	Curso:	Análise e Desenvolvimen	to de Sister	nas - AD	
0111	Disciplina: ARQ I1		Módulo:	10	Período: Noturno
MISTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA	Prof. Rosalvo Filho	Data da Prova:	11	Avai	iação: P1.2
SACTALS Longo Supera Parina	WEND UL				ntuário: BP 300805
	Nome: Gallo Machaguas Assista				ntuário BP300794
	Nome:		Prontuário		
	Nome:			Pror	ntuário

Obs.: todas as questões valem 1 ponto

e.1) Escreva a expressão booleana para a saída X na figura a seguir. Determine o valor de X para todas as condições de entrada possíveis e relacione os valores em uma tabela-verdade.

Fonte: Tocci, R.J., Sistemas Digitais: princípios e aplicações, 8.ed., São Paulo, Prentice Hall, 2003 (com adaptações)

- Um avião a jato emprega um sistema para monitoração dos valores de rpm (R), pressão (P) e temperatura (T) dos motores utilizando sensores que operam como segue:
- ✓ Saída do sensor R=0 somente quando a velocidade for <4800 rpm
 </p>
- ✓ Saída do sensor P=0 somente quando a pressão for < 1,5x10⁶ N/m²
- ✓ Saída do sensor T=0 somente quando a temperatura for < 95°C</p>

A figura acima mostra o circuito lógico que controla a luz de alerta da cabine do piloto para certas combinações das condições do motor. Suponha que um nível ALTO na saída Wativa a luz de alerta.

Das opções a seguir^(*), assinale em que condições do motor o piloto receberá um alerta (luz acesa):

	T	P	R	W
a.	0	1	0	0
X	1	0	0	1
C.	1	0	1	0
d.	0	1	1	9
×	1	1	0	1

(*) pode haver mais de uma opção certa

Suponha que inicialmente Q=0, determine a forma de onda de Q para as entradas do latch NOR da figura abaixo.

Analise o circuito ao lado e responda:

Das opções abaixo a correta é:

- a. O circuito representa um somador.
- b. O circuito representa um meio-somador.
- c. O circuito representa um contador de 4 bits.

O circuito representa um multiplexador de 4 entradas.

e. O circuito representa um multiplexador de 2 entradas.

Considere a figura a seguir, que representa (simula) componentes de um computador.

Regras para a realização das tarefas:

- No arquivo de aço (1) estão armazenadas as instruções para a realização de cada tarefa. Essas instruções apresentam uma sequência de passos a serem seguidos.
- II. Quando o operador (2) receber as instruções, ele deve copiar cada uma delas no quadro-negro (3), que possui 16 áreas para isso (A1 – A16). Cada instrução deve ser escrita em uma das áreas livres do quadro-negro, sempre iniciando em A5.
- III. Após copiar as instruções, o operador deve começar a realizar cada uma delas, respeitando a sequência. Caso alguma indique ao operador para escrever em uma área já ocupada do quadro, ele deve sobrescrever o conteúdo anterior com o novo conteúdo (áreas protegidas não poderão ser usadas para escrita- somente leitura)

Simulação de um computador. Baseado em Guimarãos e Lages (1998

- IV. Os dados que serão usados para realizar as tarefas encontram-se escritos em fichas empilhadas ao lado do operador, no escaninho (4).
 As fichas devem ser usadas na sequência em que se encontram e, ao ser usada, a ficha deve ser descartada.
- V. O operador possui uma calculadora (5) para realizar todos os cálculos matemáticos necessários para a realização da sua tarefa (dependendo das instruções).
- VI. Para apresentar os resultados da tarefa realizada, o operador possui uma máquina de escrever (6), utilizada para escrever os resultados.

Agora, suponha que o operador receba a seguinte sequência de instruções que estavam armazenadas no arquivo de aço:

- 1) PEGUE UMA FICHA E COPIE SEU VALOR NO QUADRO ÁREA A 14
- 2) PEGUE UMA FICHA: SE SEU CONTEÚDO FOR "(*)" VÁ PARA A 10 CASO CONTRÁRIO: COPIE SEU VALOR NA ÁREA A 15
- 3) SOME O CONTEÚDO DE A15 COM O DE A14 E COLOQUE O RESULTADO EM A14
- 4) SE NÃO HOUVER MAIS FICHAS, AVANCE PARA A ÁREA A11; CASO CONTRÁRIO, AVANCE PARA A ÁREA A9
- 5) VOLTE PARA A ÁREA A6

6) SUBTRAIA DO CONTEÚDO DA ÁREA 14 O VALOR CONTIDO NA ÁREA A3 E COLOQUE O RESULTADO EM A16

7) DATILOGRAFE O CONTEÚDO DE A14 8) DATILOGRAFE O CONTEÚDO DE A16

9) PARE

	-	execução destas	instruções	(complete	o quadro a	seguir).
a.	Simule a	execução destas	Millian Street, Married		a subset	- ACCID

b. Qual (is) símbolos/letras foram datilografados? (use a tabela ASCII)

FICHAS	Conteúdo
F1	40
F2	30
F3	9
F4	(*)

A1	A2	A3 4	A4
45 Instrução I	A6 Instrução 2	A7 Instrução 3	AB Instrução 4
19 Instrução 5	10 mstrus 206	111 Instrução 7	Instrução
A13	A14 79	A15	A16 7-5