TD 2 Montages linéaires à amplificateur opérationnel

1a) A quoi sert le montage ci-dessous ? Montrer que sa fonction de transfert peut être mise sous la forme $\frac{V_S}{V_e} = -k \cdot \frac{1}{1+j\frac{\omega}{\omega_c}}$. Exprimer k et ω_c en fonction de R₁, R₂ et C.

- b) Quel est le gain maximal?
- c) Dimensionnez C de manière à avoir une fréquence de coupure f_c=20 kHz.
- d) Tracer le diagramme de Bode (gain et phase)
- e) $v_e=0,1V*\sin(2\pi*20kHz*t)$ est appliqué à l'entrée. Donnez v_s .

$$R_1=1.5k\Omega$$
, $R_2=90k\Omega$

- 2a) A quoi sert le montage ci-dessous ? Déterminez la fonction de transfert.
- b) Déterminez C de manière à avoir une fréquence de coupure f_c=20 kHz
- c) Tracer le diagramme de Bode (gain et phase).
- d) v_e =0,1V*sin(2 π *10kHz*t) est appliqué à l'entrée. Donnez v_s .

