M1 W4D4

Configurazione Indirizzo IP su Kali Linux

```
(salvatoremorale® kali)-[~]
$ ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 192.168.32.100 netmask 255.255.255.0 broadcast 192.168.32.255
    inet6 fe80::6c04:b7ff:fee8:7f17 prefixlen 64 scopeid 0×20<link>
    ether 6e:04:b7:e8:7f:17 txqueuelen 1000 (Ethernet)
    RX packets 8 bytes 340 (340.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 13 bytes 2208 (2.1 KiB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Configurazione Indirizzo IP su Windows 7

Configurazione servizi HTTPS e DNS su InetSim. Per il DNS è richiesta l'associazione tra "epicode.internal" e l'IP di Kali Linux (192.168.32.100)

```
start_service dns
#start_service http
start_service https
# start_service smtp
# start_service pop3
# start_service pop3s
# start_service ftp
# start_service ftp
# start_service ftps
# start_service tftp
```

Abilitazione servizi tramite InetSim e test connessione con il client Windows 7:

Test connettività al servizio HTTPS verso https://epicode.internal

Prima cattura con Wireshark (servizio HTTPS)

Disabilitazione servizio HTTPS e configurazione del servizio HTTP su InetSim

Test connettività al servizio HTTP verso http://epicode.internal

Seconda cattura con Wireshark (servizio HTTP)

Macro differenze tra le due catture:

HTTPS

	[🗆 🔬 🕲 🛨 🖺	🕅 🙆 ٩ ← →	ሁ ・← →・ 📑 📕	0 0	腊
Applica un filtro di visualizzazione <ctrl-></ctrl-> +					
No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000000	72:d4:11:cf:eb:e3	Broadcast	ARP	60 Who has 192.168.32.100? Tell 192.168.32.101
	2 0.000031709	6e:04:b7:e8:7f:17	72:d4:11:cf:eb:e3	ARP	42 192.168.32.100 is at 6e:04:b7:e8:7f:17
	3 0.000911584	192.168.32.101	192.168.32.100	TCP	66 49309 → 443 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=4 SAC
	4 0.000958500	192.168.32.100	192.168.32.101	TCP	66 443 → 49309 [SYN, ACK] Seq=0 Ack=1 Win=64240 Len=0 MSS=1
	5 0.006669334	192.168.32.101	192.168.32.100	TCP	60 49309 → 443 [ACK] Seq=1 Ack=1 Win=65700 Len=0
	6 0.036888209	192.168.32.101	192.168.32.100	TLSv1	178 Client Hello
	7 0.036933000	192.168.32.100	192.168.32.101	TCP	54 443 → 49309 [ACK] Seq=1 Ack=125 Win=64128 Len=0
	8 0.038624459	192.168.32.100	192.168.32.101	TLSv1	1368 Server Hello, Certificate, Server Key Exchange, Server H
	9 0.110209500	192.168.32.101	192.168.32.100	TLSv1	188 Client Key Exchange, Change Cipher Spec, Encrypted Hands
	10 0.110251917	192.168.32.100	192.168.32.101	TCP	54 443 → 49309 [ACK] Seq=1315 Ack=259 Win=64128 Len=0
	11 0.110514167	192.168.32.100	192.168.32.101	TLSv1	113 Change Cipher Spec, Encrypted Handshake Message
	12 0.316629209	192.168.32.101	192.168.32.100	TCP	60 49309 → 443 [ACK] Seq=259 Ack=1374 Win=64324 Len=0

HTTP

La disparità più significativa tra le due acquisizioni risiede nell'effettuato tentativo di istituire un canale cifrato su HTTPS. È possibile esaminare la cattura Wireshark focalizzandosi sul protocollo TLS (Transport Layer Security) per monitorare il susseguirsi dei pacchetti.

TLS fornisce un canale sicuro, crittografando i dati durante la trasmissione e impedendo a terze parti di intercettare o manipolare le informazioni.

Questa protocollo non è invece riscontrabile nella cattura HTTP, la quale, come noto, opera senza cifrare i dati. Nel caso del pacchetto dati HTTP, il contenuto della richiesta è visibile in maniera non crittografata, mentre nel contesto di HTTPS, il protocollo TLS istituisce un tunnel cifrato prima della trasmissione dei flussi di dati.