2-3 trees

Dictionary: an abstract data type

A container that maps keys to values

Dictionary operations

- Insert
- Search
- Delete

Several possible implementations

- · Balanced search trees
- Hash tables

2-3 trees

A kind of balanced search tree

Assume keys are totally ordered (<,>,=)

Assume n key/value pairs are stored in the dictionary

Time per dictionary operation is $O(\log n)$

Support of other useful operations as well

Basic structure: a tree

- key/value pairs stored only at leaves (no duplicate keys)
- all leaves at the same depth (i.e., distance from root)
- looking at the leaves from left to right, keys appear in sorted order
- each internal node:
 - has either 2 or 3 children
 - has a "guide": the maximum key in its subtree

Example

4

Let h := height of tree (Recall: height = max depth of any node)

Let n := # of leaves

Claim: $n \ge 2^h$

- Proof by induction on h
- Base case: h = 0, n = 1 \checkmark
- Induction step: h > 0, assume claim holds for h 1
 - Tree has a root node, which has either 2 or 3 children
 - Each of these children is the root of a subtree, which itself is a 2-3 tree of height h-1
 - By induction hypothesis, if the *i*th subtree has n_i leaves, then $n_i \ge 2^{h-1}$ [here, i = 1...2 (or 3)]
 - : $n = \sum_{i} n_i \ge \sum_{i} 2^{h-1} \ge 2 \cdot 2^{h-1} = 2^h \checkmark$

Corollary: $h \leq \log_2 n$

Example Data Layout (Java syntax)

```
class Node {
    KeyType guide;
    // guide points to max key in subtree rooted at node
}
class InternalNode extends Node {
    Node child0, child1, child2;
    // child0 and child1 are always non-null
    // child2 is null iff node has only 2 children
}
class LeafNode extends Node {
    // guide points to the key
    ValueType value;
}
```

```
Search(x): // use guides to search for the key x
p \leftarrow \text{root of tree}
h \leftarrow \text{height of tree}
repeat h times
    // p points to an internal node
    if x \leq p.child0.guide then
        p \leftarrow p.\text{child0}
    else if p.child2 = null or x \le p.child1.guide then
        p \leftarrow p.child1
    else
        p \leftarrow p.child2
// p now points to a leaf node
if x = p guide then
    return p.value
else
    return null // or some default value
```

7

Search Invariant

$\underline{Insert(x)}$: Search for x, and if it should belong under p:

add x as a child of p (if not already present) if p now has 4 children:

• split p into two nodes, p_1 and p_2 , each with two children

- process p's parent in the same way
- Special case: no parent create new root, increasing height of tree by 1

Also need to update "guides" — easy Time = $O(\text{height}) = O(\log n)$

Insert 69 21 69

Insert 10

Delete(x): Search for x, and if found under p:

remove x

if *p* now only has one child:

- if p is the root: delete p (height decreases by 1)
- if one of p's adjacent siblings has 3 children: p adopts one

- if none of p's adjacent siblings has 3 children:
 - one sibling q must have 2 children
 - give p's only child to q
 - delete p
 - process p's parent

2-3 trees: summary

Assume *n* keys in dictionary

Running time for lookup, insert, delete: $O(\log n)$ comparisons, plus $O(\log n)$ overhead

Space: O(n) pointers

Note: in the literature, "traditional" 2-3 trees usually store the guides *in the parent node*

• every node contains one or two guides

"Traditional" 2-3 Trees

```
Idea: move the guides into the parent node
     class Node { }
     class InternalNode extends Node {
           KeyType quide0, quide1;
           Node child0, child1, child2:
     class LeafNode extends Node {
           KeyType key;
           ValueType value;
     Search(x):
     p \leftarrow \text{root of tree}, h \leftarrow \text{height of tree}
     repeat h times
           // p points to an internal node
           if x \le p.guide0 then p \leftarrow p.child0
           else if p.child2 = null or x \le p. quide1 then p \leftarrow p.child1
           else p \leftarrow p.child2
     // p now points to a leaf node
     if x = p.key then
           return p.value
     else
           return null
```

A generalization: B-trees

- allow between B and 2B guides in each internal node
- branching factor is at least B + 1
- height of the tree is at most $log_{B+1}(n)$
- example: $B = 2^{10}$ and $n = 2^{30}$, then height is just 3, instead of 30
- useful for high-latency memory (like hard drives)

many file systems use B-trees to organize their metadata

Augmenting 2-3 trees

Idea: augment nodes with additional information to support new types of queries

Example: store # of keys in subtree at each internal node

Queries:

- What is the kth smallest key?
- How many keys are $\leq x$?

Fast range operations

- Suppose values associated with keys are numbers
- Operation AddRange(x, y, Δ) adds the same value Δ to the values associated with keys in the range [x, y]
- We can do this in time O(log n) using a "lazy" update technique
 - Store a value field at *every* node: internal nodes and leaves
 - "effective" value associated with a key is the sum all value fields on path from root to its leaf

- To perform $AddRange(x, y, \Delta)$:
 - trace paths e, f to x, y
 - add Δ to x, y, and to all roots of "internal" subtrees

 Insert and Delete operations also need to be slightly adjusted

Detailed Example:

2-3 Trees: Join and Split

 $Join(T_1, T_2)$ joins two 2-3 trees in time $O(\log n)$

Assume $max(T_1) < min(T_2)$

Assume T_i has height h_i for i = 1, 2

Case 1: $h_1 = h_2$

Time: *O*(1)

Case 2: $h_1 < h_2$

- Attach v as the left-most child of p
- If *p* now has 4 children, we split *p*, and proceed up the tree as in *Insert*

Time: $O(h_2 - h_1 + 1) = O(\log n)$

Case 3: $h_1 > h_2$ — similar

$Split(T,x) \Longrightarrow (T_1 [\leq x], T_2 [> x])$

We want to merge 2-3 trees $X_1, ..., X_k$ of heights $h_1, ..., h_k$:

```
Y_2 := Join(Y_1, X_2)
Y_3 := Join(Y_2, X_3)
\vdots
Y_k := Join(Y_{k-1}, X_k)
```

Assumption:

 $Y_1 := X_1$

- $h_i \le h_{i+1}$ for i = 1, ..., k-1,
- at most 2 trees of any given height except the first 3 may be of the same height

Claim: Y_i has height h_i or $h_i + 1$ for i = 2, ..., k

• Proof: See 2-3 Tree Handout

7 0 1 2 3 4 8 8

27

Claim
$$\Longrightarrow$$
 Time needed to compute $Y_{i+1} = Join(Y_i, X_{i+1})$ is $O(h_{i+1} - h_i + 1)$

 \therefore the total cost is O(t), where

$$t \le (h_2 - h_1 + 1) + (h_3 - h_2 + 1) + (h_4 - h_3 + 1) + \vdots$$

$$\vdots$$

$$(h_{k-1} - h_{k-2} + 1) + (h_k - h_{k-1} + 1)$$

$$= h_k - h_1 + k - 1 = O(h)$$

and where h is the height of the original tree

Conclusion: total time for *Split* is $O(\log n)$