Homework 1 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

2023/9/12

1. Let $R = \{f(x) \mid x \in X\}$ and $r = \sup R$. Then, for any β which is upper bound of R, $r \le \beta$. Thus, $a + \beta$ is an upper bound of $R' = \{a + f(x) \mid x \in X\}$.

Assume there exists $\beta' = \sup R'$ s.t. $\beta' < a + r$. Since $\beta' \ge a + f(x)$, $\forall x \in X \Rightarrow \beta' - a \ge f(x)$, $\forall x \in X$. Therefore, $\beta' - a$ is an upper bound of R and it should greater or equal to r. This causes contradiction to the assumption.

Thus, for every upper bound f R', it is greater or equal to a + r.

That is $\sup\{a + f(x) \mid x \in X\} = a + \{f(x) \mid x \in X\}$

2. let a be greastest lower bound of $\{f(x) \mid x \in X\}$, b be greastest lower bound of $\{f(x) \mid x \in X\}$. That is $a \le f(x) \forall x \in X$ and $b \le g(x) \forall x \in X$. Then, a + b is an lower bound of $\{f(x) + g(x) \mid x \in X\}$. Therefore $a + b \le \inf\{f(x) + g(x) \mid x \in X\}$. In other world, $\inf\{f(x) \mid x \in X\} + \inf\{g(x) \mid x \in X\} \le \inf\{f(x) + g(x) \mid x \in X\}$

Using the same way we can prove $\sup\{f(x) + g(x) \mid x \in X\} \le \sup\{f(x) \mid x \in X\} + \sup\{g(x) \mid x \in X\}$ Then, we want to show $\inf S \le \sup S$ for all set S:

For a upper bound of S " β " and lower bound of S " α ". For any element $x \in S$, $\alpha \le x \le \beta$. Then, inf $S \le x \le \sup S$ for all $x \in S$

Then, $\inf\{f(x) \mid x \in X\} + \inf\{g(x) \mid x \in X\} \le \inf\{f(x) + g(x) \mid x \in X\} \le \sup\{f(x) + g(x) \mid x \in X\} \le \sup\{f(x) \mid x \in X\} + \sup\{g(x) \mid x \in X\}$

Ex. Let $f(x) = \sin(x)$, $g(x) = \cos(x)$, $X = (0, 2\pi)$, then $-2 < -\sqrt{2} < 2$.

3. Proof Bernoulli's Inequality and its Generalization of exponent

Statement. For x > 0

$$(1+x)^n \ge 1 + nx, \ \forall n \in \mathbb{N}$$

 $(1+x)^r \le 1 + rx, \ \forall 0 \le r \le 1$

Proof. For $n \in \mathbb{N}$

(1)
$$(1+x)^1 \ge 1+x$$

(2)
$$(1+x)^2 = 1 + 2x + x^2 \ge 1 + 2x$$

Assume n = k is true

(k+1)
$$(1+x)^{k+1} = (1+x)^k (1+x) \ge (1+kx)(1+x) = 1+kx+x+kx^2 \ge 1+(k+1)x$$
 is true

Then, the first line is proof by math induction.

Since
$$((1+x)^r)' = (r-1)(1+x)^{r-1} \le r = (1+rx)'$$
, for all $0 \le r \le 1$ and $(1+x)^r = 1+rx$ when $x = 0$, $(1+x)^r \le 1+rx$, for all $x > 0$ and $0 \le r \le 1$.

Let $A = \{x \mid x \in \mathbb{R}, \ b^x < y\}.$

Let b=1+c with $c\in\mathbb{R},\ c>0$, then $(1+c)^n\geq 1+nc$ with all $n\in N$. Then, we can find some $n\in\mathbb{N}$ s.t. $c>\frac{y}{n}$. Therefore, $b^n=(1+c)^n\geq 1+nc>y$ and n is upper bound of A. Thus, by completeness of \mathbb{R} , there exists $\beta\in\mathbb{R}$ be $\sup A$.

If $b^{\beta} < y$, then assume $\beta + \frac{1}{n} \in A$. Thus $b^{\beta + \frac{1}{n}} = b^{\beta} \cdot b^{\frac{1}{n}} > b^{\beta} \cdot 1 = b^{\beta}$ for all $n \in \mathbb{N}$. Then, we want to proof $b^{\beta + \frac{1}{n}} < y$, thus we check the inequality $b^{\beta + \frac{1}{n}} < y$ for some $n \in \mathbb{N}$.

Proof. $b^{\beta+\frac{1}{n}} = b^{\beta}b^{\frac{1}{n}}$. Since $b^{\frac{1}{n}} = (1+c)^{\frac{1}{n}} \le 1 + \frac{1}{n}c$ and $\frac{y}{b^{\beta}}$ is a positive real number which is greater than 1, by Archimedeam Property there exists some $n \in \mathbb{N}$ s.t. $n > \frac{c \cdot b^{\beta}}{y - b^{\beta}} > 0$. In the other world $1 + \frac{c}{n} < \frac{y}{b^{\beta}}$. Therefore, $b^{\beta+\frac{1}{n}} < y$.

Thus, $b^{\beta+\frac{1}{n}} \in A \Rightarrow b^{\beta}$ is not a upper bound of A. Therefore, b^{β} should greater or equal to y.

If $b^{\beta} > y$, assume exists $n \in \mathbb{N}$ s.t. $b^{\beta - \frac{1}{n}} > y$. Then, $b^{\beta - \frac{1}{n}} = \frac{b^{\beta}}{b^{\frac{1}{n}}} \ge \frac{b^{\beta}}{1 + \frac{1}{n}c}$. And since $\frac{b^{\beta}}{y} - 1$ is a

positive real number by $b^{\beta} > y$, there exists some $n \in \mathbb{R}$ s.t. $\frac{c}{n} > \frac{b^{\beta}}{y} - 1$ by Archimedeam Property.

Therefore, b^{β} is not the least upper bound of A(contradiction).

These two line implies the supremun of A, β , is the unique real number s.t. $b^{\beta} = y$ since the supremun is unique.