MSIB32500 Advanced Bioinformatics Fall 2018

RNAseq Data Analysis and Clinical Applications, Part I

Riyue Sunny Bao, Ph.D.

Research Assistant Professor (Bioinformatics)

Center for Research Informatics & Department of Pediatrics

The University of Chicago

Outline

- Part I (11/24/2018)
 - Introduction to RNAseq technology and clinical applications
 - Hands on: From raw data to gene expression quantification
- Part II (12/01/2018)
 - Differential gene expression analysis and data visualization
 - Hands on: Identification of genes and pathways significantly changed under condition
 - Homework assignment
- Part III (12/08/2018)
 - How to associate gene expression data with clinical outcome
 - Hands on: Use gene expression data to discover tumor subtypes and survival analysis

Class materials

- GitHub
 - https://github.com/MScBiomedicalInformatics/MSIB32500
 - This lecture note contains the same contents as the notebook. In addition, the notebook also contains hands-on materials
 - lecture8.pdf
 - Handson8.Rmd
- Gardner high-performance computing (HPC) clusters (hands on practice)

Objective

- Learn the good-practice RNAseq analysis pipeline
- Learn commonly used bioinformatics tools
- Practice the automated, scalable pipeline
- Explore the quality metrics and input/output of the RNAseq pipeline
- Visualize result files and quality plots

Biological and clinical questions

- I am interested in studying transcriptional landscape shift before and after drug treatment in cell lines
- I want to identify which pathways are affected after knocking down my favorite gene in mice
- I have expression data of clinical isolates collected at various time points, when patient's response changed. Why?
- I have a cohort of patients and want to discover which gene signature predicts patient's response to treatment
- I want to detect gene fusions, expressed mutations, and disrupted isoforms in tumors that may be related to disease

... and more!

The Sequencing Iceberg

One sequencing run every 3 days (per instrument)

28 instruments

Current Sequencing Technologies

Illumina HiSeq 2000/2500/X _{TEN}

Ion Torrent (Life Technologies)
Ion Proton

Illumina MiSeq

PacBio RS

Illumina

- Sample
- Library
- DNA fragment
- Barcode
- Run
- Flow cell
- Lane
- Cluster
- Read
- Adapter/Primer

Though we are talking about Illumina here, many of those terms can be applied to other sequencing technologies.

Illumina

DNA Fragment DNA fragment Adapter/Primer Single-End Paired-End Insert

- Sample
- Library
- DNA fragment
- Barcode
- Run
- Flow cell
- Lane
- Cluster
- Read
- Adapter/Primer

<u>Fragment size = R1+R2+insert size</u>

What is RNAseq?

High-throughput sequencing of RNA: Profile, identify or assemble transcripts

- Detect gene expression changes between conditions
- Identify novel splice sites / exons, mutations, fusion genes, etc.
- Broad detection range, high sensitivity, low requirement of RNA amount
- Available for all species (reference genome is optional): reference genome-guided alignment or de novo assembly

Biological sample or clinical specimen

Millions of reads!

Which factors to consider if I want to initiate an RNAseq experiment?

- Sample source (fresh cells, frozen, FFPE)
- Sample quality (RNA quality, DNA contamination, tumor purity)
- RNA concentration (e.g. 100ng total RNA)
- Ribosome RNA depletion (accounts for 80% of total RNA)
- Library type (single-end or paired-end reads)
- Library strandness (unstranded or stranded/directional)
- Sequencing depth (20 million, 50 million, or >100 million reads)

Library type: Single-end vs paired-end reads

2 x 50bp PE reads >> 1 x 100 bp SE reads!

Library strandness: stranded-protocol is always recommended!

- Non-stranded/Non-directional
- Forward, also known as second-stranded (coding strand)
- Reverse, also known as firststranded (template strand)

Sequencing depth: How many reads do I need?

downstream gene discovery, expression estimation, and power of tatistical analysis

The/more, the better!

Trapnell et al. Nature Protocol 2012

ENCODE saturation analysis

- 214 million 2x100bp PE reads
- H1 human embryonic stem cells
- 80% of the genes with <u>FPKM≥10</u> are detected by ~36 million mapped reads per sample
- Genes with <u>FPKM<10</u>: ~80 million mapped reads per sample

Sims et al., 2014 Nature Reviews

Experimental design: Biological replicates

Include biological replicates for **increased discovery power** and reduced false positives/negatives!

Experimental design: Multiplexing and Randomization

- Multiplexing: simultaneously measures multiple libraries in one sequencing lane. Unique barcodes are added to label DNA molecules from each library
- Randomization: Avoid loading samples from the same biological group in the same sequencing lane. Minimizes technical bias and lane-specific effects.

Experimental design: Multiplexing and Randomization

Challenges and limitations

- Relatively poor RNA quality for tumor FFPE samples
- Contamination from adjacent normal tissue
- Still more expensive than targeted-panel sequencing such as NanoString
- 40 million mapped reads are usually sufficient for gene profiling, but > 80 million are required to detect bottom 1% lowly expressed genes

nature.com > journal home > archive > issue > review > abstract

NATURE REVIEWS GENETICS | REVIEW

Sequencing depth and coverage: key considerations in genomic analyses

David Sims, Ian Sudbery, Nicholas E. llott, Andreas Heger & Chris P. Ponting

Affiliations | Corresponding author

Whom to contact if I want to initiate an NGS (e.g. RNAseq) experiment?

The University of Chicago Genomics Facility

Pieter W. Faber, Ph.D. Technical Director <u>pfaber@bsd.uchicago.edu</u> 773.834.8420

The Center for Research Informatics Bioinformatics Core

Jorge Andrade, Ph.D.
Director of Bioinformatics
jandrade@bsd.uchicago.edu

How to perform RNAseq analysis

The good-practice analysis protocol takes 8 major steps.

- **01-04**: From raw sequencing to transcript quantification
- 05-08: DEG and pathway analysis (06/03, part II)

How to perform RNAseq analysis

01 Quality assessment of raw sequencing reads: FastQC

Raw sequencing reads are stored in FastQ format (e.g. KO01.fastq.gz), where each read is presented by 4 lines

- Check if the reads are of high quality
- Check if any preprocessing step is required (e.g. base trimming, adapter clipping, read filtering)

01 Quality assessment of raw sequencing reads: FastQC

- Method
 - FastQC version 0.11.5
 - Scan raw sequencing reads and produce QC reports for evaluation
- Our data
 - Read quality pretty good (baseQ >= 30 in all base positions)
 - Preprocessing is optional

fastqc --extract -o \$out.dir -t 2 --nogroup \$r1.fastq.gz

01 Quality assessment of raw sequencing reads: FastQC

Summary Basic Statistics Per base sequence quality Per tile sequence quality Per sequence quality scores Per base sequence content Per sequence GC content Per base N content Sequence Length Distribution Sequence Duplication Levels Overrepresented sequences Adapter Content **Kmer Content**

02 Preprocessing: Trimmomatic

- Preprocess reads to improve mapping rate and accuracy
 - Trim low-quality bases, clip adapters, etc.
 - Avoid over-trimming in RNAseq!
- Clean up reads for improved alignment rate and accuracy (for the next step)

02 Preprocessing: Trimmomatic

- Method
 - Trimmomatic version 0.36
 - Clip adapters
 - Trim leading/trailing low quality or N bases
 - Trim reads to a specific length
 - ► Filter out reads of low average quality / of specific length
 - Convert base quality scores between Phred33 and Phred64 FastQ format
- Our data (KO01 as an example)
 - 74,126,025 reads total. Survived: 73,636,793 (99.34%) Dropped: 489,232 (0.66%)

```
java -Xmx4G -jar trimmomatic-0.36.jar SE -threads 4 -phred33
$r1.fastq.gz $r1.trim.fastq.gz ILLUMINACLIP:TruSeq3-
SE.fa:2:30:10 LEADING:5 TRAILING:5 MINLEN:36 SLIDINGWINDOW:4:15
```

03 Map reads to reference genome (GRCh38): STAR

- Read mapping identifies the location in the genome where a sequencing read comes from
- Splice-aware aligner (e.g. STAR)

Each horizontal bar represents one read. Red/blue indicates reads aligned to plus/minus strand on the genome, respectively.

780 reads map to FOS gene

03 Map reads to reference genome (GRCh38): STAR

- A read may map to one, or multiple genomic locations (Mapping quality: MAPQ)
- Accurate mapping result is the key for downstream differential gene expression identification
- Read alignment results are stored in SAM or BAM (Binary SAM) format

03 Map reads to reference genome (GRCh38): STAR

- Method
 - STAR version 2.5.3a
 - splice-aware aligner
 - Ultrafast (~15 minutes for 50m reads), require lots of memory (~36GB for human genome)
 - ► Flexible options to allow canonical/non-canonical junctions, with/wo known gene annotations, etc.
- Different aligners may generate very different results! (Engström et al. Nature methods 2013. Systematic evaluation of spliced alignment programs for RNA-seq data)

STAR --runMode alignReads --genomeLoad NoSharedMemory -- outFileNamePrefix \$out.prefix --readFilesCommand zcat -- genomeDir \$refgenome.dir --readFilesIn \$r1.trim.fastq.gz -- runThreadN 2 --outSAMstrandField intronMotif -- outFilterIntronMotifs RemoveNoncanonicalUnannotated -- outSAMtype BAM SortedByCoordinate

04 Quantify transcript abundance: featureCounts

- Estimate number of reads mapped to gene features (e.g. gene, exon, etc.)
- Method
 - featureCounts version 2.5.2b
 - Ultrafast (~10 minutes for 50m reads), require low amount of memory (~4GB for human genome)
 - Flexible options to count the reads based on specific mapping criteria or study purposes
 - Gene-level or exon-level (for isoforms); Uniquely mapped reads; Primary alignment; Properly paired reads (if reads are paired-end); Mapping quality thresholds
- Choose the option accordingly based on your experimental design!

```
featureCounts -s 0 -F GTF -t exon -g gene_id -Q 255 -J --primary -a
$refgeneanno.gtf -T 2 -G $refgenome.fa -o
$sample.star.featurecounts.raw_counts.txt $sample.star.merged.bam
```

11	/	featureCounts setting ============================	(/	//Running\					
ï	1	1	ΠÌ						
li	Input files :	1 BAM file	ii i	Load annotation file gencode.v24.primary_assembly.annotation.chr11.gtf					
li		S results/rnaseq/DLBC_samples_grch38/KO01/al	Ιİ						
l	ĺ		Ιİ	Meta-features : 60725					
Ιij	Output file :	results/rnaseq/DLBC_samples_grch38/KO01/read	Ιij						
H		gencode.v24.primary_assembly.annotation.chr11							
ш		<pre><output_file>.jcounts</output_file></pre>	ΙİΙ	Loading FASTA contigs : GRCh38.primary_assembly.genome.chr11.fa					
П			ΙİΙ	194 contigs were loaded					
İ	Threads :	12	ΙİΙ	ii i					
	Level :	meta-feature level	Ш	Process BAM file results/rnaseq/DLBC_samples_grch38/KO01/alignment/KO0					
	Paired-end :	yes		Single-end reads are included.					
	Strand specific :	no	Ш	Assign reads to features					
	Multimapping reads :	primary only	Ш	Total reads : 93186698					
	Multi-overlapping reads :	not counted		Successfully assigned reads : 55910832 (60.0%)					
	Read orientations :	fr	Ш	Running time : 10.23 minutes					
	Chimeric reads :	not counted		Found 230830 junctions in all the input files.					
	Both ends mapped :	not required							
		1		Read assignment finished.					
1,	\====== http	://subread.sourceforge.net/ =================================							
	\\======= http://subread.sourceforge.net/ ==========/								

Geneid	Chr	Start	End	Strand	Length	KO01
	chr11;chr					
ENSG00000019485.12	11;chr11;c	45095806;45146675;4	45095901;45146877;4			
	hr11;chr1	5147343;45181761;45	5147581;45181885;45			
	1;chr11;ch	182246;45182861;452	182349;45183123;452	+;+;+;+;+;+;+;+;+	13954	710
	r11;chr11;	04711;45208874;4521	04778;45209295;4521	;+;+	13934	′ 10
	chr11;chr	2469;45219570;45224	4713;45219757;45225			
	11;chr11;c	217;45225995	087;45235124			
	hr11					
ENSG00000170345.9	chr14;chr	75278774;75279237;7	75279128;75279531;7	+;+;+	3238	780
	14;chr14	5279643	5282230			
ENSG00000119660.4	chr14	75292131	75292495	_	365	0
	CIII 14				000	
ENSG00000259687.1	chr14;chr	75294404;75294677;7		+;+;+	718	₀
	14;chr14	5296120	5296638	.,.,.	, 10	لسّا
ENSG00000259319.1	chr14	75423683	75427741	_	4059	25
2.13000000200010.1	511114	. 0 12000	10421141		,,,,,	

Pseudoaligners (Kallisto, Salmon)

- 'Align' reads to the transcriptome instead of genome
- K-mer 'compatibility' searching (pseudo-alignment) BAM file optional
- Accurate transcript-level quantification, robust to sequencing errors
- Gene-level quantification can be summarized by tximport (subsequent to kallisto) or salmon itself
- Super fast and relatively low memory requirement!

Transcriptome de Bruijn graph (T-DBG)

RNAseq quality metrics & coverage: Picardtools, bedtools, RSeQC

- Evaluate the quality of reads and alignments
- Identify potential problems regarding (RNA) sample quality
 - Is the RNA highly degraded?
 - Is there high-level genomic DNA contamination?
 - Was ribosome RNA successfully depleted?
 - How do reads distribute on the genome? (exons, introns, intergenic, etc.)
 - Is the strandness of read alignment consistent with library type? nonstranded or forward/reverse strand-specific libs
 - Does the target gene that was knocked down in KO samples have reduced expression, compared to WT?

a) RNA degradation

- RNA quality: Fresh samples (e.g. cell line) > frozen samples (e.g. mouse tissues) >>
 FFPE samples (e.g. human tumors)
- During lib prep, RNA quality is inferred by The RNA integrity number (RIN) evaluated using the 28S to 18S rRNA ratio (e.g. RIN > 4.5)
- However, studies have shown that RIN can be quite inaccurate for FFPE samples
- Gene body coverage plot (Picardtools). FFPE samples often has 5' degradation

b) Genomic DNA contamination

- In lib prep, DNase digestion removes genomic DNA
- While fresh samples often has good-quality RNAs, highly-degraded samples (e.g. FFPE tumors) often has a higher degree of genomic DNA contamination
- Sometimes DNA contamination could occupy 70% of sequencing reads, greatly reducing the discovery power of DEG analysis
- Good assessment to identify and estimate genomic DNA contamination includes
 - Read distribution in genomic features: high fraction of intergenic reads indicates
 DNA contamination
 - Visualize intergenic region in genome browser (e.g. IGV)

b) Genomic DNA contamination

Q1: Which sample (S1-4) has the most severe genomic DNA contamination?

Hint: higher percentage of intergenic reads indicates more severe DNA contamination in RNA samples

c) Ribosome RNA fraction

- rRNA accounts for > 80% of the transcriptome
- Mmost RNAseq lib prep protocol includes an ribosomal RNA depletion step
- However, if RNA quality is relatively poor (e.g. FFPE tumors), rRNA depletion often is efficient
- Accessing if the depletion step is successful through read distribution in genomic features
- How many reads map to ribosome RNA regions on the genome?

c) Ribosome RNA fraction

Q2: Which sample (\$1-4) has the least efficient depletion of ribosome RNAs?

Hint: rRNAs account for > 80% of the whole transcriptome. If not removed, the majority of the sequencing reads will be derived from rRNA

c) Library standness: fraction of correctly oriented reads

RSeQC: infer_experiment.py

For pair-end RNA-seq, there are two different ways to strand reads (such as Illumina ScriptSeq protocol):

- read1 mapped to '+' strand indicates parental gene on '+' strand
- read1 mapped to '-' strand indicates parental gene on '-' strand
- read2 mapped to '+' strand indicates parental gene on '-' strand
- read2 mapped to '-' strand indicates parental gene on '+' strand

- read1 mapped to '+' strand indicates parental gene on '-' strand
- read1 mapped to '-' strand indicates parental gene on '+' strand
- read2 mapped to '+' strand indicates parental gene on '+' strand
- read2 mapped to '-' strand indicates parental gene on '-' strand

For single-end RNA-seq, there are also two different ways to strand reads:

- read mapped to '+' strand indicates parental gene on '+' strand
- read mapped to '-' strand indicates parental gene on '-' strand

- read mapped to '+' strand indicates parental gene on '-' strand
- read mapped to '-' strand indicates parental gene on '+' strand

e) Confirmation of reduced/increased expression for knockdown/overexpressed genes in KO/OE samples

- Is there a gene that is expected/known to be repressed or overexpressed?
- Does the RNAseq result reflect expression change of this gene?
- In our data, PRDM11 expression is expected to be down since this is the gene knocked down in U2932 cells
- NOT all exons are affected!
- Only those targeted by siRNA (small RNA interference) will be affected

Our data

- PRDM11 knockdown U2932 cells in triplicates (KO01-03 vs WT01-03)
- NOT the full PRDM11 gene is knockdown!
- siRNAs target exons 4,5,6 of PRDM11, thus only those three exons show a reduction of expression in the KO samples; other exons are not affected
- PRDM11 knockdown leads to upregulation of FOS expression

How to perform RNAseq analysis

05-08: Identify differentially expressed genes and pathways: DESeq2, clusterProfiler

- After steps 01-04, we have generated read alignment and counts for every annotated gene on the genome
- The next step is to utilize the read counts data to detect DEGs
- For example, if we visualize FOS gene across 6 samples in genome browser

FOS = Fos proto-oncogene, AP-1 transcription factor subunit

Thank you!

Questions

Hands-on practice START

- Open your handson.Rmd on the Github or download to local computer
- https://github.com/MScBiomedicalInformatics/MSIB32500/blob/master/lectures/handson8.html
- Dataset: two groups (PRDM11 KO vs WT, human U2932 cells), 6 samples
- Single-end reads, unstranded libraries

Sample	Group	Sequencing File	Sequencing Data
KO01	KO	KO01.fastq.gz	74,126,025 reads
KO02	KO	KO02.fastq.gz	64,695,948 reads
KO03	KO	KO03.fastq.gz	52,972,573 reads
WT01	WT	WT01.fastq.gz	55,005,729 reads
WT01	WT	WT02.fastq.gz	61,079,377 reads
WT01	WT	WT03.fastq.gz	66,517,156 reads

Fog. et al. 2015. Loss of *PRDM11* promotes MYC-driven lymphomagenesis. Blood 125(8):1272-81

Job running is prohibited on the head node!

Ten essential Linux commands

cd Change directory

ls List contents

cp Copy

mv Move/rename

rm Delete

pwd Print the current path

head Show the first few lines of a file

more View a file by page

Five useful HPC/Shell commands

```
qsub Submit a job
```

qstat List submitted jobs from the user

qdel Delete a job

showq Show all jobs on the cluster

ssh Log into a server using Secure Shell (SSH)

