Álgebra

Notas de Aula

Lucas Giraldi A. Coimbra

Sumário

1	Grupo Fundamental e Espaços de Recobrimento				
2	Topologia Algébrica	5			
3	Álgebra Homológica				
	3.1 Categorias	7			
	3.2 Aula 01	8			

2 SUMÁRIO

Capítulo 1

Grupo Fundamental e Espaços de Recobrimento

Capítulo 2

Topologia Algébrica

Capítulo 3

Álgebra Homológica

3.1 Categorias

Essa seção foi construída pelo autor das notas de aula com o intuíto de resumir fatos categóricos relevantes para o estudo de álgebra homológica.

Uma *categoria* é uma classe C, cujos elementos são chamados de *objetos*, de maneira que para cada dois $A, B \in C$ se associa um conjunto $\operatorname{Hom}_{C}(A, B)$, cujos elementos são chamados de *morfismos entre* $A \in B$. Se $f \in \operatorname{Hom}_{C}(A, B)$, escrevemos $f : A \to B$. Pedimos que morfismos satisfaçam as seguintes condições:

- dados A, B, $C \in C$, deve existir uma operação de composição \circ que, dados $f: A \to B$ e $g: B \to C$ produz um morfismo $g \circ f: A \to C$;
- dado $A \in \mathcal{C}$ deve existir um morfismo $\mathbb{1}_A \colon A \to A$ tal que para todos $B \in \mathcal{C}$, $f \colon A \to B$ e $g \colon B \to A$ temos

$$f \circ \mathbb{1}_A = f$$
 e $\mathbb{1}_A \circ g = g$; (3.1)

• dados A, B, C, $D \in C$, f: $A \to B$, g: $B \to C$ e h: $C \to D$, devemos ter

$$(h \circ g) \circ f = h \circ (g \circ f). \tag{3.2}$$

Um *funtor covariante* entre duas categorias \mathcal{C} e \mathcal{D} , denotado por $F \colon \mathcal{C} \to \mathcal{D}$. é uma associação, para cada $A \in \mathcal{C}$ de um objeto $F(A) \in \mathcal{C}$, e para cada $f \colon A \to B$, de um morfismo $F(f) \colon F(A) \to F(B)$, de maneira que $F(\mathbbm{1}_A) = \mathbbm{1}_{F(A)}$ e $F(f \circ g) = F(f) \circ F(g)$. Um *funtor contravariante* é definido da mesma maneira, mas para cada $f \colon A \to B$ o funtor produz um morfismo $F(f) \colon F(B) \to F(A)$ e a regra de composição é dada por $F(f \circ g) = F(g) \circ F(f)$.

Uma *transformação natural* entre dois funtores covariantes $F,G:\mathcal{C}\to\mathcal{C}$, denotada por $\eta:F\to G$, é uma associação, para cada objeto $A\in\mathcal{C}$, de um morfismo $\eta_A\colon F(A)\to G(A)$, de maneira que dados $f,g\colon A\to B$ (com $A,B\in\mathcal{C}$), o diagrama abaixo comuta.

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\downarrow \eta_A \qquad \qquad \downarrow \eta_B$$

$$G(A) \xrightarrow{G(f)} G(B)$$

Uma transformação natural entre funtores contravariantes pode ser definida de maneira similar.

Dada uma categoria \mathcal{C} , definimos o *funtor identidade* $\mathbb{1}_{\mathcal{C}}$ por $\mathbb{1}_{\mathcal{C}}(A) = A$ e $\mathbb{1}_{\mathcal{C}}(f) = f$ para quaisquer $A, B \in \mathcal{C}$ e $f: A \to B$. Dadas categorias \mathcal{C}, \mathcal{D} e \mathcal{E} e funtores $F: \mathcal{C} \to \mathcal{D}$ e $G: \mathcal{D} \to \mathcal{E}$, podemos definir a sua *composição* como o funtor $G \circ F: \mathcal{C} \to \mathcal{E}$ dado por $(G \circ F)(A) = G(F(A))$ e $(G \circ F)(f) = G(F(f))$.

Diremos que duas categorias \mathcal{C} e \mathcal{D} são *isomorfas* se existe um *isomorfismo* de categorias entre elas, isso é, um funtor $F:\mathcal{C}\to\mathcal{D}$ tal que existe um outro funtor $G:\mathcal{D}\to\mathcal{C}$ de maneira que $F\circ G=\mathbb{1}_{\mathcal{D}}$ e $G\circ F=\mathbb{1}_A$.

Dadas duas categorias \mathcal{C} e \mathcal{D} , três funtores covariantes $F,G,H\colon\mathcal{C}\to\mathcal{D}$ e duas transformações naturais $\eta\colon F\to G$ e $\lambda\colon G\to H$, definimos a *composição* de η e λ como uma transformação natural $\lambda\circ\eta\colon F\to H$ cuja componente em $A\in\mathcal{C}$ é dada por $(\lambda\circ\eta)_A=\lambda_A\circ\eta_A$. Podemos definir também a *transformação identidade* por $\mathbb{1}_F\colon F\to F$ cuja componente em $A\in\mathcal{C}$ é $(\mathbb{1}_F)_A=\mathbb{1}_{F(A)}$.

Diremos que dois funtores $F,G:\mathcal{C}\to\mathcal{D}$ são *naturalmente isomorfos* se existe um *isomorfismo natural* entre eles, isso é, uma transformação natural $\eta:F\to G$ tal que existe uma outra transformação natural $\lambda:G\to F$ de maneira que $\lambda\circ\eta=\mathbb{1}_F$ e $\eta\circ\lambda=\mathbb{1}_G$.

Diremos que duas categorias \mathcal{C} e \mathcal{D} são *equivalentes* se existe uma *equivalência* de categorias entre elas, isso é, um funtor $F \colon \mathcal{C} \to \mathcal{D}$ tal que existe um outro funtor $G \colon \mathcal{D} \to \mathcal{C}$ de maneira que existem isomorfismos naturais $\eta \colon F \circ G \to \mathbb{1}_{\mathcal{D}}$ e $\lambda \colon G \circ F \to \mathbb{1}_{A}$.

Se \mathcal{C} é uma categoria e $A, B \in \mathcal{C}$, então um *produto* de A e B é um outro objeto \mathcal{C} , geralmente denotado por $A \times B$, equipado com um par de morfismos $\pi_A \colon A \times B \to A$ e $\pi_B \colon A \times B \to B$, satisfazendo a seguinte propriedade universal: para cada $D \in \mathcal{C}$ e para cada par de morfismos $f_A \colon D \to A$ e $f_B \colon D \to B$, existe um único morfismo $f \colon D \to A \times B$ tal que o seguinte diagrama é comutativo.

A definição pode ser estendida similarmente para uma família finita qualquer de objetos A_1, \ldots, A_n , produzindo o produto $A_1 \times \cdots \times A_n$.

Se \mathcal{C} é uma categoria e $A, B \in \mathcal{C}$, então um *coproduto* de A e B é um outro objeto \mathcal{C} , geralmente denotado por $A \oplus B$, equipado com um par de morfismos $i_A \colon A \to A \oplus B$ e $i_B \colon B \to A \oplus B$, satisfazendo a seguinte propriedade universal: para cada $D \in \mathcal{C}$ e para cada par de morfismos $f_A \colon A \to D$ e $f_B \colon B \to D$, existe um único morfismo $f \colon A \oplus B \to D$ tal que o seguinte diagrama é comutativo.

$$A \xrightarrow[i_A]{f_{\uparrow}} A \oplus B \xleftarrow[i_B]{f_B} B$$

A definição pode ser estendida similarmente para uma família finita qualquer de objetos A_1, \ldots, A_n , produzindo o produto $A_1 \oplus \cdots \oplus A_n$.

Uma categoria C é dita *pré-aditiva* se, dados $A, B \in C$, o conjunto $\operatorname{Hom}_{\mathcal{C}}(A, B)$ possui uma operação binária, geralmente denotada por +, que faz dele um grupo abeliano, e de maneira que composição de morfismos é bilinear, isso é: dados $A, B, C \in C$, $f_1, f_2 \colon A \to B$ e $g_1, g_2 \colon B \to C$, temos

$$g_1 \circ (f_1 + f_2) = g_1 \circ f_1 + g_1 \circ f_2 \quad e \quad (g_1 + g_2) \circ f_1 = g_1 \circ f_1 + g_2 \circ f_1.$$
 (3.3)

3.2 Aula 01

A referência principal do curso será o texto "Introduction to Homological Algebra" de Charles Weibel. O objetivo da primeira aula é dar algumas definições e lembrar certos conceitos categóricos.

Começamos com um anel R, que para todos os propósitos pode ser comutativo dependendo do objetivo do aluno, mas que por agora é apenas associativo e com unidade. Nos preocuparemos, ao longo do curso, com a categoria R-Mod dos módulos de R à esquerda, isso é, dos grupos abelianos (M,+) equipados de uma ação de R à esquerda

$$R \times M \to M$$

$$(a, x) \mapsto ax'$$
(3.4)

isso é, um morfismo de anéis $R \to \operatorname{End}(M)$ (note que $\operatorname{End}(M)$ possui estrutura de anel com a soma (f+g)(x)=f(x)+g(x)). É importante notar que as categorias R-Mod e Mod-R (dos módulos à esquerda) não são necessariamente equivalentes (mas podem ser, caso R seja comutativo, ou possua uma involução).

Assume-se que o estudante já tem conhecimento da teoria de módulos sobre anéis. O objeto de interesse desse curso será a categoria dos complexos de cadeias. Um *complexo de cadeias* em R-Mod é uma sequência $C_{\bullet} = \{C_i\}_{i \in \mathbb{Z}} \subset R$ -Mod junto com uma coleção de morfismos de módulos $d = \{d_i \colon C_i \to C_{i-1}\}_{i \in \mathbb{Z}}$ tal que $d^2 = 0$, isso é, tal que para cada $i \in \mathbb{Z}$ a composição $d_{i-1} \circ d_i \colon C_i \to C_{i-2}$ é o mapa nulo. Equivalentemente, podemos pedir que im $d_i \subset \ker d_{i-1}$ para todo $i \in \mathbb{Z}$.

3.2. AULA 01 9

Os *módulos de homologia* de C_{\bullet} são definidos, para cada $i \in \mathbb{Z}$, por

$$H_i(C_{\bullet}) = \frac{\ker d_i}{\operatorname{im} d_{i+1}}.$$
(3.5)

Geralmente denotamos ker d_i por $Z_i(C_{\bullet})$, que é o módulo das *i-cadeias de* C_{\bullet} , e denotamos im d_{i+1} por $B_i(C_{\bullet})$, que é o módulo dos *i-bordos de* C_{\bullet} .

Podemos considerar também o conceito dual: um *complexo de cocadeias* em R-Mod é uma sequência $C^{\bullet} = \{C^i\}_{i \in \mathbb{Z}} \subset R$ -Mod junto com uma coleção de morfismos de módulos $d = \{d^i : C^i \to C^{i+1}\}$ tal que $d^2 = 0$, isso é, tal que para cada $i \in \mathbb{Z}$ a composição $d^{i+1} \circ d^i : C^i \to C^{i+2}$ é o mapa nulo. Equivalentemente, podemos pedir que im $d^i \subset \ker d^{i+1}$ para todo $i \in \mathbb{Z}$.

Os *módulos de cohomologia* de C^{\bullet} são definidos, para cada $i \in \mathbb{Z}$, por

$$H^{i}(C^{\bullet}) = \frac{\ker d^{i}}{\operatorname{im} d^{i-1}}.$$
(3.6)

Geralmente denotamos ker d^i por $Z^i(C^{\bullet})$, que é o módulo das *i-cocadeias de* C^{\bullet} , e denotamos im d^{i-1} por $B^i(C^{\bullet})$, que é o módulo dos *i-cobordos de* C^{\bullet} .

Sempre que nos referirmos a "complexos" ao longo do curso, a menos que o contrário seja dito, iremos nos referir a complexos de cadeia. A grande maioria dos argumentos e dos resultados vale também para complexos de cocadeia, apenas invertendo as setas da demonstração.

O primeiro passo é notar que complexos em R-Mod formam uma categoria. Um *morfismo de complexos* entre complexos C_{\bullet} e D_{\bullet} é uma coleção de morfismos $f_{\bullet} = \{f_i \colon C_i \to D_i\}_{i \in \mathbb{Z}}$ tais que o seguinte diagrama comuta

$$C_{i} \xrightarrow{d_{i}} C_{i-1}$$

$$\downarrow f_{i} \qquad \downarrow f_{i-1}$$

$$D_{i} \xrightarrow{d_{i}} D_{i-1}$$

Para cada complexo C_{\bullet} temos a identidade $\mathbb{1}_{C_{\bullet}} \colon C_{\bullet} \to C_{\bullet}$ que age identicamente em cada módulo: $(\mathbb{1}_{C_{\bullet}})_i = \mathbb{1}_{C_i}$. Além disso, se temos morfismos $f_{\bullet} \colon C_{\bullet} \to D_{\bullet}$ e $g_{\bullet} \colon D_{\bullet} \to E_{\bullet}$ podemos construir a composição $g_{\bullet} \circ f_{\bullet} \colon C_{\bullet} \to E_{\bullet}$ da maneira esperada: para cada $i \in \mathbb{Z}$, tomamos $(g_{\bullet} \circ f_{\bullet})_i = g_i \circ f_i \colon C_i \to E_i$. Denotamos a categoria dos complexos em R-Mod por $\mathrm{Ch}_{\bullet}(R$ -Mod) ou apenas Ch_{\bullet} se o anel estiver entendido do contexto.

Proposição 1

A categoria dos complexos de cadeia é aditiva.

Demonstração.