$\acute{\text{Arboles}}$ B+

Clase 12

IIC 2133 - Sección 3

Prof. Eduardo Bustos

Sumario

Introducción

Árboles B+

Inserciones

Eliminaciones

Cierre

Definición

Definición

Un árbol de búsqueda 2-3 es una EDD que almacena (llave, valor) según

1. Un árbol 2-3 tiene una nodo que puede ser un 2-nodo (con una llave) o un 3-nodo (con 2 llaves distintas y ordenadas)

Definición

- 1. Un árbol 2-3 tiene una nodo que puede ser un 2-nodo (con una llave) o un 3-nodo (con 2 llaves distintas y ordenadas)
- 2. El nodo puede no tener hijos o tener exactamente

Definición

- 1. Un árbol 2-3 tiene una nodo que puede ser un 2-nodo (con una llave) o un 3-nodo (con 2 llaves distintas y ordenadas)
- 2. El nodo puede no tener hijos o tener exactamente
 - 2 hijos árboles 2-3 si es un 2-nodo

Definición

- 1. Un árbol 2-3 tiene una nodo que puede ser un 2-nodo (con una llave) o un 3-nodo (con 2 llaves distintas y ordenadas)
- 2. El nodo puede no tener hijos o tener exactamente
 - 2 hijos árboles 2-3 si es un 2-nodo
 - 3 hijos árboles 2-3 si es un 3-nodo

Definición

Un árbol de búsqueda 2-3 es una EDD que almacena (llave, valor) según

- 1. Un árbol 2-3 tiene una nodo que puede ser un 2-nodo (con una llave) o un 3-nodo (con 2 llaves distintas y ordenadas)
- 2. El nodo puede no tener hijos o tener exactamente
 - 2 hijos árboles 2-3 si es un 2-nodo
 - 3 hijos árboles 2-3 si es un 3-nodo

Definición

Un árbol de búsqueda 2-3 es una EDD que almacena (llave, valor) según

- 1. Un árbol 2-3 tiene una nodo que puede ser un 2-nodo (con una llave) o un 3-nodo (con 2 llaves distintas y ordenadas)
- 2. El nodo puede no tener hijos o tener exactamente
 - 2 hijos árboles 2-3 si es un 2-nodo
 - 3 hijos árboles 2-3 si es un 3-nodo

y que además, satisface la propiedad de árboles 2-3

■ Si es 2-nodo con llave k

Definición

Un árbol de búsqueda 2-3 es una EDD que almacena (llave, valor) según

- 1. Un árbol 2-3 tiene una nodo que puede ser un 2-nodo (con una llave) o un 3-nodo (con 2 llaves distintas y ordenadas)
- 2. El nodo puede no tener hijos o tener exactamente
 - 2 hijos árboles 2-3 si es un 2-nodo
 - 3 hijos árboles 2-3 si es un 3-nodo

- Si es 2-nodo con llave k
 - las llaves k' del hijo izquierdo son k' < k

Definición

Un árbol de búsqueda 2-3 es una EDD que almacena (llave, valor) según

- 1. Un árbol 2-3 tiene una nodo que puede ser un 2-nodo (con una llave) o un 3-nodo (con 2 llaves distintas y ordenadas)
- 2. El nodo puede no tener hijos o tener exactamente
 - 2 hijos árboles 2-3 si es un 2-nodo
 - 3 hijos árboles 2-3 si es un 3-nodo

- Si es 2-nodo con llave k
 - las llaves k' del hijo izquierdo son k' < k
 - las llaves k'' del hijo derecho son k < k''

Definición

Un árbol de búsqueda 2-3 es una EDD que almacena (llave, valor) según

- 1. Un árbol 2-3 tiene una nodo que puede ser un 2-nodo (con una llave) o un 3-nodo (con 2 llaves distintas y ordenadas)
- 2. El nodo puede no tener hijos o tener exactamente
 - 2 hijos árboles 2-3 si es un 2-nodo
 - 3 hijos árboles 2-3 si es un 3-nodo

- Si es 2-nodo con llave k
 - las llaves k' del hijo izquierdo son k' < k
 - las llaves k'' del hijo derecho son k < k''
- Si es 3-nodo con llaves $k_1 < k_2$

Definición

Un árbol de búsqueda 2-3 es una EDD que almacena (llave, valor) según

- 1. Un árbol 2-3 tiene una nodo que puede ser un 2-nodo (con una llave) o un 3-nodo (con 2 llaves distintas y ordenadas)
- 2. El nodo puede no tener hijos o tener exactamente
 - 2 hijos árboles 2-3 si es un 2-nodo
 - 3 hijos árboles 2-3 si es un 3-nodo

- Si es 2-nodo con llave k
 - las llaves k' del hijo izquierdo son k' < k
 - las llaves k'' del hijo derecho son k < k''
- Si es 3-nodo con llaves $k_1 < k_2$
 - las llaves k' del hijo izquierdo son $k' < k_1$

Definición

Un árbol de búsqueda 2-3 es una EDD que almacena (llave, valor) según

- 1. Un árbol 2-3 tiene una nodo que puede ser un 2-nodo (con una llave) o un 3-nodo (con 2 llaves distintas y ordenadas)
- 2. El nodo puede no tener hijos o tener exactamente
 - 2 hijos árboles 2-3 si es un 2-nodo
 - 3 hijos árboles 2-3 si es un 3-nodo

- Si es 2-nodo con llave k
 - las llaves k' del hijo izquierdo son k' < k
 - las llaves k'' del hijo derecho son k < k''
- Si es 3-nodo con llaves $k_1 < k_2$
 - las llaves k' del hijo izquierdo son $k' < k_1$
 - las llaves k'' del hijo central son $k_1 < k'' < k_2$

Definición

Un árbol de búsqueda 2-3 es una EDD que almacena (llave, valor) según

- 1. Un árbol 2-3 tiene una nodo que puede ser un 2-nodo (con una llave) o un 3-nodo (con 2 llaves distintas y ordenadas)
- 2. El nodo puede no tener hijos o tener exactamente
 - 2 hijos árboles 2-3 si es un 2-nodo
 - 3 hijos árboles 2-3 si es un 3-nodo

- Si es 2-nodo con llave k
 - las llaves k' del hijo izquierdo son k' < k
 - las llaves k'' del hijo derecho son k < k''
- Si es 3-nodo con llaves $k_1 < k_2$
 - las llaves k' del hijo izquierdo son $k' < k_1$
 - las llaves k'' del hijo central son $k_1 < k'' < k_2$
 - las llaves k''' del hijo derecho son $k_2 < k'''$

Si consideramos un árbol M-ario

Si consideramos un árbol M-ario

■ Cada nodo tiene a lo más *M* hijos

Si consideramos un árbol M-ario

- Cada nodo tiene a lo más M hijos
- Si está lleno con *n* nodos, balanceado y con altura *h*

Si consideramos un árbol M-ario

- Cada nodo tiene a lo más *M* hijos
- Si está lleno con n nodos, balanceado y con altura h

$$h \in \mathcal{O}(\log_M(n))$$

Si consideramos un árbol M-ario

- Cada nodo tiene a lo más M hijos
- Si está lleno con *n* nodos, balanceado y con altura *h*

$$h \in \mathcal{O}(\log_M(n))$$

Es decir, mientras mayor ramificación, menor altura (para n fijo)

Si consideramos un árbol M-ario

- Cada nodo tiene a lo más *M* hijos
- Si está lleno con *n* nodos, balanceado y con altura *h*

$$h \in \mathcal{O}(\log_M(n))$$

Es decir, mientras mayor ramificación, menor altura (para n fijo)

Hoy veremos una versión más general de los árboles 2-3

☐ Comprender la estructura de árbol B+

- ☐ Comprender la estructura de árbol B+
- ☐ Conocer sus operaciones de inserción y eliminación

- \square Comprender la estructura de árbol B+
- ☐ Conocer sus operaciones de inserción y eliminación
- ☐ Comprender su uso en el contexto de índices

Sumario

Introducción

Árboles B+

Inserciones

Eliminaciones

Cierre

Definición

Definición

Un árbol B+ de orden d es un árbol de búsqueda que almacena pares (llave, valor) y cumple con

1. Los nodos internos solo guardan llaves

Definición

- 1. Los nodos internos solo guardan llaves
- 2. La raíz tiene entre 1 y 2d hijos

Definición

- 1. Los nodos internos solo guardan llaves
- 2. La raíz tiene entre 1 y 2d hijos
- 3. Los nodos internos tienen entre d y 2d hijos

Definición

- 1. Los nodos internos solo guardan llaves
- 2. La raíz tiene entre 1 y 2d hijos
- 3. Los nodos internos tienen entre d y 2d hijos
- 4. Las hojas están a la misma altura y guardan a lo más 2d pares (llave, valor) **ordenados por llave**

Definición

- 1. Los nodos internos solo guardan llaves
- 2. La raíz tiene entre 1 y 2d hijos
- 3. Los nodos internos tienen entre d y 2d hijos
- 4. Las hojas están a la misma altura y guardan a lo más 2d pares (llave, valor) **ordenados por llave**
- 5. Las hojas están conectadas formando una lista doblemente ligada

Definición

Un árbol B+ de orden d es un árbol de búsqueda que almacena pares (llave, valor) y cumple con

- 1. Los nodos internos solo guardan llaves
- 2. La raíz tiene entre 1 y 2d hijos
- 3. Los nodos internos tienen entre d y 2d hijos
- 4. Las hojas están a la misma altura y guardan a lo más 2d pares (llave, valor) **ordenados por llave**
- 5. Las hojas están conectadas formando una lista doblemente ligada

¿Qué diferencias tiene este enfoque con los árboles 2-3?

Algunas observaciones . . .

Algunas observaciones . . .

■ Siempre esta balanceado.

Algunas observaciones . . .

- Siempre esta balanceado.
- Mantiene la eficiencia de búsqueda: $\mathcal{O}(\log_{2d}(\#datos))$.

Árboles B+

Algunas observaciones . . .

- Siempre esta balanceado.
- Mantiene la eficiencia de búsqueda: $\mathcal{O}(\log_{2d}(\#datos))$.
- Procedimientos eficientes de insertar/eliminar elementos.

Árboles B+

Algunas observaciones ...

- Siempre esta balanceado.
- Mantiene la eficiencia de búsqueda: $\mathcal{O}(\log_{2d}(\#datos))$.
- Procedimientos eficientes de insertar/eliminar elementos.
- Todos los nodos tienen un uso mínimo del 50% (menos el root).

Árboles B+

Algunas observaciones . . .

- Siempre esta balanceado.
- Mantiene la eficiencia de búsqueda: $\mathcal{O}(\log_{2d}(\#datos))$.
- Procedimientos eficientes de insertar/eliminar elementos.
- Todos los nodos tienen un uso mínimo del 50% (menos el root).

"B+-trees are by far the most important access path structure in databases and file systems", Gray y Reuter (1993).

Estructura de B+-trees

Distinguimos entre nodos que solo permiten navegar (directorios) y aquellos que contienen los pares (datos)

Estructura de B+-trees

Distinguimos entre nodos que solo permiten navegar (directorios) y aquellos que contienen los pares (datos)

¿Para qué sirve tener una lista doblemente ligada?

Definición

Método de acceso que optimiza el acceso a los datos para una consulta o conjunto de consultas en particular.

Definición

Método de acceso que optimiza el acceso a los datos para una consulta o conjunto de consultas en particular.

Ejemplos

Índice de un libro.

Definición

Método de acceso que optimiza el acceso a los datos para una consulta o conjunto de consultas en particular.

Ejemplos

- Indice de un libro.
- Orden alfabético en un diccionario.

Definición

Método de acceso que optimiza el acceso a los datos para una consulta o conjunto de consultas en particular.

Ejemplos

- Índice de un libro.
- Orden alfabético en un diccionario.
- Número de páginas de un libro.

Definición

Método de acceso que optimiza el acceso a los datos para una consulta o conjunto de consultas en particular.

Ejemplos

- Indice de un libro.
- Orden alfabético en un diccionario.
- Número de páginas de un libro.
- Secciones de un diario.

Definición

Método de acceso que optimiza el acceso a los datos para una consulta o conjunto de consultas en particular.

Ejemplos

- Índice de un libro.
- Orden alfabético en un diccionario.
- Número de páginas de un libro.
- Secciones de un diario.

¡Los B+ se usan para almacenar índices en Bases de Datos!

Estructura de B+-trees

Estructura de B+-trees

■ El mínimo y máximo número de llaves y punteros (n) viene dado por el orden (d) del B+-tree:

 $d \le n \le 2d$ para los intermedios $1 \le n \le 2d$ para la raíz

Ejemplo de un B+-tree de orden 2

Ejemplo de un B+-tree de orden 2

Consideremos una consulta que use un índice sobre el atributo A:

SELECT

FROM R

WHERE A BETWEEN \times AND y

Consideremos una consulta que use un índice sobre el atributo A:

SELECT *
FROM R

WHERE A BETWEEN × AND y

1. Llamar P = busquedaEnArbol(x,raíz).

Consideremos una consulta que use un índice sobre el atributo A:

SELECT *
FROM R

WHERE A BETWEEN \times AND y

- 1. Llamar P = busquedaEnArbol(x,raíz).
- 2. Realizar una búsqueda del mayor elemento k^* en P con $k^* \le x$.

Consideremos una consulta que use un índice sobre el atributo A:

SELECT *
FROM R

WHERE A BETWEEN \times AND y

- 1. Llamar P = busquedaEnArbol(x,raíz).
- 2. Realizar una búsqueda del mayor elemento k^* en P con $k^* \le x$.
- 3. Hacer scan desde k^* sobre todos los valores menores o iguales a y.

Consideremos una consulta que use un índice sobre el atributo A:

```
SELECT *
FROM R
WHERE A BETWEEN × AND y
```

- 1. Llamar P = busquedaEnArbol(x,raíz).
- 2. Realizar una búsqueda del mayor elemento k^* en P con $k^* \le x$.
- 3. Hacer scan desde k^* sobre todos los valores menores o iguales a y.

¿Cómo cambia el desempeño de esta operación si x no está almacenado?

Sumario

Introducción

Árboles B+

Inserciones

Eliminaciones

Cierre

Recordar: un B+-trees siempre debe estar balanceado.

Recordar: un B+-trees siempre debe estar balanceado.

Para insertar un valor k:

1. Llamar P = busquedaEnArbol(k, raíz).

Recordar: un B+-trees siempre debe estar balanceado.

Para insertar un valor k:

- 1. Llamar P = busquedaEnArbol(k, raíz).
- 2. Si la cantidad de llaves de P es menor a 2d, insertar k en P.

Recordar: un B+-trees siempre debe estar balanceado.

Para insertar un valor k:

- 1. Llamar P = busquedaEnArbol(k, raíz).
- 2. Si la cantidad de llaves de P es menor a 2d, insertar k en P.
- 3. En otro caso: debemos insertar k en P y hacer split de [P + k]!

donde
$$[P + k] = k_1^* k_2^* \dots k_{2d}^* k_{2d+1}^*$$
.

Para hacer split del nodo [P + k] de tamaño 2d + 1:

1. Asuma: $[P + k] = k_1^* k_2^* \dots k_{2d}^* k_{2d+1}^* \text{ con } k_i < k_{i+1}$.

Para hacer split del nodo [P + k] de tamaño 2d + 1:

- 1. Asuma: $[P + k] = k_1^* k_2^* \dots k_{2d}^* k_{2d+1}^* \text{ con } k_i < k_{i+1}$.
- 2. Divida [P + k] en dos nodos:

$$P_1 = k_1^* \dots k_d^*$$
 y $P_2 = k_{d+1}^* \dots k_{2d+1}^*$

y reemplace P por P_1, P_2 en la lista doble-ligada de los datos.

Para hacer split del nodo [P + k] de tamaño 2d + 1:

- 1. Asuma: $[P + k] = k_1^* k_2^* \dots k_{2d}^* k_{2d+1}^* \text{ con } k_i < k_{i+1}$.
- 2. Divida [P+k] en dos nodos:

$$P_1 = k_1^* \dots k_d^*$$
 y $P_2 = k_{d+1}^* \dots k_{2d+1}^*$

y reemplace P por P_1, P_2 en la lista doble-ligada de los datos.

3. Seleccione el valor k_{d+1} como divisor de P_1 y P_2 .

Para hacer split del nodo [P + k] de tamaño 2d + 1:

- 1. Asuma: $[P + k] = k_1^* k_2^* \dots k_{2d}^* k_{2d+1}^* \text{ con } k_i < k_{i+1}$.
- 2. Divida [P + k] en dos nodos:

$$P_1 = k_1^* \dots k_d^*$$
 y $P_2 = k_{d+1}^* \dots k_{2d+1}^*$

y reemplace P por P_1, P_2 en la lista doble-ligada de los datos.

- 3. Seleccione el valor k_{d+1} como divisor de P_1 y P_2 .
- 4. Reemplace el puntero p en el nodo P' que apuntaba a el nodo P por $p_1 k_{d+1} p_2$ donde p_1 apunta a P_1 y p_2 apunta a P_2 .

Para hacer split del nodo [P + k] de tamaño 2d + 1:

- 1. Asuma: $[P + k] = k_1^* k_2^* \dots k_{2d}^* k_{2d+1}^* \text{ con } k_i < k_{i+1}$.
- 2. Divida [P + k] en dos nodos:

$$P_1 = k_1^* \dots k_d^*$$
 y $P_2 = k_{d+1}^* \dots k_{2d+1}^*$

y reemplace P por P_1, P_2 en la lista doble-ligada de los datos.

- 3. Seleccione el valor k_{d+1} como divisor de P_1 y P_2 .
- 4. Reemplace el puntero p en el nodo P' que apuntaba a el nodo P por $p_1 k_{d+1} p_2$ donde p_1 apunta a P_1 y p_2 apunta a P_2 .
- 5. Itere sobre el nodo de directorio P' que apuntaba a P (split de P').

Ejemplo de como insertar un elemento en B+-trees

Inserte el elemento 8^* en el siguiente B+-tree (de orden d = 2):

Ejemplo de como insertar un elemento en B+-trees

Inserte el elemento 8^* en el siguiente B+-tree (de orden d = 2):

Ejemplo de como insertar un elemento en B+-trees

Inserte el elemento 8^* en el siguiente B+-tree (de orden d = 2):

Inserte el elemento 8^* en el siguiente B+-tree (de orden d = 2):

Inserte el elemento 8^* en el siguiente B+-tree (de orden d = 2):

Inserte el elemento 8^* en el siguiente B+-tree (de orden d = 2):

Nuestro B+tree queda "balanceado"

Split de los nodos parte desde las hojas y continua hasta la raíz.

- Split de los nodos parte desde las hojas y continua hasta la raíz.
- Si:
 - es necesario hacer split de todos los nodos y
 - el nodo raíz esta lleno,

entonces será necesario crear un nuevo nodo raíz.

- Split de los nodos parte desde las hojas y continua hasta la raíz.
- Si:
 - es necesario hacer split de todos los nodos y
 - el nodo raíz esta lleno,

entonces será necesario crear un nuevo nodo raíz.

■ El nodo raíz es el único que se le permite estar lleno al menos del 50%.

- Split de los nodos parte desde las hojas y continua hasta la raíz.
- Si:
 - es necesario hacer split de todos los nodos y
 - el nodo raíz esta lleno,

entonces será necesario crear un nuevo nodo raíz.

■ El nodo raíz es el único que se le permite estar lleno al menos del 50%.

¿qué ocurre con la altura del árbol al hacer split de la raíz?

Otro ejemplo de como insertar un elemento en B+-trees

Inserta los elementos 23^* y 40^* en el siguiente B+-tree (de orden d = 2):

Es posible evitar el crecimiento del árbol usando redistribución en los nodos vecinos.

Ejemplo

Insertar el elemento 6* en:

Redistribución es posible también a nivel de directorio.

Sumario

Introducción

Árboles B+

Inserciones

Eliminaciones

Cierre

Para eliminar un valor k:

1. Llamar P = busquedaEnArbol(k, root).

Para eliminar un valor k:

- 1. Llamar P = busquedaEnArbol(k, root).
- 2. Si el espacio usado en P es mayor o igual a d+1, eliminar k en P.

Para eliminar un valor k:

- 1. Llamar P = busquedaEnArbol(k, root).
- 2. Si el espacio usado en P es mayor o igual a d+1, eliminar k en P.
- 3. En otro caso: debemos eliminar k en P y rebalancear [P-k]!

Para eliminar el elemento 19*:

Para eliminar el elemento 19*:

Podemos eliminar 19* sin problemas (#-data entries > 2).

Para eliminar el elemento 20*:

Para eliminar el elemento 20*:

Debemos hacer redistribución o "unsplit" de las nodos.

Para eliminar el elemento 20*:

Debemos hacer redistribución o "unsplit" de las nodos.

Ahora, si deseamos eliminar el elemento 22*:

Ahora, si deseamos eliminar el elemento 22*:

Necesitamos hacer un "unsplit" de los nodos.

Ahora, si deseamos eliminar el elemento 22*:

Necesitamos hacer un "unsplit" de los nodos.

Ahora, si deseamos eliminar el elemento 22*:

Ahora, si deseamos eliminar el elemento 22*:

Otro "unsplit", pero ahora del directorio.

Ahora, si deseamos eliminar el elemento 22*:

Ahora, si deseamos eliminar el elemento 22*:

Ahora, si deseamos eliminar el elemento 22*:

Si el root tiene un solo elemento, esta es la única manera de decrementar la altura H del árbol.

Eliminación y redistribución de elementos

En algunos casos es necesario redistribuir los elementos de un directorio en una eliminación.

Ejemplo

Eliminación y redistribución de elementos

En algunos casos es necesario redistribuir los elementos de un directorio en una eliminación.

Ejemplo

Eliminación y redistribución de elementos

En algunos casos es necesario redistribuir los elementos de un directorio en una eliminación.

Ejemplo

Eficiencia de B+-trees

Considere:

- n: el número de nodos.
- 2d: cantidad (máxima) de datos en una hoja.

Eficiencia de B+-trees

Considere:

- n: el número de nodos.
- 2d: cantidad (máxima) de datos en una hoja.

El costo de cada operación (en I/O):

Búsqueda:

Considere:

- n: el número de nodos.
- 2d: cantidad (máxima) de datos en una hoja.

El costo de cada operación (en I/O):

Búsqueda: $\mathcal{O}(\log_{2d}(n))$

Considere:

- n: el número de nodos.
- 2d: cantidad (máxima) de datos en una hoja.

El costo de cada operación (en I/O):

Búsqueda: $\mathcal{O}(\log_{2d}(n))$

Insertar:

Considere:

- n: el número de nodos.
- 2d: cantidad (máxima) de datos en una hoja.

El costo de cada operación (en I/O):

Búsqueda: $\mathcal{O}(\log_{2d}(n))$

Insertar: $\mathcal{O}(\log_{2d}(n))$

Considere:

- n: el número de nodos.
- 2d: cantidad (máxima) de datos en una hoja.

El costo de cada operación (en I/O):

Búsqueda: $\mathcal{O}(\log_{2d}(n))$

Insertar: $\mathcal{O}(\log_{2d}(n))$

Eliminar:

Considere:

- n: el número de nodos.
- 2d: cantidad (máxima) de datos en una hoja.

El costo de cada operación (en I/O):

Búsqueda: $\mathcal{O}(\log_{2d}(n))$

Insertar: $\mathcal{O}(\log_{2d}(n))$

Eliminar: $\mathcal{O}(\log_{2d}(n))$

Considere:

- n: el número de nodos.
- 2d: cantidad (máxima) de datos en una hoja.

El costo de cada operación (en I/O):

Búsqueda: $\mathcal{O}(\log_{2d}(n))$

Insertar: $\mathcal{O}(\log_{2d}(n))$

Eliminar: $\mathcal{O}(\log_{2d}(n))$

Costo depende logaritmicamente en base d!

Suposición: ${f NO}$ hay data-entries duplicados.

Suposición: NO hay data-entries duplicados.

Si consideramos duplicados, tenemos varias opciones . . .

Suposición: NO hay data-entries duplicados.

Si consideramos duplicados, tenemos varias opciones ...

usar páginas con overflow

Suposición: NO hay data-entries duplicados.

Si consideramos duplicados, tenemos varias opciones ...

- usar páginas con overflow, o
- \blacksquare data entries extendidos con una llave compuesta (k, id)

Suposición: NO hay data-entries duplicados.

Si consideramos duplicados, tenemos varias opciones ...

- usar páginas con overflow, o
- \blacksquare data entries extendidos con una llave compuesta (k, id), o
- permitir duplicados y flexibilizar los intervalos del directorio:

$$k_i \le k < k_{i+1} \implies k_i \le k \le k_{i+1}$$

Optimizaciones a B+-trees y otros

Optimizaciones a B+-trees y otros

Varias posibles optimizaciones para B+-trees:

Compresión de index keys (o directorio).

Optimizaciones a B+-trees y otros

Varias posibles optimizaciones para B+-trees:

- Compresión de index keys (o directorio).
- Bulk loading.

Sumario

Introducción

Árboles B+

Inserciones

Eliminaciones

Cierre

 \square Comprender la estructura de árbol B+

- $\ \square$ Comprender la estructura de árbol B+
- ☐ Conocer sus operaciones de inserción y eliminación

- ☐ Comprender la estructura de árbol B+
- ☐ Conocer sus operaciones de inserción y eliminación
- ☐ Comprender su uso en el contexto de índices