Contents

	0.1	Asses	ssment		
1	Lec	ecture Notes 2			
	1.1	Bits, E	Bytes and Binary		
		1.1.1	Structured Computer Organization		
		1.1.2	Unsigned Number in Binary		
		1.1.3	Converting Decimal to Binary		
			Least and Most Significant Bits		
			Conversions		
		1.1.6	Negative Numbers		
	1.2	_	Gates		
		1.2.1	Logic Functions		
		1.2.2	Logic Function Implementation		

Contributors:

• Daniel Fitz (Sanchez)

0.1 Assessment

- Online Quizzes (10% = Best 10 \times 1%)
 - Due Mondays at 8am
- Mid-semester exam (10% or 20%)

Saturday (centrally scheduled - sometime week 5 to 7)

Multiple-choice, open-book

Prac Exam (Pass/Fail)

Held during Monday/Wednesday Learning Lab sessions in week 6 You must pass in order to pass the course

• Project (20%)

Develop a microcontroller program

• Final Exam (50% or 60%)

Short answer, problem solving, open-book

Chapter 1

Lecture Notes

1.1 Bits, Bytes and Binary

1.1.1 Structured Computer Organization

Level 5: Problem-oriented language level

Level 4: Assembly language level

Level 3: Operating system machine level **Level 2:** Instruction set architecture level

Level 1: Microarchitecture level

Level 0: Digital Logic level

1.1.2 Unsigned Number in Binary

Each bit position has a value $\to 2^n$ (starting at zero). Add all values of the positions together and that's unsigned value.

1.1.3 Converting Decimal to Binary

Method 1

rewrite n as sum of powers of 2 (by repeatedly subtracting largest power of 2 not greater than n)

Assemble binary number from 1's in bit positions corresponding to those powers of 2, 0's elsewhere

Method 2

Divide n by 2

Remainder of division (0 or 1) is next bit

Repeat with n = quotient

Note 1: Example

Convert 53 to binary

$$\frac{53}{2} = 26 \text{ rem } 1 \Rightarrow 1$$

$$\frac{26}{2} = 13 \text{ rem } 0 \Rightarrow 0$$

$$\frac{13}{2} = 6 \text{ rem } 1 \Rightarrow 1$$

$$\frac{6}{2} = 3 \text{ rem } 0 \Rightarrow 0$$

$$\frac{3}{2} = 1 \text{ rem } 1 \Rightarrow 1$$

$$\frac{1}{2} = 1 \text{ rem } 1 \Rightarrow 1$$

 $\therefore 53 \equiv 0b110101$

1.1.4 Least and Most Significant Bits

Most Significant Bit (MSB): Bit that's worth the

most, the left-most bit

Least Significant Bit (LSB): Bit that's worth the

least, the right-most bit

Note 2: Radices

- Radix: number system base
- A radix-k number system

 \boldsymbol{k} different symbols to represent digits 0 to $\boldsymbol{k}-1$

Value of each digit is (from the right) $k^0, k^1, k^2, k^3, \dots$

• Often convenient to deal with

Octal (radix-8) - Symbols: 0, 1, 2, 3, 4, 5, 6, 7

One octal digit corresponds to 3 bits

Hexadecimal (radix-16) - Symbols: 0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, A, B, C, D, E, F

One hexadecimal digit corresponds to 4 bits (useful)

Note 3: Radix Identification

Hexadecimal

Leading 0x (C, Atmel AVR)
Trailing h (Some assembly languages)

Leading \$ (Atmel AVR Assembly)

Octal

Leading 0 (C, Atmel AVR)
Trailing q (Some assembly languages)

Leading @ (Some assembly languages)

Binary

Leading 0b (Atmel AVR Assembly, Some C)

Trailing b (Some assembly languages)

Leading % (some assembly languages)

1.1.5 Conversions

Easiest to convert from most formats to binary then to the desired format.

Octal

From Binary: Group bits into series of 3 and then convert to decimal (0b010 = 02)

To Binary: Convert each octal number to binary and append

Hex

From Binary: Group bits into series of 4 and then convert to hex with overflow being apart of the alphabet (0b1100 = 0xC)

To Binary: Convert each hex number to binary and append

Decimal

From Binary: Add together the powers of two at each position n ($0b1010 = 2^3 + 2^1 = 10$)

To Binary: Starting with LSB, divide by 2 with the remainder being bit value at position. $(9 = 9/2 = 4rem1, 4/2 = 2rem0, 2/2 = 1rem0, 1/2 = 0rem1. <math>\therefore 9 = 0b1001)$

1.1.6 Negative Numbers

Signed Magnitude

Leftmost bit is the sign bit, true is negative and false is positive

One's Complement

Leftmost bit = sign-bit (as per signed magnitude), true is negative and false is positive. If negative all bits are inverted

Two's Complement

MSB signifies if negative, true is negative and false is positive. To negate invert all bits and add decimal 1.

Allows addition without requiring conversion

Excess 2^{m-1}

e.g. for 8 bits, excess-128. Add 128 to the original bit and convert to binary

1.2 Logic Gates

NOT Gate: Inverts the signal (i.e. input is true, output is false)

AND Gate: Output is true only if **all** inputs are true **NAND Gate:** Opposite of AND, always true unless all inputs are true

OR Gate: Output is true when at **least one** input is true

XOR Gate: Output is true if only one input is true

Note 4: XOR Multiple Inputs

For more than 2 inputs, XOR is true if there is an odd number of inputs true. Also referred to as the "odd function"

1.2.1 Logic Functions

Logic functions can be expressed as expressions involving:

variables (literals), e.g. A B X functions, e.g. +. $\oplus \overline{A}$

- Rules about how this works called Boolean algebra
- Variables and functions can only take on values 0 or 1

Convenctions

Inversion: \overline{A} (overline of A)

AND: dot(.) or implied by adjacency. AB = A.B **OR:** plus sign. OR(A,B,C) = A+B+C

XOR: $OR(A,B) = A \oplus B = \overline{A}B + A\overline{B}$

NAND: \overline{ABC} NOR: $\overline{A+B}$

Representations of Logic Functions

There are four representations of logic functions (assume function of n inputs)

Truth Table

Lists output for all 2^n combinations of in-

puts

• Boolean Function (or equation)

Describes the conditions under which the function output is true

• Logic Diagram

Combination of logic symbols joined by wires

• Timing Diagram

1.2.2 Logic Function Implementation

Any logic function can be implemented as the OR of AND combinations of the inputs. Called **sum of products**.

Table 1.1: Boolean Identities Name **OR Form** AND Form **Identity Law** 1A = A0 + A = A**Null Law** 0A = 01 + A = 1AA = AA + A = AIdempotent Law A + B = B + AAB = BACommutative Law (AB)C = A(BC)(A+B) + C = A + (B+C)Associative Law Distributive Law A + BC = (A + B)(A + C)A(B+C) = AB + ACA + AB = ABA(A+B) = A**Absorption Law** $\overline{A+B} = \overline{AB}$ $\overline{AB} = \overline{A} + \overline{B}$ De Morgan's Law