

Politechnika Bydgoska im. J.J. Śniadeckich w Bydgoszczy Wydział Telekomunikacji, Informatyki i Elektrotechniki Zakład Informatyki Stosowanej i Inżynierii Systemów

Przedmiot	Fizyka		Kierunek/ Tryb	IS / ST
Nr. ćwiczenia	A1			
Imię i nazwisko:	Nikodem Gębicki			
Numer lab.	8	Data oddania sprawozdania:	1.06.2023	

Karta pomiarowa

Wydział: NTLiA Kierunek: Jimforma Semestr: II		John Strain, Social Low	Data: <u>8.05.202</u>
Wzór roboczy: $\lambda = \sqrt[3]{ S_2 - S_4 } \qquad \forall = 1$	2f/92-8a/	POMIAROWA	
Wyniki pomiarów, wartości tablicowe: P. 2.5 kHz 23 / 95 22/ 94 20/100 24/88 24/88 24/88 28/94 25/86 28/94 25/88	2,75 kHz 67/99 60/10 66/99 62/98 63/110 61/98 69/99 61/98 64/99 60/116	3 kH ₂ 281 99 90/88 22/90 22/86 20/86 25/82 24/86 25/86 27/86	Doktadności przyrządów, doktadności odcznu wartości tabilcowych: Anna 1 Hz
Obliczona wartość wyznaczonej wielkoś	ici fizycznej:		Podpis prowadzącego:

Wstęp teoretyczny

Pojecie fali, rodzaje fal, równanie fali

Fala jest zjawiskiem, które polega na przenoszeniu energii z jednego miejsca do drugiego bez transportu materii. Fale mogą występować w różnych środowiskach, takich jak powietrze, woda czy ośrodek materialny. Podstawowe rodzaje fal to fale mechaniczne, elektromagnetyczne i materii. Równanie falowe jest matematycznym opisem zachowania się fali i opisuje jej rozchodzenie się w czasie i przestrzeni.

Fala stojąca – jak powstaje, rysunek z zaznaczonymi miejscami charakterystycznymi:

Fala stojąca powstaje, gdy dwie fale o tej samej amplitudzie i częstotliwości poruszają się w przeciwnych kierunkach i nakładają się na siebie. Powstające w ten sposób miejsca charakterystyczne to węzły i brzuchy. Węzeł to punkt, w którym amplituda fali jest minimalna, podczas gdy brzuch to punkt, w którym amplituda jest maksymalna.

Wzór na prędkość fali – wyprowadzenie

Prędkość fali jest zależna od rodzaju fali i ośrodka, w którym się rozchodzi. W przypadku fal mechanicznych, prędkość fali (ν) jest związana z długością fali (λ) i częstotliwością (f) wzorem:

 $v = \lambda * f$

Co to jest dźwięk, na czym polega jego rozchodzenie się w przestrzeni

Dźwięk to mechaniczna fala longitudinalna, która rozchodzi się poprzez środowisko, takie jak powietrze czy woda. Dźwięk powstaje w wyniku drgań cząsteczek ośrodka, które są przenoszone jako fala ciśnienia. Podstawowymi parametrami dźwięku są amplituda (określająca głośność), częstotliwość (określająca wysokość tonu) i czas trwania. Dźwięk rozchodzi się w przestrzeni w postaci fal kulistych, które rozprzestrzeniają się we wszystkich kierunkach od źródła dźwięku.

Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie długości generowanych fal dźwiękowych oraz prędkości rozchodzenia się dźwięku w powietrzu.

Wyniki pomiarów, obliczenia i rachunek niepewności Wyniki pomiarów i niepewności Uc(s1) Uc(s2)

D		U			G	_
1	2,5	kHz	2,75	kHz	3 k	Hz
Lp.	s1 [m]	s2 [m]	s1 [m]	s2 [m]	s1 [m]	s2 [m]
1	0,023	0,09	0,057	0,099	0,028	0,079
2	0,022	0,094	0,06	0,12	0,03	0,088
3	0,02	0,1	0,056	0,099	0,022	0,09
4	0,027	0,088	0,062	0,098	0,022	0,086
5	0,027	0,088	0,063	0,115	0,02	0,086
6	0,028	0,088	0,061	0,098	0,028	0,082
7	0,028	0,097	0,059	0,099	0,027	0,086
8	0,028	0,088	0,061	0,098	0,025	0,086
9	0,028	0,098	0,054	0,099	0,027	0,082
10	0,027	0,088	0,06	0,116	0,029	0,08
AVG	0,0258	0,0919	0,0593	0,1041	0,0258	0,0845
	AVG - s1	AVG - s2	AVG - s1	AVG - s2	AVG - s1	AVG - s2
1	0,0028	0,0019	0,0023	0,0051	-0,0022	0,0055
2	0,0038	-0,0021	-0,0007	-0,0159	-0,0042	-0,0035
3	0,0058	-0,0081	0,0033	0,0051	0,0038	-0,0055
4	-0,0012	0,0039	-0,0027	0,0061	0,0038	-0,0015
5	-0,0012	0,0039	-0,0037	-0,0109	0,0058	-0,0015
6	-0,0022	0,0039	-0,0017	0,0061	-0,0022	0,0025
7	-0,0022	-0,0051	0,0003	0,0051	-0,0012	-0,0015
8	-0,0022	0,0039	-0,0017	0,0061	0,0008	-0,0015
9	-0,0022	-0,0061	0,0053	0,0051	-0,0012	0,0025
10	-0,0012	0,0039	-0,0007	-0,0119	-0,0032	0,0045
	(AVG - s1)^2	(AVG - s2)^2	(AVG - s1)^2	(AVG - s2)^2	(AVG - s1)^2	(AVG - s2)^2
1	0,00000784	3,61E-06	5,29E-06	2,601E-05	0,00000484	3,025E-05
2	0,00001444	4,41E-06	4,9E-07	0,00025281	0,00001764	1,225E-05
3	0,00003364	6,561E-05	0,00001089	2,601E-05	0,00001444	3,025E-05
4	0,00000144	1,521E-05	7,29E-06	3,721E-05	0,00001444	2,25E-06
5	0,00000144	1,521E-05	0,00001369	0,00011881	0,00003364	2,25E-06
6	0,00000484	1,521E-05	0,00000289	3,721E-05	0,00000484	6,25E-06
7	0,00000484	2,601E-05	9E-08	2,601E-05	0,00000144	2,25E-06
8	0,00000484	1,521E-05	0,00000289	3,721E-05	6,4E-07	2,25E-06
9	0,00000484	3,721E-05	0,00002809	2,601E-05	0,00000144	6,25E-06
	0,00000144	1,521E-05	4,9E-07	0,00014161	0,00001024	2,025E-05
10	0,00000144	2,0222				
10 Ua	8,8E-07	2,4E-06	8,0E-07	8,1E-06	1,2E-06	1,3E-06
			8,0E-07 5,8E-03	8,1E-06 5,8E-03	1,2E-06 5,8E-03	1,3E-06 5,8E-03

$$egin{align} U_C(s1) &= \sqrt{(U_A^2(s1) + U_B^2(s1))} \ &U_A(s1) &= \sqrt{rac{\sum (s-s_n)^2}{90}} \ &U_B(s1) &= rac{0,01}{\sqrt{3}} \ &U_A(s2) &= \sqrt{rac{\sum (s-s_n)^2}{90}} \ &U_B(s2) &= rac{0,01}{\sqrt{3}} \ &U_C(s2) &= \sqrt{(U_A^2(s2) + U_B^2(s2))} \ &U_C(s2) &= \sqrt{(U_A^2(s2) + U_A^2(s2))} \ &U_C(s$$

Obliczone wartości i niepewności

	vartoser i ii.	L-	IVI
	λ - 2,5 kHz [m]	λ - 2,75 kHz [m]	λ - 3 kHz [m]
	0,13	0,09	0,12
U(λ)	1,6E-02	1,6E-02	1,6E-02
	υ - 2,5 kHz [m/s]	υ - 2,75 kHz [m/s]	υ - 3 kHz [m/s]
	331	246	352
U(v)	41	45	49
Uc(f) = Ub(f) 0,58		

$$U(\lambda) = \sqrt{(rac{2*s_1 - 2*s_2}{|s_1 - s_2|} * U(s_1))^2 + (rac{2*s_2 - 2*s_1}{|s_2 - s_1|} * U(s_2))^2}$$
 $U(v) = \sqrt{(rac{2f*s_1 - 2f*s_2}{|s_1 - s_2|} * U(s_1))^2 + (rac{2f*s_2 - 2f*s_1}{|s_2 - s_1|} * U(s_2))^2 + (2|s_2 - s_1| * U(f))^2}$

Wynik końcowy oraz wartości tablicowe

Prędkość dźwięku przy różnych
temperaturach powietrza[3]

Temperatura (°C)	Prędkość (m/s)
– 40	306,5
-30	312,9
-20	319,3
-10	325,6
0	331,8
10	337,8
15	340,3
20	343,8
30	349,6
40	355,3

$$\lambda(2500Hz)=0,13\pm3,2*10^{-2}m,k=2,lpha=95\%$$
 $\lambda(2750Hz)=(9\pm3,2)*10^{-2}m,k=2,lpha=95\%$
 $\lambda(3000Hz)=0,12\pm3,2*10^{-2}m,k=2,lpha=95\%$
 $v(2500Hz)=331\pm82\frac{m}{s},k=2,lpha=95\%$
 $v(2750Hz)=246\pm90\frac{m}{s},k=2,lpha=95\%$
 $v(3000Hz)=352\pm98\frac{m}{s},k=2,lpha=95\%$

Tablicową wartością długości fali jest 344 / f:

- 2500Hz 0,14m
- 2750Hz 0,13m
- 3000Hz 0,11m

Wnioski

Na podstawie maksymalnych wychyleń fali i zastosowanej częstotliwości obliczyć można długość fali oraz prędkość rozchodzenia się dźwięku w powietrzu.

Prędkość dźwięku jest zależna od temperatury otoczenia.