tópicos de matemática discreta | MIEInf

cláudia mendes araújo | suzana mendes gonçalves

UM | 2019/2020

grafos

Um grafo é uma coleção de nós (também designados por vértices) e de arestas. Cada uma das arestas liga dois nós. Para visualizar um grafo, podemos representar os nós por pontos do espaço, do plano ou de qualquer outra superfície e as arestas por linhas que ligam os nós.

Esta representação não é única. A única característica importante de um grafo é a incidência de nós e arestas. Todos os elementos de um grafo podem sofrer continuamente deslocações ou deformações, continuando, no entanto e sempre, a representar o mesmo grafo, isto é, a mesma coleção de nós e de arestas.

definição 6.1

Um grafo simples G é um par ordenado G=(V,E) no qual V é um conjunto não vazio e E é um conjunto de subconjuntos de V com exactamente dois elementos. Aos elementos de V chamamos vértices e aos elementos de E chamamos arestas.

grafos simples

exemplo 6.2

O grafo

é simples. De facto, se tomarmos $V = \{a,b,c,d\}$ e $E = \{\{a,b\},\{b,c\},\{c,d\}\}$, o grafo G = (V,E) tem a representação dada. Nesta unidade curricular, estudaremos apenas os grafos simples. Não havendo ambiguidade e se nada for dito em contrário, referir-nos-emos aos grafos simples apenas como **grafos**.

grafos simples

definição 6.3

Dois grafos simples são iguais se V = V' e E = E'.

observação [1] Existem representações *aparentemente* distintas de um mesmo grafo.

No entanto, numa representação de um grafo, o importante é o número de vértices, o número de arestas e o modo como estas se dispõem em relação àqueles. É claro que o grafo do exemplo 6.2 pode ser representado por

grafos simples

observação [2] Uma mesma representação pode descrever grafos que, por definição, são distintos. Por exemplo, ▲

tanto pode representar o grafo $G_1=(V_1,E_1)$, onde $V_1=\{a,b,c,d\}$ e $E_1=\{\{a,b\},\{b,c\},\{c,d\}\}$ como o grafo $G_2=(V_2,E_2)$, onde $V_2=\{1,2,3,4\}$ e $E_2=\{\{1,2\},\{2,3\},\{3,4\}\}$. Os grafos G_1 e G_2 diferem apenas na natureza dos seus vértices e dizem-se isomorfos.

definição 6.4

Dois grafos $G_1=(V_1,E_1)$ e $G_2=(V_2,E_2)$ dizem-se **isomorfos** quando existe $f:V_1\to V_2$ bijetiva tal que, para todo $v,v'\in V_1,\ \{v,v'\}\in E_1$ se e só se $\{f(v),f(v')\}\in E_2$.

No resto deste estudo não distinguiremos entre grafos isomorfos.

Sejam $n \in \mathbb{N}$ e $m \in \mathbb{N}_0$. Seja G = (V, E) um grafo simples com n vértices e m arestas. Para facilitar a escrita, consideremos

$$V = \{v_i : 1 \leq i \leq n\} \qquad \text{e} \qquad E = \{e_j : 1 \leq j \leq m\}.$$

definição 6.5

Diz-se que $e_i \in E$ é **incidente** com $v_i \in V$ quando existe $v_k \in V$ tal que a aresta e_i liga os vértices v_i e v_k .

definição 6.6

Uma matriz $[a_{ij}] \in \mathcal{M}_{n \times m}(\mathbb{Z})$ diz-se uma **matriz de incidência** de G quando

$$a_{ij} = \left\{ egin{array}{ll} 0 & \textit{se } e_{j} \; ilde{n} ilde{ao} \; \acute{e} \; \textit{incidente com } v_{i} \ 1 & \textit{se } e_{j} \; \acute{e} \; \textit{incidente com } v_{i}. \end{array}
ight.$$

exemplo 6.7

Seja G = (V, E) o grafo onde $V = \{a, b, c, d\}$ e $E = \{\{a, b\}, \{b, c\}, \{c, d\}\}$. Considerando $v_1 = a$, $v_2 = b$, $v_3 = c$, $v_4 = d$, $e_1 = \{a, b\}$, $e_2 = \{b, c\}$ e $e_3 = \{c, d\}$, obtemos a matriz de incidência

$$M = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right].$$

Observemos que temos 4 linhas, pois existem 4 vértices, e 3 colunas, correspondentes às 3 arestas.

definição 6.8

Dois vértices v_i e v_j de G dizem-se **adjacentes** quando existe uma aresta em G incidente com ambos.

definição 6.9

Diz-se que uma matriz $[a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{Z})$ é uma matriz de adjacência de G quando

$$a_{ij} = \begin{cases} 0 & \text{se } v_i \text{ e } v_j \text{ não são adjacentes} \\ 1 & \text{se } v_i \text{ e } v_j \text{ são adjacentes}. \end{cases}$$

exemplo 6.10

A matriz

$$M = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

é uma matriz de adjacência do grafo do exemplo 6.7.

observação

- [1] Uma matriz de adjacência de um grafo simples é uma matriz quadrada. Mais, é uma matriz simétrica cuja diagonal é preenchida por zeros.
- [2] Dado um grafo simples, a construção de uma matriz de incidência (ou de adjacência) depende da ordem pela qual se consideram os vértices e as arestas. Assim, o mesmo grafo admite várias matrizes de incidência e de adjacência. No entanto, duas quaisquer matrizes de incidência (ou de adjacência) de um mesmo grafo são semelhantes, pois uma obtém-se da outra por troca de linhas e/ou colunas

Existem grafos simples que, pelas suas características próprias, merecem destaque especial.

definição 6.11

Um grafo trivial é um grafo G = (V, E) onde #V = 1 e #E = 0.

definição 6.12

Um **grafo nulo** é um grafo G = (V, E) onde #E = 0.

definição 6.13

Um **grafo completo** é um grafo no qual dois quaisquer vértices são adjacentes. Um grafo completo com n vértices representa-se por K_n .

exemplo 6.14

Para n = 1, 2, 3, 4, 5, os grafos completos são

proposição 6.15

Um grafo completo K_n tem $\binom{n}{2}$ arestas.

definição 6.16

Um grafo G = (V, E) diz-se um **grafo bipartido** se existir uma partição $\{X, Y\}$ de V de tal modo que cada vértice de X é adjacente apenas a vértices de Y e cada vértice de Y é adjacente apenas a vértices de X.

exemplo 6.17

Os dois grafos seguintes são bipartidos

definição 6.18

Um **grafo bipartido completo** é um grafo bipartido G = (V, E) tal que, para a partição $\{X, Y\}$ de V da definição, cada vértice de X é adjacente a todos os vértices de Y(e, portanto, cada vértice de Y é adjacente a todos os vértices de X). Representa-se um grafo bipartido completo por $K_{m,n}$ onde #X = m e #Y = n.

exemplo 6.19

Os grafos $K_{2,3}$ e $K_{3,3}$ são representados, respetivamente, por

grau de um vértice

definição 6.20

Sejam G = (V, E) um grafo e $v \in V$. Chama-se **grau** (ou **valência**) de v, e representa-se por grau(v), ao número de arestas incidentes com v.

exemplo 6.21

- 1 | No grafo completo K_6 todos os vértices têm grau 5.
- $2 \mid$ No grafo bipartido completo $K_{2,3}$ existem dois vértices com grau 3 e três vértices com grau 2.

grau de um vértice

teorema 6.22 [teorema do aperto de mãos]

Num grafo G = (V, E), a soma dos graus de todos os seus vértices é igual ao dobro do número das suas arestas.

corolário 6.23

Em qualquer grafo, o número de vértices de grau ímpar é par.

demonstração

Seja G = (V, E) é um grafo com n arestas. Então,

$$\sum_{\operatorname{grau}(v) \text{ impar}} \operatorname{grau}(v) \ + \sum_{\operatorname{grau}(v) \text{ par}} \operatorname{grau}(v) = \sum_{v \in V} \operatorname{grau}(v) = 2n.$$

Logo, $\sum_{\text{grau}(v) \text{ impar}} \operatorname{grau}(v)$ é par e, portanto, o número de vértices de grau impar é par.

caminhos

definição 6.24

Um caminho de um grafo G é uma sequência de vértices de G no qual dois vértices sucessivos definem uma aresta. Representa-se um caminho por $\langle v_1, v_2, \ldots, v_k \rangle$, onde v_1, v_2, \ldots, v_k são vértices de G. Ao primeiro vértice da sequência chamamos **origem do caminho**, ou **vértice inicial**, e ao último vértice chamamos **destino do caminho**, ou **vértice final**.

Por convenção, chama-se **caminho trivial** à sequência $\langle a \rangle$, onde $a \in V$.

exemplo 6.25

No grafo

 $\langle a, b, d, f, c, e, f, b \rangle$ é um caminho de a a b.

caminhos

Um caminho pode ser também definido como uma sequência de arestas na qual quaisquer duas arestas sucessivas têm um vértice em comum.

exemplo 6.26

No grafo

o caminho $\langle a, b, d, f, c, e, f, b \rangle$ pode também ser representado por $\langle e_1, e_2, e_3, e_6, e_5, e_4, e_9 \rangle$.

caminhos

definição 6.27

Chama-se comprimento de um caminho ao número de arestas que definem esse caminho.

exemplo 6.28

O caminho apresentado no exemplo 6.26 tem comprimento 7.

definição 6.29

Um ciclo é um caminho de comprimento maior que 2 onde não há repetição de vértices, com exceção dos vértices inicial e final, que são iguais.

exemplo 6.30

Qualquer linha poligonal pode ser vista como um ciclo.

grafos conexos

definição 6.31

Um **grafo conexo** é um grafo G = (V, E) no qual existe um caminho entre quaisquer dois dos seus vértices.

Um grafo desconexo é um grafo que não é conexo.

exemplo 6.32

O grafo

é um grafo conexo. O grafo

é um grafo desconexo.

definição 6.33

Uma árvore é um grafo conexo no qual não existem ciclos.

exemplo 6.34

O grafo

é uma árvore.

exemplo 6.35

Os grafos

são as únicas árvores com 2 e 3 vértices, resp..

Os grafos

são as únicas árvores com 4 vértices.

Os grafos

são as únicas árvores com cinco vértices.

proposição 6.36

Numa árvore, a diferença entre o número de vértices e o número de arestas é 1.

proposição 6.37

Toda a árvore tem pelo menos dois vértices de grau 1.

exemplo 6.38

A árvore

tem 12 vértices e 11 arestas.

Existem 7 vértices com grau 1.

