Notes on Signature Transform

Kexing Ying

February 24, 2025

We introduce the following notations:

- For $p \ge 1$, $a < b \in \mathbb{R}_+$ and V a normed space, denote $C_0^{p\text{-var}}([a,b],V) = C_0^{p\text{-var}}$ for the space of functions x with finite p-variation and is such that $x_0 = 0$. We omit the 0 subscript from the notation in the case the latter condition is removed. When p = 1, we simply write C^1 .
- For V a vector space, denote $T(V) = \bigoplus_{k=0}^{\infty} V^{\otimes k}$ and $T((V)) = \prod_{k=0}^{\infty} V^{\otimes k}$. T(V) is referred to as the tensor algebra while T((V)) is referred to as the extended tensor algebra. Note that T(V) can be viewed as a subspace of T((V)) for which all but finitely may terms are zero.
- We use the concise notation $v_1v_2 = v_1 \cdot v_2$ for the tensor product $v_1 \otimes v_2$ whenever there is no ambiguity.

In the case $p \in [1, 2)$, using the theory of Young integration, we can define iterated integrals of the form

$$S(x)_{[a,b]}^{(n)} := \int_{0 < t_1 < \dots < t_n < T} \mathrm{d}x_{t_1} \cdots \mathrm{d}x_{t_n}.$$

Definition 1. The signature transform (ST) is the mapping $S = S_{[a,b]} : C^{p\text{-var}}([a,b],V) \to T((V))$ defined by

$$S(x) = S(x)_{[a,b]} = (1, S(x)_{[a,b]}^{(1)}, S(x)_{[a,b]}^{(2)}, \dots).$$

Moreover, we define the truncated signature transform (TST) $S_n(x) = S_n(x)_{[a,b]} \in T(V)$ by simply setting all but the first n+1 terms to zero, i.e. the last non-zero term is $S(x)_{[a,b]}^{(n)}$.

The signature occurs naturally in the context of controlled differential equations. Suppose $x \in C^{p\text{-var}}$ for some $p \in [1,2)$ and $T(y): V \to V$ is a linear map. Then, performing Picard iteration on the differential equation $\mathrm{d}y_t = T(y_t)\mathrm{d}x_t$ with initial condition y_0 :

$$y_t^{(0)} = y_0, \ y_t^{(k+1)} = y_0 + \int_0^t T(y^{(k)}) dx_t,$$

it is easy to see by induction that

$$y_t^{(k)} = \sum_{i=0}^k T^{\otimes i}(y_0) S(x)_{[0,t]}^{(i)}$$

where $T^{\otimes i}(y)$ denotes the *i*-fold multilinear map defined by

$$T^{\otimes 0}(y) = y$$
, $T^{\otimes (k+1)}(y)(v_1, \dots, v_{k+1}) = T(T^{\otimes k}(y)(v_1, \dots, v_k))(v_{k+1})$.

Theorem 1. The signature transform is invariant under reparametrization, i.e. for $x \in C^{p\text{-var}}([a,b],V)$, $\lambda:[c,d] \to [a,b]$ a continuous, monotone surjection, $S(x)_{[a,b]} = S(x \circ \lambda)_{[c,d]}$.

Definition 2. For $x \in C^1$, we define the reparametrization of x with constant speed x^* to be the path $x^* = x \circ \lambda : [0, ||x||_1] \to V$ where

$$\lambda(t) := \inf\{s \ge a : ||x||_{1:[a,s]} > t\}.$$

As a consequence of the above proposition, $S(x) = S(x^*)$.

Definition 3. For $x \in C^{p\text{-var}}([a,b])$, $y \in C^{p\text{-var}}([b,c])$, we define the concatenation of x and y to be the path $x * y \in C^{p\text{-var}}([a,c])$ defined by

$$(x*y)_t = \begin{cases} x_t & t \in [a,b), \\ y_t - y_b + x_b & t \in [b,c]. \end{cases}$$

Theorem 2 (Chen's relation). For $x \in C^{p\text{-var}}([a,b]), y \in C^{p\text{-var}}([b,c]), S(x*y) = S(x)S(y)$.

Chen's relation is incredibly useful in actual computations. Suppose we observe a time series $(t_i, x_i)_{i=1}^n$ and by linear interpolation, we obtain a path $\gamma \in C^1([0, 1], V)$. We would like to compute the signature of γ .

Let us first compute the signature of a linear path. Suppose $x_a, v \in V$ and $x_t = x_a + \frac{t-a}{b-a}v$. Then, we can compute

$$S(x)_{[a,b]}^{(k)} = \frac{v^{\otimes k}}{(b-a)^k} \int_{a < t, < \dots < t, < b} \mathrm{d}t_1 \cdots \mathrm{d}t_k = \frac{v^{\otimes k}}{k!}.$$

Thus, $S(x) = \exp_{\otimes}(v) = \sum_{i=0}^{\infty} \frac{1}{k!} v^{\otimes i}$.

Now, going back to γ . As γ is the concatenation of linear paths of the form $x_t^i:[t_i,t_{i+1}]\to V$, it follows by Chen's relation that

$$S(\gamma)_{[t_1,t_n]} = \exp_{\otimes}(x_2 - x_1) \otimes \cdots \otimes \exp_{\otimes}(x_n - x_{n-1}).$$

Consider now the ordinary differential equation dy = y dx which has solution $y = y_0 e^x$. In the context of controlled differential equations, as indicated by the linear case, the signature plays the role of the exponential function. In particular, we have the following theorem.

Theorem 3 (CDE formulation of ST). Let $x \in C^{p\text{-var}}$ for some $p \in [1,2)$ and $E \subseteq T((V))$ be a Banach subalgebra containing $S_p := S(C^{p\text{-var}})_{[a,b]} \subseteq T((V))$. Then, for any $y \in E$, $y_t := yS(x)_{[a,t]}$ is the unique solution to the controlled differential equation

$$dy_t = y_t dx_t$$
 with $y_0 = y$.

Definition 4. For $x \in C^{p\text{-var}}$, define the time reversal of x to be \overleftarrow{x} defined by

$$\overleftarrow{x}_t = x_{a+b-t}$$
 for all $t \in [a, b]$.

Via the CDE formulation of the signature transform, it is easy to see that the time reversal of a path inverts the signature of said path.

Proposition 0.1. For $x \in C^{p\text{-var}}$, $S(\overleftarrow{x})S(x) = S(x)S(\overleftarrow{x}) = 1$.

Definition 5. Define the shuffle operation $\sqcup : T(V) \times T(V) \to T(V)$ by

- for $f \in V$ and $r \in \mathbb{R}$, $f \coprod r = r \coprod f = rf$,
- for $f = f_- \otimes a \in V^{\otimes k}$, $g = g_- \otimes b \in V^{\otimes l}$,

$$f \coprod g = (f_- \coprod g) \otimes a + (f \coprod g_-) \otimes b.$$

For *x* differentiable and $f, g \in V^*$, we observe by the integration by parts formula that

$$f(x_{ab})g(x_{ab}) = \int_a^b f(x_{as})dg(x_s) + \int_a^b g(x_{as})df(x_s)$$

where we have denoted $x_{at} := x_t - x_a$. Thus, by observing

$$\langle f, S(x)_{[a,b]}^{(1)} \rangle = f\left(\int_a^b dx_s\right) = f(x_{ab})$$

and moreover, as $f \coprod g = g \otimes f + f \otimes g$, we have

$$\left\langle f \sqcup g, S(x)_{[a,b]}^{(2)} \right\rangle = \left\langle g \otimes f, \int_{a}^{b} \int_{a}^{s} \mathrm{d}x_{r} \otimes \mathrm{d}x_{s} \right\rangle + \left\langle f \otimes g, \int_{a}^{b} \int_{a}^{s} \mathrm{d}x_{r} \otimes \mathrm{d}x_{s} \right\rangle$$
$$= \int_{a}^{b} g(x_{as}) \mathrm{d}f(x_{s}) + \int_{a}^{b} f(x_{as}) \mathrm{d}g(x_{s}).$$

Thus, the above equality can be alternatively written as

$$\langle f \sqcup g, S(x)_{[a,b]}^{(2)} \rangle = \langle f, S(x)_{[a,b]}^{(1)} \rangle \langle g, S(x)_{[a,b]}^{(1)} \rangle.$$

Theorem 4 (Shuffle identity). For $x \in C^{p\text{-var}}$ where $p \in [1,2)$ and $f,g \in T((V))^*$, we have

$$\langle f \sqcup g, S(x)_{[a,b]} \rangle = \langle f, S(x)_{[a,b]} \rangle \langle g, S(x)_{[a,b]} \rangle.$$

An important consequence of the shuffle identity is the following proposition.

Proposition 0.2. S_p is linearly independent in T((V)).

We are interested in the question "to what extent does the signature determine a path on $C_0^{p\text{-var}}$. It is clear that the signature does not determine the path completely as we saw that, for $x \in C_0^{p\text{-var}}$,

$$S(x * \overleftarrow{x}_{\cdot+(b-a)}) = S(x)S(\overleftarrow{x}_{\cdot+(b-a)}) = S(x)S(\overleftarrow{x}) = 1$$

while $x * \overleftarrow{x}_{\cdot+(b-a)}$ is not the constant path for any non-constant x.

In the finite dimensional case, one can show that any two paths which agrees on a one dimensional projection and have the same signature must be the same path. T

By defining the equivalence relation on $C_0^{p\text{-var}}$ by S(x) = S(y), one can view S_p as a quotient of $C_0^{p\text{-var}}$. We introduce some terminologies for dealing with this quotient.

• We call S_p the space of unparametrized paths.

- For any $x \in C_0^{p\text{-var}}$, we denote $[x] \in S_p$ for the equivalence class containing x under this equivalence relation.
- For $x \in C_0^{p\text{-var}}$ with x = [1], we refer to x as a tree like path.
- For $x \in C_0^{p\text{-var}}$, we call $||x||_{p\text{-var}}$ its *length* and we say x is tree reduced if $||x||_{p\text{-var}} = \inf_{x' \in [x]} ||x'||_{p\text{-var}}$.

For p = 1, there exists a unique (up to reparametrization) tree reduced path in each equivalence class.

Since by Chen's relation, the signature of a concatenated path is only dependent on the signature of its constituents, concatenation can be lifted to the quotient space. It is easy to see that S_p forms a group with this operation.

Definition 6. For any $f \in T((V))^*$, define $\Phi_f : S_p \to \mathbb{R}$ by

$$\Phi_f([x]) = \langle f, S(x) \rangle.$$

Proposition 0.3. The set $\Phi_{T((V))^*} = \{\Phi_f : f \in T((V))^*\}$ is a unital subalgebra of \mathbb{R}^{S_p} which separates points.

Consequently, by Stone-Weierstrass, if S_p is equipped with a topology for which $K \subseteq S_p$ is a compact subset, and $\Phi_{T((V))^*}|_K = \{\Phi_f|_K : f \in T((V))^*\} \subseteq C(K,\mathbb{R})$, then it is dense (with respect to $\|\cdot\|_{\infty}$). This type of result is referred to as uniform approximation with signatures.

For $x \in C_0^{p\text{-var}}$ and some vector field $f(y): V \to V$, we define the Itô-Lyons map

$$\Phi: x \mapsto y$$
, such that $dy_t = f(y_t)dx_t$ with initial condition y_a .

We are interested in whether or not we can lift Φ through the quotient so that it is instead of a map from S_p . We will assume $f \in C^{\infty}$ and p = 1. Moreover, suppose that there exists some C > 0 such that for all $k \in \mathbb{N}$, $||f^{(k)}||_{\infty} \leq C^k$.

Proposition 0.4 (Factorial decay of the signature). For $x \in C^1$ and $k \in \mathbb{N}$,

$$||S(x)^{(k)}||_{V^{\otimes k}} \le \frac{1}{k!} ||x||_1^k.$$

Let y be the solution of the CDE $dy_t = f(y_t)dx_t$ with initial condition y_a , we define

$$y_t^N = y_a + \sum_{k=1}^N f^{(k)}(y_a)S(x)^{(k)}.$$

Then, by induction and Taylor theorem, it is easy to see that

$$y_t = y_t^N + \int_{a < t_1 < \dots < t_{N+1} < t} f^{(N+1)}(y_{t_1}) dx_{t_1} \cdots dx_{t_{N+1}}.$$

Thus, by the factorial decay of the signature, it follows that

$$||y_t - y_t^N|| = \left| \left| \int_{a < t_1 < \dots < t_{N+1} < t} f^{(N+1)}(y_{t_1}) dx_{t_1} \dots dx_{t_{N+1}} \right| \right| \le \frac{C^{N+1}}{(N+1)!} ||x||_1^{N+1} \to 0$$

as $N \to \infty$. Hence, as y^N is uniquely determined by the signature of x and the initial condition, it follows that Φ is invariant over any equivalence class and we may lift it to a map on S_p .