第一题

- 1. S的基本函数依赖为: $Sno \to Sname, Sno \to SD, SD \to Sdname, (Sno, Course) \to Grade$ 候选码为:(Sno, Course), 因为只有一组候选码,故主码为: (Sno, Course)
 - 2. 原来的S为1NF,因为Sname,SD都部分函数依赖于候选键属性(Sno, Course)

将关系模式S分解为:

 $S_1(Sno, Course, Grade), F = \{(Sno, Course) \rightarrow Grade\}, S_1$ 的候选键为Sno

 $S_2(Sno,Sname,SD,Sdname),F=\{Sno o Sname,Sno o SD,SD o Sdname\}$, S_2 的候选键为Sno

分解后的2个关系模式中,都不存在"某个非键属性对候选键有部分函数依赖",故分解后的2个关系模式都是2NF

3. 前面分解得到的 S_2 ,由于非键属性Sdname传递依赖于候选键属性Sno,故 S_2 不是3NF 故把它继续分解为3NF:

 $S_{2,1}=(Sno,Sname,SD),F=\{Sno\rightarrow Sname,Sno\rightarrow SD\},S_{2,1}$ 的候选键为Sno

 $S_{2,2}=(SD,Sdname),F=\{SD\rightarrow Sdname\},S_{2,2}$ 的候选键为SD

消除了非键属性对候选键的传递函数依赖。

故现在得到的 $S_1(Sno, Course, Grade), F = \{(Sno, Course) \rightarrow Grade\}, S_1$ 的候选键为Sno

 $S_{2.1} = (Sno, Sname, SD), F = \{Sno \rightarrow Sname, Sno \rightarrow SD\}, S_{2.1}$ 的候选键为Sno

 $S_{2,2}=(SD,Sdname), F=\{SD
ightarrow Sdname\}$, $S_{2,2}$ 的候选键为SD

他们都是3NF了

第二题

- 1. 首先确定R的候选键为(A,B),由于F中存在关系 $A\to D$,故非键属性D对候选键(A,B)存在部分函数依赖,故R不是2NF
- 2. 把R分解为: $R_1 = (A, D), F = \{A \to D\}, R_1$ 的候选键为A

 $R_2 = (A, B, C), F = \{(A, B) \to C\}, R_2$ 的候选键为(A, B)

由于分解后的2个关系模式中都不存在"某个非键属性对候选键存在部分函数依赖",故此时他们都是2NF

第三题

- 1. 首先确定R的候选键为C,根据F中的函数依赖关系,可知非键属性A对候选键C存在传递函数依赖,故R不是3NF
- 2. 把R分解为: $R_1 = (C, B), F = \{C \rightarrow B\}, R_1$ 的候选键为C

 $R_2 = (B, A), F = \{B \to A\}, R_2$ 的候选键为B

分解后消除了"非键属性对候选键存在传递函数依赖", 故此时他们都是3NF

第四题

1. 第一步: F右边单一化

得到
$$F_1 = \{A \rightarrow C, C \rightarrow A, B \rightarrow A, B \rightarrow C, D \rightarrow A, D \rightarrow C\}$$

第二步:逐个尝试去掉X→A依赖后,设剩下函数依赖集为G,求属性集X关于G的闭包,如果闭包包含石边属性A,则去掉该函数依赖。

 $A \rightarrow C: (A) + = A$, 不包含C, 故保留

 $C \rightarrow A: (C) + = C$, 不包含A, 故保留

B o A: (B) + = ABC,包含A,去掉

 $B \rightarrow C: (B) + = B$, 不包含C, 故保留

 $D \rightarrow A: (D) + = ACD$, 包含A, 去掉

 $D \rightarrow C: (D) + = D$, 不包含C, 故保留

所以 $F2 = \{A \rightarrow C, C \rightarrow A, B \rightarrow C, D \rightarrow C\}$

第三步:对左边属性单一化,X=B1B2...Bi,逐个考察Bj,判断属性集(X-Bj)关于F1的闭包,如果包含A则用X-Bj代替X。

由于F2中左部均只有一个属性,故此步骤可以省略

故最终的最小函数依赖集为 $F2 = \{A \rightarrow C, C \rightarrow A, B \rightarrow C, D \rightarrow C\}$

2. 依据前面求出的最小函数依赖集

L类属性: B, D

LR类属性: A, C

故B,D必定在候选键中,求出此时候选健集合相对于 F_2 的闭包:(B,D)+=(A,B,C,D),**说明** (B,D)**就是候选健。**

第五题

1. 依据给出的F

L类属性: B, E

LR类属性: A, C, D

故B, E必定在候选键中,先求出(BE)+ = (ABCDE),已经包含了R的全部属性,故候选键只有一个:(B,E)

2. 给定 $\rho = \{AD, AB, BC, CDE, AE\}$

Table1: 初始化

	Α	В	С	D	E
AD	a_1	b_{12}	b_{13}	a_4	b_{15}
AB	a_1	a_2	b_{23}	b_{24}	b_{25}
ВС	b_{31}	a_2	a_3	b_{34}	b_{35}
CDE	b_{41}	b_{42}	a_4	a_4	a_5
AE	a_1	b_{52}	b_{53}	b_{54}	a_5

Table2: A o C

	Α	В	С	D	E
AD	a_1	b_{12}	b_{13}	a_4	b_{15}
AB	a_1	a_2	b_{13}	b_{24}	b_{25}
ВС	b_{31}	a_2	a_3	b_{34}	b_{35}
CDE	b_{41}	b_{42}	a_3	a_4	a_5
AE	a_1	b_{52}	b_{13}	b_{54}	a_5

Table3: C o D

	Α	В	С	D	E
AD	a_1	b_{12}	b_{13}	a_4	b_{15}
AB	a_1	a_2	b_{13}	a_4	b_{25}
ВС	b_{31}	a_2	a_3	a_4	b_{35}
CDE	b_{41}	b_{42}	a_3	a_4	a_5
AE	a_1	b_{52}	b_{13}	a_4	a_5

Table4: B o C

	Α	В	С	D	E
AD	a_1	b_{12}	a_3	a_4	b_{15}
AB	a_1	a_2	a_3	a_4	b_{25}
ВС	b_{31}	a_2	a_3	a_4	b_{35}
CDE	b_{41}	b_{42}	a_3	a_4	a_5
AE	a_1	b_{52}	a_3	a_4	a_5

Table5: DE o C

	Α	В	С	D	E
AD	a_1	b_{12}	a_3	a_4	b_{15}
AB	a_1	a_2	a_3	a_4	b_{25}
ВС	b_{31}	a_2	a_3	a_4	b_{35}
CDE	b_{41}	b_{42}	a_3	a_4	a_5
AE	a_1	b_{52}	a_3	a_4	a_5

Table6: CE o A

	Α	В	С	D	E
AD	a_1	b_{12}	a_3	a_4	b_{15}
AB	a_1	a_2	a_3	a_4	b_{25}
ВС	b_{31}	a_2	a_3	a_4	b_{35}
CDE	a_1	b_{42}	a_3	a_4	a_5
AE	a_1	b_{52}	a_3	a_4	a_5

此时已经遍历完了一边全部的函数依赖,此时的Table和初始的表有变化,故需要再一次遍历函数依赖

Table7: 第二轮A o C

	Α	В	С	D	E
AD	a_1	b_{12}	a_3	a_4	b_{15}
AB	a_1	a_2	a_3	a_4	b_{25}
ВС	b_{31}	a_2	a_3	a_4	b_{35}
CDE	a_1	b_{42}	a_3	a_4	a_5
AE	a_1	b_{52}	a_3	a_4	a_5

继续按照前面的步骤去遍历函数依赖,第二轮结束之后的Table为:

	Α	В	С	D	E
AD	a_1	b_{12}	a_3	a_4	b_{15}
AB	a_1	a_2	a_3	a_4	b_{25}
ВС	b_{31}	a_2	a_3	a_4	b_{35}
CDE	a_1	b_{42}	a_3	a_4	a_5
AE	a_1	b_{52}	a_3	a_4	a_5

此时的Table和这一轮开始时的Table是相同的,且没有任何一行中的内容全是 a_i ,故**不是无损连接分解。**

3. 在原关系模式R, 候选键是(B, E)。

首先,对于 $A \to C$, A 不是候选键,所以我们可以拆分成两个关系 (AC); (ABDE),则对于 $<\{AC\},\{A\to C\}>$, A 是主键,从而 (AC) 是 BCNF; 又 $<(ABDE),\{A\to D,B\to D,DE\to A\}>$,候选键为 $\{BE\}$,故需要继续拆分(ABDE).

对于 $A \to D,A$ 不是候选键,所以我们可以将(ABDE)继续拆分成(AD),(ABE);对于 $<(AD),\{A \to D\}>$,候选键为A,故其为BCNF,又对于 $<(ABE),\phi>$,其所有属性都是键属性,故它也是BCNF

故分解之后为(AC),(AD),(ABE),它们都是BCNF。

下面证明此分解是无损连接分解:

Table1: 初始化

	Α	В	С	D	E
AC	a_1	b_{12}	a_3	b_{14}	b_{15}
AD	a_1	b_{22}	b_{23}	a_4	b_{25}
ABE	a_1	a_2	b_{33}	b_{34}	a_5

Table2: A o C

	A	В	С	D	E
AC	a_1	b_{12}	a_3	b_{14}	b_{15}
AD	a_1	b_{22}	a_3	a_4	b_{25}
ABE	a_1	a_2	a_3	b_{34}	a_5

Table3: $C \rightarrow D$

	A	В	С	D	E
AC	a_1	b_{12}	a_3	a_4	b_{15}
AD	a_1	b_{22}	a_3	a_4	b_{25}
ABE	a_1	a_2	a_3	a_4	a_5

此时已经出现某一行全为 a_i ,故这种分解是无损的。