BUNDESREPUBLIK DEUTSCHLAND

PRIORITY-DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 33 566.4

REC'D 16 SEP 2003

PCT

Anmeldetag:

22. Juli 2002

Anmelder/Inhaber:

Leibnitz-Institut für Festkörper- und Werkstofffor-

WIPO

schung Dresden e.V.,

Dresden/DE

Bezeichnung:

Verfahren zur Herstellung endohedraler Fullerene

IPC:

C 07 F 5/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 26. August 2003

Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

SLe

A 9161 03/00 EDV-L

Best Available Copy

Stemme

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e.V.

22.07.2002

10221 DED

Verfahren zur Herstellung endohedraler Fullerene

10

Beschreibung

Die Erfindung betrifft ein Verfahren Herstellung zur endohedraler Fullerene in einem Lichtbogenreaktor Abbrennen von Graphitelektroden.

15

Verfahren zur Herstellung endohedraler Fullerene in einem Lichtbogenreaktor durch Abbrenhen modifizierten von Graphitelektroden sind bereits bekannt.

35

20

Bei einem dieser Verfahren werden in einem Lichtbogenreaktor für das Krätschmer-Huffman-Verfahren Graphitelektroden, die mit einem oder mehreren Metallen modifiziert sind, in einer strömenden. Heliumatmosphäre; die eine geringe Menge Stickstoff enthält, abgebrannt (US 6,303,760 B1). werden endohedrale Metallfullerene des Typs erzeugt. Die Ausbeute an endohedralen Metallfullerenen ist bei diesem Verfahren sehr gering; sie soll zwischen 3 bis 5 % liegen (Stevenson, S. Small-bandgap endohedral et metallofullerenes in high yield and purity, Nature 401, 55-57 (1999)).

30

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung endohedraler Fullerene in einem Lichtbogenreaktor durch Abbrennen von Graphitelektroden zu schaffen, mit dem es möglich ist, die Fullerenausbeute wesentlich zu erhöhen.

Diese Aufgabe wird mit dem in den Patentansprüchen dargestellten Verfahren gelöst.

- 5 Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass das Abbrennen in einer Atmosphäre durchgeführt wird, die in einem Inertgas oder Inertgasgemisch eine aus mindestens zwei Elementen bestehende reaktive Gaskomponente enthält.
- 10 Der Anteil der reaktive Gaskomponente kann dabei bis zu 60 Vol-% betragen. Vorzugsweise beträgt der Anteil 5 Vol-% bis 10 Vol-%.
- Nach einer vorteilhaften Ausgestaltung des Verfahrens wird 15 eine stickstoffhaltige oder eine kohlenstoffhaltige reaktive Gaskomponente verwendet, wie NH₃ oder CH₄ oder andere Kohlenwasserstoffe.
- Die reaktive Gaskomponente kann dem Lichtbogenreaktor während 20 des Abbrennens von außen zugeführt oder im Lichtbogenreaktor generiert werden.
 - Bei dem erfindungsgemäßen Verfahren können Graphitelektroden eingesetzt werden, die mit Metall oder Metalloxiden modifiziert sind.
 - So können Graphitelektroden eingesetzt werden, die beispielsweise mit Holmium oder Scandium oder deren Oxide modifiziert sind.
 - Nach einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens können auch Graphitelektroden eingesetzt werden, die mit Metall oder Metalloxiden und einer stickstoffhaltigen Substanz modifiziert sind.

Zur Modifikation der Graphitelektroden mit einer stickstoffhaltigen Substanz kann insbesondere ein Metallcyanamid, vorzugsweise Calciumcyanamid oder Bleicyanamid, verwendet werden.

Mit dem erfindungsgemäßen Verfahren wird in vorteilhafter Weise eine sehr hohe Fullerenausbeute von 50 bis 95% an endohedralem M₃N-Cluster-Fulleren als Hauptprodukt erreicht. Das Verfahren ist mit geringem Aufwand und in einfacher Weise durchführbar und führt zu reproduzierbaren Ergebnissen.

Die auf diese Weise hergestellten Fullerene können beispielsweise als Kontrastmittel für medizinische Untersuchungen eingesetzt werden.

Nachstehend ist die Erfindung anhand von Ausführungsbeispielen näher erläutert.

Beispiel 1

In einem Lichtbogenreaktor werden mit Holmiummetall modifizierte Graphitelektroden in einem Gasgemisch, das eine reaktive Gaskomponente enthält, mit gepulstem Gleichstrom mit einer Stromstärke zwischen 75 A und 150 A abgebrannt. Die eingesetzten Graphitelektroden besitzen eine Zusammensetzung mit dem Verhältnis Graphit:Holmium von 1 Mol:0,4 Mol. Das Gasgemisch besteht aus He und NH3, wobei das NH3 die reaktive Komponente ist. Die Anteile im Gasgemisch sind 200 mbar He und 20 mbar NH3.

30 Bei der Durchführung dieses Verfahrens entstehen endohedrale Holmiumnitrid-Cluster-Fullerene mit einer Ausbeute zwischen ,85 und 95 %.

Beispiel 2

In einem Lichtbogenreaktor werden mit Ho₂O₃ modifizierte Graphitelektroden in einem Gasgemisch, das eine reaktive Gaskomponente enthält, mit gepulstem Gleichstrom mit einer Stromstärke zwischen 75 A und 150 A abgebrannt. Die eingesetzten Graphitelektroden besitzen eine Zusammensetzung mit dem Verhältnis Graphit:M₂O₃ von 1 Mol:0,3 Mol. Das Gasgemisch besteht aus He und NH₃, wobei das NH₃ die reaktive Komponente ist. Die Anteile im Gasgemisch sind 200 mbar He und 20 mbar NH₃.

Bei der Durchführung dieses Verfahrens entstehen endohedrale Holmiumnitrid-Cluster-Fullerene mit einer Ausbeute um 60 %.

15 Beispiel 3

10

20

35

In einem Lichtbogenreaktor werden mit Scandium und CaNCN modifizierte Graphitelektroden in einem Gasgemisch, das eine reaktive Gaskomponente enthält, mit gepulstem Gleichstrom mit einer Stromstärke zwischen 75 A und 150 A abgebrannt. Die eingesetzten Graphitelektroden besitzen eine Zusammensetzung mit dem Verhältnis Graphit:Scandium:CaNCN von 1 Mol:0,6 Mol:0,4 Mol. Das Gasgemisch besteht aus He und NH3, wobei das NH3 die reaktive Komponente ist. Die Anteile im Gasgemisch sind 200 mbar He und 10 mbar NH3.

Bei der Durchführung dieses Verfahrens entstehen endohedrale Scandiumnitrid-Cluster-Fullerene mit einer Ausbeute zwischen 80 und 90 %.

30 Beispiel 4

In einem Lichtbogenreaktor werden mit Ho_2O_3 und CaNCN modifizierte Graphitelektroden in einem Gasgemisch, das eine reaktive Gaskomponente enthält, mit gepulstem Gleichstrom mit einer Stromstärke zwischen 75 A und 150 A abgebrannt. Die eingesetzten Graphitelektroden besitzen eine Zusammensetzung

mit dem Verhältnis Graphit: Ho_2O_3 :CaNCN von 1 Mol:0,4 Mol:0,4 Mol. Das Gasgemisch besteht aus He und NH₃, wobei das NH₃ die reaktive Komponente ist. Die Anteile im Gasgemisch sind 200 mbar He und 10 mbar NH₃.

Bei der Durchführung dieses Verfahrens entstehen endohedrale Holmiumnitrid-Cluster-Fullerene mit einer Ausbeute zwischen 50 und 70 %.

10 <u>Beispiel 5</u>

In einem Lichtbogenreaktor werden Graphitelektroden in einem Gasgemisch, das eine reaktive Gaskomponente enthält, mit gepulstem Gleichstrom mit einer Stromstärke von 175 A abgebrannt. Das Gasgemisch besteht aus He und CH₄, wobei das CH₄ die reaktive Komponente ist. Die Anteile im Gasgemisch sind 200 mbar He und 10 mbar CH₄.

Bei der Durchführung dieses Verfahrens entsteht $CH_2@C_{70}$ als Hauptkomponente der endohedralen Fullerene, wobei C_{60} und C_{70} den Hauptanteil des Gesamtfullerengehalts stellen.

10

- 1. Verfahren zur Herstellung endohedraler Fullerene in einem Lichtbogenreaktor durch Abbrennen von Graphitelektroden, dadurch gekennzeichnet, dass das Abbrennen in einer Atmosphäre durchgeführt wird, die in einem Inertgas oder Inertgasgemisch eine aus mindestens zwei Elementen bestehende reaktive Gaskomponente enthält.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Inertgas beziehungsweise das Inertgasgemisch bis zu 60 Vol-% der reaktiven Gaskomponente enthält.
 - 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Inertgas beziehungsweise das Inertgasgemisch 5 Vol-% bis 10 Vol-% einer reaktiven Gaskomponente enthält.
 - 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Inertgas beziehungsweise Inertgasgemisch eine stickstoffhaltige oder kohlenstoffhaltige reaktive Gaskomponente enthält.
 - 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die reaktive Gaskomponente aus NH₃ oder aus CH₄ oder anderen Kohlenwasserstoffen besteht.
 - 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die reaktive Gaskomponente dem Lichtbogenreaktor während des Abbrennens von außen zugeführt oder im Lichtbogenreaktor generiert wird.

- 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Graphitelektroden eingesetzt werden, die mit Metall oder Metalloxiden modifiziert sind.
- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass Graphitelektroden eingesetzt werden, die mit Holmium oder Scandium oder deren Oxide modifiziert sind.
- 9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Graphitelektroden eingesetzt werden, die mit Metall oder Metalloxiden und einer stickstoffhaltigen Substanz modifiziert sind.
- 15 10. Verfahren nach Anspruch 1 oder 9, dadurch gekennzeichnet, dass Graphitelektroden eingesetzt werden, die mit Metallcyanamid, vorzugsweise mit Calciumcyanamid oder Bleicyanamid, modifiziert sind.