Question Bank

Subject: Numerical Methods Set-II

Topic: Solution of Algebraic and Transcendental Equations

- 1. If f(x) is continuous in [a,b] and f(a)f(b)<0, then there exist
 - a) At least one real root
 - b) At most one real root
 - c) Exactly one real root
 - d) Exactly one complex root
- 2. Which of the following does not always guarantee the convergence
 - a) Secant method
 - b) Bisection method
 - c) Regula-falsi method
 - d) Newton-Raphson Method
- 3. The Newton-Raphson method fails when
 - a) f'(x)=1
 - b) f'(x)=0
 - c) f'(x) = -1
 - d) f''(x)=0
- 4. Condition for convergence of Newton-Raphson method is
 - a) $|f(x)f'(x)| < \{f''(x)\}^2$
 - b) $|f(x)f''(x)| < \{f'(x)\}^2$
 - c) $|f(x)f'(x)| > \{f''(x)\}^2$
 - d) $|f(x)f''(x)| > \{f'(x)\}^2$
- 5. Regula falsi method used for finding the real roots of a numerical equation is
 - a) An analytical method
 - b) Graphical method
 - c) Iterative method
 - d) None of these
- 6. Regula-Falsi method is
 - a) Conditionally divergent
 - b) Linearly convergent
 - c) Divergent
 - d) None of these
- 7. For Newton-Raphson method, the iterative formula is
 - a) $X_{n+1} = X_n +$
 - b) $X_{n+1} =$
 - c) $X_{n+1} =$
 - **d)** $X_{n+1} = X_n -$
- 8. One of the roots of the equation $x^2+2x-2=0$ lies in between
 - a) 1 and 2
 - b) 0 and 0.5
 - c) 0.5 and 1.0
 - d) None of these
- 9. Newton-Raphson method is also known as method of
 - a) Straight line
 - b) Tangent

	c) Normal d) Cyclic
10	The order of convergence of Newton-Raphson method is
	a) 3
	b) 2
	c) 1
	d) 4
	Under the condition that f(a), f(b) have opposites and a <b approximation="" first="" of="" th="" the="" the<="">
	one of the roots of f(x)=0 by Regula-Falsi method is given by
	a)
	b)
	c)
	d)
12.	Newton-Raphson method formula for (Where N is a positive integer) is
	a) $X_{n+1}=NX_n$
	b) $X_{n+1} = X_n(2 - NX_n)$
	$c) x_{n+1} = x_n (2 + Nx_n)$
	$d) x_{n+1} = Nx_{n-1}$
	Bisection method is but
	a) Fast, fails
	b) Fast, sometimes fails
	c) Fast, never fails
	d) Slow, never fails
	Newton-Raphson method formula for finding the square root of a real number R from the
	equation x²-R=0 is
	a) $X_{n+1} = \frac{1}{2}$
	b) $x_{n+1} = (x_n + 1)$
	$\begin{array}{ll} C) & X_{n+1} = (X_{n}) \\ \end{array}$
	d) None of these
15.	Find the root of the following equation by Newton-Raphson method correct up to 3
	decimal places: x³ -3x+1=0
	Ans: 1.532
	Find the root of the following equation by Regula-Falsi method correct up to 3 decimal
	olaces:
	Xe ^x -3=0
	Ans: 1.060
	Find the root of the following equation by Bisection method correct up to 3 decimal
	places: x³ -4x-9=0
	Ans: 2.7065
٠	Topic: Numerical Solution of Ordinary Differential Equations
1.	Runge-Kutta formula has a truncation error, which is order of-
	a) h^2
	b) h⁴
	c) h⁵
	d) None of these

2.	The truncation error of Euler's method is order of a) hb) h²
	c) h ³
3.	 d) None of these Milne's predictor-corrector method is a single step method a) False
1	b) True
4.	If and $y(0)=2$, the value of k_2 according to Runge-Kutta of 2^{nd} order is $(h=0.2)$ a) 0.1
	b) 0.01
	c) 0.4 d) 0.04
5.	For solving ordinary differential equation, the Euler's formula is
	a) b)
	c)
6.	d) Runge-Kutta method of fourth order is used to solve
-	a) A first order ordinary differential equation numerically
	b) A system of linear equationsc) A first-order partial differential equations numerically
	d) None of these
7.	Modified Euler's method has a truncation error of the order a) h
	b) h ²
	c) h^4 d) h^3
8.	Milne's predictor formula is-
	a)
	b) c)
^	d)
9.	Milne's corrector formula is- a)
	b)
	c) d)
10.	Úse Taylor series method to solve the differential equation given $y(0)=1$ and find $y(0.03)$
	Ans: 0.97001 Use Euler's method, find the approximate value of y corresponding to x=1 given that
	and y=1 when x=0
	Ans: 3.18 Using modified Euler's method, find an approximate value of y at x=0.3 given that and
12.	y(0)=1.
10	Ans: 1.3997 Civen that where v(0)=0. Use the fourth order Punge Kutte method to find v(0.2)
13.	Given that where $y(0)=0$. Use the fourth order Runge-Kutta method to find $y(0.2)$ Ans: 0.2027
14.	Compute $y(2)$ by Milne's predictor-corrector method if given $y(0)=2$, $y(0.5)=2.636$, $y(0.4)=0.4228$ and $y(0.6)=0.6841$. Ans: 6.8710, 6.8732
	7410. 0.07 10, 0.07 02

Topic: Numerical Solution of a System of Linear Equations

- 1. When the Gauss elimination method is used to solve BX=A, B is transformed into
 - a) A lower triangular matrix
 - b) An upper triangular matrix
 - c) Zero matrix
 - d) None of these
- 2. Diagonal dominance is must for
 - a) Gauss-Seidel method
 - b) Gauss-Jordan method
 - c) Gauss-elimination method
 - d) None of these
- 3. Gauss elimination method does not fail even if one of the pivot element is equal to zero
 - a) True
 - b) False
- 4. When Gauss-Jordan method is used to solve the system of equations which can be written in the form AX=B, A must be a
 - a) Singular matrix
 - **b)** Non-singular matrix
 - c) Diagonal matrix
 - d) Orthogonal matrix
- 5. Solve the system of equations by Gauss-elimination method

x+4y+3z=1

2x+y+4z=4

x-3y-2z=5

Ans: x=3, y=-2, z=2

6. Solve the system of equations by Gauss-Seidel method correct up to 3 decimal places x+y+54z=110

27x+6y-z=85

6x+15y+2z=72