International Journal of Physics and Research (IJPR) ISSN(P): 2250-0030; ISSN(E): 2319-4499 Vol. 4, Issue 2, Apr 2014, 15-26 © TJPRC Pvt. Ltd.

GAMMA RAY PROPERTIES FROM⁷⁰AS NUCLEUS

BASHAIR M. SAIED, TAGHREED A. YOUNIS & HUSSEIN A. JAN MIRAN

Department of Physics, College of Education, Ibn Al-Haitham, Basra, Iraq

ABSTRACT

Multipole mixing ratios (δ) for gamma transition populated in ⁷⁰As from ⁷⁰Ge (**p,n** γ) reaction have been studied by least square fitting method (**LSF**), also transition strength [**M**(**EL,ML**]² for pure gamma transitions have been calculated taking into accurate the mean life time for these levels.

KEYWORDS: Multipole Mixing Ratios, Least Square Fitting Method, Angular Distribution, ⁷⁰Ge (**p,n**γ), Transition Strength, Gamma Width

INTRODUCTION

The energy levels of 70 As have been studied from 70 Se by β^+ - decay and $(p,n\gamma)$ reaction by Ten Brink et.al [1,2].

Filevichetal also study ⁷⁰As nuclei from heavy-ion reactions [3].the δ - mixing ratios of γ -transitions from levels of ⁷⁰As isotopes were calculated using a₂-ratio and constant statistical tensor CST - Method by taghreed [4]. Podolyok et.al have been studied excited levels in ⁷⁰As from (p,n γ), were the proton energy is varied between 7.59 and 8.7 MeV, energies and relative intensities of 113 (among them 60 new) ⁷⁰As excited levels, also determined γ -ray branching and mixing ratios, levels and parity values [5].

The aim of the present work is to determine the multipole mixing ratios $\delta_{0f} \gamma$ -ray for 70 As from $(p,n\gamma)$ reaction by using LSF-Method and to study the transition strength of γ -ray for pure electric and magnetic equaduapole emission in 70 As isotopes.

Data Reduction & Analysis

Levels with certain J_i values might have no pure γ -transition or transition considered to be pure. the statistical tensor $\rho_2(J_i)$ for such levels can not be calculated and hence the δ -values of mixed transition from such levels can not be determined by the CST-Method it also happens that a level with certain J_{i^-} values has only one pure γ -transition or considered to be pure γ -transition whose a_2 -coefficient is not accurately measured in which case, the statistical tensor $\rho_2(J_i)$ calculated for that levels shall be inaccurate also, the LSF-Method was there for, suggested to estimate $\rho_2(J_i)$ for all J_i -values . in this method, the $\rho_2(J_i)$ values calculated for levels with different J_i -values are computer fitted to a polynomial series of the form:

$$\rho_2(\mathbf{J}_i) = \sum \mathbf{B}_x \mathbf{J}^* \tag{1}$$

with n= 1,2,3,4 and 5, using the least square fitting program that was written in the present work in matlab language to determine the B_X parameters for all n-values and the R^2 -values for each n. the set with best R^2 values was

then used to calculate the $\rho_2(J_i)$ values for all J_i values . the obtained values of $\rho_2(J_i)$ are then used to calculate the δ – values for all γ -transition whose angular distribution have been measured [4,5] An additional calculation was performed for each γ - ray transition it is the calculation of transition strength and total gamma width as follows:

Skerka et.al [6] has shown that, the partical width of γ - ray transition from an intial state with spin J_i to final state with spin J_f , may be represented by the following:

$$\Gamma_{\gamma} \ell = \frac{8 \pi \left[(\ell+1) \right]}{\ell \left[(2 \ell+1)! \right]^2} \underbrace{\left[\begin{array}{c} E_{\gamma} \\ \hbar_{c} \end{array} \right]}^{2_{\ell}+1} B(L) \tag{2}$$

Where

 \mathfrak{h} : Dirac constant = $\frac{h}{2\pi}$, h= plank constant

c: speed of light

 \mathbf{E}_{γ} : Gamma ray energy

 \boldsymbol{l} : Angular momentum of the γ – transition, $\boldsymbol{l} \neq 0$

B(L): Reduced transition probability

The wisskopf single-particle reduced transitions probability is defined in Ref.[7] by:

$$B(EL) (W.u) = \frac{\mathbf{t'}_{\approx} (EL) \ sp}{\mathbf{t''}_{\approx} (EL)_{sxp}}$$

 $t_{\frac{\gamma}{2}}$: partical half life for γ – ray transition .

If the total width is
$$\Gamma_{v} = \sum \Gamma_{vi}$$
 (4)

Then
$$\Gamma_{\gamma} T = \hbar = 0.65822 \times 10^{-15} \text{ ev.s}$$
 (5)

Where **T** is the mean life time of the initial state =
$$\frac{t + \frac{t}{2}}{\ln 2}$$
 (6)

The γ - ray transition strength $[\mathbf{M}]^2$ is defined as $[\mathbf{6}]$

$$[M]^2 = \frac{\Gamma_{\gamma}}{\Gamma_{\gamma w}} \tag{7}$$

 $\Gamma_{Y_{w=}}$ width in Weiss Kopf unit

By using single partical model, Weisskopf derived the following relation for

$$\Gamma_{\gamma w}$$
 [(EL)] and $\Gamma_{\gamma w}$ [(ML)]:

$$\Gamma_{\gamma W} (EL) = 6.7469 \times 10^{-11} A^{2/3} E_{\gamma} \chi^3$$
 (8)

$$\Gamma_{yy}(ML) = 2.0722 \times 10^{-11} E \gamma^3$$
 (9)

Where A: mass number.

 E_r in keV, Γ_{rw} in eV.

For γ –transitions with mixed mulipolarities L and L+1 and by theoretical calculation from Ref.[7] substuting mixing ratio δ in eq.(5&6)

$$\delta^2 = \frac{\Gamma(L+l)}{\Gamma(L)} \tag{10}$$

Where

$$\Gamma(L) + \Gamma(L+1) = \Gamma_{\gamma} \tag{11}$$

partial width of each γ - ray can be calculated as follows [8]:

$$(\Gamma_{\gamma L} = BRi \times \Gamma_{\gamma}) \tag{12}$$

 BR_i is the branching ratio of (γ_i) which can be calculated as in Ref. [9] from :

$$BR(\gamma i) = \frac{I_{\gamma i}}{I_{tot}} \times 100\%$$
(13)

I $_{\gamma i}$ = the relative intensity of γ_i

 $I_{tot} = \sum I_i$

Also the square of the mixing ratio δ^2 , may be defind as follows[9]

$$\delta^2 = \frac{I_{\gamma i} (L+1)}{I_{\gamma i}(L)} \tag{14}$$

$$I_{\gamma}(L) + I_{\gamma}(L+1) = I_{\gamma} \tag{15}$$

For pure **EL**, **ML** transition $\delta = 0$ and hence:

$$\Gamma(E1) \text{ or } \Gamma(E2) = \Gamma_{\gamma}$$
 (16)

And the transition strength of this transition can be calculated by using eq.(6), the corresponding $\Gamma_{\gamma w}(E_2)$ Values calculated for the transitions ,so that eq. (8,9) can then used in the form of

$$[M(El)]^{2} = \frac{\Gamma(El)_{exp}}{\Gamma(El) w.u}$$
(17)

$$[M(Ml)]^{2} = \frac{\Gamma(Ml)_{exp}}{\Gamma_{yw}(Ml)_{w.u}}...$$
(18)

RESULTS & DISCUSSIONS

Result for δ – Values Calculated by LSF Method

The weighed average of $ho_2(J_i)$ presented in table (1),(2) were computer fitted as mentioned previously .

The fitting equation was as follows

$$\rho_2(\mathbf{J}_i) = -0.09 - 0.54135 J_i + 0.36578 J_i^2 - 0.12615 J_i^3 - 0.013623 J_i^4$$
(20)

The $\rho_2(J_i)$ values calculated for each Ji as follows

$$\rho_{2}(1) = -0.3844$$

$$\rho_2(2) = -0.5135$$

$$\rho_{2}(3) = -0.7436$$

$$\rho_{2}(4) = -1.0144$$

$$\rho_2(5) = -0.9383$$

the statistical tensor coefficient $\rho_k(J_{ij}M_i)$ are constant for each J_i values then according to [10]:

$$\rho_{k}(J_{i}) = \sum_{\substack{m_{i}=0 \\ \text{or } m_{i} = \frac{1}{2}}}^{J_{i}} \rho_{k} (J_{i}m_{i}) P(m_{i})$$
(21)

the statistical tensor ρ_k (J_i) would also be constant for level with the same (J_i) value so eq.(21) can be used to calculate multipole mixing ratio for γ – transition for each levels where (J_i) is constant by using ρ_k (J_i) values as follows[10]:

$$a_2(J_i - J_f) = \rho_2(J_i) F_2(J_i J_f \delta)$$
 (22)

Where F_2 (Ji J_f δ) is parameters included information about angular momentum and mixing ratio and given by [11]

$$F_{2}(Ji J_{f} \delta) = \frac{F_{2}(J_{f}L_{1}L_{1}J_{i}) + 2\delta F_{2}(J_{f}L_{1}L_{2}J_{i}) + \delta^{2}F_{2}(J_{f}L_{2}L_{2}J_{i})}{(I + \delta^{2})}$$
(23)

Where: The F2 values were represented in Ref. [12]

$$L_1 = |J_i - J_f| \neq 0 \tag{24}$$

$$L_2 = L_1 + 1$$
 (25)

Sub.eq.(23) in eq. (22) the result as follows:

$$\alpha_{2}(1-1) = \rho_{2}(1) \frac{-0.35355-2.12134 \delta - 0.35355 \delta^{2}}{(1+\delta^{2})}$$
(26)

$$a_{2}(1-2) = \rho_{2}(1) \frac{0.07071 + 0.94868 \,\delta + 0.35355 \,\delta^{2}}{(1+\delta^{2})}$$
(27)

$$a_{2}(2-1) = \rho_{2}(2) \frac{0.41833 - 1.87084 \delta - 0.29881 \delta^{2}}{(1+\delta^{2})}$$
(28)

$$a_{2}(2-2) = \rho_{2}(2) \frac{-0.41833 - 1.22476 \delta + 0.12806 \delta^{2}}{(1+\delta^{2})}$$
(29)

$$a_2(3-2) = \rho_2(3) \qquad \frac{0.34641 - 1.89738 \ \delta - 0.12372 \ \delta^2}{(1+\delta^2)}$$
(30)

$$a_{2}(3-3) = \rho_{2}(3) \quad \frac{-0.43301 - 0.86602 \,\delta + 0.22682 \,\delta^{2}}{(1+\delta^{2})}$$
(31)

$$a_{2}(3-4) = \rho_{2}(3) \quad \frac{0.14434 + 1.44338 \,\delta + 0.30929 \,\delta^{2}}{(1+\delta^{2})}$$
(32)

$$a_2(4-2) = \rho_2(4) \quad \frac{-0.44770 - 1.05944 \,\delta - 0.47009 \,\delta^2}{(1+\delta^2)}$$
(33)

$$a_2(4-3) = \rho_2(4) \quad \frac{0.31339 - 1.88036 \,\delta - 0.04477 \,\delta^2}{(1+\delta^2)}$$
(34)

$$a_2(4-4) = \rho_2(4) \quad \frac{-0.43875 - 0.67082 \,\delta + 0.26455 \,\delta^2}{(1+\delta^2)}$$
(35)

$$a_{2}(5-4) = \rho_{2}(5) \qquad 0.29439 - 1.86190 \,\delta + 0.00000 \,\delta^{2}$$

$$(1+\delta^{2}) \qquad (36)$$

Results for Transition Strength

The transition strength $[M(EL,ML)]^2$ for γ - transitions from excited levels to the ground levels that produced by pure electric or magnetic quadrupole transitions for 70 A_S isotope represented in figure 1 have been calculated as follows:

Mean life time τ for excited level calculated by using eq. (5) half life times $\mathbf{t}_{1/2}$ related to these levels were present to gather with relative intensities for γ -transition measured by Ref .[5].

The total gamma width Γ_{ν} calculated by using eq.(4) table (3) represent these values.

- Using total gamma width and relative branching ratios in order to calculate partial gamma width Γ (E_2) & Γ (M_1) by using eq. (11).
- Using eq.(8 & 9) the partial gamma width Γ (E₂) & Γ (M₁) in w.u were calculated for each gamma transition
- Table (4) represent the transition strength values $[M(EL,ML)]^2$ for each γ ray transition were calculated by using eq.(15).

CONCLUSIONS

In the present work, The LSF –Method has been used to calculate the multipole mixing raitios of γ - transition from level in 70 As and also transition strength pure γ –ray transition also calculated. The reselts are in general, in good agreement with those obtained previously CST (1) & CST(2) and that from other refrenceses. The confirms that the present Method is good as other Methods and rather simple.

REFERENCES

- 1. B. O. ten Brink, R. D. Vis, A. W. B. Kalshoven and H. verheul, Z., (1974), Phys. 270, 83.
- 2. B. O. ten Brink, J. Akkermans, P. Van Nes and H. Verheul, (1979), Nucl. Phys. A330, 409.
- 3. A. Fi Levich, M. Behar, G. Garcia Bermudez, M. A. J. Mariscotti, E.der Matesian, P. Thieberger, (1978), Nucl. Phys. A309, 285.
- 4. Tagreed A. J. Younis, (2005); Multipole Mixing Ratios of γ -Rays from 56 Fe(n,n' γ) 56 Fe, 70 Ge(p,n γ) 70 As and $^{142-150}$ Nd(n,n' γ) $^{142-150}$ Nd Reactions. 5- Z. S. Poda lak, T. Fenyes, J. Timar, (1995), Nucl. Phys. A584:60.
- 5. Skerka S. J, Hertal. J. and Retzschaidt, (1966), Nucl. Data. A2, p.341.
- 6. Forsten R. B. and shirlay V.S, (1999), table of isotopes, 8th edition
- 7. Kibed T., Spear R. H., (2005), Atomic Data & Nucl. Data tables, 89:77.
- 8. Andvejtscheef W., Schilling K. D. & Marfross p., (1975), Atomic Data, Nucl. Data tables, 16:515.
- 9. Poletti, A. R., and Warburton, E.K., (1965), Phys. Rev. <u>137</u>, B595.
- 10. Yamazaki T., (1967); Nucl. Data, Section A3, 1.
- 11. Al-Zuhairy M.H.M.,(2002); multipole mixing ratios of Gamma Ray from the Heavy ion Reactions by using constant statistical Tensor Method, Ph.D. Thesis University of Baghdad.
- 12. Zs. Podolyak et al. (1995), Nuclear physics A 584, 60-83.

APPENDICES

بطريقة مطابقة المربعات 70 As 70 Ge المتولدة في التفاعل 0 As المتقلة في النواة وكذلك تم حساب قوى الانتقال (LSF) الدنيا بالاعتماد على حساب معدل العمر للمستوي المتهيج والشدة النسبية لاشعة كاما المنتقلة وان النتائج التي تم وكذلك تم حساب قوى الانتقال (LSF) الدنيا الحصول عليها كانت متوافقة مع النتائج المنشورة سابقا .

Table 1: Multipole Mixing Ratios (δ) for Gamma Transition Populated in AS by Using Least Square Fitting

(KeV)	(KeV)	$J_i^\pi J_f^\pi$	a, [9]	8 [9]		δ	
			a,		CST(1) [4]	CST(2) [4]	LSF(P,W)
81.52	49.45	1*-2*	-0.052(49) -0.036(51)	0.12(31)		0.07 +0.15 0	0.07 +0.13 - 0.14
167.72	86.19	25-12	-0.186(64)	0.03(3)	-0.02(10)	- 4.4 +10 - 1.9	4.4 +6.2 0.03(7)
807.72	50.19	2.4	-0.012(50)		-(2.5 -0.6	-2.9(7)	2.9 +0.7
234.79	202.66	1*-2*	0.142(58) 0.125(46)	-0.01(27)		Imajenary roots	Imaje mry roots
	153.18	1.1.	-0.126(106) -0.278(115)	(0.52 (0.28 (0.26)	*******	-0.36 +0.40 -0.19 -0.19 -0.14 -0.14 -0.14	$ \begin{bmatrix} 0.36 & +0.27 \\ -0.16 \end{bmatrix} $ $ \begin{bmatrix} 2.7 & +2.3 \\ -1.1 \end{bmatrix} $
325.66	293.63	2"-2"	0.304 (90) 0.024(75)	0.15 (4)	$ \begin{bmatrix} 0.34 & -7 \\ & -0.31 \end{bmatrix} $ $ \begin{bmatrix} +1.0 \\ 1.1 & -7 \end{bmatrix} $	0.16 +0.28 -0.17 (1.5 -0.6)	0.16 +0.24 -0.16 (1.5 +0.7) -0.5
	244.10	2'-1'	-0.179(69) -0.003(70)	0.03(3)	- 0.01 (11) -2.5 -0.7	0.04(7) -(2.9 -0.6)	0.04 (65) +0.9 2.9 -0.5
328.64	296.64	1°-2°	-0.040(87) -0.043 (67)	-0.19 (24)	***********	0.03 -0.27 -0.27 -61.2	0.03 +0.27 -0.23 (3.8 +37.4)

	247.11	1*-1*	-0229(166) -0.264(174)	-0.16 (40)		$ \begin{bmatrix} -\begin{pmatrix} 0.62 & +? \\ & -0.43 \end{pmatrix} & -\begin{pmatrix} 0.62 & +? \\ & -0.36 \end{pmatrix} \\ -\begin{pmatrix} 1.6 & +3.7 \\ & -? \end{pmatrix} & -\begin{pmatrix} 1.62 & -3.2 \\ & -? \end{pmatrix} $
	160.89	1* -2*	-0.091(59) -0.086(62)	0.05 (28)	**********	0.17 +0.24 0.17 -0.16
383.32	301.50	2'-1"	-0.165 (53) 0.010(54)	0.03 (3)	0.01 (8) -(2.7 -0.5	0.05(6) 0.05(5) -(3.6 -0.5) -(3.1 -0.5)
	148.57	2-1-	-0.051 (235) 0.02 7(185)	0.14(7)	0.15 -0.31 only	0.16 +0.32 -0.24 only (-0.261 -0.24)
390.13	223,42	33-	0.131(106) -0.116(115)	-0.21 (8)	-0.25(14)	0.14 only - \begin{pmatrix} -0.26 & (0.14) & -0.26 & (0.14) & -0.14 & -0.7 & -
485.32	318.60	4' - 3'	-0.285 (49) -0.047 (38)	0.013 (14)	0.00 (4)	0.02 (4) (5.8 +1) - (5.8 +1) -0.8
503.34	476,75	35.	-0.271 (133) 0.116(99)	-0.05 (4)	0.01 (10)	-0.01 (11) -0.01 (9) (+2.6) (+2.3)
839.99	453.48	2*-1*	-0.400(104) -0.005 (103)	-(0.17 +0.12) -0.19	42 -1.3 -2 -(0.40 -0.28)	$ \begin{bmatrix} -\begin{bmatrix} 3.9 & & & \\ & -1.3 & & \\ & +0.2 & & \\ & -0.14 & & -\begin{bmatrix} 0.22 & +0.2 \\ & -0.13 & & \\ & & -1.5(6) & & -1.5(5) \end{bmatrix} $
566.53	51.19	5.4	-0.413 (104) +0.003(103)	-0.08 (4)	-t,)	-0.05 (9) -2.5 -4.1 -4.2
571.96	539.92	2*-2*	0.284 (64)	0.11(8)	0.26 +? -0.22) -0.8 1.2 -?	0.12 -0.13 0.12 -0.12 1.76) 1.7
581.वा	413.89	15.	-0.252 (98) -0.267 (104)	0.05 (34)		0.84 *? 0.84 *? 0.84 *? 0.49) (2.3 *19.5) (2.3 *17.7)
625,21	235.10	73	-0.328 (135) -0.180 (137)	0.03 (6)	-0.02(9) $\begin{pmatrix} 4.7 & +3.1 \\ -1.4 \end{pmatrix}$	-9.01(5) -0.01(7) -51 +3.3 -51 +3
641.84	474.12	3*.2*	-0.273 (186) -0.090 (188)	0.03 (5)	0.01 (33)	-0.01 (15) -[0.01 -0.13]
698,96	315.53	x-x-	-0.301 (99) -0.061 (76)	-0.01 (3)	-0.01 (8) -0.01 (8) -0.01 (9)	$ \begin{array}{cccc} & -3.6 \\ & -1.6 \\ & -0.03(9) \end{array} $ $ \begin{array}{cccc} & -3.5 \\ & -0.03(7) \end{array} $ $ \begin{array}{ccccc} & -3.5 \\ & -0.03(7) \end{array} $ $ \begin{array}{ccccc} & -3.6 \\ & -1 \end{array} $ $ \begin{array}{cccccc} & -3.6 \\ & -3.6 \\ & -0.8 \end{array} $
772.18	256.96	3- d	-0.169 (173) 0.076 (172)	0.07(11)	0.04 0.13 0.05	0.06 (17) 0.06 (16) Only Only

Table 2: Multipole Mixing Ratios of γ-Transitions Populated in ⁷⁰As by Using Aproximated Values from Ref.[9]

Iultipole M	ixing Ratio	os of γ-T		ulated in ⁷⁰ As by Using Aproximated Values from R δ				
E _i (KeV)	E _γ (KeV)	$\mathbf{J_i}^{\pi}$ - $\mathbf{J_f}^{\pi}$	$\frac{a_2}{a_4}$ [9]	Ref[9]	CST(P.W)	LSF(P.W)		
81.52	49.45	2 ⁺ - 2 ⁺	-0.052 (49) -0.036 (51)	≈-0.40	+23.0 - 0.42 -0.09	-0.42(8) Only		
		3 ⁺ - 2 ⁺	-0.052 (49) -0.03 (51)	≈+0.16	+0.14(4) +5.03 -10 -2.58	0.14 (3)		
234.73	2.2.66	3 ⁺ - 2 ⁺	+0.142 (58) +0125 (46)	≈+19.08	0.3 - 0.06 Only	+0.03 0.3 - 0.06 Only		
325.65	293.63	3 ⁺ - 2 ⁺	0.304 (90) 0.024 (75)	≈+0.45	0.43(9) (62 - 4	0.43(9) (62 - 2)		
383.32	148.57	1'-1+	-0.051 (235) +0.027 (185)	≈-0.34	$ \begin{array}{cccc} - & & & +? \\ 0.24 & & -0.3 \\ - & & & & \\ 4.1 & & -? \end{array} $	$ \begin{bmatrix} -\begin{pmatrix} 0.24 & +? \\ & -0.3 \end{pmatrix} \\ -\begin{pmatrix} 4 & +12.8 \\ & -? \end{pmatrix} $		
	301.80	1-1+	-0.165 (53) +0.010 (54)	≈-0.62	- \begin{pmatrix} +0.14 & \\ -0.1 & \\ -0.1 & \\ -0.6 & \end{pmatrix} \]	- \begin{pmatrix} +0.16 \\ -0.1 \\ \ -0.1 \\ \ -0.6 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
390.13	223.42	2+-3+	+0.131 (106) -0.116 (115)	≈-0.47	- (0.38 +?) - (0.25) - (1.9 +1.3)	$ \begin{bmatrix} -\begin{pmatrix} 0.34 & +? \\ -0.21 & \\ -1.9 & -? \end{bmatrix} $		
		5 ⁺ -3 ⁺	+0.131 (106) -0.116 (115)	≈-8.14	$ \begin{bmatrix} -\begin{pmatrix} 0.3 & +0.1 \\ & -015 \end{pmatrix} \\ -\begin{pmatrix} 4.6 & -1.7 \end{pmatrix} $	$ \begin{bmatrix} - \begin{pmatrix} 0.3 & +0.1 \\ & -0.15 & \\ & -0.15 & \\ - \begin{pmatrix} 4.6 & +4.9 \\ & -1.7 & \\ & & -1.7 & \\ \end{bmatrix} $		
485.32	318.60	13+	-0.285 (49) -0.047 (38)	≈+2.14	Imajenary Roots	Imajenary Roots		
		2-3+	-0.285 (49) -0.447 (38)	≈+0.32	5.8 -2 (5.8 -2) (0.35 -0.08)	5.8 +5 -2 0.35 +0.1 -0.08		
		3 ⁻ -3 ⁺	-0.285 (49) -0.047 (38)	≈-1.15	-\begin{pmatrix} 12 & +? \\ -1.1 \end{pmatrix} \\ -\begin{pmatrix} 43 & +4.3 \\ -? \end{pmatrix}	-\begin{pmatrix} +? \\ -\begin{pmatrix} -11 \\ -\begin{pmatrix} +43 \\ -? \end{pmatrix}		
566.53	83.39	2 -4	-0.413 (104) +0.003(103)	≈+1.80	Imajenary Roots	Imajenary Roots		
		2+-3+	-0.28 (135) -0.180(137)					

		34-	-0.413 (104) +0.003 (103)	≈+0.27	$ \begin{pmatrix} +0.15 \\ 0.29 \\ -0.11 \end{pmatrix} $ $ \begin{pmatrix} +9.5 \\ 5.6 \\ -2.4 \end{pmatrix} $	0.13(1) 5.6 + 7.8 - 2.3
571.95	539.90	3 ⁺ -2 ⁺	+ 0.284 (64) -0.05(71)	≈+0.42	$ \begin{pmatrix} 0.4 & +0.07 \\ 0.4 & -0.05 \end{pmatrix} $ $ \begin{pmatrix} 7 & +3.7 \\ -2 \end{pmatrix} $	0.40 + 0.07 0.40 - 0.05 (7 +3.7 -2
		4 ⁺ -2 ⁺	+ 0.284 (64) +-0.05(71)	≈-11.43	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- \begin{pmatrix} + 0.07 \\ - 0.16 & -0.06 \\ - 0.06 & \\ - 0.4 & -1.4 \end{pmatrix}
625.21	235.10	1+-3+	-0328 (135) -0.180(137)	≈ +2.14	Imajenary Roots	Imajenary Roots
		2 ⁺ -3 ⁺	-0328 (135) -0.180 (137)	≈ +0.21	(0.44 +? -0.24) (+34 4 -?)	0.4 4 +? -0.1
		3 ⁺ -3 ⁺	-0328 (135) -0.180(137)	≈ -4.70	2 +? -1.17 +23.5 2.1 -?	2 +? 2 -12 (21 +23.5 -?
641.84	474.12	1+-2+	-0.273 (186) -0.090 (188)	≈ +1.33	Imajenary Roots	Imajenary Roots
		2+-2+	-0.273 (186) -0.090 (188)	≈ -0.82	Imajenary Roots	Imajenary Roots
698.86	315.53	12-	-0.301 (99) -0.061(76)	≈ +1.33	Imajenary Roots	Imajenary Roots
		22-	-0.301 (99) -0.061(76)	≈ +1.13	Imajenary Roots	Imajenary Roots
772.28	286.96	24-	-0.169 (173) +0.076 (172)	≈ +0.52	(0.5 +0.6) Only	0.5 +0.6 -0.3 Only
		4-4-	-0.169 (173) +0.076 (172)	≈ -0.75	- (0.81 +0.59 Only	- (0.81
		5-4-	-0.169 (173) +0.076 (172)	≈ +0.04	0.05 - 0.09 Only	(0.06 +0.1) Only

Table 3: Mean Life Time (τ_m) and Total Gamma Width (Γ_y) for Levels of 70 As

Table 3.	Mican Liic	I IIII (tm)	and I otal Ga	11111111111111111111111111111111111111	jiui Leveis ui As	
E _i (KeV)	E _f (KeV)	E _γ (KeV)	10 ⁻⁹ _s τ ×	J_i^{π} - J_f^{π}	Ιγ	(EL,ML) $\Gamma_{\gamma} \times 10^{-9} \text{ eV}$
167.7	81.56	86.25	< 4.3	2+ -1+	35(4)	M1>39.4±4.8
234.8	32.07	202.73	138528±4329	1+ -2+	100(1)	M>0.004±0.0001
325.7	81.56	244.14	< 4.3	2+ -1+	100(3)	M1> 76±3.2
328.7	167.7	160.79	< 4.3	1+ -2+	100(7)	M1>71.69±9.85
383.4	81.56	301.9	< 4.3	2+ -1+	100(4)	E1>119±12
483.3	166.7	318.6	8± 0.721	4 ⁺ -3 ⁺	100(5)	E1>44.39±5.05
581.6	167.7	413.91	< 4.3	1+ -2+	100(3)	M1>57±3
641.8	167.7	474.1	< 4.3	3 ⁺ -2 ⁺	100	M1>152
698.8	383.4	315.5	< 1.4	3 ⁺ -2 ⁺	100	M1>470

Table 4: The Transition Strength, [M(EL, ML)]² for ⁷⁰As Nucleus

E _γ (KeV)	J_i^{π} - J_f^{π}	B.R [5]	(EL,ML) Γ 10 ⁻⁹ eV ×	w.u(EL,ML) Γ eV 10 ⁻⁹ \times	$ M(EL, ML) ^2$ w.u.10 ⁻⁶
86.25	2+ -1+	25.9 ± 3.1	$M1 > 39.4 \pm 4.8$	13474	> 2924 ± 356
202.73	1+ -2+	91.7 ± 1.9	$M1\ 0.004 \pm 0.0001$	174973.9	0.0249 ± 0.009
244.14	2+ -1+	50 ± 2.12	$M1 > 76 \pm 3.2$	305587.8	$> 248.7 \pm 10.4$
160.79	1+ -2+	47.1 ± 6.4	$M1 > 71.69 \pm 9.85$	87296.4	>821.3 ± 112.9
301.9	2+ -1+	78.7 ± 8.0	$E1 > 119 \pm 12$	31780711.2	$> 3.744 \pm 0.377$
318.6	4 ⁺ -3 ⁺	54.1 ± 3.7	$E1\ 44.39 \pm 5.05$	37351804.4	1.188 ± 0.135
413.91	1+ -2+	38.0 ± 2.4	$M1>57\pm3$	1489145.2	$>38.27 \pm 2.01$
474.1	3 ⁺ -2 ⁺	100	M1>152	2237840.6	>67.92
315.5	3 ⁺ -2 ⁺	100	M1>470	659503.92	>712.6

Figure 1: High Energy Part of the Proposed Level Scheme of ⁷⁰AS Adopted of the Nuclear Data Sheets Evaluatio Are Shown on the Left Side, which Contain Also the High-Spin States, Excited in Heavy –Ion Reaction.[13]