Built-in Functions

Functions in SQL Server

Table of Contents

- 1. Function Overview
- 2. String Functions
- 3. Math Functions
- 4. Date Functions
- 5. Other Useful Functions

Functions in SQL Server

Overview

SQL Functions

- String Functions for manipulating text
 - Either Table values or user input
 - E.g. concatenate column values
- Math Functions calculations and working with aggregate data
 - E.g. perform geometry and currency operations
- Date and Time Functions
 - E.g. find length of timespan
- Miscellaneous Functions

String Functions
CONCAT, SUBSTRING, Etc.

String Functions

Concatenation – combine strings

```
SELECT FirstName + ' ' + LastName
AS [Full Name]
FROM Employee
```

```
SELECT CONCAT(FirstName, ' ', LastName)
AS [Full Name]
FROM Employee
```

CONCAT replaces NULL values it with empty string

String Functions (2)

SUBSTRING – extract part of a string

```
SUBSTRING(String, StartIndex, Length)
SUBSTRING('SoftUni', 5, 3)
Uni
```

Example: get short summary of article Index is 1-based!

```
SELECT ArticleId, Author, Content,

SUBSTRING(Content, 1, 200) + '...' AS Summary
FROM Articles
```

String Functions (3)

REPLACE – replace specific string with another

Example: censor the word blood from album names

```
SELECT REPLACE(Title, 'blood', '*****')

AS Title
FROM Album
```

String Functions (4)

LTRIM & RTRIM – remove spaces from either side of string

```
LTRIM(String)
RTRIM(String)
```

LEN – counts the number of characters

```
LEN(String)
```

DATALENGTH – get number of used bytes (double for Unicode)

DATALENGTH(String)

String Functions (5)

LEFT & RIGHT – get characters from beginning or end of string

```
LEFT(String, Count)
RIGHT(String, Count)
```

Example: name shorthand (first 3 letters)

```
SELECT Id, Start,
    LEFT(Name, 3) AS Shorthand
FROM Games
```

Problem: Obfuscate CC Numbers

- Our database contains credit card details for customers
- Provide a summary without revealing the serial numbers

ID	FirstName	LastName	PaymentNumber
1	Guy	Gilbert	5645322227179083
2	Kevin	Brown	4417937746396076
•••	•••		•••

ID	FirstName	LastName	PaymentNumber
1	Guy	Gilbert	564532*******
2	Kevin	Brown	441793*******
•••	•••		•••

Solution: Obfuscate CC Numbers

We reveal the first 6 digits and obfuscate the rest

```
SELECT CustomerID,
    FirstName,
    LastName,
    LEFT(PaymentNumber, 6) + '********
FROM Customers
```

Bonus – create View for use by client apps

```
CREATE VIEW v_PublicPaymentInfo AS ...
```

String Functions (6)

LOWER & UPPER – change letter casing

```
LOWER(String)
UPPER(String)
```

REVERSE – reverse order of all characters in string

```
REVERSE(String)
```

REPLICATE – repeat string

REPLICATE(String, Count)

String Functions (7)

CHARINDEX – locate specific pattern (substring) in string

Optional, begins at 1

CHARINDEX(Pattern, String, [StartIndex])

STUFF – insert substring at specific position

STUFF(String, StartIndex, Length, Substring)

Number of chars to delete

Math Functions

Arithmetic, PI, ABS, ROUND, etc.

Math Functions

- SQL Server supports basic arithmetic operations
 - Addition, subtraction, etc.
- Example: find area of triangles by given side and height


```
SELECT Id,
(A*H)/2 AS Area
FROM Triangles
```

Math Functions (2)

PI – get the value of Pi as float (15 –digit precision)

```
SELECT PI() --3.14159265358979
```

ABS – absolute value

```
ABS(Value)
```

SQRT – square root (result will be float)

```
SQRT(Value)
```

SQUARE – raise to power of two

```
SQUARE(Value)
```

Example: Line Length

Find the length of a line by given coordinates of end points

ld	X1	Y1	X2	Y2
1	0	0	10	0
2	0	0	5	3
4	-1	5	8	-3
5	18	23	8882	134

	ld	Length
	1	10
ľ	2	5.8309518948453
	4	12.0415945787923
	5	8864.69497501183

```
SELECT Id,
SQRT(SQUARE(X1-X2) + SQUARE(Y1-Y2))
AS Length
FROM Lines
```

Math Functions (3)

POWER – raise value to desired exponent

```
POWER(Value, Exponent)
```

- ROUND obtain desired precision
 - Negative precision rounds characters before decimal point

```
ROUND(Value, Precision)
```

FLOOR & CEILING – return the nearest integer

```
FLOOR(Value)
CEILING(Value)
```

Problem: Pallets

- Calculate the required number of pallets to ship each item
 - BoxCapacity specifies how many items can fit in one box
 - PalletCapacity specifies how many boxes can fit in a pallet

ld	Name	Quantity	BoxCapacity	PalletCapacity
1	Perlenbacher 500ml	108	6	18
2	Perlenbacher 500ml	10	6	18
3	Chocolate Chips	350	24	3
4	Oil Pump	100	1	12

Number of pallets	
1	
1	
5	
9	

Solution: Pallets

Since we can't use half a box or half a pallet, we need to round up to the nearest integer value

Math Functions (4)

SIGN – returns 1, -1 or 0, depending on value sign

```
SIGN(Value)
```

- RAND get a random float value in range [0,1)
 - If **Seed** is not specified, one is assigned at random

```
RAND()
RAND(Seed)
```


Date Functions GETDATE, DATEDIFF, DATEPART, etc.

Date Functions

- DATEPART extract a segment from a date as an integer
 - Part can be any part and format of date or time

```
DATEPART(Part, Date)
```

```
year, yyyy, yy
month, mm, m
day, dd, d
```

```
YEAR(Date)
MONTH(Date)
DAY(Date)
```

For a full list, see the <u>official documentation</u>

Problem: Quarterly Report

 Prepare sales data for aggregation by displaying yearly quarter, month, year and day of sale

InvoiceId	InvoiceDate	Total
1	2009-01-01 00:00:00.000	1.98
2	2009-01-02 00:00:00.000	3.96
3	2009-01-03 00:00:00.000	5.94
4	2009-01-06 00:00:00.000	8.91

InvoiceId		Quarter	Month	Year	Day
1	1.98	1	1	2009	1
2	3.96	1	1	2009	2
3	5.94	1	1	2009	3
4	8.91	1	1	2009	6

Solution: Quarterly Report

Use DATEPART to get the relevant parts of the date

```
SELECT InvoiceId, Total,

DATEPART(QUARTER, InvoiceDate) AS Quarter,

DATEPART(MONTH, InvoiceDate) AS Month,

DATEPART(YEAR, InvoiceDate) AS Year,

DATEPART(DAY, InvoiceDate) AS Day

FROM Invoice
```

This statement might be useful as a View

Date Functions (2)

- DATEDIFF find difference between two dates
 - Part can be any part and format of date or time

```
DATEDIFF(Part, FirstDate, SecondDate)
```

Example: Show employee experience

Date Functions (3)

DATENAME – get a string representation of a date's part

```
DATENAME(Part, Date)

SELECT DATENAME(weekday, '2017/01/27')
```

- DATEADD perform date arithmetic
 - Part can be any part and format of date or time

```
DATEADD(Part, Number, Date)
```

GETDATE – obtain current date and time

```
SELECT GETDATE()
```


Other Functions

CAST, CONVERT, OFFSET, FETCH

Other Functions

CAST & CONVERT – convert between data types

```
CAST(Data AS NewType)
CONVERT(NewType, Data)
```

ISNULL – swap NULL values with a specified default value

```
ISNULL(Data, DefaultValue)
```

Example: Display "Not Finished" for projects with no EndDate

```
SELECT ProjectID, Name,

ISNULL(CAST(EndDate AS varchar), 'Not Finished')

FROM Projects
```

Other Functions(2)

- OFFSET & FETCH get only specific rows from the result set
 - Used in combination with ORDER BY for pagination

Summary

- SQL Server provides various built-in functions
- String functions allow us to manipulate strings
 - CONCAT, LEFT/RIGHT, REPLACE, etc.
- Math functions allow us to do various calculations
 - PI, ABS, POWER, ROUND, etc.
- Date functions allow us to work with dates easier
 - DATEPART, DATEDIFF, GETDATE, etc.
- Using Wildcards, we can obtain results by partial string matches