Puzzle: HAMPATH = E(G) | G encodes a graph with a "Hamiltonian cycle; a path that visits each vertex exactly once.] 3-COLOR = {(G) | G encodes a graph that can be "3-colored": we can give each vertex a color in {R,G,B} s.t. no two adjacent vertices have the same color } Given G, what info do we (a verifier) need to check if (G) EHAMPATH, or (G)E3-COLOR? If this information is encoded as a string c, what's the runtime of $V_{HAMPATH}$ ($\langle G, c \rangle$), $V_{3COL}(\langle G, c \rangle)$? (Say V has n vertices). Certificate for HAMPATH: a path. Certificate for 3-COLOR: a coloring. Show in NP: $V_{HAMPATH}(\langle G, c \rangle)$: Check O(n) edges of the path c are in the graph G, and farm a Hemiltonian coale. (plastime to scan back and fath) V₃color ((G, c)): Check O(n²) pairs of adjacent vertices (-), make sure our coloning Conever gives an adjacent pair thesame coloring.

NP-completeness: Cook-Levin Theorem. 2. NP-completeness reductions. transition to review session mode - Tim will be in dos to 4:45 — on 200m — 5-7. Fist: Course Evals-~ "efficiently" decidable languages (TM can decede in poly (n)). ≈ "efficiently verifiable" languages (verifiable by a TM, with the right proof string,)
in fine poly(a)

(NTM decides in poly(a)). P=NP What would it take to prove P=NP? To show NPE P: - simulate an NTM with a TM in fine poly (n)? If we can solve one special problem in NP (SAT) we can solve every problem in NP in time poly Ca). in poly (n) "To show P=NP, solve SAT in time poly(n)."

SAT = "Boolean formula sortisfiability"
Boolean formula: n Boolean variables, connected by A, V, T.
Def. A Boolean formula & is satisfiable if there is some assignment of T/F values to the variables that makes the statement true.
(x, \sqrt{x}) is unsatisfiable.
$ (x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2) $ $ F T T F T T $ $ X_1 = F $
SAT = { () } \$\Phi\$ is a satisfiable Boolean formula ? (on n variables) }
SATENP. (NTM can guest a satisfying assignment.)
Cook-Levin: Decide SAT in time poly(a)
Proof sketch. [(Sipser p. 304-311).] Start with any language LENP, decided by the poly (a) - time NTM N _L . Let I show that if we could decide SAT in time poly (a), we could decide L in time poly (a).
Start with any language LENT, decided by the
poly (a) - time NTM N. Lebell show that if we could ever be
SAT in time payon, we could seed to in the pay
Idea: Write the statement
"Ne accepts w" as a Boolean formula Dw such that
"Ne accepts w" as a Boolean formula Dw such that Ne (w) accepts & Dw ESAT (Dw satisfiable).
(If we have this, can use a decider for SAT on COW) to abbrained if NL(W) accepte.)
if N _L (w) accepte.)

To dois: (1) What is \$\phi_{\omega}\$?	
(2) (OWE SAT WEL	
(3) $ \langle \Phi_w \rangle = poly(n)$, and Φ_w can be built in time poly(n)	1
(Well ighave (2) and (3), focus on (1).)	
Recall: we can summarize an (N)TM with a configuration string, which lists the state, the tape contents, and the tape head position	»vi
Impat: $\omega = \omega_1 \omega_2 \dots \omega_m$ $C = g_0 \omega_1 \omega_2 \dots \omega_n$ $C' = g_1 \omega_1 \omega_2 \dots \omega_n$	
" N_L accepts $w'' = "There exists a sequence C_1, C_2, C_R of NTM config$,2 ¹¹
\wedge 'C, = gow, the start configuration N _L (co)	
(2) Citi follows from Ci according to Nis transition function, for all 1=i=l."	
1 "Ce is an accepting configuration."	
= "C, character 1, is go" 1 "C, char 2, is w,"	
(1 "C1, char 3, is wz" 1 " 1" C, char n+1, is wn"	/
= Boolean Variable X1,1,80	
Connect that variables to make (2) true.	
" $C_2[i] = a \iff C_1[i] = a$ " "config (, chor $i = a$ "	
$(X_{1/i,\alpha} \wedge X_{2/i,\alpha}) \vee (\overline{X_{1/i,\alpha}} \wedge \overline{X_{2/i,\alpha}}).$	
Remainder of proof: carefully building up Ow s.t.	
(Ow) ESAT = WEL.	J
Takeaway: Decide Decide any LENP	
Takeaway: Decide \Longrightarrow Decide any LENP \inf in poly (n).	

(1) SATENP, (2) If we salve SAT in poly(n), we can solve any problem in NP in poly(n).
= SAT & NP-complete.
"SAT is Ei of NP"
"SAT is Eight NP"
3SAT = ? (0) \$\phi\$ is a satisficible Roolean formula in "3-CNF,"
or "3- conjunctive normal form" }
= a big 1 of 3-variable V clauses."
$(x_1 \vee \overline{X_2} \vee X_3) \wedge (\overline{X_4} \vee X_4 \vee X_3) \wedge (x_4 \vee \overline{X_5} \vee X_6) \cdots$
Fact. If you can decide 35AT in time poly(n) => can decide SAT in time poly(n).
=> can decide SAT in time poly(n).
3SAT for any LENP fast.
SUDOKU fast Pall ENP HAMPATH Gall ENP 3-COLOR VX COUSE Pall allow you to decide = NP-complete.
3-color VX COUER) all allow you to decide = NP-complete. SUBSETSUM) any LENP in fine poly(n), if you have an efficient alg for them
If we could solve any of many efficiently verifiable problems quickly, we could solve them all.
P=NP

E. A satisfiable. In this case, there is an assignment that satisfies every clause. Choose K vertices in G corresponding to one satisfied variable in each clouse.

These vertices form a clique: no x, x pairs, no vertices in the same clouse.

Given any 3SAT formula &, we can convert it to a graph G such that (G, K) E CLIQUE if and only if the K-claux formula (B) e 3SAT.

Thus, solving CLIQUE gives as an algorithm for 35AT. IT

Back at 3:18