Lec 6

Vector Models Continued; Principal Component Analysis; Distributional semantics; Word embeddings and word2vec; Sentence and text embeddings

- 1. Text as vectors (TF BOW, TF-IDF, etc...)
 - a. So we have a |V|-dimensional vector space (|V| is the size of vocabulary)
 - b. Words/tokens are the axes of the space
 - c. Sentences, documents etc. are points or vectors in this space
 - d. Very high-dimensional: Number of dimensions = size of vocabulary, often 10,000 or more.
 - e. These are very sparse vectors most entries are zero.
 - f. The frequency of the sentence becomes a vector in the vector space where the words are the axis

g.

2. Cosine similarity

- a. Recall: Cosine Similarity is a measure of how similar two objects in vector space are, as the cosine of the angle between them, irrespective of their magnitude. The scale is [-1 .. 1].
- b. We are interested in the percentage of words (not the length of sentences)
- c. The cosine similarity gives you the angle between the two vectors (how close the two vectors are, ignoring the length)

$$ext{cosine similarity} = S_C(A,B) := \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2 \cdot \sum\limits_{i=1}^n B_i^2}},$$

d.

3. An Example: A Vector Space Model for Characters in PotC

ord	Frequency	Word	Frequency	Word	Frequency	Word	Frequency	Word	Frequency	
					rroquency					
ack	22	want	15	jack	11	will	22	jack	7	
i11	12	come	11	aye	9	jack	12	sparrow	7	
ind	8	know	9	us	8	find	7	one	5	
et	7	oh	9	will	6	know	7	will	5	
Lizabe	eth 6	will	9	ho	5	oh	7	compass	5	
low	5	bugger	8	sea	5	want	6	mister	4	
s	5	dirt	8	got	4	man	6	turner	4	
ıh	5	love	8	think	4	good	5	freedom	3	
ome	5	hey	7	bit	4	somethin	ng 5	world	3	
eed	5	one	7	like	4	sparrow	4	must	3	
ey.	5	mate	6	cast	4	would	4	somethin	g 3	
nip	5	captain	6	rum	3	chance	4	currency	3	
ld	5	key	6	captain	3	us	3	governor	2	
earl	4	would	6	seems	3	captain	3	mercer	2	
top	4	jones	6	key	3	compass	3	arrest	2	
parrov		save	6	cap'n	3	give	3	william	2	
nest	4	jar	6	back	3	going	3	oh	2	
ack	4	chest	6	made	3	came	3	believe	2	
vay	4	much	5	chief	3	way	3	question	2	
eave	3	way	5	believe	3	yes	3	perhaps	2	

b. First, we calculate the cosine similarity between each character's BOW

Cosine Similarity	Degrees	Characters			
0.5758	54.84	elizabeth swann	will turner		
0.4909	60.6	gibbs	will turner		
0.4497	63.28	elizabeth swann	lord cutler beckett		
0.4493	63.3	elizabeth swann	jack sparrow		
0.4203	65.15	jack sparrow	will turner		
0.401	66.36	elizabeth swann	gibbs		
0.3982	66.53	lord cutler beckett	will turner		
0.3618	68.79	davy jones	will turner		
0.344	69.88	gibbs	jack sparrow		
0.3383	70.23	davy jones	elizabeth swann		
0.3236	71.12	jack sparrow	lord cutler beckett		
0.3093	71.98	davy jones	lord cutler beckett		
0.3021	72.42	gibbs	lord cutler beckett		
0.2823	73.6	gibbs	pintel		
0.2807	73.7	pintel	ragetti		
0.2752	74.03	davy jones	gibbs		
0.2717	74.23	davy jones	jack sparrow		
0.2709	74.28	gibbs	ragetti		
0.2408	76.07	jack sparrow	pintel		
0.2357	76.37	jack sparrow	ragetti		
0.22	77.29	ragetti	will turner		
0.1834	79.43	elizabeth swann	ragetti		
0.1826	79.48	pintel	will turner		
0.1545	81.11	lord cutler beckett	ragetti		
0.1326	82.38	davy jones	ragetti		
0.1187	83.18	elizabeth swann	pintel		
0.0962	84.48	lord cutler beckett	pintel		
0.0936	84.63	davy jones	pintel		

c.

d. Here is each character's cosine similarity to Elizabeth Swann:

Degrees	Characters		
54.8443	elizabeth swann	will turner	
63.2756	elizabeth swann	lord cutler beckett	1
63.3012	elizabeth swann	jack sparrow	ı
66.3593	elizabeth swann	gibbs	,
79.4321	elizabeth swann	ragetti	
83.1829	elizabeth swann	pintel	
	54.8443 63.2756 63.3012 66.3593 79.4321	54.8443 elizabeth swann 63.2756 elizabeth swann 63.3012 elizabeth swann 66.3593 elizabeth swann 79.4321 elizabeth swann	54.8443 elizabeth swann will turner 63.2756 elizabeth swann lord cutler beckett 63.3012 elizabeth swann jack sparrow 66.3593 elizabeth swann gibbs 79.4321 elizabeth swann ragetti

- e. This does not mean that Pintel and Ragetti are close to each other.
- f. This simply means that they are highly unrelated with Elizabeth Swann
- 4. Digression: Dimensionality Reduction using PCA
 - a. The total vocabulary size for this task is 1249 words; thus the cosine similarity for character vectors takes place in 1249 dimensions!
 - b. It is impossible to get any intuition for so many dimensions!
 - c. Principal Components Analysis
 - i. Factor the term-document matrix using singular value decomposition:

$$m \text{ documents} \left\{ \begin{array}{c|cccc} & n \text{ words} & & & & & \\ \hline w_{11} & \dots & w_{1j} & \dots & w_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & w_{n1} & \dots & w_{mj} & \dots & w_{mn} \end{array} \right\} = \begin{bmatrix} \vdots & & \vdots \\ \vdots & & \vdots \\ \mathbf{u}_1 & \dots & \mathbf{u}_r \\ \vdots & & \vdots \\ \vdots & & \vdots \end{bmatrix} \times \begin{bmatrix} \sigma_1 & & & \\ \sigma_r \end{bmatrix} \times \begin{bmatrix} \dots & \dots & \mathbf{v}_1 & \dots & \dots \\ \vdots & & \vdots & & \vdots \\ \dots & \dots & \mathbf{v}_r & \dots & \dots \end{bmatrix}$$

ii.

- iii. The eigenvectors are the principal components of the data and the eigenvalues o₁, ..., o_n give the "importance" of each componenent.
- d. Eigenvectors can be used with images
- e. It reduces the dataset by eigenvalues providing the importance of each word
- f. Principal Components Analysis
 - i. The principal components tell you which parts of the data are more significance (have more variance)
 - ii. The largest two principal components give us a 2D view of the data;
 - iii. Illustration of reducing a 2D data set to 1 dimension:

iv.

- g. The steps:
 - i. Center the components
 - ii. Look at the distance of the plots in a few directions
 - iii. Choose the line with the longest length
- h. Taking the data \rightarrow reducing the dimensions \rightarrow preserving as much data as possible (you are still losing information)
- i. The axis do not correspond to any of the original words
- 5. Vector Space models for Characters in PotC
 - a. Just using Term Frequency Counts (stop words Not deleted)

- i. This was reduced into 15 * 2 from 15 * 1249
- b. Just using Term Frequency Counts (stop words deleted)

i.

c. Just using TF-IDF (stop words NOT deleted)

d. Just using TF-IDF (with stop words deleted)

- e. Why there is not more consistency between these different views of the data?
 - i. There is no much data \rightarrow cannot find patterns
- 6. Vector Space Models for Social Media

i.

a.

- b. We are not doing cosine similarity, so the angles do not matter anymore
- c. They have different trends and suggest that the data is classifiable

- 7. What's wrong with Term-Frequency Vector Models
 - a. Inefficient: Huge sparse vectors (could be 100,000 words!), mostly 0's.
 - i. They don't scale well!
 - b. They don't generalize well:
 - i. TF models don't generalize across NLP tasks and domains
 - ii. Can't be used for transfer learning
 - c. Statistics ≠ Semantics:
 - i. They do not have semantics (there is no ordering)
 - ii. Cannot tell the subtle differences between words
 - iii. What words occur together?
 - iv. How are they used?
 - v. What do words mean?
 - vi. There is no sense in these questions answered in the model
 - vii. Can only find the relationship regarding probability
 - d. Can't handle complex linguistic phenomena:
 - i. Synonyms: car and automobile have no relationship!
 - ii. Polysemy (multiple meanings): sound = audio signal, healthy, body of water (19 noun meanings, 12 adjective meanings, 12 verb meanings, etc.)
 - iii. In python, words are stored as strings and do not mean anything (that is why we assign probabilities to each and conduct the code)
 - e. Short, dense vectors are a better solution!
 - i. Short: 50-1000 dimensions o Dense: Most elements are not 0
 - ii. Efficient: Easier to use as features in machine learning
 - iii. Generalize better than explicit counts
 - iv. May capture synonymy better, since fewer dimensions
 - v. In general, to capture semantics better!
- 8. Vector Models of Meaning: Short and Dense
 - a. Naïve idea: Meaning as a point in space (Osgood et al. 1957) Define a word by abstract characteristics:
 - i. 3 affective dimensions for a word
 - 1. valence: pleasantness
 - 2. arousal: intensity of emotion
 - 3. dominance: the degree of control exerted
 - ii. Hence the connotation of a word is a vector in 3-space

Valence	love	1.000	toxic	0.008
	happy	1.000	nightmare	0.005
Arousal	elated	0.960	mellow	0.069
	frenzy	0.965	napping	0.046
Dominance	powerful	0.991	weak	0.045
	leadership	0.983	empty	0.081

iii.

iv. But this doesn't generalize well to all English words: what about nouns?

- b. Embeddings are short and dense word/text vectors (take a word and put it in a vector)
 - i. "Neural Language Model"-inspired embeddings
 - 1. Word2vec (skipgram, CBOW), GloVe
 - ii. Singular Value Decomposition (SVD)
 - 1. A special case of this is called LSA Latent Semantic Analysis
 - iii. Alternative to these "static embeddings":
 - 1. Contextual Embeddings (ELMo, BERT)
 - 2. Compute distinct embeddings for a word in its context
 - 3. Separate embeddings for each token of a word
- 9. Vector Models of Meaning: Embeddings
 - a. How to capture the meaning of words? By context!
 - b. Ludwig Wittgenstein: "The meaning of a word is its use in the language"
 - c. Distributional Semantics: "You shall know a word by the company it keeps" (Firth 1959)
 - i. Words are defined by the words around them
 - ii. Synonyms can be substituted into the same contexts
 - 1. "The fast car was speeding down the road."
 - 2. "The fast automobile was speeding down the road."
 - 3. The word "car" and "automobile" are synonym and therefore can be used interchangeably
 - d. What does recent English borrowing ongchoi mean?
 - i. Suppose you see these sentences:
 - 1. Ong choi is delicious sautéed with garlic.
 - 2. Ong choi is superb over rice
 - 3. Ong choi leaves with salty sauces
 - ii. And you've also seen these:
 - 1. ...spinach sautéed with garlic over rice
 - 2. Chard stems and leaves are delicious
 - 3. Collard greens and other salty leafy greens
 - iii. Conclusion:
 - 1. Ongchoi is a leafy green like spinach, chard, or collard greens
 - a. We could conclude this based on words like "leaves" and "delicious" and "sauteed"
 - e. Simple way to think about embeddings: A word is placed in vector space by its context
 - f. A skip-gram is a context (+/- N) before and after a word:
 - i. (2,2) Skip-Gram
 - ii. The fast car was speeding
 - g. A word context is a set of words nearby (i.e., +/- N words):

i. Word

Word context:

ii. car

- {fast, speeding, the, was }
- h. Words have similar meanings iff they have similar contexts.
- i. This is a machine learning task (return later)
 - i. Start with a random D-dimensional vectors as a word's initial embedding
 - ii. Train a classifier based on embedding similarity
 - iii. Take a corpus and take pairs of words that co-occur as positive examples
 - iv. Take pairs of words that don't co-occur as negative examples
 - v. Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier performance
 - vi. Throw away the classifier code and keep the embeddings.
- j. Embeddings keep similar words near each other and dissimilar words far apart.

k.

1. They also allow a simple form of analogical reasoning: To solve: "Apple is to tree as grape is to _____?"

- i.
- ii. Use vector arithmetic:
 - 1. X = tree apple + grape
- iii. Search for the closest word (using cosine sim):
 - 1. argminX(cosine sim(tree apple + grape, X)) => vine

m.

- n. Embeddings as a window onto historical semantics
- o. Train embeddings on different decades of historical text to see meanings shift
 - i. ~30 million books, 1850-1990, Google Books data

p.

- q. Word embeddings can be extended to document embeddings:
- r. Generally, a document embedding is simply the sum of its word embeddings.

S.