PERIODIC TABLE

EXERCISE # 1

Carbon family

- $4d^35s^2$ 7. Block - d Period - 5
 - Group number electrons + (n-1) d electrons = 2 + 3 = 5 or (VB)
- N^{-3} O^{-2} F^{-} 8. esz/e 0.7 0.8 0.9 Radius $\propto \frac{1}{(z/e)}$

Order of radius = $N^{-3} > O^{-2} > F^{-1}$

24. EN of P and H is almost same = 2.1

Valency

Group

Family

15. The difference of IP_4 and IP_5 is maximum

For A particular atom successive I. P is are always increase. So $E_1 \le E_2 \le E_3$

IVA or 14th

40. Vanderwall's Radii > Covalent radil

PERIODIC TABLE

EXERCISE # 2

P-3 S-2 Cl-2.

Size ∞ negative ∞ $\frac{1}{Zeff}$

Order of size = P^{-3} $> S^{-2} > Cl^{-1}$

 $1s^2$, $2s^22p^6$, $3s^2 3p^1$ 9. $1s^2$, $2s^22p^6$, $3s^2$ Al^+ – Al^{2+} – $1s^2$, $2s^22p^6$, $3s^1$ Al^{+3} - $1s^2$, $2s^22p^6$

> = Al⁺³ > Al⁺ > Al⁺² Stability

- **28.** $_{5}B$ $1s^{2}$, $2s^{2}2p^{1}$ Two electrons of 1s and 2s subshells
- **32.** Size ∝ number of shell
- **35.** 2nd pd. N Ο 3rd pd. S Cl $EA^{3rd}pd > EA^{2nd}pd$ (More repulsion of electrons) Cl > S > O > N

40. Size \propto negative charge \propto positive charge

- $41. \quad X = \frac{IP + EA}{2}$ 2 X - IP - EA = 0He I^tpd
- **48**. Be Ν Ne IIndpd

Group – Ionization energy $\propto \frac{1}{\text{size}}$ Period – Ionization energy ∝ zeff I.P. - He > Ne > N > Be

$$IP_2 = 250 - 100 = 150 \text{ ev}$$

68. IP₁ Вe $1s^2$, $2s^2$ $1s^2$, $2s^2$, $2p^1$ (more stable)

Be > B

- **71**. IP₁ В C [He]2s², 2p¹ $[He]2s^2, 2p^2$ $[He]2s^2, 2p^3$ $[He]2s^2, 2p^4$ (More stable) (Half filled)
 - B < C < O < N IP_1
- 83. 1. $M(s) \longrightarrow M(g)$
 - $M(s) \longrightarrow M_{(g)}^{2+} + 2e^{-}$ 2.
 - $M(g) \longrightarrow M_{(g)}^+$
 - $4. \qquad M_{(g)}^{+} \longrightarrow M_{(g)}^{2+} + 2e^{-}$
 - 5. $M(g) \longrightarrow M_{(g)}^{2+} + 2e^{-}$

$$M_{\text{o}} \xrightarrow{\text{(3)}=\text{IP}_{1}} M_{\text{o}}^{\text{+}} \xrightarrow{\text{(4)}=\text{IP}_{2}} M_{\text{o}}^{\text{+}2}$$

$$(5) = \text{IP}_{2}$$

$$I.P. = IP_1 + IP_2$$

$$(5) = (3) + (4)$$

$$(5) = I.P - IP_1 \text{ or } (5) - (3)$$

CHEMICAL BONDING

EXERCISE # 1

- (i) Vapour pressure of (B) is higher than (A) due to intra molecular H-bonding present in (B).
 ((B) का वाष्पदाब (A) की अपेक्षा उच्च है क्योंकि इसमें अन्त: आण्विक H-बन्ध उपस्थित होता है।)
- 5. Tetracyanoethylene (टेट्रासायनों एथीलीन)

- $\begin{array}{ll} \textbf{11.} & \% \text{ Ionic character} &=& \frac{\text{observer dipole moment}}{\text{Theortical dipole moment}} \\ &=& \frac{1.03 \times 10^{-18} \text{ esu} \times \text{cm}}{1.275 \times 10^{-8} \text{cm} 4.8 \times 10^{-10} \text{esu}} & 100 \text{=} 16.83.\% \\ \end{array}$
- 13. Ionic character $\propto \Delta EN$
- 14. Due to presence of vacant d-orbital in P atom but not in N atom. (P में रिक्त d-कक्षक उपस्थित होते हैं लेकिन N परमाण में नहीं।)

(B.P. – L.P.) repulsion at 90 = 8

16.

- **28.** A^{+3} B^{-2} A_2B_3 compound
- 29. Valency of $x = 2 \Rightarrow x^{+2}$ Valency of $y = 1 \Rightarrow dy^{+2}$ $\therefore x^{+2} y^{-1}$
- \mathbf{xy}_2 30. Polarisability ∞ Size of anions

Bond order $\propto \frac{1}{\text{Bond length}}$ Order of Bond length = $H_2O_2 > O_3 > O_3$

CHEMICAL BONDING

EXERCISE # 2

4. According to M.O.T. $H_2^- \to \sigma 1 s^2 \ \sigma^* 1 s^1$

Bond order =
$$\frac{2-1}{2}$$
 = $\frac{1}{2}$

- 12. $sp^3 109 28'$ P_x and $P_y - 90$ H-O-H - 104'.5sp - 180
- 19. Hydrolysis \propto Covalent character $NCl_3 > PCl_3 > AsCl_3 > SbCl_3 > BiCl_3$
- **21.** Ca^{+2} C_2^{2-} Ionic bond

38. $N_3^- \Rightarrow N_{\equiv N \rightarrow N}^{+} \longrightarrow N$

16 outer electrons Total electron – 22 total electron – 22

- 44. MgO BaO
 L.P. MgO > BaO
 M.P. MgO > BaO
 Ionic character $\propto \Delta EN$
- **49.** BF $_3$ has number lone pair and planar dipole moment μ = 0 NF $_3$ has polar bond and pyramidal μ ≠ O
- **50.** Bond length $\propto \frac{1}{\text{size of central atom}}$
- **52.** Pyrophosphoric acid H₄P₂O₇

Tetra basic acid

1.(a) $K^+ HF_2^-$

F--H-----F

H-bonding

H-bonding present in ${\rm KHF}_2$ so it exist but there is no H-bonding in ${\rm KHCl}_2$ due to less polarity in between HCl and ${\rm Cl}^-$

(KHF $_2$ में हाइड्रोजन बन्ध उपस्थित होने के कारण इसका अस्तित्व होता है। लेकिन KHCl $_2$ में HCl व Cl $^-$ के मध्य कम ध्रवता होने के कारण कोई H-बन्धन नहीं होता।)

(b) In $(CH_3)_3$ N, hybridisation is sp^3 and pyramidal shape but in $(SiH_3)_3$ N, due to present of vacant d-orbital in Si atom, lone pair of N shifted in vacant orbital so its hybridisation is sp^2 with tirgonal planar geometry.

((CH₃)₃ $\stackrel{\bullet}{N}$ में, sp³ संकरण एवं पिरामिडल आकृति होती है। लेकिन (SiH₃)₃ $\stackrel{\bullet}{N}$ में, Si परमाणु के पास रिक्त d-कक्षक उपस्थित होने के कारण नाइट्रोजन के एकांकी इलेक्ट्रॉन युग्म रिक्त d-कक्षक में स्थानान्तरित हो जाते हैं। इसलिए इसका संकरण sp² व त्रिकोणीय समतलीय ज्यामिती होती है।)

(c) Due to presence of vanderwaal's force in between ${\rm CO}_2$ molecule it is gas but ${\rm SiO}_2$ is a 3-d network structure so it is solid in nature.

 (CO_2) अणुओं के मध्य वाण्डरवाल बलों की उपस्थिति के कारण यह गैस होती है। जबिक SiO_2 अणु की 3-d जालक संरचना होती है। इसलिये यह प्रकृति में ठोस होता है।)

$$\mathbf{2}.(a) \quad \mathbf{N}_2\mathbf{O}_3 \qquad \mathbf{O} = \mathbf{N} \qquad \mathbf{N} = \mathbf{C}$$

 P_2O_3 exist in P_4O_6 (Ring structure)

(b) H-Cl, H-Br, H-I

Due to increase in size of I, the difference between electronegativity of H and I is less, so bond length is more and but bond strength is weak.

(आयोडिन का आकार बढ़ने के कारण H व। की विद्युतऋणता में कम अन्तर होता है। इसलिए बन्ध लम्बाई अधिक एवं बन्ध सामर्थ्य दुर्बल होती है।)

sp, hybridisation

5.

BeCl₂(s), hybridisation is sp³

sp hybridisation

 sp^3 hybrisiation

6. Due to the properly oriented tetrahedral structure of ice, H⁺ ions are free and hence move more rapidly in ice than in water where molecular associations are not so well organized.

> (बर्फ की चतुष्फलकीय संरचना व आण्विक सगुणन अधिक होने के कारण H⁺ आयन अधिक मुक्त रहता है। इसलिए H⁺ आयन की गतिशीलता बर्फ में जल की अपेक्षा अधिक होता है।)

7. BCl_3 exist in monomer form

(i)
$$Cl-B-Cl$$

sp², trigonal planar

 $AlCl_3$ exist in dimer form – Al_2Cl_6

Dimer form sp³, tetrahedra

(ii) BaSO₄ (Barium sulphate)

 $BeSO_4$

H.E > L.E.

H.E < L.E.

(iii) In O_2 (O=O) due to small size of oxygen strong $p\pi$ - $p\pi$ bonding is possible but in S_2 due to larger size of sulphur there is not strong $p\pi$ - $p\pi$ bonding. So bond is weak and break down.

 $(O_2 (O=O)$ में ऑक्सीजन का आकार छोटा होने के कारण प्रबल $p\pi$ - $p\pi$ बन्धन संभव होता है लेकिन S_2 में सल्फर का बड़ा आकार होने पर प्रबल $p\pi$ - $p\pi$ बन्धन नहीं होता। इसलिए बन्ध दुर्बल होता है और टूट जाता है।)

- **8**. (i) $\sigma 1s$
- (ii) $\pi^*2p_{..}$
- (iii) $\sigma 2p_z$
- (iv) $\sigma 2s$
- (v) $\pi 2p_v$

9. According to M.O.T. O_2 is paramagnetic in nature. (M.O.T. के अनुसार O_2 प्रकृति में अनुचुम्बकीय होता है।)

10.(a) In graphite sp² hybridisation and due to presence of free electron they are good conductor of electricity in a layer but not so good in between two layers.

(ग्रेफाइट में ${
m sp}^2$ संकरण होता है ओर मुक्त इलेक्ट्रॉन की उपस्थिति के कारण ये परत में अच्छा चालक होता है लेकिन परतों के मध्य यह अच्छा विद्युत का चालक नहीं होता।)

- (b) In solid states position of ions are fixed. (ठोस अवस्था में आयनों की स्थिती निश्चित होती है।)
- 12. Due to H-bonding in NH $_3$ molecule. It is liquid but there is presence of vanderwaal force in between HCl molecules instead of H-bonding so it is gas. (NH $_3$ अणु में H-बन्धन के कारण यह द्रव होता है लेकिन HCl अणु में वाण्डरवाल बल होने के कारण यह गैस होता है।)
- **14.** 1.4 Å
- **15.** 84.35 %
- **16.** $2\frac{1}{2}$, 3

S₈, Grown structure

- (ii) H N=N H
- (iii) P_4O_{10}

- (v) XeOF₄
- (vi) C_3O_2 O=C=C=CO
- (vii) F

CHEMICAL BONDING

EXERCISE # 4[B]

 $\mathbf{1.(i)} \quad \mathrm{Na[B_{3}O_{3}(OH)_{4}]} \qquad \mathrm{OR} \quad \left[\mathrm{B_{3}O_{3}(OH)_{4}}\right]^{-}$

Trimeric metaborate ion

(ii) $Na_{2}[B_{4}O_{5}(OH)_{4}] 8H_{2}O$ (Borax)

s₃o₃

cyclic timer of SO₃

- (vi) $(CN)_2 \Rightarrow N \equiv C C \equiv N$
- $\mathbf{3}$. $H_2S_nO_6$

(v)