

CEFET-MG — Centro Federal de Educação Tecnológica de Minas Gerais

DEPARTAMENTO DE COMPUTAÇÃO DE DIVINÓPOLIS — DECOM-DV

Laboratório de Eletrônica

Turma: 2024/1

Prof. M. Sc. Diego Ascânio Santos

Alunos:			
Data:]		

Aula Prática 01 — Circuitos Retificadores

Objetivos

- Verificar o funcionamento do Diodo em circuitos retificadores;
- Compreender o funcionamento dos circuitos retificadores de meia onda e onda completa;
- Analisar a influência do filtro capacitivo na tensão de saída de um circuito retificador:
- Efetuar medidas de tensão elétrica com um multímetro e um osciloscópio.

Conceitos Teóricos

Diodo

Na área da eletrônica, uma variedade de componentes são empregados na elaboração de circuitos, incluindo Diodos, Transistores e Circuitos Integrados, que são fundamentalmente construídos a partir de semicondutores. Os semicondutores são materiais que não se classificam nem como condutores nem como isolantes, apresentando uma resistividade elétrica que se situa entre ambos, como é o caso do Germânio e do Silício. Estes possuem 4 elétrons na sua camada de valência. Para a fabricação desses componentes, utilizam-se cristais semicondutores dopados. A dopagem de um semicondutor pode resultar em um excesso de elétrons livres ou em um excesso de lacunas (ausência de elétrons). Por isso, existem dois tipos de semicondutores: o tipo N e o tipo P.

O diodo é formado pela combinação de um cristal do tipo P e um cristal do tipo N, resultando em uma junção PN, que constitui um dispositivo de estado sólido básico: o diodo semicondutor de junção. A estrutura é ilustrada na Figura 1 e um encapsulamento típico é mostrado na Figura 2.

Figura 1: Junção do cristal P ao cristal N formando um diodo.

Figura 2: Encapsulamento típico de um diodo.

O encapsulamento mostrado na Figura 2 apresenta uma tarja branca que indica o terminal catodo (K) e uma tarja preta que indica o terminal anodo (A). A corrente elétrica flui do anodo para o catodo, e o diodo só conduz corrente elétrica no sentido do anodo para o catodo. A tensão de polarização direta do diodo é da ordem de 0,7 V para o silício e 0,3 V para o germânio. A tensão de polarização reversa é da ordem de 50 V para o silício e 10 V para o germânio. A corrente de fuga reversa é da ordem de 1 µA para o silício e 10 µA para o germânio.

Circuito Retificador

O circuito retificador é um circuito eletrônico que converte a corrente alternada (CA) em corrente contínua (CC). A corrente alternada é uma corrente elétrica que muda de direção periodicamente, enquanto a corrente contínua é uma corrente elétrica que flui em uma única direção. A conversão de corrente alternada em corrente contínua é chamada de retificação. A retificação pode ser feita de duas maneiras: meia onda e onda completa.

Filtro Capacitivo

A tensão de saída de um circuito retificador é pulsante, ou seja, apresenta variações de tensão ao longo do tempo. Para suavizar essas variações — procedimento necessário em aplicações onde a tensão contínua deve ser constante — utiliza-se um filtro capacitivo. O filtro capacitivo é um circuito eletrônico que utiliza capacitores para suavizar a tensão de saída de um circuito retificador. O capacitor armazena energia elétrica e libera essa energia quando a tensão de saída do circuito retificador cai. O filtro capacitivo é composto por um ou mais capacitores, que são conectados em paralelo com a carga.

Com o filtro capacitivo a tensão de saída é uma forma de onda CC quase constante, apresentando somente uma pequena variação nos valores máximos (ripple) causada pela carga e descarga do capacitor.

Atividade Experimental

Materiais e Equipamentos

- 4 Diodos:
- 1 Resistor de $2.2k\Omega$;
- 1 Capacitor de $47\mu F$;
- Multímetro;
- Sinais senoidas de tensão alternada de 12V e 60Hz;
- Osciloscópio:

· Breadboard;

Retificador de Meia Onda

1. Como mostrado pela Figura 3, monte o circuito retificador de meia onda na breadboard.

Figura 3 — Retficador de Meia Onda

2. Em posse do multímetro, meça e preencha na tabela abaixo as respectivas grandezas:

Medida	Valor	Unidade
Tensão Eficaz — $V_{ m AC}$		$V_{ m RMS}$
Tensão Eficaz — $R_{2.2k\Omega}$		$V_{ m RMS}$
Tensão Contínua — $R_{2.2k\Omega}$		$V_{ m DC}$

3. Com os dados da tabela acima e com as fórmulas necessárias, calcule:

Grandeza	Valor Calculado	Unidade
$I_{R_{2.2k\Omega}}$		$A_{ m RMS}$
$P_{R_{2.2k\Omega}}$		mW
Tensão Eficaz — $R_{2.2k\Omega}$		$V_{ m RMS}$
Tensão Contínua — $R_{2.2k\Omega}$		$V_{ m DC}$

- 4. Conecte um canal do osciloscópio em um ponto de entrada da fonte do gerador de sinais e o outro canal em um ponto de saída do circuito retificador. Ajuste o osciloscópio para visualizar a forma de onda de entrada e saída do circuito retificador.
- 5. Com base na forma de onda obtida no osciloscópio, bem como, pelos dados obtidos no equipamento preencha a tabela abaixo:

Medida	Valor	Unidade
Tensão Eficaz — $V_{ m AC}$		$V_{ m RMS}$

Medida	Valor	Unidade
Tensão Eficaz — $R_{2.2k\Omega}$		$V_{ m RMS}$
Tensão Contínua — $R_{2.2k\Omega}$		$V_{ m DC}$
Tensão de Pico — $V_{{ m AC}_p}$		$V_{ m pico}$
Tensão de Pico Reversa sobre o Diodo — $V_{ m D}$		$V_{ m pico}$
Período (T)		s
Frequência (f)		Hz

6. Desenhe (ou carregue fotos) as formas de onda obtidas no osciloscópio para as grandezas abaixo:

1. Tensão da entrada $V_{ m AC}$:	Choose File No file selected

2. Tensão	da saída $V_{R_{2.2k\Omega}}$:	Choose File	No file selected	

3.	Tensão	de	Pico	Reversa	sobre	0	Diodo	$-V_{\mathrm{D}}$:
Cho	oose File No	file sel	ected					

7. Conecte o capacitor de $47\mu F$ em paralelo ao resistor de $2.2k\Omega$. Preencha a tabela abaixo com os respectivos valores obtidos:

Medida	Valor medido no Multímetro	Valor medido no Osciloscópio	Unidade
Tensão Eficaz — $V_{ m AC}$			$V_{ m RMS}$
Tensão de Pico — $V_{{ m AC}_P}$			$V_{ m pico}$
Tensão Eficaz — $V_{R_{2.2k\Omega}}$			$V_{ m RMS}$
Tensão Contínua $-V_{R_{2.2k\Omega}}$			$V_{ m DC}$
Tensão de Pico — $V_{R_{2.2k\Omega}}$			$V_{ m pico}$
Potência Ativa — $P_{R_{2.2k\Omega}}$			mW

8.	Desenhe ((ou carregue	fotos) as	formas	de onda	obtidas no	osciloscópio	para as
	grandezas	s abaixo:						

1.	Tensão	da	entrada $V_{ m AC}$	sobreposta	а	tensão	de	saída $V_{R_{2.2k\Omega}}$:
Ch	oose File	No file	e selected					

Retificador de Onda Completa

O Retificador de onda completa estudado no laboratório será o de onda completa em ponte, que não depende da utilização de transformadores. A Figura 4 mostra o circuito retificador de onda completa em ponte:

Figura 4 — Retficador de Onda Completa

Como podemos observar na Figura 4 a saída da tensão retificada é dada pela diferença de potencial entre os pontos C e D.

- 1. Monte o circuito retificador de onda completa em ponte na breadboard.
- Conecte um canal do osciloscópio em um ponto de entrada da fonte do gerador de sinais e o outro canal em um ponto de saída do circuito retificador. Ajuste o osciloscópio para visualizar a forma de onda de entrada e saída do circuito retificador.
- 3. Meça e preencha na tabela abaixo as respectivas grandezas:

Medida	Valor do Multímetro	Valor do Osciloscópio	Unidade
$V_{ m AC}$			$V_{ m RMS}$
V_{AC_P}			$V_{ m pico}$
$V_{R_{2.2k\Omega}}$			$V_{ m RMS}$
$V_{R_{2.2k\Omega_{DC}}}$			$V_{ m CC}$
$V_{R_{2.2k\Omega_P}}$			$V_{ m pico}$

4. Com os dados da tabela acima calcule:

Grandeza	Valor	Unidade
$I_{R_{2.2k\Omega}}$		$A_{ m RMS}$

Grandeza	Valor	Unidade
$P_{R_{2.2k\Omega}}$		mW
$V_{R_{2.2k\Omega}}$		$V_{ m RMS}$
$V_{R_{2.2k\Omega}}$		$V_{ m CC}$

$V_{R_{2.2k\Omega}}$		$V_{ m CC}$	
Desenhe (ou c grandezas aba	,	s de onda obti	das no osciloscópio para as

1. Tensão	da entrada $V_{ m AC}$:	Choose File	No file selected	

2. Tensão	da saída $V_{R_{2.2k\Omega}}$:	Choose File	No file selected	

6. Adicione o capacitor de $47\mu F$ em paralelo ao resistor. Com o capacitor em paralelo, meça e preencha:

Medida	Valor do Multímetro	Valor do Osciloscópio	Unidade
$V_{ m AC}$			$V_{ m RMS}$
V_{AC_P}			$V_{ m pico}$
$V_{R_{2.2k\Omega}}$			$V_{ m RMS}$
$V_{R_{2.2k\Omega_{DC}}}$			$V_{ m CC}$
$V_{R_{2.2k\Omega_P}}$			$V_{ m pico}$

- 7. Desenhe (ou carregue fotos) as formas de onda obtidas no osciloscópio para as grandezas abaixo:
 - 1. Tensão da entrada $V_{
 m AC}$ sobreposta a tensão de saída $V_{R_{2.2k\Omega}}$: Choose File No file selected

I			
I			
I			
I			
I			
I			
I			
I			
I			
I			
I			
I			
I			
1			
1			
1			
I			
I			
I			
I			
I			
I			
I			
I			
I			
I			
I			
I			
I			
I			
I			
I			
I			
1			
1			
I			
I			
I			
I			
I			
I			
1			
1			
1			
1			
1			
1			

Questões Pós Experimentos

е

• Use o simulador Falstad para simular o comportamento dos retificadores com o filtro capacitivo de $1000 \mu F$.

Referências

- 1. MALVINO, A. P.; BATES, D. J. Eletrônica. Vol. 1. 7. ed. São Paulo: McGraw-Hill, 2007.
- 2. BOYLESTAD, R. L.; NASHELSKY, L. Dispositivos Eletrônicos e Teoria de Circuitos. 8. ed. São Paulo: Pearson Prentice Hall, 2004.
- 3. DEQUIGIOVANI, T. Roteiro Experimental Circuitos Retificadores. Disponível : https://professor.luzerna.ifc.edu.br/tiago-dequigiovani/wpcontent/uploads/sites/22/2016/02/TD_ELB_Roteiros.Experimentais_1.pdf. Acesso em: 18 de Março de 2024.

Formulário

	Tensão Eficaz	Tensão Média
Fórmula Geral	$V_{ef}=rac{1}{T}\sqrt{\int_0^T v^2(t)dt}$	$V_{CC} = rac{1}{T} \int_0^T v(t) dt$
Retificador de Meia Onda	$V_o = rac{V_{ef}}{\sqrt{2}}$	$V_{CC}=rac{\sqrt{2}V_{ef}}{\pi}$
Retificador de Onda Completa	$V_o=V_{ef}$	$V_{CC}=rac{2\sqrt{2}V_{ef}}{\pi}$