Comparative Genomics and Visualisation BS32010 1.Introduction

Leighton Pritchard^{1,2,3}

¹Information and Computational Sciences,

²Centre for Human and Animal Pathogens in the Environment,

³Dundee Effector Consortium.

The James Hutton Institute, Invergowrie, Dundee, Scotland, DD2 5DA

Recording of this talk, taking photos, discussing the content using email, Twitter, blogs, etc. is permitted (and encouraged), providing distraction to others is minimised.

These slides will be made available on SlideShare.

These slides, and supporting material including exercises, are available at https://github.com/widdowquinn/Teaching-2015-03-17-UoD_compgenvis

Introduction

What is comparative genomics?

Types of genome comparison

Course outline

What Is Comparative Genomics?

Comparative genomics is...

The combination of genomic data, and comparative and evolutionary biology, to address questions of genome structure, evolution, and function.

"NOTHING IN BIOLOGY MAKES SENSE EXCEPT In the light of evolution."

THEODOSIUS DOBZHANSKY

Comparison of physical features

How do we determine that features are related, and evolved?

Comparison of sequence features

Multiple alignment of ATP synthase

Comparison of genome features

Sequence similarity of individual features

Comparison of genome features

Genome structural rearrangements

Why comparative genomics?

- Genomes describe heritable characteristics
- Related organisms share ancestral genomes
- Functional elements encoded in genomes are common to related organisms

Then betwee A & B. chins
For of whiten. C + B. The
frinch predation, B a D
rather prestor histrockers
Then from bonds he
from d. - bierry whiten

Why comparative genomics?

- Transfer of functional understanding from model systems (E. coli, A. thaliana, D. melanogaster) to non-model systems
- Genome comparisons can be informative, even for distantly-related organisms

The betwee A & B. chins

For & celetin. C & B. The
frint predation, B & D

rather predate histochen

Then formed bout he
fromed. - bierry whiten

Genomes are informative, but...

CONTEXT: epigenetics, tissue differentiation, mesoscale systems, etc.

PHENOTYPIC PLASTICITY: responses to temperature, stress, environment, etc.

Genomes to systems

Functional Genomics

- Genomic differences can underpin phenotypic (morphological or physiological) differences.
- Where phenotypes/other organism-level properties are known, comparison of genomes can give mechanistic or functional insight into differences (e.g. GWAS).
- Genomic changes reveal evolutionary processes and constraints.

The betwee A & B. ching for of whiten C + B. The finet preater, B a D rather preater histories The farm bother from . - harry whiten

Introduction

What is comparative genomics? Types of genome comparison

Types of comparison

Within species

- e.g. isolate-level (and even within individuals)
- which genome features may account for unique characteristics of organisms/cell-types (e.g. tumours)?
- what epigenetic changes occur in an individual?

Within genera/between species

- what genome features show evidence of selective pressure?
- which species are under selective pressure for which functions?

Between subgroups

- what are the core set of genome features that define a subgroup or genus?
- what functions are present/absent between groups?

- Run by the Lenski lab, Michigan State University since 1988 (http://myxo.css.msu.edu/ecoli/)
- 12 flasks, citrate usage selection
- >50,000 generations of *E coli*!
 - Cultures propagated every day
 - Every 500 generations (75 days), mixed-population samples stored
 - Mean fitness estimated at 500 generation intervals

^aJeong et al. (2009) J. Mol. Biol. doi:10.1016/j.jmb.2009.09.052

^bBarrick *et al.* (2009) *Nature* doi:10.1038/nature08480

^CWiser et al. (2013) Science doi:10.1126/science.1243357

Comparative genomics in the news ^{a b c}

- Utricularia gibba: carnivorous bladderwort
- Genome: 82Mbp, 17,324 genes (wheat: 17bn bases, ≈94-96k genes)
- Intergenic region contraction (3% repeat elements; most plants: 10-60% repeat elements)
- Genomic context for flowering plants does not require "hidden regulators" (cf. ENCODE)

^aWashington Post 23/2/2015

^bIbarra-Laclette et al. (2013) Nature doi:10.1038/nature12132

^CCarretero-Paulet et al. (2015) Mol. Biol. Evol. doi:10.1093/molbev/msv020

Introduction

What is comparative genomics?
Types of genome comparison
Course outline

Levels of comparison

Bulk Properties

 chromosome/plasmid counts and sizes, nucleotide content, etc.

Whole Genome Sequence

- sequence similarity
- organisation of genomic regions (synteny), etc.

Genome Features/Functional Components

- numbers and types of features (genes, ncRNA, regulatory elements, etc.)
- organisation of features (synteny, operons, regulons, etc.)
- complements of features
- selection pressure, etc.

By: Leighton Pritchard

This presentation is licensed under the Creative Commons Attribution ShareAlike license https://creativecommons.org/licenses/by-sa/4.0/