NASA CONTRACTOR REPORT

NASA CR-345

Difference of the state of the second of the

IMPROVED ANALYTIC LONGITUDINAL RESPONSE ANALYSIS FOR AXISYMMETRIC LAUNCH VEHICLES

VOLUME I - LINEAR ANALYTIC MODEL

by J. S. Archer and C. P. Rubin

20060516171

Prepared under Contract No. NAS 1-4351 by
TRW SPACE TECHNOLOGY LABORATORIES
Redondo Beach, Calif. (6)
for Langley Research Center, NASA (1987)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. DECEMBER 1965

"The aeronautical and space activities of the United States shall be conducted so as to contribute... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other nonaerospace applications. Publications include Tech Briefs; Technology Utilization Reports and Notes; and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546

IMPROVED ANALYTIC LONGITUDINAL RESPONSE ANALYSIS FOR AXISYMMETRIC LAUNCH VEHICLES

VOLUME I - LINEAR ANALYTIC MODEL

By J. S. Archer and C. P. Rubin

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS 1-4351 by TRW SPACE TECHNOLOGY LABORATORIES Redondo Beach, Calif.

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ACKNOWLEDGEMENT

The authors wish to acknowledge the technical guidance and assistance provided in a consulting capacity by Professor Y.C. Fung and Professor W.T. Thomson. Also, the performance of detailed calculations by Mrs. N.H. Piatt provided invaluable support for the theoretical developments.

		,

CONTENTS

Section		Page	
1	INTRODUCTION		
2	ANALYTICAL MODEL		
3	SHELL COMPONENT STIFFNESS AND MASS MATRICES	3.1 3.2 3.7	
4	FLUID COMPONENT MASS MATRIX	4.1	
5	LAUNCH VEHICLE COORDINATE SYSTEMS 5.1 Local Coordinate Distortions	5.1 5.1	
	5.2 System Coordinate Point Displacements5.3 Local to System Coordinate Transformation for Shell Component	5. 1 5. 4	
	5.4 Local to System Coordinate Transformation for Fluid Component	5.8	
6	LAUNCH VEHICLE STIFFNESS AND MASS MATRIX SYNTHESIS		
7	DYNAMIC RESPONSE EQUATIONS	7.1 7.1 7.1	
8	DIGITAL PROGRAM ARRANGEMENT	8.1	
9	DATA SETUP	9.1 9.1 9.2	
10	NOTATION	10.1	
11	REFERENCES	11.1	
Appendic	es		
Α	SHELL GEOMETRY AND ENERGY EXPRESSIONS		
В	INITIAL STRESSES IN SHELL ELEMENTS	B. 1	

CONTENTS (Continued)

Append	ices		Page
С	FLU	JID MASS MATRIX EXPRESSIONS	C. 1
	C. 1	Case I. Upper Bulkhead Convex Upward, Lower Bulkhead Convex Downward	C. 1
	C. 2	Case II. Upper Bulkhead Convex Downward, Lower Bulkhead Convex Downward	C. 4
	C. 3	Case III. Upper Bulkhead Convex Upward, Lower Bulkhead Convex Upward	C.8
D		CULATION OF THE SHELL STIFFNESS MASS MATRICES	D. 1
	D. 1	Functional Flow Chart for Calculation of Shell Stiffness and Mass Matrices	D. 2
	D. 2	Gaussian Weighting Matrix Tables	D. 4
	D. 3	Assembly of \overline{KMF} for $M = 1, 2, \dots, 13 \dots$	D. 4
	D. 4	Initial Stress for Conic	D. 7
	D. 5	Initial Stress for Ellipsoidal Bulkhead	D.8
E	CAL	CULATION OF FLUID MASS MATRIX	E. 1
	E. 1	Functional Flow Chart for Calculation of Fluid Mass Matrix	E.2
	E.2	General Matrix Equation for Mass Matrix $\left[\overline{\overline{M}}\right]$	E.3
	E.3	Case I	E. 9
		E.3.1 Integral Equation Relationships E.3.2 Integration Limit Data E.3.3 Specific Matrix Data	E. 9 E. 13 E. 15
	E.4	Case II	E.19
		E. 4.1 Integral Equation Relationships E. 4.2 Integration Limit Data	E. 19 E. 22 E. 23
	E.5	Case III	E.27
		E.5.1 Integral Equation Relationships E.5.2 Integration Limit Data E.5.3 Specific Matrix Data	E. 27 E. 32 E. 33
	E.6	Lagrangian Weighting Matrix Tables	E. 36
F	SAM	PLE INPUT DATA	r l

ILLUSTRATIONS

Figure		Page
1	Summary of Technical Approach	1.4
2	Vehicle Components	2.2
3	Tank Configuration	2.3
4	Displacements of Shell of Revolution	3.9
5	Conical Shell Component	3.9
6	Ellipsoidal Bulkhead Component	3.10
7	Definition of Fluid Motions	4.4
8	Conical Shell Component System Coordinate Arrangement	5.11
9	Convex Upward Ellipsoidal Shell Component System Coordinate Arrangement	5.12
10	Convex Downward Ellipsoidal Shell Component System Coordinate Arrangement	5.12
11	Vehicle System Coordinates	6.4
12	Digital Program Arrangement	8.4
A.1	Meridian of Shell of Revolution	A.4
A.2	Conical Shell	A.4
A.3	Ellipsoidal Shell	A.5
C.1	Case I Tank Configuration	C.14
C.2	Case II Tank Configuration	C.15
C.3	Case III Tank Configuration	C.15
F.1	Typical One-Stage Launch Vehicle	F.2
F.2	System Components and Coordinates	F.3

1. INTRODUCTION

This report describes an improved linear analytical model and digital program developed for the calculation of axisymmetric launch vehicle steady-stage response to applied axisymmetric sinusoidal loads.

The detailed computer programming manual for the digital program is contained in Volume II of this report.

In the evaluation of launch vehicle behavior, it is necessary to study the response of the entire vehicle to a wide variety of dynamic loadings to insure the structural integrity and stability of the system. Much effort has already gone into the development of techniques to calculate the vehicle response to lateral and longitudinal loadings using distributed and lumped spring-mass models and techniques for theoretical and empirical modeling of the vehicle behavior. However, experimental data indicate that these procedures are unsatisfactory in several respects. For example, accurate representation of important structural shell characteristics and realistic coupling of the fluids with the detailed structural behavior of tank walls and bulkheads are omitted.

The approach described herein overcomes the above noted deficiencies. A finite element technique is utilized to construct the total launch vehicle stiffness matrix [K] and mass matrix [M] by subdividing the prototype structure into a set of (1) axisymmetric shell components, (2) fluid components, and (3) spring-mass components. In this way, it is possible to represent as separate shell units the fairing, interstage structure, bulkheads, tank walls and engine thrust structure, and to conveniently provide for the inertial and stiffness characteristics of equipment, engines and vehicle supporting structure.

The stiffness and mass matrices for the complete launch vehicle

The stiffness and mass matrices for the complete launch vehicle are obtained by superposition of the stiffness and mass matrices of the individual shell, fluid and spring-mass components which are computed using a Rayleigh-Ritz approach. Fluid motions are assumed to be consistent with the shell component distortions. The superposition technique assures displacement compatibility and force equilibrium at the joints between components. After the complete system stiffness and mass

matrices have been formulated, displacement boundary conditions are introduced by removing appropriate rows and columns corresponding to points on the vehicle and its supports which are rigidly restrained from motion.

The coupled system natural frequencies and mode shapes are obtained from the eigenvalue equation constructed with the total stiffness and mass matrices

$$[K] \{\alpha\} - p^2 [M] \{\alpha\} = 0$$
 (1.1)

in which p is the circular frequency of the system and {a} is the modal vector whose components are the longitudinal, radial and rotational displacements at discrete points on the vehicle. The steady-state response due to simple harmonic loads is determined using a standard modal response procedure which expresses the total displacement, velocity, acceleration and force responses as the linear superposition of the individual modal responses based on an assumed modal damping.

The procedure will handle shell components with a wide range of geometries. It includes shell effects in the tank and bulkhead structure, but avoids the need for including detailed local deformation, such as at shell discontinuities, which are unimportant in determining the total dynamic behavior of the vehicle. The approach has the capability of representing the tank or stage of most interest in great detail and those of least interest with minimum detail, as desired, thereby minimizing the computation time required and remaining within the maximum limitations of standard eigenvalue routines. The formulation of the problem is subdivided into well-defined portions, leading to efficient coding and easy modification for later incorporation of asymmetric shell behavior and even more detailed treatment of the fluid behavior.

The analytical procedure discussed herein is summarized in Figure 1. The launch vehicle analytical model is discussed in Section 2. The equations for the shell and fluid component stiffness and mass matrices are developed in Sections 3 and 4, respectively. The coordinate representation which forms the framework for the vehicle model, and the construction of stiffness and mass matrices for the complete launch vehicle, are discussed

in Sections 5 and 6, respectively. The method for computing the dynamic response is discussed in Section 7. The computer program arrangement is described in Section 8 and detailed input data requirements for the computer program are itemized in Section 9. A complete list of symbols is provided in Section 10.

Figure 1. Summary of Technical Approach

2. ANALYTICAL MODEL

As illustrated in Figure 2, the vehicle structure is subdivided into a consistent set of shell components, a, fluid components, b, and multicoordinate spring-mass components, c. The total vehicle which may be represented is limited to one with not more than six (6) fluid components. The total number of shell components which may be represented shall not exceed forty (40). The characteristics of the spring-mass components representing such equipment as engines and mass-elastic supports are provided directly by low order (≤ 10) stiffness and mass matrices. The total number of spring-mass components may not exceed thirty (30). The vehicle behavior is described in terms of motions of discrete points on the vehicle located at intersections of shell components, at lumped masses, and at intermediate points on the shell elements. The number of nonfixed degrees-of-freedom by which the behavior of the system is described may not exceed eighty (80).

The specific shell components to be used are conical frustums (which include cylindrical shells as a special case) and ellipsoidal bulkheads (which include hemispherical shells as a special case). Within the domain of thin shell theory, the shell components may have orthotropic properties and a linear thickness variation in the meridional direction. Local thickening of a shell at a bulkhead or wall joint may be handled by using an equivalent local hoop stiffener which is provided as input in the form of an additional spring-mass component. Initial static stresses based on membrane theory are accounted for in determining the stiffness matrix for the shell components.

The most general fluid component may be in contact with an ellip-soidal upper bulkhead, a conical tank wall, and a conical or ellipsoidal lower bulkhead. The bulkhead shell elements may be convex down or up with fluid at any desired depth on either side, both sides or neither side. The tank configurations which are considered are illustrated in Figure 3.

Figure 2. Vehicle Components

INVERTED UPPER BULKHEAD TANKS

INVERTED LOWER BULKHEAD TANKS

Figure 3. Tank Configurations

3. SHELL COMPONENT STIFFNESS AND MASS MATRICES

The displacements of an individual shell component (Figure 4) are approximated in the Rayleigh-Ritz manner by a finite series of functions having the form

$$\mathbf{u}(\xi) = \sum_{k=1}^{\overline{U}} \overline{\mathbf{a}}_{k} \mathbf{u}_{k}(\xi) , \qquad \overline{\overline{U}} \leq 11$$

$$\mathbf{v}(\xi) = \sum_{\ell=1}^{\overline{V}} \overline{\beta}_{\ell} \mathbf{v}_{\ell}(\xi) , \qquad \overline{\overline{V}} \leq 11$$

$$(3.1)$$

in which ξ is a dimensionless variable and $0 \le \xi \le 1$. For conical frustums, Figure 5, $\xi = s/\ell \sin \phi_0$. For convex upward ellipsoidal shells, Figure 6, $\xi = \phi/\phi_0$, and for convex downward ellipsoidal shells, $\xi = (\pi - \phi)/(\pi - \phi_0)$.

The assumed mode shapes $u_k(\xi)$ and $v_k(\xi)$ consist of polynomial terms sufficient to represent all modes of shell distortion, including longitudinal stretching, radial dilatation and rigid body displacements. The specific shape of the assumed modes is determined within the limitations of a tenth order polynomial, as follows:

$$u_{k}(\xi) = \sum_{n=0}^{10} a_{kn} \xi^{n}$$

$$v_{\ell}(\xi) = \sum_{n=0}^{10} b_{\ell n} \xi^{n}$$
(3.2)

in which $\begin{bmatrix} a_{kn} \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}_{(\overline{U} \times 11)}$ and $\begin{bmatrix} b_{\ell n} \end{bmatrix} = \begin{bmatrix} B \end{bmatrix}_{(\overline{V} \times 11)}$ define the polynomial functions associated with the local coordinates (\overline{a}_k) and $(\overline{\beta}_{\ell})$, respectively. $\begin{bmatrix} A \end{bmatrix}$ and $\begin{bmatrix} B \end{bmatrix}$ are furnished as input to provide maximum flexibility in the selection of the assumed coordinate functions. It should be understood that the \overline{a}_k and the $\overline{\beta}_{\ell}$ are the unknown generalized coordinates associated with the shell component, whereas the a_{kn} and $b_{\ell n}$ are definite arbitrarily specified coefficients which determine the functions $u_k(\xi)$ and $v_{\ell}(\xi)$.

3.1 SHELL STIFFNESS MATRIX

The shell stiffness matrix is constructed from the potential energy function V derived in Appendix A. For the generalized displacement (Equation 3.1), the stiffness matrix is defined by

$$\begin{bmatrix} \frac{\partial^{2} V}{\partial \overline{a}_{1} \partial \overline{a}_{1}} \cdots \frac{\partial^{2} V}{\partial \overline{a}_{1} \partial \overline{a}_{\overline{U}}} & \frac{\partial^{2} V}{\partial \overline{a}_{1} \partial \overline{\beta}_{1}} \cdots \frac{\partial^{2} V}{\partial \overline{a}_{1} \partial \overline{\beta}_{\overline{V}}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^{2} V}{\partial \overline{a}_{\overline{U}} \partial \overline{a}_{1}} \cdots \frac{\partial^{2} V}{\partial \overline{a}_{\overline{U}} \partial \overline{a}_{\overline{U}}} & \frac{\partial^{2} V}{\partial \overline{a}_{\overline{U}} \partial \overline{\beta}_{1}} \cdots \frac{\partial^{2} V}{\partial \overline{a}_{\overline{U}} \partial \overline{\beta}_{\overline{V}}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^{2} V}{\partial \overline{a}_{\overline{U}} \partial \overline{a}_{1}} \cdots \frac{\partial^{2} V}{\partial \overline{a}_{1} \partial \overline{a}_{\overline{U}}} & \frac{\partial^{2} V}{\partial \overline{a}_{1} \partial \overline{\beta}_{1}} \cdots \frac{\partial^{2} V}{\partial \overline{a}_{1} \partial \overline{\beta}_{\overline{V}}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^{2} V}{\partial \overline{\beta}_{\overline{V}} \partial \overline{a}_{1}} \cdots \frac{\partial^{2} V}{\partial \overline{\beta}_{\overline{V}} \partial \overline{a}_{\overline{U}}} & \frac{\partial^{2} V}{\partial \overline{\beta}_{\overline{V}} \partial \overline{\beta}_{1}} \cdots \frac{\partial^{2} V}{\partial \overline{\beta}_{\overline{V}} \partial \overline{\beta}_{\overline{V}}} \end{bmatrix}$$

$$(3.3)$$

which is consistent with the Rayleigh-Ritz procedure and in which, for example

$$\begin{split} \frac{\partial^{2} V}{\partial \overline{a}_{k} \partial \overline{\beta} \ell} &= 2\pi \int_{s} \gamma a \Biggl\{ \Biggl[C_{11} \frac{\partial \varepsilon_{\phi}}{\partial \overline{a}_{k}} + C_{12} \frac{\partial \varepsilon_{\theta}}{\partial \overline{a}_{k}} \Biggr] \frac{\partial \varepsilon_{\phi}}{\partial \overline{\beta} \ell} + \Biggl[C_{12} \frac{\partial \varepsilon_{\phi}}{\partial \overline{a}_{k}} + C_{22} \frac{\partial \varepsilon_{\theta}}{\partial \overline{a}_{k}} \Biggr] \frac{\partial \varepsilon_{\theta}}{\partial \overline{\beta} \ell} \\ &+ \Biggl[C_{33} \frac{\partial K_{\phi}}{\partial \overline{a}_{k}} + C_{34} \frac{\partial K_{\theta}}{\partial \overline{a}_{k}} \Biggr] \frac{\partial K_{\phi}}{\partial \overline{\beta} \ell} + \Biggl[C_{34} \frac{\partial K_{\phi}}{\partial \overline{a}_{k}} + C_{44} \frac{\partial K_{\theta}}{\partial \overline{a}_{k}} \Biggr] \frac{\partial K_{\theta}}{\partial \overline{\beta} \ell} \\ &+ N_{\phi}^{\circ} \frac{\partial \rho}{\partial \overline{a}_{k}} \frac{\partial \rho}{\partial \overline{\beta} \ell} \Biggr\} ds \end{split}$$

$$(3.4)$$

and

$$k = 1 \dots \overline{U}$$

$$\ell = 1 \dots \overline{V}$$

The strains (ϵ_{ϕ} , ϵ_{θ}), curvatures (K_{ϕ} , K_{θ}) and meridional rotation ρ are defined in terms of the displacements in Appendix A by Equations (A.13) through (A.17). The quantities C_{11} , C_{12} , C_{22} , C_{33} , C_{34} and C_{44} are the orthotropic stress-strain coefficients which are functions of the dimensionless parameter ξ . For the present analytical model, these coefficients are approximated by the following polynomial equations:

$$\left\{ \overline{\overline{C}}(\xi) \right\} = \left\{ \overline{\overline{C}}_{12}(\xi) \\ \overline{C}_{12}(\xi) \\ \overline{C}_{22}(\xi) \right\} = \left\{ \overline{\overline{C}}(0) \right\} + \xi \left(\left\{ \overline{\overline{C}}(1) \right\} - \left\{ \overline{\overline{C}}(0) \right\} \right)$$
 (3.5)
$$\left\{ \overline{\overline{C}}(\xi) \right\} = \left\{ \overline{\overline{C}}_{33}(\xi) \\ \overline{\overline{C}}_{34}(\xi) \\ \overline{C}_{44}(\xi) \right\} = -\frac{9}{2} \left(\xi - \frac{1}{3} \right) \left(\xi - \frac{2}{3} \right) (\xi - 1) \left(\overline{\overline{C}}(0) \right)$$

$$+ \frac{27}{2} \xi \left(\xi - \frac{2}{3} \right) (\xi - 1) \left(\overline{\overline{C}}(\frac{1}{3}) \right)$$

$$- \frac{27}{2} \xi \left(\xi - \frac{1}{3} \right) (\xi - 1) \left(\overline{\overline{C}}(\frac{2}{3}) \right)$$

$$+ \frac{9}{2} \xi \left(\xi - \frac{1}{3} \right) \left(\xi - \frac{2}{3} \right) \left(\overline{\overline{C}}(1) \right)$$
 The quantities $\left\{ \overline{\overline{C}}(0) \right\}$, $\left\{ \overline{\overline{C}}(1) \right\}$ are provided as input.

 $N_{\phi}^{\ o}$ is the initial meridional stress caused by tank pressures and longitudinal vehicle accelerations (prestress and static longitudinal acceleration stress). These initial stresses are derived in Appendix B using membrane theory, which is a reasonable first order approximation, except in very localized areas where the bending stresses predominate.

This simplifies the calculation of the initial stresses which are readily obtained from the membrane equations of equilibrium. Expressions for the initial stresses for conical shell components are given in Equations (B. 1) through (B. 6), for the upright ellipsoidal bulkheads in Equations (B. 7) through (B. 11), and for the inverted ellipsoidal bulkheads in Equations (B. 12) through (B. 15). The computation of these stresses is included as an integral part of the digital program.

After substitution of the displacements (3.1) into (3.3), the shell component stiffness matrix becomes

$$\begin{split} \left[\overline{K}_{a}\right] &= 2\pi \int r \left(K1 \cdot \left\langle \dot{u} \right\rangle \cdot \left\langle \dot{u} \right\rangle^{T} + K2 \left\langle \ddot{u} \right\rangle \cdot \left\langle \ddot{u} \right\rangle^{T} + K3 \left[\left\langle \dot{u} \right\rangle \cdot \left\langle \ddot{u} \right\rangle^{T} + \left\langle \ddot{u} \right\rangle \cdot \left\langle \dot{u} \right\rangle^{T} \right] \\ &+ K4 \left[\left\langle v \right\rangle \cdot \left\langle \dot{v} \right\rangle^{T} + \left\langle \dot{v} \right\rangle \cdot \left\langle v \right\rangle^{T} \right] + K5 \left\langle v \right\rangle \cdot \left\langle v \right\rangle^{T} + K6 \left\langle \dot{v} \right\rangle \cdot \left\langle \dot{v} \right\rangle^{T} \\ &+ K7 \left\langle \ddot{v} \right\rangle \cdot \left\langle \ddot{v} \right\rangle^{T} + K8 \left[\left\langle \dot{v} \right\rangle \cdot \left\langle \ddot{v} \right\rangle^{T} + \left\langle \ddot{v} \right\rangle \cdot \left\langle \dot{v} \right\rangle^{T} \right] \\ &+ K9 \left[\left\langle v \right\rangle \cdot \left\langle \dot{u} \right\rangle^{T} + \left\langle \dot{u} \right\rangle \cdot \left\langle v \right\rangle^{T} \right] + K10 \left[\left\langle \dot{v} \right\rangle \cdot \left\langle \dot{u} \right\rangle^{T} + \left\langle \dot{u} \right\rangle \cdot \left\langle \dot{v} \right\rangle^{T} \right] \\ &+ K11 \left[\left\langle \ddot{v} \right\rangle \cdot \left\langle \dot{u} \right\rangle^{T} + \left\langle \dot{u} \right\rangle \cdot \left\langle \ddot{v} \right\rangle^{T} \right] + K12 \left[\left\langle \dot{v} \right\rangle \cdot \left\langle \ddot{u} \right\rangle^{T} + \left\langle \ddot{u} \right\rangle \cdot \left\langle \ddot{v} \right\rangle^{T} \right] \\ &+ K13 \left[\left\langle \ddot{v} \right\rangle \cdot \left\langle \ddot{u} \right\rangle^{T} + \left\langle \ddot{u} \right\rangle \cdot \left\langle \ddot{v} \right\rangle^{T} \right] \right) r_{1} d\phi \end{split} \tag{3.6}$$

in which

$$\left\{\mathbf{u}\right\} = \left\{ \begin{array}{c} \mathbf{u}_{1}(\xi) \\ \vdots \\ \mathbf{u}_{\overline{\mathbf{U}}}(\xi) \\ \\ \mathbf{0}_{1} \\ \vdots \\ \\ \mathbf{0}_{\overline{\mathbf{V}}} \end{array} \right\} \qquad \left\{\mathbf{v}\right\} = \left\{ \begin{array}{c} \mathbf{0}_{1} \\ \vdots \\ \\ \mathbf{0}_{\overline{\mathbf{U}}} \\ \\ \mathbf{v}_{1}(\xi) \\ \vdots \\ \\ \mathbf{v}_{\overline{\mathbf{V}}}(\xi) \end{array} \right\}$$

$$\frac{1}{r_{1}} \frac{d}{d\phi} \left\{ u \right\} = \left\{ \dot{u} \right\} = \left[\frac{A}{0} \right] \left[\dot{D} \right] \left(\xi^{n} \right)$$

$$\frac{1}{r_{1}} \frac{1}{d\phi} \left\{ \dot{u}_{k} \right\} = \left(\ddot{u}_{k} \right) = \left[\frac{A}{0} \right] \left[\dot{D} \right] \left[\dot{D} \right] \left(\xi^{n} \right)$$

$$\frac{1}{r_{1}} \frac{d}{d\phi} \left\{ v_{\ell} \right\} = \left(\dot{v}_{\ell} \right) = \left[\frac{0}{B} \right] \left[\dot{D} \right] \left(\xi^{n} \right)$$

$$\frac{1}{r_{1}} \frac{d}{d\phi} \left\{ \dot{v}_{\ell} \right\} = \left(\ddot{v}_{\ell} \right) = \left[\frac{0}{B} \right] \left[\dot{D} \right] \left(\dot{\xi}^{n} \right)$$

$$\begin{pmatrix} 0 & 0 & 0 & \cdot & \cdot & 0 \\ 1 & 0 & 0 & \cdot & \cdot & 0 \\ 0 & 2 & 0 & \cdot & \cdot & 0 \end{pmatrix}$$

$$\begin{pmatrix} \dot{D} \right] = D \begin{pmatrix} \cdot & \cdot & \cdot & 0 \\ 1 & 0 & 0 & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & 0 \end{pmatrix}$$

$$\begin{pmatrix} \dot{D} \right] = D \begin{pmatrix} \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & 0 \end{pmatrix}$$

$$\begin{pmatrix} \dot{D} \right] = D \begin{pmatrix} \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & 0 \end{pmatrix}$$

$$\begin{pmatrix} \dot{D} \right] = D \begin{pmatrix} \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & 0 \end{pmatrix}$$

$$\begin{pmatrix} \dot{D} \right] = D \begin{pmatrix} \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & 0 \end{pmatrix}$$

$$\begin{pmatrix} \dot{D} \right] = D \begin{pmatrix} \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & 0 \end{pmatrix}$$

$$\begin{pmatrix} \dot{D} \right] = D \begin{pmatrix} \dot{D} \right] \begin{pmatrix} \dot{D} \right]$$

and

$$D = \frac{1}{r_1 \phi_0}$$
 for convex upward ellipsoid,

$$= \frac{1}{r_1 (\phi_0 - \pi)}$$
 for convex downward ellipsoid, (3.7)

$$= \frac{\sin \phi_0}{\sqrt{L/2}}$$
 for a cone.

The constants K1 - K13 are defined as follows:

$$K1 = \left[C_{11} \sin^{2} \phi + C_{33} \frac{1}{r_{1}^{2}} \left(\sin \phi + \frac{\dot{r}_{1}}{r_{1}} \cos \phi\right)^{2} - C_{34} \frac{2 \cos^{2} \phi}{rr_{1}} \left(\sin \phi + \frac{\dot{r}_{1}}{r_{1}} \cos \phi\right) + C_{44} \frac{\cos^{4} \phi}{r^{2}}\right] + N_{\phi}^{0} \cos^{2} \phi$$

$$K2 = C_{33} \cos^2 \phi$$

$$K3 = -C_{33} \frac{\cos \phi}{r_1} \left(\sin \phi + \frac{\dot{r}_1}{r_1} \cos \phi \right) + C_{34} \frac{\cos^3 \phi}{r}$$

$$K4 = C_{12} \frac{\cos \phi}{r}$$

$$K5 = C_{22} \frac{1}{r^2}$$

$$K6 = C_{11} \cos^2 \phi + C_{33} \frac{1}{r_1^2} \left(\cos \phi - \frac{\dot{r}_1}{r_1} \sin \phi \right)^2$$

$$+ C_{34}^{2} \frac{\sin \phi \cos \phi}{rr_{1}} \left(\cos \phi - \frac{\dot{r}_{1}}{r_{1}} \sin \phi\right) + C_{44}^{2} \frac{\sin^{2} \phi \cos^{2} \phi}{r^{2}} + N_{\phi}^{0} \sin^{2} \phi$$

$$K7 = C_{33} \sin^2 \phi$$

$$K8 = C_{33} \frac{\sin \phi}{r_1} \left(\cos \phi - \frac{\dot{r}_1}{r_1} \sin \phi\right) + C_{34} \frac{\sin^2 \phi \cos \phi}{r}$$

$$K9 = -C_{12} \frac{\sin \phi}{r}$$

$$\begin{split} \text{K10} &= -\mathsf{C}_{11} \; \sin \; \phi \; \cos \phi \; - \; \mathsf{C}_{33} \, \frac{1}{\mathsf{r}_1^2} \left(\cos \; \phi \; - \; \frac{\dot{\mathsf{r}}_1}{\mathsf{r}_1} \sin \; \phi \right) \left(\sin \; \phi \; + \; \frac{\dot{\mathsf{r}}_1}{\mathsf{r}_1} \cos \; \phi \right) \\ &- \mathsf{C}_{34} \, \frac{\sin \phi \; \cos \phi}{\mathsf{r}_1} \left(\sin \; \phi \; + \; \frac{\dot{\mathsf{r}}_1}{\mathsf{r}_1} \cos \; \phi \right) \; + \mathsf{C}_{34} \, \frac{\cos^2 \phi}{\mathsf{r}_1} \left(\cos \; \phi \; - \; \frac{\dot{\mathsf{r}}_1}{\mathsf{r}_1} \sin \; \phi \right) \\ &+ \mathsf{C}_{44} \, \frac{\sin \phi \; \cos^3 \phi}{\mathsf{r}^2} \; + \; \mathsf{N}_{\phi}^{\; 0} \; \sin \phi \; \cos \phi \\ \\ \text{K11} &= -\mathsf{C}_{33} \, \, \frac{1}{\mathsf{r}_1} \left(\sin \; \phi \; + \; \frac{\dot{\mathsf{r}}_1}{\mathsf{r}_1} \cos \; \phi \right) \; \sin \phi \; + \; \mathsf{C}_{34} \, \frac{\sin \phi \; \cos^2 \phi}{\mathsf{r}} \\ \\ \text{K12} &= \mathsf{C}_{33} \, \left(\cos \phi \; - \; \frac{\dot{\mathsf{r}}_1}{\mathsf{r}} \sin \phi \right) \, \frac{\cos \phi}{\mathsf{r}_1} \; + \; \mathsf{C}_{34} \, \frac{\sin \phi \; \cos^2 \phi}{\mathsf{r}} \end{split}$$

3.2 SHELL MASS MATRIX

 $K 13 = C_{33} \sin \phi \cos \phi$

The shell mass matrix associated with the generalized coordinates \overline{a}_k , $\overline{\beta}_\ell$ is derived by operating on the expression for the kinetic energy T. For each shell component, the mass matrix is defined by

(3.8)

$$p^{2}\left[\overline{M}_{a}\right]_{\left((\overline{U}+\overline{V})\times(\overline{U}+\overline{V})\right)} = \begin{bmatrix} \frac{\partial^{2}T}{\partial\overline{\alpha}_{1}\partial\overline{\alpha}_{1}} & & \frac{\partial^{2}T}{\partial\overline{\alpha}_{1}\partial\overline{\alpha}_{\overline{U}}} \\ \vdots & & \vdots \\ \partial^{2}T}{\partial\overline{\alpha}_{\overline{U}}\partial\overline{\alpha}_{1}} & & \frac{\partial^{2}T}{\partial\overline{\alpha}_{\overline{U}}\partial\overline{\alpha}_{\overline{U}}} \\ \vdots & & & \vdots \\ \partial^{2}T}{\partial\overline{\alpha}_{\overline{U}}\partial\overline{\alpha}_{\overline{1}}} & & \frac{\partial^{2}T}{\partial\overline{\beta}_{1}\partial\overline{\beta}_{\overline{1}}} & & \frac{\partial^{2}T}{\partial\overline{\beta}_{1}\partial\overline{\beta}_{\overline{V}}} \\ \vdots & & & \vdots \\ \partial^{2}T}{\partial\overline{\beta}_{\overline{V}}\partial\overline{\beta}_{1}} & & & \frac{\partial^{2}T}{\partial\overline{\beta}_{\overline{V}}\partial\overline{\beta}_{\overline{V}}} \\ \vdots & & & & \vdots \\ \partial^{2}T}{\partial\overline{\beta}_{\overline{V}}\partial\overline{\beta}_{1}} & & & \frac{\partial^{2}T}{\partial\overline{\beta}_{\overline{V}}\partial\overline{\beta}_{\overline{V}}} \end{bmatrix}$$

$$(2ero)$$

After substitution of Equations (3.1) into the kinetic energy expression in Equation (3.9), the mass matrix assumes the form 3

$$\left[\overline{M}_{a}\right] = 2\pi\gamma_{a}\int tr\left(\left\{u\right\}\cdot\left\{u\right\}^{T} + \left\{v\right\}\cdot\left\{v\right\}^{T}\right) ds \qquad (3.10)$$

where $\boldsymbol{\gamma}_a$ is the shell mass density.

The detailed equations for the calculation of the stiffness and mass matrices of the shell components are presented in Appendix D. The equations are written in matrix notation to accommodate the Gaussian weighted matrix 5 integration scheme.

Figure 4. Displacements of Shell of Revolution

(TRANSVERSE CROSS-SECTION THROUGH LONGITUDINAL AXIS)

Figure 5. Conical Shell Component

(TRANSVERSE CROSS-SECTION THROUGH LONGITUDINAL AXIS)

Figure 6. Ellipsoidal Bulkhead Component

4. FLUID COMPONENT MASS MATRIX

In addition to the mass and stiffness matrices for the shell components, the inertial effects due to the presence of liquid propellants in the vehicle fuel tanks must be considered. The linear analytical model does not include, however, the effective fluid stiffness caused by changes in the fluid head during shell distortions as this is a higher order nonlinear effect.

The general fluid component b is enclosed by three shell components, consisting of conical and ellipsoidal shells of revolution. The specific tank configurations which are included in the present model have been illustrated in Figure 3. For a typical fluid component, as shown in Figure 7, the tank is divided into three shells in which the upper bulkhead is referred to as shell al, the tank wall as shell a2, and the lower bulkhead as shell a3.

The fluid motions are a function of the generalized displacements for shell components, al, a2 and a3. For the $u_k(\xi)$ or $v_\ell(\xi)$ of each shell element defined by Equation (3.2), there is an associated fluid motion $u_m(x)$ and $v_m(x, \hat{r})$, where $1 \le m \le \overline{w}$ and $\overline{w} = (\overline{u} + \overline{v})_{a1} + (\overline{u} + \overline{v})_{a2} + (\overline{u} + \overline{v})_{a3}$. $u_m(x)$ is the fluid displacement parallel to the x-axis (longitudinal axis of the vehicle) associated with the tank shell generalized displacement m. $v_m(x, \hat{r})$ is the fluid displacement parallel to the r-axis (radial axis of the vehicle) associated with the tank shell generalized displacement m.

The general form of the fluid mass matrix consistent with the fluid displacement may be expressed as 3

$$\left[\overline{M}_{b}\right]_{(\overline{W}\times\overline{W})} = 2\pi\gamma_{b} \int_{-\overline{H}_{3}}^{H} \int_{0}^{r} \left(\left\{\hat{u}(x)\right\}\left\{\hat{u}(x)\right\}^{T} + \left\{\hat{v}(x, \hat{r})\right\}\left\{\hat{v}(x, \hat{r})\right\}^{T}\right) d\hat{r} dx \tag{4.1}$$

where

 γ_b is the fluid mass density and matrix $\left[\overline{M}_b^{}\right]\!is$ of order $\overline{W}\!$.

The fluid motion $\mathring{u}_{\mathbf{m}}(\mathbf{x})$ is assumed independent of location \mathring{r} and is obtained by treating the fluid as incompressible and inviscid. From these assumptions, $\mathring{u}_{\mathbf{m}}(\mathbf{x})$ is equal to the change in volume below a given location \mathbf{x} divided by the corresponding tank cross sectional area. Thus (see Figure 7),

$$\left\{ \stackrel{\wedge}{u}(x) \right\} = -\frac{2}{r^2} \int_{-\overline{H}_3}^x r \left(\cot \phi \left\{ \overline{u(\xi)} \right\}_b + \left\{ \overline{v(\xi)} \right\}_b \right) dx$$
 (4.3)

where

Fluid sloshing motions which disturb the planar character of the assumed longitudinal motion are beyond the scope of this treatment, but may be superimposed as generalized sloshing modes independent of the shell distortions. Consistent with the assumed longitudinal fluid motion $\hat{u}_k(x)$ and the axisymmetric nature of the linear model, the radial fluid motion $\hat{v}_k(x, \hat{r})$ varies linearly with space coordinate \hat{r} . At a particular longitudinal location x, the radial fluid motion is a function of the radial motion of the adjacent tank shell boundary and of the longitudinal fluid motion. Thus

$$\left\{ \stackrel{\wedge}{\mathbf{v}}(\mathbf{x}, \stackrel{\wedge}{\mathbf{r}}) \right\} = \frac{\stackrel{\wedge}{\mathbf{r}}}{\mathbf{r}} \left(\cot \phi \left\{ \mathbf{u}(\xi) \right\}_{\mathbf{b}} + \left\{ \mathbf{v}(\xi) \right\}_{\mathbf{b}} - \cot \phi \left\{ \stackrel{\wedge}{\mathbf{u}}(\mathbf{x}) \right\} \right) \tag{4.5}$$

Upon substituting Equations (4.3) and (4.5) into (4.1) and integrating with respect to r, one obtains

$$\left[\overline{M}_{b}\right] = \pi \gamma_{b} \int_{-\overline{H}_{3}}^{H} \left(\frac{4}{r^{2}} \left\{\frac{r^{2}}{2} \mathring{u}(x)\right\} \left\{\frac{r^{2}}{2} \mathring{u}(x)\right\}^{T} + \frac{1}{2} \left\{r^{\wedge}_{v}(x, r)\right\} \left\{r^{\wedge}_{v}(x, r)\right\}^{T}\right) dx$$

$$(4.6)$$

where

$$\left\{\frac{r^2}{2} \mathring{\mathbf{u}}(\mathbf{x})\right\} = -\int_{-\overline{\mathbf{H}}_3}^{\mathbf{x}} \mathbf{r} \left(\cot \phi \left\{\overline{\mathbf{u}(\xi)}\right\}_b + \left\{\overline{\mathbf{v}(\xi)}\right\}_b\right) d\mathbf{x}$$

and

$$\left(\operatorname{rv}(\mathbf{x}, \mathbf{r})\right) = \operatorname{rcot} \phi \left(\overline{\mathbf{u}(\xi)}\right)_b + \operatorname{r}\left(\overline{\mathbf{v}(\xi)}\right)_b - \operatorname{rcot} \phi \left(\mathbf{u}(\mathbf{x})\right)$$
 (4.7)

The detailed expressions developed for evaluating Equation (4.6) for various cases are summarized in Appendix C.

Figure 7. Definition of Fluid Motions

5. LAUNCH VEHICLE COORDINATE SYSTEMS

5.1 LOCAL COORDINATE DISTORTIONS

The matrices for the shell and fluid components are derived in Sections 3 and 4, respectively, using a system of generalized coordinate displacements (local coordinates), as given by Equations (3.1) and (3.2) to describe the shell distortion. These equations may be written in matrix notation in the following form:

$$u(\xi) = \left[\bar{a}_{k}\right] \left[A\right] \left\{\xi\right\} = \left[\xi\right] \left[A\right]^{T} \left\{\bar{a}_{k}\right\}$$
 (5.1)

and

$$v(\xi) = \left[\overline{\beta}_{\ell}\right] \left[B\right] \left\{\xi\right\} = \left[\xi\right] \left[B\right]^{T} \left\{\overline{\beta}_{\ell}\right\}$$
 (5.2)

where

$$\begin{bmatrix} \bar{a}_{k} \end{bmatrix} = \begin{bmatrix} \bar{a}_{1} & \cdot & \cdot & \bar{a}_{\overline{U}} \end{bmatrix}$$

$$\begin{bmatrix} \bar{\beta}_{\ell} \end{bmatrix} = \begin{bmatrix} \bar{\beta}_{1} & \cdot & \cdot & \bar{\beta}_{\overline{V}} \end{bmatrix}$$

$$\begin{bmatrix} \xi \end{bmatrix} = \begin{bmatrix} 1(\xi)(\xi)^{2} & \cdot & \cdot & (\xi)^{10} \end{bmatrix}$$
(5.3)

 $\overline{\mathbf{U}}$ and $\overline{\mathbf{V}}$ are constants provided as input which define the number of local coordinates selected for representing shell distortions in the longitudinal and radial directions, respectively, for a particular component.

5.2 SYSTEM COORDINATE POINT DISPLACEMENTS

In order to work with reference to a space frame, however, it is necessary to transform the generalized coordinates to space coordinates designated as system coordinates. The system coordinates represent displacement and rotations at specific points on each shell component, connections of spring-mass components, and applications of force inputs at arbitrary stations along the vehicle.

For each shell component, system coordinates are provided to represent displacements in the longitudinal and radial directions at equally spaced intervals along the shell meridian, and tangential rotations at the edges of the shell (see Figures 8, 9 and 10). Longitudinal displacements $\left\{u(\xi_i)\right\}$

at locations $\xi_i = (U-i)/(U-1)$, where $i=1, 2, \ldots$, U are expressed [using Equation (5.1)] as

$$\left(u(\xi_i)\right)_{(U\times 1)} = \left[U\right]\left[A\right]^T\left(\overline{\alpha_k}\right)$$
 (5.4)

where

$$[U] = \begin{bmatrix} 1_1 & \xi_1 & \cdots & (\xi_1)^{10} \\ \vdots & \vdots & \ddots & \vdots \\ 1_U & \xi_U & \cdots & (\xi_U)^{10} \end{bmatrix}$$
 (5.5)

Longitudinal displacements $\{v(\xi_j)\}$ at locations $\xi_j = (V - j)/(V - 1)$, where j = 1, 2, ..., V, are similarly expressed (using Equation (5.2) as

$$\left\langle v(\xi_{j})\right\rangle_{(V\times 1)} = \left[V\right]\left[B\right]^{T}\left\{\overline{\beta}_{\ell}\right\}$$
 (5.6)

where

$$\begin{bmatrix} \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_1 & \boldsymbol{\xi}_1 & \cdots & (\boldsymbol{\xi}_1)^{10} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{1}_{\mathbf{V}} & \boldsymbol{\xi}_{\mathbf{V}} & \cdots & (\boldsymbol{\xi}_{\mathbf{V}})^{10} \end{bmatrix}$$
 (5.7)

The scalar quantities U and V are constants provided as input which define the number of system coordinate point displacements to be provided in the longitudinal and radial directions, respectively, for a given shell component. These are related to \overline{U} and \overline{V} , as discussed in Section 5.3. The shell rotations, ρl and $\rho \xi$, are evaluated at $\xi = l$ and 0, respectively, and by Equation (A.17) can be shown to have the following form:

where

$$\begin{bmatrix} D_1 \end{bmatrix} = D_1 \begin{bmatrix} 0 & 1 & 2 & \dots & 9 & 10 \\ & & & & & \\ 0 & 1 & 0 & \dots & 0 & 0 \end{bmatrix}_{(2 \times 11)}$$

and

$$\begin{bmatrix} D_2 \end{bmatrix} = D_2 \begin{bmatrix} 0 & 1 & 2 & \dots & 9 & 10 \\ & & & & & \\ 0 & 1 & 0 & \dots & 0 & 0 \end{bmatrix}_{(2 \times 11)}$$
 (5.9)

$$D_1 = \frac{\cos \phi_0 \sin \phi_0}{L}$$
 for conical frustums

$$\frac{\cos\phi_{o}}{\left(r_{1}\right)_{o}\phi_{o}}$$
 for convex upward ellipsoidal bulkheads, and

$$\frac{\cos \phi_0}{(r_1)(\phi_0 - \pi)}$$
 for convex downward ellipsoidal bulkheads

$$D_2 = \frac{\sin^2 \phi_0}{L}$$
 for conical frustums,

$$\frac{\sin \phi_{o}}{(r_{1})_{o}\phi_{o}}$$
 for convex upward elipsoidal bulkheads, and

$$\frac{\sin \phi_{o}}{\binom{r}{l}_{o} (\phi_{o} - \pi)}$$
 for convex downward ellipsoidal bulkheads.

where $(r_1)_0$ is r_1 evaluated at $\phi = \phi_0$

The total vector of system coordinates displacements for shell component "a" is defined from Equations (5.4), 5.6) and 5.8) as

$$\left\{\alpha_{a}\right\}_{\left(\overline{U}+\overline{V}\right)\times 1} = \left\{\begin{array}{c} u(\xi_{i}) \\ v(\xi_{j}) \\ \rho 1 \\ \rho 2 \end{array}\right\}$$
 (5.10)

As indicated in Figures 8, 9 and 10, each displacement and rotation coordinate is identified by a number C where $1 \le C \le N_C$ and N_C is defined as the total number of system coordinates used in the vehicle model. The identification numbers C may be arbitrarily specified on the vehicle independent of location and, hence, must be identified with the vector $\{a_a\}$ components in the input data. For this purpose, a vector $\{C_a\}$ is provided for each shell component a with the identification numbers illustrated in Figures 8, 9 and 10 arranged consistent with Equations (5.4), (5.6) and (5.10). Thus, in general,

$$\left\{ \begin{array}{l} C_{1} \\ \vdots \\ C_{U} \\ C_{U+1} \\ \vdots \\ C_{U+V} \\ C_{\rho 1} \\ C_{\rho 2} \end{array} \right\}$$
 (5.11)

For ellipsoidal bulkhead components, vector elements $\boldsymbol{C}_{\text{U+V}}$ and $\boldsymbol{C}_{\text{o2}}$ are omitted.

5.3 LOCAL TO SYSTEM COORDINATE TRANSFORMATION FOR SHELL COMPONENT

The local coordinate displacements for shell component "a" are related to the system coordinate displacements by the transformation $\begin{bmatrix} T_a \end{bmatrix}$ as follows:

Consolidating the arrangement of local coordinate displacements, as defined in Equations (5.1), (5.2) and (5.3), let

$$\left\{\overline{a}_{a}\right\}_{(\overline{U}+\overline{V}) \times 1} = \left\{\overline{b}_{k}\right\}$$
 (5.12)

Consistent with the system coordinate displacement vector $\{a_a\}$ given by Equations (5.4), (5.6) and (5.8), the transformation matrix $[T_a]$ which relates local to system coordinates, is defined by the equation

$$\left\langle \alpha_{a} \right\rangle = \left[T_{a} \right]^{-1} \left\langle \overline{\alpha}_{a} \right\rangle \tag{5.13}$$

where, in general,

$$\begin{bmatrix} \mathbf{T}_{\mathbf{a}} \end{bmatrix}^{-1} = \begin{bmatrix} \underline{\begin{bmatrix} \mathbf{U} \end{bmatrix}} & \mathbf{0} \\ \underline{0} & \underline{\begin{bmatrix} \mathbf{V} \end{bmatrix}} \\ \underline{\begin{bmatrix} \mathbf{D}_{\mathbf{l}} \end{bmatrix}} & \begin{bmatrix} \mathbf{A} \end{bmatrix}^{\mathrm{T}} & \mathbf{0} \\ - - - - - - - \\ \mathbf{0} & \underline{\begin{bmatrix} \mathbf{B} \end{bmatrix}}^{\mathrm{T}} \end{bmatrix}$$
 (5.14)

Thus

$$\left\langle \bar{a}_{a}\right\rangle = \left[T_{a}\right]\left\langle a_{a}\right\rangle \tag{5.15}$$

It is apparent that computation of the matrix $\begin{bmatrix} T_a \end{bmatrix}$ requires inversion of the matrix $\begin{bmatrix} T_a \end{bmatrix}^{-1}$, which must therefore be nonsingular, square, and of order $(\overline{U}+\overline{V})$. This may require modification of the general Equation (5.14), as discussed below. Special attention must be given the scalar quantities U, V, \overline{U} , \overline{V} and the matrices $\begin{bmatrix} A \end{bmatrix}$, $\begin{bmatrix} B \end{bmatrix}$, $\begin{bmatrix} D_1 \end{bmatrix}$, $\begin{bmatrix} D_2 \end{bmatrix}$ to satisfy the above conditions consistent with the shell component boundary conditions.

For ellipsoidal bulkheads, the [A] and [B] matrices are selected so that the displacement v(0) and the rotation $\rho 2$ are equal to zero to satisfy the conditions imposed by axial symmetry. This implies that for ellipsoidal bulkheads $U=\overline{U}$, $V=\overline{V}$, which requires that the last row of V, D_1 and D_2 in Equation (5.14) be removed. For a conical bulkhead, D_1 is selected so that v(0) is zero. This case requires that the last row of V be removed, and V_1 is zero. This case requires that V_1 is a necessary condition. The following example matrices fulfill the above requirements.

For nonbulkhead components:

$$[A]_{(\overline{U}\times11)} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & . & . & . & . & . & . \\ 0 & 0 & 1 & 0 & . & . & . & . & . & . & . \\ 0 & 0 & 0 & 1 & . & . & . & . & . & . & . & . \\ (Illustrated for \overline{U} = 4)$$
 (5.16)

For ellipsoidal bulkhead components:

$$\begin{bmatrix} A \end{bmatrix}_{(\overline{U} \times 11)} = \begin{bmatrix} 1 & 0 & 0 & \dots & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & \dots & \dots & 0 \end{bmatrix}$$
(Illustrated for $\overline{U} = 4$)

$$\begin{bmatrix} B \end{bmatrix}_{(\overline{V} \times 11)} = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & \dots & \dots \\ 0 & 0 & 0 & 1 & 0 & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 1 & \dots & \dots & \dots & 0 \end{bmatrix}$$
(Illustrated for $\nabla = 4$)

For the simple unit diagonal [A] and [B] matrices illustrated, the matrix $[T_a]^{-1}$ may be poorly conditioned and difficult to invert accurately if \overline{U} and/or \overline{V} are equal to or greater than six (6). For these cases it is recommended that Shifted Chebyshev Polynomial Coefficients 10 (see Table 1) be used for the [A] and [B] matrices to improve the accuracy of the matrix $[T_a]$ calculation. Using Table 1, Equations (5.16), (5.17), (5.18) and (5.19) become, respectively,

For nonbulkhead components:

(Illustrated for $\overline{U} = 4$)

$$\begin{bmatrix} B \end{bmatrix}_{(\overline{V} \times 11)} = \begin{bmatrix} 1 & 0 & 0 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 0 \\ -1 & 2 & 0 & 0 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 1 & -8 & 8 & 0 & 0 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ -1 & 18 & -48 & 32 & 0 & 0 & \cdot & \cdot & \cdot & \cdot & \cdot \\ 1 & -32 & 160 & -256 & 128 & 0 & \cdot & \cdot & \cdot & \cdot \\ -1 & 50 & -400 & 1120 & -1280 & 512 & 0 & \cdot & \cdot & \cdot \end{bmatrix}$$
(Illustrated for $\overline{V} = 6$)

For ellipsoidal bulkhead components:

5.4 LOCAL TO SYSTEM COORDINATE TRANSFORMATION FOR FLUID COMPONENT

As illustrated in Figure 7, and discussed in Section 4, the distortion of each fluid component "b" is a function of the distortion of the three enclosing shell components al, a2 and a3. The local to system coordinate transformation matrix $\begin{bmatrix} T_b \end{bmatrix}$ for the fluid component is thus obtained as a combination of the shell component transformations $\begin{bmatrix} T_a \end{bmatrix}$ for a = al, a2 and a3, as follows:

Consolidating the arrangement of local coordinate displacements, as defined by Equations (4.4) and (5.12), let

$$\left\langle \bar{a}_{b}\right\rangle = \left\langle \left\langle \bar{a}_{a1}\right\rangle \right\rangle$$

$$\left\langle \bar{a}_{a2}\right\rangle$$

$$\left\langle \bar{a}_{a3}\right\rangle$$
(5.24)

Consistent with Equation (5.10), let the consolidated vector of system coordinate displacements be

$${\{\alpha_{b}\}} = {\{\alpha_{a1}\}}$$

$${\{\alpha_{a2}\}}$$

$${\{\alpha_{a3}\}}$$

$$(5.25)$$

Corresponding to Equations (5.15), (5.24) and (5.25), the transformation matrix T_b is defined by

$$\left\langle \bar{a}_{b}\right\rangle = \left[T_{b}\right]\left\langle a_{b}\right\rangle$$
 (5.26)

where

$$\begin{bmatrix} \mathbf{T}_{\mathbf{b}} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf{T}_{\mathbf{a}1} \end{bmatrix} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} \mathbf{T}_{\mathbf{a}2} \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \begin{bmatrix} \mathbf{T}_{\mathbf{a}3} \end{bmatrix} \end{bmatrix}_{(\overline{\mathbf{W}} \times \overline{\mathbf{W}})}$$
(5.27)

From Equations (5.10) and (5.25), it is noted that the coordinate identification vector for fluid component b is obtained as a combination of the shell coordinate identification vectors $\{C_a\}$, defined in Equation (5.11), for a = a1, a2 and a3, as follows:

$$\left\{C_{b}\right\} = \left\{ \begin{cases} C_{a1} \\ C_{a2} \\ C_{a3} \end{cases} \right\}$$
 (5.28)

Table 1. Shifted Chebyshev Polynomial Coefficients for Use in Constructing Matrices A and B

1 0													
0 0	•	0	0	0	0	0	0	0	0	0	0	524288	7
0 0 0 0 0 0 2 0 0 0 0 0 -8 8 0 0 0 0 -8 8 0 0 0 0 -18 -48 32 0 0 0 0 -32 160 -256 128 0 0 0 0 -72 840 -158 512 0 0 0 -72 840 -26880 39424 -28672 8192 -128 2688 -21504 84480 -180224 212992 -131072 -128 2688 -21504 84480 -180224 -1118208 1105920 - -200 6600 -84880 549120 -2050048 4659200 -6553600		0	0	0	0	0	0	0	0	0	131072	-2621440	
0 0 0 0 0 2 0 0 0 0 0 -8 8 0 0 0 0 -8 8 0 0 0 0 -18 -48 32 0 0 0 0 -32 160 -256 128 0 0 0 0 -72 840 -156 1280 512 0		0	0	0	0	0	0	0	0	32768	-589824	5570560	
0 0 0 0 0 2 0 0 0 0 -8 8 0 0 0 -8 8 0 0 0 -18 -48 32 0 0 0 -32 160 -256 128 0 0 0 -72 840 -156 512 0 0 0 0 -72 840 -3584 6192 -6144 2048 98 -1568 9408 -26880 39424 -28672 -28672 -1289 -21504 84480 -180224 -21599 -11182 -21599 -1162 -4320 44352 -228096 658944 -11182 -200 -2050048 46592 -2050048 46592 -2050048 -2050048 -2050048 -20592 -2050048 -20592 -2050048 -20592 -2050048 -20592 -2050048 -20592 -2050048 -2050048 -2050048 <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>8192</td> <td>-131072</td> <td>1105920</td> <td>-6553600</td> <td></td>		0	0	0	0	0	0	0	8192	-131072	1105920	-6553600	
0 0 0 0 2 0 0 0 0 -8 8 0 0 0 -18 8 0 0 0 -32 160 -256 128 0 -32 160 -256 128 0 -72 840 -1580 512 -72 840 -3584 6192 -6144 98 -1568 9408 -26880 39424 -128 2688 -21504 84480 -180224 162 -4320 44352 -228096 658944 -200 6600 -84880 549120 -2050048		0	0	0	0	0	0	2048	-28672	212992	-1118208	4659200	
0 0 0 2 0 0 -8 8 0 -18 -48 32 -32 160 -256 50 -400 1120 -72 840 -3584 98 -1568 9408 -128 2688 -21504 162 -4320 44352 -200 6600 -84880		0	0	0	0	0	512	-6144	39424	-180224	658944	-2050048	
0 0 2 0 -8 8 18 -48 -32 160 -72 840 -72 840 -128 2688 -128 2688 -128 2688 -120 6600		0	0	0	0	128	-1280	6192	-26880	84480	-228096	549120	
0 2 -8 -32 -72 -72 -128 -128 -200		0	0	0	32	-256	1120	-3584	9408	-21504	44352	-84880	
		0	0	∞	-48	160	-400	840	-1568	2688	-4320	0099	
		0	7	8	18	-32	20	-72	86	-128	162	-200	
	<u>_</u>		-1	~	7		7		7	-	7		نــــ

Conical Shell Component System Coordinate Arrangement Figure 8.

6. LAUNCH VEHICLE STIFFNESS AND MASS MATRIX SYNTHESIS

In order to construct the total vehicle stiffness and mass matrices referenced to a common coordinate system, the individual component stiffness and mass matrices are expressed in terms of the system coordinates developed in Section 5.2. For each shell and fluid component e, the matrices, transformed to system coordinates, become

$$\begin{bmatrix} \mathbf{K}_{\mathbf{e}} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{\mathbf{e}} \end{bmatrix}^{\mathbf{T}} \begin{bmatrix} \overline{\mathbf{K}}_{\mathbf{e}} \end{bmatrix} \begin{bmatrix} \mathbf{T}_{\mathbf{e}} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{M}_{\mathbf{e}} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{\mathbf{e}} \end{bmatrix}^{\mathbf{T}} \begin{bmatrix} \overline{\mathbf{M}}_{\mathbf{e}} \end{bmatrix} \begin{bmatrix} \mathbf{T}_{\mathbf{e}} \end{bmatrix}$$
(6.1)

and

where $\begin{bmatrix} T_e \end{bmatrix}$ is the transformation matrix defined in Equation (5.13) for shell components and in Equation (5.26) for fluid components. $\begin{bmatrix} \overline{K}_e \end{bmatrix}$ and $\begin{bmatrix} \overline{M}_e \end{bmatrix}$ are the stiffness and mass matrices related to the local coordinate system. The stiffness and mass matrices for the spring mass components do not undergo the transformation Equation (6.1), since they already exist as input data in terms of the system coordinate displacements.

The total system stiffness and mass matrices are synthesized by expanding each of the component matrices Equation (6.1) into an enlarged matrix which is of the same order as the total system matrix and which is related to the set of system coordinates for the total vehicle, as shown in Figure 11. This is accomplished by superimposing each of the component matrices after an additional transformation, as described below.

As indicated in Figures 8, 9, 10 and 11 and discussed in Section 5.2, each system displacement and rotation coordinate is defined by an identification number $C(C=1,\ 2,\ \ldots,\ N_C)$ arbitrarily specified to suit the convenience of the analyst. It is desirable, however, to reserve the identification numbers (N_C) , (N_C-1) , ..., (N_C-N_O+1) for the N_O system coordinates to be used for rigid supports to preserve a one-to-one correspondence in the digital program output between the identification numbers and the coordinate row-column location in the total system matrices.

The arrangement of the coordinates in the total system displacement vector $\{\alpha\}$ of order N_c is made to coincide with the coordinate identification numbers C. Thus, the transformation matrix $[\Delta_e]$ relating the total system displacements $\{\alpha\}$ to the component e system displacements $\{\alpha_e\}$ is defined as

$$\{\alpha_e\} = [\Delta_e] \{\alpha\}.$$
 (6.2)

The elements $\delta_{\mbox{rs}}$ of $\left[\Delta_{\mbox{e}}\right]$ are determined to be zero or unity from the relations

$$\delta_{rs} = 1 \text{ when } s = C_r$$

$$= 0 \text{ when } s \neq C_r$$
(6.3)

where C_r is the r-th element of the coordinate identification vector $\{C_e\}$ for component e [see Equations (5.11) and 5.28)].

The total stiffness and mass matrices are obtained using transformation matrices $\left\lceil \Delta_e \right\rceil$ in the following summation equations

$$\begin{bmatrix} \mathbf{K} \end{bmatrix}_{(\mathbf{N_C} \times \mathbf{N_C})} = \sum_{a=1}^{\mathbf{N_S}} \begin{bmatrix} \Delta_{\underline{a}} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \mathbf{K}_{\underline{a}} \end{bmatrix} \begin{bmatrix} \Delta_{\underline{a}} \end{bmatrix} + \sum_{c=1}^{\mathbf{N_M}} \begin{bmatrix} \Delta_{c} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \mathbf{K}_{\underline{c}} \end{bmatrix} \begin{bmatrix} \Delta_{\underline{c}} \end{bmatrix}$$
 (6.4)

and

$$\begin{bmatrix} \mathbf{M} \end{bmatrix}_{(\mathbf{N}_{\mathbf{C}} \times \mathbf{N}_{\mathbf{C}})} = \sum_{\mathbf{a}=1}^{\mathbf{N}_{\mathbf{S}}} \begin{bmatrix} \Delta_{\mathbf{a}} \end{bmatrix}^{\mathbf{T}} \begin{bmatrix} \mathbf{M}_{\mathbf{a}} \end{bmatrix} \begin{bmatrix} \Delta_{\mathbf{a}} \end{bmatrix} + \sum_{\mathbf{b}=1}^{\mathbf{N}_{\mathbf{F}}} \begin{bmatrix} \Delta_{\mathbf{b}} \end{bmatrix}^{\mathbf{T}} \begin{bmatrix} \mathbf{M}_{\mathbf{b}} \end{bmatrix} \begin{bmatrix} \Delta_{\mathbf{b}} \end{bmatrix}$$
$$+ \sum_{\mathbf{c}=1}^{\mathbf{N}_{\mathbf{M}}} \begin{bmatrix} \Delta_{\mathbf{c}} \end{bmatrix}^{\mathbf{T}} \begin{bmatrix} \mathbf{M}_{\mathbf{c}} \end{bmatrix} \begin{bmatrix} \Delta_{\mathbf{c}} \end{bmatrix}$$
(6.5)

in which N_C , N_S , N_F and N_M are the total number of system coordinates, shell components, fluid components and spring-mass components, respectively. The matrices $\begin{bmatrix} K_a \end{bmatrix}$, $\begin{bmatrix} M_a \end{bmatrix}$ and $\begin{bmatrix} M_b \end{bmatrix}$ are, respectively, the stiffness and mass matrices for the shell components and the mass matrix for the fluid components, as defined by Equation (6.1).

The superposition technique assures displacement compatibility and force equilibrium at the joints between components. Displacement boundary conditions are imposed on the total stiffness and mass matrix by removing appropriate rows and columns of coefficients corresponding to points on the vehicle and its support which are rigidly restrained from motion. Due to storage limitations in the digital program, the order of the resulting total stiffness and mass matrix must not exceed 80.

Additional limitations are placed on the size of the component matrices utilized in Equations (6.4) and (6.5). The shell component stiffness and mass matrices, $\begin{bmatrix} K_a \end{bmatrix}$ and $\begin{bmatrix} M_a \end{bmatrix}$, must have an order no larger than 22. For the fluid mass matrix, $\begin{bmatrix} M_b \end{bmatrix}$, the order must not exceed 35, and for the spring-mass component stiffness and mass matrices, $\begin{bmatrix} K_c \end{bmatrix}$ and $\begin{bmatrix} M_c \end{bmatrix}$, the order must not exceed 10.

Figure 11. Vehicle System Coordinates

7. DYNAMIC RESPONSE EQUATIONS

7.1 NATURAL FREQUENCY EQUATIONS

The total stiffness and mass matrices which are derived in Section 6 are used for computation of the natural frequencies and mode shapes from the eigenvalue equation

$$[K] \{\alpha\} - p^2 [M] \{\alpha\} = 0$$
 (7.1)

in which p is the circular frequency of the launch vehicle and $\{a\}$ is the modal vector whose elements are the longitudinal, radial and rotational system coordinate displacements defined in Section 5 and illustration in Figure 11. This equation is solved to obtain the natural frequencies p_t and the mode shapes for all modes, t, which are arranged in a square modal matrix $\{a\}$ of order $N_c - N_o$. Each column, $\{a_t\}$, of [a], is the mode t displacement vector with system coordinate elements, whereas each row, $[a_s]$, of [a], is the system coordinate s displacement vector with natural mode elements.

7.2 STEADY-STATE RESPONSE EQUATIONS

The steady-state response due to simple harmonic loads of frequency ω is determined using a standard modal technique. The elements of the load vector $\{P\}$ of order $(N_c - N_o)$ represent axisymmetric forces (longitudinal and radial) or moments, depending on whether the associated coordinate is a displacement or a rotation. The displacement response $\{R\}$ at coordinates $s(s=1,\,2,\,\ldots,\,(N_c-N_o))$ on the launch vehicle is expressed as the linear superposition of the individual modal responses based on an assumed modal damping factor η_k which is the ratio of the actual damping to the critical damping for each mode and has the form 4

 ${R} = {\overline{R} \sin {\omega t - \overline{\delta}}}$

$$\left\{ \overline{R}^{2} \right\} = \left(\left[\alpha \right] \left\{ \frac{Q_{t} \sin \delta_{t}}{m_{t} \left(p_{t}^{2} z_{t} \right)} \right\}^{2} + \left(\left[\alpha \right] \left\{ \frac{Q_{t} \cos \delta_{t}}{m_{t} \left(p_{t}^{2} z_{t} \right)} \right\} \right)^{2} \tag{7.2}$$

$$\begin{cases}
\overline{\delta}
\end{cases} = \begin{cases}
\frac{\alpha_s}{\alpha_s} \left\{ \frac{Q_t \sin \delta_t}{m_t \left(p_t^2 z_t \right)} \right\} \\
\frac{\alpha_s}{\alpha_t} \left\{ \frac{Q_t \cos \delta_t}{m_t \left(p_t^2 z_t \right)} \right\} \\
Q_t = \left(\alpha_t \right)^T \left\{ P \right\} \\
m_t = \left(\alpha_t \right)^T \left[M \right] \left(\alpha_t \right) \\
p_t^2 z_t = \left[\left(p_t^2 - \omega^2 \right)^2 + 4 p_t^2 \eta_t^2 \omega^2 \right]^{1/2}
\end{cases} (7.4)$$

(7.4)

and

$$\delta_{t} = \tan^{-1} \frac{2\eta_{t} \left(\frac{P_{t}}{\omega}\right)}{\left(\frac{P_{t}}{\omega}\right)^{2} - 1}$$

In these equations, $\delta_t = \pi$ when $p_t = 0$, and $\delta_t = 0$ when $p_t \neq 0$, $\omega = 0$. $\{\overline{R}\}$ and $\{\overline{\delta}\}$ represent, respectively, the vectors of steady-state displacement amplitude and the phase angle by which the forcing function leads (+) or lags (-) the response. The velocity $\{\dot{R}\}$ and acceleration $\{\ddot{R}\}$ responses are obtained from the relations

$$\left(\dot{R} \right) = \omega \left\{ \overline{R} \sin \left(\omega t - \left(\frac{\pi}{2} + \overline{\delta} \right) \right) \right\}$$

$$\left(\overline{R} \right) = -\omega^2 \left\{ \overline{R} \sin \left(\omega t - \overline{\delta} \right) \right\}$$

$$(7.5)$$

The internal forces (or moments) S_a acting at each point along the vehicle on each shell component a are obtained from the equation

$$\left\{S_{a}\right\}_{\left(\left(\overline{U}+\overline{V}\right)\times1\right)} = \left\{\overline{S}\sin\left(\omega t - \delta\right)\right\}$$
 (7.6)

where

$$\left(\overline{S}^{2}\right)_{\left((\overline{U}+\overline{V})\times 1\right)} = \left(\left[K_{a}\right]\left[\Delta_{a}\right]\left(\overline{R}\sin\overline{\delta}\right)\right)^{2} + \left(\left[K_{a}\right]\left[\Delta_{a}\right]\left(\overline{R}\cos\overline{\delta}\right)\right)^{2} \\
\left(\overline{\delta}\right)_{\left((\overline{U}+\overline{V})\times 1\right)} = \left\{\tan^{-1}\left(\frac{\left[K_{s}\right]\left[\Delta_{a}\right]\left(\overline{R}\sin\overline{\delta}\right)}{\left[K_{s}\right]\left[\Delta_{a}\right]\left(\overline{R}\cos\overline{\delta}\right)}\right)\right\}$$
(7.7)

 $\{\overline{S}\}$ and $\{\overline{\delta}\}$ represent, respectively, the amplitude and phase angle of the internal forces. $[K_s]$ is row s $\{s=1, 2, \cdots, (\overline{U}+\overline{V})_a\}$ of the shell element stiffness matrix $[K_a]$. $\{\overline{R}\}$ and $\{\overline{\delta}\}$ are obtained from Equation (7.3).

8. DIGITAL PROGRAM ARRANGEMENT

The analytic model developed in the previous sections is used as the basis for a digital computer program to determine the vibration characteristics and steady-state response of a launch vehicle subjected to axisymmetric sinusoidal loads. The program is written in Fortran IV language for use on an IBM 7094 computer having 32K magnetic core storage locations. The functional operations and the overall program arrangement are illustrated in Figure 12. Each of the operations enclosed by a block represents an independent link in the computer program. This feature facilitates the task of making future modifications or expansions of the program.

The input data necessary to inititate the program sequence is discussed in detail in Section 9. After the data has been processed, the program proceeds to develop the stiffness and mass matrices for each of the shell components. The functional operations required to perform these computations and the form of the equations used in the digital program are provided in Appendix D. Consistent with the matrix formulation of the basic equations, the numerical integration is performed using a sixteen point Gaussian weighted matrix integration scheme.

In a similar fashion, the fluid mass matrix for each fluid component is constructed. The functional flow diagram and the basic equations required to describe the three fluid tank configurations considered in the present analytical model are presented in detail in Appendix E. Unlike the formulation for the shell stiffness and mass matrices, the equations for the fluid mass matrix involve a double integration. For this computation, a double Lagrangian weighted matrix integration scheme was found most suitable. This technique employs two 11-point Lagrangian weighting matrices in sequence to provide a 22 point approximation.

The component matrix construction is concluded with the setting up of the stiffness and mass matrices, provided as input data, of the springmass components.

The shell, fluid and spring-mass component stiffness and mass matrices are then synthesized into a total vehicle system stiffness and mass matrix, according to the steps presented in Section 6. Utilizing these matrices, the natural frequency equation, Equation (7.1), is formulated and subsequently solved using a standard digital eigenvalue routine which solves matrices up to order 80.

The program user now has the option of 1) continue the analysis and move directly to the computation of the steady-state response, or 2) to temporarily stop the solution after the free vibrations stage for the purpose of examining the output before proceeding with the computation of the steady-state response. This option enables the user to examine the results of the computation for the natural frequencies and mode shapes before determining the input for the modal damping and for the frequencies at which the launch vehicle is forced.

Checks on the accuracy and consistency of the various computations are performed throughout the program. The shell component stiffness matrices are subjected to longitudinal rigid body displacements to establish automatically that equilibrium is satisfied. For each shell component, the "equilibrium check" appears as output in the following form

Equilibrium =
$$\frac{\sum \text{Longitudinal Rigid Body Displacement Forces}}{\bigcup_{i=1}^{U} k_{ii}}$$
 (8.1)

where k_{ii} are the diagonal components of the shell component stiffness matrix $\begin{bmatrix} K_a \end{bmatrix}$ associated with the system coordinates and U is defined in Section 5.2 as the total number of longitudinal system coordinates associated with component a. If equilibrium is satisfied, Equation (8.1) will be equal to zero.

In a similar manner, the mass matrices for the shell and fluid components are subjected to unit accelerations to verify that the rigid body mass characteristics have been accurately represented. The "mass check" also appears as output and has the form

Mass Check =
$$\frac{M_{input}}{M_{computed}}$$
 (8.2)

where $M_{\rm input}$ is the total mass of the element, provided as input, and $M_{\rm computed}$ is the rigid body mass computed in the program. The elements of the mass matrix $[M_{\rm e}]$ are corrected by the "mass check" factor to provide the correct total mass representation for the structural component e, since $M_{\rm computed}$, in general, will not agree with $M_{\rm input}$ due to the physical nature of the problem.

An additional check on the accuracy of the program is provided in the form of a $\begin{bmatrix} T_a \end{bmatrix}$ "inverse check." In developing the $\begin{bmatrix} T_a \end{bmatrix}$ transformation, Equation (5.15), it is necessary to take the inverse of $\begin{bmatrix} T_a \end{bmatrix}^{-1}$. An indication of the conditioning of this matrix is furnished by the product

Inverse Check =
$$\begin{bmatrix} T_a \end{bmatrix} \begin{bmatrix} T_a \end{bmatrix}^{-1}$$
 (8.3)

which appears as output. The deviation of this product from a unit diagonal matrix provides an estimate of the accuracy of the computation for $\begin{bmatrix} T_a \end{bmatrix}$. The incorporation of the three checks discussed above is a useful aid in assuring the reliability of the digital solution.

An additional feature which is incorporated in the program is the capability to stack cases, i.e., to solve numerous related problems in sequence by simply stacking the data input for each of the cases. The stacking capability can be utilized for

- the solution of the complete problem, which may include the steady-state response or
- 2) the solution of the steady-state response using natural mode data previously stored on tape.

This feature provides for an efficient use of machine time by eliminating the need for reloading the program deck for successive cases.

Figure 12. Digital Program Arrangement

9. DATA SETUP

9.1 VEHICLE SUBDIVISION

In order to prepare the input data, it is first necessary to subdivide the launch vehicle into a consistent set of axisymmetric shell components a, fluid components b, and spring-mass components c. Size limitations of the program require that

- 1) The total number of shell components shall not exceed forty (40),
- 2) The total number of <u>fluid components</u> shall not exceed six (6),
- 3) The total number of <u>spring-mass components</u> shall not exceed thirty (30), and
- 4) The order of the spring-mass stiffness and mass matrices must not exceed ten (10).

Subsequent to the vehicle subdivision, the location of the system coordinate displacements must be determined. The internal operations of the digital program require that

- 1) Longitudinal, radial and rotational coordinate displacements must be placed at each junction of two or more shell elements
- 2) Longitudinal and radial coordinate displacements are placed at each point lying on the vehicle longitudinal axes.

These locations are defined as the terminal points of each shell element. Additional longitudinal and radial coordinate displacements may be placed, as desired, at intermediate points uniformly spaced between the terminal points. Longitudinal, radial and rotational coordinates may also be used to describe the motions of the spring-mass elements.

The coordinate displacements are then identified by a consecutively numbered sequence. The arrangement of these numbers on the vehicle is arbitrary and is left up to the discretion of the analyst. However, the radial coordinate points lying on the vehicle axis are not to be identified with a number. This is necessary because the program must assume these displacements equal to zero, as is required by the axisymmetry of the vehicle, and thus they do not contribute to the degrees-of-freedom of the

system. These are defined as "unnumbered" coordinates and are utilized only in the preparation of the data input sheets for determining the value of U and V (see Figure 11).

In general, for a supported structure, some of the "numbered" coordinates may be assumed fixed or restrained from motion. The total number of "numbered" coordinates which are not fixed must not exceed eighty (80). In addition, the numbering sequence should be arranged so that the fixed coordinates are numbered last to insure consistency in the program output identification with the coordinate identification numbers.

The total number of coordinates for a shell component may not exceed 22, of which in general the number of longitudinal displacement coordinates may not exceed 11, and the number of lateral displacement coordinates may not exceed 10 (see Section 5.3). For the case of three shell components surrounding a fluid component, the total number of coordinates for the composite tank structure may not exceed 29.

9.2 INPUT DESCRIPTION

System Input Data

1)	Heading	
	HHEAD	is one line of BCD characters which will
		be printed as the title of the printed out-
		put. The number of BCD words (6 char-
		acters per word) must not exceed 11.

2) Input Parameters

N_{C}	is the total number of system coordinates
v	which include the fixed coordinates ${ m N}_{ m O}$.
	N _C - N _O must not exceed 80.
N_S	is the total number of shell components.
~	N_S cannot be zero and must not exceed 40.
N _F	is the total number of fluid components.
~	N_{F} must not exceed 6.
N M	is the total number of spring-mass com-
	ponents. N_{M} must not exceed 30.

 N_{O} is the total number of fixed coordinates. N_{C} - N_{O} must not exceed 80.

3) Applied Loads and Forcing Frequencies (Section 7.2)

N_L is the total number of discrete applied

loads. N_I must not exceed 80.

 C_i is the applied load coordinates C_1 , C_2 ,

 $C_3, \cdots, C_{NL}.$

P; is the discrete applied loads P1, P2, P3,

 \cdots , P_{N_L} .

 $N_{W}^{}$ is the number of sets of forcing function

frequencies.

 f_i , Δf_i , m_i f is the frequency of the forcing function

in cycles per second ($\omega = 2\pi f$). This program will compute the steady-state response for the

frequencies f_i , $f_i + \Delta f_i$, $f_i + 2 \Delta f_i$, ..., $f_i + (m_i - 1) \Delta f_i$, $i = 1, 2, ..., N_W$.

4) Modal Damping Factor

 $N_{\mbox{ET}}$ is the number of input η . Program will

generate a complete table of $\boldsymbol{\eta}$ by setting

 $^{\eta}(N_{ET}^{+1}), ^{\eta}(N_{ET}^{+2}), \cdots, ^{\eta}(N_{C}^{-N}_{O})$ equal

to $\eta_{N_{\rm ET}}$

 $\eta_{\mathbf{k}}$ $$ is the ratio of the assumed damping to the

critical damping in mode k

$$\eta_1$$
, η_2 , η_3 , ..., $\eta_{N_{ET}}$

5) Ratio of Acceleration

g is the ratio of the vehicle acceleration to the acceleration of gravity.

6) Steady-State Response Option

S is a fixed point word which controls the option of computing steady-state response.

S < 0 indicates that the computation of the steadystate response is not included. The necessary data for the steady-state computation is saved on Tape 1 and 2.

S = 0 indicates that the computation of the steadystate response is included.

S > 0 is the option to compute the steady-state response only. The necessary data should be available on Tape 1 and 2. In addition the following System Input Data must be provided:

- S = 1, Heading [Item 1)], Input Parameters [Item 2)], and Modal Damping Factors [Item 4)].
- S = 2, Heading [Item 1)], Input Parameters [Item 2)], Applied Loads and Forcing Frequencies [Item 3)], Modal Damping Factors [Item 4)], and the option word opt₄.

7) Print Options

opt,

opt is an option word which controls the output of stiffness matrix and mass matrix of the shell and the fluid components.

opt₁ = 1, print the component matrices

opt₁ = 0, suppress the printing of component matrices.

is an option word which controls the printing of total stiffness matrix and total mass matrix.

opt₂ = 1, print the total stiffness and mass matrices.

opt₂ = 0, suppress the printing of total stiffness and mass matrices.

opt₃

is an option word which sets the rigid body frequency to zero for computing the response.

opt₃ = 1, set the first frequency to zero.

opt₃ = 0, do not set the first frequency to zero.

 opt_4

is an option word which controls the computation and printing of forces for the steady-state response.

opt₄ = 1, compute and print the forces.

opt₄ = 0, do not compute and print the forces.

 N_{EI}

is the number of frequencies, mode shapes, velocities and accelerations that will be printed as the final output.

8) Polynomial Matrices (Section 5.3)

 $N_{\mathbf{p}}$

is the total number of polynomial matrices.

 $\overline{\overline{U}}_k$

is the number of rows of polynomial matrix [A] $\overline{U}_{k} \times 11$. ($\overline{U}_{k} \leq 11$)

 $\boldsymbol{\tilde{v}}_k$

is the number of rows of polynomial matrix [B] $\overline{V}_k \times 11$. ($\overline{V}_k \leq 11$)

 $[A]_k$

is $\overline{U}_k \times 11$ polynomial matrix.

 $[B]_k$

is $\overline{V}_k \times 11$ polynomial matrix.

 $k = 1, 2, 3, \dots, N_{p}$

The input sequence of the polynomial matrices establishes the identification number k which is referred by the shell components.

The subscript k is used as the polynomial matrix identification number by the shell components.

Shell Component Input Data

1) I.D. Number

a

is the identification number for shell component a where 0 < a $\leq N_{\rm S}$

+ a indicates a conical shell component

- a indicates an ellispoidal shell component

2) Coordinates

U, V

are the total number of system coordinates.

Ū, V

are the total number of local coordinates \overline{U} , \overline{V} must not exceed 11.

3) Coordinate I.D. Vector (Figures 8, 9, and 10)

(ID);

is the identification vector which is used to position the elements for building total stiffness and mass matrices. The length of the vector must be equal to $\overline{\textbf{U}}$ + $\overline{\textbf{V}}$ and the number must not be greater than \textbf{N}_{C} .

4) Polynomial Matrix Identification Number

k

is the polynomial matrix identification number which refers to polynomial matrices $\left[A\right]_k$ and $\left[B\right]_k$ in the system input data.

5) Shell Geometric Data (Figures 4 and 5)

 $\boldsymbol{\phi}_{o}$

is the meridional angle for conical shell and is the edge meridional angle for ellipsoidal shell. ϕ_{Ω} is input in degrees.

L

is the height of conical shell

+ L indicates converging upward

- L indicates converging downward

L = 0 for ellipsoidal shell input

is the lower radius of conical shell

R₂ = 0 for ellipsoidal shell input

is the height of ellipsoidal shell

+ \overline{b} indicates convex upward

- \overline{b} indicates convex downward

\overline{b} = 0 for conical shell input

is the radius of the base of ellipsoida

is the radius of the base of ellipsoidal shell, $\bar{a} = 0$ for conical shell input

6) Orthotropic Shell Constants and Thickness (Equation 3.5)

 $(C_{11})_p \qquad \text{are orthotropic shell constants at two} \\ (C_{12})_p \qquad \text{points } \xi = 0, 1 \text{ which are represented by} \\ (C_{22})_p \qquad p = 1, 2, \text{ respectively.}$ $(C_{33})_p \qquad \text{are orthotropic shell constants at four} \\ (C_{34})_p \qquad \text{points } \xi = 0, 1/3, 2/3, 1 \text{ which are} \\ (C_{34})_p \qquad \text{represented by } p = 1, 2, 3, 4, \text{ respectively.}$ $(C_{44})_p \qquad \text{are shell thickness at two points } \xi = 0, 1$

(t) are shell thickness at two points $\xi = 0$, which are represented by p = 1, 2, respectively.

7) Mass Density and Total Mass

 γ_a is the mass density of the shell component.

M is the total mass of the shell component.

 $M_a \neq 0$, the ratio of the total mass M_a to the computed mass \overline{M}_a will be used as the scaling factor for the mass matrix. When opt $_1$ = 1, the scaling factor will be printed as the mass check of the mass matrix.

 $M_a = 0$, no scaling factor will be used for the mass matrix. When opt $_1 = 1$, the computed mass will be printed.

8) Initial Stress Data (Figures (B.1), (B.2) and (B.3))

H; is the depth of interior fluid.

w. is the weight density of interior fluid.

p; is the uniform interior pressure.

H is the depth of exterior fluid.

w_e is the weight density of exterior fluid.

p_e is the uniform exterior pressure

W is the reactive force at upper edge of conical shell.

+ W produces tensile stresses.

- W produces compressive stresses.

W = 0 for ellipsoidal shells.

Fluid Component Input Data

1) I.D. Number

b is the identification number for fluid component b where $0 - b \le N_F$.

2) Associated Shell Components (Figure 7)

a₁, a₂, and are the identification numbers of the associated shell components

3) Fluid Data (Figure C.1)

H is the depth of fluid component.

γ is the mass density of fluid component.

is the mass of fluid component. $M \neq 0$, the ratio of the total mass M to the computed mass \overline{M} will be used as the scaling factor for the mass matrix. When opt $_1$ = 1, the scaling factor will be printed as the mass check of the mass matrix.

M = 0, no scaling factor will be used for the mass matrix. When opt₁ = 1, the computed mass will be printed.

Spring-Mass Component Input Data

l) I.D. Number

c is the identification number of springmass component c where $0 < c \le N_M$.

2) Stiffness and Mass Matrices

n is the order of the spring-mass component n must not exceed 10.

 $\left[K\right]_{C}$ is n x n stiffness matrix of spring-mass component.

 $\left[M\right]_{C}$ is n x n mass matrix of spring-mass component.

3) Coordinate I.D. Vector

is the identification vector which is used to position the elements for building the total stiffness and mass matrices. The length of the vector must be equal to n and the number must not be greater than $N_{\rm C}$.

9.3 SAMPLE INPUT DATA SHEETS

Sample input data sheets are included to illustrate the input format. The data must be arranged in the order shown, that is,

- 1) System input data
- 2) Shell component input data
- 3) Fluid component input data
- 4) Spring-mass component input data

THE SYSTEM INPUT DATA

DATE	S CO	PACE TECHNOLOGY LABORATORIES, APPUTATION AND DATA REDUCTION C	INC. ENTER PAGEOF
PROBLEM NO		- - 325	PRIORITY
NO, OF CARD			VERIFIED BY
HHEAD	7		73
MILAD			
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

	1 2 7 20 25 37 38 43 55 56 61	17 35 53 71 73	<u> </u>
	55 56 61	71 73	-
SYMBOL	RE LOC. VAL	JE EXP.	
N _C	I NC		1
N _c	I NS		
NC NS NF NM	I NF		g
N _M	I NM		
NO	I NØ		
	M = 1 =		
	-[]		
<u></u>	-13		
N _I .	I NL		g
-CL	I NL I LDCRD		
	I		X
	-[1]		N
			[]
	•		
•	-		
c _{N_T}	- I		 , 8
P I			
P ₁ P ₂	ALØAD		
			3
•	- []		
PNI	-[]		<u> </u>
-MT			
	-17		<u>~</u> ;
W	I NOT		-
W	I NW		
	<u> </u>		M
			N
<u>ω</u> 1	G.FGA		- 내
ω <u>1</u> 7.ω,	ØMEGA		
<u> </u>			Q
m ₁	I		— N
			-
115.			H
$\omega_{\rm NM}$	[]		
M: Y			[]
m _{N,J}	I		- []
N _{ET}	I JETAK		
''1	ETAK		
η2			
•	F3		I U

DATE			_	SPACE T	ION AND	GY LABORATORIES, IN DATA REDUCTION CEN	IC. ITER	PAGEOF
NAME					- j	ट्रारक्त्री	PRIORITY	
					_ L	11281-		
PROBLEM NO					- L	885 I	KEYPUNC	HED BY
NO. OF CARD	S						VERIFIED	
1	7							73
			· · · · · · · · · · · · · · · · · · ·					
								
								\$
						·	F1	
	1 2 19 20 37 38 55 56		7 28 43 61		17 35 53 71		_ []	
	55 56		31		71	79		
SYMBOL	PRE	LOC.	,	VALUE	EXP.	ļ	14	
						Ī	A	
•	11					1		
THET							[]	
g	G						_	
			T				N	
							👸	
S	IIN	S						
			Ţ			Ĭ		
							_ 8	
opt	III	PTL	Ţ				H	
opt2	III						M	
	II				-		_ [4	
opt ₄	III] []	
NEI	INE	I					8	
							8	
							_ #	
							J [8]	
N _P	INP		<u> </u>					
	-11		ļ					
	_[]		ļ				-, M	
			ļ				J []	
	END		ļ				M	
	-[]		 			}		
	-{}		ļ				- N	
· · · · · · · · · · · · · · · · · · ·			 				- 8	
\overline{V}_{K}	I UB	AR	 		_	-	M	
٧ _٧ .	IVB	WK .	ļ			-	N	
	-[]		ļ <u> </u>				¬ #	
r. 3		ot v	77 77		 		- N	
[A] _k	M AP		11,11			-		
·	-[][0I	,OJ	 			-	A	
	-						- N	
F	-	or v	177 77		 		- []	
[BJk	М ВР		11,11			{	[]	
	-11 <u>br</u>	,OJ	 			1	M	
	-[] -		- 				7 N	

DATE					SPAC COMPU	TATION	INOL	OGY LABORATORIES, INC. DATA REDUCTION CENTER		PAGE 0F
PROBLEM NO	OBLEM NO.								PRIORITY	
1	7								VERIFIED BY	73
					-	······································				
		19 37	2 20 38 86	27 26 43 61			17 36 83 71	71	\$	
SYMBOL	H	P _E	LOC.	101	VALUE		EXP.		92 10	
	+ 1-	_	'W		· · · · · · · · · · · · · · · · · · ·					
		-		 						
	Il			 			 			
=1,2,3										
···N _P	1	-		-			 	}		
	壯									
		\Box					<u> </u>			
		\dashv					 			
	Jt									
				I						
	-	-	····	ļ						
		4		 						
	1					·····				
	1							·	ř	
	_	4		ļ						
	}-	\dashv		 		·				
	L	4		ļ						
·]-	\dashv		 						
	_	-		ļ						
	-	+		ļ						
									1	
		_[
	-	+		<u> </u>						
	١	1								
]								
	1	_		<u> </u>					}	

THE SHELL COMPONENT INPUT DATA

E			COMPUTA	TECHNOL	OGY LABORATORIES, INC DATA REDUCTION CEN	C. TER PAGEOI
	۰. ـــــ					PRIORITY
	7					73
						<u> </u>
		9 20 7 38 5 56	7 25 43 61	17 35 53 71	75	
MBOL	-	L LOC.		EXP.		
14,3						
,	-{}-	mur	_			
5		THI				
][_	DESTA				
·····	- }-	- MA				
	- -	HI				
	- -	DESTI PRI				
		TIE				
	- -	DESTE				
<u> </u>	-	PRE WFØRC				
		11.17.19				
	E	ND				
	-					
		 				
	1	-				
	- -					
	-					
] [
	-					
	11-					
	-	-	<u> </u>			
	1	 				11

ATE		·	-	COMPUTATI	ON AND	OGY LABORATORIES, IN	TER	PAGE 0
AME			~	••••	- r	as af		
9081 FM MC	OBLEM NO.					1134-		
					- [<u>886</u> 3		D BY
O. OF CARE	S						VERIFIED B	
	 '							73
			······					
······································								
	 			,			·	
	<u> </u>				1:-	 1		
	119	20 36 36	25 43 61		17 38 53 71		-,	
	55 P	56	61			73	-	
SYMBOL	RE	 	<u> </u>	VALUE	EXP.			
р	I	INB					i i	
a 1		IDAl]	A	
g	ll_I	1						
a 3								
H	11_	HF						
Υ	J:L	DESTF					Ħ	
M	11_	FM						
	<u> </u>] []	
·	E	ND	ļ					
	H_						- 13	
	H_{-}							
] [] []	
	j [_							
] [_				•		_	
]] []	
]						M	
	11_						H	
							_	
	<u> </u>		ļ				J 13	
· · · · · · · · · · · · · · · · · · ·							Ä	
T	1		L				<u> </u>	
		· · · · · · · · · · · · · · · · · · ·					_	
	J						J [3]	
	[-]		ļ				M	
	[]_							
							_	
	<u> </u>		ļ				J []	
] [ļ				H	
	!		ļ				_ FI	
	! }				_		J []	
					_			
							11	
			ļ		_		., [1]	
					_		J [
·]				_			
							11	

					ASS COMPONENT INPUT	DATA	IV-12
DATE			SPACE 1	TECHNOL:	DGY LABORATORIES, INC. DATA REDUCTION CENTER	R DAGS	or
NAME				7	N D. LA T		
					PRIORITY		
PROBLEM NO					## # ##	KEYPUNCHED BY	
NO. OF CARE)\$			フ		VERIFIED BY	
1	 ' —						73
	╁						
	 						ന
	 						×I
	7	1 2	T 7	117	<u> </u>	8	الشعد
	37	2 20 38 56	7 28 43 61	17 36 53 71	73	**************************************	
SYMBOL		LOC.	VALUE	EXP.			
						ş	
n c	I I	INC				4	
	-11-						
	-[]-		ļ				
[x] _e	М	СК	10, 10				
c	-N- <u>'</u>	OI, OJ				ă	
		021 00					
						Š	
[M] ^e	M	CM	10, 10				
	\mathbb{M}_{-}	OI, OJ					
	_						
	-{}-					Ž	
(IDC) ₁	I	IDVIC					
110/2	<u> </u> _					¥	
•	┨.				<u> </u>		
•	11-					6	
(IDC) _n	怔						
	11-						
	J. F	_ND					
	-11_	ļ					
	<u> </u>						
	{}						
	[] —		<u> </u>				
· · · · · · · · · · · · · · · · · · ·	11-					\$	
	}						

	! }				<u>'</u>	M	
	[]_					À	
	11_						
	11_						
	{}-						
	-						
	11-						
	<u> </u>					i i	

10. NOTATION

$$\bigcup_{\{1 \times j\}}$$
 Row matrix of order j

Column matrix of order i

Rectangular matrix with i rows and j columns

- a, b, c Identification number for the shell, fluid and spring-mass components respectively
 - a, b Semimajor and semiminor axes, respectively, of an ellipsoidal bulkhead
 - ā, b Edge radius and height, respectively, of an ellipsoidal bulkhead
- al, a2, a3 Identification numbers for the shell components which enclose a fluid component

$$[A]_{(\widetilde{U} \times 11)} \equiv [a_{kn}]$$
 Polynomial matrix associated with $u_k(\xi)$

$$\begin{bmatrix} \mathbf{B} \end{bmatrix}_{(\overline{\mathbf{V}} \times 11)} \begin{bmatrix} \mathbf{b}_{\ell n} \end{bmatrix}$$

Polynomial matrix associated with v_{ℓ} (§)

 ${C_e \choose e}$ Coordinate identification vector for component e

$$C_r$$
 rth component of $\{C_e\}$

$$C_{11}(\xi)$$
, $C_{12}(\xi)$, $C_{22}(\xi)$ Orthotropic stress-strain coefficients

$$C_{33}(\xi), C_{34}(\xi), C_{44}(\xi)$$
 Orthotropic moment-curvature coefficients

ds Differential meridional distance along shell

()
$$=\frac{d(\)}{ds}$$
 Derivative with respect to meridional distance s

$$D_1$$
, D_2 Constants used to determine the rotation vector $\{\rho\}$

$$\begin{bmatrix} D_1 \end{bmatrix}_{(2\times11)}$$
, $\begin{bmatrix} D_2 \end{bmatrix}_{(2\times11)}$ Matrices used in the definition of the rotation vector $\{\rho\}$

- e General identification number for vehicle components which may stand for a or b
- g Ratio of vehicle acceleration to acceleration of gravity
- H Total fluid level measured positive upward from the base of a2
- \overline{H}_1 , \overline{H}_2 , \overline{H}_3 Fluid levels associated with tank shell sections al, a2, a3
- $[K]_{(N_{\hat{a}}\times N_{\hat{a}})}$ Total launch vehicle stiffness matrix
- $[\overline{K}_{\underline{a}}]_{((\overline{U}+\overline{V})\times(\overline{U}+\overline{V}))}$ Stiffness matrix for shell component a associated with the local coordinates
 - [K_c] Stiffness matrix of spring-mass component c associated with the system coordinates
 - $\begin{bmatrix} K_s \end{bmatrix}$ Row $s \left(s = 1, 2, \dots (\overline{U} + \overline{V})_a \right) \text{ of } \left[K_{\underline{a}} \right]$
 - \mathbf{K}_{ϕ} Shell meridional curvature
 - K_{θ} Shell hoop curvature
 - L Length of conical shell
 - m_{t} Generalized mass for mode t
 - M Total mass matrix for the launch vehicle
 - [Ma] Mass matrix for shell component a associated with the system coordinates
 - $\left[\overline{M}_{a}\right]$ Mass matrix for shell component a associated with the local coordinates
 - Mass matrix for fluid component b associated with the system coordinates

 $|\overline{\mathrm{M}}_{\mathrm{h}}|$ Mass matrix for fluid component b associated with the local coordinates M_{c} Mass matrix for spring-mass component c associated with the system coordinates N_{C} Total number of system coordinates used in the vehicle model Total number of fluid components used in $N_{\mathbf{F}}$ the vehicle model N_{M} Total number of spring-mass components used in the vehicle model Total number of fixed coordinates N_{O} Total number of shell components used in N_{S} the vehicle model N_{ϕ}^{O} Initial meridional stress Circular frequency of the vehicle р Circular frequency of the vehicle for mode t p_t $\left\{P\right\}_{\left(\left(N_{C}^{-1}N_{O}\right)\times 1\right)}$ Applied load vector Q_{\downarrow} Generalized force acting on mode t Radial distance from the vehicle longitudinal axis to each point on the shell Å Radial distance from the vehicle longitudinal axis to each point in the fluid Meridional radius of curvature of the shell rı Hoop radius of curvature of the shell $\left(\mathbb{R}\right)_{\left(\mathbb{N}_{\mathbb{C}}^{\times 1}\right)}$ Displacement response vector $\{\bar{R}\}$ Displacement response amplitude vector

${S_{a}\choose (\overline{U}+\overline{V})\times 1}$	Vector of internal forces or moments acting at each point of shell component a
⟨̄s̄⟩	Amplitude vector of internal forces S_a
t	Identification number for a particular mode of vibration
t	Time
$\begin{bmatrix} \mathbf{T} \mathbf{a} \end{bmatrix} \left((\overline{\mathbf{U}} + \overline{\mathbf{V}}) \mathbf{x} (\overline{\mathbf{U}} + \overline{\mathbf{V}}) \right)$	Transformation matrix which relates local to system coordinates in shell component a
$\left[^{\mathrm{T}}\mathbf{b} ight] _{\left(\overline{\mathbf{W}}\mathbf{x}\overline{\mathbf{W}} ight) }$	Transformation matrix which relates local to system coordinates in fluid component b
$\left\{ \mathbf{U} \right\}_{\left((\overline{\mathbf{U}} + \overline{\mathbf{V}}) \times 1 \right)}, \left\{ \mathbf{V} \right\}_{\left((\overline{\mathbf{U}} + \overline{\mathbf{V}}) \times 1 \right)}$	Longitudinal and radial displacement vectors, respectively, for shell components
$\mathbf{u}_{\mathbf{k}}(\xi), \ \mathbf{v}(\xi)$ $\left\{ \mathbf{u}_{\mathbf{k}}(\mathbf{x}) \right\}_{(\overline{\mathbf{W}} \times 1)} = \left\{ \mathbf{u}_{\mathbf{m}}(\mathbf{x}) \right\}$	Generalized longitudinal and radial displace- ments, respectively, for shell components
	Longitudinal and radial fluid displacements, respectively
U, V	Total number of longitudinal and radial system coordinates, respectively, associated with each shell component
Ū,∇	Total number of longitudinal and radial local coordinates, respectively, associated with each shell component
$[U]_{(U\times 11)}, [V]_{(V\times 11)}$	Constant matrices used in the definition of the system coordinates
^w i, ^w e	Fluid weight densities interior and exterior, respectively, to each shell component
$\overline{\mathbf{w}}_{\mathbf{i}}, \ \overline{\mathbf{w}}_{\mathbf{e}}$	Effective fluid weight densities equal to, respectively, gw; and gw;
$\overline{\mathbf{w}}$	The sum of $\overline{\mathbb{U}}$ + $\overline{\mathbb{V}}$ for the three shells surrounding a fluid component

x	Longitudinal axis of the launch vehicle			
$^{\mathbf{z}}_{\mathbf{t}}$	Structural impedance for mode t			
$\left\{ a_{a}\right\} _{\left(\left(\widetilde{\overline{U}}+\overline{V}\right)\times1\right)}$	Modal vector whose components are the longitudinal, radial and rotational system coordinate displacements for shell component a			
$\left\{\overline{\alpha}_{\mathbf{a}}\right\}_{\left((\overline{\mathbb{U}}+\overline{\mathbb{V}})\times 1\right)}$	Consolidated vector of local coordinates			
$\left\{ \tilde{\mathbf{a}}_{\mathbf{k}} \right\}_{\left(\overline{\mathbf{U}}_{\mathbf{X}}1\right)}, \left\{ \tilde{\mathbf{\beta}}_{\ell} \right\}_{\left(\overline{\mathbf{V}}_{\mathbf{X}}1\right)}$	Generalized coordinates in the longitudinal and radial directions, respectively			
$\begin{bmatrix} \alpha \end{bmatrix}_{\text{(N}^{\text{C}}-\text{N}^{\text{O}})\times (\text{N}^{\text{C}}-\text{N}^{\text{O}})}$	Modal matrix with each column representing a vehicle mode shape			
$\left(\frac{1}{2} \left(\frac{1}{2$	Each row of [a] which is a system coordinate "s" displacement vector with natural mode elements			
$\left\{^{\alpha_{t}}\right\}_{\left(N_{C}^{-N_{O}}\right)\times 1}$	Each column of [a] which is a mode "t" displacement vector with system coordinate elements			
γ_a , γ_b	Mass densities for shell and fluid components respectively			
$\left(\bar{\delta}\right)_{\left(\left(N_{C}-N_{O}\right)\times 1\right)}$	Vector of steady-state displacement phase angles			
$\left\{\overline{\delta}\right\}_{\left((\overline{U}+\overline{V})\times 1\right)}$	Vector of phase angles for the internal forces of each shell component			
$\left[\Delta \mathbf{e}\right]_{\left(\overline{\mathbf{U}}+\overline{\mathbf{V}}\right)\times\mathbf{N}_{\mathbf{C}}} = \left[\delta_{\mathbf{r}\underline{\mathbf{s}}}\right]$	Transformation matrix relating total system displacements to component 3 system displacements			
^ϵ φ', ^ϵ θ	Meridional and hoop strains, respectively, for the shell components			
η_{t}	Ratio of actual damping to the critical damping for each mode t			
(\$)	Nondimensional variable describing location on each shell component			

- ρ Meridional rotation of the shell components
- ϕ Meridional angle
- ω Frequency of the forcing function in radians per second

11. REFERENCES

- 1. J.D. Wood, "Survey on Missile Structural Dynamics," EM 11-11, TRW Space Technology Laboratories, 1 June 1961.
- 2. R.A. Winje, J.H. Walker, and K.J. McKenna, "An Investigation of Low Frequency Longitudinal Vibration of the Titan II Missile During Stage I Flight," 6438-6001-RU000, TRW Space Technology Laboratories, 26 March 1964.
- 3. J.S. Archer, "Consistent Matrix Formulations for Structural Analysis Using Influence-Coefficient Techniques," Preprint No. 64-488, Am. Inst. Aeron. and Astronaut., June-July 1964.
- 4. Walter C. Hurty and Moshe F. Rubinstein, <u>Dynamics of Structures</u>, Prentice-Hall, Inc., 1964.
- 5. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U.S. Department of Commerce, National Bureau of Standards, Applied Mathematic Series, 1964.
- 6. Tables of Lagrangian Interpolation Coefficients, National Bureau of Standards, Computation Laboratories, New York, Columbia University Press.
- 7. S.P. Timoshenko and J.M. Gere, Theory of Elastic Stability, Second Ed., McGraw-Hill Book Co., Inc., 1961.
- 8. W. Flügge, Stresses in Shells, Springer-Verlag, pp. 18-24, 97, 355-359, 1960.
- 9. W.F. Thielemann, "New Developments in the Nonlinear Theories of the Buckling of Thin Cylindrical Shells." Proceedings of the Durant Centennial Conference, Pergamon Press, New York, 1960.
- 10. Cornelius Lanczos, Applied Analysis, Prentice-Hall, Inc., p. 516, 1956.

APPENDIX A

SHELL GEOMETRY AND ENERGY EXPRESSIONS

The additional potential energy of a shell of revolution due to axisymmetric deformations is given in the form

$$V = \frac{1}{2} \int_{S} 2\pi r \left(N_{\phi} \epsilon_{\phi} + N_{\theta} \epsilon_{\theta} + M_{\phi} K_{\phi} + M_{\theta} K_{\theta} + N_{\phi}^{\circ} \rho^{2} \right) ds \qquad (A.1)$$

in which the last term represents the work done by the initial meridional stress, $N_{\phi}^{\ o}$. The initial hoop stress does not make a similar contribution to the potential energy since there is zero rotation in the hoop direction. In the notation of Flugge, the strains $(\epsilon_{\phi}, \epsilon_{\theta})$, curvatures (K_{ϕ}, K_{θ}) and the meridional rotation ρ are expressed in terms of the displacements \overline{v} and \overline{w} (see Figure A.1) as follows:

$$\epsilon_{\phi} = \frac{1}{r_1} \left(\frac{d\overline{v}}{d\phi} + \overline{w} \right)$$
 (A.2)

$$\epsilon_{\theta} = \frac{1}{r_2} (\overline{v} \cot \phi + \overline{w})$$
 (A.3)

$$K_{\phi} = \frac{1}{r_{1}} \frac{d}{d\phi} \left[\frac{1}{r_{1}} \left(\frac{d\overline{w}}{d\phi} - \overline{v} \right) \right]$$
 (A.4)

$$K_{\theta} = \frac{\cot \phi}{r_2} \left[\frac{1}{r_1} \cdot \left(\frac{d\overline{w}}{d\phi} - \overline{v} \right) \right]$$
 (A. 5)

$$\rho = \frac{1}{r_1} \left(\frac{d\overline{w}}{d\phi} - \overline{v} \right) \tag{A.6}$$

where r_1 and r_2 are the radii of curvature of the shell in the meridional and hoop directions, respectively. Hookes law for an orthotropic shell with the principal directions in the hoop and meridional directions takes the form:

$$\begin{cases}
N_{\phi} \\
N_{\theta} \\
N_{\theta} \\
M_{\phi}
\end{cases} =
\begin{bmatrix}
C_{11} & C_{12} & 0 & 0 \\
C_{12} & C_{22} & 0 & 0 \\
0 & 0 & C_{33} & C_{34} \\
0 & 0 & C_{34} & C_{44}
\end{bmatrix}
\begin{cases}
\epsilon_{\phi} \\
\epsilon_{\theta} \\
K_{\phi} \\
K_{\theta}
\end{cases}$$
(A.7)

The shell configurations to be considered for the bulkheads and the tank walls are listed below with their corresponding geometric parameters defined:

- 1. Conical Shell (Figure A. 2)
 - a) General Case

$$\phi = \phi_{O}$$

$$r_{1} = \infty$$

$$r_{2} = (R_{2}/\sin \phi_{O}) - S \cot \phi_{O}$$
(A.8)

b) Cylinder (radius = R)

$$\phi = \frac{\pi}{2}$$

$$r_1 = \infty$$

$$r_2 = R$$
(A. 9)

- 2. Ellipsoid (Figure A. 3)
 - a) General Case (a = semimajor axis, b = semiminor axis)

$$r_{1} = \frac{a^{2}b^{2}}{\left(a^{2}\sin^{2}\phi + b^{2}\cos^{2}\phi\right)^{3/2}}$$

$$r_{2} = \frac{a^{2}}{\left(a^{2}\sin^{2}\phi + b^{2}\cos^{2}\phi\right)^{1/2}}$$
(A. 10)

b) Hemisphere (radius = R)

$$r_1 = R$$

$$(A.11)$$

$$r_2 = R$$

For the present analysis, the longitudinal displacement u and the radial displacement v will be more convenient. They are related to the displacements \overline{v} and \overline{w} by the transformation

$$\overline{v}$$
 = -u sin ϕ + v cos ϕ
 \overline{w} = u cos ϕ + v sin ϕ (A. 12)

Substitution of this transformation into the strains, curvature and rotation yields

$$\epsilon_{\phi} = \frac{1}{r_1} \left(\frac{du}{d\phi} \sin \phi + \frac{dv}{d\phi} \cos \phi \right)$$
 (A.13)

$$\epsilon_{\theta} = \frac{V}{r}$$
 (A.14)

$$K_{\phi} = \frac{1}{r_1} \frac{d}{d\phi} \left[\frac{1}{r_1} \left(\frac{du}{d\phi} \cos \phi + \frac{dv}{d\phi} \sin \phi \right) \right]$$
 (A.15)

$$K_{\theta} = \frac{\cos \phi}{r} \left[\frac{1}{r_1} \left(\frac{du}{d\phi} \cos \phi + \frac{dv}{d\phi} \sin \phi \right) \right]$$
 (A.16)

$$\rho = \frac{1}{r_1^2} \left(\frac{du}{d\phi} \cos \phi + \frac{d\dot{v}}{d\phi} \sin \phi \right) \tag{A.17}$$

Figure A.1. Meridian of Shell of Revolution

Figure A.2. Conical Shell

Figure A. 3. Ellipsoidal Shell

APPENDIX B

INITIAL STRESSES IN SHELL ELEMENTS

In the formulation of the shell stiffness matrix, the effect of the initial meridional stresses is included. Expressions for these stresses are developed below for each of the shell elements to be considered. These derivations are based on membrane theory which is a good first order approximation except in very localized areas where bending predominates.

Conical Element

The derivation of the initial stresses in a conical element is divided into three steps. The notation is listed below and shown in Figure B. 1.

R, lower radius of the conic

 ϕ_0 meridional angle

L length of element

 $\overline{\mathbf{w}}_{:}$ effective density of interior fluid

h, location of interior fluid surface

 $\overline{\overline{w}}_{e}$ effective density of exterior fluid

 $\mathbf{h}_{\mathbf{e}}$ location of exterior fluid surface

p_i uniform internal pressure

p_e uniform external pressure

1. Stress due to uniform pressures and reactive force

$$N_{\phi_1} = \frac{1}{2\pi r \sin \phi_0} \left[W + (p_i - p_e) \pi (r^2 - R_1^2) \right] \quad 0 \le x \le L$$
 (B. 1)

2. Stress due to interior fluid

$$N_{\phi_{2}} = \frac{-1}{r \sin \phi_{o}} \int_{\mathbf{x}}^{\mathbf{h}_{i}} \operatorname{pr} d\mathbf{r}$$

$$= \frac{-1}{r \sin \phi_{o}} \int_{\mathbf{x}}^{\mathbf{h}_{i}} \overline{\mathbf{w}}_{i} (\mathbf{h}_{i} - \mathbf{x}) (\mathbf{R}_{2} - \mathbf{x} \cot \phi_{o}) (-d \mathbf{x} \cot \phi_{o})$$

$$= + \frac{\overline{\mathbf{w}}_{i} \cot \phi_{o}}{r \sin \phi_{o}} \left[\mathbf{h}_{i} (\mathbf{h}_{i} - \mathbf{x}) \mathbf{R}_{2} - \frac{1}{2} \left(\mathbf{h}_{i}^{2} - \mathbf{x}^{2} \right) (\mathbf{R}_{2} + \mathbf{h}_{i} \cot \phi_{o}) + \frac{1}{3} \left(\mathbf{h}_{i}^{3} - \mathbf{x}^{3} \right) \cot \phi_{o} \right] \qquad \mathbf{x} = \mathbf{h}_{i} \leq \mathbf{L} \qquad (B.2)$$

Case 2: h, - L

$$N_{\phi_2} = \frac{-1}{r \sin \phi_0} \int_{\mathbf{x}}^{L} pr dr$$

$$= + \frac{\overline{w}_{i} \cot \phi_{o}}{r \sin \phi_{o}} \left[h_{i} (L - x) R_{2} - \frac{1}{2} (L^{2} - x^{2}) (R_{2} + h_{i} \cot \phi_{o}) + \frac{1}{3} (L^{3} - x^{3}) \cot \phi_{o} \right] \qquad 0 \le x \le L \qquad (B. 3)$$

3. Stress due to exterior fluid

$$N_{\phi_3} = \frac{-1}{r \sin \phi_o} \int_{\mathbf{x}}^{\mathbf{h}_e} \operatorname{pr} d\mathbf{r}$$

$$-\frac{\overline{w}_e \cot \phi_o}{r \sin \phi_o} \left[h_e (h_e - \mathbf{x}) R_2 - \frac{1}{2} \left(h_e^2 - \mathbf{x}^2 \right) (R_2 + h_e \cot \phi_o) + \frac{1}{3} \left(h_e^3 - \mathbf{x}^3 \right) \cot \phi_o \right] \qquad 0 \le \mathbf{x} \le h_e \le L \qquad (B.4)$$

$$\begin{split} N_{\phi_3} &= \frac{-1}{r \sin \phi_o} \int_{\mathbf{x}}^{\mathbf{L}} \mathbf{p} r \, dr \\ &= \frac{-\overline{\mathbf{w}}_e \cot \phi_o}{r \sin \phi_o} \left[h_e \, (\mathbf{L} - \mathbf{x}) \, R_2 - \frac{1}{2} \, (\mathbf{L}^2 - \mathbf{x}^2) \, (R_2 + h_e \cot \phi_o) \right. \\ &+ \frac{1}{3} \, (\mathbf{L}^3 - \mathbf{x}^3) \cot \phi_o \right] \qquad 0 \le \mathbf{x} \le \mathbf{L} \qquad (B.5) \end{split}$$

The total meridional initial stress on the conic will then be the sum of the above stresses

$$N_{\phi} = N_{\phi_1} + N_{\phi_2} + N_{\phi_3}$$
 (B. 6)

Ellipsoidal Element

The expressions for the initial stress for an ellipsoidal element are developed separately for the upright and inverted bulkheads. The notation for both cases is listed below and shown in Figures B. 2 and B. 3.

a radius of base

b height of element

slope of meridian (Note: The semimajor and semiminor axes, a and b, can be computed from \overline{a} , \overline{b} , and ϕ_0 .)

w, effective density of interior fluid

h, location of surface of interior fluid

 \overline{w}_{e} effective density of exterior fluid

h_e location of surface of exterior fluid

p_i uniform internal pressure

p_e uniform external pressure

Upright Bulkhead (Figure B. 2)

1. Stress for exterior fluid

Case 1:
$$h_e \le \bar{b}$$

$$N_{\phi_1} = -\frac{p_e^r 2}{2} + \frac{1}{2\pi r \sin \phi} \int_{r}^{r} 2\pi r p dr$$

where

$$\overline{r} = a \sqrt{1 - \frac{\left(h_e + b - \overline{b}\right)^2}{b^2}} = a \sqrt{1 - \frac{H_e^2}{b^2}}$$

$$p = -\overline{w}_e (h_e - x)$$

$$x + (b - \overline{b}) = b \sqrt{1 - \frac{r^2}{a^2}}$$
(B. 7)

This finally leads to

$$N_{\phi_{1}} = -\frac{p_{e}^{r_{2}}}{2} - \frac{\overline{w}_{e}}{r \sin \phi} \left[\frac{H_{e}}{2} (r^{2} - \overline{r}^{2}) - \frac{a^{2}}{3b^{2}} H_{e}^{3} + \frac{a^{2}b}{3} \left(1 - \frac{r^{2}}{a^{2}} \right)^{3/2} \right]$$

$$for \ \overline{r} \le r \le \overline{a}$$

$$for \ 0 \le r \le \overline{r}$$
(B. 8)

Case 2:
$$h_e > \bar{b}$$

$$N_{\phi_1} = -\frac{p_e^r_2}{2} + \frac{1}{2\pi r \sin \phi} \int_0^r 2\pi r p \, dr$$

$$= -\frac{p_e r_2}{2} - \frac{\overline{w}_e}{r \sin \phi} \left[\frac{H_e r^2}{2} + \frac{a^2 b}{3} \left(1 - \frac{r^2}{a^2} \right)^{3/2} - \frac{a^2 b}{3} \right] \quad \text{for } 0 \le r \le \overline{a} \quad (B. 9)$$

2. Stress for interior fluid

$$N_{\phi_2} = \frac{p_i r_2}{2} + \frac{1}{2\pi r \sin \phi} \int_{\frac{\pi}{r}}^{r} 2\pi r p dr$$
 (B. 10)

where

$$\overline{\overline{r}} = a \sqrt{1 - \frac{(h_i + b - b)^2}{b^2}} = a \sqrt{1 - \frac{H_i^2}{b^2}}$$

$$p = \overline{w}_i (h_i - x)$$

or, after integration,

$$N_{\phi_{2}} = \frac{p_{i}r_{2}}{2} + \frac{\overline{w}_{i}}{r \sin \phi} \left[\frac{H_{i}}{2} (r^{2} - \overline{r}^{2}) - \frac{a^{2}}{3b^{2}} H_{i}^{3} + \frac{a^{2}b}{3} \left(1 - \frac{r^{2}}{a^{2}} \right)^{3/2} \right]$$

$$for \ \overline{r} < r \le \overline{a}$$

$$N_{\phi_{2}} = \frac{p_{i}r_{2}}{2}$$

$$for \ 0 \le r \le \overline{r}$$
(B. 11)

Inverted Bulkhead (Figure B. 3)

1. Stress for interior fluid

$$N_{\phi_1} = \frac{P_i^r_2}{2} + \frac{1}{2\pi r \sin \phi} \int_0^r 2\pi r p dr$$
 (B. 12)

for

$$r \leq \overline{r} = a \sqrt{1 - \frac{\left(h_i + b - \overline{b}\right)^2}{b^2}}$$

$$= a \sqrt{1 - \frac{H_i^2}{b^2}} \qquad h_i \geq 0$$

or

$$=\overline{a}$$
 $h_i < 0$

where

$$p = w_i (x - h_i) \qquad x \ge h_i$$

This leads to the following expressions for the stress:

$$N_{\phi_{1}} = \frac{p_{1}r_{2}}{2} - \frac{\overline{w}_{1}}{r \sin \phi} \left[\frac{H_{1}}{2} r^{2} + \frac{a^{2}b}{3} \left(1 - \frac{r^{2}}{a^{2}} \right)^{3/2} - \frac{a^{2}b}{3} \right] \quad 0 \le r \le \overline{r}$$

$$N_{\phi_{1}} = \frac{p_{1}r_{2}}{2} - \frac{\overline{w}_{1}}{r \sin \phi} \left[\frac{H_{1}}{2} \overline{r}^{2} + \frac{a^{2}b}{3} \left(1 - \frac{\overline{r}^{2}}{a^{2}} \right)^{3/2} - \frac{a^{2}b}{3} \right] \quad \overline{r} \le r \le \overline{a}$$
(B. 13)

2. Stress for lower fluid

$$N_{\phi_2} = -\frac{p_e^r_2}{2} + \frac{1}{2\pi r \sin \phi} \int_0^r 2\pi r p \, dr$$

for

$$r \le \overline{r} = a \sqrt{1 - \frac{\left(h_e + b - \overline{b}\right)^2}{b^2}} = a \sqrt{1 - \frac{H_e^2}{b^2}}$$
 (B. 14)

where

$$p = -\overline{w}_e (x - h_e) \qquad x \ge h_e$$

or, after integration

$$N_{\phi_{2}} = -\frac{p_{e}^{r} 2}{2} + \frac{\overline{w}}{r \sin \phi} \left[\frac{H_{e}}{2} r^{2} + \frac{a^{2} b}{3} \left(1 - \frac{r^{2}}{a^{2}} \right)^{3/2} - \frac{a^{2} b}{3} \right] \text{ for } 0 \le r \le \overline{r}$$

$$N_{\phi_{2}} = -\frac{p_{e}^{r} 2}{2} + \frac{\overline{w}}{r \sin \phi} \left[\frac{H_{e}}{2} \overline{r}^{2} + \frac{a^{2} b}{3} \left(1 - \frac{\overline{r}^{2}}{a^{2}} \right)^{3/2} - \frac{a^{2} b}{3} \right] \overline{r} \le r \le \overline{a}$$
(B. 15)

Figure B.1. Conic

Figure B.2. Upright Ellipsoidal Bulkhead

Figure B.3. Inverted Ellipsoidal Bulkhead

APPENDIX C

FLUID MASS MATRIX EXPRESSIONS

Detailed expressions are given below for evaluating Equation (4.4) to obtain the fluid component mass matrix. Three cases are involved depending upon whether the upper and lower tank bulkheads are convex upward or convex downward (see Section 2.0). A general description of the program operations utilized to construct the mass matrix for the fluid tanks is described in Appendix E. A brief flow chart followed by the relevant equations in a form suitable for a weighting matrix integration scheme is included to provide the user with a more basic understanding of the digital program.

C. 1 CASE I. UPPER BULKHEAD CONVEX UPWARD, LOWER BULKHEAD CONVEX DOWNWARD

Equation (4.6) for the general tank shell can be expressed as the sum of contributions to \overline{M}_b from fluid in three sections of the tank, as illustrated in Figure C.1 for Case I. One of these sections is that located above the base of the upper bulkhead (shell 1). A second lies below the top of lower bulkhead (shell 2). The third lies between the two bulkheads. In general, the motion of the fluid in any section may be affected by the generalized coordinate distortions associated with all three tank shell components. Thus, Equation (4.6) is expressed as

$$\frac{1}{m_{b}} \left[\overline{M}_{b} \right] = \sum_{m=m_{o}}^{m=3} \int_{0}^{\overline{H}(m)} \left(\frac{4}{r_{(m)}} \left(\frac{4}{r_{(m)}} \left(\frac{2}{r_{(m)}} \right) \hat{u}_{(m)}(x) \right) \right) \left(\frac{r_{(m)}}{2} \hat{u}_{(m)}(x) \right)^{T} + \frac{1}{2} \left(r_{(m)} \hat{v}_{(m)}(x, r) \right) \left(r_{(m)} \hat{v}_{(m)}(x, r) \right)^{T} dx$$
(C.1)

where $m_0 = 1$, 2 or 3, depending upon whether the fluid surface lies within the range of tank section (1), (2) or (3), as illustrated in Figure C.1. $\overline{H}_{(m)}$ is the depth of fluid within tank section (m), $r_{(m)}$ is the radius of shell (m) and, similarly, $\hat{u}(x)$ and $\hat{v}_{(m)}(x,r)$ represent the fluid motions

within tank section m. The specific form of the column matrix $\{\hat{u}_{(m)}(x)\}$ in terms of the component shell generalized coordinates is

$$\begin{cases}
-\int_{0}^{x} r_{\{1\}} \cot \phi_{\{1\}} \left(u_{\{1\}}(\xi)\right) dx \\
-\int_{0}^{x} r_{\{1\}} \left(v_{\{1\}}(\xi)\right) dx \\
-\int_{0}^{\overline{H}(2)} r_{\{2\}} \cot \phi_{\{2\}} \left(u_{\{2\}}(\xi)\right) dx
\end{cases}$$

$$-\int_{0}^{\overline{H}(2)} r_{\{2\}} \cot \phi_{\{2\}} \left(u_{\{2\}}(\xi)\right) dx \\
-\int_{0}^{\overline{H}(3)} r_{\{3\}} \cot \phi_{\{3\}} \left(u_{\{3\}}(\xi)\right) dx$$

$$-\int_{0}^{x} r_{\{2\}} \cot \phi_{\{3\}} \left(u_{\{3\}}(\xi)\right) dx$$

$$-\int_{0}^{x} r_{\{2\}} \cot \phi_{\{2\}} \left(u_{\{2\}}(\xi)\right) dx$$

$$\begin{cases}
-\int_{0}^{x} r_{\{2\}} \cot \phi_{\{2\}} \left(u_{\{2\}}(\xi)\right) dx \\
-\int_{0}^{x} r_{\{2\}} \cot \phi_{\{3\}} \left(u_{\{3\}}(\xi)\right) dx
\end{cases}$$

$$\begin{cases}
-\int_{0}^{x} r_{\{2\}} \cot \phi_{\{3\}} \left(u_{\{3\}}(\xi)\right) dx \\
-\int_{0}^{x} r_{\{3\}} \cot \phi_{\{3\}} \left(u_{\{3\}}(\xi)\right) dx
\end{cases}$$

$$\begin{cases}
-\int_{0}^{x} r_{\{2\}} \cot \phi_{\{3\}} \left(u_{\{3\}}(\xi)\right) dx \\
-\int_{0}^{x} r_{\{3\}} \cot \phi_{\{3\}} \left(u_{\{3\}}(\xi)\right) dx
\end{cases}$$

$$\begin{cases}
-\int_{0}^{\overline{H}(3)} r_{\{3\}} \cot \phi_{\{3\}} \left(u_{\{3\}}(\xi)\right) dx \\
-\int_{0}^{\overline{H}(3)} r_{\{3\}} \left(v_{\{3\}}(\xi)\right) dx
\end{cases}$$

$$\begin{cases}
-\int_{0}^{\overline{H}(3)} r_{\{3\}} \cot \phi_{\{3\}} \left(u_{\{3\}}(\xi)\right) dx
\end{cases}$$

$$\begin{cases}
-\int_{0}^{\overline{H}(3)} r_{\{3\}} \cot \phi_{\{3\}} \left(u_{\{3\}}(\xi)\right) dx
\end{cases}$$

$$\begin{cases}
-\int_{0}^{\overline{H}(3)} r_{\{3\}} \cot \phi_{\{3\}} \left(u_{\{3\}}(\xi)\right) dx
\end{cases}$$

and

where

$$\left\{ \mathbf{u_{(m)}}(\xi) \right\} = \left\{ \mathbf{u_{1}}(\xi) \\ \vdots \\ \mathbf{u_{\overline{U}}}(\xi) \right\}$$

and

$$\left\{ v_{(m)}(\xi) \right\} = \left\{ v_{1}(\xi) \\ \vdots \\ v_{\overline{V}}(\xi) \right\}$$

are the generalized coordinate displacement vectors for tank shell component m, and $\phi_{(m)}$ is the meridional angle for tank shell component m, and \overline{U} and \overline{V} are the number of longitudinal and radial generalized coordinates, respectively, in shell component m.

The column matrix $\{r_{(m)}^{\hat{v}}(m)^{(x,r)}\}$ in terms of the component shell generalized coordinates is

$$\left\{ r_{(3)} \hat{v}_{(3)}(x, r) \right\} = \begin{cases} 0 \\ ------ \\ ------ \\ r_{(3)} \cot \phi_{(3)} \left\{ u_{(3)}(\xi) \right\} \end{cases} - \frac{2 \cot \phi_{(3)}}{r_{(3)}} \left\{ \frac{r_{(3)}^{2}}{2} \hat{u}_{(3)}(x) \right\}$$

$$\left\{ r_{(3)} \left\{ v_{(3)}(\xi) \right\} \right\}$$

$$(C. 7)$$

C. 2 CASE II. UPPER BULKHEAD CONVEX DOWNWARD, LOWER BULKHEAD CONVEX DOWNWARD

The Case II configuration is illustrated in Figure C.2 which also defines the tank sections m for this case. Equation (C.1) for the fluid in tank section (1) is modified as follows. The fluid motion $\{\hat{u}(x)\}$ in tank section (1) is given by

$$\begin{cases} \int_{o}^{x} r_{(1)} \cot \phi_{\{1\}} \left(u_{\{1\}}(\xi)\right) dx \\ \int_{o}^{x} r_{(1)} \left\{v_{(1)}(\xi)\right\} dx \\ -\int_{o}^{x} r_{(2)} \cot \phi_{\{2\}} \left\{u_{(2)}(\xi)\right\} dx - \int_{o}^{\overline{H}_{2}} r_{(2)} \cot \phi_{\{2\}} \left(u_{(2)}(\xi)\right) dx \\ -\int_{o}^{x} r_{(2)} \left\{v_{(2)}(\xi)\right\} dx - \int_{o}^{\overline{H}_{2}} r_{(2)} \left\{v_{(2)}(\xi)\right\} dx \\ -\int_{o}^{\overline{H}_{3}} r_{(3)} \cot \phi_{(3)} \left\{u_{(3)}(\xi)\right\} dx \\ -\int_{o}^{\overline{H}_{3}} r_{(3)} \left\{v_{(3)}(\xi)\right\} dx \end{cases}$$

$$\begin{cases} \overline{H}_{3} \\ r_{(3)} \left\{v_{(3)}(\xi)\right\} dx \end{cases}$$

$$\left\{ \hat{V}_{(1)}(x, \hat{Y}) \right\} = \frac{\left(\hat{Y} - Y_{(2)} \right)}{\left(\hat{Y}_{(1)} - Y_{(2)} \right)} \left\{ \frac{\left\{ V_{(1)}(\xi) \right\}}{-\frac{1}{2} - \frac{1}{2}} - \cot \phi_{(1)} \left\{ \hat{V}_{(1)}(x) \right\} - \cot \phi_{(1)} \left\{ \hat{V}_{(1)}(x) \right\} - \cot \phi_{(2)} \left\{ \hat{V}_{(2)}(\xi) \right\}$$

Upon substitution of Equations (C.1) and (C.2) into Equation (4.1) and integration with respect to $\hat{\mathbf{r}}$ between the limits of $\mathbf{r}_{(1)}$ and $\mathbf{r}_{(2)}$, one obtains the following expression for the $\mathbf{m} = 1$ portion of Equation (C.1).

$$\begin{split} &\frac{1}{\pi\gamma_{b}}\left[\overline{M}_{b}\right]_{(1)} \\ &= \int_{o}^{\overline{H}(1)} \frac{4}{\left(\overline{r}_{(2)}^{2} - \overline{r}_{(1)}^{2}\right)} \underbrace{\left(\overline{r}_{(2)}^{2} - \overline{r}_{(1)}^{2}\right)}_{2} \underbrace{\left(\overline{r}_{(1)}^{2} - \overline{r}_{(1)}^{2}\right)}_{2} \underbrace{\left(\overline{r}_{(1$$

where

$$\left\{ \frac{\left\{ \frac{1}{c(2)^{2} - r_{(1)}^{2}} \right\} dx}{\left\{ \frac{(r_{(2)}^{2} - r_{(1)}^{2})}{2} d_{(1)}(x) \right\}} = \begin{cases}
-\int_{0}^{x + \overline{H}_{(2)}} r_{(2)} \cot \phi_{(2)} \left\{ u_{(2)}(\xi) \right\} dx}{r_{(2)} \cot \phi_{(2)} \left\{ u_{(2)}(\xi) \right\} dx} \\
-\int_{0}^{x + \overline{H}_{(2)}} r_{(2)} \left\{ v_{(2)}(\xi) \right\} dx}{r_{(3)} \cot \phi_{(3)} \left\{ u_{(3)}(\xi) \right\} dx} \\
-\int_{0}^{\overline{H}_{(3)}} r_{(3)} \cot \phi_{(3)} \left\{ u_{(3)}(\xi) \right\} dx}
-\int_{0}^{\overline{H}_{(3)}} r_{(3)} \left\{ v_{(3)}(\xi) \right\} dx
\end{cases}$$

$$\left\{ \hat{\mathbf{v}}_{(1,1)}(\mathbf{x},\mathbf{r}) \right\} = \left\{ \begin{array}{c} \left\{ \mathbf{v}_{(1)}(\xi) \\ \mathbf{v}_{(1)}(\xi) \\ 0 \\ - - - - - \\ 0 \end{array} \right\} - \frac{2 \cot \phi_{(1)}}{\left(\mathbf{r}_{(2)} - \mathbf{r}_{(1)}\right)} \left(\mathbf{r}_{(2)} - \mathbf{r}_{(1)}^{2} \right) \\ \left(\mathbf{r}_{(2)} - \mathbf{r}_{(1)} \right) \\ \mathbf{v}_{(1)}(\mathbf{x}) \\ \end{array} \right\}$$
(C. 12)

The expressions for the m = 2 and m = 3 portions of Equation (C.1) remain unchanged. In summary for evaluating the equivalent of Equation (C.1) for Case II tank configuration, use Equations (C.10), (C.11), (C.12) and (C.13) for m = 1, and Equations (C.1), (C.3), (C.4), (C 6) and (C.7) for m = 2 and m = 3.

C.3 CASE III. UPPER BULKHEAD CONVEX UPWARD, LOWER BULKHEAD CONVEX UPWARD

The Case III configuration is illustrated in Figure C. 3 which also defines the tank sections m for this case. Equation (C.1) for the fluid in tank section (3) is modified as follows. The fluid motion $\{\hat{u}(x)\}$ in tank section (3) is given by

$$\begin{cases}
\hat{u}_{(3)}(x) = \frac{\left(r_{(2)}^{2} - r_{(3)}^{2}\right)}{2} \\
-\int_{0}^{x} r_{(2)} \cot \phi_{(2)} \left\{u_{(2)}(\xi)\right\} \\
-\int_{0}^{x} r_{(2)} \left\{v_{(2)}(\xi)\right\} \\
-\int_{0}^{x} r_{(3)} \cot \phi_{(3)} \left\{u_{(3)}(\xi)\right\} \\
\int_{0}^{x} r_{(3)} \left\{v_{(3)}(\xi)\right\}
\end{cases}$$
(C. 14)

The fluid motion $\{\hat{v}(x,\hat{r})\}$ in tank section (3) is given by

Upon substitution of Equations (C. 14) and (C. 15) into Equation (4.1) and integration with respect to f between the limits of $r_{(3)}$ and $r_{(2)}$, one obtains the following expression for the m = 3 portion of Equation (C. 1).

$$\frac{1}{\pi \gamma_b} \left[\overline{M}_b \right]_{(3)}$$

$$= \int_{0}^{\overline{H}(3)} \frac{4}{\left(r_{(2)}^{2} - r_{(3)}^{2}\right)} \left(\frac{\left(r_{(2)}^{2} - r_{(3)}^{2}\right)}{2} \hat{u}_{(3)}(x)\right) \left(\frac{\left(r_{(2)}^{2} - r_{(3)}^{2}\right)}{2} \hat{u}_{(3)}(x)\right)^{T} dx$$

$$+ \int_{0}^{\overline{H}(3)} \frac{\left(r_{(2)}^{4} + 8r_{(2)}r_{(3)}^{3} - 6r_{(2)}^{2}r_{(3)}^{2} - 3r_{(3)}^{4}\right)}{6\left(r_{(3)} - r_{(2)}\right)^{2}} \left(\hat{v}_{(3,3)}(x,r)\right) \left(\hat{v}_{(3,3)}(x,r)\right)^{T} dx$$

$$+ \int_{0}^{\overline{H}(3)} \frac{\left(r_{(2)}^{4} + 2r_{(2)}r_{(3)}^{3} - 2r_{(2)}^{3}r_{(3)} - r_{(3)}^{4}\right)}{6\left(r_{(3)} - r_{(2)}\right)^{2}} \left(\hat{v}_{(3,3)}(x,r)\right) \left(\hat{v}_{(3,3)}(x,r)\right)^{T} dx$$

$$+ \left(\hat{v}_{(3,2)}(x,r)\right) \left(\hat{v}_{(3,3)}(x,r)\right)^{T} dx$$

$$+ \left(\hat{v}_{(3,2)}(x,r)\right)^{T} dx$$

$$+ \int_{0}^{\overline{H}(3)} \frac{\left(3r_{(2)}^{4} - 8r_{(2)}^{3}r_{(3)}^{3} + 6r_{(2)}^{2}r_{(3)}^{2} - r_{(3)}^{4}\right)}{6\left(r_{(3)} - r_{(2)}\right)^{2}} \left((3, 2)^{(x, r)} \right) \left((3, 2)^{(x, r)} \right)^{2} dx$$

where $\frac{\left(\frac{r}{(2)^{2}-r_{(3)}^{2}}\right)}{\left(\frac{r}{(2)^{2}-r_{(3)}^{2}}\right)} \hat{u}_{(3)}(x) = \begin{cases}
-\int_{0}^{x} r_{(2)} \left(v_{(2)}(\xi)\right) dx \\
-\int_{0}^{x} r_{(2)} \left(v_{(2)}(\xi)\right) dx \\
-\int_{0}^{x} r_{(3)} \left(v_{(3)}(\xi)\right) dx \\
+\int_{0}^{x} r_{(3)} \left(v_{(3)}(\xi)\right) dx
\end{cases} (C. 16)$

$$\begin{cases}
\hat{v}_{(3,3)}(x,r) \\
\hat{v}_{(3,3)}(x,r)
\end{cases} = \begin{cases}
0 \\
\cot \phi_{(3)} \left\{ u_{(3)}(\xi) \right\} \\
\begin{cases}
v_{(3)}(\xi) \\
\end{cases}
\end{cases} - \frac{2 \cot \phi_{(3)}}{\left(r_{(2)}^2 - r_{(3)}^2 \right)} \frac{\left(r_{(2)}^2 - r_{(3)}^2 \right)}{2} \hat{u}_{(3)}(x) \\
\end{cases} \\
\begin{cases}
\hat{v}_{(3)}(\xi) \\
\end{cases} - \frac{2 \cot \phi_{(3)}}{\left(r_{(2)}^2 - r_{(3)}^2 \right)} \frac{\left(r_{(2)}^2 - r_{(3)}^2 \right)}{2} \hat{u}_{(3)}(x) \\
\end{cases} \\
\begin{cases}
\hat{v}_{(3,2)}(x,r) \\
\end{cases} = \begin{cases}
0 \\
\\
\frac{v_{(2)}(\xi)}{v_{(2)}(\xi)} \\
\end{cases} - \frac{2 \cot \phi_{(2)}}{r_{(2)}^2 - r_{(3)}^2} \frac{\left(r_{(2)}^2 - r_{(3)}^2 \right)}{2} \hat{u}_{(3)}(x) \\
\end{cases} \\
\end{cases}$$
(C. 18)

Equation (C.1) remains valid for m = 1 and m = 2, however, Equations (C.2) and (C.3), respectively, become

$$\begin{cases}
-\int_{0}^{x} r_{(1)} \cot \phi_{(1)} \left\{u_{(1)}(\xi)\right\} dx \\
-\int_{0}^{x} r_{(1)} \left\{v_{(1)}(\xi)\right\} dx \\
-\int_{\overline{H}(2)}^{\overline{H}(2)} r_{(2)} \cot \phi_{(2)} \left\{u_{(2)}(\xi)\right\} dx \\
-\int_{\overline{H}(3)}^{\overline{H}(2)} r_{(2)} \left\{v_{(2)}(\xi)\right\} dx \\
-\int_{\overline{H}(3)}^{\overline{H}(2)} r_{(2)} \left\{v_{(2)}(\xi)\right\} dx \\
+\int_{0}^{\overline{H}(3)} r_{(3)} \cot \phi_{(3)} \left\{u_{(3)}(\xi)\right\} dx \\
+\int_{0}^{\overline{H}(3)} r_{(3)} \left\{v_{(3)}(\xi)\right\} dx
\end{cases}$$
(C. 20)

$$\left\{ \frac{1}{\frac{1}{2}} \left(\frac{1}{2} \right)^{(x)} \right\} = \left\{ -\int_{\overline{H}(3)}^{x} r_{(2)} \left(\frac{1}{2} \right)^{(\xi)} \right\} dx$$

$$\left\{ -\int_{\overline{H}(3)}^{x} r_{(2)} \left(\frac{1}{2} \right)^{(\xi)} dx$$

$$\left\{ -\int_{\overline{H}(3)}^{x} r_{(2)} \left(\frac{1}{2} \right)^{(\xi)} dx$$

$$\left\{ -\int_{\overline{H}(3)}^{x} r_{(2)} \left(\frac{1}{2} \right)^{(\xi)} dx$$

$$\left\{ -\int_{\overline{H}(3)}^{x} r_{(3)} \cot \phi_{(3)} \left(\frac{1}{2} \right)^{(\xi)} dx$$

$$\left\{ -\int_{\overline{H}(3)}^{x} r_{(3)} \cot \phi_{(3)} \left(\frac{1}{2} \right)^{(\xi)} dx$$

$$\left\{ -\int_{\overline{H}(3)}^{x} r_{(3)} \cot \phi_{(3)} \left(\frac{1}{2} \right)^{(\xi)} dx$$

$$\left\{ -\int_{\overline{H}(3)}^{x} r_{(3)} \cot \phi_{(3)} \left(\frac{1}{2} \right)^{(\xi)} dx$$

$$\left\{ -\int_{\overline{H}(3)}^{x} r_{(3)} \cot \phi_{(3)} \left(\frac{1}{2} \right)^{(\xi)} dx$$

$$\left\{ -\int_{\overline{H}(3)}^{x} r_{(3)} \cot \phi_{(3)} \left(\frac{1}{2} \right)^{(\xi)} dx$$

$$\left\{ -\int_{\overline{H}(3)}^{x} r_{(3)} \cot \phi_{(3)} \left(\frac{1}{2} \right)^{(\xi)} dx$$

In summary for evaluating the equivalent of Equation (C.1) for Case III tank configuration, use Equations (C.1), (C.20) and (C.5) for m = 1, use Equations (C.1) with limits of integration

$$\int_{\overline{H}_{(3)}}^{\overline{H}_{(2)}}$$

Equations (C.21) and (C.6) for m = 2, and use Equations (C.16), (C.14) and (C.15) for m = 3.

A. DEFINITION OF TANK SECTIONS

Figure C.1. Case I Tank Configuration

Figure C.2. Case II Tank Configuration

Figure C.3. Case III Tank Configuration

APPENDIX D

CALCULATION OF THE SHELL STIFFNESS AND MASS MATRICES

In this section the equations for the shell stiffness and mass matrices presented in Section 3.0 are rewritten in a form more suitable for digital programming. As previously mentioned, integration of these equations is accomplished using a sixteen (16) point Gaussian weighting matrix integration scheme. ⁵

These operations may be performed in a straightforward fashion using matrix operations. The equations in this section are, therefore, written in matrix notation and are identical to the equations which are coded into the digital program. For a more complete understanding of the steps required in the construction of the shell stiffness and mass matrices, a functional flow chart depicting the program operations is presented in Section D.1. The weighting matrix coefficients are given in Section D.2 and other detailed expressions are provided in Sections D.3, D.4 and D.5 for elements \overline{KM} , M and for the initial stresses N_{ϕ} .

D.1 FUNCTIONAL FLOW CHART FOR CALCULATION OF SHELL STIFFNESS AND MASS MATRICES

D.1 FUNCTIONAL FLOW CHART FOR CALCULATION OF SHELL STIFFNESS AND MASS MATRICES (Continued)

D.2 GAUSSIAN WEIGHTING MATRIX TABLES

DATA FOR $\left[\xi_{G16}^{n}\right]$		DATA [W _G]			
Gl	0.00529	95325	Wl	0.01357	62297
G2	0.02771	24885	w2	0.03112	67620
G3	0.06718	43988	w3	0.04757	92558
G4	0.12229	77958	W4	0.06231	44857
G5	0.19106	18778	W5	0.07479	79944
G6	0.27099	16112	w6	0.08457	82597
G7	0.35919	82246	W7	0.09130	17075
G8	0.45249	37451	W8	0.09472	53052
G9	0.54750	62549	W9	0.09472	53052
G10	0.64080	17754	W10	0.09130	17075
G11	0.72900	83888	W11	0.08457	82597
G12	0.80893	81222	W12	0.07479	79944
G13	0.87770	22042	W13	0.06231	44857
Gl4	0.93281	56012	W14	0.04757	92558
G15	0.97228	75115	W15	0.03112	67620
G16	0.99470	04675	w16	0.01357	62297

D.3 ASSEMBLY OF $[r\overline{KM}F]$ FOR M = 1, 2, ..., 13:

The equations for \overline{KM} and F are presented below and are evaluated at the points $\xi=G_1,\ G_2,\ \cdots,\ G_{16}.$

$$\overline{KI} = \frac{1}{2} KI = \frac{1}{2} \left[C_{11} \sin^2 \phi + C_{33} \frac{1}{r_1^2} \left(\sin \phi + \frac{\dot{r}_1}{r_1} \cos \phi \right)^2 - C_{34} \frac{2 \cos^2 \phi}{r \cdot r_1} \left(\sin \phi + \frac{\dot{r}_1}{r} \cos \phi \right) + C_{44} \frac{\cos^4 \phi}{r^2} + N_{\phi}^{\circ} \cos^2 \phi \right]$$

$$\overline{K2} = \frac{1}{2} K2 = \frac{1}{2} \left(C_{33} \cos^2 \phi \right)$$

$$\overline{\text{K3}} = \text{K3} = -C_{33} \frac{\cos \phi}{r_1} \left(\sin \phi + \frac{\dot{r}_1}{r_1} \cos \phi \right) + C_{34} \frac{\cos^3 \phi}{r}$$

$$\overline{K4} = K4 = C_{12} \frac{\cos \phi}{r}$$

$$\overline{\text{K5}} = \frac{1}{2} \text{ K5} = \frac{1}{2} \left(C_{22} \frac{1}{r^2} \right)$$

$$\overline{\text{K6}} = \frac{1}{2} \text{ K6} = \frac{1}{2} \left[C_{11} \cos^2 \phi + C_{33} \frac{1}{r_1} \left(\cos \phi - \frac{\dot{r}_1}{r_1} \sin \phi \right)^2 \right]$$

$$+ C_{34} \frac{2 \sin \phi \cos \phi}{r \cdot r_1} \left(\cos \phi - \frac{r_1}{r_1} \sin \phi \right)$$

$$+ C_{44} \frac{\sin^2 \phi \cos^2 \phi}{r^2} + N_{\phi}^{o} \sin^2 \phi$$

$$\overline{K7} = \frac{1}{2} K7 = \frac{1}{2} \left(C_{33} \sin^2 \phi \right)$$

$$K8 = K8 = C_{33} \frac{\sin \phi}{r_1} \left(\cos \phi - \frac{r_1}{r_1} \sin \phi\right) + C_{34} \frac{\sin^2 \phi \cos \phi}{r}$$

$$\overline{K9} = K9 = -C_{12} \frac{\sin \phi}{r}$$

$$\overline{\text{KII}} = \text{KII} = \begin{bmatrix} -\text{C}_{11} \sin \phi \cos \phi - \text{C}_{33} \frac{1}{r_1^2} \left(\cos \phi - \frac{\dot{r}_1}{r_1} \sin \phi \right) \left(\sin \phi + \frac{\dot{r}_1}{r_1} \cos \phi \right) \\ - \text{C}_{34} \frac{\sin \phi \cos \phi}{\mathbf{r} \cdot \mathbf{r}_1} \left(\sin \phi + \frac{\dot{r}_1}{r_1} \cos \phi \right) \\ + \text{C}_{34} \frac{\cos^2 \phi}{\mathbf{r} \cdot \mathbf{r}_1} \left(\cos \phi - \frac{\dot{r}_1}{r_1} \sin \phi \right) \\ + \text{C}_{44} \frac{\sin \phi \cos^3 \phi}{\mathbf{r}^2} + \text{N}_{\phi}^{\circ} \sin \phi \cos \phi \end{bmatrix}$$

$$\overline{\text{KII}} = \text{KII} = \begin{bmatrix} -\text{C}_{33} \frac{1}{r_1} \left(\sin \phi + \frac{\dot{r}_1}{r_1} \cos \phi \right) \sin \phi + \text{C}_{34} \frac{\sin \phi \cos^2 \phi}{\mathbf{r}} \right]$$

$$\overline{\text{KII}} = \text{KI2} = \begin{bmatrix} \text{C}_{33} \left(\cos \phi - \frac{\dot{r}_1}{r} \sin \phi \right) \frac{\cos \phi}{r_1} + \text{C}_{34} \frac{\sin \phi \cos^2 \phi}{r} \right]$$

 $\overline{K13} = K13 = C_{33} \sin \phi \cos \phi$

$$\frac{\dot{r}_1}{r} = \frac{-3(k^2 - 1) \sin \phi \cos \phi}{\left[(k^2 - 1) \sin^2 \phi + 1 \right]}$$

 $M = 2\pi \gamma_a rtF$

and

$$F = \frac{\left| L \right|}{\sin \theta}$$
 for conic

= $r_1^{\phi_0}$ for convex upward ellipsoidal bulkhead

= $r_1(\phi_0 - \pi)$ for convex downward ellipsoidal bulkhead

D.4 INITIAL STRESS FOR CONIC

DEFINE

$$N_{\phi_1} = \frac{1}{2\pi r \sin \phi_0} \left[gW + (p_i - p_e) \pi (r^2 - R_1^2) \right]$$

$$N_{\phi_{2}} = \frac{gw_{i}L^{3}\cot\phi_{o}}{r\sin\phi_{o}} \left[\frac{R_{2}h_{i}}{L^{2}} \left(\frac{h_{i}}{L} - \xi \right) - \frac{1}{2} \left(\frac{R_{2}}{L} + \frac{h_{i}}{L}\cot\phi_{o} \right) \left(\frac{h_{i}^{2}}{L^{2}} - \xi^{2} \right) + \frac{1}{3} \left(\frac{h_{i}^{3}}{L^{3}} - \xi^{3} \right) \cot\phi_{o} \right]$$

$$\begin{split} N_{\phi_{3}} &= \frac{gw_{i}L^{3}\cot\phi_{o}}{r\sin\phi_{o}} \left[\frac{R_{2}h_{i}}{L^{2}} \left(1 - \xi \right) - \frac{1}{2} \left(\frac{R_{2}}{L} + \frac{h_{i}}{L}\cot\phi_{o} \right) \left(1 - \xi^{2} \right) + \frac{1}{3} \left(1 - \xi^{3} \right) \cot\phi_{o} \right] \\ &\text{where} \\ &r = L \left(\frac{R_{2}}{L} - \xi \cot\phi_{o} \right) \end{split}$$

$$\frac{h_i}{L} > 1 \qquad N_{\phi} = N_{\phi_1} + N_{\phi_3} \qquad 0 < \xi < 1$$

D.5 INITIAL STRESS FOR ELLIPSOIDAL BULKHEAD

$$N_{\phi} = N_{\phi_{1}} + N_{\phi_{2}}(\mathbf{r}, 0, -\mathbf{w}_{i}, H_{i}) + N_{\phi_{2}}(\mathbf{r}, 0, \mathbf{w}_{e}, H_{e}) \quad 0 \leq \mathbf{r} \leq \overline{\mathbf{r}}$$

$$= N_{\phi_{1}} + N_{\phi_{2}}(\overline{\mathbf{r}}, 0, -\mathbf{w}_{i}, H_{i}) + N_{\phi_{2}}(\mathbf{r}, 0, \mathbf{w}_{e}, H_{e}) \quad \overline{\mathbf{r}} = \mathbf{r} \leq \overline{\mathbf{r}}$$

$$= N_{\phi_{1}} + N_{\phi_{2}}(\overline{\mathbf{r}}, 0, -\mathbf{w}_{i}, H_{i}) + N_{\phi_{2}}(\overline{\mathbf{r}}, 0, \mathbf{w}_{e}, H_{e}) \quad \overline{\mathbf{r}} = \mathbf{r} \leq \overline{\mathbf{r}}$$

$$N_{\phi} = N_{\phi_{1}} + N_{\phi_{2}}(\mathbf{r}, 0, -\mathbf{w}_{i}, H_{i}) + N_{\phi_{2}}(\overline{\mathbf{r}}, 0, \mathbf{w}_{e}, H_{e}) \quad 0 \leq \mathbf{r} \leq \overline{\mathbf{r}}$$

$$= N_{\phi_{1}} + N_{\phi_{2}}(\mathbf{r}, 0, -\mathbf{w}_{i}, H_{i}) + N_{\phi_{2}}(\overline{\mathbf{r}}, 0, \mathbf{w}_{e}, H_{e}) \quad \overline{\mathbf{r}} = \mathbf{r} \leq \overline{\mathbf{r}}$$

$$= N_{\phi_{1}} + N_{\phi_{2}}(\overline{\mathbf{r}}, 0, -\mathbf{w}_{i}, H_{i}) + N_{\phi_{2}}(\overline{\mathbf{r}}, 0, \mathbf{w}_{e}, H_{e}) \quad \overline{\mathbf{r}} = \mathbf{r} \leq \overline{\mathbf{r}}$$

$$= N_{\phi_{1}} + N_{\phi_{2}}(\overline{\mathbf{r}}, 0, -\mathbf{w}_{i}, H_{i}) + N_{\phi_{2}}(\overline{\mathbf{r}}, 0, \mathbf{w}_{e}, H_{e}) \quad \overline{\mathbf{r}} = \mathbf{r} \leq \overline{\mathbf{r}}$$

Note: when

$$b = 0, \quad \overline{r} = a \sqrt{1 - \frac{\left(h_e + b - |\overline{b}|\right)^2}{b^2}}$$

$$= \overline{r} = a \sqrt{1 - \frac{\left(h_i + b - |\overline{b}|\right)^2}{b^2}}$$

$$= a \sqrt{1 - \frac{\left(h_i + b - |\overline{b}|\right)^2}{b^2}}$$

$$= a \sqrt{1 - \frac{\left(h_e + b - |\overline{b}|\right)^2}{b^2}}$$

v

APPENDIX E

CALCULATION OF FLUID MASS MATRIX

The construction of the fluid mass matrix presented in Section 4.0 for three tank configurations differs from the construction of the shell inertial and stiffness characteristics insofar as the fluid equations involve double integrations. As mentioned in Section 4.0, these integrations are performed using a Lagrangian integration scheme. Although this technique is similar to the Gaussian method of integration used in the computation of the shell matrices described in Appendix D, only the Lagrangian technique is adaptable to double integration. The digital program utilizes a 21-point Lagrangian weighting matrix which is constructed by combining two 11-point matrices tabulated in the above reference. The increased number of points provides additional numerical accuracy. In the following pages, the fluid equations are rewritten to accommodate the integrations using the weighting matrix technique. A functional flow chart outlining the complete mass matrix calculation is provided.

^{*}The notation of this appendix corresponds to the notation utilized in the digital program.

E.1 FUNCTIONAL FLOW CHART FOR CALCULATION OF FLUID MASS MATRIX

E. 2 GENERAL MATRIX EQUATION FOR MASS MATRIX $\lceil \overline{M} \rceil$

$$\begin{bmatrix} \overline{M} \end{bmatrix}_{m=3} = \begin{bmatrix} \overline{M}_1 \end{bmatrix} + \begin{bmatrix} \overline{M}_2 \end{bmatrix}$$

$$\begin{bmatrix} \overline{\mathbf{W}}_{1} \end{bmatrix}_{\mathbf{m}=3} \begin{bmatrix} \overline{\mathbf{U}}_{k}^{1} \end{bmatrix} \begin{bmatrix} \mathbf{K}_{1} \end{bmatrix} \begin{bmatrix} \mathbf{W} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{U}}_{k}^{1} \end{bmatrix}^{T} \\ + \begin{bmatrix} \overline{\mathbf{U}}_{k}^{2} \end{bmatrix} \begin{bmatrix} \mathbf{K}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{W} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{U}}_{k}^{2} \end{bmatrix}^{T} \\ + \begin{bmatrix} \overline{\mathbf{U}}_{k}^{3} \end{bmatrix} \begin{bmatrix} \mathbf{K}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{W} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{U}}_{k}^{3} \end{bmatrix}^{T} \end{bmatrix}$$

$$\begin{bmatrix} \overline{\mathbf{v}}_{k}^{1} & \mathbf{c}_{1} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{k} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{v}}_{k}^{1} \end{bmatrix}^{T} + \begin{bmatrix} \overline{\mathbf{v}}_{k}^{1} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{k} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{v}}_{k}^{1} \end{bmatrix}^{T} \\ \begin{bmatrix} \overline{\mathbf{v}}_{k}^{1} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{k} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{k}^{1} \end{bmatrix}^{T} + \begin{bmatrix} \overline{\mathbf{v}}_{k}^{1} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{k} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{v}}_{k}^{1} \end{bmatrix}^{T} \\ \begin{bmatrix} \overline{\mathbf{v}}_{k}^{2} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{4} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{k} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{v}}_{k}^{2} \end{bmatrix}^{T} \\ \begin{bmatrix} \overline{\mathbf{v}}_{k}^{3} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{4} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{k} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{v}}_{k}^{3} \end{bmatrix}^{T} + \begin{bmatrix} \overline{\mathbf{v}}_{k}^{3} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{6} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{k} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{v}}_{k}^{3} \end{bmatrix}^{T} \\ \begin{bmatrix} \overline{\overline{\mathbf{v}}}_{k}^{3} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{6} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{k} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{v}}_{k}^{3} \end{bmatrix}^{T} + \begin{bmatrix} \overline{\overline{\mathbf{v}}}_{k}^{3} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{7} \end{bmatrix} \begin{bmatrix} \mathbf{w}_{k} \end{bmatrix} \begin{bmatrix} \overline{\overline{\mathbf{v}}}_{k}^{3} \end{bmatrix}^{T} \end{bmatrix}$$

$$\begin{bmatrix} \left[U_{k1} \right] \left[\mathsf{K} U_{1} \right] \left[\overline{w} \right] \\ \left[V_{k1} \right] \left[\mathsf{K} V_{1} \right] \left[\overline{w} \right] \\ \left[V_{k1} \right] \left[\mathsf{K} V_{1} \right] \left[\overline{w} \right] \\ \left[\left[V_{k2} \right] \left[\mathsf{K} U_{2} \right] \left[\overline{w} \right] + \left[\overline{U}_{k2} \right] \left[\overline{w} U_{2} \right] \left[\overline{w} \right] + \left[\overline{U}_{k2} \right] \left[\overline{w} U_{2} \right] \left[\overline{w} \right] \\ \left[\left[V_{k2} \right] \left[\mathsf{K} V_{2} \right] \left[\overline{w} \right] + \left[\overline{V}_{k2} \right] \left[\overline{w} V_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\mathsf{K} V_{3} \right] \left[\overline{w} \right] \\ \left[\left[V_{k3} \right] \left[\mathsf{K} V_{2} \right] \left[\overline{w} \right] + \left[\overline{V}_{k2} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\mathsf{K} V_{2} \right] \left[\overline{w} \right] + \left[\overline{V}_{k2} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \\ \left[\left[V_{k3} \right] \left[\mathsf{K} V_{3} \right] \left[\overline{w} \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[\overline{V}_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \\ \left[\left[\overline{V}_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right] \\ \left[\left[V_{k3} \right] \left[\overline{w} \overline{V}_{2} \right] \left[\overline{w} \right] \right]$$

$$\begin{bmatrix} \overline{\mathbf{V}}_{\mathbf{k}}^{1} \end{bmatrix}_{\mathbf{X}} \begin{bmatrix} \mathbf{V}_{\mathbf{k}1} \end{bmatrix} \begin{bmatrix} \mathbf{K} \mathbf{U}_{\mathbf{4}} \end{bmatrix} \\ \begin{bmatrix} \mathbf{V}_{\mathbf{k}1} \end{bmatrix} \begin{bmatrix} \mathbf{K} \mathbf{V}_{\mathbf{4}} \end{bmatrix} \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} \overline{\mathbf{U}}_{\mathbf{k}}^{1} \end{bmatrix} \begin{bmatrix} \mathbf{K} \mathbf{4} \end{bmatrix}$$

$$\begin{bmatrix} \overline{V}_{k}^{2} \end{bmatrix}_{\sum(\overline{U}+\overline{V})\times 21} = \begin{bmatrix} U_{k2} \end{bmatrix} \begin{bmatrix} KU_{5} \end{bmatrix} + \begin{bmatrix} \overline{U}_{k}^{2} \end{bmatrix} \begin{bmatrix} K5 \end{bmatrix}$$

$$\begin{bmatrix} \overline{V}_k^3 \end{bmatrix}_{\sum(\overline{U}+\overline{V})\times 21} = \begin{bmatrix} 0 \\ \overline{U}_{k3} \end{bmatrix} \begin{bmatrix} KU_6 \\ \overline{V}_{k3} \end{bmatrix} \begin{bmatrix} KV_6 \end{bmatrix} + \begin{bmatrix} \overline{U}_{\overline{k}}^3 \end{bmatrix} \begin{bmatrix} K6 \end{bmatrix}$$

$$\begin{bmatrix} \overline{V}_k^3 \end{bmatrix}_{\sum(\overline{U}+\overline{V})\times 21} = \begin{bmatrix} 0 \\ \overline{U}_{k2} \end{bmatrix} \begin{bmatrix} \overline{K}\overline{U}_5 \\ \overline{V}_{k2} \end{bmatrix} \begin{bmatrix} \overline{K}\overline{U}_5 \end{bmatrix} + \begin{bmatrix} \overline{U}_{\overline{k}}^3 \end{bmatrix} \begin{bmatrix} \overline{K}\overline{S} \end{bmatrix}$$

$$\begin{bmatrix} U_{k1} \end{bmatrix}_{\overline{U}_{a1}\times 21} = \begin{bmatrix} A_{a1} \end{bmatrix} \begin{bmatrix} \xi_{a1} \\ B_{a1} \end{bmatrix} \begin{bmatrix} \xi_{a1} \end{bmatrix}$$

$$\begin{bmatrix} U_{k2} \end{bmatrix}_{\overline{U}_{a2}\times 21} = \begin{bmatrix} A_{a2} \end{bmatrix} \begin{bmatrix} \xi_{a2} \end{bmatrix} \begin{bmatrix} \overline{U}_{k2} \end{bmatrix}_{\overline{U}_{a2}\times 21} = \begin{bmatrix} A_{a2} \end{bmatrix} \begin{bmatrix} \overline{\xi}_{a2} \end{bmatrix}$$

$$\begin{bmatrix} V_{k2} \end{bmatrix}_{\overline{V}_{a2}\times 21} = \begin{bmatrix} B_{a2} \end{bmatrix} \begin{bmatrix} \xi_{a2} \end{bmatrix} \begin{bmatrix} \overline{V}_{k2} \end{bmatrix} \underbrace{V}_{a2}\times 21} = \begin{bmatrix} B_{a2} \end{bmatrix} \begin{bmatrix} \overline{\xi}_{a2} \end{bmatrix}$$

$$\begin{bmatrix} U_{k3} \end{bmatrix}_{\overline{U}_{a3}\times 21} = \begin{bmatrix} A_{a3} \end{bmatrix} \begin{bmatrix} \xi_{a3} \end{bmatrix}$$

$$\begin{bmatrix} V_{k3} \end{bmatrix}_{\overline{V}_{a3}\times 21} = \begin{bmatrix} B_{a3} \end{bmatrix} \begin{bmatrix} \xi_{a3} \end{bmatrix}$$

$$\begin{bmatrix} \overline{V}_{k2} \end{bmatrix}_{\overline{U}_{a2}\times 21} = \begin{bmatrix} A_{a2} \end{bmatrix} \begin{bmatrix} \overline{\xi}_{a2} \end{bmatrix}$$

$$\begin{bmatrix} \overline{V}_{k3} \end{bmatrix}_{\overline{V}_{a3}\times 21} = \begin{bmatrix} B_{a3} \end{bmatrix} \begin{bmatrix} \xi_{a3} \end{bmatrix}$$

$$\begin{bmatrix} \overline{V}_{k3} \end{bmatrix}_{\overline{V}_{a3}\times 21} = \begin{bmatrix} B_{a3} \end{bmatrix} \begin{bmatrix} \xi_{a3} \end{bmatrix}$$

$$\begin{bmatrix} \overline{V}_{k3} \end{bmatrix}_{\overline{V}_{a3}\times 21} = \begin{bmatrix} B_{a3} \end{bmatrix} \begin{bmatrix} \xi_{a3} \end{bmatrix}$$

$$\begin{bmatrix} \overline{V}_{k3} \end{bmatrix}_{\overline{V}_{a3}\times 21} = \begin{bmatrix} B_{a3} \end{bmatrix} \begin{bmatrix} \xi_{a3} \end{bmatrix}$$

$$\begin{bmatrix} \overline{V}_{k3} \end{bmatrix}_{\overline{V}_{a3}\times 21} = \begin{bmatrix} B_{a3} \end{bmatrix} \begin{bmatrix} \xi_{a3} \end{bmatrix} = \begin{bmatrix} A_{a2} \end{bmatrix} \begin{bmatrix} \overline{\xi}_{a2} \end{bmatrix}$$

$$\begin{bmatrix} \overline{V}_{k3} \end{bmatrix}_{\overline{V}_{a3}\times 21} = \begin{bmatrix} B_{a3} \end{bmatrix} \begin{bmatrix} \overline{V}_{a3} \end{bmatrix} = \begin{bmatrix} \overline$$

Note: $\begin{bmatrix} A_{am} \end{bmatrix}$ and $\begin{bmatrix} B_{am} \end{bmatrix}$ are provided as initial input E.6

$$\begin{bmatrix} \xi_{am}^{n} \end{bmatrix}_{11x21} = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ \xi_{m0} & (0.95 \, \xi_{m0} + 0.05 \, \xi_{m1}) & (0.90 \, \xi_{m0} + 0.10 \, \xi_{m1}) & \dots & \xi_{m1} \\ \xi_{m0}^{2} & (0.95 \, \xi_{m0} + 0.05 \, \xi_{m1})^{2} & (0.90 \, \xi_{m0} + 0.10 \, \xi_{m1})^{2} & \dots & \xi_{m1}^{2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \xi_{m0}^{10} & (0.95 \, \xi_{m0} + 0.05 \, \xi_{m1})^{10} & (0.90 \, \xi_{m0} + 0.10 \, \xi_{m1}) & \dots & \xi_{m1}^{10} \end{bmatrix}$$

$$\begin{bmatrix} \xi_{m0} & (0.95 \, \xi_{m0} + 0.05 \, \xi_{m1}) & (0.90 \, \xi_{m0} + 0.10 \, \xi_{m1}) & \cdots \, \xi_{m1} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ \hline \xi_{2,1}(\xi_{10}) & \overline{\xi}_{2,2}(0.95 \, \xi_{10} + 0.05 \, \xi_{11}) & \overline{\xi}_{2,3}(0.90 \, \xi_{10} + 0.10 \, \xi_{11}) & \cdots \, \overline{\xi}_{2,21}(\xi_{11}) \end{bmatrix}$$

$$\begin{bmatrix} \overline{\xi}_{n2}^{n} \\ \overline{\xi}_{n2}^{n} \end{bmatrix}_{11x21} = \begin{bmatrix} \frac{1}{\xi_{2,1}} & \overline{\xi}_{2,2}^{n} & \overline{\xi}_{2,2}^{n} & \overline{\xi}_{2,3}^{n} & \cdots \, \overline{\xi}_{2,21}(\xi_{11}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \overline{\xi}_{2,1} & \overline{\xi}_{2,2} & \overline{\xi}_{2,3} & \cdots \, \overline{\xi}_{2,21} \end{bmatrix}$$

$$\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \overline{\xi}_{2,1} & \overline{\xi}_{2,2} & \overline{\xi}_{2,3} & \cdots \, \overline{\xi}_{2,21} \end{bmatrix}$$

$$Note:$$
See Functional Relationship $\overline{\xi}_{n}(\xi_{n})$ defined below.

See Functional Relationship $\overline{\xi}_{a2}(\xi_{a1})$ defined below.

See functional relationship $\overline{\xi}_{a2}$ (ξ_{a3}) defined below.

$$F_1(r_{a1}, r_{a2}) = \frac{r_{a2}^4 + 8r_{a2}r_{a1}^3 - 6r_{a2}^2r_{a1}^2 - 3r_{a1}^4}{6(r_{a1} - r_{a2})^2}$$

$$F_2(r_{a1}, r_{a2}) = \frac{r_{a2}^4 + 2r_{a2}r_{a1}^3 - 2r_{a1}r_{a2}^3 - r_{a1}^4}{6(r_{a1} - r_{a2})^2}$$

Functional Relationship $\overline{\xi}_{a2}(\xi_{a1})$

$$\overline{\xi}_{a2} = \frac{x}{|L|} = \frac{b}{|L|} \left[1 - \sqrt{1 - \frac{r^2}{a^2}} \right]$$

where

$$\mathbf{r}^{2} = f(\xi_{a1})$$

$$= \frac{a^{4} \sin^{2} \phi}{(a^{2} \sin^{2} \phi + b^{2} \cos^{2} \phi)}$$

and

$$\xi_{a1} = \frac{\pi - \phi}{\pi - \phi_0}$$

Functional Relationship $\frac{\overline{\xi}}{\xi_{a2}}$ (ξ_{a3})

$$\overline{\overline{\xi}}_{a2} = \frac{1}{|L|} \left\{ \overline{b} - b \left[1 - \sqrt{1 - \frac{r^2}{a^2}} \right] \right\}$$

where

$$r^2 = f(\xi_{a3})$$

$$= \frac{a^4 \sin^2 \phi}{(a^2 \sin^2 \phi + b^2 \cos^2 \phi)}$$

and

$$\xi_{a3} = \frac{\phi}{\phi_0}$$

E.3.1 Integral Equation Relationships

$$\begin{split} \left[\overline{M}\right] &= -4\pi\overline{\gamma}_{1} \left(\phi_{o}\right)_{a1} \int_{\xi_{10}}^{\xi_{11}} \left(\frac{r_{1} \sin \phi}{r^{2}}\right)_{a1} \left\{\frac{r^{2}}{2} \hat{\mathbf{u}}(\mathbf{x})\right\}_{1} \left\{\frac{r^{2}}{2} \hat{\mathbf{u}}(\mathbf{x})\right\}_{1}^{T} d\xi_{a1} \\ &+ 4\pi\overline{\gamma}_{2} \left(|\mathbf{L}|\right)_{a2} \int_{\xi_{20}}^{\xi_{21}} \left(\frac{1}{r^{2}}\right)_{a2} \left\{\frac{r^{2}}{2} \hat{\mathbf{u}}(\mathbf{x})\right\}_{2} \left\{\frac{r^{2}}{2} \hat{\mathbf{u}}(\mathbf{x})\right\}_{2}^{T} d\xi_{a2} \end{split} \\ & \text{IA:} \left\{-4\pi\overline{\gamma}_{3} \left(\phi_{o} - \pi\right)_{a3} \int_{\xi_{30}}^{\xi_{31}} \left(\frac{r_{1} \sin \phi}{r^{2}}\right)_{a3} \left\{\frac{r^{2}}{2} \hat{\mathbf{u}}(\mathbf{x})\right\}_{3} \left\{\frac{r^{2}}{2} \hat{\mathbf{u}}(\mathbf{x})\right\}_{3}^{T} d\xi_{a3} \end{split} \\ & \text{IB:} \left\{+4\pi\overline{\gamma}_{3} \left(|\mathbf{L}|\right)_{a3} \int_{\xi_{30}}^{\xi_{31}} \left(\frac{1}{r^{2}}\right)_{a3} \left\{\frac{r^{2}}{2} \hat{\mathbf{u}}(\mathbf{x})\right\}_{3} \left\{\frac{r^{2}}{2} \hat{\mathbf{u}}(\mathbf{x})\right\}_{3}^{T} d\xi_{a3} \end{split} \\ & -\frac{\pi\overline{\gamma}_{1} \left(\phi_{o}\right)_{a1}}{2} \int_{\xi_{10}}^{\xi_{11}} \left(r_{1} \sin \phi\right)_{a1} \left\{r\hat{\mathbf{v}}(\mathbf{x}, \mathbf{r})\right\}_{1} \left\{r\hat{\mathbf{v}}(\mathbf{x}, \mathbf{r})\right\}_{1}^{T} d\xi_{a1} \\ &+ \frac{\pi\overline{\gamma}_{2} \left(|\mathbf{L}|\right)_{a2}}{2} \int_{\xi_{20}}^{\xi_{21}} \left\{r\hat{\mathbf{v}}(\mathbf{x}, \mathbf{r})\right\}_{2} \left\{r\hat{\mathbf{v}}(\mathbf{x}, \mathbf{r})\right\}_{2} d\xi_{a2} \end{split} \\ & \text{IA:} \left\{-\frac{\pi\overline{\gamma}_{3} \left(\phi_{o} - \pi\right)_{a3}}{2} \int_{\xi_{30}}^{\xi_{31}} \left(r_{1} \sin \phi\right)_{a3} \left\{r\hat{\mathbf{v}}(\mathbf{x}, \mathbf{r})\right\}_{3}^{T} d\xi_{a3} \\ &+ \frac{\pi\overline{\gamma}_{3} \left(|\mathbf{L}|\right)_{a3}}{2} \int_{\xi_{30}}^{\xi_{31}} \left(r_{1} \sin \phi\right)_{a3} \left\{r\hat{\mathbf{v}}(\mathbf{x}, \mathbf{r})\right\}_{3}^{T} d\xi_{a3} \end{split} \\ & \text{IB:} \left\{+\frac{\pi\overline{\gamma}_{3} \left(|\mathbf{L}|\right)_{a3}}{2} \int_{\xi_{30}}^{\xi_{31}} \left(r^{2} \hat{\mathbf{v}}(\mathbf{x}, \mathbf{r})\right)_{3} \left\{r\hat{\mathbf{v}}(\mathbf{x}, \mathbf{r})\right\}_{3}^{T} d\xi_{a3} \end{split} \right.$$

where

$$\begin{cases} +\int_{\xi_{10}}^{\xi} \left(\mathbf{r} \cdot \mathbf{r}_{1} \phi_{o} \cos \phi \left\{\mathbf{u}(\xi)\right\}\right)_{a1} d\xi_{a1} \\ +\int_{\xi_{10}}^{\xi} \left(\mathbf{r} \cdot \mathbf{r}_{1} \phi_{o} \sin \phi \left\{\mathbf{v}(\xi)\right\}\right)_{a1} d\xi_{a1} \\ -\int_{\xi_{20}}^{\xi_{21}} \left(\mathbf{r} \left|\mathbf{L}\right| \cot \phi_{o} \left\{\mathbf{u}(\xi)\right\}\right)_{a2} d\xi_{a2} \\ -\int_{\xi_{20}}^{\xi_{21}} \left(\mathbf{r} \left|\mathbf{L}\right| \left(\mathbf{v}(\xi)\right)\right)_{a2} d\xi_{a2} \\ -\int_{\xi_{30}}^{\xi_{31}} \left(\mathbf{r} \cdot \mathbf{r}_{1} \left(\phi_{o} - \pi\right) \cos \phi \left\{\mathbf{u}(\xi)\right\}\right)_{a3} d\xi_{a3} \\ \int_{\xi_{30}}^{\xi_{31}} \left(\mathbf{r} \cdot \mathbf{r}_{1} \left(\phi_{o} - \pi\right) \sin \phi \left(\mathbf{v}(\xi)\right)\right)_{a3} d\xi_{a3} \\ -\int_{\xi_{30}}^{\xi_{31}} \left(\mathbf{r} \left|\mathbf{L}\right| \left(\mathbf{v}(\xi)\right)\right)_{a3} d\xi_{a3} \\ -\int_{\xi_{30}}^{\xi_{31}} \left(\mathbf{r} \left|\mathbf{L}\right| \left(\mathbf{v}(\xi)\right)\right)_{a3} d\xi_{a3} \end{cases}$$
IB:

IB:
$$\begin{cases} -\int_{\xi_{30}}^{\xi_{31}} \left(\mathbf{r} | \mathbf{L} | \cot \phi_{o} \left\{ \mathbf{u}(\xi) \right\} \right)_{a3} d\xi_{a3} \\ -\int_{\xi_{30}}^{\xi_{31}} \left(\mathbf{r} | \mathbf{L} | \left\{ \mathbf{v}(\xi) \right\} \right)_{a3} d\xi_{a3} \end{cases}$$

$$\left\{\frac{\mathbf{r}^{2} \hat{\mathbf{u}}(\mathbf{x})}{2}\right\}_{3} = \begin{cases}
\begin{cases}
\frac{\xi}{\xi_{30}} \left(\mathbf{r} \cdot \mathbf{r}_{1} \left(\phi_{o} - \pi\right) \cos \phi \left\{\mathbf{u}(\xi)\right\}\right)_{a3} d\xi_{a3} \\
\end{bmatrix}
\end{cases}$$
IA:
$$\left\{\int_{\xi_{30}}^{\xi} \left(\mathbf{r} \cdot \mathbf{r}_{1} \left(\phi_{o} - \pi\right) \sin \phi \left\{\mathbf{v}(\xi)\right\}\right)_{a3} d\xi_{a3}\right\}$$

$$IB: \begin{cases} -\int_{\xi_{30}}^{\xi} \left(r \left| L \left| \cot \phi_{o} \left\{ u(\xi) \right\} \right) \right|_{a3} d\xi_{a3} \\ -\int_{\xi_{30}}^{\xi} \left(r \left| L \left| \left\{ v(\xi) \right\} \right| \right)_{a3} d\xi_{a3} \end{cases} \end{cases}$$

$$\begin{cases} \left(r \cdot \cot \phi \left\{ u(\xi) \right\} \right)_{a1} \\ \left(r \left\{ v(\xi) \right\} \right)_{a1} \\ 0 \end{cases} - \left(\frac{2 \cot \phi}{r} \right)_{a1} \cdot \left(\frac{r^{2}}{2} \hat{u}(x) \right)_{a1} \end{cases}$$

$$\left\{ \stackrel{\frown}{\mathbf{r}\mathbf{v}}(\mathbf{x}, \mathbf{r}) \right\}_{2} = \begin{cases}
\left(\stackrel{\frown}{\mathbf{r} \cdot \cot \phi_{o}} \left\{ \mathbf{u}(\xi) \right\} \right)_{a2} \\
\left(\stackrel{\frown}{\mathbf{r} \cdot \left\{ \mathbf{v}(\xi) \right\} \right)_{a2}} \\
0
\end{cases} - \left(\frac{2 \cot \phi_{o}}{\mathbf{r}} \right)_{a2} \cdot \left\{ \frac{\mathbf{r}^{2}}{2} \stackrel{\frown}{\mathbf{u}}(\mathbf{x}) \right\}_{a2} \\
\left(\stackrel{\frown}{\mathbf{r}}\mathbf{v}(\mathbf{x}, \mathbf{r}) \right)_{3} = \begin{cases}
0 \\
\left(\stackrel{\frown}{\mathbf{r} \cdot \cot \phi} \left\{ \mathbf{u}(\xi) \right\} \right)_{a3} \\
\left(\stackrel{\frown}{\mathbf{r} \cdot \cot \phi} \left\{ \mathbf{u}(\xi) \right\} \right)_{a3}
\end{cases} - \left(\frac{2 \cot \phi}{\mathbf{r}} \right)_{a3} \cdot \left\{ \frac{\mathbf{r}^{2}}{2} \stackrel{\frown}{\mathbf{u}}(\mathbf{x}) \right\}_{a3}$$

E.3.2 Integration Limit Data

Fluid Surface in Section 1

$$\xi_{11} = \left(\overline{\phi}/\phi_{o}\right)_{a1}$$

$$\xi_{20} = \xi_{30} = 0$$

$$\xi_{10} = \xi_{21} = \xi_{31} = 1$$

$$\overline{\gamma}_{1} = \overline{\gamma}_{2} = \overline{\gamma}_{3} = \gamma$$

Note:

$$\overline{\phi} = \sin^{-1} \left\{ \frac{\overline{r}}{\left[a^2 k^2 - \overline{r}^2 (k^2 - 1)\right]^{1/2}} \right\}$$

$$k = a/b$$

$$\overline{r} = a - \sqrt{1 - \frac{\left(\overline{H}_1 + b - \overline{b}\right)^2}{b^2}}$$

if
$$(\overline{H}_1 + b - \overline{b}) \ge 0$$
, $0 \le \overline{\phi} \le 90^\circ$, if ≤ 0 , $90^\circ \le \overline{\phi} \le 180^\circ$

Fluid Surface in Section 2

$$\xi_{21} = \left(\overline{H}_2/|L|\right)_{a2}$$

$$\xi_{10} = \xi_{11} = \xi_{31} = 1$$

$$\xi_{20} = \xi_{30} = 0$$

$$\overline{\gamma}_1 = 0$$

$$\overline{\gamma}_2 = \overline{\gamma}_3 = \gamma$$

Fluid Surface in Section 3

IA:
$$\left\{ \xi_{31} = \left(\frac{\pi - \overline{\phi}}{\pi - \phi_0} \right)_{a3} \right\}$$
IB:
$$\left\{ \xi_{31} = \left(\overline{H}_3 / |L| \right)_{a3} \right\}$$

$$\xi_{10} = \xi_{11} = 1$$

$$\xi_{20} = \xi_{21} = \xi_{30} = 0$$

$$\overline{\gamma}_1 = \overline{\gamma}_2 = 0$$

$$\overline{\gamma}_3 = \gamma$$

Note:

$$= \sin^{-1} \left\{ \frac{\frac{\pi}{r}}{-\left[a^2 k^2 - \frac{\pi}{r^2}(k^2 - 1)\right]^{1/2}} \right\}$$

$$k = a/b$$

$$\overline{\overline{r}} = a \sqrt{1 - \frac{\left(b - \overline{H}_3\right)^2}{b^2}}$$

E.3.3 Specific Matrix Data

Note: Quantities $\{(\)_{am}\}_{am,i}$ are evaluated at

points $\xi_{am, i}$ (i = 1, 2, 3, ... 21) where

$$\xi_{am, 1} = \xi_{m0}; \, \xi_{am, 2} = (0.95 \, \xi_{m0} + 0.05 \, \xi_{m1});$$

$$\xi_{\text{am}, 3} = (0.90 \, \xi_{\text{m0}} + 0.10 \, \xi_{\text{m1}}); \, \xi_{\text{am}, 4} = (0.85 \, \xi_{\text{m0}} + 0.15 \, \xi_{\text{m1}});$$

...,
$$\xi_{am, 20} = (0.05 \xi_{m0} + 0.95 \xi_{m1}); \xi_{am, 21} = \xi_{m1}$$

$$Kl_{i} = -4\pi \overline{\gamma}_{1} \left(\phi_{o}\right)_{al} \left\{ \left(\frac{r_{1} \sin \phi}{r^{2}}\right)_{al}\right\}_{al,i} \cdot (\xi_{11} - \xi_{10})$$

$$K2_{i} = +4\pi\overline{\gamma}_{2} (|L|)_{a2} \left\{ \left(\frac{1}{r^{2}}\right)_{a2} \right\}_{a2} \cdot (\xi_{21} - \xi_{20})$$

IA:
$$\left\{ K3_i = -4\pi\overline{\gamma}_3 \left(\phi_0 - \pi \right)_{a3} \left\{ \left(\frac{\mathbf{r}_1 \sin \phi}{\mathbf{r}^2} \right)_{a3} \right\}_{a3} \cdot (\xi_{31} - \xi_{30}) \right\}$$

IB:
$$\left\{ \text{K3}_{i} = +4\pi\overline{\gamma}_{3} \left(|\text{L}| \right)_{a3} \left\{ \left(\frac{1}{r^{2}} \right)_{a3} \right\}_{a3} \right\}_{a3} \left(|\xi_{31} - \xi_{30}| \right)$$

$$K4_{i} = -\left\{ \left(\frac{2 \cot \phi}{r} \right)_{a1} \right\}_{a1, i}$$

$$K5_{i} = -2(\cot \phi_{o})_{a2} \left\{ \left(\frac{1}{r} \right)_{a2} \right\}_{a2, i} ; \quad \overline{K}_{5i} = \overline{\overline{K}}_{5i} = 0$$

$$IA: \left\{ K6_{i} = -\left\{ \left(\frac{2 \cot \phi}{r} \right)_{a3} \right\}_{a3, i} \right\}$$

$$IB: \left\{ K6_{i} = -2(\cot \alpha)_{a3} \left\{ \left(\frac{1}{r} \right)_{a3} \right\}_{a3, i} \right\}$$

$$C1_{i} = -\frac{\pi \overline{\gamma}_{1}}{2} \left(\phi_{o} \right)_{21} \left\{ \left(r_{1} \sin \phi \right)_{a1} \right\}_{a1, i} \cdot (\xi_{11} - \xi_{10})$$

$$C2_{i} = C3_{i} = 0$$

$$C4_{i} = +\frac{\pi \overline{\gamma}_{2}}{2} (|L|)_{a2} \left\{ 1 \right\}_{a2, i} \cdot (\xi_{21} - \xi_{20})$$

$$IA: \left\{ C5_{i} = -\frac{\pi \overline{\gamma}_{3}}{2} \left(\phi_{o} - \pi \right)_{a3} \left\{ \left(r_{1} \sin \phi \right)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30})$$

$$IB: \left\{ C5_{i} = +\frac{\pi \overline{\gamma}_{3}}{2} (|L|)_{a3} \left\{ 1 \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \right\}$$

$$C6_{i} = C7_{i} = 0$$

$$\left(KU_{1} \right)_{i} = +\left(\phi_{o} \right)_{a1} \left\{ \left(r \cdot r_{1} \cos \phi \right)_{a1} \right\}_{a1, i} \cdot (\xi_{11} - \xi_{10})$$

$$\left(K^{*} \cdot r_{1} \sin \phi \right)_{a1} \right\}_{a1, i} \cdot (\xi_{11} - \xi_{10})$$

$$\begin{split} \left(\mathrm{KU}_{2} \right)_{i} &= - (\left| \mathrm{L} \right| \cot \phi_{0})_{a2} \left\{ (\mathbf{r})_{a2} \right\}_{a2, i} \cdot (\xi_{21} - \xi_{20}) \; ; \\ &\overline{\mathrm{KU}}_{2} = \overline{\mathrm{KU}}_{2} = \overline{\mathrm{KV}}_{2} = \overline{\mathrm{KV}}_{2} = 0 \\ &\left(\mathrm{KV}_{2} \right)_{i} = - (\left| \mathrm{L} \right|)_{a2} \left\{ (\mathbf{r})_{a2} \right\}_{a2, i} \cdot (\xi_{21} - \xi_{20}) \\ &\mathrm{IA:} \\ &\left(\mathrm{KU}_{3} \right)_{i} = + \left(\phi_{0} - \pi \right)_{a3} \left\{ (\mathbf{r} \cdot \mathbf{r}_{1} \cos \phi)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &\left(\mathrm{KV}_{3} \right)_{i} = - (\left| \mathrm{L} \right| \cot \phi_{0})_{a3} \left\{ (\mathbf{r})_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &\left(\mathrm{KV}_{3} \right)_{i} = - (\left| \mathrm{L} \right|)_{a3} \left\{ (\mathbf{r})_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &\left(\mathrm{KV}_{3} \right)_{i} = - (\left| \mathrm{L} \right|)_{a3} \left\{ (\mathbf{r})_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &\left(\mathrm{KV}_{4} \right)_{i} = + \left(\mathrm{r} \cot \phi_{0} \right)_{a1} \right\}_{a1, i} \\ &\left(\mathrm{KV}_{4} \right)_{i} = + \left(\mathrm{rr} \right)_{a1} \right\}_{a1, i} \\ &\left(\mathrm{KV}_{5} \right)_{i} = + \left(\cot \phi_{0} \right)_{a2} \left(\mathrm{rr} \right)_{a2} \right\}_{a2, i} \\ &\left(\mathrm{KV}_{5} \right)_{i} = + \left(\mathrm{rr} \right)_{a2} \right\}_{a2, i} \; ; \quad \overline{\mathrm{KU}}_{5} = \overline{\mathrm{KU}}_{5} = \overline{\mathrm{KV}}_{5} = \overline{\mathrm{KV}}_{5} = 0 \end{split}$$

IA:
$$\begin{cases} \left(KU_{6}\right)_{i} = +\left\{\left(\mathbf{r} \cot \phi\right)_{a3}\right\}_{a3, i} \\ \left(KV_{6}\right)_{i} = +\left\{\left(\mathbf{r}\right)_{a3}\right\}_{a3, i} \end{cases}$$
IB:
$$\begin{cases} \left(KU_{6}\right)_{i} = +\left(\cot \phi_{0}\right)_{a3}\left(\mathbf{r}\right)_{a3}\right\}_{a3, i} \\ \left(KV_{6}\right)_{i} = +\left\{\left(\mathbf{r}\right)_{a3}\right\}_{a3, i} \end{cases}$$

E. 4. 1 Integral Equation Relationships

$$\begin{split} \left[\overline{M}\right] &= -4\pi \overline{\gamma}_1 \left(\theta_0 - \pi\right)_{a1} \int_{\xi_{10}}^{\xi_{11}} \frac{\left(r_1 \sin \theta\right)_{a1}}{\left(r_{a2}^2 - r_{a1}^2\right)} \left(\frac{\left(r_{a2}^2 - r_{a1}^2\right)}{2} \widehat{u}(x)\right)_1 \left(\frac{\left(r_{a2}^2 - r_{a1}^2\right)}{2} \widehat{u}(x)\right)_2 \left(\frac{r_{a2}^2}{2} \widehat{u}(x)\right)_3 \left(\frac{$$

^{*}Identical with Case I.

where

where
$$\begin{cases} -\int_{\xi_{10}}^{\xi} \left(\mathbf{r} \cdot \mathbf{r}_{1} \left(\phi_{o} - \pi \right) \cos \phi \left\{ \mathbf{u}(\xi) \right\} \right)_{a1} \, \mathrm{d}\xi_{a1} \\ -\int_{\xi_{10}}^{\xi} \left(\mathbf{r} \cdot \mathbf{r}_{1} \left(\phi_{o} - \pi \right) \sin \phi \left\{ \mathbf{v}(\xi) \right\} \right)_{a1} \, \mathrm{d}\xi_{a1} \\ -\int_{\xi_{20}}^{\xi_{21}} \left(\mathbf{r} | \mathbf{L} | \cot \phi_{o} \left\{ \mathbf{u}(\xi) \right\} \right)_{a2} \, \mathrm{d}\xi_{a2} \\ +\int_{\xi_{20}}^{\xi} \left(\mathbf{r} \cot \phi_{o} \left\{ \mathbf{u}(\xi) \right\} \right)_{a2} \, \mathrm{d}\xi_{a2} \\ -\int_{\xi_{20}}^{\xi_{21}} \left(\mathbf{r} | \mathbf{L} | \left\{ \mathbf{v}(\xi) \right\} \right)_{a2} \, \mathrm{d}\xi_{a2} \\ +\int_{\xi_{10}}^{\xi} \left(\mathbf{r} \left\{ \mathbf{v}(\xi) \right\} \right)_{a2} \, \mathrm{d}\xi_{a2} \\ -\int_{\xi_{30}}^{\xi_{31}} \left(\mathbf{r} \cdot \mathbf{r}_{1} (\phi_{o} - \pi) \cos \phi \left\{ \mathbf{u}(\xi) \right\} \right)_{a3} \, \mathrm{d}\xi_{a3} \\ \int_{\xi_{30}}^{\xi_{31}} \left(\mathbf{r} \cdot \mathbf{r}_{1} (\phi_{o} - \pi) \sin \phi \left\{ \mathbf{v}(\xi) \right\} \right)_{a3} \, \mathrm{d}\xi_{a3} \\ -\int_{\xi_{30}}^{\xi_{31}} \left(\mathbf{r} | \mathbf{L} | \cot \phi_{o} \left\{ \mathbf{u}(\xi) \right\} \right)_{a3} \, \mathrm{d}\xi_{a3} \\ -\int_{\xi_{30}}^{\xi_{31}} \left(\mathbf{r} | \mathbf{L} | \cot \phi_{o} \left\{ \mathbf{u}(\xi) \right\} \right)_{a3} \, \mathrm{d}\xi_{a3} \\ -\int_{\xi_{30}}^{\xi_{31}} \left(\mathbf{r} | \mathbf{L} | \cot \phi_{o} \left\{ \mathbf{u}(\xi) \right\} \right)_{a3} \, \mathrm{d}\xi_{a3} \end{cases}$$

Note: $\left\{\frac{\mathbf{r}^2}{2} \mathring{\mathbf{u}}(\mathbf{x})\right\}_2$ and $\left\{\frac{\mathbf{r}^2}{2} \mathring{\mathbf{u}}(\mathbf{x})\right\}_2$ are the same as for Case I.

Note:
$$\left\{ \stackrel{\wedge}{v}(x,r) \right\}_2$$
 and $\left\{ \stackrel{\wedge}{v}(x,r) \right\}_3$ same as for Case I.

E.4.2 Integration Limit Data

Fluid Surface in Section 1

$$\xi_{10} = \xi_{20} = \xi_{30} = 0 ; \quad \xi_{31} = 1$$

$$\xi_{11} = \left(\frac{\pi - \frac{\overline{\phi}}{\phi}}{\pi - \phi_0}\right)_{a1}$$

$$\xi_{21} = 1 - (|\overline{b}|)_{a1}/(|L|)_{a2}$$

$$\overline{\gamma}_1 = \overline{\gamma}_2 = \overline{\gamma}_3 = \gamma$$

Note:

$$\overline{\phi} = \sin^{-1} \left\{ \frac{\overline{r}}{\left[a^2 k^2 - \overline{r}^2 (k^2 - 1)\right]^{1/2}} \right\}$$

$$k = a/b$$

$$\overline{\overline{r}} = a \sqrt{1 - \frac{\left(b - \overline{H}_1\right)^2}{b^2}}$$

Fluid Surface in Section 2

$$\xi_{10} = \xi_{11} = 0.5$$

$$\xi_{20} = \xi_{30} = 0$$

$$\xi_{31} = 1$$

$$\xi_{21} = (\overline{H}_2/|L|)_{a2}$$

$$\overline{\gamma}_1 = 0 ; \overline{\gamma}_2 = \overline{\gamma}_3 = \gamma$$

Fluid Surface in Section 3

$$\xi_{10} = \xi_{11} = 0.5$$
 , $\xi_{20} = \xi_{21} = \xi_{30} = 0$

IIA: $\left(\xi_{31} = \left(\overline{\phi}/\phi_{o}\right)_{a3}\right)$

IIB: $\left(\xi_{31} = \left(\overline{H}_{3}/|L|\right)_{a3}\right)$

E. 22

E.4.3 Specific Matrix Data

$$\begin{aligned} & (\mathrm{K1})_{i} = -4\pi\overline{\gamma}_{1} \Big(\phi_{o} - \pi \Big)_{a1} \left\{ \frac{\left(r_{1} \sin \phi \right)_{a1}}{\left(r_{a2} - r_{a1}^{2} \right)} \right\}_{a1, i} \cdot (\xi_{11} - \xi_{10}) \\ & (\mathrm{K2})_{i} = +4\pi\overline{\gamma}_{2} \left(|L| \right)_{a2} \left\{ \frac{1}{r^{2}} \right\}_{a2, i} \cdot (\xi_{21} - \xi_{20})^{*} \\ & \mathrm{IIA:} \quad \left\{ (\mathrm{K3})_{i} = -4\pi\overline{\gamma}_{3} \left(\phi_{o} - \pi \right)_{a3} \left\{ \frac{\left(r_{1} \sin \phi \right)_{a1}}{r^{2}} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30})^{*} \\ & \mathrm{IIB:} \quad \left\{ (\mathrm{K3})_{i} = +4\pi\overline{\gamma}_{3} \left(|L| \right)_{a3} \left\{ \frac{1}{r^{2}} \right\}_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30})^{*} \\ & (\mathrm{C1})_{i} = -\pi\overline{\gamma}_{1} \left(\phi_{o} - \pi \right)_{a1} \left\{ F_{1} (r_{a1}, r_{a2}) \cdot \left(r_{1} \sin \phi \right)_{a1} \right\}_{a1, i} \cdot (\xi_{11} - \xi_{10}) \\ & (\mathrm{C2})_{i} = -\pi\overline{\gamma}_{1} \left(\phi_{o} - \pi \right)_{a1} \left\{ F_{2} (r_{a1}, r_{a2}) \cdot \left(r_{1} \sin \phi \right)_{a1} \right\}_{a1, i} \cdot (\xi_{11} - \xi_{10}) \\ & (\mathrm{C3})_{i} = +\pi\overline{\gamma}_{1} \left(\phi_{o} - \pi \right)_{a1} \left\{ F_{1} (r_{a2}, r_{a1}) \cdot \left(r_{1} \sin \phi \right)_{a1} \right\}_{a1, i} \cdot (\xi_{11} - \xi_{10}) \\ & (\mathrm{C4})_{i} = +\frac{\pi\overline{\gamma}_{2}}{2} \left(|L| \right)_{a2} \left(1 \right)_{a2, i} \cdot (\xi_{21} - \xi_{20})^{*} \\ & \mathrm{IIA:} \quad \left\{ (\mathrm{C5})_{i} = -\frac{\pi\overline{\gamma}_{3}}{2} \left(\phi_{o} - \pi \right)_{a3} \left\{ \left(r_{1} \sin \phi \right)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30})^{*} \\ & \mathrm{IIB:} \quad \left\{ (\mathrm{C5})_{i} = (\mathrm{C7})_{i} = 0^{*} \end{aligned} \right. \end{aligned}$$

^{*}Same as for Case I

$$\begin{split} \left(\mathsf{K} \mathsf{U}_{1} \right)_{i} &= - \left(\phi_{0} - \pi \right)_{a1} \left\{ \left(\mathbf{r} \cdot \mathbf{r}_{1} \cos \phi \right)_{a1} \right\}_{a1, i} (\xi_{11} - \xi_{10}) \\ \left(\mathsf{K} \mathsf{V}_{1} \right)_{i} &= - \left(\phi_{0} - \pi \right)_{a1} \left\{ \left(\mathbf{r} \cdot \mathbf{r}_{1} \sin \phi \right)_{a1} \right\}_{a1, i} (\xi_{11} - \xi_{10}) \\ \left(\mathsf{K} \mathsf{U}_{2} \right)_{i} &= - \left(| \mathsf{L} | \cot \phi_{0} \right)_{a2} \left\{ \left(\mathbf{r} \right)_{a2} \right\}_{a2, i} (\xi_{21} - \xi_{20})^{*} \\ \left(\mathsf{K} \mathsf{V}_{2} \right)_{i} &= - \left(| \mathsf{L} | \right)_{a2} \left(\mathsf{V} \right)_{a2} \right\}_{a2, i} (\xi_{21} - \xi_{20})^{*} \\ \left(\mathsf{K} \mathsf{V}_{3} \right)_{i} &= \left(\phi_{0} - \pi \right)_{a3} \left\{ \left(\mathbf{r} \cdot \mathbf{r}_{1} \cos \phi \right)_{a3} \right\}_{a3, i} (\xi_{31} - \xi_{30})^{*} \\ \left(\mathsf{K} \mathsf{V}_{3} \right)_{i} &= - \left(| \mathsf{L} | \cot \phi_{0} \right)_{a3} \left\{ \left(\mathbf{r} \cdot \mathbf{r}_{1} \sin \phi \right)_{a3} \right\}_{a3, i} (\xi_{31} - \xi_{30})^{*} \\ \left(\mathsf{K} \mathsf{V}_{3} \right)_{i} &= - \left(| \mathsf{L} | \cot \phi_{0} \right)_{a3} \left\{ \left(\mathbf{r} \right)_{a3} \right\}_{a3, i} (\xi_{31} - \xi_{30})^{*} \\ \left(\mathsf{K} \mathsf{V}_{3} \right)_{i} &= - \left(| \mathsf{L} | \right)_{a3} \left(\left(\mathbf{r} \right)_{a3} \right)_{a3, i} (\xi_{31} - \xi_{30})^{*} \\ \left(\mathsf{K} \mathsf{V}_{3} \right)_{i} &= - \left(| \mathsf{L} | \right)_{a3} \left(\left(\mathbf{r} \right)_{a3} \right)_{a3, i} (\xi_{31} - \xi_{30})^{*} \\ \left(\mathsf{K} \mathsf{V}_{3} \right)_{i} &= - \left(| \mathsf{L} | \right)_{a3} \left(\left(\mathbf{r} \right)_{a3} \right)_{a3, i} (\xi_{31} - \xi_{30})^{*} \\ \left(\mathsf{K} \mathsf{V}_{3} \right)_{i} &= - \left(| \mathsf{L} | \right)_{a3} \left(\left(\mathbf{r} \right)_{a3} \right)_{a3, i} (\xi_{31} - \xi_{30})^{*} \\ \left(\mathsf{K} \mathsf{V}_{3} \right)_{i} &= - \left(| \mathsf{L} | \right)_{a3} \left(\left(\mathbf{r} \right)_{a3} \right)_{a3, i} (\xi_{31} - \xi_{30})^{*} \\ \left(\mathsf{K} \mathsf{V}_{2} \right)_{i} &= \left(\phi_{0} - \pi \right)_{a1} \left(\cot \phi_{0} \right)_{a2} \left(\left(\mathsf{r}_{1} \sin \phi \right)_{a1} (\mathbf{r} \right)_{a2} \right)_{a1, i} (\xi_{11} - \xi_{10}) \\ \left(\mathsf{K} \mathsf{V}_{2} \right)_{i} &= 0^{*} \\ \left(\mathsf{K} \mathsf{V}_{2} \right)_{i} &= 0^{*} \\ \left(\mathsf{K} \mathsf{U}_{4} \right)_{i} &= \left((\cot \phi)_{a1} \right)_{a1, i} \\ \left(\mathsf{K} \mathsf{V}_{4} \right)_{i} &= \left((\cot \phi)_{a1} \right)_{a1, i} \\ \left(\mathsf{K} \mathsf{V}_{4} \right)_{i} &= \left((\cot \phi)_{a1} \right)_{a1, i} \end{aligned}$$

^{*}Same as for Case I

$$(\overline{KU}_{5})_{i} = (\cot \phi_{0})_{a2}$$

$$(\overline{KV}_{5})_{i} = (1)$$

$$(KU_{5})_{i} = +(\cot \phi_{0})_{a2}(r)_{a2}^{*}_{a2,i}$$

$$(KV_{5})_{i} = +(r)_{a2}^{*}_{a2,i}$$

$$(KV_{6})_{i} = +(r)_{a3}^{*}_{a3,i}$$

$$(\overline{KV}_{5})_{i} = 0^{*}$$

$$(KV_{6})_{i} = -2\left(\frac{(\cot \phi)_{a1}}{(r^{2})_{a2} - (r^{2})_{a1}}\right)_{a1,i}$$

$$(\overline{KV}_{5})_{i} = -2\left(\frac{(\cot \phi)_{a2}}{(r^{2})_{a2} - (r^{2})_{a1}}\right)_{a1,i}$$

^{*}Same as for Case I

$$(K5)_{i} = -2 \left(\cot \phi_{o}\right)_{a2} \left\{ \left(\frac{1}{r}\right)_{a2}\right\}_{a2, i}^{*}$$

$$(\overline{K5})_{i} = 0^{*}$$

$$IIA: \left\{ \left(K6\right)_{i} = -\left\{ \left(\frac{2 \cot \phi}{r}\right)_{a3}\right\}_{a3, i}^{*}$$

$$IIB: \left\{ \left(K6\right)_{i} = -2 \left(\cot \phi_{o}\right)_{a3} \left\{ \left(\frac{1}{r}\right)_{a3}\right\}_{a3, i}^{*}$$

^{*}Same as for Case I

E.5 CASE III (al - Convex Up Ellipsoid; a2 - Conic; a3 - Convex Up Ellipsoid)

E.5.1 Integral Equation Relationships

$$\begin{split} \left[\overline{\mathbf{M}} \right] &= -4\pi \overline{\gamma}_1 \left(\phi_o \right)_{a1} \int_{\xi_{10}}^{\xi_{11}} \left(\frac{r_1 \sin \phi}{r^2} \right)_{a1} \left\{ \frac{r^2}{2} \hat{\mathbf{u}}(\mathbf{x}) \right\}_1 \left\{ \frac{r^2}{2} \hat{\mathbf{u}}(\mathbf{x}) \right\}_1^T \mathrm{d} \, \xi_{a1} \\ &+ 4\pi \overline{\gamma}_2 (|\mathbf{L}|)_{a2} \int_{\xi_{20}}^{\xi_{21}} \left(\frac{1}{r^2} \right)_{a2} \left(\frac{r^2}{2} \hat{\mathbf{u}}(\mathbf{x}) \right)_2 \left(\frac{r^2}{2} \hat{\mathbf{u}}(\mathbf{x}) \right)_1^T \mathrm{d} \, \xi_{a2} \\ &- 4\pi \overline{\gamma}_3 \left(\phi_o \right)_{a3} \int_{\xi_{30}}^{\xi_{31}} \frac{\left(r_1 \sin \phi \right)_{a3} \left(r_{a2} - r_{a3}^2 \right)}{\left(r_{a2}^2 - r_{a3}^2 \right)} \hat{\mathbf{u}}(\mathbf{x}) \right\}_3^T \mathrm{d} \, \xi_{a2} \\ &- \frac{\pi \overline{\gamma}_1 \left(\phi_o \right)_{a1}}{2} \int_{\xi_{10}}^{\xi_{11}} \left(r_1 \sin \phi \right)_{a1} \left\{ r \hat{\mathbf{v}}(\mathbf{x}, r) \right\}_1^T \left\{ r \hat{\mathbf{v}}(\mathbf{x}, r) \right\}_1^T \mathrm{d} \, \xi_{a1} \\ &+ \frac{\pi \overline{\gamma}_2 (|\mathbf{L}|)_{a2}}{2} \int_{\xi_{20}}^{\xi_{21}} \left\{ r \hat{\mathbf{v}}(\mathbf{x}, r) \right\}_2 \left\{ r \hat{\mathbf{v}}(\mathbf{x}, r) \right\}_2^T \mathrm{d} \, \xi_{a2} \\ &- \pi \overline{\gamma}_3 \left(\phi_o \right)_{a3} \int_{\xi_{30}}^{\xi_{31}} F_1 (r_{a3}; r_{a2}) \cdot \left(r_1 \sin \phi \right)_{a3} \left\{ \hat{\mathbf{v}}(\mathbf{x}, r) \right\}_{3, 3}^T \left\{ \hat{\mathbf{v}}(\mathbf{x}, r) \right\}_{3, 3}^T \mathrm{d} \, \xi_{a3} \\ &- \pi \overline{\gamma}_3 \left(\phi_o \right)_{a3} \int_{\xi_{30}}^{\xi_{31}} F_2 (r_{a3}; r_{a2}) \cdot \left(r_1 \sin \phi \right)_{a3} \left\{ \hat{\mathbf{v}}(\mathbf{x}, r) \right\}_{3, 3}^T \left\{ \hat{\mathbf{v}}(\mathbf{x}, r) \right\}_{3, 2}^T \mathrm{d} \, \xi_{a3} \\ &+ \left\{ \hat{\mathbf{v}}(\mathbf{x}, r) \right\}_{3, 2}^T \left\{ \hat{\mathbf{v}}(\mathbf{x}, r) \right\}_{3, 2}^T \mathrm{d} \, \xi_{a3} \\ &+ \pi \overline{\gamma}_3 \left(\phi_o \right)_{a3} \int_{\xi_{30}}^{\xi_{31}} F_1 (r_{a2}; r_{a3}) \cdot \left(r_1 \sin \phi \right)_{a3} \left\{ \hat{\mathbf{v}}(\mathbf{x}, r) \right\}_{3, 2}^T \left\{ \hat{\mathbf{v}}(\mathbf{x}, r) \right\}_{3, 2}^T \mathrm{d} \, \xi_{a3} \end{aligned}$$

where
$$\begin{cases} + \int_{\xi_{10}}^{\xi} \left(r \cdot r_{1} \phi_{o} \cos \phi \left\{ u(\xi) \right) \right)_{a1} d\xi_{a1} \\ + \int_{\xi_{10}}^{\xi} \left(r \cdot r_{1} \phi_{o} \sin \phi \left\{ v(\xi) \right) \right)_{a1} d\xi_{a1} \\ - \int_{\xi_{20}}^{\xi_{21}} \left(r | L| \cot \phi_{o} \left\{ u(\xi) \right\} \right)_{a2} d\xi_{a2} \\ + \int_{\xi_{30}}^{\xi_{31}} \left(r \cot \phi_{o} \left\{ u(\xi) \right\} \right)_{a2} \cdot \left(r_{1} \phi_{o} \sin \phi \right)_{a3} d\xi_{a3} \\ - \int_{\xi_{20}}^{\xi_{21}} \left(r | L| \left\{ v(\xi) \right\} \right)_{a2} d\xi_{a2} \\ + \int_{\xi_{30}}^{\xi_{31}} \left(r \cdot r_{1} \phi_{o} \cos \phi \left\{ u(\xi) \right\} \right)_{a3} d\xi_{a3} \\ - \int_{\xi_{30}}^{\xi_{31}} \left(r \cdot r_{1} \phi_{o} \cos \phi \left\{ u(\xi) \right\} \right)_{a3} d\xi_{a3} \\ - \int_{\xi_{30}}^{\xi_{31}} \left(r \cdot r_{1} \phi_{o} \sin \phi \left\{ v(\xi) \right\} \right)_{a3} d\xi_{a3} \\ - \int_{\xi_{30}}^{\xi_{31}} \left(r \cdot r_{1} \phi_{o} \sin \phi \left\{ v(\xi) \right\} \right)_{a3} d\xi_{a3} \end{aligned}$$

$$\begin{cases} -\int_{\xi_{20}}^{\xi} \left(r \, | \, L \, | \cot \phi_{o} \left\{ u(\xi) \right) \right)_{a2} \, d\xi_{a2} \\ + \int_{\xi_{30}}^{\xi_{31}} \left(r \, \cot \phi_{o} \left\{ u(\xi) \right) \right)_{a2} \, \left(r_{1} \phi_{o} \, \sin \phi \right)_{a3} \, d\xi_{a3} \\ -\int_{\xi_{20}}^{\xi} \left(r \, | \, L \, | \, \left\{ v(\xi) \right\} \right)_{a2} \, d\xi_{a2} \\ + \int_{\xi_{30}}^{\xi_{31}} r \, \left\{ v(\xi) \right\}_{a2} \left(r_{1} \phi_{o} \, \sin \phi \right)_{a3} \, d\xi_{a3} \\ -\int_{\xi_{30}}^{\xi_{31}} \left(r \, \cdot \, r_{1} \phi_{o} \, \cos \phi \, \left\{ u(\xi) \right\} \right)_{a3} \, d\xi_{a3} \\ -\int_{\xi_{30}}^{\xi_{31}} \left(r \, \cdot \, r_{1} \phi_{o} \, \sin \phi \, \left\{ v(\xi) \right\} \right)_{a3} \, d\xi_{a3} \end{cases}$$

 $\left\{ \stackrel{\wedge}{\text{rv}}(x,r) \right\}_{1}$ and $\left\{ \stackrel{\wedge}{\text{rv}}(x,r) \right\}_{2}$ are same as Case I.

$$\left\{ \hat{v}(x, r) \right\}_{3, 3} = \left\{ \begin{array}{c} 0 \\ ----- \\ ---- \\ \left(\cot \phi \left\{ u(\xi) \right\} \right)_{a3} \end{array} \right\} - \frac{2(\cot \phi)_{a3}}{\left(r_{a2}^2 - r_{a3}^2\right)} \left(\frac{r_{a2}^2 - r_{a3}^2}{2} \right) \hat{u}(x) \right\}_{3}$$

$$\left\{ \hat{v}(\mathbf{x}, \mathbf{r}) \right\}_{3, 2} = \begin{cases} 0 \\ \left(\cot \phi_{0} \left\{ \mathbf{u}(\xi) \right\} \right)_{a2} \\ \left\{ \mathbf{v}(\xi) \right\}_{a2} \\ 0 \end{cases} - \frac{2(\cot \phi_{0})_{a2}}{\left(\mathbf{r}_{a2}^{2} - \mathbf{r}_{a3}^{2} \right)} \left(\mathbf{r}_{a2}^{2} - \mathbf{r}_{a3}^{2} \right) \\ \left(\mathbf{v}(\xi) \right)_{a2} \\ 0 \end{cases}$$

E. 5.2 Integration Limit Data

Fluid Surface in Section 1

$$\xi_{11} = \left(\overline{\phi}/\phi_{o}\right)_{a1}$$

$$\xi_{20} = (|b|)_{a3}/(|L|)_{a2}$$

$$\xi_{31} = 0$$

$$\xi_{10} = \xi_{21} = \xi_{30} = 1$$

$$\overline{\gamma}_{1} = \overline{\gamma}_{2} = \overline{\gamma}_{3} = \gamma$$

Fluid Surface in Section 2

$$\xi_{10} = \xi_{11} = \xi_{30} = 1$$

$$\xi_{21} = (H/|L|)_{a2}$$

$$\xi_{20} = (|b|)_{a3}/(|L|)_{a2}$$

$$\xi_{31} = 0$$

$$\overline{\gamma}_{1} = 0$$

$$\overline{\gamma}_{2} = \overline{\gamma}_{3} = \gamma$$

Fluid Surface in Section 3

$$\xi_{10} = \xi_{11} = 1$$

$$\xi_{20} = \xi_{21} = \left(\overline{H}_3 / |L|\right)_{a2}$$

$$\xi_{30} = 1$$

$$\xi_{31} = \left(\overline{\phi} / \phi_o\right)_{a3}$$

$$\overline{\gamma}_1 = \overline{\gamma}_2 = 0$$

$$\overline{\gamma}_3 = \gamma$$

E.5.3 Specific Matrix Data

$$\begin{split} &(\mathrm{K1})_{i} = -4\pi\overline{\gamma}_{l} \Big(\phi_{o}\Big)_{a1} \left\{ \left(\frac{r_{1} \sin \phi}{r^{2}}\right)_{a1}\right\}_{a1, i} \cdot (\xi_{11} - \xi_{10})^{*} \\ &(\mathrm{K2})_{i} = +4\pi\overline{\gamma}_{2} (|L|)_{a2} \left\{ \left(\frac{1}{r^{2}}\right)_{a2}\right\}_{a2, i} \cdot (\xi_{21} - \xi_{20})^{*} \\ &(\mathrm{K3})_{i} = -4\pi\overline{\gamma}_{3} \Big(\phi_{o}\Big)_{a3} \left\{ \frac{(r_{1} \sin \phi)_{a3}}{r_{a2}^{2} - r_{a3}^{2}}\right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &(\mathrm{C1})_{i} = -\frac{\pi\overline{\gamma}_{1}}{2} \Big(\phi_{o}\Big)_{a1} \left\{ (r_{1} \sin \phi)_{a1}\right\}_{a1, i} \cdot (\xi_{11} - \xi_{10})^{*} \\ &(\mathrm{C2})_{i} = (\mathrm{C3})_{i} = 0^{*} \\ &(\mathrm{C4})_{i} = +\frac{\pi\overline{\gamma}_{2}}{2} (|L|)_{a2} \left\{ 1\right\}_{a2, i} \cdot (\xi_{21} - \xi_{20})^{*} \\ &(\mathrm{C5})_{i} = -\pi\overline{\gamma}_{3} \Big(\phi_{o}\Big)_{a3} \left\{ F_{1}(r_{a3}, r_{a2}) \cdot (r_{1} \sin \phi)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &(\mathrm{C6})_{i} = -\pi\overline{\gamma}_{3} \Big(\phi_{o}\Big)_{a3} \left\{ F_{2}(r_{a3}, r_{a2}) \cdot (r_{1} \sin \phi)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &(\mathrm{C7})_{i} = +\pi\overline{\gamma}_{3} \Big(\phi_{o}\Big)_{a3} \left\{ F_{1}(r_{a2}, r_{a3}) \cdot (r_{1} \sin \phi)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &(\mathrm{C7})_{i} = +\pi\overline{\gamma}_{3} \Big(\phi_{o}\Big)_{a3} \left\{ F_{1}(r_{a2}, r_{a3}) \cdot (r_{1} \sin \phi)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &(\mathrm{C7})_{i} = +\pi\overline{\gamma}_{3} \Big(\phi_{o}\Big)_{a3} \left\{ F_{1}(r_{a2}, r_{a3}) \cdot (r_{1} \sin \phi)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &(\mathrm{C7})_{i} = +\pi\overline{\gamma}_{3} \Big(\phi_{o}\Big)_{a3} \left\{ F_{1}(r_{a2}, r_{a3}) \cdot (r_{1} \sin \phi)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &(\mathrm{C7})_{i} = +\pi\overline{\gamma}_{3} \Big(\phi_{o}\Big)_{a3} \left\{ F_{1}(r_{a2}, r_{a3}) \cdot (r_{1} \sin \phi)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &(\mathrm{C7})_{i} = +\pi\overline{\gamma}_{i} \Big(\phi_{o}\Big)_{a3} \left\{ F_{1}(r_{a2}, r_{a3}) \cdot (r_{1} \sin \phi)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &(\mathrm{C7})_{i} = +\pi\overline{\gamma}_{i} \Big(\phi_{o}\Big)_{a3} \left\{ F_{1}(r_{a2}, r_{a3}) \cdot (r_{1} \sin \phi)_{a3} \right\}_{a3, i} \cdot (r_{1} \sin \phi)_{a3} \\ &(\mathrm{C7})_{i} = +\pi\overline{\gamma}_{i} \Big(\phi_{o}\Big)_{a3} \left\{ F_{1}(r_{a3}, r_{a2}) \cdot (r_{1} \sin \phi)_{a3} \right\}_{a3, i} \cdot (r_{1} \cos \phi)_{a3} \\ &(\mathrm{C7})_{i} = +\pi\overline{\gamma}_{i} \Big(\phi_{o}\Big)_{a3} \left\{ F_{1}(r_{a3}, r_{a2}) \cdot (r_{1} \sin \phi)_{a3} \right\}_{a3, i} \cdot (r_{1} \cos \phi)_{a3} \\ &(\mathrm{C7})_{i} = +\pi\overline{\gamma}_{i} \Big(\phi_{o}\Big)_{a3} \left\{ F_{1}(r_{a3}, r_{a2}) \cdot (r_{1} \sin \phi)_{a3} \right\}_{a3, i} \cdot (r_{1} \cos \phi)_{a3} \\ &(\mathrm{C7})_{i} = +\pi\overline{\gamma}_{i} \Big(\phi_{o}\Big)_{a3} \left\{ F_{1}(r_{a3}, r_{a2}) \cdot (r_{1} \cos$$

^{*}Same as for Case I

$$\begin{split} &(\mathrm{KU}_{1})_{i} = + \left(\phi_{o}\right)_{a1} \left\{ \left(\mathbf{r} \cdot \mathbf{r}_{1} \cos \phi\right)_{a1} \right\}_{a1, i} \cdot (\xi_{11} - \xi_{10})^{*} \\ &(\mathrm{KV}_{1})_{i} = + \left(\phi_{o}\right)_{a1} \left\{ \left(\mathbf{r} \cdot \mathbf{r}_{1} \sin \phi\right)_{a1} \right\}_{a1, i} \cdot (\xi_{11} - \xi_{10})^{*} \\ &(\mathrm{KU2})_{i} = -(|\mathrm{L}|\cot \phi_{o})_{a2} \left((\mathbf{r})_{a2}\right)_{a2, i} \cdot (\xi_{21} - \xi_{20})^{*} \\ &(\mathrm{KV}_{2})_{i} = -(|\mathrm{L}|)_{a2} \left\{ (\mathbf{r})_{a2} \right\}_{a2, i} \cdot (\xi_{21} - \xi_{20})^{*} \\ &(\overline{\mathrm{K}}\overline{\mathrm{U}}_{2})_{i} = (\overline{\mathrm{K}}\overline{\mathrm{V}}2) = 0^{*} \\ &(\overline{\overline{\mathrm{K}}\overline{\mathrm{U}}}_{2})_{i} = + (\cot \phi_{o})_{a2} \left(\phi_{o}\right)_{a3} \left\{ (\mathbf{r})_{a2} \left(\mathbf{r}_{1} \sin \phi\right)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &(\overline{\overline{\mathrm{K}}\overline{\mathrm{V}}}_{2})_{i} = + \left(\phi_{o}\right)_{a3} \left\{ \left(\mathbf{r} \cdot \mathbf{r}_{1} \cos \phi\right)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &(\mathrm{K}\mathrm{U}_{3})_{i} = - \left(\phi_{o}\right)_{a3} \left\{ \left(\mathbf{r} \cdot \mathbf{r}_{1} \cos \phi\right)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &(\mathrm{K}\mathrm{V}_{3})_{i} = - \left(\phi_{o}\right)_{a3} \left\{ \left(\mathbf{r} \cdot \mathbf{r}_{1} \sin \phi\right)_{a3} \right\}_{a3, i} \cdot (\xi_{31} - \xi_{30}) \\ &(\mathrm{K}\mathrm{U}_{4})_{i} = + \left\{ (\mathbf{r} \cot \phi)_{a1} \right\}_{a1, i}^{*} \\ &(\mathrm{K}\mathrm{V}_{4})_{i} = + \left\{ (\mathbf{r})_{a} \right\}_{a1, i}^{*} \\ &(\mathrm{K}\mathrm{V}_{5})_{i} = (\overline{\mathrm{K}}\mathrm{V}5) = 0^{*} \\ \end{split}$$

^{*}Same as for Case I

$$(KU_{5})_{i} = +(\cot \phi_{o})_{a2} \{(r)_{a2}\}_{a2, i}^{*}$$

$$(KV_{5})_{i} = +\{(r)_{a2}\}_{a2, i}^{*}$$

$$(KU_{6})_{i} = +\{(\cot \phi)_{a3}\}_{a3, i}^{*}$$

$$(KV_{6})_{i} = +1$$

$$(\overline{KU}_{5})_{i} = +\{(\cot \phi_{o})_{a3}\}_{a3, i}^{*}$$

$$(\overline{KV}_{5})_{i} = +1$$

$$(K_{4})_{i} = -\{(\frac{2 \cot \phi}{r})_{a1}\}_{a1, i}^{*}$$

$$(\overline{K}_{5})_{i} = 0^{*}$$

$$(K_{5})_{i} = -2(\cot \phi_{o})_{a2} \{(\frac{1}{r})_{a2}\}_{a2, i}^{*}$$

$$(\overline{K}_{5})_{i} = -2(\cot \phi_{o})_{a2} \{(\frac{1}{r^{2}a^{2} - r^{2}a^{3}})\}_{a3, i}^{*}$$

$$(K_{6})_{i} = -2\{(\cot \phi)_{a3} \cdot \frac{1}{(r^{2}a^{2} - r^{2}a^{3})}\}_{a3, i}^{*}$$

^{*}Same as for Case I

E.6 LAGRANGIAN WEIGHTING MATRIX TABLES

	DATA FOR [w.]	DA	$TA^* FOR \begin{bmatrix} \overline{x} \\ \overline{y} \end{bmatrix}$	21×21
w ₁	0.01341	70742	\mathbf{w}_1	0.01341	70742
w ₂	0.08876	79707	w ₂	0.08876	79707
w ₃	-0.04052	17853	w ₃	-0.04052	17853
w ₄	0.22747	31442	$\ $ w ₄	0.22747	31442
w ₅	-0.21757	75613	w ₅	-0.21757	75613
w ₆	0.35688	23152	w ₆	0.35688	23152
w ₇	-0.21757	75613	$\ $ w ₇	-0.21757	75613
w ₈	0.22747	31442	w ₈	0.22747	31442
w ₉	-0.04052	17853	w ₉	-0.04052	17853
w_{10}	0.08876	79707	w ₁₀	0.08876	79707
\mathbf{w}_{11}	0.02683	41484	w ₁₁	0.02683	41484
w_{12}	0.08876	79707	w ₁₂	0.08876	79707
w_{13}	-0.04052	17853	w ₁₃	-0.04052	17853
W ₁₄	0.22747	31442	W ₁₄	0.22747	31442
W ₁₅	-0.21757	75613	W ₁₅	-0.21757	75613
W ₁₆	0.35688	23152	W ₁₆	0.35688	23152
W ₁₇	-0.21757	75613	w ₁₇	-0.21757	75613
W ₁₈	0.22747	31442	W ₁₈	0.22747	31442
W ₁₉	-0.04052	17853	w ₁₉	-0.04052	17853
W ₂₀	0.08876	79707	w ₂₀	0.08876	79707
W ₂₁	0.01341	70742	W ₂₁	0.01341	70742

^{*}This column is identical for all 21 columns of the matrix.

0.01341	0.08876	-0.04052 17853	0.22747	-0.21757	0.35688	-0.21757	0.22747	-0.04052	0.08876	414	0.08876	-0.04052	0.22747	-0.21757	0.35688	-0.21757	0.22747	-0.04052 17853	0.08876	0.01341
0.01341	0.08876	-0.04052 17853	0.22747	-0.21757 75613	0.35688	-0.21757	0.22747	-0.04052 17853	0.08876	r 4	0.08498	-0.02123	0.16824 04626	-0.09538 62114	0.17830 51948	-0.02725	0.07651	0.05239	0.02027	-0.00059
0.01341	0.08876	-0.04052 17853	0.22747	-0.21757 75613	0.35688 23152	-0.21757 75613	0.22747	-0.04052 17853	0.08876	2.0	0.08560	-0.02448 35658	0.17846 52878	-0.11721	0.21187 62226	-0.06624 72342	0.11344 94148	0.00256	0.00253	-0.00025
0.01341	0.08876 79707	-0.04052	0.22747	-0.21757 75613	0.35688	-0.21757 75613	0.22747	-0.04052 17853	0.08876	965	0.08540	-0.02338 90489	0.17490	-0.10920 40325	0.19844 72503	-0.04757 12200	0.07274 56685	-0.01822 10802	0.00347	-0.00030 84484
0.01341	0.08876 79707	-0.04052 17853	0.22747	-0.21757	0.35688	-0.21757 75613	0.22747	-0.04052 17853	0.08876 79707	~ 00	0.08551	-0.02400	0.17701	-0.11437 98701	0.20887 01298	-0.08237 98702	0.04901	-0.01629 05844	0.00322	-0.00029
0.01341	0.08876	-0.04052	0.22747	-0.21757 75613	0.35688	-0.21757 75613	0.22747	-0.04052 17853	0.08876 79707	0.02713	0.08541	-0.02345 79722	0.17496 54908	-0.10833 66684	0.17844 11576	-0.10924 08930	0.05250	-0.01706	0.00334	-0.00030
0.01341	0.08876 79707	0.04052	0.22747	.0.21757	0.35688	-0.21757 75613	0.22747	-0.04052 17853	0.08876 79707	473	0.08554	-0.02423	0.17846 01572	-0.13519 76912	0.14801 21854	-0.10319 76912	0.05046	-0.01651 69152	0.00325	-0.00029 23414
0.01341	0.08876 79707	-0.04052 -	0.22747	-0.21757 - 75613	0.35688	-0.21757 75613	0.22747	-0.04052 17853	0.08876 79707	0.02714	0.08528	-0.02230	0.15472	-0.17000 63413	0.15843 50650	-0.10837 35288	0.05257 12256	-0.01713	0.00336 69846	-0.00030
0.01341	0.08876	-0.04052	0.22747	-0.21757	0.35688	-0.21757	0.22747	-0.04052	0.08876	0.02708 72615	0.08623	-0.04308	0.11402	-0.15133	0.14500 60927	-0.10036	0.04900 78564	-0.01603	0.00316	-0.00028 39573
0.01341	0.08876	-0.04052 17853	0.22747	-0.21757 75613	0.35688	-0.21757	0.22747	-0.04052 17853	0.08876	0 9	0.06849	-0.09291	0.15096	-0.19032 41624	0.17857	-0.12219	0.05923	-0.01928 76386	0.00378	-0.00033
0.01341	0.08876	-0.04052 17853	0.22747	-0.21757 75613	0.35688	-0.21757	0.22747	-0.04052 17853	0.08876 79707	0.01341	 • 	0	0	6	0	•	0	0	0	0
0.01375	0.08498	-0.02125 41467	0.16824 04626	-0.09538 62114	0.17830 51948	-0.02725	0.07651	0.05239 81078	0.02027	-0.00059 24056	! 1 0 !	0	. 0	0	0	0	0	0	0	0
0.01370	0,08560 69692	-0.02448 35658	0.17846 52878	-0.11721 01972	0.21187 62226	-0.06624	0.11344 94148	0.00256 40532	0.00253	-0.00025	! ! • !	0	0	0	0	0	0	0	0	0
0.01371	0.08540 09862	-0.02338	0.17490 19185	-0.10920 40325	0.19844 72503	-0.04757 12200	0.07274 56685	-0.01822 10802	0.00347	-0.00030 84484	 • 	0	0	0	0	0	0	0	0	0
0.01370	0.08551 29870	-0.02400 48702	0.17701 29870	-0.11437 98701	0.20887	-0.08237 98702	0.04901 29870	-0.01629 05844	0.00322 72728	-0.00029 05844	 • 	0	0	0	0	0	0	0	0	0
0.01371	0.08541 85560	-0.02345	0.17496 54908	-0.10833 66684	0.17844	-0.10924 08930	0.05250 76534	-0.01706 38131	0.00334	900	 • 	0	0	0	٥	0	0	0	0	0
0.01370	0.08554 06980	-0,02423 12009	0.17846	-0.13519 76912	0.14801	-0.10319 76912	0.05046	-0.01651 69152	0.00325	-0.00029 23414	 • 	0	0	0	۰	0	0	0	0	0
0.01372	0.08528 88596	-0.02230	0.15472	-0.17000 63413	0.15843 50650	-0.10837 35288	0.05257 12256	-0.01713 27364	0.00336 69846	-0.00030	 • 	0	0	0	0	0	0	0	0	0
0.01367	0.08623 68393	-0.04308 58386	0.11402	-0.15133	0.14500 60927	-0.10036 73641	0.04900	-0.01603 82195	0.00316	-0,00028 39573	 • 	0	0	0	٥	0	0	0	0	0
0.01400	0.06849	-0.09291 98931	0.15096	-0.19032 41624	0.17857 71204	-0.12219 13499	0.05923	-0.01928 76386	0.00378	033 925	 • 	0	0	0	0	0	0	0	0	0
0	•	0	0	•	0	0	0	0	0	0	!	0	0	0	0	•	0	0	0	0

APPENDIX F

SAMPLE INPUT DATA

Sample input data for a typical one stage launch vehicle (Figure F. 1) is presented to illustrate the basic data requirements. For simplicity all structural components are constructed of aluminum. The vehicle oxidizer and fuel tanks are both assumed to be simple tanks according to the terminology used in Section 2.0. To demonstrate the capability of handling stringers and ribs, two shell sections are given orthotropic properties as indicated in Figure F.1.

The physical model is first subdivided into a consistent set of shell, fluid and mass-spring components as shown in Figure F.2. In this example the vehicle is represented by eleven (11) shell components, two (2) fluid components and four (4) spring-mass components to account for the payload, engine and equipment. The displacement coordinate locations are then selected and numbered according to the requirements discussed in Section 8.0. For this sample problem the vehicle is assumed to be unsupported, i.e., no fixed coordinates are specified.

The input data load sheets have been prepared for the launch vehicle illustrated in Figure F. 1 and are included in this appendix to illustrate the input format. The system data appears first followed in order by the data specifications for each of the shell, fluid and spring-mass components.

Figure F.1. Typical One-Stage Launch Vehicle

Figure F.2. System Components and Coordinates

DATE						LABORATORIES TA REDUCTION CE	ENTE	≟ R	PAG	E_L_0F	14
NAME		_		~	11011 7	JA Newww	.15.	-R PRIORITY			A- 4
PROSLEM NO	o,								CHED BY		
NO. OF EARD								VERIFIER			
	-						Australians		Si Arabina da ana	78	minute:
	-			21						1	
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									+-	
	-	ranto	r an car								
		1	1 2	T7	117		Ţ	112	1,		
	1	1 19 37 85	20	7 26 43 41	17 36 63 71		37	1 2 9 20 7 38 6 56	7 28 48 61		1 3 8 7
SYMBOL	7	A E	LOC.	VALUE	EXP.	\$YMBOL	ا ا	LOC.	, VA	ALUE	E
	1	I	NG	30			忙	14.04			1
		Z	115	11			E	04,04	†]
		\bar{z}	NE	2							1
	بإ [Z	NIM	14			ŢŢ	<u> </u>			4
	14	Z	NP	1.0			113	UBAR VBAR	3		+
	-11.	-	G	1.0			14	VBAK	5		+
	1:	싀	INS IDPTI	-/			1	+			+
		力	TAPTZ	1			10	APALY	1111		1
		Z	TOPTZ	0			IL	01,01	40		7
	17	Ż;	TAPTA NET	0			11_	01,01	1,0		4
	4	4				<u> </u>	1	103.00	1.0		+
			INP	3			1/2	01,01	11,11		+
	-	=	ND_	 			1				t
	1	J					一	02,02	1,0		#
	11:	\overline{z}	UBAR	2			! L	04,04	1.0		1
	تإل	Z	UBAR YBAR	2			4	04,04	10		1
	4						(E	NO_			+
	4 1-	-	177114	 			1	-	+		+
	17	4	ATGLI	1///			1		_		+
	1	丁	12 03	11,11 1.0 1.0							1
] [7					4_				4
	In	u	BPOLY	1111			1-				+
	+		01,02 02,03 ND	110			1-	 			+
	11	-	02,03	1.0	-+-		一	 			1
2	h	키	11 RAR	2			i 🗀				I
	11-	Z	U.BAR V.BAR	4		<u> </u>					7
	11.						1-	Γ			4
		+	17777			 	;}-	-	 		+
·	1	7/	APALY 01,01 02,02 BPALY 01,01	11,11			4	-			+
	1-		21,01	1.0			1				1
	11-	7	Dejun	7.0			上				7
	1/	n	BPALY	11.11			4				1
	1		01.01	110			4_	<u></u>	Ĺ		+
	11	_}/	02,02	1.0			4	ļ			+
				(/ A		t r		1	1		- 1

DATE					GY LABORATORIES DATA REDUCTION C	ENTE	R	PAGE 2	or 14
NAME							PRIORITY		
PROBLEM NO							KEYPUNCI	180 BY DOL	
NO. OF CARD							VERIFIED	, (A
1								71)
				·~					=1
			· · · · · · · · · · · · · · · · · · ·					>	<
		2	7 28	17		[;;	2 20	7 28	
	37	2 20 36 56	28 43 61	17 38 63 71		37	36	28 43 61	1 3 8 7
SYMBOL	PAE	LOC.	VALUE	EXP.	SYMBOL.		LOC.	VALUE	ε
	IZ		-/	1		11-	HE	0.	
	I	IU	ż				DESTE		
].[I	IV	2				PRE	0.	
	JI	TUB	2	-		J/[_	WFOR	0,	
	I	IVB	2			L"E	NO		
	I	IDVT		╀		-11	<u> </u>		
	L	ļ	2			-{	 		
				+	·	-{}-	-		
	II	INK	-7	┪		- -			
	广	DUTAL	69.444	-			 		
]	XL	0.	1		T			
		RZIN				\mathcal{H}			
	_	BBAR							
		ABAR	24.0]]_]
	_ ا ا	CIII	.7692307	06		┦┞┈	<u> </u>		
	_		7692307	06		-11-	 		
	-	C/2I	.2307692	06		∤ }—	ļ		
	┨—	1 227	12307692	06		┨├─	 		
	 	CZZZ	,7692307	06		┧┝╴			
		0.337	.31410256	03		11	 		
		000-	1314107-56	03			1		
			131410256	03		J [
			.31410256	03			<u> </u>		
		C34I	.94230769	02		11_	<u> </u>		
			.94230769	02		-[]_	<u> </u>		{
	-! !	ļ	194230769	02		-{ }	 		
	-	4 0.17	,94230769	03	ļ	-{	<u> </u>	<u> </u>	
	-	0 471	.3/4/0256	200		-	 	<u> </u>	
	·		131410256	03		11-	 		
	1	-	.31410256	0.3		11			
	-{	THI	.07	1		7,1-	1		
	11	1112	.07	1] [
		DESTA	.2588	-3					
		AM				11_	<u> </u>		
						11_	<u> </u>		
		DESTI	0.			-	<u> </u>		
	11	PRT	10.	1	ı	i I	1		

DATE			SPACE TEC COMPUTATIO		OGY LABOR. DATA REDI		NTE	₹	PAG	. ع ه	- 14
NAME	·		of Association (VE Principle as the					PRIORITY	11		·
PROBLEM NO	3		and the second s					KEYPUNC	421-	/_1)
NO. OF CAR								VERIFIED		$\setminus A$	<u> </u>
1	7						in er			73	
					<u>-</u>					- 	
										- ><	
		T 3	1 v	117	1		<u> </u>	T 3	r		112
	10	2 20 38 56	7 25 43 61	17 35 53			1 19 37 88	2 20 30	7 26 4a 61		17 35 53 71
SYMBOL		LOC.	VALUE	- 71 EXP		#YMBOL	PR _E	LOC.		LUE	E x
			2	-	1 -		·	AM	. 4901		
	Z	IU	3		1		1	HI	0.	40	
	1	IV	3		1			DESTI		M	
	17	IUB	3		1			PRI	0.		
	\overline{z}	IVB	5-					HE	0;		
	7	IDVI					!	DESTE			
	7		5				1	PRE	0.		
	JIZ		6				<u> </u>	WEARC	-19.8		_
	1		3	J	 		E	NO			_ _
	Z	ļ	7								
	7		8				-				
	Z		2	-	1 -	' !	1				_
	Z	INK	3	-	1		-				_
		PHTM	69.444	_	1		-				
		XL	96.								
		R2IN	60.								
		BBAR	0.		l		_				
************************], [DBAR	0.	_	[
 	<u> </u>	C11T.	.7692307	106			ļ				
	. j		,7692307	06							
	.		12307692	06			-				
	-	1227	1307692	06			1				
	1	المستجريري	.7692307	06							
		137I	131410256	3							
		9-0-	,31410256	03							
			1314102-56	03							_
	11_		31410256	03							
	!	C317	194230769	102							
	[]		14230769	02							
	<u>.</u>		01230767	07			-				
	- -	0 117	1311.10256	13.3	<u> </u>						
	-	C 1/2/2	13/1/02-56	23	ļ —						
	: -		31410256	03 03 03							
	-		31410256	03							
	- 1-	THZ	,07								
	: ! _		.07								
	1	175577	125CS	- 3		ì	i				L_

DATE			SPACE T COMPUTAT	ION AND DA	LABORATORIES TA REDUCTION CE	NTF	,	B405 4	1
1AME								1	
PROBLEM N	•						PRIORITY	4211	<u> </u>
							KEYPUNC	HED BY	
O. OF CAR	7			*** * * * * * * * * * * * * * * * * *			VERIFIED		
	<u> </u>				······································		·····		78
		·							
			· · · · · · · · · · · · · · · · · · ·						=
				······································	·····			:	×
		.2		17			2	7	
	37	2 20 56 56	7 26 43 61	17 35 63 71		19 37 88	2 20 30 56	7 26 43 61	
YMBOL	PR	LOC.	VALUE	EXP.	SYMBOL.	PRE	LOC.	VALUE	
	7 7		-3			E	HE	 	
			2					0.	
	1 2	71/	2.				DESTE	0.	
	117	IUB	2			[]	WEBRC		
	Z	IVB	2			1	ND		
			6			į	-V-V		
	Z Z Z		10						
			8						
	Z		9						
	Z		1						
		PHIN	69.444			. [
		XL	0.						
		RZIN	0.						
	. _	BBAR	42.4						
	11	ABAR	600						
	┦ ┞—	C. 11I	.514.1758	06					
	.]_		.824.1758	_06		-			
	1 1_	C12I	. 24.72527	06					
	H	4 50 7	2172527	06					
·	(`		18271758	- 26	<u> </u>	-			
	- -		,8241758	06					
		C33.T		03	<u> </u>	1-1			
	1:-		:38633241 :38633241	03 03 03	· · · · · · · · · · · · · · · · · · ·	-			
	1 }		.38633241	03					
		@ 31T	11581772	03		1			
		UJ-7-Z	11589972			1-1			
	1		11589972	03					
			.11587772	0.3					
	11-	CAAI	.38633241	03					
			. 38633241	03					,
) [.38633741 .38633241	03 03 03 03					
) [.38633241	03					
		THI	.075						
			.075						
	_ ا إ		.2588	-3		\square			
] _		0.						
	41_	·	0.						
	1 _	DESTI	0.						

ATE						ORATORIES EDUCTION C	ENT	R	PAGE .	5_0-1	1
AMK			ne Personalitati ne pulpul n. n					PRIORY		__	_
OHLEM NO	۰		n a summing of the summer					KEYPUNC	HEO BY - P	X	
OF CARE)#		an atomic of the ordinates and a					VERIFIES	· 8Y	1	1
	7	· · ·	er og er		iv a substant *			ara na mana na manana	TO THE STATE OF TH	79	
		*******									_
			a the factor desired, a specimental entering of states of south for speciments, and								
										ار. اید	
L	r_,	7.	γ.,						<u> </u>	<u> </u>	_
	10 37 88	2 20 36 66	25 43 01	17	1		;	1 2 9 20 7 38	7 26		
	~ .			71				5 6 6	43		-
YMBOL			VALUE	EXP	1 1	SYMBOL.			VALUE		_
	I	- p. s	7]]	·	_ _		15/70/3	<i>88</i>	_
	I	ZU_	2		-		- -	PRZ	20.		
 .	1 7	LY	2		4 }			HE	0.		إ
		LUB	2		┥┟		-{ }-	DESTE	1		
	1 4	LVA	4				-	PRE	0.		_
	17	IDVI	6		- J.		-		-5347,0	22	1
	エエエ	.	8		 		1 4	10			1
		-	12	_	1 }			-			1
	エエエ	ļ	9	-	1			 			1
	I		13		1 F		{		 		l
	1	INK	2		1		-				
		PHIN	90.		1		List				İ
	-	14	60.		1				<u> </u>		t
		RZIN	60.				}-	1			ł
		BBAR			1 1						t
		ABAR	0.				П				ĺ
		CIII	1.098901	06							ĺ
			1.098901	06							ľ
		C-12.T.	,3296703	06			J - L				ļ
			.3276703	06	_		_				L
i	j	C22I	1.098901	06	-		 			ļ	Ļ
	Ì		1.098901	_06	-				<u>, </u>		ŀ
	ļ	C337	1915750	<u>3</u>	ļ-		{	-			-
	ļ		1915750	<u>د</u> ص	-			ļ			
			915750	03	_	· · · · · · · · · · · · · · · · · · ·	∤	ļ			-
	į	C34Z	1915750	_03 _03	-		{				~
¹	<u> </u>	0047			 -		-	 			-
	\ 		2747250	03	-						-
			12141250	03	}-						~
	-	CARI	1915750 1915750	03	<u> </u> -		1-				-
			.915750	03					······································		•
:			.915750	03	-			[-
	1		,915750	_03	 			[-
;			1/0		一						-
,	-		.10		Γ						•
		DESTA	,2588	3							
	1	AM	.585389								_
	1	47	30.								-

DATE			SPACE TE COMPUTATI	CHNOL	OGY LAB	ORATORIES EDUCTION C	ENTE	R	PA	1 <u>6</u> 0 r	14
NAME								PRIORITY			
PROBLEM NO)								Z.	11-1	
								KEYPUNC	HED BY		
O. OF CARD	7							VERIFIED	<u> </u>		2
										- "	
						·····			~~~~~~~~		
										×	
	[1 2 0 20 7 98 8 56	7 25 42 61	17 36 63 71				1 2	7		
	, <u> </u>	7 56	61	71			11	1 2 9 20 7 30 6 86	7 28 48 61		
SYMBOL			VALUE	EXP.		SYMBOL.		E LOC.	٧	ALUE .	
	113	IINA	-5-					HE	0.		
· · · · · · · · · · · · · · · · · · ·]]]	ZU	2				IL	DESTE	0,		
	1 13		2				-[-]_	PRE	0.		
	1	TUB	2				4 _	WEARC	0.		_
	{ =	ZVB	2				IE	NO	<u> </u>		
	12		11				-{}-	-			
			14		}		-{}-	 	 		
	₹ }∸		/3		ŀ		1	 			
		ZNX	7		ł		11-	┨┈┈┈	 		
	115	PHIN			ŀ	·····	11-	 			
		XL	0.		ŀ		-11	 	 		
	lΓ	RZIN	0.		ſ		11			***************************************	_
			-42.4				11				
		ABAR	60.		[
	 	CIIZ	.87912	06	[Γ				
	11_		87912	06			IL	<u> </u>			
	[]_	CIZI	263736	06]				
		 	263736	06].		11_	 			_
	} -	CZZZ	.87912	06	-		∤				4
·]_	2327	,87912	06			!! _	 		· · · · · · · · · · · · · · · · · · ·	4
	[-	C33I	.46886447	03	1		4—	 			4
			46886447	03 03	ŀ		{}	 	<u> </u>		\dashv
		1	96886447	03	-					· · · · · · · · · · · · · · · · · · ·	7
	-	0.347	.14065934	b3		,					1
		1	.14065934	03	f		厂				1
			14065934	03 03			IL				1
			.14065934	03							J
	I	CAIZ	.46886447	03			IL				\mathbb{I}
	1_	 	.46886447	03	· [_				_[
	! !-		16886147	03	-		[]_			··	4
	_	<u> </u>	.46886447	03	-		[]_	<u> </u>		·	4
	[]-	THI	108	+	 	······································	[]-	 		· · · · · · · · · · · · · · · · · · ·	4
i	[DESTA	.2588	-3	}-		}}	 	· · · · · · · · · · · · · · · · · · ·		+
	/ -	DAA	1380503		}					···	+
	1	HI	-30.	$\dashv \dashv$	F						+
		DESTE	15/70/388	-/	ļ.						\dagger
	-	PRI	20.		-		1-				+

					ABORATORIES	NTCC)	PAGE 7 OF	14
DATE			COMPUTAT	ION AND DATA	A REDUCTION CE	:NI En			÷
NAME	*******	· · · · · · · · · · · · · · · · · · ·					PRIORITY	DV	
ROBLEM NO							KEYPUNC	HED BY	不
O. OF CARD							VERIFIED	73	<u>4</u>
								<u> </u>	
	1 16 37 86	20	7 25 43 61	17 35 53 71		1 19 37 66	20	7 28 43 61	
	37	30			r	, 👸	5.6		
YMBOL	PAE		VALUE	EXP.	SYMBOL	PRE	LOC.	VALUE	
	I		6			_	7	1.580557	
	I	IU	3				HZ_		
	I	IV	3			H-	DESTI		
	三	IUB	<i>3</i>		-	∤	PRI	0.	
	1	IVB	5				ME	0.	
	I	IOVT	//			<u> </u>	DESTE	0.	
	1/2		15		 	-	WESE	0.	
	17		12			E	ND		-
	一		17						
	17		18						
	定		/3						_
	I		19						
	I	INK	3						
		PHIN	90.						
] [!			
	11_	R2 IN	60.						
		BBAR							
		ABAR	0.		 				
		C117	1.64835	06				<u> </u>	
	 	2107	1.64835	06					
	{	C12I	.494505 .494505	06					
		1.227	1.64835	06					
	í j		1.64835	06					_
	-	C33I	,618	04					_
			.618	04					
			.618	04		!]			
			.618	04					
		C34I	185	04					
			.185	_04					
	ļ <i>}</i> —		.185	04					
	[j	- 411-7	.185	-04				<u> </u>	
		CATI	.618	04 04 04 04		-			_
		·	1618	-04					
	1 }-		1618	04					
	 	THI	15	-07					_
 		1772	, 15-						7
	[DESTA	12588	-3					寸

ATE			COMPUTAT	ECHNOLOGY ION AND DAT	LABORATORIES A REDUCTION CE	NTE	R	PAGE	. /
AME						,		/ 1	سر ۱۴
ROBLEM NO							PRIORITY	W/ (
							KEYPUNC	HED BY	
OF CARD)	***********					VERIFIED		
								78	
									
									
								×	
	1.	2	.7	17			2	7	
	1 19 37 88	38	7 25 48 61	17 36 53 71		37	2 20 38 86	7 28 43 61	
SYMBOL	PAE	LOC.	VALUE	EXP.	SYMBOL	Pa	LOC.	VALUE	
	I	INA	-7			╂	HE	0.	
	IZ	ZU					DESTE	0.	
	Z	IV	2				PRE	0.	
) Z	IUB	1 2.				WFORC	0.	
· · · · · · · · · · · · · · · · · · ·	IZ	IVB	2			E	NS		
	IZ	ZOVT	16						
	II		20			1			
	1 7		18					ļ	
	I		19		ļ]			
	E	INK							
	[]	PHIN	90]	ļ		
	/ } _		0:	_		 -	 	ļ ————	
		R2ZV BBAR					<u> </u>		
		B BAR				1-		· · · · · · · · · · · · · · · · · · ·	
		CIII	.8241758	06		1			
	í i		.8241758	06					
		C121	.2472527	06					
			.2472527	06		-		***************************************	
		C.22.T	18241758	06					
			18741758	06					
		C.33T	.38633241	03		''			
····			,38633241	03					
	<u> </u>		1381-33241	03	ļ!				
			,38633241	<u></u>			 		
	[]	C.341	.11589772	23		-			
			.11589972 .11589972	03 03					
			.11589972			-			
	}	1117	13863324/	03		\vdash			
		<u> </u>	,20/22511	03	·	H			
			38633241	03					
			.38633241 .38633241 .38633241	03		\prod			
		THL	.075						
			1075						
		DESTA	.2588	-3					
		AM	.35672 1						
		HI	0.			\sqcup			
		DESTI	20.]

ATE		-	SPACE TE COMPUTATI	CHNOLOGY I	LABORATORIES A REDUCTION CE	NTE	R	PAGE 9 01	. /
AMK									
			**************************************				PRIORITY	/ }	7
ROBLEM NO	·						KEYPUNG	HED BY	_
	7			~~~			VERIFIED		_
	<u> </u>							73	
					-				
	***************************************		· · · · · · · · · · · · · · · · · · ·					1	
								X	
	[1.2	1.2	[17]			2	7	_
	37	2 20 98 98	7 28 48 61	17 36 83 71		37	2 20 36 50	7 26 43 61	
YMBOL	PAE	LOC.	VALUE	EXP.	SYMBOL	PAE		VALUE	
	IZ	 	8	_		╂┦╌╴	 	.32465277	
	1 2	ZU	2				PRI	200 .	
	Z	J-V	2		}	}	HE	0.	
	行	TUB	2				DESTE		
	IT	IVB	4					0.	
·	厅	IDVT	16			j		40720,379	
	TI		21			E	ND	12.000	
	江		18				7		
	II		22			\Box			
	1		17						
	I		23						_
	Z	INK	2						
-	l	PHIN	90.			_			
		XL	48.						
		RZIN	60.]				
		BBAR	0.		}	_			
		ABAR							
		CIII	1.3/868	06]			
		CIZI	1.31868	06		-			
		<u> </u>		06		-			
	[.]	CZZI	1375-604	06					
	1	<u>C221</u>	1,31868 1,31868	06					
		C.3.3T	1.582.4176	03					
			1.5824176	03					
			1.5821176	03	[
			1.5824176	03					-
		C.34.T	. 47472528	03	,				_
	1		.41475528	03					
			147473538	03					
			,42177518	03					
			1.5821.176	03					_
	-		1.5821176	03					_
			1.5824176	03	 		<u></u>		_
	1_1		1,5824176	03	ļ				_
	<u> </u>	TUT	, 12	+	 	}-			
			.12	1 3	}	}			4
		DESTA	.2588	-3					4
	1	AM	1561973	1	}			···	4

E			COMPUTATIO	д ана ис	DATA RE	TOUCTION CE	NTE	₹	PAG	1 LO 01	* Z.
E								PRIORITY		: 11/1 /	
LEM NO			·					KEYPUNC	HED BY		
FCARD	\$	rostri , shi	Targe disease, graphe increase of effective to desire the first of the second				evans.	VERIFIED	BY	109	
		~~~								70	
		<del></del>		<del></del> -				·····			
	1 10 37 80	2 20	7 28	17 36 83 71			1	2 20 38 56	7 28		
	1 65	56	43 61	71	r		37	56	48		
MBOL	PRE	LOC.	VALUE	EXP.	ļ	SYMBOL	PRE	LOC.	<u> </u>	ALUE	
		INA	-9				11_	HE	0.		
	I	ZV_	2		]		]	DESTE			
	工	ZY	2		ļ		[ ]	PRE	0.		
	「王	INB	2		ł		<b>!</b>	WEBEC	0.		
	三	IVB	2		}		E	NO			
<del></del>	1   ‡	FOVI	21		ļ		[				
<u></u> _	エエエ	<del> </del>	24		ł		$\{ \mid -$	<del> </del>	<u> </u>		
	Ī		23		ľ	·					_
	Ī	INK	7		Ţ						_
	11-	PHZN	110.		Ī						
		XL	0		į		ļΓ				_
		RZIN	0		1				<u> </u>		
	1.		- 42,4		[						
		A BAR	.87912		ļ		]		ļ		
	<u>ــا ل</u>	C.11Z.		06	}		{				
	11_		.87912	106			[.				
	[]	C/27	126 373 6	06	ł		l		<del> </del>		
		C 22.J.	1263736	06	ŀ	·	<b>   -</b> -		<u> </u>		
	{	C 22.10	.87912	06	ł		1 -				-
	-	C 33 Z	.46.886447	03	ŀ		[ ]				-
		<u></u>	46886417	03	Ì		-			<del></del>	
			16886117	03							_
			.46886447	03							
		C34I	11065934	03			11_	<u> </u>			
	]		14065934	03 03	]		<del> </del>	<u> </u>	ļ		
	-		14065934	<u> </u>	}		{	<del> </del>			-
	_	4 / / -	.14065934	무림	ł		{	<del> </del>			
		CA4I	146886447	03	ł			<del> </del>	<del> </del>		_
	[]-	<del> </del>	146886147 146886147 146886147	03	ł			<del> </del>	<del> </del>		
	{	<del> </del>	.4688644.7	03	•		ii				
	-[	THI	08	-1-1	Ì						
	11-	1//-	.08				1				
	-	DISTA	.2.588	-3			] [				
		AM	0				11				
· · · · · · · · · · · · · · · · · · ·	11-	HZ	-24.								
		DESTI	-24.	-/					<u></u>		
		1007	20.		- 1		1.1	1	1		

DATE						LABORATORIES  TA REDUCTION C	ENT	ER	₹ '	PAGE	_//or	-,
NAME	<del></del>								PRIORITY		HA-)-	_
PROBLEM N	o								KEYPUNC	HED BY	10/	
NO. OF CAR	Ds								VERIFIED	BY	-19	
1	-									· . · . · · · · · · · · · · · · · · · ·	72	
			<u> </u>						γ .	γ		•
		1 19 37 88	20 38	7 25 43 61	17 36 63 71			7	2 20 38 66	7  25  48  01		
SYMBOL		PR.	LOC.	VALUE	EXP.	SYMBOL	٦   أ	·	LOC.	VAL	U <b>K</b>	,
	11	I	INA	10			11	_	DESTI	0.		•
		I	IU	2					PRI	0.		
		7.	IV	2					<u> سے بہر</u>	0.		_
<u></u> :	-∤ ¦	7	IUE	2	<del></del>		۱,	_	DESTE		·	•
	-[]	7	TVB	1		ļ	-   -		سترج ح	0. -6260	1000	
	-	Z	INUT	25			11-	=	NA	6 2601	.078	
		7		22			1 1	=-	74.25			-
	$\mathbb{J}_{4}$	Τ.		26			$\mathbb{I}$					
	$\prod$	7.		23			11_			! 		
		7.	INK	2.7			-	-				
		2	PHIN	7			11	ㅓ				•
	- - -		XL	34.		<u> </u>	11	7				
	11		RZZN									
	].[	_	BBAR	0.			}					
	11		4848				-	4				-
·		}	CIII	1.64835	56		[]-	-				-
	-{ }	-	C12.I	1.64835	06		1	1				•
	7 /	T		.494505	06			٦				•
			C22.I	1.64.835	06							
				1.61835	06		_	_				_
<del></del>	{		C33.Z	1618	04			+				•
	-}}	-		.618	24		-	+				_
	11	+		.618	09			+			<del></del>	
		-	C34.Z	185	-64			1				
				.185	01			$\prod$				
	H	_[		1185	01			4			· · · · · · · · · · · · · · · · · · ·	
	1	_	0000	.185	01.		]-	+				-
	1}	-	CHAL	·618 ·618	124		1	7			·	•
· · · · · · · · · · · · · · · · · · ·	- [ ]	+		1618	04			+				
	1	+	, , ,	618	04			1				
		二	7717	115			_	1				,
		4		.15			-	+				
DJY 1-	1.	-	DISTA	.15 .2588 1.227311	-3		-	+				
DL'		=-}	2112	0.			11-	+				-

DATE			СОМРИТАТИ	AD DIA NC	TA REDUCTION C	ENTER	a	PAGE-12.01	r .I.::
NAME			aler - Managappy, agglerication, et again				PRIORITY	<del></del>	7
PROBLEM NO.	·•						KEYPUNC	HED BY	<u>,</u>
O. OF CARD			And the state of t				VERIFIED	BY	4
	<u></u>	**********		******				79	<u>Z</u>
				<del></del>					
	100	2 20 36 56	7 25 43 61	17 36 83		110	2 20 36	7 25 43 61	
	7 100	56		71		7   10	0.0	<del></del>	
YMBOL	PAE		VALUE	EXP.	SYMBOL.	PRE	LOC.	VALUE	
	Z		1/			11_	DEST.Z	)	
	I	-	2			-11	PRI	0.	
	月石	IV	2			-[.]	HE	<i>o</i>	
		~~~~~~	2			<b>↓</b>	7	0.	
	I	IVB	1-			[]_	PRE	0.	
	14	ZDYT	2/			-[]_	1	1695.3252	
	ZZZ		28		ļ	E	ND_		
			22		 	-{}-	}	 	
	I Z	<u>-</u>	29			↓	 		
	兰		23			- -	ļ	ļ	
	12		30			-[-]	ļ		
	<u> ۴</u>					-	 		
	-	PHIN				-[]	 	ļ	
	1	XL	-60.			1}-	 		
	11-		38.1618			-{-}-	 	ļ	
i	{ }	BEAR				{ }—	 		
	{ -	ARAR					 		
	<u> </u>	1111	1.64835	_66			 		
!	-	C12.I	1.64835	26		 	 		
	{ 	0100				什一	 		-
	1 -	C22T	1.64835	06		-	 		
 !	1.1-	C 12 200	1.64835	06		11-	 	 	
	11-	P. 33 Z	3.0906593	03		11-			
······································			3.0906593	03		11			
		\ <u></u>	3.0106593	03		11			
	1	-		03		11			-
	! [_	C34I	3,0106573	03					
	1.1		.9271978	03					
	1		1.2271778	03		H_{\perp}			
			.7271178	3					
		CALL	3.0901593	<u>03</u> 03					
			3.0906593						
			13.0906573	03] [_			
			13,0906573	C3]			
		THI			<u> </u>	ا[اِ			
	1		.15						
	!	DESTA	.7588	-3		1			
	1 _	IM	.764387		ļ	.	L		
	1	11.7	To. '	1 1	1	11	1	1	

DATE							ORATORIES EDUCTION C	EN ⁻	TEF	}		PAGE 13	or 14
NAME										PRIORITY	·		
PROBLEM N	o									KEYPUNG		Υ	
NO, OF CAR										VERIFIE			
	7								-	VERIFIE		78	
					~		· · · · · · · · · · · · · · · · · · ·						7
												\	7
<u> </u>													IJ
ł		10 37 00	2 20	7 28 48 61	17 35 53 71			1	1 19 37 88	20	7 26 48 61		17 38 63 71
ļ		37	56	01	71			٦,	37		<u> </u>		
SYMBOL	1	PRE	LOC.	VALUE	EXP.]	SYMBOL.	Ц	P _E	LOC.	<u> </u>	VALUE	EXP
_ <i>b</i>	J	Z	INB	/				H		ļ			
	1	I	I'DA I	_3	_		· · · · · · · · · · · · · · · · · · ·				 		
	_	Z	IDA2	4				-[:]		ļ	 		
	4	Z	TDA3					1 }			 		
<u> </u>	- :	1-	HF	30.				IJ		ļ	┼		
	-[1-		.13380276	3			[]			+-		
	+	E	FM ND	87.368307				۲.}			┼		
Ь	4	17	INB	2				H			 		
	-[定	IDA1	-7				11					
	-[Z	IDA2	8		1	···········	П					
].	I	I.DA3	-9]		\mathbf{J}					
		\subseteq	HF	24.		i i		П			<u> </u>		
		1_	DESTE	24.	-4						 		
	1	1	FM	0.				H			 		
	Ļ.	E	ND			}		{}			┼─	. 	
[-[!						П			 		
	-	1_		ļ				11			┼		
	-	1-						[]			 		
	7	}-				1		tì					
	-]-						11			<u> </u>	<u> </u>	,
		1-						П					
								J (
	1	_						11			 		
	- (11			 		
	_[;]						{ }	_		 		
	۲,	<u> </u>						{ }	-		-		
	-					}		H	_		 		
	-	!	<u>:</u>					1	\dashv		 		
	- -	1			_			排					
	7	1						H					
	-}	1											
	-							11			ļ		
								<i>\j</i>	_		├		
	1	1_			_			₩			 		
	1	_						[]			 		
]	_[]						{}			 		

DAYE			SPACE TE COMPUTATI	CHNOL	BORATORIES REDUCTION CE	NTE	R	PAGE _	14 or L
NAME							PRIORITY		
PROBLEM NO							KEYPUNC	HED BY	· · · · · · · · · · · · · · · · · · ·
NO. OF CARD							VERIFIED	• • ¥	
7	<u></u>	· · · · · · · · · · · · · · · · · · ·							78
				···					
					·		· · · · · · · · · · · · · · · · · · ·		X
	Г	2	T 7	117		<u> </u>	T.		<u> </u>
	19 37 58	2 20 38 50	7 25 43 61	17 36 53 71		1,5	2 20 36 50	7 28 43 61	
SYMBOL] PA.E	LOC.	VALUE	EXP.	SYMBOL	9.5 P_	50	T	
 ,			/		STMBOL	PRE		VALU	
	1	INC				-	03,03	1.0	
	L	IN	10 10			M	CM	10,10	
	17	02.02	1:0	3		7	DITC.	3.42318 28	8
	M	CM	2. 10,10 1:0 10,10	13		1-	20116	29	
	1	01,01	10,18			エエ	 	27	
	Z	ZOVIC	5	1		E	ND	-	
	Z	•	7			F	17.23		····
	E	NB							
						1			
	I	INC	2			\Box			
	Z	IN	2						
	11	CK	10,10						
		02,02		3					
	11	CM	10,10	-					
		01,01	1.293995			H			
	14	LOVIC	15			1-1			
	E	44.5	//			-			
-	E	NO		+	<u> </u>				
	1-1					$\ \cdot \ $			
				+		-			
ع ا	IZ	INC.	3			\sqcap			
	Z	INC. IN	2						
)	M	CK	10,10						
		02,02	1.0	3					
	M	CM	10,10						
l		01,01	1.293995	4					
	Z	I DVTC	21	-				· • · · · · · · · · · · · · · · · · · ·	
	4		22	+		<u> </u>			
	E	ND_	2 10,10 1.0 10,10 1,293995 21 22	4					
	-			+	<u> </u>	\vdash			
	-	<u>-</u>		+		$\vdash \vdash$			
4	기	TAIL	4.	+		}			
7	17	INC IN	Z R	1-1	<u> </u>			**** **********************************	
	11	1-18 1.K	10.10	+	 ;				
	1-4	CK 02,02	1 1	3		$\vdash \vdash$			