Scilab Textbook Companion for Electronic Circuit Analysis And Design by D. A. Neamen¹

Created by
Priya Apte
Electrical
Electrical Engineering
Indian Institute of Technology Patna
College Teacher
NA
Cross-Checked by
Ganesh R

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronic Circuit Analysis And Design

Author: D. A. Neamen

Publisher: McGraw-Hill Education

Edition: 2

Year: 2001

ISBN: 0256119198

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Semiconductor materials and diodes	12
2	Diode Circuits	19
3	The Bipolar Junction Transistor	25
4	Basic BJT Amplifiers	37
5	The Field Effect Transistor	44
6	Basic FET Amplifier	54
7	Frequency Response	66
8	Ouput Stages and Power Amplifier	80
9	The Ideal Operational Amplifier	86
10	Integrated Circuit Biasing and Active Loads	88
11	Differential and Multistage Amplifier	96
12	Feedback and Stability	107
13	Operational Amplifier Circuits	114
11	Nonideal Effects in Operational Amplifier Circuits	195

15 Applications and Design of Integrated Circuits	130
16 MOSFET Digital Circuits	136
17 Bipolar Digital Circuits	142

List of Scilab Codes

Exa 1.1	Calculate intrinsic carrier concentration in silicon	12
Exa 1.2	Calculate thermal equilibrium electron and hole concen-	
	trations	12
Exa 1.3	Calculate the built in potential barrier of a pn junction	13
Exa 1.4	Calculate the junction capacitance of a pn junction	13
Exa 1.5	Determine the diode current in pn junction	14
Exa 1.6	Determine the diode voltage and current	15
Exa 1.7	Determine the diode voltage and current	16
Exa 1.9	Analysing the circuit	16
Exa 1.10	Calculate currents in a circuit	17
Exa 1.11	Design the value of resistance required to limit the cur-	
	rent in given circuit	17
Exa 2.1	Compare voltages and the transformer turns ratio in two	
	full wave rectifier circuits	19
Exa 2.2	Determine the capacitance required to yield a particular	
	ripple voltage	20
Exa 2.3	Design a full wave rectifier	21
Exa 2.5	Determine the percent regulation of a voltage regulator	22
Exa 2.8	Determine the output voltage and diode currents	22
Exa 2.10	Calculate the photocurrent generated in a photodiode	23
Exa 2.11	Determine the value of R required to limit the current	
	in circuit	23
Exa 3.1	Calculate the collector and emitter currents	25
Exa 3.2	Calculate the breakdown voltage of a transistor	25
Exa 3.3	Calculate the base collector and emitter currents and ce	
	voltage for common emitter circuit	26
Exa 3.4	Analyse the common emitter circuit with pnp transistor	26
Exa 3.5	Calculate the currents and voltages in a circuit	27

Exa 3.6	Calculate the characteristics of a circuit containing an	
	emitter resistor	28
Exa 3.7	Calculate the characteristics of a circuit	29
Exa 3.9	Calculate the characteristics of an npn bipolar circuit .	30
Exa 3.10	Calculate the currents output voltage and power dissi-	
	pation	31
Exa 3.13	Design the circuit	32
Exa 3.14	Analyze a circuit using voltage divider bias circuit and	
	determine the change in Q point	32
Exa 3.15	Design a bias stable circuit	34
Exa 3.16	Determine the currents in a two transistor current source	34
Exa 3.17	Calculate the dc voltages at each node and the dc cur-	
	rents through the elements in mulstistage circuit	35
Exa 4.1	Calculate the small signal voltage gain of a bipolar tran-	
	sistor	37
Exa 4.2	Determine the small signal voltage gain	38
Exa 4.4	Determine the small signal voltage gain	38
Exa 4.5	Determine the small signal voltage gain of a common	
	emitter circuit	39
Exa 4.7	Determine the small signal voltage gain of a common	
	emitter circuit	40
Exa 4.8	Determine the dc and ac load lines	41
Exa 4.9	Determine the maximum symmetrical swing	42
Exa 4.10	Calculate the small signal voltage gain of an emitter	
	circuit	42
Exa 5.1	Calculate the current in an n channel MOSFET	44
Exa 5.2	Determine the source to drain voltage required to bias	
	p channel MOSFET	44
Exa 5.3	Calculate the drain current and drain to source voltage	
	of circuit	45
Exa 5.4	Calculate the drain current and drain to source voltage	
	of circuit	45
Exa 5.6	Design the dc bias of a MOSFET circuit to produce	
	specified drain current	46
Exa 5.7	Design a MOSFET circuit biased with a constant cur-	
	rent source	47
Exa 5.8	Calculate the characteristics of a circuit containing an	
	enhancement load device	48

Exa 5.10	Calculate the characteristics of a circuit containing a
D F 11	depletion load device
Exa 5.11	Determine the dc transistor currents and voltages in a
D × 40	circuit containing a depletion load device
Exa 5.13	Determine the currents and voltages in a MOSFET con-
.	stant current source
Exa 5.14	Design the size of a power MOSFET to meet the speci-
	fication of particular switch application
Exa 5.16	Calculate Id and Vds in an n channel pn JFET
Exa 5.17	Design the dc bias of a JFET circuit
Exa 5.19	Calculate the quiscent current and voltage values
Exa 5.20	Design a circuit with an enhancement mode MESFET
Exa 6.1	Calculate the transconductance of an n chennel MOS-FET
Exa 6.2	Determine the small signal voltage gain of a MOSFET
Exa 6.3	Determine the small signal voltage gain and input and
	output resistance of a commoon source amplifier
Exa 6.4	Design the bias of a MOSFET such that the Q point is
	in the middle of saturation
Exa 6.6	Determine the small signal voltage gain of a circuit
Exa 6.7	Determine the small signal voltage gain of a circuit
Exa 6.9	Calculate the output resistance of a source follower cir-
	cuit
Exa 6.11	Design the small signal voltage gain of an NMOS am-
	plifier
Exa 6.12	Determine the small signal voltage gain of a circuit
Exa 6.13	Determine the small signal voltage gain of a circuit
Exa 6.14	Design the biasing of a multistage MOSFET
Exa 6.15	Design the biasing of cascade circuit
Exa 6.17	Determine the small signal voltage gain of a circuit
Exa 6.18	Determine the small signal voltage gain of a circuit
Exa 6.19	Design a JFET source follower
Exa 7.1	Determine the corner frequencies and maximum magni-
	tude asymptotes
Exa 7.2	Determine the corner frequencies and bandwidth
Exa 7.3	Determine the corner frequencies and maximum gain .
Exa 7.4	Design the circuit
Exa 7.5	Determine 3dB frequency

Exa 7.6	Determine the corner frequencies and maximum gain .
Exa 7.7	Determine the mid gain corner frequencies and band-
	width of a circuit
Exa 7.8	Determine the corner frequencies and limiting horizontal
	asymptotes
Exa 7.9	Determine 3dB frequency
Exa 7.10	Calculate bandwidth and capacitance
Exa 7.12	Determine the unity gain bandwidth
Exa 7.13	Determine the Miller capacitance and cutoff frequency
Exa 7.14	Determine the upper corner frequency and midband gain
Exa 7.15	Determine the upper corner frequency and midband gain
Exa 7.16	Determine the upper corner frequency and midband gain
Exa 7.17	Determine the frequency of a zero and a pole
Exa 8.2	Determine the maximum power dissipation
Exa 8.3	Determine the maximum safe power dissipation
Exa 8.7	Determine the required biasing in MOSFET class AB
Exa 8.8	Design a transformer coupled emitter follower amplifier
Exa 8.9	Design the class AB output stage
Exa 8.11	Determine the currents and the current gain
Exa 9.5	Determine a load current in a voltage to current converter
Exa 9.9	Determine the time constant
Exa 10.1	Design a two transistor current source
Exa 10.2	Determine the change in load current
Exa 10.4	Design a Widlar current source
Exa 10.5	Determine the change in load current
Exa 10.6	Design a generalized current mirror
Exa 10.7	Design a MOSFET current source
Exa 10.8	Compare the output resistances
Exa 10.9	Determine the currents and voltages
Exa 10.10	Calculate the open circuit voltage gain
Exa 10.11	Calculate the small signal voltage gain
Exa 10.12	Calculate the small signal voltage gain
Exa 11.1	Determine the quiescent collector current and collector
	emitter voltage
Exa 11.3	Determine the differential and common mode gains
Exa 11.7	Determine the CMRR of a differential amplifier
Exa 11.8	Design a bipolar source

Exa 11.9	Determine the differential and common mode input re-	
	sistance	98
Exa 11.10	Calculate the dc characteristics of a MOSFET diff amp	99
Exa 11.11	Compare the forward transconductance	100
Exa 11.12	Determine the differential mode voltage gain common	
	mode voltage gain CMRR	100
Exa 11.13	Determine the differential mode voltage gain	101
Exa 11.15	Determine the differential mode voltage gain	102
Exa 11.16	Calculate the input resistance and the small signal volt-	
	age gain	102
Exa 11.17	Calculate the output resistance	103
Exa 11.19	Determine the differential mode voltage gain	104
Exa 11.20	Determine the zero and pole frequencies	105
Exa 12.1	Calculate the feedback transfer function	107
Exa 12.2	Calculate the percent change in the closed loop gain Af	107
Exa 12.3	Determine the bandwidth of a feedback amplifier	108
Exa 12.5	Determine the input resistance and output resistance.	108
Exa 12.6	Determine the input resistance and output resistance.	109
Exa 12.7	Determine the expected input resistance	109
Exa 12.11	Determine the transconductance gain of a transistor feed-	
	back circuit	110
Exa 12.16	Determine the loop gain	111
Exa 12.19	Determine the stability of an amplifier	112
Exa 12.22	Determine the shift in the 3dB frequency	112
Exa 12.23	Determine the shift in the 3dB frequency	112
Exa 13.1	Calculate the dc currents	114
Exa 13.2	Calculate the bias currents	115
Exa 13.3	Calculate the bias currents	115
Exa 13.4	Determine the small signal differential voltage gain	116
Exa 13.5	Determine the small signal voltage gain	118
Exa 13.6	Calculate the output resistance	119
Exa 13.7	Determine the dominant pole frequency of the 741 op	
	amp	120
Exa 13.9	Determine the small signal voltage gain	120
Exa 13.10	Determine the differential mode voltage gain	121
Exa 13.12	Determine the small signal voltage gain	122
Exa 13.13	Determine the small signal voltage gain	123

Exa 13.14	Determine the dominant pole frequency and unity gain
	bandwidth
Exa 14.2	Determine the closed loop input resistance
Exa 14.3	Determine the closed loop input resistance
Exa 14.5	Determine the unity gain bandwidth and the closed loop
	gain
Exa 14.6	Calculate the slew rate of the 741 op amp
Exa 14.7	Determine the small signal bandwidth of an amplifier and full power bandwidth
Exa 14.8	Calculate the offset voltage in bipolar diff amp
Exa 14.0	9 1
	Calculate the offset voltage in MOSFET diff amp
Exa 14.11	Determine the range of voltage produced by an offset voltage compensation network
Exa 14.13	Determine the bias current effect
Exa 14.13 Exa 15.2	
	Determine the clock frequency
Exa 15.3	Design a one pole low pass switched capacitor filter
Exa 15.4	Determine the oscillation frequency and required ampli-
D 15 C	fier gain
Exa 15.6	Determine the hysteresis width of a particular Schmitt
D . 15 7	trigger
Exa 15.7	Design a Schmitt trigger circuit
Exa 15.10	Design the 555IC as a monostable multivibrator
Exa 15.13	Design the supply voltage
Exa 15.14	Determine the output resistance and load regulation .
Exa 15.15	Determine the output resistance and variation in output voltage
Exa 15.16	Determine the bias current temperature compensated
	reference voltage and required resistor
Exa 16.3	Design the aspect ratio and determine the power dissi-
	pation
Exa 16.4	Design the aspect ratio and determine the power dissi-
	pation
Exa 16.5	Determine the noise margin of an inverter with enhance-
	ment load
Exa 16.9	Determine the critical voltage on the voltage transfer
	curve of a CMOS inverter
Exa 16.10	Calculate the power dissipation in CMOS inverter
Exa 16.11	
пуа 10.11	Determine the hoise margins of a CiviOs inverter

Exa 16.15	Determine the currents voltages and power dissipation	
	in two NMOS SPAM cells	140
Exa 17.1	Calculate the currents and voltages in the basic differ-	
	ential amplifier circuit used as digital circuit	142
Exa 17.2	Calculate the currents resistors and logic 0 values in the	
	basic ECL logic gate	143
Exa 17.3	Design the reference position of the ECL circuit	144
Exa 17.4	Calculate the power dissipated in the ECL logic circuit	145
Exa 17.5	Calculate minimum fanout of ECL logic gate	145
Exa 17.7	Analyze the modified ECL logic gate	146
Exa 17.9	Calculate the currents and voltages for the basic TTL	
	NAND circuit	147
Exa 17.11	Determine the currents in a Schottky transistor	148
Exa 17.12	Calculate the power dissipation in a low power Schottky	
	TTL circuit	149

Chapter 1

Semiconductor materials and diodes

Scilab code Exa 1.1 Calculate intrinsic carrier concentration in silicon

```
1 clear;
2 clc;
3 //Example 1.1
4 T=300; // (( K ) temperature)
5 // for silicon
6 B=5.23*10^(15); // Constant (per centimeter cube degree kelvin)
7 Eg=1.1; // bandgap energy in electrovolt (eV)
8 k=86*10^(-6); // Boltzmann's constant (eV per degree kelvin)
9 n_i=B*T^(3/2)*exp(-Eg/(2*k*T)); // intrinsic carrier concentration
10 printf('intrinsic carrier concentration=%f cm^-3', n_i);
```

Scilab code Exa 1.2 Calculate thermal equilibrium electron and hole concentrations

Scilab code Exa 1.3 Calculate the built in potential barrier of a pn junction

Scilab code Exa 1.4 Calculate the junction capacitance of a pn junction

```
1 clear;
```

```
2 clc;
3 //Example 1.4
4 T=300; //( K) Given Temperature
5 Na=10^16; //(\text{cm}^-3) Acceptor concentration in p region
6 Nd=10^15; //(cm^-3) Donor concentration in n region
7 n_i=1.5*10^10; //(cm^3)intrinsic carrier
      concentration
8 C_jo=0.5; //(pF) junction capacitance at zero applied
      voltage
9 V_T=0.026; // (Volt) terminal voltage
10 //built-in potential
11 V_bi=V_T*log(Na*Nd/(n_i)^2);
12 disp(V_bi," the built-in potential(V)")
13 //the junction capacitance for
14 V_R=1; //(V) reverse bias voltage
15 Cj=C_jo*(1+V_R/V_bi)^(-1/2);
16 printf('\nthe junction capacitance for V_R=1V=\%f pF\
     n',Cj)
17 V_R=5; //(V) reverse bias voltage
18 C_{j}=C_{jo}*(1+V_R/V_bi)^(-1/2);
19 printf ('\nthe junction capacitance for V_R=5V_T=5V_T
      ',Cj)
```

Scilab code Exa 1.5 Determine the diode current in pn junction

```
1 clear;
2 clc;
3 //Example 1.5
4 T=300; // ( K ) Given Temperature
5 V_T=0.026; // (Volt) terminal voltage
6 Is=10^-11; // (mA) reverse bias saturation current
7 n=1; //emission coefficient
8 v_D=+0.7; // (V) applied voltage
9 //pn junction is forward biased
10 i_D=Is*(exp(v_D/V_T)-1); // diode current
```

```
printf('\ndiode current=%f mA\n',i_D)
v_D=-0.7;//(V)pn junction is reverse biased
Is=10^-14//A;
i_D=Is*(exp(v_D/V_T)-1);//diode current
printf('\ndiode current=%e A',i_D)
```

Scilab code Exa 1.6 Determine the diode voltage and current

```
1 clear;
2 clc;
3 //Example 1.6
4 Is=10^-13; //(A) reverse saturation current
5 V_PS=5; //(V) applied voltage
6 R=2; // (KOhm) Resistance in circuit
7 V_T=0.026; // (Volt) terminal voltage
8 //V_PS=I_S*R*(exp(V_D/V_T)-1)+V_D
9 //5 = (10^{-13}) * (2000) * (\exp(V_D/V_T) - 1) + V_D
10 //let right side of equation be x=(10^{-13})*(2000)*(
      \exp(V_D/V_T) - 1+V_D
11 V_D = 0.6; //(V)
12 x = (10^-13)*(2000)*(exp(V_D/V_T)-1)+V_D
13 //so the equation is not balanced
14 V_D = 0.65; //(V)
15 x = (10^-13)*(2000)*(exp(V_D/V_T)-1)+V_D
16 //again equation is not balanced solution for V_D
      is between 0.6V and 0.65V
17 V_D=0.619; //(V)
18 x = (10^-13)*(2000)*(exp(V_D/V_T)-1)+V_D
19 //essentially equal to the value of the left side of
       the equation i.e 5V
20 printf ('\ndiode voltage=\%f V', V_D)
21 I_D=(V_PS-V_D)/R;//(A) diode current
22 printf('\nthe diode current=\%f mA', I_D)
```

Scilab code Exa 1.7 Determine the diode voltage and current

```
clear;
clc;
//Example 1.7
//piecewise linear diode parameters
V_Y=0.6;//(V)
r_f=0.010;//(KOhm)
V_PS=5;//(V) applied voltage
R=2;//(KOhm) Resistance in circuit
I_D=(V_PS-V_Y)/(R+r_f);//(A) diode current
printf('\nthe diode current=%f mA\n',I_D)
V_D=V_Y+I_D*r_f;//(V) diode voltage
printf('\ndiode voltage=%f V',V_D)
```

Scilab code Exa 1.9 Analysing the circuit

```
1 clear;
2 clc;
3 //Example 1.9
4 //circuit and diode parameters
5 V_PS=5; //(V)
6 R=5; //(KOhm)
7 V_Y=0.6; //(V)
8 V_T=0.026; //(Volt) terminal voltage
9 v_i=0.1//*sin(wt) Volt
10 //dc analysis
11 I_DQ=(V_PS-V_Y)/R;
12 printf('\ndc quiescent current=%f mA\n',I_DQ)
13 V_O=I_DQ*R;
14 printf('\ndc output voltage=%f V\n',V_O)
15 //ac analysis
```

```
16 V_PS=0;
17 //Kirchhoff voltage law equation becomes
18 //v_i=i_d*r_d+i_d*R
19 r_d=V_T/I_DQ//(Ohm) small signal diode diffusion
    resistance
20 i_d=v_i/(r_d+R);//ac diode current
21 printf('\nac diode current=%fsin(wt) A\n',i_d)
22
23 v_o=i_d*R;//ac output voltage
24 printf('\nac output voltage=%fsin(wt) V',v_o)
```

Scilab code Exa 1.10 Calculate currents in a circuit

```
1 clear;
2 clc;
3 //Example 1.10
4 V_Y=0.7; //(V) cut in voltage for pn junction
5 r_f=0;
6 V_PS=4; //(V)
7 R1=4,R2=4//(KOhm) from given circuit
8 I1=(V_PS-V_Y)/R1;
9 printf('\ncurrent through pn junction diode=%.3 f mA\n', I1)
10 V_Y=0.3; //(V) cut in voltage for Schottky diode
11 I2=(V_PS-V_Y)/R2;
12 printf('\ncurrent through Schottky diode=%.3 f mA\n', I2)
```

Scilab code Exa 1.11 Design the value of resistance required to limit the current in given circuit

```
1 clear;
2 clc;
```

```
3  //Example 1.11
4  V_Z=5.6; //(V) Zener diode breakdown voltage
5  r_z=0; //(Ohm) Zener resistance
6  I=3; //(mA) current in the diode
7  V_PS=10; //(V)
8  //I=(V_PS-V_Z)/R
9  R=(V_PS-V_Z)/I;
10  printf('\nresistance=%.3 f KOhm\n',R)
```

Chapter 2

Diode Circuits

Scilab code Exa 2.1 Compare voltages and the transformer turns ratio in two full wave rectifier circuits

```
1 clear;
2 clc;
3 //Example 2.1
4 v_I=120; //(V)rms primary input
5 v_o=9; //(V) peak output voltage
6 V_Y=0.7; //(V) diode cut in voltage
7 // for center-tapped transformer circuit in fig. 2.6 (a
8 v_S=v_o+V_Y/(V) peak value of secondary voltage
9 printf('\npeak value of secondary voltage=\%.2 f V\n',
     v_S)
10 v_S_rms=v_S/sqrt(2)//for a sinusoidal signal rms
      value of v_S
11 printf('\nrms value of v_S=\%.2 f V n', v_S_rms)
12 //let turns ratio of the primary to secondary
      winding be x=N1/N2
13 x=v_I/v_S_rms;
14 printf('\nturns ratio=\%f\n',x)
15 // for the bridge circuit in fig. 2.7(a)
16 v_Sb=v_o+2*V_Y; //(V) peak value of secondary voltage
```

```
17 printf('\npeak value of secondary voltage=\%.2 f V\n',
      v_Sb)
18 v_S_rms=v_Sb/sqrt(2);//for a sinusoidal signal rms
      value of v_S
19 printf('\nrms value of v_S=\%f V n', v_S_rms)
20 //let turns ratio of the primary to secondary
      winding be x=N1/N2
21 x=v_I/v_S_rms;
22 printf ('\nturns ratio=\%f\n',x)
23 //for center tapped rectifier
24 \text{ PIV} = 2 * v_S - V_Y;
25 printf('\npeak inverse voltage of a diode=\%f V\n',
26 //for the bridge rectifier peak inverse voltage of a
        diode
27 \text{ PIV} = \text{v}_{\text{Sb}} - \text{V}_{\text{Y}};
28 printf('\npeak inverse voltage of a diode=\%.2 \,\mathrm{f} \,\mathrm{V} \,\mathrm{n}',
      PIV)
29 //advantage of bridge rectifier over center tapped
       rectifier is it requies only half of the turns
```

Scilab code Exa 2.2 Determine the capacitance required to yield a particular ripple voltage

```
1 clear;
2 clc;
3 //Example 2.2
4 //full wave rectifier circuit with 60Hz input signal
5 V_M=10;//(V)peak output voltage
6 R=0.01;//(MOhm)output load resistance
7 f=60;//Hz
8 V_r=0.2;//(V)ripple voltage
9 C=V_M/(2*f*R*V_r);//capacitance
10 printf('\ncapacitance=%f microF\n',C)
```

Scilab code Exa 2.3 Design a full wave rectifier

```
1 clear;
2 clc;
3 //Example 2.3
4 V_0=12; //(V) peak output voltage
5 I_L=0.12; //(A) current delivered to the load
6 R=V_0/I_L;
7 printf('\neffective load resistance=\%.2 f Ohm\n',R)
8 V_Y=0.7; //(V) diode cut in voltage
9 v_S = V_0 + 2 * V_Y;
10 printf('\npeak value of v_S=\%.2 f V n', v_S)
11 v_Srms=v_S/sqrt(2);
12 printf('\nrms voltage=\%.2 f V\n', v_Srms)
13 / let x=N1/N2
14 Vin=120; //(V) input line voltage
15 \text{ x=Vin/v\_Srms};
16 printf('\nturns ratio=\%.2 f \n',x)
17 VM=12; //(V)
18 Vr = 5/100 * VM;
19 printf('\nripple voltage=\%.2 f V \ n', Vr)
20 f=60; //(Hz) input frequency
21 C=VM/(2*R*Vr*f);
22 printf('\nfilter capacitance=%f F\n',C)
23 i_Dmax=(VM/R)*(1+2*%pi*sqrt(VM/(2*Vr)));
24 printf('\npeak diode current=\%.2 f A\n',i_Dmax)
25 R=0.1; //Kohm
26 i_Davg=(1/(2*%pi))*sqrt(2*Vr/VM)*((VM/R)*(1+%pi*sqrt
      (VM/(2*Vr)));
27 printf('\naverage diode current=\%f mA\n',i_Davg)
28 \text{ PIV} = \text{v}_S - \text{V}_Y;
29 printf('\npeak inverse voltage=\%.2 f V n',PIV)
```

Scilab code Exa 2.5 Determine the percent regulation of a voltage regulator

```
1 clear;
2 clc;
3 //Example 2.5
4 rZ=4; // (Ohm) Zener resistance
5 V_Lnom=9; // (V) nominal output voltage
6 Izmax=0.3; // (A) maximum zener diode current
7 Izmin=0.03; // (A) minimum zener diode current
8 V_Lmax=V_Lnom+Izmax*rZ
9 V_Lmin=V_Lnom+Izmin*rZ
10 //percent regulation R
11 R=((V_Lmax-V_Lmin)/V_Lnom)*100;
12 printf('\npercent regulation=%0.1 f \n',R)
```

Scilab code Exa 2.8 Determine the output voltage and diode currents

```
1 clear;
2 clc;
3 //Example 2.8
4 R1=5;R2=10;//(KOhm)
5 V_Y=0.7;//(V) diode cut in voltage
6 V1=5;V2=-5;//(V)
7 vt=0;//(V)
8 //asssuming initially diode D1 is off
9 //iR1=iD2=iR2=V1-V2-V_Y/(R1+R2)
10 iD2=(V1-V2-V_Y)/(R1+R2);
11 printf('\ndiode current=%0.2 f mA\n',iD2)
12 iR1=iD2;
13 vo=V1-iR1*R1;
14 printf('\noutput voltage=%0.2 f V\n',vo)
```

```
15  v=vo-V_Y; //v=v'
16  printf('\nVoltage=%0.1 f V\n',v)
17  vt=4; //(V) fig .2.33
18  //both D1 and D2 are on
19  vo==vt;
20  vo=4;
21  iD2=(V1-vo)/R1;
22  printf('\ndiode current=%.2 f mA\n',iD2)
23  iR1==iD2;
24  v=vo-V_Y;
25  printf('\nV=%.2 f V\n',v)
26  iR2=(v-V2)/R2;
27  printf('\niR2=%.2 f mA\n',iR2)
28  iD1=iR2-iD2;
29  printf('\ncurrent through D1=%.2 f mA\n',iD1)
```

Scilab code Exa 2.10 Calculate the photocurrent generated in a photodiode

```
1 clear;
2 clc;
3 //Example 2.10
4 n=1;//quantum efficiency
5 A=10^-2;//cm^2 junction area
6 p=5*10^17;//(cm^-2-s^-1) incident photon flux
7 e=1.6*10^-16;//charge of an electron
8 Iph=n*e*p*A;
9 printf('\nphotocurrent=\%0.1 f mA\n', Iph)
```

Scilab code Exa 2.11 Determine the value of R required to limit the current in circuit

```
1 clear;
```

```
2 clc;
3 //Example 2.11
4 I=0.01; //(A) diode current
5 V_Y=1.7; //(V) forward bias voltage drop
6 Vt=0.2; //(V)
7 R=(5-V_Y-Vt)/I;
8 printf('\nresistance=%0.1 f Ohm', R)
```

Chapter 3

The Bipolar Junction Transistor

Scilab code Exa 3.1 Calculate the collector and emitter currents

```
clear;
clc;
//Example 3.1
//let beta be "b"
b=150;//common emitter current gain
iB=15*10^-3;//(mA) base current
//assume transistor biased in forward active mode
iC=b*iB;
printf('\ncollector current=%.2 f mA\n',iC)
iE=(1+b)*iB;
printf('\nemitter current=%.2 f mA\n',iE)
a=b/(1+b);
printf('\nemitter current gain=%.3 f\n',a)
```

Scilab code Exa 3.2 Calculate the breakdown voltage of a transistor

```
1 clear;
2 clc;
3 //Example 3.2
4 b=100;//common emitter current gain
5 BVcbo=120;//(V) break down voltage of the B-C
    junction
6 n=3;//empirical constant
7 BVceo=BVcbo/(b)^(1/n);
8 printf('\nbreakdown voltage=%.2 f V\n', BVceo)
```

Scilab code Exa 3.3 Calculate the base collector and emitter currents and ce voltage for common emitter circuit

```
1 clear;
2 clc;
3 //Example 3.3
4 Vbb=4;/(V)
5 \text{ Rb} = 220 / / (\text{KOhm});
6 Rc=2; // (KOhm)
7 Vcc=10; //(V)
8 Vbe=0.7; //(V)
9 b = 200;
10 //from fig.3.19(b)
11 Ib=(Vbb-Vbe)/Rb;
12 printf('\nbase current=\%.3 \text{ f mA} \cdot \text{n'}, Ib)
13 Ic=b*Ib;
14 printf('\ncollector current=\%.2 f mA\n', Ic)
15 Ie=(1+b)*Ib;
16 printf('\nemitter current=\%.2 f mA\n', Ie)
17 Vce=Vcc-Ic*Rc;
18 printf('\ncollector emitter voltage=\%.1 f V \ ', Vce)
```

Scilab code Exa 3.4 Analyse the common emitter circuit with pnp transistor

```
1 clear;
2 clc;
3 //Example 3.4
4 Vbb=1.5; //(V)
5 Rb=580; // (KOhm)
6 Veb=0.6; //(V)
7 Vcc=5; //(V)
8 b = 100;
9 // writing Kirchhoff voltage law equation around E-B
      loop
10 Ib=(Vcc-Veb-Vbb)/Rb;
11 printf('\nbase current=\%.3 f mA\n', Ib)
12 Ic=b*Ib;
13 printf('\ncollector current=\%.2 f mA\n', Ic)
14 Ie=(1+b)*Ib;
15 printf('\nemitter current=\%.3 f mA\n', Ie)
16 Vec = (1/2) * Vcc;
17 printf('\nce voltage=\%.2 f V n', Vec)
18 Rc=(Vcc-Vec)/Ic;
19 printf('\ncollector resistance=\%.f KOhm\n', Rc)
```

Scilab code Exa 3.5 Calculate the currents and voltages in a circuit

```
1 clear;
2 clc;
3 //Example 3.5
4 b=100;
5 Vbe=0.7;//(V)
6 Vce=0.2;//(V)
7 Vbb=8;//(v)
8 Rb=220;//(KOhm)
9 Ib=(Vbb-Vbe)/Rb
```

```
10 printf('\nbase current=\%f mA\n', Ib)
11 //transistor in active region
12 Ic=b*Ib;
13 printf('\ncollector current=\%.3 f mA\n',Ic)
14 Vcc=10; //(V)
15 Rc=4; // (KOhm)
16 Vce=Vcc-Ic*Rc;
17 printf('\ncollector emitter voltage=\%.2 f V \ n', Vce)
18 //saturation
19 Vce=0.2; //(V)
20 Ic=(Vcc-Vce)/Rc;
21 printf('\nsaturation collector current=\%.2 f mA\n', Ic
22 x = Ic/Ib
23 //which is <b
24 Ie=Ic+Ib;
25 printf('\nemitter current=\%f mA\n', Ie)
```

Scilab code Exa 3.6 Calculate the characteristics of a circuit containing an emitter resistor

```
1 clear;
2 clc;
3 //Example 3.6
4 Vbe=0.7;
5 b=75;
6 //Q point values::
7 //using KVL eq around the B-E loop
8 //Vbb=Ib*Re+Vbe+Ie*Re
9 //assuming transistor is in forward biased mode we can write Ie=(1+b)*Ib
10 Vbb=6;
11 Rb=25; //KOhm
12 Re=0.6; //KOhm
13 Ib=(Vbb-Vbe)/(Rb+(1+b)*Re);
```

```
14 printf('\nbase current=\%f mA\n', Ib)
15 Ic=b*Ib;
16 printf('\ncollector current=\%0.2 \, \text{f mA} \, \text{n',Ic})
17 Ie=(1+b)*Ib;
18 printf('\nemitter current=\%0.2 \text{ f mA} \cdot \text{n'}, Ie)
19 Vcc=12;
20 \text{ Rc} = 0.4;
21 Vce=Vcc-Ic*Rc-Ie*Re;
22 printf('\ncollector emitter voltage=\%0.2 \, \text{f V} \, \text{n}', Vce)
23 //load line::
24 //using KVL law around C-E loop
25 / \text{Vce=Vcc} - (\text{Ic} * (\text{Rc} + ((1+B)/B) * \text{Re}));
26 \text{ Ic} = [0, 12, 5.63]
27 \text{ Vce} = 12 - \text{Ic} * 1;
28 xset ('window',1)
29 plot2d(Vce,Ic,style=3)
30 title("load line")
31 xlabel("Vce")
32 ylabel("Ic")
```

Scilab code Exa 3.7 Calculate the characteristics of a circuit

```
1 clear;
2 clc;
3 //Example 3.7
4 Vbe=0.65;
5 Vcc=5;
6 Rc=0.5; //KOhm
7 b=100;
8 V1=-5;
9 Re=1; //KOhm
10 // Q-point values :: writing KVL eq around B-E loop
11 Ie=(-V1-Vbe)/Re;
12 printf('\nemitter current=%.2 f mA\n', Ie)
13 Ib=(Ie/(1+b));
```

```
14     printf('\nbase current=%f mA\n', Ib)
15     Ic=(b/(1+b))*Ie;
16     printf('\ncollector current=%0.2 f mA\n', Ic)
17     Vce=Vcc-Ic*Rc-Ie*Re-V1;
18     printf('\ncollector emitter voltage=%f V\n', Vce)
19     //load line::
20     //Vce=Vcc-V1-(Ic*(Rc+((1+B)/B)*Re));
21     Vce=[0,2,3.5,4,6,8,10]
22     Ic=(10-Vce)/1.51;
23     xset('window',1)
24     plot2d(Vce,Ic,style=3,rect=[0,0,10,8])
25     title("load line")
26     xlabel("Vce")
27     ylabel("Ic")
```

Scilab code Exa 3.9 Calculate the characteristics of an npn bipolar circuit

```
1 clear;
2 clc;
3 //Example 3.9
4 b=100;
5 Vbe=0.7;
6 V1 = -5;
7 V2=12;
8 \text{ Rb} = 10;
9 \text{ Re} = 5;
10 Rc=5;
11 Rl=5:
12 //Q point values:: using KVL eq around B-E loop
13 Ib=-(V1+Vbe)/(Rb+(1+b)*Re);
14 printf('\nbase current=\%f mA\n', Ib)
15 Ic=b*Ib;
16 printf('\ncollector current=\%f mA\n', Ic)
17 Ie = (1+b) * Ib;
18 printf('\nemitter current=\%f mA\n', Ie)
```

```
19 //at collector node we can write Ic=(V2-Vo)/Rc-Vo/Rl
20 Vo = (V2/Rc - Ic) *Rc *R1/(Rc + R1);
21 printf('\noutput voltage=\%0.3 \, f \, V \setminus n', Vo)
22 \text{ Vce=Vo-Ie*Re-V1};
23 printf('\ncollector emitter voltage=\%f V\n', Vce)
24 //load line::
25 Rth=R1*Rc/(R1+Rc);
26 printf('\nThevenin rquivalent resistance=%f KOhm\n',
      Rth)
27 \text{ Vth} = (R1/(R1+Rc))*V2;
28 printf('\nThevenin equivalent voltage=\%f V\n', Vth)
29 // fig.3.36(c) KVL law
30 / Vce = 6 - V1 - Ic * Rth - Ie * Re;
31 Vce=[0,2,4.7,3.5,4,6,8,10]
32 \text{ Ic} = (11 - \text{Vce}) / 7.5;
33 xset ('window',1)
34 plot2d(Vce, Ic, style=3, rect=[0,0,12,2])
35 title("load line")
36 xlabel("Vce")
37 ylabel("Ic")
```

 ${f Scilab\ code\ Exa\ 3.10}$ Calculate the currents output voltage and power dissipation

```
11 Vt=12; //(V)
12 Ib=(Vt-Vbe)/Rb;
13 printf('\nbase current=%0.3 f mA\n', Ib)
14 Ic=(Vcc-Vce)/Rc;
15 printf('\ncollector current=%0.2 f A\n', Ic)
16 Ib=0.0471; //A
17 x=Ic/Ib
18 //since Ic/Ib<b transistor is in saturation
19 //Vo=Vcc;
20 Vo=0.1;
21 printf('\noutput voltage=%0.2 f V\n', Vo)
22 P=Ic*Vce+Ib*Vbe;
23 printf('\npower dissipation=%0.3 f W\n', P)</pre>
```

Scilab code Exa 3.13 Design the circuit

```
clear;
clc;
//Example 3.13
b=100;
Vcc=12;
Vbe=0.7;
Icq=1;//mA
Vceq=6;
Rc=(Vcc-Vceq)/Icq;
printf('\ncollector resistance=%.3 f KOhms\n',Rc)
Ibq=Icq/b;
printf('\nbase current=%0.3 f mA\n',Ibq)
Rb=(Vcc-Vbe)/Ibq;
printf('\nbase resistance=%.3 f KOhms\n',Rb)
```

Scilab code Exa 3.14 Analyze a circuit using voltage divider bias circuit and determine the change in Q point

```
1 clear;
2 clc;
3 //Example 3.14
4 R1=56;
5 R2=12.2;
6 Rc=2;
7 Re=.4;
8 \ \text{Vcc} = 10;
9 Vbe=0.7;
10 b = 100;
11 // fig.3.53(b)
12 Rth=R2*R1/(R1+R2);
13 printf('\nThevenin rquivalent resistance=\%0.1 f KOhm\
      n', Rth)
14 Vth = (R2/(R1+R2))*Vcc;
15 printf('\nThevenin equivalent voltage=\%0.2 \, f \, V \n',Vth
      )
16 Ibq=(Vth-Vbe)/(Rth+(1+b)*Re);
17 printf('\nbase current=\%f mA\n', Ibq)
18 \text{ Icq=b*Ibq};
19 printf('\ncollector current=\%.3 \text{ f mA} \cdot \text{n',Icq})
20 Ieq=(1+b)*Ibq;
21 printf ('\nemitter current=\%.2 \text{ f mA} \cdot \text{n'}, Ieq)
22 Vceq=Vcc-Icq*Rc-Ieq*Re;
23 printf('\ncollector emitter voltage=\%.3 \, f \, V \ n', Vceq)
24 b = [50, 100, 150]
25 for x=b
26 Ibq=(Vth-Vbe)/(Rth+(1+x)*Re);
27 disp("Ibeq, Iceq, Ieq, Vceq")
28 disp(Ibq)
29 \text{ Icq=x*Ibq};
30 disp(Icq)
31 \text{ Ieq} = (1+x)* \text{Ibq};
32 disp(Ieq)
33 Vceq=Vcc-Icq*Rc-Ieq*Re;
34 disp(Vceq)
35 disp("")
36 \text{ end}
```

Scilab code Exa 3.15 Design a bias stable circuit

```
1 clear;
2 clc;
3 //Example 3.15
4 Vcc=5;
5 \text{ Rc} = 1; //\text{KOhm}
6 Vbe=0.7;
7 b=120;
8 \text{ Vceq=3};
9 \text{ Re} = .510;
10 Icq=(Vcc-Vceq)/(Rc+Re);
11 printf('\ncollector current=\%.3 f mA\n', Icq)
12 Ibq=Icq/b;
13 printf('\nbase current=\%0.3 \, \text{f mA} \, \text{n'}, Ibq)
14 //for bias stable circuit
15 Rth=0.1*(1+b)*Re;
16 printf('\nThevenin rquivalent resistance=\%.1 f KOhm\n
       ', Rth)
17 / \text{Ibq} = (\text{Vth-Vbe}) / (\text{Rth+(1+b)} * \text{Re})
18 Vth=Ibq*(Rth+(1+b)*Re)+Vbe;
19 printf('\nThevenin equivalent voltage=\%.2 f V n', Vth)
20 //Vth = (R2/(R1+R2)) *Vcc
21 // let x = (R2/(R1+R2))
22 x = Vth/Vcc
23 / Rth = 6050 = R1 * x
24 R1 = 6.05/x;
25 printf('\nR1=%.1 f KOhms\n',R1)
26 R2 = x * R1 / (1 - x);
27 printf('\nR2=\%.1f KOhms\'',R2)
```

Scilab code Exa 3.16 Determine the currents in a two transistor current source

```
1 clear;
2 clc;
3 //Example 3.16
4 R1=10;
5 b=50;
6 Vbe=0.7;
7 V1=-5;
8 I1=-(V1+Vbe)/R1;
9 printf('\nreference current=%.3 f mA\n',I1)
10 Iq=I1/(1+2/b);
11 printf('\nbias current=%.3 f mA\n',Iq)
12 //Ib=Ib1=Ib2
13 Ib=Iq/b;
14 printf('\nbase current=%f mA\n',Ib)
```

Scilab code Exa 3.17 Calculate the dc voltages at each node and the dc currents through the elements in mulstistage circuit

```
1 clear;
2 clc;
3 //Example 3.17
4 Vbe=0.7;
5 Vcc=10;
6 V2=5;
7 b=100;
8 R1=100;
9 R2=50;
10 Re1=2;
11 Rth=R2*R1/(R1+R2);
12 printf('\nThevenin rquivalent resistance=%.1 f KOhm\n ',Rth)
13 Vth=(R2/(R1+R2))*Vcc-V2;
```

```
14 printf('\nThevenin equivalent voltage=\%.2 f V\n', Vth)
15 / Vth = Ib1 * Rth + Vbe + Ie1 * Re1 - 5 \text{ and } Ie1 = (1+b) * Ib1
16 Ib1 = (Vth+5-Vbe)/(Rth+(1+b)*Re1);
17 printf ('\nIb1=\%.3 f mA\n', Ib1)
18 Ic1=b*Ib1;
19 printf ('\nIc1=\%.3 f mA\n', Ic1)
20 Ie1=(1+b)*Ib1;
21 printf ('\nIe1=\%.3 f mA\n', Ie1)
22 //summing the currents at the collector of Q1, Ir1+
       Ib2=Ic1
23 //(5-Vc1)/Rc1+Ib2=Ic1
24 // also Ib2=Ie2/(1+b)=(5-(Vc1+0.7))/(1+b)*Re2
25 \text{ Rc1} = 5;
26 \text{ Re} 1 = 2;
27 \text{ Re}2=2;
28 \text{ Rc} 2 = 1.5;
29 Vc1=Rc1*(1+b)*Re2*((5/Rc1)+(4.3/((1+b)*Re2))-Ic1)
       /(((1+b)*Re2)+Rc1);
30 printf('\nVc1=\%.2 f V\n', Vc1)
31 \text{ Ir1} = (5 - \text{Vc1}) / \text{Rc1};
32 printf ('\nIr1=\%.3 f mA\n', Ir1)
33 \text{ Ve2=Vc1+Vbe};
34 printf ('\nVe2=\%.2 f V\n', Ve2)
35 \text{ Ie2}=(5-\text{Ve2})/\text{Re1};
36 printf('\n Ie2=\%.3 f mA\n', Ie2)
37 \text{ Ic2=Ie2*b/(1+b)};
38 printf ('\nIc2=\%.3 f mA\n', Ic2)
39 Ib2=Ie2/(1+b);
40 printf('\nIb2=\%f mA\n', Ib2)
41 Ve1 = Ie1 * Re1 - 5;
42 printf ('\nVe1=\%.2 f V\n', Ve1)
43 Vc2 = Ic2 * Rc2 - 5;
44 printf('\nVc2=\%.2 f V\n', Vc2)
45 \quad Vce1=Vc1-Ve1;
46 printf ('\nVce1=\%.2 f V\n', Vce1)
47 \quad \text{Vec2=Ve2-Vc2};
48 printf('\nVec2=\%.2 f V\n', Vec2)
```

Chapter 4

Basic BJT Amplifiers

Scilab code Exa 4.1 Calculate the small signal voltage gain of a bipolar transistor

```
1 clear;
2 clc;
\frac{3}{2} //Example 4.1
4 b = 100;
5 \text{ Vcc=} 12;
6 \text{ Vbe=0.7};
7 Rc=6;
8 \text{ Rb} = 50;
9 Vbb=1.2;
10 //dc solution
11 Ibq=(Vbb-Vbe)/Rb;
12 printf('\nbase current=\%.3 f mA\n', Ibq)
13 Icq=b*Ibq;
14 printf('\ncollector current=\%.3 f mA\n', Icq)
15 Vceq=Vcc-Icq*Rc;
16 printf('\ncollector emitter voltage=\%.2 \, f \, V \ n', Vceq)
17 //transistor is forward biased
18 //ac solution
19 V_T = 0.026; //(V)
20 //small signal hybrid pi parameters
```

```
21 r_pi=b*V_T/Icq;
22 printf('\nsmall signal resistance=%.1 f KOhm\n',r_pi)
23 g_m=Icq/V_T;
24 printf('\ntransconductance=%.3 f mA/V\n',g_m)
25 //Av=Vo/Vs=-(g_m*Rc)*r_pi/(r_pi+Rb)
26 Av=-(g_m*Rc)*r_pi/(r_pi+Rb);
27 printf('\nsmall signal voltage gain=%.3 f\n',Av)
```

Scilab code Exa 4.2 Determine the small signal voltage gain

Scilab code Exa 4.4 Determine the small signal voltage gain

```
1 clear;
2 clc;
3 //Example 4.4
4 b=100;
5 Vbe=0.7;
6 Va=100;
```

```
7 V_T = 0.026; //(V)
8 //from dc analysis
9 \text{ Icq=0.95};
10 Vceq=6.31;
11 //ac analysis
12 r_pi=b*V_T/Icq;
13 printf('\nsmall signal resistance=%.2f KOhm\n',r_pi)
14 g_m = Icq/V_T;
15 printf('\ntransconductance=\%.3 f mA/V\n',g_m)
16 \text{ Rs} = 0.5;
17 Rc=6;
18 ro=Va/Icq;
19 printf ('\nro=\%.2 f KOhm\n',ro)
20 Av = -g_m*(5.9*r_pi/(5.9+r_pi))/((5.9*r_pi/(r_pi+5.9))
      +Rs)*ro*Rc/(ro+Rc);
21 printf('\nsmall signal voltage gain=\%.2 \, \text{f} \, \text{n',Av})
22 Ri=5.9*r_pi/(r_pi+5.9);
23 printf('\ninput resistance=\%.3f KOhm\n',Ri)
24 Ro = ro * Rc / (ro + Rc);
25 printf('\noutput resistance=\%.2 f KOhm\n', Ro)
```

Scilab code Exa 4.5 Determine the small signal voltage gain of a common emitter circuit

```
1 clear;
2 clc;
3 //Example 4.5
4 b=100;
5 Vbe=0.7;
6 Rc=2;
7 Rs=0.5;
8 Icq=2.16;
9 V_T=0.026;//(V)
10 Vceq=4.8
11 //ac solution
```

```
12 r_pi=b*V_T/Icq;
13 printf('\nsmall signal resistance=\%.2 f KOhm\n',r_pi)
14 g_m = Icq/V_T;
15 printf('\ntransconductance=%3f mA/V\n',g_m)
16 //since Va=infinity, ro=Va/Icq is also infinity
17 Re=0.4;
18 Rib=r_pi+(1+b)*Re;
19 printf('\ninput resistance to the base=\%.2 f KOhm\n',
      Rib)
20 //Ri=R1 | R2 | Rib
21 Ri=10*Rib/(10+Rib);
22 printf('\ninput resistance to the amplifier=%.3f
     KOhm \setminus n', Ri)
23 Av = -(1/(r_pi + (1+b)*Re))*b*Rc*Ri/(Ri+Rs);
24 printf('\nsmall signal voltage gain=\%.2 \,\mathrm{f} \, \mathrm{n}', Av)
25 //by approximate expression
26 Av=-Rc/Re;
27 printf('\nsmall signal voltage gain=\%.3 f \n', Av)
```

Scilab code Exa 4.7 Determine the small signal voltage gain of a common emitter circuit

```
1 clear;
2 clc;
3 //Example 4.7
4 Iq=0.5;
5 b=120;
6 Va=80;
7 V_T=0.026; // (V)
8 rc=120; // small signal collector resistance (KOhm)
9 // Icq=Iq
10 Icq=0.5;
11 g_m=Icq/V_T;
12 printf('\ntransconductance=%.3 f mA/V\n', g_m)
13 ro=Va/Icq;
```

```
14 printf('\nsmall signal output resistance=%.2 f KOhm\n
        ',ro)
15 Av=-g_m*ro*rc/(ro+rc);
16 printf('\nsmall signal voltage gain=%.3 f \n',Av)
```

Scilab code Exa 4.8 Determine the dc and ac load lines

```
1 clear;
2 \text{ clc};
3 //Example 4.8
4 b=150; Veb=0.7;
5 //dc solution
6 V2 = 10;
7 V1 = -10;
8 V_T = 0.026; //(V)
9 Rc=5;
10 Rb=50;
11 Re=10;
12 Ibq=(V2-Veb)/(Rb+(1+b)*Re);
13 printf('\nbase current=\%f mA\n', Ibq)
14 Icq=b*Ibq;
15 printf('\ncollector current=\%.3 \text{ f mA} \cdot \text{n',Icq})
16 Ieq=(1+b)*Ibq;
17 printf('\nemitter current=\%.3 f mA\n', Ieq)
18 Vecq=V2-V1-Icq*Rc-Ieq*Re;
19 printf ('\nemitter collector voltage=\%.2 \,\mathrm{f} \,\mathrm{V} \,\mathrm{n}', Vecq)
20 //ac solution
21 r_pi=b*V_T/Icq;
22 printf('\nsmall signal resistance=%.1f KOhm\n',r_pi)
23 g_m = Icq/V_T;
24 printf('\ntransconductance = \%.3 \,\text{fmA/V\n',g_m})
25 //since Va=infinity, ro=Va/Icq is also infinity
```

Scilab code Exa 4.9 Determine the maximum symmetrical swing

Scilab code Exa 4.10 Calculate the small signal voltage gain of an emitter circuit

```
1 clear;
2 clc;
3 //Example 4.10
4 b=100;
5 Vbe=0.7;
6 V_T=0.026;//(V)
7 Re=2;
8 R1=50;
9 R2=50;
10 Rs=0.5;
11 Va=80;
12 //by dc analysis
13 Icq=0.793;
14 Vceq=3.4;
```

```
15 r_pi=b*V_T/Icq;
16 printf('\nsmall signal resistance=\%.3 f KOhm\n',r_pi)
17 g_m = Icq/V_T;
18 printf ('\ntransconductance=\%.3 f mA/V\n', g_m)
19 ro=Va/Icq;
20 printf('\nsmall signal output resistance=\%.2 f KOhm\n
      ',ro)
21 Rib=r_pi+(1+b)*Re*ro/(ro+Re);
22 printf('\ninput resistance to the base=\%.2 f KOhm\n',
      Rib)
23 //Ri=R1 | | R2 | | Rib
24 x=R1*R2/(R1+R2);
25 \text{ Ri}=x*Rib/(x+Rib);
26 printf('\nRi=\%.2 f KOhm\n',Ri)
27 \text{ y=ro*Re/(ro+Re)};
28 Av = (1/(r_pi + (1+b)*y))*(1+b)*y*Ri/(Ri+Rs);
29 printf('\nsmall signal voltage gain=\%.3 f \ n', Av)
```

Chapter 5

The Field Effect Transistor

Scilab code Exa 5.1 Calculate the current in an n channel MOSFET

```
1 clear;
2 clc;
3 //Example 5.1
4 Vtn=0.75; // (V)
5 W=40*10^-6; // (cm)
6 L=4*10^-6; // (cm)
7 u=650; // (cm)
8 Iox=450*10^-11;
9 e=3.9*8.86*10^-14;
10 Kn=W*u*e/(2*L*Iox);
11 printf('\nconduction parameter=%f mA/V^2\n',Kn)
12 Vgs=2*Vtn;
13 i_D=Kn*(Vgs-Vtn)^2;
14 printf('\ndrain current=%f mA\n',i_D)
```

Scilab code Exa 5.2 Determine the source to drain voltage required to bias p channel MOSFET

```
1 clear;
2 clc;
3 //Example 5.2
4 Kp=0.2; // (mA/V^2)
5 Vtp=0.5;
6 iD=0.5;
7 Vsg=sqrt(iD/Kp)-Vtp;
8 printf('\nVgs=%.2 f V\n', Vsg)
9 //to bias in p channel MOSFET
10 Vsd=Vsg+Vtp;
11 printf('\nVsd=%.2 f V\n', Vsd)
```

Scilab code Exa 5.3 Calculate the drain current and drain to source voltage of circuit

```
1 clear;
2 clc;
3 //Example 5.3
4 R1=30;
5 R2=20;
6 RD=20;
7 Vdd=5;
8 Vtn=1;
9 Kn=0.1;
10 Vgs=R2*Vdd/(R1+R2);
11 printf('\nVgs=%0.2 f V\n', Vgs)
12 I_D=Kn*(Vgs-Vtn)^2;
13 printf('\nthe drain current=%0.1 f mA\n', I_D)
14 Vds=Vdd-I_D*RD;
15 printf('\ndrain to source voltage=%0.1 f V\n', Vds)
```

Scilab code Exa 5.4 Calculate the drain current and drain to source voltage of circuit

```
1 clear;
2 clc;
\frac{3}{2} //Example 5.4
4 R1=50;
5 R2 = 50;
6 \text{ RD} = 7.5;
7 Vdd=5;
8 \text{ Vtp} = -0.8;
9 \text{ Vg=} 2.5;
10 Kp = 0.2;
11 Vo=R2*Vdd/(R1+R2);
12 printf('\nVo=\%.2 f V\n', Vo)
13 Vsg=Vdd-Vg;
14 printf('\nsource to gate voltage=\%.2 \, f \, V \ ', Vsg)
15 I_D=Kp*(Vsg+Vtp)^2;
16 printf('\nthe drain current=\%.3 \text{ f mA}\n',I_D)
17 Vsd=Vdd-I_D*RD;
18 printf('\nsource to drain voltage=\%.3 f V\n', Vsd)
```

Scilab code Exa 5.6 Design the dc bias of a MOSFET circuit to produce specified drain current

```
1 clear;
2 clc;
3 //Example 5.6
4 Vtn=2;
5 Kn=80*10^-3;
6 //x=W/L
7 x=4;
8 I_D=0.5;
9 //I_D=Kn*x*((Vgs-Vtn)^2)/2;
10 Vgs=sqrt(I_D*2/(Kn*x))+2;
11 printf('\nVgs=%.2 f V\n', Vgs)
12 //y=R1+R2
13 Rs=2;
```

```
14 y=10/0.05;

15 printf('\nR1+R2=%.2 f Kohm\n',y)

16 //Vgs=Vg-Vs=(R2/(R1+R2)*10-5)-I_D*Rs+5

17 R2=(y/10)*(Vgs+I_D*Rs);

18 printf('\nR2=%.2 f KOhm\n',R2)

19 R1=y-R2;

20 printf('\nR1=%.2 f KOhm\n',R1)
```

Scilab code Exa 5.7 Design a MOSFET circuit biased with a constant current source

```
1 clear;
2 clc;
3 //Example 5.7
4 Vtn=0.8;
5 Kn = 80;
6 / x = W/L
7 x = 3;
8 I_D=250;
9 \text{ Vd} = 2.5;
10 //I_D=Kn/2*x*(Vgs-Vtn)^2
11 Vgs=sqrt(I_D*2/(Kn*x))+Vtn;
12 printf('\nVgs=\%.3f\ V\n', Vgs)
13 \ Vs = -Vgs
14 //I_D = (5-Vd)/Rd
15 Rd=(5-Vd)/I_D;
16 printf('\nRd=\%.2 f KOhm\n', Rd)
17 Vds=Vd-Vs;
18 printf ('\nVds=\%.2 f V\n', Vds)
19 Vdssat=Vgs-Vtn
20 //since Vds>Vdssat transistor is biased in
      saturation region
```

Scilab code Exa 5.8 Calculate the characteristics of a circuit containing an enhancement load device

```
1 clear;
2 clc;
3 //Example 5.8
4 Vtn=0.8;
5 \text{ Kn} = 0.05;
6 //I_D=Kn*(Vgs-Vtn)^2
7 / Vds=Vgs=5-I_D*Rs
8 //combining these two equations we obtain 0.5(Vgs)
      ^2+0.2 \, \mathrm{Vgs} - 4.68
9 Vgs = poly(0, 'Vgs')
10 p=poly([-4.68 0.2 0.5], 'Vgs', 'c')
11 printf('\npossible solutions :: \%. 3 f V\n', roots(p))
12 //assuming transistor is conducting ,Vgs must be
      greater than threshold voltage
13 Vgs = 2.87;
14 I_D=Kn*(Vgs-Vtn)^2;
15 printf('\ndrain current=\%.3 f mA\n', I_D)
```

Scilab code Exa 5.10 Calculate the characteristics of a circuit containing a depletion load device

```
1 clear;
2 clc;
3 //Example 5.10
4 Vtn=-2;
5 Kn=0.1;
6 Vdd=5;
7 Rs=5;
8 Vgs=0;
9 I_D=Kn*(Vgs-Vtn)^2;
10 printf('\ndrain current=%.3 f mA\n',I_D)
11 Vds=Vdd-I_D*Rs;
```

Scilab code Exa 5.11 Determine the dc transistor currents and voltages in a circuit containing a depletion load device

```
1 clear;
2 clc;
3 //Example 5.11
4 Vtnd=1;
5 Vtnl=-2;
6 \text{ Knd} = 50;
7 \text{ Knl} = 10;
8 \text{ Vt} = 5;
9 \text{ Vo=poly}(0, 'Vo')
10 p=poly([4 -40 5], 'Vo', 'c')
11 printf('\npossible solutions :: \%.2 f V \ n', roots(p))
12 //since output voltage cannot be greater than supply
        voltage 5V
13 Vo = 0.1; //(V)
14 I_D=Knl*(-Vtnl)^2;
15 printf('\ndrain current=\%.3 f microA\n',I_D)
```

Scilab code Exa 5.13 Determine the currents and voltages in a MOSFET constant current source

```
1 clear;
2 clc;
3 //Example 5.13
4 Kn1=0.2;
5 Kn2=0.1;
```

```
6 \text{ Kn3=0.1};
7 Kn4=0.1;
8 Vtn1=1;
9 Vtn2=1;
10 Vtn3=1;
11 Vtn4=1;
12 V2 = -5;
));
14 printf ('\nVgs3=\%.2 f V\n', Vgs3)
15 Iq=Kn3*(Vgs3-Vtn3)^2;
16 printf('\nbias current=\%.3 f mA\n', Iq)
17 Vgs1=sqrt(Iq/Kn1)+Vtn1;
18 printf('\ngate to source voltage on M1=\%.2 f V\n',
     Vgs1)
19 \text{ Vds2} = -\text{V2} - \text{Vgs1};
20 printf('\ndrain to source voltage on M2=\%.2 f V n',
     Vds2)
21 Vgs2=Vgs3;
22 Vdssat=Vgs2-Vtn2
23 //since Vds2>Vdssat M2 is biased in saturation
     region
```

Scilab code Exa 5.14 Design the size of a power MOSFET to meet the specification of particular switch application

```
1 clear;
2 clc;
3 //Example 5.14
4 I_D=0.5;
5 Vds=6;
6 Kn=80*10^-6;
7 Vgs=5;
8 Vtn=1;
9 //x=W/L
```

Scilab code Exa 5.16 Calculate Id and Vds in an n channel pn JFET

```
1 clear;
2 clc;
3 //Example 5.16
4 Idss=2;//(mA) saturation current
5 Vp=-3.5;//(V) pinch off voltage
6 Vgs=[0 Vp/4 Vp/2]
7 I_D=Idss*(1-Vgs/Vp)^2;
8 disp(I_D,"I_D (A)")
9 Vds=Vgs-Vp;
10 disp(Vds," Vdssat (V)")
```

Scilab code Exa 5.17 Design the dc bias of a JFET circuit

```
1 clear;
2 clc;
3 //Example 5.17
4 Idss=5;//mA
5 Vp=-4;
6 Vdd=10;
7 I_D=2;
8 Vds=6;
9 //I_D=Idss*(1-Vgs/Vp)^2
10 Vgs=(1-sqrt(I_D/Idss))*Vp;
11 printf('\nVgs=%.2 f V\n', Vgs)
```

```
12 Rs=-Vgs/I_D;
13 printf('\nRs=\%.3 f KOhm\n',Rs)
14 Rd=(Vdd-Vds-I_D*Rs)/I_D;
15 printf('\nRd=\%.2 f KOhm\n',Rd)
16 Vgs-Vp
17 //since Vds>Vgs-Vp JFET is biased in saturation
```

Scilab code Exa 5.19 Calculate the quiscent current and voltage values

```
1 clear;
 2 clc;
\frac{3}{2} //Example 5.19
4 Idss=2.5;
5 Vp=2.5;
6 I_D=0.8;
7 //I_D=I_q=0.8*10^-3=(V_d-(-9))/R_d
8 Vd=0.8*4-9;
9 printf ('\nVd = \%.2 \, \text{fV} \, \text{n}', Vd)
10 //I_D = Idss*(1 - Vgs/Vp)^2;
11 Vgs=(1-sqrt(I_D/Idss))*Vp;
12 printf ('\nVgs = \%.2 \, \text{fV} \, \text{n}', Vgs)
13 Vs=1-Vgs;
14 printf ('\nVs=\%.2 f V\n', Vs)
15 Vsd=Vs-Vd;
16 printf ('\nVsd=\%.2 f V\n', Vsd)
17 Vp-Vgs
18\ //\,\mathrm{since}\ \mathrm{Vsd}{>}\mathrm{Vp}{-}\mathrm{Vgs}\ \mathrm{JFET} is biased in saturation
```

Scilab code Exa 5.20 Design a circuit with an enhancement mode MESFET

```
1 clear;
2 clc;
```

```
\frac{3}{2} //Example 5.20
4 Vtn=0.24;
5 \text{ Kn} = 1.1;
6 / x = R1 + R2 = 50000
7 x = 50;
8 \text{ Vgs} = 0.5;
9 \text{ Vds} = 2.5;
10 \text{ Vdd}=4;
11 Rd=6.7;
12 I_D=Kn*(Vgs-Vtn)^2;
13 printf('\ndrain current=%.3f mA\n',I_D)
14 Vd=Vdd-I_D*Rd;
15 printf('\nvoltage at drain=\%0.2 \, \text{f V} \, \text{n'}, \text{Vd})
16 \, \text{Vs=Vd-Vds};
17 printf('\nvoltage at source =\%0.2 fV\n', Vs)
18 Rs=Vs/I_D;
19 printf ('\nsource resistance =\%.2fKOhm\n', Rs)
20 \text{ Vg=Vgs+Vs};
21 printf('\nvoltage at the gate=\%.2 \, f \, V \setminus n', Vg)
22 //Vg=R2*Vdd/(R2+R1)
23 R2=Vg*x/Vdd;
24 printf('\nR2=\%0.3 f KOhm\n',R2)
25 R1 = x - R2;
26 printf('\nR1=\%0.3 f KOhm\n', R1)
27 Vgs-Vtn
28 //since Vds>Vgs-Vtn transistor is biased in
       saturation
```

Chapter 6

Basic FET Amplifier

Scilab code Exa 6.1 Calculate the transconductance of an n chennel MOSFET

```
1 clear;
2 clc;
3 //Example 6.1
4 Vtn=1;
5 //let x= u_n*Cox*1/2
6 x=20*10^-3;
7 //let y=W/L
8 y=40;
9 I_D=1;
10 Kn=x*y;
11 printf('\nconduction parameter=%.3 f mA/V^2\n',Kn)
12 g_m=2*sqrt(Kn*I_D);
13 printf('\ntransconductance=%.3 f mA/V\n',g_m)
```

Scilab code Exa 6.2 Determine the small signal voltage gain of a MOS-FET

```
1 clear;
2 clc;
3 //Example 6.2
4 Vgsq=2.12;
5 \text{ Vdd=5};
6 \text{ Rd} = 2.5;
7 Vtn=1;
8 \text{ Kn} = 0.8;
9 //let lambda=y
10 y=0.02; /V^{-1}
11 Idq=Kn*(Vgsq-Vtn)^2;
12 printf('\ndrain current=\%.3 f mA\n', Idq)
13 Vdsq=Vdd-Idq*Rd;
14 printf('\ndrain to source voltage=\%.3 f V \ ', Vdsq)
15 Vgs=1.82;
16 Vgs-Vtn
17 //since Vdsq>Vgs-Vtn transistor is biased in
      saturation
18 g_m=2*Kn*(Vgsq-Vtn);
19 printf('\ntransconductance=\%.3 f mA/V n', g_m)
20 ro = (y * Idq)^{-1};
21 printf('\noutput resistance=\%.2 f KOhm\n',ro)
22 Av = -g_m * ro * Rd / (ro + Rd);
23 printf('\nsmall signal voltage gain=\%.2 \text{ f} \cdot \text{n}', Av)
```

Scilab code Exa 6.3 Determine the small signal voltage gain and input and output resistance of a commoon source amplifier

```
1 clear;
2 clc;
3 //Example 6.3
4 Vdd=10;
5 R1=70.9;//(Kohm)
6 R2=29.1;//(Kohm)
7 Rd=5;//(Kohm)
```

```
8 Vtn=1.5;
9 Kn=0.5; //(mA/V^2)
10 // lambda=y
11 y=0.01; //V^{-1}
12 Rsi=4; // (Kohm)
13 Vgsq=Vdd*R2/(R1+R2);
14 printf('\ngate to source voltage=\%.2 \,\mathrm{f} \,\mathrm{V} \,\mathrm{n}', Vgsq)
15 Idq=Kn*(Vgsq-Vtn)^2;
16 printf('\ndrain current=\%.3 \text{ f mA\n'}, Idq)
17 Vdsq=Vdd-Idq*Rd;
18 printf('\ndrain to source voltage=\%.2 f V \ ', Vdsq)
19 g_m=2*Kn*(Vgsq-Vtn);
20 printf('\ntransconductance=\%.3 f mA/V n', g_m)
21 \text{ ro}=(y*Idq)^-1;
22 printf('\noutput resistance=\%.2f KOhm\n',ro)
23 Ri=R1*R2/(R1+R2);
24 printf('\namplifier input resistance=\%.2 f Kohm\n', Ri
25 Av = -g_m*(ro*Rd/(ro+Rd))*Ri/(Ri+Rsi);
26 printf ('\nsmall signal voltage gain=\%.2 \text{ f} \cdot \text{n}', Av)
27 printf('\namplifier input resistance=\%.2 f Kohm\n', Ri
28 \text{ Ro=Rd*ro/(Rd+ro)};
29 printf('\namplifier output resistance=%.2f Kohm\n',
      Ro)
```

Scilab code Exa 6.4 Design the bias of a MOSFET such that the Q point is in the middle of saturation

```
1 clear;
2 clc;
3 //Example 6.4
4 Vtn=1;
5 Kn=1;//(mA/V^2)
6 //lambda=y
```

```
7 y=0.015; //V^{-1}
8 Ri = 100; // (Kohm)
9 Idq=2; //(mA)
10 Idt=4; // (mA)
11 / Idt = 4 = Kn * (Vgst - Vtn)^2
12 Vgst=sqrt(Idt/Kn)+Vtn;
13 printf('\nVgst=\%.2f\ V\n',Vgst)
14 Vdst=Vgst-Vtn;
15 printf ('\nVdst=\%.2 f V\n', Vdst)
16 Vdd=12;
17 Vdsq=7;
18 Rd=(Vdd-Vdsq)/Idq;
19 printf ('\nRd =\%.2fKOhm\n', Rd)
20 Vgsq=sqrt(Idq/Kn)+Vtn;
21 printf('\nVgsq=\%.2 f V\n', Vgsq)
22 R1=Ri*Vdd/Vgsq;
23 printf ('\nR1=\%.2 f Kohm\n', R1)
24 R2 = Ri * R1 / (R1 - Ri);
25 printf('\nR2=%.2 f Kohm\n',R2)
26 \text{ g_m=2*Kn*(Vgsq-Vtn)};
27 printf('\ntransconductance=\%.3 f mA/V n', g_m)
28 \text{ ro} = (y*Idq)^-1;
29 printf('\noutput resistance=\%.2f KOhm\n',ro)
30 Av = -g_m * (ro*Rd/(ro+Rd));
31 printf('\nsmall signal voltage gain=\%.2 \text{ f} \cdot \text{n}', Av)
```

Scilab code Exa 6.6 Determine the small signal voltage gain of a circuit

```
1 clear;
2 clc;
3 //Example 6.6
4 Vtn=0.8;
5 Kn=1;//(mA/V^2)
6 Idq=0.5;
7 Vdd=5;
```

```
8  Rd=7; // (Kohm)
9  Vgsq=sqrt(Idq/Kn)+Vtn;
10  printf('\nVgsq=%.2 f V\n',Vgsq)
11  Vs=-Vgsq
12  Vdsq=Vdd-Idq*Rd-Vs;
13  printf('\nVdsq=%.2 f V\n',Vdsq)
14  g_m=2*Kn*(Vgsq-Vtn);
15  printf('\ntransconductance=%.3 f mA/V\n',g_m)
16  Av=-g_m*Rd;
17  printf('\nsmall signal voltage gain=%.2 f\n',Av)
```

Scilab code Exa 6.7 Determine the small signal voltage gain of a circuit

```
1 clear;
2 clc;
3 //Example 6.7
4 Vdd=12;
5 R1 = 162;
6 R2 = 463;
7 \text{ Rs} = 0.75;
8 \text{ Kn} = 4;
9 Vtn=1.5;
10 //lambda=y
11 y = 0.01;
12 Rsi=4;
13 Idq=7.97;
14 Vgsq=2.91;
15 \text{ g_m=2*Kn*(Vgsq-Vtn)};
16 printf ('\ntransconductance=\%.2 f mA/V\n',g_m)
17 ro=(y*Idq)^-1;
18 printf('\noutput resistance=\%.2 f KOhm\n',ro)
19 Ri = R1 * R2 / (R1 + R2);
20 printf('\namplifier input resistance=\%.3 f Kohm\n', Ri
21 x=Rs*ro/(Rs+ro);
```

```
22 Av=g_m*x*(Ri/(Ri+Rsi))/(1+g_m*x);
23 printf('\nsmall signal voltage gain=\%.2 f\n',Av)
```

Scilab code Exa 6.9 Calculate the output resistance of a source follower circuit

```
1 clear;
2 clc;
3 //Example 6.9
4 Rs=750; //Ohm
5 ro=12500;
6 g_m=11.3*10^-3;
7 x=1/g_m;
8 y=x*Rs/(x+Rs);
9 Ro=y*ro/(y+ro);
10 printf('\noutput resistance=%.3 f ohm\n',Ro)
```

Scilab code Exa 6.11 Design the small signal voltage gain of an NMOS amplifier

```
1 clear;
2 clc;
3 //Example 6.11
4 Vtnd=1;
5 Vtnl=1;
6 Kn=30;
7 //let W/L=x
8 xl=1;
9 Vdd=5;
10 Av=10;
11 //Av=sqrt(xd/xl)
12 xd=(Av)^2*xl;
```

Scilab code Exa 6.12 Determine the small signal voltage gain of a circuit

```
1 clear;
2 clc;
3 //Example 6.12
4 Vtnd=0.8;
5 Vtnl = -1.5;
6 \text{ Knd} = 1;
7 \text{ Knl} = 0.2;
8 //lambda=y
9 \text{ yd} = 0.01;
10 y1=0.01;
11 Idq=0.2;
12 gmd=2*sqrt(Knd*Idq);
13 printf ('\ntransconductance of the driver=\%.3 f mA/V\n
      ', gmd)
14 roD=1/(yd*Idq);
15 printf('\noutput resistances=\%.2 f Kohm\n',roD)
16 Av=-gmd*roD/2;
17 printf('\nsmall signal voltage gain=\%.2 f \ n', Av)
```

Scilab code Exa 6.13 Determine the small signal voltage gain of a circuit

```
1 clear;
2 clc;
3 //Example 6.13
4 Vtn=0.8;
5 Vtp = -0.8;
6 Kn = 80 * 10^{-3};
7 Kp = 40 * 10^{-3};
8 / x = W/L
9 \text{ xn} = 15;
10 xp=10;
11 // lambda=y
12 yn = 0.01;
13 yp = 0.01;
14 Ibias=0.2;
15 gm=2*sqrt(Kn*xn*Ibias/2);
16 printf('\ntransconductance of the NMOS driver=\%.3 f
      mA/V^2 \setminus n', gm)
17 ron=1/(yn*Ibias);
18 printf('\noutput resistances=\%.2 f Kohm\n',ron)
19 Av=-gm*ron/2;
20 printf('\nsmall signal voltage gain=\%.2 \, f \, \ n', Av)
```

Scilab code Exa 6.14 Design the biasing of a multistage MOSFET

```
1 clear;
2 clc;
3 //Example 6.14
4 Kn1=500*10^-3;
5 Kn2=200*10^-3;
```

```
6 Vtn1=1.2;
7 Vtn2=Vtn1;
8 Idq1=0.2;
9 \text{ Idq2=0.5};
10 Vdsq1=6;
11 Vdsq2=6;
12 Ri=100;
13 Rsi=4;
14 Rs2=(10-Vdsq2)/Idq2;
15 printf ('\nRs2=\%.2 f KOhm\n', Rs2)
16 Vgs2=sqrt(Idq2/Kn2)+Vtn2;
17 printf('\ngate to source voltage for M2=\%.2 f V n',
       Vgs2)
18 Vs2=-1;
19 Vg2=Vs2+Vgs2;
20 printf('\ngate voltage of M2=\%.2 \, \text{f V} \cdot \text{n'}, \text{Vg2})
21 \text{ Vg1=Vg2};
22 \text{ Rd1} = (5 - \text{Vg1}) / \text{Idq1};
23 printf('\nresistor Rd1=\%.2 f KOhm\n', Rd1)
24 \text{ Vs1=Vg1-Vdsq1};
25 printf('\nsource voltage of M1=\%.2f KOhm\n', Vs1)
26 \text{ Rs1} = (\text{Vs1} + 5) / \text{Idq1};
27 printf ('\nresistor Rs1=\%.2 f KOhm\n', Rs1)
28 Vgs1=sqrt(Idq1/Kn1)+Vtn1;
29 printf('\ngate to source voltage for M1=\%.2 f V\n',
       Vgs1)
30 R1 = Ri * 10 / (Vgs1 + Idq1 * Rs1);
31 printf ('\nR1=\%.2 f KOhm\n', R1)
32 / Ri = R1 * R2 / (R1 + R2)
33 R2=Ri*R1/(R1-Ri);
34 printf ('\nR2=\%.2 f KOhm\n', R2)
```

Scilab code Exa 6.15 Design the biasing of cascade circuit

```
1 clear;
```

```
2 clc;
3 //Example 6.15
4 Vtn1=1.2;
5 Vtn2=1.2;
6 \text{ Kn1=0.8};
7 \text{ Kn}2=0.8;
8 / x = R1 + R2 + R3 = 300
9 x = 300;
10 Rs=10;
11 Idq=0.4;
12 Vdsq1=2.5;
13 Vdsq2=2.5;
14 Vs1 = Idq*Rs-5;
15 printf('\ndc voltage at source of M1=\%.2 f V\n', Vs1)
16 Vgs=sqrt(Idq/Kn1)+Vtn1;
17 printf('\ngate to source voltage=\%.2 \, f \, V \cdot n', Vgs)
18 R3=(Vgs+Vs1)*x/5;
19 printf('\nR3=\%.2f\ KOhm\n',R3)
20 \text{ Vs2=Vdsq2+Vs1};
21 printf('\nvoltage at source of M2=\%.2 f V n', Vs2)
22 / y = R2 + R3
23 y = (Vgs + Vs2) * x/5;
24 printf ('\nR2+R3=\%.2 f KOhm\n',y)
25 R2 = 150;
26 R1 = x - y;
27 printf('\nR1=\%.2 f KOhm\n',R1)
28 R3 = y - R2;
29 printf('\nR3=\%.2 f KOhm\n',R3)
30 \text{ Vd2=Vdsq2+Vs2};
31 printf('\nvoltage at drain of M2 = \%.2 \,\mathrm{fV} \,\mathrm{n}', Vd2)
32 \text{ Rd} = (5 - \text{Vd}2) / \text{Idq};
33 printf ('\ndrain resistance=\%.2 f KOhm\n', Rd)
```

Scilab code Exa 6.17 Determine the small signal voltage gain of a circuit

```
1 clear;
2 clc;
3 //Example 6.17
4 Kn=0.8;
5 Vtn=1.2;
6 Vgs=1.91;
7 Rd=2.5;
8 gm=2*Kn*(Vgs-Vtn);
9 printf('\ntransconductance=%.2 f mA/V\n',gm)
10 Av=-gm*Rd;
11 printf('\nsmall signal voltage gain=%.2 f \n',Av)
```

Scilab code Exa 6.18 Determine the small signal voltage gain of a circuit

```
1 clear;
2 clc;
3 //Example 6.18
4 //Determine the small signal voltage gain of a
      circuit in fig.6.55
5 \text{ Idss}=12;
6 Vp = -4;
7 //lambda=y
8 y = 0.008;
9 Vgsq=poly(0, 'Vgsq');
10 p=poly([26.4 17.2 2.025], 'Vgsq', 'c')
11 printf('\nroots=\%fV\n', roots(p))
12 \ Vgsq = -2.01
13 Idq=Idss*(1-Vgsq/Vp)^2;
14 printf('\nquiescent drain current=\%f mA\n', Idq)
15 gm = (-2*Idss/Vp)*(1-Vgsq/Vp);
16 printf ('\ntransconductance=\%.2 f mA/V\n',gm)
17 ro=(1/(y*Idq));
18 printf('\noutput resistance=\%.2 f KOhm\n',ro)
19 Rd=2.7;
20 R1 = 4;
```

```
21 x=Rd*R1/(Rd+R1);
22 Av=-gm*ro*x/(ro+x);
23 printf('\nsmall signal voltage gain=%.2f \n',Av)
```

Scilab code Exa 6.19 Design a JFET source follower

```
1 clear;
2 clc;
3 //Example 6.19
4 Idss=12;
5 Vp = -4;
6 R1 = 10;
7 //lambda=y
8 y = 0.01;
9 Av=0.9;
10 / \text{gm} = (-2* \text{Idss/Vp})*(1 - \text{Vgs/Vp})
11 gm = 2;
12 Vgs = (1 + gm * Vp / (2 * Idss)) * Vp;
13 printf('\ngate to source voltage=\%.3 \, f \, V \ ', Vgs)
14 Idq=Idss*(1-Vgs/Vp)^2;
15 printf('\nquiescent drain current=\%.3 f mA\n', Idq)
16 Rs = (-Vgs + 10) / Idq;
17 printf('\n\text{Rs}=\%.2 \text{ f KOhm}\n', Rs)
18 ro=(1/(y*Idq));
19 printf('\noutput resistance=\%.3 f KOhm\n',ro)
20 x=R1*ro/(R1+ro);
21 t=x*Rs/(x+Rs);
22 Av=gm*t/(1+gm*t);
23 printf('\nsmall signal voltage gain=%.3f \n', Av)
```

Chapter 7

Frequency Response

Scilab code Exa 7.1 Determine the corner frequencies and maximum magnitude asymptotes

```
1 clear;
2 clc;
3 //Example 7.1
4 Rs=1000;
5 \text{ Rp} = 10000;
6 Cs=1*10^-6;
7 Cp = 3 * 10^{-12};
8 Ts = (Rs + Rp) * Cs;
9 printf('\ntime constant=\%.3 \, f \, s n',Ts)
10 f=1/(2*\%pi*Ts);
11 printf('\ncorner frequency=\%.2 f Hz\n',f)
12 x=20*log10(Rp/(Rp+Rs));
13 printf('\nmaximum magnitude =\%.3 fdB\n',x)
14 Rp=10; //KOhm
15 Rs=1; //Kohm
16 Cp=3; //pF
17 Tp = Cp * Rs * Rp / (Rs + Rp);
18 printf('\ntime constant=\%.3 f ns n', Tp)
19 Tp=2.73*10^{-3}; // micro sec
20 f=1/(2*%pi*Tp);
```

```
21 printf('\ncorner frequency = \%.2 \, \text{fMHz} \, \text{n',f})
```

Scilab code Exa 7.2 Determine the corner frequencies and bandwidth

```
1 clear;
2 clc;
3 //Example 7.2
4 Rs=1000;
5 \text{ Rp} = 10000;
6 Cs = 1 * 10^- - 6;
7 Cp = 3 * 10^{-12};
8 Ts = (Rs + Rp) * Cs;
9 printf('\nopen circuit time constant=\%.3 \, \text{f s} \, \text{n',Ts})
10 Rs=1; //KOhm
11 Rp=10; //KOhm
12 Cp = 3; //pF
13 Tp=Cp*Rs*Rp/(Rs+Rp);
14 printf('\nshort circuit time constant=\%.3 \, \text{f ns} \, \text{n'}, \text{Tp})
15 fL=1/(2*\%pi*Ts);
16 printf('\ncorner frequency fL=\%.2 f Hz n', fL)
17 Tp=2.73*10^-3; // microsec
18 fH=1/(2*\%pi*Tp);
19 printf('\ncorner frequency fH=\%.3 f MHz\n',fH)
20 fL=14.5*10^-6; //MHz
21 fbw=fH-fL;
22 printf('\nbandwidth =\%.3fMHz\n',fbw)
```

Scilab code Exa 7.3 Determine the corner frequencies and maximum gain

```
1 clear;
2 clc;
3 //Example 7.3
4 R1=51.2;
```

```
5 R2=9.6;
6 \text{ Rc} = 2;
7 Re=.4;
8 \text{ Rsi} = .1;
9 Vt = 0.026;
10 Cc=1;
11 Vcc=10;
12 Vbe=0.7;
13 b=100;
14 Rb=8.08;
15 \text{ Icq=1.81};
16 gm = Icq/Vt;
17 printf('\ntransconductance=\%.3 f mA/V n', gm)
18 r=b*Vt/Icq;
19 printf('\ndiffusion resistance=\%.2 f KOhm\n',r)
20 x=r+(1+b)*Re;
21 y=x*R2/(x+R2);
22 Ri = y * R1 / (R1 + y);
23 printf('\ninput resistance=%.3f KOhm\n',Ri)
24 Ts = (Rsi + Ri) * Cc;
25 printf('\ntime constant=\%.3 \, f \, ms\'',Ts)
26 Ts=6.87*10^-3; //Sec
27 \text{ fL}=1/(2*\%pi*Ts);
28 printf('\ncorner frequency fL=\%.3 f Hz \ n', fL)
29 Rib=r+(1+b)*Re;
30 printf('\n\text{Rib}=\%.3 \text{ f KOhm}\n', \text{Rib})
31 Av = (gm*r*Rc/(Rsi+Ri))*Rb/(Rb+Rib);
32 printf('\nsmall signal voltage gain=\%.2 \text{ f} \cdot \text{n}', Av)
```

Scilab code Exa 7.4 Design the circuit

```
1 clear;
2 clc;
3 //Example 7.4
4 fL=20*10^-3; //KHz
```

```
5  Rd=6.7;
6  Rl=10;
7  Ts=1/(2*%pi*fL);
8  printf('\ntime constant=%.3 f ms\n',Ts)
9  Cc=Ts/(Rd+Rl);
10  printf('\ncoupling capacitance=%.3 f microF\n',Cc)
```

Scilab code Exa 7.5 Determine 3dB frequency

```
1 clear;
2 clc;
\frac{3}{2} //Example 7.5
4 b=100;
5 Vbe=0.7;
6 Rs=500;
7 Rb=100000;
8 \text{ Re} = 10000;
9 R1=10000;
10 \text{ Va} = 120;
11 Ccc2=1*10^-6;
12 \text{ Icq=0.838*0.001};
13 r=3100; //small signal parameter
14 gm=32.2*0.001;
15 ro=143000;
16 x = (r + Rs * Rb / (Rs + Rb)) / (1+b);
17 y=ro*x/(ro+x);
18 Ro=Re*y/(Re+y);
19 printf('\noutput resistance of emitter=\%.2 f Ohm\n',
      Ro)
20 Ts = (Ro + R1) * Ccc2;
21 printf('\ntime constant=\%.2 \, f \, s \, n', Ts)
22 \text{ fL=1/(2*\%pi*Ts)};
23 printf('\n3dB frequency=\%.2 f Hz\n',fL)
```

Scilab code Exa 7.6 Determine the corner frequencies and maximum gain

```
1 clear;
2 clc;
3 //Example 7.6
4 Rs=3.2;
5 \text{ Rd} = 10;
6 R1 = 20;
7 C1 = 10;
8 Vtp=-2;
9 Kp = 0.25;
10 Idq=0.5;
11 Vsgq=3.41;
12 Vsdq=3.41;
13 gm=2*Kp*(Vsgq+Vtp);
14 printf ('\ntransconductance = \%.3 \,\text{fmA/V\n'}, \,\text{gm})
15 Tp=Cl*Rd*Rl/(Rd+Rl);
16 printf('\ntime constant=\%.3 \, f \, ns \, n', Tp)
17 Tp=66.7*10^-3; //micro sec
18 fH=1/(2*\%pi*Tp);
19 printf('\ncorner frequency=\%.2 f MHz\n',fH)
20 Av = (gm*Rd*R1/(Rd+R1))/(1+gm*Rs);
21 printf('\nmaximum small signal voltage gain=\%.2 f\n',
      Av)
```

Scilab code Exa 7.7 Determine the mid gain corner frequencies and bandwidth of a circuit

```
1 clear;
2 clc;
3 //Example 7.7
4 Vbe=0.7;
```

```
5 b=100;
6 Re=.5;
7 Rc=5;
8 R1 = 10;
9 R1 = 40;
10 \text{ Cc} = 10;
11 R2=5.7;
12 Rs=.1;
13 Vt = 0.026;
14 \text{ Icq=0.99};
15 gm = Icq/Vt;
16 printf('\ntransconductance=\%.3 f mA/V n', gm)
17 r=b*Vt/Icq;
18 printf('\ndiffusion resistance=\%.2 f KOhm\n',r)
19 Ri=r+(1+b)*Re;
20 printf('\ninput resistance=\%.2 f KOhm\n', Ri)
21 x=Rc*R1/(Rc+R1);
22 y=R1*R2/(R1+R2);
23 t=y*Ri/(y+Ri);
24 Av=gm*r*x*(y/(y+Ri))*(1/(Rs+t));
25 printf('\nmaximum small signal voltage gain=\%.2 \,\mathrm{f} \,\mathrm{n}',
       Av)
26 \text{ Ts} = (\text{Rs} + \text{t}) * \text{Cc};
27 printf('\ntime constant=\%.3 \, \text{f ms} \cdot \text{n'}, Ts)
28 Ts=46.6*0.001; // sec
29 \text{ Cl} = 15;
30 \text{ Tp=x*Cl};
31 printf('\ntime constant=\%.3 \, \text{f ns} \, \text{n'}, Tp)
32 \text{ fL=1/(2*\%pi*Ts)};
33 printf('\nlower corner frequency=\%.2 f Hz\n',fL)
34 \text{ Tp=}50*10^{-3}; // \text{micro sec}
35 fH=1/(2*\%pi*Tp);
36 printf('\nupper corner frequency=%.2f MHz\n',fH)
37 fL=3.4*10^-6; //MHz
38 \text{ fbw=fH-fL};
39 printf ('\nbandwidth =\%.2 fMHz\n', fbw)
```

Scilab code Exa 7.8 Determine the corner frequencies and limiting horizontal asymptotes

```
1 clear;
2 clc;
3 //Example 7.8
4 Re=4;
5 \text{ Rc}=2;
6 \text{ Rs} = 0.5;
7 Vt = 0.026;
8 Ce=1*10^-3;
9 V1 = 5;
10 Icq=1.06;
11 V2 = -5;
12 b = 100;
13 Vbe=0.7;
14 gm = Icq/Vt;
15 printf ('\ntransconductance = \%.2 \,\text{fmA/V\n'}, gm)
16 \text{ r=b*Vt/Icq};
17 printf('\ndiffusion resistance=\%.2 f KOhm\n',r)
18 Ta=Re*Ce;
19 printf('\ntime constant Ta=\%ef s\n', Ta)
20 Tb=(Re*Ce*(Rs+r))/(Rs+r+(1+b)*Re);
21 printf('\ntime constant Tb=\%e s\n',Tb)
22 \text{ fA=1/(2*\%pi*Ta)};
23 printf('\ncorner frequency = \%.2 \, \text{fHz} \, \text{n}',fA)
24 Tb=2.9*0.01; //msec
25 \text{ fB=1/(2*\%pi*Tb)};
26 printf('\ncorner frequency =%.2 fkHz\n',fB)
27 Av = (gm*r*Rc)/(Rs+r+(1+b)*Re);
28 printf('\nlimiting low frequency horizontal
      asymptote=\%.2 f n', Av)
29 Av=gm*r*Rc/(Rs+r);
30 printf('\nnlimiting high frequency horizontal
```

Scilab code Exa 7.9 Determine 3dB frequency

```
1 clear;
2 clc;
3 //Example 7.9
4 r=2600;
5 C1=2*10^-6;
6 C2=0.1*10^-6;
7 fB=1/(2*%pi*r*(C1+C2));
8 printf('\n3dB frequency=%.2 f MHz\n',fB)
```

Scilab code Exa 7.10 Calculate bandwidth and capacitance

```
1 clear;
2 clc;
3 //Example 7.10
4 \text{ fT=500};
5 \text{ Ic=1};
6 b = 100;
7 Vt = 0.026;
8 C2=0.3*10^-12;
9 	ext{ fB=fT/b};
10 printf ('\nbandwidth=\%.3 f MHz\n',fB)
11 gm=Ic/Vt;
12 printf('\ntransconductance=\%.3 f mA/V n', gm)
13 fT=500000000;
14 gm=38.5*0.001;
15 C1=gm/(fT*2*\%pi)-C2;
16 printf('\ncapacitance = \%3.2 \,\mathrm{eF} \,\mathrm{n}',C1)
```

Scilab code Exa 7.12 Determine the unity gain bandwidth

```
1 clear;
2 clc;
3 //Example 7.12
4 Kn=0.25;
5 Vtn=1;
6 Cgd=0.04*10^-3;
7 Cgs=0.2*10^-3;
8 Vgs=3;
9 gm=2*Kn*(Vgs-Vtn);
10 printf('\ntransconductance =\%.3fmA/V\n',gm)
11 fT=gm/(2*\%pi*(Cgd+Cgs));
12 printf('\nunity gain bandwidth=\%.f MHz\n',fT)
```

Scilab code Exa 7.13 Determine the Miller capacitance and cutoff frequency

```
1 clear;
2 clc;
3 //Example 7.13
4 gm=1;
5 Cgd=0.04;
6 Rl=10;
7 Cgs=0.2;
8 Cm=Cgd*(1+gm*Rl);
9 printf('\nMiller capacitance=%.3 f pF\n',Cm)
10 Cm=0.44*0.001;//nF
11 Cgs=0.2*0.001;//nF
12 fT=gm/(2*%pi*(Cgs+Cm));
13 printf('\ncutoff frequency=%.3 f MHz\n',fT)
```

Scilab code Exa 7.14 Determine the upper corner frequency and midband gain

```
1 clear;
2 clc;
3 //Example 7.14
4 V1=5;
5 V = -5;
6 Rs = 0.1;
7 \text{ Rb} = 40;
8 R2=5.72;
9 Re=0.5;
10 Rc=5;
11 Rl=10;
12 b = 150;
13 Vbe=0.7;
14 \quad C1 = 35 * 10^{-3};
15 C2=4;
16 \text{ Vt} = 0.026;
17 \text{ Icq} = 1.02;
18 r=b*Vt/Icq;
19 printf('\nsmall signal parameter=%.2 f KOhm\n',r)
20 gm = Icq/Vt;
21 printf ('\ntransconductance=\%.3 \text{ f mA/V\n',gm})
22 Cm = C2 * (1 + gm * Rc * R1 / (Rc + R1));
23 printf('\nMiller capacitance=\%.3 f pF\n',Cm)
24 \text{ Cm} = 527 * 10^{-3};
25 \text{ x=Rb*Rs/(Rb+Rs)};
26 \text{ y=r*x/(r+x)};
27 fH=1/(2*\%pi*y*(C1+Cm));
28 printf('\nupper corner frequency =\%.2fMHz\n',fH)
29 t=Rb*r/(Rb+r);
30 p=Rc*R1/(Rc+R1);
31 Av=gm*p*t/(t+Rs);
```

Scilab code Exa 7.15 Determine the upper corner frequency and midband gain

```
1 clear;
 2 clc;
 3 //Example 7.15
4 V1 = 5;
5 V = -5;
6 Rs=0.1;
7 R1 = 40;
8 R2=5.72;
9 Re=0.5;
10 Rc=5;
11 Rl=10;
12 b = 150;
13 Vbe=0.7;
14 \text{ C1=35};
15 C2=4;
16 \text{ Vt} = 0.026;
17 \text{ Icq}=1.02;
18 \text{ gm} = 39.2;
19 r=3.82;
20 x=Re*Rs/(Re+Rs);
21 t=r/(1+b);
22 y=t*x/(t+x);
23 Tp = y * C1;
24 printf('\ntime constant=\%.3 f ns\n', Tp)
25 Tp=0.679*10^-3; //micro sec
26 f = 1/(2*\%pi*Tp);
27 printf('\nupper frequency =\%.3 \, \text{fMHz} \, \text{n',f})
28 T=C2*Rc*R1/(Rc+R1);
29 printf('\ntime constant=\%.3 f ns n',T)
30 \text{ T=} 13.3*10^{-3}; // \text{micro sec}
```

```
31  f=1/(2*%pi*T);
32  printf('\nupper frequency=%.2 f MHz\n',f)
33  x=Rc*R1/(Rc+R1);
34  y=Re*t/(Re+t);
35  Av=gm*x*(y/(y+Rs));
36  printf('\nmidband voltage gain=%.2 f \n',Av)
```

Scilab code Exa 7.16 Determine the upper corner frequency and midband gain

```
1 clear;
2 clc;
3 //Example 7.16
4 V1=5;
5 V = -5;
6 Rs=0.1;
7 R1 = 42.5;
8 R2 = 20.5;
9 R3 = 28.3;
10 Re=5.4;
11 Rc=5;
12 R1=10;
13 b = 150;
14 Vbe=0.7;
15 \text{ C1} = 35;
16 C2=4;
17 \text{ Vt} = 0.026;
18 Icq=1.02;
19 gm = 39.2;
20 \text{ r=} 3.820;
21 Rb=R2*R3/(R2+R3);
22 x=Rb*r/(Rb+r);
23 y=Rs*x/(x+Rs);
24 \text{ Tp=y*(C1+2*C2)};
25 printf('\ntime constant=\%.3 f ns\n',Tp)
```

```
26  Tp=Tp*10^-3; // micro sec
27  f=1/(2*%pi*Tp);
28  printf('\n3dB frequency =%0.3fMHz\n',f)
29  T=C2*Rc*R1/(Rc+R1);
30  printf('\ntime constant=%.2 f ns\n',T)
31  T=T*0.001; // micro sec
32  f=1/(2*%pi*T);
33  printf('\nupper frequency=%.3 f MHz\n',f)
34  x=Rc*R1/(Rc+R1);
35  y=Rb*r/(Rb+r);
36  Av=gm*x*(y/(y+Rs));
37  printf('\nmidband voltage gain=%.f \n',Av)
```

Scilab code Exa 7.17 Determine the frequency of a zero and a pole

```
1 clear;
2 clc;
3 //Example 7.17
4 V1=5;
5 V = -5;
6 Rs=0.1;
7 R1 = 40;
8 R2=5.720;
9 Re=0.5;
10 Rc=5;
11 Rl=10;
12 b = 150;
13 Vbe=0.7;
14 \text{ C1} = 35;
15 \quad C2=4;
16 \text{ Vt} = 0.026;
17 Icq=1.02;
18 \text{ gm} = 39.2;
19 r=3.820;
20 t=r/(1+b);
```

Chapter 8

Ouput Stages and Power Amplifier

Scilab code Exa 8.2 Determine the maximum power dissipation

```
1 clear;
2 clc;
3 //Example 8.1
4 //let thermal resistance parameters be R
5 Rdcase=1.75; //degree celsius per watt
6 Rcsnk=1; //degree celsius per watt
7 Rsamb=5; //degree celsius per watt
8 Rcamb=50; //degree celsius per watt
9 Tamb=30; //ambient temperature
10 Tjmax=150; //maximum junction temperature
11 Tdev=150; //device temperature
12 //when no heat sink is used
13 P=(Tjmax-Tamb)/(Rdcase+Rcamb);
14 printf('\nmaximum power dissipation=\%.2 f W n', P)
15 //when heat sink is used
16 P=(Tjmax-Tamb)/(Rdcase+Rcsnk+Rsamb);
17 printf ('\nmaximum power dissipation=\%.2 \text{ f W} / \text{n',P})
```

Scilab code Exa 8.3 Determine the maximum safe power dissipation

```
clear;
clc;
//Example 8.3
Rcsnk=1;//degree celsius per watt
Rsamb=5;//degree celsius per watt
Tjmax=175;//maximum junction temperature
Toc=25;
Tamb=25;
Pr=20;//rated power W
Rdcase=(Tjmax-Toc)/Pr;
Printf('\ndevice to case thermal resistance=%.2f C/W\n',Rdcase)
P=(Tjmax-Tamb)/(Rdcase+Rcsnk+Rsamb);
printf('\nmaximum power dissipation=%.2f W\n',P)
```

Scilab code Exa 8.7 Determine the required biasing in MOSFET class AB

```
1 clear;
2 clc;
3 //Example 8.7
4 Vdd=10;
5 R1=20;
6 K=0.2;
7 Vt=1;
8 vo=5;
9 iL=vo/20;
10 printf('\niL=%.2 f A\n',iL)
11 Idq=0.05;
12 //Idq=K*(Vbb/2-Vt)
13 Vbb=(sqrt(Idq/K)+1)*2;
```

Scilab code Exa 8.8 Design a transformer coupled emitter follower amplifier

```
1 clear;
2 clc;
3 //Example 8.8
4 Vcc=24;
5 R1 = 8;
6 P = 5;
7 Vbe=0.7;
8 b=100;
9 Vp=sqrt(2*R1*P);
10 printf('\npeak output voltage=\%.2 \, f \, V \setminus n', Vp)
11 Ip=Vp/R1;
12 printf('\npeak output current =\%.2 \, fA \setminus n', Ip)
13 a=0.9*Vcc/Vp;
14 printf('\na=\%.2 f\n',a)
15 Icq=Ip/(0.9*a);
16 printf('\nIcq=\%.3 f A\n',Icq)
17 Pq=Vcc*Icq;
18 printf('\nmaximum power dissipated in the transistor
      =\%.2 f W n', Pq)
19 Ibq=Icq/b;
20 Ibq=Ibq*1000; //mA
21 printf('\nbase current Ibq=\%.2 \text{ f mA} \cdot \text{n', Ibq})
22 Rth=2.500;
```

```
23 //Vth=Vcc*Rth/R1 and Vth=Ibq*Rth+Vbe

24 R1=Vcc*Rth/(Ibq*Rth+Vbe);

25 printf('\nR1=%.2 f KOhm\n',R1)

26 R2=Rth*R1/(R1-Rth);

27 printf('\nR2=%.2 f KOhm\n',R2)
```

Scilab code Exa 8.9 Design the class AB output stage

```
1 clear;
2 clc;
3 //Example 8.9
4 Iso=3*10^-14;
5 Isq=10^-13;
6 b = 75;
7 Vt = 0.026;
8 R1 = 8;
9 P=5;
10 Vp=sqrt(2*R1*P);
11 printf('\npeak voltage Vp=\%.2 f V n', Vp)
12 Vcc = Vp/0.8;
13 printf('\nsupply voltage=\%.2 f V \ n', Vcc)
14 Ien=Vp/R1;
15 printf('\nemitter current=\%.3 f A\n', Ien)
16 Ibn=Ien/(1+b);
17 Ibn=Ibn*1000; //mA
18 printf('\nbase current=\%.2 \text{ f mA} \cdot \text{n}', Ibn)
19 iD=0.020;
20 Vbb=2*Vt*log(iD/Iso);
21 printf('\nVbb=\%.2 f V\n', Vbb)
22 Icq=Isq*exp((Vbb/2)/Vt);
23 Icq=Icq*1000; //mA
24 printf(' \mid nquiescent collector current=\%.3 f mA \mid n', Icq
      )
25 Ibias=20; /mA
26 iD=Ibias-Ibn;
```

```
printf('\ndrain current=%.3f mA\n',iD)
iD=iD*0.001; //A

ybb=2*Vt*log(iD/Iso);
printf('\nVbb=%.2f V\n',Vbb)

Icn=1.12;

Vben=Vt*log(Icn/Isq);
printf('\nB-E voltage of Qn=%.2f V\n',Vben)

Vebp=Vbb-Vben;
printf('\nemitter base voltage of Qp=%.2f V\n',Vebp)

Icp=Isq*exp(Vebp/Vt);
Icp=Icp*1000; //mA
printf('\nIcp=%f mA\n',Icp)
```

Scilab code Exa 8.11 Determine the currents and the current gain

```
1 clear;
2 clc;
3 //Example 8.11
4 R1=2; //KOhm
5 R2=R1;
6 R1=.1; //KOhm
7 b=60;
8 \text{ Vbe} = 0.6;
9 \text{ Veb=0.6};
10 V1 = 15;
11 V2 = V1;
12 iR1 = (V1 - Vbe)/R1;
13 / iR1 = iR2 = iE1 = iE2
14 printf ('\niR1=\%.2 f mA\n', iR1)
15 \text{ vo} = 10;
16 io=vo/R1;
17 printf('\noutput current=\%.3 f mA\n',io)
18 iB3 = 100/61;
19 printf ('\niB3=\%.3 fmA\n', iB3)
20 iR1=(V1-(10+Vbe))/R1;
```

```
21 printf('\ncurrent in R1=\%.3 f mA\n',iR1)
22 iE1=iR1-iB3;
23 printf('\niE1=\%.3 f mA\n', iE1)
24 iB1=iE1/(1+b);
25 iB1=iB1*1000; // micro A
26 printf('\niB1=\%.3f microA\n',iB1)
27 iE2 = (10-0.6+15)/R1;
28 printf('\niE2=\%.3 f mA\n', iE2)
29 iB2=iE2/(1+b);
30 iB2=iB2*1000;
31 printf('\niB2=\%.3 f microA\n',iB2)
32 Ii=iB2-iB1;
33 printf('\ninput current=\%.3f microA\n', Ii)
34 \text{ Ii=Ii*0.001; } / \text{mA}
35 \text{ Ai=io/Ii};
36 printf('\ncurrent gain=\%.2 f n', Ai)
37 Ai = (1+b)*R1/(2*R1);
38 printf('\npredicted current gain=\%.2 \, f \setminus n', Ai)
```

Chapter 9

The Ideal Operational Amplifier

Scilab code Exa 9.5 Determine a load current in a voltage to current converter

```
1 clear;
2 clc;
\frac{3}{2} //Example 9.5
4 \text{ Zl} = 0.1;
5 R1 = 10;
6 R2=1;
7 R3 = 1;
8 Rf = 10;
9 Vt = -5;
10 iL=-Vt/R2;
11 printf('\nload current=\%.3 f mA\n',iL)
12 vL=iL*Z1;
13 printf('\nvoltage across the load=\%.2 \, f \, V \ ',vL)
14 i4=vL/R2;
15 printf('\ni4=\%.3 f mA\n',i4)
16 i3=i4+iL;
17 printf('\ni3=\%.3 f mA\n',i3)
18 Vo = i3 * R3 + vL;
```

Scilab code Exa 9.9 Determine the time constant

```
1 clear;
2 clc;
3 //Example 9.9
4 //Vo=(-1/R1*C2)*integrate((-1)dt)
5 x=integrate('(-1)','t',0,1)
6 Vo=10;
7 //let y=R1*C2
8 y=-x/Vo;
9 printf('\nR1C2=%.2 f ms\n',y)
```

Chapter 10

Integrated Circuit Biasing and Active Loads

 ${\bf Scilab}$ ${\bf code}$ ${\bf Exa}$ ${\bf 10.1}$ ${\bf Design}$ a two transistor current source

```
1 clear;
2 clc;
3 //Example 10.1
4 Vbe=0.6; // (V)
5 b=100;
6 V1=5;
7 Io=200; // micro A
8 Iref=Io*(1+2/b);
9 printf('\nreference current=%.2f microA\n', Iref)
10 Iref=Iref*0.001; //mA
11 R1=(V1-Vbe)/Iref;
12 printf('\nR1=%.2f KOhm\n', R1)
```

Scilab code Exa 10.2 Determine the change in load current

```
1 clear;
```

```
2 clc;
3 //Example 10.2
4 V1 = 5;
5 V2 = -5;
6 R1 = 9.3;
7 b=50;
8 \text{ Vbe} = 0.7;
9 \text{ Va} = 80;
10 Iref = (V1 - Vbe - V2)/R1;
11 printf('\nreference current =\%.3fmA\n', Iref)
12 Io=Iref/(1+2/b);
13 printf('\noutput current=\%.2 \,\text{fmA} \,\text{n'}, Io)
14 ro=Va/Io;
15 printf('\nsmall signal output resistance=%.2f KOhm\n
      ',ro)
16 //dIo=dVce2/ro
17 \ Vce2=0.7;
18 dIo=(V1-Vce2)/ro;
19 printf('\nchange in load current=\%.3 f mA\n',dIo)
20 x = dIo/Io;
21 x = x * 100;
22 printf('\npercent change in output current=\%.2 f \n',
      x)
```

Scilab code Exa 10.4 Design a Widlar current source

```
1 clear;
2 clc;
3 //Example 10.4
4 Iref=1;
5 Io=12*10^-3;
6 V1=5;
7 V2=-5;
8 Vt=0.026;
9 Vbe=0.7;
```

```
10 R1=(V1-Vbe-V2)/Iref;
11 printf('\nResistance R1 =\%.2fKOhm\n',R1)
12 Re=(Vt/Io)*log(Iref/Io);
13 printf('\nResistance Re =\%.2fKOhm\n',Re)
14 Vbe=Io*Re;
15 printf('\ndifference between two B-E voltages=\%.2f V\n',Vbe)
```

Scilab code Exa 10.5 Determine the change in load current

```
1 clear;
2 clc;
3 //Example 10.5
4 V1=5;
5 \quad V2 = -5;
6 R1 = 9.3;
7 Re=9.580;
8 Vt = 0.026;
9 b=100;
10 Vbe=0.7;
11 Va=80;
12 Io = 12;
13 ro2=Va/Io;
14 printf('\nsmall signal collector resistance=%.2f
      MOhm \ n', ro2)
15 Io=12*0.001; //mA
16 \text{ gm}2=\text{Io/Vt};
17 printf ('\ntransconductance=\%.3 \text{ f mA/V\n',gm2})
18 \text{ r=b*Vt/Io};
19 printf('\nResistance=\%.2 f KOhm\n',r)
20 Ro = ro2 * (1 + gm2 * Re * r / (Re + r));
21 printf('\noutput resistance=\%.2f MOhm\n',Ro)
22 \, dVc2=4;
23 dIo=dVc2/Ro;
24 printf('\nchange in load current=\%.3f microA\n',dIo)
```

Scilab code Exa 10.6 Design a generalized current mirror

```
1 clear;
2 clc;
3 //Example 10.6
4 V1=5;
5 V2=-5;
6 Vbe=0.6;
7 Veb=0.6;
8 Iq2=400*10^-3; //mA
9 Iref=200*10^-3; //mA
10 Iq1=Iref;
11 Iq3=Iq1;
12 Iq4=600*10^-6;
13 R1=(V1-Veb-Vbe-V2)/Iref;
14 printf('\nResistance R1=%.f KOhm\n',R1)
```

Scilab code Exa 10.7 Design a MOSFET current source

```
1 clear;
2 clc;
3 //Example 10.7
4 //uox*Cox/2=x
5 x=20*10^-6; //A/V^2
6 Vtn=1;
7 V1=5;
8 V2=0;
```

Scilab code Exa 10.8 Compare the output resistances

```
1 clear;
2 clc;
3 //Example 10.8
4 Iref=100;
5 Io=Iref;
6 //lambda=y
7 y=0.01;
8 gm=0.5*10^+3;
9 ro=1/(y*Iref);
10 printf('\noutput resistance=%.2 f MOhm\n',ro)
11 ro2=1;
12 ro4=1;
13 Ro=ro4+ro2*(1+gm*ro4);
14 printf('\noutput resistance of cascode circuit=%.2 f MOhm\n',Ro)
```

Scilab code Exa 10.9 Determine the currents and voltages

```
1 clear;
2 clc;
3 //Example 10.9
4 Idss1=2;
5 Idss2=1;
6 Vp1 = -1.5;
7 Vp2=Vp1;
8 //lambda=y
9 y1=0.05;
10 y2 = y1;
11 V2 = -5;
12 Vds=1.5;
13 Vsmin=Vds+V2;
14 printf('\nminimum value of Vs=\%.2 f V n', Vsmin)
15 Io = Idss2*(1+y1*Vds);
16 printf('\noutput current=\%.2 \, \text{f mA} \cdot \text{n'}, Io)
17  Vgs1=(1-sqrt(Io/Idss1))*Vp1;
18 printf('\ngate to source voltage of Q1=\%.2 f V n',
      Vgs1)
19 V1 = Vgs1 + Vsmin;
20 printf('\nV1=\%.2 f V\n', V1)
```

Scilab code Exa 10.10 Calculate the open circuit voltage gain

```
1 clear;
2 clc;
3 //Example 10.10
4 Vt=0.026;
5 Van=120;
6 Vap=80;
7 Av=-(1/Vt)/(1/Van+1/Vap);
8 printf('\nsmall signal open circuit voltage gain=%.2 f\n', Av)
```

Scilab code Exa 10.11 Calculate the small signal voltage gain

```
1 clear;
2 clc;
3 //Example 10.11
4 Van = 120;
5 Vap=80;
6 Vt = 0.026;
7 Ico=0.001;
8 //Rl=infinity
9 Av = -(1/Vt)/(1/Van+1/Vap);
10 printf('\nsmall signal open circuit voltage gain=\%.2
      f \setminus n', Av)
11 Rl=100;
12 Av1 = -(1/Vt)/(1/Van+1/Vap+1/R1);
13 printf('\nsmall signal open circuit voltage gain=\%.2
      f \setminus n', Av1)
14 R1=10;
15 Av2 = -(1/Vt)/(1/Van+1/Vap+1/R1);
16 printf('\nsmall signal open circuit voltage gain=\%.2
      f \setminus n', Av2)
```

Scilab code Exa 10.12 Calculate the small signal voltage gain

```
1 clear;
2 clc;
3 //Example 10.12
4 //lambda=y
5 yn=0.01;
6 yp=0.01;
7 Vtn=1;
8 Kn=1;
```

Chapter 11

Differential and Multistage Amplifier

Scilab code Exa 11.1 Determine the quiescent collector current and collector emitter voltage

```
1 clear;
2 clc;
3 //Example 11.1
4 V1 = 10;
5 V2 = -10;
6 Iq=1;
7 Rc = 10;
8 \text{ Vbe} = 0.7;
9 iC1=Iq/2;
10 iC2=iC1;
11 printf('\ncollector currents = \%.2 \,\text{fmA} \cdot \text{n',iC1})
12 Vc1=V1-iC1*Rc;
13 Vc2=Vc1;
14 printf('\ncollector voltages = \%.2 \,\mathrm{fV} \,\mathrm{n}', Vc1)
15 Vcm=0;
16 Ve=Vcm-Vbe;
17 Vce1=Vc1-Ve;
18 printf('\ncollector emitter voltage=\%.2 \, f \, V \ n', Vce1)
```

```
19 Vcm=-5;
20 Ve=Vcm-Vbe;
21 Vce1=Vc1-Ve;
22 printf('\ncollector emitter voltage =\%.2 fV\n', Vce1)
23 Vcm=5;
24 Ve=Vcm-Vbe;
25 Vce1=Vc1-Ve;
26 printf('\ncollector emitter voltage=\%.2 f V\n', Vce1)
```

Scilab code Exa 11.3 Determine the differential and common mode gains

```
1 clear;
2 clc;
3 //Example 11.3
4 V1=10;
5 V2=-10;
6 Iq=0.8*10^-3;
7 Rc=12000;
8 Ro=25000;
9 b=100;
10 Vt=0.026;
11 Ad=Iq*Rc/(4*Vt);
12 printf('\ndifferential gain=%.3f\n',Ad)
13 Acm=-(Iq*Rc/(2*Vt))/(1+(1+b)*Iq*Ro/(Vt*b));
14 printf('\ncommon mode gain=%.3f\n',Acm)
```

Scilab code Exa 11.7 Determine the CMRR of a differential amplifier

```
1 clear;
2 clc;
3 //Example 11.7
4 Ad=92.3;
5 Acm=0.237;//mod of Acm
```

```
6 CMRR=Ad/Acm;
7 printf('\ncommon mode rejection ratio=%.2f\n',CMRR)
8 CMRRdB=20*log10(CMRR);
9 printf('\nCMRR in decibels=%.2f dB\n',CMRRdB)
```

Scilab code Exa 11.8 Design a bipolar source

```
1 clear;
2 clc;
3 //Example 11.8
4 CMRRdB=90; //dB
5 CMRR=3.16*10^4;
6 b=100;
7 Vt=0.026;
8 Iq=0.8;
9 Ro=(2*CMRR-1)*Vt*b/((1+b)*Iq);
10 Ro=Ro*10^-3; //Mohm
11 disp(Ro,"output resistance (MOhm)")
```

Scilab code Exa 11.9 Determine the differential and common mode input resistance

```
1 clear;
2 clc;
3 //Example 11.9
4 b=100;
5 Vbe=0.7;
6 Va=100;
7 Vt=0.026;
8 Iref=0.5;
9 Iq=Iref;
10 I1=Iq/2
11 Icq=I1;
```

```
12 r=b*Vt/Icq;
13 printf('\nsmall signal parameter=%.2f KOhm\n',r)
14 ro=Va/Icq;
15 printf('\nro=%.2f KOhm\n',ro)
16 Ro=Va/Iq;
17 printf('\noutput resistance of Q4=%.2f KOhm\n',Ro)
18 Rid=2*r;
19 printf('\ndifferential mode input resistance=%.2 fKOhm\n',Rid)
20 Ricm=(1+b)*(Ro*ro/2)/(Ro+ro/2);
21 Ricm=Ricm*0.001;//Mohm
22 printf('\ncommon mode input resistance=%.2f MOhm\n', Ricm)
```

Scilab code Exa 11.10 Calculate the dc characteristics of a MOSFET diff amp

```
1 clear;
2 clc;
3 //Example 11.10
4 \text{ Kn1} = 0.1;
5 \text{ Kn2=Kn1};
6 \text{ Kn3} = 0.1;
7 Kn4=Kn3;
8 R1 = 30;
9 Vtn=1;
10 \text{ Rd} = 16;
11 / I1 = (20 - Vgs4) / R1 and I1 = Kn3 * (Vgs4 - Vtn)^2
12 \text{ Vgs4=poly}(0, \text{Vgs4})
13 p=poly([-1 -17 9], 'Vgs4', 'c')
14 printf ('\nroots=\%.2 fV\n', roots(p))
15 Vgs4=2.40;
16 I1=(20-Vgs4)/R1;
17 printf ('\nI1=\%.2 f mA\n', I1)
18 Iq=I1;
```

```
19     Id1=Iq/2;
20     printf('\nId1 and Id2 =%.2fmA\n',Id1)
21     Vgs1=sqrt(Id1/Kn1)+Vtn;
22     printf('\nVgs1 and Vgs2 =%.2fV\n',Vgs1)
23     vo1=10-Id1*Rd;
24     printf('\nvo1 and vo2=%.2f V\n',vo1)
25     Vds1=Vgs1-Vtn;
26     printf('\nVds1=Vds2=Vds1(sat)=%.2f V\n',Vds1)
27     Vcm=vo1-Vds1+Vgs1;
28     printf('\nVcm max=%.2f V\n',Vcm)
29     Vds4=Vgs4-Vtn;
30     printf('\nVds4=%.2f V\n',Vds4)
31     Vcm2=Vgs1+Vds4-10;
32     printf('\nVcm min=%.2fV\n',Vcm2)
```

Scilab code Exa 11.11 Compare the forward transconductance

```
1 clear;
2 clc;
3 //Example 11.11
4 Kn=0.5;
5 Iq=1;
6 Vt=0.026;
7 //transconductance of the MOSFET
8 gm=2*sqrt(Kn*Iq/2);
9 printf('\ntransconductance=%.3 f mA/V\n',gm)
10 //transconductance of the bipolar transistor
11 gm=Iq/(2*Vt);
12 printf('\ntransconductance=%.3 f mA/V\n',gm)
```

Scilab code Exa 11.12 Determine the differential mode voltage gain common mode voltage gain CMRR

```
1 clear;
2 clc;
3 //Example 11.12
4 Iq=0.587;
5 \text{ Kn} = 1;
6 \text{ Rd} = 16;
7 //lambda=y
8 y=0.01;
9 Ro=1/(y*Iq);
10 printf('\noutput resistance =\%.2fKOhm\n',Ro)
11 Ad=sqrt(Kn*Iq/2)*Rd;
12 printf('\ndifferential mode voltage gain=\%.2f\n',Ad
13 Acm = -sqrt(2*Kn*Iq)*Rd/(1+2*sqrt(2*Kn*Iq)*Ro);
14 printf('\ncommon mode voltage gain=\%.2 \,\mathrm{f} \,\mathrm{h}', Acm)
15 CMRR = 20 * log 10 (-Ad/Acm);
16 printf('\ncommon mode rejection ratio=\%.2 f dB\n',
      CMRR)
```

Scilab code Exa 11.13 Determine the differential mode voltage gain

```
1 clear;
2 clc;
3 //Example 11.13
4 Iq=0.2;
5 Va=100;
6 Va2=Va;
7 Va4=Va;
8 R1=100;
9 Vt=0.026;
10 Ad=(1/Vt)/(1/Va2+1/Va4);
11 printf('\nopen circuit voltage gain=%.2 f\n', Ad)
12 Ad=(Iq/(2*Vt))/(Iq/(2*Va2)+Iq/(2*Va4)+1/R1);
13 printf('\nvoltage gain=%.2 f\n', Ad)
```

Scilab code Exa 11.15 Determine the differential mode voltage gain

```
1 clear;
2 clc;
3 //Example 11.15
4 Kn = 0.2;
5 \text{ Idq} = 0.1;
6 ro4=1000; //Kohm
7 ro6=1000; //KOhm
8 ro2=ro4;
9 //lambda=y
10 y = 0.01;
11 gm=2*sqrt(Kn*Idq);
12 printf ('\ntransconductance=\%.3 \text{ f mA/V\n',gm})
13 ro=1/(y*Idq);
14 printf ('\noutput resistance=\%.2 f KOhm\n',ro)
15 Ro=ro4+ro6*(1+gm*ro);
16 Ro=Ro*0.001; //Mohm
17 printf('\noutput resistance of the cascode active
      load = \%.2 fMohm \ n', Ro)
18 Ro=Ro*1000; //KOhm
19 Ad=gm*ro2*Ro/(ro4+Ro);
20 printf('\ndifferential mode voltage gain=\%.2 \text{ f} \cdot \text{n}', Ad)
```

Scilab code Exa 11.16 Calculate the input resistance and the small signal voltage gain

```
1 clear;
2 clc;
3 //Example 11.16
4 Iq=0.2;
5 Ic1=Iq;
```

```
6 Icb=1;
7 R4 = 10;
8 R3 = 0.2;
9 b=100;
10 Va=100;
11 Vt=0.026;
12 Ri = 2*(1+b)*b*Vt/Iq;
13 Ri=Ri*0.001; / MOhm
14 printf ('\ninput resistance=\%.2 f MOhm\n', Ri)
15 R11=b*Vt/Iq;
16 printf('\nresistance R11=\%.2 f KOhm\n',R11)
17 Re=R11*R3/(R11+R3);
18 printf('\nRe=\%.2 f KOhm\n', Re)
19 gm11=Iq/Vt;
20 printf ('\ngm11=\%.3 f mA/V\n', gm11)
21 ro11=Va/Iq;
22 printf ('\nro11 =\%.2fKOhm\n',ro11)
23 Rc11=ro11*(1+gm11*Re);
24 Rc11=Rc11*0.001; //MOhm
25 printf ('\nRc11=\%.2 f MOhm\n', Rc11)
26 \text{ r8=b*Vt/Icb};
27 printf ('\nresistance=\%.2fKOhm\n',r8)
28 //answer of following given in the book is wrong
29 \text{ Rb8=r8+(1+b)*R4};
30 Rb8=Rb8*0.001; / MOhm
31 printf('\nRb8 = \%.2 \text{fMOhm} \setminus n', Rb8)
32 R17 = Rc11 * Rb8 / (Rc11 + Rb8);
33 printf ('\nR17=\%.2 f MOhm\n', R17)
34 \text{ Av=Iq*R17/(2*Vt)};
35 printf('\nsmall signal voltage gain=\%.2 \text{ f} \cdot \text{n}', Av)
```

Scilab code Exa 11.17 Calculate the output resistance

```
1 clear;
2 clc;
```

```
3 //Example 11.17
4 Va=100;
5 R4=10;
6 b=100;
7 Rc11=1.26*10^3;
8 r8=2.6;
9 Iq=0.2;
10 Rc7=Va/Iq;
11 printf('\nRc7=%.2 f KOhm\n', Rc7)
12 Z=Rc11*Rc7/(Rc11+Rc7);
13 printf('\nZ=%.2 f KOhm\n', Z)
14 x=(r8+Z)/(1+b);
15 Ro=R4*x/(R4+x);
16 printf('\noutput resistance=%.2 f KOhm\n', Ro)
```

Scilab code Exa 11.19 Determine the differential mode voltage gain

```
1 clear;
2 clc;
3 //Example 11.19
4 b=100;
5 \text{ Vt} = 0.026;
6 Rc=20;
7 \text{ Ir}4=0.4;
8 Iq=Ir4;
9 Ir6=Ir4;
10 r4=b*Vt/Ir4;
11 printf('\nr4=\%.2 f KOhm\n',r4)
12 r3=b^2*Vt/Ir4;
13 printf ('\nr3=\%.2 f KOhm\n',r3)
14 \text{ Ri2}=r3+(1+b)*r4;
15 printf('\ninput resistance=\%.2f KOhm\n',Ri2)
16 gm = Iq/(2*Vt);
17 printf ('\ntransconductance=\%.3 \text{ f mA/V\n',gm})
18 Ad1=gm*Rc*Ri2/(2*(Rc+Ri2));
```

```
19 printf('\ngain of differential amplifier stage=\%.2 f\
      n', Ad1)
20 r5=b*Vt/Ir6;
21 printf ('\nr5 =\%.2fKOhm\n',r5)
22 \text{ Ir7=2};
23 r6=b*Vt/Ir7;
24 printf('\nr6=\%.2f KOhm\n',r6)
25 R6 = 16.5;
26 R7 = 5;
27 Ri3=r5+(1+b)*(R6+r6+(1+b)*R7);
28 Ri3=Ri3*0.001; //MOhm
29 printf ('\nRi3=\%.2 f MOhm\n', Ri3)
30 \text{ Rs} = 5;
31 A2=Ir4*Rs/(2*Vt);
32 printf('\nvoltage gain A2=\%.2 f n', A2)
33 A3=1; //vo/vo3
34 \text{ Ad} = \text{Ad1} * \text{A2} * \text{A3};
35 printf('\nsmall signal voltage gain=\%.2 \text{ f} \cdot \text{n}', Ad)
```

Scilab code Exa 11.20 Determine the zero and pole frequencies

```
1 clear;
2 clc;
3 //Example 11.20
4 Ro=10000000;
5 Co=1*10^-12;
6 Rb=500;
7 r=10000;
8 b=100;
9 f=1/(2*%pi*Ro*Co);
10 f=f*0.001;//KHz
11 printf('\nfrequency of the zero=%.2 f KHz\n',f)
12 Req=Ro*(1+Rb/r)/(1+Rb/r+2*(1+b)*Ro/r);
13 printf('\nReq=%.2 f Ohm\n',Req)
14 f=1/(2*%pi*Req*Co);
```

```
15 f=f*10^-9; //GHz
16 printf('\nfrequency of the pole=\%.2 f GHz\n',f)
```

Chapter 12

Feedback and Stability

Scilab code Exa 12.1 Calculate the feedback transfer function

```
1 clear;
2 clc;
3 //Example 12.1
4 A=10^5; //open loop gain
5 Af=50; //closed loop gain
6 b=(A/Af-1)/A;
7 printf('\nfeedback transfer function=%f\n',b)
8 A=-10^5;
9 Af=-50;
10 b=(A/Af-1)/A;
11 printf('\nfeedback transfer function=%f\n',b)
```

Scilab code Exa 12.2 Calculate the percent change in the closed loop gain Af

```
1 clear;
2 clc;
3 //Example 12.2
```

```
4 A=10^5;
5 Af=50;
6 b=0.019999;
7 dA=10^4;
8 dAf=Af*dA/(A*(1+b*A));
9 printf('\ndAf=%e\n',dAf)
10 //x=dAf/Af
11 x=dAf/Af;
12 x=x*100;
13 printf('\npercent change dAf/Af=%f\n',x)
```

Scilab code Exa 12.3 Determine the bandwidth of a feedback amplifier

```
1 clear;
2 clc;
3 //Example 12.3
4 Ao=10^4;
5 wh=2*%pi*100;//rad/s
6 Af=50;
7 //x=(1+bAo)
8 x=Ao/Af;
9 printf('\n(1+bAo)=%f\n',x)
10 wfh=wh*x;
11 printf('\nclosed loop bandwidth=%f\n',wfh)
```

Scilab code Exa 12.5 Determine the input resistance and output resistance

```
1 clear;
2 clc;
3 //Example 12.5
4 Av=10^5;
5 Avf=50;
```

```
6  Rf = 10; //Kohm
7  Ro = 20000; //Ohm
8  //x = (1+bvAv)
9  x = Av/Avf;
10  printf('\n(1+bvAv)=\%.e\n',x)
11  Rif = Rf * x;
12  Rif = Rif * 0.001; //MOhm
13  printf('\ninput resistance=\%.2 f MOhm\n', Rif)
14  Rof = Ro/x;
15  printf('\noutput resistance=\%.2 f Ohm\n', Rof)
```

Scilab code Exa 12.6 Determine the input resistance and output resistance

```
1 clear;
2 clc;
3 //Example 12.6
4 Af=10^5;
5 Aif=50;
6 Rf=10000;
7 Ro=20;
8 //x=(1+biAi)
9 x=Af/Aif;
10 printf('\n(1+biAi)=%.e\n',x)
11 Rif=Rf/x;
12 printf('\ninput resistance =%.2fOhm\n',Rif)
13 Rof=Ro*x;
14 Rof=Rof*0.001;//Mohm
15 printf('\noutput resistance=%.2f MOhm\n',Rof)
```

Scilab code Exa 12.7 Determine the expected input resistance

```
1 clear;
```

```
2 clc;
3 //Example 12.7
4 Ri=50;
5 R1=10;
6 R2=90;
7 Av=10^4;
8 bv=1/(1+R2/R1);
9 printf('\nfeedback transfer function=%.2 f\n',bv)
10 Rif=Ri*(1+bv*Av);
11 Rif=Rif*0.001; //Mohm
12 printf('\ninput resistance=%.2 f MOhm\n',Rif)
```

Scilab code Exa 12.11 Determine the transconductance gain of a transistor feedback circuit

```
1 clear;
2 clc;
3 //Example 12.11
4 hFE=100; // transistor parameter
5 Vbe=0.7;
6 \ \text{Vcc=10};
7 R1 = 55;
8 R2 = 12;
9 Re=1;
10 Rc=4;
11 R1=4;
12 \text{ Icq=0.983};
13 Vceq = 5.08;
14 Vt = 0.026;
15 r=hFE*Vt/Icq;
16 printf('\nsmall signal parameter resistance=\%.2 f
      KOhm \setminus n', r)
17 gm = Icq/Vt;
18 printf ('\ntransconductance=\%.3 \text{ f mA/V\n',gm})
19 Agf = -gm*(Rc/(Rc+Rl))/(1+Re*(gm+1/r));
```

Scilab code Exa 12.16 Determine the loop gain

```
1 clear;
2 clc;
3 //Example 12.15
4 //Determine the loop gain fig12.45(a)
5 \text{ hFE} = 100;
6 Vbe=0.7;
7 Icq=0.492;
8 r=5.28;
9 \text{ gm} = 18.9;
10 Rs=10;
11 R1=51;
12 R2=5.5;
13 Re=0.500;
14 Rc=10;
15 Rf=82;
16 x=r*R2/(r+R2);
17 y=R1*x/(x+R1);
18 t=Rs*y/(y+Rs);
19 Req=t;
20 printf('\nequivalent resistance=\%.2 f KOhm\n',t)
21 T=gm*Rc*Req/(Rc+Rf+Req);
22 printf('\nthe loop gain=\%.2 \text{ f} \cdot \text{n}',T)
```

Scilab code Exa 12.19 Determine the stability of an amplifier

```
1 clear;
2 clc;
3 //Example 12.19
4 //T=b*100/(sqrt(1+(f/10^5)^2) angle=-3tan^-1(f/10^5)
5 //stable at f180 at which phase becomes -180 degrees
6 //-3*atan(f180/10^5)=-180
7 f180=tand(180/3)*10^5;
8 printf('\nfrequency at -180 degree=%ef Hz\n',f180)
9 b=0.2;
10 T=b*100/(sqrt(1+(f180/10^5)^2))^3;
11 printf('\nmagnitude of the loop gain=%.2f\n',T)
12 b=0.02;
13 T=b*100/(sqrt(1+(f180/10^5)^2))^3;
14 printf('\nmagnitude of the loop gain=%.2f\n',T)
```

Scilab code Exa 12.22 Determine the shift in the 3dB frequency

```
1 clear;
2 clc;
3 //Example 12.22
4 Ao=10^6;
5 fPD=0.010; //KHz
6 b=0.01;
7 Af=Ao/(1+b*Ao);
8 printf('\nlow frequency closed loop gain=%.2f\n',Af)
9 fc=fPD*(1+b*Ao);
10 printf('\nclosed loop 3dB frequency=%.2f KHz\n',fc)
```

Scilab code Exa 12.23 Determine the shift in the 3dB frequency

```
1 clear;
```

```
2 clc;
3 //Example 12.23
4 A=10^3;
5 Cf=30*10^-12; //feedback capacitor (F)
6 R2=5*10^5;
7 Cm=Cf*(1+A);
8 printf('\nMiller capacitance=%e F\n',Cm)
9 fp=1/(2*%pi*R2*Cm);
10 printf('\ndominant pole frequency =%.2fHz\n',fp)
```

Chapter 13

Operational Amplifier Circuits

Scilab code Exa 13.1 Calculate the dc currents

```
1 clear;
2 clc;
3 //Example 13.1
4 V1=15; // positive supply voltage
5 V2=-15; // negative supply voltage
6 Veb12=0.6;
7 Vbe11=0.6;
8 \text{ Rs} = 40;
9 Iref=(V1-V2-Veb12-Vbe11)/Rs;
10 printf('\nreference current=\%.2 \, f \, mA\n', Iref)
11 Ic10=19;
12 Ic1 = Ic10/2;
13 printf ('\nIc1=Ic2=Ic3=Ic4= \%.3 fmicroA\n', Ic1)
14 Ic1=Ic1*0.001; //mA
15 Vbe7=0.6;
16 \text{ Vbe6=0.6};
17 Ic6=Ic1;
18 R2=1;
19 Vc6=Vbe7+Vbe6+Ic6*R2+V2;
20 printf('\nvoltage at collector of Q6=\%.2 \text{ f V} \cdot \text{n',Vc6})
```

Scilab code Exa 13.2 Calculate the bias currents

```
1 clear;
2 clc;
3 //Example 13.2
4 Iref=0.72;
5 Ic17=0.75*Iref;
6 printf('\ncollector currents in Q17=\%.2 f mA\n', Ic17)
7 b = 200;
8 Ib17 = Ic17/b;
9 Ie17=Ic17;
10 R8=0.100;
11 Vbe17=0.6;
12 R9=50;
13 Ic16=Ib17+(Ie17*R8+Vbe17)/R9;
14 Ic16=Ic16*1000;
15 printf('\ncollector current in Q16=\%.2 f microA\n',
      Ic16)
```

Scilab code Exa 13.3 Calculate the bias currents

```
11 R10=50;
12 Ir1o=Vbe19/R10;
13 printf('\ncurrent in Ro=\%.3 f mA\n', Ir1o)
14 Ic19=Ic13a-Ir1o;
15 printf ('\ncurrent in Q19 = \%.3 \text{ fmA} \cdot \text{n'}, Ic19)
16 Ic19=Ic19*0.001; //A
17 Vbe19=Vt*log(Ic19/Is1);
18 printf('\nB-E voltage of Q19=\%.2 \, \text{f V} \cdot \text{n}', Vbe19)
19 b = 200;
20 Ic19=Ic19*10^6; //micro A
21 \text{ Iv} 19 = \text{Ic} 19 * 1000;
22 Ib18=Ic19/b;
23 Ir1o=Ir1o*1000;
24 printf ('\nbase current in Q18=\%.3 f microA\n', Ib18)
25 Ic18=Ir1o+Ib18;
26 printf ('\ncurrents in Q18=\%.3 f microA\n', Ic18)
27 Ic18=Ic18*10^-6;
28 Vbe18=Vt*log(Ic18/Is1);
29 printf('\nB-E voltage of Q18=\%.2 f V\n', Vbe18)
30 Vbb=Vbe18+Vbe19;
31 printf('\nvoltage difference Vbb=\%.2 f V n', Vbb)
32 \text{ Ic} 14 = \text{Is} 2 * \exp(Vbb/(2 * Vt));
33 Ic14=Ic14*10^6; //micro A
34 printf ('\nquiescent currents in Q14 and Q20 =\%.
      fmicroA \setminus n', Ic14)
```

Scilab code Exa 13.4 Determine the small signal differential voltage gain

```
1 clear;
2 clc;
3 //Example 13.4
4 b=200;
5 Va=50
6 Vt=0.026;
7 R2=1;
```

```
8 \text{ Ic6=0.0095};
9 Ic4=Ic6;
10 \text{ Ic} 16 = 0.0158;
11 Ic17=0.54;
12 r17=b*Vt/Ic17;
13 printf('\ninput resistance to gain stage=%.2f KOhm\n
       ',r17)
14 R9=50;
15 R8 = 0.100;
16 x=r17+(1+b)*R8;
17 Re=x*R9/(x+R9);
18 printf ('\nRe=\%.3 f KOhm\n', Re)
19 r16=b*Vt/Ic16;
20 printf('\nr16=\%.2 f KOhm\n',r16)
21 Ri2=r16+(1+b)*Re;
22 Ri2=Ri2*0.001; / MOhm
23 printf ('\nRi2=\%.2 f KOhm\n', Ri2)
24 \text{ r6=b*Vt/Ic6};
25 printf('\nresistance of the active load=%.2f KOhm\n'
       ,r6)
26 \text{ gm} = \text{Ic6/Vt};
27 printf('\ntransconductance =%.3fmA/V\n',gm)
28 \text{ ro6=Va/Ic6};
29 ro6=ro6*0.001; //MOhm
30 printf ('\nro6=\%.2 f MOhm\n', ro6)
31 R = ro6*(1+gm*R2*r6/(R2+r6));
32 printf('\neffective resistance of active load=%.2f
      MOhm \setminus n', R)
33 \text{ ro4=Va/Ic4};
34 \text{ ro4} = \text{ro4} * 0.001; //Mohm
35 printf('\nResistance ro4=\%.2 f KOhm\n',ro4)
36 \text{ Icq=9.5};
37 x = Ri2 * R / (R + Ri2);
38 \ y = ro4 * x / (ro4 + x);
39 \text{ Ad}=-y*Icq/Vt};
40 printf('\nsmall signal differential voltage gain=\%.2
       f \setminus n', Ad)
```

Scilab code Exa 13.5 Determine the small signal voltage gain

```
1 clear;
2 clc;
3 //Example 13.5
4 bp=50;
5 \text{ bn} = 200;
6 \text{ Va} = 50;
7 R9 = 50;
8 R8 = 0.100;
9 R1 = 2;
10 Vt = 0.026;
11 Ri2=4070;
12 Ic20=0.138;
13 r20=bp*Vt/Ic20;
14 printf ('\nr20=\%.2 f KOhm\n',r20)
15 R20=r20+(1+bp)*R1;
16 printf('\nR20=\%.2f KOhm\n', R20)
17 Ic13A=0.18;
18 R19=Va/Ic13A;
19 printf ('\nR19=\%.2 f KOhm\n', R19)
20 r22=bp*Vt/Ic13A;
21 printf('\nr22=\%.2f KOhm\n',r22)
22 Ri3=r22+(1+bp)*R19*R20/(R19+R20);
23 Ri3=Ri3*0.001; //MOhm
24 printf('\ninput resistance to the output stage=%.2f
      MOhm \ n', Ri3)
25 \text{ Ic13B=0.54};
26 R=Va/Ic13B;
27 printf('\neffective resistance of the active load=%
      .2 f KOhm n', R)
28 \text{ Ic} 17 = \text{Ic} 13B;
29 R17=Va/Ic17;
30 printf('\noutput resistance Ro17 =\%.2fKOhm\n',R17)
```

```
31 Ri3=Ri3*1000; //KOhm

32 r17=9.63;

33 x=R17*Ri3/(Ri3+R17);

34 y=x*R/(R+x);

35 A=-bn*R9*(1+bn)*y/(Ri2*(R9+r17+(1+bn)*R8));

36 printf('\nsmall signal voltage gain=%.2 f\n',A)
```

Scilab code Exa 13.6 Calculate the output resistance

```
1 clear;
2 clc;
3 //Example 13.6
4 \text{ Ic20=2};
5 \text{ bn} = 200;
6 bp=50;
7 \text{ Va} = 50;
8 \text{ r17} = 9.63;
9 \text{ r} 22 = 7.22;
10 R20=0.260;
11 gm17 = 20.8;
12 ro17=92.6;
13 Ro13B=92.6;
14 R8=0.100;
15 Rc17 = ro17 * (1 + gm17 * R8 * r17 / (R8 + r17));
16 printf ('\nRc17=\%.2 f KOhm\n', Rc17)
17 Rc22=(r22+Rc17*Ro13B/(Rc17+Ro13B))/(1+bp);
18 printf ('\nRc22=\%.2 f KOhm\n', Rc22)
19 Ic13A=0.18;
20 Rc19=Va/Ic13A;
21 printf ('\nRc19=\%.2 f KOhm\n', Rc19)
22 \text{ Rc} 20 = (\text{R}20 + \text{Rc}22 * \text{Rc}19 / (\text{Rc}22 + \text{Rc}19)) / (1 + \text{bp});
23 printf('\n\text{Rc}20=\%.5 \text{ f KOhm}\n', Rc20)
24 Rc20=Rc20*1000; //Ohm
25 R3 = 22;
26 \text{ Ro} = \text{R3} + \text{Rc20};
```

Scilab code Exa 13.7 Determine the dominant pole frequency of the 741 op amp

```
1 clear;
2 clc;
3 //Example 13.7
4 Av2=285;
5 C1 = 30;
6 Ci = C1 * (1 + Av2);
7 printf('\ninput capacitance=\%.2 f pF\n',Ci)
8 Ri2=4.07;
9 Ract=7.18;
10 \text{ ro4} = 5.26;
11 Ro1=Ract*ro4/(Ract+ro4);
12 printf('\ngate stage input resistance=\%.2fMOhm \n',
      Ro1)
13 Req=Ro1*Ri2/(Ri2+Ro1);
14 printf('\nequivalent resistance=\%.2 f MOhm\n', Req)
15 Req=Req*10^6; //Ohm
16 Ci = Ci * 10^{-12}; //F
17 fPD=1/(2*%pi*Req*Ci);
18 printf('\ndominant pole frequency = \%.2 \, \text{fHz} \, \text{n',fPD})
```

Scilab code Exa 13.9 Determine the small signal voltage gain

```
1 clear;
2 clc;
3 //Example 13.9
4 //lambda=y
5 y=0.02;
6 //W/L=x and u*Cox/2=t
```

```
7 x=12.5;
8 t = 10;
9 Kp1=x*t;
10 printf ('\nconduction parameters of M1 and M2=\%.
       fmicroA/V^2 \ n', Kp1)
11 Kp1=Kp1*0.001; //mA/V^2
12 Id=0.0199;
13 \text{ ro2=1/(y*Id)};
14 ro2=ro2*0.001; //Mohm
15 printf('\noutput resistance=\%.2 f MOhm\n',ro2)
16 \text{ Iq} = 0.0397;
17 ro2=ro2*1000; //Kohm
18 ro4=ro2;
19 Ad=sqrt (2*Kp1*Iq)*ro2*ro4/(ro2+ro4);
20 printf('\nthe gain of input stage=\%.2 \,\mathrm{f} \, \mathrm{n}', Ad)
21 \text{ Kn7} = 0.250;
22 \quad Id7 = Iq;
23 gm7=2*sqrt(Kn7*Id7)
24 printf('\ntransconductance of M7=\%.2 \text{ f mA/V\n',gm7})
25 \text{ ro7=1/(y*Id7)};
26 \text{ ro7} = \text{ro7} * 0.001;
27 printf ('\noutput resistance of M7 and M8 = \%.2 fMOhm\n
       ',ro7)
28 ro7=ro7*1000; //Kohm
29 ro8=ro7;
30 Av2=gm7*ro7*ro8/(ro7+ro8);
31 printf('\ngain of the second stage=\%.2 \text{ f} \cdot \text{n}', Av2)
32 Av = Ad * Av2;
33 printf('\noverall voltage gain=\%.2 \text{ f} \cdot \text{n}', Av)
```

Scilab code Exa 13.10 Determine the differential mode voltage gain

```
1 clear;
2 clc;
3 //Example 13.10
```

```
4 Iref=100;
5 \text{ Kn} = 80;
6 Kp = 40;
7 / W/L=x
8 x = 25;
9 //lambda=y
10 \quad y = 0.02;
11 Id=Iref/2;
12 gm1 = 2 * sqrt (Kp * x * Id/2);
13 printf('\ntransconductance gm1=gm8=\%.3 f microA/V\n',
      gm1)
14 gm6 = 2 * sqrt (Kn * x * Id/2);
15 printf('\ntransconductance=\%.3 f microA/V\n',gm6)
16 \text{ ro1=1/(y*Id)};
17 ro8=ro1;
18 ro6=ro1;
19 ro10=ro1;
20 printf ('\noutput resistance ro1=ro8=ro6=ro10=\%.3 f
      MOhm \ n', ro1)
21 Id4=Iref;
22 \text{ ro4=1/(y*Id4)};
23 printf('\nro4=\%.3 f MOhm\n',ro4)
24 \text{ Ro8=gm1*ro8*ro10};
25 printf('\ncomposite output resistances =\%.2 f MOhm\n'
       , Ro8)
26 Ro6=gm6*ro6*ro4*ro1/(ro4+ro1);
27 printf('\ncomposite output resistances=%.2f MOhm\n',
      Ro6)
28 Ad = gm1 * Ro6 * Ro8 / (Ro6 + Ro8);
29 printf ('\ndifferential voltage gain=\%.2 \text{ f} \cdot \text{n}', Ad)
```

Scilab code Exa 13.12 Determine the small signal voltage gain

```
1 clear;
2 clc;
```

Scilab code Exa 13.13 Determine the small signal voltage gain

```
1 clear;
2 clc;
3 //Example 13.13
4 Va=150;
5 Vt=0.026;
6 Ic13=0.2;
7 gm13=Ic13/Vt;
8 printf('\ntransconductance=\%.2 f mA/V\n',gm13)
9 ro13=Va/Ic13;
10 printf('\noutput resistance=\%.2 f KOhm\n',ro13)
11 Av2=gm13*ro13;
12 printf('\nvoltage gain=\%.2 f \n',Av2)
```

Scilab code Exa 13.14 Determine the dominant pole frequency and unity gain bandwidth

```
1 clear;
2 clc;
```

```
3 //Example 13.14
4 Av2=5768;
5 C1=12;
6 Ci=C1*(1+Av2);
7 printf('\neffective input capacitance=%.2f pF\n',Ci)
8 Ri2=26000;//gain stage input resistance (Ohm)
9 Ci=Ci*10^-12;//F
10 fPD=1/(2*%pi*Ri2*Ci);
11 printf('\ndominant pole frequency=%.f Hz\n',fPD)
12 Av=73254;
13 fT=fPD*Av;
14 fT=fT*10^-6;//MHz
15 printf('\nunity gain bandwidth=%.2f MHz\n',fT)
```

Chapter 14

Nonideal Effects in Operational Amplifier Circuits

Scilab code Exa 14.2 Determine the closed loop input resistance

Scilab code Exa 14.3 Determine the closed loop input resistance

```
1 clear;
2 clc;
3 //Example 14.3
4 Aol=10^5;
```

```
5 Ri=10;
6 R1=10;
7 R2=R1;
8 Rif=(Ri*(1+Aol)+R2*(1+Ri/R1))/(1+R2/R1);
9 Rif=Rif*0.001;//Mohm
10 printf('\ninput resistance =%.fMOhm\n',Rif)
```

Scilab code Exa 14.5 Determine the unity gain bandwidth and the closed loop gain

```
1 clear;
2 clc;
3 //Example 14.5
4 Ao=2*10^5;
5 fPD=5;
6 fT=fPD*Ao;
7 printf('\nunity gain bandwidth=%.e Hz\n',fT)
8 f3dB=20*10^3;
9 Acl=fT/f3dB;
10 printf('\nclosed loop gain=%.2f\n',Acl)
```

Scilab code Exa 14.6 Calculate the slew rate of the 741 op amp

```
1 clear;
2 clc;
3 //Example 14.6
4 Iq=19*10^-6;
5 C1=30*10^-12;
6 SR=Iq/C1;
7 SR=SR*10^-6;
8 printf('\nslew rate=%.2 f V/micros\n',SR)
```

Scilab code Exa 14.7 Determine the small signal bandwidth of an amplifier and full power bandwidth

Scilab code Exa 14.8 Calculate the offset voltage in bipolar diff amp

```
1 clear;
2 clc;
3 //Example 14.8
4 Is1=10^-14;
5 Is2=1.05*10^-14;
6 Vt=0.026;
7 Vos=Vt*log(Is2/Is1);
8 printf('\nthe offset voltage =%fV\n', Vos)
```

Scilab code Exa 14.10 Calculate the offset voltage in MOSFET diff amp

```
1 clear;
2 clc;
3 //Example 14.10
4 Kn1=105;
5 Kn2=100;
6 Iq=200;
7 dKn=Kn1-Kn2;
8 printf('\ndifference in conduction parameter=%.2f microA/V^2\n',dKn)
9 Kn=(Kn1+Kn2)/2;
10 printf('\naverage of the conduction parameter=%.2f microA/V^2\n',Kn)
11 Vos=sqrt(Iq/(2*Kn))*dKn/(2*Kn);
12 printf('\noffset voltage=%f V\n',Vos)
```

Scilab code Exa 14.11 Determine the range of voltage produced by an offset voltage compensation network

```
1 clear;
2 clc;
3 //Example 14.11
4 Rs=100;
5 R4=100000;
6 R3=100000;
7 V1=15;
8 V2=-15;
9 Vy=Rs*V1/(Rs+R4);
10 Vy=Vy*1000;//mV
11 printf('\nVoltage Vy =%.2fmV\n', Vy)
```

Scilab code Exa 14.13 Determine the bias current effect

```
1 clear;
```

```
2 clc;
3 //Example 14.13
4 R1=10;
5 R2=100;
6 Ib1=1.1*10^-3;
7 Ib2=1*10^-3;
8 vo=Ib1*R2;
9 printf('\noutput voltage =\%.2 fV\n',vo)
10 R3=R1*R2/(R1+R2);
11 printf('\nR3=\%.2 f KOhm\n',R3)
12 vo=R2*(Ib1-Ib2);
13 printf('\noutput voltage=\%.2 f V\n',vo)
```

Chapter 15

Applications and Design of Integrated Circuits

Scilab code Exa 15.2 Determine the clock frequency

```
1 clear;
2 clc;
3 //Example 15.2
4 C=20*10^-6;
5 Req=1000;
6 fC=1/(C*Req);
7 printf('\nclock frequency =\%.2fKHz\n',fC)
```

Scilab code Exa 15.3 Design a one pole low pass switched capacitor filter

```
1 clear;
2 clc;
3 //Example 15.3
4 fC=10000;
5 f3dB=1000;
6 //x=C2/C1
```

```
7 x=2*%pi*f3dB/fC;
8 printf('\ncapacitances C2/C1=%.3f \n',x)
```

Scilab code Exa 15.4 Determine the oscillation frequency and required amplifier gain

```
1 clear;
2 clc;
3 //Example 15.4
4 C=0.1*10^-6;
5 R=1000;
6 fo=1/(2*%pi*R*C*sqrt(3));
7 printf('\nthe oscillation frequency =%.2fHz\n',fo)
8 //minimum amplifier gain=8
9 R=1;//KOhm
10 R2=8*R;
11 printf('\nR2=%.f KOhm\n',R2)
```

Scilab code Exa 15.6 Determine the hysteresis width of a particular Schmitt trigger

```
1 clear;
2 clc;
3 //Example 15.6
4 R1=10000;
5 R2=90000;
6 Vh=10;
7 Vl=-10;
8 Vth=R1*Vh/(R1+R2);
9 printf('\nupper crossover voltage=%.f V\n',Vth)
10 Vtl=R1*Vl/(R1+R2);
11 printf('\nlower crossover voltage=%.f V\n',Vtl)
12 x=Vth-Vtl;
```

```
13 printf('\nhysteresis width =\%.fV\n',x)
```

Scilab code Exa 15.7 Design a Schmitt trigger circuit

```
1 clear;
2 clc;
3 //Example 15.7
4 Vs=2;
5 Vh=15;
6 Vl=-15;
7 // hysteresis width=x
8 x=60*0.001; //(V)
9 //Vth-Vtl=(R1/(R1+R2))*(Vh-Vl)
10 //R2/R=y
11 y=(Vh-Vl)/x-1;
12 printf('\nR2/R1=%.2f\n',y)
13 Vref=(1+1/y)*Vs;
14 printf('\nreference voltage=%.4f V\n',Vref)
```

Scilab code Exa 15.10 Design the 555IC as a monostable multivibrator

```
1 clear;
2 clc;
3 //Example 15.10
4 C=15*10^-9;
5 T=100*10^-6;//(s) time
6 R=T/(1.1*C);
7 R=R*0.001;//Kohm
8 printf('\nResistance R=%.2f KOhm\n',R)
```

Scilab code Exa 15.13 Design the supply voltage

```
1 clear;
2 clc;
3 //Example 15.13
4 R1=10;//load resistance
5 P1=20;//power delivered to the load
6 Ps=20;//(W)
7 Vp=sqrt(2*R1*P1);
8 printf('\npeak output voltage=%.2 f V\n', Vp)
9 Ip=Vp/R1;
10 printf('\npeak load current =%.2 fA\n', Ip)
11 Vs=%pi*R1*Ps/Vp;
12 printf('\nrequired supply voltage=%.2 f V\n', Vs)
```

Scilab code Exa 15.14 Determine the output resistance and load regulation

```
1 clear;
2 clc;
3 //Example 15.14
4 Vonl=5;
5 Vofl=4.96;
6 I1=0.005;
7 I2=1.5;
8 dVo=Vonl-Vofl;
9 dIo=I1-I2;
10 Rvf=-dVo/dIo;
11 printf('\noutput resistance=%f Ohm\n', Rvf)
12 LR=100*(Vonl-Vofl)/Vonl;
13 printf('\nload regulation =\%.2 f\n', LR)
```

Scilab code Exa 15.15 Determine the output resistance and variation in output voltage

```
1 clear;
2 clc;
3 //Example 15.15
4 Aol=1000;
5 Vref=5;
6 Vo=10;
7 Io=0.1*0.001;
8 Vt=0.026;
9 Rof=2*Vt*Vo/(Io*Vref*Aol);
10 printf('\noutput resistance=%.2 f mOhm\n', Rof)
11 //dVo/Vo=V and dIo/Io=I
12 //V=-I*2*Vt/(Vref*Aol)
13 //V/I=x
14 x=-2*Vt/(Vref*Aol);
15 printf('\npercent change=%.2 e\n',x)
```

Scilab code Exa 15.16 Determine the bias current temperature compensated reference voltage and required resistor

```
1 clear;
2 clc;
3 //Example 15.16
4 Vz=6.3;
5 Vbe=0.6;
6 Veb=0.6;
7 Vo=8;
8 R1=3.9;
9 R2=3.4;
10 R3=0.576;
11 Ic3=(Vz-3*Vbe)/(R1+R2+R3);
12 printf('\nbias current =\%.3 f mA\n', Ic3)
13 Vb7=Ic3*R1+2*Vbe;
```

Chapter 16

MOSFET Digital Circuits

Scilab code Exa 16.3 Design the aspect ratio and determine the power dissipation

```
1 clear;
2 clc;
3 //Example 16.3
4 Vdd=5;
5 Vtnd=0.8;
6 Vtnl=0.8;
7 \text{ Kn} = 35;
8 \text{ Vo} = 0.1;
9 \text{ Vi} = 4.2;
10 / W/L=Y
11 yl=0.5;
12 / \text{Kd/Kl} = x
13 x = (Vdd - Vo - Vtn1)^2/(2*Vo*(Vi - Vtnd) - Vo^2);
14 printf ('\nKd/Kl=\%.2 f\n',x)
15 / \text{Kd/Kl=yd/yl}
16 \text{ yd} = 12.6
17 y1=0.5
18 iD=Kn*yl*(Vdd-Vo-Vtnl)^2/2;
19 printf('\ndrain current =\%.2 f microA \n',iD)
20 P = iD * Vdd;
```

Scilab code Exa 16.4 Design the aspect ratio and determine the power dissipation

```
1 clear;
2 clc;
3 //Example 16.4
4 Vdd=5;
5 \text{ Vtnd=0.8};
6 Vtnl=-2;
7 \text{ Kn} = 35;
8 \text{ Vo} = 0.1;
9 Vi=5;
10 / W/L=Y
11 yl=0.5;
12 / \text{Kd/Kl} = x
13 x=(-Vtn1)^2/(2*Vo*(Vi-Vtnd)-Vo^2);
14 printf ('\nKd/Kl=\%.2 f\n',x)
15 / \text{Kd/Kl=yd/yl}
16 \text{ yd} = 2.41
17 y1=0.5
18 iD=Kn*yl*(-Vtn1)^2/2;
19 printf('\ndrain current=\%.2 f microA \n',iD)
20 P = iD * Vdd;
21 printf('\npower dissipation =\%.2 f microW\n',P)
```

Scilab code Exa 16.5 Determine the noise margin of an inverter with enhancement load

```
1 clear;
2 clc;
3 //Example 16.5
```

```
4 \ Voh=4.2;
5 \text{ Vol} = 0.1;
6 //x = Kd/Kl
7 x = 25.1;
8 \text{ Vdd=5};
9 Vtnl=0.8;
10 Vohu = 4.2;
11 Vil=0.8;
12 Vtnd=0.8;
13 Vih=Vtnd+(Vdd-Vtnl)/x*((1+2*x)/sqrt(1+3*x)-1);
14 printf ('\nVih=\%.2 f V\n', Vih)
15 Volu=(Vdd-Vtnl+x*(Vih-Vtnd))/(1+2*x);
16 printf ('\noutput voltage corresponding to Vih=\%.3 f V
      \n', Volu)
17 NMl=Vil-Volu;
18 printf('\nnoise margin=\%0.3 \, f \, V \setminus n', NM1)
19 NMh=Vohu-Vih;
20 printf('\nnoise margin=\%.3 \, f \, V \setminus n', NMh)
```

Scilab code Exa 16.9 Determine the critical voltage on the voltage transfer curve of a CMOS inverter

```
1 clear;
2 clc;
3 //Example 16.9
4 Vdd=5;
5 Vtn=1;
6 Vtp=-1;
7 //Kn=Kp hence Kn/Kp=x=1;
8 x=1;
9 Vit=(Vdd+Vtp+sqrt(x)*Vtn)/(1+sqrt(x));
10 printf('\ninput voltage=%.2 f V\n', Vit)
11 Vipt=Vit;
12 Vopt=Vipt-Vtp;
13 printf('\noutput voltage at the transition point for
```

```
PMOS = \%.2 \, fV \setminus n', Vopt)
14 Vint=Vit;
15 Vont = Vint - Vtn;
16 printf('\noutput voltage at the transition point for
       NMOS=\%.2 f V n', Vont)
17 Vdd=10;
18 Vit=(Vdd+Vtp+sqrt(x)*Vtn)/(1+sqrt(x));
19 printf('\ninput voltage = \%.2 \,\mathrm{fV} \,\mathrm{n}', Vit)
20 Vipt=Vit;
21 Vint=Vit;
22 Vopt=Vipt-Vtp;
23 printf('\noutput voltage at the transition point for
       PMOS = \%.2 \, fV \setminus n', Vopt)
24 Vont=Vint-Vtn;
25 printf('\noutput voltage at the transition point for
       NMOS = \%.2 \, fV \setminus n', Vont)
```

Scilab code Exa 16.10 Calculate the power dissipation in CMOS inverter

Scilab code Exa 16.11 Determine the noise margins of a CMOS inverter

```
1 clear;
2 clc;
```

```
3 //Example 16.11
4 Vtn=1;
5 Vtp=-1;
6 \text{ Vdd=5};
7 Vth=1;
8 Vil=Vtn+3*(Vdd+Vtp-Vth)/8;
9 printf('\ninput voltage at the transition points Vil
      =\%.3 f V n', Vil)
10 Vih=Vtn+5*(Vdd+Vtp-Vtn)/8;
11 printf('\ninput voltage at the transition points Vih
      =\%.3 \,\mathrm{fV} \,\mathrm{n}', Vih)
12 Vohu=1*(2*Vil+Vdd-Vtn-Vtp)/2;
13 printf('\noutput voltage =\%.3 f V\n', Vohu)
14 Volu=1*(2*Vih-Vdd-Vtn-Vtp)/2;
15 printf('\noutput voltage =\%.2 f V\n', Volu)
16 NML=Vil-Volu;
17 printf('\nnoise margin = \%.3 f V \ n', NML)
18 NMH = Vohu - Vih;
19 printf('\nnoise margin=\%.3 f V \ n', NML)
```

Scilab code Exa 16.15 Determine the currents voltages and power dissipation in two NMOS SPAM cells

```
1 clear;
2 clc;
3 //Example 16.15
4 Vdd=3;
5 Kn=60;
6 Vtnd=0.5;
7 //W/L=x
8 xd=2;
9 Vtn1=-1;
10 x1=0.5;
11 R=2;//(MOhm)
12 Vgs1=0;
```

```
13 //solution with Depletion load
14 iD=Kn*xl*(Vgsl-Vtnl)^2/2;
15 printf('\nfrain currents in M1 and M3 =\%.fmicroA\n',
      iD)
16 P = iD * Vdd;
17 printf('\npower dissipation in the circuit=\%.f
      microW \setminus n', P)
18 //iD=Kn/2*x*(2*Vgsd-Vtnd)Vdsd-Vdsd^2
19 Q = poly(0, 'Q');
20 p = poly([0.25 -5 1], 'Q', 'c');
21 roots(p)
22 disp("Q=50.5 (mV)")
23 //solution with Resistor load
24 / (Vdd-Q) / R=Kn/2*xd*(2*Vgsd-Vtnd)Q-Q^2
25 \ Q=poly(0, 'Q');
26 p = poly([3 -599 120], 'Q', 'c');
27 roots(p)
28 \quad Q = 0.005;
29 disp("Q=5 (mV)")
30 \text{ iD} = (Vdd - Q)/R;
31 printf('\ndrain current =\%.2 f microA\n',iD)
32 P=iD*Vdd;
33 printf ('\npower dissipation in the circuit =\%.2 f
      microW \setminus n', P)
```

Chapter 17

Bipolar Digital Circuits

Scilab code Exa 17.1 Calculate the currents and voltages in the basic differential amplifier circuit used as digital circuit

```
1 clear;
2 clc;
3 //Example 17.1
4 V1=5;
5 \quad V2 = -5;
6 Rc1=1;
7 Rc2=Rc1;
8 \text{ Rc} = \text{Rc1};
9 Re=2.150;
10 \text{ v} 2 = 0;
11 // \text{for v1} = 0
12 vE = -0.7;
13 iE=(vE-V2)/Re;
14 printf('\nemitter current=\%.3 f mA\n', iE)
15 iC=1;
16 \, \text{Vcc=5};
17 vo1 = Vcc - iC*Rc;
18 printf('\nvo1=vo2=\%.f V\n',vo1)
19 // for v2 = -1
20 \text{ vE} = -0.7;
```

```
21 iE=2;
22 iC2=2;
23 vo1=5;
24 vo2=Vcc-iC2*Rc;
25 printf('\nvo2=%.2 f V\n',vo2)
26 v1=1;
27 Vbe=0.7;
28 vE=v1-Vbe;
29 iE=(vE-V2)/Re;
30 printf('\nemitter current =%.3 fmA\n',iE)
31 iC1=iE;
32 vo1=Vcc-iC1*Rc;
33 printf('\nvo1=%.2 f V\n',vo1)
34 vo2=Vcc
```

Scilab code Exa 17.2 Calculate the currents resistors and logic 0 values in the basic ECL logic gate

```
1 clear;
2 clc;
3 //Example 17.2
4 \text{ Vx} = -0.7;
5 \forall y = \forall x;
6 Vbe=0.7;
7 V2 = -5.2;
8 \text{ Re} = 1.180;
9 vE=Vx-Vbe;
10 printf('\nemitter voltage =\%.2 fV\n', vE)
11 iE=(vE-V2)/Re;
12 printf('\nemitter current=\%.2 f mA\n', iE)
13 Icxy=iE;
14 \text{ vol} = -0.7;
15 Rc1=-vo1/Icxy;
16 printf('\n\text{Rc}1=\%.2 \text{ f KOhm}\n', Rc1)
17 Vnor=vo1-Vbe;
```

Scilab code Exa 17.3 Design the reference position of the ECL circuit

```
1 clear;
2 clc;
3 //Example 17.3
4 Vr = -1.05;
5 Vbe=0.7;
6 Vb5 = Vr + Vbe;
7 printf ('\nVb5 = \%.2 \,\mathrm{fV} \,\mathrm{n}', Vb5)
8 R1 = 0.250;
9 i1 = -Vb5/R1;
10 printf ('\ni1=\%.3 f mA\n',i1)
11 Vy = 0.7;
12 V2 = -5.2;
13 / let R1 + R2 = x
14 x = (-2*Vy-V2)/i1;
15 R2=x-R1;
16 printf ('\nR2=\%.3 f KOhm\n', R2)
17 iS=i1;
18 Rs=(Vr-V2)/iS;
19 printf('\nRs=%.3 f KOhm\n',Rs)
```

Scilab code Exa 17.4 Calculate the power dissipated in the ECL logic circuit

```
1 clear;
2 clc;
3 //Example 17.4
4 \text{ Vx} = -0.7;
5 Vy = -0.7;
6 iCxy = 3.22; //(mA)
7 iCR=0;
8 i5=1.40;
9 i1=1.40;
10 Vor = -0.7;
11 R4=1.500;
12 Vnor = -1.4;
13 V2 = -5.2;
14 R3=1.500;
15 i3 = (Vor - V2)/R3;
16 printf('\ncurrent i3=\%.2 f mA\n',i3)
17 i4 = (Vnor - V2)/R4;
18 printf('\ncurrent i4 =\%.2 fmA\', i4)
19 P = (iCxy + iCR + i5 + i1 + i3 + i4) * (0 - V2);
20 printf ('\npower dissipation=\%.2 f mW\n',P)
```

Scilab code Exa 17.5 Calculate minimum fanout of ECL logic gate

```
1 clear;
2 clc;
3 //Example 17.5
4 b=50;
5 V2=-5.2;
6 Vbe=0.7;
```

```
7 Rc2=0.240;
8 Vor=-0.75;
9 Re=1.180;
10 iE=(Vor-Vbe-V2)/Re;
11 printf('\nemitter current=%.2 f mA\n',iE)
12 iB=iE/(1+b);
13 iB=iB*1000; // micro A
14 printf('\ninput base current=%.2 f microA\n',iB)
15 R3=1.500;
16 i3=(Vor-V2)/R3;
17 printf('\ni3=%.2 f mA\n',i3)
18 iB=iB*0.001; //mA
19 N=(-(Vor+Vbe)*(1+b)/(Rc2)-i3)/iB;
20 printf('\nN=%.f\n',N)
```

Scilab code Exa 17.7 Analyze the modified ECL logic gate

```
1 clear;
2 clc;
3 //Example 17.7
4 \ Vcc=1.7;
5 \text{ Re} = 0.008; //\text{mohm}
6 Rc=0.008; /mohm
7 \text{ Vy} = 0.4;
8 \text{ Vbe} = 0.7;
9 Vor=Vcc//logic 1
10 Vor = Vcc - Vy / logic 0
11 Vr = 1.5;
12 iE=(Vr-Vbe)/Re;
13 printf('\nemitter current=\%.2f microA\n',iE)
14 iR=Vy/Rc;
15 printf('\nmaximum current in Rc =\%.2 \, \text{fmicroA} \setminus \text{n',iR})
16 iD=iE-iR;
17 printf('\ncurrent through the diode=\%.2f microA\n',
       iD)
```

```
18 P=iE*Vcc;
19 printf('\npower dissipation=%.2f microW\n',P)
20 Vv=1.7;
21 iE=(Vv-Vbe)/Re;
22 printf('\niE =%.2fmicroA\n',iE)
23 P=iE*Vcc;
24 printf('\npower dissipation =%.2fmicroW\n',P)
```

Scilab code Exa 17.9 Calculate the currents and voltages for the basic TTL NAND circuit

```
1 clear;
2 clc;
3 //Example 17.9
4 \text{ bf} = 25;
5 b=bf;
6 \text{ br} = 0.1;
7 Vcc=5;
8 R1 = 4;
9 Vbc = 0.7;
10 Vy = 0.1;
11 Vx = 0.1;
12 R2=1.6;
13 Vbe=0.8;
14 Rc=4;
15 Vce=0.1;
16 \text{ vB2=Vx+Vce};
17 printf ('\nvB2=\%.2 f V\n', vB2)
18 \text{ vB1=Vx+Vbe};
19 printf('\nbase voltage=\%.2 f V\n', vB1)
20 i1 = (Vcc - vB1)/R1;
21 printf('\ncurrent i1=\%.2 f mA\n',i1)
22 \text{ vB1=Vbe+Vbe+Vbc};
23 printf('\nvB1=\%.2 f V\n', vB1)
24 \text{ vC2=Vbe+Vce};
```

```
25 printf('\ncollector voltage=\%.2 f V n', vC2)
26 i1 = (Vcc - vB1)/R1;
27 printf('\ncurrent i1 =\%.2\fmA\n',i1)
28 iB2 = (1+2*br)*i1;
29 printf ('\niB2=\%.2 f mA\n', iB2)
30 i2 = (Vcc - vC2)/R2;
31 printf('\ni2 = \%.2 \,\text{fmA} \,\n',i2)
32 iE2=i2+iB2;
33 printf('\niE2=\%.2 f mA\n', iE2)
34 \text{ Rb} = 1;
35 i4 = Vbe/Rb;
36 printf('\ncurrent in the pull down resistor=\%.2 f mA\
      n', i4)
37 \quad iBo = iE2 - i4;
38 printf('\nbase drive to the output transistor=\%.2f
      mA \setminus n', iBo)
39 i1 = (Vcc - Vce)/Rc;
40 printf ('\ni1=\%.2 f mA\n',i1)
```

Scilab code Exa 17.11 Determine the currents in a Schottky transistor

```
1 clear;
2 clc;
3 //Example 17.11
4 b=25;
5 iB=1;
6 iC=2;
7 ic=(iB+iC)/(1+1/b);
8 printf('\ninternal collector current=%.3 f mA\n',ic)
9 ib=ic/b;
10 printf('\ninternal base current =%.3 fmA\n',ib)
11 iD=iB-ib;
12 printf('\nSchottky diode current=%.3 f mA\n',iD)
13 iC=20;
14 ic=(iB+iC)/(1+1/b);
```

```
printf('\ninternal collector current=%.3 f mA\n',ic)
ib=ic/b;
printf('\ninternal base current =%.3 fmA\n',ib)
iD=iB-ib;
printf('\nSchottky diode current=%.3 f mA\n',iD)
```

Scilab code Exa 17.12 Calculate the power dissipation in a low power Schottky TTL circuit

```
1 clear;
2 clc;
3 //Example 17.12
4 \text{ Vy=0.3};
5 Vbe=0.7;
6 \text{ vx} = 0.4;
7 R2 = 8;
8 \ \text{Vce} = 0.4;
9 Vcc=5;
10 b = 25;
11 Vce=0.4;
12 \, \text{Vbe1=0.7};
13 Vbe2=0.7;
14 Vcc=5;
15 R1 = 20;
16 \text{ v1=Vce+Vy};
17 i1 = (Vcc - v1)/R1;
18 printf('\ni1=\%.3 f mA\n',i1)
19 Pl=i1*(Vcc-vx);
20 printf('\npower dissipation=\%.3 \text{ f mW} \cdot \text{n'},Pl)
21 \quad v1 = Vbe1 + Vbe2;
22 printf ('\nv1=\%.3 f V\n', v1)
23 \text{ vC2=Vbe1+Vce};
24 printf ('\nvoltage vC2 = \%.2 \,\mathrm{fV} \,\mathrm{n}', vC2)
25 i1 = (Vcc - v1)/R1;
26 printf('\ncurrent i1 =%.3fmA\n',i1)
```

```
27 i2=(Vcc-vC2)/R2;
28 printf('\ncurrent i2 =\%.3fmA\n',i2)
29 P=(i1+i2)*Vcc;
30 printf('\npower dissipation for high input condition =\%.3 f mW\n',P)
```