Universidad del Valle de Guatemala

Facultad de Ingeniería

Mineria de Datos

INFORME

Gabriel Paz 221087

Diedrich Solis

27 de abril del 2025, Guatemala de la Asunción

Informe

Resumen Ejecutivo

Este informe presenta un análisis exhaustivo de modelos de clasificación y regresión aplicados al conjunto de datos "House Prices: Advanced Regression Techniques" de Kaggle.

- Clasificación: Se creó la variable categórica PrecioCategoria con tres niveles (Barato, Medio, Caro) y se compararon SVM (kernels lineal, RBF, polinomial) frente a Random Forest, Regresión Logística, KNN, Árbol de Decisión y Naive Bayes.
- Regresión: Se evaluó KNN Regressor, un método de Naive Bayes adaptado a regresión y un SVR afinado, comparándolos además con Regresión Lineal y Bayesian Ridge.

3. Hallazgos clave:

- Clasificación: Random Forest mostró la mayor exactitud (82.9 %), mientras que SVM lineal equilibró precisión (82.4 %) y velocidad.
- Regresión: Bayesian Ridge y Regresión Lineal lideraron en R² (~0.82) y menor MSE; el SVR lineal afinado obtuvo R² = 0.586.
- 4. Se discuten implicaciones prácticas y recomendaciones de uso según la velocidad de cómputo, la precisión deseada y el impacto de errores en cada categoría.

Introducción

InmoValor S.A., consultora en valoración inmobiliaria, requiere modelos predictivos para categorizar propiedades (baratas, medias, caras) y estimar precios con precisión. Este proyecto, dividido en seis entregas, aborda:

- Creación y codificación de variables objetivo.
- Desarrollo de pipelines reproducibles de preprocesamiento.
- Entrenamiento y comparación de múltiples algoritmos de clasificación y regresión.
- Análisis de resultados, errores críticos y recomendaciones de mejoras.

Conjunto de Datos

- Origen: Kaggle "House Prices: Advanced Regression Techniques".
- **Dimensiones:** 1 460 registros × 81 atributos.

• Tipos de variables:

- Numéricas: áreas, años, conteos de habitaciones, precio de venta (SalePrice).
- o Categóricas: vecindario, tipo de calle, calidad de acabados, etc.
- Valores faltantes: Distribuidos en variables como PoolQC, Alley, FireplaceQu.

• Preprocesamiento inicial:

- o Imputación de nulos (mediana para numéricas).
- Eliminación de variables con excesivos nulos o irrelevancia.
- Selección de atributos numéricos para regresión directa y codificación para clasificación.

Metodología

Preprocesamiento

1. Imputación: Nulos rellenos con mediana (numéricas) o moda (categóricas).

2. Codificación:

- Para SVM y regresores numéricos, se mantuvieron solo columnas numéricas.
- o Para modelos con variables categóricas, se aplicó One-Hot Encoding.
- 3. Escalado: StandardScaler sobre características numéricas.

División Train/Test

- Clasificación: 70 % entrenamiento, 30 % prueba, semilla fija 221087.
- Regresión: 70 % / 30 % con la misma semilla para asegurar comparabilidad entre modelos.

Clasificación de Precio

Creación de la variable PrecioCategoria

- Se calcularon los percentiles 33 % y 66 % de SalePrice.
- Se asignaron etiquetas:

o **Barato:** ≤ percentil 33

o Medio: entre 33 y 66

o Caro: > percentil 66

Modelos SVM y ajuste de hiperparámetros

• Algoritmos: SVM lineal, RBF y polinomial.

GridSearchCV:

○ Lineal: $C \in \{0.1, 1, 10\} \rightarrow C=0.1$

 $\circ \quad RBF \colon C \in \{0.1,1,10\}, \, \gamma \in \{0.01,0.1,1\} \to C = 1, \, \gamma = 0.01$

○ Polinomial: $C \in \{0.1,1,10\}$, degree $\in \{2,3,4\} \rightarrow C=10$, degree=2

Comparación interna de SVM

Modelo	Accuracy	Precision	Recall	F1-score	Train(s)	Pred (s)	Clase +FN	#FN	Clase -FN	#FN
SVM Lineal	82.42%	82.16%	82.42%	82.20%	0.12	0.009	Medio	45	Barato	16
SVM RBF	81.96%	81.75%	81.96%	81.81%	0.05	0.036	Medio	44	Caro	16
SVM Polinomial	82.19%	82.72%	82.19%	82.39%	0.04	0.01	Medio	34	Caro	18

Interpretación:

- Lineal maximiza accuracy/recall.
- Polinomial elevada precision y F1.
- Todas confunden principalmente la categoría "Medio".

Comparación con otros clasificadores

Modelo	Accuracy	Train(s)	Pred (s)
Random Forest	82.88%	0.53	0.015
SVM Lineal	82.42%	0.07	0.01
Regresión Logística	81.51%	0.02	0.001
KNN	79.22%	0.001	0.282
Árbol de Decisión	78.77%	0.03	0.002
Naive Bayes	63.47%	0.005	0

Conclusión de clasificación:

- Random Forest lidera en precisión.
- SVM lineal y Regresión Logística ofrecen mejor velocidad manteniendo > 82 % de accuracy.
- Naive Bayes demasiado impreciso para esta tarea.

Regresión de Precio Continuo

KNN Regressor

- MAE (test): 28 153
- RMSE (test): 47 681
- R² (test): 0.7036

Naive Bayes "Regresión" por bins

- MAE (test): 77 942
- RMSE (test): 98 117
- R² (test): -0.2551

SVR Afinado

- **Modelo:** SVR(kernel=linear, C=10, ε=0.5)
- **MSE**: 2.89 × 10⁹ → RMSE ≈ 53 767
- R²: 0.5856
- **Tiempo CV**: 19 s

Comparación con Regresores Lineales y Bayesiana

Modelo	MSE (×10 ⁹)	R ²	Train(s)	Pred (s)	
Regresión	1.235	0.8231	0.015	0.001	
Bayesiana	1.200	0.0231	0.013	0.001	
Regresión	1.242	0.822	0.014	0.002	
Lineal	1.242	0.022	0.014	0.002	
KNN	1.378	0.8025	0.001	0.004	
Regressor	1.376	0.0023	0.001	0.004	
Árbol de	1.419	0.7966	0.022	0	
Regresión	1.419	0.7900	0.022	U	
SVR Afinado	2.892	0.5856	0.068	0.016	

Interpretación de regresión:

- Bayesiana y Lineal explican ~82 % de la varianza con menor error.
- SVR lineal queda rezagado en precisión y velocidad.
- KNN equilibra bien generalización (R² ~0.70) pero no supera a los lineales.

Conclusiones y Recomendaciones

1. Modelos de clasificación:

- Para máxima accuracy: Random Forest.
- Para equilibrio precisión/latencia: SVM Lineal o Regresión Logística.

2. Modelos de regresión:

- Regresión Bayesiana y Regresión Lineal lideran en explicación de varianza y eficiencia.
- o El **SVR lineal** afinado no supera a los regresores lineales más sencillos.

3. Mejoras Futuras:

- Ingeniería de variables: crear interacciones, transformaciones polinomiales de atributos clave.
- o Ensambles avanzados: **XGBoost**, **LightGBM** para capturar no linealidades.
- Evaluar métricas de negocio: MAE, median absolute error, intervalos de confianza.

Referencias

- Kaggle. House Prices: Advanced Regression Techniques.
- Scikit-Learn: documentación oficial de SVM, SVR, Random Forest, KNN, regresión lineal, BayesianRidge.
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.