Solutions to the Homework Problems

1. Calculate the work done when a force $\vec{F} = 3xy\hat{\imath} - y^2\hat{\jmath}$ moves a particle in the xy-plane from (0,0) to (1,2) along the parabola $y=2x^2$.

Solution: Let, $x = t, y = 2t^2$

that is dx = dt, dy = 4t dt

For the point (0,0),

$$0 = t$$
, $0 = 2t^2$

That means we get t = 0

Again for the point (1, 2),

$$1 = t, 2 = 2t^2$$

That means we get t = 1

Now we get

$$\vec{F} = 6t^3\hat{\imath} - 4t^4\hat{\jmath}$$

and $d\vec{r} = dx\hat{\imath} + dy\hat{\jmath} + dz\hat{k} = dt\hat{\imath} + 4t dt \hat{\jmath}$

Now,
$$\int_C \vec{F} \cdot d\vec{r} = \int_0^1 (6t^3 - 16t^5) dt = -\frac{7}{6}$$

So, the work done is $\frac{7}{6}$.

2. Evaluate $\oint_C (y^2 dx + x^2 dy)$ where C is the triangle with vertices (1, 0), (1, 1), (0, 0).

Solution:

Along the straight line from (0,0) to (1,0) we get,

$$<(0,0)+(1,0)t>=<(t,0)>$$
 where $0 \le t \le 1$

So that, x = t, y = 0 that is dx = dt, dy = 0

So we get

$$\oint_C (y^2 dx + x^2 dy) = 0$$

Along the straight line from (1,0) to (1,1) we get,

$$<(1,0)+(0,1)t>=<(1,t)>$$
 where $0 \le t \le 1$

So that,
$$x = 1$$
, $y = t$ that is $dx = 0$, $dy = dt$

So we get

$$\oint_C (y^2 dx + x^2 dy) = \oint_0^1 dt = 1$$

Along the straight line from (1,1) to (0,0) we get,

$$<(1,1)+(-1,-1)t>=<(1-t,1-t)>$$
 where $0 \le t \le 1$

So that, x = 1 - t, y = 1 - t that is dx = -dt, dy = -dt

So we get

$$\oint_C (y^2 dx + x^2 dy) = \oint_0^1 \{-(1-t)^2 - (1-t)^2\} dt$$
$$= -\frac{2}{3}$$

Adding,

$$\oint_C (y^2 dx + x^2 dy) = 0 + 1 - \frac{2}{3} = \frac{1}{3}$$

3. If $\emptyset = 2xyz^2$, $\vec{F} = xy\hat{\imath} - z\hat{\jmath} + x^2\hat{k}$ and C is the curve $x = t^2$, y = 2t, $z = t^3$ from t = 0 to t = 1, evaluate the line integrals (a) $\oint_C \emptyset \, d\vec{r}$ (b) $\oint_C \vec{F} \times d\vec{r}$.

Solution: Since $x = t^2$, y = 2t, $z = t^3$ so that dx = 2tdt, y = 2dt, $dz = 3t^2dt$ $d\vec{r} = dx\hat{\imath} + dy\hat{\jmath} + dz\hat{k} = 2tdt\hat{\imath} + 2dt\hat{\jmath} + 3t^2dt\hat{k}$ $\vec{F} = 2t^3\hat{\imath} - t^3\hat{\jmath} + t^4\hat{k}$ $\emptyset = 4t^9$

(a)
$$\oint_C \emptyset d\vec{r} = \oint_0^1 (4t^9)(2t\hat{\imath} + 2\hat{\jmath} + 3t^2\hat{k}) dt = \frac{8}{11}\hat{\imath} + \frac{4}{5}\hat{\jmath} + \hat{k}$$

(b)
$$\oint_C \vec{F} \times d\vec{r} = \oint_0^1 \left[(-3t^5 - 2t^4)\hat{\imath} + (2t^5 - 6t^5)\hat{\jmath} + (4t^3 + 2t^4)\hat{k} \right] dt$$

$$= -\frac{9}{10}\hat{\imath} - \frac{2}{3}\hat{\jmath} + \frac{7}{5}\hat{k}$$