CRPL-F47

tional Bureau of Standards
Library, N. W. Bldg.

AUG 2 1948

Reference book not to be taken from the Library.

IONOSPHERIC DATA

ISSUED
JULY 1948

CENTRAL RADIO PROPAGATION LABORATORY NATIONAL BUREAU OF STANDARDS WASHINGTON,D.C.

Issued 26 July 1948

IONOSPHERIC DATA

CONTENTS

	I	Pa	ge
Terminology and Scaling Practices	•	•	2
Monthly Average and Median Values of World-Wide Ionospheric Data	•		4
Ionospheric Data for Every Day and Hour at Washington, D. C	•	•	7
Ionosphere Disturbances	•	•	7
American and Zürich Provisional Relative Sunspot Numbers	•	•	8
Solar Coronal Intensities Observed at Climax, Colorad	0		9
Erratum	•	•	10
Tables of Ionospheric Data		•	11
Graphs of Ionospheric Data	,	•	47
Index of Tables and Graphs of Ionospheric Data in CRPL-F17			75

TERMINOLOGY AND SCALING PRACTICES

The symbols and terminology used in this report are those adopted by the International Radio Propagation Conference, and given in detail on pages 24 to 26 of the report IRPL-C61, "Report of International Radio Propagation Conference," and in the section on "Terminology" in report IRPL-F5.

Beginning with IRPL-F14 the symbol L, defined as follows, is used in detailed tabulations of hourly values of ionosphere characteristics observed at Washington:

L or 1 = critical frequency, muf, or muf factor for Fl layer omitted because no definite and abrupt change in slope of the h'f curve occurs either for the first reflection or for any of the multiples.

In the past, ionospheric conditions were summarized on a monthly basis by using average or mean values for each hour of the day for each month. However, following the recommendations of the International Radio Propagation Conference, held in Washington April 17 to May 5, 1944, beginning with data for January 1, 1945, median values are published wherever possible.

Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The monthly median values used here are the values equaled or exceeded on half the days of the month at the given hour. The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in the report referred to above, IRPL-C61.

- a. For all ionospheric characteristics:

 Values missing because of A, B, C, or F (see terminology referred to above) are omitted from the median count.
- b. For critical frequencies and virtual heights:

 Values of f^OF2 (and f^OE near sunrise and sunset) missing
 because of E are counted as equal to or less than the lower
 limit of the recorder. Values of h^IF2 (and h^IE near sunrise
 and sunset) missing for this reason are counted as equal to or
 greater than the median. Other characteristics missing because
 of E are omitted from the median count. See CRPL-F38, page 9.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For f^OF2, as equal to or less than f^OF1.
- 2. For h'F2, as equal to or greater than the median. Values missing for any other reason are omitted from the median count.

c. For muf factors (M-factors):

Values missing because of G are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because no Es reflections appeared, the equipment functioning normally otherwise, are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of hEs missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

Beginning with CRPL-F33, an additional group of symbols is used in recording the Washington, D.C. data. The list of additional symbols and their meanings follows:

N - unable to make logical interpretation.

P - trace extrapolated to a critical frequency.

Q - the Fl layer not present as a distinct layer.

R - curve becomes incoherent near the F2 critical frequency.

S - no observation obtainable because of interference.

V - forked record (previously denoted by U. This change should also be made in CRPL-7-1).

Z - triple split near critical frequency.

For a more detailed explanation of the meaning and use of these symbols, see the report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

MONTHLY AVERAGE AND MEDIAN VALUES OF WORLD-WIDE IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 55 and figures 1 to 109 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL predictions of radio propagation conditions. The data are redian values unless otherwise indicated. The following are the sources of the data:

Australian Council for Scientific and Industrial Research,
Radio Research Board:
Brisbane, Australia
Canberra, Australia
Hobart, Tasmania
Townsville, Australia

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geophysical Section:
Wa'theroo, W. Australia

Pritish Department of Scientific and Industrial Research,
Radio Research Board:
Falkland Is.
Fraserburgh, Scotland

Fraserburgh, Scotland Lindau/Harz, Germany Slough, England

Canadian Radio Wave Propagation Committee: Churchill, Canada Clyde, Baffin I.

Ottawa, Canada Portage la Prairie, Canada Prince Rupert, Canada

St. John's, Newfoundland

New Zealand Radio Research Committee:

Campbell I. Christchurch, New Zealand (Canterbury University College Observatory) Fiji Is. Rarotonga I.

South African Council for Scientific and Industrial Research: Johannesburg, Union of S. Africa

Scientific Research Institute of Terrestrial Magnetism, Moscow, U.S.S.R.:
Alma Ata, U.S.S.R.
Bay Tiksey, U.S.S.R.
Bukhta Tikhaya, U.S.S.R.
Chita, U.S.S.R.
Leningrad, U.S.S.R.
Moscow, U.S.S.R.
Sverdlovsk, U.S.S.R.
Tomsk, U.S.S.R.

Japanese Physical Institute for Radio Waves (under supervision of Supreme Commander, Allied Powers):

Fukaura, Japan Shibata, Japan Tokyo (Kokobunji), Japan Wakkanai, Japan Yamakawa, Japan

United States Army Signal Corps:
Adak, Alaska
Okinawa I.

National Bureau of Standards (Central Radio Propagation Laboratory):

Baton Rouge, Louisiana (Louisiana State University)

Boston, Massachusetts (Harvard University)

Fairbanks, Alaska (University of Alaska, College, Alaska)

Guam I.

Huancayo, Peru (Instituto Geofisico de Huancayo)

Maui, Hawaii

Palmyra I.

San Francisco, California (Stanford University)

San Juan, Puerto Rico (University of Puerto Rico)

Trinidad, British West Indies

Washington, D. C.

White Sands, New Mexico

Wuchang, China (National Wuhan University)

All India Radio (Government of India), New Delhi, India Bombay, India Delhi, India Madras, India

Indian Council of Scientific and Industrial Research,
Radio Research Committee:
Calcutta, India

Radio Wave Research Laboratory, Central Broadcasting Administration:
Chungking, China
Lanchow, China
Nanking, China
Peiping, China

French Ministry of Naval Armaments (Section for Scientific Research): Fribourg, Germany

National Laboratory of Radio-Electricity (French Ionospheric Bureau):
Bagneux, France

Philippine Republic, Radio Control Division, Department of Commerce and Industry:

Leyte, Philippine Is.

Norwegian Defense Research Establishment, Florida, Bergen, Norway: Tromso, Norway Beginning with CRPL-F26 publication of tables of so-called "provisional data" reported to the CRPL by telephone or telegraph was discontinued. The reason for this change in policy is that users of the data hitherto published in this form receive them through established channels sooner than through the F series. Furthermore, having two sets of data, "provisional" and "final," for the same station for the same month leads to confusion.

It must be emphasized that no change has been made in the methods used for rapid reporting and exchange of data. The change has to do only with the printing of provisional data in the F series.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of these errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when f°F2 is less than or equal to f°F1, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

Month	Pr	edicted	Sunspot	No.
	1948	1947	1946	1945
December		126	85	38
November		124	83	36
October		119	٤1	23
September		121	79	22
August		122	77	20
July		116	73	
June	129	112	67	
May	130	109	67	
April	133	107	62	
March	133	105	51	
February	133	90	46	
January	130	88	42	

IONOSPHERIC DATA FOR EVERY DAY AND HOUR AT WASHINGTON, D. C.

The data given in tables 56 to 67 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Terminology and Scaling Practices."

IONOSPHERE DISTURBANCES

Table 68 presents ionosphere character figures for Mashington, D. C., during June 1948, as determined by the criteria presented in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

Table 69 lists for the stations whose locations are given the sudden ionosphere disturbances observed on the continuous field intensity recordings made at the Sterling Radio Propagation Laboratory during June 1948.

Table 70 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Brentwood and Somerton, England, receiving stations of Cable and Wireless, Ltd., from May 21 to June 21, 1948.

Table 71 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Point Reyes, California, receiving station of RCA Communications, Inc., for June 20, 1948.

Table 72 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT, May 1948, compared with the CRPL daily radio disturbances warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CAPL, in a manner basically the same as that described in IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause, conditions may be reported as disturbed because of seasonal characteristics, such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all the disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

AMERICAN AND ZÜRICH PROVISIONAL RELATIVE SUNSPOT NUMBERS

Table 73 presents the daily American relative sunspot number, RA, computed from observations communicated to CRPL by observers in America and abroad. Beginning with the observations for January 1948, a new method

of reduction of observations is employed such that each observer is assigned a scale-determining "observatory coefficient," ultimately referred to Zürich observations in a standard period, December 1944 to September 1945, and a statistical weight, the reciprocal of the variance of the observatory coefficient. The daily numbers listed in the table are the weighted means of all observations received for each day. Details of the procedure will be published shortly. The American relative sunspot number computed in this way is designated RA. It is noted that a number of observatories abroad, including the Zürich observatory, are included in RA. The scale of RA was referred specifically to that of the Zürich relative sunspot numbers in the standard comparison period; since that time, RA is influenced by the Zürich observations only in that Zürich proves to be a consistent observer and receives a high statistical weight. In addition, this table lists the daily provisional Zürich sunspot numbers, RZ.

SOLAR CORONAL INTENSITIES OBSERVED AT CLIMAX, COLORADO

In tables 74a and 74b are listed the intensities of the green (5303A) line of the emission spectrum of the solar corona as observed during June 1948 by the High Altitude Observatory of Harvard University and the University of Colorado at Climax, Colorado, for east and west limbs, respectively, at 5° intervals of position angle north and south of the solar equator at the limb computed to the nearest 5°. A correction, P, as listed, has been applied to the position angles of the actual observations which were on astronomical coordinates. The time of observation is given to the nearest tenth of a day, GCT. The tables of coronal observations in CRPL-F29 to F41 listed the data on astronomical coordinates; the present format on solar rotation coordinates is in conformity with the tables of CRPL-1-4, "Observations of the Solar Corona at Climax, 1944-46."

Tables 75a and 75b give similarly the intensities of the first red (6374A) coronal line; tables 76a and 76b list the intensities of the second red (6704A) coronal line. The following symbols are used in tables 74, 75, and 76: a, observation of low weight; -, corona not visible; and x, position-angle not included in plate estimates.

Table 77 gives details of the Climax observations from January 1948 through June 1948. The first column lists the Greenwich date of observation; the next six columns give the threshold or lowest observable intensity of 5303A for each spectrum plate centered at astronomical position angles 45°, 90°, 135°, 225°, 270°, and 315° respectively; the last two columns indicate the observer and the person responsible for the intensity estimates of the observation. This table is a continuation of table 1 of CRPL-1-4 and appears at intervals of six months.

ERRATUM

1. CRPL-F46, p. 10, table 3: The f°F2 column should read as follows at the hours indicated: 01, 5.4; 03, 4.3; 04, 4.9; 05, 5.1; 07, 5.9; 09, 6.6; 19, 7.2; 20, 6.7; 22, 5.5.

Table 1

Washington, D.C. (39.0°N, 77.5°W)

June 1948

Fairbanks, Alaska (64.9°N, 147.8°W)

May 1948

Time	h'P2	Zols.	h ¹ Fl	tol)	h * E	for.	126	F2-M3000	Time	h'F2	for2	h'Fl	f°F1	h * E	for	17E8	72-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	275 270 280 270 270 240 330 380 430 430 435 430 435 430 400 350 260 250 260 270 280	6.8 6.4 6.2 5.4 5.4 6.4 7.2 7.4 6.4 7.5 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.6 7.6	240 220 200 200 200 200 200 200 200 210 225 230	4.1 4.7 5.0 5.4 5.5 5.5 5.5 5.3 5.0	110 100 100 100 100 100 100 100 100 100	1.9 2.5 3.1 3.4 3.9 3.9 3.9 3.9 3.9 3.9 3.7 3.8 2.1	2.4 2.8 2.6 2.4 2.4 2.4 2.4 4.3 4.4 4.3 4.4 4.2 4.6 4.2 4.6 4.2 3.9 3.1 3.0 2.5	2.7 2.7 2.7 2.7 2.9 2.8 2.9 2.6 2.6 2.6 2.6 2.6 2.6 2.7 2.8 2.8 2.7 2.8 2.7 2.7	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	350 360 (360) (360) 375. 410 452 520 520 520 570 578 590 660 570 5498 472 450 295 295 290 310 340	5.1 5.2 5.4 5.5 6.0 6.0 6.0 6.0 6.1 6.3 6.4 6.3 6.0 6.3 6.3 6.3 6.3 6.3 6.3	285 290 250 240 239 230 230 240 242 255 275	4.0 4.1 4.4 4.5 4.7 4.8 4.9 5.1 5.1 5.0 4.8 4.6 4.3		2.4 2.7 3.0 3.2 3.6 3.6 3.5 3.5 3.5 3.9 2.8 2.5 2.0 1.9	5.0 5.3 5.5 5.5 4.8 4.4 3.2 3.2 3.0 3.0 3.7 4.2 4.4	2.5 2.5 2.5 2.4 2.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3

Time: 75.007. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Time: $160.0^{\circ}W$. Sweep: 16.0 Mc to 0.5 Mc in 15 minutee, sutomatic operation.

Table 2

Table 3 Churchill, Canada (58.8°N, 94.2°W)

May 1948

Time	h'F2	Tok5	h'Fl	f°F2	h'E	for:	1Eq.	F2-M3000
00	330	5,1					5.2	2.5
01	325	5.0					5.0	2.4
02	310	4.9					3,9	2.6
03	306	4.8				E	3.4	2.5
04	340	5.0	260	3.4		2.4	3.4	2.6
06	340	5.6	260	3.6	110	2.6	3.3	(2.6)
06	440	6.2	240	4.4	100	3.0	3.3	(2.5)
07	430	5.B	230	4.7	100	3.4	3.4	(2.4)
08	480	6.1	240	6.0	100	3.4		2.4
09	510	6.0	230	5.2	100	3.6		2.4
10	495	6.3	240	6.3	100	3.7		2.4
11	510	6.5	250	5.4	100	3.8		2.4
12	520	6.5	240	6.4	100	3.6		2.4
13	496	6.7	240	5.4	100	3.6		2.4
14	470	7.3	240	5.3	100	3.6		2.4
16	450	7.2	240	5.2	100	3,6		2.4
16	480	6.9	240	5.1	100	3.4		2.5
17	440	6.8	250	5.0	100	3,4		2.5
18	3 7 0	6.8	240	4.8	110	3.1		2.6
19	340	6.2	260		120	2.8	3.6	2.7
20	330	6.2			125	2.7	4.0	2.6
21	330	6.1			-		6.0	2.6
22	310	5.8					7.4	2.6
23	320	6.2					6.8	2.6
	1							

Time: 90.0°W. Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

Table 4 Prince Rupert, Canada (54.3°N, 130.3°W)

May 1948

Time	h'F2	Lols.	h'Fl	for	h'E	for	fEs	F2-M3000
00	300	4.6					3.0	2.6
01	330	4.0					2.8	2.5
02	360	3.8					0	2.5
03	350	3.9					3.1	2.5
04	360	4.2				E	3.6	2.5
05	390	4.8	300	. 3, 4		(1.9)	3.6	2.4
06	500	5,3	280	3.9	120	2.5	4.0	2.4
07	510	5.7	260	4.3	110	2.9	4.0	2.4
08	505	6.0	240	4.7	110	3.2	4.0	2.4
09	550	6.0	230	4.9	110	3.4	4.0	2.3
10	535	6.4	330	5.0	110	3.6	4.1	2.4
11	560	6.3	220	5.2	110	3.7	4.1	2.3
12	545	6.5	220	5.2	110	3.8	4.1	2.3
- 13	520	6.6	230	5.3	110	3.8	4.0	2.3
14	550	6.7	230	5.3	110	3.8	4.0	2.4
15	610	6.9	226	5.3	110	3.7	4.0	2.4
16	505	6.9	230	5.3	110	3.5	0	2.4
17	440	6.9	240	5.0	110	3.3		2.4
18	380	6.9	250	4.7	115	3.0		2.5
19	330	6.9	260	4.2	120	2.7		2.6
20	280	7.0		-1-	130	2.1	3.1	2.7
21	270	6.3			_00	1.7	2.9	2.7
22	280	5.8				'	3.5	2.6
23	290	5.3					3.8	2.6

Time: 120.0°W. Sweep: 1.6 Mc to 13.5 Mc, manual operation.

Time

00 **0**1

02

03 04 05

19 20 21

22

3.0 3.9

4.4

4.9

5.1

5.4

5.5

5.6

5.8

5.8

5.5

5.2

4.9

4.4

forl his for fee

1.8

3.0

3.4

3.6 (3.9)

(4.0) (4.2)

4.2

(4.0)

3.9 3.6

3.2

2.8

3.0

3.6

3.8

4.8

5.2

5.0

5.2

5.8

4.3

3.8

4.0

4.0

4.0

3.6

3.4 3.7

2.6

2.4

130 120 120

110

110 110

110

110 110

120

110

120

110

120

120

130

120

Adak, Alaeka (51.9°N, 176.6°W)

forz

6.2

5.9

5.6

5.2

5.4 6.2

6.9 7.0

6.9

6.8 7.0 7.2 7.3

7.5 7.6 7.6

7.4 7.4 7.1 7.2

6.9

6.9

6.7

6.6

h Fl

330

265

250

240

230

230

225

215

240

225

230

230

240

240 260

270

h F2

300

310

320

340 340

410

420

420

455

430

445

430

450

430

420

400

370

350

310

280

280

290

290

300

May 1948 P2-M3000

2.5 2.5 2.5

2.5

2.5

2.5

2.5

2.6

2.6

2.5 2.6 2.8

2.7 2.7 2.8

2.8

2.9

2.7

2.6

2.6

Portage la Prairie, Canada (49.9°N, 98.3°W)

May 1949

Time	h'F2	for2	h Fl	forl	h'E	for	175s	F2-M3000
00	350	5.0					2.7	(2.4)
01	325	4.9					3.1	(2.4)
02	350	4.6					3.7	(2.4)
03	340	4.5					2.8	(2.4)
04	340	4.4				E	3.3	(2.5)
Q5	310	4.8			120	1.9	3.0	(2.6)
06	310	5.2	260	(4.0)	110	2.4	0	2.8
07	420	5.8	240	4.5	110	2.8		2.6
08	460	6.1	230	4.7	110	3.1		2.4
09	535	6.0	225	5.0	100	3.4		2.3
10	450	6.4	220	5.1	100	3.6		2.4
11	460	7.2	220	5.2	100	3.8		2.4
12	490	6.8	220	5.3	100	3.8		2.4
13	480	7.2	230	5.4	100	3.8		2.4
14	490	7.2	240	5.4	100	3.8	4	2.4
15	480	7.0	230	5.2	100	3.6		2.4
16	470	7.2	230	5.1	110	3.4		2.4
17	420	7.1	240	5.0	110	3.2		2.5
18	260	7.0	250	(4.6)	110	2.8		2.5
19	280	7.2			120	2.4		2.5
20	290	7.2			145	1.8		(2.6)
21	295	6.8				E .	1.9	(2.5)
22	300	6.4				_	2.8	(2.5)
23	300	5.6					2.6	(2.4)
	1							/

Table 6

Time: 90.0°W.

Sweep: 1.0 Mc to 16.0 Mc in 2 minutee 30 eeconds.

Time: 180.0°W.

Sweep: 1.2 Mc to 15.5 Mc in 12 minutes, menual operation.

Table 7 St. John's, Newfoundland (47.6°N, 52.7°W)

May 1948

2.8

00	300	5.3						2.8
01	310	4.4					2.2	3.0
02	310	4.0					1.4	3.0
03	300	4.0						3.0
04	290	4.2						3.0
05	270	5.1	260	3.6	120	2.2		2.9
06	290	5.6	250	4.4	110	2.7	2.8	2.9
07	320	5.8	230	4.8	110	3.1	3.1	2.9
08	360	6.3	220	5.1	110	3.3	3.5	2.9
09	380	6.4	220	5.4			4.0	2.8
10	450	6.2	210	5.6			4.0	2.8
11	475	6.4	210	5.8			3.9	2.6
12	460	6.8	210	5.7			4.0	2.6
13	450	7.0	210	5.8			4.1	2.6
14	445	7.2	220	5.8			3.9	2.6
15	440	7.4	210	5.6			3.7	2.6
16	410	7.6	220	5.4	110	3.5	3.3	2.7
17	350	7.8	230	5.0	110	3,3		2.7
18	300	7.6	240	4.4	110	2.9		2.7
19	270	7.5	260	3.6	120	2.2		2.8
20	270	7.6						2.8
51	280	7.4						2.8
22	280	6.8						2.7

Time h'F2 foF2 h'F1 foF1 h'E foE fEs F2-M3000

Time: 52.5°W.

300

23

Sweep: 1.2 Mc to 20.0 Mc, manual operation.

5.8

Table 8 Ottawa, Canada (45.5°N, 75.8°W)

May 1948

Time	h1F2	for2	h Fl	f°Fl	h B	₫0E	1Es	F2-M3000
00	340	5.1						2.7
01	360	4.7						2.7
02	360	4.5						2.7
03	370	4.3						2.7
04	340	4.6						2.7
05	330	5.2						2.7
06	300	5.9	290	4.3	130	2.8		2.7
07	380	6.4	265	4.9	130	3.2		2.7
08	450	6.6	255	5.2	125	3.5		2.5
09	560	6.4	240	5.4	130	3.7	4.9	2.3
10	570	6.6	240	5.5	120	3.9	5.0	2.3
11	585	6.6	240	5.7	120	3.9	5.2	2.3
12	550	7.3	240	5.8	120	3.9	4.9	2.3
13	580	7.0	240	5.7	125	3.8		2.3
14	545	7.6	260	5.6	130	3.8		2.4
15	510	7.8	260	5.5	140	3.7		2.4
16	470	7.9	260	5.4	130	3.6		2.5
17	420	7.7	260	5.0	130	3.1		2.5
18	360	7.8	290	4.4	130	2.7		2.5
19	320	7.8						2.5
50	310	7.6						2.5
21	320	7.2						2.5
22	340	6.4						2.6
23	340	5.7						
		_ • ·						2.6

Time: 75.0°W. Sweep: 1.7 Mc to 18.0 Mc, manual operation.

Table 9

Boston, Massachusetts (42.4°M, 71.2°W)

May 1948

San Francisco, California (37.4°W, 122.2°W)

Table 10

May 1948

mana.	h'F2	1072	h Fl	POP1	h'E	for	fF.s	F2-H5000	Tina	h'F2	f°72	h'Fl	2017	h E	for	fEs	F2-H3000
00	290	6.6						2,5	00	320	6.2						2.4
01	290	6.0						2.5	01	320	6.0						3.4
os	282	5.7					1.2	2.5	02	320	5.6						2.4
03	295	5.0					1.4	2.5	03	320	5.4						2.4
04	312	4.9					1.6	2.6	04	320	5,2						2.4
05	318	5.5			115	2.0		2.8	05	300	5,4						2.5
06	350	6.5	275	4.8				2.7	0.6	260	6.3			120	2.4		2.6
07	400	6.7	250	5.0				2.6	07	340	7.4	240	4.8	120	3.0		2.5
08	420	6.8	235	5.0				2.6	08	400	7.6	230	5.0	120	3.3	4.2	2.4
09	455	6.8	220	5.0				2.6	09	440	7.9	240	5.4	120	3.6	4.4	2.4
10	450	7.0	550	5.0				2.5	10	420	8.4	550	5.6	110	3.8	4.4	2.4
11	440	6.9		4.9				2.6	11	420	9.1	220	5.8	110	4.0		2.4
12	460	7.3	210					2.5	12	420	9.6	220	6.0	110	4.0		2.4
13	470	7.7	255	5.0				2.5	13	410	9.8	220	6.0	115	3.9		2.4
14	450	7.5	245	5.4				2.6	14	400	9.6	550	5.8	120	3.9		2.4
15	400	7.9	225	5.1				2.7	15	410	9.4	240	5.7	120	3.8		2.5
16	382	7.5	242	5.0				2.7	16	380	9.0	240	5.3	120	3.5	4.0	2.5
17	32.0	8.2	250	5.0				2.7	17	310	8.6	240	4.8	120	3.1	4.0	2.6
18	580	8.2		5.0	1 1 0	2.2		2.6	18	260	8.4			120	2.5	3.8	2.6
19	275	8.8		4	P1			2.7	19	270	8.8					3.0	2.7
50	275	0.9						8.8	20	260	7.6					8.5	2.6
21	285	7.7						2.6	21	280	7.4					2.5	2.5
52	285	7.2						2.6	22 23	300	6.6					2.4	2.5
23	290	6.9						2.5	23	320	6.4						2.4

Time: 120.0° W. Sweep: 1.3 Mc to 18.5 Mc in 4 minutes 30 seconds.

Time: 75.0°W.
Sweep: 0.8 Mc to 14.0 Mc in 1 minute.

Table 11 White Sands, New Mexico (32.3°N, 106.5°W)

May 1948

-				Table 12
Baton	Rouge,	Louisiana	(30.5°N,	91.2°W)

May 1948

Time	h' F2	fore	h'Fl	1°71	h'E	for	fEs	F2-M3000	Time	h F2	TOFS	h'Pl	foll	h'E	for	fEs	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 23	310 305 300 300 320 3265 245 300 415 420 420 420 420 420 390 380 260 280 275 280 300 310	6.8 6.8 6.7 6.0 6.0 6.0 7.0 8.2 9.5 9.8 10.0 10.1 10.2 10.0 9.8 8.1 9.2 6.8 7.1 7.0	250 250 220 220 220 220 220 230 240 250	4.2 4.5 5.0 5.9 6.2 6.0 6.0 6.7 5.6 5.7	120 120 120 120 120 120 120 120 120 120	3.1 3.4 3.7 3.9 4.0 4.1 4.1 4.0 3.5 3.5	1.1 1.1 1.9 1.1 2.5 5.2 4.6 4.6 4.7 4.3 2.8 2.6	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	300 300 300 300 300 300 320 390 400 400 400 400 390 340 340 300 285 290 300 310	7.1 7.0 6.8 6.5 6.2 8.3 7.2 2.4 8.9 10.2 10.3 10.4 (10.7) (10.8) 10.3 10.1 9.5 9.0 8.7 8.6 2 7.2 7.2	240 230 240 (240) (240) (240) (240) (240) 235 240 240 240	(5.0) 5.3 5.6 6.0 (6.0) (6.0) 6.0 5.9 5.7 5.4 (5.2)	130 120 120 120 120 120 120 120 120 120 12	2.2 3.1 3.5 3.7 (3.7) (3.7) (3.7) (3.7) 3.7 3.6 3.2		2.7 2.7 2.7 2.7 2.9 2.9 2.8 2.6 2.7 2.7 2.6 2.7 2.8 2.8 2.7 2.6

Time: 105.0°W. Sweep: 0.79 Mc to 14.0 Me in 2 minutes.

Time: 90.0°W. Sweep: 2.15 Mc to 18.5 Mc in 5 minutes, automatic operation.

Haui, Hawaii (20.8° M, 156.5° W)

May 1948

San Juan, Puerto Rico (18.4°N, 66.1°W)

Calou

9.7 (9.2)

8.3

7.8

6.8

7.4

8.9

10.0

11.0

11.9

12.5

12.5

(12.3)

12.2

11.5

11.1

10.4

10.1

(9.6)

(9.9)

10.0

10.0

h 121

Table 14

5.0 5.5

6.0

6.0

6.0

6.0

6.0

5.9

5.9

Time	h'F2	Lolls	h'Fl	toll3	h E	for	fEs	F2-H3000
00	250	9.8						3.0
01	240	9.2						3.0
02	230	9.0						3.0
03	240	8.2						2.9
04	250 .	7.3						2.9
05	260	7.0						2.8
06	230	6.7						2.8
07	550	8.1			110	2.7		3.0
08	220	9.3	200		100	3.2	4.0	2.8
09	290	10.3	200	5.9	105	3.6	4.6	2.6
10	310	11.4	200	6.0	110	3.9	4.5	2.6
11	320	12.1	200	6.0	110	4.2	4.6	2.6
12	340	12.6	500	6.2	100	4.2		2.8
13	340	13.0	200	6.2	100	4.2	5,3	2.8
14	330	13.5	\$00	6.4	100	4.1	4.8	2.8
15	320	13.7	200	5.9	110	4.0	4.4	2.8
16	305	13.7	200	5.8	100	3.6		2.9
17	285	13.4	215		100	3.2	4.4	2.9
18	240	12.9			105	2.6	3.7	2. 9
19	240	13.1					3.3	2.9
20	250	11.9					3.1	2.8
21	260	11.2						2.8
22	260	10.0						2.8
23	270	9.8						2.9

m a				-0	
Time	7	1	50.	.0-	8.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute; above 16.0 Mc, manual operation.

Time: 60.0°W.

Time

00

02

03

04 05

06

07 08

09

10

11

12

13

14

15

16

17

18

19

50

21

22

23

h'F2

240

270

300

350

360

365

370

380

365

350

340

300

Sweep: 2.8 Mc to 13.0 Mc in 9 minutes, supplemented by manual operation.

Table 15

cor1

h E

for

Æ8

3.2

3.2

2.8

2.5

2.5

2.8

3.8

5.0

5.0

6.8

5.3 5.9

5.5

5.6

5.3

6.5

5.1

5.0

5.2

4.8

2.4

2.5

Guam I. (13.6°N, 144.9°E)

CES

10.8

10.8

10.5

10.8

9.2 7.6

8.0

9.8

11.0

11.5

12.4

13.0

13.5

14.2

14.2

14.2

14.3

14.3

13.8

11.7

11.3

11.0

(10.7)

11.2

h Fl

P, LS

310

280

260

240

230

220

240

240

230

230

550

220

220

220

220

230

240

270

340

400

400 370

350

Time

00

01

07 08 09

10

11 12 13

14 15

16

17

18

20

22

23

May 1948

F2-M3000

2.6

2.8

3.0

3.1

3.1

3.0

3.0

2.8

2.5

2.4

2.3

2.2

2.2

2.2

2.2

2.2

2.2

2.1

2.1

2.2

(2.2)

2.4

Trinidad,	Brit.	West	Indies	(10.6°N,	61.2°W)

May 1948

May 1948

2.8

2.8

2.7

2.8

2.7

2,6

2.6

2.5

2.5

(2.5)

2.5

2.5

2.6

2.6

2.6

(2.6)

2.6

for his for fee F2-M3000

3.3

3.8

4.0

4.1

4.0

4.0

5.5 5.0 4.2 4.2

Time	h'F2	for2	h'Fl	f°F]	h'E	for	TES	F2-M3000
00	260	11.4						2.9
01	255	10.0						2.8
02	250	9.2						2.9
03	250	8.8						2.8
04	255	8.0						2.8
05	270	7.4						2.7
06	270	8.0			120	1.9	2.4	2.8
07	240	9.5			120	2.8	3.4	2.9
08	240	10.7			120	3.4	4.0	2.8
09	250	11.4	220	5.2	120	3.8	4.4	2.7
10	280	12.1	550	5.4	120	4.0	4.6	2.6
11	305	12.6	220	5.8	120	4.2	4.8	2.5
12	320	13.1	230	5.9	120	4.2	5.0	2.6
13	320	13.2	220	(5.8)	120	4.2	5.4	2.6
14	320	13.2	220	(5.7)	120	4.1	5.3	2.6
15	300	12.5	240	(5,5)	120	3.9	5.4	2.5
16	320	12.0	230	5.1	110	3.5	5.0	2.5
17	290	11.7	240	(4.7)	120	3.1	4.5	2,5
18	280	11.4					3.7	2.5
19	300	11.2					3.0	2.5
20	320	11.5					3.0	2.5
21	320	11.8					2.4	2.6
22	300	11.6						2.6
23	280	11.3						2.7

Table 16

Time: 150.0%.

Sweep: 1.25 Mc to 19.0 Mc in 12 minutes, manual operation.

Time: 60.0° W.

Sweep: 1.2 Mc to 18.0 Mc, manual operation.

Table 17

Palmyra I. (5.9°N, 162.1°W)

May 1948

Okinawa I. (26.3°N, 127.7°E)

April 1948

Time	P, LS	toks	h'Fl	forl	h 'E	for	1Zs	F2-M3000
00	250	14.2						
	250	13.0					1.8	2.8
02	250	(11.2)						(2.9)
03	260	(9.6)						(2.9)
	250							(2.9)
04		(9.0) 7.4					1.8	(3.0)
05	240				3.70		1.8	2.9
06 07	290	7.2			130	1.6	2.2	2.9
	250	9.1			120	2.7	3.8	2.8
08	240	10.6			110	3.4	4.2	2.6
09	240	11.2	\$30		115	3.9		2.4
10	270	11.8	220		110	4.0		2.3
11	280	12.0	220		110	(4.2)		2.2
12	280	12.3	210		110	4.4		2.2
13	285	12.6	220		120	4.4		2.2
14	280	12.5	350		110	4.1		2.2
15	280	12.7	220		110	3.8		2.2
16	240	12.6	220		110	3.5		2.2
17	250	12.5			115	3.0		2.1
18	290	12.1			130	2.3	3.8	2.2
19	375	11.5					2.4	2.1
20	400	11.3					2.0	(2.0)
21	380	12.3					2.1	(2.2)
22	330	13.0					1.8	2.4
23	290	14.0					2.4	2.6

Time	h'F2 foF2	h'Fl	f°F1	h'E	for	178	F2-M3000
00	15.0					2.4	3.0
01	14.0					2.4	3.1
02	13.1					2.4	3.1
03	10.4					2.4	3.1
04	8.5					2.4	2.9
05	7.5					2.4	2.9
06	8.0					2.4	2.8
07	10.0				(2.7)	3.2	3.1
08	11.0				(2.8)	4.4	2.9
09	12.0				(3.2)	4.5	2.8
10	12.8		(5.8)			4.4	2.8
11	13.7		(6.9)		(3.7)	5.0	2.7
12	14.8		(6.7)			5.2	2.7
13	15.3		(6.9)			5.1	2.7
14	15.9		(6.5)			5.4	2.7
15	18.2		(6.8)			5.4	2.6
16	16.5		(8.4)			5.0	2.7
17	16.0		(5.4)			5.1	2.8
18	16.1					5.0	2.8
19	15.7					4.2	2.8
20	15.6					4.0	2.7
21	15.6					4.0	2.7
22	(15.1)					2.4	(2.8)
23	(15.2)					2.6	(2.9)
	i						

Table 18

Time: 157.5°W.

Sweep: 1.0 Mc to 13.0 Mc in 1 minute 36 seconds, automatic operation; 13.0 Mc to 18.0 Mc, manual operation.

Time: $135.0^{\circ}E$. Sweep: 1.8 Mo to 18.0 Mc in 15 minutes, manual operation.

Table 19 Leyte, Philippine Is. (11.0°H, 125.0°E)

Apr 11 1948

Table 20 Huancayo, Peru (12.0°S, 75.3°W)

Apr 11 1948

Time	P, LS	2012	h'Fl	foll	h'E	101	2Es	JS-M3000
00		10.9					,	3,1
01		9.1						3.0
02		7.9						3.0
03		7.3					1.8	3.0
04		6.1					2.6	3.0
05		5,3					2.9	3.0
06		8.7				- 2.8	3.6	2.9
07		11.2				3.3	4.4	2.9
08		13.6				3.9	4.8	2.6
09		13.0				4.3	5.0	2.3
10		12.7				4.8	5.0	2.2
11		12.0				4.7	5.3	2.2
12		11.7				4.7	5.4	2.1
13		11.8				4.6	5.2	2.1
14		12.0				4.5	5.0	2.1
15		12.3				4.0	4.4	2.1
16		12.2				3.6	4.4	2.2
17		11.8				2.8	3.5	2.2
18		11.2					3.0	2.1
19		10.0					1.9	1.9
30		(10.7)						2.2
21		(10.6)					1.8	
23		(10.8)					1.9	2.6
23		10.9					3.0	2.7

Time: 120.0°E. Sweep: 1.8 No to 18.0 Mc, manual operation.

Time	T. LS	1085	D.E.	IOLI	D.E	705	150	F2-M3000
00	230	9.3						2,8
01	230	8.6						2.9
02	240	7.8						
03	240							2.9
		6.8						3.0
04	240	6.0						3.0
05	240	5.0						3.0
08	280	6.3				1.8	2.0	2.8
07	260	10.2				2.7		3.0
08	240	12.3				3.5	7.2	2.7
09	240	13.4	230	5.5		3.9	11.7	2.4
10	260	13.2	220	5.5		4.1	12.1	2.3
11	270	12.7	220	5.5		4.3	12.1	2.2
12	270	12.2	220	5.5		4.3	12.2	2.1
13	280	11.9	220	5.5		4.2	12.0	2.1
14	280	12.2	220	5.5		4.1	11.9	2.1
15	250	12.5	230	5, 5		3. 9	11.9	2.1
16	260	12.6				3.3	10.6	2,2
17	280	12.4				2.6	6.2	2.1
18	340	11.8				1.5	0.2	
19	430	10.0						2.0
20	400	9.4				0.8		1.9
21	320							2.0
		9.5						2.3
55	250	9.2						2.5
\$3	240	9.4						2.6

Time: 75.0° W. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Time

00

01

08

03

04

05

06 07

08

09

10

11

12

13

14 15

17

18

19

20

22

23

Sweep:

Time

00

01

02

03 04

05

06

08

03

11

12

14

15

16 17

18

20

21

22

23

h'F2

250

250

270

250

240

260

260

230

230

250

250

270

300

320

320

300

290

240 230

220

240

230

240

Time: 30.0°E.

.230

for

h E

110

110

100

100

100

100

100

100

110

110

100

Table 23*

h E

146

126

117

116

115

113

114

112

113

114

117

122

.129

3.5₽

3.8

4.4

4.8

4.7

4.6

4.4

4.1#

TOE

1.6

8.0

2.6

3.0

3.2

3.5

3.4

3.3

3.1

2.8

2.3

LES

1.0

2.4

3.0

3.7

3.9

4.0

4.0

3.9

3.6

3.2

2.5

1.7

Johannesburg, Union of 8. Africa (26.2°S, 28.0°E)

h'Fl

220

210

210

225

230

foF2

5.0

4.6

4.0

3.6

3.8

4.6

8.8

11.1

13.0

13.1

13.1

13.0

13.1

13.1

13.0

12.8

12.2

10.8

9.5

8.9 7.1

April 1946

F2-M3000

2.9

2.8

2.8

2.9

8.8

8.8

2.8

3.3

3.2

2.8

2.8

2.7

2.7

2.7

2.7

2.8

2.9

2.9

3.1

3.0

3.0

fEs.

1.4

4.1

4.2

3.4

2.2

1.6

1.6

1.4

Fraserburgh, Scotland (57.6°%, 2.1°W)

March 1948

Time	P. LS	Tols.	h'Fl	foll.	h'E	for.	1754	F2-M3000
00	330	(5.3)						2.3
01	330	(5.0)						2.4
02	330	(4.4)						2.3
03	330	(4.4)						2.5
04	330	(4.0)						2.6
0.5	320	(3.8)						2.6
06	280	(4.8)						2.9
07	270	6.3				(2.5)		3.0
08	240	7.1			130	2.7		3.0
09	550	8.0			120	3.0		3.0
10	220	8.6			115	3,3		2.8
11	330	9.4			115	3.3		2.8
12	220	9.8			120	3.3		2.9
13	220	9.6			120	3.4		2.9
14	225	(9.9)			125	3.3		2.9
15	230	9.8			125	3.1		2.9
16	240	9.8			125	8.8		2.9
17	245	9.7			125	2.5		2.9
18	245	(9.4)						2.9
19	240	9.2						3.0
20	245	7.9						2.8
21	250	(6.8)						2.6
22	300	(6.2)						2.4
23	320	(5.6)						2.4

Table 22*

1.0 Mc to 16.0 Mc in 7 seconds.

Time: Local.

*Average values excapt for f°F2, which are median valuea; data taken March 20 through 31 only.

Table 24

h'Fl

270#

228

222

219

218

217

225

228

229

245#

280#

Slough, England (51.5°N, 0.6°W)

rof2

5.3

5.0 4.7

.4.5

4.0 3.5

4.5

6.5

8.0

8.9

9.9

10.2

10.8

10.5

10.4

10.2

9.9 9.5

7.7

6.4

6.0

h F2

293

294

294

291

276

256

263

252

246

243

267

260

275

269

261

256

242

243

234

230

235

247

275

283

March 1946

F2-M3000

2.6

2.6

2.5

2.6

2.6

2.6

2.9

3.1

3.1

3.0

3.0

2.9

3.0

3.0

2.9

3.0

3.0

2.9

2.8

2.7

2.5

Peiping, China (39.9°N, 116.4°E)

March 1948

Time	h'F2	tols	h'Fl	20M	h E	fog	1Es	F2-M3000
00		6.4						
01		(5.7)						
os		6.2						
03		6.2						
04		5.7						
05		6.2						
06		6.2						
07		8.2						
08		10.5						
09		11.4						
10		12.0						
11		12.2						
12		12.3						
13		12.2						
14		12.3						
15		12.0						
16		12.0						
17		11.9						
18		11.3						
19		10.8						
20		9.6						
21		9.1						
SS		7.9						
23		7.1						

Time: Local.

Sweep: 0.5 Mc to 16.5 Mc in 5 minutes.
*Average values except for f°F2 and fBe, which are median values.

#One or two values only.

Time: 120.0°E.

Sweep: 2.9 Mc to 14.5 Mc in 15 minutes, manual operation.

Table 25

Chungking, China (29.4°M, 106.8°E)

March 1948

Briebane, Australia (27.5°S, 153.0°E)

8.0

7.8

7.2 6.5

6.0

6.0

7.0

9.0

10.0

11.0

11.2

12.0

12.0

11.8

11.7

11.3

11.0

10.0

9.0

8.5

8.0

8.0

220

212

210

200

205

210

220

230

P. Lo Za, u

275

250

250 240

260

255

240

230

250

250

260

270

280

290 290

285

250

240

240

235

250

270

260

270

Table 26

h'Fl forl h'E for

5.0

5.1

5.4

5.6

5.6

5.3

March 1948

2.1

2.4

2.2

3.5 4.2

4.0

4.0

1.8

1.8

1.8

1.8

2.6

3.6

3.9

4.0

3.9

3.8

3.5

3.2

2.7

1.8

110

110

110

110

110

110

110

110

110

110

110

F2-M3000

2,8

2.8

2.8

2.8

8.5

3.1

3.3

3.2

3.1

3.0

2.9

2.9

2.9

2.9

2.9

3.0

3.0

2.9

2.8

2.8

2.8

Time	h'F2	tols	h Fl	for]	h 声	10E	1E8	F2-M3000
00	280	8.2						2.6
01	290	8.0						2.6
02	290	7.9						2.7
03	280	6.9						2.7
04	260	5.4						2.7
05	300	4.8						2.6
06	300	5.8					2.7	2.7
07	260	8.6			120	2.5	3.7	3.0
08	260	10.8	240		100	3.0	4.2	3.0
09	270	12.2	240		100	3.3.	4.5	2.8
10	280	12.8	220		100	3.7	4.4	2.7
11	300	13,7	220	5.4	110	3.7	4.3	2.7
12	300	15.0	220	5.9	110	3.7	4.4	2.7
13	210	15.7	230	6.7	120	3.8	4.0	2.7
14	310	16.1	230	5.8	110	3.7	4.0	2.7
15	285	15.3	240		105	3.5	4.0	2.8
16	280	15.3	230		100	3.2	3.8	2.8
17	275	14.4	240		100	2.8	3.7	2.8
18	260	14.0					3.3	2.8
19	260	14.2					2.6	2.7
20	250	13.0						2.7
21	260	11.4						2.7
22	250	9.8						2.7
23	275	9.0						2.7

Titon!	 . 0

Time

00

01

02

04

05

06 07 08

09 10 11

12

13 14 15

16

17 18

19

20

23

Time

00

01

Time: 150.0 %.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 eeconds.

Time: 105.0 B.

Sweep: 1.7 Mc to 20.0 Mc in 15 minutes, manual operation.

Table 28 Camberra, Australia (35.3°S, 149.0°E)

for2

6.8

6.6

280

278

h'Fl

March 1948

1Es

2.6 2.6 F2-H5000

2.7

Tims	h'F2	Tols.	h! Fl	for	h 'E	for	1750	F2-M3000
00	280	6.0					2.9	2.8
01	260	5.8					2.6	2.8
02	260	5.7					2.9	2.9
03	250	5.3					3.2	2.9
04	240	4.9					2.8	2.8
05	260	4.5					3.0	2.8
06	265	5.1				1.7	2.4	2.9
07	240	7.1				2.4	2.4	3.2
08	262	8.4	230	4.7		2.9	3.3	3.2
09	280	9.1	220	5.0		3.3	3.6	3.1
10	280	10.2	210	5.2		3.4	3.7	3.0
11	290	10.7	215	5.3		3.5	3.8	2.9
12	302	11.0	215	5.5		3.5	4.0	2.8
13	300	11.2	220	5.4		3.6	4.0	2.8
14	300	11.2	228	5.5		3.6	3.9	2.8
15	298	11.4	232	5.4		3.4	3.7	2.8
16	280	11.1	238	5.2		3.3	3.5	2.9
17	260	10.5	240	4.7		2.8	3.3	2.9
18	248	10.1				2.0	3.0	3.0
19	225	9.2					2.6	3.0
20	230	8.0					2.6	2.9
21	250	7.3					2.8	2.8
22	258	6.7					2.8	2.8
23	270	6.2					2.8	2.8

m	3.50	A 0 73

Time: $150.0^{\circ}E$. Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 esconds.

Time: 120.0°E. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Table 27 Watheroo, W. Australia (30.3°S, 115.9°E) March 1948

0.2		0.0					2.0	2.0
02	260	6.4					2.7	2.6
03	270	6.0					2.7	2.5
04	270	5.5					2.5	2.6
05	270	5.2					2.4	2.7
06	250	5.4			130	1.7		3.0
07	240	7.4			110	2.4	3.2	3,2
08	240	8.6	240	4.2	100	3.0	3.5	3.1
09	250	9.4	220	4.4	100	3.3		3.1
10	255	10.2	210	4.6	100	3.6		3.0
11	250	10.5	200	4.7	100	3.6	3.3	2.9
12	280	11.0	.500	4.6	100 .	3.7		2.8
13	275	11.0	220	4.8	100	3.7		2. 9
14	260	11.0	220	4.8	100	3.6		2.9
15	260	10.6	230	4.6	100	3.5		2,9
16	255	10.2	230	4.4	100	3.2		2,9
17	240	10.3	250	4.3	110-	2.8	3.2	3.0
18	240	9.7			120	2.1	2.6	3.0
19	240	9.0					2.6	3.0
20	240	8.0						2.8
21	255	7.6					2.5	2.8
22	270	7.0					2.6	2.7
23	280	7.0					2.8	2.6

forl hie

for

Hobart, Taemania (42.8°S, 147.4°E)

March 1948

Slough, England (51.5°N, 0.6°W)

February 1948

Tine	h'F2	Cols	h Fl	f°F1	h E	10世	fEs	F2-M3000
00	275	6.0						2.6
01	262	5.6						2.7
02	260	5.3					2.4	2.7
03	258	5.0					2.5	2.7
04	260	4.8					2.6	2.8
05	255	4.5					2.1	2.8
06	255	4.6					2.1	2.9
07	250	6.3			100	2.3	2.1	3.1
08	250	7.3	240		100	2.8	3.0	3.1
09	275	7.5	235	4.5	100	3.1	4.0	3.1
10	300	8.5	220	5.0	100	3.2	4.0	3.1
11	292	9.1	210	5.0	100	3.3	4.0	3.1
12	295	9.1	205	5.0	100	3.5	3.8	3.0
13	300	9.0	210	5.0	100	3.5	3.5	3.1
14	292	9.5	210	5.0	100	3.5	3.5	3.1
15	275	9.2	210	4.8	100	3.2	3.1	3.0
16	255	9.5	210	4.5	100	3.0		3.0
17	250	9.5	242		100	2.6	2.8	3.0
18	250	9.5					2.4	3.0
19	250	9.0						3.0
20	250	8.2						2.9
21	250	7.3						2.8
22	250	6.5						2.7
23	260	6.2						2.6

Time	h' F2	tols	h'Fl	foli)	h [†] E	for	175a	F2-M3000
00	292	4.0					2.6	2.5
01	294	4.0					2.6	
02	297	3.7					2.6	2.5
03	296	3.4					2.5	
04	279	3.0					0.9	2.5
05	266	2.8					2.4	2.7
06	274	2.8			175#	1.4#		2.7
07	244	4.9			153	1.6	3.0	
08	228	7.6			123	2.1	3.3	3.2
09	226	9.4	5504	3.6	118	2.6	3.3	
10	228	10.2	219	4.2	115	2.9	3.3	3.1
11	230	10.8	219	4.6	115	3.1	3.3	
12	233	11.0	224	4.7	116	3.1	3.3	3.0
13	232	10.9	221	4.3	115	3.1		
14	232	10.8	218	4.4	116	3.0		3.0
15	229	10.6	220#		119	2.7		
16	227	10.1			121	2.3	3.3	3.1
17	221	9.2			129	1.8	3.3	
18	219	8.1					2.6	3.0
19	227	6.7						
20	242	5.9					2.5	2.8
21	262	4.9					2.6	
22	283	4.5					2.0	2.6
23	291	4.3					2.6	

Table 30°

Time: 150.0° E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Time: Local.

Sweep: 0.5 Mc to 14.0 Mc in 6 minutee; 14.0 Mc to 25.0 Mc,
manual operation.

*Average values except for f°F2 and fFe, which are median values.

#Less than 3 observations.

Table 31

Lanchow, China (36.1°E, 103.8°E)

February 1948

Time	h'F2	tols	h'Fl	forl	h E	TOE	fEs	F2-M3000
00	420	4.0						2.7
01	405	4.4						2.3
02	400	4.5						2.3
03	370	4.5						2.4
								2.4
04	345	4.4						2.5
05	360	4,0						2,5
06	395	3.9						2.4
07	325	6.1						2.5
80	350	(9.8)	295		180	2.9		(2.6)
09	340	(10.8)	290		145	3.2		(2.6)
10	330	11.5	290		150	3.4	3.8	2.7
11	340	13.2	280				3.6	2.6
12	320	13.0	280		130	3.9	3.6	2.6
13	340	(14.0)	280				3.8	(2.5)
14	340	12.5	280	5.2	135	3.6	3.3	2.6
15	330	12.5	280			-,-	3.8	2.6
16	320	11.5	290		160	3.2	3.5	2.6
17	320	11.6	290			-,-	3.3	2.7
18	300	10.0					0.0	2.6
19	300	(7.4)						(2.6)
20	300	(6.3)						
21	320	5.2						(2.7)
22	360	4.6						2.6
23	390	4.2						2.4
- 0	1							2.3

Table 32

Nanking, China (32.1°N, 119.0°E)

February 1948

3000
.5
. 4
. 8
.0
.9
.8
.9
. 7
.8
.6 .6
.6
. 7
.8
.7
7
6
6
-

Time: 105.0°E. Sweep: 2.4 Mc to 16.0 Mc in 15 minutes, manual operation.

Time: 120.0°E. Sweep: 1.7 Mc to 15.0 Mo in 20 minutes, manual operation.

Table 33

fold his

FOE

h'Fl

Delhi, India (28.6°N, 77.1°E)

390

390 (390)

360

390

390

390 330

300

330 360

360 360

360

360

360 360

360

360

375

390

fore

5.4

4.8

4.2

3.6

3.4 3.7

7.2 9.7

12.0

12.6 13.2

13.3

13.2

13.2 13.2

12.6

10.0

8.1

6.2

Time

00

22

23

February 1948

2Bs

F2-M3000

З.

3.2

2.9

2.8

2.8

Ckinawa 1. (26.3°N, 127.7°E)

February 1948

Time	h'F2	fore	h'Fl	toll	h,E	foE	TEG	F2-M3000
00		(7.5)						(2.9)
01		(7.4)						(2.8)
02		(6.2)						(2.9)
03		(5.7)						(3.0)
04		(4.9)						(3.3)
05		(4.0)						(2.9)
06		(3.2)						(2.8)
07		(5.3)						(3.0)
08		(8.8)						(3.3)
09		10.6						3.3
10		11.8						(3.1)
11		(13.0)		(4.6)				(3.1)
12		(13.7)		(4.8)				(3.0)
13		(14.2)		(5.7)				(2.9)
14		(15.1)		(5.4)			(4.3)	(3.0)
15		(15.4)		(5.5)			(4.1)	2.9
16		(15.6)					(3.4)	(2.9)
17		(15.8)					(3.2)	3.0
18		(15.4)						3.1
19		(14.2)						(3.0)
20		(13.1)						(3.0)
21		(12.4)						(3.0)
22		(11.2)						(3.1)
23		(9.0)						(3.0)

Table 34

Time: $135.0^{\circ}E$. Sweep: 1.8 Mc to 18.0 Mc in 15 minutes, manual operation.

Time: Local
Sweep: 1.º Le so 16.0 Le in 5 minutes, manual operation.
**Microbt at 6.00 1022.
**Average values: other columns, median values.

Table 35

Bombay, India (19.0°N, 73.0°E)

February 1948

Time	4	for2	h'Fl	for]	h'E	for	fZe	190 M2000
65						405	124	F2-M3000
01								
02								
03								
04								
05								3.0
06								
07	330	7.5						
08	330	11.2						
09	330	12.3						3,2
10	360	13.8						
11	(390)	(14.0)						
12	(390)	(14.1)						
13		(14.3)						2.7
14		(14.3)						
15	(450)	(14.3)						
16	(420)	(14.3)						2:7
17	(450)	(14.3)						2.1
18	(390)	(14.2)						
19	(390)	(14.1)						
20		(13.8)						
21								
22								
23								

Time: Local.

Sweep: 1.º Lc to 16.0 Lc in 5 minutes, manual operation.

*Meight at 0.83 f°F2.

**Average values; other columns, median values.

Table 36

Madras. India (13.0°N, 80.2°E)

February 1948

ine	41	for2	h Fl	for1	h * E	₫o <u>R</u>	fEs.	F2-H3000
00							+210	FE-MOUQU
01								
02								
03								
04								
05								
06								
07	360	7.6						
08	420	31.8						
09	480	11.8						2.7
10	540	12.0						
11	540	11.8						
SI	540	12.0						2,2
13	600	11.9						2.4
14	300	11.8						
15	600	12.0						
16	600	12.4						2,2
17	600	12.5						2.5
18	540	12.4						
19	540	11.9						
20	510	11.7						2,3
21								2,0
22		(11.9)						

Time: Local.

Sweep: 1.8 Lc to 16.0 Mc in 5 minutes, manual operation.
*Height at 0.83 form.
**Average values; other columns, median values.

Time

00 01

02

04

05

06

07

08

09 10

11

12 13

15

16

18

19

21

22

23

Time

00

02

03

04

05

06

07

80

09

10

11

12

13

14

15

16

17

18

19

21

22

23

h'F2 270

260

250 252

255

250

250

250

298

315 340

312

340

350

325

308

305

300

255

250

250

250

265

280

Table 38*

Hobart, Taemania (42.8°S, 147.4°E)

forg

6.5

6.0

5.5 5.4

5.0

4.6

5.0

6.9

7.3

7.8

7.5

8.0

8.0

7.5 7.5

8.0

8.0

8.0 8.0

7.5

7.0

6.9

February 1948

Falkland Ie. (51.7°S, 57.8°W)

February 1948

h'Fl	fori	h E	TOE	1Es	F2-M3000	Time	h'F2	LoLS.	h Pl	for	h E	1ºE	7Bs	P2-M3000
				2.8	2.6	00	328	7.7					3.4	2.5
				2.8	2.6	01	324	7.6					3.4	2.6
				2.8	2.7	02 .	312	7.6					2.4	2.5
				3.0	2.7	03	314	7.3						2.5
				2.7	2.7	04	320	6.9						2.5
					2.8	05	274	7.4	245	4.8	125#	2.8#		2.6
				2.8	3.1	06	271	8.5	255∯	4.9#	128	2.6		2.6
235		`100	2.6	3.9	3.0	07	262	9.0	253∯	4.7	118	2.9	3.5	2.7
240	4.6	100	3.0	4.5	3.0	08	267	9.5		5.1#	112	3.2	4.3	2.7
240	5.0	100	3.3	5.0	2.9	09	268	10.6	236	5.7	111	3.4	4.6	2.7
200	5.3	100	3,5	5.6	2.9	10	318	10.9	230	5.5	110	3.5	5.6	2.8
200	5.0	100	3.6	5.3	3.0	11	293	11.0	220	5.5	110	3.6	5.7	2,8
202	5.5	100	3.8	5.0	2.8	12	290	11.3	229	5.5	109	3.7	5.9	2,8
210	5.3	100	3.8	5.1	2.8	13	283	10.9	237	5.5	110	3.5	5.5	2.8
205	5.1	95	3.8	4.8	3.0	14	278	10.0	235	5.3	111	3.4	5.0	3.0
200	5.1	95	3.6	4.2	2,9	15	280	9.4	242	5.2	111	3.3	4.2	3.0
205	5.0	95	3.5	3.7	2.9	16	268	9.6	250	5.3#	113	3.1	4.2	3.0
225	4.6	100	3.0	3.8	2.9	17	255	9.5			119	2.9	5.1	3.0
240		100	2.5	3.5	3.0	18	258	9.0			115	2.5	4.6	3,1
				2,5	3.0	19	264	8.6				-	4.8	3.0
					2.9	20	284	8.2					4.6	2.7
				3.2	2.8	21	293	8.2					4.2	2.8
				3,3	2.7	22	318	8.1					3.6	2.6
				3.4	2.6	23	314	7.9					3.7	2.5

Time: 'Local.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute.
*Average values except for 2 and fis, which are median values. #One or two values only.

Time: 150.0°E.

Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 econds.

Table 39 (Supercedes Table 2, CRPL-F43).

for fra

Clyde, Baffin I. (70.5°N, 68.6°W)

CAOL

4.6

(4.6)

(4.3) (4.2)

(4.2)

(4.2) (4.3)

(4.2)

4.8

(6.0) (7.2)

8.0 (8.2)

(8.2)

(8.0) (7.7) (6.3)

(5.8)

(5.8) (5.7)

(5.2)

(5.2)

(4.9)

(4.5)

h'Fl

for1

h'E

h'F2

300

300

300

290

320

320

340

340

300

280

265

260

260

260

260

270

260

270

300

280

280

290

270

300

January 1948

.L5-N3000

2.8

(2.8)

(2.8)

(2.7)

2.9

(2.7)

3.0

(3.0)

3.1

3.0

(3.0)

(3.0)

(3.0)

2.9

(2.8)

(2.8)

(3.0)

(3.0) 2.9

(2.8)

Nanking, China (32.1°N, 119.0°E)

January 1948

Time	h'F2	Lols	h'Fl	forl	h E	for	fEs	F2-M3000
00								
01								
02								
03								
04								
05	355	3.4						2.4
06	300	3.5						2.4
07	265	5.6						2.6
08	260	9.2	250		150	2.4		2.8
09	270	11.2	250		140	3.0		2.8
10	270	12.1	240		120	3.3	3.4	2.7
-11 İ	275	13.0	230		120	3.5	4.0	2.7
12	300	13.2	240	6.8	130	3.6	4.2	2.6
13	290	13.6	240		120	3.7	4.2	2.7
14	290	13.2	230	5.6	120	3.5	4.0	2.6
15	290	13,3	220		100	3.4	3.9	2.7
16	280	13.2	250		130	3.0	3.6	2.7
17	260	12.5	240		140	2.5	2.7	2.7
18	215	9.2						2.8
19	230	8.1						2.6
20	240	8.4						2.7
21	225	6.8						2.7
22	240	5.4						2.5
23								

Table 40

Time: 75.0°W.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc, manual operation.

Time: 120.0°E.

Sweep: 1.7 Mc to 15.0 Mc in 15 minutes, menual operation.

Table 41

Falkland Ie (51.7°S. 57.8°W)

January 1948

Fribourg, Germany (48.1°W, 7.8°E)

September 1947

Time	h F2	forz	h'Fl	fofi	h'E	for	fEs	F2-M3000
00	334	9.4					3.0	2.5
01	323	9.1					3.5	2.5
02	326	8.6					3.2	2.4
03	324	8.5					3.0	
04	302	8.9						2.4
05	275	9.5	265 #	4.6₩	135	2.4		
06	321	9.8	244	5.1	116	2.8	3.6	
07	354	10.3	245	5.2	111	3.2	4.3	2.4
08	351	10.2	244	5.6	110	3.5	4.6	2.4
09	367	10.2	236	5.8	109	3.7	6.0	2.5
10	373	10.6	228	5.8	108	3.8	6.3	2.5
11	370	11.0	231	5.8	10,7	3.8	5.9	2.6
12	360	10.7	239	5.9	108	3.8	5.2	2.6
13	353	10.3	235	5.8	108	3.7	5.4	2.6
14	354	9.7	238	5.6	109	3,6	4.4	2.7
15	355	9.0	240	5.5	110	3.6	4.8	2.7
16	342	8.7	243	5.3	110	3.4	4.5	2.7
17	318	8.5	251	5.2	118	3.1	5.2	2.8
18	278	8.4				2.7	5.4	2.8
19	281	8.2					4.4	2.7
20	298	8.1					4.4	2.5
21	327	8.6					4.0	2.4
SS	335	8.9					4.4	2.5
23	336	9.2					3.9	2.4

Time	h'F2	tols	h'Fl	for	h * E	for	2Ze	F2-M3000
00	310	(5.6)					1.8	
01	320	(5.3)					2.4	
02	318	(4.9)					2.3	
03	330	4.8					1.8	
04	325	1.4					2.3	
05	300	4.2				1.6	2.2	
06	260	5.0			120	1.9		
C7	260	6.2	230		110	2.7	3.3	
08	(260)	7.0	230		110	3.1	3.8	
09	(300)	(8.4)	220		105	3.4	4.0	
10		9.0	220		108	3.5	4.2	
11	(330)	(9.3)	220	(5.4)	105	3.6	4.8	
12	(330)	9.6	220		105	3.7	4.8	
13	(325)	(10.2)	230		110	3.6	4.0	
14	(350)	10.1	230		105	3.5	4.1	
15	340	(9.3)	230		110	3.4	3.7	
16	(260)	(9.3)	230		102	3.2	3.6	
17	248	(9.2)	235		108	2.6	3.3	
18	250	(8.7)			108	1.9	2.9	
19	245	(8.2)					2.7	
20	250	(8.0)					2.0	
21	270	(6.9)					2.0	
22	300	(6.2)					- , 0	
23	305	(6.0)					1.6	

Table 42

Time: Local.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

*Average values except for f°F2 and fEe, which are median values.

#Lees than 3 observations.

Time: Local.

Sweep: 1.4 Mc to 16.6 Mc in 10 minutes, automatic operation,
September 1 through 22; 1.6 Mc to 17.6 Mc in 10 minutes,
automatic operation, September 23 through 30.

Table 43

Fribourg, Germany (48.1°N, 7.8°E)

August 1947

Clyde, Baffin I. (70.5°N, 68.6°W)

Table 44 (Supersedes Table 2, CRPL-F42)

December 1947

Tims	h F2	fors	h'Fl	forl	h'E	for	fEs	F2-M3000
00	330	6.2					3.5	
01	310	5.8					2.7	
02	315	5.9					2.8	
03	310	5.6					3.3	
04	290	5.5					2.3	
05	270	5.6			105	1.6	3.1	
06	250	6.7	230		100	2.4	4.0	
07	(275)	7.0	220	2	100	2.9	4.7	
08	345	(7.8)	. 550	(5.0)	100	3.3	4.8	
09	(345)	8.1	220	(5.1)	100	3.8	5.2	
10	350	8.8	210	(5.5)	100	3.9	5.2	
11	3 60	8.8	220	(5,8)	100	(4.0)	5.2	
12	440	8.6	220	(5.5)	100	4.0	5.0	
13	365	8.6	220	(5,6)	100	(4.0)	4.9	
14	360	8.6	(225)	(5.6)	100	3.8	5.0	
15	(340)	8.4	230	(5.7)	100	3.8	4.6	
16	360	8.3	240	(5.5)	100	3.6	4.6	
17	(300)	8.3	240		102	3.0	4.3	
18	(250)	8.4	235		108	2.5	3.9	
19	260	8.4			110	1.9	3.2	
20	250	(8.0)				_,,,	3.7	
21	255	(7.5)					4.3	
22	285	(7.0)					3.6	
23	300	6.5					3.0	

Time: Local.
Sweep: 1.4 Mc to 16.6 Mc in 10 minutee, automatic operation.

Time	h' F2	f°F2	h'Fl	1011	h * E	for	£Es.	F2-M3000
00	300	4.5						2.8
01	300	4.5						2.7
02	300	4.3						(2.8)
03	315	4.0						2.7
04	(305)	3.4						2.6
05	(300)	3.3						2.7
06	300	4.2						(2.8)
07	31.5	3.9						2.8
08	300	4.7						2.8
09 {	290	5.5						(2.9)
10	275	6.6						2.9
11	280	6.8						(3.0)
12	270	8.1						(3.0)
13	270	8.2						(2.9)
14	265	8.0						2.9
15	270	(7.4)						(2.8)
16	290	6.7						(2.8)
17	280	(6.0)						(2.8)
18	300	6.0						(2.8)
19	300	5.9						2.8
20	300	5.6						(2,8)
21	300	(5.6)						(2.8)
22	300	5.4						(2.8)
23	300	4.8						2.8

Time: 75.0°W.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc. manual operation.

Table 46 (Supersedes Table 2, CRPL-F40)

Table 45 (Supersedes Table 2, CRPL-F41)

Clyde, Baffin I. (70.5°N, 68.6°W)

November 1947

						40.7		Ma Wasaa
Time	h'F2	Tols	h'Fl	forl	h E	1ºE	2Be	F2-N3000
00	300	6.7						2.7
01	300	5.2						2.7
02	300	4.8						2.7
03	320	5.0						2.7
04	300	4.7						2.7
05	- 300	4.4						2.7
06	320	5.2						2.6
07	300	6.2						2.8
80	285	7.2						2.8
09	270	€.0						2.8
10	270	8.6						(2.9)
11	270	8.7						2.8
12	270	9.0						2.9
13	260	9.2						(2.9)
14	250	(9.5)						(2.9)
15	260	(9.2)						(2.9)
16	270	(9.0)						2.8
17	280	8.2						(2.7)
18	300	(8.0)						2.8
19	290	6.8						2.7
50	280	(7.2)						(8.8)
21	300	(7.2)						(2.8)
22	280	7.0						(2.8)
23	295	6.7						2.8
	-							

Time: 75.0°W. Sweep: 2.2 Mc to 16.0 Mc in 1 mirute; 1.9 Mc to 13.0 Mc. manual operation.

Table 47 (Supersedes Table 2, CRPL-F39)

Clyde, Baffin I. (70.5°N, 68.6°W)

September 1947

h'F2	foF2	h'Fl	forl	h'E	40E	126	F2-M3000
300 310 (290) (320) 300 300 345 395 350 430 455 440 440 440 380 300 300	4.6 3.7 3.4 3.1 4.7 5.5 6.4 6.0 6.3 5.8 5.8 5.8 5.4 5.4	270 260 250 250 250 250 270 270	3.3 3.7 4.0 4.3 4.4 4.5 4.4 4.0 4.0 3.9	h'E	foE (2.8) 3.0	£6	2.6 2.6 2.7 2.8 2.8 2.8 2.7 2.6 6.6 2.6 2.6 2.7 2.8 2.8 2.8 2.6 2.6 2.7 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8
300 300 305 290 295	5.6 4.8 4.8 5.4 4.5						2.8 2.6 2.5 2.7 2.6
	300 310 (290) 300 300 300 345 395 430 455 440 445 400 380 300 300 300 300 300 300 300 300 3	300 4.6 310 3.7 (290) 3.1 (320) 3.1 300 4.7 300 4.7 300 5.5 345 5.4 395 6.4 395 6.3 455 5.9 440 5.8 440 5.8 440 5.8 440 5.8 380 5.4 300 5.6 300 4.8 300 5.4 300 5.6 300 4.8	300	300	300	300	300

Time: 75.0°W.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc, manual operation.

Clyde, Baffin I. (70.5°N, 68.6°W)

October 1947

Time	P, LS	tols	h¹Pl	for	h'E	for	7Bs	IP2-M3000
00	30 0	5.6						2.8
01	3 00	5.9						2.7
02	290	5.9						2.6
03	315	5.1						2.6
04	340	4.9						2.7
05	320	4.8						2.7
06	300	5.5						2.8
07	295	6.2						2.8
08	300	6.8						(2.8)
09	280	7.1						2.9
10	280	7.8						2.9
11	310	7.1	280	3.9				2.8
12	300	7.2	265	4.0				2.7
13	300	7.3		4.0				2.8
14	280	7.0	280	4.0				8.8
15	280	7.2						2.9
16	285	7.9						2.8
17	280	7.8						2.8
18	300	7.0						2.7
19	300	6.2						2.7
50	300	6.6						2.7
21	300	6.8						2.7
22	300	(6.6)						(2.7)
23	300	5.8						2.7

Time: 75,0°W. Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc. manual operation.

Table 48 (Supersedes Table 2, CRPL-F38)

Clyde, Baffin I. (70.5°N, 68.6°W)

Auguet 1947

Time	h'F2	Tols.	h'Fl	for	h'E	for	fEs	F2-M3000
00	3 00	5.2						
								2.7
01	300	4.8						8.8
02	310	4.6						2.7
03	310	5.0						8.8
04	310	5.1		3.6				2.8
05	390	5.4	250	3.6	145	2.7		2.7
06	380	5.4	260	4.0				2.7
07	450	5.2	265	4.1				2.7
08	500	5.5		4.3				2.5
09	495	5.5	250	4.6				2.4
10	520	5.7	255	4.6				2.5
11	490	5.6	240	4.7				2.5
12	45Q	5.8	245	4.8				2.6
13	460	5.2	250	4.8				2.6
14	490	5.7	250	4.7	120	3.4		2.5
15	520	5.5	250	4.4		3.4		2.5
- 16	520	5.6	250	4.4	145	3.0		2.4
17	445	5.6	250	4.1		•••		2.6
18	380	5.4	250	4.0		2.9		2.6
19	350	5.6	250	3.6	145	2.6		2.7
50	300	5.7	260	5.0	170	2.4		2.7
21	300	5.4	280		1 /0	6.4		
22	300	5.2	~80					2.8
23	300	5.0						2.7
20	300	. 0.0						2.7

Time: 75.0°W.
Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc, manual operation.

Table 50 (Supersedee Table 2, CRPL-F36)

Table 49 (Supersedes Table 19, CRPL-#38)

h'Fl foFl h'E foE fEs F2-M3000

Clyde, Baffin I. (70.5°N, 68.6°W)

for2

5.7

5.4

5.7

5.4 5.4

5.4

5.5

5.6

5.9

5.5

5.6 (5.6)

5.8

5.7

5.9

5.8

5.8

5.8

5.8

5.6

5.9

5.6

5.8

250

250

250

250

250

250

255

230

250

250

250

240

210

230

240

240

250

250

250

255

3.4

3.9

4.0

4.3

4.5

4.8

4.8

4.7

4.7

4.9

4.7

4.8

4.7

4.6

4.3

4.0

3.4

Time

00

01

02

03

05

06 07

08

09

16 17

18

19

20

22

23

h'I'z

300

295

300

310

350

400

500

480

(520)

(550)

(535)

(550)

(600)

570

540

530

500

480

440

400

345

320

290

300

July 1947

2.9

2.9

2.9

2.9

2.9

2.8

2.7

2.5

(2.3)

(2.4)

2.5

2.4

2.5

2.5

2.6

2.6

2.7

2.8

2,9

2.8

Olyde, Baffin I. (70.5°N, 68.6°W)

June 1947

Time	h' I'z	Tols	h'Fl	1017	h'E	₫0Ē	15s	F2-M3000
00	370	5.3	340	3,3				2.5
01	350	5.1		3.6				2.6
02	380	5.5		3.5				2.6
03	440	5.2	290	3.9				2.6
04	515	5.0	275	4.0				2.5
05	580	4.8	300	4.2				2.3
06	570	5.0	255	4.4				2.5
07	550	5.3	250	4.3				2.3
08	(590)	5.3	250	4.5				(2,2)
09	(550)	(5.3)		4.6				(2.4)
10	(590)	(5.5)	250	4.6		4		(2.3)
11	(560)	(5.5)	250	4.6				(2.3)
12	560	5.5	250	4.7				2.4
13	570	5.4	250	4.6				2.4
14	(555)	5.6	250	4.6				(2.4)
15	600	5.4	250	4.6				2.3
16	520	5.5	250	4.4				2.4
17	500	5.5	280	4.3				2.5
18	480	5.6	275	4.2				2.5
19	450	5.4	260	4.1				2.6
20	425	5.5	290	3.7				2.6
21	350	5.5		3.8				2.7
22	380	5.5						2.5
23	350	5.5						2.6

Time: 75.0°W.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc, manual operation.

Time: 75.0°W.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc, manual operation.

Table 51 (Supercedes Table 2, CRPI-F35)

Clyde. Baffin 1. (70.5°N. 68.6°W)

May 1947

Table 52 (Supersedes Table 2, CRPL-F34)

Clyde, Baffin I. (70.5°N, 68.6°W)

April 1947

Time	h'F2	forz	h171	1011	h E	10%	fEs.	F2-M3000
00	340	5.4						2,6
01	340	5.2						2.6
02	335	5.1						2.7
03	350	4.4						2.7
04	340	5.4						2.7
05	340	5,2						2.7
06	350	6.1						2.7
07	400	5.8						(2.7)
08	440	6.0		4.5				(2.5)
09	440	6.6		4.6				2.6
10				-40				
11	460	6.2						(2.5)
12	450	6.6	300	5.0				(2.6)
13	400	6.2		4.8				(2.6)
14	450	6.0		4.6				2.6
15	400	6.4	280	4.6				2.6
16	320	6.2	275	4.4				2.6
17	390	6.6		_				2.6
18	345	6.6						2.7
19	325	6.6						2.8
20	320	6.8						2.7
21	310	6.3						2.8
22	320	5.7						2.8
23	340	6.2						2.8
								-

Time: 75.0°W.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc. manual operation.

Time	P, LS	Tols.	h'Fl	1011	h'E	for	175s	172-M3000
00	315	5.6						2,8
01	300	5.7						2.8
02	3 30	5.6						2.8
03	300	5.3	300					2.9
04	350	5.3	275	3.8				2.7
05	33 5	5.4	270	4.2				2.8
06	415	5.9		4.4				2.7
07	405	5.8	270	4.6				2.6
08	4 65	5.8		4.6				2.6
09	(460)	(6.0)		4.6				(2.6)
10	(450)	6.0		4.6				2.6
11	(435)	(6.2)	250	4.6				(2.6)
12	475	(6.4)	250	4.6				(2.5)
13	470	6.0		4.8				2.6
14	450	5.8	250	4.8				2.4
15	465	6.1	265	4.8				2.5
18	430	6.2	255	4.7				2.6
17	420	6.2	250	4.4				2.6
18	400	6.0	300	4.1				2.6
19	320	6.0	290					2.8
20	315	5.8						2.7
21	330	5.8						2.7
22	300	6.0						2.8
23	330	5.7						2.8

Time: 75.0°W. Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc, manual operation.

Time

00

19

20 21

22

23

h'F2

320

330 335

320 330

340 350 300

315

(300)

(300)

(365) (350)

(300) 320

300

320

315

320

330

330

310

Table 53 (Supercedee Table 18, CRPL-F34)

h'Fl for h'E for fre F2-M3000

Table 54 (Supercedes Table 13, CRPL-F33)

Clyde, Baffin I. (70.5°N, 68.6°W)

Toks.

5.2 5.4 4.7

4.7

4.6

5.6 6.0

6,2

7.0

6.0

(6.2)6.0

6.0 6.6

5.8

5.8

5.8

5.4

5.8 5.4

5.0

March 1947

2.7

2.6

2.8

2.8

2.9

2.9

2.6

2.8

2.6 2.8 2.7 2.8

2.7 2.7 2.8

2.7

Time	P, LS	tols:	h'Fl	for	h'E	for	175s	T2-M3000
00	340	5.2						2.8
01	330	5 .3						2.8
02	335	4.6						2.8
03	340	4.8						2.8
04	335	3.4						2.7
05	350	4.6						2.6
06	350	4.9						2.7
07	330	5.4						2.8
08	330	5.7						2.8
09	30 0	7.4						2.9
10	300	8.6						2.9
11	300	8.1						2.9
12	300	8,6						2.9
13	300	8.8						3.0
14	290	8.4						2.9
15	300	9.4						2.9
16	300	8.9						2.9
17	300	8.2						2.9
18	310	7.3						2.9
19	320	6.0						2.9
. 50	320	6.2						2.8
21	300	6.2						2.8
22	320	5.6						2.9
23	330	5.1						2.8

Time: 75.0°W. Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc,

manual operation.

Time: 75.0°W.

Clyde, Baffin I. (70.5°N, 68.6°W)

Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc, manual operation.

Table 55 (Supersedes Table 13, CRPL-F32)

Clyde, Baffin I. (70.5°N, 68.6°W)

January 1947

Time	P. LS	forg	h'Fl	f°F1	h B	₫0Ē	TES	F2-M3000
00	320	4.6						
01	340	4.4						2.8
								2.8
02	300	3.5						2.9
03	330	3.8						2.8
04	330	3.6						2.9
05	330	3.6						2.8
06	300	4.4						2.8
07	300	3.8						2.8
08	300	4.7						2.9
09	300	5.2						2.9
10	300	5.6						3.0
11	285	6.6						3.0
12	290	6.8						3.0
13	290	8.8						3.0
14	290	8.2						2.9
15	300	8.6						
16	300	7.4						2.9
17	300	5.8						2.9
18	290	5.8						2.8
19								2.9
	300	5.4						2.8
20	300	5.6						2.9
21	300	4.9						2.9
55	300	4.8						2.9
23	320	4.4						2.8

Time: 75.0°W.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute; 1.9 Mc to 13.0 Mc. manual operation.

Form adopted June 1946

Standards

National Bureau of Scoled by: E. J. W., J. J. S.

J. M. C.

TABLE 56
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

IONOSPHERIC DATA

June (Month)

Km

Washington, D.C.

Observed at

Sweep 1.0 Mc to 25.0 Mc in 0 25 min

Monual C Automotic 38

National Bureau of Standards

IONOSPHERIC

948

June

Mc (Unit)

(Characteristic) f°F2

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Monual

Automatic

Monual

U S GOVERNMENT PRINTING OFFICE, 1946 0 - 102518

Form adopted June 1946

National Bureau of Standards

J. M. C.

J. J. S.

E. J. W.

Scaled by.

TABLE 58
Central Radia Propagatian Laboratory, National Bureau of Standards, Woshington 25, D.C.

DATA ONOSPHERIC

948

June

Observed at Washington, D.C.

(Characteristic) (Unit)

CE Σ 5(88) (71) 3 (6.9) 8 (6.6) 8.0 (8.0) 7 (8.1) 3 (78)3 (7.5) [(2,0) | (6,9) | (6,6) | (6,6) (6.2)3 (6.7)3 (6.6)3 (6.2)7 [70] (60) 3 (6.6) (81) 3 (82) 4 (7.9) (7.6) (7.6) 3 1.4 , (1:1) (7.1) (7.0) 3 (6.5) (7.4) (7.1) (8.7) 3 (0.6) 7.3 (1 4) 2030 2130 2230 2330 14 2.3 6.3 (6.4)" (4.3) (6.2) (7.0) [6.6] نے م (7 9)3 (8.2) (79) 8.0 (79)3 (8.5) \$ (8.0) } (6.4) (7.3) (8.0) J (7.7) J [7.4]S 7.4 2.0 7.9 6.7 7.6 6.9 7.4 6.7 6.3 70 7.7 K. L. ≪ 8.0 000 7.8 K 6.9 (8.3) \$ (89) (8.1) 3 (8.1) 3 (7.7) 27 8.1 7.5 9.0 7.5 7.8 8 (7.2) 7.3 2.3 7.2 2.7 6.3 X (8.2) 2 (58) (2.5) (8.8) (8.4) Calculated by: 0 6.9 10 7.9 000 8.7 8.6 7.7 7.6 [68] 9.0 7.2 2.7 6.8 70 8.5 (8.0) (82) 12 (6.9) (8.0)3 (7.7) (7.4) (7.4) (8.1) (7.7) 5(0) (6.8) H 1930 (7.4)3 (6.6) (98) مر ک 6.2 Do Do 7.2 8.7 7.6 7.4 7.5 7.7 7 7 8.7 7.3 00 9 7-7 CIKK 6.3 K (7.8) 3 (6.8) X 1830 7.0 (7.7) 7.3 2.0 78 78 86 12 9.0 7.5 00 6.9 6 8 7 08 7.7 0.8 7.5 8 2 8.6 8.9 7.6 7.7 7.5 69 7.7 6.8 X (8.2) 8 (6.4)3 (7.9) (4.4) (7.8) 8.7 6.3 0 6 7.2 1730 3.5 72 8.5 7.6 8.6 1.4 6.0 7.9 6.9 7.6 2.0 11 6.8 00 00 7 3 8.8 7.6 62 7.3 5.9 K 59 X 6.7 K 5 (1.9) 7.8 (6 5) (7.23 8.5 1630 2.0 9.0 7.5 7.2 11 8.6 1.8 م 7.3 50 7.5 7.8 8 0.0 7.8 8 8.7 6 9 11 - 8 1 P 30 5.6 K 6.0 x (6.3) (7.3) E. x (5.7) \$ (5.7) \$ (170) 3(8.0) 1530 20 [6.9] 8 7.0 (7.9) ~ € 7.6 ... 7.7 8.1 8 8.1 7.3 77 00.7 00 7.6 × 00 1.8 2.6 1.1 50 29 (8.9) 6.4 4 (6.3) (6.9) 8 (7.2) (6.5) 7.5 (18) 1430 5 2 7.5 26 9 8 2.8 8.8 8.9 8.3 6.7 5.3 0.0 6.2 33 7.3 2.8 00 8.0 7.4 79 80 Ģ 7.1 23 U Mean Time (8.5) 4.2 (7.4) 1230 1330 . 3 7.7 7 9 8.7 7.8 6.8 *ج* ح 7.5 7.6 80 8.9 8.7 7.3 7.4 26 8.5 6.0 5.9 8.7 16 7.6 2.0 7.8 5.5 U P 38 0 0 5.7 K (6.5) 7.4 S X 6.3 (6.9) (6.4)J (1.6) 7.3 8.3 (4.9) 00 7.7 8 7.4 7.8 6.6 7.6 2 50 8 8.7 50 7.2 75°W U 9 G 75 U 6.3 X × U (p.7) (p.7) (9.9) 7.9 9.3 7.2 9 8 1130 7.6 7.3 8.6 0.00 7.8 7.5 8.3 4.9 7.3 8 7 7.5 10 و 7.3 7.5 00 J b 7.7 9 P .29 5 4 K (7 3) (4.6) (6.5) (6.5) (6.2) X (6.1) S 6.0 7.5 m 1030 7.4 7.3 8.0 1.1 00 4.1 7.2 1.9 9.3 4.6 7.7 7.2 0.8 5.30 7.8 6.8 7 G 9 P [90] 5.3 X [64] (7.6) (7.3) 7.1 6.5 7.5 0930 (3.6) 9.0 7.7 4.6 7.3 (8.1) 6.7 6.4 00 5.3 8.4 1. 7.6 ° 3 8.9 5.1 5.3 U S O (6.9) 5.5 K (0.1) (8.8) (7.1) 6.40 5.8 X 7.8 6.7 6 8 0830 8.9 4.6 5.8 2.0 5.9 8.4 6.9 6.9 9 7.1 80 1 4 9.9 69 0.0 200 8.1 9 B Z U [6.6] (3.8) (6.7) 6(8.9) 4.6 7.5 00 (8.8) 0730 5.5 P(84) 55 4.9 6.3 5.0 30 7.3 6.7 00 m ٥٥ 7.5 らか 6.3 8 1.1 5.9 5.5 6.8 62 P 7 (+ (6.2)B 4.8 K 52 65 5.7 4.8 (6.9) 7.5 5.9 5.4 6.2 6.1 ((1) 0630 7.1 6.2 6.00 7.7 5.6 1.1 7.7 2.6 6.8 5.3 5.4 -9 5.6 5.4 1.9 5.0 30 7.3 (6.4) 5.9 8 6(1.9) (6.3) (4.7) x (5.5) $(5.4)^{p}$ (6.7) 5.9 5.4 [6.4]5 0530 4.7 5.4 4.9 4.9 7 5.7 5.6 ف م 9.9 2.4 4.7 1:5 5.2 500 19 4.9 5.2 5.5 9 30 4.05 (8.5) 0130 0230 0330 0430 (8.8) 6.3 5.5 Long 77.5°W 5.7 5.0 4.9 4.2 4.9 5.2 4.9 5.3 5 7 5.0 5.2 6.3 5.7 3.7 5.0 6.7 5.2 3.4 5.9 4.5 4.9 رخ 5.9 8.4 90 [6.0] S 3.0 (5.4) 5.7 (5.3) (0.9) 3.5 5.9 5.0 1.7 (2.4) 5.3 6.5 5.8 10 6.0 5.5 4.9 53 6.3 5.5 24 8.4 5.5 0.0 5.8 5,5 6.2 2.0 5.9 5.1 $(5.9)^{d}$ (5.1)F (4.4) (69) (7.3)8 (6.5)8 6.8 (6.6)3 (6.5)3 (4.7) N.0.65 6.3 F 3.6 5.3 0.0 6.0 5.0 6.2 6.7 2.8 5.7 ė 5.5 5:3 (6.9) 9 4.3 9 50.50 6 ė 6.6 5.4 5.6 30 (6.8) (6.2) (6.5) (6.4) } (7.0) (6.2) (2.0) (74) (6.7) (7.7)8 (6.9) 3 7.0 (5.2) (6.4) 000 7 9 6.4 (6.1) 4.9 (67) (65) (8.9) 5.0 2.0 4.9 5.6 7.3 4.9 6.5 (3:8) 10) 10 2 30 7.0 (6.3)3 (6.5) (6.5) (6.7)s 6.4 0030 3 9 7.5 7.2 6.5 4.9 5 5.9 53 7 4 6.6 6.8 و 30 Median Count м 9 c) 4 ωļ Doy 00 6 0 _ 2 2 4 2 9 1 8 6 20 23 30 5 22 24 25 56 27 29 28 3

Automatic 35

Sweep 1.0 Mc to 25 0 Mc In 0.25 min

Monual |

Form adopted June 1946

	- 1	K	ul	June	948			Centra	- Kadia -	rapagatian	ation Laboratory, National Bure	Central Radia Propagation Laboratory, National Bureau af Standards, Washington 25, D.C.	al Bureau	u at Standards	ords, Wasi	ningtan 28	D. O.		Natio	National Bureau of Standards	ean o	Stand	ards	
(Characteris	1ic)	Washington,	0.0	(Month)						2	200			1	1				Scaled by: E. J. W., J. J. S.	W., J.	Institu J. S.	J. M. C.	Ö	
		Lot 39.0°N	- , Lang	77.5°W								₩°27	Mean Time	ime					Calculated by:	M. C. E.	шi	(O)	Ŧ	
Day	00	01 02	0 3	0.4	0.5	90	07	0.8		0	=	12	13	41	15	91	17	8	19 20	21	22	23		
-				broisso	-	280	230	210	(200)	A 230#	210	200	(220)	200	0	220	220 :	230						
2						O	220	0 220		200	200	(200)	220	220	220		230	Q						
10	-					ď	230	200	200	0	(0/2)	200#	200	200	220 #	2204	200	210						
4						Q	220	0 200	0 200	061		200 H	200	200	0		230#	0						
ß				ESCHIEL)		230	5# 200	2004	34 240	3/0	230 H	2.20	200	230	A	A		200 #						
9				egrope.		Ø	220		200 K	KAK	AK	240 K	210 K	210K	200 K	٠,	230)46	(230)4				-	CUTTO	
7						ď	A	220#	," A	200	190	200	200	2005	200	200	200	S					ORCHISOL	
8						250	230H		2/0	А	(220)	190	190H	230	200	(230)	230	240						
0				and the		240	0 220H	0H (230)	200	200 A	200	200	(210)A	200	(250)A	L	-	a					in etta	
01	-			stat Prass		230"	0" 230	200	230	_	230	230	210	5(000)			-	(250)						
=				17.4000		o 		0 200	(200) A	A	А	A	(240)4	A	200	Second	2004	Ø					e sebesti	
12			,			230	0 220	200		(230)H		A	(220)5 (240)A	A(0+2)	220	210		230						
. 13						ď	0	200	220		200	240	230		200	220	240 ((250)A				ata restono	in to the	
14						Q	A	A	A	(200)4	A	A	A	A	(240)A	A	A	220						
15						G	G	200	200	200	(170)	190	180	190 ((200)	200	210	0					be-ensit	
91						Ø	200 H	N A	210 H	H 200	180	(230)5	1200)#	200		200	А	Q						
17							A	200 #	190	A	A	200 H	190	200	200	210	210	210					0.01.0	
18					(240)4	1 240"	3" 220	and the last	A	(230)	200	230	200	200	A	(230)4	240	(240)				g.		
6					290 K		220K	1 200K	200 K	K 200K	AK	200K	190	K 200 K 210 K (200) K	210K	(200) S	220 K	A K						
20						Q	A	H 220	0 200	200	200	200	200	210 #	220	220	230	230					Marci gandi	
21						Q	210	A	A	200		(200)"	200	(210)4	230	230	230	230					lor uredit.	
22						Q	200	210 K	x 210 K	X 200K		(200) A	200 K	200 K (220) K	220)×	200 K	V	220K						
23				00m 1100		Ø	230	230		200		180	A	A	A	(220)8	230	Q						
24						Q	210	-	9	200	180 #	200	200 #	2204	A	А	220 6	(250)4			_			
25						Q	220	_	200	A	A	V	A	A	(260)4	А	A	A						
56						(250)	1)4 210	210K		KAK	220K		AK	A K	A K	200K 230K	230 K 2	230K						
27						Ø	200 K	, K 200 K		200 K (210) K 220 K	220K	190 K	A K	200 K	¥	× V	210 KZ	220 K						
28						Q	Q	220		A	' A	A	180)4	200	200	(240)	7	A						
59						Ø	210	(200))4 210	200	220H	180 H	200	240)8	200	230 "	(240)4	A						
30						240	(230)4)4 200	0	0	200	J	200	200	0		220	0						
31			·																			Name of		
								and the								1								
Median	-					240	0 220	0000	0 200	200	200	200	200	200	200	210	225	230						
Caunt					2	?	23	27	24	71	۵,	13	25	35	77	25	77	1/				1		

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual
Automatic B

Napp 10 ... Mr to 25.0 Mc in 0.25 min

Manual El Automatic K

TABLE 60 Central Radia Propagation Laboratory, National Bureau of Stondards, Washington 25, D. C.

Form adopted June 1946

National Bureau of Standards

IONOSPHERIC DATA

J. M. C. X. T. W. 53 Scaled by: E. J. W., J. J. S. M. C. E. 22 2 Calculated by: 20 5 5.1 K L K 49 KK50 K 43 K 48 × (4.8) A O Q QQ O Q Q (4.8)5 (5.5) 538 (51)3 51 K 50 K 51 K 50 K (49) & (46) X 5.0 5.0 ę V # 7 # 7 (51)3 (53) (([56] H 47 K 55x 55 x 55 x 52 x 51 x 5.3 5.0 5.3 5.6 5.2 5.6 5.4 5.5 5.5 5.7 9 5.3 3.4 64 23 5.4 (5.8) F = 5.4 50 K 51 K 51 K (54) & 54 K [54] & 5.5 K 54 K [50] R 5.1 K 51 K (54) & 59 K (54) & [547] & 5.3 & A K L 5.1 A A A (56) A 5.7 5.5 4 (66)⁴ 57 5.5 5.9 56 (56)⁸ 5.3 [58]² (58)² (55)² [54]² 5.6 5.2 H 5.5 (53) 5.5 [5.4]# (5.3)# 5.3 H 5.4 5.4 N 54 H 5.4 5.3 5.3 # [5.2]A 5.4 5.2 5.5 53 [54] 5.5 5.4 5.4 5.3 5.6 5.3 5.6 (58) 56 56 55 57 57 3 13 5.1 K 5.8 (54) 4 5 6.8 5.5 # 5.5 24 # 5.3 5.4 5.4 [56] # (5.4) 1 [5.4] A 5.7 5.3 5.7 5.6 5.7 5.3 5.4 52 4.9 × 5.3 × 5.1 × 4 5.7 56 5.7 5.8 5.7 5.6 H 5.7 Mean Time 5.8 55 55 5.5 5.5 5.5 5 5.6 5.5 5.7 V 73 V 5.8 (5.9) \$ 53 5.4 [53] 5 (5.2)A × 5.7 5.6 5.4 55 5.3 5.3 2 V 75°W 5.1 X (57) [52] 5.2 [50] 8.5 5.5 [50] RT 57 4 (5.4)8 5.1 K S.7 K 5.5 K 5.3 5.5 55 [5.6]3 5.7 52 H [54]# 56 H 4.6 49 45 4.9 K 47 K 49 K 50 K 51 K 5.6 59 5.5 5.5 5.3 5.4 5.5 5.1 5.2 5.5 5.5 25 5.3 5.5 5.8 5.7 = K 5.5 5.6 5.9 5.6 54 56 57 0 2 V 0 5.3 H H Lt 8t 5.0 H 5.4 5.1 49 H 5.0 5.1 5.2 # 5.3 4 52 [50] 53 5.5 5.6 60 ≪ 0 * 7 [5.0]A 5.0 67 5.5 4.7 0.3 67 00 ⋖. ¥ 7 4.3 K 47 H [4.6] 4.6 7.6 4.5 4.9 8.4 4.7 (87) 4.9 4.7 4.5 1.4 0 67 07 0 7 Q VX Ŧ 7 3.9 K 42 1.4 3.7 4.3 20 90 40 00 1 00000 00000 9 00 0001 Q O \mathcal{O} 0.5 7 ., Long 77.5°W 0 03 Observed at Washington, D.C. Nº0.65 10.1 02 0 00 Day ~ 30 Median 4 9 ~ 0 S œ Φ 2 4 Count ~ -23 22 9 17 80 21 6 23 24 25 26 27 28 53 30 F0

orm adapted June 1946

National Bureau of Standards

IONOSPHERIC DATA

June

Km (Unit)

Sweep 1.0 Mc to 250 Mc in 0.25 min Monual

Automatic

Manual TABLE 62
Central Rodio. Propagation Laborotory, National Bureou of Standards, Washington 25, D. C.

Form adopted June 1946

National Bureau of Standards

J. M. C.

Scoled by: E. J. W., J. J. S.

(untion)

948

June (Month)

Washington, D.C.

IONOSPHERIC DATA

K. L. W. 23 M. J. H. 22 2 Calculoted by:. 20 (2.0) 7.7 2.5 (8.1) <u>ი</u> 2.1 2.1 2.1 ∢ ⋖ ∢ ∢ ∢ ∢ K T = T T ⋖ < V A T (2.6) 3 × 2.5 " (2.9) 2.9 2.7 32 7 2.7 3 3.00 2.5 2.9 2.9 2.8 3.00 2.6 8 2.9 2.8 90 3 K 20 2.7 3.0 53 V Ţ K 3.3× (3.1) (3.1) A 5. € (3.3)5 (3.3) 3.0 3,3 3.3 (3.2) 3.1 ы Э 28 3.3 J. 3.2 3,3 3.3 3.3 3.2 3.2 3,3 3,3 3.3 ы В 97) 97) 34 V 7 K 3.7 H [3.4]X 3.5 % 3.7 K 13.77 A 3.6 (3.8) 3.7 (3.6) 3.6 3.7 3.7 3.7 3.5 J. 64 3.7 3.7 3.6 3.7 3.6 3.7 3.7 9 3.7 9 K 3.7 9.2 7 ⋖ [3.8] C [3.P] C 3.P K 3.8 K 3.8 (3.8) (3.8) 3.6 [3.8] 3.7 3.8 3.9 F (3.8) K 3.7 3.9 3.6 33 3.7 3.9 4.0 3.9 #r6 3.9 3.9 ⋖ 2 ⋖ (3.9) A [3.6] (4.0)Z (4.0) 5 (3.5) 3.9 0 3.9 3.9 3.5 4.0 1.4 (3.3) 4.0 3.9 3.9 (3.5) 4.0 3.9 3.9 0 # 3.9 3.9 1.7 3.9 3.5 4 3.9 ∢ Ž PA K T Mean Time [3.9] B (3.9) 8 4.0 × 3.9 H (3.4) (3.9) (3.9) 3.9 (3.7) 10°, 4.1 0.4 ** 3.9 4 4.0 (38) 3.9 3.9 3.5 4 3.9 K 10 ₹ W Ö 3.9 ₹ T (3.9) H (3.7) A 14.07A 4.2 K 3.7 K [3.6] A 4.0 4.0 1.4 [3.9] 4.0 0.4 4.0 74 3.9 3.9 4.0 4.0 3.9 3.00 3.8 3.9 4 7 75°W 2 ⋖ ₹ ęj [3.8] A (39) A 3.9 H B(1.4) [3.8] B (4.0) A 3.9 1 (3.7) [3.6] 4.1× (4.0) 3.9 (3.9) 5 4.0 39 4.0 (3.9) 4.0 [3.5] 4.1 4 7.7 3.9 3.0 3.9 4.1 36 T (3.7) A 16.0) (3.7)A 3. g (3.7) (3.6) 13. P (3.9) A (3.9) S 3.7 H 3 4 [3.6] 4.0 3.0 4.0 3.9 3.9 4.0 3.9 3.9 3.9 3.0 3.9 3.1 39 0.71 300 2 27 ₹ V [3 4] A (3.8) 5 (3.6) A 3.7 K 3.9 K [3.6]c 3.7 33 3.5 3.7 [3.2] 3.5 3.7 3.7 3.9 3.7 W. 3.6 3.7 30 w. 9 60 3.7 3.00 3.0 28 ∢ 3.6 H (3:3) K 3.00 × (2.9)A 3,23 [3.3] A (3.4) 3.4 (3.5) [3.3] 3.3 3. [35] 3.5 3.4 3.50 3.4 3.3 3.6 3.2 3.6 3.7 90 27 < [3.1] x (2.9) (3.2) (2.9) 3 3.1 1 3.0 × (9.0) 3 [3.0]A 3.0 [3.0] ι. 13 3.1 2.0 2.9 3.0 (2.9) 3. (3.7) 3.0 3. 3.1 3.1 3.1 3.1 3.0 07 27 J (2.5)F (2.4) (2.5)F (2.4)A (2.1) 2.4 4 (4.4) (25) 2.5 2.5 [2.5] 3.5 2.4 (2.3) (2.4) 2.5 2.5 2.5 کی کم 8 90 1.8 H 2.6 3,5 2,3 25 K K \triangleleft K 1.8 H (6:1) 1.9 0.5 1.7 1.9 6. 1.5 6. 1.9 6. 1.9 K 13 K K ⋖ \checkmark ., Long 77.5°W 04 03 N-0.65 02 õ Observed at 00 Day Medion Count 2 Ю 4 2 9 ~ ω 6 2 2 2 9 0 4 20 ~ 17 8 21 24 26 30 6 22 23 25 27 28 29 3

Sweep 1.0 Mc to 250 Mc in 0.25 piin Manual 🗆 Automatic 🗵

J. T. D.

F. H. L.

Calculated by:__

TABLE 63
Centrol Rodia Propagatian Labaratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

948

(Characheristic) (Unit) (Month)
Observed of Washington, D. C.

Lot 39.0°N , Lang 77.5°W

75°W Mean Time

National Bureau of Standards Scaled by: E.J.W., J. J.S. J.M.C.

																																			6 O - 702519
	-			200/		00/			00/	8	00/		00/	011		00/	20			0,	0,0		20	00/		20	20	011	011			_			U S GOVERNMENT PRINTING OFFICE 1945 O - 702519
23	_		0	27	0	32	0		2.7	100 3.0 100	100 58/		50	110 3.2		10032/	100 36100		00/	130 30,20	35,00		100 2 3,00	3.5		0 45/1	047,00	0 23 //	3.			_	2.5	30	OVERNMENT P
22			3.0//0	06/6/0	0 2.9 110	02/61/0	011/18	0	034100	03910	9.0		038100	33		5.7	4.9		3.4	24		0	4.1	046,00		0 32/1	00/6#0	00/6# 0		-		_	3.0	30	0 8 0
22	1		0	2 29 110	100 39 100	01/1.8	3.3/10	120 3.1 110	3.1 100	100 3.8 100	0 53 100		00/0%	0 4.3 100		045/00	38 100	0	38,00			232/00	001240	33/00 32/00	4.4,100 24,110	02.9/1	110 31 110	0 58/00	01/82				3.1	30	
20	2.9/20		00107	011 88 0	7.5	1.9 110 2.7	#2/00 3.3	00		5.0	00/8/00		01102	36,00	0	28100	3.1100	01/820	3.7 100			011860	56100	3310	01 4:4 0	110 36100 29110 32110 45100	0	12	3.0 110	32/10		L	3.2	30	
6	1.2,00	00/6/	29/20	3.3/20	3911054	001 1.20			2.4/30	01105	5.4 100		3.8/10	0118.4	3.8 100	49100 59100	3.1/20	5.5 100	32/10	8.8 120	3.3/20	3.7 120	3.4130	55,000	47100	37/10	4311038110	45,00	3.1100	54100			3.8	30	
8	3.7 110	31/30		5.3 110	36 110	.00/8#		2		0112110	01/8:50		4.1100	3.8/20	5.7 100	-		001/4	4.3/10	4:3100	110		36/20	00/84	100 59 100				43/10	5.4 110			1 #	30	
1			-	51/30	4.9120	011 5 4		43 100	i	3.7 110	5.2 130			55/10	3.8/30	011 8.4	3.5 //0	46 100	3.4 100		01104		3.8 110	5.4 110	5.5 100	02187	120 5.8/10	00////	54/20	37/20			3.9	30	
91					5.8 110	4.2,100	4.2,100	4.3 110		5.6100				58 120		5.7 100	53 110	0010.9	#2,100				20/00	5.5 110	6.0 100 5.5	9.5 100	00	# /	44/20				42	30	
5	U	3.8 110		U	5.7/20		4.6,00		5.8 100	82 110		45/20		28 110		0119#	5.8 100	56 110	01197			4.3,100	53100	96,00	7.7,00 5.7,00 5.7,00	100 5.8 100 5.7,00 6.0,00	57/10			U			4.6	27	
4		3.9/20		4.2,110		4.5 110	4.2,00		#2100	120 56 110	54100	5.8 120		10.0/00/			47 110		4.3/20	3.8/10	4.0100		5.7,00	44120 45/20	5.7100	5.7100	50 100	011 4.4					42	30	Mc to 25.0 Mc in 0.25 min
10						00/8#		4.3,100	58 100	54 120	56100			01109	42 130		4.2,00	4.2 110	42/00	4.0 110			00/09	44120	77,000	5.8 100	47100	54100		4.6110			42	30	O Mc In
21				41/00		4.3,100			00/97	58 110	6.9	50/00		5.5 130			00/84	5.4,100	40/00			4.6,00	4.2110	0119#	00106	5.5	43,00	9.5 100	42 100	3.9,100			42	30	1.0 Mc to 25
=		011/4				50110		5.7,00		46100	72,00	47100		58,00	42100		20100	50/00	54100	4.3,110		5.6100	5.1 110	011	59100 95 100	6-2,00 54100	42100	00119	4.3100	00/1#			44	30	Sweep 1.0
9					#3,00	4.5,100		58100		5.1 110	67 100			7.2,100			76,00	54,00		4.3/10	3.8,100	5.0 110	5.3 110	5.2/20 #8	59100	6.2,100	52/00	7.4100	42,00	U			43	58	Swe
60	4.6	2.6	50 110	43/20	43/10	100 # 2/20	100 6.2,00	52/20	5.0/20	48100	4.3,100		58,00	5.7100	4.5 100	4.2,110	54,00	5.7100			5.6 100	0116.4	5.2,10				43,00	011 110	53 100	U			94	29	
80	42,00	4.0110	01/14		4.3,100	50,00	3.8 100		51/20	0118+	4.1100	47110	90,00	54100		50/00	42,100	52 110	4.8 100		56100	5.5/10		36100	3.9/10	0018#	4.2/10	46/20	44/20	52100			##	30	
07	Г		4.8/30		01164	110	5.6 110	39,20	3.8 110	011	10/1	100		00105	40/00	1.2,00	011 8.4	38 100		38 100	13,000	38/00		3.8100	110	42 100	1.2 100	00/ 9:	4.3/00	3.7 110			42	48	
90			3.8/20	37/20		01154	21/10			3.4 110 120	38 63	5.8,100 3.9,100	110 3.7,20	. 0118	36/20 40/00	4.5,00 4.2,00	110 #2/10 4	4.5100	52/20	35/10	37,00 43,00	36110	3.5/20	100/17/00/	55,001	1,2,00	, 00/38	33/10 5.6 100	3.5,00	3.0/00			3.7	30	
0.5		31/30	19/20				2.9/20	00/61			3.9 F 3.8 FS 4.9	46,000	2.0/10	36,20 3.8 110 50100		3.0 110	31/10	3.2,00	2.9 100	.,	3.0/00	28,000	3.5,00	31,00	20,00 55,000 #2,110	0018	29/10 38/00 4.2/00	100 27 110	38 100	,			7 #	30	
0.4					25,00	6.3/10	1.9 110	3.1 100			41/60	3.7100					3.0/00	34110	32,110			3.4,00	3.6,00	E .	14	31,20 38,00 42,00 42,00		58 100	56 100	3.1100			2.4	30	
03					15/10	120 26/20 23/10	1 100/	1.9 120		00/	00			3.9/30	1.2,30 2.4,20	31/00 38/00 39100	0010	27110	(5)		3.2,100	2.8/00	36/00		3.1/10		00/4/	8	20	31,00			2.6	30	
02			3.1 110		01	5120 2	35,00 3.7,00			100 26100 32	8 100 5	1000		6120		1,00	34,00 30,00	32,100 2			35/10 3	d	6)		34,000 3	3.	110	00/	2 100 29	10			2.8	30	
ō			ln)		4.9 110 3	130	00/	29 130		4/00 2	8,000	7,00 5.1		100 38120 6	2110		38,00 3	M			4,30			100	2.4.100 3		76,00 3.7	9,00 3.9	4.0 100 32	36 110			4.4	30	
00	-	00101			2.3,30 4	26,20 2.3	39,00	19110 2		3.3 100 44	5.4 100 3.8	38 100 57		49,000 3	34/10 3.5		100	3.2,00			CF			30,00	75/00 3.		3.1,00 3	1100 49 100	46100 4	5			2.4	30	
Dov	-	S	117		5			. 8	6		1.	12	121	4 41	15	91	17 3.7	18	61	50	21	22	23				27 3.	28 5./	29 4	30	3		Median	Caunt	

Manual

Automatic

Manual

Form adopted June 1946

National Bureau of Standards

J. M. C.

Scaled by: E. J. W.,

TABLE 64Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

June 1948

Washington, D. C.

Observed at __

F2-M 1500 (Characteristic) (Unit)

IONOSPHERIC DATA

ا ا آ (1.8) 3 (1.7) (1.8) 175 (1.8) T (1.8) F (1.7) (17) (1.9) (1.7) (8%) (1.8) (20) 7 (1.8)3 (1.9)3 (19) (19)5 (17)3 23 1.80 1.8 1.00 % 1.7 29 1.7 6.1 18(6.1.) Ŋ S 2(8.1) (1.8)3 (1.9)3 (8.9) (1.9)5 1.7 % 1.8 22 1.0 1.8 1.7 6.1 1.8 s S % S N. N. 38 1.85 (1.8)5 v S (1.9)5 (1.8) F (8.8) (1.9) \$ (1.9) (1.9)5 (1.95 2.0 1.80 (8.1) 6.1 ~ 1.7 % 1.8 1.00 20. 2 6.1 6.1 1.80 1.9 200% (6.1) (1.8)5 1.8 k (1.9) (1.9) (1.9)5 (1.8)3 00 00. 6.1 5. 6:1 1.9 20 6. 6. 6.1 00 1.9 1.8 K (2.1)3 (2.05 19 K 20 × (1.9)5 (8.1) (1.9) 3 (1.9)3 (8.1) 2.0 6.1 30 8. 1.8 - 2 8.1 3 61 2 (8.1) 2 (1.1) 6.1 1.8 2.0 00/ 1.8 61 00. 6.1 6.1 00 <u>o</u> 6.1 6.1 20.5 E 181) 1.8 K × 8. 2(61) 3.0 1.8 K 1.8 K 9 20 6.1 6.1 6.1 6.1 6.1 6.1 1.8 6. 30 ** 1.8 Ś 1.8 8. 1.7 6. 00 1.80 <u>ω</u> 00. 1.7 K 1.7 K 1.6 K (1.9) 1.8 K (1.9)3 17 K (1.8) X 0 00 200 1.80 1.8 00/ 1.7 1.6 6.1 00. 6.1 1.9 1.9 6.1 6.1 61 00: 1.8 00. 1.7 K (1.6)5 (17) 17 K (1.6)3 (2.C)x 1.7 1.6 1.7 1.7 1.7 13 1.7 6.1 00 9. 1.7 1.8 6. 6.1 8. 00. 1.8 1.7 09. 9 29 ∢ 1.7 K × ٧ ل × 9/ 09. 1.8 1.7 1.7 1.7 17 1.8 1.7 8. 1.7 1.7 1.8 00. 1.7 2 U 1.00 1.9 00. 00 1.7 Ŋ 00. U T U (1.7) 5 1.6 K 1.6 K × b (1.6)x 1.4 K 5(8.1) 5(1.1) (1.1) 4 9 7.5 1.7 1.8 1.8 1.6 1.7 1.7 1.6 6.1 1.9 9.1 1.7 30 1.7 1.7 00 1.00 1.7 1.7 1.7 61 1.7 ص -1.4 K 1.7 S 1.4 K (1.7) (1.6) x (1.7)3 1.6 K (81) 9. 1.6 1.7 8 1.7 08/ 6.1 00-1.7 30 1.7 00 1.7 -6 1.8 10 1.00 00 6.1 1.00 1.7 1.7 6.1 1.8 1.5 K 17K 15 K ₹ (P) ٠ ا 5/ 30 9: 1.7 1-7 h 1.7 ψ 1.8 1.6 1.7 00 1.7 1.7 1.7 1.8 6.1 1.7 1.8 1.8 1.7 1.7 Ų 00. % 9 1.7 75°W 2 x b 1.4 K 1.6 K 1.5 K 6(9%) (1.7) 5 (1.7) 5 (1.6) 00 4.1 1.1 29 = 1.7 9 00 6.1 6.1 00 1.7 1.9 1.7 1.7 00 b 1.00 1.8 Ġ N 00 00. 1.7 1.7 (1.8)3 1.4× x G 1.75 1.8 *₽* 1.7 5 10 9 1.7 00 00-1.7 1.6 1.80 00. 00. 61 9 1.8 Ġ 1.7 00 1.7 1.7 08. U 29 P × 1.815 7.1.7 1.6 K (1.7)5 17 K Y V 20 K (1.8)5 2.0 9 0 60 6.1 1.7 1.7 1.8 1.7 1.8 00/ 91 6.1 6.1 00. 6.1 28 28 1.7 00 U 10 1.6 U 19 61 5(6.1) 1.7 K 1.7 K 1.9 K (20) (1.8) 9.0 2.1 K (1.9) (8.1) 000 1.4 0 0 5.0 1.8 1.7 6.1 1.8 90 9 1.7 00. 1.6 1.7 1.7 6.1 2.0 1.8 30 00 1.6 K (1.9)3 1.9 H 20 x (1.9)5 (20)5 (3.0) 17 1 9 - 8 2.0 2.2 1.9 0.0 1.6 07 1.9 1.8 4 00 1.7 8. 7.4 08. 6.1 6.1 6.1 00 6 1.9 U 5(81) (23) 1.8 K 17 6 2.0 F(2.1)3 ٠, 0 (1.7) 3.0 0.0 0 (2.0) 2.0 08-6.1 20. 4 0 1.7 6.1 2.0 30 90 6.1 1.9 8 6:1 1.4 6.1 6. 1.7 6.1 0. 1.7 K 7.7 6. 6.1 6.1 9.0 0.5 20.0 1.9 0.4 1.9 00 6.1 6.1 61 0 6.1 1.9 2.0 9.0 20 7 6.1 (8.1) 6.1 6.1 00. 00 6. 30 1.7 (1.8) 3 (1.8)3 1.9)4 1.8 4 7.6 1.7 F 1.7 6 1.8 5 W-2.77 pno, N°0.95 Lou 0 4 (1.9) 1.9 1.9 1.7 1.7 00. 1.8 00 6.1 (1.7) 1.8 6.1 1.8 1.7 6.1 1.9 20 % 30 (18) 9(8.1) 1.0 F (1.8) 1.8 F (1.8)5 1.3 (1.6) \$ (1.8) \$ 1.8 F 1.9 F (1.9)5 1.67 1.8 03 1.7 17 16 1.6 00. 00 1.7 8.1 5 (8.1) \$ (1.7) (1.9)3 (1.9)5 (1.9)3 1.8 1.9 41.7 00 -00 6.1 00. 1.7 00. 8. 30 (9.1) (1.7) { (1.9)] 1.5 F P(1.6)5 9(8.1) (1.8)3 1.8 F (8.1) (1.8) 3 (/8/) (1.7) 02 9/ (1.9)3 8.1 3(6.1) 40 1.7 T 00. 6.1 6.1 8 1.7 6.1 00. 1.7 1.7 (1.7)3 7(6.1) (8.1) (17)5 (8.1) 9(9/) 5(81) 1(6-1) (8.1) 0 1.8 00. 6. 5 00 00 1.8 1.8 29 (1.7)5 (81) (1.8)5 (1.7)5 (81) 00-(1.8)5 (1.7) 3 (1.7)5 (19)5 5(1.9)5 S (8.7) (1.9)3 00 0 00 6.1 00 00/ 1.7 81 1.7 00 00 6.1 1.8 1.8 17 29 Day Median α Caunt _ ω 0 0 22 S 9 2 <u>m</u> -2 _ 8 23 59 4 91 6 20 2 24 25 26 27 28 30 10

Sweep 1.0 Mc to 25.0 Mc In 0.25 min

Manual [] Automatic [3]

National Bureau of Standards

J. M. C.

Scoled by: E. J. W., J. J. S.

TABLE 65
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D C
IONOSPHERIC DATA

948

June (Month)

(Characterstic) (Unit) (Characterstic) (Unit) (Nashington, D. C.

	N. W.																																		
	Z	23	S	(2.8) 3	(2.7)3	3 6	(2.6)3	26	(2.6) 3	(27)5	2.7	2.6	P (2.8)3	(8 2)	2.7	2.8	(2.9) \$	2.7	(2.6) 3	2.9	(27)	(2.6)3	2.5	(2 NF	(2.7)5	(2.7) J	(2.6) 3	2.7	00	(4.9)3	5.7	(2.6)5		27	29
9	Υ.	22	26	(2.7)3	26	2.8	2.6	2.6	2.6	2.6	(27)3	(2.8)5	(2.7)	2.6	(2.8)3	(2.8)3	S	2.7	2.7	2.7	2.7	2.7	14	(2.8) 3	2.7	26	S.	(29) 3	200	200	2.00	2.7		2.7	38
4	J. L	21	2.7	S	26	2.6	26	2.6	2.7	(27)5	7.7	00	2.0	(2.8)5	(8.8)	5 8 2	2.9	2.80	(2.8) 3	2.8	2.7 K	2.7	2.80	(27)x	2.8	2.7	(2.7)5	(3.8)3	27	(27)3	2.8	2.7		2.7	29
Dy.	oted by:	20	2.7	20	2.7	(26)3	2.7	2.8	4.9	(27)5	(27.3	300)	₹	(27)3	(36)	00	2.8	2.7	200	2.00	2.7 K	2.9	2.7	2.8 K	2.8	2.0	2.7	(8.8)	2.8	(3.8)	3.8	(3.8)2		2.8	29
Scaled by	Calculated	61	26	28	(2.8)5	2.8	36	2.8	2.7	(29)5	(28)3	2.9	2.9	2.7	(3.0)3	2.8	2.8	2.9	2.00	29	2.9 ×	3.8	2.7	30 K	29	2.7	2.0	(2.8)=	27 K	2.9	(2.8) 5	(38)2		2.8	30
		83	2.5	50.5	2.00	2.7	2.8	2.6	28	(27) ^T	2.00	(3.8)3	28	2.85	2.8	2.9	2.95	29	2.00	27	27K	3.0	2.00	× ×	2.8	2.0	00.4	2.7 K	2.8 K	2.7	8 7	2.8		2.8	30
		17	2.7	8.2	(2.6) =	2.7	36	2.5 K	2.6	2.5	2.00	2.7	2.7	(27)3	27	2.8	2.00	2.8	2.8	2.8	(27)x	2.7	20.5	2.7 K	2.7	(26)3	28	26 K	3 # K	29	2.8	2.8		2.7	30
		91	(3.6)5	2.7	2.5	27	2.5	7.6 K	2.6	2.6	2.6	2.6	26	5(92)	255	27	4.9	00	2.0	2.6	X97	2.8	25	2.6 K	2.7	(24)3	2.6	(4.4)x	AA	2.7	28	2.7		2.6	29
		12	U	2.7	2.5	U	25	75K	36	2.5	2.7	2.5	2.8	2.5	2.6	27.	2.7	29	2.7	4.6	× O	3.8	3.6	2.5 K	2.7	9	38	×	X X	2.7	27	U		2.6	35
	ne	4	34	2.7	2.5	2.5	2.4	(3 4) E	26	2.5	2.6	2.7	2.8	(31)2	(3.6) 3	2.6	2.8	2.0	26	27	22K	2.6	2.5	Xtx	2.7	(3.6)3	2.8	X th X	ν Υ	2.7	26	27		26	30
	Mean Time	12	2.6	2.7	2.5	2.6	2.5	24) F	2.7.	2.5	2.6	(3.7)3	2.7	(3.6)5	2.6 (2.7	2.8	2.8	2.9	7.5	2.1 K	35	7.4	7.1×	2.7	(25)2	(26)3	2.5 X	73 K	2.8	2.6	2.5		76	30
	A	12	9	7.5	P	3.6	2.3	34K	2.5	2.5	2.6	2.6 (4.7	25	2.6	2.7	2.7	2.9	36	3.8	×	2.7	2.6	7.5 X	2.6	9	7.7	2.3 K	G K	2.7	27	3.6		26	30
	75°W	=	2.515	27	b	2.6	2.5	22K	2.7	2.5	77	27	2.8	S	7.7	26	2.8	2.8	2.7	3.6	¥ ψ	2.6	2.6	7.2 K	2.6	(26)	2.7	24 K	X P	2.7	2.7	(25)3		26	29
		0	24 6	2.7	6	4.4	2.5	₹ Ø	2.5	2.6	200	2.6 5	3.8	2.65	2.5	2.7	27	2.00	2.6	2.6	γ S	2.7	(3.8)3	22 K	3.6	(25) (27 4.	7.6 K	A A	2.7	2.7	C		2.6	29
		60	2.5	2.0	36	75	2.6	GK	3.6	2.6	25	2.6	2.7	(38)2	4%	38	3.0 H	3.0	3.1	2.9	2.5 K	27	(3.7)5 (2.7 K	29	0	2.9	G K	2.6 K	2.9	(28)	C		2.7	28
		90	(3.5) 1	50	(27)P	2.5	7.7	2.9	2.7	2.4	2.6	2.7	3.0	27 (22	(29)5	28F	38	2.9	2.6	36 K	(38)2	31	26K	30	(2.8)3	27	2.8 K	3.1 K	3.0	(29) (3.0		28	30
		20	2.5F (30	(31)3	2.9	2.6	2.7	3.1	27	2	2.7	20	27	U	2.8 (2.9	29	32	(29) 5	25 K	2.9 H (7.7	2.9	3)2	2.8	30	24	3.1 K	30	216	2.8		29	29
E014/		90	2.5°	29	(31) P (.	20	1) 5	0)5	2.8	2.7	27	2.8	28	3.0	(2.7)5	3.1	2.9	2.9	2.8	26 (28 K	3.0	2.9	3.0	30 (2	29 .	3.0	2.6	2.8	3.0	(27)3 (2	2.7		2.8	30
	and the control of th	0.5	2.7	31	2.9 (2.9	3.0 P(3	29 (3	2.9	200	27	2.9	2.9	29	29 (-	3.1	28	2.9	2.8	2.9	7.5 K	2.9	2.9	2.9	3.1	2.8	29	25	27	2.9	2.7 (2.8		29	30
	77.5°W	40	245	7.7	(28) E	3.6	2.8	2.5	2.7	27	25 F	28	(28)3	26	275		(2.7)3		29	27	256	2.8	2.9	275	28F	28	2.9	(2.6)3	27	38	(3.8)4	2.7		2.7	30
5	, Lang 77.	03	745		(27)° (27 1	77	7 4		275	2.6	(27)3	28 ((37)5	28	27 (78F	28 F	28	75	26	7.7	2.8	28 €	2.7	2.8	28 (2.6	27	(27)5 6	(3.9)3		2.7	30
0110	11	0.5	u.		(25) [(27)3	7.5	2.6	2.7	00		(2615)	V		(3.0)2	7.7	2.9	37	27	2.5	36	26	2.7	27F	(27)3	38	(2.7)3			(3.8)3 (-	(38)2 (27	44
WUSHINGTOIL,	Lot 39.0°N	ō	(3 th E)	27 16	0	2.7 (76 (2.7	27	(27) 3	(2.8)T		(76) 5 (2.9	22 ((38)2 (37	3.8		(4 g) F	(3.6)	2.8	(3.7)5	36	(23)F		(38)2	(2.7)5 (2.9	2.6 (.	27 6		2.7	29
1		00	2.51 ((2.8) g	(27)5		(26)3	26	2.7 ((26) E (.	2.7 ((2.8)3		(3.8)2 (30	2.9	27	37 (27 (27	(36)3 (-	(26) 7	5(2.9) F (-	2.7 ((38)2 (la .	200	(2.8)F	3.8		2.7	29
Observed at		Day					r.	-		-			-	12 (15		17	8	61	50	21 (-	22 (23 5(-	24	25 (-	26	27 (-	28	29 (30	31	Median	Count
	1																				1													≥	~

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Monual

Automatic

Manual

Automatic

Manual

Manual TABLE 66
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

Form adopted June 1946

IONOSPHERIC DATA

IONOSPHERIC DATA

75°W Meon Time National Bureau of Standards (Institution) J. M. C.

(Characteristic) (Unit) (M. Observed at Washington, D. C.

E-MI500 ,

(Month)

, ₁₉48

Column C		-	,	1	90 /	047	2	L	-	2	200	_	L	0	000	ŀ	_		_		_
Colored Colo				i,	j	-	4	\dashv	4	+	-	-	-	4	-	4				-	
Column Clay Column Clay Column Colum			4.4	r V	j.			_	-	_				_			7				
Colored St.																	_				
Column C						-						-									
Column C			1	(43)0	\vdash	4.2	C	-	-	-	-	-			-		,				
Color Colo			L	4:0	í		17.4	-	-	-		-			(H)						
Color Colo			A	A	(4.5)	2.4.5	(45	Į.	A		(W)	4,3	4.3		ì						
Co O O O O O O O O O			444	2.02	X 4:2 X	X X S		X (47)	1. Y		7	1 4 46	5 x 43	×	1	4	-				
Column C			45	39 %	X 2.2 X	X		(HH) x/	2 X)A 43	(43	×		4	_					
Column Long				A	A	A		-)A 46	(4.5	⊢	1 4.4		t.								
Columbra By: No. N			A	A		-		2.5		╁	 _	4.			1	1.3					
Columbria Colu			4.2		1.	A		JA (4.6	+	-	4.4		2			3	6				
Columbra		7.5	-	4.2	1.	T	(4.2)	X XX	1 ×	D	(4.5		5 × (4,6			(H)					
Coligor Cologo			+	7.00	1.		1.14	1 4.2	-	4	4. 2	-		-		_					
Cot 200 N Long 1/25W Cot 200 10 11 12 13 14 15 17 18 19 20 21 22 23			A	4.4	4.	١,		-	ž.	-		3 4.4		×		<u> </u>	<u> </u>	-			
Correction Cor		*	A	A		ì	1 ^	A			1	X 45		S X (4.		U					
Column Comp				2	4.2	l.		1.		-		A		7	(2) #	(4)					
Column C				4.60	(41)				_	A	-	-	-		7						
Column C				(43)A	4.5		-	-	+-		¥.2.	-	-								
Cot			Į.	4.2		-	-		⊢	1	F 4.1	-	-		<u> </u>	l .	4				
Column C			A	4.1	-	1	-	-	-		A A	14.6		i	7	١.					
Columbia			A	4.4	1	-		8 44	_		2 4.3	1)5 (43	_		-						
Cot 390°N Long 775°W Meon Time Columbia by N. N. M. J. L.			3.8	1.7	1	-		13	-		2	T. H.	4.	Y N		- >					
Cot 200 N Cong 77.5 m Cot Cot Cot N N N N N N N N N			A	4.2		-	4-2	A	_)A (46	5 (4.6		2) 5		(4)					
Colculoted by: N.M. J.L. Oo Oi Oz O3 O4 O5 O6 O7 O8 O9 IO II I2 I3 I4 I5 I6 I7 I8 I9 Z0 Z1 Z2 Z3		4	(4%6)	41		4.3			-		-	-	 	-		r.					
Colculoted by: N.M. J.L. OO OI OZ O3 O4 O5 O6 O7 O8 O9 IO II IZ I3 I4 I5 I6 I7 I8 I9 ZO ZI ZZ Z3 A A A A A A A A A A A A A A A A A A A			7	4.0		-		├			-	-	-								
Colculoted by: N.M. J.L. Col. 390°N		*	250	4.0	4.6	-		_				-	-		14 4	-					
Columbra			(4.4)		39	L)S A	(4.4)	-			3 (4.4	-		(c) A						-
Columbra			Δ	\neg			X 4.5	x A	* A	1		3 4.2		A H	9 %	11"	_				
Colculoted by: N.N.M. J.L. (A43) ⁶ (A5) ⁶ (A			A	y is	44		\$ \$\chi_3		7.4) 14	Į,) A B	6 (4.6		2)A (4.	4 4	7 7 7					
Columbia Don Cong 77.5°W Columbia Co		4	(40)	4.6 2	h	-) S (4.5) # (4/5)B (4.5	EM (43	_	-		· &	# #	J				
Colculoted by: N. N. M. J. L. Col 3390°N Long 77.5°W Long 77.5°W Meon Time Colculoted by: N. N. M. J. L. Colculoted by: N. N. M. J. Colculoted by: N. J. Colculoted by: N. J. Colculoted by: N. J. Colculoted by: N. J. Colc			A		42	- 2:		8 1.2	*	3 4/6	*	L			_						
Colculoted by: N.N.M., J.L. OO OI OZ O3 O4 O5 O6 O7 O8 O9 IO II IZ I3 I4 I5 I6 I7 I8 I9 ZO ZI ZZ Z3 OO OI OZ O3 O4 O5 O6 O7 O8 O9 IO II Z Z Z3 OO OI OZ O3 O4 O5 O6 O7 O8 O9 O II Z Z Z3 OO OI OZ O3 O4 O5 O6 O7 O8 O9 O II Z Z Z3 OO OI OZ O3 O4 O5 O6 O7 O8 O9 O II Z Z Z Z3		, F	(4.3)	4./	I	(42)	_	0		1											
Colculoted by: N. N. M. J. L. Col. 390°N , Long 77.5°M OO 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	Н			4.07	1	4,02	H	H	\vdash				1 1		Н	5 # 4	\vdash				
, Long 77.5°W	22	20	19	18	17	16	5		_	12				_	-	_		03	02	10	00
	N. M.	utoted by:_	Colc					n Time		\Q_0 \M							No.	Long.		Lot.	

Sweep_1.0 _ Mc to 25.0 Mc in 0.25 min

U S GOVERNMENT PRINTING OFFICE 1946 O - 701518

9£

Form adopted June 1946

Table 68

Ionospheric Storminess at Washington, D. C.

June 1948

Day	Ionospheric 00-12 GCT	c character* 12-24 GCT	Principa Beginnin GCT	al storms ng End GCT	Geomagnet	cic character**
1 2 3 4 5 6 7 8 9 0 11 2 13 1 5 6 7 8 9 0 11 2 13 1 5 6 7 8 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 3 2 2 3 3 2 2 3	33111322122231112133221112210	333134321213313312623513345312	1400 1400 1300 / 1300 1200 /	2300 / 0300 / 0300 2400/ 0100	432122223212302122324412242111	3122323331232211333334222242112

^{*}Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D.C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures

^{**}Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

Dashes indicate continuing storm.

Sudden Ionosphere Disturbances Chserved at Mashington, D. C.

June 1948

Day	GCI Peginnin	-	Location of transmitters	Relative intensity at minimum*	Other phenomena
1	1748	1810	Ohio, D.C., England	0.0	
5	1639	1700	Ohio, D.C., England	0.03	
5	1859	1930	Ohio, D.C., England	0.0	
g	1842	1940	Ohio, D.C., England	0.0	
13	1715	***	Chio, D.C., England	0.0	
13	1734	1830	Ohio, D.C., England	0.02	
19	1315	1330	Ohio, D.C., England	0.1	Terr.mag.pulse** 1313-1325
120	2005	2030	Ohio, D.C., England	0.0	
22	1630	1710	Chio, D.C., England	0.05	= /
23	1935	2015	Ohio, D.C.	0.1	
24	1823	1920	Ohio, D.C.	0.05	10
25	1313	1320	Ohio, D.C., England	0.2	
25	2052	2120	Ohio, D.C.	0.1	
30	1411	1420	Chio, England	0.05	

^{*}Ratio of received field intensity during SID to average field intensity before and after, for station NEXAL, 6080 kilocycles, 600 kilometers distant.

**As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

^{***}Incomplete recovery of SID.

Table 70

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief,

Cable and Wirelass, Ltd., as Observed in England

1	1.				ì			L 1.	pg 77
	Location of transmitters	Austria, Bahrein I., Belgian Congo, Dulgaria, Canary Is., Greece, India, Iran, Kenya, Madgacar, Halta, New York, Palestina, Ortugal, Southern Rhodesia, Spain, Switzer- land, Syria, Thailand, Turkey, U.S.S.R., Yugoslavia, Zanzibar	Argentina, Australia, Barbados, Brazil, Canada, Ceylon, China, Egypt, Gold Coast, India, New York, Union of S. Africa	Austria, Bulgaria, Eritrea, Germany, Halta, Palestine, Southern Rhodasia, Turkey, U.S.S.R., Zanzibar	Austria, lahrein I., lelgian Congo, Pulgaria, Canary Is., Eritrea, Fronch Equatorial Africa, Germany, Greece, India, Iran, Kenya, Palestine, Portugal, Southern Rhodesia, Spain, Switzerland, Syria, Turkay, U.S.S.R., Yugoslavia, Zenzibar	Argentina, Australia, Ceylon, China, Gold Coast, India, Union of S. Africa	Austria, Behrein I., Pelgian Congo, Bulgaria, Greece, India, Iran, Kenya, Portugal, Southcrn Rhodesia, Srein, Switzerland, Syria, Turicey, U.S.S.R., Tugoslavia, Zanziber	Austria, Bahrein I., Belgian Confo, Bulgaria, Greece, India, Iran, Benya, Pulestine, Portugal, Southern Modesia, Spain, Syria, Turkey, Yugoslavia, Lanzibar	Afghanistan, Austria, Fehrain I., Felgian Confo, French Equatorial Africa, Greece, India, Iran, Kenya, Madagascar, Portugal, Jouthern Rhodesia, Switzerland, Syria, Thailand, Turkey, U.S.S.R., Yugoslavia, Zanzibar
	Recaiving station	Brentwood	Somerton	Brentwood	Drentwood	Somerton	Drentwood	Irentwood	Erentwood
	bug Bu	1300	1225	0760	1000	1000	1030	7030	0£15
	GCT Beginning End	5211	1125	0915	0920	0925	1007	1020	0737
	1948 Day	May 21	21	23	June 3	<i>c</i> .	11	15	18

Table 70 (Continued)

8761	CCT		Recaiving	
Day	Beginning End	End Ju	station	Location of transmitters
June 18	0735	0610	Somerton	Geylon, China, Egypt, Gold Coast, India, Union of S. Africa
19	1315	1350	Brentwood	Austria, Eulfaria, Canary Is., Iran, Halta, Spain, Svitzerland, Yugoslavia, Zanziber
20	1015	1055	Brentwood	Austria, Dehrcin I., Belgian Congo, India, Iron, Svain, Svitzerland, Syria, Turkey, U.S.S.R.
20	1015	1030	Somerton	China, New York
21	0745	0020	Brentwood	Austria, Delgian Confo, Greece, India, Iron, Lenya, Ladagascur, Palestine, Portugal, Southern Rhodesia, Switzerland, Syria, Thailand, Turkey, U.S.S.g.,
21	0745	00,00	Somerton	Australia, Larbados, Cerlon, China, Gold Coast, Hew York, Union of S. Africa

Table 71

Sudden Jonosphere Disturbances Reported by

RGA Communications, Inc., as Observed at Point Meyes, California

1928 GGT Day Enginning End Location of transmitters June 2007 2035 Australia, China, Hawaii, Japon, Philippine Is.
--

Note: Observers are invited to send to the CAPL information on times of beginning and end of sudden ionosphere disturbances for publication as above, address letters to the Central Radio Prepagation Laboratory, National Pureau of Standards, Weskington 25, D. C.

Table 72

Provisional Radio Propagation Quality Figures (Including Comparisons with CRPL Warnings and CRPL Probable Disturbed Period Forecasts) May 1948

		orth Atlan				orth Paci		
Day	Quality figure	CRPL* Warning	CRPL Forecast of probable disturbed periods	Geo- mag- netic ECh	Quality figure	CRPL® Warning	CRPL Forecast of probable disturbed periods	Geo- mag- netic KCh
	01-12 GCT 13-24 GCT	01-12 GOT 13-24 GCT		01-12 0CT 13-24 GCT	01-12 GCT 13-24 GCT	01-12 GCT 13-24 GCT	mon or 10	13-24 GCT
17 18 19 20 21 22	7 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	X X X X X X X X X X X X X X X X X X X	X X X X X	233223424333341452212443332231322	7 7 7 8 5 7 6 5 6 5 6 6 6 6 6 6 5 5 5 5 5 5 5 5	X X X X X X X X X X X X X X X X X X X	X	4 3 3 2 2 3 3 3 3 3 3 3 3 3 2 2 4 6 2 2 1 1 4 3 3 2 2 2 2 4 3
H M G (S)		6 1 17 5 2	4 3 19 2 3			3 1 16 7 4	1 3 19 5	

*Broadcast on WWV, Washington, D.C. Times of warnings recorded to nearest half day as broadcast.

0 34			
		gure Scale	<u>:</u>
	Usel		
2 =	- Very	poor	
3 =	Poor		
4 =	Poor	to fair	
5 =	Fair		
		to good	
7 =	Good		
8 =	- Very	good	
9 =	Exce	llent	

Symbo	la:	
X	Warning g	given or
	probable	disturbed
	date	

- H Quality 4 or worse on day or half day of warning
- M Quality 4 or worse on day or half day of no warning
- G Quality 5 or better on day of no warning
- (S) Quality 5 on day of warning
- S Quality 6 or better on day of warning
- () Quality 4 or worse (disturbed)

Geomagnetic K_{Ch} on the standard scale of 0 to 9, 9 representing the greatest disturbance.

Table 73 American and Zurich Frovisional Relative Sunspot Numbers June 1948

Date	R _A *	R _Z **		Date	R_A^*	R _Z **
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	150 156 153 180 213 211 189 181 191 184 187 172 175 182 188	131 127 126 142 175 212 177 173 178 198 172 143 140 151		16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	211 234 219 207 171 186 190 233 254 277 268 247 257 248 193	157 172 193 163 133 151 155 160 184 202 198 205 200 216 150
	<u> </u>		L-L-	Mean:	203.6	167.6

^{*}Combination of 47 observers; see page 6.
**Dependent on observations at Zürich Observatory and its stations at Locarno and Arosa.

Table 74a

Coronal observations at Climax, Colorado (5303A), east limb

Date				Deg	ree	s r	ort	h c	f t	the	so.	lar	θď	uat	or				100	o			De	gre	es :	sou	th	of t	the	sol	ar	equ	ato	or				5
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	r
1948																																						
	TF	v	TF	TF							2	7.57	12	16	22	30	20	7/	92	120	25	28	20	19	20	13	d.	_										-15
June 1.6	Α	A	A	A	_	_	-	_	-	-	,,	1/	15		25		28			16		25		20		22	7/	2	-	_	-	_	_	-	-	-	- 1	-15 -15
2.6	_	-		- TF	-	-	-	-	-	8	ΤŢ	14	10	~ ~			26			-			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17		22	14	10	2	_	-	_	-	-	-	-	-	
3.6	X	A.	A	A	-	-	-	_	-	_	4	8	10	- /		27	-				15				10	14	11	10	ر	_	-	-	-	-	_	_	- 1	-15
4.6	-	_	-	-	-	_	-	-	3	5	9	10	14	13	25	37	26					19	20	18	14	15	11	9	5	2	_	-	-	_	_	2	2	-15
5.7	-	_	-	_	-	, -	_	-	-	_	_	_	3	5	9	13	14	15	15	13	25	1	19	18	15	TT	11	9	3	-	-	-	-	-	_	-	- 1	-15
6.7	-	***	***	_	-	-	-	-	_	-	_	_	_	-	8	11	11	11	10	10	13	-	24	20	13	10	8	8	7	-	-	-	-	-	-	-	- 1	-15
7.7	X	Х	Х	Х	-	_	-	-	-	_	_	_	_	-	4	- 5	7	7	-	10	13	25	25	19	15	10	8	5	5	-	-	-	-	-	-	-	- -	-15
8.6	-	_	-	_	-	_	-	-	_	-	_	_	_	_	3	14	9	7	8	31	33	25	19	17	8	5		-	-	-	-	-	-	-	-	-	- 1	-10
10.6	-	***	_	_	-	_	_	-	_	_	_	_	_	_	10	11	14	11	-	-	10	9	9	8	5	_	-	-	_	-	-	-	_	-	_	-	- 1	-10
12.7	-	_	_	_	-	_	-	-	_	-	5	3	8	11	11	13	16	18	12	5	3	3	4	5	5	-	-	-	_	-	_	-	_	-	_	-	- 1	-10
13.7	-	_	-	_	_	_	_	-	_	_	4	5	8	15	13	15	14	13	5	-	-	_	5	5	_	_	_		-	-	-	-	_	-	-	-		-10
14.9	-	_	_	_	-	_	_	_	_	-	5	10	15	20	20	19	15	10	10	9	1.1	12	12	13	14	8	3	3	-	-	-		-	-	-	-	1	-10
16.0	_	_	_	_	_	_	_	_	_	_	-	8	9	11	11	10	_	_	-	-	_	-	-	-	_	-	-	-	_	-	_	-	_	_	-	-	- 1	-10
16.6		_	_	_	_	-	_	_	_	5	8	10	13	14	14	14	10	9	8	10	15	16	17	12	7	6	6	6	5	3	_	_	_	-	_	_	- 1	-10
17.6	_	_	_	_	_	-	_	_	_	_	6	11	13	13	10	14	14	13	5	11	14	15	16	13	10	_	_	_	_	_	_	_	_	_	_	-	- 1	-10
18.7	X	X	Х	_	_	_	_	_	-	_	_	11	1.2	13	13	14	14	14	10	_	9	10	12	12	8	_	_	_	_	_	_	_	_	_	_	-		-10
20.9	_	_	_	_	_	_	_	-	_	_	4	6	10	11	11	10	6	_	6	-	_	7	7	7	5	_	_	3	3	_	_	-	_	_	_	_	_	- 5
22.6	-	_	_	***	_	_	-	_	_	2	9	18	19	20	14	13	15	15	15	12	14	13	13	11	10	9	_	_	_	_	3	3	_	-	_	-	- 1	- 5
24.9	х	X	_	_	_	_	_	_	_	-	_	- 4	10	11	12	13	17	13	13	12	12	13	11	9	8	5	4	_	Х	X	Х	Х	Х	Х	Х	Х	χ	- 5
25.8	4 X	X	_	_	_	_	_	_	_	_	_	_	9	10	1%	1/	13	12	8	10	12	13	10	7	_	_	_	_	_	_	_	_	_	_	_	_	_	- 5
26.8	X	X	_	_	_	_	_	_	_	_	_	5	á	11	12	10	10	3	_	5	1%	12	10	_	_	_	_	_	X	X	χ	Х	Х	χ	Х	X	x l	- 5
27.8	X	Y	_	_	_	_	_	_	_	_	_	2	5	10	11	11	-8	5	1	1 7	11	13	_	_	_	_	_	_	X	X	Ϋ́	X	X	х	X	Х	x l	- 5
28.7	-	-	_	_	_	_	_	_	_	_	3	5	5	g	11	10	13	12	6	3	3	10	22	17	10	9	5	_	_	_	-	3	3	_	_	_		<u> </u>
29.7	_	_	_	_	_	_	_	_	_	Ξ	_	5	5	5		8	9		10	1 -	10	17		16	12	11	_	_	_	_	_	_	_	_	_	_	_	- 5
30.6	_		_		-	_	_	_		_	_	,	6	77	1.0	_		15	1	1 1	-		/		-	15	13	8	6	-	5	7	,	3	3	_	_ [ノ 5
30.0	_		_		_				_	_	_	4		11	12	1)	14	10	1-4	1	10	Τ,	÷Τ	: 0	T Z;	1.)	1)	0		,		41	11	,				_ ′

 $\underline{\text{Table 75a}}$ Coronal observations at Climax, Colorado (6374A), east $\underline{\text{limb}}$

ate				Deg	ree	s r	ort	h o	of :	the	30	lar	eqi	ato	T			.	00				Deg	ree	ន ន	out	h o	of t	he	sol	ar	equ	ato	r				١,
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0.5	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	I
1010																																						
1948			**													-	,	. 1	_	١.	_	_	,	4													- 1	
June 1.6	X	Х	Х	X	_	_	_	-	_	-	****	_	_	4	4	5	- 6	4	5.	1	2	5	6	8	5	_	-	_	-	-	-	-	-	-	-	-		-1
2.6	-	-	_	_	-	-	_	_	_	-	_	-	8	13	12	8	19	10	4	3	4	8	8	7	6	1	-	_	_	-	-	_	-	-	-	_	- 1	-1
3.6	X	X	X	Х	-	-	_	_	_	_	_	_	1	1	2	14	11	7	7	4	6	13	10	1	1	-	-	_	-	-	-	-	_	-	-	-	-	-1
4.6	-	-	_	-	-		-	_	_	_	_	_	5	1	7	15	7	5	1	1	5	4	3	1	1	1	-		-	_	-	_	-	-	-		-	-1
5.7	-	-	_	_	_	_	-	-	_	-	_	_	-	-	2	14	10	_	-	8	10	14	11	3	2	1	_	_	_	_	_	-	-	_	_	_	-	-1
6.7	-	-		_	_	_	_	_	_	_	_	_	_	_	_	1	5	9	-	5	12	12	10	12	6	3	_	_	_	_	_	_	_	_	_	_	-	-1
7.7	X	X	X	Х	-	-	_	_	_	_	_	_	_	_	1	8	10	1	1	9	10	10	11	11	11	8	1	_	_	_	_	_	_	_	_	_	-	-1
8.6	-	_	_	_	_	_	_	_	1	1	2	2	3	2	11	5	_	8	9	7	8	9	10	_	_	_	_	_	_	_	_	_	_	_	_	_		-1
10.6	_	_	_	_	_	_	-	_	-	_	_	_	1	1	10	11	9	6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_]
12.7	_	_	_	_		_	-	_	_	_	2	1	1	2	_	9	7	3	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
13.7	_	_	_	_	_	_	_	-	-	_	_	8	1	5	9	Ŕ	2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_1
14.9	_	_	-	_	_	_	_	_	_	_	_	3	2	í	á	1.	1.	1	٦	2	2	2	1	_	_	_	_	_	_	_	_	_	_	_	_	_	- 1	_
16.0	_	_	_	_	_	_	_	_	_	_	_	_	~	_	_	- 1	4	_		_	~	~	_				_				Ξ	_	_				- 1	
16.6	_	_		_	_	_	_	_	_		7	7	7	1	1	2	2	2	1	3	3	1	1	1	7	2	2	1	7	_	_	_	_	_	_	_	- 6	_
17.6		_	_	_	_	_	_	_	-	_	1	1	1	Τ.	1	7	7	2	+	17	2	1	7	7	2	2	7	Τ.	1	-	-	-	_	_	-	-		_
18.7	X	y	y	_			_	_		_	_	_	_	_	7	1	1	3	_	1	2	7	Ý	7	1	7	1	-	-	_	_	-	-	-	_	-	- [_:
20.9	. A.	1	Λ	_	_	_	_	_	_	_	_	_		_	1	Τ.	1	٠,	- 1			Τ	7	1	1	Τ.	-	-	-	-	-	-	-	_	-	_	- 1	-
22.6	_	_	_	_	_	_	_	_	_	_	_	-	_	2	-	_	-	_	- 1	-	-	-	-	~	-	-	-	_	_	-	_	-	-	_	_	_	-	~
		_ v	_	_	_	-	-	_	-	_	_	9	< 0	2	2	2	Τ.	2	1	1	Ţ	Ţ	1	Ţ	_	-	-	-	_	-	-	-	_	-	-	-	- 1	_
24.9	A.	A.	_	_	_	_	_	Τ	Τ		2	2	2	2	Т	_	3	_	3	15	- 5	3	3	3	2	-	-	-	X	Ä	A	X	A	A	X	X	A 1	-
25.8	X	A.	-	_	-	-	-	-	-	-	_	_	_	_	-	-	_	2	_	-	1	1	11	8	1	_	-	-	_	_	_	_	_	_	_	-	- 1	-
26.8	X	Ä	-	-	_	_	-	_	-	-	1	2	3	4	-5	5	5	2	1	3	5	8	10	10	-	_	-	**	Х	Х	Х	X	Х	Х	Х	χ	X	-
27.8	X	Х	-	_	-	-	-	-	-	_	-	-	1	1	1	1	?	2	3	3	5	4	5	3	1	-	-	-	X	X	Х	X	X	X	X	X	X	-
28.7	-	-	-	-	_	-	-	_	-	_	_	-	2	1	***	1	1	1	2	2	6	9	8	8	5	1	-	-		-	-	-	-	-	-	-		-
29.7	-	-	-	-	_	-	_	_	-	_	-	-	-	_	-	-	_	1	2 ·	3	3	7	5	5	2	1	1	-	-	-	_	-	-	_	-	-		_
30.6	-	_	_	_	-	_	_	_	_	-	_	_	_	_	-	_	_	1	1	1		10	7	2	1	2	1	1	-	_	_	_	_	_	_	_	-	_

Table 74b

Coronal observations at Climax, Colorado (5303A), west limb

Date							out												- 0	o .									the									p
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	7 "	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	P
																			Τ	F						-												
1948																				1																		
June 1.6	_	_	_	-	_	_	2	4	5	_	2	3	11	14	14	12	14	13	10	10	10	12	15	15	15	X	X	X	Х	X	χ	Х	Х	X	Х	X	X	-15
2.6	_	_	_	_	_	3	6	10	10	2	2	-3	23	24	28	25	23	17	15	14	22	26	28	25	18	15	15	13	7	_	_	_	_	-	_	_	-	-15
3.6	_	_	_	_	-	_	6	8	-5	_	_	_	13	22	20	30	24	22	19	10	13	20	21	20	20	17	13	10	7	3	X	X	X	X	X	Х	Х	-15
4.6	2	3	3	3	3	L	3	5	5	4	3	13	50	33	35	32	30	27	28	20	10	25	22	20	50	19	18	15	9	2	2	_	_	_	_	-	_	-15
5.7	_	_	_	_	_	3	3	5	5	4	8	9	11	14	36	37	18	14	14	12	13	24	22	20	15	12	14	13	11	_	_	_	_	_	_	_	-	-15
6.7	-	_	_		3	4	6	7	6	3	10	10	12	16	18	18	17	17	16	16	21	23	24	20	16	14	13	12	11	_	-	_	_	_	_	_	-	-15
7.7	_	_	-	_	_	5	7	7	5	_		_	5	6	8	11	12	10	10	13	14	14	13	18	23	14	9	8	7	5	X	Х	X	X	X	X	Х	-15
8.6	_	_	3	4	9	11	11	9	9	11	10	11	11	13	14	14	13	13	18	30	29	15	28	25	22	19	10	9	5	_	_	_	_	_	_	_	-	-10
10.6		_	_	_	_	8	9	9	9	8	_	_	_	_	10	11	11	12	15	20	19	18	18	15	14	13	10	5	_	_	_	_	_	_	-	_	-	-10
12.7	_	_	_	_	3	4	5.	5	5	3	_		_	7	10	25	24	22	13	10	23	27	18	16	14	11	8	3	_	-	-	_	_	_	_	-	_	-10
13.7	-	_	_	_	_	4	4	5	5	4	_	_	_	8	13	18	24	23	15	6	14	15	18	14	13	13	11	_	-	_	_	_	_	_	_	_	-	-10
14.9	-	_	_	3	4	5	5	5	4	Ä	3	6	8	21	31	30	28	20	14	12	14	18	27	15	13	14	15	12	_	_	_	_	_	_	_	_	- 1	-10
16.0	-	_	_	_	_	-	_	_	_	_	_	_	_	8	10	10	8	_	_	8	9	10	10	10	_	_	_	_	_	-	_	_	_	_	_	_	-	-10
16.6	_	-	-	_	_	3	4	4	3	_	9	10	12	12	17	24	20	18	10	20	22	20	18	15	13	9	11	10	3	_	_	_	-	_	_	_	-	-10
17.6	_	_	_	_	_	_	_	_	_	_	10	12	15	14	13	18	16	15	13	14	16	16	15	11	11	11	10	9	7	_	_	_	_	_	_	_	- 1	-10
18.7	_	_	X	X	X	X	X	Х	Х	X	X	X	_	_	9	10	12	10	9	1 -	_	_	_	_	_	_	_	_	-	X	X	X	Х	Х	Х	Х	х	-10
20.9	_	_	_	_	_	_	_	_	_	_	_	3	8	10	13	15	15	11	10	10	11	8	5	_	_	_	_	_	_	_	_	_	-	-	_	_	-	- 5
22.6	_	_	_		-	_	_	_	_	_	_	3	4	7	11	12	11	9	9	13	18	15	14	_	_	_	_	_	_	_	°-	_	_	_	_	-	_	- 5
24.9	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	Х	X	Х	X	Х	Х	- 5
25.8	_	X	X	X	X	X	Х	X	X	X	Х	X	X	X	X	X	Х	X	X	X	Х	Х	Х	X	Х	X	X	X	X	Х	X	X	X	Х	X	X	Х	- 5
26.8	X	X	Х	X	X	Х	Х	Х	X	X	Х	X	Х	X	X	X	X	X	X	X	X	X	Х	Х	X	X	X	X	X	X	X	, Х	Х	Х	X	Х	X	- 5
27.8	X	X	X	X	X	X	X	Х	X	Х	X	Х	X	X	Х	Х	Х	Х	X	X	Х	X	Х	Х	X	X	Х	χ	Х	X	Х	X	X	Х	X	X	X	- 5
28.7	-	_	_	_	_	_	_	_	_	_	_	3	4	5	6	7	8	7	1 4	1 2	2	5	8	10	9	8	5	3	2	_	_	_	_	_	_	_	-	- 5
29.7	_	_	_	_	_	_	_	_	_	_	_	7	5	6	8	11	10	8	7	16	6	ģ.	10	13	12	13	12	10	10	5	_	_	_	_	_		_]	- 5
30.6		_	_	_	_	_	3	7	6	3	3	10	11	12	28	23	27	28	13	μo	11	16	15	15	15	17	16	14	13	8	3	_	_	_	_	_	_	- 5
																/			F_	Ε.	7-																	

 $\underline{\text{Table 75b}}$ Coronal observations at Climax, Colorado (6374A), west $\underline{\text{limb}}$

ate				Deg	ree	8 8	out	h o	f t	he	sol	ar	equ	ato	r				00			1	Deg	ree	s n	ort:	h o	f ti	he :	sol	ar	equ	ato	T			1
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	٥	5 1	LO :	15	20 2	25	30	35 .	40 4	45	50	55	60	65	70	75	80	85	90
1948																																					
une 1.6	_	_	_	_	_	_	_	_	_	_	_	_	1	4	1	1	6	8	2	1	3	3	2	_	_	X	X	Χ	X	X	X	X	χ	Х	χ	Х	Х
2.6	-	_	_	_	_	_	_	_	_	_	_	1	3	11	10	3	7	4	4	2 :	10	10	1	2	9	1	1	_	_	-	-	-	_	_	_	_	-
3.6	_	-	_	_	_	-	-	-	-	_	_	_	1	13	3	2	4	9	2	8	1	12	10	l	1	1	2	2	i	1	X	X	X	Х	X	Х	X
4.6	_	_	_	_	_	_	_	_	-	_	-	_	_	2	5	3	3	4	4	5	1	10	10	1	-	_	_	_	_	_	_	_	-	_	-	-	-
5.7	_	-	_	_	_	_	_	_	_	-	-	-	-	1	11	11	5	2	1	3	3	4	10	2	2	-	-	-	_	_	-	_	-	_	-	-	-
6.7	-	-	_	_	_	-	-	-	-	-	-	-	-	-	2	13	1	-		1	2	8	6	9	7	1	_	-	-	-	-	-	-	_	-	-	- 1
7.7	-	-	_	-	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	1	2	2	5	11	6	2	1	-	_	X	Х	Х	Х	Х	Х	X
8.6	-	-	_	-	-	-	_	_	-	-	_	_	-	-	-	-	-	-	1	3 :	11	2	3 :	15	1	1	1	1	_	-	-	-	-	-	-	-	-
10.6	_	-	_	_	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	2 :	10	3	-	_	1	1	1	-	-	-	-	-	-	-	-	-	-
12.7	_	-	-	_	-	-	_	_	-	-	-	_	1	3	11	10	2	4	1	3	8	10	1	1	1	1	1	1	1	1	-	-	-	-	-	-	-
13.7	-	-	_	_	-	-	_	_	_	-	_	_	-	3	3	4	3	1	-	2 :	10	7	1	1	2	1	1	-	_	-	_	-	-	-	-	-	-
14.9	-	-	-	-	-	-	-	-	-	-	-	1	2	3	8	8	13	8	5	- :	10	1	1	9	1	-	-	-	-	-	-	-	-	-	-	-	-
16.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16.6	-	-	-	-	-	_	_	_	-	-	-	_	2	3	7	9	7	4	5	6	6	4	2	1	4	1	_	-	_	_	-	_	-	-	-	-	-
17.6	-	-	-	_	-	-	-	-	-	-	_	_	-	-	1	1	8	14	5	1	1	1	1	-	_	_	-	_	-	_	_	-	-	_	_	_	-
18.7	-	-	Х	X	Х	X	Х	Х	Х	X	X	Х	_	-	-	3	- 5	4	2	-	-	_	-	-	_	-	-	-	_	Х	Х	Х	X	Х	X	X	Х
20.9	-	-	-	-	-	_	-	_	-	-	-	_	-	1	3	5	10	7	5	Z ₁	5	5	4	1	1	1	-	-	-	-	-	-	-	-	-	-	-
22.6	-	_	_	_	_	_	_	_	_		_	1	2	2	2	3	1	_	-	2 :	12	8	8	5	_	_	_	_	_	_	_	_	_	_	_	_	_
24.9	X	X	Х	X	X	X	Х	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	Х	Х	Х	Х	Х	Х	X	Х	X	Х	Х	Х	Х	Х	X
25.8	438	X	X	X	X	X	X	X	X	X	X	X	Х	X	X.	Х	Х	X	Х	X	Х	Х	Х	Χ	Х	χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
26.8	X	Х	Х	Х	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X	X	X	X	Х	X	Х	Х	Х	Х	Х	X	X	X	X	X	Х	Х	X,	X
27.8	X	X	X	X	Х	Х	X	Х	Х	X	Х	Х	Х	Х	X	Х	Х	Х	X	Х	X	Х	Х	X	X	X	X	X	X	X	X	X	X	Х	X	Х	X
28.7		_		-	_	-	-	-	-	-	-	-	-	_	-	1	-	-	-	-	_	-	-	-	1	1	4	1	-	-	_	-	-	-	-	-	-
29.7	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-	1	3	1	-	-	-	-	-	_	-	-	-	-	-	-	- '	-	-	-	-	-
30.6	-	_	_	_				_	_	_	_	_	2	3	5	8	8	6	5	3	3	3	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_

Table 76a

Coronal observations at Climax, Colorado (6704A), east limb

Date				Des	ree	SI	nort	h	of t	the	80	lar	egi	ato	T				00				Deg	ree	8 8	out	th c	of t	the	sol	ar	equ	nti	or				
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	P
0.10																																						
9/8	٠,	35	v	sr.									,	-	,	2	_	,		į	,	1	2	2	2	2	٦											
une 1.6	ı A	Λ	A	7	-	_	-	_	_	-	-	_	1		4	2	4	1	-	-	1	1	- í	-45	2	- 1		_	-	-	_	-	_	-	-	_	_	
2.6	-	15	76	-	_	-	-	-	_	-	_	-	-	-		7	4	1	-	-	-	1.	i	1	-	7	.1	.i.	-	-	-		-	-	~		_	-
3.6	X	X	X	X	_	-	-	-	-	-	*	-	-	***	Ŧ	J.	1	Ţ	-	-	-	Τ	Ţ	1	Ţ	_	-	-		Har	~	-	-	-	-	-	-	
4.5	-	_	_	_	_	_	-	-	-	-	_	-	-	•	-	-	-	***	-	-	-	-	1	1	į.	Ţ	- !	Ĺ	-	_	**	_	-	-	-	-		1
5.7	-	-	-	_	-	_	-	_	_	-	-	**	-		-	-	_	-	-	-	2	1	Ţ	1	1	1	1	-	-	-	PR-P	-	-	-	1000	-		-
6.7	-	_	-	-	-	-	-	-	-	-	-	_	-		-	-	-	-	-	-	-	1	1	1	1	1	3		4.	~~	mar.	-	-	-	***	**	~	
7.7	I X	X	Χ	Х	-	-	-	-		-	-	-	-	-	-	-	-	***	-	1	7	1	7	1	1	-	-	-	-	_	-	-	-	-	-	***		١.
8.6	-	-	-	-	-	758	_	-	~	-	-	-	-	-	_	_	-	-	1	1	•	7	?	7	7		-	-	***	-	4.07			***		-	-	
10.6	-	-	-	_	-	-	-	-	-	-	***	-	-		_	-	-	_	-	-	-	-	Argon	-	-		-	-	-	-	-	-		-		-		١.
12.7	-	-		-	-	~	_	_	wit-		~*	7	3.	7	7	2	3	3	1			~	_	_	-	400	-	~	-	-		-	-	-	-	-	**	١.
13.7		-	-	-	-	-	***	-,000	4,00	~	-	- %		-	***	-		**	-	-	-	-		-	~	-	•	**	-	-	-	-				~	r~	
14.9	-	-	-	-	_	~	_		-	-	*	-	***		-	-	-	-		-	-	-		-	-	-	-	-	-	-			~		-	-	- 1	-
16.0	-	-				ren			~	-	**		1.00	-	-	-	par.	•	-	-	1700	-	_	-	-	-	_	_	-	_	140	ma	_	196.1	-		-	
15.6	-	-	-		-	* 44	-			140.0	-	-	***		-	-	-	-94	-	1	1	1	1	1	1		-	~	***	**	-		we	-	,00		-	
17.6	-	-	-	-	_	_	-	~	-	~	with	_	-	- 40	_	~ ~			-	-	1	1		1	1).	-	7	-44	-				4-14				١,
18.7	X	77	X		-	-	~			1100	1,000	-	-	-	-	3	1	I	1	1	7.	1	2	1	7	-			-	-	W.a	-	~~	-		arry	-	
20.9		-	-	_	_	_	-	nitre	140	100	-	***	_	-	-	_	-	-	-	-	-	-	_	week	_	_	-	-	-	_	_	_	_	***	8-00	-	_	-
22.6	_	_	_	_	-	-	-	_	-	-	_	1	3	1	1	1	1	1	1	1	1	1	1	1	1	_	-	-	-	_	-	-	_	-		-	_	-
24.9	X	Х	ant.	_								0.00	**	_	_		-	-	-	-	_	_	-	_	_	_	_	-	Λ	X	Х	Ä	Z	7.),	Ä		i -
35.8	X	X	-	4-1	-	_			~ 1	-		w.		-	_	_	_	_	-	11	1	1	1	7	1	_	_	_	-	_		1-46	-00		_		-	١.
26.8	_	_	****	_	-	-	-	_	_	_	_	_	-	_	_	_	_	_	-	-	_	_	_	_	_	_	-	_	X	X	X	7	*7	77	Y	10	2	-
27.8	1	X	-	_	-		-	-	4,075	-	-		-		_	-		-	-	_	-	_	_	-	-	_	_	-	X	X	Х	Х	X	Х	v	X	X	
28.7	_	-	_		_	rest	-	Cont.	***		_		-	-	-	-	-	_	_	1	3	1	1	7	-	_	_	_	_	-	_	_	_		_	-	_	
29.7	_	879	-	1.10	_	-	-	_	_	_	-	-	_	-	_	_	_	_	_		7	7	7	7	-	_	_	W0#	-0	_	_	v.P.	_		-		_	1
30.6	_	_	_		-		_	_	_		_		-			_	-	_	1	1	7	7	7	ī	7	3		_	_	_	_	-		_	_	_	_	
50.1	-	_	_		-	,,	_	_	_			-				_				1 -	7	-	-	- din	d.	-			_			-	-	-	-	-		

Table 76b

Coronal observations at Climax, Colorado (6704A), west limb

Date							out												$I_{n'}$				Deg	re	95 1	or	th	of '	the	sol	lar	eqt	18to	or				P
GCT	90 -	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	7 '	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	1
																			\Box	T																		
1948																				1							•											
June 1.6	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	X	Х	χ	X	Х	χ	Х	X	Х	Х	Y	X	-15
2.6	-	-	-	-	-	-	-	_	-	-	-	-	_	1	1	1	1	-	-	-	_	_	-	-	-	-	_	-	_	-	_	_	_	_	-	_	-	-15
3.6	-	-	-	-	-	-	_	***	-	-	-	-	1	3	4	3	1	1	1	1	-	-	-	-	-	-	-	_	-	_	Х	Х	X	X	X.	X	X.	-15
4.6	_	_	-	_	-	-	_	-	-	-	-	-	-	1	1	1	1	1	1	-	-	1	1	1	-	-	-	-	_	-	-	-	_	-	-	-	-	-15
5.7	-	-	-	-	-	-	_	-	_	-	-	-	_	1	1	1	1	1	1	1	1	1	1	1	-	-	-	_	-	-	-	-	-	-	-	-	-	-15
6.7	-	-	_	-	-	_	-	-	-	-	-	-	_	1	1	1	1	1	1	1	1	1	1	1	-	-	_	_	-	-	_	_	_	_	_	-	-	-15
7.7	-	-	-	-	-	-	-	-	-	-	_	-	-	-	1	1	1	1	1	1	1	1	1	1	1	-	-	-	-	-	χ	Χ	X.	Х	X	X	X	-15
8.6	-	-	-		-	-	-	-	_	_	_	-	-	-	1	2	2	1	2	3	2	2	2	2	1	-	-	_	-	-	_	-	-	_	-	-	-	-10
10.6	-	_	-	-	_	_	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	-	-	-	_	_	-	-	-	_	-	-	-	-10
12.7	-	-	-	-	-	-	-	_	-	-	-	-	-	1	1	1	1	1	1	-	-	1	1	1	-	-	-	-	-	-	-	-	_	_	-	-	-	-10
13.7	_	_	_	-	_	_	- '	_	_	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	-	-	-	-	_	-	_	-	-	-	-10
14.9	-	-	-	-	_	_	_	_	-	-	-	-	1	1	1	1	1	_	-	1	1	1	1	1	1	1	-	-	-	-	-	-	-	-	_	-	-	-10
16.0	-	_	_	-	-	_	_	_	_	_	-	_	_	-	-	-	_	-	i –	-	-	-	-	-	-	_	-	-	-	_	_	_	_	-	_	-	-	-10
16.6	_	-	_	_	-	_	-	-	-	-	-	1	1	1	1	1	1	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	_	_	_	-	-	-10
17.6	-	_	-	-	-	_	,-	_	_	_	-	_	_	_	_	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	-10
18.7	-	_	X	Х	Х	X	X	X	X	X	X	X	_	_	_	-	-	_	-	-	-	-	_	-	-	-	-	-	-	Х	Х	Х	Х	Х	X	X	X	-10
20.9	-	_	_	_	-	-	-	_	-	-	-	-	-	-	_	_	-	_	-	-	_	_	_	_	-	-	-	_	-	-	-	-	-	-	-	-	-	- 5
22.6	-	_	_	-	_	_	_	-	_	_	_	-	-	_	_	_	-	-	-	-	-	_	_	_	-	_	-	_	_	-	_	-	-	-	_		-	- 5
24.9	X	X	X	X	X	X	X	X	X	X	X	X	Х	Х	X	Х	Х	Х	X	X	X	X	Х	Х	X	X	X	X	Х	Х	Х	X	X	X	Х	Х	Х	- 5
25.8	-	X	X	Х	X	X	Χ	X	Х	X	X	X	X	Х	Χ	X	Х	Х	Х	X	Х	Х	Х	X	Х	X	X	Х	X	Х	Х	Χ	X	X	X	X	X	- 5
26.8	Х	Х	Х	X	Х	Х	χ	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	Х	Х	X	X	Х	X	Х	Х	X	Х	X	X	Χ	χ	X	- 5
27.8	X	X	Х	Х	X	X	X	X	X	χ	X	X	Χ	X	7.	χ	Х	X	X	X	X	X	X	X	Х	X	X	Х	Х	Х	Χ	X	X	Х	Х	X	Х	- 5
28.7	-	_	_	-	-	_	-	_	-	-	_	_	-	_	_	_	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 5
29.7	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	-	_	_	_	_	_	_	-	_	_	_	-	_	-	_	-	-	-	- 5
30.6	-	-	-	-	-	-	-	-	-	-	-	1	1	2	3	3	3	5	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 5

Particulars of observations, Climax, Colorado January-June 1948

Date	1 0-0	An 3	ine	* h ==0	ahol	A	1	1	Dat	- 0	1 (200	en 14	ne t	hace	ho?d	waterfell makering the more to	1	n-coraça mise casmodi
GCT			nsit		91107	W.	Obs.	Meas.	G		1 02 3		nsit		11070		Obs.	Meas
6901	450	71100	1 750	2250	2200	315 ⁰	0000	neas.		₩ &	450	7000	1 750	2250	2200	315 ⁹	008.	31025
1948	400	30	100-	500	210	010			19	10	1.20	30	1.00	440	eru	010		MATERIAL TRANSPORTED BY
			(2)				E	121	,		_	17%					773	
Jan. 1.7	-	6	3	982	que	-		E	May	28.9	5	6	-	_	SERVICE SERVIC	trap	F	A
5.9	6	6	4	7	900	-	F		į	30.0	-	11		-	(iii)	Cine	F	E
6.7	4	3	4	4	3	3	F	E		31.0	10	11	12	089	marin	eno-	F	E
7.9	3	3	3	3	4	3	F	E	-	31.6	13	12	12	-	600	400	F	E
9.9	4	4	7	4	3	3	F	E	June	1.6	6	6	5	5	mo	too	F	E
10.7	2	S	2	2	2	2	F	E	l	2.6	6	5	4	6	6	8	F	E
14.8	3	3	4	3	3	3	W	E		3.6	7	7	6	6	5	4420	F	E
30.8	4	4	4	5	4	4	W	E	1	4.6	5	4	3	3	4	3	F	E
Feb. 5.8	9	4	5	400	***	-	H	E	1	5.7	6	5	4	6	4	4	F	E
8.8	2	3	2	2	S	2	W	E)	6.7	6	6	6	5	5	4	F	E
15.8	2	4	4	2	2	2	W	E		7.7	8	9	11	8	6	mpn	F	E
17.8	6	6	3	5	5	5	W	E		8.6	8	6	5	6	5	4	F	E
Mar.11.8	3	3	2	3	4	3	W	E	1	10.6	6	6	6	11	7	6	F	E
12.7	3	3	3	2	3	4	W	E		12.7	5	5	6	8	5	4	F	E
Apr. 2.7	5	3	2	3	3	3	W	E		13.7	9	9	9	8	8	7	F	E
28.7	3	5	3	4	4	3	W	E		14.9	8	9	9	6	7	8	F	E
29.8	5	5	6	7	6	5	W	E		16.0	13	12	11	13	15	12	F	E
30.7	4	5	4	5	5	5	W	E	T I I I I I I I I I I I I I I I I I I I	16.6	6	6	6	8	6	6	F	E
May 6.8	7	6	10	8	6	7	Tr.	E		17.6	8	ry	7	10	11	11	F	E
7.6	8	7	7	9	9	8	¥	E		18.7	11	10	15	- AL-O	15		F	E
13.6	11	10	9	12	15	nite	F	E		20.9	12	13	una vo	10	10	14	F	E
14.7	15	8	12	10	11	7	F	20	ļ	22.6	5	5	5	6	5	5	F	E
15.7	8	7	7	7	7	6	P	E	1	24.9	9	5	mas .			-	F	E
16.7	7	7	7	9	7	7	F	E	125 mg	25.8	5	6	6	-	_	Olia	Ho.	E
19.6	10	10	8	10	9	13	F	E		26.8	6	8		-	-	-	F	E
20.7	10	10	10	9	10	9	F	E	ĺ	27.8	6	_					F	E
21.6	14	14	13	13	13	11	F	E	Į	28.8	7	7	6	6	5	8	F	E
22.7	7	6	8	6	7	7	F	E	ì	29.7	7	7	7	10	9		F	E
23.6	8	7	7	2	7	6	F	E			5					10	F	
20.0	0						To the standard linear section	B		30.6	1 2	5	5	8	6	6	F	E

E = J.W. Evans F = W. Fleming W = M. Warner

Index of Tables and Grarhs of Tonoscheric Data

in CRPL-F47

	Table pure	Figure page
Adak, Alaska		
May 1948	. 12	49
Baton Rouge, Louisiana		7 0
iay 1948	. 13	52
Eombay, India February 1948	. 19	64
Loston, Massachusetts	-/	
May 1948	. 13	51
Prisbane, Asutralia March 1948	. 17	59
Canberra, Australia	• 1) /
March 1948	. 17	60
Chungking, China	•/	CO
Harch 1948	. 17	50
Churchill, Canada	•	2,
Eay 1948	. 11	48
Clyde, Baffin I.	• L.L	240
January 1948	. 20	66
December 1947		69
November 1947		69
October 1947		70
September 1947		70
August 1947		71
July 1947		71
June 1947		72
May 1947		72
April 1947		73
March 1947		73
February 1947		74
January 1947		74
Delhi, Indïa		
February 1948	. 19	63
Fairbanks, Alaska	,	
liay 194ε	. 11	47
Falkland Is.		
February 1948	. 20	6 <i>5</i>
January 1948		67
Fraserburgh, Scotland		
March 1948	. 16	57
Fribourg, Germany		
September 1947	. 21	67
August 1947	. 21	68
Guam I.		
May 1948	. 14	54
Hobart, Tasmania		74
March 1948	. 18	61
February 1948	. 20	65
	~ ~0	

Index (CRPL-F47, contd.)

	Table page	Figure page
Huancayo, Peru		
April 1948	15	56
Johannerburg, Union of S. Africa April 1948	16	57
Lanchow, China	10	, ,
February 1948	18	62
Leyte, Philippine Is. Arril 1948	15	56
Madras. India		
Tebruary 1948	19	64
Maui, Hawaii May 1948	7./	<i>r</i> 2
Nanking, China	14	53
February 1948	18	62
January 1948	20	66
Okinawa I.		
April 1948	15	55
February 1948	19	63
Ottawa, Canada	70	50
Nay 1948	12	50
May 1948	15	55
Peiping, China	-,	
March 1948	16	58
Portage la Prairie, Canada	7.0	
May 1948	12	49
Prince Rupert, Canada May 1948	11	48
St. John's, Newfoundland	11	40
May 1948	12	50
San Francisco, California		•
May 1948'	13	51
San Juan, Fuerto Rico		* •
May 1948	14	53
Slough, England March 1948	16	58
February 1948	18	61
Trinidad, Brit. West Indies		01 ,
May 1948	14	54
Washington, D. C.		
June 1948	11	47
Watheroo, W. Australia March 1948	17	60
White Sands, New Mexico	Ι/	CU
May 1948	13	52
	-	-

CRPL and IRPL Reports

Daily: Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Weekly: CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly: CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Easic Radio Propagation Prediction Reports.

Monthly:
CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC-13-1 (), monthly supplements to Ionospheric Data. CRPL-F.

Ouarterly: *IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific. *IRPL-H. Frequency Guide for Operating Personnel.

Nonscheduled reports: CRPL-1-1. Prediction of Annual Sunspot Numbers.

CRPL-1-2, 3-1. High Frequency Radio Propagation Charts for Sunspot Minimum and Sunspot Maximum. CRPL-1-3. Some Methods for General Prediction of Sudden Ionospheric Disturbances.

CRPL-1-4. Observations of the Solar Corona at Climax, 1944-46.

CRPL-1-5. Comparison of Predictions of Radio Noise with Observed Noise Levels,

CRPL-1-6. The Variability of Sky-Wave Field Intensities at Medium and High Frequencies.

CRPL-7-1. Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records. NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.

IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

IRPL-R. Nonscheduled reports:

Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies. R4. Criteria for Ionospheric Storminess. R5.

R6. Experimental Studies of Ionospheric Propagation as Applied to the Loran System.
R7. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.
R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics.

R12. Short Time Variations in Ionospheric Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients.

R15. Predicted Limits for F2-layer Radio Transmission Throughout the Solar Cycle.

R16. Predicted F2-layer Frequencies Throughout the Solar Cycle, for Summer, Winter, and Equinox Season.
R17. Japanese Ionospheric Data—1943.
R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October
1943 Through May 1945.

R19. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for June.
R20. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for September.
R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

R22. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for December.

R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.
R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System. R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.
R26. The Ionosphere as a Measure of Solar Activity.
R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped

by Distance From Center of Disc.

R28. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for January.
R30. Disturbance Rating in Values of IRPL Quality-Figure Scale From A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.
R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.
R32. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for February.

R33. Ionospheric Data on File at IRPL.
R34. The Interpretation of Recorded Values of fEs.

R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of

IRPL-T. Reports on tropospheric propagation: (Superseded by JANP 101.) (Superseded by JANP 102.) Radar operation and weather.

Radar coverage and weather. CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

Items bearing this symbol are distributed only by U.S. Navy. They are issued under one cover as the DNC-14 series.

