Chapitre 7 : Bilans énergétiques

I Transformation d'un système obéissant à l'une des lois de Joule

A) Système satisfaisant la 1^{ère} loi de Joule

En particulier, le gaz parfait vérifie la 1^{ère} loi de Joule. Soit une transformation quasi-statique d'un état initial 1 vers un état final 2.

Pour une étape infinitésimale de la transformation :

$$dU = \frac{\partial U}{\partial T}\Big|_{V} dT + \underbrace{\frac{\partial U}{\partial V}\Big|_{T}}_{T} dV = C_{V} dT \Rightarrow \Delta U = U_{2} - U_{1} = \int_{T_{1}}^{T_{2}} C_{V} dT$$

Pour une transformation quelconque, on a aussi $\Delta U = U_2 - U_1 = \int_{T_1}^{T_2} C_V dT$ (il suffit de prendre une transformation quasi-statique qui a même état initial et même état final).

B) Système satisfaisant la 2^{nde} loi de Joule

Le gaz parfait vérifie aussi la 2^{nde} loi de Joule. Soit une transformation quasi-statique d'un état initial 1 vers un état final 2.

$$\tau_{QS}$$

Pour une étape infinitésimale de la transformation :

$$dH = \frac{\partial H}{\partial T}\Big|_{P} dT + \underbrace{\frac{\partial H}{\partial V}\Big|_{T}}_{=0} dV = C_{P} dT \Rightarrow \Delta H = H_{2} - H_{1} = \int_{T_{1}}^{T_{2}} C_{P} dT$$

Pour une transformation quelconque, on a aussi $\Delta H = \int_{T_1}^{T_2} C_P dT (= \Delta H_{TQS})$

II Transformation réversible d'un gaz parfait

A) Transformation isotherme réversible

On considère n moles d'un gaz parfait

Etat final
$$P_2, V_2, T_1$$
 Etat initial P_1, V_1, T_1 Etat initial P_1, V_1, T_1 Etat initial P_1, V_1, T_1 Etat final P_2, V_2, T_2 Etat final $P_$

Pour que la transformation soit isotherme et réversible, elle doit être très lente. Pour une transformation infinitésimale : $\delta W = -PdV$ (réversibilité). Puisque la

transformation est quasi-statique, on a, pendant toute la transformation, $P = \frac{nRT}{V}$.

Donc
$$\delta W = -nRT \frac{dV}{V} \Rightarrow W = \int_{1}^{2} -nRT \frac{dV}{V} = -nRT \times \ln \left(\frac{V_{2}}{V_{1}} \right)$$

 $W = -nRT \ln a$ avec $a = \frac{V_1}{V_2} \left(= \frac{P_2}{P_1} \right)$, rapport volumétrique de la transformation

$$\Delta U = U_2 - U_1 = U(T_1) - U(T_2) = 0$$

D'après le premier principe, $\Delta U = Q + W$. Donc $Q = -W = nRT_1 \ln a$.

Pour une compression, $a = \frac{V_2}{V_1} < 1$.

Pour une détente, $a = \frac{V_2}{V_1} > 1$.

B) Transformation adiabatique réversible

On considère *n* moles d'un gaz parfait

Pour que la transformation soit adiabatique et réversible, il faut qu'elle soit assez lente (réversibilité), mais suffisamment rapide pour être adiabatique.

1) Loi de Laplace

Pour une étape infinitésimale de la transformation, $dU = nC_{mV}dT$ (1^{ère} loi de Joule et quasi-staticité). On a :

$$C_{m,V} = \frac{R}{\gamma - 1}$$
, et, d'après le premier principe, $dU = \delta W + \underbrace{\delta Q}_{=0} = \underbrace{-PdV}_{\text{réversible donc}}$

Donc
$$n \frac{R}{\gamma - 1} dT = -PdV$$
.

D'après l'équation d'état du gaz parfait :

$$PV = nRT \Rightarrow d(PV) = d(nRT) \Rightarrow VdP + PdV = nRdT$$

$$\operatorname{Donc} \frac{PdV + VdP}{\gamma - 1} = -PdV \iff PdV + VdP = -(\gamma - 1)PdV \iff \gamma PdV + VdP = 0$$

$$\Leftrightarrow \gamma \frac{dV}{V} + \frac{dP}{P} = 0$$
 (Formulation différentielle de la loi de Laplace)

Si γ est constante sur l'intervalle $[T_1;T_2]$, on peut intégrer la loi de Laplace : $\gamma \ln V + \ln P = cte$

$$\Leftrightarrow \ln(V^{\gamma}P) = cte$$

$$\Leftrightarrow PV^{\gamma} = cte = P_1V_1^{\gamma} = P_2V_2^{\gamma} \text{ (loi de Laplace)}$$
ou $TV^{\gamma-1} = cte \text{ ou } T^{\gamma}P^{1-\gamma} = cte \text{ (à partir de l'équation d'état du gaz parfait)}$

2) travail reçu

$$\Delta U = Q + W = W \text{ . Donc } W = \Delta U = \int_{T_1}^{T_2} n C_{m,V} dT$$
 si γ est constante, $W = \Delta U = \int_{T_1}^{T_2} n \frac{R}{\gamma - 1} dT = \frac{nR}{\gamma - 1} (T_2 - T_1)$ Pour une compression, $\Delta U = W > 0$ Pour une détente, $\Delta U = W < 0$

C) Cycle de Carnot du gaz parfait

Transformation	W	Q	ΔU
$(T_f) \tau_{1\rightarrow 2}$	$nRT_f \ln a > 0$	$-nRT_f \ln a < 0$	0
$ au_{2\rightarrow 3}$	$\frac{nR}{\gamma - 1} (T_c - T_f)$	0	$\frac{nR}{\gamma-1}(T_c-T_f)$
$(T_c) \tau_{3\rightarrow 4}$	$-nRT_c \ln a < 0$	$nRT_c \ln a > 0$	0
$ au_{ ext{4->1}}$	$\frac{nR}{\gamma - 1}(T_f - T_c)$	0	$\frac{nR}{\gamma-1}(T_f-T_c)$
(moteur) $ au_{ ext{cycle}}$	$-nR\ln a \times (T_c - T_f) < 0$	$nR\ln a \times (T_c - T_f) > 0$	0

On définit le rendement
$$\eta = \frac{\int_{\text{le système}}^{\text{fourni par}}}{\underbrace{Q_{3\rightarrow 4}}_{\text{payé par}}} = \frac{nR \ln a \times (T_c - T_f)}{nRT_c \ln a} = 1 - \frac{T_f}{T_c}$$

III Détente de Joule Gay-Lussac

A) Présentation

B) Bilan énergétique

Système $V_1 + V_2$

Détente adiabatique, et $W = W_{\text{ext}} = 0$. On a donc :

$$\begin{split} \Delta U &= 0 \\ &= U(P_2, V_1 + V_2, T_2) - U(P_1, \underbrace{V_1}_{\substack{\text{car } U = 0 \\ \text{a drotte au} \\ \text{debut}}}, T_1) \end{split}$$

On dit que la détente est isoU (à *U* constante)

C) Application aux gaz parfaits et réels

Gaz parfait : U ne dépend que de T (1^{ère} loi de Joule). $\Delta U = 0 \Rightarrow T_1 = T_2$ (U(T) est injective car strictement croissante : plus T augmente, plus l'énergie interne augmente). La transformation est donc monotherme.

Gaz réel : U dépend de V, T (il ne satisfait plus la première loi de Joule)

Pour un gaz de Van der Waals $U_{vdw}(V,T) = U_{gp}(T) - \frac{n^2a}{V}$. Pour une mole de gaz

réel diatomique :
$$U_{vdw} = \frac{5}{2}nRT - \frac{n^2a}{V} = \frac{5}{2}RT - \frac{a}{V}$$

Détente de
$$V = 1$$
L à $V = 2$ L : $\Delta U = \frac{5}{2}R(T_2 - T_1) - \frac{a}{V_2} + \frac{a}{V_1} = 0$

$$\Leftrightarrow \frac{5}{2}R(T_2 - T_1) = a\left(\frac{1}{V_2} - \frac{1}{V_1}\right). \text{ Pour } a = 0,138 \text{ Pa.m}^6.\text{mol}^{-1}, T_2 - T_1 = -3,3\text{K}.$$

IV Détente de Joule Thomson (ou Joule Kelvin)

A) Formulation du 1^{er} principe pour un écoulement stationnaire

On suppose P_w et P_{th} indépendants du temps

En amont : pression P_1 , température T_1 En aval : pression P_2 , température T_2

(Uniformes et stationnaires)

d : débit massique = $\frac{dm}{dt}$: masse qui traverse une surface donnée pendant dt

$$D_m$$
: débit molaire = $\frac{dn}{dt}$

Système étudié entre A et B à t qui se déplace entre A et B à $t + \Delta t$ 1^{er} principe appliqué au système :

$$\Delta U_{\Sigma} = W + Q$$

$$U_{\Sigma}(t + \Delta t) - U_{\Sigma}(t) = (U_{A'B}(t + \Delta t) + U_{BB'}(t + \Delta t)) - (U_{AA'}(t) + U_{A'B}(t))$$

Comme l'écoulement est stationnaire, $\frac{\partial \bullet}{\partial t} = 0$ Donc $\Delta U_{\Sigma} = U_{BB'} - U_{AA'}$

$$Q = P_{th} \Delta t$$

$$W = W_{P_{\text{ext}} \text{amont}} + W_{P_{\text{ext}} \text{aval}} + P_{w} \Delta t$$
 ($\delta W_{P_{\text{ext}}} = -PdV$ et P est constante)

$$= -P_1 \times (-V_{AA'}) - P_2 \times (V_{BB'}) + P_w \Delta t$$

Donc
$$U_{BB'} - U_{AA'} = P_1 V_{AA'} - P_2 V_{BB'} + P_w \Delta t + P_{th} \Delta t$$

$$\Leftrightarrow U_{BB'} + P_2 V_{BB'} - (U_{AA'} + P_1 V_{AA'}) = (P_w + P_{th}) \Delta t$$

$$\iff H_{BB'} - H_{AA'} = (P_w + P_{th}) \Delta t$$

Masse de
$$AA' = \int_{t}^{t+\Delta t} d \times dt = d \times \Delta t \ (\text{car } \frac{\partial d}{\partial t} = 0)$$

De même, masse de $BB' = d \times \Delta t$

On note h l'enthalpie massique (h est constante au cours du temps, et même partout en aval <u>ou</u> en amont car les paramètres d'état sont uniformes dans ces deux zones). $d \times h_{\text{aval}} \times \Delta t - d \times h_{\text{amont}} \times \Delta t = (P_{th} + P_w) \Delta t$. Donc $d \times h_{\text{aval}} - d \times h_{\text{amont}} = P_{th} + P_w$ ou $D_m \Delta H_m = P_{th} + P_w$, où H_m est l'enthalpie molaire.

B) Détente de Joule Kelvin

1) Présentation

On suppose l'écoulement stationnaire

2) Bilan énergétique

1^{er} principe appliqué à l'écoulement :

$$d \times \Delta h = \underbrace{P_{th}}_{=0 \text{ car athermane}} + \underbrace{P_{w}}_{=0 \text{ car pas de forces}} = 0$$

Donc $\Delta h = 0$

On dit que la détente de Joule Kelvin est isoH ou isenthalpique

3) Applications aux gaz

Pour un gaz parfait : H dépend uniquement de T (2^{nde} loi de Joule)

Donc $\Delta H = 0 \Rightarrow T_1 = T_2$ (idem que pour *U*), la détente est donc monotherme

Pour un gaz réel : H dépend de T et P. On a $\Delta H = 0$ mais $\Delta T \neq 0$

En général, $\Delta T < 0$.