Challenge-2

Lok

2023-08-21

Welcome! Hope you have watched the lecture videos and followed the instructions in code-along. Go through the steps described below, *carefully*. It is totally fine to get stuck - **ASK FOR HELP**; reach out to your friends, TAs, or the discussion forum on Canvas.

Here is what you have to do,

- 1. Pair with a neighbor and work
- 2. Download the Challenge-2.Rmd and playlist_data.csv files from Canvas
- 3. Move the downloaded files to the folder, "Week-2"
- 4. **Set** it as the working directory
- 5. Edit content wherever indicated
- 6. Remember to set eval=TRUE after completing the code to generate the output
- 7. Ensure that echo=TRUE so that the code is rendered in the final document
- 8. Inform the tutor/instructor upon completion
- 9. Submit the document on Canvas after they approve
- 10. Attendance will be marked only after submission
- 11. Once again, do not hesitate to reach out to the tutors/instructor, if you are stuck

I. Exploring music preferences

A. Background

Imagine that you have been hired as a data analyst by a radio station to analyze music preferences of their DJs. They have provided you with a dataset, playlist_data.csv, containing information about DJs, their preferred music genres, song titles, and ratings.

Using the data-set you are required to complete some tasks that are listed subsequently. All these tasks are based on the concepts taught in the video lectures. The questions may not be entirely covered in the lectures; To complete them, you are encouraged to use Google and the resources therein.

B.Tasks

Task-1

In the lecture, we used two data-sets, starwars and anscombe's quartet that were readily available with the packages, tidyverse and Tmisc, respectively. When we have to use custom-made data-sets or the ones like we downloaded from Canvas, we have to import it using the R commands before using them. All the questions below are related to this task.

Question 1.1: What does the term "CSV" in playlist_data.csv stand for, and why is it a popular format for storing tabular data?

Solution: Comma Separated Valuel

Question 1.2: load the tidyverse package to work with .csv files in R.

Solution:

```
library(tidyverse)
```

```
## — Attaching core tidyverse packages —
                                                          —— tidyverse 2.0.0 —
## ✓ dplyr 1.1.2
                       ✓ readr
                                   2.1.4
## ✓ forcats 1.0.0

✓ stringr 1.5.0

## ✓ ggplot2 3.4.3

✓ tibble

                                   3.2.1
## ✓ lubridate 1.9.2

✓ tidyr

                                   1.3.0
## ✓ purrr
              1.0.2
                                                        - tidyverse_conflicts() -
## — Conflicts —
## * dplyr::filter() masks stats::filter()
## * dplyr::lag() masks stats::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflic
ts to become errors
```

Question 1.3: Import the data-set, playlist_data.csv

```
# Import the "playlist_data.csv" dataset into R
read_csv("playlist_data.csv")
```

```
## Rows: 26 Columns: 7
## — Column specification
## Delimiter: ","
## chr (4): DJ_Name, Music_Genre, Experience, Location
## dbl (3): Rating, Age, Plays_Per_Week
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

```
## # A tibble: 26 × 7
    DJ_Name Music_Genre Rating Experience
                                           Age Location Plays_Per_Week
##
##
     <chr>
            <chr> <dbl> <chr>
                                         <dbl> <chr>
                                                               <dbl>
                         4.2 Advanced
                                           28 City X
##
   1 DJ A
            Pop
                                                                  80
   2 DJ B
                                           24 City Y
##
            Rock
                         3.8 Intermediate
                                                                  60
            Electronic 4.5 Advanced
##
   3 DJ C
                                            30 City Z
                                                                 100
##
   4 DJ D
                             Intermediate 22 City X
                                                                  70
            Pop
            Electronic 4.8 Advanced
                                          27 City Y
## 5 DJ E
                                                                  90
##
  6 DJ F
            Rock
                         3.6 Intermediate 25 City Z
                                                                  55
##
  7 DJ G
            Pop
                          4.3 Advanced
                                            29 City X
                                                                  85
## 8 DJ H
            Electronic
                        4.1 Intermediate 23 City Y
                                                                  75
                          3.9 Advanced
## 9 DJ I
            Rock
                                            31 City Z
                                                                  70
## 10 DJ J
                          4.4 Intermediate
                                            26 City X
                                                                  95
            Pop
## # i 16 more rows
```

Question 1.4: Assign the data-set to a variable, playlist_data

Solution:

```
# Assign the variable to a dataset
Music_Genre <- read_csv("playlist_data.csv")</pre>
```

```
## Rows: 26 Columns: 7
## — Column specification
## Delimiter: ","
## chr (4): DJ_Name, Music_Genre, Experience, Location
## dbl (3): Rating, Age, Plays_Per_Week
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

From now on, you can use the name of the variable to view the contents of the data-set

Question 1.5: Get more information about read_csv() command and provide a screenshot of the information displayed in the "Help" tab of the "Files" pane

```
# More information about the R command, complete the code
?read_csv()
```

```
knitr::include_graphics("screenshot1.png")
```


screenshot1

Question 1.6: What does the skip argument in the read_csv() function do?

Solution: "Number of lines to skip before reading data, which the commented line after the skip will also be ignored"

Question 1.7: Display the contents of the data-set

Solution:

Music_Genre

```
## # A tibble: 26 × 7
##
    DJ_Name Music_Genre Rating Experience
                                         Age Location Plays_Per_Week
##
     <chr>
           <chr> <dbl> <chr>
                                       <dbl> <chr>
                                                            <dbl>
                       4.2 Advanced
                                         28 City X
## 1 DJ A
            Pop
                                                               80
  2 DJ B
                                         24 City Y
##
           Rock
                       3.8 Intermediate
                                                               60
           Electronic 4.5 Advanced
##
   3 DJ C
                                          30 City Z
                                                              100
##
  4 DJ D
                           Intermediate 22 City X
                                                               70
           Pop
           Electronic 4.8 Advanced 27 City Y
## 5 DJ E
                                                               90
##
  6 DJ F
            Rock
                        3.6 Intermediate 25 City Z
                                                               55
##
  7 DJ G
            Pop
                        4.3 Advanced
                                          29 City X
                                                               85
## 8 DJ H
            Electronic 4.1 Intermediate 23 City Y
                                                               75
                         3.9 Advanced 31 City Z
## 9 DJ I
            Rock
                                                               70
## 10 DJ J
                         4.4 Intermediate 26 City X
                                                               95
            Pop
## # i 16 more rows
```

Question 1.8: Assume you have a CSV file named sales_data.csv containing information about sales transactions. How would you use the read_csv() function to import this file into R and store it in a variable named sales_data?

Solution:

```
sales_data <- read_csv("sales_data.csv")
```

Task-2

After learning to import a data-set, let us explore the contents of the data-set through the following questions

Question 2.1: Display the first few rows of the data-set to get an overview of its structure

Solution:

```
# Type the name of the variable we assigned the data-set to
head(Music_Genre)
```

```
## # A tibble: 6 × 7
##
   DJ_Name Music_Genre Rating Experience
                            Age Location Plays_Per_Week
   ##
                                           <dbl>
## 1 DJ A Pop
                                             80
60
                                            100
                                             70
## 5 DJ E Electronic 4.8 Advanced 27 City Y
                                            90
      Rock
                 3.6 Intermediate 25 City Z
## 6 DJ F
                                             55
```

Question 2.2: Display all the columns of the variable stacked one below another

```
glimpse(Music_Genre)
```

Question 2.3: How many columns are there in the dataset?

Solution:

```
ncol(Music_Genre)
```

```
## [1] 7
```

Question 2.4: What is the total count of DJs?

Solution:

```
nrow(Music_Genre)
```

```
## [1] 26
```

Question 2.5: Display all the location of all the DJs

Solution:

Music_Genre\$Location

```
## [1] "City X" "City Y" "City Z" "City X" "City Y" "City Z" "City X" "City Y" ## [9] "City Z" "City X" "City Y" "City Z" "City X" "City X
```

Question 2.6: Display the age of the DJs

```
Music_Genre$Age
```

[1] 28 24 30 22 27 25 29 23 31 26 32 28 29 25 31 26 27 24 29 23 28 24 30 22 27 ## [26] 25

Task-3

Let us plot the data to get more insights about the DJs.

Question 3.1: Create a plot to visualize the relationship between DJs' ages and their ratings.

Solution:

```
# complete the code to generate the plot
ggplot(data=Music_Genre)
```

Question 3.2: Label the x-axis as "Age" and the y-axis as "Rating."

```
# complete the code to generate the plot
ggplot(data=Music_Genre, mapping=aes(x=Age, y=Rating))
```


Question 3.3: Represent data using points

```
# complete the code to generate the plot
ggplot(data=Music_Genre,mapping=aes(x=Age,y=Rating)) + geom_point()
```


Question 3.4: Can you change the points represented by dots/small circles to any other shape of your liking? **Solution:**

```
# complete the code to generate the plot
ggplot(data=Music_Genre, mapping=aes(x=Age, y=Rating)) + geom_point(shape = 11)
```


Question 3.5: Insert a suitable title and briefly provide your insights in the caption

```
# complete the code to generate the plot

ggplot(data=Music_Genre,mapping=aes(x = Age, y = Rating)) +
   geom_point(shape = 11) +
   labs(x = "Age",y = "Rating",
   title = "Age versus Rating",
   caption = "weak positive correlation between Age and Rating")
```

Age versus Rating

weak positive correlation between Age and Rating