

Relembrando alguns conceitos

- · Caminho -> sequência de vértices
- Comprimento de um caminho -> total de arestas do caminho
- · Ordem -> número total de vértices
- · Tamanho -> número total de arestas
- Diâmetro -> maior dos menores caminhos entre os vertices
- Conectividade dos vértices -> número mínimo de vértices cuja remoção desconecta o grafo
- Conectividade das arestas-> número mínimo de arestas cuja remoção desconecta o grafo

Relembrando alguns conceitos

 grau de entrada -> numero de arestas que entram no nó

 grau de saída -> numero de arestas que saem do nó

 grau médio do nó-> numero de arestas do nó: grau de entrada + grau de saída

Algumas aplicações

Estrutura de Dados

Dados computacionais são armazenados nos nós de uma estrutura denominada: árvore

No exemplo ao lado, cada nó armazena um número, mas outros itens, como textos, imagens e arquivos também poderiam ser armazenados

Mas qual a vantagem de armazenar dados em árvores?

Para dados hierárquicos, como sistemas de arquivos, esta é a organização natural

A manutenção de um conjunto ordenados de dados é também eficiente

Armazenamento de Dados

Muitas vezes precisamos manter um conjunto ordenados de dados no computador

Principal vantagem é que a busca é muito mais eficiente

Imagine você realizando a busca por:

Um nome em uma lista telefônica no qual os nomes estão fora de ordem

Por uma determinada casa em uma rua onde os números da casa foram definidos de modo arbitrário

Árvore com Dados Ordenados

As árvores abaixo mantém uma lista de números organizados de modo aleatório e ordenado, respectivamente

Exercício: Tente descobrir qual a regra utilizada para que os nós da árvore se mantenham ordenados

Por que a busca é eficiente?

O computador consegue analisar um nó de cada vez e sempre começa a busca pelo nó raiz.

Suponha que desejemos obter o conteúdo do nó denominado pelo número 14:

Árvore não ordenada: necessário verificar nó por nó

Árvore ordenada: basta verificar alguns nós

Se a busca for por um número não presente, como o 18, a vantagem da ordenação é ainda maior

Aplicações do armazenamento

Podemos utilizá-las sempre que queremos armazenar um conjunto de dados de modo ordenado

Obs: Árvores nem sempre são a estrutura de dados mais eficiente em computação, mas este é um tópico para outras disciplinas

Exercício: para cada um dos exemplos abaixo, pense em dois critérios de ordenação a utilizar

Nomes de clientes de uma empresa

Alunos da UFABC

Lista de produtos em estoque

Lista de vôos em um aeroporto

Redes Metabólicas

- Nossas células funcionam através da interação entre diversas moléculas, como enzimas, proteínas e ácidos nucleicos
- A figura ao lado mostra parte de uma rede metabólica

Redes Metabólicas

Podemos modelar redes metabólicas por grafos, onde os nós correspondem às moléculas e as arestas às interações

Estudar estas redes são importante pois:

- Permite entender o funcionamento dos seres vivos
- Permite descobrir as causas e tratamento para doenças, como câncer e diabetes

Hoje existe um grande números de bancos de dados contendo informações sobre genes, proteínas, enzimas e suas redes metabólicas

Ex: KEGG: Kyoto Encyclopedia of Genes and Genomes

http://www.genome.jp/kegg/kegg.html

Internet

- Grafos são utilizados para modelar diversas situações:
- Canais de comunicação entre computadores de usuários, roteadores e servidores web
- Estrutura lógica das páginas da Internet, com as relações entre os sítios da Internet através de hyperlinks
- Hierarquia de servidores no caso de serviços, como o de descoberta de endereços IP de servidores a partir de seus nomes (ex: www.ufabc.edu.br)
- Organização das páginas de um sítio da Internet

Representação de Grafos

Algoritmos de Grafos

- ✓ Algoritmos envolvendo grafos são comuns em computadores, pois estes permitem a resolução de importantes problemas, conforme vimos:
 - Caixeiro viajante
 - Menor distância entre 2 pontos
 - Fluxo máximo
 - Organização de dados em computadores

Representação de Grafos

- ✓ Mas como representar grafos em computadores?
- ✓ As duas maneiras mais utilizadas são:

- Lista de adjacências
- Matriz de adjacências

Matriz de Adjacências

• A matriz de adjacências de um grafo tem colunas e linhas indexadas pelos vértices. Se A for a matriz de adjacências de índices i e j, A(i,j) = 1 se os vértices i e j forem conectados por uma aresta e A(i,j) = 0 caso contrário. Em grafos não orientados a matriz de adjacências é sempre simétrica, ou seja, A(i,j) = A(j,i).

Exemplo: Grafo não-orientado e Matriz de Adjacência

$$A(i,j) = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

- O grau do nó pode ser obtido diretamente da Matriz de Adjacência
- Em uma rede não direcionada o grau pode ser obtido tanto da soma das linhas ou das colunas

Exemplo: Grafo orientado e Matriz de Adjacência

$$A(i,j) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

Em uma Matriz de Adjacências de uma rede direcionada a soma das linhas nos dá o grau de saída e a soma das colunas o grau de entrada

Exercício 1

 Apresente a Matriz de Adjacência do grafo abaixo:

Matriz de Adjência

Somando os valores de cada linha temos o grau do nó correspondente!

	A	В	C	D	E	F	G	Н
A	0	1	0	0	0	0	1	0
В	1	0	1	0	0	0	0	0
C	0	1	0	1	0	0	0	0
D	0	0	1	0	1	0	0	0
E	0	0	0	1	0	1	1	0
F	0	0	0	0	1	0	0	0
G	1	0	0	0	1	0	0	1
Н	0	0	0	0	0	0	1	0

Como já vimos em algumas redes, as arestas podem ter um valor de importância associado a ela.

Ex.:

- o custo em atravessar certo trecho de rodovia;
- o grau de amizade entre duas pessoas;
- a energia transferida de um animal ao outro.

	A	В	C	D	E	F	G	Н
A	0	2	0	0	0	0	3	0
В	2	0	2	0	0	0	0	0
C	0	2	0	4	0	0	0	0
				0				
E	0	0	0	2	0	2	3	0
F	0	0	0	0	2	0	0	0
G	3	0	0	0	3	0	0	1
Н	0	0	0	0	0	0	1	0

Matriz de Incidência

- A Matriz de Incidência representa computacionalmente um grafo em que as linhas e colunas são vértices e arestas. Assim, dado um grafo com n vértices e m arestas, podemos representá-lo por uma matriz B n x m, guardando informações sobre a incidência de vértices em cada aresta.
- Para representar um grafo sem pesos nas arestas e não-orientado, basta que as entradas da matriz B contenham +1 se a aresta chega no vértice, -1 se a aresta parte do vértice e O caso a aresta não chegue nem parta no/do vértice.

Exemplo: Matriz de Incidência

Exercício 2

 Apresente a Matriz de Incidência do grafo abaixo:

Lista de Adjacências

 O vetor de listas de adjacência de um grafo tem uma lista encadeada para cada um de seus vértices.

 A lista de cada vértice v contém todos os vértices vizinhos que se pode alcançar a partir de v.

Exemplo: Lista de Adjacências

Exercício

 Um grafo não-ponderado é representado pela lista de adjacências Adj = {[2]; [3]; [4,5,8]; []; [6,7]; [1]; [9]; [10]; [10]; []}

 Apresente o grafo bem como os graus de entrada e saída de cada nó, a partir da Matriz de Adjacência

· Apresente a Matriz de Incidência