CS F364 Design & Analysis of Algorithms

ALGORITHM DESIGN - APPROXIMATION

Approximation Schemes

- Polynomial Time Approximation Scheme (PTAS)
- Design and Example.

APPROXIMATION RATIO VS. TIME COMPLEXITY

- o Given an №-complete problem, is there a way to tradeoff approximation ratio for time complexity?
 - In practice, even 2 may not be a "good" approximation ratio.
 - In particular, can we find algorithms with an approximation ratio of 1+∈ where ∈ can be made arbitrarily small?
 - \circ Note that ϵ must be positive:
 - $\circ \epsilon = 0$ would imply an exact solution for a NP hard problem.

APPROXIMATION SCHEMES

- Polynomial Time Approximation Scheme (PTAS):
 - An NP-complete problem π is said to admit a PTAS if there exists an algorithm A such that
 - for any input instance x of π , and for any r > 1, A(x,r) returns an r-approximate solution i.e.
 - o $m(x,A(x,r)) \le r * m*(x)$ (assuming minimization)

Typically:

- As r decreases (and approaches 1) the time complexity of the algorithm increases.
 - oOf course, when r=1 we expect the algorithm to be have exponential time complexity (unless P=NP)

PROBLEM - PARTITION

• Problem Definition:

• Given a multi-set X of rational numbers, partition the numbers into two sets Y1 and Y2, so that sums of their values are as close as possible.

• Formal Problem Definition:

- I = { X | X is a multi-set of numbers in Z⁺ }
- F(X) = (Y1, Y2) a partition of X
- m(X, (Y1,Y2)) = max(w(Y1), w(Y2)),• where for any set Y, $w(Y) = \Sigma_{a \in Y}$ a
- goal: min

PARTITION - RELATIVE APPROXIMATION

- Lower Bound (on optimal measure)
 - Lemma : $m^*(X) >= w(X) / 2$
 - Proof:
 - o For (Y1,Y2) in F(X) m(X,(Y1,Y2)) >= w(X)/2
 - (by definition of m and partition)
- Corollary:
 - Consider the trivial solution (X,{}) for any input instance
 X:

```
om(X, (X, {})) = w(X) <= 2 * m*(x)
```

 i.e. we only need to consider r-approximation algorithms for values of r < 2

PARTITION - R-APPROXIMATION ALGORITHM

- o Greedy_PART(X)
 - Sort items in X in decreasing order to get x1, x2, ... xn
 - 2. $Y1 = Y2 = \{ \}$
 - 3. for j = 1 to n do if $((\sum_{a \in Y1} a) >= (\sum_{a \in Y2} a))$ then Y2 = Y2 U { xj } else Y1 = Y1 U { xj }
 - 4. return (Y1, Y2)

- O Claim:
 - Greedy_PART(X) does not yield an optimal solution
- (Counter)Example:
 - Consider the input instance

```
{50, 49, 41, 39, 19}
```

Optimal solution:

```
({50, 49}, {41, 39, 19})
```

Greedy_PART(X) will return

```
({50, 39, 19}, {49, 41})
```

PARTITION - R-APPROXIMATION ALGORITHM - ANALYSIS

o Lemma 1:

- If Greedy_PART(X) returns (Y1, Y2) such that |Y1| = 1 and w(Y1) >= w(Y2) then (Y1, Y2) is the optimal solution for X.
- Proof: Trivial

o Lemma 2:

- Let Greedy_PART(X) returns (Y1, Y2) such that |Y1| >= 2 and w(Y1) >= w(Y2). If the last item added to Y1 is xh and the rank of xh is k then xh <= w(X)/k
- Proof:
- If rank of xh was k then at least k items each >= xh have been added
- i.e. X includes at least k items each >= xh.
- i.e. w(X) >= k*xh
- i.e. $xh \le w(X)/k$

```
PARTITION - R-APPROXIMATION ALGORITHM - ANALYSIS [2]
```

- Lemma 3: If Greedy_PART(X) returns (Y1,Y2) then m(X, (Y1,Y2)) <= (3/2) * m*(X)</p>
- Proof: Assume without loss of generality:
 - \circ w(Y1) >= w(Y2) and xh is the last item added to Y1
 - Then: $w(Y1) xh \le w(Y2)$
 - o i.e. $2*w(Y1) xh \le w(X)$
 - o i.e. $2*w(Y1) \le xh + w(X)$

[E1]

- 1. If |Y1| = 1, then $m(X, (Y1,Y2))/m^*(X) = 1$ by Lemma 1.
- 2. If |Y1|>=2 then

```
om(X, (Y1,Y2))/m*(X) <= w(Y1) / m*(X)
```

<= 2 * w(Y1) / w(X) [by lower bound]

<= 1 + xh / w(X) [by E1]

o <= 1 + 1/2 [by Lemma 2]

Tighter result: 1+1/k, where k is rank of last item added to larger set.

8

Partition – R-Approximation Algorithm – Analysis [3]

o Lemma 4:

• Greedy_PART is a polynomial time 3/2 – approximate algorithm for PARTITION.

• Proof:

- m(X, Greedy_PART(X)) / m*(X) <= 3/2 for any X by Lemma 3
- Time complexity of Greedy_PART is O(N*A(N) + N*logN)
 - o where A(N) is the time taken to add an element to a set of size N

PTAS - EXAMPLE - PARTITION

- Assume EXACT_PART is an exact algorithm for PARTITION
 - For instance, it may obtain all subsets Y1 of the given input set X and find the one with minimum measure among all (Y1, X – Y1)
- PTAS_PART(X, r)
 - 1. If $r \ge 2$ then return $(X, \{\})$
 - 2. Sort items in X in decreasing order to get x1, x2, ... xn
 - 3. k = fpart(r, n) // fpart returns an integer in the range 1...n
 - 4. $(Y1, Y2) = EXACT_PART(\{x1,...,xk\});$
 - 5. for j = k+1 to n do if $((\sum_{a \in Y1} a) >= (\sum_{a \in Y2} a))$ then $Y2 = Y2 \cup \{xj\}$ else $Y1 = Y1 \cup \{xj\}$
 - 6. return (Y1, Y2)

PTAS - EXAMPLE - PARTITION

[2]

• Lemma 5: If PTAS_PART(X) returns (Y1,Y2) then m(X, (Y1,Y2)) <= (1+(1/(1+fpart(r,n)))) * m*(X)</p>

• Proof:

- Assume without loss of generality:
 - o w(Y1) >= w(Y2) and xh is the last item added to Y1
- Then:
- 1. If xh was added to |Y1| by EXACT_PART then the solution is optimal.
- 2. Otherwise: $xh * (fpart(r,n)+1) \le w(X)$ [E3]
 - Modify Lemma 3 as follows:
 - In the last step (application of Lemma 2), use E3.
 - 2. Then m(X, (Y1,Y2)) / m*(X) <= 1 + (1/(1+fpart(r,n)))

PTAS - EXAMPLE - PARTITION

[10]

 Theorem: PTAS_PART is a Polynomial Time Approximation Scheme for PARTITION

• Proof:

By lemma 5,

```
o m(X, PTAS_PART(X)) \le (1+(1/(1+fpart(r)))) * m*(X)
```

- Then let 1 + (1/(1+fpart(r))) = r
 - o i.e. define fpart(r) = (1/(r-1)) 1
- i.e. PTAS_PART(X,r) with fpart(r) = (1/(r-1))-1 will be an r-approximate algorithm for PARTITION.
- Time Complexity of PTAS_PART:
 - O(nlogn) for sorting + O(2^{f(r)}) for EXACT_PART + O(n*A(n)) for greedy part
 - o i.e. $O(nlogn + 2^{f(r)})$ i.e. $O(nlogn + 2^{O(1/(r-1))})$