

Too much host! or not enough pathogen

Goals:

- Diagnostics
- Whole genome sequencing

Approaches:

- Hybrid capture
- Amplicon amplification

Sample preparation

Library preparation

High throughput sequencing

Data analysis

Sample preparation

Library preparation

High throughput sequencing

Data analysis

- Greater sensitivity
- Increased sequencing depth of target
- Ability to recover WGS even with low copy number/poor sample quality

Hybrid capture/targeted capture

Hybrid capture

Hybrid capture

Diagnostic or Pathogen Discovery

Wylezich et al. 2021

Developing your probes/baits

CTS APPLICATIONS & INDUSTRIES

TRAINING & EVENTS

SERVICES

SUPPORT & RESOURCES

ORDER CENTER

Home > Products > Next Generation Sequencing > Hybridization-based Next Generation Sequencing (NGS) > NGS Custom Target Enrichment Probes > SureSelect Custom DNA Target Enrichment Probes

NGS Custom Target Enrichment Probes

SureSelect Custom DNA Target Enrichment Probes

Agilent NGS Custom Target Enrichment Probes can be utilized to design customized hybrid capture panels to target any coding or non-coding regions of the genome or the transcriptome. Enabled by the SureDesign custom design tool, you can design and order any custom panel within minutes. Combine your custom panel with one of the OneSeq CNV backbones to achieve a comprehensive solution to detect SNVs, indels and CNVs in one workflow.

For Research Use Only. Not for use in diagnostic procedures.

PRODUCT DETAILS

① This part number is not available for online sale. Please contact your local Agilent Representative for ordering information

Amplicon amplification

Tiled amplicon approach

Combined for Illumina sequencing

Quick et al. 2017, Nature Protocols

Tiled amplicon approach

Primer Design

ARTIC primers

Name	Pool	Sequence
nCoV-2019_7_LEFT_alt0	nCoV-2019_1	CATTTGCATCAGAGGCTGCTCG
nCoV-2019_7_RIGHT_alt5	nCoV-2019_1	AGGTGACAATTTGTCCACCGAC
nCoV-2019_9_LEFT_alt4	nCoV-2019_1	TTCCCACAGAAGTGTTAACAGAGG
nCoV-2019_9_RIGHT_alt2	nCoV-2019_1	GACAGCATCTGCCACAACACAG
nCoV-2019_15_LEFT_alt1	nCoV-2019_1	AGTGCTTAAAAAGTGTAAAAGTGCCT
nCoV-2019_15_RIGHT_alt3	nCoV-2019_1	ACTGTAGCTGGCACTTTGAGAGA
nCoV-2019_21_LEFT_alt2	nCoV-2019_1	GGCTATTGATTATAAACACTACACACCCT
nCoV-2019_21_RIGHT_alt0	nCoV-2019_1	GATCTGTGTGGCCAACCTCTTC
nCoV-2019_45_LEFT_alt2	nCoV-2019_1	AGTATGTACAAATACCTACAACTTGTGCT
nCoV-2019_45_RIGHT_alt7	nCoV-2019_1	TTCATGTTGGTAGTTAGAGAAAGTGTGTC
nCoV-2019_89_LEFT_alt2	nCoV-2019_1	CGCGTTCCATGTGGTCATTCAA
nCoV-2019_89_RIGHT_alt4	nCoV-2019_1	ACGAGATGAAACATCTGTTGTCACT

From sequences to genomes

Quick et al. 2017, Nature Protocols

Variant analyses

Keys for variant analyses is including a technical replicate and achieving sufficient depth of coverage (~400x)

An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar

Nathan D. Grubaugh , Karthik Gangavarapu , Joshua Quick, Nathaniel L. Matteson, Jaqueline Goes De Jesus, Bradley J. Main, Amanda L. Tan, Lauren M. Paul, Doug E. Brackney, Saran Grewal, Nikos Gurfield, Koen K. A. Van Rompay, Sharon Isern, Scott F. Michael, Lark L. Coffey, Nicholas J. Loman & Kristian G. Andersen

Genome Biology 20, Article number: 8 (2019) Cite this article

12k Accesses | 68 Citations | 52 Altmetric | Metrics

Summary

Hybridization - benefits

- Multiple pathogens
- Diagnostics
- Baits can be generated commercially

Target amplicon -benefits

- Poor sample quality
- Relatively inexpensive
- High depth of coverage
- Can use cheaper sequencing approach

Summary

Hybridization - Challenges

- Needs to be known or close to known pathogen (vs. metagenomics)
- Relatively expensive

Target amplicon - Challenges

- Issue of PCR artifact
- No "true" haplotypes