Grafy – definice a pojmy

Zdeněk Dvořák

15. listopadu 2018

- **Příklad 1.** Existuje v počítačové síti kabel, po jehož přerušení spolu nějaké dva počítače nebudou moct komunikovat?
 - Potřebujeme města propojit elektrickým vedením. Natažení vedení mezi dvěma městy má nějakou cenu (obecně různou pro různé dvojice měst). Jak nejlevněji lze města propojit do souvislé elektrické sítě?
 - Máme dáno schéma elektrického obvodu. Lze ho realizovat na čipu bez křížení spojů? Případně, jaké je minimální množství křížení?
 - Máme skupinu lidí a pro každé dva víme, zda se snáší nebo ne. Do kolika nejméně týmů je můžeme rozdělit tak, aby se v rámci jednoho týmu všichni snášeli? Jak velký může být největší takový tým?
 - Jak najít nejrychlejší cestu z Aše do Mikulova?
 - Jak má čisticí stroj projet všechny ulice ve městě, aby celková vzdálenost byla co nejmenší?

Definice 1. Graf je dvojice (V, E), kde V je množina <u>vrcholů</u> a $E \subseteq \binom{V}{2}$ je množina <u>hran</u>. Pro graf G píšeme tyto množiny jako E(G) a V(G). Hranu $\{v_1, v_2\}$ typicky zapisujeme v_1v_2 .

Příklad 2.

 $\underline{\acute{U}pln\acute{y}\ graf}\ K_n\ je\ graf\ s\ V(K_n) = \{v_1, \dots, v_n\}\ a\ E(K_n) = \{v_iv_j : 1 \le i < j \le n\}.$

 $\underbrace{Cesta}_{n-1} P_n \text{ je graf s } V(P_n) = \{v_1, \dots, v_n\} \text{ a } E(P_n) = \{v_i v_{i+1} : 1 \leq i \leq n-1\}.$

 $\underbrace{Kružnice}_{1 \leq i \leq n-1} (cyklus) C_n \text{ je graf s } V(C_n) = \{v_1, \dots, v_n\} \text{ a } E(C_n) = \{v_i v_{i+1} : 1 \leq i \leq n-1\} \cup \{v_1 v_n\}.$

Varianty: Smyčky, násobné hrany, orientované grafy, váhy vrcholů, délky hran, . . .

1 Izomorfismus a podgrafy

Dva grafy G_1 a G_2 jsou <u>izomorfní</u>, jestliže existuje bijekce $f:V(G_1)\to V(G_2)$ tž. $uv\in E(G_1)\Leftrightarrow f(u)f(v)\in E(G_2)$; taková bijekce se nazývá izomorfismus. Tj. G_1 a G_2 se liší pouze přejmenováním vrcholů. Píšeme $G_1\simeq G_2$.

Pozorování 1. Relace izomorfismu je ekvivalence.

Příklad 3. Existuje právě 11 (tříd) navzájem neizomorfních grafů na 4 vr-cholech.

Lemma 2. Počet různých grafů s vrcholy $\{1, \ldots, n\}$ je

$$2^{\binom{n}{2}} = 2^{\frac{1}{2}n^2 - \frac{1}{2}n}.$$

Počet navzájem neizomorfních grafů s vrcholy $\{1,\ldots,n\}$ je alespoň

$$2^{\binom{n}{2}}/n! \ge 2^{\binom{n}{2}}/n^n = 2^{\frac{1}{2}n^2 - n\log_2 n - \frac{1}{2}n}.$$

 $D\mathring{u}kaz$. Pro každou dvojici se můžeme nezávisle rozhodnout, zda bude hrana nebo ne, graf s vrcholy $\{1,\ldots,n\}$ lze tedy zvolit $2^{\binom{n}{2}}$ způsoby. Existuje pouze n! bijekcí množiny $\{1,\ldots,n\}$, každý graf je tedy izomorfní nejvýše n! z těchto grafů, a počet navzájem neizomorfních grafů je alespoň $2^{\binom{n}{2}}/n!$.

Graf H je <u>podgraf</u> grafu G, jestliže $V(H) \subseteq V(G)$ a $E(H) \subseteq E(G) \cap \binom{V(H)}{2}$. Graf H je <u>indukovaný podgraf</u> grafu G, jestliže $V(H) \subseteq V(G)$ a $E(H) = E(G) \cap \binom{V(\overline{H})}{2}$. <u>Doplněk</u> \overline{G} grafu G je graf s $V(\overline{G}) = V(G)$ a $E(\overline{G}) = \binom{V(G)}{2} \setminus E(G)$.

Příklad 4. Kružnice C_n obsahuje podgraf (ale ne indukovaný podgraf) izomorfní cestě P_n . Kružnice C_n obsahuje n podgrafů izomorfních cestě P_{n-1} . Úplný graf K_n obsahuje $3\binom{n}{4}$ podgrafů izomorfních 4-cyklu C_4 . Doplněk C_5 je izomorfní C_5 .