

# Estimation of Large Zipfian Distributions with Sort and Snap

Peter Jacobs 12

Debdeep Pati <sup>3</sup> Anirban Bhattacharya <sup>4</sup>

Lekha Patel<sup>2</sup> Jeff Phillips<sup>1</sup>



<sup>1</sup>University of Utah <sup>3</sup>University of Wisconsin <sup>4</sup>Texas A&M University <sup>2</sup>Sandia National Laboratories

#### What is a Zipfian Distribution?

• A discrete distribution ( $\mathbf{p}=(p_1,p_2,\ldots,p_k)$ ) over k alphabet items where for some decay s>0 and permutation function  $\pi$ , the  $i^{th}$  largest probability, denoted  $p_{\pi(i)}$ , satisfies

$$p_{\pi(i)} \propto i^{-s}$$

• s>0 is called the decay.  $\pi$  gives the order of the alphabet items in decreasing order of probability



Figure 1. The top 20 probabilities in decreasing order for the k=100 and  $s \in \{.5, 1, 1.5, 2\}$  Zipfian distributions

#### What Problem Do We Consider?

- 1.  $\boldsymbol{p}$  is s-Zipfian for some  $s > 0, k \in \mathbb{N}$  and some permtuation function  $\pi$ .
- 2. We must learn  $\boldsymbol{p}$  only from n i.i.d samples  $Y_1, Y_2, \ldots, Y_n$
- 3. High Dimensional Inference:  $k = n^{\beta}$  for some  $\beta > 0$ .
- 4. We seek an *estimator* for  $\boldsymbol{p}$ , denoted  $\hat{\boldsymbol{p}}$ , that is close to  $\boldsymbol{p}$  for large n

## **How Do We Compare Estimators?**

Let  $\mathcal{P}_{s,k}$  denote the k-dimensional s>0 Zipfian distributions

• A good estimator  $\hat{p}$  will minimize maximum risk over  $\mathcal{P}_{s,k}$  as n grows:

$$\sup_{\boldsymbol{p}\in\mathcal{P}_{s,k}} \mathbb{E}_{\boldsymbol{p}}L_1(\hat{\boldsymbol{p}},\boldsymbol{p}) \approx \inf_{\hat{\boldsymbol{p}}\in\mathsf{Estimators}} \sup_{\boldsymbol{p}\in\mathcal{P}_{s,k}} \mathbb{E}_{\boldsymbol{p}}L_1(\hat{\hat{\boldsymbol{p}}},\boldsymbol{p})$$

• For  $oldsymbol{p},oldsymbol{q},L_1(oldsymbol{p},oldsymbol{q}):=\sum_{j=1}^k|p_i-q_i|$ 

#### Why is this problem important?

Because high-dimensional Zipfian or near Zipfian distributions occur in a variety of natural settings. Examples include City Size and Word Frequency distributions.



Figure 2. Double Log Plots for City Size Proportions in the USA (left,n=125,145,895 people,k=976 cities) and Word Frequency Proportions in Moby Dick (right,n=219,422,k=18,811 words). The Blue line represents a Zipfian Probability Law fit using Ordinary Least Squares

## Our Approach

Is s known before data collection?

- If Yes: Use **Sort and Snap**: Sort the alphabet items by empirical frequency, and assign the  $i^{th}$  largest s-Zipfian probability as the estimate for the alphabet item with  $i^{th}$  largest frequency
- If No: Adaptive Sort and Snap: Estimate s first via approximate Maximum Likelihood. Then apply Sort and Snap with given estimate of s.

Through theory and experiment, we compare **Sort and Snap** (SS) and **Adaptive Sort and Snap** (SSA) to SOTA (state of the art) estimators.

| Usable for $s$ unknown? |
|-------------------------|
| No                      |
| Yes                     |
|                         |

Table 1. Estimators Under Comparison

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

#### Results

#### **Highlighted Theoretical Results**

In the s known case:

- SS is near minimax and outperforms SOTA for  $\beta < \frac{1}{B(s)}$  where  $B(s) := \max(1,s) + 2$
- SS achieves an exponential decay in worst case risk when  $\beta < \frac{1}{B(s)}$  of general form  $n^{-f(\beta,s)} \exp(-n^{1-\beta B(s)})$
- An adaptation of SS that uses SS only for top  $\frac{1}{B(s)}$  ranks and EPE otherwise is near minimax when  $\beta>\frac{1}{B(s)}$  and s>2

Here we highlight experiments in which the worst case risk of the estimators is compared at various  $(s, \beta)$ .



Figure 3. Monte Carlo Study Using M=300 iterations to compare expected risk under a variety of  $(s,\beta)$  settings. Note  $B(s):=\max(s,1)+2$ , which is an intermediate dimension at which Sort and Snap no longer has exponential decay in its risk

#### **Summary of Conclusions**

- The above simulations, and our theoretical results suggest SS and SSA are competitive with SOTA methods for all  $(s, \beta)$ , and superior when  $\beta$  is small relative to s.
- Future work will investigate
- SSA for more complex distriutions (Zipf-Mandelbrot) that occur in nature
- How to incorporate SSA into a model-selection strategy when the model is unknown.

University of Utah Data Science & Al Day 2025