# Complex Analysis

Md. Aquil Khan

$$f(z) = z^2.$$



• 
$$f(z) = z^2$$
.

• 
$$f(z) = f(x + iy) = (x + iy)^2 =$$



• 
$$f(z) = z^2$$
.

• 
$$f(z) = f(x + iy) = (x + iy)^2 = \underbrace{x^2 - y^2}_{\text{real part}} + i \underbrace{2xy}_{\text{imaginary part}}$$

• 
$$f(z) = z^2$$
.

• 
$$f(z) = f(x + iy) = (x + iy)^2 = \underbrace{x^2 - y^2}_{\text{real part}} + i \underbrace{2xy}_{\text{imaginary part}}$$

• 
$$f = u + iv$$
, where  
 $u(x, y) = x^2 - y^2$ ,  $v(x, y) = 2xy$ 

$$f(z) = \frac{1}{z}.$$

• 
$$f(z) = \frac{1}{z}$$
.

• 
$$f(z) = f(x + iy) = \frac{1}{x + iy} =$$

• 
$$f(z) = \frac{1}{z}$$
.

• 
$$f(z) = f(x + iy) = \frac{1}{x + iy} = \underbrace{\frac{x}{x^2 + y^2}}_{\text{real part}} + i \underbrace{\frac{-y}{x^2 + y^2}}_{\text{imaginary part}}$$

• 
$$f(z) = \frac{1}{z}$$
.

• 
$$f(z) = f(x + iy) = \frac{1}{x + iy} = \underbrace{\frac{x}{x^2 + y^2}}_{\text{real part}} + i \underbrace{\frac{-y}{x^2 + y^2}}_{\text{imaginary part}}$$

• f = u + iv, where

$$u(x,y) = \frac{x}{x^2 + y^2}, \quad v(x,y) = \frac{-y}{x^2 + y^2}$$



•  $f: D \to \mathbb{C}$ , where  $D \subseteq \mathbb{C}$ .

- $f: D \to \mathbb{C}$ , where  $D \subseteq \mathbb{C}$ .
- $f(z) = \underbrace{u(x,y)}_{\text{real part}} + i \underbrace{v(x,y)}_{\text{imaginary part}}$ , z = x + iy

where u and v are real functions of the two real variables x and y.



- $f: D \to \mathbb{C}$ , where  $D \subseteq \mathbb{C}$ .
- $f(z) = \underbrace{u(x,y)}_{\text{real part}} + i \underbrace{v(x,y)}_{\text{imaginary part}}$ , z = x + iy

where u and v are real functions of the two real variables x and y.

•  $u \longrightarrow \text{Real part of } f$  $v \longrightarrow \text{Imaginary part of } f$ 

- $f: D \to \mathbb{C}$ , where  $D \subseteq \mathbb{C}$ .
- $f(z) = \underbrace{u(x,y)}_{\text{real part}} + i \underbrace{v(x,y)}_{\text{imaginary part}}$ , z = x + iy

where u and v are real functions of the two real variables x and y.

- $u \longrightarrow \text{Real part of } f$  $v \longrightarrow \text{Imaginary part of } f$
- $\bullet$  f = u + iv



•  $f: D \to \mathbb{C}$ ,  $D \subseteq \mathbb{C}$ , and  $z_0$  is a limit point of  $\mathbb{C}$ .

- $f: D \to \mathbb{C}$ ,  $D \subseteq \mathbb{C}$ , and  $z_0$  is a limit point of  $\mathbb{C}$ .
- $\lim_{z\to z_0} f(z) = I$  (f has the limit I as z approaches  $z_0$ )



- $f: D \to \mathbb{C}$ ,  $D \subseteq \mathbb{C}$ , and  $z_0$  is a limit point of  $\mathbb{C}$ .
- $\lim_{z \to z_0} f(z) = I$  (f has the limit I as z approaches  $z_0$ )



For a given  $\epsilon > 0$ , there exists a  $\delta_{\epsilon} > 0$  such that

$$z \in D \& 0 < |z - z_0| < \delta_{\epsilon} \Rightarrow$$

- $f: D \to \mathbb{C}$ ,  $D \subseteq \mathbb{C}$ , and  $z_0$  is a limit point of  $\mathbb{C}$ .
- $\lim_{z \to z_0} f(z) = I$  (f has the limit I as z approaches  $z_0$ )



For a given  $\epsilon > 0$ , there exists a  $\delta_{\epsilon} > 0$  such that

$$z \in D \& 0 < |z - z_0| < \delta_{\epsilon} \Rightarrow |f(z) - I| < \epsilon$$

- $f: D \to \mathbb{C}$ ,  $D \subseteq \mathbb{C}$ , and  $z_0$  is a limit point of  $\mathbb{C}$ .
- $\lim_{z \to z_0} f(z) = I$  (f has the limit I as z approaches  $z_0$ )



For a given  $\epsilon > 0$ , there exists a  $\delta_{\epsilon} > 0$  such that

$$z \in D \& 0 < |z - z_0| < \delta_{\epsilon} \Rightarrow |f(z) - I| < \epsilon$$



• The limit *I*, if exists, must be unique.

- The limit I, if exists, must be unique.
- The value of I is independent of the direction along which  $z \rightarrow z_0$ .

- The limit I, if exists, must be unique.
- The value of I is independent of the direction along which  $z \rightarrow z_0$ .

# Example

• consider  $\lim_{z\to 0} \frac{z}{\overline{z}}$ 

- The limit I, if exists, must be unique.
- The value of I is independent of the direction along which  $z \to z_0$ .

- consider  $\lim_{z\to 0} \frac{z}{\overline{z}}$
- Along the positive direction of x-axis,  $\lim_{z\to 0} \frac{z}{\overline{z}} =$

- The limit I, if exists, must be unique.
- The value of I is independent of the direction along which  $z \to z_0$ .

- consider  $\lim_{z\to 0} \frac{z}{\overline{z}}$
- Along the positive direction of x-axis,  $\lim_{z\to 0} \frac{z}{\overline{z}} = 1$ .

- The limit I, if exists, must be unique.
- The value of I is independent of the direction along which  $z \to z_0$ .

- consider  $\lim_{z\to 0} \frac{z}{\overline{z}}$
- Along the positive direction of x-axis,  $\lim_{z\to 0} \frac{z}{\overline{z}} = 1$ .
- Along the positive direction of *y*-axis,  $\lim_{z\to 0} \frac{z}{\overline{z}} =$



- The limit *I*, if exists, must be unique.
- The value of I is independent of the direction along which  $z \to z_0$ .

- consider  $\lim_{z\to 0} \frac{z}{\overline{z}}$
- Along the positive direction of x-axis,  $\lim_{z\to 0} \frac{z}{\overline{z}} = 1$ .
- Along the positive direction of *y*-axis,  $\lim_{z\to 0}\frac{z}{\overline{z}}=-1$

- The limit *I*, if exists, must be unique.
- The value of I is independent of the direction along which  $z \to z_0$ .

- consider  $\lim_{z\to 0} \frac{z}{\overline{z}}$
- Along the positive direction of x-axis,  $\lim_{z\to 0} \frac{z}{\overline{z}} = 1$ .
- Along the positive direction of *y*-axis,  $\lim_{z\to 0}\frac{z}{\overline{z}}=-1$
- $\lim_{z \to 0} \frac{z}{\overline{z}}$  does not exist.



•  $f:D\to\mathbb{C}$  is said to be continuous at  $z_0\in D$ 



•  $f:D\to\mathbb{C}$  is said to be continuous at  $z_0\in D$ 



$$\lim_{z\to z_0}f(z)=$$

•  $f:D\to\mathbb{C}$  is said to be continuous at  $z_0\in D$ 



$$\lim_{z\to z_0}f(z)=f(z_0)$$



•  $f:D\to\mathbb{C}$  is said to be continuous at  $z_0\in D$ 



$$\lim_{z\to z_0}f(z)=f(z_0)$$

A complex function is said to be continuous in a region R if it is continuous at every point in R.



# Theorem

$$f = u + iv$$
 is continuous at  $z_0 = x_0 + iy_0$ 



### Theorem

$$f = u + iv$$
 is continuous at  $z_0 = x_0 + iy_0$ 



u(x,y) and v(x,y) are both continuous at  $(x_0,y_0)$ 

• 
$$f(x + iy) = e^x \cos y + ie^x \sin y$$
.

- $f(x + iy) = e^x \cos y + ie^x \sin y$ .
- u(x, y) =

- $f(x + iy) = e^x \cos y + ie^x \sin y$ .
- $u(x, y) = e^x \cos y$ ,  $v(x, y) = e^x \sin y$

- $f(x + iy) = e^x \cos y + ie^x \sin y$ .
- $u(x, y) = e^x \cos y$ ,  $v(x, y) = e^x \sin y$
- u and v are both continuous in  $\mathbb{R}^2$



- $f(x + iy) = e^x \cos y + ie^x \sin y$ .
- $u(x, y) = e^x \cos y$ ,  $v(x, y) = e^x \sin y$
- ullet u and v are both continuous in  $\mathbb{R}^2$
- f is continuous in  $\mathbb{C}$

• 
$$f(z) = |z|^2$$

- $f(z) = |z|^2$
- u(x, y) =

• 
$$f(z) = |z|^2$$

• 
$$u(x,y) = x^2 + y^2$$
,  $v(x,y) = 0$ 

• 
$$f(z) = |z|^2$$

• 
$$u(x, y) = x^2 + y^2$$
,  $v(x, y) = 0$ 

• u and v are both continuous in  $\mathbb{R}^2$ 

• 
$$f(z) = |z|^2$$

• 
$$u(x, y) = x^2 + y^2$$
,  $v(x, y) = 0$ 

- u and v are both continuous in  $\mathbb{R}^2$
- ullet f is continuous in  ${\mathbb C}$



•  $f(z) = \frac{\operatorname{Re} z}{z}$  for  $z \neq 0$ , and f(0) = 0.



- $f(z) = \frac{\operatorname{Re} z}{z}$  for  $z \neq 0$ , and f(0) = 0.
- u(x, y) =

- $f(z) = \frac{\operatorname{Re} z}{z}$  for  $z \neq 0$ , and f(0) = 0.
- $u(x,y) = \frac{x^2}{x^2 + y^2}$ ,  $v(x,y) = \frac{-xy}{x^2 + y^2}$ , for  $(x,y) \neq (0,0)$ u(0,0) = v(0,0) = 0

- $f(z) = \frac{\operatorname{Re} z}{z}$  for  $z \neq 0$ , and f(0) = 0.
- $u(x,y) = \frac{x^2}{x^2+y^2}$ ,  $v(x,y) = \frac{-xy}{x^2+y^2}$ , for  $(x,y) \neq (0,0)$ u(0,0) = v(0,0) = 0
- u and v are not continuous at (0,0) as  $\lim_{(x,y)\to(0,0)} u(x,y)$ , and  $\lim_{(x,y)\to(0,0)} v(x,y)$  does not exist.

- $f(z) = \frac{\operatorname{Re} z}{z}$  for  $z \neq 0$ , and f(0) = 0.
- $u(x,y) = \frac{x^2}{x^2+y^2}$ ,  $v(x,y) = \frac{-xy}{x^2+y^2}$ , for  $(x,y) \neq (0,0)$ u(0,0) = v(0,0) = 0
- u and v are not continuous at (0,0) as  $\lim_{(x,y)\to(0,0)} u(x,y)$ , and  $\lim_{(x,y)\to(0,0)} v(x,y)$  does not exist.
- f is not continuous at z = 0.



Theorems on real continuous functions can be extended to complex continuous functions

 Sum, difference and product of continuous functions are also continuous