IN THE CLAIMS:

- Please cancel claims 10, 11, 12, 13 and 14, without prejudice.
- 1 1-9 cancelled.
- 10. Cancelled

1	11. (Currently Amended) The method as defined in claim 10 including the further steps
2	of:
3	(A) identifying a weakest cell in a fuel cell stack;
4	——————————————————————————————————————
5	- (C) dynamically determining a desired value for said output voltage;
6	(D) comparing a present value of said weakest cell output voltage with a de-
7	sired value;
8	——————————————————————————————————————
9	the fuel cell system required to substantially achieve said desired value for the output
10	voltage of the weakest cell; and
11	——————————————————————————————————————
12	eyele. A method of dynamically controlling and managing operating characteristics of a
13	fuel cell system, including the steps of:
14	(A) providing a DC-DC converter circuit having an input connection to re-
15	ceive the output of a fuel cell, and connected to place a load across the fuel cell, said DC-
16	DC converter circuit having internal switches that are operated at a duty cycle that is ad-
17	justable;
18	(B) providing a programmable controller that receives as an input, present and
19	stored values of one or more operating characteristics, said programmable controller also
20	being programmed to signal said DC-DC converter switches to adjust its duty cycle;

21	(C) dynamically determining a desired value for one or more operating charac-	
22	teristics of the fuel cell system, depending upon the operating conditions of the fuel cell	
23	system, including determining a minimum fuel cell output voltage as said desired value;	
24	(D) identifying a weakest cell in a fuel cell sack;	
25	(E) measuring the output voltage of the weakest cell;	
26		
27	(F) dynamically determining a desired value for said output voltage;	
28	(G) comparing a present value of said weakest cell output voltage with a de-	
29	sired value;	
30	(H) calculating a new duty cycle for the associated DC-DC converter within	
31	the fuel cell system required to substantially achieve said desired value for the output	
32	voltage of the weakest cell; and	
33	(I) signaling said DC-DC converter to adjust its duty cycle to said new duty	
34	cycle.	
1	12. Cancelled	
1	13. Cancelled	
1	14. Cancelled	
1	15. (Currently Amended) The method of controlling operating characteristics of a	
2	fuel cell as defined in claim 10 including the further steps of:	
3	A method of dynamically controlling and managing operating characteristics of a	
4	fuel cell system used to power a battery or an application device, including the steps of:	
5	(A) providing a DC-DC converter circuit having an input connection to re-	
6	ceive the output of a fuel cell, and connected to place a load across the fuel cell, said DC-	
7	DC converter circuit having internal switches that are operated at a duty cycle that is ad-	
8	iustable:	

9	(B) providing a programmable controller that receives as an input, present and			
10	stored values of one or more operating characteristics, said programmable controller also			
11	being programmed to signal said DC-DC converter switches to adjust its duty cycle;			
12	(C) dynamically determining a desired value for one or more operating charac-			
13	teristics of the fuel cell system, depending upon the operating conditions of the fuel cell			
14	system;			
15	$(A\underline{D})$ monitoring as said operating characteristic, the output power of the fuel			
16	cell stack;			
17	(\underline{BE}) dynamically determining as said desired value, the <u>an</u> output power of the			
18	fuel cell stack that does not exceed a maximum power needed by at least one of the bat-			
19	tery or the application device being powered by the system;			
20	$(\underline{\mathbf{CF}})$ comparing a present value of said output power with a desired value;			
21	$(\underline{\mathbf{DG}})$ calculating a new duty cycle for the associated DC-DC converter within			
22	the fuel cell system required to substantially achieve said desired value for the output			
23	power; and			
24	$(\underline{E}\underline{H})$ signaling the DC-DC converter to adjust its duty cycle to said new duty			
25	cycle.			
1	16. (Previously Presented) A method of controlling a fuel cell system, including the			
2	steps of:			
3	(A) dynamically determining desired values for a plurality of operating char-			
4	acteristics being monitored in a current mode of operation of a fuel cell system;			
5	(B) measuring each of said selected operating characteristics;			
6	(C) determining a duty cycle required to substantially achieve each individual			
7	desired value and storing each duty cycle;			
8	(D) comparing stored values and selecting the minimum duty cycle; and			
9	(E) using this duty cycle as the new duty cycle of the DC-DC converter circuit			
10	switches within said fuel cell system;			

- 1 17. (Previously Presented) The method as defined in claim 16 including the further
 2 step of:
 3 periodically repeating determining the desired values and the measurements and
- updating the duty cycle.
- 1 18. (Currently Amended) A method of measuring fuel cell concentration in a fuel cell system:
 - (A) identifying the weakest fuel cell in a fuel cell stack;

3

7

10

3

5

- (B) increasing the overall stack output current and varying the duty cycle of

 DC-DC converter circuit switches coupled to said fuel cell system until the voltage of the weakest fuel cell approaches zero;
- (C) measuring the stack output current as a limiting current;
- 8 (D) determining whether concentration is too high or too low, based on the 9 measured current value; and
 - (E) dosing additional fuel or water should a desired value not be met.
- 1 19. (Previously Presented) A method of dynamically controlling and managing temperature in a fuel cell system, including the steps of:
 - (A) measuring the stack output voltage of the fuel cell system;
- 4 (B) determining whether the stack output voltage is at a desired value depend-5 ing upon the present desired temperature range of the fuel cell system, for the present op-6 erating conditions, and
- 7 (C) adjusting the duty cycle of an associated DC-DC converter to change the 8 output stack voltage to substantially the desired value.
- 20. (Currently Amended) A method of dynamically controlling the output power of a fuel cell system including the steps of:
- dynamically determining a desired value for the output power of the fuel cell system, depending upon the present operating conditions of the fuel cell system;
 - (B) measuring the output power of the fuel cell system;

6	(C)	if the desired value is not substantially met, measuring fuel cell concentra-	
7	tion;		
8	(D)	adjusting fuel cell concentration to substantially achieve the desired value	
9	of the output	power of the fuel cell system; and	
10	(E)	adjusting the overall stack voltage by adjusting a duty cycle of associated	
11	DC-DC converter circuit switches coupled to the fuel cell system to substantially achieve		
12	the maximum output power of the fuel cell system.		