Reference for Mathematical Notions (Material covered in appendix A)

Xavier Rival and Kwangkeun Yi

Material provided with the book "Static analysis: an abstract interpretation perspective"

2019

Basic mathematics

This set of slides covers the basic notions of mathematics required to read the book/follow the lectures supplied with it:

- sets
- logical connectors and formulas
- functions
- order relations, Galois connections
- use of induction in definitions and proofs, fixpoints

Note: this is just an introduction

more advanced material would be required for an in-depth lecture!

Rival & Yi Math Reference 2019 2 / 12

Sets define finite or infinite collections of elements

A few sets and their notations:

- ∅: empty set, containing no element
- $\{a_0, a_1, \ldots, a_n\}$: set comprising elements a_0, a_1, \ldots, a_n
- $S \cup T$: union of sets S and T, set containing exactly the elements that are either in S or in T
- $S \cap T$: intersection of sets S and T, set containing exactly the elements that are either in S and in T
- $S \times T$: set of pairs made of an element of S and an element of T
- $\wp(S)$: set of all subsets of S
- $\{x \in S \mid P(x)\}$: set of elements in S that satisfy logical predicate P
- \mathbb{N}, \mathbb{R} : sets of integers, of reals

Rival & Yi Math Reference 2019 3 / 12

Logical connectives

The following standard logical connectives are used throughout the book and the course (look for notes on mathematical logics for a formal introduction):

- conjunction ∧:
 - $A \wedge B$ holds if and only if both A and B hold
- disjunction V:
 - $A \vee B$ holds if and only if either A or B holds
- negation ¬
- implication \Longrightarrow : $A \Longrightarrow B$ holds if and only if $\neg A \lor B$ holds
- equivalence \iff : $A \iff B$ is equivalent to $A \implies B \land B \longrightarrow A$
- universal quantification ∀:
 - $\forall x \in A, P(x)$ holds if and only if P(x) holds for any x in A
- existential quantification ∃:
 - $\exists x \in A, P(x)$ holds if and only if there exists at least one x in A such that P(x) holds

4 / 12

Definitions by induction

Definitions by induction allow to define mathematical objects of unbounded size, and possibly arbitrarily deep with nesting patterns.

Example: definition of very basic arithmetic expressions

$$\begin{array}{ccc} E & ::= & n \\ & | & E \odot E \end{array}$$

An expression is

- either a base value
- or an operator applied to two expressions
 which in turn may be either a value or a binary operator applied to...

Rival & Yi Math Reference 2019 5 / 12

Proofs by recurrence

Principle of **proofs by induction**: cover all cases by exploiting the recursive structure of a set.

Most classical case: proofs by recurrence over integers We assume a unary predicate ${\it P}$ over integers.

Then, if we can prove:

- that P(0) holds
- 2 that for all integer n, if P(n) holds, so does P(n+1) then, we can derive that, for all integer n, P(n) holds.

This principle generalizes to other inductively defined objects e.g., the arithmetic expressions introduced previously:

- prove P(v) for each value $v \in n$
- ② prove that for each operator \odot , and expressions E_0, E_1 , if $P(E_0)$ and $P(E_1 \text{ hold so does } P(E_0 \odot E_1)$

Functions

A function describes a mapping from a set to another set; very often this mapping may be seen as a computation.

Notation for function definitions:

$$f: A \longrightarrow B$$

 $x \longmapsto e$ expression depending on x

Meaning: function called f, from set A to set B, which maps x into e.

Other notations:

- f(a): application of function f to element a (i.e., it is an element of set B)
- $f \circ g$ composition of function g with function f
- $(x_n)_{n\in\mathbb{N}}$: sequence, i.e., function from \mathbb{N} to some set (the image of n is x_n)

Order relations

An order relation over a set E is a binary relation $(\preceq) \subseteq E \times E$ which is

- reflexive: $\forall x \in E, x \leq x$
- transitive: $\forall x, y, z \in E, x \leq y \text{ and } y \leq z \Longrightarrow x \leq z$
- anti-symmetric: $\forall x, y \in E, x \leq y$ and $y \leq x \Longrightarrow x = y$

Furthermore it is **total** when any pair of elements can be compared in one direction or the other.

Examples:

- standard order over integers: $\ldots \le -2 \le -A \le 0 \le 1 \le 2 \le \ldots$
- ullet lexicographic order ("dictionary ordering"): "ab" \leq "b" \leq "ba" \leq "bad"
- set inclusion, not total ($\{1,2\}$ and $\{2,3\}$ cannot be compared)

Chain: subset of E that is a total ordering

Ordered sets

Distinguished elements of a subset F of a partially ordered set (E, \preceq) :

- maximal element y of F: $y \in F$ and $\forall z \in F, z \leq y$
- upper bound y of $F: \forall z \in F, z \leq y$
- least upper bound: minimal element of the upper bounds, noted $\sqcup F$
- dual notions: minimal element, lower bound, greatest lower bound

Lattice: set E with partial order \leq ((E, \leq) called partial order), such that

- pairs have a least upper bound and a greatest lower bound
- ullet E has a minimal element ot and a maximal element ot

Complete lattice: lattice + any subset has a greatest lower bound and a least upper bound

Complete partial order (or CPO): partial order (E, \preceq) such that

- there is a minimal element
- any chain has a least upper bound

Rival & Yi Math Reference 2019

9 / 12

Operators over ordered sets

We consider two partial orders (E, \preceq) and (F, \preceq) and $f: E \longrightarrow F$; then:

• f is monotone if and only if

$$\forall x, y \in E, \ x \leq y \Longrightarrow f(x) \leq f(y)$$

• f is continuous if and only if (E, \preceq) and (F, \preceq) are CPOs and

$$\forall G \subseteq E, \ G \text{ is a chain} \Longrightarrow \left\{ \begin{array}{l} f(G) \text{ is a chain} \\ \sqcup \{f(x) \mid x \in G\} = f(\sqcup G) \end{array} \right.$$

If E = F then f is extensive if and only if $\forall x \in E, x \leq f(x)$

Rival & Yi Math Reference 2019 10 / 12

Fixpoints

We consider $f: E \longrightarrow E$, where (E, \prec) is a partial order.

• $x \in E$ is a fixpoint of f if and only if

$$f(x) = x$$

• $x \in E$ is the least fixpoint of f if and only if x is a fixpoint of f and is smallest than all others

Existence: not guaranteed in general! (conditions + theorem needed!)

Unicity: not guaranteed for fixpoints in general! if it exists, the least fixpoint is unique

Rival & Yi Math Reference 2019 11 / 12

Kleene's fixpoint theorem

An important constructive existence theorem:

Theorem

Let f be a continuous function from a CPO (E, \preceq) to itself. Then f has a least fixpoint expressed as follows:

$$\mathsf{lfp} f = \bigcup_{n \in \mathbb{N}} f^n(\bot)$$

Proof main steps:

- proof that the iterates form a chain, since $f^n(\bot) \leq f^{n+1}(\bot)$
- existence of the least upper bound CPO property
- fixpoint by continuity
- **9** proof that any fixpoint is greater than $f^n(\bot)$ by induction over n

There exist other fixpoint existence theorems though we do not present them in this course.

2019

12 / 12