

Module 1A: Descriptive Statistics

Measurements of *location* and *spread* of data

Agenda:

- Mean, mode, median
- Variability, variation, range
- Accuracy/Bias and Precision/Spread
- Intuitions about uncertainty: Fermi Estimation

You are considering buying a house in a certain neighbourhood. You find a potential house and, to appeal to perceived snobbiness as you are making your decision, your realtor mentions that the **average income in this neighbourhood is \$100,000 per year.**

You buy the house.

A year later, the same realtor knocks on your door, this time acting as a representative of the neighbourhood taxpayers' association. He would like you to sign a petition to decrease property taxes because, he says, the residents can't afford an increase in property taxes since the **average family income in the neighbourhood is only \$25,000 per year.**

How is this possible, if the realtor is telling the truth, and no one in the neighbourhood has moved or changed jobs in the last year?

The two common descriptions of data:

1. Location:

- Central Tendency
- Where is the weight of the data?

Average

2. Spread:

• How far apart are the data points? Especially: how far apart are the largest and smallest data points?

Range

You will also see:

- 1. Skew The third standardized moment; positive or negative skew. The shape of the distribution is not symmetric.
- 2. Kurtosis The fourth standardized moment; sort of 'peakness' of the distribution (fatness of the tails)

A story about central location of the data

Waiter	\$35,000	
Cook	\$30,000	
Dishwasher	\$25,000	
Customer 1	\$80,000	
Customer 2	\$50,000	
Customer 3	\$30,000	
Customer 4	\$45,000	

"Average" is approx. **\$42,143**

"Average" is \$125,000,037

Waiter	\$35,000	
Cook	\$30,000	
Dishwasher	\$25,000	
Customer 1	\$80,000	
Customer 2	\$50,000	
Customer 3	\$30,000	
Customer 4	\$45,000	
Software or Social Engineer	\$1,000,000,000	

\$35,000
\$30,000
\$25,000
\$80,000
\$50,000
\$30,000
\$45,000

Reorder
data

\$25,000
\$30,000
\$30,000
\$35,000
\$45,000
\$50,000
\$80,000

\$35,000		
\$30,000		
\$25,000		
\$80,000		
\$50,000		
\$30,000		
\$45,000		
\$1,000,000,000		

Reorder

\$25,000	
\$30,000	
\$30,000	
\$35,000	
\$45,000	
\$50,000	
\$80,000	
\$1,000,000,000	
	_

(Arithmetic) **Mean** =
$$\frac{\sum_{i=1}^{n} x_i}{n}$$

Median = middle value (odd), mean of middle value (even)

Mode = most frequent value

	Scenario 1	Scenario 2
mean	\$42 143	\$125,000,037
median	\$35,000	\$40,000
mode	\$30,000	\$30,000

Mean, Mode, and Median can give you different information and they have different benefits

- If the data are skewed or have an outlier, median is often a fairer reflection of the data
- Median can give quick information abut the data without having to calculate anything
- (arithmetic) mean can be a theoretical abstract (2.2 children per woman doesn't actually exist), but it allows you to use normal distribution to answer questions about the whole population

Will Rogers Phenomenon

"When the Okies left Oklahoma and moved to California, they raised the average intelligence level in both states."

https://en.wikipedia.org/wiki/Will_Rogers_phenomenon

Actual medical phenomenon: "medical stage migration"

<u>Example:</u> There were more COVID deaths among the vaccinated than the unvaccinated. In September 2022, 12,593 COVID deaths occurred in the United States. Of those, 39% were unvaccinated, while 61% were vaccinated. WHY?

Random Variables:

- Characteristics measured on individuals drawn from the population
- Value is not constant; it is subject to VARIATION
- Categorical (Nominal, Ordinal) or Numeric (Discrete, Continuous)

Types of data:

Categorical Variable

- AKA Class variables or Nominal variables
- They do not have magnitude on a numerical scale
- Nominal
 - Lack inherent order
- Ordinal
 - Inherent order i.e. age (0-18, 19-30, 30-45, etc)
- Ex: blood type, genotype, sex, state, survival (live or die), drug treatment (aspirin vs ibuprofen)

Quantitative Variables

- AKA Numerical variables
- Random Variable is a Quantitative variable
- Continuous
 - Ability to take any value ex.. Human weight, age
 - They can be measured
- Discrete
 - Spaces between possible values ex. Number of offspring, age
 - They can be counted

A research team is studying the health and fitness habits of a group of individuals. They collect the following data for each participant:

- 1. Resting heart rate (beats per minute)
- 2. Favorite type of exercise (running, swimming, cycling, pilates, etc.)
- 3. Number of hours exercised per week
- 4. Body Mass Index (BMI)
- 5. Member status at a gym (yes or no)

Which of the following (A, B, C, or D) correct classifies these variables:

A. Resting heart rate: Nominal

Favorite exercise: Ordinal

Number of hours of exercise per week: **Discrete**

BMI: Continuous

Membership status: Nominal

B. Resting heart rate: **Continuous**

Favorite exercise: Nominal

Number of hours of exercise per week: **Continuous**

BMI: Continuous

Membership status: Categorical

C. Resting heart rate: Ordinal

Favorite exercise: Nominal

Number of hours of exercise per week: Continuous

BMI: Ordinal

Membership status: Nominal

D. Resting heart rate: **Discrete**

Favorite exercise: Continuous

Number of hours of exercise per week: **Discrete**

BMI: Continuous

Membership status: Ordinal

Parameters Parameters

- Represented by Greek Letters
- μ; σ

Samples

have

ESTIMATES

- Represented by Roman Letters
 - \overline{x} ;

A story about spread (and shift of location) of the data

Spread of Data:

1. Variance

$$\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$

- 2. Standard Deviation
 - Same units as data
 - σ
- 3. Range
 - largest smallest value
- 4. Interquartile Range
 - 25th to 75th percentile

Peter and Rosemary Grant and the Ongoing Evolution of Galapagos Finches

Fermi Estimation*

- A good way to practice so you aren't bamboozled so easily
- https://www.njaapt.org/resources/Documents/Physics Olympics -- All/Fermi Questions - Worksheet and Answers.pdf
- **Question:** Genes are composed of exons (and introns) and all the exons in the genome comprise the exome. Using a Fermi estimation, what is a reasonable estimate for the size of the human genome?

* won't usually be time to discuss this, but the link to how to improve/justify your estimation is here in case you want to use it as a party trick

What Makes a 'good' sample?

Two major considerations:

1. Accuracy/biased

Bias:

a systematic discrepancy between estimates and the true population characteristic

2. Precision/Spread

• Low Sampling Error, high precision

$$SE_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

To address these, you typically need:

- 1. A sufficiently large sample
- 2. Randomly Sampled data points that are independent of each other

Question: Which of the following statements best describes the difference between accuracy and precision?

- A. Accuracy refers to how close measurements are to each other, while precision refers to how close measurements are to the true value.
- B. Accuracy refers to how close measurements are to the true value, while precision refers to how consistent measurements are with each other.
- C. Accuracy and precision are the same and both refer to how close measurements are to the true value.
- D. Accuracy and precision are unrelated to measurements and focus only on data variability.

https://www.zoology.ubc.ca/~whitlock/Kingfisher/SamplingNormal.htm

Many samples, each sample is size 5 individuals

Many samples, each sample is size 100 individuals

Produces a sampling distribution that is

Much narrower than the sampling distribution
produced from n=5, on the left.

(two arrows compare widths)

95% Confidence Intervals

95% Confidence Interval is calculated: $\bar{x} - 1.96 * SE_{\bar{x}} < \mu < \bar{x} + 1.96 * SE_{\bar{x}}$

We care a lot about precision and sample sizes because (along with alpha and some other assumptions) that is going to create our confidence intervals!

https://www.zoology.ubc.ca/~whitlock/Kingfisher/CIMean.htm

https://stats103.com/confidence-intervals/

https://onlinestatbook.com/2/estimation/ci_sim.html

95% Confidence Intervals

95% Confidence Interval is calculated:

$$\bar{x} - 1.96 * SE_{\bar{x}} < \mu < \bar{x} + 1.96 * SE_{\bar{x}}$$

https://www.zoology.ubc.ca/~whitlock/Kingfisher/CIMean.htm

Summary

1. Average:

- mean, median, mode all are legitimate ways of summarizing the average
- They are impacted differently by features of the data set
- Summary statistics, like average, hide a lot of heterogeneity, but are often useful

2. Philosophical core of frequentist statistics (mostly what we use):

We use samples to infer information about populations

- **Samples** are **noisy.** You estimate a value that jumps around from sample to sample and isn't constant.
- **Populations** have a **TRUE AND CONSTANT PARAMETER VALUE** that you usually don't know (and are thus using samples to estimate the parameter value)

3. Accuracy ("Signal") versus Precision ("Noise")

- **Bias is bad** and almost impossible to fix (try to avoid with good experimental design and sampling protocol)
- **Precision** can be fixed by increasing sample size: