

# UE Interfaçage Numérique

INu / Semestre 6 Institut d'Optique





- Génération de photons
- Conception optique / « Fabrication d'images »
- Acquisition de données
- Traitement des informations









Dong, Jing-Tao & lu, rs & Shi, Yan-Qiong & Xia, Rui-Xue & Li, Qi & Xu, Yan. (2011). Optical design of color light-emitting diode ring light for machine vision inspection. Optical Engineering - OPT ENG. 50. 10.1117/1.3567053.



**Volume horaire de 46,5h** pour **5 ECTS** (European Credit Transfer and Accumulation System)

16 % du S6

Module d'enseignement s'inscrivant dans le

## déploiement de l'approche par compétences

Vous serez encouragé·e à

analyser votre progression personnelle

dans l'acquisition de savoirs et savoir-faire

Vous serez amené·e en particulier à

repérer de façon explicite les erreurs

et les maladresses commises

### 8 séances de TP

4h30 / en binôme

4 séances de TD

1h30

### 2 séances de TD Machine

1h30

Découverte de Matlab

### Responsables

Fabienne BERNARD
Julien VILLEMEJANE



**Volume horaire de 46,5h** pour **5 ECTS** (European Credit Transfer and Accumulation System)

16 % du S6

## Module non noté

Se former à son rythme

- Être **présent·es et actif·ves** à toutes les séances de TD et de TP
- Réaliser l'ensemble des activités proposées :
  - Présentation individuelle (mini-projet)
  - Validation du TP caméra
  - Présentation des codes IHM ou Traitement Image

### 8 séances de TP

4h30 / en binôme

4 séances de TD

1h30

### 2 séances de TD Machine

1h30

Découverte de Matlab

### Responsables

Fabienne BERNARD Julien VILLEMEJANE



UE Interfaçage Numérique

8 séances de TP

4 séances de TD

Acquis d'Apprentissage Visés

Être capable de **mettre en œuvre une solution numérique** (microcontrôleur) pour **acquérir des données analogiques** et **commander un élément mobile** 

Être capable de **mettre en œuvre un protocole simple de communication** entre un ordinateur et un microcontrôleur pour transmettre des commandes et lire des données

Être capable de développer une interface informatique de pilotage et d'affichage de données

2 séances de TD Machine

Découverte de MatLab



### **Robot**

Arduino / Nucleo

Robotique

Communication



## **Camera et Images**

Vision Industrielle

Traitement Images

Python





### Rayonnement de LEDs

Arduino / Nucleo

Protocole Série

LEDs Puissance

## **IHM sous Python**

PyQt6



## **Images et OpenCV**

OpenCV











choisi

## **Rayonnement de LEDs**

Arduino / Nucleo

Protocole Série

**LEDs Puissance** 

Mini-projet: Pilotage servomoteur avec Arduino (Nucléo) / Récupération donnée photodiode / Pilotage LED de puissance / Acquisition de données sous Python et affichage

Robot

Arduino / Nucleo

Robotique

Mini-projet : Pilotage moteur avec Arduino (Nucléo) / Suivi de ligne / Détection d'obstacle Pilotage via une télécommande

## **Camera et Images**

Vision Industrielle

Traitement Images

Python

Séance 1 : Prise en main interface / Paramètres d'une caméra CMOS / Impact de l'éclairage

Séance 2 : Prise en main d'OpenCV / Histogramme d'une image / Moyennage

choisin

séances

## **IHM sous Python**

Python

PyQt6

Mini-projet: Développement d'une mini-interface sous PyQt6 (affichage d'un graphique, simulation...)

### **Images et OpenCV**

Python

**OpenCV** 

Séance 1 : Pré-traitement d'images (moyennage, seuillage, erosion...) – traitements bas niveau

Séance 2 : Détection de formes, couleurs... / Filtrage par TF2D / Bruits



(R)obot

(D)iag Ray

(C)améra

(I)hm (I)mage 4 x 2 séances de TP

4 bancs pour chaque bloc

|          | B1à4 | B5à8 | B9à12 | B13à16 |
|----------|------|------|-------|--------|
| Séance 1 | R    | D    | С     | 1      |
| Séance 2 | R    | D    | C     | I      |
| Séance 3 | R    | D    | 1     | C      |
| Séance 4 | R    | D    | 1     | C      |
| Séance 5 | C    | 1    | R     | D      |
| Séance 6 | C    | 1    | R     | D      |
| Séance 7 | I    | С    | R     | D      |
| Séance 8 | I    | C    | R     | D      |



### Rayonnement de LEDs

Arduino / Nucleo

Protocole Série

LEDs Puissance

**Mini-projet**: Pilotage servomoteur avec Arduino (Nucléo) / Récupération donnée photodiode / Pilotage LED de puissance / Acquisition de données sous Python et affichage







 $I_{\text{erel}} = f(\phi)$ 





**Robot** 

Arduino / Nucleo

Robotique

Mini-projet : Pilotage moteur avec Arduino (Nucléo) / Suivi de ligne / Détection d'obstacle









### **Camera et Images**

Vision Industrielle

Traitement Images

Python

TP 1 : Prise en main interface / Paramètres d'une caméra CMOS / Impact de l'éclairage

TP 2 : OpenCV / Histogramme d'une image / Détection de formes, couleurs... / Filtrage par TF2D













## **IHM sous Python**

Python

PyQt6

Mini-projet : Développement d'une mini-interface sous PyQt6 (affichage d'un graphique, simulation...)











## **Images et OpenCV**

Python

OpenCV

Séance 1 : Pré-traitement d'images (moyennage, seuillage, erosion...)

Séance 2 : Détection de formes, couleurs...













