PROJECT 2: BINARY SIGNAL RECOVERY

Abstract. The scope of the present project is to illustrate how to recover a binary signal from noisy observations using Markov Chain Monte Carlo techniques.

Binary signal recovery via maximum likelihood estimate

Let $X \in \mathbb{R}^{m \times d}$ be a random sensing matrix with i.i.d. entries sampled from N(0,1). Let $\xi \in \mathbb{R}^m$ be a noise vector, independent of X, with i.i.d. entries sampled from N(0,1).

Take $\Theta = \{0,1\}^d$ (signal space) and let $\theta \in \Theta$ (signal) be chosen uniformly at random and be independent of the pair (X,ξ) .

The measurement vector $y \in \mathbb{R}^m$ is generated as

$$y = X\theta + \xi$$
.

We want to recover the unknown vector θ using Markov Chain Monte Carlo techniques, given the observations (X, y). We are interested in the case when d is large. We recover θ by finding the maximum likelihood estimate.

In the present setting, the maximum likelihood estimate of θ is given by the value $\hat{\theta} \in \Theta$ that maximizes the likelihood function

$$\mathcal{L}(X, y; \theta) = \frac{\exp\{-\frac{1}{2} \left(y - X\theta\right)^{\mathsf{T}} \left(y - X\theta\right)\}}{(2\pi)^{m/2}},$$

given the observations (X, y). Here the superscript T represents the transpose operation. We can equivalently cast the question in the form of a minimization problem. Indeed, the maximum likelihood estimate of θ is given by the value $\hat{\theta} \in \Theta$ that minimizes the function

$$\mathcal{H}(X, y; \theta) = (y - X\theta)^{\mathsf{T}} (y - X\theta),$$

given the observations (X, y).

Metropolis-Hastings algorithm

Let $\beta > 0$ be a fixed real parameter. We construct the Metropolis-Hastings (discrete-time) Markov chain on the state space Θ , with stationary distribution

$$\pi_{\beta}(\theta) = \frac{e^{-\beta \mathcal{H}(X,y;\theta)}}{Z_{\beta}}, \quad \text{with} \quad Z_{\beta} = \sum_{\theta \in \Theta} e^{-\beta \mathcal{H}(X,y;\theta)}.$$

Observe that the probability distribution π_{β} concentrates on the maximum likelihood estimate as $\beta \to +\infty$. Therefore, if we choose β sufficiently large and we run the chain for a large number N of steps, we can take the state visited at time N as the maximum likelihood estimate $\hat{\theta}$.

The following algorithm produces the first N steps $\theta_1, \dots, \theta_N$ of the Metropolis-Hasting chain on Θ .

Input: value of the parameter β ; number of steps N;

initial state $\bar{\theta} \in \Theta$:

Output: trajectory of the Metropolis-Hastings chain starting at $\bar{\theta}$;

Procedure

Step 1. Set $\theta_0 = \bar{\theta}$.

Step 2. For
$$t = 1, 2, ..., N - 1$$
:

1. pick i uniformly at random in $\{1, 2, \dots, d\}$;

2. let the proposed state be $\theta^* \in \Theta$, with entries

$$\theta^*(j) = \begin{cases} \theta_{t-1}(j) & \text{if } j \neq i \\ 1 - \theta_{t-1}(j) & \text{if } j = i \end{cases}$$
 $(j = 1, 2, \dots, d);$

3. set

$$\theta_t = \left\{ \begin{array}{ll} \theta^* & \text{ with probability } \min \left\{ 1, \frac{e^{-\beta \mathcal{H}(X,y;\theta^*)}}{e^{-\beta \mathcal{H}(X,y;\theta_{t-1})}} \right\} \\ \\ \theta_{t-1} & \text{ with probability } 1 - \min \left\{ 1, \frac{e^{-\beta \mathcal{H}(X,y;\theta^*)}}{e^{-\beta \mathcal{H}(X,y;\theta_{t-1})}} \right\}. \end{array} \right.$$

Project

By implementing the Metropolis-Hastings algorithm above, we determine an estimate $\hat{\theta}$ of a signal $\theta \in \Theta$ for any given realization of (X, y). To check the quality of our estimate, we analyze the mean squared error

$$\mathcal{E} = E\left((\hat{\theta} - \theta)^{\mathsf{T}}(\hat{\theta} - \theta)\right),\,$$

where the expectation is over θ and (X, y), for different values of m (number of measurements). Fix d = 10. For every $1 \le m \le 15$, compute the mean squared error. Plot \mathcal{E} as a function of m and comment on the characteristics of your plot. What is the minimum value of $\frac{m}{d}$ required to reliably recover θ ?

Remark. The mean squared error \mathcal{E} can be estimated by exploiting the law of large numbers. Let M denote the number of independent realizations of (θ, X, y) . Moreover, let $\hat{\theta}^{(j)}$ be the maximum likelihood estimate of the j-th signal $\theta^{(j)}$, obtained by the j-th run of the Metropolis-Hastings algorithm, given $(X^{(j)}, y^{(j)})$. If M is sufficiently large (use M of order 10^4), then we have the approximation

$$\mathcal{E} \approx \frac{1}{M} \sum_{j=1}^{M} \left(\hat{\theta}^{(j)} - \theta^{(j)} \right)^{\mathsf{T}} \left(\hat{\theta}^{(j)} - \theta^{(j)} \right).$$

References

- Levin D.A. and Peres Y., Markov chains and mixing times, Volume 107, American Mathematical Society, 2017
- [2] Ross S.M., Simulation, Academic Press, 2006