Consider the problem of a n-input \underline{AND} function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical \underline{AND} of all the elements of x.

Formulate a **language** that describes the above problem.

1

ECE-374-B: Lecture 1 - Regular Languages

Lecturer: Nickvash Kani

August 28, 2025

University of Illinois at Urbana-Champaign

Consider the problem of a n-input \underline{AND} function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical \underline{AND} of all the elements of x.

Formulate a **language** that describes the above problem.

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a **language** that describes the above problem.

$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$
(1)

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a **language** that describes the above problem.

$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$
 (1)

This is an example of a regular language which we'll be discussing today.

Refresh on strings

Rapid-fire questions -strings

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 1. What is Σ^0 ?
- 2. How many elements are there in Σ^n ?
- 3. If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- 4. Let *u* be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?

Languages

Languages

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Languages

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}$.
- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \setminus B$ (also written as A B).
- For language $A \subseteq \Sigma^*$ the complement of A is $\bar{A} = \Sigma^* \setminus A$.

4

Set Concatenation

Definition

Given two sets X and Y of strings (over some common alphabet Σ) the concatenation of X and Y is

$$XY = \{xy \mid x \in X, y \in Y\}$$
 (2)

Question:
$$X = \{ECE, CS, \}, Y = \{340, 374\} \implies XY = .$$

Σ^* and languages

Definition

1. Σ^n is the set of all strings of length n. Defined inductively:

$$\Sigma^n = {\epsilon}$$
 if $n = 0$
 $\Sigma^n = \Sigma \Sigma^{n-1}$ if $n > 0$

- 2. $\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$ is the set of all finite length strings
- 3. $\Sigma^+ = \bigcup_{n>1} \Sigma^n$ is the set of non-empty strings.

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Question: Does Σ^* have strings of infinite length?

Rapid-Fire questions - Languages

Problem

Consider languages over $\Sigma = \{0, 1\}$.

- 1. What is \emptyset^0 ?
- 2. If |L| = 2, then what is $|L^4|$?
- 3. What is \emptyset^* , $\{\epsilon\}^*$?
- 4. For what L is L* finite?
- 5. What is \emptyset^+ ?
- 6. What is $\{\epsilon\}^+$?

Terminology Review

- A character(a, b, c, x) is a unit of information represented by a symbol: (letters, digits, whitespace)
- A $alphabet(\Sigma)$ is a set of characters
- A string(w) is a sequence of characters
- A language(A, B, C, L) is a set of strings

Chomsky Hierarchy

Grammar	Languages	Production Rules	Automation	Examples
Type-0	Recursively enumerable	$\gamma \to \alpha$ (no constraints)	Turing machine	$L = \{\langle M, w \rangle M \text{ is a TM which halts on } w\}$
Type-1	Context-sensitive	$\alpha A \beta \to \alpha \gamma \beta$	Linear bounded Non-deterministic Turing machine	$L = \{a^n b^n c^n n > 0\}$
Type-2	Context-free	$A \rightarrow \alpha$	Non-deterministic Push-down automata	$L = \{a^n b^n n > 0\}$
Type-3	Regular	A o aB	Finite State Machine	$L = \{a^n n > 0\}$

 $\text{Meaning of symbols:} \quad \cdot \ a = \text{terminal} \quad \cdot \ A, B = \text{variables} \quad \cdot \ \alpha, \beta, \gamma = \text{string of } \{a \cup A\}^* \quad \cdot \ \alpha, \beta = \text{maybe empty} \longrightarrow \gamma = \text{never empty}$

· Table borrowed from wikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy

Theorem (Kleene's Theorem)

A language is regular if and only if it can be obtained from finite languages by applying the three operations:

- Union
- · Concatenation
- Repetition

a finite number of times.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively.

Base Case

- ∅ is a regular language.
- $\{\epsilon\}$ is a regular language.
- $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.

Inductive step:

We can build up languages using a few basic operations:

- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The \cdot^* operator name is Kleene star.
- If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.

Note:Kleene star (repetition) is a single operation!

Regular Languages - Example

Example: The language $L_{01} = 0^i 1^j |$ for all $i, j \ge 0$ is regular:

1.
$$L_1 = \{0^i \mid i = 0, 1, \dots, \infty\}$$
. The language L_1 is regular. T/F?

- 1. $L_1 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_1 is regular. T/F?
- 2. $L_2 = \left\{0^{17i} \mid i = 0, 1, \dots, \infty\right\}$. The language L_2 is regular. T/F?

- 1. $L_1 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_1 is regular. T/F?
- 2. $L_2 = \left\{0^{17i} \mid i = 0, 1, \dots, \infty\right\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. L_3 is regular. T/F?

- 1. $L_1 = \{0^i \mid i = 0, 1, \dots, \infty\}$. The language L_1 is regular. T/F?
- 2. $L_2 = \left\{0^{17i} \mid i = 0, 1, \dots, \infty\right\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \{0^i \mid i \text{ is divisible by 2, 3, or 5}\}$. L_3 is regular. T/F?
- 4. $L_4 = \{w \in \{0,1\}^* \mid w \text{ has at most 2 1s}\}$. L_4 is regular. T/F?

Regular Expressions

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- · useful in
 - text search (editors, Unix/grep, emacs)
 - · compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star names after him ¹.

Inductive Definition

A regular expression r over an alphabet Σ is one of the following:

Base cases:

- \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(r_1 + r_2)$ denotes the language $R_1 \cup R_2$
- $(\mathbf{r_1} \cdot \mathbf{r_2}) = r_1 \cdot r_2 = (\mathbf{r_1} \mathbf{r_2})$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

Regular Languages	Regular Expressions
Ø regular	Ø denotes Ø
$\{\epsilon\}$ regular	ϵ denotes $\{\epsilon\}$
$\{a\}$ regular for $a \in \Sigma$	a denote {a}
$R_1 \cup R_2$ regular if both are	$\mathbf{r_1} + \mathbf{r_2}$ denotes $R_1 \cup R_2$
R_1R_2 regular if both are	$r_1 \cdot r_2$ denotes $R_1 R_2$
R* is regular if R is	r * denote <i>R</i> *

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!

Example: (0+1) and (1+0) denotes same language $\{0,1\}$

Notation and Parenthesis

- For a regular expression \mathbf{r} , $L(\mathbf{r})$ is the language denoted by \mathbf{r} . Multiple regular expressions can denote the same language! **Example:** (0 + 1) and (1 + 0) denotes same language $\{0, 1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!

Example: (0+1) and (1+0) denotes same language $\{0,1\}$

- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: $*, \cdot, +$. **Example:** $r^*s + t = ((r^*)s) + t$

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!

Example: (0+1) and (1+0) denotes same language $\{0,1\}$

- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: *, -, +.

Example: $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each operation.

Example:
$$rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.$$

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!

Example: (0+1) and (1+0) denotes same language $\{0,1\}$

- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: $*, \cdot, +$.

Example: $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each operation.

Example:
$$rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.$$

• Superscript +. For convenience, define $\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$. Hence if $L(\mathbf{r}) = R$ then $L(\mathbf{r}^+) = R^+$.

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by r. Multiple regular expressions can denote the same language!

Example: (0 + 1) and (1 + 0) denotes same language $\{0, 1\}$

- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: $*, \cdot, +$.

Example: $r^*s + t = ((r^*)s) + t$

Omit parenthesis by associativity of each operation.

Example:
$$rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.$$

- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, r|s all denote union. rs is sometimes written as $r \cdot s$.

Some examples of regular

expressions

1. All strings that end in 1011?

- 1. All strings that end in 1011?
- 2. All strings except 11?

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?
- 4. All strings that do not contain the substring 10?

1. $(0+1)^*$:

- 1. $(0+1)^*$:
- 2. (0+1)*001(0+1)*:

- 1. $(0+1)^*$:
- 2. (0+1)*001(0+1)*:
- 3. $0^* + (0^*10^*10^*10^*)^*$:

- 1. $(0+1)^*$:
- 2. (0+1)*001(0+1)*:
- 3. $0^* + (0^*10^*10^*10^*)^*$:
- 4. $(\epsilon + 1)(01)^*(\epsilon + 0)$:

Tying everything together

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with an input alphabet $\Sigma_i = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x. We knwo the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0 \cdot |0, & 1 \cdot |1, \\ 0 \cdot 0 \cdot |0, & 0 \cdot 1 \cdot |0, & 1 \cdot 0 \cdot |0, & 1 \cdot 1 \cdot |1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1 |0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

Formulate the regular expression which describes the above language:

Tying everything together

Consider the problem of a n-input AND function. The input (x) is a string n-digits long with an input alphabet $\Sigma_i = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x. We knwo the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0 \cdot |0, & 1 \cdot |1, \\ 0 \cdot 0 \cdot |0, & 0 \cdot 1 \cdot |0, & 1 \cdot 0 \cdot |0, & 1 \cdot 1 \cdot |1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1 |0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

Formulate the regular expression which describes the above language:

$$\Sigma = \{0, 1, `\cdot ', `|'\} \ r_{AND_N} = \underbrace{\left("0\cdot" + "1\cdot"\right)^* "0\cdot" \left("0\cdot" + "1\cdot"\right)^* "|0"}_{\text{all output 0 instances}} + \underbrace{\left("1\cdot"\right)^* "|1"}_{\text{all output 1 instances}}$$

Regular expressions in programming

One last expression....

Bit strings with odd number of 0s and 1s

Bit strings with odd number of 0s and 1s

The regular expression is

$$(00 + 11)^*(01 + 10)$$

$$(00 + 11 + (01 + 10)(00 + 11)^*(01 + 10))^*$$

Bit strings with odd number of 0s and 1s

The regular expression is

$$(00+11)^*(01+10)$$
$$(00+11+(01+10)(00+11)^*(01+10))^*$$

(Solved using techniques to be presented in the following lectures...)