

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 2 ปีการศึกษา 2550

วิชา ENE 311 Physics of Electronic Materials and Devices I

ภาควิชาวิศวฯอิเล็กฯ ปีที่ 3 ปีที่ 2 (โครงการฯ)

เวลา 09:00 -12:00 น.

สอบ วันอังคารที่ 11 มีนาคม 255%

- คำเตือน1. ข้อสอบวิชานี้มี 6 ข้อ 12 หน้า (รวมใบปะหน้า) ข้อละ 20 คะแนน
 - 2. แสดงวิธีทำลงในข้อสอบเท่านั้น และแสดงวิธีทำทุกข้อโดยใช้เลขนัยสำคัญ 4ตำแหน่ง
 - 3. ไม่อนุญาดให้นำเอกสาร หรือหนังสือประกอบการเรียนเข้าห้องสอบ
 - 4. สามารถนำเครื่องคำนวณเข้าห้องสอบได้

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถู	าซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา		
ชื่อ-สกุล			
รหัสประจำตัว	เลขที่นั่งสอบ		
 อาจารย์อภิชัย ภัทรนันท์			
ผู้ออกข้อสอบ			
โทร. 0-2470-9063			

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(ผศ.ดร.วุฒิชัย อัศวินชัยโชติ)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

افص	el v
20	เลขที่นั่งสอบ
טער	

1. จงหาค่าความยาวคลื่น de Broglie ของอิเล็กตรอนใน<u>ซิลิกอนและแกลเลี่ยมอาร์เซไนด์</u>ที่ เคลื่อนที่ด้วยค่าความเร็วเฉลี่ยจากพลังงานความร้อนที่อุณหภูมิห้อง
Find the de Broglie wavelength of an electron in <u>Si and GaAs</u> having average thermal energy velocity at room temperature.

<u>Solⁿ</u>

40		
שנד	เดขทนาลยบเดขทนาลยบ	 .

- 2. (ก) ที่อุณหภูมิห้อง จงคำนวณหาค่าความหนาแน่นของ<u>ซิลิกอน</u>ในหน่วยของกรัมต่อลูกบาศก์ เซนดิเมตร
 - (a) At 300 K, calculate the density of Si.

- (ข) จงคำนวณหาค่าความหนาแน่นพื้นผิว (ต่อตารางเซนติเมตร) ของอาร์เซนิกอะตอมบน ระนาบ (001) ของแกลเลี่ยมอาร์เซไนด์
- (b) Calculate the atom surface density (per cm2) for As atoms on a Ga terminated (001) surface in GaAs.

ชื่อเลขที่นั่งสอบ.......

3.

ชิลิกอนถูกโต๊ปด้วยอินเดี่ยมอะตอมที่อุณหภูมิห้องแต่ไม่ทุกอะตอมของ N_A จะไอออนในซ์ ทำ ให้ $E_A=E_F$ ถ้าอินเดี่ยมมีค่า $m_h^*=0.39m_o$ จงหา

- (ก) ค่าความเข้มข้นของการโต๊ป N_A ที่ทำให้ $E_A=E_F$ ที่อุณหภูมิห้อง
- (a) The doping concentration N_A for which $E_A = E_F$ at room temperature

(ข) ค่าความหนาแน่นของประจุอิสระข้างมาก และข้างน้อย

Si is doped with In at room temperature but not all acceptor atoms are ionized so that $E_A = E_F$. If effective hole mass of In is $m_h^* = 0.39 m_o$, Find

(b) Free majority and minority carrier density

ชื่อเลขที่นั่งสอบ......

4. จงหาค่าความเข้มข้นการโด๊ป N_D ที่ทำให้ซิลิกอนไดโอดชนิดพี-เอ็นมีค่าด่างๆดังนี้ $N_A = 10^{18} \text{ cm}^{-3}$, $|E_{max}| = 4 \times 10^5 \text{ V/cm}$ ที่ $V_R = 30 \text{ V}$ และ T = 300 K Determine the n-type doping concentration to meet the following specifications for a Si p-n junction:

 $N_A = 10^{18} \text{ cm}^{-3}$, $|E_{max}| = 4 \times 10^5 \text{ V/cm}$ at $V_R = 30 \text{ V}$, T = 300 K

5. แกลเลี่ยมอาร์เซไนด์ p ๋ก ไดโอดแบบ one-sided abrupt มีค่า $N_D=8 \times 10^{14} \ cm^{-3}$ และ $N_A=10^{18} \ cm^{-3}$ และมีค่า breakdown voltage ที่ 500 โวลท์

For a GaAs p⁺n one-sided abrupt junction with $N_D = 8 \times 10^{14}$ cm⁻³ and $N_A = 10^{18}$ cm⁻³

- (ก) จงคำนวณหาความกว้างของ depletion layer ที่ breakdown
- (a) Calculate the depletion width at breakdown

- (ฃ) ถ้าฝั่งเอ็นของใดโอดนี้ถูกลดความกว้างลงเป็น 20 ไมโครเมตร จงหาค่า breakdown voltage
- (b) If the n-type region of this diode is reduced to 20 micron, calculate the breakdown voltage.

6. ชิลิกอน p-n-p ทรานซิสเซอร์มีค่าการโด๊ป 5x10¹⁸, 2x10¹⁷, และ 10¹⁶ อะตอมต่อลูกบาศก์ เซนติเมตรที่อีมิตเตอร์ เบส และคอลเลคเตอร์ ตามลำดับ ความกว้างของเบสเท่ากับ 1 ไมโครเมตร และพื้นที่หน้าตัดเท่ากับ 0.2 ตารางมิลลิเมตร โดยที่อิมิตเตอร์-เบสถูกไบแอสตรงที่ 0.5 โวลท์ และที่เบส-คอลเลคเตอร์ถูกไบแอสย้อนกลับที่ 5 โวลท์ ค่าคงที่การแพร่ของพาหะข้าง น้อยเท่ากับ 52, 40, และ 115 ตารางเซนติเมตรต่อวินาที ที่อิมิตเตอร์ เบส และคอลเลคเตอร์ ตามลำดับ และค่า lifetime ที่อิมิตเตอร์ เบส และคอลเลคเตอร์ วินาที ตามลำดับ จงคำนวณหา I_{Ep} , I_{Cp} , I_{En} , I_{Cn} และ I_{BB} ดังรูป

A Si p-n-p transistor has impurity concentrations of 5×10^{18} , 2×10^{17} , and 10^{16} cm⁻³ in the emitter, base, and collector, respectively. The base width is 1.0 μ m and the device cross-sectional area is 0.2 mm². The emitter-base junction is forward biased to 0.5 V and the base-collector junction is reverse biased to 5 V. The diffusion constants of minority carriers in the emitter, base, and collector are 52, 40, and 115 cm²/s, respectively; and the corresponding lifetimes are 10^{-8} , 10^{-7} , and 10^{-6} s. Find the current components I_{Ep} , I_{Cp} , I_{En} , I_{Cn} , and I_B as shown in the figure.

Properties of Si and GaAs at 300 K

Properties	Si	GaAs
Atoms/cm ³	5.02×10^{22}	4.42×10^{22}
Atomic weight	28.09	144.63
Breakdown field (V/cm)	$\sim 3 \times 10^5$	$\sim 4 \times 10^3$
Crystal structure	Diamond	Zincblende
Density (g/cm³)	2.329	5.317
Dielectric constant	11.9	12.4
Effective density of states in conduction band, $N_C(cm^{-3})$	2.86×10^{19}	4.7×10^{17}
Effective density of states in valence band, N ₁ (cm ⁻³)	2.66 × 10 ¹⁹	7.0×10^{18}
Effective mass (conductivity)		
Electrons (m_a/m_0)	0.26	0.063
Holes (m_p/m_0)	0.69	0.57
Electron affinity, $\chi(V)$	4.05	4.07
Energy gap (eV)	1.12	1.42
Index of refraction	3.42	3.3
Intrinsic carrier concentration(cm ⁻³)	9.65×10^{9}	2.25×10^{6}
Intrinsic resistivity (Ω -cm)	3.3×10^{5}	2.9×10^8
Lattice constant (Å)	5.43102	5.65325
Linear coefficient of thermal expansion, \[\Delta L \times T \(\circ C^{-1} \) \]	2.59×10^{-6}	5.75 × 10 ⁻⁶
Melting point (°C)	1412	1240
Minority-carrier lifetime (s)	3×10^{-2}	~10-8
Mobility (cm ² /V-s)		
μ_n (electrons)	1450	9200
μ, (holes)	505	320
Specific heat (J/g -°C)	0.7	0.35
Thermal conductivity(W/cm-K)	1.31	0.46
Vapor pressure (Pa)	1 at 1650°C 10-6 at 900°C	100 at 1050°C 1 at 900°C

^{**} สามารถฉีกกระดาษสูตรและค่าคงที่ต่างๆออกจากตัวข้อสอบได้

.....เลขที่นั่งสอบ......

Formula sheet (1/3)

 $N_A = Avogadro's number = 6.02 \times 10^{23} atoms/mole$

 $k = Boltzmann's constant = 1.38 \times 10^{-23} J/K$

e = electronic charge = 1.6×10^{-19} C eV = electronvolt = 1.6×10^{-19} J

 m_0 = free electron mass = 9.11 x 10⁻³¹ kg.

 ε_0 = permittivity of free space = 8.85 x 10^{-12} F/m = 8.85 x 10^{-14} F/cm

 μ_0 = permeability of free space = 1.26 x 10⁻⁶ H/m

 $h = Planck's constant = 6.63 \times 10^{-34} J.s$

 $c = light velocity (speed) = 3 \times 10^8 \text{ m/s}$

$$A^{\bullet}$$
 = Richardson constant = 1.2 x 10⁶ A/(m².K²) = $\frac{4\pi e m_0 k^2}{h^3}$

 $1G = 1x10^{-4} \text{ Wb/m}^2$

$$R = \frac{\rho l}{A} = \frac{1}{\sigma} \cdot \frac{l}{A}$$
 $J = \sigma E$ $v_D = \mu_e E$ $J = N_e \cdot e \cdot v_D$

$$\sigma_e = N_e e \mu_e = n e \mu_e \qquad \sigma_h = p e \mu_h \qquad \frac{1}{\mu} = \frac{1}{\mu_L} + \frac{1}{\mu_I} \qquad R_{_H} = -\frac{1}{q N_e} = \frac{1}{N_e e} = \frac{1}{N_e e$$

$$V_H = E_H d$$
 $J_e = -eF = eD_n \frac{dn}{dx}$ $D_n = \left(\frac{kT}{e}\right)\mu_e$ $\lambda = \frac{h}{p}$

$$T \cong \exp\left\{-2d\sqrt{\frac{2m_e^*(eV_0 - E)}{\hbar^2}}\right\} \qquad E = \frac{n^2h^2}{8mL^2} \qquad \rho = \left(\frac{nM}{N_A}\right) \cdot \frac{1}{a^3}$$

$$E_n = -\frac{me^4}{8\varepsilon_0^2 h^2} \cdot \frac{1}{n^2} = -\frac{13.6 \text{ eV}}{n^2} \qquad n = \int_0^\infty n(E)d(E) = \int_0^\infty N(E)F(E)dE$$

$$N(E) = 4\pi \left(\frac{2m}{h^2}\right)^{3/2} E^{1/2} \qquad F(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$$

$$n = N_C \exp\left[-(E_C - E_F)/kT\right] \qquad n_i = \sqrt{N_C N_V} \exp\left(-E_g/2kT\right)$$

$$N_{V} = 2(2\pi m_{h}^{*}kT/h^{2})^{3/2} \qquad N_{C} = 2(2\pi m_{e}^{*}kT/h^{2})^{3/2}$$

$$n.p = n_i^2$$
 $E_E = E_i = (E_C + E_V)/2 + (kT/2)\ln(N_V/N_C)$

** สามารถฉีกกระดาษฐตรและค่าคงที่ต่างๆออกจากตัวข้อสอบได้

ชื่อเลขที่นั่งสอบ.......

Formula sheet (2/3)

$$\begin{split} E &= \frac{-m^* e^4}{8 \left(\varepsilon_0 \varepsilon_r \right)^2 h^2} & p_n = p_{n0} + \tau_p G_L \\ n &= N_D^* = N_D \Big[1 - F \left(E_D \right) \Big] & p = N_A^* = N_A \Big[F \left(E_A \right) \Big] \\ E_F &= \left(\frac{E_C + E_D}{2} \right) + \frac{kT}{2} \ln \left(\frac{N_D}{N_C} \right) & E_F = E_C - \frac{kT}{2} \ln \left(\frac{N_C}{N_D} \right) \\ n &= n_i \exp \Big[\left(E_F - E_i \right) / kT \Big] & p = n_i \exp \Big[\left(E_i - E_F \right) / kT \Big] \\ \Delta E_g &= 22 \sqrt{\frac{N}{10^{18}}} \text{ meV} & J &= A^* T^2 \exp \left(\frac{-q\phi}{kT} \right) \\ V_{bi} &= \left| \psi_n \right| + \left| \psi_p \right| = \frac{kT}{e} \ln \left(\frac{N_A N_D}{n_i^2} \right) & N_A x_p = N_D x_n \\ V_{bi} &= \frac{eN_A x_p^2}{2\varepsilon} + \frac{eN_D x_n^2}{2\varepsilon} & E_p(x) = -\frac{eN_A (x + x_p)}{\varepsilon} & E_n(x) = \frac{eN_D (x - x_n)}{\varepsilon} \\ x_p &= \sqrt{\frac{2\varepsilon V_{bi}}{e \left(N_A + N_D \right)} \cdot \frac{N_D}{N_A}} & x_n = \sqrt{\frac{2\varepsilon V_{bi}}{e \left(N_A + N_D \right)} \cdot \frac{N_A}{N_D}} & W = \sqrt{\frac{2\varepsilon_s}{e} \left(\frac{N_A + N_D}{N_A N_D} \right)} V_{bi} \\ E(x) &= -\frac{ea}{\varepsilon} \left[\frac{\left(W / 2 \right)^2 - x^2}{2} \right] & V_{bi} = \frac{eaW^3}{12\varepsilon} & V_{bi} = \frac{2kT}{e} \ln \left(\frac{aW}{2n_i} \right) \\ C_J &= \frac{\varepsilon_s}{W} = \sqrt{\frac{q\varepsilon_s N_B}{2 \left(V_{bi} - V \right)}} & n_{n0} = n_{p0} \exp(eV_{bi} / kT) & p_{p0} = p_{n0} \exp(eV_{bi} / kT) \\ n_p &= n_{p0} e^{eV / kT} & p_n = p_{n0} e^{eV / kT} & L = \sqrt{D\tau} \\ J &= J_s \left(e^{V / kT} - 1 \right) & J_s &= \frac{eD_p p_{n0}}{L_p} + \frac{eD_n n_{p0}}{L_n} & W_m = \sqrt{\frac{2\varepsilon \left(V_{bi} - V \right)}{eN_B}} \end{aligned}$$

** สามารถฉีกกระดาษสูตรและค่าคงที่ต่างๆออกจากตัวข้อสอบได้

ชื่อเลขที่นั่งสอบ......เลขที่นั่งสอบ......

Formula sheet (3/3)

$$\begin{split} V_{B} &= \frac{E_{c}W}{2} = \frac{\varepsilon_{s}E_{c}^{2}}{2e} (N_{B})^{-1} & \frac{V_{B}'}{V_{B}} = \left(\frac{W}{W_{m}}\right) \left(2 - \frac{W}{W_{m}}\right) & J_{s} = A^{**}T^{2}e^{-\left[e(\phi_{m} - \chi_{s})/kT\right]} \\ \frac{1}{R_{C}} &= \frac{\partial J}{\partial V}\bigg|_{V=0} & R_{c} = \frac{k}{eA^{**}T}e^{(\phi_{m}/kT)} \\ \frac{1}{R_{C}} &= J_{0}\left(\frac{4\sqrt{m_{c}^{*}\varepsilon_{s}}}{\hbar\sqrt{N_{D}}}\right) \exp\left(-\frac{4\sqrt{m_{c}^{*}\varepsilon_{s}}\phi_{b}}{\hbar\sqrt{N_{D}}}\right) & \alpha_{0} = \frac{I_{Cp}}{I_{E}} & \gamma = \frac{I_{Ep}}{I_{E}} \\ \alpha_{T} &= \frac{I_{Cp}}{I_{Ep}} & I_{C} = \alpha_{0}I_{E} + I_{CB0} & I_{Ep} = \frac{eAD_{p}P_{n0}}{W}e^{eV_{Eg}/kT} \\ I_{En} &= \frac{eAD_{p}P_{n0}}{U}e^{eV_{Eg}/kT} & I_{Cn} = \frac{eAD_{C}n_{C0}}{L_{C}} & \beta_{0} = \frac{\alpha_{0}}{1-\alpha_{0}} \\ I_{CE0} &= \frac{I_{CB0}}{1-\alpha_{0}} = (\beta_{0}+1)I_{CB0} & I_{C} = \beta_{0}I_{B} + I_{CE0} \\ \alpha &= \frac{\alpha_{0}}{1+j\left(f/f_{\alpha}\right)} & \beta &= \frac{\beta}{1+j\left(f/f_{\beta}\right)} \\ I_{D} &= G_{0}\left\{V_{D} - \frac{2}{3}\sqrt{\frac{1}{V_{po}}}\left[\left(V_{D} + V_{bi} - V_{G}\right)^{3/2} - \left(V_{bi} - V_{G}\right)^{3/2}\right]\right\} \\ G_{0} &= \frac{2eaW}{L} \frac{\mu_{s}N_{D}}{L} & \psi_{s}\left(inv\right) &= 2\psi_{B} = \frac{2kT}{e}\ln\left(\frac{N_{s}}{n_{i}}\right) \\ W_{m} &= 2\sqrt{\frac{\varepsilon_{s}kT\ln\left(\frac{N_{s}}{n_{i}}\right)}{e^{2}N_{c}}} & \lambda &= \frac{1.24}{E(aV)} \end{split}$$

- Good luck for all your finals & have a nice break -