub>IL</sub>     | Low-level input current                         | $V_{DD} = 5.5 \text{ V}, \qquad V_{I} = 0 \text{ V}$ | 900           | nA   |
| Z <sub>I</sub>      | Input impedance                                 |                                                      | See Figure 28 |      |
| 1                   | Supply current                                  | BTL mode                                             | 10 15         | A    |
| <sup>I</sup> DD     |                                                 | SE mode                                              | 5 7.5         | mA   |
| I <sub>DD(SD)</sub> | Supply current, shutdown mode                   |                                                      | 150 300       | μΑ   |



<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

## **TPA0132** 2-W STEREO AUDIO POWER AMPLIFIER WITH DC VOLUME CONTROL SLOS223D - MAY 1999 - REVISED MAY 2001

# operating characteristics, $V_{DD}$ = 5 V, $T_A$ = 25°C, $R_L$ = 4 $\Omega$ , Gain = 2 V/V, BTL mode (unless otherwise noted)

| PARAMETER |                                      | TEST CONDITIONS                                  |                     | MIN | TYP  | MAX | UNIT  |
|-----------|--------------------------------------|--------------------------------------------------|---------------------|-----|------|-----|-------|
| PO        | Output power                         | THD = 1%,                                        | f = 1 kHz           |     | 2    |     | W     |
| THD+N     | Total harmonic distortion plus noise | P <sub>O</sub> = 1 W,                            | f = 20 Hz to 15 kHz |     | 0.4% |     |       |
| ВОМ       | Maximum output power bandwidth       | THD = 5%                                         |                     |     | >15  |     | kHz   |
|           | Supply ripple rejection ratio        | Supply simple rejection ratio                    | BTL mode            |     | 65   |     | dB    |
|           |                                      | $C_{(BYP)} = 0.47 \mu F$                         | SE mode             |     | 60   |     | uБ    |
| Vn        | Noise output voltage                 | $C_{(BYP)} = 0.47 \mu F,$<br>f = 20 Hz to 20 kHz | BTL mode            |     | 34   |     | μVRMS |
|           |                                      |                                                  | SE mode             |     | 44   |     |       |

#### **TYPICAL CHARACTERISTICS**

#### **Table of Graphs**

|                |                                      |                        | FIGURE         |
|----------------|--------------------------------------|------------------------|----------------|
|                | Total harmonic distortion plus noise | vs Output power        | 1, 4, 6, 8, 10 |
| THD+N          |                                      | vs Voltage gain        | 2              |
| I I II D+IN    |                                      | vs Frequency           | 3, 5, 7, 9, 11 |
|                |                                      | vs Output voltage      | 12             |
| ٧n             | Output noise voltage                 | vs Frequency           | 13             |
|                | Supply ripple rejection ratio        | vs Frequency           | 14, 15         |
|                | Crosstalk                            | vs Frequency           | 16, 17, 18     |
|                | Shutdown attenuation                 | vs Frequency           | 19             |
| SNR            | Signal-to-noise ratio                | vs Frequency           | 20             |
|                | Closed loop response                 |                        | 21, 22         |
| PO             | Output power                         | vs Load resistance     | 23, 24         |
| D-             | Power dissipation                    | vs Output power        | 25, 26         |
| PD             |                                      | vs Ambient temperature | 27             |
| Z <sub>i</sub> | Input impedance                      | vs Gain                | 28             |

#### **APPLICATION INFORMATION**



NOTE A: A 0.1- $\mu$ F ceramic capacitor should be placed as close as possible to the IC. For filtering lower-frequency noise signals, a larger electrolytic capacitor of 10  $\mu$ F or greater should be placed near the audio power amplifier.

Figure 29. Typical TPA0132 Application Circuit Using Single-Ended Inputs and Input MUX



#### **APPLICATION INFORMATION**



NOTE A: A 0.1-μF ceramic capacitor should be placed as close as possible to the IC. For filtering lower-frequency noise signals, a larger electrolytic capacitor of 10 μF or greater should be placed near the audio power amplifier.

Figure 30. Typical TPA0132 Application Circuit Using Differential Inputs

