

Understanding the Basics of LLMs

Working with Embeddings and Vectors

Storing and Searching Vectorized Data

Retrieval-Augmented Generation (RAG)

Using LangChain for Al Workflows

WHAT ARE LLMs?

- Advanced AI systems
- Generate human-like text
- Trained on vast textual data

LOCAL VS. CLOUD LLM

Local LLM

- High Privacy
- Full Control
- Higher Costs

Cloud LLM

- Easy Access
- Scalable
- Pay-As-You-Go

LLM PARAMETERS

TEMPERATURE IN LLM

The best way to learn coding is?

"The best way to learn to code is to practice a lot and follow online tutorials."

"The best way to learn coding is *to go*back in time and meet the

programming language inventors."

CONTEXT WINDOW AND TOKEN LIMITS

- Token Limit
- Input Token Limit
- Output Token Limit

Understanding the Basics of LLMs

Working with Embeddings and Vectors

Storing and Searching Vectorized Data

Retrieval-Augmented Generation (RAG)

Using LangChain for Al Workflows

VECTOR EMBEDDING

Converting data into mathematical space

HOW DOES VECTOR EMBEDDING WORK?

king – man + woman ≈ queen

Representation

Usage in

Models

DIFFERENT TYPES OF EMBEDDING

Word Embeddings

Contextual Word Embeddings

Document Embeddings

Transformer-Based Embeddings

Graph Embeddings

Image Embeddings

Knowledge Graph Embeddings

VECTOR SIMILARITY

- Dot Product
- Cosine Similarity
- Manhattan
- Euclidean Distance

VECTOR DIMENSIONALITY

- Each vector has N components
- Example: [age, height, weight] = 3D
- Higher dimensions = More features

Understanding the Basics of LLMs

Working with Embeddings and Vectors

Storing and Searching Vectorized Data

Retrieval-Augmented Generation (RAG)

Using LangChain for Al Workflows

VECTOR DATABASES

- Popular choices:
 - FAISS
 - Chroma DB
 - Pinecone

VECTOR SEARCH

- Converts data to numeric vectors
- Finds nearest neighbors
- Uses ANN for efficiency

- Real-world examples:
 - Netflix: "Similar shows"
 - E-commerce: "You may like"
 - Search: Understanding intent

Understanding the Basics of LLMs

Working with Embeddings and Vectors

Storing and Searching Vectorized Data

Retrieval-Augmented Generation (RAG)

Using LangChain for Al Workflows

RAG

- To create more accurate and informed Al responses RAG combines the power of:
 - Information Retrieval
 - Text Generation

- Key Benefits
 - Real-time information access
 - Up-to-date responses
 - Factual accuracy
 - Customizable knowledge sources

RAG

Understanding the Basics of LLMs

Working with Embeddings and Vectors

Storing and Searching Vectorized Data

Retrieval-Augmented Generation (RAG)

Using LangChain for Al Workflows

LANGCHAIN COMPONENTS

CHAIN TYPES

Extended

Parallel

Branching

Understanding the Basics of LLMs

Working with Embeddings and Vectors

Storing and Searching Vectorized Data

Retrieval-Augmented Generation (RAG)

Using LangChain for Al Workflows

PROMPT ENGINEERING

- Key aspects:
 - Clear instructions
 - Context setting
 - Constraints

