Name:

Matr.:

Solution

Cryptography – Questionnaire 6

Questions- 1P each= 5P		
	true	false
If RSA (i.e. $f(x) = x^e \mod N$ with modulus $N = pq$) is an OWF then computing a $z < N$ with $\gcd(z, N) > 1$ has to be hard.		
Let $f: \mathbb{Z}_{77}^* \to \mathbb{Z}_{77}^*$ with $f(x) = x^{13} \mod 77$ and $g: \mathbb{Z}_{77}^* \to \mathbb{Z}_{77}^*$ with $g(x) = x^{43} \mod 77$. Then f and g define the same map.		

If OWP with hard-core predicate exist then PRGs of variable stretch exist.

"One-liners" -2P+2P+1P = 5P

If $\mathcal{P} = \mathcal{NP}$ then there are no CPA-secure ES.

OWF exist if and only if CCA-secure ES exist.

Exercise 6.1 2P

 \boxtimes

 \boxtimes

 \boxtimes

П

Compute the *least* positive integer d such that $g(x) := x^d \mod (5 \cdot 17)$ is the inverse of $f(x) := x^3 \mod (5 \cdot 17)$. Answer: $d = 3^{-1} \mod \lambda (5 \cdot 17) = 3^{-1} \mod 16 = 11$

Exercise 6.2

Show (i.e. sketch the argument briefly) that $f_n: \{0,1\}^{42} \times \{0,1\}^n \to \{0,1\}^{(n+44)}$ defined as $f(x,y) = (x||0) \cdot (y||1)$ is not an OWF (the multiplication \cdot is to be interpreted in $Z_{2(n+44)}^*$).

Answer: Given $y = f_n(x_1, x_2)$ we can simply enumerate all elements of $\{0, 1\}^{42}$ (these are finitely many so it takes constant time:)) and try to divide y by each of these elements. If one such division succeeds (i.e. we get no remainder) we have found pre-images a, b with $f_n(a, b) = y$. Note that the runtime is polynomial in n as division of n bit numbers can be carried out in polynomial time and we do a constant ($< 2^{42}$) number of divisions!

Exercise 6.3

How many solutions does the quadratic equation $X^2 \equiv 1 \mod 51$ have? (*Hint*: $51 = 3 \cdot 17$) Answer: 4