Propagation guidée des ondes

7 juin 2025

Référence

Expérience:

Livre:

- Optique Une approche expérimentale et pratique, Houard, De Boek (info sur les fibres optiques)
- Ondes, H prépa, Brébec, Hachette

Prérequis :

- Ondes acoustiques
- Réflexion sur un conducteur parfait
- Ondes électromagnétiques
- Optique géométrique

Niveau: PSI/PC

Introduction

Expérience qualitative de la diminution importante avec la distance de l'énergie reçue pour une onde en propagation libre mais pas ce problème pour une onde guidée dans un tuyau.

1 Guide d'ondes plans

1.1 Réflexion sur un plan

Soit deux milieux de propagation différents séparés par une interface plane. Le milieu 1 est assimilé au vide tandis que le milieu 2 est assimilé à un conducteur parfait. Une onde incidente électrique transverse arrive avec un angle i sur l'interface. Elle est réfléchie avec un angle -i (lien avec Snell-Descartes).

On peut écrire que :
$$\overrightarrow{E}_i = E_0 e^{j(\omega t - \overrightarrow{k}_i \cdot \overrightarrow{r})} \overrightarrow{e}_y \text{ où } \overrightarrow{k}_i = \frac{\omega}{c} (\cos(i) \overrightarrow{e}_z - \sin(i) \overrightarrow{e}_x)$$

$$\overrightarrow{E}_r = E_0 e^{j(\omega t - \overrightarrow{k}_r \cdot \overrightarrow{r})} \overrightarrow{e}_y \text{ où } \overrightarrow{k}_r = \frac{\omega}{c} (\cos(i) \overrightarrow{e}_z + \sin(i) \overrightarrow{e}_x)$$
En sommant les deux ondes, on obtient :

En sommant les deux ondes, on obtient :

$$\overrightarrow{E}_{tot} = E_0 \overrightarrow{e}_y e^{j(\omega t - k_z z)} \left[e^{j\frac{\omega}{c}\cos(i)x} - e^{-j\frac{\omega}{c}\cos(i)x} \right] = 2jE_0 \overrightarrow{e}_y e^{j(\omega t - k_z z)} \sin(\frac{\omega}{c}\cos(i))$$

(le signe moins dans la somme vient de l'annulation du champ sur l'interface : $\overrightarrow{E}_{0r}=-\overrightarrow{E}_{0i}$ On a donc une onde progressive en z et une onde stationnaire en x.

Propagation entre deux conducteurs

En ajoutant un autre conducteur à une distance a selon Ox, on ajoute une condition aux limites pour le champ électrique totale : $\vec{E}_{tot}(x=a) = \vec{0}$

Cela implique que $\sin(\frac{\omega}{c}\cos(i)a)=0$ et donc que $\frac{\omega}{c}\cos(i)a=n\pi$ où n est un entier positif On retrouve une quantification des directions de propagation (similaire à la corde de Melde) -> Voir schéma du cercle du Hprépa.

Relation de dispersion

On peut écrire que $k_z^2 = \frac{\omega^2}{c^2} \sin^2(i) = \frac{\omega^2}{c^2} \left(1 - \left(\frac{n\pi c}{a\omega}\right)^2\right) = \frac{\omega^2 - \omega_{nc}^2}{c^2}$ où $\omega_{nc}^2 = \left(\frac{n\pi c}{a}\right)^2$ On peut calculer la vitesse de phase et de groupe indépendamment. En différenciant la relation de dispersion, on peut obtenir le relation : $2(dk)k = \frac{2(d\omega)}{c^2} \Leftrightarrow c^2 = \frac{d\omega}{dk} \frac{\omega}{k}$ Mettre schéma asymptotique.

$\mathbf{2}$ Guide d'ondes cylindriques

Mesure expérimentale

Expérience quantitative sur les ondes acoustiques dans un tuyau.

2.2 Fibre optique

Application pour la fibre optique (parler d'ouverture numérique et de temps de dispersion des modes)

Expérience quantitative

Objectif de l'expérience

Mesure de la vitesse de groupe de plusieurs paquets d'onde

Matériels

- Tuyaux (18mm et 24mm)
- Émetteurs à ultrasons
- GBF
- Oscilloscope
- Pieds d'optique x4
- Pinces deux doigts
- Thermocouple

Protocole

Trouver la fréquence de résonance des émetteurs à ultrasons. Mesurer le temps de retard avec les émetteurs collées. Mesurer le temps entre émission et réception à travers un tube. Comparaison entre les vitesses de groupe, la célérité du son et les modes propres.

Précautions expérimentales