

Bachelor of Engineering Subject Code: 3110018 PHYSICS 1stYEAR (For Group II Branches)

Type of course: Type of course: Basic Science (Physics)

Prerequisite: Basic understanding of Math's, Physics and chemistry

Rationale: The basic science physics program is to prepare students for careers in engineering where physics principles can be applied to the advancement of technology. This education at the intersection of engineering and physics will enable students to seek employment in engineering upon graduation while, at the same time, provide a firm foundation for the pursuit of graduate studies in engineering.

Teaching and Examination Scheme:

Teaching Scheme			Credits	Examination Marks			Total	
L	T	P	C	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA (I)	
3	0	2	4	70	30	30	20	150

Content:

SrNo	Торіс	Teaching Hrs.	Module Weightage
1	 MODULE 1: ELECTRONIC MATERIALS Free electron theory Density of states and energy band diagrams, Kronig-Penny model (to introduce origin of band gap), Energy bands in solids, E-k diagram, Direct and indirect bandgaps, Types of electronic materials: metals, semiconductors, and insulators, Density of states, Occupation probability, Fermi level, Effective mass, Phonons. 	8	22%
2	 MODULE 2: SEMICONDUCTORS (10) Intrinsic and extrinsic semiconductors Dependence of Fermi level on carrier-concentration and temperature (equilibrium carrier statistics) Carrier generation and recombination, Carrier transport: diffusion and drift, p-n junction, Metal-semiconductor junction (Ohmic and Schottky), Semiconductor materials of interest for optoelectronic devices 	10	27%

Bachelor of Engineering Subject Code: 3110018

	Subject Code. 3110018		
2	MODULE 3: LIGHT-SEMICONDUCTOR INTERACTION		
3	 Optical transitions in bulk semiconductors: absorption, 		
	spontaneous emission, and stimulated emission;		
	 Joint density of states 	6	17%
	 Density of states for photons, 		
	 Transition rates (Fermi's golden rule) 		
	 Optical loss and gain; Photovoltaic effect, Exciton 		
	Drude model.		
	Module 4: Measurements		
4	 Four-point probe and Van Der Pauw measurements for carrier density, 	6	
	Resistivity and hall mobility		
	Hot-point probe measurement, capacitance-voltage		17%
	measurements,		
	Parameter extraction from diode I-V characteristics, DLTS,		
	 band gap by UV-Vis spectroscopy, absorption/transmission. 		
5	Module 5: Superconductivity	6	17%
	Introduction of Superconductivity		
	 Properties of superconductor 		
	Effect of magnetic field		
	Meissner effect		
	• Pressure effect		
	Impurity effect		
	Isotopic mass effect		
	Mechanism of Superconductivity : BCS Theory		
	• Penetration depth : Magnetic field		
	 Josephson's junction and its application 		
	Application of superconductors		
1			

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	C Level
30	40	30	0	0	0

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

References:

- 1. J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995).
- 2. 2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., (2007).
- 3. S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley (2008).
- 4. 4. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications,

Bachelor of Engineering Subject Code: 3110018

Oxford

- 5. University Press, New York (2007).
- 6. 5. P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall of India
- 7. Engineering Physics by Dattu R Joshi, McGraw hill Publications.

Extra Study Material

- 1. Online course: "Semiconductor Optoelectronics" by M R Shenoy on NPTEL
- 2. Online course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Gupta on NPTEL

Course Outcome:

Sr. No.	CO statement	% weightage
CO-1	The student will gain knowledge of basic theoretical and mathematical concept of electronic materials.	22%
CO-2	The student will demonstrate understanding of basic principles, properties and applications associated with semiconducting materials.	27%
CO-3	The student will demonstrate understanding of basic theory and properties associated with optoelectronic materials.	17%
CO-4	The student will gain knowledge of the different measurements techniques to characterize various semiconducting, electrical and optoelectrical materials and devices.	17%
CO-5	The student will demonstrate understanding of basic theory, properties and applications of Superconductivity.	17%

List of Experiments:

- 1. To measure the dielectric constant of a material
- 2. To study the Hall-Effect.
- 3. To study the I-VCharacteristic of Silicon diode.
- 4. To study the I-VCharacteristic of Zenerdiode.
- 5. To study the I-VCharacteristic of LED.
- 6. To determine the efficiency of given solarcell.
- 7. To measure the Resistivity & Band gap of Germanium Crystal (N-type) by Four Probe Method.
- 8. To measure thenumerical aperture of optical fiber.
- 9. To Study of propagation & bending loss in optical fiber.
- 10. P-N Junction diode as Bridge Rectifier.
- 11. Energy gap of Semiconductor
- 12. Study of cathode ray oscilloscope
- 13. Time constant of an R-C circuit.
- 14 L-C-R Circuit.
- 15.Logic Gates
- 16. Virtual Laser Optics Lab
- 17. Virtual Solid-State Physics Lab
- 18. Virtual Harmonic Motion & Waves Lab
- 19. Virtual Optics Lab
- 20. Virtual Modern Physics Lab
- 21. Virtual Physical Sciences Lab

Bachelor of Engineering Subject Code: 3110018