Power Screws

Sappinandana Akamphon

Department of Mechanical Engineering, TSE

Outline

Overview of Power Screws

Types of Power Screws

Installation

Power Screws Analysis

What is a Power Screw?

- Accurate screw used to push a nut with load along the screw
- Nut is kept from rotating, so it moves along the screw
- Transform rotation (torque) into linear motion (axial force)
- Similar to screw fasteners, but used for motion rather than clamping

What is a Power Screw Used for?

Outline

Overview of Power Screws

Types of Power Screws

Installation

Power Screws Analysis

Lead Screws vs Ball Screws

Figure 1: Lead Screw

Figure 2: Ball Screw

Lead Screws

6

Lead Screw Geometry

Ball Screws

- Bearing + Lead screw = Ball screw
- Ball screws: recirculating ball bearing, expensive, up to 95% efficiency

Ball Screw Geometry

Thread Profiles

Thread Form	Figure	Uses	
Unified		General use.	
Metric		General use.	
Square		Ideal thread for power transmission.	
ACME	Marin Sin.	Stronger than the square thread.	
Buttress		Designed to handle heavy forces in one direction (e.g. truck jack).	

Lead vs Ball Screws

Lead	Ball
Inexpensive + Less complex	More efficient
Self-locking	Lower temperature
More quiet	Lubrication required

Outline

Overview of Power Screws

Types of Power Screws

Installation

Power Screws Analysis

Mounting

 Power screws should be mounted with bearings that can take thrust (axial) loads

Mounting II

· For heavy loads, linear bearings may be needed

Outline

Overview of Power Screws

Types of Power Screws

Installation

Power Screws Analysis

Forces on Power Screws

$$F_t = F \cos \phi_n \sin \lambda + \mu F \cos \lambda$$
$$F_r = F \sin \phi_n$$
$$F_n = F \cos \phi_n \cos \lambda - \mu F \sin \lambda$$

$$\tan \lambda = \frac{V_{nut}}{V_{shaft}} = \frac{l}{\pi d}$$

λ lead angle l screw lead (pitch)

d screw diameter

Power Screw Efficiency

· Input and output power

$$\begin{split} H_{in} &= F_t V_{shaft} = T_{shaft} \omega_{shaft} \\ H_{out} &= F_a V_{nut} \\ \eta &= \frac{F_a V_{nut}}{F_t V_{shaft}} = \frac{F_{nut} V_{nut}}{T_{shaft} \omega_{shaft}} \\ \eta_{raise} &= \frac{\cos \phi_n \cos \lambda - \mu \sin \lambda}{\cos \phi_n \sin \lambda + \mu \cos \lambda} \tan \lambda \\ &= \frac{\cos \phi_n - \mu \tan \lambda}{\cos \phi_n + \mu \cot \lambda} \\ \eta_{lower} &= \frac{\cos \phi_n + \mu \tan \lambda}{\cos \phi_n - \mu \cot \lambda} \end{split}$$

Required Torque

$$T_{raise} = \frac{F_{nut}V_{nut}}{\omega_{shaft}} \frac{\cos \phi_n + \mu \cot \lambda}{\cos \phi_n - \mu \tan \lambda}$$

$$= \frac{F_{nut}V_{nut}}{V_{shaft}/(d/2)} \frac{\cos \phi_n + \mu \cot \lambda}{\cos \phi_n - \mu \tan \lambda}$$

$$= \frac{F_{nut}d \tan \lambda}{2} \frac{\cos \phi_n + \mu \cot \lambda}{\cos \phi_n - \mu \tan \lambda}$$

$$T_{lower} = \frac{F_{nut}d \tan \lambda}{2} \frac{\cos \phi_n - \mu \cot \lambda}{\cos \phi_n + \mu \tan \lambda}$$

• set $F_{nut} = F$ to determine required torque

Required Torque II

 Power screw sizes are usually given in lead l, (major) diameter, effective (median) diameter d, root (minor) diameter

$$\tan \lambda = \frac{l}{\pi d}$$

$$T_{raise} = \frac{F_{nut} d \tan \lambda}{2} \frac{\cos \phi_n + \mu \cot \lambda}{\cos \phi_n - \mu \tan \lambda}$$

$$= \frac{F_{nut} d}{2} \frac{l}{\pi d} \frac{\cos \phi_n + \mu \frac{\pi d}{l}}{\cos \phi_n - \mu \frac{l}{\pi d}}$$

$$= \frac{F_{nut} d}{2} \frac{l \cos \phi_n + \mu \pi d}{\pi d \cos \phi_n - \mu l}$$

$$T_{lower} = \frac{F_{nut} d}{2} \frac{l \cos \phi_n - \mu \pi d}{\pi d \cos \phi_n + \mu l}$$

Self-Locking

Similar to worm gears

$$F_t = F \cos \phi_n \sin \lambda - \mu F \cos \lambda \le 0$$

$$\mu \ge \cos \phi_n \tan \lambda$$

- Possible in lead screws (μ > 0), NOT in ball screws (μ \approx 0).
- This makes lead screws desirable in vertical application: self-locking prevents weight drop

Buckling

- Buckling is a common failure in shafts
- · Put shafts in TENSION whenever possible
- · Power screws can easily generate forces that will buckle them
- · Heavy loads should be PULLED, not PUSHED

Shaft Whirling

 Shafts (or screws) that spins too fast can excite shaft bending (whirling or whip) → bearing failure

$$\omega_{\rm max} \le 0.8\omega_1$$

Buckling and Whirling Formula

$$\omega_1 = k^2 \sqrt{\frac{EI}{A\rho L^4}}$$

$$P_{cr} = \frac{cEI}{L^4}$$

End conditions	k	С
cantilevered	1.88	2.47
simply supported	3.14	9.87
fixed-simple	3.93	20.2
fixed-fixed	4.73	39.5

Example: Power Screw Design

We need to drive a 50-kg mass vertically. The selected lead screw has μ = 0.1, ϕ_n = 0°, l = 2 mm, d = 10 mm, E = 210 GPa. Determine the required torque to drive this mass

Solution

Required torque is (typically) T_{raise} , as it is usually larger.

$$T_{raise} = \frac{F_{nut}d}{2} \frac{l \cos \phi_n + \mu \pi d}{\pi d \cos \phi_n - \mu l}$$
$$= \frac{500(0.01)}{2} \frac{0.002(1) + 0.1\pi(0.01)}{\pi(0.01)(1) - 0.1(0.002)}$$
$$= 0.412 \text{ N-m}$$