

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Automatizálási és Alkalmazott Informatika Tanszék

3D rekonstrukció Kinect alkalmazásával

Beszámoló

HallgatóDanyi Dávid

Kovács Viktor

Tartalomjegyzék

Introduction			2
1.	Alg	oritmusok, paraméterek	3
	1.1.	Előfeldolgozási lépések	3
		1.1.1. Uniform skálázás	4
		1.1.2. Gauss szűrés	4
		1.1.3. Difference of Gaussians	4
		1.1.4. Hisztogram kiegyenlítés	4
	1.2.	Diszparitás meghatározás	4
	1.3.	Utófeldolgozás	4
		1.3.1. Medián szűrő	4
		1.3.2. Vizualizáció	4
2.	Tesz	zt platform	5
	2.1.	Programozói interfész	5
	2.2.	Felhasználói felület	5
3.	Lok	ális struktúra vizsgálata	6
	3.1.	Modellek	6
	3.2.	Illesztési módszerek	6
		3.2.1. Kumulált korreláció	6
		3.2.2. RANSAC	6
4.	Ere	dmények	7
5.	Öss	zegzés	8

Bevezetés

Ez a dokumentum a 2016 őszi félévében, Önálló laboratórium 2 tárgy keretei között végzett munkám összefoglalója.

Az itt közölt eredmények építenek az előző féléves, azonos témában végzett kutatásomra. Akkor a feladat a strukturált fényt használó 3D rekonstrukciós eljárások vizsgálata volt. Az elvek gyakorlati kipróbálására a Microsoft Kinect adott kiváló platformot. Az előző féléves munka legjavát a technológiával és módszerekkel való ismerkedés adta. A Kinect által szolgáltatott infravörös kép elemzésével próbáltam reprodukálni az eszköz belső működését.

Az előző félév munkája proof-of-concept jellegű volt. A mostani ezen túlmutat. A cél most kettős: egy hosszútávon használható, rugalmas, moduláris keretrendszer fejlesztése a diszparitás meghatározásához, valamint rekonstrukció minőségének javítása a kép lokális struktúrájának figyelembe vételével.

Az első fejezetben röviden összefoglalom a használt algoritmusokat és paraméterezésüket. Ez részben az előző féléves munka összefoglalása is.

A második, egyben leghosszabb fejezet tartalmazza a fejlesztett keretrendszer leírását. Ismertetésre kerül a program felhasználó felülete, valami a programozási struktúra és a fejlesztői interfész is.

A harmadik fejezet a lokális struktúra figyelembevételével foglalkozik. Az itt tárgyalt algoritmusok kísérleti jellegűek, a későbbiekben behatóbb vizsgálatot és optimalizációt igényelnek.

A negyedik részegység az eredmények rövid összegzését és néhány példát tartalmaz.

Algoritmusok, paraméterek

A strukturált fényt használó rekonstrukciós eljárások alapja, hogy előre ismert mintát vetítenek a fényképezett objektumra, majd ennek torzulásai alapján következtetnek a mélységinformációra. A Kinect első verziója is így működik. Az eszköz mélységképet szolgáltató része (kamera és projektor) az infravörös tartományban üzemel. A vetített minta egy látszólag véletlenszerű eloszlást követő pontfelhő. A minta formális leírása vagy a generálás algoritmusa nem ismert, ezért a rekonstrukcióhoz elengedhetetlen valamilyen referenciakép készítése. A diszparitás meghatározását ez némileg bonyolítja, extra feldolgozási lépéseket tesz szükségessé.

Az extra lépések oka, hogy jelentős időbeli különbség van a referencia- és adatkép készítése között. Ez idő alatt szinte garantáltan változnak a fényviszonyok, amit kompenzálni kell. A feladat megoldására 3 lépcsős feldolgozást valósítottam meg, amik a következőkben ismertetésre fognak kerülni.

A rekonstrukció mintaillesztésen alapuló diszparitás meghatározás. Az illeszkedés minőségének javítása érdekében szükség van előfeldolgozási lépésekre. Az diszparitáskép szűrésére és emberi fogyasztásra alkalmassá tételére pedig szükség van utófeldolgozásra.

1.1. Előfeldolgozási lépések

Az előfeldolgozás szükségességét a 1.1. ábra jól mutatja. Ilyen mértékű fényerőkülönbség esetén a legtöbb mintaillesztési eljárás csődöt mondana. A jelenség kiküszöbölésére több algoritmust is próbáltam a félév során, melyek változó mértékben voltak eredményesek. A következőkben ismertetem a kipróbált feldolgozási lépéseket.

¹Valójában úgy tervezték a pontfelhőt, hogy minimális legyen az egy sorban lévő ismétlődő vagy hasonló blokkok száma

(a) Nyers referencia kép

(b) Nyers adat kép

 ${\bf 1.1.\ \acute{a}bra.}\ \textit{F\'{e}nyviszonyok}\ \textit{k\"{u}l\"{o}nbs\'{e}ge}\ \textit{feldolgoz\'{a}s}\ \textit{e}l\~{o}tt$

- 1.1.1. Uniform skálázás
- 1.1.2. Gauss szűrés
- 1.1.3. Difference of Gaussians
- 1.1.4. Hisztogram kiegyenlítés
- 1.2. Diszparitás meghatározás
- 1.3. Utófeldolgozás
- 1.3.1. Medián szűrő
- 1.3.2. Vizualizáció

Teszt platform

- 2.1. Programozói interfész
- 2.2. Felhasználói felület

Lokális struktúra vizsgálata

- 3.1. Modellek
- 3.2. Illesztési módszerek
- 3.2.1. Kumulált korreláció
- 3.2.2. RANSAC

Eredmények

Összegzés