String Search using Compressed Indexes

Simon Gog and Andrew Turpin

Department of Computing and Information Systems
The University of Melbourne

Melbourne, May 7th 2013

Lecture objectives

At the end of this lecture you should:

- know what the string searching problem is
- know what the suffix array data structure is
- understand the connection between the BWT and suffix array
- know how to do backward search in the BWT
- know what a wavelet tree is and how it implements rank()

Problem Definition

Given a string T and a pattern P over an alphabet Σ of constant size σ . Let n = |T| be the length of T, and m = |P| be the length of P and $n \gg m$.

Example

T = abracadabrabarbara\$

P = bar

 $\Sigma = \{\$, a, b, c, d, r\}, \sigma = 6, n = 18, m = 3$

Problem: String search

- Does *P* occur in *T*? (Existence query)
- How often does P occur in T? (Count query)
- Where does *P* occur in *T*? (Locate query)

Simple Solutions

• Check for each *i* in $i \in \{0, ..., n-m-1\}$ if T[i..i+m-1] = P.

```
for (size_t i=0; i<n; ++i){
  bool match=true;
  for (size_t j=0; j<m && match; ++j)
    match = (i+j < n && T[i+j] == P[j]);
  if (match)
    return true;
}
return false;</pre>
```

• Time complexity: $\mathcal{O}(n \cdot m)$ comparisons

Improved solution

- Knuth, Morris, and Pratt precomputed a table of size m which allows to shift the pattern by possibly more than one position in case of a mismatch and get complexity: $\mathcal{O}(n+m)$
- This solution is optimal in the online scenario, in which we are not allowed to pre-process T (online scenario), but not in ...

our scenario

We are allowed to pre-compute an index structure I for T and use I for the string search.

- I should be small
- Time complexity of matching independent of n

First attempt: Suffix Arrays (1)

i	SA[i]	T[SA[i]n-1]T[0SA[i]-1]
18	18	\$abracadabrabarbara
17	17	a\$abracadabrabarbar
10	10	abarbara\$abracadabr
7	7	abrabarbara\$abracad
0	0	abracadabrabarbara\$
3	3	acadabrabarbara\$abr
5	5	adabrabarbara\$abrac
15	15	ara\$abracadabrabarb
12	12	arbara\$abracadabrab
14	14	bara\$abracadabrabar
11	11	barbara\$abracadabra
8	8	brabarbara\$abracada
1	1	bracadabrabarbara\$a
4	4	cadabrabarbara\$abra
6	6	dabrabarbara\$abraca
16	16	ra\$abracadabrabarba
9	9	rabarbara\$abracadab
2	2	racadabrabarbara\$ab
13	13	rbara\$abracadabraba

- First sort suffixes of T. (quicksort: $\mathcal{O}(n^2 \log n)$, best algorithms: $\mathcal{O}(n)$)
- Storing all suffixes takes $n^2 \log \sigma$ bits space. Only store starting positions of suffixes in SA ($n \log n$ bits).
- Question: How fast can we search using T and SA?

First attempt: Suffix Arrays (2)

- The suffixes are *ordered* in SA. We can use *binary search*!
- Start with the empty string ϵ which matches all prefixes (i.e. the interval $[sp_0..ep_0] = [0..n 1]$) of suffixes in SA.
- Then use binary search to determine the interval SA[sp_j..ep_j] in SA[sp_{j-1}..ep_{j-1}] so that all suffixes start with P[0..j − 1] for all j ∈ [1..m].
- P occurs in T if [sp_m..ep_m] is not empty.
- If P occurs the count query can be answered by $ep_m sp_m + 1$.
- Time complexity: $\mathcal{O}(m \cdot \log n)$, space $\mathcal{O}(n \log n + n \log \sigma)$

i	SA[i]	T[SA[i]n-1]T[0SA[i]-1]
0	18	\$abracadabrabarbara
1	17	a\$abracadabrabarbar
2	10	abarbara\$abracadabr
3	7	abrabarbara\$abracad
4	0	abracadabrabarbara\$
5	3	acadabrabarbara\$abr
6	5	adabrabarbara\$abrac
7	15	ara\$abracadabrabarb
8	12	arbara\$abracadabrab
9	14	bara\$abracadabrabar
10	11	barbara\$abracadabra
11	8	brabarbara\$abracada
12	1	bracadabrabarbara\$a
13	4	cadabrabarbara\$abra
14	6	dabrabarbara\$abraca
15	16	ra\$abracadabrabarba
16	9	rabarbara\$abracadab
17	2	racadabrabarbara\$ab
18	13	rbara\$abracadabraba

- Search for bar.
- Step 1: *b* interval [9..12]
- Step 2: *ba* interval [9..10]
- Step 2: bar interval [9..10]


```
SA[i]
             T[SA[i]..n-1]T[0..SA[i]-1]
            $abracadabrabarbara
0
      18
      17
            a$abracadabrabarbar
2
      10
             abarbara$abracadabr
3
             abrabarbara$abracad
4
       0
             abracadabrabarbara$
5
       3
             acadabrabarbara$abr
6
       5
             adabrabarbara$abrac
      15
             ara$abracadabrabarb
8
      12
             arbara$abracadabrab
9
             bara$abracadabrabar
      14
10
             barbara$abracadabra
      11
11
       8
             brabarbara$abracada
12
            bracadabrabarbara$a
13
       4
            cadabrabarbara$abra
14
       6
            dabrabarbara$abraca
15
      16
             ra$abracadabrabarba
16
       9
             rabarbara$abracadab
17
       2
             racadabrabarbara$ab
18
      13
             rbara$abracadabraba
```

- Search for bar.
- Step 1: b interval [9..12]
- Step 2: ba interval [9..10]
- Step 2: bar interval [9..10]


```
SA[i]
             T[SA[i]..n-1]T[0..SA[i]-1]
            $abracadabrabarbara
0
      18
      17
            a$abracadabrabarbar
2
      10
             abarbara$abracadabr
3
             abrabarbara$abracad
4
       0
             abracadabrabarbara$
5
       3
             acadabrabarbara$abr
6
       5
             adabrabarbara$abrac
      15
             ara$abracadabrabarb
8
      12
             arbara$abracadabrab
9
      14
             bara$abracadabrabar
10
             barbara$abracadabra
      11
11
       8
             brabarbara$abracada
12
            bracadabrabarbara$a
13
       4
            cadabrabarbara$abra
14
       6
            dabrabarbara$abraca
15
      16
             ra$abracadabrabarba
16
       9
             rabarbara$abracadab
17
       2
             racadabrabarbara$ab
18
      13
             rbara$abracadabraba
```

- Search for bar.
- Step 1: *b* interval [9..12]
- Step 2: ba interval [9..10]
- Step 2: *bar* interval [9..10]


```
SA[i]
             T[SA[i]..n-1]T[0..SA[i]-1]
            $abracadabrabarbara
0
      18
      17
            a$abracadabrabarbar
2
      10
             abarbara$abracadabr
3
             abrabarbara$abracad
4
       0
             abracadabrabarbara$
5
       3
             acadabrabarbara$abr
6
       5
             adabrabarbara$abrac
      15
             ara$abracadabrabarb
8
      12
             arbara$abracadabrab
9
      14
            bara$abracadabrabar
10
            barbara$abracadabra
      11
11
       8
             brabarbara$abracada
12
            bracadabrabarbara$a
13
       4
            cadabrabarbara$abra
14
       6
            dabrabarbara$abraca
15
      16
             ra$abracadabrabarba
16
       9
             rabarbara$abracadab
17
       2
             racadabrabarbara$ab
18
      13
             rbara$abracadabraba
```

- Search for bar.
- Step 1: *b* interval [9..12]
- Step 2: *ba* interval [9..10]
- Step 2: bar interval [9..10]


```
SA[i]
           BWT
                  T[SA[i]..n - 1]T[0..SA[i] - 1]
      18
           а
                  $abracadabrabarbara
      17
                  a$abracadabrabarbar
      10 r
                  abarbara$abracadabr
                  abrabarbara$abracad
           d
4
                  abracadabrabarbara$
5
           r
                  acadabrabarbara$abr
6
                  adabrabarbara$abrac
           С
      15
                  ara$abracadabrabarb
           h
8
      12
                  arbara$abracadabrab
9
      14
                  bara$abracadabrabar
                  barbara$abracadabra
10
      11
           а
11
       8
                  brabarbara$abracada
           а
12
                  bracadabrabarbara$a
           а
13
       4
                  cadabrabarbara$abra
           а
14
           а
                  dabrabarbara$abraca
15
                  ra$abracadabrabarba
      16
16
                  rabarbara$abracadab
           h
17
           b
                  racadabrabarbara$ab
18
      13
                  rbara$abracadabraba
```

- BWT[i] = T[SA[i] 1], for SA[i] > 0
- BWT[i] = T[n-1], for SA[i] = 0
- I.e. BWT[i] is the character preceding suffix SA[i]

```
BWT
           T[SA[i]..n - 1]T[0..SA[i] - 1]
           $abracadabrabarbara
    а
           a$abracadabrabarbar
    r
           abarbara$abracadabr
           abrabarbara$abracad
    d
           abracadabrabarbara$
5
           acadabrabarbara$abr
6
           adabrabarbara$abrac
7
    h
           ara$abracadabrabarb
8
    b
           arbara$abracadabrab
9
    r
           bara$abracadabrabar
10
           barbara$abracadabra
11
           brabarbara$abracada
12
           bracadabrabarbara$a
    а
13
           cadabrabarbara$abra
    а
14
           dabrabarbara$abraca
15
           ra$abracadabrabarba
16
           rabarbara$abracadab
17
           racadabrabarbara$ab
18
           rbara$abracadabraba
```

Add an array *C* containing the left border of each character interval:

\$ a b c d r r+1 0 1 9 13 14 15 19

- Operation rank(i, X, BWT) returns how often character $X \in \Sigma$ occurs in the prefix BWT[0..i-1].
- Now search backwards for bar.

i	BWT	T[SA[i]n - 1]T[0SA[i] —	1]
0	а	\$abracadabrabarbara	-	•
1	r	a\$abracadabrabarbar		
2	r	abarbara\$abracadabr		
3	d	abrabarbara\$abracad		
4	\$	abracadabrabarbara\$ -	\$	_
5	r	acadabrabarbara\$abr		2
6	С	adabrabarbara\$abrac	0	1
7	b	ara\$abracadabrabarb	•	Ν
8	b	arbara\$abracadabrab		
9	r	bara\$abracadabrabar	•	lr
10	а	barbara\$abracadabra		[5
11	а	brabarbara\$abracada	•	D
12	а	bracadabrabarbara\$a		
13	а	cadabrabarbara\$abra		S
14	а	dabrabarbara\$abraca		е
15	а	ra\$abracadabrabarba		
16	b	rabarbara\$abracadab		
17	b	racadabrabarbara\$ab		
18	а	rbara\$abracadabraba		

- Now search backwards for bar.
- Initial interval:

$$[sp_0, ep_0] = [0..n-1]$$

$$sp_1 = C[r] + rank(sp_0, r, BWT)$$

 $ep_1 = C[r] + rank(ep_0 + 1, r, BWT) - 1$

BWT	T[SA[i]n - 1]T[0SA]	i] –	1]
а	\$abracadabrabarbara		•
r	a\$abracadabrabarbar		
r	abarbara\$abracadabr		
d	abrabarbara\$abracad		
\$	abracadabrabarbara\$	Φ	_
r	acadabrabarbara\$abr	•	8
С	adabrabarbara\$abrac	0	1
b	ara\$abracadabrabarb	•	Ν
b	arbara\$abracadabrab		
r	bara\$abracadabrabar	•	lr
а	barbara\$abracadabra		[5
а	brabarbara\$abracada	_	_
а	bracadabrabarbara\$a	•	D
а	cadabrabarbara\$abra		S
а	dabrabarbara\$abraca		е
а	ra\$abracadabrabarba		
b	rabarbara\$abracadab		
b	racadabrabarbara\$ab		
а	rbara\$abracadabraba		
	arrd\$rcbbraaaaabb	a \$abracadabrabarbara r a\$abracadabrabarbar r abarbara\$abracadabr d abrabarbara\$abracad \$ abracadabrabarbara\$ r acadabrabarbara\$abr c adabrabarbara\$abr c adabrabarbara\$abr b ara\$abracadabrabarb b arbara\$abracadabrab r bara\$abracadabrabar a brabarbara\$abracadabra a brabarbara\$abracada a bracadabrabarbara\$a a cadabrabarbara\$a a cadabrabarbara\$abra a dabrabarbara\$abraca a ra\$abracadabrabarba b racadabrabarbara\$abraca	a \$abracadabrabarbara r a\$abracadabrabarbar r abarbara\$abracadabr d abrabarbara\$abracad \$ abracadabrabarbara\$ r acadabrabarbara\$abr c adabrabarbara\$abrac b ara\$abracadabrabar b bara\$abracadabrabar r bara\$abracadabrabar a brabarbara\$abracada a bracadabrabarbara\$a a cadabrabarbara\$abra a dabrabarbara\$abra a dabrabarbara\$abra a dabrabarbara\$abra a ra\$abracadabrabarb b racadabrabarbara\$abraca a ra\$abracadabrabarba b racadabrabarbara\$ab

- Now search backwards for bar.
- Initial interval:

$$[sp_0, ep_0] = [0..n-1]$$

$$sp_1 = 15 + rank(0, r, BWT)$$

 $ep_1 = 15 + rank(19, r, BWT)$

i	В۷	۷T	T[SA[i]n - 1]T[0SA]	[i] —	1]
0	a		\$abracadabrabarbara	-	_
1	r		a\$abracadabrabarbar		
2	r		abarbara\$abracadabr		
3	d		abrabarbara\$abracad		
4	\$		abracadabrabarbara\$	\$	_
5	r		acadabrabarbara\$abr		2
6	С		adabrabarbara\$abrac	0	1
7	b		ara\$abracadabrabarb	•	Ν
8	b		arbara\$abracadabrab		
9	r		bara\$abracadabrabar	•	lr
10	a		barbara\$abracadabra		[5
11	a		brabarbara\$abracada	_	D
12	a		bracadabrabarbara\$a	•	
13	a		cadabrabarbara\$abra		S
14	a		dabrabarbara\$abraca		е
15	а		ra\$abracadabrabarba		
16	b		rabarbara\$abracadab		
17	b		racadabrabarbara\$ab		
18	a		rbara\$abracadabraba		

- Now search backwards for bar.
- Initial interval:

$$[sp_0, ep_0] = [0..n-1]$$

$$sp_1 = 15+0$$

 $ep_1 = 15+rank(19, r, BWT) - 1$

i	BWT	T[SA[i]n - 1]T[0SA]	[<i>i</i>] —	1]
0	а	\$abracadabrabarbara		•
1	r	a\$abracadabrabarbar		
2	r	abarbara\$abracadabr		
3	d	abrabarbara\$abracad		
4	\$	abracadabrabarbara\$	\$	_
5	r	acadabrabarbara\$abr	•	8
6	С	adabrabarbara\$abrac	0	1
7	b	ara\$abracadabrabarb	•	Ν
8	b	arbara\$abracadabrab		
9	r	bara\$abracadabrabar	•	lr
10	а	barbara\$abracadabra		[5
11	а	brabarbara\$abracada	•	D
12	а	bracadabrabarbara\$a		_
13	а	cadabrabarbara\$abra		S
14	а	dabrabarbara\$abraca		е
15	а	ra\$abracadabrabarba		
16	b	rabarbara\$abracadab		
17	b	racadabrabarbara\$ab		
18	а	rbara\$abracadabraba		

- Now search backwards for bar.
- Initial interval:

$$[sp_0, ep_0] = [0..n-1]$$

$$sp_1 = 15+0 = 15$$

 $ep_1 = 15+4-1 = 18$

i	BWT	T[SA[i]n - 1]T[0SA]	i] _	1]
0	a	\$abracadabrabarbara		•
1	r	a\$abracadabrabarbar		
2	r	abarbara\$abracadabr		
3	d	abrabarbara\$abracad		
4	\$	abracadabrabarbara\$		
5	r	acadabrabarbara\$abr	\$	6
6	С	adabrabarbara\$abrac	Ò	1
7	b	ara\$abracadabrabarb	U	
8	b	arbara\$abracadabrab	•	Ν
9	r	bara\$abracadabrabar		Ir
10	а	barbara\$abracadabra		
11	а	brabarbara\$abracada	•	D
12	a	bracadabrabarbara\$a		s
13	a	cadabrabarbara\$abra		e
14	a	dabrabarbara\$abraca		·
15	a	ra\$abracadabrabarba		
16	b	rabarbara\$abracadab		
17	b	racadabrabarbara\$ab		
18	а	rbara\$abracadabraba		

- Now search backwards for bar.
- Interval: $[sp_1, ep_1] = [15..18]$
- Determine interval for ar:
 sp₂ = C[a]+rank(sp₁, a, BWT)
 ep₂ = C[a]+rank(ep₁+1, a, BWT)-1

i	BWT	T[SA[i]n - 1]T[0SA[i]
0	а	\$abracadabrabarbara
1	r	a\$abracadabrabarbar
2	r	abarbara\$abracadabr
3	d	abrabarbara\$abracad
4	\$	abracadabrabarbara\$
5	r	acadabrabarbara\$abr ;
6	С	adabrabarbara\$abrac
7	b	ara\$abracadabrabarb
8	b	arbara\$abracadabrab
9	r	bara\$abracadabrabar
10	a	barbara\$abracadabra
11	а	brabarbara\$abracada
12	а	bracadabrabarbara\$a
13	а	cadabrabarbara\$abra
14	а	dabrabarbara\$abraca
15	а	ra\$abracadabrabarba
16	b	rabarbara\$abracadab
17	b	racadabrabarbara\$ab
18	a	rbara\$abracadabraba

Sabcdr 0 1 9 13 14 15

-1

- Now search backwards for bar.
- Interval: $[sp_1, ep_1] = [15..18]$
- Determine interval for ar: $sp_2 = 1 + rank(15, a, BWT)$ $ep_2 = 1 + rank(ep_1, a, BWT)$

i	BWT	T[SA[i]n-1]T[0SA]	[<i>i</i>] —	1]
0	a	\$abracadabrabarbara	-	-
1	r	a\$abracadabrabarbar		
2	r	abarbara\$abracadabr		
3	d	abrabarbara\$abracad		
4	\$	abracadabrabarbara\$		
5	r	acadabrabarbara\$abr	\$	а
6	С	adabrabarbara\$abrac	Ò	1
7	b	ara\$abracadabrabarb	U	
8	b	arbara\$abracadabrab	•	Ν
9	r	bara\$abracadabrabar		Ir
10	a	barbara\$abracadabra		
11	a	brabarbara\$abracada	•	D
12	a	bracadabrabarbara\$a		S
13	a	cadabrabarbara\$abra		e
14	a	dabrabarbara\$abraca		U
15	а	ra\$abracadabrabarba		
16	b	rabarbara\$abracadab		
17	b	racadabrabarbara\$ab		
18	а	rbara\$abracadabraba		

- Now search backwards for bar.
- Interval: $[sp_1, ep_1] = [15..18]$
- Determine interval for ar:
 sp₂ = 1+rank(15, a, BWT)
 ep₂ = 1+rank(ep₁, a, BWT)

i	В	WT	T[SA[i]n-1]T[0SA[i]	i] —	1]
0	а		\$abracadabrabarbara	•	•
1	r		a\$abracadabrabarbar		
2	r		abarbara\$abracadabr		
3	d		abrabarbara\$abracad		
4	\$		abracadabrabarbara\$		
5	r		acadabrabarbara\$abr	\$	а
6	С		adabrabarbara\$abrac	0	1
7	b		ara\$abracadabrabarb	•	
8	b		arbara\$abracadabrab		Ν
9	r		bara\$abracadabrabar	•	Ir
10	а		barbara\$abracadabra		
11	а		brabarbara\$abracada		
12	а		bracadabrabarbara\$a		s
13	а		cadabrabarbara\$abra		e
14	а		dabrabarbara\$abraca		Ŭ
15	а		ra\$abracadabrabarba		
16	b		rabarbara\$abracadab		
17	b		racadabrabarbara\$ab		
18	a		rbara\$abracadabraba		

- Now search backwards for bar.
- Interval: $[sp_1, ep_1] = [15..18]$
- Determine interval for ar:

$$sp_2 = 1+6$$

 $ep_2 = 1+rank(19, a, BWT) - 1$

i	BWT	T[SA[i]n-1]T[0SA]	[<i>i</i>] –	1]
0	а	\$abracadabrabarbara		
1	r	a\$abracadabrabarbar		
2	r	abarbara\$abracadabr		
3	d	abrabarbara\$abracad		
4	\$	abracadabrabarbara\$		
5	r	acadabrabarbara\$abr	\$	а
6	С	adabrabarbara\$abrac	0	1
7	b	ara\$abracadabrabarb	Ü	
8	b	arbara\$abracadabrab	•	Ν
9	r	bara\$abracadabrabar		Ir
10	а	barbara\$abracadabra		_
11	а	brabarbara\$abracada	•	D
12	а	bracadabrabarbara\$a		S
13	а	cadabrabarbara\$abra		e
14	а	dabrabarbara\$abraca		Ŭ
15	а	ra\$abracadabrabarba		
16	b	rabarbara\$abracadab		
17	b	racadabrabarbara\$ab		
18	а	rbara\$abracadabraba		

			С		
\$	а	b	С	d	r
0	1	9	13	14	15

- Now search backwards for bar.
- Interval: $[sp_1, ep_1] = [15..18]$
- Determine interval for ar:

$$sp_2 = 1+6=7$$

 $ep_2 = 1+8-1=8$

i	BWT	T[SA[i]n-1]T[0SA]	[<i>i</i>] –	1]
0	а	\$abracadabrabarbara		
1	r	a\$abracadabrabarbar		
2	r	abarbara\$abracadabr		
3	d	abrabarbara\$abracad		
4	\$	abracadabrabarbara\$		
5	r	acadabrabarbara\$abr	\$	а
6	С	adabrabarbara\$abrac	Ò	1
7	b	ara\$abracadabrabarb	U	
8	b	arbara\$abracadabrab	•	Ν
9	r	bara\$abracadabrabar		Ir
10	а	barbara\$abracadabra		
11	а	brabarbara\$abracada	•	D
12	а	bracadabrabarbara\$a		S
13	а	cadabrabarbara\$abra		e
14	а	dabrabarbara\$abraca		Ŭ
15	а	ra\$abracadabrabarba		
16	b	rabarbara\$abracadab		
17	b	racadabrabarbara\$ab		
18	а	rbara\$abracadabraba		

- Now search backwards for bar.
- Interval: $[sp_2, ep_2] = [7..8]$
- Determine interval for bar:
 sp₃ = C[b]+rank(sp₂, b, BWT)
 ep₃ = C[b]+rank(ep₂+1, b, BWT)-1

i	BWT	T[SA[i]n-1]T[0SA]	[<i>i</i>] —	1]
0	а	\$abracadabrabarbara		
1	r	a\$abracadabrabarbar		
2	r	abarbara\$abracadabr		
3	d	abrabarbara\$abracad		
4	\$	abracadabrabarbara\$		
5	r	acadabrabarbara\$abr	\$	а
6	С	adabrabarbara\$abrac	0	1
7	b	ara\$abracadabrabarb	U	
8	b	arbara\$abracadabrab	•	Ν
9	r	bara\$abracadabrabar	•	Ir
10	а	barbara\$abracadabra		_
11	а	brabarbara\$abracada	•	D
12	а	bracadabrabarbara\$a		S
13	а	cadabrabarbara\$abra		e
14	а	dabrabarbara\$abraca		•
15	а	ra\$abracadabrabarba		
16	b	rabarbara\$abracadab		
17	b	racadabrabarbara\$ab		
18	а	rbara\$abracadabraba		

- Now search backwards for bar.
- Interval: $[sp_2, ep_2] = [7..8]$
- Determine interval for bar: $sp_3 = 9 + rank(7, b, BWT)$ $ep_3 = 9 + rank(ep_1, b, BWT)$

i	BWT	T[SA[i]n - 1]T[0SA[i] -	- 1]
0	a	\$abracadabrabarbara	-
1	r	a\$abracadabrabarbar	
2	r	abarbara\$abracadabr	
3	d	abrabarbara\$abracad	
4	\$	abracadabrabarbara\$	
5	r	acadabrabarbara\$abr \$	a
6	C	adabrabarbara\$abrac 0	1
7	b	ara\$abracadabrabarb	
8	b	arbara\$abracadabrab	N
9	r	bara\$abracadabrabar	l Ir
10	а	barbara\$abracadabra	
11	а	brabarbara\$abracada •	D
12	а	bracadabrabarbara\$a	S
13	а	cadabrabarbara\$abra	e
14	а	dabrabarbara\$abraca	Ū
15	а	ra\$abracadabrabarba	
16	b	rabarbara\$abracadab	
17	b	racadabrabarbara\$ab	
18	а	rbara\$abracadabraba	

- Now search backwards for bar.
- Interval: $[sp_2, ep_2] = [7..8]$
- Determine interval for bar:
 sp₃ = 9+rank(7, b, BWT)
 ep₃ = 9+rank(ep₁, b, BWT)

i	BWT	T[SA[i]n-1]T[0SA]	[<i>i</i>] —	1]
0	a	\$abracadabrabarbara		
1	r	a\$abracadabrabarbar		
2	r	abarbara\$abracadabr		
3	d	abrabarbara\$abracad		
4	\$	abracadabrabarbara\$		
5	r	acadabrabarbara\$abr	\$	а
6	C	adabrabarbara\$abrac	0	1
7	b	ara\$abracadabrabarb	Ū	
8	b	arbara\$abracadabrab	•	Ν
9	r	bara\$abracadabrabar	•	Ir
10	а	barbara\$abracadabra		_
11	a	brabarbara\$abracada	•	D
12	a	bracadabrabarbara\$a		S
13	a	cadabrabarbara\$abra		e
14	а	dabrabarbara\$abraca		Ū
15	a	ra\$abracadabrabarba		
16	b	rabarbara\$abracadab		
17	b	racadabrabarbara\$ab		
18	а	rbara\$abracadabraba		

- Now search backwards for bar.
- Interval: $[sp_2, ep_2] = [7..8]$
- Determine interval for bar:

$$sp_3 = 9+0$$

 $ep_3 = 9+rank(9, b, BWT)-1$

i	BWT	T[SA[i]n-1]T[0SA]	[<i>i</i>] —	1]
0	а	\$abracadabrabarbara		•
1	r	a\$abracadabrabarbar		
2	r	abarbara\$abracadabr		
3	d	abrabarbara\$abracad		
4	\$	abracadabrabarbara\$		
5	r	acadabrabarbara\$abr	\$	6
6	С	adabrabarbara\$abrac	Ò	1
7	b	ara\$abracadabrabarb	U	. '
8	b	arbara\$abracadabrab	•	Ν
9	r	bara\$abracadabrabar		Ir
10	a	barbara\$abracadabra		-
11	a	brabarbara\$abracada	•	
12	a	bracadabrabarbara\$a		S
13	a	cadabrabarbara\$abra		e
14	а	dabrabarbara\$abraca		Ŭ
15	a	ra\$abracadabrabarba		
16	b	rabarbara\$abracadab		
17	b	racadabrabarbara\$ab		
18	а	rbara\$abracadabraba		

			С		
\$	а	b	С	d	r
0	1	9	13	14	15

- Now search backwards for bar.
- Interval: $[sp_2, ep_2] = [7..8]$
- Determine interval for *bar*: $sp_3 = 9+0 = 9$

$$ep_3 = 9+0 = 9$$

 $ep_3 = 9+2-1 = 10$

Backward search summary

- Only C and a data structure R supporting the rank operation on BWT are required for existance and count queries.
- Space: $\sigma \log n$ bits for C + space for R
- Time: $\mathcal{O}(m \cdot t_{rank})$, where t_{rank} is time for one rank operation. Independent from n?
- Next: How can we implement rank?

Backward search summary

- Only C and a data structure R supporting the rank operation on BWT are required for existance and count queries.
- Space: $\sigma \log n$ bits for C + space for R
- Time: $\mathcal{O}(m \cdot t_{rank})$, where t_{rank} is time for one rank operation. Independent from n? If t_{rank} is independent from n
- Next: How can we implement rank?

Simple solution for rank (first attempt)

- Remember rank(i, X, A) is the count of how many times X occurs in A[0..i − 1]
- Store for each $i \in [0..n-1]$ and for each $X \in \Sigma$ the answer for rank(i, X, BWT).
- Pro: Constant time per rank. $\mathcal{O}(m)$ for string search!
- Con: Too much space $(\mathcal{O}(\sigma n \log n) \text{ bits})$.

Solution for rank (second attempt)

- We can solve rank on a bit vector in constant time using n + o(n) bits as follows:
- Divide bit vector in superblocks of size $sbz = \log^2 n$ bits.
- (1) Store all values rank(k · sbz, 1).
- Divide superblocks in blocks of size $bz = \frac{\log n}{2}$ bits.
- (2) Store all values $rank(k \cdot sbz + k' \cdot bz, 1) rank(k \cdot sbz, 1)$.
- (3) Pre-compute all answers of rank for bitvectors of size log n/2.

Total space: *n* bits for bitvector +

- (1) $n\lceil \frac{\log n}{\log^2 n} \rceil \in o(n)$ bits, (2) $n\lceil \frac{2\log\log n}{\log n} \rceil \in o(n)$ bits
- (3) $2^{\log n/2} \log n/2 \log \log n/2 = \sqrt{n} \log n/2 \log \log n/2 \in o(n)$ bits

Solution for rank (second attempt)

Exercise: Implement the rank operation based on this schema.

Simple solution for rank (second attempt)

Use a wavelet tree to handle general alphabets:

Depth: $\log \sigma$. Only bitvectors and pointers to bitvectors are stored.

Total space: $\approx n \log \sigma + 2\sigma \log n$

$$rank(11, a, WT) = rank(rank(rank(11, 0, b_{\epsilon}) = 5, 0, b_{0}) = 3, 1, b_{00}) = 2$$

$$rank(11, a, WT) = rank(rank(rank(11, 0, b_{\epsilon}) = 5, 0, b_{0}) = 3, 1, b_{00}) = 2$$

$$rank(11, a, WT) = rank(rank(rank(11, 0, b_{\epsilon}) = 5, 0, b_0) = 3.1, b_{00}) = 2$$

$$rank(11, a, WT) = rank(rank(rank(11, 0, b_{\epsilon}) = 5, 0, b_0) = 3, 1, b_{00}) = 2$$

Pseudocode for rank on WT

```
rank(i, c, WT)
00 p \leftarrow b_{\epsilon}
01 i \leftarrow 0
02
     while not p! = codeword(c) do
03
        if codeword(c)[j] = 0 then
04
           i \leftarrow i - rank(i, 1, b_n)
05
           p \leftarrow p0
06
      else
07
           i \leftarrow rank(i, 1, b_p)
08
           p \leftarrow p1
09
      return i
```

This code can also be used in a more space-efficient WT variant.

Huffman shaped wavelet tree

Avg. depth: $H_0(BWT)$. Total space: $\approx nH_0 + 2\sigma \log n$

Huffman shaped wavelet tree

```
arrd$rcbbraaaaabba
           1000000000111111001
         rrd$rcbbrbb
                       aaaaaaaa
         11001000100
      d$cbbbb
                 rrrr
       0001111
    d$c
             bbbb
    100
  $с
rank(11, a, WT) = rank(11, 1, b_{\epsilon}) = 2
```

Huffman shaped wavelet tree

```
arrd$rcbbraaaaabba
           1000000000111111001
         rrd$rcbbrbb
                       aaaaaaa
         11001000100
      d$cbbbb
                 rrrr
       0001111
    d$c
             bbbb
    100
  $с
  01
rank(11, a, WT) = rank(11, 1, b_{\epsilon}) = 2
```

Summary

- Using a wavelet tree we can answer rank() in $\mathcal{O}(\log \sigma)$ time
- Using backward search in *BWT* we can count patterns in $\mathcal{O}(m\log \sigma)$ independent of n, the text size
- Space required for the index is just the wavelet tree and the C array: ≈ n log σ + σ log n bits or O(n + σ) words
- for locate queries we need the SA as well: same time, n log n additional bits.