

Machine Learning for Bioinformatics & Systems Biology

2. Classification

<u>Perry Moerland</u> Amsterdam UMC, University of Amsterdam

Marcel Reinders Delft University of Technology

Lodewyk Wessels Netherlands Cancer Institute

Some material courtesy of Robert Duin and David Tax

Classification

How to distinguish between the apples and the pears?

Classification in bioinformatics

Classification in bioinformatics (2)

- Secondary structure prediction
 amino acids of a protein sequence → {H,E,-} = {alpha helix,beta strand,turn}
- Protein localization prediction {sequence,...} → {cell organelle}
- Genome annotation
 {sequence,...} → {exon,intron,splice site, ...}

•

Classification (2)

- Formulation of two-class problems
- Logistic classifier
- Plug-in Bayes classifiers
 - Density-based classification: Parzen, nearest neighbour, Gaussian
- Linear discriminant analysis
 - Fisher classifier
- Decision trees and random forests

Classification (3)

- Given labeled data: x
- Assign to each object a class label ω
- In effect splits the feature space in separate regions

decision boundary

Classification (4)

Class posterior probability

• For each object we have to estimate posterior $p(\omega = c | x)$

- healthy
- diseased

Class posterior probability

• For each object we have to estimate posterior $p(\omega = c | x)$

- healthy
- diseased

Class posterior probability (2)

For each object we have to estimate posterior $p(\omega = c | x)$

healthy

diseased

Class posterior probability (3)

• For each object we have to estimate posterior $oldsymbol{p}(\omega = oldsymbol{c} | oldsymbol{x})$

Class posterior probability (4)

• For each object we have to estimate posterior $oldsymbol{p}(\omega = oldsymbol{c} | oldsymbol{x})$

Assign label of class with the largest posterior probability

BioSB

Description of a classifier

There are several ways to describe the classifier:

- If $p(\omega = h|x) > p(\omega = d|x)$ then assign to h otherwise to d
- If $p(\omega = h|\mathbf{x}) p(\omega = d|\mathbf{x}) > 0$ then assign to h
- If $\frac{p(\omega=h|\mathbf{x})}{p(\omega=d|\mathbf{x})} > 1$ then assign to h
- If $\ln(p(\omega=h|\mathbf{x})) \ln(p(\omega=d|\mathbf{x})) > 0$ then assign to h

A Bayesian classifier is a *threshold* on the difference between *posterior probabilities*

Logistic classifier

• We can rewrite:

$$\ln(p(\omega=h|\mathbf{x})) - \ln(p(\omega=d|\mathbf{x})) = \ln\left(\frac{p(\omega=h|\mathbf{x})}{p(\omega=d|\mathbf{x})}\right)$$

logit, log-odds

Assume we can approximate:

$$\ln\left(\frac{p(\boldsymbol{\omega}=\boldsymbol{h}|\boldsymbol{x})}{p(\boldsymbol{\omega}=\boldsymbol{d}|\boldsymbol{x})}\right) = \boldsymbol{w}_0 + \boldsymbol{w}^T \boldsymbol{x}$$

The classifier becomes (computer lab exercise):

$$p(\omega = d|\mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0)}$$

Logistic function

The function looks like:

logistic (sigmoid) function

Logistic classifier (2)

On a two-dimensional dataset it looks like:

Logistic classifier (3)

On a two-dimensional dataset it looks like:

Optimizing the logistic classifier

 To optimize the parameters on a training set, maximize the likelihood

$$L = \prod_{i=1}^{n_1} p(\mathbf{x}_i^{(1)}|\omega_1) \prod_{j=1}^{n_2} p(\mathbf{x}_j^{(2)}|\omega_2)$$

where $\mathbf{x}_{i}^{(j)}$ is the *i*-th object from class *j*

- Maximization using gradient ascent
- Appears to be easier to maximize log(L)
- Weights are iteratively updated as:

$$\mathbf{w}_{new} = \mathbf{w}_{old} + \eta \frac{\partial \log(L)}{\partial \mathbf{w}}$$

Optimizing the logistic classifier (2)

Function to maximize

$$L = \prod_{i=1}^{n_1} p(\mathbf{x}_i^{(1)}|\omega_1) \prod_{j=1}^{n_2} p(\mathbf{x}_j^{(2)}|\omega_2)$$

Use log(L)

$$\log(L) = \sum_{i=1}^{n_1} \log(p(\mathbf{x}_i^{(1)}|\omega_1)) + \sum_{j=1}^{n_2} \log(p(\mathbf{x}_j^{(2)}|\omega_2))$$

Use Bayes' theorem

$$\log p(\mathbf{x}_i^{(1)}|\omega_1) = \log p(\omega_1|\mathbf{x}_i^{(1)}) - \log p(\omega_1) + \log p(\mathbf{x}_i^{(1)})$$

Therefore

constant

$$\log(L) = \sum_{i=1}^{n_1} \log(p(\omega_1|\mathbf{x}_i^{(1)})) + \sum_{j=1}^{n_2} \log(p(\omega_2|\mathbf{x}_j^{(2)})) + C$$

Optimizing the logistic classifier (3)

Filling in that

$$p(\omega_2|\mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0)}$$

gives

$$\log(L) = \sum_{i=1}^{n_1} (w_0 + \mathbf{w}^T \mathbf{x}_i^{(1)}) - \sum_{j=1}^{n_1 + n_2} \log(1 + \exp(w_0 + \mathbf{w}^T \mathbf{x}_j))$$

Derivative of the log-likelihood

The gradient of log(L) is

$$\frac{\partial \log(L)}{\partial w_0} = n_1 - \sum_{i=1}^{n_1 + n_2} p(\omega_1 | \mathbf{x}_i)$$

$$\frac{\partial \log(L)}{\partial w_i} = \sum_{i=1}^{n_1} (\mathbf{x}_i^{(1)})_j - \sum_{i=1}^{n_1 + n_2} p(\omega_1 | \mathbf{x}_i)(\mathbf{x}_i)_j, j = 1, \dots, p$$

- Take initial values:
- $w_0 = 0, w = 0$ $w_{new} = w_{old} + \eta \frac{\partial \log(L)}{\partial w}$ Keep iterating

till convergence

Bayes' error

The error we make can be described as

$$p(error) = \sum_{c=1}^{C} p(error \mid \omega = c) p(\omega = c)$$

For a single class:

$$p(error \mid \omega = c) = \int_{\overline{\Omega}_c} p(x \mid \omega = c) dx$$

 $\omega = d$ $\omega = h$

where $\bar{\Omega}_c$ is the complement of the region Ω_c in which objects are assigned to class c

Bayes' error (2)

 Minimizing p(error) is equivalent to maximizing

$$\sum_{c=1}^{C} \int_{\Omega_{c}} p(x | \omega = c) p(\omega = c) dx$$

i.e. the probability of correct classification

• At every x, pick class label ω s.t. the above integral is maximal:

$$c_{opt} = \operatorname{arg\,max}_{c} p(x \mid \omega = c) p(\omega = c)$$

Bayes' error:

$$e = 1 - \int \max_{c} p(x \mid \omega = c) p(\omega = c) dx$$

Misclassification error

- What is...
 - the maximum error for a problem with C classes?
 - the error of a rather dumb classifier, labeling all data to class c?
 - the error of this classifier for a 10-class problem, with equal class priors?

Misclassification error

- What is...
 - the maximum error for a problem with C classes?
 - the error of a rather dumb classifier, labeling all data to class c?
 - the error of this classifier for a 10-class problem, with equal class priors?

Bayes' risk

Conditional risk of assigning object x to class c':

$$r(\omega = c' \mid x) = \sum_{c=1}^{C} \Lambda(\omega = c', \omega = c) p(\omega = c \mid x)$$

Average risk over class c':

$$r(\omega = c') = \int_{\Omega_{c'}} r(\omega = c' | x) p(x) dx$$
$$= \int_{\Omega_{c'}} \sum_{c=1}^{C} \Lambda(\omega = c', \omega = c) p(\omega = c | x) p(x) dx$$

Overall expected risk (at every x):

$$R = \sum_{c'=1}^{C} r(\omega = c') = \sum_{c'=1}^{C} \int_{\Omega_{c'}} \sum_{c=1}^{C} \Lambda(\omega = c', \omega = c) p(\omega = c \mid x) p(x) dx$$

Bayes' risk (2)

Overall expected risk is minimized if class label c' is chosen s.t.

$$c_{opt} = \arg\min_{c'} \sum_{c=1}^{C} \Lambda(\omega = c', \omega = c) p(\omega = c \mid x) p(x)$$

- For equal cost $\Lambda(\cdot,\cdot)$ this is identical to Bayes' rule for minimum error
- The minimum overall risk then is:

$$r^* = \int \min_{c'} \sum_{c=1}^{C} \Lambda(\omega = c', \omega = c) p(\omega = c \mid x) p(x) dx$$

Example

Reject option

- Reject classification of objects with insufficient certainty (too low confidence in any class assignment)
- The reject area *R* can be written as:

$$R = \{x \mid \max_{c} p(\omega = c \mid x) < t\}$$

- Rejected objects should be classified by an expert, or by another classifier
- In Bayesian estimation, the reject option can be modeled as an additional class with certain (high) misclassification cost

Reject option (2)

- Define the threshold t
- Reject all objects in the green area R
- Objects in the yellow area are still errors

Error-reject curve

By changing the threshold t,
 the error decreases, but the percentage rejected increases

Recapitulation

- For classification we want the posterior $oldsymbol{p}(\mathbf{\omega}|oldsymbol{x})$
- We can approximate the posterior directly: logistic classifier
- Assigning an object to the class with maximum posterior probability gives the Bayes classifier
- Bayes classifier is the optimal classifier
- The Bayes' error is the smallest error attainable
- The Bayes' risk is the smallest risk attainable

10min break

Exercises 2.1-2.7

Discord

Lecture room: Channel where lectures are given

Meeting room: Channel where general meetings can take place

Chill room: Channel to hangout

TA-X-room: Channel where assistants are online

You can enter and start discusison/question

Do see whether other people are already there

Chat-XX: Chat room for a group

Room-XX: Channel for a group

Plug-in Bayes classification

- In many cases the posterior is hard to estimate
- Often a functional form of the class distributions can be assumed
- Use Bayes' theorem to rewrite one into the other:

$$p(\omega|\mathbf{x}) = \frac{p(\mathbf{x}|\omega)p(\omega)}{p(\mathbf{x})}$$

class-conditional distribution: $p(x|\omega)$

prior distribution: $p(\omega)$

data distribution: p(x)

Plug-in Bayes classification (2)

Plug-in Bayes classification (3)

• For each object we estimate $p(\omega = c|x)$ using Bayes' rule

$$p(\mathbf{x}|\omega=h)p(\omega=h) > p(\mathbf{x}|\omega=d)p(\omega=d)$$

$$0.5$$

$$p(\mathbf{x}|\omega=d)p(\omega=d)>p(\mathbf{x}|\omega=h)p(\omega=h)$$

Bayes decision making

 $\hat{p}(\mathbf{x}|\omega_i) = N(\mathbf{x};\mu,\sigma)$

• Estimate the class-conditional density (Day 1) $\hat{p}(\mathbf{x}|\mathbf{\omega}_i)$

- Parametric
 - Known distribution
 - Estimate parameters on training set

- Non-parametric
 - No knowledge on distribution
 - Manage the smoothness of the distribution

Example plugin

Two examples

Normal density estimation Parzen density estimation

Parzen classifier

$$p(\mathbf{x}|\mathbf{\omega}_m) = \frac{1}{N} \sum_{i=1}^{N_m} N(\mathbf{x}; \mathbf{x}_i, h \mathbf{I})$$

Parzen width parameter

The width parameter h has a large influence

Optimization of h

- Use the average k-nearest neighbor distance (k=10 is suggested...)
- Use a heuristic

$$h = \sigma \left(\frac{4}{p+2}\right)^{\frac{1}{p+4}} n^{\frac{-1}{p+4}}$$

$$\sigma^2 = \frac{1}{p} \sum_{i=1}^p s_{ii}$$

Optimize the likelihood using cross-validation

$$\prod_{i=1}^{n} \hat{p}(\mathbf{x}_i)$$

and more...

Cross-validation

Scheme:

- Split data into training set and validation set
- Optimise h w.r.t. likelihood of test set, given Parzen model trained on training set

Problems:

- Uses a lot of valuable data
- Sensitive to split of data

Cross-validation (2)

- Better solution: K-fold crossvalidation
 - Split data into K parts (K = n: leave-one-out)
 - Repeat K times:
 - Find h using (K-1) parts for training and 1 part for validation
 - Use average of h's as kernel width

Cross-validation (3)

- Prefer K-fold cross-validation over leave-one-out
 - Smoother (less variance) and more biased (conservative)

Bootstrap

- Alternative to cross-validation:
 - Repeat K times:
 - Draw *n* objects from the dataset, with replacement (some objects will be selected more than once)
 - Validate using objects that were not selected
- Cross-validation and bootstrap estimates are biased
 - They are conservative (i.e. too pessimistic) because they do not use all data available

Training, validation and test sets

- Terminology:
 - A training set is used to estimate parameters
 - An optional validation set is used to optimise parameter settings,
 e.g. by calculating classifier error on this set
 - A test set is only used to judge performance of the entire classifier
- Error estimates:
 - On training set: apparent error
 - On test set: true error
- The test set should *never* be used to set any parameters!

 This leads to biased estimates of performance -- in practice we may do much worse than we predict

Training, validation and test sets (2)

Training, validation and test sets (3)

Can lead to complicated schemes for estimating parameters,
 e.g. double cross-validation loops

Nearest neighbor classification

For the k-nearest neighbor density we defined:

$$\hat{p}(\mathbf{x}) = \frac{k}{n V_k}$$

where V_k is the volume of the sphere centered at x, with radius r the distance to the k-th nearest neighbor

Nearest neighbor classification (2)

- When more classes are present, count how many objects of each of the classes are members of the k neighbors
- Class-conditional density:

$$\hat{p}(\mathbf{x}|\mathbf{\omega}_m) = \frac{k_m}{n_m V_k}$$

Nearest neighbor classification (3)

• Using Bayes:
$$\hat{p}(\mathbf{x}|\omega_m)\hat{p}(\omega_m) \ge \hat{p}(\mathbf{x}|\omega_i)\hat{p}(\omega_i)$$

Estimate the prior probability by counting:

$$\hat{p}(\omega_m) = \frac{n_m}{n}$$

Fill in:

No density estimation is needed!

The choice of *k*

When does the classifier become more smooth? When more ragged?

• What happens for k = 1, and k = n?

The choice of k (2)

When does the classifier become more smooth? When

Sometimes strange results:

Sometimes strange results (2):

Rescaling the features has large influence!

Advantages/disadvantages

- simple and flexible classifier
- often a very good classification performance
- it is simple to adapt the complexity of the classifier
- you have to store the complete training set
- distances to all training objects have to be computed
- scaling of the features should be sensible
- you have to optimize k or h

Classifying with densities

Plug-in Gaussian distribution

Now take the most obvious choice: the Gaussian distribution

$$\hat{p}(\mathbf{x}|\omega) = \frac{1}{\sqrt{2\pi^{p} det(\hat{\Sigma_{\omega}})}} exp\left(-\frac{1}{2}(\mathbf{x} - \hat{\mu_{\omega}})^{T} \hat{\Sigma}_{\omega}^{-1}(\mathbf{x} - \hat{\mu_{\omega}})\right)$$

- So-called parametric density estimation
- We have to estimate the parameters via maximum likelihood:

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}$$

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{x}_{i} - \hat{\boldsymbol{\mu}}) (\boldsymbol{x}_{i} - \hat{\boldsymbol{\mu}})^{T}$$

Example on banana data

A single Gaussian distribution on each class:

Class-conditional densities

Combining

$$\hat{p}(\mathbf{x}|\mathbf{\omega}_{i}) = \frac{1}{\sqrt{2\pi^{p} det(\Sigma_{i})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{\mu}_{i})^{T} \Sigma_{i}^{-1}(\mathbf{x} - \mathbf{\mu}_{i})\right)$$

$$p(\mathbf{\omega}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{\omega})p(\mathbf{\omega})}{p(\mathbf{x})}$$

we can derive for log(p):

$$\log(\hat{p}(\omega_i|\mathbf{x})) = -\frac{p}{2}\log(2\pi) - \frac{1}{2}\log(\det \Sigma_i)$$
$$-\frac{1}{2}(\mathbf{x} - \mu_i)^T \Sigma_i^{-1}(\mathbf{x} - \mu_i) + \log(p(\omega_i)) - \log(p(\mathbf{x}))$$

Normal density-based classifier

• p(x) is independent of the classes and can be dropped

$$g_i(\boldsymbol{x}) = -\frac{1}{2}\log(\det \Sigma_i) - \frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_i) + \log(p(\boldsymbol{\omega}_i))$$

Classifier becomes:

assign x to class ω_i when for all $i \neq j$: $g_i(x) > g_j(x)$

The two-class case

- Define the discriminant $f(\mathbf{x}) = p(\omega_1 | \mathbf{x}) p(\omega_2 | \mathbf{x}) > 0$
- We get (laboratory exercise):

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{W} \mathbf{x} + \mathbf{w}^T \mathbf{x} + \mathbf{w}_0$$

This is a quadratic classifier because
 the decision boundary is a quadratic function of x

Quadratic classifier on banana data

Estimating the covariance matrix

For the quadratic classifier you need to estimate

$$\hat{\boldsymbol{\Sigma}_{k}} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{x}_{i} - \hat{\boldsymbol{\mu}}_{k}) (\boldsymbol{x}_{i} - \hat{\boldsymbol{\mu}}_{k})^{T}$$

for each of the classes!

- When you have insufficient data, this covariance matrix cannot be inverted
- Average over the covariance matrices of different classes:

$$\hat{\mathbf{\Sigma}} = \frac{1}{C} \sum_{k=1}^{C} \hat{\mathbf{\Sigma}_{k}}$$

Average covariance matrix

When we use the averaged covariance matrix:

$$g_i(\boldsymbol{x}) = -\frac{1}{2}\log(\det \hat{\Sigma}) - \frac{1}{2}(\boldsymbol{x} - \hat{\boldsymbol{\mu}}_i)^T \hat{\Sigma}^{-1}(\boldsymbol{x} - \hat{\boldsymbol{\mu}}_i) + \log(p(\boldsymbol{\omega}_i))$$

- First term and quadratic term are always the same for all classes
- We end up with:

$$g_i(\boldsymbol{x}) = -\frac{1}{2}\hat{\boldsymbol{\mu}}_i^T \hat{\boldsymbol{\Sigma}}^{-1} \hat{\boldsymbol{\mu}}_i - \frac{1}{2}\hat{\boldsymbol{\mu}}_i^T \hat{\boldsymbol{\Sigma}}^{-1} \boldsymbol{x} + \log(\boldsymbol{p}(\boldsymbol{\omega}_i))$$

 This classifier is *linear*: the linear normal density-based classifier.

The two-class case (2)

• Define the discriminant $f(\mathbf{x}) = p(\omega_1 | \mathbf{x}) - p(\omega_2 | \mathbf{x}) > 0$

• We get
$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \mathbf{w}_0$$

with
$$\mathbf{w} = \hat{\Sigma}^{-1}(\hat{\mu}_1 - \hat{\mu}_2)$$

$$w_0 = \frac{1}{2} \hat{\mu}_2^T \hat{\Sigma}^{-1} \hat{\mu}_2 - \frac{1}{2} \hat{\mu}_1^T \hat{\Sigma}^{-1} \hat{\mu}_1 + \log \frac{p(\omega_1)}{p(\omega_2)}$$

Linear classifier on banana data

No estimated full covariance matrix

- In some cases even the averaged covariance matrix is too much to estimate
- Assume that all features have the same variance, and are uncorrelated:

$$\hat{\Sigma} = \sigma^2 I$$

Then it becomes even simpler:

$$g_i(\mathbf{x}) = -\frac{1}{2\hat{\sigma}^2} (\hat{\mu}_i^T \hat{\mu}_i - \hat{\mu}_i^T \mathbf{x}) + \log(p(\omega_i))$$

Nearest mean classifier

• Define the discriminant: $f(\mathbf{x}) = p(\omega_1 | \mathbf{x}) - p(\omega_2 | \mathbf{x}) > 0$

We get

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \mathbf{w}_0$$

with

$$\mathbf{w} = \hat{\mu}_1 - \hat{\mu}_2$$

$$w_0 = \frac{1}{2} \hat{\mu}_2^T \hat{\mu}_2 - \frac{1}{2} \hat{\mu}_1^T \hat{\mu}_1 + \hat{\sigma}^2 \log \frac{p(\omega_1)}{p(\omega_2)}$$

 Again a linear classifier, but it only uses the distance to the mean of each of the classes: nearest mean classifier

Nearest mean on banana data

Nearest mean on gene expression data

ROC curve

Recall minimum cost classification:

$$c_{opt} = \arg\min_{c'} \sum_{c=1}^{C} \Lambda(\omega = c', \omega = c) p(\omega = c \mid x) p(x)$$

$$= \arg\min_{c'} \sum_{c=1}^{C} \Lambda(\omega = c', \omega = c) p(x \mid \omega = c) p(\omega = c)$$

• In the two-class case, cost can be absorbed into prior:

$$c_{opt} = \operatorname{arg\,min}_{c'} \sum_{c=1}^{2} p(x \mid \omega = c) \tilde{p}(\omega = c)$$

i.e. changing the costs is like changing the class priors

ROC curve (2)

- Error as a function of the threshold gives an overview of all possible cost/prior scenarios: receiver-operator characteristic curve
- Classifier: any x left of the threshold belongs to the blue class, any x to the right to the red class

ROC curve (3)

Different classifiers have different ROC curves

ROC curve (4)

Example: prediction of synthetic genetic interactions (SGAs)

Wong et al., PNAS 2004

ROC for two-class problems: changing threshold

- Changing class costs = changing priors = moving the decision boundary = changing threshold
- Look at the general form of the normal-based classifiers:

$$g_i(\boldsymbol{x}) = -\frac{1}{2}\log(\det \Sigma_i) - \frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_i) + \log(p(\boldsymbol{\omega}_i))$$

- Changing the prior affects only the 'offset' (=threshold)
- It means only the thresholds have to be adapted:

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \mathbf{w}_0$$
$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{W} \mathbf{x} + \mathbf{w}^T \mathbf{x} + \mathbf{w}_0$$

Changing threshold in banana data

Recapitulation

- Using the Parzen density and nearest neighbor density we can derive the Parzen classifier and nearest neighbor classifier
- Using the plug-in Bayes' rule with a normal distribution for each of the classes gives different classifiers
 - Separate mean and covariance matrix per class gives the quadratic classifier
 - Separate mean, equal covariance matrix per class gives the linear classifier (see Fisher classifier, for two classes)
 - Separate mean, identity covariance matrix per class gives the nearest mean classifier
- By changing the thresholds a ROC curve is obtained, showing the error on both classes.

30min lunch break

Exercises 2.8-2.15

Discriminant analysis

- Different approach to classifiers: avoid estimating the (class conditional) probabilities altogether
 - Linear discriminant
 - Fisher classifier

Avoid density estimation

- From the k-nearest neighbor we saw already that we don't need to explicitly estimate a density
- Estimating densities is hard, in particular when we have a high number of features (high dimensional feature space, curse of dimensionality)
- Now, we start from the other end:
 - Assume we have a function to describe the decision boundary
 - Optimize the free parameters of this function directly
 - No Bayes' theorem, no density estimates

Linear discriminant

Let us assume we can describe the discriminant by:

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \mathbf{w}_0$$

- There are several ways to optimize w and w_a
- This is generally called linear discriminant analysis

Linear discriminant (2)

- Classifier is a linear function of the features
- The classification depends on whether the weighted sum of the features is above or below 0

Fisher classifier

Linear projection onto 1-D:

$$y = \boldsymbol{w}^T \boldsymbol{x}$$

Maximize Fisher criterion:

$$J = \frac{|m_1 - m_2|^2}{(s_1^2 + s_2^2)}$$

- Maximizing J implies that after projection:
 - Means should be far apart
 - Variances should be small
- Find a projection direction w for which J is optimized

Derivation Fisher classifier

Map the means on w:

$$m_1 = \boldsymbol{w}^T \boldsymbol{\mu}_1, \quad m_2 = \boldsymbol{w}^T \boldsymbol{\mu}_2$$

Map the differences in mean:

$$|m_1 - m_2|^2 = (\boldsymbol{w}^T \boldsymbol{\mu}_1 - \boldsymbol{w}^T \boldsymbol{\mu}_2)^2$$

= $\boldsymbol{w}^T (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^T \boldsymbol{w} = \boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w}$

Compute the mapped variance:

$$s_i^2 = \sum_j (\boldsymbol{w}^T \boldsymbol{x}_j^{(i)} - \boldsymbol{w}^T \boldsymbol{\mu}_i)^2$$

$$= \sum_j \boldsymbol{w}^T (\boldsymbol{x}_j^{(i)} - \boldsymbol{\mu}_i) (\boldsymbol{x}_j^{(i)} - \boldsymbol{\mu}_i)^T \boldsymbol{w} = \boldsymbol{w}^T \boldsymbol{S}_i \boldsymbol{w}$$

Derivation Fisher discriminant

- Combine both results from the previous slide.
- The Fisher criterion $J = \frac{|m_1 m_2|^2}{(s_1^2 + s_2^2)}$

can be written in terms of the weights

$$J(\boldsymbol{w}) = \frac{\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w}}{\boldsymbol{w}^T \boldsymbol{S}_W \boldsymbol{w}}$$

where $\mathbf{S}_{W} = \sum_{i} \frac{n_{i}}{n} \mathbf{S}_{i}$ is the 'within scatter matrix'

and $\mathbf{S}_B = (\mathbf{\mu}_1 - \mathbf{\mu}_2)(\mathbf{\mu}_1 - \mathbf{\mu}_2)^T$ the 'between scatter matrix'.

Derivation Fisher discriminant (2)

• To optimize *J*, we set the derivative to 0:

$$(\boldsymbol{w}^T \boldsymbol{S}_B \boldsymbol{w}) \boldsymbol{S}_W \boldsymbol{w} = (\boldsymbol{w}^T \boldsymbol{S}_W \boldsymbol{w}) \boldsymbol{S}_B \boldsymbol{w}$$

• Because $\mathbf{S}_B = (\mathbf{\mu}_1 - \mathbf{\mu}_2)(\mathbf{\mu}_1 - \mathbf{\mu}_2)^T$

 $\mathbf{S}_{B}\mathbf{w}$ will always be in the direction $(\mathbf{\mu}_{1}-\mathbf{\mu}_{2})$

• We get: $(\boldsymbol{w}^T(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2))\boldsymbol{S}_W \boldsymbol{w} = (\boldsymbol{w}^T \boldsymbol{S}_W \boldsymbol{w})(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$

Derivation Fisher discriminant (3)

Ignoring scalar factors, we get:

$$(\boldsymbol{w}^{T}(\boldsymbol{\mu} - \boldsymbol{\mu}_{2})) \boldsymbol{S}_{W} \boldsymbol{w} = (\boldsymbol{w}^{T} \boldsymbol{S}_{W} \boldsymbol{w}) (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})$$

 $\boldsymbol{S}_{W} \boldsymbol{w} = \boldsymbol{C} \cdot (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})$

$$\boldsymbol{w} \sim \boldsymbol{S}_W^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

- Strictly speaking, we don't have a classifier yet, only a direction on which to project our data
- In practice, take the decision boundary in the middle

The result

This is familiar...

The expression for the Fisher discriminant

$$\boldsymbol{w} \sim \boldsymbol{S}_W^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)$$

looks like the linear normal-based classifier:

$$f(\mathbf{x}) = \mathbf{w}^{T} \mathbf{x} + w_{0}$$

$$\mathbf{w} = \hat{\Sigma}^{-1} (\hat{\mu}_{1} - \hat{\mu}_{2})$$

$$w_{0} = \frac{1}{2} \hat{\mu}_{2}^{T} \hat{\Sigma}^{-1} \hat{\mu}_{2} - \frac{1}{2} \hat{\mu}_{1}^{T} \hat{\Sigma}^{-1} \hat{\mu}_{1} + \log \frac{p(\omega_{1})}{p(\omega_{2})}$$

For a two-class problem, both classifiers are identical

Comparison Fisher and Gauss

- The normal-based linear classifier assumes a density per class
- Fisher classifier just tries to optimise the Fisher criterion
 - For the Fisher classifier the bias term is (in principle) still free to optimise
- Both classifiers rely on the inverse of S_W , so it can therefore become undefined when insufficient data is available

10min break

Exercises 2.16-2.18

Tree-based models

- Until now: mainly linear and quadratic decision surfaces, often real data is more complex
- Classification trees
 - Feature selection
- Random forests
 - Ensemble of trees
 - Randomization
 - Bootstrapping
- More on Day 5: neural networks, support vector machines

Classification trees

Build a tree of (binary) splits parallel to the axes in a greedy (=one by one) way.

Classification trees: new data

Can perfectly fit the data: overfitting

Classification trees: pruning

Allow errors on training data in order to reduce overfitting

Tree ingredients

Trees are constructed in a greedy way: starting with an empty tree and adding splits one by one (and never coming back on a decision taken)

Main questions:

- How to choose a split
- How to choose a final tree?
 - Amount of pruning

Rest: details (but might be important ...)

How to choose a split?

How to choose a split? (2)

Good split at A:

- few x & many + in B, C
- many x & few + in B, C

Find some measure *m* that captures goodness

How to choose a split? (3)

maximize $m(P_A) - P(B)m(P_B) - P(C)m(P_C)$

P(X): determined by number of x and + at node X

How to choose a split? (4)

$$m(P_A) - P(B)m(P_B) - P(C)m(P_C)$$

$$\frac{45}{99} - \frac{431}{944} - \frac{514}{955} =$$

0.075

maximum

$$\frac{45}{99} - \frac{422}{944} - \frac{523}{955} =$$

0.0025

Pruning: one step back

minimize: D = C + k(# of leaf nodes in the tree)

 $0 \le k$ k: complexity parameter

k penalizes big trees

Pruning: one step back (2)

Pruning: CART

- Build a complete tree T
- With each subtree of T corresponds a choice of k

Cannot make choice of *k* on training set: overfitting Optimal choice of *k* is made by cross-validation

Pruning: model selection

10-fold cross-validation: mean +/- std. error

Decision tree: application

- Prediction of synthetic lethal genetic interactions
- Integrate multiple types of data: localization, mRNA expression, physical interaction, protein function, and characteristics of network topology

Advantages/disadvantages

- simple and flexible classifier
- combination of discrete and continuous features
- feature selection (Day 3)
- interpretability

- hard splits
- splits are axis-aligned
- sensitive to small variations in data (high variance, Day 5)

Classifier combination

- Idea: combine different classifiers and have them vote
- Design choices:
 - Identical or different?
 - Base classifiers, feature spaces, training sets, initialisations, etc.
 - Combination by a fixed rule or by another classifier?

Example: random forests

- General overview: Day 5
- Specific example: random forest an ensemble of decision trees
- Choices to be made:
 - Base classifiers: identical decision trees
 - Feature spaces: for each node in each tree sample randomly m features
 - m << total number of features
 - Training sets: sampling with replacement (bootstrapping)
 - About two-third of the cases are used for training each tree
- Combination: majority vote

Characteristics

- Out-of-bag error (oob) estimate:
 - Each tree can be tested on about one-third of the cases the outof-bag samples
- Variable importance:
 - For each tree: predict the class for oob cases and count the number of votes cast for the correct class
 - For each tree: randomly permute the values of variable n in the oob cases and count the number of votes cast for the correct class
 - Importance: rank (from high to low) based on average difference of these two scores

Some intuition

- Breiman et al., Machine Learning (2001) paper
- Accuracy depends on two factors:
 - Correlation between any two trees in the forest. Decreasing correlation increases the forest accuracy: diversity
 - Accuracy of each individual tree (strength) in the forest. Increasing strength of individual trees increases the forest accuracy
- Trade-off:
 - Reducing m reduces correlation and strength
 - Increasing m increases correlation and strength
- Solution: somewhere in between is an optimal range of m usually quite wide. Using the oob error rate a value of m in the
 range can be found

Random forests: example

- Prediction of genome-wide DNA methylation
- Features:
 - Neighbors
 - Genomic position
 - DNA sequence properties
 - Cis-regulatory elements
- Random forest: feature selection

Recapitulation

- Decision trees: simple and flexible classifier
 - Incorporates feature selection
 - Interpretable
 - Hard, axis-aligned splits
 - Pruning is essential to avoid overfitting
- Random forest: example of ensemble method
 - Ensemble of decision trees
 - Variation between members introduced via randomness
 - When number of features is large and percentage of truly informative features is small (gene expression-based diagnostics): performance tends to decline significantly

Exercises 2.19-2.20