

Mathématiques 1

PSI

2022

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrice autorisée

Notations et rappels

Pour n et p deux entiers naturels non nuls, on désigne par $\mathcal{M}_{n,p}(\mathbb{R})$ l'ensemble des matrices à n lignes et p colonnes à coefficients dans \mathbb{R} et $\mathcal{V}_{n,p}$ l'ensemble des matrices à n lignes et p colonnes à coefficients dans $\{-1,1\}$.

Si M est une matrice de $\mathcal{M}_{n,p}(\mathbb{R}),$ on note M^{\top} sa transposée.

Une matrice M de $\mathcal{M}_n(\mathbb{R})$ est antisymétrique si $M^{\top} = -M$.

On désigne par $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées d'ordre n à coefficients réels, I_n la matrice identité d'ordre n et 0_n la matrice nulle d'ordre n.

Si $M \in \mathcal{M}_n(\mathbb{R})$, on note $\operatorname{tr}(M)$ sa trace.

On note $\mathcal{G}\ell_n(\mathbb{R})$ le sous-ensemble de $\mathcal{M}_n(\mathbb{R})$ formé des matrices inversibles.

On définit la suite des puissances de M par

$$\begin{cases} M^0 = I_n \\ \forall k \in \mathbb{N}, \quad M^{k+1} = MM^k \end{cases}$$

Une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est dite nilpotente s'il existe un entier naturel $k \geqslant 1$ tel que $M^k = 0_n$.

On note \mathcal{N}_n le sous-ensemble de $\mathcal{M}_n(\mathbb{R})$ formé des matrices nilpotentes.

Si U est une partie d'un espace vectoriel E, on note $\mathrm{Vect}(U)$ le sous-espace vectoriel de E engendré par U.

Toutes les variables aléatoires considérées dans les parties II, III et IV sont définies sur un même espace probabilisé discret $(\Omega, \mathcal{A}, \mathcal{P})$.

Étant donné une variable aléatoire réelle Z, on note, sous réserve d'existence, $\mathbb{E}(Z)$ son espérance et $\mathbb{V}(Z)$ sa variance.

On pourra utiliser, sans démonstration, le résultat suivant, connu sous le nom de lemme des coalitions:

Si $X_1,...,X_N$ sont des variables aléatoires réelles mutuellement indépendantes, alors, pour tout entier naturel $k \in [\![1,N-1]\!]$, toute fonction f de \mathbb{R}^k dans \mathbb{R} et toute fonction g de de \mathbb{R}^{N-k} dans \mathbb{R} , les variables aléatoires $f(X_1,...,X_k)$ et $g(X_{k+1},...,X_N)$ sont indépendantes.

Dans la partie III, l'espace vectoriel $\mathcal{M}_{n,1}(\mathbb{R})$ est muni de sa structure euclidienne canonique. Son produit scalaire est noté $\langle\cdot|\cdot\rangle$.

On note ch la fonction cosinus hyperbolique.

Objectifs du problème et articulations entre les différentes parties

Ce problème porte sur l'étude de certains sous-ensembles de $\mathcal{M}_n(\mathbb{R})$ et de $\mathcal{M}_{n,1}(\mathbb{R})$, où n est un entier naturel non nul

Dans la partie I, on étudie quelques propriétés de l'ensemble \mathcal{N}_n . Dans les parties II et III, on s'intéresse à des variables aléatoires réelles et matricielles à coefficients dans $\{-1,1\}$. Dans la partie IV, on établit, à l'aide d'outils d'analyse et de probabilités, l'existence d'une famille de vecteurs unitaires de $\mathcal{M}_{n,1}(\mathbb{R})$ vérifiant certaines propriétés de nature euclidienne.

Les quatre parties du problème sont largement indépendantes les unes des autres. Cependant, le résultat de la question 9 est utilisé dans la sous-partie II.C, ceux des questions 14 et 16 sont utilisés dans la sous-partie II.D et celui de la question 19 dans la partie IV.

I Partie I

I.A – Quelques résultats préliminaires

Q 1. Démontrer que l'application

$$\left| \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \to & \mathbb{R} \\ M & \mapsto & \mathrm{tr}(M) \end{array} \right.$$

est une forme linéaire et que

$$\forall (A,B) \in \left(\mathcal{M}_n(\mathbb{R})\right)^2, \qquad \operatorname{tr}(AB) = \operatorname{tr}(BA).$$

Q 2. Montrer que l'application

$$\left| \begin{array}{ccc} \left(\mathcal{M}_n(\mathbb{R}) \right)^2 & \to & \mathbb{R} \\ (A,B) & \mapsto & \operatorname{tr}(A^\top B) \end{array} \right.$$

est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

Q 3. En déduire que si A est une matrice de $\mathcal{M}_n(\mathbb{R})$ vérifiant $A^{\top}A=0$ alors A=0.

I.B - Quelques propriétés de \mathcal{N}_n

Q 4. Montrer que, si $A \in \mathcal{M}_n(\mathbb{R})$ est nilpotente, alors 0 est une valeur propre de A et que c'est la seule valeur propre complexe de A.

Q 5. Déterminer la trace et le déterminant d'une matrice nilpotente de $\mathcal{M}_n(\mathbb{R})$.

Q 6. Montrer que, si $M \in \mathcal{M}_n(\mathbb{R})$ est nilpotente, alors M^2 est nilpotente.

Q 7. On suppose que M et N sont deux matrices nilpotentes qui commutent. Montrer que MN et M+N sont nilpotentes.

Q 8. On suppose que M, N et M+N sont nilpotentes. En calculant $(M+N)^2-M^2-N^2$, montrer que ${\rm tr}(MN)=0$.

 $\mathbf{Q} \ \mathbf{9.} \qquad \text{D\'emontrer qu'une matrice } M \ \text{de} \ \mathcal{M}_2(\mathbb{R}) \ \text{est nilpotente si et seulement si } \det(M) = \operatorname{tr}(M) = 0.$

Q 10. Montrer que la seule matrice réelle nilpotente et symétrique est la matrice nulle.

Q 11. Soit A une matrice antisymétrique réelle et nilpotente. Montrer que $A^{\top}A = 0_n$, puis que $A = 0_n$.

Q 12. On suppose $n\geqslant 3$. Donner un exemple de matrice de $\mathcal{M}_n(\mathbb{R})$ de trace nulle et de déterminant nul, mais non nilpotente.

II Matrices aléatoires à coefficients dans {-1,1}

II.A - Quelques résultats algébriques

Soit $(E_1,...,E_n)$ la base canonique de $\mathcal{M}_{n,1}(\mathbb{R}).$ On note $V=\sum_{k=1}^n E_k.$

 $\textbf{Q 13.} \quad \text{Pour } i \in \llbracket 1, n \rrbracket, \text{ exprimer } E_i \text{ en fonction de } V \text{ et de } V - 2E_i. \text{ En déduire que } \mathcal{M}_{n,1}(\mathbb{R}) = \text{Vect}(\mathcal{V}_{n,1}).$ (L'ensemble $\mathcal{V}_{n,p}$ a été défini dans les notations présentées au début du problème.)

Soient $C_1,...,C_n,n$ matrices colonnes de $\mathcal{M}_{n,1}(\mathbb{R}),$ avec C_1 non nulle.

Q 14. Démontrer que, si la famille $(C_1,...,C_n)$ est liée, alors il existe un unique $j\in [\![1,n-1]\!]$ tel que

$$\left\{ \begin{aligned} &(C_1,...,C_j) \text{ est libre} \\ &C_{j+1} \in \operatorname{Vect}(C_1,...,C_j) \end{aligned} \right.$$

Soit $d \in [\![1,n]\!]$, $(U_1,...,U_d)$ une famille libre de $\mathcal{M}_{n,1}(\mathbb{R})$ et $H = \mathrm{Vect}(U_1,...,U_d)$.

Q 15. Démontrer qu'il existe des entiers $i_1, ..., i_d$ vérifiant $1 \leqslant i_1 < \cdots < i_d \leqslant n$ tels que l'application

$$\begin{pmatrix} H & \to & \mathcal{M}_{d,1}(\mathbb{R}) \\ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} & \mapsto & \begin{pmatrix} x_{i_1} \\ \vdots \\ x_{i_d} \end{pmatrix}$$

soit bijective.

On pourra s'intéresser au rang de la matrice de $\mathcal{M}_{n,d}(\mathbb{R})$ dont les colonnes sont $U_1,...,U_d.$

 ${\bf Q}$ 16. Soit ${\mathcal W}$ un sous-espace vectoriel de ${\mathcal M}_{n,1}({\mathbb R})$ de dimension d. Démontrer que

$$\operatorname{card}(\mathcal{W} \cap \mathcal{V}_{n,1}) \leqslant 2^d$$
.

II.B - Une loi de probabilité

On dit qu'une variable réelle X suit la loi $\mathcal R$ si

$$X(\Omega)=\{-1,1\}, \qquad \mathbb{P}(X=-1)=\mathbb{P}(X=1)=\frac{1}{2}$$

Q 17. Si X suit la loi \mathcal{R} , préciser la loi de la variable aléatoire $\frac{1}{2}(X+1)$.

Q 18. Calculer l'espérance et la variance d'une variable suivant la loi \mathcal{R} .

Q 19. Soient X et Y deux variables aléatoires réelles indépendantes, suivant chacune la loi \mathcal{R} . Déterminer la loi de leur produit XY.

II.C - Un premier procédé de génération de matrices aléatoires à coefficients dans {-1,1}

Jusqu'à la fin de la partie II, n est un entier naturel non nul et $m_{i,j}$ $(1 \le i, j \le n)$ sont n^2 variables aléatoires réelles mutuellement indépendantes suivant toutes la loi \mathcal{R} . La variable aléatoire matricielle $M_n = (m_{i,j})_{1 \le i, j \le n}$ est alors à valeurs dans $\mathcal{V}_{n,n}$.

On pose $\tau_n = \operatorname{tr}(M_n)$ et $\delta_n = \det(M_n)$.

Q 20. Calculer l'espérance et la variance de la variable τ_n .

Q 21. Calculer l'espérance de la variable δ_n .

Q 22. Démontrer que la variance de la variable δ_n est égale à n!

On pourra développer δ_n selon une rangée et raisonner par récurrence.

Dans le cas particulier $n=2,\ m_{11},\ m_{12},\ m_{21}$ et m_{22} sont quatre variables aléatoires réelles, mutuellement indépendantes, suivant toutes la loi \mathcal{R} et $M_2=\begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$.

Q 23. Calculer la probabilité de l'événement $M_2 \in \mathcal{N}_2$.

Q 24. Calculer la probabilité de l'événement $M_2 \in \mathcal{G}\ell_2(\mathbb{R})$.

II.D - Une généralisation

L'objectif de cette sous-partie est de prolonger le dernier résultat de la partie précédente, en trouvant, dans le cas général où n est un entier naturel supérieur ou égal à 2, un minorant de la probabilité de l'évènement $M_n \in \mathcal{G}\ell_n(\mathbb{R})$.

II.D.1) On considère 2n variables aléatoires réelles $c_1, c_2, ..., c_n$ et $c_1', c_2', ..., c_n'$ mutuellement indépendantes, suivant toutes la loi \mathcal{R} .

 $\mathbf{Q} \ \mathbf{25.} \qquad \text{Soit} \ (\varepsilon_1,...,\varepsilon_n) \in \{-1,1\}^n. \ \text{Calculer} \ \mathbb{P} \big((c_1 = \varepsilon_1) \cap \cdots \cap (c_n = \varepsilon_n) \big).$

On considère les matrices colonnes aléatoires $C = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$ et $C' = \begin{pmatrix} c_1' \\ \vdots \\ c' \end{pmatrix}$.

Q 26. Démontrer que, pour tout $\omega \in \Omega$, la famille $(C(\omega), C'(\omega))$ est liée si et seulement s'il existe $\varepsilon \in \{-1, 1\}$ tel que $C'(\omega) = \varepsilon C(\omega)$.

Q 27. En déduire $\mathbb{P}((C, C'))$ est liée).

II.D.2) On rappelle que $m_{i,j}$ $(1 \leqslant i,j \leqslant n)$ sont n^2 variables aléatoires réelles mutuellement indépendantes suivant toutes la loi \mathcal{R} , que $M_n = (m_{i,j})_{1 \leqslant i,j \leqslant n}$ est la matrice aléatoire à valeurs dans $\mathcal{V}_{n,n}$ dont, pour tout $(i,j) \in [\![1,n]\!]^2$, le coefficient situé à la ligne i et la colonne j est égal à $m_{i,j}$. On note

$$C_1 = \begin{pmatrix} m_{11} \\ \vdots \\ m_{n1} \end{pmatrix}, \dots, C_n = \begin{pmatrix} m_{1n} \\ \vdots \\ m_{nn} \end{pmatrix}$$

les variables aléatoires à valeurs dans $\mathcal{V}_{n,1}$ constituées par les colonnes de la matrice M_n .

Pour tout $j \in [\![1,n-1]\!]$, on note R_i l'événement

$$(C_1,...,C_j)$$
 est libre et $C_{j+1} \in \operatorname{Vect}(C_1,...,C_j)$

et R_n l'événement

$$(C_1, ..., C_n)$$
 est libre.

Q 28. Montrer que $(R_1, ..., R_n)$ est un système complet d'événements.

II.D.3)

Q 29. Montrer que

$$\mathbb{P}\big(M \notin \mathcal{G}\ell_n(\mathbb{R})\big) \leqslant \sum_{j=1}^{n-1} \mathbb{P}\big(C_{j+1} \in \mathrm{Vect}(C_1,...,C_j)\big).$$

 $\mathbf{Q} \ \mathbf{30.} \quad \text{ Justifier que, pour tout } j \in \llbracket 1, n-1 \rrbracket,$

$$\mathbb{P} \left(C_{j+1} \in \operatorname{Vect}(C_1,...,C_j) \right) = \sum_{(v_1,...,v_j) \in \mathcal{V}_{n,1}^j} \mathbb{P} \left(C_{j+1} \in \operatorname{Vect}(v_1,...,v_j) \right) \mathbb{P} \left((C_1 = v_1) \cap \cdots \cap (C_j = v_j) \right).$$

Q 31. En déduire que, pour tout $j \in [1, n-1]$,

$$\mathbb{P}\left(C_{i+1} \in \mathrm{Vect}(C_1,...,C_i)\right) \leqslant 2^{j-n}.$$

Q 32. En déduire que

$$\mathbb{P}\left(M\in\mathcal{G}\ell_n(\mathbb{R})\right)\geqslant\frac{1}{2^{n-1}}.$$

III Un autre procédé de construction de matrices aléatoires à coefficients dans $\{-1,1\}$

Soit $p \in]0, 1[$. On définit une suite (A_k) de matrices aléatoires d'ordre n à coefficients dans $\{-1, 1\}$ selon le procédé suivant :

- on note A_0 la matrice réelle d'ordre n dont tous les coefficients sont égaux à 1;
- pour tout entier naturel k, on construit la matrice A_{k+1} à partir de la matrice A_k en conservant chaque coefficient de A_k égal à -1 et en changeant en -1 avec la probabilité p chaque coefficient de A_k égal à 1. Chaque coefficient égal à 1 a donc la probabilité q=1-p de ne pas être modifié ;
- le processus s'arrête quand la matrice obtenue est égale à $-A_0$.

On suppose avoir utilisé l'instruction

import numpy as np, numpy.random as rd

 $pour \ charger \ les \ bibliot \ h\`e ques \ numpy \ et \ numpy \ . \ random. \ Voici \ quel ques \ fonctions \ de \ ces \ bibliot \ h\`e ques \ qui \ peuvent \ être \ utiles \ dans \ cette \ partie \ ;$

- np.ones((n, n)) crée un tableau numpy de taille $n \times n$ dont tous les éléments valent 1;
- A. shape est un tuple qui contient les dimensions du tableau A;
- A. size donne le nombre total d'éléments du tableau A;
- A.sum() renvoie la somme de tous les éléments du tableau A;
- rd.binomial(1, p) simule une variable aléatoire suivant la loi de Bernoulli de paramètre p.
- Q 33. Écrire en Python une fonction $modifie_matrice(p, A)$ qui prend en argument une probabilité p et un tableau numpy représentant une matrice $A \in \mathcal{V}_{n,n}$. Cette fonction modifie le tableau A selon le procédé décrit ci-dessus.
- Q 34. En utilisant la fonction précédente, écrire en Python une fonction $\mathtt{nb_tours}(\mathtt{p}, \mathtt{n})$ qui prend en argument une probabilité p et l'ordre n des matrices A_k et renvoie le plus petit entier k tel que $A_k = -A_0$, en partant de la matrice A_0 .
- **Q 35.** Écrire en Python une fonction moyenne_tours(p, n, nbe) qui prend en argument une probabilité p, l'ordre n des matrices A_k et un nombre entier nbe et qui renvoie la moyenne, sur nbe essais effectués, du nombre d'étapes nécessaires pour passer de A_0 à $-A_0$.

IV Vecteurs aléatoires unitaires

On suppose que n est un entier naturel supérieur ou égal à 1.

On désigne par I un sous-ensemble de $\mathbb N$ ayant au moins deux éléments et par $u=(u_i)_{i\in I}$ une suite de vecteurs unitaires de $\mathcal M_{n,1}(\mathbb R)$.

Q 36. Démontrer que le nombre réel

$$C(u) = \sup\{|\langle u_i|u_i\rangle|, (i,j) \in I^2, i \neq j\}$$

existe et appartient à l'intervalle [0, 1].

C(u) s'appelle paramètre de cohérence de la suite $(u_i)_{i \in I}$.

Q 37. Montrer que si C(u)=0, alors l'ensemble $\{u_i,i\in I\}$ est fini et donner un majorant de son cardinal. On se propose de démontrer que, pour tout entier naturel N inférieur ou égal à $\exp\left(\frac{\varepsilon^2 n}{4}\right)$, il existe une famille u

de N vecteurs unitaires de $\mathcal{M}_{n,1}(\mathbb{R})$ vérifiant $C(u) \leqslant \varepsilon$ où ε est un nombre réel de l'intervalle [0,1]. On dit alors que u est une famille « presque orthogonale ».

Q 38. Démontrer que, pour tout nombre réel t, $\operatorname{ch}(t) \leqslant \exp\left(\frac{t^2}{2}\right)$.

Soient $X_1, ..., X_n, Y_1, ..., Y_n$ des variables aléatoires mutuellement indépendantes de même loi \mathcal{R} (définie dans la sous-partie II.B). On définit les vecteurs aléatoires, $X = \frac{1}{\sqrt{n}}(X_1, ..., X_n)^{\top}$ et $Y = \frac{1}{\sqrt{n}}(Y_1, ..., Y_n)^{\top}$ à valeurs dans $\mathcal{M}_{n,1}(\mathbb{R})$.

Q 39. Démontrer que, pour tout nombre réel t,

$$\mathbb{E}(\exp(t\langle X|Y\rangle)) = \left(\operatorname{ch}\left(\frac{t}{n}\right)\right)^{n}.$$

 ${f Q}$ 40. En déduire que, pour pour tout nombre réel t,

$$\mathbb{E} \big(\exp(t \langle X | Y \rangle) \big) \leqslant \exp \left(\frac{t^2}{2n} \right).$$

Soient σ et λ deux nombres réels strictement positifs et Z une variable aléatoire réelle telle que $\exp(tZ)$ est d'espérance finie et vérifie

$$\forall t \in \mathbb{R}, \qquad \mathbb{E} \big(\exp(tZ) \big) \leqslant \exp \left(\frac{\sigma^2 t^2}{2} \right).$$

Q 41. En appliquant l'inégalité de Markov à une variable aléatoire bien choisie, démontrer que

$$\forall t \in \mathbb{R}^+, \qquad \mathbb{P}(Z \geqslant \lambda) \leqslant \exp\left(\frac{\sigma^2 t^2}{2} - \lambda t\right).$$

Q 42. En déduire que

$$\mathbb{P}(|Z| \geqslant \lambda) \leqslant 2 \exp\left(-\frac{\lambda^2}{2\sigma^2}\right).$$

Q 43. Avec les notations et les hypothèses de la question 39, démontrer que

$$\mathbb{P}(|\langle X|Y\rangle|\geqslant\varepsilon)\leqslant 2\exp\left(-\frac{\varepsilon^2n}{2}\right).$$

N étant un entier naturel non nul, $(X_j^i)_{1\leqslant i\leqslant N, 1\leqslant j\leqslant n}$ est une famille de $n\times N$ variables aléatoires réelles mutuellement indépendantes de même loi \mathcal{R} . Pour tout $i\in \llbracket 1,N \rrbracket$, on pose $X^i=\frac{1}{\sqrt{n}}(X_1^i,...,X_n^i)^\top$.

Q 44. Déduire des questions précédentes que

$$\mathbb{P}\left(\bigcup_{1\leqslant i< j\leqslant N}|\langle X^i|X^j\rangle|\geqslant \varepsilon\right)\leqslant N(N-1)\exp\left(-\frac{\varepsilon^2n}{2}\right).$$

Q 45. On suppose que $n \geqslant 4 \frac{\ln N}{\varepsilon^2}$. Démontrer que

$$\mathbb{P}\left(\bigcup_{1 \leq i \leq i \leq N} |\langle X^i | X^j \rangle| \geqslant \varepsilon\right) < 1.$$

Q 46. En déduire que, pour tout entier naturel N inférieur ou égal à $\exp\left(\frac{\varepsilon^2 n}{4}\right)$, il existe une famille de N vecteurs unitaires de \mathbb{R}^n dont le paramètre de cohérence est majoré par ε .

