数学B問題

(100分)

【必答問題】	数学B受験者は	B1,	$\mathbf{B2}$,	B3 を全問解答せよ。
	24 1 2 2 3 1 1			

B 1	次の		を正しく	うめよ。	解答欄には答	えのみ	を記入	せよ。
------------	----	--	------	------	--------	-----	-----	-----

- (1) $(x+2)^2(x-2)^2$ を展開し、整理すると (π) である。
- (2) 2次関数 y=(x-1)(x-3) ……①がある。①のグラフの軸の方程式は x= (4) であり,関数①の $0 \le x \le 5$ における最大値は (b) である。
- (3) 男子4人と女子2人の計6人が横一列に並ぶ並び方は全部で 田 通りある。このうち,女子2人が隣り合う並び方は全部で 田 通りある。
- (4) AB=3, AC=8, ∠BAC=90°の △ABC がある。△ABC の重心を G, 直線 BG と 辺 AC の交点を D とするとき, 線分 AD の長さは (配点 20)

- $oxedebar{B2}$ さいころを 1 回投げて,3 以上の目が出れば A の勝ち,2 以下の目が出れば B の勝ちとするゲームを行う。このゲームを繰り返し,A,B のうち,先に 3 回ゲームに勝った方を優勝とする。
 - (1) 1回のゲームで A が勝つ確率を求めよ。また、3回目のゲームで A が優勝する確率を 求めよ。
 - (2) 4回目のゲームで A が優勝する確率を求めよ。

③ 優勝が決まるまでに行うゲームの回数の期待値を求めよ。

(配点 20)

THE RESIDENCE OF THE RESIDENCE OF THE PERSON OF THE PERSON

20(2

- $oxed{B3}$ \angle C が鈍角である \triangle ABC において,AB = 5k, $BC = \sqrt{10}\,k$, $CA = 3k \;(k > 0)$ とする。 また, \triangle ABC の面積は 18 である。
 - (1) cos A の値を求めよ。
 - (2) kの値を求めよ。また、 $\sin B$ 、 $\sin C$ の値をそれぞれ求めよ。
 - (3) 辺 BC(両端を除く)上の点 P から直線 AB,AC にそれぞれ垂線 PD,PE を引く。 $\triangle PDE \ om fi \ \frac{9}{10} \ om fi \ Section 20)$

【選択問題】 数学B受験者は、次のB4 $\sim B8$ のうちから2題を選んで解答せよ。

- $\mathbf{B4}$ x の 3 次式 $P(x) = x^3 (a-1)x^2 + 3(a-2)x 2a$ がある。ただし、a は実数の定数とする。
 - (1) P(x)をx-2で割った商を求めよ。
 - (2) 方程式 P(x) = 0 の 1 つの解が 1+2i であるとき,a の値を求めよ。ただし,i は虚数単位とする。
 - (3) 方程式 P(x)=0 が虚数解をもつとする。このとき,P(x)=0 の3つの解の平方の和 が6であるような a の値を求めよ。 (配点 20)
 - **B5** 座標平面上に円 $C: x^2 + y^2 6x 2y + 5 = 0$ と直線 $\ell: y = mx$ (m は正の定数) があり, 直線 ℓ は円 C に接している。
 - (1) 円 C の中心と半径を求めよ。
 - (2) mの値を求めよ。

0

(3) 円 C と等しい半径の円で、直線 ℓ と x 軸の両方に接する円 K の方程式を求めよ。ただし、円 K の中心の x 座標と y 座標はともに正とする。 (配点 20)

A STATE OF THE PARTY OF THE PAR