1. Vector Notation

- A vector x in d-dimensions is represented as a column:

$$x = [x1, x2, ..., xd]$$

2. Norms

- L2 Norm (Euclidean): $||x|| = \operatorname{sqrt}(x1 + x2 + ... + xd)$
- L1 Norm (Manhattan): ||x|| = |x1| + |x2| + ... + |xd|

3. Dot Product

$$-x y = xy = x1*y1 + x2*y2 + ... + xd*yd$$

4. Angle Between Vectors

- $-\cos() = (xy) / (||x|| * ||y||)$
- Helps understand directional similarity
- < 90 positive dot product same side
- > 90 negative dot product opposite side

5. Equation of Line and Halfspace

- Line: wx + w = 0
- Defines the decision boundary
- Halfspaces:
 - * wx + w > 0 positive halfspace
 - * wx + w < 0 negative halfspace

6. Distance from Origin to Line

$$- d = |w| / ||w||$$

7. Distance from Point to Line

- d = |wp + w| / ||w||
- Sign indicates which side of the hyperplane the point lies on

8. Distance Between Two Hyperplanes

- -d = |w w| / ||w||
- Valid only when w = w = w

9. Loss and Gain Functions (SVM Intuition)

- Loss function tells how good the structure is
- Lower the loss, better the separation
- Gain function:

$$Gain(f(x)) = [(wxi + w) / ||w|| * yi] over i = 1 to n$$

- Loss = -Gain(f(x))
- Good line: High sum of signed distances (SOD) large margin

Date:
Loss function: tells us how good the stoucture
Lower the hoss better the function
· A Good Line will have SOD as high as possible
Gain func = (= 1 will + wo) y:
loss func = - Gain f(n)

Machine Learning for Maths - Session 4
Date : Mon tue wed thu Fri sat sun
(2) Dist blu point 4 line:
$d = \frac{\omega^2 \rho + \omega_0}{1/\omega 1/}$
4 work we half space -ve, opposite of point, -ve half space
Distance b/w 2 Hyperplane
Ext Es
$\omega_1 = \omega_2 = \omega^T$ $d = 0$ $d = 0$
Coplanes de la