



## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No.:

10/812,406

Filing Date:

March 26, 2004

Applicant:

TAKASE et al.

Group Art Unit:

1742

Examiner:

MORILLO, Janelle Combs

Title:

WEAR-RESISTANT

ALUMINUM ALLOY

EXCELLENT IN CAULKING PROPERTY AND **EXTRUDED PRODUCT...** 

Attorney Docket:

8498-000004/CO

Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450

## AFFIDAVIT OF KAZUHIRO NISHIKAWA TRAVERSING REJECTION UNDER 37 CFR 1.132

Sir:

- I, Kazuhiro NISHIKAWA, state as follows:
- I graduated from Toyama University in 1983 with a bachelor's degree in Light Metal Engineering.
- 2. In 1983, I started working for AISIN KEIKINZOKU CO., LTD. as an engineer in the Technical Development Department. My current position is Deputy General Manager of Production Control Department.

- 3. I am an inventor of the subject matter claimed in the aboveidentified patent application.
- 4. The claimed invention is directed to a wear-resistant aluminum alloy or extruded product that is excellent in caulking properties.
- 5. The composition of the alloy and extruded product of the claimed invention includes 0.1 to 0.39 wt% of Mg, 3.0 to 6.0 wt% of Si, 0.01 to 0.20 wt% of Cu, 0.01 to 0.5 wt% of Fe, 0.01 to 0.15 wt% of Mn, 0.01 to 0.5 wt% of Cr, less than 0.02 wt% of Zn, and the remainder being Al and unavoidable impurities.
- 6. The wear-resistant aluminum alloy and extruded product having the composition of paragraph 5 are suitable for use in automotive break parts for which wear resistance to sliding parts and viscosity during plastic deformation such as caulking are required.
- 7. To evaluate caulking properties of the alloy or extruded product, the calculation of a critical upsetting ratio may be used. The critical upsetting ratio occurs when microcracks develop during compression of the alloy or extruded product.
- 8. The critical upsetting ratio of the alloy and extruded product of the claimed invention is greater than or equal to 43%.
- 9. The composition of the claimed invention also satisfies the numerical expression  $0.79 \cdot (wt\% \text{ of Mn}) + 0.26 \cdot (wt\% \text{ of Mg}) \le 0.22$ , which significantly affects the critical upsetting ratio as shown in Figure 4 of the present application.

- 10. The coefficients 0.79 (Mn) and 0.26 (Mg) were calculated using a multiple regression analysis of the relationship between the critical upsetting ratio as an evaluation item of caulking properties and the alloy components.
- 11. The critical upsetting ratio is significantly affected by the Mg content and the Mn content in the claimed ranges of 0.1 to 0.39 wt% and 0.01 to 0.15 wt%, respectively.
- 12. Reference Figure 1 (attached at Exhibit A) shows the relationship between the expression 0.79 (wt% of Mn)+0.26 (wt% of Mg) using the coefficients calculated using the multiple regression analysis and the critical upsetting ratio (%).
- 13. As can be seen in Reference Figure 1, the horizontal axis indicates the value of 0.79·(wt% of Mn)+0.26·(wt% of Mn), and the vertical axis indicates the critical upsetting ratio (%).
- 14. The plot numbers shown in Reference Figure 1 indicate Nos. 1 to 10 shown in Figure 1 of the present application, and supplemental data Nos. 11 to 18 as comparative examples.

- 15. The supplemental data Nos. 11 to 18 were selected from the ranges disclosed in the cited reference JP 09-176769 ('769).
- 16. Reference Figure 2, attached as Exhibit B, shows the alloy compositions and the critical upsetting ratios of the supplemental data Nos. 11 to 18.
- 17. As is clear form Reference Figure 1, alloy Nos. 1 to 6, 8 and 9 according to the claimed invention and the supplement data Nos. 11 to 18 (comparative examples selected from JP '769) clearly belong to different groups.
- 18. When the value indicated by the horizontal axis is x and the value indicated by the vertical axis is y, alloy Nos. 1 to 6, 8 and 9 according to the claimed invention belong to a first group approximated by y = -100.46x + 65.55 (R<sup>2</sup>=0.84, linearly approximated statistically), and the supplemental data Nos. 11 to 18 belong to a second group approximated by y = -13.40x + 43.68 (R<sup>2</sup>=0.50, almost linearly approximated statistically).
- 19. The minimum upsetting ratio of the alloys according to the claimed invention shown in Figure 1 is 43.1%. In this case, the value of 0.79xMn+0.26xMg is 0.22 (upper limit).
- 20. In contrast, the supplemental data Nos. 11 to 18 which were selected from JP'769 have a value of 0.79(wt% of Mn) +0.26(wt% of Mg) of more than 0.22, as shown in Reference Figure 1.
- 21. The supplemental data Nos. 16-18 contain a Mg content that is just slightly outside of the claimed range of 0.39 wt%.

22. Surprisingly, the critical upsetting ratio of the supplemental data Nos. 16-18 is less than 43%.

23. Quite unexpectedly, even though the comparative alloy Nos. 11 to 18 that were taken from the alloys disclosed JP '769, and in particular alloy Nos. 16-18 have a Mg content that is very close to the claimed range of 0.39 wt%, only the critical upsetting ratio of the claimed combination is greater than or equal to 43%.

Respectfully submitted,

Date: January 24, 2007

Kazuhiro NISHIKAWA



## Reference Figure 2

|                        | NO. | COMPONENTS (%) |      |      |      |      |       |      |      | CRETICAL UPSETTING |
|------------------------|-----|----------------|------|------|------|------|-------|------|------|--------------------|
|                        |     | Si             | Fe   | Cu   | Tı   | Mn   | Mg    | Cr   | Zn   | ratio(%)           |
| COMPARATIVE<br>EXAMPLE | 11  | 3.85           | 0.28 | 0.15 | 0.03 | 0.16 | 0.51  | C.15 | 0.01 | 40.6               |
|                        | 12  | 4.96           | 0.29 | 0.16 | 0.04 | 0.24 | 0.61  | C.14 | 0.00 | 39.4               |
|                        | 13  | 3.97           | 1.06 | 0.14 | 0.03 | 0.20 | 0.62  | (.10 | 0.01 | 38.6               |
|                        | 14  | 4.17           | 0.29 | 0.96 | 0.03 | 0.18 | 0.58  | 0.10 | 0.01 | 40.3               |
|                        | 15  | 4.59           | 0.30 | 0.15 | 0.03 | 0.11 | 0.60  | (.10 | 0.01 | 38.9               |
|                        | 16  | 4.04           | 0.30 | 0.15 | 0.03 | 0.19 | 0.40  | (.15 | 0.01 | 40.1               |
|                        | 17  | 4.52           | 0.29 | 0.16 | 0.04 | 0.18 | .0.40 | (.15 | 0.01 | 40.6               |
|                        | 18  | 4.98           | 0.28 | 0.15 | 0.03 | 0.20 | 0.41  | (.10 | 0.01 | 39.6               |