Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет программной инженерии и компьютерной техники

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ 2 ИССЛЕДОВАНИЕ РАБОТЫ БЭВМ ВАРИАНТ 1016

Студент: Пышкин Никита Сергеевич, Р3113

Преподаватель: Блохина Елена Николаевна

Санкт Петербург 2023

Содержание

Задание	. 3
Выполнение работы	. 4
Заключение	. 6

Задание

Лабораторная работа №2

По выданному преподавателем варианту определить функцию, вычисляемую программой, область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы, предложить вариант с меньшим числом команд. При выполнении работы представлять результат и все операнды арифметических операций знаковыми числами, а логических операций набором из шестнадцати логических значений.

Ход работы, содержание отчета и контрольные вопросы описаны в методических указаниях

Введите номер варианта 1016

173: 0200
174: E175
175: A174
176: 0200
177: + A174
178: 2176
179: E173
174: 0200
178: 617F
170: 4173
170: E175
17E: 0100
17F: E175

Выполнение работы

Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарий
177	A174	LD 174	Загрузка значения из ячейки В в аккумулятор: 174 -> AC
178	2176	AND 176	Выполнить логическое "И" для содержимого ячейки памяти 176 и аккумулятора, результат записать в аккумулятор: 176 & AC -> AC
179	E173	ST 173	Сохранить содержимое аккумулятора в ячейку 173: AC -> 173
17A	0200	CLA	Очистить содержимое аккумулятора: 0 -> AC
17B	617F	SUB 17F	Вычесть из аккумулятора содержимое ячейки 17F, результат записать в аккумулятор: AC - 17F -> AC
17C	4173	ADD 173	Добавить содержимое ячейки 173 к аккумулятору, результат записать в аккомулятор 173 + AC -> AC
17D	E175	ST 175	Сохранить содержимое аккумулятора в ячейку 175: AC -> 175
17E	0100	HLT	Остановка

Описание программы

1) Назначение программы и реализуемая ею функция (формула):

$$R = (-E) + (D \& B)$$

2) Описание и назначение исходных данных:

Область представления:

- В, D набор из 16 однобитовых значений, $0 \le B, D \le 2^{16} 1$
- A, E, R знаковое, 16-ти разрядное число, $-2^{15} \le A$, E, R $\le 2^{15} 1$

Результат логической операции (D & B) трактуется как арифмитический операнд:

- (D & B) – знаковое, 16-ти разрядное число, $-2^{15} \le$ (D & B) $\le 2^{15} - 1$

Допустимые значения:

- С R все просто: $-2^{15} \le R \le 2^{15} 1$
- Теперь рассмотрим А Е:

Прежде всего учтем, что у нас 0-E, а значит, E не может быть равно -2^{15} , следовательно $-2^{15}+1 \le E \le 2^{15}-1$

Случай 1, когда слагаемые имеют разные знаки, переполнение возникнуть не может:

$$A_{15} \otimes E_{15} = 1$$

-2¹⁵ $\leq A \leq 2^{15} - 1$, -2¹⁵ + 1 $\leq E \leq 2^{15} - 1$

Случай 2, когда слагаемые имеют одинаковый знак переполнение возможно, поэтому их нужно ограничить (хоть мы и теряем половину возможных значений A и E)

$$A_{15} \otimes E_{15} = 0$$

-2¹⁴ \le A, E \le 2¹⁴ - 1

- Отдельно рассмотрим случаи:
 - 1) А принимает крайнее отрицательное значение:

$$A = -2^{15}$$

$$-2^{15} + 1 \le E \le 0$$

2) А принимает крайнее положительное значение:

$$A = 2^{15} - 1$$

$$0 \le E \le 2^{15} - 1$$

3) Е принимает крайнее отрицательное значение:

$$E = -2^{15} + 1$$

$$-2^{15} \le A \le 1$$

4) Е принимает крайнее положительное значение:

$$E = 2^{15} - 1$$

$$-1 \le A \le 2^{15} - 1$$

3) Расположение в памяти ЭВМ программы, исходных данных и результатов:

По адресам 173-17F находится исходный код программы

По адресам 174, 176, 17F находятся переменные

По адресу 173 находится промежуточный результат

По адресу 175 находится итоговый результат

По адресам 177 и 17Е находятся первая и последняя команда программы соответственно

Новые исходные данные для таблицы трассировки

B = -2 (1111 1111 1111 1110) 174

D = 34 (0000 0000 0010 0010) 176

Таблица трассировки

Выполня коман		Содержимое регистров процессора после выполнения команды						e	после	й изменилось	
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
177	A174	178	A174	174	FFFE	000	0177	FFFE	1000		
178	2176	179	2176	176	0022	000	0178	0022	0000		
179	E173	17A	E173	173	0022	000	0179	0022	0000	173	0022
17A	0200	17B	0200	17A	0200	000	017A	0000	0100		
17B	617F	17C	617F	17F	FF00	000	017B	0100	0000		
17C	4173	17D	4173	173	0022	000	017C	0122	0000		
17D	E175	17E	E175	175	0122	000	017D	0122	0000	175	0122
17E	0100	17F	0100	17E	0100	000	017E	0122	0000		

Вариант программы с меньшим числом команд

$$R = (D \& B) - E$$

Адрес	Код команды	Мнемоника	Комментарий
177			Загрузка значения из ячейки В в
	+ A174	LD 174	аккумулятор:
			174 -> AC
			Выполнить логическое "И" для
178	2176	AND 176	содержимого ячейки памяти 176 и
			аккумулятора, результат записать в
			аккумулятор:
			176 & AC -> AC
			Вычесть из аккумулятора содержимое
	617F	SUB 17F	ячейки 173, результат записать в
179			аккумулятор:
			AC - 17F -> AC
17A	E175	ST 175	Сохранить содержимое аккумулятора в
			ячейку 175:
			AC -> 175
17B	0100	HLT	Остановка

Заключение

В ходе выполнения данной лабораторной работы я изучил основные команды БЭВМ, научился работать с адресами, определять область представления переменных и результатов, составлять таблицу трассировки и переписывать исходный код программы с меньшим числом команд.