- 1 Compare Richardson and Jacobi 1. Implement a function iter_solve() which takes as arguments a matrix $A \in \mathbb{R}^{n \times n}$, a vector $b \in \mathbb{R}^n$ and a parameter θ , and returns an approximate solution of the problem Ax = b after performing $m \in \mathbb{N}$ steps of the *Richardson*iteration.
 - 2. Add the Jacobi-iteration by adding an additional input method to your function so that the user can choose between the solvers.
 - 3. Test your two solvers for some invertible matrix $A \in \mathbb{R}^{3\times 3}$, some $b \in \mathbb{R}^3$ and m = 50. In both cases, plot the distance $||x^k - x^*||$ to the solution x^* (of numpy.linalg.solve()) for each iterate k = 1, ..., m.

Hint: Of course, it can happen that the algorithm does not converge. Use small values for θ in (i) and matrices with large values on the diagonal (compared to its other entries) in (ii). This will assure that $\rho(I-NA) < 1$.

Solution: