

DCS Lab 6 Pattern

葉曜銘

Purpose

Learn how to write a pattern to test your design.

Lab06

- Run the command below to get files for this lab.
 - tar -xvf ~dcsTA01/Lab06.tar

Design vs. Testbench vs. Pattern

Always Block vs. Initial Block

```
always_ff @ (posedge clk or negedge rst_n) begin
    if(!rst n) begin
        time cs <= 'b0;
        out valid cs <= 'b0;
    end
    else begin
        time cs <= time ns;</pre>
        out valid cs <= out valid ns;
    end
end
always_comb begin
    if(in_valid) time_ns = in_time;
    else if(time_cs == 'b0) time_ns = 'd0;
    else time_ns = time_cs - 'd1;
end
```

```
initial begin
    clk = 'b0;
    rst n = 'b1;
    in valid = 'b0;
    card = 'bx;
    #(10) check_reset;
    repeat(3) @(negedge clk);
    for(int i = 0; i < PATNUM; i++) begin</pre>
        input task;
        check ans;
        $display("\033[0;32mPASS PATTERN NO.%3d \033[m", i);
        repeat(($urandom % 3) + 3) @(negedge clk);
    end
    YOU PASS task;
    $finish;
```

Timer for this Lab

Pattern for Lab03

Timer.sv (TA has written.)

THIS IS NOT WHAT YOU SHOULD DO FOR THIS LAB!!!

Input Signal	Bit Width	Definition
clk	1	Clock.
rst_n	1	Asynchronous active-low reset.
in_valid	1	High when input is valid.
in_time	4	Start time for the timer.

Output Signal	Bit Width	Definition
out_time	4	Current time of the timer. Should be reset when rst_n is low.
out_finish	1	High for one cycle when the timer finishes. Should be reset when rst_n is low.

PATTERN.sv

• 00_TESTBED/PATTERN.sv

Input Signal	Bit Width	Definition
out_time	4	Current time of the timer.
out_finish	1	High for one cycle when the timer finishes.

Output Signal	Bit Width	Definition
clk	1	Clock.
rst_n	1	Asynchronous active-low reset.
in_valid	1	High when input is valid.
in_time	4	Start time for the timer.

Timer.sv

THIS IS NOT WHAT YOU SHOULD DO FOR THIS LAB!!!

Specifications

Error code	Description
0	Outputs should be reset to zero when rst_n is low.
1	out_finish should be low before timer finishes.
2	out_time is incorrect.
3	out_finish should be high when timer finishes.
4	out_finish should be high for only one cycle. (after timer finishes)

YOU FAIL!!! ERROR_0 Outputs should be reset to zero when rst_n is low.

YOU FAIL!!!

ERROR_1
out_finish should be low before timer finishes.

YOU FAIL!!!
ERROR_2
out_time is incorrect.

YOU FAIL!!!

ERROR_3
out_finish should be high when timer finishes.

Report this error if out_finish is still 1 at the second cycle after out_time reaches 0.

YOU FAIL!!!
ERROR_4
out_finish should be high for only one cycle.

Rules for Pattern

- 1. You should reset the design before testing patterns.
- 2. You should not provide a new pattern until the next cycle after the previous pattern finishes (out_finish is high).
- You should call the task "fail(error code)" provided by TA when you detect an error, and call the task "YOU_PASS_task" if the design has no error.
- 4. You should not print anything (\$display, \$write, etc.) on screen except what is mentioned in "fail" and "YOU_PASS_task" tasks.

```
if(out_finish !== 'b0 || out_time !== 'b0) fail(0);
YOU_PASS_task;
```

File Usage

- You should modify and submit the file 00_TESTBED/PATTERN.sv instead of 01_RTL/Timer.sv.
- You should not modify or remove the tasks, "fail" and "YOU_PASS_task" in PATTERN.sv
- In 01_RTL directory:
 - Run 01_run for correct design. (Timer.sv)
 - Run 01_run_x for design with error code x. (Timer_x.sv)
- There will be hidden cases for demo!

- 01_run
- 01_run_0
- 01_run_1 01_run_2
- 01 run 3
- 01_run_4
- 09_clean_up
- 🔊 filelist.f
- filelist_0.f
- filelist_1.f
- filelist_2.f
- 🔊 filelist_3.f
- filelist_4.f
- PATTERN.sv
- TESTBED.sv
- TESTBED_0.sv
- TESTBED_1.sv
- TESTBED 2.sv
- ▶ TESTBED_3.sv
- TESTBED_4.sv
- Timer.sv
- Timer_0.sv
- Timer_1.sv
- Timer 2.sv
- Timer 3.sv
- Timer_4.sv

Hidden Cases Release

- There is one hidden case for each error.
- The environment with hidden cases will be released after the result of 1st demo is announced. You can get it with:

tar -xvf ~dcsTA01/Lab06_hid.tar

 To run a hidden case, you can use the command below in Lab06_hid/01_RTL directory:

./01_run_x_hid (x is the error code.)

Grading Policy

- Successfully distinguish correct design and every faulty design (print the message on screen): 100%
- Demo 2 打7折

Upload

- 請將Lab06/00_TESTBED裡的PATTERN.sv依以下命名規則重新命名後上傳至E3
- 命名規則:PATTERN_dcsxxx.sv,xxx為工作站帳號號碼
- 命名錯誤扣5分!!!
- Deadline:
 - Demo 1: 4/17 17:25
 - Demo 2: 4/17 23:59