

Informe N° 7

Ensayo Curvas Características de una Bomba Centrífuga

Laboratorio de Máquinas (ICM 557)

Segundo Semestre 2020

Profesores: Cristóbal Galleguillos

Tomas Herrera

Ayudante: Ignacio Ramos

Paralelo: 3

Nombre: Gustavo Sáez

Índice

1.		Introd	lucción	3
2.		Objeti	ivos	3
3.		Meto	dología / Procedimientos	4
4.		Result	ados	5
	4.1	1 T	abla de Valores Medidos	5
	4.2	2 T	ablas de Valores Calculados	6
	4.3	3 6	Gráficas de Rendimiento y Potencia v/s Caudal	7
	4.3	3.1	¿Cuáles son las condiciones óptimas de operación de esta bomba?	8
	4.3	3.2	¿Las curvas tienen la forma esperada?	8
	4.3	3.3	¿Cuál es la potencia máxima consumida?	8
	4.3	3.4	¿Qué tipo de curvas son?	8
	4.4	4 G	Gráfica de Ψ vs Φ	9
	4.4	4.1	¿La nube de puntos que conforman esta curva son muy dispersos?	9
	4.4	4.2	¿Al observar todas las bombas anteriores, qué tipo de bomba centrífuga es?	9
	4.4	4.3	Calcule la velocidad específica y determine si las características constructivas y	
	ор	eracio	onales son concordantes con esa velocidad específica y su respuesta 3.4.2.2	10
5.		Anexo	os	11
6.		Concl	usiones	14
7.		Refere	encias	14

1. Introducción

En el presente informe, se procederá a analizar cómo se comporta una bomba centrífuga sujeta a distintas velocidades RPM (específicamente 2700, 2900 y 3070 rpm). Mediante diversas gráficas, se logrará entender mejor el funcionamiento de este tipo de bombas.

2. Objetivos

El objetivo de este ensayo es analizar el comportamiento de una bomba centrífuga por medio de sus curvas características.

3. Metodología / Procedimientos

Los procedimientos a realizar en laboratorio son:

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada por el profesor. Luego de inspeccionar los instrumentos y su operación y esperar un tiempo prudente para que se estabilice su funcionamiento, tome las siguientes medidas:

Medir:

- n velocidad de ensayo, [rpm].
- nx velocidad de la bomba, [rpm].
- pax% presión de aspiración, [%].
- pdx% presión de descarga, [%].
- Δhx caudal de la bomba, presión diferencial del venturímetro, [mm_{Hg}].
- Fx fuerza medida en la balanza, [kp].
- t_a temperatura de agua en el estanque, [ºC].
- Patm presión atmosférica, [mmHg].
- Manteniendo la velocidad constante, repetir las mediciones tantas veces como fuera necesario para recorrer completamente la curva característica de la bomba y tener los valores apropiados para trazar las curvas que se indican. Para obtener las distintas condiciones de operación, se modifica la curva característica del sistema estrangulando la descarga de la bomba.

Se repite lo anterior para otras dos velocidades de ensayo.

Mida los valores siguientes:

- cpax altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm].
- cpdx altura piezométrica del manómetro de descarga respecto del eje de la bomba, en [mm].

4. Resultados

4.1 Tabla de Valores Medidos

	VALORES MEDIDOS										
					3070	[rpm]					
	n	срах	cpdx	nx	pax	pdx	Δhx	Fx	Т	P _{atm}	
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	
1	3070	115	165	3075	89.5	6.5	146	1.54	16	758.7	
2	3070	115	165	3076	92	13.6	133	1.68	16	758.7	
3	3070	115	165	3076	94.8	19.4	118	1.79	16	758.7	
4	3070	115	165	3076	97	24.5	104	1.85	16	758.7	
5	3070	115	165	3077	99.4	29.1	91	1.89	16	758.7	
6	3070	115	165	3078	101.7	34.4	76	1.91	16	758.7	
7	3070	115	165	3078	105.2	41.3	59	1.92	16	758.7	
8	3070	115	165	3078	107.6	46.2	45	1.89	16	758.7	
9	3070	115	165	3078	110	49.2	32	1.83	16	758.7	
10	3070	115	165	3077	112.5	54.4	17	1.69	16	758.7	
11	3070	115	165	3078	114.3	56.9	9	1.55	16	758.7	
12	3070	115	165	3078	120.5	62.1	0	1.13	16	758.7	
13											

Tabla 4.1 – Tabla de Valores Medidos en Laboratorio para 3070[rpm].

	VALORES MEDIDOS										
					2900	[rpm]					
	n	cpax	cpdx	nx	pax	pdx	Δhx	Fx	Т	P _{atm}	
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	
1	2900	115	165	2903	91.5	6.2	134	1.37	16	758.7	
2	2900	115	165	2903	93.9	12.7	121	1.47	16.5	758.7	
3	2900	115	165	2903	96.3	16.4	109	1.55	16.5	758.7	
4	2900	115	165	2903	98.7	21.4	95	1.62	17	758.7	
5	2900	115	165	2903	100.5	26.1	82	1.65	17	758.7	
6	2900	115	165	2902	103.4	30.5	70	1.68	17	758.7	
7	2900	115	165	2904	105.6	35.5	56	1.69	17	758.7	
8	2900	115	165	2902	108.1	40.2	43	1.68	17	758.7	
9	2900	115	165	2903	110	44.3	30	1.6	17	758.7	
10	2900	115	165	2903	112.3	48.1	17	1.49	17	758.7	
11	2900	115	165	2904	114.6	51.2	8	1.37	17	758.7	
12	2900	115	165	2904	119.5	56.1	0	0.94	17	758.7	
13											

Tabla 4.2 – Tabla de Valores Medidos en Laboratorio para 2900[rpm].

	VALORES MEDIDOS										
					2700	[rpm]					
	n	срах	cpdx	nx	pax	pdx	Δhx	Fx	Т	P _{atm}	
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	
1	2700	115	165	2702	94.3	5.8	118	1.16	17	758.7	
2	2700	115	165	2703	96.8	10.5	106	1.24	17	758.7	
3	2700	115	165	2703	98.5	14.5	95	1.3	17	758.7	
4	2700	115	165	2703	100	18.1	84	1.34	17	758.7	
5	2700	115	165	2702	102.4	22.6	72	1.38	17	758.7	
6	2700	115	165	2703	104.8	26.9	60	1.4	17	758.7	
7	2700	115	165	2703	107.1	32.1	47	1.4	17	758.7	
8	2700	115	165	2702	109.1	36.1	35	1.38	17	758.7	
9	2700	115	165	2702	111.3	39.9	23	1.3	17	758.7	
10	2700	115	165	2703	113.6	43.5	11	1.18	17	758.7	
11	2700	115	165	2703	114.9	45.3	5	1.05	17	758.7	
12	2700	115	165	2703	119.6	49.1	0	0.78	17	758.7	
13											

Tabla 4.3 – Tabla de Valores Medidos en Laboratorio para 2700[rpm].

4.2 Tablas de Valores Calculados

	VALORES CALCULADOS													
					3070	[rpm]								
	Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	η _{gl}	U ₂	cm ₂	Φ	Ψ
	[m³/h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m/s]	[-]	[-]
1	108	107.82439	-1.165	2.765	3.93	3.917229903	3.48296025	3.46599781	1.14979296	33.1735052	21.70055125	2.90619396	0.13392259	0.16315042
2	100.8	100.603381	-0.915	5.605	6.52	6.494589176	3.80082864	3.77863048	1.7786391	47.0709987	21.70055125	2.71156588	0.12495378	0.27049598
3	97.2	97.0104031	-0.635	7.925	8.56	8.526638551	4.04969242	4.0260408	2.25174775	55.9295809	21.70055125	2.61472424	0.12049114	0.3551297
4	93.6	93.4174252	-0.415	9.965	10.38	10.33954535	4.1854363	4.16099189	2.62937731	63.1911182	21.70055125	2.51788261	0.11602851	0.43063625
5	86.4	86.2034449	-0.175	11.805	11.98	11.92555436	4.27732232	4.24819668	2.79850942	65.875232	21.70055125	2.32344398	0.10706843	0.49669263
6	79.2	78.994152	0.055	13.925	13.87	13.79799493	4.32398979	4.29036202	2.96711581	69.1577026	21.70055125	2.1291317	0.09811418	0.57467873
7	64.8	64.6315789	0.405	16.685	16.28	16.1954836	4.34662848	4.31282465	2.84945801	66.0694148	21.70055125	1.74201685	0.08027523	0.67453278
8	57.6	57.4502924	0.645	18.645	18	17.90655434	4.27871241	4.24543677	2.80045013	65.9637697	21.70055125	1.54845942	0.07135576	0.74579791
9	46.8	46.6783626	0.885	19.845	18.96	18.86157058	4.14288027	4.110661	2.39671857	58.3049435	21.70055125	1.25812328	0.05797656	0.7855738
10	32.4	32.3262918	1.135	21.925	20.79	20.69551546	3.82469562	3.79865206	1.82119191	47.9431093	21.70055125	0.87129149	0.04015066	0.86195657
11	21.6	21.5438596	1.315	22.925	21.61	21.4978133	3.50899695	3.4817074	1.26078599	36.2117157	21.70055125	0.58067228	0.02675841	0.89537183
12	0	0	1.935	25.005	23.07	22.95023382	2.55817197	2.53827701	0	0	21.70055125	0	0	0.95586433
13														

Tabla 4.4 – Tabla de Valores Calculados para 3070[rpm].

	VALORES CALCULADOS													
					2900	[rpm]								
	Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	η _{gl}	U ₂	cm ₂	Φ	Ψ
	[m³/h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m/s]	[-]	[-]
1	104.4	104.292112	-0.965	2.645	3.61	3.602542608	2.92516441	2.91610506	1.02278456	35.0736526	20.49889206	2.81098835	0.13712879	0.16815083
2	100.8	100.695832	-0.725	5.245	5.97	5.957667416	3.13868006	3.12895944	1.63309453	52.1928955	20.49889206	2.71405771	0.13240021	0.27807769
3	97.2	97.0995522	-0.485	6.725	7.21	7.195105874	3.30949258	3.29924295	1.90185758	57.6452721	20.49889206	2.61712708	0.12767164	0.33583587
4	93.6	93.5032725	-0.245	8.725	8.97	8.951470138	3.45895353	3.44824102	2.27847755	66.0765165	20.49889206	2.52019645	0.12294306	0.41781522
5	86.4	86.3107131	-0.065	10.605	10.67	10.64795835	3.52300823	3.51209733	2.50181172	71.2341227	20.49889206	2.32633518	0.1134859	0.49699983
6	75.6	75.547898	0.225	12.365	12.14	12.12327248	3.58582728	3.57841855	2.49324999	69.6746331	20.49889206	2.03624471	0.09933438	0.565861
7	64.8	64.7107438	0.445	14.365	13.92	13.8816793	3.60965748	3.59476208	2.44535533	68.0255125	20.49889206	1.74415058	0.08508511	0.64793569
8	57.6	57.5603032	0.695	16.245	15.55	15.52857389	3.58582728	3.57841855	2.43320232	67.9965824	20.49889206	1.55142454	0.07568334	0.72480548
9	50.4	50.3479159	0.885	17.885	17	16.96488209	3.4162504	3.40567014	2.32517647	68.2736839	20.49889206	1.35702886	0.06620011	0.79184602
10	32.4	32.3665174	1.115	19.405	18.29	18.25221726	3.18138319	3.17153032	1.60818193	50.7068123	20.49889206	0.87237569	0.04255721	0.85193316
11	18	17.9752066	1.345	20.645	19.3	19.24686857	2.92617204	2.91409707	0.94179753	32.3186739	20.49889206	0.48448627	0.02363475	0.89835911
12	0	0	1.835	22.605	20.77	20.71282178	2.00773848	1.99945346	0	0	20.49889206	0	0	0.96678335
13														

Tabla 4.5 – Tabla de Valores Calculados para 3070[rpm].

	VALORES CALCULADOS													
					2700	[rpm]								
	Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	η _{gl}	U ₂	cm ₂	Φ	Ψ
	[m³/h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m/s]	[-]	[-]
1	100.8	100.725389	-0.685	2.485	3.17	3.165308917	2.30529236	2.30017707	0.86791786	37.7326544	19.08517537	2.71485436	0.14224938	0.17044115
2	97.2	97.0921199	-0.435	4.365	4.8	4.789351085	2.46519006	2.45699099	1.26585579	51.5205712	19.08517537	2.61692676	0.1371183	0.25789032
3	93.6	93.4961154	-0.265	5.965	6.23	6.216178595	2.58447345	2.57587765	1.58212439	61.4207896	19.08517537	2.52000354	0.13203984	0.33472014
4	90	89.900111	-0.115	7.405	7.52	7.5033167	2.66399571	2.65513542	1.83627229	69.1592705	19.08517537	2.42308033	0.12696139	0.40402816
5	82.8	82.7387121	0.125	9.205	9.08	9.06656308	2.74250298	2.73641755	2.04209066	74.6264276	19.08517537	2.23005894	0.1168477	0.48820368
6	75.6	75.5160932	0.365	10.925	10.56	10.53657239	2.7832791	2.77402208	2.16601991	78.0822879	19.08517537	2.03538748	0.10664756	0.5673587
7	64.8	64.7280799	0.595	13.005	12.41	12.38246812	2.7832791	2.77402208	2.18184311	78.6526942	19.08517537	1.74461784	0.0914122	0.66675392
8	57.6	57.5573649	0.795	14.605	13.81	13.78956345	2.74250298	2.73641755	2.1606031	78.9573618	19.08517537	1.55134535	0.08128536	0.74252124
9	50.4	50.3626943	1.015	16.125	15.11	15.08763966	2.5835173	2.57778465	2.06849195	80.2430082	19.08517537	1.35742718	0.07112469	0.81241824
10	43.2	43.1520533	1.245	17.565	16.32	16.28379369	2.34590667	2.33810433	1.91284875	81.8119503	19.08517537	1.16307856	0.06094147	0.87682708
11	25.2	25.1720311	1.375	18.285	16.91	16.87248476	2.08745933	2.08051656	1.15616782	55.5711906	19.08517537	0.67846249	0.03554919	0.9085261
12	0	0	1.845	19.805	17.96	17.92015531	1.55068407	1.54552659	0	0	19.08517537	0	0	0.9649396
13														

Tabla 4.6 – Tabla de Valores Calculados para 3070[rpm].

4.3 Gráficas de Rendimiento y Potencia v/s Caudal.

Figura 4.3.1 – Gráfico de Rendimiento en [rpm] vs Caudal en [m³/h].

Figura 4.3.2 – Gráfico de Rendimiento en [rpm] vs Caudal en [m³/h].

4.3.1 ¿Cuáles son las condiciones óptimas de operación de esta bomba?

Las condiciones óptimas de operación se dan cuando el rendimiento es mayor. En este caso, cuando la bomba opera a 2700[rpm] y sujeta a un caudal de aproximadamente 43[m³/h] se da el rendimiento máximo correspondiente a un 82%.

4.3.2 ¿Las curvas tienen la forma esperada?

Según el apunte suministrado por el profesor Tomás referente a las curvas características de una bomba, las curvas tendrían la forma esperada con ligeras variaciones. Estas variaciones se deben fundamentalmente a la precisión con la que se tomaron los valores de Qx.

4.3.3 ¿Cuál es la potencia máxima consumida?

La potencia máxima consumida por el eje se da a los 3070[rpm] y tiene una magnitud de aproximadamente 4.4[kW], momento en que el caudal es de 64[m³/h].

4.3.4 ¿Qué tipo de curvas son?

Ambas curvas tienen una trayectoria parabólica que asciende y luego desciende. Esta característica está más marcada en la curva de Potencia vs Caudal. La curva llega a un punto de valor máximo, para luego descender.

4.4 Gráfica de Ψ vs Φ .

Figura 4.4.1 – Gráfico de Φ vs Ψ .

- 4.4.1 ¿La nube de puntos que conforman esta curva son muy dispersos?

 Podemos notar que la nube de puntos se encuentra bastante junta, y la que más tiende a alejarse es la curva de 2700[rpm] en el valor de Φ cercano a 0.06. Podemos concluir que los datos no son dispersos.
- 4.4.2 ¿Al observar todas las bombas anteriores, qué tipo de bomba centrífuga es?

 Como se comprueba en la siguiente pregunta, luego de calculada la velocidad específica en el punto óptimo de funcionamiento, se concluye que la bomba es de tipo Francis helicoidal.

4.4.3 Calcule la velocidad específica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta 3.4.2.2.

Ns	Ns	Ns
3070[rpm]	2900[rpm]	2700[rpm]
135.397614	125.787608	115.092592
130.785258	123.59983	112.997773
128.428574	121.372624	110.885479
126.027828	119.103777	108.732158
121.063943	114.431207	104.311519
115.891071	107.059034	99.6546689
104.827418	99.0832682	92.2622955
98.8322372	93.448786	87.0018214
89.0861747	87.3982781	81.3827519
74.1362218	70.074517	75.3318488
60.5221378	52.2214676	57.5356499
0	0	0

Tabla 4.4.2 – Tabla de velocidades específicas para distintos[rpm].

Como vimos anteriormente, el punto óptimo se da a 2700[rpm]. Luego, este se da en la iteración nº 10, por lo que la velocidad específica que usaremos para determinar el tipo de bomba es la de 75.33. Gracias a este valor, y revisando la clasificación de bombas según su Ns, es que podemos concluir que se trata de una bomba de tipo Francis helicoidal.

5. Anexos

• Fórmulas:

Caudal:

De gráfico del venturímetro adjunto se determina el caudal para cada línea de mediciones: Qx

Caudal corregido:

$$Q = Qx \left(\frac{n}{nx}\right) \quad \left\lceil \frac{m^3}{h} \right\rceil$$

Presión de aspiración:

$$pax = 0.1 pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

cpax = 115 [mm]

Presión de descarga:

$$pdx = 0.4 pdx\% + \frac{cpdx}{1000} \left[m_{ca} \right]$$

cpdx=165 [mm]

Altura:

$$Hx = -pax + pdx$$
 $[m_{ca}]$

Altura corregida:

$$H = Hx \left(\frac{n}{nx}\right)^2 \left[m_{ca}\right]$$

Potencia en el eje de la bomba:

$$Nex = 0,0007355 Fxnx$$
 [kW]

Potencia en el eje de la bomba corregida:

$$Ne = Nex \left(\frac{n}{nx}\right)^3$$
 [kW]

Potencia hidráulica:

$$Nh = \gamma \frac{QH}{3600}$$
 [kW]

 γ peso específico del agua en $[N/m^3]$

Rendimiento global:

$$\eta_{gl} = \frac{Nh}{Ne} 100 \quad [\%]$$

Velocidad tangencial del rodete en la descarga:

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600\pi D_2 B_2} \quad \left[\frac{m}{s}\right]$$

D₂ diámetro exterior del rodete

B2 ancho exterior del rodete

Phi:

$$\phi = \frac{cm_2}{U_2} \quad [-]$$

Psi:

$$\psi = \frac{2gH}{U_2^2} \quad [-]$$

• Clasificación de Bombas Centrífugas según su Ns:

CLASIFICACIÓN DE BOMBAS CENTRÍFUGAS.

Según la velocidad específica (Ns).

Según el valor de Ns, pueden distinguirse varios tipo de bombas:

Ns menor a 10. Bombas periféricas o tipo turbina.

Ns de 10 a 20: Bombas radiales o centrífugas.

Ns de 20 a 35: Bombas de tipo radial o Francis.

Ns de 35 a 80: Bombas Francis de tipo hélice o helicoidal.

Ns de 80 a 135: Bombas de flujo mixto.

Ns de 135 a 270: Bombas de flujo a axial o de propela.

• Gráfico de Venturímetro para cálculo del Caudal:

6. Conclusiones

La realización de este ensayo y el anterior también referente al compresor recíproco, nos ayuda a obtener más conocimiento de cómo operan y funcionan este tipo de máquinas.

Se logró apreciar que las pérdidas que se producen en este tipo de compresores es bastante alta, por lo que vale la pena idear o aprovechar algún sistema ingenieril capaz de aprovechar parte de estas pérdidas (sobre todo las de calor, que son elevadísimas) para ser utilizadas en algún otro sistema.

Finalmente, cabe destacar que el análisis del comportamiento del compresor mediante el estudio de gráficos y distintas tablas de valores, nos acercan más a un conocimiento de estos equipos, lo cual nos puede servir en el futuro a la hora de insertarnos en la industria como ingenieros.

7. Referencias

- Valores obtenidos de experiencia Aula Virtual
- PPT suministrado por profesor Tomás, en aula virtual.
- https://avdiaz.files.wordpress.com/2008/10/bombas.pdf