

How to Investigate Look at each transaction and work out what tables it will affect. Work out if there are tables that are used by a lot of transactions Look at how the data is affected by the transaction

Physic	al Design (4) Topic 9 - 9.18
Performance	/
Increasingly databases contain large amoundata	nt of
 The rate at which a query can return an ans be slowed when it has to sort though large of of records. 	
Performance becomes an issue	
Finging Breah Education to You V1.0	© NCC Education Limited

Indexes Improve performance. They work by creating entries in a special structure that makes it easier to find a record Indexes Indexe

Primary Index Built around a key field that is used for ordering. A unique value for every entry in the index. Broper Broph Carefort to You you see the second of the se

Secondary Index • Defined on a non-ordering field • May not contain unique values • Improves the performance of queries that use columns other than primary key

Mechanism for specifying additional key columns. For example Customer would be searched often on Customer Name as well as the primary key and so a secondary index could be used on it. Moderated to Note Education Limited Note Education Limited Note Education Limited Note Education Limited

Clustering Index Built around non-key column or columns. So there can be more than one record corresponding to the indexed column The non-key field is called the 'clustering field'

Physical Design (4) Topic

Examples of Creating Indexes in SQL

- To create primary index
 - CREATE UNIQUE INDEX CustomerIDIndex
 - ON Customer(CustomerID)
- To create clustering index
 - CREATE INDEX OrderDateIndex
 - ON Order(OrderDate) CLUSTER
- To create secondary index use CREATE INDEX syntax without specifying unique.
- NOTE: Index creation is not yet standard SQL

Physical Design (4) Topic 9 - 9.27

Overheads of Use of Indexes

- A record is added to the index table every time a new record is added to the table where there is a secondary index.
- Updating the indexed record means an update to the index table
- More disk space need to store index tables
- Impact on performance if indexes are all consulted every time a query is run

NCC Education Limit

De-normalisation • We have created a database following all the rules of normalisation... Now we can break them to make the database work quicker and perform better...

Candidates in Art Supply for De-Normalisation • If most enquires are about orders but also require some customer information then we might denormalise by including the customer_name on the Orders table. • We could also use a trigger to allow creation of

Orders with customer details on the Orders table.

References Connolly, Thomas M., and Begg, Carolyn E., Database Systems: A Practical Approach to Design and Implementation Addision-Wesley, Fourth Edition 2005 Chapter 17 Connolly, Thomas and Begg, Carolyn Database Solutions: A step-by-step guide to building database Addison-Wesley 2nd Edition 2004 Chapters 13 and Appendix D

