Name: Vishisht Priyadarshi

Rolls No: 180123053

MA 423: Matrix Computations Lab - 1

Question - 1

(a) Wilkinson matrix for n = 4:

(b) Hamiltonian matrix for n = 4:

0.3123	-1.4627	-0.4679	0.1562	-3.0219	0.7802	0.7961	0.2430
-0.5152	-0.2573	0.8756	0.2902	0.7802	-0.3076	-0.3962	0.4468
0.2708	-0.7940	0.2130	0.7369	0.7961	-0.3962	-0.1908	-0.7512
-0.7796	0.3427	-0.4569	0.0122	0.2430	0.4468	-0.7512	-0.7093
1.8562	1.1919	0.5629	-0.8149	-0.3123	0.5152	-0.2708	0.7796
1.1919	-0.5226	1.0122	1.4383	1.4627	0.2573	0.7940	-0.3427
0.5629	1.0122	1.7716	0.2500	0.4679	-0.8756	-0.2130	0.4569
-0.8149	1.4383	0.2500	-1.9057	-0.1562	-0.2902	-0.7369	-0.0122

Question - 2

(a) s = 7.485471(b) scf = 7.484600(c) scb = 7.484900

Result: (c) is closer to (a) than (b) which is evident from below:

|s - scf| = 0.000871|s - scb| = 0.000571

Question - 3

Question - 4

(a) The column oriented back substitution method to solve upper triangular system for Ux = b:

$$U = [2 4 5 \\ 0 2 6 \\ 0 0 2]$$

$$\mathbf{x} = \begin{bmatrix} 7.5000 \\ -6.5000 \\ 3.0000 \end{bmatrix}$$

(b) The row oriented forward substitution method to solve upper triangular system for Lx = b:

$$L = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 4 & 0 \\ 2 & 4 & 8 \end{bmatrix}$$

$$b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

$$x = \begin{bmatrix} 2.0000 \\ 0.2500 \end{bmatrix}$$

0.1250]

Question - 5

An example for the function program using the matrix A defined as below is:

$$A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 9 & 4 \\ 3 & 4 & 7 \end{bmatrix}$$

LU factorization for matrix A -