Deep Learning Part 2 Other networks

Slides by:

Joseph E. Gonzalez,

jegonzal@berkeley.edu

Quick Logistics

- Please sign up to present
- Complete reading questions before lecture
- Skim the reading for the lecture you are presenting (later in semester).
 - Is there a better paper?

http://bit.ly/aisys-sp19

Al-Sys Syllabus Projects Grading

Al-Sys Spring 2019

- When: Mondays and Wednesdays from 9:30 to 11:00
- Where: Soda 405
- Instructors: Ion Stoica and Joseph E. Gonzalez
- Announcements: Piazza
- Sign-up to Present Google Spreadsheet

Course Description

The recent success of AI has been in large part due in part to advances in hardware and software systems. These systems have enabled training increasingly complex models on ever larger datasets. In the process, these systems have also simplified model development, enabling the rapid growth in the machine learning community. These new hardware and software systems include a new generation of GPUs and hardware accelerators (e.g.,

Last Time

Machine Learning ≈ Function Approximation

Object Recognition

Label:Cat

Speech Recognition

Robotic Control

Machine Translation

Architectures for Different kinds of inputs

Convolutional Networks

spatial reasoning tasks

Recurrent Networks

Sequential reasoning tasks

Reinforcement Learning

Speech recognition

Architectures for Different kinds of inputs

al Networks

ning tasks

Recurrent Networks

Sequential reasoning tasks

Reinforcement Learning

Speech recognition

Graph Networks

Operating on graph data

Supervised Machine Learning

Given data containing the function inputs and outputs

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} L(f_{\theta}(x_i), y_i)$$

Loss

Learning without Labels

- > Can we learn what inputs look like?
 - Useful inductive bias when training for a later supervised task.
 - Often done when labeled data is available but limited
- Convert to a supervised learning problem:

$$f(x) \to z$$
 Encoder $g(z) \to x$ Decoder

Convert to a supervised learning problem:

 X_2

. . .

Convert to a supervised learning problem:

Input

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} L(g_{\theta_2}(f_{\theta_1}(x_i)), x_i)$$

Output

$$f(x) \to z$$
 Encoder $g(z) \to x$ Decoder

Xor Perceptrons

Perceptron Not Gate

And Gate Perceptron

x ₁	X ₂
-1	-1
-1	1
1	-1
1	1

$$sign(x_1w_1 + x_2w_2 + b) = y$$

Or Gate Perceptron

\mathbf{x}_1	X ₂
-1	-1
-1	1
1	-1
1	1

$$sign(x_1w_1 + x_2w_2 + b) = y$$

XOr Gate Perceptron

x ₁	X ₂
-1	-1
-1	1
1	-1
1	1

$$sign(x_1w_1 + x_2w_2 + b) = y$$

No separating hyperplane

$$sign (x_1w_1 + x_2w_2 + b) = y$$

Using one hidden layer

