Logică computațională Curs 11

Lector dr. Mihiș Andreea-Diana

Conținut

- http://www.cs.ubbcluj.ro/files/curricula/2013/syllabus/Mihis-Andreea MLR5055 inf 2013-2014.pdf
- 8. Logica predicatelor de ordinul I
- 9. Metoda tabelelor semantice în logica predicatelor, substituții și unificatori
- 10. Metoda rezoluției în logica predicatelor
- 11. Algebre booleene, funcții booleene, Simplificarea funcțiilor booleene Prin metoda Veitch și Karnaugh
- 12. Simplificarea funcțiilor booleene prin metoda Quine Mc'Clusky
- 13. Circuite logice
- 14. Verificarea programelor utilizând logica predicatelor și alte aplicații ale logicii (Recapitulare)

Algebre booleene

- introduse de George Boole (1815-1864)
- stau la baza definirii funcțiilor booleene
 - care sunt utilizate în realizarea circuitelor logice

Definirea axiomatică (1)

O algebră booleană este o structură $(A, \land, \lor, \neg, 0, 1)$, unde:

- $|A| \ge 2$, A conținând cel puțin 2 elemente diferite, 0 și 1, $0 \ne 1$
- ∧, ∨ sunt operații binare
- este operator unar
- există elementul unic 0 elementul zero, cu proprietățile:

$$x \wedge 0 = 0 \wedge x = 0$$
 şi $x \vee 0 = 0 \vee x = x$, $\forall x \in A$

• există elementul unic 1 – elementul unitate, cu proprietățile:

$$x \wedge 1 = 1 \wedge x = x \text{ si } x \vee 1 = 1 \vee x = 1, \forall x \in A$$

• elementul zero, 0 și cel unitate, 1 sunt primul respectiv ultimul element, iar \overline{x} este complementul lui x:

$$x \wedge \overline{x} = 0$$
 și $x \vee \overline{x} = 1$, $\forall x \in A$

• dubla negație:

$$\overline{\overline{x}} = x, \ \forall x \in A$$

Definirea axiomatică (2)

• operaţiile ∧, ∨ sunt comutative:

$$x \wedge y = y \wedge x \text{ și } x \vee y = y \vee x, \ \forall x, y \in A$$

• operațiile \land , \lor sunt asociative:

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z (= x \wedge y \wedge z)$$
 şi
 $x \vee (y \vee z) = (x \vee y) \vee z (= x \vee y \vee z), \forall x, y, z \in A$

• au loc proprietățile de distributivitate ale operatorilor \land și \lor :

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$
 şi
 $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z), \forall x, y, z \in A$

• are loc proprietatea de idempotență pentru ambele operații:

$$x \wedge x = x \text{ si } x \vee x = x, \ \forall x \in A$$

• au loc legile lui De Morgan:

$$\overline{x \wedge y} = \overline{x} \vee \overline{y}$$
 și $\overline{x \vee y} = \overline{x} \wedge \overline{y}, \ \forall x, y \in A$

• au loc proprietățile de absorbție:

$$x \wedge (x \vee y) = x \text{ si } x \vee (x \wedge y) = x, \forall x, y \in A$$

Observații

- Într-o algebră booleană are loc principiul dualității: "Pentru orice egalitate între două expresii booleene U = V, există o nouă egalitate U' = V', obținută prin interschimbarea operațiilor \land , \lor și a elementelor: 0, 1".
- majoritatea axiomelor algebrei booleene, sunt perechi de axiome duale

Algebra booleană binară

$$\mathbf{B} = (B_2 = \{0,1\}, \land, \lor, -, 0, 1)$$

V	0	1
0	0	1
1	1	1

^	0	1
0	0	0
1	0	1

х	\overline{x}
0	1
1	0

Alte exemple de algebre booleene

• $(F_P, \land, \lor, \neg, F, T)$

• $(\mathscr{F}(X), \cap, \cup, C, \varnothing, X)$

Problemă practică

• Cine face tortul?

Soluțiile posibile

x

y,

Z

$$f(x, y, z) =$$

Funcții booleene

Fie $\mathbf{B} = (B_2^n, \land, \lor, \lnot, 0, 1)$ algebra booleană binară, $B_2 = \{0, 1\}$ și $n \in \mathbb{N}^*$. O funcție booleană de n variabile este o funcție definită recursiv astfel:

- 1. Funcția *proiecție*: $P_i: B_2^n \to B_2$, $P_i(x_1,...,x_i,...,x_n) = x_i$, care păstrează doar variabila x_i , este o funcție booleană.
- 2. Dacă avem două funcții booleene $f,g:B_2^n \to B_2$, atunci $f \land g, f \lor g, \overline{f}$ sunt funcții booleene, unde:

$$(f \land g)(x_1,...,x_n) = f(x_1,...,x_n) \land g(x_1,...,x_n)$$

$$(f \lor g)(x_1,...,x_n) = f(x_1,...,x_n) \lor g(x_1,...,x_n)$$

$$\overline{f}(x_1,...,x_n) = \overline{f(x_1,...,x_n)}$$

• Orice funcție booleană este obținută prin aplicarea de un număr finit de ori a regulilor 1 și 2 de mai sus.

n=1

X	$f_0(x)$	$f_1(x)$	$f_2(x)$	$f_3(x)$
0	0	0	1	1
1	0	1	0	1

Teoreme

• $\forall n \in \mathbb{N}^*$, există 2^{2^n} funcții booleene de n variabile.

• Mulţimea tuturor funcţiilor booleene de $n \in \mathbb{N}^*$ variabile formează o algebră booleană: (**FB**(n), \land , \lor , $\overline{}$, f_0 , f_{2^n-1}), unde şi ; $f_0(x_1, x_2, ..., x_n) = 0$, $f_{2^n-1}(x_1, ..., x_n) = 1$ funcţiile constante 0, respectiv 1.

Notații

•
$$x^{\alpha} = \begin{cases} x, \text{dacă } \alpha = 1 \\ -x, \text{dacă } \alpha = 0 \end{cases}$$
, $x \in \{0, 1\}$

• Pentru x, $\alpha \in \{0, 1\}$, au loc: $x^0 = \overline{x}$, $x^1 = x$ și $0^0 = \overline{0} = 1$; $0^1 = 0$; $1^0 = \overline{1} = 0$; $1^1 = 1$

• Astfel, se obţine:
$$x^{\alpha} = \begin{cases} 1, \text{dacă } x = \alpha \\ 0, \text{dacă } x \neq \alpha \end{cases}$$
, $x, \alpha \in \{0, 1\}$

Formele canonice ale funcțiilor booleene (1)

O funcție booleană $f: (B_2)^n \rightarrow B_2$, $n \in \mathbb{N}^*$ poate fi transformată în cele două forme echivalente:

• forma canonică disjunctivă (FCD):

(1)
$$f(x_1,...,x_n) = \bigvee_{(\alpha_1,...,\alpha_n) \in (B_2)^n} (f(\alpha_1,...,\alpha_n) \wedge x_1^{\alpha_1} \wedge ... \wedge x_n^{\alpha_n})$$

• forma canonică conjunctivă (FCC):

$$(2) f(x_1, ..., x_n) = \bigwedge_{(\alpha_1, ..., \alpha_n) \in (B_2)^n} (f(\alpha_1, ..., \alpha_n) \vee x_1^{\alpha_1} \vee ... \vee x_n^{\alpha_n})$$

Formele canonice ale funcțiilor booleene (2)

O funcție booleană $f: (B_2)^n \to B_2$, $n \in \mathbb{N}^*$ este unic determinată de valorile sale $f(\alpha_1, \alpha_2, ..., \alpha_n)$, unde $(\alpha_1, \alpha_2, ..., \alpha_n) \in (B_2)^n$:

• forma canonică disjunctivă:

$$(1) \Leftrightarrow (1')f(x_1,...,x_n) = \bigvee_{(\alpha_1,...,\alpha_n) \in (B_2)^n \text{ si } f(\alpha_1,...,\alpha_n) = 1} (x_1^{\alpha_1} \wedge ... \wedge x_n^{\alpha_n})$$

• forma canonică conjunctivă:

$$(2) \Leftrightarrow (2') f(x_1, \dots, x_n) = \bigwedge_{(\alpha_1, \dots, \alpha_n) \in (B_2)^n \text{ si } f(\alpha_1, \dots, \alpha_n) = 0} (x_1^{\overline{\alpha_1}} \vee \dots \vee x_n^{\overline{\alpha_n}})$$

Observație

- Forma canonică *conjunctivă* este utilă când există un număr mic de zerouri și un *număr mare de valori* 1 (realizări).
- Forma canonică *disjunctivă* este recomandată în caz contrar, când există un *număr mare de zerouri* ale funcției și un număr mic de valori 1.
- Funcția booleană f_0 nu poate fi scrisă în forma canonică disjunctivă, deoarece nu ia valoarea 1 pentru niciun argument.
- Funcția booleană f_{2^n-1} nu poate fi scrisă în forma canonică conjunctivă, deoarece nu ia valoarea 0 pentru niciun argument.

Definiție

Fie $f: (B_2)^n \to B_2$, $n \in \mathbb{N}^*$ o funcție booleană cu n variabile.

- O conjuncție de variabile se numește *monom*.
- Un monom care conţine toate cele *n* variabile se numeşte *monom canonic* sau *minterm* de *n* variabile. Are forma:

$$x_1^{\alpha_1} \wedge ... \wedge x_n^{\alpha_n}, \alpha_i \in B_2$$

• Disjuncția care conține toate cele *n* variabile, având forma:

 $x_1^{\alpha_1} \vee ... \vee x_n^{\alpha_n}$, $\alpha_i \in B_2$ se numeşte *maxterm* de *n* variabile.

Proprietăți

- $\forall n \in \mathbb{N}^*$, există exact 2^n maxtermi, notați cu $M_0, M_1, ..., M_{2^n-1}$ și exact 2^n mintermi, notați cu $m_0, m_1, ..., m_{2^n-1}$.
- Un *maxterm* este o funcție booleană care ia valoarea 0 doar pentru un argument.
- Un *minterm* este o funcție booleană care ia valoarea 1 doar pentru un argument.

Observație

- Indicele unui minterm de *n* variabile este obținut prin conversia în zecimal a numărului binar format cu cifrele ce reprezintă puterile celor *n* variabile ale expresiei acestuia.
- Indicele unui maxterm de *n* variabile este obținut prin conversia în zecimal a numărului binar, format cu dualele cifrelor ce reprezintă puterile celor *n* variabile ale expresiei acestuia.

Propoziție

• Conjuncția a doi mintermi distincți este 0:

$$m_i \wedge m_j = 0, \forall i \neq j, \quad i, j = 0, ..., 2^{n-1}$$

• Disjuncția a doi maxtermi distincți este 1:

$$M_i \vee M_j = 1, \forall i \neq j, i, j = 0,..., 2^{n-1}$$

• Un minterm și un maxterm cu același indice sunt funcții duale.

$$M_i = \overline{m_i}, \overline{M}_i = m_i, \forall i = 0,..., 2^{n-1}$$

Observație

- Forma canonică conjunctivă, *FCC*, este conjuncția maxtermilor corespunzători argumentelor pentru care funcția ia valoarea 0.
- Forma canonică disjunctivă, *FCD*, este disjuncția mintermilor corespunzători argumentelor pentru care funcția ia valoarea 1.

Soluțiile posibile

$$f(x, y, z) = \bigcup$$

•Putem să le "condensăm"?

Suportul funcției

• suportul funcției booleene f

$$S_f = \{ (x_1, x_2, ..., x_n) \in B_2^n | f(x_1, x_2, ..., x_n) = 1 \}$$

$$(1,1,0) \in S_f$$

$$(1,0,1) \notin S_f$$

Relația mai mic sau egal

• Relaţia mai mic sau egal $f \le g \Leftrightarrow S_f \le S_g$

$$m = x \wedge y \wedge \overline{z}$$

$$\sin m' = x \wedge \overline{z}$$

$$S_m = \{(1, 1, 0)\} \subset S_m = \{(1, 1, 0), (1, 0, 0)\}$$

$$m \leq m'$$

Factorizarea

• monoame adiacente (vecine) dacă ele diferă doar prin puterea (semnul: negație sau nu) variabilei cu indicele $,k_i$ ":

$$m = x_{k_1}^{\alpha_{k_1}} \wedge \dots \wedge x_{k_j}^{\alpha_{k_j}} \wedge x_{k_i} \wedge x_{k_l}^{\alpha_{k_l}} \wedge \dots \wedge x_{k_s}^{\alpha_{k_s}}$$

$$m' = x_{k_1}^{\alpha_{k_1}} \wedge \dots \wedge x_{k_j}^{\alpha_{k_j}} \wedge \overline{x_{k_i}} \wedge x_{k_l}^{\alpha_{k_l}} \wedge \dots \wedge x_{k_s}^{\alpha_{k_s}}$$

• factorizarea monoamelor m și m' este operația prin care se obține, eliminând variabila cu indicele " k_i ", monomul

$$m \vee m' = x_{k_1}^{\alpha_{k_1}} \wedge \dots \wedge x_{k_j}^{\alpha_{k_j}} \wedge x_{k_l}^{\alpha_{k_l}} \wedge \dots \wedge x_{k_s}^{\alpha_{k_s}}$$

mai mare decât m și m'.

Simplificarea

- A *simplifica* o funcție booleană, înseamnă a obține o formă echivalentă a sa cu un număr cât mai mic de apariții de variabile.
- Dacă se pornește de la FCD(f), prin factorizări repetate, într-un număr finit de pași se poate obține o formă simplificată a funcției.

Mulțimea monoamelor maximale

• Mulţimea M(f) se numeşte $mulţimea\ monoamelor$

maximale ale funcției booleene $f: B_2^n \to B_2$ dacă:

$$\forall m \in M(f), m \in FB(n), m \le f;$$

 $\forall m \in M(f), \exists m' \in FB(n), \text{ astfel încât } m < m' \le f$

Mulțimea monoamelor centrale

• Mulţimea C(f) se numeşte mulţimea monoamelor

centrale ale funcției booleene $f: B_2^n \to B_2$ dacă:

$$\forall m \in C(f), m \in M(f)$$

 $\forall m \in C(f)$, nu are $loc m \leq \vee m'$, unde $m' \in M(f) - \{m\}$

Algoritmul de simplificare a funcțiilor booleene

Sf algoritm

```
Date de intrare: f – o funcție booleană în formă canonică disjunctivă
Date de ieșire: f'_1, f'_2, ..., f'_k - variantele simplificate ale funcției f
Se determină M(f) și C(f).
\operatorname{dacă} M(f) = C(f)
   atunci f'_1 = \bigvee_{m \in M(f)} m STOP1 // caz 1--- soluție unică
   altfel
   dacă C(f) \neq \emptyset not.
           atunci g = \bigvee_{m \in C(f)} m
                                       f'_{i}=g \vee h_{i}, i=\overline{1,k}, unde h_{i} este disjuncția unui număr cât
                      mai mic de monoame maximale astfel încât S_{h_i} = S_f - S_g
                                     <u>STOP2 // caz 2 --- k soluții</u>
           altfel // nu există monoame centrale
                      f'_{i}=h_{i}, i=1,k, unde h_{i} este disjuncția unui număr cât mai mic de
                       monoame maximale astfel încât S_{h_i} = S_f
                                     <u>STOP3</u> // caz 3 --- k soluții
           sf_dacă
   sf dacă
```

Metoda diagramelor Veitch

- Această metodă se bazează pe reprezentarea grafică, sub forma unei diagrame, a suportului funcției.
- Este foarte utilă pentru funcții cu un număr mic de variabile: 2, 3 sau 4.

Construirea diagramei Veitch

Completarea diagramei

Exercițiu

 $f(x_1, x_2, x_3, x_4) = x_1 x_2 \overline{x_3} x_4 \vee \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \vee x_1 x_2 \overline{x_3} \overline{x_4} \vee x_1 \overline{x_2} \overline{x_3} \overline{x_4}$

V	$x_1x_2x_3$	X.
	30 130 230 3	4

$$\vee x_1 x_2 x_3 x_4$$

$$\vee \overline{x}_1 x_2 x_3 \overline{x}_4$$

$$\vee x_1 \overline{x}_2 x_3 \overline{x}_4$$

$$\vee x_1 \overline{x_2} x_3 x_4$$

J T		<i>J</i> T	1 2 3		
		x_1	χ	1	
	m_{15}	m_{13}			x_4
x_2		m_{12}		m_6	
	m_{10}	m_8	m_0		\overline{x}_4
x_2	m_{11}	m_9			x_4
	x_3	5	\overline{x}_3	x_3	

Mintermi adiacenți

***************************************	******	*****	x_I	_ X	. 1	
		m_{15}	m_{13}			x_4
	x_2		m_{12}		m_6	
		m_{10}	m_8	m_0		\overline{x}_4
	\overline{x}_2	m_{11}	m_9			X_4
	******	x_3	3	\overline{x}_3	x_3	

Factorizarea (1)

Se grupează 2^k , $k \in \mathbb{N}$ mintermi adiacenți, k – cât mai mare

$$max_1 = m_{13} \lor m_{12} \lor m_8 \lor m_9$$

$$max_2 = m_{10} \lor m_{11} \lor m_8 \lor m_9$$

$$max_3 = m_{11} \lor m_9 \lor m_{15} \lor m_{13}$$

$$max_4 = m_8 \lor m_0$$

$$max_5 = m_6$$

Factorizarea (2)

- se grupează 2^k , $k \in \mathbb{N}$ mintermi adiacenți
- ! prima și ultima line, prima și ultima coloană sunt vecine!
- același minterm poate fi utilizat de mai multe ori
- ! se neglijează grupurile incluse!
- nu se lasă mintermi neîncercuiți

Formulele monoamelor maximale

$$max_1 = m_{13} \lor m_{12} \lor m_8 \lor m_9 = x_1 \overline{x}_3$$

$$max_2 = m_{10} \lor m_{11} \lor m_8 \lor m_9$$
$$= x_1 \overline{x}_2$$

$$max_3 = m_{11} \lor m_9 \lor m_{15} \lor m_{13}$$

= $x_1 x_4$

$$max_4 = m_8 \lor m_0$$
$$= \overline{x}_2 \overline{x}_3 \overline{x}_4$$

$$max_5 = m_6 = \overline{x}_1 x_2 x_3 \overline{x}_4$$

Mulțimea monoamelor maximale și mulțimea monoamelor centrale

$$M(f) = \{max_1, max_2, max_3, max_4, max_5\}$$

$$M(f) = C(f)$$

Forma simplificată a funcției

- Cazul I al algoritmului de simplificare
- O singură formă simplificată a funcției:

$$f^{s}(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1}\overline{x_{3}} \vee x_{1}\overline{x_{2}} \vee x_{1}x_{4} \vee \overline{x_{2}}\overline{x_{3}}\overline{x_{4}} \vee \overline{x_{1}}x_{2}x_{3}\overline{x_{4}}$$

Construirea diagramei Karnaugh

x_1 x_2 x_3	00	01	11	10
0				
1				

• ! O singură cifră distinctă!

