Notes on SSE for Rydberg

Isaac De Vlugt

March 5, 2020

1 Introduction

This is motivated by our need to make an SSE for the Rydberg hamiltonian.

$$H = -\Omega \sum_{i=1}^{N} \sigma_i^x - h \sum_{i=1}^{n} n_i - \sum_{\langle i,j \rangle} V_{ij} n_i n_j$$

Here, n_i is simply an occupation number (i.e. either 0 or 1). We can therefore trivially map this to spin- $\frac{1}{2}$ with $n_i = \frac{1}{2} (\sigma_i^z + 1)$. The hamiltonian then becomes the following.

$$H = -\Omega \sum_{i=1}^{N} \sigma_{i}^{x} - \frac{h}{2} \sum_{i=1}^{N} (\sigma_{i}^{z} + 1) - \sum_{\langle i,j \rangle} V_{ij} (\sigma_{i}^{z} + 1) (\sigma_{j}^{z} + 1)$$

$$= -\Omega \sum_{i=1}^{N} \sigma_{i}^{x} - \frac{h}{2} \sum_{i=1}^{N} (\sigma_{i}^{z} + 1) - \sum_{\langle i,j \rangle} V_{ij} (\sigma_{i}^{z} \sigma_{j}^{z} + \sigma_{i}^{z} + \sigma_{j}^{z} + 1)$$

This is extremely similar to a LTFIM (general J_{ij} for all pairs, assuming $J_{ij} > 0 \quad \forall \quad i, j$ as in the Rydberg case since $V_{ij} = \frac{C}{R_{ij}^6}$).

$$H = -\Omega \sum_{i=1}^{N} \sigma_i^x - h \sum_{i=1}^{N} \sigma_i^z + \sum_{\langle i,j \rangle} J_{ij} \sigma_i^z \sigma_j^z \qquad \text{LTFIM}$$

In the SSE formalism, we can decompose the Rydberg hamiltonian similarily to how we would for a regular TFIM as follows. Note that we will ignore the shift of Nh/2 in the Rydberg hamiltonian. To calculate observables, this can simply be added back after the fact.

$$H_{0,0} = \mathbb{1}$$

$$H_{-1,a} = \Omega \sigma_i^x$$

$$H_{0,a} = \frac{h}{2} (\sigma_i^z + \mathbb{1})$$

$$H_{1,a} = V_{ij} (\sigma_i^z \sigma_j^z + \sigma_i^z + \sigma_j^z + \mathbb{1})$$

Also note that in the vanilla TFIM SSE formalism, the decomposition of the hamiltonian had $H_{0,a} = \Omega$ instead, which was convenient simply for cluster forming / flipping in the off-diagonal update procedure since the only non-zero matrix element of $H_{0,a}$ and $H_{-1,a}$ are both equal to Ω . In the Rydberg hamiltonian, their only non-zero matrix element is 2h and Ω , respectively. It's not obvious to me how to make these matrix elements equal to each other... I think it's not possible unless some other decomposition of the hamiltonian is thought of... Even then I'm not sure that it is possible.

$$\langle \uparrow | H_{-1,a} | \downarrow \rangle = \langle \downarrow | H_{-1,a} | \uparrow \rangle = \Omega$$
$$\langle \uparrow | H_{0,a} | \uparrow \rangle = h$$
$$\langle \uparrow \uparrow | H_{1,a} | \uparrow \uparrow \rangle = 4V_{ij}$$

All other matrix elements are zero. Notice that there are two less non-zero matrix elements that in the regular TFIM SSE formalism. So, the importance sampling of operators should be an easier task.

2 Diagonal Updates (Finite T)

The diagonal update proceeds similarly to that for the regular TFIM. Traverse the list of all M operators in the propagatin sequence, ignore off-diagonal operators (still only the $H_{-1,a}$ operator), and perform this MH procedure.

1. If a diagonal operator is encountered $(H_{0,a} \text{ or } H_{1,a})$, remove it with probability

$$P = \min \left(\frac{M - n + 1}{\beta \left[Nh + 4 \sum_{\langle i,j \rangle} V_{ij} \right]}, 1 \right)$$

- 2. If the null operator, $H_{0,0}$, is encountered, insert a diagonal operator with the following procedure.
 - Decide whether or not to insert a diagonal operator with the probability

$$P = \min \left(\frac{\beta \left[Nh + 4 \sum_{\langle i,j \rangle} V_{ij} \right]}{M - n}, 1 \right).$$

• If it was decided to insert a diagonal operator, choose the operator to insert with probabilities

$$P_{H_{0,a}} = \frac{Nh}{Nh + 4\sum_{\langle i,j\rangle} V_{ij}},$$

$$P_{H_{1,a}} = \frac{4\sum_{\langle i,j\rangle} V_{ij}}{Nh + 4\sum_{\langle i,j\rangle} V_{ij}}.$$

• If a site operator is chosen (i.e. it was decided to insert $H_{0,a}$), then choose a random site (probability 1/N) to put the operator. If the chosen site is not \uparrow , reject the insertion altogether.

If a bond operator is chosen $(H_{1,a})$, then choose a random bond (k,l) to put the operator with probability

$$P = \frac{V_{kl}}{\sum_{\langle i,j\rangle} V_{ij}}.$$

If the chosen bond has spins that are anti-parallel or both spin-down, reject the insertion altogether.

3 Off-Diagonal Updates and Forming Loops

4 Off-Diagonal Updates and Forming Loops

4.1 Off-Diagonal Updates

Diagonal updates are performed by forming loops in the D+1 simulation cell and proposing that the spins in each loop are flipped with a certain probability (thus changing the diagonal operators in each loop to off-diagonal ones). We will discuss loop-forming for the Rydberg hamiltonian shortly.

Firstly, as with the vanilla TFIM SSE QMC formalism, spins associated to bond operators, $H_{1,a}$, cannot ever be flipped since there are no corresponding off-diagonal bond operators. The spins we are allowed to flip in the simulation cell are those associated to site operators since we have a diagonal site operator, $H_{0,a}$, and an off-diagonal site operator, $H_{-1,a}$. However, the big difference between the vanilla TFIM and Rydberg hamiltonian is that the weights associated to the diagonal and off-diagonal site operators are not all the same. Thus, constructed loops cannot be flipped with probability 1/2 (simple SW flipping procedure).

Once the loops have been formed (more later on how they're formed), the new configuration of spins after the proposed flip of one loop will have a weight W(x'). This weight is proportional to the product of the matrix elements, $B^i_{\sigma\sigma'}$, within this loop of which there are n_l matrix elements.

$$W(x') \propto \prod_{i=1}^{n_l} B_{\sigma\sigma'}^i$$

If there are $N_{H_{-1,a}}^f$ off-diagonal operators in the flipped loop and $N_{H_{0,a}}^f$ diagonal operators in the flipped loop, then

$$W(x') \propto \Omega^{N_{H_{-1,a}}^f} (2h)^{N_{H_{0,a}}^f}.$$

If there are $N_{H_{-1,a}}$ off-diagonal operators in the flipped loop and $N_{H_{0,a}}$ diagonal operators in the loop (pre-flip), then the weight of this configuration is

$$W(x) \propto \Omega^{N_{H_{-1,a}}} (2h)^{N_{H_{0,a}}}.$$

Note that $N_{H_{-1,a}} + N_{H_{0,a}} = N_{H_{-1,a}}^f + N_{H_{0,a}}^f = n_l$. Thus, the flipped loop is accepted with probability

$$P_{flip} = \frac{W(x')}{W(x') + W(x)}$$

$$= \frac{\Omega^{N_{H_{-1,a}}^{f}}(2h)^{N_{H_{0,a}}^{f}}}{\Omega^{N_{H_{-1,a}}^{f}}(2h)^{N_{H_{0,a}}^{f}} + \Omega^{N_{H_{-1,a}}}(2h)^{N_{H_{0,a}}}}$$

Note that in the case of $\Omega = 2h$ (the vanilla TFIM case),

$$P_{flip} = \frac{\Omega^{N_{H_{-1,a}}^f + N_{H_{0,a}}^f}}{\Omega^{N_{H_{-1,a}}^f + N_{H_{0,a}}^f} + \Omega^{N_{H_{-1,a}} + N_{H_{0,a}}}}$$

$$= \frac{\Omega^{n_l}}{\Omega^{n_l} + \Omega^{n_l}}$$

$$= \frac{1}{2},$$

and we recover the simple SW flipping procedure.

4.2 Forming Loops

We just demonstrated what to do when loops in the D+1 simulation cell are formed. Flipping formed loops has the dual effect of sampling the off-diagonal and diagonal site operators, $H_{0,a}$ and $H_{-1,a}$, and also sampling the spin configurations (as before with the vanilla TFIM SSE QMC). How do we go about forming the loops?

- 1. Loops are not allowed to be formed that, if flipped, give a matrix element that is zero.
- 2. Bond operators $H_{1,a}$ must still belong to one cluster as before with vanilla TFIM SSE QMC.

3.