

FCC TEST REPORT FCC ID: 2AIAPFMX1

Product : TV BOX

Model Name : FMX1

Brand : FenMI

Report No. : PT800305160426E-FC04

Prepared for

Shenzhen FenMI Technoligy Co.,Ltd

The 8th Floor of VIA Technology Building NO. 9966 Shennan Road, Nanshan District, Shenzhen, China

Prepared by

DongGuan Precise Testing Service Co.,Ltd.

Building D, Baoding Technology Park, Guangming Road 2, Guangming Community

Dongcheng District, Dongguan, Guangdong, China

TEST RESULT CERTIFICATION

Applicant's name Shenzhen FenMI Technoligy Co.,Ltd

The 8th Floor of VIA Technology Building NO. 9966 Shennan Road, Address

Nanshan District, Shenzhen, China

Manufacture's name Shenzhen FenMI Technoligy Co.,Ltd

The 8th Floor of VIA Technology Building NO. 9966 Shennan Road, Address

Nanshan District, Shenzhen, China

TV BOX Product name

Model name FMX1

Standards FCC CFR47 Part 15 Section 15.247

Test procedure ANSI C63.10:2013, DA 00-705

Test Date May. 22, 2016 - June. 17, 2016

June. 17, 2016 Date of Issue

Test Result **Pass**

This device described above has been tested by PTS, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTS, this document may be altered or revised by PTS, personal only, and shall be noted in the revision of the document.

Testing Engineer

August Qiu

Technical Manager

Hack Ye

Authorized Signatory

Chris Du

August Qiu Hack Ye Chism

Table of Contents

Page

4 TEGT CURINA DV	
	E.U.T
	· · · · · · · · · · · · · · · · · · ·
4. CONDUCTED EMISSION	
	RESULT
	NS1
	1
	1ENT
	ER3
	ON
	JENCY4
	4
	4
	4
	ENT4
	4
13 TEST SETUD	1

1. Test Summary

Test Items	Test Requirement	Result
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Band edge	15.247(d) 15.205(a)	PASS
Conduct Emission	15.207	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Antenna Requirement	15.203	PASS

Remark:

N/A: Not Applicable

2. General Information

2.1 General Description of E.U.T.

Product Name : TV BOX

Model Name : FMX1

Model Description : /

Bluetooth Version : V4.0

For BT3.0:

Operating frequency : 2402-2480MHz, 79 channels

For BLE:

2402-2480MHz, 40 channels

Antenna Type: : PIFA Antenna

Antenna Gain: : 1.25dBi

For BT3.0:

Type of Modulation : GFSK, Pi/4DQPSK, 8DPSK

For BLE:

GFSK

Power supply : DC 5.0V power by adapter

2.2 Channel List

BT3.0							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

2.3 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel		Middle channel	High channel	
Transmitting	2402MHz		2441MHz	2480MHz	
Hopping			2402-2480MHz		
Tests Carr	ied Out L	Jnder FCC p	eart 15.207		
Test Item		Test Mode			
Conduction Emission, 0.15MHz to 30MHz			BT Communica	tion	

3. Equipment During Test

3.1 Equipments List

RF Conducted Test							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	EMC Analyzer (9k~26.5GHz)	Agilent	E4407B	MY45109572	Aug.04, 2015	Aug.03, 2016	1 year
2	EXA Signal Analyzer	Keysight	N9010A	MY50520207 526B25MPB W7X	Aug.04, 2015	Aug.03, 2016	1 year
3	EMI Test Receiver	R&S	ESCI	101155	July 15, 2015	July 14, 2016	1 year
Radiat	ed Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	EMI Test Receiver	Rohde&Schw arz	ESCI	101417	July 15, 2015	July 14, 2016	1 year
2	Trilog Broadband Antenna	SCHWARZB ECK	VULB9160	9160-3355	July 15, 2015	July 14, 2016	1 year
3	Amplifier	EM	EM-30180	060538	July 15, 2015	July 14, 2016	1 year
4	Horn Ant (1G-18GHz)	SCHWARZB ECK	BBHA9120 D	9120D-1246	July 15, 2015	July 14, 2016	1 year
5	Horn Ant (18G- 40GHz)	SCHWARZB ECK	BBHA 9170	9170-181	June 6, 2016	June 5, 2017	1 year
Condu	cted Emission	ns					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	EMI Test Receiver	R&S	ESCI	101155	July 15, 2015	July 14, 2016	1 year
2	LISN	SCHWARZB ECK	NSLK 8128	8128-289	July 15, 2015	July 14, 2016	1 year
3	Cable	LARGE	RF300	-	July 15, 2015	July 14, 2016	1 year

3.2 Measurement Uncertainty

Parameter	Uncertainty
RF output power, conducted	±1.0dB
Power Spectral Density, conducted	±2.2dB
Radio Frequency	± 1 x 10 ⁻⁶
Bandwidth	± 1.5 x 10 ⁻⁶
Time	±2%
Duty Cycle	±2%
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±3%
Conducted Emissions (150kHz~30MHz)	±3.64dB
Radiated Emission(30MHz~1GHz)	±5.03dB
Radiated Emission(1GHz~25GHz)	±4.74dB

4. Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: : ANSI C63.4:2014

Test Result: : PASS

Frequency Range: : 150kHz to 30MHz

Class/Severity: : Class B

Limit: : $66-56 \text{ dB} \,\mu\text{V}$ between $0.15\text{MHz} \,\&\, 0.5\text{MHz}$

: 56 dB_μV between 0.5MHz & 5MHz

: $60 \text{ dB}\,\mu\text{V}$ between 5MHz & 30MHz

Detector: : Peak for pre-scan (9kHz Resolution Bandwidth)

4.1 E.U.T. Operation

Operating Environment:

Temperature: : 25.5 °C

Humidity: : 51 % RH

Atmospheric Pressure: : 101.2kPa

EUT Operation: : Refer to section 2.3

4.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003.

4.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

4.4 Conducted Emission Test Result

Live line-120V:

	Cable	WIALI A	neceivei	LIIIISSIUII		Over	
Freq	Loss	Factor	Reading	Level	Limit	Limit	Remark
MHz	dB	dB	dBu∀	dBu∀	dBu∀	dB	
0.170	10.60	0.60	12.43	23.63	54.94	-31.31	Average
0.170	10.60	0.60	33.43	44.63	64.94	-20.31	QP _
0.194	10.61	0.60	12.60	23.81	53.84	-30.03	Average
0.194	10.61	0.60	31.60	42.81	63.84	-21.03	QP _
0.238	10.62	0.60	9.00	20.22	52.17	-31.95	Average
0.238	10.62	0.60	27.00	38.22	62.17	-23.95	QP -
0.318	10.63	0.60	11.43	22.66	49.75	-27.09	Average
0.318	10.63	0.60	24.43	35.66	59.75	-24.09	QP _
0.461	10.64	0.60	21.61	32.85	46.67	-13.82	Average
0.461	10.64	0.60	32.61	43.85	56.67	-12.82	QP -
0.668	10.66	0.60	9.51	20.77	46.00	-25.23	Average
0.668	10.66	0.60	22.51	33.77	56.00	-22.23	QP _
	0.170 0.170 0.194 0.194 0.238 0.238 0.318 0.318 0.461 0.461 0.668	Freq Loss MHz dB 0.170 10.60 0.170 10.60 0.194 10.61 0.194 10.61 0.238 10.62 0.238 10.62 0.318 10.63 0.318 10.63 0.461 10.64 0.461 10.64 0.668 10.66	Freq Loss dB 0.170 10.60 0.60 0.170 10.60 0.60 0.194 10.61 0.60 0.194 10.61 0.60 0.238 10.62 0.60 0.238 10.62 0.60 0.318 10.63 0.60 0.318 10.63 0.60 0.461 10.64 0.60 0.461 10.64 0.60 0.668 10.66 0.60	Freq MHz Loss dB Factor AB Reading dBuV 0.170 10.60 0.60 12.43 0.170 10.60 0.60 33.43 0.194 10.61 0.60 12.60 0.194 10.61 0.60 31.60 0.238 10.62 0.60 9.00 0.318 10.63 0.60 27.00 0.318 10.63 0.60 11.43 0.461 10.64 0.60 21.61 0.461 10.64 0.60 32.61 0.668 10.66 0.60 9.51	Freq MHz Loss dB Factor AB dBuV Reading dBuV Level dBuV 0.170 10.60 0.60 12.43 23.63 0.170 10.60 0.60 33.43 44.63 0.194 10.61 0.60 12.60 23.81 0.194 10.61 0.60 31.60 42.81 0.238 10.62 0.60 9.00 20.22 0.238 10.62 0.60 27.00 38.22 0.318 10.63 0.60 11.43 22.66 0.318 10.63 0.60 24.43 35.66 0.461 10.64 0.60 21.61 32.85 0.461 10.64 0.60 32.61 43.85 0.668 10.66 0.60 9.51 20.77	Freq MHz Loss dB Factor ABUV Reading dBuV Level dBuV Limit dBuV 0.170 10.60 0.60 12.43 23.63 54.94 0.170 10.60 0.60 33.43 44.63 64.94 0.194 10.61 0.60 12.60 23.81 53.84 0.194 10.61 0.60 31.60 42.81 63.84 0.238 10.62 0.60 9.00 20.22 52.17 0.238 10.62 0.60 27.00 38.22 62.17 0.318 10.63 0.60 11.43 22.66 49.75 0.318 10.63 0.60 24.43 35.66 59.75 0.461 10.64 0.60 21.61 32.85 46.67 0.461 10.64 0.60 32.61 43.85 56.67 0.668 10.66 0.60 9.51 20.77 46.00	Freq MHz Loss dB Factor ABUV Reading dBuV Level dBuV Limit dBuV Limit dBuV 0.170 10.60 0.60 12.43 23.63 54.94 -31.31 0.170 10.60 0.60 33.43 44.63 64.94 -20.31 0.194 10.61 0.60 12.60 23.81 53.84 -30.03 0.194 10.61 0.60 31.60 42.81 63.84 -21.03 0.238 10.62 0.60 9.00 20.22 52.17 -31.95 0.238 10.62 0.60 27.00 38.22 62.17 -23.95 0.318 10.63 0.60 11.43 22.66 49.75 -27.09 0.318 10.63 0.60 24.43 35.66 59.75 -24.09 0.461 10.64 0.60 21.61 32.85 46.67 -13.82 0.461 10.64 0.60 32.61 43.85 56.67 -12.82 0.668

Neutral line-120V:

Live line-240V:

Neutral line-240V:

0.234

0.466

0.466

0.735

0.735

10.62

10.64

10.64

10.66

10.66

0.60

0.60

0.60

0.60

0.60

8.

9.

10.

11.

12.

27.30

24.55

34.55

12.40

22.40

38.52

35.79

45.79

23.66

33.66

62.30

46.58

56.58

46.00

56.00

-23.78

-10.79

-10.79

-22.34

-22.34

QΡ

QΡ

QΡ

Average

Average

5. Radiated Spurious Emissions

Test Requirement: : FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: : ANSI C63.10:2013, DA 00-705

Test Result: : PASS
Measurement Distance: : 3m

Limit: : See the follow table

	Field Strength			Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Class A (dBu	iV/m) (at 3M)	Class B (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK AVERAGE		PEAK	AVERAGE	
Above 1000	80	60	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15 C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.1 EUT Operation

Operating Environment:

Temperature: : 23.5 °C

Humidity: : 51.1 % RH

Atmospheric Pressure: : 101.2kPa

EUT Operation : Refer to section 2.3

5.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site. The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

5.3 Spectrum Analyzer Setup

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

5.5 Summary of Test Results

Test Frequency: Below 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 26.5GHz

Remark: only the worst data(GFSK modulation mode) were reported.

EUT :	TV BOX	Model Name. :	FMX1
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 5.0V
Test Mode:	GFSK-Low channel		

Note: All test modes have been tested and only record the worst results.

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK Low Channel						
4804.00	54.48	PK	-1.06	53.42	74.00	-20.58
4804.00	41.70	Ave	-1.06	40.64	54.00	-13.36
7206.00	53.4	PK	1.33	54.73	74.00	-19.27
7206.00	44.84	A ve	1.33	46.17	54.00	-7.83

Frequency	Receiver Reading	Detector		Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave) (dB) (dBμV/m)		(dBµV/m)	(dBµV/m)	(dB)
	GFSK Middle Channel					
4882.00	4882.00 54.64 PK -0.93 53.71 74.00					-20.29
4882.00	41.55	A ve	-0.93	40.62	54.00	-13.38
7323.00	7323.00 52.87 PK		1.67	54.54	74.00	-19.46
7323.00	45.05	A ve	1.67	46.72	54.00	-7.28

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK High Channel					
4960.00	54.20	PK	-0.87	53.33	74.00	-20.67
4960.00	41.51	Ave	-0.87	40.64	54.00	-13.36
7440.00	52.94	PK	1.84	54.78	74.00	-19.22
7440.00	44.78	A ve	1.84	46.62	54.00	-7.38

The measurements were more than 20 dB below the limit and not reported

Note:1. Measuring frequencies from 9k~26.5GHz, No emission found between lowest internal used/generated frequency to 30MHz.

2. Radiated emissions measured in frequency range from 9k~26.5GHz were made with an instrument using Peak detector mode.

Result of Conducted Spurious Emission of GFSK Mode:

Note: Only record the worst results.

Results of Restricted Band and Bandedge Test:

GFSK Normal Voltage

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
		Ope	ration fred	uency:2402M	Hz		
V	2390.00	54.87	-3.62	51.25	74.00	-22.75	Pk
V	2390.00	39.28	-3.62	35.66	54.00	-18.34	AV
V	2400.00	56.57	-3.62	52.95	74.00	-21.05	Pk
V	2400.00	39.87	-3.62	36.25	54.00	-17.75	AV
V	4804.00	54.70	-1.06	53.64	74.00	-20.36	Pk
V	4804.00	40.25	-1.06	39.19	54.00	-14.81	AV
Н	2390.00	55.26	-3.62	51.64	74.00	-22.36	Pk
Н	2390.00	39.51	-3.62	35.89	54.00	-18.11	AV
Н	2400.00	55.79	-3.62	52.17	74.00	-21.83	Pk
Н	2400.00	40.04	-3.62	36.42	54.00	-17.58	AV
Н	4804.00	55.84	-1.06	54.78	74.00	-19.22	Pk
Н	4804.00	40.47	-1.06	39.41	54.00	-14.59	AV

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Limit- Absolute Level

GFSK Normal Voltage

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
		Opei	ration fred	uency:2480M	Hz		
V	2483.50	55.33	-3.59	51.74	74.00	-22.26	Pk
V	2483.50	38.74	-3.59	35.15	54.00	-18.85	AV
V	4960.00	54.41	-0.87	53.54	74.00	-20.46	Pk
V	4960.00	40.34	-0.87	39.47	54.00	-14.53	AV
Н	2483.50	54.81	-3.59	51.22	74.00	-22.78	Pk
Н	2483.50	39.15	-3.59	35.56	54.00	-18.44	AV
Н	4960.00	54.04	-0.87	53.17	74.00	-20.83	Pk
Н	4960.00	41.50	-0.87	40.63	54.00	-13.37	AV

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Limit- Absolute Level

The measurements were more than 20 dB below the limit and not reported

Note: 1. Measuring frequencies from 9k~26.5GHz, No emission found between lowest internal used/generated frequency to 30MHz.

2. Radiated emissions measured in frequency range from 9k~26.5GHz were made with an instrument using Peak detector mode.

SE TESTING Report No.: PT800305160426E-FC04

6. Band Edge Measurement

Test Requirement : Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section

15.205(c)).

Test Method : ANSI C63.10:2013, DA 00-705

Test Limit : Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated

measurement, provided the transmitter demonstrates compliance with the

peak conducted power limits. If the transmitter complies with the

conducted power limits based on the use of RMS averaging over a time

interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission

limits specified in §15.209(a) (see §15.205(c)).

Test Mode : Refer to section 2.3

6.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

6.2 Test Result

GFSK Band edge-left side

GFSK Band edge-right side

Pi/4 DQPSK Band edge-right side

8DPSK Band edge-left side

8DPSK Band edge-right side

Preferences

GFSK Band edge-left side-Hopping mode

GFSK Band edge-right side-Hopping mode

Pi/4 DQPSK Band edge-right side-Hopping mode

8DPSK Band edge-right side-Hopping mode

7. 20 dB Bandwidth Measurement

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013, DA 00-705

Test Mode : Refer to section 2.3

7.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

7.2 Test Result

Modulation	Test Channel	Bandwidth(MHz)
GFSK	Low	0.823
GFSK	Middle	0.836
GFSK	High	0.837
Pi/4 DQPSK	Low	1.135
Pi/4 DQPSK	Middle	1.129
Pi/4 DQPSK	High	1.132
8DPSK	Low	1.174
8DPSK	Middle	1.176
8DPSK	High	1.174

GFSK Low Channel

GFSK Middle Channel

GFSK High Channel

Pi/4DQPSK Low Channel

Pi/4DQPSK Middle Channel

Pi/4DQPSK High Channel

8DPSK Low Channel

8DPSK Middle Channel

8DPSK High Channel

8. Maximum Peak Output Power

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013, DA 00-705

Test Limit : Regulation 15.247 (b)(1), For frequency hopping systems operating in the

2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5

MHz band: 0.125 watts.

Refer to the result "Number of Hopping Frequency" of this document. The

0.125 watts (20.97 dBm) limit applies.

Test Mode : Refer to section 2.3

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyser: RBW = 3 MHz. VBW =3 MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

8.2 Test Result

Modulation	Test Channel	Output Power (dBm)	Correct Limit (dBm)
GFSK	Low	4.372	30.00
GFSK	Middle	5.286	30.00
GFSK	High	6.067	30.00
Pi/4 DQPSK	Low	3.847	20.97
Pi/4 DQPSK	Middle	4.073	20.97
Pi/4 DQPSK	High	4.811	20.97
8DPSK	Low	3.817	20.97
8DPSK	Middle	4.071	20.97
8DPSK	High	4.792	20.97

CISE TESTING Report No.: PT800305160426E-FC04

9. Hopping Channel Separation

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013, DA 00-705

Test Limit : Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems

operate with an output power no greater than 1W.

Test Mode : Hopping

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30KHz. VBW = 100KHz , Span = 3MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

9.2 Test Result

Modulation	Separation (MHz)	Result
GFSK	1.000	PASS
Pi/4 DQPSK	1.000	PASS
8DPSK	1.000	PASS

Test plot of Pi/4DQPSK

Test plot of 8DPSK

10. Number of Hopping Frequency

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013, DA 00-705

Test Limit : Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the 2400-

2483.5 MHz band shall use at least 15 channels.

Test Mode : Hopping(GFSK)

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

10.2 Test Result

Channel Number	Limit
79	≥15

11. Dwell Time

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013, DA 00-705

Test Limit : Regulation 15.247(a)(1)(iii) Frequency hopping systems in the 2400-

2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels

employed.

Test Mode : Hopping

Remark : The worst case(8DPSK,DH5) was recorded

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

11.2 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)		
3DH5	1600/79/6*0.4*79*(MkrDelta)/1000		
3DH3	1600/79/4*0.4*79*(MkrDelta)/1000		
3DH1	1600/79/2*0.4*79*(MkrDelta)/1000		
Pomark: Mkr Polta is once pulse time. Only the worst data(DUS)			

Remark: Mkr Delta is once pulse time. Only the worst data(DH5) were show as follow.

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
		Low	2.88	0.307	0.4
8DPSK	3DH5	middle	2.88	0.307	0.4
		High	2.88	0.307	0.4

8DPSK Low Channel

8DPSK Middle Channel

8DPSK High Channel

12. Antenna Requirement

12.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

12.2 EUT ANTENNA

The EUT antenna is R-SMA antenna and the gain is 1.25dBi. It's permanent attached antenna. It comply with the standard requirement.

13. Test Setup

Conducted Emissions

******THE END REPORT*****