

PCT

RAW SEQUENCE LISTING DATE: 07/17/2003
 PATENT APPLICATION: US/09/763,822A TIME: 11:32:33

Input Set : A:\W0008463.txt
 Output Set: N:\CRF4\07172003\I763822A.raw

```

3 <110> APPLICANT: WALLAART, Thorvald Eelco
4      BOUWMEESTER, Hendrik Jan
6 <120> TITLE OF INVENTION: Transgenic Amorpha-4, 11-Diene Synthesis
8 <130> FILE REFERENCE: 702 010272
10 <140> CURRENT APPLICATION NUMBER: 09/763,822A
C--> 11 <141> CURRENT FILING DATE: 2003-05-05
13 <150> PRIOR APPLICATION NUMBER: PCT/EP99/06302
14 <151> PRIOR FILING DATE: 1999-08-27
16 <160> NUMBER OF SEQ ID NOS: 14
18 <170> SOFTWARE: MS Word 97 SR-2
20 <210> SEQ ID NO: 1
21 <211> LENGTH: 15
22 <212> TYPE: DNA
23 <213> ORGANISM: Artificial Sequence
25 <220> FEATURE:
26 <223> OTHER INFORMATION: EcoR I (Not I) adapter
28 <400> SEQUENCE: 1
29 gtcgacgcgg cccgcg 15
31 <210> SEQ ID NO: 2
32 <211> LENGTH: 19
33 <212> TYPE: DNA
34 <213> ORGANISM: Artificial Sequence
36 <220> FEATURE:
37 <223> OTHER INFORMATION: EcoR I (Not I) adapter
39 <400> SEQUENCE: 2
40 cagctgcgcc ggcgcattaa 19
42 <210> SEQ ID NO: 3
43 <211> LENGTH: 27
44 <212> TYPE: DNA
45 <213> ORGANISM: Artificial Sequence
47 <220> FEATURE:
48 <223> OTHER INFORMATION: Sense primer (primer C) used in PCR amplification
50 <400> SEQUENCE: 3
51 gtcgacaaaac catggcactt acagaag 27
53 <210> SEQ ID NO: 4
54 <211> LENGTH: 32
55 <212> TYPE: DNA
56 <213> ORGANISM: Artificial Sequence
58 <220> FEATURE:
59 <223> OTHER INFORMATION: Antisense primer (primer D) used in PCR amplification
61 <400> SEQUENCE: 4
62 ggatggatcc tcatatactc ataggataaa cg 32
64 <210> SEQ ID NO: 5

```

ENTERED

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/763,822A

DATE: 07/17/2003

TIME: 11:32:33

Input Set : A:\W0008463.txt

Output Set: N:\CRF4\07172003\I763822A.raw

65 <211> LENGTH: 23
 66 <212> TYPE: DNA
 67 <213> ORGANISM: Artificial Sequence
 69 <220> FEATURE:
 70 <223> OTHER INFORMATION: Sense primer (primer G) used in PCR amplification
 72 <400> SEQUENCE: 5
 73 gaggatccat gtcacttaca gaa 23
 75 <210> SEQ ID NO: 6
 76 <211> LENGTH: 24
 77 <212> TYPE: DNA
 78 <213> ORGANISM: Artificial Sequence
 80 <220> FEATURE:
 81 <223> OTHER INFORMATION: Antisense primer (primer H) used in PCR amplification
 83 <400> SEQUENCE: 6
 84 atggatcc tcatactcat agga 24
 86 <210> SEQ ID NO: 7
 87 <211> LENGTH: 22
 88 <212> TYPE: DNA
 89 <213> ORGANISM: Artificial Sequence
 91 <220> FEATURE:
 92 <223> OTHER INFORMATION: Sense primer (primer E) used in PCR amplification
 94 <400> SEQUENCE: 7
 95 cgagaatca tgtca ttac ag 22
 97 <210> SEQ ID NO: 8
 98 <211> LENGTH: 22
 99 <212> TYPE: DNA
 100 <213> ORGANISM: Artificial Sequence
 102 <220> FEATURE:
 103 <223> OTHER INFORMATION: Antisense primer (primer F) used in PCR amplification
 105 <400> SEQUENCE: 8
 106 ggatctcgag tcataatactc at 22
 108 <210> SEQ ID NO: 9
 109 <211> LENGTH: 538
 110 <212> TYPE: DNA
 111 <213> ORGANISM: Artificial Sequence
 113 <220> FEATURE:
 114 <223> OTHER INFORMATION: Nucleotide sequence of probe generated by PCR with primers A
 115 and B
 117 <400> SEQUENCE: 9
 118 gatgagaatg gaaatttaa ggaatcgta gcta atgatg ttgaagg ttt gcttgagg 60
 120 tacgaagcaa ctcttatgag ggtacctggg gagattat tagaagatgc tcttgg 120
 122 acacgatctc gtcttagcat tatgacaaaaa gatgctttt ctacaaaccc cgctt 180
 124 accgaaatac aacgggact aaagcaaccc cttggaaaaa gggtgccaag aata gaggcg 240
 126 ggcgactaca ttcccttcta tcaacaacaa gattctcata acaagacttt actt 300
 128 gctaagttag agttcaattt gcttcagtca ttgcacaagg aagagctcag ccatgtgtgc 360
 130 aaatggtgg aagctttcga tatcaagaag aacgcaccc tttaagaga tagaatttt 420
 132 gaatgtact ttggggact aggttcaggc tatgagccac agtattcccg ggcttaggtt 480
 134 ttcttcacaa aagctgttgc tggataact cttatagacg acaccc tcga cgctacgg 538
 136 <210> SEQ ID NO: 10

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/763,822A

DATE: 07/17/2003
TIME: 11:32:33

Input Set : A:\W0008463.txt
Output Set: N:\CRF4\07172003\I763822A.raw

137 <211> LENGTH: 179
 138 <212> TYPE: PRT
 139 <213> ORGANISM: Artificial Sequence
 141 <220> FEATURE:
 142 <223> OTHER INFORMATION: Deduced amino acid sequence of probe generated by PCR with
 143 primers A and B
 145 <400> SEQUENCE: 10
 146 Asp Glu Asn Gly Lys Phe Lys Glu Ser Leu Ala Asn Asp Val Glu Gly
 147 1 5 10 15
 148 Leu Leu Glu Leu Tyr Glu Ala Thr Ser Met Arg Val Pro Gly Glu Ile
 149 20 25 30
 150 Ile Leu Glu Asp Ala Leu Gly Phe Thr Arg Ser Arg Leu Ser Ile Met
 151 35 40 45
 152 Thr Lys Asp Ala Phe Ser Thr Asn Pro Ala Leu Phe Thr Glu Ile Gln
 153 50 55 60
 154 Arg Ala Leu Lys Gln Pro Leu Trp Lys Arg Leu Pro Arg Ile Glu Ala
 155 65 70 75 80
 156 Ala Gln Tyr Ile Pro Phe Tyr Gln Gln Asp Ser His Asn Lys Thr
 157 85 90 95
 158 Leu Leu Lys Leu Ala Lys Leu Glu Phe Asn Leu Leu Gln Ser Leu His
 159 100 105 110
 160 Lys Glu Glu Leu Ser His Val Cys Lys Trp Trp Lys Ala Phe Asp Ile
 161 115 120 125
 162 Lys Lys Asn Ala Pro Cys Leu Arg Asp Arg Ile Val Glu Cys Tyr Phe
 163 130 135 140
 164 Trp Gly Leu Gly Ser Gly Tyr Glu Pro Gln Tyr Ser Arg Ala Arg Val
 165 145 150 155 160
 166 Phe Phe Thr Lys Ala Val Ala Val Ile Thr Leu Ile Asp Asp Thr Phe
 167 165 170 175
 168 Asp Ala Thr
 170 <210> SEQ ID NO: 11
 171 <211> LENGTH: 2112
 172 <212> TYPE: DNA
 173 <213> ORGANISM: Artemisia annua L.
 175 <220> FEATURE:
 176 <223> OTHER INFORMATION: Nucleotide sequence of a positive clone (amorphadiene synthase
 177 encoding gene) isolated from the cDNA library of induced A.annua
 179 <400> SEQUENCE: 11
 180 aattcgcggc cgcgctcgaca aatcatgtca cttacagaag aaaaacctat tcgccccatt 60
 182 gccaactttc ctccaaggcat ttggggagat cagtttctca tctataaaa gcaagttagag 120
 184 caagggttgg aacagatagt gaatgattta aaaaaagaag tgccgcaact actaaaagaa 180
 186 gctttggata ttccatgaa acatgccaat ttgttgaagc tgattgtat aattcaacgc 240
 188 cttgaaatac cgtatcactt tgaacggag attgatcatg cattgcaatg tatttatgaa 300
 190 acatatggtg ataactggaa tggtgaccgc tcttcctt ggttccgtct tatgcgaaag 360
 192 caaggatatt atgttacatg tcatgtttc aataactata aagacaaaaa tggagcggtc 420
 194 aagcaatcgtagtcaatga tggtaaggt ttgttgcgt tgcgtacgc aacttctatg 480
 196 agggtacctg gggagattat attagaagat gctttgggtt ttacacgatc tcgtctttagc 540
 198 attatgacaa aagatgcttt ttctacaac cccgctctt ttaccgaaat acaacgggca 600
 200 ctaaagcaac ccctttggaa aaggttgcca agaatagagg cggcgcagta cattccttgc 660

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/763,822A

DATE: 07/17/2003

TIME: 11:32:33

Input Set : A:\W0008463.txt

Output Set: N:\CRF4\07172003\I763822A.raw

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/763,822A

DATE: 07/17/2003
TIME: 11:32:33

Input Set : A:\W0008463.txt
Output Set: N:\CRF4\07172003\I763822A.raw

278	115	120	125
279	Val Phe Asn Asn Tyr Lys Asp Lys Asn Gly Ala Phe Lys Gln Ser Leu		
280	130	135	140
281	Ala Asn Asp Val Glu Gly Leu Leu Glu Leu Tyr Glu Ala Thr Ser Met		
282	145	150	155
283	Arg Val Pro Gly Glu Ile Ile Leu Glu Asp Ala Leu Gly Phe Thr Arg		160
284	165	170	175
285	Ser Arg Leu Ser Ile Met Thr Lys Asp Ala Phe Ser Thr Asn Pro Ala		
286	180	185	190
287	Leu Phe Thr Glu Ile Gln Arg Ala Leu Lys Gln Pro Leu Trp Lys Arg		
288	195	200	205
289	Leu Pro Arg Ile Glu Ala Ala Gln Tyr Ile Pro Phe Tyr Gln Gln Gln		
290	210	215	220
291	Asp Ser His Asn Lys Thr Leu Leu Lys Leu Ala Lys Leu Glu Phe Asn		
292	225	230	235
293	Leu Leu Gln Ser Leu His Lys Glu Glu Leu Ser His Val Cys Lys Trp		240
294	245	250	255
295	Trp Lys Ala Phe Asp Ile Lys Lys Asn Ala Pro Cys Leu Arg Asp Arg		
296	260	265	270
297	Ile Val Glu Cys Tyr Phe Trp Gly Leu Gly Ser Gly Tyr Glu Pro Gln		
298	275	280	285
299	Tyr Ser Arg Ala Arg Val Phe Thr Lys Ala Val Ala Val Ile Thr		
300	290	295	300
301	Leu Ile Asp Asp Thr Tyr Asp Ala Tyr Gly Thr Tyr Glu Glu Leu Lys		
302	305	310	315
303	Ile Phe Thr Glu Ala Val Glu Arg Trp Ser Ile Thr Cys Leu Asp Thr		320
304	325	330	335
305	Leu Pro Glu Tyr Met Lys Pro Ile Tyr Lys Leu Phe Met Asp Thr Tyr		
306	340	345	350
307	Thr Glu Met Glu Glu Phe Leu Ala Lys Glu Gly Arg Thr Asp Leu Phe		
308	355	360	365
309	Asn Cys Gly Lys Glu Phe Val Lys Glu Phe Val Arg Asn Leu Met Val		
310	370	375	380
311	Glu Ala Lys Trp Ala Asn Glu Gly His Ile Pro Thr Thr Glu Glu His		
312	385	390	395
313	Asp Pro Val Val Ile Ile Thr Gly Gly Ala Asn Leu Leu Thr Thr Thr		400
314	405	410	415
315	Cys Tyr Leu Gly Met Ser Asp Ile Phe Thr Lys Glu Ser Val Glu Trp		
316	420	425	430
317	Ala Val Ser Ala Pro Pro Leu Phe Arg Tyr Ser Gly Ile Leu Gly Arg		
318	435	440	445
319	Arg Leu Asn Asp Leu Met Thr His Lys Ala Glu Gln Glu Arg Lys His		
320	450	455	460
321	Ser Ser Ser Ser Leu Glu Ser Tyr Met Lys Glu Tyr Asn Val Asn Glu		
322	465	470	475
323	Glu Tyr Ala Gln Thr Leu Ile Tyr Lys Glu Val Glu Asp Val Trp Lys		480
324	485	490	495
325	Asp Ile Asn Arg Glu Tyr Leu Thr Thr Lys Asn Ile Pro Arg Pro Leu		
326	500	505	510

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/763,822A

DATE: 07/17/2003

TIME: 11:32:34

Input Set : A:\W0008463.txt

Output Set: N:\CRF4\07172003\I763822A.raw

L:11 M:271 C: Current Filing Date differs, Replaced Current Filing Date

SEQUENCE LISTING

<110> WALLAART, Thorvald Eelco
BOUWMEESTER, Hendrik Jan

<120> Transgenic Amorpha-4, 11-Diene Synthesis

<130> 702 010272

<140> 09/763,822
<141> 2001-02-26

<150> PCT/EP99/06302
<151> 1999-08-27

<160> 14

<170> MS Word 97 SR-2

<210> 1
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> EcoR I (Not I) adapter

<400> 1
gtcgacgcgg ccgcg 15

<210> 2
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> EcoR I (Not I) adapter

<400> 2
cagctgcgcc ggcgcttaa 19

<210> 3
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense primer (primer C) used in PCR amplification

<400> 3
gtcgacaaac catggcactt acagaag 27

<210> 4
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense primer (primer D) used in PCR amplification

<400> 4
ggatggatcc tcataatactc ataggataaa cg 32

<210> 5
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense primer (primer G) used in PCR amplification

<400> 5
gaggatccat gtcacttaca gaa 23

<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense primer (primer H) used in PCR amplification

<400> 6
atggatcctc atataactcat agga 24

<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Sense primer (primer E) used in PCR amplification

<400> 7
cgagaattca tgtcacttac ag 22

<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Antisense primer (primer F) used in PCR amplification

<400> 8
ggatctcgag tcataatactc at 22

<210> 9
<211> 538
<212> DNA
<213> Artificial Sequence

<220>
<223> Nucleotide sequence of probe generated by PCR with primers A

and B

<400> 9
gatgagaatg ggaaatttaa ggaatcgta gctaatgatg ttgaaggttt gcttgagttg 60
tacgaagcaa cttctatgag ggtacctggg gagattatat tagaagatgc tcttggttt 120
acacgatctc gtcttagcat tatgacaaaa gatgctttt ctacaaaccc cgcttttt 180
accgaaatac aacgggcact aaagcaaccc ctttgaaaaa ggttgccaag aatagaggcg 240
gcgcagtaca ttccttcta tcaacaacaa gattctcata acaagacttt acttaaactt 300
gctaaatggtag agttcaattt gtttcagtc ttgcacaagg aagagctcag ccatgtgtgc 360
aaatggtgg aagcttcga tatcaagaag aacgcacctt gtttaagaga tagaattgtt 420
gaatgctact tttggggact aggttcagc tatgagccac agtattcccgg ggttagagtt 480
ttcttcacaa aagctgttgc tggtataact cttatagacg acacccctcga cgctacgg 538

<210> 10
<211> 179
<212> PRT
<213> Artificial Sequence

<220>
<223> Deduced amino acid sequence of probe generated by PCR with
primers A and B

<400> 10
Asp Glu Asn Gly Lys Phe Lys Glu Ser Leu Ala Asn Asp Val Glu Gly
1 5 10 15
Leu Leu Glu Leu Tyr Glu Ala Thr Ser Met Arg Val Pro Gly Glu Ile
20 25 30
Ile Leu Glu Asp Ala Leu Gly Phe Thr Arg Ser Arg Leu Ser Ile Met
35 40 45
Thr Lys Asp Ala Phe Ser Thr Asn Pro Ala Leu Phe Thr Glu Ile Gln
50 55 60
Arg Ala Leu Lys Gln Pro Leu Trp Lys Arg Leu Pro Arg Ile Glu Ala
65 70 75 80
Ala Gln Tyr Ile Pro Phe Tyr Gln Gln Asp Ser His Asn Lys Thr
85 90 95
Leu Leu Lys Leu Ala Lys Leu Glu Phe Asn Leu Leu Gln Ser Leu His
100 105 110
Lys Glu Glu Leu Ser His Val Cys Lys Trp Trp Lys Ala Phe Asp Ile
115 120 125
Lys Lys Asn Ala Pro Cys Leu Arg Asp Arg Ile Val Glu Cys Tyr Phe
130 135 140
Trp Gly Leu Gly Ser Gly Tyr Glu Pro Gln Tyr Ser Arg Ala Arg Val
145 150 155 160
Phe Phe Thr Lys Ala Val Ala Val Ile Thr Leu Ile Asp Asp Thr Phe
165 170 175
Asp Ala Thr

<210> 11
<211> 2112

<212> DNA
<213> Artemisia annua L.

<220>
<223> Nucleotide sequence of a positive clone (amorphadiene synthase encoding gene) isolated from the cDNA library of induced A.annua

<400> 11
aattcgcggc cgcgtcgaca aatcatgtca cttacagaag aaaaacctat tcgccccatt 60
gccaacttgc tcccaaggcat ttggggagat cagttctca tctatcaaaa gcaagttagag 120
caagggttgg aacagatagt gaatgattta aaaaaagaag tgccggcaact actaaaagaa 180
gctttggata ttccatgaa acatgccaat ttgttgaagc tgattgtga aattcaacgc 240
cttggaaatac cgtatcactt tgaacgggag attgatcatg cattgcaatg tatttatgaa 300
acatatggtg ataactggaa tggtgaccgc tcttccttat ggttccgtct tatgcgaaag 360
caaggatatt atgttacatg tggatgtttc aataactata aagacaaaaa tggagcgttc 420
aagcaatcgt tagctaata tggatgttgc ttttccttat ggttccgtct tatgcgaaag 480
agggtacctg gggagattat attagaagat gctcttggtt ttacacgatc tcgtcttagc 540
attatgacaa aagatgcttt ttctacaaac cccgctcttt ttaccgaaat acaacgggca 600
ctaaagcaac ccctttggaa aaggttgcca agaatagagg cggcgcagta cattccttgc 660
tatcaacaac aagattctca taacaagact ttacttaaac ttgtctaagtt agagttaat 720
ttgcttcagt cattgcacaa ggaagagctc agccatgtgt gcaaattggtg gaaagcttgc 780
gatatacaaga agaacgcacc ttgtttaaga gatagaattt ttgaatgcta ctgttgggaa 840
ctaggttcag gctatgagcc acagtattcc cgggcttagag ttttcttcac aaaagctgtt 900
gctgttataa ctcttataga tgacacttat gatgcgtatg gtacttatga agaacttaag 960
atctttactg aagctgttga aagggttgtca attacatgtc tagacacact tccagaatac 1020
atgaaaccga tatacaaattt attcatggat acatacacag aaatggaaat atttcttgca 1080
aaggagggaa gaacagatct atttaactgc ggcaaaagaat ttgtgaaaga gtttgttaga 1140
aacctgatgg ttgaagcaaa atgggcaaat gagggacaca taccaaccac tgaagagcat 1200
gatccagttg taatcattac tggcggtgt aacctgctta caacaacttg ttatcttggc 1260
atgagtgata tattcacaaa agagtctgtc gaatgggctg tctctgcacc tcctctttt 1320
agataactcag gtataacttgg tcgacgccta aatgatctca tgacccacaa ggccgagcaa 1380
gaaagaaaaac atagttcatc gagccttgaa agtttatatga aggaatataa tgtcaatgag 1440
gagttatgccca aaaccttgat ttacaaggaa gtagaaagatg tggaaagaataa tataaaccga 1500

gagttaccta caactaaaaa cattccaagg ccgttattga tggctgtat ctatttgtc 1560
cagtttcttg aagttcaata tgccggaaag gataacttca cacgtatggg agacgaatac 1620
aaacatctca taaagtctct actcgtttat cctatgagta tatgactacc aatccttcgt 1680
gcatacgctta tcaattatat taaaagggtt aactatgcac gtctctatgg agagaatttc 1740
tcaagctatt tggtgttct tgcggcaat aataaatcag acgcataaaa ttgtattgaa 1800
ctatatgccg atagctatTTT aaagttatta tacaactaaa atattcaaca atggattat 1860
actttactt tgtacaaaag caaaagtaca ctactgttat gtaacatTTT agttctatga 1920
tacTTtagtt acgaatcggc ttatatacat tgatacactt ttatgcagaa aaccctagta 1980
aataaaaagt cgatatcttg tactacacat atcgacgaa tttccgtttc ccgtttgtat 2040
tttacgatAT gttatttaat gaatatgttt catgtggttg ttgcttaaaa aaaaagtgcg 2100
cgccggccgcg aa 2112

<210> 12

<211> 697

<212> PRT

<213> Artemisia annua L.

<220>

<223> Deduced amino acid sequence of a positive clone (amorphadiene synthase encoding gene) isolated from the cDNA library of induced A.annua

<400> 12

Asn	Ser	Arg	Pro	Arg	Arg	Gln	Ile	Met	Ser	Leu	Thr	Glu	Glu	Lys	Pro
1						5					10			15	
Ile	Arg	Pro	Ile	Ala	Asn	Phe	Pro	Pro	Ser	Ile	Trp	Gly	Asp	Gln	Phe
			20							25				30	
Leu	Ile	Tyr	Gln	Lys	Gln	Val	Glu	Gln	Gly	Val	Glu	Gln	Ile	Val	Asn
			35				40				45				
Asp	Leu	Lys	Lys	Glu	Val	Arg	Gln	Leu	Leu	Lys	Glu	Ala	Leu	Asp	Ile
	50					55				60					
Pro	Met	Lys	His	Ala	Asn	Leu	Leu	Lys	Leu	Ile	Asp	Glu	Ile	Gln	Arg
	65					70				75			80		
Leu	Gly	Ile	Pro	Tyr	His	Phe	Glu	Arg	Glu	Ile	Asp	His	Ala	Leu	Gln
					85				90			95			
Cys	Ile	Tyr	Glu	Thr	Tyr	Gly	Asp	Asn	Trp	Asn	Gly	Asp	Arg	Ser	Ser
						100			105			110			
Leu	Trp	Phe	Arg	Leu	Met	Arg	Lys	Gln	Gly	Tyr	Tyr	Val	Thr	Cys	Asp
		115					120				125				
Val	Phe	Asn	Asn	Tyr	Lys	Asp	Lys	Asn	Gly	Ala	Phe	Lys	Gln	Ser	Leu
		130				135			140						
Ala	Asn	Asp	Val	Glu	Gly	Leu	Leu	Glu	Leu	Tyr	Glu	Ala	Thr	Ser	Met
	145					150				155			160		
Arg	Val	Pro	Gly	Glu	Ile	Ile	Leu	Glu	Asp	Ala	Leu	Gly	Phe	Thr	Arg
					165				170			175			
Ser	Arg	Leu	Ser	Ile	Met	Thr	Lys	Asp	Ala	Phe	Ser	Thr	Asn	Pro	Ala

	180	185	190												
Leu	Phe	Thr	Glu	Ile	Gln	Arg	Ala	Leu	Lys	Gln	Pro	Leu	Trp	Lys	Arg
195								200				205			
Leu	Pro	Arg	Ile	Glu	Ala	Ala	Gln	Tyr	Ile	Pro	Phe	Tyr	Gln	Gln	Gln
210					215					220					
Asp	Ser	His	Asn	Lys	Thr	Leu	Leu	Lys	Leu	Ala	Lys	Leu	Glu	Phe	Asn
225					230					235			240		
Leu	Leu	Gln	Ser	Leu	His	Lys	Glu	Glu	Leu	Ser	His	Val	Cys	Lys	Trp
					245				250			255			
Trp	Lys	Ala	Phe	Asp	Ile	Lys	Lys	Asn	Ala	Pro	Cys	Leu	Arg	Asp	Arg
					260				265			270			
Ile	Val	Glu	Cys	Tyr	Phe	Trp	Gly	Leu	Gly	Ser	Gly	Tyr	Glu	Pro	Gln
					275			280			285				
Tyr	Ser	Arg	Ala	Arg	Val	Phe	Phe	Thr	Lys	Ala	Val	Ala	Val	Ile	Thr
					290			295			300				
Leu	Ile	Asp	Asp	Thr	Tyr	Asp	Ala	Tyr	Gly	Thr	Tyr	Glu	Glu	Leu	Lys
305						310				315			320		
Ile	Phe	Thr	Glu	Ala	Val	Glu	Arg	Trp	Ser	Ile	Thr	Cys	Leu	Asp	Thr
					325				330			335			
Leu	Pro	Glu	Tyr	Met	Lys	Pro	Ile	Tyr	Lys	Leu	Phe	Met	Asp	Thr	Tyr
					340				345			350			
Thr	Glu	Met	Glu	Glu	Phe	Leu	Ala	Lys	Glu	Gly	Arg	Thr	Asp	Leu	Phe
					355			360			365				
Asn	Cys	Gly	Lys	Glu	Phe	Val	Lys	Glu	Phe	Val	Arg	Asn	Leu	Met	Val
					370			375			380				
Glu	Ala	Lys	Trp	Ala	Asn	Glu	Gly	His	Ile	Pro	Thr	Thr	Glu	Glu	His
385						390				395			400		
Asp	Pro	Val	Val	Ile	Ile	Thr	Gly	Gly	Ala	Asn	Leu	Leu	Thr	Thr	Thr
					405				410			415			
Cys	Tyr	Leu	Gly	Met	Ser	Asp	Ile	Phe	Thr	Lys	Glu	Ser	Val	Glu	Trp
					420				425			430			
Ala	Val	Ser	Ala	Pro	Pro	Leu	Phe	Arg	Tyr	Ser	Gly	Ile	Leu	Gly	Arg
					435				440			445			
Arg	Leu	Asn	Asp	Leu	Met	Thr	His	Lys	Ala	Glu	Gln	Glu	Arg	Lys	His
					450			455			460				
Ser	Ser	Ser	Ser	Leu	Glu	Ser	Tyr	Met	Lys	Glu	Tyr	Asn	Val	Asn	Glu
465						470				475			480		
Glu	Tyr	Ala	Gln	Thr	Leu	Ile	Tyr	Lys	Glu	Val	Glu	Asp	Val	Trp	Lys
					485				490			495			
Asp	Ile	Asn	Arg	Glu	Tyr	Leu	Thr	Thr	Lys	Asn	Ile	Pro	Arg	Pro	Leu
					500				505			510			
Leu	Met	Ala	Val	Ile	Tyr	Leu	Cys	Gln	Phe	Leu	Glu	Val	Gln	Tyr	Ala
					515			520			525				
Gly	Lys	Asp	Asn	Phe	Thr	Arg	Met	Gly	Asp	Glu	Tyr	Lys	His	Leu	Ile
					530			535			540				
Lys	Ser	Leu	Leu	Val	Tyr	Pro	Met	Ser	Ile	Leu	Pro	Ile	Leu	Arg	Ala
545						550				555			560		
Pro	Ile	Asn	Tyr	Ile	Glu	Arg	Val	Asn	Tyr	Ala	Arg	Leu	Tyr	Gly	Glu
					565				570			575			
Asn	Phe	Ser	Ser	Tyr	Leu	Val	Phe	Leu	Ala	Gly	Asn	Asn	Lys	Ser	Asp
					580				585			590			
Ala	Asn	Cys	Ile	Glu	Leu	Tyr	Ala	Asp	Ser	Tyr	Leu	Lys	Leu	Leu	Tyr
					595				600			605			
Asn	Asn	Ile	Gln	Gln	Trp	Tyr	Tyr	Thr	Phe	Thr	Leu	Tyr	Lys	Ser	Lys
					610			615			620				
Ser	Thr	Leu	Leu	Leu	Cys	Asn	Ile	Leu	Val	Leu	Tyr	Phe	Ser	Tyr	Glu
					625			630			635			640	

Ser Ala Tyr Ile His Tyr Thr Phe Met Gln Lys Thr Leu Val Asn Lys
645 650 655
Lys Ser Ile Ser Cys Thr Thr His Ile Ala Arg Ile Ser Val Cys g
660 665 670
Leu Tyr Phe Thr Ile Cys Tyr Leu Met Asn Met Phe His Val Val Val
675 680 685
Ala Lys Lys Ser Arg Arg Gly Arg Glu
690 695

<210> 13

<211> 1649

<212> DNA

<213> Artificial Sequence

<220>

<223> Nucleotide sequence of the amorphadiene synthase encoding gene,
between start and stop codon, obtained by PCR with primers C
and D

<400> 13

ccatggcact tacagaagaa aaacctattc gccccattgc caacttcct ccaagcattt 60
ggggagatca gtttctcatc tatcaaaagc aagtagagca aggggtggaa cagatagtga 120
atgatttaaa aaaagaagtg cgccaactac taaaagaagc ttggatatt cctatgaaac 180
atgccaattt gttgaagctg attgatgaaa ttcaacgcct tggaaataccg tatcactttg 240
aacgggagat tgatcatgca ttgcaatgta tttatgaaac atatggat aactggaatg 300
gtgaccgctc ttccattatgg ttccgtctta tgcgaaagca aggatattat gttacatgtg 360
atgtttcaa taactataaa gacaaaaatg gagcgttcaa gcaatcgta gctaattatg 420
ttgaaggttt gcttgagttt tacgaagcaa cttctatgag ggtacctggg gagattat 480
tagaagatgc tcttggttt acacgatctc gtcttagcat tatgacaaaa gatgttttt 540
ctacaaaccc cgctctttt accgaaatac aacggcact aaagcaaccc ctggaaaa 600
ggttgccaag aatagaggcg ggcgactaca ttccattctta tcaacaacaa gattctcata 660
acaagacttt acttaaactt gctaagttt agttcaattt gtttgcgtca ttgcacaagg 720
aagagctcg ccatgtgtgc aaatggtgg aagcttcga tatcaagaag aacgcacctt 780
gtttaagaga tagaattgtt gaatgtact tttggggact aggttcaggc tatgagccac 840
agtattcccg ggcttagagtt ttcttcacaa aagctgtgc tttataact cttatagatg 900
acacttatga tgcgtatggt acttatgaag aacttaagat ctttactgaa gctgtgaaa 960
ggtgtcaat tacatgctt gacacacttc cagaatacat gaaaccgata tacaattat 1020
tcatggatac atacacagaa atgaaagaat ttcttgcaaa ggaggaaaga acagatctat 1080
ttaactgcgg caaagaattt gtgaaagagt ttgttagaaa cctgtatgggtaa gaagcaaaat 1140

ggccaaatga gggacacata ccaaccactg aagagcatga tccagttgt atcattactg 1200
gcggtgctaa cctgcttaca acaacttgtt atcttggcat gagtgatata ttcacaaaag 1260
agtctgtcga atgggctgtc tctgcaccc tccttttag atactcaggat atactggtc 1320
gacgcctaaa tgatctcatg acccacaagg ccgagcaaga aagaaaacat agttcatcga 1380
gccttggaaag ttatataatg gaatataatg tcaatgagga gtatgccaa accttgattt 1440
acaaggaagt agaagatgtg tgaaagata taaaccgaga gtacctcaca actaaaaaca 1500
ttccaaggcc gttattgatg gctgtgatct atttgcgcgaa gttcaatatg 1560
cagggaaagga taacttcaca cgtatggag acgaatacaa acatctcata aagtctctac 1620
tcgttttatcc tatgagtgata tgaggatcc 1649

<210> 14

<211> 549

<212> PRT

<213> Artificial Sequence

<220>

<223> Deduced amino acid sequence of the amorphadiene synthase encoding gene, between start and stop codon, obtained by PCR with primers C and D

<400> 14

Thr	Met	Ala	Leu	Thr	Glu	Glu	Lys	Pro	Ile	Arg	Pro	Ile	Ala	Asn	Phe
					5				10					15	
Pro	Pro	Ser	Ile	Trp	Gly	Asp	Gln	Phe	Leu	Ile	Tyr	Gln	Lys	Gln	Val
					20				25				30		
Glu	Gln	Gly	Val	Glu	Gln	Ile	Val	Asn	Asp	Leu	Lys	Lys	Glu	Val	Arg
					35			40			45				
Gln	Leu	Leu	Lys	Glu	Ala	Leu	Asp	Ile	Pro	Met	Lys	His	Ala	Asn	Leu
					50			55			60				
Leu	Lys	Leu	Ile	Asp	Glu	Ile	Gln	Arg	Leu	Gly	Ile	Pro	Tyr	His	Phe
					65		70			75			80		
Glu	Arg	Glu	Ile	Asp	His	Ala	Leu	Gln	Cys	Ile	Tyr	Glu	Thr	Tyr	Gly
					85			90			95				
Asp	Asn	Trp	Asn	Gly	Asp	Arg	Ser	Ser	Leu	Trp	Phe	Arg	Leu	Met	Arg
					100			105			110				
Lys	Gln	Gly	Tyr	Tyr	Val	Thr	Cys	Asp	Val	Phe	Asn	Asn	Tyr	Lys	Asp
					115			120			125				
Lys	Asn	Gly	Ala	Phe	Lys	Gln	Ser	Leu	Ala	Asn	Asp	Val	Glu	Gly	Leu
					130			135			140				
Leu	Glu	Leu	Tyr	Glu	Ala	Thr	Ser	Met	Arg	Val	Pro	Gly	Glu	Ile	Ile
					145			150			155			160	
Leu	Glu	Asp	Ala	Leu	Gly	Phe	Thr	Arg	Ser	Arg	Leu	Ser	Ile	Met	Thr
					165			170			175				
Lys	Asp	Ala	Phe	Ser	Thr	Asn	Pro	Ala	Leu	Phe	Thr	Glu	Ile	Gln	Arg
					180			185			190				
Ala	Leu	Lys	Gln	Pro	Leu	Trp	Lys	Arg	Leu	Pro	Arg	Ile	Glu	Ala	Ala
					195			200			205				
Gln	Tyr	Ile	Pro	Phe	Tyr	Gln	Gln	Gln	Asp	Ser	His	Asn	Lys	Thr	Leu

210	215	220
Leu Lys Leu Ala Lys Leu Glu Phe Asn Leu Leu Gln Ser Leu His Lys		
225	230	235
Glu Glu Leu Ser His Val Cys Lys Trp Trp Lys Ala Phe Asp Ile Lys		240
245	250	255
Lys Asn Ala Pro Cys Leu Arg Asp Arg Ile Val Glu Cys Tyr Phe Trp		
260	265	270
Gly Leu Gly Ser Gly Tyr Glu Pro Gln Tyr Ser Arg Ala Arg Val Phe		
275	280	285
Phe Thr Lys Ala Val Ala Val Ile Thr Leu Ile Asp Asp Thr Tyr Asp		
290	295	300
Ala Tyr Gly Thr Tyr Glu Glu Leu Lys Ile Phe Thr Glu Ala Val Glu		
305	310	315
Arg Trp Ser Ile Thr Cys Leu Asp Thr Leu Pro Glu Tyr Met Lys Pro		
325	330	335
Ile Tyr Lys Leu Phe Met Asp Thr Tyr Thr Glu Met Glu Glu Phe Leu		
340	345	350
Ala Lys Glu Gly Arg Thr Asp Leu Phe Asn Cys Gly Lys Glu Phe Val		
355	360	365
Lys Glu Phe Val Arg Asn Leu Met Val Glu Ala Lys Trp Ala Asn Glu		
370	375	380
Gly His Ile Pro Thr Thr Glu Glu His Asp Pro Val Val Ile Ile Thr		
385	390	395
400		400
Gly Gly Ala Asn Leu Leu Thr Thr Cys Tyr Leu Gly Met Ser Asp		
405	410	415
Ile Phe Thr Lys Glu Ser Val Glu Trp Ala Val Ser Ala Pro Pro Leu		
420	425	430
Phe Arg Tyr Ser Gly Ile Leu Gly Arg Arg Leu Asn Asp Leu Met Thr		
435	440	445
His Lys Ala Glu Gln Glu Arg Lys His Ser Ser Ser Ser Leu Glu Ser		
450	455	460
Tyr Met Lys Glu Tyr Asn Val Asn Glu Glu Tyr Ala Gln Thr Leu Ile		
465	470	475
480		
Tyr Lys Glu Val Glu Asp Val Trp Lys Asp Ile Asn Arg Glu Tyr Leu		
485	490	495
Thr Thr Lys Asn Ile Pro Arg Pro Leu Leu Met Ala Val Ile Tyr Leu		
500	505	510
Cys Gln Phe Leu Glu Val Gln Tyr Ala Gly Lys Asp Asn Phe Thr Arg		
515	520	525
Met Gly Asp Glu Tyr Lys His Leu Ile Lys Ser Leu Leu Val Tyr Pro		
530	535	540
Met Ser Ile Gly Ser		
545		