Moduli Spaces

D. Zack Garza

 $March\ 15,\ 2020$

Contents

1.2 Definition	1	Thu	rsday January 9th	
List of Definitions 1.1 Definition 1.2 Definition List of Theorems 1.1 Theorem – Yoneda 1 Thursday January 9th 1.1 Representability Last time: Fix an S -scheme, i.e. a scheme over S . Then there is a map $Sch/S \longrightarrow \operatorname{Fun}(\operatorname{Sch}/S^{\operatorname{op}},\operatorname{Set})$ $x \mapsto h_x(T) = \operatorname{hom}_{\operatorname{Sch}/S}(T,x).$			Representability	Ĺ
1.1 Definition		1.2	Projective Space	3
List of Theorems 1.1 Theorem – Yoneda 1.1 Thursday January 9th 1.1 Representability Last time: Fix an S -scheme, i.e. a scheme over S . Then there is a map $Sch/S \longrightarrow Fun(Sch/S^{op}, Set)$ $x \mapsto h_x(T) = \hom_{Sch/S}(T, x).$	Li	st o	f Definitions	
List of Theorems 1.1 Theorem – Yoneda		1.1	Definition	2
1.1 Theorem – Yoneda		1.2	Definition	3
1.1 Theorem – Yoneda	1 ;	st o	f Theorems	
1 Thursday January 9th 1.1 Representability Last time: Fix an S -scheme, i.e. a scheme over S . Then there is a map $\operatorname{Sch}/S \longrightarrow \operatorname{Fun}(\operatorname{Sch}/S^{\operatorname{op}},\operatorname{Set})$ $x \mapsto h_x(T) = \operatorname{hom}_{\operatorname{Sch}/S}(T,x).$	_,	si u	i incorenis	
1.1 Representability Last time: Fix an S-scheme, i.e. a scheme over S. Then there is a map $\operatorname{Sch}/S \longrightarrow \operatorname{Fun}(\operatorname{Sch}/S^{\operatorname{op}},\operatorname{Set})$ $x \mapsto h_x(T) = \operatorname{hom}_{\operatorname{Sch}/S}(T,x).$		1.1	Theorem – Yoneda	2
Last time: Fix an S-scheme, i.e. a scheme over S. Then there is a map ${\rm Sch}/S \longrightarrow {\rm Fun}({\rm Sch}/S^{\rm op},{\rm Set})$ $x \mapsto h_x(T) = {\rm hom}_{{\rm Sch}/S}(T,x).$	1	Th	ursday January 9th	
Then there is a map $\frac{{\rm Sch}/S\longrightarrow {\rm Fun}({\rm Sch}/S^{\rm op},{\rm Set})}{x\mapsto h_x(T)={\rm hom}_{{\rm Sch}/S}(T,x)}.$	1.	l Re	presentability	
$\operatorname{Sch}/S \longrightarrow \operatorname{Fun}(\operatorname{Sch}/S^{\operatorname{op}},\operatorname{Set})$ $x \mapsto h_x(T) = \operatorname{hom}_{\operatorname{Sch}/S}(T,x).$	La	st tin	ne: Fix an S -scheme, i.e. a scheme over S .	
$x \mapsto h_x(T) = \hom_{\mathrm{Sch}/S}(T, x).$	Γh	en tl	aere is a map	
$x \mapsto h_x(T) = \hom_{\mathrm{Sch}/S}(T, x).$				
where $T' \xrightarrow{f} T$ is given by			$x \mapsto h_x(T) = \hom_{\operatorname{Sch}/S}(T, x).$	
where $I \to I$ is given by	1	7		
	wh	ere T	$\to T$ is given by	

 $T \mapsto x \longrightarrow \text{triangles}$

 $h_x(f):h_x(T)\longrightarrow h_x(T')$

of the form

Theorem 1.1 (Yoneda).

 $\hom_{Fun}(h_x, F) = F(x).$

Corollary 1.2.

 $hom_{Sch/S}(x, y) \cong hom_{Fun}(h_x, h_y).$

Definition 1.1.

A moduli functor is a map

 $F: (\operatorname{Sch}/S)^{\operatorname{op}} \longrightarrow \operatorname{Set}$

F(x) = "Families of something over x"

F(f) = "Pullback".

Definition 1.2.

A moduli space for that "something" appearing above is an $M \in \text{Obj}(Sch/S)$ such that $F \cong h_M$.

Now fix $S = \operatorname{Spec}(k)$.

 h_m is the functor of points over M

Remark (1) $h_m(\operatorname{Spec}(k)) = M(\operatorname{Spec}(k)) \cong \text{"families over } \operatorname{Spec} k$ " = $F(\operatorname{Spec} k)$.

Remark (2) $h_M(M) \cong F(M)$ are families over M, and $\mathrm{id}_M \in \mathrm{Mor}_{Sch/S}(M,M) = \xi_{Univ}$ is the universal family

Every family is uniquely the pullback of ξ_{Univ} This makes it much like a classifying space.

For $T \in Sch/S$,

$$h_M \xrightarrow{\cong} F$$

$$f \in h_M(T) \xrightarrow{\cong} F(T) \ni \xi = F(f)(\xi_{\text{Univ}}).$$

where $T \xrightarrow{f} M$ and $f = h_M(f)(\mathrm{id}_M)$.

Remark (3) If M and M' both represent F then $M \cong M'$ up to unique isomorphism.

$$\xi_M$$
 $\xi_{M'}$

$$M \xrightarrow{f} M'$$

$$M' \xrightarrow{g} M$$

$$\xi_{M'}$$
 ξ_{M}

which shows that f, g must be mutually inverse by using universal properties.

Example 1.1.

A length 2 subscheme of \mathbb{A}^1_k then $F(S) = \{V(x^2 + bx + c)\} \subset \mathbb{A}'_5$ where $b, c \in \mathcal{O}_s(s)$, which is functorially bijective with $\{b, c \in \mathcal{O}_s(s)\}$ and F(f) is pullback.

Then F is representable by $\mathbb{A}_k^2(b,c)$ and the universal object is given by

$$V(x^2 + bx + c) \subset \mathbb{A}^1(?) \times \mathbb{A}^2(b, c)$$

where $b, c \in k[b, c]$.

Moreover, F'(S) is the set of effective Cartier divisors in \mathbb{A}'_5 which are length 2 for every geometric fiber.

F''(S) is the set of subschemes of \mathbb{A}_5' which are length 2 on all geometric fibers. In both cases, F(f) is always given by pullback.

Problem: F'' is not a good moduli functor, as it is not representable. Consider $\mathrm{Spec} k[\varepsilon]$.

We think of $T_p F^{',"}$ as the tangent space at p.

If F is representable, then it is actually the Zariski tangent space.

$$M(\operatorname{Spec} k[\varepsilon]) \longrightarrow M(\operatorname{Spec} k)$$
 $\subset \qquad \subset$
 $T_pM \longrightarrow p$

Moreover, $T_pM = (m_p/m_p^2)^{\vee}$, and in particular this is a k-vector space. To see the scaling structure, take $\lambda \in k$.

$$\lambda: k[\varepsilon] \longrightarrow k[\varepsilon]$$

$$\varepsilon \mapsto \lambda \varepsilon$$

$$\lambda^*: \operatorname{Spec}(k[\varepsilon]) \longrightarrow \operatorname{Spec}(k[\varepsilon])$$

$$\lambda: M(\operatorname{Spec}(k[\varepsilon])) \longrightarrow M(\operatorname{Spec}(k[\varepsilon]))$$

$$\supset T_n M \longrightarrow T_n M \subset .$$

Conclusion: If F is representable, for each $p \in F(\operatorname{Spec} k)$ there exists a unique point of T_pF that are invariant under scaling.

1. If $F, F', G \in \text{Fun}((\text{Sch}/S)^{\text{op}}, \text{Set})$, there exists a fiber product

$$F \times_G F' \longrightarrow F'$$

$$\downarrow \qquad \qquad \downarrow$$

$$F \longrightarrow G$$

where

$$(F \times_G F')(T) = F(T) \times_{G(T)} F'(T).$$

2. This works with the functor of points over a fiber product of schemes $X \times_T Y$ for $X, Y \longrightarrow T$, where

$$h_{X \times_T Y} = h_X \times_{h_t} h_Y.$$

- 3. If F, F', G are representable, then so is the fiber product $F \times_G F'$.
- 4. For any functor

$$F: (\operatorname{Sch}/S)^{\operatorname{op}} \longrightarrow \operatorname{Set},$$

for any $T \xrightarrow{f} S$ there is an induced functor

$$F_T: (\operatorname{Sch}/T) \longrightarrow \operatorname{Set}$$

 $x \mapsto F(x).$

5. F is representable by M/S implies that F_T is representable by $M_T = M \times_S T/T$.

1.2 Projective Space

Consider $\mathbb{P}^n_{\mathbb{Z}}$, i.e. "rank 1 quotient of an n+1 dimensional free module".

Claim: $\mathbb{P}^n_{\mathbb{Z}}$ represents the following functor

$$F: \operatorname{Sch}^{\operatorname{op}} \longrightarrow \operatorname{Set}$$

 $F(S) = \mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0/\sim.$

where \sim identifies diagrams of the following form:

and F(f) is given by pullbacks.

Remark \mathbb{P}^n_S represents the following functor:

$$F_S: (\mathrm{Sch}/S)^{\mathrm{op}} \longrightarrow \mathrm{Set}$$

 $F_S(T) = \mathcal{O}_T^{n+1} \longrightarrow L \longrightarrow 0/\sim.$

This gives us a cleaner way of gluing affine data into a scheme.

Proof (of claim).

Note: $\mathcal{O}^{n+1} \longrightarrow L \longrightarrow 0$ is the same as giving n+1 sections $s_1, \dots s_n$ of L, where surjectivity ensures that they are not the zero section.

$$F_i(S) = \left\{ \mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0 \right\} / \sim,$$

with the additional condition that $s_i \neq 0$ at any point.

There is a natural transformation $F_i \longrightarrow F$ by forgetting the latter condition, and is in fact a

subfunctor.

 $F \leq G$ is a subfunctor iff $F(s) \hookrightarrow G(s)$.

Claim 2: It is enough to show that each F_i and each F_{ij} are representable, since we have natural transformations:

and each $F_{ij} \longrightarrow F_i$ is an open embedding (on the level of their representing schemes).

Example 1.2.

For n = 1, we can glue along open subschemes

For n=2, we get overlaps of the following form:

This claim implies that we can glue together F_i to get a scheme M. We want to show that M represents F. F(s) (LHS) is equivalent to an open cover U_i of S and sections of $F_i(U_i)$ satisfying the gluing (RHS).

Going from LHS to RHS isn't difficult, since for $\mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0$, U_i is the locus where $s_i \neq 0$ and by surjectivity, this gives a cover of S.

RHS to LHS comes from gluing.

Proof of (Claim 2)

$$F_i(S) = \left\{ \mathcal{O}_S^{n+1} \longrightarrow L \cong \mathcal{O}_s \longrightarrow 0, s_i \neq 0 \right\},$$

but there are no conditions on the sections other than s_i .

So specifying $F_i(S)$ is equivalent to specifying n-1 functions $f_1 \cdots \widehat{f_i} \cdots f_n \in \mathcal{O}_S(s)$ with $f_k \neq 0$. We know this is representable by \mathbb{A}^n .

We also know F_{ij} is obviously the same set of sequences, where now $s_j \neq 0$ as well, so we need to specify $f_0 \cdots \widehat{f_i} \cdots f_j \cdots f_n$ with $f_j \neq 0$. This is representable by $\mathbb{A}^{n-1} \times \mathbb{G}_m$, i.e. $\operatorname{Spec}_k[x_1, \cdots, \widehat{x_i}, \cdots, x_n, x_j^{-1}]$. Moreover, $F_{ij} \hookrightarrow F_i$ is open.

What is the compatibility we are using to glue? For any subset $I \subset \{0, \dots, n\}$, we can define

$$F_I = \left\{ \mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0, s_i \neq 0 \text{ for } i \in I \right\} = \underset{i \in I}{\times} F_i,$$

and $F_I \longrightarrow F_J$ when $I \supset J$.