FUNKCIJE

Relacija $f \subseteq X \times Y$ je **funkcija** (**preslikava**) iz množice X v množico Y, če velja:

$$\forall x \in X \exists ! y \in Y : (x, y) \in f.$$

Namesto $f \subseteq X \times Y$ uporabljamo zapis $f: X \to Y$ in namesto $(x, y) \in f$ zapis f(x) = y.

Množici X rečemo domena (tudi definicijsko območje), množici Y pa rečemo kodomena funkcije $f: X \to Y$.

Množico $f(X) = \{f(x) | x \in X\} \subseteq Y$ imenujemo slika (tudi zaloga vrednosti) funkcije $f: X \to Y$.

Funkcija $f: X \to Y$ je **injektivna**, če

$$\forall x_1, x_2 \in X : (f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$$

ali enakovredno

$$\forall x_1, x_2 \in X : (x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)).$$

Funkcija $f: X \to Y$ je surjektivna, če

$$\forall y \in Y \ \exists x \in X : y = f(x)$$

ali enakovredno, če je zaloga vrednosti enaka množici Y.

Funkcija $f: X \to Y$ je **bijektivna**, če je hkrati injektivna in surjektivna.

Kompozitum funkcij $f: X \to Y$ in $g: Z \to W$, kjer je $f(X) \subseteq Z$, je funkcija

$$g \circ f : X \to W,$$
 $(g \circ f)(x) = g(f(x)).$

Inverz funkcije $f: X \to Y$, kjer je f bijektivna, je funkcija

$$f^{-1}: Y \to X, \qquad f^{-1}(f(x)) = x.$$

Zožitev funkcije $f: X \to Y$ na množico $A \subseteq X$, je funkcija

$$f|_A: A \to Y,$$
 $(f|_A)(x) = f(x).$

Operacija nad funkcijami: Če na množici Y obstaja neka dvomestna operacija *, lahko za poljubni funkciji $f: X \to Y$ in $g: X \to Y$ definiramo funkcijo

$$f * q : X \rightarrow Y$$
, $(f * q)(x) = f(x) * q(x)$.

Rečemo, da tako definiramo binarno operacijo na funkcijah po točkah.

Osnovne elementarne funkcije:

- konstantna funkcija: f(x) = c, kjer je $c \in \mathbb{R}$;
- potenčna funkcija: $f(x) = x^r$, kjer je $r \ge 0$;
- eksponentna funkcija: $\exp : \mathbb{R} \to \mathbb{R}$;
- logaritemska funkcija: $\ln:(0,\infty)\to\mathbb{R};$
- funkcija sinus: $\sin : \mathbb{R} \to \mathbb{R}$;
- funkcija arkus sinus: $\arcsin: [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}].$

Funkcija je **elementarna**, če jo lahko dobimo iz osnovnih elementarnih funkcij s seštevanjem, odštevanjem, množenjem, deljenjem, ali s postopkom kompozituma, ali s postopkom zožitve v končno mnogih korakih.

Polinom je elementarna funkcija

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0,$$

kjer so a_i poljubni koeficienti iz nekega polja in $a_n \neq 0$.

Racionalna funkcija je elementarna funkcija

$$f(x) = \frac{p(x)}{q(x)},$$

kjer je p polinom in q neničelni polinom.

Naloge

- 1. Dani sta množici $A = \{a, b, c, d\}$ in $B = \{1, 2, 3, 4\}$. Za dane relacije utemeljite, ali so funkcije. Če so funkcije, utemeljite njihovo injektivnost, surjektivnost oz. bijektivnost.
 - (a) $R_1 = \{(c, 1), (b, 2), (d, 3)\}$
 - (b) $R_2 = \{(a,4), (c,1), (b,2), (d,3)\}$
 - (c) $R_3 = \{(a, 2), (d, 1), (b, 2), (c, 3)\}$
 - (d) $R_4 = \{(a, 2), (d, 1), (a, 3), (c, 3), (b, 4)\}$
- 2. Naj bosta podani množici

$$f = \{(1,b), (2,d), (4,d)\} \subseteq \{1,2,4\} \times \{a,b,c,d\},$$

$$g = \{(a, 1), (b, 2), (c, 4)\} \subseteq \{a, b, c\} \times \{1, 2, 4\}.$$

(a) Ali imamo opraviti s funkcijama

$$f: \{1, 2, 4\} \to \{a, b, c, d\}$$
 oz. $g: \{a, b, c\} \to \{1, 2, 4\}$?

- (b) Določi domeno, kodomeno, zalogo vrednosti ter razišči injektivnost, surjektivnost, bijektivnost in inverz funkcij f in g.
- (c) Opiši naslednje kompozitume funkcij: $f \circ g$, $g \circ f$, $f \circ f$ in $g \circ g$.
- 3. Naj bosta X in Y končni množici, X z m elementi in Y z n elementi.
 - (a) Koliko je vseh funkcij, ki preslikajo množico X v množico Y?
 - (b) Koliko funkcij iz točke (a) je injektivnih?
 - (c) Koliko funkcij iz točke (a) je bijektivnih?
- 4. Utemelji, ali je dana funkcija injektivna, surjektivna oz. bijektivna.
 - (a) Naj bo S množica vseh točk, K pa množica vseh krogov v ravnini. Naj bo $f:K\to S$ funkcija, ki vsakemu krogu priredi njegovo središče.
 - (b) Naj bo B izbrana podmnožica množice X in $f:\mathcal{P}(X)\to\mathcal{P}(X)$ funkcija, ki dani podmnožici $A\subseteq X$ priredi množico $A\cap B$.

5. V množici realnih števil $\mathbb R$ določi definicijska območja naslednjih funkcij

(a)
$$f(x) = \sqrt{9 - x^2}$$

(b)
$$g(x) = \sqrt{\ln \frac{5x - x^2}{4}}$$

(c)
$$h(x) = \arccos \ln \frac{x+1}{x-3}$$

6. Naj bosta f in g realni funkciji realne spremenljivke, podani s predpisom

$$f(x) = \frac{2x+1}{x-1}$$
 in $g(x) = \frac{x+1}{x-2}$.

Določi $f \circ g$ in $g \circ f$.

7. Naj bosta f in g realni funkciji realne spremenljivke, podani s predpisom

$$f(x) = \begin{cases} 0 & ; & x < 0 \\ x & ; & x \ge 0 \end{cases}, \qquad g(x) = \begin{cases} 0 & ; & |x| > \frac{\pi}{2} \\ \cos x & ; & |x| \le \frac{\pi}{2} \end{cases}$$

Določi $f\circ g$ in $g\circ f$ ter nariši grafa.

- 8. Funkcija f je podana s predpisom $f(x+1)=x^3-5x+4$. Izračunaj f(3) in f(x-1).
- 9. Izračunaj vrednosti ciklometričnih funkcij:
 - (a) arcsin 1
 - (b) $\arcsin \frac{\sqrt{3}}{2}$
 - (c) arccos 1
 - (d) $\arccos \frac{1}{2}$
 - (e) $\arctan \sqrt{3}$
- 10. Nariši grafa funkcij $\arccos(\cos x)$ in $\arctan(\tan x).$
- 11. Za vsako od funkcij, ki so dane s spodnjimi predpisi, utemelji, ali je surjektivna oz. injektivna.

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^3 - x$

(b)
$$f : \mathbb{R} \to [-1, 1], f(x) = \cos x$$

(c)
$$f:[0,\pi] \to [-1,1], f(x) = \cos x$$

12. Naj bo funkcija $f: \mathbb{R} \to \mathbb{R}$ dana s predpisom

$$f(x) = \begin{cases} x^2 & ; & x \in \mathbb{R} \setminus \mathbb{Q} \\ x & ; & x \in \mathbb{Q} \end{cases}.$$

Utemelji, ali je f injektivna in ali je f surjektivna.

- 13. Naj bo $f(x) = \frac{3x-2}{x+1}$. Določi definicijsko območje \mathcal{D}_f funkcije f. Dokaži, da je f injektivna na \mathcal{D}_f in določi inverzno funkcijo. Nalogo reši računsko in grafično.
- 14. Naj bo funkcija $f: \mathbb{R} \to \mathbb{R}$ dana s predpisom

$$f(x) = \arcsin(||x| - 1| + |x + 2|).$$

Določi definicijsko območje \mathcal{D}_f in zalogo vrednosti \mathcal{Z}_f funkcije f. Nato poišči funkcijo $g: \mathcal{Z}_f \to \mathcal{D}_f$, za katero velja $f \circ g = \mathrm{id}_{\mathcal{Z}_f}$, kjer je $\mathrm{id}_{\mathcal{Z}_f}(x) = x$ za vsak $x \in \mathcal{Z}_f$. Ali je funkcija g inverz funkcije f?

- 15. Naj bo $f(x) = \frac{e^{\cos x} 1}{2 e^{\cos x}}$. Določi definicijsko območje \mathcal{D}_f funkcije f. Dokaži, da je funkcija f na $[\pi, 2\pi] \cap \mathcal{D}_f$ injektivna in določi inverzno funkcijo te zožitve.
- 16. Dani sta funkciji $f:A\to B$ in $g:B\to C$. Dokaži naslednje trditve.
 - (a) Če sta f in g injektivni, je $g \circ f$ injektivna.
 - (b) Če sta f in g surjektivni, je $g \circ f$ surjektivna.
 - (c) Če je $g \circ f$ injektivna, je f injektivna.
 - (d) Če je $q \circ f$ surjektivna, je q surjektivna.
- 17. Poišči primer funkcij $f,g:\mathbb{R}\to\mathbb{R}$, da je g surjektivna, $g\circ f$ pa ni, in primer, da je f injektivna, $g\circ f$ pa ni.

Rešitve nekaterih nalog

- 4. (a) Je surjektivna, ni injektivna.
- 4. (b) Ni surjektivna, ni injektivna.
- 5. (a) [-3, 3]
- 5. (b) [1, 4]
- 5. (c) $\left(-\infty, -\frac{e+3}{e-1}\right] \cup \left[\frac{3e+1}{e-1}, \infty\right)$
- 8. f(3) = 2

$$f(x-1) = x^3 - 6x^2 + 7x + 6$$

- 11. (a) Je surjektivna, ni injektivna.
- 11. (b) Je surjektivna, ni injektivna.
- 11. (c) Je surjektivna, je injektivna.
- 12. f ni niti injektivna, niti surjektivna.
- 13. $\mathcal{D}_f = \mathbb{R} \setminus -1$

$$f^{-1}(x) = \frac{x+2}{3-x}$$

14. $\mathcal{D}_f = [-2, -1]$

$$\mathcal{Z}_f = \left\{ \frac{\pi}{2} \right\}$$

Za funkcijo gje več možnosti, npr.: $g(\frac{\pi}{2})=-2.$

gni inverz
 funkcije f,saj fni injektivna.

15. $\mathcal{D}_f = \mathbb{R} \setminus \{\pm \arccos \ln 2 + 2\pi k \mid k \in \mathbb{Z}\}$

$$f^{-1}(x) = 2\pi - \arccos \ln \frac{2x+1}{x+1}$$