0kuuou0vg

January 25, 2025

```
[]: #
        FINAL PROJECT REPORT
    # Melbourne Housing Market Prediction Project Report
    # Project Overview
    # - Predicted house prices in Melbourne using Linear Regression model
    # - Dataset: Melbourne Housing Market dataset
     # - Features: Rooms, Distance, Postcode
    # - Target: Price
    # Methodology
    #1. Data Preprocessing:
         - Handled missing values using median imputation
          - Standardized 'Price' column using StandardScaler
     # 2. Model Selection:
         - Chosen Linear Regression model for prediction
    # 3. Model Evaluation:
         - Split data into training (80%) and testing sets (20%)
         - Evaluated model using Mean Absolute Error (MAE), Mean Squared Error
     ⇔(MSE), Root Mean Squared Error (RMSE), R-squared (R2)
    # Results
     # - Model Performance Metrics:
        - MAE: 0.507
        - MSE: 0.590
        - RMSE: 0.766
        - R2: 0.262
     #
        - Accuracy: 26.20
        - Predicted Values Plot:
         - Actual vs predicted house values
```

```
- Actual vs Predicted values plot with best fit line
                   Conclusion
       # - Linear Regression model predicted house prices with reasonable accuracy (24.
       →1%)
       # - Model performance can be improved by feature engineering, hyperparameter,
        →tuning, and exploring other algorithms
       # - Project demonstrates ability to predict continuous outcomes using linear
        ⇔regression analysis
[162]: #importing the all the packages
      import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      from sklearn.model_selection import train_test_split
      from sklearn.preprocessing import StandardScaler
      from sklearn.linear_model import LinearRegression
      from sklearn.metrics import mean squared error, mean absolute error, r2 score
[80]: #loading the datset
      data = pd.read csv(r"C:\Users\91703\Downloads\ML - 1 - DATASET.csv")
[81]: #to get the top rows in the data
      data.head()
[81]:
               Suburb
                                Address Rooms Type
                                                         Price Method
                                                                        SellerG \
      0
           Abbotsford
                          49 Lithgow St
                                             3
                                                  h 1490000.0
                                                                         Jellis
      1
           Abbotsford
                          59A Turner St
                                             3
                                                  h 1220000.0
                                                                    S Marshall
           Abbotsford
                          119B Yarra St
                                             3
                                                  h 1420000.0
      2
                                                                    S
                                                                         Nelson
           Aberfeldie
                             68 Vida St
                                             3
                                                  h 1515000.0
      3
                                                                    S
                                                                          Barry
                                             2
                                                      670000.0
      4 Airport West 92 Clydesdale Rd
                                                  h
                                                                    S
                                                                         Nelson
               Date Postcode
                                          Regionname Propertycount Distance \
      0 01-04-2017
                         3067 Northern Metropolitan
                                                               4019
                                                                          3.0
      1 01-04-2017
                         3067 Northern Metropolitan
                                                               4019
                                                                          3.0
      2 01-04-2017
                         3067 Northern Metropolitan
                                                               4019
                                                                          3.0
      3 01-04-2017
                         3040 Western Metropolitan
                                                               1543
                                                                          7.5
      4 01-04-2017
                         3042
                                Western Metropolitan
                                                               3464
                                                                         10.4
                        CouncilArea
      0
                 Yarra City Council
                 Yarra City Council
      1
                 Yarra City Council
      2
      3 Moonee Valley City Council
      4 Moonee Valley City Council
```

[82]: #to get the total information of the data data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 63021 entries, 0 to 63020
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype			
0	Suburb	63021 non-null	object			
1	Address	63021 non-null	object			
2	Rooms	63021 non-null	int64			
3	Туре	63021 non-null	object			
4	Price	48432 non-null	float64			
5	Method	63021 non-null	object			
6	SellerG	63021 non-null	object			
7	Date	63021 non-null	object			
8	Postcode	63021 non-null	int64			
9	Regionname	63021 non-null	object			
10	Propertycount	63021 non-null	int64			
11	Distance	63021 non-null	float64			
12	CouncilArea	63021 non-null	object			
<pre>dtypes: float64(2), int64(3), object(8)</pre>						
memory usage: 6.3+ MB						

[83]: #to get the statistical columns of the data data.describe()

[83]:		Rooms	Price	Postcode	Propertycount	Distance
	count	63021.000000	4.843200e+04	63021.000000	63021.000000	63021.000000
	mean	3.110614	9.978980e+05	3125.674727	7617.791895	12.684930
	std	0.957556	5.935050e+05	125.628659	4424.477446	7.592042
	min	1.000000	8.500000e+04	3000.000000	39.000000	0.000000
	25%	3.000000	6.200000e+05	3056.000000	4380.000000	7.000000
	50%	3.000000	8.300000e+05	3107.000000	6795.000000	11.400000
	75%	4.000000	1.220000e+06	3163.000000	10412.000000	16.700000
	max	31.000000	1.120000e+07	3980.000000	21650.000000	64.100000

- [84]: #to get the shape of the data data.shape
- [84]: (63021, 13)
- [85]: #to get the columns in the dataset data.columns
- [85]: Index(['Suburb', 'Address', 'Rooms', 'Type', 'Price', 'Method', 'SellerG', 'Date', 'Postcode', 'Regionname', 'Propertycount', 'Distance',

'CouncilArea'],
dtype='object')

```
[86]: #to get the null values
data.isnull()
```

[86]:		Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date	Postcode	\
	0	False	False	False	False	False	False	False	False	False	
	1	False	False	False	False	False	False	False	False	False	
	2	False	False	False	False	False	False	False	False	False	
	3	False	False	False	False	False	False	False	False	False	
	4	False	False	False	False	False	False	False	False	False	
		•••						•••			
	63016	False	False	False	False	False	False	False	False	False	
	63017	False	False	False	False	False	False	False	False	False	
	63018	False	False	False	False	False	False	False	False	False	
	63019	False	False	False	False	True	False	False	False	False	
	63020	False	False	False	False	True	False	False	False	False	

	Regionname	Propertycount	Distance	CouncilArea
0	False	False	False	False
1	False	False	False	False
2	False	False	False	False
3	False	False	False	False
4	False	False	False	False
•••	•••	•••	•••	•••
63016	False	False	False	False
63017	False	False	False	False
63018	False	False	False	False
63019	False	False	False	False
63020	False	False	False	False

[63021 rows x 13 columns]

```
[87]: #to get the count of the null values in each column data.isnull().sum()
```

```
[87]: Suburb
                           0
     Address
                           0
     Rooms
                           0
                           0
     Туре
     Price
                       14589
     Method
                           0
     SellerG
                           0
     Date
                           0
     Postcode
                           0
     Regionname
                           0
```

```
dtype: int64
[32]: #after getting the count we get the 14589 null values in the price column
      \#Since\ Price\ is\ a\ numerical\ column,\ we'll\ use\ a\ strategy\ to\ fill\ null\ values_{\sqcup}
       ⇔logically. Options:
      #1. Mean Imputation: Fill null values with mean Price value.
      #2. Median Imputation: Fill null values with median Price value.
      #3. Regression Imputation: Predict missing Price values using regression model.
      #mean_price = data['Price'].mean()
      #data['Price'].fillna(mean_price, inplace=True)
      #For Price column, Median Imputation might suit better because:
      #1. Prices can have outliers (extremely high/low values).
      #2. Median represents a more typical middle value.
      median price = data['Price'].median()
      data['Price'].fillna(median_price, inplace=True)
      #to unshown the warnings we use this code
      import warnings
      warnings.filterwarnings('ignore')
[30]: data.isnull().sum()
[30]: Suburb
                       0
      Address
                       0
      Rooms
      Туре
      Price
     Method
                       0
      SellerG
                       0
     Date
     Postcode
     Regionname
     Propertycount
     Distance
      CouncilArea
                       0
      dtype: int64
```

Propertycount

CouncilArea

[88]: scaler = StandardScaler()

Distance

0

0

0

data['Price'] = scaler.fit_transform(data[['Price']]).flatten()

```
[89]: | #Now we are free with null values, so we can now use this data to train
      \#splitting the data into feauters(x) and target
      X = data[['Rooms', 'Distance', 'Postcode']]
      y = data['Price']
       #Target Variable (y):
       #Price: This is what we want to predict using Linear Regression. House price
       •depends on various factors, so we'll model these factors to forecast prices.
       #Feature Variables (X):
       #Rooms: Number of rooms in a house. More rooms typically increase price.
      #Distance: Distance from city center. Closer proximity often raises property⊔
        -110.7.11e.
       #Postcode: Area code representing location. Different postcodes have varying
        ⇔price trends.
      #We choose these features because they:
      #1. Directly influence house prices
      #2. Are numerical or categorical data types suitable for Linear Regression
       #3. Are available in our dataset
       #By selecting these columns, we create a relationship between:
       #Independent variables (Rooms, Distance, Postcode) -> Features (X)
       #Dependent variable (Price) -> Target (y)
[93]: data['Price'].fillna(data['Price'].mean(), inplace=True)
[94]: y.head()
[94]: 0
           0.829154
      1
           0.374225
      2
           0.711209
      3
           0.871277
          -0.552483
      Name: Price, dtype: float64
[167]: #Split data into training and testing sets
       #we can change the test_size and random_state based on the result we can choose_
       ⇔the best one
       \#test\_szie = 0.2, random\_state = 42
      \#X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size= 0.2, __
       →random_state=42)
       #test size = 0.2, random state = 72
      ⇒random state=72)
      #test_size = 0.3, random_state = 60
       \#X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.3, <math>\sqcup
        ⇔random_state=60)
```

```
[168]: #Training Linear Regression model
      model = LinearRegression()
      model.fit(X_train, y_train)
[168]: LinearRegression()
[169]: #Making Predections on test data
      y_pred = model.predict(X_test)
      print("Predicted House Prices:", y_pred)
     0.15057692
      -0.24003049]
[170]: # Calculate metrics
      mae = mean_absolute_error(y_test, y_pred)
      mse = mean_squared_error(y_test, y_pred)
      rmse = (mean_squared_error(y_test, y_pred)) ** 0.5
      r2 = r2_score(y_test, y_pred)
      #Coefficients
      coefficients = model.coef
      intercept = model.intercept_
      # Print results
      print("Mean Absolute Error (MAE):", mae)
      print("Mean Squared Error (MSE):", mse)
      print("Root Mean Squared Error (RMSE):", rmse)
      print("R-squared (R2):", r2)
      print("Coefficients:", coefficients)
      print("Intercept:", intercept)
     Mean Absolute Error (MAE): 0.5072731929655269
     Mean Squared Error (MSE): 0.5909231323176708
     Root Mean Squared Error (RMSE): 0.7687152478763972
     R-squared (R2): 0.26216527313646076
     Coefficients: [ 0.41393791 -0.04949711 0.0012052 ]
     Intercept: -4.429320633764733
[152]: #FOR TEST_SCORE = 0.2, RANDOM_STATE = 42
      0.257 * 100
[152]: 25.7
[151]: #FOR TEST_SCORE = 0.3, RANDOM_STATE = 60
      0.254 * 100
```

[151]: 25.4

```
[150]: #FOR TEST_SCORE = 0.2, RANDOM_STATE = 72

#we are using this , because this has the r2 score high which when we calculate

the r2 with 100,

# then we get the accuracy

#this one has the highest accuracy among the others

0.262 * 100
```

[150]: 26.200000000000003

```
[163]: plt.figure(figsize=(10,6))
    plt.plot(range(len(y_test)), y_test, label='Actual Prices', marker='o')
    plt.plot(range(len(y_pred)), y_pred, label='Predicted Prices', marker='x')
    plt.xlabel('House Index')
    plt.ylabel('Price')
    plt.title('Actual vs Predicted House Prices')
    plt.legend()
    plt.grid(True)
    plt.show()
```



```
[]: #This is the graphical representation of how the predected values are at and \Box \Box actual values are at.
```

```
[166]: plt.figure(figsize=(10,6))
plt.scatter(y_pred, y_test, label='Data Points')
```

```
plt.xlabel('Predicted Prices')
plt.ylabel('Actual Prices')
plt.title('Actual vs Predicted House Prices with Best Fit Line')
plt.plot(y_pred, y_pred, "r--", label='Best Fit Line')
plt.legend()
plt.show()
```


[]: