Spacecraft Manufacture and Test

Colonel John E. Keesee

Lesson Objective

To introduce and discuss manufacturing and test processes and philosophies

Uniqueness of Satellite Manufacture

- Small production runs
- Extreme operational environments
- Limited repair/replace options after launch
- High product cost and importance
- High cost test environment
- Highly coupled designs minimize weight and maximize performance but yield high complexity

Overall Manufacturing Process

- Prepare engineering data
 - Drawings, specifications, and processes
- Manufacture component
- Qualify the component
- Integrate and test
- Repeat for other components and at higher levels of assembly

Classic Manufacturing Processes

- Raw materials ordered from certified vendors
- High reliability (S-level) electronic piece parts
 - Group A, B, and C testing to ensure part quality
- Project approved parts and materials lists
- Clean rooms for critical assemblies

Clean Rooms

Facility/Operation	Cleanliness
Mechanical	Not controlled
Manufacturing	
Electronic assembly	Class 10,000
Electromechanical	Class 100
assembly	
Inertial instruments	Class 100
Optical Assembly	Class 100
Spacecraft Assembly	Class 100,000
and Test	

Classical Quality Assurance

- Identify points in process flow where we can make sure the hardware construction complies with engineering data before the next steps prevent inspection
- Test surveillance certifies test equipment and processes
- Quality assurance records all failures and anomalies

Qualification Test

- Establishes that the design has suitable
 - Performance
 - Capacity to survive the operating environment
- Includes vibration, shock, launch acoustics and the temperature extremes of space
- Unique functional performance tests in each environment

Designing for Manufacturability

- Traditional approach to quality (test/retest) is high cost and takes a long time
- New approaches use concurrent engineering and lean manufacturing processes to reduce cost and ensure quality

Lean Manufacturing

- Establishes and implements quality goals in the design phase
- Focuses on the processes
- Minimizes wasted time and effort
- Involves manufacturing personnel in the design effort
- Minimizes work in progress

Test Philosophies

- Design verification establishes the performance of the design in functional test, vibration, shock, and space environments
 - Moving toward limiting verification to initial system
- Process verification establishes the performance of the production system
 - The focus of lean manufacturing

Part Selection Criteria

- Cost S-level parts are not always required
- Interchangeability Ease of remove/replace
- Simplicity Cheaper, fewer installation issues, higher reliability
- Availability Just In Time delivery minimizes inventory
 - Reduces part cost, handling, waste due to obsolescence and redesign

Concurrent Engineering

- Involves manufacturing and test personnel in the design team
- Refines the design while changes are relatively inexpensive
- Permits quality, manufacturability, and profit to be designed into the system

Test Reduction

- High quality processes that are well characterized, controlled and repeatable permit testing to be reduced
- Continuous process improvement until the process, not inspection, guarantees quality
 - Reduces inspection points
- Reduced testing reduces opportunities to inject variability

Process Characterization Process

- →Process definition
- Process capability
 - Establish current level of process performance
- Process optimization
 - Focus on key metrics
 - Determine which variables influence process output
- Process control

Learning Cycles

- Simulation packages model and predict performance
- Prototypes allow physical evaluation
- Pathfinding models handling, manufacturing and logistics activities

Conclusion

Modern spacecraft manufacturing seeks to design-in quality and manufacturability to reduce cost and time to market.