Prof. Luiz Paulo Lopes Fávero

PRINTS REALIZADOS DURANTE A AULA DE 06/08/2024:

Lihear?

		coef	std err	t	P> t	[0.025	0.975]
Intercept idade	dB	43.1004 0.9411	1.034 0.036	41.665 25.841	0.000 0.000	41.038 0.868	45.163 1.014
Model.	Si	=======) ,ean;	=======	=======		========	
			+ 0,9	4 1. 1.		R2- 9	70.3%

coef	std err	t	P> t	[0.025	0.975]
Intercept	630.253 22.189	7.926 42.689	0.000 0.000	3738.774 902.997	6251.546 991.463
Modelo Não Linear	1R. G)			
TORKIO NAS 91-ESC	(Dex- Co	·×):			2
					0-
^ 2,65		en e oz	0/7 03	1.1	K - 96 2
Comprimente -1	499	5,16+	947,23.	i dade i	K= 96,2

MATERIAL COMPLEMENTAR Data Science e Analytics 06/08/2024

$$Y_{Box-Cox}^* = \frac{Y^{\lambda} - 1}{\lambda}$$

MATERIAL COMPLEMENTAR Data Science e Analytics 06/08/2024

relano = $0 + \beta$, duclorue + β , endividence to, + β , liquidet: + β 4, Adirar.

	coef	std err	t	P> t	[0.025	0.975]
Intercept ✓	-2.5348	2.341	-1.083	0.281	-7.169	2.100
Q('ativos') 3	0.0040	0.001	7.649	0.000	0.003	0.005
Q('liquidez') 32	2.7391	0.258	10.637	0.000	2.229	3.249

MATERIAL COMPLEMENTAR Data Science e Analytics 06/08/2024

	=======			========	========	========
	coef	std err	t	P> t	[0.025	0.975]
Intercept $ extit{ extit{\extit{\extit{\extit{\extit{ extit{\exit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\exti}$	2.8275	0.072	39.019	0.000	2.684	2.971
Q('disclosure')		0.001	3.109	0.002	0.001	0.005
	4.005e-05	1.43e-05	2.795	0.006	1.17e-05	6.84e-05
Q('liquidez') 61	0.0398	0.008	5.080	0.000	0.024	0.055

