Notes on Stein's Method (221201)

Jiachun Jin

School of Information Science and Technology

ShanghaiTech University

This note will contain some core concepts required to understand the Stein's method.

Contents

1	Kernelized Stein discrepancy	1
	1.1 Background [Liu, 2016]	1
	1.2 Stein's identity	2
	1.3 (Kernelized) Stein discrepancy	
2	Stein Variational Gradient Descent	4
	2.1 Multi-dimensional KSD	4
	2.2 Variational inference with smooth transforms	5
3	Amortizd SVGD	6
Α	The reproducing property	6
В	Lemmas	6
C	Introduction to measure theory	6

1 Kernelized Stein discrepancy

1.1 Background [Liu, 2016]

Given data: $\{\mathbf{x}_i\}_{i=1}^n$, and model: $p(\mathbf{x})$. We want some discrepancy measures that can tell the consistency between data and models. They have wide applications in:

- ullet Model evalution: $\{\mathbf{x}_i\}_{i=1}^n$ and $p(\mathbf{x})$ are both given, (discrepancy measures tell us how well a model fits data).
- Frequentist parameter learning: $\{\mathbf{x}_i\}_{i=1}^n$ is given and we optimize $p(\mathbf{x})$, (find the model that minimizes the discrepancy with data).

• Sampling for Bayesian inference: $p(\mathbf{x})$ is given and we want to optimize $\{\mathbf{x}_i\}_{i=1}^n$, (find a set of points ("data") to approximate the posterior distribution).

The discrepancy measure should to be tractably computable, the famous KL divergence $D_{\mathrm{KL}}\left[p(\mathbf{x}) \parallel q(\mathbf{x})\right] = \mathbb{E}_{p(\mathbf{x})}\left[\log \frac{p(\mathbf{x})}{q(\mathbf{x})}\right]$ is not ideal for this case because:

- $\log q(\mathbf{x})$ is required, however, a lot models are only known up to a normalization constant, e.g. energy based models (EBMs): $q(\mathbf{x}) = \exp(-E(\mathbf{x}))/Z$, where $Z = \int_{\mathcal{X}} \exp(-E(\mathbf{x})) d\mathbf{x}$ is the normalization constant.
- It is not straightforward to talk about the KL divergence $D_{\mathrm{KL}}\left(\{\mathbf{x}_i\}_{i=1}^n \mid\mid p(\mathbf{x})\right)$ between a set of data points (drawn from a distribution q) and the model, since in this way we have to do density estimation (or entropy estimation) for $\{\mathbf{x}_i\}_{i=1}^n$.

Kernelized Stein discrepancy (KSD) [Liu et al., 2016] provides a convenient way to directly assess the compatibility of data-model pairs, even for models with intractable normalization constant.

For simplicity, in the following $f(\cdot)$ is always referred to a scalar-valued function, and the data points \mathbf{x} 's are also scalars.

1.2 Stein's identity

For distributions with smooth density $p(\mathbf{x})$ and function $f(\mathbf{x})$ (supported on \mathbb{R}) that satisfies $\lim_{\|\mathbf{x}\|\to\infty} p(\mathbf{x})f(\mathbf{x}) = 0$, we have:

$$\mathbb{E}_{p(\mathbf{x})} \left[\nabla_{\mathbf{x}} \log p(\mathbf{x}) f(\mathbf{x}) + \nabla_{\mathbf{x}} f(\mathbf{x}) \right] = 0, \quad \forall f.$$
 (1)

Proof.

$$\int p(\mathbf{x}) \left[\nabla_{\mathbf{x}} \log p(\mathbf{x}) f(\mathbf{x}) + \nabla_{\mathbf{x}} f(\mathbf{x}) \right] = \int \left[\nabla_{\mathbf{x}} p(\mathbf{x}) f(\mathbf{x}) + p(\mathbf{x}) \nabla_{\mathbf{x}} f(\mathbf{x}) \right] d\mathbf{x}$$

$$= \int \nabla_{\mathbf{x}} \left[f(\mathbf{x}) p(\mathbf{x}) \right] d\mathbf{x}$$

$$= \lim_{\mathbf{x} \to \infty} p(\mathbf{x}) f(\mathbf{x}) - \lim_{\mathbf{x} \to -\infty} p(\mathbf{x}) f(\mathbf{x})$$

$$= 0.$$
(2)

Here we define $A_p f(\mathbf{x}) = \nabla_{\mathbf{x}} \log p(\mathbf{x}) f(\mathbf{x}) + \nabla_{\mathbf{x}} f(\mathbf{x})$, where A_p is called the *Stein operator*. And we say that a function $f: \mathcal{X} \to \mathbb{R}$ is in the *Stein class* of p if f is smooth and satisfies:

$$\int_{\mathbf{x} \in \mathcal{X}} \nabla_{\mathbf{x}} \left(f(\mathbf{x}) p(\mathbf{x}) \right) d\mathbf{x} = 0.$$
(3)

1.3 (Kernelized) Stein discrepancy

Consider $\mathbb{E}_q\left[\mathcal{A}_pf(\mathbf{x})\right] = \mathbb{E}_q\left[\mathcal{A}_pf(\mathbf{x})\right] - \mathbb{E}_q\left[\mathcal{A}_qf(\mathbf{x})\right] = \mathbb{E}_{q(\mathbf{x})}\left[f(\mathbf{x})\left(\nabla_{\mathbf{x}}\log p(\mathbf{x}) - \nabla_{\mathbf{x}}\log q(\mathbf{x})\right)\right]$ (the equation holds because of Lemma 1). In this way, Stein's identity provides a mechanism to compare two different distributions. It is convenient to consider the most discriminant f that maximizes the violation of Stein's identity, this leads to the notion of Stein discrepancy for measuring the difference between two distributions p and q:

$$\sqrt{S(q,p)} = \max_{f \in \mathcal{F}} \mathbb{E}_{q(\mathbf{x})} \left[\mathcal{A}_p f(\mathbf{x}) \right], \tag{4}$$

where \mathcal{F} is a proper set of functions that we optimize over.

When f can be represented as a linear combination $f(\cdot) = \sum_i w_i f_i(\cdot)$ of a set of **known** basis functions $f_i(\cdot)$, with unknown coefficients w_i (give an example of Fourier series here). In this case we have:

$$\mathbb{E}_{q}\left[\mathcal{A}_{p}f\right] = \mathbb{E}_{\mathbf{x} \sim q}\left[\mathcal{A}_{p} \sum_{i} w_{i} f_{i}(\mathbf{x})\right]$$

$$= \sum_{i} w_{i} \beta_{i},$$
(5)

where $\beta_i = \mathbb{E}_{q(\mathbf{x})}[\mathcal{A}_p f_i(\mathbf{x})]$, which is a fixed scalar when \mathbf{x} is a scalar. Then the optimization problem delivered in equation 4 becomes to:

$$\max_{\mathbf{w}} \sum_{i} w_{i} \beta_{i}, \quad s.t. \quad \|\mathbf{w}\| \le 1, \tag{6}$$

and the optimal solution with closed form can be easily got as $w_i^* = \beta_i / \|\beta_i\|$.

Kernelized Stein discrepancy (KSD) takes $\mathcal F$ to be the unit ball of a reproducing kernel Hilbert space (RKHS) with kernel $k(\cdot,\cdot)$. (The RKHS $\mathcal H$ related to $k(\cdot,\cdot)$ contains functions of form $f(\cdot) = \sum_i w_i k(\mathbf x_i,\cdot)$. Q: what is $\mathbf x_i$? A: related to the reproducing property.) And KSD is defined as:

$$\sqrt{S(q,p)} = \max_{f \in \mathcal{H}} \mathbb{E}_{q(\mathbf{x})} \left[\mathcal{A}_p f(\mathbf{x}) \right], \quad s.t. \quad ||f||_{\mathcal{H}} \le 1.$$
 (7)

To use a RKHS \mathcal{H} as \mathcal{F} , we should make sure that $\forall f \in \mathcal{H}$ is in the *Stein class* of p, and this is carefully discussed in Section 3 of [Liu et al., 2016], in the following we simply assume $k(\mathbf{x},\cdot)$ and $k(\cdot,\mathbf{x})$ are in the *Stein class* of p for any fixed \mathbf{x} .

Our goal is to derive a computational tractable closed form solution to equation 7. First, by the reproducing property of RKHS [Sejdinovic and Gretton, 2012], we have:

$$f(\mathbf{x}) = \langle f(\cdot), k(\mathbf{x}, \cdot) \rangle_{\mathcal{H}},\tag{8}$$

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \langle f(\cdot), \nabla_{\mathbf{x}} k(\mathbf{x}, \cdot) \rangle_{\mathcal{H}}, \tag{9}$$

with the reproducing property and the definition of Stein's operator, we have:

$$\mathbb{E}_{q(\mathbf{x})}\left[A_p f(\mathbf{x})\right] = \mathbb{E}_{q(\mathbf{x})}\left[\nabla_{\mathbf{x}} \log p(\mathbf{x}) f(\mathbf{x}) + \nabla_{\mathbf{x}} f(\mathbf{x})\right] \tag{10}$$

$$= \mathbb{E}_{q(\mathbf{x})} \left[\nabla_{\mathbf{x}} \log p(\mathbf{x}) \langle f(\cdot), k(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} + \langle f(\cdot), \nabla_{\mathbf{x}} k(\mathbf{x}, \cdot) \rangle_{\mathcal{H}} \right]$$
(11)

$$= \langle f(\cdot), \mathbb{E}_{q(\mathbf{x})} \left[k(\mathbf{x}, \cdot) \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \nabla_{\mathbf{x}} k(\mathbf{x}, \cdot) \right] \rangle_{\mathcal{H}}$$
(12)

$$= \langle f(\cdot), \mathbb{E}_{q(\mathbf{x})} \left[\mathcal{A}_{p} k(\mathbf{x}, \cdot) \right] \rangle_{\mathcal{H}} \tag{13}$$

$$= \langle f(\cdot), \beta_{q,p}(\cdot) \rangle_{\mathcal{H}}, \tag{14}$$

equation 12 holds because of the linearity of expectation and inner product operation, in equation 14 we define $\beta_{q,p}(\cdot) = \mathbb{E}_{q(\mathbf{x})}\left[\mathcal{A}_p k(\mathbf{x},\cdot)\right]$, and similar to equation 6, we have the optimal solution to equation 7:

$$f^*(\cdot) = \beta_{q,p}(\cdot) / \|\beta_{q,p}(\cdot)\|_{\mathcal{H}},\tag{15}$$

and $\sqrt{S(q,p)} = \|\beta_{q,p}(\cdot)\|_{\mathcal{H}}$, $S(q,p) = \|\beta_{q,p}(\cdot)\|_{\mathcal{H}}^2$. Thus, we have:

$$S(q,p) = \langle \beta_{q,p}(\cdot), \beta_{q,p}(\cdot) \rangle_{\mathcal{H}}$$
(16)

$$= \langle \mathbb{E}_{\mathbf{x} \sim q} \left[\mathcal{A}_p k(\mathbf{x}, \cdot) \right], \mathbb{E}_{\mathbf{x}' \sim q} \left[\mathcal{A}_p k(\mathbf{x}', \cdot) \right] \rangle_{\mathcal{H}}$$
(17)

$$= \langle \mathbb{E}_{\mathbf{x} \sim q} \left[(s_p(\mathbf{x}) - s_q(\mathbf{x})) k(\mathbf{x}, \cdot) \right], \mathbb{E}_{\mathbf{x}' \sim q} \left[(s_p(\mathbf{x}') - s_q(\mathbf{x}')) k(\mathbf{x}', \cdot) \right] \rangle_{\mathcal{H}}$$
(18)

$$= \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim q} \left[(s_p(\mathbf{x}) - s_q(\mathbf{x}))^\top \underbrace{k(\mathbf{x}, \mathbf{x}')(s_p(\mathbf{x}') - s_q(\mathbf{x}'))}_{\oplus} \right], \tag{19}$$

we use $s_p(\mathbf{x})$ in equation 18 to denote $\nabla_{\mathbf{x}} \log p(\mathbf{x})$, and the equality holds because of Lemma 1. The form in equation 19 still contains the intractable $s_q(\cdot)$, we will further make it computationally tractable.

First, note that we can apply Lemma 1 to ① in equation 19 by keeping \mathbf{x} fixed (denote $k(\mathbf{x}, \mathbf{x}') = k_{\mathbf{x}}(\mathbf{x}')$ in this case), then we have:

$$\mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim q} \left[(s_p(\mathbf{x}) - s_q(\mathbf{x}))^{\top} k_{\mathbf{x}}(\mathbf{x}') (s_p(\mathbf{x}') - s_q(\mathbf{x}')) \right]$$
(20)

$$= \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim q} \left[(s_p(\mathbf{x}) - s_q(\mathbf{x}))^{\top} \mathcal{A}_p k_{\mathbf{x}}(\mathbf{x}') \right]$$
(21)

$$= \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim q} \left[\left(s_p(\mathbf{x}) - s_q(\mathbf{x}) \right)^\top \left(k_{\mathbf{x}}(\mathbf{x}') \nabla_{\mathbf{x}'} \log p(\mathbf{x}') + \nabla_{\mathbf{x}'} k_{\mathbf{x}}(\mathbf{x}') \right) \right]$$
(22)

$$= \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim q} \left[(s_p(\mathbf{x}) - s_q(\mathbf{x}))^\top v(\mathbf{x}, \mathbf{x}') \right], \tag{23}$$

where we denote $v(\mathbf{x}, \mathbf{x}') = \mathcal{A}_p^{\mathbf{x}'} k_{\mathbf{x}}(\mathbf{x}') = k_{\mathbf{x}}(\mathbf{x}') \nabla_{\mathbf{x}'} \log p(\mathbf{x}') + \nabla_{\mathbf{x}'} k_{\mathbf{x}}(\mathbf{x}') \in \mathbb{R}^d$, and $v_{\mathbf{x}'}(\mathbf{x})$ is also in the Stein class, thus Lemma 2 is applicable to equation 23, and we can have:

$$\mathbb{E}_{\mathbf{x},\mathbf{x}'\sim q}\left[(s_p(\mathbf{x}) - s_q(\mathbf{x}))^{\top} v_{\mathbf{x}'}(\mathbf{x})\right] \tag{24}$$

$$= \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim q} \left[\operatorname{trace} \left(\mathcal{A}_p^{\mathbf{x}} v_{\mathbf{x}'}(\mathbf{x}) \right) \right] \tag{25}$$

$$= \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim q} \left[\operatorname{trace} \left(\mathcal{A}_p^{\mathbf{x}} \mathcal{A}_p^{\mathbf{x}'} k(\mathbf{x}, \mathbf{x}') \right) \right]$$
 (26)

$$= \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim q} \left[\operatorname{trace} \left(\nabla_{\mathbf{x}} \log p(\mathbf{x}) v_{\mathbf{x}'}(\mathbf{x})^{\top} + \nabla_{\mathbf{x}} v_{\mathbf{x}'}(\mathbf{x}) \right) \right]$$
(27)

$$= \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim q} \left[\operatorname{trace} \left(\nabla_{\mathbf{x}} \log p(\mathbf{x})^{\top} v_{\mathbf{x}'}(\mathbf{x}) \right) + \operatorname{trace} \left(\nabla_{\mathbf{x}} v_{\mathbf{x}'}(\mathbf{x}) \right) \right], \tag{28}$$

$$= \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim q} \left[s_p(\mathbf{x})^\top k(\mathbf{x}, \mathbf{x}') s_p(\mathbf{x}') + s_p(\mathbf{x})^\top \nabla_{\mathbf{x}'} k(\mathbf{x}, \mathbf{x}') + \operatorname{trace} \left(\nabla_{\mathbf{x}} k(\mathbf{x}, \mathbf{x}') s_p(\mathbf{x}')^\top \right) + \operatorname{trace} \left(\nabla_{\mathbf{x}} \nabla_{\mathbf{x}'} k(\mathbf{x}, \mathbf{x}') \right) \right]$$
(29)

$$= \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim q} \left[s_p(\mathbf{x})^\top k(\mathbf{x}, \mathbf{x}') s_p(\mathbf{x}') + s_p(\mathbf{x})^\top \nabla_{\mathbf{x}'} k(\mathbf{x}, \mathbf{x}') + s_p(\mathbf{x}')^\top \nabla_{\mathbf{x}} k(\mathbf{x}, \mathbf{x}') + \operatorname{trace} \left(\nabla_{\mathbf{x}} \nabla_{\mathbf{x}'} k(\mathbf{x}, \mathbf{x}') \right) \right], \tag{30}$$

now the intractable $s_q(\mathbf{x})$ terms are removed from the formulation of KSD.

2 Stein Variational Gradient Descent

2.1 Multi-dimensional KSD

In the following, we will consider data points take values in $\mathcal{X} \subset \mathbb{R}^d$ and $\phi : \mathcal{X} \to \mathbb{R}^d$. We can apply the Stein identity in equation 1 again by taking $\phi(\mathbf{x})$ as the $f(\mathbf{x})$, a tiny difference is now $\mathbf{x} \in \mathbb{R}^d$ and $\phi(\mathbf{x}) = [\phi_1(\mathbf{x}), \cdots, \phi_d(\mathbf{x})]^\top$ are both d-dimensional vectors, and $\mathcal{A}_p \phi(\mathbf{x}) = \phi(\mathbf{x}) \nabla_{\mathbf{x}} \log p(\mathbf{x})^\top + \nabla_{\mathbf{x}} \phi(\mathbf{x}) \in \mathbb{R}^{d \times d}$. We will also use \mathcal{H}^d to denote the space of vector functions $\mathbf{f} = [f_1, \cdots, f_d]$ with $f_d \in \mathcal{H}$, whose inner product is given by $\langle \mathbf{f}, \mathbf{g} \rangle_{\mathcal{H}^d} = \sum_{i=1}^d \langle f_i, g_i \rangle_{\mathcal{H}}$. And the Stein discrepancy which searches the ϕ in the RKHS \mathcal{H}^d is given by:

$$\sqrt{S(q,p)} = \max_{\phi \in \mathcal{H}^d} \{ \mathbb{E}_{\mathbf{x} \sim q} \left[\operatorname{trace} \left(\mathcal{A}_p \phi(\mathbf{x}) \right) \right] \qquad s.t. \qquad \|\phi\|_{\mathcal{H}^d} \le 1 \},$$
(31)

and the objective of equation 31 can be further written as:

$$\mathbb{E}_{q(\mathbf{x})}\left[\operatorname{trace}\left(\mathcal{A}_{p}\boldsymbol{\phi}(\mathbf{x})\right)\right] \tag{32}$$

$$= \mathbb{E}_{q(\mathbf{x})} \left[\operatorname{trace} \left(\phi(\mathbf{x}) \nabla_{\mathbf{x}} \log p(\mathbf{x})^{\top} \right) + \operatorname{trace} \left(\nabla_{\mathbf{x}} \phi(\mathbf{x}) \right) \right]$$
(33)

$$= \mathbb{E}_{q(\mathbf{x})} \left[\sum_{i=1}^{d} \left(\frac{\partial}{\partial \mathbf{x}_{i}} \phi_{i}(\mathbf{x}) + \frac{\partial}{\partial \mathbf{x}_{i}} \log p(\mathbf{x}) \phi_{i}(\mathbf{x}) \right) \right], \tag{34}$$

and since every $\phi_i(\cdot)$ comes from the RKHS with reproducing kernel $k(\cdot,\cdot)$, by the reproducing property we can have:

$$\phi_i(\mathbf{x}) = \langle \phi_i(\cdot), k(\mathbf{x}, \cdot) \rangle_{\mathcal{H}},\tag{35}$$

$$\frac{\partial}{\partial \mathbf{x}_i} \phi_i(\mathbf{x}) = \langle \phi_i(\cdot), \frac{\partial}{\partial \mathbf{x}_i} k(\mathbf{x}, \cdot) \rangle_{\mathcal{H}}, \tag{36}$$

thus equation 34 can be further derived as:

$$\mathbb{E}_{q(\mathbf{x})} \left[\sum_{i=1}^{d} \left(\frac{\partial}{\partial \mathbf{x}_{i}} \phi_{i}(\mathbf{x}) + \frac{\partial}{\partial \mathbf{x}_{i}} \log p(\mathbf{x}) \phi_{i}(\mathbf{x}) \right) \right]$$
(37)

$$= \sum_{i=1}^{d} \langle \phi_i(\cdot), \mathbb{E}_{q(\mathbf{x})} \left[\frac{\partial}{\partial \mathbf{x}_i} \log p(\mathbf{x}) k(\mathbf{x}, \cdot) + \frac{\partial}{\partial \mathbf{x}_i} k(\mathbf{x}, \cdot) \right] \rangle_{\mathcal{H}},$$
(38)

the optimal unnormalized $\tilde{\phi}(\cdot)$ is given by simply setting its i-th entry to $\mathbb{E}_{q(\mathbf{x})}\left[\frac{\partial}{\partial \mathbf{x}_i}\log p(\mathbf{x})k(\mathbf{x},\cdot) + \frac{\partial}{\partial \mathbf{x}_i}k(\mathbf{x},\cdot)\right]$, which means $\tilde{\phi}^*(\cdot) = \mathbb{E}_{q(\mathbf{x})}\left[\mathcal{A}_p k(\mathbf{x},\cdot)\right]$ (note that $\mathcal{A}_p k(\mathbf{x},\cdot) \in \mathbb{R}^d$) and $\phi^*(\mathbf{x}) = \tilde{\phi}^*(\mathbf{x})/\|\tilde{\phi}^*(\cdot)\|_{\mathcal{H}^d}$.

2.2 Variational inference with smooth transforms

The general idea of Stein Variational Gradient Descent (SVGD) [Liu and Wang, 2016] is incrementally transforming a set of data points $\{\mathbf{x}_i\}_{i=1}^n, \mathbf{x}_i \in \mathbb{R}^d$ sampled from a known initial distribution $q(\mathbf{x})$ to approximate a target distribution $p(\mathbf{x}) = \tilde{p}(\mathbf{x})/Z$ which may be unnormalized. The transformation is in the form of: $T(\mathbf{x}) = \mathbf{x} + \epsilon \phi(\mathbf{x})$, where $\phi(\mathbf{x}) \in \mathbb{R}^d$ is a smooth function that characterizes the direction and the scalar ϵ represents the magnitude.

Denote $q_{[T]}$ as the density of the transformed points, when $|\epsilon|$ is sufficiently small, T is guranteed to be invertible, and denote $\mathbf{z} = T(\mathbf{x})$, we have:

$$q_{[T]}(\mathbf{z}) = q(T^{-1}(\mathbf{z})) \left| \det \left(J_T^{-1}(\mathbf{z}) \right) \right|. \tag{39}$$

SVGD proposes to use $q_{[T]}(\mathbf{z})$ to do variational inference by updating the particles to get close to $p(\mathbf{x})$ in terms of KL divergence. And there is a surprising connection between *Stein operator* and the derivative of KL divergence w.r.t. the perturbation magnitude ϵ :

$$\nabla_{\epsilon} D_{\mathrm{KL}} \left(q_{[T]} \parallel p \right) \Big|_{\epsilon = 0} \tag{40}$$

$$= \nabla_{\epsilon} D_{\mathrm{KL}} \left(q \parallel p_{[T^{-1}]} \right) \Big|_{\epsilon=0} \tag{41}$$

$$= \mathbb{E}_{\mathbf{x} \sim q} \left[-\nabla_{\epsilon} \log p_{[T^{-1}]}(\mathbf{x}) \right] \Big|_{\epsilon=0}$$
(42)

$$= \mathbb{E}_{\mathbf{x} \sim q} \left[-\nabla_{\epsilon} \left(\log p \left(\mathbf{T}_{\epsilon}(\mathbf{x}) \right) + \log \left| \det J_{\mathbf{T}}(\mathbf{x}) \right| \right) \right] \Big|_{\epsilon = 0}$$
(43)

$$= -\mathbb{E}_{\mathbf{x} \sim q} \left[s_p(\mathbf{T}_{\epsilon}(\mathbf{x}))^{\top} \nabla_{\epsilon} \mathbf{T}_{\epsilon}(\mathbf{x}) + \operatorname{trace} \left(J_{\mathbf{T}}(\mathbf{x})^{-1} \nabla_{\epsilon} J_{\mathbf{T}}(\mathbf{x}) \right) \right] \Big|_{\epsilon=0}$$
(44)

$$= -\mathbb{E}_{\mathbf{x} \sim q} \left[s_p(\mathbf{x})^\top \phi(\mathbf{x}) + \operatorname{trace} \left(I \nabla_{\mathbf{x}} \phi(\mathbf{x}) \right) \right]$$
(45)

$$= -\mathbb{E}_{\mathbf{x} \sim q} \left[\operatorname{trace} \left(\mathcal{A}_p \phi(\mathbf{x}) \right) \right]. \tag{46}$$

We can see it is equivalent to the objective in equation 31, and when we consider $\phi(\cdot)$ in the unit ball of \mathcal{H}^d , the optimal direction that gives **the steepest descent on the KL divergence** has a closed form solution as $\phi_{q,p}^*(\cdot) = \beta_{q,p}(\cdot) = \mathbb{E}_{\mathbf{x} \sim q}\left[\mathcal{A}_p k(\mathbf{x},\cdot)\right] = \mathbb{E}_{\mathbf{x} \sim q}\left[\nabla_{\mathbf{x}} \log p(\mathbf{x}) k(\mathbf{x},\cdot) + \nabla_{\mathbf{x}} k(\mathbf{x},\cdot)\right]$, this is computationally tractable.

3 Amortizd SVGD

"SVGD and other particle based methods become ineficient when we need to apply them repeatedly on a large number of different, but similar target distributions for multiple tasks, because they can not leverage the similarity between the different distributions and may require a large memory to restore a large number of particles."

References

- Q. Liu. A short introduction to kernelized stein discrepancy, 2016.
- Q. Liu and D. Wang. Stein variational gradient descent: A general purpose bayesian inference algorithm. *Advances in neural information processing systems*, 29, 2016.
- Q. Liu, J. Lee, and M. Jordan. A kernelized stein discrepancy for goodness-of-fit tests. In *International conference on machine learning*, pages 276–284. PMLR, 2016.
- D. Sejdinovic and A. Gretton. What is an rkhs? Lecture Notes, 2012.

A The reproducing property

Refer to [Sejdinovic and Gretton, 2012].

B Lemmas

Lemma 1 (First half of Lemma 2.3 of [Liu et al., 2016]). Assume $p(\mathbf{x})$ and $q(\mathbf{x})$ are smooth densities supported on \mathcal{X} and scalar-valued function $f(\mathbf{x})$ is in the Stein class of q, we have:

$$\mathbb{E}_{\mathbf{x} \sim g} \left[\mathcal{A}_p f(\mathbf{x}) \right] = \mathbb{E}_{\mathbf{x} \sim g} \left[(s_p(\mathbf{x}) - s_g(\mathbf{x})) f(\mathbf{x}) \right].$$

Lemma 2 (Second half of Lemma 2.3 of [Liu et al., 2016]). Assume $p(\mathbf{x})$ and $q(\mathbf{x})$ are smooth densities supported on \mathcal{X} and when $f(\mathbf{x})$ is a $d \times 1$ vector-valued function in the Stein class of q, we have:

$$\mathbb{E}_{\mathbf{x} \sim q} \left[(s_p(\mathbf{x}) - s_q(\mathbf{x}))^\top \boldsymbol{f}(\mathbf{x}) \right] = \mathbb{E}_{\mathbf{x} \sim q} \left[\operatorname{trace} \left(\mathcal{A}_p \boldsymbol{f}(\mathbf{x}) \right) \right].$$

C Introduction to measure theory

- Limit of a sequence: a sequence x_1, x_2, \cdots, x_n is said to converge to x or have limit if ...
- Cauchy sequence

- Algebraic structure
- measure space: $(\mathcal{X}, \mathcal{A}, \mu)$, where \mathcal{X} is a set, \mathcal{A} is a class of subsets of \mathcal{X} , and μ is a function that attach a nonnegative number to every set in \mathcal{A} .
- σ -algebra: $\mathcal A$ is call a σ -field of $\mathcal X$ if:
 - both \emptyset and $\mathcal X$ in $\mathcal A$
 - if A in \mathcal{A} , then A^c in \mathcal{A}
 - if A_1, \cdots, A_n is a countable collection of sets in \mathcal{A} , then both $\cup_i A_i$ and $\cap_i A_i$ in \mathcal{A}
- measure: a function μ defined on \mathcal{A} is called a (countably additive, nonnegative) measure if: (1) (2) (3)
- $\bullet \ (\Omega, \mathcal{F}, \mathbb{P})$ used to denote a probability space
- countable additive
- metric space, complete metric space, normed space
- inner product on a vector space
- Hilbert space: a vector space where inner product is defined, and contains all the limits of Cauchy sequences of functions
- kernel: $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if exists a \mathbb{R} -Hilbert space and a map $\phi: \mathcal{X} \to \mathcal{H}$ s.t. $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}, \forall x, x' \in \mathcal{X}$