Data Frame

```
In [8]: # All imports
   import numpy as np
   import pandas as pd
```

Example - 1

Create a Data Frame cars using raw data stored in a dictionary

Out[12]:		cars_per_cap	country	drives_right
	0	809	United States	True
	1	731	Australia	False
	2	588	Japan	False
	3	18	India	False
	4	200	Russia	True
	5	70	Morocco	True
	6	45	Egypt	True

In [13]: type(cars)

Out[13]: pandas.core.frame.DataFrame

Example - 2 (Reading data from a file)

Create a Data Frame by importing cars data from cars.csv

Out[16]:

	USCA	US	United States	809	FALSE
0	ASPAC	AUS	Australia	731.0	True
1	ASPAC	JAP	Japan	588.0	True
2	ASPAC	IN	India	18.0	True
3	ASPAC	RU	Russia	200.0	False
4	LATAM	MOR	Morocco	70.0	False
5	AFR	EG	Egypt	45.0	False
6	EUR	ENG	England	NaN	True

Example - 3 (Column headers)

Read file - skip header

```
In [35]: cars df = pd.read csv('cars.csv', header=None)
         cars_df
Out[35]:
                                   2
                                        3
             USCA
                      US United States 809.0 False
           1 ASPAC
                    AUS
                             Australia 731.0
                                           True
          2 ASPAC
                     JAP
                               Japan 588.0
                                            True
          3 ASPAC
                                      18.0
                      IN
                                India
                                           True
                              Russia 200.0 False
           4 ASPAC
                      RU
           5 LATAM MOR
                                      70.0 False
                             Morocco
               AFR
                      EG
                               Egypt
                                      45.0 False
               EUR ENG
                             England
                                      NaN True
```

Assign Headers

```
In [36]: # Returns an array of headers
    cars_df.columns
Out[36]: Int64Index([0, 1, 2, 3, 4], dtype='int64')
In [37]: # Rename Headers
    cars_df.columns = ['country code', 'region', 'country', 'cars_per_cap', 'drive_right']
```

In [38]: cars_df

Out[38]:

	country code	region	country	cars_per_cap	drive_right
0	USCA	US	United States	809.0	False
1	ASPAC	AUS	Australia	731.0	True
2	ASPAC	JAP	Japan	588.0	True
3	ASPAC	IN	India	18.0	True
4	ASPAC	RU	Russia	200.0	False
5	LATAM	MOR	Morocco	70.0	False
6	AFR	EG	Egypt	45.0	False
7	EUR	ENG	England	NaN	True

Example - 4 (Row index/names)

Read file - skip header and assign first column as index.

```
In [31]: # Index is returned by
cars_df.index
```

Out[31]: RangeIndex(start=0, stop=8, step=1)

```
In [43]: # Read file and set 1st column as index
          cars df = pd.read csv("cars.csv", header= None, index col=0)
         # set the column names
         cars df.columns = ['region', 'country', 'cars per cap', 'drive right']
         cars df
Out[43]:
                  region
                            country cars_per_cap drive_right
               0
           USCA
                    US United States
                                           809.0
                                                     False
          ASPAC
                   AUS
                            Australia
                                          731.0
                                                     True
           ASPAC
                    JAP
                              Japan
                                           588.0
                                                     True
           ASPAC
                     IN
                               India
                                           18.0
                                                     True
           ASPAC
                     RU
                             Russia
                                           200.0
                                                     False
           LATAM
                   MOR
                            Morocco
                                           70.0
                                                     False
             AFR
                    EG
                                           45.0
                                                     False
                              Egypt
             EUR
                            England
                   ENG
                                           NaN
                                                     True
In [44]: # Print the new index
          cars df.index
Out[44]: Index(['USCA', 'ASPAC', 'ASPAC', 'ASPAC', 'LATAM', 'AFR', 'EUR'], dtype='object', name=0)
```

Rename the Index Name

In [46]: cars_df.index.name = 'country_code'
 cars_df

Out[46]:

	region	country	cars_per_cap	drive_right
country_code				
USCA	US	United States	809.0	False
ASPAC	AUS	Australia	731.0	True
ASPAC	JAP	Japan	588.0	True
ASPAC	IN	India	18.0	True
ASPAC	RU	Russia	200.0	False
LATAM	MOR	Morocco	70.0	False
AFR	EG	Egypt	45.0	False
EUR	ENG	England	NaN	True

Delete the index name

In [51]: cars_df.index.name = None
 cars_df

Out[51]:

	region	country	cars_per_cap	drive_right
USCA	US	United States	809.0	False
ASPAC	AUS	Australia	731.0	True
ASPAC	JAP	Japan	588.0	True
ASPAC	IN	India	18.0	True
ASPAC	RU	Russia	200.0	False
LATAM	MOR	Morocco	70.0	False
AFR	EG	Egypt	45.0	False
EUR	ENG	England	NaN	True

Set Hierarchical index

```
In [52]: # Read file and set 1st column as index
          cars df = pd.read csv("cars.csv", header= None)
          # set the column names
          cars df.columns = ['country code', 'region', 'country', 'cars per cap', 'drives right']
          cars df.set index(['region', 'country code'], inplace=True)
In [53]: cars df
Out[53]:
                                   country cars_per_cap drives_right
           region country_code
              US
                        USCA United States
                                                 809.0
                                                             False
             AUS
                       ASPAC
                                  Australia
                                                 731.0
                                                             True
                       ASPAC
             JAP
                                                  588.0
                                    Japan
                                                              True
                       ASPAC
              IN
                                     India
                                                  18.0
                                                             True
              RU
                       ASPAC
                                    Russia
                                                  200.0
                                                             False
            MOR
                       LATAM
                                  Morocco
                                                  70.0
                                                             False
              EG
                          AFR
                                    Egypt
                                                  45.0
                                                             False
            ENG
                          EUR
                                                              True
                                   England
                                                  NaN
 In [ ]:
```

Example - 5 (Write Data Frame to file)

Write cars_df to cars_to_csv.csv

```
In [54]: cars_df.to_csv('cars_to_csv.csv')
In [ ]:
```

Case Study - Sales Data

```
In [1]: # All imports
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
```

Sales and Profit data is read in dataframe "sales"

```
In [9]: # Read file

sales = pd.read_excel('sales.xlsx')
sales
```

Out[9]:

	Market	Region	No_of_Orders	Profit	Sales
0	Africa	Western Africa	251	-12901.51	78476.06
1	Africa	Southern Africa	85	11768.58	51319.50
2	Africa	North Africa	182	21643.08	86698.89
3	Africa	Eastern Africa	110	8013.04	44182.60
4	Africa	Central Africa	103	15606.30	61689.99
5	Asia Pacific	Western Asia	382	-16766.90	124312.24
6	Asia Pacific	Southern Asia	469	67998.76	351806.60
7	Asia Pacific	Southeastern Asia	533	20948.84	329751.38
8	Asia Pacific	Oceania	646	54734.02	408002.98
9	Asia Pacific	Eastern Asia	414	72805.10	315390.77
10	Asia Pacific	Central Asia	37	-2649.76	8190.74
11	Europe	Western Europe	964	82091.27	656637.14
12	Europe	Southern Europe	338	18911.49	215703.93
13	Europe	Northern Europe	367	43237.44	252969.09
14	Europe	Eastern Europe	241	25050.69	108258.93
15	LATAM	South America	496	12377.59	210710.49
16	LATAM	Central America	930	74679.54	461670.28
17	LATAM	Caribbean	288	13529.59	116333.05
18	USCA	Western US	490	44303.65	251991.83
19	USCA	Southern US	255	19991.83	148771.91
20	USCA	Eastern US	443	47462.04	264973.98
21	USCA	Central US	356	33697.43	170416.31
22	USCA	Canada	49	7246.62	26298.81

```
In [10]: # Read file and set 1st two columns as index
sales = pd.read_excel('sales.xlsx', index_col = [0,1])
sales
```

Out[10]:

		No_of_Orders	Profit	Sales
Market	Region			
	Western Africa	251	-12901.51	78476.06
	Southern Africa	85	11768.58	51319.50
Africa	North Africa	182	21643.08	86698.89
	Eastern Africa	110	8013.04	44182.60
	Central Africa	103	15606.30	61689.99
	Western Asia	382	-16766.90	124312.24
	Southern Asia	469	67998.76	351806.60
Asia Pacific	Southeastern Asia	533	20948.84	329751.38
Asia i acilic	Oceania	646	54734.02	408002.98
	Eastern Asia	414	72805.10	315390.77
	Central Asia	37	-2649.76	8190.74
Europe	Western Europe	964	82091.27	656637.14
	Southern Europe	338	18911.49	215703.93
Larope	Northern Europe	367	43237.44	252969.09
	Eastern Europe	241	25050.69	108258.93
	South America	496	12377.59	210710.49
LATAM	Central America	930	74679.54	461670.28
	Caribbean	288	13529.59	116333.05
	Western US	490	44303.65	251991.83
	Southern US	255	19991.83	148771.91
USCA	Eastern US	443	47462.04	264973.98
	Central US	356	33697.43	170416.31
	Canada	49	7246.62	26298.81

Example - 1

Display first 3 land last 3 rows of the sales dataframe

	nead() # <i>Defa</i> u		•	
		No of Oudous	D., - 61	0-1
Manhat	Danian		Profit	: Sales
Market				
				51319.50
Africa	North Africa	182	21643.08	86698.89
	Eastern Africa	110	8013.04	44182.60
	Central Africa	103	15606.30	61689.99
sales.	nead(3)			
		No_of_Orders	Profit	Sales
Market	Region			
	Western Africa	251	-12901.51	78476.06
Africa	Southern Africa	85	11768.58	51319.50
	North Africa	182	21643.08	86698.89
sales.t	tail()			
	N	lo of Orders	Profit	Sales
Market	Region			
Market			4303.65 2	
Market	Region	490 4		 51991.83
Market	Region Western US	490 4 255 1	4303.65 2	51991.83 48771.91
	Region Western US Southern US	490 4 255 1 443 4	9991.83 1	51991.83 48771.91 64973.98
	Market Africa	Western Africa Southern Africa Africa North Africa Eastern Africa Central Africa sales.head(3) Market Region Western Africa Africa Southern Africa North Africa sales.tail()	Market Region Western Africa 251 Southern Africa 85 Africa North Africa 182 Eastern Africa 110 Central Africa 103 sales.head(3) No_of_Orders Market Region Western Africa 251 Africa Southern Africa 85 North Africa 182	Western Africa 251 -12901.51 Southern Africa 85 11768.58 Africa North Africa 182 21643.08 Eastern Africa 110 8013.04 Central Africa 103 15606.30 sales.head(3) No_of_Orders Profit Market Region Western Africa 251 -12901.51 Africa Southern Africa 85 11768.58 North Africa 182 21643.08 sales.tail()

Market	Region			
	Eastern US	443	47462.04	264973.98
USCA	Central US	356	33697.43	170416.31
	Canada	49	7246.62	26298.81

Example - 2

Display the information about the data stored in data frame

```
In [16]: sales.info()
         <class 'pandas.core.frame.DataFrame'>
         MultiIndex: 23 entries, ('Africa', 'Western Africa') to ('USCA', 'Canada')
         Data columns (total 3 columns):
                            Non-Null Count Dtype
             Column
             No of Orders 23 non-null
                                            int64
          1
              Profit
                            23 non-null
                                           float64
              Sales
                                           float64
                            23 non-null
         dtypes: float64(2), int64(1)
         memory usage: 932.0+ bytes
```

Display the statistical information about the data in dataframe

In [17]: sales.describe()

Out[17]:

	No_of_Orders	Profit	Sales
count	23.000000	23.000000	23.000000
mean	366.478261	28859.944783	206285.108696
std	246.590361	27701.193773	160589.886606
min	37.000000	-16766.900000	8190.740000
25%	211.500000	12073.085000	82587.475000
50%	356.000000	20948.840000	170416.310000
75%	479.500000	45882.845000	290182.375000
max	964.000000	82091.270000	656637.140000

In [18]: sales[["Sales", "Profit"]].plot(kind= "box", subplots= True) plt.show()


```
In [20]: |sales["Profit"]
Out[20]: Market
                        Region
         Africa
                       Western Africa
                                            -12901.51
                       Southern Africa
                                             11768.58
                       North Africa
                                             21643.08
                       Eastern Africa
                                              8013.04
                        Central Africa
                                             15606.30
         Asia Pacific Western Asia
                                            -16766.90
                       Southern Asia
                                             67998.76
                       Southeastern Asia
                                             20948.84
                       Oceania
                                             54734.02
                        Eastern Asia
                                             72805.10
                       Central Asia
                                             -2649.76
         Europe
                       Western Europe
                                             82091.27
                                             18911.49
                       Southern Europe
                       Northern Europe
                                             43237.44
                        Eastern Europe
                                             25050.69
         LATAM
                       South America
                                             12377.59
                       Central America
                                             74679.54
                       Caribbean
                                             13529.59
         USCA
                       Western US
                                             44303.65
                                             19991.83
                       Southern US
                                             47462.04
                        Eastern US
                       Central US
                                             33697.43
                        Canada
                                              7246.62
         Name: Profit, dtype: float64
In [ ]:
```

Case Study - Sales Data

```
In [26]: # All imports
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd

# Displays pandas float values in 2 decimals
    pd.options.display.float_format = '{:,.2f}'.format
```

Out[27]:

	Market	Region	No_of_Orders	Profit	Sales
0	Africa	Western Africa	251	-12,901.51	78,476.06
1	Africa	Southern Africa	85	11,768.58	51,319.50
2	Africa	North Africa	182	21,643.08	86,698.89
3	Africa	Eastern Africa	110	8,013.04	44,182.60
4	Africa	Central Africa	103	15,606.30	61,689.99
5	Asia Pacific	Western Asia	382	-16,766.90	124,312.24
6	Asia Pacific	Southern Asia	469	67,998.76	351,806.60
7	Asia Pacific	Southeastern Asia	533	20,948.84	329,751.38
8	Asia Pacific	Oceania	646	54,734.02	408,002.98
9	Asia Pacific	Eastern Asia	414	72,805.10	315,390.77
10	Asia Pacific	Central Asia	37	-2,649.76	8,190.74
11	Europe	Western Europe	964	82,091.27	656,637.14
12	Europe	Southern Europe	338	18,911.49	215,703.93
13	Europe	Northern Europe	367	43,237.44	252,969.09
14	Europe	Eastern Europe	241	25,050.69	108,258.93
15	LATAM	South America	496	12,377.59	210,710.49
16	LATAM	Central America	930	74,679.54	461,670.28
17	LATAM	Caribbean	288	13,529.59	116,333.05
18	USCA	Western US	490	44,303.65	251,991.83
19	USCA	Southern US	255	19,991.83	148,771.91
20	USCA	Eastern US	443	47,462.04	264,973.98
21	USCA	Central US	356	33,697.43	170,416.31
22	USCA	Canada	49	7,246.62	26,298.81

Sales and Profit data is read in dataframe "sales"

```
In [28]: # Read file and set 2nd column as index
sales = pd.read_excel('sales.xlsx', index_col = [1])
sales
```

Out[28]:

	Market	No_of_Orders	Profit	Sales
Region				
Western Africa	Africa	251	-12,901.51	78,476.06
Southern Africa	Africa	85	11,768.58	51,319.50
North Africa	Africa	182	21,643.08	86,698.89
Eastern Africa	Africa	110	8,013.04	44,182.60
Central Africa	Africa	103	15,606.30	61,689.99
Western Asia	Asia Pacific	382	-16,766.90	124,312.24
Southern Asia	Asia Pacific	469	67,998.76	351,806.60
Southeastern Asia	Asia Pacific	533	20,948.84	329,751.38
Oceania	Asia Pacific	646	54,734.02	408,002.98
Eastern Asia	Asia Pacific	414	72,805.10	315,390.77
Central Asia	Asia Pacific	37	-2,649.76	8,190.74
Western Europe	Europe	964	82,091.27	656,637.14
Southern Europe	Europe	338	18,911.49	215,703.93
Northern Europe	Europe	367	43,237.44	252,969.09
Eastern Europe	Europe	241	25,050.69	108,258.93
South America	LATAM	496	12,377.59	210,710.49
Central America	LATAM	930	74,679.54	461,670.28
Caribbean	LATAM	288	13,529.59	116,333.05
Western US	USCA	490	44,303.65	251,991.83
Southern US	USCA	255	19,991.83	148,771.91
Eastern US	USCA	443	47,462.04	264,973.98
Central US	USCA	356	33,697.43	170,416.31
Canada	USCA	49	7,246.62	26,298.81

Example - 1 (Column Indexing)

Display Sales Column

```
In [10]: sales["Sales"]
Out[10]: Region
         Western Africa
                              78,476.06
         Southern Africa
                              51,319.50
         North Africa
                              86,698.89
         Eastern Africa
                              44,182.60
         Central Africa
                              61,689.99
         Western Asia
                             124,312.24
                              351,806.60
         Southern Asia
         Southeastern Asia
                             329,751.38
         Oceania
                             408,002.98
         Eastern Asia
                              315,390.77
         Central Asia
                               8,190.74
         Western Europe
                              656,637.14
         Southern Europe
                              215,703.93
         Northern Europe
                             252,969.09
                             108,258.93
         Eastern Europe
         South America
                              210,710.49
         Central America
                             461,670.28
         Caribbean
                             116,333.05
         Western US
                              251,991.83
         Southern US
                             148,771.91
                              264,973.98
         Eastern US
         Central US
                             170,416.31
                              26,298.81
         Canada
         Name: Sales, dtype: float64
```

```
In [11]: sales.Sales
Out[11]: Region
         Western Africa
                              78,476.06
         Southern Africa
                              51,319.50
         North Africa
                              86,698.89
         Eastern Africa
                              44,182.60
         Central Africa
                              61,689.99
         Western Asia
                              124,312.24
         Southern Asia
                              351,806.60
                              329,751.38
         Southeastern Asia
                              408,002.98
         Oceania
                              315,390.77
         Eastern Asia
         Central Asia
                                8,190.74
         Western Europe
                              656,637.14
         Southern Europe
                              215,703.93
         Northern Europe
                              252,969.09
                              108,258.93
         Eastern Europe
         South America
                              210,710.49
         Central America
                             461,670.28
         Caribbean
                              116,333.05
         Western US
                              251,991.83
                              148,771.91
         Southern US
         Eastern US
                              264,973.98
                             170,416.31
         Central US
                              26,298.81
         Canada
         Name: Sales, dtype: float64
In [12]: type(sales["Sales"])
Out[12]: pandas.core.series.Series
```

Display Sales and Profit Column together

In [13]: sales[["Sales", "Profit"]]

Out[13]:

	Sales	Profit
Region		
Western Africa	78,476.06	-12,901.51
Southern Africa	51,319.50	11,768.58
North Africa	86,698.89	21,643.08
Eastern Africa	44,182.60	8,013.04
Central Africa	61,689.99	15,606.30
Western Asia	124,312.24	-16,766.90
Southern Asia	351,806.60	67,998.76
Southeastern Asia	329,751.38	20,948.84
Oceania	408,002.98	54,734.02
Eastern Asia	315,390.77	72,805.10
Central Asia	8,190.74	-2,649.76
Western Europe	656,637.14	82,091.27
Southern Europe	215,703.93	18,911.49
Northern Europe	252,969.09	43,237.44
Eastern Europe	108,258.93	25,050.69
South America	210,710.49	12,377.59
Central America	461,670.28	74,679.54
Caribbean	116,333.05	13,529.59
Western US	251,991.83	44,303.65
Southern US	148,771.91	19,991.83
Eastern US	264,973.98	47,462.04
Central US	170,416.31	33,697.43
Canada	26,298.81	7,246.62

Example - 2 (Row Indexing)

Display data for "Southern Asia"

loc accessor takes row index and column index

```
In [14]: sales.loc["Southern Asia"]
```

Out[14]: Market Asia Pacific
No_of_Orders 469
Profit 67,998.76
Sales 351,806.60

Name: Southern Asia, dtype: object

Display Sales data for "Southern Asia"

```
In [15]: sales.loc["Southern Asia", "Sales"]
```

Out[15]: 351806.6

Display data for "Southern Asia"

iloc accessor takes row number and column number

```
In [16]: sales.iloc[6]
```

Out[16]: Market Asia Pacific
No_of_Orders 469

Profit 67,998.76 Sales 351,806.60

Name: Southern Asia, dtype: object

```
sales.iloc[6,3]
In [17]:
Out[17]: 351806.6
           Example - 3 (Slicing)
           Display data for Market, Sales and Profit
          sales.loc[:, ["Market", "Sales", "Profit"]].head()
In [19]:
Out[19]:
                            Market
                                       Sales
                                                  Profit
                    Region
             Western Africa
                             Africa 78,476.06 -12,901.51
            Southern Africa
                             Africa 51,319.50
                                             11,768.58
               North Africa
                             Africa 86,698.89
                                              21,643.08
             Eastern Africa
                             Africa 44,182.60
                                               8,013.04
              Central Africa
                             Africa 61,689.99
                                              15,606.30
           sales.iloc[:, [0,3,2] ].head()
In [20]:
Out[20]:
                                                  Profit
                            Market
                                       Sales
                    Region
             Western Africa
                             Africa 78,476.06 -12,901.51
            Southern Africa
                             Africa 51,319.50
                                              11,768.58
                             Africa 86,698.89
               North Africa
                                              21,643.08
             Eastern Africa
                             Africa 44,182.60
                                               8,013.04
```

Display data for Western Africa Southern Africa and North Africa

Africa 61,689.99 15,606.30

Central Africa

```
In [21]: sales.loc[["Western Africa", "Southern Africa", "North Africa"] ,:]
Out[21]:
                           Market No_of_Orders
                                                      Profit
                                                               Sales
                   Region
             Western Africa
                             Africa
                                            251 -12,901.51 78,476.06
            Southern Africa
                                                  11,768.58 51,319.50
                             Africa
               North Africa
                             Africa
                                            182
                                                21,643.08 86,698.89
          sales.iloc[0:3, :]
In [22]:
Out[22]:
                           Market No_of_Orders
                                                     Profit
                                                               Sales
                   Region
             Western Africa
                             Africa
                                            251 -12,901.51 78,476.06
            Southern Africa
                             Africa
                                                  11,768.58 51,319.50
               North Africa
                             Africa
                                            182
                                                  21,643.08 86,698.89
```

Display Sales and Profit data for Western Africa Southern Africa and North Africa

```
In [23]: sales.loc[["Western Africa", "Southern Africa", "North Africa"], ["Sales", "Profit"]]
```

 Out[23]:
 Sales
 Profit

 Region

 Western Africa
 78,476.06
 -12,901.51

 Southern Africa
 51,319.50
 11,768.58

 North Africa
 86,698.89
 21,643.08

In [24]: sales.iloc[0:3, 2:4]

Out[24]:

Region		
Western Africa	-12,901.51	78,476.06
Southern Africa	11,768.58	51,319.50
North Africa	21,643.08	86,698.89

Profit

Sales

Example - 4 (Filtering)

Display Markets with Sales >300000

In [28]: sales["Sales"] > 300000

Out[28]: Region

Western Africa False Southern Africa False North Africa False Eastern Africa False Central Africa False Western Asia False Southern Asia True Southeastern Asia True Oceania True Eastern Asia True Central Asia False Western Europe True False Southern Europe False Northern Europe Eastern Europe False South America False Central America True Caribbean False Western US False Southern US False Eastern US False Central US False False Canada Name: Sales, dtype: bool

```
In [29]: sales[ sales["Sales"] > 300000 ]
Out[29]:
                                 Market No_of_Orders
                                                           Profit
                                                                      Sales
                      Region
                Southern Asia Asia Pacific
                                                  469 67,998.76 351,806.60
            Southeastern Asia Asia Pacific
                                                  533 20,948.84 329,751.38
                     Oceania Asia Pacific
                                                       54,734.02 408,002.98
                 Eastern Asia Asia Pacific
                                                  414 72,805.10 315,390.77
              Western Europe
                                 Europe
                                                       82,091.27 656,637.14
              Central America
                                 LATAM
                                                  930 74,679.54 461,670.28
```

Display the LATAM and Eruopean countries with sales > 250000

ı [30]:	<pre>sales[(sales["Market"].isin(["LATAM", "Europe"])) &</pre>				
Out[30]:		Market	No_of_Orders	Profit	Sales
	Region				
	Western Europe	Europe	964	82,091.27	656,637.14
	Northern Europe	Europe	367	43,237.44	252,969.09
	Central America	LATAM	930	74,679.54	461,670.28

Optional Examples

The examples given below are good to know but not essential to achieve the objective of this session. You can go through them at your own pace.

Example - 5 (Transformation)

Replace the sales values in the form of thousands

Context: Some time you might want to modify columns to make them more readable. For instance, the sales column in the given data set has six digits, followed by two decimal places. You might want to make it more readable. You can convert the actual sales number to a number in thousands and make it a round figure.

eg. 300000 - 300K

You can use the .floordiv function to achieve the transformation explained above. You can read more about the .floordiv method https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.floordiv.html).

Profit Sales

Out[18]:

Region				
Western Africa	Africa	251	-12,901.51	78.00
Southern Africa	Africa	85	11,768.58	51.00
North Africa	Africa	182	21,643.08	86.00
Eastern Africa	Africa	110	8,013.04	44.00
Central Africa	Africa	103	15,606.30	61.00

Market No_of_Orders

Market No_of_Orders

In [19]: sales.rename(columns={'Sales': 'Sales in Thousands'}, inplace=True)
 sales.head()

Profit Sales in Thousands

Out[19]:

Region				
Western Africa	Africa	251	-12,901.51	78.00
Southern Africa	Africa	85	11,768.58	51.00
North Africa	Africa	182	21,643.08	86.00
Eastern Africa	Africa	110	8,013.04	44.00
Central Africa	Africa	103	15,606.30	61.00

Replace values in Profit percent of total

Replace negative Profits with NAN

In [29]: sales.loc[sales['Profit']<0, 'Profit'] = np.nan
 sales.head()</pre>

Out[29]:

	Market	No_of_Orders	Profit	Sales
Region				
Western Africa	Africa	251	nan	78,476.06
Southern Africa	Africa	85	11,768.58	51,319.50
North Africa	Africa	182	21,643.08	86,698.89
Eastern Africa	Africa	110	8,013.04	44,182.60
Central Africa	Africa	103	15,606.30	61,689.99

Operations on Pandas

This notebook will cover the following topics:

- Filtering dataframes
 - Single and multiple conditions
- · Creating new columns
- · Lambda functions
- · Group by and aggregate functions
- Pivot data
- Merging data frames
 - Joins and concatenations

Preparatory steps

Background

An FMCG company P&J found that the sales of their best selling items are affected by the weather and rainfall trend. For example, the sale of tea increases when it rains, sunscreen is sold on the days when it is least likely to rain, and the sky is clear. They would like to check whether the weather patterns play a vital role in the sale of certain items. Hence as initial experimentation, they would like you to forecast the weather trend in the upcoming days. The target region for this activity is Australia; accordingly, this exercise will be based on analysing and cleaning the weather data from the Australian region available on public platforms.

Read the data into a dataframe

```
In [1]: import pandas as pd
In [2]: data = pd.read_csv("weatherdata.csv", header =0)
```

Display the data

In [3]: data.head(5)

Out[3]:

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed
0	2008-12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	44.0
1	2008-12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0
2	2008-12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	46.0
3	2008-12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0
4	2008-12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	41.0

Data Dictionary

- 1. Date: The date on which the recording was taken
- 2. Location: The location of the recording
- 3. MinTemp: Minimum temperature on the day of the recording (in C)
- 4. MaxTemp: Maximum temperature in the day of the recording (in C)
- 5. Rainfall: Rainfall in mm
- 6. Evaporation: The so-called Class A pan evaporation (mm) in the 24 hours to 9am
- 7. Sunshine: The number of hours of bright sunshine in the day.
- 8. WindGustDir: The direction of the strongest wind gust in the 24 hours to midnight
- 9. WindGustSpeed: The speed (km/h) of the strongest wind gust in the 24 hours to midnight

Example 1.1: Filtering dataframes

Find the days which had sunshine for more that 4 hours. These days will have increased sales of sunscreen.

In [4]: data.shape
Out[4]: (142193, 9)

In [5]: data["Sunshine"]>4

Out[5]:	0	False
	1	False
	2	False
	3	False
	4	False
	5	False
	6	False
	7	False
	8	False
	9	False
	10	False
	11	False
	12	False
	13	False
	14	False
	15	False
	16	False
	17	False
	18	False
	19	False
	20	False
	21	False
	22	False
	23	False
	24	False
	25	False
	26	False
	27	False
	28	False
	29	False
	142163	False
	142164	False
	142165	False
	142166	False
	142167	False
	142168	False
	142169	False
	142170	False
	142171	False
	142172	False

```
142173
          False
142174
          False
142175
          False
142176
          False
142177
          False
142178
          False
142179
          False
142180
          False
142181
          False
         False
142182
142183
          False
142184
          False
142185
          False
142186
          False
142187
          False
142188
          False
         False
142189
142190
          False
142191
          False
142192
         False
```

Name: Sunshine, Length: 142193, dtype: bool

In [6]: data[data["Sunshine"]>4]

Out[6]:

		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed
_	5939	2009-01-01	Cobar	17.9	35.2	0.0	12.0	12.3	SSW	48.0
	5940	2009-01-02	Cobar	18.4	28.9	0.0	14.8	13.0	S	37.0
	5941	2009-01-03	Cobar	15.5	34.1	0.0	12.6	13.3	SE	30.0
	5942	2009-01-04	Cobar	19.4	37.6	0.0	10.8	10.6	NNE	46.0
	5943	2009-01-05	Cobar	21.9	38.4	0.0	11.4	12.2	WNW	31.0
	5944	2009-01-06	Cobar	24.2	41.0	0.0	11.2	8.4	WNW	35.0
	5946	2009-01-08	Cobar	23.3	34.0	0.0	9.8	12.6	SSW	41.0
	5947	2009-01-09	Cobar	16.1	34.2	0.0	14.6	13.2	SE	37.0
	5948	2009-01-10	Cobar	19.0	35.5	0.0	12.0	12.3	ENE	48.0
	5949	2009-01-11	Cobar	19.7	35.5	0.0	11.0	12.7	NE	41.0
	5950	2009-01-12	Cobar	20.9	37.8	0.0	12.8	13.2	Е	30.0
	5951	2009-01-13	Cobar	23.9	39.1	0.0	13.8	12.1	ENE	39.0
	5952	2009-01-14	Cobar	24.9	41.2	0.0	14.8	13.0	SSW	43.0
	5953	2009-01-15	Cobar	25.2	40.5	0.0	16.4	10.3	SW	44.0
	5954	2009-01-16	Cobar	21.6	34.2	0.0	17.4	13.1	SW	44.0
	5955	2009-01-17	Cobar	18.4	31.8	0.0	16.0	12.9	S	33.0
	5956	2009-01-18	Cobar	17.9	34.2	0.0	12.0	11.3	SE	61.0
	5957	2009-01-19	Cobar	21.4	37.5	0.0	14.8	6.9	NNE	43.0
	5958	2009-01-20	Cobar	23.3	39.4	4.8	12.0	10.9	W	59.0
	5960	2009-01-22	Cobar	21.8	30.7	0.0	8.0	5.9	WNW	56.0
	5961	2009-01-23	Cobar	20.3	36.0	18.0	8.2	10.5	WSW	94.0
	5962	2009-01-24	Cobar	22.1	34.7	8.6	8.6	12.4	NNW	50.0
	5963	2009-01-25	Cobar	19.7	37.3	0.0	14.2	13.4	SSW	28.0
	5964	2009-01-26	Cobar	23.8	39.9	0.0	12.6	13.2	S	31.0
	5965	2009-01-27	Cobar	27.0	38.7	0.0	14.2	13.0	ENE	46.0
	5966	2009-01-28	Cobar	26.2	38.5	0.0	14.6	13.3	Е	39.0

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed
5967	2009-01-29	Cobar	25.0	39.5	0.0	14.6	13.6	ENE	52.0
5968	2009-01-30	Cobar	25.1	39.3	0.0	15.8	13.2	ESE	44.0
5969	2009-01-31	Cobar	25.2	38.5	0.0	16.2	13.1	ENE	44.0
5970	2009-02-01	Cobar	24.8	40.8	0.0	13.4	11.3	SE	30.0
139083	2017-05-26	Darwin	24.3	31.9	0.0	6.4	10.9	ESE	50.0
139084	2017-05-27	Darwin	23.5	33.3	0.0	5.4	10.8	E	43.0
139085	2017-05-28	Darwin	22.4	32.2	0.0	8.0	6.3	E	39.0
139086	2017-05-29	Darwin	24.1	32.6	0.0	6.8	10.4	E	52.0
139087	2017-05-30	Darwin	22.5	32.3	0.0	6.6	10.6	SE	48.0
139088	2017-05-31	Darwin	20.4	31.4	0.2	9.6	9.6	ESE	52.0
139089	2017-06-01	Darwin	21.9	31.6	0.0	10.0	9.9	ESE	43.0
139090	2017-06-02	Darwin	21.6	32.0	0.0	9.6	10.7	ESE	43.0
139091	2017-06-03	Darwin	22.7	31.6	0.0	7.0	7.4	ESE	43.0
139092	2017-06-04	Darwin	22.4	31.4	0.0	6.6	8.3	E	43.0
139093	2017-06-05	Darwin	23.3	32.4	0.0	5.4	8.9	E	43.0
139094	2017-06-06	Darwin	20.6	31.8	0.0	6.4	10.8	E	46.0
139095	2017-06-07	Darwin	20.0	30.4	0.0	9.0	10.8	ESE	43.0
139096	2017-06-08	Darwin	19.2	29.4	0.0	7.4	10.9	E	54.0
139097	2017-06-09	Darwin	20.6	29.4	0.0	10.6	5.4	Е	46.0
139098	2017-06-10	Darwin	18.7	29.4	0.0	7.8	8.7	ESE	48.0
139099	2017-06-11	Darwin	19.0	29.4	0.0	7.6	10.4	E	46.0
139100	2017-06-12	Darwin	17.2	29.1	0.0	7.2	10.1	ESE	44.0
139101	2017-06-13	Darwin	18.3	29.8	0.0	8.4	10.5	ESE	41.0
139102	2017-06-14	Darwin	16.9	30.3	0.0	5.4	10.9	Е	33.0
139103	2017-06-15	Darwin	19.0	30.9	0.0	5.0	10.8	Е	41.0

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed
139104	2017-06-16	Darwin	18.9	31.1	0.0	6.0	10.6	ESE	31.0
139105	2017-06-17	Darwin	20.2	32.1	0.0	4.8	9.9	Е	31.0
139106	2017-06-18	Darwin	20.0	33.1	0.0	4.6	10.9	E	43.0
139107	2017-06-19	Darwin	21.9	33.0	0.0	5.2	10.9	Е	44.0
139108	2017-06-20	Darwin	19.3	33.4	0.0	6.0	11.0	ENE	35.0
139109	2017-06-21	Darwin	21.2	32.6	0.0	7.6	8.6	Е	37.0
139110	2017-06-22	Darwin	20.7	32.8	0.0	5.6	11.0	Е	33.0
139111	2017-06-23	Darwin	19.5	31.8	0.0	6.2	10.6	ESE	26.0
139112	2017-06-24	Darwin	20.2	31.7	0.0	5.6	10.7	ENE	30.0

58898 rows × 9 columns

Note: High sunshine corresponds to low rainfall.

Example 1.2: Filtering dataframes

The cold drink sales will most likely increase on the days which have high sunshine(>5) and high max temperature(>35). Use the filter operation to filter out these days

In [7]: data[(data["MaxTemp"]>35) & (data["Sunshine"]>5)]

_			_	-	
n	1111	ы	17		•
U	u	L	/	- 1	•

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed
5939	2009-01-01	Cobar	17.9	35.2	0.0	12.0	12.3	SSW	48.0
5942	2009-01-04	Cobar	19.4	37.6	0.0	10.8	10.6	NNE	46.0
5943	2009-01-05	Cobar	21.9	38.4	0.0	11.4	12.2	WNW	31.0
5944	2009-01-06	Cobar	24.2	41.0	0.0	11.2	8.4	WNW	35.0
5948	2009-01-10	Cobar	19.0	35.5	0.0	12.0	12.3	ENE	48.0
5949	2009-01-11	Cobar	19.7	35.5	0.0	11.0	12.7	NE	41.0
5950	2009-01-12	Cobar	20.9	37.8	0.0	12.8	13.2	Е	30.0
5951	2009-01-13	Cobar	23.9	39.1	0.0	13.8	12.1	ENE	39.0
5952	2009-01-14	Cobar	24.9	41.2	0.0	14.8	13.0	SSW	43.0
5953	2009-01-15	Cobar	25.2	40.5	0.0	16.4	10.3	SW	44.0
5957	2009-01-19	Cobar	21.4	37.5	0.0	14.8	6.9	NNE	43.0
5958	2009-01-20	Cobar	23.3	39.4	4.8	12.0	10.9	W	59.0
5961	2009-01-23	Cobar	20.3	36.0	18.0	8.2	10.5	WSW	94.0
5963	2009-01-25	Cobar	19.7	37.3	0.0	14.2	13.4	SSW	28.0
5964	2009-01-26	Cobar	23.8	39.9	0.0	12.6	13.2	S	31.0
5965	2009-01-27	Cobar	27.0	38.7	0.0	14.2	13.0	ENE	46.0
5966	2009-01-28	Cobar	26.2	38.5	0.0	14.6	13.3	E	39.0
5967	2009-01-29	Cobar	25.0	39.5	0.0	14.6	13.6	ENE	52.0
5968	2009-01-30	Cobar	25.1	39.3	0.0	15.8	13.2	ESE	44.0
5969	2009-01-31	Cobar	25.2	38.5	0.0	16.2	13.1	ENE	44.0
5970	2009-02-01	Cobar	24.8	40.8	0.0	13.4	11.3	SE	30.0
5971	2009-02-02	Cobar	27.6	40.3	0.0	14.4	10.9	S	57.0
5972	2009-02-03	Cobar	23.6	40.4	0.6	11.8	12.2	WSW	54.0
5973	2009-02-04	Cobar	24.1	41.4	1.6	12.6	12.3	ENE	39.0
5974	2009-02-05	Cobar	27.2	43.4	0.0	14.2	12.6	NNW	37.0
5975	2009-02-06	Cobar	29.1	43.5	0.0	13.0	12.1	WNW	28.0

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed
5976	2009-02-07	Cobar	28.9	41.4	0.0	15.6	12.7	NNE	41.0
5977	2009-02-08	Cobar	25.1	42.0	0.0	17.4	13.0	NNE	39.0
5978	2009-02-09	Cobar	25.4	36.6	0.0	15.2	10.3	SW	43.0
5992	2009-02-23	Cobar	21.9	35.1	0.0	9.0	10.2	S	43.0
138541	2015-12-01	Darwin	25.1	35.5	1.2	5.2	7.8	N	28.0
138543	2015-12-03	Darwin	25.6	35.6	0.0	5.0	11.0	ESE	37.0
138546	2015-12-06	Darwin	25.6	35.9	0.0	4.6	12.0	N	41.0
138547	2015-12-07	Darwin	27.0	36.4	0.0	8.4	11.9	NNE	33.0
138584	2016-01-13	Darwin	25.2	35.5	0.0	8.0	7.8	S	39.0
138623	2016-02-21	Darwin	27.4	35.3	0.0	7.0	9.9	NNW	30.0
138632	2016-03-01	Darwin	26.6	35.2	0.0	8.0	11.5	NW	28.0
138645	2016-03-14	Darwin	26.2	35.1	1.6	6.0	6.6	WSW	44.0
138673	2016-04-11	Darwin	25.7	35.9	0.0	9.2	11.2	E	39.0
138674	2016-04-12	Darwin	25.6	36.0	0.0	6.8	10.7	E	43.0
138675	2016-04-13	Darwin	26.1	35.7	0.0	9.8	9.5	ENE	44.0
138683	2016-04-21	Darwin	24.9	35.7	0.0	5.2	11.1	Е	41.0
138684	2016-04-22	Darwin	24.9	35.9	0.0	6.0	11.0	Е	41.0
138685	2016-04-23	Darwin	24.9	35.5	0.0	8.0	9.8	Е	52.0
138686	2016-04-24	Darwin	23.9	35.4	0.0	8.0	10.8	SSE	56.0
138687	2016-04-25	Darwin	23.7	35.6	0.0	9.0	11.1	ESE	57.0
138688	2016-04-26	Darwin	23.3	35.4	0.0	8.0	10.0	Е	33.0
138709	2016-05-17	Darwin	24.8	35.1	0.0	6.6	10.9	ENE	39.0
138710	2016-05-18	Darwin	25.0	35.2	0.0	3.8	11.0	ESE	33.0
138715	2016-05-23	Darwin	25.9	35.1	0.0	4.8	11.1	S	37.0
138821	2016-09-06	Darwin	24.0	35.2	0.0	8.0	10.7	NW	41.0

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed
138837	2016-09-22	Darwin	25.0	35.5	0.0	6.8	9.3	NNE	39.0
138851	2016-10-06	Darwin	24.8	35.8	0.0	8.0	9.3	Е	41.0
138852	2016-10-07	Darwin	26.3	36.2	0.0	8.0	11.0	Е	44.0
138853	2016-10-08	Darwin	25.7	37.5	0.0	8.0	11.5	Е	50.0
138862	2016-10-17	Darwin	25.1	35.2	0.0	7.4	11.5	NNE	39.0
138879	2016-11-03	Darwin	24.4	35.5	0.0	7.8	9.9	NW	35.0
138892	2016-11-16	Darwin	25.7	35.2	0.0	5.4	11.3	NW	26.0
138905	2016-11-29	Darwin	25.8	35.1	0.8	4.8	6.4	SSE	46.0
138910	2016-12-04	Darwin	25.8	35.2	0.0	NaN	12.0	ESE	33.0

3861 rows × 9 columns

Note: The construction of the filter condition, it has individual filter conditions separated in parenthesis

Example 2.1: Creating new columns

If you noticed the filtering done in the earlier examples did not give precise information about the days, the data column simply has the dates. The date column can be split into the year, month and day of the month.

Special module of pandas The "DatetimeIndex" is a particular module which has the capabilities to extract a day, month and year form the date.

Adding New columns To add a new column in the dataframe just name the column and pass the instructions about the creation of the new column

```
In [10]: data["Year"] = pd.DatetimeIndex(data["Date"]).year
In [11]: data.head()
```

Out[11]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	Year
	0	2008-12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	44.0	2008
	1	2008-12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0	2008
	2	2008-12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	46.0	2008
	3	2008-12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0	2008
	4	2008-12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	41 0	2008

```
In [12]: data["Month"] = pd.DatetimeIndex(data["Date"]).month
In [13]: data["Dayofmonth"] = pd.DatetimeIndex(data["Date"]).day
```

In [14]: data.head(20)

Out[14]:

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	Year	Month	Dayofmonth
0	2008-12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	44.0	2008	12	1
1	2008-12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0	2008	12	2
2	2008-12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	46.0	2008	12	3
3	2008-12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0	2008	12	4
4	2008-12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	41.0	2008	12	5
5	2008-12-06	Albury	14.6	29.7	0.2	NaN	NaN	WNW	56.0	2008	12	6
6	2008-12-07	Albury	14.3	25.0	0.0	NaN	NaN	W	50.0	2008	12	7
7	2008-12-08	Albury	7.7	26.7	0.0	NaN	NaN	W	35.0	2008	12	8
8	2008-12-09	Albury	9.7	31.9	0.0	NaN	NaN	NNW	80.0	2008	12	9
9	2008-12-10	Albury	13.1	30.1	1.4	NaN	NaN	W	28.0	2008	12	10
10	2008-12-11	Albury	13.4	30.4	0.0	NaN	NaN	N	30.0	2008	12	11
11	2008-12-12	Albury	15.9	21.7	2.2	NaN	NaN	NNE	31.0	2008	12	12
12	2008-12-13	Albury	15.9	18.6	15.6	NaN	NaN	W	61.0	2008	12	13
13	2008-12-14	Albury	12.6	21.0	3.6	NaN	NaN	SW	44.0	2008	12	14
14	2008-12-16	Albury	9.8	27.7	NaN	NaN	NaN	WNW	50.0	2008	12	16
15	2008-12-17	Albury	14.1	20.9	0.0	NaN	NaN	ENE	22.0	2008	12	17
16	2008-12-18	Albury	13.5	22.9	16.8	NaN	NaN	W	63.0	2008	12	18
17	2008-12-19	Albury	11.2	22.5	10.6	NaN	NaN	SSE	43.0	2008	12	19
18	2008-12-20	Albury	9.8	25.6	0.0	NaN	NaN	SSE	26.0	2008	12	20
19	2008-12-21	Albury	11.5	29.3	0.0	NaN	NaN	S	24.0	2008	12	21

Example 2.2: Creating new columns

The temperature given is in Celcius, convert it in Fahrenheit and store it in a new column for it.

In [15]: data["Maxtemp_F"] = data["MaxTemp"] * 9/5 +32
In [16]: data.head()

Out[16]:

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	Year	Month	Dayofmonth	Maxtemp_F
0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	44.0	2008	12	1	73.22
1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0	2008	12	2	77.18
2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	46.0	2008	12	3	78.26
3	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0	2008	12	4	82.40
4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	41.0	2008	12	5	90.14

Example 3.1: Lambda Functions

Let's create a new column which highlights the days which have rainfall more than 50 mm as rainy days and the rest are not.

In [18]: data.Rainfall

Out[18]:	0	0.6
	1	0.0
	2	0.0
	3	0.0
	4	1.0
	5	0.2
	6	0.0
	7	0.0
	8	0.0
	9	1.4
	10	0.0
	11	2.2
	12	15.6
	13	3.6
	14	NaN
	15	0.0
	16	16.8
	17	10.6
	18	0.0
	19	0.0
	20	0.0
	21	0.0
	22	0.0
	23	0.0
	24	0.0
	25	0.0
	26	0.0
	27	0.0
	28	1.2
	29	0.8
	142162	
	142163	0.4
	142164	0.0
	142165	0.0
	142166	0.0
	142167 142168	0.0 0.0
	142168	0.0
	142169	0.0
	142170	0.0
	142171	0.0
	1421/2	0.0

```
142173
           0.0
142174
           0.0
142175
           0.0
142176
           0.0
142177
           0.0
142178
           0.0
142179
           0.0
142180
           0.0
142181
           0.0
142182
           0.0
142183
           0.0
142184
           0.0
142185
           0.0
142186
           0.0
           0.0
142187
142188
           0.0
142189
           0.0
142190
           0.0
142191
           0.0
142192
           0.0
```

Name: Rainfall, Length: 142193, dtype: float64

In [17]: data.Rainfall.apply(lambda x: "Rainy" if x > 50 else "Not rainy")

0 1 [47]	_		
Out[17]:	0	Not	rainy
	1	Not	rainy
	2	Not	rainy
	3	Not	rainy
	4	Not	rainy
	5	Not	rainy
	6	Not	rainy
	7	Not	rainy
	8	Not	rainy
	9	Not	rainy
	10	Not	rainy
	11	Not	rainy
	12	Not	rainy
	13	Not	rainy
	14	Not	rainy
	15	Not	rainy
	16	Not	rainy
	17	Not	rainy
	18	Not	rainy
	19	Not	rainy
	20	Not	rainy
	21	Not	rainy
	22	Not	rainy
	23	Not	rainy
	24	Not	rainy
	25	Not	rainy
	26	Not	rainy
	27	Not	rainy
	28	Not	rainy
	29	Not	rainy
			. •
	142163	Not	rainy
	142164	Not	rainy
	142165	Not	rainy
	142166	Not	rainy
	142167	Not	rainy
	142168	Not	rainy
	142169	Not	rainy
	142170	Not	rainy
	142171	Not	rainy
	142172	Not	rainy
			,

```
Not rainy
142173
142174
          Not rainy
142175
          Not rainy
142176
          Not rainy
142177
          Not rainy
142178
          Not rainy
142179
          Not rainy
142180
          Not rainy
142181
          Not rainy
142182
          Not rainy
142183
          Not rainy
142184
          Not rainy
142185
          Not rainy
142186
          Not rainy
142187
          Not rainy
142188
          Not rainy
142189
         Not rainy
142190
          Not rainy
142191
          Not rainy
142192
          Not rainy
Name: Rainfall, Length: 142193, dtype: object
```

Note

- 1. New way of accessing a column in a dataframe by using the dot operator.
- 2. "apply" function takes in a lambda operator as argument.

```
In [19]: |type(data.Rainfall)
Out[19]: pandas.core.series.Series
In [20]: type(data["Rainfall"])
Out[20]: pandas.core.series.Series
```

```
In [21]: data["is raining"] = data.Rainfall.apply(lambda x: "Rainy" if x > 50 else "Not rainy")
In [24]: ## Note that the above code is also another way to find this
          ## data["is raining"] = data[Rainfall]apply(lambda x: "Rainy" if x > 50 else "Not rainy")
In [22]: data[data["is raining"] == "Rainy"]
Out[22]:
                              Location MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir WindGustSpeed Year Month Dayofmonth
                    Date
                   2010-
              429
                                Albury
                                           19.2
                                                     26.1
                                                             52.2
                                                                         NaN
                                                                                   NaN
                                                                                                 SE
                                                                                                               33.0 2010
                                                                                                                              2
                                                                                                                                          5
                   02-05
                   2010-
03-08
              455
                                           18.1
                                                     25.5
                                                             66.0
                                                                         NaN
                                                                                   NaN
                                                                                                NW
                                                                                                               56.0 2010
                                                                                                                              3
                                                                                                                                          8
                                Albury
                   2010-
10-31
              690
                                Albury
                                           13.8
                                                     18.7
                                                             50.8
                                                                         NaN
                                                                                   NaN
                                                                                               NNW
                                                                                                               52.0 2010
                                                                                                                             10
                                                                                                                                         31
              704
                                           19.2
                                                     22.6
                                                             52.6
                                                                                   NaN
                                                                                                               26.0 2010
                                                                                                                                         14
                                Albury
                                                                         NaN
                                                                                                  Ν
                                                                                                                             11
                   2011-
02-05
              787
                                                     23.0
                                                             99.2
                                                                                                                    2011
                                                                                                                              2
                                                                                                                                          5
                                Albury
                                           20.4
                                                                         NaN
                                                                                   NaN
                                                                                                NW
                                                                                                               28.0
                   2011-
02-06
              788
                                           14.7
                                                     21.5
                                                             51.0
                                                                                              WSW
                                                                                                               43.0 2011
                                                                                                                              2
                                                                                                                                          6
                                Albury
                                                                         NaN
                                                                                   NaN
             1142
                                           17.1
                                                                                                 SE
                                                                                                                              3
                                Albury
                                                     20.9
                                                            104.2
                                                                         NaN
                                                                                   NaN
                                                                                                               57.0 2012
                                                                                                                                          1
 In [ ]:
 In [ ]:
 In [ ]:
```

Example 4.1: Grouping and Aggregate functions

Find the location which received the most amount of rain in the given data. In this place, certain promotional offers can be put in place to boost

In [25]: data.head()

Out[25]:

:	ا	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	Year	Month	Dayofmonth	Maxtemp_F	İ٤
-		2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	44.0	2008	12	1	73.22	
	1 ²	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0	2008	12	2	77.18	
		2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	46.0	2008	12	3	78.26	
	3 2	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0	2008	12	4	82.40	
		2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	41.0	2008	12	5	90.14	
	4														

In [32]: data.tail()

Out[32]:

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	Year	Month	Dayofmonth	Maxtemp
142188	2017- 06-20	Uluru	3.5	21.8	0.0	NaN	NaN	Е	31.0	2017	6	20	71.
142189	2017- 06-21	Uluru	2.8	23.4	0.0	NaN	NaN	Е	31.0	2017	6	21	74.
142190	2017- 06-22	Uluru	3.6	25.3	0.0	NaN	NaN	NNW	22.0	2017	6	22	77.
142191	2017- 06-23	Uluru	5.4	26.9	0.0	NaN	NaN	N	37.0	2017	6	23	80.
142192	2017- 06-24	Uluru	7.8	27.0	0.0	NaN	NaN	SE	28.0	2017	6	24	80.
4													•

```
data bylocation = data.groupby(by = ['Location']).mean()
In [29]:
          data bylocation.head()
Out[29]:
                           MinTemp MaxTemp
                                                Rainfall Evaporation Sunshine WindGustSpeed
                                                                                                     Year
                                                                                                            Month Dayofmonth Maxtemp F
                 Location
                 Adelaide 12.628368 22.945402 1.572185
                                                           5.824924
                                                                     7.752002
                                                                                    36.530812 2012.525890 6.523948
                                                                                                                     15.740453
                                                                                                                                 73.301723
                   Albany 12.948461 20.072587 2.255073
                                                                     6.658765
                                                                                             2012.708554 6.413130
                                                                                                                      15.680371
                                                                                                                                 68.130657
                                                           4.207273
                   Albury
                           9.520899 22.630963 1.925710
                                                               NaN
                                                                         NaN
                                                                                    32.953016
                                                                                              2012.733643 6.412488
                                                                                                                      15.745932
                                                                                                                                 72.735734
                                                                     9.581944
                                                                                                                                 84.639545
              AliceSprings 13.125182 29.244191
                                               0.869355
                                                           9.029929
                                                                                    40.533714 2012.719565 6.407456
                                                                                                                      15.689211
            BadgerysCreek 11.136900 24.023111 2.207925
                                                               NaN
                                                                         NaN
                                                                                    33.609890 2012.790984 6.326161
                                                                                                                      15.769467
                                                                                                                                 75.241600
          data bylocation.sort values('Rainfall', ascending = False).head()
In [31]:
Out[31]:
                          MinTemp
                                   MaxTemp
                                              Rainfall Evaporation Sunshine WindGustSpeed
                                                                                                   Year
                                                                                                           Month Dayofmonth Maxtemp F
                Location
                                                                                  38.067991
                                                                                                                    15.720214
                                                                                                                                85.179819
                  Cairns 21.199197 29.544344 5.765317
                                                          6.211976
                                                                   7.575995
                                                                                            2012.677376 6.363454
                 Darwin 23.210530 32.540977 5.094048
                                                          6.319089
                                                                   8.499310
                                                                                  40.582355
                                                                                            2012.502820
                                                                                                        6.534461
                                                                                                                    15.716792
                                                                                                                                90.573759
           CoffsHarbour 14.365774
                                   23.915575 5.054592
                                                          3.904267
                                                                  7.362374
                                                                                  39.232197
                                                                                            2012.749746 6.392482
                                                                                                                    15.716898
                                                                                                                                75.048035
              GoldCoast 17.341490
                                   25.752971 3.728933
                                                             NaN
                                                                       NaN
                                                                                  42.472539
                                                                                            2012.683221 6.435906
                                                                                                                                78.355347
                                                                                                                    15.717114
             Wollongong 14.949058 21.476510 3.589127
                                                             NaN
                                                                       NaN
                                                                                  45.695257
                                                                                            2012.743882 6.423734
                                                                                                                    15.694268
                                                                                                                                70.657718
 In [
 In [
```

Example 4.2: Grouping and Aggregate functions

Hot chocolate is the most sold product in the cold months. Find month which is the coldest so that the inventory team can keep the stock of hot chocolate ready well in advance.

In [42]: data_bymonth = data.groupby(by = ['Month']).mean()
 data_bymonth

Out[42]:

	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustSpeed	Year	Dayofmonth	Maxtemp_F	WCI
Month										
1	17.520778	29.547362	2.719036	8.773171	9.208942	43.361730	2013.042721	15.986688	85.185252	504.169996
2	17.500239	28.877704	3.174075	7.651018	8.607494	41.457472	2013.054822	14.643515	83.979867	511.722359
3	15.904347	26.886744	2.801304	6.237989	7.646279	39.546399	2013.024778	15.995321	80.396138	570.372892
4	12.831979	23.611845	2.314764	4.547511	7.107208	36.460285	2013.279055	15.492659	74.501320	680.791840
5	9.618572	20.047202	1.978896	3.244134	6.337496	35.721056	2013.040214	15.991038	68.084964	787.434259
6	7.815031	17.324778	2.781114	2.518705	5.660379	35.506375	2012.975381	15.257648	63.184600	845.755217
7	6.951308	16.764242	2.179314	2.699269	6.069790	37.891458	2012.467867	16.001528	62.175636	863.519699
8	7.465145	18.258930	2.029610	3.616533	7.171661	40.245052	2012.473474	16.022275	64.866074	836.501471
9	9.460189	20.772510	1.875851	4.917265	7.698770	42.213311	2012.461084	15.518378	69.390517	762.816683
10	11.531145	23.540695	1.610734	6.379571	8.500080	42.716694	2012.462725	16.026771	74.373252	697.875616
11	14.299624	26.165571	2.273758	7.465236	8.685394	42.582385	2012.435041	15.498211	79.098028	612.435126
12	15.771514	27.526390	2.476483	8.046298	8.975372	43.004769	2012.286401	15.969103	81.547503	561.241935

data bymonth.sort values('MinTemp') In [35]: Out[35]: MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustSpeed Year Dayofmonth Maxtemp F Month 6.951308 16.764242 2.179314 2.699269 6.069790 37.891458 2012.467867 16.001528 62.175636 7 7.465145 18.258930 2.029610 3.616533 7.171661 40.245052 2012.473474 16.022275 64.866074 8 15.257648 7.815031 17.324778 2.781114 2.518705 5.660379 35.506375 2012.975381 63.184600 9.460189 20.772510 1.875851 4.917265 7.698770 42.213311 2012.461084 15.518378 69.390517 9.618572 20.047202 1.978896 3.244134 6.337496 35.721056 2013.040214 15.991038 68.084964 11.531145 23.540695 1.610734 16.026771 6.379571 8.500080 42.716694 2012.462725 74.373252 12.831979 23.611845 2.314764 4.547511 7.107208 36.460285 2013.279055 15.492659 74.501320 **11** 14.299624 26.165571 2.273758 7.465236 8.685394 15.498211 42.582385 2012.435041 79.098028 **12** 15.771514 27.526390 2.476483 8.046298 8.975372 43.004769 2012.286401 15.969103 81.547503

Example 4.3: Grouping and Aggregate functions

Sometimes feeling cold is more than about low temperatures; a windy day can also make you cold. A factor called the chill factor can be used to quantify the cold based on the wind speed and the temperature. The formula for the chill factor is given by

39.546399 2013.024778

41.457472 2013.054822

15.995321

14.643515

80.396138

83.979867

$$WCI = (10 * \sqrt{v} - v + 10.5).(33 - T_m)$$

3 15.904347 26.886744 2.801304

2 17.500239 28.877704 3.174075

v is the speed of the wind and T_m is the minimum temperature

6.237989

7.651018 8.607494

7.646279

Add a column for WCI and find the month with the lowest WCI.

```
In [37]: from math import sqrt
          def wci(x):
               velocity = x['WindGustSpeed']
              minTemp = x['MinTemp']
               return ((10 * sqrt(velocity) - velocity + 10.5)*(33-minTemp))
In [38]: data['WCI'] = data.apply(wci,axis=1)
In [39]: data.head()
Out[39]:
               Date Location MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir WindGustSpeed Year Month Dayofmonth Maxtemp_F is
              2008-
12-01
                       Albury
                                 13.4
                                           22.9
                                                    0.6
                                                                                      W
                                                                                                    44.0 2008
                                                                                                                  12
                                                                                                                                       73.22
                                                               NaN
                                                                        NaN
              2008-
12-02
                                  7.4
                                                    0.0
                                                                                    WNW
                                                                                                                  12
                                                                                                                               2
                       Albury
                                           25.1
                                                               NaN
                                                                        NaN
                                                                                                    44.0 2008
                                                                                                                                       77.18
                                 12.9
                                                    0.0
                                                                                                                               3
                                                                                                                                       78.26
                       Albury
                                           25.7
                                                               NaN
                                                                        NaN
                                                                                    WSW
                                                                                                    46.0 2008
                                                                                                                  12
              2008-
12-04
                       Albury
                                                                                      ΝE
                                  9.2
                                           28.0
                                                    0.0
                                                               NaN
                                                                        NaN
                                                                                                    24.0 2008
                                                                                                                  12
                                                                                                                                       82.40
                       Albury
                                 17.5
                                           32.3
                                                    1.0
                                                                                                    41.0 2008
                                                                                                                               5
                                                               NaN
                                                                        NaN
                                                                                       W
                                                                                                                  12
                                                                                                                                       90.14
```

In [41]: data_bymonth = data.groupby(by = ['Month']).mean()
 data_bymonth

Out[41]:

	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustSpeed	Year	Dayofmonth	Maxtemp_F	WCI
Month										
1	17.520778	29.547362	2.719036	8.773171	9.208942	43.361730	2013.042721	15.986688	85.185252	504.169996
2	17.500239	28.877704	3.174075	7.651018	8.607494	41.457472	2013.054822	14.643515	83.979867	511.722359
3	15.904347	26.886744	2.801304	6.237989	7.646279	39.546399	2013.024778	15.995321	80.396138	570.372892
4	12.831979	23.611845	2.314764	4.547511	7.107208	36.460285	2013.279055	15.492659	74.501320	680.791840
5	9.618572	20.047202	1.978896	3.244134	6.337496	35.721056	2013.040214	15.991038	68.084964	787.434259
6	7.815031	17.324778	2.781114	2.518705	5.660379	35.506375	2012.975381	15.257648	63.184600	845.755217
7	6.951308	16.764242	2.179314	2.699269	6.069790	37.891458	2012.467867	16.001528	62.175636	863.519699
8	7.465145	18.258930	2.029610	3.616533	7.171661	40.245052	2012.473474	16.022275	64.866074	836.501471
9	9.460189	20.772510	1.875851	4.917265	7.698770	42.213311	2012.461084	15.518378	69.390517	762.816683
10	11.531145	23.540695	1.610734	6.379571	8.500080	42.716694	2012.462725	16.026771	74.373252	697.875616
11	14.299624	26.165571	2.273758	7.465236	8.685394	42.582385	2012.435041	15.498211	79.098028	612.435126
12	15.771514	27.526390	2.476483	8.046298	8.975372	43.004769	2012.286401	15.969103	81.547503	561.241935

In [44]: data_bymonth.sort_values('WCI', ascending = False)

Out[44]:

	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustSpeed	Year	Dayofmonth	Maxtemp_F	WCI
Month										
7	6.951308	16.764242	2.179314	2.699269	6.069790	37.891458	2012.467867	16.001528	62.175636	863.519699
6	7.815031	17.324778	2.781114	2.518705	5.660379	35.506375	2012.975381	15.257648	63.184600	845.755217
8	7.465145	18.258930	2.029610	3.616533	7.171661	40.245052	2012.473474	16.022275	64.866074	836.501471
5	9.618572	20.047202	1.978896	3.244134	6.337496	35.721056	2013.040214	15.991038	68.084964	787.434259
9	9.460189	20.772510	1.875851	4.917265	7.698770	42.213311	2012.461084	15.518378	69.390517	762.816683
10	11.531145	23.540695	1.610734	6.379571	8.500080	42.716694	2012.462725	16.026771	74.373252	697.875616
4	12.831979	23.611845	2.314764	4.547511	7.107208	36.460285	2013.279055	15.492659	74.501320	680.791840
11	14.299624	26.165571	2.273758	7.465236	8.685394	42.582385	2012.435041	15.498211	79.098028	612.435126
3	15.904347	26.886744	2.801304	6.237989	7.646279	39.546399	2013.024778	15.995321	80.396138	570.372892
12	15.771514	27.526390	2.476483	8.046298	8.975372	43.004769	2012.286401	15.969103	81.547503	561.241935
2	17.500239	28.877704	3.174075	7.651018	8.607494	41.457472	2013.054822	14.643515	83.979867	511.722359
1	17.520778	29.547362	2.719036	8.773171	9.208942	43.361730	2013.042721	15.986688	85.185252	504.169996

In [43]: #The month with the Lowest WCI
data_bymonth.sort_values('WCI')

Out[43]:

	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustSpeed	Year	Dayofmonth	Maxtemp_F	WCI
Month										
1	17.520778	29.547362	2.719036	8.773171	9.208942	43.361730	2013.042721	15.986688	85.185252	504.169996
2	17.500239	28.877704	3.174075	7.651018	8.607494	41.457472	2013.054822	14.643515	83.979867	511.722359
12	15.771514	27.526390	2.476483	8.046298	8.975372	43.004769	2012.286401	15.969103	81.547503	561.241935
3	15.904347	26.886744	2.801304	6.237989	7.646279	39.546399	2013.024778	15.995321	80.396138	570.372892
11	14.299624	26.165571	2.273758	7.465236	8.685394	42.582385	2012.435041	15.498211	79.098028	612.435126
4	12.831979	23.611845	2.314764	4.547511	7.107208	36.460285	2013.279055	15.492659	74.501320	680.791840
10	11.531145	23.540695	1.610734	6.379571	8.500080	42.716694	2012.462725	16.026771	74.373252	697.875616
9	9.460189	20.772510	1.875851	4.917265	7.698770	42.213311	2012.461084	15.518378	69.390517	762.816683
5	9.618572	20.047202	1.978896	3.244134	6.337496	35.721056	2013.040214	15.991038	68.084964	787.434259
8	7.465145	18.258930	2.029610	3.616533	7.171661	40.245052	2012.473474	16.022275	64.866074	836.501471
6	7.815031	17.324778	2.781114	2.518705	5.660379	35.506375	2012.975381	15.257648	63.184600	845.755217
7	6.951308	16.764242	2.179314	2.699269	6.069790	37.891458	2012.467867	16.001528	62.175636	863.519699

Example 5.1: Merging Dataframes

The join command is used to combine dataframes. Unlike hstack and vstack, the join command works by using a key to combine to dataframes.

For example the total tea for the Newcastle store for the month of June 2011 is given in the file names junesales.csv Read in the data from the file and join it to the weather data exacted from the original dataframe.

```
In [45]: sales = pd.read_csv("junesales.csv", header = 0)
```

In [46]: sales["Dayofmonth"] = pd.DatetimeIndex(sales["Date"]).day
sales.head()

Out[46]:

	Date	Tea_sales(in 100's)	Dayofmonth
0	6/1/2011	26	1
1	6/2/2011	35	2
2	6/3/2011	37	3
3	6/4/2011	33	4
4	6/5/2011	25	5

In [47]: # Filter the sales data for the relevant month and the appropriate location to a new dataframe.

Newcastle_data = data[(data['Location']=='Newcastle') & (data['Year']==2011) & (data['Month']==6)]
Newcastle_data.head()

Out[47]:

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	Year	Month	Dayofmonth	Maxtemp_
15605	2011- 06- 01	Newcastle	NaN	21.2	6.0	NaN	NaN	NaN	NaN	2011	6	1	70.
15606	2011- 06- 02	Newcastle	NaN	20.2	4.0	NaN	NaN	NaN	NaN	2011	6	2	68.:
15607	2011- 06- 03	Newcastle	10.7	20.2	0.4	NaN	NaN	NaN	NaN	2011	6	3	68.:
15608	2011- 06- 04	Newcastle	9.4	20.4	0.0	NaN	NaN	NaN	NaN	2011	6	4	68.
15609	2011- 06- 05	Newcastle	9.6	18.8	3.0	NaN	NaN	NaN	NaN	2011	6	5	65.1
4												_	

```
In [48]: merge_data = Newcastle_data.merge(sales, on = "Dayofmonth")
merge_data.head(30)
```

Out[48]:

	Date_x	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	Year	Month	Dayofmonth	Maxtemp_F
0	2011- 06-01	Newcastle	NaN	21.2	6.0	NaN	NaN	NaN	NaN	2011	6	1	70.16
1	2011- 06-02	Newcastle	NaN	20.2	4.0	NaN	NaN	NaN	NaN	2011	6	2	68.36
2	2011- 06-03	Newcastle	10.7	20.2	0.4	NaN	NaN	NaN	NaN	2011	6	3	68.36
3	2011- 06-04	Newcastle	9.4	20.4	0.0	NaN	NaN	NaN	NaN	2011	6	4	68.72
4	2011- 06-05	Newcastle	9.6	18.8	3.0	NaN	NaN	NaN	NaN	2011	6	5	65.84
5	2011- 06-06	Newcastle	8.2	19.5	0.0	NaN	NaN	NaN	NaN	2011	6	6	67.10
6	2011- 06-07	Newcastle	5.6	16.7	0.0	NaN	NaN	NaN	NaN	2011	6	7	62.06
7	2011- 06-08	Newcastle	8.7	15.2	0.0	NaN	NaN	NaN	NaN	2011	6	8	59.36
8	2011- 06-09	Newcastle	5.5	15.6	0.0	NaN	NaN	NaN	NaN	2011	6	9	60.08
9	2011- 06-10	Newcastle	7.3	17.2	0.0	NaN	NaN	NaN	NaN	2011	6	10	62.96
10	2011- 06-11	Newcastle	10.1	17.0	4.0	NaN	NaN	NaN	NaN	2011	6	11	62.60
11	2011- 06-12	Newcastle	10.0	18.3	36.4	NaN	NaN	NaN	NaN	2011	6	12	64.94
12	2011- 06-13	Newcastle	NaN	18.5	35.6	NaN	NaN	NaN	NaN	2011	6	13	65.30
13	2011- 06-14	Newcastle	NaN	18.7	26.5	NaN	NaN	NaN	NaN	2011	6	14	65.66
14	2011- 06-15	Newcastle	NaN	18.5	12.4	NaN	NaN	NaN	NaN	2011	6	15	65.30
15	2011- 06-16	Newcastle	NaN	18.6	21.8	NaN	NaN	NaN	NaN	2011	6	16	65.48

	Date_x	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	Year	Month	Dayofmonth	Maxtemp_F
16	2011- 06-17	Newcastle	8.4	18.5	0.4	NaN	NaN	NaN	NaN	2011	6	17	65.30
17	2011- 06-18	Newcastle	6.7	17.7	0.0	NaN	NaN	NaN	NaN	2011	6	18	63.86
18	2011- 06-19	Newcastle	6.5	18.1	0.0	NaN	NaN	NaN	NaN	2011	6	19	64.58
19	2011- 06-20	Newcastle	6.9	18.8	0.0	NaN	NaN	NaN	NaN	2011	6	20	65.84
20	2011- 06-21	Newcastle	6.2	19.9	0.0	NaN	NaN	NaN	NaN	2011	6	21	67.82
21	2011- 06-22	Newcastle	6.8	15.7	0.8	NaN	NaN	NaN	NaN	2011	6	22	60.26
22	2011- 06-23	Newcastle	7.5	18.2	0.0	NaN	NaN	NaN	NaN	2011	6	23	64.76
23	2011- 06-24	Newcastle	5.6	18.2	0.0	NaN	NaN	NaN	NaN	2011	6	24	64.76
24	2011- 06-25	Newcastle	4.9	18.8	0.0	NaN	NaN	NaN	NaN	2011	6	25	65.84
25	2011- 06-26	Newcastle	6.0	20.0	0.0	NaN	NaN	NaN	NaN	2011	6	26	68.00
26	2011- 06-27	Newcastle	6.3	20.0	0.0	NaN	NaN	NaN	NaN	2011	6	27	68.00
27	2011- 06-28	Newcastle	10.0	18.0	0.4	NaN	NaN	NaN	NaN	2011	6	28	64.40
28	2011- 06-29	Newcastle	12.4	19.6	0.0	NaN	NaN	NaN	NaN	2011	6	29	67.28
29	2011- 06-30	Newcastle	13.4	17.2	0.6	NaN	NaN	NaN	NaN	2011	6	30	62.96

Example 5.2: Merging Dataframes

Types of joins.

- INNER JOIN
- LEFT JOIN
- RIGHT JOIN
- FULL JOIN

Each state may have different tax laws, so we might want to add the states information to the data as well.

The file locations and states.csv information about the states and location, the data in this file is **not** same as the weather data. It is possible that few locations in "data" (original dataframe) are not in this file, and all the locations in the file might not be in the original dataframe.

In the original dataframe add the state data.

```
In [49]: state = pd.read_csv("locationsandstates.csv", header = 0)
state
```

0	u	t	ſ٠	49)]	۱:

	Location	State
0	Sydney	New South Wales
1	Albury	New South Wales
2	Armidale	New South Wales
3	Bathurst	New South Wales
4	Blue Mountains	New South Wales
5	Broken Hill	New South Wales
6	Campbelltown	New South Wales
7	Cessnock	New South Wales
8	Dubbo	New South Wales
9	Goulburn	New South Wales
10	Grafton	New South Wales
11	Lithgow	New South Wales
12	Liverpool	New South Wales
13	Newcastle	New South Wales
14	Orange	New South Wales
15	Parramatta	New South Wales
16	Penrith	New South Wales
17	Queanbeyan	New South Wales
18	Tamworth	New South Wales
19	WaggaWagga	New South Wales
20	Wollongong	New South Wales
21	Darwin	Northern Territory
22	Palmerston	Northern Territory
23	Brisbane	Queensland
24	Bundaberg	Queensland
25	Caboolture	Queensland

	Location	State
26	Cairns	Queensland
27	Caloundra	Queensland
28	Gladstone	Queensland
29	Gold Coast	Queensland
46	Ararat	Victoria
47	Bairnsdale	Victoria
48	Benalla	Victoria
49	Ballarat	Victoria
50	Bendigo	Victoria
51	Dandenong	Victoria
52	Frankston	Victoria
53	Geelong	Victoria
54	Hamilton	Victoria
55	Horsham	Victoria
56	Latrobe City	Victoria
57	Melton	Victoria
58	Mildura	Victoria
59	Sale	Victoria
60	Shepparton	Victoria
61	Swan Hill	Victoria
62	Wangaratta	Victoria
63	Warrnambool	Victoria
64	Wodonga	Victoria
65	Perth	Western Australia
66	Albany	Western Australia

	Location	State
67	Bunbury	Western Australia
68	Busselton	Western Australia
69	Fremantle	Western Australia
70	Geraldton	Western Australia
71	Joondalup	Western Australia
72	Kalgoorlie	Western Australia
73	Karratha	Western Australia
74	Mandurah	Western Australia
75	Rockingham	Western Australia

76 rows × 2 columns

In [50]: state_data = data.merge(state, on = "Location", how = "left")
state_data

U	u.	tĮ	.5	0_	ŀ

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	Year	Month	Dayofmonth	Maxte
0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	44.0	2008	12	1	
1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0	2008	12	2	
2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	46.0	2008	12	3	
3	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0	2008	12	4	
4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	41.0	2008	12	5	
													•

```
In [ ]:

In [ ]:

In [ ]:
```

Example 6.1: pivot tables

Using pivot tables find the average monthly rainfall in the year 2016 of all the locations. The information can then be used to predict the sales of tea in the year 2017.

```
data 2016 = data[data["Year"] ==2016]
In [51]:
           data 2016
Out[51]:
                     Date Location MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir WindGustSpeed Year Month Dayofmonth Maxte
                    2016-
01-01
              2474
                             Albury
                                         20.4
                                                   37.6
                                                             0.0
                                                                         NaN
                                                                                   NaN
                                                                                                ENE
                                                                                                                 54.0 2016
                                                                                                                                 1
                                                                                                                                              1
                                                                                                SSE
              2475
                                         20.9
                                                   33.6
                                                             0.4
                                                                                                                     2016
                             Albury
                                                                         NaN
                                                                                   NaN
                                                                                                                 50.0
                                                                                                                                              2
                    2016-
01-03
              2476
                             Albury
                                                             2.2
                                                                                                ENE
                                         18.4
                                                   23.1
                                                                         NaN
                                                                                   NaN
                                                                                                                 48.0
                                                                                                                      2016
                                                                                                                                              3
                    2016-
01-04
                                         17.3
                                                                                                SSE
                             Albury
                                                   23.7
                                                            15.6
                                                                         NaN
                                                                                   NaN
                                                                                                                 39.0 2016
                                                                                                                                 1
                                                                                                                                              4
                    2016-
01-05
                             Albury
                                                             6.8
              2478
                                         15.5
                                                   22.9
                                                                         NaN
                                                                                   NaN
                                                                                                ENE
                                                                                                                 31.0 2016
                                                                                                                                 1
                                                                                                                                              5
                                                                                                 SE
                             Albury
                                         17.0
                                                   28.1
                                                             0.2
                                                                         NaN
                                                                                   NaN
                                                                                                                 39.0 2016
                                                                                                                                 1
                                                                                                                                              6
              2480
                             Albury
                                                                                                                35.0 2016
                                         16.4
                                                   28.0
                                                             0.0
                                                                         NaN
                                                                                   NaN
                                                                                                 SE
                                                                                                                                 1
                                                                                                                                              7
```

In [52]: data_2016.pivot_table(index = "Location", columns = "Month", values = "Rainfall", aggfunc='mean')

Out[52]:

Month	1	2	3	4	5	6	7	8	9	10	11	12
Location												
Adelaide	1.703226	0.634483	1.735484	0.320000	2.838710	3.173333	3.612903	1.896774	4.373333	2.612903	1.106667	2.800000
Albany	2.380645	0.748276	1.144828	3.153333	3.158065	4.010000	3.954839	3.777419	3.426667	2.025806	0.753333	0.650000
Albury	2.206452	1.013793	0.961290	0.546667	3.477419	2.866667	3.767742	2.400000	4.740000	1.980645	1.653333	0.735484
AliceSprings	1.290323	0.910345	0.522581	0.000000	1.832258	0.933333	0.000000	0.658065	1.640000	0.109677	0.233333	4.352000
BadgerysCreek	5.012903	0.441379	1.019355	0.346667	0.380645	8.346667	1.438710	1.890323	1.826667	0.458065	0.337931	0.728571
Ballarat	1.358621	0.355556	1.180645	0.460000	2.303226	2.353333	3.012903	2.051613	5.940000	3.303226	1.133333	0.890323
Bendigo	1.117241	0.162963	1.077419	0.493333	2.677419	1.913333	2.961290	2.612903	5.113333	1.883871	1.253333	0.941935
Brisbane	0.972414	0.523077	3.787097	0.426667	0.890323	8.826667	0.909677	1.019355	1.726667	0.974194	0.933333	3.290323
Cairns	9.316129	4.689655	8.329032	4.593103	9.336842	2.220000	2.741935	1.348387	4.500000	2.427273	0.765217	4.033333
Canberra	3.432258	0.806897	0.916129	0.226667	1.535484	4.806667	2.290323	1.490323	4.973333	1.406452	1.893333	2.083871
Cobar	0.728571	0.062069	2.344828	1.313333	2.438710	3.586667	1.058065	1.948387	3.406667	0.658065	1.126316	0.993548
CoffsHarbour	3.129032	1.086207	2.345161	3.876667	0.112903	11.350000	0.732258	5.706452	1.163333	0.841935	3.546667	2.051613
Dartmoor	0.606897	1.420690	0.922581	1.133333	3.238710	5.053333	4.116129	2.780645	3.640000	2.341935	1.560000	1.670968
Darwin	5.477419	5.186207	3.735484	1.546667	2.012903	0.000000	0.000000	0.000000	2.146667	4.219355	6.940000	13.122581
GoldCoast	3.360000	2.336000	1.745455	3.764286	0.600000	10.042857	0.607407	2.407407	1.284615	1.264000	0.992308	1.825806
Hobart	1.296774	0.751724	0.548387	0.293333	3.096774	3.846667	2.554839	0.509677	3.140000	2.690323	2.173333	1.825806
Katherine	8.112903	3.889655	3.245161	0.626667	1.438710	0.000000	0.179310	0.000000	1.933333	0.141935	1.350000	3.469565
Launceston	4.961290	0.848276	1.596774	0.920000	4.312903	4.483333	4.545161	2.083871	2.706667	2.377419	1.840000	2.287097
Melbourne	NaN	NaN	NaN	NaN	1.838710	1.813333	2.070968	1.974194	2.906667	2.045161	1.046667	1.277419
MelbourneAirport	1.445161	0.151724	0.877419	1.213333	1.516129	2.213333	2.045161	0.987097	3.326667	2.496774	1.326667	2.496774
Mildura	2.200000	0.006897	0.012903	0.100000	1.400000	0.606667	0.619355	0.993548	3.120000	0.800000	1.706667	0.180645
Moree	3.270588	0.110345	0.347826	0.453333	1.122581	2.106667	0.470968	1.612903	4.620000	1.832258	0.773333	1.135484
MountGambier	0.425806	1.668966	0.916129	1.046667	3.438710	5.433333	4.948387	2.779310	3.921429	2.290323	1.653333	1.917241
MountGinini	4.690323	1.427586	1.767742	0.520000	3.432258	9.153333	6.354839	2.277419	7.110345	3.600000	1.926667	2.967742
Newcastle	13.851613	2.475000	2.280645	2.140000	0.458065	6.713333	1.787097	1.674194	1.866667	1.813793	1.693333	1.768000

Nhil 1.193548 0.496296 1.116129 0.220000 1.322581 1.44		3.113333 1.903226	0.453333	
		3.113333 1.903226	0 453333	
	67 2.664516 2.432258		0.100000	1.032258
NorahHead 7.013793 0.600000 4.980645 1.813333 0.412903 6.50		2.306667 1.941935	1.173333	2.238710
NorfolkIsland 4.419355 9.165517 8.841379 2.740000 3.880645 3.92	00 2.161290 3.516129	2.440000 1.290323	7.084211	0.375000
Nuriootpa 0.967742 0.424138 1.470968 0.483333 2.862069 3.14	00 2.437931 2.054839	6.036667 1.512903	0.783333	1.658065
PearceRAAF 0.696552 0.034483 3.283871 2.273333 2.909677 3.14	00 3.845161 4.329032	1.664286 1.307143	0.246667	0.445161
Penrith 9.929032 0.072000 0.541935 0.406667 0.268966 6.98	00 1.776000 1.574194	1.666667 0.400000	0.585714	2.248276
Perth 0.490323 0.020690 0.541935 2.273333 3.612903 3.64	67 4.503226 3.974194	2.293333 1.206452	0.480000	0.329032
PerthAirport 0.754839 0.027586 0.690323 2.053333 3.419355 2.88	00 4.174194 4.245161	2.060000 1.219355	0.186667	0.277419
Portland 0.944828 2.806897 0.961290 1.386667 4.658065 4.00	00 5.425806 3.522581	5.471429 3.703226	2.246667	1.524138
Richmond 8.593548 0.525926 0.441379 0.286667 0.135484 6.30	67 1.845161 1.987097	1.846667 0.438710	1.353333	2.529032
Sale 3.613793 0.213793 1.954839 0.866667 1.219355 2.43	33 3.303226 0.845161	1.207143 2.259259	1.780000	0.761290
SalmonGums 1.331034 0.496552 1.670968 1.093333 1.148387 1.90	67 1.051613 1.729032	0.900000 0.374194	0.113333	0.593103
Sydney 8.058065 0.889655 6.232258 5.166667 0.232258 10.16	67 3.374194 4.883871	2.333333 1.012903	0.906667	2.096774
SydneyAirport 8.477419 1.393103 5.025806 2.700000 0.432258 9.31	33 3.683871 4.238710	2.260000 1.103226	0.893333	1.883871
Townsville 2.470968 3.262069 18.000000 0.700000 0.012903 1.96	67 1.716129 0.677419	0.242857 0.264516	0.366667	1.064286
Tuggeranong 3.234483 1.162963 1.875862 0.235714 1.200000 6.13	33 2.077419 1.232258	5.033333 1.392593	1.780000	3.012903
Uluru 0.081481 0.491667 0.935484 0.006667 2.406452 2.68	81 0.690323 0.935484	0.520000 0.064516	0.046667	6.929032
WaggaWagga 1.780645 0.558621 1.077419 0.360000 3.813793 2.82	00 2.987097 1.896774	5.700000 2.064516	1.041667	0.600000
Walpole 3.584000 1.427586 1.151724 4.221429 4.870968 5.40	33 6.379310 6.448276	5.092857 2.928571	0.938462	1.703226
Watsonia 1.207407 0.324138 0.890323 1.700000 1.722581 2.39	33 2.051613 1.780645	2.792857 3.048276	2.033333	3.800000
Williamtown 13.625806 1.117241 1.474074 5.585185 0.361290 5.23	00 1.696774 1.800000	1.660000 2.406452	1.561538	11.680000
Witchcliffe 0.296296 0.324138 0.551724 1.735714 6.238710 7.65	00 7.806452 7.348387	4.364286 2.751724	0.570370	0.832258
Wollongong 5.735484 1.710345 6.587097 1.820000 0.316129 14.55	33 3.483871 3.612903	1.580000 0.200000	0.986207	1.586667
Woomera 0.012903 0.524138 0.774194 0.033333 0.945161 1.89	00 0.222581 0.890323	1.500000 0.335484	0.016667	0.505000

Find the Pandas pivot table documentation https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.pivot table.html)

This information can be used to decide the stocks of tea in each of the stores.

You can modify the pivot_table command to get a lot of work done quickly.

In [53]: data_2016.pivot_table(index = "Location", columns = "Month", values = "Sunshine", aggfunc='mean')

Out[53]:

Month	1	2	3	4	5	6	7	8	9	10	11	1:
Location												
Albany	5.588000	7.825000	4.450000	3.473333	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nai
AliceSprings	9.427273	11.638462	9.558621	10.212500	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Naî
Brisbane	8.870000	9.781481	8.558065	7.853333	8.332258	5.400000	6.864516	8.577419	7.690000	9.909677	10.293103	8.80645
Cairns	8.576667	9.020690	7.116667	6.980952	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Naî
Dartmoor	8.873333	7.813793	5.293548	5.304545	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Naî
Darwin	8.045161	8.065517	7.490323	9.320000	9.416129	10.266667	10.329032	10.383871	8.633333	9.145161	8.433333	5.92258
Hobart	6.900000	8.186207	6.335484	6.420000	4.287097	3.630000	4.993548	6.574194	6.043333	7.587097	7.413333	8.43000
Melbourne	NaN	NaN	NaN	8.400000	5.219355	3.850000	3.861290	5.738710	4.893333	6.941935	6.960000	8.37419
MelbourneAirport	6.912903	8.472414	5.835484	6.373333	5.219355	3.850000	3.861290	5.738710	4.893333	6.941935	6.960000	8.37419
Mildura	8.990000	11.496429	9.067742	7.892857	6.057143	4.950000	4.966667	7.377419	7.000000	9.270000	9.709524	10.24583
Moree	9.623077	11.200000	10.270000	9.272727	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Naî
MountGambier	9.000000	7.813793	5.293548	5.304545	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Naî
Norfolkisland	7.643333	4.710714	6.546429	6.538462	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nai
Nuriootpa	10.167742	10.537931	7.593548	7.306667	4.831579	4.810000	4.393103	6.722222	5.353571	8.970968	10.072414	10.06071
PearceRAAF	9.330000	11.641379	9.003226	6.413333	6.590323	5.686667	6.141935	6.193548	7.862069	9.762069	11.940000	12.04516
Perth	9.412903	11.641379	9.003226	6.413333	6.590323	5.686667	6.141935	6.193548	7.940000	9.725806	11.940000	12.04516
PerthAirport	9.412903	11.641379	9.003226	6.413333	6.590323	5.686667	6.141935	6.193548	7.940000	9.725806	11.940000	12.04516
Portland	8.900000	7.813793	5.293548	5.304545	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nai
Sydney	6.600000	9.572414	7.412903	7.246667	7.451613	5.631034	6.663333	6.830000	7.466667	9.106452	9.500000	7.42580
SydneyAirport	6.600000	9.572414	7.412903	7.246667	7.451613	5.631034	6.663333	6.830000	7.466667	9.106452	9.500000	7.42580
Townsville	9.480645	9.210345	6.912903	8.600000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nai
WaggaWagga	8.151613	11.500000	9.145161	8.957692	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nai
Watsonia	6.924138	8.472414	5.835484	6.373333	5.219355	3.850000	3.861290	5.738710	4.879310	7.010000	6.960000	8.10000
Williamtown	7.226667	10.913333	8.181250	6.723077	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nai

Month	1	2	3	4	5	6	7	8	9	10	11	1:
Location												
Woomera	10.387097	11.710345	7.609677	8.957692	7.644828	NaN	NaN	NaN	NaN	NaN	0.000000	Nai

Note

<u>Here (https://pandas.pydata.org/pandas-docs/stable/index.html)</u> is the link to the official documentation of Pandas. Be sure to visit it inorder to explore to availability of functions in the library.

In []:

Create DataFrames

Since a new concept is being introduced, it is beneficial to explore the concept first using simple DataFrames. Once you understand the usage and the capabilities of these concepts, you can think of ways to apply these capabilities as and when needed.

```
In [1]: import pandas as pd
In [2]: df_1 = {\text{"col1"}:[1,2,3,4], \text{"col2"}: [5,6,7,8]}
        df_2 = {"col1":[11,12,13,14], "col2": [15,16,17,18]}
In [3]: df1 = pd.DataFrame(df 1)
        df2 = pd.DataFrame(df 2)
In [4]: df1
Out[4]:
            col1 col2
                    5
               2
                    6
                   7
                   8
In [5]: df2
Out[5]:
            col1 col2
                  15
              11
                  16
              12
              13
                  17
              14
                  18
```

Concatenation

It is used when you want to stick two dataframes together without any consideration given to matching elements. In contrast, the merge command uses a key to stitch two data frames together.

If the shape of the two concatenating dataframes does not match, NaN values are added to make the dimensions uniform.

In [7]: pd.concat([df1, df2], axis = 0)
Axis 0 represents row wise concatenation

Out[7]:

	col1	col2
0	1	5
1	2	6
2	3	7
3	4	8
0	11	15
1	12	16
2	13	17
3	14	18

NOTE

- Rows in df2 get added to the df1
- Intexes of df2 remain the same as they were before the join.

```
In [8]: pd.concat([df1, df2], axis = 1)
# Axis 0 represents column wise concatenation
Out[8]: col1 col2 col1 col2
```

col1 col2 col1 col2 0 1 5 11 15 1 2 6 12 16 2 3 7 13 17 3 4 8 14 18

```
In [9]: df1["col3"] = df1["col1"] + df1["col2"]
# After this operation df1 will have 3 columns while df2 has only 2.
```

Out[10]:		col1	col2	col3
	0	1	5	6.0
	1	2	6	8.0
	2	3	7	10.0
	3	4	8	12.0
	_	4.4	4-	

0 11 15 NaN

1 12 16 NaN

2 13 17 NaN

3 14 18 NaN

Since there is one extra column in df1, the corresponding vales in df2 become NaN or null values.

Arithmetic Operators on DataFrames

You can perform element wise operations on dataframes as well. These are very similar to operations you performed on NumPy arrays.

for example, if you want to add all the elements on df1 to the corresponding elements on df2 you can use the '+' operator.

In [11]: df1 + df2

Out[11]:

	col1	col2	col3
0	12	20	NaN
1	14	22	NaN
2	16	24	NaN
3	18	26	NaN

As you saw all the elements in df1 got added to corresponding elements in df2

But the df1 had three columns while df2 had two. So the operation for the third column is incomplete, that is why you see the null values in the result. This is the most significant difference in using operators in pandas and NumPy; this operation would have thrown an error if it was executed using NumPy arrays.

The same result can be achieved by the add() method

Out[13]:

In [13]: df1.add(df2)

	col1	col2	col3
0	12	20	NaN
1	14	22	NaN
2	16	24	NaN
3	18	26	NaN

Along with the normal addition this add method also provides additional functionalities. You can read about them https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.add.html)

similar to the '+' operator and the add() there are other operators as well

```
sub():'-'
mul():'*'
div():'/'
floordiv():'//'
mod():'%'
pow():'**'
```

```
In [15]: # recreating the DataFrames so that the dimentions match.

df_1 = {"col1":[1,2,3,4], "col2": [5,6,7,8]}
    df_2 = {"col1":[11,12,13,14], "col2": [15,16,17,18]}

df1 = pd.DataFrame(df_1)
    df2 = pd.DataFrame(df_2)

print (df1)
print (df2)
```

```
col1 col2
0 1 5
1 2 6
2 3 7
3 4 8
col1 col2
0 11 15
1 12 16
2 13 17
3 14 18
```

In [16]: df2 - df1

Out[16]:

	col1	col2
0	10	10
1	10	10
2	10	10
3	10	10

In [17]: df2 ** df1

Out[17]:

	col1	col2
0	11	759375
1	144	16777216
2	2197	410338673
3	38416	11019960576

```
In [24]: # recreating the DataFrames so that the dimentions match.
         df_1 = {"col1":[1,2,3,4], "col2": [5,6,7,8]}
         df 2 = {"col1":[11,12,13,14]}
         df1 = pd.DataFrame(df 1)
         df2 = pd.DataFrame(df 2)
         print (df1)
         print (df2)
            col1 col2
                     5
               1
               2
                     6
         1
                     7
             col1
              11
         1
              12
              13
              14
In [25]: df1 + df2
Out[25]:
             col1 col2
              12 NaN
              14 NaN
              16 NaN
              18 NaN
```

One of the advantages of pandas DataFrame is that it can hold data of different data types.

Which leads us to the question What would happen of operators were used on DataFrames which have "non-numerical" data types?

```
In [19]: | df_1 = {"col1":[1,2,3,4], "col2": [5,6,7,8], "col3": [True,False,False,True], "col4": ["a","b","c","d"] }
         df 2 = {"col1":[11,12,13,14], "col2": [15,16,17,18], "col3": [True,False,True,False], "col4": ["e","f","g","h"]}
         df1 = pd.DataFrame(df 1)
         df2 = pd.DataFrame(df 2)
         print (df1)
         print (df2)
            col1 col2
                         col3 col4
               1
                     5
                         True
                     6 False
         1
               2
                                 b
                     7 False
                         True
                        col3 col4
            col1 col2
              11
                    15
                        True
                                 f
         1
              12
                    16 False
              13
                    17
                       True
              14
                    18 False
```

In [20]: df1 +df2

D:\Software\Anaconda\lib\site-packages\pandas\core\computation\expressions.py:178: UserWarning: evaluating in Python space because the '+' operator is not supported by numexpr for the bool dtype, use '|' instead f"evaluating in Python space because the {repr(op str)} "

Out[20]:

	col1	col2	col3	col4
0	12	20	True	ae
1	14	22	False	bf
2	16	24	True	cg
3	18	26	True	dh

Something very interesting has happened.

Pandas was smart enough to recognise the different data types and use the operators accordingly.

• For int data type, it performed addition

- For boolean, it performed OR operation
- For string, it performed concatenation

```
In [21]: df1 - df2
         D:\Software\Anaconda\lib\site-packages\pandas\core\computation\expressions.py:178: UserWarning: evaluating in Pyth
         on space because the '-' operator is not supported by numexpr for the bool dtype, use '^' instead
           f"evaluating in Python space because the {repr(op str)} "
                                                   Traceback (most recent call last)
         TypeError
         D:\Software\Anaconda\lib\site-packages\pandas\core\ops\array ops.py in na arithmetic op(left, right, op, str rep)
             148
                     try:
                         result = expressions.evaluate(op, str rep, left, right)
         --> 149
                     except TypeError:
             150
         D:\Software\Anaconda\lib\site-packages\pandas\core\computation\expressions.py in evaluate(op, op str, a, b, use nu
         mexpr)
             208
                         return evaluate(op, op str. a. b)
                     return evaluate standard(op, op str, a, b)
         --> 209
             210
         D:\Software\Anaconda\lib\site-packages\pandas\core\computation\expressions.py in evaluate standard(op, op str, a,
         b)
              69
                     with nn arretate(all="ignore").
```

This throws an error because there is not '-' in strings and pandas cannot figure out what to do.

```
In [22]: df_1 = {"col1":[1,2,3,4], "col2": [5,6,7,8], "col3": [True,False,False,True], "col4": ["a","b","c","d"] }
    df_2 = {"col1": [True,False,True,False], "col2": ["e","f","g","h"], "col3":[11,12,13,14], "col4": [15,16,17,18] }

df1 = pd.DataFrame(df_1)
    df2 = pd.DataFrame(df_2)

print (df1)
    print (df2)
```

```
col1 col2
            col3 col4
          5
             True
          6 False
     2
1
                    b
          7 False
          8
            True
                    d
   col1 col2 col3 col4
  True
              11
                   15
1 False
          f 12
                   16
          g 13
                   17
  True
3 False
          h 14
                   18
```

```
In [23]: df1 + df2
                                                   Traceback (most recent call last)
         TypeError
         D:\Software\Anaconda\lib\site-packages\pandas\core\ops\array ops.py in na arithmetic op(left, right, op, str rep)
         --> 149
                         result = expressions.evaluate(op, str rep, left, right)
             150
                     except TypeError:
         D:\Software\Anaconda\lib\site-packages\pandas\core\computation\expressions.py in evaluate(op, op str, a, b, use nu
         mexpr)
                     if use numexpr:
             207
                         return evaluate(op, op str, a, b)
         --> 208
                     return evaluate standard(op, op str, a, b)
             209
         D:\Software\Anaconda\lib\site-packages\pandas\core\computation\expressions.py in evaluate numexpr(op, op str, a,
                     if result is None:
             120
                         result = _evaluate_standard(op, op_str, a, b)
         --> 121
             122
```

Since the data types of correcponding columns do not match Pandas throws a type error.

Summary

- 1. Concatenation: Used when you want to stich to dataframes together without any reguard to the values.
- a. Even if the shapes do not match the operation is performed. Filling Null values wherever necessary.
- 2. operators: Can perform element wise operations on Pandas DataFrames.
- a. You can use operators themselves '+' or the function add() for the same result.
- b. If the Shape does not match then null values are added. c. Can work with differnet data types as well, as long as the operation is defined for that data type.