Estudios sobre la regulación de la expresión génica por microARNs en plantas mediante estrategias bioinformáticas

Uciel Chorostecki

Director Dr. Javier Palatnik Instituto Biología Molecular y Celular Rosario

1 / 10

miARNs

- Los microARNs (miARNs) son ARN pequeños de 20-22 nt que regulan la expresión génica en animales y plantas.
- En plantas controlan procesos vitales como el desarrollo, señalización hormonal y respuestas al estrés

Objetivos

- Identificar genes regulados por miARNs en plantas.
- 2 Estudiar la biogénesis de los miARNs en plantas.

Objetivos

- Identificar genes regulados por miARNs en plantas.
- 2 Estudiar la biogénesis de los miARNs en plantas.

- Diseñar una estrategia para la identificación de genes blanco regulados por miARNs en plantas, basado en la conservación evolutiva del par miARN-gen blanco.
- Desarrollar herramientas que permitan el análisis de los intermediarios de procesamiento de miARNs en plantas a partir de bibliotecas de secuenciación masiva de ARN.
- Identificar y caracterizar precursores de miARNs en distintas especies que tengan mecanismos de procesamiento distintos.
- Caracterizar la relación entre la evolución de los precursores de miARNs en plantas y los mecanismos de procesamiento determinados previamente.

- Diseñar una estrategia para la identificación de genes blanco regulados por miARNs en plantas, basado en la conservación evolutiva del par miARN-gen blanco.
- Desarrollar herramientas que permitan el análisis de los intermediarios de procesamiento de miARNs en plantas a partir de bibliotecas de secuenciación masiva de ARN.
- Identificar y caracterizar precursores de miARNs en distintas especies que tengan mecanismos de procesamiento distintos.
- Caracterizar la relación entre la evolución de los precursores de miARNs en plantas y los mecanismos de procesamiento determinados previamente.

Aplicaciones bioinformáticas para el estudio de interacciones miARN-gen blanco

5 / 10

Conservación y divergencia de miARNs en distintas especies

miARN	Consenso (18 nt)	Targets conocidos (a,b)
miR156	GACAGAAGAGAGTGAGCA	factores de transcripción SPL
miR159	TTGGATTGAAGGGAGCTC	factores de transcripción MYB, NOZZLE (NZL)
miR160	GCCTGGCTCCCTGTATGC	factores de transcripción ARF
miR162	CGATAAACCTCTGCATCC	DCLI
miR164	GGAGAAGCAGGGCACGTG	factores de transcripción NAC
miR166	CGGACCAGGCTTCATTCC	factores de transcripción HDZip
miR167	GAAGCTGCCAGCATGATC	factores de transcripción ARF, IAA-ALANINE RESISTANT 3 (IAR3)
miR168	CGCTTGGTGCAGGTCGGG	AGO1
mir169	AGCCAAGGATGACTTGCC	factores de transcripción CCAAT-HAP2
mir171	TTGAGCCGTGCCAATATC	factores de transcripción GRAS
miR172	GAATCTTGATGATGCTGC	factores de transcripción AP2
miR319	TGGACTGAAGGGAGCTCC	factores de transcripción TCP
miR390	AGCTCAGGAGGGATAGCG	TAS RNA
miR393	CCAAAGGGATCGCATTGA	TIR1 proteins, F-BOX proteins
miR394	TGGCATTCTGTCCACCTC	proteínas F-BOX
miR395	TGAAGTGTTTGGGGGAAC	ATP-sulfurilasas, transportadores de sulfato
miR396	TCCACAGCTTTCTTGAAC	factores de transcripción GRF, MMG4.7, FLUORESCENT IN BLUE LIGHT (FLU)
miR397	CATTGAGTGCAGCGTTGA	Laccases
miR398	GTGTTCTCAGGTCACCCC	Cu/Zn SODs, CytC oxidase protein subunit, Chaperona de cobre (CCS)
miR399	GCCAAAGGAGATTTGCCC	Enzima E2 de conjugación de ubiquitina
miR408	TGCACTGCCTCTTCCCTG	Blue copper proteins, Laccases, P-TYPE ATPase (PAA2), PAC1 (Proteasome component)
miR827	TAGATGACCATCAGCAAA	SPX proteins

a

- a
- a

- a
- a
- a

- Diseñar una estrategia para la identificación de genes blanco regulados por miARNs en plantas, basado en la conservación evolutiva del par miARN-gen blanco.
- Desarrollar herramientas que permitan el análisis de los intermediarios de procesamiento de miARNs en plantas a partir de bibliotecas de secuenciación masiva de ARN.
- Identificar y caracterizar precursores de miARNs en distintas especies que tengan mecanismos de procesamiento distintos.
- Caracterizar la relación entre la evolución de los precursores de miARNs en plantas y los mecanismos de procesamiento determinados previamente.

- Diseñar una estrategia para la identificación de genes blanco regulados por miARNs en plantas, basado en la conservación evolutiva del par miARN-gen blanco.
- Desarrollar herramientas que permitan el análisis de los intermediarios de procesamiento de miARNs en plantas a partir de bibliotecas de secuenciación masiva de ARN.
- Identificar y caracterizar precursores de miARNs en distintas especies que tengan mecanismos de procesamiento distintos.
- Caracterizar la relación entre la evolución de los precursores de miARNs en plantas y los mecanismos de procesamiento determinados previamente.

Muchas gracias.

