Artificial Intelligence: Modeling Human Intelligence with Networks

Jeová Farias Sales Rocha Neto jeova_farias@brown.edu

Multiclass Classification

lacksquare Our problem: m points in the plane.

Our problem: m points in the plane. Classify them in three classes:

■ How to classify 3 classes if only have a binary classifier (can separate the dataset in two?).

■ We can use **three** classifiers!

(a) Is this a square?

■ We can use **three** classifiers!

 \blacksquare This strategy is called one-vs-rest classification!

■ Matrices are *not* just a set of vectors!

- Matrices are *not* just a set of vectors! They *transform* other vectors!!
- That happens through Matrix Factorization.

- Matrices are *not* just a set of vectors! They *transform* other vectors!!
- That happens through Matrix Factorization.
- The idea is simple: start with a matrix $M \in \mathbb{R}^{m \times n}$ (made of row vectors, $v^1, v^2, \dots, v^m \in \mathbb{R}^n$).

$$M = \begin{bmatrix} - & v^1 & - \\ - & v^2 & - \\ - & \vdots & - \\ - & v^m & - \end{bmatrix}$$

- Matrices are *not* just a set of vectors! They *transform* other vectors!!
- That happens through Matrix Factorization.
- The idea is simple: start with a matrix $M \in \mathbb{R}^{m \times n}$ (made of row vectors, $v^1, v^2, \dots, v^m \in \mathbb{R}^n$) and column vector $x \in \mathbb{R}^n$.

$$M = \begin{bmatrix} - & v^1 & - \\ - & v^2 & - \\ - & \vdots & - \\ - & v^m & - \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- Notice that v^1, v^2, \dots, v^m and x have the same size!
- The matrix multiplication Mx and is then done as:

$$Mx = \begin{bmatrix} - & v^1 & - \\ - & v^2 & - \\ - & \vdots & - \\ - & v^m & - \end{bmatrix} \begin{bmatrix} x1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} v^1 \cdot x \\ v^2 \cdot x \\ \vdots \\ v^m \cdot x \end{bmatrix}$$

■ Example – let $M \in \mathbb{R}^{5 \times 3}$ and $x \in \mathbb{R}^3$ be:

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & 15 \end{bmatrix} \quad x = \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$$

■ Example – let $M \in \mathbb{R}^{5\times 3}$ and $x \in \mathbb{R}^3$ be:

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & 15 \end{bmatrix} \quad x = \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$$

Now, let y = Mx:

$$y = Mx = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \\ 13 & 14 & 15 \end{bmatrix} \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix} = \begin{bmatrix} (1 \times -1) + (2 \times -2) + (3 \times -3) \\ (4 \times -1) + (5 \times -2) + (6 \times -3) \\ (7 \times -1) + (8 \times -2) + (9 \times -3) \\ (10 \times -1) + (11 \times -2) + (12 \times -3) \\ (13 \times -1) + (14 \times -2) + (15 \times -3) \end{bmatrix} = \begin{bmatrix} -14 \\ -32 \\ -50 \\ -68 \\ -86 \end{bmatrix}$$

■ Notice that $y \in \mathbb{R}^5$! x got transformed to y!

- How about multiplying two matrices?
- The idea is simple: start with a matrix $M \in \mathbb{R}^{m \times n}$ (made of row vectors, $v^1, v^2, \dots, v^m \in \mathbb{R}^n$) a matrix $H \in \mathbb{R}^{n \times k}$ (made of column vectors, $u^1, u^2, \dots, u^k \in \mathbb{R}^m$)

$$M = \begin{bmatrix} - & v^1 & - \\ - & v^2 & - \\ - & \vdots & - \\ - & v^m & - \end{bmatrix} \quad H = \begin{bmatrix} | & | & | & | \\ u^1 & u^2 & \cdots & u^k \\ | & | & | & | \end{bmatrix}$$

- \blacksquare Notice that M has as may columns as H has rows!
- The matrix multiplication Mx and is then done as:

$$MH = \begin{bmatrix} - & v^1 & - \\ - & v^2 & - \\ - & \vdots & - \\ - & v^m & - \end{bmatrix} \begin{bmatrix} | & | & | & | \\ u^1 & u^2 & \cdots & u^k \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} v^1 \cdot u^1 & v^1 \cdot u^2 & \cdots & v^1 \cdot u^k \\ v^2 \cdot u^1 & v^2 \cdot u^2 & \cdots & v^2 \cdot u^k \\ \vdots & \vdots & \ddots & \vdots \\ v^m \cdot u^1 & v^m \cdot u^2 & \cdots & v^m \cdot u^k \end{bmatrix}$$

■ The dimensions work this way:

$$(m \times n) \cdot (n \times k) = (m \times k)$$
product is defined

Neuronal evolution

Our friend Perceptron

Our friend Perceptron

Output =
$$f_{act}(w \cdot x) = sign(w \cdot x)$$

Output =
$$[O_1, O_2, O_3]$$
 = $f_{act}(Wx)$ = $sign(Wx)$

Multiclass Perceptron with softmax!

Multiclass Perceptron with softmax!

13/1