

CS120: Computer Networks

Lecture 27. Network Security 1

Zhice Yang

How to Make Internet Secure?

What is Network Security

- Confidentiality
 - To encrypt messages so as to prevent an adversary from understanding the message contents
- Integrity
 - To prevent an adversary from modifying the message contents.
- Originality
 - To prevent an adversary from relaying the message
- Timeliness
 - To identify delayed messages

How to Achieve Network Security

- Cryptographic Tools
 - Symmetric-Key Cipher
 - Public-Key Cipher
 - Hash Function
- Key Predistribution Protocols
 - Public-Key Predistribution
 - Symmetric-Key Predistribution
- Authentication Protocols
 - Public-Key Authentication
 - Symmetric-Key Authentication

Cipher

• Cipher: the Cryptographic Algorithm for Encryption or Decryption

HELLO

ABCDEFGHIJKLMNOPQRSTUVWXYZ

RSTUVWXYZABCDEFGHIJKLMNOPQ

Cipher

- Ciphers are normally parameterized by keys
 - Message: x
 - Key: k1, k2
 - Encryption function: y=En(x, k1)
 - Decryption function: x=De(y, k2)
- Key is the secret
 - The encryption function and decryption function are public known

Cipher as a Secret?

Not Scalable

The mechanism of the locker is public known, but the key unknown

Cipher

- Ciphers are under various attacks
 - e.g., word frequency, known plaintext, etc.
- Cipher designs
 - Prevent attackers from knowing key even the attacker knows plaintext
 - e.g., Cipher Block Chaining to prevent same output under same input

Symmetric-Key Cipher

Symmetric-Key Cipher

- Examples:
 - 3DES
 - ASE
 - https://aesencryption.net/

- If the message is encrypted with public key
 - The message can only be decrypted with private key

• For traffic confidentiality: the public key can be released to

everyone

- If the message is encrypted with private key
 - The message can only be decrypted with public key

 For identification: the public key can be used verify if the message sender has the paired private key

- Example:
 - RSA
 - Elliptic Curve Cryptography

What is Network Security

- Integrity
 - To prevent an adversary from modifying the message contents.

Data Integrity: Checksum

Checksum can be replicated

HMAC: Cryptographic Hash + Secret

- Cryptographic Hash
 - Example
 - MD5
 - SHA

Authenticator

- Digital Signature
 - To authenticate the sender, or to give a recipient reason to believe that the message was created by a known sender

Authenticator

- Digital Signature
 - The message digest can be a signature for the sender, if the message digest is decodable with the public key of the sender
 - Everyone with a public key can challenge the private key holder

Bootstrap the First Key

Key Predistribution

- Distribute through Offline Channel
 - Not scalable

Endorsement

Step 1. Verify Each Other Offline; Exchange Public Keys

Step 3. Verify Each Other Offline; Exchange Public Keys

Step 2. Certifies Public Keys

Step 4. Certifies Public Keys from Others

- Certificate Authority (CA)
 - Preinstall trusted public keys
- Web of Trust
 - Collect public keys from known people

Certificate

- The identity of the entity being certified
- The public key of the entity being certified
- The identity of the signer
- The digital signature of the signer
- A digital signature algorithm identifier (which cryptographic hash and which cipher)

Certificate Authority (CA)

Demo

- Certificate Authority (CA)
 - certmgr.msc
 - https://www.sinorailca.com/

Symmetric-Key Predistribution

- Through Trust Server
- Through Public-Key Predistribution

Diffie-Hellman Key Exchange

- Generate shared key without key predistribution
 - a is the secret of A
 - b is the secret of B
 - g and p are public known
 - g^ab mod p is the shared key

Diffie-Hellman Key Exchange

- Man in the middle attack
 - A cannot authenticate he is talking with B
- Diffie-Hellman Key Exchange is not secure without authentication

What is Network Security

- Originality
 - To prevent an adversary from replaying the message contents.
- Timeliness
 - To identify delayed messages

Authentication

- Messages must be authenticated
 - Timely
 - Timestamp
 - From its original source
 - Authenticate the sender continuously
 - High overhead in using key predistribution methods along
 - Generating new session keys

Public-Key Authentication Protocols

- A sends its certificate and T A to B
- B verifies A's certificate
- B sends its certificate, T_A and T_B to A
- A verifies T_A and B's certificate
- A sends T_B and uses B's public key to encrypt new session key to B
- B verifies T_B and decrypt the session key

Symmetric-Key Authentication Protocols

Symmetric-Key Authentication Protocols

Kerberos

Reference

• Textbook 8.1, 8.2, 8.3