Student Result Analysis Report

• What is Student Result Analysis?

Student result analysis involves examining academic performance data to identify trends, patterns, and influencing factors. This kind of analysis helps educators and administrators understand:

- How demographic or socio-economic factors impact student scores
- The effects of parental education and marital status on academic outcomes
- Trends across different student groups (e.g., gender or ethnic group)
- Areas that may need intervention or support

By visualizing student performance data, we can make data-driven decisions in the field of education.

Dataset Information: students_data.csv

This dataset contains detailed academic and demographic information of school students. Here's a summary of the attributes:

Column Name	Description
Unnamed: 0	Index column (auto-generated during data export, removed)
Gender	Gender of the student (Male/Female)
EthnicGroup	Categorical ethnicity label (Group A to Group E)
ParentEduc	Level of education of the student's parents
LunchType	Type of lunch received (e.g., standard, free/reduced)
TestPrep	Test preparation course completion (completed/not completed)
ParentMaritalStatus	Marital status of the student's parents
MathScore	Score in Mathematics (out of 100)
ReadingScore	Score in Reading (out of 100)
WritingScore	Score in Writing (out of 100)

Libraries Used and Why

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

- pandas for loading, cleaning, and manipulating structured data
- numpy for handling numerical operations and aggregations
- matplotlib.pyplot for plotting graphs
- seaborn for creating beautiful statistical visualizations (like heatmaps, boxplots)

Step-by-Step Analysis

1. Loading the Data

```
df = pd.read_csv('students_data.csv')
Loads the CSV file into a DataFrame.
```

2. Data Inspection

df.head()

df.info()

df.describe()

df.isnull().sum()

- Checks the first few rows
- Inspects data types
- Describes summary statistics
- Confirms there are no missing values

3. Data Transformation

```
df = df.drop("Unnamed: 0", axis=1)
```

Removes the unnecessary index column that was created during export.

4. Gender Distribution

```
sns.countplot(data=df, x='Gender')
```

A countplot is created showing that **female students outnumber males** in the dataset.

5. Impact of Parental Education on Scores

```
gb = df.groupby('ParentEduc').agg({
   'MathScore': 'mean',
   'ReadingScore': 'mean',
   'WritingScore': 'mean'
})
```

sns.heatmap(gb, annot=True)

 A heatmap shows that students whose parents have higher education levels tend to perform better academically.

6. Impact of Parents' Marital Status

```
gb1 = df.groupby('ParentMaritalStatus').agg({
   'MathScore': 'mean',
   'ReadingScore': 'mean',
   'WritingScore': 'mean'
})
```

sns.heatmap(gb1, annot=True)

• This analysis shows **negligible or no significant impact** of marital status on academic performance.

7. Outlier Detection (Math Score)

```
sns.boxplot(data=df, x='MathScore')
```

• A boxplot is used to **detect outliers** in math scores. A few students may have exceptionally low or high scores.

8. Distribution of Ethnic Groups

```
# Count members of each ethnic group
```

Create pie chart

A pie chart is created to visualize the ethnic group distribution.

• Group C has the highest representation among students.

Visual Insights Summary

Insight Conclusion

Gender Distribution More female students than male

Parent Education Positively correlates with student performance

Parent Marital Status Has minimal impact on scores

Ethnic Group C is the most populous

Outliers Detected in math scores using boxplot

© Real-World Applications

- School administration can identify performance gaps and create tailored support systems.
- Counselors can better understand students' backgrounds.
- Policy makers can allocate resources more effectively based on real data.
- Parents and educators can recognize the influence of education and support on students.

Conclusion

This project shows how simple visualizations and group-based aggregation can reveal powerful educational insights.

We observed that:

- Parental education strongly influences academic performance
- Ethnic and gender distribution can be visualized to monitor diversity
- Not all demographic factors (like marital status) impact scores equally

This type of analysis can help design more inclusive, data-backed education systems.