UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen (utsatt prøve) i: KJM 1110 – Organisk kjemi I

Eksamensdag: 14. august 2014 Tid for eksamen: 14:30-18:30

Oppgavesettet er på 4 sider + 2 sider vedlegg

Vedlegg: 2 sider med spektroskopiske data og

periodesystemet (bakerst i oppgavesettet)

Tillatte hjelpemidler: Molekylbyggesett og enkel kalkulator

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Alle 8 oppgaver teller likt.

Oppgave 1

En organisk forbindelse inneholder kun grunnstoffene C, H og O. Massespekteret til forbindelsen viser et tydelig signal for molekylionet ved m/z = 150. Forbindelsen har ¹H NMR-spekteret som er vist nedenfor.

- a) Hva er forbindelsens molekylformel?
- b) Foreslå en mulig struktur til forbindelsen. Forklar hvordan den foreslåtte strukturen er i overensstemmelse med alle spektroskopiske data.

Oppgave 2

a) Forbindelsene under har svært forskjellige syrestyrker. Hvilken er den sterkeste syren, og hvilken er den svakeste? Grunngi svarene.

$$\stackrel{\scriptscriptstyle +}{\bigvee}$$
 $\stackrel{\scriptscriptstyle +}{\bigvee}$ $\stackrel{\scriptscriptstyle$

- b) En mastergradsstudent utførte reduksjonen av et amid som vist under. Hun startet med 6,27 g av syklopentankarboksamid og fikk isolert 4,02 g av ren syklopentylmetanamin.
 - i) Hvilket reduksjonsmiddel, LiAlH₄ eller NaBH₄, bør benyttes til denne reaksjonen? Begrunn svaret.
 - ii) Hva ble utbyttet av syklopentylmetanamin, regnet i % av teoretisk mulig?

Atommasser som kan være nyttige er gitt i periodesystemet i vedlegget.

Oppgave 3

a) Hver av reaksjonene under fører til syrekatalysert addisjon av vann. Hver reaksjon gir to stereoisomere produkter.

1)
$$H_2O, H^+$$
 ? + ?

$$2) \qquad \xrightarrow{H_2O, H^+} ? + ?$$

- i) Tegn strukturene til de to produktene fra reaksjon 1). Forklar hva slags form for stereoisomeri de to produktene har i forhold til hverandre (diastereomerer, enantiomerer, eller annet).
- ii) Tegn strukturene til de to produktene fra reaksjon 2). Forklar hva slags form for stereoisomeri de to produktene har i forhold til hverandre (diastereomerer, enantiomerer, eller annet).
- b) Hva mener vi med begrepet «racemisk blanding»?
- c) Det dannes en racemisk produktblanding i kun én av reaksjonene 1) og 2). Forklar hvorfor.
- d) Vis mekanismen for reaksjon 1). Bruk elektronparforskyvningspiler.

Oppgave 4

a) Ranger forbindelsene **A-E** etter økende reaktivitet i S_N2-reaksjoner. (Start med den som reagerer langsomst). Grunngi svaret.

b) i) Hvilket av alternativene **F-J** viser overgangstilstanden for E2-reaksjonen mellom 2-brom-2-metylpropan og hydroksidionet? Grunngi svaret.

ii) Vis mekanismen for denne E2-reaksjonen ved bruk av elektronparforskyvningspiler.

Oppgave 5

- a) Hver av disse forbindelsene kan foreligge i to stolkonformasjoner.
 - i) Tegn begge stolkonformasjonene for **A**. Hvilken av de to konformasjonene vil det foreligge mest av ved likevekt?
 - ii) Tegn begge stolkonformasjonene for **B**. Hvilken av de to konformasjonene er minst stabil?

$$CI$$
 $C(CH_3)_3$
 CH_3
 CH_3
 CH_3
 CH_3

- b) Det frigjøres varme når hydrogen (H₂) adderes til alkener i nærvær av katalysatoren PtO₂.
 - i) Flere isomere alkener kan gi 3-metylpentan når det gjennomføres katalytisk hydrogenering med dem. Vis strukturene til alle de mulige alkenene.
 - ii) Hvilket av alkenene i i) vil frigi mest varme når det hydrogeneres? Begrunn svaret, gjerne ved bruk av et energidiagram.

Oppgave 6

Vis og diskuter kort mekanismene for disse to reaksjonene. Benytt elektronparforskyvningspiler.

a)
$$CH_3 \xrightarrow{\Delta, H^+} OH$$

b)
$$OH$$
 Δ og M mest minst

Oppgave 7

- a) Tegn strukturen til disse forbindelsene:
 - i) (E)-hept-3-enal
 - ii) (R)-4-fluor-4-metylsyklopent-2-enon
 - iii) (1R,3S)-1,3-dimetylsykloheksan
- b) Gi entydige IUPAC-navn på disse forbindelsene:

$$V)$$
 CHO Br

Oppgave 8

Vi ønsker å gjennomføre disse to flertrinns-syntesene. Angi reagenser og strukturer for mellomprodukter. Reaksjonsmekanismer trengs ikke.

¹H NMR kjemiske skift av protoner i forskjellige omgivelser. Dersom protonet er omgitt av flere funksjonelle grupper, vil effektene være omtrent additive (forsterkende).

Type proton		Kjemisk skift (δ)
Referanse	$Si(CH_3)_4$	0,0
Alkyl (primær)	—СН ₃	0,7-1,3
Alkyl (sekundær)	—С Н ₂ —	1,2-1,6
Alkyl (tertiær)	СН —	1,4-1,8
Allylisk	$C = C - C \stackrel{\mathbf{H}}{\longleftarrow}$	1,6-2,2
Metylketon	—с С Н 3	2,0-2,4
Aromatisk metyl	Aryl—CH ₃	2,4-2,7
Alkynyl	—с≡с−н	2,5-3,0
Alkylhalid	CH—Halogen	2,5-4,0
Alkohol	ССОН	2,5-5,0
Alkohol, eter	CCH H	3,3-4,5
Vinylisk	C = C H	4,5-6,5
Aromatisk	Aryl—H	6,5-8,0
Aldehyd	—c(H	9,7-10,0
Karboksylsyre	—с ^о —н	11,0-12,0

[223]	[226]	[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[285]						
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub						
francium 87	radium 88	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111	ununbium 112						
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
85.47 caesium	87.62 barium	88.91	91.23 hafnium	92.91 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42	107.87 gold	mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
Rb	Sr	I	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd 112.41	In	Sn	Sb 121.76	Te	126.00	Xe
37	38 C#	39 V	40 7.	41 NJ 6	42 N/1 -	43 T	44 D	45 D.b	46 Del	47 A ~	48 C-d	49 •••	50 Cm	51 Ch	52 T	53 ■	54 V •
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
39.098	40.078	44.956	47.867	50.942	51.996	54.939	55.845	58.933	58.693	63.546	65.409	69.723	72.64	74.922	78.96	79.904	83.798
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
22.990 potassium	24.305 calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.984 krypton
Na	Mg												Si	P	S	CI	Ar
11	12											13 Al	14	15	16	17	18
sodium	magnesium	atomic weight										aluminium	silicon	14.007 phosphorus	sulphur	chlorine	argon
6.941	9.0122									atomic weight 10.811 12.011					15.999	18.998	20.180
Li	Be									ıbol		В	С	N	0	F	Ne
3	4									atomic number			6	7	8	9	10
1.0079 lithium	beryllium	element name boron carbon nitrogen oxygen fluorine												4.003 neon			
Н													He				
1		1 of towes ysteritet											2				
hydrogen	Periodesystemet											helium					

lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]