★☆☆☆☆ they all do very bad things. It should be called 'Badfellas'

By Crispin Smith on 26 November 2015

There is nothing 'Good' about the 'fellas' in this movie.

★☆☆☆ Cost me my marriage

16 December 2017

Format: Prime Video

Terrifying, the very thought of toys coming alive when you aren't watching gave me chills. Subsequently I burned all my kids toys which apparently makes me a "bad father" and my wife has left me and taken the kids away from me. Terrible movie, ruined my life

Movie Review Analysis

By colton - March 19, 2015

Amazon Verified Purchase

I never knew what struggles bugs went through.... changed my life

Natural Language Processing, NER, and Genre Classification

By J. janousek - March 1, 2007

I'm confused, does 1 star mean good or not??

1 of 35 people found this review helpful

Word Sentiment Analysis

Dataset and Question

 Movie Reviews Dataset - a dataset containing 50,000 movie reviews (from which we extracted 20,000 reviews) and corresponding positive or negative sentiment classification

-	review	sentiment
0	One of the other reviewers has mentioned that	positive
1	A wonderful little production. The	positive
2	I thought this was a wonderful way to spend ti	positive
3	Basically there's a family where a little boy	negative
4	Petter Mattei's "Love in the Time of Money" is	positive

 Question: Which words are most influential in determining whether a review is positive or negative?

Preprocessing Steps

- 1) Remove all characters except A-Z and a-z from the reviews
- 2) **Tokenize** text so that each review is a list of words
- 3) Remove all **stopwords** (a, I, the, etc.) from the tokenized reviews
- 4) **Lemmatize** all words ("run," "running," "ran" —> "run")
- 5) Compile a count of the number of instances of each word in each review

	raw_text	modified_text	word_count	aaron	abandon	abandoned	abc	abilities	ability	able	 youth	youthful	youtube	youve	zany	zero	zombie	zombies	zone	sentiment
0	One of the other reviewers has mentioned that	[One, reviewer, mention, watch, Oz, episode, y	320	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	positive
1	A wonderful little production The filming tech	[A, wonderful, little, production, The, film,	166	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	positive
2	I thought this was a wonderful way to spend ti	[I, think, wonderful, way, spend, time, hot, s	172	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	positive
3	Basically theres a family where a little boy J	[Basically, there, family, little, boy, Jake,	141	0	0	0	0	0	0	0	 0	0	0	0	0	0	1	0	0	negative
4	Petter Matteis Love in the Time of Money is a	[Petter, Matteis, Love, Time, Money, visually,	236	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	positive

Finding Word Weights

- Logistic Regression with 86.7% test accuracy
- We extract the coefficients the model assigned to each word:

10 Most **Positive** Words:

	word	weight
2214	excellent	0.781233
3823	loved	0.725900
2378	favorite	0.614576
751	brilliant	0.608669
7105	wonderful	0.572822
2351	fantastic	0.552297
218	amazing	0.534505
4623	perfect	0.496655
577	best	0.490964
5110	realistic	0.487599

10 Most **Negative** Words:

	word	weight
7132	worst	-1.134225
6971	waste	-1.081301
454	awful	-0.915316
687	boring	-0.766668
7130	worse	-0.713850
3082	horrible	-0.669245
440	avoid	-0.656827
6405	terrible	-0.610543
1806	disappointing	-0.604421
4764	poorly	-0.581686

Assigning Scores to Each Review

- We calculate the sum of the word weights of each review
- This sum is assigned as the total score for each review

	raw_text	modified_text	sentiment	word_count	total_score
0	One of the other reviewers has mentioned that \dots	[One, reviewer, mention, watch, Oz, episode, y	positive	320	-0.662223
1	A wonderful little production The filming tech	[A, wonderful, little, production, The, film, \dots	positive	166	0.866091
2	I thought this was a wonderful way to spend ti	[I, think, wonderful, way, spend, time, hot, s	positive	172	1.542105
3	Basically theres a family where a little boy J	[Basically, there, family, little, boy, Jake,	negative	141	-0.584063
4	Petter Matteis Love in the Time of Money is a	[Petter, Matteis, Love, Time, Money, visually,	positive	236	1.409738
5	Probably my alltime favorite movie a story of	[Probably, alltime, favorite, movie, story, se	positive	125	1.864355
6	I sure would like to see a resurrection of a u	[I, sure, would, like, see, resurrection, date	positive	161	-0.318894
7	This show was an amazing fresh innovative ide	[This, show, amaze, fresh, innovative, idea, f	negative	181	-3.649886
8	Encouraged by the positive comments about this	[Encouraged, positive, comment, film, I, look,	negative	130	-1.441471
9	If you like original gut wrenching laughter yo	[If, like, original, gut, wrench, laughter, li	positive	34	0.106713
10	Phil the Alien is one of those quirky films wh	[Phil, Alien, one, quirky, film, humour, base,	negative	101	-0.466289
11	I saw this movie when I was about when it cam	[I, saw, movie, I, come, I, recall, scary, sce	negative	184	-0.791748
12	So im not a big fan of Bolls work but then aga	[So, im, big, fan, Bolls, work, many, I, enjoy	negative	412	-0.987699
13	The cast played ShakespeareShakespeare lostI a	[The, cast, play, ShakespeareShakespeare, lost	negative	122	-0.057414
14	This a fantastic movie of three prisoners who	[This, fantastic, movie, three, prisoner, beco	positive	51	0.584989

Confusion Matrix: Predicted Sentiment according to word sentiments vs. Actual Sentiment Model: Logistic Regression

Confusion Matrix: Predicted Sentiment according to word sentiments vs.Actual Sentiment Model: SVM with Linear Kernel

Linear SVM:				
Accuracy: 0.8302				
pr	ecision	recall	f1-score	support
a	0.84	0.82	0.83	2026
0 1	0.82	0.84	0.83	2026 1975
1	0.02	V.04	0.03	1975
accuracy			0.83	4001
macro avg	0.83	0.83	0.83	4001
weighted avg	0.83	0.83	0.83	4001
norgheod dry	0.00	0.00	0.00	.001
Polynomial SVM:				
Accuracy: 0.7983				
pr	ecision	recall	f1-score	support
•	0.74	0.04	0.00	2026
0 1	0.74	0.94	0.83	2026
1	0.91	0.65	0.76	1975
accuracy			0.80	4001
macro avg	0.82	0.80	0.79	4001
weighted avg	0.82	0.80	0.79	4001
werghted dry	0.02	0.00	0.75	1001
RBF SVM:				
Accuracy: 0.8310	422394401	4		
pr	ecision	recall	f1–score	support
•	0.00	0.00	0.00	2026
0 1	0.83	0.83	0.83	2026
1	0.83	0.83	0.83	1975
accuracy			0.83	4001
macro avg	0.83	0.83	0.83	4001
weighted avg	0.83	0.83	0.83	4001
Hergineed avg	0.05	0.05	0.05	4001

Assigning a Star Rating to Each Review

Classifying New Samples

Positive Sample Review

"Oppenheimer is an exceptional film that deserves the highest praise for its thought-provoking narrative, exquisite craftsmanship, and compelling performances. From the very first frame, the movie draws the audience into the fascinating world of J. Robert Oppenheimer, the brilliant physicist whose contributions during World War II profoundly altered the course of history . . ."

```
#Positive Review for "Oppenheimer"
review_sample1 = "Oppenheimer is an exceptional film that deserves the h
print("Movie Sample 1's review score is: ",review_score(review_sample1))
Movie Sample 1's review score is: 9
```

Negative Sample Review

"Where do I even begin with the Oppenheimer movie? It's a perplexing mess of a film that fails to capture the essence of its subject matter and leaves the audience scratching their heads in confusion"

```
#Negative Review for "Oppenheimer"
review_sample2 = "Where do I even begin with the Oppenheimer movie? Its a
print("Movie Sample 2's review score is: ", review_score(review_sample2))
Movie Sample 2's review score is: 5
```

Sentiment Analysis and NER with Mentioned Names

Got the names of **well known directors**, actors, actresses, and movie **characters** via webscraping

Used Spacy module to extract the name of entities appearing in movie reviews

Analyzed which people / movie characters had the highest or lowest average ratings

Directors

Dataset = 5000 reviews

Worst 5 Director Ratings

Actors/Actresses

Movie Characters

Dataset = 5000 reviews

ML Model: Movie Review sentiment from mentioned movie characters

ML Model: Movie Review sentiment from mentioned actors/actresses

~60% Accuracy

ML Model: Movie Review sentiment from mentioned directors

~63% Accuracy

ML Model Review

For better accuracy: could've used more comprehensive names from webscraping

No strong correlation between mentioned names and movie reviews

Names of directors most indicative of movie sentiments

Movie Genre Prediction

Dataset and Goal

Dataset: IMDb movies dataset from Kaggle

Goal: Predict genres using descriptive texts of movie plots

Multi-Class

Multi-Label

genre
Romance
Biography, Crime, Drama
Drama
Drama, History
Adventure, Drama, Fantasy
Biography, Drama
Biography, Drama, Romance
Drama, History
History, War
Drama
Drama
Crime, Drama
Drama
Crime, Drama
Drama
Drama, War
Crime, Drama, Mystery
Drama
Drama, Fantasy, Horror
Crime, Drama
Adventure, Drama
Drama
Crime, Drama, Horror
Western

Make each genre *even-sized*: 7 genres of 400 movies

Explore genres with abundant data
df['genre'].value_counts()[0:7]
df['genre'].value_counts()

Drama	12105	
Comedy	7146	
Horror	2241	
Thriller	1217	
Action	699	
Western	588	
Romance	415	
Family	277	
Sci-Fi	255	
Adventure	232	
Crime	157	
Mystery	130	
Musical	118	
Animation	97	
Fantasy	73	
War	53	
Biography	51	
Music	27	
History	26	
Sport	15	
Documentary	1	
Name: genre,	dtype: int64	

-	genre	description
0	Drama	Two men of high rank are both wooing the beaut
1	Drama	Richard of Gloucester uses manipulation and mu
2	Drama	After Dr. Friedrich's wife becomes mentally un
3	Drama	Single mother is separated from her children d
4	Drama	Leslie Swayne, an adventurer, in order to obta
2795	Romance	Sato is 27 years old, lives in the northern pr
2796	Romance	A family entertainer, the story of Ammammagari
2797	Romance	Tej, a youngster who's highly attached to his
2798	Romance	The film is a rom-com which explores the life
2799	Romance	How will 3 sisters save the Shakespeare Chatea

2800 rows × 2 columns

description	genre	
Two men of high rank are both wooing the beaut	Drama	0
Richard of Gloucester uses manipulation and mu	Drama	1
After Dr. Friedrich's wife becomes mentally un	Drama	2
Single mother is separated from her children d	Drama	3
Leslie Swayne, an adventurer, in order to obta	Drama	4
Sato is 27 years old, lives in the northern pr	Romance	2795
A family entertainer, the story of Ammammagari	Romance	2796
Tej, a youngster who's highly attached to his	Romance	2797
The film is a rom-com which explores the life	Romance	2798
How will 3 sisters save the Shakespeare Chatea	Romance	2799

Things need to be fixed:

- 1. Both upper and lower cases exist
 - → Convert to all lower cases
- 2. Non-english characters exist (, . ")
 - \rightarrow Replace them by empty string
 - → Save spaces at this point! We'll use them to chop sentences into words soon
- 3. Same words now have different forms
 - E.g. man VS men become VS becomes separate VS separated
 - → Requires lemmatization!

→ Similar Preprocessing Steps

Before training our models...

1. "Word To Vectors" - Tf-idf

	vec = tfidf tfidf	Tfi = v = t _df	dfVec ec.fi fidf.	torize t_tran toarra	sform(da y()	vords = "e ata['descr df, column	iptio	n'])	_feat	ure_nam	es_out	())								
[232]:		aadi	aage	abacco	abandon	abandoned	abbey	abbott	abby	abdicate	abduct		zenith	zhai	zhang	zhao	zhigalovs	zinochka	zita	zombie
	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2795	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2796	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2797	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2798	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2799	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2800 r	ows ×	9278	columns																

- 2. Features: word vectors from plot descriptions / Targets: movie genres
- 3. Train Test Split

Model_1: Multinomial Naive Bayes

Confusion Matrix: Movie Genre Prediction Model:NaiveBayes

Model_2: Logistic Regression

Confusion Matrix: Movie Genre Prediction Model:LogisticRegression

Model_3: Linear Support Vector Machine

Confusion Matrix: Movie Genre Prediction Model: Linear SVM

action

comedy

horror

Observations:

- 1. Frequent words not that meaningful
 - → "two" "become" "go" "find"
 - → overlaps among genres
- 2. Not-perfect NLP preprocessing
 - \rightarrow "ha": probably stripping the ending 's' from "has"

Pytorch Neural Network + Bert Transformer

```
# Encoding
                                                         # Categorical Genres \rightarrow Numerical Labels
label encoder = LabelEncoder()
v train encoded = label encoder.fit transform(v train)
# Model selection
model name = "bert-base-uncased"
                                                            # Model / Device Preparation
tokenizer = BertTokenizer.from pretrained(model name)
embedding model = BertModel.from pretrained(model name)
# Device selection
device = torch.device("cuda" if torch.cuda.is available() else "cpu")
embedding model.to(device)
                                                          # Tokenization + Embeddings
# Tokenizer & embeddings
max length = 20
encoded_inputs = tokenizer(list(train_dataset['description']), padding='max_length', truncation=True,
                          max length=max length, return attention mask=True)
train dataset = TensorDataset(torch.tensor(encoded inputs['input ids']),
                             torch.tensor(encoded inputs['attention mask']), torch.tensor(y train encoded))
train loader = DataLoader(train dataset, batch size=12, shuffle=True)
encoded_inputs_test = tokenizer(list(test_dataset['description']), padding='max_length', truncation=True,
                                max_length=max_length, return_attention_mask=True)
v test encoded = label encoder.fit transform(v test)
test dataset = TensorDataset(torch.tensor(encoded inputs test['input ids']),
                             torch.tensor(encoded inputs test['attention mask']), torch.tensor(y test encoded))
test loader = DataLoader(test dataset, batch size=12, shuffle=True)
```

```
# nn definition
class GenreClassifier(nn.Module):
    def __init__(self, embedding_model, num_classes):
        super(GenreClassifier, self).__init__()
        self.embedding model = embedding model
        self.fc = nn.Linear(embedding_model.config.hidden_size, num_classes)
    def forward(self, input_ids, attention_mask):
        embeddings = self.embedding model(input ids, attention mask=attention mask).last hidden state[:, 0]
        logits = self.fc(embeddings)
        return logits
# Create the new model and move to device
num_classes = len(label_encoder.classes_)
model = GenreClassifier(embedding_model, num_classes)
model.to(device)
# Optimizer & loss
optimizer = optim.AdamW(model.parameters(), lr=1e-5)
loss_fn = nn.CrossEntropyLoss()
```

```
# Train...
model.train()
for epoch in range(10):
    progress_bar = tqdm(train_loader, desc=f"Epoch {epoch + 1}/10", leave=False)
   total correct = 0
    total samples = 0
    for batch in progress bar:
        optimizer.zero grad()
        input_ids, attention_mask, labels = [item.to(device) for item in batch]
        logits = model(input_ids, attention_mask)
        loss = loss_fn(logits, labels)
        loss.backward()
        optimizer.step()
        # accuracy
        _, predicted = torch.max(logits, 1)
        total_correct += (predicted == labels).sum().item()
        total samples += labels.size(0)
        accuracy = total_correct / total_samples
        progress bar.set postfix({"loss": loss.item(), "accuracy": accuracy})
        # Accuracy * epoch
    print(f'Epoch {epoch + 1} - Accuracy: {accuracy:.4f}')
```

```
Epoch 1 - Accuracy: 0.4147
Epoch 2 - Accuracy: 0.6504
Epoch 3 - Accuracy: 0.7643
Epoch 4 - Accuracy: 0.8661
Epoch 5 - Accuracy: 0.9268
Epoch 6 - Accuracy: 0.9665
Epoch 7 - Accuracy: 0.9830
Epoch 8 - Accuracy: 0.9955
Epoch 9 - Accuracy: 0.9982
```

Epoch 10 - Accuracy: 0.9951

```
# Evaluate...
model.eval()
total correct = 0
total_samples = 0
with torch.no grad():
    progress_bar = tqdm(test_loader, desc="Evaluating", leave=False)
    for batch in progress_bar:
        input ids, attention mask, labels = [item.to(device) for item in batch]
        logits = model(input_ids, attention_mask)
        _, predicted = torch.max(logits, 1)
        total correct += (predicted == labels).sum().item()
        total_samples += labels.size(0)
        progress bar.set postfix({"accuracy": total correct / total samples})
accuracy = total_correct / total_samples
print(f'Final Accuracy: {accuracy:.4f}')
```

Final Accuracy: 0.6714

Inspired by the open notebook done by EUGENIO SCHIAVONI on Kaggle https://www.kaggle.com/code/eugeniokukes/bert-torch-superior-to-tensorflow-22min-run-0-65

TBC on NLP...

Multi-label Problems of Text Categorization

- Scrutinize on each step: lemmatization, embedding...
- More advanced model to be trained other than traditional ML
- More powerful tools to explore (E.g. KerasNLP)

Thank You!