EC 2.101 - Digital Systems and Microcontrollers

Practice Sheet 1 (Lec 1 – Lec 9)

Q1. Base Conversions

- a. $(5641)_7$ into base 3.
- b. $(F3E612)_{16}$ into base 8, 4 and 2.
- c. $(10110.0101)_2$, $(16.5)_{16}$, $(26.24)_8$, $(DADA.B)_{16}$ into decimal.
- d. $(A4389)_{16}$ into BCD and $(100000101111000111)_{BCD}$ into decimal.

Q2. Complements

Perform the calculations assuming the binary numbers are in signed 2's complement representation (Convert the remaining before addition).

- a. $(-7634)_8 + (-512)_{10} + (+4AF)_{16} + (011001100110)_2$ [16 bit]
- b. $(+657)_9 + (-565)_7 + (100001000101)_{BCD} + (1101010110)_2 [12 bit]$
- c. $(1000100101010111)_{BCD} + (+7345)_8 + (4FB)_{16} [16 bit]$

Q3. Boolean Expressions

- a. Show that the dual of (xy' + x'y) is equal to its complement.
- b. Simplify the following expressions.
 - i. x'y + yz + xz' + x'y' + xyz'
 - ii. xyz + x'y'z + xy'z + xz + xzy'
 - iii. xy + xy' + x'y'z + xy'z' + xyz
 - iv. x'y + x'y'z + xyz' + xy + xy'z'

Q4. Logic Gates

a.

Write the Boolean expressions describing the outputs of the circuits given below.

b.