

Digital IC Design

Lecture 17 Sequential Circuit Design (1): Latches and Flip-Flops

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Combinational vs. Sequential Logic

- Combinational logic circuits
 - Output depends on current inputs
- Sequential logic circuits
 - Output depends on current and previous inputs
 - Use flip-flops or latches (memory/sequencing elements)
 - Separate previous, current, and next states (tokens)
 - Ex: FSM, pipeline

Static vs. Dynamic Logic

- Combinational logic circuits
 - Static circuits: no clock input
 - e.g., complementary CMOS, pseudo NMOS, and PTL
 - Dynamic circuits: requires clock input
 - e.g., domino logic
- ☐ Sequential logic circuits
 - Static storage: feedback used to retain output indefinitely
 - Dynamic storage: temporary charge on a capacitor
- ☐ Static/dynamic circuits can be sequenced using static/dynamic storage

Sequencing Elements

- ☐ Latch: Level sensitive
 - a.k.a. transparent latch, D latch
 - Transparent/opaque
- ☐ Flip-flop: edge triggered
 - a.k.a. master-slave flip-flop, D flip-flop,
 D register
 - Simply, a pair of latches using clk and its complement
 - Edge-triggered

Sequencing Elements

- ☐ Latch: Level sensitive
 - a.k.a. transparent latch, D latch
 - Transparent/opaque
- ☐ Flip-flop: edge triggered
 - a.k.a. master-slave flip-flop, D flip-flop,
 D register
 - Simply, a pair of latches using clk and its complement
 - Edge-triggered

Input Timing Constraints

- ☐ Flip-flop samples *D* at clock edge
 - D must be stable when sampled
 - Similar to a photograph, D must be stable around clock edge
 - If not, metastability can occur
- \Box Setup time: t_{setup} = time *before* clock edge data must be stable (i.e. not changing)
- \Box Hold time: t_{hold} = time *after* clock edge data must be stable
- \Box Aperture time: t_a = time *around* clock edge data must be stable (t_a = t_{setup} + t_{hold})

Timing Diagrams

- ☐ Contamination delay: output may begin to change or glitch
- ☐ Propagation delay: output must have settled to final value

t	Logic Prop. Delay
t _{pd}	
t _{cd}	Logic Cont. Delay
t _{pcq}	Latch/Flop Clk-to-Q Prop. Delay
t _{ccq}	Latch/Flop Clk-to-Q Cont. Delay
t _{pdq}	Latch D-to-Q Prop. Delay
t _{cdq}	Latch D-to-Q Cont. Delay
t _{setup}	Latch/Flop Setup Time
t _{hold}	Latch/Flop Hold Time
t _a	Aperture time

- Pass Transistor Latch
- Pros
 - + Tiny
 - + Low clock load
- **Cons**
 - V_t drop
 - dynamic (leakage)
 - nonrestoring
 - backdriving
 - output floating (noise sensitivity)
 - diffusion input

Used in 1970's

- ☐ Transmission gate
- Pros
 - + No V_t drop
 - + Tiny
 - + Low clock load
- Cons
 - Requires inverted clock
 - dynamic (leakage)
 - nonrestoring
 - backdriving
 - output floating (noise sensitivity)
 - diffusion input

What is Bad About Diffusion Input?

- ☐ Diffusion input is sensitive to noise
- Ex: power supply noise and/or coupling noise drove the input voltage below -Vt relative to GND seen by the transmission gate
 - Vgs now exceeds Vt for the NMOS
 - The transmission gate turns on
- ☐ If the latch stores 1, it could be incorrectly discharged to 0
- Also makes the delay harder to model with static timing analyzers
 - Delay will be dependent on the level of the input signal strong/weak
- ☐ However, exposing the diffusion input results in a faster latch
 - Can be used in datapaths where the inputs are carefully controlled and checked

- ☐ Inverting buffer
 - + Restoring
 - + No backdriving
 - + Fixes either
 - Output noise sensitivity
 - Or diffusion input
 - Inverted output
- ☐ Similar to a clocked tristate inverter: Clocked CMOS (C²MOS)
 - But TG design is slightly faster

- Dynamic latches are sensitive to leakage
 - Requires min clock frequency (to refresh output)
 - Not compatible with clock gating
 - Leakage is worse in burn-in testing at elevated temperature and voltage
 - Not used in MPUs beyond $0.35 \mu m$
- Tristate feedback
 - + Static
 - Backdriving risk (Output 'Q' may affect the state node 'X')
- ☐ Static latches are now essential because of leakage
 - But they are larger and slower than dynamic latches

- ☐ Buffered input
 - + Fixes diffusion input
 - + Noninverting

- ☐ Buffered output
 - + No backdriving
- Widely used in standard cells
 - + Very robust (most important)
 - Rather large
 - Rather slow (1.5 2 FO4 delays)
 - High clock loading

- ☐ In semicustom datapath applications input noise can be better controlled
- ☐ Datapath latch
 - + smaller
 - + faster
 - unbuffered input
- Intel uses this as a standard datapath latch

- ☐ Jamb latch
 - Uses a weak feedback inverter in place of the tristate
 - Saves two transistors
 - Reduces the clock load
 - But requires careful design to ensure that the tristate overpowers the feedback inverter in all corners
- ☐ Itanium 2 processor latch
 - Pulldown stack is clocked
 - Pullup is a weak PMOS transistor

Flip-Flop Design

- ☐ Flip-flop is built as pair of back-to-back latches
- Dynamic
 - Leakage
 - Not used in MPUs beyond $0.35 \mu m$
- Static
 - Conventional flip-flop widely used in std cells
 - Simple, robust, and energy-efficient
 - But other alternatives may be faster
 - In Artisan library, the clock is buffered and complemented in every flip-flop cell

Flip-Flop Race Condition

- \Box Skew between Φ and $\overline{\Phi}$: Both PMOS ON
- \Box CMOS-TG: both latches are transparent \rightarrow race condition

- \Box C²MOS: skew tolerant (you must go through NMOS and PMOS)
 - But clock must be reasonably sharp to avoid races
 - Even no. of logic stages can be placed between latches: NO RAce CMOS (NORA)

☐ Practically: CMOS-TG is slightly faster and is carefully designed to be safe

Pulsed Latch

- ☐ Conventional transparent latch driven by a clock pulse
- ☐ Pulse generator (one-shot) is required
 - Adds to the energy consumption
 - Shared across multiple latches for energy and area efficiency
- Faster than flip-flop, but increases hold time

Delay Trade-Offs

$$t'_{\text{setup}} = t_{\text{setup}} + t_{\text{buf}}$$

$$t'_{pcq} = t_{pcq}$$

$$t'_{\text{hold}} = t_{\text{hold}} - t_{\text{buf}}$$

Delay Trade-Offs

$$t'_{\text{setup}} = t_{\text{setup}} + t_{\text{buf}}$$

$$t'_{pcq} = t_{pcq}$$

$$t'_{\text{hold}} = t_{\text{hold}} - t_{\text{buf}}$$

$$t'_{\text{setup}} = t_{\text{setup}}$$

$$t'_{pcq} = t_{pcq} + t_{buf}$$

$$t'_{\text{hold}} = t_{\text{hold}}$$

$$t'_{\text{setup}} = t_{\text{setup}} - t_{\text{buf}}$$

$$t'_{pcq} = t_{pcq} + t_{buf}$$

$$t'_{\text{hold}} = t_{\text{hold}} + t_{\text{buf}}$$

Reset

- ☐ Force output low when reset asserted
- ☐ Synchronous vs. asynchronous
- ☐ Tristate NAND gate = NAND gate + clocked TG

Set / Reset

- ☐ Set forces output high when enabled
- ☐ Flip-flop with asynchronous set and reset
- ☐ Recovery time: time between removing set/reset to clk input

Enable

- \Box Enable: ignore clock when en = 0
 - Mux: increases latch D-Q delay, area (safe choice)
 - Clock Gating: saves power, but hazardous, constrains en timing, adds skew

Logic into Latches

- ☐ Reduce sequencing overhead by incorporating logic into latches
- ☐ Replace inverters with gates that perform useful computation
- ☐ Mux-latch:
 - Integrates the multiplexer function with no extra delay from the D inputs to the Q
 - Setup time on the select inputs is relatively high.

True Single-Phase Clock (TSPC) Latches

- lacksquare CMOS-TG or C²MOS require Φ and $\overline{\Phi}$
- $lue{}$ TSPC uses $oldsymbol{}$ only
- lacktriangle TSPC flip-flop produces a momentary low glitch on ar Q after the rising clock edge when D is low
 - Increases the activity factor of downstream circuits
- ☐ Not easy to staticize
- Clock must be reasonably sharp to avoid races
- ☐ TSPC is primarily of historical interest
 - But still useful for HS full custom digital, e.g., PLLs and serial links

Differential Sense-Amplifier Flip-Flop

- ☐ Built from a clocked sense amplifier so that it can rapidly respond to small differential input voltage
 - Used in StrongARM MPU in the 1990s (a.k.a. StrongARM latch)
- \square CLK = 0: internal nodes X and \overline{X} precharge.
- \Box CLK = 1: one of X and \overline{X} is pulled down
- ☐ SR latch: slave stage, captures output and holds it during Precharge (static output).

Radiation-Hardened Flip-Flops

- ☐ Soft errors are random nonrecurring errors triggered by radiation striking a chip (mostly from cosmic radiation)
 - Critically important for space applications
- Traditionally affected DRAMs, but becoming more important for registers as charge diminishes (scaling dimensions and voltage)
- ☐ If one node (n1 to n4) is disturbed, the feedback will restore it

Characterizing Sequential Circuits

- ☐ Read Section 10.4.2 in the textbook: Characterizing Sequencing Element Delays
- \Box t_{DQ} is min when the slope of t_{CQ} is -1 (increase/decrease in x is counteracted by an equal decrease/increase in y)

Characterizing Sequential Circuits

☐ Aperture time: The time that input must remain '0' or '1' to be correctly sampled

$$\begin{aligned} t_{a0} &= t_{setup0} + t_{hold0} \\ t_{a1} &= t_{setup1} + t_{hold1} \end{aligned}$$

Thank you!

Characterizing Sequential Circuits

Latch delay vs. data arrival time

