

Part 3.4: Mixed Questions

- 1. An ice cream machine is set to pour out ice cream into cups. It is controlled to randomly cut the flow of ice cream between 200 g and 206 g. Find the probability it pours out:
 - a. Less than 201 g.
 - b. Between 202 g and 205 g.
 - c. More than 205.5 g.
- 2. The maximum weight that can be sent using a standard parcel post bag is 3kg. Assuming the weight of the bags has a uniform distribution:
 - a. Justify why a uniform distribution is best to use in this situation and state the value of the parameters (a and b).
 - b. What is the probability it weighs more than 2.9 kg?
 - c. What is the probability it weighs less than 1.8 kg?
- 3. The amount of time it takes for a grenade to go off it anywhere between 6 seconds and 8 seconds.
 - a. Justify why a uniform distribution is best to use in this situation and state the value of the parameters (a and b).
 - b. What is the probability it takes between 6.2 and 6.6 seconds to go off?
 - c. What is the probability it goes off in under 5 seconds?
- 4. The cost to fill my car with petrol is between \$40 and \$90 depending on how long between visits to the petrol station.
 - a. Justify why a uniform distribution is best to use in this situation and state the value of the parameters (a and b).
 - b. What is the probability it costs more than \$70 to fill my car?
 - c. Between what two values do the middle 90% of fill ups cost?
- 5. The northern explorer train departs Auckland at 7:50 am and arrives in Wellington between 6:20 pm and 6:30 pm.
 - a. Justify what distribution would be best to model the time taken to travel between Auckland and Wellington and state the value of the parameters (a and b).
 - b. What is the probability it takes more than 10 hours and 5 minutes to complete the journey?
 - c. What is the probability it takes less than 9 hours to complete the journey?
- 6. I always drink more than 1 L of water a day and always drink less than 2.1 L.
 - a. Justify what distribution would be best to model the amount of water I drink in a day and state the value of the parameters (a and b).
 - b. What is the probability I drink more than 2 L of water in a day?
 - c. Between what two values do I drink on the middle 90% of days?
- 7. The diagonal measurement of a 'standard' 40 inch TV is anywhere between 101.2 cm and 102.1 cm.
 - a. Justify what distribution would be best to model the diagonal measurement of a 'standard' 40 inch TV and state the parameters (a and b).
 - b. What is the probability it is actually more than 40 inches (101.6 cm)?
 - c. Under what length are the smallest 10% of 'standard' 40 inch TVs?