Proving Two Triangles are Congruent

 $\mathsf{SAA}/\mathsf{AAS}$ (Side-Angle-Angle) Theorem: If two angles and a non-included side of one triangle are congruent to the corresponding two angles and a non-included side of another triangle, then the triangles are congruent.

Isosceles Triangle Theorem: If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Converse of Isosceles Triangle Theorem: If two angles of a triangle are congruent, then the sides opposite those angles are also congruent

An equilateral triangle is also equiangular.

LL Congruence Theorem: If the legs of one right triangle are congruent to the legs of another right triangle, then the triangles are congruent.

LA (Leg-Acute angle) Congruence Theorem: If a leg and an acute angle of one right triangle are congruent to a leg and an acute angle of another right triangle, then the triangles are congruent.

Practice Exercises

Complete the following proofs.

Given: $\angle A \cong \angle E$, $\angle B \cong \angle B$, $\overline{FG} \cong \overline{FG}$

Prove: $\triangle ABC \cong \triangle EDF$

Proof:

Statements	Reasons
1. $\angle A + \angle B + \angle C = 180^{\circ}$ $\angle D + \angle E + \angle F = 180^{\circ}$	1.
$2. \angle A + \angle B + \angle C = \\ \angle E + \angle D + \angle F$	2.
3. $\angle A = \angle E$, $\angle B = \angle D$	3.
4. ∠ <i>C</i> = ∠ <i>F</i>	4.
5. $\overline{BC} \cong \overline{DF}$	5.
6. $\triangle ABC \cong \triangle EDF$	6.

2.

Given: E is the midpoint of segments AD and BC.

Prove: $\triangle AEB \cong \triangle DEC$

Proof:

Statements	Reasons
1. E is the midpoint of segments AD and BC.	1.
2. $\overline{AE} \cong \overline{DE}$	2.
3. ∠ <i>AEB</i> ≅ ∠ <i>DEC</i>	3.
4. <i>BE</i> ≅ <i>CE</i>	4.
5. $\triangle AEB \cong \triangle DEC$	5.

Problem Set

Complete the following proof.

Given: $\overline{\mathit{FN}} \perp \overline{\mathit{EI}}$, $\overline{\mathit{FN}}$ bisects $\angle \mathit{EFI}$

Prove: $\triangle FNI \cong \triangle FNE$

Proof:

1001.		
Reasons		
1.		
2.		
3.		
4.		
5.		
6.		
7.		

Proving Two Triangles are Congruent

SAA/AAS (Side-Angle-Angle) Theorem: If two angles and a non-included side of one triangle are congruent to the corresponding two angles and a non-included side of another triangle, then the triangles are congruent.

Isosceles Triangle Theorem: If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Converse of Isosceles Triangle Theorem: If two angles of a triangle are congruent, then the sides opposite those angles are also congruent.

An equilateral triangle is also equiangular.

LL Congruence Theorem: If the legs of one right triangle are congruent to the legs of another right triangle, then the triangles are congruent.

LA (Leg-Acute angle) Congruence Theorem: If a leg and an acute angle of one right triangle are congruent to a leg and an acute angle of another right triangle, then the triangles are congruent.

Practice Exercises

Complete the following proofs

Given: $\angle A \cong \angle E$, $\angle B \cong \angle B$, $\overline{FG} \cong \overline{FG}$

Prove: $\triangle ABC \cong \triangle EDF$

Proof:

Statements	Reasons
1. $\angle A + \angle B + \angle C = 180^{\circ}$ $\angle D + \angle E + \angle F = 180^{\circ}$	1.
$ 2. \angle A + \angle B + \angle C = \\ \angle E + \angle D + \angle F $	2.
3. $\angle A = \angle E$, $\angle B = \angle D$	3.
4. ∠ <i>C</i> = ∠ <i>F</i>	4.
5. $\overline{BC} \cong \overline{DF}$	5.
6. $\triangle ABC \cong \triangle EDF$	6.

Given: E is the midpoint of segments AD and BC.

Prove: $\triangle AEB \cong \triangle DEC$

Proof:

2.

Statements	Reasons
1. E is the midpoint of segments AD and BC .	1.
2. $\overline{AE} \cong \overline{DE}$	2.
3. ∠ <i>AEB</i> ≅ ∠ <i>DEC</i>	3.
4. <i>BE</i> ≅ <i>CE</i>	4.
5. $\triangle AEB \cong \triangle DEC$	5.

Problem Set

Complete the following proof.

Given: $\overline{FN} \perp \overline{EI}$, \overline{FN} bisects $\angle EFI$

Prove: $\triangle FNI \cong \triangle FNE$

Proof

1001.	
Statements	Reasons
1. FN ⊥ EI	1.
2. $\angle FNI = 90^{\circ}$, $\angle FNE = 90^{\circ}$	2.
3. ∠ <i>FNI</i> ≅ ∠ <i>FNE</i>	3.
4. $\overline{FN} \cong \overline{FN}$	4.
5. <i>FN</i> bisects ∠ <i>EFI</i>	5.
6. ∠ <i>EFN</i> ≅ ∠ <i>IFN</i>	6.
7. $\triangle FNI \cong \triangle FNE$	7.