Project 3 - NLP

Group 2: Alex, Luis, Kat

Stacked NB with Random Forest performed best for classifying news headlines - val. accuracy of 95.09%

Executive summary

- Final validation accuracy: 95.09%
- Model: Stacked NB¹⁾ model with Random Forest
 - Multinomial NB
- Complement NB

Bernoulli NB

Random Forest

Meta Classifier = Logistic Regression

- Alternatives tested:
 - Various types of Naive Bayes, incl. Bag of Words, n-grams, Voting Classifier
 - Other common models
 - Visualization techniques (UMAP, TSNE)

Confusion Matrix for our best model (validation set)

Best model on basic data cleaning – stopwords and TF-IDF worsened model performance

Preprocessing

Basic data cleaning (best results)

Full processing (worse results)

Additional techniques (no significant improvement):

- Lemmatization (worked well on K-Means and KNN without applying stopwords)
- Word2Vec and Word Embedding (discarded)

Many different models were tested, stacked model with best validation accuracy

Model specifications

- Text Blob (needed some preprocessing)
- Naive Bayes with Bag of Words
- Naive Bayes with n-grams
- Models with TF-IDF:
 - Naive Bayes
 - Random Forest
 - K-Means, K-Nearest Neighbours (best with lemmatization, but without stopword)
 - o SVC
 - UMAP, TSNE
- Others:
 - Word Embedding
 - Ensemble Voting (SVC, NB and LogReg¹⁾)
 - Ensemble Stacking (best)
 - Neural Network (2x Dense/BatchNorm/Dropout)

Model Performance

Selected Models

Selected graphs other models

Key takeaways

- Challenges:
 - Many model options -> a lot of trial and error, choosing is difficult
 - Overthinking techniques to use (tempting to apply EVERYTHING)
- Key learnings:
 - Simple models **performed well** (in comparison to word embedding etc..)
 - No improvement with tuned parameters -> only highly time consuming to run
 - K-Means and KNN performed worst
 - Best results with only basic preprocessing
 - Stacking models can improve performance