The sequence $\{V_{ik}\} \longrightarrow V_{\pi}$ as $k \to \infty$ under the same conditions that guarantee the existence of V_{π} .

1. either $\gamma \leq 1$ (: $\gamma \in [0, 1)$)

2. episodie task

Fhis iterative algorithm is called "iterative folicy evaluation" expected updates: In DP, updates are bossed on on expect attain over all possible next states, seather than on a sample next state.

in the subsequent Whom you use the updated values iteration — in flace algorithm. ex- S= & s,, ss, ss} $V(s_1) \rightarrow 0.5$ $V(s_2) \rightarrow -1$ iteration 0, -> see the pseudo code for policy evaluation from TB. V(53) -> 2 iteration 1, $V(s_i)$ = whate Policy improvement: - deterministie vs. Stochestie policy: -V/S2) $(\pi | a|s)$ $a \in A(s) = Sa_{1}a_{2}$ let vossey we have Un for some orbitrary dot : policy of . If we change the policy to

deterministically choose $a \neq \pi/s$) - whether we should do it or not? $V_{\pi/s}$) $v_{\pi/s}$ $Q_{\pi}(s,a) = E[R_{t+1} + \gamma V_{\pi}(s_{t+1}) | s_{t} = s, A_{t} = a]$ $\uparrow (a) \qquad \text{(see earlier lectures for } prof_{\sigma}(s_{t})$ Choose a & then follow T, leading to value of S bouring grassa) a. 2*(s,a) > V*(s) Suffere the D. has a tre answer, then coetamily a

the new policy would in fact be a better one overall. This is what one would expect.