1. Use Kirchoff's current law to determine the unknown currents in the circuit of the Figure 1. Assume that I_0 =-2A, I_1 =-4A, I_s =8A and V_s =12V.

Figure 1

Ans.
$$I_2 = 6A, I_3 = 2A$$

2. Apply KVL to find the voltages v_1 and v_2 in the Figure 2.

Figure 2

Ans.
$$v_1 = 12V, v_2 = 2V$$

- 3. For the circuit given in Figure 3,
 - i) Determine which components are absorbing power and which are delivering power.
 - ii) Is conservation of power satisfied? Explain your answer.

Figure 3

Ans: Absorbing power: C,D,E; Delivering power: A,B

4. In the circuit given in Figure 4, the power absorbed by the 15-Ohm resistor is 15W. Find R.

Figure 4

Ans. $R = 4\Omega$

- 5. For the circuit shown in Figure 4, find:
 - i) The currents i_1 and i_2 .

Ans.
$$i_1 = -1.8A, i_2 = -1.2A$$

- ii) The power delivered by the 3A current source and by the 12V voltage source. Ans. 279W, 6.17W
- iii) The total power dissipated by the circuit. Ans. 285.17W

Given R1=25 ohm, R2= 10 ohm, R3=5 ohm, R4=7 ohm.

Figure 5

- 6. Given the circuit of Figure 6:
 - i) Determine the power delivered by the dependent current source.

Ans. 108W

ii) Determine the power delivered by the voltage source.

Ans. 0W

Figure 6

- 7. Consider NiMH hobbyist batteries shown in the circuit of Figure 7:
 - i) If V_1 =12.0V, R_1 =0.15 ohm, R_L =2.55 ohm, find the load current I_L and the power dissipated by the load.

Ans.
$$I_L = 4.44A, P_L = 50.4W$$

ii) If we connect a second battery in parallel with battery 1 that has voltage V2=12V and R2=0.28 ohm, will the load current I_L increase or decrease? By how much?

Use mesh current analysis method.

Ans. Increases by 0.09A

Figure 7

8. Using node voltage analysis in the circuit of Figure 8, find the current *i* through the voltage source.

Ans. *i=8.03A*

Figure 8

9. Using KCL, perform node analysis in the circuit shown in Figure 9 and determine voltage across R4. Note that one source is a controlled voltage source

Vs=5V, Av=70, R1=2.2kohm, 2=1.8kohm, R3=6.8kohm, R4=220ohm.

Ans. 8.757mV

Figure 9

10. Determine, using superposition, the voltage v across R in the circuit of Figure 10.

$$I_{\scriptscriptstyle B}=3A, R_{\scriptscriptstyle B}=1\Omega, V_{\scriptscriptstyle G}=15V, R_{\scriptscriptstyle G}=1\Omega, R=2\Omega$$

Ans. *v=7.2V*

Figure 10

11. Find the Thevenin equivalent circuit that the load ($R_{\rm L}$) sees for the circuit of Figure 11.

Ans. V_{th} =4.499V, R_{th} =504 ohm

Figure 11

12. For the circuit given in Figure 12:

i) Obtain the Thevenin's equivalent for the circuit which contains a dependent voltage source.

Ans. Vth=30V, Rth=10 ohm

- ii) What should be the optimum value of a load resistor RL to be connected between a and b so that the power delivered to it by the network is maximum?Ans. RL=10 ohm
- iii) What is the maximum power? Ans. 22.5W

Figure 12

- 13. In the circuit of Figure 13, assume that the capacitor is initially uncharged. If the switch is closed at t=0,
 - i) Determine the current flow through the resistors and the capacitor when t=0+. Ans. $i_1=5A, i_2=0A, i_3=5A$
 - ii) What will be the current flow under steady state condition? Ans. $i_1=i_2=2.5A, i_3=0A$
 - iii) Determine the voltage across the capacitor under steady state condition. Ans. 50V
 - iv) Find an expression for the capacitor voltage as a function of time t>0.

Ans.
$$50(1-e^{-\frac{1}{20\times10^{-6}}})$$

Figure 13

- 14. For the circuit shown in Figure 14, assume that switch S1 was closed and switch S2 was opened for a long time. Then, at time t=0, switch S1 is opened and switch S2 is closed.
 - i) Find the capacitor voltage $v_c(t)$ at t=0+. Ans. 20V
 - ii) Find the time constant τ for t>=0. Ans. $56\mu S$
 - iii) Find an expression for $v_c(t)$, and sketch the function.

Ans.
$$12 + 8e^{-\frac{t}{56 \times 10^{-6}}}$$

Figure 14

- 15. For the circuit given in Figure 15, switch S2 was closed for a long time before t=0. At t=0, the switch S1 is closed and S2 is opened.
 - i) Find the inductor current i(t) at t=0+.Ans. 2A
 - ii) Find the time constant τ for t>=0. Ans. $1\mu S$
 - iii) Find an expression for i(t).

Ans.
$$0.5 + 1.5e^{-\frac{t}{1 \times 10^{-6}}}$$

iv) Find i(t) for each of the following values, the time constant, twice the time constant, five times the time constant and ten times the time constant. Sketch the function.

Ans.
$$i(\tau) = 1.05A, i(2\tau) = 0.70A, i(3\tau) = 0.55A, i(5\tau) = 0.51$$

Figure 15

- 16. For the circuit in Figure 16,
 - i) Find the expression for $v_R(t)$.
 - ii) If the sinusoidal has a frequency of 10 kHz, and the inductor is 1 mH, what is the value of R for phase difference between $v_s(t)$ and $v_R(t)$ to be 45 deg? Ans. 62.832 ohm
 - iii) Draw the phasor diagram showing the $v_s(t)$ and $v_R(t)$ for part (ii).

Figure 16

17. Determine the current i(t) in the circuit shown in Figure 17.

$$v_s(t) = 636\cos\left(3000t + \frac{\pi}{12}\right)$$

 $R_1 = 2.3k\Omega, R_2 = 1.1k\Omega$
 $L = 190mH, C = 55nF$

Ans.
$$i(t) = 0.2814\cos(3000t + 22.56^{\circ})A$$

Figure 17

18. Find the Thevenin equivalent of the circuit as seen from terminals a-b for the circuit shown in Figure 18.

Ans. $V_{th} = 5\sqrt{2}\angle 15^{\circ}, Z_{th} = 8 - j8$ $- j8\Omega$ $5\angle -30^{\circ}$ 8Ω

Figure 18