□ 카르노 맵을 이용한 간소화

- 카르노 맵(Kamaugh map)은 1953년 모리스 카르노(Maurice Kamaugh)가 체계적으로 논리식을 간소화하기 위해 소개
- 카르노 맵은 논리식에서 사용될 최소항을 각 칸에 넣어 표로 만들어 놓은 것이다.

A	\overline{B}	В
\overline{A}	$\overline{A}\overline{B}$	$\overline{A}B$
A	$A\overline{B}$	AB

A	\overline{B}	В
\overline{A}	$m_{\scriptscriptstyle m O}$	$m_{\scriptscriptstyle 1}$
A	m_2	m_3

A	0	1
0	0	1
1	2	3

그림 3-21 2변수 카르노 맵 표현 방법

02 불 대수

❖ 카르노 맵에서 묶는 규칙

- 이웃하는 최소항끼리 묶을 수 있다. (해당 조건에 F=1인 경우들 끼리)
- ② 최소항은 1, 2, 4, 8, 16개 단위로 묶을 수 있다.
- ③ 반드시 직사각형이나 정사각형으로 묶어야 하며, 대각선으로는 묶을 수 없다.
- 4 최대한 크게 묶는다.
 - → 0과 1의 경우를 모두 포함하는 경우, 입력항이 빠진 형태로 간소화 됨
- ⑤ 중복해서 묶는 것이 더 간소하다면 중복하여 묶는다.
- 무관항은 간소화될 수 있으면 묶어 주고, 그렇지 않으면 묶지 않는다.

A=0, B=0,1 일 때 F=1이므로 A' 로 묶을 수 있음 (B는 상관이 없게 됨)

그림 3-22 $F = \overline{AB} + \overline{AB}$ 의 카르노 맵

불 대수의 법칙으로 풀면 $F = \overline{AB} + \overline{AB}$

 $=\overline{A}(\overline{B}+B)=\overline{A}\cdot 1=\overline{A}$

A=0이므로 \overline{A} , B=0 and 1이므로 B를 제거한다. 즉, 한 변수에서 서로 다른 값이 묶여지면 제거한다.

❖ 3변수 카르노 맵 표현 방법

A^{B}	$C\overline{B}\overline{C}$	$\overline{B}C$	BC	$B\overline{C}$
\overline{A}	$\overline{A}\overline{B}\overline{C}$	$\overline{A}\overline{B}C$	$\overline{A}BC$	$\overline{A}B\overline{C}$
A	$A\overline{B}\overline{C}$	$A\overline{B}C$	ABC	$AB\overline{C}$
A^{B}	C ₀₀	01	11	10
0	0	1	3	2
1	4	5	7	6

그림 3-23 3변수 카르노 맵 표현 방법

이웃하는 항이 한 비트 차이 나도록 00, 01, 11, 10, ... 순으로 적어야 함 그래서, 번호 순서가 0, 1, 3, 2, ... 됨

AB	\overline{C}	С	AB	0	1
$\overline{A}\overline{B}$	$\overline{A}\overline{B}\overline{C}$	$\overline{A}\overline{B}C$	00	0	1
$\overline{A}B$	$\overline{A}B\overline{C}$	$\overline{A}BC$	01	2	3
AB	$AB\overline{C}$	ABC	11	6	7
$A\overline{B}$	$A\overline{B}\overline{C}$	$A\overline{B}C$	10	4	5

행과 열을 바꾸어도 상관없다. 설계자가 선호하는 방법을 선택하면 된다.

02 불 대수

(b) 3변수 최소항				
A	\boldsymbol{B}	C	최소항	기호
0	0	0	$\overline{A}\overline{B}\overline{C}$	m_0
0	0	1	$\overline{A}\overline{B}C$	m_1
0	1	0	$\overline{A}B\overline{C}$	m_2
0	1	1	$\overline{A}BC$	m_3
1	0	0	$A\overline{B}\overline{C}$	m_4
1	0	1	$A\overline{B}C$	m_5
1	1	0	$AB\overline{C}$	m_6
1	1	1	ABC	m_7

❖ 간소화 예1

요구사항: 입력 변수가 3개(A,B,C)이고, 원하는 출력(F)이 0,1,6,7번째만 1로 되도록 함

$$F = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + ABC + AB\overline{C}$$
$$= \overline{A}\overline{B} + AB$$

그림 3-24 $F(A, B, C) = \sum m(0, 1, 6, 7)$ 의 카르노 맵

❖ 간소화 예2

그림 3-25 3변수 카르노 맵에서 양쪽 끝 묶음

❖ 간소화 예3

그림 3-26 4개 항을 묶은 예

02 불 대수

❖ 4변수 카르노 맵 표현 방법

CL AB	\overline{CD}	$\bar{C}D$	CD	$C\overline{D}$
$\overline{A}\overline{B}$	$\overline{A}\overline{B}\overline{C}\overline{D}$	$\overline{A}\overline{B}\overline{C}D$	$\overline{A}\overline{B}CD$	$\overline{A}\overline{B}C\overline{D}$
$\overline{A}B$	$\overline{A}B\overline{C}\overline{D}$	$\overline{A}B\overline{C}D$	$\overline{A}BCD$	$\overline{A}BC\overline{D}$
AB	$AB\overline{C}\overline{D}$	$AB\overline{C}D$	ABCD	$ABC\overline{D}$
$A\overline{B}$	$A\overline{B}\overline{C}\overline{D}$	$A\overline{B}\overline{C}D$	$A\overline{B}CD$	$A\overline{B}C\overline{D}$

CL AB	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

그림 3-27 4변수 카르노 맵의 표현 방법

그림 3-28 4변수 카르노 맵의 상하좌우 끝 쪽 연결

AB	00	01	11	10	
00	1	1	1	1	
01	1	1	1	1	
11	1	1	1	1	
10	1	1	1	1	
	$\Gamma = 1$				

❖ 4변수 카르노 맵 간소화 예

02 불 대수

❖ 4변수 카르노 맵 간소화 예(계속)

❖ 무관항이 있는 경우

- 무관항(don't care)은 입력 값이 0이든 1이든 상관없는, 즉, 입력이 결과에 영향을 미치지 않는 최소항으로 ×나 d로 표시한다.
- 무관항이 있는 경우에는 같이 묶어 간소하게 되면 같이 묶는다.
- 무관항끼리만 묶을 필요는 없고 무관항을 포함해도 간소화되지 않는다면 묶을 필요가 없다.
- 무관항을 잘 이용하면 회로를 간단하게 나타낼 수 있다.

그림 3-30 무관항이 있는 카르노 맵의 간소화

02 불 대수

ABC가 001, 010, 100,

111로 1이 홀수 개일때 만 minterm이 1임: XOR

❖ XOR와 XNOR의 카르노 맵

• 입력 변수에 나타나는1 의 개수에 따라 XOR와 XNOR를 구분할 수 있다.

• 카르노 맵에서 그룹으로 묶은 후 제거되는 변수를 제외하고, minterm 1인경우의 입력 변수들의 값에 1의 개수가 홀수이면 XOR, 짝수이면 XNOR이다.

XOR

		입력		출력
	A	B	C	F
	0	0	0	1
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	0 .
	1	0	1	1 .
	1	1	0	1
	1	1	1	0
(b)	3입력	취인 경	령우: <i>I</i>	$F = \overline{A \oplus B \oplus C}$

그림 3-31 XOR와 XNOR 카르노 맵 표현

XNOR