

1. FCC SAR TEST EXCLUSION CALCULATIONS

FCC ID: VC7120-0195

Model number: DD16X Product Marketing Name: Chroma 16L

Based on guidance from KDB 447498

1.1 SAR TEST EXCLUSION CALCULATION

Time averaged conducted power					
Nominal power output	0dBm	Set by Firmware			
Production tolerance	+0.5dB	IC tolerance over			
		temperature and supply			
max conducted power	0.5dBm (1.12mW)	"tune up tolerance"			
Max theoretical duty cycle in	0.068%	12ms every 17.6s			
normal operation					
Max average conducted power	0.0007 mW				
Rounded up to nearest mW	1 mW	(clause 4.3.1)			

Minimum test Separation Distance			
Minimum 5mm is used	It is conceivable that a user might touch the electronic		
(clause 4.1.5)	shelf label display while it is transmitting. Antenna is		
	3mm from the surface of the display.		

Minimum frequency	902.5 MHz
Maximum frequency	927.5 MHz

SAR test exclusion threshold calculation (clause 4.3.1)

Calculation is Power of channel (mW) / min test separation(mm) * [sqrt freq (GHz)]. (result rounded to 1decimal place)

Min. channel: 1/5 * [sqrt 0.9025] = 0.2Max. channel: 1/5 * [sqrt 0.9275] = 0.2

This is below the limits for 1-g SAR (3.0) and 10-g SAR (7.5) and so the product meets the thresholds for SAR test exclusion.

2. MPE CALCULATION AND RADIATION EXPOSURE RISK **ASSESSMENT**

FCC ID: VC7120-0195 IC ID: 8910A-1200195

Model: DD16X PMN: Chroma 16L

2.1 MPE CALCULATION AND EXPOSURE RISK

Following guidelines in KDB 447498 D03 supplement C Cross-reference v01

Prediction of MPE limit at a given distance

$$S = \frac{1.64ERP}{4\pi R^2} \text{ re-arranged } R = \sqrt{\frac{1.64ERP}{S4\pi}}$$

where:

S = power density

R = distance to the centre of radiation of the antenna

ERP = EUT Maximum power

With the maximum test case 100% duty cycle the MPE calculation result based on radiated field measurements from Hursley EMC test report no.180874 FR "FCC Part 15C, Industry Canada, Certification Report":

Max Result at 902.5MHz is 87.59dBuV/m @ 3m, equivalent to 0.105mW ERP

Prediction frequency (MHz)	Max ERP (mW)	Power density limit (S) (mW/cm2)	Distance R cm required to be less than 0.6mW/cm2	
902.5MHz	0.105	0.6	0.48cm	

Exposure risk in normal operation

The maximum theoretical transmitter duty cycle in operation is 12ms every 17.6s. (0.068%), which reduces the average ERP to 0.000071mW.

In practice, it is impossible to reach the power density limit of 0.6mW/cm2 even with 100% duty cycle, because the required distance R is smaller than the distance from the antenna to the outside surface of the device enclosure.

DD16X is a fixed installation. In a retail shelf edge context it is possible that human body will contact the device, but with only momentary exposure.

3. INDUSTRY CANADA RSS-102 exemption requirements

ISED ID: 8910A-1200195 HVIN: DD16X PMN: Chroma 16L

The minimum distance and bystander could be <5mm, if the bystander is touching the product, therefore the electronic shelf label DD16X falls under RSS-102 issue 5, section 2.5.1

From RSS-102 issue 5, section 2.5.1 table 1 the appropriate exemption limit for the 902.5 to 927.5MHz band of operation is between 7mW and 17mW for <5mm separation distance. (assumed 7mW for worst case)

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance^{4,5}

Frequency	Exemption Limits (mW)					
(MHz)	At separation distance of ≤5 mm	At separation distance of 10 mm	At separation distance of 15 mm	At separation distance of 20 mm	At separation distance of 25 mm	
≤300	71 mW	101 mW	132 mW	162 mW	193 mW	
450	52 mW	70 mW	88 mW	106 mW	123 mW	
835	17 mW	30 mW	42 mW	55 mW	67 mW	
1900	7 mW	10 mW	18 mW	34 mW	60 mW	

From Hursley EMC test report no.180874 FR "FCC Part 15C, Industry Canada, Certification Report":

Max Result (100% duty cycle) at 902.5MHz is 87.59dBuV/m @ 3m, equivalent to 0.172mW EIRP (0.105mW ERP)

Maximum TX power with 100% duty cycle, adjusted for +0.5dB production tolerance: 88.09dBuV/m @ 3m @ 902.5MHz = 0.193mW EIRP (0.118mW ERP)

The maximum theoretical transmitter duty cycle in operation is 12ms every 17.6s, (0.068%), which reduces the maximum EIRP to 0.000131mW.

This meets the requirement for exemption from routine evaluation.

Assessment carried out by:

Oli Bailey (Senior Hardware Engineer)

Date of Assessment: 6th March 2019

Tel: +44 1344 292 110

Email: oli.bailey@displaydata.com