Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

thupham@college.harvard.edu Harvard Statistics Department

03 May 2022

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

ntroduction

Methods

Results

iscussion

Introduction

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

vietnoas

Results

)ISCUSSIO

- ► COVID-19 and the onset of many travel restrictions
- ▶ What makes immigration policies "similar?"
- ► Interesting to find similarities between countries with "similar" policies

Introduction

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

vietnoas

Results

JISCUSSIOI

Conclusion

- ► COVID-19 and the onset of many travel restrictions
- What makes immigration policies "similar?"
- Interesting to find similarities between countries with "similar" policies

Research Question: Using cluster analysis, can we find demographic patterns in countries' COVID-19 immigration policies?

Clustering Methods

 Cluster analysis: unsupervised machine learning method to group observations, with little to no prior knowledge of what the groups should look like Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

Methods

resuits

scussion

Clustering Methods

- Cluster analysis: unsupervised machine learning method to group observations, with little to no prior knowledge of what the groups should look like
- Common application: market analysis

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

Methods

Results

iscussion

Clustering Methods

Cluster analysis: unsupervised machine learning method to group observations, with little to no prior knowledge of what the groups should look like

Common application: market analysis

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introductio

Methods

resuits

scussion

K-Means

Hartigan-Wong method: less prone to converge to a local optima ¹ Thu Pham

Introduction

Methods

Results

scussion

Cluster Analysis and COVID-19 Immigration Policies

¹Morissette, Laurence and Sylvain Chartier. The k-means clustering technique: General considerations and implementation in Mathematica

K-Means

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

Methods

Results

scussion

onclusion

Randomly initializes point to K clusters

Hartigan-Wong method: less prone to converge to a local optima ¹

¹Morissette, Laurence and Sylvain Chartier. The k-means clustering technique: General considerations and implementation in Mathematica

K-Means

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

Methods

Results

Discussion

- ▶ Randomly initializes point to *K* clusters
- ► Repeat until clusters converge:

Hartigan-Wong method: less prone to converge to a local optima ¹

¹Morissette, Laurence and Sylvain Chartier. The k-means clustering technique: General considerations and implementation in Mathematica

- Hartigan-Wong method: less prone to converge to a local optima ¹
- ▶ Randomly initializes point to *K* clusters
- Repeat until clusters converge:
 - Calculate the within-cluster sum of squares error

$$SSE = \sum_{k}^{K} \sum_{x_i \in c_k} (x_i - \mu_k)^2$$

¹Morissette, Laurence and Sylvain Chartier. The k-means clustering technique: General considerations and implementation in Mathematica

- Hartigan-Wong method: less prone to converge to a local optima ¹
- ▶ Randomly initializes point to *K* clusters
- Repeat until clusters converge:
 - ► Calculate the within-cluster sum of squares error

$$SSE = \sum_{k}^{K} \sum_{x_i \in c_k} (x_i - \mu_k)^2$$

▶ Re-assign x_i to the cluster c_ℓ that has the lowest SSE with the inclusion of x_i

¹Morissette, Laurence and Sylvain Chartier. The k-means clustering technique: General considerations and implementation in Mathematica

 Deterministic, and does not require a choice of K clusters ahead of time

Thu Pham

ntroduction

Methods

Results

iscussion

Cluster Analysis and COVID-19 Immigration Policies

²Saraçli, Sinan, et al.: Comparison of hierarchical cluster analysis methods by cophenetic correlation

- Deterministic, and does not require a choice of K clusters ahead of time
- Each observation belongs to its own cluster

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

Methods

esults

coussion

²Saraçli, Sinan, et al.: Comparison of hierarchical cluster analysis methods by cophenetic correlation

 Deterministic, and does not require a choice of K clusters ahead of time

- Each observation belongs to its own cluster
- Repeat until we have a single cluster:
 - Closest clusters are merged (by some linkage and metric criteria)
 - Clustering at each step is recorded

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

ntroduction

Methods

esults

. .

²Saraçli, Sinan, et al.: Comparison of hierarchical cluster analysis methods by cophenetic correlation

 Deterministic, and does not require a choice of K clusters ahead of time

- Each observation belongs to its own cluster
- Repeat until we have a single cluster:
 - Closest clusters are merged (by some linkage and metric criteria)
 - Clustering at each step is recorded
- Construct and cut dendrogram

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

ntroduction

Methods

esults

. .

²Saraçli, Sinan, et al.: Comparison of hierarchical cluster analysis methods by cophenetic correlation

 Deterministic, and does not require a choice of K clusters ahead of time

- ▶ Each observation belongs to its own cluster
- Repeat until we have a single cluster:
 - Closest clusters are merged (by some linkage and metric criteria)
 - Clustering at each step is recorded
- Construct and cut dendrogram
- Choosing a linkage criteria with the cophenetic correlation ²:

$$c = \frac{\sum_{i < j} [d(x_i, x_j) - \bar{d}][t(x_i, x_j) - \bar{t}]}{\sqrt{\sum_{i < j} [x(i, j) - \bar{x}]^2 \sum_{i < j} [t(i, j) - \bar{t}]^2}}$$

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

ntroduction

Methods

esults

iscussion

²Saraçli, Sinan, et al.: Comparison of hierarchical cluster analysis methods by cophenetic correlation

Choosing the Number of Clusters

Gap statistic, the difference of total intra-cluster variation between observed data and reference data ³

Thu Pham

ntroduction

Methods

esults

couccion

Cluster Analysis and COVID-19 Immigration Policies

³Tibshirani, Robert et al. Estimating the number of clusters in a data set via the gap statistic.

Choosing the Number of Clusters

Gap statistic, the difference of total intra-cluster variation between observed data and reference data ³

For *K* clusters, calculate the intra-cluster variation:

$$W_K = \sum_{k=1}^K \frac{1}{2n_k} \sum_{i,i' \in C_k} d_{i,i'},$$

Thu Pham

Introduction

Methods

esults

iscussion

Cluster Analysis and COVID-19 Immigration Policies

³Tibshirani, Robert et al. Estimating the number of clusters in a data set via the gap statistic.

Choosing the Number of Clusters

Gap statistic, the difference of total intra-cluster variation between observed data and reference data ³

For *K* clusters, calculate the intra-cluster variation:

$$W_K = \sum_{k=1}^K \frac{1}{2n_k} \sum_{i,i' \in C_k} d_{i,i'},$$

► Generate *N* reference distributions and cluster

Thu Pham

Introduction

Methods

esults

Discussion

Cluster Analysis and COVID-19 Immigration Policies

³Tibshirani, Robert et al. Estimating the number of clusters in a data set via the gap statistic.

Gap statistic, the difference of total intra-cluster variation between observed data and reference data ³

For *K* clusters, calculate the intra-cluster variation:

$$W_K = \sum_{k=1}^K \frac{1}{2n_k} \sum_{i,i' \in C_k} d_{i,i'},$$

- Generate N reference distributions and cluster
- ► Compute the gap statistic:

$$\mathsf{Gap}(K) = \frac{1}{N} \sum_{n=1}^{N} [\log(W_{K,n}) - \log(W_K)]$$

³Tibshirani, Robert et al. Estimating the number of clusters in a data set via the gap statistic.

Gap statistic, the difference of total intra-cluster variation between observed data and reference data ³

For *K* clusters, calculate the intra-cluster variation:

$$W_K = \sum_{k=1}^K \frac{1}{2n_k} \sum_{i,i' \in C_k} d_{i,i'},$$

- Generate N reference distributions and cluster
- ► Compute the gap statistic:

$$\mathsf{Gap}(K) = \frac{1}{N} \sum_{n=1}^{N} [\log(W_{K,n}) - \log(W_K)]$$

► Choose the number of clusters as the smallest value of k such that $Gap(k) \ge Gap(k+1) - \sigma(k+1)$.

³Tibshirani, Robert et al. Estimating the number of clusters in a data set via the gap statistic.

Methods of Analysis

 Multiple sample T-test (ANOVA) across each chosen demographic factor Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

Methods

Results

iscussion

- Multiple sample T-test (ANOVA) across each chosen demographic factor
- ► Rand index to compare clustering

$$R = \frac{a+b}{\binom{n}{2}},$$

where for a partition X and Y of some set \widetilde{S} of n elements, a is the number of pairs in S that are in the same subset in both X and Y, and b is the number of pairs that are in different subsets in X and Y

Data and Data Cleaning

Cluster Analysis and COVID-19 Immigration

Thu Pham

Introduction

Methods

Results

onclusion

► COVID Border Accountability Project

➤ Variables Visa bans, history of travel bans, citizen bans, policy length, policy type, travel blockage (air, land, sea), refugee bans, country exceptions, work exceptions

Data and Data Cleaning

Cluster Analysis and COVID-19 Immigration

Thu Pham

Introduction

Methods

Results

Conclusion

COVID Border Accountability Project

- Variables Visa bans, history of travel bans, citizen bans, policy length, policy type, travel blockage (air, land, sea), refugee bans, country exceptions, work exceptions
- ▶ Data cleaning: NA values, one-hot encoding, assumptions, aggregating by country

Data and Data Cleaning

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

ntroduction

Methods

Results

JISCUSSION

- COVID Border Accountability Project
- Variables Visa bans, history of travel bans, citizen bans, policy length, policy type, travel blockage (air, land, sea), refugee bans, country exceptions, work exceptions
- Data cleaning: NA values, one-hot encoding, assumptions, aggregating by country
- World Bank data: GDP, population, life expectancy, fertility rate, and adult literacy rate (2020)

Chosen Hyperparameters

Figure: Gap statistic for K-Means (left), final dendrogram (right).

The cophonetic correlation was highest for minimum linkage (0.862).

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

ntroduction

Methods

Results

ANOVA and Rand Index

Demographic	K-Means	HAC
GDP	0.485	0.334
Population	0.155	0.984
Life Expectancy	0.00542	0.039
Fertility Rate	0.0067	0.089
Literacy Rate	0.0273	0.149

Table: Significant p-values are bolded.

Policy Clustering	Continent	Development Level
K-Means	0.640	0.612
HAC	0.300	0.342

Table: Another interesting result: the rand index for K-Means vs HAC was 0.405.

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduc

Methods

Results

71300331011

ANOVA

Figure: K-Means (left) and HAC (right)

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

Methods

Results

Discussion

ANOVA

Figure: K-Means (left) and HAC (right)

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

ntroduction

Methods

resuits

Discussion

Rand Index

▶ Minimum distance linkage ⇒ stringier clusters; may merge clusters whose centroids are far apart Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

Methods

Results

Discussion

Rand Index

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

Vethods

Discussion

- ▶ Minimum distance linkage ⇒ stringier clusters; may merge clusters whose centroids are far apart
- ► K-Means are more compact; takes into account the size of the clusters and the internal variance

Rand Index

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

Methods

Discussion

onclusion

▶ Minimum distance linkage ⇒ stringier clusters; may merge clusters whose centroids are far apart

- K-Means are more compact; takes into account the size of the clusters and the internal variance
- K-Means had more similar clustering to our "natural" metrics – why?

Continents: 43, 41, 50, 15, 40

Development level: 33, 29, 48, 61

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

troduction

/lethods

Conclusion

► More effective visualizations

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

Methods

DISCUSSIO

- More effective visualizations
- ► Some clusters seem "intuitive:" Belgium, Denmark, Greece, Iceland, Poland, and Sweden
- Others, not so much: Iraq, United States, Egypt, Mexico

Cluster Analysis and COVID-19 Immigration Policies

Thu Pham

Introduction

Methods

Discussion

- ► More effective visualizations
- Some clusters seem "intuitive:" Belgium, Denmark, Greece, Iceland, Poland, and Sweden
- Others, not so much: Iraq, United States, Egypt, Mexico
- Impact of choosing cluster method