

	Sumário da Aula	
2.1. 2.1. 2.1. 2.1.	lântica da Lógica Proposicional	
2.2 Valo2.3 Con2.4 Class	or Lógico de Proposições Compostas	

2.1 Semântica da Lógica Proposicional

As fórmulas da lógica proposicional, apesar de possuírem uma definição sintática não possuem um significado matematicamente preciso. Para compreender o significado dessas fórmulas é necessário definir a **semântica da linguagem**.

A semântica, na lógica matemática, considera as possibilidades de **valores lógicos** (ou valores verdades) que uma variável pode assumir. Os dois resultados possíveis, verdade e falsidade, são

indicados, respectivamente, pelas constantes *true* (T ou \top) ou *false* (F ou \bot), conforme apresentado na tabela verdade abaixo.

O valor verdade de uma proposição composta pode ser determinado através de uma **tabela verdade**, onde são apresentadas todas as possíveis combinações dos valores lógicos que as proposições simples podem assumir. O valor verdade de uma proposição composta vai depender do valor lógico de suas proposições simples e do significado do conectivo lógico que faz a ligação dessas proposições.

2.1.1 Semântica da Conjunção

A conjunção é o resultado da combinação de duas proposições ligadas pela palavra **e** (ou o símbolo \land). Sejam A e B elementos (ou fatores) de uma fórmula qualquer. A conjunção de A e B, denotada por $A \land B$ (leia "A e B"), possui valor lógico **verdadeiro** (T) se, e somente se, **as duas proposições que a compõem forem verdadeiras** (A = B = T) e valor lógico **falso** nos **demais casos**. Segue a tabela verdade para a fórmula $A \land B$:

A	B	$A \wedge B$
T	T	T
T	F	F
F	Т	F
F	F	F

2.1.2 Semântica da Disjunção

A disjunção é o resultado da combinação de duas proposições ligadas pela palavra **ou** (ou o símbolo símbolo \vee). A disjunção de A e B, denotada pela expressão $A \vee B$ (leia "A ou B"), possui valor lógico **falso** (F) se, e somente se, **ambas as proposições que a compõem forem falsas** (A = B = F) e valor lógico **verdadeiro** nos demais casos, como indicado na tabela verdade:

A	B	$A \lor B$
Т	T	T
Т	F	T
F	T	T
F	F	F

Na linguagem coloquial, a palavra **ou** pode ser empregada em dois sentidos: **inclusivo** ou **exclusivo**. A tabela anterior trata-se da disjunção inclusiva.

Disjunção Exclusiva

A disjunção exclusiva é representada simbolicamente por $A \oplus B$ (leia "ou A ou B" ou ainda "A ou B, mas não ambos"). Como o próprio nome diz, a disjunção "exclusiva"indica que ocorre um termo ou o outro, mas não ambos.

A proposição $A \oplus B$ possui valor lógico falso (F) se, e somente se, ambas as proposições possuírem o mesmo valor lógico (A = B = T ou A = B = F) e valor lógico verdadeiro nos demais casos, como indicado na tabela verdade:

A	B	$A \oplus B$
T	T	F
T	F	T
F	T	T
F	F	F

Exemplo 9. Defina se as conjunções seguintes são inclusivas ou exclusivas.

- Paulo é matemático ou físico.
 Disjunção inclusiva, simbolicamente representada por A ∨ B.
- Mateus é mineiro ou paulista. Disjunção exclusiva, simbolicamente representada por $A \oplus B$.
- Maria será cantora ou seguirá a carreira de cientista da computação. Disjunção inclusiva, simbolicamente representada por $P \lor Q$.
- O elefante é macho ou fêmea. Disjunção exclusiva, simbolicamente representada por $P \oplus Q$.

2.1.3 Semântica da Condicional

A expressão "se A, então B" é representada simbolicamente por $A \to B$ (leia "A condicional B"). A proposição A é chamada de antecedente e a proposição B de consequente.

A proposição condicional possui valor falso (F) se, e somente se, a proposição antecedente for verdadeira (T) e a consequente for falsa (F) (A = T e B = F). O valor lógico da condicional será verdadeiro nos demais casos, como indicado na tabela verdade:

A	B	$A \rightarrow B$
T	T	T
T	F	F
F	Т	T
F	F	T

2.1.4 Semântica da Bicondicional

A expressão "A se, e somente se, B", representada simbolicamente por $A \leftrightarrow B$, é uma abreviatura da conjunção de dois condicionais: $(A \to B) \land (B \to A)$.

A proposição bicondicional possui valor lógico verdadeiro (T) se, e somente se, as duas proposições que a compõem tiverem o mesmo valor lógico (A = B = T ou A = B = F). O valor lógico do bicondicional será **falso nos demais casos**, como indicado na tabela verdade:

A	B	$A \leftrightarrow B$
T	T	T
Т	F	F
F	T	F
F	F	T

2.1.5 Semântica da Negação

Este conectivo, representado pelo símbolo \neg , nega a afirmação da proposição que o precede. A negação da proposição A é representada simbolicamente pela fórmula $\neg A$ (leia "não A").

A fórmula $\neg A$ significa que a negação de uma proposição verdadeira (T) é uma proposição falsa (F) e a negação de uma proposição falsa (F) é uma proposição verdadeira (T), como indicado na tabela verdade:

A	$\neg A$
T	F
F	T

Observação:

A aplicação do conectivo da negação em uma proposição composta deve ser feita com muito cuidado!

Exemplo 10. Considere, por exemplo, a negação das seguintes proposições compostas que envolvem os conectivos da conjunção e disjunção.

• Pedro é alto e magro.

Negação	Proposição	Justificativa		
Incorreta:	Pedro não é alto e não é magro.	É uma proposição muito forte. A negação		
	Pedro é baixo e gordo.	diz que Pedro não tem ambas as proprie-		
		dades (ser magro e ser alto),		
		mas ele ainda pode ter uma delas.		
Correta:	É falso que Pedro seja alto e magro.			
	Pedro não é alto ou não é magro.			
	Pedro é baixo ou gordo.			

• A comida é ruim ou está salgada.

Negação:	Proposição	Justificativa				
Incorreta:	A comida não é ruim ou não está	É uma proposição fraca. A negação diz				
	salgada.	que a comida não tem nenhuma das pro-				
		priedades, e não que ela deixa de ter ape-				
		nas uma delas.				
Correta:	É falso que a comida esteja ruim ou					
	salgada.					
	A comida não é ruim nem salgada.					
	A comida é boa e não está salgada.					

Exemplos da aplicação do conectivo da negação em proposições compostas envolvendo sentenças condicionais e bicondicionais serão apresentadas nas próximas seções, quando introduzido o conceito de equivalências lógicas.

2.2 Valor Lógico de Proposições Compostas

Para determinar o valor lógico de uma proposição composta devemos analisar os valores lógicos de todas as proposições simples e das operações lógicas que compõem a expressão.

Exemplo 11. Considere os seguintes exemplos:

- a) O Brasil foi colônia de Portugal, mas hoje é um país independente.
 - Proposições simples e valor verdade:
 - A: O Brasil foi colônia de Portugal. (T)
 - B: Hoje (o Brasil) é um país independente. (T)
 - Formalização: $A \wedge B$
 - Valor verdade: $\underbrace{T \wedge T}_{T}$
- b) Vivemos em um país da América Latina, portanto, nosso idioma é proveniente do latim.
 - Proposições simples e valor verdade:
 - A: Vivemos em um país da América Latina. (T)
 - B: Nosso idioma é proveniente do latim. (T)
 - Formalização: $A \rightarrow B$
 - Valor verdade: $\underbrace{T \rightarrow T}_{T}$

- **c)** Se D. Pedro proclamou a independência do Brasil ou declarou guerra à Inglaterra, então o Brasil foi colônia da Inglaterra.
 - Proposições simples e valor verdade:

A: D. Pedro proclamou a independência do Brasil. (T)

B: D. Pedro declarou guerra à Inglaterra (F)

C: O Brasil foi colônia da Inglaterra (F)

• Formalização: $A \lor B \to C$

• Valor verdade: $\underbrace{V \rightarrow F}_{F}$

2.3 Construção de Tabelas Verdade

Para analisar os valores lógicos de proposições compostas é comum fazer uso de **tabelas verdade**. Quando a proposição composta é formada por apenas duas proposições simples a tabela gerada possui exatamente quatro linhas. Para três ou mais proposições **o número de linhas da tabela verdade é calculado por** 2^n , **onde** n **é o número de letras de proposição existentes**. Assim, se fórmula composta possuir 2 letras de proposição o número de linhas da tabela verdade será $2^2 = 4$, se a fórmula composta possuir 3 letras de proposição o número de linhas da tabela verdade será $2^3 = 8$, e assim, por diante.

Dica

Construa a tabela verdade adicionando colunas para os "resultados intermediários" da fbf. O conectivo principal deve aparecer na última coluna da tabela.

Exemplo 12. Considere como exemplo a construção da tabela verdade para analisar os valores lógicos da fórmula $A \vee \neg B \rightarrow \neg (A \vee B)$.

Na fórmula, o conectivo principal de acordo com as regras de precedência é o condicional (\rightarrow) . A tabela verdade apresenta a seguinte estrutura:

A	B	$\neg B$	$A \vee \neg B$	$A \vee B$	$\neg(A \lor B)$	$A \vee \neg B \to \neg (A \vee B)$
T	T					
T	F					
F	Т					
F	F					

O valor verdade da formula composta é determinado apresentando todas as possíveis combinações dos valores lógicos que as proposições simples podem assumir:

A	B	$\neg B$	$A \vee \neg B$	$A \lor B$	$\neg(A \lor B)$	$A \vee \neg B \to \neg (A \vee B)$
T	T	F	T	Т	F	F
T	F	T	T	T	F	F
F	T	F	F	T	F	T
F	F	T	T	F	T	T

Exemplo 13. O valor verdade da fórmula composta $(P \to P \lor Q) \land (R \leftrightarrow Q)$ pode ser obtido com a construção de uma tabela verdade. Na fórmula o cujo conectivo principal é a conjunção (\land):

P	Q	R	$P \lor Q$	$P \to P \lor Q$	$R \leftrightarrow Q$	$(P \to P \lor Q) \land (R \leftrightarrow Q)$
T	T	T	T	T	T	V
T	Т	F	T	T	F	F
T	F	T	T	T	F	F
T	F	F	T	T	T	V
F	T	T	T	T	T	V
F	Т	F	T	Т	F	F
F	F	T	F	Т	F	F
F	F	F	F	Т	T	V

2.4 Classificação das Fórmulas

As proposições compostas podem ser classificadas em tautológicas, contraditórias ou contingentes.

Definição 2.1 (Tautologia). Uma proposição composta é uma **tautologia** se, e somente se, o seu **valor lógico for sempre verdadeiro**, independentemente do valor lógico das proposições simples que a compõem. Em outras palavras, **tautologia é uma fórmula que é sempre verdadeira**.

Exemplo 14. São exemplos de fórmulas tautológicas:

a)
$$\neg (P \land \neg P)$$

P	$\neg P$	$P \wedge \neg P$	$\neg (P \land \neg P)$
T	F	F	T
F	T	F	T

Este exemplo traduz a ideia do princípio da não contradição: "uma proposição não pode ser verdadeira e falsa".

b)
$$P \vee \neg P$$

P	$\neg P$	$P \vee \neg P$	
T	F	T	
F	T	T	

Este exemplo envolve o **princípio do terceiro excluído**: "**uma proposição ou é verdadeira ou é falsa**". Um exemplo na linguagem natural é a frase "Hoje vai ter sol ou hoje não vai ter sol".

c)
$$P \leftrightarrow P$$

P	$P \leftrightarrow P$
T	T
F	T

Este exemplo envolve o Princípio da Identidade: "Toda proposição é idêntica a ela mesma".

Exemplo 15. Verifique se a fórmula $((P \to Q) \to R) \to (P \to (Q \to R))$ é uma tautologia.

Solução: Considere a seguinte tabela verdade:

P	Q	R	$P \rightarrow Q$	$(P \to Q) \to R$	$Q \to R$	$P \to (Q \to R)$	$((P \to Q) \to R) \to (P \to (Q \to R))$
T	T	T					
T	T	F					
T	F	T					
T	F	F					
F	T	T					
F	T	F					
F	F	T					
F	F	F					

Definição 2.2 (Contradição). Uma proposição composta é uma **contradição** se, e somente se, **o seu valor lógico for sempre falso**, independentemente do valor lógico das proposições simples que a compõem. Em outras palavras, **contradição é uma fórmula que é sempre falsa.**

Exemplo 16. São exemplos de fórmulas contraditórias:

a)
$$(P \land \neg P)$$

P	$\neg P$	$P \wedge \neg P$	
T	F	F	
F	T	F	

Um exemplo na linguagem natural é a frase "Hoje é quarta-feira e hoje não é quarta-feira".

b)
$$(P \wedge Q) \wedge (\neg P \wedge \neg Q)$$

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$\neg P \wedge \neg Q$	$(P \land Q) \land (\neg P \land \neg Q)$
T	T	F	F	T	F	F
T	F	F	T	F	F	F
F	Т	T	F	F	F	F
F	F	T	T	F	T	F

Exemplo 17. Verifique se a fórmula $\neg(P \to (\neg P \to (Q \lor \neg Q)))$ é uma contradição.

Solução: Considere a seguinte tabela verdade:

P	Q	$\neg P$	$\neg Q$	$Q \vee \neg Q$	$\neg P \to (Q \vee \neg Q)$	$P \to (\neg P \to (Q \lor \neg Q))$	$\neg (P \to (\neg P \to (Q \lor \neg Q)))$
T	Т						
T	F						
F	Т						
F	F						

Definição 2.3 (Fórmula Satisfazível, Falseável e Contingente). As fórmulas podem ainda ser classificas em **falseáveis** ou **satisfazíveis**. Uma **fórmula falseável possui pelo menos uma atribuição**

de valores às suas variáveis que a torne falsa e uma fórmula satisfazível tem pelo menos uma atribuição de valores às suas variáveis que a torne verdadeira. Uma fórmula é dita contingente se é falseável e satisfazível ao mesmo tempo.

Exemplo 18. São exemplos de fórmulas contingentes:

a)
$$(P \rightarrow \neg P)$$

P	$\neg P$	$P \to \neg P$
Т	F	F
F	T	T

b)
$$P \leftrightarrow (P \land Q)$$

P	Q	$P \wedge Q$	$P \leftrightarrow (P \land Q)$	
T	T	T	T	
Т	F	F	F	
F	Т	F	T	
F	F	F	T	

Exemplo 19. Verifique se a fórmula $(P \to Q) \to (P \lor R) \land \neg P$ se trata de uma contingência.

Solução: Considere a seguinte tabela verdade:

P	Q	R	$\neg P$	$P \rightarrow Q$	$P \vee R$	$(P \lor R) \land \neg P$	$(P \to Q) \to (P \lor R) \land \neg P$
T	Т	T					
T	Т	F					
T	F	T					
T	F	F					
F	Т	T					
F	Т	F					
F	F	T					
F	F	F					

Resumo dos valores verdades dos conectivos lógicos:

A	B	$A \wedge B$	$A \lor B$	$A \oplus B$	$A \to B$	$A \leftrightarrow B$	$\neg A$
T	T	T	T	F	T	T	F
T	F	F	T	T	F	F	
F	Т	F	T	T	T	F	T
F	F	F	F	F	T	T	

2.5 Exercícios

E. 1. Determine se as proposições seguintes são verdadeiras ou falsas.

- a) Belo horizonte é capital de Minas Gerais.
- b) Curitiba é capital de Santa Catarina.
- c) 2+3=5.
- d) 5+7=10.
- e) A lua é feita de queijo verde.
- f) Todo número divisível por 5 termina em 0.
- g) Se 1+1 =3, então unicórnios existem.
- h) Se 1+1=3, então peixes podem nadar.
- i) Se 1+1=2, então cachorros podem voar.
- j) Se 2+2=4, então 1+2=3.
- k) 8 é ímpar e 6 é ímpar.
- l) Se 8 for ímpar, então 6 é ímpar.
- m) Se 8 for par, então 6 será ímpar.
- n) Se 8 for ímpar, então 6 será par.
- o) Se 8 for ímpar e 6 for par, então 8 < 6.
- p) 8 é par se, e somente se, 6 for par.
- q) É falso que 8 é par e 6 é ímpar.

E. 2. Dados os seguintes valores lógicos A verdadeiro, B falso e C verdadeiro, determine se as fórmulas bem formadas são verdadeiras ou falsas.

- a) $A \wedge (B \vee C)$
- b) $(A \wedge B) \vee C$
- c) $\neg (A \land B) \lor C$
- d) $\neg A \lor \neg (\neg B \land C)$
- e) $\neg (A \leftrightarrow (\neg B \land C))$
- f) $(A \rightarrow \neg (B \rightarrow C)) \rightarrow A$

g)
$$\neg A \lor \neg (B \land C)$$

- E. 3. Seja a sentença: "Se o composto X estiver fervendo, sua temperatura deverá ser de pelo menos 150° C". Supondo que a afirmação seja verdadeira, qual(is) das alternativas seguintes (é)são verdadeira(s)?
 - a) Se a temperatura do composto X for pelo menos 150^{o} C, o composto X estará fervendo.
 - b) Se a temperatura do composto X for inferior a 150° C, o composto X não está fervendo.
 - c) O composto X ferverá apenas se a temperatura for de pelo menos 150° C.
 - d) Se o composto X não estiver fervendo, sua temperatura será inferior a $150^o~C$.
 - e) Uma condição necessária para o composto X ferver é que sua temperatura seja de pelo menos $150^{o}~C.$
 - f) Uma condição suficiente para o composto X ferver é que sua temperatura seja de pelo menos $150^o~C$.
- E. 4. Para cada uma das sentenças, determine se o conectivo se trata de uma disjunção inclusiva ou disjunção exclusiva. Explique sua resposta.
 - a) Café ou chá será servido após o jantar.
 - b) Uma senha deve ter ao menos três dígitos ou oito caracteres de comprimento.
 - c) O pré-requisito para o curso é a disciplina de teoria dos números ou criptografia.
 - d) Você pode jogar usando dólares americanos ou euros.
 - e) Você viajará para São Paulo ou Belo Horizonte.
- E. 5. O operador lógico ou exclusivo (⊕) é definido pela seguinte tabela-verdade:

P	Q	$P \oplus Q$
T	T	F
T	F	T
F	T	T
\overline{F}	\overline{F}	F

- a) Prove que $P \oplus Q \equiv (P \land \neg Q) \lor (\neg P \land Q)$ construindo uma tabela verdade para a segunda fórmula e comparando-a com a tabela verdade da fórmula $(P \oplus Q)$.
- b) Prove também que $P \oplus Q \equiv (P \vee Q) \land \neg (P \land Q)$.
- E. 6. Escreva a negação das fórmulas bem formadas.
 - a) Ou a comida é boa, ou o serviço é excelente.
 - b) Ou a comida é boa e o serviço é excelente, ou então está caro.

- c) Nem a comida é boa, nem o serviço é excelente.
- d) O verão em Ouro Preto é quente e ensolarado.
- e) 8 é ímpar e 6 é ímpar.
- f) Você viajará para Ouro Preto ou Mariana.
- g) Será servido no almoço frango e batata frita.

E. 7. Construa tabelas verdade para cada uma das proposições compostas.

- a) $\neg P \land Q$
- b) $P \wedge (Q \wedge R)$
- c) $\neg (P \land Q) \lor (P \lor Q)$
- d) $P \wedge (\neg Q \vee R)$
- e) $(P \to Q) \leftrightarrow (\neg Q \to \neg P)$
- f) $P \lor Q \to P \oplus Q$
- g) $(P \lor Q) \oplus (P \land Q)$
- h) $(P \leftrightarrow Q) \leftrightarrow (R \leftrightarrow S)$

E. 8. Construa tabelas verdade para as fórmulas bem formadas e classifique, cada uma delas, em tautologia, contradição ou contingência.

- a) $(P \wedge Q) \vee (\neg P \vee (P \neg Q))$
- b) $(P \land \neg Q) \land (\neg P \lor Q)$
- c) $((\neg P \land Q) \land (Q \land R)) \land \neg Q$
- d) $(\neg P \lor Q) \lor (P \land \neg Q)$
- e) $(A \rightarrow B) \leftrightarrow \neg A \lor B$
- f) $(A \land B) \lor C \to A \land (B \lor C)$
- g) $(\neg (A \lor B) \lor \neg A) \land A$
- h) $(A \rightarrow B) \rightarrow [(A \lor C) \rightarrow (B \lor C)]$
- i) $A \vee (B \rightarrow C)$

