Chapter 3

Set Theory

Definition 3.1.1

(Informal) We define a set A to be any unordered collection of objects, e.g., 3, 8, 5, 2 is a set. If x is an object, we say that x is an element of A or $x \in A$ if x lies in the collection; otherwise we say that $x \notin A$. For instance, $3 \in \{1, 2, 3, 4, 5\}$ but $7 \notin \{1, 2, 3, 4, 5\}$.

Axiom 3.1 (Sets are objects).

If A is a set, then A is also an object. In particular, given two sets A and B, it is meaningful to ask whether A is also an element of B.

Axiom 3.2 (Equality of sets).

Two sets A and B are equal, A = B, iff every element of A is an element of B and vice versa. To put it another way, A = B if and only if every element x of A belongs also to B, and every element y of B belongs also to A.

Axiom 3.3 (Empty set).

There exists a set \emptyset , known as the empty set, which contains no elements, i.e., for every object x we have $x \notin \emptyset$.

Lemma 3.1.5 (Single choice).

Let A be a non-empty set. Then there exists an object x such that $x \in A$.

Axiom 3.4 (Singleton sets and pair sets).

If a is an object, then there exists a set $\{a\}$ whose only element is a, i.e., for every object y, we have $y \in \{a\}$ if and only if y = a; we refer to $\{a\}$ as the singleton set whose element is a. Furthermore, if a and b are objects, then there exists a set $\{a,b\}$

whose only elements are a and b; i.e., for every object y, we have $y \in \{a, b\}$ if and only if y = a or y = b; we refer to this set as the pair set formed by a and b.

Axiom 3.5 (Pairwise union).

Given any two sets A, B, there exists a set $A \cup B$, called the union of A and B, which consists of all the elements which belong to A or B or both. In other words, for any object x,

$$x \in A \cup B \iff (x \in A \text{ or } x \in B).$$

Lemma 3.1.12

If a and b are objects, then $\{a,b\} = \{a\} \cup \{b\}$. If A,B,C are sets, then the union operation is commutative (i.e., $A \cup B = B \cup A$) and associative (i.e., $(A \cup B) \cup C = A \cup (B \cup C)$). Also, we have $A \cup A = A \cup \emptyset = \emptyset \cup A = A$.

Definition 3.1.14 (Subsets).

Let A, B be sets. We say that A is a subset of B, denoted $A \subseteq B$, iff every element of A is also an element of B, i.e.

For any object
$$x, x \in A \iff x \in B$$
,

We say that A is a proper subset of B, denoted $A \subseteq B$, if $A \subseteq B$ and $A \neq B$.

Proposition 3.1.17 (Sets are partially ordered by set inclusion).

Let A, B, C be sets. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$. If $A \subseteq B$ and $B \subseteq A$, then A = B. Finally, if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

Exercises

Exercise 3.1.1

Let a, b, c, d be objects such that $\{a, b\} = \{c, d\}$. Show that at least one of the two statements "a = c and b = d" and "a = d and b = c" hold.

Proof. Consider two cases: a = b and $a \neq b$.

Case 1: a = b. Then $\{a, b\} = \{a\}$. By Axiom 3.2, if $\{a\}$ and $\{c, d\}$ are equal to each other, then every element belong to $\{c, d\}$ must also belong to $\{a\}$. Therefore, c = a, d = a. Since a = b, we have a = b = c = d. Thus, both statements hold.

Case 2: $a \neq b$. Similarly, by Axiom 3.2, every element belong to $\{a, b\}$ must also belong to $\{c, d\}$. So $\{c, d\}$, a set of two elements, contains two distinct elements a and b. Therefore, either a = c, b = d or a = d, b = c holds, exclusively.

Thus, we have shown that at least one of the two statements "a=c and b=d" and "a=d and b=c" hold.

Exercise 3.1.2

Using only Axiom 3.2, Axiom 3.1, Axiom 3.3, and Axiom 3.4, prove that the sets \emptyset , $\{\emptyset\}$, $\{\{\emptyset\}\}$, and $\{\emptyset, \{\emptyset\}\}$ are all distinct.

Proof. First, let's consider \emptyset . \emptyset contains no element while other sets all have at least one element in it. Therefore, \emptyset is distinct from $\{\emptyset\}$, $\{\{\emptyset\}\}$ and $\{\emptyset, \{\emptyset\}\}\}$. Then, let's consider $\{\emptyset\}$. Is it distinct from $\{\{\emptyset\}\}\}$ and $\{\emptyset, \{\emptyset\}\}\}$? We know that $\emptyset \in \{\emptyset\}$. But we have proved earlier \emptyset and $\{\emptyset\}$ are not equal to each other, so $\emptyset \notin \{\{\emptyset\}\}\}$. So $\{\emptyset\}$ and $\{\{\emptyset\}\}\}$ are distinct. For the same reason, $\{\emptyset\} \notin \{\emptyset\}\}$. So $\{\emptyset\}$ and $\{\emptyset, \{\emptyset\}\}\}$ are also distinct. Last, consider $\{\{\emptyset\}\}\}$ and $\{\emptyset, \{\emptyset\}\}\}$. For the same reason $(\emptyset]$ and $\{\emptyset\}$ are distinct, $\{\emptyset\}$, and $\{\emptyset\}$, $\{\emptyset\}$, are distinct. Thus, we have proved the sets $\{\emptyset\}$, $\{\{\emptyset\}\}\}$, and $\{\emptyset, \{\emptyset\}\}\}$ are all distinct.

Exercise 3.1.3

Prove the remaining claims in Lemma 3.1.12.

Proof. First, prove the union operation is commutative (i.e., $A \cup B = B \cup A$). By definition, we know that $A \cup B$ consists of all the elements which belong to A or B, inclusively. And $B \cup A$ also consists of all the elements belong to A or B, inclusively. Therefore, $A \cup B$ and $B \cup A$ are containing exactly the same elements. Thus, $A \cup B = B \cup A$.

The second part is to prove $A \cup A = A \cup \emptyset = \emptyset \cup A = A$. First, let's consider $A \cup A$. By definition, $A \cup A$ consists of all the element x such that $x \in A$ or $x \in A$. So $A \cup A$ and A have exactly the same elements. Therefore $A \cup A = A$. Now let's consider $A \cup \emptyset$. $A \cup \emptyset$ consists of all the x such that $x \in A$ or $x \in \emptyset$. Since no element would belong to \emptyset . $A \cup \emptyset$ contains exactly the same elements as A. Therefore, $A \cup \emptyset = A$. And by commutative law, we have $A \cup \emptyset = \emptyset \cup A = A$.

Thus, we have proved $A \cup A = A \cup \emptyset = \emptyset \cup A = A$.

Exercise 3.1.4

Prove the remaining claims in Lemma 3.1.17.

Proof. Part I. If $A \subseteq B$ and $B \subseteq A$, then A = B. Translate the if statement into propositional logic: $(x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A)$. Therefore, we have $x \in A \iff x \in B$. Thus, A = B.

Part II. If $A \subsetneq B$ and $B \subsetneq C$ then $A \subsetneq C$. Since $A \neq B$ and $B \neq C$, by transitivity, $A \neq C$. And by the first part of this proposition (if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$), we would have $A \subseteq C$. Since $A \subseteq C$ and $A \neq C$, $A \subsetneq C$.