Évaluation 1 : Asymptotes et branches infinies

Professeur: M. BA

Classe: Terminale S2

Durée: 5 minutes

Note: /5

Nom de l'élève : _

Complétez les questions suivantes en vous aidant du cours.

Question 1(1 point):

On dit que la droite d'équation y = b est une asymptote horizontale à la courbe représentative de f si et seulement si :

$$\lim_{x \to +\infty} f(x) = \underline{\qquad}, \quad \lim_{x \to -\infty} f(x) = \underline{\qquad}$$

Question 2(1 point):

Complétez la phrase suivante : La droite d'équation x = a est une asymptote verticale à la courbe représentative de f si

Question 3(1 point) : Soit $f(x) = \frac{x-2}{x-3}$.

Déterminez les limites de f(x) en $x \to +\infty$, $x \to -\infty$ et $x \to 3$:

$$\lim_{x\to +\infty} f(x) = \underline{\qquad}, \quad \lim_{x\to -\infty} f(x) = \underline{\qquad}, \quad \lim_{x\to 3^-} f(x) = \underline{\qquad},$$

$$\lim_{x\to 3^+} f(x) = \underline{\qquad}.$$

Question 4(1 point):

Montrez que la droite y=x+1 est une asymptote oblique de la fonction $f(x)=\frac{x^2-1}{x-1}$ en $+\infty$.

Question 5(1 point):

Si
$$\lim_{x \to +\infty} f(x) = -\infty$$
 et $\lim_{x \to +\infty} \frac{f(x)}{x} = \underline{\qquad}$ alors (C_f)

Si
$$\lim_{x \to +\infty} f(x) = +\infty$$
 et $\lim_{x \to +\infty} \frac{f(x)}{x} = \beta \in \mathbb{R}^*$ et $\lim_{x \to +\infty} [f(x) - \beta x] = +\infty$ alors ______