Probabilistic language models

Сергей Аксенов

Высшая Школа Экономики

10 октября 2022 г.

Today

- 1 Language models
 - Sequence modelling
 - Definition
 - Training
 - Gated architectures
- RNN generators

Overview

- 1 Language models
 - Sequence modelling
 - Definition
 - Training
 - Gated architectures
- RNN generators

Языковая модель

Вычислить вероятность последовательности слов:

$$P(w_1, w_2, \ldots, w_n)$$

Предсказать следующее слово:

$$P(w_n|w_1,w_2,\ldots,w_{n-1})$$

Языковые модели используются:

- Машинный перевод: выбрать
- Проверка правописания: найти слово с ошибкой
- Распознавание речи: выбрать наилучшую транскрипцию
- Автодополнение
- Генерация текстов
- Суммаризация

Markov assumptions

Chain rule:

$$P(W) = P(w_1, w_2, \dots, w_n) = \prod_i P(w_i | w_1, \dots, w_{i-1})$$

Максимальное правдоподобие:

$$P(w_i|w_1,...,w_{i-1}) = \frac{\text{count}(w_1,w_2,...,w_i)}{\text{count}(w_1,...,w_{i-1})}$$

3 Марковское предположение (k-го порядка):

$$P(w_i|w_1,\ldots,w_{i-1})\approx P(w_i|w_{i-k},\ldots w_{i-1})$$

Модель *п*-грам

- $lacksymbol{0}$ Модель униграм: $P(W) = P(w_1, \ldots, w_n) pprox \prod_i P(w_i)$
- $m{Q}$ Модель биграм: $P(W) = P(w_1, \ldots, w_n) pprox \prod_i P(w_i | w_{i-1})$
- **③** Перплексия: $PP(W) = P(w_1, w_2, \dots w_n)^{-\frac{1}{N}}$ Чем ниже перплексия, тем лучше модель предсказывает новое слово
- ullet Сглаживание: $P(w_i|w_1,\ldots,w_{i-1})=rac{\mathsf{count}(w_1,w_2,\ldots,w_i)+1}{\mathsf{count}(w_1,\ldots,w_{i-1})+lpha|V|}$, где |V|-размер словаря
- f O Интерполяция: $\hat{P}(w_i|w_{i-1}) = \lambda P_{MLE}(w_i|w_{i-1}) + (1-\lambda)P_{MLE}(w_i)$

Модель n-грам для генерации текстов

Hа основе слова w_i :

- lacktriangle Выбираем наиболее вероятное слово w_{i+i}
- Случайно выбираем слово из вероятностного распределения для следующего слова

https://twitter.com/alg_testament

Нейросетевая языковая модель

 Модель *n*-грам: по *n* – 1 слову предсказываем *n*-ное слово.

Вход: w₁, .., w_{n-1}

Выход: w_n

Все студенты открыли свои книги

• Вход: Все студенты открыли свои

• Выход: книги

Нейросетевая языковая модель

- Первый слой: каждому слову ставим в соответствие d-мерный вектор f_i .
- Конкатенируем векторы эмбеддингов, получаем вектор $x = [f_1, ... f_{n-1}]$. Его размерность (n-1)d
- Скрытый слой: $h = \sigma(Wx + b)$
- ullet W,b обучаемые параметры
- Вероятность следующего слова из у:

$$y = softmax(Uh + b)$$

Нейросетевая языковая модель

Обучение

- Разбиваем корпус на Т п-грамм
- n-1 слов контекста подаем на вход сети, предсказываем n-ое слово

Функция потерь

 Отрицательный логарифм правдоподобия

$$L = -\frac{1}{T}log(P(y))$$

Today

- Language models
- Sequence modelling
 - Definition
 - Training
 - Gated architectures
- 3 RNN generators

Последовательные данные

- 💶 Временные ряды
 - Финансовые данные: курс акций, облигаций, валют
 - Медицинские данные: пульс, уровень сахара
- Текст и речь: распознавание речи, генерация текста
- Пространственно-временные данные
 - Беспилотники
 - Тектоническая активность
- Физические данные
- etc.

Sequence modelling I

Классификация последовательностей

- $\mathbf{0} \; \; x = x_1, x_2, \dots, x_n, \; x_i \in V$ объекты
- $\mathbf{2}$ $y \in \{1, \ldots, L\}$ метки классов
- $\{(x^{(1)},y_1),(x^{(2)},y_2),\ldots,(x^{(m)},y_m)\}$ данные для обучения

Задача классификации: $\gamma: x \to y$

- Activity recognition: x пульс, y активность (ходьба, бег, покой)
- ② Сентимент-анализ: x sentence, y сентимент (позитивный, негативный)
- **3** Биржевая торговля: x курс акции, y действие (продать, купить, ничего не делать)

Sequence modelling II

Разметка последовательностей

- $\mathbf{0} \;\; x = x_1, x_2, \dots, x_n, \; x_i \in V$ объекты
- ② $y = y_1, y_2, \dots, y_n, y_i \in \{1, \dots, L\}$ метки классов
- **3** $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$ training data
- **3** Экспоненциально большое число возможных вариантов : если length(x) = n, то существует L^n возможных вариантов разметки

Задача классификации: $\gamma: x \to y$

- POS-tagging: x слово, y часть речи (глагол, прилагательное, etc.)
- Разметка генома: x ДНК, y ген
- Распознавание именованных сущностей

Sequence labelling tasks

POS tagging and Named Entity Recognition

X (words)	the	cat	sat	on	а	mat
Y (tags)	DET	NOUN	VERB	PREP	DET	NOUN

Таблица: POS tagging

Alex	is	going	to	Los	Angeles
B-PER	0	0	0	B-LOC	I-LOC

Таблица: NER (IOB2)

Alex	travels	with	Marty	A.	Rick	to	NY	city
S-PER	0	0	B-PER	I-PER	E-PER	0	B-LOC	E-LOC

Таблица: NER (IOBES)

Sequence modelling III

Преобразование последовательностей

- $oldsymbol{0}$ $x=x_1,x_2,\ldots,x_n,\,x_i\in V_{source}$ объекты
- $y=y_1,y_2,\ldots,y_n,\ y_i\in V_{target}$ объекты
- $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\ldots,(x^{(m)},y^{(m)})\}$ данные для обучения

Задача преобразования последовательности: $x_{source} o y_{target}$

- Машинный перевод: х предложение на русском, у предложение на английском
- Распознавание речи: x речь, y текст
- Чат-боты: x вопрос, y ответ

Traditional ML approaches to sequence modeling

- Hidden Markov Models (HMM)
- Conditional Random Fields (CRF)
- Local classifier: for each x define features, based on x_{-1} , x_{+1} , etc, and perform classification n times

Problems:

- Markov assumption: fixed length history
- Computation complexity

DL approaches to sequence modeling

- Neural networks
- Recurrent neural network and its modifications: LSTM, GRU, Highway
- 2D Convolutional Neural Network
- Transformer
- Pointer network

Problems:

- Training time
- 2 Amount of training data

Recurrent neural network

- Input: sequence of vectors
- $x_{1:n} = x_1, x_2, \ldots, x_n, x_i \in \mathbb{R}^{d_{in}}$
- Output: a single vector $y_n = RNN(x_{1:n}), y_n \in \mathbb{R}^{d_{out}}$
- For each prefix x_{i:j} define an output vector y_i:
 v_i = RNN(x_{1·i})
- RNN^* is a function returning this sequence for input sequence $x_{1:n}$: $v_{1\cdot n} = RNN^*(x_{1\cdot n}), v_i \in \mathbb{R}^{d_{out}}$

Sequence modelling with RNN

Sequence classification Put a dense layer on top of RNN to predict the desired class of the sequence after the whole sequence is processed

$$p(I_j|x_{1:n}) = \mathtt{softmax}(RNN(x_{1:n}) \times W + b)_{[j]}$$

Sequence labelling Produce an output y_i for each input RNN reads in. Put a dense layer on top of each output to predict the desired class of the input

$$p(I_j|x_j) = \operatorname{softmax}(RNN(x_{1:j}) \times W + b)_{[j]}$$

More details on RNN

- $RNN^*(x_{1:n}, s_0) = y_{1:n}$
- $y_i = O(s_i)$ simple activation function
- $s_i = R(s_{i-1}, x_i)$, where R is a recursive function, s_i is a state vector
- s₀ is initialized randomly or is a zero vector
- $x_i \in \mathbb{R}^{d_{in}}$, $y_i \in \mathbb{R}^{d_{out}}$, $s_i \in \mathbb{R}^{f(d_{out})}$
- θ shared weights

More details on RNN

•
$$s_i = R(x_i, s_{i-1}) = g(s_{i-1}W^s + x_iW^x + b)$$

- $y_i = O(s_i) = s_i$
- $y_i, s_i, b \in \mathbb{R}^{d_{out}}, x_i \in \mathbb{R}^{d_{in}}$
- ullet $W^{ imes} \in \mathbb{R}^{d_{in} imes d_{out}}$ $W^{s} \in \mathbb{R}^{d_{out} imes d_{out}}$

RNN unrolled

$$s_4 = R(s_3, x_4) = R(R(s_2, x_3), x_4) = R(R(R(s_1, x_2), x_3), x_4) =$$

$$= R(R(R(s_0, x_1), x_2), x_3), x_4)$$

Bidirectional RNN (Bi-RNN)

The input sequence can be read from left to right and from right to left. Which direction is better?

$$biRNN(x_{1:n}, i) = y_i = [RNN^f(x_{1:i}); RNN^r(x_{n:i})]$$

Bi-RNN

$$biRNN^*(x_{1:n}, i) = y_{1:n} = biRNN(x_{1:n}, 1) \dots biRNN(x_{1:n}, n)$$

Figure: Goldberg, Yoav. Neural network methods for natural language processing. 🕡 🤊 🔞 🗦 🔻 🚊 🕏 🔾

Multilayer RNN

Connections between different layers are possible too: $y_1^2 = \mathtt{concat}(x_1, y_1^1)$

Figure: Goldberg, Yoav. Neural network methods for natural language processing, 🕡 🕟 📵 🕟 🚊 🤛 🤉 🔊 🔾

Sequence classification

- $\bullet \hat{y_n} = O(s_n)$
- prediction = $MLP(\hat{y_n})$
- Loss: $L(\hat{y_n}, y_n)$
- L can take any form: cross entropy, hinge, margin, etc.

Sequence labelling

- Output \hat{t}_i for each input $x_{1,i}$
- Local loss: $L_{local}(\hat{t}_i, t_i)$
- Global loss:

$$L(\hat{t_n}, t_n) = \sum_i L_{local}(\hat{t_i}, t_i)$$

 L can take any form: cross entropy, hinge, margin, etc.

Backpropogation through time

$$\begin{aligned} s_i &= R(x_i, s_{i-1}) = g(s_{i-1}W^s + x_iW^x + b) \\ \text{Chain rule: } \frac{\partial L}{\partial w} &= \frac{\partial L}{\partial p(\hat{y}_5)} \frac{\partial p(\hat{y}_5)}{\partial s_4} (\frac{\partial s_4}{\partial w} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial w} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial s_w} + \ldots) \end{aligned}$$

Figure: Goldberg, Yoav. Neural network methods for natural language processing, 🕡 🖟 🥫 🖟 💈 🦻 💈 🔗 🔾

Vanishing gradient problem

Chain rule:
$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial p(\hat{y_5})} \frac{\partial p(\hat{y_5})}{\partial s_4} (\frac{\partial s_4}{\partial w} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial w} + \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial s_w} + \dots)$$
 $g - \text{sigmoid}$

- Many sigmoids near 0 and 1
 - Gradients \rightarrow 0
 - Not training for long term dependencies
- Many sigmoids > 1
 - Gradients \rightarrow + inf
 - Not training again

Solution: gated architectures (LSTM and GRU)

Controlled memory access

- Entire memory vector is changed: $s_{i+1} = R(x_i, s_i)$
- Controlled memory access: $s_{i+1} = g \odot R(x_i, s_i) + (1 g)s_i$ $g \in [0, 1]^d, s, x \in \mathbb{R}^d$
- Differential gates: $\sigma(g), g' \in \mathbb{R}^d$
- This controllable gating mechanism is the basis of the LSTM and the GRU architectures

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * \tanh (C_t)$$

Gated recurrent unit

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

Today

- Language models
 - Sequence modelling
 - Definition
 - Training
 - Gated architectures
- 3 RNN generators

Language model

Compute the probability of a sequence of words:

$$P(w_1, w_2, \ldots, w_n)$$

Predict next word:

$$P(w_n|w_1,w_2,\ldots,w_{n-1})$$

Perplexity

$$2^{H(p)} = 2^{\frac{1}{|V|} - \sum_{x} \log_2 p(x)}$$

Sequence generation

Teacher forcing: $x := \langle s \rangle x, y := x \langle s \rangle$

$$x : \langle s \rangle x_1 x_2 \dots x_n$$

$$y: x_1x_2...x_n < /s >$$

