Lecture 6

MATH 0200

Inverse function

Lecture 6 Inverse functions

MATH 0200

Dr. Boris Tsvelikhovskiy

Outline

Lecture 6

MATH 0200

Inverse function

1 Inverse functions

Inverse functions

Lecture 6

MATH 0200

Inverse functions

Definition

A function g is called the **inverse** of a function f if $(f \circ g)(x) = x$ (and automatically $(g \circ f)(x) = x$). The inverse of f is denoted by f^{-1} .

Definition

A function g is called the **inverse** of a function f if $(f \circ g)(x) = x$ (and automatically $(g \circ f)(x) = x$). The inverse of f is denoted by f^{-1} .

Remark

The inverse of a function is **NOT** the multiplicative inverse, in other words,

$$f^{-1} \neq \frac{1}{f}.$$

The formula for converting the temperature from Celsius to Fahrenheit is $F(x) = \frac{9}{5}x + 32$. We would like to find the formula for converting 'backwards': from Fahrenheit to Celsius.

The formula for converting the temperature from Celsius to Fahrenheit is $F(x) = \frac{9}{5}x + 32$. We would like to find the formula for converting 'backwards': from Fahrenheit to Celsius.

Said differently, we would like to find the function C(x) with F(C(x)) = x (since conversion from Fahrenheit to Celsius and then back to Fahrenheit should give the initial value).

The formula for converting the temperature from Celsius to Fahrenheit is $F(x) = \frac{9}{5}x + 32$. We would like to find the formula for converting 'backwards': from Fahrenheit to Celsius.

Said differently, we would like to find the function C(x) with F(C(x)) = x (since conversion from Fahrenheit to Celsius and then back to Fahrenheit should give the initial value).

Let's denote C(x) by a dummy variable y. Then we need to find y from the equation $F(y) = \frac{9}{5}y + 32 = x$.

This can be done via the following sequence of algebraic transformations:

This can be done via the following sequence of algebraic transformations:

$$\frac{9}{5}y + 32 = x \Leftrightarrow \frac{9}{5}y = x - 32 \Leftrightarrow y = \frac{5}{9}(x - 32).$$

This can be done via the following sequence of algebraic transformations:

$$\frac{9}{5}y + 32 = x \Leftrightarrow \frac{9}{5}y = x - 32 \Leftrightarrow y = \frac{5}{9}(x - 32).$$

Therefore, $C(x) = \frac{5}{9}(x - 32)$.

This can be done via the following sequence of algebraic transformations:

$$\frac{9}{5}y + 32 = x \Leftrightarrow \frac{9}{5}y = x - 32 \Leftrightarrow y = \frac{5}{9}(x - 32).$$

Therefore, $C(x) = \frac{5}{9}(x - 32)$.

We can (and should) check that the functions F and C are indeed inverse:

This can be done via the following sequence of algebraic transformations:

$$\frac{9}{5}y + 32 = x \Leftrightarrow \frac{9}{5}y = x - 32 \Leftrightarrow y = \frac{5}{9}(x - 32).$$

Therefore, $C(x) = \frac{5}{9}(x - 32)$.

We can (and should) check that the functions F and C are indeed inverse:

$$C(F(x)) = \frac{5}{9} \left(\frac{9}{5}x + 32 - 32 \right) = \frac{5}{9} \cdot \frac{9}{5}x = x.$$

Inverse function

Question

There are two natural questions at this point.

There are two natural questions at this point.

• For which functions f does the inverse function f^{-1} exist?

There are two natural questions at this point.

- For which functions f does the inverse function f^{-1} exist?
- ② How can we find a formula for f^{-1} (provided it exists)?

There are two natural questions at this point.

- For which functions f does the inverse function f^{-1} exist?
- \bullet How can we find a formula for f^{-1} (provided it exists)?

Example

Consider the function $f(x) = x^2$, then $f(1) = 1^2 = 1$, but $f(-1) = (-1)^2 = 1$ as well. If f^{-1} existed then what would $f^{-1}(1)$ be equal to? Recall that f^{-1} is a function, so we can not have $f^{-1}(1) = \{1, -1\}$. Therefore, the function $f(x) = x^2$ does not have an inverse.

One-to-one functions

Lecture 6

MATH 0200

Inverse functions

Definition

A function f is called **one-to-one** if for any numbers $a \neq b$ in the domain of f, one has $f(a) \neq f(b)$.

One-to-one functions

Lecture 6

MATH 0200

Inverse functions

Definition

A function f is called **one-to-one** if for any numbers $a \neq b$ in the domain of f, one has $f(a) \neq f(b)$.

Remark

A function f is one-to-one if and only if any horizontal line y = c intersects the graph in at most one point. This statement is known as the **horizontal line test**.

One-to-one functions

Lecture 6

MATH 0200

Inverse functions

Definition

A function f is called **one-to-one** if for any numbers $a \neq b$ in the domain of f, one has $f(a) \neq f(b)$.

Remark

A function f is one-to-one if and only if any horizontal line y = c intersects the graph in at most one point. This statement is known as the **horizontal line test**.

Remark

A function f is invertible if and only if it is one-to-one.

Inverse functions

Example

The function f(x) below is not one-to-one.

Lecture 6

MATH 0200

Inverse functions

Next we provide a 3-step recipe for finding the inverse.

Lecture 6

MATH 0200

Inverse functions

Next we provide a 3-step recipe for finding the inverse.

Step 1. Write
$$y = f(x)$$
.

Lecture 6

MATH 0200

Inverse functions

Next we provide a 3-step recipe for finding the inverse.

Step 1. Write y = f(x).

Step 2. Find x as a function of y.

Lecture 6

MATH 0200

Inverse function

Next we provide a 3-step recipe for finding the inverse.

- **Step 1.** Write y = f(x).
- Step 2. Find x as a function of y.
- **Step 3.** Substitute x by $f^{-1}(x)$ and y by x to obtain a formula for the inverse function.

$$\mathbf{0} \ \ y = \frac{1-x}{3+x}.$$

$$y = \frac{1-x}{3+x} \Leftrightarrow (3+x)y = 1-x \Leftrightarrow 3y+xy = 1$$

$$xy + x = 1 - 3y \Leftrightarrow x(y+1) = 1 - 3y \Leftrightarrow x = \frac{1 - 3y}{y+1}.$$

$$y = \frac{1 - x}{3 + x}.$$

$$y = \frac{1-x}{3+x} \Leftrightarrow (3+x)y = 1-x \Leftrightarrow 3y+xy = 1-x \Leftrightarrow xy+x=1-3y \Leftrightarrow x(y+1)=1-3y \Leftrightarrow x=\frac{1-3y}{y+1}.$$

3 We get
$$f^{-1}(x) = \frac{1-3x}{x+1}$$
.

We check:
$$f^{-1} \circ f(x) = \frac{1 - 3 \cdot \frac{1 - x}{3 + x}}{\frac{1 - x}{3 + x} + 1} = \frac{\frac{3 + x - (3 - 3x)}{3 + x}}{\frac{1 - x + 3 + x}{3 + x}} = \frac{\frac{x + 3x}{3 + x}}{\frac{3 + x}{3 + x}} = \frac{4x}{4} = x$$

Lecture 6

MATH 0200

Inverse functions • Domain of $f = \text{range of } f^{-1}$.

Lecture 6

MATH 0200

Inverse functions

- Domain of $f = \text{range of } f^{-1}$.
- **2** Range of $f = \text{domain of } f^{-1}$.

Lecture 6

MATH 0200

Inverse function:

- ① Domain of $f = \text{range of } f^{-1}$.
- 2 Range of $f = \text{domain of } f^{-1}$.
- **3** The graphs of f and f^{-1} are symmetric with respect to the line y = x.

Lecture 6

MATH 0200

Inverse functions

- Domain of $f = \text{range of } f^{-1}$.
- 2 Range of $f = \text{domain of } f^{-1}$.
- **3** The graphs of f and f^{-1} are symmetric with respect to the line y = x.

Let f(x) be given by the table below

x	f(x)
-2	3
0	1
3	-2

What are the range of f^{-1} and the value of $f^{-1}(-2)$?