WIRELESS LISTENERS' COMPENDIUM

By

VIRENDRA KUMAR SAKSENA

B. Sc. (Hons), M. Sc.

Associate Member of the Institute of Radio Engineers. Graduate of the Institution of Electrical Engineers. Member of the Institute of Engineering Technology. Author of Radio Reception in Theory and Practice'.

PUBLISHED BY THE AUTHOR

1941.

To

My Mother Who is no more

PREFACE

Radio sways a great force today; but though Radio during peacetime aims at the development of a better universal culture its diversion during wartime to Radio warfare symbolizes the diabolic tendencies in human nature. Its usefulness during normal times cannot, however, be denied. It has a great future,

Truly India is on the verge of a new era in Broadcasting. Broadcast listening has opened up a new field of entertainment which suits a variety of tastes. Radio has indeed created a place in our homes and added to their charm.

How often listeners fail to get optimum results and the real entertainment from their receivers is really surprising. This has, however, arisen from false notions and imperfect knowledge and that, in wireless as in any other field, is a great handicap. Listeners are often disappointed not to find a particular station and it is specially annoying if it is known to be on the air. In most cases it is not through any fault of the receiver but of insufficient information on the part of the listener. Of the numerous stations heard on short waves few people are able to identify even a couple but this is quite simple. Aerial, Earth and Inter-

ference often present baffling problems to the average listener.

This compendium is an attempt to remove most of the difficulties of broadcast listeners but the book is not claimed to be exhaustive. The Author, however hopes that it will meet the requirements even of the most enthusiastic listeners and in a measure it will be useful to the amateur transmitter. The Author will welcome and gratefully acknowledge any suggestions for improvement.

VIRENDRA KUMAR SAKSENA

29, KAISARBAGH

CONTENTS

		Page
Preface		V
A Dictionary of Wireless Terms	••••	1
How Much Do You Know?		
Aerial : Earth : Interference		
Accumulator: Miscellaneous		17
Some Wireless Don'ts	••••	27
Some False Notions	••••	29
Radio Waves and the Ionosphere	••••	31
Reception Reports		34
Time in different countries	•••	37
Call Signs		40
Assignment of Transmission Bands	••••	46
Wavelength and Frequency	••••	51
Broadcasting Stations in India	••••	53
British Oversea Services (B. B. C.)	••••	58
Time Schedule of some Short Wave		
Broadcasting Stations	••••	60
Short Wave Broadcasting Stations	••••	63
News from British Oversea Services		72
News in English from Abroad	••••	74
The Continental Morse Code	••••	, 81
The "Q" Code	••••	82
Miscellaneous Abbreviations	••••	87
Colour Codes:—		
Fuse Colour Code:	••••	90
Condenser Colour Code:	••••	90
Resistance Colour Code (R.M.A)		91

(viii)

Standard Battery Cable Co	lour	
Code (N. E. M. A.)	••••	92
Abbreviations : —		
Abbreviations used for Con	nponents	
and Parts : Standard abbrey	viations	
for units and constants: Pr	efixes	
for Unit abbreviations : Co	nversion	
Table	••••	93
Some Useful Equations:—		
Relating to Ohm's Law : C	oncerning	
Resistances : Concerning er	nergy	
dissipation: Concerning co	ndensers :	
Concerning chokes: Relating	ng to Wave-	
length and Frequency.		95

A Dictionary of Wireless Terms.

ABAC-Graphs or scales which are used for the determination of unknown quantities and make mathematical calculations unnecessary.

"A" Battery—American equivalent for L. T. (battery used to supply filament current for valves)

Abscissa—The distance of a point from the vertical axis measured horizontally.

A. C .- Alternating Current.

A. C. Resistance—The resistance offered to alternating current.

Acceptor Circuit—A combination of a condenser and an inductance in series and tuned to the frequency of the alternating current applied to it. At this frequency the circuit offers least opposition to the flow of current and hence it is called an 'acceptor circuit'.

Accumulator—A device for storing electricity. Each cell consists of two metal plates immersed in a liquid and when direct current is passed through it certain chemical actions occur and act as a source of electric current when the charging current is stopped. In use, as a source of electricity, the current flows in opposite direction to the original charging current and lasts only until the plates have returned to the original condition. The cell then requires recharging. In the lead accumulator the plates consist of lead covered with certain chemicals and the liquid is dilute sulphuric acid. Nickel and iron plates immersed in certain alkaline solutions are used in another type of accumulator.

Accoustics-The science of sound.

Adapter—A device which enables an apparatus to perform an additional function.

Adcock Aerial—A type of direction-finding aerial.

Admittance—

Admittance =
$$\frac{1}{\text{Impedance}}$$

(impedance in A. C. circuits is analogous to resistance in D. C. circuits)

Aerial—An arrangement of wires which in combination with suitable apparatus is used to receive or transmit wireless waves.

Aerial Insulators —Pieces of non-conductors of electricity used to insulate the aerial wire from the masts which support it.

Aerial Lead-in—The connecting wire between the aerial and the transmitter or receiver. Precautions are taken to keep it as far removed from trees, buildings and other earth-connected objects as possible. It should also be short and kept away from electric light, telephone and power wires. Failure to observe this precaution may result in the pick up of interference by the lead-in. Specially shielded wire is obtainable which screens the lead-in from interference.

Aerial resistance—The total resistance to high frequency currents of the entire aerial earth system.

Air Condenser - A condenser, fixed or variable, in which the plates are separated by air gaps.

Air Core Choke—A coil of wire wound on a hollow cylinder.

Alternating current - Electric current which flows in alternate directions in a circuit. It starts in one direction from zero, increases to a maximum value, is reduced to zero again and rises to a maximum value in the opposite direction. This complete sequence comprises a cycle. The number of such cycles completed per second is called the frequency.

Alternator -A generator of alternating currents,

Aluminium rectifier—An appliance, often called the Nodon valve, which converts alternating current into direct current by means of an aluminium rod and a plate of lead immersed in a solution of ammonium phosphate.

Ammeter—An instrument which measures current in amperes, a unit of current.

Ampere-Hour—A unit which indicates the storage capacity of accumulators. For instance an accumulator having a capacity of 100 A. H (Ampere Hours) can give a current of 1 ampere for 100 hours, 2 amps for 50 hours, 3 amps for 33'3 hours.

Amplification factor—Of a valve is the ratio of change in anode volts to change in grid volts in order to produce the same change in anode current. It is also the product of mutual conductance and impedance of a valve.

Amplifier—A device for increasing the amplitude, of electric current, voltage or power.

Anode—An electrode in a thermionic valve which is given a high positive potential.

Anode dissipation—The power dissipated in the form of heat at the anode of a valve.

Antenna - Aerial.

Anti-microphonic valve—A valve which is not effected by mechanical vibrations.

Aperiodic-Untuned.

10.000 cycles.

Appleton Layer—An ionized layer about 180 miles above the earth. Long distance communication is made possible by the reflection of waves at this layer.

Atmospherics—Electromagnetic waves of an irregular nature produced by atmospheric electrical phenomenon.

Attenuation—Reduction in power or current of a wave.

Audio frequency—The range is approximately 25-

Automatic Frequency Control—A self-acting device which corrects the frequency of an oscillator in a superheterodyne receiver in case of any drift from the correct value. This is usually incorporated in push-button—tuned receivers.

Automatic Grid Bias—Grid bias for valves obtained by the drop of voltage due to anode current through a resistance in the anode circuit.

Automatic Selectivity Control—A system which reduces the selectivity in the case of a strong signal and increases it in the case of a weak one.

Automatic Tuning Control—A means whereby stations may be correctly tuned on a receiver without having to carry out any accurate manual adjustment.

Automatic Volume Control—A device whereby fading is reduced and different stations, weak and strong, are heard at the same strength.

"B" **Gattery**—Battery for supplying anode current for a valve.

Baffle—A board with an opening for mounting a loudspeaker. This improves response at low frequencies.

Ballast Valve-see Barreter.

Band Pass Filter—A tuning circuit which allows currents of frequencies between a certain range and rejecting the rest.

Barreter.—A valve which tends to maintain a constant current while the voltage applied across it is varying. Usually it consists of a fine filament in an atmosphere of hydrogen.

Battery Eliminator—An appliance which enables apparatus to be worked from mains, thus eliminating batteries.

Beam Transmission—The transmission of wireless waves in narrow beam to eliminate the waste of energy in undesired directions and concentrating only on the required path, thus producing large field strengths.

Bellini-Tosi System-A direction-finding system.

Blasting—The distortion produced when a valve is overloaded.

Blocking condenser—A fixed condenser used for eliminating D. C. from A. C. circuits

Bright emitter—Valves with tungsten filaments which have to be heated to a high temperature for the emission of electrons.

Broadcasting—Radio transmission having entertainment value and intended for general reception.

By-Bass Condenser—A condenser used to provide an a. c. path across a circuitof a comparatively lower impedance.

"C" Battery-Grid-bias battery.

Capacitive Coupling—The inter-connection of two circuits by a common capacity.

Carbon Microphone—A form of microphone in which the property of carbon granules to change their resistance with changes in pressure is utilized for converting sound waves into electrical currents.

Carrier—A term used to designate carrier wave, carrier current and carrier voltage.

Carrier Frequency-The frequency of a carrier wave.

Carrier Suppression—A method of transmission in which the carrier wave is suppressed at the transmitter.

Carrier wave—A wave on which modulation is imposed and which makes the transmission of a signal possible.

Cathode—The electrode in a thermionic valve which emits electrons.

Cathode Current—The total current passing to or from the cathode through the vacuous space. The term should be carefully distinguished from filament and heater current.

Catkin—A valve in which the outer envelope serves as the anode.

Cat Whisker—A wire used to make contact with a crystal in a crystal detector.

Choke Coil—An inductance coil used to offer a relatively high impedance to alternating currents in a circuit.

Class A Amplifier—An amplifier which operates in such a manner that the plate output wave form is essentially the same as that of the exciting grid voltage.

Class AB Amplifier—An amplifier which is over-biased operating as a Class A system for small signals and as a Class B amplifier when the signals are large.

Class B Amplifier—An amplifier which operates in such a manner that the power output is proportional to the square of the grid excitation voltage. This is done by operating with a negative grid bias such that the plate current is reduced to a relatively low value with no grid excitation voltage and by applying excitation such that pulses of plate current are produced on the positive half cycles of the grid voltage variations.

Class C Amplifier—An amplifier which operates in such a manner that the output varies as the square of the plate voltage. This is done by operating with a negative grid bias more than sufficient to reduce the plate current to zero with no excitation.

Condenser Loudspeaker—A loudspeaker in which electrostatic forces accomplish the conversion of electrical into sound energy.

Condenser Microphone—A microphone which consistes of a condenser the capacity of which undergoes changes by the impinging sound waves.

Conversion Conductance—It is the ratio of the intermediate frequency component of the plate current or output current of the converter valve in a superheterodyne raceiver to the radio frequency component of the signal voltage applied to the signal grid.

Conversion Gain—It is the ratio of the intermediate frequency voltage developed across the load to the radio frequency voltage applied to the control grid.

Converter—In a superheterodyne receiver, a valve which simultaneously generates oscillations and mixes them with the incoming signal.

It is also an electrical machinery for the conversion of D. C. into A. C.

Counterpoise—A network of wires spread underneath the aerial a little above the ground and insulated from it to serve as an earth.

Coupling—It is the association of two circuits in such a way that power may be transferred from one to the other.

Cross Modulation—It is a type of intermodulation due to the modulation of the carrier of the desired signal by an interfering one.

Grystal Control—A device for the stablization of the frequency of oscillotion of a valve by means of a crystal.

Crystal Detector—A detector of high frequency waves which consists of a crystal in contact with a pointed wire.

Cycle-See Alternating Current.

Damped Oscillation—Oscillations which are continually decreasing in amplitude and finally die out.

D. A. V. C,-Delayed-Automatic Volume Control.

Decoupling—Method whereby interaction between different valve-stages is avoided.

Demodulation—Process whereby the modulation frequency component is separated from the carrier frequency.

Detector—See Demodulation.

D. F.-Direction Finder.

Diaphragm—A surface which when vibrating emits sound.

Diode—A valve having two electrodes, an anode and a cathode.

Diode Rectification—A method of rectification employing a Diode Valve.

Direct Current—Current flowing in one direction only.

Distortion—A change of the wave form occurring in a circuit when the output wave form is not a true replica of the input wave form.

Double Diode Triode—A valve containing two diode valves and a triode valve in a single envelope.

Dynamic Loudspeaker—A moving coil Loudspeaker.

Electrolytic Condenser—A condenser in which the anode is of Aluminium and the dielectric is a very thin gas film.

Electron—The smallest negative charge; the unit of negative charge.

Electron Emission—Liberation of electrons from an electrode into the surrounding space.

Electron Valve—An evacuated valve the electrical characteristics of which are essentially due to electron emission.

Exponential Horn—A loudspeaker of such shape that the cross-sectional area is an exponential function of the length.

Facsimile transmission—Transmission of pictures etc.

Fading—Fluctuation of signal strength of a received signal due to atmospheric condition.

Feed-back—Feeding back of energy; regeneration; recation.

Fidelity—Degree to which a system reproduces at its output the form of the signal which is impressed upon its input.

Filament—The wire which emits electrons in a valve.

Filter—A selective circuit designed to pass a conti-

nous band or bands of frequencies while greatly reducing the undesired frequencies,

Frequency—The number of cycles per second.

Frequency Changer—A valve in a heterodyne receiving system which changes the frequency of a carrier wave.

Frequency Modulation—Modulation produced by varying the frequency of a carrier wave.

Full-wave Rectification—A method of rectification in which both positive and negative half-cycles are rectified.

Ganging—of tuned circuits, mechanical coupling of variable elements.

Gramophone Pick-up—An apparatus which, when used in place of a soundbox in a gramophone, generates electrical currents corresponding to sound waves. These currents are amplified by an amplifier and reproduced through a loud-speaker.

Grid—An electrode in a valve, with a mesh-like, structure through which electrons can pass.

Grid Bias—The grid voltage applied to a valve for proper functioning.

Grid Leak-A resistance in the grid circuit of a valve.

Han-Wave Rectifier—A rectifier which changes alternating current into direct current and utilizes only one half of each cycle.

Hard Valve—A valve with a high vacuum, the pressure being .001 mm of mercury or less.

Harmonic--A frequency which is an integral multiple of the fundamental frequency.

Heater—Filament used to heat up the cathode in an indirectly heated valve.

Heaviside Layer—An ionised layer enveloping the earth at a distance of about 60 miles.

Heptode-A valve having a cathode, five grids and an

anode used as a frequency converter in superheterodyne receivers.

Heterodyne—The production of sum or difference frequencies.

- H. F. Pentode—A pentode valve used for high frequency amplification.
- H. T. Battery—A battery for supplying anode current to a valve.

Howling—Low frequency oscillations produced in a receiver.

Indirectly heated cathode—The cathode of a thermionic valve which is heated up by a separate filament.

Inter-electrode capacitance—The capacitance between the electrodes of a valve.

Interference—Unwanted intermingling of reception with strays and undesired signals.

Intermediate Frequency—In Superheterodyne reception, fhe frequency generated by mixing the signal currents and local oscillations.

Interrupted C. W.—High frequency waves produced by the interruption of continuous high frequency currents at audio frequency, used for morse signalling.

Jamming—Interference produced by a signal at a neighbouring frequency.

Johnson Noise--Noise produced in thermionic valves due to thermal agitation of electrons.

Lead-in—That portion of the aerial installation which connects the aerial wire to the receiver.

Litz wire—Composite wire consisting of fine strands which pass out along the surface for part of their length.

Loaded Aerial—It has an inductance Coil in series which increases the wavelength to which it responds most.

Load Resistance—Total effective resistance in the plate

circuit external to the valve.

Loose Coupling —A form of coupling in which the coefficient of coupling is small.

Loudspeaker—A device for reproducing sound from electrical currents.

Magnetic Screen—A screen of iron or copper to shield from external magnetic effects.

Magnetron—A valve in which the electronic currents are guided by magnetic fields.

Man-made Static—Interference produced by electrical machinery.

Master Oscillator—An oscillator of low power for the sole purpose of producing constant frequency oscillations.

Matched Impedance—The output of a power valve is greatest when the impedance of the loudspeaker is matched to valve impedance. That impedance is called the matched impedance.

Maximum Peak Inverse Voltage—The highest peak voltage that a rectifier can safely withstand in opposite direction to that in which it is designed to pass current.

Maximum Peak Plate Current—The highest peak current that a rectifier can safely stand in the direction in which the valve is designed to pass current.

Mechanical Rectifier—It is a rectifier which depends for its action on mechanical commutation.

Metal Rectifier—A rectifying device which uses electrodes of copper and lead separated by a layer of copper oxide.

Metallized Valve—A valve which has a glass bulb sprayed with metal, usually Zinc.

Microphone—A device for converting sound vibrations into electrical impulses.

Microphonic Valve-A valve the electrodes of which

begin to vibrate if sound vibrations impinge on it.

Miller Effect—Feed-back resulting from grid-plate capacitance.

Mixer Valve-See Converter.

Modulated Wave—A wave of which either the phase, amplitude or frequency is varied in accordance with sound vibrations.

Modulation—The process whereby the amplitude, phase or frequency of a wave is varied in accordance with a signal.

Modulation Distortion—It is caused by the unequal attenuation of side-bands.

Modulation Factor—Ratio of half the difference between the maximum and minimum amplitudes of a modulated wave to the average amplitude.

Modulator—The device which produces modulation.

Monkey Chatter—It occrs when the wanted and unwanted side-bands produce beats.

Motor Boating—Low frequency oscillations produced by the energy which is fed back.

Moving Coil Loudspeaker—Such a loudspeaker has a coil which is movable in a magnetic field. The coil carries the speech currents.

Mutual Conductance—Ratio of the amplification factor to the plate resistance of a valve.

Neutralizing Coil—A coil placed in series with the moving coil of a loudspeaker to neutralize hum which is introduced due to the ripple in the D. C. supplying the field current.

Oscillator—A valve circuit in which energy is fed back for the production of oscillations.

Pantode—A thermionic valve containing one anode, a cathode and three grids.

Percentage Modulation-Modulation Factor x 100

Permeability Tuning—A method of tuning in which inductance is varied by a movable iron dust core.

Photo-electricity—The science of the liberation of electrons by electromagnetic waves (including light)

Power Amplification—Ratio of A. C. power secured in the output circuit of an amplifier to the A. C. power supplied in the input circuit.

Power Output—The A. C. power produced in an external non-inductive resistor of specified value connexted in the plate circuit of the amplifier.

Power Valve-A valve used for power amplification.

Proton—The unit of positive electricity.

Pulling—The tendency of the received wave to pull in the oscillator into step if the frequencies are close to one another.

Pulsatance-2 x x x f.

Push-Pull—A method of amplification using a couple of valves in the balanced condition.

Q. P P.—Quiescent Push Pull. It is a push-pull output stage, the grids being biased much more negative.

Radiation-The transmission of electromagnetic waves.

Radiation Resistance—That hypothetical resistance of the aerial which on multiplication by the R. M. S. Value of the aerial current gives the radiated power.

Radio Beacon—The transmitters radiating waves for ships and aeroplanes to enable them to locate their position by means of Direction-Finding apparatus.

Radio Receiver—A receiver for converting wireless waves into sound waves.

Radio Transmitter—Apparatus for producing and transmitting wireless waves.

Reaction—Feeding back of energy from anode to grid circuit.

Rectification—Conversion of alternating into direct current.

Reflex Circuit—Such a circuit system in which amplification takes place both before and after detection in the same amplifier valve or valves.

Rejector Circuit—A circuit comprising a condenser and inductance connected in parallel; this offers a high impedance to waves of a particular frequency thus rejecting it and accepting the rest.

Resistance Capacity Coupling—The coupling of one circuit to another by capacity and resistance.

Resonance Frequency—That frequency to which a circuit produces the greatest response. The circuit may offer the highest (rejector circuit) or the lowest (acceptor circuit) impedance at that frequency. At resonance frequency the supply current and voltage are in phase.

Response Curve—A curve giving the relation of the output to input voltage at various frequencies.

Screen Current—The current that flows to the screen grid of a valve.

Screen-grid Valve—A valve having one anode, a cathode, a control grid and a screening grid which shields the control grid from the anode.

Selectivity—The ability of a receiver to discriminate between incoming signals of different carrier frequencies.

Sensitivity—The ability of a receiver to respond to signals whose frequency corresponds to the one for which the receiver is tuned.

Shot or Schottky Effect - Noise caused in valves by the random motion of electrons.

Side Bands—Frequency bands, one on either side of the carrier frequency, resulting from the modulation process.

Side Band Splash—The twittering sound produced when an unwanted side hand hears with the wanted carrier.

Signal—Anything communicated.

Single Side Band Transmission—A method of transmitting wireless waves in which one side band is suppressed and the other transmitted. The carrier may or may not be transmitted.

Skin Effect—The phenomenon that high frequency currents travel over the surface of a conductor and not through it.

Skip Distance—Sometimes short waves are received beyond a certain distance and there is no reception within the intervening space called the skip distance.

Smoothing Circuit—A low pass filter for smoothing out rectified A, C, or pulsating D. C.

Soft Valve—A valve which contains gas.

Space Charge—Electrons after being emitted from the cathode cluster round it and form a cloud of charge in the absence of an accelerating potential on the grid.

Static-Atmospherics.

Superheterodyne Receiver—In a Superheterodyne Receiver the modulated h. f. currents after beating with locally generated oscillations are rectified to produce intermediate frequency currents which on further rectification reproduce the signal.

'T' Aerial—A horizantal Aerial, the down-lead being connected to the middle point of the aerial.

Television—Transmission of scenes or pictures by translating minute portions of them at a time in a sequence (scanning) into electrical currents which are superimposed (modulation) on h. f. currents and transmitted.

Tetrode - A valve with four electrodes.

Thermionic Emission—Emission of electrons under the influence of heat.

Tone Control—A device for varying the frequency—response of an amplifier.

Tone Correction—A method whereby the attenuation of high audio frequencies resulting from high selectivity circuits is corrected for by an amplifier with a rising frequency response characteristics

Trimmer—A small semi-variable condenser used for ganging condensers.

Triode—A three electrode valve having an anode, a grid and a cathode.

Tuned Anode—A method of high frequency amplification in which the anode load is a parallel tuned circuit.

Tuning—The adjustment of a circuit in relation to frequency for optimum performance.

Variable-Mu Valve-A valve of which the mutual conductance varies with the applied bias.

Visual Tuning Indicator—Any kind of visual indicator for tuning operation. This simplifies tuning.

Volume Expansion—A circuit arrangement which amplifies strong signals more than weak ones. The action is not very quick for otherwise the relative loudness over short periods will be reduced to a negligible proportion.

Wired-Wireless - The transmission of high frequency currents along wires

X's-Atmospherics.

How much do you know?

AERIAL

- 1. In Aerials height is of the utmost importance, but by height is meant 'effective height'.
- 2. An aerial which consists of a wire a couple of feet above the roof of a building a hundred feet or so high does not constitute a hundred-foot aerial.
- 3. An aerial which passes over houses is less effective than one with nothing in between it and the earth.
- 4. An aerial which runs vertically up the side of a house and close to the walls will be a poor aerial.
- 5. The two things to aim at are height and remoteness from, walls, house wiring, neighbouring aerials, power lines, telephone wires and conducting materials generally.
 - 6. A good aerial is about 30 feet high and 60 feet long.
- The aerial wire should be properly insulated at each end by at least two insulators.
- 8. The lead-in wire should be soldered to the aerial wire proper.
- 9. The best indoor aerial is of the roof type in which a wire is fixed round the loft.
- 10. Two or more wires running in a straight line are sometimes fixed up inside a loft at least 6 feet apart and joined together at the ends.
- 11. In reinforced concrete buildings the walls are full of metal and the windows often have lead frames and lead glass panes; under such cicumstances it is desirable to tune your radio with the windows open.
 - 12. When working with a portable set reception

from a station is always strongest with the frame lined up in the direction of the station.

- 13. Cracking in the loudspeaker may be produced by the intermittent contact of a faulty joint, the rubbing of the aerial against trees or walls etc.
- 14. There is little chance for lightning to strike a receiving aerial but it is usual to protect receivers against lightning by means of lightning arresters which are installed outside the house and provide an easy path for lightning.
- Care should be taken to see that there is no leakage or an actual short-circuit caused by the lightning arrester.
- 16. When the receiver is not in use the aerial should always be connected to earth.
- 17. Outdoor aerials often take up a high charge during storms and it is desirable not to use an outdoor aerial during a stormy weather. Aerials are often found to impart a powerful shock under such circucmstances. (Cases have been reported where motor cars driven at a high speed through a dust storm accumulate sufficient charge to impart a shock on touching the body of the car, just after the drive, while standing on the ground). The charge is often high enough to produce continuous sparking (for the duration of the storm) if the aerial is at any point touching the earth or the wall

EARTH

- 18. Gas and water pipes are not advisable for earth connection to a receiver as they are often found to give noises in a receiver if they move under the influence of vibration.
- 19. A good earth can be made by burying a Copper, Zinc or galvanized Iron plate, two or three feet square, upon its edge as many feet below the surface as one has energy to dig—preferably not less than three feet.

- 20. It is much better to bury an earth plate a few feet away from the wall of a house if the ground near the wall is sheltered and therefore drier.
- 21. The earth lead from the receiver should be of a fairly heavy gauge, such as 7/22 (7 strands of 22 S. W. G. wire) and need not be insulated if the lead is short.
- 22. The wire should be soldered to the plate at three or four points to ensure proper contact in case of corrosion or breakage at one of them.
- 23. The earth lead from the receiver should be as short as possible, but if a much better earthing point is to be obtained with a lead a few feet longer, the better should be used.
- 24. A long earth lead, where unavoidable, should be insulated.
- 25. Twin earth leads should not be used in view of risk of setting up erratic effects.
- 26. As an alternative to burying a plate, an earth tube is very often used. In favourable soil it proves an efficient earth. It can be driven straight into the ground and is much easier to instal.
- 27. An earth tube should be made of Copper, since part of it projects above the ground where it is practically liable to corrosion.
- 28. Sometimes earth tubes containing a special chemical are used. The chemical spreads through the surrounding soil and improves its conductivity.
- 29. A solution of salt and water poured down an earth tube is also effective in improving the conductivity of the surrounding soil.
- 30. Weak reception of distant stations during summer is often traceable to dryness of the earth connection.
- 31. Watering the ground occassionally around the earth tube is a wise plan in dry weather.

- 32. Rocksalt or ammonium chloride (Nausadar-Hindustani) improves an earth connection.
- 33. It is often found on disconnecting the earth lead that very little difference is made to the sensitivity of the receiver.
 - 34. This may be a sign that the earth is faulty.
- 35. Or in the case of mains receivers it may be due to the considerable capacity between the wiring and the mains leads through the mains transformer—one of the mains being earthed. Any change in volume may be masked by the automatic volume control which compensates for the reduction caused by the removal of the earth lead.
- 36. In practically all cases an earth lead is a decided advantage, though that may not be immediately apparent.
- 37. Although there may be quite effective indirect paths to earth, a direct earth helps to stabilize the receiver and also to reduce certain kinds of ineterference.
- 38. In the case of Universal and D. C. receivers an earth may be a disadvantage.
- 39. On D. C. Mains a considerable amount of interference may sometimes be brought to the receiver where there is a difference of potential between the earthed main and the earth.
- 40. This apparently strange effect may be due to the voltage drop on the earthed main, or a bad earth at the supply station.
- 41. In such cases removal of the direct receiver earth may reduce or eliminate the interference.

INTERFERENCE

- 42. Noise in radio reception comes from three sources, faulty parts and connections in the receiver itself, natural static or man-made static.
 - 43. To avoid noise from faulty parts and connections

have your radio set examined by an engineer quite regularly.

- 44. No device has yet been perfected, though there are many which suppress certain types of noises, for the elimination of natural Static.
- 45 Natural static is not so troublesome on short as on medium and long waves
- 46 Atmospherics are bad only on odd days and nights. They are usually most troublesome in summer. The crackles always occur at irregular intervals and never follow one another at fixed periods of so many seconds.
- 47. If crackles are heard all day and every day and if they are at their worst at certain hours or at certain days of the week or if they occur at regular intervals when you can be quite sure that they are due to electrical machinery. This is called man-made static.
- 48. A characteristic of man-made static that is mystifying is that while its direct radiation is very limited it may be carried great distances by electric power lines or telephone lines.
- 49. Noises thus carried by electric power lines do not reach the receiver through its connections to the mains. The design of most good receivers ensures this.
- 50. The noises usually are carried to the vicinity of the aerial or aerial lead-in by the power line from where they are reradiated and picked up by the aerial or the lead-in along with the broadcast programme,
- 51. To find out whether noise is reaching the receiver through the wires connecting it to the mains, disconnect the aerial and listen. If the noise disappears it is coming via the aerial (see also 50) otherwise if it persists it is entering through the mains connections.
- 52 In the above case noise can be reduced considerably by connecting choke condenser filters (which are available

ready-made) at the Metre Board and at the socket.

- 53. It is, however, best to suppress noise at the apparatus causing interference.
- 54. If the aerial is picking up noise (it may be the re-radiated interference) a noise reducing aerial of which there are several varieties will greatly minimise man-made interference.

ACCUMULATOR

- 55. An accumulator is a device which may be used repeatedly for the storage of electrical energy. During the process of charging energy in the form of electricity is put into the accumulator and this energy is given in the same form during discharge.
- 56. Acid in accumulators can be rendered non-liquid (gelatinous) by adding sodium silicate to the acid.
- 57. A non-spillable accumulator may be obtained by adding sodium silicate until the desired consistency is obtained.
- 58. The capacity of accumulators is indicated in Ampere-hours which is the product of the current taken from the accumulator and the time in hours for which such a current can be obtained. Thus a 100 A. H. accumulator can give 1 Ampere for 100 hours, 2 Amperes for 50 hours and so on.
- 59. Beware of over-discharging your accumulator, or worse still leaving it for long periods in a partially discharged condition.
- 60. As soon as reception shows any sign of weakening due to the accumulator being run down take it off and get it recharged at once.
- $\,$ 61. An accumulator fully charged has a voltage of 2.2 volts.
 - 62. An accumulator gives a steady voltage which

does not fall below 2 volts per cell throughout the whole of its useful discharge period and as soon as it falls below 2 volts it is time to get it recharged.

- 63. It will go on discharging and your set may go on working until it is well below this figure, but rapid deterioration of the accumulator sets in when it is discharged below 18 volts and although you may not notice ill effects at first you will find your accumulator deteriorate rapidly and become quite useless after a few months more of work.
- 64. The accumulation of dirt and moisture allows the current to leak away and reduce the efficiency of an accumulator.
- 65. Corrosion is best prevented by removing all traces of acid from terminals and connections and then coating all metal parts with vaseline.
- 66. A hydrometer is the best indicator of the charge in an accumulator. One should always be used in conjunction with a voltmeter.
- 67. The Air Cell batteries introduced by Eveready do not need recharging and last for a few thousand hours,
- 68. Where electric power is not easily available accumulators can be charged by wind-operated electric generators. They are however, useful only where there is always a good breeze, such as on sea-shores.

MISCELLANEOUS

- 69. In listening to foreign short wave stations, remember to take into account the differences in local standard times. Stations are most likely to be on the air during the evening hours (6 to 11 p. m.), their local standard time.
- 70. In mains receivers the fuse is an important safeguard.
- 71. A. C. Mains units should be protected by means of fuse on the input and on the output portions.

- 72. D. C. Mains receivers should have a fuse in both the mains leads
- 73. D. C. Mains receivers can be worked off A. C. Mains with the help of an inverter.
- 74. The inverter is just the opposite of a converter and thus generates D. C. from an A. C. source.
- 75. A. C. Mains receivers (or other A. C. apparatus) which are intended for operation from 50-cycle mains should not be used on mains of lower periodicity (for instance 25 c/s).
- 76. A. C. Mains receivers, not provided with a fuse if plugged into D. C. mains burn out the mains transformer.
- 77. D. C. and A.C/D.C. receivers will work from D. C. Mains only if the receiver plug is properly connected to the mains socket. The positive end of the plug should go to the positive pole of the mains.
- 78. When working a battery receiver from the mains by means of an eliminator it is desirable to connect fixed condensers in both aerial and earth leads.
- 79. Gramophone records which are warped can be flattened out by placing them between two glass sheets in a warm place.
- 80. Gramophone needles are available which can play several records without the point wearing out.
- 81. Gramophone records can be played back through a radio by means of a pick up which is used in place of a soundbox.
- 82. Receivers are available which can work from Battery. A. C. or D. C. Mains.
- 83. Receivers are available (with automatic tuning) in which you get the desired station by pressing a button.
- 84. Receivers are available (with band-spread tuning) in which the various short wave bands are spread over

a length of several inches thus making tuning very much easier.

- 85. Where appearance is not of primary importance a flat baffle (for a loudspeaker) is preferable to any form of cabinet.
 - 86. Corrosion increases the H. F. resistance of wires.
- 87. Headphones should always be joined to a mains receiver through fixed condensers.
- 88. Ordinary flex leads should not be untidy with straggling whiskers. A little sealing wax or rubber solution will keep them quite neat.
- 89. Wireless waves are propagated through space via the great circle path.
- 90. Ordinary map projections do not give the correct direction of a place.
- 91. A globe offers, probably, the best means of ascertaining the direction of any place.
- 92. It is a good practice to cover up the radio, when it is not in use, to prevent dirt and moisture from getting in.
- 93. Dirt deposited on chassis and components can be blown out with a bicycle pump. Small bellows serve admirably.
- 94. Pipe cleaners are ideal for removing dirt from between the vanes of variable condensers. This, however, requires great care as any undue pressure on the vanes may disturb ganging.
- 95. The deterioration in quality of reproduction of a radio receiver is generally a sign that one or more valves need replacing.
- 96. Volume controls should be replaced when they produce a grinding noise or crackles during operation.
- 97. Local station should not be tuned-in at full volume for fear of damage to the receiver.

- 98. Stations should be tuned-in very accurately to get the last ounce of fidelity.
- 99. Do not look for short wave stations above 31 metres during daylight and below 25 metres after dark.
- 100. Medium and long wave stations are heard better after nightfall.

Some Wireless Don'ts.

- 1. Don't get discouraged if reception is poor one night; it may be fine the next.
- 2. Don't tune above 31 metres for distant stations in daylight.
- 3. Don't tune below 25 metres for distant stations after dark.
- Don't expect to find stations on all parts of the dial. Short wave stations are widely separated except in a few instances.
- 5. Don't skim over the dials. Tune very slowly listening for weak signals.
- 6. Don't use the maximum volume for the local station. The quality is impaired and there is danger to the loudspeaker and other components.
- 7. Don't pull a valve out of its holder by the glass bulb. Always take hold of the base of the valve.
- 8. Don't make any change in the anode and grid voltages of a battery receiver without first switching off filament current (L. T.)
- 9. Don't leave the aerial connected to the set while not in use. Always connect the aerial to the earth.
- 10. Don't work a radio receiver which is meant for operation from 50-cycle A. C. mains on mains of lower frequency.
- 11. Don't try to displace wiring in a commercially made radio receiver in an attempt to make it look more neat.
- Don't meddle with any trimming condenser unless of course you know all about it.

- 13. Don't fiddle with volume and tone controls; they have a limited period of useful life after which they begin to develop noise and have to be replaced.
- 14. Don't work your radio in a half-hearted mood it is better to switch it off and conserve valve-life, which is limited, for enjoyable occasions.

Some False Notions

- 1. Thinking of a 4-volt battery as being twice as powerful as one giving only 2 volts, do not imagine that 4-volt valves must have similar superiority over 2-volt valves.
- 2. The covered wire does not possess miraculous properties for aerials.
- 3. Do not believe that the thicker the aerial the stronger must be the signal in direct ratio.
- 4. Do not imagine that the wavelength of a station represents the length of the aerial most suitable for receiving a particular station.
- 5. Do not imagine that the wavelength of a station represents the radius over which the station can be heard.
- 6. Do not imagine that long wave stations are heard over very long distances.
- 7. It is wrong to say that a 10 valve receiver will last twice as long as a five valve one.
- It is erroneous to think that fading is due to any fault in a radio receiver—it is a natural phenomenon but circuits have been evolved which considerably minimise fading.
- 9. It is a very common notion, though undoubtedly wrong, that while working a receiver, generally, at a low volume less power is consumed. A very few battery receivers do incorporate a battery economy switch.
- 10. Ventilation of air is not necessary for the reception of wireless waves. In fact reception is possible in a completely airtight room. There is, however, a little screening effect of the walls particularly if they are wet.

- 11. Do not imagine that an aerial one foot above a roof which is itself 100 feet high makes an aerial of 100 feet effective height. It is the height above earthed objects that matters.
- 12. Do not think that metal valves can stand rough handling whereas glass valves cannot. It is not the glass envelope that is delicate but the inner structure.

Radio Waves and the lonosphere

The directions which the wireless waves take in travelling from one place to another follow the great circle path (a great circle is a circle passing through two points on the surface of a sphere such that it has the largest possible diameter). The great circle paths can be easily determined from a globe. In setting up directional aerials great circle paths must be known.

From a transmitting aerial two distinct sets of waves are radiated. The first of these is known as the ground wave because it follows the surface of the earth. It gradually becomes weaker since its energy is taken up in overcoming resistance, and by absorption over the ground that it travels. However, it remains usually sufficiently strong upto 75 miles to provide good reception. The second wave known as the sky-wave travels outwards and upwards. High above the earth this sky-wave encounters an ionized belt known as the Heaviside layer. During daylight the Medium and Long wave transmissions that reach this layer are almost completely absorbed so we have to rely on ground wave reception. This accounts for why Medium and Long wave stations are comparatively weak until after dark. After dark the layer reflects instead of absorbing the waves, thus widely increasing the range.

Enveloping the earth there exist at least two welldefined layers:

- (1) The F Layer 180 miles above the earth, called the Appleton layer, and
- (2) The E Layer about 60 miles above the earth, called the Heaviside layer.

Radio waves above about 3 Mc/s. (below 100 Metres) are propagated by means of bending and reflection in the

F Layer and the amount of bending depends upon the frequency and the density of ionization in the layer in the following manner:-

- the lower the wavelength the smaller is the bending and consequently it is less likely for the wave to be reflected
- (2) the smaller the density of ionization the smaller is the bending. The density of ionization is higher during the day than at night.

It is therefore quite apparent that at night reception is not usually possible on wavelengths up to 25 metres (approximately) because the waves are not reflected, they penetrate the layers and go far out into space. During the day ionization is greater and reflection is possible on lower wavelengths down to 11 metres. But during the day waves above about 49 metres are heavily absorbed by the ionized layers and reception is therefore not usually possible on wavelengths higher than 49 metres.

On short waves although two waves are again sent out, the ground ray is very rapidly absorbed. The skywave penetrates the Heaviside layer and is reflected back by the second layer, 180 miles up. This layer reflects most of the waves back to earth at such an angle that the signals come back many thousands of miles away from the transmitter. As there is no ground wave, reception depends entirely on the sky-waves.

A phenomenon known as skip-distance must also be considered. The area between the transmitter and the point where the reflected wave comes back to earth is almost: without signals The waves skip over the zone.

From what has been said already it will be apparent that different wavelengths will have skip zones of varying lengths and different maximum range, both of which will be different for day and for night.

The following table gives the useful range for day and

for night transmission for different wavelengths.

Wavelength	Range for daylight prevailing between the transmitter and the receiver.	Range for darkness prevailing (between the transmitter and the receiver.	
16 Metre Band	600-8000 miles	Reception not poss- ible	
19 ,, ,,	5005000 ,,	2000-3000 miles	
25 ,	350—2000 ,.	900 —9000 ,,	
31 ",,	250—1500 ,,	600 —9000 .,	
41 ., ,,	120- 800 ,,	300 -7000 .,	
49 ,, ,,	50 - 600 .,	70 -6500	
61 ,, ,,	upto 500 ,,	upto 6000 ,,	
75 Metres	,, 400 ,,	,, 5000 ,.	
91 ,,	,, 200 ,,	., 1500 ,,	
100 ,,	,, 150 ,,	,, 800 ,,	

The following reception problems can be solved with the help of this chart.

- (1) Suppose you want to know whether a 31-metre station can be received at a particular time. Find out the distance of the transmitter from the receiver (the great circle distance) and consult the appropriate column in the above table. If the distance falls within the range reception is likely.
- (2) You can know which wavelength will be most suitable for searching stations of a given country, and
- (3) the most appropriate time for searching a station at a particular wavelength at aknown distance.

Reception Reports

If one is asked to send a reception report, generally it will not do to describe the condition of reception in words. Certain International conventions have to be followed in giving a comprehensive report.

THE R-S-T SYSTEM

This system is mostly used by amateurs all over the world. Here

- R stands for readability
- S. stands for signal strength
- T. stands for tone.

The interpretation of the numerals used is given in the following table.

The letters R-S-T determine the order of sending the report. Such a reception report as RST 465 X will have the following interpretation—Signals readable with practically no difficulty; good singnals; musically modulated note; crystal characteristics noticeable.

THE R-SYSTEM

In this system which is most commonly used for broadcast reception reports, signal strength, fading and atmospherics are given. Symbols and their interpretation are given in the following table.

R-S-T SYSTEM

Numeral	Interpretation
	(R) Readability
1 2 3 4 5	Unreadable Barely readable, occasional words distinguishable Readable with considerable difficulty Readble with practically no difficulty Perfectly readable
	(S) Singnal Strength
1 23 4 5 6 7 8 9	Faint—signals barely perceptible Very weak signals Weak signals Fair signals Fairly good signals Good signals Moderately strong signals Strong signals Extremely strong signals
	(T) Tone
1 2 3 4 5 6 7 8 9	Extremely rough hissing note Very rough a. c. note, no trace of musicality Rough low-pitched a c. note, slightly musical Rather rough a. c. note, moderately musical Musically modulated note Modulated note, slight trace of whistle Near d. c. note, smooth ripple Good d. c. note, just a trace of ripple Purest d. c. note

If the note appears to be crystal controlled add an X after the appropriate number.

(R)-SYSTEM

Symbol	Interpretation	
1	Signal Strength	
R1 R2 R3	Faint signals, just audible Weak signals, barely audible Weak signals, copiable (in absence of any difficulty)	
R4 R5	Fair signals, readable Moderately strong signals	
R6	Strong signals	
R7	Good strong signals (such as copiable through	
R8	interference) Very strong signals; can be heard severel feet from phones	
R9	Extremely strong signals	
	Fading	
F FF FFF N SS S R RR	Slight Fading Fairly deep fading but no programme lost Complete fade-out programme lost No fading Very slow fading (minutes) Slow (one minute or so) Fairly rapid (several seconds) Very rapid (one second or less)	
	Atmospherics	
X XX XXX N	Slight static Rather bad Very strong atmospherics No atmospherics	

Time in Different Countries

Every fifteen degrees of longitude make a difference of an hour. Places 15 degrees East (from any place) are an hour ahead and those 15 degrees west are an hour behind. Therefore at the same instant the local time at different longitudes is different.

Different countries adopt different standard times to suit their convenience. The following are some of the well-known standard times; their relation to the Indian Standard Time (I.S.T.) is also given

```
Eastern Standard Time (E. S. T.)

Greenwhich Mean Time (G. M. T.)

British Summer Time (B. S. T.)

4½ hours slow on I. S. T.

4½ hours slow on I. S. T.
```

In U. S. A. four standard times are used which are as follows;

```
Eastern U S. A.

Central U. S. A.

Mountain States
of U. S. A.

Western U. S. A.

Eastern Time 10½ hours slow on I. S. T.

Mountain Tfme 12½ hours slow on I. S. T.

Mountain Tfme 12½ hours slow on I. S. T.
```

Canada is similarly divided into five time-zones which are as follows;

East of 68° W	9½ hours slow on I. S. T
68° W—89° W	10½ hours slow on I. S. T.
89° W—103° W	11½ hours slow on I. S. T.
103° W-Rockies	12½ hours slow on I. S. T.
British Columbia	13½ hours slow on I. S. T,

In the Table that follows the relation of I.S.T. to time in different countries is given.

FAST ON I S.T. Canada from 103° West to the Rockies; Mountain States of U S. A; Mexico British Columbia; Western U. S. A. Yukon; Alaska Newzealand Tasmania; Victoria; New South Wales; Queensland; New Guinea South Australia, Northern Territory Japan: Korea East China, most of East Indies; Western Australia Indo-China; Siam; Straits Settlements Burma Ceylon SLOW ON I. S. T. Somaliland; Iraq; Tanganyika; Kenya; Zanzibar Uganda Ji Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	Time Difference in hours	Country
Mountain States of U S. A; Mexico British Columbia; Western U. S. A. Yukon; Alaska Newzealand Tasmania; Victoria; New South Wales; Queensland; New Guinea South Australia, Northern Territory Japan: Korea East China, most of East Indies; Western Australia Indo-China; Siam; Straits Settlements Burma Ceylon SLOW ON I. S. T. Somaliland; Iraq; Tanganyika; Kenya; Zanzibar Uganda Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	FAST	ON I S.T.
10½ British Columbia; Western U. S. A. 8½ Yukon; Alaska Newzealand 1½ Tasmania; Victoria; New South Wales; Queensland; New Guinea South Australia, Northern Territory Japan: Korea East China, most of East Indies; Western Australia Indo-China; Siam; Straits Settlements Burma Ceylon SLOW ON I. S. T. 2½ Somaliland; Iraq; Tanganyika; Kenya; Zanzibar Uganda Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	113	
Yukon; Alaska Newzealand Tasmania; Victoria; New South Wales; Queensland; New Guinea South Australia, Northern Territory Japan: Korea East China, most of East Indies; Western Australia Indo-China; Siam; Straits Settlements Burma Ceylon SLOW ON I. S. T. Somaliland; Iraq; Tanganyika; Kenya; Zanzibar Uganda Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	1	·
Newzealand Newzealand Newzealand Tasmania; Victoria; New South Wales; Queensland; New Guinea South Australia, Northern Territory Japan: Korea East China, most of East Indies; Western Australia Indo-China; Siam; Straits Settlements Burma Ceylon SLOW ON I. S. T. Somaliland; Iraq; Tanganyika; Kenya; Zanzibar Uganda Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;		British Columbia; Western U. S. A.
Tasmania; Victoria; New South Wales; Queensland; New Guinea South Australia, Northern Territory Japan: Korea East China, most of East Indies; Western Australia Indo-China; Siam; Straits Settlements Burma Ceylon SLOW ON I. S. T. Somaliland; Iraq; Tanganyika; Kenya; Zanzibar Uganda Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	8½	Yukon; Alaska
Queensland; New Guinea South Australia, Northern Territory Japan: Korea East China, most of East Indies; Western Australia Indo-China; Siam; Straits Settlements Burma Ceylon SLOW ON I. S. T. Somaliland; Iraq; Tanganyika; Kenya; Zanzibar Uganda Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	6	Newzealand
4 South Australia, Northern Territory Japan: Korea 2 East China, most of East Indies; Western Australia Indo-China; Siam; Straits Settlements Burma Ceylon SLOW ON I. S. T. 2 Somaliland; Iraq; Tanganyika; Kenya; Zanzibar Uganda Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	41	Tasmania; Victoria; New South Wales;
Japan: Korea East China, most of East Indies; Western Australia Indo-China; Siam; Straits Settlements Burma Ceylon SLOW ON I. S. T. Somaliland; Iraq; Tanganyika; Kenya; Zanzibar Uganda Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	- 1	Queensland; New Guinea
2½ East China, most of East Indies; Western Australia 1½ Indo-China; Siam; Straits Settlements 1 Burma 0 Ceylon SLOW ON I. S. T. 2½ Somaliland; Iraq; Tanganyika; Kenya; Zanzibar 1 Uganda 3½ Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa 1½ Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	4	South Australia, Northern Territory
Australia Indo-China; Siam; Straits Settlements Burma Ceylon SLOW ON I. S. T. Somaliland; Iraq; Tanganyika; Kenya; Zanzibar Uganda Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	31	Japan: Korea
14 Indo-China; Siam; Straits Settlements 1 Burma 0 Ceylon SLOW ON I. S. T. 24 Somaliland; Iraq; Tanganyika; Kenya; Zanzibar 3 Uganda 34 Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	21/2	East China, most of East Indies; Western
1 Burma 0 Ceylon SLOW ON I. S. T. 2 Somaliland; Iraq; Tanganyika; Kenya; Zanzibar Uganda 3 Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	ŀ	Australia
SLOW ON I. S. T. Somaliland; Iraq; Tanganyika; Kenya; Zanzibar Uganda Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	14	Indo-China; Siam; Straits Settlements
SLOW ON I. S. T. 24 Somaliland; Iraq; Tanganyika; Kenya; Zanzibar 3 Uganda 34 Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa 44 Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	1	Burma
Somaliland; Iraq; Tanganyika; Kenya; Zanzibar Uganda Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	0	Ceylon
Zanzibar Uganda Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	SLO	W ON I. S. T.
Zanzibar Uganda Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	21	Somaliland; Iraq; Tanganyika; Kenya;
Finland; Estonia; Latvia; European Russia; Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;		
Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugo- slavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	3	Uganda
Rumania: Bulgaria; Greece; Turkey; Syria; Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugo- slavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	34	Finland; Estonia; Latvia; European Russia;
Palestine; Egypt; Sudan; Rhodesia; Union of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugoslavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	• •	
of S. Africa; Portuguese East Africa Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugo- slavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;		
Norway; Sweden; Denmark; Germany; Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugo- slavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;		
Poland Lithuania; Austria; Hungary; Switzerland; Italy; Czechoslovakia; Yugo- slavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	41	_
Switzerland; Italy; Czechoslovakia; Yugo- slavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;		Poland Lithuania; Austria; Hungary;
siavia; Albania; Tunis; Nigeria; French Equatorial Africa; Cameroons; Congo;	1.0	
Equatorial Africa; Cameroons; Congo;		
_	1	
Portuguese West Africa: Libva		Portuguese West Africa; Libya
1	5 <u>ł</u>	British Isles; France; Belgium; Spain;

Time Difference in hours	Countries
	Portugal; Algeria; Morocco; Gold Coast;
	Togo;
61	Iceland; Senegal; French and Portuguese
1	Guinea; Liberia; Sierra Leone
81	Eastern Brazil
9	Uruguay
91	Canada East of 68° West; Central Brazil;
1	Argentina
10	Venezuela
10}	Canada from 68° W. to 89° W; Eastern
	U. S. A.; Western Brazil; Chile; Columbia
113	Central Canada and U.S. A.; Part of
	Mexico; Central America

Call Signs.

For the purpose of indicating the nationality of a radio station the Telecommunications Convention has assigned the alphabet among the various nations. Every station chooses its call sign from the block of alphabets which have thus been assigned.

The Call Sign of an amateur station is composed of :-

- 1. One or two initial letters from the block assigned
- 2 A digit (which the local government allocates for the purpose of indicating the subdivision where the station is located), and
- 3 A few additional letters, to identify individual stations.

In the first column of the list that follows are given the assigned blocks from which the nationality of a station, be it an amateur or a broadcasting one, is at once established. The last column gives the amateur prefixes (No 1 above)

Block Assigned		Country	Amateur Prefix
CAA-CEZ CFA-CKZ CLA-CMZ CNA-CNZ COA-COZ CPA-CPZ CQA-CRZ	Cape V	c Colonies : Verde Islands uese Guinea	 CE (VE) CM (CO)* CN CO (CM) CP CR 4 CR 5 CR 6

CALL SIGNS

Block Assigned	Country		Amateur Prefix
	Mozambique	•••	CR 7
	Porruguese India	•••	CR 8
	Macao	•••	CR 9
004 005	Timer	•••	CR 10
CSA-CUZ	Portugal		CT 1
	Portugal Proper Azores Islands		CT 1 CT 2
	Madeira Islands		CT 3
CVA-CXZ	Uruguay	•••	CX
CYA-CZZ	Canada'	• • •	(VE)
D	Germany	•••	D'
EAA-EHZ	Spain		_
	Spain Proper	•••	EA1-2-3-4-5
	Balearic Islands	•••	EA6
	Canary Islands	•••	EA8
	Spanish Morocco & North		! !
ELA ELE	Africa		EA9
EIA - EIZ ELA- ELZ	Irish Free State		EI
EPA- EQZ	Liberia		EL
ESA- ESZ	Iran (Persia) Estonia		EP ES
ETA-ETZ	Ethiopia (Abyssinia)	•••	ET
F	France	•••	151
-	France Proper	•••	F3, F8
	Algéria	•••	FA
	Madagiscar	•••	FB8
	French Togoland	•••	FD8
	French Cameroons	•••	FE8
	French West Africa	•••	FF8
	Guadelope	•••	FG8
	French Indo-China New Caledonia		FI8
	French Somaliland	•••	FK8 FL8
:	Martinique	•••	FM8
1	French India	•••	FN8
	French Oceania	•••	FO8
	Miguelon & St. Pierre Isla	nds	FP8
	French Equatorial Africa	•••	FQ8
	Reunion Íslands	•••	FR8
	Tunisia	•••	FT4
•	New Hebrides (French)	•••	FU8
	French Guiana & Inini	•••	FY8

Block Assigned	Country	Amateur Prefix
G	Unit d Kingdom	
	Great Britain except Ireland	
	Northern Ireland	G
HAA-HAZ	riungary	GI
HBA -HBZ HCA -HCZ	Swiss Confederation	HAF
HHA-HHZ	Equador Republic of Haiti	HB
HIA -HIZ	Dominican Republic	HC HH
HJA -HKZ	Republic of Colombia	HI
HPA -HPZ	Republic of Panama	HJHK
HRA-HRZ	Republic of Honduras	HP
HSA -HSZ	Siam	HR
HVA-HVZ	Vatican City	HS
HZA -HZZ	Hedjaz	
I	Italy and Colonies	HZ
J	Japanese Empire	I
	Japan	
	Chosen (Corea)	J1-J7
K	(rormosa)	J8
v	United States of America Continental United States	J9
	Puerto Rico & Virgin Islands	(337) (37)
	Canal Zone	(W)-(N)1 K4
	Territory of Hawaii, Guam,	K6
	U. S Samoa, Midway &	I KO
	Wake Islands	
	Alaska	K6
	Phillipine Islands	K7
LAA-LNZ	Norway	K8
LOA -LWZ	Argentine Republic	LA
LXA-LXZ	Luxemburg	LU
LYA-LYZ LZA-LZZ	Lithuania Bulgaria	LX
M	Great Britain	LY
N	United States of America	LZ G
OAA-OCZ	Peru	(K-W)(N)1
OEA-OEZ	Austria	OA OA
OFA-OHZ	Finland	OE OE
OKA-OKZ	Czechoslovakia	ŎЙ
ONA-OTZ	Belgium and Colonies	OK
OUA-OZZ	Denmark	ON

Block Assigned	Country	Amateur Prefix
	Denmark	OZ
	Faeroes	ŎŸ
Į.	Greenland	ŎX
PAA-PIZ	Netherlands	PA
PIA -PIZ	Curacao	ΡΪ
PKA -POZ	Netherlands Indies	
	Java	PK12-3
	Šumatra	PK4
	Dutch Borneo	PK5
	Celebes, Moluccas	
	and New Guinea	PK6
PPA -PYZ	Brazil	PY
PZA -PZZ	Surinam	PZ
R	Union of Socialist Soviet Repu-	/# #\
CAA CAG	blics Sweden	(U)
SAA-SMZ	Poland	SM
SOA -SRZ STA -SUZ	Egypt	SP
31A-304	Sudan	ST
	Egypt	SU
SVA-SZZ	Greece	SV
TAA-TCZ	Turkey	TA
TFA-TFZ	Iceland	TF
TGA-TGZ	Guatemala	TG
TIA -TIZ	Costa Rica	ΤΪ
TKA-TZZ	France & Colonies & Protectorates	
U	Union of Socialist Soviet	\-'
	Republics :	
. (European Soviet Republics	
:	(Russia)	U1.2.3.4.5 6
	Asiatic Soviet Republics	
	(Siberia)	U8-9-0
VAA-VGZ	Canada	VE .
VHA-VMZ	Commonwealth of Australia	
	Australia	VK2-3 4-5-6-8
	Tasmania	VK7
*****	New Guinea	VK9
VOA-VOZ	Newfoundland	vo
VPA -VSZ	British Colonies & Protectorates: British Honduras & Zanzibar	VP1
	Leeward Islands & Antigua	VP1 VP2
1	Leeward Islands & Mittigua	V F4

Block Assigned	Country	Amateur Prefix
	Gilbert & Ellice Islands &	
	Ocean Island	· VR1
	British Guiana	· VP3
	Trinidad and Tobago	VP4
	Jamaica and Cayman Islands	
	Barbados	VP5
	Bahamas	VP6
	Falkland Islands	VP7
		VP8
	permuda	V P9
	Fanning Isla ds	· VQ1
	Northern Knodesia	1 VQ2
•	Langanyika	1 VQ3
	Kenya	· VQ4
	Uganda	VQ5
	Mauritius and St. Helena	VQ8
	Fiji Islands	V R-2
	Solomon Islands	· VR4
	Straits Settlments	VS1
	Malaya ···	· VS2-VS3
	North Borneo	· VS4
	Sarawak ···	VS5
	Hong Kong	
	Ceylon	
	Bahrein Islands	VS8
	Maldive Islands	
TA-VWZ	British India	
VXA-VYZ	Canada ···	
W	United States of America	
KAA-XFZ	Mexico	· XE
KGA-XUZ	China	
YA-XZZ	British India	
AA-YAZ	Afghanistan	(VU) YA
BA-YHZ	Netherlands Indies	
IA -YIZ	Iraq	(PK)
IA -YIZ	New Hebrides	YI
LA -YLZ	Latvia	YJ
MA-YMZ		YL
NA-YNZ	Free City of Danzig	YM
OA-YRZ		YN
SA -YSZ	Rumania	YR
TA-YUZ	Republic of El Salvador	YS
INTIUL	Yugo-Slavia ···	YT-YU

Block Assigned	Country		Amateur Prefix	
YVA-YWZ	Venezuela		YV	
ZAAZAZ	Albania	•••	ŻĂ	
ZBA -ZJZ	British Colonies & Protector	2105 .	241	
<i></i>	Malta		ZB1	
	Gibralter	•••	ZB2	
	Transjordania		ZCi	
	Cocos Islands		ZC2	
	Christmas Islands		ZC3	
	Cyprus	•••	ŽC4	
	Palestine		ZC6	
	Sierra Leone		ZD1	
	Nigeria & British Camero	wns	ZD2	
	Gambia		ZD3	
	Gold Coast		ŽD4	
	Nyassa		ZD6	
	Ascencion		ŽD8	
	Southern Rodesia	[ZE	
ZKA-ZMZ	Newzealand			
	Cook Island	•••	ZK1	
	Niue	•••	ZK2	
	New Zealand		ZL	
	British Samoa		ΖM	
ZPA -ZPZ	Paraguay	•••	ZP	
ZSA -ZUZ	Union of south Africa		ZS-ZT-ZU	
ZVAZZZ	Brazil	•••	(PY)	

^{*} CM is used by C. W. Stations; CO by phones

T Certain amateur stations licensed to members of the U.S. Naval Communications Reserve are authorized to use the prefix N.

Assignment of Transmission Bands

Wavelength in Metres

Wavelength in Metres

Wavelength and Frequency

Frequency in Kc/s	Wave length in Metres	Frequency in Kc/s	Wave lenth in Metres	Frequency in Kc/s	Wave length in Metres
300,000 150,000 100,000 75,000 60,000 50,000 42,855 37,500 33,333 30,000 27,273 25,000 12,429 20,000 18,750 17,647 16,666 15,789 15,000 14,285 13,636 13,043 12,500 12,000 11,538 11,111 10,714 10,346 10,000 9,677 9,375 9,091 8,823 8,571 8,333	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	8,108 7,855 7,692 7,500 7,317 7,143 6 977 6,818 6,667 6,522 6,383 6,250 6,122 6,000 5,454 5,000 4,615 4,286 4,000 3,750 3,529 3,333 3,158 3,000 2,857 2,727 2,609 2,500 2,308 2,143 2,000 1,875 1,765 1,667 1,579 1,500	37 38 39 40 41 42 43 44 45 46 47 48 49 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 130 140 150 160 170 180 190 200	1,429 1,364 1,304 1,250 1,200 1,154 1,111 1,034 1,000 967 7 937·5 909·1 882·3 857·1 883·3 857·1 883·3 810·8 789·5 769·2 7500 731 7 714·3 697 7 681·8 666·7 652 2 638·3 666·7 652 2 638·3 625 0 612 2 600·0 588 2 576·9 566 0 555 6 545·4 535·7	210 220 230 240 250 250 260 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 500 510 520 530 540 550 560

Frequency	Wave	Frequency	Wave	Frequency	Wave
in	length in	in	length in	in	length in
Kc/s	Metres	Kc/s	Metres	Kc/s	Metres
526 3 517 1 508 5 500 0 461 5 428 6 400 0 375 0 333 3 315 8 300 0 285 7 272 7 260 9 250 0 241 9 240 0 232 6	570 580 590 600 650 700 750 800 850 900 950 1,000 1,050 1,100 1,240 1,240 1,290	230·8 222 2 214 3 212 8 206·9 202·7 200·0 193·5 187·5 181·8 176·5 172·4 166·7 162·2 157·9 153·8 151·5 150·5	1,300 1 350 1 400 1,410 1,450 1 480 1 500 1,550 1,650 1,740 1,750 1,800 1,850 1,950 1,950 1,980 2,000	142 9 136 4 130 4 125 0 120 0 115 4 111 1 107 1 100 0 96 77 93 75 90 91 88 24 85 71 80 00 78 95 76 92 75 00	2,100 2,200 2,300 2,400 2,500 2,500 2,700 2,800 2,900 3,100 3,200 3,400 3,500 3,750 3,800 3,900 4,000

Broadcasting Stations in India

In the following list all stations except the last four are under the All India Radio. The programmes of these stations are published fortnightly in five journals, viz. The Indian Listener (English), Sarang (Hindi) Awaz (Urdu), Betar Jagat (Bengali), and Vanoli (Tamil).

The Allahabad Radio station is operated by the Allahabad Agricultural Institute. Transmissions normally begin at 630 p.m. in summer and at 6 p.m. in winter lasting usually about an hour and a half. Programmes are published in the Leader, Allahabad.

The Hyderabad and Aurangabad broadcasting stations are operated by H E H. the Nizam's State Broadcasting Service. The Haderabad station begins transmissions at 5 30 p. m. and closes down at 10 p. m. Programmes are published fortnightly by the Broadcasting Authorities.

	STATION	NC	Power in k. W.	Call Sign	Fre- queny in kc/s.	Wave- length in Metres.	Transmission Time (I. S. T.)
H.	1. Delhi	M. W.	50	VUD	886 ::	338.6	i 7.30 a. m 10.00 a. m. ii 12.00 noon 2.00 p m. iii 5.00 p.m 10.45 p. m
	Delhi	S W.	10	VUD2	7.290 9.590 7,290 4,960	41.15 31.3 41.15 60.48	i 7.30 a. m 10.00 a m. ii 12.00 noon 2.00 p. m iii (a) 5.00 p. m 7.00 p. m. iii (b) 7.15 p. m 10 45 p. m.
	Delhi	S. W.	rv	VUD3	15,290 15,290 9,590 6,085	19.62 19.62 31.3 49.3	i 7.35 a. m 10 30 a. m. ii 11 30 a. m 2 55 p. m. iii (a) 5.00 p. m 9 30 p. m. iii (b) 9.50 p. m 10 20 p. m.
	Delhi	S. W.	10	VUD4	11,830	25.36	i 730 a. m 10.00 a. m. ii 12.00 noon 200 p. m. iii 5.00 p m 10.45 p. m.
્રાં (Bombay	M. W.	15	VUB	1,231	244	i 7.30 a m 9.30 a. m. ii 12.30 p. m 2.25 p. m. iii 5 00 p. m 10.45 p. m.

0					
Transmission Time (I. S. T.)	i 7.30 a. m 9,30 a. m. ii 12.30 p. m 2.25 p. m. iii (a)500 p. m 7.15 p. m. iii (b)7.50 p. m 10.45 p. m.	i 730 a. m 900 a. m. ii 130 p. m 300 p. m. iii 400 p. m 10.30 p. m.	i 730 a. m. 9.00 a. m. ii 130 p. m. 300 p. m. iiii (a) 4 00 p. m. 545 p. m. iii (b) 6.00 p. m 10.30 p. m.	i 7.30 a. m 9 00 a. m. ii 12 30 p. m 3 00 p. m. iii 5.00 p. m 10.30 p. m.	i 730 a. m 9.00 a. m. ii 12.30 p. m 3 00 p m. iii(a) 5 00 p. m 8.45 p. m. iii(b) 9 00 p. m 10.30 p m.
Wave- length in Metres.	41.44 31.4 41.44 61.48	211	41.27 31.35 41.27 60.98	370.4	41 61 31.48 41.61 61.98
Frequency in kc/s.	7,240 9,550 7.240 4 880	1 420	7,270 9,570 7,270 4,920	810	7.210 9.530 7.210 4.840
Call Sign	VUB2	NOM	VUM2	VUC	VUC2
Power in k. W.	10	0 25	10	1.5	10
NO	S W.	M.W.	s, W	M W.	S. W.
STATION	Вотьау	Madras	Madras	Calcutta M	Calcutta S. W.
		က		4.	

	STATION	Power in k. W.	Call Sign.	Fre- quency	Wave- length in Metres.	Transmission Time (. S. T.)	
10	Lahore M. W.	٠,	VUL	1,086	276	i 730 a.m 930 a.m. ii 1230 p.m 1.35 p.m. iii 5.30 p.m 10.45 p.m.	
vo	Lucknow M. W.	ഗ	MUV	1,022	293 5	i 7.30 a. m 9 30 a. m. ii 12.30 p. m 1 35 p. m. iii 5 30 p. m 10 45 p. m.	
	Trichinopoly, M. W.	ഗ	VUT	758	336	ii 5 00 p. m 230 p. m.	
ന്റ്	Dacca M. W. Peshawar M.W.	5 0.25	VUY	1,167	257.1	5.00 p. m 10.30 p. m. 1 830 a m 9.30 a. m. ii 5 00 p. m 10.45 p. m.	
Ö	Allahabad M. W.		VUA	1 465	203 5	Summer: 630 p m 800 p, m. Winter: 600 p.m 730 p.m.	
-	HyderabadM.W	5	ADA	730	411 0		
તાં જ	AurangabadM.W Mysore (Akash- Vani) M.W.	ńώ	VUX VU7MC	940	319.1 310.0	5.30 p.m 930 p.m. 5.00 p.m 9.00 p.m.	

The transmission timings and wavelengths of the first nine stations belonging to the All India Radio, will be effective during the summer of 1941 1. e. from April 16 to October 16 During 1941 winter i. e. from October 16 the following wavelengths will be in use:

Station	Frequency in kc/s.		Wavelength in Metres.	Transmission
Delhi VUD 2	4,960 3,495		60,48 85.84	ni (a) Evening ni (b) Late Evening
Bombay VUB 2	4,880 3,365		61 48 89.15	ni (a) Evening nı (b) Late Evening
Madras VUM 2	4,920 3,435		60 98 87.34	ni (a) Evening 111 (b) Late Evening
Calcutta VUC 2	4,840 3,305		61.98 90.77	111 (a) Evening 111 (b) Late Evening

From May 16, 1941 the above stations will adopt the 41 metre band for the midday transmissions.

		_
(<u>ز</u>
(ב	כ
	2	
	とのとなって	
D.:1:-D		

. B. C.)	Best reception between	idia)	7.30 p. m. & 830 p. m. 7.30 p. m. & 8.30 p. m.		4,25 p. m. & 8,30 p. m. 425 p. m. & 1000 p. m. 8,30 p. m. & 1000 p. m. 7.15 p. m.)	India)	10.25 p. m. & 11.45 p m.	to India)	8.30 a. m & 10.15 a. m.	Not satisfactory Not satisfactory 7.00 a.m. & 8,30 a.m.
Dritish Oversea Services (B. B. C.)	On' Between	Special Indian Transmission (Directed to India)	7.30 p. m. & 8.30 p. m. 7.30 p. m & 8.30 p. m.	Eastern Transmission (Directed to India)	4.25 p. m. & 8.30 p. m. 4.25 4.25 p. m. & 10.00 p. m. 4.25 7.30 p. m. & 10.00 p. m. 8.30 (Interval from 7.00 p. m. to 7.15 p. m.)	Part of African Transmission (Directed to India)	10.25 р. т. & 11.45 р. т.	North American Transmission (Not directed to India)	3.50 a. m. & 6.45 a. m	3.50 a. m. & 10.15 a. m. 3.50 a. m. & 10.15 a. m. 3.50 a. m. & 10.15 a. m. 7.00 a. m. & 10.15 a. m.
Drittish	Frequency in Mc/s	Special In	17.79 15.31	Easte	17.81 15.14 11.75	Part of A	12.04	North Ame	11.75	9.60 9.58 6.11
	Wavelength in Metres		16.86 19.60		16.84 19.82 25.53		24.92		25.53	31.25 31.32 49.10
	Call Signs		GSG GSP	ě	GSV GSD GSD		GRV	ç	קנא	GRY GSC GSL

Best reception Fetween		2.00 p m & 3.30 p m. 100 p. m. & 3.30 p. m. Not satisfactory 1.00 p m & 33. p m. 1140 a. m & 100 p m. 11.40 a. m & 12 noon
'On' Between	Pacific Transmission (Not directed to India)	1.00 p m. & 3.30 p. m. 1.00 p. m. & 3.30 p. m. 11.40 a m & 3.30 p m. 1.00 p. m. & 3.30 p m. 11.40 a. m. & 3.30 p. m. 11.40 a. m. & 3.30 p. m.
Frequency in Mc/s		17.81 15.31 15.26 15.14 11.75 9.51
Wavelength in Metres		16.84 19.60 19.66 19.82 25.53 31.55
Call sign		GSV GSP GSI GSF GSB GSB

Time Schedule

OF SOME SHORT WAVE BROADCASTING STATIONS.

tion ; C		Wave-length in quency Metres in Mc/s. 13 91 21.57 13.98 21.46 15.48 19.38 15.77 19.02 16.87 17.78	6.00 p. 71 Ti.	(IST)	(T) 11. p. m. 10. p. m.
					.1. p. m. 10. p. m.
					10. p. m.
 . 					
				İ	•
 		•			ō.
			,	1	7,15 p m.
			Joseph H	1	, æ
			730 р m.	1	e,
Budapest HAS 3	3 1952	2 15.37	10 25 a.m.	1	1.45 p. m
			7.30 р m.	1	ö
Buneos Aires LRU	19 62	2 15.29	530 a.m.	1	ď
ork			11.30 р. ш.	-	ď
Boston		-	1.30 а. ш.	1	2 30 a.m.
	-		4 00 p. m.		Ġ.
		-	۵.	1	
Bandoeng	. 198		ď	H	12.30 p: m
			300 p m	1	. o
Boston	19.83	3 15.13	830 nm.	Ī	

Station	Call Sign	Wave- length in quency Metres in Mc/s	Fre- quency in Mc/s	Тіте		(I. S. T.)	
Rio de Janeiro	PSE	50 00	14 94	130 a m.		2.45 a. m.	
Radio Nations	Ħ	20 64	14.54	1145 р. ш.	}	45 a	
China	XLOY	25.21	11 90	. ო			
		(7.30 p m.	I	30 a.	
Melbourne		25.25	11 88	a.	1	30 p.	
Mr. Vanl		1	,	1.30 a.m.	1	ď.	T
New Tork		25.36	11.83		j	ė,	ΊM
p	,		į	4 45 a.m.	1	9 30 a.m.	ΙE
Boston	WIXAL	25.45	11 79	11.30 p.m.	1	a. m	SC
Salgon		25.46	11.78	ġ	1	غ	CH
Fanama	HP 5 G	25 47	11.78	400 am	İ	a m	EC
Lanti	*******	25 47	11 78	11 45 a m.	ļ	10.45 p m.	U
Doston	WIXAL	25.58	11 73	7 45 a.m.	1	æ.	LE
Fanama	A C JH	25 64	11 70	430 a.m.	1	900 a m	
Singapore	7H7	30.36	696	3,10 p.m.	1	8.10 p m.	
				11 10 a.m.	ı	۵	
				10.55 a.m.	١	D III.	
TVI: 1				10 a.	ı	a.m.	
Klipnenvel	_	31.23	09.6	200 p.m.	1	Ë	,
(South Airica)				4 00 p.m.	1	ف	
				7.30 p. m.	ı	10 15 p. m	
, i	1117 6 3 217		,	e e	ı	a. m.	(
Fertn	VAOME	31.28	9.59	430 p.m.	ı	6.30 p m. (Ex Sun.)	61

Stations	Call Sign	Wave-	Fre-	Time		(I S T.)
	0	Metres	in Mc/s.			
Sydney	VK 2 ME	31.28	9 59	11 30 а. т.	1	1.30 p. m. (Sun)
5				3.30 p.m.	I	E 0
Melbourne	VLR	31.32	9 58	220 p m.	ı	600 p. m (Sun)
				4 ()0 p m.	l	ē.
Schenectady	W 2 XAD	31.41	9.55	4 45 a.m.	1	830 a m.
Bandoeng	YDB	31.41	9 55	4.30 a m.	1	6.00 a. m
	_			300 р ш.	١	p. m.
Robert's Heights	ZRH	31.50	9 52	400 p.m.	I	D III.
(South Africa)			_	330 p, m.	İ	ċ
Bangkok	HS 8 PJ	31.55	9 51	6.30 p. m.	I	830 p. m (Thu)
Ankara	TAP	31 70	9.46	10 00 p m.	1	a m.
Colombo	VPB	48 70	6.16	6 00 p. m.	١	
		428.00	.70 >:			
Kliphenvel	ZRK	49 20	6 10	10.30 p. m.	l	130 a.m. (Sun)
(South Africa)				10 30 p.m.	1	2.30 a. m. (Ex. Sun)
Rangoon	XXO	49.94	6.01	730 a m.	١	9 30 a.m.
				530 p m.	1	830 p m
Robert's Heights	ZRH	46 64	6.01	7.30 p.m.	١	10 30 р. т.
(South Africa)				10.45 p. m.	١	1.45 a. m.
				10 15 a.m.	I	11 20 a.m.
Durban	ZRD	61.53	4.88	6 00 p m.	I	10 30 p. m.

Except where stated otherwise the above transmissions take place daily

Short Wave Broadcasting Stations

Station	Country	Call Sign	Frequency in Mc/\$	Wave- length in Merres	Power in kw
49-Metre Band (9.000-6 200 Mc/s)	6 200 Mc/s)				
Rangoon	Burma	XXO	9 007	49 94	0 -
Ргетопа	South Africa	ZRH	6,007	49. ₀₄	2
Pernambuco	Brazıl	PRA8	6 010	49 92	1
Boston	U S. A.	WRUL	6 040	49 67	50
British Oversea Service		GSA	6 050	49.59	10-50
Philadelphia	U S. A.	WCAB	9 090	49 50	10
Motala	Sweden	SBO	6.065	49 46	12
Toronto	Canada	CFRX	020 9	49 42	
Lima	Peru	OAX4Z	080 9	49 34	15
Vancouver	Canada	CFKX	080 9	49 34	1
Nairobi	Kenya	VQ7LO	6 083	49 31	
Toronto	Canada'	CRCX	060 9	49.26	1
Cape Town	South Africa	ZRK	6 097	49 20	2
Belgrade	Yugoslavia	YUA	0019	49 18	10
British Oversea Service		GSL	6 110	49 10	10-50
Saigon	French Indo-China	FZR	6 110	49.10	12
Lahti	Finland	OFD	6.120	49 02	-
Hsinking	Manchukuo	MTCY	6 125	48.98	8
Pittsburgh	U.S. A.	WPIT	6 140	48.86	- 04

			The second secon		
Stations	Country	Call Sign	Frequency in Mc/s	Wave- length in Metres	Power in kw
British Oversea Service Winnipeg Teheran Colombo Schwarzenburg Lima Schenectady Vatican City Athlone Ica' Radio Nations Bandoeng Valladolid Ireland Ireland 41-Metre Band (7 200-	ervice Canada Iran Ceylon Switzerland Peru U. S. A. Irelond Peru Switzerland Peru Switzerland Dutch East Indies Spain (7 200-7 300Mc/s)	GRW CJRO EQB — OAX4G WGEA/O HVJ OAXIA HBQ PMH FETI	6 145 6.150 6.150 6.155 6.165 6.180 6.190 6.190 6.190 6.675 7.070	88.88 88.78 88.73 88.73 88.73 88.73 87.74 88.73 88.44 89.74	10–50 2 14 15 15 15 15 17 17
British Oversea Service Tokio British Oversea Service Lisbon Moscow Gairo Moscow Budapest	Japan Porrugal C. S. R. Egypt U. S. S. R Hungary	GSW JVW GSU CSW8 SUX HAT4	7.230 7.257 7.260 7.260 7.545 7.865 9.010	41 49 41 34 41 32 41 32 38 14 33 30 32 38	10-50 50 10-50 10 20-100 10 20-100 5

Station	Country	Call Sign	Frequency in Mc/s	Wave- length	Power intkw
Bucharest Lima Radio Nations Ankara St. John's	Rumania Peru Switzerland Turkey Newfoundland	OAX4J HBL TAP VONG	9.280 9.340 9.345 9.465 9.482	32.33 32.12 32.10 31.70 31.64	
S1-Metre Band (9.500-9, 700 Mc/s) Chungking Bangkok Bangkok Mexico Belgrade British Oversea Service Moscow Noscow Pretoria Fredoria Schenectady Treasure Island Suva Motala Fiji	ria R. frica	XGOY HS8PJ OFD XEWW YUC YUC SSB RW96 ZRG ZRG ZBW3 WGEO KGET IZI SBU	9 500 9 500 9 500 9 500 9 550 9 br>9 550 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	######################################	35 10 10 10 10 20 100 20 100 5 12 12 12 12 12 13
		The second second second		-	

Station	Country	Call Sign	Frequency in Mc/s	Wave- length in Metres	Power in kw
Varican City		HVJ	9.550	31.41	52
Pittsburgh Millis	U.S. A	WPIT	9.570	31.35	10
Montevedio	Uruguay	CXA2	9.570	31,35	10-70
British Oversea Service	Austrolia	ر در در	9.580	31.32	30
Philadelphia	U. S. A.	WCAB	9.590	31.28	10
British Oversea Service	6	GRY	009.6	31.25	20-20
Moscow	South Africa	KAL	9.606	31.23	340
Panama City		HP5J	9.610	31,32	2.5
Sydney	Australia	VLQ	9.615	31.20	1
Budapest	Hungary	HAT5	9.625	31,17	م
Taiboku	Formosa	JFO	9.636	31 13	1 :
Wayne	U. S. A	WCBX	9.650	31.09	27
Perth	Ausralia	VLW2	9.650	60.15	1
Perth	Australia	VLW4	9.655	\$1.04 0.15	1 8
Vatican City		HV	9.660	07.00	91
Buenos Aires	Argentine	LRX	9.660	31.00	_
Manila	Philippine Islands	KZRH	099.6	31.06	18
Treasure Island	U. S. A.	KGEI	9.670	31.02	25.
Teheran	Iran	EQC	089.6	56.05 66.05	47
Mexico City	Mexico	XEQQ	089.6	30.99	10
Sydney	Australia	VLQ5	089.6	30.99	1

Country Call Sign Argentine CRX Malaya E. W. I Portugal CSW7 Screece CSW7	Frequency in Mc/s 9.690 9.690 9.700	Wave- length in Metres	Power
•	9.690	and the same of th	
	9.690	30.96	10-50
CSW7 SVJ EA17		30.96	10
CSW7 SVJ EAT	9.705	30.93 30.93	2.5 -
 	9.740	30.80	10
	0.825	30.54	15
PSH	10.220	29.35	31
PMN	10.260	29.24	15
	10.310	29.10 28.99	12
	10.724	29.59	20-100
	11 040	27.17	10 30
	11.500	26.09 25.75	20-100
			1
	11.705	25.63	2
	11.700	25 64	2.5
	11,715	3.53.5 3.12.8	20-100 10
Jayar Bulgaria Argentine U. S. S. R. Portugal Switzerland U. S. S. R. China —11.900 Mc/s) Sweden U. S. S. R. Thailand Canada			LSX CSW6 HBO XGOK XGOK HP5A HP5A CJRX

Station	Country	Call Sign	Frequency in Mc/s	Wave- length in Mettes	Power
	Argentine	LRA3 HVJ	11.730	25.58 25.55	10 25 16, 50
British Oversea Service Moscow Hsinking	U. S. S. R. Manchukuo	GSD RNE MTCY	11.766	25.55 25.51 25.48	20-100 20-100
Saigen Lahti	Grench Indo-China Finland	FZR OFE	11.780	25,47 25,47	212
,		WROL JZJ SSV	11.800	25.42 25.42 26.32	20 50 10-50
british Oversea Service Moscow Wayne	71Ce U. S. S. R. 11'S. A	WCBX	11.830	25.36 35.36 35.36	20-100 10
Perth	Australia	VLW3	11.830	25.36	: ;
Lisbon Melbourne	Portugal Australia	CSW5 VLR3	11.850	25.32	20
Rio de Janeiro British Oversea Service	Brazil	PRF5 GSE	11.855 11.860	5230 5230	10-50
	Australia	VLQ2	11.870	25.27	18
Sydney	Australia	VLQ7	11 880	25.25	2
Chungking	China 11 c c n	XGOY	11.900	25.21	35
Rabat	Morocco		11 940	25.13	. 001-02
Moscow	U S. S. R.	RNE	12.000	25.00	20-100

Station	Country	Call Sign	Frequency in Mc/s	Wave- length in Metres	Power in kw	
Shanghai Quito Quito Moscow To S. F. Radio Nations 19-Metre Read 15 000-15 350 Me/co	China Ecuador U.S. S. R. Switzerland	FFZ HCJB RKI HBJ	12 050 12.460 14.717 14.538	24.90 24.08 20.33 20.61	20 - 100 20	5110K1 W11
CT 000:01 punc 01:0:::	CO MICE S					
Moscow Tehran Vorige	U. S. S. R Iran	RKI EBP	15 040	19 95	20-100	
Boston	U. S. A.	WRUL	15.130	19.83	666	
Bandoeng	Netherland Indies	GSF	15 140 15 150	19.82 19.80	10-50	
Motala Tokio	Sweden Japan	SBT 17K	15.155	19 80 19 79	712	
Moscow	Ú S. S. R.	RW96	15.180	19.76	20-100	
British Oversea Service Lahti	Finland	GSO	15.180	19.76 19.75	10-50	
Ankara	Turkey	TAQ	15.195	19.74	8	
Chungking	China II S. A	XGOX	15 200	19.74	33	
Lishon	Dortugal	CCITY	15.210	19.72	94.	
Belgrade	Yugoslavia	**************************************	15 240	19.72	25	
Boston	U.S.A	WRUL	15 250	19 67	202	

Station	Country	Call Sign	Frequency in Mc/s.	Wave- length in Metres	Power in kw	,0
British Oversea Service Wayne Buenos Aires British Oversea Service Sydney Schenectady Treasure Island Budapest Moscow	U. S. A Argentine Australia U. S. A. U. S. A. Hungary U S. S. R.	GSI WCBX LRU GSP VLQ3 WGEA/O KGEI HAS3	15 260 15 270 15 290 15 310 15 310 15 330 15 330 15 370	19.66 19.65 19.60 19.57 19.52 19.52	10–50 10 7 10–50 25–100 20 5 20–100	WIRELESS HISTER
16-Metre Band(17.750-17, 850 Mc/s)	850 Mc/s)					, 1 1110
Pittsburgh Bound Brook	U. S. A. U. S. A.	WNBI	17.780	16,87	25.	COM
Drillsh Oversea Service Chungking Sydney	China Australia	XGOX VLQ8	17.800	16.85 16.85	35 1	ENDI
British Oversea Service Wayne	U. S. A.	GSV	17.810	16.84 16.83	10-50	JWI
Moscow	Japan U. S. S. R.	75.25	17.910	16.51	20-100	
Radio Nations Moscow Bangkok	Switzerland U. S. S. R. Thailand	HBF HS6PJ	18.540 18.540 19.020	16.26 16.18 15.77	20 20–100 10	

Station	Country	Call Sign	Frequency in Mc/s	Wave- length in Metres	Power in kw
(13-Metre Band 21,450-	21,450-21 750 Mc/s)				
Boston	U.S.A.	WRUL	21.460	14.00	20
British Oversea Service Schenectady	U.S. A.	WGEA	21.500	13.95	25.20
British Oversea Setvice		GSJ	21.530	13.93	10-50
Pittsburgh British Oversea Service	. O. 9. A.	GST	21.550	13,93	10-50
Wayne	U.S. A.	WCBX WGFA/O	21.570	13.91	10 25–100
British Oversea Service	; ;	GRZ	21.640	13.86	10-50
(11-Metre Band 25,600-26 600 Mc/s)	. 26 600 Mc/s)				
Boston	U. S. A.	WRUW	25.600	11.70	l
St. Louis	U. S. A.	W9XPD	25.900	11.58	1
Cincinnati	O. S. A.	W8XNU	25.950	11.56	ı
South Band	U.S. A.	W9XH	26 050	11.52	
Superior	U.S.A.	W9XJL	26.10	11.49	l
Nashville	O. S. A.	W4XA	26.150	11.47	

News from British Oversea Services (B. B. C.)

Wavelength in Metres	Frequency in kc/s.	Time (I. S. T.)
Spec	ial Indian Tr	ansmission (Directed to India)
19.60	15,310	7.30 p. m. (News in Hindustani)
East	ern Transmis	sion (Directed to India)
16.84 19 82	17,810) 15,140)	430 p. m. to 4,45 p. m.
16.84 19.82	17,810) 15,140)	6.30 p. m. to 7.00 p. m.
19.82 25.53	15,140) 11,750)	9.30 p. m to 10.00 p. m.
Part	of African T	ransmission (Directed to India)
24.92	12,040	11.30 p. m. to 11.45 p. m.
Nor	th American	Transmission (Not Directed to India)
25.53 31.25 31.32	11,750 9,600 9,580	4.15 a m to 4.45 a.m.
25.53 31,25 31.32	11.750 9,600 9,580	5.30 a. m. to 5.45 a. m
31.25 31.32 49.10	9,600 9,580 6,110	7.15 a. m. to 7.30 a m.
25,53 31 25 31 32 49,10	11,750 9,600 9,580 6,110	10,00 a. m.

Wavelangt in Metres	h Frequency in Kc/s	Time (I. S. T.)
Pa	eific Transmissi	ion (Not Directed to India)
19.66 25 53 31 55	15 260) 11,750} 9,510)	11.45 a. m to 12.15 p. m.
16.84 19.60 19.66 19.82 25.53 31.55	17,810 15,310 15,260 15,140 11,750 9,510	1.30 p. m. to 2.00 p. m. & 3.00 p. m. to 3.30 p m.

News In English From Abroad

REGULAR SHORT WAVE TRANSMISSIONS

Country	Station	Frequency in Mc/s	Wavelength in Metres	Daily Bulletins (I. S. T.)
America WNBI	BoundBrook	17.780	16 87	8 30 p. m. (except Sun.) 10 30 p. m.
WCAB WCAB	Philadelphia Philadelphia	6.060 9.590	49.50) 31.28)	5,15 a. m. (ex. Sun.) 5.30 a. m.(Sun. only).
WBOS	Millis	9 570	31.35	415 a. m.
WCBX	Wayne	17.830	16,83	6 30 p. m.; 7 30 p. m (Sun only)
			_	o.50 p m. (Sun. only): 645 p. m. (ex. Sat, and Sun) 930 p. m. (Sat. Sun. only)
				11 30 p. m.
WGFO	WGFO Schenectady	9 530	31 48	1 00 a. m (Sunday only)
) 		3		225 a, m. (except Sat and Sun)
4 11 (11)	-	000		355 a. m. (except Sundays)
WGEA	WGEA Schenectady	15.330	195/	5.30 p. m.
			•	10.30 p, m.
				12 15 a. m.
		1		2.25 a. m. (except Sat. and Sun)
WPIT	Pittsburgh	15.210	19 72	10.30 p. m.

	NEW:	S IN EN	(GLIS	H FROM AB	ROAD		75
Darly Bulletins (I S T.)	5 30 a m. (except Saturdays) 3 15 a. m. 5 30 a m. 3 15 a. m.	12 30 p. m.	12 30 a. m. 6 00 p. m. 6 00 p. m.	3.00 p. m. 3.00 p. m. 10.30 p. m. 12.30 p. m. 7.30 p. m.	330a m. 11.30a m.	4.00 p. m. 4.40 p. m.	2 00 a. m. 3.00 a. m.
Wavelength in Metres	49.67 25.45 19.67	31.20	30.99	25.27 25.25	16.85	25.21	
Frequency in Mc/s	6 040 11.790 15 250	9.615	089.6	11.870	17.800	11.900	
Station	Boston Boston Boston	Sydney	Sydney	Sydney Sydney	VLQ8 Sydney	China XGOY Chungking	
Country	WRUL WRUL WRUL	Australia VLQ	VLQ5	VLQ2 VLQ7	VLQ8	China XGOY	

Country	Station	Frequency in Mc/s	Wavelength in Metres	Daily Bulletins (I. S. T.)	76
Finland OFD La OFD La OFE La OFE La	Labti Labti Labti Labti	6.120 9.500 11.780 15.190	49.02 31.58 25.47 19.75	1.25 p. m. 11.45 p. m. 2.15 a. m. 3 45 a. m.	WIRELI
Hungary HAT4 Bud HAT5 Bud	Budapest Budapest	9 125 9.625	32.88 31.17	600 a. m (except Saturday) 4.45 a. m. (except Sunday)	ess listi
HAS3 Budapest	lapest	15.370	19.52	500 a. m. (Sundays only) 825 p. m. (Sundays only)	ENER
Iran (Persia) EQB Tek) Teheran	6.155	48.74	12 00 midnight	S' COM
Japan JZJ Tokio JZK Tokio	cio Kio	11.800 15.160	25.42 19.79	1.35 а m. 1.35 а m.	IPENDIUN
Manchukuo MTCY Hsi	Hsinking	11.775	25.48	12 30 p. m. 2 35 a. m.	1
Nova Scotia CHNX Ha	Halifax	6.130	48.94	3.15 а. т.	

MG St. Johns' 5.970 B Bucharest 9,280 Walladolid 7.070 Madrid 9.850		
Bucharest 9,280 Valladolid 7.070 Madrid 9,850	50 25	3.45 а. т.
Valladolid 7.070 Madrid 9.850	32.33	3.10 a. m. (except Sundays)
	42 43 30.43	1.20 a. m. 5 00 a. m.
Sweden SBO Motala 6.065 4	49.46	2.45 a. m.
Thailand HSP6 Bangkok 11,715 2	25.61	7 15 р. т.
Turkey TAP Ankara 9.465 3 TAQ Ankara 15.195 1	31.70	12.45 a. m. 5.45 p. m.
U. S. S. R. Moscow 7.545 36	39.76	3.00 a. m. 4.00 a. m

Country	Station	Frequency in Mc/s	Wavelength in Metres	Daily Bulletins (I. S. T.)
	RW96 Moscow	9.520	31.51	12.00 midnight 1.30 a. m.
	Moscow Moscow	9.600	31.25 29.59	3.00 a. m. 4.00 a. m. 5.30 a. m. 4.00 a. m.
	Moscow Moscow Moscow	11 499 11.710 11.830	25.09 25.62 25.36	4.30 p. m 3.00 a. m. 12.03 p. m.
	Moscow	12.000	25 00	12.00 midnight 4.00 a. m. 5 30 a. m.
	Moscow	14 720	20.38	1.30 a. m. (Sundays only) 3.00 a. m. 4 30 p. m.
	Moscow Moscow	15.040 15.180	19.95	9 30 p. m. 5.30 a. m. 5 30 a. m.
				12 03 p. m. 1.30 a. m. 3.00 a. m.
~~	Moscow Moscow	15.715 18 540	19.09 16.18	4.30 p. m. 4 30 p. m.

	Station	in Mc/s in Metres	ın Metres	Daily Builetins (1. S. 1.)
Vatican City HVJ	Þ	6 190	48.47	12.45 a. m.
Yugoslavia YUA Belgrade	3elgrade	6 100	49.18	2.55 a. m.
Java PMA		19 38	15.48	6.15 р. т.
Ceylon VPB Colombo	olombo	6.16	48 70	8.00 p. m. and 9.30 p. m.
	REGULAR	LONG ANI	MEDIUM W	REGULAR LONG AND MEDIUM WAVE TRANSMISSIONS
Country	Station	Frequency in Mc/s	Frequency Wavelength in Mc/s In Metres	Daily Bulletins (I. S. T.)
Bulgaria	Sofia	850	352.9	225 a m. (Thursdays and Saturdays)
Hungary	Budapest	546	449.5	3.40 а. т.

-				
Country	Station	Frequency in kc/s	Frequency Wavelength in kc/s in Metres	Daily Bulletins ¿(I. S. T.)
Ireland	Radio-Eireann	. 565	531	11.15 p. m. (except Sundays) 2.35 a.'m. (Sundays only) 2.40 a. m. (except Sundays)
Latvia	Madona	283	5146	2.30 a. m. (Tuesdas and Fridays)
	Kuldiga	1.104	271.7	2.30 a. m. (Tuesdays and Fridays)
Rumania	Radio Rumania Bucharest	160 823	1.875 364.5	3.20 a.m. (except Sundays) 3.20 a.m. (except Sundays)
Spain	Radio-Coruna	896	309.9	5,40 a.m.
Sweden	Motala Stockholm Goteborg Falun	216 704 941 1 086	1.389 426.1 318.8 276.2	245 a.m.
Ceylon	VPB Colombo	200	428	8 p m. and 9,30 p. m.

The Continental Morse Code

•_	A	1
	В	2
	c	3
	D	4
y•	E	5
	F	- 6
 .	G	- - 7
••••	н	8
••	I	·- 9
	J	0
	к	
	L	····· Period
	М	· · - Interrogation
	N	Break (Double Dash)
	0	· - ··· Wait
	P	· - · End of Message
	Q	End of Transmission
	R	Received (O K)
	s	Invitation to transmit
_	т	—— — Exclamation
	U	Bar Indicating fraction
	V	Comma
	w	Colon
	х	Semicolon
-·	Y	Quotes
	z	Parenthesis

The "Q" Code

There is an inernationally agreed code which is intended to meet the requirements of international radio communication and is found very useful as a time saving device

In the code that follows if an abbreviation is not followed by a question mark it has the meaning given in the answer column but if the question mark is there the meaning is that given in the question column.

Abbre- viation	Question	Answer
QRA	What is the name of your station?	The name of my station
QRB	How for approximately	The approximate dis-
QRC	are you from my station?	
Q1.0	Government administra-	station are settled by
	tion) settles the account	thecompany (or by
7	of your station?	the Government admi-
QRD	Where are you bound and where are you from?	nistration of) I am bound forfrom
QRG	Will you tell me my ex- act frequency (wave- length) in kc/s (or m.)?	Your exact frequency (wavelength is kc/s (orm.)
QRH	Does my frequency (wavelength) vary?	Your frequency (wave- length) varies.
QRI	Is my note good?	Your note varies.
QRJ	Do you receive me badly? Are my signals weak?	I cannot receive you. Your signals are too weak.
QRK	Do you receive me well?	I receive you well. Your
QRL	Are my signals good.? Are you busy?	signals are good. I am busy (or I am busy with) Please do not interfere.

Abbre- viation	Questions	Answer such a
QRM	Are you being inter- fered with?	I am being interfered
	Are you troubled by atmospherics?	with. I am troubled by atmospherics.
QRO QRP QRQ	Shall I increase power? Shall I decrease power?	Increase power. Decrease power, Send faster (words per minute)
QRS	Shall I send more slow-ly?	Send more slowly (words per minute).
	Shall I stop sending? Have you anything for me?	Srop sending I have nothing for you.
QRV QRW	Are you ready? Shall I tellthat you are calling him on	I am ready. Please tell that I am calling him on kc/s
QRX	kc/s (orm)? Shall I wait? When will you call me again?	(orm.) Wait (or wait until I have finished communicating with) I will call you at o'clock
QRY	What is my turn?	(or immediately). Your turn is No(or according to any other method of arranging it.
QRZ	Who is calling me?	You are being called by
QSA	What is the strength of my signals (1 to 5)?	The strength of your signals is(1 to 5).
QSB	Does the strength of my signals vary?	The strength of your signals varies.
ļ	Is my keying correct; are my signals distinct?	Your keying is correct; your signals are bad.
QSG	Shall I sendtelegrams (or one telegram at a	Sendtelegrams (or one telegram) at a time.
QSJ	what is the charge per word for including your internal telegraph	
QSK	charge? Shall I continue with the transmission of all my traffic, I can hear	graph charge. Continue with the transmission of all your traffic, I will interrupt

Abbre- viation.	Question	Answer
QSL	you through my signals? Can you give me ackno-	you if necessary. I give you acknowledg-
QSM	wledgment of receipt? Shall I repeat the last	ment of rceipt. Repeat the last telegram you have sent me.
QSO	withdirect (or thro-	I can communicate withdirect (or through
QSP		the medium of) I will retransmit to
QSR	free of charge? Has the distress call received from been cleared?	free of charge. The distress call received fromhas been cleared by
QSU	Shall I send (or reply) on kc/s (or m.) and/or on waves of type A1.	Send (or reply) on kc/s (orm) and/or on waves of type A1,A2,A3
QSV	A2, A3, or B? Shall I send a series of VVV?	or B. Send a series of VV
QSW	Will you send onkc/s or m.) and/or on waves of type A1, A2, A3 or B?	I am going to send (or I will send) onkc/s (or m) and/or on waves of type A1, A2, A3
QSX	Will you listen for (call sign) onkc/s (orm)?	or B. I am listening for (call sign) onkc/s
QSY		(orm). Change to transmission onkc/s (orm) without changing the type of wave
	Shall I change to transmission on another wave?	Change to transmission on another wave.
QSZ	Shall I send each word	Send each word or
QTA	Noas if it had not	group twice. Cancel telegram No as if it had not been
QTB	been sent. Do you agree with my number of words.	sent. I do not agree with your number of words; I will repeat the first

Abbrevi- ation	Question	Answer
4	How many telegrams have you to send? What is my true bearing in relation to you?	letter of each word and the first figure of each number. I have telegrams for you (or for) Your true bearing in relation to me is degrees
	What is my true bearing in relation to (call sign)	or Your true bearing in relation to(call sign) is degree at (time).
	What is the true bearing of(call sign) in relation tocall sign)	or The true bearing of (call sign) in relation to (call sign) is degrees at (time)
QTF	Will you give me the position of my station according to the bearings taken by the direction finding stations	The position of your station according to the bearings taken by the direction-finding stations which I control is
QTG	which you control? Will you send your call sign for fifty seconds followed by a dash of ten seconds on kc/s (orm.) in order that I may take your bear-	latitudelongitude. I will sent my call sign for fifty second followed by a dash of ten seconds on kc/s (orm)in order that you may take my bearing.
QTH	ings? What is your position in latitude and longitude (or by any other	My position islati- tude longitude (or by any other way of showing it).
QTI		My true course is
QTJ	course? What is your speed?	degrees. My speed isknots(or kilometers) per
QTM	Send radioelectric signals and submarine sound signals to enable me to fix my bearing	hour. I will send radioelectric signals and submarine sound signals to enable you to fix your bearing

Abbre- viation	Question	Answer
QTO	and my distance? Have you left dock (or port)?	and your distance I have just left dock (or port).
QTP	Are you going to enter dock (or port)?	I am going to enter dock (or port).
QTQ	Can you communicate with my station by means of the interna-	I am going to communicate with your station by means of the international code of signals.
QTR QTU	during which your	
QUA	station is open? Have you news of (call sign of the mobile station)?	Here is news of(call sign of the mobile station)
QUB		Here is the information requested
	height of clouds, ground wind for (place of	
QUC	observation)? What is the last message received by you from (call sign of the mobile station)?	The last message received by me from (call sign of the mobile sta-
QUD	Have you received the urgency signal sent by call sign of the	tion) is I have received the urgency signal sent by(call sign of the
QUF	mobile station)? Have you received the distress signal sent by (call sign of the	mobile station)at, (time) I have received the distress signal sent by (call sign of the mobile
QUG	mobile station)? Are you being forced to alight in the sea (or on land)?	station) at(time) I am forced to alight (or land) at(place)
QUH	Will you indicate the present barometric pre-	The present barometric pressure at sea level is
QUJ	ssure at sea level? Will you indicate the true course for me to follow, with no wind,	(units) The true course for you to follow, with no wind
	to make for you?	to make for me is degrees at (time)

Miscellaneous Abbreviations

Abbre- viation	Meaning
C N P	Yes. No. Indicator of private telegram in the mobile service
W AA	(to be used as a prefix) Word or words. All after(to be used after a note of interrogation to ask for a repetition.)
AB	All before(to be used after a note of interro-
AL	gation to ask for a repetition.) All that has just been sent (to be used after a
BN	note of interrogation to ask for a repetition) All between(to be used after a note of
BQ CL CS	interrogation to ask for a repetition) A reply to an R. I am closing my station. Call sign (to be used to ask for a call sign or to
DB	have one repeated) I cannot give you a bearing (you are not in the
DC	calibrated section of this station.) The minimum of your signal is suitable for the
DF	bearing. Your bearing at(time) wasdegree., in the doubtful sector of your station, with a possible error of two degress
DG	Please advise me if you note an error in the bearing given.
DI	Bearing doubtful in consequence of the bad quality of your signal,
DJ DL	Bearing doubtful because of interference. Your bearing at(time) wasdegrees, in the doubtful sector of this station.
DO	Bearing doubtful. Ask for another bearing later, or at(time)
DP	Beyond 59 miles, the possible error of bearing may amount to two degrees,
DS	Adjust your transmitter, the minimum of your signal is too broad.
DT	I cannot furnish you with a bearing; the minimum of your signal is too broad.

Abbre- viation	Meaning
DY	This station is two-way, what, is your approximate direction in degrees in ralation to this station?
DZ	Your bearing is reciprocal (to be used only by the control station of a group of direction finding stations when it is addressing other stations of the same group)
ER	Here(to be used after the name of the mobile station in the sending of route indications)
GA	Resume sending (to be used more specially in the fixed service).
JM	If I may transmit, send a series of dashes. To stop my transmission, send a series of dots (not to be used on 500kc/s; 600m)
MN	Minute or minutes (to be used to indicate the duration of a wait.
NW	I resume transmission (to be used more specially in the fixed service)
OK	Agreed-
RQ	Designation of a request.
SA	Indicator preceding the name of an aircraft station (to be used in the sending of particulars of flight)
SF	Indicator preceding the name of an aeronau- tical station,
SN	Indicator preceding the name of a coast station,
SS	Indicator preceding the name of a ship station (to be used in sending particulars of voyage)
TR	Indicator used in sending particulars concerning a mobile station.
UA	Are we agreed?
WA	Word after(to be used after a note of interrogation to request a repetition)
WB	Word before(to be used after a note of interrogation to request a repetition)
XS	Atmospherics.
YS	Your service message.
ABV	Repeat (or I repeat) the figures in abbreviated form
ADR	'Address (to be used) after a note of interrogation to request a repetition)
CFM	Confirm (or I confirm)
COL	Collate (or I collate)
ITP	Stops (punctuation) count.

Abbre- viation	Meaning
MSG	Telegram concerning the service of a ship (to
NIL	be used as a prefix) I have nothing for you (to be used after an abbreviation of the 'Q' code to mean that the
PBL	answer to the question is negative. Preamble (to be used after a note of interrogation
REF RPT	to request a repetition.) Referring to(or Refer to). Repeat (or I repeat) (to be used to ask for or to
KI I	give repetition of all or part of the traffic, the relative particulars being sent after the abbreviation.)
SIG	Signature (to be used after a note of interrogation to raquest a repetition.)
SVC	Indicator of service telegram concerning private traffic for to be used as a prefix.)
TFC	Traffic.
TXT	Text (to be used after a note of interrogation to request a repetition.

Colour Codes

Fuse Colour Code

Fuses of different current carrying capacities are designated by colours:—

Current carrying capacity	Colour code
60 mA 150 mA 250 mA 500 mA 750 mA	Black Red Brown Yellow Green

Current carrying capacity	Colour code.
1 Amp.	Dark Blue
1.5 ,,	Light Blue
2 Amps.	Purple
3 Amps	White
5 Amps	Black & White

Condenser Colour Code

This colour code is applied only to fixed mica condensers. Three coloured dots are put on the condenser on the trade mark side. The dots are read from left to right and the value thus obtained is in f. The code is as follows:—

Colour	Figure
Black	0
Brown	1
Red	2
Orange	3
Yellow	4

Colcur	Figure
Green	5
Blue	6
Violet	7
Grey	8
White	9

The interpretation of the three dots reading from left to right is as follows:—

1st dot.—first figure of the condenser value

Example:-

First dot	Second dot	Third dot	t سد سه value	value a f
Black	Brown	Black	1	.000005
Black	Green	Brown	50	.00005
Orange	Green	Brown	350	.00035

Resistance Colour Code (R. M. A.,

The standard RMA Colour Code is used to designate resistance values. This method has saved manufacturers a vast amount of money in the past. Ten colours are assigned to the figures, as shown in the table.

First Figure	Second Figure	Ciphers	
0 Black 1 Brown 2 Red 3 Orange 4 Yellow 5 Green 6 Blue 7 Purple 8 Grey 9 White	0 Black 1 Brown 2 Red 3 Orange 4 Yellow 5 Green 6 Blue 7 Purple 8 Grey 9 White	None 0 Black 0 Brown 00 Red 0000 Orange 00000 Yellow 000000 Blue	

The body of the resistance is coloured to represent the first figure of the resistance value.

One tip of the resistor is coloured to represent the second figure of the resistance value.

A dot located within the body colour, represents the number of ciphers following the first two figures.

Example:-

A 25000 ohm resistor would have a red body green tip and orange dot.

Standard Battery Cable Colour Code (N. E. M. A.)

Coloured connecting wires are used for battery operated receivers. The wire code that follows is not universally used but it has been adopted by the manufacturer members of the National Electric Manufacturers Association (N. E. M. A.) U. S. A.

Abbreviations

Abbreviations used for Components and Circuits

A. C.	Alternating Current	
A. F.	Audio Frequency	

A. V. C. Automatic Volume Control
A. F. C. Automatic Frequency Control
A. S. C Automatic Selectivity Control

D. C. Direct Current

D. C. C.
Double Cotton Covered
D. P. D. T.
Double Pole Double Throw
Double Pole Single Throw

D. S. C. Double Silk Covered

E. Earth

G. B. Grid Battery or Grid bias

H. F. High Frequency H. T. High Tension

I. F. Intermediate Frequency

K. W. Kilowatt

 L. F.
 Low Frequency

 L. S.
 Loudspeaker

 L. T.
 Low Tension

 P. D.
 Potential Difference

O. A. V. C. Quiet Automatic Volume Control

O. P. P. Quiescent Push Pull

R. F. Radio Frequency (same as H. F.)

S C. C. Single Cotton Covered
S. I. C. Speciafic Inductive Capacity
S. P. D. T. Single Pole Double Throw
S. P. S. T. Single Pole Single Throw
S. S. C. Single Silk Covered
S. W. G. Standard Wire Gauge

Standard Abbreviations for Units and Constants

A	Ampere	K	Specific Inductive
Ω	Ohm		capacity
V	Volt	Z	Impedance
W	Watt	f	Frequency
F	Farad	c/s	Cycles per second
H	Henry	m	Metres
С	Capacity	ω	$2 \times \pi \times f$
L	Inductance	λ	Wavelength
M	Mutual Inductance	dB	Decibel

Prefixes for Unit Abbreviations

M	mega-	means	one	million	1,000,000
k	kilo—	means	one	thousand	1,000
m	milli—	means	one	thousandth	1/1,000
æ	micro-	means	one	millionth	1/1,000,000
Au Au	micromicr	o-means	s one	billionth	1/1,000,000,000,000

Conversion Table

Farad	1,000,000 microtarads
Henry	1,000,000 microhenry
Kilocycle	1,000 cycles
Kilovolt	1,000 volts
Kilowatt	1,000 watts
Megacycle	1,000,000 cycles
Microfarad	'000,001 farad
Microhenry	'000,001 henry
Microvolt	'000 001 volt
Milliampere	'001 Ampere
Millihenry	'001 Henry
Ohm	1,000,000 micro-ohms
Volt	1.000.000 microvolts

Ampere 1,000 milliamperes

Some Useful Equations

Relating to Ohm's Law (for D C)

(1) Amperes =
$$\frac{\text{Volts}}{\text{Ohms}}$$
(2) Milliamperes =
$$\frac{\text{Volts x 1000}}{\text{Ohms}}$$
(3) Ohms =
$$\frac{\text{Volts}}{\text{Amperes}}$$
(4) Ohms =
$$\frac{\text{Volts x 1000}}{\text{Milliamperes}}$$
(5) Volts = Amperes x Ohms
(6) Volts =
$$\frac{\text{Milliamperes x Ohms}}{1000}$$

Concerning Resistances

(7) Connected in Series:—

Total resistance = $r_1 + r_2$ (8) Connected in parallel:—

Total resistance = $\frac{1}{r_1} + \frac{1}{r_2}$ or = $\frac{r_1 \times r_2}{r_1 + r_2}$

Concerning Energy dissipation (D. C.)

WIRELESS LISTENERS' COMPENDIUM

\$ *			Watts				
(10) Mill	amperes :	=	1000 x Ohms				
(11) Was	tts :	=	Amperes 2 x Ohms				
(12) Wa	tts	=	Volts x Amperes				
Concerning Condensers							
(13) Connected in series; as formula 7							
(14) Connected in parallel; as formula 8							
(15) Reactance of a condenser to A. C.:—							
Ohms = $\frac{1,000,000}{$							
Of	ıms =	6,	5,28 x frequency x microfarads				
			-				
Concerning Chokes							
, ,	(16) Reactance:— Ohms 6.28 x Frequency x Henries						
Relating to Wavelength and Frequency							
(17) Metres =			300,000,000				
	etres =		Cycles per second				
(10) 6 1	-1		300,000,000				
(18) Cycles per seco		101 -	Metres				
(19) Metres = 1885 x Microhenries x Microfarads							

(20) Kilocycles =

159.2

Microhenries x Microfarads