Credit Scoring Model

from google.colab import drive
Mount Google Drive
drive.mount('/content/drive')

Error Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

import os

import numpy as np
import pandas as pd

import seaborn as sns

 $\stackrel{\cdot}{\text{import matplotlib.pyplot as plt}}$

%matplotlib inline
import warnings

warnings.filterwarnings("ignore")

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

application_record = pd.read_csv("drive/My Drive/ML_internship/ML_Task01/application_record.csv", index_col=0)
application_record

	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	NAME_INCOME_TYPE	NAME_EDUCATION_TYPE	NAME_FAMILY_
ID								
5008804	М	Υ	Υ	0	427500.0	Working	Higher education	Civil n
5008805	M	Υ	Υ	0	427500.0	Working	Higher education	Civil n
5008806	М	Υ	Y	0	112500.0	Working	Secondary / secondary special	
5008808	F	N	Y	0	270000.0	Commercial associate	Secondary / secondary special	Single / not
5008809	F	N	Y	0	270000.0	Commercial associate	Secondary / secondary special	Single / not
6840104	М	N	Y	0	135000.0	Pensioner	Secondary / secondary special	Se
6840222	F	N	N	0	103500.0	Working	Secondary / secondary special	Single / not
6841878	F	N	N	0	54000.0	Commercial associate	Higher education	Single / not
6842765	F	N	Υ	0	72000.0	Pensioner	Secondary / secondary special	
6842885	F	N	Υ	0	121500.0	Working	Secondary / secondary special	
438557 rov	vs × 17 columns							
4								>

credit_record = pd.read_csv("drive/My Drive/ML_internship/ML_Task01/credit_record.csv")
credit_record

₹		ID	MONTHS_BALANCE	STATUS	\blacksquare		
	0	5001711	0	Х	ıl.		
	1	5001711	-1	0	+/		
	2	5001711	-2	0			
	3	5001711	-3	0			
	4	5001712	0	С			
	1048570	5150487	-25	С			
	1048571	5150487	-26	С			
	1048572	5150487	-27	С			
	1048573	5150487	-28	С			
	1048574	5150487	-29	С			
	1048575 rows × 3 columns						

Cleaning the data

Next steps:

Pivoting the original DataFrame to get STATUS counts as columns
pivoted_df = credit_record.pivot_table(index='ID', columns='STATUS', aggfunc='size', fill_value=0).reset_index()
pivoted_df

View recommended plots

New interactive sheet

Conducting InnerJoin between the Application Record and Newly created Pivot Table
merged_df = pd.merge(application_record, pivoted_df, how="inner", on="ID")
merged_df

Generate code with pivoted_df

	ID	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	NAME_INCOME_TYPE	NAME_EDUCATION_TYPE	NAME_
0	5008804	М	Υ	Υ	0	427500.0	Working	Higher education	
1	5008805	М	Υ	Υ	0	427500.0	Working	Higher education	
2	5008806	М	Υ	Υ	0	112500.0	Working	Secondary / secondary special	
3	5008808	F	N	Y	0	270000.0	Commercial associate	Secondary / secondary special	Sin
4	5008809	F	N	Y	0	270000.0	Commercial associate	Secondary / secondary special	Sin
36452	5149828	М	Υ	Υ	0	315000.0	Working	Secondary / secondary special	
36453	5149834	F	N	Υ	0	157500.0	Commercial associate	Higher education	
36454	5149838	F	N	Υ	0	157500.0	Pensioner	Higher education	
36455	5150049	F	N	Υ	0	283500.0	Working	Secondary / secondary special	
36456	5150337	М	N	Υ	0	112500.0	Working	Secondary / secondary special	Sin
36457 rows × 26 columns									
4									•

merged_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 36457 entries, 0 to 36456
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype		
0	ID	36457 non-null	int64		
1	CODE_GENDER	36457 non-null	object		
2	FLAG_OWN_CAR	36457 non-null	object		
3	FLAG_OWN_REALTY	36457 non-null	object		
4	CNT_CHILDREN	36457 non-null	int64		
5	AMT_INCOME_TOTAL	36457 non-null	float64		
6	NAME_INCOME_TYPE	36457 non-null	object		
7	NAME_EDUCATION_TYPE	36457 non-null	object		
8	NAME_FAMILY_STATUS	36457 non-null	object		
9	NAME_HOUSING_TYPE	36457 non-null	object		
10	DAYS_BIRTH	36457 non-null	int64		
11	DAYS_EMPLOYED	36457 non-null	int64		
12	FLAG_MOBIL	36457 non-null	int64		
13	FLAG_WORK_PHONE	36457 non-null	int64		
14	FLAG_PHONE	36457 non-null	int64		
15	FLAG_EMAIL	36457 non-null	int64		
16	OCCUPATION_TYPE	25134 non-null	object		
17	CNT_FAM_MEMBERS	36457 non-null	float64		
18	0	36457 non-null	int64		
19	1	36457 non-null	int64		
20	2	36457 non-null	int64		
21	3	36457 non-null	int64		
22	4	36457 non-null	int64		
23	5	36457 non-null	int64		
24	C	36457 non-null	int64		
25	X	36457 non-null	int64		
<pre>dtypes: float64(2), int64(16), object(8)</pre>					
memo	ry usage: 7.2+ MB				

Converting column types to Int 64/Integer
columns = merged_df.iloc[:, 17:].columns
merged_df[columns] = merged_df[columns].astype('Int64')

merged_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 36457 entries, 0 to 36456
Data columns (total 26 columns):

Column Non-Null Count Dtype
--- 0 ID 36457 non-null int64

```
CODE GENDER
                          36457 non-null
                                          object
2
    FLAG OWN CAR
                          36457 non-null
                                          object
    FLAG_OWN_REALTY
                          36457 non-null
                                          object
    CNT_CHILDREN
                          36457 non-null
                                          int64
    AMT_INCOME_TOTAL
                          36457 non-null
                                          float64
     NAME_INCOME_TYPE
                          36457 non-null
                                          object
     NAME EDUCATION TYPE
                          36457 non-null
                                          object
    NAME_FAMILY_STATUS
                          36457 non-null
                                          object
9
     NAME_HOUSING_TYPE
                          36457 non-null
                                          object
10
    DAYS_BIRTH
                          36457 non-null
                                          int64
    DAYS EMPLOYED
                          36457 non-null
                                          int64
11
    FLAG_MOBIL
                          36457 non-null
                                          int64
12
    FLAG_WORK_PHONE
                          36457 non-null
                                          int64
13
    FLAG PHONE
                          36457 non-null
14
                                          int64
    FLAG_EMAIL
15
                          36457 non-null
                                          int64
16
    OCCUPATION_TYPE
                          25134 non-null
                                          object
    CNT_FAM_MEMBERS
                          36457 non-null
17
                                          Int64
    0
                          36457 non-null
                                          Tnt64
18
19
    1
                          36457 non-null
                                          Int64
20
    2
                          36457 non-null
                                          Int64
21
    3
                          36457 non-null
                                          Int64
22
    4
                          36457 non-null
                                          Int64
23
                          36457 non-null
24
    C
                          36457 non-null
                                          Int64
25 X
                          36457 non-null Int64
dtypes: Int64(9), float64(1), int64(8), object(8)
memory usage: 7.5+ MB
```

merged_df.describe()


```
merged_df['DAYS_EMPLOYED'].sort_values(ascending = False).unique()
```

```
→ array([365243, -17, -43, ..., -15227, -15661, -15713])
```

Positive values

 $\label{eq:merged_df['DAYS_EMPLOYED']} $$ merged_df['DAYS_EMPLOYED'].apply(lambda x : 0 if x > 0 else -x) $$ merged_df['DAYS_BIRTH'] = merged_df['DAYS_BIRTH'] * -1 $$ $$ $$$

Renaming columns

merged_df.rename(columns={'CODE_GENDER':'Gender','FLAG_OWN_CAR':'Car','FLAG_OWN_REALTY':'Property','CNT_CHILDREN':'Children','AMT_INCOME_TO'
'NAME_INCOME_TYPE':'Income status', 'NAME_EDUCATION_TYPE':'Education','NAME_FAMILY_STATUS':'Marital', 'NAME_HOUSING_TYPE':'Housing', 'DAYS_I
'DAYS_EMPLOYED' : 'Days employed', 'FLAG_MOBIL' : 'Mobile', 'FLAG_WORK_PHONE':'Work phone', 'FLAG_PHONE':'Phone', 'FLAG_EMAIL':'Email', 'OCC
'CNT_FAM_MEMBERS':'Family'},inplace=True)

merged_df.head()

```
₹
                                                                 Income
              ID Gender Car Property Children
                                                     Income
                                                                         Education Marital
                                                                                              Housing ...
                                                                                                                Job Family 0 1 2 3 4 5 (
                                                                 status
                                                                            Higher
                                                                                        Civil
                                                                                               Rented
      0 5008804
                                                0 427500.0
                                                                Working
                                                                                                               NaN
                                                                                                                          2 1 1 0 0 0 0 13
                                                                          education
                                                                                    marriage
                                                                                             apartment
                                                                            Higher
                                                                                        Civil
                                                                                                Rented
      1 5008805
                                                0 427500.0
                                                                Working
                                                                                                               NaN
                                                                                                                          2 1 1 0 0 0 0 12
                                                                          education
                                                                                    marriage
                                                                                             apartment
                                                                         Secondary
                                                                                                            Security
                                                                                               House /
      2 5008806
                                                   112500.0
                                                                Working
                                                                                     Married
                                                                                                                          2 7 0 0 0 0 0 7
                                                                         secondary
                                                                                             apartment
                                                                                                                staff
                                                                            special
                                                                         Secondary
                                                                                     Single /
                                                                                               House /
                                                                                                              Sales
                                                             Commercial
                                                0 270000.0
      3 5008808
                            Ν
                                                                                        not
                                                                                                                          1 2 0 0 0 0 0 (
                                                                         secondary
                                                                                             apartment
                                                               associate
                                                                                                               staff
                                                                                     married
                                                                            special
                                                                         Secondary
                                                                                     Single /
                                                             Commercial
                                                                                               House /
                                                                                                              Sales
      4 5008809
                                                0 270000.0
                                                                                                                          1 0 0 0 0 0 0 0
                            Ν
                                                                                        not
                                                               associate
                                                                         secondary
                                                                                             apartment
                                                                                                               staff
                                                                                     married
                                                                            special
     5 rows × 26 columns
merged_df.Mobile.unique()
\rightarrow array([1])
merged_df = merged_df.drop(['ID', 'Mobile'], axis = 1)
import math
# Summing the column from 1 to 5
merged_df['Bad debt chance'] = merged_df.iloc[:,17:-2].sum(axis=1, min_count=1)
# Low if the sum is 0, else high
merged_df['Bad debt chance'] = merged_df['Bad debt chance'].apply(lambda x: 'low' if (x == 0) else 'high')
merged_df['Bad debt chance'].value_counts()
<del>_</del>
                       count
      Bad debt chance
            low
                       32166
            high
                        4291
# Drop the status columns since we summarized it with bad debt chance
merged_df = merged_df.drop(merged_df.iloc[:,16:-1].columns, axis = 1)
# Histogram with numerical features
merged_df.drop(['Work phone', 'Phone', 'Email'], axis = 1).hist(bins=30, figsize=(10, 5))
plt.tight_layout()
```


Correlation heatmap

plt.figure(figsize = (8, 6))
sns.heatmap(merged_df.select_dtypes(include =['float64', 'int64']).drop(['Email', 'Phone', 'Work phone'], axis = 1).corr(), annot = True)
plt.title('Correlation Heatmap')

→ Text(0.5, 1.0, 'Correlation Heatmap')

sns.pairplot(merged_df.select_dtypes(include =['float64', 'int64']).drop(['Email', 'Phone', 'Work phone'], axis = 1))

Data Preprocessing

```
# Engineering income category for stratified sample
def cat(x):
    if x <= 100000:
        return "low"
    elif x <= 300000:
        return 'medium'
    else:
        return 'high'

merged_df['Income_cat'] = merged_df['Income'].apply(cat)
merged_df['Income_cat'].value_counts()</pre>
```

Feature selection

```
Double-click (or enter) to edit
```

```
# Defining stratified train and test set
from sklearn.model_selection import train_test_split
X = merged_df.drop(['Family', 'Bad debt chance'], axis = 1)
y = merged_df['Bad debt chance']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=X['Income_cat'])
X train.info()
<<class 'pandas.core.frame.DataFrame'>
     Index: 25519 entries, 34239 to 24918
     Data columns (total 16 columns):
     # Column
                         Non-Null Count Dtype
     0 Gender
                         25519 non-null object
                          25519 non-null object
                         25519 non-null object
         Property
         Children
                          25519 non-null int64
      4
         Income
                          25519 non-null float64
         Income status
                         25519 non-null object
         Education
                         25519 non-null object
         Marital
                          25519 non-null object
       Housing
                          25519 non-null object
         Day since birth 25519 non-null int64
      10 Days employed
                         25519 non-null int64
      11 Work phone
                          25519 non-null int64
      12 Phone
                          25519 non-null int64
     13 Email
                         25519 non-null int64
      14 Job
                          17550 non-null object
      15 Income_cat
                          25519 non-null object
     dtypes: float64(1), int64(6), object(9)
     memory usage: 3.3+ MB
```

Creating a Data Pipeline for Classification: preprocessing Numerical and categorical Features

```
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.model_selection import cross_val_score
class DataFrameSelector(BaseEstimator, TransformerMixin):
   def __init__(self, attribute_names):
        self.attribute_names = attribute_names
   def fit(self, X, y=None):
        return self
   def transform(self, X):
        return X[self.attribute_names].values
cat_attribs = X_train.drop(['Children', 'Income', 'Day since birth', 'Days employed', 'Income_cat'], axis = 1).column
num_attribs = X_train.iloc[:,[3, 4, 9, 10]].columns
cat_pipeline = Pipeline([
    ('selector', DataFrameSelector(cat_attribs)),
    ('one_hot_encoder', OneHotEncoder())
```

```
num_pipeline = Pipeline([
    (\ 'selector',\ DataFrameSelector(num\_attribs)),
    ('imputer', SimpleImputer(strategy='mean')),
    ('std_scaler', StandardScaler())
])
full_pipeline = FeatureUnion(transformer_list=[
    ('cat_pipeline', cat_pipeline),
    ('num_pipeline', num_pipeline),
1)
# Transform the training and testing data sets
X_train_prepared = full_pipeline.fit_transform(X_train)
X_test_prepared = full_pipeline.fit_transform(X_test)
Implementing Logistic Regression
# Logistic Regression
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, classification_report
model = LogisticRegression(solver = 'liblinear', C=1e9, class_weight = {'low':2,'high':8},random_state = 0)
model.fit(X_train_prepared, y_train)
\overline{2}
                                                                         (i) (?)
                               LogisticRegression
     LogisticRegression(C=1000000000.0, class_weight={'high': 8, 'low': 2},
                         random_state=0, solver='liblinear')
```