Восстановление снимков фМРТ по просматриваемому видеоряду

Никита Сергеевич Киселев

Московский физико-технический институт (национальный исследовательский университет)

Курс: Автоматизация научных исследований (Моя первая научная статья)/Группа 003, весна 2023 Эксперт: А.В. Грабовой

Цель исследования

Проблема

Восстановление показаний датчиков фМРТ при взаимодействии человека с внешним миром.

Цель

Аппроксимация последовательности снимков фМРТ по видеоряду, просматриваемому человеком.

Предлагается

- f O Восстановление изменения снимка фМРТ с учетом времени задержки Δt .
- 2 Исследование свойств построенного метода и проверка гипотез.

Постановка задачи

Постановка задачи

Пусть задана частота кадров $\nu \in \mathbb{R}$ и продолжительность $t \in \mathbb{R}$ видеоряда. Задан видеоряд

$$\mathbf{P} = [\mathbf{p}_1, \dots, \mathbf{p}_{\nu t}], \quad \mathbf{p}_{\ell} \in \mathbb{R}^{W \times H \times C}.$$

Обозначим частоту снимков фМРТ $\mu \in \mathbb{R}$. Задана последовательность снимков

$$\mathbf{S} = [\mathbf{s}_1, \dots, \mathbf{s}_{\mu t}], \quad \mathbf{s}_{\ell} \in \mathbb{R}^{X \times Y \times Z}.$$

Необходимо построить отображение, которое бы учитывало задержку Δt между снимком фМРТ и видеорядом, а также предыдущие томографические показания.

$$\mathbf{g}(\mathbf{p}_1,\ldots,\mathbf{p}_{k_\ell-
u\Delta t};\mathbf{s}_1,\ldots,\mathbf{s}_{\ell-1})=\mathbf{s}_\ell, \ \ell=1,\ldots,\mu t, \qquad k_\ell=rac{\ell\cdot
u}{\mu}.$$

Описание метода

Предположение марковости:

Снимок \mathbf{s}_ℓ зависит только от изображения $\mathbf{p}_{k_\ellu\Delta t}$ и снимка $\mathbf{s}_{\ell-1}$, тогда

$$\mathbf{g}(\mathbf{p}_{k_{\ell}-\nu\Delta t})=\mathbf{s}_{\ell}-\mathbf{s}_{\ell-1}=\boldsymbol{\delta}_{\ell},\ \ell=2,\ldots,\mu t.$$

Отображение $\mathbf{g}:\mathbf{P} \to \mathbf{S}$ представимо в виде композиции

$$\mathbf{g} = \boldsymbol{\varphi} \circ \boldsymbol{\psi},$$

 $\psi: \mathbf{P}
ightarrow \mathbb{R}^d$ — векторизация изображения,

 $oldsymbol{arphi}: \mathbb{R}^d
ightarrow \mathbf{S}$ — восстанавливаемое отображение.

Для векторизации используется ResNet152 без последнего линейного слоя. Суммарное число пар (изображение, снимок): $N=\mu(t-\Delta t)$. Таким образом, для каждого вокселя задана выборка

$$\mathfrak{D}_{ijk} = \{(\mathbf{x}_{\ell}, \delta_{ijk}^{\ell}) \mid \ell = 2, \dots, N\}.$$

- $\mathbf{x}_{\ell} = [x_1^{\ell}, \dots, x_d^{\ell}]^{\mathsf{T}} \in \mathbb{R}^d$ признаки изображения;
- $\pmb{\delta}_\ell = [\delta_{ijk}^\ell] \in \mathbb{R}^{X \times Y \times Z}$ разность между двумя последовательными снимками фМРТ.

Модель, функция потерь и решение

Используется линейная модель с вектором параметров

$$\mathbf{w}_{ijk} = [w_1^{ijk}, \dots, w_d^{ijk}]^{\mathsf{T}} \in \mathbb{R}^d :$$

$$f_{ijk}(\mathbf{x}, \mathbf{w}_{ijk}) = \langle \mathbf{x}, \mathbf{w}_{ijk} \rangle.$$

Квадратичная функция потерь с коэффициентом L_2 -регуляризации $lpha \in \mathbb{R}$:

$$\mathcal{L}_{ijk}(\mathbf{w}_{ijk}, \Delta t) = \sum_{\ell=2}^{N} \left(f_{ijk}(\mathbf{x}_{\ell}, \mathbf{w}_{ijk}) - \delta_{ijk}^{\ell} \right)^{2} + \alpha \|\mathbf{w}_{ijk}\|_{2}^{2},$$

Требуется найти параметры, доставляющие минимум функционалу потерь при фиксированном Δt :

$$\hat{\mathbf{w}}_{ijk} = \operatorname*{arg\,min}_{\mathbf{w}_{ijk}} \mathcal{L}_{ijk}(\mathbf{w}_{ijk}, \Delta t).$$

Решение для каждого вокселя находится методом наименьших квадратов:

$$\hat{\mathbf{w}}_{ijk} = (\mathbf{X}^\mathsf{T} \mathbf{X} + \alpha \mathbf{I})^{-1} \mathbf{X}^\mathsf{T} \mathbf{\Delta} \mathbf{v}_{ijk}.$$

- $oldsymbol{\mathsf{X}} = [\mathbf{x}_2^\mathsf{T}, \dots, \mathbf{x}_N^\mathsf{T}]^\mathsf{T} = [x_i^i] \in \mathbb{R}^{(N-1) imes d}$ матрица объекты-признаки;
- $oldsymbol{\Phi} oldsymbol{
 u}_{ijk} = [\delta^2_{ijk}, \dots, \delta^N_{ijk}]^\mathsf{T} \in \mathbb{R}^{N-1}$ вектор изменения вокселя в снимках.

Вычислительный эксперимент

Цель

- Проверка работоспособности предложенного метода.
- ② Исследование зависимости качества восстановления от гиперпараметра Δt .
- Проверка гипотез:
 - линейная зависимость между данными;
 - взаимосвязь снимков в последовательности;
 - инвариантность весов модели относительно человека.

Данные

Реальное фМРТ-обследование 1 30 испытуемых разного пола и возраста. Каждый из них просматривал короткий аудиовизуальный фильм. Продолжительность фильма t=390 с, частота кадров $\nu=25$ с $^{-1}$. Частота снимков фМРТ $\mu=1.64$ с $^{-1}$.

Производится предварительное сжатие снимка ϕ MPT с помощью сверточного слоя MaxPool3D. Значения вокселей нормализуются на [0; 1].

¹ Julia Berezutskaya et al. (2022). Open multimodal iEEG-fMRI dataset from naturalistic stimulation with a short audiovisual film. https://doi.org/10.1038/s41597-022-01173-0

\exists ависимость от гиперпараметра Δt

Зависимость метрики MSE от гиперпараметра Δt . Использовалось предварительное 8-кратное сжатие снимка. Производилось усреднение по испытуемым. Обозначены границы среднеквадратичного отклонения.

Качество восстановления зависит от значения Δt . Наблюдается характерный минимум при $\Delta t \approx 10$ с.

Восстановленный снимок

Срезы истинного и восстановленного снимков из тестовой выборки. Можно наблюдать разность между ними.

Усредненная по всем снимкам и вокселям MSE $=1.09\cdot 10^{-4}$. Значения вокселей лежат в отрезке [0; 1], поэтому ошибка на одном снимке порядка $10^{-3}\div 10^{-2}$ свидетельствует о достаточно точном предсказании.

Зависимость от коэффициента регуляризации

Зависимость метрики MSE от коэффициента регуляризации α . Рассматривались коэффициенты сжатия 1, 2, 4 и 8. Производилось усреднение по испытуемым. Обозначены границы среднеквадратичного отклонения.

Оптимальное значение коэффициента $\alpha \approx 100$.

Распределение весов в среднем по всем вокселям

График распределения значений компонент вектора весов модели. Производилось усреднение по всем вокселям фиксированного снимка.

Веса модели распределены нормально, а не лежат в окрестности какого-то определенного значения.

Инвариантность весов относительно человека

Предположение: зависимость между видеорядом и снимками фМРТ у разных испытуемых имеет схожий характер, а время задержки Δt практически совпадает.

Проведена проверка гипотезы инвариантности весов модели относительно человека: можно ли восстановить снимок фМРТ одного испытуемого, используя матрицу весов другого. Использовалась метрика МЅЕ на тестовой выборке.

Матрица весов	Истинная	Подмешанная ¹
MSE	$1.02 \cdot 10^{-4}$	$1.05 \cdot 10^{-4}$

Значения MSE практически совпадают. Это свидетельствует о справедливости рассматриваемой гипотезы.

 $^{^{1}}$ Предсказание снимков одного человека с использованием весов модели другого

Проверка работы на случайном шуме

Рассмотрено качество работы метода на случайном шуме. В качестве матрицы объекты-признаки взята матрица случайных чисел $\mathbf{X} = [x_j^i], \; x_j^i \sim U[0,1].$ Ниже приведены срезы последнего снимка, восстановленного последовательно по всем предсказанным изменениям, и значения метрики MSE.

Большое значение MSE при работе на случайном шуме свидетельствует о наличии зависимости между видеорядом и снимками фMPT, которую улавливает предложенная модель.

Заключение

- Предложен метод аппроксимации последовательности снимков фМРТ по видеоряду, просматриваемому человеком.
- Проверены гипотезы:
 - о линейной зависимости между видеорядом и снимками фМРТ;
 - о взаимосвязи снимков в последовательности;
 - об инвариантности весов модели относительно человека.