Formulario Procesamiento Digital de Señales

$$\sum_{n=0}^{M} \alpha^n = \frac{1 - \alpha^{M+1}}{1 - \alpha} \tag{1}$$

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}, \quad |a| < 1 \tag{2}$$

$$\operatorname{sen}(A \pm B) = \operatorname{sen}(A)\operatorname{cos}(B) \pm \operatorname{cos}(A)\operatorname{sen}(B) \tag{3}$$

$$\cos(A \pm B) = \cos(A)\cos(B) \mp \sin(A)\sin(B) \tag{4}$$

$$\cos^2(A) = \frac{1}{2}(1 + \cos(2A)) \tag{5}$$

$$sen^{2}(A) = \frac{1}{2}(1 - \cos(2A)) \tag{6}$$

$$\operatorname{sen}(A)\operatorname{sen}(B) = \frac{1}{2}\left(\cos(A-B) - \cos(A+B)\right) \tag{7}$$

$$\cos(A)\cos(B) = \frac{1}{2}\left(\cos(A-B) + \cos(A+B)\right) \tag{8}$$

$$\operatorname{sen}(A)\operatorname{cos}(B) = \frac{1}{2}\left(\operatorname{sen}(A-B) + \operatorname{sen}(A+B)\right) \tag{9}$$

$$\operatorname{sen}\left(\frac{A}{2}\right) = \sqrt{\frac{1}{2}\left(1 - \cos(A)\right)} \tag{10}$$

$$\cos\left(\frac{A}{2}\right) = \sqrt{\frac{1}{2}\left(1 + \cos(A)\right)}\tag{11}$$

$$e^{j\omega} = \cos(\omega) + j\operatorname{sen}(\omega) \tag{12}$$

$$\cos(\omega) = \frac{e^{j\omega} + e^{-j\omega}}{2} \tag{13}$$

$$\operatorname{sen}(\omega) = \frac{e^{j\omega} - e^{-j\omega}}{2j} \tag{14}$$

Cuadro 1: Transformada z de algunas funciones comunes

Señal $x(n)$	Transformada $z, X(z)$	ROC
$\delta(n)$	1	Plano z
u(n)	$\frac{1}{1-z^{-1}}$	z > 1
$a^n u(n)$	$\frac{1}{1 - az^{-1}}$	z > a
$na^nu(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-(a^n)u(-n-1)$	$\frac{1}{1 - az^{-1}}$	z < a
$-n(a^n)u(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\cos(\omega_0 n)u(n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
$\operatorname{sen}(\omega_0 n)u(n)$	$\frac{z^{-1} \sin \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}}$	z > 1
$a^n \cos(\omega_0 n) u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
$a^n \operatorname{sen}(\omega_0 n) u(n)$	$\frac{az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a

Propiedad	Dominio n	b Dominio z	ROC
Notación	$x(n) \\ x_1(n)$	$\frac{X(z)}{X_1(z)}$	ROC: $r_2 < z < r_1$ ROC ₁
	$x_2(n)$	$X_2(z)$	ROC_2
Linealidad	$a_1 x_1(n) + a_2 x_2(n)$	$a_1 X_1(z) + a_2 X_2(z)$	por lo menos $ROC_1 \cap ROC_2$
Desplazamiento en n	x(n-k)	$z^{-k}X(z)$	como la de $X(z)$ excepto $z=0$ si $k>0$ y $z=\infty$ si $k<0$
Escalado en z	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$
Reflexión en n	x(-n)	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$
Conjugación	$\overline{x}(n)$	$\overline{X}(ar{z})$	ROC
Parte real	$\mathrm{Re}\{x(n)\}$	$\frac{1}{2} \left[X(z) + \overline{X}(\overline{z}) \right]$	Incluye ROC
Parte imaginaria	$\operatorname{Im}\{x(n)\}$	$rac{1}{2}\left[X(z)-\overline{X}(\overline{z}) ight]$	Incluye ROC
Derivación en z	nx(n)	$-zrac{dX(z)}{dz}$	$r_2 < z < r_1$
Convolución	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	Por lo menos $ROC_1 \cap ROC_2$
Correlación	$r_{x_1x_2}(n) = x_1(n) * x_2(-n)$	$R_{x_1x_2} = X_1(z)X_2(z^{-1})$	Por lo menos la intersección de ROC ₁ y la de $X_2(z^{-1})$
Teorema del valor inicial	Si $x(n)$ es causal	$x(0) = \lim_{z \to \infty} X(z)$	
Multiplicación		$\frac{1}{2\pi j} \oint_C X_1(v) X_2\left(\frac{z}{v}\right) v^{-1} dv$	Por lo menos $r_{1l}r_{2l} < z < r_{1u}r_{2u}$
Relación de Parseval	$\sum_{n=-\infty}^{\infty} x_1(n)\overline{x_2}(n) =$	$\frac{1}{2\pi j} \oint_C X_1(v) \overline{X_2} \left(\frac{1}{\overline{v}}\right) v^{-1} dv$	

Cuadro 3: Propiedades de la DFT

Propiedad	Dominio temporal	Dominio frecuencial
Notación	x(n), y(n)	X(k), Y(k)
Periodicidad	x(n) = x(n+N)	X(k) = X(k+N)
Linealidad	$a_1x_1(n) + a_2x_2(n)$	$a_1 X_1(k) + a_2 X_2(k)$
Reflexión temporal	x(N-n)	X(N-k)
Desplazamiento temporal circular	$x((n-l))_N$	$X(k) e^{-j2\pi kl/N}$
Desplazamiento frecuencial circular	$x(n)e^{j2\pi ln/N}$	$X((k-l))_N$
Conjugación compleja	$\overline{x}(n)$	$\overline{X}(N-k)$
Convolución circular	$x_1(n) \otimes x_2(n)$	$X_1(k)X_2(k)$
Correlación circular	$x(n) \ \overline{\mathbb{y}}(-n)$	$X(k)\overline{Y}(k)$
Multiplicación de dos secuencias	$x_1(n)x_2(n)$	$\frac{1}{N}X_1(k) \otimes X_2(k)$
Teorema de Parseval	$\sum_{n=0}^{N-1} x(n)\overline{y}(n)$	$\frac{1}{N} \sum_{k=0}^{N-1} X(k) \overline{Y}(k)$

Cuadro 4: Simetrías en filtros FIR de fase lineal

Simetría	Simétrica $h(n) = h(M - 1 - n)$	Antisimétrica $h(n) = -h(M - 1 - n)$
M par	$H_r(0) = 2\sum_{k=0}^{\frac{M}{2}-1} h(k)$	$H_r(0) = 0$ no apto como filtro paso bajos
M impar	$H_r(0) = h\left(\frac{M-1}{2}\right) + 2\sum_{k=0}^{\frac{M-3}{2}} h(k)$	$H_r(0)=H_r(\pi)=0$ no apto como filtro paso bajos o altos

Cuadro 5: Funciones utilizadas como ventanas.

Ventana	$h(n), 0 \le n \le M - 1$	Ancho lobular	Pico lóbulo lateral [dB]
Rectangular	1	$4\pi/M$	-13
Bartlett (triangular)	$1 - \frac{2\left n - \frac{M-1}{2}\right }{M-1}$	$8\pi/M$	-27
Hamming	$0.54 - 0.46 \cos \frac{2\pi n}{M - 1}$	$8\pi/M$	-32
Hanning	$\frac{1}{2} \left(1 - \cos \frac{2\pi n}{M - 1} \right)$	$8\pi/M$	-43

$h(n) = h(M - 1 - n)$ $M \text{ Impar} \text{Caso } 1$ $Q(\omega) = 1$ $P(\omega) = \sum_{k=0}^{(M-1)/2} a(k) \cos \omega k$ $a(k) = \left\{ h\left(\frac{M-1}{2}\right) & k = 0 \\ 2h\left(\frac{M-1}{2}\right) & k = 1, 2, \dots, \frac{M-1}{2} \right\}$ $Q(\omega) = \cos\left(\frac{\omega}{2}\right)$ $Q(\omega) = \cos\left(\frac{\omega}{2}\right)$ $P(\omega) = \sum_{k=0}^{M-1} \tilde{b}(k) \cos(\omega k)$ $\tilde{b}(0) = h\left(\frac{M}{2} - 1\right)$ $\tilde{b}(k) = 4h\left(\frac{M}{2} - k\right) - \tilde{b}(k-1), 1 \le k \le \frac{M}{2}$ $\tilde{b}\left(\frac{M}{2} - 1\right) = 4h(0)$	Simétrico	Antisimétrico
$= 1$ $= 1$ $k = 0$ $2h\left(\frac{M-1}{2}\right)^2$ $= \cos\left(\frac{\omega}{2}\right)$ $= \cos\left(\frac{\omega}{2}\right)$ $= \frac{\frac{M}{2}-1}{2}$ $= \sum_{k=0}^{M} \tilde{b}(k)$ $= \frac{M}{2} - 1$ $= \frac{1}{2} - 1$ $= \frac{1}{2} - 1$ $= -1$ $= -1$	(n) = h(M - 1 - n)	h(n) = -h(M - 1 - n)
$Q(\omega) = 1$ $P(\omega) = \sum_{k=0}^{(M-1)/2} c$ $A(k) = \begin{cases} h\left(\frac{M-1}{2}\right) \\ 2h\left(\frac{M}{2}\right) \end{cases}$ $Q(\omega) = \cos\left(\frac{\omega}{2}\right)$ $Q(\omega) = \sum_{k=0}^{M-1} \tilde{b}(k)$ $\tilde{b}(0) = h\left(\frac{M}{2} - \frac{1}{2}\right)$ $\tilde{b}(k) = 4h\left(\frac{M}{2} - \frac{1}{2}\right)$	'aso 1	Caso 3 $Q(\omega) = \operatorname{sen}(\omega)$
$Q(\omega) = 1$ $P(\omega) = \sum_{k=0}^{(M-1)/2} c$ $A(k) = \begin{cases} h\left(\frac{M-1}{2}\right) \\ 2h\left(\frac{M-1}{2}\right) \end{cases}$ $Q(\omega) = \cos\left(\frac{\omega}{2}\right)$ $Q(\omega) = \sum_{k=0}^{M} \tilde{b}(k)$ $\tilde{b}(0) = h\left(\frac{M}{2} - \frac{1}{2}\right)$ $\tilde{b}(k) = 4h\left(\frac{M}{2} - \frac{1}{2}\right)$		$P(\omega) = \sum_{i} \tilde{c}(k) \cos \omega k$
$P(\omega) = \sum_{k=0}^{(M-1)/2} c$ $a(k) = \begin{cases} h\left(\frac{M-1}{2}\right) \\ 2h\left(\frac{M-1}{2}\right) \end{cases}$ $Q(\omega) = \cos\left(\frac{\omega}{2}\right)$ $Q(\omega) = \sum_{k=0}^{M-1} \tilde{b}(k)$ $\tilde{b}(0) = h\left(\frac{M}{2} - \frac{1}{2}\right)$ $\tilde{b}(k) = 4h\left(\frac{M}{2} - \frac{1}{2}\right)$	$Q(\omega)=1$	k=0
$a(k) = \begin{cases} h\left(\frac{M-1}{2}\right) \\ 2h\left(\frac{M-1}{2}\right) \end{cases}$ $Caso 2 \\ Q(\omega) = cos\left(\frac{\omega}{2}\right)$ $P(\omega) = \sum_{k=0}^{\frac{M}{2}-1} \tilde{b}(k)$ $\tilde{b}(0) = h\left(\frac{M}{2} - \frac{1}{2}\right)$ $\tilde{b}(k) = 4h\left(\frac{M}{2} - \frac{1}{2}\right)$	$a(\omega) = \sum_{k=1}^{(M-1)/2} a(k) \cos \omega k$	$\tilde{c}\left(\frac{M-3}{2}\right) = 2h(0)$
$a(k) = \begin{cases} \frac{\alpha}{2h} \left(\frac{M-2}{2} \right) \\ \frac{1}{2h} \left(\frac{M-2}{2} \right) \\ \frac{1}{2h} \left(\frac{M}{2} \right) \\ \frac{1}{2h} \left(\frac{M}{2h} \right) $		$\tilde{c}\left(\frac{M-5}{2}\right) = 4h(1)$
Caso 2 $Q(\omega) = \cos\left(\frac{\omega}{2}\right)$ $Q(\omega) = \left(\frac{M}{2}\right)$ $P(\omega) = \sum_{k=0}^{\frac{M}{2}-1} \tilde{b}(k)$ $\tilde{b}(0) = h\left(\frac{M}{2} - \frac{M}{2}\right)$ $\tilde{b}(k) = 4h\left(\frac{M}{2} - \frac{M}{2}\right)$	$k=1,2,\ldots,$	$\tilde{c}(k-1) - \tilde{c}(k+1) = 4h\left(\frac{M-1}{2} - k\right), 2 \le k \le \frac{M-5}{2}$
Caso 2 $Q(\omega) = \cos\left(\frac{\omega}{2}\right)$ $P(\omega) = \sum_{k=0}^{\frac{M}{2}-1} \tilde{b}(k)$ $\tilde{b}(0) = h\left(\frac{M}{2} - \frac{M}{2}\right)$ $\tilde{b}(k) = 4h\left(\frac{M}{2} - \frac{M}{2}\right)$ $\tilde{b}\left(\frac{M}{2} - 1\right) = 4$		\
$Q(\omega) = \cos\left(\frac{\omega}{2}\right)$ $P(\omega) = \sum_{k=0}^{\frac{M}{2}-1} \tilde{b}(k)\cos(\omega k)$ $\tilde{b}(0) = h\left(\frac{M}{2} - 1\right)$ $\tilde{b}(k) = 4h\left(\frac{M}{2} - k\right) - \tilde{b}(k-1), 1 \le k \le \frac{M}{2}$ $\tilde{b}\left(\frac{M}{2} - 1\right) = 4h(0)$	aso 2	Caso 4
$P(\omega) = \sum_{k=0}^{\frac{M}{2} - 1} \tilde{b}(k) \cos(\omega k)$ $\tilde{b}(0) = h\left(\frac{M}{2} - 1\right)$ $\tilde{b}(k) = 4h\left(\frac{M}{2} - k\right) - \tilde{b}(k - 1), 1 \le k \le \frac{M}{2}$ $\tilde{b}\left(\frac{M}{2} - 1\right) = 4h(0)$	$\mathcal{Q}(\omega) = \cos\left(\frac{\omega}{2}\right)$	$Q(\omega) = \operatorname{sen}\left(\frac{\omega}{2}\right)$
$\tilde{b}(0) = h\left(\frac{M}{2} - 1\right)$ $\tilde{b}(k) = 4h\left(\frac{M}{2} - k\right) - \tilde{b}(k-1), 1 \le k \le \frac{M}{2}$ $\tilde{b}\left(\frac{M}{2} - 1\right) = 4h(0)$	$rac{M}{2} - 1$ $\sum_{i=1}^{M} \frac{1}{\tilde{b}(k)\cos(\omega i k)}$	$P(\omega) = \sum_{k=0}^{M-1} \tilde{d}(k) \cos(\omega k)$
$\tilde{b}(0) = h\left(\frac{M}{2} - 1\right)$ $\tilde{b}(k) = 4h\left(\frac{M}{2} - k\right) - \tilde{b}(k-1), 1 \le k \le \frac{M}{2}$ $\tilde{b}\left(\frac{M}{2} - 1\right) = 4h(0)$	k=0	k=0
$\tilde{b}(k) = 4h\left(\frac{M}{2} - k\right) - \tilde{b}(k-1), 1 \le k \le \frac{M}{2}$ $\tilde{b}\left(\frac{M}{2} - 1\right) = 4h(0)$	$(0) = h\left(\frac{M}{2} - 1\right)$	$\tilde{d}\left(\frac{M}{2} - 1\right) = 4h(0)$
$ ilde{b}\left(rac{M}{M}-1 ight)\equiv 4b(0)$	$(k) = 4h\left(\frac{M}{2} - k\right) - \tilde{b}(k-1), 1 \le k \le \frac{M}{2} - 2$	
$\begin{pmatrix} 2 & 1 \end{pmatrix} - \frac{1}{10}\begin{pmatrix} 3 \end{pmatrix}$	$\tilde{b}\left(\frac{M}{2} - 1\right) = 4h(0)$	$\tilde{d}(0) - \frac{1}{2}\tilde{d}(1) = 2h\left(\frac{\tilde{M}}{2} - 1\right)$

Cuadro 7: Características de Filtros Paso Bajo Analógicos

Filtro	Función de Transferencia	Características
Butterworth (todo-polos)	$ H(\Omega) ^2 = \frac{1}{1 + (\Omega/\Omega_C)^{2N}}$ Ω_C : frecuencia de corte	$ H(\Omega) $ monótona en las bandas de paso y rechazo.
Chebyshev, Tipo I (todo- polos)	$ H(\Omega) ^2 = \frac{1}{1 + \epsilon^2 T_N^2 \left(\frac{\Omega}{\Omega_P}\right)}$ $T_N: \text{ polinomio de Chebyshev}$ $T_0(x) = 1$ $T_1(x) = x$ $T_{N+1}(x) = 2xT_N(x) - T_{N-1}(x)$	Rizado constante en la banda de paso y característica monótona en la banda de rechazo.
Chebyshev, Tipo II (polos y ceros)	$ H(\Omega) ^2 = \frac{1}{1 + \epsilon^2 \left[\frac{T_N^2 \left(\frac{\Omega_S}{\Omega_P} \right)}{T_N^2 \left(\frac{\Omega_S}{\Omega} \right)} \right]}$ $T_N: \text{ polinomio de Chebyshev}$	Rizado constante en la banda de rechazo y característica monótona en la banda de paso.
Elíptico ó Cauer (polos y ceros)	$ H(\Omega) ^2 = \frac{1}{1 + \epsilon^2 U_N \left(\frac{\Omega}{\Omega_P}\right)}$ U_N : función elíptica Jacobiana de orden N	Rizado constante tanto en la banda de paso como en la de rechazo.
Bessel (todo-polos)	$H(s) = rac{1}{B_N(s)}$ $B_N(s)$: funciones de Bessel $B_0(s) = 1$ $B_1(s) = s + 1$ $B_N(s) = (2N - 1)B_{N-1}(s) + s^2B_N(s)$	Respuesta de fase lineal en la banda de paso (aunque se destruye en la conversión a digital). $V_{-2}(s)$

Cuadro 8: Transformaciones de frecuencia para filtros analógicos.

Tipo de filtro deseado	Transformación	Nuevas frecuencias de corte
Paso bajo	$s \to \frac{\Omega_P}{\Omega_P'} s$	Ω_P'
Paso alto	$s \to \frac{\Omega_P \Omega_P'}{}$	Ω_P'
Paso banda	$s \to \Omega_P \frac{s^2 + \Omega_l \Omega_u}{s(\Omega_u - \Omega_l)}$	Ω_u, Ω_l
Supresor de banda	$s \to \Omega_P \frac{s(\Omega_u - \Omega_l)}{s^2 + \Omega_l \Omega_u}$	Ω_u, Ω_l

 Ω_P : frecuencia de corte del prototipo

 Ω_l : frecuencia de corte inferior Ω_u : frecuencia de corte superior

Cuadro 9: Transformaciones de frecuencia para filtros digitales.

Tipo de filtro deseado	Transformación	Constantes	Nuevas frecuencias
			de corte
Paso bajo	$z^{-1} \to \frac{z^{-1} - a}{1 - az^{-1}}$	$a = \frac{\operatorname{sen}\left(\frac{\omega_P - \omega_P'}{2}\right)}{\operatorname{sen}\left(\frac{\omega_P + \omega_P'}{2}\right)}$ $a = \frac{\operatorname{cos}\left(\frac{\omega_P + \omega_P'}{2}\right)}{\operatorname{cos}\left(\frac{\omega_P - \omega_P'}{2}\right)}$	ω_P'
Paso alto	$z^{-1} \to \frac{z^{-1} + a}{1 + az^{-1}}$	$a = \frac{\cos\left(\frac{\omega_P + \omega_P'}{2}\right)}{\cos\left(\frac{\omega_P - \omega_P'}{2}\right)}$	ω_P'
Paso banda	$z^{-1} \to \frac{z^{-2} - a_1 z^{-1} + a_2}{a_2 z^{-2} - a_1 z^{-1} + 1}$		ω_u, ω_l
	\sim^{-2} $q \sim^{-1} + q$	$a_2 = \frac{K-1}{K+1}$ $\alpha = \frac{\cos(\frac{\omega_u + \omega_l}{2})}{\cos(\frac{\omega_u - \omega_l}{2})}$ $K = \cot \frac{\omega_u - \omega_l}{2} \tan \frac{\omega_P}{2}$	
Supresor	$z^{-1} \to \frac{z^{-2} - a_1 z^{-1} + a_2}{a_2 z^{-2} - a_1 z^{-1} + 1}$		ω_u, ω_l
de banda		$a_2 = \frac{1-K}{1+K}$ $\alpha = \frac{\cos(\frac{\omega_u + \omega_l}{2})}{\cos(\frac{\omega_u - \omega_l}{2})}$ $K = \tan^{\omega_u - \omega_l} \tan^{\omega_P}$	
		$K = \tan \frac{\omega_u - \omega_l}{2} \tan \frac{\omega_P}{2}$	

 ω_P : frecuencia de corte normalizada del prototipo

 ω_l : frecuencia de corte normalizada inferior

 ω_u : frecuencia de corte normalizada superior