Stochastik I

Blatt 5

Aufgabe 1 (4 Punkte)

Seien $(\Omega, \mathcal{A}, \mathbb{P})$ ein Maßraum und $A, B \in \mathcal{A}$ zwei Ereignisse. Zeigen Sie dass A und B genau dann unabhängig sind, wenn die zugehörigen Indikatorfunktionen $\mathbb{1}_A$ und $\mathbb{1}_B$ unabhängig sind.

Aufgabe 2 (5 Punkte)

Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum, $X, Y \in \mathcal{E}^*$ und $\alpha \geq 0$. Zeigen Sie:

(i)
$$\int_{\Omega} (\alpha X) \ d\mu = \alpha \int_{\Omega} X \ d\mu$$

(ii)
$$\int_{\Omega} (X+Y) \ d\mu = \int_{\Omega} X \ d\mu + \int_{\Omega} Y \ d\mu$$

(iii)
$$X \leq Y \Rightarrow \int_{\Omega} X \ d\mu \leq \int_{\Omega} Y \ d\mu$$

Aufgabe 3 (5 Punkte)

Sei X eine Poiss (λ) -verteilte Zufallsvariable $(\lambda > 0)$ und X eine standardnormalverteilte Zufallsvariable. Berechnen Sie $\mathbb{E}[X]$ und $\mathbb{E}[Y^n]$ $(n \in \mathbb{N})$.

Aufgabe 4 (6 Punkte)

Wir betrachten einen Fußboden, auf dem im Abstand von 1cm parallele Linien aufgezeichnet sind. Nun lassen wir zufällig eine Nadel der Länge 2lcm auf den Boden fallen, wobei 2l < 1 gelten soll. Wie hoch ist die Wahrscheinlichkeit, dass die Nadel eine der Linien kreuzt.