ALGORITMOS em linguagem C

Paulo Feofiloff

Instituto de Matemática e Estatística Universidade de São Paulo

Campus/Elsevier

"Algoritmos em linguagem C" Paulo Feofiloff editora Campus/Elsevier, 2009

www.ime.usp.br/~pf/algoritmos-livro/

"Ciência da computação não é a ciência dos computadores, assim como a astronomia não é a ciência dos telescópios."

— E. W. Dijkstra

Leiaute

Bom leiaute

```
int Funcao (int n, int v[]) {
   int i, j;
   i = 0;
   while (i < n) {
      if (v[i] != 0)
         i = i + 1;
      else {
         for (j = i + 1; j < n; j++)
            v[j-1] = v[j];
         n = n - 1;
   return n;
```

Mau leiaute

```
int Funcao (int n, int v[]) {
   int i, j;
   i = 0;
   while (i < n) {
       if (v[i] != 0)
          i = i + 1:
       else {
          for (j = i + 1; j < n; j++)
             v[j-1] = v[j];
          n = n - 1;
   return n;
```

Use fonte de espaçamento fixo!

Péssimo leiaute

```
int Funcao ( int n,int v[] ){
   int i,j;
   i=0;
   while(i<n){
      if(v[i] !=0)
         i = i + 1;
      else
         for (j=i+1; j< n; j++)
             v[j-1]=v[j];
         n = n - 1;
   return n;
```

Seja consistente!

Um bom leiaute compacto

```
int Funcao (int n, int v[]) {
  int i, j;
  i = 0;
  while (i < n) {
    if (v[i] != 0)    i = i + 1;
    else {
       for (j = i + 1; j < n; j++) v[j-1] = v[j];
       n = n - 1; } }
  return n; }</pre>
```

Regras

Use as regras adotadas por todos os jornais, revistas e livros:

```
bla bla bla
bla = bla
bla <= bla
bla; bla
bla) bla;
bla {
while (bla
if (bla
```

Leiaute enfeitado

```
int Função (int n, int v[]) {
   int i, j;
  i = 0;
  while (i < n) {
      if (v[i] != 0)
         i = i + 1;
     else {
         for (j = i + 1; j < n; j++)
            v[j-1] = v[j];
         n = n - 1;
  return n;
```

"Devemos mudar nossa atitude tradicional em relação à construção de programas. Em vez de imaginar que nossa principal tarefa é instruir o computador sobre o que ele deve fazer, vamos imaginar que nossa principal tarefa é explicar a seres humanos o que queremos que o computador faca."

D. F. Knuth

Documentação

- ▶ documentação: o que um algoritmo faz
- código: como o algoritmo faz o que faz

Exemplo

```
/* A função abaixo recebe um número n >= 1 e um vetor v
* e devolve o valor de um elemento máximo de v[0..n-1].
 int Max (int v[], int n) {
  int j, x = v[0];
  for (i = 1; i < n; i++)
    if (x < v[j]) x = v[j];
  return x;
```

Invariantes

Exemplo 1

```
int Max (int v[], int n) {
   int j, x;
   x = v[0];
   for (j = 1; j < n; j++)
        /* x é um elemento máximo de v[0..j-1] */
        if (x < v[j]) x = v[j];
   return x;
}</pre>
```

```
int Max (int v[], int n) {
   int j, x;
   x = v[0];
   for (j = 1; /* A */ j < n; j++)
      if (x < v[j]) x = v[j];
   return x;
}
/* a cada passagem pelo ponto A,
   x é um elemento máximo de v[0..j-1] */
```

"A atividade de programação deve ser encarada como um processo de criação de obras de literatura, escritas para serem lidas."

- D. E. Knuth

Recursão

"Para entender recursão, é preciso primeiro entender recursão."

— folclore

"Ao tentar resolver o problema, encontrei obstáculos dentro de obstáculos. Por isso, adotei uma solução recursiva."

— um aluno

Problemas e suas instâncias

- ▶ instância de um problema = exemplo concreto do problema
- cada conjunto de dados de um problema define uma instância
- cada instância tem um tamanho

Exemplo

Problema: Calcular a média de dois números, digamos a e b.

Instância: Calcular a média de 123 e 9876.

Problemas que têm estrutura recursiva

Cada instância do problema contém uma instância menor do mesmo problema.

Algoritmo recursivo

```
se a instância em questão é pequena
   resolva-a diretamente
senão
```

reduza-a a uma instância menor do mesmo problema aplique o método à instância menor volte à instância original

Exemplo: Problema do máximo

Determinar o valor de um elemento máximo de um vetor v[0..n-1].

- o tamanho de uma instância deste problema é n
- lacktriangle o problema só faz sentido quando $n\geq 1$

```
/* Ao receber v \in n >= 1, esta função devolve
   o valor de um elemento máximo de v[0..n-1]. */
 int MáximoR (int v[], int n) {
    if (n == 1)
       return v[0]:
    else {
       int x;
       x = M\acute{a}ximoR (v, n - 1);
       if (x > v \lceil n-1 \rceil)
           return x;
       else
          return v[n-1];
```

Outra solução recursiva

```
int Máximo (int v[], int n) {
   return MaxR (v, 0, n);
}
int MaxR (int v[], int i, int n) {
   if (i == n-1) return v[i]:
   else {
      int x;
      x = MaxR (v, i + 1, n);
      if (x > v[i]) return x;
      else return v[i];
```

/* A função MaxR recebe v, i e n tais que i < ne devolve o valor de um elemento máximo de v[i..n-1]. */

Vetores

Problema da busca

Dado x e vetor v[0..n-1], encontrar um índice k tal que v[k] = x.

- ightharpoonup o problema faz sentido com qualquer n > 0
- se n=0, o vetor é vazio e essa instância não tem solução
- como indicar que não há solução?

Algoritmo de busca

```
Recebe um número x e um vetor v[0..n-1] com n \ge 0
e devolve k no intervalo 0 \dots n-1 tal que v[k] = x.
Se tal k não existe, devolve -1.
 int Busca (int x, int v[], int n) {
    int k;
    k = n - 1;
    while (k >= 0 \&\& v[k] != x)
      k -= 1;
    return k;
```

Deselegante e/ou ineficiente!

```
int k = n - 1, achou = 0;
while (k \ge 0 \&\& achou == 0) {
   if (v[k] == x) achou = 1;
  else k \rightarrow 1;
return k;
```

```
int k;
if (n == 0) return -1;
k = n - 1;
while (k >= 0 \&\& v[k] != x) k -= 1:
return k;
```

Deselegante, ineficiente e/ou errado!

```
int k = 0;

int sol = -1;

for (k = n-1; k \ge 0; k--)

if (v[k] == x) sol = k;

return sol;
```

```
int k = n - 1;
while (v[k] != x \&\& k >= 0)
k -= 1;
return k;
```

Algoritmo recursivo de busca

```
Recebe x, v \in n \geq 0 e devolve k tal que 0 \leq k < n \in v[k] = x. Se tal k não existe, devolve -1. int BuscaR (int x, int v[], int n) { if (n == 0) return -1; if (x == v[n-1]) return n-1; return BuscaR (x, v, n-1); }
```

```
int feio (int x, int v[], int n) {
   if (n == 1) {
      if (x == v[0]) return 0;
      else return -1;
   if (x == v[n-1]) return n - 1;
   return feio (x, v, n-1);
```

Remover o elemento de índice k de um vetor v[0..n-1].

Decisões de projeto:

- ightharpoonup suporemos 0 < k < n-1
- ▶ novo vetor fica em v[0..n-2]
- algoritmo devolve algo?

Algoritmo de remoção

```
Remove o elemento de índice k do vetor v[0..n-1] e devolve o novo valor de n. Supõe 0 \le k < n.

int Remove (int k, int v[], int n) {
	int j;
	for (j = k; j < n-1; j++)
	v[j] = v[j+1];
	return n-1;
}
```

- funciona bem mesmo quando k = n 1 ou k = 0
- \triangleright exemplo de uso: n = Remove (51, v, n);

Versão recursiva

```
int RemoveR (int k, int v[], int n) {
    if (k == n-1) return n-1;
    else {
        v[k] = v[k+1];
        return RemoveR (k+1, v, n);
    }
}
```

Problema de inserção

Inserir um novo elemento y entre as posições k-1 e k de um vetor $v[0\dots n-1]$.

Decisões de projeto:

- ightharpoonup se k=0 então insere no início
- ightharpoonup se k=n então insere no fim
- lacktriangleright novo vetor fica em $v[0 \dots n{+}1]$

Algoritmo de inserção

```
Insere y entre as posições k-1 e k do vetor v[0 \dots n-1] e devolve o novo valor de n. Supõe que 0 \le k \le n.
```

```
int Insere (int k, int y, int v[], int n) {
   int j;
   for (j = n; j > k; j--)
      v[j] = v[j-1];
   v[k] = y;
   return n + 1;
}
```

- ightharpoonup estamos supondo $n < \mathbb{N}$
- exemplo de uso: n =Insere (51, 999, v, n);

Versão recursiva

```
int InsereR (int k, int y, int v[], int n) {
   if (k == n) v[n] = y;
   else {
      v[n] = v[n-1];
      InsereR (k, y, v, n - 1);
   }
   return n + 1;
}
```

Problema de busca-e-remoção

Remover todos os elementos nulos de um vetor v[0..n-1].

Algoritmo

```
Remove todos os elementos nulos de v[0..n-1],
deixa o resultado em v[0...i-1], e devolve o valor de i.
int RemoveZeros (int v[], int n) {
    int i = 0, j;
    for (j = 0; j < n; j++)
       if (v[j] != 0) {
          v[i] = v[j];
          i += 1:
    return i;
```

Funciona bem mesmo em casos extremos:

- ightharpoonup quando n vale 0
- quando v[0..n-1] não tem zeros
- ightharpoonup quando v[0..n-1] só tem zeros

Invariantes

No início de cada iteração

- **▶** *i* < *j*
- ightharpoonup v[0..i-1] é o resultado da remoção dos zeros do vetor v[0...j-1] original

Versão recursiva

```
int RemoveZerosR (int v[], int n) {
   int m;
   if (n == 0) return 0;
   m = RemoveZerosR (v, n - 1);
   if (v[n-1] == 0) return m;
   v[m] = v[n-1];
   return m + 1;
}
```

Endereços e ponteiros

Endereços

- os bytes da memória são numerados següencialmente
- o número de um byte é o seu endereço
- cada char ocupa 1 byte
- cada int ocupa 4 bytes consecutivos
- etc.
- cada objeto char, int, struct etc. tem um endereço
- o endereço de um objeto x é &x

Exemplo fictício

```
endereços
                                          89421
char c;
                                   С
                                   i
                                          89422
int i;
struct {int x, y;} ponto;
                                          89426
                                   ponto
int v[4];
                                   701v
                                          89434
                                   v[1]
                                          89438
                                   v[2]
                                          89442
```

- ▶ **&**i vale 89422
- ▶ &v[3] vale 89446

Ponteiros

- ponteiro é um tipo de variável capaz de armazenar endereços
- se p = &x então dizemos "p aponta para x"
- ▶ se p é um ponteiro então *p é o valor do objeto apontado por p

representação esquemática

Exemplo: Um jeito bobo de fazer j = i + 999

```
int j, i = 888;
int *p;
p = \&i;
j = *p + 999;
```

Listas encadeadas

Estrutura de uma célula

```
struct cel {
   int      conteúdo;
   struct cel *seg; /* seguinte */
};
```


Células são um novo tipo de dados

```
typedef struct cel célula;
```

Definição de uma célula e de um ponteiro para célula

```
célula c;
célula *p;
```

- conteúdo da célula: c.conteúdo p->conteúdo
- ► endereço da célula seguinte: c.seg p->seg

última célula da lista: p->seg vale NULL

Exemplos: imprime lista com e sem cabeça

O algoritmo imprime o conteúdo de uma lista 1st sem cabeça.

```
void Imprima (célula *lst) {
   célula *p;
   for (p = lst; p != NULL; p = p->seg)
        printf ("%d\n", p->conteúdo);
}
```

Imprime o conteúdo de uma lista 1st com cabeça.

```
void Imprima (célula *lst) {
   célula *p;
   for (p = lst->seg; p != NULL; p = p->seg)
        printf ("%d\n", p->conteúdo);
}
```

Algoritmo de busca

Recebe um inteiro x e uma lista 1st com cabeça. Devolve o endereço de uma célula que contém x ou devolve NULL se tal célula não existe.

```
célula *Busca (int x, célula *lst) {
   célula *p;
   p = lst->seg;
   while (p != NULL && p->conteúdo != x)
      p = p->seg;
   return p;
}
```

Versão recursiva

```
célula *BuscaR (int x, célula *lst) {
  if (lst->seg == NULL)
    return NULL;
  if (lst->seg->conteúdo == x)
    return lst->seg;
  return BuscaR (x, lst->seg);
}
```

Algoritmo de remoção de uma célula

```
Recebe o endereço p de uma célula em uma lista
e remove da lista a célula p->seg.
Supõe que p ≠ NULL e p->seg ≠ NULL.

void Remove (célula *p) {
    célula *lixo;
    lixo = p->seg;
    p->seg = lixo->seg;
    free (lixo);
}
```

Algoritmo de inserção de nova célula

```
Insere uma nova célula em uma lista
entre a célula p e a seguinte (supõe p \neq NULL).
A nova célula terá conteúdo y.
void Insere (int y, célula *p) {
    célula *nova:
    nova = malloc (sizeof (célula));
    nova->conteúdo = y;
    nova->seg = p->seg;
    p->seg = nova;
}
```

Algoritmo de busca seguida de remoção

Recebe uma lista ${\tt lst}$ com cabeça e remove da lista a primeira célula que contiver x, se tal célula existir.

```
void BuscaERemove (int x, célula *lst) {
   célula *p, *q;
   p = lst;
   q = lst->seg;
   while (q != NULL && q->conteúdo != x) {
      p = q;
      q = q->seg;
   if (q != NULL) {
      p->seg = q->seg;
      free (q);
}
```

Algoritmo de busca seguida de inserção

Recebe lista ${\tt lst}$ com cabeça e insere nova célula conteúdo y imediatamente antes da primeira que contiver x.

Se nenhuma célula contiver x, a nova célula será inserida no fim da lista.

```
void BuscaEInsere (int y, int x, célula *1st) {
   célula *p, *q, *nova;
   nova = malloc (sizeof (célula));
   nova->conteúdo = y;
   p = lst;
   q = lst->seg;
   while (q != NULL && q->conteúdo != x) {
      p = q;
      q = q->seg;
   }
   nova->seg = q;
   p->seg = nova;
}
```

Filas

Fila implementada em vetor

Remove elemento da fila

Insere y na fila

Aplicação: distâncias em uma rede

 0
 1
 2
 3
 4
 5

 d
 2
 3
 1
 0
 1
 6

O vetor d dá as distâncias da cidade 3 a cada uma das demais.

Algoritmo das distâncias

Recebe matriz **A** que representa as interligações entre cidades $0,1,\ldots,n-1$: há uma estrada de x a y se e somente se $\mathbf{A}[x][y]=1$. Devolve um vetor d tal que d[x] é a distância da cidade o à cidade x.

```
int *Distâncias (int **A, int n, int o) {
   int *d, x, y;
   int *f, s, t;
   d = \text{malloc} (n * \text{sizeof} (\text{int}));
   for (x = 0; x < n; x++) d[x] = -1;
   d[o] = 0;
   f = malloc (n * size of (int));
    processo iterativo
   free (f);
   return d;
```

processo iterativo

Invariantes (antes de cada comparação "s < t")

- 1. para cada cidade v em $\mathbf{f}[0..\mathbf{t}-1]$ existe um caminho de comprimento d[v] de o a v cujas cidades estão todas em $\mathbf{f}[0..\mathbf{t}-1]$
- 2. para cada cidade v de $\mathbf{f}[0..\mathbf{t}-1]$ todo caminho de o a v tem comprimento $\geq d[v]$
- 3. toda estrada que começa em f[0..s-1] termina em f[0..t-1]

Conseqüência

Para cada v em $\mathbf{f}[0..\mathbf{t}-1]$, o número d[v] é a distância de o a v.

- $\mathbf{4.} \quad d[\mathbf{f}[\mathbf{s}]] \ \leq \ d[\mathbf{f}[\mathbf{s}{+}1]] \ \leq \ \cdots \ \leq \ d[\mathbf{f}[\mathbf{t}{-}1]]$
- $\mathbf{5}. \quad d[\mathbf{f}[\mathbf{t}-1]] \ \leq \ d[\mathbf{f}[\mathbf{s}]] + 1$

Implementação circular da fila

Remove elemento da fila

```
x = f[s++];
if (s == N) s = 0;
```

Insere y na fila

$$f[t++] = y;$$

if $(t == N) t = 0;$

Fila implementada em lista encadeada

```
typedef struct cel {
  int valor;
  struct cel *seg;
} célula;
```

Decisões de projeto

- ▶ lista sem cabeça
- primeira célula: início da fila
- última célula: fim da fila

Fila vazia

```
célula *s, *t; /* s aponta primeiro elemento da fila */
s = t = NULL; /* t aponta último elemento da fila */
```

Remove elemento da fila

Recebe endereços **es** e **et** das variáveis **s** e **t** respectivamente. Supõe que fila não está vazia e remove um elemento da fila. Devolve o elemento removido.

```
int Remove (célula **es, célula **et) {
   célula *p;
   int x;
   p = *es;
   /* p aponta o primeiro elemento da fila */
   x = p \rightarrow valor;
   *es = p->seg;
   free (p);
   if (*es == NULL) *et = NULL;
   return x;
}
```

Recebe endereços **es** e **et** das variáveis **s** e **t** respectivamente. Insere um novo elemento com valor **y** na fila.

Atualiza os valores de s e t.

```
void Insere (int y, célula **es, célula **et) {
   célula *nova;
   nova = malloc (sizeof (célula));
   nova->valor = y;
   nova->seg = NULL;
   if (*et == NULL) *et = *es = nova:
   else {
      (*et)->seg = nova;
      *et = nova;
}
```

Pilhas

Pilha implementada em vetor

Remove elemento da pilha

$$x = p[--t];$$
 /* $t = p[t]; */$

Insere y na pilha

Aplicação: parênteses e chaves

- expressao bem-formada: ((){()})
- expressao malformada: ({)}

Algoritmo

Devolve 1 se a string ${\bf s}$ contém uma seqüência bem-formada e devolve 0 em caso contrário.

```
int BemFormada (char s[]) {
   char *p; int t;
   int n, i;
   n = strlen (s);
   p = malloc (n * sizeof (char));
   processo iterativo
   free (p);
   return t == 0;
}
```

processo iterativo

```
t = 0:
for (i = 0; s[i] != '\0'; i++) {
   /* p[0..t-1] é uma pilha */
   switch (s[i]) {
      case ')': if (t != 0 \&\& p[t-1] == '(') --t;
                else return 0;
                break:
      case '}': if (t != 0 && p[t-1] == '\{'\} --t;
                else return 0;
                break;
      default: p[t++] = s[i];
```

Aplicação: notação posfixa

Notação infixa versus posfixa

```
infixa posfixa

(A+B*C) ABC*+

(A*(B+C)/D-E) ABC+*D/E-

(A+B*(C-D*(E-F)-G*H)-I*3) ABCDEF-*-GH*-*+I3*-

(A+B*C/D*E-F) ABC*D/E*+F-

(A*(B+(C*(D+(E*(F+G)))))) ABCDEFG+*+*+*
```

Algoritmo

Recebe uma expressão infixa representada por uma string infix que começa com '(' e termina com ')' seguido de '\0'. Devolve a correspondente expressão posfixa.

```
char *InfixaParaPosfixa (char infix∏) {
   char *posfix, x;
   char *p; int t;
   int n, i, j;
   n = strlen (infix);
   posfix = malloc (n * sizeof (char));
   p = malloc (n * sizeof (char));
   processo iterativo
   free (p);
   posfix[j] = '\0';
   return posfix;
```

processo iterativo

```
t = 0; p[t++] = infix[0]; /* empilha '(' */
for (j = 0, i = 1; /*X*/ infix[i] != '\0'; i++) {
   /* p[0..t-1] é uma pilha de caracteres */
   switch (infix[i]) {
      case '(': p[t++] = infix[i]; /* empilha */
                break:
      case ')': while (1) { /* desempilha */
                   x = p[--t];
                   if (x == '(') break:
                   posfix[j++] = x; }
                break;
      demais casos
```

demais casos

```
case '+':
case '-': while (1) {
             x = p[t-1];
             if (x == '(') break;
             --t; /* desempilha */
             posfix[j++] = x; }
          p[t++] = infix[i]; /* empilha */
          break:
case '*':
case '/': while (1) {
             x = p[t-1];
             if (x == '(' | x == '+' | x == '-')
                break;
             --t;
             posfix[j++] = x; 
          p[t++] = infix[i];
          break;
default: posfix[j++] = infix[i];
```

Aplicação de InfixaParaPosfixa à expressão (A*(B*C+D))

Valores das variáveis a cada passagem pelo ponto X:

```
infix[0..i-1] p[0..t-1] posfix[0..j-1]
( A (
(A* (*
(A*( (*( A
(A*(B (*( AB
(A*(B* (*(* AB
(A*(B*C (*(* ABC
(A*(B*C+ (*(+ ABC*
(A*(B*C+D (*(+ ABC*D
(A*(B*C+D)) (* ABC*D+
(A*(B*C+D))
              A B C * D + *
```

Pilha implementada em lista encadeada

```
typedef struct cel {
  int valor;
  struct cel *seg;
} célula;
```

Decisões de projeto

- lista com cabeca
- segunda célula: topo da pilha

Pilha vazia

```
célula cabeça;
célula *p;
p = &cabeça; /* p->seg é o topo da pilha */
p->seg = NULL;
```

Insere

```
void Empilha (int y, célula *p) {
   célula *nova;
   nova = malloc (sizeof (célula));
   nova->valor = y;
   nova->seg = p->seg;
   p->seg = nova;
}
```

Remove

```
int Desempilha (célula *p) {
   int x; célula *q;
   q = p->seg;
   x = q->valor;
   p->seg = q->seg;
   free (q);
   return x;
}
```

Busca em vetor ordenado

Problema:

Encontrar um dado número x num vetor crescente v[0...n-1].

Vetor é crescente se $v[0] \le v[1] \le \cdots \le v[n-1]$.

Problema mais geral

Dado x e um vetor crescente v[0..n-1], encontrar j tal que $v[j-1] < x \le v[j]$.

- 0 < j < n
- ightharpoonup se j=0 então $x\leq v[0]$
- ightharpoonup se j=n então v[n-1] < x
- ightharpoonup imagine $v[-1] = -\infty$ e $v[n] = \infty$

Se x=555 então j=4. Se x=1000 então j=13. Se x=110 então j=0.

```
Recebe um vetor crescente v[0..n-1] com n \ge 1 e um inteiro x. Devolve um índice j em 0..n tal que v[j-1] < x \le v[j]. int BuscaSeqüencial (int x, int n, int v[]) { int j=0; while (j < n \ \&\& \ v[j] < x) \ ++j; return j; }
```

- lacktriangle invariante: no começo de cada iteração tem-se v[j-1] < x
- \triangleright consumo de tempo: proporcional a n

```
Recebe um vetor crescente v[0..n-1] com n \ge 1 e um inteiro x.
Devolve um índice j em 0 \dots n tal que v[j-1] < x \le v[j].
 int BuscaBinária (int x, int n, int v[]) {
    int e, m, d;
    e = -1: d = n:
    while (/*X*/e < d-1) {
       m = (e + d)/2;
       if (v[m] < x) e = m;
       else d = m;
    return d;
```

Invariante: a cada passagem pelo ponto X temos $v[e] < x \le v[d]$.

Consumo de tempo

- ightharpoonup em cada iteração, o tamanho do vetor em jogo é d-e-1
- ▶ tamanho do vetor na primeira, segunda, terceira, etc. iterações: n, n/2, n/4, ..., $n/2^k$, ...
- ▶ número total de iterações: $\cong \log_2 n$
- **ightharpoonup** consumo de tempo: proporcional a $\log_2 n$

Versão recursiva

```
int BuscaBinária2 (int x, int n, int v[]) {
    return BuscaBinR (x, -1, n, v);
}
BuscaBinR recebe um vetor crescente v[e ... d] e um x tal que v[e] < x \le v[d].
Devolve um índice j no intervalo e+1...d tal que v[j-1] < x \le v[j].
```

```
int BuscaBinR (int x, int e, int d, int v[]) {
   if (e == d-1) return d;
   else {
      int m = (e + d)/2;
      if (v[m] < x)
         return BuscaBinR (x, m, d, v):
      else
         return BuscaBinR (x, e, m, v);
```

ALGORITMOS DE ORDENAÇÃO

Problema

Rearranjar os elementos de um vetor v[0..n-1]de tal modo que ele fique crescente.

Vetor é crescente se $v[0] \le v[1] \le \cdots \le v[n-1]$.

Ordenação por inserção por seleção

Algoritmo de ordenação por inserção

Rearranja o vetor $v[0 \dots n{-}1]$ em ordem crescente.

```
void Inserção (int n, int v[]) {
   int i, j, x;
   for (j = 1; /*A*/ j < n; j++) {
        x = v[j];
        for (i = j-1; i >= 0 && <math>v[i] > x; i--)
        v[i+1] = v[i];
        v[i+1] = x;
   }
}
```

Invariantes: a cada passagem pelo ponto A

- 1. v[0...n-1] é uma permutação do vetor original
- 2. o vetor v[0..j-1] é crescente

0 crescente
$$j-1$$
 j $n-1$
444 555 555 666 777 222 999 222 999 222 999

Consumo de tempo

- proporcional ao número de execuções de "v[i] > x"
- ▶ no pior caso, esse número é $\sum_{i=1}^{n-1} j = n(n-1)/2$
- \triangleright consumo de tempo total: no máximo n^2 unidades de tempo

Algoritmo de seleção

Rearranja o vetor $v[0 \dots n-1]$ em ordem crescente.

```
void Seleção (int n, int v[]) {
   int i, j, min, x;
   for (i = 0; /*A*/ i < n-1; i++) {
      min = i;
      for (j = i+1; j < n; j++)
            if (v[j] < v[\min]) min = j;
      x = v[i]; v[i] = v[\min]; v[\min] = x;
   }
}
```

Invariantes: a cada passagem pelo ponto A

- 1. v[0...n-1] é uma permutação do vetor original
- 2. v[0..i-1] está em ordem crescente
- 3. $v[i-1] \le v[j]$ para j = i, i+1, ..., n-1

Consumo de tempo

ightharpoonup no máximo n^2 unidades de tempo

Algoritmo Mergesort

Problema principal

Rearranjar os elementos de um vetor v[0...n-1]de tal modo que ele fique crescente, ou seja, de modo que $v[0] \le v[1] \le \cdots \le v[n-1]$.

Problema auxiliar: intercalação

Rearranjar v[p...r-1] em ordem crescente sabendo que v[p..q-1] e v[q..r-1] são crescentes.

```
Recebe vetores crescentes v[p..q-1] e v[q..r-1]
e rearranja v[p...r-1] em ordem crescente.
void Intercala (int p, int q, int r, int v[]) {
    int i, j, k, *w;
    w = \text{malloc}((r-p) * \text{sizeof}(\text{int}));
    i = p; j = q; k = 0;
    while (i < q && j < r) {
       if (v[i] \le v[j]) w[k++] = v[i++];
       else w[k++] = v[i++]:
    }
    while (i < q) w[k++] = v[i++];
    while (j < r) w[k++] = v[j++];
    for (i = p; i < r; i++) v[i] = w[i-p];
    free (w):
```

Consumo de tempo do algoritmo Intercala

proporcional ao número de elementos do vetor

Algoritmo Mergesort (ordena por intercalação)

```
Rearranja o vetor v[p..r-1] em ordem crescente.

void Mergesort (int p, int r, int v[]) {
	if (p < r-1) {
		int q = (p + r)/2;
		Mergesort (p, q, v);
		Mergesort (q, r, v);
		Intercala (p, q, r, v);
	}
```

0	1	2	3	4	5	6	7	8	9	10
999	111	222	999	888	333	444	777	555	666	555
999	111	222	999	888	333	444	777	555	666	555
999	111	222	999	888	333	444	777	555	666	555
					:					
111	999	222	888	999	333	444	777	555	555	666
111	222	888	999	999	333	444	555	555	666	777
111	222	333	444	555	555	666	777	888	999	999

$$\begin{array}{c} v[0\mathinner{.\,.} n{-}1] \\ v[0\mathinner{.\,.} \frac{n}{2}{-}1] & v[\frac{n}{2}\mathinner{.\,.} n{-}1] \\ v[0\mathinner{.\,.} \frac{n}{4}{-}1] & v[\frac{n}{4}\mathinner{.\,.} \frac{n}{2}{-}1] & v[\frac{n}{2}\mathinner{.\,.} \frac{3n}{4}{-}1] & v[\frac{3n}{4}\mathinner{.\,.} n{-}1] \\ \vdots \end{array}$$

Consumo de tempo do Mergesort

- aproximadamente log₂ n "rodadas"
- cada "rodada" consome n unidades de tempo
- \triangleright total: $n \log_2 n$ unidades de tempo

Versão iterativa

```
void MergesortI (int n, int v[]) {
   int p, r, b = 1;
   while (b < n) {
      p = 0;
      while (p + b < n) {
         \mathbf{r} = p + 2 * b;
          if (r > n) r = n;
          Intercala (p, p+b, r, v);
         p = p + 2*b;
      b = 2*b;
```

Algoritmo Heapsort

Problema

Rearranjar os elementos de um vetor v[0..n-1]em ordem crescente.

Definição

Um max-heap é um vetor v[1..m] tal que $v[\frac{1}{2}f] \ge v[f]$ para f = 2, 3, ..., m.

```
6 7 8 9
                                 10
                                    11
                                        12 13
999 888 666 333 777 555 555 333 222 111 444 111 222 444 111
```


Algoritmo auxiliar 1: inserção em um heap

Transforma $v[1 \dots m+1]$ em max-heap supondo que $v[1 \dots m]$ é max-heap.

```
void InsereEmHeap (int m, int v[]) { int f = m+1; while /*X*/ (f > 1 && v[f/2] < v[f]) { int t = v[f/2]; v[f/2] = v[f]; v[f] = t; f = f/2; }
```

- ▶ invariante no pto X: $v[\left|\frac{1}{2}i\right|] \ge v[i]$ para $i = 2, \ldots, m+1, i \ne f$
- consumo: $\log_2(m+1)$ unidades de tempo

1	2	3	4	5	6	7	8	9	10	11	12	13	14
98	97	96	95	94	93	92	91	90	89	87	86	85	99
98	97	96	95	94	93	99	91	90	89	87	86	85	92
98	97	99	95	94	93	96	91	90	89	87	86	85	92
99	97	98	95	94	93	96	91	90	89	87	86	85	92

Transforma $v[1\mathinner{.\,.} 14]$ em max-heap supondo que $v[1\mathinner{.\,.} 13]$ é max-heap.

Transforma quase-max-heap $v[1\mathinner{.\,.} m]$ em max-heap.

```
void SacodeHeap (int m, int v[]) {
    int t, f = 2;
    while /*X*/ (f <= m) {
        if (f < m \&\& v[f] < v[f+1]) ++f;
        if (v[f/2] >= v[f]) break;
        t = v[f/2]; v[f/2] = v[f]; v[f] = t;
        f *= 2;
    }
}
```

- $ightharpoonup v[1 \dots m]$ é quase-max-heap se $v[\left|\frac{1}{2}f\right|] \ge v[f]$ para $f=4,5,\dots,m$
- ▶ invariante no ponto X: $v[\left|\frac{1}{2}i\right|] \ge v[i]$ quando $i \ne f$ e $i \ne f+1$
- ightharpoonup consumo: $\log_2 m$ unidades de tempo

Algoritmo Heapsort

Rearranja vetor $v[1\mathinner{.\,.} n]$ de modo que ele fique crescente.

```
void Heapsort (int n, int v[]) {
   int m;
   for (m = 1; m < n; m++)
        InsereEmHeap (m, v);
   for (m = n; /*X*/ m > 1; m--) {
        int t = v[1]; v[1] = v[m]; v[m] = t;
        SacodeHeap (m-1, v);
   }
}
```

Invariantes no ponto X

- $\triangleright v[1..m]$ é um max-heap
- $v[1..m] \leq v[m+1..n]$
- $\triangleright v[m+1..n]$ está em ordem crescente

elementos pequenos

elementos grandes

Consumo de tempo do Heapsort

ightharpoonup no pior caso: $n \log_2 n$ unidades de tempo

Algoritmo Quicksort

Problema:

Rearranjar um vetor v[0..n-1] em ordem crescente.

Subproblema da separação: formulação vaga

Rearranjar um vetor v[p...r] de modo que os elementos pequenos figuem todos do lado esquerdo e os grandes do lado direito.

Formulação concreta

Rearranjar v[p...r] de modo que $v[p...j-1] \leq v[j] < v[j+1...r]$ para algum j em $p \dots r$.

```
Recebe um vetor v[p \dots r] com p < r.
Rearranja os elementos do vetor e
devolve j em p 	cdots r tal que v[p 	cdots j-1] \le v[j] < v[j+1 	cdots r].
 int Separa (int p, int r, int v[]) {
    int c, j, k, t;
    c = v[r]; j = p;
    for (k = p; /*A*/ k < r; k++)
        if (v \lceil k \rceil \le c) {
            t = v[j], v[j] = v[k], v[k] = t;
           i++:
    v[r] = v[i], v[i] = c;
    return j;
```

Invariantes no ponto A

- \triangleright v[p...r] é uma permutação do vetor original
- $v[p...j-1] \le c < v[j...k-1]$ e v[r] = c
- p < j < k < r

resultado final

Consumo de tempo do algoritmo Separa

proporcional ao número de elementos do vetor

Algoritmo Quicksort

```
Rearranja o vetor v[p...r], com p \le r + 1,
de modo que ele figue em ordem crescente.
void Quicksort (int p, int r, int v[]) {
    int i;
    if (p < r) {
       j = \text{Separa}(p, r, v);
       Quicksort (p, j-1, v);
        Quicksort (i + 1, r, v);
```

Consumo de tempo do Quicksort

- ightharpoonup no pior caso: n^2 unidades de tempo
- ightharpoonup em média: $n \log_2 n$ unidades de tempo

$$n := r - p + 1$$

Quicksort com controle da altura da pilha de execução

```
Cuida primeiro do menor dos subvetores v[p...j-1] e v[j+1...r].
void QuickSortP (int p, int r, int v[]) {
    int j;
    while (p < r) {
       i = \text{Separa}(p, r, v);
       if (j - p < r - j) {
          QuickSortP (p, j-1, v);
          p = j + 1;
       } else {
          QuickSortP (j+1, r, v);
          r = j - 1;
```

Altura da pilha de execução: $\log_2 n$

Algoritmos de enumeração

Enumerar = fazer uma lista de todos os objetos de um determinado tipo

Problema

Fazer uma lista, sem repetições, de todas as subseqüências de $1,2,\ldots,n$.

```
1 2 1 2 3 1 2 3 1 2 4 1 3 1 3 4 1 4 2 2 3 2 3 4 2 4 3 3 4 4
```

Ordem lexicográfica de seqüências

```
\begin{split} &\langle r_1, r_2, \dots, r_j \rangle \text{ precede } \langle s_1, s_2, \dots, s_k \rangle \text{ se} \\ &1. \quad j < k \ \text{ e } \ \langle r_1, \dots, r_j \rangle = \langle s_1, \dots, s_j \rangle \text{ ou} \\ &2. \quad \text{existe } i \text{ tal que } \langle r_1, \dots, r_{i-1} \rangle = \langle s_1, \dots, s_{i-1} \rangle \ \text{ e } \ r_i < s_i \end{split}
```

Algoritmo de enumeração em ordem lexicográfica

Recebe $n \ge 1$ e imprime todas as subseqüências não-vazias de $1,2,\ldots,n$ em ordem lexicográfica.

```
void SubseqLex (int n) {
  int *s, k;
  s = malloc ((n+1) * sizeof (int));
  processo iterativo
  free (s);
}
```

processo iterativo

```
s[0] = 0; k = 0;
while (1) {
   if (s[k] < n) {
     s[k+1] = s[k] + 1;
     k += 1;
   } else {
     s[k-1] += 1;
     k = 1;
   if (k == 0) break;
   imprima (s, k);
```

Invariante

Cada iteração começa com subsequência $\langle s_1, s_2, \dots, s_k \rangle$ de $\langle 1, 2, \dots, n \rangle$.

Vetor s no início de uma iteração de SubseqLex com n=7.

Versão recursiva

```
void SubseqLex2 (int n) {
   int *s;
   s = \text{malloc} ((n+1) * \text{sizeof} (\text{int}));
   SseqR (s, 0, 1, n);
   free (s);
}
void SseqR (int s[], int k, int m, int n) {
   if (m \le n) {
      s[k+1] = m;
      imprima (s, k+1);
      SseqR (s, k+1, m+1, n); /* inclui m */
      SseqR (s, k, m+1, n); /* não inclui m */
```

Ordem lexicográfica especial

$$\langle r_1, r_2, \dots, r_j \rangle$$
 precede $\langle s_1, s_2, \dots, s_k \rangle$ se

- 1. j>k e $\langle r_1,\ldots,r_k\rangle=\langle s_1,\ldots,s_k\rangle$ ou
- 2. existe i tal que $\langle r_1, \dots, r_{i-1} \rangle = \langle s_1, \dots, s_{i-1} \rangle$ e $r_i < s_i$

Algoritmo de enumeração em ordem lexicográfica especial

```
Recebe n \ge 1 e imprime, em ordem lexicográfica especial,
todas as subseqüências não-vazias de 1, 2, \ldots, n.
void SubseqLexEsp (int n) {
     int *s, k:
     s = \text{malloc} ((n+1) * \text{sizeof} (\text{int})):
     processo iterativo
     free (s);
```

processo iterativo

```
s[1] = 0; k = 1;
while (1) {
   if (s\lceil k \rceil == n) {
      k -= 1:
      if (k == 0) break;
   } else {
      s[k] += 1;
      while (s[k] < n) {
          s[k+1] = s[k] + 1;
         k += 1;
   imprima (s, k);
```

Versão recursiva

```
Recebe n \geq 1 e imprime todas as subseqüências de 1,2,\ldots,n em ordem lexicográfica especial.
```

```
void SubseqLexEsp2 (int n) {
   int *s;
   s = malloc ((n+1) * sizeof (int));
   SseqEspR (s, 0, 1, n);
   free (s);
}
```

continua...

```
Recebe um vetor s[1...k] e imprime, em ordem lexicográfica especial,
todas as seqüências da forma s[1], \ldots, s[k], t[k+1], \ldots
tais que t[k+1], \ldots é uma subseqüência de m, m+1, \ldots, n.
Em seguida, imprime a seqüência s[1], \ldots, s[k].
void SseqEspR (int s[], int k, int m, int n) {
    if (m > n) imprima (s, k);
    else {
        s\lceil k+1 \rceil = m:
        SseqEspR (s, k+1, m+1, n); /* inclui m */
        SseqEspR (s, k, m+1, n); /* não inclui m */
```

9

Resultado de SseqEspR (s,2,7,9) supondo s[1] = 2 e s[2] = 4.

Busca de palavras em um texto

Problema:

Encontrar as ocorrências de $a[1\mathinner{.\,.} m]$ em $b[1\mathinner{.\,.} n].$

Definições

- ightharpoonup a[1..m] é sufixo de b[1..k] se m < k e a[1..m] = b[k-m+1..k]
- ightharpoonup a[1..m] ocorre em b[1..n] se existe k no intervalo m cdot n tal que a[1 cdot m] é sufixo de b[1 cdot k]

Problema

Encontrar o número de ocorrências de a[1..m] em b[1..n].

```
typedef unsigned char *palavra;
typedef unsigned char *texto;
```

Algoritmo trivial

```
Recebe palavra a[1..m] e texto b[1..n], com m \ge 1 e n \ge 0,
e devolve o número de ocorrências de a em b.
int trivial (palavra a, int m, texto b, int n) {
    int k, r, ocorrs;
    ocorrs = 0;
    for (k = m; k \le n; k++) {
       r = 0:
       while (r < m \&\& a[m-r] == b[k-r]) r += 1;
       if (r >= m) ocorrs += 1;
    return ocorrs;
}
```

Algoritmo de Boyer-Moore

posições k em que a[1..4] é comparada com b[k-3..k]

Tabela de deslocamentos T1

T1[c] é o menor t em 0..m-1 tal que a[m-t]=c

Primeiro algoritmo de Boyer-Moore

```
Recebe uma palavra a[1..m] e um texto b[1..n], com m > 1 e n > 0,
e devolve o número de ocorrências de a em b.
```

Supõe que cada elemento de a e b pertence ao conjunto de caracteres 0..255.

```
int BoyerMoore1 (palavra a, int m, texto b, int n) {
   int T1[256], i, k, r, ocorrs;
   /* pré-processamento da palavra a */
   for (i = 0; i < 256; i++) T1[i] = m;
   for (i = 1; i <= m; i++) T1[a[i]] = m - i;
   busca da palavra a no texto b
   return ocorrs;
```

busca da palavra a no texto b

```
ocorrs = 0; k = m;
while (k <= n) {
    r = 0;
    while (m-r >= 1 && a[m-r] == b[k-r]) r += 1;
    if (m-r < 1) ocorrs += 1;
    if (k == n) k += 1;
    else k += T1[b[k+1]] + 1;
}</pre>
```

Segundo algoritmo de Boyer-Moore

Tabela de deslocamentos T2

```
T2[i] é o menor t em 1 	cdots m-1 tal que m-t é bom para i
```

j é bom para i se $a[i \dots m]$ é sufixo de $a[1 \dots j]$ ou a[1...i] é sufixo de a[i...m]

Recebe uma palavra a[1..m] com $1 \le m \le \texttt{MAX}$ e um texto b[1..n] e devolve o número de ocorrências de a em b.

```
int BoyerMoore2 (palavra a, int m, texto b, int n) {
   int T2[MAX], i, j, k, r, ocorrs;
  /* pré-processamento da palavra a */
  for (i = m; i \ge 1; i--) {
     j = m-1; r = 0;
      while (m-r) = i \&\& j-r >= 1
         if (a[m-r] == a[j-r]) r += 1;
         else i -= 1, r = 0;
      T2[i] = m - j;
   busca da palavra a no texto b
  return ocorrs;
```

busca da palavra a no texto b

```
ocorrs = 0; k = m;
while (k <= n) {
    r = 0;
    while (m-r >= 1 && a[m-r] == b[k-r]) r += 1;
    if (m-r < 1) ocorrs += 1;
    if (r == 0) k += 1;
    else k += T2[m-r+1];
}</pre>
```

Consumo de tempo dos algoritmos de Boyer-Moore

- ightharpoonup pré-processamento: m^2 unidades de tempo
- busca, pior caso: mn unidades de tempo
- busca, em média: n unidades de tempo

Árvores binárias


```
Estrutura de um nó
```

```
struct cel {
   int       conteúdo;
   struct cel *esq;
   struct cel *dir;
};
typedef struct cel nó;
```


typedef nó *árvore;

Varredura esquerda-raiz-direita

Visite

- ▶ a subárvore esquerda (em ordem e-r-d)
- depois a raiz
- depois a subárvore direita (em ordem e-r-d)

Algoritmo de varredura e-r-d

```
Recebe uma árvore binária r
e imprime o conteúdo de seus nós em ordem e-r-d.
```

```
void Erd (árvore r) {
   if (r != NULL) {
      Erd (r->esq);
      printf ("%d\n", r->conteúdo);
      Erd (r->dir);
```

Versão iterativa

```
void ErdI (árvore r) {
   nó *p[100], *x;
   int t = 0;
   x = r:
   while (x != NULL || t > 0) {
      /* o topo da pilha p[0..t-1] está em t-1 */
      if (x != NULL) {
        p[t++] = x;
         x = x -> esq;
      else {
         x = p[--t];
         printf ("%d\n", x->conteúdo);
         x = x->dir;
```

- de nó = distância entre nó e seu descendente mais afastado
- ▶ de árvore = altura da raiz

Se árvore tem n nós e altura h então $\lfloor \log_2 n \rfloor \leq h < n$.

$$h = \lfloor \log_2 12 \rfloor = 3$$

Algoritmo da altura

Devolve a altura da árvore binária r.

```
int Altura (árvore r) {
   if (r == NULL)
      return -1; /* a altura de uma árvore vazia é -1 */
   else {
      int he = Altura (r->esq);
      int hd = Altura (r->dir):
      if (he < hd) return hd + 1:
      else return he + 1;
```

Estrutura de nó com campo pai

```
struct cel {
  int     conteúdo;
  struct cel *pai;
  struct cel *esq;
  struct cel *dir;
};
```

Algoritmo do nó seguinte

Recebe um nó x de uma árvore binária cujos nós têm campo pai e devolve o (endereço do) nó seguinte na ordem e-r-d. A função supõe que $x \neq NULL$.

```
nó *Seguinte (nó *x) {
   if (x->dir != NULL) {
      nó *y = x->dir;
      while (y->esq != NULL) y = y->esq;
      return y;
   }
   while (x->pai != NULL && x->pai->dir == x)
      x = x-pai;
   return x->pai;
}
```

Árvores binárias de busca

```
Estrutura de um nó
struct cel {
  int chave;
  int conteúdo;
  struct cel *esq;
  struct cel *dir;
};
typedef struct cel nó;
```

Árvore de busca: definição

```
E.chave < X.chave < D.chave
```

para todo nó X, todo nó E na subárvore esquerda de X e todo nó D na subárvore direita de X

Algoritmo de busca

Recebe k e uma árvore de busca \mathbf{r} .

Devolve um nó cuja chave é k ou devolve NULL se tal nó não existe.

```
nó *Busca (árvore r, int k) {
  if (r == NULL || r->chave == k)
    return r;
  if (r->chave > k)
    return Busca (r->esq, k);
  else
    return Busca (r->dir, k);
}
```

Versão iterativa

```
while (r != NULL && r->chave != k) {
  if (r->chave > k) r = r->esq;
  else r = r->dir;
}
return r;
```

```
nó *novo;
novo = malloc (sizeof (nó));
novo->chave = k;
novo->esq = novo->dir = NULL;
```

Algoritmo de inserção

Recebe uma árvore de busca \mathbf{r} e uma folha avulsa novo.

Insere novo na árvore de modo que a árvore continue sendo de busca e devolve o endereço da nova árvore.

```
árvore Insere (árvore r, nó *novo) {
   nó *f, *p;
   if (r == NULL) return novo;
   processo iterativo
   return r;
```

processo iterativo

```
f = r;
while (f != NULL) {
   p = f;
   if (f->chave > novo->chave) f = f->esq;
   else f = f->dir;
if (p->chave > novo->chave) p->esq = novo;
else p->dir = novo;
```

Algoritmo de remoção da raiz

Recebe uma árvore não-vazia \mathbf{r} , remove a raiz da árvore e rearranja a árvore de modo que ela continue sendo de busca. Devolve o endereço da nova raiz.

```
arvore RemoveRaiz (arvore r) {
  nó *p, *q;
  if (r->esq == NULL) q = r->dir;
  else {
      processo iterativo
  }
  free (r);
  return q;
}
```

processo iterativo

```
p = r; q = r -> esq;
while (q->dir != NULL) {
   p = q; q = q->dir;
}
/* q é o nó anterior a r na ordem e-r-d */
/* p é o pai de q */
if (p != r) {
   p->dir = q->esq;
   q - > esq = r - > esq;
q->dir = r->dir;
```

Exemplo: antes e depois de RemoveRaiz

nó f passa a ser o filho direito de p nó q fica no lugar de r

Remoção do filho esquerdo de x

Remoção do filho direito de x

Consumo de tempo da busca, inserção e remoção

- pior caso: proporcional à altura da árvore
- \blacktriangleright árvore "balanceada": proporcional a $\log_2 n$

n = número de nós da árvore

Fim