

# DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY

TIRUCHIRAPPALLI - 620 015, TAMIL NADU, INDIA

|                                          | CC                                               | <b>DURSE P</b> | LAN (PA | RT I)                    |            |       |            |            |  |  |
|------------------------------------------|--------------------------------------------------|----------------|---------|--------------------------|------------|-------|------------|------------|--|--|
| Name of the programme and specialization | B. Tech., ELECTRICAL AND ELECTRONICS ENGINEERING |                |         |                          |            |       |            |            |  |  |
| Course Title                             | Circuits and Digital Laboratory                  |                |         |                          |            |       |            |            |  |  |
| Course Code                              |                                                  | EELR10         |         |                          | of Credits |       | 02         |            |  |  |
| Course Code of Pre-requisites            | EEPC10 Circuit Theory                            |                |         |                          |            |       |            |            |  |  |
| Session                                  | July 2025                                        |                |         | Section (if, applicable) |            |       | В          |            |  |  |
| Name of the Faculty                      | Dr. Dipanshu Naware                              |                |         | Department               |            |       | EEE        |            |  |  |
| E-mail                                   | dipanshu@nitt.edu                                |                |         | Telephone No.            |            |       | 8319776878 |            |  |  |
| Course Coordinator(s) (if, applicable)   | Dr. Dipanshu Naware                              |                |         |                          |            |       |            |            |  |  |
| E-mail of Course Coordinator (s)         | dipanshu@nitt.edu                                |                |         | Telephone No.            |            |       | 9723684556 |            |  |  |
| Course Type (tick)                       | IR                                               | Core           | Program |                          |            | Minor | Honours    | Laboratory |  |  |
|                                          |                                                  |                |         |                          |            |       |            | 1          |  |  |

## COURSE CONTENT (as in latest curriculum)

### List of Experiments:

- · Verification of Kirchhoff's Current and Voltage law.
- · Verification of Thevenin and Maximum Power Transfer Theorem.
- Verification of Superposition Theorem.
- · Transient characteristics of R-L series circuit.
- · Transient characteristics of R-C series circuit.
- · Transient characteristics of R-L-C series circuit.
- Forward bias characteristics of p-n junction diode and reverse bias characteristics of zener diode.
- · Design of combinational logic circuit.
- Design of Multiplexer and Demultiplexer, encoder and decoder.
- Design of synchronous sequential logic circuits.
- Mini Project.

#### References

- Hayt, W. H, Kemmerly J. E. & Durbin, 'Engineering Circuit Analysis', McGraw Hill Publications, 8th Edition, 2013.
- Charles K. Alexander, Matthew N.O.Sadiku, 'Fundamentals of Electric Circuits', McGraw-Hill Publications, 5th Edition, 2013
- Joseph. A. Edminister, 'Electric Circuits Schaum's Outline Series', McGraw-Hill Publications, 6th Edition, 2003.
- Robins & Miller, 'Circuit Analysis Theory and Practice', Delmar Publishers, 5th Edition, 2012

#### **COURSE LEARING OBJECTIVES**

- To understand and analyze the basic theorems of Circuit theory
- Understand and analyze series & parallel circuits and measurement of single and three-phase power.
- Understand and analyze different applications of diode and characteristics of Transistor.
- Understand the basics of digital design

| 245                         |                                                                                                                                                      |                                                  |                                                             |       | TCON   |                               |      |       |           |        |          |        |        |        |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|-------|--------|-------------------------------|------|-------|-----------|--------|----------|--------|--------|--------|
|                             | Course Outcomes                                                                                                                                      | Alig                                             | ned l                                                       | Prog  | ramm   | e Ou                          | tcom | es (P | O) (Ass   | ign le | evel - 1 | or 2 o | r 3 or | blank) |
| After SI                    | uccessful completion of the course,                                                                                                                  |                                                  | 1                                                           | 2     | 3      | 4                             | 5    | 6     | 7         | 8      | 9        | 10     | 11     | 12     |
| the ctu                     | dents should be able to:                                                                                                                             | CO1                                              | 3                                                           | 2     | 3      | 3                             | 3    | 2     | 2         | 3      | 3        | 3      | 2      | 3      |
|                             | Verify the network theorems and                                                                                                                      | CO2                                              | 3                                                           | 2     | 3      | 3                             | 3    | 2     | 2         | 3      | 3        | 3      | 2      | 3      |
| operation of electrical and |                                                                                                                                                      | CO3                                              | 3                                                           | 2     | 3      | 3                             | 2    | 2     | 2         | 3      | 3        | 3      | 3      | 3      |
|                             | electronic circuits.                                                                                                                                 | CO4                                              | 3                                                           | 2     | 3      | 3                             | 3    | 2     | 2         | 3      | 3        | 3      | 2      | 3      |
| CO2                         | Choose the appropriate equipment for measuring the electrical quantities and verify the same for different circuits  Prepare the technical report on | PO1:<br>PO2:<br>PO3:<br>PO4:                     | PO2: Problem analysis PO3: Design/ development of solutions |       |        | PO7:<br>PO8:<br>PO9:<br>PO10: |      |       |           |        |          |        |        |        |
|                             | the experiments carried out                                                                                                                          | PO5: Modern tool usage PO6: Engineer and society |                                                             | PO11: |        |                               |      |       | d finance |        |          |        |        |        |
| CO4                         | Design basic digital logic circuits                                                                                                                  | PO6:                                             | Eng                                                         | ineer | and so | ciety                         |      |       | PO12:     | LIII   | e-long i | eaming |        |        |
|                             | •                                                                                                                                                    |                                                  |                                                             |       |        |                               |      |       |           |        |          |        |        |        |

# COURSE PLAN (PART II) **COURSE OVERVIEW**

In our day-to-day life, we come across various electrical and electronic equipment. This equipment revolves around us and forms an integral form of our daily routine such as ceiling fans, fluorescent tube lights, LEDs, grinders, cell phones, refrigerators, laptops/PCs, and many more. All these devices follow fundamental laws of electrical and electronics engineering and to understand the basic working/operation of these devices it is indeed important to thoroughly understand the science behind it. These requirements motivated us to frame this coursework as a general institute requirement for Production Engineering students.

The laboratory course 'Circuits and Digital Laboratory' is designed in such a way that initially, it deals with the fundamentals of electrical circuits and networks with hands-on experimentation on basic circuit elements such as active and passive, fundamental concepts of voltage, current, and power, and application of various laws &

theorems in both AC and DC circuits alongside applications.

Furthermore, the students are exposed to the fundamental experimentation on analog and digital electronics, which include introduction to semiconductor devices such as diodes, and BJT characterized for several applications

| and exposure to Boolean laws and log | gic gates. |
|--------------------------------------|------------|
|--------------------------------------|------------|

|            |                                                           | COURSE TEACHING AND LEARNING ACTIVITIES                                                                                      | Mode of Delivery                        |
|------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| SI.<br>No. | Week                                                      | Topic                                                                                                                        | Widde of Belivery                       |
| 1.         | 2 <sup>nd</sup> week of July<br>(07/07/25 – 11/07/25)     | Introduction to the laboratory, course plan discussion, mode of assessment, attendance policy, etc.                          | -                                       |
| 2.         | 3 <sup>rd</sup> week of July<br>(14/07/25 – 18/07/25)     | Demonstration and use of Bread board, Variable regulated power supply, DSO, Multi meters, etc.                               | Laboratory demonstration                |
| 3.         | 4 <sup>th</sup> week of July<br>(21/07/25 – 25/07/25)     | Verification of Kirchhoff's Current and Voltage law.                                                                         | Hands-on Experiment                     |
| 4.         | 5 <sup>th</sup> week of July<br>(28/07/25 – 01/08/25)     | Verification of Thevenin's and Maximum Power Transfer Theorem.                                                               | Hands-on Experiment Hands-on Experiment |
| 5.         | 1 <sup>st</sup> week of August (04/08/25 – 08/08/25)      | 1 <sup>st</sup> week of August Verification of Superposition Theorem                                                         |                                         |
| 6.         | 2 <sup>nd</sup> week of August<br>(11/08/25 – 15/08/25)   | <ul> <li>Transient characteristics of RL series circuit.</li> <li>Transient characteristics of RC series circuit.</li> </ul> | Hands-on Experiment                     |
| 7.         | 3 <sup>rd</sup> week of August (18/08/25 – 22/08/25)      | Transient characteristics of RLC series circuit.                                                                             | Hands-on Experiment                     |
| 8.         | 4 <sup>th</sup> week of August (25/08/25 – 29/08/25)      | Forward bias characteristics of p-n junction diode and reverse bias characteristics of zener diode.                          | Hands-on Experiment                     |
| 9.         | 1 <sup>st</sup> week of Sept. (01/09/25 – 05/09/25)       | Design of combinational logic circuit.                                                                                       | Hands-on Experiment                     |
| 10.        | 2 <sup>nd</sup> week of Sept.<br>(08/09/25 – 12/09/25)    | Design of Multiplexer and De-Multiplexer, Encoder and decoder.                                                               | Hands-on Experiment                     |
| 11.        | 3 <sup>rd</sup> week of Sept.<br>(15/09/25 – 19/09/25)    | Design of synchronous sequential logic circuits                                                                              | Hands-on Experiment                     |
| 12.        | 4 <sup>th</sup> week of Sept.<br>(22/09/25 – 26/09/25)    | Compensation Experiments, if required                                                                                        | Hands-on Experiment                     |
| 13.        | 5 <sup>th</sup> week of October (27/10/25 – 28/10/25)     | Submission of Mini Project                                                                                                   | Demo and Report                         |
| 14.        | 1 <sup>st</sup> week of November<br>(10/11/25 – 21/11/25) | Final Assessment                                                                                                             | End-semester Exam                       |

|     |                    |           | SEC. O |
|-----|--------------------|-----------|--------|
| SI. | Mode of Assessment | Week/Date |        |
| No. |                    |           | BMBS   |

| SI.<br>No. | Mode of Assessment                                                                                                                        | Week/Date | Duration                                                    | % Weightage |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------|-------------|
| 1.         | Subject Entrance Test (SET) (Based on prerequisite knowledge)                                                                             | Day 1     | 15 minutes                                                  | NIL         |
| 2.         | Continuous Evaluation (Prerequisite knowledge, preparedness for experiments, active participation, record book submission, and Viva-voce) | Weekly    | Regular Lab Hours                                           | 40%         |
| 3.         | Surprise Test                                                                                                                             | Week 6    | Regular Lab Hours                                           | 10%         |
| 4.         | Mini Project<br>(Group/Individual Activity)                                                                                               | Week 12   | Regular Lab Hours                                           | 20%         |
| 5.         | Final Assessment (Hands-on Experimentation and Viva-voce)                                                                                 | Week 13   | Four Sessions in one full<br>day – 1.5 hours per<br>session | 30%         |

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- Feedback from the students during class committee meetings
- Feedback through the institute's online feedback system.

## **COMPENSATION POLICY**

- Only one instance of absence is acceptable in continuous assessment, and a compensation assessment for such cases will be conducted only once.
- Compensation assessments are restricted to genuine reasons, like severe illness, and require valid proof in the form of a medical certificate issued by the NITT hospital medical officer.
- In situations where students anticipate missing assessments due to unavoidable reasons, prior intimation to the faculty is essential. If a student is unable to provide advance notice due to sudden illness or emergencies, they must communicate the reason and submit valid proof of the absence within one week of the assessment.

#### ATTENDANCE POLICY

- At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade. Students awarded 'V' grade must compulsorily redo the course.

#### ACADEMIC DISHONESTY AND PLAGIARISM

#### Academic Dishonesty

- a) Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty
- b) Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- c) The department disciplinary committee constituted with the faculty member, PAC Chairperson, and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student found guilty,

## ADDITIONAL COURSE INFORMATION

The faculty/course coordinator is available for consultation at times as per the intimation given by the faculty. Queries may also be emailed to the course coordinator directly at dipanshu@nitt.edu

08-07-2025

FOR APPROVAL

Course Faculty/EEE Dr. Dipanshu Naware Chairperson (Class Committee)/EEE Dr. Jose Thankachan

Dr. Sishaj P. Simon