광학·전자 융합 현미경시스템

BIOFLASH, NANOFLASH

E-Mail: blcho@modulesci.com Homepage: www.modulesci.com

Contents

- 1 기술개념 및 특징
- 2 사업화 대상기술 현황 및 역량
- 3 제품-기술상용화 유망성 (시장포지션)
- 4 적용분야(BI) 및 신규 사업분야(BM)
- 5 기술이전을 통한 매출확장 가능성
- 6 연구자 소개

Ⅰ 기술개념 및 특징 - 기술 개요

Ⅰ 기술개념 및 특징 - 사업화 추진 현황

• 광학계와 전자현미경을 결합하면서 핵심기술 성능을 유지하는 방법 기술형태 • 광학-전자 융합 현미경시스템 • 반도체 검사장비 적용분야 • 연구장비(나노바이오분야) • 석유&가스 산업 적용제품 • 광전자현미경 Level 9 기술완성도 (TRL) • 사업화 단계 • 연구소기업 창업 후 마케팅 사업화 추진 현황 • 제품의 도입사례 확보 및 상용화 검토 투자유치 • B2B: 바이오 및 나노분야 연구소, 시장관심도 반도체공정장비 • B2G : 공공연구소

기술연구 방향(수익화 모델)

TRL (Lv.7~9)	추가 IP 패키지 (Group1)	추가 IP 패키지 (Group3)	적극적 수익화 (Group2)	적극적 수익화 (Group3)	적극적 수익화 * (Group1)
TRL (Lv.4~6)	X	추가 IP 패키지 (Group3)	추가 IP 패키지 (Group2)	적극적 수익화 (Group2)	추가 IP 패키지 (Group1)
TRL (Lv.1~3)	X	X	X	X	X
	기술대체/약 화	R&D	기술경쟁	초기시장 형성	시장성장/성 숙

	Group 1 *	Group 2	Group 3
사업화 모델	기술자산 이전 및 라이선싱	기술자산 출자 및 지분확보를 통한 기술사업화	투자유치를 통한 IP 창업 및 JV(Joint Venture) 설립
제품기술 확보	상용화 및 성숙기 단계	제품개발 및 시제품 단계	(기초)연구개발 및 (신제품) 응용기술개발 단계
IP 특징	현재 상용화 제품특허들과 유사	현제품의 강화(개선) 또는 보강(신기능) 가능성이 있는 특허	신제품 또는 신규응용 제품 개발 가능성이 있는 특허

■ 사업화 대상기술 현황 및 역량 - 7-Force (기회/위협, 강점/요인)

■ 제품-기술상용화 유망성 (시장포지션)

배관 내부 직경을 측정하지 않고, 정확한 유량 및 유속 산출이 가능한 초음파 유량계

Business Model

R&D Roadmap

초음파 유량계 진화방향

제품-기술 상용화 추진 / 시장진입

주사전자현미경 분야 업계동향

1 전방산업

• 반도체산업, 연구장비산업

→ 2 비즈니스 모델

- 산업체에서 운영하는 생산설비에 결합하여 활용
- 광학 현미경 및 전자현미경 동시 측정이 필요한 연구설비에 적용

→ 3 시장진입 채널

- (국내) 연구소에 설치된 장비 대체, 기업 품질부서 활용
- (해외) 해외 박람회 참여 및 KOTRA 등을 통한 바이어발굴

ightarrow $oldsymbol{4}$ 유망기술 / 비즈니스 아이디어

- 보급형 현미경 적용 후 맞춤형 소프트웨어 제공
- 바이러스 백신 연구기관 등의 연구기관 및 공무기관에 납품하여 신뢰성 확보

▮ 적용분야(BI) 및 신규 사업분야(BM)

광학 측정 및 전자현미경 측정이 동시에 가능한 융합 현미경 기술

기존 제품의 사업화 저해 요인

- 광학 및 전자현미경 측정을 각각 진행해야 함
- 기존 대기업 SEM 제품과의 경쟁

제품구현 시 차별적 요인

- 나노 및 바이오 등 민감한 소재의 측정가능(외부 노출로 인한 오차 최소화)
- 모듈화를 통해 연구자가 원하는 장비 구현가능

- 1 연구소
- 주요 소비시장 : 신약 스타트업/공공연구기관
- 2 제조업
- 주요 소비시장 : 반도체 검사장비/무기화학
- 3 공공기관
- 주요 소비시장 : 환경과학원, 보건 관련 기관

■ 기술이전을 통한 매출확장 가능성 - 국내외 기업동향 및 경쟁사 진단

Correlative Light-Electron Microscopy(CLEM)

VS delmic

제품 차별화 전략 추진 (소프트웨어 개발을 통한 편리성 증대)

매출액 창출

해외 제품과의 경쟁

- 수요자 맞춤형 응용 Application 다각화 / 검사자동화
- 차량용 등으로 활용할 수 있는 Mini-SEM 등을 개발하여 편리한 측정기능 제공
 (환경측정 및 보건목적 등 실외에서 사용 고려)

우리나라 유량계 시장의 최종 사용자 산업별 시장 규모 및 전망 (단위: 백만 달러)

산업	반도체용	생명과학용	재료과학용	나노 테크놀로지용	기타
2017년	2,008	1,276	1,166	782	372
2022년	2,605	1,581	1,558	1,200	450
성장률(%)	5.3	4.4	6.0	8.9	3.9

※ 자료: Marketsandmarkets, Microscopy Market, 2017

■ 모듈싸이 소개 🛍 mơdule/ci

- ✓ 사용자에게 모듈화된 부품을 지원하여 연구자가 자신만의 장비를 구축할 수 있도록 하는 파트너 기업
- ✓ 한국 최초로 광학 및 형광현미경과 주사전자현미경을 통합한 광전자 융합현미경을 제품화함

NanoFlash

NanoFlash의 차별점은 시료의 동일한 부분을 광학현미경과 주사 전자 현미경으로 실시간으로 관찰할 수 있다는 것입니다. 한 시템에서 광학이미지와 형광 실험을 할 수 있고, 중요한 부분 을 더 자세히 관찰하여 전자빔에 의해서 발생하는 Cathode Luminescence, X-ray 등의 신호를 수집해 분광 실험까지 한 번에 진행할 수 있는 표면분석 플랫폼입니다.

BioFlash

BioFlash의 차별점은 얇은 시료의 위 아래를 동시에 관찰할 수 있다는 것입니다. BioFlash만의 특별한 시료홀더를 활용하여 1분 이하의 시료교체 시간으로 편리함을 제공합니다. 생물학 시료, 나노입자관찰 등의 실험을 진행할 수 있습니다. 또한 다양한 시료홀더를 지원함으로써 시료홀더교체만으로 살아 있는 세포 관찰 등 유저만의 독특한 실험환경을 구축할 수 있는 나노 & 바이오 분석 플랫폼입니다.

▮ 대표자 소개

조복래 대표

한국표준과학연구원 첨단측정장비연구소 포항공과대학교 Ph.D. 일본과학기술진흥기구, 히타치 하이테크놀로지 등에서 근무

전자현미경 분야에서 다수의 연구 수행

기업 자문진행

RGB 242, 34, 72	RGB 50, 100, 166	RGB 5, 131, 242	RGB 4, 196, 217	RGB 13, 13, 13
HSV 349, 86, 95	HSV 214, 70, 65	HSV 208, 98, 95	HSV 186, 98, 85	HSV 0, 0, 5
CMYK 0, 86, 70, 5	CMYK 70, 40, 0, 35	CMYK 98, 46, 0, 5	CMYK 98, 10, 0, 15	CMYK 0, 0, 0, 95
LAB 52, 75, 34	LAB 42, 6, -40	LAB 55, 12, -64	LAB 73, -33, -22	LAB 4, 0, 0