

APPUNTI DI Geometria Analitica e Algebra Lineare

Giacomo Mezzedimi

frutto della rielaborazione delle lezioni tenute dai professori

E. Fortuna

R. Frigerio

a.a. 2013-2014

29/11/2015

INTRODUZIONE

Questi appunti nascono dall'esigenza mia (ma credo anche di altri) di un supporto per lo studio del corso "Geometria Analitica e Algebra Lineare" al primo anno; a differenza infatti di molti altri corsi, non è facile trovare del materiale adatto da affiancare durante lo studio.

Sostanzialmente queste pagine contengono gli argomenti svolti dalla professoressa E. Fortuna e dal professore R. Frigerio durante l'anno accademico 2013-2014, anno in cui io ho seguito il corso; molte parti sono prese dai lucidi della professoressa Fortuna, ma alcune sono state riadattate/modificate/completate per dare una continuità al testo.

I paragrafi 3.6 (Basi cicliche per endomorfismi) e 5.3 (Geometria affine euclidea) sono stati aggiunti nel giugno del 2015, in quanto svolti nell'a.a. 2014-2015; voglio ringraziare a tal proposito Dario Balboni, che ha realizzato questi due paragrafi, oltre ad avermi aiutato nell'opera di correzione del testo.

Voglio infine ringraziare tutti quelli che hanno contribuito o contribuiranno a migliorare questi appunti: è impossibile rendere un testo completamente privo di errori, ma l'obiettivo è quello di ripulirlo più possibile; invito dunque tutti a segnalarmi qualunque tipo di errore/imprecisione presente in queste pagine (la mia e-mail è *mezzedimi@mail.dm.unipi.it*).

Nella speranza che questi appunti vi siano utili, vi auguro un buono studio.

Giacomo Mezzedimi (con l'accento sulla seconda e)

SOMMARIO

CAPITOLO 1: Prime definizioni e proprietà	3
• 1.1 Prime definizioni	3
• 1.2 Strutture algebriche	6
CAPITOLO 2: Spazi vettoriali e applicazioni lineari	13
• 2.1 Spazi vettoriali	13
• 2.2 Spazi di matrici	14
• 2.3 Sottospazi e combinazioni lineari	15
2.4 Applicazioni lineari	18
• 2.5 Sistemi lineari	25
• 2.6 Basi e dimensione	30
• 2.7 Rango	38
• 2.8 SD-equivalenza	42
• 2.9 Spazio duale	47
CAPITOLO 3: Endomorfismi	50
• 3.0 Alcune nozioni sulle permutazioni	50
• 3.1 Determinante	51
• 3.2 Endomorfismi simili	60
• 3.3 Diagonalizzabilità	68
• 3.4 Triangolabilità	72
• 3.5 Forma canonica di Jordan	75
• 3.6 Basi cicliche per endomorfismi	90
CAPITOLO 4: Forme bilineari	92
• 4.1 Forme bilineari e forme quadratiche	92
• 4.2 Congruenza e decomposizione di Witt	97
• 4.3 Isometrie	111
• 4.4 Aggiunto	113
4.5 Spazi euclidei	117
• 4.6 Il teorema spettrale reale	123
CAPITOLO 5: Spazi affini	127
• 5.1 Isometrie affini	127
• 5.2 Spazi e sottospazi affini	134
• 5.3 Geometria affine euclidea	143
• 5.4 Affinità di \mathbb{K}^n	145
• 5.5 Quadriche	148

1 PRIME DEFINIZIONI E PROPRIETÁ

1.1 PRIME DEFINIZIONI

DEFINIZIONE 1.1.1: Siano *A*, *B* insiemi. Diciamo che:

- $A \in \mathbf{sottoinsieme} \ \mathrm{di} \ B \ (A \subset B \ \mathrm{oppure} \ A \subseteq B) \ \mathrm{se} \ \forall a \in A, \ a \in B;$
- $A
 earrow
 ag{equale} a B (A = B) se A \subset B \land B \subset A$.

Se un insieme è finito, si può definire elencando tutti i suoi elementi:

$$A = \{a_1, \dots, a_n\}$$

Se un insieme è infinito, si definisce enunciando la proprietà che caratterizza tutti i suoi elementi:

$$A = \{x | P(x)\}$$

Esempio: $P = \{a \in \mathbb{N} | a \equiv 0 \ (2)\}$ è l'insieme dei numeri pari.

DEFINIZIONE 1.1.2: Dati *A*, *B* insiemi, definiamo:

• **unione** di due insiemi $A \cup B = \{x | x \in A \lor x \in B\};$

• **intersezione** di due insiemi $A \cap B = \{x | x \in A \land x \in B\};$

• **differenza** di due insiemi $A - B = A \setminus B = \{x \mid x \in A \land x \notin B\};$

• **prodotto cartesiano** di due insiemi $A \times B = \{(a, b) | a \in A, b \in B\}.$

DEFINIZIONE 1.1.3: Una applicazione è una terna $f: A \to B$, dove $A \in B$ sono insiemi, chiamati rispettivamente **dominio** e **codominio**, e f è una legge che associa ad ogni elemento $x \in A$ **uno** e **un solo elemento** f(x) di B.

 id_A : $A \to A$ è l'applicazione identica, tale che $\forall x \in A$, $id_A(x) = x$.

DEFINIZIONE 1.1.4: Data un'applicazione $f: A \to B$, si definisce **immagine** di f l'insieme $Im(f) = \{y \in B | \exists x \in A \text{ tale che } f(x) = y\}.$ Vale sempre $Im(f) \subset B$.

Esempio: $f: \mathbb{N} \to \mathbb{N} | f(x) = 2x$; $Im(f) = \{pari\}$.

In generale, se $W \subset A$, allora $f(W) = \{y \in B | \exists x \in W \text{ tale che } f(x) = y\}$ perciò $f(W) \subset B$.

DEFINIZIONE 1.1.5: Si definisce **restrizione** di f a W, dove $f: A \to B$ e $W \subset A$, come la funzione $f|_W: W \to B$ tale che $\forall x \in W \ (f|_W)(x) \stackrel{\text{def}}{=} f(x)$.

In parole povere, $f|_W$ agisce come f ma in un dominio ristretto; si parla infatti di una **restrizione del dominio**.

Perciò: $Im(f|_W) = f(W)$.

DEFINIZIONE 1.1.6: Sia $f: A \to B$ e $Z \subset B$. Si indica con $f^{-1}(Z)$ il sottoinsieme del dominio che contiene tutti gli elementi che hanno immagine in Z, cioè:

$$f^{-1}(Z) = \{ x \in A | f(x) \in Z \}$$

 $f^{-1}(Z)$ viene chiamata **controimmagine** di Z.

DEFINIZIONE 1.1.7: Una applicazione $f: A \rightarrow B$ si dice:

- **surgettiva** se Im(f) = B oppure equivalentemente se $\forall y \in B, \exists x \in A | f(x) = y$;
- **iniettiva** se $\forall x, y \in A, x \neq y \Rightarrow f(x) \neq f(y)$ oppure equivalentemente se $f(x) = f(y) \Rightarrow x = y$;
- **bigettiva** (o biunivoca) se è sia iniettiva che surgettiva.

DEFINIZIONE 1.1.8: Data un'applicazione $f: A \to B$ bigettiva, si definisce **funzione inversa** $f^{-1}: B \to A$ tale che $\forall y \in B, f^{-1}(y) = x$, dove $x \mid f(x) = y$. L'unicità della x viene garantita dalla bigettività di f.

DEFINIZIONE 1.1.9: Date $f: A \to B$ e $g: B \to C$, si definisce **composizione di funzioni** la funzione $g \circ f: A \to C$ tale che $\forall x \in A \ (g \circ f)(x) \stackrel{\text{def}}{=} g(f(x))$.

PROPOSIZIONE 1.1.1: $Im(g \circ f) = Im(g|_{Im(f)})$

Dimostrazione:

Entrambi i contenimenti derivano direttamente dalla definizione di composizione.

DEFINIZIONE 1.1.10: Dato un insieme $E \neq \emptyset$, si definisce **relazione** \mathcal{R} su E come un sottoinsieme di $E \times E$ tale che $(x, y) \in \mathcal{R}$ per alcuni $x, y \in E$. $(x, y) \in \mathcal{R}$ viene comunemente scritto $x\mathcal{R}y$ $(x \in \mathbb{R})$ in relazione con y).

DEFINIZIONE 1.1.11: Una relazione \mathcal{R} si dice di equivalenza se:

- è riflessiva, cioè $\forall x \in E, x\mathcal{R}x$;
- è simmetrica, cioè $x\mathcal{R}y \Rightarrow y\mathcal{R}x$;
- è transitiva, cioè $x\mathcal{R}y \wedge y\mathcal{R}z \Rightarrow x\mathcal{R}z$.

DEFINIZIONE 1.1.12: Sia \mathcal{R} una relazione di equivalenza. $\forall x \in E$, si definisce **classe di equivalenza** di x l'insieme $[x] = \{y \in E | x\mathcal{R}y\}$, cioè l'insieme degli elementi di E in relazione con x.

Evidentemente $\forall x \in E$, $[x] \neq \emptyset$, poiché $x \in [x]$.

LEMMA 1.1.2: Siano $x, y \in E$ e sia \mathcal{R} una relazione di equivalenza su E. Allora $[x] = [y] \Leftrightarrow x\mathcal{R}y$.

Dimostrazione:

- \Rightarrow) $x \in [x] \Rightarrow x \in [y] \Rightarrow x \mathcal{R} y$.
- \Leftarrow) Sia $z \in [x]$; allora $z\mathcal{R}x$.

Ma $x\mathcal{R}y$ per ipotesi, quindi per transitività $z\mathcal{R}y \Rightarrow z \in [y]$.

Perciò $[x] \subset [y]$.

Analogamente si prova che $[y] \subset [x]$, da cui la tesi.

PROPOSIZIONE 1.1.3: Le classi di equivalenza formano una partizione, cioè:

- 1) ogni classe è non vuota;
- 2) $\bigcup_{x \in F} [x] = E$;

3) $[x] \cap [y] \neq \emptyset \Rightarrow [x] = [y]$.

Dimostrazione:

- 1) già fatta.
- 2) $\forall x \in E$, $[x] \subset E \Rightarrow \bigcup_{x \in E} [x] \subset E$; $\forall x \in E$, $x \in [x] \Rightarrow E \subset \bigcup_{x \in E} [x]$, da cui segue la tesi.
- 3) $[x] \cap [y] \neq \emptyset \Rightarrow \exists z \in [x] \cap [y] \Rightarrow z\mathcal{R}x \land z\mathcal{R}y \Rightarrow x\mathcal{R}y$ e per il lemma precedente ho che [x] = [y], cioè la tesi.

Esempio: $E = \mathbb{R}$, $(x, y) \in \mathcal{R} \iff x - y \in \mathbb{Z}$.

Questa relazione è di equivalenza, in quanto:

- 1) è riflessiva, poiché $x x = 0 \in \mathbb{Z}$;
- 2) è simmetrica, poiché se $x y = k \in \mathbb{Z} \Rightarrow y x = -k \in \mathbb{Z}$;
- 3) è transitiva, poiché se $x-y=k_1\in\mathbb{Z}$ e $y-z=k_2\in\mathbb{Z}$ \Rightarrow $x-z=k_1+k_2\in\mathbb{Z}$.

DEFINIZIONE 1.1.13: Si definiscono **rappresentanti di una classe di equivalenza** tutti gli elementi di una certa classe.

DEFINIZIONE 1.1.14: Sia $E \neq \emptyset$ e \mathcal{R} una relazione di equivalenza su E. Si definisce **insieme quoziente** $E/_{\mathcal{R}} \stackrel{\text{def}}{=} \{[x] | x \in E\}$ (si legge E modulo \mathcal{R}).

DEFINIZIONE 1.1.15: Si definisce proiezione naturale al quoziente l'applicazione:

$$\pi_{\mathcal{R}}: E \to E/_{\mathcal{R}} \mid \pi_{\mathcal{R}}(x) = [x]$$

 $\pi_{\mathcal{R}}$ è surgettiva poiché ogni classe di $E/_{\mathcal{R}}$ è immagine di tutti i suoi rappresentanti. Per lo stesso motivo non è iniettiva.

PROPOSIZIONE 1.1.4 (Leggi di De Morgan): Sia X un insieme e A, $B \subset X$. Allora, se $\overline{A} = X \setminus A$:

- 1) $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$
- 2) $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$

Dimostrazione:

- 1) $x \in \overline{(A \cup B)} \Leftrightarrow x \notin A \cup B \Leftrightarrow x \notin A \land x \notin B \Leftrightarrow x \in \overline{A} \land x \in \overline{B} \Leftrightarrow x \in \overline{A} \cap \overline{B}$.
- 2) Analoga.

PROPOSIZIONE 1.1.5: Sia $f: X \to Y$. Allora:

- 1) $\exists g: Y \to X \mid f \circ g = id_Y$ (inversa destra) $\Leftrightarrow f$ è surgettiva;
- 2) $\exists g: Y \to X \mid g \circ f = id_X$ (**inversa sinistra**) $\Leftrightarrow f$ è iniettiva;
- 3) g è unica sia in 1) che in 2).

Dimostrazione:

- 1) \Rightarrow) $\forall y \in Y$, $y = f(g(y)) \Rightarrow$ ogni $y \in Y$ appartiene a $Im(f) \Rightarrow f$ è surgettiva \Leftrightarrow) f surgettiva $\Rightarrow \forall y_0 \in Y \ \exists x_0 \in X | f(x_0) = y_0$. Scelgo $g | g(y_0) = x_0 \ \forall y_0 \in Y$. Allora $f(g(y_0)) = y_0 \ \forall y_0 \in Y \Rightarrow f \circ g = id_Y$.
- 2) Analoga.
- 3) g è fissata $\forall y_0 \in Y$, dunque è sicuramente unica.

1.2 STRUTTURE ALGEBRICHE

DEFINIZIONE 1.2.1: Dato un insieme *A*, si definisce **operazione** su *A* un'applicazione:

$$*: A \times A \rightarrow A$$

Esempio: la somma su \mathbb{Z} è definita come $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} | + (x, y) = x + y$.

DEFINIZIONE 1.2.2: La coppia (A,*), con A insieme e * operazione su <math>A, si chiama **gruppo** se valgono le seguenti proprietà:

- 1) associativa: $\forall a, b, c \in A$, (a * b) * c = a * (b * c);
- 2) **dell'elemento neutro**: $\forall a \in A \ \exists e \in A | \ a * e = e * a = a;$
- 3) **dell'inverso**: $\forall a \in A \ \exists b \in A | \ a * b = b * a = e$.

Se vale anche la proprietà commutativa (cioè $\forall a, b \in A, \ a * b = b * a$), allora (A,*) si dice **gruppo abeliano**.

Esempi: $(\mathbb{N}, +)$ non è un gruppo (non vale la proprietà dell'inverso).

 $(\mathbb{Z}, +)$ è un gruppo abeliano.

 (\mathbb{R},\cdot) non è un gruppo perché non esiste l'inverso di 0.

 $(\mathbb{R}\setminus\{0\},\cdot)$ è un gruppo abeliano.

TEOREMA 1.2.1: Dato un gruppo (A,*):

- 1) l'elemento neutro è unico
- 2) l'inverso di un elemento è unico
- 3) se $a, b, c \in A$ e a * b = a * c, allora b = c (legge di cancellazione).

Dimostrazione:

- 1) Siano e_1 , e_2 elementi neutri. Allora: $e_1 = e_1 * e_2 = e_2$, da cui $e_1 = e_2$.
- 2) Sia $a \in A$. Se a_1 e a_2 sono inversi di a allora:

$$a_1 = e * a_1 = (a_2 * a) * a_1 = a_2 * (a * a_1) = a_2 * e = a_2$$

da cui $a_1 = a_2$.

3) Se a^{-1} è l'inverso di a, allora $a*b=a*c \Rightarrow a^{-1}*a*b=a^{-1}*a*c \Rightarrow e*b=e*c \Rightarrow b=c$.

DEFINIZIONE 1.2.3: Siano $f, g: A \to B$. Si dice che $f = g \Leftrightarrow \forall x \in A, f(x) = g(x)$.

DEFINIZIONE 1.2.4: Siano +, · operazioni in A, con A insieme. La terna $(A, +, \cdot)$ si dice **anello** se:

- 1) (A, +) è un gruppo abeliano;
- 2) (associativa di ·) $\forall a, b, c \in A, (ab)c = a(bc)$;
- 3) (elemento neutro per ·) $\exists 1 \mid \forall a \in A, \ a \cdot 1 = 1 \cdot a = a$;
- 4) (distributiva) $\forall a, b, c \in A$, $(a + b) \cdot c = ac + bc$; $a \cdot (b + c) = ab + ac$.

Se inoltre l'operazione · è commutativa, cioè $\forall a, b \in A, \ a \cdot b = b \cdot a$, l'anello si dice **commutativo**.

Esempio: $(\mathbb{Z}, +, \cdot)$ è un anello commutativo.

DEFINIZIONE 1.2.5: $(A, +, \cdot)$ è un **campo** se:

- 1) $(A, +, \cdot)$ è un anello commutativo;
- 2) $\forall a \in A, a \neq 0$ (dove lo 0 rappresenta l'elemento neutro per la somma) $\exists b \in A \mid ab = ba = 1$.

Notazione: l'inverso rispetto alla somma a^{-1} si denota con – a.

Esempi: $(\mathbb{Q}, +, \cdot)$ è un campo.

 $(\mathbb{R}, +, \cdot)$ è un campo.

 $(\mathbb{Z}, +, \cdot)$ non è un campo perché $\forall a \neq 1 \ \nexists b \in \mathbb{Z} | \ ab = 1$.

PROPOSIZIONE 1.2.2: Sia $(A, +, \cdot)$ un anello. Allora:

- 1) $\forall a \in A, \ a \cdot 0 = 0 \cdot a = 0$;
- 2) $\forall a \in A$, $(-1) \cdot a = -a$ (-1 rappresenta l'inverso rispetto alla somma dell'elemento neutro per il prodotto).

Dimostrazione:

- 1) $a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0$. Sommando da entrambe le parti l'inverso dell'elemento $a \cdot 0$: $a \cdot 0 - a \cdot 0 = a \cdot 0 + a \cdot 0 - a \cdot 0 \Rightarrow a \cdot 0 = 0$.
- 2) Dobbiamo verificare che $(-1) \cdot a + a = 0$. $(-1) \cdot a + a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a = 0 \cdot a = 0$.

PROPOSIZIONE 1.2.3: Sia ($\mathbb{K}, +, \cdot$) un campo. Allora $ab = 0 \land a \neq 0 \Rightarrow b = 0$.

Dimostrazione:

$$\exists a^{-1}$$
, dunque: $ab = 0 \Rightarrow a^{-1}ab = a^{-1} \cdot 0 = 0 \Rightarrow 1 \cdot b = 0 \Rightarrow b = 0$.

Questo significa che in un campo non esistono **divisori di 0**, cioè, dato un $a \in \mathbb{K} \setminus \{0\}, \exists b \in \mathbb{K} \setminus \{0\} \mid ab = 0$.

DEFINIZIONE 1.2.6: Definiamo l'insieme dei **numeri complessi** $\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}$, dove i è l'unità immaginaria tale che $i^2 = -1$.

DEFINIZIONE 1.2.7: Definiamo su C una somma e un prodotto:

$$+: \mathbb{C} \times \mathbb{C} \to \mathbb{C} | (a+ib,c+id) \to (a+ib) + (c+id) \stackrel{\text{def}}{=} (a+c) + i(b+d);$$

$$\cdot: \mathbb{C} \times \mathbb{C} \to \mathbb{C} | (a+ib,c+id) \to (a+ib) \cdot (c+id) \stackrel{\text{def}}{=} (ac-bd) + i(ad+bc).$$

DEFINIZIONE 1.2.8: a + ib, $c + id \in \mathbb{C}$, $a + ib = c + id \Leftrightarrow a = c \land b = d$.

PROPOSIZIONE 1.2.4: $(\mathbb{C}, +, \cdot)$ è un campo.

Dimostrazione:

- $(\mathbb{C}, +)$ è evidentemente un gruppo abeliano;
- · è associativa;
- · ha un elemento neutro, il numero 1 = 1 + 0i;
- gode della proprietà distributiva:

 $((a+bi)+(c+di))\cdot(e+if) = ((a+c)+i(b+d))\cdot(e+if) = (ae+ce-bf-df)+i(af+cf+be+de),$

 $(a + bi) \cdot (e + if) + (c + di) \cdot (e + if) = (ae - bf) + i(af + be) + (ce - df) + i(cf + de) = (ae - bf) + ce - df) + i(af + be) + cf + de);$

- $(a + bi) \cdot (c + di) = (c + di) \cdot (a + bi) = (ac bd) + i(ad + bc)$, dunque · gode della proprietà commutativa;
- $\forall z = a + bi \in \mathbb{C}, \ \exists w \in \mathbb{C} | \ wz = zw = 1.$

Infatti poniamo $w = \frac{a}{a^2 + b^2} - i \frac{b}{a^2 + b^2}$. Allora:

$$zw = (a+bi)\left(\frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}\right) = \frac{a^2+b^2}{a^2+b^2} + i\left(\frac{ab}{a^2+b^2} - \frac{ab}{a^2+b^2}\right) = 1$$

DEFINIZIONE 1.2.9: Sia $\mathbb K$ un campo. Si definisce **polinomio nell'indeterminata** x a coefficienti in $\mathbb K$ $p(x) = \sum_{i=0}^n a_i x^i$, con $a_i \in \mathbb K$ $\forall 0 \le i \le n$.

DEFINIZIONE 1.2.10: Sia $\mathbb{K}[x]$ l'insieme dei polinomi in x a coefficienti in \mathbb{K} .

$$\mathbb{K}[x] = \left\{ p(x) = \sum_{i=0}^{n} a_i x^i \mid a_i \in \mathbb{K} \ \forall i \right\}$$

DEFINIZIONE 1.2.11: Due polinomi $p(x) = \sum_{i=0}^n a_i x^i$, $q(x) = \sum_{i=0}^n b_i x^i \in \mathbb{K}[x]$ si dicono uguali si $a_i = b_i \ \forall 0 \le i \le n$.

Notiamo che se gli esponenti massimi di p(x) e q(x) sono diversi, è sufficiente aggiungere termini del tipo $0 \cdot x^k$ per renderli uguali.

Notazione: Si denota con $0 \in \mathbb{K}[x]$ il polinomio con tutti i coefficienti nulli.

DEFINIZIONE 1.2.12: Dato $p(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{K}[x] \setminus \{0\}$, si definisce **grado** del polinomio $\deg(p(x)) = \max\{i \in \mathbb{N} | a_i \neq 0\}$.

DEFINIZIONE 1.2.13: Dati $p(x) = \sum_{i=0}^{n} a_i x^i$ e $q(x) = \sum_{i=0}^{n} b_i x^i \in \mathbb{K}[x]$, definiamo:

- $(p+q)(x) \stackrel{\text{def}}{=} \sum_{i=0}^{n} (a_i + b_i) x^i;$
- $(pq)(x) \stackrel{\text{def}}{=} \sum_{i=0}^{2n} c_i x^i$, dove $c_i = \sum_{j=0}^{i} a_j b_{i-j}$.

PROPOSIZIONE 1.2.5: ($\mathbb{K}[x]$, +,·) è un anello commutativo ma non un campo. Dimostrazione:

 $(\mathbb{K}[x], +)$ è evidentemente un gruppo abeliano; inoltre valgono le proprietà associativa, distributiva e commutativa di · perché valgono in \mathbb{K} ; · ha l'elemento neutro $p(x) \equiv 1$. Dunque è un anello commutativo.

Poiché $\deg(pq(x)) = \deg(p(x)) + \deg(q(x))$ (basta vedere che il coefficiente di grado massimo è il prodotto di due termini $\neq 0$), allora se esistesse $p^{-1}(x)$, $0 = \deg 1 = \deg(p(x)) + \deg(p^{-1}(x)) \Rightarrow \forall p(x) | \deg p > 0 \not\exists p^{-1}(x) \Rightarrow (\mathbb{K}[x], +, \cdot)$ non è un campo.

TEOREMA 1.2.6 (di divisione in \mathbb{Z}): $\forall a, b \in \mathbb{Z} \land b \neq 0 \exists unici \ q, r \in \mathbb{Z}$:

- a = bq + r;
- $0 \le r < |b|$.

TEOREMA 1.2.7 (di divisione in $\mathbb{K}[x]$): $\forall a(x), b(x) \in \mathbb{K}[x] \setminus \{0\}$ $\exists unici \ q(x), r(x) \in \mathbb{K}[x]$:

- $\bullet \quad a(x) = b(x)q(x) + r(x);$
- $\deg(r(x)) < \deg(b(x))$.

Notiamo una similitudine fra la divisione in \mathbb{Z} e in $\mathbb{K}[x]$, poiché c'è una similitudine stretta fra la funzione valore assoluto e la funzione deg.

Osservazione: se $r(x) = 0 \Rightarrow b(x)|a(x)$.

DEFINIZIONE 1.2.14: $a \in \mathbb{K}$ si dice radice di p(x) se p(a) = 0.

TEOREMA 1.2.8 (di Ruffini): se a è radice di p(x), allora (x - a)|p(x).

Dimostrazione:

Applico il teorema di divisione; $\exists q(x), r(x) \in \mathbb{K}[x]$ tali che:

$$\begin{cases} p(x) = (x - a)q(x) + r(x) \\ \deg(r(x)) < \deg(x - a) = 1 \end{cases}, \text{ dunque } r(x) = costante.$$

Valuto in *a*:

$$0 = p(a) = (a - a)q(a) + r(a) = r(a)$$
, da cui segue la tesi.

DEFINIZIONE 1.2.15: Sia a una radice di p(x). Si definisce **molteplicità algebrica** della radice a il massimo numero naturale m tale che $(x-a)^m|p(x)$.

TEOREMA 1.2.9 (fondamentale dell'algebra): Ogni polinomio $p(x) \in \mathbb{C}[x]$ di grado $n \geq 1$ ha almeno una radice.

COROLLARIO 1.2.10: Ogni polinomio $p(x) \in \mathbb{C}[x]$ di grado $n \ge 1$ ha esattamente n radici (contate con molteplicità).

Dimostrazione:

Per induzione su *n*:

Passo base): n = 1, ovvio.

Passo induttivo): Per il teorema, so che $\exists a$ radice di p(x), quindi per Ruffini $p(x) = (x - a) p_1(x)$, con $\deg(p_1(x)) = n - 1$, dunque per ipotesi induttiva $p_1(x)$ ha esattamente n - 1 radici contate con molteplicità. Dunque p(x) ne ha n, da cui la tesi.

DEFINIZIONE 1.2.16: Un polinomio $p(x) \in \mathbb{K}[x]$ si dice **irriducibile** su $\mathbb{K}[x]$ se non può essere scritto come p(x) = a(x)b(x), con a(x), $b(x) \in \mathbb{K}[x]$ non costanti.

Esempi: I polinomi di grado 1 sono sempre irriducibili.

 $ax^2 + bx + c$ è riducibile su $\mathbb{R}[x]$ se ha radici (poiché la fattorizzazione di un polinomio di secondo grado può avvenire solo per mezzo di due polinomi di grado 1), quindi è riducibile $\Leftrightarrow \Delta \geq 0 \Leftrightarrow b^2 - 4ac \geq 0$.

 $x^2 - 2$ è riducibile su $\mathbb{R}[x]$, ma non è riducibile su $\mathbb{Q}[x]$.

DEFINIZIONE 1.2.17: Si definisce l'operazione **prodotto per scalari** in $\mathbb{K}[x]$:

 $: \mathbb{K} \times \mathbb{K}[x] \to \mathbb{K}[x] \mid (\alpha, p(x)) \to \alpha p(x), \text{ con } \alpha \in \mathbb{K} \text{ e } p(x) \in \mathbb{K}[x].$

Se
$$p(x) = \sum_{i=0}^{n} a_i x^i$$
, allora $\alpha p(x) = \sum_{i=0}^{n} (\alpha a_i) x^i$.

PROPOSIZIONE 1.2.11: ($\mathbb{K}[x]$, +,·), dove · è il prodotto per scalari, è un anello (nel senso che + e · $|_{\mathbb{K} \times \mathbb{K}[x]}$ soddisfano le proprietà di anello)

Dimostrazione:

Poiché ($\mathbb{K}[x]$, +) è un gruppo abeliano, le restanti verifiche sono immediate.

Riprendiamo la notazione $S(X) = \{f: X \to X | f \text{ bigettiva}\}$, dove $X \neq \emptyset$ è un insieme.

PROPOSIZIONE 1.2.12: La funzione inversa f^{-1} di una funzione $f: X \to Y$ bigettiva è bigettiva. Dimostrazione:

 f^{-1} è iniettiva, poiché se non lo fosse due elementi del dominio sarebbero immagine di un solo elementi del codominio, quindi $f^{-1} \circ f \neq id_X$.

Poiché $f \circ f^{-1} = id$, allora $\forall x \in X$, $(f \circ f^{-1})(f(x)) = f(x)$, ma f è bigettiva, dunque $(f^{-1} \circ f)(x) = x \Rightarrow f$ è un'inversa destra, quindi f^{-1} è surgettiva.

PROPOSIZIONE 1.2.13: $(S(X), \circ)$ è un gruppo (in generale non abeliano).

Dimostrazione:

L'elemento neutro è evidentemente id_X , e poiché abbiamo visto che l'inversa di una funzione bigettiva è bigettiva, resta la banale verifica dell'associatività.

Abbiamo inoltre visto che in generale le funzioni non commutano, dunque ho la tesi.

PROPOSIZIONE 1.2.14: $(S(X), \circ)$ è un gruppo abeliano $\Leftrightarrow |X| \leq 2$.

Dimostrazione:

Sicuramente se $|X| = 1 \Rightarrow S(X) = \{id\} \Rightarrow (S(X), \circ)$ è gruppo abeliano.

Se $|X| = 2 \Rightarrow S(X) = \{id, f\}$, dove $f \circ f = id$, dunque $(S(X), \circ)$ è gruppo abeliano.

Se |X| = 3, supponiamo $X = \{a, b, c\}$. Sia $f: X \to X | f(a) = b$, f(b) = a, f(c) = c e sia

 $g: X \to X | g(a) = b, g(b) = c, g(c) = a.$

Allora $(f \circ g)(a) = f(g(a)) = f(b) = a$; $(g \circ f)(a) = g(b) = c$, quindi per |X| = 3, $(S(X), \circ)$ non è un gruppo abeliano.

Per |X| > 3 il ragionamento è analogo, basta scegliere come controesempio il precedente esteso con l'identità agli altri elementi di X.

Osservazione: Ogni gruppo G di due elementi è abeliano. La dimostrazione è analoga alla precedente.

Osservazione: Esistono campi con un numero finito di elementi.

Prendiamo $\mathbb{F} = \{[0]_3, [1]_3, [2]_3\}$, dove $[a]_3$ è la classe di resto a nella divisione per 3.

Definendo $[a]_3 \cdot [b]_3 = [ab]_3$ e $[a]_3 + [b]_3 = [a+b]_3$, non è difficile mostrare che $(\mathbb{F}, +, \cdot)$ è un campo.

Notazione: Sia \mathbb{K} un campo e $n \in \mathbb{N}$, $n \ge 1$. Si denota con:

$$\mathbb{K}^n = \underbrace{\mathbb{K} \times ... \times \mathbb{K}}_{n \ volte}$$

il prodotto cartesiano di \mathbb{K} per se stesso n volte.

Perciò $\mathbb{K}^n = \{(x_1, ..., x_n) | x_i \in \mathbb{K} \ \forall i\}.$

DEFINIZIONE 1.2.18: Definiamo una somma e un prodotto per scalari su \mathbb{K}^n :

+:
$$\mathbb{K}^n \times \mathbb{K}^n \to \mathbb{K}^n | (x_1, ..., x_n) + (y_1, ..., y_n) \stackrel{\text{def}}{=} (x_1 + y_1, ..., x_n + y_n);$$

:: $\mathbb{K} \times \mathbb{K}^n \to \mathbb{K}^n | \alpha \cdot (x_1, ..., x_n) \stackrel{\text{def}}{=} (\alpha x_1, ..., \alpha x_n).$

PROPOSIZIONE 1.2.15: $(\mathbb{K}^n, +, \cdot)$ è un anello (nello stesso senso della PROPOSIZIONE 1.2.11). Dimostrazione:

Le semplici verifiche sono lasciate al lettore.

PROPOSIZIONE 1.2.16: Siano f(t), g(t) polinomi in $\mathbb{R}[t]$, con $f(t) \neq 0$. Sia h(t) un polinomio in $\mathbb{C}[t]|f(t) = g(t) \cdot h(t)$ in $\mathbb{C}[t]$, allora $h(t) \in \mathbb{R}[t]$.

Dimostrazione 1:

Siano $f(t) = a_n t^n + ... + a_0$, $g(t) = b_m t^m + ... + b_0$, $h(t) = c_l t^l + ... + c$, $a_n \neq 0$, $b_m \neq 0$, $c_l \neq 0$. La nostra ipotesi è che $a_i, b_i \in \mathbb{R}$ $\forall i, j$.

Mostriamo con l'induzione II su i che $c_{l-i} \in \mathbb{R}$.

Passo base): Poiché $f(t) = g(t) \cdot h(t)$ e $b_m \neq 0 \implies c_l = \frac{a_n}{b_m} \in \mathbb{R}$.

Passo induttivo): Mostriamo che se $c_{l-i} \in \mathbb{R} \ \forall 0 \leq i \leq k \Rightarrow c_{l-k-1} \in \mathbb{R}.$

$$a_{n-k-1} = b_m c_{l-k-1} + b_{m-1} c_{l-k} + \dots + b_{m-k-1} c_l, \text{ perciò } c_{l-k-1} = \frac{a_{n-k-1} - b_{m-1} c_{l-k} - \dots - b_{m-k-1} c_l}{b_m}.$$

Ma tutti i termini della frazione $\in \mathbb{R}$, dunque ho la tesi.

Dimostrazione 2: Poiché in $\mathbb{C}[t]$ ho che $f(t) = g(t) \cdot h(t)$ e $f(t) \neq 0$, allora $g(t) \neq 0$.

Dunque divido f(t) per g(t) in $\mathbb{R}[t]$:

$$f(t) = g(t) \cdot q(t) + r(t)$$

$$\deg r(t) < \deg g(t)$$
in $\mathbb{R}[t]$ e dunque in $\mathbb{C}[t]$.

Allora
$$g(t)h(t) = g(t)q(t) + r(t)$$
 in $\mathbb{C}[t] \Rightarrow g(t)(h(t) - q(t)) = r(t)$ in $\mathbb{C}[t]$, ma $\deg r(t) < \deg g(t)$ e poiché il grado è additivo, allora $h(t) - q(t) = 0 \Rightarrow h(t) = g(t) \in \mathbb{R}[t]$.

DEFINIZIONE 1.2.18: Sia $c: \mathbb{C} \to \mathbb{C}$ l'applicazione definita in modo tale che associ ad ogni numero complesso z = a + bi il suo coniugato $\overline{z} = a - bi$. c prende il nome di **coniugio** ed è evidentemente biunivoca.

PROPOSIZIONE 1.2.17: 1) $z = \overline{z} \iff z \in \mathbb{R}$

$$2) \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

3)
$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

4)
$$\frac{\overline{z}}{z} = z$$

5)
$$z + \overline{z} \in \mathbb{R}, \ z \cdot \overline{z} \in \mathbb{R}$$
.

Dimostrazione:

Queste semplici verifiche sono lasciate al lettore per esercizio.

COROLLARIO 1.2.18: 1) $\overline{\sum_{i=1}^{n} z_i} = \sum_{i=1}^{n} \overline{z_i}$

2)
$$\overline{\prod_{i=1}^n z_i} = \prod_{i=1}^n \overline{z_i}$$

3)
$$\overline{z^n} = \overline{z}^n$$

Dimostrazione:

1) Per induzione su $n \ge 2$:

Passo base): n = 2, già visto;

Passo induttivo):
$$\overline{\sum_{i=1}^{n} z_i} = \overline{\sum_{i=1}^{n-1} z_i} + \overline{z_n} = (ip.ind.) = \sum_{i=1}^{n-1} \overline{z_i} + \overline{z_n} = \sum_{i=1}^{n} \overline{z_i}.$$

- 2) Analoga.
- 3) È un caso particolare del 2) con $z_1 = ... = z_n = z$.

PROPOSIZIONE 1.2.18: Sia $f(t) \in \mathbb{R}[t] \setminus \{0\}$ e sia α un numero complesso non reale. Allora, se α è radice di f(t):

- 1) anche $\overline{\alpha}$ è radice di f(t);
- 2) la molteplicità algebrica di α è uguale a quella di $\overline{\alpha}$.

Dimostrazione:

- 1) Poiché α è radice di f(t), allora $f(\alpha) = \sum_{i=0}^{n} a_i \alpha^i = 0$. Allora: $0 = a_n \alpha^n + \ldots + a_0 = \overline{a_n \alpha^n + \ldots + a_0} = \overline{a_n \alpha^n} + \ldots + \overline{a_0} = (poichè \ a_i \in \mathbb{R}) = a_n \overline{\alpha^n} + \ldots + a_0 = a_n \overline{\alpha^n} + \ldots + a_0 = f(\overline{\alpha})$.
- 2) Dimostriamolo per induzione II su $n = \deg f(t)$:

Passo base): $n=0 \Rightarrow f(t)=\beta \Rightarrow f(t)$ non ha radici, quindi molteplicità algebrica di $\alpha=$ molteplicità algebrica di $\overline{\alpha}=0$.

Passo induttivo): Supponiamo che l'enunciato sia vero $\forall k \leq n$ e dimostriamo che è vero per n+1.

Se né α né $\overline{\alpha}$ sono radice, ho la tesi.

Altrimenti $f(\alpha) = 0$ e $f(\overline{\alpha}) = 0$.

Dunque $f(t) = (t - \alpha)g(t)$ per Ruffini in $\mathbb{C}[t]$.

Valutando in $\overline{\alpha}$:

$$0 = f(\overline{\alpha}) = (\overline{\alpha} - \alpha)g(\overline{\alpha})$$
, ma $\alpha \neq \overline{\alpha}$, dunque $g(\overline{\alpha}) = 0$ e quindi $(t - \overline{\alpha})|g(t)|f(t)$.

Per cui
$$f(t) = (t - \alpha)(t - \overline{\alpha})h(t) = (t^2 - (\alpha + \overline{\alpha})t + \alpha\overline{\alpha})h(t)$$
.

Sappiamo che $\alpha + \overline{\alpha}$, $\alpha \overline{\alpha} \in \mathbb{R}$, dunque per la proposizione 1.2.16 so che $h(t) \in \mathbb{R}[t]$.

Applicando l'ipotesi induttiva a h(t), vediamo che la molteplicità algebrica μ di α e $\overline{\mu}$ di $\overline{\alpha}$ in h(t) coincidono, ma le loro molteplicità in f(t) sono semplicemente $\mu+1$ e $\overline{\mu}+1$, che quindi coincidono.

2 SPAZI VETTORIALI E APPLICAZIONI LINEARI

2.1 SPAZI VETTORIALI

DEFINIZIONE 2.1.1: Un \mathbb{K} -spazio vettoriale è una quaterna $(V, +, \cdot, \mathbb{K})$, dove \mathbb{K} è un campo e V insieme $\neq \emptyset$.

- $+: V \times V \to V$ $: \mathbb{K} \times V \to V$ tali che:
- 1) (V, +) è un gruppo abeliano;
- 2) $\forall \alpha, \beta \in \mathbb{K}, \forall x \in V, (\alpha \beta) x = \alpha(\beta x)$;
- 3) $\forall \alpha, \beta \in \mathbb{K}, \forall x \in V, (\alpha + \beta)x = \alpha x + \beta x$;
- 4) $\forall \alpha \in \mathbb{K}, \forall x, y \in V, \ \alpha(x+y) = \alpha x + \alpha y;$
- 5) $\forall x \in V$, $1 \cdot x = x$.

PROPOSIZIONE 2.1.1: Sia $(V, +, \cdot, \mathbb{K})$ un \mathbb{K} -spazio vettoriale. Allora:

- 1) 0 è unico;
- 2) $\forall x \in V, -x \text{ è unico}$;
- 3) $\forall x \in V$, $0 \cdot x = 0$;
- 4) $\forall \alpha \in \mathbb{K}, \ \alpha \cdot 0 = 0$
- 5) $\forall \alpha \in \mathbb{K}, \forall x \in V, \ \alpha x = 0 \Rightarrow \alpha = 0 \lor x = 0$;
- 6) $\forall x \in V$, $(-1) \cdot x = -x$.

Dimostrazione:

- 1), 2) derivano dal fatto che (V, +) è un gruppo abeliano.
- 3) $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x \Rightarrow 0 \cdot x = 0$
- 4) analoga alla 3)
- 5) Se $\alpha = 0$, abbiamo subito la tesi.

Se
$$\alpha \neq 0 \Rightarrow 0 = \alpha^{-1} \cdot 0 = \alpha^{-1} \cdot \alpha \cdot x = 1 \cdot x = x$$

6)
$$x + (-1) \cdot x = 1 \cdot x + (-1) \cdot x = (1 + (-1)) \cdot x = 0 \cdot x = 0$$

DEFINIZIONE 2.1.2: Ogni elemento di uno spazio vettoriale si definisce **vettore**.

Notazione: Al posto di x + (-y) scriveremo x - y.

PROPOSIZIONE 2.1.2: \mathbb{K}^n è un \mathbb{K} -spazio vettoriale $\forall n \geq 1$.

Dimostrazione:

La verifica è lasciata al lettore.

Osservazioni: • Se $V = \mathbb{K}$, il prodotto per scalari è definito · : $\mathbb{K} \times \mathbb{K} \to \mathbb{K}$, dove il primo \mathbb{K} rappresenta il campo degli scalari, mentre il secondo lo spazio vettoriale.

• Per l'osservazione precedente $\mathbb C$ è un $\mathbb C$ -spazio vettoriale. Consideriamo ora una restrizione dell'operazione prodotto per scalari su $\mathbb R$, cioè $\cdot : \mathbb R \times \mathbb C \to \mathbb C$.

Poiché $\mathbb{R} \subset \mathbb{C}$, le definizioni che valgono su \mathbb{C} valgono anche su \mathbb{R} ; perciò \mathbb{C} è un \mathbb{R} -spazio vettoriale.

In generale possiamo effettuare una restrizione del campo degli scalari, cioè se \mathbb{K}' è sottocampo di \mathbb{K} ($\mathbb{K}' \subset \mathbb{K}$ e \mathbb{K}' è chiuso rispetto a + e ·), ogni \mathbb{K} -spazio vettoriale è anche un \mathbb{K}' -spazio vettoriale.

• Fissiamo nel piano due assi cartesiani. Allora la funzione:

$$Piano \rightarrow \mathbb{R}^2$$

 $P \rightarrow (x_P, y_P)$ è biunivoca.

Inoltre la funzione:

Piano → *vettori uscenti da 0* $P \rightarrow \overrightarrow{OP}$ è biunivoca, dunque possiamo identificare $P \text{ con } (x_P, y_P)$ e con \overrightarrow{OP} . Quindi la somma in \mathbb{R}^2 corrisponde alla regola del parallelogramma.

2.2 SPAZI DI MATRICI

DEFINIZIONE 2.2.1: Definiamo l'insieme $\mathcal{M}(p, n, \mathbb{K})$ come l'insieme delle **matrici** $p \times n$, cioè con p righe e n colonne, a coefficienti in \mathbb{K} .

DEFINIZIONE 2.2.2: Una matrice di dice **quadrata** se p = n e l'insieme delle matrici $n \times n$ si indica con $\mathcal{M}(n, \mathbb{K})$ (o più semplicemente con $\mathcal{M}(n)$).

Notazioni: • Per indicare l'elemento di posto i, j della matrice A si usa il simbolo $[A]_{ij}$;

- A_i indica l'i-esima riga di A;
- A^j indica la j-esima colonna di A;
- 0 rappresenta la matrice nulla, cioè $[0]_{ij} = 0 \ \forall i, j$.

DEFINIZIONE 2.2.3: Siano $A, B \in \mathcal{M}(p, n, \mathbb{K})$ matrici. Allora si dice che A e B sono uguali se $[A]_{ij} = [B]_{ij} \ \forall i, j$.

DEFINIZIONE 2.2.4: $\forall A, B \in \mathcal{M}(p, n, \mathbb{K})$, poniamo:

$$[A + B]_{ij} \stackrel{\text{def}}{=} [A]_{ij} + [B]_{ij} \ \forall i, j;$$
$$[\alpha A]_{ij} \stackrel{\text{def}}{=} \alpha [A]_{ij} \ \forall i, j.$$

PROPOSIZIONE 2.2.1: $\mathcal{M}(p, n, \mathbb{K})$ è un \mathbb{K} -spazio vettoriale.

Dimostrazione:

Le verifiche sono immediate.

Osservazione: L'applicazione:

$$\mathbb{K}^n \to \mathcal{M}(n, 1, \mathbb{K})$$
$$(x_1, \dots, x_n) \to \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

è bigettiva, quindi scriveremo indifferentemente un vettore di \mathbb{K}^n come n-upla o come colonna.

DEFINIZIONE 2.2.5: $A \in \mathcal{M}(n)$ si dice:

- **diagonale** se $[A]_{ij} = 0 \ \forall i \neq j;$
- **simmetrica** se $[A]_{ij} = [A]_{ji} \ \forall i, j;$
- antisimmetrica se $[A]_{ii} = -[A]_{ii} \ \forall i, j \ (dunque \ [A]_{ii} = 0 \ \forall i);$
- triangolare superiore se $[A]_{ij} = 0 \ \forall i > j$.

Notazione: Denoteremo:

- $\mathcal{D}(n) = \{A \in \mathcal{M}(n) | A \text{ è diagonale} \};$
- $S(n) = \{A \in \mathcal{M}(n) | A \text{ è simmetrica} \};$
- $\mathcal{A}(n) = \{A \in \mathcal{M}(n) | A \text{ è antisimmetrica} \};$
- $T(n) = \{A \in \mathcal{M}(n) | A \text{ è triangolare superiore} \}.$

PROPOSIZIONE 2.2.2: Ogni spazio di polinomi $\mathbb{K}[x]$ è un \mathbb{K} -spazio vettoriale.

DEFINIZIONE 2.2.6: Sia A un insieme e V un \mathbb{K} -spazio vettoriale. Definiamo $\mathcal{F}(A,V)=\{f\colon A\to V\}$ tale che $\forall f,g\in\mathcal{F}(A,V), \forall \alpha\in\mathbb{K}$: $(f+g)(x)\stackrel{\mathrm{def}}{=} f(x)+g(x)\ \forall x\in A;$ $(\alpha f)(x)\stackrel{\mathrm{def}}{=} \alpha f(x)\ \forall x\in A.$

PROPOSIZIONE 2.2.3: $\mathcal{F}(A, V)$ è uno spazio vettoriale di funzioni.

Osservazioni: • $\mathcal{F}(\mathbb{N}, \mathbb{K}) = \{successioni \ a \ valori \ in \ \mathbb{K}\}$

- $\mathcal{F}(\{1,\ldots,n\},\mathbb{K}) = \mathbb{K}^n$
- $\mathcal{F}(\{1,\ldots,p\}\times\{1,\ldots,q\},\mathbb{K})=\mathcal{M}(p,q,\mathbb{K}).$

2.3 SOTTOSPAZI E COMBINAZIONI LINEARI

DEFINIZIONE 2.3.1: Dato V K-spazio vettoriale, $W \subset V$ si dice **sottospazio vettoriale** di V se:

- 1) $0_V \in W$;
- 2) $\forall x, y \in W, x + y \in W$ (cioè W è chiuso rispetto alla somma);
- 3) $\forall \alpha \in \mathbb{K}, \forall x \in W, \ \alpha x \in W \ (\text{cioè } W \text{ è chiuso rispetto al prodotto per scalari}).$

Quindi, poiché se le 8 proprietà di spazio vettoriale valgono per V, allora valgono anche per W e poiché + e · sono chiusi rispetto a W, allora W è uno spazio vettoriale.

PROPOSIZIONE 2.3.1: $\mathcal{D}(n)$, $\mathcal{S}(n)$, $\mathcal{A}(n)$, $\mathcal{T}(n)$ sono sottospazi vettoriali di $\mathcal{M}(n)$.

Dimostrazione:

Dimostriamolo per $\mathcal{D}(n)$, per gli altri il procedimento è analogo.

- 1) $0 \in \mathcal{D}(n)$, poiché $[0]_{ij} = 0 \ \forall i \neq j$;
- 2), 3) Evidentemente, se $A, B \in \mathcal{D}(n)$, allora $A + B \in \mathcal{D}(n)$ e $\alpha A \in \mathcal{D}(n)$.

Notazione: Fissato $m \in \mathbb{N}$, si denoti con $\mathbb{K}_m[x] = \{p(x) \in \mathbb{K}[x] | \deg p(x) \leq m\}$ l'insieme dei polinomi di $\mathbb{K}[x]$ di grado $\leq m$.

PROPOSIZIONE 2.3.2: $\forall m \in \mathbb{N}$, $\mathbb{K}_m[x]$ è sottospazio vettoriale di $\mathbb{K}[x]$.

Dimostrazione:

La verifica è lasciata al lettore.

PROPOSIZIONE 2.3.3: Le rette in \mathbb{R}^2 per l'origine sono sottospazi vettoriali di \mathbb{R}^2 .

Le rette e i piani per l'origine in \mathbb{R}^3 sono sottospazi vettoriali di \mathbb{R}^3 .

Dimostrazione:

Semplice verifica.

PROPOSIZIONE 2.3.4: Se $\{W_i\}_{i\in I}$ è una famiglia arbitraria di sottospazi vettoriali di V, allora $\bigcap_{i\in I}W_i$ è sottospazio vettoriale di V.

Dimostrazione:

- 1) $0_V \in W_i \ \forall i \in I$, perciò $0_V \in \bigcap_{i \in I} W_i$.
- 2), 3) Se + e · sono chiusi in $W_i \, \forall i \in I$, a maggior ragione saranno chiusi in $\bigcap_{i \in I} W_i$.

DEFINIZIONE 2.3.2: Dati $v_1, \dots, v_n \in V$ e $\alpha_1, \dots, \alpha_n \in \mathbb{K}$, si definisce **combinazione lineare** dei v_1, \dots, v_n il vettore $\alpha_1 v_1 + \dots + \alpha_n v_n \in V$.

DEFINIZIONE 2.3.3: Dato $S \subset V$, denotiamo con:

$$Span(S) \stackrel{\text{def}}{=} \{v \in V | \exists v_1, \dots, v_n \in S, \exists \alpha_1, \dots, \alpha_n \in \mathbb{K} \ per \ cui \ v = \alpha_1 v_1 + \dots + \alpha_n v_n \}.$$

Esempio: $V = \mathbb{R}^2$, $S = \{(1,1)\}$.

 $Span(S) = \{a(1,1) | a \in \mathbb{R}\}$, cioè Span(S) è semplicemente la retta passante per l'origine e per (1,1) (che è quindi uno spazio vettoriale).

PROPOSIZIONE 2.3.5: 1) Span(S) è sottospazio vettoriale di $V \ \forall S \subset V$.

- 2) $S \subset Span(S)$
- 3) Se *W* è sottospazio vettoriale di $V \mid S \subset W \subset Span(S) \Rightarrow W = Span(S)$.

Dimostrazione:

- 1) Semplice verifica.
- 2) Ovvia.
- 3) Sappiamo che $W \subset Span(S)$ per ipotesi, dunque basta dimostrare che $Span(S) \subset W$. Se $v \in Span(S) \Rightarrow v = \alpha_1 v_1 + \ldots + \alpha_n v_n$ per certi $v_1, \ldots, v_n \in S, \alpha_1, \ldots, \alpha_n \in \mathbb{K}$. Ma $v_1, \ldots, v_n \in S \subset W$, dunque, poiché W è sottospazio vettoriale, $v = \alpha_1 v_1 + \ldots + \alpha_n v_n \in W$, da cui segue immediatamente la tesi.

PROPOSIZIONE 2.3.6:
$$Span(S) = \bigcap_{\substack{W \text{ ssv di } V \\ W \supseteq S}} W$$
.

Dimostrazione:

Evidentemente $S \subset \bigcap_{W \text{ } ssv \text{ } di \text{ } V} W$, poiché interseco insiemi che contengono S.

Inoltre $\bigcap_{\substack{W \ SSV \ di \ V}} W \subset Span(S)$, poiché fra i W che interseco c'è anche Span(S), dunque

l'intersezione sarà sicuramente "più piccola" di Span(S).

Grazie alla proposizione precedente, ho la tesi.

Osservazione: In generale l'unione di sottospazi vettoriali non è un sottospazio vettoriale. Esempio: $V = \mathbb{R}^2$ e prendiamo due rette per l'origine distinte come sottospazi.

Vediamo che evidentemente la somma non è chiusa, dunque $u \cup v$ non è sottospazio di \mathbb{R}^2 .

DEFINIZIONE 2.3.4: Siano U, W sottospazi vettoriali di V. Definiamo l'**insieme somma**: $U + W \stackrel{\text{def}}{=} \{x \in V | \exists u \in U, \exists w \in W \ t. c. \ x = u + w\}.$

Osservazione: Se ad esempio U e W sono due rette per l'origine distinte, con combinazioni lineari di vettori su di esse posso individuare qualsiasi altro vettore di \mathbb{R}^2 , semplicemente scomponendolo nelle due componenti. Dunque $U + W = \mathbb{R}^2$.

PROPOSIZIONE 2.3.7: U + W è sottospazio vettoriale di V ed è il più piccolo sottospazio contenente U e W.

Dimostrazione:

Evidentemente U + W è sottospazio vettoriale.

Ovviamente $U \subset U + W$, poiché $\forall u \in U$, $u = u + 0 \in U + W$; analogamente $W \subset U + W$. Prendiamo Z sottospazio di V tale che $U \subset Z$ e $W \subset Z$ e mostriamo che $U + W \subset Z$. Infatti $\forall u \in U, \forall w \in W, u, w \in Z$, ma Z è sottospazio vettoriale $\Rightarrow u + w \in Z \Rightarrow$ tesi.

Osservazioni: • In \mathbb{R}^2 , $retta + retta = < \frac{se\ stessa\ se\ collineari}{\mathbb{R}^2\ altrimenti}$;

- In \mathbb{R}^3 , retta + retta = piano che le contiene;
- In \mathbb{R}^3 , $piano + retta = \mathbb{R}^3$.

DEFINIZIONE 2.3.5: Se $U \cap W = \{0\}$, la somma U + W si denota con $U \oplus W$ e prende il nome di **somma diretta**.

PROPOSIZIONE 2.3.8: Ogni vettore in $U \oplus W$ si scrive in modo unico come u + w, con $u \in U$ e $w \in W$.

Dimostrazione:

Supponiamo che il vettore v si scriva $v = u_1 + w_1$ e $v = u_2 + w_2$. Allora:

$$u_1 + w_1 = u_2 + w_2 \Rightarrow u_1 - u_2 = w_2 - w_1$$
, ma $u_1 - u_2 \in U$ e $w_2 - w_1 \in W$, perciò $u_1 - u_2 = w_2 - w_1 \in U \cap W = \{0\} \Rightarrow u_1 = u_2$ e $w_1 = w_2$.

DEFINIZIONE 2.3.6: Se $V = U \oplus W$, con U e W sottospazi vettoriali di V, sono ben definite le applicazioni:

$$\pi_U$$
: $V \to U$ π_W : $V \to W$ dette **proiezioni** di V su U e su W .

Esempio: In \mathbb{R}^2 siano U, W gli assi cartesiani. Allora se v = (x, y), semplicemente $\pi_U(v) = x$ e $\pi_W(v) = y$.

DEFINIZIONE 2.3.7: Sia U un sottospazio vettoriale di V. Si definisce **supplementare** di U ogni sottospazio W di V tale che $V = U \oplus W$.

Osservazione: Il supplementare non è unico, ad esempio in \mathbb{R}^2 il supplementare di una retta per l'origine è una qualsiasi altra retta per l'origine di \mathbb{R}^2 .

2.4 APPLICAZIONI LINEARI

DEFINIZIONE 2.4.1: Siano V, W \mathbb{K} -spazi vettoriali. $f:V \to W$ si dice \mathbb{K} -lineare (o semplicemente lineare) se:

- 1) $\forall x, y \in V, f(x + y) = f(x) + f(y);$
- 2) $\forall \alpha \in \mathbb{K}, \forall x \in V, f(\alpha x) = \alpha f(x).$

Osservazione: Se f è lineare $\Rightarrow f(0) = 0$. Infatti $f(0) = f(0+0) = f(0) + f(0) \Rightarrow f(0) = 0$.

DEFINIZIONE 2.4.2: Definiamo l'applicazione **trasposta**:

$$^{t}: \mathcal{M}(p, q, \mathbb{K}) \to \mathcal{M}(q, p, \mathbb{K}) | [^{t}A]_{ij} = [A]_{ji} \ \forall i, j$$

DEFINIZIONE 2.4.3: Definiamo l'applicazione traccia:

$$tr: \mathcal{M}(n) \to \mathbb{K}| tr(A) = \sum_{i=1}^{n} [A]_{ii}$$

DEFINIZIONE 2.4.4: Definiamo l'applicazione valutazione in $a \in \mathbb{K}$:

$$v_a : \mathbb{K}[x] \to \mathbb{K}| v_a(p(x)) = p(a)$$

PROPOSIZIONE 2.4.1: Le seguenti applicazioni sono lineari:

- 1) l'applicazione nulla $0: V \to W | f(v) = 0 \ \forall v \in V$;
- 2) l'applicazione identica;
- 3) l'applicazione trasposta;

- 4) l'applicazione traccia;
- 5) la valutazione;
- 6) le proiezioni indotte dalla scomposizione $V = U \oplus W$.

Dimostrazione:

Mostriamo che la 3) è lineare, per le altre il ragionamento è analogo.

$$\forall A, B \in \mathcal{M}(p, q, \mathbb{K}), \ [^t(A + B)]_{ij} = [A + B]_{ji} = [A]_{ji} + [B]_{ji} = [^tA]_{ij} + [^tB]_{ij};$$

 $\forall \alpha \in \mathbb{K}, \forall A \in \mathcal{M}(p, q, \mathbb{K}), \ [^t(\alpha A)]_{ij} = [\alpha A]_{ji} = \alpha [A]_{ji} = \alpha [A]_{ij}.$

PROPOSIZIONE 2.4.2: $\mathcal{M}(n, \mathbb{R}) = \mathcal{S}(n, \mathbb{R}) \oplus \mathcal{A}(n, \mathbb{R})$.

Dimostrazione:

Sia
$$C \in \mathcal{M}(n, \mathbb{R})$$
. Poniamo $S = \frac{C + {}^t C}{2}$ e $A = \frac{C - {}^t C}{2}$.

Vediamo che:

$${}^{t}S = \frac{t}{2} \left(\frac{C + {}^{t}C}{2} \right) = \frac{1}{2} \left({}^{t}C + {}^{t}{}^{t}C \right) = \frac{1}{2} \left({}^{t}C + C \right) = S \implies S \in \mathcal{S}(n, \mathbb{R})$$

$${}^{t}A = \frac{t}{2} \left(\frac{C - {}^{t}C}{2} \right) = \frac{1}{2} \left({}^{t}C - {}^{t}{}^{t}C \right) = \frac{1}{2} \left({}^{t}C - C \right) = -A \implies A \in \mathcal{A}(n, \mathbb{R})$$

$$S + A = \frac{C + {}^{t}C}{2} + \frac{C - {}^{t}C}{2} = C$$

Poiché evidentemente $S(n, \mathbb{R}) \cap \mathcal{A}(n, \mathbb{R}) = \{0\}$, ho la tesi.

PROPOSIZIONE 2.4.3: L'applicazione coniugio è ℝ-lineare (ma non ℂ-lineare).

Dimostrazione:

Sicuramente $\forall z, w \in \mathbb{C}$, $\overline{z+w} = \overline{z} + \overline{w}$; inoltre $\forall \alpha \in \mathbb{R}$, $\forall z \in \mathbb{C}$, $\overline{\alpha z} = \alpha \overline{z}$, poiché $\alpha = \overline{\alpha}$. Se invece prendiamo \mathbb{C} come campo di scalari, in generale $\overline{\alpha z} \neq \alpha \overline{z}$.

DEFINIZIONE 2.4.5: Sia \mathbb{K} un campo. Definiamo la **caratteristica** $char(\mathbb{K})$ del campo:

- se $\forall n \in \mathbb{N}, n \cdot 1 \neq 0 \Rightarrow char(\mathbb{K}) = 0$;
- se $\exists n \in \mathbb{N} | n \cdot 1 = 0 \Rightarrow char(\mathbb{K}) = min\{p \in \mathbb{N} | p \cdot 1 = 0\}.$

Osservazione: È vero che $\mathcal{M}(n, \mathbb{K}) = \mathcal{S}(n, \mathbb{K}) \oplus \mathcal{A}(n, \mathbb{K})$ per qualsiasi campo \mathbb{K} ? Vediamo che $A \in \mathcal{S}(n, \mathbb{R}) \cap \mathcal{A}(n, \mathbb{R}) \Leftrightarrow [A]_{ij} = -[A]_{ij} \ \forall i, j \Leftrightarrow 2[A]_{ij} = 0 \ \forall i, j$. Questo implica A = 0 solamente se $char(\mathbb{K}) \neq 2$.

In questo caso vediamo anche che ha senso dividere per 2 nella prima parte della dimostrazione, dunque possiamo affermare che $\mathcal{M}(n,\mathbb{K}) = \mathcal{S}(n,\mathbb{K}) \oplus \mathcal{A}(n,\mathbb{K}) \Leftrightarrow char(\mathbb{K}) \neq 2$.

Infatti prendiamo un campo \mathbb{F}_2 | $char(\mathbb{F}_2) = 2$, ad esempio $\mathbb{F}_2 = \{[0]_2, [1]_2\}$, dove $[a]_2$ è la classe di resto a modulo 2:

DEFINIZIONE 2.4.6: Siano *V*, *W* K-spazi vettoriali. Allora definiamo l'**insieme degli** omomorfismi:

$$Hom(V, W) \stackrel{\text{def}}{=} \{f: V \to W \mid f \text{ è lineare}\} \subset \mathcal{F}(V, W)$$

PROPOSIZIONE 2.4.4: Hom(V, W) è sottospazio vettoriale di $\mathcal{F}(V, W)$.

DEFINIZIONE 2.4.7: Sia $f \in Hom(V, W)$. Si definisce **kernel** (o **nucleo**) di f: $Ker(f) \stackrel{\text{def}}{=} \{x \in V | f(x) = 0\}$

PROPOSIZIONE 2.4.5: Sia $f \in Hom(V, W)$. Allora:

- 1) Ker(f) è sottospazio vettoriale di V;
- 2) Im(f) è sottospazio vettoriale di W;
- 3) f è iniettiva $\Leftrightarrow Ker(f) = \{0\}.$

Dimostrazione:

- 1), 2) ovvie.
- 3) \Rightarrow) Sia $x \in Ker(f)$. Allora f(x) = 0 = f(0), in quanto f è lineare. Ma f è iniettiva $\Rightarrow x = 0$.
 - \Leftarrow) Per dimostrare che f è iniettiva, dobbiamo mostrare che se $f(x) = f(y) \Rightarrow x = y$. Prendiamo f(x) = f(y). Allora per linearità f(x) - f(y) = f(x - y) = 0, quindi $x - y \in Ker(f) = \{0\}$. Dunque $x - y = 0 \Rightarrow x = y$.

DEFINIZIONE 2.4.8: Siano $(a_1 \dots a_n) \in \mathcal{M}(1, n, \mathbb{K})$ e $\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in \mathcal{M}(n, 1, \mathbb{K})$. Si definisce **prodotto**

fra la riga e la colonna:

$$(a_1 \dots a_n) \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \stackrel{\text{def}}{=} a_1 b_1 + \dots + a_n b_n = \sum_{i=1}^n a_i b_i$$

DEFINIZIONE 2.4.9: Sia $A \in \mathcal{M}(p, n)$, $x \in \mathcal{M}(n, 1)$. Si definisce **prodotto fra la matrice e la colonna**:

$$A \cdot X = \begin{pmatrix} A_1 \\ \vdots \\ A_p \end{pmatrix} \cdot (X) \stackrel{\text{def}}{=} \begin{pmatrix} A_1 \cdot X \\ \vdots \\ A_p \cdot X \end{pmatrix} \in \mathcal{M}(p, 1)$$

Osservazione: Possiamo notare che fare il prodotto fra la matrice e la colonna nel modo illustrato sopra è equivalente a eseguire il prodotto:

$$X \cdot A = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \cdot (A^1 \quad \dots \quad A^n) \stackrel{\text{def}}{=} x_1 A^1 + \dots + x_n A^n$$

Esempio:
$$\begin{pmatrix} 1 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 5 + 0 \cdot 0 + 2 \cdot 1 \\ 1 \cdot 5 - 1 \cdot 0 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 6 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix} = 5 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ -1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 6 \end{pmatrix}.$$

Perciò
$$A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 A^1 + \dots + x_n A^n \in Span(A^1, \dots, A^n).$$

DEFINIZIONE 2.4.10: Definiamo **spazio delle colonne** di una matrice A $C(A) = Span(A^1, ..., A^n)$.

PROPOSIZIONE 2.4.6: Sia $A \in \mathcal{M}(p, q, \mathbb{K})$. Allora l'applicazione:

$$L_A: \frac{\mathbb{K}^q \to \mathbb{K}^p}{X \to A \cdot X}$$
 è lineare.

Dimostrazione:

Sfruttando la definizione $A \cdot X = x_1 A^1 + ... + x_q A^q$, la dimostrazione è immediata.

Notazione: Fissiamo il campo \mathbb{K}^q . Denotiamo:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{K}^q, \dots, e_q = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \in \mathbb{K}^q$$

Osservazione:
$$L_A(e_1) = A \cdot \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = A^1, \dots, L_A(e_q) = A \cdot \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} = A^q$$
, quindi:
$$A = (Ae_1 \quad \dots \quad Ae_q)$$

Esempio: Prendiamo $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, L_A : \mathbb{R}^2 \to \mathbb{R}^2 | L_A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}.$

Dunque A rappresenta la riflessione nel piano rispetto alla bisettrice del $1^o/3^o$ quadrante.

TEOREMA 2.4.7: Ogni applicazione lineare $\mathbb{K}^q \to \mathbb{K}^p$ è indotta da una matrice, ossia $\forall g \colon \mathbb{K}^q \to \mathbb{K}^p$ lineare $\exists ! A \in \mathcal{M}(p,q,\mathbb{K})$ tale che $g(X) = A \cdot X \ \forall X \in \mathbb{K}^q$.

Dimostrazione:

Grazie all'osservazione precedente è chiaro che l'unica matrice di questo tipo può essere solo:

$$A = (g(e_1) \dots g(e_q))$$

poiché per imposizione nel teorema $g(e_1) = A \cdot e_1 = A^1...$

Verifichiamo che con una tale scelta $g(X) = A \cdot X \ \forall X \in \mathbb{K}^q$:

$$A \cdot X = x_1 g(e_1) + \ldots + x_q g(e_q) = (per \ linearit\`a) = g(x_1 e_1 + \ldots + x_q e_q) = g\begin{pmatrix} x_1 \\ \vdots \\ x_q \end{pmatrix} = g(X)$$

Esempio: L'applicazione $g: \mathbb{R}^2 \to \mathbb{R}^3 | g(x,y) = (y,2x-y,5x)$ è indotta dalla matrice:

$$A = (g(e_1) \quad g(e_2)) = \begin{pmatrix} 0 & 1 \\ 2 & -1 \\ 5 & 0 \end{pmatrix}$$

DEFINIZIONE 2.4.11: $f: V \to W$ lineare si dice **isomorfismo** se è bigettiva.

PROPOSIZIONE 2.4.8: L'applicazione:

$$f: \frac{\mathcal{M}(p, n, \mathbb{K}) \to Hom(\mathbb{K}^n, \mathbb{K}^p)}{A \to L_A}$$
 è un isomorfismo.

Dimostrazione:

a. f è lineare:

$$\forall X \in \mathbb{K}^n \ L_{A+B} = (A+B) \cdot X = x_1(A+B)^1 + \dots + x_n(A+B)^n =$$

$$= x_1(A^1 + B^1) + \dots + x_n(A^n + B^n) = A \cdot X + B \cdot X = L_A(X) + L_B(X)$$

Analogamente per il prodotto per scalari.

- b. *f* è surgettiva per il teorema precedente
- c. f è iniettiva:

Sia
$$A \in Ker(f) \Rightarrow L_A(X) = 0 \ \forall X \Rightarrow L_A(e_i) = A \cdot e_i = A^i = 0 \ \forall i \Rightarrow A = 0 \Rightarrow Ker(f) = \{0\}.$$

PROPOSIZIONE 2.4.9: Se $f: V \to W$ è un isomorfismo, allora $f^{-1}: W \to V$ è un isomorfismo. Dimostrazione:

Sappiamo già che l'inversa di una funzione bigettiva è bigettiva, dunque dobbiamo mostrare che f^{-1} è lineare.

Siano
$$w_1, w_2 \in W$$
 e sia $v_1 = f^{-1}(w_1), v_2 = f^{-1}(w_2)$. Allora: $f^{-1}(w_1 + w_2) = f^{-1}(f(v_1) + f(v_2)) = f^{-1}(f(v_1 + v_2)) = v_1 + v_2 = f^{-1}(w_1) + f^{-1}(w_2)$ Per il prodotto per scalari il ragionamento è analogo.

PROPOSIZIONE 2.4.10: Dati V, W, Z K-spazi vettoriali. Siano $f: V \to W$ e $g: W \to Z$ lineari. Allora $g \circ f: V \to Z$ è lineare.

Dimostrazione:

La verifica è immediata.

COROLLARIO 2.4.11: La composizione di isomorfismi è un isomorfismo.

DEFINIZIONE 2.4.12: Definiamo $GL(V) = \{f: V \to V | f \text{ è isomorfismo}\}.$

COROLLARIO 2.4.12: $(GL(V), \circ)$ è un gruppo, detto gruppo lineare generale.

DEFINIZIONE 2.4.13: Siano V, W \mathbb{K} -spazi vettoriali. V e W si dicono **isomorfi** (si scrive $V \cong W$) se $\exists f: V \to W$ isomorfismo.

Osservazione: $\mathcal{M}(p,q,\mathbb{K}) \cong Hom(\mathbb{K}^q,\mathbb{K}^p)$

Osservazione: L'"essere isomorfi" è una relazione di equivalenza:

- 1) è riflessiva, poiché sicuramente $V \cong V$ tramite $f = id_V$;
- 2) è simmetrica, poiché se $V \cong W$ tramite f, allora $W \cong V$ tramite f^{-1} , che sappiamo essere un isomorfismo;
- 3) è transitiva, poiché se $V \cong W$ tramite f e $W \cong Z$ tramite g, $V \cong Z$ tramite $g \circ f$, che sappiamo essere un isomorfismo.

DEFINIZIONE 2.4.14: Si definisce **endomorfismo** ogni applicazione $f: V \to V$ lineare.

DEFINIZIONE 2.4.15: Si definisce spazio degli endomorfismi $End(V) = \{f: V \rightarrow V | f \text{ è } lineare\}.$

Osservazione: End(V) = Hom(V, V), dunque End(V) è sottospazio di $\mathcal{F}(V, V)$.

PROPOSIZIONE 2.4.13: $(End(V), +, \circ)$ è un anello.

Dimostrazione:

Lasciata al lettore.

DEFINIZIONE 2.4.16: Una quaterna $(S, +, \cdot, \circ)$ si dice **algebra** se $(S, +, \cdot)$ è uno spazio vettoriale, $(S, +, \circ)$ è un anello e (S, \cdot, \circ) ha la seguente proprietà:

$$\forall \alpha \in \mathbb{K}, \forall f, g \in S \ \alpha(f \circ g) = (\alpha f) \circ g = f \circ (\alpha g)$$

PROPOSIZIONE 2.4.14: $(End(V), +, \cdot, \circ)$ è un'algebra.

Dimostrazione:

L'ultima verifica è lasciata al lettore.

Osservazione: Date $f: \mathbb{K}^n \to \mathbb{K}^p$, $g: \mathbb{K}^p \to \mathbb{K}^q$ lineari, sappiamo che:

 $\exists A \in \mathcal{M}(p, n, \mathbb{K}) | f(X) = A \cdot X \ \forall x \in \mathbb{K}^n;$

 $\exists B \in \mathcal{M}(q, p, \mathbb{K}) | g(X) = B \cdot X \ \forall x \in \mathbb{K}^p;$

 $g \circ f : \mathbb{K}^n \to \mathbb{K}^q$ è lineare.

Quindi $\exists C \in \mathcal{M}(q, n, \mathbb{K}) | (g \circ f)(X) = C \cdot X \ \forall X \in \mathbb{K}^n$.

Vediamo che $C^i = (g \circ f)(e_i) = g(f(e_i)) = g(A^i) = B \cdot A^i \ \forall i$, perciò: $C = (BA^1 \dots BA^n)$

DEFINIZIONE 2.4.17: Si definisce prodotto fra due matrici $B \in \mathcal{M}(q,p)$ e $A \in \mathcal{M}(p,n)$ la matrice $C \in \mathcal{M}(q,n)$ tale che:

$$C = B \cdot A = (BA^1 \dots BA^n)$$

ossia $[C]_{ji} = B_j \cdot A^i$.

Questo prodotto viene chiamato prodotto righe per colonne.

PROPOSIZIONE 2.4.15: Valgono le seguenti proprietà $\forall A, B, C$ di formato opportuno:

- 1) (AB)C = A(BC);
- 2) $(\lambda A)B = \lambda(AB) = A(\lambda B)$;
- 3) (A + B)C = AC + BC;
- 4) A(B+C) = AB + AC;
- 5) IA = AI = A, dove $I = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$ è la matrice identica.

Osservazioni: 1) Non ha senso parlare in generale di commutatività del prodotto fra matrici, poiché se A, B non sono quadrate, se posso eseguire $A \cdot B$ non posso eseguire $B \cdot A$ e viceversa.

2) Anche se in $\mathcal{M}(n)$ ha senso parlare di commutatività del prodotto, in generale $AB \neq BA$:

$$\begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ 1 & 3 \end{pmatrix}; \qquad \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}.$$

3) $AB = 0 \implies A = 0 \lor B = 0$:

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -2 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Questo significa che $\mathcal{M}(n)$ non è un campo, quindi vuol dire che esistono matrici che non hanno un'inversa:

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ 0 & 0 \end{pmatrix} \neq I \ \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

4) $A^n = 0 \implies A = 0$:

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

DEFINIZIONE 2.4.18: $A \in \mathcal{M}(n)$ si dice **nilpotente** se $\exists s \in \mathbb{N} | A^s = 0$.

PROPOSIZIONE 2.4.16: 1) ${}^{t}(AB) = {}^{t}B{}^{t}A \ \forall A, B \in \mathcal{M}(n)$

- 2) $\forall A \in \mathcal{M}(n), \forall S \in \mathcal{S}(n), \ ^tASA \in \mathcal{S}(n)$
- 3) $tr(AB) = tr(BA) \ \forall A, B \in \mathcal{M}(n)$.

Dimostrazione:

- 1) $[{}^{t}(AB)]_{ij} = [AB]_{ji} = A_{j}B^{i} = \sum_{k=1}^{n} [A]_{jk}[B]_{ki};$ $[{}^{t}B^{t}A]_{ij} = ({}^{t}B)_{i}({}^{t}A)^{j} = B^{i}A_{j} = \sum_{k=1}^{n} [B]_{ki}[A]_{jk}.$ Dunque $[{}^{t}(AB)]_{ij} = [{}^{t}B^{t}A]_{ij} \ \forall i,j \Rightarrow {}^{t}(AB) = {}^{t}B^{t}A.$
- 2) Dimostriamo che ${}^{t}({}^{t}ASA) = {}^{t}ASA$: ${}^{t}({}^{t}ASA) = {}^{t}(SA) \cdot {}^{t}A = {}^{t}A^{t}SA = {}^{t}ASA$.
- 3) $tr(AB) = \sum_{k=1}^{n} A_k B^k = \sum_{k=1}^{n} \sum_{s=1}^{n} [A]_{ks} [B]_{sk}$ $tr(BA) = \sum_{k=1}^{n} B_k A^k = \sum_{k=1}^{n} \sum_{s=1}^{n} [B]_{ks} [A]_{sk}$, che sono uguali perché ogni elemento della prima sta nella seconda con s, k scambiati.

DEFINIZIONE 2.4.19: Definiamo $GL(n, \mathbb{K}) = \{A \in \mathcal{M}(n, \mathbb{K}) | A \text{ è } un \text{ isomorf } ismo \text{ di } \mathbb{K}^n \}.$

Osservazione: So che $\forall A, B \in GL(n, \mathbb{K}), A \cdot B \in GL(n, \mathbb{K})$, poiché ho definito il prodotto fra matrici come composizione di A e B.

So anche che la composizione di isomorfismi è un isomorfismo, perciò · è un'operazione in $GL(n, \mathbb{K})$.

PROPOSIZIONE 2.4.17: $(GL(n, \mathbb{K}), \cdot)$ è un gruppo, detto **gruppo lineare generale in** \mathbb{K} . Dimostrazione:

- Il prodotto fra matrici è associativo in $\mathcal{M}(n, \mathbb{K}) \supset GL(n, \mathbb{K})$, dunque lo è anche in $GL(n, \mathbb{K})$;
- $I_n \in GL(n, \mathbb{K});$
- $\forall A \in GL(n, \mathbb{K}), \exists A^{-1} | A^{-1} \in GL(n, \mathbb{K})$, poiché ho già dimostrato che l'inversa di un isomorfismo esiste ed è un isomorfismo.

PROPOSIZIONE 2.4.18: 1) $\forall A \in GL(n, \mathbb{K})$, allora ${}^tA \in GL(n, \mathbb{K})$ e $({}^tA)^{-1} = {}^t(A^{-1})$;

- 2) Se $A, B \in GL(n, \mathbb{K})$, allora $(AB)^{-1} = B^{-1}A^{-1}$;
- 3) Se $A \in GL(n, \mathbb{K})$, $B \in \mathcal{M}(n, \mathbb{K})$ e $AB = I \Rightarrow BA = I$.

Dimostrazione:

1)
$${}^{t}(A^{-1}){}^{t}A = {}^{t}(AA^{-1}) = {}^{t}I = I;$$

 ${}^{t}A^{t}(A^{-1}) = {}^{t}(A^{-1}A) = {}^{t}I = I,$

dunque tA ha un'inversa destra che è anche un'inversa sinistra, dunque ${}^tA \in GL(n, \mathbb{K})$.

- 2) $(B^{-1}A^{-1})AB = B^{-1}IB = B^{-1}B = I;$ $AB(B^{-1}A^{-1}) = A^{-1}IA = A^{-1}A = I.$ Perciò $(AB)^{-1} = B^{-1}A^{-1}.$
- 3) A è bigettiva e B inversa sinistra di A, quindi B è anche inversa destra, cioè BA = I.

Osservazione: Siano $A \in \mathcal{M}(p, n, \mathbb{K})$, $B \in \mathcal{M}(n, q, \mathbb{K})$, e siano $p_1p_2, n_1, n_2, q_1, q_2$ tali che $p = p_1 + p_2, n = n_1 + n_2, q = q_1 + q_2$.

Allora osserviamo che il prodotto fra matrici può essere fatto **a blocchi**:

$$A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \\ n_1 & n_2 \end{pmatrix} \begin{cases} p_1 \\ p_2, & B = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \\ q_1 & q_2 \end{pmatrix} \end{cases} \begin{cases} n_1 \\ n_2 \end{cases} \Rightarrow A \cdot B = \begin{pmatrix} A_1B_1 + A_2B_3 & A_1B_2 + A_2B_4 \\ A_3B_1 + A_4B_3 & A_3B_2 + A_4B_4 \\ \hline q_1 \ colonne & q_2 \ colonne \end{pmatrix} \end{cases} \begin{cases} p_1 \ righe \\ p_2 \ righe \end{cases}.$$

Il lettore può verificare per esercizio che il prodotto così definito coincide con il prodotto definito precedentemente.

2.5 SISTEMI LINEARI

DEFINIZIONE 2.5.1: Definiamo sistema lineare di p equazioni in n incognite:

$$\begin{cases} a_{11}x_1 + \ldots + a_{1n}x_n = b_1 \\ \vdots \\ a_{p1}x_1 + \ldots + a_{pn}x_n = b_p \end{cases}.$$

Osservazione: Un sistema lineare si può scrivere nella forma AX = B, dove:

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{p1} & \dots & a_{pn} \end{pmatrix} \in \mathcal{M}(p, n, \mathbb{K}),$$

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{K}^n; \qquad B = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix} \in \mathbb{K}^p.$$

Quindi $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ è soluzione del sistema $\Leftrightarrow AY = B$.

DEFINIZIONE 2.5.2: Se B = 0, il sistema si dice **omogeneo**.

Osservazione: I sistemi omogenei ammettono sempre $0 \in \mathbb{K}^n$ come soluzione.

DEFINIZIONE 2.5.3: Risolvere il sistema AX = B significa trovare tutte le soluzioni del sistema.

Osservazione: AX = B è risolubile $\Leftrightarrow B \in Im(A)$.

Notazione: Denotiamo l'insieme delle soluzioni del sistema AX = B con:

$$Sol_B = \{X \in \mathbb{K}^n | AX = B\}.$$

Osservazione: $Sol_0 = \{X \in \mathbb{K}^n | AX = 0\} = Ker(A)$, dunque Sol_0 è un sottospazio vettoriale di \mathbb{K}^n (mentre Sol_B non lo è perché non contiene 0).

DEFINIZIONE 2.5.4: Definiamo **sistema omogeneo associato** al sistema AX = B il sistema AX = 0.

PROPOSIZIONE 2.5.1: Sia y_B una qualsiasi soluzione di AX=B. Allora:

 $Sol_B = y_B + Sol_0 \stackrel{\text{def}}{=} \{y_B + X | X \in Sol_0\}.$

Dimostrazione:

⊇) Sia $X \in Sol_0$. Devo verificare che $y_B + X \in Sol_B$: $y_B + X \in Sol_B \Leftrightarrow A(y_B + X) = B \in A(y_B + X) = Ay_B + AX = B + 0 = B$

 \subseteq) Sia $X \in Sol_B$. Poiché $X = y_B + (X - y_B)$, verifico che $X - y_B \in Sol_0$. Infatti $A(X - y_B) = AX - Ay_B = B - B = 0$.

DEFINIZIONE 2.5.5: Due sistemi lineari si dicono **equivalenti** se hanno esattamente le stesse soluzioni.

DEFINIZIONE 2.5.6: Definiamo operazioni elementari sul sistema le seguenti operazioni:

1º tipo: Scambiare due equazioni;

 2^{o} tipo: Moltiplicare un'equazione per uno scalare $\neq 0$;

 3^o tipo: Sostituire un'equazione con quella ottenuta sommando ad essa un multiplo di un'altra equazione.

Osservazione: In notazione matriciale, ciò corrisponde ad eseguire sulla matrice A' = (A : B), detta matrice completa del sistema, una delle seguenti operazioni elementari per riga:

1º tipo: Scambiare due righe;

 2^{o} tipo: Moltiplicare una riga per uno scalare $\neq 0$;

3º tipo: Aggiungere ad una riga un multiplo di un'altra riga.

Tutte queste operazioni non modificano l'insieme delle soluzioni del sistema.

Esempio:
$$\begin{cases} x_1 - x_2 + 2x_3 - x_4 = 1 \\ 2x_1 - 2x_2 + 5x_3 + x_4 = 3 \end{cases}$$

$$A' = \begin{pmatrix} 1 & -1 & 2 & -1 \vdots & 1 \\ 2 & -2 & 5 & 1 & \vdots & 3 \end{pmatrix} \xrightarrow[A_2 \to A_2 - 2A_1]{} \begin{pmatrix} 1 & -1 & 2 & -1 \vdots & 1 \\ 0 & 0 & 1 & 3 & \vdots & 1 \end{pmatrix}$$

Perciò $x_3 = -3x_4 + 1$.

Sostituendo nell'altra equazione:

$$x_1 - x_2 + 2(-3x_4 + 1) - x_4 = 1 \Rightarrow x_1 - x_2 - 7x_4 = -1 \Rightarrow x_1 = x_2 + 7x_4 - 1$$
. Quindi:

$$Sol_{B} = \left\{ \begin{pmatrix} x_{2} + 7x_{4} - 1 \\ x_{2} \\ -3x_{4} + 1 \\ x_{4} \end{pmatrix} | x_{2}, x_{4} \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_{2} \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_{4} \begin{pmatrix} 7 \\ 0 \\ -3 \\ 1 \end{pmatrix} | x_{2}, x_{4} \in \mathbb{R} \right\}$$

Osservazione: Il termine $\begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}$ non è altro che una soluzione y_B del sistema (nel caso $x_2=$

 $x_4 = 0$), mentre il termine $x_2 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 7 \\ 0 \\ -3 \\ 1 \end{pmatrix}$ è la soluzione generale del sistema omogeneo

associato, perciò:

$$Sol_{B} = \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix} + Span \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 7\\0\\-3\\1 \end{pmatrix}$$

$$= Sol_{0}$$

Osservazione: Un sistema del tipo:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 \dots + a_{1n}x_n = b_1 \\ a_{2j_2}x_{j_2} + a_{2(j_2+1)}x_{(j_2+1)} + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{pj_p}x_{j_p} + \dots + a_{pn}x_{pn} = b_p \end{cases}$$

con $a_{11} \neq 0$, $a_{2j_2} \neq 0$, ..., $a_{pj_p} \neq 0$, cioè se in una riga sono nulli i coefficienti di x_1 , ..., x_k , nella successiva sono nulli almeno quelli di x_1 , ..., x_k , x_{k+1} , è facilmente risolubile.

Infatti ricavo x_{j_p} nell'ultima equazione (poiché $a_{pk} \neq 0$), poi $x_{j_{p-1}}$ dalla penultima e così via fino a x_1 dalla prima equazione, tutti in funzione dei x_i con $i \neq 1, j_1, ..., j_p$.

DEFINIZIONE 2.5.7: Una matrice *A* del tipo:

$$A = \begin{pmatrix} 0 \dots 0 & | & \underline{p_1 \dots \dots} \\ 0 \dots 0 & | & \underline{p_2 \dots} \\ 0 \dots 0 & | & \underline{p_2 \dots} \\ 0 \dots 0 & | & \underline{p_r \dots} \\ 0 \dots & | & \underline{$$

cioè in cui se nella n-esima riga ci sono k zeri iniziali, nella (n + 1)-esima ce ne sono almeno k + 1, viene detta **a scalini**.

Il primo termine $\neq 0$ di ogni riga viene detto **pivot**.

Osservazione: Se A' = (A : B) è a scalini, il sistema AX = B è risolubile \Leftrightarrow la colonna B non contiene nessun pivot.

In tal caso, se i pivots sono contenuti nelle colonne A^{j_1} , ..., A^{j_r} , ricavo le incognite x_{j_1} , ..., x_{j_r} in funzione delle altre.

ALGORITMO DI GAUSS:

Data una $M \in \mathcal{M}(p,q)$, l'algoritmo trasforma M in una matrice a scalini attraverso un numero finito di operazioni elementari per riga.

- Sia M^{j_1} la prima colonna da sinistra non nulla.
- A meno di scambi di riga, posso supporre $[M]_{1,j_1} \neq 0$.
- Per i = 2, ..., p sostituisco la riga M_i con la riga $M_i [M]_{i,j_1} \cdot ([M]_{1,j_1})^{-1} \cdot M_1$ (cioè rendo $[M]_{i,j_1} = 0$).
- Ottengo:

$$\widetilde{M} = \left(0 \begin{vmatrix} [M]_{1,j_1} \\ 0 \\ \vdots \\ 0 \end{vmatrix} * \right)$$

• Considero in \widetilde{M} la sottomatrice ottenuta eliminando la prima riga e le prime j_1 colonne. Itero il procedimento.

Termino quando ho trattato tutte le righe o quando restano solo righe nulle.

TEOREMA DI GAUSS: Ogni sistema lineare AX = B è equivalente ad un altro sistema lineare SX = T, dove S' = (S : T) è a scalini.

Il sistema AX = B è risolubile \Leftrightarrow le matrici S e S' hanno lo stesso numero di pivots (cioè se Tnon contiene pivots).

Osservazione: La riduzione a scalini di una matrice non è unica.

DEFINIZIONE 2.5.8: Definiamo forma parametrica di un sottospazio di \mathbb{K}^n

$$W = Span(w_1, ..., w_p) = \{X \in \mathbb{K}^n | \exists t_1, ..., t_p \in \mathbb{K} \ t. \ c. \ x = t_1 w_1 + ... + t_p w_p\} \text{ la scrittura:}$$

$$W = Im(A)$$

dove $A: \mathbb{K}^p \to \mathbb{K}^n$ è la matrice:

$$A = (w_1 \mid \dots \mid w_p)$$

con i vettori $w_1, ..., w_n$ per colonne.

DEFINIZIONE 2.5.9: Definiamo forma cartesiana di un sottospazio W di \mathbb{K}^n la scrittura:

$$W = \{X | BX = 0\} = Ker(B)$$

 $\operatorname{con} \mathcal{M}(q,n) \ni B \colon \mathbb{K}^n \to \mathbb{K}^q.$

Le equazioni del sistema BX = 0 si dicono equazioni cartesiane di W.

Osservazione: • Si passa dalle equazioni cartesiane BX = 0 alla forma parametrica risolvendo il sistema BX = 0.

Per passare dalla forma parametrica alla forma cartesiana, si costruisce il sistema (A : X), dove A è tale che W = Im(A) e $X = \begin{pmatrix} x_1 \\ \vdots \\ x \end{pmatrix}$.

Si porta il sistema (A : X) nella forma a scalini (S : X'), dove $X' = \begin{pmatrix} x_1' \\ \vdots \\ x_r' \end{pmatrix}$, e, dette S_{k_1}, \dots, S_{k_r}

le righe con pivot di S, poniamo $x_i' = 0 \ \forall i \neq k_1, ..., k_r$ (ottenendo quindi un sistema con n-r equazioni).

Esempio: Sia $W \subset \mathbb{R}^3$ il sottospazio vettoriale $\begin{cases} x = t \\ y = t + s \\ z = 3t + 2s \end{cases}$, ossia $W = Span\left(\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}\right)$.

Perciò $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in W \Leftrightarrow \exists t, s \in \mathbb{R} \mid \begin{cases} t = x \\ t + s = y \\ 3t + 2s = z \end{cases} \Leftrightarrow \text{il sistema} \begin{pmatrix} 1 & 0 & \vdots & x \\ 1 & 1 & \vdots & y \\ 3 & 2 & \vdots & z \end{pmatrix} \text{ ha soluzione} \Leftrightarrow \begin{pmatrix} 1 & 0 & \vdots & x \\ 1 & 0 & \vdots & x \\ 0 & 1 & \vdots & y - x \\ 0 & 2 & \vdots & z - 3x \end{pmatrix} \text{ ha soluzione} \Leftrightarrow \begin{pmatrix} 1 & 0 & \vdots & x \\ 0 & 1 & \vdots & y - x \\ 0 & 0 & \vdots & z - x - 2y \end{pmatrix} \text{ ha soluzione} \Leftrightarrow z - x - 2y = 0.$ Ouin di la forma a serie de la soluzione of the series o

Perciò
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in W \Leftrightarrow \exists t, s \in \mathbb{R} | \begin{cases} t = x \\ t + s = y \\ 3t + 2s = z \end{cases} \Leftrightarrow \text{il sistema} \begin{pmatrix} 1 & 0 & \vdots & x \\ 1 & 1 & \vdots & y \\ 3 & 2 & \vdots & z \end{pmatrix} \text{ ha soluzione} \Leftrightarrow$$

$$\begin{pmatrix} 1 & 0 & \vdots & x \\ 0 & 1 & \vdots & y - x \\ 0 & 2 & \vdots & z - 3x \end{pmatrix} \text{ ha soluzione } \Leftrightarrow \begin{pmatrix} 1 & 0 & \vdots & x \\ 0 & 1 & \vdots & y - x \\ 0 & 0 & \vdots & z - x - 2y \end{pmatrix} \text{ ha soluzione } \Leftrightarrow z - x - 2y = 0.$$

Quindi la forma cartesiana per W è:

$$W = \{x + 2y - z = 0\} = Ker(B)$$

dove $B = (1 \ 2 \ -1)$.

DEFINIZIONE 2.5.10: Sia V uno spazio vettoriale e $v \in V$. Si definisce **traslazione** di v l'applicazione:

$$\tau_v: V \to V | \tau_v(x) = x + v.$$

PROPOSIZIONE 2.5.2: 1) $\forall v \in V$, τ_v è bigettiva;

- 2) $\forall v, w \in V$, $\tau_{v+w} = \tau_v \circ \tau_w = \tau_w \circ \tau_v$;
- 3) $\forall v \in V$, $(\tau_v)^{-1} = \tau_{-v}$.

Dimostrazione:

- 1) τ_v è iniettiva, poiché se $x \neq y \in V$, $\tau_v(x) = x + v \neq y + v = \tau_v(y)$; τ_v è surgettiva, poiché $\forall x \in V$, $\exists f^{-1}(x) \in V | f^{-1}(x) + v = x$.
- 2) $\forall x \in V$:

$$\tau_{v+w}(x) = x + v + w;$$

$$(\tau_v \circ \tau_w)(x) = \tau_v(\tau_w(x)) = \tau_v(x+w) = x+v+w;$$

$$(\tau_w \circ \tau_v)(x) = \tau_w(\tau_v(x)) = \tau_w(x+v) = x+v+w.$$

3)
$$(\tau_v \circ \tau_{-v})(x) = \tau_v(\tau_{-v}(x)) = \tau_v(x-v) = x \quad \forall x \in V.$$

Quindi le traslazioni di *V* formano un gruppo abeliano.

DEFINIZIONE 2.5.11: Sia W un sottospazio vettoriale di V e $v \in V$. Si definisce **sottospazio affine** di V con **giacitura** W l'immagine di τ_v , cioè:

$$H = \tau_v(W) = \{v + w | w \in W\}$$

Esempi: 1) Sia dato il sistema AX = B, con $A \in \mathcal{M}(p, n, \mathbb{K})$.

 $Sol_B = y_0 + Sol_0$, quindi Sol_B è sottospazio affine di \mathbb{K}^n ;

2) Ogni retta r di \mathbb{R}^3 è un sottospazio affine con giacitura la retta $r_0//r$ e passante per l'origine. Se $P_0 \in r$, $r = \tau_{P_0}(r_0)$;

se
$$r_0 = Span(v_0)$$
, $r = \{X \in \mathbb{R}^3 | X = P_0 + tv_0, t \in \mathbb{R}\}.$

Graficamente:

Possiamo rappresentare un sottospazio affine di \mathbb{K}^n in forma parametrica e cartesiana:

Sia W sottospazio vettoriale di \mathbb{K}^n e sia $H = P_0 + W$.

Per la forma parametrica, scrivo $W = Im(A) = \{AY | Y \in \mathbb{K}^p\}.$

Allora $H = \{AY + P_0 | Y \in \mathbb{K}^p\}.$

Per la forma cartesiana, scrivo $W = Ker(B) = \{X \in \mathbb{K}^n | BX = 0\}.$

Allora:

$$H = \{X \in \mathbb{K}^n | X = Y + P_0, Y \in W\} = \{X \in \mathbb{K}^n | X - P_0 \in W\} = \{X \in \mathbb{K}^n | B(X - P_0) = 0\} = \{X \in \mathbb{K}^n | BX = BP_0\}$$

Si passa da una rappresentazione all'altra in modo analogo al caso vettoriale.

2.6 BASI E DIMENSIONE

DEFINIZIONE 2.6.1: Uno spazio vettoriale V si dice **finitamente generato** se $\exists v_1, ..., v_n \in V | \forall v \in V \exists \alpha_1, ..., \alpha_n \in \mathbb{K} | v = \alpha_1 v_1 + ... + \alpha_n v_n$, ossia $V = Span(v_1, ..., v_n)$. In tal caso, $v_1, ..., v_n$ sono detti **generatori** di V.

Esempio:
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
, ..., $e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$ generano \mathbb{K}^n .

Osservazione: $\mathbb{K}[x]$ non è finitamente generato, poiché se per assurdo $\mathbb{K}[x] = Span(1, x, ..., x^a)$, con $a \in \mathbb{N}$, non si potrebbero rappresentare i polinomi di grado > a.

DEFINIZIONE 2.6.2: $v_1, ..., v_n \in V$ sono detti **linearmente indipendenti** se $a_1v_1+...+a_nv_n=0 \Rightarrow a_1=...=a_n=0$. Altrimenti sono detti **linearmente dipendenti**.

Esempio: $e_1,\dots,e_n\in\mathbb{K}^n$ sono linearmente indipendenti, infatti:

$$a_1e_1+\ldots+a_ne_n=0 \Rightarrow \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}=0 \Rightarrow a_1=\ldots=a_n=0.$$

Osservazione: $v \in V$ è linearmente indipendente $\Leftrightarrow v \neq 0$.

Osservazione: Se uno fra i vettori v_1, \dots, v_n è nullo, allora v_1, \dots, v_n sono linearmente dipendenti. Infatti, se ad esempio $v_1 = 0$:

$$av_1 + 0v_2 + \ldots + 0v_n = 0 \implies a = 0.$$

PROPOSIZIONE 2.6.1: Sia $n \ge 2$. I vettori v_1, \dots, v_n sono linearmente dipendenti \Leftrightarrow almeno uno di essi si può esprimere come combinazione lineare degli altri.

Dimostrazione:

 \Rightarrow): Per ipotesi $\exists a_1, ..., a_n$ non tutti nulli $| a_1v_1 + ... + a_nv_n = 0$. Se $a_1 \neq 0$, allora $v_1 = -a_1^{-1}(a_2v_2 + ... + a_nv_n)$, tesi.

$$\Leftarrow$$
): Se $v_1=a_2v_2+\ldots+a_nv_n$, allora $v_1-a_2v_2-\ldots-a_nv_n=0$, da cui la tesi.

Osservazione: Se $v_1, ..., v_n$ sono linearmente indipendenti e $k \le n$, allora $v_1, ..., v_k$ sono linearmente indipendenti.

PROPOSIZIONE 2.6.2: Se $v_m \in Span(v_1, ..., v_{m-1})$, allora

 $Span(v_1, ..., v_m) = Span(v_1, ..., v_{m-1}).$

Dimostrazione:

 $\subseteq) \text{ Se } v \in Span(v_1, \dots, v_m) \Rightarrow v = a_1v_1 + \dots + a_mv_m = a_1v_1 + \dots + a_{m-1}v_{m-1} + a_m(b_1v_1 + \dots + b_{m-1}v_{m-1}) = (a_1 + a_mb_1)v_1 + \dots + (a_{m-1} + a_mb_{m-1})v_{m-1} \Rightarrow v \in Span(v_1, \dots, v_{m-1}).$

⊇) Se
$$v \in Span(v_1, ..., v_{m-1})$$
 ⇒ $v = a_1v_1 + ... + a_{m-1}v_{m-1} = a_1v_1 + ... + a_{m-1}v_{m-1} + 0v_m$, quindi $v \in Span(v_1, ..., v_m)$.

DEFINIZIONE 2.6.3: Un insieme ordinato $\{v_1, \dots, v_n\}$ di vettori di V è detto **base** di V se v_1, \dots, v_n sono linearmente indipendenti e generano V.

Esempio: $\{e_1, ..., e_n\}$ è una base di \mathbb{K}^n , detta **base canonica**.

PROPOSIZIONE 2.6.3: Se $\mathcal{B} = \{v_1, \dots, v_n\}$ è una base di V, allora ogni $v \in V$ può essere scritto in modo unico come combinazione lineare dei v_1, \dots, v_n .

Dimostrazione:

Poiché i $v_1, ..., v_n$ sono generatori, allora $v \in V = Span(v_1, ..., v_n)$, dunque supponiamo:

$$v = a_1 v_1 + \ldots + a_n v_n;$$

$$v = b_1 v_1 + \ldots + b_n v_n.$$

Allora $(a_1 - b_1)v_1 + ... + (a_n - b_n)v_n = 0$, ma i v_i sono linearmente indipendenti, dunque $a_i = b_i \ \forall i$, da cui segue la tesi.

DEFINIZIONE 2.6.4: I coefficienti dell'unica combinazione lineare dei $v_1, ..., v_n$ che dà v si chiamano **coordinate** di v rispetto alla base \mathcal{B} e denotati con $[v]_{\mathcal{B}}$.

DEFINIZIONE 2.6.5: Fissando una base \mathcal{B} si determina quindi una corrispondenza biunivoca: $[\]_{\mathcal{B}}: V \to \mathbb{K}^n |\ v \to [v]_{\mathcal{B}}$

chiamata "coordinate rispetto a B".

PROPOSIZIONE 2.6.4: $\forall \mathcal{B}$ base, $[\]_{\mathcal{B}}$ è un isomorfismo.

Dimostrazione:

 $[\]_{\mathcal{B}}$ è evidentemente lineare; inoltre è iniettiva, poiché

 $Ker([\]_{\mathcal{B}}) = \{v \in V | [v]_{\mathcal{B}} = 0\} = \{v \in V | v = 0v_1 + ... + 0v_n\} = \{0\}, \text{ mentre è surgettiva in quanto ogni } (a_1 ... a_n) \in \mathbb{K}^n \text{ è immagine di } v = a_1v_1 + ... + a_nv_n \in V.$

COROLLARIO 2.6.5: Se V è un \mathbb{K} -spazio vettoriale che ammette una base formata da n vettori, allora $V \cong \mathbb{K}^n$.

PROPOSIZIONE 2.6.6: Sia $\{v_1,\dots,v_n\}$ base di V e w_1,\dots,w_k dei vettori di V.

Se k > n, allora $w_1, ..., w_k$ sono linearmente dipendenti.

Dimostrazione:

Si ha:
$$w_1 = a_{11}v_1 + \dots a_{1n}v_n$$

 $w_2 = a_{21}v_1 + \dots a_{2n}v_n$
 \vdots
 $w_k = a_{k1}v_1 + \dots a_{kn}v_n$.

Devo trovare degli α_i non tutti nulli tali che:

$$\alpha_1(a_{11}v_1 + \dots + a_{1n}v_n) + \dots + \alpha_k(a_{k1}v_1 + \dots + a_{kn}v_n) = 0$$
, ossia:

$$(a_{11}\alpha_1 + \dots + a_{k1}\alpha_k)v_1 + \dots + (a_{1n}\alpha_1 + \dots + a_{kn}\alpha_k)v_n = 0.$$

Ma $v_1, ..., v_n$ sono linearmente indipendenti, perciò:

$$\begin{cases} a_{11}\alpha_1 + \dots a_{k1}\alpha_k = 0 \\ \vdots \\ a_{1n}\alpha_1 + \dots a_{kn}\alpha_k = 0 \end{cases}$$

Poiché è un sistema omogeneo di n equazioni in k > n incognite, ha infinite soluzioni, dunque in particolare ne ha una non nulla, per cui i w_i sono linearmente dipendenti.

COROLLARIO 2.6.7: Se $\{v_1, \dots, v_n\}$ e $\{w_1, \dots, w_k\}$ sono basi di V, allora n = k.

Dimostrazione:

Se k > n, i w_i sono linearmente dipendenti per la proposizione precedente;

se n < k, i v_i sono linearmente dipendenti,

perciò k = n.

DEFINIZIONE 2.6.6: Se V possiede una base finita $\{v_1, \dots, v_n\}$, diciamo che V ha **dimensione** n (dim V = n).

Se $V = \{0\}$, poniamo dim V = 0.

Esempi: 1) dim $\mathbb{K}^n = n$;

- 2) $\dim_{\mathbb{C}} \mathbb{C} = 1$, in quanto $\{1\}$ è una base di \mathbb{C} come \mathbb{C} -spazio vettoriale;
- 3) $\dim_{\mathbb{R}} \mathbb{C} = 2$, in quanto $\{1, i\}$ è una base di \mathbb{C} come \mathbb{R} -spazio vettoriale;
- 4) dim $\mathcal{M}(p, n) = p \cdot n$, in quanto $\{E_{ij}\}_{1 \le i \le p}$ è una base, dove:

$$[E_{ij}]_{hk} = \delta_{ih} \cdot \delta_{jk} = \langle \frac{1}{0} \frac{se(i,j) = (h,k)}{se(i,j) \neq (h,k)} (\delta_{ij} \stackrel{\text{def}}{=} \langle \frac{1}{0} \frac{se(i=j)}{se(i\neq j)} \stackrel{\text{def}}{=} \langle \frac{1}{$$

5) dim $\mathbb{K}_n[x] = n + 1$, in quanto $\{1, x, ..., x^n\}$ è una base.

DEFINIZIONE 2.6.7: Siano V, W \mathbb{K} -spazi vettoriali. Definiamo una somma e un prodotto per scalari in $V \times W$:

$$(v_1, w_1) + (v_2, w_2) \stackrel{\text{def}}{=} (v_1 + v_2, w_1 + w_2);$$

 $\alpha(v, w) \stackrel{\text{def}}{=} (\alpha v, \alpha w).$

PROPOSIZIONE 2.6.8: $V \times W$ è spazio vettoriale e dim $(V \times W) = \dim V + \dim W$.

Dimostrazione:

Lasciamo la verifica che $V \times W$ è spazio vettoriale.

Sia $\{v_1, \dots, v_n\}$ base di V e $\{w_1, \dots, w_k\}$ base di W.

È immediato mostrare che $\{(v_1,0),\ldots,(v_n,0),(0,w_1),\ldots,(0,w_k)\}$ è base di $V\times W$, dunque segue la tesi.

ALGORITMO PER L'ESTRAZIONE DI UNA BASE: Sia $V \neq \{0\}$ uno spazio vettoriale.

Da ogni insieme finito di generatori di V si può estrarre una base.

Dimostrazione:

Siano $v_1, ..., v_k$ generatori di V. Posso supporre $v_i \neq 0 \ \forall i$, poiché, se ce ne fossero, li potrei togliere e non altererei lo spazio generato.

Allora v_1 è linearmente indipendente.

Guardo $\{v_1, v_2\}$:

- se v_1 , v_2 sono linearmente indipendenti, li tengo;
- altrimenti $v_2 \in Span(v_1)$ e quindi $Span(v_1, ..., v_k) = Span(v_1, v_3, ..., v_k)$. Allora elimino v_2 .

Continuo così fino a quando ho considerato tutti i vettori.

COROLLARIO 2.6.9: Sia dim V = n. Se $v_1, ..., v_k$ sono generatori di V, allora $k \ge n$.

PROPOSIZIONE 2.6.10: Se $v_1, ..., v_k$ sono linearmente indipendenti e $v \notin Span(v_1, ..., v_k)$, allora $v, v_1, ..., v_k$ sono linearmente indipendenti.

Dimostrazione:

Sia $a_1v_1 + ... + a_kv_k + av = 0$.

Deve essere a=0, poiché altrimenti $v=-a^{-1}(a_1v_1+\ldots+a_kv_k) \Rightarrow v \in Span(v_1,\ldots,v_k)$.

Allora $a_1v_1+\ldots+a_kv_k=0$. Poiché i v_1,\ldots,v_k sono linearmente indipendenti, segue $a_1=\ldots=a_k=0$ e quindi la tesi.

TEOREMA DI COMPLETAMENTO A BASE: Sia V uno spazio finitamente generato.

Se $v_1, ..., v_k \in V$ sono linearmente indipendenti, esistono $v_{k+1}, ..., v_n \in V$

 $\{v_1,\dots,v_k,v_{k+1},\dots,v_n\}$ è una base di V.

Dimostrazione:

Se $\{v_1, \dots, v_k\}$ generano V, allora $\{v_1, \dots, v_k\}$ è una base di V.

Se non lo generano, allora $\exists v_{k+1} \notin Span(v_1, ..., v_k)$.

Per la proposizione precedente, i v_1 , ..., v_k , v_{k+1} sono linearmente indipendenti.

Se generano *V*, ho trovato una base.

Altrimenti itero il procedimento.

V è finitamente generato, perciò dopo un numero finito di passi il procedimento deve finire.

Osservazione: È un procedimento non algoritmico, poiché non c'è un metodo semplice e diretto per trovare i v_{k+h} , con h > 0.

ALGORITMO DI COMPLETAMENTO A BASE: Se $v_1, ..., v_k$ sono linearmente indipendenti e se conosco una base $\{z_1, ..., z_n\}$ di V, posso completare $\{v_1, ..., v_k\}$ a base applicando l'algoritmo di estrazione di una base all'insieme di generatori $\{v_1, ..., v_k, z_1, ..., z_n\}$.

PROPOSIZIONE 2.6.11: Ogni sottospazio vettoriale W di uno spazio vettoriale V finitamente generato ha un supplementare.

Dimostrazione:

Sia dim V = n. Allora dim $W = k \le n$.

Sia $\{w_1, \dots, w_k\}$ una base di W.

Posso completarla a una base $\{w_1, ..., w_k, v_{k+1}, ..., v_n\}$ di V.

Perciò $V = W \oplus Span(v_{k+1}, ..., v_n)$ e dunque $Span(v_{k+1}, ..., v_n)$ è un supplementare.

PROPOSIZIONE 2.6.12: Sia $V = U \oplus W$, $\{u_1, ..., u_k\}$ base di U, $\{w_1, ..., w_m\}$ base di W.

Allora $\{u_1, \dots, u_k, w_1, \dots, w_m\}$ è base di V.

Dimostrazione:

Ogni $v \in V$ si può scrivere come v = u + w, con $u \in U$ e $w \in W$, ma

 $u = a_1 u_1 + \ldots + a_k u_k$ e $w = b_1 w_1 + \ldots + b_m w_m$, dunque i $u_1, \ldots, u_k, w_1, \ldots, w_m$ generano V.

Inoltre sono linearmente indipendenti, poiché:

$$\underbrace{a_1u_1+\ldots+a_ku_k}_{=u\in U} + \underbrace{b_1w_1+\ldots+b_mw_m}_{=w\in W} = 0 \Rightarrow u+w=0 \Rightarrow u=-w, \text{ dunque } W\ni w=-u\in U,$$

perciò $u, w \in U \cap W = \{0\}$, cioè u = 0 e w = 0.

Poiché $\{u_1, \dots, u_k\}$ e $\{w_1, \dots, w_m\}$ sono linearmente indipendenti, allora

 $a_1 = ... = a_k = b_1 = ... = b_m = 0$, da cui la tesi.

PROPOSIZIONE 2.6.13: Se $V \neq \{0\}$ non è finitamente generato, allora $\forall n \geq 1$ esistono $v_1, ..., v_n \in V$ linearmente indipendenti.

Dimostrazione:

Per induzione su *n*:

Passo base): n = 1, basta scegliere $v_1 \neq 0$;

Passo induttivo): Per ipotesi induttiva $\exists v_1, ..., v_{n-1}$ linearmente indipendenti.

Osservo che $Span(v_1, ..., v_{n-1}) \neq V$, poiché V non è finitamente generato.

Dunque $\exists v_n \notin Span(v_1, ..., v_{n-1}) | v_1, ..., v_n$ sono linearmente indipendenti.

PROPOSIZIONE 2.6.14: Se V è finitamente generato e W è un sottospazio vettoriale di V, allora:

- 1) *W* è finitamente generato;
- 2) $\dim W \leq \dim V$;
- 3) se dim $W = \dim V \Rightarrow W = V$.

Dimostrazione:

- 1) Sia $n = \dim V$. Se W non fosse finitamente generato, per la proposizione precedente esisterebbero $w_1, \dots, w_{n+1} \in W \subset V$ linearmente indipendenti, assurdo.
- 2) Sia $n = \dim V$. Se $\dim W > n$, allora esisterebbero $w_1, ..., w_{n+1} \in W \subset V$ linearmente indipendenti, assurdo.
- 3) Se dim W = n e $\{w_1, ..., w_n\}$ è base di W, allora $w_1, ..., w_n$ sono linearmente indipendenti anche in V e, poiché dim V = n, devono essere una base di V. Dunque W = V.

FORMULA DI GRASSMANN: Siano U, W sottospazi vettoriali di dimensione finita di V. Allora: $\dim(U+W) = \dim U + \dim W - \dim(U\cap W)$.

Dimostrazione:

Sia dim U = h, dim W = k, dim $(U \cap W) = s$.

Sia $\{z_1, ..., z_s\}$ una base di $U \cap W$. Allora $z_1, ..., z_s$ sono linearmente indipendenti in $U \in W$.

Per il teorema di completamento a base $\exists u_1, ..., u_{h-s} \in U, \exists w_1, ..., w_{k-s} \in W$ tali che:

 $\{z_1, ..., z_s, u_1, ..., u_{h-s}\}$ è base di U;

 $\{z_1,\ldots,z_s,w_1,\ldots,w_{k-s}\}$ è base di W.

Se mostro che $\{z_1, \dots, z_s, u_1, \dots, u_{h-s}, w_1, \dots, w_{k-s}\}$ è base di U+W ho la tesi, poiché dimostro che dim(U+W)=h+k-s.

Quei vettori generano, in quanto, preso $v \in U + W$, $\exists u \in U, w \in W \mid v = u + w$.

Inoltre $u=a_1z_1+\ldots+a_sz_s+b_1u_1+\ldots+b_{h-s}u_{h-s}$ e $w=\alpha_1z_1+\ldots+\alpha_sz_s+\beta_1w_1\ldots+\beta_{k-s}w_{k-s}$, dunque $v=(a_1+\alpha_1)z_1+\ldots+(a_s+\alpha_s)z_s+b_1u_1+\ldots+b_{h-s}u_{h-s}+\beta_1w_1+\ldots+\beta_{k-s}w_{k-s}$. Mostriamo quindi che sono linearmente indipendenti: sia

$$\underbrace{a_1z_1+\ldots+a_sz_s}_{=z} + \underbrace{b_1u_1+\ldots+b_{h-s}u_{h-s}}_{=u} + \underbrace{c_1w_1+\ldots+c_{k-s}w_{k-s}}_{=w} = 0.$$

Allora z + u = -w. Ma $z + u \in U$, $w \in W$, quindi $z + u = -w \in U \cap W$.

Posso dunque scrivere $w = \alpha_1 z_1 + ... + \alpha_s z_s$, per cui ho:

$$a_1z_1+\ldots+a_sz_s+b_1u_1+\ldots+b_{h-s}u_{h-s}+\alpha_1z_1+\ldots+\alpha_sz_s=0\Rightarrow$$

$$(a_1 + \alpha_1)z_1 + \ldots + (a_s + \alpha_s)z_s + b_1u_1 + \ldots + b_{h-s}u_{h-s} = 0.$$

Questi vettori sono una base di U, quindi $b_1 = ... = b_{h-s} = 0$.

Allora:

 $a_1z_1+\ldots+a_sz_s+c_1w_1+\ldots+c_{k-s}w_{k-s}=0$, ma questi vettori sono una base di W, quindi sono linearmente indipendenti, per cui $a_1=\ldots=a_s=c_1=\ldots=c_{k-s}=0$, da cui segue la tesi.

Osservazione: dim $S(n) = \frac{n(n+1)}{2}$, dim $A(n) = \frac{n(n-1)}{2}$.

Infatti, detta $\{E_{ij}\}_{1 \le i,j \le n}$ la base canonica di $\mathcal{M}(n)$, $\{E_{ij} + E_{ji}\}_{1 \le i < j \le n} \cup \{E_{ii}\}_{1 \le i \le n}$ è una base di

S(n). Lasciamo questa verifica per esercizio. Il numero dei vettori di base è $\frac{n(n-1)}{2} + n$.

Inoltre per Grassmann, dim $\mathcal{A}(n) = \dim \mathcal{M}(n) - \dim \mathcal{S}(n) = n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$.

TEOREMA 2.6.15: Siano V, W K-spazi vettoriali, con V finitamente generato.

Sia $\{v_1, ..., v_n\}$ una base di V; siano $w_1, ..., w_n$ vettori di W.

Allora $\exists! f: V \to W$ lineare tale che $f(v_i) = w_i \forall i$.

Dimostrazione:

Esistenza: Sia $v \in V \Rightarrow \exists unici \ a_1, ..., a_n \in \mathbb{K} | \ v = a_1 v_1 + ... + a_n v_n$.

Poniamo $f(v) = a_1 w_1 + ... + a_n w_n$.

Si ha evidentemente che $f(v_i) = w_i \ \forall i$.

Inoltre f è lineare, infatti, se $v = a_1 v_1 + ... + a_n v_n$ e $z = b_1 v_1 + ... + b_n v_n$, allora

$$v + z = (a_1 + b_1)v_1 + \dots + (a_n + b_n)v_n;$$

quindi $f(v+z) = (a_1 + b_1)w_1 + \dots + (a_n + b_n)w_n = a_1w_1 + \dots + a_nw_n + b_1w_1 + \dots + b_nw_n = f(v) + f(z).$

Analogamente per il multiplo.

<u>Unicità</u>: Prendiamo una qualsiasi g lineare tale che $g(v_i) = w_i \ \forall i$.

Per linearità:

$$g(v) = g\left(\sum_{i=1}^{n} a_i v_i\right) = \sum_{i=1}^{n} a_i g(v_i) = \sum_{i=1}^{n} a_i w_i = f(v)$$

dunque f è unica.

PROPOSIZIONE 2.6.16: Sia $f: V \to W$ lineare. Allora:

- 1) Se $v_1, ..., v_n$ sono linearmente indipendenti e f è iniettiva, allora $f(v_1), ..., f(v_n)$ sono linearmente indipendenti;
- 2) Se $v_1, ..., v_n$ generano V, allora $f(v_1), ..., f(v_n)$ generano Im(f).

Dimostrazione:

- 1) Sia $a_1f(v_1)+\ldots+a_nf(v_n)=0$. Allora per linearità $f(a_1v_1+\ldots+a_nv_n)=0$, dunque $a_1v_1+\ldots+a_nv_n\in Ker(f)=\{0\}$, ma v_1,\ldots,v_n sono linearmente indipendenti, per cui $a_1=\ldots=a_n=0$, tesi.
- 2) Sia $y = f(x) \in Im(f)$. Mostriamo che può essere scritto come combinazione lineare dei $f(v_i)$.

So che $\exists a_1, ..., a_n \in \mathbb{K} | x = a_1 v_1 + ... a_n v_n$. Allora:

$$y = f(x) = f\left(\sum_{i=1}^{n} a_i v_i\right) = \sum_{i=1}^{n} a_i f(v_i)$$

da cui la tesi.

Osservazione: Se $A \in \mathcal{M}(p, n, \mathbb{K})$, allora sappiamo che A è una applicazione lineare e la sua immagine è lo spazio generato dalle colonne.

Quindi $Im(A) = Span(A^1, ..., A^n) = C(A)$.

COROLLARIO 2.6.17: $f: V \to W$ è un isomorfismo $\Rightarrow f$ trasforma ogni base di V in una base di W.

Dimostrazione:

Prendo una base di V. Poiché f è iniettiva, allora le immagini dei vettori della base sono linearmente indipendenti. Inoltre quegli stessi vettori generano V, quindi le loro immagini generano Im(f), ma f è surgettiva, quindi Im(f) = W.

FORMULA DELLE DIMENSIONI: Sia V uno spazio vettoriale finitamente generato, e sia $f:V\to W$ lineare. Allora:

$$\dim V = \dim Ker(f) + \dim Im(f)$$

Dimostrazione:

Sia $n = \dim V$ e $k = \dim Ker(f)$.

Sia $\{v_1, ..., v_k\}$ una base di Ker(f); la completo a $\{v_1, ..., v_k, ..., v_n\}$ base di V.

Allora $f(v_1), ..., f(v_n)$ generano Im(f), ma $f(v_1) = ... = f(v_k) = 0$, poiché appartengono a Ker(f).

Perciò posso toglierli e i rimanenti $f(v_{k+1}), ..., f(v_n)$ generano comunque Im(f).

Dimostriamo che $f(v_{k+1}), ..., f(v_n)$ sono linearmente indipendenti:

$$\begin{aligned} a_{k+1}f(v_{k+1}) + \ldots + a_n f(v_n) &= 0 \implies f(a_{k+1}v_{k+1} + \ldots + a_n v_n) = 0 \implies \sum_{i=k+1}^n a_i v_i \in Ker(f) \\ &\Rightarrow \exists a_1, \ldots, a_k \in \mathbb{K} | \sum_{i=k+1}^n a_i v_i = a_1 v_1 + \ldots + a_k v_k \\ &\Rightarrow a_1 v_1 + \ldots + a_k v_k - a_{k+1} v_{k+1} - \ldots - a_n v_n = 0 \end{aligned}$$

Ma $v_1, ..., v_n$ sono linearmente indipendenti, quindi $a_i = 0 \ \forall i$.

Per cui $\{f(v_{k+1}), \dots, f(v_n)\}$ è una base di Im(f), cioè dim Im(f) = n - k, tesi.

COROLLARIO 2.6.18: Sia $f: V \to W$ lineare.

Se dim $V = \dim W$, allora f è iniettiva $\Leftrightarrow f$ è surgettiva.

Dimostrazione:

f è iniettiva $\Leftrightarrow Ker(f) = \{0\} \Leftrightarrow \dim V = \dim Im(f) \Leftrightarrow \dim W = \dim Im(f) \Leftrightarrow Im(f) = W$ (poiché $Im(f) \subseteq W$) $\Leftrightarrow f$ è surgettiva.

COROLLARIO 2.6.18: $V \cong W \iff \dim V = \dim W$.

Dimostrazione:

- \Leftarrow) Se dim $V = \dim W$, allora $V \cong \mathbb{K}^n \cong W$.
- \Rightarrow) Se $\exists f: V \to W$ isomorfismo, per la formula delle dimensioni dim $V = 0 + \dim W$.

Osservazione: Siano V_1 , V_2 sottospazi vettoriali di V e sia $f: V_1 \times V_2 \to V$ data da $f(v_1, v_2) = v_1 + v_2$. f è evidentemente lineare e $Im(f) = V_1 + V_2$.

Inoltre Ker(f) è canonicamente isomorfo a $V_1 \cap V_2$, infatti:

$$Ker(f) = \{(v_1, v_2) \in V_1 \times V_2 | v_1 + v_2 = 0\} = \{(v_1, v_2) \in V_1 \times V_2 | v_1 = -v_2\} = \{(v, -v) | v \in V_1 \cap V_2\},$$
 poiché $V_1 \ni v_1 = -v_2 \in V_2,$ dunque:

 $L: V_1 \cap V_2 \to V_1 \times V_2 \mid L(v) = (v, -v)$ induce l'isomorfismo cercato (le proprietà sono immediatamente verificabili).

Per cui, per la formula delle dimensioni, $\dim(V_1 + V_2) = \dim Im(f) = \dim(V_1 \times V_2) - \dim Ker(f) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$,

che conclude quindi la dimostrazione alternativa della formula di Grassmann.

Osservazione: Nell'insieme quoziente $\{\mathbb{K}-spazi\ vettoriali\ finitamente\ generati\}/_{\cong}$ esistono tante classi di equivalenza quante \mathbb{N} e in ognuna un rappresentante è \mathbb{K}^n . La dimensione è un sistema completo di invarianza per la relazione di equivalenza \cong , perciò se dim $V \neq \dim W$, allora sicuramente V e W non sono isomorfi.

DEFINIZIONE 2.6.8: Due \mathbb{K} -spazi vettoriali V, W si dicono **canonicamente isomorfi** se $\exists f: V \to W$ isomorfismo che non dipende dalla scelta di una base.

PROPOSIZIONE 2.6.19: Sia $V = U \oplus W$ e $V = U \oplus W'$. $\forall w \in W, \exists ! u \in U, w' \in W' | w = u + w'$. Allora è ben definita l'applicazione $\varphi: W \to W' | \varphi(w) = w'$. φ è un isomorfismo canonico.

Dimostrazione:

- φ è lineare, poiché dati $w_1 = u_1 + w_1'$ e $w_2 = u_2 + w_2'$, allora: $\varphi(w_1 + w_2) = \varphi((u_1 + u_2) + (w_1' + w_2')) = w_1' + w_2' = \varphi(w_1) + \varphi(w_2)$; $\varphi(\lambda w) = \varphi(\lambda u + \lambda w') = \lambda w' = \lambda \varphi(w)$.
- φ è iniettiva, poiché se $w \in Ker(\varphi), \varphi(w) = 0 \Rightarrow w = \underbrace{u}_{\in U} + \underbrace{0}_{=\varphi(w)} \Rightarrow w \in U \cap W = \{0\}.$
- Poiché dim $W' = \dim V \dim U = \dim W$ e φ è iniettiva, allora φ è surgettiva. Infine evidentemente φ non dipende dalla scelta di una base, dunque ho la tesi.

Osservazione: Se π_W , è la proiezione indotta da $V = U \oplus W'$ e $i_W : W \to V$ è l'inclusione (cioè $i_W(w) = w \ \forall w \in W$), allora $\varphi = \pi_W$, $\circ i_W$.

2.7 RANGO

PROPOSIZIONE 2.7.1: Siano $f: V \to W$, $g: W \to Z$ lineari. Allora:

- 1) $\dim Im(g \circ f) \leq \min(\dim Im(f), \dim Im(g));$
- 2) Se f è un isomorfismo, dim $Im(g \circ f) = \dim Im(g)$;
- 3) Se g è un isomorfismo, dim $Im(g \circ f) = \dim Im(f)$.

Dimostrazione:

- 1) $Im(g \circ f) = Im(g|_{Im(f)})$ e $g|_{Im(f)}$ è lineare, poiché restrizione di g lineare. Quindi $\dim Im(g \circ f) = \dim Im(f) \dim Ker(g|_{Im(f)}) \le \dim Im(f)$. Inoltre $Im(g \circ f) \subseteq Im(g)$, quindi $\dim Im(g \circ f) \le \dim Im(g)$, tesi.
- 2) Se f è un isomorfismo, allora f(V) = W, perciò $Im(g \circ f) = Im(g|_{Im(f)}) = Im(g)$, tesi.
- 3) Se g è un isomorfismo, allora $Ker(g) = \{0\}$, dunque $\dim Im(g \circ f) = \dim Im(f) 0$, tesi.

DEFINIZIONE 2.7.1: Sia $f: V \to W$ lineare. Definiamo **rango** di f $rk(f) = \dim Im(f)$. In particolare, se $A \in \mathcal{M}(p, n, \mathbb{K})$ e dunque $A: \mathbb{K}^n \to \mathbb{K}^p | X \to AX$, allora $rk(A) = \dim Im(A) = \dim \mathcal{C}(A)$.

DEFINIZIONE 2.7.2: Sia $A \in \mathcal{M}(p, n, \mathbb{K})$. Definiamo spazio delle righe $\mathcal{R}(A) = Span(A_1, ..., A_p)$ Definiamo inoltre rango per righe il numero dim $\mathcal{R}(A)$.

PROPOSIZIONE 2.7.2: Sia S una ridotta a scalini di A. Allora:

- 1) $\mathcal{R}(A) = \mathcal{R}(S)$;
- 2) $\dim \mathcal{C}(A) = \dim \mathcal{C}(S)$, $\operatorname{cioè} rk(A) = rk(S)$.

Dimostrazione:

- 1) Facendo operazioni elementari di riga, non altero lo spazio delle righe, dunque $\mathcal{R}(A) = \mathcal{R}(S)$.
- 2) I sistemi AX = 0 e SX = 0 sono equivalenti, perciò Ker(A) = Ker(S). Per la formula delle dimensioni: $n = \dim Ker(A) + rk(A)$ e $n = \dim Ker(S) + rk(S)$, dunque rk(A) = rk(S).

PROPOSIZIONE 2.7.3: Sia S una matrice a scalini con r pivots nelle colonne S^{j_1}, \dots, S^{j_r} . Allora:

- 1) $\{S_1, ..., S_r\}$ è una base di $\mathcal{R}(S)$, dunque dim $\mathcal{R}(S) = r$;
- 2) $\{S^{j_1}, ..., S^{j_r}\}$ è una base di $\mathcal{C}(S)$, dunque rk(S) = r.

Dimostrazione:

- 1) Poiché le altre righe sono nulle, sicuramente $S_1, ..., S_r$ generano $\mathcal{R}(S)$.
 - $S_1, ..., S_r$ sono linearmente indipendenti, poiché se:

$$a_1S_1 + \ldots + a_rS_r = 0$$

allora $a_1 = 0$ in quanto S_1 è l'unica riga ad avere un elemento $\neq 0$ nella colonna S^{j_1} , $a_2 = 0$, in quanto $a_1 = 0$ e quindi S_2 è l'unica riga ad avere un elemento $\neq 0$ nella colonna S^{j_2} , e così via.

2) $S^{j_1}, ..., S^{j_r}$ sono linearmente indipendenti, la dimostrazione è analoga alla precedente nel caso delle righe.

Mostriamo che $S^{j_1}, ..., S^{j_r}$ generano C(S), cioè che $S^i \in Span(S^{j_1}, ..., S^{j_r}) \ \forall i \neq j_1, ..., j_r$, cioè che $\exists a_1, ..., a_r \in \mathbb{K} | S^i = a_1 S^{j_1} + ... a_r S^{j_r}$, cioè che il sistema

$$(S^{j_1} \mid \dots \mid S^{j_r}) \begin{pmatrix} a_1 \\ \vdots \\ a_r \end{pmatrix} = (S^i)$$

ha soluzione.

Ma la matrice è a scalini, perciò ha r pivots.

Se aggiungo la colonna dei termini noti non posso dunque aggiungere pivots.

Dunque #pivots(S) = #pivots(S'), quindi il sistema è risolubile, tesi.

Osservazione: Se in qualche modo riesco a calcolare rk(A), allora:

- so calcolare dim $Sol(AX = 0) = \dim Sol_0$, poiché dim $Sol_0 = \dim Ker(A) = n rk(A)$;
- se voglio calcolare dim $Span(v_1, ..., v_k)$, pongo $A = (v_1 | ... | v_k)$ e dunque dim $Span(v_1, ..., v_k) = \dim C(A) = \dim Im(A) = rk(A)$.

Osservazione: Un modo per calcolare rk(A) è via l'algoritmo di Gauss; infatti abbiamo visto che rk(A) = #pivots(S), dove S è una ridotta a scalini di A. Per formalizzare meglio questo procedimento, ci serviremo del seguente risultato:

PROPOSIZIONE 2.7.4: Sia $A \in \mathcal{M}(p, q)$. Allora:

- 1) il numero di pivots di una sua ridotta a scalini non dipende dalla riduzione a scalini;
- 2) $\dim \mathcal{R}(A) = \dim \mathcal{C}(A)$;

Dimostrazione:

- 1) Se S è una ridotta a scalini di A, con r pivots, allora $r = \dim \mathcal{R}(S) = \dim \mathcal{R}(A)$. Quindi r dipende solamente da A.
- 2) $\dim \mathcal{R}(A) = \dim \mathcal{R}(S) = r = \dim \mathcal{C}(S) = \dim \mathcal{C}(A) = rk(A)$.

COROLLARIO 2.7.5: $\forall A \in \mathcal{M}(p,q), rk(^tA) = rk(A)$.

Dimostrazione:

$$rk(^tA) = \dim \mathcal{C}(^tA) = \dim \mathcal{R}(A) = rk(A).$$

TEOREMA DI ROUCHÉ – CAPELLI: AX = B è risolubile $\Leftrightarrow rk(A) = rk(A')$,

dove A' = (A : B).

Dimostrazione:

Se S è una ridotta a scalini di A, sapevamo che AX = B è risolubile $\Leftrightarrow rk(S) = rk(S')$, ma rk(S) = rk(A), dunque segue la tesi.

DEFINIZIONE 2.7.3: Una matrice $A \in \mathcal{M}(n, \mathbb{K})$ si dice **invertibile** se $\exists B \in \mathcal{M}(n, \mathbb{K}) | A \cdot B = B \cdot A = I$.

DEFINIZIONE 2.7.4: Una matrice $A \in \mathcal{M}(n, \mathbb{K})$ si dice **singolare** se rk(A) < n.

PROPOSIZIONE 2.7.6: Sia $A \in \mathcal{M}(n, \mathbb{K})$. Allora sono fatti equivalenti:

- 1) *A* è invertibile;
- 2) $A: \mathbb{K}^n \to \mathbb{K}^n$ è un isomorfismo;

3) rk(A) = n.

Dimostrazione:

- 1) \Leftrightarrow 2): ovvia.
- 2) \Rightarrow 3): ovvia.
- 3) \Rightarrow 2): So che A è lineare e che A è surgettiva, in quanto $rk(A) = \dim Im(A) = n$, perciò A è iniettiva, dunque ho la tesi.

Osservazione: $A \in \mathcal{M}(n)$ è singolare \Leftrightarrow non è invertibile.

DEFINIZIONE 2.7.5: Definiamo matrice elementare di $\mathcal{M}(n, \mathbb{K})$ ogni matrice ottenuta da I_n eseguendo una sola operazione elementare per riga:

 1^o tipo: Denotiamo con E_{ij} la matrice ottenuta da I_n scambiando l'i-esima riga con la j-esima riga;

 2^o tipo: Denotiamo con $E_i(\lambda)$ la matrice ottenuta da I_n moltiplicando l'*i*-esima riga per la costante $\lambda \neq 0$;

 3^o tipo: $E_{ij}(\lambda)$ è la matrice ottenuta da I_n sommando alla riga i-esima λ volte la riga j-esima.

Osservazione: Se B è ottenuta da A con un'operazione elementare per riga, allora B = EA, dove E è la matrice elementare corrispondente all'operazione effettuata.

Esempio:
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \xrightarrow{A_2 + 3A_1} B = \begin{pmatrix} a & b \\ c + 3a & d + 3b \end{pmatrix};$$

$$E \cdot A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c + 3a & d + 3b \end{pmatrix}.$$

Osservazione: Le matrici elementari sono tutte invertibili:

- 1) $E_{ij} \cdot E_{ij} = I$, poiché scambio le righe i e j e poi le riscambio; perciò $\left(E_{ij}\right)^{-1} = E_{ij}$.
- 2) $E_i(\lambda^{-1}) \cdot E_i(\lambda) = I$, poiché moltiplico la riga i-esima prima per λ^{-1} e poi per λ ; perciò $(E_i(\lambda))^{-1} = E_i(\lambda^{-1})$.
- 3) $E_{ij}(\lambda) \cdot E_{ij}(-\lambda) = I$, dunque $\left(E_{ij}(\lambda)\right)^{-1} = E_{ij}(-\lambda)$.

Quindi se prendo una matrice $A \in \mathcal{M}(p, q, \mathbb{K})$ e gli applico n operazioni di riga, ottengo la ridotta a scalini S:

$$A \rightarrow M_1 A \rightarrow M_2 M_1 A \rightarrow \dots \rightarrow M_n \dots M_1 A = S$$

Se A è invertibile, allora è un isomorfismo; gli M_i sono tutti isomorfismi, e la composizione di isomorfismi è un isomorfismo, perciò S è invertibile.

Dunque, detta $M = M_n \dots M_1 \in GL(p)$:

$$\mathbb{K}^n \xrightarrow{A} \mathbb{K}^p \xrightarrow{M} \mathbb{K}^p$$
$$\mathbb{K}^n \xrightarrow{S=M \cdot A} \mathbb{K}^p$$

Sappiamo che $S^j = M \cdot A^j$, ma M è un isomorfismo, quindi trasforma basi in basi. Inoltre $\{S^{j_1}, ..., S^{j_r}\}$ è una base di Im(S), dunque $\{A^{j_1}, ..., A^{j_r}\}$ è una base di Im(A).

ALGORITMO PER L'ESTRAZIONE DI UNA BASE DA UN GRUPPO DI GENERATORI: Dati $v_1, ..., v_k \in \mathbb{K}^n$, sia $A = (v_1 \mid ... \mid v_k)$. Detta S una ridotta a scalini di A, se $S^{j_1}, ..., S^{j_r}$ sono le colonne contenenti i pivots di S, allora $\{v_{j_1}, ..., v_{j_r}\}$ è una base $Span(v_1, ..., v_k)$.

Osservazione: Per estendere $v_1, \dots, v_m \in \mathbb{K}^n$ linearmente indipendenti a base di \mathbb{K}^n costruiamo $A = (v_1 \mid \dots \mid v_m \mid e_1 \mid \dots \mid e_n)$. Poiché i vettori in colonna generano \mathbb{K}^n , applicando l'algoritmo precedente estendo v_1, \dots, v_m a base di \mathbb{K}^n .

Osservazione: Sia $A \in \mathcal{M}(p, n, \mathbb{K})$. So che $\exists M \in GL(p) | MA = S$ a scalini.

Per trovare una tale M riduco $(A \mid I_p)$ a scalini fino a ottenere $(S \mid B)$.

Sicuramente $\exists M \in GL(p) | M(A \mid I_p) = (S \mid B)$; allora:

$$\{MA = S \mid M = B\}$$

dunque la matrice cercata è B.

CALCOLO DELL'INVERSA: Sia $A \in \mathcal{M}(n, \mathbb{K})$. Riduco per righe $(A \mid I_n)$ fino a $(S \mid *)$, con S a scalini. Poiché rk(A) = rk(S), A è invertibile $\Leftrightarrow rk(S) = n$.

Se rk(S) < n, l'algoritmo si ferma, poiché A non è invertibile.

Se rk(S) = n, proseguo con la riduzione fino a ottenere $(I \mid B)$.

Per l'osservazione precedente, BA = I, cioè B è un'inversa sinistra di A. Ma essendo A invertibile, allora B è anche inversa destra: $B = A^{-1}$.

Notazione: Sia $A \in \mathcal{M}(p,n)$. Denotiamo con $\left(A_{i_1},\ldots,A_{i_m}|A^{j_1},\ldots,A^{j_q}\right)$ la sottomatrice di A ottenuta in modo che contenga gli elementi nelle intersezioni fra le righe e le colonne considerate.

DEFINZIONE 2.7.6: Una sottomatrice quadrata si dice **minore**.

PROPOSIZIONE 2.7.7: Sia $A \in \mathcal{M}(p, n)$. Sia B un minore invertibile di A.

Allora le righe (o le colonne) che concorrono a formare B sono linearmente indipendenti. Dimostrazione:

Sia
$$B = (A_{i_1}, ..., A_{i_q} | A^{j_1}, ..., A^{j_q}).$$

Se $\alpha_1 A_{i_1} + \ldots + \alpha_q A_{i_q} = 0$, a maggior ragione $\alpha_1 B_1 + \ldots + \alpha_q B_q = 0$.

Ma $B_1, ..., B_q$ sono linearmente indipendenti perché rk(B) = q, quindi $\alpha_1 = ... = \alpha_q = 0$.

TEOREMA 2.7.8: Il rango di una matrice coincide con il massimo degli ordini dei suoi minori invertibili.

Dimostrazione:

Sia $A \in \mathcal{M}(p, n)$; sia r = rk(A); sia ρ il massimo degli ordini dei minori di A invertibili.

- $\rho \le r$: Sia B un minore $\rho \times \rho$ di A invertibile. Allora, per la proposizione precedente, esistono in A ρ righe indipendenti, quindi $r \ge \rho$.
- $\rho \ge r$: Siano $A_{i_1}, ..., A_{i_r}$ r righe indipendenti in A. Allora ho la sottomatrice $B = (A_{i_1}, ..., A_{i_r} \mid A^1, ..., A^n)$ di rango r.

Allora il rango per colonne è r, dunque esistono in B r colonne indipendenti B^{j_1}, \ldots, B^{j_r} . Allora la sottomatrice M di B, $M = (B_1, \ldots, B_r \mid B^{j_1}, \ldots, B^{j_r})$ ha rango r, cioè è un minore $r \times r$ invertibile di A.

Dunque $\rho \ge r$, da cui la tesi.

DEFINIZIONE 2.7.7: Sia $B = (A_{i_1}, \dots, A_{i_q} | A^{j_1}, \dots, A^{j_q})$ un minore di A. Definiamo minore orlato di B un qualunque minore $B' = (A_{i_1}, \dots, A_{i_q}, A_h | A^{j_1}, \dots, A^{j_q}, A^k)$, con $h \neq i_1, \dots, i_q$ e $k \neq j_1, \dots, j_q$.

TEOREMA DEGLI ORLATI: Sia $A \in \mathcal{M}(m, n, \mathbb{K})$. Allora $rk(A) = k \iff \exists$ un minore $k \times k$ invertibile i cui orlati sono tutti non invertibili.

Dimostrazione:

- \Rightarrow) Sappiamo che se rk(A) = k allora esiste un minore $k \times k$ invertibile e tutti i minori $h \times h$, con h > k, sono non invertibili. Gli orlati appartengono a questo tipo di minori, dunque segue la tesi.
- \Leftarrow) Se esiste un minore $Q k \times k$ invertibile, so che $rk(A) \ge k$.

Dunque devo mostrare che se tutti gli orlati di Q sono non invertibili, effettivamente non può essere rk(A) > k.

Ovvero se rk(A) > k, trovo un orlato di Q invertibile.

Sia Q dato dalle righe R_{i_1}, \dots, R_{i_k} e dalle colonne C_{j_1}, \dots, C_{j_k} .

L'invertibilità di Q implica che la matrice $(C_{j_1} | ... | C_{j_k})$ ha rango k.

Dunque $C_{j_1}, ..., C_{j_k}$ sono elementi di \mathbb{K}^n linearmente indipendenti.

Se rk(A) > k, allora dim $Span(C_1, ..., C_m) > k$, per cui $\exists C_{j_{k+1}} | C_{j_1}, ..., C_{j_k}, C_{j_{k+1}}$ sono linearmente indipendenti.

Quindi $rk(C_{j_1} | ... | C_{j_k} | C_{j_{k+1}}) = k + 1.$

Inoltre le righe $i_1, ..., i_k$ di questa matrice sono linearmente indipendenti, perché identificano una sottomatrice che contiene Q.

Dunque \exists riga $R_{i_{k+1}}$ | le righe R_{i_1} , ..., R_{i_k} , $R_{i_{k+1}}$ di questa matrice $(k+1) \times (k+1)$ sono linearmente indipendenti.

Questo è un orlato invertibile di Q, dunque ho la tesi.

2.8 SD-EQUIVALENZA

DEFINIZIONE 2.8.1: Sia $f: V \to W$ lineare e siano $S = \{v_1, \dots, v_n\}$ una base di V e $T = \{w_1, \dots, w_m\}$ una base di W. Definiamo **matrice associata a** f **rispetto a** S e T:

$$\mathfrak{M}_{\mathcal{S},\mathcal{T}}(f) = ([f(v_1)]_{\mathcal{T}} \mid \dots \mid [f(v_n)]_{\mathcal{T}})$$

dove $[f(v_i)]_{\mathcal{T}} = \begin{pmatrix} \alpha_{i,1} \\ \vdots \\ \alpha_{i,m} \end{pmatrix}$ sono le coordinate di $f(v_i)$ rispetto a \mathcal{T} , cioè tali che $f(v_i) = \alpha_{i,1}w_1 + \ldots + \alpha_{i,m}w_m$.

Osservazione: Sia $v \in V$; allora $v = x_1v_1 + ... + x_nv_n$.

 $f(v) = x_1 f(v_1) + \dots + x_n f(v_n) = x_1 (\alpha_{1,1} w_1 + \dots + \alpha_{1,m} w_m) + \dots + x_n (\alpha_{n,1} w_1 + \dots + \alpha_{n,m} w_m) = (\alpha_{1,1} x_1 + \dots + \alpha_{n,1} x_n) w_1 + \dots + (\alpha_{1,m} x_1 + \dots + \alpha_{n,m} x_n) w_m, \text{ cioè:}$

$$[f(v)]_{\mathcal{T}} = \begin{pmatrix} \alpha_{1,1}x_1 + \dots + \alpha_{n,1}x_n \\ \vdots \\ \alpha_{1,m}x_1 + \dots + \alpha_{n,m}x_n \end{pmatrix} = \mathfrak{M}_{\mathcal{S},\mathcal{T}}(f) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \mathfrak{M}_{\mathcal{S},\mathcal{T}}(f) \cdot [v]_{\mathcal{S}}$$

TEOREMA 2.8.1: Siano V, W spazi vettoriali tali che dim V = n, dim W = m.

Sia $\mathcal{S} = \{v_1, \dots, v_n\}$ base di V e $\mathcal{T} = \{w_1, \dots, w_m\}$ base di W.

Allora l'applicazione:

$$\mathfrak{M}_{\mathcal{S},\mathcal{T}}$$
: $Hom(V,W) \to \mathcal{M}(m,n,\mathbb{K}) | f \to \mathfrak{M}_{\mathcal{S},\mathcal{T}}(f)$

è un isomorfismo.

Dimostrazione:

- $\mathfrak{M}_{\mathcal{S},\mathcal{T}}$ è evidentemente lineare;
- È iniettiva, poiché se $f \in Ker(\mathfrak{M}_{\mathcal{S},\mathcal{T}})$, $[\mathfrak{M}_{\mathcal{S},\mathcal{T}}(f)]^1 = \ldots = [\mathfrak{M}_{\mathcal{S},\mathcal{T}}(f)]^n = 0$, cioè $f(v_1) = \ldots = f(v_n) = 0$, e per il teorema che dice che \exists ! applicazione lineare che manda una base in vettori preassegnati, allora f è l'applicazione nulla.
- $\mathfrak{M}_{\mathcal{S},\mathcal{T}}$ è surgettiva, poiché $\forall A \in \mathcal{M}(m,n) \exists ! f: V \to W$ lineare tale che $[f(v_1)]_{\mathcal{T}} = A^1, \dots, [f(v_n)]_{\mathcal{T}} = A^n$, dunque $\mathfrak{M}_{\mathcal{S},\mathcal{T}}(f) = A$.

COROLLARIO 2.8.2: Siano V, W spazi vettoriali tali che dim V = n, dim W = m. Allora dim $Hom(V, W) = m \cdot n$.

Dimostrazione:

Segue dal fatto che \forall basi di V e W, l'applicazione $\mathfrak{M}_{\mathcal{S},\mathcal{T}}$: $Hom(V,W) \to \mathcal{M}(m,n,\mathbb{K})$ è un isomorfismo e dim $\mathcal{M}(m,n,\mathbb{K}) = m \cdot n$.

Notazione: Se V è uno spazio vettoriale e \mathcal{B} è base di V, denotiamo con $V_{\mathcal{B}}$ lo spazio V rispetto alla base \mathcal{B} .

PROPOSIZIONE 2.8.3: Siano $f: U_S \to V_T$ e $g: V_T \to W_R$ lineari e siano $A = \mathfrak{M}_{S,T}(f)$ e $B = \mathfrak{M}_{T,R}(g)$. Allora $\mathfrak{M}_{S,R}(g \circ f) = B \cdot A$.

Dimostrazione:

$$\forall u \in U, \ [(g \circ f)(u)]_{\mathcal{R}} = \big[g\big(f(u)\big)\big]_{\mathcal{R}} = B \cdot [f(u)]_{\mathcal{T}} = B \cdot A \cdot [u]_{\mathcal{S}}, \text{ da cui la tesi.}$$

Osservazione: Se \mathcal{S} è base di V, \mathcal{T} è base di W e $A=\mathfrak{M}_{\mathcal{S},\mathcal{T}}(f)$, allora il diagramma

$$V \xrightarrow{f} W$$

$$[]_{\mathcal{S}} \downarrow \qquad \downarrow []_{\mathcal{T}}$$

$$\mathbb{K}^n \xrightarrow{A} \mathbb{K}^m$$

è commutativo, cioè per "andare" da uno spazio all'altro si può seguire un qualsiasi percorso (dunque ad esempio $A \circ [\]_{\mathcal{S}} = [\]_{\mathcal{T}} \circ f$).

Inoltre il diagramma:

$$V \xrightarrow{f} W \xrightarrow{g} Z$$

$$[]_{\mathcal{S}} \downarrow \qquad \downarrow []_{\mathcal{T}} \downarrow []_{\mathcal{R}}$$

$$\mathbb{K}^{n} \xrightarrow{A} \mathbb{K}^{m} \xrightarrow{B} \mathbb{K}^{p}$$

è commutativo.

PROPOSIZIONE 2.8.4: Sia $f: V \to W$ lineare, $A = \mathfrak{M}_{\mathcal{S},\mathcal{T}}(f)$. Allora rk(f) = rk(A).

Dimostrazione:

Sia
$$S = \{v_1, \dots, v_n\}$$
; allora $Im(f) = Span(f(v_1), \dots, f(v_n))$.

Inoltre $[f(v_i)]_T = A^i \ \forall i$.

Se $\varphi = [\]_{\mathcal{T}}: W \to \mathbb{K}^m$ è l'isomorfismo indotto dalla base \mathcal{T} , allora $\varphi(Im(f)) = \mathcal{C}(A) = Im(A)$. Per cui $rk(f) = \dim Im(f) = \dim Im(A) = rk(A)$.

Osservazione: Per la proposizione precedente, se $\{A^{j_1}, \dots, A^{j_r}\}$ è una base di Im(A), allora $\{f(v_{j_1}), \dots, f(v_{j_r})\}$ è una base di Im(f).

COROLLARIO 2.8.5: Sia $f: V \to W$ lineare, dim $V = \dim W = n$.

Allora f è invertibile $\Leftrightarrow A = \mathfrak{M}_{\mathcal{S},T}(f)$ è invertibile.

Dimostrazione:

f è invertibile $\Leftrightarrow rk(f) = n \Leftrightarrow rk(A) = n \Leftrightarrow A$ è invertibile.

DEFINIZIONE 2.8.2: Siano \mathcal{S} , \mathcal{T} basi di V. Definiamo matrice del cambiamento di base da \mathcal{S} a \mathcal{T} la matrice $\mathfrak{M}_{\mathcal{S},\mathcal{T}}(id)$.

Osservazioni: 1) Se $N = \mathfrak{M}_{\mathcal{S},\mathcal{T}}(id)$ e $v \in V$, allora $[v]_{\mathcal{T}} = N \cdot [v]_{\mathcal{S}}$. Dunque N trasforma le coordinate di v rispetto a \mathcal{S} nelle coordinate di v rispetto a \mathcal{T} .

- 2) Evidentemente $\mathfrak{M}_{\mathcal{S},\mathcal{T}}(id) \cdot \mathfrak{M}_{\mathcal{T},\mathcal{S}}(id) = I$, dunque $\mathfrak{M}_{\mathcal{S},\mathcal{T}}(id)$ è invertibile e $\left(\mathfrak{M}_{\mathcal{S},\mathcal{T}}(id)\right)^{-1} = \mathfrak{M}_{\mathcal{T},\mathcal{S}}(id)$.
- 3) Se $\mathcal{B} = \{v_1, \dots, v_n\}$ è base di V, allora $[\]_{\mathcal{B}}(v_i) = e_i$, cioè $[\]_{\mathcal{B}}$ trasforma \mathcal{B} nella base canonica di \mathbb{K}^n .
- 4) Se $g: V \to \mathbb{K}^n$ è un isomorfismo, allora $\exists !$ base \mathcal{B} di V tale che $g = [\]_{\mathcal{B}}$. Infatti, per l'osservazione precedente, $\mathcal{B} = \{g^{-1}(e_1), \dots, g^{-1}(e_n)\}$, dunque è unica.

PROPOSIZIONE 2.8.6: Sia V uno spazio vettoriale, dim V = n, \mathcal{B} base di V, $A \in GL(n)$. Allora:

- 1) $\exists ! \text{ base } S \text{ di } V \mid A = \mathfrak{M}_{S,B}(id);$
- 2) $\exists ! \text{ base } \mathcal{T} \text{ di } V \mid A = \mathfrak{M}_{\mathcal{B},\mathcal{T}}(id).$

Dimostrazione:

1) Le ipotesi creano una situazione del genere:

$$V \stackrel{id}{\to} V$$

$$\downarrow []_{\mathcal{B}}$$

$$\mathbb{K}^n \xrightarrow{A} \mathbb{K}^n$$

A è un isomorfismo, dunque anche A^{-1} è un isomorfismo.

Allora $\exists !$ isomorfismo $g: V \to \mathbb{K}^n |$ il diagramma:

$$V \xrightarrow{id} V$$

$$g \downarrow \qquad \downarrow []_{\mathcal{B}}$$

$$\mathbb{K}^n \xrightarrow{A} \mathbb{K}^n$$

commuti. In particolare $g = A^{-1} \circ [\]_{\mathcal{B}}$.

Per l'osservazione 4) $\exists !$ base S di V tale che $g = []_S$ (che dunque sarà $S = \{g^{-1}(e_1), ..., g^{-1}(e_n)\} = \{[]_B^{-1}(A(e_1)), ..., []_B^{-1}(A(e_n))\} = \{[A^1]_B^{-1}, ..., [A^n]_B^{-1}\}.$

2) $\exists ! g = A \circ []_{\mathcal{B}}$ isomorfismo che rende commutativo il diagramma:

$$\begin{array}{ccc} V & \stackrel{id}{\rightarrow} & V \\ [\,\,]_{\mathcal{B}} \downarrow & & \downarrow & g \\ \mathbb{K}^n \underset{A}{\rightarrow} & \mathbb{K}^n \end{array}$$

Per l'osservazione 4) $\exists !$ base \mathcal{T} di V tale che $g = []_{\mathcal{T}}$.

Osservazione: Sia $f: V \to W$ lineare, S, S' basi di V, T, T' basi di W. Siano $A = \mathfrak{M}_{S,T}(f)$ e $A' = \mathfrak{M}_{S,T}(f)$. Siano inoltre $N = \mathfrak{M}_{S,S}(id)$ e $M = \mathfrak{M}_{T,T}(id)$. La situazione dei dati è dunque:

$$\begin{array}{ccc} V_{\mathcal{S}} \stackrel{A}{\rightarrow} W_{\mathcal{T}} \\ N \uparrow & \downarrow M \\ V_{\mathcal{S}}, \underset{A'}{\rightarrow} W_{\mathcal{T}}, \end{array}$$

Il diagramma è commutativo e dunque A' = MAN, ossia: $\mathfrak{M}_{S',T'}(f) = \mathfrak{M}_{T,T'}(id) \cdot \mathfrak{M}_{S,T}(f) \cdot \mathfrak{M}_{S',S}(id)$.

DEFINIZIONE 2.8.3: $f, g \in Hom(V, W)$. $f \in g$ si dicono **SD-equivalenti** $(f \equiv_{SD} g) \Leftrightarrow \exists h \in GL(W), \exists k \in GL(V) | g = h \circ f \circ k$.

Osservazioni: 1) \equiv_{SD} è una relazione di equivalenza (la verifica è lasciata al lettore);

2) Se $f \equiv_{SD} g$, allora rk(f) = rk(g), poiché componendo isomorfismi il rango non cambia (il rango è dunque un invariante per \equiv_{SD});

DEFINIZIONE 2.8.4: $A, B \in \mathcal{M}(p, n, \mathbb{K})$. $A \equiv_{SD} B \iff \exists M \in GL(p), \exists N \in GL(n) | B = MAN$.

Osservazione: Dalle definizioni segue immediatamente che, se $A = \mathfrak{M}_{\mathcal{B},\mathcal{S}}(f)$, $B = \mathfrak{M}_{\mathcal{B},\mathcal{S}}(g)$, allora $f \equiv_{SD} g \iff A \equiv_{SD} B$.

Osservazione: Se B = MAN, con M, N invertibili, posso vedere A come un'applicazione lineare: $A = \mathfrak{M}_{\mathcal{C},\mathcal{C}}(A)$, dove \mathcal{C} è la base canonica.

Inoltre, se interpreto $N = \mathfrak{M}_{S,C}(id_{\mathbb{K}^n}), M = \mathfrak{M}_{C,T}(id_{\mathbb{K}^p})$:

$$\mathbb{K}^n_{\mathcal{S}} \xrightarrow{N} \mathbb{K}^n_{\mathcal{C}} \xrightarrow{A} \mathbb{K}^p_{\mathcal{C}} \xrightarrow{M} \mathbb{K}^p_{\mathcal{T}}$$

Allora $B = \mathfrak{M}_{\mathcal{S},T}(A)$.

Per cui $A \equiv_{SD} B \Leftrightarrow$ rappresentano la stessa applicazione lineare in basi diverse.

Estendiamo questa osservazione al caso delle applicazioni lineari con la seguente proposizione:

PROPOSIZIONE 2.8.7: $f, g \in Hom(V, W)$. Allora:

 $f \equiv_{SD} g \iff \exists \mathcal{B}, \mathcal{B}'$ basi di $V, \exists \mathcal{S}, \mathcal{S}'$ base di W tali che $\mathfrak{M}_{\mathcal{B}',\mathcal{S}'}(f) = \mathfrak{M}_{\mathcal{B},\mathcal{S}}(g)$.

Dimostrazione:

 \Rightarrow) Fisso \mathcal{B} base di V e \mathcal{S} base di W.

Per ipotesi $\exists h \in GL(W), \exists k \in GL(V) | g = h \circ f \circ k$:

Allora $\mathfrak{M}_{\mathcal{B},\mathcal{S}}(g) = MAN$, con $A = \mathfrak{M}_{\mathcal{B},\mathcal{S}}(f)$.

Interpreto *N* e *M* come matrici del cambiamento di base:

 $\exists ! \ \mathcal{B}' \text{ base di } V | \ \mathfrak{M}_{\mathcal{B}',\mathcal{B}}(id_V) = N,$

 $\exists ! \mathcal{S}'$ base di $W \mid \mathfrak{M}_{\mathcal{S},\mathcal{S}'}(id_W) = M$.

Allora $\mathfrak{M}_{\mathcal{B}',\mathcal{S}'}(f) = \mathfrak{M}_{\mathcal{S},\mathcal{S}'}(id_W) \cdot \mathfrak{M}_{\mathcal{B},\mathcal{S}}(f) \cdot \mathfrak{M}_{\mathcal{B}',\mathcal{B}}(id_V) = MAN = \mathfrak{M}_{\mathcal{B},\mathcal{S}}(g).$

←) Analogo.

PROPOSIZIONE 2.8.8: $f: V \to W$ lineare, dim V = n, dim W = p, rk(f) = r. Allora $\exists \mathcal{B}$ base di V, $\exists \mathcal{S}$ base di W:

$$\mathfrak{M}_{\mathcal{B},\mathcal{S}}(f) = \left(\frac{I_r \mid 0}{0 \mid 0}\right) \in \mathcal{M}(p, n, \mathbb{K})$$

Dimostrazione:

 $\dim Ker(f) = n - r.$

Sia $\{v_{r+1}, ..., v_n\}$ una base di Ker(f).

Sia $\mathcal{B} = \{v_1, \dots, v_r, v_{r+1}, \dots, v_n\}$ base di V.

Allora $\{f(v_1), \dots, f(v_r)\}$ è una base di Im(f) (in quanto $f(v_i) = 0 \ \forall r+1 \le i \le n$).

La completo a $S = \{f(v_1), \dots, f(v_r), w_{r+1}, \dots, w_p\}$ base di W.

Allora \mathcal{B} e \mathcal{S} verificano la tesi.

TEOREMA 2.8.9: $f \equiv_{SD} g \Leftrightarrow rk(f) = rk(g)$.

Dimostrazione:

⇒) Già vista.

$$\Leftrightarrow \text{Se } rk(f) = rk(g) = r, \text{ allora per la proposizione precedente } \exists \mathcal{B}, \mathcal{S} \text{ basi} | \mathfrak{M}_{\mathcal{B},\mathcal{S}}(g) = \left(\frac{I_r \mid 0}{0 \mid 0}\right), \\ \exists \mathcal{B}', \mathcal{S}' \text{ basi} | \mathfrak{M}_{\mathcal{B}',\mathcal{S}'}(f) = \left(\frac{I_r \mid 0}{0 \mid 0}\right).$$

Poiché \equiv_{SD} è una relazione di equivalenza, ho la tesi.

Osservazione: Il rango è dunque un invariante completo per \equiv_{SD} , in altre parole l'insieme quoziente $Hom(V,W)/_{\equiv_{SD}}$ ha $r=\min(\dim V,\dim W)+1$ classi di equivalenza, in quanto il rango di una matrice $m\cdot n$ può oscillare fra 0 e $\min(\dim V,\dim W)$.

Esprimiamo le due precedenti proposizioni anche a livello matriciale:

PROPOSIZIONE 2.8.10:
$$A \in \mathcal{M}(p, n, \mathbb{K})$$
. Se $rk(A) = r \Rightarrow A \equiv_{SD} \left(\frac{l_r \mid 0}{0 \mid 0}\right)$.

TEOREMA 2.8.11: $A, B \in \mathcal{M}(p, n, \mathbb{K})$. Allora $A \equiv_{SD} B \iff rk(A) = rk(B)$.

Si ritrova dunque il seguente risultato:

COROLLARIO 2.8.12: $rk(A) = rk(^tA)$.

Dimostrazione:

Denotiamo
$$J_r(p,n) = \left(\frac{I_r \mid 0}{0 \mid 0}\right) \in \mathcal{M}(p,n).$$

Se rk(A) = r, $\exists M$, N invertibili $A = M \cdot J_r(p, n) \cdot N$.

Dunque ${}^tA = {}^tN \cdot {}^tJ_r(p,n) \cdot {}^tM = {}^tN \cdot J_r(n,p) \cdot {}^tM$.

Ma tM e tN sono invertibili, dunque ${}^tA \equiv_{SD} J_r(n,p)$.

Poiché $rk(J_r(n,p)) = r$, segue che $rk({}^tA) = r$.

2.9 SPAZIO DUALE

DEFINIZIONE 2.9.1: Sia V un \mathbb{K} -spazio vettoriale. Si definisce **spazio duale** $V^* = Hom(V, \mathbb{K})$. Gli elementi v_i^* di V^* sono detti **funzionali lineari**.

PROPOSIZIONE 2.9.1: Sia $\mathcal{B} = \{v_1, ..., v_n\}$ base di V. $\forall i$, sia $v_i^* : V \to \mathbb{K}$ il funzionale definito da $v_i^*(v_i) = \delta_{ij}$, dove δ_{ij} è il delta di Kronecker.

Allora $\mathcal{B}^* = \{v_1^*, \dots, v_n^*\}$ è base di V^* , detta base duale di \mathcal{B} .

Dimostrazione:

- I v_i^* sono linearmente indipendenti, infatti se $a_1v_1^*+\ldots+a_nv_n^*=0$, allora $(a_1v_1^*+\ldots+a_nv_n^*)(v_j)=0 \ \forall j$. Poiché $0=(a_1v_1^*+\ldots+a_nv_n^*)(v_j)=(a_jv_j^*)(v_j)=a_j \ \forall j$, concludiamo che $a_1=\ldots=a_n=0$.
- Dimostriamo che generano: sia $f \in V^*$; cerco $a_1, ..., a_n \in \mathbb{K} | f = a_1 v_1^* + ... + a_n v_n^*$. Poiché $\forall j, f(v_j) = (a_1 v_1^* + ... + a_n v_n^*)(v_j) = a_j$, basta scegliere $a_i = f(v_i)$ e ottengo la tesi.

Osservazione: Per la dimostrazione precedente, $[f]_{\mathcal{B}^*} = \begin{pmatrix} f(v_1) \\ \vdots \\ f(v_n) \end{pmatrix}$.

DEFINIZIONE 2.9.2: Si definisce spazio biduale $V^{**} = (V^*)^* = Hom(V^*, \mathbb{K})$.

Osservazione: $\dim V = \dim V^* = \dim V^{**}$.

Notazione: Sia $\mathcal{B}=\{v_1,\dots,v_n\}$ una base di V. Poniamo $\varphi_{\mathcal{B}}:V\to V^*|\ v_i\to\varphi_{\mathcal{B}}(v_i)=v_i^*\ \forall i$. Quindi:

$$V \xrightarrow{\varphi_{\mathcal{B}}} V^* \xrightarrow{\varphi_{\mathcal{B}^*}} V^{**}$$

TEOREMA 2.9.2: L'applicazione $\psi_V: V \to V^{**} | v \to \psi_V(v)$, dove $\psi_V(v): V^* \to \mathbb{K} | g \to \psi_V(v)(g) = g(v)$:

- 1) è un isomorfismo canonico;
- 2) \forall base \mathcal{B} di V, $\varphi_{\mathcal{B}^*} \circ \varphi_{\mathcal{B}} = \psi_V$.

Dimostrazione:

- 1) Dimostriamo innanzitutto che effettivamente $\psi_V(v) \in V^{**}$, cioè che $\psi_V(v)$ è lineare $\forall v$: $\forall v \in V$, $\forall \lambda, \mu \in \mathbb{K}$, $\forall f, g \in V^*$, $\psi_V(v)(\lambda f + \mu g) = (\lambda f + \mu g)(v) = \lambda f(v) + \mu g(v) = \lambda \psi_V(v)(f) + \mu \psi_V(v)(g)$, che implica che $\psi_V(v)$ è lineare perché conserva le combinazioni lineari; dunque $\psi_V \colon V \to V^{**}$ è ben definita. Lasciamo la verifica che ψ_V è lineare, cioè che $\forall v_1, v_2 \in V$, $\psi_V(a_1v_1 + a_2v_2) = a_1\psi_V(v_1) + a_2\psi_V(v_2)$, cioè che $\psi_V(a_1v_1 + a_2v_2)(g) = (a_1\psi_V(v_1) + a_2\psi_V(v_2))(g) \ \forall g \in V^*$. Poiché dim $V^{**} = \dim V$, dimostriamo solo l'iniettività di ψ_V : sia $v \in Ker(\psi_V) \Rightarrow \psi_V(v) = 0 \Rightarrow \psi_V(v)(g) = g(v) = 0 \ \forall g \in V^* \Rightarrow v = 0$, poiché se $v \neq 0$, $\exists g \colon V \to \mathbb{K}$ lineare $\mid g(v) \neq 0$, assurdo.
 - Dunque ψ_V è un isomorfismo ed evidentemente non dipende da nessuna base.
- 2) Devo mostrare che, fissata $\mathcal{B} = \{v_1, \dots, v_n\}$, $(\varphi_{\mathcal{B}^*} \circ \varphi_{\mathcal{B}})(v_i) = \psi_V(v_i) \ \forall i$, poiché se due applicazioni lineari coincidono su una base, evidentemente coincidono su qualunque elemento dello spazio e dunque sono uguali.

Ma poiché $(\varphi_{\mathcal{B}^*} \circ \varphi_{\mathcal{B}})(v_i)$ e $\psi_V(v_i)$ sono due funzionali di V^{**} , per mostrare che sono uguali bisogna far vedere che coincidono su una base di V^* , cioè che

$$(\varphi_{\mathcal{B}^*} \circ \varphi_{\mathcal{B}})(v_i)(v_i^*) = \psi_V(v_i)(v_i^*) \ \forall j.$$

Ora:

$$(\varphi_{\mathcal{B}^*} \circ \varphi_{\mathcal{B}})(v_i)(v_j^*) = (\varphi_{\mathcal{B}^*}(\varphi_{\mathcal{B}}(v_i)))(v_j^*) = (\varphi_{\mathcal{B}^*}(v_i^*))(v_j^*) = (v_i^{**})(v_j^*) = \delta_{ij};$$

$$\psi_V(v_i)(v_i^*) = (v_i^*)(v_i) = \delta_{ij}, \text{ dunque ho la tesi.}$$

DEFINIZIONE 2.9.3: Sia $S \subset V$. Si definisce **annullatore** di S $Ann(S) = \{f \in V^* | f|_S \equiv 0\}$.

PROPOSIZIONE 2.9.3: 1) $\forall S \subset V$, Ann(S) è sottospazio vettoriale di V^*

- 2) $S \subseteq T \Rightarrow Ann(T) \subseteq Ann(S)$
- 3) Se *U* è sottospazio vettoriale di *V* e dim $U = k \Rightarrow \dim Ann(U) = n k$
- 4) $\forall f \in V^*, Ann(f) = \psi_V(Ker(f))$
- 5) $\forall U$ sottospazio vettoriale di V, $Ann(Ann(U)) = \psi_V(U)$.

Dimostrazione:

- 1) È una semplice verifica.
- 2) Se $f \in Ann(T) \Rightarrow f(v) = 0 \ \forall v \in T \supseteq S \Rightarrow f \in Ann(S)$.
- 3) Sia $\{u_1, \dots, u_k\}$ base di U. La completo a $\{u_1, \dots u_k, v_{k+1}, \dots, v_n\}$ base di V. Provo che $\{v_{k+1}^*, \dots, v_n^*\}$ è base di Ann(U):
 - Sicuramente $v_i^* \in Ann(U) \ \forall i \geq k+1$, poiché $v_i^*(u_i) = 0 \ \forall j \leq k$;
 - $v_{k+1}^*, ..., v_n^*$ sono linearmente indipendenti perché elementi della base duale;
 - Mostriamo ora che v_{k+1}^* , ..., v_n^* generano: Sia $f \in Ann(U) \subset V^* \Rightarrow \exists a_1, ..., a_n \in \mathbb{K} | f = a_1u_1^* + ... + a_ku_k^* + a_{k+1}v_{k+1}^* + ... + a_nv_n^*$. Poiché $f \in Ann(U)$, allora $f(u_i) = 0 \ \forall i \leq k$, quindi $a_1 = ... = a_k = 0$. Dunque $f = a_{k+1}v_{k+1}^* + ... + a_nv_n^*$, da cui la tesi.
- 4) $Ann(f) = \{h \in V^{**} | h(f) = 0\} = \{\psi_V(x) \in V^{**} | \psi_V(x)(f) = f(x) = 0\} = \psi_V(\{x \in V | f(x) = 0\}) = \psi_V(Ker(f)).$
- 5) Poiché dim $\psi_V(U) = \dim U = n \dim Ann(U) = n n + \dim Ann(Ann(U)) = \dim Ann(Ann(U))$, dimostro solo che $\psi_V(U) \subseteq Ann(Ann(U))$: $\forall x \in U, \psi_V(x)|_{Ann(U)} = 0$, perché $\forall f \in Ann(U), \psi_V(x)(f) = f(x) = 0$.

Notazione: Al posto di $\psi_V(U)$ scriveremo semplicemente U.

DEFINZIONE 2.9.4: Sia $f: V \to W$ lineare. Definiamo **trasposta** di $f: {}^tf: W^* \to V^* | {}^tf(g) = g \circ f$.

Osservazione: È una buona definizione, poiché se $g: W \to \mathbb{K}$, allora $g \circ f: V \to W \to \mathbb{K}$, cioè $g \circ f \in V^*$.

PROPOSIZIONE 2.9.4: 1) ${}^tf:W^* \to V^*$ è lineare

2) t(t) = f (grazie all'identificazione degli isomorfismi canonici ψ_V e ψ_W), cioè è commutativo il diagramma:

$$\begin{array}{ccc}
V & \xrightarrow{f} & W \\
\psi_V \downarrow & & \downarrow \psi_W \\
V^{**} \xrightarrow[t_{(t_f)}]{} W^{**}
\end{array}$$

- 3) Se $h: W \to Z$ è lineare, allora ${}^t(h \circ f) = {}^tf \circ {}^th$
- 4) $Ker(^tf) = Ann(Im(f))$
- 5) $Im(^tf) = Ann(Ker(f))$
- 6) Se \mathcal{B} è base di V e \mathcal{S} è base di W, $\mathfrak{M}_{\mathcal{S}^*,\mathcal{B}^*}({}^tf) = {}^t (\mathfrak{M}_{\mathcal{B},\mathcal{S}}(f))$.

Dimostrazione:

- 1) $\forall a_1, a_2 \in \mathbb{K}, \forall g_1, g_2 \in W^*$: ${}^t f(a_1g_1 + a_2g_2) = (a_1g_1 + a_2g_2) \circ f = a_1(g_1 \circ f) + a_2(g_2 \circ f) = a_1{}^t f(g_1) + a_2{}^t f(g_2).$
- 2) Devo mostrare che $\psi_W \circ f = {}^t({}^tf) \circ \psi_V$, ossia che $\forall v \in V, (\psi_W \circ f)(v) = ({}^t({}^tf) \circ \psi_V)(v)$, ossia che $\forall g \in W^*, (\psi_W \circ f)(v)(g) = ({}^t({}^tf) \circ \psi_V)(v)(g)$. $(\psi_W \circ f)(v)(g) = \psi_W(f(v))(g) = g(f(v)) = (g \circ f)(v)$; $({}^t({}^tf) \circ \psi_V)(v)(g) = {}^t({}^tf)(\psi_V(v))(g) = (\psi_V(v) \circ {}^tf)(g) = \psi_V(v)({}^tf(g)) = \psi_V(v)(g \circ f) = (g \circ f)(v)$.
- 3) $\forall g \in Z^*, t(h \circ f)(g) = g \circ h \circ f = th(g) \circ f = tf(th(g)) = (tf \circ th)(g).$
- 4) \subseteq) Sia $g \in Ker({}^tf)$, cioè ${}^tf(g) = g \circ f = 0 \Rightarrow \forall f(x) \in Im(f), \ g(f(x)) = 0$, quindi $g \in Ann(Im(f))$;
 - ⊇) Sia $g \in Ann(Im(f))$ ⇒ $\forall x \in V$, g(f(x)) = 0, cioè $({}^tf(g))(x) = 0$ $\forall x \in V$, quindi ${}^tf(g) = 0$, cioè $g \in Ker({}^tf)$.
- 5) Per la 4) so che $Ker(^t(^tf)) = Ann(Im(^tf))$, cioè $Ker(f) = Ann(Im(^tf))$, quindi, applicando l'annullatore, $Ann(Ker(f)) = Ann(Ann(Im(^tf))) = Im(^tf)$.
- 6) $\mathcal{B} = \{v_1, ..., v_n\}, \mathcal{S} = \{w_1, ..., w_p\}. \text{ Sia } A = \mathfrak{M}_{\mathcal{B}, \mathcal{S}}(f), \ N = \mathfrak{M}_{\mathcal{S}^*, \mathcal{B}^*}({}^t f).$ Allora $N^j = \left[{}^t f(w_j^*)\right]_{\mathcal{B}^*} = \begin{pmatrix} (w_j^* \circ f)(v_1) \\ \vdots \\ (w_j^* \circ f)(v_n) \end{pmatrix}, \text{ dunque } [N]_{ij} = (w_j^* \circ f)(v_i) = w_j^* (f(v_i)).$ Ora $[f(v_i)]_{\mathcal{S}} = A^i$, cioè $f(v_i) = [A]_{1i}w_1 + ... + [A]_{pi}w_p$, da cui:

 $W_i^*(f(v_i)) = [A]_{ii}$, close $f(v_i) = [A]_{1i}W_1 + ... + [A]_{pi}W_p$, da $W_i^*(f(v_i)) = [A]_{ii}$, ossia $[N]_{ij} = [A]_{ii}$, da cui $N = {}^tA$.

Osservazione: Ancora: $rk(^tA) = \dim Im(^tA) = \dim Ann(Ker(f)) = n - \dim Ker(f) = rk(A)$

3 ENDOMORFISMI

3.0 ALCUNE NOZIONI SULLE PERMUTAZIONI

Notazione: Denoteremo $J_n = \{1, ..., n\}$ e $S_n = S(J_n)$ le permutazioni di J_n .

Notazione: Denoteremo con $\begin{pmatrix} 1 & \dots & n \\ \sigma(1) & \dots & \sigma(n) \end{pmatrix}$ la permutazione σ tale che $i \to \sigma(i) \ \forall i$.

DEFINIZIONE 3.0.1: Definiamo **orbita** di i secondo σ la successione:

$$i \to \sigma(i) \to \dots \to \sigma^k(i) = i$$
.

L'orbita si dice **banale** quando consiste di un solo elemento, cioè $\sigma(i) = i$.

DEFINIZIONE 3.0.2: $c \in S_n$ si dice **ciclo** se contiene una sola orbita non banale.

Due cicli si dicono disgiunti se non hanno elementi in comune.

Notazione: Denoteremo con $(n_1 \dots n_k)$ il ciclo tale che $n_i \to n_{i+1} \ \forall 1 \le i < k \ e \ n_k \to n_1$.

PROPOSIZIONE 3.0.1: Cicli disgiunti commutano.

Esempio: Se
$$\sigma = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix} \circ \begin{pmatrix} 3 & 5 \end{pmatrix}$$
 e $\tau = \begin{pmatrix} 3 & 5 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 4 \end{pmatrix}$, $\sigma, \tau \in S_5$: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix}$, $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix}$.

PROPOSIZIONE 3.0.2: Ogni $\sigma \in S_n$ si scrive come composizione di cicli disgiunti, in modo unico a meno dell'ordine.

Esempio: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 1 & 2 & 6 \end{pmatrix}$. La decompongo in cicli:

 $1 \rightarrow 4 \rightarrow 1$, cioè ho il ciclo $(1 \quad 4)$,

 $2 \rightarrow 3 \rightarrow 5 \rightarrow 2$, cioè ho il ciclo (2 3 5),

 $6 \rightarrow 6$, cioè ho il ciclo banale.

Quindi $\sigma = (1 \ 4) \circ (2 \ 3 \ 5)$.

DEFINIZIONE 3.0.3: Se $c = (n_1 \dots n_k)$ è un ciclo, definiamo **lunghezza** di c l(c) = k. Per convenzione l(id) = 1.

DEFINIZIONE 3.0.4: Definiamo **trasposizione** un ciclo di lunghezza 2: $\tau = (n_1 \quad n_2)$.

DEFINIZIONE 3.0.5: Se $\sigma = c_1 \circ ... \circ c_p$, con $c_1, ..., c_p$ cicli disgiunti:

- 1) poniamo $N(\sigma) = (l(c_1) 1) + ... + (l(c_p) 1)$
- 2) diciamo che σ è **pari** (**dispari**) se $N(\sigma)$ è pari (dispari)
- 3) definiamo **segno** di σ $sgn(\sigma) = (-1)^{N(\sigma)}$.

Osservazioni: Tutte le trasposizioni sono permutazioni dispari.

PROPOSIZIONE 3.0.3: Ogni ciclo c di lunghezza k si può scrivere come composizione di N(c) = k - 1 trasposizioni (non disgiunte).

Dimostrazione:

Se
$$c = (n_1 \dots n_k)$$
, non è difficile verificare che $c = (n_1 n_k) \circ \dots \circ (n_1 n_2)$.

Osservazione: La decomposizione di un ciclo nel prodotto di trasposizioni non è unica, ad esempio $(1 \ 2 \ 3) = (1 \ 3)(1 \ 2) = (1 \ 2)(1 \ 3)(2 \ 3)(1 \ 2)$. Si può però dimostrare il seguente fatto:

PROPOSIZIONE 3.0.4: La parità del numero di trasposizioni che compongono un ciclo è costante.

PROPOSIZIONE 3.0.5: Sia $\sigma \in S_n$. Allora $N(\sigma) = N(\sigma^{-1})$.

Dimostrazione:

Sia $\sigma = c_1 \circ ... \circ c_p$ la decomposizione di σ in cicli disgiunti.

Allora
$$\sigma^{-1} = c_n^{-1} \circ ... \circ c_1^{-1}$$
.

Inoltre
$$l(c_i) = l(c_i^{-1})$$
, poiché $(n_1 \dots n_k)^{-1} = (n_k \dots n_1)$.

Perciò
$$\forall i, \ N(c_i) = N(c_i^{-1}) \Rightarrow N(\sigma) = N(\sigma^{-1}).$$

Osservazione: Poiché $\sigma \circ \sigma^{-1} = id$, componendo σ con $N(\sigma)$ trasposizioni si ottiene l'identità.

3.1 DETERMINANTE

DEFINIZIONE 3.1.1: Sia $A \in \mathcal{M}(n, \mathbb{K})$. Definiamo **determinante** una funzione $D: \mathcal{M}(n, \mathbb{K}) \to \mathbb{K}$ tale che $D(A) = 0 \Leftrightarrow$ le righe di A sono linearmente dipendenti ($\Leftrightarrow rk(A) < n$).

Osservazione: Cerchiamo una tale D_2 nello spazio $\mathcal{M}(2, \mathbb{K})$.

Sia
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

- Se $a = 0 \land c = 0$ le righe sono dipendenti;
- Se $a = 0 \land c \neq 0$, allora le righe sono dipendenti $\Leftrightarrow b = 0$.
- Se $a \neq 0$, riduco a scalini:

$$A' = \begin{pmatrix} a & b \\ 0 & d - bca^{-1} \end{pmatrix},$$

dunque le righe di *A* sono dipendenti $\Leftrightarrow d - bca^{-1} = 0 \iff ad - bc = 0$.

Riassumendo, se pongo $D_2(A) = ad - bc$, ho l'applicazione voluta, tale che $D(A) = 0 \iff$ le righe di A sono linearmente dipendenti.

$$\begin{split} \text{DEFINIZIONE 3.1.2: Siano } V, W & \mathbb{K}\text{-spazi vettoriali. Sia } f \colon \underbrace{V \times \ldots \times V}_{n \ volte} \to W. \\ \forall i = 1, \ldots, n \text{ fisso } w_1, \ldots, w_{i-1}, w_{i+1}, \ldots, w_n \in V \text{ e sia } f_i = f(w_1, \ldots, w_{i-1}, v, w_{i+1}, \ldots, w_n) \colon V \to W. \end{split}$$
L'applicazione f si dice **multilineare** se f_i è lineare $\forall i$.

Osservazione: L'applicazione determinante che stiamo cercando deve essere multilineare, poiché deve essere lineare in ogni riga.

PROPOSIZIONE 3.1.1: La funzione $D_2: \mathcal{M}(2, \mathbb{K}) \to \mathbb{K} | D_2 \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$ verifica le seguenti proprietà:

- 1) D_2 è lineare in ogni riga;
- 2) Se A ha due righe uguali, $D_2(A) = 0$;
- 3) $D_2(I) = 1$.

Dimostrazione:

- 1) Verifichiamolo solo per la prima riga; poniamo $B=(a_1 \quad b_1), C=(a_2 \quad b_2)$. Allora: $D_2 \binom{\lambda B + \mu C}{A_2} = D_2 \binom{\lambda a_1 + \mu a_2}{c} \frac{\lambda b_1 + \mu b_2}{d} = (\lambda a_1 + \mu a_2)d (\lambda b_1 + \mu b_2)c = \lambda (a_1 d b_1 c) + \mu (a_2 d b_2 c) = \lambda D_2 \binom{B}{A_2} + \mu D_2 \binom{C}{A_2}$, da cui la tesi.
- 2) Ovvia.
- 3) $1 \cdot 1 0 \cdot 0 = 1$.

PROPOSIZIONE 3.1.2: Se *D* verifica le proprietà 1), 2), 3), allora verifica anche le seguenti:

- a) Se *A* ha una riga nulla, D(A) = 0;
- b) $D(..., A_i, ..., A_i, ...) = -D(..., A_i, ..., A_i, ...);$
- c) Se B è ottenuta da A sommando ad una riga una combinazione lineare delle altre righe (operazione elementare di 3^o tipo), allora D(B) = D(A);
- d) Se le righe di A sono linearmente dipendenti, D(A) = 0;

e) Se
$$A = \begin{pmatrix} a_1 & 0 \\ & \ddots & \\ 0 & a_n \end{pmatrix}$$
, allora $D(A) = a_1 \cdot ... \cdot a_n$.

Dimostrazione:

- a) Se $A_i = 0$, allora $A = (A_1 | ... | 0 \cdot B | ... | A_n)$. Dunque $D(A) = 0 \cdot D(A_1 | ... | B | ... | A_n) = 0$.
- b) Considero la matrice $(..., A_i + A_j, ..., A_i + A_j, ...)$. Per la proprietà 2), $D(..., A_i + A_j, ..., A_i + A_j, ...) = 0$. Per multilinearità:

$$0 = D(..., A_i + A_j, ..., A_i + A_j, ...) = D(..., A_i, ..., A_i, ...) + D(..., A_i, ..., A_j, ...) + D(..., A_i, ..., A_i, ..., A_i, ...) + D(..., A_i, ..., A_i, ..., A_i, ...) + D(..., A_i, ..., A_i, ..., A_i, ..., A_i, ...) + D(..., A_i, ..., A_i, ..., A_i, ..., A_i, ..., A_i, ...) + D(..., A_i, ..., A_i, ..., A_i, ..., A_i, ..., A_i, ...) + D(..., A_i, ..., A_i, A_i, ..., A_i, A_i, ..., A_i, A_i, A_i, A$$

- c) Supponiamo $B=A_1+\sum_{i=2}^n\alpha_iA_i$. Allora: $D(B)=D(A_1+\sum_{i=2}^n\alpha_iA_i\,,A_2,\ldots,A_n)=D(A)+\sum_{i=2}^n\alpha_iD(A_i,A_2,\ldots,A_n).$ Ma la sommatoria è nulla, in quanto per la proprietà 2) tutti i termini sono nulli, dunque D(B)=D(A).
- d) Supponiamo $A_1 = \sum_{i=2}^n \alpha_i A_i$. Allora: $D(A) = D(\sum_{i=2}^n \alpha_i A_i, A_2, ..., A_n) = \sum_{i=2}^n \alpha_i D(A_i, A_2, ..., A_n) = 0$.
- e) Se A è diagonale, allora $A_i = a_i I_i \ \forall i$. Perciò: $D(A) = a_1 D(I_1, a_2 I_2, ..., a_n I_n) = ... = a_1 \cdot ... \cdot a_n \cdot D(I) = a_1 \cdot ... \cdot a_n$.

Nella seguente esposizione riguardo al determinante dimostreremo prima che, se la funzione determinante esiste, allora è unica, e solo dopo ne mostreremo l'esistenza.

PROPOSIZIONE 3.1.3: Se *D* verifica 1), 2) e 3), allora è unico.

Dimostrazione:

Sia S a scalini ottenuta da A con m operazioni di 1^o tipo e k di 3^o tipo.

Allora $D(A) = (-1)^m D(S)$.

Se *S* ha una riga nulla $\Rightarrow D(S) = 0 \Rightarrow D(A) = 0$.

Altrimenti con solo operazioni di 3º tipo portiamo S nella forma $S' = \begin{pmatrix} a_1 & 0 \\ & \ddots \\ 0 & a_n \end{pmatrix}$

Dunque $D(S)=D(S')=a_1\cdot\ldots\cdot a_n \Rightarrow D(A)=(-1)^ma_1\cdot\ldots\cdot a_n$, perciò in ogni caso è unico.

COROLLARIO 3.1.4: Se *D* è una funzione che verifica 1), 2) e 3), allora:

 $D(A) = 0 \Leftrightarrow$ le righe di A sono linearmente dipendenti.

Dimostrazione:

- ←) Già fatta.
- \Rightarrow) Se le righe di A fossero indipendenti, allora $D(A) = (-1)^m a_1 \cdot ... \cdot a_n \neq 0$, assurdo.

PROPOSIZIONE 3.1.5: Se $D: \mathcal{M}(n, \mathbb{K}) \to \mathbb{K}$ verifica 1), 2) e 3), allora:

$$D(A) = \sum_{\sigma \in S_n} sgn(\sigma) \cdot a_{1,\sigma(1)} \cdot \dots \cdot a_{n,\sigma(n)}$$

dove $a_{i,j} = [A]_{ij}$.

Dimostrazione:

$$D(A) = D\left(\frac{\sum_{i_{1}=1}^{n} a_{1,i_{1}} \cdot I_{i_{1}}}{A_{2}}\right) = \sum_{i_{1}=1}^{n} a_{1,i_{1}} D\left(\frac{\sum_{i_{2}=1}^{n} a_{2,i_{2}} \cdot I_{i_{2}}}{\sum_{i_{2}=1}^{n} a_{2,i_{2}} \cdot I_{i_{2}}}\right) = \dots = \sum_{\substack{i_{1} \in J_{n} \\ \vdots \\ i_{n} \in J_{n}}} a_{1,i_{1}} \cdot \dots \cdot a_{n,i_{n}} D\left(\frac{I_{i_{1}}}{\vdots}\right)$$

Ma se fra gli i_j ce ne sono due uguali, allora $D\left(\frac{I_{i_1}}{\vdots}\right) = 0$, poiché ha due righe uguali.

Perciò:

$$D(A) = \sum_{\{i_1, \dots, i_n\} \in J_n^n} a_{1, i_1} \cdot \dots \cdot a_{n, i_n} D\left(\frac{\overline{I_{i_1}}}{\overline{I_{i_n}}}\right) = \sum_{\sigma \in S_n} a_{1, \sigma(1)} \cdot \dots \cdot a_{n, \sigma(n)} D\left(\frac{\overline{I_{\sigma(1)}}}{\overline{I_{\sigma(n)}}}\right)$$

Si riporta la matrice $\left(\frac{I_{\sigma(1)}}{\vdots}\right)$ a I con $N(\sigma)$ scambi di righe, per cui:

$$D(A) = \sum_{\sigma \in S_n} \underbrace{\frac{(-1)^{N(\sigma)}}{sgn(\sigma)}} \cdot a_{1,\sigma(1)} \cdot \dots \cdot a_{n,\sigma(n)} \underbrace{D(I)}_{=1} = \sum_{\sigma \in S_n} sgn(\sigma) \cdot a_{1,\sigma(1)} \cdot \dots \cdot a_{n,\sigma(n)}.$$

Osservazione: La precedente proposizione è una dimostrazione alternativa dell'unicità di *D*.

Esempi: Applichiamo la formula trovata ai casi più semplici (è molto laborioso applicarla alle matrici di ordine > 3):

•
$$n = 2$$
: $S_2 = \left\{id, \underbrace{(1 \quad 2)}_{\sigma}\right\} e \ sgn(id) = 1$, $sgn(\sigma) = -1$.
$$D \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = 1 \cdot a_{1,id(1)} \cdot a_{2,id(2)} + (-1) \cdot a_{1,\sigma(1)} \cdot a_{2,\sigma(2)} = a_{11}a_{22} - a_{12}a_{21}$$
, che coincide con la formula che già avevamo.

•
$$n = 3: S_3 = \left\{ \underbrace{id}_{sgn=1}, \underbrace{(1 \quad 2), (1 \quad 3), (2 \quad 3)}_{sgn=-1}, \underbrace{(1 \quad 2 \quad 3), (1 \quad 3 \quad 2)}_{sgn=1} \right\};$$

$$D \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} =$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32} - a_{13}a_{22}a_{31}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32} - a_{13}a_{22}a_{31}$$

Osservazione: La precedente espressione per il determinante nel caso n=3 è detta **regola** (o **formula**) **di Sarrus**.

DEFINIZIONE 3.1.3: Definiamo $D_n: \mathcal{M}(n, \mathbb{K}) \to \mathbb{K}$ la funzione definita da:

se
$$n = 1$$
, $D_1(a) = a$;

se
$$n = 2$$
, $D_2 \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$;

se n > 2, $D_n(A) = \sum_{i=1}^n (-1)^{i+1} \cdot [A]_{i1} \cdot D_{n-1}(A_{i1})$, dove A_{ij} è la sottomatrice di A di ordine n-1 ottenuta da A cancellando la riga A_i e la colonna A^j .

Questa sottomatrice prende il nome di **complemento algebrico** dell'elemento a_{ij} .

L'applicazione D_n appena definita si chiama sviluppo di Laplace secondo la prima colonna.

Osservazione: L'applicazione D_n è stata definita ricorsivamente.

PROPOSIZIONE 3.1.6: L'applicazione D_n verifica le proprietà 1), 2) e 3).

Dimostrazione:

Procediamo in ogni caso con l'induzione su n; in tutti e tre i casi abbiamo già provato il passo base, dunque qua mostriamo solo il passo induttivo.

1) Siano
$$A = \begin{pmatrix} \frac{A_1}{\vdots} \\ \frac{\overline{\lambda}B + \mu C}{\vdots} \\ A_n \end{pmatrix} \leftarrow A_j, \ A' = \begin{pmatrix} \frac{A_1}{\vdots} \\ \frac{\overline{B}}{\vdots} \\ \overline{A_n} \end{pmatrix} \leftarrow A'_j, \ A'' = \begin{pmatrix} \frac{A_1}{\vdots} \\ \frac{\overline{C}}{\vdots} \\ \overline{A_n} \end{pmatrix} \leftarrow A''_j.$$

Dobbiamo dimostrare che $D_n(A) = \lambda D_n(A') + \mu D_n(A'')$.

Osserviamo che:

$$\begin{cases} [A]_{i1} = [A']_{i1} = [A'']_{i1} \ \forall i \neq j \\ [A]_{j1} = \lambda [A']_{j1} + \mu [A'']_{j1} \end{cases}, \text{ in oltre } A_{j1} = A'_{j1} = A''_{j1},$$

mentre se $i \neq j$ il minore A_{i1} ha una riga che è combinazione lineare di due righe dei minori A'_{i1} e A''_{i1} .

Dunque per ipotesi induttiva:

$$\forall i \neq j, \ D_{n-1}(A_{i1}) = \lambda D_{n-1}(A'_{i1}) + \mu D_{n-1}(A''_{i1}).$$

$$\begin{split} D_{n}(A) &= \sum_{i=1}^{n} (-1)^{i+1} \cdot [A]_{i1} \cdot D_{n-1}(A_{i1}) = \\ &= \sum_{i \neq j} \left((-1)^{i+1} \cdot [A]_{i1} \cdot D_{n-1}(A_{i1}) \right) + (-1)^{j+1} \cdot [A]_{j1} \cdot D_{n-1}(A_{j1}) = \\ &= \sum_{i \neq j} \left((-1)^{i+1} \cdot [A]_{i1} \cdot \left(\lambda D_{n-1}(A'_{i1}) + \mu D_{n-1}(A''_{i1}) \right) \right) + (-1)^{j+1} \cdot \\ &\cdot \left(\lambda [A']_{j1} + \mu [A'']_{j1} \right) \cdot D_{n-1}(A_{j1}) = \\ &= \lambda \sum_{i=1}^{n} \left((-1)^{i+1} \cdot [A']_{i1} \cdot D_{n-1}(A'_{i1}) \right) + \mu \sum_{i=1}^{n} \left((-1)^{i+1} \cdot [A'']_{i1} \cdot D_{n-1}(A''_{i1}) \right) \\ &= \lambda D_{n}(A') + \mu D_{n}(A''). \end{split}$$

2) Supponiamo che A abbia due righe uguali, ad esempio $A_i = A_h$, j < h.

Se $i \neq j$ e $i \neq h$, anche il minore A_{i1} ha due righe uguali e quindi, per ipotesi induttiva, $D_{n-1}(A_{i1}) = 0$. Dunque:

$$D_n(A) = (-1)^{j+1} [A]_{j1} D_{n-1} (A_{j1}) + (-1)^{h+1} [A]_{h1} D_{n-1} (A_{h1})$$

Poiché $A_i = A_h$, si ha che $[A]_{i1} = [A]_{h1}$.

Inoltre i minori A_{j1} e A_{h1} contengono le stesse righe ma in posizioni diverse.

Più precisamente, se A'_m denota la riga A_m privata del primo elemento, si ha:

$$A_{j1} = \begin{pmatrix} \frac{\vdots}{A'_{j-1}} \\ \hline A'_{j+1} \\ \vdots \\ \hline A'_{h} = A'_{j} \\ \hline A'_{h+1} \\ \vdots \end{pmatrix}; \qquad A_{h1} = \begin{pmatrix} \frac{\vdots}{A'_{j-1}} \\ \hline A'_{j} = A'_{h} \\ \hline \vdots \\ \hline A'_{h-1} \\ \hline A'_{h+1} \\ \vdots \end{pmatrix}.$$

Allora A_{j1} può essere trasformato in A_{h1} attraverso h-1-j scambi di righe, per cui $D_{n-1}(A_{h1}) = (-1)^{h-1-j} D_{n-1}(A_{j1}).$

Dunque:

$$D_n(A) = (-1)^{j+1} [A]_{j1} D_{n-1} (A_{j1}) + (-1)^{h+1} [A]_{h1} (-1)^{h-1-j} D_{n-1} (A_{j1}) =$$

$$= [A]_{j1} D_{n-1} (A_{j1}) \cdot ((-1)^{j+1} + (-1)^{2h-j})$$
Ma $j+1+2h-j=2h+1$ dispari, allora $((-1)^{j+1} + (-1)^{2h-j}) = 0$, da cui la tesi.

3) L'unico contributo allo sviluppo di Laplace è dato da $[A]_{11} = 1$, il cui complemento algebrico è I_{n-1} .

Per ipotesi induttiva $D_{n-1}(I_{n-1}) = 1$ e dunque $D_n(I_n) = 1$.

Osservazione: Con la precedente dimostrazione abbiamo dimostrato l'effettiva esistenza della funzione determinante.

DEFINIZIONE 3.1.4: Chiamiamo determinante l'unica funzione det : $\mathcal{M}(n, \mathbb{K}) \to \mathbb{K}$ che verifica 1), 2) e 3).

Osservazione: Abbiamo visto che $det(A) = 0 \Leftrightarrow le righe di A sono dipendenti \Leftrightarrow A è singolare. Inoltre <math>A$ è invertibile $\Leftrightarrow det(A) \neq 0$.

Osservazione: Con la stessa dimostrazione si prova che lo sviluppo di Laplace secondo una colonna A^{j} :

$$D_n(A) = \sum_{i=1}^{n} (-1)^{i+j} [A]_{ij} D_{n-1} (A_{ij})$$

verifica 1), 2) e 3) e dunque coincide con det(A) (per l'unicità).

Osservazione: Dalla definizione, $det(\lambda A) = \lambda^n det(A)$.

TEOREMA DI BINET: $\forall A, B \in \mathcal{M}(n, \mathbb{K}), \det(AB) = \det(A) \cdot \det(B)$.

Dimostrazione:

Se $det(B) = 0 \Rightarrow rk(B) < n$ e dunque $rk(AB) < n \Rightarrow det(AB) = 0$.

Se $\det(B) \neq 0$, si consideri $f: \mathcal{M}(n, \mathbb{K}) \to \mathbb{K}$ definita da $f(A) = \frac{\det(AB)}{\det(B)}$;

f verifica le proprietà 1), 2) e 3), infatti:

- 1) Se una riga di A è combinazione lineare di due righe, allora lo stesso vale per AB. Ne segue che f è lineare nelle righe (poiché il denominatore det(B) è una costante).
- 2) Se *A* ha due righe uguali, allora ce le ha anche *AB* (poiché ancora *B* è isomorfismo); dunque $det(AB) = 0 \Rightarrow f(A) = 0$.

3)
$$f(I) = \frac{\det(IB)}{\det(B)} = 1.$$

Per l'unicità della funzione det, $f(A) = \det(A)$ e dunque $\det(A) = \frac{\det(AB)}{\det(B)}$, tesi.

COROLLARIO 3.1.7: Se A è invertibile, allora $\det(A^{-1}) = (\det(A))^{-1}$.

Dimostrazione:

$$1 = \det(I) = \det(A \cdot A^{-1}) = \det(A) \cdot \det(A^{-1}) \Rightarrow \det(A^{-1}) = (\det(A))^{-1}.$$

PROPOSIZIONE 3.1.8: $\forall A \in \mathcal{M}(n, \mathbb{K}), \det({}^t A) = \det(A)$.

Dimostrazione:

$$\det({}^tA) = \sum_{\sigma \in S_n} sgn(\sigma) \cdot [{}^tA]_{1,\sigma(1)} \cdot \ldots \cdot [{}^tA]_{n,\sigma(n)} = \sum_{\sigma \in S_n} sgn(\sigma) \cdot [A]_{\sigma(1),1} \cdot \ldots \cdot [A]_{\sigma(n),n}$$

Sia $\tau = \sigma^{-1}$. Se $\sigma(i) = j \implies \tau(j) = i$, dunque $[A]_{\sigma(i),i} = [A]_{j,\tau(j)}$.

Riordinando il prodotto e poiché $sgn(\sigma) = sgn(\sigma^{-1})$:

$$\det({}^tA) = \sum_{\tau \in S_n} sgn(\tau) \cdot [A]_{1,\tau(1)} \cdot \dots \cdot [A]_{n,\tau(n)} = \det(A)$$

COROLLARIO 3.1.9: det(A) può essere calcolato mediante sviluppo di Laplace secondo una qualsiasi riga.

Dimostrazione:

$$\sum_{i=1}^{n} (-1)^{i+j} [A]_{ji} \det(A_{ji}) = \sum_{i=1}^{n} (-1)^{i+j} [{}^{t}A]_{ij} \det({}^{t}A_{ji}) = \sum_{i=1}^{n} (-1)^{i+j} [{}^{t}A]_{ij} \det(({}^{t}A)_{ij}) \equiv \det({}^{t}A) = \det(A),$$

dove il passaggio [=] deriva dal fatto che quella precedente è esattamente lo sviluppo di Laplace della *j*-esima colonna di ^tA.

Osservazione: Poiché $\det({}^tA) = \det(A)$, la funzione determinante verifica le proprietà 1), 2) e 3) anche per le colonne.

REGOLA DI CRAMER: Sia AX = B un sistema lineare quadrato con n equazioni e n incognite, $det(A) \neq 0$. Allora la sua unica soluzione è $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_r \end{pmatrix}$, dove:

$$y_i = \frac{\det(B(i))}{\det(A)}$$
, dove $B(i) = \left(A^1 \mid \dots \mid \underbrace{B}_{\substack{i-esima \text{colonna}}} \mid \dots \mid A^n\right)$.

Dimostrazione:

Poiché Y è soluzione di AX=B, allora $AY=y_1A^1+\ldots+y_nA^n=B$. Allora:

$$\det(B(i)) = \det\left(A^{1} \mid ... \mid \sum_{j=1}^{n} y_{j} A^{j} \mid ... \mid A^{n}\right) = \sum_{j=1}^{n} y_{j} \det(A^{1} \mid ... \mid A^{j} \mid ... \mid A^{n}) = y_{i} \det(A)$$

poiché se $j \neq i$, allora $(A^1 \mid ... \mid A^j \mid ... \mid A^n)$ ha due colonne uguali e dunque $\det(A^1 \mid ... \mid A^j \mid ... \mid A^n) = 0.$

Quindi, visto che $det(A) \neq 0$, si ha la tesi.

CALCOLO DELL'INVERSA: Se A è invertibile, allora la matrice B definita da

$$[B]_{ij} = (-1)^{i+j} \frac{\det(A_{ji})}{\det(A)}$$

è l'inversa di A.

Dimostrazione:

Poiché A è invertibile, mi basta mostrare che AB = I, poiché se B è inversa destra allora è anche inversa sinistra.

$$[AB]_{hk} = \sum_{i=1}^{n} [A]_{hi} [B]_{ik} = \sum_{i=1}^{n} (-1)^{i+k} [A]_{hi} \frac{\det(A_{ki})}{\det(A)}$$
Se $h = k \Rightarrow [AB]_{hh} = \sum_{i=1}^{n} (-1)^{i+h} [A]_{hi} \frac{\det(A_{hi})}{\det(A)} = \frac{\det(A)}{\det(A)} = 1;$

Se
$$h = k \implies [AB]_{hh} = \sum_{i=1}^{n} (-1)^{i+h} [A]_{hi} \frac{\det(A_{hi})}{\det(A)} = \frac{\det(A)}{\det(A)} = 1;$$

se $h \neq k \Rightarrow [AB]_{hk} = 0$, poiché il numeratore è lo sviluppo secondo la riga k-esima di una matrice ottenuta da A sostituendo ad A_k la riga A_h e che quindi ha due righe uguali \Rightarrow tesi.

Osservazione: La formula dell'inversa implica la regola di Cramer.

Infatti sia dato il sistema lineare $n \times n$ AX = B.

L'unica soluzione è $Y = A^{-1}B$.

Se
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \Rightarrow y_i = [A^{-1}B]_{i1} = \sum_{j=1}^n [A^{-1}]_{ij} [B]_{j1} = \sum_{j=1}^n (-1)^{i+j} \frac{\det(A_{ji})}{\det(A)} [B]_{j1} = \frac{\det(B(i))}{\det(A)}$$

L'ultimo passaggio deriva dal fatto che quello sulla sinistra è lo sviluppo secondo la prima colonna di una matrice ottenuta da A sostituendo la colonna B alla colonna A^{l} .

Osservazione: Siano *A*, *C* matrici quadrate. Allora, sfruttando il prodotto a blocchi, possiamo vedere che:

$$\begin{pmatrix} A & \mid & B \\ \hline 0 & \mid & C \end{pmatrix} = \begin{pmatrix} I & \mid & 0 \\ \hline 0 & \mid & C \end{pmatrix} \cdot \begin{pmatrix} A & \mid & B \\ \hline 0 & \mid & I \end{pmatrix}$$

Dunque:

$$\det\left(\frac{A + B}{0 + C}\right) = \det\left(\frac{I + 0}{0 + C}\right) \cdot \det\left(\frac{A + B}{0 + I}\right) = \det(C) \cdot \det(A)$$

poiché eseguendo lo sviluppo di Laplace secondo la prima riga nella matrice $\left(\frac{I + 0}{0 + C}\right)$, si ottiene $1 \cdot ... \cdot 1 \cdot \det(C) = \det(C)$. Analogamente per l'altra matrice.

Osservazione: Sia $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}(2, \mathbb{R})$. Sia P il parallelogramma con lati (a, b) e (c, d). Posso supporre a > 0.

• Caso 1): b = 0, d > 0.

$$Area(P) = ad = \det \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} = \det \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

• Caso 2): b = 0, d < 0.

Ribaltiamo P rispetto all'asse x ottenendo P':

$$Area(P) = Area(P') = \det \begin{pmatrix} a & 0 \\ c & -d \end{pmatrix} = -\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Dunque se
$$b = 0 \Rightarrow Area(P) = \left| \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right|$$
.

Caso generale): Sia R_{θ} la rotazione antioraria degli assi di angolo θ .

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
; sia P' il parallelogramma P nei nuovi assi.

Sicuramente Area(P) = Area(P').

$$\binom{a}{b} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \binom{a'}{b'} \Rightarrow \begin{cases} a = a' \cos \theta \\ b = a' \sin \theta \end{cases}$$

$$P' \text{ ha lati } (a',0), (c',d'), \text{ perciò:}$$

$$\binom{a}{b} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \binom{a'}{b'} \Rightarrow \begin{cases} a = a' \cos \theta \\ b = a' \sin \theta \end{cases};$$

$$\binom{c}{d} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \binom{c'}{d'} \Rightarrow \begin{cases} c = c' \cos \theta - d' \sin \theta \\ d = c' \sin \theta + d' \cos \theta \end{cases}.$$

$$\begin{vmatrix} \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{vmatrix} = |ad - bc| = |a' \cos \theta (c' \sin \theta + d' \cos \theta) - a' \sin \theta (c' \cos \theta - d' \sin \theta)|$$

$$= |a'c' \cos \theta \sin \theta + a'd'(\cos \theta)^2 - a'c' \sin \theta \cos \theta + a'd'(\sin \theta)^2| = |a'd'|$$

$$= \left| \det \begin{pmatrix} a' & 0 \\ c' & d' \end{pmatrix} \right| = Area(P') = Area(P)$$

Dunque in generale $|\det(A)| = Area(P)$, dove $A \in \mathcal{M}(2, \mathbb{R})$ e P è il parallelogramma con lati i vettori riga di A.

DETERMINANTE DI VANDERMONDE: Siano $\lambda_1, ..., \lambda_n$

$$A(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 & \cdots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \lambda_2^2 & \cdots & \lambda_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda_n & \lambda_n^2 & \cdots & \lambda_n^{n-1} \end{pmatrix}$$

Allora $\det(A(\lambda_1, ..., \lambda_n)) = \prod_{i < j} (\lambda_i - \lambda_i)$ (in particolare $e \neq 0 \Leftrightarrow \lambda_i \neq \lambda_j \ \forall i \neq j$).

Dimostrazione 1:

Per induzione su *n*:

Passo base): n = 2: $\det\begin{pmatrix} 1 & \lambda_1 \\ 1 & \lambda_2 \end{pmatrix} = \lambda_2 - \lambda_1$, verificato.

Passo induttivo): Consideriamo $A(\lambda_1, ..., \lambda_{n+1})$ e $\forall 2 \leq i \leq n+1$ tolgo $\lambda_1 \mathcal{C}_{i-1}$ a \mathcal{C}_i . Ottengo:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & \lambda_2 - \lambda_1 & \lambda_2^2 - \lambda_1 \lambda_2 \\ 1 & \lambda_3 - \lambda_1 & \lambda_3^2 - \lambda_1 \lambda_3 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda_{n+1} - \lambda_1 & \lambda_{n+1}^2 - \lambda_1 \lambda_{n+1} \end{pmatrix} \dots \begin{pmatrix} 0 \\ \lambda_2^n - \lambda_1 \lambda_2^{n-1} \\ \lambda_3^n - \lambda_1 \lambda_3^{n-1} \\ \vdots \\ \lambda_{n+1}^n - \lambda_1 \lambda_{n+1}^{n-1} \end{pmatrix}$$

Dunque:

$$A(\lambda_{1}, \dots, \lambda_{n+1}) = \det \begin{pmatrix} \lambda_{2} - \lambda_{1} & \lambda_{2}(\lambda_{2} - \lambda_{1}) & \vdots & \vdots \\ \lambda_{n+1} - \lambda_{1} & \lambda_{n+1}(\lambda_{n+1} - \lambda_{1}) & \vdots & \vdots \\ \lambda_{n+1} - \lambda_{1} & \lambda_{n+1}(\lambda_{n+1} - \lambda_{1}) & \vdots & \lambda_{n+1}^{n-1}(\lambda_{n+1} - \lambda_{1}) \end{pmatrix}$$

$$= (\lambda_{2} - \lambda_{1})(\lambda_{3} - \lambda_{1}) \dots (\lambda_{n+1} - \lambda_{1}) \det A(\lambda_{2}, \dots, \lambda_{n+1}) = \prod_{i \leq i} (\lambda_{i} - \lambda_{i})$$

Dimostrazione 2:

$$\operatorname{Sia} p(x) = \det \begin{pmatrix} 1 & x & x^2 & x^n \\ 1 & \lambda_2 & \lambda_2^2 & \lambda_2^n \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & \lambda_{n+1} & \lambda_{n+1}^2 & \lambda_{n+1}^n \end{pmatrix}.$$

p(x) è un polinomio in x di grado al più n (per sviluppo lungo la prima riga);

 $\forall 2 \le i \le n$, $p(\lambda_i) = 0$ (poiché la matrice avrebbe due righe uguali).

Per Ruffini $(\lambda_i - x)|p(x) \ \forall i \geq 2$.

Supponiamo i λ_i tutti diversi (altrimenti la tesi è banale); allora:

$$(\lambda_2 - x) \cdot \dots \cdot (\lambda_{n+1} - x) | p(x).$$

Confrontando i due gradi, deduco che $p(x) = k \cdot (\lambda_2 - x) \cdot ... \cdot (\lambda_{n+1} - x), \ k \in \mathbb{K}.$

Ma:

$$p(0) = \det\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & \lambda_2 & \lambda_2^2 & \dots & \lambda_2^n \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & \lambda_{n+1} & \lambda_{n+1}^2 & \lambda_{n+1}^n \end{pmatrix} = \lambda_2 \cdot \dots \cdot \lambda_{n+1} \cdot \prod_{\substack{i < j \\ i \ge 2}} (\lambda_j - \lambda_i)$$

$$\text{Perciò } k = \prod_{\substack{i < j \\ i \ge 2}} (\lambda_j - \lambda_i) \Rightarrow p(\lambda_1) = k \cdot (\lambda_2 - \lambda_1) \cdot \dots \cdot (\lambda_{n+1} - \lambda_1) \Rightarrow \text{tesi.}$$

3.2 ENDOMORFISMI SIMILI

Notazione: Indicheremo $\mathfrak{M}_{\mathcal{B},\mathcal{B}}(f)$ come $\mathfrak{M}_{\mathcal{B}}(f)$.

Riprendiamo per un attimo il concetto di SD-equivalenza. Sappiamo che, dato $f \in End(V)$, $\mathfrak{M}_{\mathcal{B},\mathcal{B}'}(f) \equiv_{SD} \mathfrak{M}_{\mathcal{S},\mathcal{S}'}(f)$.

Supponiamo che $\mathcal{B} = \mathcal{B}'$ e $\mathcal{S} = \mathcal{S}'$; allora:

 $\mathfrak{M}_{\mathcal{B}}(f) \equiv_{SD} \mathfrak{M}_{\mathcal{S}}(f) \iff \exists M, N \in GL(V) \mid \mathfrak{M}_{\mathcal{S}}(f) = N \cdot \mathfrak{M}_{\mathcal{B}}(f) \cdot M.$

In particolare, $M = \mathfrak{M}_{\mathcal{S},\mathcal{B}}(id)$ e $N = \mathfrak{M}_{\mathcal{B},\mathcal{S}}(id)$.

Dunque $N = M^{-1}$. Questo può essere riassunto nel seguente schema:

dove $A = \mathfrak{M}_{\mathcal{B}}(f)$. Dunque $\mathfrak{M}_{\mathcal{S}}(f) = M^{-1} \cdot A \cdot M$.

DEFINIZIONE 3.2.1: $f, g \in End(V)$ di dicono **coniugati** $(f \sim g)$ se $\exists h \in GL(V) | g = h^{-1} \circ f \circ h$

DEFINIZIONE 3.2.2: $A, B \in \mathcal{M}(n, \mathbb{K})$ si dicono **simili** $(A \sim B)$ se $\exists M \in GL(n, \mathbb{K}) | B = M^{-1}AM$.

Osservazioni: 1) Coniugio e similitudine sono relazioni di equivalenza (le verifiche sono lasciate al lettore);

- 2) $f, g \in End(V)$. Sono fatti equivalenti:
 - a) $f \sim g$;
 - b) $\forall \mathcal{B}$ base di V, $\mathfrak{M}_{\mathcal{B}}(f) \sim \mathfrak{M}_{\mathcal{B}}(g)$;
 - c) $\exists \mathcal{B}, \mathcal{S}$ basi di $V, \mathfrak{M}_{\mathcal{B}}(f) = \mathfrak{M}_{\mathcal{S}}(g)$.

Questo fatto può essere dimostrato ricalcando l'analoga dimostrazione per endomorfismi SD-equivalenti.

3) $f \sim g \Rightarrow f \equiv_{SD} g$.

Dunque il rango è un invariante di coniugio, ma non è un sistema completo di invarianti.

Infatti
$$rk(I) = rk\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = 2$$
, ma $\not\exists M \in GL(2) | M^{-1}IM = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, poiché $\forall M \in GL(2), M^{-1}IM = I$.

PROPOSIZIONE 3.2.1: $A, B \in \mathcal{M}(n, \mathbb{K})$. $A \sim B \Rightarrow \det(A) = \det(B)$.

Dimostrazione:

$$B = M^{-1}AM \Rightarrow \det(B) = \det(M^{-1}AM) = \det(M^{-1}) \cdot \det(A) \cdot \det(M) = \det(A)$$
, poiché per Binet $\det(M^{-1}) = (\det(M))^{-1}$.

Osservazione: Dunque il determinante è un invariante di similitudine. Per la proposizione precedente sicuramente $\#(\mathcal{M}(n, \mathbb{K})/_{\sim}) \geq \#(\mathbb{K})$, dunque se \mathbb{K} è infinito anche $\mathcal{M}(n, \mathbb{K})/_{\sim}$ ha infinite classi di similitudine.

DEFINIZIONE 3.2.3: $f \in End(V)$. Definiamo $det(f) = det(\mathfrak{M}_{\mathcal{B}}(f))$, dove \mathcal{B} è una base di V.

Osservazione: È una buona definizione, cioè non dipende dalla scelta della base. Infatti, se S è un'altra base di V, allora le matrici $\mathfrak{M}_{\mathcal{B}}(f)$ e $\mathfrak{M}_{\mathcal{S}}(f)$ sono simili e dunque hanno lo stesso determinante.

PROPOSIZIONE 3.2.2: $f \sim g \Rightarrow \det(f) = \det(g)$.

Dimostrazione:

Sia \mathcal{B} una base di V. Allora:

$$f \sim g \Rightarrow \mathfrak{M}_{\mathcal{B}}(f) \sim \mathfrak{M}_{\mathcal{B}}(g) \Rightarrow \det(\mathfrak{M}_{\mathcal{B}}(f)) = \det(\mathfrak{M}_{\mathcal{B}}(g)) \Rightarrow \det(f) = \det(g).$$

Osservazione: Quindi il determinante è un invariante di coniugio; con lo stesso controesempio di prima vediamo che $\{rango, determinante\}$ non è un sistema completo di invarianti per coniugio.

DEFINIZIONE 3.2.4: $f \in End(V)$. $\lambda \in \mathbb{K}$ si dice **autovalore** per f se $\exists v \in V, v \neq 0 | f(v) = \lambda v$.

In tal caso v è detto **autovettore** relativo a λ .

DEFINIZIONE 3.2.5: Definiamo spettro di f $Sp(f) = {\lambda \in \mathbb{K} | \lambda \text{ è autovalore per } f}.$

DEFINIZIONE 3.2.6: Diciamo che W sottospazio di V è un **sottospazio** f-invariante se $f(W) \subseteq W$.

Osservazioni: 1) Se v è autovettore $\Rightarrow f(Span(v)) \subseteq Span(v)$, quindi Span(v) è f-invariante. In particolare, se $\lambda \neq 0 \Rightarrow f(Span(v)) = Span(v)$, se $\lambda = 0 \Rightarrow f(Span(v)) = \{0\}$.

- 2) L'autovalore relativo ad un autovettore è univocamente determinato; infatti: $f(v) = \lambda v = \mu v \Rightarrow (\lambda \mu)v = 0 \Rightarrow (\text{poiché } v \neq 0) \Rightarrow \lambda = \mu$.
- 3) v è autovettore relativo a $0 \Leftrightarrow v \in Ker(f) \Leftrightarrow f$ non è iniettiva.

DEFINIZIONE 3.2.7: Definiamo **autospazio** relativo all'autovalore λ $V_{\lambda}(f) = \{v \in V | f(v) = \lambda v\}$ (potremo scrivere V_{λ} al posto di $V_{\lambda}(f)$).

Osservazioni: 1) V_{λ} è un sottospazio vettoriale di V, poiché $V_{\lambda} = Ker(f - \lambda id)$.

- 2) λ è autovalore per $f \Leftrightarrow \dim(V_{\lambda}) \geq 1$. In tal caso $V_{\lambda} = \{0\} \cup \{autovettori\ relativi\ a\ \lambda\}$.
- 3) $f(V_{\lambda}) \subseteq V_{\lambda}$, cioè V_{λ} è f-invariante.
- 4) $f|_{V_{\lambda}} = \lambda id|_{V_{\lambda}}$.

DEFINIZIONE 3.2.8: Se λ è autovalore per $f \in End(V)$, poniamo $\mu_g(\lambda) = \dim(V_\lambda)$, dove $\mu_g(\lambda)$ è detta **molteplicità geometrica** di λ .

Osservazione: \forall autovalore λ , $1 \le \mu_q(\lambda) \le \dim(V)$.

PROPOSIZIONE 3.2.3: Sia $f \sim g$. Allora:

- 1) Sp(f) = Sp(g);
- 2) $\forall \lambda \in Sp(f)$, $\dim(V_{\lambda}(f)) = \dim(V_{\lambda}(g))$;

(ossia lo spettro e la molteplicità geometrica degli autovalori sono invarianti di coniugio).

Dimostrazione:

- 1) Per ipotesi $\exists h \in GL(V) | g = h^{-1} \circ f \circ h$.
 - \subseteq) Sia $\lambda \in Sp(f)$. Allora $\exists v \neq 0 | f(v) = \lambda v$. Sia $w = h^{-1}(v)$. Allora $w \neq 0$.

$$g(w) = (h^{-1} \circ f \circ h) (h^{-1}(v)) = h^{-1} (f(v)) = \lambda h^{-1}(v) = \lambda w.$$

Dunque $\lambda \in Sp(g)$.

- ⊇) Analogo.
- 2) Abbiamo appena provato che $h^{-1}(V_{\lambda}(f)) \subseteq V_{\lambda}(g)$ e dunque $V_{\lambda}(f) \subseteq h(V_{\lambda}(g))$. Allo stesso modo si prova che $V_{\lambda}(f) \supseteq h(V_{\lambda}(g))$, allora $V_{\lambda}(f) = h(V_{\lambda}(g))$. Essendo h un isomorfismo, $\dim(V_{\lambda}(f)) = \dim(V_{\lambda}(g))$, tesi.

PROPOSIZIONE 3.2.4: $f \in End(V)$, \mathcal{B} base di V, $A = \mathfrak{M}_{\mathcal{B}}(f)$.

Sia [] $_{\mathcal{B}}$ l'isomorfismo indotto da \mathcal{B} ([] $_{\mathcal{B}}:V\to\mathbb{K}^n$). Allora:

- 1) λ è autovalore per $f \Leftrightarrow \lambda$ è autovalore per A;
- 2) $V_{\lambda}(A) = [V_{\lambda}(f)]_{\mathcal{B}}$.

Dimostrazione:

- 1) λ è autovalore per $f \Leftrightarrow \exists v \neq 0 | f(v) = \lambda v \Leftrightarrow \exists v \neq 0 | \underbrace{[f(v)]_{\mathcal{B}}}_{AX} = \lambda \underbrace{[v]_{\mathcal{B}}}_{X} \Leftrightarrow \exists X \in \mathbb{K}^{n} \setminus \{0\} | AX = \lambda X \Leftrightarrow \lambda$ è autovalore per A.
- 2) \subseteq) Sia $X \in V_{\lambda}(A)$ e sia $v \in V | [v]_{\mathcal{B}} = X$. $AX = \lambda X \Rightarrow [f(v)]_{\mathcal{B}} = \lambda [v]_{\mathcal{B}} \Rightarrow f(v) = \lambda v \Rightarrow v \in V_{\lambda}(f)$.
 - ⊇) Sia $v \in V_{\lambda}(f) \Rightarrow f(v) = \lambda v$ e sia $X = [v]_{\mathcal{B}}$. Allora $[f(v)]_{\mathcal{B}} = \lambda [v]_{\mathcal{B}} \Rightarrow AX = \lambda X \Rightarrow X = [v]_{\mathcal{B}} \in V_{\lambda}(A)$.

Osservazione: Dunque possiamo calcolare gli autovalori e gli autospazi di f usando una qualsiasi matrice associata.

CALCOLO DI AUTOVALORI E AUTOVETTORI PER $A \in \mathcal{M}(n, \mathbb{K})$:

 λ è autovalore per $A \Leftrightarrow \exists X \neq 0 | AX = \lambda X \Leftrightarrow \exists X \neq 0 | X \in Ker(A - \lambda I) \Leftrightarrow \det(A - \lambda I) = 0$ (poiché se $\det(A - \lambda I) \neq 0$, allora il sistema $(A - \lambda I)X = 0$ avrebbe una soluzione, X = 0, assurdo).

DEFINIZIONE 3.2.9: Il polinomio $p_A(t) = \det(A - tI)$ è detto polinomio caratteristico di A.

Osservazione: Gli autovalori di A sono le radici del polinomio caratteristico p_A .

Osservazioni: 1) Se $T \in \mathcal{T}(n, \mathbb{K})$ è triangolare superiore, cioè è del tipo:

$$T = \begin{pmatrix} a_1 & * \\ & \ddots & \\ 0 & & a_n \end{pmatrix}$$

allora:

$$T - tI = \begin{pmatrix} a_1 - t & * \\ & \ddots & \\ 0 & a_n - t \end{pmatrix}$$

Perciò $p_T(t) = (a_1 - t) \cdot ... \cdot (a_n - t)$, dunque gli autovalori sono gli elementi sulla diagonale.

2) Se $A = \left(\frac{M \mid N}{0 \mid P}\right)$, con $M, P \in \mathcal{M}(n, \mathbb{K})$, $\det(A) = \det(M) \cdot \det(P)$.

$$A - tI = \left(\frac{M - tI \mid N}{0 \mid P - tI}\right)$$

Quindi $p_A(t) = \det(A - tI) = \det(M - tI) \cdot \det(P - tI) = p_M(t) \cdot p_P(t)$.

PROPOSIZIONE 3.2.5: $\forall A \in \mathcal{M}(n, \mathbb{K}), \ p_A(t) = (-1)^n t^n + (-1)^{n-1} tr(A) t^{n-1} + \ldots + \det(A).$ Dimostrazione:

Sicuramente il coefficiente di t^n è $(-1)^n$; inoltre $p_A(0) = \det(A - 0I) = \det(A)$.

Mostriamo per induzione su n che il coefficiente di t^{n-1} è $(-1)^{n-1}tr(A)$.

Passo base): n = 2, $A - tI = \begin{pmatrix} a - t & b \\ c & d - t \end{pmatrix} \Rightarrow \det(A - tI) = t^2 - (a + d)t + ad - bc$, verificato.

Passo induttivo): Sia $A \in \mathcal{M}(n, \mathbb{K})$ e siano $a_{ij} = [A]_{ij}$.

$$\det(A - tI) = \sum_{i=1}^{n} (-1)^{i+1} [A - tI]_{1i} \det((A - tI)_{1i})$$

$$= (a_{11} - t) \det((A - tI)_{11}) + \sum_{i=2}^{n} (-1)^{i+1} a_{1i} \det((A - tI)_{1i})$$

Notiamo che l'addendo $\sum_{i=2}^{n} (-1)^{i+1} a_{1i} \det((A-tI)_{1i})$ contiene al massimo termini di grado n-2, poiché "cancellando" la prima riga e l'i-esima colonna, con $i \neq 1$, vengono "cancellati" due elementi sulla diagonale che contengono la variabile t, dunque con il prodotto degli altri n-2 termini sulla diagonale si raggiunge al massimo l'esponente n-2.

Per ipotesi induttiva $\det((A - tI)_{11}) = (-1)^{n-1}t^{n-1} + (-1)^{n-2}(\sum_{j=2}^{n} a_{jj})t^{n-2} + r(t)$, con $\deg(r(t)) \le n-2$. Dunque:

$$(a_{11} - t) \det((A - tI)_{11}) = (a_{11} - t) \left((-1)^{n-1} t^{n-1} + (-1)^{n-2} \left(\sum_{j=2}^{n} a_{jj} \right) t^{n-2} + r(t) \right)$$

$$= (-1)^{n} t^{n} + (-1)^{n-1} a_{11} t^{n-1} + (-1)^{n-1} \left(\sum_{j=2}^{n} a_{jj} \right) t^{n-1} + r'(t)$$

 $\operatorname{con} \operatorname{deg}(r'(t)) \le n - 2.$

Quindi il coefficiente del termine di grado n-1 di $\det(A-tI)$ è:

$$(-1)^{n-1}a_{11} + (-1)^{n-1} \left(\sum_{j=2}^{n} a_{jj} \right) = (-1)^{n-1} \sum_{j=1}^{n} a_{jj} = (-1)^{n-1} tr(A),$$

tesi.

Osservazione: Si può dimostrare in generale che il coefficiente del termine di grado n-i di $p_A(t)$ è:

$$(-1)^{n-i} \sum_{i=1}^{n-i+1} \det(M_A(j,i))$$

dove $M_A(j,i)$ è la sottomatrice quadrata di A che ha come diagonale gli elementi dal j-esimo al (i+j-1)-esimo della diagonale di A.

Osservazioni: 1) Abbiamo dimostrato che tr(A) è la somma degli autovalori di A (contati con molteplicità), poiché se $a_1, ..., a_n$ sono gli autovalori di A (eventualmente $\notin \mathbb{K}$), $p_A(t) = (a_1 - t) ... \cdot (a_n - t)$, quindi il coefficiente del termine di grado n - 1 di $p_A(t)$ è la somma degli autovalori.

- 2) Se $\mathbb{K} = \mathbb{R}$ e $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathcal{M}(n, \mathbb{R})$, cioè A è una rotazione di 90°, $p_A(t) = t^2 + 1$, che è irriducibile su \mathbb{R} , dunque A non ha autovalori reali.
- 3) In ogni caso $A \in \mathcal{M}(n, \mathbb{K})$ ha al massimo n autovalori distinti.

PROPOSIZIONE 3.2.6: Se $A \sim B$, allora $p_A(t) = p_B(t)$.

Dimostrazione:

 $B = M^{-1}AM$, dunque:

 $p_B(t) = \det(B - tI) = \det(M^{-1}AM - tI) = \det(M^{-1}(A - tI)M) \equiv \det(A - tI) = p_A(t)$, dove il passaggio contrassegnato con \equiv deriva dalla formula di Binet.

Osservazione: Dunque il polinomio caratteristico è un invariante di similitudine; con esso lo sono anche tutti i suoi coefficienti, in particolare det(A) e tr(A).

DEFINIZIONE 3.2.10: $f \in End(V)$. Poniamo $p_f(t) = p_A(t)$, dove A è la matrice associata a f in una qualsiasi base di V.

Osservazione: È una buona definizione, poiché se A' è la matrice associata ad f in un'altra base di V, $A \sim A'$ ed abbiamo dimostrato che se $A \sim A' \Rightarrow p_A(t) = p_{A'}(t)$.

COROLLARIO 3.2.7: Se $f \sim g$, allora $p_f(t) = p_g(t)$.

Dimostrazione:

Sia \mathcal{B} base di V.

$$f \sim g \Rightarrow \mathfrak{M}_{\mathcal{B}}(f) \sim \mathfrak{M}_{\mathcal{B}}(g) \Rightarrow p_f(t) = p_g(t).$$

DEFINIZIONE 3.2.11: $\forall \lambda \in Sp(f)$ denotiamo con $\mu_a(\lambda)$ la molteplicità algebrica di λ come radice di $p_f(t)$.

PROPOSIZIONE 3.2.8: $\forall n \in \mathbb{N}, A \sim B \Rightarrow A^n \sim B^n$.

Dimostrazione:

$$A \sim B \Rightarrow \exists M \in GL(n) | B = M^{-1}AM$$
, dunque $B^n = \underbrace{M^{-1}AM \cdot ... \cdot M^{-1}AM}_{n \ volte} = M^{-1}A^nM \Rightarrow B^n \sim A^n$.

Osservazione: La lista di invarianti per coniugio/similitudine trovati fin qui è:

- rk(f);
- det(*f*);
- Sp(f);
- p_f ;
- $\forall \lambda \in Sp(f)$, $\mu_q(\lambda) \in \mu_a(\lambda)$.

Questa lista è ridondante, infatti:

 $\bullet \quad \text{Se } p_f = p_g \ \Rightarrow \begin{cases} \det(f) = \det(g) \\ Sp(f) = Sp(g) \\ \forall \lambda \in Sp(f), \ \mu_a(\lambda,f) = \mu_a(\lambda,g) \end{cases}, \text{ infatti il determinante è il termine noto}$

del polinomio caratteristico e gli autovalori sono le radici.

• Se $\forall \lambda \in Sp(f) = Sp(g), \ \mu_g(\lambda, f) = \mu_g(\lambda, g) \Rightarrow rk(f) = rk(g).$ Infatti:

$$rk(f) = n - \dim(Ker(f)) = n - \dim(V_0(f)) = n - \mu_g(0, f);$$

$$rk(g) = n - \dim(Ker(g)) = n - \dim(V_0(g)) = n - \mu_g(0, g).$$

Dunque gli invarianti significativi trovati finora sono:

- 1) il polinomio caratteristico;
- 2) la dimensione degli autospazi.

Questo non è un sistema completo di invarianti, infatti:

$$sia A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$p_A(t) = p_B(t) = t^4;$$

$$\dim(V_0(A)) = \dim(Ker(A)) = 2;$$

$$\dim(V_0(B)) = \dim(Ker(B)) = 2.$$

Ma poiché $A^2 \neq 0$ e $B^2 = 0$, allora sicuramente $A^2 \nsim B^2 \Rightarrow A \nsim B$.

PROPOSIZIONE 3.2.9: $f \in End(V)$, $\lambda \in Sp(f)$. Allora $1 \le \mu_g(\lambda) \le \mu_a(\lambda) \le \dim(V)$.

Dimostrazione:

Sia
$$d = \mu_q(\lambda) = \dim(V_\lambda)$$
.

Sia
$$\{v_1, \dots, v_d\}$$
 una base di V_{λ} .

La completo a una base \mathcal{B} di V.

Allora
$$A = \mathfrak{M}_{\mathcal{B}}(f) = \left(\frac{\lambda I_d \mid M}{0 \mid N}\right)$$
, da cui $p_f(t) = (\lambda - t)^d \cdot p_N(t)$ e quindi $\mu_a(\lambda) \ge d$.

PROPOSIZIONE 3.2.10: Sia V uno spazio vettoriale e siano $W_1, ..., W_k$ sottospazi di V.

Sono fatti equivalenti:

- 1) $\dim(W_1 + ... + W_k) = \dim(W_1) + ... + \dim(W_k)$
- 2) Se \mathcal{B}_i è base di W_i , allora $\mathcal{B} = \mathcal{B}_1 \cup ... \cup \mathcal{B}_k$ è base di $W_1 + \cdots + W_k$
- 3) Se $w_i \in W_i \ \forall i \ e \ w_1 + ... + w_k = 0 \ \Rightarrow w_1 = ... = w_k = 0$
- 4) $\forall v \in W_1 + ... + W_k$, v si scrive in modo unico come $v = w_1 + ... + w_k$, con $w_i \in W_i \ \forall i$.

Dimostrazione:

- 2) \Rightarrow 1): Poiché B_i è base di $W_i \Rightarrow \#\mathcal{B} = \#\mathcal{B}_1 + \cdots + \#\mathcal{B}_k \Rightarrow$ \Rightarrow dim $(W_1 + ... + W_k) = \dim(W_1) + ... + \dim(W_k)$.
- 1) \Rightarrow 2): $\mathcal{B} = \mathcal{B}_1 \cup ... \cup \mathcal{B}_k$ genera $W_1 + ... + W_k$ per 1). Inoltre $\#\mathcal{B} = \dim(W_1 + ... + W_k)$, quindi \mathcal{B} è una base di $W_1 + \ldots + W_k$.
- 2) \Rightarrow 3): Scrivo ogni w_i come combinazione lineare di \mathcal{B}_i :

$$w_1 + \ldots + w_k = cl(\mathcal{B}_1) + \ldots + cl(\mathcal{B}_k)$$

Ma \mathcal{B}_1 , ..., \mathcal{B}_k fanno parte di \mathcal{B} e dunque sono indipendenti, dunque tutti gli addendi sono nulli $\Rightarrow w_i = 0 \ \forall i$.

3) \Rightarrow 4): Sia $v = w_1 + \dots + w_k = w_1' + \dots + w_k'$. Allora: $\underbrace{(w_1 - w_1')}_{\in W_1} + \dots + \underbrace{(w_k - w_k')}_{\in W_k} = 0.$

$$\underbrace{(w_1 - w_1')}_{\in W} + \dots + \underbrace{(w_k - w_k')}_{\in W} = 0$$

Quindi per 3), $w_i - w'_i = 0 \ \forall i$, da cui la tesi.

4) \Rightarrow 2): $\mathcal{B} = \mathcal{B}_1 \cup ... \cup \mathcal{B}_k$ genera $W_1 + ... + W_k$.

Basta mostrare che \mathcal{B} è un insieme indipendente.

$$\underbrace{cl(\mathcal{B}_1)}_{=w_1} + \ldots + \underbrace{cl(\mathcal{B}_k)}_{=w_k} = 0.$$

Allora
$$w_1 + ... + w_k = 0 + ... + 0 = 0$$
.

Ma poiché la scrittura è unica, $w_i = 0 \ \forall i$.

Poiché \mathcal{B}_i è base di W_i , tutti i coefficienti della combinazione lineare sono nulli \Rightarrow tesi. DEFINIZIONE 3.2.12: Se vale una qualsiasi delle precedenti condizioni equivalenti, diciamo che $W_1, ..., W_k$ sono in **somma diretta** (**multipla**) e $W_1 \oplus ... \oplus W_k = W_1 + ... + W_k$. Si ha che dim($W_1 \oplus ... \oplus W_k$) = $\sum_{i=1}^k \dim(W_i)$.

PROPOSIZIONE 3.2.11: Sia $f \in End(V)$, $Sp(f) = \{\lambda_1, ..., \lambda_k\}$.

Allora gli autospazi V_{λ_1} , ..., V_{λ_k} sono in somma diretta.

Dimostrazione:

Basta provare che se $v_1 \in V_{\lambda_1}, ..., v_k \in V_{\lambda_k}$ e $v_1 + ... + v_k = 0$, allora $v_i = 0 \ \forall i$.

Per induzione su *k*:

Passo base): k = 1: $v_1 = 0$ implica ovviamente $v_1 = 0$.

Passo induttivo): Dall'ipotesi $v_1 + ... + v_k = 0$ ottengo, applicando f:

 $\lambda_1 v_1 + \ldots + \lambda_k v_k = 0$ e, moltiplicando invece per λ_k :

$$\lambda_k v_1 + \ldots + \lambda_k v_k = 0.$$

Sottraendo ottengo:

$$\underbrace{(\lambda_1 - \lambda_k)v_1}_{\in V_{\lambda_1}} + \ldots + \underbrace{(\lambda_{k-1} - \lambda_k)v_{k-1}}_{\in V_{\lambda_{k-1}}} = 0.$$

Per ipotesi induttiva:

$$(\lambda_1 - \lambda_k)v_1 = 0, \dots, (\lambda_{k-1} - \lambda_k)v_{k-1} = 0.$$

Ma $\lambda_i - \lambda_k \neq 0 \ \, \forall i$, poiché gli autovalori sono distinti. Dunque $v_1 = ... = v_{k-1} = 0$ e quindi anche $v_k = 0$.

Osservazione: In generale $V_{\lambda_1} \oplus ... \oplus V_{\lambda_k} \subsetneq V$.

PROPOSIZIONE 3.2.12: Siano $A, B \in \mathcal{M}(n, \mathbb{R})$. Allora $A \in B$ sono simili su $\mathbb{R} \Leftrightarrow$ lo sono su \mathbb{C} . Dimostrazione:

Precisiamo che:

 $A \sim_{\mathbb{R}} B \iff \exists M \in GL(n,\mathbb{R}) | M^{-1}AM = B;$

 $A \sim_{\mathbb{C}} B \iff \exists M \in GL(n,\mathbb{C}) | M^{-1}AM = B.$

- ⇒) ovvia.
- \Leftarrow) Per ipotesi $\exists M \in GL(n, \mathbb{C}) | M^{-1}AM = B$, cioè AM = MB.

Sia M = X + iY, con $X, Y \in \mathcal{M}(n, \mathbb{R})$ (N.B.: non è detto che X e Y siano invertibili!).

 $A(X + iY) = (X + iY)B \Rightarrow AX + iAY = XB + iYB \Rightarrow AX = XB$, AY = YB, separando parte reale e parte immaginaria.

Notiamo che:

$$\forall t \in \mathbb{R}, A(X + tY) = AX + tAY = XB + tYB = (X + tY)B,$$

dunque per arrivare alla tesi mi basta trovare $t \in \mathbb{R} | X + tY$ sia invertibile, poiché in quel caso A e B sarebbero simili grazie a $X + tY \in \mathcal{M}(n, \mathbb{R})$, cioè simili su \mathbb{R} .

 $\det(X + tY)$ è un polinomio $p(t) \in \mathbb{R}[t]$, ma $p(i) = \det(X + iY) = \det(M) \neq 0$, dunque p(t) non è il polinomio nullo $\Rightarrow \exists t_0 \in \mathbb{R} | p(t_0) \neq 0$, cioè $X + t_0Y \in GL(n, \mathbb{R})$, tesi.

3.3 DIAGONALIZZABILITÁ

DEFINIZIONE 3.3.1: $f \in End(V)$ si dice **diagonalizzabile** se esiste una base $\mathcal{B}|\mathfrak{M}_{\mathcal{B}}(f)$ è diagonale.

Osservazione: $\mathfrak{M}_{\mathcal{B}}(f)$ è diagonale $\Leftrightarrow \mathcal{B}$ è costituita da autovettori per f.

PROPOSIZIONE 3.3.1: $f \in End(V)$, $Sp(f) = \{\lambda_1, ..., \lambda_k\}$.

Allora f è diagonalizzabile $\Leftrightarrow V = V_{\lambda_1} \oplus ... \oplus V_{\lambda_k}$.

Dimostrazione:

 \Rightarrow) Per ipotesi $\exists \mathcal{B}$ base di autovettori.

La suddivido in $\mathcal{B} = \mathcal{B}_1 \cup ... \cup \mathcal{B}_k$, con $\mathcal{B}_i \subset V_{\lambda_i}$.

$$V = Span(\mathcal{B}_1) \oplus ... \oplus Span(\mathcal{B}_k) \subseteq V_{\lambda_1} \oplus ... \oplus V_{\lambda_k}.$$

 $\text{Ma } V_{\lambda_1} \oplus \ldots \oplus V_{\lambda_k} \subseteq V \ \Rightarrow \text{tesi}.$

 $\Leftarrow) \text{ Se } \mathcal{B}_i \text{ è base di } V_{\lambda_i} \ \Rightarrow \ \mathcal{B}_1 \cup ... \cup \mathcal{B}_k \text{ è base di autovettori di } V, \text{ dunque segue la tesi.}$

Osservazioni: 1) La proprietà di essere diagonalizzabile è un invariante di coniugio.

Dimostrazione:

$$f \sim g \implies g = h^{-1} \circ f \circ h.$$

Se $\{v_1, \dots, v_n\}$ è base di autovettori per f, $\{h^{-1}(v_1), \dots, h^{-1}(v_n)\}$ è base di autovettori per g.

- 2) $A \in \mathcal{M}(n, \mathbb{K})$ è diagonalizzabile $\Leftrightarrow A \sim D$ diagonale (poiché D ha una base di autovettori quindi ce l'ha anche A).
- 3) Sia $\mathcal S$ base di V. f diagonalizzabile $\Leftrightarrow \mathfrak M_{\mathcal S}(f)$ è diagonalizzabile.
- 4) $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \mathcal{M}(2, \mathbb{R})$ non è diagonalizzabile (infatti se lo fosse sarebbe simile a una matrice diagonale, ma A ha come autovalore solo $1 \Rightarrow$ la matrice simile sarebbe $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, ma $A \nsim I$).
- 5) $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathcal{M}(2, \mathbb{R})$ non è diagonalizzabile perché non ha autovalori reali.
- 6) $f \in End(V) | f^2 = f$ (si dice che f è un **proiettore**) $\Rightarrow f$ è diagonalizzabile.

Dimostrazione:

Sicuramente $\forall v \in V, v = (v - f(v)) + f(v)$. Notiamo che:

$$f(v-f(v)) = f(v) - f(f(v)) = f(v) - f(v) = 0 \Rightarrow v - f(v) \in Ker(f) = V_0(f);$$

 $f(f(v)) = f(v) \Rightarrow f(v) \in Im(f) = V_1(f).$

Poiché sappiamo che $V=Ker(f)\oplus Im(f) \Rightarrow V=V_0(f)\oplus V_1(f)$, da cui la tesi.

7) $f \in End(V) | f^2 = id$ (si dice che f è un'**involuzione**) $\Rightarrow f$ è diagonalizzabile. Dimostrazione:

Sicuramente $\forall v \in V, v = \frac{v + f(v)}{2} + \frac{v - f(v)}{2}$. Notiamo che:

$$f\left(\frac{v+f(v)}{2}\right) = \frac{f(v)+v}{2} \implies \frac{v+f(v)}{2} \in V_1(f);$$

$$f\left(\frac{v-f(v)}{2}\right) = \frac{f(v)-v}{2} \implies \frac{v-f(v)}{2} \in V_{-1}(f).$$

Abbiamo mostrato che $V_1(f)$ e $V_{-1}(f)$ generano V, dunque $V_1(f) + V_{-1}(f) \supseteq V$.

Poiché ovviamente $V_1(f) + V_{-1}(f) \subseteq V$, allora $V_1(f) + V_{-1}(f) = V$.

Inoltre $V_1(f) \cap V_{-1}(f) = \{0\}$, dunque $V_1(f) \oplus V_{-1}(f) = V$, tesi. TEOREMA DI DIAGONALIZZABILITÁ: $f \in End(V)$, dim(V) = n, $Sp(f) = \{\lambda_1, ..., \lambda_k\}$. $(\mu_2(\lambda_1) + ... + \mu_2(\lambda_k) = n$

Allora
$$f$$
 è diagonalizzabile $\Leftrightarrow \begin{cases} \mu_a(\lambda_1) + \dots + \mu_a(\lambda_k) = n \\ \mu_a(\lambda_i) = \mu_g(\lambda_i) \ \forall i \end{cases}$.

Dimostrazione:

 \Rightarrow) $\exists \mathcal{B}$ base di autovettori di f.

$$\mathfrak{M}_{\mathcal{B}}(f) = \begin{pmatrix} \boxed{\lambda_1 I_{d_1}} & & \\ & \ddots & \\ & & \boxed{\lambda_k I_{d_k}} \end{pmatrix}$$

 $con d_1 + \ldots + d_k = n.$

Allora
$$p_f(t) = (\lambda_1 - t)^{d_1} \cdot ... \cdot (\lambda_k - t)^{d_k}$$
.

Da questo segue che $\mu_a(\lambda_i) = d_i$, quindi è provata la prima condizione.

Poiché $\mathcal B$ contiene d_i autovettori relativi a λ_i , si ha che $\dim(V_{\lambda_i}) \geq d_i = \mu_a(\lambda_i)$.

Ma
$$\mu_g(\lambda_i) \le \mu_a(\lambda_i) \implies \mu_g(\lambda_i) = \mu_a(\lambda_i)$$
.

 \Leftarrow) So che $V_{\lambda_1} \oplus ... \oplus V_{\lambda_k} \subseteq V$ e che f è diagonalizzabile \Leftrightarrow vale l'uguaglianza. Ma $\dim(V_{\lambda_1} \oplus ... \oplus V_{\lambda_k}) = \dim(V_{\lambda_1}) + ... + \dim(V_{\lambda_k}) = \sum_i \mu_g(\lambda_i) = \sum_i \mu_a(\lambda_i) = n \Rightarrow$ tesi.

Osservazione: La condizione $\mu_a(\lambda_1)+\ldots+\mu_a(\lambda_k)=n$ equivale a dire che $p_f(t)=\prod_{i=1}^k(\lambda_i-t)^{m_i}$, cioè che $p_f(t)$ è completamente fattorizzabile.

COROLLARIO 3.3.2: Se $f \in End(V)$, con dim(V) = n, ha n autovalori distinti, allora f è diagonalizzabile.

Dimostrazione:

Poiché $\mu_a(\lambda_i) > 0$, allora sicuramente $\mu_a(\lambda_i) = 1 \ \forall i$ e dunque $\sum_i \mu_a(\lambda_i) = n$. Inoltre $1 \le \mu_g(\lambda_i) \le \mu_a(\lambda_i) = 1 \ \Rightarrow \ \mu_g(\lambda_i) = 1 = \mu_a(\lambda_i) \ \forall i \ \Rightarrow$ tesi grazie al teorema di diagonalizzabilità.

Osservazione: Se $\mathbb{K} = \mathbb{C}$ (o in generale se \mathbb{K} è algebricamente chiuso), la condizione $\sum_i \mu_a(\lambda_i) = n$ è sempre verificata.

Osservazioni: 1) Se A è diagonalizzabile, anche A^n lo è $\forall n \in \mathbb{N}$.

Dimostrazione:

A diagonalizzabile $\Rightarrow A \sim D$ diagonale $\Rightarrow A^n \sim D^n$ e sicuramente D^n è diagonale $\forall n \in \mathbb{N}$ (la dimostrazione formale può essere fatta in questo modo:

- a) dimostrare per induzione su m che, prese $B, C \in \mathcal{D}(m, \mathbb{K}), BC \in \mathcal{D}(m, \mathbb{K})$;
- b) sfruttare il fatto a) per dimostrare per induzione che $D^{n-1} \in \mathcal{D}(m, \mathbb{K}) \Rightarrow D^n \in \mathcal{D}(m, \mathbb{K})$.)
- 2) Se λ è autovalore per A, allora λ^m è autovalore per $A^m \ \forall m \in \mathbb{N}$.

Dimostrazione: Se $AX = \lambda X \Rightarrow A^2X = A(AX) = A(\lambda X) = \lambda(AX) = \lambda^2 X$.

In generale, se $A^{n-1}X = \lambda^{n-1}X$, procedendo come sopra si mostra che $A^nX = \lambda^nX$.

PROPOSIZIONE 3.3.3: Siano $f, g \in End(V) | f \circ g = g \circ f$ e sia V_{λ} l'autospazio relativo a λ per f. Allora $g(V_{\lambda}) \subseteq V_{\lambda}$.

Dimostrazione:

Sia $v \in V_{\lambda}$. Allora $f(g(v)) = g(f(v)) = g(\lambda v) = \lambda g(v) \Rightarrow g(v) \in V_{\lambda} \Rightarrow \text{tesi.}$

Osservazione: Dunque se due endomorfismi commutano, gli autospazi dell'uno sono invarianti per l'altro.

PROPOSIZIONE 3.3.4: $f \in End(V)$, $V = A \oplus B$, A, B sottospazi di V f-invarianti.

Allora f è diagonalizzabile $\Leftrightarrow f|_A$ e $f|_B$ sono diagonalizzabili.

Dimostrazione:

 \Leftarrow) $\exists \mathcal{B}_A$ base di A di autovettori per f;

 $\exists \mathcal{B}_B$ base di B di autovettori per f;

Perciò $\mathcal{B} = \mathcal{B}_A \cup \mathcal{B}_B$ è base di V di autovettori per f.

 \Rightarrow) $\exists \mathcal{B} = \{v_1, ..., v_n\}$ base di V di autovettori per f.

 $f(v_i) = \lambda_i v_i \ \forall i$; inoltre $\forall i \ \exists ! \ a_i \in A, b_i \in B | \ v_i = a_i + b_i$.

$$f(v_i) = \lambda_i v_i = \lambda_i (a_i + b_i) = \underbrace{\lambda_i a_i} + \underbrace{\lambda_i b_i}$$

 $f(v_i) = \lambda_i v_i = \lambda_i (a_i + b_i) = \underbrace{\lambda_i a_i}_{\in A} + \underbrace{\lambda_i b_i}_{\in B}.$ $\operatorname{Ma} f(v_i) = f(a_i + b_i) = \underbrace{f(a_i)}_{\in A} + \underbrace{f(b_i)}_{\in B}, \operatorname{poich\'e} A, B \operatorname{sono} f\operatorname{-invarianti}.$

Ma lo spezzamento è unico, quindi $f(a_i) = \lambda_i a_i$; $f(b_i) = \lambda_i b_i \ \forall i$.

Dunque ho trovato $a_1, \dots, a_n \in A, b_1, \dots, b_n \in B | f(a_i) = \lambda_i a_i$ e $f(b_i) = \lambda_i b_i \ \forall i.$

Ma $a_1, ..., a_n \in A$ provengono, tramite la proiezione $\pi_A: V \to A$, da una base di V, dunque gli a_i sono generatori di $Im(\pi_A)$. Ma π_A è surgettiva, dunque gli a_i generano A.

Dunque posso estrarre una base per A che è di autovettori perché sono $\neq 0$ (se ci fossero l'algoritmo di estrazione li eliminerebbe) e verificano $f(a_i) = \lambda_i a_i$.

Il discorso per B è analogo \Rightarrow tesi.

PROPOSIZIONE 3.3.5: $f \in End(V)$ diagonalizzabile; W sottospazio di V f-invariante.

Allora $f|_W$ è diagonalizzabile.

Dimostrazione 1:

Per la proposizione precedente mi basta trovare U sottospazio di $V \mid f(U) \subseteq U$ e $V = W \oplus U$. f è diagonalizzabile $\Rightarrow \exists$ base di autovettori $\{v_1, ..., v_n\}$ di V per f.

Se $\{w_1, \dots, w_p\}$ è una base di W, $\{w_1, \dots, w_p, v_1, \dots, v_n\}$ generano V e se applico l'algoritmo di estrazione a base ottengo una base $\left\{w_1,\dots,w_p,v_{j_1},\dots,v_{j_{n-p}}\right\}$ di V.

Sia $U = Span(v_{j_1}, ..., v_{j_{n-p}})$. Per costruzione $V = U \oplus W$ e inoltre $f(U) \subseteq U$ poiché questi sono elementi di una base di autovettori.

Dimostrazione 2:

$$V = V_{\lambda_1} \oplus ... \oplus V_{\lambda_k}$$
.

Proviamo che $W = (W \cap V_{\lambda_1}) \oplus ... \oplus (W \cap V_{\lambda_k}).$

$$\forall w \in W, \exists v_1, \dots, v_k | w = v_1 + \dots + v_k e v_i \in V_{\lambda_i}.$$

Se provo che $v_i \in W \ \forall i$ ho la tesi, poiché avrei che W è composto solo da autovettori.

$$w = v_1 + \ldots + v_k;$$

$$f(w) = \lambda_1 v_1 + \dots + \lambda_k v_k;$$

$$f^2(w) = \lambda_1^2 v_1 + \dots + \lambda_k^2 v_k;$$

:

$$f^{k-1}(w) = \lambda_1^{k-1} v_1 + \dots + \lambda_k^{k-1} v_k.$$

Dunque:

$$\begin{pmatrix} w \\ f(w) \\ \vdots \\ f^{k-1}(w) \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \vdots & \vdots & \vdots & \vdots \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \cdots & \lambda_k^{k-1} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \end{pmatrix}$$

V è invertibile perché è una matrice di Vandermonde con $\lambda_i \neq \lambda_j \ \forall i, j$, poiché i corrispondenti autospazi sono in somma diretta, perciò:

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_k \end{pmatrix} = V^{-1} \begin{pmatrix} w \\ f(w) \\ \vdots \\ f^{k-1}(w) \end{pmatrix}$$

Quindi i v_i si ottengono come combinazione lineare degli $f^j(w) \Rightarrow$

$$\Rightarrow v_i \in Span \Big(w, f(w), \dots, f^{k-1}(w) \Big) \ \forall i.$$

Ma i $f^j(w)$ sono tutti contenuti in W, poiché W è un sottospazio f-invariante, dunque $v_i \in W \ \forall i$, da cui la tesi.

DEFINIZIONE 3.3.2: $f, g \in End(V)$ si dicono **simultaneamente diagonalizzabili** se ammettono una base comune di autovettori.

TEOREMA DI DIAGONALIZZAZIONE SIMULTANEA: Siano $f,g \in End(V) | f \circ g = g \circ f$. Allora:

- 1) Se f è diagonalizzabile con $n = \dim(V)$ autovalori distinti, allora g è diagonalizzabile e f e g sono simultaneamente diagonalizzabili
- 2) Se f e g sono diagonalizzabili lo sono simultaneamente. Dimostrazione:
- 1) $\exists \mathcal{B}$ base di V, $\mathcal{B} = \{v_1, \dots, v_n\}$ ciascun $Span(v_i)$ coincide con un autospazio (in quanto tutti gli autospazi di f hanno dimensione 1 per ipotesi). Dunque sappiamo che $g(Span(v_i)) \subseteq Span(v_i)$, cioè $g(v_i) = \lambda_i v_i$ per qualche $\lambda_i \in \mathbb{K} \ \forall i$ (infatti in generale so che $g(Span(v_i)) \subseteq V_{\lambda_i}$, ma $V_{\lambda_i} = Span(v_i)$) Dunque segue la tesi.
- 2) f diagonalizzabile $\Rightarrow V = V_{\lambda_i} \oplus ... \oplus V_{\lambda_k}$. $f \circ g = g \circ f \Rightarrow g(V_{\lambda_i}) \subseteq V_{\lambda_i} \ \forall i$. Sappiamo che g diagonalizzabile e $g(V_{\lambda_i}) \subseteq V_{\lambda_i}$ implica che $g|_{V_{\lambda_i}}$ è diagonalizzabile. Se \mathcal{B}_{λ_i} è una base di autovettori per $g|_{V_{\lambda_i}}$, allora $\mathcal{B} = \mathcal{B}_{\lambda_1} \cup ... \cup \mathcal{B}_{\lambda_k}$ è una base di V (poiché $V = V_{\lambda_i} \oplus ... \oplus V_{\lambda_k}$) di autovettori (questo per costruzione, perché prendendo un $x \in V_{\lambda_i} \oplus ... \oplus V_{\lambda_k}$ ho sicuramente un autovettore per f, ma questi sono autovettori per i $g|_{V_{\lambda_i}}$, dunque sono autovettori anche per g).

Dunque segue la tesi.

3.4 TRIANGOLABILITÁ

DEFINIZIONE 3.4.1: $f \in End(V)$ si dice triangolabile se $\exists B$ base di $V \mid \mathfrak{M}_{\mathcal{B}}(f)$ è triangolare.

Osservazioni: 1) $A \in \mathcal{M}(n, \mathbb{K})$ è triangolabile $\Leftrightarrow A \sim T$ triangolare.

2) f diagonalizzabile $\Rightarrow f$ triangolabile.

Il viceversa è falso, infatti:

 $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ è triangolabile ma non è diagonalizzabile.

3) $f \in End(V)$, S base qualsiasi di V. Allora f è triangolabile $\Leftrightarrow A = \mathfrak{M}_{S}(f)$ è triangolabile.

DEFINIZIONE 3.4.2: $\dim(V) = n$. Si chiama **bandiera** per V ogni famiglia $\{V_i\}_{i \in J_n}$ di sottospazi vettoriali di V tali che:

- 1) $V_1 \subset V_2 \subset \ldots \subset V_n$
- 2) $\forall i \operatorname{dim}(V_i) = i$.

Osservazioni: 1) Ogni base $\{v_1, ..., v_n\}$ di V induce una bandiera per $V: V_i = Span(v_1, ..., v_i)$.

2) \forall bandiera per V, $\exists \mathcal{B}$ base che la induce (basta scegliere come i-esimo vettore di base un vettore $\in V_i$ e $\notin V_{i-1}$).

DEFINIZIONE 3.4.3: $f \in End(V)$, \mathcal{B} base di V. \mathcal{B} si dice **base a bandiera** per f se i sottospazi della bandiera indotta da \mathcal{B} sono f-invarianti, cioè $\forall i \ f(Span(v_1, ..., v_i)) \subseteq Span(v_1, ..., v_i)$.

PROPOSIZIONE 3.4.1: f triangolabile $\Leftrightarrow \exists$ base a bandiera per f.

Dimostrazione:

- \Rightarrow) f triangolabile \Rightarrow $A = \mathfrak{M}_{\mathcal{B}}(f)$ triangolabile \Rightarrow $A \sim T$ triangolare \Rightarrow se \mathcal{S} è la base tale che $\mathfrak{M}_{\mathcal{S}}(f) = T$, allora \mathcal{S} è evidentemente a bandiera.
- \Leftarrow) Se $f(v_i) \in Span(v_1, ..., v_i) \ \forall i$, allora $\forall i$ le coordinate di $f(v_i)$ dalla (i+1)-esima alla n-esima sono nulle, da cui la tesi.

Osservazione: Non tutti gli endomorfismi sono triangolabili (poiché il primo vettore di una base a bandiera deve essere autovettore per f). Ad esempio:

 $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, non avendo autovalori reali, non è triangolabile.

TEOREMA DI TRIANGOLABILITÁ: f è triangolabile $\Leftrightarrow p_f(t)$ è completamente fattorizzabile (cioè se $\sum_x \mu_a(x) = \dim(V)$).

Dimostrazione:

 \Rightarrow) Per ipotesi $\exists \mathcal{B}$ base di V tale che:

$$A=\mathfrak{M}_{\mathcal{B}}(f)=\begin{pmatrix}\lambda_1 & *\\ & \ddots \\ 0 & \lambda_n\end{pmatrix}$$
 Allora $p_f(t)=p_A(t)=(\lambda_1-t)\cdot ...\cdot (\lambda_n-t)=\prod_{i=1}^k (\lambda_i-t)^{m_i}$, tesi.

\Leftarrow) Per induzione su $n = \dim(V)$:

Passo base): n = 1: ovvio, poiché ogni matrice 1×1 è triangolare.

Passo induttivo): Per ipotesi $\exists \lambda_1$ autovalore per f (poiché $p_f(t)$ è completamente fattorizzabile e dunque ha almeno una radice). Sia v_1 autovettore relativo a λ_1 .

Completo v_1 a base $S = \{v_1, ..., v_n\}$ di V.

Sia $V_1 = Span(v_1)$ e $W = Span(v_2, ..., v_n)$. Allora $V = V_1 \oplus W$.

$$\mathfrak{M}_{\mathcal{S}}(f) = \begin{pmatrix} \frac{\lambda_1 \mid & \dots & \\ 0 \mid & \\ \vdots \mid & C & \\ 0 \mid & & \end{pmatrix}$$

Siano $\pi_{V_1}: V \to V_1$, $\pi_W: V \to W$ le proiezioni indotte dalla somma diretta.

Osservo che $\mathcal{T}=\{v_2,\dots,v_n\}$ è base di W e $\mathfrak{M}_{\mathcal{T}}(\pi_W\circ f|_W)=\mathcal{C}.$

Ora:

$$p_f(t) = (\lambda_1 - t) \cdot p_C(t).$$

Ma $p_f(t)$ è completamente fattorizzabile, quindi anche $p_C(t)$ lo è. Inoltre $\pi_W \circ f|_W \in$ End(W), quindi per ipotesi induttiva $\exists \{w_2, ..., w_n\}$ base di W a bandiera per $\pi_W \circ f|_W$.

È ovvio che $\{v_1, w_2, ..., w_n\}$ è base di V, ma è anche a bandiera, infatti:

 $f(v_1) = \lambda_1 \cdot v_1$, poiché v_1 è autovettore;

$$f(v_1) = \lambda_1 \cdot v_1, \text{ poiche } v_1 \text{ e autovettore;}$$

$$f(w_i) = \left(\underbrace{\left(\pi_{V_1} + \pi_W\right)}_{=id} \circ f\right)(w_i) = \underbrace{\left(\pi_{V_1} \circ f\right)(w_i)}_{\in V_1} + \underbrace{\left(\pi_W \circ f\right)(w_i)}_{\in Span(w_2, \dots, w_i)},$$

e $(\pi_W \circ f)(w_i) \in Span(w_2, ..., w_i)$ poiché per ipotesi induttiva $\{w_2, ..., w_n\}$ è una base di W a bandiera per $\pi_W \circ f|_W$.

Dunque $f(w_i) \in Span(v_1, w_2, ..., w_n)$, da cui la tesi.

COROLLARIO 3.4.2: Se K è algebricamente chiuso (cioè ogni polinomio in K è completamente fattorizzabile), allora tutti gli endomorfismi di *V* sono triangolabili.

COROLLARIO 3.4.3: La proprietà di essere triangolabile è una proprietà invariante per coniugio/similitudine (poiché dipende solo dal polinomio caratteristico).

Osservazione: Le matrici $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ e $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ sono simili poiché entrambe rappresentano l'endomorfismo $f \mid f(e_1) = v_1$ e $f(e_2) = v_1 + v_2$, la prima nella base $\mathcal{B}_1 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$, la seconda nella base $\mathcal{B}_2 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$. D'altra parte, entrambe le matrici sono triangolabili (in quanto triangolari), ma la forma triangolabile è sostanzialmente diversa. Dunque, poiché nella stessa classe di similitudine possono coesistere elementi molto diversi, si dice che le matrici triangolari non sono "forme canoniche".

DEFINIZIONE 3.4.4: $A \in \mathcal{M}(n, \mathbb{K})$ si dice nilpotente se $\exists n \in \mathbb{N} | A^n = 0$.

PROPOSIZIONE 3.4.4: $A \in \mathcal{M}(n, \mathbb{K})$. A è nilpotente $\Leftrightarrow 0$ è autovalore con molteplicità $n \iff 0$ $\Leftrightarrow p_A(t) = t^n$).

Dimostrazione:

- \Rightarrow) Per ipotesi $\exists p \in \mathbb{N} \mid A^p = 0$. Sia $\lambda \in \overline{\mathbb{K}}$ un autovalore per A ($\overline{\mathbb{K}}$ è la chiusura algebrica di \mathbb{K} , cioè un campo dove tutti i polinomi di $\mathbb{K}[t]$ sono completamente fattorizzabili). Allora λ^p è autovalore per $A^p = 0$, ma l'unico autovalore per 0 è $0 \Rightarrow \lambda^p = 0 \Rightarrow \lambda = 0$.
- \Leftarrow) Per ipotesi A è triangolabile, cioè $A \sim T$ triangolare strettamente (poiché matrici simili hanno gli stessi autovalori, quindi T ha solo 0 come autovalore e dunque ha la diagonale nulla).

Dimostriamo ora per induzione su n che se $T \in \mathcal{M}(n, \mathbb{K})$ triangolare strettamente $\Rightarrow T^n = 0$:

Passo base):
$$n = 2$$
: $\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Passo induttivo): Sia $T' \in \mathcal{M}(n, \mathbb{K})$ triangolare strettamente:

$$T' = \begin{pmatrix} & & & | & & \\ & T & & | & X \\ & & & | & \\ \hline 0 & \dots & 0 & | & 0 \end{pmatrix} \Rightarrow T'^{n+1} = \begin{pmatrix} & & & | & & \\ & T^{n+1} & | & T^n X \\ & & & | & \\ \hline 0 & \dots & 0 & | & 0 \end{pmatrix}$$

Ma per ipotesi induttiva (poiché T è triangolare strettamente), $T^n = 0$, quindi ${T'}^{n+1} = 0$. Quindi, poiché $A^n \sim T^n = 0 \implies A^n = 0$, tesi.

Osservazione: L'esempio già visto:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

prova che gli invarianti di similitudine trovati finora non sono un sistema completo di invarianti neppure nella classe degli endomorfismi triangolabili.

DEFINIZIONE 3.4.5: $f, g \in End(V)$ si dicono **simultaneamente triangolabili** se \exists base \mathcal{B} di V a bandiera sia per f sia per g.

TEOREMA DI TRIANGOLAZIONE SIMULTANEA: Siano $f, g \in End(V)$ triangolabili tali che $f \circ g = g \circ f$. Allora:

- 1) Se $W \subseteq V$ è un sottospazio f-invariante, allora $f|_W$ è triangolabile;
- 2) $f \in g$ ammettono un autovettore comune;
- 3) f e g sono simultaneamente triangolabili.

Dimostrazione:

1) Sia \mathcal{B}_W una base di W; estendiamola a base \mathcal{B} di V. Sia inoltre $A_W = \mathfrak{M}_{\mathcal{B}_W}(f|_W)$. Allora:

$$A = \mathfrak{M}_{\mathcal{B}}(f) = \left(\frac{A_W \mid *}{0 \mid C}\right)$$

 $A=\mathfrak{M}_{\mathcal{B}}(f)=\left(\frac{A_W\mid \ \ast}{0\mid C}\right)$ Dunque $p_f(t)=p_A(t)=\det(A-tI)=\det(A_W-tI)\cdot\det(C-tI)=p_{A_W}(t)\cdot q(t)=0$ $= p_{f|_{\mathcal{W}}}(t) \cdot q(t).$

Poiché $p_f(t)$ si fattorizza completamente, anche $p_{f|_W}(t)$ si fattorizza completamente $\Rightarrow f|_W$ è triangolabile.

2) f triangolabile $\Rightarrow \exists$ autospazio V_{λ} per f di dimensione > 0. $g(V_{\lambda}) \subseteq V_{\lambda} \Rightarrow \text{per 1}) \ g|_{V_{\lambda}}$ è triangolabile $\Rightarrow \exists v \in V_{\lambda}$ autovettore per $g|_{V_{\lambda}}$, dunque per g. v è l'autovettore sia di f che di g cercato.

3) Per induzione su $n = \dim(V)$:

Passo base): n = 1: ovvio.

Passo induttivo): Per 2) sappiamo che $\exists v$ autovettore sia per f che per g. Sia $V_1 = Span(v)$. Estendiamo v a base $\mathcal{B}=\{v,v_2,\ldots,v_n\}$ di V. Sia $W=Span(v_2,\ldots,v_n)$. Evidentemente $V = V_1 \oplus W$. Allora:

$$A_1 = \mathfrak{M}_{\mathcal{B}}(f) = \begin{pmatrix} \frac{\lambda \mid & \dots & \\ \hline 0 \mid & \\ \vdots \mid & C_1 & \\ \hline 0 \mid & & \end{pmatrix}; \quad A_2 = \mathfrak{M}_{\mathcal{B}}(g) = \begin{pmatrix} \frac{\mu \mid & \dots & \\ \hline 0 \mid & \\ \vdots \mid & C_2 & \\ \hline 0 \mid & & \end{pmatrix}.$$

Siano $\pi_{V_1}: V \to V_1$ e $\pi_W: V \to W$ le proiezioni indotte dalla somma diretta $V = V_1 \oplus W$.

Allora $\pi_W \circ f$, $\pi_W \circ g \in End(W)$, inoltre:

$$(\pi_W \circ f) \circ (\pi_W \circ g) \sqsubseteq \pi_W \circ f \circ g = \pi_W \circ g \circ f = (\pi_W \circ g) \circ (\pi_W \circ f)$$

dove il passaggio contrassegnato con \equiv segue dal fatto che $\pi_W \circ f \circ \pi_W = \pi_w \circ f$, infatti, se $v \in V \implies v = v_1 + w$, con $v_1 \in V_1$ e $w \in W$, dunque:

$$(\pi_w \circ f \circ \pi_W)(v) = (\pi_W \circ f)(w) = \pi_W(f(w));$$

$$(\pi_w \circ f)(v) = (\pi_w \circ f)(v_1 + w) = \pi_W (\lambda v_1 + f(w)) = \pi_W (f(w)).$$

Quindi si può applicare l'ipotesi induttiva a $\pi_W \circ f$ e $\pi_W \circ g$, che dunque ammettono una base $\{w_2, ..., w_n\}$ di W a bandiera sia per $\pi_W \circ f$ che per $\pi_W \circ g$.

Sicuramente $\{v, w_2, ..., w_n\}$ è base di V e la verifica che è evidentemente a bandiera per f e per g è analoga a quella nel teorema di triangolabilità.

3.5 FORMA CANONICA DI JORDAN

DEFINIZIONE 3.5.1:
$$\forall f \in End(V), \forall p(t) = a_0 + ... + a_s t^s \in \mathbb{K}[t]$$
, poniamo $p(f) = a_0 f^0 + ... + a_s f^s \in End(V)$, dove $f^0 = id \in \forall j \in \mathbb{N}$, $f^j = \underbrace{f \circ ... \circ f}_{j \text{ volte}}$.

DEFINIZIONE 3.5.2: $S \subseteq \mathbb{K}[t]$ si definisce **ideale di polinomi** in $\mathbb{K}[t]$ se:

- $\forall p(t), q(t) \in S, p+q \in S;$
- $\forall p(t) \in S, \ \forall q(t) \in \mathbb{K}[t], \ pq \in S.$

DEFINIZIONE 3.5.3: $\forall f \in End(V)$, definiamo ideale di f, $I(f) = \{p(t) \in \mathbb{K}[t] | p(f) = 0\}$.

Osservazioni: 1) Se $g = h^{-1} \circ f \circ h$, con $h \in GL(V)$, allora $\forall p(t) \in \mathbb{K}[t], p(g) = h^{-1} \circ p(f) \circ h$, poiché $p(g) = a_0(h^{-1} \circ id \circ h) + a_1(h^{-1} \circ f \circ h) + \dots + a_s \underbrace{(h^{-1} \circ f \circ h \circ \dots \circ h^{-1} \circ f \circ h)}_{s \ volte} =$

$$=a_0id+a_1(h^{-1}\circ f\circ h)+\cdots+a_s(h^{-1}\circ f^s\circ h)=h^{-1}\circ p(f)\circ h.$$

Dunque $f \sim g \Rightarrow p(f) \sim p(g) \ \forall p(t) \in \mathbb{K}[t]$.

- 2) $\forall p(t), q(t) \in \mathbb{K}[t]$ si ha che:
 - (p+q)(f) = p(f) + q(f);
 - $(pq)(f) = p(f) \circ q(f) = q(f) \circ p(f)$

(le semplici verifiche sono lasciate al lettore).

Dunque $\forall f \in End(V)$ l'applicazione:

$$F: \begin{matrix} (\mathbb{K}[t], +, \cdot) \to (End(V), +, \circ) \\ p(t) \to p(f) \end{matrix}$$

è un omomorfismo di anelli.

3) Se \mathcal{B} è base di V e $A = \mathfrak{M}_{\mathcal{B}}(f)$, allora $p(A) = \mathfrak{M}_{\mathcal{B}}(p(f))$.

PROPOSIZIONE 3.5.1: $f, g \in End(V)$. Allora:

- 1) Se $f \sim g$ allora I(f) = I(g);
- 2) I(f) è un ideale di $\mathbb{K}[t]$;
- 3) Se $A = \mathfrak{M}_{\mathcal{B}}(f)$, allora I(f) = I(A).

Dimostrazione:

- 1) Le due inclusioni sono ovvie grazie al fatto che $g = h^{-1} \circ f \circ h \Rightarrow p(g) = h^{-1} \circ p(f) \circ h$.
- 2) Le due verifiche sono immediate.
- 3) $p(t) \in I(f) \Leftrightarrow p(f) = 0 \Leftrightarrow \mathfrak{M}_{\mathcal{B}}(p(f)) = 0 \Leftrightarrow p(A) = 0 \Leftrightarrow p(t) \in I(A)$.

Osservazione: Quindi I(f) è un invariante di coniugio.

Osservazione: I(f) contiene polinomi di grado ≥ 1 . Infatti, se f = 0, $t^s \in I(f) \ \forall s \in \mathbb{N}$. Se $f \neq 0$ e dim(V) = n, allora $\{f^0, ..., f^{n^2}\}$ sono linearmente dipendenti in End(V), poiché sono $n^2 + 1$ elementi in uno spazio di dimensione n^2 .

Dunque $\exists a_0, ..., a_{n^2} \in \mathbb{K}$ non tutti nulli tali che:

$$a_0 f^0 + \dots + a_{n^2} f^{n^2} = 0$$

 $a_0f^0+\ldots+a_{n^2}f^{n^2}=0.$ Allora $p(t)=a_0+a_1t+\ldots+a_{n^2}t^{n^2}\in\mathbb{K}[t]$ ha grado ≥ 1 e $p(t)\in I(f)$.

TEOREMA DI HAMILTON-CAYLEY: $\forall f \in End(V), p_f \in I(f)$.

Dimostrazione:

Sia \mathcal{B} una base di V e $A = \mathfrak{M}_{\mathcal{B}}(f)$.

 $p_f = p_A \implies \mathfrak{M}_{\mathcal{B}}\left(p_f(f)\right) = p_f(A) = p_A(A)$, dunque per provare che $p_f(f) = 0$ mi basta provare che $p_{A}(A) = 0$.

Procediamo per induzione su $n = \dim(V)$:

Passo base): n = 1: ovvio, poiché se A = (a), allora $p_A(t) = a - t$, quindi $p_A(A) = aI - A = 0$.

Passo induttivo): 1° CASO: *A* è triangolabile.

Allora $\exists v_1 \in \mathbb{K}^n$ autovettore per A.

Lo completo a base di \mathbb{K}^n , $S = \{v_1, ..., v_n\}$.

Allora:

$$\tilde{A} = \mathfrak{M}_{\mathcal{S}}(A) = \begin{pmatrix} \frac{\lambda \mid & \dots & \\ 0 \mid & \\ \vdots \mid & A_1 & \\ 0 \mid & \end{pmatrix}$$

Poiché $A \sim \tilde{A}$, allora $p_A(A) \sim p_A(\tilde{A})$, quindi la tesi è provare che $p_A(\tilde{A}) = 0$, cioè non è restrittivo supporre $A = \tilde{A}$.

Osserviamo che $\forall m \in \mathbb{N}$:

$$A^{m} = \begin{pmatrix} \begin{array}{c|c} \lambda & & \dots & \\ \hline 0 & & & \\ \vdots & & A_{1} & \\ \hline 0 & & & \\ \end{pmatrix}^{m} = \begin{pmatrix} \begin{array}{c|c} \lambda^{m} & \dots & \\ \hline 0 & & & \\ \vdots & & A_{1}^{m} & \\ \hline 0 & & & \\ \end{pmatrix}$$

quindi $\forall q(t)$ si ha che:

$$q(A) = \begin{pmatrix} \frac{q(\lambda)| & \dots & \\ 0 & | & \\ \vdots & | & q(A_1) \\ 0 & | & \end{pmatrix}.$$

Ora, $p_A(t) = (\lambda - t)p_{A_1}(t)$.

Ma poiché $p_A(A)$ è completamente fattorizzabile, allora anche $p_{A_1}(t)$ è completamente fattorizzabile $\Rightarrow A_1$ è triangolabile.

Per ipotesi induttiva $p_{A_1}(A_1) = 0$, dunque:

$$p_{A_1}(A) = \begin{pmatrix} \frac{p_{A_1}(\lambda)| & \dots & \\ 0 & | & \\ \vdots & | & p_{A_1}(A_1) \\ 0 & | & \end{pmatrix} = \begin{pmatrix} \frac{p_{A_1}(\lambda)| & \dots & }{0} & \\ \vdots & | & 0 \\ 0 & | & & \end{pmatrix}$$

Allora $\forall v \in \mathbb{K}^n$:

$$p_A(A)(v) = (\lambda I - A) \underbrace{p_{A_1}(A)(v)}_{\in Span(v_1)} = 0$$
, poiché $v_1 \in Ker(\lambda I - A)$ in quanto v_1 è autovettore

relativo all'autovalore λ .

CASO GENERALE: Utilizziamo il fatto che esiste un campo \mathbb{F} estensione di $\mathbb{K}|\ p_A(t)$ è completamente fattorizzabile in $\mathbb{F}[t]$ (ad esempio se $\mathbb{K} = \mathbb{R}, \mathbb{F} = \mathbb{C}$).

Si procede come nel caso precedente lavorando in \mathbb{F} e si trova che $p_A(A)=0$ in $\mathcal{M}(n,\mathbb{F})$, dunque tale relazione vale anche in $\mathcal{M}(n,\mathbb{K})$, da cui la tesi.

PROPOSIZIONE 3.5.2: Sia I un ideale $\neq \{0\}$ di $\mathbb{K}[t]$. Allora esiste un unico polinomio monico $g(t) \in I$ che genera I, ossia $I = \{g(t)q(t)|q(t) \in \mathbb{K}[t]\}$ (se g genera I, scriviamo I = (g)). Dimostrazione:

Esistenza): Sia $g(t) \in I$ monico, di grado ≥ 0 e minimo (cioè il polinomio con grado più basso in I).

Sia $a(t) \in I$. Per il teorema di divisone in $\mathbb{K}[t]$, $\exists ! q(t), r(t) \in \mathbb{K}[t]$ tali che:

(a(t) = g(t)q(t) + r(t)

 $\left(\deg(r(t)) \le \deg(g(t))\right)$

Allora r(t) = a(t) - g(t)q(t).

 $\operatorname{Ma} a(t) \in I, g(t) \in I \ \Rightarrow g(t)q(t) \in I \ \Rightarrow r(t) \in I.$

Poiché $\deg(r(t)) \leq \deg(g(t))$, avrei trovato un polinomio di grado più piccolo di g in I, assurdo $\Rightarrow r(t) = 0$.

Unicità): Se $g_1, g_2 \in I$ sono due polinomi monici di grado minimo e ≥ 0 , allora: $I = (g_1) = (g_2)$, quindi $g_1 | g_2$ e $g_2 | g_1$, poiché sono entrambi generatori. Allora $g_1 = k \cdot g_2$, quindi $g_1 = g_2$, in quanto sono monici.

PROPOSIZIONE 3.5.3: Siano $a(t), b(t) \in \mathbb{K}[t]$ non nulli.

Sia $I(a(t), b(t)) = {\varphi(t)a(t) + \psi(t)b(t) | \varphi(t), \psi(t) \in \mathbb{K}[t]}$. Allora:

- 1) I(a(t), b(t)) è un ideale di $\mathbb{K}[t]$ che contiene polinomi non nulli;
- 2) Se d(t) è il generatore monico di I(a(t), b(t)), allora d(t) è il M.C.D. di a(t) e b(t). Dimostrazione:
- 1) Le semplici verifiche sono lasciate al lettore. Sicuramente a(t), $b(t) \in I(a(t), b(t))$, dunque l'ideale contiene polinomi non nulli.
- 2) Sicuramente d(t) divide a(t) e b(t), poiché questi ultimi appartengono all'ideale e d(t) è il generatore dell'ideale. Sia $d_1(t)$ tale che divide sia a(t) che b(t). Allora qualsiasi $q(t) \in I(a(t), b(t))$ è diviso da $d_1(t)$, in quanto $q(t) = \varphi_0(t)a(t) + \psi_0(t)b(t) = d(t)(\varphi_0(t)a'(t) + \psi_0(t)b'(t))$. Ma $d(t) \in I(a(t), b(t))$, dunque $d_1(t)|d(t)$, tesi.

IDENTITÁ DI BEZOUT: Se d(t) = M.C.D.(a(t), b(t)), allora $\exists \varphi(t), \psi(t) \in \mathbb{K}[t]$ tali che $d(t) = \varphi(t)a(t) + \psi(t)b(t)$.

Dimostrazione:

È un corollario immediato della precedente proposizione.

DEFINIZIONE 3.5.4: Sia $f \in End(V)$. Si definisce **polinomio minimo** di f il generatore $m_f(t)$ monico dell'ideale I(f).

Osservazione: dal teorema di Hamilton-Cayley segue che $m_f|p_f \ \forall f \in End(V)$.

Osservazione: Non conosciamo un metodo pratico e/o algoritmico per calcolare il polinomio minimo di un endomorfismo. Quindi è utile calcolare prima il polinomio caratteristico e poi risalire (a tentativi) al polinomio minimo.

Esempi:

1)
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
; $p_A(t) = t^3$, inoltre $A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0$, dunque sicuramente $m_A(t) = t^3$
2) $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$; $p_A(t) = t^3$ e $B^2 = 0$, dunque $m_A(t) = t^2$.

Osservazione: Se W è sottospazio vettoriale di V e $f(W) \subseteq W$, allora $m_{f|_W}|m_f$. Infatti $f|_W$ è un endomorfismo e poiché m_f si annulla su V, a maggior ragione si annulla su W; inoltre evidentemente $m_{f|_W}$ è polinomio minimo di $f|_W$, dunque $m_{f|_W}|m_f$.

PROPOSIZIONE 3.5.4: Sia λ autovalore per f. Allora $\forall q(t) \in I(f), \ q(\lambda) = 0$.

Dimostrazione:

Sia
$$v \neq 0$$
, $v \in V | f(v) = \lambda v$. Per ipotesi $q(f) = 0$ e dunque $q(f)(v) = 0$. Se $q(t) = a_0 + a_1 t + \ldots + a_s t^s$, $0 = q(f)(v) = (a_0 i d + \ldots + a_s f^s)(v) = a_0 v + a_1 \lambda v + \ldots + a_s \lambda^s v = q(\lambda) \cdot v$. Ma poiché $v \neq 0 \Rightarrow q(\lambda) = 0$.

Osservazione: Abbiamo appena dimostrato che ogni polinomio dell'ideale di f (dunque in particolare il polinomio minimo) si annulla su ogni autovalore. Dunque segue:

COROLLARIO 3.5.5: Se
$$f$$
 è triangolabile, allora, se $\lambda_1, \dots, \lambda_k$ sono gli autovalori di f :
$$p_f(t) = \prod_{i=1}^k (t-\lambda_i)^{h_i}; \quad m_f(t) = \prod_{i=1}^k (t-\lambda_i)^{s_i}$$

con $1 \le s_i \le h_i \ \forall i$.

PROPOSIZIONE 3.5.6: Sia $N = \left(\frac{A \mid 0}{0 \mid B}\right)$, con $A, B \in \mathcal{M}(n, \mathbb{K})$. Allora $m_N = m.c.m(m_A, m_B)$.

Dimostrazione:

Notiamo innanzitutto che $\forall q(t) \in \mathbb{K}[t]$, $q(N) = \left(\frac{q(A) \mid 0}{0 \mid q(B)}\right)$.

Dunque, poiché $m_N(N) = 0$, allora $\left(\frac{m_N(A) \mid 0}{0 \mid m_N(B)}\right) = 0$, dunque $m_N(A) = m_N(B) = 0$, cioè $m_N \in I(A)$ e $m_N \in I(B)$, ossia $m_A | m_N$ e $m_B | m_N$

Sia ora g tale che $m_A|g$ e $m_B|g$; allora sicuramente g(A)=g(B)=0, quindi g(N)=0, ossia $g \in I(N) \Rightarrow m_N | g$, tesi.

Osservazione: Il polinomio minimo, in quanto generatore di I(f), è un invariante di coniugio/similitudine.

Inoltre m_f distingue le già studiate matrici non simili:

$$A = \begin{pmatrix} 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ \hline 0 & 0 & 0 & | & 0 \end{pmatrix}; \quad B = \begin{pmatrix} 0 & 1 & | & 0 & 0 \\ 0 & 0 & | & 0 & 0 \\ \hline 0 & 0 & | & 0 & 1 \\ 0 & 0 & | & 0 & 0 \end{pmatrix}$$

Infatti $m_A(t) = m.c.m(t^3, t) = t^3 e m_B(t) = m.c.m(t^2, t^2) = t^3 e m_B(t) = m.c.m(t^2, t^2) = t^3 e m_B(t) = m.c.m(t^3, t^2) = t^3 e m_B(t) = m.c.m(t^3, t^2) = t^3 e m_B(t) = m.c.m(t^2, t^2) = t^3 e m_B(t) = t^3 e m_B($

Nonostante questo, gli invarianti trovati finora:

- il polinomio caratteristico;
- la dimensione degli autospazi;
- il polinomio minimo;

non sono un sistema completo di invarianti per coniugio/similitudine, infatti:

$$C = \begin{pmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} & 0 & 0 \\ 0 & \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} & 0 \\ 0 & 0 & 0 \end{bmatrix}; D = \begin{pmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} & 0 & 0 \\ 0 & \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} & 0 \\ 0 & 0 & \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{pmatrix}$$

 $p_C(t) = p_D(t) = t^7$; $m_C(t) = m.c.m(t^3, t^3, t) = t^3$; $m_D(t) = m.c.m(t^3, t^2, t^2) = t^3$; Inoltre $V_0(C) = 7 - rk(C) = 3$; $V_0(D) = 7 - rk(D) = 3$, ma $C \not\sim D$, in quanto $rk(C^2) = 2$ e $rk(D^2) = 1.$

LEMMA 3.5.7: $f \in End(V)$, $g(t) \in \mathbb{K}[t]$, allora W = Ker(g(f)) è f-inviariante.

Dimostrazione:

Dobbiamo provare che $f(W) \subseteq W$, ossia che $\forall x \in W$, g(f)(f(x)) = 0.

Poiché $g(t) \cdot t = t \cdot g(t)$, si ha che $g(f) \circ f = f \circ g(f)$ e dunque:

$$g(f)\big(f(x)\big) = (g(f)\circ f)(x) = \big(f\circ g(f)\big)(x) = f\big(g(f)(x)\big) \sqsubseteq f(0) = 0,$$

dove il passaggio contrassegnato da \equiv segue dal fatto che $x \in Ker(g(f))$.

TEOREMA DI DECOMPOSIZIONE PRIMARIA: $f \in End(V), q(t) \in I(f)$.

Sia $q(t) = q_1(t)q_2(t)$, con $q_1(t), q_2(t) \in \mathbb{K}[t]$ e M. C. $D(q_1, q_2) = 1$. Allora:

- 1) $V = Ker(q_1(f)) \oplus Ker(q_2(f));$
- 2) Gli addendi $Ker(q_1(f))$ e $Ker(q_2(f))$ sono f-invarianti;

3) Se
$$f \sim g$$
, allora
$$\begin{cases} \dim \left(Ker(q_1(f)) \right) = \dim \left(Ker(q_1(g)) \right) \\ \dim \left(Ker(q_2(f)) \right) = \dim \left(Ker(q_2(g)) \right) \end{cases}$$

Dimostrazione:

1) Per Bezout $\exists a(t), b(t) \in \mathbb{K}[t]$ tali che $1 = a(t)q_1(t) + b(t)q_2(t)$.

Valutando in *f* ho:

$$id = a(f) \circ q_1(f) + b(f) \circ q_2(f) \Rightarrow \forall v \in V, \ v = \big(a(f) \circ q_1(f)\big)(v) + \big(b(f) \circ q_2(f)\big)(v).$$

Notiamo che $(a(f) \circ q_1(f))(v) \in Ker(q_2(f))$, infatti:

$$q_2(f)(a(f) \circ q_1(f))(v) = (a(f) \circ q_1(f) \circ q_2(f))(v) = (a(f) \circ (q_1q_2)(f))(v) = (a(f) \circ q(f))(v) = 0,$$

in quanto q(f) = 0.

Analogamente si prova che $(a(f) \circ q_2(f))(v) \in Ker(q_1(f))$.

Dunque abbiamo dimostrato che $V = Ker(q_1(f)) + Ker(q_2(f))$.

Sia ora $z \in Ker(q_1(f)) \cap Ker(q_2(f))$; allora:

$$z = \underbrace{\left(a(f) \circ q_1(f)\right)(z)}_{=0 \; poich\`{e} \; z \in Ker\left(q_1(f)\right)} + \underbrace{\left(b(f) \circ q_2(f)\right)(z)}_{=0 \; poich\`{e} \; z \in Ker\left(q_2(f)\right)} = 0,$$

da cui la tesi.

- 2) Già provato.
- 3) Se $g = k^{-1} \circ f \circ k$, con $k \in GL(V)$, sappiamo che $q_1(g) = k^{-1} \circ q_1(f) \circ k$, cioè $q_1(g) \sim q_1(f)$, per cui $rk(q_1(g)) = rk(q_1(f))$, da cui $\dim \left(Ker(q_1(f)) \right) = \dim \left(Ker(q_1(g)) \right)$.

Analogamente per q_2 .

COROLLARIO 3.5.8: $f \in End(V)$, $q(t) \in I(f)$. Sia $q = q_1 \cdot ... \cdot q_m$, con $M.C.D(q_i, q_j) = 1$ $\forall i \neq j$.

Allora $V = Ker(q_1(f)) \oplus ... \oplus Ker(q_m(f))$ e gli addendi sono f-invarianti.

Dimostrazione:

Per induzione su *m*:

Passo base): m = 2: già fatto.

Passo induttivo): Poiché m > 2, poniamo $\tilde{q} = q_2 \cdot ... \cdot q_m$.

Allora $q = q_1 \tilde{q}$ e $M.C.D(q_1, \tilde{q}) = 1$.

Per il teorema di decomposizione primaria abbiamo che:

$$V = Ker(q_1(f)) \oplus \underbrace{Ker(\tilde{q}(f))}_{=W}$$

W è f-invariante e $\tilde{q} \in I(f|_{W})$. Per ipotesi induttiva:

$$W = Ker(q_2(f|_W)) \oplus ... \oplus Ker(q_m(f|_W)).$$

Ora
$$\forall 2 \leq j \leq m, Ker\left(q_j(f|_W)\right) = Ker\left(q_j(f)|_W\right) = Ker\left(q_j(f)\right) \cap W.$$

D'altra parte $Ker(q_j(f)) \subseteq W$, in quanto se $x \in Ker(q_j(f))$:

$$\tilde{q}(f)(x) = (q_2 \cdot \dots \cdot q_m)(f)(x) = (\dots \cdot q_i)(f)(x) = 0.$$

Dunque $W = Ker(q_2(f)) \oplus ... \oplus Ker(q_m(f))$, da cui la tesi.

COROLLARIO 3.5.9: $f \in End(V)$ triangolabile, $Sp(f) = \{\lambda_1, ..., \lambda_k\}$. $p_f = (-1)^n (t - \lambda_i)^{h_i} \cdot ... \cdot (t - \lambda_k)^{h_k}$; $m_f = (t - \lambda_i)^{s_i} \cdot ... \cdot (t - \lambda_k)^{s_k}$, con $1 \le s_i \le h_i \ \forall i$. Allora:

$$V = \bigoplus_{j=1}^{k} Ker(f - \lambda_{j}id)^{h_{j}}$$

$$V = \bigoplus_{j=1}^{k} Ker(f - \lambda_{j}id)^{s_{j}}$$

e ogni addendo è f-invariante.

PROPOSIZIONE 3.5.10: f è diagonalizzabile $\Leftrightarrow m_f = (t - \lambda_1) \cdot ... \cdot (t - \lambda_k)$.

Dimostrazione:

 \Rightarrow) $\exists \mathcal{B}$ tale che:

$$\mathfrak{M}_{\mathcal{B}}(f) = \begin{pmatrix} \boxed{\lambda_1 I_{d_1}} & & \\ & \ddots & \\ & & \boxed{\lambda_k I_{d_k}} \end{pmatrix}$$

 $m_f = m. c. m((t - \lambda_1), ..., (t - \lambda_k)) = (t - \lambda_1) \cdot ... \cdot (t - \lambda_k)$

 \Leftarrow) Per la proposizione precedente $V = \underbrace{Ker(f - \lambda_1 id)}_{=V_{\lambda_1}} \oplus ... \oplus \underbrace{Ker(f - \lambda_k id)}_{=V_{\lambda_k}}$, dunque segue la

tesi.

LEMMA 3.5.11: Sia $\varphi \in End(V)$. Allora:

- 1) $Ker(\varphi^j) \subseteq Ker(\varphi^{j+1}) \ \forall j \in \mathbb{N};$
- 2) Se $\exists m \in \mathbb{N} | Ker(\varphi^m) = Ker(\varphi^{m+1})$, allora $Ker(\varphi^m) = Ker(\varphi^{m+t}) \ \forall t \geq 1$;
- 3) La successione $\{\dim \left(Ker(\varphi^j)\right)\}_i$ è un invariante di coniugio.

Dimostrazione:

- 1) Se $\varphi^{j}(x) = 0$, allora $\varphi^{j+1}(x) = \varphi(\varphi^{j}(x)) = \varphi(0) = 0$.
- 2) Basta provare che $Ker(\varphi^{m+1}) = Ker(\varphi^{m+2})$ e poi iterare. Ovviamente per 1) $Ker(\varphi^{m+1}) \subseteq Ker(\varphi^{m+2})$, quindi resta da mostrare il contenimento opposto.

Sia $x \in Ker(\varphi^{m+2})$. Allora $\varphi^{m+2}(x) = \varphi^{m+1}(\varphi(x)) = 0$, cioè $\varphi(x) \in Ker(\varphi^{m+1})$. Ma $Ker(\varphi^m) = Ker(\varphi^{m+1})$, dunque $\varphi(x) \in Ker(\varphi^m)$, cioè $x \in Ker(\varphi^{m+1})$, tesi.

3) Già provato.

Osservazione: Se applichiamo il lemma a $\varphi = f - \lambda_i id$:

$$Ker(f - \lambda_j id) \subseteq ... \subseteq Ker(f - \lambda_j id)^{s_j} \subseteq ... \subseteq Ker(f - \lambda_j id)^{h_j}$$
. Ma poiché:

$$V = \bigoplus_{j=1}^{k} Ker(f - \lambda_{j}id)^{h_{j}} = \bigoplus_{j=1}^{k} Ker(f - \lambda_{j}id)^{s_{j}}$$

allora $Ker(f - \lambda_j id)^{s_j} = Ker(f - \lambda_j id)^{h_j} \ \forall j$, quindi le due decomposizioni primarie coincidono.

DEFINIZIONE 3.5.5: \forall autovalore λ_j , il sottospazio f-invariante $V'_j = Ker(f - \lambda_j id)^{s_j}$ è detto autospazio generalizzato relativo a λ_j .

Osservazione: Se $\mathfrak{M}_{\mathcal{B}}(f) = A$, gli autospazi generalizzati si possono calcolare risolvendo i sistemi lineari $(A - \lambda_i I)^{h_j} X = 0$.

Si ha dunque $V = V'_{\lambda_1} \oplus ... \oplus V'_{\lambda_k}$.

PROPOSIZIONE 3.5.12: Sia $f \in End(V)$ e $Sp(f) = \{\lambda_1, ..., \lambda_k\}$. Allora:

- 1) $\forall j, f|_{V'_{\lambda_j}}$ ha solo l'autovalore λ_j ;
- 2) $f|_{V'_{\lambda_j}}$ ha polinomio caratteristico = $\pm (t \lambda_j)^{h_j}$ e polinomio minimo = $(t \lambda_j)^{s_j}$;
- 3) dim $(V'_{\lambda_j}) = h_j = \mu_a(\lambda_j);$
- 4) Se poniamo $d_i = \dim \left(Ker(f \lambda_j id)^i \right) \ \forall 1 \le i \le s_j$, i numeri $d_1 < ... < d_{s_j}$ sono invarianti di coniugio (Osservazione: $d_1 = \mu_g(\lambda_j)$, $d_{s_j} = \mu_a(\lambda_j)$).

Dimostrazione:

- 1) Sicuramente $V_{\lambda_j} \subseteq V'_{\lambda_j}$. Se $f|_{V'_{\lambda_j}}$ avesse un altro autovalore μ , allora $V_{\mu} \cap V'_{\lambda_j} \neq \{0\}$ e dunque $V'_{\mu} \cap V'_{\lambda_j} \neq \{0\}$, assurdo, poiché sono in somma diretta.
- 2,3) Sia \mathcal{B}_j una base di V'_{λ_j} . Allora $\mathcal{B}=\mathcal{B}_1\cup...\cup\mathcal{B}_k$ è una base di V.

$$\mathfrak{M}_{\mathcal{B}}(f) = \begin{pmatrix} \boxed{M_1} & & \\ & \ddots & \\ & & \boxed{M_k} \end{pmatrix},$$

con M_j blocco quadrato di ordine = dim (V'_{λ_j}) .

$$p_f = p_{M_1} \cdot \ldots \cdot p_{M_k}.$$

Poiché ogni blocco M_j ha solo l'autovalore λ_j , segue che $p_{M_j} = p_{f|_{V'_{\lambda_i}}} = \pm (t - \lambda_j)^{h_j}$ e

$$h_j = \text{ordine di } M_j = \dim \left(V'_{\lambda_j}\right).$$

Inoltre
$$m_f = m.c.m(m_{M_1}, ..., m_{M_k}) = m_{M_1} \cdot ... \cdot m_{M_k}$$
, da cui $m_{f|_{V'_{\lambda_i}}} = (t - \lambda_j)^{s_j}$.

4) Già provato.

Osservazione: Dunque possiamo ricondurci a studiare la restrizione di f a ciascun autospazio generalizzato; se λ è autovalore, $W=V'_{\lambda}$ e $\varphi=f|_{W}$, allora:

- $\dim(W) = \mu_a(\lambda) = h$
- $p_{\varphi} = \pm (t \lambda)^h$
- $m_{\varphi} = (t \lambda)^s$, con $1 \le s \le h$
- se $d_i = \dim(Ker(\varphi \lambda id)^i)$, la stringa $[\lambda, s, [d_1 < ... < d_s = h]]$ è un invariante di coniugio.

Osservazione: Possiamo in ogni caso ridurci al caso nilpotente, poiché se $\psi = \varphi - \lambda id$, allora ψ ha solo l'autovalore 0 (cioè è nilpotente).

$$p_{\psi}=\pm t^h; \ m_{\psi}=t^s.$$

La stringa di invarianti di ψ è $\left[0, s, \left[d_1 < \ldots < d_s = h\right]\right]$.

PROPOSIZIONE 3.5.13: Sia $\psi \in End(V)$, dim(V) = h, ψ nilpotente. Sono fatti equivalenti:

1) $m_{\psi} = t^h$ (ossia $m_{\psi} = \pm p_{\psi}$)

2)
$$\exists \mathcal{B} \text{ base di } V | \mathfrak{M}_{\mathcal{B}}(\psi) = \begin{pmatrix} 0 & 1 & & & 0 \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ 0 & & & & 0 \end{pmatrix}.$$

Dimostrazione:

$$(=) \ \text{Ovvio, poich\'e} \begin{pmatrix} 0 & 1 & & & 0 \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ 0 & & & & 0 \end{pmatrix}^h = 0 \ \ e \begin{pmatrix} 0 & 1 & & & 0 \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ 0 & & & & 0 \end{pmatrix}^{h-1} \neq 0.$$

 $\Rightarrow) Ker(\psi) \subseteq ... \subseteq Ker(\psi^h), \text{ con dim} \Big(Ker(\psi^h) \Big) = h.$ $\psi^{h-1} \neq 0 \Rightarrow \exists v \notin Ker(\psi^{h-1}), v \neq 0.$

Mostriamo che $\mathcal{B}=\{\psi^{h-1}(v),...,\psi(v),v\}$ è una base di V e in questo modo giungo alla tesi, poiché nella prima colonna di $\mathfrak{M}_{\mathcal{B}}(\psi)$ ci andrebbe $\psi\Big(\psi^{h-1}(v)\Big)=0$, nella seconda $\psi\Big(\psi^{h-2}(v)\Big)=\psi^{h-1}(v)$ e così via.

Poiché i vettori sono in numero adeguato, basta che siano linearmente indipendenti.

Sia
$$a_0v + a_1\psi(v) + \dots + a_{h-1}\psi^{h-1}(v) = 0$$
.

Se applico ψ^{h-1} , ottengo $a_0\psi^{h-1}(v)=0$, ma $\psi^{h-1}(v)\neq 0$, quindi $a_0=0$.

Allo stesso modo se applico ψ^{h-2} ottengo $a_1=0$; iterando il processo si ottiene $a_0=\ldots=a_{h-1}=0$, da cui la tesi.

DEFINIZIONE 3.5.6: La matrice $r \times r$:

$$J(\lambda, r) = \begin{pmatrix} \lambda & 1 & 0 \\ & \ddots & \ddots & \\ & & \lambda & 1 \\ 0 & & & \lambda \end{pmatrix}$$

è detta **blocco di Jordan** di ordine r relativo a λ .

DEFINIZIONE 3.5.7: Si chiama matrice di Jordan ogni matrice diagonale a blocchi:

$$J = \begin{pmatrix} \boxed{J_1} & & \\ & \ddots & \\ & & \boxed{J_n} \end{pmatrix}$$

in cui ogni blocco J_i è un blocco di Jordan.

DEFINIZIONE 3.5.8: Se $f \in End(V)$, si chiama base di Jordan per f ogni base \mathcal{B} tale che $\mathfrak{M}_{\mathcal{B}}(f)$ è una matrice di Jordan.

Osservazione: L'ultima proposizione afferma dunque che:

$$m_{\psi} = \pm p_{\psi} = \pm t^h \iff \exists \mathcal{B} \mid \mathfrak{M}_{\mathcal{B}}(\psi) = J(0, h).$$

In tal caso la stringa di invarianti è [0, h, [1, 2, ..., h - 1, h]].

LEMMA 3.5.14: Sia $\psi \in End(V)$ nilpotente con indice di nilpotenza s (cioè $\psi^s = 0$ e $\psi^{s-1} \neq 0$) dim(V) = h.

 $\forall j \mid 3 \le j \le s \text{ si consideri } Ker(\psi^{j-2}) \subseteq Ker(\psi^{j-1}) \subseteq Ker(\psi^j).$

Sia W un sottospazio vettoriale di V tale che $Ker(\psi^j) = Ker(\psi^{j-1}) \oplus W$ e sia $\{w_1, \dots, w_k\}$ una base di W. Allora:

- 1) $\psi(w_1), ..., \psi(w_k) \in Ker(\psi^{j-1})$ e sono linearmente indipendenti;
- 2) $Span(\psi(w_1), ..., \psi(w_k)) \cap Ker(\psi^{j-2}) = \{0\}.$

Dimostrazione:

- 1) Sicuramente $\psi(w_1), \dots, \psi(w_k) \in Ker(\psi^{j-1})$, poiché $\psi^{j-1}(\psi(w_j)) = \psi^j(w_j) = 0$. Sia ora $a_1\psi(w_1)+\dots+a_k\psi(w_k) = 0$. Per linearità $\psi(a_1w_1+\dots+a_kw_k) = 0 \Rightarrow \underbrace{a_1w_1}_{\in W} + \dots + \underbrace{a_kw_k}_{\in W} \in Ker(\psi) \cap W \subseteq Ker(\psi^{j-1}) \cap W = \{0\},$ perciò $a_1w_1+\dots+a_kw_k = 0$, da cui $a_1=\dots=a_k=0$ poiché $\{w_1,\dots,w_k\}$ è base di W.
- 2) Sia $z = a_1 \psi(w_1) + ... + a_k \psi(w_k) \in Span(\psi(w_1), ..., \psi(w_k)) \cap Ker(\psi^{j-2}).$ $z = \psi(a_1 w_1 + ... + a_k w_k) \in Ker(\psi^{j-2}) \Rightarrow \psi^{j-1}(a_1 w_1 + ... + a_k w_k) = 0 \Rightarrow a_1 w_1 + ... + a_k w_k \in Ker(\psi^{j-1}) \cap W = \{0\} \Rightarrow a_i = 0 \ \forall i \Rightarrow z = 0.$

TEOREMA 3.5.15 (forma canonica di Jordan per endomorfismi nilpotenti): $\psi \in End(V)$ nilpotente, dim(V) = h, con stringa di invarianti $[0, s, [d_1 < d_2 < ... < d_s = h]]$. Allora:

1) $\exists \mathcal{B}$ base di V tale che:

$$\mathfrak{M}_{\mathcal{B}}(\psi) = \begin{pmatrix} J(0, n_1) & & \\ & \ddots & \\ & & J(0, n_t) \end{pmatrix},$$

dove $n_1 + \ldots + n_t = h$.

- 2) La matrice $\mathfrak{M}_{\mathcal{B}}(\psi)$, detta **forma di Jordan** di ψ , è unica a meno di permutazioni dei blocchi sulla diagonale ed è completamente determinata dalla stringa di invarianti $[0, s, [d_1 < d_2 < ... < d_s = h]]$.
- 3) La stringa di invarianti è un sistema completo di coniugio per endomorfismi nilpotenti. (Osservazione: Se conveniamo che i blocchi $J_1, ..., J_m$ sulla diagonale siano in ordine decrescente, allora la forma di Jordan di ψ è unica e possiamo denotarla con $J(\psi)$).

Dimostrazione:

1) Per ipotesi $m_{\psi}(t) = t^s$.

$$Ker(\psi) \subsetneq Ker(\psi^2) \subsetneq ... \subsetneq Ker(\psi^s) = V.$$

Poniamo
$$d_i = \dim (Ker(\psi^i)).$$

Sia W_s un supplementare di $Ker(\psi^{s-1})$ in $Ker(\psi^s)$, ossia $Ker(\psi^s) = Ker(\psi^{s-1}) \oplus W_s$. Poniamo $r_s = \dim(W_s)$. (Osservazione: $r_s = d_s - d_{s-1} = h - d_{s-1}$).

Sia $\{v_{1,s}, \dots, v_{r_s,s}\}$ una base di W_s .

Poniamo
$$v_{j,s-1} = \psi(v_{j,s}) \ \forall 1 \le j \le r_s$$
.

Per il lemma, $v_{1,s-1}, \ldots, v_{r_s,s-1}$ stanno in $Ker(\psi^{s-1})$ e sono linearmente indipendenti; dunque posso completarli a una base $\{v_{1,s-1}, \ldots, v_{r_s,s-1}, v_{r_s+1,s-1}, \ldots, v_{r_{s-1},s-1}\}$ di un supplementare W_{s-1} di $Ker(\psi^{s-2})$ in $Ker(\psi^{s-1})$, ossia $Ker(\psi^{s-1}) = Ker(\psi^{s-2}) \oplus W_{s-1}$. Itero il procedimento scegliendo supplementari $W_j \mid Ker(\psi^j) = Ker(\psi^{j-1}) \oplus W_j$, $r_j = \dim(W_j)$.

I vettori così trovati possono essere organizzati in una tabella:

Si ha

$$V = Ker(\psi^s) = Ker(\psi^{s-1}) \oplus W_s = Ker(\psi^{s-2}) \oplus W_{s-1} \oplus W_s = \cdots$$

... = $Ker(\psi) \oplus W_2 \oplus ... \oplus W_s$,

dunque per costruzione i vettori presenti nella tabella formano una base di V (in quanto sono linearmente indipendenti e in numero adeguato).

Inoltre ad esempio:

$$v_{1,1} = \psi(v_{1,2}) = \psi^2(v_{1,3}) = \dots = \psi^{s-1}(v_{1,s})$$

dunque:

$$\left\{v_{1,1}, v_{1,2}, \ldots, v_{1,s}\right\} = \left\{\psi^{s-1}(v_{1,s}), \psi^{s-2}(v_{1,s}), \ldots, v_{1,s}\right\}$$

Pertanto la base $\mathcal B$ ottenuta riordinando i vettori della tabella procedendo da sinistra verso destra e risalendo le colonne è una base di Jordan.

Ogni colonna "alta" j produce in $\mathfrak{M}_{\mathcal{B}}(\psi)$ un blocco di Jordan di ordine j.

2) Mostriamo che il tipo dei blocchi in $\mathfrak{M}_{\mathcal{B}}(\psi)$ è completamente determinato dalla stringa di invarianti $[0, s, [d_1 < d_2 < ... < d_s = h]]$.

Notiamo innanzitutto che, per quanto visto nel punto 1):

- $s = \text{indice di nilpotenza} = \text{massimo ordine dei blocchi in } \mathfrak{M}_{\mathcal{B}}(\psi)$ (in quanto l'altezza di una colonna non può superare l'indice di nilpotenza);
- $d_1 = \dim(Ker(\psi)) = \text{numero totale dei blocchi (cioè il numero delle colonne)}.$

Più precisamente, poniamo b_j = numero dei blocchi $j \times j$ in $\mathfrak{M}_{\mathcal{B}}(\psi)$. Allora:

$$b_S = \dim(W_S) = r_S;$$

$$b_i = \dim(W_i) - \dim(W_{i+1}) = r_i - r_{i+1}.$$

Se poniamo $r_{s+1} = 0$, allora $b_i = r_i - r_{i+1} \ \forall 1 \le j \le s$.

Esprimiamo i b_i in funzione dei d_i :

$$r_j = \dim(W_j) = \dim(Ker(\psi^j)) - \dim(Ker(\psi^{j-1})) = d_j - d_{j-1};$$

 $r_1 = \dim(Ker(\psi)) = d_1.$

Dunque poniamo $d_0 = 0$ e $d_{s+1} = d_s = h$, in modo da avere:

$$b_j = r_j - r_{j+1} = d_j - d_{j-1} - (d_{j+1} - d_j) = 2d_j - d_{j-1} - d_{j+1} \ \forall j.$$

Dunque $\mathfrak{M}_{\mathcal{B}}(\psi)$ dipende, a meno di permutazioni dei blocchi sulla diagonale, solo dai d_i .

3) Se ψ_1, ψ_2 sono endomorfismi nilpotenti di V con stessa stringa di invarianti, allora, per quanto visto nei punti precedenti, $\exists \mathcal{B}_1, \mathcal{B}_2$ basi di V tale che $\mathfrak{M}_{\mathcal{B}_1}(\psi_1) = \mathfrak{M}_{\mathcal{B}_2}(\psi_2)$, quindi $\psi_1 \sim \psi_2$.

Osservazione: Dal lemma segue che $\dim(W_j) \leq \dim(W_{j-1})$, cioè $r_j \leq r_{j-1}$, ossia la successione $\{d_j - d_{j-1}\}_j$ è decrescente (in generale non strettamente).

Osservazione: Dato $f \in End(V)$, $Sp(f) = \{\lambda_1, ..., \lambda_k\}$. Allora ci restringiamo a lavorare in ogni autospazio generalizzato V'_{λ_j} ; studiando l'endomorfismo di V'_{λ_j} , $f_j = f|_{V'_{\lambda_j}} - \lambda_j id$, troviamo la forma di Jordan $J(f_j)$ di f_j , da cui risaliamo facilmente a quella di $f|_{V'_{\lambda_j}}$, semplicemente aggiungendo a $\lambda_j I$ a $J(f_j)$. Dunque la forma canonica di Jordan dell'endomorfismo f è:

$$J(f) = \begin{pmatrix} J(f_1) + \lambda_1 I & & \\ & \ddots & \\ & & J(f_k) + \lambda_k I \end{pmatrix}$$

Da questo segue:

COROLLARIO 3.5.16 (forma canonica di Jordan per endomorfismi triangolabili): Sia $f \in End(V)$ triangolabile. Allora:

- 1) $\exists \mathcal{B}$ base di $V \mid \mathfrak{M}_{\mathcal{B}}(f)$ è una matrice di Jordan (\mathcal{B} è detta base di Jordan per f);
- 2) La matrice $\mathfrak{M}_{\mathcal{B}}(f)$ è unica a meno di permutazioni dei blocchi sulla diagonale ed è determinata dalla stringa di invarianti $s(\lambda_i) = \left[\lambda_i, s_i, \left[d_1(\lambda_1) < \ldots < d_{s_i}(\lambda_i)\right]\right]$ associati agli autovalori di f;
- 3) Due endomorfismi triangolabili di V sono coniugati \Leftrightarrow hanno la stessa forma canonica di Jordan (che è quindi un invariante completo di coniugio).

COROLLARIO 3.5.17: Ogni matrice triangolabile A è simile alla sua trasposta. Dimostrazione:

J(A) dipende solo dalle dimensioni dei $Ker(A - \lambda I)^j$ e dunque dai $rk(A - \lambda I)^j$. Poiché $\forall j$, $rk(^tA - \lambda I)^j = rk(A - \lambda I)^j$, allora $J(^tA) = J(A)$, da cui $^tA \sim A$.

Osservazione: Per quanto visto finora siamo in grado di stabilire se due endomorfismi triangolabili sono simili. Dunque la forma canonica di Jordan è un sistema completo di invarianti in End(V), con V \mathbb{K} -spazio vettoriale e \mathbb{K} algebricamente chiuso.

Però ad esempio in $\mathcal{M}(n,\mathbb{R})$ abbiamo visto che esistono matrici non triangolabili; ovviamente la teoria della forma canonica di Jordan non può essere applicata a tali matrici. Riprendendo però il teorema che dice che $A \sim_{\mathbb{R}} B \iff A \sim_{\mathbb{C}} B$, possiamo lavorare in questo modo:

$$A \sim_{\mathbb{R}} B \iff A \sim_{\mathbb{C}} B \iff J_{\mathbb{C}}(A) = J_{\mathbb{C}}(B)$$

Dunque possiamo considerare $A, B \in \mathcal{M}(n, \mathbb{R}) \subseteq \mathcal{M}(n, \mathbb{C})$, cioè $A, B : \mathbb{C}^n \to \mathbb{C}^n$, trovare la loro forma di Jordan complessa (che di sicuro esiste) e stabilire se sono simili o meno a partire da questa. In quest'ultima parte del capitolo vogliamo arrivare alla stessa conclusione provando che nella classe di similitudine di A non triangolabile in $\mathcal{M}(n, \mathbb{R})/_{\sim}$ esiste un rappresentante canonico, detto **forma di Jordan reale** di A, univocamente determinata da $J_{\mathbb{C}}(A)$ e quindi essenzialmente unica.

FORMA DI JORDAN REALE: $\forall A \in \mathcal{M}(n, \mathbb{R})$ esiste un rappresentante canonico di similitudine, univocamente determinato dalla forma di Jordan complessa di A.

Dimostrazione:

Sia $A \in \mathcal{M}(n, \mathbb{R})$. Procediamo per passi dimostrando lemmi:

1) Poiché $p_A(t) \in \mathbb{R}[t]$, gli autovalori di A sono del tipo:

$$\underbrace{\lambda_1,\ldots,\lambda_k}_{\in\mathbb{R}},\underbrace{\mu_1,\ldots,\mu_r,\overline{\mu_1},\ldots\overline{\mu_r}}_{\in\mathbb{C}\setminus\mathbb{R}}$$

e
$$\mu_a(\mu_j) = \mu_a(\overline{\mu_j}) \ \forall j.$$

2) Pensiamo A come endomorfismo di \mathbb{C}^n . Allora per il teorema di Jordan:

$$\mathbb{C}^n = V'_{\lambda_1} \oplus \ldots \oplus V'_{\lambda_k} \oplus V'_{\mu_1} \oplus \ldots \oplus V'_{\mu_r} \oplus V'_{\overline{\mu_1}} \oplus \ldots \oplus V'_{\overline{\mu_r}}$$

3) Sia λ uno degli autovalori reali di A. Una base di Jordan di $V'_{\lambda} \subseteq \mathbb{C}^n$ si trova prendendo basi opportune nella successione di sottospazi:

$$Ker(A - \lambda I) \subseteq Ker(A - \lambda I)^2 \subseteq \cdots$$

Poiché $\forall j$ il sottospazio $Ker(A - \lambda I)^j$ ha la stessa dimensione sia come sottospazio di \mathbb{R}^n sia come sottospazio di \mathbb{C}^n (in quanto è reale), allora possiamo scegliere una base di Jordan di V'_{λ} formata da vettori reali.

4) Sia $\mu \in \mathbb{C} \setminus \mathbb{R}$ uno degli autovalori complessi non reali di A. Se $\{z_1, ..., z_t\}$ è una base di Jordan di V'_{μ} , allora $\{\overline{z_1}, ..., \overline{z_t}\}$ è una base di Jordan di $V'_{\overline{\mu}}$.

Dimostrazione:

Poiché $\overline{Ker(A - \mu I)^j} = Ker(A - \overline{\mu}I)^j \ \forall j$, in quanto A è reale e quindi $A = \overline{A}$, allora i vettori $\overline{z_1}, ..., \overline{z_t} \in V'_{\overline{\mu}} = \bigcup_j Ker(A - \overline{\mu}I)^j$.

Dimostriamo che gli $\overline{z_i}$ sono linearmente indipendenti:

$$a_1\overline{z_1}+\ldots+a_t\overline{z_t}=0$$
, con $a_i\in\mathbb{C}\ \forall i$.

Coniugando:

 $\overline{a_1}z_1+\ldots\overline{a_t}z_t=0 \ \Rightarrow \overline{a_t}=0 \ \forall i$, poiché gli z_i sono linearmente indipendenti $\Rightarrow a_i=0 \ \forall i$.

Inoltre dim $(V'_{\mu}) = \mu_a(\mu) = \mu_a(\bar{\mu}) = \dim(V'_{\bar{\mu}}) = t$, quindi $\{\bar{z}_1, ..., \bar{z}_t\}$ è una base di $V'_{\bar{\mu}}$.

Ci resta da mostrare che è una base di Jordan di $V'_{\overline{u}}$.

Poiché $\{z_1, ..., z_t\}$ è una base di Jordan di V'_{μ} , allora:

$$Az_j = \mu z_j \lor Az_j = \mu z_j + z_{j-1} \ \forall j$$

Se
$$Az_i = \mu z_i \Rightarrow A\overline{z_i} = \overline{Az_i} = \overline{\mu}\overline{z_i} = \overline{\mu}\overline{z_i};$$

se
$$Az_j = \mu z_j + z_{j-1} \Rightarrow A\overline{z_j} = \overline{\mu}\overline{z_j} + \overline{z_{j-1}}$$
,

dunque $\{\overline{z_1}, ..., \overline{z_t}\}$ è effettivamente una base di Jordan di $V'_{\overline{u}}$.

(Osservazione: Abbiamo quindi mostrato che, se in $J_{\mathbb{C}}(A)$ ci sono b blocchi relativi all'autovalore μ di ordine m, allora in $J_{\mathbb{C}}(A)$ ci sono b blocchi di ordine m relativi a $\bar{\mu}$.)

5) Sia $\mu \in \mathbb{C} \setminus \mathbb{R}$ uno degli autovalori complessi non reali di A. Allora esiste una base di $V'_{\mu} \oplus V'_{\overline{\mu}}$ formata da vettori reali.

Dimostrazione:

Sia $\{z_1, ..., z_t\}$ una base di Jordan di V'_{μ} . Per 4) sappiamo che $\{\overline{z_1}, ..., \overline{z_t}\}$ è una base di Jordan di $V'_{\overline{\mu}}$. Quindi dim $(V'_{\mu} \oplus V'_{\overline{\mu}}) = 2t$.

Poniamo $x_j = \Re e(z_j) e y_j = \Im m(z_j) \forall j$.

Poiché $x_j = \frac{z_j + \overline{z_j}}{2}$ e $y_j = \frac{z_j - \overline{z_j}}{2i}$, i vettori $x_1, y_1, \dots, x_t, y_t \in V'_{\mu} \oplus V'_{\overline{\mu}}$, in quanto combinazioni lineari di z_j e $\overline{z_j}$. Inoltre, poiché gli z_j e $\overline{z_j}$ generano $V'_{\mu} \oplus V'_{\overline{\mu}}$, allora anche gli x_j, y_j generano, in quanto ciascuno è combinazione lineare di z_j e $\overline{z_j}$.

Infine, poiché $\dim(V'_{\mu} \oplus V'_{\overline{\mu}}) = 2t$, allora $\{x_1, y_1, \dots, x_t, y_t\}$ è una base di vettori reali di $V'_{\mu} \oplus V'_{\overline{\mu}}$.

- 6) Scriviamo la matrice associata a $A|_{V'_{\mu} \oplus V'_{\overline{\mu}}}$ rispetto alla base $\{x_1, y_1, \dots, x_t, y_t\}$.
 - Se $Az_i = \mu z_i$, allora:

$$Ax_{j} = A \frac{z_{j} + \overline{z_{j}}}{2} = \frac{\mu z_{j} + \overline{\mu z_{j}}}{2} = \Re(\mu z_{j}) \equiv \Re(\mu)\Re(z_{j}) - \Im(\mu)\Im(z_{j}) =$$

$$= \Re(\mu)x_{j} - \Im(\mu)y_{j}$$

$$Ay_{j} = A \frac{z_{j} - \overline{z_{j}}}{2i} = \frac{\mu z_{j} - \overline{\mu z_{j}}}{2i} = \Im(\mu z_{j}) \equiv \Im(\mu)\Re(z_{j}) + \Re(\mu)\Im(z_{j}) =$$

$$= \Im(\mu)x_{j} + \Re(\mu)y_{j}$$

I passaggi contrassegnati con ☐ derivano dalle relazioni:

 $z, w \in \mathbb{C}, \ \Re e(zw) = \Re e(z)\Re e(w) - \Im m(z)\Im m(w);$

 $\mathfrak{Im}(zw) = \mathfrak{Im}(z)\mathfrak{Re}(w) + \mathfrak{Re}(z)\mathfrak{Im}(w).$

• Analogamente, se $Az_i = \mu z_i + z_{i-1}$:

$$Ax_{j} = A \frac{z_{j} + \overline{z_{j}}}{2} = \frac{\mu z_{j} + z_{j-1} + \overline{\mu} \overline{z_{j}} + \overline{z_{j-1}}}{2} = \Re(\mu z_{j}) + \Re(z_{j-1}) =$$

$$= \Re(\mu)x_{j} - \Im(\mu)y_{j} + x_{j-1}$$

$$Ay_{j} = \Im(\mu)x_{j} + \Re(\mu)y_{j} + y_{j-1}$$

Pertanto, se la matrice associata ad $A|_{V'_\mu}$ rispetto alla base $\{z_1,\dots,z_t\}$ era:

$$\begin{pmatrix} \boxed{J_1} & & \\ & \ddots & \\ & & \boxed{J_r} \end{pmatrix}$$

con J_i blocco di Jordan di ordine m_i relativo a μ , allora la matrice associata a $A|_{V'_{\mu} \oplus V'_{\overline{\mu}}}$ rispetto alla base $\{x_1, y_1, \dots, x_t, y_t\}$ è una matrice di ordine 2t e del tipo:

$$\begin{pmatrix} \boxed{\widetilde{J_1}} & & \\ & \ddots & \\ & & \boxed{\widetilde{J_r}} \end{pmatrix}$$

dove $\widetilde{J_i}$ è un blocco di ordine $2m_i$ della forma:

$$\begin{pmatrix} H_{\mu} & I & & \\ & H_{\mu} & I & & \\ & & \ddots & \ddots & \\ & & & H_{\mu} & I \\ & & & & H_{\mu} & I \\ & & & & H_{\mu} & I \\ & & & & H_{\mu} \end{pmatrix}$$
 con $H_{\mu} = \begin{pmatrix} \Re e(\mu) & \Im m(\mu) \\ -\Im m(\mu) & \Re e(\mu) \end{pmatrix} e I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Osservazione: Se per la coppia di autovalori μ e $\bar{\mu}$ si fosse scelto di lavorare con $\bar{\mu}$, al posto del blocchetto $\begin{pmatrix} \Re e(\mu) & \Im m(\mu) \\ -\Im m(\mu) & \Re e(\mu) \end{pmatrix}$ avremmo avuto il blocchetto $\begin{pmatrix} \Re e(\mu) & -\Im m(\mu) \\ \Im m(\mu) & \Re e(\mu) \end{pmatrix}$, simile ma non uguale a quello associato a μ .

Per evitare ambiguità nella forma $J_{\mathbb{R}}(A)$ conveniamo di scegliere l'autovalore $\mathfrak{Im}(\mu) > 0$. A questo punto la forma di Jordan reale di A è unica a meno di permutazioni dei blocchetti.

Esempio: Trovare la forma di Jordan reale di $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

$$p_A(t) = \det\begin{pmatrix} -t & 0 & 1\\ 1 & -t & 0\\ 0 & 1 & -t \end{pmatrix} = -t(t^2) + 1(1) = -t^3 + 1 = (1-t)(t^2+t+1).$$

Poiché su $\mathbb C$ il polinomio caratteristico ha tre radici distinte, $1, \mu = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \bar{\mu} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$, allora su $\mathbb C$ A è diagonalizzabile:

$$J_{\mathbb{C}}(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \bar{\mu} \end{pmatrix}$$

Per quanto visto prima, sostituiamo i due blocchetti (μ) e ($\bar{\mu}$) con il blocchetto

$$\begin{pmatrix}
\Re e(\mu) & \Im m(\mu) \\
-\Im m(\mu) & \Re e(\mu)
\end{pmatrix} = \begin{pmatrix}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{pmatrix}. \text{ Dunque:}$$

$$J_{\mathbb{R}}(A) = \begin{pmatrix}
1 & 0 & 0 \\
0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\
0 & -\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{pmatrix}.$$

PROPOSIZIONE 3.5.18: Siano $\mathbb{K} \subseteq \mathbb{K}'$ campi. $A \in \mathcal{M}(n, \mathbb{K})$. Allora $m_{\mathbb{K}}(A) = m_{\mathbb{K}'}(A)$ (dove $m_{\mathbb{F}}(A)$ è il polinomio minimo di A su \mathbb{F}).

Dimostrazione:

Lavoriamo in $\mathbb{K}'[t]$. In questo anello, poiché $m_{\mathbb{K}'}(A)$ genera l'ideale dei polinomi che si annullano in A, e $m_{\mathbb{K}}(A)$ appartiene a questo ideale, ho che $m_{\mathbb{K}'}(A)|m_{\mathbb{K}}(A)$.

Per concludere mi basta mostrare che $\deg(m_{\mathbb{K}}(A)) \leq \deg(m_{\mathbb{K}'}(A))$, poiché, essendo sicuramente $\deg(m_{\mathbb{K}}(A)) \geq \deg(m_{\mathbb{K}'}(A))$, avrei che $\deg(m_{\mathbb{K}}(A)) = \deg(m_{\mathbb{K}'}(A))$, ma essendo i due polinomi monici, avrei la tesi.

Notiamo innanzitutto che, dati $v_1, ..., v_k \in \mathbb{K}^n \subseteq (\mathbb{K}')^n$, sono linearmente indipendenti su $\mathbb{K}^n \Leftrightarrow$ lo sono su $(\mathbb{K}')^n$, infatti entrambe le condizioni sono equivalenti alla condizione:

"Se M è la matrice $n \times k$ avente i v_i come colonne, \exists minore $k \times k$ di M con determinante $\neq 0$ ". Mostriamo ora che, date $A_1, ..., A_k \in \mathcal{M}(n, \mathbb{K})$, con $k \leq n^2$, sono linearmente indipendenti su $\mathbb{K} \Leftrightarrow \text{lo sono su } \mathbb{K}'$.

Infatti, considerando che $\mathcal{M}(n, \mathbb{K}') \cong (\mathbb{K}')^{n^2}$, per la precedente osservazione se esiste una combinazione lineare non nulla su $\mathcal{M}(n, \mathbb{K}')$ delle A_i che dà 0, allora esiste anche su $(\mathbb{K}')^{n^2}$, quindi anche su \mathbb{K}^{n^2} , quindi su $\mathcal{M}(n, \mathbb{K})$.

Inoltre il viceversa è ovvio, in quanto se le A_i sono indipendenti su \mathbb{K}' lo sono anche su \mathbb{K} .

A questo punto sia $d = \deg(m_{\mathbb{K}'}(A))$. Allora $I, A, ..., A^d$ sono linearmente dipendenti su \mathbb{K}' per definizione di polinomio minimo, ma per quanto visto $I, A, ..., A^d$ sono linearmente dipendenti anche su \mathbb{K} , quindi \exists polinomio $q(t) \in \mathbb{K}[t], q \neq 0, \deg(q) \leq d$ tale che q(A) = 0. Per cui $\deg(m_{\mathbb{K}}(A)) \leq d$, da cui la tesi.

Osservazione: Quindi $m_{\mathbb{R}}(A) = m_{\mathbb{C}}(A) \ \forall A \in \mathcal{M}(n,\mathbb{R})$. Inoltre è evidente che $p_{\mathbb{R}}(A) = p_{\mathbb{C}}(A)$, poiché il polinomio caratteristico, essendo un determinante, dipende solo da A.

3.6 BASI CICLICHE PER ENDOMORFISMI

Nel seguito sia V spazio vettoriale su \mathbb{K} , $char(\mathbb{K}) = 0$.

DEFINIZIONE 3.6.1: $\dim(V) = n$, $f \in End(V)$. Una base \mathcal{B} di V si dice **ciclica** per f se $\exists v \in V$ tale che $\mathcal{B} = \{v, f(v), ..., f^{n-1}(v)\}$.

DEFINIZIONE 3.6.2: $v \in V$. $I(f, v) = \{q \in \mathbb{K}[t] | q(f)(v) = 0\}$ è un ideale di $\mathbb{K}[t]$, dunque esiste un generatore $m_{f,v}$ di I(f,v), detto **polinomio minimo di v rispetto a f**.

Osservazione: Visto che $I_f \subseteq I(f, v)$, si ha che $m_{f,v}|m_f$.

LEMMA 3.6.1: \mathbb{K} campo con $char(\mathbb{K})=0$. Sia V un \mathbb{K} -spazio vettoriale e siano $W_1,...,W_n$ sottospazi di V tali che $V=W_1\cup...\cup W_n$. Allora $\exists i$ tale che $V=W_i$.

Dimostrazione:

Supponiamo che l'unione $V=W_1\cup...\cup W_n$ sia minimale, cioè $W_j\nsubseteq W_1\cup...W_{j-1}\cup W_{j+1}\cup...\cup W_n$ $\forall j$. Supponiamo per assurdo che $n\geq 2$; allora per minimalità $W_n\nsubseteq W_1\cup...\cup W_{n-1}$.

Sia $u \notin W_n$ e $v \in W_n \setminus (W_1 \cup ... \cup W_{n-1})$ e denotiamo $S = \{v + tu | t \in \mathbb{K}\}.$

 $u \neq 0$ e # $\mathbb{K} = +\infty$, dunque # $S = +\infty$; visto che $S \subseteq V = W_1 \cup ... \cup W_n$, dovrà esistere un W_i tale che # $(S \cap W_i) = +\infty$. Vediamo che ciò è assurdo.

Se $v + tu \in W_n$ per $t \neq 0$, si avrebbe $W_n \ni (v + tu) - v = tu$, cioè $u \in W_n$, assurdo.

Se invece $v + t_1 u$, $v + t_2 u \in W_i$ con $t_1 \neq t_2$ e i < n, si avrebbe $(t_2 - t_1)v = t_2(v + t_1 u) - t_1(v + t_2 u) \in W_i$, cioè $v \in W_i$, assurdo.

Dunque $\#(S \cap W_i) \le 1 \ \forall i$, da cui l'assurdo e la tesi.

Osservazione: La precedente proposizione è falsa se $char(\mathbb{K}) > 0$; non è infatti difficile trovare un controesempio con $\mathbb{K} = \mathbb{F}_2$.

LEMMA 3.6.2: $f \in End(V)$. Allora $\exists v \in V$ tale che $m_{f,v} = m_f$.

Dimostrazione:

Visto che $\forall v \in V \ m_{f,v} | m_f$, l'insieme $\{m_{f,v} | v \in V\}$ è finito, pertanto coincide con $\{m_{f,v_1}, \dots, m_{f,v_p}\}$ per alcuni $v_i \in V$.

$$\forall j = 1, ... p \text{ considero i sottospazi } W_j = Ker\left(m_{f,v_j}(f)\right) = \left\{z \in V \middle| m_{f,v_j}(f)(z) = 0\right\}.$$

$$\begin{split} &\forall z \in V, \exists j \text{ tale che } m_z = m_{v_j} \text{ e quindi } m_{v_j}(f)(z) = m_z(f)(z) = 0, \text{ cioè } z \in W_j. \\ &\text{Allora } V = W_1 \cup \ldots \cup W_p \text{ e dunque } \exists i_0 \text{ tale che } W_{i_0} = V, \text{ ossia } Ker\Big(m_{v_{i_0}}(f)\Big) = V, \text{ cioè } m_{v_{i_0}} \in I_f \text{ quindi } m_f | m_{v_{i_0}}. \end{split}$$

TEOREMA 3.6.3: f ammette una base ciclica $\Leftrightarrow m_f = \pm p_f$.

Dimostrazione:

- \Rightarrow) Ovvia, in quanto se $\{v, f(v), \dots, f^{n-1}(v)\}$ sono linearmente indipendenti, $\deg(m_f) \ge n$ e dunque $m_f = \pm p_f$.
- \Leftarrow) Per il lemma $\exists v \in V$ tale che $m_{f,v} = m_f$. Per ipotesi $\deg(m_{f,v}) = \deg(m_f) = n$. Ma allora $\{v, f(v), ..., f^{n-1}(v)\}$ sono linearmente indipendenti; infatti se $b_0v + b_1f(v) + ... + b_{n-1}f^{n-1}(v) = 0$, il polinomio $g(t) = b_0 + b_1t + ... + b_{n-1}t^{n-1}$ deve soddisfare $g(t) \in I(f, v)$, ma $m_{f,v} = m_f$, dunque tutti i polinomi in I(f, v) hanno grado $\geq n$, quindi $g(t) \equiv 0$ e $b_i = 0$ $\forall i$.

4 FORME BILINEARI

4.1 FORME BILINEARI E FORME QUADRATICHE

DEFINIZIONE 4.1.1: Sia V un \mathbb{K} -spazio vettoriale. $\phi: V \times V \to \mathbb{K}$ è detta **applicazione** (o **forma**) bilineare se:

- 1) $\forall x, y, z \in V, \phi(x + y, z) = \phi(x, z) + \phi(y, z)$
- 2) $\forall x, y, z \in V, \phi(x, y + z) = \phi(x, y) + \phi(x, z)$
- 3) $\forall x, y \in V, \forall \alpha \in \mathbb{K}, \phi(\alpha x, y) = \alpha \phi(x, y) = \phi(x, \alpha y).$

PROPOSIZIONE 4.1.1: Le seguenti applicazioni sono bilineari:

- 1) $\phi \equiv 0$;
- 2) $\phi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} | \phi(X, Y) = {}^t XY = \sum_{i=1}^n x_i y_i$, detto **prodotto scalare standard su** \mathbb{R}^n ;
- 3) $A \in \mathcal{M}(n, \mathbb{K}), \phi : \mathbb{K}^n \times \mathbb{K}^n \to \mathbb{K} | \phi(X, Y) = {}^t X A Y;$
- 4) $\phi: \mathcal{M}(n, \mathbb{K}) \times \mathcal{M}(n, \mathbb{K}) \to \mathbb{K} | \phi(A, B) = tr(^tAB);$
- 5) $\phi: \mathcal{M}(n, \mathbb{K}) \times \mathcal{M}(n, \mathbb{K}) \to \mathbb{K} | \phi(A, B) = tr(AB);$
- 6) $a_1, ..., a_r \in \mathbb{K}, \phi : \mathbb{K}_n[x] \times \mathbb{K}_n[x] \to \mathbb{K} | \phi(p(x), q(x)) = \sum_{i=1}^r p(a_i)q(a_i)$, cioè la valutazione $(\mathbb{K}_n[x])$ è l'insieme dei polinomi di grado $\leq n$);

7)
$$\phi: \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R} \left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} \right) = x_1 y_1 + x_2 y_2 + x_3 y_3 - x_4 y_4$$
, detto **prodotto scalare di**

Minkowski.

Dimostrazione:

- 1) Ovvia.
- 2) Segue immediatamente dal fatto che la trasposizione e il prodotto fra matrici sono lineari.
- 3) Analoga alla 2).
- 4) La traccia, così come la trasposizione e il prodotto fra matrici, è lineare.
- 5) Analoga alla 4).
- 6) Segue dal fatto che la valutazione è lineare.
- 7) Lasciata al lettore.

DEFINIZIONE 4.1.2: Una forma bilineare $\phi: V \times V \to \mathbb{K}$ si dice **prodotto scalare** se è **simmetrica**, cioè $\phi(v, w) = \phi(w, v) \ \forall v, w \in V$.

PROPOSIZIONE 4.1.2: Delle precedenti forme bilineari, 1), 2), 4), 5), 6), 7) sono prodotti scalari, mentre la 3) è un prodotto scalare \Leftrightarrow *A* è simmetrica.

Dimostrazione:

La 3) è un prodotto scalare $\Leftrightarrow {}^t XAY = {}^t YAX = {}^t ({}^t X^t AY) \ \forall X,Y \in \mathbb{K}^n$, ma essendo numeri, ${}^t XAY = {}^t ({}^t X^t AY) \ \forall X,Y \in \mathbb{K}^n$. Poiché l'uguaglianza deve valere $\forall X,Y \in \mathbb{K}^n$, in particolare varrà per $X = e_i,Y = e_j$, con $1 \le i,j \le n$. Quindi ${}^t e_i A e_i = {}^t e_i {}^t A e_j \ \forall i,j \ \Leftrightarrow [A]_{ij} = [{}^t A]_{ij} \ \forall ij \ \Leftrightarrow A = {}^t A$.

La 4) è un prodotto scalare perché $tr({}^tAB) = tr({}^t({}^tAB)) = tr({}^tBA)$, mentre la 5) è un prodotto scalare perché abbiamo dimostrato che tr(AB) = tr(BA). Le altre sono verifiche immediate.

Osservazione: Durante tutta la trattazione delle forme bilineari lavoreremo solo in campi \mathbb{K} con $char(\mathbb{K}) \neq 2$, per poter dividere per 2.

DEFINIZIONE 4.1.3: Sia $\phi: V \times V \to \mathbb{K}$ una forma bilineare. Si definisce **forma quadratica indotta da** ϕ l'applicazione $q_{\phi}: V \to \mathbb{K}$ definita da $q_{\phi}(v) = \phi(v, v) \ \forall v \in V$.

Esempio: $\phi(X,Y) = {}^t XY$ su \mathbb{K}^n induce $q_{\phi}(x) = {}^t XX = \sum_{i=1}^n x_i^2$ (detta **forma quadratica standard**).

DEFINIZIONE 4.1.4: Una applicazione $q: V \to \mathbb{K}$ si dice **forma quadratica** se $\exists \phi$ forma bilineare su $V \mid q = q_{\phi}$.

Osservazione: Più forme bilineari possono definire la stessa forma quadratica, ad esempio $\phi_1 \equiv 0$ e $\phi_2(X,Y) = {}^t XAY$, con A antisimmetrica, inducono la stessa $q_{\phi} = 0$, in quanto: ${}^t XAX = {}^t ({}^t X{}^t AX) \sqsubseteq {}^t X(-A)X = -{}^t XAX \Rightarrow {}^t XAX = 0$ (il passaggio \sqsubseteq deriva dal fatto che la trasposizione lascia invariato un numero).

PROPOSIZIONE 4.1.3: Sia $q:V\to\mathbb{K}$ una forma quadratica. Allora esiste uno e un solo prodotto scalare che induce q.

Dimostrazione:

Per definizione $\exists \phi$ forma bilineare tale che $q = q_{\phi}$, cioè tale che $q(v) = \phi(v, v) \ \forall v \in V$.

Allora $\phi'(u, v) = \frac{\phi(u, v) + \phi(v, u)}{2}$ è un prodotto scalare che induce q (in quanto è evidentemente simmetrico e $\phi'(u, u) = \phi(u, u) = q(u)$).

Inoltre se ψ è un prodotto scalare che induce q, allora:

$$q(u+v) - q(u) - q(v) = \psi(u+v, u+v) - \psi(u, u) - \psi(v, v) = \psi(u, v) + \psi(v, u) = 2\psi(u, v)$$

da cui $\psi(u,v) = \frac{q(u+v) - q(u) - q(v)}{2}$ (detta formula di polarizzazione), dunque ψ è univocamente determinato e quindi unico.

DEFINIZIONE 4.1.5: Definiamo:

- $Bil(V) = \{\phi: V \times V \to \mathbb{K} | \phi \text{ è bilineare} \}$
- $PS(V) = \{\phi: V \times V \to \mathbb{K} | \phi \text{ è prodotto scalare} \}$
- $Q(V) = \{q: V \to \mathbb{K} | q \text{ è forma quadratica}\}.$

DEFINIZIONE 4.1.6: Definiamo una somma e un prodotto per scalari in Bil(V):

- $\forall \phi, \psi \in Bil(V), (\phi + \psi)(v, w) \stackrel{\text{def}}{=} \phi(v, w) + \psi(v, w);$
- $\forall \lambda \in \mathbb{K}$, $\forall \phi \in Bil(V)$, $(\lambda \phi)(v, w) \stackrel{\text{def}}{=} \lambda \phi(v, w)$.

PROPOSIZIONE 4.1.4: 1) Bil(V) è uno spazio vettoriale;

- 2) PS(V) è un sottospazio vettoriale di Bil(V);
- 3) Q(V) è un sottospazio vettoriale di $\mathcal{F}(V, \mathbb{K}) = \{f: V \to \mathbb{K}\}.$

Osservazione: $PS(V) \cong Q(V)$, in quanto l'applicazione $F: PS(V) \to Q(V) | F(\phi) = q_{\phi}$ è un isomorfismo (sappiamo che è bigettiva e si vede con un'immediata verifica che è lineare).

Notazione: Indicheremo con (V, ϕ) lo spazio vettoriale V dotato del prodotto scalare ϕ .

DEFINIZIONE 4.1.7: Siano (V, ϕ) e (W, ψ) K-spazi vettoriali. $f: V \to W$ lineare si dice isometria se:

- *f* è isomorfismo di spazi vettoriali;
- $\forall x, y \in V, \phi(x, y) = \psi(f(x), f(y)).$

DEFINIZIONE 4.1.8: (V, ϕ) e (W, ψ) si dicono **isometrici** se $\exists f: V \to W$ isometria (in tal caso ϕ e ψ si dicono **prodotti scalari isometrici**).

Osservazione: L'essere isometrici è una relazione di equivalenza (la verifica è lasciata al lettore).

Osservazione: Se $f: V \to (W, \psi)$ è un isomorfismo, l'applicazione $f_{\psi}^*: V \times V \to \mathbb{K} | f_{\psi}^*(v, w) =$ $\psi(f(v), f(w))$ è evidentemente un prodotto scalare su V e $f:(V, f_{\psi}^*) \to (W, \psi)$ è un'isometria per costruzione.

Dunque in generale basterà studiare $\{(V, \phi)\}/_{isometrie}$, con V fissato.

Denoteremo con \langle , \rangle il prodotto scalare standard di \mathbb{R}^n .

Esempi:

1) Le rotazioni di centro l'origine sono isometrie lineari di \mathbb{R}^2 dotato del prodotto scalare standard, infatti sia $\binom{x}{y}$ un vettore di \mathbb{R}^2 e sia $\binom{x'}{y'}$ il vettore ottenuto ruotando l'altro di un angolo α ; allora:

aligno
$$\alpha$$
, aliona.
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos(\alpha) - y\sin(\alpha) \\ x\sin(\alpha) + y\cos(\alpha) \end{pmatrix};$$

$$\langle \begin{pmatrix} x_1\cos(\alpha) - y_1\sin(\alpha) \\ x_1\sin(\alpha) + y_1\cos(\alpha) \end{pmatrix}, \begin{pmatrix} x_2\cos(\alpha) - y_2\sin(\alpha) \\ x_2\sin(\alpha) + y_2\cos(\alpha) \end{pmatrix} \rangle =$$

$$= x_1x_2(\cos^2(\alpha) + \sin^2(\alpha)) + y_1y_2(\sin^2(\alpha) + \cos^2(\alpha)) = x_1x_2 + y_1y_2 =$$

$$= \langle \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \rangle$$
2) Sia $H = \{b_1x_1 + \dots + b_nx_n = 0\}$ un iperpiano in $(\mathbb{R}^n, \langle, \rangle)$ passante per 0 .

Sia
$$B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
. Allora $H = \{X | \langle B, X \rangle = 0\}$.

Sia ora $\rho: \mathbb{R}^n \to \mathbb{R}^n$ la riflessione ortogonale rispetto ad H che associa ad ogni $P \in \mathbb{R}^n$ il simmetrico rispetto ad H.

Grazie alla figura (che è in \mathbb{R}^3 ma che comunque rende l'idea della situazione), vediamo che: $\rho(P) = P - 2B_P$; ma avendo l'iperpiano dimensione n - 1, su di esso giaceranno n - 1componenti di P, che chiamiamo M_1, \dots, M_{n-1} , mentre l'ultima componente sarà esattamente B_P . Allora:

$$\langle P, B \rangle = \langle B_P + \sum_{i=1}^{n-1} M_i, B \rangle = \langle B_P, B \rangle + \sum_{i=1}^{n-1} \langle M_i, B \rangle = \langle B_P, B \rangle.$$

Sia ora $B_P = k \cdot B$; quindi:

$$\langle P, B \rangle = \langle B_P, B \rangle = k \langle B, B \rangle \Rightarrow k = \frac{\langle P, B \rangle}{\langle B, B \rangle}.$$

Dunque
$$\rho(P) = P - 2 \frac{\langle P, B \rangle}{\langle B, B \rangle} B$$
.

Notiamo che $\rho^2 = id$, infatti:

$$\rho(\rho(P)) = P - 2\frac{\langle P, B \rangle}{\langle B, B \rangle} B - 2\frac{\langle P - 2\frac{\langle P, B \rangle}{\langle B, B \rangle} B, B \rangle}{\langle B, B \rangle} B =$$

$$= P - 2\frac{B}{\langle B, B \rangle} \left(\langle P, B \rangle + \langle P, B \rangle - 2\frac{\langle P, B \rangle}{\langle B, B \rangle} \langle B, B \rangle \right) = P$$

Inoltre ρ è un'isometria, in quanto:

- è lineare (la verifica è immediata);
- è iniettiva, poiché:

$$Ker(\rho) = \left\{ P \mid P = 2 \frac{\langle P, B \rangle}{\langle B, B \rangle} B \right\} = \left\{ P \mid P = 2 \frac{\langle P, B \rangle}{\langle B, B \rangle} B = 2 \frac{\langle 2 \frac{\langle P, B \rangle}{\langle B, B \rangle} B, B \rangle}{\langle B, B \rangle} B \right\} = \left\{ P \mid \langle P, B \rangle = 2 \langle P, B \rangle \right\} = \{0\}$$

- è surgettiva, poiché la controimmagine di P è $\rho(P)$, in quanto $\rho^2=id$;
- mantiene i prodotti scalari, in quanto:

$$\begin{split} \langle \rho(X), \rho(Y) \rangle &= \langle X - 2 \frac{\langle X, B \rangle}{\langle B, B \rangle} B, Y - 2 \frac{\langle Y, B \rangle}{\langle B, B \rangle} B \rangle \\ &= \langle X, Y \rangle - 2 \frac{\langle X, B \rangle \langle Y, B \rangle}{\langle B, B \rangle} - 2 \frac{\langle X, B \rangle \langle Y, B \rangle}{\langle B, B \rangle} + 4 \frac{\langle X, B \rangle \langle Y, B \rangle \langle B, B \rangle}{\langle B, B \rangle \langle B, B \rangle} = \langle X, Y \rangle. \end{split}$$

DEFINIZIONE 4.1.9: Si definisce **gruppo ortogonale** di (V, ϕ) l'insieme $O(V, \phi) = \{ f \in GL(V) | f: (V, \phi) \rightarrow (V, \phi) \text{ è isometria} \}$, cioè: $f \in O(V, \phi) \Leftrightarrow \phi(x, y) = \phi(f(x), f(y)) \ \forall x, y \in V$.

PROPOSIZIONE 4.1.5: $(O(V, \phi), \circ)$ è un gruppo ed è sottogruppo di GL(V).

DEFINIZIONE 4.1.10: $x, y \in V$ si dicono **ortogonali** rispetto a ϕ se $\phi(x, y) = 0$.

Osservazione: Se x, y sono ortogonali rispetto a ϕ e $f \in O(V, \phi)$, allora f(x), f(y) sono ortogonali rispetto a ϕ .

DEFINIZIONE 4.1.11: $\phi \in Bil(V)$, $\mathcal{B} = \{v_1, ..., v_n\}$ base di V. Si definisce **matrice associata** a ϕ rispetto a \mathcal{B} la matrice $\mathfrak{M}_{\mathcal{B}}(\phi) \in \mathcal{M}(n, \mathbb{K})$ definita da $[\mathfrak{M}_{\mathcal{B}}(\phi)]_{ij} = \phi(v_i, v_j)$.

PROPOSIZIONE 4.1.6: Se $\mathfrak{M}_{\mathcal{B}}(\phi) = A$, allora $\forall v, w \in V$, $\phi(v, w) = {}^t[v]_{\mathcal{B}}A[w]_{\mathcal{B}}$. Dimostrazione:

$$\phi(v,w) = \phi\left(\sum_{i=1}^{n} x_{i} v_{i}, \sum_{j=1}^{n} y_{j} v_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \phi(v_{i}, v_{j}) = {}^{t}[v]_{\mathcal{B}} A[w]_{\mathcal{B}}.$$

PROPOSIZIONE 4.1.7: Sia $\mathcal B$ base di V. Allora l'applicazione:

$$\mathfrak{M}_{\mathcal{B}}: \begin{array}{ccc} Bil(V) & \rightarrow & \mathcal{M}(n, \mathbb{K}) \\ \phi & \rightarrow & \mathfrak{M}_{\mathcal{B}}(\phi) \end{array}$$

è un isomorfismo di spazi vettoriali.

Dimostrazione:

 $\mathfrak{M}_{\mathcal{B}}$ è evidentemente una bigezione, poiché $\forall A \in \mathcal{M}(n, \mathbb{K}), \ \phi(v_i, v_j) = {}^t[v]_{\mathcal{B}}A[w]_{\mathcal{B}}$, dove $\mathcal{B} = \{v_1, \dots, v_n\}$ è fissata. Essendo ϕ definita su vettori di base, è univoca l'estensione a tutti i $v \in V$. Inoltre dalla definizione segue la linearità, dunque ho la tesi.

COROLLARIO 4.1.8: $\dim(Bil(V)) = n^2$.

Osservazione: $\phi \in Bil(V)$, \mathcal{B} base di V. Allora $\phi \in PS(V) \iff \mathfrak{M}_{\mathcal{B}}(\phi)$ è simmetrica.

COROLLARIO 4.1.9: $\dim(PS(V)) = \dim(Q(V)) = \frac{n(n+1)}{2}$.

Dimostrazione:

 $\mathfrak{M}_{\mathcal{B}}|_{PS(V)}: PS(V) \to \mathcal{S}(n, \mathbb{K})$ è un isomorfismo.

Osservazione: \mathcal{B} base di V, $\phi \in PS(V)$, $A = \mathfrak{M}_{\mathcal{B}}(\phi)$. Sia ψ_A il prodotto scalare su \mathbb{K}^n associato alla matrice simmetrica A, cioè $\psi_A(X,Y) = {}^t X A Y$.

Allora $[\]_{\mathcal{B}}:(V,\phi)\to (\mathbb{K}^n,\psi_A)$ è un'isometria, infatti $\phi(v,w)={}^t[v]_{\mathcal{B}}A[w]_{\mathcal{B}}=\psi_A([v]_{\mathcal{B}},[w]_{\mathcal{B}}).$

PROPOSIZIONE 4.1.10: $f:(V,\phi) \to (W,\psi)$ isomorfismo, \mathcal{B} base di V,\mathcal{S} base di W.

Siano $M = \mathfrak{M}_{\mathcal{B}}(\phi)$, $N = \mathfrak{M}_{\mathcal{S}}(\psi)$, $A = \mathfrak{M}_{\mathcal{B},\mathcal{S}}(f)$. Allora f è isometria $\Leftrightarrow M = {}^tANA$.

Dimostrazione:

Siano $X = [v]_{\mathcal{B}}, Y = [w]_{\mathcal{B}}$. Allora $\phi(v, w) = {}^t X M Y$.

$$\psi(f(v), f(w)) = {}^t[f(v)]_{\mathcal{S}} N[f(w)]_{\mathcal{S}} = {}^t(AX) N(AY) = {}^tX^tANAY.$$

Dunque f è isometria \Leftrightarrow ${}^tXMY = {}^tX{}^tANAY \ \forall X,Y \in \mathbb{K}^n \Leftrightarrow M = {}^tANA$ (per il solito discorso che quell'uguaglianza deve valere $\forall X,Y$ e quindi in particolare per gli $X=e_i,Y=e_j$).

Osservazione: f isomorfismo. $f \in O(V, \phi) \Leftrightarrow M = {}^t AMA$, dove $M = \mathfrak{M}_{\mathcal{B}}(\phi)$ e $A = \mathfrak{M}_{\mathcal{B}}(f)$.

4.2 CONGRUENZA E DECOMPOSIZIONE DI WITT

DEFINIZIONE 4.2.1: $A, B \in \mathcal{M}(n, \mathbb{K})$ si dicono **congruenti** se $\exists M \in GL(n, \mathbb{K}) | B = {}^tMAM$.

PROPOSIZIONE 4.2.1: Sia $\phi \in Bil(V)$ e $\mathcal{B}, \mathcal{B}'$ basi di V. Poniamo $A = \mathfrak{M}_{\mathcal{B}}(\phi)$ e $A' = \mathfrak{M}_{\mathcal{B}'}(\phi)$. Allora A e A' sono congruenti.

Dimostrazione:

Sia M la matrice del cambiamento di base da $\mathcal B$ a $\mathcal B'$; quindi $[v]_{\mathcal B}=M[v]_{\mathcal B'} \ \forall v \in V$.

Allora:

$$\phi(u, v) = {}^{t}[u]_{\mathcal{B}}A[v]_{\mathcal{B}} = {}^{t}[u]_{\mathcal{B}'}{}^{t}MAM[v]_{\mathcal{B}'};
\phi(u, v) = {}^{t}[u]_{\mathcal{B}'}A'[v]_{\mathcal{B}'}.$$

Poiché ${}^t[u]_{\mathcal{B}'}{}^tMAM[v]_{\mathcal{B}'}={}^t[u]_{\mathcal{B}'}A'[v]_{\mathcal{B}'} \ \forall u,v\in V,$ allora $A'={}^tMAM.$

Osservazione: La congruenza è una relazione di equivalenza

Osservazione: Il rango è un invariante di congruenza (poiché si moltiplica per matrici invertibili).

DEFINIZIONE 4.2.2: $rk(\phi) = rk(\mathfrak{M}_{\mathcal{B}}(\phi))$.

Osservazione: La definizione è ben posta perché il rango non dipende da \mathcal{B} .

PROPOSIZIONE 4.2.2: Sia V un \mathbb{K} -spazio vettoriale, $\phi, \psi \in PS(V)$. Sono fatti equivalenti:

- 1) (V, ϕ) e (V, ψ) sono isometrici;
- 2) $\forall \mathcal{B}$ base di V, $\mathfrak{M}_{\mathcal{B}}(\phi)$ e $\mathfrak{M}_{\mathcal{B}}(\psi)$ sono congruenti;
- 3) $\exists \mathcal{B}, \mathcal{B}'$ basi di $V \mid \mathfrak{M}_{\mathcal{B}}(\phi) = \mathfrak{M}_{\mathcal{B}'}(\psi)$.

Dimostrazione:

Analoga a quella per gli endomorfismi.

Osservazione: Gli invarianti rispetto all'isometria in PS(V) corrispondono agli invarianti rispetto alla congruenza in $S(n, \mathbb{K})$.

Osservazione: Se $B = {}^tMAM$, con $M \in GL(n, \mathbb{K})$, allora $\det(B) = \det(A) \cdot (\det(M))^2$. Quindi:

- il determinante non è invariante di congruenza;
- se $\mathbb{K} = \mathbb{R}$ il segno del determinante è invariante per congruenza.

DEFINIZIONE 4.2.3: Sia $\phi \in PS(V)$. Si definisce **radicale** di ϕ l'insieme $Rad(\phi) = \{v \in V | \phi(v, w) = 0 \ \forall w \in V\}$.

PROPOSIZIONE 4.2.3: $Rad(\phi)$ è sottospazio di V e $\dim(Rad(\phi)) = \dim(V) - rk(\phi)$.

Dimostrazione:

La verifica che sia sottospazio è lasciata.

Sia dim(V) = n e \mathcal{B} base di V; sia $A = \mathfrak{M}_{\mathcal{B}}(\phi)$.

Poniamo $X = [v]_{\mathcal{B}}$ e $Y = [w]_{\mathcal{B}}$.

$$v \in Rad(\phi) \Leftrightarrow \phi(v, w) = 0 \ \forall w \in V \Leftrightarrow {}^tXAY = 0 \ \forall Y \in \mathbb{K}^n \ \Longrightarrow {}^tXA = 0 \Leftrightarrow {}^t({}^tXA) = 0$$
$$\Leftrightarrow AX = 0$$

dove il passaggio \iff segue dal fatto che deve essere ${}^tXAY = 0 \ \forall Y \in \mathbb{K}^n$, dunque in particolare per $Y = e_i$, con $1 \le i \le n$.

Quindi l'immagine di $Rad(\phi)$ tramite l'isomorfismo $[]_{\mathcal{B}}: V \to \mathbb{K}^n$ è Ker(A), per cui $\dim(Rad(\phi)) = \dim(Ker(A)) = n - rk(A) = n - rk(\phi)$.

Osservazione: In particolare $Rad(\phi)$ si calcola risolvendo il sistema lineare AX = 0.

DEFINIZIONE 4.2.4: Diciamo che $\phi \in PS(V)$ è **non degenere** se $Rad(\phi) = \{0\}$, ossia se $\phi(v, w) = 0 \ \forall w \in V \Rightarrow v = 0$ (e **degenere** altrimenti).

COROLLARIO 4.2.4: ϕ è non degenere $\Leftrightarrow rk(\phi) = \dim(V)$.

Osservazione: Se $A = \mathfrak{M}_{\mathcal{B}}(\phi)$ allora ϕ è non degenere \Leftrightarrow det $(A) \neq 0$.

Notazione: Se W è sottospazio di V e $\phi \in PS(V)$, denoteremo con $\phi|_W$ la restrizione di ϕ a $W \times W$.

Osservazione: Sia $A=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ prodotto scalare su \mathbb{K}^2 e $W=Span(e_1)$. $\phi|_W\equiv 0$, dunque la restrizione di un prodotto scalare non degenere può essere degenere.

DEFINIZIONE 4.2.5: (V, ϕ) e (W, ψ) si dicono **canonicamente isometrici** se esiste un'isometria fra di essi che non dipende da nessuna base.

PROPOSIZIONE 4.2.5: $\phi \in PS(V)$.

- 1) Se $V = Rad(\phi) \oplus U$, allora $\phi|_U$ è non degenere.
- 2) Se $V = Rad(\phi) \oplus U_1 = Rad(\phi) \oplus U_2$, allora U_1 e U_2 sono canonicamente isometrici. Dimostrazione:
- 1) Sia $n = \dim(V)$, $p = \dim(Rad(\phi))$. Sia $\mathcal{B}_1 = \{v_1, ..., v_p\}$ base di $Rad(\phi)$; sia $\mathcal{B}_2 = \{v_{p+1}, ..., v_n\}$ base di U. Sia $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ (che ovviamente è base di V); allora:

$$\mathfrak{M}_{\mathcal{B}}(\phi) = \left(\frac{0 \mid 0}{0 \mid A}\right),\,$$

dove $A = \mathfrak{M}_{\mathcal{B}_2}(\phi|_U) \in \mathcal{M}(n-p, \mathbb{K}).$

Poiché $rk(\mathfrak{M}_{\mathcal{B}}(\phi)) = n - \dim(Rad(\phi)) = n - p$, allora A è invertibile e dunque $\phi|_{U}$ è non degenere.

2) $\forall u \in U_1 \subseteq V \ \exists ! \ z_u \in Rad(\phi), u' \in U_2 | \ u = z_u + u'.$ Definiamo $L: U_1 \to U_2 | \ L(u) = u'.$ L è sicuramente lineare, in quanti restrizione di $\pi_{U_2}: V \to U_2.$ Poiché $\dim(U_1) = \dim(U_2)$, per provare che L è isomorfismo basta provare che è iniettiva. Sia $u \in Ker(L) \Rightarrow u' = L(u) = 0 \Rightarrow u = z_u \in Rad(\phi) \Rightarrow u \in U_1 \cap Rad(\phi) = \{0\}.$ Mostriamo che L è un'isometria: $\phi(u,v) = \phi(z_u + u', z_v + v') = \phi(z_u, z_v) + \phi(z_u, v') + \phi(u', z_v) + \phi(u', v') = \phi(u', v') = \phi(L(u), L(v)),$ da cui la tesi.

DEFINIZIONE 4.2.6: Se $\phi \in PS(V)$ e $S \subseteq V$, definiamo ortogonale di S: $S^{\perp} = \{v \in V | \phi(v, s) = 0 \ \forall s \in S\}.$

Osservazione: $Rad(\phi) = V^{\perp}$.

PROPOSIZIONE 4.2.6: Siano $S, T \subseteq V$.

- 1) S^{\perp} è sottospazio di V
- 2) $S \subseteq T \Rightarrow T^{\perp} \subseteq S^{\perp}$
- 3) $S^{\perp} = (Span(S))^{\perp}$
- 4) $S \subseteq S^{\perp^{\perp}}$

Siano *U*, *W* sottospazi di *V*.

- 5) $(U + W)^{\perp} = U^{\perp} \cap W^{\perp}$
- 6) $U^{\perp} + W^{\perp} \subseteq (U \cap W)^{\perp}$

Dimostrazione:

- 1) Verifica immediata.
- 2) $v \in T^{\perp} \Rightarrow \phi(v,t) = 0 \ \forall t \in T \supseteq S \Rightarrow \phi(v,s) = 0 \ \forall s \in S \Rightarrow v \in S^{\perp}$.
- 3) Poiché $S \subseteq Span(S)$, per 2) ho che $(Span(S))^{\perp} \subseteq S^{\perp}$. Inoltre se $v \in S^{\perp} \Rightarrow \phi(v,s) = 0 \ \forall s \in S$. Ma se $S = \{s_1, ..., s_k\}$, allora: $\phi(v, \sum_{i=1}^k a_i s_i) = \sum_{i=1}^k \phi(v, s_i) = 0$, da cui la tesi.
- 4) $v \in S \Rightarrow \phi(v,s) = 0 \ \forall s \in S^{\perp} \Rightarrow v \in S^{\perp^{\perp}}$.
- 5) $v \in (U+W)^{\perp} \Leftrightarrow \phi(v,u+w) = 0 \ \forall u \in U, w \in W \Leftrightarrow \phi(v,u) + \phi(v,w) = 0 \Leftrightarrow \phi(v,u) = 0 \land \phi(v,w) = 0 \ \forall u \in U, w \in W \Leftrightarrow v \in U^{\perp} \cap W^{\perp},$ dove il passaggio contrassegnato con \Leftrightarrow si ottiene ponendo prima u = 0 e poi w = 0.
- 6) $v \in U^{\perp} + W^{\perp} \Rightarrow v = v_U + v_W$, con $v_U \in U^{\perp}$, $v_W \in W^{\perp} \Rightarrow \forall h \in U \cap W$, $\phi(v, h) = \phi(v_U + v_W, h) = \phi(v_U, h) + \phi(v_W, h) = 0 + 0 = 0 \Rightarrow v \in (U \cap W)^{\perp}$.

Osservazione: Se W è sottospazio di V, allora $W \cap W^{\perp} = Rad(\phi|_W)$, poiché in $W \cap W^{\perp}$ ci sono i vettori di W ortogonali a tutti i vettori di W, cioè i vettori di $Rad(\phi|_W)$.

Esempio: Sia $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ e $W = Span(e_1)$. $W^{\perp} = Span(e_1) \Rightarrow W \cap W^{\perp} = Rad(\phi|_W) = Span(e_1)$.

PROPOSIZIONE 4.2.7: Se W è sottospazio di V e $W \cap Rad(\phi) = \{0\}$, allora: $\dim(W^{\perp}) = \dim(V) - \dim(W)$.

(Osservazione: Non è detto che W e W^{\perp} siano in somma diretta, nonostante abbiamo dimensioni adeguate; un controesempio può essere l'esempio precedente).

Dimostrazione:

Sia $\dim(W) = k \operatorname{edim}(Rad(\phi)) = h$.

Esiste una base \mathcal{B} di V del tipo:

$$\mathcal{B} = \underbrace{\left\{ \underbrace{w_1, \dots, w_k}_{base \ di \ W}, v_{k+1}, \dots, v_{n-h}, \underbrace{v_{n-h+1}, \dots, v_n}_{base \ di \ Rad(\phi)} \right\}}_{}.$$

Allora:

$$A = \mathfrak{M}_{\mathcal{B}}(\phi) = \left(\frac{\frac{M_1 \mid M_2 \mid 0}{t_{M_2} \mid M_3 \mid 0}}{\frac{t_{M_2} \mid M_3 \mid 0}{t_{M_3} \mid 0}}\right)$$

e rk(A) = n - h.

$$W^{\perp} = \{v \in V | \phi(v, w) = 0 \ \forall w \in W\} = \{v \in V | \phi(w_1, v) = \dots = \phi(w_k, v) = 0\}.$$

Infatti il contenimento \subseteq è ovvio, mentre l'altro segue dal fatto che ogni $w \in W$ si può scrivere come combinazione lineare dei w_i .

Ora:

Dunque attraverso l'isomorfismo $[\]_{\mathcal{B}}$ i vettori di W^{\perp} corrispondono alle soluzioni del sistema lineare:

$$\underbrace{(I_k \mid 0)A}_{=(M_1\mid M_2\mid 0)}X = 0.$$

Poiché
$$rk(A) = n - h$$
, la matrice $\left(\frac{M_1 \mid M_2}{t_{M_2} \mid M_3}\right)$ è invertibile e dunque $rk(M_1 \mid M_2) = k$.

Allora lo spazio delle soluzioni del sistema $(M_1|M_2|0)X=0$ ha dimensione n-k e dunque $\dim(W^{\perp})=n-k$.

COROLLARIO 4.2.8: 1) $\dim(W^{\perp}) = \dim(V) - \dim(W) + \dim(W \cap Rad(\phi))$

- 2) In generale $\dim(W^{\perp}) + \dim(W) \ge \dim(V)$
- 3) Se ϕ è non degenere, allora $\dim(W^{\perp}) = \dim(V) \dim(W)$
- 4) $\phi|_W$ è non degenere $\Leftrightarrow V = W \oplus W^{\perp}$.

Dimostrazione:

1) Sia $W = (W \cap Rad(\phi)) \oplus W_1$.

Allora
$$W^{\perp} = W_1^{\perp}$$
, infatti sicuramente $W^{\perp} \subseteq W_1^{\perp}$ in quanto $W_1 \subseteq W$, e: $v \in W_1^{\perp} \Rightarrow \phi(v, w') = 0 \ \forall w' \in W_1 \Rightarrow \phi(v, w) = \phi(v, w_0 + w'), w_0 \in Rad(\phi), w' \in W_1 \Rightarrow \phi(v, w) = \phi(v, w_0) + \phi(v, w') = 0 + 0 = 0 \Rightarrow v \in W^{\perp}$

Inoltre $W_1 \cap Rad(\phi) = \{0\}$, poiché:

$$\{0\} = W_1 \cap (W \cap Rad(\phi)) = (W_1 \cap W) \cap Rad(\phi) \sqsubseteq W_1 \cap Rad(\phi),$$

dove il passaggio contrassegnato con \equiv segue dal fatto che $W_1 \subseteq W$.

Per la proposizione precedente:

$$\dim(W^{\perp}) = \dim(W_1^{\perp}) = \dim(V) - \dim(W_1) = \dim(V) - \left(\dim(W) - \dim(W \cap Rad(\phi))\right),$$
da cui la tesi.

- 2) Segue dal punto 1).
- 3) Poiché $Rad(\phi) = \{0\}$ e per il punto 1) si ha la tesi.
- 4) $\phi|_W$ è non degenere $\Leftrightarrow Rad(\phi|_W) = W \cap W^{\perp} = \{0\}$. Dunque $\dim(W \oplus W^{\perp}) \leq \dim(V)$. D'altra parte $\dim(W \oplus W^{\perp}) = \dim(W) + \dim(W^{\perp}) \geq \dim(V)$, dunque ho la tesi.

Osservazione: Se ϕ è non degenere, poiché $U \subseteq U^{\perp^{\perp}}$ e dim $(U) = \dim(U^{\perp^{\perp}})$, allora segue che $U = U^{\perp^{\perp}}$. Inoltre, sapendo che $(U + W)^{\perp} = U^{\perp} \cap W^{\perp}$, se ϕ è non degenere segue che $U^{\perp} + W^{\perp} = (U \cap W)^{\perp}$ (con un ragionamento analogo al precedente).

DEFINIZIONE 4.2.7: Se $V=W\oplus W^{\perp}$, la proiezione $\pi_W\colon V\to W$ è detta **proiezione ortogonale** su W.

Osservazione: $\forall v \in V, v - \pi_W(v) \in W^{\perp}$.

DEFINIZIONE 4.2.8: $v \in V$ si dice **isotropo** se $\phi(v, v) = 0$.

Denotiamo con $\mathcal{I}(\phi)$ l'insieme dei vettori isotropi per ϕ .

Osservazione: Se ogni $v \in V$ è isotropo per ϕ , allora $\phi \equiv 0$ (per la formula di polarizzazione).

Osservazione: Se v non è isotropo, quindi $V = Span(v) \oplus Span(v)^{\perp}$, allora ogni $w \in V$ si scrive come $w = w_1 + w_2$, con $w_1 \in Span(v)$ e $w_2 \in Span(v)^{\perp}$.

Inoltre $w_1 = c \cdot v$, quindi $w_2 = w - cv$.

$$w_2 = w - cv \in Span(v)^{\perp} \Leftrightarrow \phi(w - cv, v) = 0 \Leftrightarrow \phi(w, v) = c\phi(v, v) \Leftrightarrow c = \frac{\phi(v, w)}{\phi(v, v)}$$

Il numero $c = \frac{\phi(v,w)}{\phi(v,v)}$ prende il nome di **coefficiente di Fourier** di w rispetto a v.

Dunque $\pi|_{Span(v)}(w) = \frac{\phi(v,w)}{\phi(v,v)}v$.

DEFINIZIONE 4.2.9: Una base $\mathcal{B} = \{v_1, \dots, v_n\}$ di V si dice **ortogonale** se $\phi(v_i, v_i) = 0 \ \forall i \neq j$.

Osservazione: \mathcal{B} è ortogonale $\Leftrightarrow \mathfrak{M}_{\mathcal{B}}(\phi)$ è diagonale.

PROPOSIZIONE 4.2.9: $\forall \phi \in PS(V)$ esiste una base di V ortogonale rispetto a ϕ .

Dimostrazione 1:

Per induzione su $n = \dim(V)$:

Passo base): n = 1: ogni base è ortogonale.

Passo induttivo): Se $\phi(v,v) = 0 \ \forall v \in V$, allora $\phi \equiv 0$ e quindi ogni base è ortogonale.

Altrimenti $\exists v_1 | \phi(v_1, v_1) \neq 0$; allora $V = Span(v_1) \oplus Span(v_1)^{\perp}$.

Per ipotesi induttiva $\exists \{v_2, \dots, v_n\}$ base di $Span(v_1)^{\perp}$ ortogonale per la restrizione di ϕ (e dunque per ϕ).

Allora $\{v_1, ..., v_n\}$ è base di V ortogonale per ϕ .

Dimostrazione 2 – **Algoritmo di Lagrange**:

Sia $\mathcal{B} = \{v_1, ..., v_n\}$ una base qualsiasi di V. Sia $A = \mathfrak{M}_{\mathcal{B}}(\phi)$.

• Supponiamo $[A]_{11} = \phi(v_1, v_1) \neq 0$, cioè $v_1 \notin \mathcal{I}(\phi)$. Poniamo:

$$v'_1 = v_1;$$

 $v'_2 = v_2 - \frac{\phi(v_2, v'_1)}{\phi(v'_1, v'_1)} v'_1;$
 \vdots

$$v'_n = v_n - \frac{\phi(v_n, v'_1)}{\phi(v'_1, v'_1)} v'_1.$$

Allora $\phi(v_j', v_1') = 0 \quad \forall j \geq 2 \text{ e } \mathcal{B}' = \{v_1', \dots, v_n'\}$ è una base di V, infatti, se mettiamo i vettori v_i' per colonna in una matrice, otteniamo:

$$M = \begin{pmatrix} 1 & -k_2 & -k_3 & & -k_n \\ 0 & 1 & 0 & & 0 \\ 0 & 0 & 1 & \cdots & \vdots \\ \vdots & \vdots & \vdots & & 0 \\ 0 & 0 & 0 & & 1 \end{pmatrix}$$

che ha evidentemente $\det M = 1 \neq 0$.

Inoltre abbiamo che:

$$\mathfrak{M}_{\mathcal{B}'}(\phi) = \begin{pmatrix} * & 0 & \dots & 0 \\ 0 & & & & \\ \vdots & & C & \\ 0 & & & & \end{pmatrix}$$

- Se [A]₁₁ = 0 guardo se ∃j ∈ {2, ..., n}| [A]_{jj} ≠ 0.
 Se lo trovo, permuto la base B in modo che v_j sia il primo vettore e procedo come prima.
 Altrimenti:
- Se $[A]_{ii} = 0 \ \forall i$ ci sono due casi:
 - a) ϕ è nullo, quindi ogni base è ortogonale;
 - b) $\exists i \neq j | [A]_{ij} = [A]_{ji} \neq 0$. In tal caso $\phi(v_i + v_j, v_i + v_j) = 2[A]_{ij} \neq 0$. Allora scelgo una base di V in cui $v_i + v_j$ è il primo vettore e poi applico il primo caso.

Dopo aver ortogonalizzato i vettori rispetto al primo, itero il procedimento sulla matrice C e così via.

COROLLARIO 4.2.10: Ogni matrice simmetrica è congruente ad una matrice diagonale.

Osservazione: Sia $\mathcal{B} = \{v_1, ..., v_n\}$ una base ortogonale.

Sia $v = \alpha_1 v_1 + \ldots + \alpha_n v_n$.

 $\phi(v, v_1) = \alpha_1 \phi(v_1, v_1)$, quindi, se v_1 è non isotropo, la coordinata di v_1 coincide con il coefficiente di Fourier di v_1 rispetto a v_1 .

Quindi, se ϕ è non degenere:

$$v = \frac{\phi(v, v_1)}{\phi(v_1, v_1)} v_1 + \dots + \frac{\phi(v, v_n)}{\phi(v_n, v_n)} v_n$$

Inoltre, se W è sottospazio di V, dim(W) = k, $\phi|_W$ è non degenere (per cui $V = W \oplus W^{\perp}$) e $\{w_1, \dots, w_k\}$ è una base ortogonale di W, allora:

$$v = \frac{\phi(v, w_1)}{\phi(w_1, w_1)} w_1 + \ldots + \frac{\phi(v, w_k)}{\phi(w_k, w_k)} w_k + z, z \in W^{\perp}$$

Quindi:

$$\pi_W(v) = \frac{\phi(v, w_1)}{\phi(w_1, w_1)} w_1 + \ldots + \frac{\phi(v, w_k)}{\phi(w_k, w_k)} w_k$$

Osservazione: Sia V un \mathbb{C} -spazio vettoriale, $\dim(V)=n, \phi \in PS(V), rk(\phi)=r$. Allora $\exists \mathcal{S}=\{v_1,\dots,v_n\}$ base ortogonale di V tale che:

$$\mathfrak{M}_{\mathcal{S}}(\phi) = egin{pmatrix} a_{11} & & & & & & & \\ & \ddots & & & & & & \\ & & a_{rr} & & & & \\ & & & 0 & & & \\ & & & \ddots & & \\ & & & & 0 \end{pmatrix}$$

 $con a_{ii} \neq 0 \ \forall i \leq r.$

$$\mathrm{Sia}\ \mathcal{B} = \left\{ \frac{v_1}{\sqrt{\phi(v_1,v_1)}}, \dots, \frac{v_r}{\sqrt{\phi(v_r,v_r)}}, v_{r+1}, \dots, v_n \right\}.$$

 \mathcal{B} è detta base ortogonale normalizzata per ϕ e:

$$\mathfrak{M}_{\mathcal{B}}(\phi) = \left(\frac{I_r \mid 0}{0 \mid 0}\right).$$

TEOREMA DI SYLVESTER COMPLESSO: Sia V un \mathbb{C} -spazio vettoriale.

Allora (V, ϕ) e (V, ψ) sono isometrici $\Leftrightarrow rk(\phi) = rk(\psi)$.

(Osservazione: Quindi il rango è un sistema completo di invarianti per l'isometria nel caso $\mathbb{K}=\mathbb{C}$).

Dimostrazione:

 (V,ϕ) e (V,ψ) sono isometrici $\Leftrightarrow \exists \mathcal{B}, \mathcal{S}$ basi di $V \mid \mathfrak{M}_{\mathcal{B}}(\phi) = \mathfrak{M}_{\mathcal{S}}(\psi)$.

Poiché abbiamo visto nell'osservazione precedente che se $rk(\phi) = rk(\psi)$ allora $\exists \mathcal{B}, \mathcal{S}$ basi di

$$V \mid \mathfrak{M}_{\mathcal{B}}(\phi) = \mathfrak{M}_{\mathcal{S}}(\psi) = \left(\frac{I_r \mid 0}{0 \mid 0}\right)$$
, segue la tesi.

COROLLARIO 4.2.11: Tutti i prodotti scalari non degeneri su un C-spazio vettoriale sono isometrici.

COROLLARIO 4.2.12: Ogni matrice simmetrica complessa di rango r è congruente a $\left(\frac{I_r\mid 0}{0\mid 0}\right)$ e dunque il rango è un invariante completo di congruenza su $\mathbb C$.

Osservazione: Sia V un \mathbb{R} -spazio vettoriale, dim(V) = n, $\phi \in PS(V)$, $rk(\phi) = r$. Allora $\exists S = \{v_1, ..., v_n\}$ base ortogonale di V tale che:

 $con a_{ii} \neq 0 \ \forall i \leq r.$

Supponiamo che $a_{ii} > 0$ per $1 \le i \le p$ e $a_{ii} < 0$ per $p + 1 \le i \le r$.

Sia
$$\mathcal{B} = \left\{ \frac{v_1}{\sqrt{a_{11}}}, \dots, \frac{v_p}{\sqrt{a_{pp}}}, \frac{v_{p+1}}{\sqrt{-a_{(p+1)(p+1)}}}, \frac{v_r}{\sqrt{-a_{rr}}}, v_{r+1}, \dots, v_n \right\}.$$

 ${\mathcal B}$ è detta base ortogonale normalizzata per ϕ e:

$$\mathfrak{M}_{\mathcal{B}}(oldsymbol{\phi}) = egin{pmatrix} oldsymbol{I_p} & & & \ & oldsymbol{-I_{r-p}} & \ & oldsymbol{0} \end{pmatrix}.$$

103

DEFINIZIONE 4.2.10: Sia V un \mathbb{R} -spazio vettoriale, $\phi \in PS(V)$.

- ϕ si dice **definito positivo** (o **negativo**) se $\phi(v,v) > 0 \ \forall v \neq 0$ (oppure $\phi(v,v) < 0 \ \forall v \neq 0$);
- ϕ si dice **definito** se è definito positivo o definito negativo;
- ϕ si dice **semidefinito positivo** (o **negativo**) se $\phi(v, v) \ge 0 \ \forall v$ (oppure $\phi(v, v) \le 0 \ \forall v$);
- ϕ si dice **semidefinito** se è semidefinito positivo o semidefinito negativo.

Osservazione: ϕ definito $\Rightarrow \phi$ non degenere; inoltre se W è sottospazio di V e ϕ è (semi)definito, allora $\phi|_W$ è (semi)definito.

DEFINIZIONE 4.2.11: • Il numero $i_+(\phi) = \max\{dim(W) | W \ ssv \ di \ V, \phi|_W \ def. \ positivo\}$ prende il nome di **indice di positività**;

- Il numero $i_{-}(\phi) = \max\{dim(W) | W \ ssv \ di \ V, \phi|_{W} \ def.negativo\}$ prende il nome di **indice** di negatività;
- Il numero $i_0(\phi) = \dim(Rad(\phi))$ prende il nome di **indice di nullità**.

Osservazione: Questi tre numeri sono invarianti per isometria, poiché le isometrie mantengono il prodotto scalare e dunque anche i segni dei prodotti scalari.

DEFINIZIONE 4.2.12: La terna $\sigma(\phi) = (i_+(\phi), i_-(\phi), i_0(\phi))$ è detta **segnatura** di ϕ .

TEOREMA DI SYLVESTER REALE: Sia V un \mathbb{R} -spazio vettoriale, dim $(V) = n, \phi \in PS(V)$. Sia \mathcal{B} una base ortogonale di V tale che:

$$\mathfrak{M}_{\mathcal{B}}(\phi) = egin{pmatrix} I_p & & & & \\ & & \boxed{-I_q} & & \\ & & \boxed{0} \end{pmatrix}.$$

Allora $p = i_+(\phi)$ e $q = i_-(\phi)$.

Dimostrazione:

Sia
$$\mathcal{B} = \{v_1, \dots, v_p, v_{p+1}, \dots, v_{p+q}, v_{p+q+1}, \dots, v_n\}.$$

La restrizione di ϕ a $Span(v_1, ..., v_p)$ è definita positiva, dunque $i_+(\phi) \ge p$.

Sia ora W un sottospazio di V tale che dim $(W) = i_+(\phi) \wedge \phi|_W$ è definito positivo.

Sia
$$Z = Span(v_{p+1}, ..., v_n)$$
. Dunque $\forall z \in Z, \ z = a_{p+1}v_{p+1} + ... + a_nv_n$.

$$\phi(z,z) = -a_{p+1}^2 - \dots - a_{p+q}^2 \le 0$$
, dunque $\phi|_Z$ è semidefinito negativo.

Notiamo che $W \cap Z = \{0\}$, infatti, se $v \in W \cap Z$, allora $\phi(v,v) \ge 0 \land \phi(v,v) \le 0$, quindi $\phi(v,v) = 0$, cioè v = 0 perché $v \in W$ ed essendo W definito positivo il suo unico vettore isotropo è il vettore nullo.

Allora esiste $W \oplus Z$ sottospazio di V, per cui dim $(W \oplus Z) = \dim(W) + \dim(Z) \le \dim(V) = n$, ossia $i_+(\phi) + n - p \le n$, cioè $i_+(\phi) \le p$.

Segue dunque che $i_+(\phi) = p$ e con questo che $i_+(\phi)$ non dipende dalla scelta della base. Poiché $p + q = rk(\phi)$ e $i_+(\phi) + i_-(\phi) = rk(\phi)$, allora $q = i_-(\phi)$, da cui la tesi.

COROLLARIO 4.2.13: Se $\mathbb{K} = \mathbb{R}$, (V, ϕ) e (V, ψ) sono isometrici $\Leftrightarrow \sigma(\phi) = \sigma(\psi)$, cioè la segnatura è un invariante completo di isometria nel caso $\mathbb{K} = \mathbb{R}$.

COROLLARIO 4.2.14: $A, B \in \mathcal{S}(n, \mathbb{R})$ sono congruenti $\Leftrightarrow \sigma(A) = \sigma(B)$, cioè la segnatura è un invariante completo di congruenza nel caso reale.

DEFINIZIONE 4.2.13: V \mathbb{K} -spazio vettoriale, $\phi \in PS(V)$. Una base \mathcal{B} di V si dice **ortonormale** per $\phi \iff \mathfrak{M}_{\mathcal{B}}(\phi) = I$.

Osservazione: Se $\mathbb{K} = \mathbb{C}$ ∃una base ortonormale per $\phi \Leftrightarrow \phi$ è non degenere. Se $\mathbb{K} = \mathbb{R}$ ∃una base ortonormale per $\phi \Leftrightarrow \phi$ è definito positivo.

DEFINIZIONE 4.2.14: Sia $A \in \mathcal{S}(n, \mathbb{R})$. A si dice **definita positiva** (**negativa**) se ${}^tXAX > 0$ (${}^tXAX < 0$) $\forall X \neq 0$.

Sia $A \in \mathcal{S}(n, \mathbb{R})$. A si dice **semidefinita positiva** (**negativa**) se ${}^tXAX \geq 0$ (${}^tXAX \leq 0$) $\forall X$.

Osservazione: A è definita positiva $\Leftrightarrow \psi_A$: $(X,Y) \to {}^t XAY$ è definito positivo. Analogamente se è definita negativa.

Osservazione: A è definita positiva $\Leftrightarrow A$ è congruente a $I \Leftrightarrow \exists M \in GL(n, \mathbb{R}) | A = {}^tMM$ (dunque $\det(A) = \det({}^tMM) = (\det(M))^2 > 0$).

DEFINIZIONE 4.2.15: $A \in \mathcal{S}(n, \mathbb{R})$. $\forall 1 \leq i \leq n$ si definisce i-esimo minore principale $M_i(A)$ il minore formato dalle prime i righe e dalle prime i colonne.

CRITERIO DEI MINORI PRINCIPALI: $A \in \mathcal{S}(n, \mathbb{R})$.

A è definita positiva $\Leftrightarrow \det(M_i(A)) > 0 \ \forall i$.

Dimostrazione:

- \Rightarrow) $M_i(A)$ è la matrice associata alla restrizione di ψ_A al sottospazio $Span(e_1, ..., e_i)$. Tale restrizione è definita positiva e quindi $det(M_i(A)) > 0 \ \forall i$.
- \Leftarrow) Per induzione su n:

Passo base): n = 1: ovvio.

Passo induttivo): Per ipotesi tutti i minori principali della matrice $M_{n-1}(A)$ hanno determinante positivo.

Allora per ipotesi induttiva la restrizione di ψ_A a $Span(e_1, ..., e_{n-1})$ è definita positiva e quindi $i_+(\psi_A) \ge n-1$.

Allora, se $i_+(\psi_A)=n-1$, esisterebbe per Sylvester una base $\mathcal B$ tale che:

$$\mathfrak{M}_{\mathcal{B}}(\psi_A) = \left(\begin{array}{c|c} I_{n-1} & \\ & -1 \end{array}\right)$$

e det $(\mathfrak{M}_{\mathcal{B}}(\psi_A)) = -1 < 0$, assurdo, quindi $i_+(\psi_A) = n$, cioè A è definita positiva.

PROPOSIZIONE 4.2.15: Le trasformazioni di base con l'algoritmo di Lagrange nel caso in cui il vettore non sia isotropo non alterano i determinanti dei minori principali.

Dimostrazione:

$$A = \mathfrak{M}_{\mathcal{B}}(\psi) \xrightarrow{trasf.di.hase} A' = \mathfrak{M}_{\mathcal{B}'}(\psi); \mathcal{B} = \{v_1, \dots, v_n\}, \mathcal{B}' = \{v_1', \dots, v_n'\}.$$

$$M = \mathfrak{M}_{\mathcal{B}'\mathcal{B}}(id) = \begin{pmatrix} 1 & * & * & & * \\ 0 & 1 & 0 & & 0 \\ 0 & 0 & 1 & \cdots & \vdots \\ \vdots & \vdots & \vdots & & 0 \\ 0 & 0 & 0 & & 1 \end{pmatrix}$$

Notiamo che $A' = {}^{t}MAM$; sia inoltre $W_k = Span(v_1, ..., v_k)$.

Allora $A_k = \mathfrak{M}_{\{v_1,\dots,v_k\}}(\psi|_{W_k}), W_k = Span(v'_1,\dots,v'_k) \in \mathfrak{M}_{\{v'_1,\dots,v'_k\},\{v_1,\dots,v_k\}}(id) = M_k.$

Quindi $A'_k = {}^t M_k A_k M_k$.

Ma $\det(M_k) = 1 \ \forall k$, quindi $D'_k = \det(A'_k) = \det(A_k) \cdot (\det(M_k))^2 = \det(A_k) = D_k$, tesi.

CRITERIO DI JACOBI: $A \in \mathcal{S}(n, \mathbb{R}), rk(A) = r$. Supponiamo che $D_i \neq 0 \ \forall i \leq r$. Allora $\exists T$ triangolare superiore, $\det(T) = 1$, tale che:

Dimostrazione:

 $D_1 \neq 0 \Rightarrow [A]_{11} = D_1 \neq 0$, quindi posso effettuare una trasformazione di base.

 $A' = {}^{t}MAM$, M triangolare superiore, det(M) = 1.

$$A' = \begin{pmatrix} D_1 & 0 & \cdots & 0 \\ 0 & a'_{22} & \cdots & * \\ \vdots & \vdots & \ddots & \\ 0 & * & & * \end{pmatrix}.$$

Ma si conservano i determinanti dei minori principali $\Rightarrow D_2 = D_2' = D_1 \cdot a_{22}' \Rightarrow a_{22}' = \frac{D_2}{D_1}$.

Itero perché $\frac{D_2}{D_1} \neq 0 \implies a'_{33} \cdot \frac{D_2}{D_1} \cdot D_1 = D_3 = D'_3 \implies a'_{33} = \frac{D_3}{D_2}$.

In generale $a'_{kk} \cdot \frac{D_{k-1}}{D_{k-2}} \cdot \dots \cdot \frac{D_2}{D_1} \cdot D_1 = D_k \implies a'_{kk} = \frac{D_k}{D_{k-1}}.$

Quindi, chiamando \tilde{A} la matrice A dopo r trasformazioni di base:

 $\tilde{A} = {}^{t}M_{r}{}^{t}M_{r-1} \dots {}^{t}M_{1}AM_{1} \dots M_{r} = {}^{t}(M_{1} \dots M_{r})AM_{1} \dots M_{r},$

quindi se $T = M_1 \dots M_r$, allora T è la matrice cercata, in quanto è triangolare superiore (perché prodotto di matrici triangolari superiori) e ha $\det(T) = \det(M_1 \dots M_r) = 1$.

COROLLARIO 4.2.16: Si deduce il criterio dei minori principali.

Dimostrazione:

 ψ è definito positivo $\Leftrightarrow D_1 > 0, \frac{D_2}{D_1} > 0, \dots, \frac{D_r}{D_{r-1}} > 0 \iff D_1 > 0, \dots, D_r > 0.$

COROLLARIO 4.2.17: *A* è definita negativa $\Leftrightarrow D_1 < 0, D_2 > 0, D_3 < 0, ...$

Dimostrazione:

 ψ è definito negativo $\Leftrightarrow D_1 < 0, \frac{D_2}{D_1} < 0, \dots, \frac{D_r}{D_{r-1}} < 0 \iff D_1 < 0, D_2 > 0, D_3 < 0, \dots$

DEFINIZIONE 4.2.16: (P, ψ) si dice **piano iperbolico** se P è uno spazio vettoriale di dimensione 2 e ψ è un prodotto scalare di P non degenere per cui esiste un vettore isotropo non nullo.

PROPOSIZIONE 4.2.18: (P, ψ) piano iperbolico, $v \neq 0$ isotropo. Allora v si estende ad una base $\mathcal{B} = \{v, w\}$ di P tale che $\mathfrak{M}_{\mathcal{B}}(\psi) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} (\mathcal{B} \text{ è detta base iperbolica}).$

Dimostrazione:

Sia $S = \{v, z\}$ una base di P. Allora $\mathfrak{M}_{S}(\psi) = \begin{pmatrix} 0 & a \\ a & b \end{pmatrix}$.

 ψ non degenere $\Rightarrow a \neq 0$.

Ora cerco $\lambda, \mu \mid w = \lambda v + \mu z, \mathcal{B} = \{v, w\}$ sia base di $P \in \mathfrak{M}_{\mathcal{B}}(\psi) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Notiamo che \mathcal{B} è base $\Leftrightarrow \mu \neq 0$.

 $\psi(v,w) = \psi(v,\lambda v + \mu z) = \mu a; \ \psi(w,w) = \psi(\lambda v + \mu z,\lambda v + \mu z) = 2\lambda\mu a + \mu^2 b.$

Allora
$$\mathfrak{M}_{\mathcal{B}}(\psi) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Leftrightarrow$$

Allora
$$\mathfrak{M}_{\mathcal{B}}(\psi) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Leftrightarrow$$

 $\Leftrightarrow \begin{cases} \mu a = 1 \\ 2\lambda \mu a + \mu^2 b \end{cases} \Leftrightarrow \begin{cases} \mu = a^{-1} \\ \lambda = -2^{-1}b\mu^2 = -b(2a^2)^{-1} \end{cases}$

Poiché abbiamo trovato tali λ , μ , ho la tesi

Osservazione: Se (P, ϕ) è un piano iperbolico, allora $\sigma(\phi) = (1,1,0)$. Infatti sia $\{v, w\}$ una base iperbolica per (P, ϕ) . Sia $S = \left\{\frac{v+w}{\sqrt{2}}, \frac{v-w}{\sqrt{2}}\right\}$, che quindi è base di P. Si può facilmente vedere che:

$$\mathfrak{M}_{\mathcal{S}}(\phi) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

da cui segue che $\sigma(\phi) = (1,1,0)$.

DEFINIZIONE 4.2.17: (V, ϕ) si dice **anisotropo** se V non contiene vettori isotropi non nulli.

PROPOSIZIONE 4.2.19: V K-spazio vettoriale, ϕ prodotto scalare non degenere. Allora:

- 1) Se $\mathbb{K} = \mathbb{C}$, (V, ϕ) è anisotropo $\Leftrightarrow \dim(V) = 1$;
- 2) Se $\mathbb{K} = \mathbb{R}$, (V, ϕ) è anisotropo $\Leftrightarrow \phi$ è definito.

Dimostrazione:

- 1) **⇐**) Ovvio.
 - \Rightarrow) Se per assurdo dim $(V) \ge 2$ e $\mathcal{B} = \{v_1, ..., v_n\}$ è una base di $V \mid \mathfrak{M}_{\mathcal{B}}(\phi) = I$, allora $\phi(v_1 + iv_2, v_1 + iv_2) = 1 - 1 = 0$ e dunque $v_1 + iv_2 \in \mathcal{I}(\phi)$, assurdo.
- 2) *⇐*) Ovvio per definizione.
 - \Rightarrow) Se per assur<u>do</u> ϕ non è definito, $\exists \mathcal{B} = \{v_1, \dots, v_p, v_{p+1}, \dots, v_n\}$ base di V tale che

$$\mathfrak{M}_{\mathcal{B}}(\phi) = \begin{pmatrix} \boxed{I_p} \\ \boxed{-I_{n-p}} \end{pmatrix}. \text{ Allora } \phi(v_1 + v_{p+1}, v_1 + v_{p+1}) = 1 - 1 = 0, \text{ assurdo.}$$

Notazione: Denoteremo con $W_1 \oplus^\perp W_2$ la somma diretta ortogonale di W_1 e W_2 , che sta ad indicare la somma diretta dei sottospazi W_1 e W_2 tali che $\phi(w_1, w_2) = 0 \ \forall w_1 \in W_1, w_2 \in W_2$. FORMA NORMALE DI WITT: Sia (V, ϕ) , ϕ non degenere.

Caso 1): $\mathbb{K} = \mathbb{C}$.

a) $\dim(V) = n = 2m$.

Sappiamo che $\exists \mathcal{B} = \{v_1, w_1, \dots, v_m, w_m\}$ base di $V \mid \mathfrak{M}_{\mathcal{B}}(\phi) = I$. Allora $\mathfrak{M}_{\{v_j, w_j\}} \begin{pmatrix} \phi \mid_{Span(v_j, w_j)} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ e $v_j + iw_j$ è isotropo, dunque $P_i = Span(v_i, w_i)$ è un piano iperbolico e:

$$V = P_1 \bigoplus^{\perp} ... \bigoplus^{\perp} P_m$$

 $V=P_1 \oplus^\perp ... \oplus^\perp P_m,$ detta **decomposizione di Witt** di V. Prendendo una base iperbolica in ogni P_i , $\exists S$ base di V tale che:

$$\mathfrak{M}_{\mathcal{S}}(\phi) = egin{pmatrix} egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} & & & \ & \ddots & & \ & & & egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix},$$

detta forma normale di Witt di V.

b) $\dim(V) = n = 2m + 1$.

Con un procedimento analogo al precedente si trova la decomposizione di Witt:

$$V = P_1 \oplus^{\perp} ... \oplus^{\perp} P_m \oplus^{\perp} Span(z),$$

Inoltre come prima $\exists S$ base di V

$$\mathfrak{M}_{\mathcal{S}}(\phi) = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}, \ & \ddots & & \ & & 0 & 1 \ & & 1 & 0 \end{pmatrix},$$

che è la forma normale di Witt di *V*.

Caso 2): $\mathbb{K} = \mathbb{R}$.

1) $i_{+}(\phi) \leq i_{-}(\phi)$. Sia $p = i_{+}(\phi)$.

Allora $\exists \mathcal{B} = \left\{v_1, \dots, v_p, w_1, \dots, w_{n-p}\right\}$ base di V|

$$\mathfrak{M}_{\mathcal{B}}(\phi) = \begin{pmatrix} I_p \\ & \\ & -I_{n-p} \end{pmatrix}.$$

Si definisca $P_j = Span(v_j, w_j) \ \forall j \in A = Span(w_{p+1}, \dots, w_{n-p})$. Allora P_j è un piano iperbolico $\forall j$ e ϕ_A è definito negativo; inoltre:

$$V = P_1 \oplus^{\perp} \dots \oplus^{\perp} P_p \oplus^{\perp} A,$$

che è la decomposizione di Witt di V e $\exists S$ base di V|

che è la forma normale di Witt di *V*.

2) $i_{-}(\phi) \leq i_{+}(\phi)$.

È del tutto analogo al caso precedente, tranne che $\phi|_A$ è definito positivo.

In generale:

DEFINIZIONE 4.2.18: Se ϕ è non degenere, si chiama **decomposizione di Witt** di (V, ϕ) una decomposizione:

$$V = P_1 \oplus^{\perp} ... \oplus^{\perp} P_h \oplus^{\perp} A_1$$

 $V=P_1\oplus^\perp\ldots\oplus^\perp P_h\oplus^\perp A,$ dove ogni P_j è un piano iperbolico e $\phi|_A$ è anisotropo.

Dunque, grazie a quello che abbiamo visto, segue:

TEOREMA 4.2.20: Se $\mathbb{K} = \mathbb{C} \vee \mathbb{K} = \mathbb{R} e \phi$ è non degenere:

1) Se
$$\mathbb{K} = \mathbb{C}$$
 e dim $(V) = 2m \Rightarrow \begin{cases} \#piani \ iperbolici = m \\ A = \{0\} \end{cases}$

2) Se
$$\mathbb{K} = \mathbb{C}$$
 e dim $(V) = 2m + 1 \Rightarrow \begin{cases} \#piani \ iperbolici = m \\ \dim(A) = 1 \end{cases}$

TEOREMA 4.2.20: Se
$$\mathbb{K} = \mathbb{C} \vee \mathbb{K} = \mathbb{R} \in \phi$$
 è non degenere:

1) Se $\mathbb{K} = \mathbb{C}$ e dim $(V) = 2m \Rightarrow \begin{cases} \#piani \ iperbolici = m \\ A = \{0\} \end{cases}$

2) Se $\mathbb{K} = \mathbb{C}$ e dim $(V) = 2m + 1 \Rightarrow \begin{cases} \#piani \ iperbolici = m \\ \dim(A) = 1 \end{cases}$

3) Se $\mathbb{K} = \mathbb{R} \Rightarrow \begin{cases} \#piani \ iperbolici = \min(i_+(\phi), i_-(\phi)) \\ \phi|_A \ e \ definito \end{cases}$

Osservazione: Da questo teorema segue che sia nel caso complesso sia in quello reale, il numero dei piani iperbolici è invariante per isometria.

DEFINIZIONE 4.2.19: $\phi \in PS(V)$. Si definisce **indice di Witt** di (V, ϕ) il numero naturale $w(\phi) = \max\{dim(W) | W \in ssv \ di \ V, \phi|_W \equiv 0\}.$

Osservazioni: 1) $w(\phi) = 0 \Leftrightarrow \phi$ è anisotropo;

- 2) $w(\phi)$ è invariante per isometria;
- 3) Se ϕ non degenere, $w(\phi) \leq \frac{\dim(V)}{2}$

Dimostrazione:

Sia W un sottospazio di V tale che dim $(W) = w(\phi) \wedge \phi|_{W} \equiv 0$.

Allora $\exists \mathcal{B}$ base di V

$$\mathfrak{M}_{\mathcal{B}}(\phi) = \begin{pmatrix} \frac{0}{t_{A}} & | & A \\ \underbrace{v_{W}(\phi)} & n - w(\phi) \end{pmatrix}$$

Quindi $n = rk(\phi) \le \underbrace{\left(n - w(\phi)\right)}_{=\max(rk(^tA|C))} + \underbrace{\left(n - w(\phi)\right)}_{=\max(rk(A))} \Rightarrow n \ge 2w(\phi)$, da cui la tesi. 4) Se $V = P_1 \bigoplus^{\perp} ... \bigoplus^{\perp} P_h \bigoplus^{\perp} A$ è una decomposizione di Witt, allora $h \le w(\phi)$.

Dimostrazione:

Se $\{v_i, w_i\}$ è una base iperbolica per P_j , allora $Z = Span(v_1, ..., v_h)$ è un sottospazio di V| $\dim(Z) = h e \phi|_{Z} \equiv 0$, dunque $w(\phi) \ge h$.

TEOREMA 4.2.21: Sia (V, ϕ) , ϕ non degenere, dim(V) = n. Allora:

1) Se
$$\mathbb{K} = \mathbb{C}$$
, $w(\phi) = \left[\frac{n}{2}\right]$;

2) Se
$$\mathbb{K} = \mathbb{R}, w(\phi) = \min(i_{+}(\phi), i_{-}(\phi)).$$

Dimostrazione:

- 1) Se $\mathbb{K} = \mathbb{C}$, abbiamo visto che $V = P_1 \oplus^{\perp} ... \oplus^{\perp} P_{\left[\frac{n}{2}\right]} \oplus^{\perp} A$, con dim $(A) \leq 1$. Allora, per le osservazioni 3) e 4), abbiamo che $\left[\frac{n}{2}\right] \leq w(\phi) \leq \frac{n}{2} \Rightarrow w(\phi) = \left[\frac{n}{2}\right]$.
- 2) Sia $V = P_1 \oplus^{\perp} ... \oplus^{\perp} P_m \oplus^{\perp} A$ una decomposizione di Witt di V. Vogliamo provare che $m = w(\phi)$, ma per l'osservazione 4), $m \leq w(\phi)$.

Supponiamo per assurdo che $m < w(\phi)$.

Sia *Z* sottospazio di *V* tale che dim(*Z*) = $w(\phi)$ e $\phi|_Z \equiv 0$.

 $\phi|_A$ è definito, supponiamo che sia definito negativo (altrimenti la dimostrazione è analoga). Allora $\exists W$ sottospazio di V tale che dim(W) = n - m e $\phi|_W$ è definito negativo (ad esempio

 $W = A \oplus Span(w_1, \dots, w_m), \operatorname{con} w_i \in P_i \mid \phi(w_i, w_i) < 0).$

Poiché $\dim(Z) + \dim(W) > n \Rightarrow Z \cap W \neq \{0\} \Rightarrow \exists v \neq 0, v \in Z \cap W$.

Ma $\phi(v, v) = 0$ in quanto $v \in Z$ e $\phi(v, v) < 0$ in quanto $v \in W$, assurdo.

Quindi abbiamo mostrato che tutte le decomposizioni di Witt in V contengono lo stesso numero di piani iperbolici, in particolare $w(\phi)$ piani iperbolici.

Poiché abbiamo trovato una decomposizione di Witt di V con $\min(i_+(\phi), i_-(\phi))$ piani iperbolici, segue la tesi.

DEFINIZIONE 4.2.20: Definiamo segno di (V, ϕ) , con ϕ definito, il numero sgn(V) che è 1 se (V, ϕ) è definito positivo, -1 se è definito negativo.

COROLLARIO 4.2.22: V \mathbb{R} -spazio vettoriale, ϕ non degenere.

La coppia $(w(\phi), sgn(\phi|_A))$ è un sistema completo di invarianti per isometria su \mathbb{R} .

Dimostrazione:

Sappiamo che $w(\phi) = \min(i_+(\phi), i_-(\phi))$, inoltre:

- se $sgn(\phi|_A) = 1 \Rightarrow i_+(\phi) \ge i_-(\phi)$ (questo segue facilmente dalla dimostrazione della forma normale di Witt);
- se $sgn(\phi|_A) = -1 \Rightarrow i_+(\phi) \le i_-(\phi)$.

Dunque la conoscenza di $(w(\phi), sgn(\phi|_A))$ porta immediatamente alla conoscenza di $(i_+(\phi), i_-(\phi))$. Da questo segue la tesi.

PROPOSIZIONE 4.2.20: Se $V = Rad(\phi) \oplus U$, allora $w(\phi) = \dim(Rad(\phi)) + w(\phi|_U)$.

Dimostrazione:

Sia Z sottospazio di U tale che dim $(Z) = w(\phi|_U)$ e $\phi|_Z \equiv 0$.

Allora $\phi|_{Z \oplus Rad(\phi)} \equiv 0$, quindi $w(\phi) \ge \dim(Rad(\phi)) + w(\phi|_U)$.

Supponiamo per assurdo che $w(\phi) > \dim(Rad(\phi)) + w(\phi|_U)$. Allora sia H sottospazio di V tale che $\dim(H) = w(\phi)$ e $\phi|_H \equiv 0$.

Allora $H \cap U$ è un sottospazio di U in cui ϕ si annulla, quindi:

$$w(\phi|_{U}) \ge \dim(H \cap U) = \dim(H) + \dim(U) - \dim(H + U) >$$

$$> \left(\dim(Rad(\phi)) + w(\phi|_{U})\right) + \dim(U) - \dim(H + U) =$$

$$= \dim(V) + w(\phi|_{U}) - \dim(H + U) \ge w(\phi|_{U}),$$

assurdo.

4.3 ISOMETRIE

PROPOSIZIONE 4.3.1: *V* spazio vettoriale e $\phi \in PS(V)$, $f \in O(V, \phi)$.

Se W è sottospazio di V tale che $f(W) \subseteq W$, allora $f(W^{\perp}) \subseteq W^{\perp}$.

Dimostrazione:

Essendo f isomorfismo, ho che f(W) = W.

Allora, se $w \in W$, $\exists y \in W | f(y) = w$.

La tesi è mostrare che $\forall x \in W^{\perp}$, $f(x) \in W^{\perp}$, cioè che $\forall x \in W^{\perp}$, $\forall w \in W$, $\phi(f(x), w) = 0$.

Ora:

$$\phi(f(x), w) = \phi(f(x), f(y)) = \phi(x, y) = 0, \text{ da cui la tesi.}$$

Osservazione: Sia $\phi \in PS(V)$ non degenere. Se $v \in V$ è non isotropo, allora:

$$V = Span(v) \oplus Span(v)^{\perp}$$

 $\forall w \in V, w = c(w) \cdot v + (w - c(w) \cdot v).$

Se
$$c(w) = \frac{\phi(w,v)}{\phi(v,v)}$$
, allora $w - c(w) \cdot v \in Span(v)^{\perp}$.

Poniamo $z(w) = w - c(w) \cdot v$. Allora w si scrive in modo unico come $w = c(w) \cdot v + z(w)$, con $c(w) \cdot v \in Span(v)$ e $w - c(w) \cdot v \in Span(v)^{\perp}$.

DEFINIZIONE 4.3.1: Definiamo riflessione parallela a un vettore v l'applicazione

$$\rho_v: V \to V | \rho(w) = \rho(c(w) \cdot v + z(w)) = -c(w) \cdot v + z(w).$$

DEFINIZIONE 4.3.2: Definiamo **luogo dei punti fissi** di un'isometria f l'insieme $Fix(f) = \{v \in V | f(v) = v\}.$

PROPOSIZIONE 4.3.2: $\rho_v^2 = id \ e \ \rho_v \in O(V, \phi)$.

Dimostrazione:

Che $\rho_v^2 = id$ è evidente; inoltre ρ_v è sicuramente un isomorfismo.

Con una semplice verifica si vede che $\phi(\rho_v(w_1), \rho_v(w_2)) = \phi(w_1, w_2)$.

Osservazione: $\rho_v(v) = -v$ e $Fix(\rho_v) = Span(v)^{\perp}$.

TEOREMA 4.3.3: $\phi \in PS(V)$ non degenere. Allora $O(V, \phi)$ è generato dalle riflessioni, cioè ogni $f \in O(V, \phi)$ è composizione di un numero finito di riflessioni parallele a vettori non isotropi. (Osservazione: Conveniamo che id è composizione di 0 riflessioni).

Dimostrazione:

Per induzione su $n = \dim(V)$:

Passo base): n = 1: V = Span(v), con v non isotropo perché ϕ non degenere.

Sia
$$f \in O(V, \phi)$$
. Allora $f(v) = \lambda v, \lambda \neq 0$.

$$\phi(f(v), f(v)) = \lambda^2 \phi(v, v) \Rightarrow \lambda = \pm 1.$$

Se $\lambda = 1 \Rightarrow f = id$, che è composizione di 0 riflessioni.

Se $\lambda = -1 \Rightarrow f(v) = -v = \rho_v(v) \Rightarrow f = \rho_v$, poiché coincidono su una base.

Passo induttivo): Sia $w \in V$ non isotropo.

Caso 1):
$$f(w) = w$$
.

In questo caso per la prima proposizione si ha che $f(Z_w) = Z_w$, con

 $Z_w = Span(w)^{\perp}$, quindi posso applicare l'ipotesi induttiva a $f|_{Z_w}$ e $\phi|_{Z_w}$. Allora $\exists \widetilde{\rho_1}, ..., \widetilde{\rho_k}$ riflessioni di $Z_w|f|_{Z_w} = \widetilde{\rho_1} \circ ... \circ \widetilde{\rho_k}$.

Ogni $\widetilde{\rho_i}$ si estende ad una riflessione ρ_i di V (parallela allo stesso vettore) ponendo $\rho_i(w) = w$. Allora $f = \rho_1 \circ ... \circ \rho_k$, da cui la tesi.

Caso 2): $f(w) \neq w$.

Notiamo che $w = \frac{f(w)+w}{2} - \frac{f(w)-w}{2}$. Inoltre f(w) + w e f(w) - w sono ortogonali e non contemporaneamente isotropi, infatti:

$$\phi(f(w) + w, f(w) + w) = 2\phi(w, w) + 2\phi(f(w), w)$$

$$\phi(f(w) - w, f(w) - w) = 2\phi(w, w) - 2\phi(f(w), w).$$

Se fossero entrambi isotropi, sommando avremmo che $4\phi(w, w) = 0$, cioè w isotropo, assurdo. Quindi:

Se f(w) - w = u è non isotropo, allora:

$$\rho_u(w) = \rho_u\left(\underbrace{-\frac{f(w)-w}{2}}_{\in Span(u)} + \underbrace{\frac{f(w)+w}{2}}_{\in Span(u)^{\perp}}\right) = \underbrace{\frac{f(w)-w}{2}}_{2} + \underbrace{\frac{f(w)+w}{2}}_{2} = f(w),$$

quindi, applicando ρ_u a entrambi i membri, $(\rho_u \circ f)(w) = \rho_u^2(w) = w$. Dunque w è punto fisso per $\rho_u \circ f$.

Allora, per il caso 1), $\exists \rho_1, ..., \rho_k$ di V tali che

$$\rho_u \circ f = \rho_1 \circ \dots \circ \rho_k$$
, e perciò $\rho_u^2 \circ f = f = \rho_u \circ \rho_1 \circ \dots \circ \rho_k$.

Se invece è f(w) + w = u a essere non isotropo, possiamo comunque ricondurci al caso precedente in quanto -u = (-f)(w) - w.

Dunque $\exists \rho_0, \dots, \rho_k$ riflessioni tali che

$$-f = \rho_0 \circ \dots \circ \rho_k$$
.

Ma $f=(-f)\circ(-id)$, quindi se $\{v_1,\ldots,v_n\}$ è una base ortogonale per V: $-id=\rho_{v_1}\circ\ldots\circ\rho_{v_n}$,

poiché ciascuna riflessione cambia di segno la coordinata corrispondente. Dunque $f = \rho_{v_1} \circ ... \circ \rho_{v_n} \circ \rho_0 \circ ... \circ \rho_k$, da cui la tesi.

LEMMA 4.3.4: (V, ϕ) anisotropo, $f \in O(V, \phi)$.

Se $Fix(f) = \{0\}$, allora $\exists \rho$ riflessione tale che $\dim(Fix(\rho \circ f)) = 1$.

Dimostrazione:

Sia $w \in V$, $w \neq 0$. Per ipotesi $f(w) \neq w$.

 (V, ϕ) anisotropo $\Rightarrow u = f(w) - w$ è non isotropo.

Come provato prima, $(\rho_u \circ f)(w) = w$, cioè $w \in Fix(\rho_u \circ f)$ e quindi $\dim(Fix(\rho_u \circ f)) \ge 1$. Proviamo che $Fix(\rho_u \circ f) \cap f^{-1}(Z_u) = \{0\}$, con $Z_u = Span(u)^{\perp}$.

Infatti $\rho_u|_{Z_u}=id$, quindi $(\rho_u\circ f)|_{f^{-1}(Z_u)}=f|_{f^{-1}(Z_u)}$ e poiché f non ha punti fissi, a maggior ragione non li ha $f|_{f^{-1}(Z_u)}$.

Perciò $Fix(\rho_u \circ f) \cap f^{-1}(Z_u) = \{0\}$, e poiché $\dim(f^{-1}(Z_u)) = n-1$ (in quanto f è isomorfismo), per la formula di Grassmann $\dim(Fix(\rho_u \circ f)) \leq 1$, tesi.

TEOREMA 4.3.5: (V, ϕ) anisotropo, $\dim(V) = n$. Allora ogni $f \in O(V, \phi)$ è composizione di n - k riflessioni, dove $k = \dim(Fix(f))$.

Dimostrazione:

Se k = n, allora f = id, quindi f è composizione di 0 riflessioni, e n - k = 0.

Se k < n, allora sia $H = Fix(f)^{\perp}$, $\cos V = Fix(f) \oplus^{\perp} H$.

Allora dim(H) = n - k, H è f-invariante (poiché $f(Fix(f)) \subseteq Fix(f)$), $f|_H \in O(H, \phi|_H)$ e $O(H, \phi|_H)$ è anisotropo.

Inoltre evidentemente $Fix(f|_H) = \{0\}.$

Per il lemma $\exists u \in H$ tale che, detta $\widetilde{\rho_u}$ la riflessione in H parallela a u, si ha che $\dim(Fix(\widetilde{\rho_u} \circ f|_H)) = 1$.

 $\widetilde{\rho_u}$ si estende naturalmente alla riflessione ρ_u di V, ponendo $\rho_u(w) = w \ \forall w \notin H$.

Allora $Fix(f) \subseteq Span(u)^{\perp} = Fix(\rho_u)$, infatti:

 $v \in Fix(f) \Rightarrow v \notin H \Rightarrow \rho_u(v) = v \Rightarrow v \in Fix(\rho_u).$

Quindi $Fix(f) \oplus Fix(\widetilde{\rho_u} \circ f|_H) \subseteq Fix(\rho_u \circ f)$, in quanto ovviamente $Fix(f) \subseteq Fix(\rho_u \circ f)$ e $Fix(\widetilde{\rho_u} \circ f|_H) \subseteq Fix(\rho_u \circ f)$ e $Fix(f) \cap \underbrace{Fix(\widetilde{\rho_u} \circ f|_H)}_{\subseteq H} \subseteq Fix(f) \cap H = \{0\}.$

Inoltre vale l'uguaglianza $Fix(f) \oplus Fix(\widetilde{\rho_u} \circ f|_H) = Fix(\rho_u \circ f)$, infatti sia $x \in Fix(\rho_u \circ f)$. Scrivo x = a + b, con $a \in Fix(f)$ e $b \in H$; allora:

 $x = (\rho_u \circ f)(x) = (\rho_u \circ f)(a) + (\rho_u \circ f)(b) = a + (\rho_u \circ f)(b)$, ma per la scrittura unica $b = (\rho_u \circ f)(b) \Rightarrow b \in Fix(\widetilde{\rho_u} \circ f|_H)$, in quanto $b \in H$.

Allora dim $(Fix(\rho_u \circ f)) = k + 1$.

Iterando, trovo che $\exists \rho_1, \dots, \rho_{n-k}$ riflessioni tali che $\dim(Fix(\rho_{n-k} \circ \dots \circ \rho_1 \circ f)) = n$, quindi $\rho_{n-k} \circ \dots \circ \rho_1 \circ f = id$, da cui $f = \rho_1 \circ \dots \circ \rho_{n-k}$.

4.4 AGGIUNTO

DEFINIZIONE 4.4.1: Sia $\phi \in PS(V)$. $\forall y \in V$ sia $\phi_{\mathcal{V}}: V \to \mathbb{K} | v \to \phi_{\mathcal{V}}(v) \stackrel{\text{def}}{=} \phi(v, y)$.

Osservazione: ϕ_y è lineare, quindi $\phi_y \in V^*$.

DEFINIZIONE 4.4.2: Definiamo $F_{\phi}: V \to V^* | y \to \phi_y$.

PROPOSIZIONE 4.4.1: 1) F_{ϕ} è lineare;

- 2) $Ker(F_{\phi}) = Rad(\phi);$
- 3) $Im(F_{\phi}) = Ann(Rad(\phi));$
- 4) F_{ϕ} è un isomorfismo $\Leftrightarrow \phi$ è non degenere.

Dimostrazione:

- 1) Semplice verifica.
- 2) $y \in Ker(F_{\phi}) \Leftrightarrow \phi_y = 0 \Leftrightarrow \phi_y(x) = \phi(x, y) = 0 \ \forall x \in V \Leftrightarrow y \in Rad(\phi)$.
- 3) $Im(F_{\phi}) \subseteq Ann(Rad(\phi))$, infatti $\forall y \in V, F_{\phi}(y) = \phi_y \in Ann(Rad(\phi))$, perché $\forall x \in Rad(\phi), \phi_y(x) = \phi(x, y) = 0$. Inoltre $\dim(Im(F_{\phi})) = \dim(V) - \dim(Ker(F_{\phi})) = \dim(V) - \dim(Rad(\phi)) = 0$

 $= \dim \left(Ann(Rad(\phi)) \right).$

4) Ovvia per quanto visto nei punti precedenti (infatti se ϕ non degenere, allora $Ker(F_{\phi}) = Rad(\phi) = \{0\} \in Im(F_{\phi}) = Ann(Rad(\phi)) = V$).

DEFINIZIONE 4.4.3: $g \in V^*$ è detto ϕ -rappresentabile se $g \in Im(F_\phi)$ (ossia se $\exists y \in V$ tale che $g = F_{\phi}(y)$, ossia se $\exists y \in V$ tale che $g(x) = \phi(x, y) \ \forall x \in V$

TEOREMA DI RAPPRESENTAZIONE DI RIESZ: Se ϕ è non degenere, ogni $g \in V^*$ è ϕ -rappresentabile in modo unico (cioè $\exists ! y \in V | g(x) = \phi(x, y) \ \forall x \in V$).

Dimostrazione:

Segue dal fatto che F_{ϕ} è un isomorfismo.

Osservazione: Grazie alla teoria del duale, avevamo trovato un isomorfismo canonico fra V e V^{**} , mentre ora, grazie al teorema di rappresentazione di Riesz, abbiamo trovato un isomorfismo canonico F_{ϕ} fra V e V^* .

Osservazione: Sia W^* un sottospazio fissato di V^* .

 W^* coincide con l'insieme dei funzionali ϕ -rappresentabili $\Leftrightarrow W^* = Im(F_\phi) = Ann(Rad(\phi))$. Dunque se $W^* = Ann(S)$, cioè $S = Ann(W^*)$ (grazie all'isomorfismo canonico ψ_V), allora $W^* = Im(F_{\phi}) \iff S = Rad(\phi).$

PROPOSIZIONE 4.4.2: Siano *U*, *W* sottospazi di *V*. Allora:

- 1) $Ann(U+W) = Ann(U) \cap Ann(W)$;
- 2) $Ann(U \cap W) = Ann(U) + Ann(W)$.

Dimostrazione:

- 1) \subseteq $U \subseteq U + W \Rightarrow Ann(U + W) \subseteq Ann(U)$ e analogamente $Ann(U + W) \subseteq Ann(W)$. Dunque $Ann(U + W) \subseteq Ann(U) \cap Ann(W)$.
 - \supseteq) Sia $f \in Ann(U) \cap Ann(W)$; $f(u+w) = f(u) + f(w) = 0 + 0 = 0 \ \forall u \in U, w \in W$, dunque $f \in Ann(U + W)$.
- 2) $Ann(Ann(U) + Ann(W)) = Ann(Ann(U)) \cap Ann(Ann(W)) = U \cap W$.

Passando all'annullatore:

$$Ann\Big(Ann\big(Ann(U)+Ann(W)\big)\Big)=Ann(U)+Ann(W)=Ann(U\cap W),$$
 da cui la tesi.

Esempio: $V = \mathbb{R}^5$. In V^* si considerino:

$$f_1(x) = x_1 + x_2 + x_3 + x_4 + x_5;$$

$$f_2(x) = x_1 + x_2 - x_3 - x_4 - x_5;$$

$$f_3(x) = x_1 + x_2 + 3x_3 + 3x_4 + 3x_5;$$

e sia
$$W^* = Span(f_1, f_2, f_3)$$
.

Si costruisca in V un prodotto scalare ϕ tale che W^* sia il sottospazio dei funzionali ϕ -rappresentabili.

Dimostrazione:

Cerco $\phi \in PS(V)$ tale che $W^* = Ann(Rad(\phi))$.

Vediamo che $(2f_1 - f_2)(x) = f_3(x) \quad \forall x \in V$, quindi $W^* = Span(f_1, f_2)$.

Allora, grazie all'isomorfismo canonico ψ_V :

$$Ann(W^*) = Ann(Span(f_1, f_2)) = Ann(Span(f_1) + Span(f_2)) = Ann(f_1) \cap Ann(f_2) =$$

$$= Ker(f_1) \cap Ker(f_2)$$

$$= Ker(f_1) \cap Ker(f_2)$$

$$\{x_1 + x_2 + x_3 + x_4 + x_5 = 0 \\ x_1 + x_2 - x_3 - x_4 - x_5 = 0 \}$$

$$\{x_1 + x_2 + x_3 + x_4 + x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \}$$

$$\{x_1 + x_2 - x_3 - x_4 - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \}$$

$$\{x_1 + x_2 - x_3 - x_4 - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \}$$

$$\{x_1 + x_2 - x_3 - x_4 - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \}$$

$$\{x_1 + x_2 - x_3 - x_4 - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \}$$

$$\{x_1 + x_2 - x_3 - x_4 - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \}$$

$$\{x_1 + x_2 - x_3 - x_4 - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \}$$

$$\{x_1 + x_2 - x_3 - x_4 - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \}$$

$$\{x_1 + x_2 - x_3 - x_4 - x_5 = 0 \\ x_3 + x_4 + x_5 = 0 \}$$

$$Sol = \left\{ \begin{pmatrix} -x_2 \\ x_2 \\ -x_4 - x_5 \\ x_4 \\ x_5 \end{pmatrix} \middle| x_2, x_4, x_5 \in \mathbb{R} \right\}, \text{ cioè, se } W^* = Ann(S) \Rightarrow S = Ann(W^*), \text{ e:}$$

$$S = Span\left(\underbrace{\begin{pmatrix} -1\\1\\0\\0\\0 \end{pmatrix}}_{=v_1}, \underbrace{\begin{pmatrix} 0\\0\\-1\\1\\0 \end{pmatrix}}_{=v_2}, \underbrace{\begin{pmatrix} 0\\0\\-1\\0\\1 \end{pmatrix}}_{=v_3}\right).$$

Dunque $S = Ann(W^*) = Rad(\phi)$, perciò costruisco $\phi \in PS(V) | Rad(\phi) = Span(v_1, v_2, v_3)$. Completo v_1, v_2, v_3 a base $\mathcal{B} = \{v_1, v_2, v_3, w_1, w_2\}$ di V. Ad esempio $w_1 = e_1, w_2 = e_3$. Ottengo la tesi con:

PROPOSIZIONE 4.4.3: Sia U sottospazio di V. Se ϕ è non degenere, allora $F_{\phi}(U^{\perp}) = Ann(U)$. Dimostrazione:

Sicuramente $F_{\phi}(U^{\perp}) \subseteq Ann(U)$, poiché $\forall y \in U^{\perp}, \forall u \in U, \phi_{y}(u) = \phi(y, u) = 0$.

Inoltre $\dim \left(F_{\phi}(U^{\perp})\right) = \dim(U^{\perp}) = \dim(V) - \dim(U) = \dim(Ann(U))$, da cui la tesi.

PROPOSIZIONE 4.4.4: $\forall \phi \in PS(V)$ non degenere, $\forall f \in End(V)$, $\exists f^*: V \to V$ tale che $\phi(f(x), y) = \phi(x, f^*(y)) \ \forall x, y \in V$.

Dimostrazione:

Fissiamo $y \in V$.

Poniamo inoltre $g(x) = \phi(f(x), y)$; g(x) è evidentemente lineare, cioè $g(x) \in V^*$.

Dunque per il teorema di rappresentazione di Riesz $\exists ! w \in V | g(x) = \phi(x, w) \ \forall x \in V$.

Quindi $\phi(f(x), y) = \phi(x, w) \ \forall x \in V$.

Poiché w dipende da y, poniamo $w = f^*(y)$.

Dunque è ben definita l'applicazione $f^*: V \to V | \phi(f(x), y)) = \phi(x, f^*(y)) \ \forall x, y \in V$.

DEFINIZIONE 4.4.4: L'applicazione f^* trovata è detta l'**aggiunto** di f rispetto a ϕ .

PROPOSIZIONE 4.4.5: 1) f^* è lineare;

- 2) $f^{**} = f$, cioè è un'involuzione;
- 3) $Ker(f^*) = (Im(f))^{\perp}$;
- 4) $Im(f^*) = (Ker(f))^{\perp}$;
- 5) Se \mathcal{B} è base di V, $A=\mathfrak{M}_{\mathcal{B}}(f)$, $A^*=\mathfrak{M}_{\mathcal{B}}(f^*)$, $M=\mathfrak{M}_{\mathcal{B}}(\phi)$, allora $A^*=M^{-1}{}^tAM$.

Dimostrazione:

1) $\forall x, y_1, y_2 \in V$ si ha: $\phi(x, f^*(y_1 + y_2)) = \phi(f(x), y_1 + y_2) = \phi(f(x), y_1) + \phi(f(x), y_2) = \phi(f(x$

$$= \phi \big(x, f^*(y_1) \big) + \phi \big(x, f^*(y_2) \big) = \phi \big(x, f^*(y_1) + f^*(y_2) \big).$$
 Quindi $\phi \big(x, f^*(y_1 + y_2) - f^*(y_1) - f^*(y_2) \big) = 0 \ \forall x \in V \Rightarrow$
$$\Rightarrow \big(x, f^*(y_1 + y_2) - f^*(y_1) - f^*(y_2) \big) \in Rad(\phi) = \{0\} \Rightarrow f^*(y_1 + y_2) = f^*(y_1) + f^*(y_2) \ .$$
 Analogamente per il multiplo \Rightarrow tesi.

- 2) $\forall x, y \in V, \phi(f(x), y) = \phi(x, f^*(y)) = \phi(f^*(y), x) = \phi(y, f^{**}(x)) = \phi(f^{**}(x), y).$ Quindi come prima $f(x) f^{**}(x) \in Rad(\phi) = \{0\}$, da cui la tesi.
- 3) \subseteq) Sia $v \in Ker(f^*)$. Allora $\forall f(w) \in Im(f), \phi(v, f(w)) = \phi(f^*(v), w)) = \phi(0, w) = 0$. \supseteq) Sia $v \in (Im(f))^{\perp}$. Allora $\forall w \in V, \phi(f^*(v), w)) = \phi(v, f(w)) = 0$, quindi $f^*(v) \in Rad(\phi) = \{0\}$, da cui $v \in Ker(f^*)$
- 4) Dalla 3) segue che $Ker(f^{**}) = \left(Im(f^*)\right)^{\perp}$; applicando l'ortogonale si ottiene la tesi.
- 5) Poiché $\forall v, w \in V$, $\phi(f(v), w) = \phi(v, f^*(w))$, allora: ${}^tX^tAMY = {}^tXMA^*Y \ \forall X, Y \in \mathbb{K}^n$. Poiché vale $\forall X, Y \in \mathbb{K}^n$, allora ${}^tAM = MA^*$. Ma ϕ non degenere $\Rightarrow M$ invertibile $\Rightarrow A^* = M^{-1}{}^tAM$.

Osservazioni: 1) Se $\exists \mathcal{B}$ base ortonormale, $A^* = {}^tA$.

2) Il diagramma:

$$V \xrightarrow{f^*} V$$

$$F_{\phi} \downarrow \qquad \downarrow F_{\phi}$$

$$V^* \xrightarrow{t_f} V^*$$

commuta, cioè $F_{\phi} \circ f^* = {}^t f \circ F_{\phi}$. Infatti $\forall v, x \in V$:

$$(F_{\phi} \circ f^*)(v)(x) = F_{\phi}(f^*(v))(x) = \phi(f^*(v), x);$$

$$({}^tf\circ F_\phi)(v)(x)=({}^tf(\phi_v))(x)=(\phi_v\circ f)(x)=\phi(f(x),v)=\phi(f^*(v),x).$$

Da questo si ricavano di nuovo i punti 3) e 4) della proposizione precedente, infatti:

$$Ker(f^*) = Ker(F_{\phi}^{-1} \circ {}^t f \circ F_{\phi}) \sqsubseteq Ker(F_{\phi}^{-1} \circ {}^t f) \sqsubseteq F_{\phi}^{-1}(Ker({}^t f)) = F_{\phi}^{-1}(Ann(Im(f))) = (Im(f))^{\perp},$$

dove i passaggi contrassegnati con \equiv derivano dal fatto che F_{ϕ} è un isomorfismo. Analogamente per $Im(f^*)$.

3) $\Psi: (x, y) \to \phi(f(x), y)$ è un prodotto scalare $\Leftrightarrow \forall x, y, \ \phi(f(x), y) = \phi(f(y), x),$ $\text{cioè} \Leftrightarrow \phi(x, f^*(y)) = \phi(x, f(y)), \text{ ossia } \Leftrightarrow f^*(y) - f(y) \in Rad(\phi) = \{0\} \Leftrightarrow f^* = f.$

DEFINIZIONE 4.4.5: $f \in End(V)$ si dice autoaggiunto $\Leftrightarrow f = f^*$.

Osservazione: Supponiamo che $\exists \mathcal{B}$ base di V ortonormale. Allora: f è autoaggiunto $\Leftrightarrow \mathfrak{M}_{\mathcal{B}}(f) = {}^t (\mathfrak{M}_{\mathcal{B}}(f)) \Leftrightarrow \mathfrak{M}_{\mathcal{B}}(f) \in \mathcal{S}(n, \mathbb{K}).$

4.5 SPAZI EUCLIDEI

DEFINIZIONE 4.5.1: (V, ϕ) si dice **spazio euclideo** se V è un \mathbb{R} -spazio vettoriale e ϕ è definito positivo.

Esempi: 1) $(\mathbb{R}^n, \langle, \rangle)$, con $\langle X, Y \rangle = {}^t XY$, cioè il prodotto scalare standard su \mathbb{R}^n ;

2) $(\mathcal{M}(n, \mathbb{R}), \phi)$, con $\phi(A, B) = tr({}^{t}AB)$. Infatti $\phi(A, A) = tr({}^{t}AA) = \sum_{i=1}^{n} \sum_{j=1}^{n} [A]_{ji}^{2} > 0$ se $A \neq 0$.

DEFINIZIONE 4.5.2: Sia (V, ϕ) spazio euclideo. Si definisce **norma** su V l'applicazione $\| \|: V \to \mathbb{R} \| \|v\| = \sqrt{\phi(v, v)}$.

PROPOSIZIONE 4.5.1: Valgono le seguenti proprietà:

- 1) $||v|| \ge 0 \ \forall v \in V \ e \ ||v|| = 0 \iff v = 0;$
- 2) $\forall \lambda \in \mathbb{R}, \forall v \in V, ||\lambda v|| = |\lambda| \cdot ||v||$;
- 3) $\forall v, w \in V, |\phi(v, w)| \le ||v|| \cdot ||w||$ (disuguaglianza di Schwarz);
- 4) $\forall v, w \in V, ||v + w|| \le ||v|| + ||w||$ (disuguaglianza triangolare).

Dimostrazione:

- 1) Ovvia.
- 2) $\|\lambda v\| = \sqrt{\phi(\lambda v, \lambda v)} = \sqrt{\lambda^2 \phi(v, v)} = |\lambda| \cdot \|v\|$.
- 3) Se $v = 0 \lor w = 0$ la tesi è ovvia.

Altrimenti $\phi(tv + w, tv + w) \ge 0 \ \forall t \in \mathbb{R}$, cioè $t^2 \phi(v, v) + 2t \phi(v, w) + \phi(w, w) \ge 0 \ \forall t$. Quindi il discriminante dell'equazione di secondo grado è ≤ 0 , cioè:

 $\phi(v, w)^2 - \phi(v, v) \cdot \phi(w, w) \le 0$, da cui la tesi.

4) $||v + w||^2 = \phi(v + w, v + w) = \phi(v, v) + 2\phi(v, w) + \phi(w, w) \le ||v||^2 + 2||v|| \cdot ||w|| + ||w||^2 = (||v|| + ||w||)^2,$

dove il passaggio contrassegnato con \leq segue da 3).

DEFINIZIONE 4.5.3: Una applicazione $d: V \times V \to \mathbb{R}$ si dice **distanza** se verifica le proprietà:

- 1) $d(x,y) \ge 0 \ \forall x,y \in V$;
- 2) $d(x,y) = 0 \Leftrightarrow x = y$;
- 3) $d(x,y) = d(y,x) \ \forall x,y \in V$;
- 4) $d(x,z) \le d(x,y) + d(y,z) \ \forall x,y,z \in V$.

DEFINIZIONE 4.5.4: Definiamo $d: V \times V \to \mathbb{R} | d(x, y) = ||x - y||$.

Osservazione: L'applicazione d appena definita è una distanza.

Osservazione: In uno spazio euclideo non esistono vettori isotropi non nulli. Già sappiamo che in ogni spazio euclideo esistono basi ortonormali. Se $\mathcal{B} = \{v_1, ..., v_n\}$ è ortonormale, allora \mathcal{B} induce una isometria $[\]_{\mathcal{B}}: (V, \phi) \to (\mathbb{R}^n, \langle, \rangle)$ data da:

$$v \to [v]_{\mathcal{B}} = \begin{pmatrix} \phi(v, v_1) \\ \vdots \\ \phi(v, v_n) \end{pmatrix}.$$

Osservazione: Per trovare una base ortonormale in uno spazio euclideo si può procedere applicando a una qualsiasi base dello spazio l'algoritmo di Lagrange e poi normalizzare. Esiste però un metodo più rapido:

METODO DI ORTONORMALIZZAZIONE DI GRAM-SCHMIDT: \mathcal{B} base di (V, ϕ) euclideo.

Sia
$$v_1' = v_1$$
 e $v_2' = v_2 - \frac{\phi(v_2, v_1)}{\phi(v_1, v_1)} v_1$. Allora $\phi(v_1', v_2') = 0$.

Inoltre $Span(v_1, v_2) = Span(v_1', v_2')$ e v_1', v_2' sono linearmente indipendenti.

Ora cerco v_3' in modo che $Span(v_1, v_2, v_3) = Span(v_1', v_2', v_3')$ e $\{v_1', v_2', v_3'\}$ sia base ortogonale di $Span(v_1, v_2, v_3)$.

Notiamo che un tale v_3' si ottiene sottraendo a v_3 la sua proiezione ortogonale su $Span(v_1', v_2') = V_2'$.

Poiché v_1' e v_2' sono ortogonali, conosciamo già l'espressione analitica della proiezione ortogonale su v_2' :

$$\pi_{V_2'}: V \to V_2' \mid x \to \frac{\phi(x, v_1')}{\phi(v_1', v_1')} v_1' + \frac{\phi(x, v_2')}{\phi(v_2', v_2')} v_2'.$$

Dunque basta porre:

$$v_3' = v_3 - \frac{\phi(v_3, v_1')}{\phi(v_1', v_1')} v_1' - \frac{\phi(v_3, v_2')}{\phi(v_2', v_2')} v_2'.$$

 $v_3' \in Span(v_1', v_2', v_3') = Span(v_1, v_2, v_3).$

Inoltre la matrice che contiene per colonna le coordinate di v_1', v_2', v_3' rispetto a $\{v_1, v_2, v_3\}$ è:

$$M = \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}, \text{ dunque } \{v_1', v_2', v_3'\} \text{ è una base ortogonale di } Span(v_1, v_2, v_3).$$

Itero il procedimento ponendo $\forall j$:

$$v'_{j} = v_{j} - \sum_{i=1}^{j-1} \frac{\phi(v_{j}, v'_{i})}{\phi(v'_{i}, v'_{i})} v'_{i}$$

Alla fine ottengo una base ortogonale $\{v_1', \dots, v_n'\}$; basta normalizzare ponendo $w_i = \frac{v_i'}{\|v_i'\|}$.

Abbiamo così ottenuto con una procedura algoritmica il seguente risultato:

TEOREMA DI ORTONORMALIZZAZIONE DI GRAM-SCHMIDT: (V, ϕ) spazio euclideo, $\{v_1, \dots, v_n\}$ base di V. Allora esiste una base ortonormale $\{w_1, \dots, w_n\}$ di V tale che $Span(w_1, \dots, w_i) = Span(v_1, \dots, v_i) \ \forall j$.

COROLLARIO 4.5.2: (V, ϕ) euclideo, $f \in End(V)$ triangolabile.

Allora esiste \mathcal{B} base di V ortonormale e a bandiera per f.

Dimostrazione:

 $\exists S = \{v_1, \dots, v_n\}$ base a bandiera per f.

Applico Gram-Schmidt a S e trovo $B = \{w_1, ..., w_n\}$ ortonormale.

Poiché $\forall j, Span(w_1, ..., w_j) = Span(v_1, ..., v_j), \mathcal{B}$ è a bandiera per f.

Osservazione: $f \in End(V)$, con (V, ϕ) spazio euclideo. Se $\phi(f(x), f(y)) = \phi(x, y) \ \forall x, y \in V$, allora f è un isomorfismo.

Dimostrazione:

Se $x \in Ker(f)$, $\phi(x, x) = \phi(f(x), f(x)) = \phi(0, 0) = 0$, dunque x = 0.

Poiché f è lineare e iniettiva, allora è un isomorfismo.

Dunque $f \in O(V, \phi) \Leftrightarrow \phi(f(x), f(y)) = \phi(x, y) \ \forall x, y \in V \ (\text{se } \phi \in End(V) \ \text{e } V \ \text{euclideo}).$

ISOMETRIE DI UNO SPAZIO EUCLIDEO: (V, ϕ) euclideo, $f: V \to V$. Sono fatti equivalenti:

- 1) $f \in O(V, \phi)$
- 2) $f \in End(V) \ e \ ||f(v)|| = ||v|| \ \forall v \in V$
- 3) f(0) = 0 e $d(f(x), f(y)) = d(x, y) <math>\forall x, y \in V$
- 4) $f \in End(V)$ e $\forall \{v_1, ..., v_n\}$ base ortonormale di V, $\{f(v_1), ..., f(v_n)\}$ è base ortonormale di V
- 5) $f \in End(V)$ e $\exists \{v_1, ..., v_n\}$ base ortonormale di $V \mid \{f(v_1), ..., f(v_n)\}$ è base ortonormale di V
- 6) $f \in End(V)$ e $f^* \circ f = id$.

Dimostrazione:

- 1) \Rightarrow 2): Ovvia perché $||f(v)||^2 = \phi(f(v), f(v)) = \phi(v, v) = ||v||^2$.
- 2) \Rightarrow 1): Usando la formula di polarizzazione:

$$\begin{split} &2\phi(v,w) = \phi(v+w,v+w) - \phi(v,v) - \phi(w,w) = \|v+w\|^2 - \|v\|^2 - \|w\|^2 = \\ &= \|f(v+w)\|^2 - \|f(v)\|^2 - \|f(w)\|^2 = \phi\big(f(v+w),f(v+w)\big) - \phi(f(v),f(v) + \\ &-\phi\big(f(w),f(w)\big) = \phi\big(f(v)+f(w),f(v)+f(w)\big) - \phi(f(v),f(v)-\phi\big(f(w),f(w)\big) = \\ &= 2\phi\big(f(v),f(w)\big). \end{split}$$

- $2) \Rightarrow 3): d(f(x), f(y)) = ||f(x) f(y)|| = ||f(x y)|| = ||x y|| = d(x, y).$
- 3) \Rightarrow 1): f conserva la norma:

$$||f(x)|| = ||f(x) - 0|| = ||f(x) - f(0)|| = d(f(x), f(0)) = d(x, 0) = ||x||.$$

• *f* conserva il prodotto scalare:

Per ipotesi $\forall x, y \in V$, ||f(x) - f(y)|| = ||x - y||. Elevando al quadrato ho:

$$\phi(f(x) - f(y), f(x) - f(y)) = \phi(x - y, x - y) \Rightarrow$$

$$\Rightarrow \underbrace{\|f(x)\|^2}_{=\|x\|^2} + \underbrace{\|f(y)\|^2}_{=\|y\|^2} - 2\phi(f(x), f(y)) = \|x\|^2 + \|y\|^2 - 2\phi(x, y) \Rightarrow$$

- $\Rightarrow \phi(f(x), f(y)) = \phi(x, y) \ \forall x, y \in V.$
- *f* manda basi ortonormali in basi ortonormali:

Sia $\{v_1, ..., v_n\}$ una base ortonormale di V. Poiché f conserva il prodotto scalare, l'insieme $\{f(v_1), ..., f(v_n)\}$ è un insieme ortonormale (cioè sono a due a due ortogonali e hanno tutti norma 1).

Allora $f(v_1), ..., f(v_n)$ sono linearmente indipendenti, infatti sia $\sum_{i=1}^n a_i f(v_1) = 0$. $\forall j, 0 = \phi\left(\sum_{i=1}^n a_i f(v_1), f(v_j)\right) = \sum_{i=1}^n a_i \phi\left(f(v_i), f(v_j)\right) = a_j \phi\left(f(v_j), f(v_j)\right) = a_j$ dunque $\forall j, a_i = 0$, quindi $\{f(v_1), ..., f(v_n)\}$ è una base ortonormale di V.

• *f* è lineare:

 $\forall v \in V, \, v = \sum_{i=1}^n x_i v_i, \, \text{con} \, x_i = \phi(v, v_i) \, \text{coefficiente di Fourier.}$ Ma abbiamo visto che anche $\{f(v_1), \dots, f(v_n)\}$ è una base ortonormale di V, quindi: $f(v) = \sum_{i=1}^n \phi\big(f(v), f(v_i)\big) f(v_i) = \sum_{i=1}^n \phi(v, v_i) f(v_i) = \sum_{i=1}^n x_i f(v_i),$ dunque f è lineare.

• f è bigettiva in quanto è lineare e manda basi in basi.

Poiché f è isomorfismo e mantiene il prodotto scalare, allora $f \in O(V, \phi)$.

- 1) \Rightarrow 4): Ovvia perché $\phi(f(v_i), f(v_i)) = \phi(v_i, v_i) = \delta_{ij}$ e f manda basi in basi.
- $4) \Rightarrow 5$): Ovvia.
- 5) \Rightarrow 1): Per ipotesi $\exists \mathcal{B} = \{v_1, \dots, v_n\}$ base ortonormale tale che $\{f(v_1), \dots, f(v_n)\}$ è base ortonormale.

Siano $v = \sum_{i=1}^{n} x_i v_i$ e $w = \sum_{i=1}^{n} y_i v_i$. Allora: $\phi(f(v), f(w)) = \phi(f(\sum_{i=1}^{n} x_i v_i), f(\sum_{i=1}^{n} y_i v_i)) = \phi(\sum_{i=1}^{n} x_i f(v_i), \sum_{i=1}^{n} y_i f(v_i)) =$ $= \sum_{i,j} x_i y_j \phi(f(v_i), f(v_j)) = \sum_{i,j} x_i y_j \delta_{ij} = \phi(v, w).$

1) \Leftrightarrow 6): $f \in O(V, \phi) \Leftrightarrow \phi(f(x), f(y)) = \phi(x, y) \ \forall x, y \in V$, ma $\phi(f(x), f(y)) = \phi(x, f^*(f(y))), \text{ quindi } f \in O(V, \phi) \Leftrightarrow \phi(x, f^*(f(y))) = \phi(x, y) \ \forall x, y \in V \Leftrightarrow f^*(f(y)) - y \in Rad(\phi) = \{0\} \ \forall y \Leftrightarrow f^* \circ f = id.$

PROPOSIZIONE 4.5.3: \mathcal{B} base ortonormale di (V, ϕ) , $f \in End(V)$. Sia $A = \mathfrak{M}_{\mathcal{B}}(f)$. Allora $f \in O(V, \phi) \iff {}^t AA = I$.

Dimostrazione:

Poiché $\mathfrak{M}_{\mathcal{B}}(\phi) = I$, $\phi(f(v), f(w)) = {}^t X^t A A Y \ \forall v, w \in V, X = [v]_{\mathcal{B}}, Y = [w]_{\mathcal{B}}.$ $\phi(v, w) = {}^t X Y.$

Quindi $f \in O(V, \phi) \iff {}^tX^tAAY = {}^tXY \ \forall X, Y \in \mathbb{K}^n \iff {}^tAA = I.$

DEFINIZIONE 4.5.5: $M \in \mathcal{M}(n, \mathbb{R})$ si dice **ortogonale** se ${}^tMM = M{}^tM = I$. Denotiamo con $O(n) = \{M \in \mathcal{M}(n, \mathbb{R}) | M \text{ è } ortogonale\}$.

Osservazioni: 1) $M \in O(n) \Rightarrow M$ invertibile e $M^{-1} = {}^tM$

- 2) $M \in O(n) \Leftrightarrow$ le righe (e le colonne) di M formano una base ortonormale di \mathbb{R}^n . Infatti: \Rightarrow) $[{}^tMM]_{ij} = [I]_{ij} = \delta_{ij}$, dunque se $v_j = M^j$, allora $\phi(v_i, v_j) = \delta_{ij}$ \Leftrightarrow) Se $v_j = M^j$ e $\mathcal{B} = \{v_1, \dots, v_n\} \Rightarrow \mathfrak{M}_{\mathcal{B}}(\phi) = I \in O(n)$.
- 3) O(n) dotato del prodotto è un gruppo, detto **gruppo ortogonale**
- 4) Se $A \in O(n) \Rightarrow \det(A) = \pm 1$ (poiché $\det({}^t AA) = \det(I) = 1 \Rightarrow (\det(A))^2 = 1$). In particolare denotiamo con $SO(n) = \{A \in O(n) | \det(A) = 1\}$ il **gruppo ortogonale speciale** (che è un gruppo con il prodotto).
- 5) Nel caso n = 2:

$$O(2) = \underbrace{\left\{ \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \middle| \alpha \in \mathbb{R} \right\}}_{=SO(2),non\ diagonalizzabili\ (rotazioni)} \cup \underbrace{\left\{ \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} \middle| \alpha \in \mathbb{R} \right\}}_{det=-1,diagonalizzabili\ (riflessioni)}$$

Dimostreremo fra poco che in O(2) esistono solo questi due tipi di matrici.

PROPOSIZIONE 4.5.4: $A \in O(n)$, $\lambda \in \mathbb{C}$ autovalore per $A \Rightarrow |\lambda| = 1$.

(Osservazione: $|a+bi| = \sqrt{a^2 + b^2} \implies$ se $\lambda \in \mathbb{R}$ autovalore per A, allora $\lambda = \pm 1$).

Dimostrazione:

Pensiamo $A: \mathbb{C}^n \to \mathbb{C}^n$.

Sia $X \in \mathbb{C}^n \setminus \{0\}$ autovettore per A relativo a λ , cioè $AX = \lambda X$.

Poiché A è reale, allora $\overline{AX} = \overline{AX} = A\overline{X} = \overline{\lambda}\overline{X}$.

$${}^{t}(\lambda X)\overline{\lambda X} = < \frac{\lambda \bar{\lambda}^{t} X \bar{X}}{{}^{t}(AX)A\bar{X}} = {}^{t}X^{t}AA\bar{X} = {}^{t}X\bar{X}$$

Dunque $(\lambda \bar{\lambda} - 1)^t X \bar{X} = 0$. Ma $\lambda \bar{\lambda} = |\lambda|^2$, perciò: $(|\lambda|^2 - 1)^t X \bar{X} = 0$. Ora ${}^t X \bar{X} = x_1 \overline{x_1} + \ldots + x_n \overline{x_n} = |x_1|^2 + \ldots + |x_n|^2 \in \mathbb{R}^+$, poiché $X \neq 0$. Allora $|\lambda|^2 = 1 \Rightarrow |\lambda| = 1$.

PROPOSIZIONE 4.5.5: (V, ϕ) euclideo, $\mathcal{B} = \{v_1, ..., v_n\}$ base ortonormale di V.

 $\mathcal{B}' = \{w_1, \dots, w_n\}$ base di $V; M = \mathfrak{M}_{\mathcal{B}', \mathcal{B}}(id)$. Allora:

 \mathcal{B}' è ortonormale $\Leftrightarrow M$ è ortogonale.

Dimostrazione:

 $\forall i, [w_i]_{\mathcal{B}} = M[w_i]_{\mathcal{B}'} = M^i.$

$$\phi\big(w_i,w_j\big)={}^t[w_i]_{\mathcal{B}}\big[w_j\big]_{\mathcal{B}}={}^t\big(M^i\big)M^j=({}^tM)_iM^j=[{}^tMM]_{ij}.$$

Dunque \mathcal{B}' è ortonormale $\Leftrightarrow \phi(w_i, w_j) = \delta_{ij} \ \forall i, j \Leftrightarrow [^tMM]_{ij} = \delta_{ij} \ \forall i, j \Leftrightarrow M \in O(n)$.

Dunque possiamo migliorare il teorema di triangolabilità per matrici:

PROPOSIZIONE 4.5.6: $A \in \mathcal{M}(n, \mathbb{R})$ triangolabile. Allora $\exists M \in O(n) | M^{-1}AM = T$ triangolare. Dimostrazione:

Interpretando $A: \mathbb{R}^n \to \mathbb{R}^n$, allora $\mathfrak{M}_{\mathcal{C}}(A) = A$, dove \mathcal{C} è la base canonica di \mathbb{R}^n .

Come conseguenza dell'algoritmo di Gram-Schmidt, $\exists \mathcal{B}$ base di \mathbb{R}^n ortonormale e a bandiera per A.

Sia $M = \mathfrak{M}_{\mathcal{B},\mathcal{C}}(id)$; allora $M^{-1}AM = \mathfrak{M}_{\mathcal{B}}(A) = T$ triangolare.

Poiché \mathcal{B} e \mathcal{C} sono basi ortonormali, $M \in \mathcal{O}(n)$.

Osservazione: Se \mathcal{B} è una base ortonormale, la restrizione di $\mathfrak{M}_{\mathcal{B}}$: $GL(V) \to GL(n, \mathbb{R})$ a $O(V, \phi)$ identifica $O(V, \phi)$ con il sottogruppo O(n) di $GL(n, \mathbb{R})$.

$$\mathfrak{M}_{\mathcal{B}}: O(V, \phi) \to O(n) | f \to \mathfrak{M}_{\mathcal{B}}(f)$$

Per quanto visto, se f è isometria, allora:

- $\det(f) = \pm 1$;
- gli unici autovalori reali di f sono ± 1 .

Denotiamo con $SO(V, \phi) = \{ f \in O(V, \phi) | \det(f) = 1 \}$ il gruppo ortogonale speciale.

Gli elementi di $SO(V, \phi)$ sono detti **isometrie dirette** o **rotazioni**.

 $f \in O(V, \phi) \setminus SO(V, \phi)$ si dice **isometria inversa**.

Osservazione: Lavoriamo in $(\mathbb{R}^n, \langle, \rangle)$.

Ogni isometria di \mathbb{R}^n è composizione di al più n riflessioni.

Ogni isometria diretta è composizione di un numero pari di riflessioni, poiché se ρ è una riflessione, $\det(\rho) = -1$, quindi $\det(\rho_1 \circ \dots \rho_k) = 1 \Leftrightarrow k$ pari.

Analogamente le isometrie inverse sono composizione di un numero dispari di riflessioni. Se $f \in O(\mathbb{R}^n, \langle, \rangle)$ e dim(Fix(f)) = k, allora f è composizione di n - k riflessioni.

PROPOSIZIONE 4.5.7: Ogni matrice in O(2) è della forma:

$$R_{\theta} = \left\{ \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \middle| \theta \in \mathbb{R} \right\} \vee \rho_{\theta} = \left\{ \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix} \middle| \theta \in \mathbb{R} \right\}.$$

Dimostrazione:

Se
$$A = (v_1 \mid v_2), \{v_1, v_2\}$$
 è base ortonormale di \mathbb{R}^2 .

In particolare, se
$$v_1 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, allora $\langle v_1, v_1 \rangle = x_1^2 + x_2^2 = 1$, quindi $\exists \theta_1 | x_1 = \cos(\theta_1)$, $x_2 = \sin(\theta_1)$.

$$x_2 = \sin(\theta_1).$$
Analogamente $v_2 = {\cos(\theta_2) \choose \sin(\theta_2)}.$

Ma:

$$0 = \langle v_1, v_2 \rangle = \cos(\theta_1)\cos(\theta_2) + \sin(\theta_1)\sin(\theta_2) = \cos(\theta_1 - \theta_2).$$

Dunque
$$\theta_2 = \theta_1 + \frac{\pi}{2} + 2k\pi \vee \theta_2 = \theta_1 - \frac{\pi}{2} + 2k\pi$$
.

Se vale la prima, allora
$$\binom{\cos(\theta_2)}{\sin(\theta_2)} = \binom{-\sin(\theta_1)}{\cos(\theta_1)}$$
.

Se vale la prima, allora
$$\binom{\cos(\theta_2)}{\sin(\theta_2)} = \binom{-\sin(\theta_1)}{\cos(\theta_1)}$$
.
Se vale la seconda, allora $\binom{\cos(\theta_2)}{\sin(\theta_2)} = \binom{\sin(\theta_1)}{-\cos(\theta_1)}$, tesi.

PROPOSIZIONE 4.5.8 (Forma canonica per un'isometria in uno spazio euclideo): Sia $A \in O(n)$. Allora $\exists M \in O(n)$ tale che:

$${}^{t}MAM = M^{-1}AM = \begin{pmatrix} \boxed{I} & & & & \\ & \boxed{-I} & & & \\ & & \boxed{R_{\theta_1}} & & \\ & & \ddots & \\ & & & \boxed{R_{\theta_k}} \end{pmatrix}$$

$$\operatorname{con} R_{\theta_i} = \begin{pmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{pmatrix}, \operatorname{con} \theta_i \neq k\pi \ \forall i.$$

FORMULAZIONE ALTERNATIVA: Sia (V, ϕ) uno spazio euclideo di dimensione n. Sia $\psi \in O(V, \phi)$. Allora $\exists \mathcal{B}$ base ortonormale di V tale che:

$$\mathfrak{M}_{\mathcal{B}}(\psi) = egin{pmatrix} ar{I} & & & & & \\ & ar{-I} & & & & \\ & & ar{R}_{ heta_1} & & & \\ & & & \ddots & \\ & & & & ar{R}_{ heta_k} \end{pmatrix}$$

(Osservazione: Le due formulazioni sono equivalenti, infatti:

Prima \Rightarrow Seconda: Scelgo \mathcal{B}' base ortonormale per (V, ϕ) . Allora $\mathfrak{M}_{\mathcal{B}'}(\phi) = I$.

$$\psi \in O(V, \phi) \Rightarrow {}^t \big(\mathfrak{M}_{\mathcal{B}'}(\psi) \big) \mathfrak{M}_{\mathcal{B}'}(\phi) \mathfrak{M}_{\mathcal{B}'}(\psi) = \mathfrak{M}_{\mathcal{B}'}(\phi), \operatorname{cioè}_{\mathcal{B}'}(\psi) \big) \mathfrak{M}_{\mathcal{B}'}(\psi) = I.$$

Dunque per la prima formulazione $\exists M \in O(n)$ tale che:

$${}^{t}M\mathfrak{M}_{\mathcal{B}'}(\psi)M = \begin{pmatrix} \boxed{I} & & & \\ & \boxed{-I} & & & \\ & & \boxed{R_{\theta_1}} & & \\ & & \ddots & & \\ & & & \boxed{R_{\theta_k}} \end{pmatrix}$$

Ma $M \in O(n)$, per cui rappresenta un cambio di base da \mathcal{B}' a un'altra base ortonormale, cioè $M = \mathfrak{M}_{\mathcal{B},\mathcal{B}'}(id)$, dunque ${}^tM\mathfrak{M}_{\mathcal{B}'}(\psi)M = \mathfrak{M}_{\mathcal{B}}(\psi)$, tesi.

Il viceversa è analogo.)

Dimostrazione:

Per induzione su *n*:

Passo base): n = 1: Basta osservare che un autovalore reale di A può essere solo ± 1 .

Passo induttivo): $n \ge 2$.

Caso a) *A* ammette l'autovalore reale $\lambda = \pm 1$.

Sia v un autovettore relativo a λ . Allora:

$$\mathbb{R}^n = Span(v) \oplus^{\perp} Span(v)^{\perp}, Av \in Span(v) \Rightarrow (poiché A \in O(n)) \Rightarrow Av^{\perp} \subseteq v^{\perp}, dunque A|_{v^{\perp}} \in O(v^{\perp}, \langle, \rangle|_{v^{\perp}}).$$

Per ipotesi induttiva della seconda formulazione $\exists \mathcal{B}$ base ortonormale di $v^{\perp} | \mathfrak{M}_{\mathcal{B}}(A|_{v^{\perp}}) = \mathcal{C}$ della forma voluta.

Se scelgo v normalizzato, $B^* = \{v\} \cup \mathcal{B}$ è una base ortonormale di \mathbb{R}^n

e
$$\mathfrak{M}_{\mathcal{B}^*}(A) = \left(\frac{\pm 1 \mid 0}{0 \mid C}\right)$$
, dunque a meno di permutare i vettori di \mathcal{B}^*

ho la tesi.

Caso b) A non ha autovalori reali. Sia λ un autovalore complesso.

$$|\lambda| = 1 \Rightarrow \lambda = \cos(\theta) + i\sin(\theta)$$
. Sia $v = v_{\mathbb{R}} + i \ v_{\mathbb{I}} \in \mathbb{C}^n$ un autovettore per $\lambda \ (v_{\mathbb{R}}, v_{\mathbb{I}} \in \mathbb{R}^n)$.

So dalla forma di Jordan reale che $v_{\mathbb{R}}, v_{\mathbb{I}}$ sono indipendenti.

Mostro che $||v_{\mathbb{R}}|| = ||v_{\mathbb{I}}||$ e che $\langle v_{\mathbb{R}}, v_{\mathbb{I}} \rangle = 0$.

Se denoto con \langle , \rangle il prodotto scalare standard su \mathbb{C}^n ,

$${}^{t}AA = I \implies A \in O(\mathbb{C}^{n}, \langle, \rangle)$$
, dunque:

$$\langle v, v \rangle = \langle Av, Av \rangle = \langle \lambda v, \lambda v \rangle = \lambda^2 \langle v, v \rangle.$$

Ma
$$\lambda^2 \neq 1$$
 e dunque $\langle v, v \rangle = 0$, cioè:

$$0 = \langle v_{\mathbb{R}} + i \ v_{\mathbb{I}}, v_{\mathbb{R}} + i \ v_{\mathbb{I}} \rangle = \langle v_{\mathbb{R}}, v_{\mathbb{R}} \rangle - \langle v_{\mathbb{I}}, v_{\mathbb{I}} \rangle + 2i \langle v_{\mathbb{I}}, v_{\mathbb{R}} \rangle \Rightarrow$$

⇒ uguagliando a 0 parte reale e immaginaria:

$$\langle v_{\mathbb{R}}, v_{\mathbb{R}} \rangle = \langle v_{\mathbb{I}}, v_{\mathbb{I}} \rangle \ \Rightarrow \ \|v_{\mathbb{R}}\| = \|v_{\mathbb{I}}\| \ \mathrm{e} \ \langle v_{\mathbb{R}}, v_{\mathbb{I}} \rangle = 0.$$

A meno di riscalare v, posso supporre che $v_{\mathbb{R}}, v_{\mathbb{I}}$ siano ortonormali.

Dalla forma di Jordan reale so che $A(Span(v_{\mathbb{R}}, v_{\mathbb{I}})) \subseteq Span(v_{\mathbb{R}}, v_{\mathbb{I}})$ e

 $A|_{Span(v_{\mathbb{R}},v_{\mathbb{I}})}$ si rappresenta rispetto a $\{v_{\mathbb{R}},v_{\mathbb{I}}\}$ come:

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Concludo come prima sfruttando l'invarianza di $Span(v_{\mathbb{R}}, v_{\mathbb{I}})^{\perp}$.

4.6 IL TEOREMA SPETTRALE REALE

In tutto il capitolo lavoreremo in uno spazio euclideo (V, ϕ) .

DEFINIZIONE 4.6.1: $f \in End(V)$ si dice **ortogonalmente diagonalizzabile** se \exists una base \mathcal{B} di V ortonormale per ϕ e di autovettori per f (detta anche **base spettrale**).

Osservazione: Se f è ortogonalmente diagonalizzabile, allora f è autoaggiunto.

Infatti se $\exists \mathcal{B}$ base spettrale $\Rightarrow \mathfrak{M}_{\mathcal{C}}(f) = D$ diagonale. Ma poiché f è autoaggiun

Infatti se $\exists \mathcal{B}$ base spettrale $\Rightarrow \mathfrak{M}_{\mathcal{B}}(f) = D$ diagonale. Ma poiché f è autoaggiunto $\Leftrightarrow \exists \mathcal{B}$ base di V ϕ -ortonormale $|\mathfrak{M}_{\mathcal{B}}(f)$ è simmetrica e D lo è, allora f è autoaggiunto.

LEMMA 4.6.1: $f \in End(V)$ autoaggiunto, W sottospazio di V.

Allora $f(W) \subseteq W \Rightarrow f(W^{\perp}) \subseteq W^{\perp}$.

Dimostrazione:

Dobbiamo mostrare che $\forall x \in W^{\perp}, f(x) \in W^{\perp}$.

 $\forall w \in W$, $0 = \phi(x, f(w)) = \phi(f(x), w)$, dunque segue la tesi.

LEMMA 4.6.2: $A \in \mathcal{S}(n, \mathbb{R})$. Allora $p_A(t)$ è completamente fattorizzabile in $\mathbb{R}[t]$.

Dimostrazione:

Consideriamo A come matrice complessa, $A: \mathbb{C}^n \to \mathbb{C}^n$; sia λ autovalore per A.

Se $X \in \mathbb{C}^n \setminus \{0\}$ autovettore per A relativo a λ , allora $AX = \lambda X$, dunque $A\overline{X} = \overline{\lambda}\overline{X}$.

Allora:

$${}^{t}XA\bar{X} = < {}^{t}X(\bar{\lambda}\bar{X}) = \bar{\lambda}{}^{t}X\bar{X}$$
$${}^{t}(AX)\bar{X} = {}^{t}(\lambda X)\bar{X} = \lambda{}^{t}X\bar{X}$$

Dunque $(\bar{\lambda} - \lambda)^t X \bar{X} = 0$.

Ma ${}^t X \overline{X} = x_1 \overline{x_1} + \ldots + x_n \overline{x_n} = |x_1|^2 + \ldots + |x_n|^2 \in \mathbb{R}^+$, poiché $X \neq 0$.

Dunque $\bar{\lambda} = \lambda \implies \lambda \in \mathbb{R}$.

TEOREMA SPETTRALE REALE: (V, ϕ) spazio euclideo.

 $f \in End(V)$ è ortogonalmente diagonalizzabile $\Leftrightarrow f$ è autoaggiunto.

Dimostrazione 1:

- ⇒) Già vista.
- \Leftarrow) Per induzione su $n = \dim(V)$:

Passo base): n = 1: ovvio.

Passo induttivo): Per il lemma $\exists \lambda \in \mathbb{R}$ autovalore per f.

Sia $v_1 \in V_\lambda$ di norma 1.

Allora $V = Span(v_1) \oplus Span(v_1)^{\perp}$.

Per il primo lemma, $f(Span(v_1)^{\perp}) \subseteq Span(v_1)^{\perp}$; inoltre

 $\dim(\operatorname{Span}(v_1)^{\perp}) = n - 1 e f|_{\operatorname{Span}(v_1)^{\perp}}$ è autoaggiunto.

Dunque per ipotesi induttiva, $\exists \{v_2, ..., v_n\}$ base ortonormale di $Span(v_1)^{\perp}$

di autovettori per $f|_{Span(v_1)^{\perp}}$ (e quindi per f).

Allora $\{v_1, ..., v_n\}$ è base spettrale per f, da cui la tesi.

Dimostrazione 2:

- ⇒) Già vista.
- \Leftarrow) Sia S base φ-ortonormale, $A = \mathfrak{M}_{S}(f)$. Allora ${}^{t}A = A$.

Per il lemma A è triangolabile, in particolare $\exists P \in O(n) | P^{-1}AP = {}^tPAP = T$ triangolare.

A simmetrica \Rightarrow T simmetrica (poiché congruente ad A) \Rightarrow T è diagonale.

Sia \mathcal{B} base di $V \mid \mathfrak{M}_{\mathcal{B},\mathcal{S}}(id) = P$.

 $P \in O(n) \Rightarrow \mathcal{B}$ ortonormale. $\mathfrak{M}_{\mathcal{B}}(f) = T$ diagonale $\Rightarrow \mathcal{B}$ di autovettori.

COROLLARIO 4.6.3: $A \in \mathcal{S}(n, \mathbb{R})$. Allora $\exists P \in O(n) | P^{-1}AP = {}^tPAP = D$ diagonale.

Osservazione: Sia $A \in \mathcal{S}(n, \mathbb{R})$. In particolare abbiamo dimostrato che:

• A è simile a D tramite una matrice ortogonale, cioè $A \mathcal{R} D$ in $\mathcal{M}(n, \mathbb{R})/_{similit.tramite\ el.di\ O(n)}$, che corrisponde a $End(V)/_{coniugio\ tramite\ el.di\ O(V, \Phi)}$;

• A è congruente a D tramite matrice ortogonale, ossia $A \mathcal{R} D$ in $\mathcal{M}(n,\mathbb{R})/_{congruenza\ tramite\ el.di\ O(n)}$, che corrisponde a $PS(V)/_{isometria\ tramite\ el.di\ O(V,\phi)}$. Dunque, se $P^{-1}AP = {}^tPAP = D$ diagonale, allora gli elementi sulla diagonale di D sono sia gli autovalori di A, sia permettono di calcolare $\sigma(A)$.

In particolare:

 $i_{+}(A) = \#autovalori positivi di A;$

 $i_{-}(A) = \#autovalori\ negativi\ di\ A;$

 $i_0(A) = \#autovalori nulli di A.$

COROLLARIO 4.6.4: $A \in \mathcal{S}(n, \mathbb{R})$ è definita positiva \Leftrightarrow tutti gli autovalori di A sono positivi.

PROPOSIZIONE 4.6.5: (V, ϕ) euclideo, $f \in End(V)$, $f^* = f$, $\lambda \neq \mu$ autovalori per f.

Allora $V_{\lambda} \perp V_{\mu}$ (cioè $\phi(v, w) = 0 \ \forall v \in V_{\lambda}, w \in V_{\mu}$).

Dimostrazione:

$$\lambda \phi(v, w) = \phi(\lambda v, w) = \phi(f(v), w) = \phi(v, f(w)) = \phi(v, \mu w) = \mu \phi(v, w) \ \forall v \in V_{\lambda}, w \in V_{\mu}.$$

Dunque $(\lambda - \mu)\phi(v, w) = 0 \ \forall v \in V_{\lambda}, w \in V_{\mu}$, ma $\lambda \neq \mu$, da cui la tesi.

TEOREMA DI ORTOGONALIZZAZIONE SIMULTANEA: *V* ℝ-spazio vettoriale.

 $\phi, \psi \in PS(V)$, ϕ definito positivo. Allora $\exists \mathcal{B}$ base di V ortonormale per ϕ e ortogonale per ψ . Dimostrazione:

Sia S base ortonormale per ϕ .

Sia $A = \mathfrak{M}_{\mathcal{S}}(\psi) \Rightarrow A$ è simmetrica.

Sia $g \in End(V) | \mathfrak{M}_{\mathcal{S}}(g) = A \Rightarrow g$ è autoaggiunto.

Per il teorema spettrale $\exists \mathcal{B}$ base ortonormale per ϕ e di autovettori per g, ossia $\mathfrak{M}_{\mathcal{B}}(g) = D$ diagonale.

Sia $M = \mathfrak{M}_{\mathcal{B},\mathcal{S}}(id)$; poiché \mathcal{B} e \mathcal{S} sono ortonormali, allora $M \in \mathcal{O}(n)$.

Inoltre $M^{-1}AM = D$, perciò $M^{-1}AM = {}^{t}MAM = D$.

Ma $\mathfrak{M}_{\mathcal{B}}(\psi) = {}^{t}MAM = D$, per cui la base \mathcal{B} è ortogonale per ψ .

PROPOSIZIONE 4.6.6: $A \in \mathcal{M}(n, \mathbb{R})$. $A \in \text{simmetrica} \Leftrightarrow \begin{cases} A^t A = {}^t A A \\ A \in triangolabile \end{cases}$

Dimostrazione:

- ⇒) Ovvia.
- \Leftarrow) Come conseguenza di Gram-Schmidt $\exists P \in O(n) | P^{-1}AP = {}^tPAP = T$ triangolare superiore. $T^tT = {}^tPAP^tP^tAP = {}^tPA^tAP = {}^tP^tAAP = {}^tP^tAP^tPAP = {}^tTT$.

Ma una matrice T triangolare superiore tale che ${}^tTT = T{}^tT$ è diagonale, infatti:

$$[T^tT]_{11} = T_1 \cdot T_1 = [T]_{11}^2 + \dots + [T]_{1n}^2$$

 $[^tTT]_{11} = [T]_{11}^2,$

dunque $[T]_{1i} = 0 \ \forall 2 \leq j \leq n$.

Iterando, ottengo che *T* è diagonale.

Allora *A* è simmetrica perché congruente a *T* tramite $P \in O(n)$.

COROLLARIO 4.6.7: $A \in O(n)$. Se A ha tutti gli autovalori reali, allora è simmetrica (e dunque diagonalizzabile).

PROPOSIZIONE 4.6.8: $A \in \mathcal{S}(n, \mathbb{R})$. A è definita positiva $\Leftrightarrow \exists ! S \in \mathcal{S}(n, \mathbb{R})$ definita positiva tale che $A = S^2$ (si dice che S è la **radice quadrata** di A).

Dimostrazione:

- \Leftarrow) $\forall X \in \mathbb{R}^n \setminus \{0\}$, ${}^tXAX = {}^tXS^2X = {}^tX^tSSX = {}^t(SX)SX > 0$, poiché $S \in GL(n, \mathbb{R})$, tesi.
- \Rightarrow) Esistenza: Per ipotesi gli autovalori di *A* sono reali positivi, quindi $\exists M \in O(n)$ tale che

$$M^{-1}AM = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} = D^2 \implies D = \begin{pmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_n} \end{pmatrix}.$$

Allora $A = MD^2M^{-1} = (MD^tM)(MD^tM)$.

Basta prendere $S = MD^tM$ (che è simmetrica e definita positiva perché congruente a D simmetrica e definita positiva).

<u>Unicità</u>: Sia S una qualsiasi matrice simmetrica definita positiva tale che $A = S^2$. Allora $SA = S \cdot S^2 = S^2 \cdot S = AS$.

Se
$$\mathbb{R}^n = V_{\lambda_1}(A) \oplus ... \oplus V_{\lambda_k}(A)$$
, $SA = AS \implies S\left(V_{\lambda_j}(A)\right) \subseteq V_{\lambda_j}(A) \ \forall j$.

Vediamo ora che $S|_{V_{\lambda_i}(A)}$ è completamente determinato (e quindi S è unica).

Sia μ autovalore per $S|_{V_{\lambda_i}(A)}$ e v un autovettore relativo a μ , cioè $Sv=\mu v$.

$$\lambda_j v = Av = S^2 v = \mu^2 v \xrightarrow{J} \mu^2 = \lambda_j \Rightarrow \mu = \sqrt{\lambda_j} \Rightarrow S|_{V_{\lambda_j}(A)} = \sqrt{\lambda_j} \cdot id|_{V_{\lambda_j}(A)}.$$

Dunque S è determinato univocamente, cioè ho la tesi.

Osservazione: Con la stessa dimostrazione si prova che A è semidefinito positivo $\Leftrightarrow \exists ! S \in S(n, \mathbb{R})$ semidefinita positiva tale che $A = S^2$.

PROPOSIZIONE 4.6.9: $A \in GL(n, \mathbb{R})$. Allora $\exists ! S \in S(n, \mathbb{R})$ definita positiva e $P \in O(n)$ | A = SP (questa decomposizione prende il nome di **decomposizione polare**). Dimostrazione:

Esistenza: A^tA è evidentemente simmetrica e definita positiva, in quanto

 ${}^tXA^tAX = {}^t({}^tAX)^tAX > 0$, poiché $A \in GL(n,\mathbb{R}) \Rightarrow {}^tA \in GL(n,\mathbb{R})$ (oppure tAA è definita positiva perché rappresenta l'identità in una base differente, cioè è una matrice congruente all'identità, che è definita positiva $\Rightarrow {}^tAA$ definita positiva $\Rightarrow A^tA$ è definita positiva).

Dunque per la proposizione precedente $\exists S$ simmetrica definita positiva $A^tA = S^2$.

Quindi $S^{-1}A^tAS^{-1} = I \implies S^{-1}A^t(S^{-1}A) = I$, cioè $P = S^{-1}A \in O(n)$.

Inoltre $A = S(S^{-1}A) = SP$, da cui la tesi.

<u>Unicità</u>: Se A = SP, allora $A^tA = SP^tPS = S^2$, ma allora S è unica per la proposizione precedente. Poiché $P = S^{-1}A$, anche P è unica.

PROPOSIZIONE 4.6.10: Siano f, g endomorfismi autoaggiunti di uno spazio euclideo (V, ϕ) | $f \circ g = g \circ f$. Allora \exists base ortonormale di V fatta da autovettori sia per f che per g. Dimostrazione:

f,g diagonalizzabili per il teorema spettrale. Inoltre $\forall \lambda$ autovalore per $f,V_{\lambda}(f)$ è g-invariante. $g|_{V_{\lambda}(f)}$ è autoaggiunto nello spazio euclideo $(V_{\lambda}(f),\phi|_{V_{\lambda}(f)})$, dunque $g|_{V_{\lambda}(f)}$ ammette una base \mathcal{B}_{λ} di autovettori ortogonale rispetto a $\phi|_{V_{\lambda}(f)}$. Al variare di $\lambda_i \in Sp(f)$, pongo $\mathcal{B} = \bigcup_i \mathcal{B}_{\lambda_i}$. Ogni elemento di \mathcal{B} è di autovettori per f e per g; ma f è autoaggiunto, per cui $V = V_{\lambda_1}(f) \oplus^{\perp} ... \oplus^{\perp} V_{\lambda_k}(f)$, quindi \mathcal{B} è ortonormale; da questo segue la tesi.

5 SPAZI AFFINI

5.1 ISOMETRIE AFFINI

Riprendiamo la notazione $S(X) = \{f: X \to X \ biunivoche\}, X \neq 0.$

DEFINIZIONE 5.1.1: Ogni sottogruppo di S(X) si chiama **gruppo di trasformazioni** di X.

Esempi: 1) Se V è uno spazio vettoriale, con l'algebra lineare abbiamo studiato GL(V) come gruppo di trasformazioni di V.

2) Allo stesso modo abbiamo studiato $O(V, \phi)$ se $\phi \in PS(V)$.

Osservazione: Non tutte le trasformazioni sono lineari, infatti:

DEFINIZIONE 5.1.2: V spazio vettoriale. La trasformazione $\tau_v: V \to V | \tau_v(w) = w + v$ è detta **traslazione** del vettore v fissato, $v \in V$.

Osservazione: τ_v è lineare $\Leftrightarrow v = 0$.

Notazione: Indicheremo con $T(V) = \{traslazioni\ di\ V\}.$

PROPOSIZIONE 5.1.1: $(T(V), \circ)$ è un gruppo abeliano di trasformazioni di V e $(T(V), \circ) \cong (V, +)$.

Dimostrazione:

 $\tau_0 = id$, vale evidentemente la proprietà associativa e $(\tau_v)^{-1} = \tau_{-v}$.

Inoltre $\tau_v \circ \tau_w = \tau_{v+w} = \tau_{w+v} = \tau_w \circ \tau_v$.

Quindi $(T(V), \circ)$ è un gruppo abeliano.

Poiché $F:(V,+) \to (T(V),\circ)|F(v)=\tau_v$ è sicuramente un isomorfismo, segue anche l'altra tesi.

DEFINIZIONE 5.1.3: Sia G un gruppo. Si chiama **azione** di G su un insieme X ogni omomorfismo $\psi: G \to S(X)$.

L'azione di un gruppo si dice **transitiva** se $\forall x, y \in X, \exists g \in G | \psi(g)(x) = y$.

Osservazione: T(V) agisce su V in modo transitivo, infatti $\forall v, w \in V \ \exists \tau \in T(V) | \ \tau(v) = w$ (in particolare $\tau = \tau_{w-v}$ e $\psi(w-v) = \tau_{w-v}$).

DEFINIZIONE 5.1.4: Sia (V, ϕ) uno spazio euclideo e sia d la distanza indotta da ϕ su V. Allora definiamo $Isom(V, d) = \{f: V \to V | d(P, Q) = d(f(P), f(Q)) \ \forall P, Q \in V \}$ come l'insieme delle **isometrie affini** di V (spesso in seguito le chiameremo semplicemente **isometrie**).

Osservazione: Sicuramente $O(V, \phi) \subseteq Isom(V, d)$ e $T(V) \subseteq Isom(V, d)$, quindi $\forall v \in V, \forall f \in O(V, \phi), \tau_v \circ f \in Isom(V, d)$.

LEMMA 5.1.2: $\forall v \in V, \forall f \in O(V, \phi)$ (in realtà basterebbe $f \in GL(V)$),

 $f \circ \tau_v = \tau_{f(v)} \circ f$ (dunque in generale non commutano).

Dimostrazione:

$$(f \circ \tau_v)(x) = f(x+v) = f(x) + f(v) = \left(\tau_{f(v)} \circ f\right)(x).$$

PROPOSIZIONE 5.1.3: $\{\tau_v \circ f | v \in V, f \in O(V, \phi)\}$ è un gruppo rispetto al prodotto di composizioni.

Dimostrazione:

Mostriamo che è chiuso rispetto al prodotto di composizioni:

$$(\tau_v \circ f) \circ (\tau_w \circ g) = \tau_v \circ (f \circ \tau_w) \circ g = \underbrace{\tau_v \circ \tau_{f(w)}}_{\in T(V)} \circ \underbrace{f \circ g}_{\in O(V,\phi)}.$$
 Inoltre $id = \tau_0 \circ id$, dunque rimane da far vedere che $(\tau_v \circ f)^{-1} \in \{\tau_v \circ f | v \in V, f \in O(V,\phi)\}.$

$$\tau_v \circ f \circ \tau_w \circ g = \tau_v \circ \tau_{f(w)} \circ f \circ g = id \iff \begin{cases} f \circ g = id \\ f(w) = -v \end{cases} \begin{cases} g = f^{-1} \\ w = -f^{-1}(v) \end{cases}$$

Quindi $(\tau_v \circ f)^{-1} = \tau_{-f^{-1}(v)} \circ f^{-1}$, da cui la tesi.

Osservazione: Con la stessa dimostrazione si prova che $\{\tau_v \circ f | v \in V, f \in GL(V)\}$ è un gruppo di trasformazioni di V.

TEOREMA 5.1.4: $\{\tau_v \circ f | v \in V, f \in O(V, \phi)\} = Isom(V, d)$.

Dimostrazione:

- ⊆) Già vista.
- \supseteq) Sia $f \in Isom(V, d)$.

Abbiamo già provato che, se f(0) = 0, allora $f \in O(V, \phi)$.

Se invece $f(0) = v \neq 0$, allora $\tau_{-v} \circ f \in Isom(V, d)$ e $(\tau_{-v} \circ f)(0) = 0$, dunque $\tau_{-v} \circ f = g \in O(V, \phi)$, da cui $f = \tau_v \circ g$ con $g \in O(V, \phi)$.

Osservazione: Ora andremo a studiare le isometrie di $(\mathbb{R}^n, \langle , \rangle)$.

Notiamo che $Isom(\mathbb{R}^n) = \{X \to AX + B | A \in O(n), B \in \mathbb{R}^n\}.$

Inoltre se $f \in Isom(\mathbb{R}^n)$, allora $Fix(f) = \{X \in \mathbb{R}^n | AX + B = X\} = \{X \in \mathbb{R}^n | (A - I)X = -B\}$, quindi Fix(f) o è vuoto, oppure è un sottospazio affine di \mathbb{R}^n con giacitura

 ${X \in \mathbb{R}^n | (A - I)X = 0} = V_1(A) = Fix(A).$

DEFINIZIONE 5.1.5: $f \in Isom(\mathbb{R}^n)$ è detta simmetria se $f^2 = id$.

PROPOSIZIONE 5.1.5: Sia f una simmetria di \mathbb{R}^n , f(X) = AX + B, con $A \in O(n)$. Allora:

- 1) $A^2 = I e f(B) = AB + B = 0$;
- 2) $\frac{B}{2} \in Fix(f)$ (quindi $Fix(f) = \frac{B}{2} + Fix(A)$);
- 3) B è ortogonale a Fix(A).

Dimostrazione:

- 1) $\forall X \in \mathbb{R}^n, f^2(X) = X \Rightarrow A(AX + B) + B = A^2X + AB + B = X \Rightarrow A^2 = I \in AB + B = 0.$
- 2) $f\left(\frac{B}{2}\right) = A \cdot \frac{B}{2} + B \equiv -\frac{B}{2} + B = \frac{B}{2}$ (il passaggio \equiv segue da 1)).
- 3) $Fix(A) = V_1(A)$ e $Fix(A)^{\perp} = V_{-1}(A)$, in quanto $A^2 = I$ e dunque ha come autovalori solo 1 e -1; inoltre se $x \in V_{-1}(A)$, $y \in V_1(A)$, si ha $\langle x, y \rangle = {}^t xy = {}^t (-Ax)Ay = -{}^t x^t AAy = -{}^t xy$,

cioè $\langle x, y \rangle = 0$. Poiché per 1) $AB = -B \Rightarrow B \in V_{-1}(A)$, ho la tesi.

DEFINIZIONE 5.1.6: $f \in Isom(\mathbb{R}^n)$ è detta **riflessione** se $f^2 = id$ e Fix(f) è un iperpiano affine (cioè ha come giacitura un sottospazio di dimensione n-1).

Osservazione: Se f(X) = AX + B è una riflessione, allora $\dim(Fix(A)) = n - 1$, per cui $A \in O(n)$ è una riflessione lineare rispetto alla giacitura di Fix(f). In particolare $\det(A) = -1$.

DEFINIZIONE 5.1.7: $f \in Isom(\mathbb{R}^n)$ è detta rotazione se Fix(f) ha come giacitura un sottospazio di dimensione n-2.

LEMMA 5.1.7: La composizione di due riflessioni ρ_1 , ρ_2 di \mathbb{R}^n rispetto a iperpiani incidenti H_1 e H_2 (non coincidenti) è una rotazione r tale che $Fix(r) = H_1 \cap H_2$. Dimostrazione:

Dobbiamo mostrare che dim(Fix(r)) = n - 2.

Notiamo che, se W_i è la giacitura di H_i per i=1,2, allora $\dim(W_1\cap W_2)=\dim(W_1)+\dim(W_2)-\dim(W_1+W_2)=n-1+n-1-n=n-2$ e $W_1\cap W_2$ è la giacitura di $H_1\cap H_2$. Sicuramente $H_1\cap H_2\subseteq Fix(r)$, poiché se $\rho_i(X)=A_iX+B_i$ per i=1,2, allora: $X\in H_1\cap H_2\Rightarrow A_iX+B_i=X$ per $i=1,2\Rightarrow r(X)=(\rho_1\circ\rho_2)(X)=A_1(A_2X+B_2)+B_1=A_1X+B_1=X$.

Dunque la dimensione della giacitura di r può essere n-2 o n-1 (se fosse $n \Rightarrow r=id$, cioè i due piani sarebbero coincidenti).

Se la dimensione è n-1, allora r è una riflessione, assurdo, perché $\det(A_1A_2)=\det(A_1)\cdot\det(A_2)=1$. Dunque $Fix(r)=H_1\cap H_2$.

Osservazione: Notiamo anche che la rotazione r è di un angolo doppio rispetto a quello formato dai due iperpiani H_1 e H_2 ; questo è semplicemente dimostrabile in \mathbb{R}^2 e \mathbb{R}^3 , ma non lo dimostriamo in dimensione maggiore per evitare di definire un angolo in \mathbb{R}^n .

PROPOSIZIONE 5.1.8: La composizione di due riflessioni di \mathbb{R}^n può essere una traslazione o una rotazione.

Dimostrazione:

Siano $\rho_1(X) = A_1X + B_1$ e $\rho_2(X) = A_2X + B_2$ le due riflessioni.

Siano $H_1 = Fix(\rho_1)$ e $H_2 = Fix(\rho_2)$ i due iperpiani di punti fissi.

Caso 1): H_1 e H_2 sono paralleli (e quindi hanno la stessa giacitura).

Allora $Fix(A_1) = Fix(A_2)$, cioè A_1 e A_2 sono riflessioni lineari rispetto allo stesso iperpiano lineare $\Rightarrow A_1 = A_2 = A$. Allora:

$$(\rho_2 \circ \rho_1)(X) = A(AX + B_1) + B_2 = A^2X + AB_1 + B_2 = X + (AB_1 + B_2) = X + (B_2 - B_1) \Rightarrow \rho_2 \circ \rho_1$$
 è la traslazione $\tau_{\overline{B_1B_2}}$.

(Osservazione: $B_2 - B_1$ è ortogonale ai due iperpiani e $||B_2 - B_1|| = 2d(H_1, H_2)$.

Pertanto qualsiasi coppia di iperpiani paralleli a H_1 , H_2 e aventi la stessa distanza produce $\rho_2 \circ \rho_1$.)

Caso 2): H_1 e H_2 non sono paralleli.

Allora H_1 e H_2 sono incidenti non coincidenti (altrimenti la composizione sarebbe l'identità), dunque la tesi segue per il lemma.

FORMA CANONICA PER UNA SIMMETRIA: Sia $f \in Isom(\mathbb{R}^n)$ una simmetria, $k = \dim(Fix(f))$. Allora esiste una base ortonormale $\{v_1, ..., v_n\}$ di \mathbb{R}^n rispetto alla quale f si scrive:

$$f(X) = \begin{pmatrix} \boxed{I_k} & 0 \\ 0 & \boxed{-I_{n-k}} \end{pmatrix} X + \alpha v_n.$$

TEOREMA 5.1.9: Ogni $f \in Isom(\mathbb{R}^n)$ è composizione di al più n+1 riflessioni.

Dimostrazione:

Se $f(0) = 0 \Rightarrow f \in O(\mathbb{R}^n) \Rightarrow f$ è composizione di al più n riflessioni lineari.

Se $f(0) = B \neq 0$, consideriamo $H = \{X \in \mathbb{R}^n | d(X, 0) = d(X, B)\}$.

H è un iperpiano, poiché $X \in H \iff ||X||^2 = ||X - B||^2 \iff \langle X, X \rangle = \langle X - B, X - B \rangle \iff 2\langle B, X \rangle = \langle B, B \rangle$, che è un'unica equazione. Inoltre $\frac{B}{2} \in H$.

In particolare la giacitura di $H \in Span(B)^{\perp}$.

Sia ρ_H la riflessione rispetto a H. Allora:

 $\rho_H \circ f \in Isom(\mathbb{R}^n)$ e $(\rho_H \circ f)(0) = \rho_H(B) = 0$, quindi $\rho_H \circ f \in O(\mathbb{R}^n)$ è composizione di al più n riflessioni $\Rightarrow f$ è composizione di al più n+1 riflessioni.

DEFINIZIONE 5.1.8: Un'isometria si dice **diretta** se è composizione di un numero pari di riflessioni, **inversa** altrimenti.

Osservazione: f(X) = AX + B è diretta (inversa) \Leftrightarrow det(A) = 1 (det(A) = -1).

DEFINIZIONE 5.1.9: Sia $f \in Isom(\mathbb{R}^n)$. Diciamo che f è:

• una glissoriflessione (o riflessione traslata, o glide) se è composizione di una riflessione ρ e di una traslazione parallela a $Fix(\rho)$;

- una **riflessione rotatoria** se è composizione di una riflessione ρ e di una rotazione attorno a una iperretta (sottospazio di dimensione n-2) che contiene una retta ortogonale a $Fix(\rho)$;
- un **avvitamento** (o **twist**) se è composizione di una rotazione r e di una traslazione (non banale) parallela a Fix(r).

Osservazione: Da quello che abbiamo visto, segue che:

- se $\tau \in T(V)$, allora $\det(\tau) = 1$ e $Fix(\tau) = \emptyset$;
- se ρ è una riflessione, $\det(\rho) = -1$ e $\dim(Fix(\rho)) = n 1$;
- se r è una rotazione, det(r) = 1 e dim(Fix(r)) = n 2;
- se g è una glissoriflessione, det(g) = -1 e $Fix(g) = \emptyset$;
- se R è una riflessione rotatoria, $\det(R) = -1$ e $\dim(Fix(R)) = n 3$ (poiché se $x \in Fix(R)$, è chiaro che $x \in Fix(\rho) \cap Fix(r)$, dove $R = \rho \circ r$, e $\dim(Fix(\rho) \cap Fix(r)) = \dim(Fix(\rho)) + \dim(Fix(r)) \dim(Fix(\rho) + Fix(r)) = n 1 + n 2 n = n 3$
- se t è un avvitamento, allora det(t) = 1 e $Fix(t) = \emptyset$.

PROPOSIZIONE 5.1.10: Sia $f \in Isom(\mathbb{R}^n)$. Se f ha almeno un punto fisso, allora f è composizione di al più n riflessioni.

Dimostrazione:

Sia f(0) = B. Se B = 0, segue subito la tesi.

Sia allora $B \neq 0$.

Sia Q|f(Q) = Q; $H = \{X \in \mathbb{R}^n | d(X, 0) = d(X, B)\}$.

Come provato prima, $\rho_H \circ f$ è lineare. Inoltre $Q \in H$, infatti:

$$d(Q,0) = d(f(Q), f(0)) = d(Q, B).$$

Allora $\rho_H(Q) = Q$ e quindi $(\rho_H \circ f)(Q) = Q \Rightarrow \rho_H \circ f$ è lineare e dim $Fix(\rho_H \circ f) \geq 1$, quindi $\rho_H \circ f$ è composizione di al più n-1 riflessioni, quindi f è composizione di al più n riflessioni, da cui la tesi.

Osservazione: Se $Fix(f) = \emptyset$, possono effettivamente essere necessarie n + 1 riflessioni:

$$f: \mathbb{R}^2 \to \mathbb{R}^2 | f((x,y)) = (x+2,-y); \text{ allora } f: \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \end{pmatrix}.$$

 $Fix(f) = \emptyset$; non bastano 2 riflessioni perché f non è né una traslazione, né una riflessione, né una rotazione.

D'altra parte, se $f = \tau_v$, $Fix(f) = \emptyset$ ma bastano 2 riflessioni.

TEOREMA DI CLASSIFICAZIONE DELLE ISOMETRIE PIANE: Ogni $f \in Isom(\mathbb{R}^2)$ è:

- 1) una traslazione;
- 2) una rotazione;
- 3) una riflessione;
- 4) una glissoriflessione.

Dimostrazione:

f è composizione di al più 3 riflessioni.

Se f è composizione di 0 riflessioni, f = id.

Se f è composizione di 1 riflessione, allora f è una riflessione.

Se f è composizione di 2 riflessioni, abbiamo visto che f è una traslazione o una rotazione.

Se f è composizione di 3 riflessioni, diciamo $f = \rho_1 \circ \rho_2 \circ \rho_3$, allora:

Caso 1): $\rho_1 \circ \rho_2 = \tau_v$ traslazione.

Scrivo $v=v_1+v_2$, con $v_1//v_3$ e $v_2\perp r_3$. Allora:

$$f=\tau_v\circ\rho_3=\tau_{v_1}\circ\tau_{v_2}\circ\rho_3.$$

Ma $\tau_{v_2} \circ \rho_3$ è una riflessione con asse $r_3'//r_3$, dunque f è una glissoriflessione.

(Osservazione: Se $v_1 = 0$ (cioè $v \perp r_3$), f è una riflessione. Quindi:

 $f = \tau_v \circ \rho_3$ è una riflessione \Leftrightarrow gli assi di riflessione sono 3 rette parallele.)

Caso 2): $\rho_1 \circ \rho_2$ è una rotazione attorno ad un punto P con angolo α .

a) $P \notin r_3$.

Allora scrivo la rotazione $R=\rho_1\circ\rho_2$ come composizione di due riflessioni ρ_1' e ρ_2' rispetto a rette incidenti di angolo $\frac{\alpha}{2}$ e $r_2'//r_3$.

$$f = R \circ \rho_3 = \rho_1' \circ \underbrace{\rho_2' \circ \rho_3}_{traslazione} \Rightarrow f$$
 è glissoriflessione.

b) $P \in r_3$ (gli assi di ρ_1, ρ_2, ρ_3 si dicono **concorrenti** in P).

Scrivo $R = \rho_1 \circ \rho_2$ come $\rho_1' \circ \rho_3$, dove ρ_1' è una riflessione rispetto ad una opportuna retta passante per $P \Rightarrow f = \rho_1' \circ \rho_3 \circ \rho_3 = \rho_1' \Rightarrow f$ è riflessione.

(Osservazione: $\rho_1 \circ \rho_2 \circ \rho_3$ è riflessione \Leftrightarrow i 3 assi sono concorrenti o paralleli).

Osservazione: La composizione di 3 riflessioni di \mathbb{R}^3 rispetto a 3 piani incidenti in un punto P e a due a due ortogonali è una simmetria con $Fix(f) = \{P\}$. Quest'ultima è detta simmetria **centrale** di centro *P*.

In generale la composizione fra due isometrie "elementari" (riflessioni, traslazioni e rotazioni) non è commutativa, tranne che nei casi speciali della glissoriflessione, della riflessione rotatoria e dell'avvitamento. Ne tralasciamo la dimostrazione.

TEOREMA DI CLASSIFICAZIONE DELLE ISOMETRIE DI \mathbb{R}^3 : Ogni $f \in Isom(\mathbb{R}^3)$ è una:

- traslazione;
- riflessione;
- rotazione;
- glissoriflessione;
- avvitamento;
- riflessione rotatoria.

Dimostrazione:

f(X) = AX + B, con $A \in O(n)$, per cui $\exists \mathcal{B}$ base ortonormale di \mathbb{R}^3 , $\mathcal{B} = \{v_1, v_2, v_3\} | \mathfrak{M}_{\mathcal{B}}(A) =$

a)
$$I$$
;
b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$;
c) $\begin{pmatrix} rot(\theta) \mid 0 \\ 0 \mid 1 \end{pmatrix}$, $\theta \in (0, 2\pi)$;
d) $\begin{pmatrix} rot(\theta) \mid 0 \\ 0 \mid -1 \end{pmatrix}$, $\theta \in (0, 2\pi)$.

d)
$$\left(\frac{rot(\theta) \mid 0}{0 \mid -1}\right)$$
, $\theta \in (0,2\pi)$.

Studiamo i vari casi:

a) f è una traslazione, $f = \tau_0$.

b) f(X) = AX è una riflessione (poiché $f|_{Span(v_1,v_2)} = id$), quindi il tipo di f(X) = AX + B dipende dalla posizione della traslazione B.

Sia $H = Span(v_1, v_2)$ e $\forall v \in \mathbb{R}^3$, v_H , v_H^{\perp} le proiezioni di v su H e $H^{\perp} = Span(v_3)$ rispetto a $\mathbb{R}^3 = H \oplus^{\perp} H^{\perp}$.

$$f(X) = (AX + B_H^{\perp}) + B_H.$$

Studiamo $Fix(X \rightarrow AX + B_H^{\perp})$:

$$AX + B_H^{\perp} = X \iff (A - I)X = -B_H^{\perp}.$$

Ora $(A - I)|_{H} \equiv 0$ e $(A - I)|_{H^{\perp}} = -2I$, dunque:

$$(A-I)X = (A-I)(X_H + X_H^{\perp}) = -2X_H^{\perp} \Rightarrow AX + B_H^{\perp} = X \Leftrightarrow -2X_H^{\perp} = -B_H^{\perp} \Leftrightarrow X_H^{\perp} = \frac{B_H^{\perp}}{2}$$
$$\Leftrightarrow X = \frac{B_H^{\perp}}{2} + h, h \in H \Leftrightarrow X \in \frac{B_H^{\perp}}{2} + H$$

Perciò $Fix(X \to AX + B_H^{\perp})$ è un piano affine e $X \to AX + B_H^{\perp}$ è una riflessione ρ .

 $f = \tau_{B_H} \circ \rho$, $B_H \in H$ che è la giacitura di Fix(S).

Dunque f è una riflessione se $B_H = 0$, una glissoriflessione se $B_H \neq 0$.

c) Usando la stessa notazione del punto precedente, vogliamo mostrare che $X \to AX + B_H$ è una rotazione.

$$AX + B_H = X \iff (A - I)X = -B_H.$$

 $(A-I)|_{H}: H \to H$ è invertibile, $(A-I)|_{H^{\perp}} \equiv 0$; per cui:

 $\exists !\, X_0 \in H | (A-I)X_0 = -B_H;$ inoltre $Ker(A-I) = H^\perp,$ quindi

$$X \text{ risolve } (A - I)X = -B_H \iff X \in X_0 + H^{\perp}.$$

Quindi $Fix(X \to AX + B_H)$ è una retta affine, per cui $X \to AX + B_H$ è una rotazione.

Dunque se $B_H^{\perp} = 0$, f è una rotazione, altrimenti f è un avvitamento.

d)
$$\underbrace{\left(\frac{rot(\theta) \mid 0}{0 \mid -1}\right)}_{=A} = \underbrace{\left(\frac{rot(\theta) \mid 0}{0 \mid 1}\right)}_{=A_H} + \underbrace{\left(\begin{matrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{matrix}\right)}_{=A_{H-1}} - I$$

Dunque:

$$f(X) = AX + B = (A_H + A_{H^{\perp}} - I)X + B_H + B_{H^{\perp}} =$$

= $(A_H X + B_H - X_H) + (A_{H^{\perp}} X + B_{H^{\perp}} - X_{H^{\perp}})$

Sappiamo già per il punto c) che $(A_HX + B_H - X_H)$: $H \to H$ è una rotazione e per il punto b) che $(A_{H^{\perp}}X + B_{H^{\perp}} - X_{H^{\perp}})$: $H^{\perp} \to H^{\perp}$ è una riflessione (con piano di riflessione \perp all'asse di rotazione).

Dunque $\forall B, f$ è una riflessione rotatoria.

5.2 SPAZI E SOTTOSPAZI AFFINI

DEFINIZIONE 5.2.1: Definiamo $A(V) = \{\tau_v \circ f | v \in V, f \in GL(V)\}.$

Osservazione: Abbiamo visto che A(V) è un gruppo di trasformazioni di V (che in particolare coincide con il sottogruppo di S(V) generato da T(V) e GL(V))

DEFINIZIONE 5.2.2: G gruppo di trasformazioni di un insieme X. $\forall x \in X$, definiamo **stabilizzatore** di x l'insieme $St_x(G) = \{g \in G | g(x) = x\}$.

PROPOSIZIONE 5.2.1: 1) $St_v(GL(V)) = GL(V) \Leftrightarrow v = 0$

2) $St_v(A(V)) \cong GL(V) \ \forall v \in V$.

Dimostrazione:

- 1) Ovviamente $St_0(GL(V)) = GL(V)$. D'altra parte se $v \neq 0$, $\exists f \in GL(V) | f(v) \neq v$.
- 2) Vediamo intanto che $\forall v, w \in V$, $St_v(A(V))$ e $St_w(A(V))$ sono isomorfi. Infatti se u = v w (così che $\tau_u(w) = v$):

$$St_v(A(V)) \to St_w(A(V))$$

 $f \to \tau_{-u} \circ f \circ \tau_u$

è un isomorfismo.

Inoltre
$$\tau_v \circ f \in St_0(A(V)) \Leftrightarrow (\tau_v \circ f)(0) = 0 \Leftrightarrow v = 0$$
. Cioè $St_0(A(V)) = GL(V)$, tesi.

Osservazione: Questo fa capire che in V c'è un punto privilegiato, cioè l'origine O, mentre rispetto ad A(V) tutti i punti di V sono equivalenti.

Dunque nella seguente trattazione distingueremo gli elementi di V pensati come punti e i vettori di V pensati come traslazioni (poiché sappiamo che $(T(V), \circ) \cong (V, +)$).

DEFINIZIONE 5.2.3: V spazio vettoriale. Un insieme A (anche \emptyset) si dice **spazio affine** su V se $\exists F: A \times A \to V$ che associa ad ogni coppia di punti $P, Q \in A$ un vettore di V, denotato \overrightarrow{PQ} , in modo che:

- 1) $\forall P \in A, \forall v \in V, \exists ! Q \in A | \overrightarrow{PQ} = v;$
- 2) $\forall P, Q, R \in A, \overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$ (relazione di Chasles).

DEFINIZIONE 5.2.4: Definiamo **dimensione** di uno spazio affine A, dim(A) = dim(V) se $A \neq \emptyset$, altrimenti dim (\emptyset) = -1.

Osservazione: Dalla relazione di Chasles discende:

- $\forall P \in A, \overrightarrow{PP} = 0$ (basta prendere P = Q = R);
- $\forall P, Q \in A, \overrightarrow{QP} = -\overrightarrow{PQ}$ (basta prendere P = R).

Esempi: Alcuni esempi di spazi affini possono essere:

- 1) $A = V, F: V \times V \to V \mid (P, Q) \to \overrightarrow{PQ} \stackrel{\text{def}}{=} Q P \text{ (detto spazio affine standard su } V)$
- 2) $f: U \to W$ lineare, $b \in W$.

Sia
$$A = f^{-1}(b)$$
, $V = f^{-1}(0) = Ker(f)$.
Allora A è spazio affine su V tramite $F: A \times A \rightarrow V \mid (a_1, a_2) \rightarrow \overrightarrow{a_1 a_2} \stackrel{\text{def}}{=} a_2 - a_1$.

DEFINIZIONE 5.2.5: Definiamo **traslazione** del vettore $v, \tau_v: A \to A \mid P \to Q, \text{ con } \overrightarrow{PQ} = v.$

Notazione: Se $P \in A$ e $v \in V$, denoteremo con P + v l'unico punto Q di A tale che $\overrightarrow{PQ} = v$.

Osservazione: Con questa notazione si ha:

- $\overrightarrow{P(P+v)} = v$;
- $P + \overrightarrow{PQ} = Q$;
- $\bullet \quad \tau_v(P) = P + v.$

Si ha così l'applicazione $A \times V \rightarrow A | (P, v) \rightarrow P + v$.

LEMMA 5.2.2:
$$\forall P \in A, \forall v_1, v_2 \in V, (P + v_1) + v_2 = P + (v_1 + v_2).$$

(Osservazione: Questa relazione non è affatto ovvia, in quanto la scrittura P + v è solamente una notazione e non ha niente a che fare con la somma tradizionale.)

Dimostrazione:

Sia
$$P_1 = P + v_1$$
, ossia $\overrightarrow{PP_1} = v_1$.
Sia $P_2 = P_1 + v_2$, ossia $\overrightarrow{P_1P_2} = v_2$.
 $P + (v_1 + v_2) = P + (\overrightarrow{PP_1} + \overrightarrow{P_1P_2}) = P + \overrightarrow{PP_2} = P_2$, da cui la tesi.

DEFINIZIONE 5.2.6: Fissato $P \in A$, definiamo l'applicazione $F_P: A \to V \mid Q \to \overrightarrow{PQ}$ (a volte questa applicazione prende il nome di **sollevamento** di A su V).

Osservazione: Dagli assiomi segue che F_P è bigettiva e $F_P(P) = \overrightarrow{PP} = 0$, dunque F_P trasforma P nell'origine di V.

In altre parole, con F_P "identifico" A con V, ossia "sollevo" su A una struttura di spazio vettoriale. Questo si può fare $\forall P \in A$.

Osservazione: $\forall v \in V, F_P^{-1}(v) = P + v$.

Osservazione: Cerchiamo di sollevare la nozione di combinazione lineare di vettori nello spazio affine: siano $P_1, ..., P_k \in A$. Fissiamo $P \in A$.

 F_P trasforma P_i in $\overrightarrow{PP_i}$ $\forall i$.

Inoltre
$$\forall t_1, \dots, t_k \in \mathbb{K}, \exists t_1 \overrightarrow{PP_1} + \dots + t_k \overrightarrow{PP_k} \in V$$
 e $F_P^{-1}(t_1 \overrightarrow{PP_1} + \dots + t_k \overrightarrow{PP_k}) = P + t_1 \overrightarrow{PP_1} + \dots + t_k \overrightarrow{PP_k} \in A$.

Affinché sia una buona definizione, il risultato non deve dipendere da P.

Cioè se $A \ni Q \neq P$, allora deve valere $P + \sum_{i=1}^k t_i \overrightarrow{PP_i} = Q + \sum_{i=1}^k t_i \overrightarrow{QP_i}$.

$$P + \sum_{i=1}^{k} t_i \overrightarrow{PP_i} = P + \sum_{i=1}^{k} t_i \left(\overrightarrow{PQ} + \overrightarrow{QP_i} \right) = P + \left(\sum_{i=1}^{k} t_i \right) \overrightarrow{PQ} + \sum_{i=1}^{k} t_i \overrightarrow{QP_i},$$

che coincide con $Q + \sum_{i=1}^k t_i \overrightarrow{QP_i} \iff P + (\sum_{i=1}^k t_i) \overrightarrow{PQ} = Q \iff \sum_{i=1}^k t_i = 1.$

DEFINIZIONE 5.2.7: Dati $P_1, ..., P_k \in A$ e $t_1, ..., t_k \in \mathbb{K} | \sum_{i=1}^k t_i = 1$, definiamo combinazione affine dei punti P_i con coefficienti e $t_1, ..., t_k$ il punto $P + t_1 \overrightarrow{PP_1} + ... + t_k \overrightarrow{PP_k}$, dove P è un qualunque punto di A.

Osservazione: Notiamo che $\forall P, P_1, \dots, P_k \in A$ e $\forall t_1, \dots, t_k \in \mathbb{K} | \sum_{i=1}^k t_i = 1$, vale: $P + t_1 \overrightarrow{PP_1} + \dots + t_k \overrightarrow{PP_k} = t_1 P_1 + \dots + t_k P_k$. Infatti $F_P (P + t_1 \overrightarrow{PP_1} + \dots + t_k \overrightarrow{PP_k}) = t_1 \overrightarrow{PP_1} + \dots + t_k \overrightarrow{PP_k}$ e $F_P (t_1 P_1 + \dots + t_k P_k) = \overrightarrow{P(t_1 P_1 + \dots + t_k P_k)} = t_1 \overrightarrow{PP_1} + \dots + t_k \overrightarrow{PP_k}$, e poiché F_P è bigettiva, ho la tesi.

Esempi: 1) Se $P, Q \in A, \frac{1}{2}P + \frac{1}{2}Q$ è detto punto medio fra P e Q $(char(\mathbb{K}) \neq 2)$ 2) Se $P_1, \dots, P_k \in A, \frac{1}{k}P_1 + \dots + \frac{1}{k}P_k$ è detto baricentro dei P_i $(char(\mathbb{K}) \nmid k)$.

DEFINIZIONE 5.2.8: Definiamo insieme delle combinazioni affini dei punti $P_1, \dots, P_k \in A$ $Comb_a(P_1, \dots, P_k) = \{combinazioni \ affini \ di \ P_1, \dots, P_k\}.$

Esempio: $A = \mathbb{K}^n$, P_1 , $P_2 \in A$ punti distinti.

$$Comb_a(P_1, P_2) = \{t_1P_1 + t_2P_2|t_1 + t_2 = 1\} = \{P_1 + (1-t)\overrightarrow{P_1P_1} + t\overrightarrow{P_1, P_2}|t \in \mathbb{K}\} = \{P_1 + t(P_2 - P_1)|t \in \mathbb{K}\},$$

cioè è la retta passante per P_1 e P_2 .

Analogamente se vede che $Comb_a(P_1, P_2, P_3)$ è il piano contenente P_1, P_2, P_3 (se i tre punti non sono allineati).

Similmente al caso lineare, definisco:

DEFINIZIONE 5.2.9: $H \subseteq A$ (anche $H = \emptyset$) è detto sottospazio affine di A se è chiuso per combinazioni affini.

Osservazione: Come nel caso lineare, l'intersezione di una famiglia arbitraria di sottospazi affini è un sottospazio affine.

Notazione: Se $P_0 \in A$ e W è sottospazio di V, indicheremo con $P_0 + W = \{P_0 + w | w \in W\}$.

Osservazione: $P_0 + W = \{\tau_w(P_0) | w \in W\} \text{ e } F_P^{-1}(W) = P + W.$

PROPOSIZIONE 5.2.3: $\forall P_0 \in A, \forall W$ sottospazio di $V, P_0 + W$ è sottospazio affine di A. Dimostrazione:

Verifico che $P_0 + W$ è chiuso per combinazioni affini.

Siano
$$P_0 + w_1, ..., P_0 + w_k \in P_0 + W; t_1 + ... + t_k = 1.$$

$$t_1(P_0 + w_1) + ... + t_k(P_0 + w_k) = P_0 + t_1 \overrightarrow{P_0(P_0 + w_1)} + ... + t_k \overrightarrow{P_0(P_0 + w_k)} = P_0 + t_1 w_1 + ... + t_k w_k \in P_0 + W, \text{ da cui la tesi.}$$

PROPOSIZIONE 5.2.4: Sia $H \neq \emptyset$ un sottospazio affine di A. Allora esiste un unico sottospazio W_H di V (detto la **giacitura** di H), tale che $\forall P \in H, H = P + W_H$.

Dimostrazione:

Sia $P_0 \in H$. Cerco W_0 sottospazio di $V \mid H = P_0 + W_0$.

Poiché $P_0 + W_0 = F_{P_0}^{-1}(W_0)$, deve essere $W_0 = F_{P_0}(H) = \{w \in V | P_0 + w \in H\}$.

Verifico che l'insieme W_0 è sottospazio di V.

Siano $w_1, w_2 \in W_0, \alpha_1, \alpha_2 \in \mathbb{K}$.

Allora $P_0 + w_1 \in H, P_0 + w_2 \in H$.

Devo mostrare che $\alpha_1 w_1 + \alpha_2 w_2 \in W_0$, cioè che $P_0 + \alpha_1 w_1 + \alpha_2 w_2 \in H$.

$$\begin{split} P_0 + \alpha_1 w_1 + \alpha_2 w_2 &= P_0 + \alpha_1 \overrightarrow{P_0(P_0 + w_1)} + \alpha_2 \overrightarrow{P_0(P_0 + w_2)} = \\ &= P_0 + (1 - \alpha_1 - \alpha_2) \overrightarrow{P_0 P_0} + \alpha_1 \overrightarrow{P_0(P_0 + w_1)} + \alpha_2 \overrightarrow{P_0(P_0 + w_2)}, \end{split}$$

che appartiene a H perché combinazione affine dei punti P_0 , $P_0 + w_1$, $P_0 + w_2$ che stanno in H. Resta da controllare che W_0 non dipende dalla scelta di P_0 , ossia che $\forall P_1, P_2 \in H$,

$$F_{P_1}(H) = F_{P_2}(H).$$

$$F_{P_1}(H) = \{ \overrightarrow{P_1 Q} | Q \in H \}.$$

Sia
$$\overline{P_1Q} \in F_{P_1}(H)$$
.
Allora $\overline{P_1Q} = \overline{P_1P_2} + \overline{P_2Q} = \underbrace{-\overline{P_2P_1}}_{\in F_{P_2}(H)} + \underbrace{\overline{P_2Q}}_{\in F_{P_2}(H)} \in F_{P_2}(H)$,
cioè $F_{P_2}(H) \subseteq F_{P_2}(H)$.

cioè $F_{P_1}(H) \subseteq F_{P_2}(H)$.

Analogamente si prova l'inclusione opposta \Rightarrow tesi.

DEFINIZIONE 5.2.10: Se *H* è sottospazio affine di *A*, si pone dim(H) = dim (W_H) .

- *H* è detto **retta** (**affine**) se dim(H) = 1;
- $H \stackrel{.}{e} detto piano (affine) se dim(H) = 2;$
- H è detto **iperpiano** (**affine**) se $\dim(H) = \dim(A) 1$.

Osservazione: H, L sottospazi affini di $A, H \cap L \neq \emptyset$.

Allora $\forall P \in H \cap L, H = P + W_H, L = P + W_L.$

$$H\cap L=(P+W_H)\cap (P+W_L)=P+(W_H\cap W_L) \Rightarrow W_{H\cap L}=W_H\cap W_L.$$

Dunque $\dim(H \cap L) = \dim(W_H \cap W_L)$.

DEFINIZIONE 5.2.11: Due sottospazi affini *H*, *L* si dicono:

- incidenti se $H \cap L \neq \emptyset$;
- paralleli se $W_H \subseteq W_L \vee W_L \subseteq W_H$;
- sghembi se $H \cap L = \emptyset \wedge W_H \cap W_L = \{0\}.$

Osservazione: Il parallelismo non è una relazione di equivalenza:

infatti dalla figura si vede che $W_r \subseteq W_P$ e $W_s \subseteq W_P$, ma $W_s \not\subseteq W_r \land W_r \not\subseteq W_s$.

PROPOSIZIONE 5.2.5: $P_0, ..., P_k \in A$. Allora:

$$Comb_a(P_0, ..., P_k) = P_0 + Span(\overrightarrow{P_0P_1}, ..., \overrightarrow{P_0P_k}).$$

Quindi $Comb_a(P_0, ..., P_k)$ è un sottospazio affine di A, detto il sottospazio affine generato da $P_0, ..., P_k$. È il più piccolo sottospazio affine di A contenente $P_0, ..., P_k$.

Dimostrazione:

Per definizione di combinazione affine vale ⊆.

Mostriamo ora l'inclusione opposta:

$$\forall t_1, \dots, t_k \in \mathbb{K}, P_0 + t_1 \overrightarrow{P_0 P_1} + \dots + t_k \overrightarrow{P_0 P_k} = P_0 + (1 - \sum_{i=1}^k t_i) \overrightarrow{P_0 P_0} + t_1 \overrightarrow{P_0 P_1} + \dots + t_k \overrightarrow{P_0 P_k}$$
, che appartiene a $Comb_a(P_0, \dots, P_k) \Rightarrow \text{tesi}$.

Osservazione: Dunque $\dim(Comb_a(P_0, ..., P_k)) = \dim(Span(\overrightarrow{P_0P_1}, ..., \overrightarrow{P_0P_k}))$.

Notazione: In generale $\forall X\subseteq A,\,X\neq\emptyset$, denotiamo con $Comb_a(X)$ l'insieme delle combinazioni affini dei punti di X.

PROPOSIZIONE 5.2.6: $X \subseteq A$. $\forall R \in X$, $Comb_a(X) = R + Span(\{\overrightarrow{RQ} | Q \in X\})$.

Inoltre se $H \subseteq A$ è un sottospazio affine di A che contiene X, allora $Comb_a(X) \subseteq H$.

Dimostrazione:

È analoga a quella della proposizione precedente.

DEFINIZIONE 5.2.12: Se H, L sono sottospazi affini di A, poniamo $H + L = Comb_a(H \cup L)$.

Osservazione: $H \subseteq L \Rightarrow W_H \subseteq W_L$.

Dimostrazione:

$$\forall P \in H, H = P + W_H, L = P + W_L.$$

 $\forall w \in W_H, P + w \in H \subseteq L \Rightarrow w \in W_L.$

PROPOSIZIONE 5.2.7: H, L sottospazi affini di A. Allora $\forall P \in H, \forall Q \in L$:

$$W_{H+L} = W_H + W_L + Span(\overrightarrow{PQ}).$$

Dimostrazione:

- ⊇) $H \subseteq H + L$, $L \subseteq H + L \Rightarrow W_H + W_L \subseteq W_{H+L}$. Poiché $Comb_a(P,Q) \subseteq H + L \Rightarrow Span(\overrightarrow{PQ}) \subseteq W_{H+L}$.
- \subseteq) Considero il sottospazio affine $S = P + (W_H + W_L + Span(\overrightarrow{PQ}))$.

Allora $S \supseteq P + W_H = H$; inoltre $S \supseteq L$, infatti:

$$Q = P + \overrightarrow{PQ} \in S \implies S = Q + \left(W_H + W_L + Span(\overrightarrow{PQ})\right) \implies S \supseteq Q + W_L = L.$$

Per minimalità, $S \supseteq H + L \Rightarrow W_S = W_H + W_L + Span(\overrightarrow{PQ}) \supseteq W_{H+L}$.

LEMMA 5.2.8: H, L sottospazi affini di A. Allora $H \cap L = \emptyset \iff \forall P \in H, \forall Q \in L, \overrightarrow{PQ} \notin W_H + W_L$. Dimostrazione:

 \Rightarrow) Per assurdo supponiamo che $\exists P \in H, Q \in L | \overrightarrow{PQ} = w_1 + w_2$, con $w_1 \in W_H, w_2 \in W_L$.

$$\underbrace{P + w_1}_{\in H} = P + \left(\overrightarrow{PQ} - w_2\right) = \left(P + \overrightarrow{PQ}\right) - w_2 = \underbrace{Q - w_2}_{\in L}, \text{ assurdo.}$$

 \Leftarrow) Per assurdo supponiamo $\exists R \in H \cap L$.

Siano
$$P \in H$$
, $Q \in L$, per cui $H = P + W_H$, $L = Q + W_L$.

Allora
$$\overrightarrow{PQ} = \overrightarrow{PR} + \overrightarrow{RQ} \in W_H + W_L$$
, assurdo.

FORMULA DI GRASSMANN AFFINE: Siano H, L sottospazi di A.

- 1) Se $H \cap L \neq \emptyset \Rightarrow \dim(H + L) = \dim(H) + \dim(L) \dim(H \cap L)$.
- 2) Se $H \cap L = \emptyset \Rightarrow \dim(H + L) = \dim(H) + \dim(L) \dim(W_H \cap W_L) + 1$.

Dimostrazione:

$$\dim(H+L) = \dim(W_{H+L}) \in W_{H+L} = W_H + W_L + Span(\overrightarrow{PQ}), \text{ con } P \in H \in Q \in L.$$

1) Per il lemma, se $H \cap L \neq \emptyset$, $\overrightarrow{PQ} \in W_H + W_L \Rightarrow W_{H+L} = W_H + W_L$. La tesi segue dalla formula di Grassmann vettoriale:

$$\dim(W_{H+L}) = \dim(W_H + W_L) = \dim(W_H) + \dim(W_L) - \dim(W_H \cap W_L) =$$
$$= \dim(H) + \dim(L) - \dim(H \cap L).$$

2) Se $H \cap L = \emptyset$, per il lemma $\overrightarrow{PQ} \notin W_H + W_L$. Quindi dim $(W_{H+L}) = \dim (W_H + W_L + Span(\overrightarrow{PQ})) = \dim(W_H + W_L) + 1$ e si conclude come prima.

Osservazione: Se H e L sono sghembi, allora $\dim(H + L) = \dim(H) + \dim(L) + 1$ (infatti tutte le combinazioni affini di due rette sghembe in \mathbb{R}^3 generano tutto lo spazio \mathbb{R}^3).

DEFINIZIONE 5.2.13: P_0, \ldots, P_k si dicono **affinemente indipendenti** se $\dim \left(Comb_a(P_0, \ldots, P_k) \right) = k$ (ossia se $\dim \left(Span(\overline{P_0P_1}, \ldots, \overline{P_0P_k}) \right) = k$, cioè se $\overline{P_0P_1}, \ldots, \overline{P_0P_k}$ sono linearmente indipendenti.

DEFINIZIONE 5.2.14: Sia $\dim(A) = n$. Si chiama **riferimento affine** di A ogni insieme ordinato $R = \{P_0, \dots, P_n\}$ di n+1 punti di A affinemente indipendenti.

Osservazione: Essendo R ordinato, scelgo P_0 come "punto base". Inoltre $\{\overrightarrow{P_0P_1}, ..., \overrightarrow{P_0P_n}\}$ è una base di V.

Osservazioni: 1) Se $\mathcal{B} = \{v_1, \dots, v_n\}$ è una base di $V, \forall P_0 \in A, \{P_0, P_0 + v_1, \dots, P_0 + v_n\}$ è riferimento affine di A.

2) Se A = V e $\mathcal{B} = \{v_1, ..., v_n\}$ è base di V allora $\{0, v_1, ..., v_n\}$ è riferimento affine. Ad esempio in \mathbb{K}^n , $\{0, e_1, ..., e_n\}$ è detto **riferimento affine standard**.

PROPOSIZIONE 5.2.9: Se $R = \{P_0, ..., P_n\}$ è un riferimento affine di A, ogni punto $P \in A$ si scrive in modo unico come $P = a_0 P_0 + ... + a_n P_n$, con $a_0 + ... + a_n = 1$. $((a_1, ..., a_n)$ sono quindi dette le **coordinate affini** di P rispetto a R).

Dimostrazione:

Per ipotesi $A = Comb_a(P_0, ..., P_n)$, dunque gli a_i esistono.

Mostriamo che sono unici:

se $P = a_0 P_0 + \ldots + a_n P_n = a'_0 P_0 + \ldots + a'_n P_n$, con $\sum_{i=0}^n a_i = \sum_{i=0}^n a'_i = 1$, allora: $a_0 P_0 + \ldots + a_n P_n = P_0 + a_1 \overrightarrow{P_0 P_1} + \ldots + a_n \overrightarrow{P_0 P_n}$; $a'_0 P_0 + \ldots + a'_n P_n = P_0 + a'_1 \overrightarrow{P_0 P_1} + \ldots + a'_n \overrightarrow{P_0 P_n}$, dunque $a_1 \overrightarrow{P_0 P_1} + \ldots + a_n \overrightarrow{P_0 P_n} = a'_1 \overrightarrow{P_0 P_1} + \ldots + a'_n \overrightarrow{P_0 P_n}$, ma i $\overrightarrow{P_0 P_i}$ sono linearmente indipendenti, perciò $a_i = a'_i \ \forall i \ \Rightarrow a_0 = a'_0$, da cui la tesi.

DEFINIZIONE 5.2.15: *A* spazio affine su V, B spazio affine su W, V, W \mathbb{K} -spazi vettoriali. $f: A \to B$ si dice **trasformazione affine** se conserva le combinazioni affini.

DEFINIZIONE 5.2.16: $f: A \rightarrow B$ transformazione affine si dice **isomorfismo affine** se è biunivoca.

DEFINIZIONE 5.2.17: Un isomorfismo affine $f: A \to A$ si dice affinità. Poniamo $Aff(A) = \{affinità A \to A\}$.

Esempi: 1) Le traslazioni sono affinità.

2) Se R è riferimento affine e dim(A) = n, $[\]_R \colon \stackrel{A \to \mathbb{K}^n}{P \to [P]_R}, \text{ dove } [P]_R \text{ sono le coordinate affini di } P \text{ rispetto a } R,$ è un isomorfismo affine (quindi $A \cong \mathbb{K}^n$).

Osservazione: $[\]_R$ trasforma i punti di R in $0, e_1, \dots, e_n$.

PROPOSIZIONE 5.2.10: A = V. Se $f: V \to V$ è un'affinità e f(0) = 0, allora f è lineare.

Dimostrazione: $\forall v_1, v_2 \in V, \forall t_1, t_2 \in \mathbb{K}$:

$$f(t_1v_1 + t_2v_2) = f((1 - t_1 - t_2) \cdot 0 + t_1v_1 + t_2v_2) = (1 - t_1 - t_2)f(0) + t_1f(v_1) + t_2f(v_2) = t_1f(v_1) + t_2f(v_2),$$

da cui la tesi.

PROPOSIZIONE 5.2.11: $f \in Aff(V)$. Allora esistono unici $v \in V$, $g \in GL(V) | f = \tau_v \circ g$. Dimostrazione:

Sia
$$v = f(0)$$
. Allora $g = \tau_{-v} \circ f \in Aff(V)$ e $g(0) = 0 \Rightarrow g \in GL(V)$.

Poiché f(0) è unico, allora v è unico e quindi anche g è univocamente determinato, tesi.

Osservazione: Dunque $Aff(V) = \{\tau_v \circ g | v \in V, g \in GL(V)\}.$

Di conseguenza Aff(V) coincide con il gruppo di trasformazioni che avevamo precedentemente denotato con A(V), generato dalle traslazioni T(V) di V e da GL(V).

In particolare:

$$Aff(\mathbb{K}^n) = \{X \to AX + B | A \in GL(n, \mathbb{K}), B \in \mathbb{K}^n\}.$$

Osservazione: Prendiamo $f: A \to B$ biunivoca, con A, B spazi affini su V, W. Allora:

$$\begin{array}{ccc}
A \xrightarrow{f} B \\
F_{P_0} \downarrow & \downarrow F_{f(P_0)} \\
V & W
\end{array}$$

Sia φ_{P_0} : $V \to W$ l'unica applicazione che rende commutativo il diagramma:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
F_{P_0} \downarrow & & \downarrow F_{f(P_0)} \\
V & \xrightarrow{\varphi_{P_0}} W
\end{array}$$

Dunque φ_{P_0} è univocamente determinata da $\varphi_{P_0} = F_{f(P_0)} \circ f \circ F_{P_0}^{-1}$.

Osservazioni: Sia φ_{P_0} l'applicazione trovata nel punto precedente. Allora:

1)
$$A \ni P \xrightarrow{F_{P_0}} \overrightarrow{P_0P} \xrightarrow{\varphi_{P_0}} \varphi_{P_0}(\overrightarrow{P_0P}) \xrightarrow{F_{f(P_0)}^{-1}} f(P_0) + \varphi_{P_0}(\overrightarrow{P_0P}).$$

Dunque $f(P) = f(P_0) + \varphi_{P_0}(\overrightarrow{P_0P})$ e quindi $f(P_0 + v) = f(P_0) + \varphi_{P_0}(v).$

2)
$$V \ni v \xrightarrow{F_{P_0}^{-1}} P_0 + v \xrightarrow{f} f(P_0 + v) \xrightarrow{F_{f(P_0)}} \overrightarrow{f(P_0)f(P_0 + v)}$$

Dunque $\varphi_{P_0}(v) = \overrightarrow{f(P_0)f(P_0 + v)}$.

PROPOSIZIONE 5.2.12: f è affine $\Leftrightarrow \varphi_{P_0}$ è lineare.

Dimostrazione:

PROPOSIZIONE 5.2.13: Sia $f: A \to B$ transformazione affine. $\forall P_0, P_1 \in A, \varphi_{P_0} = \varphi_{P_1}$.

Dimostrazione:

Valgono le relazioni:

$$f(P_0 + v) = f(P_0) + \varphi_{P_0}(v);$$

$$f(P_1 + v) = f(P_1) + \varphi_{P_1}(v), \forall v \in V.$$

Queste relazioni possono essere riscritte nella forma:

$$\varphi_{P_0}(v) = f(P_0 + v) - f(P_0);$$

$$\varphi_{P_1}(v) = f(P_1 + v) - f(P_1).$$

Sia
$$P = P_0 + v$$
. Allora $P_1 + v = P_1 + P - P_0$. Dunque:

Sia
$$P = P_0 + v$$
. Allora $P_1 + v = P_1 + P - P_0$. Dunque:
$$\varphi_{P_1}(v) = f\underbrace{(P_1 + P - P_0)}_{comb.affine} - f(P_1) = f(P_1) + f(P) - f(P_0) - f(P_1) = f(P) - f(P_0) = f(P_0 + v) - f(P_0) = \varphi_{P_0}(v),$$

da cui la tesi.

COROLLARIO 5.2.14: $f: A \to B$ è affine $\Leftrightarrow \exists \varphi: V \to W$ applicazione lineare tale che $\forall P_0 \in A$, $f(P) = f(P_0) + \varphi(\overline{P_0P}).$

DEFINIZIONE 5.2.18: Questa $\varphi: V \to W$ prende il nome di **applicazione lineare associata** a f.

Osservazione: Sia $f: A \to B$ applicazione affine con applicazione lineare associata $\phi: V \to W$.

Sia $g: B \to C$ applicazione affine con applicazione lineare associata $\psi: W \to Z$.

Sia
$$P_0 \in A$$
, $Q_0 = f(P_0)$.

Allora:

$$\begin{split} f(P) &= f(P_0) + \varphi(\overline{P_0P}) \ \forall P \in A, \\ g(Q) &= g(Q_0) + \psi(\overline{Q_0Q}) \ \forall Q \in B. \\ (g \circ f)(P) &= g(f(P)) = g(Q_0) + \psi(\overline{f(P_0)f(P)}) = g(f(P_0)) + (\psi \circ \varphi)(\overline{P_0P}). \end{split}$$

PROPOSIZIONE 5.2.15: Se $f: A \to B$ è affine e invertibile, allora $f^{-1}: B \to A$ è affine.

Dimostrazione:

Sia $\varphi: V \to W$ l'applicazione lineare associata. φ è invertibile e quindi isomorfismo.

Sia $P_0 \in A$, $Q_0 = f(P_0)$.

Sia
$$g: B \to A$$
 definita da $g(Q) = f^{-1}(Q_0) + \varphi^{-1}(\overline{Q_0Q})$.

Allora
$$(g \circ f)(P_0) = g(Q_0) = f^{-1}(Q_0) + \varphi^{-1}(\overline{Q_0Q_0}) = P_0$$
.

Per la formula precedente:

$$(g \circ f)(P) = P_0 + (\varphi^{-1} \circ \varphi)(\overline{P_0P}) = P_0 + \overline{P_0P} = P \ \forall P.$$

Dunque
$$f^{-1}(Q) = f^{-1}(Q_0) + \varphi^{-1}(\overline{Q_0Q})$$
, da cui la tesi.

Osservazione: Perciò Aff(A) è un gruppo.

PROPOSIZIONE 5.2.16: A spazio affine su $V.\{P_0,\ldots,P_n\},\{Q_0,\ldots,Q_n\}$ riferimenti affini di A.

Allora esiste una sola affinità f di A tale che $f(P_i) = Q_i \ \forall 0 \le i \le n$.

Dimostrazione:

 $\forall P \in A, P \text{ si scrive in modo unico come } P = \sum_{i=0}^{n} t_i P_i, \text{ con } \sum_{i=0}^{n} t_i = 1.$

Necessariamente dobbiamo definire $f(P) = \sum_{i=0}^{n} t_i Q_i$.

Verifico che f è un'affinità (che sarà dunque unica per quanto appena visto):

sia $\varphi \in GL(V)$ l'unico isomorfismo che trasforma $\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_n}$ in $\overrightarrow{Q_0Q_1}, \dots, \overrightarrow{Q_0Q_n}$.

$$f(P) = \sum_{i=0}^{n} t_i Q_i = Q_0 + t_1 \overline{Q_0 Q_1} + \dots + t_n \overline{Q_0 Q_n} = f(P_0) + \sum_{i=1}^{n} t_i \varphi(\overline{P_0 P_i}) = f(P_0) + \varphi\left(\sum_{i=1}^{n} t_i \overline{P_0 P_i}\right)$$

 $\text{Ma } P = \sum_{i=0}^n t_i P_i = P_0 + \sum_{i=1}^n t_i \, \overrightarrow{P_0 P_i}; \text{ inoltre } P = P_0 + \overrightarrow{P_0 P} \ \Rightarrow \ \overrightarrow{P_0 P} = \sum_{i=1}^n t_i \, \overrightarrow{P_0 P_i}.$

Dunque $f(P) = f(P_0) + \varphi(\overline{P_0P}) \ \forall P \in A$, da cui la tesi.

5.3 GEOMETRIA AFFINE EUCLIDEA

Notazione: Indicheremo con $X \cdot Y$ il prodotto scalare standard fra X e Y in \mathbb{R}^n .

DEFINIZIONE 5.3.1: $v \in \mathbb{R}^n$ si dice **ortogonale** al sottospazio affine S se $v \in W_S^{\perp}$.

Esempio: Se H è l'iperpiano $B \cdot X + d = 0$, allora B è ortogonale a H.

DEFINIZIONE 5.3.2: Due sottospazi affini S e S' si dicono **ortogonali** (e lo denoteremo $S \perp S'$) se $W_S \subseteq W_{S'}^{\perp}$ ($\Leftrightarrow W_{S'} \subseteq W_S^{\perp}$).

Esempi: 1) Siano r la retta X = At + C e r' la retta X = A't + C'. Allora $r \perp r' \Leftrightarrow W_r \subseteq W_{r'}^{\perp} \Leftrightarrow A \in (Span(A'))^{\perp} \Leftrightarrow A \cdot A' = 0$.

2) r retta di equazione X = At + C e H iperpiano di equazione $B \cdot X + d = 0$. Allora $W_H = \{X \mid B \cdot X = 0\}$ e $W_H^{\perp} = Span(B)$, da cui $r \perp H \Leftrightarrow A \parallel B$.

PROPOSIZIONE 5.3.1: Sia *S* un sottospazio affine di dimensione *k*. Allora:

- 1) $S' \perp S \Rightarrow \dim(S') \leq n k$.
- 2) $\forall 0 \le d \le n k$ esiste un sottospazio affine S' di dimensione d tale che $S' \perp S$.
- 3) Tutti i sottospazi affini S' ortogonali a S di dimensione massima (dim(S') = n-k) sono paralleli e ciascuno di essi interseca S in uno e un solo punto.
- 4) $\forall P \in \mathbb{R}^n \exists !$ sottospazio affine S' ortogonale a S di dimensione massima passante per P. Dimostrazione:
- 1) $W_S \subseteq W_{S'}^{\perp}$. Poiché $\dim(W_S) = k$, allora $\dim(W_{S'}^{\perp}) \ge k$ e dunque $\dim(W_{S'}) \le n k$.
- 2) Basta prendere S' tale che $\dim(S') = \dim(W_{S'}) = d$ e $W_{S'} \subseteq W_S^{\perp}$.
- 3) Sia $S = R + W_S$ e sia S' come nelle ipotesi; $S' = Q + W_{S'}$ con $W_{S'} \subseteq W_S^{\perp}$. Poiché $\dim(W_{S'}) = \dim(W_S^{\perp}) = n - k$, si ha $W_{S'} = W_S^{\perp}$, e dunque ogni S' ha giacitura W_S^{\perp} . Consideriamo $S' = Q + W_{S'}$. Visto che $\mathbb{R}^n = W_S \oplus W_S^{\perp}$, si ha R - Q = v + w, con $v \in W_S$ e $w \in W_S^{\perp}$. Dunque $R - v = Q + w \in S \cap S'$, poiché $R - v \in R + W_S = S$ e $Q + w \in Q + W_S^{\perp} = S'$. Per ragioni di dimensione, il punto è unico.
- 4) Basta prendere $S' = P + W_S^{\perp}$.

Esempio: Sia r una retta in \mathbb{R}^3 e $P \in \mathbb{R}^3$. Esiste un unico piano passante per P e ortogonale a r; tale piano interseca r in uno e un solo punto.

In particolare, se r ha equazione X = At + C, allora $W_r = Span(A)$; visto che $W_r \subseteq W_H^{\perp}$, per ragioni di dimensione $W_r = W_H^{\perp}$, cioè $W_H^{\perp} = Span(A)$. Dunque H ha equazione $A \cdot X = A \cdot P$.

Osservazione: Siano H e H' due iperpiani in \mathbb{R}^n , di equazione rispettivamente $B \cdot X + d = 0$ e $B' \cdot X + d' = 0$; H e H' si dicono ortogonali $\Leftrightarrow B \perp B' \Leftrightarrow B \cdot B' = 0$.

DEFINIZIONE 5.3.3: Sia $P \in \mathbb{R}^n$ e S un sottospazio affine di \mathbb{R}^n . Definiamo **distanza** di P da S $d(P,S) = \inf_{X \in S} d(P,X)$.

PROPOSIZIONE 5.3.2: $\exists P_0 \in S$ tale che $d(P,S) = ||P - P_0||$ (e quindi l'inf è un minimo). Dimostrazione:

Sia $\dim(S) = k$. Per la proposizione precedente $\exists ! S'$ sottospazio affine ortogonale a S, di dimensione massima e passante per P; sia P_0 tale che $S \cap S' = \{P_0\}$.

Osserviamo che $(P - P_0) \perp S$.

Vogliamo mostrare che $d(P,S) = ||P - P_0||$, cioè che $\forall X \in S, X \neq P_0, d(P,X) > ||P - P_0||$. Abbiamo:

$$\begin{split} d(P,X)^2 &= \|P - X\|^2 = \|(P - P_0) + (P_0 - X)\|^2 = \\ &= \left((P - P_0) + (P_0 - X) \right) \cdot \left((P - P_0) + (P_0 - X) \right) = \\ &= d(P, P_0)^2 + d(P_0, X)^2 + 2 \underbrace{(P_0 - X) \cdot (P - P_0)}_{=0} = d(P, P_0)^2 + \underbrace{d(P_0, X)^2}_{>0} > \\ &> \|P - P_0\|^2, \end{split}$$

da cui la tesi.

COROLLARIO 5.3.3: H iperpiano di \mathbb{R}^n di equazione $B \cdot X + d = 0$, $P \in \mathbb{R}^n$. Allora $d(P, H) = \frac{|B \cdot P + d|}{\|B\|}$.

Dimostrazione:

 $d(P, H) = ||P - P_0||$, dove $P_0 = H \cap r \text{ con } r$ la retta per P ortogonale a H. r ha equazione X = Bt + P.

Per determinare $P_0 = H \cap r$, cerco t tale che $B \cdot (Bt + P) + d = 0$, cioè $t = \frac{-d - B \cdot P}{\|B\|^2}$, ossia $P_0 = \frac{-d - B \cdot P}{\|B\|^2}B + P$.

Finalmente abbiamo
$$d(P, H) = \|P - P_0\| = \left\| \frac{d + B \cdot P}{\|B\|^2} B \right\| = \frac{|d + B \cdot P|}{\|B\|^2} \|B\| = \frac{|d + B \cdot P|}{\|B\|}.$$

Osservazione: Il lettore può trovare in modo analogo la formula per la distanza di un punto da una retta in \mathbb{R}^3 .

DEFINIZIONE 5.3.4: S, S' sottospazi affini di \mathbb{R}^n . Definiamo **distanza** fra S e S' $d(S,S') = \inf_{X \in S, Y \in S'} d(X,Y)$.

DISTANZA FRA DUE PIANI IN \mathbb{R}^3 :

- Se $H_1 \cap H_2 \neq \emptyset$, $d(H_1, H_2) = 0$.
- Se $H_1 \parallel H_2$, $d(H_1, H_2) = d(P, H_2) \ \forall P \in H_1$, che si può calcolare con la formula precedente.

DISTANZA RETTA-PIANO IN \mathbb{R}^3 :

- Se $r \cap H \neq \emptyset$, d(r, H) = 0.
- Se $r \parallel H$, $d(r, H) = d(P, H) \forall P \in r$, che si calcola ancora con la formula precedente.

DISTANZA FRA DUE RETTE IN \mathbb{R}^3 :

- Se $r_1 \cap r_2 \neq \emptyset$, $d(r_1, r_2) = 0$.
- Se $r_1 \parallel r_2$, $d(r_1, r_2) = d(P, r_2) \forall P \in r_1$.
- Se le rette sono sghembe, diciamo che r_1 e r_2 hanno equazione rispettivamente $X = A_1t + C_1$ e $X = A_2t + C_2$; proviamo che $\exists ! l$ retta ortogonale a r_1 e r_2 che le interseca entrambe. Se r_1 e r_2 sono i punti di intresezione, evidentemente si ha che r_2 che le interseca entrambe.

Dimostrazione:

Il generico punto di r_1 è $P(t) = A_1 t + C_1$, mentre il generico punto di r_2 è $Q(\theta) = A_2 \theta + C_2$. La retta $l(t, \theta)$ congiungente P(t) e $Q(\theta)$ è ovviamente incidente sia a r_1 che a r_2 ; provo che $\exists ! (t, \theta)$ tale che $l(t, \theta)$ è ortogonale a entrambe le rette.

Poiché l è parallela al vettore $P(t) - Q(\theta) = A_1 t + C_1 - A_2 \theta - C_2$, basta imporre:

$$\begin{cases} (A_1t + C_1 - A_2\theta - C_2) \cdot A_1 = 0 \\ (A_1t + C_1 - A_2\theta - C_2) \cdot A_2 = 0 \end{cases}$$

La matrice dei coefficienti di questo sistema 2x2

$$M = \begin{pmatrix} A_1 \cdot A_1 & -A_1 \cdot A_2 \\ A_1 \cdot A_2 & -A_2 \cdot A_2 \end{pmatrix};$$

 $M = \begin{pmatrix} A_1 \cdot A_1 & -A_1 \cdot A_2 \\ A_1 \cdot A_2 & -A_2 \cdot A_2 \end{pmatrix};$ Se $A_1 = (\alpha_1 \quad \beta_1 \quad \gamma_1)$ e $A_2 = (\alpha_2 \quad \beta_2 \quad \gamma_2)$, si ha $\det(M) = -(A_1 \cdot A_1)(A_2 \cdot A_2) + (A_1 \cdot A_2)^2$ $(A_1 \cdot A_2)^2 = -(\alpha_1 \beta_2 - \alpha_2 \beta_1)^2 - (\alpha_1 \gamma_2 - \alpha_2 \gamma_1)^2 - (\beta_1 \gamma_2 - \beta_2 \gamma_1)^2$, dunque $\det(M) = 0 \Leftrightarrow$ la matrice:

$$\begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = \begin{pmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \end{pmatrix}$$

ha rango 1, cio
è ${\cal A}_1$ e ${\cal A}_2$ sono linearmente dipendenti. Ma le rette sono s
ghembe, dunque ${\cal A}_1$ e A_2 sono linearmente indipendenti e dunque $det(M) \neq 0$.

Da questo segue l'unicità (e l'esistenza) della soluzione (t_0, θ_0) del sistema; i punti P_1 $P(t_0)$ e $P_2 = Q(\theta_0)$ sono quelli cercati.

5.4 AFFINITÁ DI \mathbb{K}^n

Osservazione: $Aff(\mathbb{K}^n) = \{X \to MX + N | M \in GL(n, \mathbb{K}), N \in \mathbb{K}^n\}.$

Possiamo vedere $Aff(\mathbb{K}^n)$ come un sottogruppo di $GL(n+1,\mathbb{K})$, infatti:

sia
$$H = \left\{ X = \begin{pmatrix} x_1 \\ \vdots \\ x_{n+1} \end{pmatrix} \in \mathbb{K}^{n+1} \middle| x_{n+1} = 1 \right\}$$
. H è sottospazio affine di \mathbb{K}^{n+1} con giacitura $W_H = \{ X \in \mathbb{K}^{n+1} | x_{n+1} = 0 \}$.

Sia $f: \mathbb{K}^n \to H | X \to \left(\frac{X}{1}\right)$ (se $X \in \mathbb{K}^n$, la notazione $\left(\frac{X}{1}\right)$ indica il vettore X' di \mathbb{K}^{n+1} tale che $x_i' = x_i \ \forall i \le n \ e \ x_{n+1}' = 1$).

$$x_i = x_i \ \forall i \le n \ \text{e} \ x_{n+1} = 1$$
.
Poiché $\left(\frac{X}{1}\right) = \underbrace{\left(\frac{0}{1}\right)}_{=e_{n+1}} + \left(\frac{X}{0}\right)$, allora $f = \tau_{e_{n+1}} \circ \varphi$, dove $\varphi \colon \mathbb{K}^n \to W_H | X \to \left(\frac{X}{0}\right)$ è un isomorfismo

lineare.

Allora f è un isomorfismo affine e $\mathbb{K}^n \cong_{aff} H$.

Sia $G(H) = \{g \in GL(n+1, \mathbb{K}) | g(H) = H\}$ e sia $g \in G(H)$.

Allora:

$$g(Y) = \left(\frac{M \mid N}{{}^{t}P \mid q}\right) \cdot Y$$

per certi $M\in\mathcal{M}(n,\mathbb{K}),\,N,P\in\mathbb{K}^n,\,q\in\mathbb{K}\;\;\forall Y\in\mathbb{K}^{n+1}$

Se $Y = \left(\frac{X}{1}\right) \in H$, allora:

$$g\left(\frac{X}{1}\right) = \left(\frac{M \mid N}{{}^{t}P \mid q}\right)\left(\frac{X}{1}\right) = \left(\frac{*}{{}^{t}PX + q}\right)$$

e dunque ${}^tPX + q = 1 \ \forall X \in \mathbb{K}^n$, cioè P = 0, q = 1. Si ha perciò:

$$G(H) = \left\{ \widetilde{M_N} = \left(\frac{M \mid N}{0 \mid 1} \right) \middle| M \in GL(n, \mathbb{K}), N \in \mathbb{K}^n \right\}.$$

Osservazione: $\left(\frac{M_1 \mid N_1}{0 \mid 1}\right) \left(\frac{M_2 \mid N_2}{0 \mid 1}\right) = \left(\frac{M_1M_2 \mid M_1N_2 + N_1}{0 \mid 1}\right) \Rightarrow (G(H), \circ)$ è un sottogruppo di $GL(n+1, \mathbb{K})$.

PROPOSIZIONE 5.4.1:
$$L: (Aff(\mathbb{K}^n), \circ) \to (G(H), \circ) | (X \to MX + N) \to \left(\frac{M \mid N}{0 \mid 1}\right)$$
è un

isomorfismo di gruppi (e dunque $Aff(\mathbb{K}^n)$ è isomorfo a un sottogruppo di $GL(n+1,\mathbb{K})$). Dimostrazione:

Siano $f_1, f_2 \in Aff(\mathbb{K}^n)$; $f_1(X) = M_1X + N_1$, $f_2(X) = M_2X + N_2$. Vediamo che $(f_1 \circ f_2)(X) = f_1(M_2X + N_2) = M_1(M_2X + N_2) + N_1 = M_1M_2X + M_1N_2 + N_1$. Poiché prima abbiamo visto che:

$$L(f_1)L(f_2) = \left(\frac{M_1 \mid N_1}{0 \mid 1}\right) \left(\frac{M_2 \mid N_2}{0 \mid 1}\right) = \left(\frac{M_1M_2 \mid M_1N_2 + N_1}{0 \mid 1}\right),$$

allora effettivamente $L(f_1 \circ f_2) = L(f_1)L(f_2)$, cioè L è lineare.

Poiché è evidentemente bigettiva, ho la tesi.

DEFINIZIONE 5.4.1: Sia G un gruppo di trasformazioni di \mathbb{K}^n . Due sottoinsiemi F_1, F_2 di \mathbb{K}^n sono detti G-equivalenti se $\exists g \in G | g(F_1) = F_2$.

DEFINIZIONE 5.4.2: $F_1, F_2 \subseteq \mathbb{K}^n$ sono detti **affinemente** (rispettivamente, **metricamente**) **equivalenti** se $\exists g \in Aff(\mathbb{K}^n)$ (rispettivamente, $g \in Isom(\mathbb{K}^n)$) tale che $g(F_1) = F_2$.

Notazione: Se F_1 e F_2 sono affinemente equivalenti, lo indicheremo con $F_1 \sim_{aff} F_2$.

Esempi: $A = \mathbb{K}^n$.

- 1) Siano $F_1 = \{P_0, \dots, P_k\}$, $F_2 = \{Q_0, \dots, Q_k\}$ (k+1)-uple di punti di \mathbb{K}^n affinemente indipendenti. Abbiamo visto che $\exists g \in Aff(\mathbb{K}^n) | g(P_i) = Q_i \ \forall i$ e dunque F_1 e F_2 sono affinemente equivalenti.
- 2) H_1, H_2 iperpiani affini di \mathbb{K}^n . Allora $\exists g \in Aff(\mathbb{K}^n) | g(H_1) = H_2$, infatti, se $H_1 = Comb_a(P_0, ..., P_{n-1})$ e $H_2 = Comb_a(Q_0, ..., Q_{n-1})$, allora scegliendo P_n, Q_n in modo che sia i P_i che i Q_i siano un riferimento affine, so che $\exists g \in Aff(\mathbb{K}^n) | g(P_i) = Q_i \ \forall i$, e dunque $g(H_1) = H_2$. Dunque $\{iperpiani \ affini \ di \ \mathbb{K}^n\}/_{\sim_{aff}}$ ha una sola classe di equivalenza.

DEFINIZIONE 5.4.3: $\forall g \in \mathbb{K}[x_1, ..., x_n]$ (dove $\mathbb{K}[x_1, ..., x_n]$ rappresenta l'anello dei polinomi in $x_1, ..., x_n$), definiamo **luogo di zeri** di g l'insieme $V(g) = \{X \in \mathbb{K}^n | g(X) = 0\}$.

Osservazione: L'applicazione $V: \mathbb{K}[x_1, ..., x_n] \to \mathbb{K}^n | g \to V(g)$ non è iniettiva, infatti:

• $V(\alpha g) = V(g) \ \forall \alpha \in \mathbb{K} \setminus \{0\};$

- $V(g^m) = V(g) \ \forall m \in \mathbb{N}^+;$
- Se $\mathbb{K} = \mathbb{C}$ e g_1, g_2 non contengono fattori multipli, allora: $V(g_1) = V(g_2) \Leftrightarrow \exists \alpha \in \mathbb{C} \setminus \{0\} | g_1 = \alpha g_2.$
- Se $\mathbb{K} = \mathbb{R}$ la proprietà precedente non vale, infatti $\forall c > 0$, $V(x^2 + y^2 + c) = \emptyset$.

DEFINIZIONE 5.4.4: $g_1, g_2 \in \mathbb{K}[x_1, ..., x_n]$. Diciamo che g_1, g_2 sono **proporzionali** $g_1 \sim g_2 \iff \exists \alpha \in \mathbb{K} \setminus \{0\} | g_1 = \alpha g_2$.

Osservazione: La relazione di proporzionalità fra polinomi è di equivalenza in $\mathbb{K}[x_1, ..., x_n]$ (la verifica è immediata).

DEFINIZIONE 5.4.5: Definiamo **ipersuperficie affine** (o semplicemente **ipersuperficie**) ogni classe di proporzionalità di polinomi di $\mathbb{K}[x_1, ..., x_n]$ di grado positivo.

DEFINIZIONE 5.4.6: Se I = [g] è ipersuperficie, g(X) = 0 è detta **equazione** di I e $V(g) \subseteq \mathbb{K}^n$ è detto **supporto** di I (indicato anche come Supp(I)).

DEFINIZIONE 5.4.7: Se I = [g] è ipersuperficie, definiamo grado di I, deg([g]) = deg(g).

Osservazione: È una buona definizione, poiché se $g' \sim g \Rightarrow \deg(g_1) = \deg(g_2)$.

- Se n = 2, I è detta **curva affine**;
- se n = 3, I è detta **superficie affine**;
- le ipersuperfici di grado 2 sono dette **quadriche** (**coniche** se n = 2).

Osservazione: Come visto, l'ipersuperficie determina il suo supporto, non il viceversa.

È dunque improprio parlare di equivalenza affine solo per i supporti, in quanto due ipersuperfici possono avere lo stesso luogo di zeri.

Introduciamo quindi il concetto di equivalenza affine anche per le ipersuperfici:

DEFINIZIONE 5.4.8: I = [g] ipersuperficie. $\psi(X) = MX + N \in Aff(\mathbb{K}^n)$. Definiamo **ipersuperficie "rimontata"** di I tramite ψ l'ipersuperficie $\psi^{-1}(I)$ di equazione $g(\psi(X)) = 0$.

Osservazione:

$$\mathbb{K}^n \supseteq V(g \circ \psi) \xrightarrow{\psi} V(g) \subseteq \mathbb{K}^n$$

$$g \circ \psi \searrow \quad \not\subset g$$

$$\mathbb{K}$$

La definizione precedente è coerente con il fatto che ψ trasforma il supporto di $\psi^{-1}(I)$ nel supporto di I, infatti:

$$x_0 \in Supp(\psi^{-1}(I)) \Leftrightarrow g(\psi(x_0)) = 0 \Leftrightarrow \psi(x_0) \in V(g) = Supp(I).$$

DEFINIZIONE 5.4.9: Due ipersuperfici affini I e J si dicono affinemente equivalenti se $\exists \psi \in Aff(\mathbb{K}^n) | I = \psi^{-1}(J)$.

In altre parole, I=[f] e J=[g] sono affinemente equivalenti se $\exists \psi \in Aff(\mathbb{K}^n) | f=g \circ \psi$.

Osservazione:

$$\mathbb{K}[x_1,\ldots,x_n]/_{\sim_{aff}}\ni I\xleftarrow{\psi^{-1}}J\in\mathbb{K}[x_1,\ldots,x_n]/_{\sim_{aff}}$$

$$V\downarrow \qquad \downarrow V$$

$$\mathbb{K}^n\supseteq Supp(I)\xrightarrow{\psi} Supp(J)\supseteq\mathbb{K}^n$$

 $I \sim_{aff} J \Rightarrow Supp(I) \sim_{aff} Supp(J)$. Il viceversa è falso.

Osservazione: \sim_{aff} classifica dunque i polinomi (e non i supporti) a meno di coordinate affini.

Osservazione: I = [g] ipersuperficie V(g) è iperpiano. Allora $\deg(g) = 1$.

Sia $g(X) = {}^t AX + b, A \in \mathbb{K}^n \setminus \{0\}, b \in \mathbb{K}.$

Sia $\psi(X) = MX + N$ affinità di \mathbb{K}^n .

Allora $(g \circ \psi)(X) = {}^tA(MX + N) + b = ({}^tAM)X + {}^tAN + b.$

Dunque se I = [f] è un altro iperpiano, $f(X) = {}^tA'X + b'$.

 $I \sim_{aff} J \iff \exists \alpha \neq 0, \exists M \in GL(n, \mathbb{K}), \exists N \in \mathbb{K}^n$

 $(^tA' = \alpha^tAM)$

 $b' = \alpha(^t AN + b)$

Poiché il sistema ha sempre soluzione, troviamo che due qualsiasi iperpiani sono affinemente equivalenti anche come ipersuperfici, non solo come supporti.

5.5 QUADRICHE

DEFINIZIONE 5.5.1: Il supporto di un'ipersuperficie si dice **cono** se vale la seguente proprietà: se contiene un punto P, allora contiene tutti i punti $tP \ \forall t \in \mathbb{K}$.

Osservazione: Prendiamo una quadrica I = [g], dunque deg(g) = 2.

L'equazione generica della quadrica è:

$$g(X) = {}^{t}XAX + 2{}^{t}BX + c, \operatorname{con} A \in \mathcal{S}(n, \mathbb{K}), A \neq 0, B \in \mathbb{K}^{n}, c \in \mathbb{K}.$$

Esempio:
$$g {x_1 \choose x_2} = x_1^2 + 2x_1x_2 + 3x^2 + 4x_2 + 5$$
.
 $A = {1 \choose 1}, B = {0 \choose 2}; c = 5$.

Osservazione: Se denoto l'equazione con
$$Q = \begin{pmatrix} A & B \\ & t_B & c \end{pmatrix}$$
, allora, ponendo $\tilde{X} = \begin{pmatrix} X \\ 1 \end{pmatrix}$:

$${}^{t}\tilde{X}Q\tilde{X} = ({}^{t}X \mid 1) \left(\begin{array}{|c|} A & B \\ \hline {}^{t}B & c \end{array} \right) \left(\frac{X}{1} \right) = ({}^{t}XA + {}^{t}B \mid {}^{t}XB + c) \left(\frac{X}{1} \right) = \\ = {}^{t}XAX + \underbrace{{}^{t}BX + {}^{t}XB}_{sono\ numeri} + c = {}^{t}XAX + 2{}^{t}BX + c = g(X).$$

Dunque $V(g) = V(^t\tilde{X}Q\tilde{X})$.

Osservazione: L'equazione ${}^t\tilde{X}Q\tilde{X}$ è omogenea di secondo grado, quindi $V({}^t\tilde{X}Q\tilde{X})$ è un cono. Dunque vedo V(g) come un cono in \mathbb{K}^{n+1} intersecato con l'iperpiano $x_{n+1}=1$:

Esempio: La figura precedente mostra l'equivalenza fra $x_1^2+x_2^2-1=0$ e $\begin{cases} x_1^2+x_2^2-x_3^2=0\\ x_3=1 \end{cases}$

Osservazione: Sia I la quadrica di equazione ${}^t\tilde{X}Q\tilde{X}=0$.

Sia $\psi(X)=MX+N$ affinità; calcoliamo l'equazione della quadrica $\psi^{-1}(I)$.

Poniamo
$$\widetilde{\psi(X)} = \widetilde{M_N}\widetilde{X} = \left(\frac{M \mid N}{0 \mid 1}\right)\left(\frac{X}{1}\right) = \left(\frac{MX + N}{1}\right).$$

Dunque $\psi^{-1}(I)$ ha equazione:

$${}^{t}(\widetilde{\psi(X)})Q(\widetilde{\psi(X)}) = {}^{t}\widetilde{X}{}^{t}\widetilde{M_{N}}Q\widetilde{M_{N}}\widetilde{X} = 0.$$

Dunque la matrice associata alla quadrica $\psi^{-1}(I)$ è ${}^t\widetilde{M_N}Q\widetilde{M_N}.$

Perciò studiare {quadriche di \mathbb{K}^n }/ $_{aff}$ corrisponde a studiare

$$\left\{Q = \left(\begin{array}{cc} A & B \\ & t_B & c \end{array}\right) \middle| A \in \mathcal{S}(n, \mathbb{K}) \setminus \{0\}\right\} / \underset{\sim}{}_{aff},$$

 $\text{dove } Q \sim_{aff} Q' \iff \exists \alpha \in \mathbb{K} \backslash \{0\}, \, \exists \widetilde{M_N} \in Aff(\mathbb{K}^n) | \, Q' = \alpha^t \widetilde{M_N} Q \widetilde{M_N}.$

Vogliamo trovare dei "rappresentanti canonici" per equivalenza affine, cioè una famiglia $\{F_1, ..., F_k\}$ di quadriche di \mathbb{K}^n tali che:

- $\forall J$ quadrica di \mathbb{K}^n , $\exists i | J \sim_{aff} F_i$;
- $F_i \nsim_{aff} F_j \forall i, j$.

Questi rappresentanti prendono il nome di forme canoniche.

Restringiamoci al caso $\mathbb{K} = \mathbb{R} \vee \mathbb{K} = \mathbb{C}$.

Cominciamo dal caso n = 2, cioè dalle coniche di \mathbb{K}^2 .

CLASSIFICAZIONE AFFINE DELLE CONICHE:

Sia C la conica di equazione $g(x,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33}$, $a_{ij} \in \mathbb{K} = \mathbb{R} \vee \mathbb{C}$, a_{11} , a_{12} , a_{22} non tutti nulli.

Se
$$\tilde{X} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
, $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$, $B = \begin{pmatrix} a_{13} \\ a_{23} \end{pmatrix}$, $c = a_{33}$, $Q = \begin{pmatrix} A & B \\ b & c \end{pmatrix}$, allora

C ha equazione ${}^t\tilde{X}Q\tilde{X}=0$.

Se $\psi(X') = MX' + N$ è affinità, allora $\psi^{-1}(C)$ ha equazione $\widetilde{tX'}\widetilde{tM_N}Q\widetilde{M_N}\widetilde{X'} = 0$.

$$Q' = {}^t\widetilde{M_N}Q\widetilde{M_N} = \begin{pmatrix} {}^tM & | & 0 \\ {}^tN & | & 1 \end{pmatrix} \begin{pmatrix} \boxed{ & A & B \\ & t_B & c \end{pmatrix}} \begin{pmatrix} \frac{M & | & N}{0 & | & 1 \\ \end{pmatrix} = \begin{pmatrix} {}^tMAM & | & {}^tMAN + {}^tMB \\ \hline {}^tN^tAM + {}^tBM & | & {}^tNAN + 2{}^tNB + c \end{pmatrix}$$

Quindi $A' = {}^{t}MAM, B' = {}^{t}M(AN + B).$

Osservazione: M invertibile e $A \neq 0 \Rightarrow A' \neq 0$, quindi l'affinità trasforma la conica in una conica.

Osservazione: Q e Q' sono congruenti e A e A' sono congruenti $\Rightarrow rk(A)$ e rk(Q) sono invarianti per equivalenza affine (non cambiano se Q è moltiplicata per $\alpha \neq 0$).

DEFINIZIONE 5.5.2: C è detta **degenere** se det(Q) = 0. Più precisamente, si dice:

- semplicemente degenere se rk(Q) = 2;
- **doppiamente degenere** se rk(Q) = 1.

DEFINIZIONE 5.5.3: C = [g] è detta conica a centro se $\exists N \in \mathbb{K}^2 | g(X) = g(\sigma_N(X)) \ \forall X$, dove σ_N è la simmetria centrale di centro N.

Osservazione: Se N = (0,0), $\sigma_N(x,y) = (-x,-y)$, dunque (0,0) è centro per $C = [g] \Leftrightarrow g(x,y)$ non contiene monomi di primo grado (ossia B = 0).

In generale, se $N \in \mathbb{K}^2$ è un centro per C e considero la traslazione $\tau(X) = X + N$, allora $\tau^{-1}(C)$ ha centro in (0,0), e quindi B' = 0.

Poiché $B' = {}^tM(AN + B) = AN + B$, in quanto in una traslazione $M = {}^tM = I$, allora N è centro per $C \Leftrightarrow AN = -B$.

In altre parole, i centri della conica C sono le soluzioni del sistema AY = -B.

Per la trattazione delle coniche, distinguiamo il caso delle coniche a centro da quelle non a centro:

CONICHE NON A CENTRO: Sia C la conica non a centro tale che

$$Q = \left(\begin{array}{c|c} A & B \\ \hline & t_B & c \end{array} \right).$$

Siamo nel caso in cui il sistema AY = -B non ha soluzione, dunque rk(A) = 1, poiché 0 < rk(A) < 2.

Allora $\exists M \in GL(2, \mathbb{K}) | {}^tMAM = \begin{pmatrix} \pm 1 & 0 \\ 0 & 0 \end{pmatrix}$, quindi con la trasformazione lineare $X \to MX$ (ossia \widetilde{M}_0), ed eventualmente cambiando di segno all'equazione, Q diventa:

$$Q_1 = \begin{pmatrix} \boxed{1 & 0} & b_1 \\ 0 & 0 & b_2 \\ b_1 & b_2 & d \end{pmatrix}.$$

Poiché C non ha centri, $b_2 \neq 0$ (altrimenti il sistema AY = -B avrebbe infinite soluzioni) e quindi rk(Q) = 3.

Vediamo che $\exists N = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} |$ la traslazione $X \to X + N$ trasforma Q_1 in:

$$Q_2 = \begin{pmatrix} \boxed{1 & 0} & 0 \\ 0 & 0 & c_2 \\ 0 & c_2 & 0 \end{pmatrix}, \text{ con } c_2 \neq 0.$$

Infatti impongo che:

$$\begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 0 \\ * \end{pmatrix} \\ (\alpha & \beta) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + 2(\alpha & \beta) \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} + d = 0 \end{cases} \begin{cases} \alpha + b_1 = 0 \\ \alpha^2 + 2\alpha b_1 + 2\beta b_2 + d = 0 \end{cases} \begin{cases} \alpha = -b_1 \\ 2\beta b_2 = b_1^2 - d \end{cases}$$

che ha soluzione perché $b_2 \neq 0$.

Infine con la trasformazione $\begin{cases} x = x' \\ y = \frac{y'}{2c_2}, \text{ cioè con l'affinità:} \end{cases}$

$$M' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2c_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ si ottiene l'equazione } x'^2 - y' = 0, \text{ ossia:}$$

$$Q_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} \\ 0 & -\frac{1}{2} & 0 \end{pmatrix}, \text{ chiamato tipo } C_1 \text{ o parabola.}$$

CONICHE A CENTRO: Sia *C* una conica a centro.

Passo 1): Eliminazione dei termini di primo grado con una traslazione.

In particolare, se N è il centro di C, con la traslazione $\tau: X \to X + N$ si ottiene la nuova conica $\tau^{-1}(C)$ che ha per matrice associata:

$$Q_1 = \left(\begin{array}{c|c} A & 0 \\ \hline 0 & d \end{array} \right).$$

Se $d \neq 0$ posso dividere l'equazione per d, ossia posso supporre d = 0 o d = 1.

A si modifica per congruenza, quindi la forma canonica dipende dal campo.

Caso $\mathbb{K} = \mathbb{C}$

Il rango di *A* è un invariante completo per congruenza, quindi:

- se rk(A) = 2, $A \in \text{congruente a} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$;
- se rk(A) = 1, $A \approx congruente a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Vediamo dunque come si semplifica l'equazione di C a seconda della coppia (rk(A), rk(Q)):

a)
$$\begin{cases} rk(A) = 2 \\ rk(Q) = 3 \end{cases}$$
 Quindi $d = 1$. Allora $C \sim_{aff} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, che ha equazione $x^2 + y^2 + 1 = 0$; b)
$$\begin{cases} rk(A) = 2 \\ rk(Q) = 2 \end{cases}$$
 Quindi $d = 0$. Allora $C \sim_{aff} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, che ha equazione $x^2 + y^2 = 0$ (dunque il supporte à l'unione delle rette incidenti $x - iy = 0$ o $x + iy = 0$);

b)
$$\begin{cases} rk(A) = 2 \\ rk(Q) = 2 \end{cases}$$
. Quindi $d = 0$. Allora $C \sim_{aff} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, che ha equazione $x^2 + y^2 = 0$

(dunque il supporto è l'unione delle rette incidenti x - iy = 0 e x + iy = 0);

(dunque il supporto è l'unione delle rette incidenti
$$x - ty = 0$$
 è $x + ty = 0$);

c)
$$\begin{cases} rk(A) = 1 \\ rk(Q) = 2 \end{cases}$$
 Quindi $d = 1$. Allora $C \sim_{aff} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, che ha equazione $x^2 + 1 = 0$ (ossia il supporto è l'unione delle rette parallele $x - i = 0$ e $x + i = 0$);

d)
$$\begin{cases} rk(A) = 1 \\ rk(Q) = 1 \end{cases}$$
 Quindi $d = 0$. Allora $C \sim_{aff} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, che ha equazione $x^2 = 0$, detta **retta**

doppia perché è l'unione di due rette coincidenti.

Osservazione: Ricordiamo che nel caso della conica non a centro si aveva rk(A) = 1, rk(Q) = 3.

Abbiamo così provato:

TEOREMA DI CLASSIFICAZIONE AFFINE DELLE CONICHE DI \mathbb{C}^2 : Ogni conica di \mathbb{C}^2 è affinemente equivalente ad una e una sola delle seguenti:

- 1) $x^2 y = 0$;
- 2) $x^2 + y^2 + 1 = 0$;
- 3) $x^2 + y^2 = 0$;
- 4) $x^2 + 1 = 0$;
- 5) $x^2 = 0$.

La coppia (rk(A), rk(Q)) è un sistema completo di invarianti per equivalenza affine in \mathbb{C}^2 .

Caso $\mathbb{K} = \mathbb{R}$

Su \mathbb{R} il rango non è un invariante completo per congruenza.

La segnatura lo è, ma non è invariante per \sim_{aff} (in quanto se moltiplico un'equazione per $\alpha < 0$ cambia la segnatura da $(i_+(Q), i_-(Q), i_0(Q))$ a $(i_-(Q), i_+(Q), i_0(Q))$.

Possiamo però usare l'indice di Witt che è insensibile alla moltiplicazione per scalare $\neq 0$ (infatti min $(i_+(Q), i_-(Q))$ rimane lo stesso).

Passo 2 – Caso reale): Semplifichiamo *A*.

Infatti dopo il passo 1 ci siamo ridotti alla forma:

$$Q = \begin{pmatrix} A & 0 \\ 0 & d \end{pmatrix}, \operatorname{con} d = 0 \vee d = 1.$$

Distinguiamo i casi a seconda dei valori di (rk(A), rk(Q), w(A), w(Q)).

 $\begin{cases} rk(A) = 2 \\ rk(Q) = 3 \end{cases}$, quindi C è non degenere, cioè d = 1.

Si possono avere i seguenti sottocasi:

$$\begin{cases} w(A) = 0 \Rightarrow w(Q) = < 0 \\ w(A) = 1 \Rightarrow w(Q) = 1 \end{cases}$$

$$rk(A) = 2, rk(Q) = 3, w(A) = 0, w(Q) = 0:$$

$$(1 \quad 0 \quad 0)$$

 $Q \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, ossia $x^2 + y^2 + 1 = 0$, tipo C_2 , detta "ellisse immaginaria" $(V(f) = \emptyset)$.

$$rk(A) = 2, rk(Q) = 3, w(A) = 0, w(Q) = 1:$$

$$Q \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \text{ ossia } x^2 + y^2 - 1 = 0, \text{ tipo } C_3, \text{ detta "ellisse reale"}$$

(V(f) = circonferenza).

rk(A) = 2, rk(Q) = 3, w(A) = 1, w(A) = 1:

$$Q \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, ossia $x^2 - y^2 + 1 = 0$, tipo C_4 , detta "iperbole" ($V(f)$ = iperbole).

2) $\begin{cases} rk(A) = 2 \\ rk(O) = 2 \end{cases}$, quindi C è semplicemente degenere, cioè d = 0.

Si possono avere i seguenti sottocasi:

$$\begin{cases} w(A) = 0 \Rightarrow w(Q) = 1 \\ w(A) = 1 \Rightarrow w(Q) = 2 \end{cases}$$

rk(A) = 2, rk(Q) = 2, w(A) = 0, w(Q) = 1:

$$Q \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, ossia $x^2 + y^2 = 0$, tipo C_5 , detta "rette complesse incidenti" $(V(f) = \{(0,0)\})$.

•
$$rk(A) = 2, rk(Q) = 2, w(A) = 1, w(Q) = 2$$
:
 $Q \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, ossia $x^2 - y^2 = 0$, tipo C_6 , detta "rette incidenti"
 $(V(f) = \text{rette incidenti})$

3)
$$\begin{cases} rk(A) = 1 \\ rk(Q) = 2 \end{cases}$$
, cioè $d = 1$.

Si possono avere i seguenti sottocasi:

$$\left\{ w(A) = 1 \ \Rightarrow w(Q) = < \frac{1}{2} \right\}$$

• rk(A) = 1, rk(Q) = 2, w(A) = 1, w(Q) = 1:

$$Q \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, ossia $x^2 + 1 = 0$, tipo C_7 , detta "rette complesse parallele" $(V(f) = \emptyset)$.

rk(A) = 1, rk(Q) = 2, w(A) = 1, w(Q) = 2:

$$Q \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, ossia $x^2 - 1 = 0$, tipo C_8 , detta "rette parallele"

$$(V(f) = \text{rette parallele}).$$
4)
$$\begin{cases} rk(A) = 1 \\ rk(Q) = 1 \end{cases}$$
, cioè $d = 0$.

Si possono avere i seguenti sottocasi:

$$\{w(A)=1 \Rightarrow w(Q)=2$$

rk(A) = 1, rk(Q) = 1, w(A) = 1, w(Q) = 2:

$$Q \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, ossia $x^2 = 0$, tipo C_9 , detta "retta doppia" $(V(f) = \{x = 0\})$.

Abbiamo dunque provato:

TEOREMA DI CLASSIFICAZIONE AFFINE DELLE CONICHE DI \mathbb{R}^2 : Ogni conica di \mathbb{R}^2 è affinemente equivalente a una e una sola delle seguenti:

1)
$$x^2 - y = 0$$
;

2)
$$x^2 + y^2 + 1 = 0$$
;

3)
$$x^2 + y^2 - 1 = 0$$
;

4)
$$x^2 - y^2 + 1 = 0$$
;

5)
$$x^2 + y^2 = 0$$
;

6)
$$x^2 - y^2 = 0$$
;

7)
$$x^2 + 1 = 0$$
;

8)
$$x^2 - 1 = 0$$
;

9)
$$x^2 = 0$$
.

Inoltre la quaterna (rk(A), rk(Q), w(A), w(Q)) è un sistema completo di invarianti per equivalenza affine in \mathbb{R}^2 .

Osservazione: La conica C di equazione $x^2 - y^2 + 1 = 0$ (l'iperbole) può essere vista come: $C = S \cap \{z = 1\}, \text{ dove } S = \{(x, y, z) \in \mathbb{R}^3 | x^2 - y^2 + z^2 = 0\}.$

Esempio: Sia C la conica di \mathbb{R}^2 di equazione $x^2+y^2+4xy-2x-10y+1=0$. Determinare il modello canonico affine \tilde{C} di C e determinare un'affinità $\psi \in Aff(\mathbb{R}^2) | \psi(\tilde{C}) = C$.

Svolgimento:

$$Q = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & -5 \\ -1 & -5 & 1 \end{pmatrix}, A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, B = \begin{pmatrix} -1 \\ -5 \end{pmatrix}.$$

$$\det(A) = -3 \Rightarrow \sigma(A) = (1,1,0) \Rightarrow w(A) = 1.$$

$$\det(Q) = -3 + 5(-3) - 1(-9) = -9 \Rightarrow \sigma(Q) = (2,1,0) \Rightarrow w(Q) = 1.$$

Dunque
$$\tilde{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, x^2 - y^2 + 1 = 0$$
, cioè è un'iperbole.

Sia
$$f(x,y) = x^2 + y^2 + 4xy - 2x - 10y + 1$$
.

Sia
$$\tilde{f}(x, y) = x^2 - y^2 + 1$$
.

1) Ricerchiamo il centro di *C*.

Dobbiamo risolvere il sistema AX = -B, cioè:

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \Rightarrow \begin{cases} \alpha = 3 \\ \beta = -1 \end{cases} \Rightarrow N = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}.$$

Sia
$$\psi_1(X) = X + N = X + {3 \choose -1}$$
.

Allora
$$\widetilde{M_1} = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
 rappresenta l'affinità ψ_1 .

La conica $\psi_1^{-1}(C)$ ha come matrice associata $Q_1 = {}^t\widetilde{M_1}Q\widetilde{M_1}$.

Per quanto visto nella teoria:

$$Q_1 = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

2) Trasformo A nella forma di Sylvester.

$$v_1 = e_1, v_2 = e_2 - \frac{2}{1}e_1 = e_2 - 2e_1.$$

$$\langle v_2, v_2 \rangle = \langle e_2 - 2e_1, e_2 - 2e_1 \rangle = 1 + 4 - 8 = -3$$
. Dunque:

$$\mathfrak{M}_{\{v_1,v_2\},\{e_1,e_2\}}(id) = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}.$$

Sia
$$\psi_2(X) = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} X$$
, che è rappresentata da $\widetilde{M}_2 = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

La matrice relativa alla conica $\mathcal{C}_2 = \psi_2^{-1}(\mathcal{C}_1)$ è:

$$Q_2 = {}^t \widetilde{M_2} Q_1 \widetilde{M_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Dobbiamo trasformare il coefficiente di x^2 da 1 a 3, poiché in questo modo otterremmo l'ipersuperficie cercata (poiché nella classo di equivalenza ci sta il polinomio di \tilde{C} moltiplicato per una qualsiasi $\alpha \neq 0$, in questo caso $\alpha = 3$):

$$\widetilde{M_3} = \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

L'affinità cercata è
$$\widetilde{M_1} \cdot \widetilde{M_2} \cdot \widetilde{M_3} = \begin{pmatrix} \sqrt{3} & -2 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
, cioè:

$$\psi(X) = \begin{pmatrix} \sqrt{3} & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \end{pmatrix}.$$

Osservazione: Si possono classificare metricamente le coniche di \mathbb{R}^2 in modo simile al caso affine. Si diagonalizza A non con Sylvester ma con il teorema spettrale.

Se
$$M \in O(2)$$
, $\det(\widetilde{M_N}) = \det\begin{pmatrix} M & N \\ 0 & 1 \end{pmatrix} = \det(M) = \pm 1$, quindi:

- $tr(^tMAM) = tr(A);$
- $\det({}^tMAM) = \det(A)$;
- $\det({}^t\widetilde{M_N}Q\widetilde{M_N}) = \det(Q)$ (anche se $\widetilde{M_N} \notin O(3)$).

Se moltiplico l'equazione della conica per $\alpha \neq 0$, la matrice della conica diventa:

$$\alpha Q = \begin{pmatrix} \boxed{ & \alpha A & \alpha B \\ & \alpha^t B & \alpha c \end{pmatrix}}, \text{ dunque:}$$

- $\det(\alpha Q) = \alpha^3 \det(Q)$;
- $\det(\alpha A) = \alpha^2 \det(A)$;
- $tr(\alpha A) = \alpha tr(A)$.

Quindi (se $tr(A) \neq 0$) i numeri $\frac{\det(A)}{tr(A)^2}$ e $\frac{\det(Q)}{tr(A)^3}$ sono invarianti metrici.

Se C e C' sono metricamente equivalenti, allora $\exists \alpha \neq 0 \mid$

- $\det(Q') = \alpha^3 \det(Q)$;
- $\det(A') = \alpha^2 \det(A)$;
- $tr(A') = \alpha tr(A)$.

Non vale però il viceversa, cioè questi invarianti non sono sufficienti per decidere se due coniche sono metricamente equivalenti. Infatti:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} e \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & c \end{pmatrix}$$

non sono metricamente equivalenti $\forall c \neq 1$, ma hanno gli stessi invarianti precedenti.

DEFINIZIONE 5.5.4: Sia $f(x_1, ..., x_n) \in \mathbb{K}[x_1, ..., x_n]$ un polinomio di grado 2. Allora $f(X) = {}^t XAX + 2{}^t BX + c$, con $A \in \mathcal{S}(n, \mathbb{K})$.

Definiamo **matrice della quadrica** [*f*]:

$$Q = \left(\begin{array}{c|c} A & B \\ \hline & B \\ \hline & & c \end{array} \right) \in \mathcal{M}(n+1, \mathbb{K}).$$

La quadrica C si dice **degenere** se det(Q) = 0.

DEFINIZIONE 5.5.5: Una quadrica C si dice **cono di vertice** $P_0 \in C$ se $\forall P \in C$, $P \neq P_0$, tutta la retta congiungente P_0 e P è contenuta in C.

DEFINIZIONE 5.5.6: Una quadrica C è detta **cilindro** se $\exists r$ retta di \mathbb{K}^n tale che $\forall P \in C$ la retta passante per P e parallela a r è contenuta in C.

Esempi: 1) Se f è un polinomio omogeneo di secondo grado, [f] è un cono di vertice l'origine.

- 2) Se f è un polinomio di secondo grado in $x_1, ..., x_n$ in cui non compare una variabile x_i , allora [f] è un cilindro parallelo all'asse x_i .
- 3) $x^2 y^2 = 0$ in \mathbb{R}^3 (che è l'unione di due piani incidenti), è sia un cono di vertice (0,0,0), sia un cilindro parallelo all'asse z.

In modo simile al caso delle coniche si prova:

TEOREMA DI CLASSIFICAZIONE AFFINE DELLE QUADRICHE: Ogni quadrica di \mathbb{K}^n è affinemente equivalente ad una e una sola delle seguenti:

- 1) Se $\mathbb{K} = \mathbb{C}$:
 - $x_1^2 + ... + x_r^2 + d = 0$, con $d = 0 \lor d = 1$ (conica a centro);
 - $x_1^2 + ... + x_r^2 x_n = 0$, detto "paraboloide".
- 2) Se $\mathbb{K} = \mathbb{R}$:
 - $x_1^2 + \ldots + x_p^2 x_{p+1}^2 \ldots x_r^2 + d = 0$, con $d = 0 \lor d = 1$ (conica a centro); $x_1^2 + \ldots + x_p^2 x_{p+1}^2 \ldots x_r^2 x_n = 0$, detti "paraboloidi".

LISTA DEI MODELLI AFFINI PER LE QUADRICHE DI \mathbb{R}^3 :

- a) A centro:
- A centro non degeneri (cioè $c \neq 0$):
 - 1) $x^2 + y^2 + z^2 + 1 = 0$, detto "ellissoide immaginario" $(V(f) = \emptyset)$;
 - 2) $x^2 + y^2 + z^2 1 = 0$, detto "ellissoide";

3) $x^2 + y^2 - z^2 - 1 = 0$, detto "iperboloide a una falda";

4) $x^2 + y^2 - z^2 + 1 = 0$, detto "iperboloide a due falde"

- A centro degeneri con c = 0 (dunque coni):
 - 5) $x^2 + y^2 + z^2 = 0$, detto "punto", o "cono immaginario" ($V(f) = \{(0,0,0)\}$);
 - 6) $x^2 + y^2 z^2 = 0$, detto "cono reale";

- 7) $x^2 + y^2 = 0$, detto "piani complessi incidenti" (V(f) = asse z); 8) $x^2 y^2 = 0$, detto "piani incidenti";
- 9) $x^2 = 0$, detto "**piano doppio**";
- A centro degeneri con $c \neq 0$:
 - 10) $x^2 + y^2 + 1 = 0$, detto "cilindro immaginario" $(V(f) = \emptyset)$;

11) $x^2 - y^2 + 1 = 0$, detto "cilindro iperbolico";

12) $x^2 + y^2 - 1 = 0$, detto "cilindro ellittico";

13)
$$x^2 - 1 = 0$$
, detto "**piani paralleli**";

13)
$$x^2 - 1 = 0$$
, detto "piani paralleli";
14) $x^2 + 1 = 0$, detto "piani complessi paralleli" ($V(f) = \emptyset$);

- b) Non a centro (paraboloidi):
- Non a centro non degeneri:

15) $x^2 + y^2 - z = 0$, detto "paraboloide ellittico";

16) $x^2 - y^2 - z = 0$, detto "paraboloide iperbolico" o "sella";

Non a centro degeneri: 17)
$$x^2 - z = 0$$
, detto "cilindro parabolico";

Osservazione: L'iperboloide a una falda è spesso detto "rigato" perché per ogni suo punto passano due rette incidenti completamente giacenti sull'iperboloide. Infatti:

$$x^2 + y^2 - z^2 - 1 = 0 \Rightarrow x^2 - z^2 = 1 - y^2 \Rightarrow (x + z)(x - z) = (1 + y)(1 - y).$$

Dunque ci sono due tipi di queste rette:

1° tipo:
$$\begin{cases} \lambda(x-z) = \mu(1-y) \\ \mu(x+z) = \lambda(1+y) \end{cases}$$
2° tipo:
$$\begin{cases} \lambda(x-z) = \mu(1+y) \\ \mu(x+z) = \lambda(1-y) \end{cases}$$

PROPOSIZIONE 5.5.1: Sia Q una quadrica di \mathbb{R}^n e R un centro di Q. Allora, se $f: \mathbb{R}^n \to \mathbb{R}^n$ è un'affinità, f(R) è un centro di f(Q) (cioè le affinità mantengono i centri).

Dimostrazione:

Utilizzando la notazione usuale:

SITOGRAFIA:

• http://upload.wikimedia.org/wikipedia/commons/9/91/HyperboloidOfTwoSheets.png