Estatística Básica

Aula 13 (???)
Análise de dados categóricos

Pavel Dodonov pdodonov@gmail.com anotherecoblog.wordpress.com

Tipos de variáveis operacionais

Categórica (qualitativa)

Numérica (quantitativa)

Ordinal (semi-quantitativa)

Tipos de variáveis operacionais

Categórica (qualitativa)

Numérica (quantitativa)

Ordinal (semi-quantitativa)

Variávéis explanatórias categóricas Variávéis explanatórias contínuas

Variávelresposta categórica

Variávéis explanatórias categóricas Tabela de contingência Qui-quadrado Teste exato de Fisher

> Variávelresposta categórica

Variávéis explanatórias contínuas

Variávéis explanatórias categóricas Regressão logística
Regressão multinomial
GLM – distribuição binomial

Variávelresposta categórica

Variávéis explanatórias contínuas

Variávéis explanatórias categóricas Variávéis explanatórias contínuas

Variávelresposta categórica

GLM - distribuição binomial

Categórica VS Categórica

Exemplo: Sobreviventes do Titanic

Gênero	Sobreviveu?	1a Classe	2a Classe	3a Classe	Tripulação
Masculino	Não	118	154	422	670
	Sim	62	25	88	192
Feminino	Não	4	13	106	3
	Sim	141	93	90	20

Fonte: Wikipedia (Mosaic_plot)

Representação gráfica

Fonte: Wikipedia (Mosaic_plot)

Comparando com mortalidade homogenea

Fonte: Wikipedia (Mosaic_plot)

Comparando...

- Parece que há uma associação entre gênero e classe com mortalidade.
 - Associação: análogo à correlação, mas para variáveis categóricas.

Qui-quadrado

• Compara o **observado** com o **esperado** (sob a hipótese nula de não haver associação)

Qui-quadrado

 Compara o observado com o esperado (sob a hipótese nula de não haver associação)

$$\chi^2 = \sum \frac{(Observado - Esperado)^2}{Esperado}$$

Teste exato de Fisher

 Compara o observado com todas as distribuições possíveis das amostras entre os grupos

Teste exato de Fisher

- Compara o observado com todas as distribuições possíveis das amostras entre os grupos
 - É exato porque o P-valor é calculado exatamente, não aproximado com base em uma distribuição assintótica.

Categórica (binária) VS contínua

Exemplo: Desmatamento VS genética de palmito

Presença/ausência de plântulas com adulto encontrado em algum lugar, na mesma paisagem ou em outra paisagem. Com maior cobertura florestal, há maior possibilidade do parental estar longe.

Santos, Cazetta, Dodonov, Faria & Gaiotto 2016

Proporção VS contínua

Exemplo: Desmatamento VS genética de palmito

Proporção de plântulas com adulto encontrado em algum lugar, na mesma paisagem ou em outra paisagem. Com maior cobertura florestal, há maior possibilidade do parental estar longe.

Santos, Cazetta, Dodonov, Faria & Gaiotto 2016

Distribuição binomial

- Proporção de sucessos em um certo número de testes
 - Presença/ausência: sucesso ou falha em um único teste.

Diferença importante

	Y contínuo, X categórico	Y categórico, X contínuo
Exemplo de pergunta	O valor médio (ou outro parâmetro) de Y difere entre níveis de X?	O X influencia a probabilidade de eu obter um sucesso (ou um certo nível) em Y?
Exemplo de gráfico	Jitter plot, box plot, gráfico de barras	Gráfico de dispersão (possivelmente com <i>jitter</i> no Y)
Exemplo de análise	Teste t de Student, ANOVA, Kruskal- Wallis, Kolmogorov- Smirnov	GLM com distribuição binomial