	Utech
Name:	
Roll No.:	In Summer (V. Samueladay Stad Carelland)
Invigilator's Signature :	

2012

PHYSICS - II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) The angle between the vectors $\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$ is
 - a) 90°

b) 60°

c) 30°

- d) 0°.
- ii) The value of $\oint_C \overrightarrow{r}$ d \overrightarrow{l} on any arbitrary closed curve C is
 - a) 3

b) 1

c) - 1

d) 0.

3052(N) [Turn over

iii) In free space Poisson's equation reduces to

a)
$$\nabla^2 v = 0$$

b)
$$\nabla^2 v = \frac{\rho}{\varepsilon_0}$$

c)
$$\nabla^2 v = -\frac{\rho}{\varepsilon_0}$$

d)
$$\nabla^2 v = \infty$$
.

iv) The continuity equation for steady current is

a)
$$\overrightarrow{\nabla} \cdot \overrightarrow{j} + \frac{\partial \rho}{\partial t} = 0$$

b)
$$\overrightarrow{\nabla} \cdot \overrightarrow{j} = 0$$

c)
$$\frac{\partial \rho}{\partial t} = 0$$

d)
$$\overrightarrow{\nabla} \times \overrightarrow{j} = 0$$
.

v) The electrostatic potential energy of a system of two charges $q_{\rm 1}$ and $q_{\rm 2}$ separated by a distance r is

a)
$$\frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}$$

b)
$$\frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$$

c)
$$\frac{1}{4\pi\epsilon_0} \frac{q_1^2 q_2}{r^2}$$

$$\mathrm{d)} \quad \frac{\varepsilon_0}{4\pi} \frac{q_1 q_2}{r} \,.$$

vi) If $\overrightarrow{B} = \overrightarrow{\nabla} \times \overrightarrow{A}$, \overrightarrow{B} and \overrightarrow{A} are any vectors then

a)
$$\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0$$

b)
$$\overrightarrow{\nabla} \cdot \overrightarrow{B} = 1$$

c)
$$\overset{\rightarrow}{\nabla} \cdot \vec{B} = -1$$

d)
$$\overrightarrow{\nabla} \cdot \overrightarrow{B} = |\overrightarrow{A}|$$
.

vii) The energy associated with a magnetic field $\overset{
ightarrow}{H}$ is

a)
$$\frac{1}{2}H^2$$

b)
$$\mu_0 H^2$$

c)
$$\frac{1}{2}\mu_0 H^2$$

d)
$$\frac{1}{2\mu_0}H^2$$
.

- viii) Skin depth for a conductor in reference to electromagnetic wave varies
 - a) inversely as frequency
 - b) directly as frequency
 - c) inversely as square root of frequency
 - d) directly as square root of frequency.
- ix) Schroendinger time independent wave equation is
 - a) $\stackrel{\wedge}{H} \psi = E \psi^2$
- b) $\stackrel{\wedge}{H} \psi^2 = E \psi^2$
- c) $\stackrel{\wedge}{H} \frac{1}{\psi} = E \frac{1}{\psi}$
- d) $\stackrel{\wedge}{H} \psi = E \psi$.
- x) The ground state energy of a particle moving in a one dimensional potential box is given in terms of length L of the box by
 - a) $\frac{2\hbar^2}{8mL^2}$

b) $\frac{\hbar^2}{8mL^2}$

c) $\frac{h^2}{8mL^2}$

- d) 0.
- xi) The communication bracket $[\stackrel{\wedge}{p}_y,\stackrel{\wedge}{y}]$ is equal to
 - a) *i*ħ

b) $-i\hbar$

c) $i\hbar^2$

- d) i/\hbar .
- xii) The electric dipole moment of a particle (atom or molecule) per unit polarizing electric field is termed as
 - a) polarization
- b) polarizability
- c) net dipole moment
- d) susceptibility.

xiii) A system is called strongly degenerate if

a)
$$\frac{N_i}{g_i} = 1$$

b)
$$\frac{N_i}{g_i} >> 1$$

c)
$$\frac{N_i}{g_i} \ll 1$$

d)
$$g_i = 1$$
.

xiv) A coin and a six faced disc are thrown simultaneously. The probability that the coin shows head and the disc shows 2 is

a)
$$\frac{1}{4}$$

b)
$$\frac{1}{12}$$

c)
$$\frac{1}{6}$$

d)
$$\frac{1}{8}$$
.

xv) The average energy of an electron in a metal at 0 K is

a)
$$E_F$$

b)
$$\frac{E_F}{2}$$

c)
$$\frac{3E_F}{5}$$

d)
$$\frac{5E_F}{3}$$
,

where $\boldsymbol{E}_{\boldsymbol{F}}$ is the Fermi energy.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following

 $3 \times 5 = 15$

- 2. a) Use Gauss' law to calculate the electric field between infinite extent parallel plate capacitor carrying charge density σ and mutual separation d.
 - b) Verify whether the potential function V(x,y) satisfy Laplace's equation or not. Find also the charge density.

3052(N)

- 3. a) A superposed state of a quantum particle is given by, $\psi(x) = C_1 \psi_1(x) + C_2 \psi_2(x) \text{ where } \psi_1(x) \text{ and } \psi_2(x) \text{ are }$ orthonormal states. Show that $C_1^2 + C_2^2 = 1$.
 - b) Show that $\psi(x) = Ae^{2ix} \& \psi(x) = Ae^{-2ix}$ are degenerate wave functions. Find out the energy eigenvalue. 3 + 2
- 4. a) Define displacement current.
 - b) Find the displacement current within a parallel plate capacitor in series with a resistor which carries current I. Area of the capacitor plates are A and the dielectric is vacuum. 2+3
- 5. a) A proton moves with a velocity 0.6 c parallel to a straight current 1A at a distance of 10 cm from the current. What is the magnetic force on the proton?
 - b) State the law you used in solving the above problem.

4 + 1

[Turn over

- 6. a) Construct the Hamiltonian and the Hamilton's equation of motion of a simple pendulum.
 - b) Give a comparative study of BE and FD statistics. 3 + 2

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Define degree of freedom, generalized coordinates and Hamiltonian of a system.
 - b) Derive the Lagrangian of a simple pendulum and obtain the equation of motion.
 - c) Deduce the D'Alembert's principle from the principle of virtual work.
 - d) Prove that for a conservative system, the Hamiltonian represents the total energy of the system. 3 + 4 + 4 + 4

3052(N) 5

- 8. a) What are the basic postulates of quantum mechanics?
 - b) Apply Schrödinger equation for one dimension to a particle in one dimensional box and find its total energy and normalized wave function. Plot the probability densities and explain.
 - c) Find the energy difference between the ground state and first excited state of an electron moving in a one dimensional potential box of length 1Å. 3 + 8 + 4
- 9. a) A fluid motion is given by V = (y+z)i+(z+x)j+(x+y)k. Show that the motion is irrotational.
 - b) Solve Laplace's equation to find the potential at a distance r from the axis of an infinitely long conducting cylinder of radius a charged with a surface charge density σ . Take the potential of the cylinder to be zero.
 - c) The electrostatic potential in free space is given by $\Phi = \alpha \beta (x^2 + y^2) \gamma \ln \sqrt{(x^2 + y^2)} \text{ where } \alpha, \beta \text{ and } \gamma \text{ are constants. Find the charge density in the region.}$

5 + 5 + 5

- 10. a) The magnetic field in a region of free space is given by $B = B_0 \cos(\omega t kz) \stackrel{\circ}{y}.$
 - i) What is the displacement current if there is no free charge?
 - ii) Obtain an equation for *E*, neglecting the integration constant.
 - iii) Verify that the differential form of Faraday's Law of electromagnetic induction is satisfied by *E* and *B*.
 - b) Find out Hamilton's equations of motion for a system comprising masses m_1 and m_2 connected by a massless string of length L through a frictionless pulley such that $m_1 > m_2$. (3 + 3 + 3) + 6

- 11. a) State Gauss's law of electrostatics.
 - b) Derive an expression for the electric field between two infinite extent parallel plate capacitors carrying charge density σ and mutual separation d. Draw the necessary diagram.
 - c) Stating from the definition of current density derive the equation of continuity in current electricity. What is the condition of steady current?
 - d) Two parallel wires carry equal current of 10A along with the same direction and are separated by a distance of 2·0 cm. Find the magnetic field at a point which is two cm away from any of these wires. 2 + 4 + (4 + 1) + 4
- 12. a) Deduce density of states of free electrons having energy between E and E + dE in the phase space.
 - b) Write down the postulates of B-E statistics and write down the *B-E* distribution function explaining the symbols. At what condition BE-statistics will yield classical statistics?
 - c) A system has non-degenerate single particle states with 0, 1, 2, 3 energy units. Three particles are to be distributed in these states such that the total energy of the system is 3 units. Find the number of microstates if the particles obey
 - i) MB statistics
 - ii) BE statistics
 - iii) FD statistics. 4 + (3 + 1 + 1) + (2 + 2 + 2)

=========

3052(N) 7 Turn over