

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES 2020

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE				
CHIMIE	D.C	Durée de l'épreuve :	200 min			
CHIMIE	В,С	Date de l'épreuve :	17/09/2020			

		Numéro du candidat :
<u>Instructions</u>		
• L'élève	e répond à <u>toutes</u> les qu	uestions de la <u>partie commune</u> (48 points);
	Question 1	
	Question 2	
	Question 3	
• L'élève	e répond à <u>exactement</u>	<u>1</u> question de la <u>partie au choix (</u> 12 points)
Il indic	que obligatoirement sor	n choix en marquant d'une croix la case appropriée ci-dessous
	Cochez une case pour	indiquer votre choix parmi les questions ci-dessous !
	Question 4:	
	Chimie organique	acides carboxyliques et dérivés composés azotés : amines et acides aminés
	Question 5 :	composes azotes . armines et acides armines
	Acides et bases	les concepts d'acide et de base la notion de pH force des acides et des bases
	Question 6 :	
	Acides et bases	les concepts d'acide et de base la notion de pH force des acides et des bases calcul du pH de solutions aqueuses diluées titrage acido-basique

Questions de cours (QC) : 23/22/22 pts – Applications non numériques (ANN) : 22/21/20 pts Applications numériques (AN) : 15/17/18 pts

PARTIE COMMUNE

1. QUESTION COMMUNE – Le décanal

17 pts

En raison de son arôme fruité agréable, le décanal est utilisé comme ingrédient dans des parfums ou comme additif dans l'industrie alimentaire.

On propose d'évaluer deux voies de synthèse différentes qui mènent au produit souhaité, mais qui partent de réactifs différents :

voie **A**: hydratation en milieu acide du déc-1-ène, puis oxydation du produit obtenu.

voie **B**: substitution du 1-bromodécane en milieu basique, puis oxydation du produit obtenu

Pour la voie A:

- a. L'hydratation du déc-1-ène fournit deux composés différents, qui sont isomères de position.
 Dresser l'équation chimique de cette réaction, tout en indiquant les formules semi-développées des deux produits.

 ANN2
- b. De quel type de réaction et de mécanisme s'agit-il?

 ANN1
- c. Justifier la formation du produit majoritaire et du produit minoritaire. Baser votre raisonnement sur les ions carbénium intermédiaires. QC3

Pour la voie B:

d. Dresser le mécanisme réactionnel de la substitution du 1-bromodécane en milieu basique. QC3

Comparaison des voies A et B:

e. Laquelle des deux voies **A** ou **B** est la plus prometteuse pour obtenir, après oxydation, le décanal avec un rendement élevé ? Motiver votre réponse. **ANN2**

Pour l'étape de l'oxydation de l'alcool :

- f. Dresser le système rédox de la réaction qui correspond à l'oxydation de l'alcool en aldéhyde par le permanganate de potassium en milieu acide.

 ANN3
- g. Calculer le rendement de l'étape d'oxydation, sachant que 17,6 cm³ de l'alcool en question fournissent 13,0 g de décanal. On donne la masse volumique de l'alcool : ρ = 0,83 g/cm³. **AN3**

2. QUESTION COMMUNE – Le cumène

18 pts

Le cumène est un hydrocarbure aromatique largement utilisé en industrie chimique dans la production du phénol et de l'acétone.

On propose d'analyser la synthèse en deux étapes du cumène : préparation du 2-chloropropane, puis alkylation du benzène.

En vue de préparer le 2-chloropropane, on fait réagir du propane avec du dichlore sous l'action de la lumière.

- a. Dresser l'équation chimique de cette réaction, avec formation du 2-chloropropane. Utiliser les formules semi-développées.

 ANN1
- b. Dresser toutes les étapes du mécanisme réactionnel, y compris les deux voies de la réaction en chaîne. Calculer les bilans énergétiques pour chaque étape de chaque voie. Conclure laquelle est la plus probable.

On donne les énergies de liaison en kJ/mol : C-H = 414 ; C-Cl = 326 ; Cl-H = 431 ; Cl-Cl = 242

QC6 + AN2

c. Pourquoi doit-on s'attendre à un rendement faible? Motiver.

ANN1

Dans une deuxième étape, on fait réagir le 2-chloropropane avec le benzène au cours d'une substitution électrophile.

d. Proposer un catalyseur pour cette réaction.

QC1

e. Identifier la structure du cumène et dresser l'équation chimique de la réaction considérée.

Utiliser les formules de structure.

ANN2

f. Dresser le mécanisme réactionnel.

QC5

3. QUESTION COMMUNE – Le glycéraldéhyde – un sucre réducteur

13 pts

Le glycéraldéhyde ou 2,3-dihydroxypropanal fait partie des sucres.

a. Calculer la teneur en % de masse de chaque élément du glycéraldéhyde.

OH OH
glycéraldéhyde

AN2

Le glycéraldéhyde renferme un atome de C asymétrique.

b. Dresser la formule spatiale de l'énantiomère S et dresser sa formule en projection de Fischer. Le désigner selon la nomenclature CIP.

Le glycéraldéhyde est un sucre réducteur, car il peut être oxydé par le réactif de Tollens.

c. Etudier la préparation du réactif de Tollens et donner les équations chimiques correspondantes.

QC4

d. Dresser le système redox.

ANN3

e. Calculer la masse d'argent qui se forme par oxydation de 2,00 g de glycéraldéhyde. AN2

QUESTIONS AU CHOIX

4. QUESTION AU CHOIX – Les acides carboxyliques et les amines

12 pts

Le pélargonium est une variété de fleurs des géraniums particulièrement appréciée pour son huile essentielle. Celle-ci est riche en acide pélargonique, un monoacide carboxylique à chaîne carbonée aliphatique, saturée et non ramifiée.

- a. Sachant que la masse molaire de l'acide pélargonique vaut 158 g/mol, établir sa formule brute et indiquer sa formule semi-développée.

 AN1 + ANN1
- b. Indiquer le nom systématique de l'acide pélargonique en nomenclature IUPAC. ANN1
- c. Dresser l'équation de son équilibre de dissociation acide.

Afin de déterminer la solubilité de l'acide pélargonique dans l'eau, on fait réagir 1,00 L d'une solution saturée avec un excès de carbonate de sodium. On recueille 24,3 cm³ de dioxyde de carbone. L'opération est réalisée sous une pression de 0,95 atm et à une température de 25,0°C.

d. Etablir l'équation de cette réaction.

QC1

ANN1

e. Calculer la molarité de l'acide dans la solution saturée et en déduire sa solubilité en g d'acide par litre de solution.

AN5

On donne : constante universelle des gaz parfaits R = 0,082 $\frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$ = 8,31 $\frac{\text{Pa} \cdot \text{m}^3}{\text{mol} \cdot \text{K}}$

On fait réagir l'acide pélargonique avec le pentachlorure de phosphore. Le produit organique qui en résulte est traité avec l'éthylamine.

f. Dresser les équations chimiques des deux réactions. Utiliser les formules semi-développées.

ANN2

5. QUESTION AU CHOIX – La constante d'acidité

12 pts

L'acide valproïque (ou acide 2-propylpentanoïque) ainsi que son sel valproate de sodium sont utilisés comme médicaments antiépileptiques.

 $\begin{array}{c|c} & \text{COOH} \\ | \\ \text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{CH} \\ | \\ & \text{CH}_2 \\ \textit{acide} \\ \textit{valpro\"ique} & \text{CH}_2 \\ | \\ & \text{CH}_3 \end{array}$

Comme l'acide valproïque n'est que faiblement soluble dans l'eau, le médicament est usuellement vendu sous forme de solution aqueuse contenant du valproate de sodium.

Une solution **S** contenant 6,00 g de valproate de sodium par 100,0 cm³ de solution est progressivement acidulée par addition d'acide chlorhydrique (la variation du volume est supposée négligeable).

a. Dresser l'équation de la réaction de protolyse.

ANN1

b. Vérifier si la réaction de protolyse est complète.

AN1

On donne : pK_a(acide valproïque/valproate de sodium) = 4,60

ANN1

c. Etablir l'expression de K_a pour la dissociation de l'acide valproïque.

,

d. Sachant qu'à 20°C, l'acide valproïque commence à précipiter à un pH de 6,02, calculer sa solubilité en g par 100,0 cm³ de solution.

Le degré de dissociation α de la solution de valproate de sodium.

e. Calculer α pour la solution **S** initiale (avant ajout de HCl).

AN2

f. Décrire sans calcul comment α évolue si on dilue la solution **S** avec de l'eau distillée. Donner une explication.

6. QUESTION AU CHOIX - Titrage d'une solution d'acide perchlorique HClO₄

12 pts

On propose de vérifier par titrage la concentration d'une solution aqueuse d'acide perchlorique portant l'inscription « Acide perchlorique 60 % en masse ».

La solution aqueuse de HClO₄ est d'abord <u>diluée</u> : un volume de 5,0 cm³ de la solution concentrée est introduit dans une fiole jaugée, et le volume est porté à 100,0 cm³ par addition d'eau distillée.

Le <u>titrage</u> de 10,0 cm³ de la solution <u>diluée</u> est effectué avec NaOH 1,00 M. La courbe de titrage est présentée ci-dessous.

pH en fonction du volume de NaOH 1,00 M ajouté

a. Dresser l'équation de la réaction de titrage.

- ANN1
- b. Déterminer le point d'équivalence et calculer la concentration molaire de la solution <u>diluée</u>
 d'acide perchlorique. En déduire celle de la solution <u>concentrée</u>.

 AN3
- c. Calculer le pourcentage massique de la solution concentrée, sachant que sa masse volumique vaut $\rho = 1,53 \text{ g/cm}^3$. Comparer avec la valeur indiquée sur le flacon. **AN3**
- d. Calculer le pH après addition de 3,2 cm³ de NaOH 1,00 M.

AN2

- e. Pour suivre le titrage, on utilise l'indicateur bleu de bromothymol dont le pK_a vaut 7,1. Calculer le rapport [HInd]/[Ind⁻] au point d'équivalence.
- f. Proposer une base qui réagit avec l'acide perchlorique si on veut préparer une solution tampon de pH 9. Justifier votre réponse avec une équation et commenter. On ne demande pas de calcul numérique.

 ANN2

* *

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

cat. hydronium	H ₃ O ⁺	H₂O	eau	-1,74
ac. chlorique	HClO₃	ClO ₃ -	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl₃COOH	CCl₃COO ⁻	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃ -	an. iodate	0,80
cat. hexaqua thallium III	TI(H ₂ O) ₆ ³⁺	TI(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	HOOCCOO-	an. hydrogénooxalate	1,23
ac. dichloroéthanoïque	CHCl₂COOH	CHCl ₂ COO⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO ₃ -	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO ₄ -	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HClO ₂	ClO ₂ -	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H₂PO ₄ ⁻	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH₂FCOO ⁻	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	Ga(H ₂ O) ₆ ³⁺	Ga(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	Fe(H ₂ O) ₆ ³⁺	Fe(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH₂CICOOH	CH ₂ CICOO⁻	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH₂BrCOOH	CH ₂ BrCOO ⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	V(H ₂ O) ₆ ³⁺	V(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂ -	an. nitrite	3,14
ac. iodoéthanoïque	CH₂ICOOH	CH ₂ ICOO⁻	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F ⁻	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO ⁻	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN-	an. cyanate	3,66
ac. méthanoïque	нсоон	HCOO-	an. méthanoate	3,75
ac. lactique	CH₃CHOHCOOH	CH₃CHOHCOO-	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆ ⁻	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO⁻	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

	1			1
ac. éthanoïque	CH₃COOH	CH₃COO ⁻	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH ₃ CH ₂ COO⁻	an. propanoate	4,87
cat. hexaqua aluminium	Al(H ₂ O) ₆ ³⁺	Al(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C₅H₅NH ⁺	C₅H₅N	pyridine	5,25
cat. hydroxylammonium	NH₃OH+	NH ₂ OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃ -	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H ₂ S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO ₃ -	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄ ⁻	HPO ₄ ²⁻	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO-	an. hypochlorite	7,55
cat. hexaqua cadmium	Cd(H ₂ O) ₆ ²⁺	Cd(OH)(H ₂ O) ₅ ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	Zn(H ₂ O) ₆ ²⁺	Zn(OH)(H ₂ O) ₅ +	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃ -	an. dihydrogénoborate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN-	an. cyanure	9,31
cat. triméthylammonium	(CH ₃) ₃ NH ⁺	(CH ₃) ₃ N	triméthylamine	9,87
phénol	C ₆ H ₅ OH	C ₆ H ₅ O⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO ₃ -	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO-	an. hypoiodite	10,64
cat. méthylammonium	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH ₃ CH ₂ NH ₃ +	CH ₃ CH ₂ NH ₂	éthylamine	10,75
cat. triéthylammonium	(C ₂ H ₅) ₃ NH ⁺	(C ₂ H ₅) ₃ N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH₃)₂NH	diméthylamine	10,87
cat. diéthylammonium	$(C_2H_5)_2NH_2^+$	(C ₂ H ₅) ₂ NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H ₂ O	OH-	anion hydroxyde	15,74

acides de force négligeable

bases fortes(plus fortes que OH⁻)
O²⁻, NH₂⁻, anion alcoolate RO⁻)

TABLEAU PERIODIQUE DES ELEMENTS

	groupe	s princip	aux											g	groupes	principa	ıx	
	I	II	1										III	IV	V	VI	VII	VIII
1	1,0 H 1														•	1		4,0 He 2
	6,9	9,0											10,8	12,0	14,0	16,0	19,0	20,2
2	Li	Ве											В	С	N	0	F	Ne
	3	4											5	6	7	8	9	10
	23,0	24,3				gı	oupes secondaires						27,0	28,1	31,0	32,1	35,5	39,9
3	Na	Mg									Al	Si	Р	S	CI	Ar		
	11	12	III	IV	V	VI	VII		VIII		I	I	13	14	15	16	17	18
	39,1	40,1	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85,5	87,6	88,9	91,2	92,9	95,9	(97)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	l	Xe
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132,9	137,3	175,0	178,5	180,9	183,9	186,2	190,2	192,2	195,1	197,0	200,6	204,4	207,2	209,0	(209)	(210)	(222)
6		Ва	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
	55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
l_	(223)	226,0	(260)	(261)	(262)	(266)	(264)	(269)	(268)	(281)	(272)	(285)		(289)		(293)		
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		FI		Lv		
	87	88	103	104	105	106	107	108	109	110	111	112		114		116		
					•							•						
						,	•					,						
			138,9	140,1	140,9	144,2	(145)	150,4	152,0	157,3	158,9	162,5	164,9	167,3	168,9	173,0]	
	Lantha	anides	138,9 La	140,1 Ce	140,9 Pr	144,2 Nd	(145) Pm	150,4 Sm	152,0 Eu	157,3 Gd	158,9 Tb	162,5 Dy	164,9 Ho	167,3 Er	168,9 Tm	173,0 Yb]	
	Lantha	anides			1		1 '			-		,						
	Lantha	anides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
	Lantha		La 57	Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	Ho 67	Er 68	Tm 69	Yb 70		