

MATRICES, VECTORS, TENSORS, OH MY

KARL PIERCE

Itinerary

- Introduction of tensors
- Tensor correlation and sparsity
- Tensor decomposition, algorithms and optimization strategies
- Tensor networks and examples

What are tensors?

A tensor is a representation of a function of N variables

We could therefore plot this function in 3D

Tensors and Contractions

Vector

 A_i

Order-1

1 mode: i

i has dimension I

Matrix

 A_{ij}

Order-2

modes: i, j

i has dimension I j has dimension J

Higher-order tensor

 A_{ijk}

Order-3

modes: i, j, k

i has dimension Ij has dimension Jk has dimension K

$$dim(a) = 10$$

$$dim(b) = 10$$

$$M$$

$$dim(a) = [5,5]$$

The tensor M has two blocks

$$dim(a) = [(5, \uparrow), (5, \downarrow)]$$

Tensor Correlation

The canonical form of a tensor defines instantaneous interaction between orthogonal directions

$$y = A(i, j)$$
 $i - A$

To modify the i direction we must loop over all other variables in the tensor

Tensor Correlation

The canonical form of a tensor defines instantaneous interaction between orthogonal directions

$$y = A(i, j, k) \qquad i - A - j$$

Adding more modes to the tensor increases the number of for loops

```
for i in 1:N
    for j in 1:N
        for k in 1:N
        A(i,j,k) = L(i) * A(i,j,k)
    end
end
```

Curse of Dimensionality

The cost of storing and accessing elements of a tensor grows exponentially with the number of dimensions in the tensor

$$C_{ik} = \sum_{j} A_{ij} B_{jk} \qquad i - A^{-j} B - k \qquad \mathcal{O}(N^3)$$

$$F_{ikl} = \sum_{j} D_{ijl} B_{jk} \qquad {}_{i} \underline{\qquad}_{D} \underline{\qquad}_{B} \underline{\qquad}_{k} \qquad \mathcal{O}(N^{4})$$

Breaking the Curse: Do we really need all of this storage?

Physical data often has structure which leads to sparsity.

There are two forms of sparsity

Element-wise

Tensor data can have structure

$$dim(a) = [5,5]$$

M is block-wise dense

Tensor data can have structure

$$dim(a) = [5,5]$$

M is block-wise sparse

Tensor data can have structure

$$dim(a) = [5,5]$$

M is block-wise and element-wise sparse

Do we really need all of this storage?

Physical data often has structure which leads to sparsity.

There are two forms of sparsity

Rank-Wise

Tensor compression techniques

Singular value decomposition (SVD)

$$I_2$$
 T $=$ I_1 I_1 I_2 I_3 I_4 I_5 I_6 I_7 I_8 I_8 I_8 I_8 I_8 I_8 I_9 $I_$

Properties of the SVD

$$A_{i,j} = \sum_{r,r'} U_{i,r} \Sigma_{r,r'} V_{r'j}$$

$$\sum_{i} V_{rj} V_{j,r'} = \mathbb{I}_{r,r'}$$

$$\sum_{j} V_{rj} V_{j,r'} = \mathbb{I}_{r,r'}$$
 $\sum_{j} U_{r,i} U_{i,r'} = \mathbb{I}_{r,r'}$

$$A_{i,j}^{\dagger} = U_{i,r} \frac{1}{\sum_{r,r'}} V_{r'j}$$

Properties of the SVD

$$A_{i,j} = \sum_{r,r'} U_{i,r} \Sigma_{r,r'} V_{r'j}$$

$$\sum_{j} A_{i,j} (A_{i',j})^T = U_{i,r} (\sum_{r',l'} \sum_{r,r'} (\sum_{j} V_{r'j} V_{l'j}) \sum_{l',l}) U_{i',l}$$

$$\sum_{j} A_{i,j} (A_{i',j})^{T} = \sum_{r,,l,} U_{i,r} \sum_{r,rl}^{2} U_{i',l}$$

U is the eigenvalue of the AA^*

Properties of the SVD

$$A_{i,j} = \sum_{r,r'} U_{i,r} \Sigma_{r,r'} V_{r'j}$$

$$\tilde{A}_{i,j} pprox \sum_{k,k'} U_{i,r} \Sigma_{k,k'} V_{k'j}$$

This is determined using the the k largest singular values.

Error in
$$\tilde{A}_{i,j} \propto \sigma_{k+1}$$

Other matrix decompositions

Eigenvalue	$A = Q\Lambda Q^{-1}$	Determines the roots of a linear system. Only works for square matrices
QR	A = QR	Works for rectangular matrices can be used to solve linear systems. Q is orthogonal and R is upper triangular.
LU	A = LU	Views matrix as Gaussian elimination problem. Used in solve linear problems. Can be faster than QR
Cholesky	$A = LL^*$	Positive definite matrices, Used in numerically efficient inversion algorithms.

numerically efficient inversion algorithms.

Faster than the LU

Decomposition

Hands-On Break

Tensor Decompositions

We choose a topology that represents the true correlation of the tensor

Canonical Polyadic Decomposition (CPD)

Issues with the CPD

There is no finite algorithm to determine the CP rank

Optimization is an issue

Best rank k decomposition cannot be determined from rank r approximation

Uniqueness of solutions is likely but unknown for tensors greater than order-3

Optimizing Tensor Decompositions

Multidimensional optimizations are difficult!

Finding a Global extrema is not possible (in general)

Optimizing Tensor Decompositions

$$f(x, y, z) = \begin{pmatrix} \frac{\partial f(x, y, z)}{\partial x} & \frac{\partial^2 f(x, y, z)}{\partial x \partial x} & \frac{\partial^2 f(x, y, z)}{\partial x \partial y} & \frac{\partial^2 f(x, y, z)}{\partial x \partial z} \\ \frac{\partial f(x, y, z)}{\partial y} & \frac{\partial^2 f(x, y, z)}{\partial y \partial x} & \frac{\partial^2 f(x, y, z)}{\partial y \partial y} & \frac{\partial^2 f(x, y, z)}{\partial y \partial z} \\ \frac{\partial^2 f(x, y, z)}{\partial z \partial x} & \frac{\partial^2 f(x, y, z)}{\partial z \partial y} & \frac{\partial^2 f(x, y, z)}{\partial z \partial z} \end{pmatrix}$$

Computing the gradient and Hessian are time consuming and memory intensive

The derivative of a:

- tensor is a tensor
- Tensor network is a tensor network (often of higher order)

Algorithms to compute the CPD

$$T_{abc} \approx \sum_{r} A_{ar} B_{br} C_{cr}$$

Algorithms to compute the CPD

$$T_{abc} = A_{ar}^* [B \odot C]_{r,bc} \qquad T_{abc} [B \odot C]_{r,bc}^{-1} = A_{ar}^*$$

The Khatri-Rao Product (KRP)

ITensors makes Complex operations made simple

```
julia > using ITensors
julia> \alpha = Index(2) # id = 203
julia> \beta = Index(2) # id = 38
julia> \gamma = Index(2) # id = 724
julia> \sigma = Index(2) # id = 160
julia> \kappa = Index(2) # id = 74
                                                    f(A, B, C, D) =
julia > A = ITensor(\alpha, \beta, \kappa)
julia > B = ITensor(\alpha, \gamma)
julia > C = ITensor(\beta, \sigma)
julia > D = ITensor (\gamma, \sigma, \kappa)
```

$$julia > f(A,B,C,D) = (A * B * C * D)[]$$

Hands-On: Write a CPD algorithm

Algorithms to compute the CPD

$$T_{abc}[B \odot C]_{r',bc} = A_{ar}^*[BB \odot CC]_{r,r'}$$

Computing $T_{abc}[B\odot C]_{r',bc}$ scales exponentially with the order of T

We can use tensor decomposition to reduce the cost of tensor contractions

Given a string of tensors

$$[X, Y, Z, \dots]$$

Compute the result of contracting the string

$$T = XYZ...$$

Contracting Tensor Networks

Given a string of tensors

$$[X, Y, Z, \dots]$$

Compute the result of contracting the string

$$T = XYZ...$$

There are a number of potential issues:

• The resulting tensor requires large amount of storage

Contracting Tensor Networks

Given a string of tensors

$$[X, Y, Z, \dots]$$

Compute the result of contracting the string

$$T = XYZ...$$

There are a number of potential issues:

- The resulting tensor requires large amount of storage
- Intermediates require large amounts of storage

Approximating Tensor Network components

Given the tensor contraction

$$T = XYZ...$$

Approximate some of the tensors in the set

$$X \approx \tilde{X}$$
 $Z \approx \tilde{Z}$

These approximations can make computing T easier

$$T \approx \tilde{X}Y\tilde{Z}...$$

Error in Approximated Tensor Networks

The error introduced by approximating parts of a network

$$T = \tilde{X}Y\tilde{Z}... + \Delta T$$

Can be written in terms of error of T's parts

$$X = \tilde{X} + \Delta X$$
 $Z = \tilde{Z} + \Delta Z$

And therefore ΔT grows nonlinearly

$$\Delta \mathbf{T} = [(\Delta X)Y\tilde{Z}...] + [\tilde{X}Y(\Delta Z)...] + [(\Delta X)Y(\Delta Z)...] + ...$$

Directly decomposing tensor networks

We attempt to approximate T directly

$$f(\hat{T}) = \min_{\tilde{T}} \frac{1}{2} ||T - \tilde{T}||^2$$

We can replace T with a matrix-free representation

$$f(\hat{T}) = \min_{\tilde{T}} \frac{1}{2} ||XYZ... - \tilde{T}||^2$$

Error in the approximation of T is directly controllable

Routes to improve CPD optimizations

1

Approximate canonically expensive loss function

$$T \approx XY$$

 $f(\hat{T}; T) \approx f(\hat{T}; XY)$

2

Approximate canonically expensive tensor network contractions

$$T = XY$$
$$f(\hat{T}; T) = f(\hat{T}; XY)$$

ITensorCPD.jl makes decomposing networks easy

```
### Set up A 7 x 7 Grid ####
nx=7
ny=7
grid = named_grid((nx, ny))
indices = IndsNetwork(grid; link_space = 2)
### Fill the 7 x 7 grid with the Ising partition function ###
network = ising_network(Float64, indices, 0.4)
```


ITensorCPD.jl

Physics example

Two-dimensional tensor-networks can represent Ising partition functions, quantum circuits and beyond

Contracting these models exactly becomes practically impossible very quickly

Decompose each matrix node simultaneously and independently

Approximately decompose the Coulomb integrals

Goal: decompose the two-particle (order-4) integral tensor

$$f(\hat{g}) = \min_{\hat{g}} \frac{1}{2} \|g_{st}^{pq} - \sum_{r}^{R} P_r^p Q_r^q S_s^r T_t^r\|^2$$

Prohibitively large!!

Storage: $\mathcal{O}(N^4)$

Scaling: $\mathcal{O}(N^5)$

Approximately decompose the Coulomb integrals

$$f(\hat{g}) = \min_{\hat{g}} \frac{1}{2} \|g_{st}^{pq} - \sum_{r}^{R} P_{r}^{p} Q_{r}^{q} S_{s}^{r} T_{t}^{r}\|^{2}$$

The tensor G can be quickly decomposed via the DF approximation

$$f(\hat{g}) \approx \min_{\hat{g}} \frac{1}{2} \| \sum_{X} B_s^{pX} B_t^{qX} - \sum_{r}^{R} P_r^p Q_r^q S_s^r T_t^r \|^2$$

Storage: $\mathcal{O}(N^3)$

Scaling: $\mathcal{O}(N^4)$