Математическая логика и теория алгоритмов

Сергей Григорян

7 октября 2024 г.

Содержание

1	Лен	кция 5													•	3
	1.1	Логический вывод													2	1

1 Лекция 5

Пропозициональные ф-лы:

- Всегда = 1 Тавтологии Выполнимые
- М. Б. = 0 и = 1 Опровержимые Выполнимые
- Всегда = 0 Опровержимые Противоречия

"Важные" тавтологии (Логические законы):

1) Закон непротиворечия:

$$\neg (A \land \neg A)$$

2) Закон двойного отрицания:

$$\neg \neg A \leftrightarrow A$$

3) Закон исключённого третьего:

$$A \vee \neg A$$

<u>Пример</u>. Неконструктивное док-во с использованием закона исключённого третьего:

Теорема 1.1. $\exists x,y \colon x \notin Q, y \notin Q, x^y \in Q$

Доказательство. Рассм. выр-е: $(\sqrt{2})^{\sqrt{2}}$:

- 1) Оно $\in Q \Rightarrow$ нашли пример
- 2) Оно $\notin Q \Rightarrow x = (\sqrt{2})^{\sqrt{2}}, y = \sqrt{2}$:

$$x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^2 = 2$$

4) Контрапозиция:

$$(A \to B) \leftrightarrow (\neg B \to \neg A)$$

5) Законы Де Моргана:

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$

$$\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$$

Задача о выполнимости условий: даны ф-лы $\phi_1,\phi_2,\dots,\phi_n$

Вопрос: могут ли они все быть одновременно истинны?

Это эквив. вопросу о выполнимости:

$$\phi_1 \wedge \phi_2 \wedge \ldots \wedge \phi_n$$

Пример. Превращение мат. задачи в задачу выполнимости: 1976ε . - з-ча 4 красок решена комп. перебором. Вершина графа $v \mapsto 2$ бита. (p_v, q_v) - (область на карте) u, v - соседний области \Rightarrow условие на отличие цветов:

$$(p_u \neq p_v) \vee (q_u \neq q_v)$$

1.1 Логический вывод

Определение 1.1. Логический вывод - п-ть формул, в кот. каждая фла либо является аксиомой, либо получается из более ранних по одному из правилу вывода.

Замечание.

$$(A o (B o C))$$
 - сл-ие из 2 посылок

Схемы аскиом (Аксиомы - рез-т подстановки конкретных ф-л вместо A,B,C)

- $1) \quad A \to (B \to A)$
- $2) \quad (A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- 3) $(A \wedge B) \rightarrow A$
- 4) $(A \wedge B) \rightarrow B$
- 5) $A \to (B \to (A \land B))$

6)
$$A \rightarrow (A \vee B)$$

7)
$$B \to (A \vee B)$$

8)
$$(A \to C) \to ((B \to C) \to ((A \lor B) \to C))$$
 - "Разбор случаев"

9)
$$\neg A \rightarrow (A \rightarrow B)$$

10)
$$(A \to B) \to ((A \to \neg B) \to \neg A)$$
 - "Рассуждение от противного"

11)
$$A \vee \neg A$$

Правило вывода: modus ponens:

$$\frac{A \qquad A \to B}{B}$$

Теорема 1.2 (О корректности). A - выводима $\Rightarrow A$ - тавтология Доказательство. Акс. 1-11 - тавтологии.

$$\begin{cases} A \text{ - тавтология} \\ A \to B \text{ - тавтология} \end{cases} \Rightarrow B \text{ - тавтология}$$

Теорема 1.3 (О полноте). A - тавтология $\Rightarrow A$ - выводима

Обозначение.

 $\vdash A$ - A выводима

 $\models A$ - A тавтология

Пример. $\vdash (A \lor B) \to (B \lor A)$

1)
$$A \rightarrow (B \lor A)$$
 - $a\kappa c$. 7

2)
$$B \rightarrow (B \vee A)$$
 - $a\kappa c.$ 6

3)
$$(A \rightarrow (B \lor A)) \rightarrow ((B \rightarrow (B \lor A)) \rightarrow ((A \lor B) \rightarrow (B \lor A)))$$
 - arc. 8

4)
$$(B \to (B \lor A)) \to ((A \lor B) \to (B \lor A))$$
 - modus ponens 1, 3

5)
$$(A \lor B) \to (B \lor A)$$
 - modus ponens 2, 4

<u>Пример</u>. $\vdash (A \to A)$ - Закон тождества.

1)
$$A \rightarrow ((A \rightarrow A) \rightarrow A)$$
 - arc. 1

2)
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A))$$
 - arc. 2

3)
$$(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$$
 - modus ponens 1, 2

4)
$$A \rightarrow (A \rightarrow A)$$
 - $a\kappa c. 1$

5)
$$A \rightarrow A$$
 - modus ponens 4, 3