CHEM352: Physical Chemistry II Homework Set I - due 22^{th} of Feb, 3.00 pm Each problem is worth 5 points, 25 pts in total.

Instructor: Dr. Mateusz Marianski Room#: HN-1321B

email: mmarians@hunter.cuny.edu Office hours: Thu, 4-6 pm, HN-1321B

Problem I

- 1. Show (calculate) from Rydberg formula the wavelength limits of Lyman, Balmer and Paschen series. Identify the spectral regions of these wavelengths.
- 2. Generalize the Rydberg formula for $\bar{\nu}$ for a nucleus of atomic number Z.

Problem II

Using your favorite web-search engine, social network or encyclopedia to find the work function for chromium, gold, sodium and cesium. Next, calculate the kinetic energy of electrons emitted from a metal surface that is irradiated with radiation of wavelength of 200 nm.

Problem III

1. (Warm-up) Prove that:

 $e^{i\pi}=1$

 $\cos \alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$

 $\sin \alpha = \frac{e^{i\alpha} - e^{-i\alpha}}{2}$

2. Solve the equation:

$$\frac{d^2x}{dt^2} + \omega^2 x(t) = 0$$

Subject to the initial conditions x(0) = A and $\frac{dx}{dt} = v_0$ at t = 0.

3. The general solution to the above differential equation is:

$$x(t) = c_1 \cos \omega t + c_2 \sin \omega t$$

For convenience, the solution is often presented in the equivalent forms: $x(t) = A \sin(\omega t + \phi)$ or $x(t) = B \cos(\omega t + \psi)$. Using trigonometric identities, derive expressions for A and ϕ (and B and ψ) in terms of c_1 and c_2 .

Problem IV

- 1. Calculate $\langle x \rangle$, $\langle x^2 \rangle$, $\langle p \rangle$ and $\langle p^2 \rangle$ for the n=2 state of a particle in one dimensional box. Next, compute respective standard deviations and show that Heisenberg uncertainty principle holds.
- 2. Use partice in a box model to estimate the electronic excitation energies in a haxatriene. Compare predicted and experimental values.

Problem V

Choose one from the three **challenging** problems posted on blackboard (4-33: energy barrier, 4-35: tunneling or 4-38: finite well), analyze the problem and... well - show the solution. The problems are mostly self-explanatory however the solution require your independent work. Don't leave until last moment.