Statistical palaeoclimate reconstruction: recent results and opportunities for collaboration

Andrew Parnell andrew.parnell@ucd.ie

UCD School of Mathematics and Statistics

Some history...

More versions ...

How are these created?

Year	Temperature	Proxy Data (p variables)			
2014	Temp_record ₂₀₁₄	Proxy _{2014, 1}	Proxy _{2014,2}		Proxy _{2014,p}
2013	Temp_record ₂₀₁₃	Proxy _{2013, 1}	Proxy _{2013,2}		Proxy _{2013,p}
:	:	i i	:	٠	:
Year n	Temp_record _n	Proxy _{n,1}	Proxy _{n,2}		$Proxy_{n,p}$
Year n-1	Temp_estimate _{n-1}	Proxy _{n-1,1}	Proxy _{n-1,2}		Proxy _{n-1,p}
÷	i :	:	:	٠	:
Year m+1	Temp_estimate _{m+1}	Proxy _{m+1,1}	Proxy _{m+1,2}		Proxy _{m+1,p}
Year m	Temp_estimate _m	Proxy _{m,1}	$Proxy_{m,2}$		Proxy _{m,p}

Table 1.1: Climate reconstruction layout

Some notation

Let:

- y be the ancient proxy data. Time indexed and usually multivariate
- ► c be ancient 'climate'. Time indexed and occasionally multivariate. Sometimes spatial too
- y^{cal} be the proxy data for the calibration period
- $ightharpoonup c^{cal}$ be the climate data for the calibration period

Main aim is to find $c|y, y^{cal}, c^{cal}$

The regression version

Write:

$$c^{\mathsf{cal}} = f(y^{\mathsf{cal}}) + \epsilon$$

f might be a linear regression or involve some dimension reduction or variable selection.

The regression version

Write:

$$c^{\mathsf{cal}} = f(y^{\mathsf{cal}}) + \epsilon$$

f might be a linear regression or involve some dimension reduction or variable selection.

Then create:

$$\hat{c} = \hat{f}(y)$$

Problem solved!

Problems with this approach

Statistical:

- ► Hard to do model checking on f due to the size and nature of the calibration data
- ► The calibration period is autocorrelated, leading to many spurious relationships
- ▶ Dimension reduction approaches will be very sensitive to the number of components chosen

Problems with this approach

Statistical:

- ► Hard to do model checking on f due to the size and nature of the calibration data
- ► The calibration period is autocorrelated, leading to many spurious relationships
- ▶ Dimension reduction approaches will be very sensitive to the number of components chosen

Biological:

- ► The causation is the wrong way round. Changes in climate cause changes in proxy values
- The uncertainty in the proxies is usually substantial and not included
- ► The proxies might not be sensitive to northern hemisphere temperature, or other chosen aspects of climate

A better Bayesian way

Instead write:

$$y^{\mathsf{cal}} = f(c^{\mathsf{cal}}) + \epsilon$$

f is known here as a **forward model** since it works in the causal direction we can include physical knowledge of how climate affects the proxies

A better Bayesian way

Instead write:

$$y^{\mathsf{cal}} = f(c^{\mathsf{cal}}) + \epsilon$$

f is known here as a **forward model** since it works in the causal direction we can include physical knowledge of how climate affects the proxies

Now use Bayes:

$$p(c|y, y^{\mathsf{cal}}, c^{\mathsf{cal}}) \propto p(y^{\mathsf{cal}}|c^{\mathsf{cal}})p(y|c)p(c)$$

We have the extra advantage that we can include a prior distribution p(c) on the climate process

Bayesian palaeoclimate reconstruction in more detail

$$p(c, \theta, \phi|y, y^{\text{cal}}, c^{\text{cal}}) \propto p(y^{\text{cal}}|c^{\text{cal}}, \theta)p(y|c, \theta)p(c|\phi)p(\theta, \phi)$$

Bayesian palaeoclimate reconstruction in more detail

$$p(c, \theta, \phi|y, y^{\text{cal}}, c^{\text{cal}}) \propto p(y^{\text{cal}}|c^{\text{cal}}, \theta)p(y|c, \theta)p(c|\phi)p(\theta, \phi)$$

- $ightharpoonup p(heta,\phi)$ is a prior on the parameters that control the proxy/climate relationship, and climate dynamics respectively
- $ho(c|\phi)$ is a prior distribution on climate dynamics. This might be a simple statistical time series model (e.g. a random walk) all the way up to a full general circulation model
- ▶ $p(y|c,\theta)$ is the forward model again, but this time applied to the missing ancient climates
- ▶ $p(y^{cal}|c^{cal}, \theta)$ is the forward model applied to the calibration data.

Why is this not the standard way people do this?

- Building forward models is hard because you need a good calibration data set, some statistical modelling knowledge (especially with multivariate data), and some knowledge of the pollen/climate relationship
- 2. People want to avoid testing their models (out of sample evaluation etc)
- 3. Finding a good prior for climate dynamics is hard, especially if you have timing uncertainty
- 4. Bayes is still not common in climate science

Example: sea level rise in East Coast USA

- ► Foramnifera (or forams) live in the tidal range along coastal marshes
- ► There are lots of different species, and they all like slightly different bits of the tidal range
- If you take a sediment core on the marsh you can count lots of fossilised forams (which can also be dated) and produce a history of sea level height at that site
- We also take a number of surface samples from the local region to build up a calibration data set of which forams like which aspect of the tidal range

The forward model

Model description

- Our forward model for the forams uses multinomial counts and splines
- We have a second proxy (called $\delta^{13}C$) that gives further information on the position in the tidal frame at that depth in the core
- Our prior on climate dynamics (here height of sea level over time) uses a fancy Gaussian process

Rate of sea level rise (mm/yr) for New Jersey, USA

Year CE

Example 2: multivariate climate in Italy

Other examples:

- Parnell, A. C., Sweeney, J., Doan, T. K., Salter-Townshend, M., Allen, J. R. M., Huntley, B., & Haslett, J. (2015). Bayesian inference for palaeoclimate with time uncertainty and stochastic volatility. Journal of the Royal Statistical Society: Series C (Applied Statistics), 64(1), 115–138.
- ▶ Tolwinski-Ward, S. E., Tingley, M. P., Evans, M. N., Hughes, M. K., & Nychka, D. W. (2014). Probabilistic reconstructions of local temperature and soil moisture from tree-ring data with potentially time-varying climatic response. Climate Dynamics, 44(3-4), 791–806.
- Holmström, L., Ilvonen, L., Seppä, H., & Veski, S. (2015). A Bayesian spatiotemporal model for reconstructing climate from multiple pollen records. The Annals of Applied Statistics, 9(3), 1194–1225.

Fit a Bayesian model to:

▶ Reconstruct spatio-temporal palaeoclimate ...

Fit a Bayesian model to:

- ▶ Reconstruct spatio-temporal palaeoclimate ...
- ... using physical/statistical forward models for many proxies

Fit a Bayesian model to:

- ▶ Reconstruct spatio-temporal palaeoclimate ...
- ... using physical/statistical forward models for many proxies
- ... and physical/statistical models for climate dynamics

Fit a Bayesian model to:

- ▶ Reconstruct spatio-temporal palaeoclimate ...
- ... using physical/statistical forward models for many proxies
- ... and physical/statistical models for climate dynamics

The resulting output should be a large sample of spatio-temporal climate histories

Challenges 1: fitting state space models to large and complex data sets

What we really have is a state-space model in continuous time:

$$y(t) = f(c(t)) + \epsilon$$

 $c(t) = c(t - \Delta) + \gamma$

Challenges 1: fitting state space models to large and complex data sets

What we really have is a state-space model in continuous time:

$$y(t) = f(c(t)) + \epsilon$$

 $c(t) = c(t - \Delta) + \gamma$

- ► Fitting these models is hard when all the quantities are multivariate and *f* is a complex function
- ► Pseudo-marginal partical approaches seem to be the way to go for single-site models
- ► No obvious method yet for multi-site models. Perhaps SPDF-INI A?

Challenges 2: Incorporating mechanistic models

A new version

$$y(t) = f(c(t))$$

 $c(t) = g(c(t_{-}))$

Challenges 2: Incorporating mechanistic models

A new version

$$y(t) = f(c(t))$$

 $c(t) = g(c(t_{-}))$

- ► The problem gets trickier if *f* and *g* above are deterministic models
- ► Some quite complex deterministic models have been suggested for pollen/climate. Not many for other proxies
- Quite a few simple climate models that might work over the palaeoclimate period:

$$dX_{(1)} = -(X_{(1)} + X_{(2)} + vX_{(3)} + F(\gamma_P, \gamma_C, \gamma_E)) dt + \sigma_1 dW_{(1)}$$

$$dX_{(2)} = (rX_{(2)} - pX_{(3)} - sX_{(2)}^2 - X_{(2)}^3) dt + \sigma_2 dW_{(2)}$$

$$dX_{(3)} = -q(X_{(1)} + X_{(3)}) dt + \sigma_3 dW_{(3)}$$

Back to the start: can we do better than this?

Summary

- A Bayesian version model with good forward models which produces climate histories seems like the best way to go for this work
- ► We need help with Bayesian computation for large multivariate non-linear non-Gaussian state space models
- We need help with combining deterministic/stochastic elements in forward models and climate models
- ▶ We can do better than the Hockey Stick!