Question 1 ____ / 6

Identify each item for the graph G given.

- a. How many nodes (vertices) are there?
- b. How many edges are there?

c. Write down the degree of each node:

Vertex v	deg(v)
a	2
b	2
c	2
d	2
e	3
f	1

- d. The **maximum degree** of a graph is the highest deg(v) value. What is this graph's maximum degree? 3
- e. The **minimum degree** of a graph is the lowest deg(v) value. What is this graph's minimum degree? 1

Question 2 _____ / 3

Answer the following questions, using the graph H given.

- a. Come up with several walks from a to c. Write all steps (each node visited). Also label the **length** of each walk. $a \to b \to c$ (2) or $a \to d \to c$ (2) or $a \to c$ (1).
- b. Come up with a **closed walk**, beginning and ending at a. You can choose to visit all nodes or not.
- c. Come up with a **path**, where no vertices are repeated.

Question 3 _____ / 5

Answer the following questions, using the graph I given.

- a. Come up with a **trail**, a walk with no repeated edges. Example: KC \rightarrow Independence \rightarrow Lee's Summit
- b. Come up with a **circuit**, a closed trail. Example: KC \rightarrow Independence \rightarrow Lee's Summit \rightarrow Grandview \rightarrow KC \rightarrow Overland Park \rightarrow Olathe \rightarrow Grandview
- c. Come up with a **cycle**, a circuit where the only repeated node is the first/last one.. Example: $KC \rightarrow Independence \rightarrow Lee's Summit \rightarrow Grandview \rightarrow KC$
- d. Identify: Did you come up with any **Eulerian Trails**? If not, create one. Example: Olathe \rightarrow Overland Park \rightarrow Olathe \rightarrow Grandview \rightarrow KC \rightarrow Grandview \rightarrow Lee's Summit to Independence \rightarrow KC \rightarrow Overland Park
- e. Identify: Are there any **parallel edges**? Yes: Olathe \rightarrow Overland Park

Question 4 _____ / 1

Draw a **Directed Graph** using the following list of edges:

(Don't confuse these for points on an x,y plane that are interconnected, each ordered pair is its own set of information - beginning and end nodes.)

Multiple solutions

Question 5 ____ / 2

Draw a graph that is **not connected**, and draw a **subgraph** of your graph.

Multiple solutions