Lecture 20 – Law of Total Probability and Bayes' Theorem

DSC 40A, Spring 2023

Announcements

- ► Homework 6 is due **Tuesday at 11:59pm**.
- Review solutions to Groupwork 6, posted on Campuswire in pinned post.
- Solutions to the poker hand problems from last class are also on Campuswire.
- This homework has some tricky problems come to office hours for help!

Agenda

- Partitions and the Law of Total Probability.
- ▶ Bayes' Theorem.

Example: getting to school

You conduct a survey where you ask students two questions.

- 1. How did you get to campus today? Trolley, bike, or drive? (Assume these are the only options.)
- 2. Were you late?

ate	Not Lat	Late	
	0.24	0.06	Trolley
	0.07	0.03	Bike
	0.24	0.36	Drive
	0.24	0.36	Drive

What's the probability that a randomly selected person

Discussion Question

was late? a) 0.24 b) 0.30 c) 0.45

d) 0.50e) None of the above

Example: getting to school

	Late	Not Late
Trolley	0.06	0.24
Bike	0.03	0.07
Drive	0.36	0.24

Since everyone either takes the trolley, bikes, or drives to school, we have

$$P(\text{Late} \cap \text{Trolley}) + P(\text{Late} \cap \text{Bike}) + P(\text{Late} \cap \text{Drive})$$

Discussion Question

Avi took the trolley to school. What is the probability that he was late?

- e) None of the above

= 0.06+0.24=03

= 0.2

Example: getting to school

	Late	Not Late
Trolley	0.06	0.24
Bike	0.03	0.07
Drive	0.36	0.24

Since everyone either takes the trolley, bikes, or drives to school, we have

$$P(\text{Late} \cap \text{Trolley}) + P(\text{Late} \cap \text{Bike}) + P(\text{Late} \cap \text{Drive})$$

Another way of expressing the same thing:

Partitions

- A set of events $E_1, E_2, ..., E_k$ is a **partition** of <u>S</u> if
 - P($E_i \cap E_j$) = 0 for all pairs $i \neq j$.

$$P(E_1 \cup E_2 \cup ... \cup E_k) = S.$$

Equivalently, $P(E_1) + P(E_2) + ... + P(E_k) = 1.$

In other words, E_1 , E_2 , ..., E_k is a partition of S if every outcome S in S is in **exactly** one event E_i .

Partitions, visualized

Example partitions

- ✓ In getting to school, the events Trolley, Bike, and Drive.
 - In getting to school, the events Late and Not Late.
 - In selecting an undergraduate student at random, the events Freshman, Sophomore, Junior, and Senior.
 - In rolling a die, the events Even and Odd.

In drawing a card from a standard deck of cards, the events Spades, Clubs, Hearts, and Diamonds.

Example partitions

- ▶ In getting to school, the events Trolley, Bike, and Drive.
- In getting to school, the events Late and Not Late.
- In selecting an undergraduate student at random, the events Freshman, Sophomore, Junior, and Senior.
- In rolling a die, the events Even and Odd.
- In drawing a card from a standard deck of cards, the events Spades, Clubs, Hearts, and Diamonds.
- **Special case**: any event A and its complement \bar{A} .

The Law of Total Probability

If A is an event and $E_1, E_2, ..., E_k$ is a **partition** of S, then

$$\underline{P(A)} = P(A \cap E_1) + P(A \cap E_2) + \dots + P(A \cap E_k)$$
$$= \sum_{i=1}^k P(A \cap E_i)$$

The Law of Total Probability, visualized

The Law of Total Probability

If A is an event and $E_1, E_2, ..., E_b$ is a **partition** of S, then

$$\underline{P(A)} = P(A \cap E_1) + P(A \cap E_2) + \dots + P(A \cap E_k)$$
$$= \sum_{i=1}^k P(A \cap E_i)$$

Since $P(A \cap E_i) = P(E_i) \cdot P(A|E_i)$ by the multiplication rule, an equivalent formulation is

$$P(A) = P(E_1) \cdot P(A|E_1) + P(E_2) \cdot P(A|E_2) + \dots + P(E_k) \cdot P(A|E_k)$$

$$= \sum_{i=1}^{k} P(E_i) \cdot P(A|E_i)$$

Bayes' Theorem

Example: getting to school

- Now suppose you don't have that entire table. Instead, all you know is
 - ► *P*(Late) = 0.45.
 - ► *P*(Trollev) = 0.3.
 - ► P(Late|Trolley) = 0.2.
- Can you still find P(Trolley Late)?/

Bayes' Theorem - way to press P(B|A) Recall that the multiplication will Recall that the multiplication will

Recall that the multiplication rule states that

$$P(A \cap B) = P(A) \cdot P(B|A)$$
 $P(A|B)$

► It also states that

$$P(B \cap A) = P(B) \cdot P(A|B)$$

▶ But since $A \cap B = B \cap A$, we have that

$$P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$$

Re-arranging yields Bayes' Theorem:

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$

Bayes' Theorem and the Law of Total Probability

► Bayes' Theorem:

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$

Recall from earlier, for any sample space S, B and \bar{B} partition S. Using the Law of Total Probability, we can re-write P(A) as

$$P(A) = P(A \cap B) + P(A \cap \overline{B}) = P(B) \cdot P(A|B) + P(\overline{B}) \cdot P(A|\overline{B})$$

Bayes' Theorem and the Law of Total Probability

▶ Bayes' Theorem:

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$

Recall from earlier, for any sample space S, B and \bar{B} partition S. Using the Law of Total Probability, we can re-write P(A) as

$$P(A) = P(A \cap B) + P(A \cap \bar{B}) = P(B) \cdot P(A|B) + P(\bar{B}) \cdot P(A|\bar{B})$$

This means that we can re-write Bayes' Theorem as

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(B) \cdot P(A|B) + P(\bar{B}) \cdot P(A|\bar{B})}$$

$$P(B|A) = P(B) \cdot P(A|B) = P(B) \cdot P(A|B)$$

$$= P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(B) \cdot P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(B) \cdot P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(B) \cdot P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B) \cdot P(A \cap B) + P(A \cap B)$$

$$= P(B$$

P(B) P(AIB)

Example: taste test

Your friend claims to be able to correctly guess what restaurant a burger came from, after just one bite. The probability that she correctly identifies an In-n-Out Burger is 0.55, a Shake Shack burger is 0.75, and a Five

Guys burger is 0.6. P(C|F) You buy 5 In-n-Out burgers, 4 Shake Shack burgers, and 1 Five Guys burger, choose one of the burgers randomly,

and give it to her. **Question:** Given that she guessed it correctly, what's the

probability she ate a Shake Shack burger?

$$P(S|C) = P(S) \cdot P(C|S)$$
 $S = Shake Shack$
 $T = in - n - out$
 $F = Five 9445$

==five guys P(5) P(C|5)+P(I) P(C|+)+P(F) P(O|F) Correct duess

$$= P(S) \cdot P(C|S) P(C)$$

$$= P(S) \cdot P(C|S) + P(E) \cdot P(C|E) + P(F) \cdot P(C|E) = correct guess$$

$$= \frac{4}{10} \cdot 0.75$$

$$= \frac{4}{10} \cdot 0.75 + \frac{5}{10} \cdot 0.55 + \frac{1}{10} \cdot 0.6$$

S= shake shack

 $P(S|C) = P(S) \cdot P(C|S)$

_ (

Discussion Question

Consider any two events A and B. Choose the expression that's equivalent to

$$P(B|A) + P(\overline{B}|A)$$
.

- a) P(A)b) 1 P(B)
- c) P(B)
- d) $P(\bar{B})$

Summary

Summary

- A set of events $E_1, E_2, ..., E_k$ is a **partition** of S if each outcome in S is in exactly one E_i .
- ► The Law of Total Probability states that if A is an event and $E_1, E_2, ..., E_k$ is a **partition** of S, then

$$P(A) = P(E_1) \cdot P(A|E_1) + P(E_2) \cdot P(A|E_2) + \dots + P(E_k) \cdot P(A|E_k)$$

$$= \sum_{i=1}^{k} P(E_i) \cdot P(A|E_i)$$

Bayes' Theorem states that

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$

We often re-write the denominator P(A) in Bayes' Theorem using the Law of Total Probability.