DIGITAL TRANSMISSION

Analog-to-Digital Conversion: Pulse Code Modulation (PCM)

Delta Modulation (DM)

DIGITAL TRANSMISSION

Digital Data on Digital Channel

Line Coding

Block Coding

Analog Data on Digital Channel

Different Sampling Cases

Sampling @ mininmum Nyquist rate

Oversampling rate

Undersampling rate

Nyquist Sampling Rate >= 2 x fmax

a. Nyquist rate sampling: $f_s = 2 f$

b. Oversampling: $f_s = 4 f$

c. Undersampling: $f_s = f$

Frequency Range Example

Voice

Musical Instrument

แบ่งตามชนิดของเสียง ความถี่จะถูกแบ่งออกดังนี้

เสียงร้อง

- Bass (เสียงต่ำของผู้ชาย) ความถี่หลัก 70 Hz 380 Hz / ความถี่รอง (หางเสียง) 380 Hz 10,000 Hz
- Baritone (เสียงระหว่างต่ำกับสูงของผู้ชาย) ความถี่หลัก 90 Hz 400 Hz / ความถี่รอง 400 Hz 10,000 Hz
- Tenor (เสียงสูงของผู้ชาย) ความถื่หลัก 130 Hz 500 Hz / ความถี่รอง 500 Hz 10,000 Hz
- Alto (เสี่ยงต่ำของผู้หญิง) ความถี่หลัก 160 Hz 950 Hz / ความถี่รอง 950 Hz -10,000 Hz
- Soprano (เสียงสูงของผู้หญิง) ความถี่หลัก 210 Hz 1,200 Hz / ความถี่รอง 1,200 Hz 10,000 Hz

เสียงเครื่องดนตรีชนิดดีด,สี,ตี

- Bass viola ความถึหลัก 30 Hz 210 Hz / ความถี่รอง 210 Hz 15,000 Hz
- Cello ความถี่หลัก 50 Hz 650 Hz / ความถี่รอง 650 Hz 15,000 Hz
- Viola ความถึหลัก 130 Hz 1,200 Hz / ความถึรอง 1,200 Hz -15,000 Hz
- Violin ความถี่หลัก 180 Hz 4,000 Hz / ความถี่รอง 4,000 Hz 15,000 Hz

เสียงเครื่องดนตรีชนิดเป่า

- Bass tuba ความถิ่หลัก 40 Hz -380 Hz / ความถี่รอง 380 Hz 16,000 Hz
- Bassoon ความถี่หลัก 45 Hz 500 Hz / ความถี่รอง 500 Hz 10,000 Hz
- Bass clarinet ความถี่หลัก 80 Hz 500 Hz / ความถี่รอง 500 Hz 10,000 Hz
- French horn ความถึหลัก 120 Hz 800 Hz / ความถี่รอง 800 Hz 16,000 Hz
- Trumpet ความถี่หลัก 140 Hz 850 Hz / ความถี่รอง 850 Hz 9,000 Hz
- Clarinet ความถี่หลัก 160 Hz 1,600 Hz / ความถี่รอง 1,600 Hz 16,000 Hz
- Oboe ความถิ่หลัก 240 Hz 1,600 Hz / ความถี่รอง 1,600 Hz 16,000 Hz
- Flute ความถี่หลัก 240 Hz 2,200 Hz / ความถี่รอง 2,200 Hz 16,000 Hz
- Piccolo ความถี่หลัก 500 Hz 7,000 Hz / ความถี่รอง 7,000 Hz 16000 Hz

เสียงเครื่องดนตรีชนิดเคาะ

• Piano - ความถิ่หลัก 25 Hz - 7,000 Hz

Sampling Rate Example

Regular Human voice

• f_sampling = 8,000 Hz

FM Radio (รองรับเสียงดนตรี 15,000 Hz)

• f_sampling = 32,000 Hz

CD Quality (รองรับเสียงดนตรี 20,000 Hz)

• f_sampling = 44,100 Hz

High Quality Sound

• f_sampling = 96,000 Hz

PCM Decoder

Quantization Decoder

Low Pass Filtering

#Quantization Level

Decoder

Qlevel bound:

[-3.5D, -2.5D, -1.5D, 1.5D, 2.5D, 3.5D]

Quantization Encoder

Sampled Quantizer Encode	Quantization partition	[5 0 .5]
	Quantization codebook	[7525 .25 .75]
	Input signal vector length	1
	Sample time (*เปลี่ยนตาม Period ทุกครั้ง*)	.01
Integer to Bit Converter	Number of bit per integer	2

Quantization Decoder

Bit to Integer Converter	Number of bit per integer	2
Quantizer Decode	Quantization codebook	[7525 .25 .75]

Activity# 9

น้ำ NOTEBOOK ลง MATLAB มา ด้วย

Delta Modulation Encoder

Delta Modulation Decoder

Quantization Decoder

Low Pass Filtering

DIGITAL TRANSMISSION MODE

Parallel vs Serial

Asynchronous Transmission

Synchronous Transmission

