AD Attributes 6	n om		Klyn 3 35 Jan
1 A B	Age 20 21	Male Male	A 2 10 A 3 70
3 C 1	35	Female	A+ 3 5
			P= total no at

$$(-d(1,2))^2 \frac{1-0}{1} = (1)$$

$$(1,3) = \frac{1-0}{1} = 1$$

-- d (2,4) =
$$\frac{1-0}{1}$$
 = 1

to	hoode
43	1A
02	1.A+
0	3 A-
1 4	TAH

T	n o	++40		-
	1	2 3	The second second	
	3	1		and the same of th
	4	1	3	CHARLES .

$$2if = \frac{vif - 1}{M_f - 1}$$

$$\frac{2}{3} = \frac{2-1}{3-1} = 0.5$$
, $\frac{2}{3} = \frac{3-1}{3-1} = \frac{3}{3}$

$$23 = \frac{1-1}{3-1} = 0$$
 $24 = \frac{13-1}{3-1} = 1$

$$\frac{|4|1}{|4|1} = \frac{1}{|1-0.5|} = 0.5$$

$$\frac{|4|1}{|4|1} = \frac{1}{|1-0.5|} = 0.5$$

$$\frac{|4|1}{|4|1} = \frac{1}{|4|1} = \frac{$$

$$d(2,3) = |1-0| = 1$$

$$d(2,4) = |1-0| = 0$$

$$d(3,4) = |1-0| = 1$$

 $d(2,7) = \frac{(1\times 2) + (0\cdot 38\times 1) + (1\times 1) + (0\times 6)}{1+1+1+0}$ 0.73 $d(s, q) = \frac{(1x1) + (1x1) + (0x0) + (1x1)}{1 + 1 + 0 + 1}$: Assimilarity matrix 0.52 0.955 0.8451 0.73 0.655

Cosine Similarity

Co Somuda

Document	feam	Coach	hockey	baseball
D,	5	O 1 (5)	131	<u> </u>
Do	3	0	2	- 5
Dr	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ø	1
Da	0	7 1	0	1.0

 $\frac{(3x^{2}) + (0x^{0}) + (3x^{2}) + (0x^{0})}{\sqrt{(3x^{2})^{2} + (0x^{2})^{2} + (0x^{0})}}$

2 - 15+0+6 5.83×3.61

2 1

cos (de, d3) = (3x0) + (0x3) + (2x0) + (0x2) N 32+02+22+02 × N 02+72+02+22

0

2 0

Same way (5 de cos (dy, ds), cos (d1, d4)
cos (d2, d4) ONO 100 10 ATON.