La Régression Linéaire Multiple Modèle biologique : estimation de l'âge des ormeaux

L3 Bio-Informatique (ISV51)

Assia Bemehdia¹

Pauline Spinga² groupe 6

17/12/2020

¹benmehdia.assia@gmail.com

²spinga.pauline@gmail.com

Objectif

- Existe-il un lien entre l'âge d'un organisme et ces mesures physiques ?
- Quelle méthode statistique doit-on utilisée pour répondre à cette question biologique ?

 \Downarrow

Prédire l'âge des ormeaux via un modèle de régression linéaire multiple élaboré avec le langage de programmation R.

Présentation du package

Pour ce projet nous avons construit et utilisé un package de 4 fonctions :

- Identite(coeff,hat,seuil)
- Simulation(sigma,coeff,n,seuil)
- Resultat_simu(res)
- Histog_simu(sigma_inf,coeff,n)

Plan

- Introduction
- 2 La régression linéaire simple
- 3 La régression linéaire multiple
- 4 Estimation du modèle de la régression linéaire multiple
- 5 Simulation du modèle de la régression linéaire multiple
- 6 Application du modèle sur des données réelles
- 7 Conclusion
- 8 Perspectives
- 9 Reférences

Introduction

La régression linéaire :

- définition : Un modèle de régression linéaire est un modèle qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives.
- type:
- 1 La régression linéaire simple

$$y = a_0 + a_1 x_1 + \varepsilon$$

2 La régression linéaire multiple

$$y=a_0+a_1x_1+a_2x_2+\ldots+a_px_p+\varepsilon$$

Introduction

$$y=a_0+a_1x_1+\varepsilon$$

$$y=a_0+a_1x_1+a_2x_2+\ldots+a_px_p+\varepsilon$$

$$\downarrow$$

 $Y = Xa + \varepsilon$

Y: variable à expliquer (indépendante) x: variables explicatives (dépendantes)

 a_i : paramètres de régression

 ε : le bruit du modèle $\Longrightarrow \varepsilon \sim N(0,\sigma^2)$

La régression linéaire simple

- Une droite qui représentera mathématiquement la relation existante entre des variables $\Longrightarrow Y = a + bX$
- Quand on tient compte de l'erreur résiduelle de chaque observation $\Longrightarrow \hat{Y} = a + bX + \varepsilon$

³adapté d'aprés http://www.lacim.ugam.html

La régression linéaire multiple

Plusieurs tirages

$$\begin{cases} y_1 = a_0 + a_1x_{11} + a_2x_{12} + \ldots + a_px_{1p} + \varepsilon_1 \\ y_2 = a_0 + a_1x_{21} + a_2x_{22} + \ldots + a_px_{2p} + \varepsilon_2 \\ & \vdots \\ y_i = a_0 + a_1x_{i1} + a_2x_{i2} + \ldots + a_px_{ip} + \varepsilon_i \\ & \vdots \\ y_n = a_0 + a_1x_{n1} + a_2x_{n2} + \ldots + a_px_{np} + \varepsilon_n \end{cases}$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_i \\ y_n \end{pmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & x_{1p} \\ 1 & x_{21} & x_{22} & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{i1} & x_{i2} & x_{ip} \\ 1 & x_{n1} & x_{n2} & x_{np} \end{bmatrix} \times \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_i \\ \varepsilon_n \end{pmatrix}$$

$$Y = Xa + \varepsilon \Longrightarrow \hat{Y} = X\hat{a} + e$$

Avec:

- \hat{Y}, \hat{a} : Les paramètres de regression estimés
- $e = Y \hat{Y}$

Pour calculer les valeurs des paramètres estimés on utilise la méthode des moindres Carrés qui permet la minimalisation de la somme des Carrés des erreurs.

$$\Sigma e_i^2 = (Y - \hat{Y})(Y - \hat{Y}) \longrightarrow (Y - X\hat{a})(Y - X\hat{a})$$

$$\hat{a} = (X^T \times X)^{-1} \times X^T \times Y$$

- 1 Exemple 1 une seule simulation avec Sigma fixé
- 2 Exemple 2 plusieurs simulation
 - Avec un sigma fixé
 - Avec un sigma varié (min ou max)

Exemple 1: une seule simulation avec Sigma fixé

$$y=a_0+a_1x_1+a_2x_2+\ldots+a_px_p+\varepsilon$$

- On tire $\varepsilon \Longrightarrow \varepsilon \sim N(0, \sigma^2)$
- On fixe $\sigma = 22$: représente le bruit
- On fixe le nombre de tirage n = 1000
- Initialisation du nombre de paramètres de régression p=3 avec
- $a_1=5$ et a_2,a_3 sont proportionnels à a_1
- Initialisation des variables explicatives $x_1, x_2, x_3 \Longrightarrow$ loi uniforme
- générer une matrice

Estimer la valeur des coefficients

Exemple 1: une seule simulation avec Sigma fixé

```
## [1] "Les paramètres estimés"

## [,1]

## [1,] 8.333593

## [2,] 6.355068

## [3,] 18.494502

## [1] "Les paramètres fixés au départ"

## [1] 5 10 15
```


Comparaison entre paramètres observés et les paramètres estimés

Vérification de la bonne estimation des paramètres selon un seuil fixé arbitrairement à 2

Si
$$a - \hat{a} < 2 \longrightarrow$$
 bonne estimation

```
## [1] "0 = nombre de paramètres bien estimés"
## [1] "La proportion de paramètres bien estimés"
## [1] 0
```

Vérification de la conservation de l'ordre des paramètres

```
## [1] "la proportion des p.estimés dans le bon ordre"
```

```
## [1] 0.3333333
```


Génération d'un modèle linéaire lm() pour notre exemple

```
##
## Call:
## lm(formula = Y ~ X)
##
## Residuals:
      Min 10 Median
                                   Max
## -74 846 -14 259 0 259 14 639 66 499
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.649
                          2.273 0.726 0.46829
              7.325
                     2.430 3.015 0.00264 **
## X1
## X2
               5.420
                      2.424 2.236 0.02559 *
## X3
             17.472
                      2.457 7.110 2.22e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.35 on 996 degrees of freedom
## Multiple R-squared: 0.05875. Adjusted R-squared: 0.05591
## F-statistic: 20.72 on 3 and 996 DF, p-value: 4.993e-13
```


Exemple 2: plusieurs simulations avec un sigma fixé

- replicate() de la fonction simulation
- Affichage des résultats

pourquoi nous avons obtenus ces résulatats?

Les coefficients a_i sont des estimateurs. Ils ont une distribution centrée autour de leur valeur théorique.

Affichage des résultats des simulations sous forme d'histogrammes

Affichage des résultats des simulations sous forme d'histogrammes

Application du modèle sur des données réelles

Règne : Animalia

Embranchement : Mollusca

Famille: Haliotididae

Genre: Haliotis

 Mollusques marins à coquille unique, qu'on trouve dans les eaux peu profondes du littoral accrochés aux rochers.

Figure 1: abalone ⁴

⁴ https://dpipwe.tas.gov.au/

Application du modèle sur des données réelles

```
##
## Call:
## lm(formula = abalone$Rings ~ matrice)
##
## Residuals:
       Min
               10 Median
                                30
                                       Max
## -11.1632 -1.3613 -0.3885 0.9054 13.7440
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
                      9.93368
                             0.03432 289.481 < 2e-16 ***
## (Intercept)
## matriceLongestShell -0.18877 0.21914 -0.861
                                                 0.389
                     1.32594 0.22201 5.972 2.53e-09 ***
## matriceDiameter
                      0.49465 0.06475 7.639 2.70e-14 ***
## matriceHeight
## matriceWholeWeight
                     4.53483 0.35928 12.622 < 2e-16 ***
## matriceShuckedWeight -4.48674 0.18274 -24.552 < 2e-16 ***
1.19384
                             0.15824 7.545 5.54e-14 ***
## matriceShellWeight
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.218 on 4169 degrees of freedom
## Multiple R-squared: 0.5276, Adjusted R-squared: 0.5268
## F-statistic: 665.2 on 7 and 4169 DF, p-value: < 2.2e-16
```


Détermination des données nécéssaires à la simulation

- A l'aide du modèle linéaire on détermine la valeur des coefficients associés à chaque paramètre.
- \blacksquare Calcul de $\varepsilon = Y X(X^TX)^{-1}X^TY$.
- Calcul de σ

```
## [1] 0.6872918
```


Histogramme de l'estimation des coefficients $\hat{a_i}$

Comparaison avec les vraies valeurs coeff_abalone

Conclusion

- La précision des outils de mesures.
- La perte d'information au cours des mesures.
- Des variables explicatives non exhaustives.
- Un modèle de régression pas assez précis.

Perspectives

- Compréhension du sujet.
- Utilisation de ggplot.
- Utilisation du Latex.
- Github.
- Géneration des package.

Reférences

- https: //web.maths.unsw.edu.au/~lafaye/textes/livreR2014.pdf
- https://tice.agroparistech.fr/coursenligne/courses/STAV/do cument/Poly/ModLin_CoursExemples_R.pdf?cidReq=STAV
- https://stackoverflow.com/
- https://www.rdocumentation.org

