Course 6

Problem: Parsing (construct the parsee tree)

if the source program is sintactically correct
 then construct syntax tree
 else "syntax error"

source program is sintactically correct = $w \in L(G) \Leftrightarrow S \stackrel{*}{\Rightarrow} w$

Parsing

- How:
 - 1. Top-down vs. Bottom-up
 - 2. Recursive vs. linear

	Descendent	Ascendent
Recursive	Descendent recursive parser	Ascendent recursive parser
Linear	LL(k): LL(1)	LR(k): LR(0), SLR, LR(1), LALR

Result – parse tree -representation

Arbitrary tree – child sybling representation

• Sequence of derivations S => α_1 => α_2 =>... => α_n = w

• String of production – index associated to prod – which prod is used at each derivation step: 1,4,3,...

index	Info	Parent	Left sibling
1	S	0	0
2	а	1	0
3	S	1	2
4	b	1	3
5	S	1	4
6	С	3	0
7	С	5	0

Descendent recursive parser

Example

Formal model

Configuration

(s, i, α , β)

Initial configuration: $(q,1,\varepsilon,S)$

where:

- s = state of the parsing, can be:
 - q = normal state
 - b = back state
 - f = final state corresponding to success: w ∈ L(G)
 - e = error state corresponding to insuccess: w ∉ L(G)
- i position of current symbol in input sequence $w = a_1 a_2 ... a_n$, $i \in \{1,...,n+1\}$
- α = working stack, stores the way the parse is built
- β = input stack, part of the tree to be built

Define moves between configurations

Final configuration: $(f,n+1, \alpha, \varepsilon)$

Expand

WHEN: head of input stack is a nonterminal

$$(q,i, \alpha, A\beta) \vdash (q,i, \alpha A_1, \gamma_1 \beta)$$

where:

A $\rightarrow \gamma_1 \mid \gamma_2 \mid ...$ represents the productions corresponding to A 1 = first prod of A

Advance

WHEN: head of input stack is a terminal = current symbol from input

$$(q,i, \alpha, a_i\beta) \vdash (q,i+1, \alpha a_i, \beta)$$

Momentary insuccess

WHEN: head of input stack is a terminal ≠ current symbol from input

$$(q,i, \alpha, a_i\beta) \vdash (b,i, \alpha, a_i\beta)$$

Back

WHEN: head of working stack is a terminal

(b,i,
$$\alpha$$
a, β) \vdash (b,i-1, α , a β)

Another try

WHEN: head of working stack is a nonterminal

(b,i,
$$\alpha A_{j}$$
, $\gamma_{j}\beta$) \vdash (q,i, αA_{j+1} , $\gamma_{j+1}\beta$), if $\exists A \rightarrow \gamma_{j+1}$
(b,i, α , $A\beta$), otherwise with the exception (e,i, α , β), if i=1, $A = S$, **ERROR**

Success

$$(q,n+1, \alpha, \varepsilon) \vdash (f,n+1, \alpha, \varepsilon)$$

Algorithm

Algorithm Descendent Recursive

```
INPUT: G, w = a_1 a_2 ... a_n
OUTPUT: string of productions and message
config = (q,1, \varepsilon,S);
                                                                 //initial configuration (s,i,\alpha,\beta)
while (s \neq f) and (s \neq e) do
  if s = q
    then
        Success(config)
           else
                if Head(\beta) = A
                  then Expand(config)
                  else
                     if Head(\beta) = a_i
                        then Advance(config)
                        else MomentaryInsuccess(config)
    else
        if s = b
          then
              if Head(\alpha) = a
                then Back(config)
                else AnotherTry(config)
endWhile
if s = e then message"Error"
        else message "Sequence accepted";
             BuildStringOfProd(\alpha)
```

$w \in L(G) - HOW$

- Process α :
 - From left to right (reverse if stored as stack)
 - Skip terminal symbols
 - Nonterminals index of prod

• Example: $\alpha = S_1 \ a \ S_2 \ a \ S_3 \ c \ b \ S_3 \ c$

When the algorithm never stops?

• S->S α – expand infinitely (left recursive)

• Left recursive can be equiv. transformed in a right recursive grammar [Aho]

A -> Ax transf into A -> yA

LL(1) Parser

Linear algorithm

FIRST_k

- \approx first k terminal symbols that can be generated from α
- Definition:

$$FIRST_k: (N \cup \Sigma)^* \to \mathcal{P}(\Sigma^k)$$

$$FIRST_k(\alpha) = \{\underline{u}|\underline{u} \in \Sigma^k, \alpha \stackrel{*}{\Rightarrow} \underline{u}x, |\underline{u}| = k \text{ sau } \alpha \stackrel{*}{\Rightarrow} \underline{u}, |\underline{u}| \leq k\}$$

Construct FIRST

- ➤ FIRST₁ denoted FIRST
- >Remarks:
 - If L_1, L_2 are 2 languages over alphabet Σ , then : $L_1 \oplus L_2 = \{w|x \in L_1, y \in L_2, xy = w, |w| \le 1 \text{ sau } xy = wz, |w| = 1\}$ and
 - $FIRST(\alpha\beta) = FIRST(\alpha) \oplus FIRST(\beta)$ $FIRST(X_1 ... X_n) = FIRST(X_1) \oplus ... \oplus FIRST(X_n)$

```
L1 = \{aa,ab,ba\}
L2 = \{00,01\}
L1L2 ={aa00,aa01,ab00,ab01,ba00,ba01}
L1 \bigoplus L2 = \{a,b\}
L1 = \{a,b\}
L2 = \{0,1\}
L1 \bigoplus L2 = \{a,b\}
L1=\{a, \varepsilon\}
L2={0,1}
L1L2 = \{a0,a1,0,1\}
L1 \oplus L2 = \{a,0,1\}
```