CS3353: Data Structures and Algorithm Analysis I Spring 2024

Homework #6 - Reference #1

I. Print all the nodes that can be reached from the node H (including H itself). Use a **depth-first search** starting at node H using a **stack**. Show all your work.

Adjacency Lists			
A:	В	С	D
B:	Е		
C:	В	G	
D:	С	G	
E:	С	F	
F:	С	Н	
G:	F	Н	- 1
H:	Ε	- 1	
l:	F		

- Push H onto the stack
 - o Stack: H
- Pop and print the top element of the stack, that is H. Push all the neighbors of H onto the stack.
 - Stack: E, I
 - Print: H
- Pop and print the top element of the stack, that is I. Push all the neighbors of I onto the stack.
 - o Stack: E. F
 - o Print: I
- Pop and print the top element of the stack, that is F. Push all the neighbors of F onto the stack.
 - o Stack: E, C
 - o Print: F
- Pop and print the top element of the stack, that is C. Push all the neighbors of C onto the stack.
 - o Stack: E, B, G
 - o Print: C
- Pop and print the top element of the stack, that is G. Push all the neighbors of G onto the stack. No neighbor to push onto the stack.
 - o Stack: E, B
 - o Print: G
- Pop and print the top element of the stack, that is B. Push all the neighbors of B onto the stack. No neighbor to push onto the stack.
 - o Stack: E
 - o Print: B
- Pop and print the top element of the stack, that is E. Push all the neighbors of E onto the stack. No neighbor to push onto the stack. Now the stack is empty.
 - o Stack:
 - o Print: E
- H, I, F, C, G, B, E: These are the node which are reachable from the node H.