Khôlles de Mathématiques

Kylian Boyet, George Ober, Hugo Vangilluwen, Jérémie Menard $19 \ {\rm novembre} \ 2023$

Table des matières

1	Semaine 6			
	1.1	Montrer que si f est impaire et bijective, alors f^{-1} est aussi impaire. Donnez un/des	4	
	1.2	exemples. Limite (et preuve) lorsque x tend vers $+\infty$ de $\frac{(\ln x)^{\alpha}}{x^{\beta}}$ pour $\alpha, \beta \in (\mathbb{R}_{+}^{*})^{2}$	4	
	1.3	Limite en 0 de $\frac{1-\cos(x)}{x^2}$ et limite en $+\infty$ suivant n de $\frac{(q^n)^{\alpha}}{(n!)^{\beta}}$ pour $q \in \mathbb{R}$ et $(\alpha, \beta) \in$		
	1.4 1.5 1.6 1.7	$\left(\mathbb{R}_{+}^{*}\right)^{2}$. Présentation exhaustive de la fonction arcsin. Présentation exhaustive de la fonction arccos. Présentation exhaustive de la fonction arctan. 2 preuves de $\arcsin(x) + \arccos(x) = \frac{\pi}{2} \sup \left[-1, 1\right]$, dont une basée sur une interpré-	5 7 7 8	
	1.8	tation géométrique du cercle trigonométrique	9 10	
2	Sem	naine 7	11	
3	Sem	naine 8	11	
4	Semaine 9		11	
5	Semaine 10		11	
6	Sem	naine 11	11	
7	Semaine 12		11	
8	Semaine 13		11	
9	Semaine 14		11	
10	Sem	naine 15	11	
11	Sem	naine 16	11	
12	2 Calcul de $\int_0^{2\pi} e^{imt} dt$ en fonction de $m \in \mathbb{Z}$. En Déduire qu'une fonction polynomiale nulle sur un cercle centré en l'origine a tous ses coefficients nuls.		11	
13	Preuve de la Linéarité de la dérivation d'une fonction complexe		12	
14	Dérivée composée d'une fonction à valeurs complexes		12	
15	Caractérisation des fonctions dérivables de dérivée nulle sur un intervalle		13	
16	coef	uve de l'expression des solutions réelles des EDL homogènes d'ordre 2 à ficients constants réels dans le cas $\Delta < 0$ (en admettant la connaissance de pression des solutions à valeurs complexes des EDLH2 à coeff. constants).	13 e 2 à ce de	
17		sence et unicité d'une solution au problème de Cauchy pour les EDL d'ordre coefficients constants et second membre continu sur I (cas complexe puis		

18 Soient $(a,b)\in\mathbb{C}^2,\ f$ et g les solutions, définies sur $\mathbb R$ à valeurs dans $\mathbb C$, des problèmes de Cauchy suivants :

Résumé

Ce pdf sera vraisemblablement sujet à de nombreuses maj. Je vais essayer à partir de maintenant de faire un pdf contenant toutes les khôlles de la 6-ième semaine à la dernière (j'espère avoir le temps). De plus, il peut arriver que je propose une solution originale à une question, seulement ladite solution n'aura sans doute été vérifiée par personne, si vous constatez une ou plusieurs erreur.s tachez de m'en faire part, d'ailleurs si vous relevez une erreur quelconque dans ce document je vous prie de faire de même. Enfin, les semaines 3 et 5 resteront hors de ce document car leur insertion est **BEAUCOUP TROP** compliquée pour moi donc j'ai laissé tombé... Si vous les voulez, faîtes moi signe. Aussi, si plusieurs démonstrations sont présentes dans le cours et que nous avons la possiblité de choisir celle.s que nous voulons, je prendrai toujours celle.s qui me paraît.ssent la.es plus naturelle.s et "facile.s" car je n'aime pas apprendre des choses inutilement compliquées, tout comme je prendrai parfois la liberté de laisser certaines choses au lecteur car certains passages sont trop évidents pour être traités. Finalement, si vous avez des questions sur ce que j'ai écrit ou si vous voulez des informations sur le code LATEX, (ou Tikz), n'hésitez pas. Bonne lecture.

Table des matières

1 Semaine 6

1.1 Montrer que si f est impaire et bijective, alors f^{-1} est aussi impaire. Donnez un/des exemples.

Soit $f: I \to F$, avec I, F deux parties non-vides de \mathbb{R} , une telle fonction et notons f^{-1} sa bijection réciproque. Si f est impaire sur I, alors pour tout $x \in I$, $-x \in I$, ainsi I est centré en 0 et on a :

$$\forall x \in I, \ f(-x) = -f(x).$$

Ainsi, prenons $y \in F$, alors $-y \in F$ par imparité et bijectivité de f. On a donc :

$$f^{-1}(-y) = f^{-1}(-f(f^{-1}(y)))$$

= $f^{-1}(f(-f^{-1}(y)))$
= $-f^{-1}(y)$.

D'où l'imparité de f^{-1} .

Pour ce qui est de l'exemple, prenons notre fonction bijective impaire préférée, la fonction $\sin | \frac{[-1,1]}{[-\frac{\pi}{2},\frac{\pi}{2}]}$ que l'on notera $\widetilde{\sin}$. Sa bijection réciproque est bien entendu arcsin : $[-1,1] \to \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

De la même manière que dans la démonstration du cas général, prenons $y \in [-1,1]$, comme [-1,1] est centré en $0, -y \in [-1,1]$, on a dès lors :

$$\begin{aligned} \arcsin(-y) &= \arcsin(-\widetilde{\sin}(\arcsin(y))) \\ &= \arcsin(\widetilde{\sin}(-\arcsin(y))) \\ &= -\arcsin(y). \end{aligned}$$

Ce qui suffit.

1.2 Limite (et preuve) lorsque x tend vers $+\infty$ de $\frac{(\ln x)^{\alpha}}{x^{\beta}}$ pour $\alpha, \beta \in (\mathbb{R}_{+}^{*})^{2}$.

Premièrement, posons:

$$\forall (x, \alpha, \beta) \in [1, +\infty[\times (\mathbb{R}_+^*)^2, \quad f_{\alpha, \beta}(x) = \frac{(\ln x)^{\alpha}}{x^{\beta}}.$$

Deuxièmement, montrons que :

$$\frac{\ln(x)}{x^2} \xrightarrow[n \to +\infty]{} 0.$$

Soit $x \in [1, +\infty[$ = \mathcal{A} . Nous savons que la fonction ln est concave sur \mathbb{R}_+^* , donc en particulier sur \mathcal{A} . Ainsi, ln est en dessous de toutes ses tangentes, d'où :

$$\forall x \in \mathcal{A}, \quad 0 \le \ln(x) \le x - 1.$$

Illustration de l'inégalité :

Figure 1. ln en rouge et la première bissectrice en bleu.

On peut alors diviser par x^2 (car $x \neq 0$) :

$$\forall x \in \mathcal{A}, \quad 0 \le \underbrace{\frac{\ln(x)}{x^2}}_{f_{1,2}(x)} \le \underbrace{\frac{1}{x}}_{x \to +\infty} - \underbrace{\frac{1}{x^2}}_{x \to +\infty}.$$

Donc par théorème d'encadrement $f_{1,2}(x) \xrightarrow[x \to +\infty]{} 0$.

Dernièrement, le cas général. Soit $x \in \mathcal{A}$ et soient $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$. On fait une preuve directe.

$$\frac{(\ln(x))^{\alpha}}{x^{\beta}} = \left(\frac{\ln(x)}{x^{\frac{\beta}{\alpha}}}\right)^{\alpha}$$

$$= \underbrace{\left(\frac{2\alpha}{\beta}\right)^{\alpha}}_{c^{\underline{te}} \text{ (définie !)}} \cdot \underbrace{\left[\frac{\ln\left(x^{\frac{\beta}{2\alpha}}\right)}{\sum_{x \to +\infty}^{\alpha} 0}\right]_{x \to +\infty}^{\alpha}}_{\text{par composition des limites}}$$

$$\xrightarrow[x \to +\infty]{} 0$$

$$\xrightarrow[\text{par produit}]{}$$

Ce qui conclut.

1.3 Limite en 0 de $\frac{1-\cos(x)}{x^2}$ et limite en $+\infty$ suivant n de $\frac{(q^n)^{\alpha}}{(n!)^{\beta}}$ pour $q \in \mathbb{R}$ et $(\alpha,\beta) \in \left(\mathbb{R}_+^*\right)^2$.

Montrons que $\frac{1-\cos(x)}{x^2} \xrightarrow[x\to 0]{} \frac{1}{2}$.

On fait toujours une preuve directe.

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \lim_{x \to 0} \frac{1 - \cos\left(\frac{2x}{2}\right)}{x^2}$$

$$= \lim_{x \to 0} \frac{1 - \left(1 - 2\sin^2\left(\frac{x}{2}\right)\right)}{x^2}$$

$$= \lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^2}$$

$$= \lim_{x \to 0} \underbrace{\frac{1}{2} \cdot \underbrace{\left(\frac{\sin\left(\frac{x}{2}\right)}{2}\right)^2}_{\text{cie}} \cdot \underbrace{\left(\frac{\sin\left(\frac{x}{2}\right)}{2}\right)^2}_{\text{cimit e usuelle}} \underbrace{\left(\frac{x}{2}\right)^2}_{\text{par produit}}$$

$$= \frac{1}{2}$$

Trouvons la limite, sous réserve d'existence, de $\frac{(q^n)^{\alpha}}{(n!)^{\beta}}$ pour $q \in \mathbb{R}$ et $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ suivant $n \in \mathbb{R}_+$

Remarquons que si $q \leq 0$, il est **nécessaire** d'avoir $\alpha \in \mathbb{Z}^*$ sinon l'expression n'a tout simplement **aucun sens**. De fait, on supposera q > 0 tout le long, les cas q < 0 se font naturellement (convergence pour $q \in \mathbb{R}_-$).

Soit donc 0 < q < 1, ce cas est immédiat, $((q^n)^\alpha)_{n \in \mathbb{N}} = ((q^\alpha)^n)_{n \in \mathbb{N}}$, donc il s'agit de la suite géométrique de raison $q^\alpha \in]0,1[$ et de premier terme $q^{\min_I(n)\alpha}$ ($\min_I(n)$, avec I une partie non vide de \mathbb{N} , car la suite ne démarre pas forcément à 0), donc elle converge vers 0.

Si $q \ge 1$, on montre le cas trivial $\alpha = \beta = 1$:

$$\forall n \in \llbracket \lfloor q \rfloor + 1, +\infty \llbracket, \quad 0 \leq \frac{q^n}{n!} = \underbrace{\frac{q}{1} \times \frac{q}{2} \times \cdots \times \frac{q}{\lfloor q \rfloor}}_{= \ \lambda \ (\text{une constante})} \times \underbrace{\frac{q}{\lfloor q \rfloor + 1}}_{\leq 1} \times \cdots \times \underbrace{\frac{q}{n-1}}_{\leq 1} \times \frac{q}{n} \leq \underbrace{\frac{\lambda q}{n}}_{n \to +\infty}$$

Par théorème d'existence de limite par encadrement, $\left(\frac{q^n}{n!}\right)_{n\in\mathbb{N}}$ converge et sa limite est 0.

Soient $(\alpha, \beta) \in \mathbb{R}_+^*$, montrons le cas général pour $q \geq 1$.

$$\forall n \in \mathbb{N}, \quad \frac{(q^n)^{\alpha}}{(n!)\beta} = \left(\frac{\left(q^{\frac{\alpha}{\beta}}\right)^n}{n!}\right)^{\beta} = \underbrace{\left(\frac{q^{\frac{\alpha}{\beta}}\right)^n}{n!}}_{\substack{n \to +\infty \\ n \to +\infty}} \underbrace{0}_{\substack{\text{c'est le cas trivial}}}$$

Ce qui termine la preuve.

1.4 Présentation exhaustive de la fonction arcsin.

Premièrement, ladite fonction est la bijection réciproque de la fonction $\widetilde{\sin}$ (voir 1.). D'où :

$$\arcsin = \begin{cases} [-1,1] & \to & [-\frac{\pi}{2}, \frac{\pi}{2}] \\ x & \mapsto & (\widetilde{\sin})^{-1}(x) \end{cases}$$

Ainsi, pour $x \in [-1,1]$, $\arcsin(x)$ est l'unique solution de l'équation d'inconnue $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\sin(\theta) = x$.

Il découle alors naturellement des propriétés héréditairement acquises de $\widetilde{\sin}$:

- 1. arcsin est impaire.
- 2. arcsin est strictement croissante sur [-1, 1].
- 3. $\arcsin \in C^0([-1,1],[-\frac{\pi}{2},\frac{\pi}{2}]).$
- 4. $\arcsin \in \mathcal{D}^1(]-1,1[,]-\frac{\pi}{2},\frac{\pi}{2}[).$
- 5. $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$ pour tout $x \in]-1,1[$.
- 6. arcsin admet deux demi-tangentes verticales en -1 et 1.

Graphe de arcsin :

Figure 2. arcsin en bleu, sin en vert et la première bissectrice en rouge.

On a aussi, grâce au taux d'accroissement en 0 d'arcsin :

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1.$$

Puis finalement (visible sur le graphe):

$$\forall x \in [0, 1], \quad \arcsin(x) \ge x.$$

1.5 Présentation exhaustive de la fonction arccos.

Premièrement, la dite fonction est la bijection réciproque de la fonction $\cos|_{[0,\pi]}^{[-1,1]}:=\widetilde{\cos}$. D'où :

$$\arccos = \begin{cases} [-1,1] & \to [0,\pi] \\ x & \mapsto (\widetilde{\cos})^{-1}(x) \end{cases}$$

Ainsi, pour $x \in [-1,1]$, $\arccos(x)$ est l'unique solution de l'équation d'inconnue $\theta \in [0,\pi]$, $\cos(\theta) = x$.

Il découle alors naturellement des propriétés héréditairement acquises de cos :

- 1. arccos est strictement décroissante sur [-1, 1].
- 2. $\arccos \in C^0([-1,1],[0,\pi]).$
- 3. $\arccos \in \mathcal{D}^1(]-1,1[,]0,\pi[).$
- 4. $\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$ pour tout $x \in]-1,1[$.
- 5. arccos admet deux demi-tangentes verticales en -1 et 1.

Graphe de arccos:

Figure 3. arccos en vert, $\widetilde{\cos}$ en violet, la première bissectrice en rouge et $y = \frac{\pi}{2} - x$ en rose.

1.6 Présentation exhaustive de la fonction arctan.

Premièrement, ladite fonction est la bijection réciproque de la fonction $\tan \left|_{1-\frac{\pi}{2},\frac{\pi}{2}\right|} := \widetilde{\tan}$. D'où:

$$\arctan = \begin{cases} \mathbb{R} & \to & \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\\ x & \mapsto & \left(\widetilde{\tan}\right)^{-1} (x) \end{cases}$$

Ainsi, pour $x \in \mathbb{R}$, $\arctan(x)$ est l'unique solution de l'équation d'inconnue $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ $\tan(\theta) = x$.

Il découle alors naturellement des propriétés héréditairement acquises de tan :

- 1. arctan est impaire.
- 2. $\arctan \in \mathcal{C}^0\left(\mathbb{R}, \left] \frac{\pi}{2}, \frac{\pi}{2} \right]\right)$
- 3. $\arctan \in \mathcal{D}^1\left(\mathbb{R}, \left] \frac{\pi}{2}, \frac{\pi}{2} \right[\right)$. 4. $\arctan'(x) = \frac{1}{1+x^2}$ pour tout $x \in \mathbb{R}$.

Graphe de arctan:

Figure 4. arctan en vert, $\widetilde{\tan}$ en bleu, la première bissectrice en rouge, et les fonctions $y=\pm\frac{\pi}{2}$ et $x=\pm\frac{\pi}{2}$ en noir.

On a aussi (visible sur le graphe):

$$\forall x \in \mathbb{R}_+, \quad \arctan(x) \le x.$$

Et enfin:

$$\forall x \in \mathbb{R}^*, \quad \arctan(x) + \arctan\left(\frac{1}{x}\right) = \left\{ \begin{array}{ll} \frac{\pi}{2} & \text{si } x > 0 \\ -\frac{\pi}{2} & \text{si } x < 0. \end{array} \right.$$

Ce qui conclut les présentations exhaustives.

1.7 2 preuves de $\arcsin(x) + \arccos(x) = \frac{\pi}{2} \text{ sur } [-1, 1]$, dont une basée sur une interprétation géométrique du cercle trigonométrique.

L'interprétation géométrique sur [0,1], celle sur [-1,0] est laissée au lecteur car il s'agit du même principe modulo des détails :

Figure 5.

Preuve formelle:

Soit $x \in [-1, 1]$. Posons $\varphi = \arcsin(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Ainsi:

$$\arcsin(x) + \arccos(x) = \varphi + \arccos(\sin(\varphi)) = \varphi + \arccos\left(\cos\left(\frac{\pi}{2} - \varphi\right)\right),$$
 or $\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc $\frac{\pi}{2} - \varphi \in [0, \pi]$ d'où $\arccos\left(\cos\left(\frac{\pi}{2} - \varphi\right)\right) = \frac{\pi}{2} - \varphi$ si bien que :
$$\arcsin(x) + \arccos(x) = \varphi + \frac{\pi}{2} - \varphi = \frac{\pi}{2}.$$

1.8 Présentation analytique rapide des fonctions cosh et sinh.

• Domaine de définition et symétries. \sinh et \cosh sont définies \sup \mathbb{R} .

De plus,

(ii) $\forall x \in \mathbb{R}, \begin{cases} \sinh(-x) &= \frac{e^{-x} - e^x}{2} &= -\frac{e^x - e^{-x}}{2} &= -\sinh(x) \\ \text{et} & \cosh(-x) &= \frac{e^{-x} + e^{-(-x)}}{2} &= \frac{e^x + e^{-x}}{2} &= \cosh(x). \end{cases}$

Nous les étudierons sur \mathbb{R}_+ et pour les obtenir les graphes ($\mathcal{C}_{\rm sinh}$ et $\mathcal{C}_{\rm cosh}$) de ces fonctions sur \mathbb{R} à partir de ceux ($\mathcal{C}_{\rm sinh}^+$ et $\mathcal{C}_{\rm cosh}^+$) obtenus sur \mathbb{R}_+ , nous le complèterons en traçant les images de ces graphes par la symétrie centrale s de centre O et par la réflexion r d'axe $(O, \overrightarrow{\jmath})$:

$$C_{\sinh} = C_{\sinh}^{+} \cup s\left(C_{\sinh}^{+}\right)$$
 et $C_{\cosh} = C_{\cosh}^{+} \cup r\left(C_{\cosh}^{+}\right)$

- Variations : triviales.
- Branches infinies en $+\infty$ et position relative de \mathcal{C}_{sinh} et \mathcal{C}_{cosh} .

$$\frac{\cosh(x)}{x} = \underbrace{\frac{e^x}{x}}_{x \to +\infty} + \underbrace{\frac{e^{-x}}{x}}_{x \to +\infty} \xrightarrow{x \to +\infty} 0 \xrightarrow{x \to +\infty} +\infty$$

Donc le graphe de cosh admet une branche parabolique de direction asymptotique $(O, \overrightarrow{\jmath})$. On a:

$$\forall x \in \mathbb{R}, \quad \cosh(x) - \sinh(x) = e^{-x} \xrightarrow[x \to +\infty]{} 0^+$$

Donc les graphes des deux fonctions se rapprochent l'un de l'autre arbitrairement près lorsque $x \to +\infty$, et le graphe de cosh est au-dessus de celui de sinh.

• Tangente au graphe de sinh à l'origine et position relative.

Cette étude est aussi triviale, il s'agira d'étudier $g: x \in \mathbb{R}_+ \mapsto \sinh(x) - x$, de remarquer sa dérivabilité d'en étudier les variations puis de conclure, en précisant que cette étude révèle l'inflexion du graphe de sinh en 0.

- 2 Semaine 7
- 3 Semaine 8
- 4 Semaine 9
- 5 Semaine 10
- 6 Semaine 11
- 7 Semaine 12
- 8 Semaine 13
- 9 Semaine 14
- 10 Semaine 15
- 11 Semaine 16

Aucune démo de ce document n'apparait au programme de Khôlle T_T

12 Calcul de $\int_0^{2\pi} e^{imt} dt$ en fonction de $m \in \mathbb{Z}$. En Déduire qu'une fonction polynomiale nulle sur un cercle centré en l'origine a tous ses coefficients nuls.

 $D\acute{e}monstration.$ Soit $m \in \mathbb{Z}$ fq. Calculons :

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt$$

Si $m \neq 0$:

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt &= \frac{1}{2\pi} \left[\frac{e^{mt}}{im} \right]_0^{2\pi} \\ &= \frac{1}{2\pi} \left(\frac{1}{im} - \frac{1}{im} \right) = 0 \end{split}$$

Si m=0:

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt = \frac{1}{2\pi} \int_0^{2\pi} dt = \frac{2\pi}{2\pi} = 1$$

Donc

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt = \begin{cases} 1 \text{ si } m = 0\\ 0 \text{ si } m \neq 0 \end{cases}$$

Soit $n \in \mathbb{N}$ fq

Soient $(a_0, ..., a_n) \in \mathbb{C}^{n+1}$ les coefficients de $P(z) = \sum_{k=0}^n a_k z^k$, et $s \in \mathbb{Z}$, et $r \in \mathbb{R}_+^*$ fq. tels que P soit nulle lorsqu'elle est évaluée sur $\mathscr{C}(0, r)$

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} P(re^{it}) e^{-imt} dt &= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{k=0}^n a_k (re^{it})^k \right) e^{-imt} dt \\ &= \sum_{k=0}^n a_k r^k \underbrace{\int_0^{2\pi} \frac{e^{it(k-s)}}{2\pi} dt}_{L} \end{split}$$

On remarque que:

— Si
$$s \notin [[0, n]], \{k \in [[0, n]] \mid k = s\} = \emptyset$$
, Donc

$$\sum_{k \in [[0,n]]} a_k s^k I_k = \sum_{\substack{k \in [[0,n]]\\k-s}} a_k r^k = 0$$

— Si
$$s \in [[0, n]], \{k \in [[0, n]] \mid k = s\} = s$$
, Donc

$$\sum_{k \in [[0,n]]} a_k s^k I_k = \sum_{\substack{k \in [[0,n]]\\k-s}} a_k s^k = a_s r^s$$

Or, puisque P s'annule sur le cercle de rayon r et de centre 0, $\mathcal{C}(0,r)$, ces sommes sont aussi nulles. On en déduit, en particularisant pour un $s \in [[0,n]]$ fixé quelconque que :

$$\sum_{k \in [[0,n]]} a_k s^k I_k = a_s r^s = 0 \implies a_s = 0$$

Donc

$$(\exists r \in \mathbb{R}^*_{\perp} : \forall \theta \in \mathbb{R}, P(re^{i\theta}) = 0) \implies \forall s \in [[0, n]]$$

Pour la preuve réciproque, soit $n \in \mathbb{N}$ fq. Soient $(a_0,...,a_n) \in \{0\}^{n+1}$ les coefficients nuls de la fonction polynomiale $P \in \mathbb{C}[z]$ définie pour tout $z \in \mathbb{C}$.

En remarquant que $\forall z \in \mathbb{C}, P(z) = 0$, puisque n'importe quel cercle centré en 0 est un sous ensemble de \mathbb{C} , $\exists r \in \mathbb{R}_+^* : \forall z \in \mathscr{C}(0,r), P(z) = 0$.

13 Preuve de la Linéarité de la dérivation d'une fonction complexe

Démonstration. Définissons les fonctions f_r etc. comme les parties réelles et imaginaires de f Soient $(f,g) \in \mathcal{F}(I,\mathbb{C})^2$, $(\alpha,\beta) \in \mathbb{C}^2$ fixés quelconques.

$$f_r = \operatorname{Re}(f), f_i = \operatorname{Im}(f)$$
 $g_r = \operatorname{Re}(f), g_i = \operatorname{Im}(g)$
 $\alpha_r = \operatorname{Re}(\alpha), \alpha_i = \operatorname{Im}(f)$ $\beta_r = \operatorname{Re}(f), \beta_i = \operatorname{Im}(g)$

$$\operatorname{Re}(\alpha f + \beta g) = \operatorname{Re}((\alpha_r + i\alpha_i)(f_r + if_i) + (\beta_r + i\beta_i)(g_r + ig_i))$$

$$= \underbrace{\alpha_r f_r + \beta_r g_r - \alpha_i f_i - \beta_i g_i}_{\text{Car}(f,g) \in \mathcal{D}^1(I,\mathbb{R})^2}$$

$$\xrightarrow{\operatorname{car}(f,g) \in \mathcal{D}^1(I,\mathbb{R})^2}$$

Donc, selon le théorème de stabilité par combinaison linéaire des fonctions à valeurs réelles, $\operatorname{Re}(\alpha f + \beta g) \in \mathcal{D}^1(I,\mathbb{R})$ et $\left(\operatorname{Re}(\alpha f + \beta g)\right)' = \alpha_r f'_r + \beta_r g'_r - \alpha_i f'_i - \beta_i g'_i$ On montre de même que $\operatorname{Im}(\alpha f + \beta g) \in \mathcal{D}^1(I,\mathbb{R})$ et $\left(\alpha f + \beta g\right)' = \alpha_r f'_i + \alpha f'_r + \beta_r g'_i + \beta_i g'_r$

$$(\alpha f + \beta g)' = (\alpha_r f_r' + \beta_r g_r' - \alpha_i f_i' - \beta_i g_i') + i(\alpha_r f_i' + \alpha f_r' + \beta_r g_i' + \beta_i g_r')$$

$$= \alpha_r (f_r' + i f_i') + \beta_r (g_r' + i g_i') + \alpha_i \underbrace{(-f_i' + i f_r')}_{i(f_r' + i f_i')} + \beta_i \underbrace{(-g_i' + i g_i')}_{i(g_r' + i g_i')}$$

$$= \alpha f' + \beta g'$$

14 Dérivée composée d'une fonction à valeurs complexes

 $D\acute{e}monstration$. Soient $f \in \mathcal{D}^1(J,\mathbb{C})$ et $h \in \mathcal{D}^1(I,J)$ (I et J sont deux intervalles réels) fixés quelconques. Notons f_r et f_i respectivement la partie réelle et imaginaire de f.

$$\left. \begin{array}{l} h \in \mathcal{D}^1(I,J) \\ f_r \in \mathcal{D}^1(J,\mathbb{R}), \ \mathrm{car} \ f \in \mathcal{D}^1(J,\mathbb{C}) \end{array} \right\} \implies f_r \circ h \in \mathcal{D}^1(I,\mathbb{R})$$

On montre de même que $f_i \circ h \in \mathcal{D}^1(I, \mathbb{R})$ donc $f \circ h \in \mathcal{D}^1(I, \mathbb{C})$. De plus,

$$(f \circ h)' = (f_r \circ h)' + i(f_i \circ h)'$$

$$= (f_r' \circ h) \times h' + i((f_i' \circ h) \times h')$$

$$= (f_r' \circ h + if_i' \circ h) \times h' = (f' \circ h) \times h'$$

15 Caractérisation des fonctions dérivables de dérivée nulle sur un intervalle

 $D\acute{e}monstration$. Soit $f \in \mathcal{D}^1(I,\mathbb{C})$ où I est un intervalle réel; Posons $f_r = \text{Re}(f)$ et $f_i = \text{Im}(f)$.

$$\forall t \in I, f'(t) = 0 \iff \forall t \in I, f'_r(t) + if'_i(t) = 0$$

$$\iff \begin{cases} \forall t \in I, f'_r(t) = 0 \\ \forall t \in I, f'_i(t) = 0 \end{cases}$$

$$\iff \begin{cases} \exists \lambda_r \in \mathbb{R} : \forall t \in I, f_r(t) = \lambda_r \\ \exists \lambda_i \in \mathbb{R} : \forall t \in I, f_i(t) = \lambda_i \end{cases}$$

$$\iff \exists \lambda \in \mathbb{C} : \forall t \in I, f(t) = \lambda$$

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}.\tag{1}$$

16 Preuve de l'expression des solutions réelles des EDL homogènes d'ordre 2 à coefficients constants réels dans le cas $\Delta < 0$ (en admettant la connaissance de l'expression des solutions à valeurs complexes des EDLH2 à coeff. constants).

Démonstration. Notons $S_{H,\mathbb{C}}$ et $S_{H,\mathbb{R}}$ les ensembles des solutions complexes et réelles de l'équation différentielle, puisque nous nous plaçons dans le cas $\Delta=0$ et $\alpha\pm i\beta$ les deux racines complexes conjuguées.

$$S_{H,\mathbb{C}} = \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{C} \\ t \mapsto \lambda e^{(\alpha + i\beta)t} + \mu e^{(\alpha - i\beta)t} \end{array} \middle| (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

Montrons que $\forall f \in \mathcal{S}_{H,\mathbb{C}}, \operatorname{Re}(f) \in \mathcal{S}_{H,\mathbb{R}}$ Soit $f \in \mathcal{S}_{H,\mathbb{C}}$ fq.

$$f \in \mathcal{D}^2(\mathbb{R}, \mathbb{C}) \implies \operatorname{Re}(f) \in \mathcal{D}^2(\mathbb{R}, \mathbb{R})$$

Et, de plus, par morphisme additif de Re

$$a_2 \text{Re}(f)'' + a_1 \text{Re}(f)' + a_0 \text{Re}(f) = \text{Re}(a_2 f'' + a_1 f' + a_0 f) = 0$$

D'où, avec $f: t \mapsto e^{(\alpha+i\beta)t}$; $\operatorname{Re}(f(t)) = \operatorname{Re}(e^{(\alpha+i\beta)t}) = e^{\alpha t} \cos(\beta t)$. Qui appartient donc à $\mathcal{S}_{H,\mathbb{R}}$ En suivant le même raisonnement pour $\operatorname{Im}(f)$, $(t \mapsto e^{\alpha} \sin(\beta t)) \in \mathcal{S}_{H,\mathbb{R}}$

Ainsi, par combinaison linéaire (qui se base sur le principe de superposition),

$$\left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ t \mapsto \lambda e^{\alpha t} \cos(\beta t) + \mu e^{\alpha t} \sin(\beta t) \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right\} \subset \mathcal{S}_{H, \mathbb{R}}$$

Réciproquement, soit $f \in \mathcal{S}_{H,\mathbb{R}}$ fq. Puisque $\mathbb{R} \subset \mathbb{C}$, $f \in \mathcal{S}_{H,\mathbb{C}}$.

$$\exists (a,b) \in \mathbb{C}^2 : f \mid \begin{array}{c} \mathbb{R} \to \mathbb{C} \\ t \mapsto ae^{(\alpha+i\beta)t} + be^{(\alpha-i\beta)t} \end{array}$$

Or, puisque toutes les valeurs de f sont réelles, en notant (a_r, a_i, b_r, b_i) les parties réelles et imaginaires respectives de a et b.

$$\forall t \in \mathbb{R}, f(t) = \operatorname{Re}(f(t))$$

$$= \operatorname{Re}(ae^{(\alpha+i\beta)t} + be^{(\alpha-i\beta)t})$$

$$= \operatorname{Re}((a_r + ia_i)e^{(\alpha+i\beta)t} + (b_r + ib_i)e^{(\alpha-i\beta)t})$$

$$= a_r \cos(\beta t)e^{\alpha} - a_i \sin(\beta t)e^{\alpha} + b_r \cos(\beta t)e^{\alpha} + b_i \sin(\beta t)e^{\alpha}$$

$$= (a_r + b_r)\cos(\beta t)e^{\alpha} + (b_i - a_i)\sin(\beta t)e^{\alpha}$$

Ainsi,

$$f \in \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ t \mapsto \lambda e^{\alpha t} \cos(\beta t) + \mu e^{\alpha t} \sin(\beta t) \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

Ce qui conclut la preuve par double inclu

Existence et unicité d'une solution au problème de 17 Cauchy pour les EDL d'ordre 2 à coefficients constants et second membre continu sur I (cas complexe puis cas réel).

Considérons le problème de Cauchy suivant :

Insiderons le problème de Cauchy suivant :
$$\begin{cases} a_2y'' + a_1y' + a_0y = b \text{ sur } J \\ y(t_0) = \alpha_0 \\ y'(t_0) = \alpha_1 \end{cases}$$
 où $(\alpha_0, \alpha_1) \in \mathbb{K}^2, t_0 \in J, (a_0, a_1, a_2) \in \mathbb{K}^2 \times \mathbb{K}^*, b \in \mathcal{F}(J, \mathbb{K})$

Si b est continu sur J, alors ce problème de Cauchy admet une unique solution définie sur J.

Démonstration. Cas 1. $\mathbb{K} = \mathbb{C}$

Nous savons que sous l'hyphothèse de continuité de b sur J, les solutions de (EDL2) définies sur J constituent le plan affine S:

$$S = \left\{ \lambda f_1 + \mu f_2 + s | (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

où s est une solution particulière de (EDL2), (f_1, f_2) sont deux solutions de (EDLH2) qui engendrent S_h . On a:

$$f: J \to \mathbb{C} \text{ est sol. du pb de Cauchy} \iff \begin{cases} f \text{ sol de (EDL2) sur } J \\ f(t_0) = \alpha_0 \\ f'(t_0) = \alpha_1 \end{cases}$$

$$\iff \begin{cases} f \in S \\ f(t_0) = \alpha_0 \\ f'(t_0) = \alpha_1 \end{cases}$$

$$\iff \exists (\lambda, \mu) \in \mathbb{C}^2 : \begin{cases} f = \lambda f_1 + \mu f_2 + s \\ \lambda f_1(t_0) + \mu f_2(t_0) + s(t_0) = \alpha_0 \\ \lambda f_1'(t_0) + \mu f_2'(t_0) + s'(t_0) = \alpha_1 \end{cases}$$

$$\iff \exists (\lambda, \mu) \in \mathbb{C}^2 : \begin{cases} f = \lambda f_1 + \mu f_2 + s \\ \lambda f_1(t_0) + \mu f_2'(t_0) = \alpha_0 - s(t_0) \\ \lambda f_1'(t_0) + \mu f_2'(t_0) = \alpha_1 - s'(t_0) \end{cases}$$

On en déduit donc que (λ, μ) doit être solution d'un système linéaire (2, 2). On a une unique solution si et seulement si les déterminant de ce système est nul.

Explicitons alors le déterminant de ce système, que l'on notera D.

$$D = \begin{vmatrix} f_1(t_0) & f_2(t_0) \\ f'_1(t_0) & f'_2(t_0) \end{vmatrix} = f_1(t_0) \cdot f'_2(t_0) - f_2(t_0) \cdot f'_1(t_0)$$

Notons Δ le discriminant de l'équation caractéristique de (EDL2) $(a_2r^2 + a_1r^1 + a_0 = 0)$. On distingue alors deux cas selon la nullité ou non de Δ . Traitons d'abord le cas $\Delta \neq 0$. On peut choisir :

$$f_1(t_0) = e^{r_1 t_0}$$
 et $f_2(t_0) = e^{r_2 t_0}$
 $f'_1(t_0) = r_1 e^{r_1 t_0}$ et $f'_2(t_0) = r_2 e^{r_2 t_0}$

Donc (en sachant que $\Delta \neq 0 \Rightarrow r_1 \neq r_2$):

$$D = e^{r_1 t_0} \cdot r_2 e^{r_2 t_0} - r_1 e^{r_1 t_0} \cdot e^{r_2 t_0} = (r_2 - r_1) \cdot e^{r_1 t_0 + r_2 t_0} \neq 0$$

Dans le deuxième cas, on a $\Delta = 0$; on peut alors prendre :

$$f_1(t_0) = e^{r_0 t_0}$$
 et $f_2(t_0) = t_0 e^{r_0 t_0}$

Ainsi:

$$D = e^{r_0 t_0} \left(r_0 t_0 e^{r_0 t_0} + e^{r_0 t_0} \right) - r_0 e^{r_0 t_0} \times t_0 e^{r_0 t_0} = e^{2r_0 t_0} \neq 0$$

On remarque alors que, dans les deux cas, $D \neq 0$, donc le système (2,2) étudié admet une unique solution, donc il existe

un unique couple (λ, μ) le vérifiant d'où l'unicité et existence d'une solution au problème de Cauchy.

Cas 2. $\mathbb{K} = \mathbb{R}$

$$(a_0, a_1, a_2) \in \mathbb{R}^2 \times \mathbb{R}^*, (\alpha_0, \alpha_1) \in \mathbb{R}^2, b \in C^0(J, \mathbb{R})$$

Existence : Puisque $\mathbb{R} \subset \mathbb{C}$, le problème de Cauchy admet, dans \mathbb{R} , une solution à valeurs complexes g. Posons f = Re(g) et montrons que f est une solution réelle du problème de Cauchy.

- $\star q \in \mathcal{D}^2(J,\mathbb{C}) \text{ donc } f \in \mathcal{D}^2(J,\mathbb{R})$
- $\star g$ vérifie $a_2g'' + a_1g' + a_0g = b$ sur J donc en prenant $\text{Re}(\cdot)$:

$$\operatorname{Re}(a_2 g'' + a_1 g' + a_0 g = b) = \operatorname{Re}(b) \iff a_2 \operatorname{Re}(g'') + a_1 \operatorname{Re}(g') + a_0 \operatorname{Re}(g) = b$$

$$\iff a_2 f'' + a_1 f' + a_0 f = b \operatorname{sur} J$$

- $\star f(t_0 = \operatorname{Re}(g(t_0)) = \operatorname{Re}(\alpha_0) = \alpha_0$
- $\star f'(t_0 = \text{Re}(g(t_0))' = \text{Re}(g'(t_0)) = \text{Re}(\alpha_1) = \alpha_1$

Donc f est une solution réelle définie sur J au problème de Cauchy.

Unicité : Soient f_1 et f_2 deux fonctions à valeurs réelles solutions du problème de Cauchy ci-dessus fixées quelconques : puisque $\mathbb{R} \subset \mathbb{C}$, f_1 et f_2 sont des fonctions à valeurs dans \mathbb{C} solutions du même problème de Cauchy ; or il y a unicité de la solution au problème de Cauchy dans les fonctions à valeurs complexes, donc $f_1 = f_2$ dans $\mathcal{F}(J, \mathbb{C})$, donc $f_1 = f_2$ dans $\mathcal{F}(J, \mathbb{R})$.

Soient $(a,b) \in \mathbb{C}^2$, f et g les solutions, définies sur \mathbb{R} à valeurs dans \mathbb{C} , des problèmes de Cauchy suivants :

$$\begin{cases} y'' + ay' + by = 0 \\ y(3) = 1 \\ y'(3) = 0 \end{cases} \text{ et } \begin{cases} y'' + ay' + by = 0 \\ y(3) = 0 \\ y'(3) = 1 \end{cases}$$

Comment s'exprime la solution définie sur $\mathbb R$ de $\begin{cases} y'' + ay' + by = 0 \\ y(3) = \alpha & \text{pour } (\alpha, \beta) \in \mathbb R^2 \text{ fixés ?} \\ y'(3) = \beta \end{cases}$

Peut-on affirmer que le plan vectoriel des solutions définies sur $\mathbb R$ à valeurs dans $\mathbb C$ de y'' + ay' + by = 0 est $\{\lambda \cdot f + \mu \cdot g | (\lambda, \mu) \in \mathbb C^2\}$

Démonstration. La solution s'exprime simplement comme combinaison linéaire de f et g, plus précisément, la combinaison linéaire en α et β . En effet, soient de tels scalaires, et soient f et g de telles solutions, on a :

$$(\alpha \cdot f + \beta \cdot g)'' + a(\alpha \cdot f + \beta \cdot g)' + b(\alpha \cdot f + \beta \cdot g) = 0$$
, par définition des espaces vectoriels.

Et de même, $(\alpha \cdot f + \beta \cdot g)'(3) = \alpha \cdot f'(3) + \beta \cdot g'(3) = \alpha$, et $(\alpha \cdot f + \beta \cdot g)''(3) = \alpha \cdot f''(3) + \beta \cdot g''(3) = \beta$.

Ce qui suffit par unicité des solutions (de la donc) d'un problème de Cauchy dans le cadre du théorème du cours.

Pour ce qui est du plan vectoriel des solutions, noté Ω , notons aussi Φ l'ensemble proposé. L'inclusion $\Phi \subset \Omega$ est triviale par propriété de linéarité des espaces vectoriels. Finalement, pour $\Omega \subset \Phi$, soit $\omega \in \Omega$, forcément, ω vérifie l' EDL_2 , mais aussi des conditions de Cauchy bien que celles-ci soient non-spécifiées, ainsi posons $\omega'(3) = \delta$ et $\omega''(3) = \theta$, donc en particulier, $\omega = \delta \cdot f + \theta \cdot g$, d'où l'égalité par double inclusion.