Scale Free Networks

Machine Learning / Complex Systems

Modelling of Real World Networks

Many structures in the real world can be mapped to graphs by describing the relations between entities in terms of nodes and edges

Graph Evolution: Densification and Shrinking Diameters - J. Leskovec, J. Kleinberg and C. Faloutsos

Modelling of Real World Networks

Many structures in the real world can be mapped to graphs by describing the relations between entities in terms of nodes and edges

Stanford Network Analysis Project

The Anatomy of a Scientific Rumor – M. De Domenico, A. Lima, P. Mougel and M. Musolesi

Modelling of Real World Networks

Many structures in the real world can be mapped to graphs by describing the relations between entities in terms of nodes and edges

Stanford Network Analysis Project

Physics Collaboration Graph

Twitter Higgs Dataset

Beeradvocate Reviews

From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews.

- J. McAuley and J. Leskovec

Degree Distribution

Degree distributions are a way to characterize networks. They are given by the probability distribution for a node to have k edges

Graph

Adjacency matrix:

Node	1	2	3	4	5	6
1	0	0	0	0	0	1
2	0	0	0	0	0	1
3	0	0	0	0	0	1
4	0	0	0	0	0	1
5	0	0	0	0	0	1
6	1	1	1	1	1	0

Histogram

Degree distribution

k	p(k)
0	0
1	5/6
2	0
3	0
4	0
5	1/6
	0 1 2 3 4

In this talk: Power law distributions $p(k) \sim k^{-y}$

Real World Networks

Academic studies support the hypothesis that real world networks have a power law distribution

Word Wide Web

- Nodes are websites
- Edges are links

- Size: 325729
- Average Degree: 4.51
- $\gamma_{In} = 2.1$
- $\gamma_{out} = 2.45$

Movie Actor Collaboration

- Nodes are Actors
- Edge between actors if they appear in the same movie
- Size: 212250
- Average Degree: 28.78
- $\gamma = 2.3$

Cellular Networks

- Nodes are substrates
- Edges are chemical reactions
- $\gamma \in [2.0, 2.4]$

Barabási-Albert Model

A power law distribution can be achieved by modelling the dynamics of real world networks

Start with random Network of size m_0

Network Grow

Preferential Attachment

- 1. Start with a random network of size m_0
- 2. Add a new node to the Network
- 3. Attach the new node to the already present nodes with $m \leq m_0$ edges
- 4. The probability to attach to a node with degree k_i is given by $\Pi(k_i) = \frac{\kappa_i}{\sum_{i=1}^{n} k_i}$
- 5. Repeat at step 2

Analytical Results

Using the continuum approach assuming k is a continuous variable over time leads to an differential equation for k

$$\frac{\partial k_i}{\partial t} = m \Pi(k_i) = m \frac{k_i}{\sum_{j=1}^{N-1} k_j} \approx \frac{k_i}{2t}$$

$$k_i(t) = m \left(\frac{t}{t_i}\right)^{\frac{1}{2}} \text{ With } k_i(t_i) = m$$

$$\sum_{j=1}^{N-1} k_j = 2mt - m$$

$$P(k_i(t) < k) = P\left(t_i > \frac{m^2 t}{k^2}\right) = 1 - P\left(t_i \le \frac{m^2 t}{k^2}\right) = 1 - \sum_{l=1}^{\frac{m^2 t}{k^2}} P(t_i = t_l) = 1 - \frac{m^2 t}{k^2 (t + m_0)}$$

Since
$$P(t_i) = \frac{1}{m_0 + t}$$

$$P(k) = \frac{\partial P(k_i(t) < k)}{\partial k} \sim \frac{1}{k^3}$$

Properties

Apart from the degree distribution there are several other properties which can be measured

Average Degree

- Average number of edges per node
- Barabsi-Albert: 2m

Average Path length

- Average path length from one node to all other nodes averaged over all nodes
- Barabasi-Albert: $\sim \frac{\ln(N)}{\ln(\ln(N))}$

Average Cluster coefficient

- $\frac{3 \times \#Triangles in the Graph}{\#Connected triples}$
- No analytical result for Barabsi-Albert graphs

Numerical calculation:

- 1. Create an ensemble of graphs
- 2. Compute the given property for every graph in the ensemble
- 3. Average over the ensemble

Error and attack tolerance are properties of networks strongly motivated by real world observations

Error Tolerance

 How does the Network react to random failuers of nodes

Attack Tolerance

 How does the network react to targeted attacks

Use the average path length of the largest component to quantify the changes under errors/attacks

- Measures differences in the network when the network stays connected
- Stays finite even when the network contains more than one component

Fitness Model

In the Barabási-Albert Model the oldest nodes will gain the most edges. This does not match always with reality

Idea: Give each node an additional constant fitness parameter to adjust the preferential attachment

$$\frac{\partial k_i}{\partial t} = m \, \Pi(k_i) = m \, \frac{\eta_i k_i}{\sum_{j=1}^{N-1} \eta_j k_j} \qquad \text{where } \eta \sim p(\eta)$$

Bose Einstein Condensation

- Assign to each node an energy
- An edge between two nodes corresponds to two particles at the linked energy levels

Energy levels are given by: $\epsilon_i = -\frac{1}{\beta} \ln(\eta_i)$

The distribution of energy levels tranforms according to the probability density transformation law: $g(\epsilon) = \beta \ p(e^{-\beta \epsilon})e^{-\beta \epsilon}$

Bose-Einstein Condensation

The fitness model is closely linked to statistical physics and Bose-Einstein Condensation

$$I(\beta, \mu) = \int d\epsilon \, g(\epsilon) \frac{1}{e^{\beta(\epsilon - \mu)} - 1} = 1$$

Integral has a solution

Integral has no solution

Fit get rich phase

 The fraction of particles on every energy level decays to zero as
 t → ∞

Bose Einstein Condensation

• A finite fraction of particles will occupy the fittest node as $t \to \infty$

References

- Emergence of Scaling in Random networks Barabasi, A.-L. and R. Albert (1999)
- Statistical Mechanics of complex Albert R. and A.-L. Barabasi (2002)
- Competition and multiscaling in evolving networks Bianconi, G. and A.-L. Barabasi (2000)
- Bose-Einstein condensation in complex networks Bianconi, G. and A.-L- Barabasi (2000)

GitHub

www.github.com/HOminus/ScaleFreeNet