CS-150 Concepts of Computer Science Worksheets

CS-150 Worksheet 2

Release date: 11/10/2019

This worksheet is about getting familiar with representation methods for different number types, including the use of negative numbers, real numbers, and calculations on them.

\square Task 2.1

This task is about conversion of numbers to Two's Complement binary representation.

- 1. Convert the following numbers to an 8-bit Two's Complement binary representation:
 - 34 = 00100010
 - \bullet -50 = 11001110
 - \bullet -120 = **10001000**
 - $109 = \mathbf{01101101}$
- 2. Convert the following numbers from an 8-bit Two's Complement binary representation to decimal:
 - 10111011 = -69
 - 00100101 = 37
 - 111101111 = **-9**
 - 011111111 = 127

\square Task 2.2

This task is about performing calculations on Two's Complement binary representations.

- 1. Perform the following additions on numbers which are in 8-bit Two's Complement binary representation:
 - $00010101 + 00101110 = \mathbf{01000011}$
 - 10010110 + 00010111 =**10101101**
- 2. Perform the following subtractions on numbers which are in 8-bit Two's Complement binary representation:
 - $00110111 00001101 = \mathbf{001101111} + \mathbf{11110011} = \mathbf{00101010}$
 - 01011010 11101111 = 01011010 + 00010001 = 01101011

\square Task 2.3

This task is about converting floating point numbers from base x to base y.

- 1. Convert the following from decimal to binary
 - 10.125 = 1010.001
 - \bullet 223.25 = **11011111.01**
- 2. Convert the following from binary to hexadecimal:
 - 100101111100.0111 = 4BC.7
 - $1100.0010101 = \mathbf{C.2A}$

\square Task 2.4

This task is about representation of real numbers using the $sign \times mantissa \times base^{exp}$ scheme.

- 1. Convert each of the following decimal real numbers, identifying the sign, mantissa, base and exp. For example: 3.14 would be Sign: +1, Mantissa: 314, Base: 10, Exponent: -2.
 - 4138.12 = Sign: +1, Mantissa: 413812, Base: 10, Exponent: -2
 - 141402.1112 = Sign: +1, Mantissa: 1414021112, Base: 10, Exponent: -4
 - 0.002323 =Sign: +1, Mantissa: 2323, Base: 10, Exponent: -6
- 2. Convert each of the following decimal real numbers, identifying the sign, mantissa, base and exp, however this time we can only store 5 significant digits. For example: 3.141592 would be Sign: +1, Mantissa: 31415, Base: 10, Exponent: -4. Note that we can't store the "92".
 - 23.451 =Sign: +1, Mantissa: 23451, Base: 10, Exponent: -3
 - 0.123141 = Sign: +1, Mantissa: 12314, Base: 10, Exponent: -5
 - 12000.23222 = Sign: +1, Mantissa: 12000, Base: 10, Exponent: 0
- 3. Convert each of the following to their true decimal value.
 - Sign: -1, Mantissa: 57231, Base: 10, Exponent: 5 = -5723100000
 - Sign: +1, Mantissa: 29320, Base: 10, Exponent: -2 = 293.20
 - Sign: +1, Mantissa: 13123, Base: 10, Exponent: -7 = 0.0013123

\square Task 2.5

This task is about representation of real numbers using Scientific Notation.

- 1. Convert each of the following decimal real numbers into Scientific Notation. For example: 11102019 would be 1.1102019E7.
 - 5240.82 = 5.24082E3
 - 249232.23 = 2.4923223E5
 - 0.0014210 = 1.4210E-3