Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas

Dr. Marcelo Risk

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

2017

Lógica digital

- La computadoras necesitan almacenar datos e instrucciones en memoria.
- Sistema binario: solo dos estados posibles.
- Porqué?
 - Es mucho más sencillo identificar entre sólo dos estados.
 - Es menos propenso a errores

Diseño de circuitos

- Circuitos que operan con valores lógicos:
 - ▶ Verdadero = 1
 - ► Falso = 0
- ► Idea: realizar diferentes operaciones lógicas y matemáticas combinando circuitos.

Álgebra de Boole

Figura: George Boole (1815-1864).

- George Boole, desarrolló un sistema algebraico para formular proposiciones con símbolos.
- Su álgebra consiste en un método para resolver problemas de lógica que recurre solamente a los valores binarios:
 - verdadero y falso.
 - on y off.
 - ▶ 1 y 0.
- tres operadores:
 - ► AND (y).
 - ► OR (y).
 - ► NOT (no).

Álgebra de Boole

- Las variables Booleanas sólo toman los valores binarios: 1 ó 0.
- ▶ Una variable Booleana representa un bit que quiere decir:
 - Binary digIT

Álgebra de Boole

- Las variables Booleanas sólo toman los valores binarios: 1 ó 0.
- ▶ Una variable Booleana representa un bit que quiere decir:
 - Binary digIT

Operadores básicos: AND

- Un operador booleano puede ser completamente descripto usando tablas de verdad.
- ► El operador **AND** es conocido como producto booleano (.):

X	Y	X AND Y
0	0	0
0	1	0
1	0	0
1	1	1

Operadores básicos: OR

► El operador **OR** es conocido como producto booleano (+):

X	Y	X OR Y
0	0	0
0	1	1
1	0	1
1	1	1

Operadores básicos: **NOT**

▶ El operador NOT se nota con una barra \overline{X} :

\overline{X}	\overline{X}
0	1
1	0

Funciones booleanas

- ► Tabla de verdad de esta función $F(x, y, z) = x\overline{z} + y$
- ► El **NOT** tiene mayor precedencia que todos
- ► El **AND** mayor que el **OR**

x	у	z	\bar{z}	$x\overline{z}$	$x\overline{z} + y$
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	0	1

Identidades

Identidad	1.A = A	0 + A = A
Nula	0.A = 0	1 + A = 1
Idempotencia	A.A = A	A + A = A
Inversa	$A.\overline{A}=0$	$A + \overline{A} = 1$
Conmutativa	A.B = B.A	A+B=B+A
Asociativa	(A.B).C = A.(B.C)	(A+B)+C=A+(B+C)
Distributiva	$A + B \cdot C = (A + B) \cdot (A + C)$	A.(B+C) = A.B + A.C
Absorción	A.(A+B)=A	A + A.B = A
de Morgan	$\overline{A.B} = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A}.\overline{B}$

Identidades: ejemplo de aplicación

▶ Usando identidades booleanas podemos reducir esta función: $F(x, y, z) = (x + y).(x + \overline{y}).\overline{(x.\overline{z})}$

$\overline{(x+y)(x+\overline{y})(\overline{x}+z)}$	de Morgan
$(xx + x\overline{y} + yx + y\overline{y})(\overline{x} + z)$	Distributiva
$(x+x\overline{y}+yx+0)(\overline{x}+z)$	Idempotencia e inversa
$(x+x(\overline{y}+y))(\overline{x}+z)$	Nula y distributiva
$(x)(\overline{x}+z)$	Inversa, identidad y nula
$x\overline{x} + xz$	Distributiva
xz	Inversa e identidad

Fórmulas equivalentes

- Varias fórmulas pueden tener la misma tabla de verdad:
 - Son lógicamente equivalentes.
- En general se suelen elegir las formas canónicas
 - Suma de productos:
 - $F_1(x, y, z) = xy + zx + yz$
 - Producto de sumas:
 - $F_2(x, y, z) = (x + y)(z + x)(y + z)$

Suma de productos

- Es fácil convertir una función a una suma de productos usando la tabla de verdad.
- Elegimos los valores que dan 1 y hacemos un producto (AND) de la fila (negando si aparece un 0)?.
- ► Luego sumamos todo (OR):

	x	y	z	$x\overline{z} + y$	
	0	0	0	0	
	0	0	1	0	
\rightarrow	0	1	0	1	←
\rightarrow	0	1	1	1	←
\rightarrow	1	0	0	1	←
	1	0	1	0	
\rightarrow	1	1	0	1	←
\rightarrow	1	1	1	1	←

$$F(x, y, z) = (\overline{x}y\overline{z}) + (\overline{x}yz) + (x\overline{y}\overline{z}) + (xy\overline{z}) + (xyz)$$

Circuitos booleanos

- Las computadores digitales contienen circuitos que implementan funciones booleanas.
- Cuando más simple la función más chico el circuito:
 - Son más baratos, consumen menos, y son mas rápidos!
- Podemos usar las identidades del algebra de Boole para reducir estas funciones.

Compuertas lógicas

- Una compuerta es un dispositivo electrónico que produce un resultado en base a un conjunto de valores de valores de entrada:
 - En realidad, están formadas por uno o varios transitores, pero lo podemos ver como una unidad.
 - Los circuitos integrados contienen colecciones de compuertas conectadas con algún propósito.

Compuertas lógicas

Las más simples: AND, OR, y NOT:

Se corresponden exactamente con las funciones booleanas que vimos.

Compuertas lógicas

- ► Una compuerta muy útil: el OR exclusivo => XOR
- La salida es 1 cuando los valores de entrada difieren.

Implementación de funciones booleanas

- Combinando compuertas se pueden implementar funciones booleanas.
- Este circuito implementa la siguiente función: $F(x, y, z) = x + \overline{y}z$

Ejemplo: función mayoría

Α	В	С	М
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	4	1

Compuertas lógicas combinadas

- NAND y NOR son dos compuertas lógicas combinadas.
- Con la identidad de Morgan se pueden implementar con AND u OR.
- Son más baratas y cualquier operación básica se puede representar usándolas cualquiera de ellas (sin usar la otra)?.

NAND y NOR

Ejemplos

- ▶ NOT usando NAND: simplemente unir las dos entradas.
- Utilizando solo NAND o NOR realizar circuitos con la misma funcionalidad que el AND y OR.

Circuitos combinatorios

- Producen una salida específica al (casi) instante que se le aplican valores de entrada.
- Implementan funciones booleanas.
- La aritmética y la lógica de la CPU se implementan con estos circuitos.

Sumador

- Como podemos construir un circuito que sume dos bits X e Y?
- ► F(X, Y) = X + Y (suma aritmética)
- Que pasa si X = 1 e Y = 1?

Y	Suma	carry
0	0	0
1	1	0
0	1	0
1	0	1
	0	0 0 1 1 0 1

Semi-Sumador

- Podemos usar un XOR para la suma y un AND para el carry.
- A este circuito se lo llama semi-sumador.

Sumador

Sumador: estructura interna

Sumador: estructura interna y tabla de verdad

X	Y	Ci	Suma	Со
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sumador de 4 bits

Decodificadores

- Los decodificadores de n entradas pueden seleccionar una de 2ⁿ salidas.
- Son ampliamentes utilizados.
- Por ejemplo:
 - Seleccionar una locación en una memoria a partir de una dirección colocada en el bus memoria.

Decodificadores: ejemplo

▶ Decodificador 2-a-4:

Multiplexores

- Selecciona una salida a de varias entradas.
- La entrada que es seleccionada como salida es determinada por las líneas de control.
- Para seleccionar entre n entradas, se necesitan log₂n líneas de control.
- Demultiplexor
 - Exactamente lo contrario al multiplexor.
 - Dada una entrada la direcciona entre n salidas, usando log₂ n líneas de control.

Multiplexor: ejemplo

► Multiplexor 4-a-1:

Función mayoría

Α	В	С	M
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Función mayoría con multiplexor

Ejemplo

- ► Construir una ALU de 1 bit.
- ▶ 3 entradas:
 - ► A, B, carry.
- ▶ 4 operaciones:
 - ► A.B, A+B, NOT B, Suma(A,B,Carry).
- ► Salidas:
 - Resultado, Carry out.

ALU de 1 bit

ALU de 8 bits

Memoria ROM

	Er	ıtrad	las					Sali	idas			
I_4	I_3	I_2	I_1	I_0	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	0	0	1	0
1	1	1	1	0	0	1	1	1	0	1	0	1
_1	1	1	1	1	0	0	1	1	0	0	1	1

ROM con decoder

