123. 12RACUNAVANJE DULVINE LUKA RAVNINSKE KRIVULJE

brivilja C Jeodoua je

B paramet jedm.
$$\chi = \chi(t)$$
,

 $y = y(t) + \epsilon [a_1b]$

- Rije $\chi(t)$ i $\chi(t)$ i $\chi(t)$ i maju

neprehinute derivacije na

 χ_{a}
 χ_{b}
 $\chi_{$

Laugrangeov TSV.; za svaki i=1,..., n postoje & i n; takvi
dau vrijedi:
$$\Delta x_i = \hat{x} \left(\boldsymbol{\xi}_i \right) \Delta t_i$$

$$\Delta y_i = g(n_i)\Delta t_i$$
 $p_i \in \text{commit}(\Delta x_i) = \chi(t_i) - \chi(t_{i-1})$
 $\Delta y_i = g(n_i)\Delta t_i$
 $\Delta y_i = g(n_i)\Delta t_i$

Δy: = 4/1;)-4(+;-) D+ = +: - +:-Za približnu duljinu luka dobivano

$$s \approx \sum_{i=1}^{n} \sqrt{(\Delta \times_{i})^{2} + (\Delta y_{i})^{2}} = \sum_{i=1}^{n} \sqrt{(\chi(\xi_{i}))^{2} + (\dot{y}(\gamma_{i}))^{2}} \cdot \Delta + i$$

prijelazone na limes
$$(\Delta t \rightarrow 0)$$
 doblivano:

$$S = \lim_{\delta t \rightarrow 0} \frac{1}{1-1} \sqrt{(\hat{x}(\xi_i))^2 + (\hat{y}(\eta_i))^2} \Delta t_i = \int_{a}^{b} \sqrt{\hat{x}(t)^2 + \hat{y}(t)^2} dt$$

deferencijal luka brivulje $dS = \sqrt{x(t)^2 + y(t)^2} dt$ \rightarrow ako je brivuljo seedama eksplicitnom jednaolstom $y = y(x), X \in [x_A, X_B],$ utogu parametra t preusima varijabla $X \longrightarrow x_A = 7t = a$ $x_B \Rightarrow t = b$ $d \Rightarrow \sqrt{1 + y'(x)^2} dx$

Duljimu luka brivulje sada racumannos.

$$S = \int_{x_{A}}^{x_{B}} \sqrt{1 + y'(x)^{2}} dx$$

Polarine boordinate
$$r=r(Q)$$
, $Q \in [Q_A, Q_B]$

— ulogu parametro + preusima varijabla Q
 $x(Q)=r(Q)\cos Q$
 $ds=\int x'(Q)^2+y'(Q)^2 dQ$

$$4(4) = r(4) \sin 4$$

$$ds = \sqrt{[(r(4)\cos(4)^{2})^{2} + [(14)\sin(4)^{2}]^{2}}$$

$$ds = \sqrt{r'(4) \cdot \cos(4 - r(4)\sin(4 + (r'(4)\sin(4 + r(4)\cos(4)^{2}))^{2}} dc$$

 $ds = \int r(Q)^2 + r'(Q)^2 dQ$

Zhači, u polamin boord:
$$S = \int_{Q_A}^{Q_S} \sqrt{r(Q)^2 + r'(Q)^2} dQ$$

