



FIG. 1



FIG. 2A



FIG. 2B



FIG. 3



FIG. 4

Coma(cos)Coma(sin)SphericalHO Coma(cos) 0.7 **Even Aberrations** 9.0 Intensity Change vs. Match Factor 0.5 abs(MF) **Odd Aberrations** 0.3 0.2 (ib)eds 0.15 0.05 0.25 0.1 0.3

# Generic Pattern Matching Code

- 1. Divide input shapes (polygons) into geometric primitives
- 2. Spatially organize primitives by x, y, etc.
- add contribution of G on P at X,Y to MF for each geom. Primitive G overlapping P for each X,Y match location for each match type T 3. Compute Match Factor (MF): for each orientation of P for each pattern P

Time dominated by #3: #patterns x #orientations x #types x #locations x #primitives\_overlap\_pattern time(primitive)

F/G. 6

### Data Structures

Input = polygons, rectangles (special case of a polygon), paths (can be converted to polygons), and circles (can be approximated by many-sided polygons) = polygons

Geometric Primitives:

| Туре                | Number in layout Operations to add to MF (tir | Operations to add to MF (time) |
|---------------------|-----------------------------------------------|--------------------------------|
| Pixel (Bitmap Alg.) | Very Large (area)                             | -                              |
| Edge Intersection   | Large (perimeter) 2                           | 2                              |
| Rectangle           | Medium                                        | 4                              |
| Triangle            | Small (or none)                               | 4 to 12 (if split)             |

Higher-level primitives (lower in table) are much more efficient to store and use

## Polygon Splitting (Bitmap)

- Manhattan Polygon => Bitmap
- Too many pixels to store large blocks of the same value



## Polygon Splitting (Edges)

Manhattan Polygon => Edges

Well, actually rectangle strips between 2 edges



# Polygon Splitting (Rectangles)

Manhattan Polygon => Rectangles



Non-Manhattan Polygon => Rectangles



## Polygon Splitting (Triangles)

Non-Manhattan Polygon => Rectangles + Right Triangles

Primary Goal: Min # Triangles

Secondary Goal: Min # Rectangles



## Pattern Pre-Integration

- 1D Pre-Integration
- Can be horizontal or vertical, either will work
- Pre-integrated value = sum of all pattern values at and to the right

| -              | Ţ             |
|----------------|---------------|
| 0              | Ţ             |
| $\sim$         | 4             |
| _              | <u>S</u>      |
| 7              | 7             |
| 1              | 8             |
| 0              | 8             |
| Pattern values | re-int values |

2D Pre-Integration

- Typical PM pattern is 128x128
  - Starts with 1D pre-integration
- Pre-integrated value = sum of all pattern values at and to the right AND above (top right = orientation P0)

| Pre-I                     | 4          | 7       | 11  | 13      |
|---------------------------|------------|---------|-----|---------|
| 2D P                      | 4          | 10      | 18  | 22      |
| 1D Pre-Int to the right 2 | IR (IU)    | above   |     |         |
| the                       | T          | 2       | 2   | 0       |
| þ                         | 3          | 3       | 3   | 0       |
| Int                       | 4          | 3       | 4   | 2       |
| <u>-</u> 6                | 4          | 9       | ∞   | 4       |
| $\Delta$                  |            |         |     |         |
|                           | <u>~</u>   | right   |     |         |
|                           | 1<br>PV    | 2 right | 2   | 0       |
|                           | 2 1 PV     | =       | 1 2 | 0 0     |
|                           | 1 2 1 PV   | =       |     | 2 0 0   |
| Pattern Values 1D P       | 0 1 2 1 PV | =       | П   | 2 2 0 0 |

| Pre-Int top right | P0  |     |    |    |
|-------------------|-----|-----|----|----|
| do                | Ţ   | 3   | 5  | L  |
| nt t              | 3   | 9   | 9  | σ  |
| re-I              | 4   | 7   | 11 | 13 |
|                   | 4   | 10  | 18 | 77 |
| 7                 | IU) | ve. |    |    |

FIG. 12

### Algorithm 1: Bitmap

- Entire layout represented as one huge bitmap of layers (like images on a computer screen)
  - One rectangle is added at a time to the bitmap
- At every match location (edge, corner, etc.), each pattern pixel is multiplied by the layout pixel and summed:

$$MF(i+\frac{X}{2},j+\frac{Y}{2}) = norm* \sum_{Y} \sum_{X} Layout(x+i,y+j)* Pat(x,y)$$

Pattern size (X by Y) is typically 128x128 = 16384 ops



F/G. 13

# Algorithm 2: Edge Intersections

- Store only the pixels along edges
- Run-length encoding in 1D skip large runs of the same pixel value (rectangle strips)
- Pre-integrate pattern in 1D:  $val(i,j) = \sum_{k=i}^{X} pat(k,j)$ for x intersection case
- Add MF contributions from each rectangle strip between two edges (either X or Y dir)

| 5    | 2 <del>*</del> | )<br>-       |
|------|----------------|--------------|
| -    | <del></del>    |              |
| 0    |                | <del>-</del> |
| 3    | 4              |              |
|      | 5              |              |
| 2    | 7              |              |
|      | 8              |              |
| 0    | 8              | 1)           |
| (j,  |                | jht          |
| pat( | val(           | ip (weig     |
|      |                | r strip      |

Contribution: 1\*8 + (-1)\*1 = 7

FIG. 14

edges

## Algorithm 3: Rectangles

- Simplest data structure: Store only the rectangles and pointers to them
- 2D encoding only rectangle corners are needed
- Pattern integrated in 2D, rectangle LL corner clipped to pattern area
- Integrated pattern value is sum of values above and to the right:  $val(i,j) = \sum_{k=i}^{Y} \sum_{l=j}^{X} pat(k,l)$



Contribution from rect at (x1,y1), (x2,y2) = val(x1,y1) - val(x2,y1) - val(x1,y2) + val(x2,y2)

Only process LL corner and other 3 if inside pattern

## Algorithm 3b: Triangles

- Extension of rectangle algorithm
- Pre-integration time/storage proportional to the number of unique angles
  - Limited to multiples of 45-degree angles in practice
- 0, 45, 90, 135, 180, 225, 270, 315 deg => 8 preintegrations





FIG. 17B



RH = rectangle height (3) RL = rectangle length (3)

TL = triangle length (3) TH = triangle height (3)

### Bitmap Algorithm

Pattern Values 2 0 0

Edge Intersection

1D Pre-Int to the right 4

Pre-Integrate

$$(6-2) + (8-2) + (4-0) = 14$$
  
 $2*RH = 6$  Operations

FIG. 18B

FIG. 18A

(3+0+1) + (4+1+1) + (2+2+0) = 14

RL\*RH = 9 Operations

#### Examples



Rectangle Algorithm

| right   | P0 |        |    |    |
|---------|----|--------|----|----|
| top     | 7  | $\sim$ | 5  | 5  |
|         | 3  | 9      | 9  | 6  |
| Pre-Int | 4  | 7      | 11 | 13 |
| D P     | A  | 10     | 18 | 22 |
| 7       |    |        | -  |    |

45-Triangle Algorithm

m rect algorithm 8-way Pre-Int——Precomputed:

| P0 from rect algorit | O1(B) = 1+2+2+ | (0+1+0)/2 = 5.5 | O1(C) = 0/2 = 0 |
|----------------------|----------------|-----------------|-----------------|
| $\geq$               |                |                 |                 |
| 1                    | 2              | 7               | <b>\$</b> 0     |
| 2                    |                |                 | 0               |
| 1                    |                | $\mathcal{I}$   | 2               |
| OB                   | 3              | 4               | 24              |
|                      | attern         | alues           |                 |

P0(A) - P0(B) - O1(B) + O1(C) = 11 - 4 - 5.5 + 0 = 1.5

LLC - ULC - LLC + URC =

22 - 4 - 5 + 1 = 14

Always 4 Operations

4 Operations/Shape (12 max)

### Examples

1D Pre-Int to the right

| 1 | 2   | ) 2 | 0 |
|---|-----|-----|---|
| 3 | 3   | (3) | 0 |
| 4 | (3) | 4   | 2 |
| 4 | 6   | 8   | 4 |

2D Pre-Int top right

| <u>S</u>      |    |         |    |
|---------------|----|---------|----|
| <del></del> - | 3  | 5       | 2  |
| $\sim$        | 6  | 9       | 6  |
| 4             | 7  | $^{11}$ | 13 |
| 4             | 10 | (18)    | 22 |
|               |    |         |    |

### Non-45 degree Triangle (Proposed)

$$P0(A) - P0(B) - IR(B...C) = 18 - 0 - (4 + 3 + 3) = 8$$
  
TH + 2 = **5** Operations

Similar to edge intersection algorithm but reduced storage

# Data Structures and Algorithms



#### This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

#### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| ☐ BLACK BORDERS                                         |
|---------------------------------------------------------|
| $\square$ image cut off at top, bottom or sides         |
| ☐ FADED TEXT OR DRAWING                                 |
| BLURRED OR ILLEGIBLE TEXT OR DRAWING                    |
| ☐ SKEWED/SLANTED IMAGES                                 |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                  |
| ☐ GRAY SCALE DOCUMENTS                                  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                   |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
| □ other.                                                |

#### IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.