Practice Problems Chapter 4: Non-Linear Equations

- 1. Consider a fixed point function $g(x) = (9x 1)^{\frac{1}{3}}$. The corresponding nonlinear function f(x) has a solution $x_{\perp} \in \mathbb{R}$.
 - a. Show that g(x) would lead to linear convergence if x > 0 $\frac{1}{9}$ (1 + $\sqrt{27}$). ** hint: use the condition for linear convergence **
 - b. Starting from $x_0 = 2.5$, find the value of x_* after 5 iterations while keeping up to 5 significant figures.
- 2. Use Secant method to estimate the root of the following function $f(x) = x^3 3x^2 + x$ with initial the initial values of $x_0 = 0.35 \, \& \, x_1 = 0.3$. Show your result with the error in a tabular format for the first 5 iterations.
- 3. Consider the following function $f(x) = x^2 \sqrt{(2x+3)}$. Now, find the solution of f(x) = 0 by doing 5 iterations using the Newton's Raphson method starting with $x_0 = 1.5$. Keep your answers up to 3 significant figures.
- 4. Consider the function, $f(x) = x^3 x^2 9x + 9$. Answer the following:
 - a. State the exact roots of f(x).
 - b. Construct three different fixed point functions g(x) such that f(x) = 0. (Make sure that one of the g(x)'s that you constructed converges to at least a root).
 - c. Find the convergence rate/ratio for each g(x) constructed in the previous part and also find which root it is converging to.
 - d. Find the approximate root, x*, of the above function using fixed point iterations up to 4 significant figures within the error bound of 1×10^{-3} using $x_0 = 0$ and any fixed point function g(x) from part(b) that converges to the root(s).
- 5. Use Newton's method to find the root, x_* , of the equation, $f(x) = x^2 e^{-x} 0.6$, up to machine epsilon of 1×10^{-4} starting with $x_0 = 0.2$.
- 6. Let $f(x) = x^3 + 4x^2 10 = 0$, which can be written as g(x) = x for some function g(x).

 a. By manipulating f(x) = 0, find at least three expressions for g(x) such that g(x) = x.

 b. The given function, f(x), has one real root which is $x_* = 1.36523$. The other two roots are complex and ignore those two roots. Now evaluate the rate λ for the three function, g(x), you evaluated in the previous part using the real root. Are these three function, g(x), converging or diverging?
- 7. Use Newton's method to find the solutions for (i) $f(x) = \sqrt{x} \cos(x)$ and (ii) $f(x) = x^2 2xe^{-x} + e^{2x}$ starting with $x_0 = 2.0000$ within 10^{-5} .
- 8. Consider the nonlinear equation, $f(x) = x^3 7x^2 + 4x + 12$. Answer the following:
 - a. Find the roots of the given function. Note all three distinct roots are real in this case.
 - b. Construct two different fixed point functions for the given function.
 - c. Find out if the fixed point functions you evaluated in the previous part are converging or diverging. If converging, which root it is converging to.
 - d. Construct a superlinear converging function g(x) for the given function and computer six iterations starting from (i) $x_0 = 4$ and (ii) $x_0 = 0$. Which root the g(x) seems to be converging to?
- 9. A function is given by $f(x) = x^3 + 2x^2 x 2$. Answer the following:
 - a. By manipulating f(x) = 0, find at least three expressions for g(x) such that g(x) = x.
 - b. The three roots of f(x) are ± 1 and -2. For all your g(x)'s, compute the rate λ to find if it is converging to any of the roots.

- 10. Use Newton's method to find the solution of $f(x) = 1 4x \cos(x) + 2x^2 + \cos(2x) = 0$ within 10^{-5} for $0 \le x \le 1$ starting with $x_0 = 0.25$.
- 11. Use Newton's method to find the root, x_{\star} , of the function $f(x) = x^2 e^{-x} 0.5$ up to machine epsilon 1. 0 \times 10⁻⁴ starting with $x_0 = 0.2$.
- 12. A function is given by: $f(x) = x^6 x^3 2$ which has two real roots and the other roots are complex. Answer the following:

 - a. Construct two fixed point function g(x) such that f(x) = 0. b. Compute the rate λ for the fixed point functions constructed above, and which root it is
 - converting to or diverging c. Starting from $x_0 = 60$, and the converging fixed point function g(x) that you constructed in the previous part to find the root of the above function accurate up to 3 decimal places.
- 13. Find the root of the equation, $f(x) = xe^x 1$ using fixed point iteration accurate up to machine epsilon of 1.0×10^{-5} . Use the fixed point function $g(x) = e^{-x}$ and start with $x_0 = 0$.
- 14. Use a secant method to find the root of the equation, $f(x) = 2x^3 + 7x^2 14x + 5$. Find the root accurate up to 4 decimal places starting with $x_0 = -5.5$ and $x_1 = -4.5$.