Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №5

По дисциплине

«Основы профессиональной деятельности»

Вариант 1774

Выполнил:

Кудрявцева Руслана Сегреевна

Группа Р3117

Принял:

Блохина Елена Николаевна

Оглавление

Цель работы	3
Задание	3
Текст исходной программы	3
Код на ассемблере:	4
Область допустимых значений	4
Передаваемое сообщение: «done»	4
Расположение данных в памяти	5
Адреса первой и последней выполняемой команды	5
Трассировка	5
Вывод	5

Цель работы

По выданному преподавателем варианту разработать программу асинхронного обмена данными с внешним устройством. При помощи программы осуществить ввод или вывод информации, используя в качестве подтверждения данных сигнал (кнопку) готовности ВУ.

Задание

Введите номер варианта 1774

- 1. Программа осуществляет асинхронный ввод данных с ВУ-2
- 2. Программа начинается с адреса 3ED₁₆. Размещаемая строка находится по адресу 5A7₁₆.
- 3. Строка должна быть представлена в кодировке ISO-8859-5.
- 4. Формат представления строки в памяти: АДР1: СИМВ1 СИМВ2 АДР2: СИМВ3 СИМВ4 ... СТОП СИМВ.
- 5. Ввод или вывод строки должен быть завершен по символу с кодом 00 (NUL). Стоп символ является обычным символом строки и подчиняется тем же правилам расположения в памяти что и другие символы строки.

Реализовать ввод с ВУ-2, а вывод на семисегментный индикатор

Порядок такой, если ввели число больше 1А, то выводим его, если меньше, то выходим из программы. Все остальное согласно заданию

Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарий	
3ED	0200	CLA	Очистка аккумулятора	
3EE	1205	IN 5		
3EF	2F40	AND #0x40	Ожидаем сигнал готовности с ВУ-2	
3F0	F0FD	BEQ IP-3		
3F1	1204	IN 4	Чтение символа и проверка на стоп-слово	
3F2	0600	SXTB		
3F3	F00C	BEQ IP+12		
3F4	0680	SWAB	Обмен старшего и младшего бита	
3F5	E80B	ST R	Сохраняем символ в результат	
3F6	1205	IN 5		
3F7	2F40	AND #0x40	Ожидаем сигнал готовности с ВУ-2	
3F8	F0FD	BEQ IP-3		
3F9	A807	LD R	Загружаем содержимое из результата	
3FA	1204	IN 4	Чтение символа и проверка на стоп-слово	

3FB	EA05	ST (R)+	
3FC	0600	SXTB	
3FD	F002	BEQ IP+	
3FE	0200	CLA	Сохраняем и увеличиваем адрес результата
3FF	CEEE	JUMP	Переход в начало программы
400	0100	HLT	Остановка программы
401	05A7	R	Адрес первого элемента строки

Код на ассемблере:

ORG 0x3ED

START: CLA

5 **S**1: IN **AND** #0x40 BEQ S1IN 4 **SXTB**

BEQ EXIT

SWAB

ST (ADDR)

S2: IN **AND** #0x40 BEQ S2 LD (ADDR) IN ST(ADDR)+

SXTB

EXIT BEQ

CLA

JUMP S1

EXIT: **HLT**

ADDR: WORD 0x5A7

Область допустимых значений

- R 16-разрядная ячейка для хранение 2х символов. Старший байт код первого символа, младший байт — код второго символа.
- Введенный символ: [00; FF]

Адрес первого элемента массива равен 5DA по условию. Т.к. 2047 - 1498 = 549 -кол-во ячеек, которые могут использоваться для записи результата => 549*2 = 1098 максимально возможное кол-во введенных символов (т.к. в данной кодировке символ

занимает 1 байт), включая обязательный стоп-символ => Кол-во введенных символов ∈ [1;1098].

Передаваемое сообщение: «Венера*»

 В кодировке ISO-8859-5:
 B2 D5 DD D5 E0 D0 2A

 В кодировке UTF-8:
 C2 E5 ED E5 F0 E0 2A

В кодировке UTF-16: 402 435 43D 435 440 430 2A

Расположение данных в памяти

- 3ED-3FF команды программы;
- 3Е5-3ЕА команды подпрограммы, которые считывают ВУ.
- 3ЕВ-3ЕС исходные данные;
- 5А7 первая ячейка для результата.

Адреса первой и последней выполняемой команды

Адрес первой команды: 3EDАдрес последней команды: 3FF

Вывод

При выполнении данной лабораторной работы я познакомилась с асинхронным вводомвыводом данных в БЭВМ, узнала о внешних устройствах, их регистрах и принципах работы. Также, я познакомилась с представлением данных в различных кодировках и попрактиковалась вводом данных на ВУ-2.

1011 0010

1101 0101

1101 1101

1101 0101

1110 0000

1101 0000

0010 1010