CS 170 Efficient Algorithms and Intractable Problems

Section Notes

Jan 24, 2018 Summary

TA: Chinmay Nirkhe

1 Introductions

1.1 Me

- 1. Chinmay Nirkhe: First year PhD student studying quantum computation. My interests are in the quantum PCP conjecture, multiprove interactive proofs, and quantum supremacy. Come talk to me about these problems!
- 2. Contact Information:
 - (a) nirkhe@cs.berkeley.edu.
 - (b) 615 Soda Hall
 - (c) http://cs.berkeley.edu/~nirkhe
- 3. Resources:
 - (a) I will post any documents I generate, specific to my sections at

http://cs.berkeley.edu/~nirkhe/cs170notes

(b) I used to TA a similar course at Caltech. My course notes (which include a lot of similar problems) and section notes from that are also on my website.

You can find them at http://cs.berkeley.edu/~nirkhe/cs38notes.

4. My Schedule: I teach 2 sections; they are at Wednesday 9am and 10am. I have my office hours on Wednesday 12pm - 2pm. Generally, you can find me in my office but I might sometimes turn you away if I am busy.

1.2 You

I want to get to know you. Please fill out an index card with the following information:

- 1. Name
- 2. Email
- 3. Major (Declared or Intended) and Graduation Year
- 4. Favorite problem in Computer Science or Electrical Engineering
- 5. Why do you want to learn about Algorithms?
- 6. Any concerns or questions I can answer.

2 Review of Big-O Notation

Topics Covered: Partial Ordering, Asymptotic Definition, Thinking of O(f) as a set.

Problem 1 *Show that the following two definitions are equivalent.*

- 1. For functions $f,g: \mathbb{N} \to \mathbb{N}$, f = O(g) if there exists a c > 0, N > 0, s.t. $\forall n \geq N$, $f(n) \leq c \cdot g(n)$.
- 2. For functions $f,g: \mathbb{N} \to \mathbb{N}$, f = O(g) if there exists a c > 0 s.t. $f(n) \le c \cdot g(n)$ for all but finitely many n.

3 The Master Theorem

Theorem 2 (Master Theorem) *If* T(n) *satisfies the above recurrence relation, then*

- if $\exists c > 1$, n_0 such that for $n > n_0$, $af(n/b) \ge cf(n)$ then $T(n) \in \Theta(n^{\log_b a})$
- if $f(n) \in \Theta(n^{\log_b a})$ then $T(n) \in \Theta(n^{\log_b a} \log n)$
- if $\exists c < 1$, n_0 such that for $n > n_0$, $af(n/b) \le cf(n)$ then $T(n) \in \Theta(f(n))$

Proof: Convince yourself that $a^{\log_b n} = n^{\log_b a}$. By induction, its easy to see that

$$T(n) = a^{j} \cdot T\left(\frac{n}{b^{j}}\right) + \sum_{k=0}^{j} a^{k} f\left(\frac{n}{b^{k}}\right)$$
 (1)

Apply to $j = \log_b n$ and recognize T(1) is a constant so

$$T(n) = \Theta(a^{\log_b n}) + \sum_{k=0}^{\log_b n} a^k f\left(\frac{n}{b^k}\right)$$
 (2)

Let's consider the first case. We apply the relation to get¹

$$T(n) = \Theta(a^{\log_b n}) + a^{\log_b n} f(1) \sum_{k=0}^{\log_b n} c^{-k}$$

$$= \Theta(a^{\log_b n}) + \Theta\left(a^{\log_b n} \frac{c}{c-1}\right)$$

$$= \Theta(a^{\log_b n}) = \Theta(n^{\log_b a})$$
(3)

For the second case,

$$T(n) = \Theta(a^{\log_b n}) + \sum_{k=0}^{\log_b n} a^k \Theta\left(\left(\frac{n}{b^k}\right)^{\log_b a}\right)$$

$$= \Theta(n^{\log_b a}) + \sum_{k=0}^{\log_b n} a^k \left(\frac{\Theta(n^{\log_b a})}{a^k}\right)$$

$$= \Theta(n^{\log_b a} \log n)$$
(4)

For the third case, recognize that it's nearly identical to the first except the summations are bounded in the other direction which leaves f(n) as the dominating term.

4 Problems from general TA Section Notes

¹I've made the simplifaction here that $n_0 = 0$. As an excercise, convince yourself this doesn't effect anything, just makes the algebra a little more complicated.