Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

> Отчёт по лабораторной работе №3 по дисциплине «Математическая статистика»

> > Выполнил студент: Самутичев Евгений Романович группа: 3630102/70201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

Содержание

1	Пос	становка задачи	2			
2	Teo	видо	3			
	2.1	Выбросы	3			
	2.2	Боксплот Тьюки	3			
		2.2.1 Описание	3			
		2.2.2 Построение	3			
3	Pea	ализация	4			
4	Рез	зультаты	5			
	4.1	Боксплоты	5			
	4.2	Теоретическая вероятность выбросов	8			
	4.3	Доля выбросов	8			
5	Обо	суждение	9			
6	Прі	риложения				
C	пис	сок иллюстраций				
	1	Нормальное распределение	5			
	2	Распределение Коши	5			
	3	Распределение Лапласа	6			
	4	Распределение Пуассона	6			
	5	Равномерное распределение	7			
C	пис	сок таблиц				
	1	Теоретическая вероятность выбросов	8			

1 Постановка задачи

Для каждого из 5 распределений:

- 1. Нормального N(x, 0, 1)
- 2. Коши C(x, 0, 1)
- 3. Лапласа $L(x,0,\frac{1}{\sqrt{2}})$
- 4. Пуассона P(k, 10)
- 5. Равномерного $U(x, -\sqrt{3}, \sqrt{3})$

сгенерировать выборки размера 20 и 100, построить боксплот Тьюки. Определить долю выбросов экспериментально (сгенерировав выборку каждого размера 1000 раз) и сравнить с результатами полученными теоретически.

2 Теория

2.1 Выбросы

Результат измерения, выделяющийся из выборки называется выбросом. Простейший критерий основан на межквартильном расстоянии, выбросами считаются элементы выборки лежащие вне диапазона $[X_1, X_2]$:

$$X_1 = LQ - \frac{3}{2}(UQ - LQ), X_2 = UQ + \frac{3}{2}(UQ - LQ)$$
(1)

, где LQ, UQ - выборочные нижний и верхний квартили.

Теоретическая вероятность выбросов для непрерывных распределений:

$$P_{outlier} = P(x < X_1) + P(x > X_2) = F(X_1) + (1 - F(X_2))$$
(2)

, а для дискретных с учетом возможного скачка

$$P_{outlier} = F(X_1) - (F(X_1 +) - F(X_1)) + (1 - F(X_2))$$
(3)

2.2 Боксплот Тьюки

2.2.1 Описание

Боксплот (англ. box plot) — график, использующийся в описательной статистике, компактно изображающий одномерное распределение вероятностей: в удобной форме показывает медиану, нижний и верхний квартили, минимальное и максимальное значение выборки и выбросы. [2]

2.2.2 Построение

Границами ящика служат LQ и UQ, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выбросов): X_1 и X_2 (1).

3 Реализация

Работа выполнена с использованием языка **Python** в интегрированной среде разработки **PyCharm**, были задействованы библиотеки:

- NumPy вычисление квартилей для дальнейшего подсчета выбросов
- \bullet \mathbf{SciPy} модуль \mathbf{stats} для генерации данных по распределениям
- Matplotlib построение боксплотов

Исходный код работы приведен в приложении.

4 Результаты

4.1 Боксплоты

Рис. 1: Нормальное распределение

Рис. 2: Распределение Коши

Рис. 3: Распределение Лапласа

Рис. 4: Распределение Пуассона

Рис. 5: Равномерное распределение

4.2 Теоретическая вероятность выбросов

Подсчитана для каждого распределения при помощи модуля stats библиотеки SciPy (см. Реализация):

Распределение					
$P_{outlier}(2),(3)$	0.007	0.156	0.0625	0.008	0.0

Таблица 1: Теоретическая вероятность выбросов

4.3 Доля выбросов

5 Обсуждение

6 Приложения

1. Исходный код лабораторной https://github.com/zhenyatos/statlabs/tree/master/Lab3

Список литературы

- [1] Н. И. Чернова, Математическая статистика: Учеб. пособие. Новосиб. гос. ун-т. Новосибирск, 2007. 148 стр.
- [2] Ящик с усами // Википедия. [2020—2020]. Дата обновления: 12.01.2020. URL: https://ru.wikipedia.org/?oldid=104502300 (дата обращения: 12.01.2020)