1. Пусть
$$y = X\beta + \varepsilon$$
 — регрессионная модель, где $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$. Пусть $Z = XD$, где $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
. Рассмотрите «новую» регрессионную модель $y = Z\alpha + u$, где $\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$

Определите, как выражаются «новые» МНК-коэффициенты через «старые».

2. Рассмотрим модель $y_i = \beta_1 + \beta_2 x_i + \beta_3 w_i + \beta_4 z_i + \varepsilon_i$. При оценке модели по 24 наблюдениям оказалось, что RSS = 15, $\sum (y_i - \bar{y} - w_i + \bar{w})^2 = 20$. На уровне значимости 1% протестируйте гипотезу

$$H_0: \begin{cases} \beta_2 + \beta_3 + \beta_4 = 1\\ \beta_2 = 0\\ \beta_3 = 1\\ \beta_4 = 0 \end{cases}$$

3. По 47 наблюдениям оценивается зависимость доли мужчин занятых в сельском хозяйстве от уровня образованности и доли католического населения по Швейцарским кантонам в 1888 году.

 $Agriculture_i = \beta_1 + \beta_2 Examination_i + \beta_3 Catholic_i + \varepsilon_i$

-	Оценка	Ст. ошибка	t-статистика
(Intercept)		8.72	9.44
Examination	-1.94		-5.08
Catholic	0.01	0.07	

- (а) Заполните пропуски в таблице
- (b) Укажите коэффициенты, значимые на 10% уровне значимости.
- (c) Постройте 99%-ый доверительный интервал для коэффициента при переменной Catholic
- 4. Рассмотрим модель: $y_i = \beta_1 + \beta_2 x_{1i} + \beta_3 x_{2i} + \beta_4 x_{3i} + \beta_5 x_{4i} + \varepsilon_i$. По 20 наблюдениям оценены следующие регрессии:

$$\hat{y}_{i} = 10.01 + 1.05x_{1} + 2.06x_{2} + 0.49x_{3} - 1.31x_{4}, RSS = 6.85$$

$$y_{i} - \widehat{x_{1}} - 2x_{2} = 10.00 + 0.50x_{3} - 1.32x_{4}, RSS = 8.31$$

$$y_{i} + \widehat{x_{1}} + 2x_{2} = 9.93 + 0.56x_{3} - 1.50x_{4}, RSS = 4310.62$$

$$y_{i} - \widehat{x_{1}} + 2x_{2} = 10.71 + 0.09x_{3} - 1.28x_{4}, RSS = 3496.85$$

$$y_{i} + \widehat{x_{1}} - 2x_{2} = 9.22 + 0.97x_{3} - 1.54x_{4}, RSS = 516.23$$

$$y_{i} + \widehat{x_{1}} - 2x_{2} = 9.22 + 0.97x_{3} - 1.54x_{4}, RSS = 516.23$$

На уровне значимости 5% проверьте гипотезу $H_0:$ $\begin{cases} \beta_2=1 \\ \beta_3=2 \end{cases}$ против альтернативной гипотезы $H_a: |\beta_2-1|+|\beta_3-2| \neq 0.$