The transition from discrete to continuous spaces $% \left(t\right) =\left(t\right) \left(t\right) \left($

Use	Object	Symbolic: Dirac	Discrete: \mathbb{C}^n	Continuous: L^2
Quantum State	Ket	$ \hspace{.06cm}\psi\rangle$	$\left(egin{array}{c} \psi_1 \ \psi_2 \end{array} ight)$	$\psi(x)$
Projection	Inner Product	$\langle \phi \psi angle$	$\left(egin{array}{cc} \phi_1^* & \phi_2^* \end{array} ight) \left(egin{array}{c} \psi_1 \ \psi_2 \end{array} ight)$	$\int \phi^*(x) \psi(x) dx$
Normalization	Inner Product	$\langle \psi \psi angle = 1$	$\left(egin{array}{cc} \psi_1^* & \psi_2^* \end{array} ight) \left(egin{array}{c} \psi_1 \ \psi_2 \end{array} ight) = 1$	$\int \psi^*(x) \psi(x) dx = 1$
Orthogonality	Inner Product	$\langle \phi \psi angle = 0$	$\left(egin{array}{cc} \phi_1^* & \phi_2^* \end{array} ight) \left(egin{array}{c} \psi_1 \ \psi_2 \end{array} ight) = 0$	$\int \phi^*(x) \psi(x) dx = 0$
Change of basis	Sum of Projections	$\sum_n \overline{\langle \phi_n \psi angle \mid \phi_n angle}$	$\sum_{n} \left[\left(egin{array}{cc} \phi_{n_1}^* & \phi_{n_2}^* \end{array} ight) \left(egin{array}{c} \psi_1 \ \psi_2 \end{array} ight) \left[\left(egin{array}{c} \phi_1 \ \phi_2 \end{array} ight)$	$\sum_n \left[\int \phi_n^*(x) \psi(x) dx \right] \phi_n(x)$
Probability	Sum of Moduli Squared		$\sum_{n=a}^b \psi_n ^2$	$\int_a^b \left \psi(x) ight ^2 dx$