MC458 — Projeto e Análise de Algoritmos I

C.C. de Souza C.N. da Silva O. Lee

Antes de mais nada...

- Uma versão anterior deste conjunto de slides foi preparada por Cid Carvalho de Souza e Cândida Nunes da Silva para uma instância anterior desta disciplina.
- O que vocês tem em mãos é uma versão modificada preparada para atender a meus gostos.
- Nunca é demais enfatizar que o material é apenas um guia e não deve ser usado como única fonte de estudo. Para isso consultem a bibliografia (em especial o CLR ou CLRS).

Orlando Lee

Agradecimentos (Cid e Cândida)

- Várias pessoas contribuíram direta ou indiretamente com a preparação deste material.
- Algumas destas pessoas cederam gentilmente seus arquivos digitais enquanto outras cederam gentilmente o seu tempo fazendo correções e dando sugestões.
- Uma lista destes "colaboradores" (em ordem alfabética) é dada abaixo:
 - Célia Picinin de Mello
 - ▶ José Coelho de Pina
 - Orlando Lee
 - ▶ Paulo Feofiloff
 - ▶ Pedro Rezende
 - ▶ Ricardo Dahab
 - Zanoni Dias

 Como dito anteriormente, na maior parte desta disciplina, iremos nos concentrar na análise de pior caso e no comportamento assintótico dos algoritmos (instâncias de tamanho grande).

- Como dito anteriormente, na maior parte desta disciplina, iremos nos concentrar na análise de pior caso e no comportamento assintótico dos algoritmos (instâncias de tamanho grande).
- Considere o algorimo Insertionsort. Veremos que ele tem complexidade (de pior caso) igual a uma função quadrática $an^2 + bn + c$, onde a, b, c são constantes absolutas.

- Como dito anteriormente, na maior parte desta disciplina, iremos nos concentrar na análise de pior caso e no comportamento assintótico dos algoritmos (instâncias de tamanho grande).
- Considere o algorimo Insertionsort. Veremos que ele tem complexidade (de pior caso) igual a uma função quadrática an² + bn + c, onde a, b, c são constantes absolutas.
- O estudo assintótico nos permite "jogar para debaixo do tapete" os valores destas constantes, i.e., aquilo que independe do tamanho da entrada (neste caso os valores de a, b e c).

- Como dito anteriormente, na maior parte desta disciplina, iremos nos concentrar na análise de pior caso e no comportamento assintótico dos algoritmos (instâncias de tamanho grande).
- Considere o algorimo Insertionsort. Veremos que ele tem complexidade (de pior caso) igual a uma função quadrática an² + bn + c, onde a, b, c são constantes absolutas.
- O estudo assintótico nos permite "jogar para debaixo do tapete" os valores destas constantes, i.e., aquilo que independe do tamanho da entrada (neste caso os valores de a, b e c).
- Por que podemos fazer isso?

Considere a função quadrática $3n^2 + 10n + 50$:

Considere a função quadrática $3n^2 + 10n + 50$:

n	$3n^2 + 10n + 50$	3 <i>n</i> ²
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472

Considere a função quadrática $3n^2 + 10n + 50$:

n	$3n^2 + 10n + 50$	$3n^2$
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472

Como se vê, $3n^2$ é o termo dominante quando n é grande.

Considere a função quadrática $3n^2 + 10n + 50$:

n	$3n^2 + 10n + 50$	$3n^2$
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472

Como se vê, $3n^2$ é o termo dominante quando n é grande.

De um modo geral, podemos nos concentrar nos termos dominantes e esquecer os demais.

• Usando notação assintótica, dizemos que o algoritmo Insertionsort tem complexidade de tempo de pior caso $\Theta(n^2)$.

- Usando notação assintótica, dizemos que o algoritmo Insertionsort tem complexidade de tempo de pior caso $\Theta(n^2)$.
- Isto quer dizer duas coisas:

- Usando notação assintótica, dizemos que o algoritmo Insertionsort tem complexidade de tempo de pior caso $\Theta(n^2)$.
- Isto quer dizer duas coisas:
 - para todo n suficientemente grande, a complexidade de tempo é limitada (superiormente) assintoticamente por an² para alguma constante a > 0 e

- Usando notação assintótica, dizemos que o algoritmo Insertionsort tem complexidade de tempo de pior caso $\Theta(n^2)$.
- Isto quer dizer duas coisas:
 - ▶ para todo n suficientemente grande, a complexidade de tempo é limitada (superiormente) assintoticamente por an² para alguma constante a > 0 e
 - ▶ para todo n suficientemente grande, existe alguma instância de tamanho n que consome tempo **pelo menos** dn^2 , para alguma constante d > 0.

- Usando notação assintótica, dizemos que o algoritmo Insertionsort tem complexidade de tempo de pior caso $\Theta(n^2)$.
- Isto quer dizer duas coisas:
 - para todo n suficientemente grande, a complexidade de tempo é limitada (superiormente) assintoticamente por an² para alguma constante a > 0 e
 - ▶ para todo n suficientemente grande, existe alguma instância de tamanho n que consome tempo **pelo menos** dn^2 , para alguma constante d > 0.
- Mais adiante discutiremos em detalhes o uso da notação assintótica em análise de algoritmos.

"To understand recursion, we must first understand recursion."

(anônimo)

"Para fazer um algoritmo recursivo é preciso ter fé."

"To understand recursion, we must first understand recursion."

(anônimo)

"Para fazer um algoritmo recursivo é preciso ter fé."

(Siang W. Song)

O que é o paradigma de divisão-e-conquista?

"To understand recursion, we must first understand recursion."

(anônimo)

"Para fazer um algoritmo recursivo é preciso ter fé."

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a correção de um algoritmo recursivo?

"To understand recursion, we must first understand recursion."

(anônimo)

"Para fazer um algoritmo recursivo é preciso ter fé."

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a correção de um algoritmo recursivo?
- Como analisar o consumo de tempo de um algoritmo recursivo?

"To understand recursion, we must first understand recursion."

(anônimo)

"Para fazer um algoritmo recursivo é preciso ter fé."

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a correção de um algoritmo recursivo?
- Como analisar o consumo de tempo de um algoritmo recursivo?
- O que é uma fórmula de recorrência?

"To understand recursion, we must first understand recursion."

(anônimo)

"Para fazer um algoritmo recursivo é preciso ter fé."

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a correção de um algoritmo recursivo?
- Como analisar o consumo de tempo de um algoritmo recursivo?
- O que é uma fórmula de recorrência?
- O que significa resolver uma fórmula de recorrência?

 Um algoritmo recursivo encontra a saída para uma instância de entrada de um problema chamando a si mesmo para resolver instâncias menores deste mesmo problema.

- Um algoritmo recursivo encontra a saída para uma instância de entrada de um problema chamando a si mesmo para resolver instâncias menores deste mesmo problema.
- Algoritmos de divisão-e-conquista possuem três etapas em cada nível de recursão:

- Um algoritmo recursivo encontra a saída para uma instância de entrada de um problema chamando a si mesmo para resolver instâncias menores deste mesmo problema.
- Algoritmos de divisão-e-conquista possuem três etapas em cada nível de recursão:
 - Divisão: o problema é dividido em subproblemas semelhantes ao problema original, porém tendo com entrada instâncias de tamanho menor;

- Um algoritmo recursivo encontra a saída para uma instância de entrada de um problema chamando a si mesmo para resolver instâncias menores deste mesmo problema.
- Algoritmos de divisão-e-conquista possuem três etapas em cada nível de recursão:
 - Divisão: o problema é dividido em subproblemas semelhantes ao problema original, porém tendo com entrada instâncias de tamanho menor;
 - Conquista: cada subproblema é resolvido recursivamente a menos que o tamanho de sua entrada seja suficientemente "pequeno", situação na qual ele é resolvido diretamente;

- Um algoritmo recursivo encontra a saída para uma instância de entrada de um problema chamando a si mesmo para resolver instâncias menores deste mesmo problema.
- Algoritmos de divisão-e-conquista possuem três etapas em cada nível de recursão:
 - Divisão: o problema é dividido em subproblemas semelhantes ao problema original, porém tendo com entrada instâncias de tamanho menor;
 - Conquista: cada subproblema é resolvido recursivamente a menos que o tamanho de sua entrada seja suficientemente "pequeno", situação na qual ele é resolvido diretamente;
 - Combinação: as soluções dos subproblemas são combinadas para obter uma solução do problema original.

 Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)

- Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível;

- Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível;
 - **Divisão**: divida o vetor com n elementos em dois subvetores de tamanho $\lfloor n/2 \rfloor$ e $\lfloor n/2 \rfloor$, respectivamente.

- Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível;
 - **1 Divisão**: divida o vetor com n elementos em dois subvetores de tamanho $\lfloor n/2 \rfloor$ e $\lfloor n/2 \rfloor$, respectivamente.
 - Conquista: ordene os dois vetores recursivamente usando o Mergesort;

- Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível;
 - **1 Divisão**: divida o vetor com n elementos em dois subvetores de tamanho $\lfloor n/2 \rfloor$ e $\lceil n/2 \rceil$, respectivamente.
 - 2 Conquista: ordene os dois vetores recursivamente usando o Mergesort;
 - **Ombinação:** intercale os dois subvetores para obter um vetor ordenado usando o algoritmo Intercala.

Mergesort

Relembrando: o objetivo é rearranjar A[p ... r], com $p \le r$, em ordem crescente.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

Mergesort

Relembrando: o objetivo é rearranjar A[p ... r], com $p \le r$, em ordem crescente.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

Mergesort

Relembrando: o objetivo é rearranjar A[p ... r], com $p \le r$, em ordem crescente.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

Mergesort

Relembrando: o objetivo é rearranjar A[p ... r], com $p \le r$, em ordem crescente.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

O algoritmo está correto?

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

O algoritmo está correto?

A correção do algoritmo MERGESORT apoia-se na correção do algoritmo INTERCALA e pode ser demonstrada por indução em n:=r-p+1.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

O algoritmo está correto?

A correção do algoritmo MERGESORT apoia-se na correção do algoritmo INTERCALA e pode ser demonstrada por indução em n := r - p + 1.

De modo geral, a prova de correção de um algoritmo recursivo segue o mesmo paradigma de prova por indução.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Suponha que INTERCALA é correto. Veremos mais adiante no curso uma implementação e uma prova de correção desta rotina.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Suponha que INTERCALA é correto. Veremos mais adiante no curso uma implementação e uma prova de correção desta rotina.

Base: n = 1. Neste caso p = r e claramente MERGESORT funciona.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Suponha que Intercala é correto. Veremos mais adiante no curso uma implementação e uma prova de correção desta rotina.

Base: n = 1. Neste caso p = r e claramente MERGESORT funciona.

Hipótese de indução: suponha que $n \ge 2$ e que MERGESORT funciona para qualquer vetor com menos que n elementos.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Suponha que INTERCALA é correto. Veremos mais adiante no curso uma implementação e uma prova de correção desta rotina.

Base: n = 1. Neste caso p = r e claramente MERGESORT funciona.

Hipótese de indução: suponha que $n \ge 2$ e que MERGESORT funciona para qualquer vetor com menos que n elementos.

Passo de indução: seja A[p ... r] com n = r - p + 1.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
Como p < r, segue que p \le q < r.
Assim, A[p . . q] e A[q + 1 . . r] são vetores com menos que n elementos.
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
Como p < r, segue que p \le q < r.
Assim, A[p . . q] e A[q + 1 . . r] são vetores com menos que n elementos.
```

Por HI, as linhas 3 e 4 ordenam corretamente estes vetores.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
Como p < r, segue que p \le q < r.
```

Assim, A[p ... q] e A[q + 1... r] são vetores com menos que n elementos.

Por HI, as linhas 3 e 4 ordenam corretamente estes vetores.

Por hipótese, INTERCALA está correto. Logo, MERGESORT ordena corretamente A[p..r].

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Seja T(n) a complexidade de tempo do MERGESORT para ordenar um vetor de n elementos.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Seja T(n) a complexidade de tempo do MERGESORT para ordenar um vetor de n elementos.

Para estimar a complexidade de tempo de um algoritmo, usualmente calculamos quantas operações ele faz em cada linha ou em um bloco. Como o ${\bf MergeSort}$ é um algoritmo recursivo, isto não pode ser feito apenas desta forma.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Seja T(n) a complexidade de tempo do MERGESORT para ordenar um vetor de n elementos.

Para estimar a complexidade de tempo de um algoritmo, usualmente calculamos quantas operações ele faz em cada linha ou em um bloco. Como o ${\rm MERGESORT}$ é um algoritmo recursivo, isto não pode ser feito apenas desta forma.

O que fazemos é obter uma fórmula recursiva para T(n) que temos de "resolver".

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

linha	consumo de tempo
1	?
2	?
3	?
4	?
5	?

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

	linha	consumo de tempo
	1	$\Theta(1)$
	2	$\Theta(1)$
	3	$T(\lceil n/2 \rceil)$
	4	$T(\lfloor n/2 \rfloor)$
	5	$\Theta(n)$
(n) =	$T(\lceil n/2 \rceil)$	$\overline{) + T(\lfloor n/2 \rfloor) + \Theta(n)} + \Theta(2)$

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + \Theta(n)$ para $n = 2, 3, 4, ...$

 Obtemos o que chamamos de fórmula de recorrência (i.e., uma fórmula que define uma função em termos dela mesma).

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + \Theta(n)$ para $n = 2, 3, 4, ...$

• Em geral, ao aplicar o paradigma de divisão-e-conquista, chega-se a um algoritmo recursivo cuja complexidade T(n) é dada por uma **fórmula de recorrência**.

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Em geral, ao aplicar o paradigma de divisão-e-conquista, chega-se a um algoritmo recursivo cuja complexidade T(n) é dada por uma **fórmula de recorrência**.
- É preciso então resolver a recorrência! Mas, o que significa resolver uma recorrência?

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Em geral, ao aplicar o paradigma de divisão-e-conquista, chega-se a um algoritmo recursivo cuja complexidade T(n) é dada por uma **fórmula de recorrência**.
- É preciso então resolver a recorrência! Mas, o que significa resolver uma recorrência?
- Significa encontrar uma "fórmula fechada" para T(n).

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Em geral, ao aplicar o paradigma de divisão-e-conquista, chega-se a um algoritmo recursivo cuja complexidade T(n) é dada por uma **fórmula de recorrência**.
- É preciso então resolver a recorrência! Mas, o que significa resolver uma recorrência?
- Significa encontrar uma "fórmula fechada" para T(n).
- No caso, $T(n) = \Theta(n \lg n)$. Ou seja, o consumo de tempo do MERGESORT é $\Theta(n \lg n)$ no pior caso.

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Em geral, ao aplicar o paradigma de divisão-e-conquista, chega-se a um algoritmo recursivo cuja complexidade T(n) é dada por uma **fórmula de recorrência**.
- É preciso então resolver a recorrência! Mas, o que significa resolver uma recorrência?
- Significa encontrar uma "fórmula fechada" para T(n).
- No caso, $T(n) = \Theta(n \lg n)$. Ou seja, o consumo de tempo do MERGESORT é $\Theta(n \lg n)$ no pior caso.
- Veremos depois como resolver recorrências.

• Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos:

- Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos:
 - Problemas de aritmética: número de bits (ou bytes) dos inteiros.

- Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos:
 - ▶ Problemas de aritmética: número de bits (ou bytes) dos inteiros.
 - ▶ Problemas em grafos: número de vértices e/ou arestas

- Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos:
 - ▶ Problemas de aritmética: número de bits (ou bytes) dos inteiros.
 - ▶ Problemas em grafos: número de vértices e/ou arestas
 - Problemas de ordenação de vetores: tamanho do vetor.

- Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos:
 - ▶ Problemas de aritmética: número de bits (ou bytes) dos inteiros.
 - ▶ Problemas em grafos: número de vértices e/ou arestas
 - ▶ Problemas de ordenação de vetores: tamanho do vetor.
 - ▶ Busca em textos: número de caracteres do texto ou padrão de busca.

- Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos:
 - ▶ Problemas de aritmética: número de bits (ou bytes) dos inteiros.
 - ▶ Problemas em grafos: número de vértices e/ou arestas
 - ▶ Problemas de ordenação de vetores: tamanho do vetor.
 - ▶ Busca em textos: número de caracteres do texto ou padrão de busca.
- Vamos supor que funções que expressam complexidade são sempre positivas, já que estamos contando o número de operações.

Comparação de Funções

Comparação de Funções

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

Comparação de Funções

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

Por que podemos fazer isto?

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

Por que podemos fazer isto?

Considere as funções

$$n^2$$
, $2n^2$, $30n^2$, $100n^2$, cn^2 .

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

Por que podemos fazer isto?

Considere as funções

$$n^2$$
, $2n^2$, $30n^2$, $100n^2$, cn^2 .

Obviamente, quanto maior a constante c associada, maior é o valor da função. Entretanto, todas elas têm a mesma velocidade de crescimento. Podemos ignorar o valor de c.

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

	n = 100	n = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10^{6}	10 ⁹
n log n	200	3000	$4 \cdot 10^{4}$	$6 \cdot 10^{6}$	$9 \cdot 10^{9}$
n^2	10 ⁴	10 ⁶	10 ⁸	10^{12}	10^{18}
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$pprox 10^{10}$	$\approx 10^{14}$	$pprox 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07 \cdot 10^{301}$?	?	?

Definição:

$$O(g(n)) = \{f(n) :$$
existem constantes positivas $c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0\}$.

Definição:

$$O(g(n)) = \{f(n) :$$
existem constantes positivas $c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0\}$.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

Definição:

$$O(g(n)) = \{f(n) :$$
existem constantes positivas c e n_0 tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0\}$.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

Definição:

$$O(g(n)) = \{f(n) :$$
existem constantes positivas $c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0\}$.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

Exemplo:

$$\frac{1}{2}n^2-3n\in O(n^2).$$

Definição:

$$O(g(n)) = \{f(n) :$$
existem constantes positivas c e n_0 tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0\}$.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

Exemplo:

$$\tfrac{1}{2}n^2 - 3n \in O(n^2).$$

 $ar{\mathsf{V}}$ alores de c e n_0 que satisfazem a definição são

$$c = \frac{1}{2} e n_0 = 7.$$

Definição:

```
O(g(n)) = \{f(n) : existem constantes positivas c e n_0 tais que 0 \le f(n) \le cg(n), para todo n \ge n_0\}.
```

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

Exemplo:

O que é a classe O(1)?

Definição:

```
O(g(n)) = \{f(n) : existem constantes positivas c e n_0 tais que 0 \le f(n) \le cg(n), para todo n \ge n_0\}.
```

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

Exemplo:

O que é a classe O(1)?

É classe de funções que são limitadas por alguma constante.

Definição:

$$\Omega(g(n)) = \{f(n) :$$
 existem constantes positivas $c \in n_0$ tais que $0 \le cg(n) \le f(n)$, para todo $n \ge n_0\}$.

Definição:

$$\Omega(g(n)) = \{f(n) : \text{ existem constants positivas } c \in n_0 \text{ tais }$$

 $\text{que } 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0 \}.$

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).

Definição:

 $\Omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais}$ $\text{que } 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0\}.$

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).

Definição:

$$\Omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais}$$

 $\text{que } 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0\}.$

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).

Exemplo:

$$\frac{1}{2}n^2 - 3n \in \Omega(n^2).$$

Definição:

$$\Omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais}$$

 $\text{que } 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0\}.$

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).

Exemplo:

$$\frac{1}{2}n^2 - 3n \in \Omega(n^2).$$

 $\overline{\mathsf{V}}$ alores de c e n_0 que satisfazem a definição são

$$c = \frac{1}{14} e n_0 = 7.$$

Definição:

$$\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}.$$

Definição:

```
\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n > n_0 \}.
```

Equivalentemente, $f(n) \in \Theta(g(n))$ se, e somente se, $f(n) \in O(g(n))$ e $f(n) \in \Omega(g(n))$.

Definição:

$$\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}.$$

Definição:

$$\Theta(g(n)) = \{f(n) :$$
existem constantes positivas c_1 , c_2 e n_0 tais que $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$, para todo $n \ge n_0$.

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Classe Θ

Definição:

$$\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}.$$

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Definição:

$$\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}.$$

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Exemplo:

$$\frac{1}{2}n^2 - 3n \in \Theta(n^2).$$

Classe Θ

Definição:

$$\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}.$$

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Exemplo:

$$\tfrac{1}{2}n^2 - 3n \in \Theta(n^2).$$

Valores de c_1 , c_2 e n_0 que satisfazem a definição são

$$c_1 = \frac{1}{14}$$
, $c_2 = \frac{1}{2}$ e $n_0 = 7$.

Definição:

 $o(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le f(n) < cg(n), \text{ para todo } n \ge n_0\}.$

Definição:

```
o(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le f(n) < cg(n), \text{ para todo } n \ge n_0\}.
```

Informalmente, dizemos que, se $f(n) \in o(g(n))$, então f(n) cresce mais lentamente que g(n).

Definição:

```
o(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le f(n) < cg(n), \text{ para todo } n \ge n_0\}.
```

Informalmente, dizemos que, se $f(n) \in o(g(n))$, então f(n) cresce mais lentamente que g(n).

Exemplo:

$$1000n^2 \in o(n^3)$$

Definição:

 $o(g(n)) = \{f(n) :$ para toda constante positiva c, existe uma constante $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0\}$.

Informalmente, dizemos que, se $f(n) \in o(g(n))$, então f(n) cresce mais lentamente que g(n).

Exemplo:

 $1000n^2 \in o(n^3)$

Para cada valor de c, um n_0 que satisfaz a definição é

$$n_0 = \left\lceil \frac{1000}{c} \right\rceil + 1.$$

Definição:

$$\omega(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le cg(n) < f(n), \text{ para todo } n \ge n_0.\}$$

Definição:

 $\omega(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le cg(n) < f(n), \text{ para todo } n \ge n_0.\}$

Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n) cresce mais rapidamente que g(n).

Definição:

$$\omega(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le cg(n) < f(n), \text{ para todo } n \ge n_0.\}$$

Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n) cresce mais rapidamente que g(n).

Exemplo:

$$\frac{1}{1000}n^2\in\omega(n)$$

Definição:

$$\omega(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le cg(n) < f(n), \text{ para todo } n \ge n_0.\}$$

Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n) cresce mais rapidamente que g(n).

Exemplo:

$$\frac{1}{1000}n^2 \in \omega(n)$$

Para cada valor de c, um n_0 que satisfaz a definição é

$$n_0 = \lceil 1000c \rceil + 1.$$

Definições equivalentes

$$f(n) \in o(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.
 $f(n) \in O(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$.
 $f(n) \in \Theta(g(n))$ se $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$.
 $f(n) \in \Omega(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$.
 $f(n) \in \omega(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

Propriedades das Classes

Transitividade:

```
Se f(n) \in O(g(n)) e g(n) \in O(h(n)), então f(n) \in O(h(n)).

Se f(n) \in \Omega(g(n)) e g(n) \in \Omega(h(n)), então f(n) \in \Omega(h(n)).

Se f(n) \in \Theta(g(n)) e g(n) \in \Theta(h(n)), então f(n) \in \Theta(h(n)).

Se f(n) \in o(g(n)) e g(n) \in o(h(n)), então f(n) \in o(h(n)).

Se f(n) \in \omega(g(n)) e g(n) \in \omega(h(n)), então f(n) \in \omega(h(n)).
```

Propriedades das Classes

Reflexividade:

- $f(n) \in O(f(n))$.
- $f(n) \in \Omega(f(n)).$
- $f(n) \in \Theta(f(n))$.

Simetria:

 $f(n) \in \Theta(g(n))$ se, e somente se, $g(n) \in \Theta(f(n))$.

Simetria Transposta:

- $f(n) \in O(g(n))$ se, e somente se, $g(n) \in \Omega(f(n))$.
- $f(n) \in o(g(n))$ se, e somente se, $g(n) \in \omega(f(n))$.

Usaremos expressões como f(n) = O(g(n)). Ela significa a mesma coisa que $f(n) \in O(g(n))$, ou seja, a função f(n) pertence à classe de funções O(g(n)). O mesmo se aplica para Ω e Θ .

• MERGESORT tem complexidade de tempo $O(n \lg n)$.

Usaremos expressões como f(n) = O(g(n)). Ela significa a mesma coisa que $f(n) \in O(g(n))$, ou seja, a função f(n) pertence à classe de funções O(g(n)). O mesmo se aplica para Ω e Θ .

• MERGESORT tem complexidade de tempo $O(n \lg n)$. Isto significa que para todo n suficientemente grande, a função T(n) que mede a complexidade de tempo (de pior caso) do MERGESORT pertence à classe de funções $O(n \lg n)$.

- MERGESORT tem complexidade de tempo $O(n \lg n)$. Isto significa que para todo n suficientemente grande, a função T(n) que mede a complexidade de tempo (de pior caso) do MERGESORT pertence à classe de funções $O(n \lg n)$.
- MERGESORT tem complexidade de tempo $\Omega(n \lg n)$.

- MERGESORT tem complexidade de tempo $O(n \lg n)$. Isto significa que para todo n suficientemente grande, a função T(n) que mede a complexidade de tempo (de pior caso) do MERGESORT pertence à classe de funções $O(n \lg n)$.
- MERGESORT tem complexidade de tempo $\Omega(n \lg n)$. Isto significa que para todo n suficientemente grande, a função T(n) que mede a complexidade de tempo (de pior caso) do MERGESORT pertence à classe de funções $\Omega(n \lg n)$.

- MERGESORT tem complexidade de tempo $O(n \lg n)$. Isto significa que para todo n suficientemente grande, a função T(n) que mede a complexidade de tempo (de pior caso) do MERGESORT pertence à classe de funções $O(n \lg n)$.
- MERGESORT tem complexidade de tempo $\Omega(n \lg n)$. Isto significa que para todo n suficientemente grande, a função $\mathcal{T}(n)$ que mede a complexidade de tempo (de pior caso) do MERGESORT pertence à classe de funções $\Omega(n \lg n)$.
- Logo MERGESORT tem complexidade de tempo $\Theta(n \lg n)$.

- MERGESORT tem complexidade de tempo $O(n \lg n)$. Isto significa que para todo n suficientemente grande, a função T(n) que mede a complexidade de tempo (de pior caso) do MERGESORT pertence à classe de funções $O(n \lg n)$.
- MERGESORT tem complexidade de tempo $\Omega(n \lg n)$. Isto significa que para todo n suficientemente grande, a função $\mathcal{T}(n)$ que mede a complexidade de tempo (de pior caso) do MERGESORT pertence à classe de funções $\Omega(n \lg n)$.
- Logo MERGESORT tem complexidade de tempo $\Theta(n \lg n)$.
- Por outro lado, MERGESORT tem complexidade de tempo $O(n^2)$ mas não $\Omega(n^2)$.

Exemplos

Faça a comparação assintótica das seguintes funções:

- \bullet $n \log n$
- 2^π
- 2ⁿ
- n
- \bullet n^2
- $\bullet \log n$
- $100n^2 + 15n$