On the scope of the dynamical method in commutative algebra

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not.

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal m.

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} .

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Three questions _____

Is there also a constructive proof?

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Three questions

Is there also a constructive proof? Yes, by completeness for coherent logic.

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Three questions

- Is there also a constructive proof? Yes, by completeness for coherent logic.
- 2 Do we know a constructive proof?

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Three questions

- Is there also a constructive proof? Yes, by completeness for coherent logic.
- 2 Do we know a constructive proof? Write $M = \begin{pmatrix} x \\ y \end{pmatrix}$. By surjectivity, have u, v with $u \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $v \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Hence 1 = (vy)(ux) = (uy)(vx) = 0.

Thm. Let M be a surjective matrix with more rows than columns over a ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Three questions

- Is there also a constructive proof? Yes, by completeness for coherent logic.
- 2 Do we know a constructive proof? Write $M = \begin{pmatrix} x \\ y \end{pmatrix}$. By surjectivity, have u, v with $u \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $v \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Hence 1 = (vy)(ux) = (uy)(vx) = 0.
- Solution Can the constructive proof be extracted from the classical one? Yes, by the dynamical method (and others).

- ▶ In classical mathematics, every ring has a maximal ideal.
 - Zorn's lemma

- ▶ In classical mathematics, every ring has a maximal ideal.
 - Zorn's lemma
- ▶ Without Zorn, every countable ring has a maximal ideal.
 - Iterative construction given enumeration $x_0, x_1, ...$ [Krull 1929]:

$$\mathfrak{m}_0 = \{0\}, \qquad \mathfrak{m}_{n+1} = \begin{cases} \mathfrak{m}_n + (x_n), & \text{if } 1 \not\in \mathfrak{m}_n + (x_n), \\ \mathfrak{m}_n, & \text{else.} \end{cases}$$

- ▶ In classical mathematics, every ring has a maximal ideal.
 - Zorn's lemma
- ▶ Without Zorn, every countable ring has a maximal ideal.
 - Iterative construction given enumeration $x_0, x_1, ...$ [Krull 1929]:

$$\mathfrak{m}_0 = \{0\}, \qquad \mathfrak{m}_{n+1} = \begin{cases} \mathfrak{m}_n + (x_n), & \text{if } 1 \notin \mathfrak{m}_n + (x_n), \\ \mathfrak{m}_n, & \text{else.} \end{cases}$$

- Also constructively! [Krivine 1996], [Berardi-Valentini 2004]

$$\mathfrak{m}_0 = \{0\}, \qquad \mathfrak{m}_{n+1} = \mathfrak{m}_n + \underbrace{\{x_n \mid 1 \not\in \mathfrak{m}_n + (x_n)\}}_{\text{a certain subsingleton set}}$$

- ▶ In classical mathematics, every ring has a maximal ideal.
 - Zorn's lemma
- ▶ Without Zorn, every countable ring has a maximal ideal.
 - Iterative construction given enumeration $x_0, x_1, ...$ [Krull 1929]:

$$\mathfrak{m}_0 = \{0\}, \qquad \mathfrak{m}_{n+1} = \begin{cases} \mathfrak{m}_n + (x_n), & \text{if } 1 \not\in \mathfrak{m}_n + (x_n), \\ \mathfrak{m}_n, & \text{else.} \end{cases}$$

- Also constructively! [Krivine 1996], [Berardi-Valentini 2004]

$$\mathfrak{m}_0 = \{0\}, \qquad \mathfrak{m}_{n+1} = \mathfrak{m}_n + \underbrace{(\{x_n \mid 1 \not\in \mathfrak{m}_n + (x_n)\})}_{\text{a certain subsingleton set}}$$

- ▶ In classical mathematics, every ring has a maximal ideal.
 - Zorn's lemma
- ▶ Without Zorn, every countable ring has a maximal ideal.
 - Iterative construction given enumeration $x_0, x_1, ...$ [Krull 1929]:

$$\mathfrak{m}_0 = \{0\}, \qquad \mathfrak{m}_{n+1} = \begin{cases} \mathfrak{m}_n + (x_n), & \text{if } 1 \not\in \mathfrak{m}_n + (x_n), \\ \mathfrak{m}_n, & \text{else.} \end{cases}$$

- Also constructively! [Krivine 1996], [Berardi-Valentini 2004]

$$\mathfrak{m}_0 = \{0\}, \qquad \mathfrak{m}_{n+1} = \mathfrak{m}_n + \underbrace{(\{x_n \mid 1 \not\in \mathfrak{m}_n + (x_n)\})}_{\text{a certain subsingleton set}}$$

The quotient A/\mathfrak{m} is a residue field: noninvertible implies zero.

$$\neg (1 \in \mathfrak{m})$$
$$\neg (1 \in \mathfrak{m} + (x)) \Longrightarrow x \in \mathfrak{m}$$

Forcing

► Forcing in commutative algebra

 $A \leadsto A[X]$ adjoining an indeterminate $A \leadsto A[x^{-1}]$ forcing an element to become invertible $A \leadsto A/(x)$ forcing an element to become zero

► Forcing in classical set theory

 $V \rightsquigarrow V[G]$ adjoining a generic filter of a forcing poset \mathbb{P} e.g. adding a cardinal between \aleph_0 and \mathfrak{c} , adding a random real, collapsing two cardinals, ...

► Forcing in constructive mathematics

 $V\leadsto V^{\neg \neg}$ forcing LEM $V\leadsto \operatorname{Sh}(X)$ adjoining a generic point of X $V\leadsto V[\mathbb{T}]$ adjoining a generic \mathbb{T} -model

local "Every real symmetric matrix does have an eigenvector." ✓
global "For every continuous family of symmetric matrices,
eigenvectors can locally be picked continuously." ?

local "Every real symmetric matrix does have an eigenvector." ✓

global "For every continuous family of symmetric matrices, eigenvectors can locally be picked continuously." ?

> "Let X be a topological space and let $A:X\to M_n^{\mathrm{sym}}(\mathbb{R})$ be a continuous map to the space of symmetric $(n \times n)$ -matrices. Then there is an open covering $\bigcup_{i \in I} U_i$ of X such that or all indices $i \in I$, there is a continuous map $v: U_i \to \mathbb{R}^n$ such that for all $x \in U_i$, the vector v(x) is an eigenvector of A(x)."

local "Every real symmetric matrix does have an eigenvector." ✓

global "For every continuous family of symmetric matrices, eigenvectors can locally be picked continuously." X

> "Let X be a topological space and let $A: X \to M_n^{\mathrm{sym}}(\mathbb{R})$ be a continuous map to the space of symmetric $(n \times n)$ -matrices. Then there is an open covering $\bigcup_{i \in I} U_i$ of X such that or all indices $i \in I$, there is a continuous map $v: U_i \to \mathbb{R}^n$ such that for all $x \in U_i$, the vector v(x) is an eigenvector of A(x)."

local "Every real symmetric matrix does **not not** have an eigenvector." ✓

global "For every continuous family of symmetric matrices, on a dense open eigenvectors can locally be picked continuously." ✓ "Let X be a topological space and let $A: X \to M_n^{\mathrm{sym}}(\mathbb{R})$ be a continuous map to the space of symmetric $(n \times n)$ -matrices. Then there is an open covering $\bigcup_{i \in I} U_i$ of a dense open **subset** $U \subseteq X$ such that or all indices $i \in I$, there is a continuous map $v : U_i \to \mathbb{R}^n$ such that for all $x \in U_i$, the vector v(x) is an eigenvector of A(x)."

local "Let M be a finitely generated module over a field k. Then M is finite free." \checkmark

global "Let M be a finitely generated module over a ring A. Then M^{\sim} is finite locally free." ?

local "Let M be a finitely generated module over a field k.

Then M is finite free." \checkmark

global "Let M be a finitely generated module over a ring A. Then M^{\sim} is finite locally free." ?

"Let M be a finitely generated module over an arbitrary commutative ring A. Then there is a partition $1 = f_1 + \cdots + f_n \in A$ of unity such that, for each index i, the localized module $M[f_i^{-1}]$ is finite free over $A[f_i^{-1}]$."

local "Let M be a finitely generated module over a field k.

Then M is finite free." \checkmark

global "Let M be a finitely generated module over a ring A.

Then M^{\sim} is finite locally free." \times

"Let M be a finitely generated module over an arbitrary commutative ring A. Then there is a partition $1 = f_1 + \cdots + f_n \in A$ of unity such that, for each index i, the localized module $M[f_i^{-1}]$ is finite free over $A[f_i^{-1}]$."

local "Let M be a finitely generated module over a field k. Then M is **not not** finite free." \checkmark

global "Let M be a finitely generated module over a ring A. Then M^{\sim} is finite locally free on a dense open." \checkmark

"Let M be a finitely generated module over an arbitrary commutative ring A. If f = 0 is the only element of A such that $M[f^{-1}]$ is finite free over $A[f^{-1}]$, then 1 = 0 in A."

Finite approximations to ideal objects

- Approximate maps $\mathbb{N} \to X$ by their finite prefixes. Given a finite list σ , be prepared to ...
 - **1** make it more defined: $\{\sigma :: r \mid x \mid x \in X\}$
- Approximate enumerations $\mathbb{N} \twoheadrightarrow X$ by their finite prefixes. Given a finite list σ , be prepared to ...
 - **1** make it more defined: $\{\sigma :: r \mid x \mid x \in X\}$
 - ensure that a value *x* occurs: $\{\sigma + \tau \mid \tau \in X^*, x \in \sigma + \tau\}$
- Approximate prime ideals by finitely generated ideals. Given a f.g. ideal α, be prepared to ...
 - add the individual factors in case $xy \in \mathfrak{a}$: $\{\mathfrak{a} + (x), \mathfrak{a} + (y)\}$
 - 2 collapse in case 1 ∈ \mathfrak{a} : \emptyset
- ► Approximate **local algebras** by finitely presented rings. Given a f.p. ring *A*, be prepared to ...
 - invert the individual summands in case x + y is invertible in A: $\{A[x^{-1}], A[y^{-1}]\}$
 - **2** collapse in case 1 = 0 in A: \emptyset

The generic enumeration

For any monotone predicate *P* on finite lists, we inductively define what it means that

no matter how a given list σ evolves to a better approximation σ' , eventually $P(\sigma')$ will hold

by the following clauses.

- o If $P(\sigma)$, then $P \mid \sigma$.
- If $P \mid \sigma ::^r x$ for all $x \in X$, then $P \mid \sigma$.
- **2** If $P \mid \sigma + \tau$ for all $\tau \in X^*$ such that $x \in \sigma + \tau$, then $P \mid \sigma$.

Notation. Write " $\nabla \sigma$. $P(\sigma)$ " for $P \mid \sigma$.

Examples. (in case $X = \mathbb{R}$)

- ✓ $\nabla \sigma$. length(σ) ≥ 5
- $\nabla \sigma$. length $(\sigma) \geq 2 \wedge \sigma[0] = \sigma[1]$
- $\checkmark \ \forall x \in \mathbb{R}. \, \nabla \sigma. \, \exists n \in \mathbb{N}. \, \sigma[n] = x \wedge (\nabla \sigma. \, \exists m \in \mathbb{N}. \, \sigma[m] = \sin(n))$

Soundness of the ∇ **-translation.** If $\Gamma \vdash \varphi$, then $\Gamma^{\nabla} \vdash \varphi^{\nabla}$.

```
open import Data.List
open import Data.List.Membership.Propositional
open import Data.Product
data Eventually (P : List A → Set) : List A → Set where
   now
      : {σ : List A}
      \rightarrow P \sigma
      \rightarrow Eventually P \sigma
      : {σ : List A} {a : A}
      \rightarrow ((\tau : List A) \rightarrow a \in (\sigma ++ \tau) \rightarrow Eventually P (\sigma ++ \tau))
      \rightarrow Eventually P \sigma
State : (List A \rightarrow Set) \rightarrow (List A \rightarrow Set)
State P \sigma = ((\tau : List A) \rightarrow \Sigma[ \upsilon \in List A ] P (\sigma ++ \tau ++ \upsilon))
U:**- Countable.agda All L1 <N> (Agda:Checked +5 Undo-Tree)
```

module (A : Set) where

Agda formalization available.