EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6679

Paper No. M3

Question number	Scheme		Marks
i.(a)	$v = \int \frac{1}{2} e^{-\frac{1}{6}t} dt$	→ 4147	
,	= -3e ^{-6t} (+c)	A-I	
	we of limits or t=0, v=10	MI	
	$v = 13 - 3e^{-\frac{1}{6}t}$	Al	(4)
رك)	t=3, V= 11.2 ms-1	LHIAI	(2)
(ع)	13 (ft. if v= a ± be -6t)	81 1	(ı) (T)
2. (a)	cos0 = 3/4, 0.75, 6/8	8।	<u>(1)</u>
(P)	$mg\cos O(-R) = \frac{mv^2}{DS}$	MI AI	
	v2= 5.88 ×	Aì	(s)
(c)	1 m. 5.88 - 1 mu2 = mgx0.2	MI AI	_
	u = 1.4	#]	(3) (£)
3. (a)	$\frac{1}{1}x .5y^2 = \frac{52x \cdot 05^2}{2x0 \cdot 25}$	>HI AI A1	
i y	$V = 0.589 \text{ ms}^{-1} (35F)$	L mi Al	(5)
(b)	F= 0.6×1.59	нI	
	52x or 52x 0.15 25	ВІ	
	T=F => X = 0.0424m or 4.24cm	M1 41	(-\)
	Min distance = 0.208m or 20.8cm	41 V	(5)
-			
Ì			

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6679

Paper No. M3

Question number	Scheme	Marks
4.(4)	$y = \frac{k}{k^2} \implies k = R^2 y$ $a = \frac{k}{x^2}$ $\frac{x^2}{dx} = -\frac{R^2 y}{x^2} = \frac{x}{x^2}$	BI - MI L MI AICSO, (4)
.9)	$\int v dv = -\int \frac{R^2q}{x^2} dx$ $\frac{v^2}{x} = \frac{R^2q}{x} (+ c)$ $x = R, v = U \text{or} / \text{arc of finity}$ $\frac{v^2}{x} = \frac{R^2q}{x^2} + \frac{u^2}{x^2} - Rq$ $use \text{of} v = 0$ $x = \frac{2gR^2}{2gR - u^2}$	→ H I →
5 (a)	$77^{2}h$ $\frac{1}{6}m^{2}h$ $\frac{5}{6}m^{2}h$ $\frac{5}{6}m^{2}h$ $\frac{7}{8}$ $\frac{7}{8$	82 -1e.e.o.o. 82 -1e.e.o.o. HIAI AI (7)
(F)	tank = $h-x$ Use of h = 4r to obtain expression in h arrowing $d = 66.5^{\circ}$ (10P)	MI AI MI AI (4)

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6679

Paper No. M3

Question number	Scheme	Ma	arks
6.(a)	r= 1/htm60°= 13h *	HI AI	(2)
<i>(</i> b)	A \$(1), Tiwi60"-Ticn60"= mg 60"	->M1 A1 ->M1 A1	
	He of cos60°=1 and sin6°=15 The solving for T, or T2	1	
	T=3m(hw2 tzs); T==1m(hw2-25)	A1; A1	- (4)
(c)	五>0 w> /授	n(At V	
	T-21 => T < 27/25 = 7/2 #	MI Alcisia.	(4) (14)
7. (4)	In equile, $T = mgsh30^\circ$ $ \frac{1}{8}a = mgsi30^\circ \Rightarrow \frac{1}{2} + 4mg \times \frac{1}{2} $	B) H1 41	(3)
(b)	mil = mgs=300- 4mg (fa+x)	111 A2 :	
	ic = -45 x => SHM	- MAI	(1)
	Period = 211/45 = 11/5/2	Al	(b)
ૃ	$MeXacel^2 = \omega^2 a = \frac{12}{a}, \frac{2}{4} = \underline{9}$	nt Al	(2)
(0)	X= # shut; = = = = shut	PHI 41	
	wt = su = 7/6 t = 7/2/5	LMI AI	(5)
œ:	Chele approver: 0= 1 - co 1 = 1 - 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	OR PIMIAI HIAI AIN	(s)
ok:	coo (-1)- co (.) = 3 - 1 = I	OR THI AT	
:	w= 176 = 17,2√5	AI N	(5)
			(16)

. • _ •	オトートでくれいく	
Question	Solution	Markscheme
7-(a)	$ \frac{\partial}{\partial x} = \frac{\pi}{2} - \frac{1}{2} = \frac{\pi}{6} $ $ \frac{\partial}{\partial y} = \frac{\pi}{2} = \frac{\pi}{6} $ $ \frac{\partial}{\partial y} = \frac{\pi}{2} = \frac{\pi}{6} $ $ \frac{\partial}{\partial y} = \frac{\pi}{6} $	C HI AI AI f.t.
OR:	$\cos^{-1}(-\frac{1}{2}) - \cos^{-1}(0) = \frac{2\pi}{3} - \frac{\pi}{2} = \frac{\pi}{6}$ $\omega t = \frac{\pi}{6}$ $t = \frac{\pi}{6}\sqrt{\frac{a}{45}} = \frac{\pi}{12}\sqrt{\frac{c}{5}}$	PMI AI mi AI A) ft.
	8	