Lecture 18

11.5 Alternating Series

Definition 1. The series

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + \dots$$

with $a_n > 0$ is called **alternating series**.

Theorem 1. The Alternating Series Convergence Test If alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$, $a_n > 0$ satisfies

- (i) $a_{n+1} \leq a_n$ for all n,
- (ii) $\lim_{n\to\infty} a_n = 0$,

then the series is convergent.

Theorem 2. The Alternating Series Estimation

If $S = \sum_{n=1}^{\infty} (-1)^{n-1} a_n$ is the sum of alternating series that satisfies

- (i) $a_{n+1} \leq a_n$ for all n,
- (ii) $\lim_{n\to\infty} a_n = 0$,

then

$$|R_n|=|S-S_n|\leq a_{n+1}.$$