MATH 104: MULTIVARIABLE CALCULUS

FINAL NAME:
There are four questions. Make sure you justify all your work for complete credit.
Rules
 You have 80 minutes to complete your work Closed books. No use of internet, textbooks, computer algebra systems, calculators. No collaboration. 1 person per bathroom break. When you go to the bathroom, turn in your cellphone and exam until return.
Scores: (1) (2) (3) Total :

Date: May 29, 2025.

Questions

Problem 1 (20 points, 10 points each). Evaluate

$$\iiint_E y\,dV\,,$$
 where $E=\{(x,y,z)|0\leqslant x\leqslant 3\,,0\leqslant y\leqslant x\,,x-y\leqslant z\leqslant x+y\}.$

(2) The volume of solid enclosed by the paraboloid $z = (x-2)^2 + (y-2)^2$ and the plane z=4.

Problem 2 (30 points, 10 points each). Evaluate the integrals

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx \, .$$

(2)
$$\iint_{D} \sin \sqrt{x^2 + y^2} \, dA$$

where D is the upper half of the disk center at the origin and radius 4.

(3)
$$\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2 + y^2} \, dy dx \,.$$

Problem 3 (50 points, 25 each). (1) The total production P of a certain product depends on the amount L of labor used and the amount K of capital investment. The Cobb-Douglas model $P = bL^{\alpha}K^{1-\alpha}$ follows from certain economic assumptions, where b and α are positive constants and $\alpha < 1$. If the cost of a unit of labor is m and the cost of a unit of capital is n, and the company can spend only p dollars as its total budget, then maximizing the production P is subject to the constraint mL + nK = p. Show that the maximum production occurs when

$$L = \frac{\alpha p}{m}$$
 and $K = \frac{(1-\alpha)p}{n}$

(2) Suppose that the production is fixed at $bL^{\alpha}K^{1-\alpha}=Q$, where Q is a constant. What values of L and K minimize the cost function $C(L,K)=(mL)^2+(nK)^3$?