Proximal Gradient Descent: convergence

Friday, March 12, 2021 6:40 AM

Min
$$f(x) := g(x) + h(x)$$

Smooth easy proximity operator

Assume ∇g is Lipschitz continuous

WLOG let Lipschitz constant be $L=1$ for simplicity

(ix., redefine $\tilde{f}(x) = \frac{1}{L} \cdot f(x)$)

Assume g , $h \in \Gamma_0(IR^n)$

Algorithm: $X_{k+1} = PreX_k \left(x_k - \nabla g(x_k) \right)$... or if $L \neq 1$, use stepsize $t = \frac{1}{L} \cdot f(x)$

Analysis:

introduce the gradient map $G(x) = x - prex_k \left(x - \nabla g(x) \right)$

ex: $h(x) = 0 \Rightarrow prex_k (y) = y$ so $G(x) = \nabla g(x)$

thus the algorithm as

 $X_{k+1} = X_k - G(x)$... books like gradient descent.

Property of $Prex_k (x) = arg_m h \cdot \frac{1}{2} ||w-x||^2 + h(w)$

it (Fernat's ruk) $O \in w - x + \partial h(w)$

So $X - w \in \partial h(w)$ if $w = prex_k(x)$ ($*$)

Key inequality (via descent lemma)

Since g is 1-Lipschitz, the descent lemma says
$$g(y) \leq g(x) + \langle \nabla g(x), y - x \rangle + \frac{1}{2} ||y - x||^2$$

hence

$$f(y) = g(y) + h(y) \leq g(x) + h(y) + \langle \nabla g(x), y - x \rangle + \frac{1}{2} ||y - x||^2$$

So, thinking of X as Xk, and y = x-6(x), this means