Basic Machine Learning Lecture 8 Dimensionality Reduction Principal Component Analysis (PCA)

Mannes Poel
Gwenn Englebienne

Study material

 Sections 12.1 and 12.4.2 of the course book.

Discriminating/Biased ML

Amazon recruiting engine did not like women.

Probabilistic Models

Classify new x as C_1 if $P(C_1|x) > P(C_2|x)$ else x is classified as C_2 this is equivalent to Classify new x as C1 if $P(x|C_1)P(C_1) > P(x|C_2)P(C_2)$ else x is classified as C2

Challenge: How to calculate/estimate $P(x|C_1)$ and $P(x|C_2)$?

Probabilistic Approach

Advantages:

- Insight in how the data is generated.
- No incremental learning involved.
 Just one shot parameter estimation.

Disadvantages:

- Per class one needs to estimate d + d(d+1)/2 parameters. Needs more data.
- Problems with data on low dimensional subspace.

What is the problem?

$$\mathbf{x} \sim \mathcal{N}_d(\mathbf{\mu}, \mathbf{\Sigma})$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})\right]$$
Cause of the problems

Dimensionality Reduction

Why Reduce Dimensionality?

- 1. Removing singularities; for instance in covariance matrix Σ
- 2. Reduces time complexity: Less computation
- 3. Reduces space complexity: Less parameters, smaller feature size → less memory
- 4. Saves the cost of observing the feature
- 5. Simpler models are more robust on small datasets, for small datasets with a lot of features overfitting is a problem even for simple models.
- 6. More interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

Feature Selection vs Extraction

- Feature selection:
 - Choosing *k*<*d* important features, ignoring the remaining *d k*.
 Subset selection algorithms
- Feature extraction:
 - Project the original x_i, i=1,...,d dimensions to new k<d dimensions, z_j, j=1,...,k
 Principal components analysis (PCA), linear discriminant analysis (LDA), factor analysis (FA)

Subset Selection

Main problem: there are 2^d subsets of d features.

- Correlation based: remove one of the features with high correlation. Stop when no features with high correlations are left.
- Knowledge based: remove irrelevant features.
 For instance patient id.
- But relevance can be dependent on the ML model under consideration.

Subset Selection

Given a ML model M:

- Forward search: Add the best feature at each step
 - Set of features F initially Ø.
 - At each iteration, find the best new feature $j = \operatorname{argmin}_i E(F \cup x_i)$ (error of M when feature x_i is added to the feature set.
 - add x_j to F if $E(F \cup x_j) < E(F)$
 - Hill-climbing $O(d^2)$ algorithm
- Backward search: Start with all features and remove one at a time, if possible.
- Floating search (Add k, remove l)

Principal Components Analysis (PCA)

Used for:

- Feature/Dimensionality reduction
- Lossy data compression
- Data visualization

Also known as Karhunen-Loève transformation

Principal Components Analysis (PCA)

- Find a lower (one)-dimensional space S such that when $\{x_n\}$ is projected on S, information loss is minimized.
- The projection of $\{x_n\}$ on the direction of w is: $\{w^Tx_n\}$
- Find w such that $Var(\{w^Tx_n\})$ is maximized

$$Var(\{w^{T}x_{n}\}) = E[(w^{T}x_{n} - w^{T}\overline{x})^{2}]$$

$$= E[(w^{T}x_{n} - w^{T}\overline{x})(w^{T}x_{n} - w^{T}\overline{x})]$$

$$= E[w^{T}(x_{n} - \overline{x})((x_{n} - \overline{x}))^{T}w]$$

$$= w^{T}E[(x_{n} - \overline{x})((x_{n} - \overline{x}))^{T}]w = w^{T}\sum w$$

where Σ is the covariance of $\{x_n\}$.

Example

• Maximize $Var(\{w^Tx_n\})$ subject to ||w|| = 1

$$\max_{\mathbf{w}} \left(\mathbf{w}^T \sum \mathbf{w} - \lambda (\mathbf{w}^T \mathbf{w} - 1) \right)$$

Solution:

$$\sum \mathbf{w} = \alpha \mathbf{w}$$

that is, w is an eigenvector of \sum .

Choose the eigenvector, say w_1 with the largest eigenvalue. This gives the maximal variance.

Second principal component:

Second Principal Component

Maximize $Var(\{w^Tx_n\})$,

Constrains: ||w|| = 1 and orthogonal to w_1

This gives that:

$$\sum \mathbf{w} = \alpha \mathbf{w}$$

and w is orthogonal to w_1 , the first principal component. Hence w is the eigenvector corresponding to the second largest eigenvalue.

What PCA does

$$z = \mathbf{W}^T (x - m)$$

z are the **new** feature vectors, mean(\mathbf{z})=0 where the columns of **W** are the eigenvectors of \sum , and \mathbf{m} is sample mean.

Centers the data at the origin and rotates the axes

Example of PCA: Eigenfaces

- Often applied in face recognition and reconstruction.
- Example; the OLR database.
- 46x56 greyscale image, so 2576
 dimensional data but a lot redundancy

Correlation between neighbouring pixels

The principal components

 A principal component is a direction and for this case a direction corresponds with a face (up to a scalar). The 10 most significant ones:

Basic Machine Learning 2018

Face reconstruction

Non face reconstruction

Variance explained by PCA

Autoassociative NNs

- Another approach to dimensionality reduction, also called autoencoders in DL.
- Squeeze the data through a NN:
 - Output layer same dimension as input layer.
 - One hidden layer with dimension (much) smaller then input/ouput dimension.
 - Target is same as input, so dataset is $D = \{(x_n, x_n) | n = 1 \dots N\}$

Autoencoder

Example; MNIST Data set

Digits 0 – 9 in 8x8 pixel gray image

Example

Applying auto-encoder on MNIST digit dataset:

- Hidden layer of 36 neurons.
- For each neuron the input is depicted which will result in the highest output.

Results in the following 36 dimensions.

Classification performance improved from 89% to 95%

Input with highest output

- For which input
 x is the output
 highest?
- Assume ||x/|=1.

• x=w/||w||

Question

Are NN discriminative or generative models?

Variational Autoencoders

Generative Adversal Networks

GAN architecture

Example of GAN

Wrap up

- Introduction to Machine Learning
- Basic models and learning methods are covered:
 - Logistic classification
 - -NN
 - SVM
 - DT
 - Probabilistic classification
- Methodology for evaluating and comparing ML models
- Dimensionality reduction: PCA & Autoencoders

What's next

- Advanced ML course:
 - Mixture models
 - Sequence classification
 - Deep Learning
 - Project
- Deep Learning From Theory to Practice

Parametric Estimation for p(x|C)

- Write p(x) instead of p(x|C)
- $X = \{x^t\}_t$ where $x^t \sim p(x)$
- Parametric estimation:

Assume a parametric form for p *i.e.* $p(x)=p(x \mid \theta)$ and estimate θ , its sufficient statistics, using X

e.g., $p=\mathcal{N}$ (μ , σ^2) where $\theta = \{ \mu, \sigma^2 \}$: p is normally distributed with mean μ and variance σ^2

Maximum Likelihood Estimation

- Likelihood of the sample X given θ $I(X|\theta) = p(X|\theta) = \prod_{t} p(x^{t}|\theta)$
- Log likelihood

$$\mathcal{L}(\mathcal{X}|\theta) = \log I(\mathcal{X}|\theta) = \sum_{t} \log p(x^{t}|\theta)$$

(Why should one consider a log likelihood?)

Maximum likelihood estimator (MLE)

$$\theta^* = \operatorname{argmax}_{\theta} \mathcal{L}(X | \theta)$$

Multivariate Data

- Multiple measurements (sensors)
- *d* inputs/features/attributes: *d*-variate
- N instances/observations/examples

$$\mathbf{X} = \begin{bmatrix} X_1^1 & X_1^2 & \cdots & X_1^N \\ X_1^1 & X_2^2 & \cdots & X_2^N \\ \vdots & & & & \\ X_d^1 & X_d^2 & \cdots & X_d^N \end{bmatrix}$$

Sometimes one uses another convention:

Each row is a data point!

Multivariate Parameters

Mean :
$$E[x] = \mu = [\mu_1, ..., \mu_d]^T$$

Covariance :
$$\sigma_{ij} = \text{Cov}(X_i, X_j)$$

Correlation: Corr
$$(X_i, X_j) \equiv \rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$$

$$\Sigma = \text{Cov}(\boldsymbol{X}) = E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T] = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & & & & \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{bmatrix}$$

MLE: Parameter Estimation

Sample mean **m**:
$$m_i = \frac{\sum_{t=1}^{N} x_i^t}{N}$$
, $i = 1,..., d$

Covariance matrix
$$\mathbf{S}: s_{ij} = \frac{\sum_{t=1}^{N} (x_i^t - m_i)(x_j^t - m_j)}{N}$$

Correlation matrix
$$\mathbf{R}: r_{ij} = \frac{S_{ij}}{S_i S_j}$$
 This is what is called a biased estimator for the covariance: If we divide by N-1 then we have an unbiased estimator. Hence most of

unbiased estimator. Hence most of the time we use 1/(N-1)

Estimator for covariance

Covariance matrix
$$\mathbf{S}: s_{ij} = \frac{\sum_{t=1}^{N} (x_i^t - m_i)(x_j^t - m_j)}{N}$$

This is what is called a biased estimator for the covariance: If we divide by N-1 then we have an unbiased estimator. Hence most of the time we use 1/(N-1)

Covariance matrix
$$\mathbf{S}: s_{ij} = \frac{\sum_{t=1}^{N} (x_i^t - m_i)(x_j^t - m_j)}{N-1}$$

Quiz: estimation of mean and covariance

Given a class C with example data set:

$$C = \{(2,0)^T, (0,2)^T, (2,2)^T, (0,0)^T\}$$

compute the mean and covariance.

Given $x=(1,2)^T$, compute the likelihood that x is generated by C, i.e. compute P(x|C).

Answer

- 1. Estimate mean C: $m=[1,1]^T$
- 2. Estimate covariance C:

$$S = \begin{bmatrix} 1.33 & 0 \\ 0 & 1.33 \end{bmatrix}$$

3. Compute likelihood P(x|C)=0.082

Multivariate Normal Distribution

$$\boldsymbol{x} \sim \mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right]^{\frac{1}{2}}$$
Basic Machine Learning 2018

44

Multivariate Normal Distribution

- Mahalanobis distance: $(x \mu)^T \sum_{-1}^{-1} (x \mu)$ measures the distance from x to μ in terms of \sum (normalizes for difference in variances and correlations)
- Bivariate: d = 2

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$p(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)}(z_1^2 - 2\rho z_1 z_2 + z_2^2)\right]$$
$$z_i = (x_i - \mu_i) / \sigma_i$$

Independent Inputs: Naive Bayes

If x_i are independent, offdiagonals of ∑ are 0,
 Mahalanobis distance reduces to weighted (by 1/σ_i) Euclidean distance:

$$p(\mathbf{x}) = \prod_{i=1}^{d} p_i(x_i) = \frac{1}{(2\pi)^{d/2} \coprod_{i=1}^{d} \sigma_i} \exp \left[-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_i - \mu_i}{\sigma_i} \right)^2 \right]$$

If variances are also equal, reduces to Euclidean distance

Parametric Classification

• If $p(\mathbf{x} \mid C_i) \sim \mathcal{N}(\boldsymbol{\mu}_i, \sum_i)$

$$p(\mathbf{x} \mid C_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)\right]$$

Discriminant functions are

$$g_i(\mathbf{x}) = \log p(\mathbf{x} \mid C_i) + \log P(C_i)$$

$$= -\frac{d}{2} \log 2\pi - \frac{1}{2} \log |\Sigma_i| - \frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) + \log P(C_i)$$

Estimation of Parameters

$$\hat{P}(C_i) = \frac{\sum_t r_i^t}{N}$$

$$\boldsymbol{m}_i = \frac{\sum_t r_i^t \boldsymbol{x}^t}{\sum_t r_i^t}$$

$$\boldsymbol{S}_i = \frac{\sum_t r_i^t (\boldsymbol{x}^t - \boldsymbol{m}_i) (\boldsymbol{x}^t - \boldsymbol{m}_i)^T}{\sum_t r_i^t}$$

$$g_i(\mathbf{x}) = -\frac{1}{2}\log|\mathbf{S}_i| - \frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}_i^{-1}(\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

Different S_i

Quadratic discriminant

$$g_{i}(\mathbf{x}) = -\frac{1}{2}\log|\mathbf{S}_{i}| - \frac{1}{2}(\mathbf{x}^{T}\mathbf{S}_{i}^{-1}\mathbf{x} - 2\mathbf{x}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} + \mathbf{m}_{i}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i}) + \log \hat{P}(C_{i})$$

$$= \mathbf{x}^{T}\mathbf{W}_{i}\mathbf{x} + \mathbf{w}_{i}^{T}\mathbf{x} + \mathbf{w}_{i0}$$
where
$$\mathbf{W}_{i} = -\frac{1}{2}\mathbf{S}_{i}^{-1}$$

$$\mathbf{w}_{i} = \mathbf{S}_{i}^{-1}\mathbf{m}_{i}$$

$$\mathbf{w}_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} - \frac{1}{2}\log|\mathbf{S}_{i}| + \log \hat{P}(C_{i})$$

Basic Machine Learning 2018

Common Covariance Matrix S

Shared common sample covariance S

$$\mathbf{S} = \sum_{i} \hat{P}(C_{i}) \mathbf{S}_{i}$$

Discriminant reduces to

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}_i^{-1}(\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$

where

$$\mathbf{w}_{i} = \mathbf{S}_{i}^{-1}\mathbf{m}_{i} \quad w_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} + \log \hat{P}(C_{i})$$

which is a linear discriminant

Common Covariance Matrix S

Diagonal **S**

• When $x_j j = 1,...d$, are independent, \sum is diagonal $p(\mathbf{x}|C_i) = \prod_j p(x_j|C_i)$ (Naive Bayes' assumption)

$$g_i(\mathbf{x}) = -\frac{1}{2} \sum_{j=1}^{d} \left(\frac{x_j^t - m_{ij}}{s_j} \right)^2 + \log \hat{P}(C_i)$$

Classification based on weighted Euclidean distance (in s_i units) to the nearest mean

Diagonal **S**

Diagonal S, equal variances

 Nearest mean classifier: Classify based on Euclidean distance to the nearest mean

$$g_{i}(\mathbf{x}) = -\frac{\|\mathbf{x} - \mathbf{m}_{i}\|^{2}}{2s^{2}} + \log \hat{P}(C_{i})$$

$$= -\frac{1}{2s^{2}} \sum_{j=1}^{d} (x_{j}^{t} - m_{ij})^{2} + \log \hat{P}(C_{i})$$

 Each mean can be considered a prototype or template and this is template matching

Diagonal S, equal variances

Model Selection

Assumption	Covariance matrix	No of parameters
Shared, Hyperspheric	S _i = S = <i>S</i> ² I	1
Shared, Axis-aligned	$\mathbf{S}_{i}=\mathbf{S}$, with $\mathbf{s}_{ij}=0$	d
Shared, Hyperellipsoidal	S _i =S	d(d+1)/2
Different, Hyperellipsoidal	S _i	K d(d+1)/2

- As we increase complexity (less restricted S), bias decreases and variance increases
- Assume simple models (allow some bias) to control variance (regularization)