Université Pierre et Marie Curie 2005–2006

LM223 maths-info groupes 1, 2, 5 et 6 LM223 maths groupes 1 et 2

Feuille 6

Exercice 1. On considère la forme quadratique sur \mathbb{R}^3 définie par

$$q(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3$$
.

On pose $X = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $Y = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $Z = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$; montrer que (X, Y, Z) est une base orthonormale pour a.

Exercice 2. Soit $A = ((a_{ij})) \in \mathbf{O}_n(\mathbf{R})$ une matrice orthogonale. Montrer que

$$\left| \sum_{1 \leqslant i, j \leqslant n} a_{ij} \right| \leqslant n .$$

[Indication : que vaut tXAX si $X=(1,\ldots,1)$?]

Exercice 3. Sur l'espace $E = \mathcal{C}([0,1], \mathbf{R})$ des applications continues sur [0,1] à valeurs réelles, on considère la forme bilinéaire définie par : $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$.

- 1. Montrer que c'est un produit scalaire. On note $\|\cdot\|_2$ la norme associée.
- 2. On pose par ailleurs $||f||_1 = \int_0^1 |f(t)| dt$. Montrer que pour tout f de E, on a $||f||_1 \le ||f||_2$.

Exercice 4. Appliquer la méthode d'orthonormalisation de Gram-Schmidt dans les cas suivants :

1.
$$X = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$
, $Y = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$, $Z = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$ dans \mathbf{R}^3 muni du produit scalaire usuel,

2. P = 1, Q = X, $R = X^2$ dans $\mathbf{R}[X]$ muni du produit scalaire $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Remarque : les polynômes obtenus à la question 2 sont connus sous le nom de polynômes de Legendre.

Exercice 5. Dans $\mathbf{R}[X]$, vérifier que la formule $\langle f, g \rangle = \int_0^1 x f(x) g(x) dx$ définit bien un produit scalaire. Appliquer alors la méthode de Gram-Schmidt aux éléments $1, X, X^2$ de $\mathbf{R}[X]$ muni de ce produit scalaire.

Exercice 6. Sur \mathbb{R}^3 , montrer que la forme

$$f:(x,y)\mapsto (x_1-2x_2)(y_1-2y_2)+x_2y_2+(x_2+x_3)(y_2+y_3)$$

est un produit scalaire.

- 1. Calculer la matrice de f dans la base canonique de \mathbb{R}^3 .
- 2. À l'aide de la méthode de Gram-Schmidt, orthonormaliser la base canonique de \mathbb{R}^3 pour le produit scalaire f.
- 3. Donner sans calcul la matrice de f dans la nouvelle base ainsi obtenue.