See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/252066166

Mathematical Systems Theory I: Modelling, State Space Analysis, Stabilityand Robustness

Article i	in IEEE Control Systems Magazine · January 2006	
CITATIONS	S	READS
338		1,574
2 author	rs, including:	
	D. Hinrichsen	
	University of Bremen	
	188 PUBLICATIONS 5,301 CITATIONS	
	SEE PROFILE	

Mathematical Systems Theory I

Modelling, State Space Analysis, Stability and Robustness

With 180 Figures

Contents

	Pre	face	vii				
1	Ma	Mathematical Models					
	1.1	Population Dynamics	2				
		1.1.1 Notes and References	6				
	1.2	Economics	8				
		1.2.1 Notes and References	12				
	1.3	Mechanics	13				
		1.3.1 Translational Mechanical Systems	13				
		1.3.2 Mechanical Systems with Rotational Elements	18				
		1.3.3 The Variational Method	27				
		1.3.4 Notes and References	38				
	1.4	Electromagnetism and Electrical Systems	39				
		1.4.1 Maxwell's Equations and the Elements of Electrical Circuits	39				
		1.4.2 Electrical Networks	50				
		1.4.3 Notes and References	55				
	1.5	Digital Systems	56				
		1.5.1 Combinational Switching Networks	59				
		1.5.2 Sequential Switching Networks	62				
		1.5.3 Notes and References	68				
	1.6	Heat Transfer	70				
		1.6.1 Notes and References	72				
2	Intr	roduction to State Space Theory	73				
	2.1	Dynamical Systems	74				
		2.1.1 The General Concept of a Dynamical System	74				
		2.1.2 Differentiable Dynamical Systems	83				
		2.1.3 System Properties	88				
		2.1.4 Linearization	92				
		2.1.5 Exercises	94				
		2.1.6 Notes and References	98				
	2.2	Linear Systems	100				
		2.2.1 General Linear Systems					
		2.2.2 Free Motions of Time-Invariant Linear Differential Systems	104				
		2.2.3 Free Motions of Time-Invariant Linear Difference Systems	113				
		2.2.4 Infinite Dimensional Systems	115				
		2.2.5 Exercises	121				
		2.2.6 Notes and References	123				
	2.3	Linear Systems: Input-Output Behaviour	124				

xii Contents

		2.3.1	Input-Output Behaviour in Time Domain	
		2.3.2	Transfer Functions	138
		2.3.3	Relationship Between Input-Output Operators and	
			Transfer Matrices	
		2.3.4	Exercises	
		2.3.5	Notes and References	
	2.4	Transf	formations and Interconnections	
		2.4.1	Morphisms and Standard Constructions	
		2.4.2	Composite Systems	
		2.4.3	Exercises	
		2.4.4	Notes and References	
	2.5	Sampl	ling and Approximation	
		2.5.1	A/D- and D/A-Conversion of Signals	169
		2.5.2	The Sampling Theorem	
		2.5.3	Sampling Continuous Time Systems	175
		2.5.4	Approximation of Continuous Systems by Discrete Systems	. 177
		2.5.5	Exercises	. 189
		2.5.6	Notes and References	. 192
3	Stal	bility [Γ heory	193
	3.1		al Definitions	194
		3.1.1	Local Flows	
		3.1.2	Stability Definitions	
		3.1.3	Limit Sets	
		3.1.4	Recurrence	
1		3.1.5	Attractors	
		3.1.6	Exercises	
		3.1.7	Notes and References	
	3.2		nov's Direct Method	
	0.2	3.2.1	General Definitions and Results	
		3.2.2	Time-Varying Finite Dimensional Systems	
		3.2.3	Time-Invariant Systems	
		3.2.4	Exercises	
		3.2.5	Notes and References	
	3.3		rization and Stability	
	0.0	3.3.1	Stability Criteria for Time-Varying Linear Systems	
		3.3.2	Time-Invariant Systems: Spectral Stability Criteria	
		3.3.3	Numerical Stability of Discretization Methods	
		3.3.4	Liapunov Functions for Time-Varying Linear Systems	
		3.3.5	Liapunov Functions for Time-Invariant Linear Systems	
		3.3.6	Exercises	
		3.3.7	Notes and References	
	3.4			
	0.4	3.4.1	ity Criteria for Polynomials	250 707
		3.4.1		
			Characterization of Stability via the Cauchy Index	
		3.4.3	Hermite Forms and Bézoutiants	
		3.4.4	Hankel Matrices and Rational Functions	
		3.4.5	Applications to Stability	
		3.4.6	Schur Polynomials	≀ 340

Contents xiii

		3.4.7	Algebraic Stability Domains and Linear Matrix Equations 357
		3.4.8	Exercises
		3.4.9	Notes and References
4	Per	turbat	ion Theory 369
_	4.1		bation of Polynomials
		4.1.1	Dependence of the Roots on the Coefficient Vector
		4.1.2	Polynomials with Holomorphic Coefficients
		4.1.3	The Sets of Hurwitz and Schur Polynomials
		4.1.4	Kharitonov's Theorem
		4.1.5	Exercises
		4.1.6	Notes and References
	4.2		bation of Matrices
		4.2.1	Continuity and Analyticity of Eigenvalues
		4.2.2	Estimates for Eigenvalues and Growth Rates
		4.2.3	Smoothness of Eigenprojections and Eigenvectors
		4.2.4	Exercises
		4.2.5	Notes and References
	4.3		ingular Value Decomposition
	1.0	4.3.1	Singular Values and Singular Vectors
		4.3.2	Singular Value Decomposition
		4.3.3	Matrices Depending on a Real Parameter
		4.3.4	Relations between Eigenvalues and Singular Values
		4.3.5	Exercises
		4.3.6	Notes and References
	4.4		ured Perturbations
		4.4.1	Elements of μ -Analysis
		4.4.2	μ -Values for Real Full-Block Perturbations
		4.4.3	Exercises
		4.4.4	Notes and References
	4.5		utational Aspects
	1.0	4.5.1	Condition Numbers
		4.5.2	Matrix Transformations
		4.5.3	Algorithms
		4.5.4	Exercises
		4.5.5	Notes and References
5	TIme		Systems 517
J	5.1		s of Uncertainty and Tools for their Analysis
	0.1	5.1.1	General Definitions and Basic Properties
		31212	Perturbation Structures
		5.1.3 $5.1.4$	Exercises
	5 0		ral Value Sets
	5.2	-	
		5.2.1	General Definitions and Results
		5.2.2	Complex Full-Block Perturbations
		5.2.3	Real Full-Block Perturbations
		5.2.4 $5.2.5$	The Unstructured Case (Pseudospectra)
		カスカ	r/xercises 5X0

xiv Contents

	5.2.6	Notes and References		. 58	3
5.3	Stabili	ty Radii		. 58	5
	5.3.1	General Definitions and Results		. 58	6
	5.3.2	Complex Full-Block Perturbations		. 59	1
	5.3.3	Real Full-Block Perturbations			
	5.3.4	Hamiltonian Characterization of the Complex Stability Radius .			
	5.3.5	The Unstructured Case			
	5.3.6	Dependence on System Data			
	5.3.7	Stability Radii and the Cayley Transformation			
	5.3.8	Exercises			
	5.3.9	Notes and References			
5.4	Root S	Sets and Stability Radii of Polynomials			
•	5.4.1	General Formulas			
	5.4.2	Complex Perturbation Structures			
	5.4.3	Real Perturbation Structures			
	5.4.4	Exercises			
	5.4.5	Notes and References			
5.5		ent Behaviour			
0.0	5.5.1	Transient Bounds and Initial Growth Rate			
	5.5.2	Contractions and Estimates of the Transient Bound			
	5.5.2	Spectral Value Sets and Transient Behaviour			
	5.5.4	Robustness of (M, β) -Stability			
	5.5.5	Exercises			
	5.5.6	Notes and References			
5.6		General Perturbation Classes			
0.0	5.6.1	The Perturbation Classes			
	5.6.2	Stability Radii			
~	5.6.3	The Aizerman Conjecture			
_	5.6.4				
	5.6.5	Notes and References	٠	. 11	1
Anr	endix			71	5
		Algebra			
	A.1.1	Norms of Vectors and Matrices			
	A.1.2	Spectra and Determinants			
	A.1.3	Real Representation of Complex Matrices			
	A.1.4	Direct Sums and Kronecker Products			
	A.1.5	Hermitian Matrices			
A 2	_	lex Analysis			
A.2	A.2.1	Topological Preliminaries			
	A.2.2	• •			
	A.2.2	•			
	A.2.4	Holomorphic Functions			
	A.2.4 A.2.5	Isolated Singularities			
4.0	A.2.6	Maximum Principle and Subharmonic Functions			
A.3					
	A.3.1	Sequences: Convolution and z-Transforms			
	A.3.2	Lebesgue Spaces, Convolution of Functions, Laplace Transforms			
	A.3.3	Fourier Series and Fourier Transforms		. (4	.4

Conten	ts			xv
	A.3.4	Hardy Spaces		750
A.4	Linear	Operators and Linear Forms		753
	A.4 .1	Summability and Generalized Fourier Series		753
	A.4.2	Linear Operators on Banach Spaces		754
	A.4.3	Linear Operators on Hilbert Spaces		757
	A.4.4	Spectral Theory	•	759
Refe	References			763
\mathbf{Glo}	ssary			789
Inde	ex			798