???GBoost under the hood

HEAD OF CVM @ MAGNIT SELEZNEV A.A.

ПЛАН ПО GBT-РЕГРЕССИИ

1. Интуитивный разбор регрессии на решающих деревьях (как это в Gboosting?)

ПЛАН ПО GBT-РЕГРЕССИИ

- 1. Интуитивный разбор регрессии на решающих деревьях (как это в Gboosting?)
 - 2. Математика под капотом

$$r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

ПЛАН ПО GBT-РЕГРЕССИИ

- 1. Интуитивный разбор регрессии на решающих деревьях (как это в Gboosting?)
 - 2. Математика под капотом
 - 3. Выбор рандомного докладчина на тему «Энтропия»

GAIN В ДЕРЕВЬЯХ

Ср.продажи = 25

1. Разность — это разница между фактическим значением и его отклонением от предсказанного значения (25)

19, -13, 13, -6

Скоринг =
$$\frac{{\sf Kвадрат}\;{\sf суммы}\;{\sf разниц}}{{\sf Кол-во}\;{\sf разниц}\;{\sf + L}}$$

19, -13, 13, -6

L – lambda – параметр защиты от переобучения

Скоринг =
$$\frac{(19 - 13 + 13 - 6)^{**2}}{4 + 0}$$

19, -13, 13, -6

Скоринг =
$$\frac{(19 - 13 + 13 - 6)**2}{4 + 0}$$

19, -13, 13, -6

Скоринг = 42.25

Скоринг =
$$\frac{19**2}{1+0}$$

Находим наилучший GAIN и SCORE на каждой разбивке параметра

PRUNE

PRUNE

Gamma для Pruning? Случайное число

ECЛИ GAIN – Gamma < 0: удалить

иначе:

считать дальше

PRUNE

Gamma для Pruning? Случайное число

1.
$$GAIN - Gamma = 330.75 - 200 = 130.75$$

2.
$$GAIN - Gamma = 181.5 - 200 = -18.5$$

$$Set(x_i, x_j)_{i=1}^n$$

Возраст TT	Продажи
1,00	44,00
1,50	12,00
2,00	38,00
3,80	19,00

Функция предикта

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

Функция потерь

$$\frac{1}{2}(Observed - Predicted)^2 = \frac{2}{2}(Observed - Predicted)x - 1 = -(Observed - Predicted)$$

$$Set(x_i, x_j)_{i=1}^n$$

В	озраст TT	Продажи		
	1,00	44,00		
	1,50	12,00		?
	2,00	38,00		
	3,80	19,00		

$$Set(x_i, x_j)_{i=1}^n$$

Возраст TT	Продажи	F_0 (.	$x) = argmin\Sigma L(y_i, \gamma)$
1,00	44,00		
1,50	12,00		AVG (ПРОДАЖИ)
2,00	38,00		
3,80	19,00		

$$Set(x_i, x_j)_{i=1}^n$$

Возраст ТТ Продаж	1		
1,00 44,00			
1,50 12,00		25.5	
2,00 38,00	T ()	E /) + 22522 I(= D)
3,80 19,00	$F_m(x)$	$= F_{m-1}(x)$	$+ \nu \Sigma \gamma_m I(x \in R_{jm})$

$$Set(x_i, x_j)_{i=1}^n$$

Возраст TT	Продажи				Delta
					18.5
1,00	44,00				-13.5
1,50	12,00		25.5	-	13.3
2,00	38,00				12.5
3,80	19,00				-6.5

$$\frac{1}{2}(Observed - Predicted)^2 = \frac{2}{2}(Observed - Predicted)x - 1 = -(Observed - Predicted)$$

Возраст TT	Продажи	Delta
200600	Продажи	18.5
1,00	44,00	-13.5
1,50	12,00	
2,00	38,00	12.5
3,80	19,00	-6.5

Возраст TT	Продажи	Delta
	Ьодон	-18.5
1,00	44,00	13.5
1,50	12,00	13.3
2,00	38,00	-12.5
3,80	19,00	6.5

Возраст TT	Продажи	Delta
	родали	-18.5
1,00	44,00	13.5
1,50	12,00	
2,00	38,00	-12.5
3,80	19,00	6.5

Минимизируем отклонение факт-предик

Возраст TT	Продажи	Delta	
Dospaci II	продажи	-18.5	
1,00	44,00	13.5	
1,50	12,00		
2,00	38,00	-12.5	
3,80	19,00	6.5	

Минимизируем отклонение факт-предик

Возраст TT	Продажи	Delta
	родали	-18.5
1,00	44,00	13.5
1,50	12,00	
2,00	38,00	-12.5
3,80	19,00	6.5

Минимизируем отклонение факт-предик

$$r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

$$r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

$$18.5 \qquad \text{Bospact TT <= 1.8}$$

$$-13.5 \qquad 3$$

$$r_{1,1} \qquad r_{2,1}$$

$$\gamma_{jm} = argmin\Sigma L(y_i, F_{m-1}(x_i) + \gamma)$$

$$r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

Gamma_1_1 = argmin * 0.5 * (18.5 - gamma)**2

(18.5 - gamma)

$$r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

$$18.5 \qquad \text{Bospact TT <= 1.8}$$

$$-13.5 \qquad 3$$

$$r_{1,1} \qquad r_{2,1}$$

ФИНАЛ

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

Возраст ТТ Продажи	Delta	Predict	
	продажи	18.5	27.35
1,00	44,00	-13.5	26.85
1,50	12,00		
2,00	38,00	12.5	26.1
3,80	19,00	-6.5	26.1

ЗАДАНИЕ

Кому: Никита Симаков, Акимова Лилия

Презентация о Энтропии (с примером и python кодом)

ПЛАН

1. Вспомним что было на Регрессии

ПЛАН

- 1. Вспомним что было на Регрессии
 - 2. Узнаем о Классификации

TREE, GAIN, PRUNE

Gamma для Pruning? Случайное число

1.
$$GAIN - Gamma = 330.75 - 200 = 130.75$$

2.
$$GAIN - Gamma = 181.5 - 200 = -18.5$$

УЧИМСЯ НА DELTA

Возраст TT	Продажи	Delta
	родали	-18.5
1,00	44,00	13.5
1,50	12,00	
2,00	38,00	-12.5
3,80	19,00	6.5

Минимизируем отклонение факт-предик

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

Возраст TT	•	Delta	Predict
-		18.5	27.35
1,00	44,00	-13.5	26.85
1,50	12,00		
2,00	38,00	12.5	26.1
3,80	19,00	-6.5	26.1

$$Set(x_i, x_j)_{i=1}^n$$

Возраст TT	Была покупка
1,00	1
1,50	0
2,00	0
3,80	0

Функция предикта

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

Функция потерь

$$\frac{1}{2}(Observed - Predicted)^2 = \frac{2}{2}(Observed - Predicted)x - 1 = -(Observed - Predicted)$$

$$Set(x_i, x_j)_{i=1}^n$$

Возраст TT	Была покупка
1,00	1
1,50	0
2,00	0
3,80	0

1 – положительный

= 1/3 = 0.33

3 - отрицательных

$$Set(x_i, x_j)_{i=1}^n$$

Возраст TT	Была покупка	
1,00	1	
1,50	0	
2,00	0	
3,80	0	

1 – положительный

3 - отрицательных

 $= 1/3 = 0.33 = \log(0.33) = -0.47$

P = LogReg(Log(1/3)) = 0.38

Log(Bce 1 / Bce 0)

$$Set(x_i, x_j)_{i=1}^n$$

Возраст TT	Была покупка
1,00	1
1,50	0
2,00	0
3,80	0

1 – положительный

3 - отрицательных

 $= 1/3 = 0.33 = \log(0.33) = -0.47$

P = LogReg(Log(1/3)) = 0.38

Log(Bce 1 / Bce 0)

Classification Threshold

Cat	(v	2	n
Set	$(\lambda_i,$	x_{j}	i=1

Возраст TT	Была покупка
1,00	1
1,50	0
2,00	0
3,80	0

$$= 1/3 = 0.33 = \log(0.33) = -0.47$$

$$P = LogReg(Log(1/3)) = 0.38$$

Cat	(n
sei	(x_i, x_i)	$(j)_{i=1}^n$

Возраст TT	Была покупка
1,00	1
1,50	0
2,00	0
3,80	0

$$P = 0.38$$

P **BO3PACT TT 1** = 1 - 0.38 = 0.62

ПЕРВЫЙ ШАГ. УЧИМСЯ НА РАЗНИЦЕ

Возраст TT	Была покупка	Delta
1,00	1	0.62
1,50	0	-0.38
2,00	0	-0.38
3,80	0	-0.38

P = 0.38

P **BO3PACT TT 1** = 1 - 0.38 = 0.62

ПЕРВЫЙ ШАГ. УЧИМСЯ НА РАЗНИЦЕ

Возраст TT	Была покупка	Delta
1,00	1	0.62
1,50	0	-0.38
2,00	0	-0.38
3,80	0	-0.38

P = 0.38

P **BO3PACT TT 1** = 1 - 0.38 = 0.62

Возраст TT	Была покупка	Delta
1,00	1	0.62
1,50	0	-0.38
2,00	0	-0.38
3,80	0	-0.38

P = 0.38

P **BO3PACT TT 1** = 1 - 0.38 = 0.62

Возраст TT	Была покупка	Delta
1,00	1	0.62
1,50	0	-0.38
2,00	0	-0.38
3,80	0	-0.38

P = 0.38

$$\frac{\sum Diff_i}{\sum [PreviousProb_i*(1-PreviousProb_i)]}$$

$$= 0.62 / (0.38 * (1 - 0.38) = 2.63$$

Возраст TT	Была покупка	Delta
1,00	1	0.62
1,50	0	-0.38
2,00	0	-0.38
3,80	0	-0.38

P = 0.38

$$\frac{\sum Diff_i}{\sum [PreviousProb_i*(1-PreviousProb_i)]}$$

Возраст TT	Была покупка	Delta
1,00	1	0.62
1,50	0	-0.38
2,00	0	-0.38
3,80	0	-0.38

P = 0.38

$$\frac{\sum Diff_i}{\sum [PreviousProb_i*(1-PreviousProb_i)]}$$

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

$$F_m(x) = F_{m-1}(x) + \nu \Sigma \gamma_m I(x \in R_{jm})$$

P = LogReg(0.643) = 0.65

Возраст TT	Была покупка	Delta		Prob
1,00	1	0.62	P = LogReg(0.643) = 0.65	0.65
1,50	0	-0.38		
2,00	0	-0.38		
3,80	0	-0.38	_	

Возраст TT	Была покупка	Delta		Prob
1,00	1	0.62	P = LogReg(0.643) = 0.65	0.65
1,50	0	-0.38	P = LogReg(0.219) = 0.55	0.55
2,00	0	-0.38	P = LogReg(0.219) = 0.55	0.55
3,80	0	-0.38	P = LogReg(0.219) = 0.55	0.55

НОВАЯ ДЕЛЬТА

Возраст TT	Была покупка	Prob	Delta
1,00	1	0.65	0.35
1,50	0	0.55	-0.45
2,00	0	0.55	-0.45
3,80	0	0.55	-0.45

ПАРУ СЛОВ ПРО ОТЛИЧИЯ

1. Использование Likelihood в функции потерь

P = LogReg(Log(1/3)) = 0.38

1. Использование Likelihood в функции потерь

- 1. Использование Likelihood в функции потерь
 - 2. Другое вычисление R на листьях Через LogReg

$$r_{i,m} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$

$$-Observed + \frac{e^{log(odds)}}{1 + e^{log(odds)}}$$

- 1. Использование Likelihood в функции потерь
 - 2. Другое вычисление R на листьях Через LogReg
 - 3. Другое вычисление Гаммы

