Лабораторная № 6

Прокопенко Тимофей, ACOБД, timophej3@gmail.com

Nº 9.1.5

- **9.1.** Постройте отображение $\varphi: \mathbb{R} \to \mathbb{R}$, обладающее указанными свойствами. Подтвердите ответ теоретически, численно и графически.
 - **9.1.5.** φ имеет устойчивый цикл периода три, проходящий через точку x=0.

Решение: Необходимо построить отображение из R в R с устойчивым 3-циклом, проходящим через x=0. По теореме Шарковского непрерывное отображение с 3-циклом влечет за собой хаос при изменении начальных параметров, а в условии не сказано, что отображение должно быть непрерывным. Поэтому для простоты построим кусочно-гладкое отображение с устойчивым 3-циклом, проходящим через x=0

Например:

$$f(x)=\left\{egin{array}{ll} 0, & ext{при }x{\in(-\infty;-1]}\ 1, & ext{при }x{\in(-1;1)}\ -2, & ext{при }x{\in[1;+\infty)} \end{array}
ight.$$

Подтвердим ответ теоретически, численно и графически.

1) Теоретически.

По определению ясно, что f(x) - это 3-цикл, где $x_1^*=0, x_2^*=1, x_3^*=-2$, т.к. f(f(f(x_i^*)))= x_i^* .

Осталось доказать устойчивость. Найдем производную f(x). Так как эта функция кусочно-гладкая, то на любом из трех интервалов существует производная. $f'(x_i^*)=0$ на всех интервалах, т.к. значения f(x) не зависят от x.

И abs(f'(x_1^*)f'($x^{{*}}_2$)* $f'(x^{{*}}_3$ \$))<1 => функция имеет устойчивый цикл.

- 2) Численно. Выберем несколько различных начальных значений. Например, -3, 0, 2.
- a) $x_1=f(-3)=0$. f(0) = 1 f(1) = -2 f(-2) = 0.
- б) $x_1=f(0)=1$. f(1)=-2 f(-2)=0 f(0)=1.
- B) $x_1=f(2)=-2$. f(-2)=0 f(0)=1 f(1)=-2.

3) Графически

Nº 9.5.4

9.5. Постройте диаграмму орбит для данной системы. Проверьте различные начальные условия на случай если от них что-то зависит. Прокомментируйте полученную картину.

9.5.4.
$$x_{n+1} = r \operatorname{tg} x_n$$
 (Мешанина)

Решение:

Диаграмму орбит построим используя скрипт Python.

Как видно, эта диаграмма не имеет четкой бифуркационной структруры, точки ведут себя хаотически вдоль прямой x=0. Можно предположить, что 0 является устойчивой точкой, а некоторая хаотичность появляется при изменении параметров.

Проверим различные начальные условия.

В простейшем случае если х лежит внутри между двумя ассимптотами pi/2 и значение r таково, что функция не выходит за ассимпототы, то наблюдается устойчивая точка.

При иных значениях г и х также 0 является устойчивой точкой, но рисунок может выглядеть несколько спожнее:

Был использован файл Бифуркация отображений.nb из общей папки и скрипт на Python, который прикреплен к письму.