HW₁

Author: Haonan(Harry) Chen

Class Section: 802 Loop

Section 1.2

8.a: Yes. All elements in C are in A.

8.c: Yes. All elements in C are belonging to itself.

9.c: No.

9.d: Yes.

9.g: No.

Section 2.1

17: \sim P $\wedge \sim$ Q $\equiv \sim$ (P \wedge Q)?

Р	Q	~P	~Q	$P \wedge Q$	~P ^ ~Q	~(P ∧ Q)
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	F	Т
F	Т	Т	F	F	F	Т
F	F	Т	Т	F	Т	Т

 \sim P \wedge \sim Q and \sim (P \wedge Q) have different truth values in the second and third row, so they are <u>not</u> logically equivalent.

29: This computer program does not have logical error in the first ten lines and it is being run with complete data set.

37: $0 \le X \text{ or } X < -7.$

43: $(\sim P \lor 0) \lor (P \land \sim 0)$

13. (1 V Q)	V (1 // Q)					
Р	Q	~P	~Q	(~P∨Q)	(P ∧ ~Q)	(~P∨Q) ∨(P∧~Q)
Т	Т	F	F	Т	F	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	Т	F	Т
F	F	Т	Т	Т	F	Т

It's truth values are all T's, so $(\sim P \lor Q) \lor (P \land \sim Q)$ is a tautology.

52:

Section 2.2

13.b:

Р	Q	~P	~Q	$P \rightarrow Q$	\sim (P \rightarrow Q)	P ∧ ~Q
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	Т
F	Т	Т	F	Т	F	F
F	F	Т	Т	Т	F	F

 \sim (P \rightarrow Q) and P \wedge \sim Q are always have same truth value, so they are logically equivalent.

20.b: Today is New Year's Eve and tomorrow is not January.

38: If it not rains, Ann will go.

46.c: This statement must be true. Since "P only if Q" is logically equivalent to " if P then Q", in this case P is the statement "Compound X is boiling", Q is "its temperature is at least 150°C", so the statement is logically equivalent to given statement.

46.d: Let's assume P is the statement "Compound X is boiling" and Q is the statement "its temperature is at least 150°C". This statement could be rewrite as \sim P \rightarrow \sim Q, it is the inverse of the given statement so it is not necessarily true. For instance, if the actual boiling point of X were 200°C, and X's temperature is 170°C which is not less than 150°C.

50a:

$$\begin{split} &\left(p \to (q \to r)\right) \leftrightarrow \left((p \land q) \to r\right) \equiv \\ &\equiv \left(p \to (\sim q \lor r)\right) \leftrightarrow \left(\sim (p \land q) \lor r\right) \\ &\equiv \left(\sim p \lor (\sim q \lor r)\right) \leftrightarrow \left(\sim (p \land q) \lor r\right) \\ &\equiv \left(\left(\sim p \lor \sim q\right) \lor r\right) \leftrightarrow \left(\sim (p \land q) \lor r\right) \\ &\text{By De Morgan's law} \\ &\equiv \left(\sim (p \land q) \lor r\right) \leftrightarrow \left(\sim (p \land q) \lor r\right) \\ &\text{Assume} \\ &\sim (p \land q) \lor r = A \\ &\equiv A \leftrightarrow A \end{split}$$

This statement is a tautology

Section 3.1

1.d: True.

4.a:

Q(2) is " $2^2 = 4 \le 30$ " which is true.

Q(-2) is " $(-2)^2 = 4 \le 30$ " which is true.

Q(7) is " $(7)^2 = 49 \le 30$ ". This is false because $49 \le 30$.

Q(-7) is " $(-7)^2 = 49 \le 30$ ". This is false because $49 \le 30$.

4.c: The truth set is {1,2,3,4,5}.

8.c: The truth set is $\{-8, -6, -4, -2, 0, 2, 4, 6, 8\}$.

10: Counterexample is a = 1.

23:

 $\forall x$, if x is a computer science student then x needs to take data structures. \forall computer science students x , x needs to take data structures.