

Writing (Minute Paper)

Simple

NETWORK PROTOCOLS & SECURITY 23EC2210 R/A/E

Topic:

RIP, OSPF & BGP

Session - 22

(DEEMED TO BE UNIVERSITY)

AIM OF THE SESSION

To familiarize students with the basic concept of internet protocols and Interdomain and Intradomain Routing.

INSTRUCTIONAL OBJECTIVES

This Session is designed to:

- 1. List out the few routing protocols
- 2. Describe the routing protocols OSPF and BGP

LEARNING OUTCOMES

At the end of this session, you should be able to:

- 1. Demonstrate the OSPF routing protocol.
- 2. Demonstrate the BGP routing protocol.

INTERNET PROTOCOLS

- RIP Routing Information Protocol
- OSPF Open Shortest Path First Protocol
- BGP Border Gateway Protocol

Unicast Routing Protocols: RIP, OSPF, and BGP

Objectives

Upon completion you will be able to:

- Distinguish between intra and interdomain routing
- Understand distance vector routing and RIP
- Understand link state routing and OSPF
- Understand path vector routing and BGP

INTRA- AND INTERDOMAIN ROUTING

Routing inside an autonomous system is referred to as intradomain routing. Routing between autonomous systems is referred to as interdomain routing.

Fig. Autonomous system

DISTANCE VECTOR ROUTING

In distance vector routing, the least cost route between any two nodes is the route with minimum distance. In this protocol each node maintains a vector (table) of minimum distances to every node

The topics discussed in this section include:

Initialization
Sharing
Updating
When to Share

Note:

In distance vector routing, each node shares its routing table with its immediate neighbors periodically and when there is a change.

RIP

The Routing Information Protocol (RIP) is an intradomain routing protocol used inside an autonomous system. It is a very simple protocol based on distance vector routing.

The topics discussed in this section include:

RIP Message Format
Requests and Responses
Timers in RIP
RIP Version 2
Encapsulation

Dest. Hop Next	Dest. Hop Next	Dest. Hop Next	Dest. Hop Next
130.10.0.0 1	130.10.0.0 1	130.10.0.0 2 195.2.5.1	130.10.0.0 2 1 30.11.0.2
130.11.0.0 1	130.11.0.0 2 1 30.10.0.2	130.11.0.0 3 195.2.5.1	130.11.0.0 1
195.2.4.0 2 130.10.0.1	195.2.4.0 1	195.2.4.0 2 195.2.5.1	195.2.4.0 3 130.11.0.2
195.2.5.0 2 130.10.0.1	195.2.5.0 1	195.2.5.0 1	195.2.5.0 3 130.11.0.2
195.2.6.0 3 130.10.0.1	195.2.6.0 2 195.2.5.2	195.2.6.0 1	195.2.6.0 4 130.11.0.2
205.5.5.0 2 130.11.0.1 205.5.6.0 2 130.11.0.1	205.5.5.0 3 130.10.0.2 205.5.6.0 3 130.10.0.2	205.5.5.0 4 195.2.5.1 205.5.6.0 4 195.2.5.1	205.5.5.0 1
		203.3.0.0 4 195.2.5.1	
R1 Table	R2 Table	R3 Table	R4 Table
			TCP/TP

Com: 1	Version	Reserved			
Family		All 0s			
All 0s					
All 0s					
All 0s					
All 0s					

a. Request for some

b. Request for all

RIP uses the services of UDP on well-known port 520.

LINK STATE ROUTING

In link state routing, if each node in the domain has the entire topology of the domain, the node can use Dijkstra's algorithm to build a routing table.

The topics discussed in this section include:

Building Routing Tables

20 TCP/IP Protoc^{*} Suite

Figure. Example of formation of shortest path tree

is empty)

Table. Routing table for node A

Node	Cost	Next Router
A	0	
В	5	
С	2	
D	3	
Е	6	С

OSPF

The Open Shortest Path First (OSPF) protocol is an intradomain routing protocol based on link state routing. Its domain is also an autonomous system.

26 TCP/IP Protoc^{*} Suite

TYPES OF LINKS

POINT-TO-POINT LINK

TRANSIENT LINK

a. Transient network

b. Unrealistic representation

c. Realistic representation

STUB LINK

a. Stub network

b. Representation

a. Autonomous System

0	0 7 8 15		16	31		
Ve	ersion	Type Message length				
Source router IP address						
Area Identification						
Checksum			Authentication type			
Authentication (32 bits)						

OSPF packets are encapsulated in IP datagrams.

THANK YOU

Team -Network Protocols and Security