```
In [1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
```

In [2]: df=pd.read\_csv("18\_world-data-2023.csv")
 df.fillna(0,inplace=True)
 df

## Out[2]:

|     | Country          | Density\n(P/Km2) | Abbreviation | Agricultural<br>Land( %) | Land<br>Area(Km2) | Armed<br>Forces<br>size | Birth<br>Rate | Calling<br>Code | Capital/Ma<br>C |
|-----|------------------|------------------|--------------|--------------------------|-------------------|-------------------------|---------------|-----------------|-----------------|
| 0   | Afghanistan      | 60               | AF           | 58.10%                   | 652,230           | 323,000                 | 32.49         | 93.0            | Ka              |
| 1   | A <b>l</b> bania | 105              | AL           | 43.10%                   | 28,748            | 9,000                   | 11.78         | 355.0           | Tira            |
| 2   | Algeria          | 18               | DZ           | 17.40%                   | 2,381,741         | 317,000                 | 24.28         | 213.0           | Algie           |
| 3   | Andorra          | 164              | AD           | 40.00%                   | 468               | 0                       | 7.20          | 376.0           | Andorra<br>V€   |
| 4   | Angola           | 26               | AO           | 47.50%                   | 1,246,700         | 117,000                 | 40.73         | 244.0           | Luan            |
|     |                  |                  |              |                          |                   |                         |               |                 |                 |
| 190 | Venezuela        | 32               | VE           | 24.50%                   | 912,050           | 343,000                 | 17.88         | 58.0            | Carac           |
| 191 | Vietnam          | 314              | VN           | 39.30%                   | 331,210           | 522,000                 | 16.75         | 84.0            | На              |
| 192 | Yemen            | 56               | YE           | 44.60%                   | 527,968           | 40,000                  | 30.45         | 967.0           | San             |
| 193 | Zambia           | 25               | ZM           | 32.10%                   | 752,618           | 16,000                  | 36.19         | 260.0           | Lusa            |
| 194 | Zimbabwe         | 38               | ZW           | 41.90%                   | 390,757           | 51,000                  | 30.68         | 263.0           | Hara            |

195 rows × 35 columns

## In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 195 entries, 0 to 194 Data columns (total 35 columns): Column Non-Null Count Dtype -----------------0 Country 195 non-null object Density 1 (P/Km2)195 non-null object 2 Abbreviation 195 non-null object 3 Agricultural Land( %) 195 non-null object Land Area(Km2) object 4 195 non-null 5 Armed Forces size 195 non-null object float64 Birth Rate 195 non-null 7 Calling Code 195 non-null float64 8 Capital/Major City 195 non-null object 9 Co2-Emissions 195 non-null object 10 CPI 195 non-null object 11 CPI Change (%) 195 non-null object 12 Currency-Code 195 non-null object float64 13 Fertility Rate 195 non-null 14 Forested Area (%) 195 non-null object 15 Gasoline Price 195 non-null object **16** GDP 195 non-null object 17 Gross primary education enrollment (%) 195 non-null object 18 Gross tertiary education enrollment (%) 195 non-null object 19 Infant mortality 195 non-null float64 20 Largest city 195 non-null obiect 21 Life expectancy float64 195 non-null 22 Maternal mortality ratio float64 195 non-null 23 Minimum wage 195 non-null object 24 Official language 195 non-null object 25 Out of pocket health expenditure 195 non-null object 26 Physicians per thousand float64 195 non-null 27 Population 195 non-null object 28 Population: Labor force participation (%) 195 non-null object 29 Tax revenue (%) 195 non-null object 30 Total tax rate 195 non-null object 31 Unemployment rate 195 non-null object 32 Urban population 195 non-null object 33 Latitude float64 195 non-null 34 Longitude 195 non-null float64 dtypes: float64(9), object(26) memory usage: 53.4+ KB

localhost:8888/notebooks/Downloads/Untitled7-Copy6.ipynb

In [4]: df.describe()

Out[4]:

|       | Birth Rate | Calling<br>Code | Fertility<br>Rate | Infant<br>mortality | Life expectancy | Maternal<br>mortality<br>ratio | Physicians<br>per<br>thousand | Latitude   |   |
|-------|------------|-----------------|-------------------|---------------------|-----------------|--------------------------------|-------------------------------|------------|---|
| count | 195.000000 | 195.000000      | 195.000000        | 195.000000          | 195.000000      | 195.000000                     | 195.000000                    | 195.000000 | _ |
| mean  | 19.592974  | 358.697436      | 2.601282          | 20.676410           | 69.314359       | 148.876923                     | 1.773795                      | 18.994442  |   |
| std   | 10.397534  | 323.434462      | 1.355777          | 19.594644           | 16.133643       | 228.717593                     | 1.688826                      | 23.939018  |   |
| min   | 0.000000   | 0.000000        | 0.000000          | 0.000000            | 0.000000        | 0.000000                       | 0.000000                      | -40.900557 | - |
| 25%   | 10.675000  | 81.500000       | 1.625000          | 5.000000            | 66.150000       | 9.000000                       | 0.245000                      | 4.372880   |   |
| 50%   | 17.800000  | 255.000000      | 2.200000          | 13.700000           | 72.800000       | 43.000000                      | 1.300000                      | 17.189877  |   |
| 75%   | 28.445000  | 506.500000      | 3.565000          | 31.550000           | 77.250000       | 175.000000                     | 2.875000                      | 40.106102  |   |
| max   | 46.080000  | 1876.000000     | 6.910000          | 84.500000           | 85.400000       | 1150.000000                    | 8.420000                      | 64.963051  |   |
|       |            |                 |                   |                     |                 |                                |                               |            |   |

In [5]: sns.pairplot(df)

Out[5]: <seaborn.axisgrid.PairGrid at 0x2184d7addc0>



In [6]: sns.displot(df['Longitude'])

Out[6]: <seaborn.axisgrid.FacetGrid at 0x2184fd86790>



In [7]: df1=df.drop(['Country'],axis=1)
df1

## Out[7]:

|     | Density\n(P/Km2) | Abbreviation | Agricultural<br>Land( %) | Land<br>Area(Km2) | Armed<br>Forces<br>size | Birth<br>Rate | Calling<br>Code | Capital/Major<br>City | Co<br>Emissioi |
|-----|------------------|--------------|--------------------------|-------------------|-------------------------|---------------|-----------------|-----------------------|----------------|
| 0   | 60               | AF           | 58.10%                   | 652,230           | 323,000                 | 32.49         | 93.0            | Kabul                 | 8,6            |
| 1   | 105              | AL           | 43.10%                   | 28,748            | 9,000                   | 11.78         | 355.0           | Tirana                | 4,5            |
| 2   | 18               | DZ           | 17.40%                   | 2,381,741         | 317,000                 | 24.28         | 213.0           | Algiers               | 150,00         |
| 3   | 164              | AD           | 40.00%                   | 468               | 0                       | 7.20          | 376.0           | Andorra la<br>Vella   | 4(             |
| 4   | 26               | AO           | 47.50%                   | 1,246,700         | 117,000                 | 40.73         | 244.0           | Luanda                | 34,69          |
|     |                  |              |                          |                   |                         |               |                 |                       |                |
| 190 | 32               | VE           | 24.50%                   | 912,050           | 343,000                 | 17.88         | 58.0            | Caracas               | 164,1          |
| 191 | 314              | VN           | 39.30%                   | 331,210           | 522,000                 | 16.75         | 84.0            | Hanoi                 | 192,60         |
| 192 | 56               | YE           | 44.60%                   | 527,968           | 40,000                  | 30.45         | 967.0           | Sanaa                 | 10,60          |
| 193 | 25               | ZM           | 32.10%                   | 752,618           | 16,000                  | 36.19         | 260.0           | Lusaka                | 5,14           |
| 194 | 38               | ZW           | 41.90%                   | 390,757           | 51,000                  | 30.68         | 263.0           | Harare                | 10,9           |
|     |                  |              |                          |                   |                         |               |                 |                       |                |

195 rows × 34 columns

```
In [8]: sns.heatmap(df1.corr())
```

## Out[8]: <AxesSubplot:>



```
In [9]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
```

```
In [10]: y=df['Longitude']
x=df1.drop(['Longitude','Abbreviation','Agricultural Land( %)','Land Area(Km2)','Armed
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
print(x_train)
```

|     | Birth Rate | Calling Code | Latitude          |
|-----|------------|--------------|-------------------|
| 190 | 17.88      | 58.0         | 6.423750          |
| 105 | 41.54      | 223.0        | 17.570692         |
| 154 | 17.10      | 248.0        | <b>-</b> 4.679574 |
| 152 | 34.52      | 221.0        | 14.497401         |
| 165 | 15.83      | 94.0         | 7.873054          |
|     |            | • • •        |                   |
| 27  | 39.01      | 257.0        | -3.373056         |
| 16  | 10.30      | 32.0         | 50.503887         |
| 73  | 0.00       | 379.0        | 41.902916         |
| 23  | 13.92      | 55.0         | -14.235004        |
| 157 | 10.60      | 421.0        | 48.669026         |
|     |            |              |                   |

[136 rows x 3 columns]

```
In [11]: model=LinearRegression()
    model.fit(x_train,y_train)
    model.intercept_
```

Out[11]: 11.085740356550236

```
In [12]: coeff=pd.DataFrame(model.coef_,x.columns,columns=["Coefficient"])
coeff
```

Out[12]:

 Birth Rate
 -0.320364

 Calling Code
 0.047229

 Latitude
 -0.127072

```
In [13]: prediction=model.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[13]: <matplotlib.collections.PathCollection at 0x21852125a60>



```
In [14]: model.score(x_test,y_test)
```

Out[14]: 0.003921725830336453

```
In [15]: from sklearn.linear_model import Ridge,Lasso
```

```
In [16]: rr = Ridge(alpha=10)
    rr.fit(x_train,y_train)
```

Out[16]: Ridge(alpha=10)

```
In [17]: rr.score(x_test,y_test)
```

Out[17]: 0.0039329137307800854

```
In [18]: la = Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[18]: Lasso(alpha=10)

```
In [19]: la.score(x_test,y_test)
```

Out[19]: 0.009611494267665388

```
In [20]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
         print(en.coef_)
         print(en.intercept )
         print(en.predict(x_test))
         print(en.score(x test,y test))
         from sklearn import metrics
         print("Mean Absolute Error:",metrics.mean absolute error(y test,prediction))
         print("Mean Squared Error:",metrics.mean squared error(y test,prediction))
         print("Root Mean Squared Error:",np.sqrt(metrics.mean squared error(y test,prediction))
         [-0.31032468 0.04720037 -0.12413397]
         10.840855658686868
         [ 5.43752531 48.42471327 42.71879915 8.81853357 43.60305383 24.0367542
          38.80275824 2.64600812 8.9939488 47.91008766 50.70612272 35.45293817
          11.01018304 20.41420935 6.92816362 9.87989343 13.69221578 2.50788548
           5.61318929 6.87450685 27.20688905 8.26783546 10.03799384 3.49619554
          47.9475763 11.72545888 13.97328858 3.15337859 17.38290986 9.13973656
          20.62163358 14.05523827 10.91788959 2.01042378 3.70648427 3.85418879
          10.6930735 20.07164009 19.87956289 8.34624545 10.13011985 37.65969699
           4.9711875 20.32813595 43.29406037 19.71917194 20.50526372 0.26915615
          12.27864679 7.86263266 7.51489203 9.54397631 12.33410349 13.51266428
          43.19364334 92.14450706 18.35334401 21.0575571 18.83283546]
         0.004320887974378906
         Mean Absolute Error: 37.66836110039882
         Mean Squared Error: 3100.045426966432
         Root Mean Squared Error: 55.67805157300704
```