MA3G7 Functional Analysis 1

Luca Seemungal

27th April 2021

Contents

1	Vector Spaces	1
2	Normed spaces	2
3	Banach spaces	3
4	Lebesgue spaces	4
5	Inner product spaces	5
6	Hilbert space	6
7	Dual Spaces	7
8	Introduction to Spectral Theory	8

1 Vector Spaces

Theorem 1. Every vector space has a Hamel basis.

You don't need to prove the above theorem.

Theorem 2. If a vector space has a finite Hamel basis then every Hamel basis for this vector space has the same number of elements.

Prop. 1. Any n-dimensional vector space over a field \mathbb{F} is isomorphic to \mathbb{F}^n .

Lemma 1 (Young's inequality). If $a, b > 0, 1 < p, q < \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Lemma 2 (Hölder's inequality). If $1 \le p, q \le \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $x \in \ell^p(\mathbb{F})$ and $y \in \ell^q(\mathbb{F})$, then

$$\sum |x_j y_j| \le \|x\|_p \|y\|_q.$$

Lemma 3 (Minkowski's inequality). Let $1 \le p < \infty$. If $x,y \in \ell^p(\mathbb{F})$ then $x+y \in \ell^p(\mathbb{F})$ and

$$||x + y||_p \le ||x||_p + ||y||_p$$
.

Exercise 1. C(0,1) is not a subset of $L_c^1(0,1)$.

Exercise 2. A set E is linearly independent iff for every subset $\{e_1, \ldots, e_n\} \subset E$, if $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ and $\sum e_i \alpha_i = 0$, then $\alpha_1 = \cdots = \alpha_n = 0$.

Exercise 3. The functions

$$f_{\alpha}(x) = \begin{cases} x(\alpha - x) & \text{for } 0 \le x \le \alpha \\ 0 & \text{for } \alpha \le x \le 1 \end{cases}$$

Exercise 4. If $L: V \to W$ is a linear isomorphism and $E \subset V$ is a Hamel basis for V, then L(E) is a Hamel basis for W.

2 Normed spaces

Prop. 2. Let $(W, \|\cdot\|_W)$ be a normed space, V be a vector space, and $L: V \to W$ a linear isomorphism. Then the function

$$V \ni x \mapsto ||L(x)||_W \in \mathbb{R}$$

defines a norm on V.

Prop. 3. Any finite dimensional vector space can be equipped with a norm. Therefore, any n-dimensional vector space over \mathbb{F} is isometrically isomorphic to \mathbb{F}^n equipped with a suitable norm.

Theorem 3. All norms on a finite dimensional space are equivalent.

Prop. 4. If $f_n \in C[0,1]$ for all $n \in \mathbb{N}$ and $f_n \to f$ in the sup-norm, then $f_n \to f$ in the L^1 -norm.

Prop. 5. If $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent norms on a vector space, then for any sequence x_n in the vector space and for any $x \in V$,

$$||x_n - x||_1 \to 0 \iff ||x_n - x||_2 \to 0.$$

Lemma 4. In a normed space $(V, \|\cdot\|)$, a sequence $x_n \to x$ if and only if for any open neighbourhood X of x there is an $N \in \mathbb{N}$ such that $x_n \in X$ for all n > N.

Prop. 6. On a vector space V, two norms are equivalent if and only if they induce the same topology.

Lemma 5. A subset $X \subset V$ is closed if and only if every convergent sequence with elements in X has its limit in X.

Prop. 7. A finite dimensional linear subspace W of a normed space V is closed.

Theorem 4 (Heine-Borel). A subset of \mathbb{R}^n is compact if and only if it is closed and bounded. Therefore, a subset of a finite-dimensional vector space is closed if and only if it is bounded.

You don't need to know the proof of this - but you should, as you studied it in Year 2.

Lemma 6 (Riesz' Lemma). Let X be a normed vector space and Y be a closed linear subspace of X such that $Y \neq X$ and $\alpha \in (0,1)$. Then there is $x_{\alpha} \in X$ such that $\|x_{\alpha}\| = 1$ and $\|x_{\alpha} - y\| > \alpha$ for all $y \in Y$.

Theorem 5. A normed space is finite dimensional if and only if the unit sphere is compact.

Exercise 5. Prove these things from Year 1

- (i) $x_n \to x$ if and only if $||x_n x|| \to 0$:
- (ii) the limit of a convergent sequence is unique
- (iii) any convergent sequence is bounded;
- (iv) if $x_n \to x$ then $||x_n|| \to ||x||$;
- (v) any convergent sequence is Cauchy.

Exercise 6. A (sequentially) compact subset of a normed space is compact if and only if it is closed and bounded.

3 Banach spaces

Theorem 6. A sequence of real numbers converges if and only if it is Cauchy. Proved in Year 1.

Theorem 7. Every finite-dimensional normed space is complete. In particular, \mathbb{R}^n and \mathbb{C}^n are complete.

Theorem 8. The space $\ell^p(\mathbb{F})$ equipped with the ℓ^p -norm is complete.

Theorem 9. The space C[0,1] equipped with the sup-norm is complete.

Theorem 10 (Bernstein polynomials). Consider the polynomials

$$B_{np}(x) = \binom{n}{p} x^p (1-x)^{n-p}.$$

Then the polynomials B_{np} are of degree n and we have that

- (i) $\sum_{p=0}^{n} B_{np}(x) = 1$
- (ii) $\sum_{n=0}^{n} pB_{np}(x) = nx$

(iii)
$$\sum_{p=0}^{n} (p-nx)^2 B_{np}(x) = nx(1-x).$$

Theorem 11. If a function $f:[0,1] \to \mathbb{R}$ is continuous then the sequence of polynomials

$$P_n(x) = \sum_{n=0}^{n} f\left(\frac{p}{n}\right) \binom{n}{p} x^p (1-x)^{n-p}$$

converges uniformly to f on [0,1].

Therefore, C[0,1] is separable.

Theorem 12. Any normed space is isometrically isomorphic to a dense subset of a Banach space.

4 Lebesgue spaces

Theorem 13 (Monotone Convergence Theorem). Suppose that f_n are integrable functions, $f_n(x) \leq f_{n+1}(x)$ almost everywhere, and there is a constant K such that for all n

$$\int_X f_n(x) \, \mathrm{d}x < K.$$

Then there is an integrable function f such that $f_n \to f$ almost everywhere and

$$\int_X g(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_X f_n(x) \, \mathrm{d}x.$$

Prop. 8. If f is integrable and $\int_X |f(x)| dx = 0$ then f(x) = 0 almost everywhere.

Theorem 14 (Dominated Convergence Theorem). Suppose that $f_n: X \to \mathbb{R}$ are integrable functions and $f_n(x) \to f(x)$ almost everywhere. If there is an integrable function g such that $|f_n(x)| \le g(x)$ for every n and almost every x, then f is integrable and

$$\int_X f(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_X f_n(x) \, \mathrm{d}x.$$

The Dominated Convergence theorem holds for complex-valued functions, and is easily proved from the above version for real-valued functions.

Theorem 15. $L^1(X)$ is a Banach space.

Lemma 7. If $(V, \|\cdot\|)$ is anormed space in which $sum_{j=1}^{\infty} \|y_j\| < \infty$ implies that $\sum_{j=1}^{\infty} y_j$ converges, then V is complete.

Lemma 8. If f_k is a sequence of Lebesgue-integrable functions such that

$$K := \sum_{i=1}^{\infty} \|f_k\|_1 < \infty,$$

then

- (i) there is an integrable function g such that $\sum_{k=1}^{n} |f_k(x)| \to g(x)$ almost everywhere;
- (ii) there is an integrable function h such that $\sum_{k=1}^{n} f_k(x) \to h(x)$ almost everywhere;
- (iii) $||h(x) \sum_{k=1}^{n} f(x)||_{1} \to 0.$

Theorem 16. The space C[0,1] is dense in $L^1[0,1]$. Therefore, $L^1[a,b]$ is isometrically isomorphic to the completion of C[a,b] in the L^1 -norm.

Theorem 17. $L^p(X)$ is a Banach space for any $p \in [1, \infty)$.

5 Inner product spaces

Lemma 9 (Cauchy-Schwarz inequality). If V is an inner product space and $||x|| = \sqrt{\langle x, x \rangle}$ for all $x \in V$, then for all $x, y \in V$,

$$|\langle x.y \rangle| \le ||x|| \, ||y||$$

Prop. 9. If V is an inner product space, then the equation $||x|| = \sqrt{\langle x, x \rangle}$ defines a norm on V.

Lemma 10 (Continuity of the inner product). Let V be an inner product space equipped ith the natural norm. If $x_n \to x$ and $y_n \to y$, then $\langle x_n, y_n \rangle \to \langle x, y \rangle$.

Lemma 11 (Parallelogram law). If V is an inner product space with the natural norm $\|\cdot\|$, then for all $x, y \in V$,

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Lemma 12 (Polarisation identity). Let V be an inner product space with the natural norm $\|\cdot\|$. If the vector space V is real, then

$$4\langle x, y \rangle = \|x + y\|^2 - \|x - y\|^2$$
.

If the vector spear V is complex, then

$$4\langle x, y \rangle = \|x + y\|^2 - \|x - y\|^2 + i \|x + iy\|^2 - i \|x - iy\|^2.$$

Prop. 10. If V is a real normed space with the norm $\|\cdot\|$ satisfying the parallelogram law, then

$$\langle x, y \rangle = \frac{\|x + y\|^2 - \|x - y\|^2}{4}$$

defines an inner product on V.

Theorem 18 (Pythagoras). If $x \perp y \ then ||x + y||^2 = ||x||^2 + ||y||^2$.

Lemma 13. If $\{e_1, \ldots, e_n\}$ is an orthonormal set in an inner product space V, then for any $\alpha_j \in \mathbb{F}$ we have

$$\left\| \sum_{j=1}^{n} \alpha_j e_j \right\|^2 = \sum_{j=1}^{n} |\alpha_j|^2.$$

Lemma 14 (Bessel's inequality). If V is an inner product speak and $E = (e_k)$ is an orthonormal sequence, then for every $x \in V$

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2.$$

Prop. 11. If E is an orthonormal set in an inner product space V then for any $x \in V$ the set

$$\mathcal{E}_x := \{ e \in E : \langle x, e \rangle \neq 0 \}$$

is at most countable.

Lemma 15 (Gram-Schmidt orthonormalisation). Let V be an inner product space and v_k be a sequence of linearly independent vectors in V. Then there is an orthonormal sequence (e_k) such that for every k,

$$\operatorname{span}\{v_1,\ldots,v_k\}=\operatorname{span}\{e_1,\ldots,e_k\}.$$

Prop. 12. Any infinite-dimensional inner product space contains an orthonormal sequence.

Prop. 13. Any finite-dimensional inner product space has an orthonormal basis.

Prop. 14. Any finite-dimensional inner product space is isometrically isomorphic to \mathbb{C}^n or \mathbb{R}^n (if the space is complex or real respectively) equipped with the standard inner product.

6 Hilbert space

Lemma 16. Let H be a Hilbert space and $E=(e_k)$ be an orthonormal sequence in H. The series $\sum_{k=1}^{\infty} \alpha_k e_k$ converges if and only if $\sum_{k=1}^{\infty} |\alpha_k|^2 < +\infty$. In this case, we have

$$\left\| \sum_{k=1}^{\infty} \alpha_k e_k \right\|^2 = \sum_{k=1}^{\infty} |\alpha_k|^2.$$

Prop. 15. If H is a Hilbert space and $E = (e_k)$ is an orthonormal sequence, then for every $x \in H$ the series $\sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$ converges.

Prop. 16. Let $E = e_k$ be an orthonormal set in a Hilbert space H. Then the following are equivalent:

- for every $x \in H$ there are $\alpha_k \in \mathbb{F}$ such that $x = \sum_{k=1}^{\infty} \alpha_k e_k$;
- $x = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$ for all $x \in H$;
- $||x||^2 = \sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2$ for all $x \in H$;
- if $\langle x, e_k \rangle = 0$ for all $k \in \mathbb{N}$ then x = 0;
- the linear span of E is dense in H.

Theorem 19. An infinite-dimensional Hilbert space is separable if and only if it has a countable orthonormal basis.

Theorem 20. Any infinite-dimensional separable Hilbert space over \mathbb{F} is isometrically isomorphic to $\ell^2(\mathbb{F})$.

Lemma 17. If A is a non-empty closed convex subset of a Hilbert space H, then for any $x \in H$ there is a unique $a^* \in A$ such that

$$||x - a^*|| = \inf_{a \in A} ||x - a||.$$

Prop. 17. If $X \subset H$, then X^{\perp} is a closed linear subspace of H.

Prop. 18. If $E \subset H$ then $E^{\perp} = (\operatorname{span}(E))^{\perp} = (\overline{\operatorname{span}}(E))^{\perp}$.

Theorem 21. If U is a closed linear subspace of a Hilbert space H then

- 1. $H = U \oplus U^{\perp}$;
- 2. u is the closest point to x in U;
- 3. the map $P_U: H \to U$ defined by $P_U(x) = u$ is linear, and for every $x \in H$ we have that $P_U^2(x) = P_U(x)$ and $||P_U(x)|| \le ||x||$.

Prop. 19. The map P_U is an orthogonal projection onto U.

Prop. 20. If U is a closed linear subspace of a Hilbert space H and E is an at most countable orthonormal subset in U such that $\operatorname{span}(E)$ is dense in U, then

$$P_U(x) = \sum_{e_k \in E} \langle x, e_k \rangle e_k.$$

7 Dual Spaces

Prop. 21. Let V be a normed space over \mathbb{F} . A linear functional $f:V\to\mathbb{F}$ is continuous if and only if it is bounded.

Prop. 22. If V is a normed space, then its dual space V^* is a Banach space with the norm defined by $||f|| = \sup_{||x||=1} |f(x)|$.

Theorem 22 (Riesz Representation Theorem). If H is a Hilbert space over \mathbb{F} , then for any bounded linear functional $f: H \to \mathbb{F}$ there is a unique $y \in H$ such that for all $x \in H$,

$$f(x) = \langle x, y \rangle.$$

Moreover, we have $||f||_{H^*} = ||y||_H$.

Theorem 23. If X is a compact metric space and $w : C(X) \to \mathbb{R}$ is a continuous linear functional, then there are two measures $\mu, \nu \in \mathcal{M}(X)$ such that for every $\phi \in C(X)$,

$$w(\phi) = w_{\mu}(\phi) - w_{\nu}(\phi),$$

where $w_{\mu}(\phi) = \int_{X} \phi(x) d\mu(x)$ and $w_{\nu}(\phi) = \int_{X} \phi(x) d\nu(x)$.

Lemma 18. A linear operator $A:V\to U$ is continuous if and only if it is bounded.

Theorem 24. If V is a normed space and U is a Banach space, then B(V,U) is a Banach space.

Prop. 23. If $A \in B(U, V)$ then $\ker(A)$ is a closed linear subspace of V.

Prop. 24. If $A: X \to X$ is bounded and λ is its eigenvalue then $|\lambda| \leq ||A||_{an}$.

Lemma 19. If $A: V \to U$ and $B: U \to V$ are linear operators such that $AB = I_U$ and $BA = I_V$, then A and B are both invertible and $B = A^{-1}$.

Prop. 25. Let V and U be normed spaces and $A: V \to U$ be an invertible linear operator. The inverse operator $A^{-1}: U \to V$ is bounded if and only if there is a constant c > 0 such that $||Ax|| \ge c ||x||$ for all $x \in V$.

Lemma 20. Let X be a Banach space and $T \in B(X,X)$. If ||T|| < 1, then I - T is invertible, $(I - T)^{-1} \in B(X,X)$, $(I - T)^{-1} = I + T + T^2 + T^3 + ...$, and

 $||(I-T)^{-1}|| \le \frac{1}{1-||T||}.$

Prop. 26. Let X be a Banach space, let $A: X \to X$ be an invertible linear operator and let $A, A^{-1}, B \in B(X, X)$. If $||B|| ||A^{-1}|| < 1$, then the operator A + B invertible, its inverse operator is bounded, and

$$||(A+B)^{-1}|| \le \frac{||A^{-1}||}{1-||A^{-1}|| ||B||}.$$

Theorem 25. If $A: H \to H$ is a bounded linear operator on a Hilbert space H, then there is a unique bounded linear operator $A^*: H \to H$ such that for all $x, y \in H$,

$$\langle Ax, y \rangle = \langle x, A^*, y \rangle.$$

Moreover, $||A^*||_{op} = ||A||_{op}$.

Lemma 21 (properties of adjoint operators). If $A, B : H \to H$ are bounded operators on a Hilbert space H and $\alpha, \beta \in \mathbb{C}$, then

- 1. $(\alpha A + \beta B)^* = \overline{\alpha} A^* + \overline{\beta} B^*;$
- 2. $(AB)^* = B^*A^*$;
- 3. $(A^*)^* = A;$
- 4. $||A^*A|| = ||AA^*|| = ||A||^2$.

Theorem 26. Let A be a self-adjoint operator on a Hilbert space H. Then all eigenvalues of A are real and eigenvectors corresponding to distinct eigenvalues are orthogonal.

Prop. 27. If H is a separable Hilbert space and $A: H \to H$ is a self-adjoint operator, then $\sigma_p(A)$ is at most countable.

Theorem 27. If A is a bounded self-adjoint operator, then

- 1. $\langle Ax, x \rangle$ is real for all $x \in H$;
- 2. $||A||_{op} = \sup_{||x||=1} |\langle Ax, x \rangle|$.

8 Introduction to Spectral Theory

Prop. 28. If a linear operator $A: X \to X$ is bounded and $\lambda \in \sigma(A)$, then $|\lambda| \leq ||A||_{op}$.

Prop. 29. If a linear operator $A: X \to X$ is bounded, then its resolvent set R(A) is open and its spectrum $\sigma(A)$ is closed.

Lemma 22. If $A: H \to H$ is a bounded linear operator on a Hilbert space H, then $\lambda \in \sigma(A)$ if and only if $\overline{\lambda} \in \sigma(A^*)$.

Theorem 28. If X is a normed space and Y is a Banach space, then K(X,Y) is a closed linear subspace in B(X,Y).

Lemma 23. If $T: H \to H$ is a compact self-adjoint operator on a Hilbert space H, then at least one of the real numbers ||T|| and -||T|| is an eigenvalue of T.

Prop. 30. If $T: H \to H$ is a compact self-adjoint operator on a Hilbert space H, then any eigenspace corresponding to a non-zero eigenvalue is finite-dimensional.

Theorem 29 (Spectral Theorem for a compact self-adjoint operator). Let H be a Hilbert space and $T: H \to H$ be a compact self-adjoint operator.

(a) If $\dim \operatorname{range}(T) = N$ then T and N non-zero real eigenvalues $\lambda_1, \ldots, \lambda_N$ (not necessarily distinct). If $\dim H > N$, then 0 is also an eigenvalue. Moreover, there is an orthonormal set of eigenvectors e_1, \ldots, e_N such that $Te_k = \lambda_k e_k$, and for all $x \in H$

$$Tx = \sum_{k=1}^{N} \lambda_k \langle x, e_k \rangle e_k.$$

(b) If $\dim \operatorname{range}(T) = \infty$, then T has an infinite sequence λ_k of non-zero real eigenvalues such that $\lim_k \lambda_k = 0$. Moreover, there is an orthonormal sequence e_k of eigenvectors such that $Te_k = \lambda_k e_k$ and for all $x \in H$,

$$Tx = \sum_{k=1}^{\infty} \lambda_k \langle x, e_k \rangle e_k.$$

Prop. 31. Let H be an infinite-dimensional separable Hilbert space and let $T: H \to H$ be a compact self-adjoint operator. Then there is an orthonormal basis $E = \{e_k : k \in \mathbb{N}\}$ in H such that $Te_k = \lambda_k e_k$ for all $k \in \mathbb{N}$ and for all $x \in H$,

$$Tx = \sum_{k=1}^{\infty} \lambda_k \langle x, e_l \rangle e_k.$$

Note that it is possible that $\lambda_k = 0$ for some k.

Prop. 32. Finite rank self-adjoint operators on a Hilbert space H are dense in the space of compact self-adjoint operators on H.

Theorem 30. If H is a Hilbert space and $T: H \to H$ is a compact self-adjoint operator, then $\sigma(T) = \overline{\sigma_p(T)}$.