AMA2222 Principles of Programming

Leung Man Kin, Adam Instructor

adam.leung@polyu.edu.hk
TU720

Chapter 2: Selection
Boolean variable, if and if-then statement,
logical operation, conditional expression,
random number, swapping

What is true/false?

A logical statement is a descriptive sentence that could be either TRUE or FALSE but not both, based on a known set of facts.

Example of logical statement:

"Stephen Hawking passed away in 2018." (TRUE)

"Confucius is an Korean philosopher." (FALSE)

"Mr Leung is a billionaire." (could be TRUE or FALSE, not both)

Example of non logical statements:

"Hi, how are you doing?" (not a descriptive sentence)

"This statement is false." (a paradox)

Boolean variable

A Boolean variable is a variable that takes only two possible values, 0 (FALSE) and 1 (TRUE). In C++ we use bool.

Equalities and inequalities in mathematics can be regarded as logical statements, which TRUE/FALSE value can be assigned to a Boolean variable. Brackets should be used around such inequality or equality.

Name	Mathematical symbol	C++ Expression
equal to		==
not equal to	≠	<u> </u>
greater than	>	>
greater than or equal to	≥	>=
less than	<	<
less than or equal to	<u>≤</u>	<=

if statement

An if statement is a construct that enables a program to specify alternative path of execution. It consists of two parts: condition (a boolean expression) and consequent (statements).

If the condition returns a true value, then the consequent will be executed. If the condition returns a false value, the consequent will be ignored.

For an if-else statement, if the condition returns a false value, the alternative will be executed.

THE PROBLEM ABOUT BEING A PROGRAMMER

My mom said:

"Honey, please go to the market and buy 1 bottle of milk. If they have eggs, bring 6"

I came back with 6 bottles of milk.

She said: "Why the hell did you buy 6 bottles of milk?"

I said: "BECAUSE THEY HAD EGGS!!!!"

We can express how a programming language executes the syntax of statements by showing a flowchart. A flowchart is a diagram that describes an algorithm or process.

Don't forget to use () for the boolean condition!

```
1 // 2.1 if Statement and bool Data Type
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
7
            int number;
            cout << "Enter an integer: ";</pre>
            cin >> number;
10
11
            if (number % 5 == 0)
12
                     cout << "HiFive" << endl;</pre>
13
            if (number % 2 == 0)
14
                     cout << "HiEven" << endl;</pre>
15
16
17
            return 0;
18 }
19
```

```
1 // 2.1 if Statement and bool Data Type
 2 #include <iostream>
 3 using namespace std;
4
                                               prompt user to
 5 int main()
                                               input an integer
6
   {
             int number;
7
             cout << "Enter an integer: ";</pre>
 8
             cin >> number;
10
                                                        check if the integer
             if (number % 5 == 0)
11
                                                        is divisible by 5
12
                      cout << "HiFive" << endl;</pre>
13
                                                        check if the integer
             if (number % 2 == 0)
14
                                                        is divisible by 2
                      cout << "HiEven" << endl;</pre>
15
16
17
             return 0;
18 }
19
```

```
1 // 2.2 if-else Statement
 2 #include <iostream>
 3 using namespace std;
 4 int main()
 5 {
 6
            cout << "Enter weight in kilograms: ";</pre>
 7
            double weight;
 8
            cin >> weight;
 9
            cout << "Enter height in meters: ";</pre>
10
            double height;
11
            cin >> height;
12
            double bmi = weight / (height * height);
13
            cout << "BMI is " << bmi << endl;</pre>
            if (bmi < 18.5)</pre>
14
15
                     cout << "Underweight" << endl;</pre>
16
            else
                     if (bmi < 25)
                     cout << "Normal" << endl;</pre>
17
18
                     else if (bmi < 30)
19
                     cout << "Overweight" << endl;</pre>
20
                              else cout << "Obese" << endl;</pre>
21
            return 0;
22 }
```

```
1 // 2.2 if-else Statement
 2 #include <iostream>
 3 using namespace std;
 4 int main()
 5 {
                                                                   prompt user to
            cout << "Enter weight in kilograms: ";'</pre>
 6
                                                                   input weight
 7
            double weight;
 8
            cin >> weight;
 9
            cout << "Enter height in meters: ";</pre>
                                                                   prompt user to
10
            double height;
                                                                   input height
11
            cin >> height;
                                                                   calculate and
12
            double bmi = weight / (height * height);
                                                                   output BMI
            cout << "BMI is " << bmi << endl;</pre>
13
            if (bmi < 18.5)
14
15
                     cout << "Underweight" << endl;</pre>
16
            else
                     if (bmi < 25)
                                                                     match the BMI
17
                     cout << "Normal" << endl;</pre>
                                                                     to one of the
18
                     else if (bmi < 30)
                                                                    four ranges
19
                     cout << "Overweight" << endl;</pre>
                              else cout << "Obese" << endl;</pre>
20
21
            return 0;
22 }
```


Becareful!

In an if-else statement, the else corresponds to the closest previous if in the same block. Compare the following programs, which one is correct? Test them by using different input values.

```
#include <iostream>
using namespace std;
int main()
{
  int x;
  cin >> x;
  if (x>=0)

if (x>0) cout<<"positive"<<endl;
  return 0;
}</pre>
```

```
#include <iostream>
using namespace std;
int main()
{
  int x;
  cin >> x;
  if (x>=0)
{
  if (x>0) cout<<"positive"<<endl;
}
else cout<<"negative"<<endl;
return 0;
}</pre>
```

As a good habit, use intent correctly to identify the corresponding if-else. Use { } to enclose several statements as a block.

Program A Program B input: x input: x false false condition: condition: x>=0 x>=0 true true "negative" condition: condition: false false x>0 x>0 true true "negative" "positive" "positive"

Program A Program B input: x=0 input: x=0 false false condition: condition: x>=0 x>=0 true true "negative" condition: condition: false false x>0 x>0 true true "positive" "positive" "negative"

Program A Program B input: x=-1 input: x=-1 false condition: condition: false x>=0 x>=0 true true "negative" condition: condition: false false x>0 x>0 true true "negative" "positive" "positive"

logical operations

We can form a new logical statement based on one, two or even more logical statements together by using logical operation.

Name	Operation	Mathematical symbol	C++ Expression
logical negation	not(P)	コ	!
Logical conjunction	P and Q	Λ	&&
Logical disjunction	P or Q	V	

Logical AND (&&) is a binary operator that returns true if and only if both of the conditions are true; otherwise, it returns false.

Logical OR (||) is a binary operator that returns true if and only if either or both of the conditions are true; otherwise, it returns false.

Negation (!) is a unary operator which takes one condition only. The operator returns opposite value as the condition.

Precedence of different operations

It tells which operator should be done first and then next on a statement of the program.

Operator	Operation	Precedence	
()	Parentheses	First. If the parentheses are nested, the innermost pair is	
		evaluated first. The order of evaluation of two sets of parentheses	
		that are not nested, however, is not specified in the C++ standard.	
!	Negation	Second. If there are several, they're evaluated from right to left.	
* / %	Multiplication,	Second. If there are several, they're evaluated from left to right.	
	Division,		
	Modulus		
+ -	Addition,	Third. If there are several, they're evaluated from left to right.	
	Subtraction		
<<=>>=	Relational	Third. If there are several, they're evaluated from left to right.	
== !=	Equality	Forth. If there are several, they're evaluated from left to right.	
&&	Logical AND	Fifth. If there are several, they're evaluated from left to right.	
	Logical OR	Sixth. If there are several, they're evaluated from left to right.	

Classwork exercise

Assuming that x is 1, show the result of the following Boolean expressions:

- a) (true) && (3 > 4)
- b) !(x > 0) && (x > 0)
- c) (x > 1) | (x < 1)
- d) (x != 0) | | (x == 0)
- e) $(x \ge 0) | (x < 0)$
- f) (x != 1) == !(x == 1)

Solution to classwork exercise

Assuming that x is 1, show the result of the following Boolean expressions:

a)
$$(true) \&\& (3 > 4)$$

b)
$$!(x > 0) && (x > 0)$$

c)
$$(x > 1) | (x < 1)$$

d)
$$(x != 0) | | (x == 0)$$

e)
$$(x \ge 0) | | (x < 0)$$

f)
$$(x != 1) == !(x == 1)$$

```
// 2.3 logical operation
#include <iostream>
using namespace std;
int main()
int a;
int b;
int c;
cout << "Enter three angles in degree: ";</pre>
cin >> a >> b >> c;
if (a>0 && b>0 && c>0 && (a+b+c==180))
         if (a==90 | b==90 | c==90) cout << "right angled triangle" << endl;
        else if (a>90 || b>90 || c>90) cout << "obtuse triangle" << endl;</pre>
                 else cout << "acute triangle" << endl;</pre>
else cout << "not a triangle" << endl;</pre>
return 0;
}
```

```
check if all angles are positive also the angle sum
if (a>0 && b>0 && c>0 && (a+b+c==180))
                                              is 180 degree, if yes triangle, if no not triangle
         if (a==90 | b==90 | c==90) cout << "right angled triangle" << endl;</pre>
              check if any one of the three angles is 90 degree, if yes right angled triangle
                   if (a>90 || b>90 || c>90) cout << "obtuse triangle" << endl;</pre>
         else
                           check if any one of the three angles is greater than 90 degree,
                           if yes obtuse triangle
                   else cout << "acute triangle" << endl;</pre>
                              if it is a triangle but fail to be right angled or obtuse, then it is
                              an acute triangle
else cout << "not a triangle" << endl;</pre>
```

Conditional expression

You might want to simplify your code especially when there are too many if-else statements. Consider the following:

The conditional expression on the right is equivalent to the ifelse statement. The syntax is:

(condition)?(consequent value):(alternative value)

Random number

Programs like generating a verification code or a gambling game usually involve randomness.

To generate a random number, use the rand() function in the <cstdlib> header file. This function returns a random integer between 0 and RAND_MAX which is platform-dependent constant, it is at least 32767.

Random integer from 0 to N:

rand() % (N+1)

Random integer from 1 to N:

rand() % N + 1

Random float point value from 0 to 1: rand()/(RAND_MAX+1)

However, when you run a simple program with rand() for several times, you will observe that every time it gives you the same number. The rand() function's algorithm uses a value called the seed to control how to generate the numbers. By default, the seed value is 1.

To change the seed, use the srand() function in the ccstdlib> header file. To ensure that the seed value is different each time you run the program, use time(0) which returns the current time in seconds elapsed since the time 00:00:00 on January 1, 1970 GMT. This function is included in the ctime>

```
1 // 2.4 Generating Random Numbers
                                                      Example program 2.4
 2 #include <iostream>
 3 #include <ctime> // for time function
4 #include <cstdlib> // for rand and srand functions
 5 using namespace std;
 6 int main()
 7 {
            srand(time(0));
 8
            int number1 = rand() % 10;
 9
            int number2 = rand() % 10;
10
            if (number1 < number2)</pre>
11
12
            {
13
                      int temp = number1;
14
                      number1 = number2;
15
                      number2 = temp;
16
             }
            cout << "What is " << number1 << " - " << number2 << "? ";</pre>
17
18
            int answer;
19
            cin >> answer;
            if (number1 - number2 == answer)
20
                      cout << "You are correct!";</pre>
21
22
            else
23
                      cout << "Your answer is wrong." << endl << number1</pre>
                      << " - " << number2 << " should be "
24
25
                      << (number1 - number2) << endl;</pre>
26
            return 0;
27 }
```

```
1 // 2.4 Generating Random Numbers
                                                      Example program 2.4
 2 #include <iostream>
 3 #include <ctime> // for time function
4 #include <cstdlib> // for rand and srand functions
 5 using namespace std;
6 int main()
 7 {
            srand(time(0));
 8
                                                         Generate two random
            int number1 = rand() % 10;
 9
                                                         single-digit integers
            <u>int</u> number2 = rand() % 10;
10
            if (number1 < number2)</pre>
11
                                                         Make sure no1 \ge no2.
12
                                                         If not, swap them.
                      int temp = number1;
13
14
                      number1 = number2;
                                                                  Prompt student to
15
                      number2 = temp;
                                                                  input the answer.
16
            cout << "What is " << number1 << " - " << number2 << "? ":
17
18
            int answer;
19
            cin >> answer;
            fif (number1 - number2 == answer)
20
                                                                  Check the answer and
21
                      cout << "You are correct!";</pre>
                                                                  display the result.
22
            else
23
                      cout << "Your answer is wrong." << endl << number1</pre>
                       << " - " << number2 << " should be "
24
25
                      << (number1 - number2) << endl;</pre>
26
            return 0;
27 }
```

Classwork Exercise

Write a program that simulates a rolling die, then ask users to guess the number of dots.

Samples:

```
Guess the number of dots show up:5
You win!
```

```
Guess the number of dots show up:5
You lose!
It should be 2
```

```
1 // 2.5 Classwork
 2 #include <iostream>
 3 #include <ctime>
 4 #include <cstdlib>
 5 using namespace std;
 6 int main()
7 {
             srand(time(0));
 8
             int die = rand() % 6 + 1;
             cout << "Guess the number of dots shown up: ";</pre>
10
11
             int guess;
             cin >> guess;
12
13
             if (guess == die)
                       cout << "You win!";</pre>
14
             else
15
                       cout << "You lose!" << endl << "It should be "</pre>
16
17
                       << die << endl;
18
             return 0;
19 }
```

Swapping

In the previous example, we have seen a script that swap the values of two variables. Some of you might wonder why a temporary variable was declared. Suppose x=1 and y=2 are integers. Compare the following and deduce the updated value of x and y. Which of these algorithms can swap values of x, y?

$$x = x + y;$$

 $y = x - y;$
 $x = x - y;$

$$x = y;$$

 $y = x;$

$$x = y;$$

$$y = x;$$

$$x = x + y;$$

$$y = x - y;$$

$$x = x - y;$$

