Preliminar notes on maximum-flow problem solved in FCPP. Notation:

 \bullet G will denote the directed weighted graph of capacities, s and t will denote respectively source and sink of our graph.

We will assume that capacities are nonnegative and symmetrical.

• For a path \mathfrak{p} we will denote with $|\mathfrak{p}|$ its length.

When it will be convenient, we will treat a directed weighted graph G as a function $G: V \times V \to \mathbb{R}_+$, where V is its set of vertices. With a little abuse of notation we will say that the edge from a node δ to a node δ' is in G, or $(\delta, \delta') \in G$, in place of $G(\delta, \delta') \neq 0$.

Likewise we will say that a path \mathfrak{p} is contained in G, or $\mathfrak{p} \subset G$, if every edg

• For a field Φ , \mathcal{R}_{Φ} will denote the directed weighted graph of residual capacities respect to Φ :

$$\mathcal{R} = G - \Phi \tag{1}$$

• We define a dmissible path respect to Φ a path γ in G from source to sink such that

$$\Phi|_{\gamma} < G|_{\gamma}$$

• We say that a flow Φ is maximal if there are no admissible paths in G respect to Φ .

Proposizione 0.1. Φ is a maximum flow iff \mathcal{R}_{Φ} does not have paths from source to sink.

For a field-value f in δ we define $|f| := \sum_{\delta \sim \delta'} f(\delta')$. We now formalize functions involved in the algorithm. Let Φ be a field and $\delta \sim \delta'$ be devices, we define

$$\Phi^*(\delta, \delta') := \Phi(\delta', \delta). \text{ By co-induction:}$$

$$\Phi_0 := \Phi$$

$$\mathcal{R}_n := \mathcal{R}_{\Phi_n}$$

$$e_n(\delta) := \begin{cases} \infty & \text{if } \delta = s \\ -\infty & \text{if } \delta = t \\ |\Phi_n(\delta)| & \text{otherwise} \end{cases}$$

$$d_0(\delta) := \begin{cases} 0 & \text{if } \delta = t \\ \infty & \text{otherwise} \end{cases}$$

$$d_n(\delta) := \begin{cases} 0 & \text{if } \delta = t \\ \infty & \text{otherwise} \end{cases}$$

$$I_{n+1} := \operatorname{trunc}((G + \Phi_n^*) \cdot (d_{n-1}^* < d_n), e(\Phi_n^*))$$

$$\Phi_{n+1} := -\Phi_n^* + I_{n+1} + \operatorname{trunc}(\Phi_n^*, e(\Phi_n^* - I_{n+1}))$$

 $X_n := \{ \delta \mid d_n(\delta) = \infty \}$