COL215 DIGITAL LOGIC AND SYSTEM DESIGN

Number Representation and Arithmetic Operations
05 September 2017

Values and Representations

Values: Elements of a domain

logic values

integers
real numbers
letters of an alphabet
characters

Representations: Arrangements of symbols

bits {0,1} can be used to represent values from a variety of domains

Positional representation of numbers

- Consider only non-negative integers at present (unsigned)
- Radix or base = r

Representation: $d_{n-1} d_{n-2} \dots d_2 d_1 d_0$

 $0 \le \text{val}(d_i) \le r-1$

Example:

Representation "1110", radix 2
Value 14

From representation to value

Representation: $d_{n-1} d_{n-2} \dots d_2 d_1 d_0$

 $0 \le \text{val}(d_i) \le r-1$

Value: $\sum_{i=0}^{n-1} \text{val}(d_i) \cdot r^i$

or simply $\sum_{i=0}^{n-1} d_i \cdot r^i$ [if it is clear that d_i denotes value of d_i]

Another way: from representation to value

$$((...(d_{n-1} \times r + d_{n-2}) \times r + ... + d_1) \times r) + d_0$$

From Value to Representation

Given value = V, radix = s

- val $(d_0) = V \mod s$
- val $(d_1) = (V \text{ div s}) \text{ mod s}$
- val $(d_2) = ((V \text{ div s}) \text{ div s}) \text{ mod s}$
- . . .
- val (d_i) = (. . (V div s) . .) mod s
- •

i times

Conversion from radix r to s

Do computation in radix r (division method)

- start with value in radix r (same as representation in r)
- compute the digit values with radix = s (from value to representation)
- put together these digits (representations, not values) to form the representation in radix s

Conversion from radix r to s

Do computation in radix s (multiplication method)

- start with representation in radix r
- this gives the digits
- from digits compute the value (from representation to value)
- the value expressed in radix s is the representation in radix s

Example to illustrate the methods

- Conversion from decimal (radix 10) to binary (radix 2) and vice versa
- Use subscript D for decimal and B for binary
- $213_D => ???????_B$
- $11010101_B => ???_D$

Decimal to Binary, division method

•
$$213_{D} \mod 2_{D} = 1_{D}$$

•
$$213_D$$
 div $2_D = 106_D$

•
$$6 \mod 2 = 0$$

Result = 11010101_{B}

Decimal to Binary, multiplication method

```
2 1 3_D => digit values are 10_B, 1_B, 11_B radix value is 1010_B

Do this in binary: (2_D \times 10_D + 1_D) \times 10_D + 3_D

(10_B \times 1010_B + 1_B) \times 1010_B + 11_B

= (10100 + 1) \times 1010 + 11
```

- $= 10101 \times 1010 + 11$
- = 10101000 + 101010 + 11
- = 11010101

Binary to Decimal, division method

- $11010101_{B} \mod 1010_{B} = 11_{B}$
- $11010101_{B} \text{ div } 1010_{B} = 10101_{B}$
- 10101 mod 1010 = 1
- 10101 div 1010 = 10
- 10 mod 1010 = 10
- 10 div 1010 = 0

Result =
$$10_B$$
 1_B 11_B = 2_D 1_D 3_D
= 213_D

Binary to Decimal, multiplication method

```
11010101_{R} =  digit values are 1_{D}, 1_{D}, 0_{D}, 1_{D}, 0_{D}, 1_{D}, 0_{D}, 1_{D}
radix value is 2<sub>D</sub>
Compute (in decimal):
(((((((1x2+1)x2+0)x2+1)x2+0)x2+1)x2+0)x2+1
=(((((3 \times 2 + 0) \times 2 + 1) \times 2 + 0) \times 2 + 1) \times 2 + 0) \times 2 + 1)
= ((((6 \times 2 + 1) \times 2 + 0) \times 2 + 1) \times 2 + 0) \times 2 + 1
= (((13 \times 2 + 0) \times 2 + 1) \times 2 + 0) \times 2 + 1
= ((26 \times 2 + 1) \times 2 + 0) \times 2 + 1
```

Binary to Decimal, multiplication method - continued

$$= ((26 \times 2 + 1) \times 2 + 0) \times 2 + 1$$

$$= (53 \times 2 + 0) \times 2 + 1$$

$$= 106 \times 2 + 1$$

$$= 213_{D}$$

Binary numbers: 4 bits to 64 bits

```
4 bits:
               0..15
     nibble
8 bits:
               0..255
     byte
16 bits:
               0..65,535
     half word
32 bits:
               0..4,294,967,295
     word
               0.. 18,446,744,073,709,551,615
64 bits :
```

double word

4 bit binary numbers

Binary	Decimal	Binary	Decimal
0000	0 0	1000	0 8
0001	0 1	1001	0 9
0010	0 2	1010	10
0011	0 3	1011	11
0100	0 4	1100	12
0101	0 5	1101	13
0110	0 6	1110	14
0111	0 7	1111	15

Radix 8 (octal) numbers

Decimal/Octal	Binary	Decimal/Octal
00/00	1000	08/10
01/01	1001	09/11
02/02	1010	10/12
03/03	1011	11/13
04/04	1100	12/14
05/05	1101	13/15
06/06	1110	14/16
07/07	1111	15/17
	00/00 01/01 02/02 03/03 04/04 05/05 06/06	00/00 1000 01/01 1001 02/02 1010 03/03 1011 04/04 1100 05/05 1101 06/06 1110

Radix 16 (hexadecimal) numbers

Binary	Decimal/Hex	Binary	Decimal/Hex
0000	00/0	1000	08/8
0001	01/1	1001	09/9
0010	02/2	1010	10/A
0011	03/3	1011	11/B
0100	04/4	1100	12/C
0101	05/5	1101	13/D
0110	06/6	1110	14/E
0111	07/7	1111	15/F

BCD (Binary Coded Decimal) numbers

Binary	Decimal/BCD	Binary	Decimal/BCD
0000	0 0 / 0000 0000	1000	08/00001000
0001	0 1 / 0000 0001	1001	09/00001001
0010	02/00000010	1010	10/00010000
0011	03/00000011	1011	1 1 / 0001 0001
0100	04/00000100	1100	12/00010010
0101	05/00000101	1101	13/00010011
0110	06/00000110	1110	14/00010100
0111	07/00000111	1111	15/00010101

Radix 2, 8, 10, 16

Binary Addition

Just like in primary school

$$0011[3]$$
 $0101[5]$ $0110[6]$
 $+0110[6]$ $+0111[7]$ $+1101[13]$
 $1001[9]$ $1100[12]$ $0011[3]$

Overflow will be discussed later.

Binary Subtraction

Just like in primary school

Overflow will be discussed later.

Adder circuit

 Perform bit by bit addition - similar to the "paper and pencil" way

One bit adder truth table

a _i	b _i	C _i	C _{i+1}	S _i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Boolean expressions for adder

 $s_i = a_i' b_i' c_i + a_i' b_i c_i' + a_i b_i' c_i' + a_i b_i c_i$ alternatively,

$$s_i = a_i \oplus b_i \oplus c_i$$

$$c_{i+1} = a_i b_i + a_i c_i + b_i c_i$$

One bit subtractor truth table

a _i	b _i	C _i	c _{i+1}	Si
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Boolean expressions for subtractor

 $s_i = a_i' b_i' c_i + a_i' b_i c_i' + a_i b_i' c_i' + a_i b_i c_i$ alternatively,

$$s_i = a_i \oplus b_i \oplus c_i$$

$$c_{i+1} = a_i' b_i + a_i' c_i + b_i c_i$$

Comparing two integers

 Subtract and check the result

Compare directly

Compare (>) directly (unsigned)

Method 1:

$$a_{0..i} > b_{0..i} \equiv (a_{0..i-1} > b_{0..i-1})(a_i + \overline{b}_i) + a_i \overline{b}_i$$

Method 2:

$$a_{i..31} > b_{i..31} \equiv (a_{i+1..31} > b_{i+1..31}) + (a_{i+1..31} = b_{i+1..31}) a_i b_i$$

Compare (=) directly (unsigned)

Method 1:

$$a_{0..i} = b_{0..i} \equiv (a_{0..i-1} = b_{0..i-1})(a_i \oplus b_i)$$

Method 2:

$$a_{i..31} = b_{i..31} \equiv (a_{i+1..31} = b_{i+1..31})(a_i \oplus b_i)$$

Method 3:

$$a = b \equiv \prod_{i=0}^{31} (a_i \oplus b_i)$$

Comparator circuit – method 1

$$a_{0..i} > b_{0..i} \equiv (a_{0..i-1} > b_{0..i-1})(a_i + \overline{b}_i) + a_i \overline{b}_i \qquad g_i \equiv g_{i-1}(a_i - a_{0..i}) = b_{0..i} \equiv (a_{0..i-1} = b_{0..i-1})(a_i \overline{\oplus} b_i) \qquad e_i \equiv e_i = e_i$$

$$a_{0..i} < b_{0..i} \equiv (a_{0..i-1} < b_{0..i-1})(\overline{a}_i + b_i) + \overline{a}_i b_i \qquad l_i \equiv l_{i-1}(\overline{a}_i + a_i)$$

$$g_{i} \equiv g_{i-1}(a_{i} + \overline{b}_{i}) + a_{i}\overline{b}_{i}$$

$$e_{i} \equiv e_{i-1}(a_{i} \oplus b_{i})$$

$$l_{i} \equiv l_{i-1}(\overline{a}_{i} + b_{i}) + \overline{a}_{i}b_{i}$$

Comparator circuit – method 2

$$\begin{aligned} a_{i..31} > b_{i..31} &\equiv (a_{i+1..31} > b_{i+1..31}) + (a_{i+1..31} = b_{i+1..31}) \ a_i \overline{b}_i \end{aligned} \quad \begin{aligned} g_i &\equiv \\ a_{i..31} &= b_{i..31} \equiv (a_{i+1..31} = b_{i+1..31}) (a_i \overline{\oplus} \ b_i) \end{aligned} \quad \begin{aligned} e_i &\\ a_{i..31} < b_{i..31} &\equiv (a_{i+1..31} < b_{i+1..31}) + (a_{i+1..31} = b_{i+1..31}) \ \overline{a}_i b_i \end{aligned}$$

$$g_{i} \equiv g_{i+1} + e_{i+1}a_{i}\overline{b}_{i}$$

$$e_{i} \equiv e_{i+1}(a_{i} \oplus b_{i})$$

$$l_{i} \equiv l_{i+1} + e_{i+1}\overline{a}_{i}b_{i}$$

