COMP4403 Crib Sheet

Parsing Theory

Context Free Grammars

A context-free grammar consists of:

- A finite set, Σ , of terminal symbols.
- A finite nonempty set of nonterminal symbols (disjoint from the terminal symbols).
- A finite nonempty set of producions of the form of $A \to \alpha$, where A is a nonterminal symbol, and α is a possibly empty sequence of symbols, each of which is either a terminal of nonterminal symbol.
- A start symbol that must be a nonterminal symbol

Nullable

A possibly empty sequence of symbols, α , is nullable if $\alpha \stackrel{*}{\Rightarrow} \epsilon$ or $\alpha \stackrel{*}{\Rightarrow}$ Nullable rules

- ϵ is nullable
- any terminal symbol is not nullable
- a sequence of symbols is nullable if all of its constructs are nullable
 • a set of alternatives is nullable if any of its
- constructs are nullable
- EBNF constructs for optionals and repetitions are nullable
- a nonterminal is nullable if there is a production with a nullable right-hand side

Left and right associative operators

To remove the ambiguit and treat "-" as a left associate operator (as usual) we can rewrite the grammar to

 $E \to E - T$ $E \to T$ $T \to N$

and to treat "-" as right associative we use $E \to T - E$

 $E \to T \\ T \to N$

Danalina Else

Dangling else is a problem that arises when we have an if-then-else statement and the else is ambiguous as to which if it belongs to.

Recusive-Descent Parsing

Translating EBNF to BNF

Replace optional construct [S] by a new nonterminal OptS:

 $OptS \rightarrow S|\epsilon$ For example, we can rewrite $RelCondition \rightarrow Exp [RelOp Exp]$ $\widetilde{Rel}Condition \rightarrow Exp\ OptRelExp$ $OptRelExp \rightarrow RelOp \ Exp|\epsilon$

Replace grouping construct (S) by a new nonterminal GrpS:

 $GrpS \rightarrow S$

For example, we can rewrite $RepF \rightarrow$

 $(TIMES \mid DIVIDE) \ Factor \ RepF \mid \epsilon$

 $\widetilde{RepF} \to TermOp\ Factor\ RepF\ |\epsilon|$ $TermOp \rightarrow TIMES \mid DIVIDE$

Recursive-descent parsing

A recursive-descent parser is a recursive program to recognise sentences in a language:

- Input is a stream of lexical tokens, represented by tokens of type TokenStream.
- Each nonterminal symbol N has a method parseN that:
- recognises the longest string of lexcial tokens in the input stream, starting from the current token, derivable from
- as it parses the input it moves the current location forward:
- when it has finished parsing N, the current token is the token immediately following the last token matched as part of N (which may be at the end-of-file token).

parsing example

Write parsing example here

First & Follow Sets

First Sets

The first set for a construct α records • the set of terminal symbols α can start with, and

• if α is nullable, it contains the empty string ϵ to indicate that.

Calculating First Sets

Let

- α be a terminal symbok,
- $\alpha_1, \alpha_2, \ldots, \alpha_n$ be strings of (terminal and nonterminal) symbols, and
- A be a nonterminal symbol defined by a single production

$$A \to \alpha_1 |\alpha_2| \dots |\alpha_n|$$

then

$$Fst(\epsilon) = \{\epsilon\}$$

$$Fst(\alpha) = \{\alpha\}$$

$$Fst(\alpha_1|\alpha_2|\dots|\alpha_n) = Fst(\alpha_1) \cup Fst(\alpha_2)$$

$$\cup \dots \cup Fst(\alpha_n)$$

$$Fst(A) = Fst(\alpha_1|\alpha_2|\dots|\alpha_n)$$

Let S_1, S_2, \ldots, S_n be (terminal or nonterminal) symbols, then

$$Fst(S_1S_2...S_n) =$$

$$Fst(S_1) - \{\epsilon\}$$

$$\cup Fst(S_2) - \{\epsilon\} \quad \text{if } S_1 \text{ is nullable}$$

$$\cup ...$$

$$\cup Fst(S_i) - \{\epsilon\} \quad \text{if } S_1 - S_{i-1} \text{ is nullable}$$

$$\cup ...$$

$$\cup Fst(S_n) - \{\epsilon\} \quad \text{if } S_1 - S_{n-1} \text{ is nullable}$$

$$\cup \{\epsilon\} \quad \text{if } S_1 - S_n \text{ is nullbale}$$

Calculating Algorithmically

Start with the first sets for all nonterminals being the empty set and note that the first set for every terminal symbol, α , is the singleton set $\{\alpha\}$. We then make a pass over all production in a grammer considering all atlternatives and process as follows.

- If there is a production of the form $N \leftarrow \epsilon$,
- we add ϵ to the first set of N.

 If there is a production of the form $N \leftarrow S_1 S_2 \dots S_n$, then for each $i \in 1..n$, if for all $j \in 1...i-1$, S_i is nullabe, we add the current first set for S_i minus ϵ to the first set for N.
- If every construct $S_1, ..., S_n$ is nullabe, we add ϵ to the first set for N.

We repeat the passes until no set is modified in the pass, in which case we are finished.

Example

$$A \leftarrow B \, x | C \tag{1}$$

$$B \leftarrow C \, y | D \tag{2}$$

$$C \leftarrow D z | \epsilon \tag{3}$$

$$D \leftarrow A w \tag{4}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline A & \{\} & \{\epsilon\} & \{\epsilon,y\} & \{\epsilon,y,w\} & \{\epsilon,y,w\} \\ \hline B & \{\} & \{y\} & \{y\} & \{y,w\} & \{y,w\} \\ \hline C & \{\epsilon\} & \{\epsilon\} & \{\epsilon,w\} & \{\epsilon,w,y\} & \{\epsilon,w,y\} \\ \hline D & \{\} & \{w\} & \{w,y\} & \{w,y\} & \{w,y\} \\ \hline \end{array}$$

Follow Sets

The follow set for a nonterminal, N, is the set of terminal symbols that may follow N in any context within the grammar. End-of-file is represented by the special terminal symbol \$ in which a follows N.

A nonterminal, N, is followed by a terminal symbol, a, if there is a derivation from S\$

Calculating Follow Sets

We compute the Follow set for a nonterminal, N, using two rules.

• If there is a production of the form

$$A \to \alpha N\beta$$

then any symbols that can start β can follow N, and hence Follow(N) must include all the terminal symbols in $First(\beta)$. Note that ϵ is not included even if it appears in $First(\beta)$.

$$First(\beta) - \{\epsilon\} \subseteq Follow(N)$$

• If there is a production of the form

$$A \to \alpha N \beta$$

and β is nullable, then any token that can follow A can also follow N. Hence,

$$Follow(A) \subseteq Follow(N)$$

The case where β is nullable includes the case when β is empty and the production is of the form

$$A \to \alpha N$$

Calculating Algorithmically

Start with all nonterminal symbols having an empty follow set, {}, except for the start symbol, S, which has the follow set $\{\$\}$. We make a pass through the grammar examining the right side of every production. For each occurence of a nonterminal within the right side of some production, we augment the Follow set for that nonterminal according to the following process. Assume we are processing an occurrence of N and the production is of the form

$$A \to \alpha N\beta$$

we add $First(\beta) - \{\epsilon\}$ to the Follow set computer for N so far, and if β is nullable, we also add the current Follow set for A to the Follow set for N.

After making a complete pass, we repeat the process with the Follow sets computed so far until no Follow sets are modified, in which case we are done.

Example

$$S \to xAB \qquad Fst(S) = \{x\}$$

$$A \to y|zB \qquad Fst(A) = \{y, z\}$$

$$B \to \epsilon|Ax \qquad Fst(B) = \{\epsilon, y, z\}$$

$S \{\$\}$	{\$}	{\$}	{\$}
$A \mid \{\}$	$\{y, z, \$, x\}$	$\{y, z, \$, x\}$	$ \{y, z, \$, x\} $
$ B $ {}	$\{\$, y, z\}$	$\{\$, y, z, x\}$	$ \{\$, y, z, x\} $

LL(1) Grammar

A BNF grammer is LL(1) if for each nonterminal, N, wher $N \to \alpha_1 |\alpha_2| \dots |\alpha_n$,

• the First sets for each pair of alternatives for N are disjoint, and

• if N is nullable, First(N) and Follow(N) are disjoin.

Left Factoring & Left Recursion

Left Factoring Productions

Not all EBNF grammars are suitable for Recursive-Descent Parsing, however, sometimes we can rewrite them into a form that is suitable.

Left Factor Rewriting Rule

To remove the left factor from

$$A \to \alpha \beta \mid \alpha \gamma$$
,

we can rewrite the production using an aditional nonterminal A' as

$$A \to \alpha A'$$

$$A' \to \beta \mid \gamma$$

Left Recursive Productions

A production of the form

$$E \rightarrow E + T \mid T$$

is not suitable for RDP because the left recursion in the grammar leads to an infinite

recursion.

Immediate Left Recursion Rewriting Rule (Simple)

To remove the left recursion from

$$A \to A \alpha \mid \beta$$
,

we can rewrite the production as

$$A \to \beta A'$$

$$A' \to \epsilon \mid \alpha \ A'$$

Immediate Left Recursion Rewriting Rule (General)

To remove the left recursion from the general case

 $A \to A\alpha_1 |A\alpha_2| \dots |A\alpha_n|\beta_1 |\beta_2| \dots |\beta_m|$, we can use grouping to see the structure in the same form as the simple case

 $A \to A(\alpha_1|\alpha_2|\dots|\alpha_n)|(\beta_1|\beta_2|\dots|\beta_m)$ which allows us to rewrite the production as follows,

$$A \to (\beta_1 | \beta_2 | \dots | \beta_m) A'$$

$$A' \to \epsilon | (\alpha_1 | \alpha_2 | \dots | \alpha_n) A'$$

$Indirect\ Left\ Recursion\ Rewriting\ Rule$

The following productions have indirect recursion from $A \to B \to C \to A$.

$$A \to B \alpha$$

$$B \to C \ \beta$$

$$C \to A \gamma_1 \mid \gamma_2$$

To remove the recursion we can first collapse B into A as follows.

$$A \to C \beta \alpha$$

$$C \to A \gamma_1 \mid \gamma_2$$

Then we can collapse C into A.

$$A \to (A \gamma_1 \mid \gamma_2) \beta \alpha$$

$$A \to A \gamma_1 \beta \alpha \mid \gamma_2 \beta \alpha$$

This now leaves a simple direct left recursion which we can remove as follows.

$$A \to \gamma_2 \beta \alpha A'$$

$$A' \to \gamma_1 \beta \alpha A'$$