WEERS AND AND TORREST	PROFESSOR: Paulo César Linhares da Silva CURSO: CIÊNCIAS DA COMPUTAÇÃO DISCIPLINA: CÁLCULO NUMÉRICO		
	PERÍODO: MANHÃ. HORÁRIO: 07:00 ÀS 08:40		DATA: 27/11/2024
	NOME:		PONTOS OBTIDOS
	SEMESTRE SUPLEMENTAR: 2024		
1ªAVALIAÇÃO DE CÁLCULO NUMÉRICO	Erros, sistemas de numeração e zeros de funções	NOTA OBTIDA:	

Cálculo Numérico

- **1ª Questão:** Escreva um código em Python que faça a mudança de base de um número escrito na base dez para um número escrito em uma base a critério do usuário.
- **2ª Questão:** Faça um código em Python para discretizar as derivadas de ordem 1, 2 e 3 de quatro maneiras diferentes para uma única função a ser escolhida pelo usuário. O ponto em que a derivada vai ser calculada fica a critério do usuário. Calcule também o erro percentual em cada cálculo de derivada realizado.

Observação: Não use bibliotecas prontas do Python para o cálculo das derivadas, pois, não aceitarei como resposta.

3ª Questão: Implemente o método da bissecção usando a linguagem de programação Python. O algoritmo deve fornecer como resposta se uma função escolhida pelo usuário possui ou não raiz em um intervalo [a, b] escolhido também pelo usuário. Cuide para que seu algoritmo analise todas as possibilidades acerca da escolha da raiz. A quantidade de interações do algoritmo não pode ser superior a

$$K > \frac{\log_2^{(a-b)} - \log_2^{\varepsilon}}{\log_2^{\varepsilon}}$$

Onde a e b são os extremos do intervalo e ε a precisão do problema. Meça também o tempo de execução e a quantidade de iterações necessárias para encontrar a raiz.

4ª Questão: Implemente o método da falsa posição usando a linguagem de programação Python. O algoritmo deve fornecer como resposta se uma função escolhida pelo usuário possui ou não raiz em um intervalo [a, b] escolhido também pelo usuário. Cuide para que seu algoritmo analise todas as possibilidades acerca da escolha da raiz. Meça também o tempo de execução e compare com o método da bissecção e a quantidade de iterações necessárias para encontrar a raiz.

5ª Questão Calcule os limites a seguir,

a)
$$f(x) = \begin{cases} x^4 sen\left(\frac{1}{x}\right), se \ x \neq 0 \\ 0, se \ x = 0. \end{cases}$$
, $\lim_{x \to 0} f(x)$.

b)
$$g(x) = \begin{cases} x^4 - 1 \text{ se } x > 1 \\ -x^4 + 1, \text{ se } x < 1. \end{cases}$$
 $\lim_{x \to 1} g(x)$.

Utilize o código em Python sugerido em sala de aula e faça as modificações necessárias que para que o código retorne o valor dos limites laterais e do limite bilateral.

 6^{a} Questão Implemente usando a linguagem Python o método do ponto fixo, meça a quantidade de iterações e o tempo de execução deste método. Atenção no momento de escolher a função de iteração φ . Escolha uma função, um intervalo e uma precisão e compare quantidade de iterações entre o método do ponto fixo e os métodos da bissecção.

7ªQuestão Implemente usando a linguagem Python os métodos de Newton e da secante. Compare os métodos, análise qual executa menos iterações e menos tempo para o cálculo da raiz de uma função escolhida pelo usuário.

8ª Questão Resolva o problema 3.4 a seguir usando o método sugerido.

3.4 A área *S* da superfície lateral de um cone é dada por:

$$S = \pi r \sqrt{r^2 + h^2}$$

onde r é o raio da base e h é a altura. Determine o raio de um cone que tenha uma área superficial de 1200 m² e uma altura de 20 m, calculando cinco iterações com o método da iteração de ponto fixo. Use $r = S/(\pi \sqrt{r^2 + h^2})$ como função de iteração. Comece com r = 17 m.

9ªQuestão Resolva o problema 3.30 a seguir usando o método de zeros de funções adequado ao problema sugerido.

3.30 A potência de saída de uma célula solar varia com a tensão que ela fornece. A saída V_{mn} para a qual a potência de saída é máxima é dada pela equação:

$$e^{(qV_{mp}/k_BT)} \left(1 + \frac{qV_{mp}}{k_BT}\right) = e^{(qV_{OC}/k_BT)}$$

onde V_{OC} é a tensão de circuito aberto, T é a temperatura em Kelvin, $q = 1,6022 \times 10^{-19}$ C é a carga de um elétron e $k_B = 1,3806 \times 10^{-23}$ J/k é a constante de Boltzmann. Para $V_{OC} = 0,5$ V e uma temperatura T = 297 K, determine a tensão V_{mp} na qual a potência de saída da célula solar é máxima.

10^a**Questão** Resolva o problema 3.26 a seguir usando o método de Newton. Compare a resposta usando o método Secante.

3.26 Uma viga em balanço sustenta uma carga distribuída, conforme mostrado. A deflexão y da linha central da viga em função da posição x é dada pela equação:

$$y = \frac{w_0 L}{3\pi^4 EI} \left(48L^3 \cos\left(\frac{\pi}{2L}x\right) - 48L^3 + 3\pi^3 L x^2 - \pi^3 x^3\right)$$
onde $L = 3$ m é o comprimento, $E = 70$ GPa é o módulo elástico, $I = 52.9 \times 10^{-6}$ m⁴ é o momento de inércia e $w_0 = \frac{\pi x}{2L}$

Determine a posição x onde a deflexão da viga é de 9 mm.

15 kN/m.