전산통계학 실습

08. R 데이터처리

목차

- 리스트
- 데이터프레임

리스트(List)

- 리스트
 - key-value 형태의 자료구조
 - 벡터는 단일 자료형 밖에 저장할 수 없음
 - 반면, 리스트는 key 별로 서로 다른 자료형을 저장할 수 있음

리스트의 생성

```
> list_ex <- list(1, "String", c(33, 42, 88), matrix(c(1, 2, 3, 4), nrow=2), TRUE)
> names(list_ex) <- c("Num", "Char", "V", "M", "Logical")</pre>
> list_ex
$`Num`
[1] 1
$Char
[1] "String"
$V
「17 33 42 88
$м
      [,1] [,2]
[1,] 1 3
[2,] 2 4
$Logical
[1] TRUE
```

- 리스트의 생성 & 이름 지정
 - > list(...)
 - 함수 내에 다양한 데이터 혹은 자료구조들을 나열하여 저장 및 생성

리스트의 생성

```
> list_ex <- list(1, "String", c(33, 42, 88), matrix(c(1, 2, 3, 4), nrow=2), TRUE)
> names(list_ex) <- c("Num", "Char", "V", "M", "Logical")</pre>
> list_ex
$`Num`
[1] 1
$Char
[1] "String"
$V
[1] 33 42 88
$м
      [,1] [,2]
[1,] 1 3
[2,] 2 4
$Logical
[1] TRUE
```

- 리스트의 생성 & 이름 지정
 - > names(list)
 - 기존 다른 자료구조처럼 각 원소의 이름을 반환/지정
 - 지정되는 이름이 key 와 같은 역할을 수행

리스트의 생성

```
> list_ex <- list(Num=1, Char="String", V=c(33,42,88), M=matrix(c(1, 2, 3, 4), nrow=2), Logical=TRUE)
> list_ex
$\ \text{Num'} \
[1] 1

$\text{Schar} \
[1] \"String"

$\text{V} \
[1] 33 42 88

$\text{M} \
[,1] [,2] \
[1,] 1 3 \
[2,] 2 4

$\text{Logical} \
[1] \text{TRUE}
```

- 리스트의 생성 & 이름 지정
 - > list(key1=value1, key2=value2, ...)
 - 또는 리스트 생성 시에 미리 이름을 지정하여 생성할 수 있음

리스트의 접근

```
> class(list_ex[3])
> list_ex[1]
                       [1] "list"
$`Num`
                       > class(list_ex[[3]])
[1] 1
                       [1] "numeric"
                       > list_ex["Num"]
> list_ex[[1]]
                       $`Num`
[1] 1
                       [1] 1
> list ex[3]
$`V`
                       > list_ex["V"]
[1] 33 42 88
                       $`V`
                       [1] 33 42 88
> list_ex[[3]]
「1] 33 42 88
                       > list_ex[["V"]][2]
> list_ex[[3]][2]
                       [1] 42
[1] 42
```

- 리스트의 접근
 - 다른 자료구조들처럼 key 와 index 를 통해 원소들에 접근 가능
 - value(리스트)에 접근하는 방법
 - 대괄호 1 개가 사용되어 '부분 리스트'가 반환됨
 - value(값)에 접근하는 방법
 - 대괄호 2 개가 사용되어 '저장된 값'이 반환됨

리스트의 접근

```
> list_ex$Num
[1] 1
> list_ex$V
[1] 33 42 88
> class(list_ex$V)
[1] "numeric"
> list_ex[["V"]]
[1] 33 42 88
> class(list_ex[["V"]])
[1] "numeric"
```

- 리스트의 접근
 - > list\$key
 - key 로 접근하는 경우 '\$' 기호를 통해 접근할 수 있음
 - 대괄호 2개를 사용하여 직접 값에 접근하는 것과 같은 결과를 반환

리스트의 접근

```
> unlist_ex <- unlist(list_ex)</pre>
> unlist_ex
            Char
     Num
                       V1
                                         V3
                                                          M2
                                                                   М3
                                                                                 Logical
    "1" "String"
                                       "88"
                                                          "2"
                   "33" "42"
                                                 "1"
                                                                   "3"
                                                                            "4"
                                                                                  "TRUE"
> class(unlist_ex)
[1] "character"
> list_ex[[3]]
[1] 33 42 88
> list_ex[[3]] * 3
   99 126 264
> unlist(list_ex[3]) * 3
V1 V2 V3
99 126 264
```

• 리스트 해제

- > unlist(list)
 - 모든 key 내부의 모든 value 들을 벡터로 추출하여 반환
 - 하나의 벡터가 되므로 자료형 우선순위를 반영하여 자료형이 변형됨
 - '직접 값 접근'이 아닌 '부분 리스트 반환'의 연산 수행 등에 이용될 수 있음

```
> list_ex
                          > list_ex$Num <- 5:10</pre>
$`Num`
                          > list_ex
[1] 10
                          $`Num`
                          [1] 5 6 7 8 9 10
$Char
[1] "String"
                          $Char
                          [1] "String"
$V
[1] 33 42 88
                          $V
                          [1] 33 42 88
$м
     [,1] [,2]
                          $м
     1 2
[1,]
                               [,1] [,2]
[2,]
                          [1,]
[2,]
$Logical
[1] TRUE
                          $Logical
                          [1] TRUE
```

- 리스트의 원소 변경
 - 리스트의 접근을 통해 내부 값을 변경할 수 있음
 - key\$value 방식을 통해 접근하여 새로운 값으로 변경

```
> list_ex[2] <- c("Char", "Char2")</pre>
경고메시지(들):
In list_ex[2] <- c("Char", "Char2") :</pre>
 number of items to replace is not a multiple of replacement length
> list_ex[2] <- "New Char"</pre>
> list_ex
$`Num`
[1] 5 6 7 8 9 10
$Char
                                                                         $V
[1] "New Char"
$V
[1] 33 42 88
                                                                         $м
$м
     [,1] [,2]
[1,] 1
[2,]
$Logical
[1] TRUE
```

```
> list_ex$Char <- c("Char", "Char2")
> list_ex
$`Num`
[1] 5 6 7 8 9 10

$Char
[1] "Char" "Char2"

$V
[1] 33 42 88

$M
       [,1] [,2]
[1,] 1 3
[2,] 2 4

$Logical
[1] TRUE
```

- 리스트의 원소 변경
 - 만약 부분 리스트 접근으로 변경하면 하나의 값만 저장됨
 - 저장된 값을 변경할 때는 직접 값에 접근하여 변경하는 것이 편리함

```
> list_ex[6] <- "New"
> list_ex
$`Num`
[1] 1
$Char
[1] "Char"
$1/
Γ1] 33 42 88
$м
     [,1] [,2]
[1,]
[2,]
$Logical
[1] TRUE
[[6]]
[1] "New"
```

```
> list_ex[6] <- NULL
> list_ex
$`Num`
[1] 1

$Char
[1] "Char"

$V
[1] 33 42 88

$M
        [,1] [,2]
[1,] 1 3
[2,] 2 4

$Logical
[1] TRUE
```

```
> list_ex$New <- c("Apple", "Banana", "Cherry")</pre>
> list_ex
$`Num`
[1] 1
$Char
[1] "Char"
$V
[1] 33 42 88
$м
     [,1] [,2]
[1,]
[2,]
$Logical
[1] TRUE
$New
[1] "Apple" "Banana" "Cherry"
```

- 리스트의 원소 추가/제거
 - 새로운 key 혹은 index 를 통해 원소를 추가 가능
 - 부분 리스트로 접근하여 추가하는 경우 1개의 원소를 추가 가능

```
> list_ex[6] <- "New"</pre>
> list_ex
$`Num`
\lceil 1 \rceil 1
$Char
[1] "Char"
$V
[1] 33 42 88
$м
      [,1] [,2]
[1,]
[2,]
$Logical
[1] TRUE
[[6]]
[1] "New"
```

```
> list_ex[6] <- NULL
> list_ex
$`Num`
[1] 1

$Char
[1] "Char"

$V
[1] 33 42 88

$M
       [,1] [,2]
[1,] 1 3
[2,] 2 4

$Logical
[1] TRUE
```

```
> list_ex$New <- c("Apple", "Banana", "Cherry")</pre>
> list_ex
$`Num`
[1] 1
$Char
[1] "Char"
$V
[1] 33 42 88
$м
     [,1] [,2]
[1,]
[2,]
$Logical
[1] TRUE
$New
[1] "Apple" "Banana" "Cherry"
```

- 리스트의 원소 추가/제거
 - 반대로, 기존 key 혹은 index 를 통해 원소를 제거 가능

리스트의 병합

```
> list1 <- list(1, 5:10, TRUE)
> list2 <- list("Apple", c("Mon", "Tue", "Wen"))</pre>
> merged <- c(list1, list2)</pre>
> merged
[[1]]
[1] 1
[[2]]
[1] 5 6 7 8 9 10
[[3]]
[1] TRUE
[[4]]
[1] "Apple"
[[5]]
[1] "Mon" "Tue" "Wen"
```

- 리스트의 병합
 - 벡터를 생성하는 combine 함수를 이용하여 리스트 병합 가능

실습 문제

- 리스트의 생성과 변경
 - 1. 아래 출력과 같은 day, month, year 등의 key 들과 내부 value 들을 가진 'calendar' 리스트와 'calendar2' 리스트를 생성한다.
 - calendar 리스트는 숫자벡터 생성을 응용하여 만들고, calendar 2 리스트는 calendar 를 이용하여 만든다.
 - 2. 'calendar2' 리스트의 year 로부터 1900을 제외한 값들을 추출한 'year1900' 벡터를 만든다.
 - calendar2 리스트의 year 에 저장된 value 들을 연산에 이용한다.

```
> calendar
$`day`
[1] "MON" "TUE" "WEN" "THU" "FRI" "SAT" "SUN"

$month
    [1] 1 2 3 4 5 6 7 8 9 10 11 12

$year
[1] 1900 1920 1940 1960 1980 2000

> calendar2
$`day`
[1] "MON" "TUE" "WEN" "THU" "FRI" "SAT" "SUN"

$month
    [1] 1 2 3 4 5 6 7 8 9 10 11 12

$year
    [1] 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

> year1900
[1] 0 10 20 30 40 50 60 70 80 90 100
```

데이터프레임(DataFrame)

- 데이터프레임
 - 행렬과 같은 2D(Dimension) 형태의 자료구조
 - 데이터 처리에 유용한 Spread Sheet 형태로 저장
 - 데이터를 효율적으로 다룰 수 있는 자료구조
 - 각 행은 데이터 값, 각 열은 데이터 변수(속성)
 - 각 열은 동일한 길이를 가진 벡터로 저장해야 함
 - 따라서, 각 열은 동일한 자료형의 데이터를 가짐

데이터프레임의 생성

```
d <- data.frame(name=c('A', 'B', 'C'), salary=c(30000, 42000, 38000), check=c(T, F, T))
  name salary check
   A 30000 TRUE
   B 42000 FALSE
  C 38000 TRUE
> d$name
[1] A B C
Levels: A B C
> d$salary
[1] 30000 42000 38000
> d[1]
  name
1 A
> d[2, 3]
[1] FALSE
> d[2, ]
name salary check
2 B 42000 FALSE
```

- 데이터프레임의 생성
 - > data.frame(...)
 - 리스트와 비슷하게 key-value 형태로 데이터를 저장하여 생성
 - 각 value 들은 동일한 길이를 가진 벡터여야 함

데이터프레임의 접근

```
> d <- data.frame(name=c('A', 'B', 'C'), salary=c(30000, 42000, 38000), check=c(T, F, T))</pre>
  name salary check
  A 30000 TRUE
   B 42000 FALSE
3 C 38000 TRUE
> d$name
[1] A B C
Levels: A B C
> d$salary
[1] 30000 42000 38000
> d[1]
  name
  A
> d[2, 3]
[1] FALSE
> d[2, ]
 name salary check
   B 42000 FALSE
```

- 데이터프레임의 접근
 - > DataFrame\$key
 - 리스트와 같이 key를 통해 데이터 접근 가능 (column 벡터가 반환됨)
 - > DataFrame[index]
 - 대괄호 하나와 index 로 접근하는 경우 부분 데이터프레임이 반환됨

데이터프레임의 접근

```
> d <- data.frame(name=c('A', 'B', 'C'), salary=c(30000, 42000, 38000), check=c(T, F, T))</pre>
  name salary check
  A 30000 TRUE
  B 42000 FALSE
3 C 38000 TRUE
> d$name
[1] A B C
Levels: A B C
> d$salary
[1] 30000 42000 38000
> d[1]
  name
  A
> d[2, 3]
[1] FALSE
> d[2, ]
 name salary check
2 B 42000 FALSE
```

- 데이터프레임의 접근
 - > DataFrame[row, column]
 - 행렬과 같은 형태이므로 행, 열 index로 접근 가능
 - 행렬처럼 한 쪽만을 기재하여 전체 행 혹은 열에 접근 가능

데이터프레임의 함수

- 데이터프레임의 함수
 - 데이터프레임은 행렬 형태이며, 각각 행과 열은 벡터

함수	설명
dim(x)	차원(행의 개수, 열의 개수) 반환
nrow(x)	행의 개수 반환
ncol(x)	열의 개수 반환
head(x, [n])	앞에서부터 n개의 행 반환 (기본값=6)
tail(x, [n])	뒤에서부터 n개의 행 반환 (기본값=6)
colnames(x)	열 이름 벡터 반환
rownames(x)	행 이름 벡터 반환
class(x)	해당 데이터의 자료형 타입을 반환
is.data.frame(x)	자료형이 데이터프레임인지 확인하여 Boolean 반환
as.data.frame(x)	데이터프레임 자료형으로 변환

데이터프레임의 함수

```
> str(Cars93)
'data.frame':
               93 obs. of 27 variables:
$ Manufacturer
                    : Factor w/ 32 levels "Acura", "Audi", ...: 1 1 2 2 3 4 4 4 4 5 ...
$ Model
                    : Factor w/ 93 levels "100", "190E", "240", ...: 49 56 9 1 6 24 54 74 73 35 ...
$ Type
                  : Factor w/ 6 levels "Compact", "Large", ... 4 3 1 3 3 3 2 2 3 2 ...
                  : num 12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33 ...
$ Min.Price
                    : num 15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ...
$ Price
$ Max.Price
                  : num 18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3 36.3 ...
$ MPG.city
                  : int 25 18 20 19 22 22 19 16 19 16 ...
                  : int 31 25 26 26 30 31 28 25 27 25 ...
$ MPG.highway
                    : Factor w/ 3 levels "Driver & Passenger",..: 3 1 2 1 2 2 2
$ AirBags
$ DriveTrain
                  : Factor w/ 3 levels "4WD", "Front", ...: 2 2 2 2 3 2 2 3 2 2 ...
$ Cylinders
                  : Factor w/ 6 levels "3", "4", "5", "6", ...: 2 4 4 4 2 2 4 4 4 5 ...
$ EngineSize
                  : num 1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 ...
$ Horsepower
                  : int 140 200 172 172 208 110 170 180 170 200 ...
$ RPM
                    : int 6300 5500 5500 5500 5700 5200 4800 4000 4800 4100 ...
$ Rev.per.mile
                    : int 2890 2335 2280 2535 2545 2565 1570 1320 1690 1510 ...
$ Man.trans.avail : Factor w/ 2 levels "No", "Yes": 2 2 2 2 2 1 1 1 1 1 ...
$ Fuel.tank.capacity: num
                          13.2 18 16.9 21.1 21.1 16.4 18 23 18.8 18 ...
$ Passengers
                          5556466656...
$ Length
                    : int 177 195 180 193 186 189 200 216 198 206 ...
$ Wheelbase
                  : int 102 115 102 106 109 105 111 116 108 114 ...
$ Width
                  : int 68 71 67 70 69 69 74 78 73 73 ...
$ Turn.circle : int 37 38 37 37 39 41 42 45 41 43 ...
$ Rear.seat.room : num 26.5 30 28 31 27 28 30.5 30.5 26.5 35 ...
                  : int 11 15 14 17 13 16 17 21 14 18 ...
$ Luggage.room
$ Weight
                    : int 2705 3560 3375 3405 3640 2880 3470 4105 3495 3620 ...
$ Origin
                    : Factor w/ 2 levels "USA", "non-USA": 2 2 2 2 2 1 1 1 1 1 ...
$ Make
                    : Factor w/ 93 levels "Acura Integra",..: 1 2 4 3 5 6 7 9 8 10 ...
```

- 데이터프레임의 데이터 요약
 - > str(x)
 - 데이터프레임의 구조, 클래스(자료형), 데이터의 수, 열의 내용 등의 정보를 제공
 - 존재하는 변수 및 저장된 자료형 등 데이터프레임의 구성 자체를 확인하는데 사용

데이터프레임의 함수

```
> summary(Cars93)
   Manufacturer
                     Model
                                   Type
                                              Min.Price
                                                                Price
                                                                              Max.Price
                                                                                               MPG.citv
                                                                                                             MPG.highway
                                                                                                                                           AirBags
Chevrolet: 8
                 100
                              Compact:16
                                                            Min. : 7.40
                                                                                            Min.
                                                                                                 :15.00
                                                                                                            Min.
                                                                                                                   :20.00
                                                                                                                            Driver & Passenger:16
Ford
                              Large :11
                                            1st Qu.:10.80
                                                            1st Qu.:12.20
                                                                            1st Qu.:14.7
                                                                                            1st Qu.:18.00
                                                                                                            1st Ou.:26.00
                                                                                                                            Driver only
                                                            Median :17.70
Dodge
                              Midsize:22
                                            Median :14.70
                                                                            Median:19.6
                                                                                            Median :21.00
                                                                                                            Median :28.00
                                                                                                                                               :34
Mazda
                                                            Mean
                                                                  :19.51
                                                                                            Mean
                                                                                                   :22.37
                                                                                                            Mean
                                                                                                                  :29.09
Pontiac : 5
                                                            3rd Qu.:23.30
                                                                            3rd Qu.:25.3
                                                                                            3rd Qu.:25.00
                                                                                                            3rd Qu.:31.00
                              Sporty:14
Buick
                 535i
                                     : 9
                                                   :45.40
                                                                                    :80.0
                                                                                                                   :50.00
                       : 1
                                           Max.
                                                            Max.
                                                                   :61.90
                                                                                            Max.
                                                                                                   :46.00
                                                                                                            Max.
 (Other) :57
                 (Other):87
DriveTrain Cylinders
                          EngineSize
                                           Horsepower
                                                                         Rev.per.mile
                                                                                       Man.trans.avail Fuel.tank.capacity
                                                                                                                              Passengers
4WD :10
                        Min.
                               :1.000
                                        Min. : 55.0
                                                                :3800
                                                                        Min. :1320
                                                                                       No:32
                                                                                                        Min. : 9.20
                                                                                                                                 :2.000
Front:67
                        1st Ou.:1.800
                                         1st Qu.:103.0
                                                         1st Qu.:4800
                                                                        1st Ou.:1985
                                                                                                        1st Ou.:14.50
                                                                                                                           1st Ou.:4.000
                        Median :2.400
                                        Median:140.0
                                                         Median:5200
                                                                        Median:2340
                                                                                                        Median :16.40
                                                                                                                           Median :5.000
                                               :143.8
                                                                :5281
                                                                              :2332
                                                                                                                                :5.086
                        Mean
                              :2.668
                                        Mean
                                                                        Mean
                                                                                                        Mean
                                                                                                              :16.66
                                                                                                                           Mean
                        3rd Qu.:3.300
                                         3rd Ou.:170.0
                                                         3rd Ou.:5750
                                                                        3rd Ou.:2565
                                                                                                        3rd Qu.:18.80
                                                                                                                           3rd Qu.:6.000
                                                                                                               :27.00
                                                                                                                                 :8.000
                               :5.700
                                                :300.0
                                     Width
                                                  Turn.circle
                                                                                                       Weight
    Length
                   Wheelbase
                                                                  Rear.seat.room
                                                                                   Luggage.room
                                                                                                                      Origin
       :141.0
                        : 90.0
                                        :60.00
                                                         :32.00
                                                                          :19.00
                                                                                                          :1695
                                                                                                                                Acura Integra: 1
1st Qu.:174.0
                                                                  1st Ou.:26.00
                 1st Ou.: 98.0
                                 1st Ou.:67.00
                                                 1st Ou.:37.00
                                                                                  1st Ou.:12.00
                                                                                                   1st Qu.:2620
                                                                                                                  non-USA:45
                                                                                                                                Acura Legend: 1
                                                 Median :39.00
Median :183.0
                 Median :103.0
                                 Median:69.00
                                                                  Median :27.50
                                                                                  Median :14.00
                                                                                                   Median:3040
                                                                                                                                Audi 100
       :183.2
                       :103.9
                                        :69.38
                                                        :38.96
                                                                         :27.83
                                                                                         :13.89
                                                                                                         :3073
                                                                                                                                Audi 90
                                                 Mean
3rd Ou.:192.0
                 3rd Ou.:110.0
                                 3rd Ou.:72.00
                                                  3rd Qu.:41.00
                                                                  3rd Qu.:30.00
                                                                                   3rd Qu.:15.00
                                                                                                   3rd Ou.:3525
                                                                                                                                BMW 535i
                                        :78.00
                                                         :45.00
                                                                  Max.
                                                                         :36.00
                                                                                          :22.00
                                                                                                                               Buick Century: 1
                                                                                          :11
                                                                                                                                (Other)
                                                                                                                                             :87
```

• 데이터프레임의 데이터 요약

- > summary(x)
 - 데이터프레임의 변수에 따라 각각 요약된 통계량 정보를 제공
 - 문자열 변수 혹은 Factor 변수 등에서는 각 값의 빈도 수를 출력
 - 수치 자료의 경우 최솟값, 최댓값, 중앙값 등 다양한 통계량 제공

데이터프레임의 변경

```
name salary check
1 A 30000 TRUE
  B 42000 FALSE
3 C 38000 TRUE
> newrow <- data.frame(name="D", salary=50000, check=T)
name salary check
1 D 50000 TRUE
> d <- rbind(d, newrow)
> d
 name salary check
1 A 30000 TRUE
2 B 42000 FALSE
3 C 38000 TRUE
  D 50000 TRUE
> newcol <- data.frame(part=c(1,1,2,2))</pre>
> d <- cbind(d, newcol)
> d
 name salary check part
1 A 30000 TRUE 1
  B 42000 FALSE 1
  C 38000 TRUE
  D 50000 TRUE
```

- 데이터프레임의 행/열 추가/제거
 - 행렬처럼 bind 함수를 이용하여 행/열 추가
 - 부분 데이터프레임 추출 및 재저장을 통해 제거 가능

데이터프레임의 병합

```
> d1
                                     merge(dl, d2)
  name salary check part
                                      name salary check part bonus
                                            30000
                                                   TRUE
       30000 TRUE
                                                               YES
        42000 FALSE
                                            38000
                                                   TRUE
                                                               YES
        38000 TRUE
                                           50000 TRUE
                                                                NO
     D 50000 TRUE
                                     merge(dl, d3)
> d2
                                       name salary check part bonus
                                            30000
                                                    TRUE
                                                                YES
  name bonus
                                             42000 FALSE
                                                                YES
         YES
         YES
                                             38000 TRUE
                                                                YES
    С
                                                                YES
                                             50000 TRUE
          NO
                                             30000 TRUE
                                                                YES
> d3
                                             42000 FALSE
                                                                YES
  bonus
                                             38000
                                                    TRUE
                                                                YES
   YES
                                             50000
                                                    TRUE
                                                                YES
    YES
                                                    TRUE
    NO
                                             30000
                                                                 NO
                                             42000 FALSE
                                                                 NO
                                            38000
                                                   TRUE
                                                                 NO
                                          D 50000 TRUE
                                                                 NO
```

- 데이터프레임의 병합
 - > merge(DataFrame1, DataFrame2)
 - 연관성 있는 두 데이터프레임을 병합 시 내부 변수가 고려되어 병합됨
 - 중복이 되는 열(변수)의 데이터 중 동일 데이터에 대해서만 병합
 - 만약 중복되는 열이 없는 경우 모든 데이터에 대해 '전체 곱'이 수행됨

- 데이터 처리 함수
 - 벡터, 행렬, 데이터프레임 등 여러 데이터들이 저장된 자료구조들에 각 목적에 따라 함수를 효율적으로 적용하기 위해 사용하는 함수
 - 어떤 조건, 연산, 함수 등을 반복적으로 데이터 구조에 적용할 수 있음
 - 기본적으로 벡터 단위로 함수가 적용되어 수행됨

함수	설명
apply()	특정 함수를 해당 '범위 행 혹은 열에 적용'하여 반환
lapply()	특정 함수를 '리스트 및 벡터에 적용'하여 '리스트로 반환'
sapply()	특정 함수를 '리스트 및 벡터에 적용'하고 '효율적인 자료형'으로 반환
tapply()	특정 함수를 요인에 따라 '구분된 그룹별로 적용'하여 반환

```
> data
    a b c
1 1 3 2
2 2 4 4
3 3 5 6
4 4 6 8
5 5 7 10
6 6 8 12
7 7 9 14
8 8 10 16
9 9 11 18
10 10 12 20
> apply(data, 2, sum)
    a b c
55 75 110
> apply(data, 2, function(x) { sum(x) })
    a b c
55 75 110
```

- 데이터 처리 함수에 대입되는 함수(function)
 - 반복하여 처리하고자 하는 특정 함수를 대입
 - 구현된 함수들은 함수명으로 대입
 - 함수 생성 문법인 function(...) { } 으로도 구현 가능

```
> class
  kor mat eng sci
1 92 55 100 44
2 99 60 72 56
3 72 22 55 88
4 45 33 100 92
> apply(class, 2, sum)
kor mat eng sci
308 170 327 280
> apply(class, 1, sum)
[1] 291 287 237 270
> str(Cars93[.4:61)
'data.frame': 93 obs. of 3 variables:
 $ Min.Price: num 12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33 ...
 $ Price : num 15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ...
 $ Max.Price: num 18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3 36.3 ...
> apply(Cars93[,4:6], 2, mean)
Min.Price Price Max.Price
 17.12581 19.50968 21.89892
```

- > apply(data, margin, function)
 - data에 대하여 margin 방향의 각 벡터에 대해 function을 각각 적용
 - margin=1 이면 각 행 벡터에 대하여 function 을 적용
 - margin=2 이면 각 열 벡터에 대하여 function 을 적용
 - function이 적용될 수 있는 변수들(행, 열)에 적용

```
> str(Cars93[,4:6])
'data.frame': 93 obs. of 3 variables:
$ Min.Price: num 12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33 ...
$ Price : num 15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ...
$ Max.Price: num 18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3 36.3 ...
> apply(Cars93[,4:6], 2, mean)
Min.Price
            Price Max.Price
17.12581 19.50968 21.89892
> lapply(Cars93[,4:6], sum)
$`Min.Price`
[11 1592.7
SPrice
[11] 1814.4
$Max.Price
[1] 2036.6
> unlist(lapply(Cars93[,4:6], sum))
Min.Price
            Price Max.Price
  1592.7 1814.4 2036.6
```

- > lapply(data, function)
 - data 의 각 열에 대하여 function 을 적용하여 결과를 '리스트'로 반환
 - 리스트인 경우에는 각 key 에 따른 value 에 대하여 function 이 적용됨
 - 앞서 배운 unlist(...) 함수를 이용하여 벡터 형태로 변환 가능

```
> s1 <- sapply(Cars93[,4:6], sum)
> class(s1)
[1] "numeric"
> s1
Min.Price
            Price Max.Price
   1592.7 1814.4
                       2036.6
> s2 <- sapply(Cars93[,4:6], function(x) { x < 30 })
> class(s2)
[1] "matrix"
> head(s2)
     Min.Price Price Max.Price
[1,]
          TRUE TRUE
                          TRUE
[2,]
         TRUE FALSE
                         FALSE
[3,]
        TRUE TRUE
                         FALSE
     FALSE FALSE
[4,]
                         FALSE
[5,]
          TRUE FALSE
                         FALSE
[6,]
          TRUE TRUE
                          TRUE
```

- > sapply(data, function)
 - lapply 함수와 비슷하게 사용되나, 반환되는 자료구조가 유연함
 - 반복문을 대체하기에 가장 편리한 함수
 - 일반적으로, 수행 결과가 벡터 형태로 반환됨
 - 반환될 결과의 각 value 길이가 다른 경우에도 리스트 형태로 반환됨
 - 이외에는 입력과 결과의 형태에서 차이가 없으면 동일 자료형으로 반환됨

18.02500

> tapply(Cars93\$Price, Cars93\$Manufacturer, mean)

22 2 .	•	-	-		
Acura	Audi	BMW	Buick	Cadillac	Chevrolet
24.90000	33.40000	30.00000	21.62500	37.40000	18.18750
Chrylser	Chrysler	Dodge	Eagle	Ford	Geo
18.40000	22.65000	15.70000	15.75000	14.96250	10.45000
Honda	Hyundai	Infiniti	Lexus	Lincoln	Mazda
16.46667	10.47500	47.90000	31.60000	35.20000	17.60000
Mercedes-Benz	Mercury	Mitsubishi	Nissan	Oldsmobile	Plymouth
46.90000	14.50000	18.20000	17.02500	17.50000	14.40000
Pontiac	Saab	Saturn	Subaru	Suzuki	Toyota
16.14000	28.70000	11.10000	12.93333	8.60000	17.27500
Volkswagen	Volvo				

> tapply(data, factor, function)

24.70000

• data 내부의 factor(범주, 요인)에 따라 그룹별로 function을 적용

```
> head(split(Cars93$Price, Cars93$Manufacturer))
$Acura
[1] 15.9 33.9

$Audi
[1] 29.1 37.7

$BMW
[1] 30

$Buick
[1] 15.7 20.8 23.7 26.3

$Cadillac
[1] 34.7 40.1

$Chevrolet
[1] 13.4 11.4 15.1 15.9 16.3 16.6 18.8 38.0

> subset(Cars93$Price, Cars93$Manufacturer=="Audi")
[1] 29.1 37.7
```

- 데이터 분리
 - > split(data, factor)
 - 주어진 factor의 범주에 따라 데이터를 분리하여 리스트로 반환
 - > subset(data, condition)
 - 주어진 condition(조건)에 따라 만족하는 데이터만 분리하여 값을 반환(벡터)

```
> Cars93$Price
[1] 15.9 33.9 29.1 37.7 30.0 15.7 20.8 23.7 26.3 34.7 40.1 13.4 11.4 15.1 15.9 16.3 16.6 18.8 38.0 18.4 15.8 29.5 9.2 11.3 1$
[47] 13.9 47.9 28.0 35.2 34.3 36.1 8.3 11.6 16.5 19.1 32.5 31.9 61.9 14.1 14.9 10.3 26.1 11.8 15.7 19.1 21.5 13.5 16.3 19.5 2$
[93] 26.7
> sort(Cars93$Price, decreasing=T)
[1] 61.9 47.9 40.1 38.0 37.7 36.1 35.2 34.7 34.3 33.9 32.5 31.9 30.0 29.5 29.1 28.7 28.0 26.7 26.3 26.1 25.8 24.4 23.7 23.3 2$
[47] 17.7 17.5 16.6 16.5 16.3 16.3 15.9 15.9 15.9 15.8 15.7 15.7 15.6 15.1 14.9 14.4 14.1 14.0 13.9 13.5 13.4 13.3 12.5 12.2 1$
[93] 7.4
> sort(Cars93$Price, decreasing=F)
[1] 7.4 8.0 8.3 8.4 8.4 8.6 9.0 9.1 9.2 9.8 10.0 10.0 10.1 10.3 10.9 11.1 11.1 11.3 11.3 11.4 11.6 11.8 12.1 12.2 1$
[47] 17.7 18.2 18.4 18.4 18.5 18.8 19.0 19.1 19.1 19.3 19.5 19.5 19.7 19.8 19.9 20.0 20.2 20.7 20.8 20.9 21.5 22.7 22.7 23.3 2$
[93] 61.9
> order(Cars93$Price, decreasing=T)
[1] 59 48 11 19 4 52 50 10 51 2 57 58 5 22 3 78 49 93 9 63 28 77 8 91 87 92 67 38 7 71 37 90 36 41 89 70 82 30 56 66 2$
[78] 79 81 62 32 45 46 84 23 88 73 83 39 80 53 44 31
```

• 데이터 정렬

- > sort(data, [decreasing=T/F])
 - 데이터를 직접 정렬하여 반환
 - decreasing=T이면 내림차순 정렬
- > order(data, [decreasing=T/F])
 - 정렬 결과 데이터가 현재 데이터 내에서 존재하는 위치를 반환
 - 전체 데이터에서 각 데이터의 순위에 따른 index를 보는데 유리
 - decreasing=T이면 내림차순 결과에서 각 순위에 따른 index를 반환

> table(Cars93\$M	Manufacturer)				
Acura	Audi	BMW	Buick	Cadillac	Chevrolet
2	2	1	4	2	8
Chrylser	Chrysler	Dodge	Eagle	Ford	Geo
1	2	6	2	8	2
Honda	Hyundai	Infiniti	Lexus	Lincoln	Mazda
3	4	1	2	2	5
Mercedes-Benz	Mercury	Mitsubishi	Nissan	Oldsmobile	Plymouth
2	2	2	4	4	1
Pontiac	Saab	Saturn	Subaru	Suzuki	Toyota
5	1	1	3	1	4
Volkswagen	Volvo				
4	2				

• 데이터의 정리

- > table(data)
 - data 내부에 저장된 중복되지 않은 범주에 따른 데이터의 개수를 정리하여 반환
 - 즉, 저장된 데이터에 대한 도수분포표를 반환

과제

MEDICINE	SUBJECT	EFFECT	PROBLEM
M1	S1	0.62	0.11
M1	S2	0.77	0.05
M1	S3	0.33	0.16
M1	S4	0.27	0.89
M1	S5	0.84	0.77
M2	S1	0.15	0.13
M2	S2	0.13	0.77
M2	S3	0.29	0.22
M2	S4	0.18	0.10
M2	S5	0.62	0.21
M3	S1	0.72	0.33
M3	S2	0.13	0.31
M3	S3	0.09	0.42
M3	S4	0.57	0.55
М3	S5	0.44	0.66

• 문제.

- 왼쪽 표는 어느 대학에서 안 전 약물 3가지를 각각 피실 험자 5명에게 실험한 뒤의 결과를 나타낸 표이다.
 - MEDICIN: 약의 이름
 - SUBJECT: 피실험자 이름
 - EFFECT: 약물 효과 발생률
 - PROBLEM: 문제 발생률
- 왼쪽 표를 데이터프레임으로 저장한다.
- 아래의 값들을 계산한다.
 - 약물 별 평균 효과 발생률
 - 약물 별 평균 문제 발생률
 - 평균 문제 발생률이 높은 약 물부터 순서대로 출력

과제 제출

- 제출 목록
 - 작성한 코드 파일(.R)
 - 결과 출력 화면 (.PDF)
 - 터미널 캡처(이미지)를 Word 혹은 HWP 에 붙여넣어 PDF 로 변환
- 제출 방법
 - 위 목록의 파일들을 하나로 압축
 - 아래 서식으로 압축파일 이름 지정
 - 블랙보드를 통해 제출
- 제출 서식 (XX = 주차번호 ex. 01, 02, ...)
 - 파일 이름: 전산통계학_실습과제_XX주차_학번_이름.zip