Robust Control of a Fluxonium Qubit

Thomas Propson, ^{1, 2, *} Brian Jackson, ³ Zachary Manchester, ³ and David I. Schuster^{1, 2, 4}

¹ James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA

² Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

³ Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

⁴ Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA

(Dated: November 27, 2020)

The ability to engineer high-fidelity gates on quantum processors in the presence of systematic errors and decoherence remains the primary challenge requisite to achieving quantum advantage. Quantum optimal control techniques have proven effective in experimentally realizing high-fidelity gates, but they require exquisite calibration to be performant. We apply robust trajectory optimization techniques to suppress gate errors arising from system parameter deviations and noise. We propose a method that takes advantage of deviant parameter derivative information while maintaining computational efficiency by utilizing mixed-mode differentiation. Additionally, completely modeling decoherence effects due to longitudinal relaxation requires integrating the Lindblad master equation, which is computationally expensive. We propose a computationally efficient metric and utilize time-optimal control to achieve high fidelity gates in the presence of longitudinal relaxation. We demonstrate these techniques numerically on a fluxonium qubit with realistic experimental parameters and constraints, achieving orders of magnitude gate error reductions from our baseline gate set.

I. INTRODUCTION

Quantum optimal control (QQC) techniques are a class of optimization algorithms for accurately and efficiently manipulating quantum systems. Early techniques were proposed for nuclear magnetic resonance experiments [1– 7], and applications now include superconducting circuits [8–16], neutral atoms and ions [17–27], nitrogenvacancy centers in diamond [28–34], and Bose-Einstien condensates [35, 36]. For quantum computation, optimal control techniques are employed to achieve high fidelity gates while adhering to experimental constraints. Experimental errors may cause the system to deviate from the model used in optimization, leading to poor experimental performance. Robust control techniques improve upon standard optimal control techniques by encoding model uncertainties in optimization objectives, yielding performance guarantees over a range of parameters [37–39]. We adapt robust control techniques from the robotics community to mitigate realistic model uncertainties for a superconducting fluxonium qubit.

QOC techniques have had tremendous success in engineering high fidelity quantum gates [13, 28, 29, 40–51]. While standard QOC techniques can predict system behavior with high accuracy, they are sensitive to experimental errors such as parameter drift, noise, finite control resolution, and decoherence. Multiple techniques have been developed to address these shortcomings. Analytic techniques to mitigate parameter deviation errors include dynamic and geometric phase considerations [16, 52] and composite pulses [53–56]. To mitigate decoherence, Floquet techniques have been employed [12, 57]. Numeri-

cal techniques to mitigate parameter deviation errors include closed-loop methods [12, 41, 58, 59] and open-loop methods [33, 60–63]. Numerical techniques to mitigate decoherence include modeling master equations [33] and employing Monte Carlo style quantum trajectories [64].

In this work, we study three robust control techniques that make the system's state trajectory less sensitive to static and time-dependent parameter deviations:

- 1. A sampling method, similar to the work of [33, 60–62].
- 2. An unscented sampling method adapted from the unscented transform used in the state estimation community [65–68].
- A derivative-penalization method, which uses efficient mixed-mode differentiation to compute derivative information of parameter deviations with respect to the quantum state trajectory.

We apply these techniques to the fluxonium qubit presented in [69]. We also show that QOC can solve important problems for fluxonium-based qubits, in particular, taking advantage of the T_1 -dependence of the controls to mitigate longitudinal relaxation type decoherence and performing phase gates in arbitrary times. To mitigate errors due to longitudinal relaxation, we perform timeoptimal control and utilize an efficient optimization objective that does not pay the increased computational cost of integrating a master equation. Leveraging recent advances in trajectory optimization within the field of robotics, we solve these optimization problems using the ALTRO solver, which uses iterative LQR (iLQR)—a differential-dynamic programming (DDP)-based indirect method similar to shooting methods such as GOAT [70], GRAPE [3, 14], and Krotov's [71]—within an augmented

^{*} tcpropson@uchicago.edu

Lagrangian framework to handle nonlinear equality and inequality constraints at each time step [72].

This paper is organized as follows. First, we introduce the ALTRO method in the context of QOC in Section II. We describe realistic constraints for the fluxonium and map them to the ALTRO method in Section III. Then, we outline a method for making the optimization aware of longitudinal relaxation in Section IV. Next, we outline three methods for achieving robustness to static parameter deviations in Section V. Finally, we employ the robust control techniques to mitigate 1/f flux noise in Section VI.

II. QOC + ALTRO

In this section we review the quantum optimal control problem statement and introduce the ALTRO solver. Quantum optimal control concerns the evolution of a quantum state $|\psi(t)\rangle$ governed by the time-dependent Schrödinger equation (TDSE),

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = H(u(t), t) |\psi(t)\rangle$$
 (1)

The Hamiltonian has an arbitrary dependence on the possibly multi-valued controls u(t). The controls are so called because they are the means the experimentalist has to act on the system. To make the problem numerically tractable, the controls and quantum state are discretized into N knot points (time steps). The optimization problem is to find the controls that minimize a functional J(u). In the simplest case the functional is the infidelity between the inital state evolved to the final knot point and the target state $J = 1 - |\langle \psi_f | \psi_N(u) \rangle|^2$. In general, J is a linear combination of cost functions on the state as well as cost functions on the controls [14]. Typical quantum optimal control algorithms employ automatic differentiation to compute gradients of the functional $\nabla_u J(u)$, which can easily be used to implement first-order optimization methods [3, 14, 70, 71].

Alternatively, the QOC problem can be formulated as a trajectory optimization problem and solved using a variety of specialized solvers developed by the robotics community [72–75]. Trajectory optimization problems are typically of the following form:

minimize
$$x_{0:N}, u_{0:N-1}$$
 $\ell_f(x_N) + \sum_{k=1}^{N-1} \ell(x_k, u_k)$ subject to $x_{k+1} = f(x_k, u_k),$ $g_k(x_k, u_k) \le 0,$ $h_k(x_k, u_k) = 0,$ (2)

where ℓ_f and ℓ are the final and stage cost functions, $x_k \in \mathbb{R}^n$ and $u_k \in \mathbb{R}^m$ are the augmented state and input augmented control variables, $f(x_k, u_k)$ is the discrete dynamics function, and $g_k(x_k, u_k)$ and $h_k(x_k, u_k)$ are the

inequality and equality constraints, potentially including initial and final conditions, at time step k.

Many techniques have been proposed for solving (2). Standard methods include direction collocation [76] and differential-dynamic programming (DDP) [77]. Recent state-of-the-art solvers, such as ALTRO [72], have combined principles from both of these approaches.

ALTRO uses iterative LQR (iLQR) [78] as the internal solver of an augmented Lagrangian method (ALM). iLQR solves an unconstrained trajectory optimization problem using a backward Riccati recursion to derive a closed-loop linear feedback law about the current trajectory. By simulating the system forward with the feedback law, the trajectory is brought closer to the (locally) optimal trajectory. DDP-based solvers such as iLQR are popular since they are very computationally efficient, are always dynamically feasible, and provide a locally stabilizing closed-loop control policy about the optimal trajectory. However, standard implementations have no ability to deal with nonlinear equality and inequality constraints. ALM handles constraints by successively solving unconstrained minimization problems of the form:

minimize
$$f(z) + \lambda^T c(z) + \frac{1}{2} c(z)^T I_{\mu} c(z)$$
 (3)

where f(z) is the objective function, $c(z): \mathbb{R}^n \mapsto \mathbb{R}^p$ is the constraint function, $\lambda \in \mathbb{R}^p$ is a Lagrange multiplier estimate, and I_{μ} is a diagonal matrix of penalty weights, μ , whose magnitudes depend on whether the corresponding constraint is active or inactive. For ALTRO, f(z) is the objective function of (2), c(z) is the concatenation of g_k and h_k , and z is the concatenation of the states and controls across all time steps. After minimizing (3) using iLQR, the Lagrange multiplier estimates are updated according to,

$$\lambda \leftarrow \lambda + \mu c(z),$$
 (4)

the penalty terms are updated, and the process repeats until convergence.

ALM converges superlinearly but tends to exhibit slow constraint convergence near the optimal solution due to poor numerical conditioning. To address this shortcoming, ALTRO provides a solution-polishing phase that takes 1-2 Newton steps on the active constraint set to provide machine-precision constraint satisfaction. For more information on the details of the ALTRO solver, see [72, 79].

As opposed to standard QOC solvers, the ALTRO solver provides a unified framework for imposing arbitrary, simultaneous constraints on both the state trajectory and the controls and does not restrict optimization to the constraint manifold. First-order solvers like GRAPE rely on unconstrained optimization to satisfy desiderata on the state trajectory, such as achieving a desired gate fidelity, forbidding occupations of particular quantum states, and smoothing the controls below a threshold. The unconstrained approach relies on a care-

ful choice of competing penalty weights, which is cumbersome and often intractable. To impose constraints on the controls, such as amplitude restrictions, first-order solvers employ projected gradient descent methods which restrict optimization to the constraint manifold and may hinder convergence to the optimal solution [80, 81]. The ALTRO solver delays projecting onto the constraint manifold until the ALM solve is already at a coarse tolerance, achieving machine-precision satisfaction for constraints on the controls and the state trajectory. These advantage are critical for this work, where multiple constraints must be satisfied in addition to minimizing auxiliary metrics.

III. QOC ON THE FLUXONIUM

In the following we study the quantum optimal control problem on the fluxonium qubit. The fluxonium qubit is a promising building block for superconducting circuits, and the accurate two-level approximation of its Hamiltonian makes quantum optimal control on a classical computer inexpensive. In the two-level approximation the Hamiltonian takes the form:

$$H/h = f_q \frac{\sigma_z}{2} + a(t) \frac{\sigma_x}{2} \tag{5}$$

where $f_q=14 \mathrm{MHz}$ is the qubit frequency at the flux frustration point, a(t) is the flux drive amplitude, h is Planck's constant, and σ_x, σ_y are Pauli matrices. We consider the task of constructing Z/2, Y/2, and X/2 gates for the fluxonium qubit subject to experimental constraints, decoherence, and Hamiltonian parameter deviations. We compare the gates we obtain with numerical methods to the analytically constructed gates reported in [69] for the same device.

The optimization problem takes the form:

$$\underset{x_{0:N},\,u_{0:N-1}}{\text{minimize}} \quad \sum_{k=1}^{N} \|x_k - x_f\|_{Q_k} + \sum_{k=1}^{N-1} \|u_k\|_{R_k} \qquad (6a)$$

subject to
$$x_{k+1} = f(x_k, u_k),$$
 (6b)

$$(x_1, x_N \text{ given}),$$
 (6c)

$$q_k(x_k, u_k) < 0, (6d)$$

$$h_k(x_k, u_k) = 0 (6e)$$

where the augmented state and controls are given by:

$$x = \begin{bmatrix} \psi^{(1)} \\ \psi^{(2)} \\ \int a \ dt \\ a \\ \partial a / \partial t \end{bmatrix} \qquad u = \left[\frac{\partial^2 a}{\partial t^2} \right] \tag{7}$$

The initial and final conditions are determined by the desired gate, which requires two quantum states to specify $\psi^{(1)}$, $\psi^{(2)}$. The ALTRO implementation we use does not currently support complex numbers so we compute

in the isomorphism $\mathcal{H}(\mathbb{R}^{2n}) \cong \mathcal{H}(\mathbb{C}^n)$ given in [14]:

$$H\psi \cong \begin{bmatrix} H_{\rm re} & -H_{\rm im} \\ H_{\rm im} & H_{\rm re} \end{bmatrix} \begin{bmatrix} \psi_{\rm re} \\ \psi_{\rm im} \end{bmatrix}$$
(8)

The discrete dynamics function (6b) integrates the TDSE dynamics for the quantum states using (1) and (5) and integrates the moments of the flux drive amplitude. Exposing lower order moments of the flux drive amplitude allows us to penalize their norms, smoothing the flux drive amplitude and mitigating AWG ringing due to high frequency transitions. The matrices Q_k and R_k define the penalty metric. Including objectives at each knot point smoothens the optimization landscape, though the importance of the final state objective is encoded in the relative weight $Q_N \sim N \cdot Q_k$. We choose Q to be diagonal because it is computationally efficient. This corresponds to penalizing phase differences between the quantum states, although other phase-insensitive metrics such as infidelity may be employed.

In addition to imposing optimization constraints that reflect physical limitations of the apparatus, we impose constraints that improve the experimental realization of the control pulse. To ensure gates may be concatenated arbitrarily without inducing AWG ringing due to highfrequency transitions, we require $a(t = 0) = a(t = t_N) =$ 0. Furthermore, we require $\int_0^{t_N} a(t)dt = 0$. This constraint ensures the pulse has zero net flux, mitigating the hysteresis ubiquitous in flux bias lines, [69, 82, 83]. We require $-0.5 \text{GHz} \le a(t) \le 0.5 \text{GHz}$ to ensure the twolevel approximation (5) remains valid. Additionally, we require that each gate achieves the desired state transition $\psi_N = \psi_f$. Both the zero net flux and target quantum state constraint are then handled by ensuring the target augmented state is reached $x_N = x_f$, the constraint function takes the form $c_k = (x_k - x_f)^T (x_k - x_f)$. The equality and inequality constraints on a are handled with a bound constraint which takes the form $c_k =$ $(x_k-b)^T(x_k-b)$ if $|x_k| \geq b$ and 0 otherwise. In addition, the norm of the quantum states are constrained to 1 to ensure discretization error is not exploited $c_k = x_k^T x_k - 1$. The selection of subsets from x_k is implied in the constraint equations.

IV. LONGITUDINAL RELAXATION AWARENESS

The strength of longitudinal relaxation type decoherence varies with the control parameters in a range of superconducting circuit platforms, including the fluxonium qubit. Because dissipation to the thermal bath via longitudinal relaxation is an irreversible process that results in information loss, it is advantageous to tune the controls to extend the longitudinal relaxation time T_1 —which represents the 1/e decay time of the quantum state. Computing the gate error due to longitudinal relaxation requires propagating density matrices of size $n \times n$ under

Figure 1: (a) Numerically optimized gates (red) and analytically optimized gates (blue). (b) T_1 interpolation function used in optimization. Markers denote the time-averaged, absolute amplitude of each gate. (c) Lindblad master equation simulation with T_1 dissipation for successive gate applications. The cumulative gate error is computed after each gate application. The numerically optimized Z/2 and Y/2 gate errors are indistinguishable.

master equation dynamics, rather than state vectors of size n under the TDSE dynamics (1). We avoid this increase in computational complexity by penalizing the probability (integrated rate) of longitudinal relaxation. Using this probability as proxy for the gate error incurred is reasonable because losses due to longitudinal relaxation increase monotonically in time. This technique can be extended to error channels which share the monotonically increasing property. Additionally, for a constant T_1 time, a shorter gate duration would favor a lower longitudinal relaxation probability. We allow the optimizer to tune the gate duration in order to minimize the longitudinal relaxation probability. Our scheme for time-optimal control is applicable to any time-optimal problem, not only the one we study here.

The longitudinal relaxation probability is given by,

$$P_1(t) = \int_0^t T_1^{-1}(a(t'))dt'$$
 (9)

This value is appended to the augmented state vector (7) and penalized according to (6a). $T_1(a_k)$ is obtained at each knot point by evaluating a spline fit to experimental data of the form $\{(a, T_1)\}$, see Figure 1b. It is also possible to fit a spline to theoretically obtained data. However, T_1 values are known to fluctuate greatly with laboratory temperatures [84]. Interpolating T_1 from experimental data increases the fridge truth of the simulation.

We allow the optimizer to tune the gate duration by making the time step between each knot point Δt_k a decision variable. Promoting Δt_k to a decision variable, rather than the number of knot points N, preserves the Markovian decision structure of the trajectory optimization problem. The square root of the time step $\sqrt{\Delta t_k}$ is appended to the augmented control vector (7) and the

squared root of the time step $|\Delta t_k|$ is used for integration in the discrete dynamics function (6b). To ensure numerical integration accuracy is maintained we add a bound constraint on the time step at each knot point.

We compare the numerical method we have developed to the analytic gates on the task of achieving low gate errors in the presence of longitudinal relaxation for the Z/2, Y/2, and X/2 gates. The numerically optimized gates converge on similar solutions, a periodic waveform with amplitude $\sim 0.2 \text{GHz}$, see Figure 1a. They extend their gate times beyond their analytic counterparts, trading longer gate times for access to higher amplitudes and therefore higher T_1 times. All numerical gates reduce their single gate errors by a factor of 5 over their analytic counterparts which is commensurate to their probability of longitudinal relaxation reductions, see Appendix A. The gate error reported in this text is the infidelity of the evolved state and the target state averaged over 1000 pseudo-randomly generated initial states. The numerical $\mathbb{Z}/2$ and $\mathbb{Y}/2$ gates perform similarly in the concatenated gate application comparision, suppressing cumulative gate errors to $8 \cdot 10^{-3}$ over 2000 gate applications $\sim 40 \mu s$, see Figure 1c. The numerical X/2 gate achieves a cumulative gate error of $1.7 \cdot 10^{-2}$ over 2000 gate applications $\sim 124 \mu s$. These low cumulative gate errors for high gate counts are critical for noisy, intermediatescale quantum (NISQ) applications. Both the analytic and numerical gates attain single gate errors sufficient for quantum error correction ($< 10^{-4}$), which are required for fault-tolerant quantum computing [85–87]. These improvements are significant for the realistic constraints we have imposed on the gates, and do not represent a fundamental limit to the optimization methods we have employed.

Figure 2: (a) Z/2 gates robust to qubit frequency detunings constructed with the analytic, sampling, unscented sampling, and the 1st- and 2nd-order derivative methods. The gates shown for the numerical methods are the solutions at twice the analytic gate time. (b) Single gate error as a function of the gate duration at a one-percent detuning from the nominal qubit frequency for all methods. Missing data points represent solutions with a gate error above $5 \cdot 10^{-5}$. (c) Single gate error as a function of the detuning from the nominal qubit frequency. The solutions for the analytic and 1st-order derivative methods are shown at multiples of the analytic gate time. The performance of the two methods is indistinguishable at the analytic gate time 18ns.

V. ROBUSTNESS TO STATIC PARAMETER DEVIATIONS

We have formulated the quantum optimal control problem as an open loop optimization problem, i.e. feedback from the experiment is not incorporated in optimization. However, the device typically deviates from the Hamiltonian we use in optimization, leading to poor experimental performance. We combat errors of this form using robust control techniques, making the state evolution insensitive to Hamiltonian parameter deviations. As an example, we mitigate errors arising from the drift and finite measurement precision of the qubit frequency in (5). We consider three robust control techniques: the sampling method, the unscented sampling method, and the derivative method.

The sampling method optimizes over copies of a quantum state, called samples. Each sample is associated with a distinct deviant parameter value. Two samples ψ_{\pm} are appended to the augmented state vector (7) for each of four initial states $\{|0\rangle, |1\rangle, (|0\rangle+i|1\rangle)/\sqrt{2}, (|0\rangle-|1\rangle)/\sqrt{2}\}$ which are chosen so that their outer products span the operators on the Hilbert space [88]. The discrete dynamics (6b) is modified so that the samples evolve under the Hamiltonian given in (5) with $f_q \leftarrow f_q \pm \sigma_{f_q}$. The final state for each sample is the image of the initial state under the desired gate, and deviations from the final state are penalized in the objective (6a).

For the unscented sampling method, 2(2n + d) samples are appended to the augmented state vector (7) for each initial state from the operator basis. Here 2n = 4 is the dimension of the Hilbert space under the isomorphism (8) and d = 1 is the number of deviant parame-

ters. The sample states are used to represent a Gaussian distribution over all 2n elements of the initial quantum state, modeling the uncertainty in the state as a result of the uncertainty in the deviant parameter. The unscented transformation is applied to the sample ensemble at each knot point in the discrete dynamics (6b) to ensure the first and second moments of the distribution are accurately propagated. Each sample evolves under the Hamiltonian given in (5) where the qubit frequency is replaced by a deviant value determined by the statistics of the sample ensemble. As in the sampling method, deviations from the final state are penalized according to (6a). A detailed update procedure for this method is given in Appendix B.

The derivative method draws on the intuition that the sensitivity of the state evolution to the deviant parameter is encoded in the l^{th} -order derivative of the state with respect to that parameter $\partial_{f_q}^l \psi$. The m^{th} -order derivative method minimizes the norm of the first m state derivatives with a quadratic cost at each knot point $|\langle \partial_{\lambda}^l \psi | \partial_{\lambda}^l \psi | \partial_{\lambda}^l \psi | \partial_{\lambda}^l \psi | \partial_{\lambda}^l \psi \rangle|^2$, $l \in \{1, \ldots, m\}$. The state derivatives could be obtained with backwards mode differentiation. Naive automatic differentiation would compute the state derivative at all $1, \ldots, k-1$ knot points to obtain the state derivative at knot point k. For a single state derivative and N knot points this requires $O(N^2)$ matrix multiplications. Instead, we forward propagate the state derivatives in the augmented state vector under coupled dynamics, resulting in O(N) matrix multiplications. For example, the dynamics for the 1^{st} -order

Figure 3: (a) X/2 gates robust to flux offsets constructed with the analytic, sampling, unscented sampling, and the 1^{st} - and 2^{nd} -order derivative methods. The gates shown are the solutions at the analytic gate time. (b) Simulation of stochastic 1/f flux noise for successive gate applications. The cumulative gate error is computed after each gate application.

derivative method are

$$i\hbar \frac{d}{dt} |\psi\rangle = H |\psi\rangle \tag{10}$$

$$i\hbar \frac{d}{dt} |\partial_{\lambda} \psi\rangle = H |\partial_{\lambda} \psi\rangle + (\partial_{\lambda} H) |\psi\rangle$$
 (11)

TODO: inconsistent use of \hbar vs h. Exponential integrators that account for the non-linear term may be used to efficiently integrate the coupled dynamics, see Appendix C. TODO: I think this also needs some more explanation. It's not clear exactly what you're doing. You're penalizing the derivatives of the dynamics with respect to the uncertain parameter in the objective, so why do you need to augment the state vector? Or are you adding the derivatives to the state vector so that you have standard quadratic penalty terms in the objective? Again, I think this confusion would be easily cleared up by explicitly writing down your new dynamics, objective function, and any additional constraints you impose on the system. Since this is really the meat of the paper, it's worth spending the time to make sure this is clear and easy to understand, especially for those who aren't very familiar with trajectory optimization or optimization in general. Also, I think you should explicitly state the size of the problem you're actually solving. Might be worth putting in a table, along with some timing results, to give an idea of how well these methods scale.

To demonstrate the applicability of these techniques to mitigate parameter deviations, we consider the task of achieving a single Z/2 gate subject to a constant qubit frequency detuning $f_q \leftarrow f_q + \delta f_q$. We take $\sigma_{f_q}/f_q = 1\%$ to be one standard devation, and equip the sampling methods accordingly. For each method we compute the gate error for one simulated gate application subject to the deviant dynamics given by the stated qubit frequency detuning δf_q .

We compare the numerical methods to an analytically derived $\mathbb{Z}/2$ gate, see Figure 2a TODO: IATEX suggetion:

don't hard-code the sublabels. You can directly reference them.. This gate corresponds to idling at the flux frustration point a = 0. The analytic gate is at the device's speed limit for a $\mathbb{Z}/2$ gate $t_{\mathbb{Z}/2} = 1/4f_q$ and is simple to derive. Its erroneous rotation angle $2\pi t_{Z/2}\delta f_q$ is linearly sensitive to the qubit frequency detuning, resulting in a gate error that is quadratically sensitive to the qubit frequency detutning. At a one-percent qubit frequency detuning the analytic gate achieves a gate error $\sim 4.5 \cdot 10^{-5}$, which is sufficient for quantum error correction, see Figure 2b. Although the analytic $\mathbb{Z}/2$ gate performs well, it works only at the gate time $t_{Z/2}$. The ability to perform Z rotations in arbitrary times is critical for operating multi-qubit experiments in the lab frame. Each numerical method is able to find solutions at all gate times above $t_{Z/2}$, but is unable to find solutions at shorter times. These numerical methods offer an effective scheme for synchronizing qubits operating at different frequencies $f_{q,i} \neq f_{q,j}$.

The sampling and unscented sampling methods converge on qualitatively similar solutions which combine idling periods with fast ramps to the maximum amplitude. The gate error at a one-percent detuning from the nominal qubit frequency achieved by the sampling method does not improve substantially over the range of gate durations. The unscented sampling method achieves linear decreases in its gate error with longer gate durations until half the larmor period $1/2f_q$ after which it achieves a consistent gate error $\sim 3.5 \cdot 10^{-5}$. The derivative methods converge on qualitatively similar solutions that use fast traingle pulses at the boundaries and balance time on either side of the flux-frustration point symmetrically at low amplitudes. Both methods achieve a super-linear scaling in their gate error as a function of the gate duration. The gate error for the 1st-order derivative method approaches zero at the larmor period $1/f_q$, see Figure 2c. We believe the 1st-order method outperforms the $2^{\rm nd}$ -order method due to the low contribution of second-order terms to the gate error in this deviation

regime, see Appendix C.

Additionally, there are multiple analytic methods to mitigate errors due to parameter deviations including composite pulse sequences [56], the DRAG scheme [83], and geometric phase considerations [16, 52]. Composite pulse sequences are derived by computing the erroneous rotation arising from the parameter deviation with a finite order magnus expansion. Pulses are then suitably composed to eliminate the error. In principle the error may be eliminated to arbitrary order with sufficiently many pulses [56], which mirrors the negative correlation between gate error and gate duration we observe with the derivative method. It is difficult to choose an appropriate composite pulse for the problem studied here, so we propose comparisons between composite pulses and numerical techniques for future work.

VI. ROBUSTNESS TO STOCHASTIC PARAMETER DEVIATIONS

An additional source of experimental error arises from stochastic, time-varying Hamiltonian parameter deviations. For many flux-biased and inductively-coupled superconducting circuit elements, magnetic flux noise is a significant source of coherent errors. Magnetic flux noise modifies the fluxonium qubit's amplitude from its nominal value by an amount δa . It is well studied that the spectral density of δa follows a 1/f distribution for a range of devices, consisting primarily of low frequency noise (citations needed). Analytic methods to combat flux noise take advantage of the low frequency characteristic and treat the noise as quasi-static, performing generalizations of the spin-echo technique to compensate for erroneous drift. This is the strategy employed by the analytic gate considered here.

We compare the analytic gate and those produced by the numerical methods discussed in the previous section on the task of realizing a X/2 gate subject to 1/f flux noise. The flux noise is generated by filtering white noise sampled from a standard normal distribution with a finite impulse response filter [89] [90]. It is then scaled by the flux noise amplitude of our device $A_{\Phi} = 5.21 \mu \Phi_0 \implies \delta a \sim 2.5 \cdot 10^{-5} \text{GHz}$. The unscented sampling method is modified so that its sampled deviations follow a 1/f distribution by carrying the state of a finite impulse response filter in the augmented state vector. In principle the basic sampling method could be modified similarly but we choose to sample statically at δa for comparision. The derivative methods require no modification from the static case. TODO: can you provide a little more detail on how this noise factors into the dynamics? Are you just adding some white noise to a(t)? Are you also considering uncertainty in f_q at the

We simulate successive applications of the gate constructed by each method and compute the cumulative gate error after each application, see Figure 3. Both the analytic and numerical methods achieve single gate errors sufficient for quantum error correction. Despite converging on qualitatively different solutions, the numerical methods perform similarly in the concatenated gate application comparision. They achieve a two order of magnitude cumulative gate error reduction over the analytic method after 200 gate applications $\sim 11 \mu \text{s}.~1/f$ flux noise is a significiant source of coherent errors in NISQ applications and these numerical techniques offer effective avenues to mitigate them.

VII. CONCLUSION

In conclusion, we have demonstrated techniques for achieving robustness to systematic errors and mitigating decoherence on a quantum system using state-of-theart trajectory optimization. We have proposed a scheme for mitigating longitudinal relaxation with time-optimal control and an efficient optimization metric that comes at a constant computational cost as opposed to integrating a master equation which scales quadratically with the dimension of the Hilbert space. We have proposed the derivative method for robust control which achieves super-linear gate error reductions in the gate duration for the problem we studied here. We have shown that robust control techniques can be used to mitigate decoherence due to 1/f flux noise, a dominant source of coherent errors for flux controlled qubits. The numerical techniques we have studied here can be used to perform phase gates in arbitrary times, which will be critical for synchronizing multi-qubit systems TODO: it might be worth mentioning the scaling properties of your method here, since you suggest scaling it up to systems with more states. How may the different methods you suggest perform at scale? Maybe there will be an advantage to using the sampling-based methods as the problems grow? Also you don't mention the sampling methods in the conclusion? The derivative methods only outperformed the sampling methods on the simpler of your 2 test cases, so I'd be hesitant to imply that the derivative method is the better choice. Additionally, interleaving the error models with existing characterization methods will improve their effectiveness in experiments. These techniques will be employed to achieve the low gate errors required for fault-tolerant quantum computing applications. Our implementation of the techniques described in this work is available at https://github.com/SchusterLab/rbqoc.

ACKNOWLEDGMENTS

The authors would like to thank Helin Zhang for experimental assistance and Daniel Weiss and Tanay Roy for useful discussions.

Appendix A: Longitudinal Relaxation

We comment on the longitudinal relaxation metrics and then give our procedure for integrating the Lindblad master equation. The longitudal relaxation probability and the gate error due to longitudinal relaxation metrics are compared in Table I for the experiment shown in Figure 1c. The relative performance of the analytic and numerical techniques is similar across the two metrics.

	P_{1A}	P_{1N}		$ $ GE $_{\rm A}$	GE_N	$ _{\mathrm{GE_A}/\mathrm{GE_N}}$
Gate	(10^{-5})	(10^{-5})	P_{1A}/P_{1N}	(10^{-5})	(10^{-5})	$ \mathrm{GE_A}/\mathrm{GE_N} $
$\mathbb{Z}/2$	5.745	1.149	5.000	1.776	0.371	4.787
Y/2	5.253	1.157	4.540	1.539	0.370	4.159
X/2	16.251	2.660	6.109	5.347	0.863	6.196

Table I: Single gate longitudinal relaxation probability ratios and single gate error due to longitudinal relaxation ratios. Values are reported for the analytic (A) and numerical (N) techniques presented in the main text.

To compute the gate error due to longitudinal relaxation, we require the final state of the quantum system subject to longitudinal relaxation. To obtain the final state we employ the Lindblad master equation. This equation takes the form

$$\frac{d}{dt}\rho = \frac{-i}{\hbar}[H,\rho] + \sum_{i=1}^{n^2-1} \gamma_i (L_i \rho L_i^{\dagger} - \frac{1}{2} \{L_i^{\dagger} L_i, \rho\}) \quad (A1)$$

Here $\rho = |\psi\rangle\langle\psi|$ is the density matrix, $n = \dim(\mathcal{H})$, and $[\cdot,\cdot], \{\cdot,\cdot\}$ are the algebraic commutator and anti-commutator. For longitudinal relaxation $\gamma_{\uparrow} = T_{1,\uparrow}^{-1}$, $\gamma_{\downarrow} = T_{1,\downarrow}^{-1}$, $L_{\uparrow} = \sigma^{+}/2$, and $L_{\downarrow} = \sigma^{-}/2$ where $\sigma^{\pm} = \sigma_{x} \pm i\sigma_{y}$. Both $T_{1,\uparrow}$ and $T_{1,\downarrow}$ are obtained from the spline shown in Figure 1b. The T_{1} values in this spline are obtained experimentally by driving the qubit at the desired flux amplitude and monitoring the resultant decay. For more details consult [69].

Exponential integrators can be employed to integrate the Lindblad master equation using the Vectorization/Choi-Jamiolkowski isomorphism [91]

$$\frac{d}{dt}\operatorname{vec}(\rho) = \hat{\mathcal{L}}\operatorname{vec}(\rho) \tag{A2}$$

$$\hat{\mathcal{L}} = -i(I \otimes H - H^T \otimes I) + \sum_{i=1}^{n^2 - 1} \gamma_i (L_i^* \otimes L_i - \frac{1}{2} (I \otimes L_i^{\dagger} L_i - L_i^T L_i^* \otimes I))$$
(A3)

Here $\rho = \sum_{i,j} \alpha_{i,j} |i\rangle \langle j|$ and $\operatorname{vec}(\rho) = \sum_{i,j} \alpha_{i,j} |i\rangle \otimes |j\rangle$. We use zero-order hold on the controls so the integration is exact $\operatorname{vec}(\rho_{k+1}) = \exp\left(\Delta t_k \hat{\mathcal{L}}_k\right) \operatorname{vec}(\rho_k)$. This isomor-

phism transforms $(n^2 \times n^2) \times (n^2 \times n^2)$ matrix-matrix multiplications to $(n^4 \times n^4) \times n^4$ matrix-vector multiplications. For small n and zero-order held controls, we find that it is faster to use an exponential integrator on the vectorized equation than to perform Runge-Kutta on the unvectorized equation. The latter requires decreasing the integration time step to maintain accuracy, resulting in more knot points.

Appendix B: Unscented Transformation

In this section we outline the full unscented sampling procedure. The unscented sampling method concerns a quantum state $\psi \in \mathbb{R}^{2n}$ with deviant parameters $\lambda \in \mathbb{R}^d$ and dynamics $\psi_{k+1} = f(\psi_k, \lambda_k)$. The nominal initial quantum state is given by ψ_0 with an associated positive-definite covariance matrix $P_0 \in \mathbb{R}^{n \times n}_{++}$ which describes the uncertainty in the initial state. P_0 is typically chosen to be non-zero even if the state preparation error is negligible. The deviant parameter is assumed to have zero mean and its distribution is given by the covariance matrix $L_k \in \mathbb{R}^{d \times d}_{++}$ at knot point k. The zero mean assumption is convenient for deriving the update procedure. A non-zero mean can be encoded in the dynamics f.

The initial 4n+2d sigma points and initial 4n+2d deviant parameters are sampled from the initial distributions

$$\begin{bmatrix} \Psi_0^i \\ \Lambda_0^i \end{bmatrix} = \begin{bmatrix} \bar{\Psi}_0 \\ 0 \end{bmatrix} \pm \beta \sqrt{\begin{bmatrix} P_0 & 0 \\ 0 & L_0 \end{bmatrix}}^i$$
 (B1)

We have written $\bar{\Psi}_0 = \psi_0$. β is a hyperparameter which controls the spacing of the covariance contour. The (\pm) is understood to take (+) for $i \in \{1, \ldots, 2n+d\}$ and (-) for $i \in \{2n+d+1,\ldots,4n+2d\}$. We use the Cholesky factorization to compute the square root of the joint covariance matrix, though other methods such as the principal square root may be employed. The superscript on the matrix square root indicates the i^{th} column (mod 2n+d) of the lower triangular Cholesky factor. Then, the sigma points are normalized

$$\Psi_0^i \leftarrow \frac{\Psi_0^i}{\sqrt{\Psi_0^{i^T} \Psi_0^i}} \tag{B2}$$

The sigma points are propagated to the next knot point

$$\Psi_1 = f(\Psi_0, \Lambda_0) \tag{B3}$$

The mean and covariance of the sigma points are com-

puted

$$\bar{\Psi}_1 = \frac{1}{4n + 2d} \sum_{i=1}^{4n+2d} \Psi_1^i \tag{B4}$$

$$P_1 = \frac{1}{2\beta^2} \sum_{i=1}^{4n+2d} (\Psi_1^i - \bar{\Psi}_1)^T (\Psi_1^i - \bar{\Psi}_1)$$
 (B5)

The sigma points are then resampled and propagated to the next knot point using (B1), (B2), and (B3). Our choice of sigma points follows the prescription in equation 11 of [66]. Other prescriptions may be chosen to reduce the number of required sigma points [92].

Appendix C: Derivative Method

We comment on the optimization metrics of the derivative methods and then outline how to efficiently integrate their dynamics. The 1st-order derivative method tends to outperform the 2nd-order derivative method in the small, static detuning regime, see Figure 2b. The norms of the state derivatives for the 1st- and 2nd-order methods are provided in Table II for the solutions at $t_N = 60$ ns. The 2nd-order method is able to decrease the 2nd-order state derivate norm relative to the 1st-order method at the expense of increasing its 1st-order derivative norm. In the problem we have studied it is likely the 2nd-order derivative norm has a smaller contribution to the gate error than the 1st-order derivative norm. A careful analysis could be completed for future problems to predict the efficacy of the derivative method at each order.

The dynamics for the derivative methods can be integrated efficiently using exponential integrators [93–95]. General exponential integrators break the dynamics into a linear term and a non-linear term. For example, consider integrating the dynamics of the first state derivative $\frac{d}{dt} |\partial_{\lambda}\psi\rangle = H |\partial_{\lambda}\psi\rangle + (\partial_{\lambda}H) |\psi\rangle$ in units of $i\hbar = 1$. The linear term is L = H and the non-linear term is $N = (\partial_{\lambda}H) |\psi\rangle$. With zero-order hold on the controls the exact propagation is

$$|\partial_{\lambda}\psi_{k+1}\rangle = \exp(\Delta t_{k}L_{k}) |\partial_{\lambda}\psi_{k}\rangle + \int_{0}^{\Delta t_{k}} \exp((\Delta t_{k} - t')L_{k})N(t_{k} + t')dt'$$
(C1)

General exponential integrators proceed by breaking the integral in (C1) into a discrete sum, similar to the procedure for Runge-Kutta schemes. We use a simple approximation known as the Lawson-Euler method [94]

$$|\partial_{\lambda}\psi_{k+1}\rangle \approx \exp(\Delta t_k L_k) |\partial_{\lambda}\psi_k\rangle + \exp(\Delta t_k L_k) N_k$$
 (C2)

This method provides a good tradeoff between accuracy and efficiency, requiring one unique matrix exponential computation per stage. Integration accuracy is not of the utmost importance because the state derivatives guide the optimization, and do not correspond to experimental parameters which must be realized with high accuracy.

Method	$\left \left \left\langle \partial_{f_q} \psi_N \middle \partial_{f_q} \psi_N \middle \partial_{f_q} \psi_N \middle \partial_{f_q} \psi_N \right\rangle \right ^2 (10^3) \right $	$\left \left \left\langle \partial_{f_q}^2 \psi_N \middle \partial_{f_q}^2 \psi_N \middle \partial_{f_q}^2 \psi_N \middle \partial_{f_q}^2 \psi_N \right\rangle \right ^2 (10^6) \right $
D-1	0.436	57.817
D-2	1.702	9.030

Table II: Norm of state derivates with respect to the qubit frequency for $\mathbb{Z}/2$ gates optimized using the derivative methods. The norms are computed at the end of the gate's duration $t_N=60\mathrm{ns}$ and are averaged over the four state derivatives.

L. M. K. Vandersypen and I. L. Chuang, Nmr techniques for quantum control and computation, Rev. Mod. Phys. 76, 1037 (2005).

^[2] C. T. Kehlet, A. C. Sivertsen, M. Bjerring, T. O. Reiss, N. Khaneja, S. J. Glaser, and N. C. Nielsen, Improving solid-state nmr dipolar recoupling by optimal control, Journal of the American Chemical Society 126, 10202 (2004), pMID: 15315406, https://doi.org/10.1021/ja048786e.

^[3] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, Optimal control of coupled spin dy-

namics: design of nmr pulse sequences by gradient ascent algorithms, Journal of magnetic resonance **172**, 296 (2005).

^[4] I. I. Maximov, Z. Tošner, and N. C. Nielsen, Optimal control design of nmr and dynamic nuclear polarization experiments using monotonically convergent algorithms, The Journal of Chemical Physics 128, 184505 (2008), https://doi.org/10.1063/1.2903458.

^[5] N. C. Nielsen, C. Kehlet, S. J. Glaser, and N. Khaneja, Optimal control methods in nmr spectroscopy, in *eMagRes* (American Cancer Society, 2010)

- [6] T. E. Skinner, T. O. Reiss, B. Luy, N. Khaneja, and S. J. Glaser, Application of optimal control theory to the design of broadband excitation pulses for high-resolution nmr, Journal of Magnetic Resonance 163, 8 (2003).
- [7] Z. ToÅiner, T. Vosegaard, C. Kehlet, N. Khaneja, S. J. Glaser, and N. C. Nielsen, Optimal control in nmr spectroscopy: Numerical implementation in simpson, Journal of Magnetic Resonance 197, 120 (2009).
- M. Abdelhafez, B. Baker, A. Gyenis, P. Mundada, A. A. Houck, D. Schuster, and J. Koch, Universal gates for protected superconducting qubits using optimal control, Phys. Rev. A 101, 022321 (2020).
- S. Chakram, K. He, A. V. Dixit, A. E. Oriani, R. K. Naik, N. Leung, H. Kwon, W.-L. Ma, L. Jiang, and D. I. Schuster, Multimode photon blockade, arXiv preprint arXiv:2010.15292 (2020).
- [10] R. Fisher, F. Helmer, S. J. Glaser, F. Marquardt, and T. Schulte-Herbrüggen, Optimal control of circuit quantum electrodynamics in one and two dimensions, Phys. Rev. B 81, 085328 (2010).
- [11] P. Gokhale, Y. Ding, T. Propson, C. Winkler, N. Leung, Y. Shi, D. I. Schuster, H. Hoffmann, and F. T. Chong, Partial compilation of variational algorithms for noisy intermediate-scale quantum machines, in *Proceedings* of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (2019) pp. 266-278.
- [12] Z. Huang, P. S. Mundada, A. Gyenis, D. I. Schuster, A. A. Houck, and J. Koch, Engineering dynamical sweet spots to protect qubits from 1/f noise, arXiv preprint arXiv:2004.12458 (2020).
- [13] Z. Leng, P. Mundada, S. Ghadimi, and A. Houck, Robust and efficient algorithms for high-dimensional black-box quantum optimization, arXiv preprint arXiv:1910.03591
- [14] N. Leung, M. Abdelhafez, J. Koch, and D. Schuster, Speedup for quantum optimal control from automatic differentiation based on graphics processing units, Physical Review A 95, 042318 (2017).
- [15] S. Li, T. Chen, and Z.-Y. Xue, Fast holoquantum computation nomic on superconductcircuits with ing optimal control, Advanced Quantum Technologies 2000001 (2020).
- [16] J. Xu, S. Li, T. Chen, and Z.-Y. Xue, Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, arXiv preprint arXiv:2004.10199 (2020).
- [17] I. Brouzos, A. I. Streltsov, A. Negretti, R. S. Said, T. Caneva, S. Montangero, and T. Calarco, Quantum speed limit and optimal control of many-boson dynamics, Physical Review A 92, 062110 (2015).
- [18] G. De Chiara, T. Calarco, M. Anderlini, S. Montangero, P. Lee, B. Brown, W. Phillips, and J. Porto, Optimal control of atom transport for quantum gates in optical lattices, Physical Review A 77, 052333 (2008).
- [19] M. H. Goerz, T. Calarco, and C. P. Koch, The quantum speed limit of optimal controlled phasegates for trapped neutral atoms, Journal of Physics B: Atomic, Molecular and Optical Physics 44, 154011 (2011).
- J. Guo, X. Feng, P. Yang, Z. Yu, L. Chen, C.-H. Yuan, and W. Zhang, High-performance raman quantum memory with optimal control in room temperature atoms, Nature communications 10, 1 (2019).

- https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470034520.elmHttnM04Bensen, J. J. Sørensen, K. Mølmer, and J. F. Sherson, Time-optimal control of collisional swap gates in ultracold atomic systems, Physical Review A 100, 052314 (2019).
 - [22] A. Larrouv, S. Patsch, R. Richaud, J.-M. Raimond, M. Brune, C. P. Koch, and S. Gleyzes, Fast navigation in a large hilbert space using quantum optimal control, Physical Review X 10, 021058 (2020).
 - [23] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, et al., Generation and manipulation of schrödinger cat states in rydberg atom arrays, Science **365**, 570 (2019).
 - [24] S. Rosi, A. Bernard, N. Fabbri, L. Fallani, C. Fort, M. Inguscio, T. Calarco, and S. Montangero, Fast closed-loop optimal control of ultracold atoms in an optical lattice, Physical Review A 88, 021601 (2013).
 - [25] J. J. Sørensen, J. Jensen, T. Heinzel, and J. F. Sherson, Qengine: A c++ library for quantum optimal control of ultracold atoms, Computer Physics Communications **243**, 135 (2019).
 - [26] P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calarco, Microwave potentials and optimal control for robust quantum gates on an atom chip, Physical Review A 74, 022312 (2006).
 - [27] S. van Frank, M. Bonneau, J. Schmiedmayer, S. Hild, C. Gross, M. Cheneau, I. Bloch, T. Pichler, A. Negretti, T. Calarco, et al., Optimal control of complex atomic quantum systems, Scientific reports 6, 34187 (2016).
 - [28] Y. Chou, S.-Y. Huang, and H.-S. Goan, Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond, Phys. Rev. A 91, 052315 (2015).
 - [29] F. Dolde, V. Bergholm, Y. Wang, I. Jakobi, B. Navdenov. S. Pezzagna, J. Meijer, F. Jelezko, P. Neumann. T. Schulte-Herbrüggen, et al., High-fidelity spin entanglement using optimal control, Nature communications **5**, 1 (2014).
 - [30] J. Geng, Y. Wu, X. Wang, K. Xu, F. Shi, Y. Xie, X. Rong, and J. Du, Experimental time-optimal universal control of spin qubits in solids, Phys. Rev. Lett. 117, 170501 (2016).
- [31] T. Nöbauer, A. Angerer, B. Bartels, M. Trupke, S. Rothttps://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.202000001.ter, J. Schmiedmayer, F. Mintert, and J. Majer, Smooth optimal quantum control for robust solid-state spin magnetometry, Phys. Rev. Lett. 115, 190801 (2015).
 - [32] F. Poggiali, P. Cappellaro, and N. Fabbri, Optimal control for one-qubit quantum sensing, Phys. Rev. X 8, 021059 (2018).
 - [33] P. Rembold, N. Oshnik, M. M. Müller, S. Montangero, T. Calarco, and E. Neu, Introduction to quantum optimal control for quantum sensing with nitrogen-vacancy centers in diamond, arXiv preprint arXiv:2004.12119 (2020).
 - [34] J. Tian, T. Du, Y. Liu, H. Liu, F. Jin, R. S. Said, and J. Cai, Optimal quantum optical control of spin in diamond, Phys. Rev. A 100, 012110 (2019).
 - [35] S. Amri, R. Corgier, D. Sugny, E. M. Rasel, N. Gaaloul, and E. Charron, Optimal control of the transport of boseeinstein condensates with atom chips, Scientific reports **9**, 1 (2019).
 - [36] J. Sørensen, M. Aranburu, T. Heinzel, and J. Sherson, Quantum optimal control in a chopped basis: Applications in control of bose-einstein condensates, Physical Review A 98, 022119 (2018).

- [37] K. Zhou, Essentials of Robust Control, 1st ed. (Pearson, 1997).
- [38] J. Morimoto and C. Atkeson, Minimax differential dynamic programming: An application to robust biped walking, Advances in neural information processing systems 15, 1563 (2002).
- [39] Z. Manchester and S. Kuindersma, Robust Direct Trajectory Optimization Using Approximate Invariant Funnels, Autonomous Robots 10.1007/s10514-018-9779-5 (2018).
- [40] D. J. Egger and F. K. Wilhelm, Optimized controlled-z gates for two superconducting qubits coupled through a resonator, Superconductor Science and Technology 27, 014001 (2013).
- [41] D. J. Egger and F. K. Wilhelm, Adaptive hybrid optimal quantum control for imprecisely characterized systems, Phys. Rev. Lett. 112, 240503 (2014).
- [42] M. Grace, C. Brif, H. Rabitz, I. A. Walmsley, R. L. Kosut, and D. A. Lidar, Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles, Journal of Physics B: Atomic, Molecular and Optical Physics 40, S103 (2007).
- [43] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Implementing a universal gate set on a logical qubit encoded in an oscillator, Nature communications 8, 1 (2017).
- [44] S.-Y. Huang and H.-S. Goan, Optimal control for fast and high-fidelity quantum gates in coupled superconducting flux qubits, Physical Review A 90, 012318 (2014).
- [45] J. Kelly, R. Barends, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, I.-C. Hoi, E. Jeffrey, A. Megrant, J. Mutus, C. Neill, P. J. J. O'Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, Optimal quantum control using randomized benchmarking, Phys. Rev. Lett. 112, 240504 (2014).
- [46] P. J. Liebermann and F. K. Wilhelm, Optimal qubit control using single-flux quantum pulses, Phys. Rev. Applied 6, 024022 (2016).
- [47] V. Nebendahl, H. Häffner, and C. F. Roos, Optimal control of entangling operations for trapped-ion quantum computing, Phys. Rev. A 79, 012312 (2009).
- [48] P. Rebentrost and F. K. Wilhelm, Optimal control of a leaking qubit, Phys. Rev. B 79, 060507 (2009).
- [49] P. Rebentrost, I. Serban, T. Schulte-Herbrüggen, and F. K. Wilhelm, Optimal control of a qubit coupled to a non-markovian environment, Phys. Rev. Lett. 102, 090401 (2009).
- [50] R. J. Spiteri, M. Schmidt, J. Ghosh, E. Zahedinejad, and B. C. Sanders, Quantum control for high-fidelity multiqubit gates, New Journal of Physics 20, 113009 (2018).
- [51] A. Spörl, T. Schulte-Herbrüggen, S. J. Glaser, V. Bergholm, M. J. Storcz, J. Ferber, and F. K. Wilhelm, Optimal control of coupled josephson qubits, Phys. Rev. A 75, 012302 (2007).
- [52] Z. Han, Y. Dong, B. Liu, X. Yang, S. Song, L. Qiu, D. Li, J. Chu, W. Zheng, J. Xu, et al., Experimental realization of universal time-optimal non-abelian geometric gates, arXiv preprint arXiv:2004.10364 (2020).
- [53] H. K. Cummins and J. A. Jones, Use of composite rotations to correct systematic errors in NMR quantum computation, New Journal of Physics 2, 6 (2000).
- [54] H. K. Cummins, G. Llewellyn, and J. A. Jones, Tackling systematic errors in quantum logic gates with composite rotations, Phys. Rev. A 67, 042308 (2003).

- [55] Ä. Kupce and R. Freeman, Stretched adiabatic pulses for broadband spin inversion, Journal of Magnetic Resonance, Series A 117, 246 (1995).
- [56] J. T. Merrill and K. R. Brown, Progress in compensating pulse sequences for quantum computation, Quantum Information and Computation for Chemistry , 241 (2014).
- [57] P. S. Mundada, A. Gyenis, Z. Huang, J. Koch, and A. A. Houck, Floquet-engineered enhancement of coherence times in a driven fluxonium qubit, arXiv preprint arXiv:2007.13756 (2020).
- [58] G. Feng, F. H. Cho, H. Katiyar, J. Li, D. Lu, J. Baugh, and R. Laflamme, Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system, Physical Review A 98, 052341 (2018).
- [59] N. Wittler, F. Roy, K. Pack, M. Werninghaus, A. S. Roy, D. J. Egger, S. Filipp, F. K. Wilhelm, and S. Machnes, An integrated tool-set for control, calibration and characterization of quantum devices applied to superconducting qubits (2020), arXiv:2009.09866 [quant-ph].
- [60] J. Allen, Robust Optimal Control of the Cross-Resonance Gate in Superconducting Qubits, Ph.D. thesis, University of Surrey (2019).
- [61] A. R. Carvalho, H. Ball, M. J. Biercuk, M. R. Hush, and F. Thomsen, Error-robust quantum logic optimization using a cloud quantum computer interface, arXiv preprint arXiv:2010.08057 (2020).
- [62] P. Reinhold, Controlling Error-Correctable Bosonic Qubits, Ph.D. thesis, Yale University (2019).
- [63] R. L. Kosut, M. D. Grace, and C. Brif, Robust control of quantum gates via sequential convex programming, Phys. Rev. A 88, 052326 (2013).
- [64] M. Abdelhafez, D. I. Schuster, and J. Koch, Gradient-based optimal control of open quantum systems using quantum trajectories and automatic differentiation, Physical Review A 99, 052327 (2019).
- [65] T. A. Howell, C. Fu, and Z. Manchester, Direct policy optimization using deterministic sampling and collocation, arXiv preprint arXiv:2010.08506 (2020).
- [66] S. J. Julier and J. K. Uhlmann, Unscented filtering and nonlinear estimation, Proceedings of the IEEE 92, 401 (2004).
- [67] A. Lee, Y. Duan, S. Patil, J. Schulman, Z. McCarthy, J. Van Den Berg, K. Goldberg, and P. Abbeel, Sigma hulls for gaussian belief space planning for imprecise articulated robots amid obstacles, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2013) pp. 5660–5667.
- [68] Z. Manchester and S. Kuindersma, Derivative-free trajectory optimization with unscented dynamic programming, in 2016 IEEE 55th Conference on Decision and Control (CDC) (IEEE, 2016) pp. 3642–3647.
- [69] H. Zhang, S. Chakram, T. Roy, N. Earnest, Y. Lu, Z. Huang, D. Weiss, J. Koch, and D. I. Schuster, Universal fast flux control of a coherent, low-frequency qubit, arXiv preprint arXiv:2002.10653 (2020).
- [70] S. Machnes, E. Assémat, D. J. Tannor, and F. K. Wilhelm, Gradient optimization of analytic controls: the route to high accuracy quantum optimal control, arXiv preprint arXiv:1507.04261 (2015).
- [71] M. H. Goerz, D. Basilewitsch, F. Gago-Encinas, M. G. Krauss, K. P. Horn, D. M. Reich, and C. P. Koch, Krotov: A python implementation of krotov's method for quantum optimal control, SciPost physics 7 (2019).
- [72] T. A. Howell, B. E. Jackson, and Z. Manchester, Altro:

- A fast solver for constrained trajectory optimization, in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2019) pp. 7674–7679.
- [73] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel, Finding locally optimal, collision-free trajectories with sequential convex optimization., in *Robotics:* science and systems, Vol. 9 (Citeseer, 2013) pp. 1–10.
- [74] R. Tedrake and the Drake Development Team, Drake: A planning, control, and analysis toolbox for nonlinear dynamical systems (2016).
- [75] A. Hereid and A. D. Ames, Frost: Fast robot optimization and simulation toolkit, in *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)* (IEEE/RSJ, Vancouver, BC, Canada, 2017).
- [76] C. R. Hargraves and S. W. Paris, Direct Trajectory Optimization Using Nonlinear Programming and Collocation, J. Guidance 10, 338 (1987).
- [77] D. Q. Mayne, A second-order gradient method of optimizing non-linear discrete time systems, Int J Control 3, 8595 (1966).
- [78] W. Li and E. Todorov, Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems, in Proceedings of the 1st International Conference on Informatics in Control, Automation and Robotics (Setubal, Portugal, 2004).
- [79] B. E. Jackson, T. Punnoose, D. Neamati, , K. Tracy, R. Jitosho, and Z. Manchester, ALTRO-C: A fast solver for conic model-predictive control, in *International Con*ference on Robotics and Automation ICRA (Virtual, 2021) in Review.
- [80] K. L. Clarkson, Coresets, sparse greedy approximation, and the frank-wolfe algorithm, ACM Transactions on Algorithms (TALG) 6, 1 (2010).
- [81] A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, Projected gradient descent on riemannian manifolds with applications to online power system optimization, in 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2016) pp. 225–232.
- [82] M. A. Rol, F. Battistel, F. K. Malinowski, C. C. Bultink, B. M. Tarasinski, R. Vollmer, N. Haider, N. Muthusubramanian, A. Bruno, B. M. Terhal, and L. DiCarlo, Fast, high-fidelity conditional-phase gate exploiting leakage interference in weakly anharmonic superconducting qubits, Phys. Rev. Lett. 123, 120502 (2019).
- [83] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gus-

- taysson, and W. D. Oliver, A quantum engineer's guide to superconducting qubits, Applied Physics Reviews 6, 021318 (2019).
- [84] P. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant, B. Burkett, R. Barends, K. Arya, B. Chiaro, Y. Chen, et al., Fluctuations of energy-relaxation times in superconducting qubits, Physical review letters 121, 090502 (2018).
- [85] D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error rate, SIAM Journal on Computing 38, 1207 (2008), https://doi.org/10.1137/S0097539799359385.
- [86] A. G. Fowler, A. M. Stephens, and P. Groszkowski, Highthreshold universal quantum computation on the surface code, Phys. Rev. A 80, 052312 (2009).
- [87] D. Gottesman, Stabilizer codes and quantum error correction, arXiv preprint quant-ph/9705052 (1997).
- [88] J. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S. Bishop, A. A. Houck, B. Johnson, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Randomized benchmarking and process tomography for gate errors in a solid-state qubit, Physical review letters 102, 090502 (2009).
- [89] J. O. Smith, Spectral Audio Signal Processing (http://ccrma.stanford.edu/ jos/sasp/, 2020) online book, 2011 edition.
- [90] https://ccrma.stanford.edu/~jos/sasp/Example_ Synthesis_1_F_Noise.html.
- [91] G. T. Landi, Lecture notes on quantum information and quantum noise (2018).
- [92] S. J. Julier and J. K. Uhlmann, Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations, in *Proceedings of* the 2002 American Control Conference (IEEE Cat. No. CH37301), Vol. 2 (IEEE, 2002) pp. 887–892.
- [93] N. Auer, L. Einkemmer, P. Kandolf, and A. Ostermann, Magnus integrators on multicore cpus and gpus, Computer Physics Communications 228, 115 (2018).
- [94] H. Berland and B. Skaflestad, Solving the nonlinear Schrödinger equation using exponential integrators, Tech. Rep. (Norwegian University of Science and Technology, 2005).
- [95] L. Einkemmer, M. Tokman, and J. Loffeld, On the performance of exponential integrators for problems in magnetohydrodynamics, Journal of Computational Physics 330, 550 (2017).