Large Sample Tests

Test of significance of the difference between the means of two samples.

1. If the samples are drawn from the same population, i.e. if $\sigma_1 = \sigma_2 = \sigma$, then

$$z = \frac{\overline{X}_I - \overline{X}_2}{\sigma \sqrt{\frac{I}{n_I} + \frac{I}{n_2}}}$$
 (2)

2. If σ_1 and σ_2 are not known and $\sigma_1 \neq \sigma_2$, σ_1 and σ_2 can be approximated by the sample SDs s_1 and s_2 . Hence, in such a situation [from (1)],

$$z = \frac{\overline{X}_I - \overline{X}_2}{\sqrt{\frac{s_I^2}{n_I} + \frac{s_2^2}{n_2}}}$$
 (3)

3. If σ_1 and σ_2 are equal and not known, then $\sigma_1 = \sigma_2 = \sigma$ is approximated by $\sigma^2 = \frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2}$. Hence, in such a situation, [from (2)],

$$z = \frac{\bar{X}_I - \bar{X}_2}{\sqrt{\left(\frac{n_I s_I^2 + n_2 s_2^2}{n_I + n_2}\right) \left(\frac{1}{n_I} + \frac{1}{n_2}\right)}},$$
i.e.
$$z = \frac{\bar{X}_I - \bar{X}_2}{\sqrt{\frac{s_I^2}{n_2} + \frac{s_2^2}{n_I}}}$$
(4)

4. The difference in the denominators of the values of z given in (3) and (4) may be noted.