ETH zürich

Framework for stochastic analysis of mixedcriticality scheduling

Luca Stalder

Advisors: Stefan Drašković, Dr. Rehan Ahmed **Supervising Professor:** Prof. Dr. Lothar Thiele, Computer Engineering and Networks Laboratory

Final Presentation Luca Stalder | 23.08.2017 | 1

ETH zürich

Mixed Criticality

• Task = τ_i (

 χ_i : Criticality $\in \{LO, HI\}$

T_i: Period,

C(LO): LO-mode Worst-case execution time (WCET),

C(HI): HI-mode WCET,

D_i: Deadline)

Stochastic Analysis

Final Presentation Luca Stalder | 23.08.2017 | 3

ETH zürich

Motivation

«Build an extensible framework

offering a wide range of analysis tools,

covering and comparing different scheduling

schemes.»

The Framework

Final Presentation

Task Set Synthesis

ETH zürich

MC-FairGen with Weibull Distributions

Task Set 0: #Tasks LO/HI: (2/4) Utils LO/HI/Avg: (0.8/0.601/0.273)

Final Presentation

Stochastic Analysis

ETH zürich

Convolution

Shrinking

Final Presentation Luca Stalder | 23.08.2017 | 13

ETH zürich

Backlog Analysis

→ Animation: Iterative backlog computation

pAMC-BB

pAMC-BB

Analysis:

- 1. Find response time distribution for every job using convolution and shrinking.
- 2. Compare resulting response time PMF with job deadline to get job-specific deadline miss probability.
- 3. For every task, check: $reltime_{LO} \times DMP_{LO} + reltime_{HI} \times DMP_{BB} \leq Threshold$

Lines of Python Code: ~30 + reusable methods

Final Presentation Luca Stalder | 23.08.2017 | 18

Visualization: Deterministic vs. Probabilistic

Evaluation: MC-Fairgen (n=1000)

Time measured: 1h 21min 28s, Intel i5-7600K, 4 cores @ 3.8 GHz

Final Presentation Luca Stalder | 23.08.2017 | 20

ETH zürich **Monte-Carlo Simulation** Schedulability Visualization **Synthesis** Task Params **Tests Plotting Distributions** Deterministic SMC Performance EDF-VD **Animation** Stochastic Convolve & Shrink **Backlog Analysis** pSMC **Related Topics** pAMC-BB Energy Monte-Carlo Uncertainty Real-world **Simulations** Transient Systems Task Sets

Visualization: Monte-Carlo Simulation

Evaluation: Monte Carlo Schemes (n=1000)

Time measured: 23h 20min 13s, Intel i5-7600K, 4 cores @ 3.8 GHz

Final Presentation Luca Stalder | 23.08.2017 | 22

ETH zürich

Conclusion

Still at the beginning!

- Future work:
 - Task Set Synthesis (distributions, influence of different parameters)
 - Stochastic HI-mode analysis
 - Expand on related topics (e.g. energy uncertainty)

Discussion

