Programação Linear MÉTODO SIMPLEX

O Método Simplex clássico pode ser usado diretamente quando a função objetivo for de maximização e as restrições (fora a não-negatividade) foram todas do tipo " ≤ ".

Vamos utilizar um exemplo para explicar o desenvolvimento do método.

Exemplo: Uma marcenaria produz dois produtos: mesa e armário. Para produzir uma mesa são gastos 2 m² de madeira e 2 H.h de mão de obra e para produzir um armário são gastos 3 m² de madeira e 1 H.h de mão-de-obra. Sabendo que a disponibilidade de madeira é de 12 m² e a disponibilidade de mão de obra é de 8 H.h.. Determinar quanto deve ser produzido de cada um dos produtos para maximizar a margem de contribuição total (lucro) da empresa, sabendo que cada mesa vendida a margem é de R\$ 4,00 e que cada armário vendido fornece uma margem de R\$ 1,00.

Modelo:

Variáveis de decisão: x₁ representa a quantidade de mesas a produzir

x₂ representa a quantidade de armários a produzir

Maximizar
$$L = 4x_1 + 1x_2$$

s. a.
$$\begin{cases} 2x_1 + 3x_2 \le 12 \\ 2x_1 + 1x_2 \le 8 \\ x_1 : x_2 > 0 \end{cases}$$

Passo 1) Para cada restrição tipo \leq inserir uma variável de folga. Assim, x_3 representa a folga (ou sobra) de madeira e x_4 representa a folga (ou a sobra) de horas de mão de obra.

Passo 2) Reescrevemos o modelo com as variáveis de folga:

$$\begin{aligned} \text{Maximizar } L &= 4x_1 + 1x_2 + 0x_3 + 0x_4 \\ s. a. \begin{cases} 2x_1 + 3x_2 + 1x_3 + 0x_4 = 12 \\ 2x_1 + 1x_2 + 0x_3 + 1x_4 = 8 \\ x_1; x_2; x_3; x_4 \ge 0 \end{cases} \end{aligned}$$

Passo 3) Obter a solução inicial:

Para obtermos a solução inicial consideramos que nada foi produzido ainda, ou seja, as variáveis de decisão são nulas e, portanto, as variáveis de folga são os valores totais dos recursos (madeira e mão-de-obra). De modo que o lucro inicial é nulo. Assim:

$$x_1 = 0$$
; $x_2 = 0 \rightarrow variáveis não-básicas$
 $x_3 = 12$; $x_4 = 8 \rightarrow variáveis básicas$
 $L = 0$
Ou seja: $S_0 = (x_1, x_2, x_3, x_4; L) = (0,0,12,8; 0)$

Passo 4) Escrever o quadro Simplex com a solução inicial, invertendo os sinais dos coeficientes da função objetivo:

base	X ₁	X_2	X_3	X_4	b
X ₃	2	3	1	0	12
X_4	2	1	0	1	8
L	-4	-1	0	0	0

Passo 5) Vamos obter uma nova solução: Colocamos na base a variável com o lucro mais negativo. De modo que x_1 entra na base.

Se alguma variável entra na base, alguma tem que sair, pois só há 2 lugares na base. A variável que sai da base é a com menor b/x_i , onde x_i é a coluna da variável que está entrando na base. Logo, x_4 sai da base.

Passo 6) vamos remontar o quadro Simplex com x₁ no lugar de x₄:

	base	X_1	X_2	X_3	X_4	b
Linha pivot —	X ₃	2	3	1	0	12
	► X ₁	2	1	0	1	8
	L	-4	-1	0	0	0

Para obtermos a nova solução devemos usar as 3 operações elementares de matrizes:

- 1. Podemos Trocar 2 linhas de posição;
- 2. Podemos multiplicar uma linha por um número real diferente de zero;
- 3. Podemos substituir uma linha pela soma dela com um múltiplo de outra linha

Passo 7) Usando a primeira operação vamos colocar a linha pivot na primeira linha:

	base	X_1	X_2	X_3	X_4	b
Linha pivot>	X ₁	2	1	0	1	8
	X_3	2	3	1	0	12
_	L	-4	-1	0	0	0

Para obtermos uma nova solução, a coluna da variável pivot deve mudar para ficar 1 onde x_1 cruza com x_1 , e zero em todas as outras linhas.

Passo 8) O pivot deve ser igual a 1, então vamos dividir a primeira linha por 2, usando a segunda operação elementar:

	base	X_1	X_2	X_3	X_4	b
Linha pivot 👈	X ₁	1	1/2	0	1/2	4
	X_3	2	3	1	0	12
_	L	-4	-1	0	0	0
_						

Passo 9) Para arrumar as outras linhas, devemos lembrar que os valores, que não o pivot, devem ser zero na coluna pivot. Assim, para que isso ocorra, devemos trocar a linha 2 por ela menos 2 vezes a linha pivot e, trocar a terceira linha por ela mais 4 vezes a linha pivot, ou seja:

$$L_2 \leftrightarrow L_2 - 2L_1$$
$$L_3 \leftrightarrow L_3 + 4L_1$$

_	base	X_1	X_2	X_3	X_4	b
Linha pivot -	X_1	1	1/2	0	1/2	4
	X_3	0	2	1	-1	4
·	L	0	1	0	2	16
_						

Obtemos uma nova solução, pois todas as colunas das variáveis básicas estão na forma correta, isto é, valem 1 onde a linha da variável cruza com a sua coluna, e zero nas outras posições.

$$S_1 = (x_1, x_2, x_3, x_4; L) = (4, 0, 4, 0; 16)$$

Como não há mais valores negativos na linha "L", a solução é a solução ótima.

Se após acharmos uma solução, ainda houver valores negativos na linha "L", devemos obter nova solução, voltando ao **passo 5.** Fazemos isso iterativamente até que não haja mais valores negativos na linha do lucro.