Deep learning alapú szótagolás

Németh Gergely Dániel

Abstract

Kivonat

1. Bevezetés

2. Szótagoló programok

Az elterjedt szótagoló algoritmusok kétféle csoportba bonthatóak: szabály- vagy szótáralapúak. A szabad szoftverek világában *de facto* a TEXszótagolási algoritmusát használják.

A TEX eredeti szótagoló algoritmusát Prof. Knuth tervezte 1977 nyarán[2]. Ez három fő szótagolási szabályt alkalmazott: 1) utótag leválasztás, 2) előtag leválasztás és 3) magánhangzó - mássalhangzó - mássalhangzó - magánhangzó (vccv) elválasztás, azaz ha ilyen betűnégyes található a szóban, legtöbb esetben a mássalhangzók mentén elválasztható. Ez a három szabály gyakran alkalmazható, azonban már az első algoritmusban kiegészült kisebb szabályokkal ("break vowel-q" vagy "break after ck") és kivételek listájával(300 szó).

A TEX82 verzióhoz megjelent Liang szótagoló algoritmusa[3], aminek legfontosabb újítása a minta(*patterns*) alapú szótagolás bevezetése volt. Ennek lényege, hogy a szótagolási szabályok mintákra definiálódtak és az algoritmus a szótagolás során ezeket a mintákat keresi a szóban.

A TEX jelenlegi verziójában a Hunspell szótagoló algoritmust alkalmazzák[4]. Ez az eljárás Liang algoritmusán alapszik, amit nyelvfüggő speciális szótagolási kiterjesztésekkel (non-standard hyphenation extension) egészít ki.

2.1. Liang algoritmusa

Liang szótagoló algoritmusának alapját a szótagolási minták alkotják[3]. Az algoritmust az angol hyphenation elválasztását az alábbi módon végzi:

Az algoritmus először megnézi, hogy a szó benne van-e a kivételek listájában (ez lényegében teljes szavakat tartalmaz mintaként). A *hyphenation* szó nincs a kivételek listájában.

Ezután a szó elejére és végére illeszt egy pont jelző karaktert. Ennek jelentősége azoknál a mintáknál lesz, amelyek akkor érvényesülnek, ha a szó elején, vagy a végén szerepelnek.

.hyphenation.

Ezt követően a minták között keres illeszkedést. A *hyphenation* szóra ezek az alábbiak: hy3ph, he2n, hena4, hen5at, 1na, n2at, 1tio, 2io [3, 37. oldal] A megfelelő mintákat ráillesztve a szóra, a bennük szereplő számokat a szó karakterei közé szúrva az 1. ábrán szereplőket kapjuk.¹

1. ábra. A hyphenation szótagolása

Az algoritmus következő lépésében minden két szomszédos karakter közé illesztünk egy számot. Alapértelmezetten 0-t és ha ennél nagyobb számot találtunk a mintaillesztésnél, a legnagyobb kapott értéket adjuk meg.

A szótagolás szabálya innen már csak egy lépés: a páratlan számok mentén elválasztunk, a párosoknál nem. Ezzel megkaptuk a hy-phen-ation elválasztást.

2.1.1. Minták választása

A fenti algoritmus hatékonyságát nyilvánvalóan a minták mennyisége és hatékonysága határozza meg. Csak azok a szavak választódnak el, amelyekre illeszkedik minta és csak azok lesznek jó elválasztások, melyekre jó minta illeszkedik.

2.2. Hunspell

2.2.1. Szótagolási hibák a magyar Hunspellben

Hunspell szótagolása:

au-tó-val
szem-üveg-gel
has-izom
messze

Helyesen:
a-u-tó-val
szem-ü-veg-gel
has-i-zom
messze
mesz-sze

3. Deep learning alapú módszerek

3.1. Deep learning bevezetés

A gépi tanulás területén egyre nagyobb teret nyernek a deep learning alapú módszerek. A hagyományos osztályozási feladatokon túl, szekvenciális, ún. taggelési problémák megoldására is alkalmasak a neurális hálók, különös tekintettel a rekurrens neurális hálókra.

¹Az ábrázolásmód Németh cikkéből származik[4].

A mély tanulás bevetését a nyelvtechnológia területén az a tény élteti, hogy az elektronikus kommunikáció korában jelentős mennyiségű nyelvi adatbázisok állnak rendelkezésünkre, így a deep learning legfontosabb eleme, a megfelelő méretű tanulóadat elérhető. Az ismertetett elválasztási algoritmusok kulcseleme, hogy megfelelő elválasztási mintákat ismerjünk fel az adathalmazon (*korpusz*). A képfelismerés terén sokkal komplexebb minták megtalálásában is jelentős eredményeket értek el a deep learning segítségével, így e módszer bevetése a szótagolás problémakörében megalapozott.

3.1.1. Keretrendszerek

Deep learning rendszerek tervezésénél az utóbbi időben ipari és kutatói területen egyaránt elterjedőben vannak a magas szintű keretrendszerek. Ezek legnagyobb előnye, hogy az aktív fejlesztői közösség a gyorsan fejlődő tudományág eredményeit alkalmazható technológiákként tárja a felhasználók elé. A jelentősebb keretrendszerek: TensorFlow², Torch7³, Keras⁴. Az itt ismertetett eljárások megvalósításához a Keras nyújtotta lehetőségekkel valósultak meg[1].

3.2. Előrecsatolt neurális hálók

A neurális háló lényege ebben ez esetben az, hogy a szó minden karakterére eldöntsük a környezetében lévő karakterek segítségével, hogy a karakternél van-e elválasztás.

A szavakat minden karakter mentén felbontjuk az adott ablakméretre, majd ezekre az ablakokra tanítva oldunk meg egy osztályozó problémát, ami ad egy címkét a karakternek és a címke alapján végezzük az elválasztást.

3.2.1. Karakter címkézés

Kétféle címkézést használunk. Az első eset előnye, hogy több címke van így több információt adunk át a modellnek, a másodiké pedig, hogy a jósolt címkézés minden esetben elválasztássá alakítható. Ez a BMES esetében nem teljesül: ha két karakterre egymás után E-t jósol, az nem alakítható rögtön valós elválasztássá.

BMES

- B Begin, szótag elején álló karakter
- M Middle, közepén lévő karakter, se előtte, se utána nincs elválasztás
- E End, a karakter után elválasztás van
- S Single, egy karakterből álló szótag

A le-o-párd szó címkézése: BESBMME

BM

- B Begin, szótag elején álló karakter
- M Minden egyéb eset

A le-o-párd szó címkézése: BMBBMMM

²TensorFlow: https://www.tensorflow.org/

³Torch7: http://torch.ch/

⁴Keras: https://keras.io/

3.2.2. Adat-előkészítés

One-hot, flatten, webcorpus

3.2.3. Előrecsatolt háló tanítása

Az első tanítások eredményei az 1. táblázatban láthatóak. A 2. táblázat a hiperparaméterek optimalizálási eredményeit foglalja össze. Itt a 2-1-2 környezetű karaktercímkézés 2-10 rétegű, rétegenként 10-100 neuronú tanítások közül láthatjuk azokat, amelyeknek validációs hibája megközelíti a 4 százalékot.

Az oszlopnevek rövidítései:

Length a-1-b a vizsgált karakter előtt a utána b karaktert veszünk be környezetébe, ami alapján a címkézést végezzük.

Tag a címkézés BM vagy BMES

NLayer a háló rejtett rétegeinek száma

NHidden a rejtett rétegek mérete

Val_loss a validációs adatok binary(BM) illetve categorical(BMES) crossentropy hibafüggvénnyel számolt hibája

Test w maximumkiválasztás után hibás eredményt adó teszt adatok száma

Epochs a tanításhoz szükséges epoch-ok száma. A tanítás végét early stoping módszerrel határoztuk meg.

No	Tag	Length	Loss	Batch size	Val_loss	Epochs
1	BMES	2-1-0	cat_cross	512	0.616	483
2	BM	2-1-0	bin_cross	1024	0.262	475
3	BM	2-1-0	cat_cross	1024	0.261	543
4	BM	2-1-1	bin_cross	1024	0.063	247
5	BM	2-1-2	bin_cross	1024	0.050	213
6	BM	3-1-3	bin_cross	1024	0.047	223
7	BMES	2-1-2	cat_cross	1024	0.107	389
8	BMES	3-1-3	$\operatorname{cat_cross}$	1024	0.090	769

1. táblázat. Előrecsatolt háló tanítása különböző paraméterekkel

3.3. Rekurrens neurális hálók

Hivatkozások

- [1] François Chollet. Keras, 2015.
- [2] Donald Ervin Knuth. *TEX and METAFONT: New directions in typesetting*. American Mathematical Society, 1979.

No	Tag	Length	NLayer	NHidden	Epochs	Val_loss	Test_w
2.1	BM	2-1-2	2	10	308	0.05025	0.01568
2.2	BM	2-1-2	2	20	250	0.04454	0.01352
2.3	BM	2-1-2	2	30	189	0.04274	0.01264
2.4	BM	2-1-2	2	40	170	0.04151	0.01185
2.5	BM	2-1-2	2	50	196	0.04207	0.01129
2.6	BM	2-1-2	2	60	167	0.04068	0.01119
2.7	BM	2-1-2	2	70	166	0.04155	0.01122
2.8	BM	2-1-2	2	80	175	0.03994	0.01073
2.9	BM	2-1-2	2	90	179	0.03962	0.01050
2.10	BM	2-1-2	2	100	145	0.03911	0.01100
3.7	BM	2-1-2	3	70	176	0.04221	0.01155
3.8	BM	2-1-2	3	80	161	0.03881	0.01095
3.9	$_{\mathrm{BM}}$	2-1-2	3	90	171	0.03872	0.01037
3.10	BM	2-1-2	3	100	178	0.03886	0.01062
4.7	$_{\mathrm{BM}}$	2-1-2	4	70	208	0.04024	0.01116
4.8	BM	2-1-2	4	80	171	0.03995	0.01077
4.9	$_{\mathrm{BM}}$	2-1-2	4	90	177	0.03894	0.01077
4.10	$_{\mathrm{BM}}$	2-1-2	4	100	177	0.03885	0.01090
5.4	$_{\mathrm{BM}}$	2-1-2	5	40	199	0.04423	0.01225
5.5	$_{\mathrm{BM}}$	2-1-2	5	50	205	0.03992	0.01136
5.6	$_{\mathrm{BM}}$	2-1-2	5	60	220	0.03955	0.01090
5.7	BM	2-1-2	5	70	179	0.04013	0.01063
5.8	\mathbf{BM}	2-1-2	5	80	207	0.03937	0.01032
5.9	$_{\mathrm{BM}}$	2-1-2	5	90	218	0.03995	0.01076
5.10	BM	2-1-2	5	100	186	0.03927	0.01092
6.7	$_{\mathrm{BM}}$	2-1-2	6	70	202	0.04186	0.01149
6.8	BM	2-1-2	6	80	218	0.04048	0.01076
6.9	$_{\mathrm{BM}}$	2-1-2	6	90	157	0.04715	0.01221
6.10	$_{\mathrm{BM}}$	2-1-2	6	100	217	0.03926	0.01072
7.7	$_{\mathrm{BM}}$	2-1-2	7	70	254	0.04432	0.01218
7.8	$_{\mathrm{BM}}$	2-1-2	7	80	221	0.04335	0.01169
7.9	$_{\mathrm{BM}}$	2-1-2	7	90	224	0.03943	0.01046
7.10	BM	2-1-2	7	100	210	0.04165	0.01198

 $2.\ táblázat.\ Hiperparaméter optimalizálás$

- [3] Franklin Mark Liang. *Word hyphenation by computer*. Department of Computer Science, Stanford University, 1983.
- [4] László Németh. Automatic non-standard hyphenation in openoffice. org. *COM-MUNICATIONS OF THE TEX USERS GROUP TUGBOAT EDITOR BARBARA BEETON PROCEEDINGS EDITOR KARL BERRY*, page 32, 2006.