ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

КАФЕДРА ВТ

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

по дисциплине «Архитектура вычислительных систем»

Выполнил: студент гр. AMM2-24 Ириков Евгений Алексеевич

Проверил: к.т.н., доцент Кафедры ВТ Перышкова Евгения Николаевна

Содержание

Постановка задачи	3
1. Анализ архитектуры суперкомпьютера <i>Tianhe-2A</i>	4
1.1 Основные характеристики Tianhe-2A	4
1.2. Структура вычислительных узлов TianHe-2A	5
1.3. Анализ коммуникационных сетей по функциональной структуре центрального процессора	6
1.4 Анализ коммуникационных сетей между центральным процессором одного узла	7
1.5 Анализ коммуникационных сетей между вычислительными узлами CBC	8
1.6 Анализ программного стека	10
1.7 Область применения	11
2.Оценка параметров вычислительной системы	11
2.1 Функция надёжности	11
2.2 Функция осуществимости решения задач	12

Постановка задачи

Выполнить анализ иерархии структур коммуникационных сетей супер вычислительной системы Tianhe-2A (№ 6 в списке Top500 за ноябрь 2020). В соответствии с моделью коллектива вычислителей выделить и описать уровни мультиархитектуры супер вычислительной системы. В том числе для каждого уровня показать функциональную структуру, сущность связей, вычислителя, топологию сети доступные технологии программирования И область эффективного применения, a также структурные характеристики.

Расчет структурных характеристик (диаметр, средний диаметр, бисекционная пропускная способность) выполнить для одного из уровней мультиархитектуры.

1. Анализ архитектуры суперкомпьютера *Tianhe-2A*

1.1 Основные характеристики Tianhe-2A

ТіапНе-2А (ТН-2А, иногда «Міlkyway») - вычислительная система, расположенная в Национальном суперкомпьютерном центре в Гуанчжоу. Была спроектирована в 2013 году китайским национальным университетом оборонных технологий (NUDT) и компанией Inspur, представляет собой модернизацию системы ТіапНе-2 (ТН-2)[9]. Являлся самым быстрым суперкомпьютером в мире в рейтинге ТОР500 с июня 2013 года по ноябрь 2015 года[2].

Компоненты	TianHe-2A					
Производитель	NUDT					
Узлы	17792					
Ядра	4,981,760					
Оперативная память	3,4 PB					
Память	19 PB					
Процессор	Intel Xeon E5-2692v2 12C 2.2GHz+					
	Matrix-2000					
Интерконнект	TH Express-2, 14 GB/s					
Узлы	17792					

Таблица 1. Основные характеристики ТіапНе-2A

1.2. Структура вычислительных узлов TianHe-2A

Ключевым отличием модернизированной версии вычислительной системы TianHe-2A от её старой версии 2015 года заключается в замене ускорителей Xeon Phi на сопроцессоры собственного производства - Matrix-2000. Таким образом, каждый из 17 792 вычислительных узлов TH-2A использует два процессора Intel Ivy Bridge (12 ядер с тактовой частотой 2,2 GHz) и два новых ускорителя Matrix-2000(128 ядер)[3]. Каждый узел имеет 192 GB памяти и пиковую производительность 5,3376 Tflop/s. Результатом этой комбинации является вычислительная система с 35 584 процессорами Ivy Bridge, 35 584 ускорителями Matrix-2000 и в общей сложности содержит 4 981 760 вычислительных ядра.[7]

Каждое из 12 вычислительных ядер Intel Ivy Bridge может выполнять 8 (64-битных) FLOP за такт, что дает общую пиковую производительность 211,2 Gflop/s на процессор (12 ядер × 8 FLOP на такт × 2,2 GHz тактовой частоты). Каждое из 128 вычислительных ядер Matrix-2000 может выполнять 16 FLOP с двойной точностью за такт, что дает общую пиковую производительность 2,4576 Tflop/s для каждого ускорителя (128 ядер × 16 FLOP на такт × 1,2 GHz тактовой частоты). Энергопотребление ускорителя составляет около 240 Вт, а его размеры - 66 на 66 мм. Ускоритель поддерживает восемь каналов DDR4-2400 и имеет RISC архитектуру, расширенную набором команд ISA.[3]

Каждый узел занимает половину материнской платы (Compute blade), 8 плат устанавливаются в одно шасси (Compute frame). В стойке с каждой стороны размещается по 4 шасси, в суперкомпьютере использовано 125 стоек с вычислительными узлами и 13 стоек с сетевым оборудованием и 24 стойки системы хранения данных.

Puc 1. Один из вычислительных узлов TianHe-2A

1.3. Анализ коммуникационных сетей по функциональной структуре центрального процессора

Центрального процессор *Intel Xeon E5-2692 v2* состоит из 12 физических ядер с поддержкой технологии *Hyper Threading*.Имеет кеш 3-го уровня 30720 КВ. Процессор предназначен для серверов, разъем - LGA2011.

Имеет встроенный контроллер оперативной памяти (4 канала, DDR3-800, DDR3-1066, DDR3-1333, DDR3-1600, DDR3-1866) и контроллер PCI Express 3.0 (количество линий - 40).[4]

Процессор обладает двумя последовательными кэш-когерентными шинами (QuickPath Interconnect (QPI)), предназначенными для установления канала коммуникаций между процессорами или процессором и чипсетом. Встроенный контроллер памяти (Integrated Memory Controller (IMC)) отвечает за доступ процессора к оперативной памяти системы.

Puc 2. Устройство процессора Intel Xeon E5-2692 v2

Благодаря наличию двух шин *QPI* процессор *Intel Xeon E5-2692 v2* может использоваться в многопроцессорных системах: одна отвечает за коммуникацию с чипсетом, вторая – со вторым процессором.

1.4 Анализ коммуникационных сетей между центральным процессором одного узла

Коммуникация последних поколений процессоров *Intel* друг с другом осуществляется через последовательные кэш-когерентные шины (*QuickPath Interconnect* (*QPI*)), впервые выпущенные в 2008 году. Основное достоинство интерфейса QPI — это более высокая пропускная способность, чем у оперативной памяти (25.6 ГБайт/с у шины QPI [5] против 19200 МБайт/с (18.75 Гбайт/с) у стандарта оперативной памяти DDR3-2400, используемого в TH-IVB-FEP).

Процессоры, до создания QPI, взаимодействовали друг с другом через шину Front-Side Bus (FSB). Недостаток шины FSB заключается в совмещении её с контроллером памяти, из-за чего ЦП обращались друг к другу через

оперативную память.[8] Ныне ЦП взаимодействуют друг с другом напрямую через *QPI*, без посредника (оперативной памяти), что повысило эффективность работы многопроцессорных систем.

Рис 3. Фрагмент сетевой инфраструктуры ТіапНе-2а

1.5 Анализ коммуникационных сетей между вычислительными узлами СВС

Узлы СВС *Tianhe-2* соединены друг с другом интерконнектом *TH Express-2*, сочетающем в себе функции сетевой карты и маршрутизатора. *TH Express-2* имеет 576 портов для сетевых соединений. Топология данной СВС – Fat Tree[6], изобретённая Чарльзом Лейзерсоном из МІТ, является дешевой и эффективной для суперкомпьютеров. В отличие от классической топологии дерево, в которой все связи между узлами одинаковы, связи в утолщённом дереве становятся более широкими (толстыми, производительными по пропускной способности) с каждым уровнем по мере приближения к корню дерева. Часто используют удвоение пропускной способности на каждом уровне.[3]

Puc 3. Схема топологии Fat Tree

Puc 4. Схема TH Express-2

Учитывая довольно большое количество сетевых портов (576 штук), можно констатировать, что машины TH-IVB-FEP предназначены для произведения вычислений в распределённых сетевых системах.

1.6 Анализ программного стека

Модернизация ТН-2А потребовала разработки и реализации стека программного обеспечения для ускорителя Matrix-2000. Этот программный стек предоставляет среду компиляции и выполнения для OpenMP 4.5 и OpenCL 1.2. В режиме ядра имеется облегченная операционная система на основе Linux со встроенным драйвером ускорителя, работающая на Matrix-2000, которая обеспечивает управление ресурсами устройства и обмен данными с центральным процессором через соединение PCI Express. ОС управляет вычислительными ядрами с помощью тщательно разработанного механизма пула потоков, который позволяет планировать задачи с низкими издержками и высокой эффективностью. В режиме пользователя имеется библиотека симметричной связи, предоставляющая такие функции как соединение (установление сокет-соединений между процессами на разных сообщениями, обмен сообщениями (обмен короткими узлах сети), чувствительными задержке, такими как команды операции синхронизации), и операции RMA (для передачи больших объемов данных, оптимизированные для задач, чувствительных к пропускной способности). [6]

Figure 1. Matrix-2000.

Puc 5. Ускоритель Matrix-2000

1.7 Область применения

Столь мощные компьютеры как «TianHe-2A» незаменимы при использовании в космических исследованиях, исследовании термоядерного оружия, криптографии, анализе климатических изменений.

2.Оценка параметров вычислительной системы

2.1 Функция надёжности

Функцией надёжности Электронно-вычислительной машины(ЭВМ) называется функция

$$R(t) = P\{\forall \tau \in [0, t) \to \omega(\tau) = 1\},\tag{2.1}$$

где $P\{\forall \tau \in [0,t) \to \omega(\tau) = 1\}$ — вероятность того, что для всякого τ , принадлежащего промежутку времени [0,t), производительность $\omega(\tau)$ ЭВМ равна единице, то есть (т.е.) потенциально возможной [1, c. 84]. В нормальных условиях эксплуатации ЭВМ интенсивности отказов равна константе (т.е. $\lambda = \text{const}$) [1, c. 86].

Среднее время безотказной работы в

$$\vartheta = \frac{1}{\lambda},\tag{2.3}$$

где $\vartheta = 10^2$ ч.

Исходя из формулы (2.3), можно легко выразить интенсивность отказов

$$\lambda = \frac{1}{9}.\tag{2.4}$$

Исходя из формулы (2.4), интенсивность отказов (λ) равна **0,01**.

Функция надежности равна

$$R(t) = e^{-\lambda t}$$

t	0	100	200	300	400	500	600	700	800	900	1000
R(t)	1	0,367	0,135	0,049	0,018	0,007	0,002	0,001	0,0003	0,0001	0,00005

Таблица 2.1 Значение функции надёжности

Рисунок 2.1 График зависимости функции надёжности от времени

2.2 Функция осуществимости решения задач

Функция $\Phi(t)$ — это вероятностный закон решения сложной задачи на любой совокупности из п работоспособных машин при произвольном их распределении в пределах всей ВС. Вид этого закона устанавливается на основе статистической обработки результатов решения задач на ВС [1, с. 479].

При эксплуатации ВС статистически установлено, что закон распределения времени решения простых задач на одной машине является экспоненциальным. Данный факт и опыт решения сложных задач на ВС позволяют считать, что [2, с. 479]

$$\Phi(t) = 1 - e^{-\beta t},\tag{2.6}$$

где $\beta = 0.02 1/ч$.

Собственно, осуществимость решения задач оценивается функцией

$$F(t) = R(t) * \Phi(t),$$
 (2.7)

t	0	100	200	300	400	500	600	700	800	900	1000
F(t)	0	0,318	0,133	0,048	0,018	0,007	0,002	0,001	0,0003	0,0001	0,00005

Таблица 2.2 Значения функции осуществимости решения задач

Рисунок 2.2. График зависимости функции осуществимости решения задач от времени

Список литературы

- 1. Хорошевский В.Г. Архитектура вычислительных систем: Учебное пособие. 2-е изд., перераб. и доп. М.: Изд-во МГТУ им. Н.Э. Баумана, 2008.
- November 2020 | TOP500 Supercomputer Sites [Электронный ресурс]. –
 Электрон. текстовые данные. URL: https://www.top500.org/lists/2020/11 (Дата обращения: 01.12.2020).
- 3. Суперкомпьютер Inspur TianHe-2A [Электронный ресурс]. Электрон. текстовые данные. URL: https://parallel.ru/computers/reviews/tianhe-2a.html (Дата обращения: 20.12.2020).
- 4. Intel Xeon E5-2692 v2 [Электронный ресурс]. Электрон. текстовые данные. URL: https://www.chaynikam.info/Xeon_E5-2692_v2.html (Дата обращения: 20.12.2020).
- 5. QPI шина Intel. Скоростные характеристики, принцип работы | xTechx.ru [Электронный ресурс]. Электрон. текстовые данные. URL: http://www.xtechx.ru/c40-visokotehnologichni-spravochnik-hitech-book/qpi-intel-interface/ (Дата обращения: 20.12.2020).
- 6. Fat Tree [Электронный ресурс]. Электрон. текстовые данные. URL: https://ru.wikipedia.org/wiki/Fat_tree (Дата обращения: 20.12.2020).
- 7. Тяньхэ-2 [Электронный ресурс]. Электрон. текстовые данные. URL: https://wikizero.com/ru/Tianhe-2tree (Дата обращения: 20.12.2020).
- 8. Китайский суперкомпьютер Тяньхэ-2 возглавил мировой рейтинг Top500. [Электронный ресурс]. Электрон. текстовые данные. URL: https://habr.com/ru/post/183598 (Дата обращения: 20.12.2020).
- Tianhe-2 [Электронный ресурс]. Электрон. текстовые данные. URL: http://i.cons-systems.ru/u/73/9379d22eba11e5ab71f9a9cda70bf5/-/Tianhe-2.pdf (Дата обращения: 20.12.2020).