

The Problem

- In 2018, there were 6,734,000 motor vehicle crashes in 2018 (U.S. Department of Transportation)
- Not all of these ended in death, but crashes can be costly in terms of both property and personal health
- What if, based on weather and road conditions, we could determine whether it is safe to drive or if we should stay home?

The Data

- Approximately 20,000 attributes
- Dependent Variable:
 - SEVERITYCODE
- Independent Variables:
 - WEATHER
 - ROADCOND
 - LIGHTCOND
 - ADDRTYPE
 - UNDERINFL
- All variables are categorical, so we need a model that will properly predict the outcomes keeping that consistent

Methodology

- Building a new data frame with only the relevant variables
- 2. Drop the N/A values
- 3. We are building a model that will help a person determine whether they should stay at home, so we select the decision tree as our machine learning algorithm
- 4. Convert the categorical variables we have into dummy variables
- 5. Split the data into training and testing data
- 6. Build the decision tree and evaluate it

New Data Frame (dropped N/A; pre-dummies)

	Daylight		
0 2 Overcast Wet	Daylight	Intersection	N
1 1 Raining Wet Dark - St	reet Lights On	Block	0
2 1 Overcast Dry	Daylight	Block	0
3 1 Clear Dry	Daylight	Block	N
4 2 Raining Wet	Daylight	Intersection	0
			
194668 2 Clear Dry	Daylight	Block	N
194669	Daylight	Block	N
194670 2 Clear Dry	Daylight	Intersection	N
194671 2 Clear Dry	Dusk	Intersection	N
194672 1 Clear Wet	Daylight	Block	N

SEVERITYCODE	int64
WEATHER	object
ROADCOND	object
LIGHTCOND	object
ADDRTYPE	object
UNDERINFL	object
dtype: object	

Determine Optimal Decision Tree Depth

The maximum cross-validation accuracy is found at 3, so that is our selected depth

Build Decision Tree

Results & Conclusion

- The decision tree constructed has an accuracy of approximately 70%
- Someone could input the details of their driving situation into the model and predict the possibility of a severe accident
- As with any model, this one has limitations
- Triangulating our decision tree with other algorithms (e.g. a random forest) may ultimately provide drivers with the information they need to prepare to get on the road

Discussion

- The accuracy score of 70% could be improved if :
 - More data were collected
 - More data were made available for integration into model
- We could also include additional conditions (which would require more data):
 - Presence of Hills: make rain/snow more difficult to drive through
 - Population: denser population = higher risk for collisions
 - Gender: correlates between gender and motor vehicle accidents