UNCLASSIFIED

AD NUMBER

AD102027

CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 27 JUL 1956. Other requests shall be referred to National Aeronautics and Space Administration, Washington, DC.

AUTHORITY

NASA TR Server website; NASA TR Server website

Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, 0 HIO

This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVELLATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW

RESEARCH MEMORANDUM

WIND-TUNNEL INVESTIGATION AT HIGH SUBSONIC SPEEDS OF JET, SPOILER, AND AILERON CONTROLS ON A 1/16-SCALE MODEL OF THE DOUGLAS D-558-II RESEARCH AIRPLANE

By Raymond D. Vogler

Langley Aeronautical Laboratory Langley Field, Va.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

July 27, 1956

CONFIDENTIAL

4UG 3 1956

56AA 46389

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

WIND-TUNNEL INVESTIGATION AT HIGH SUBSONIC SPEEDS OF JET,

SPOILER, AND AILERON CONTROLS ON A 1/16-SCALE MODEL

OF THE DOUGLAS D-558-II RESEARCH AIRPLANE

By Raymond D. Vogler

SUMMARY

An investigation was made in the Langley high-speed 7- by 10-foot tunnel through a Mach number range from 0.60 to 0.96 to determine the characteristics of a wing trailing-edge jet control on a 1/16-scale model of the Douglas D-558-II research airplane. The control was operated with ram air obtained from wing-tip inlets. The characteristics of ailerons and trailing-edge spoilers were also obtained for comparison with the jet control.

The results indicated that at small angles of attack and at a Mach number of 0.60 the jet control was 85 percent as effective as the fully deflected ailerons, but at a Mach number of 0.96 the jet control was 25 percent more effective than the ailerons. This change in relative effectiveness is attributed to the fact that the jet control gave constant effectiveness through the Mach number range while the aileron effectiveness decreased rapidly between Mach numbers of 0.90 and 0.96. The spoilers, which projected 0.052 of the wing chord, were slightly more effective than either the ailerons or jets but showed about the same variation with Mach number as the ailerons. All three controls decreased in effectiveness at the higher angles of attack; however, all showed considerable effectiveness through the angle-of-attack range investigated. Some of the decrease in effectiveness of the jet control at high angles of attack can be attributed to the loss in the ratio of the pressure in the wing plenum chamber to the tunnel stagnation pressure. Increasing the diameter of the holes in the jet controls or increasing the control span gave more control effectiveness as long as the total jet-exit area did not greatly exceed the inlet area. The drag of the jet control was much greater than that of either the ailerons or spoilers. Most of this drag results from the installation of the jet-control system and not from its operation.

CONFIDENTIAL

564A 46389

INTRODUCTION

The growing need for simplified airplane controls operating with smaller actuating forces than are now required has aroused considerable interest in the possibility of using air jets as controls. Some previous investigations of jet controls are reported in references 1 to 4.

The purpose of this investigation was to determine, primarily, the rolling-moment characteristics at high subsonic speeds of trailing-edge jet controls on a 1/16-scale model of the D-558-II research airplane, and to obtain a comparison of the effectiveness of the jet controls with the more conventional solid spoilers and ailerons. Jet controls with hole diameters from 0.063 inch to 0.172 inch were supplied ram air by means of a constant-diameter inlet in a wing-tip nacelle on each wing. Control span and location were also investigated. Force and moment data were obtained through a Mach number range of 0.6 to 0.96 and an angle-of-attack range of -6° to 21° in the Langley high-speed 7- by 10-foot tunnel. In addition, some drag data were obtained with the inlet closed with a faired plug and with the inlet removed so that only the plenum chamber with the thickened trailing edge was attached to the wing.

COEFFICIENTS AND SYMBOLS

The system of axes used and the positive directions of forces and moments used in the reduction of data are shown in figure 1. The origin of the system of axes was on the fuselage center line at a longitudinal position corresponding to the projection of the quarter-chord point of the mean aerodynamic chord onto the fuselage center line. The lift and drag coefficients are determined about the wind axes, and the rolling-, yawing-, and pitching-moment coefficients are determined about the body axes.

$\mathtt{c}_{\mathtt{L}}$	lift coefficient,	<u>Ifft</u> qS	
c_D	drag coefficient,	Drag qS	
C _m	pitching-moment coe	efficient,	Pitching moment
cı	rolling-moment coef	ficient,	Rolling moment

```
Yawing moment
           yawing-moment coefficient,
c_n
           side-force coefficient, Side force
C_{\mathbf{Y}}
\Delta C_1
           net rolling-moment coefficient produced by the control
\Delta c_n
           net yawing-moment coefficient produced by the control
           dynamic pressure, \frac{\rho V^2}{2}, lb/sq ft
q
          mass density of air, slugs/cu ft
           free-stream air velocity, ft/sec
S
          wing area (original model), sq ft
          wing span (original model), ft
ъ
           local wing chord, ft
C
ē
          mean aerodynamic chord of wing, ft
M
          Mach number
           angle of attack of fuselage, deg
           total pressure in wing plenum chamber
p
           tunnel stagnation pressure, lb/sq ft
p_{t}
          weight flow of air, lb/sec
           jet diameter, in.
D
Subscript:
```

MODEL AND APPARATUS

indicates wind axes (see fig. 1)

The plain-wing model used in this investigation was a 1/16-scale aluminum model of the Douglas D-558-II research airplane with two minor

differences. These modifications were an enlarged section at the rear of the model fuselage to allow attachment of a sting support and a model thickness ratio at the wing tip of 10 percent instead of 12 percent. A three-view drawing of the model equipped with wing-tip inlets and jet controls is shown in figure 2 and a photograph in figure 3.

Details of the various controls investigated are given in figures 4 and 5. Controls were on both wing panels for each configuration. jet-control configuration (fig. 4) consisted of a box-like plenum chamber replacing part of the trailing edge of the wing and a wing-tip nacelle having a 7/8-inch-diameter cylindrical inlet. The jet control with the smaller plenum chamber (fig. 4(a)) had 39 jet holes and was investigated with hole diameters of 0.0625 inch, 0.081 inch, and 0.099 inch. The control with the larger plenum chamber (fig. 4(b)) had only 24 holes and was investigated with hole diameters of 0.125 inch, 0.140 inch, 0.156 inch, and 0.172 inch. Part of the wing structure at the entrance to the plenum chambers of both configurations was faired to provide better flow in the throat, and in the larger chamber a turning vane was also used. Studs were used to reduce the flexibility of the walls of the larger chamber. Provision for obtaining aileron deflection by bending was made by cutting a spanwise groove along the 0.85-chord line of the original model without the tip nacelle (fig. 5). The trailing-edge spoiler was made of 0.016-inch-thick steel (fig. 5) and projected 0.052c. Figure 6 shows some modifications to the configuration used in assessing the drag increase.

The model was mounted on a sting-type support system in the Langley high-speed 7- by 10-foot tunnel. The sting was supported by a vertical strut downstream from the test section. The support system allowed the angle of attack of the model to be varied by rotating the model and sting in the vertical plane about an axis through the quarter-chord point of the wing mean aerodynamic chord. The forces and moments were measured by means of an electrical strain-gage balance mounted inside the fuselage. The forces and moments and the total pressure inside the plenum chamber were recorded on calibrated potentiometers.

TESTS

Data were obtained in the Langley high-speed 7- by 10-foot tunnel at Mach numbers of 0.60, 0.80, 0.85, 0.90, and 0.96 and at angles of attack generally from -6° to 21° except at the highest Mach number where the range was less. Tests were made of the original model with no controls, with trailing-edge spoilers, and with ailerons deflected equally and oppositely 7.5° and 15°. The plan form of the model was then changed by adding a wing-tip inlet and replacing part of the wing with a small plenum chamber with 39 jet holes in it at the trailing edge. Data for

this configuration were obtained with the holes closed and with open holes of three diameters - 0.0625 inch, 0.081 inch, and 0.099 inch. Some tests were also made of this configuration with the inlet closed with a round nose plug, and with the inlet removed but with the plenum chamber with jets closed attached to the wing. A larger plenum chamber with 24 jet holes and a wing-tip inlet of the same diameter as that used with the smaller plenum chamber but with a longer tail cone was installed. Tests of this configuration were made with the jet holes closed and with all holes open with jet-hole diameters of 0.125 inch, 0.140 inch, 0.156 inch, and 0.172 inch. In addition, data were obtained with the 0.125-inch jet holes with only 6, 12, and 18 inboard jets open, and data were obtained with the 0.172-inch jets with only 12 and with 18 outboard jets open.

The test Reynolds number (based on the mean aerodynamic chord) varied from about 1.45×10^6 at a Mach number of 0.6 to about 1.75×10^6 at a Mach number of 0.96.

CORRECTIONS

Blocking corrections as determined by the method of reference 5 have been applied to Mach number and dynamic pressure. Jet-boundary corrections were calculated by the method of reference 6 and were applied to the angle of attack and drag. The drag coefficients have also been adjusted to correspond to coefficients where the pressure at the base of the fuselage is equal to free-stream static pressure.

RESULTS AND DISCUSSION

The force and moment coefficients obtained in the investigation are presented in tabular form in tables I to III except for some drag-coefficient results of the effects of various modifications to the jet configuration which are presented in graphic form. There were three basic model configurations as indicated in the three tables of data:

(a) the original model using aileron and spoiler controls, (b) the model with the small plenum chamber and jet controls, (c) the model with the large plenum chamber and jet controls. Each basic configuration had its own no-controls-operating data. The rolling-moment coefficients for the no-controls-operating conditions are not zero and are not the same for all three configurations as a result of model asymmetry and wing modifications.

Lateral-Control Characteristics of Jet Controls

The rolling-moment coefficients C_l of the jet control with small plenum chamber are fairly constant at low angles of attack, are erratic at angles of attack between 6° and 12° , and are considerably reduced at the higher angles of attack as shown in figure 7. This erratic rolling behavior seems to be associated with a wing-dropping phenomenon inherent in the plain-wing model. Increasing the diameter of the jet holes increased the rolling-moment coefficients (fig. 7). The yawing-moment coefficients C_n were small and generally favorable.

The results obtained with larger jet holes in a larger plenum chamber are given in figure 8. The rolling-moment variation with angle of attack is similar to that obtained with the smaller jet holes of the previously discussed configuration, but there is a considerable increase in the magnitude of the rolling-moment coefficients. The yawing moments were generally favorable except at high angles of attack.

There is an increase in rolling-moment coefficient with increase in jet-hole diameter for the large plenum-chamber jet-control configuration as was the case for the smaller plenum-chamber configuration. However, as the ratio of the total exit area of the jet holes to the inlet area into the plenum chamber approaches 1.0 there is only a small increase in rolling-moment coefficient with increase in jet-hole diameter. For example, there is little increase in rolling-moment coefficient with increase in jet-hole diameter between 0.156 to 0.172 (fig. 8) for which the ratios of total exit area to inlet area are approximately 0.90 and 1.10, respectively. With an inlet designed for supersonic speeds there might be an advantage in having jet holes large enough to have a ratio of exit area to inlet area greater than 1.0.

Shorter-span controls starting inboard with 0.125-inch jets and starting at the wing tip with 0.172-inch jets were investigated on the large plenum-chamber jet-control configuration and the results are presented in figure 9. These shorter-span controls were made by sealing 6 jet holes and multiples of 6 holes without other changes to the configuration. The data indicate that, as was found for trailing-edge ailerons over this spanwise location, the rolling-moment coefficients are generally proportional to the span of the control for controls starting either at the tips or the inboard end of the controls.

Comparison of Jet Controls with Ailerons and Spoilers

A comparison of the effectiveness of the jet control with the ailerons of the original model and with trailing-edge spoilers projected 0.052c is given in figure 10. The rolling and yawing moments of the ailerons were opposite in sign to the moments of the spoiler and jet

controls but have been plotted with the same sign for easier visual comparison. The erratic rolling behavior of the model at moderate (between 5° and 12°) angles of attack with all three controls is evident. At small angles of attack the jet control is about 85 percent as effective as the ailerons fully deflected $(\pm 15^{\circ})$ at a Mach number of 0.60 but becomes more nearly equal as the Mach number increases, and at a Mach number of 0.96 the jet control is about 25 percent more effective than the ailerons. The trailing-edge spoiler is more effective than either the jet or the ailerons at small angles of attack. At angles of attack between 5° and 12° the effectiveness of all three controls decreases, with the jet-control effectiveness decreasing at a faster rate and becoming less effective than either the ailerons or spoilers at high angles of attack. At angles of attack near zero lift ($\alpha = -2$), the jet control has almost constant effectiveness through the Mach number range while both the aileron and spoiler controls show a decrease in effectiveness at M = 0.96 (fig. 11). However, all controls retain considerable effectiveness throughout the angle-of-attack and Mach number range investigated. The yawing moments of all controls are favorable in the low angle-of-attack range but become less favorable as the angle of attack increases above 80 or 100. (See fig. 10.)

Pressures and Weight Flow

Pressures in the large plenum chamber were obtained for all jethole diameters and spans investigated. The variation of the ratio of plenum-chamber pressure to tunnel-stagnation pressure with angle of attack is given in figure 12 for the various jet controls. No pressures were obtained for the small plenum-chamber configuration. The pressure ratios of figure 12 show a decrease as the jet diameter or control span increases, as would be expected. There is also a decrease in pressure ratio with increase in angle of attack. This decrease in pressure ratio with angle of attack accounts for some of the decrease in effectiveness of the jet control with angle of attack. Some of the pressure loss in the plenum chamber at high angles of attack might be regained with a better designed inlet thereby increasing the rolling moments by providing a larger quantity of air for the jets.

A knowledge of the actual weight of air used by the jet control would be useful if the air necessary for control were obtained from some other source such as an auxiliary jet engine. Calculated values of weight flow will be only as accurate as the estimated orifice-flow coefficient of the jets. Flow coefficients are obtainable for jets operating under specified conditions but the effect on flow coefficients of the shape of the plenum chamber and the adjacency of the jet holes to each other is unknown. Consequently, the weight-flow values in figure 13 are based on the actual jet diameters without any flow-correction factor. It is roughly estimated that the correct values are 60 to 86 percent of

the values given in figure 13. However, comparisons of the effectiveness of controls of different span and jet diameters based on relative weight flows would probably be as valid as if the comparisons were based on the actual weight flows of air.

The data shown in figure 13 indicate that a control with smaller jet holes and a longer span is more effective per pound of air used than controls with larger jet holes and shorter spans. For instance, the 0.125-inch jets extending from 0.55 to 1.00 semispan and the 0.172-inch jets extending from 0.66 to 1.00 semispan produce approximately equal rolling-moment coefficients but the larger-diameter shorter-span control uses about 35 percent more air. This would be an important point to consider if the air for the controls were furnished by an auxiliary jet engine, but from a structural standpoint on some airplanes it might be better to use controls of shorter span and larger jets if ram air is used for operation.

Drag

It was anticipated that the drag of the model with the jet control would be considerably higher than that of the model with the original ailerons since the jet system was designed primarily to produce roll rather than low drag in this investigation. The drag data are presented in figure 14 and show that not only is the drag greater but most of it is still present when the control is not operating. At low lift coefficients, the model with the nonoperating jet control has drag coefficients about 75 percent greater than the original model with ailerons undeflected (plain wing). Also the model with operating jet control has coefficients 50 to 65 percent greater than the model with ailerons fully deflected. A large part of the drag of the jet control probably could be eliminated if the wing-tip inlets were replaced by an internal duct system taking air from the engine. It is also believed that the drag could be considerably reduced with wing-tip inlets designed for low drag. For the nonoperating condition, the inlets might have exits designed to allow the air to pass directly through with minimum shocks and skin friction drag. A few tests were made to determine whether the excess drag of the jet control could be materially reduced. A faired nose plug in the inlet reduced the excess drag of the nonoperating jet control by 55 to 75 percent as shown in figure 15. In practice the plug might be replaced by an eyelid type of closing device. A considerable part of the excess drag is produced by the thickened trailing edge of the wing at the lower Mach numbers but the thickened trailing edge becomes less objectionable as the Mach number increases.

CONCLUSIONS

A wind-tunnel investigation to determine the characteristics of a jet control operated by ram air and located at the wing trailing edge of a 1/16-scale model of the D-558-II research airplane resulted in the following conclusions:

- 1. At small angles of attack and at a Mach number of 0.60 the 45-percent-span outboard jet controls are 85 percent as effective as the original ailerons fully deflected, but at a Mach number of 0.96 the jet controls are 25 percent more effective than the ailerons. Trailing-edge spoilers of approximately the same span as the other controls and projecting 0.052 of the wing chord are more effective than the fully deflected ailerons or the jet controls at small angles of attack.
- 2. At angles of attack near zero lift the jet controls give almost constant control effectiveness through the Mach number range investigated, whereas the effectiveness of the spoilers and the allerons decreases between Mach numbers 0.90 and 0.96.
- 3. All three controls decrease in effectiveness at moderate (5° to 12°) angles of attack with the jet control decreasing at a faster rate and becoming less effective than the spoilers or the ailerons at high angles of attack. Some of the decrease in effectiveness of the jet control can be attributed to the loss in pressure ratio in the wing at the higher angles of attack. However, all controls retain considerable effectiveness through the angle-of-attack range investigated.
- 4. Increasing the jet diameter or increasing the control span increases the rolling-moment coefficients as long as the total jet-exit area does not greatly exceed the inlet area.
- 5. The drag of the jet control greatly exceeds that of the aileron and was more than that of the spoiler; however, most of the drag results from the installation of the jet system and not from its operation.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., May 9, 1956.

REFERENCES

- 1. Göthert, B.: Effectiveness of a Spoiler at High Subsonic Speeds.

 Reps. and Translations No. 364, British M.O.S.(A) Völkenrode, 1947.
- 2. Attinello, John S.: An Air-Jet Spoiler. NAVAER Rep. DR-1579, Bur. Aero., Aug. 1953.
- 3. Lowry, John G., and Turner, Thomas R.: Low-Speed Wind-Tunnel Investigation of a Jet Control on a 35° Swept Wing. NACA RM L53109a, 1953.
- 4. Vogler, Raymond D., and Turner, Thomas R.: Wind-Tunnel Investigation at Transonic Speeds of a Jet Control on a 35° Swept Wing Transonic-Bump Method. NACA RM L55K09, 1956.
- 5. Hensel, Rudolph W.: Rectangular-Wind-Tunnel Blocking Corrections Using the Velocity-Ratio Method. NACA TN 2372, 1951.
- 6. Gillis, Clarence L., Polhamus, Edward C., and Gray, Joseph L., Jr.: Charts for Determining Jet-Boundary Corrections for Complete Models in 7- by 10-Foot Closed Rectangular Wind Tunnels. NACA WR L-123, 1945. (Formerly NACA ARR L5G31.)

TABLE I.- DATA OBTAINED WITH AILERONS AND SPOILERS
ON MODEL WITH ORIGINAL WINGS

	PI	ain	wing	······	<u> </u>				-	edge	spoi 52c.	lers	
a	CL	$c_{\mathcal{D}}$	Cm	C_{l}	Cn	CY	a	CL	$c_{\mathcal{D}}$	Cm	Cz	Cn	Cy
			M = C	.60						M = 0.0	50	<u> </u>	<u> </u>
-4.09 -1.97 0.15 2.28 4.40 6.53 8.64 10.68 12.71 14.72 16.75 18.81 20.83	1593 0028 -1568 -3158 -3158 -3158 -7244 -7663 -7837 -789 -8306 -8995 -9397	.0218 .0180 .0202 .0279 .0459 .0878 .1365 .1834 .2241 .2365 .3050 .3644	.0935 .0568 .0237 -0048 -0342 -0667 -0243 -0445 -0169 -0279 -00601 -0896 -1174	-:0005 -:0004 -:0003 -:0006 -:0016 -:0016 -:0009 -:0016 -:0026 -:0026	.0001 .0000 .0001 -0004 0004 0004 0006 .0006 .0005	.0102 .0091 .0086 .0067 .0046 .0097 .0125 .0065 .0064 .0052 .0052	-4.09 -1.96 0.16 2.28 4.43 6.57 8.68 10.72 12.76 14.77 16.81 18.84 20.57	1679 0049 .1575 .3346 .5112 .7011 .8244 .8530 .8603 .8746 .9082 .9626	.0405 .0364 .0369 .0436 .0641 .1068 .1612 .2084 .2497 .2337 .3372 .3931 .3195	.1055 .0660 .0293 0093 0456 1001 1145 0694 0613 0674 0978 1255 1542	-0355 -0356 -0354 -0334 -0324 -0285 -0266 -0265 -0207 -0187 -0196 -0210		.0144 .0152 .0144 .0155 .0147 .0119 .0061 .0041 .0020 .0014 -0019 -00046 -0114
			M = 0.	80		1			/	W = 0.8	10		
-4.13 -1.93 0.27 2.49 4.71 6.84 8.91 10.94 13.00 15.03 17.10 19.19 21.23	17.18 -0079 -1870 -3824 -5766 -6773 -7316 -7267 -7617 -7943 -8590 -9235 -9590	+0201 +0163 +0196 +0322 +0652 +1092 +1540 +1899 +2343 +2725 +3880 +4382	-108Q -0478 -0038 -0027 -0411 -0543 -0479 -0201 -0295 -0512 -0797 -1081 -1305	0007 0007 0007 0010 0014 0011 0018 0024 0034 0035 0043	.0001 .0000 0003 0004 0014 0003 0003 0001 .0019 .0029	.0040 .0048 .0036 .0037 .0034 .0030 .0082 .0039 .0032 .0009 0016	-4.13 -1.92 0.28 2.51 4.73 6.93 6.96 11.01 13.05 15.07 17.14 19.22 21.31	1823 .0062 .1970 .3921 .6117 .7762 .7854 .8055 .8372 .8580 .9083 .9736 1.0311	.0398 .0392 .0373 .0487 .0809 .1328 .1733 .2142 .2585 .2994 .3598 .4121	.1214 .0793 .0361 0034 0628 0868 0865 0716 0949 1209 1476 1748	0349 0342 0333 0327 0292 0248 0211 0219 0212 0221	0053 0052 0041 0033 0003 0006 0009 0011 0021 0054	.0155 .0162 .0155 .0153 .0140 .0090 .0059 .0005 -0005 -00022 -0048 -0072 -0096
			M = 0.	85					Λ	1 = 0.8	5		
-4.15 -1.94 0.30 2.56 4.78 6.89 8.95 11.01 13.08 15.12 17.19 19.29 21.37	1923 0045 -1958 -4095 -5945 -6698 -7011 -7325 -7759 -8094 -8422 1-0023	.0210 .0166 .0204 .0373 .0762 .1149 .1562 .1948 .2393 .2811 .3989 .4617	.1193 .0754 .0402 0030 0444 0443 0290 0176 0293 0530 0871 1169 1412	.0000 .0001 .0000 -0003 0007 .0013 0010 0021 0028 0037 0031	.0005 .0004 .0001 0002 0006 .0004 .0001 .0003 .0037 .0036	.0009 .0010 .0011 .0027 .0018 .0015 .0002 0004 .0048 0038 0070 0075	-4.14 -1.92 0.33 2.58 4.85 6.99 9.02 11.07 13.12 15.16 17.24 19.34	1914 -0091 -2088 -4312 -6621 -7729 -7780 -8010 -8345 -8679 -9325 1-0078	.0389 .0341 .0379 .0540 .0930 .1374 .1770 .2164 .2668 .3061 .3645 .4295	.1330 .0840 .0437 0069 0814 1015 0835 0890 0784 1007 1530 1613 1907	0335 0335 0332 0318 0259 0259 0207 0219 0209 0218 0223	0050 0048 0047 0045 0039 0007 0006 0009 0011 0013 0041 0057	.0143 .0164 .0168 .0157 .0135 .0076 .0042 .0027 0004 .0008 0036 0061
			M = 0.	90		1			/	M = 0.	90		
-4.19 -1.92 0.37 2.61 4.82 6.95 9.01 11.10 13.21 15.27 17.37 19.44 21.55	2156 -0032 -2389 -4441 -6085 -6997 -7494 -8172 -8753 1-0009 1-0744	.0233 .0177 .0269 .0515 .0877 .1228 .1602 .2535 .3076 .4287 .5006	.1392 .0866 .0243 -0327 -0571 -0488 -0295 -0273 -0357 -0628 -0991 -1361 -1659	0003 0003 0004 0004 0004 0005 0018 0026 0023 0035	.0004 .0003 .0003 .0000 .0001 .0004 .0004 .0009 .0009 .0009 .0019	.0039 .0030 .0034 .0017 .0014 .0010 .0026 .0011 .0010 0025 0029 0059	-4.18 -1.90 0.38 2.68 4.86 7.05 9.09 11.17 13.31 15.35 17.40 19.51 21.55	2236 -0074 -2471 -5037 -6693 -7839 -7891 -8297 -9167 -9458 -9458 1-0725 1-0949	.0430 .0357 .0452 .0716 .1086 .1503 .1863 .2294 .2927 .3390 .3939 .4672 .5175	-1576 -0968 -0247 0671 1297 1132 0836 0748 0883 1089 1452 1875 2038	0329 0326 0319 0297 0264 0210 0200 0191 0197 0194 0199 0207	0044 0048 0044 0031 0025 0008 0009 0009 0009 0009 0009 0009	.0172 .0178 .0170 .0137 .0132 .0090 .0039 .0022 .0015 0019 0035 0066
			M = 0.	96		{				M = 0.	96		ĺ
-4.15 -1.91 0.35 2.60 4.87 7.03 9.24 11.40 13.50	•8851 •9505	.0424 .0377 .0440 .0691 .1074 .1440 .2111 .2658 .3197	-1620 -0966 -0226 0485 0995 1020 1477 1146 0895	0005 0014 .018- .0001 0003 .0000 .0008 .0013	.0010 .0007 .0002 0001 .0000 .0001 0002 0003	+0033 +0047 +0051 +0036 +0025 +0033 -+0009 -+0013 +0004	-4.15 -1.90 0.37 2.63 4.90 7.10 9.20 11.48 13.58	2116 -0072 -2408 -4660 -6760 -8073 -8447 1-0839 1-0831	.0510 .0633 .0904 .1287 .1694 .2041	.1791 .0914 0021 0863 1519 1569 1301 2447 1556	0303 0291 0292 0289 0246 0241 0158 0157	0018 0020 0010 -0013 -0000 -0006 -0012 -0017 -0020	+0100 +0117 +0098 +1163 +0060 +0059 +0002 -+0035 -+0023

TABLE I.- DATA OBTAINED WITH AILERONS AND SPOILERS
ON MODEL WITH ORIGINAL WINGS - Concluded

	Aile	rons	defle	cted (equal/	V				defle		•	y
	and	oppo	sitely	7.5° 6	ach.		<u> </u>	and	oppo	sitely	15°	each.	
a	CL	c_D	Cm	C_{l}	Cn	Cy	a	CL	C_D	Cm	Cz	Cn	Cy
			M = 0							M = 0.6			
-4.09 -1.97	1610 -0013	+0228 +0186	•0983 •0602	.0172 .0173	40026 40028	0046	-4.09	1689 0067	.0283 .0244	•1006 •0607	.0311 .0316	+00 44 +00 44	0154
2.27	•1442 •3053	+0185 +0285	+0022	.0171 .0161	.0025	-+0060	2.27	.1473 .3083	.0259	+0317 -+0001	•0307 •0295	.004Z	0155
4.40	.4767	+0478	0330	.0156	.0014	0048	j 4.43	.5116	.0543	0310	.0286	e e e e e e e e e e e e e e e e e e e	0134
4.54 1.60	•6347 •7238	+0875 +1362	0614	.0118 .0093	0007	0012	8.60	.6349 .7268	.0880 .1404	-+0629 -+0647	•02 66	+0026 +0010	0121
10.66	•7521 •7742	.1807 .2216	0353 0107	•0071 •0102	.0001	0023	10:66	•7533 •7677	.1819	0398	•0204 •0193	.0007 .0010	.067
14.71	ı7834	42573	0207	.0116	0005	0041	14.71	.7861	.2441	0228	.0221	0005	004
16.74	.0761	+30,40 +3531	0549 0804	.0117 .0097	-60003	0061	16.73	.8150 .8680	• 3049 • 3544	0544	.0212	0006	008
20.83	.9398	.4128	1114	.0066	.0033	0110	20.84	.9447	.4210	1075	.0132	.0030	010
			M = 0.	80		İ			,	W = 0.8	0		
-4.14 -1.94	1818	.0215 .0172	•1110 •0734	.0177 .0178	.0025 .0023	0075	-4.14 -1.94	1841 0023	.0284	•1156 •0749	+0307 +0305	.0050 .0047	~.0129
0.24	·1010	.0204	.0382	.0170	.0022	0076	0.25	.1788	.0249	.0396	.0293	.0044	0129
2.47	,344'S .5383	.0325 .0627	+0005 -+0365	.0157	.0022	0091 0105	2.48	•3765 • 568 8	.0373	+0023 -+0384	•027 6 •0277	• 00 42 • 00 42	011
4.81	.6649 .7023	.1064	~•0491 ~•0346	.0147 .0121	.0017 .0007	0071	8.90	•6841 •7237	+1139 +1564	0501 0392	.0248 .0184	.0032	~.0090
10.92	.7125	1871	0159	.0114	.0008	0044	10.93	67257	.1955	0095	.0204	.0023	0061
12.98	•7509 •7677	·2296	0171 0493	.0118 .0141	-,0008	0074	12.96	•7410 •7580	· 2337	0097 0414	+0233 +0248	•0024 •0002	0040
17.06	.8340	.3193	0756	.0135	0012	0140	17.06	.8292	• 32 😘	-+0484	+0243	0010	0040
19.14 21.23	.7595	•3749	~•1003 ~•1234	.0113 .0101	.0001 .0015	0162	21.23	. 2766 . 7642	•3830 •4470	0996 1192	•0221 •01 95	•0003 •0021	005
			M = 0.	85			}		/	N = 0.8	5		
-4.17	2048	.0221	•1227	.0176	.0025	-00100	-4-15	1973	.0270	.1255	+0295	.0049	0104
-1.95 0.28	0141 -1803	.0170 .0208	•0788 •0407	.0176 .0175	•0025	0098	-1.92 0.32	40109 +2045	.0219 .0267	•0776 •0425	.0295	.0047 .0045	0110
2.52	.3833	.0345	0005	.0162	•0021	0108 0120	2.58	•4297	.0444	0046	+0274	•0044	011
6.88	.5847 .6496	.0750 .1156	0463	.0153 .0145	•0021 •0017	0112	4.79	•4130 •4925	.0817	0511 0520	+0282 +0226	.0052 .0031	013
8.94 11.01	.6938 .7329	•1549° •1971	0282 0142	.0153 .0112	•0015 •0011	0086	11.06	•7068 •7624	.1625	0284	.0237 .0193	.0030	045
13.05	.7551	. 2350	0201	.0111	.0014	0093	13.06	.7633	.2441	0172	.0218	.0029	004
15.10 17.14	.8050 .8557	. 2825 . 3315	0534	.0140 .0133	0004 0010	0070	19.10	•8044 •8551	·2891 • 2386	0919 0611	.0234	~.0003 ~.0015	004
19.23	•9112 •9683	• 3873 • 4570	1125 1360	.0113	0005	0106	21.36	49270	13996	1090 1320	.0211	0003	003
	V/202	*****	M = 0.5		*****					M = 0,.		****	
-4.21 -1.92	2358	•0259 •0190	.1428 .0850	.0174 .0171	•0024 •0019	0099	-4.19 -1.91	2204 .0096	.0306	+1445 +0868	.0288	. 00 44 . 00 44	0081 010
0.36	.2249	•0274 •0511	-0272 0281	.0167 .0141	.0015 .0021	0104	2.47	•1939 •4603	.0333	-0253	0287 0228	.0040	009
4.79	.5824	.0859	0595	.0144	.0014	0090	4.84	+6271	.0962	0762	.0254	.0034	0071
6.92 9.01	•6464 •7031	•1205 •1651	0499	•0153 •0124	.0012 .0013	0098	9.01	+6965 +7122	.1319 .1699	0941	.0233 .0183	.0034	004
11.08	.7449	. 2039	0221	.0109	.0013	0077	11.15	+7947	.2222	0132	.0171	.0027	002
13.18	.8074 .8887	. 2544 . 3144	0299	•0099	.0015 .0013	0102	13.21	+8294 +8637	• 2473 • 3125	0277 0600	.0148 .0215	.0030 0002	003
17.31	•9150	. 3603	0945	.0110	.0002	0000	17.31	.9133	. 3664	0997	.0213	0010	0011
19.37 21.49	•9600 1•0411	•4130 •4887	1267 1564	•0102 •0079	0008 -0014	0083	19.40	•9 798 1 00604	• 4297 • 3040	1289 1551	.0190 .0160	.0015	0021
			M = 0.	96		1	1			M = 0.	<i>96</i>		
-4.19 -1.93	2234 0144	.0436 .0368	.1634 .0945	.0110 .0103	.0013	0038	-4.17 -1.90	2132 .0084	.0490	.1458	.0194 .0194	.0027 .0020	T:0031
0.32	-1987	.0448	.0194	.0094	0001	0043	0.20	•1814	.0561	.0129	.0173	.0008	0007
2.57	.4048 .5744	.0717 .1042	0510 0881	.0113 .0192	.0000	0044	2.59	•4290 •6183	+0739 +1153	0045	.0172 .0205	•0007 •0007	0021
7.00	.7005	. 1430	0862	-0104	•000Z	0034	7.05	•7500	+1580	1264	.0179	.0011	0021
9.19	•7964 •9661	• 1891 • 2678	0591 1279	.0116 .0080	-,0003	+0002 0018	9.13	49487	.1953. .2711	-,1216 -,1691	.0154	.0016	0042
13:58	3.0670	- 3466	1255	.0074	0012	~.0049	13.54	1.0485	÷3473	-+1271	.0135	0004	0010

TABLE II. - DATA OBTAINED WITH JET CONTROLS INCLUDING WING-TIP INLETS AND SMALL PLENUM CHAMBER IN WINGS

	Je	ts cl	osed.	· · · · · · · · · · · · · · · · · · ·					•	nine (r iets		- inch	-
a	CL	C_D	Cm	Cı	Cn	Cr	a	C_L	c_D	Cm	C,	Cn	Cy
} <u>-</u>			M = 0	· · · · · · · · · · · · · · · · · · ·				٠٢_			<u> </u>	0,11	37
	200-				0004		1	- 2020	.0398	N = 0.6	012)	~.0024	.0068
-1.98	2005 0217	.0388 .0329	•1196 •0688	0027 0028	0006	0012	-4.11	2030 0204	.0343	•0692	0128	0024	+0082
2.20	•1566 •3350	•0360 •0476	+0253 -+0264	0029 0028	0013 0012	0031	2.30	•1584 •3438	.0373 .0487	+0247 -+0283	0127	0035 0025	+0043 +0043
4,43	•3190	.0714	0633	0024	0011	0047	4.42	•5177	.0725	0648	0117	0024	.0028
8.54		•1150 •1649	0983 1077	0022	0014 0017	0055	8.64	•6751 •7812	1164	1034 1129	0100	0022 6023	+0016 +0015
10.69	. 8096	.2120	0462	~.0029	0011	•0002	10.71	.0232	.2170	0814	0105	0029	0038
12.74	•8397 •8571	• 2607. • 3022	0514	0024 0023	0014 0014	0073	12674	.8506 .8715	.2634 .3078	0844	0080	0014	-+0030 -+0052
16,79	.9076	•3531	1023	0038	0004	0089	16.80	.9147	.3573	1193 1492	0085 0097	0005	-+0045
18.85		•4125 •4670	1338 1608	0061	0001 -0017	0120 0166	18.83	•9630 1•0143	.4101 .4708	1711	0110	.0011	0101
}			M = 0.	80		ĺ	1		A	N = 0.8	0		
-4.18	2222	0399	.1395	0029	0008	0060	-4.18	2297	.0408	.1407	֥0130	0019	•0019
-1.95 0.26		.0337 .0382	.0804 .0256	0025	0011 0012	0060	-1.96 0.24	0120 -1928	10344	+0777 +0259	0130 0128	0019 0021	•0029 •0024
2.48	-3918	0550	0255	0030	0012	0059	2.50	.4090	.0581	0283	0131	0022	.0044
4.69	•5823 •7152	.0879 .1345	0690	0029 0035	0020 0022	0029	4.70	•5975 •7270	.0920	0769 1004	0127 0117	-+0027 -+0023	.0039
8.96	-7826	-1868	0772	0034	0009	~.0082	8.97	.8026	.1922	0951	0053	0003	0036
11.00	• 7966 • 8437	+2292 +2803	0596 0705	0019	0015 0013	0071 0105	11.00	.8045 .8402	·2329	0749	0076	0017 0014	•0003 -•0015
13.10	.8802	.3254	1010	0044	0010	0079	15.11	.8745	.3315	1169	0097	0006	0012
17.18	1.0030	• 3859 • 4440	~.1396	0049 0057	0005	0126 0132	17.17	49555 140179	.3875	1552	0107 0101	0001 0007	~.0023 ~.0025
21.33		.5171	2155	0058	.0027	0203	21.33	1.0819	.5203	2198	0112	.0028	0141
			M = 0.	85		}	1		A	1 = 0.8	5		
-4.18	2262	.0392	.1444	0940	0004	0052	-4.20	2369	.0422	.1514	0133	0020	•0017
-1.95 0.32	0119 .2194	.0344	.0788 .0208	0039	0006	0038	0.33	0074 .2258	+0320 +0402	.0807 .0184	0129 0134	0021 0025	•0038 •0057
2 - 57	• 4365	.0627	0383	0033	0008	-+0053]	2.58	•4578	.0452	0463	0139	0023	.0048
4.79	.6200 .7483	.0991 .1461	0803 0993	0046	~.0023 ~.0011	0015	4.81	•6455 •7738	.1015 .1516	~.0921 ~.1108	0143	0034 0020	•0045 •0037
9.01	•7724	.1890	0792 0794	0049	0008	0031	9.05	.8096 .8352	.1955 .2411	~.0945 ~.0837	0106	0014	•0039 •0019
11.08	•8190 •8610	•2381 •2870	0791	0043	0003	0069	13.15	.8726	.2876	0984	0098	0013	0007
15.22	•9153 •9667	.3406 .3973	1181 1605	0049 0054	0002 .0009	0050	17.30	.9350 1.0026	+3449 +4101	1377 1811	0097 0097	0009 0003	0013
19.36	1.0389	.4652	2039	0056	.0011	-+0094	19.37	1.0584	. 46 98	2215	0093	.0000	0080
21.45	1.1108	•5386	2375	0093	.0058	0158	21.48	1.1318	.5460	2467 Id - 0	0161	+0058	-+0106
			M = 0.5	-				- 2072		W = 0.5		~•0014	•0020
-4.21 -1.92	0055	.0468 .0397	•1795 •0922	0039	0001 0005	0009	-4.20 -1.72	2570 .0046	.0364	•1875 •0877	-,0131 -,0134	~+0020	+0029
0.36 2.60	• 2985 • 4486	.0474 .0741	•0075 -•0524	0037 0031	0007 0007	0022	2.62	•2671 •4732	.0491	0023	0138	~•0022 -•0021	•0034 •0032
4.84	•6345	1126	0965	~.0060	0016	0001	4.54	.6386	.1152	1086	0147	0031	.0042
7.03 9.12	•7697 •8210	+1598 +2074	1097 0916	~.0030 ~.0089	0011 0014	0025	7.03	•7747 •8276	.1583	1189	0121 0121	0024 0023	+0009 -+0010
11.20	•8495	.2518	0797	~.0028	0005	0046	11.21	.8739	.2564	0995	0089	0015 0010	0034
13.30	•9096 •9672	•3054 •3651	0864	~.0035 ~.0045	0002 0001	0069	13.31	.9339 1.0181	•3110 •3797	1105 1487	0099	0004	0078
17.43	1.0360	•4297	1891	0053	.0007	0104	17:46	1.0647	.4387 .5085	2058	0104	•0009 •0022	0110
19.51 21.62		•4965 •5773	2273 2741	0090	.0015 .0044	0166	21.65	1.2030	.5899	2908	0151	•0053	0173
		•	M = O.	96			ł			W = 0.	96		
-4.10	2357	.0665	.1922	0027	+0003	0056	-4-17	2319	.0401	a 1900	0135	0006	+0038
-1.91 0.37	0057	+0560 +0639	•0995 •0070	0034 0038	0006 0015	7.0038	0.36	.0021 .2370	.0559	0075	0131 0146	0012 0018	.0030
2.62	•4417	+0924	0619	0014	0009	0034	2.57	.4144	.0880	0661	~+0130.	-:0016	•0044
7.11		•1299 •1936	1210 1994	0018	0012 0013	009Z	7.10		•1268 •1854	-,1833	~+0099 ~+0098		.0020 .0012
9.37	1.0238	.2676	2369	0057	0012	~.0089	9.35	1.0315	.2761	2784	0127		0036
11.47	1.0908	43272 4106	2572 2516			0107 0120	11.73	1.1561	0 292 (-14700	0121		
						1	<u> </u>					<u> </u>	

TABLE II. - DATA OBTAINED WITH JET CONTROLS INCLUDING WING-TIP

INLETS AND SMALL PLENUM CHAMBER IN WINGS - Concluded

## CL CD Cm Cl Cn Cy	diameter jets open. $C_L C_D C_m C_3 C_n C_{\gamma}$ $M = 0.60$ 1997 .0409 .119201640024 .0146 .0146 .0146 .0146 .0146 .0146 .0146
## = 0.60 -4.111995 .0410 .117401550027 .0065 -4.101-1980210 .0357 .068501540028 .0081 -1.980 .0155 .1374 .0393 .022401560027 .0119 .0.16 .1 .2 .2 .30 .3422 .0510 .0225011880025 .0119 .2 .30 .3422 .0510 .0225011880025 .0119 .2 .30 .3422 .01201 .0103 .0132 .0027 .0130 .0012 .4 .4 .3 .9 .4 .3 .9 .4 .3 .9 .2 .30 .3422 .01201 .0103 .0132 .0027 .0130 .055 .0052 .019 .0 .4 .3 .9 .4 .4 .3 .9 .4 .4 .3 .9 .4 .4 .3 .9 .4 .4 .3 .9 .4 .4 .3 .9 .4 .4 .3 .9 .4 .4 .3 .9 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4	M = 0.60
-4.111995 .0410 .117401550027 .0065 -4.1011980210 .0357 .068501540028 .0081 0.15 .1574 .0393 .022401560029 .0139 2.30 .3422 .0510024501480025 .0119 2.30 .3443 .5217 .0760 .0681 .014700300012 2.30 .3424 .05101201106301320027 .0130 4.43 .30 .3217 .0760 .0681 .014700300012 4.43 .30 .30 4.43 .30 .3217 .0081 .0119 .0022 .0129 4.43 .30 .30 4.43 .30 .30 4.43 .30 .30 4.43 .30 .30 4.43 .30 .30 4.43 .30 .30 4.43 .30 .30 4.43 .30 .30 4.43 .30 .30 4.43 .30 .30 4.43 .30 .30 4.43 .30 4.4	•1997 •0409 •1192 -•0164 -•0024 •0146
-1.98	•1997 •0409 •1192 =•0164 =•0024 •0146
## = 0,80 -4.192291 .0425 .138601540022 .0069 -1.950 -1.960120 .0360 .076501490024 .0093 .1.950 0.42 .3156 .0431 .022901540027 .0113 .0.29 .2 2.50 .4129 .0598032301520029 .0118 .2.50 4.70 .5977 .0925079501510031 .0130 .4.70 .6 8.48 .7293 .1402102801310026 .0115 .8.89 .7 8.498 .8124 .1952101700390001 .0023 .8.97 .8 11.00 .8132 .2946079800090018 .0050 .11.00 .8 13.07 .8535 .2222090001080012 .0030 .13.07 .8 13.12 .9027 .3347124901130010 .0005 .11.00 .8 17.05 .9556 .3882312201180007 .0006 .17.18 .9 19.23 .1.0119 .44932036 .01170013 .0011 .19.22 1.0 21.33 1.0823 .519722560131 .0035 .0014 .17.18 .9 ## = 0,85 ## = 0,8	00174 0365 00685 -00160 -0025 -0140 01678 0598 -0222 -0167 -0023 -0180 03459 0511 -0028 -0161 -0024 -0160 05278 00765 -00672 -0183 -0026 -0134 05867 -1196 -1037 -0143 -0025 -0131 07786 -1699 -1159 -0143 -0025 -0128 08205 -2177 -0080 -0128 -0095 -0095 08521 02444 -00726 -0089 -0000 -0000 08248 -3143 -0930 -0013 -0001 -0001 09244 -3628 -1219 -0113 -0015 -0012 09241 -4793 -1803 -0136 -0027 -0090
-1.94 -0.0120 0.0360 0.0765 -0.0149 -0.0024 0.0093	M = 0.80
-4.192331 .0419 .149901570022 .0027 -4.192 -1.930012 .0355 .075701580025 .0032 -1.950 0.31 .2116 .0030 .020501630030 .0005 0.33 .2 2.58 .4573 .06730049001660030 .0004 2.559 .6 4.81 .6450 .1055095401690039 .0065 4.81 .6 6.96 .7619 .1514112601570031 .00032 6.95 .7 9.05 .8151 .19641056007700150049 9.04 .8 11.10 .8377 .244609400077001500031 11.10 .8 13.16 .8800 .29381062011600120077 13.15 .8 13.23 .9395 .35131439012200080081 11.0 .8 17.30 1.0016 .41081844012200060012 17.28 .9 19.37 1.00490 .44932188010600140165 19.37 1.0 21.46 1.1266 .547125730167 .00600231 21.455 1.1 M = O, 9O -4.212573 .00483 .180101620021 .00250070 2.58 .40 4.85 .6481 .11731118 .01700025 .0060 4.85 .64 7.03 .7786 .1835123101540035 .0080 4.85 .64 7.03 .7786 .1835123101570025 .0060 4.85 .68	### ##################################
-1.93 -0.012 0.0355 0.0737 -0.0158 -0.0030 0.0032 -1.955 -0.0030 0.31 0.216 0.0430 0.0205 -0.0163 -0.0030 0.0045 0.33 0.2 2.58 0.4573 0.0673 -0.0490 -0.0166 -0.0030 0.0044 2.559 0.4 0.0030 0.0045 0.0035 0.0045 0.0035 0.0046 0.0035 0.0046 0.0035 0.0046 0.0035 0.0046 0.0035 0.0046 0.0035 0.0046 0.0035 0.0032 0.0046 0.0035 0.	M = 0.85
-0.212573 .0483 .180101620021 .0025 -4.202 -1.920023 .0003 .087401610022 .0039 .01.920 0.37 .2520 .0515 .000001660026 .0070 .0.38 .2 2.61 .4728 .0802070701570029 .0060 .2.58 .4 4.85 .6481 .1173111801700035 .0060 .4.85 .6 7.03 .7788 .1835125101540035 .0034 .7.04 .7 9.13 .88313 .2121108801500027 .0006 .9.14 .8	2317 0430 01509 -0178 -0022 0064 10109 0109 0109 0185 0830 -0177 -0021 0077 12250 0449 0174 -0176 -0024 0105 14711 0706 -0523 -0183 -0029 0127 14711 0706 -0523 -0184 -0038 0126 1477 11503 -1129 -0164 -0038 0126 126 127941 01503 -0129 -0016 -0026 0106 18137 02041 -0109 -0015 -0011 0045 18137 02444 -0020 -0123 -0018 0039 18791 02444 -0020 -0123 -0018 0039 19432 03822 -1443 -0134 -0001 0018 0039 19432 03822 -1453 -0134 -0001 0017 0008 10620 04760 0229 -0122 -0001 0008 10620 04760 0229 -0122 -0001 0008 10620 04760 0229 -0122 -0001 0008 10620 04760 0229 -0122 -0001 0009 0018 10620 04760 0229 -0167 00099 -0166
-1.92 -0.023 .0003 .0874 -0.0161 -0.022 .0039 -1.92 -0.0 0.37 .2920 .0915 .0000 -0.0166 -0.026 .0070 0.38 .2 2.61 .4728 .0802 -0.0707 -0.0157 -0.029 .0060 2.58 .4 4.85 .6481 .1173 -0.118 -0.0170 -0.039 .0060 4.85 .6 7.03 .7786 .1635 -0.1251 -0.0154 -0.033 .0034 7.004 .7 9.13 .8813 .2121 -0.1088 -0.0150 -0.0027 .0006 9.14 .8	M = 0.90
19.30	22554 -0490 -1801 -0173 -0018 -0107 -0002 -0414 -0072 -0177 -0020 -0152 -2247 ,0365 -0002 -0180 -0025 -0129 -4778 -0811 -1255 -0172 -0027 -0028 -1202 -1120 -0180 -0029 -0130 -7908 -1682 -1120 -0185 -0029 -0130 -88439 -2158 -1144 -0169 -0021 -0070 -88765 -2617 -0108 -0118 -0011 -0037 -19267 -3131 -1221 -0123 -0011 -0037 -0154 -3836 -1600 -0109 -0015 -0025 -0057 -4431 -2174 -0120 -0004 -0068 -1542 -5241 -2174 -0127 -0025 -0068 -1542 -5241 -2174 -0127 -0025 -0068 -1542 -5241 -2174 -0127 -0070 -0014
M = 0.96	M = 0.96
-4.192424 .0664 .195201510004 .0055 -1.900 .006 .036 .2475 .0761015301560013 .0076 -1.900 .0 .036 .2475 .0761015901560018 .0091 .036 .2475 .07610189801550021 .0091 .036 .2 .0 .0091 .0096089801650021 .0093 .0091 .0093 .0096 .009801650021 .0093	·· · · · · · · · · · · · · · · · · · ·

TABLE III. - DATA OBTAINED WITH JET CONTROLS INCLUDING WING-TIP

INLETS AND LARGE PLENUM CHAMBER IN WINGS

	Je	ts ci	losed							ard Ö. jets	125 - i open	nch-	
a	c_L	$c_{\mathcal{O}}$	Cm	C_{l}	Cn	Cy	a	CL	$c_{\mathcal{D}}$	Cm	Cz	Cn	Cy
			M = 0							W = 0.6	-		*************************************
-4.22 -4.10	3440 1821	.0475 .0371	•1545 •1057	0020 0019	0001 0002	+0021 +0034	-6.23	3555 1905	0554 0415	•1577 •1079	0075 0071	0014	+0060 +0034
-1.90	0136	.0325	+0548	0021	0003	0030	-1.99	0218	•0360	•0598	0070	0013 0017	.0072
0.15 2.28	.1652 .3400	•0353 •0464	•0134 ••0309	0021	0004	•0034 •0016	0.15 2.29	1949 3425	•0390 •0492	0280	0072	0014	.0054
4.42 6.54	.5172 .6703	.0707 .1151	0687 1019	0022	0004	+0047	6.54	.5235 .6700	•0746 •1157	0687 1044	0072 0057	0011 .0000	.0067 .0018
10.70	.7703 .8115	•1629 •2132	1093 0724	0020	0004 0005	•0043 •0015	10.69	.7699 .8046	•1654 •2146	1112 0796	0071 0057	0017 0010	•0059 •0024
12.73	.8318	•2577	0558	0015	~.0008	•0019	12.73	.8328	. 2568	0618	0040	0010	.0011
14.75	.8558 .8970	•3018 •3477	0743 1095	0020	->0007 0003	0001	14.75	.8496 .9003	•3026 •3528	0802 1127	0035	0010	0010 0024
18.83	.9549	•4077	1381	0036	0002	0009	18.83	.9580	•4112	1443	0041	•0004	0055
			M = 0.			1				W = 0.8	-		
-6•37 -4•17	4074 2093	.0579 .0386	•1832 •1241	0020	-0001 0001	0000	-6.37 -4.17	4062 2078	•0587 •0413	•1823 •1214	0076		•0024 •0023
-1.95 0.25	0087	.0318 .0382	.0680 .0182	0023 0021	0002	.0018 .0030	-1.96 0.25	0145	•0359 •0395	+0678 +0180	0074 0079	0012	•0029 •0042
2.50	.4153	40543	0347	0026	0007	•0039	2.49	•4039	.0566	0324	0079	0011	.0041
4 • 6 9 6 • 6 4	•5847 •7119	.0865 .1323	0761 0933	0002	0003 0001	•0032 •0024	6.84	•5877 •7123	•0903 •1362	0788 0981	0065 0062	0009 0009	•0028 •0030
8.94	•7673 •7874	•1818 •2247	0779 0595	0004 0017	0004	.0022 .0009	10.99	•7751 •7982	·1865	0857 0673	0063	0014	0000
13'-04	.8239	.2718	0689	~.0020	0002	• 0002	13.04	.8322	• 27.55	0800	-40059	-•0002	0011
15.09 17.16	•8743 •9311	•3227 •3778	1031 1312	0022	0004	0009	15.09	.8775 .9387	• 3266 • 3824	-:1122 -:1404	-+0052 -+0065	0003 .0004	0047
19.24	1.0055	.4454	1736	0042	.0007	0041	19.23	1.0038	• 4462	1797	0081	.0018	0061
			M = 0.	<i>85</i>						A = 0.8			
-4.41 -4.18	~•4327 ~•2185	.0606 .0403	·2025	~.0024 ~.0013	-+0002 +0001	+0021 +0015	-6.41 -4.17	4219 2113	•0522 •0378	.1972 .1352	-+0083 -+0076	0009 0006	•0052 •0047
-1.94	~•0064 •2074	.0345 .0384	.0761 .0181	0018 0019	0001	•0033 •0032	-1.94	0057 -2240	.0319 .0349	.0771 .0201	-+0075 -+0081	0010	.0058 .0086
0 • 31 2 • 5 •	.4338	.0611	0380	0013	0003	·0035	2.58	.4487	.0580	0390	0074	0008	.0060
4.79 6.92	•6227 •7247	+0988 +1425	0802 0924	•0025 •0025	+0005 +0004	• 0002	6.93	•6383 •7422	.0967 .1439	0847 1025	-+0034 -+0055	*0005	+0048 +0048
9.01 11.08	.7705 .8020	·1888	0755 0612	0004 0015	0002 0008	•0011 •0007	9.02	.7942 .8268	.1919 .2382	1019 0689	-+0053 -+0052	~+0009	+0029 +0039
13.15	.8524	-2844	0729	0021	0003	0001	13.16	.8687	42863	0853	0067	0000	•0012
15.22 17.28	•9172 •9731	•3428 •4005	1153 1559	0026	0004 .0002	-+0022	15.23	•9292 •9855	+3434 +4013	1219 1619	-+0066	+0002 +0004	0010
19.37	1.0423	.4681	1977	0043	.0017	-+0097	19.37	1.0506	.4678	-+2043	0079	•0025	0040
			M = 0.5							M = 0.5			
-6 · 45 -4 · 20	4727 2494	.0719 .0473	•2451 •1688	0027 0013	0005	-0008 -0003	-6.45 -4.19	4753 2390	.0727 .0479	.2526 .1708	0091 0082	-+0005 -+0002	+0052 +0061
-1.94	0108	•0397	.0869	0016	0007	•0014	-1.92	.0044	.0406	+0840 -+0014	0093	0012 0013	+0073 +0084
2.61	• 2506 • 4638	•0479 •0763	-0024 -0028	0016	0005	•0017	2.62	•2704 •4710	.0512 .0788	0639	0068	0009	.0073
4+83	•6238 •7481	•1136 •1566	0950 1060	+0032 +0024	0001 0006	•0003	7.05	•637 6 •7900	•1162 •1640	0977 1205	0030 0019	0004	.004B
9.12	.8120	.2044	0895 0767	0012	0001	0029	9.13	.8261	.2068 .2659	0962 0965	-+0036 -+0054	0003	•0024 •0032
11.19 13.30	.9416 .9118	•2506 •3087	0849	0018	0003	0022	11.25	•8932 •9324	3155	0938	0057	•0000	.0018
15.39 17.47	•9905 1•0480	•3760 •4366	1259 1750	0022	0003	0093	17.50	1.0089	•3822 •4502	0846 1893	-+0057 -+0057	.0003	-00063 -0016
19.48	1.0723	•4901	2242	0045	.0004	0097	19.56	1.1419	.5166	2387	0078	.0018	0046
	M = 0.96									M = 0.			,
-4.18 -1.91	2261	+0679 +0609	•1790 •08 • 8	0012 0012	0002	0021	-4.16	2128 .0081	.0639	.1764 .0889	0065 0067	•0004	.0032 .0047
0.35	.2421	.0722	0183	0019	0013	•0000	0.35	.2354	•0692	0088	0065	0008	.0048
2 • 61 4 • 83	•4744	.1389	1232 1797	0038	0010	-00010	2.64	•4908 •6900	.1431	1219 1916	0089	0007 0010	.0046
7.07	.8197			0038	0011	-•0005	7.11	.8510 1.0499	.1973 .2802	2121 3094	0091 0077	0010	•0059 •0022
													

TABLE III. - DATA OBTAINED WITH JET CONTROLS INCLUDING WING-TIP

INLETS AND LARGE PLENUM CHAMBER IN WINGS - Continued

	Twe	lve i	nboar	d 0.12	5 - inc	h-	T	Eigi	hteen	inbo	ard O.	125 - il	nch-
	dia	neter	jets	open.			<u> </u>	dian	neter	jets o	pen.		
a	CL	c_D	Cm	C_{l}	Cn	CY	a	C_L	c_D	Cm	Cz	Cn	Cy
			M = 0	.60						W = 0.6	50		
-6.23 -4.11 -1.95 2.28 4.42 6.55 8.64 10.68 12.72 14.74 16.78	3574 1921 0161 -1557 -3344 -5192 -6807 -7734 -8018 -8331 -8539 -9006 -9717	.0566 .0438 .0390 .0412 .0762 .1197 .1688 .2156 .2619 .3053 .3557	-1582 -1091 -0600 -0175 -0261 -0696 -1079 -1128 -0848 -0990 -1217 -1476		0018 0019 0019 0019 0018 0007 0022 0013 0014 0012 0005	.0039 .0035 .0072 .0056 .0060 .0064 .0056 .0057 .0021 0002	-6.23 -4.10 -1.97 -0.16 2.31 4.44 6.55 8.65 10.71 12.74 14.75 16.79	3593 1868 0072 -1684 -3543 -5396 -6906 -7871 -8361 -8576 -6761 -9212 -9723	.0550 .0421 .0368 .0368 .0495 .0762 .1190 .1687 .2230 .2365 .3108 .3598 .4149	-1629 -1129 -038 -0185 -0250 -0721 -1086 -1162 -0936 -0610 -1032 -13303 -1555		0019 0022 0024 0025 0024 0013 0025 0009 0010 0002	.0065 .0060 .0077 .0078 .0082 .0102 .0074 .0093 .0071 .0030 .0005 -00027
			M. = O,	80		ļ				V = 0.8	0		
-6.38 -4.18 -1.95 0.27 2.51 4.70 4.85 8.94 11.00 13.04 15.10 17.16	4132 2120 0062 -1989 -6024 -7227 -7763 -8047 -8360 -8460 -9425 1-0219	+0613 +0435 +0374 +0422 +0599 +0934 +1407 +1887 +2323 +2785 +3353 +4551	.1832 .1227 .0097 .0197 0345 0830 1014 09901 0749 0889 1218	0128. 0125 0130 0130 0129 0019 0094 0076 0092 0088 0100 0103	0014 0016 0018 0022 0019 0019 0019 0008 0002 0005	.0051 .0050 .0072 .0070 .0064 .0064 .0093 .0047 .0097 0017 0029	-6.37 -4.15 -1.95 0.29 2.52 4.73 6.85 8.95 11.01 13.05 15.10	4055 2017 0031 -2091 -4283 -6223 -7833 -7870 -8225 -8494 -8969 1-0324	.0587 .0409 .0356 .0402 .0599 .1406 .1903 .2355 .2797 .3917 .4571	-1873 -1250 -0720 -0220 -0341 -0857 -1047 -0970 -0854 -0999 -1361 -1641 -2046	0182 0177 0176 0184 0185 0152 0135 0111 0126 0127 0133	0017 0019 0022 0024 0023 0026 0020 0012 0001 0001 0017 0019	.0056 .0067 .0088 .0101 .0094 .0089 .0104 .0067 .0033 .0006 0020
			M = 0.	85					A	1 = 0.8	5		
-6.43 -4.18 -1.94 0.33 2.58 4.80 6.93 9.02 11.10 13.14 15.22 17.32 19.36	4359 2192 0068 -2231 -4544 -6373 -7401 -7993 -8312 -8707 -9286 1-0121 1-0449	.0651 .0443 .0377 .0446 .0668 .1051 .1499 .1971 .2455 .2933 .3498 .4701	.1987 .1347 .0764 .0182 0429 0888 1042 0991 0781 0976 1353 1761	0129 0123 0127 0130 0131 0096 0077 0046 0079 0097 0096 0106	0015 0014 0020 0022 0019 0016 0009 0012 0006 0004	.0039 .0032 .0056 .0057 .0054 .0041 .0032 .0008 .0002 0057 0057	-6.40 -4.15 -1.93 0.33 2.60 4.82 6.95 9.04 11.11 13.14 15.21 17.30	4300 2138 .0028 .2281 .4755 .6537 .7502 .8097 .8459 .8755 .9353 1.0123	.0619 .0418 .0359 .0427 .0678 .1054 .1497 .1971 .2466 .2908 .3478 .4144	.2134 .1659 .0768 .0203 -0494 -0915 -1020 -0864 -1096 -1475 -1899 -2227	0189 0177 0179 0181 0159 0125 0083 0124 0127 0135 0136	0014 0013 0021 0024 0025 0020 0010 0009 00014 0017	.0079 .0111 .0083 .0098 .0035 .0088 .0067 .0032 0006 0033 0006
4,4-4			M = 0:5							W = 0.5	90		!
-6.46 -4.21 -1.91 0.39 2.64 4.85 7.02 9.11 11.19 13.31 15.40 17.50	7-4762 7-2530 0076 0076 0478 0478 07727 08112 0826 09328 1-0119 1-0886 1-1319	.0754 .0513 .0427 .0527 .0811 .1187 .1647 .2073 .2582 .3138 .4536	.2440 .1730 .0838 .0006 .0703 .1012 .1188 .0969 .0917 .1081 .1491 .1491 .2419	0141 0125 0125 0133 0118 0072 0074 0075 0090 0091 0093 0094	0012 0011 0018 0020 0015 0019 0011 0011 0005 .0002 .0006	.0051 .0037 .0046 .0086 .0077 .0055 .0058 .0021 .0023 0013 0032 0090	-6.47 -4.21 -1.92 0.39 2.65 4.86 7.02 9.11 11.22 13.33 17.44 19.56	4893 2548 -0014 -2719 -4964 -6575 -7706 -8204 -8975 1-0321 1-0637 1-1516	.0752 .0507 .0421 .0510 .0792 .1180 .1609 .2072 .2633 .3214 .3898 .4412 .5208	-2540 -1750 -0845 -0030 -0766 1084 1228 1031 1316 1222 1657 2148 2534	0198 0175 0185 01175 0112 0115 0116 0116 0107 0106 0133	0007 0006 0018 0023 0023 0007 0002 0001 0001 0001 0018	.0026 .0029 .0047 .0070 .0047 .0041 0020 0061 0087 0088
	M = 0.96									M = 0.			
-1.91 0.37 2.63 4.85 7.10	2281 -0031 -2542 -4935 -6673 -8601 1-0327	.2029	2931	0111 0112 0111 0111 0160 0119 0083	-0001 0004 0013 0007 0014 0013	+0028 +0046 +0055 +0042 +0021 +0032 +0168	-4.18 -1.90 0.37 2.63 4.87 7.11	•6950	.0707 .1029	.1850 .0874 0206 1264 1969 2081	0172 0166 0163 0192 0272 0165	-0004 -0003 -0010 -0007 -0011 -0011	0004 .0024 .0054 .0009 .0005
							<u> </u>						

TABLE III. - DATA OBTAINED WITH JET CONTROLS INCLUDING WING-TIP INLETS AND LARGE PLENUM CHAMBER IN WINGS - Continued

Twenty - four O.125 - inch -	Twenty-four O.140-inch-
diameter jets open	diameter jets open.
a C_L C_D C_m C_i C_n C_Y	a C_L C_D C_m C_i C_n C_y
M = 0.60	M = 0.60
-6.233613 .0557 .161502240021 .0062 -4.101845 .0429 .110502220027 .0099 -1.980085 .0385 .061302250026 .0099	-6.23 -3520 0552 1613 -0254 -0026 0062 -4.10 -1896 0438 1120 -0255 -0027 0077 -1.08 -0093 0385 0669 -0256 -0031 0091
0.16 .1711 .0410 .014902260026 .0133 2.30 .3537 .0516028602230026 .0138 4.44 .5430 .0786075802150031 .0137 6.56 .7050 .1223113201780021 .0109	0.16 .1704 .0420 .0154 -022570035 .0113 2.31 .3534 .0521027302550036 .0138 4.44 .5468 .0788076302410037 .0137 6.56 .7056 .41240114402000029 .0126
8.64 .7876 .1703 -1215 -0178 -0028 .0127 10.69 .8193 .2202 -0.098 -0150 -0.0012 .0081 12.73 .8514 .2668 -0.899 -0.108 -0.009 .0098	8.56 .7056 .41240114402000029 .0126 8.64 .7918 .1720123902000032 .0124 10.69 .8273 .2224104801610009 .0056 12.73 .8563 .2663094901190002 .0013
14-75	14.74 .8704 .3083 -1179 -40112 .0005 -0013 16.78 .9234 .3407 -1414 -40130 .0014 -40055 11.84 .9890 .4209 -1493 -0135 .0020 -0042
M = 0.80	M = 0.80
-6.374150 .0620 .190002360018 .0058 -6.17 -2060 .0431 .124502270018 .0064 -1.94 .0002 .0370 .065402290023 .0085	-6.374070 .0611 .187002600019 .0082 -4.172148 .0449 .130602820024 .0088 -1.940030 .0378 .071002600029 .0014
0.28 .2081 .0431 .018102370025 .0110 2.51 .4235 .0395038102340027 .0115 4.72 .6177 .0956090902310031 .0122	0.29 .2129 .0432 .019002630033 .0124 2.53 .4386 .0621041702580041 .0138 4.73 .6237 .0998089802490042 .0150
6.86 .7385 .1428109301960033 .0125 8.94 .7801 .1895103001880023 .0072	4.87 .7481 .1442114601930031 .0106 8.93 .7870 .1910106602020028 .0081
11:00	13.05 .8850 .2852114101580008 .0017 15.10 .9101 .336314850157 .00050021
17-17 -9640 -391116790154 -00100038 19-26 1-0398 -460321170162 -00140045	17:17 :9786 :3970 -:1829 -:0157 :0009 -:0042 19:25 1:0402 :4600 -:2185 -:0154 :0012 -:0039
M = 0.85	M = 0.85 -6.414306 .0640 .206002650019 .0086
-6.424404 .0456 .204202420015 .0058 -4.192232 .0456 .139002340017 .0062 -1.93 .0013 .0390 .074902340024 .0080 0.33 .2315 .0454 .016502410028 .0106	-4.182194 .0454 .140102580029 .0089 -1.93 .0081 .0385 .077502590027 .0122 0.34 .2337 .0485 .018602610035 .0145
2-58 4-638 -0688053302390030 -0104 4-81 -6535 -1073099002170032 -0116 6-92 -7408 -1511111801780023 -0072	2.60 .4779 .0704 -0568 -0266 -0265 .0163 4.82 .6654 .1080 -1002 -0249 -0045 .0165 6.96 .7672 .1542 -0.1182 -0071 -0003 .0092
9.03 .8140 .2012109901340018 .0046 11.09 .8444 .2486097501570016 .0029	9.01 .7882 .2003105302000023 .0075 11.09 .8441 .2465101201580013 .0025
13-14	13:15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-6.474807 .0774 .251102490012 .0034 -4.212567 .0524 .171802340012 .0048	-6.464821 .0774 .256602690006 .0077 -4.202469 .0516 .171702520010 .0073
-1.91 .0088 .0441 .081202340022 .0079 0.39 .2780 .0552011002380033 .0106	-1.89 .0208 .0430 .083702540024 .0119 0.42 .2991 .0544011302600038 .0167
2.65 .4981 .0832080502350033 .0100 4.85 .6597 .1213115001640022 .0074	2.65 .5047 .0837083802650042 .0178 4:86 .6677 .1203114902210035 .0145
7.02 .7770 .1656126702150036 .0095 9.11 .8319 .2140114701460011 .0001	7:04 :7932 :1672 -:1323 -:0209 -:0037 :0137 9:13 :8443 :2140 -:1201 -:0133 -:0010 :0043
11.22 .8946 .2658114801490015 .0009 13.32 .9546 .32441340015100080032	11.22 .8952 .2657120601660011 .0026 13.31 .9565 .3214136901560005 .0013
15.62 1.0041 63968 -01776 -00198 -00002 -00065 17.67 1.00924 64553 -02210 -00114 -00012 -00095 19.53 1.1334 65139 -02628 -00170 60030 -00112	15:41 1:0358 :3881 -:1834 -:0151 :0007 -:0048
M = 0.96	M = 0.96
-4.172221 0090 18490219 0002 00027 -1.91 0002 0025 0087902150010 00067 0.39 0.796026602140017 0003	-4.162174 .0695 .18720245 .0001 .0005 -1.89 .0172 .0597 .089202380009 .0109 -0.39 .2474 .0724024502400019 .0117
2.63 .4909 -1073127402330018 -0073 4.88 .6651 -1456184702730019 -0064	2.65 .5003 .1049123002690025 .0124 4.90 .7050 .1444185302990019 .0110
7.09 .8604 .2029245402010017 .0025	7.13 .8804 .2044239502110015 .0085
	<u> </u>

TABLE III. - DATA OBTAINED WITH JET CONTROLS INCLUDING WING-TIP

INLETS AND LARGE PLENUM CHAMBER IN WINGS - Continued

		-	four O		inch -		T	Twe	enty -	four	0.172	inch-	
	dian	neter	jets	open.				dia	meter	jets	open.		
a	C_L	$c_{\mathcal{O}}$	Cm	C_{l}	Cn	Cy	a	CL	$c_{\mathcal{O}}$	Cm	Cz	Cn	Cy
			M = 0	.60						M = 0.6	50		
-6.21 -4.09 -1.97	3382 1756 .0010	.0489 .0421 .0352	.1536 .1080 .0597	0272 0277 0276	0027 0030 0034	+0094 +0113 +0151	-6.22 -4.10 -1.97	3455 1792 0028	.0554 .0441 .0398	.1580 .1088	0287 0284 0286	0030 0033 0034	.0078 .0114 .0131
0.17 2.31	•1842 •3674	.0306	-0150 -0295	0283 0275	003£ 0035	0174 0177	2.30	•1875 •3597	.0420 .0528	-0140 -0296	0287 0286	0037 0035	•0133 •0156
4.45	.7120	•0798 •1252	0768	0271 0246	0039 0047	•0198 •0203	6.56	•5491 •7047	•0804 •1238	0760 1161	0290 0237	0042	•0157 •0144
8.65 10.70 12.73	.8060 .8448 .8738	.1697 .2251 .2708	1243 1088 1016	0227 0180 0134	0033 0008 0003	•0165 •0113	8.65 10.69 12.72	.8046 .8303 .8595	.1751 .2234 .2686	1245 1098 1073	0237 0187 0141	0037	.0124 .0069
14.77	.9047 .9576	.3181 .3709	1265 1509	0126 0146	10009 10024	+0067 +0020 -+0022	14.76	•8904 •9400	·3154	1322 1547	0135 0150	-:0002 :0010	0018 0029 0049
18.85	1.0089	.4270	1742	0151	.0032	0024	18.83	.9912	4230	1709	0155	.0033	0072
-4.34	3923	•0592	M = 0.	80	0020	•0089	-4.24	1965	.0609	W = 0.8	-	-•0021	- 004 = "
-6.35 -4.14 -1.93	1932 -0111	.0372 .0411	•1802 •1226 •0675	0279	0020 0022	•0105 •0138	-6.36 -4.15 -1.93	3998 2006 .0058	.0441 .0389	.1237 .0660	0290 0288 0288	-+0027 -+0030	.0047 .0044
2.53	.4424	.0413 .0411	.0148 0420	0285 0278	0033 0041	+0148 +0179	0.30	+2236 +4371	+0439 +0626	.0172 0421	0295 0284	0036 0045	•0109 •0123
4.74	.6413 .7579	.0987 .1460	0938 1168	0273 0227	0041 0030	+0188 +0145	4.74	•6409 •7575	+0790 +1471	~+0952 ~+1195	-+0286 -+0234	0048	+0131 +0073
8.95 11.01	.8404	•,1949 •2418	1112	0226	0028 0010	+0132 +0049	11.00	•7.072 •8308	.1927 .2398	1120 1092	0236 0179	0033 0013	0037
13.05	.8750 .9222 .9907	.2882 .3396	1216 1560 1903	0171 0176 0168	0001 .0011	-0009 -0015	13.03 15.10 17.17	•8655 •9194 •9793	.2850 .3380 .3972	~•1311 ~•1592 ~•1934	-40181 0181 0167	0002 -0015 -0015	0073 0100 0082
17518 19525	1.0414	.4606	2270	0157	.0006	0024	19.25	1.0452	4420	2308	0165	.0014	0109
			M = 0.							1 = 0.8	-		
-4.15 -1.93	4194 2042	.0444 .0445 .0385	•1998 •1356 •0743	0285 0281 0283	0018 0022 0027	+0105 +0098	-6.41 -4.19 -1.94	4266 2249	.0453 .0442 .0388	•1997 •1364 •0742	0293 0289 0289	0020 0023	.0041 .0041
0.39	.2489 .4862	.0465 .0715	•0130 -•0571	0283 0288	0032	+0154 +0176	0.33	•2371 •4901	.0461 .0727	.0157 0603	0292	0037	.0105 .0147
4.80	.6532 .7731	•1052 •1555	1008 1229	0283	0046	+0163 +0112	4.83	•6707 •7641	.1102 .1540	1037	0287 0216	0032	•0122 •0059
9.01 11.09	.8036 .8498	•2002 •2490	1115	0225	0023	+0081 +0014	11.08	•7945 •8409	.1986 .2469	1117 1196	0235	0029 0007	.0054 0044
13.17	.9031 .9364	3013	1312	0176	0001 .0016	0005	13.14	.8875 .9555	.2974	1401 1751	0187 0195	•0004 •0028	0081
1728 19.40	1.0174	•4158 •4892	2102 2444	0153 0156	0006 .0000	0029	17.25	1.0013	.4122 .4788	2741	0161 0156	•0004 •0003	0100 0113
			M = 0.	-		1				M = 0.			
-6.45 -4.20 -1.90	4626 2431 .0201	.0752 .0502	•2398 •1657	0287 0279	0012 0016 0025	+0054 +0065	-4.21	4761 2473	.0775	• 2506 • 1657	0294 0282 0286	7:0012 7:0020 7:0031	•0021 •0028
0.40	.2872 .5121	•0559 •0847	-0789 -0073 -0870	0282 0282 0294	0035	.0101 .0134 .0151	-1.90 0.40 2.66	•0201 •2826 •5095	.0446 .0542 .0845	.0788 0046 0860	-+0289 -+0303	0040 0049	.0076 .0071 .0116
4.87	.6770 .7922	•1217 •1669	1221 1399	0261 0242	0039	•0124 •0091	7.02	.6786 .7877	.1218	1223 1303	0276 0247	0048 0043	.0088
9.07	•8033 •9036	.2070 .2712	1163 1321	0239	0022	-0022	9.10	+8323 +8824	.2130 .2650	1263 1294	0180 0207	0015 -0002	0014
13.24	•9141 •9941	•3137 •3732	1499 1638	0180	.0002 .0021	0055	13.27	•9443 1•0131	• 3203 • 3822	1566 1950	-40193 -40195	•0011 •0031	0107 0146
17.45 19.57	1.0816	•4491 •5324	2410 2929	0158 0152	•0023	-:0139 -:0150	17.45	1.1357	•4927 •5154	2495 2875	-+0179 -+0159	•0033 •0016	0195 0195
			M = 0.			į				M = 0.	96		
-4.17 -1.90	2237 .0186	.0044 .0587	•1817 •0835	0271	0013	.0057 .0108	-4.17	2239 .0080	.0676 .0606	.1843 .0886	-+0268	-0001 -0014	0018
0 • 38 2 • 6 4 4 • 8 9	•2646 •4884 •6941	.0995	0250 1162 1910	0275 0331 0335	0026 0035 0022	.0115 .0142 .0089	2.63		.0738 .1058 .1498	0276 1239 2067		0027 0029 0024	.0055 .0065
7.08			1994		0015	•0052	7.08				0242		0019
						1	-						
						1	<u> </u>						

TABLE III. - DATA OBTAINED WITH JET CONTROLS INCLUDING WING-TIP INLETS AND LARGE PLENUM CHAMBER IN WINGS - Concluded

				pard (0.172-	inch-				-	ard O.	172 - ii	nch-
	diai	neter	jets	open.				dia	meter	jets	open.		
a	C_L	$C_{\mathcal{O}}$	Cm	C_{ℓ}	Cn	CY	a	CL	c_{D}	Cm	Cz	Cn	Cy
			M = 0	,]			•	V = 0.6			
-6.23 -4.10 -1.98 0.16 2.30 4.44 6.55 8.65 10.70 12.73	3521 1825 0093 -1780 -3649 -5481 -7069 -8077 -8433 -8650	.0553 .0424 .0381 .0405 .0515 .0785 .1247 .1747 .2234	•1581 •1097 •0594 •0147 •0300 ••0771 ••1186 ••1257 ••1048 ••0949	0238 0239 0244 0245 0244 0206 0152 0114	0015 0020 0022 0023 0035 0034 0003 0001	.0059 .0056 .0071 .0114 .0118 .0137 .0121 .0104 .0058	-6.23 -4.10 -1.97 0.16 2.30 4.45 6.57 8.66 10.72 12.74	3526 1798 0039 .1755 .3580 .5508 .7087 .8128 .8517	.0549 .0417 .0362 .0400 .0496 .0777 .1239 .1743 .2178	.1583 .1074 .0601 .0137 0298 0751 1146 1226 0964 0822	0178 0175 0183 0187 0175 0135 0119 0093	0012 0015 0015 0018 0024 0027 0026 .0004	.0040 .0054 .0073 .0114 .0098 .0140 .0126 .0128 .0030
14.76 16.80 18.83	.8965 .9428 .9948	•3143 •3670 •4226	1218 1498 1739	0108 0117 0117	.0006 .0017 .0019	0035 0064 0067	14.77 16.81 18.85	.8892 .9527 .9942	.3127 .3715 .4235	1043 1367 1608	0089 0089 0091	0002 .0005 .0003	.0025 0007 0033
			M = 0.	80		į	,		A	1 = 0.8	0		
-6.36 -4.15 -1.93 0.28 2.53 4.74 6.88 8.95 11.01 13.05 15.17 17.16 19.23	~.3992 1995 .001388 .6385 .7552 .7990 .83746 .9218 .9671	.0621 .0419 .0364 .0414 .0610 .0913 .2395 .2859 .3377 .3915	*1841 *1247 *0702 *0180 *0414 *0945 *1156 *1025 *1152 *1152 *1527 *1902 *2308	0244 0231 0234 0242 0237 0134 0179 0146 0153 0156 0153	0010 0014 0016 0021 0032 0038 0026 0013 0001 0002 0011 0022 0028	**************************************	-6.34 -4.14 -1.93 0.30 2.53 4.74 6.89 6.96 11.01 13.06 15.11 17.17 19.22	3844 1902 .0112 .2214 .4387 .6303 .7556 .7991 .8231 .8623 .9078 .9665 1.0102	.0567 .0405 .0356 .0415 .0611 .0950 .1441 .1917 .2365 .2829 .3343 .3917 .4471	.1806 .1233 .0677 .0158 0403 0901 1088 0952 0873 0968 1329 1704 2078	0182 0174 0176 0180 0179 0134 0135 0109 0116 0113 0125 0126	0004 0006 0012 0015 0022 0029 0015 0012 0008 0010 0008	.0025 .0041 .0072 .0082 .0114 .0111 .0075 .0058 .0045 .0038 .0024
			M = 0.	<i>85</i>					A	1 = 0.8	5		1
-6.40 -4.19 -1.92 0.34 2.62 4.82 6.96 9.03 11.11 13.15 15.22 17.25	4192 2219 -0123 -2432 -6665 -7731 -8077 -8667 -9660 -9986	.0614 .0434 .0366 .0439 .0701 .1058 .1521 .1990 .2518 .2944 .3600 .4078 .4830	*1977 •1405 •0751 •0149 ••0565 ••1029 ••1190 ••1066 ••1093 ••1240 ••1778 ••2184 ••2533	0244 0235 0238 0247 0154 0168 0154 0162 0170 0155 0152	0007 0008 0019 0033 0039 0016 0007 0002 0005 0025 0018 0026	0040 0040 0096 0106 0128 00124 00056 0014 -0007 -00080 -0054 -0062	-6.40 -4.17 -1.92 0.35 2.59 4.83 6.96 9.02 11.11 13.18 13.23 17.25 19.35	4249 2058 -0139 -2391 -4758 -6648 -7683 -7982 -8460 -8965 -9462 -9850 1-0531	.0636 .0432 .0373 .0446 .0687 .1075 .1526 .1995 .2477 .2997 .3527 .4047	.2007 .1368 .0728 .0174 0525 0941 1122 0982 0992 1097 1475 2020	0186 0179 0177 0185 0189 0172 0106 0139 0131 0133 0084 0093	0004 0004 0010 0014 0028 0029 0011 0011 0010 004 0041 0021	.0019 .0025 .0043 .0106 .0111 .0038 .0048 .0033 .0020 .0004 .0021
			M = 0.5	90					/	u = 0.	90		
-6.44 -4.20 -1.89 0.39 2.66 4.87 7.04 9.10 11.22 13.28 15.36 17.43		.0744 .0481 .0399 .0528 .0818 .1199 .1649 .2074 .2643 .3137 .3805 .4486	-2490 -1640 -00815 -00851 1231 1360 1119 1235 1417 1920 2600 1452	0246 0230 0237 0238 0215 0218 0200 0167 0164 0129 0152	.0002 .0000 -0013 -0026 -0028 -0032 -0007 .0007 .0011 .0023 .0005 .0019	+0022 +0040 +0081 +0126 +0120 +0083 +0028 -0023 -00041 -00083 -0078	-6.44 -4.20 -1.91 0.40 2.66 4.87 7.05 9.09 11.20 13.32 13.32 17.40 19.48	4686 2439 -0121 -2783 -5004 -6757 -8013 -8084 -8726 -9538 1-0144 1-0470 1+1053	.0754 .0512 .0544 .0544 .0827 .1195 .1673 .2097 .2609 .3824 .4356 .5026	-2541 -1669 -0030 -0797 1145 1038 1087 1305 1739 2307 2696	0198 0174 0178 0185 0194 0152 0100 0125 0121 0100 0060 0113	-0004 -0000 -0009 -0021 -0028 -0021 -0012 -0012 -0015 -0054 -0006	.0006 .0020 .0058 .0089 .0064 .0068 .0013 .0014 .0005 .0005
			M = 0.	96						M = O.			
-4.16 -1.89 0.39 2.64 4.89 7.10	2194 .0194 .2718 .4906 .7063 .8529	+0626 +0557 +0694 +0998 +1430 +1899	.1824 .0842 0235 1154 1930 2198	0234 0232 0240 0275 0286 0186	-0005 0008 0022 0026 0015 0009	.0037 .0076 .0108 .0122 .0056 .0027	-4.17 -1.89 0.37 2.61 4.89 7.11	2207 .0152 .2521 .4636 .6946 .8597	.0643 .0619 .0706 .0998 .1449	+1798 +0873 0158 1038 1834 2205	0183 0171 0183 0223 0221 0134	+0008 -+0004 -+0016 -+0025 -+0009 -+0007	.0013 .0057 .0093 .0100 .0057
									· 				

Figure 1.- Systems of axes used. Positive directions of forces and moments are indicated by arrows.

Figure 2.- Three-view drawing of model with large plenum chamber in wing. All dimensions in inches unless noted.

CONFIDENTIAL

(a) Small plenum chamber.

Figure 4.- Details of jet controls. All dimensions are in inches.

(b) Large plenum chamber.

Figure 4.- Concluded.

Figure 5.- Aileron and spoiler details. All dimensions in inches.

Figure 6.- Drawings of inlet plug, and of faired wing tip with the small plenum chamber attached and wing-tip inlets removed. All dimensions in inches.

(a) M = 0.60.

Figure 7.- Variation of rolling- and yawing-moment coefficients with angle of attack for wing with control-jet holes of three diameters in the small plenum chamber.

Figure 7.- Continued.

(c) M = 0.85.

Figure 7.- Continued.

(d) M = 0.90.

Figure 7.- Continued.

(e) M = 0.96.

Figure 7.- Concluded.

(a) M = 0.60.

Figure 8.- Variation of rolling- and yawing-moment coefficients with angle of attack for control-jet holes of four diameters in the large plenum chamber.

(b) M = 0.80.

Figure 8.- Continued.

(c) M = 0.85.

Figure 8.- Continued.

CONFIDENTIAL

(d) M = 0.90.

Figure 8.- Continued.

CONFIDENTIAL

(e) M = 0.96.

Figure 8.- Concluded.

Figure 9.- Variation of rolling- and yawing-moment coefficients with angle of attack for wing with partial-span jet controls located inboard and outboard. Large plenum chamber.

(b) M = 0.80.

Figure 9.- Continued.

(c) M = 0.85.

Figure 9.- Continued.

(d) M = 0.90.

Figure 9.- Continued.

(e) M = 0.96.

Figure 9.- Concluded.

Figure 10.- Comparison of rolling- and yawing-moment coefficients produced by jet, spoiler, and aileron controls.

(b) M = 0.80.

Figure 10.- Continued.

(c) M = 0.85.

Figure 10. - Continued.

(d) M = 0.90.

Figure 10.- Continued.

(e) M = 0.96.

Figure 10. - Concluded.

Figure 11.- Variation with Mach number of rolling-moment coefficients produced by jet, spoiler, and aileron controls. $\alpha = -2^{\circ}$.

(a) Constant span controls.

Figure 12.- Ratios of pressure in large jet-control plenum chamber to tunnel stagnation pressure for various angles of attack and jet diameters.

(b) Variable-span controls.

Figure 12.- Concluded.

Figure 13.- Variation of rolling-moment coefficient with relative weight flow of air for various jet-control diameters, spans, and locations of controls. Large plenum chamber (w is based on a flow coefficient of unity; correct value is less but unknown). $\alpha = -2^{\circ}$.

Figure 14. - Comparison of drag coefficients of jet, spoiler, and alleron controls with the plain wing.

Figure 15.- Effect on the drag coefficients of some modifications to the jet control configuration.