

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

вный исследовательский университет (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНАЯ ИНЖЕНЕРИЯ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

По лабораторной работе № __5_

Название:	«Исследование полупроводниковых диодов в
	Multisim»
Дисциплина:	Основы электроники

Студент	ИУ7-35Б	А. В. Толмачев
-	(Группа)	 (И.О. Фамилия)
Преподаватель	Оглоблин Дмитрий Игоревич	

Цель практикума: получить навыки в использовании базовых возможностей программы Microcap и знания при исследовании и настройке усилительных и ключевых устройств на биполярных и полевых транзисторах.

Эксперимент 1. Снятие вольтамперных характеристик биполярного транзистора.

Используемый диод: 2N2945A - PNP

1. Моделирование схемы

2. Параметры анализа для получения выходных ВАХ

3. Построение выходных ВАХ

4. Построение входных ВАХ

5. Получение данных о транзисторе

Parameters/Test Conditions	Symbol	Value	Unit	
Junction and Storage Temperature	Tu and Tstg	-65 to +200	°c	
Thermal Resistance Junction-to-Ambient	R	435	°C/W	
Collector Current (dc)	IC BJA	-100	mA	
Emitter to Base voltage (static), collector open	2N2944A 2N2945A 2N2946A	V EBO	-15 -25 -40	V
Collector to Base voltage (static), emitter open	2N2944A 2N2945A 2N2946A	V cso	-15 -25 -40	V
Collector to Emitter voltage (static), base open	2N2944A 2N2945A 2N2946A	V CEO	-10 -20 -35	V
Emitter to Collector voltage	2N2944A 2N2945A 2N2946A	V EOO	-10 -20 -35	V
Total Power Dissipation, all terminals @ 3	A= +25 °C (1)	Рт	400	mW

6. Построение кривой допустимой мощности

7. Построение нагрузочной прямой

Ek = 12B, Rk = 750 Om => Ik = 12/750= 16 mA

По середине нагрузочной прямой:

$$Ik = U/Rk = Ek/2Rk = 8MA$$

8. Определение тока базы в рабочей точке

$$Bf = 990.284$$

lb = lk/Bf = 8mA/990=8,08mkA

U6 = 0.648596

Эксперимент 2. Установка рабочей точки каскада усиления с общим эмиттером дополнительными элементами схемы

1. Получаем зависимость коэффициента от тока коллектора для тока Iк = 8мА

2. Определяем ВF по графику

Bf=549.335 для Ik=8.0мА

3. Рассчитываем Rk и Rb

$$16 = 1k/BF = 8mA/549.335 = 14,57 mkA$$

$$Rk = (Ek-Uk)/Ik = (12-6)*1000/8=750$$

U6 = 0.648596

$$Rb = (Ek-Ub)/Ib = (12-0.648596)B/14.57mkA = 779kOm$$

4. Строим схему с найденными сопротивлениями

5. Настройка режима transient

6. Результаты анализа:

Коэффициент усиления: $\sim (-2-(-8))B/(0.02-(-0.02))B = 6/0.04 \sim 150$

Расчет тока базы, тока делителя, сопротивлений R1 и R3

$$Iб = 14,57$$
 мкА => $Iд = 145.7$ мкА = 0.0001457 А

$$R1/R3 = (Ek-U6)/U6 = (12-1)/1 = 11$$

7. Построение схемы с найденными сопротивлениями

Изменим сопротивление R3 с 6863 Ом на 4784 и получим требуемое напряжение

Эксперимент 3. Исследование влияния температуры на положение рабочей точки каскада с общим эмиттером биполярного транзистора.

1. Для построения ВАХ используем схему из задания 1

2. Влияние температуры на выходную ВАХ

3. Влияние температуры на входную ВАХ

4. Используем схему из задания 2.

5. Увеличим амплитуду в 5 раз

