PyTorch-SSO: Scalable Second-Order Methods

Kazuki Osawa, Tokyo Tech, oosawa.k.ad@m.titech.ac.jp Yaroslav Bulatov, SPC, yaroslavvb@gmail.com

Codes are available on GitHub https://github.com/cybertronai/pytorch-sso https://github.com/cybertronai/autograd-lib

Second-order optimization

First-order optimization (SGD)

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla L(\theta)$$

Second-order optimization

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta C^{-1} \nabla L(\theta)$$

Newton method

$$C = H = \nabla^2 L(\theta)$$

(S. Amari, 1998)

Natural Gradient Learning $C = F = \mathbb{E}_{x,y} \left[\nabla \log p(y|x;\theta) \nabla \log p(y|x;\theta) \right]^{T}$ Fisher information matrix

Scalable second-order optimization

Layer-wise block-diagonal approximation

Practical approximation

Distributed training

Using PyTorch autograd

 $w_l \leftarrow w_l + g_l$ $w_l \leftarrow w_l + g_l/h_l$

 $w_l \leftarrow w_l + H_l^{-1} g_l$

 $w_l \leftarrow w_l + C_l^{-1} g_l$

SGD

Diagonal Newton Newton

 $\{H_1,\ldots,H_L\}$

Natural Gradient

 $\{h_1,\ldots,h_L\}$

 $\{C_1,\ldots,C_L\}$

Hessian diagonals

Layer Hessians

Layer Fisher matrices

Bonus: single-pass estimation of

- 1. OpenAI's gradient noise = $\frac{\operatorname{trace}(H\Sigma)}{gHg'}$
- 2. Berkeley's gradient diversity = $\frac{E[g^2]}{E[g]^2}$
- 3. per-example gradients

Problem: autograd Solution: autograd_lib

1. Needs O(L) backward calls

2. Doesn't use structure

1. Uses O(1) backward calls

2. Uses structure

Example of rank-2 structure

f(x) = ReLU network

 $loss(x) = f^{T}(x)f(x)$

 $H_L(x) = A_l(x) \otimes B_l(x)$ $8~\mathrm{KB}$ (for d=1000) expanded $H_l(x)$ 4 TB

Structures		d=input size (Linear) d=Kw*Kh*Ci (Conv2d)	
structure rank 1 2 3 4	example batch-norm diagonal Newton KFAC Isserlis naive	storage cost d d^2 $2d^2$ $3d^2$ d^4	preconditioning cost d d^2 $O(d^3)$ $O(d^6)$

Papers

- Distributed K-FAC with an extremely large mini-batch size of 131K on ImageNet (By Chainer version of this library which scales to 1024 GPUs). Kazuki Osawa et al, "Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate Curvature for Deep Convolutional Neural Networks", IEEE/CVF CVPR 2019.
- Distributed natural gradient learning for Bayesian deep learning on ImageNet (By this library). Kazuki Osawa et al, "Practical Deep Learning with Bayesian Principles", NeurlPS 2019.