

ENEE 3587
Microp Interfacing

Binary

❖ MSB – most significant bit and LSB – least significant bit

MSB	LSB	
1011001010011	100	
15	0	

- n bits can represent 2ⁿ different values.
- Binary can be in the following formats:
 - Unsigned Integer binary
 - BCD (Binary Coded Decimal)
 - Signed Integer
 - Floating Point or Real: not applicable to this course
- Use prefix to denote base:
 - Dec: no prefix
 - ➢ Binary: %, e.g.: %1011 = 11; No C notation
 - \rightarrow Hex: \$, e.g.: \$89AB = 35243; C notation: 0x, e.g.: 0x89AB
 - Octal: @, e.g.: @567 = 375; C notation: 0, e.g.: 0567

Unsigned Binary

Given any unsigned number in base x:

$$a_{n-1}a_{n-2}a_{n-3}.....a_2a_1a_0$$

$$a_i = 0, 1,, x-1.$$

Binary: x = 2; $a_i = 0$ or 1.

Hex: $x = ; a_i = 0,1, ...$

Octal: $x = ; a_i =$

To convert to base 10:

$$a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + a_{n-3}x^{n-3} + \dots + a_2x^2 + a_1x^1 + a_0x^0$$

* Example: %10111011

2 ⁿ	Decimal	2 ⁿ	Decimal
20	1	2 ⁸	256
21	2	2 ⁹	512
2 ²	4	2 ¹⁰	1024 (1K)
2 ³	8	$2^{11} = 2 \times 2^{10}$	2048 (2K)
24	16	$2^{12} = 2^2 \times 2^{10}$	4096 (4K)
2 ⁵	32	$2^{13} = 2^3 \times 2^{10}$	8192 (8K)
2 ⁶	64	$2^{20} = 2^{10} \times 2^{10}$	1048576 (1M)
27	128	2 ³⁰	1073741824 (1G)

Example:

%1011 1011 = $1*2^7+0*2^6+1*2^5+1*2^4+1*2^3+0*2^2+1*2^1+1*2^0$ = 128+0+32+16+8+0+2+1=187Shortcut: %1111 1111 - %0100 0100 = (256-1)-64-4= %1011 0010 1001 1100 = ?

Conversion to Unsigned Binary

To convert a number, n, from decimal to base x:

- Divide by base x: n/x = quotient + remainder
- 2. Record remainder
- 3. Divide quotient by base x
- 4. Repeat steps 2 and 3 until quotient is zero
- 5. Reorder remainders from last to first.

Works for any base.

Example: Convert 38 to binary (base 2)

BCD

- Stored in 4-bit binary packets.
- 2 basic BCD formats:
 - Packed BCD a string of decimal digits are stored in a sequence of 4-bit groups. example: 9502 would be stored as:

9 5 0 2 % 1001 0101 0000 0010

Unpacked BCD - digits are stored in the low-order half of an 8-bit group (what is in the high half is undefined - usually zero).

example: 9502 would be stored as:

9 5 0 2

%uuuu1001 uuuu0101 uuuu0000 uuuu0010

Signed Binary: 2's Complement

- The numbers we will work with will be mostly 8 and 16 bit
- 2's complement: to create signed number consider MSB negative.
- Examples:

```
%0110\ 0000 = 2^6 + 2^5 = 64 + 32 = 96
%1110\ 0000 = -2^7 + 2^6 + 2^5 = -128
```

- Hint: in signed binary whenever the first bit is 1 then the no is negative. When it 0 the number is poistive.
- Steps to convert a decimal no. into sb (2's complement):
 - Drop the sign and convert the decimal no. into binary.
 - If the sign of the given no. is positive do not change the binary number.
 - ➤ If sign is negative then flip 1's and 0's then add 1.

- Convert the 12 into 8 bit signed binary:
 - Drop the sign (doesn't matter)
 - > 12 = %0000 1100
 - Sign is positive. 12= %0000 1100
- Convert the -12 into 8 bit signed binary :
 - Drop the sign.
 - > 12 = %0000 1100
 - Sign is negative.
 - Flip 1's and 0's: %1111 0011
 - > Add 1: %1111 0011 + 1 = %1111 0100
 - $> -12 = \%1111 \ 0100$
- Convert 21d into 8 bit signed binary :
 - 21 = %0001 0101
- Convert -21d into 8 bit signed binary :
 - -21 = %1110 1011

Binary Number Range

- Expand a signed bin. by duplicating MSB.
 - E.g. -8 = %1111 1000. In 16 bits: -8 = %1111 1111 1111 1000
 - > E.g. 8 = %0000 1000. In 16 bits: 8 = %0000 0000 0000 1000
- Difference between signed -8 and unsigned 8
- ❖ No of combinations of n bit no is 2ⁿ
- Range of n-bit unsign bin. no. is: 0 to (2ⁿ-1)
- Range of n-bit sign. bin. no. is: -(2ⁿ⁻¹) to (2ⁿ⁻¹-1)
 - Example: show signed and unsigned range for n = 3
- What is the largest/smallest number that can be represented in
 - > 8 bit binary?
 - > 16 bit binary?
- What is the largest/smallest number that can be represented in
 - > 8 bit signed bin?
 - > 16 bit signed bin?

Addition and Subtraction

❖ Binary Addition: 0+0=0, 0+1=1, 1+0=1, 1+1=0 carry 1

- Binary Subtraction: 0-0=0, 1-0=1, 1-1=0, 10-1=1
- Binary Subtraction by signed addition: A B = A + (-B)

sb

Base Conversions

- ❖ Octal is base 8, i.e. 2³, and Hex is base 16, i.e. 2⁴.
- Quick method: take 3 bits to represent 1 octal digit and 4 bits to represent one hex digit and vice-versa. Examples

Binary to Hex:

%0110 1011 0111

\$ 6 B 7

Hexadecimal-to-binary:

\$ A 1 9 % 1010 0001 1001

Bin and hex conversions shortcuts

16 =
$$2^4$$
 = $(4)(4)$ = \$10
1K = 2^{10} = $(2^4)(2^4)(2^2)$ = $(\$10)(\$10)(4)$ = \$400
1M = 2^{20} = $(2^{10})(2^{10})$ = $(\$400)(\$400)$ = $(4)(\$100)(4)(\$100)$ = $(\$10)(\$10000)$ = $\$100000$

Signed Conversions

Popular sizes:

- \geq 8 bits = ? hex digits,
- \geq 16 bits = ? hex digits,

* 8 bits: <u>un</u>signed

- > 00 h = %0 = 0
- > 80 h = %1000 0000 =
- > 7F h = %0111 1111
- > FF h = %1111 1111

❖ 16 bits: <u>un</u>signed

- > 0000 h = %0 = 0
- > 8000 h = %1000 0000 0000 0000 =
- > 7FFF h = %0111 1111 1111 =
- > FFFF h = %1111 1111 1111 =

ENEE 3587

- * 8 bits: signed
 - > 00 h = %0 = 0
 - > 80 h = %1000 0000 =
 - > 7F h = %0111 1111 =
 - > FF h = %1111 1111 =
- ❖ 16 bits: signed
 - > 0000 h = %0 = 0
 - > 8000 h = %1000 0000 0000 0000 =
 - > 7FFF h = %0111 1111 1111 =
 - > FFFF h = %1111 1111 1111 =