Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники Направление программная инженерия Образовательная программа системное и прикладное программное обеспечение Специализация системное программное обеспечение

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 2.3

курса «Информационная безопасность»

по теме: «Криптографические системы с открытым ключом» Вариант \mathbb{N}_{2} 26

Выполнил студент:

Тюрин Иван Николаевич

группа: Р33102

Преподаватель:

Маркина Т.А.,

Рыбаков С.Д.

Содержание

Лабораторная работа № 2.3. Криптографические системы с
открытым ключом
1. Описание
2. Выполнение задания
3. Вывод

Лабораторная работа № 2.3 Криптографические системы с открытым ключом

1. Описание

Цель работы. Изучить атаку на алгоритм шифрования RSA посредством метода бесключевого чтения.

Порядок выполнения работы: — ознакомьтесь с теорией, в подразделе («Бесключевое чтение»); — получите вариант задания у преподавателя; — по полученным данным определите значения r и s при условии, чтобы $e_1 \cdot r - e_2 \cdot s = 1$. Для этого необходимо использовать расширенный алгоритм Евклида; — используя полученные выше значения r и s, запишите исходный текст; — результаты и промежуточные вычисления значений для любых трех блоков шифрованного текста оформите в виде отчета.

Задание варианта № 26:

Вариант	Модуль, N	Экспоненты		Блок зашифрованного текста	
		e_1	e_2	C_1	C_2
26	199463062753	419513	830477	177528135337	63508097139
				131197957980	142467940607
				181321285074	131649552179
				96738779356	182684157712
				127632416974	22912524157
				161779284378	94825501208
				148599198368	189716623763
				2033602084	86236434624
				141914496373	94875774697
				105405878640	120252092430
				120038779975	26215384541
				7139491789	53782670605

2. Выполнение задания

Для расшифровки текста использовался метод бесключевого чтения. Метод использует теорию чисел и расширенный алгоритм Евклида для поиска обратного числа в конечном поле остатков. Результат дешифрации можно видеть на изображении 1.1.

```
D:\Projects\itmo-info-sec\crypto\lab-2_3> python main.py
message = 'монопольно захватить одна из станций, постоянно '
D:\Projects\itmo-info-sec\crypto\lab-2_3> | 12/23/2024 06:42:00 PM
```

Рис. 1.1: Результат работы утилиты

```
#!/usr/bin/env python
 from argparse import ArgumentParser
 N = 199463062753
 E1 = 419513
 E2 = 830477
 C1 = '''
10 177528135337
11 131197957980
12 181321285074
13 96738779356
14 127632416974
15 161779284378
16 148599198368
17 2033602084
18 141914496373
19 105405878640
20 120038779975
21 7139491789
22 ,,,
23
_{24} C2 = ,,,
25 63508097139
26 142467940607
27 131649552179
28 182684157712
29 22912524157
30 94825501208
31 189716623763
32 86236434624
33 94875774697
34 120252092430
35 26215384541
36 53782670605
37 ,,,
```

```
38
39
 def gcd_ext(a: int, b: int) -> tuple[int, int, int]:
40
      if a == 0:
41
          return b, 0, 1
42
      else:
43
          div, x, y = gcd_ext(b \% a, a)
44
      return div, y - (b // a) * x, x
45
46
 def hack_RSA(
47
      N: int, e1: int, e2: int, c1: list[int], c2: list[int],
48
    debug=False
 ) -> str:
49
      message = []
50
      a, r, s = gcd_ext(e1, e2)
52
      if debug:
          print(f"{N=}", f"{e1=}", f"{e2=}", f"{c1=}", f"{c2=}",
    sep="\n")
          print("(e1 x r) - (e2 x s) = +-1")
          print(f"{r=},")
          print(f"{s=}")
58
59
      for i in range(len(c1)):
60
          c1r = pow(c1[i], r, N)
61
          c2s = pow(c2[i], s, N)
62
          m = (c1r * c2s) \% N
63
          part = m.to_bytes(4, byteorder='big').decode('cp1251')
64
          message.append(part)
65
          if debug:
66
               print(f"C1[{i}]^r \pmod{N} = {c1r}")
67
               print(f"C1[{i}]^s \pmod{N} = {c2s}")
68
               print(f''m\{i\} = (\{c1r\} x \{c2s\}) (mod \{N\}) = \{m\} =>
69
    text({m}) = {part}", "\n")
70
      return "".join(message)
71
72
73
 def main():
74
      parser = ArgumentParser(description="Чтение сообщения зашиф
75
    рованного с помощью RSA без ключа")
      parser.add_argument("--debug", action="store_true", help="A
76
    обавить отладочную информацию в вывод")
      args = parser.parse_args()
77
78
      c1 = list(map(int, C1.split()))
79
      c2 = list(map(int, C2.split()))
      e1 = E1
      e2 = E2
      message = hack_RSA(N, e1, e2, c1, c2, debug=args.debug)
```

```
print(f"message = '{message}'")

print(f"message = '{message}'")

print(f"message = '{message}'")

and if __name__ == "__main__":
    main()
```

Листинг 1.1: Код скрипта выполняющего расшифрование текста методом безключевого чтения RSA

3. Вывод

В результате выполнения работы изучили метод безключевого чтения текста зашифрованного по средствам RSA. Реализовали алгоритм расшифровки на языке Python.