統計分析

第二講

王寧寧, Ph.D

oliningning@qq.com

2022/11/1

主要内容

- 參數估計
- 假設檢驗
- t檢驗
- 方差分析

統計推斷

- 參數估計
 - 。點估計
 - 。區間估計
- 假設檢驗

參數估計

基本統計概念

- ・總體: $X \sim N(\mu, \sigma^2)$
- ・様本: $X_1, X_2, \cdots, X_n \sim N(\mu, \sigma^2)$
- 統計量: \bar{X}, S (點估計)
- ·如何估計 μ ?
- •用樣本均值 $ar{X}$ 估計 μ
- 樣本均值的標准差(標準誤): $S_{ar{X}} = rac{\sigma}{\sqrt{n}}$

抽樣誤差

- 樣本均值的標準差也稱爲抽樣誤差
- 抽樣誤差的大小反映 $ar{X}$ 估計參數 μ 的波動

•
$$S_{ar{X}} = rac{\sigma}{\sqrt{n}}$$

•實際應用中: $S_{ar{X}}=rac{S}{\sqrt{n}}$

【例】求140名成年男子紅細胞數目的抽樣誤差(標准誤)

•
$$ar{X}=4.77$$
, $S=0.38$

$$m{\cdot} \, S_{ar{X}} = rac{S}{\sqrt{n}} = rac{0.38}{\sqrt{140}} = 0.032$$

可信區間(區間估計)

- ・點估計: $\hat{\mu}=ar{X}$
- 區間估計:按照預先給定的概率,計算出一個區間,能夠包含 μ
- ·事先給定的概率稱爲可信度,計算的區間成爲可信區間(confidence interval, CI)
- •一般求95%的區間估計

μ 的區間估計(假定 σ 已知情形)

$$ar{X} \sim N(\mu, rac{\sigma^2}{n})$$

$$P(\mu - 1.96 \frac{\sigma}{\sqrt{n}} < \bar{X} < \mu + 1.96 \frac{\sigma}{\sqrt{n}}) = 0.95$$

 σ 已知時, μ 的區間估計:

$$(ar{X}-1.96rac{\sigma}{\sqrt{n}},ar{X}+1.96rac{\sigma}{\sqrt{n}})$$

 σ 未知時,是否就是:

$$(ar{X}-1.96rac{S}{\sqrt{n}},ar{X}+1.96rac{S}{\sqrt{n}})$$

$$rac{ar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$$

不同自由度的 t 分布图

William Gosset

$$P(-t_{0.05/2} < rac{ar{X} - \mu}{S/\sqrt{n}} < t_{0.05/2} = 0.95$$

$$P(ar{X} - t_{0.05/2} S_{ar{X}} < \mu < ar{X} + t_{0.05/2} S_{ar{X}}) = 0.95$$

 μ 的95%可信區間:

$$(ar{X} - t_{0.05/2} S_{ar{X}}$$
 , $ar{X} + t_{0.05/2} S_{ar{X}})$

大樣本時: $t_{0.05/2}$ 約等於 $1.96(Z_{0.05/2})$

【例】求上例中,成年男子紅細胞數總體均值的95%可信區間。

$$ar{X} = 4.77, \;\; S = 0.38$$

·方法壹:利用t分佈,

$$ar{X} - t_{0.05/2} S_{ar{X}} = 4.77 - 1.98 imes 0.03 = 4.71$$

$$ar{X} + t_{0.05/2} S_{ar{X}} = 4.77 + 1.98 imes 0.03 = 4.83$$

【例續】

• 方法貳:

$$ar{X} - z_{0.05/2} S_{ar{X}} = 4.77 - 1.96 imes 0.03 = 4.71$$

$$ar{X} + z_{0.05/2} S_{ar{X}} = 4.77 + 1.96 imes 0.03 = 4.83$$

假設檢驗

假設檢驗的基本原理

- 關於總體參數的推斷
- 小概率事件原理
- •例:已知成年男子紅細胞數目均值為 4.75×10^{12} /L,某地抽取140個樣本,問此地的成年男子紅細胞數目是否達到均值水平?

基本步驟

•1、建立檢驗假設,確定檢驗水準

 \circ H_0 : $\mu_0 = 4.75$ 此地的成年男子紅細胞數目的總體均值為4.75

- $\circ H_1: \mu_0 \neq 4.75$
- $\circ \ \alpha = 0.05$

• 2、計算檢驗統計量:

$$T=rac{ar{X}-\mu_0}{S/\sqrt{n}}\sim t(n-1)$$

• 2、續: 帶入140樣本信息, 可以算出:

$$T = 0.823 \sim t(139)$$

- 3、計算P值,做出結論
 - P值: 檢驗統計量不利於原假設的概率
 - **P=0.412**大於**0.05**, 在**0.05**的檢驗水平下, 不能拒絕原假設
 - 。 結論: 不能拒絕此地的成年男子紅細胞數目已達到均值水平

t檢驗

t檢驗的分類

- 單樣本的t檢驗
- · 配對樣本t檢驗
- · 獨立樣本t檢驗

配對樣本t檢驗

【例】某项研究评估咖啡因对运动者的心肌血流量的影响,先后测定了12名男性志愿者饮用咖啡前后运动状态下的心肌血流量,数据如下表所示,问饮用咖啡前后运动者的心肌血流量有无差异。

【例】續

编号	饮用前	饮用后
1	4.8	4.8
2	5. 1	4.9
3	6.4	4.5
4	5.7	5.4
5	5.6	4.7
6	5.3	3.8
7	5.1	4.1
8	4.9	3.2
9	4.7	3.0
10	3.5	3.2
11	5.2	5.3
12	5.3	5.1

配對t檢驗步驟

• 建立檢驗假設,確定檢驗水準

- $Ookline H_0: \mu_d = 0$ 飲用咖啡前後運動者的平均心肌血流量差異的總體均值為零
- \circ $H_1: \mu_d \neq 0$ 飲用咖啡前後運動者的平均心肌血流量差異的總體均值不為零
- $\circ \ lpha = 0.05$

• 計算檢驗統計量

$$T=rac{ar{d}~-\mu_d}{S_{ar{d}}}=3.74\sim t(11)$$

【續】

- ·計算P值,做出結論
 - 。 P=0.003小於0.05, 在0.05的檢驗水平下, 拒絕原假設, 接受備擇假設
 - 結論: 兩種環境中運動者的心肌血流量有差異, 引用前大於引用后

獨立樣本t檢驗

【例】某項研究評估低氧環境(模擬高原環境)對運動者的心肌血流量的影響,將17名男性志願者隨機分成兩組,分別在正常含氧環境(正常組)和低氧環境(低氧組)中測定運動後的心肌血流量,數據如下表所示,問兩種環境中運動者的心肌血流量有無差異。

【例】續

正常组心肌血流量(X_1)	低氧组心肌血流量(X2)
3.5	6.4
3.1	5.7
3.1	5.6
2.7	5.3
2.5	5.1
2.3	4.9
2.3	4.7
2.2	3.5
2.2	

t檢驗的假定

- 樣本來自正態分佈
- ·獨立樣本t檢驗:兩組的總體方差相同
- 方差齊性檢驗

檢驗方差齊性

• 如果方差齊性條件不滿足

• 辦法一: t' 檢驗

•辦法二: 非參數檢驗

獨立樣本t檢驗步驟

- 建立檢驗假設,確定檢驗水準

 - \circ $H_1: \mu_1 \neq \mu_2$ 兩種環境中運動者的心肌血流量的總體均數不同
 - $\circ \ \alpha = 0.05$
- 計算檢驗統計量

$$T = -7.579 \sim t(15)$$

【續】

- ·計算P值,做出結論
 - 。 P=0.000小於0.05, 在0.05的檢驗水平下, 拒絕原假設, 接受備擇假設
 - 結論:兩種環境中運動者的心肌血流量的總體均數不同,正常組小於低氧組

【例】兩組小白鼠分別飼以高蛋白和低蛋白飼料,4週後記錄小白鼠體重增加量(g)如下表所示,問兩組動物體重增加量的均數是否相等。

表 7-3 两种饲料喂养小白鼠 4 周后体重增重(g)情况

高蛋白组体重增加量 (X_1)	低蛋白组体重增加量 (X_2)
50	36
47	38
42	37
43	38
39	36
51	39
43	37
48	35
51	33
42	37
50	39
43	34
	36

獨立樣本 t' 檢驗步驟

- 建立檢驗假設,確定檢驗水準
 - \circ $H_0: \mu_1 = \mu_2$ 即兩種飼料小白鼠增重總體均數相同
 - \circ $H_1: \mu_1 \neq \mu_2$ 即兩種飼料小白鼠增重總體均數不同
 - $\circ \ \alpha = 0.05$
- 計算檢驗統計量

$$T'=7.017\sim t(14.688)$$

【續】

- ·計算P值,做出結論
 - 。 P=0.000小於0.05, 在0.05的檢驗水平下, 拒絕原假設, 接受備擇假設
 - 結論:兩種飼料小白鼠增重總體均數不同,高蛋白組體重增加量更多

假設檢驗的兩類錯誤

	假设检验组	假设检验结论		
真实情况	拒绝#。	不拒绝 #。		
————————————————————————————————————	I 类错误(α)	推断正确(1-α)		
H_1 成立	推断正确(1- β)	Ⅱ 类错误(β)		

- 假設檢驗的功效
- 影響假設檢驗功效的因素: 樣本量

方差分析

完全隨機設計的方差分析

- · 完全隨機設計(completely randomized design):將實驗對象隨機分到不同處理組的單因素設計方法。
- 考察一個處理因素,通過對該因素不同水平組 均值的比較,推斷它是否起作用。

Ronald Aylmer Fisher

【例】在評價某藥物耐受性及安全性的I期臨床試驗中,對符合納入標準的30名健康自願者隨機分為3組每組10名,各組注射劑量分別為0.5U、1U、2U,觀察48小時部分凝血活酶時間(s)試問不同劑量的部分凝血活酶時間有無不同?

0.5 U	1 U	2 U	合计
36.8	40.0	32.9	
34.4	35.5	37.9	
•••	•••	•••	
35.4	38.4	32.4	
31.2	39.8	35.6	
10	10	10	30 (11)
33.6200	37.8300	35.1000	35.5167 (\overline{X})
2.2636	2.2071	3.3133	3.1072 (S)
	36.8 34.4 35.4 31.2 10 33.6200	36.8 40.0 34.4 35.5 35.4 38.4 31.2 39.8 10 10 33.6200 37.8300	36.8 40.0 32.9 34.4 35.5 37.9 35.4 38.4 32.4 31.2 39.8 35.6 10 10 10 33.6200 37.8300 35.1000

$$SS$$
縂變異 = SS 組間 + SS 組內

v終異 = v組間 + v組内

$$MS_{ ext{ ext{ iny MB}}} = rac{SS_{ ext{ iny MB}}}{v_{ ext{ iny MB}}}$$

$$MS_{ ext{組内}} = rac{SS_{ ext{組内}}}{v_{ ext{組内}}}$$

$$F = rac{MS_{ ext{ iny MS}}}{MS_{ ext{ iny MS}}} \sim F(k-1,n-k)$$

F分佈

完全隨機設計的方差分析的假設檢驗

• 建立檢驗假設,確定檢驗水準

$$\circ H_0: \mu_1 = \mu_2 = \mu_3$$

- \circ $H_1: \mu_1, \mu_2, \mu_3$ 不全相同
- $\circ \ \alpha = 0.05$
- 計算方差分析表

方差分析表

变异来源	平方和	自由度	均方	F 值	P值
	SS	df	MS		
总变异	279. 9861	29			
组间	91. 2247	2	45.6124	6.52	<0.05
组内	188. 7614	27	6.9912		

·根據P值,做出結論

- P小於0.05, 在0.05的檢驗水平下, 拒絕原假設, 接受備擇假設
- 結論: 不同劑量的部分凝血活酶時間不全相同

隨機區組設計方差設計

- 又稱配伍因素方差設計
- · 先將受試對象按條件相同或相近組成m個區組 (或稱配伍組),每個區組中有k個受試對象,再 將其隨機地分到k個處理組中

$$SS$$
 総變異 = SS 處理 + SS 區組 + SS 誤差

$$MS_{ar{eta}}=rac{SS_{ar{eta}}}{v_{ar{eta}}}, F=rac{MS_{ar{eta}}}{MS_{ar{eta}}}$$

$$MS_{oxdot{ iny Im}} = rac{SS_{oxdot{ iny Im}}}{v_{oxdot{ iny Im}}}, F = rac{MS_{oxdot{ iny Im}}}{MS_{oxdot{ iny Im}}}$$

$$MS_{
m 誤 extcolored} = rac{SS_{
m 誤 extcolored}}{v_{
m 誤 extcolored}}$$

【例】為探討Rgl 對鎘誘導大鼠睾丸損傷的保護作用,研究者按照窩別把大鼠分成10個區組,然後將同一區組內的3隻大鼠隨機地分配到三個實驗組,分別給與不同處理,一定時間後測量大鼠的睾丸MT含量(μg/g),數據如下表所示。試比較三種不同處理對大鼠MT含量有無差別?

三组大鼠 MT 含量值(µg/g)

窝别	对照组	氯化镉组	Rg1+氯化镉组	$oldsymbol{ar{X}}_{j}$
1	40.6	78. 3	116. 3	78. 4000
2	44.8	86. 0	124. 6	85. 1333
3	36.7	72. 1	149. 0	85. 9333
4	49.9	95. 4	128. 8	91. 3667
5	59.8	99. 2	134. 1	97. 7000
6	54.5	95. 9	133. 0	94. 4667
7	38.4	76. 4	115. 6	76. 8000
8	41.6	79. 9	117. 0	79. 5000
9	46.8	86. 5	128. 4	87. 2333
_10	44.7	85. 3	124. 3	84. 7667
$ar{X}_i$	45. 7800	85.5000	127. 1100	86. 1300 ($ar{X}$)

區組設計方差分析的假設檢驗

• 建立檢驗假設,確定檢驗水準

$$\circ H_0: \mu_1 = \mu_2 = \mu_3$$

- \circ $H_1: \mu_1, \mu_2, \mu_3$ 不全相同
- $\circ \ \alpha = 0.05$
- 計算方差分析表

方差分析表

随机区组设计的方差分析表

变异来源	SS	DF	MS	F 值
总变异	35226. 4630	29		
处理组间	33078. 7980	2	16539. 3990	341. 92
区组间	1276. 9630	9	141. 8848	2. 93
误差	870. 7020	18	48. 3723	

·根據P值,做出結論

- P小於0.05, 在0.05的檢驗水平下, 拒絕原假設, 接受備擇假設
- 。 結論: 三組大鼠**MT**含量的總體均值不全相同

謝謝!