PSET 1

Kevin Lin

3/26/2025

1

 $0.039\% = 0.00039 = 3.9 \times 10^{-4} \approx \pi \times 10^{-4} = \text{fraction of CO}_2$ molecules From class, we estimate the atmosphere's mass as $\pi \times 10^{21} \ \mathrm{g}$ Thus, we have $\pi \times 10^{-4} \times \pi \times 10^{21} = \pi^2 \times 10^{17} \text{ g of CO}_2$ Using $\pi^2 \approx 10$, we then have 10^{18} g of CO_2 in the atmosphere We estimate the density of dry ice to be $1564\frac{\text{kg}}{\text{m}^3} \approx 10^3\frac{\text{kg}}{\text{m}^3} = 10^6\frac{\text{g}}{\text{m}^3}$ This then gives us $\frac{10^{18}\text{g}}{10^{6}\frac{\text{g}}{\text{m}^{3}}} = 10^{12} \text{ m}^{3} \text{ of CO}_{2} \text{ as dry ice}$

From class, we know estimate the Earth's surface area as $\pi \times 10^{14}~\text{m}^2$ Thus, to find the snowfall depth, we calculate V/SA:

$$\frac{10^{12} \text{ m}^3}{\pi \times 10^{14} \text{ m}^2} = \frac{10}{\pi} \cdot \frac{10^{11}}{10^{14}} \cdot \frac{\text{m}^3}{\text{m}^2}$$
Using $\frac{10}{\pi} \approx \pi$ we finally get $\pi \times 10^{-3}$ m of snowfall depth.

$\mathbf{2}$

We estimate O_2 to be $21\% \approx 20\%$ of the Earth's atmosphere.

From class, we estimate the atmosphere's mass as $\pi \times 10^{21}$ g.

Thus, we have $2 \times 10^{-1} \times \pi \times 10^{21} = 2\pi \times 10^{20}$ g of O_2 in the atmosphere, and 10% of such would be $2\pi \times 10^{19}$ g.

From class, we estimate the average human breath to be $1 L = 10^{-3} m^3$, with a mass of 1 g.

Assuming a human breathes a normal consistency of air and not pure O_2 , a single human breath would also be 20% O_2 , which would be 2×10^{-1} g of O_2 .

Thus, it would take $\frac{2\pi\times 10^{19}}{2\times 10^{-1}}=\pi\times 10^{20}$ breaths for a single human to use up 10% of all atmospheric O_2 .

We estimate the average human breath to take $2-3~{\rm sec} \approx \pi~{\rm sec}$.

Thus, $\pi \times 10^{20}$ breaths would take $\pi \times \pi \times 10^{20}$ sec.

Using $\pi^2 \approx 10$, we finally get 10^{21} seconds.