CORSO DI LAUREA IN FISICA METODI MATEMATICI DELLA MECCANICA CLASSICA

Prova d'esame – 20 luglio 2021 (A)

TEMA I

Un sistema meccanico olonomo è formato da due punti materiali. Il primo, di massa m_A , è vincolato a muoversi su una circonferenza di raggio R e centro O posta in un piano orizzontale Π . Il secondo punto, di massa m_B , è vincolato a muoversi lungo una guida rettilinea posta nel medesimo piano Π , la quale passa per il punto O e ruota nel piano Π con velocità angolare costante ω . Fra i due punti agisce una forza elastica lineare attrattiva.

- (1) Scegliere un sistema di coordinate lagrangiane tale che la funzione di Lagrange risulti indipendente dal tempo (suggerimento: considerare un sistema di coordinate rotante con la guida rettilinea);
- (2) scrivere gli integrali primi del sistema;
- (3) effettuare la trasformazione di Legendre e scrivere la funzione di Hamilton.

TEMA II

Nello spazio delle fasi $T^*\mathbb{R}$, con coordinate (q,p), si consideri il flusso di trasformazioni lineari (parametrizzato da ε) descritto da matrici della forma

 $\begin{pmatrix} \cos(\omega\varepsilon) & \frac{1}{\omega}\sin(\omega\varepsilon) \\ -\omega\sin(\omega\varepsilon) & \cos(\omega\varepsilon) \end{pmatrix}$

con ω costante reale. Mostrare che queste trasformazioni sono canoniche per ogni ε , scrivere il campo Hamiltoniano che genera tale flusso e trovare la corrispondente Hamiltoniana.

CORSO DI LAUREA IN FISICA METODI MATEMATICI DELLA MECCANICA CLASSICA

Prova d'esame – 20 luglio 2021 (B)

TEMA I

Un sistema meccanico olonomo è formato da due punti materiali. Il primo, di massa m_A , è vincolato a muoversi su una retta fissa σ . Il secondo punto, di massa m_B , è vincolato a muoversi su una guida circolare di raggio R e centro $O \in \sigma$, la quale ruota attorno alla retta σ con velocità angolare costante ω . Fra i due punti agisce una forza elastica lineare attrattiva. Non è presente la forza peso.

- (1) Scegliere un sistema di coordinate lagrangiane tale che la funzione di Lagrange risulti indipendente dal tempo;
- (2) scrivere gli integrali primi del sistema;
- (3) effettuare la trasformazione di Legendre e scrivere la funzione di Hamilton.

TEMA II

Nello spazio delle fasi $T^*\mathbb{R}$, con coordinate (q,p), si consideri il flusso di trasformazioni lineari (parametrizzato da ε) definito da

$$\begin{cases} q_{\varepsilon} = \frac{\alpha}{2}\varepsilon^2 + p_0\varepsilon + q_0 \\ p_{\varepsilon} = \alpha\varepsilon + p_0 \end{cases}$$

con α costante reale. Mostrare che queste trasformazioni sono canoniche per ogni ε , scrivere il campo Hamiltoniano che genera tale flusso e trovare la corrispondente Hamiltoniana.