Q: If $a(\frac{1}{b} + \frac{1}{c})$, $b(\frac{1}{c} + \frac{1}{a})$, $c(\frac{1}{a} + \frac{1}{b})$ are in arithmetic progression (AP), prove that a, b, c are also in AP.

Solution: Common difference can be written as:

$$b\left(\frac{1}{c} + \frac{1}{a}\right) - a\left(\frac{1}{b} + \frac{1}{c}\right) = c\left(\frac{1}{a} + \frac{1}{b}\right) - b\left(\frac{1}{c} + \frac{1}{a}\right) \tag{1}$$

$$\implies (b-a)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) = (c-b)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \tag{2}$$

$$\implies b - a = c - b \tag{3}$$

Hence proved that a, b, c are in AP.

parameter	value	description
x(0)	$a\left(\frac{1}{b}+\frac{1}{c}\right)$	First Term of given AP
d	$(b - a)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$	Common Difference of given AP
x(n)	(x(0) + nd)u(n)	General Term of given AP

INPUT PARAMETER TABLE

From table I

$$X(z) = x(0) \left(\frac{1}{1 - z^{-1}} \right) + d \left(\frac{z^{-1}}{(1 - z^{-1})^2} \right)$$
 (4)

$$X(z) = a\left(\frac{1}{b} + \frac{1}{c}\right)\left(\frac{1}{1 - z^{-1}}\right) + (b - a)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)\left(\frac{z^{-1}}{(1 - z^{-1})^2}\right) \quad |z| > 1$$
 (5)

Fig. 1. graph with value of a = 3, b = 5, c = 7