Premessa

D'ora in poi si denoterà con u' il simbolo \dot{u} , inteso come derivata nel senso di funzioni di variabile reale.

Gli spazi normati $C^1(I,X)$ e c_0

\mathbb{H} Notazione: Lo spazio $C^1(I,X)$.

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Si denota con $C^1(I,X)$ lo spazio vettoriale delle funzioni $f:I\to X$ di classe C^1 , con le usuali operazioni definite sulle funzioni a valori in uno spazio vettoriale.

ho Proposizione 26.1: Norma su $C^1([a;b],X)$ e completezza dello spazio normato risultante

Sia $[a;b] \subseteq \mathbb{R}$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Per ogni $u \in C^1ig([a;b],Xig)$, si ponga

$$\|u\|_1 = \|u\|_{C^0([a:b],\mathbb{R})} + \|u'\|_{C^0([a:b],\mathbb{R})}$$

(Norma della somma);

$$\|u\|_{\infty} = \max \left\{ \|u\|_{C^0([a;b],\mathbb{R})}, \|u'\|_{C^0([a;b],\mathbb{R})}
ight\}$$

(Norma del massimo);

$$\|u\|_{1,t_0} = \|u'\|_{C^0([a;b],\mathbb{R})} + \|u(t_0)\|$$
 per ogni $t_0 \in [a;b]$

(Norma della somma, puntualmente rispetto a t_0);

$$\|u\|_{\infty,t_0}=\max\left\{\|u'\|_{C^0([a;b],\mathbb{R})},\|u(t_0)\|
ight\}$$
 per ogni $t_0\in[a;b]$

(Norma del massimo, puntualmente rispetto a t_0).

Si hanno i seguenti fatti:

- Le funzioni $\|\cdot\|_1$, $\|\cdot\|_\infty$, $\|\cdot\|_{1,t_0}$ e $\|\cdot\|_{\infty,t_0}$ al variare di $t_0 \in [a;b]$ sono norme equivalenti su $C^1([a;b],X)$;
- Lo spazio $C^1([a;b],X)$ dotato di una qualunque di tali norme è di Banach.

Dimostrazione

È evidente che $\|\cdot\|_1$ e $\|\cdot\|_\infty$ siano norme equivalenti su $C^1([a;b],X)$.

 $\|\cdot\|_{1,t_0}$ e $\|\cdot\|_{\infty,t_0}$ sono evidentemente nonnegative, assolutamente omogenee e sub-additive per ogni $t_0\in[a;b]$.

Esse sono anche definite positive;

infatti, fissato $t_0 \in [a;b]$ e $u \in C^1([a;b],X)$ tale che $||u||_{1,t_0} = 0$ oppure $||u||_{\infty,t_0} = 0$, segue $u(t_0) = 0$ e anche $u' = \mathbf{0}$, cioè u costante;

quindi si ha $u = \mathbf{0}$, essendo costante e annullandosi in t_0 .

È evidente che, per ogni $t_0 \in [a;b]$, le norme $\|\cdot\|_{1,t_0}$ e $\|\cdot\|_{\infty,t_0}$ siano equivalenti.

Per acquisire l'equivalenza mutuale di tutte le norme definite sopra, basta mostrare allora che, fissato $t_0 \in [a;b]$, le norme $\|\cdot\|_1$ e $\|\cdot\|_{1,t_0}$ sono equivalenti;

le altre equivalenze si ottengono per transitività.

Sia dunque $u \in C^1([a;b],X)$.

Si ha

$$\|u\|_{1,t_0} = \|u'\|_{C^0([a;b],\mathbb{R})} + \|u(t_0)\|$$
 Per definizione di $\|\cdot\|_{1,t_0}$
$$\leq \|u'\|_{C^0([a;b],\mathbb{R})} + \|u\|_{C^0([a;b],\mathbb{R})}$$
 In quanto $\|u\|_{C^0([a;b],\mathbb{R})} = \sup_{t \in [a;b]} \|u(t_0)\|$ per definizione

$$=\|u\|_1$$
 Per definizione di $\|\cdot\|_1$

D'altra parte, si fissi $t \in [a; b]$.

Essendo u di classe C^1 per ipotesi, per il teorema di Torricelli-Barrow generalizzato ([Corollario 21.11]) si ha

$$u(t)=u(t_0)+\int_{t_0}^t u'(s)\,ds.$$

Ne viene allora che

$$\|u(t)\| = \|u(t_0) + \int_{t_0}^t u'(s) \, ds\|$$

$$\leq \|u(t_0)\| + \|\int_{t_0}^t u'(s) \, ds\|$$
Per sub-additività delle norme
$$\leq \|u(t_0)\| + \int_{t_0}^t \|u'(s)\| \, ds$$
Per maggiorazione della norma dell'integrale di Riemann ([Proposizione 21.6])
$$\leq \|u(t_0)\| + |t - t_0| \sup_{s \in [t_0, t]} \|u'(s)\|$$
Per il teorema della media; $[t_0, t]$ è il segmento di estremi t_0 e t , per ovviare al caso in cui $t < t_0$

$$\leq \|u(t_0)\| + |b - a| \sup_{s \in [a;b]} \|u'(s)\|$$
Essendo $t_0, t \in [a;b]$

$$= \|u(t_0)\| + |b - a| \cdot \|u'\|_{C^0([a;b],X)}$$
Per definizione di $\|\cdot\|_{C^0([a;b],X)}$

Dall'arbitrarietà di $t \in [a; b]$ viene allora che

$$\sup_{t \in [a;b]} \|u(t)\| \leq \|u(t_0)\| + |b-a| \cdot \|u'\|_{C^0([a;b],X)}, \text{ ossia } \|u\|_{C^0([a;b],X)} \leq \|u(t_0)\| + |b-a| \cdot \|u'\|_{C^0([a;b],X)} \text{ per definizione di } \|\cdot\|_{C^0([a;b],X)}.$$

In ultima battuta, si ha allora

$$\|u\|_1 = \|u\|_{C^0([a;b],X)} + \|u'\|_{C^0([a;b],X)}$$
 Per definizione di $\|\cdot\|_1$
 $\leq \|u(t_0)\| + (|b-a|+1) \cdot \|u'\|_{C^0([a;b],X)}$ Per quanto osservato prima
 $\leq (|b-a|+1) \cdot (\|u(t_0)\| + \|u'\|_{C^0([a;b],X)})$
 $= (|b-a|+1)\|u\|_{1,t_0}.$

Avendo acquisito il punto precedente, la completezza di $C^1([a;b],X)$ rispetto a una delle norme sopra definite equivale alla sua completezza rispetto a un'altra di esse.

Si provi allora la completezza dello spazio $(C^1([a;b],X),\|\cdot\|_1)$.

Sia dunque $\{f_n\}_{n\in\mathbb{N}}\subseteq C^1([a;b],X)$ una successione di Cauchy, e si provi che essa converge.

Fissato arepsilon>0, per ipotesi esiste $u\in\mathbb{N}$ tale che $\|f_m-f_n\|_1<arepsilon$ per ogni $m,n\geq
u;$

Si osserva che, dalla definizione di $\|\cdot\|_1$, seguono

$$\|f_m-f_n\|_1 \geq \|f_m-f_n\|_{C^0([a;b],X)} \ \mathrm{e} \ \|f_m-f_n\|_1 \geq \|f_m'-f_n'\|_{C^0([a;b],X)}$$
 ;

ciò significa allora che le successioni $\{f_n\}_{n\in\mathbb{N}}$ e $\{f'_n\}_{n\in\mathbb{N}}$ sono di Cauchy in $\Big(C^0\big([a;b],X\big),\|\cdot\|_{C^0\big([a;b],X\big)}\Big)$, che è completo.

Siano allora $\tilde{f} = \lim_n f_n$ e $\tilde{g} = \lim_n f'_n$, dove tali limiti sono da intendere in $\Big(C^0\big([a;b],X\big),\|\cdot\|_{C^0\big([a;b],X\big)}\Big)$.

Ciò significa che $\{f_n\}_{n\in\mathbb{N}}$ e $\{g_n\}_{n\in\mathbb{N}}$ convergono uniformemente, a \tilde{f} e \tilde{g} rispettivamente.

Allora, dal teorema di scambio tra limiti e derivate segue che \tilde{f} è derivabile in [a;b], e si ha $\tilde{f}'=\tilde{g}$.

Ne viene allora che

$$\begin{split} &\lim_n \|f_n - \tilde{f}\|_1 \\ &= \lim_n \|f_n - \tilde{f}\|_{C^0([a;b],X)} + \|f'_n - \tilde{f}'\|_{C^0([a;b],X)} \quad \text{Per definizione di } \|\cdot\|_1 \\ &= \lim_n \|f_n - \tilde{f}\|_{C^0([a;b],X)} + \|f'_n - \tilde{g}\|_{C^0([a;b],X)} \quad \text{Per quanto osservato prima} \\ &= 0 \quad \qquad \qquad \text{Per definizione di } \tilde{f} \in \tilde{g} \end{split}$$

Dunque, $\{f_n\}$ converge a \tilde{f} in $(C^1([a;b],X),\|\cdot\|_1)$, e la tesi è acquisita.

\mathbb{H} Notazione: Lo spazio c_0 .

Si denota con c_0 lo spazio vettoriale delle successioni $\{x_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ infinitesime, con le usuali operazioni definite sulle successioni a valori in uno spazio vettoriale.

$holimits_0$ Proposizione 26.2: Norma su c_0 e completezza dello spazio normato risultante

Si definisca la funzione $\|\cdot\|_{c_0}:c_0 o\mathbb{R}$ ponendo

$$\{x_n\}_{n\in\mathbb{N}}\mapsto \|\{x_n\}_{n\in\mathbb{N}}\|_{c_0}:=\sup_{n\in\mathbb{N}}|x_n|.$$

Si hanno i seguenti fatti:

- $\|\cdot\|_{c_0}$ è una norma su c_0 ;
- Lo spazio $(c_0, \|\cdot\|_{c_0})$ è di Banach.

Dimostrazione

Che $\|\cdot\|_{c_0}$ sia una norma su c_0 segue direttamente dalle proprietà del valore assoluto e dell'estremo superiore.

Si provi la completezza di $(c_0, \|\cdot\|_{c_0})$.

Si osserva che $c_0 \subseteq \mathcal{B}(\mathbb{N}, \mathbb{R})$ (si ricordi che $\mathcal{B}(\mathbb{N}, \mathbb{R})$ è lo spazio delle funzioni limitate da \mathbb{N} in \mathbb{R} , cioè lo spazio delle successioni a valori reali e limitate), e $\|\cdot\|_{c_0} = (\|\cdot\|_{\mathcal{B}(\mathbb{N},\mathbb{R})})_{|c_0}$.

Dunque, $(c_0, \|\cdot\|_{c_0})$ è un sottospazio normato di $(\mathcal{B}(\mathbb{N}, \mathbb{R}), \|\cdot\|_{\mathcal{B}(\mathbb{N}, \mathbb{R})})$;

Essendo questo completo, per acquisire la completezza di $(c_0, \|\cdot\|_{c_0})$, basta allora mostrare che c_0 è chiuso in $(\mathcal{B}(\mathbb{N}, \mathbb{R}), \|\cdot\|_{\mathcal{B}(\mathbb{N}, \mathbb{R})})$.

Sia dunque $\tilde{s} \in \mathcal{B}(\mathbb{N}, \mathbb{R})$, e sia $\{s_n\}_{n \in \mathbb{N}} \subseteq c_0$ una successione convergente a \tilde{s} ;

si provi che $ilde{s}\in c_0$, ossia $\lim_k ilde{s}(k)=0$.

Si osserva intanto che, per ogni $n, k \in \mathbb{N}$, si ha

$$| ilde{oldsymbol{s}}(k)| = | ilde{oldsymbol{s}}(k) - oldsymbol{s}_n(k) + oldsymbol{s}_n(k)|$$

 $\leq | ilde{s}(k) - s_{n_0}(k)| + |s_n(k)|$ Per la seconda disuguaglianza triangolare

 $\leq \sup_{k \in \mathbb{N}} | ilde{s}(k) - s_n(k)| + |s_n(k)|$ Dalle proprietà dell'estremo superiore

 $=\| ilde{m{s}}-m{s}_n\|_{\mathcal{B}(\mathbb{N},\mathbb{R})}+|m{s}_n(k)|$ Per definizione di $\|\cdot\|_{\mathcal{B}(\mathbb{N},\mathbb{R})}$

Sia ora $\varepsilon > 0$.

Essendo $\lim_n \|\tilde{s} - s_n\|_{\mathcal{B}(\mathbb{N},\mathbb{R})} = 0$ per ipotesi, esiste $n_0 \in \mathbb{N}$ tale che $\|\tilde{s} - s_n\|_{\mathcal{B}(\mathbb{N},\mathbb{R})} < \frac{\varepsilon}{2}$ per ogni $n \ge n_0$.

Essendo $\lim_k s_n(k) = 0$ per ogni $n \in \mathbb{N}$ per ipotesi, sia $\nu \in \mathbb{N}$ tale che $|s_{n_0}(k)| < \frac{\varepsilon}{2}$ per ogni $k \ge \nu$.

Per la catena di disuguaglianze ottenuta prima, si ha allora che, per ogni $k \ge \nu$, vale

$$egin{aligned} | ilde{m{s}}(k)| &\leq \| ilde{m{s}} - m{s}_{n_0}\|_{\mathcal{B}(\mathbb{N},\mathbb{R})} + |m{s}_{n_0}(k)| \ &< rac{arepsilon}{2} + rac{arepsilon}{2} = arepsilon. \end{aligned}$$

Dunque, $\lim_{k} \tilde{s}(k) = 0$.

₩ Definizione: Equi-derivabilità

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia $\mathcal{F} = \{f_i : A \to \mathbb{R} \mid i \in \mathcal{I}\}$ una famiglia di funzioni derivabili.

Sia $t_0 \in I$.

Le funzioni in \mathcal{F} si dicono **equi-derivabili** in t_0 quando

$$\lim_{\lambda o 0}\sup_{i\in\mathcal{I}}\left|rac{f_i(t_0+\lambda)-f_i(t_0)}{\lambda}-f_i'(t_0)
ight|=0.$$

Le funzioni in \mathcal{F} si dicono **equi-derivabili** su I quando sono equi-derivabili in ogni punto di I.

lacktriangle Proposizione 26.3.1: Caratterizzazione dello spazio $C^1([a;b],c_0)$, prima parte

Sia $[a;b] \subseteq \mathbb{R}$.

Sia
$$u=\{u_n(\cdot)\}_{n\in\mathbb{N}}\in C^1ig([a;b],c_0ig).$$

Allora, $\{u_n\}_{n\in\mathbb{N}}$ è una successione di funzioni equi-derivabili, e si ha:

- $ullet \lim_n u_n(t) = \lim_n u_n'(t) = 0 ext{ per ogni } t \in [a;b];$
- La successione $\{u'_n\}_{n\in\mathbb{N}}$ è costituita da funzioni equi-continue ed equi-limitate;
- $u' = \{u'_n(\cdot)\}.$

Dimostrazione

Essendo per ipotesi $u(t) \in c_0$ per ogni $t \in [a;b]$, si ha $\lim_n u_n(t) = 0$ per definizione di c_0 .

Essendo per ipotesi u di classe C^1 , risulta ben definita la derivata u' e si ha

$$\lim_{\lambda o 0} \left\| rac{u(t+\lambda) - u(t)}{\lambda} - u'(t)
ight\|_{{\mathcal C}_0} = 0;$$

posto $u' = \{v_n(\cdot)\}_{n \in \mathbb{N}}$, si ha cioè

$$\lim_{\lambda o 0} \sup_{n \in \mathbb{N}} \left| rac{u_n(t+\lambda) - u_n(t)}{\lambda} - v_n(t)
ight| = 0$$
, per definizione di $\|\cdot\|_{c_0}$.

Ne segue che $\{u_n\}_{n\in\mathbb{N}}$ è una successione di funzioni equi-derivabili, e si ha $u'_n=v_n$ per ogni $n\in\mathbb{N}$; dunque, $u'=\{u'_n(\cdot)\}_{n\in\mathbb{N}}$.

Anche $u'(t) \in c_0$ per ogni $t \in [a; b]$ ne viene che $\lim_n u'_n(t) = 0$, essendo derivata (nel senso delle funzioni di variabile reale) di una funzione a valori in c_0 ;

avendo acquisito che $u'=\{u'_n(\cdot)\}_{n\in\mathbb{N}}$, ne segue che $\lim_n u'_n(t)=0$ per definizione di c_0 .

Essendo per ipotesi u di classe C^1 , u' continua su [a;b] compatto, dunque è limitata e uniformemente continua.

Dalla limitatezza di u' segue l'esistenza di M>0 tale che $\|u'(t)\|_{c_0}\leq M$ per ogni $t\in [a;b];$ dalla definizione di $\|\cdot\|_{c_0}$ e dal fatto che $u'=\{u'_n(\cdot)\}_{n\in\mathbb{N}}$, si ha allora che $\sup_{n\in\mathbb{N}}|u'_n(t)|\leq M$ per ogni $t\in [a;b].$

Ne viene che la successione $\{u_n'\}_{n\in\mathbb{N}}$ è costituita da funzioni equi-limitate.

Dall'uniforme continuità di u' si ha che

per ogni $\varepsilon > 0$, esiste $\delta > 0$ tale che, per ogni $t, s \in [a; b]$ con $|t - s| < \delta$, si abbia $\|u'(t) - u'(s)\|_{c_0} < \varepsilon$, ossia $\sup_{n \in \mathbb{N}} |u'_n(t) - u'_n(t)| < \varepsilon$ per definizione di c_0 .

Ne viene che la successione $\{u_n'\}_{n\in\mathbb{N}}$ è costituita da funzioni equi-uniformemente continue, dunque equi-continue.

La tesi è allora acquisita.

igchtharpoonup Proposizione 26.3.2: Caratterizzazione di $C^1ig([a;b],c_0ig)$, seconda parte

Sia $[a;b]\subseteq\mathbb{R}$.

Sia $\{u_n:[a;b] o\mathbb{R}\}_{n\in\mathbb{N}}$ una successione di funzioni equi-derivabili, tale che:

- $ullet \lim_n u_n(t) = \lim_n u_n'(t) = 0 ext{ per ogni } t \in [a;b];$
- La successione $\{u_n'\}_{n\in\mathbb{N}}$ sia costituita da funzioni equi-continue.

Sia $u:=\{u_n(\cdot)\}_{n\in\mathbb{N}}$.

Si ha $u\in C^1ig([a;b],c_0ig)$.

Dimostrazione

Si osserva intanto che $uig([a;b]ig)\subseteq c_0$ in quanto $\lim_n u_n(t)=0$ per ogni $t\in [a;b]$ per ipotesi.

Sia $\mathbf{v} = \{u'_n(\cdot)\}_{n \in \mathbb{N}} : [a; b] \to \mathbb{R}^{\mathbb{N}}$ ($\mathbb{R}^{\mathbb{N}}$ denota l'insieme delle successioni a valori reali);

Si osserva che $v([a;b])\subseteq c_0$ in quanto $\lim_n u_n'(t)=0$ per ogni $t\in [a;b]$ per ipotesi.

Per ipotesi di equi-derivabilità di $\{u_n\}_{n\in\mathbb{N}}$, si ha che $\lim_{\lambda\to 0}\sup_{n\in\mathbb{N}}\left|\frac{u_n(t+\lambda)-u_n(t)}{\lambda}-u_n'(t)\right|=0;$

cioè, si ha $\lim_{\lambda \to 0} \left\| \frac{u(t+\lambda) - u(t)}{\lambda} - v(t) \right\|_{c_0} = 0$, per definizione di $\|\cdot\|_{c_0}$.

Dunque, u è derivabile in [a;b], e si ha u'(t) = v(t) per ogni $t \in [a;b]$.

Per ipotesi, la successione $\{u'_n\}_{n\in\mathbb{N}}$ è costituita da funzioni equi-continue su [a;b] compatto; allora, esse sono anche equi-uniformemente continue per la [Proposizione 5.1].

Dunque, per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che, per ogni $t, s \in [a; b]$ con $|t - s| < \delta$, si abbia $|u_n'(t) - u_n'(t)| < \frac{\varepsilon}{2}$ per ogni $n \in \mathbb{N}$:

ne segue allora che $\sup_{n\in\mathbb{N}}|u_n'(t)-u_n'(t)|\leq \frac{\varepsilon}{2}<\varepsilon$ per ogni $t,s\in[a;b]$ con $|t-s|<\delta$, dunque $\|u'(t)-u'(s)\|_{c_0}<\varepsilon$ per definizione di $\|\cdot\|_{c_0}$ e avendo acquisito che $u'(t)=\{u_n'(\cdot)\}_{n\in\mathbb{N}}$.

Ciò significa allora che u' è uniformemente continua su [a;b], dunque u è di classe C^1 .

La tesi è allora acquisita.

$lacksymbol{ ext{ iny Proposizione 26.4: Caratterizzazione di } C^1ig(I,C^1ig([c;d],\mathbb{R}ig)ig)$

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia $[c;d] \subseteq \mathbb{R}$.

Sia $u:I o\mathbb{R}^{[c;d]}$. ($\mathbb{R}^{[c;d]}$ denota l'insieme delle funzioni da [c;d] in \mathbb{R})

Sia $f:I imes [c;d] o \mathbb{R}$ la funzione definita ponendo f(t,x)=u(t)(x) per ogni $(t,x)\in I imes [c;d]$.

Sono equivalenti le seguenti affermazioni:

- 1. $u(t) \in C^1ig([c;d],\mathbb{R}ig)$ per ogni $t \in I$, e $u \in C^1ig(I,C^1ig([c;d],\mathbb{R}ig)ig)$;
- 2. f è di classe C^1 , e la derivata parziale doppia f_{tx} è definita e continua in tutto $I \times [c;d]$.

In tal caso, per ogni $(x,t) \in I \times [c;d]$ si ha:

- $f_t(t,x) = u'(t)(x);$
- $f_x(t,x) = \left(u(t)\right)'(x);$
- $ullet f_{tx}(t,x) = f_{xt}(t,x) = ig(u'(t)ig)'(x).$

\bigcap Dimostrazione: 1. \Rightarrow 2.

Si supponga $u(t)\in C^1ig([c;d],\mathbb{R}ig)$ per ogni $t\in I$, e $u\in C^1ig(I,C^1ig([c;d],\mathbb{R}ig)ig)$.

Si doti $C^1([c;d],\mathbb{R})$ della norma della somma.

Si provi dapprima che f è di classe C^1 , in virtù della [Proposizione 17.3], mostrando che f è parzialmente derivabile in $I \times [c;d]$ e che le sue derivate parziali sono continue.

Per ogni $t \in I$ si ha $f(t,\cdot) = u(t) \in C^1([c;d],\mathbb{R})$ per definizione di f e per ipotesi.

Dunque, f è parzialmente derivabile in $I \times [c;d]$ rispetto alla seconda variabile, e si ha $f_x(t,x) = (u(t))'(x)$ per ogni $(t,x) \in I \times [c;d]$.

si provi la continuità della derivata parziale f_x in $I \times [c;d]$.

Si fissi dunque $(t_0, x_0) \in I \times [c; d]$;

sia $\{(t_n, x_n)\}_{n \in \mathbb{N}} \subseteq I \times [c; d]$ una successione convergente a (t_0, x_0) ;

si mostri che $\lim_n f_x(t_n,x_n) = f_x(t_0,x_0)$.

Si ha

$$egin{aligned} |f_x(t_n,x_n)-f_x(t_0,x_0)| &= |f_x(t_n,x_n)-f_x(t_0,x_n)+f_x(t_0,x_n)-f_x(t_0,x_0)| \ &\leq |f_x(t_n,x_n)-f_x(t_0,x_n)|+|f_x(t_0,x_n)-f_x(t_0,x_0)| \ &= \left|igl(u(t_n)-u(t_0)igr)'(x_n)
ight|+|f_x(t_0,x_n)-f_x(t_0,x_0)| \end{aligned}$$

Dalla seconda disuguaglianza triangolare

u(t) è di classe C^1 per ogni $t \in I$, per definizione di u;

 $u(t)'(x) = f_x(t,x)$ per ogni $x \in [c;d]$, per definizione di f e di derivata parziale;

si applica poi la derivazione di una combinazione lineare

$$egin{aligned} & \leq \|(u(t_n) - u(t_0)ig)'\|_{C^0([c;d],\mathbb{R})} + |f_x(t_0,x_n) - f_x(t_0,x_0)| \ & \leq \|u(t_n) - u(t_0)\|_{C^1([c;d],\mathbb{R})} + |f_x(t_0,x_n) - f_x(t_0,x_0)| \end{aligned}$$

Per definizione di $\|\cdot\|_{C^0([c;d],\mathbb{R})}$

Dalla definizione di $\|\cdot\|_{C^1([c;d],\mathbb{R})}$ segue che $\|g\|_{C^1([c;d],\mathbb{R})} \geq \|g'\|_{C^0([c;d],\mathbb{R})}$ per ogni $g \in C^1([c;d],\mathbb{R})$

Poiché u è continua in [a;b] per ipotesi, si ha $\lim_n \|u(t_n) - u(t_0)\|_{C^1([c;d],\mathbb{R})} = 0;$ avendo visto prima che $f(t,\cdot)$ è di classe C^1 per ogni $t\in [a;b]$, si ha in particolare che $f_x(t_0,\cdot)$ è continua; dunque, $\lim_n |f_x(t_0,x_n) - f_x(t_0,x_0)| = 0.$

Da queste osservazioni e dalla catena di disuguaglianze ottenuta segue per confronto dei limiti che $\lim_n |f_x(t_n,x_n)-f_x(t_0,x_0)|=0$, come si voleva.

Si provi ora che f è parzialmente derivabile in $I \times [c; d]$, rispetto alla prima variabile.

Essendo u derivabile in I in quanto di classe C^1 per ipotesi, si ha che

$$\lim_{\lambda o 0}\left\|rac{u(t+\lambda)-u(t)}{\lambda}-u'(t)
ight\|_{C^1([c;d],\mathbb{R})}=0$$
 per ogni $t\in I.$

Per ogni $t \in I$ si ha inoltre

$$egin{aligned} &\left\|rac{u(t+\lambda)-u(t)}{\lambda}-u'(t)
ight\|_{C^1([c;d],\mathbb{R})} \ &=\left\|rac{u(t+\lambda)-u(t)}{\lambda}-u'(t)
ight\|_{C^0([c;d],\mathbb{R})} + \left\|rac{\left(u(t+\lambda)
ight)'-\left(u(t)
ight)'}{\lambda}-\left(u'(t)
ight)'
ight\|_{C^0([c;d],\mathbb{R})} \end{aligned}$$

Per definizione di $\|\cdot\|_{C^1([c;d],\mathbb{R})}$ e per derivazione di una combinazione lineare

$$= \sup_{x \in [c;d]} \left| \frac{u(t+\lambda)(x) - u(t)(x)}{\lambda} - \left(u'(t)\right)(x) \right| + \sup_{x \in [c;d]} \left| \frac{\left(u(t+\lambda)\right)'(x) - \left(u(t)\right)'(x)}{\lambda} - \left(u'(t)\right)'(x) \right|$$

$$= \sup_{x \in [c;d]} \left| \frac{f(t+\lambda,x) - f(t,x)}{\lambda} - \left(u'(t)\right)(x) \right| + \sup_{x \in [c;d]} \left| \frac{f_x(t+\lambda,x) - f_x(t,x)}{\lambda} - \left(u'(t)\right)'(x) \right|$$
Per definizione di f e per le osservazioni fatte su f_x

Da questa catena di uguaglianze, sfruttando la nonnegatività dei due addendi all'ultimo membro e le proprietà dell'estremo superiore, segue per confronto dei limiti che

$$\lim_{\lambda o 0}\left|rac{f(t+\lambda,x)-u(t,x)}{\lambda}-ig(u'(t)ig)(x)
ight|=0,$$
 per ogni $(x,t)\in I imes [c;d];$

dunque, f è parzialmente derivabile in $I \times [c;d]$ rispetto alla prima variabile, e si ha $f_t(t,x) = (u'(t))(x)$ per ogni $(x,t) \in I \times [c;d]$.

La continuità di f_t deriva dalla continuità di u' e di u'(t) per ogni $t \in I$, dovute al fatto che $u \in C^1(I, C^1([c; d], \mathbb{R}))$ per ipotesi.

Più precisamente, fissati $(t_0, x_0) \in I \times [c; d]$ e una successione $\{(t_n, x_n)\}_{n \in \mathbb{N}} \subseteq I \times [c; d]$ convergente a (t_0, x_0) , si ha

$$|f_{t}(t_{n},x_{n}) - f_{t}(t_{0},x_{0})| = |(u'(t_{n}))(x_{n}) - (u'(t_{0}))(x_{0})|$$
Per legge di f_{t}

$$= |(u'(t_{n}))(x_{n}) - (u'(t_{0}))(x_{n}) + (u'(t_{0}))(x_{n}) - (u'(t_{0}))(x_{0})|$$

$$\leq |(u'(t_{n}))(x_{n}) - (u'(t_{0}))(x_{n})| + |(u'(t_{0}))(x_{n}) - (u'(t_{0}))(x_{0})|$$
Dalla disuguaglianza triangolare
$$\leq ||u'(t_{n}) - u'(t_{0})||_{C^{0}([c;d],\mathbb{R})} + |(u'(t_{0}))(x_{n}) - (u'(t_{0}))(x_{0})|$$
Dalla definizione di $||\cdot||_{C^{0}([c;d],\mathbb{R})} + |(u'(t_{0}))(x_{n}) - (u'(t_{0}))(x_{0})|$ Dalla definizione di $||\cdot||_{C^{1}([c;d],\mathbb{R})} + |(u'(t_{0}))(x_{n}) - (u'(t_{0}))(x_{0})|$ Dalla definizione di $||\cdot||_{C^{1}([c;d],\mathbb{R})} + |(u'(t_{0}))(x_{n}) - (u'(t_{0}))(x_{0})|$ Dalla definizione di $||\cdot||_{C^{1}([c;d],\mathbb{R})} + |(u'(t_{0}))(x_{n}) - (u'(t_{0}))(x_{0})|$

e
$$\lim_n\|u'(t_n)-u'(t_0)\|_{C^1([c;d],\mathbb{R})}+ig|ig(u'(t_0)ig)(x_n)-ig(u'(t_0)ig)(x_0)ig|=0,$$
per continuità di u' e $u'(t_0).$

Dunque, f è di classe C^1 , avendone mostrato la parziale derivabilità rispetto a entrambe le variabili e la continuità delle sue derivate parziali;

inoltre, essendo u'(t) continua per ogni $t \in I$ in quanto u è a valori in $C^1([c;d],\mathbb{R})$ per ipotesi, dalla legge di f_t segue che questa funzione è parzialmente derivabile in $I \times [c;d]$, e si ha

$$f_{tx}(t,x) = ig(u'(t)ig)'(x)$$
, per ogni $(t,x) \in I imes [c;d]$.

Sempre dall'ultima catena di uguaglianze ottenuta, facendo uso delle stesse proprietà di prima si ottiene per confronto che

$$\lim_{\lambda o 0}\left|rac{f_x(t+\lambda,x)-f_x(t,x)}{\lambda}-ig(u'(t)ig)'(x)
ight|=0,$$
 per ogni $(x,t)\in I imes [c;d];$

dunque, f_x è parzialmente derivabile in I imes [c;d] rispetto alla prima variabile, e si ha

$$f_{xt}(t,x) = ig(u'(t)ig)'(x)$$
, per ogni $(x,t) \in I imes [c;d]$.

Ne viene allora che $f_{xt} = f_{tx}$;

infine, la continuità di tale funzione segue dalla continuità di u' e di (u'(t))' per ogni $t \in I$, dovute al fatto che $u \in C^1(I, C^1([c;d], \mathbb{R}))$ per ipotesi.

Più precisamente, fissati $(t_0, x_0) \in I \times [c; d]$ e una successione $\{(t_n, x_n)\}_{n \in \mathbb{N}} \subseteq I \times [c; d]$ convergente a (t_0, x_0) , si ha

$$|f_{tx}(t_n, x_n) - f_{tx}(t_0, x_0)| = |(u'(t_n))'(x_n) - (u'(t_0))'(x_0)|$$
Per legge di f_{tx}

$$= |(u'(t_n))'(x_n) - (u'(t_0))'(x_n) + (u'(t_0))'(x_n) - (u'(t_0))'(x_0)|$$
Dalla disuguaglianza triangolare
$$\leq |(u'(t_n))'(x_n) - (u'(t_0))'(x_n)| + |(u'(t_0))'(x_n) - (u'(t_0))'(x_0)|$$
Dalla definizione di $||\cdot||_{C^0([c;d],\mathbb{R})}$

$$\leq ||u'(t_n) - u'(t_0)||_{C^1([c;d],\mathbb{R})} + |(u'(t_0))(x_n) - (u'(t_0))(x_0)|$$
Dalla definizione di $||\cdot||_{C^1([c;d],\mathbb{R})}$

$$\leq ||u'(t_n) - u'(t_0)||_{C^1([c;d],\mathbb{R})} + |(u'(t_0))(x_n) - (u'(t_0))(x_0)|$$
Dalla definizione di $||\cdot||_{C^1([c;d],\mathbb{R})}$

e
$$\lim_n \|u'(t_n)-u'(t_0)\|_{C^1([c;d],\mathbb{R})}+ig|ig(u'(t_0)ig)(x_n)-ig(u'(t_0)ig)(x_0)ig|=0,$$
per continuità di u' e $ig(u'(t_0)ig)'$.

\bigcap Dimostrazione: 2. \Rightarrow 1.

Si supponga ora f di classe C^1 , con la derivata parziale doppia f_{tx} definita e continua in tutto $I \times [c;d]$.

Si doti $C^1([c;d],\mathbb{R})$ della norma della somma.

Allora, $f(t, \cdot)$ è di classe C^1 essendo f di classe C^1 per ipotesi; dunque, $u(t) = f(t, \cdot) \in C^1([c; d], \mathbb{R})$ per ogni $t \in [c; d]$.

Essendo f_{tx} continua in $I \times [c;d]$, per il lemma di Schwartz la derivata mista f_{xt} è anch'essa definita in $I \times [c;d]$, e si ha $f_{xt} = f_{tx}$.

Si provi intanto che u è derivabile in I.

Sia dunque $t_0 \in I$; si fissi $\varepsilon > 0$.

Sia $[a;b]\subseteq\mathbb{R}$ un intervallo compatto tale che $t_0\in[a;b]\subseteq I$, e si abbia $t_0\in[a;b]^\circ$ se $t_0\in \overset{\circ}{I}$.

 f_t è continua per la [Proposizione 17.3] in quanto f è di classe C^1 per ipotesi, e f_{xt} è continua per ipotesi; essendo $[a;b] \times [c;d]$ compatto, tali funzioni sono dunque ivi uniformemente continue.

Dotando $\mathbb{R} \times \mathbb{R}$ della norma del massimo, esiste allora $\delta > 0$ tale che, per ogni $(t,x), (s,y) \in [a;b] \times [c;d]$ con $\max\{|t-s|,|x-y|\} < \delta$, si abbia $|f_t(t,x)-f_t(s,y)| < \frac{\varepsilon}{3}$, e anche $|f_{xt}(t,x)-f_{xt}(s,y)| < \frac{\varepsilon}{3}$.

Da ciò segue intanto che, per ogni $t\in [a;b]$ con $|t-t_0|<\delta$ e per ogni $x\in [c;d]$ si ha $|f_t(t_0,x)-f_t(t_0,x)|<rac{\varepsilon}{3}<arepsilon$, e anche

$$|f_{xt}(t,x)-f_{xt}(t_0,x)|<rac{arepsilon}{3}$$

dalla definizione di $\|\cdot\|_{C^0([c;d],\mathbb{R})}$ segue allora che

$$\|f_t(t,\cdot)-f_t(t_0,\cdot)\|_{C^0([c;d],\mathbb{R})}, e anche$$

$$\|f_{tx}(t,\cdot)-f_{tx}(t_0,\cdot)\|_{C^0([c;d],\mathbb{R})}$$

cioè, si ha

$$\lim_{t o t_0}\|f_t(t,\cdot)-f_t(t_0,\cdot)\|_{C^0([c;d],\mathbb{R})}=0$$
, e anche

$$\lim_{t \to t_0} \|f_{tx}(t,\cdot) - f_{tx}(t_0,\cdot)\|_{C^0([c;d],\mathbb{R})} = 0$$
, avendo costruito $[a;b]$ dimodoché $t_0 \in [a;b]^\circ$ se $t_0 \in \overset{\circ}{I}$.

Si fissi ora $x \in [c; d]$;

sia
$$\lambda \in]-\delta; \delta[\setminus \{0\}.$$

 $f(\cdot, x)$ e $f_x(\cdot, x)$ sono derivabili in [a; b], in quanto f è di classe C^1 e dunque, per la [Proposizione 17.3], le sue derivate parziali sono continue.

Per il teorema di Lagrange, esistono allora $\hat{t}, \tilde{t} \in [a;b]$ appartenenti all'intervallo aperto di estremi t_0 e $t_0 + \lambda$, tali che valga rispettivamente

$$f(t_0+\lambda,x)-f(t_0,x)=\lambda f_t(\hat{t},x),$$
 ossia $rac{f(t_0+\lambda,x)-f(t_0,x)}{\lambda}=f_t(\hat{t},x);$

$$f_x(t_0+\lambda,x)-f_x(t_0,x)=\lambda f_{xt}(ilde{t},x),$$
 ossia $rac{f_x(t_0+\lambda,x)-f_x(t_0,x)}{\lambda}=f_{xt}(ilde{t},x).$

Poiché $|\hat{t}-t_0|, |\tilde{t}-t_0|<|\lambda|<\delta$ per costruzione di \hat{t} e \tilde{t} , per costruzione di δ si ha allora

$$|f_t(\hat{t},x)-f_t(t_0,x)|<rac{arepsilon}{3}, ext{ossia}\left|rac{f(t_0+\lambda,x)-f(t_0,x)}{\lambda}-f_t(t_0,x)
ight|<rac{arepsilon}{3};$$

$$|f_{xt}(ilde{t},x)-f_{xt}(t_0,x)|<rac{arepsilon}{3}, ext{ossia}\left|rac{f_x(t_0+\lambda,x)-f_x(t_0,x)}{\lambda}-f_{xt}(t_0,x)
ight|<rac{arepsilon}{3}.$$

Dall'aribrarietà di $x \in [c; d]$ segue allora che

$$\sup_{x \in [c;d]} \left| \frac{f(t_0 + \lambda, x) - f(t_0, x)}{\lambda} - f_t(t_0, x) \right| \leq \tfrac{\varepsilon}{3}, \text{ ossia } \left\| \frac{f(t_0 + \lambda, \cdot) - f(t_0, \cdot)}{\lambda} - f_t(t_0, \cdot) \right\|_{C^0([c;d], \mathbb{R})} \leq \tfrac{\varepsilon}{3};$$

$$\sup_{x \in [c;d]} \left| \frac{f_x(t_0 + \lambda, x) - f_x(t_0, x)}{\lambda} - f_{xt}(t_0, x) \right| \leq \tfrac{\varepsilon}{3}, \operatorname{ossia} \left\| \frac{f_x(t_0 + \lambda, \cdot) - f_x(t_0, \cdot)}{\lambda} - f_{xt}(t_0, \cdot) \right\|_{C^0([c;d], \mathbb{R})} \leq \tfrac{\varepsilon}{3}.$$

Poiché
$$\frac{f_x(t_0+\lambda,\cdot)-f_x(t_0,\cdot)}{\lambda}-f_{xt}(t,\cdot)=\left(\frac{f(t_0+\lambda,\cdot)-f(t_0,\cdot)}{\lambda}-f_t(t_0,\cdot)\right)_x$$
 per derivazione di combinazioni lineari ed essendo

 $f_{xt} = f_{tx}$, per definizione di $\|\cdot\|_{C^1([c;d],\mathbb{R})}$ si ha allora che

$$\left\|rac{f(t_0+\lambda,\cdot)-f(t_0,\cdot)}{\lambda}-f_t(t_0,\cdot)
ight\|_{C^1([c:d],\mathbb{R})}\leq 2rac{arepsilon}{3}$$

$$\left\| rac{u(t_0 + \lambda) - u(t_0)}{\lambda} - f_t(t_0, \cdot)
ight\|_{C^1([c;d], \mathbb{R})} < arepsilon.$$

Dall'arbitrarietà di $\lambda \in]-\delta; \delta[\setminus \{0\}]$ e di $t_0 \in I$, segue allora che u è derivabile in I, e si ha

$$u'(t) = f_t(t, \cdot)$$
 per ogni $t \in I$.

Si provi ora che u' è anche continua in t_0 .

Per ogni $t \in I$ si ha

$$\|u'(t) - u'(t_0)\|_{C^1([c;d],\mathbb{R})} = \|f_t(t,\cdot) - f_t(t_0,\cdot)\|_{C^1([c;d],\mathbb{R})}$$
 Per legge di u'

$$= \|f_t(t,\cdot) - f_t(t_0,\cdot)\|_{C^0([c;d],\mathbb{R})} + \|f_{tx}(t,\cdot) - f_{tx}(t_0,\cdot)\|_{C^0([c;d],\mathbb{R})}$$
 Per definizione di $\|\cdot\|_{C^1([c;d],\mathbb{R})}$

e si ha $\lim_{t \to t_0} \|f_t(t,\cdot) - f_t(t_0,\cdot)\|_{C^0([c;d],\mathbb{R})} + \|f_{tx}(t,\cdot) - f_{tx}(t_0,\cdot)\|_{C^0([c;d],\mathbb{R})} = 0$ per quanto osservato prima su $f_t(t_0,\cdot)$ e $f_{tx}(t_0,\cdot)$.

Equazioni differenziali negli spazi di Banach

Definizione: Equazione differenziale ordinaria del primo ordine in forma implicita

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $A \subseteq \mathbb{R} \times X \times X$.

Sia $(Y, \|\cdot\|_Y)$ uno spazio normato.

Sia $f: A \to Y$.

Si denota con f(t, u, u') = 0 l'equazione differenziale ordinaria del primo ordine in forma implicita, associata a f;

essa consiste nella ricerca di intervalli $I\subseteq\mathbb{R}$ e di funzioni $u:I\to X$ di classe C^1 , tali che $\big(t,u(t),u'(t)\big)\in A$ e $f\big(t,u(t),u'(t)\big)=\mathbf{0}_Y$, per ogni $t\in I$.

Se f ha una legge del tipo $(t, \mathbf{x}, \mathbf{y}) \mapsto \mathbf{y} - g(t, \mathbf{x})$ per qualche funzione g, l'equazione differenziale si scrive allora come $u' - g(t, u) = \mathbf{0}$ oppure u' = g(t, u); un'equazione di questo tipo si dice in forma normale.

₩ Definizione: Problema di Cauchy

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $A \subseteq \mathbb{R} \times X \times X$.

Sia $(Y, \|\cdot\|_Y)$ uno spazio normato.

Sia $f: A \to Y$.

Sia $(t_0,\mathbf{x}_0)\in\mathbb{R} imes X$ tale che $f(t_0,\mathbf{x}_0,\mathbf{y}_0)=\mathbf{0}$.

Sia $I \subseteq \mathbb{R}$ un intervallo tale che $t_0 \in I$.

Si denota con
$$egin{cases} f(t,u,u') = \mathbf{0} & \forall t \in I \ u(t_0) = \mathbf{x}_0 & ext{il } \mathbf{problema di Cauchy} \ associato a \ f \in (t_0,\mathbf{x}_0,\mathbf{y}_0); \ u'(t_0) = \mathbf{y}_0 & ext{il } \mathbf{problema di Cauchy} \end{cases}$$

esso consiste nella ricerca di funzioni u:I o X di classe C^1 , tali che:

- $ig(t,u(t),u'(t)ig)\in A$ e fig(t,u(t),u'(t)ig)=0, per ogni $t\in I$;
- $u(t_0) = \mathbf{x}_0$;
- $u'(t_0) = \mathbf{y}_0$.

🖹 Teorema 26.5: Esistenza e unicità della soluzione al problema di Cauchy in forma normale

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $I \subseteq \mathbb{R}$ un intervallo.

Sia $f: I \times X \to X$ una funzione continua;

si supponga che esista una funzione $L:I o\mathbb{R}^+_0$ continua, tale che

 $\|f(t,\mathbf{x})-f(t,\mathbf{y})\| \leq L(t)\cdot \|\mathbf{x}-\mathbf{y}\|$, per ogni $t\in I$ e per ogni $\mathbf{x},\mathbf{y}\in X$.

Sia $(t_0, \mathbf{x}_0) \in I \times X$.

Il problema $egin{cases} u' = f(t,u) = \mathbf{0} & orall t \in I \ u(t_0) = \mathbf{x}_0 \end{cases}$ ammette un'unica soluzione.

Dimostrazione

Si supponga dapprima I compatto, ossia del tipo [a;b], con $a,b\in\mathbb{R}$.

Si definisca l'operatore $\Phi: C^0([a;b],X) \to C^0([a;b],X)$ ponendo $\Phi(u)(t) = \mathbf{x}_0 + \int_{t_0}^t f(s,u(s)) \, ds$ per ogni $u \in C^0([a;b],X)$ e per ogni $t \in [a;b]$; esso è ben definito, cioè $\Phi(u)$ è continuo per ogni $u \in C^0([a;b],X)$, essendo la mappa $s \mapsto (s,u(s))$ continua ed essendo dunque la funzione integrale $t \mapsto \int_{t_0}^t f(s,u(s)) \, ds$ ben definita e di classe C^1 per il teorema fondamentale del calcolo integrale ([Teorema 21.10]).

Sempre per tramite di tale teorema, si osserva che u è soluzione del problema $\begin{cases} u' = f(t, u) = \mathbf{0} & \forall t \in I \\ u(t_0) = \mathbf{x}_0 \end{cases}$, se e solo se $\Phi(u) = u$.

Per acquisire la tesi, si provi dunque che Φ ammette un unico punto fisso, facendo uso del teorema di Banach-Caccioppoli.

Poiché la funzione L è continua su I compatto, essa ammette massimo; sia dunque $L^* = \max_{t \in [a;b]} L(t)$ (nonnegativo in quanto L è nonnegativa) e sia $M > L^*$.

Si definisca la funzione $\|\cdot\|_{C^0([a;b],X)}^*: C^0([a;b],X) \to \mathbb{R}$, ponendo $u \mapsto \|u\|_{C^0([a;b],X)}^*:= \sup_{t \in [a;b]} e^{-M|t-t_0|} \cdot \|u(t)\|$ per ogni $u \in C^0([a;b],X)$;

essa è una norma su $C^0([a;b],X)$, e si osserva che $e^{-M(b-a)}\|u\|_{C^0([a;b],X)} \le \|u\|_{C^0([a;b],X)}^* \le \|u\|_{C^0([a;b],X)}$ per ogni $u \in C^0([a;b],X)$, dove $\|\cdot\|_{C^0([a;b],X)}$ è la norma usuale su $C^0([a;b],X)$.

Allora, le due norme $\|\cdot\|_{C^0([a;b],X)}^*$ e $\|\cdot\|_{C^0([a;b],X)}$ sono equivalenti; essendo $\left(C^0\left([a;b],X\right),\|\cdot\|_{C^0([a;b],X)}\right)$ completo, ne viene allora che anche $\left(C^0\left([a;b],X\right),\|\cdot\|_{C^0([a;b],X)}^*\right)$ è completo.

Resta da mostrare che Φ è una contrazione (rispetto alla norma $\|\cdot\|_{C^0([a;b],X)}^*$).

Siano $u,v\in C^0ig([a;b],Xig);$ per ogni $t\in [a;b]$, si ha intanto

$$egin{aligned} \|\Phi(u)(t)-\Phi(v)(t)\| &= \left\|\int_{t_0}^t fig(s,u(s)ig) - fig(s,v(s)ig)\,ds
ight\| \ &\leq \left|\int_{t_0}^t \left\|fig(s,u(s)ig) - fig(s,v(s)ig)
ight\|\,ds
ight| \end{aligned}$$

Per maggiorazione della norma di un integrale di Riemann (il valore assoluto va scritto, per ovviare al caso in cui $t_0>t$)

Per definizione di Φ e per linearità dell'integrale di Riemann

$$\leq \left| \int_{t_0}^t L(s) \cdot \left\| u(s) - v(s)
ight\| ds
ight|$$

Per ipotesi su L

$$\leq \left| \int_{t_0}^t L^* \cdot \left\| u(s) - v(s)
ight\| ds
ight|$$

Per definizione di L^* e per monotonia dell'integrale di Riemann per funzioni a valori reali

$$\leq L^* \cdot \left| \int_{t_0}^t \left\| u(s) - v(s)
ight\| ds
ight|$$

Per linearità dell'integrale di Riemann, ed essendo $L^* \geq 0$

$$= L^* \cdot \left| \int_{t_0}^t e^{M|s-t_0|} \cdot e^{-M|s-t_0|} \|u(s) - v(s)\| \, ds
ight|$$

Per definizione di $\|\cdot\|_{C^0([a;b],X)}^*$ e per monotonia dell'integrale di Riemann per funzioni a valori reali

$$\leq L^* \cdot \left| \int_{t_0}^t e^{M|s-t_0|} \cdot \|u-v\|_{C^0\left([a;b],X
ight)}^* \, ds
ight|$$

Per linearità dell'integrale di Riemann e per nonnegatività delle norme

$$=L^*\|u-v\|_{C^0ig([a;b],Xig)}^*\cdot \left|\int_{t_0}^t e^{M|s-t_0|}\,ds
ight|$$

In quanto $\left|\int_{t_0}^t e^{M|s-t_0|}\,ds
ight|=rac{1}{M}e^{M|t-t_0|}$

$$=L^*\|u-v\|_{C^0ig([a;b],Xig)}^*\cdot rac{1}{M}e^{M|t-t_0|}$$

Si ha dunque che

 $e^{-M|t-t_0|}\cdot\|\Phi(u)(t)-\Phi(v)(t)\|\leq rac{L^*}{M}\|u-v\|_{C^0([a:b],X)}^*$ per ogni $t\in[a;b]$, da cui segue che

$$\|\Phi(u) - \Phi(v)\|_{C^0([a;b],X)}^* \le \frac{L^*}{M} \|u - v\|_{C^0([a;b],X)}^*$$
, per definizione di $\|\cdot\|_{C^0([a;b],X)}^*$.

Dunque, rispetto a $\|\cdot\|_{C^0([a;b],X)}^*$ la funzione Φ è Lipschitziana di costante $\frac{L^*}{M}$; allora, essa è una contrazione, essendo $\frac{L^*}{M} \in [0;1[$ in quanto $0 \le L^* < M$ per definizione di L^* e per costruzione di M.

Pertanto, Φ ammette un unico punto fisso per il teorema di Banach-Caccioppoli.

Si supponga ora che I non sia un intervallo compatto.

Allora, è comunque possibile costruire una successione non decrescente di intervalli compatti $\{I_n\}_{n\in\mathbb{N}}$, dimodoché $t_0\in I_1$ e $\bigcup_{n\in\mathbb{N}}I_n=I.$

Per ogni $n \in \mathbb{N}$ sia allora u_n la soluzione del problema $\begin{cases} u' = f(t, u) = \mathbf{0} & \forall t \in I_n \\ u(t_0) = \mathbf{x}_0 \end{cases}$, che esiste ed è unica in quanto questo problema rientra nel caso precedente per costruzione di $\{I_n\}_{n \in \mathbb{N}}$.

Si osserva che, per ogni $n \in \mathbb{N}$, la funzione u_{n+1} estende u_n , in quanto $I_{n+1} \supseteq I_n$ per costruzione di $\{I_n\}_{n \in \mathbb{N}}$, e $(u_{n+1})_{|I_n} = u_n$ per definizione di u_n .

Allora, risulta ben definita la funzione u:I o X in cui si pone $u(t)=u_n(t)$ per ogni $t\in I$, con $n\in\mathbb{N}$ tale che $t\in I_n$.

Essa è soluzione al problema $\begin{cases} u' = f(t,u) = \mathbf{0} & \forall t \in I \\ u(t_0) = \mathbf{x}_0 \end{cases}$, ed è l'unica per unicità degli u_n .