Frühjahr 25 Themennummer 3 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Entscheiden Sie jeweils durch einen Beweis oder ein Gegenbeispiel, ob die folgenden Aussagen wahr oder falsch sind.

- a) Es gibt eine holomorphe Funktion $f: \{z \in \mathbb{C} : |z-1| < 1\} \to \mathbb{C}$ mit $f^{(k)}(1) = (k+1)!$ für alle $k \in \mathbb{N}_0$.
- b) Es gibt eine biholomorphe Funktion $g: \mathbb{C} \to \{z \in \mathbb{C}: \operatorname{Im}(z) > 0\}.$
- c) Die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$ mit $f_n:\mathbb{R}\to\mathbb{R}, f_n(x)=xe^{-nx^2}$, konvergiert gleichmäßig gegen die Nullfunktion.

Lösungsvorschlag:

- a) Wahr. Die Funktion $f(z) := \sum_{k=0}^{\infty} (k+1)(z-1)^k$ ist analytisch, also holomorph und konvergiert nach der Formel von Cauchy Hadamard auf dem angegebenen Gebiet und erfüllt $f^{(k)}(1) = (k+1)!$ für alle $k \in \mathbb{N}_0$ nach der Taylorformel. (Es gilt $f(z) = \frac{1}{(2-z)^2}$, hier kann man die ersten beiden Eigenschaften auch direkt sehen und die letzte Eigenschaft induktiv zeigen.)
- b) Falsch. Die obere Halbebene ist offen, konvex also einfach zusammenhängend, nichtleer, denn sie enthält i und nicht \mathbb{C} , denn sie enthält -i nicht. Also gibt es eine biholomorphe Abbildung $f:\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}\to\mathbb{H}:=\{z\in\mathbb{C}:\operatorname{Im}(z)>0\}$ nach dem Abbildungssatz von Riemann. Gäbe es auch eine biholomorphe Abbildung $g:\mathbb{C}\to\mathbb{H}$, so wäre $f^{-1}\circ g:\mathbb{C}\to\mathbb{D}$ eine ganze, beschränkte Abbildung, also konstant nach dem Satz von Liouville, aber auch bijektiv als Verkettung bijektiver Funktionen. Dies ist ein Widerspruch, weil \mathbb{D} mehr als einen Punkt enthält.
- c) Wahr. Es gilt $f_n'(x) = (1 2nx^2)e^{-nx^2}$ für alle $n \in \mathbb{N}$ mit Nullstellen $x_n^{\pm} := \pm \sqrt{\frac{1}{2n}}$. Wegen $f_n'(x) < 0$ auf $\mathbb{R} \setminus [x_n^-, x_n^+]$ und $f_n'(x) > 0$ auf (x_n^-, x_n^+) handelt es sich bei x_- um ein lokales Minimum und bei x_+ um ein lokales Maximum. Weil alle f_n stetig auf \mathbb{R} sind und $\lim_{|x| \to \infty} f_n(x) = 0$ erfüllen, handelt es sich sogar um die globalen Maxima. (Für C > 0 groß genug ist f_n auf $\mathbb{R} \setminus (-C, C)$ durch $\frac{f(x_+)}{2}$ beschränkt. Auf [-C, C] muss es ein globales Maximum und Minimum geben, das dort angenommen wird, es kann sich nicht um einen Randwert handeln, weil die Funktionswerte bei x_\pm größer bzw. kleiner sind. Weil diese auch größer bzw. kleiner als alle Funktionswerte für $x \in \mathbb{R} \setminus (-C, C)$ sind, existieren globale Extrema auf \mathbb{R} , diese müssen stationäre Punkte sein.) Wegen $||f_n||_{\infty} = |f_n(x_n^+)| = |f_n(x_n^-)| = \sqrt{\frac{e}{2n}} \to 0$ für $n \to \infty$, konvergiert f_n gleichmäßig gegen 0.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$