Korektnosť a úplnosť výrokovologických tabiel

6. prednáška Logika pre informatikov a Úvod do matematickej logiky

Ján Kľuka, Ján Mazák Letný semester 2022/2023

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

Obsah 6. prednášky

Dôkazy a výrokovologické tablá

Výrokovologické tablá – opakovanie

Korektnosť tabiel

Testovanie nesplniteľnosti, splniteľnosti a falzifikovateľnosti

Úplnosť

Nové korektné pravidlá

Rekapitulácia a plán

Minulý týždeň:

- Sformalizovali sme dôkazy sporom pomocou tabiel.
- Vyslovili, ale nedokázali tvrdenie o korektnosti tabiel: uzavreté tablo dokazuje výrokovologickú nesplniteľnosť
- a dôsledky pre dokazovanie vyplývania a tautológií.

Dnes:

- Dokážeme korektnosť tabiel.
- Preskúmame, čo vedia tablá povedať o splniteľnosti.
- Dokážeme úplnosť tabiel.

Dôkazy a výrokovologické tablá

Dôkazy a výrokovologické tablá

, ,

Výrokovologické tablá - opakovanie

Analytické tablo pre množinu označených formúl S^+ (skrátene tablo pre S^+) je binárny strom, ktorého vrcholy obsahujú označené formuly a ktorý je skonštruovaný podľa nasledovných induktívnych pravidiel:

 Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A⁺ z S⁺ je tablom pre S⁺.

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A⁺ z S⁺ je tablom pre S⁺.
- Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé **priame** rozšírenie \mathcal{T} ktorýmkoľvek z pravidiel:

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A^+ z S^+ je tablom pre S^+ .
- Nech \$\mathcal{T}\$ je tablo pre \$S^+\$ a \$y\$ je nejaký jeho list. Potom tablom pre \$S^+\$ je aj každé priame rozšírenie \$\mathcal{T}\$ ktorýmkoľvek z pravidiel:
 - α : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A⁺ z S⁺ je tablom pre S⁺.
- Nech \$\mathcal{T}\$ je tablo pre \$S^+\$ a \$y\$ je nejaký jeho list. Potom tablom pre \$S^+\$ je aj každé priame rozšírenje \$\mathcal{T}\$ ktorýmkoľyek z pravidiel:
 - α : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - β : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula β , tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A⁺ z S⁺ je tablom pre S⁺.
- Nech \$\mathcal{T}\$ je tablo pre \$S^+\$ a \$y\$ je nejaký jeho list. Potom tablom pre \$S^+\$ je aj každé priame rozšírenje \$\mathcal{T}\$ ktorýmkoľvek z pravidiel:
 - α : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - $m{eta}$: Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula $m{eta}$, tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať $m{eta}_1$ a pravé $m{eta}_2$.
 - S^+ : Ako jediné dieťa y pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu $A^+ \in S^+$.

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A⁺ z S⁺ je tablom pre S⁺.
- Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* \mathcal{T} ktorýmkoľvek z pravidiel:
 - α : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci
 - α_1 alebo α_2 . β : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula β , tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .
- S^+ : Ako jediné dieťa y pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu $A^+ \in S^+$. Nič iné nie ie tablom pre S^+ .

Tablá a tablové pravidlá

Pôvodné tablo	Možné priame rozšírenie	Pravidlá a označené formuly v nich				
	0	α	α	α	α_1	α_2
\mathcal{F}	<i>-</i>	α_1	α_2	$\mathbf{T}(X \wedge Y)$	TX	TY
>	<u> </u>			$\mathbf{F}(X \vee Y)$	$\mathbf{F}X$	$\mathbf{F} Y$
α)	α			$\mathbf{F}(X \to Y)$	$\mathbf{T}X$	$\mathbf{F} Y$
π_y	π_y			$\mathbf{T} \neg X$	$\mathbf{F}X$	$\mathbf{F}X$
$\bigcirc y$				$\mathbf{F} \neg X$	$\mathbf{T}X$	$\mathbf{T}X$
	α_i $i \in \{1,2\}$					
\bigcirc	\bigcirc	ŀ	3	β	$oldsymbol{eta}_1$	eta_2
× .	\mathcal{F}	$oldsymbol{eta}_1$	β_2	$\mathbf{F}(X \wedge Y)$	$\mathbf{F}X$	F Y
				$\mathbf{T}(X\vee Y)$	$\mathbf{T}X$	$\mathbf{T} Y$
(β)	β)			$T(X \to Y)$	$\mathbf{F}X$	$\mathbf{T} Y$
$n \sum_{i} \pi_{y}$	n_y					
	β_1 β_2					

Legenda: y je list v table \mathcal{T}, π_{v} je cesta od koreňa k y

Tablá a tablové pravidlá (pokračovanie)

Legenda: y je list v table \mathcal{T}, π_y je cesta od koreňa k y

Uzavretosť a otvorenosť vetvy a tabla

Definícia 5.2

Vetvou tabla \mathcal{T} je každá cesta od koreňa \mathcal{T} k niektorému listu \mathcal{T} .

Označená formula X^+ sa vyskytuje na vetve π v $\mathcal T$

vtt X^+ sa nachádza v niektorom vrchole na π .

Skrátene to budeme zapisovať $X^+ \in \text{formulas}(\pi)$.

Tablo ~ dôkaz sporom. Vetvenie ~ rozbor možných prípadov. ⇒ Spor musí nastať vo všetkých vetvách.

Definícia 5.3

Vetva π tabla $\mathcal T$ je uzavretá vtt na π sa súčasne vyskytujú označené formuly $\mathbf F X$ a $\mathbf T X$ pre nejakú formulu X. Inak je π otvorená.

Tablo \mathcal{T} je uzavreté vtt každá jeho vetva je uzavretá.

Naopak, $\mathcal T$ je otvorené vtt aspoň jedna jeho vetva je otvorená.

Príklad – vetvy a uzavretosť

Príklad 5.4 (Vetvy a uzavretosť)

Určme vetvy v table a zistime, či sú uzavreté a či je uzavreté tablo:

1.
$$T(p(A) \rightarrow (p(B) \land p(C)))$$
 S^+
2. $T((p(B) \lor p(D)) \rightarrow p(E))$ S^+

3.
$$\mathbf{T}(p(F) \to \neg p(E))$$
 S^+
4. $\mathbf{F}(p(A) \to \neg p(F))$ S^+

5.
$$\mathbf{T} p(A)$$
 $\alpha 4$ 6. $\mathbf{F} \neg p(F)$ $\alpha 4$

7.
$$\mathbf{T} p(F)$$
 $\alpha 6$
8. $\mathbf{F} p(F)$ $\beta 3$ 9. $\mathbf{T} \neg p(E)$ $\beta 3$

8.
$$\mathbf{F}p(F)$$
 $\beta 3$ 9. $\mathbf{T}\neg p(E)$ $\beta 3$ *7, 8 10. $\mathbf{F}p(E)$ $\alpha 9$ 11. $\mathbf{F}p(A)$ $\beta 1$

Dôkazy a výrokovologické tablá

Korektnosť tabiel

Korektnosť tablového kalkulu

Veta 5.16 (Korektnosť tablového kalkulu [Smullyan, 1979])

Nech S^+ je množina označených formúl a $\mathcal T$ je uzavreté tablo pre S^+ . Potom je množina S^+ nesplniteľná.

Dôsledok 5.17

Nech S je výrokovologická teória a X je výrokovologická formula. Ak existuje uzavreté tablo pre $\{\mathbf{T}A \mid A \in S\} \cup \{\mathbf{F}X\}$ (skrát. $S \vdash_p X$), tak z S výrokovologicky vyplýva X ($S \models_p X$).

Dôsledok 5.18

Nech X je výrokovologická formula.

Ak existuje uzavreté tablo pre $\{\mathbf{F}X\}$ (skrátene $\vdash_{\mathbf{p}}X$), tak X je tautológia $(\vDash_{\mathbf{p}}X)$.

Korektnosť - idea dôkazu

Aby sme dokázali korektnosť tabiel, dokážeme postupne dve lemy:

K1: Ak máme tablo pre splniteľnú množinu S^+ s aspoň jednou splniteľnou vetvou, tak každé jeho priame rozšírenie má tiež splniteľnú vetvu.

K2: Každé tablo pre splniteľnú množinu S^+ má aspoň jednu splniteľnú vetvu.

Z toho ľahko sporom dokážeme, že množina, pre ktorú sme našli uzavreté tablo je nesplniteľná.

Korektnosť – pravdivosť priameho rozšírenia tabla

Všimnime si:

Vetva sa správa ako konjunkcia svojich označených formúl — všetky musia byť naraz pravdivé.

Tablo sa správa ako disjunkcia vetiev — niektorá musí byť pravdivá.

Definícia 5.19

Nech S^+ je množina označených formúl v jazyku \mathcal{L} , nech \mathcal{T} je tablo pre S^+ , nech π je vetva tabla \mathcal{T} a nech v je výrokovologické ohodnotenie pre \mathcal{L} . Potom:

- vetva π je pravdivá vo v (v ⊧_p π) vtt vo v sú pravdivé všetky označené formuly vyskytujúce sa na vetve π.
- tablo 𝒯 je pravdivé vo v (v ⊧_p 𝒯) vtt niektorá vetva v table 𝒯 je pravdivá.

Korektnosť – pravdivosť priameho rozšírenia tabla

Pomocou predchádzajúcej definície sformulujeme lemu K1 takto:

Lema 5.20 (K1)

Nech S^+ je množina označených formúl v jazyku \mathcal{L} , nech \mathcal{T} je tablo pre S^+ a nech v je výrokovologické ohodnotenie pre \mathcal{L} .

Ak S^+ a \mathcal{T} sú pravdivé vo v,

tak aj každé priame rozšírenie $\mathcal T$ je pravdivé vo $\upsilon.$

Dôkaz lemy K1.

Nech $v \models_p S^+$ a nech $\mathcal T$ je pravdivé vo v. Potom je pravdivá niektorá vetva v $\mathcal T$. Zoberme jednu takú vetvu a označme ju π . Nech $\mathcal T_1$ je priame rozšírenie $\mathcal T$. Nastáva jeden z prípadov:

• \mathcal{F}_1 vzniklo z \mathcal{F} pravidlom α , pridaním nového dieťaťa z nejakému listu y v \mathcal{F} , pričom z obsahuje α_1 alebo α_2 pre nejakú formulu α na vetve π_y .

Ak $\pi \neq \pi_y$, tak \mathcal{T}_1 obsahuje π , a teda aj \mathcal{T}_1 je pravdivé vo v.

Ak $\pi=\pi_y$, tak α je pravdivá vo v, pretože α je na π . Potom aj α_1 a α_2 sú pravdivé vo v (pozorovanie 5.8). Vetva π_z v table \mathcal{F}_1 rozširuje vetvu π pravdivú vo v o vrchol z obsahujúci ozn. formulu α_1 alebo α_2 pravdivú vo v. Preto π_z je pravdivá vo v, a teda aj tablo \mathcal{F}_1 je pravdivé vo v.

Dôkaz lemy K1.

Nech $v \models_p S^+$ a nech $\mathcal T$ je pravdivé vo v. Potom je pravdivá niektorá vetva v $\mathcal T$. Zoberme jednu takú vetvu a označme ju π . Nech $\mathcal T_1$ je priame rozšírenie $\mathcal T$. Nastáva jeden z prípadov:

• \mathcal{F}_1 vzniklo z \mathcal{F} pravidlom β , pridaním detí z_1 a z_2 nejakému listu y v \mathcal{F} , pričom z_1 obsahuje β_1 a z_2 obsahuje β_2 pre nejakú formulu β na vetve π_y .

Ak $\pi \neq \pi_y$, tak \mathcal{F}_1 obsahuje π , a teda aj \mathcal{F}_1 je pravdivé vo v.

Ak $\pi=\pi_y$, tak $v\models_{\rm p}\beta$, pretože β je na π . Potom $v\models_{\rm p}\beta_1$ alebo $v\models_{\rm p}\beta_2$ (poz. 5.11).

Ak $v \models_{p} \beta_{1}$, tak $v \models_{p} \pi_{z_{1}}$, a teda $v \models_{p} \mathcal{F}_{1}$.

Ak $v \models_{p} \beta_{2}$, tak $v \models_{p} \pi_{z_{2}}$, a teda $v \models_{p} \mathcal{T}_{1}$.

Dôkaz lemy K1.

Nech $v \models_p S^+$ a nech $\mathcal T$ je pravdivé vo v. Potom je pravdivá niektorá vetva v $\mathcal T$. Zoberme jednu takú vetvu a označme ju π . Nech $\mathcal T_1$ je priame rozšírenie $\mathcal T$. Nastáva jeden z prípadov:

• \mathcal{T}_1 vzniklo z \mathcal{T} pravidlom S^+ , pridaním nového dieťaťa z nejakému listu y v \mathcal{T} , pričom z obsahuje formulu $A^+ \in S^+$.

Ak $\pi \neq \pi_y$, tak \mathcal{T}_1 obsahuje π , a teda aj \mathcal{T}_1 je pravdivé vo v.

Ak $\pi=\pi_y$, tak π_z v table \mathcal{T}_1 je pravdivá vo v, pretože je rozšírením vetvy π pravdivej vo v o vrchol z obsahujúci formulu A^+ pravdivú vo v (pretože $v \models_p S^+$ a $A^+ \in S^+$). Preto tablo \mathcal{T}_1 je pravdivé vo v.

Korektnosť – pravdivosť množiny a tabla pre ňu

Lema 5.21 (K2)

Nech S^+ je množina označených formúl v jazyku \mathcal{L} , nech \mathcal{T} je tablo pre S^+ a nech v je ohodnotenie pre \mathcal{L} .

Ak S^+ je pravdivá vo v, tak aj $\mathcal T$ je pravdivé vo v.

Dôkaz lemy K2.

Nech S^+ je množina označených formúl, nech v je ohodnotenie a nech $v \models_p S^+$. Úplnou indukciou na počet vrcholov tabla $\mathcal T$ dokážeme, že vo v je pravdivé každé tablo $\mathcal T$ pre S^+ .

Ak má $\mathcal T$ jediný vrchol, tento vrchol obsahuje formulu $A^+ \in S^+$, ktorá je pravdivá vo v. Preto je pravdivá jediná vetva v $\mathcal T$, teda aj $\mathcal T$.

Ak $\mathcal T$ má viac ako jeden vrchol, je priamym rozšírením nejakého tabla $\mathcal T_0$, ktoré má o 1 alebo o 2 vrcholy menej ako $\mathcal T$.

Podľa indukčného predpokladu je \mathcal{T}_0 pravdivé vo v.

Podľa lemy K1 je potom vo v pravdivé aj $\mathcal{T}.$

Korektnosť – dôkaz

Dôkaz vety o korektnosti 5.16.

Nech S^+ je množina označených formúl a $\mathcal F$ je uzavreté tablo pre $S^+.$

Sporom: Predpokladajme, že existuje ohodnotenie, v ktorom je S^+ pravdivá. Označme ho υ .

Potom podľa lemy K2 je vo v pravdivé tablo $\mathcal T$, teda vo v je pravdivá niektorá vetva π v $\mathcal T$.

Pretože $\mathcal F$ je uzavreté, aj vetva π je uzavretá. Na π sa teda nachádzajú označené formuly $\mathbf TX$ a $\mathbf FX$ pre nejakú formulu X. Pretože π je pravdivá vo v, musia byť vo v pravdivé všetky formuly na nej. Ale $v \models_{\mathbf p} \mathbf TX$ vtt $v \models_{\mathbf p} X$ a $v \models_{\mathbf p} \mathbf FX$ vtt $v \not\models_{\mathbf p} X$. Teda $\mathbf TX$ a $\mathbf FX$ nemôžu byť obe pravdivé, čo je spor.

Testovanie nesplniteľnosti, splniteľnosti

a falzifikovateľnosti

Dôkazy a výrokovologické tablá

Úplná vetva a tablo

Príklad 5.22

```
Zistime tablom, či
```

```
\begin{split} & \big\{ \big( \big( rychly(p) \lor spravny(p) \big) \land \big( citatelny(p) \lor rychly(p) \big) \big) \big\} \\ & \vDash_p \big( rychly(p) \land \big( spravny(p) \lor citatelny(p) \big) \big). \end{split}
```

Vybudujeme tablo pre množinu označených formúl:

```
\begin{split} S^+ = & \big\{ \mathbf{T} \big( \big( \mathbf{rychly}(p) \lor \mathbf{spravny}(p) \big) \land \big( \mathbf{citatelny}(p) \lor \mathbf{rychly}(p) \big) \big), \\ & \mathbf{F} \big( \mathbf{rychly}(p) \land \big( \mathbf{spravny}(p) \lor \mathbf{citatelny}(p) \big) \big) \big\} \end{split}
```

Podarí sa nám ho uzavrieť?

Úplná vetva a tablo

Nech v príklade tablové pravidlá používame akokoľvek,

- nenájdeme uzavreté tablo, ale
- ak pravidlá nepoužívame opakovane na rovnakú formulu v rovnakej vetve, po čase vybudujeme úplné a otvorené tablo.

Definícia 5.23 (Úplná vetva a úplné tablo)

Nech S^+ je množina označených formúl a $\mathcal T$ je tablo pre S^+ .

Vetva π v table \mathcal{T} je úplná vtt má všetky nasledujúce vlastnosti:

- pre každú označenú formulu α, ktorá sa vyskytuje na π, sa obidve označené formuly α₁ a α₂ vyskytujú na π;
- pre každú označenú formulu β , ktorá sa vyskytuje na π , sa aspoň jedna z označených formúl β_1 , β_2 vyskytuje na π ;
- každá $X^+ \in S^+$ sa vyskytuje na π .

 $Tablo \mathcal{T}$ je úplné vtt každá jeho vetva je buď úplná alebo uzavretá.

Otvorené tablo a splniteľnosť

Z otvoreného a úplného tabla pre S^+ môžeme vytvoriť ohodnotenie v:

- 1. nájdeme otvorenú vetvu π ,
- 2. pre každý atóm A
 - ak sa na π nachádza **T** A, definujeme v(A) = t;
 - ak sa na π nachádza $\mathbf{F} A$, definujeme v(A) = f;
 - ullet inak definujeme v(A) ľubovoľne.

V tomto v je pravdivá π , a preto je v ňom pravdivá aj S^+ (všetky formuly z S^+ sa vyskytujú na π , lebo π je úplná).

Otázka

- Dá sa vždy nájsť úplné tablo pre S⁺?
- Naozaj sa z úplného otvoreného tabla dá vytvoriť model S⁺?

Existencia úplného tabla

Lema 5.24 (o existencii úplného tabla)

Nech S^+ je konečná množina označených formúl.

Potom existuje úplné tablo pre S^+ .

Dôkaz.

Vybudujme tablo \mathcal{T}_0 pre S^+ tak, že do koreňa vložíme niektorú formulu z S^+ a opakovaním spravidla S^+ postupne doplníme ostatné.

Potom tablo postupne rozširujeme tak, že vyberieme ľubovoľný list y tabla \mathcal{T}_i , ktorého vetva π_y je otvorená a nie je úplná. Potom nastane aspoň jedna z možností:

- Na π_y sa nachádza nejaká formula α, ale nenachádza sa niektorá z formúl α₁ a α₂.
- Na π_y sa nachádza nejaká formula β,
 ale nenachádza sa ani jedna z formúl β₁ a β₂.

Ak platí prvá alebo obe možnosti, aplikujeme pravidlo α .

Ak platí druhá možnosť, aplikujeme pravidlo β .

Získame tablo \mathcal{T}_{i+1} , s ktorým proces opakujeme.

Tento proces po konečnom počte krokov (prečo?) vytvorí nejaké tablo \mathcal{T}_n , v ktorom už neexistuje vetva, ktorá by bola otvorená a nebola úplná.

Teda každá vetva v \mathcal{T}_n je buď uzavretá alebo úplná, čiže \mathcal{T}_n je úplné.

Dôkazy a výrokovologické tablá

Úplnosť

Nadol nasýtené množiny a Hintikkova lemma

Definícia 5.25

Množina označených formúl S^+ sa nazýva nadol nasýtená vtt platí:

 H_0 : v S^+ sa nevyskytujú naraz $\mathbf{T}A$ a $\mathbf{F}A$ pre žiaden predikátový atóm A;

 H_1 : ak $\alpha \in S^+$, tak $\alpha_1 \in S^+$ a $\alpha_2 \in S^+$;

 H_2 : ak $\beta \in S^+$, tak $\beta_1 \in S^+$ alebo $\beta_2 \in S^+$.

Pozorovanie 5.26

Nech π je úplná otvorená vetva nejakého tabla $\mathcal{T}.$

Potom množina všetkých označených formúl na π je nadol nasýtená.

Lema 5.27 (Hintikkova)

Každá nadol nasýtená množina S^+ je splniteľná.

Dôkaz Hintikkovej lemy.

Chceme dokázať, že existuje ohodnotenie v, v ktorom sú pravdivé všetky označené formuly z S^+ . Definujme v pre každý predikátový atóm A takto:

$$\upsilon(A) = \begin{cases} t, & \text{ak } \mathbf{T}A \in S^+; \\ f, & \text{ak } \mathbf{F}A \in S^+; \\ t, & \text{ak ani } \mathbf{T}A \text{ ani } \mathbf{F}A \text{ nie sú v } S^+. \end{cases}$$

v je korektne definované vďaka H_0 (každému atómu priradí t alebo f, žiadnemu nepriradí obe).

Indukciou na stupeň formuly dokážeme, že vo v sú pravdivé všetky formuly z S^+ :

- 1° Všetky označené predikátové atómy (formuly stupňa 0) z S^+ sú pravdivé vo v.
 - P Nech X^+ ∈ S^+ a nech platí IP: Vo v sú pravdivé všetky formuly z S^+ nižšieho stupňa ako X^+ . X^+ ie buď α alebo β:

Ak X^+ je α , potom obidve $\alpha_1,\alpha_2\in S^+$ (H₁), sú nižšieho stupňa ako X^+ , a teda podľa indukčného predpokladu sú pravdivé vo v,

preto (podľa poz. 5.8) je v ňom pravdivá aj α . Ak X^+ je β , potom aspoň jedna z β_1 , β_2 je v S^+ (H₂). Nech je to ktorákoľvek, má nižší stupeň ako X^+ . teda podľa IP je pravdivá vo v.

a preto (podľa poz. 5.11) je vo v pravdivá aj β .

Úplnosť

Úplnosť kalkulu neformálne:

Ak je nejaké tvrdenie pravdivé, tak existuje jeho dôkaz v kalkule.

Veta 5.28 (o úplnosti tablového kalkulu [Smullyan, 1979])

Nech S^+ je konečná nesplniteľná množina označených formúl. Potom existuje uzavreté tablo pre S^+ .

Dôsledok 5.29

Nech S je konečná teória a X je formula.

 $\mathsf{Ak}\,S \vDash_{\mathsf{p}} X, \, \mathsf{tak}\,S \vdash_{\mathsf{p}} X.$

Dôsledok 5.30

Nech X je formula. Ak $\models_p X$, tak $\vdash_p X$.

Úplnosť platí aj pre nekonečné množiny, ale dôkaz je ťažší.

Úplnosť – dôkaz

Dôkaz vety o úplnosti.

Zoberme ľubovoľnú konečnú nesplniteľnú množinu označených formúl S^+ .

Podľa lemy o existencii úplného tabla vieme pre S^+ nájsť úplné tablo \mathcal{F} , teda také, že každá vetva je buď uzavretá alebo úplná.

Ak by niektorá vetva bola otvorená, potom musí byť úplná, a teda nadol nasýtená. Podľa Hintikkovej lemy by bola splniteľná. Pretože obsahuje všetky formuly z S^+ , bola by aj S^+ splniteľná, čo je spor s nesplniteľnosťou S^+ .

Preto musia byť všetky vetvy tabla $\mathcal T$ uzavreté.

Dôkazy a výrokovologické tablá

Nové korektné pravidlá

Problémy so základnými pravidlami

Základné tablové pravidlá sú jednoduché, ľahko overiteľné a analytické — z (ne)pravdivosti zloženej formuly odvodzujú (ne)pravdivosť jej priamych podformúl.

Nie sú ale úplne pohodlné ani prirodzené, hlavne β .

Príklad 5.31

Dokážme, že pre všetky formuly A,B,C,X,Y,Z:

$$\{(A \to C), (B \to C), (C \to X), (C \to Y), ((X \land Y) \to Z)\}$$

$$\vdash_{p} ((A \lor B) \to Z)$$

Všimnime si:

- časté použitia pravidla β na implikáciu, kde sa jedna vetva ihneď uzavrie;
- opakovanie jedného podstromu dôkazu.

Riešenie príkladu 5.31

Tablo pre

$$S^{+} = \{ \mathbf{T}(A \to C), \mathbf{T}(B \to C), \mathbf{T}(C \to X), \mathbf{T}(C \to Y), \mathbf{T}((X \land Y) \to Z),$$

$$\mathbf{F}((A \lor B) \to Z) \}$$

$$\begin{array}{c} \mathbf{1}.\mathbf{T}(A \to C) & S^{+} \\ 2.\mathbf{T}(B \to C) & S^{+} \\ 3.\mathbf{T}(C \to X) & S^{+} \\ 4.\mathbf{T}(C \to Y) & S^{+} \\ 5.\mathbf{T}((X \land Y) \to Z) S^{+} \\ 6.\mathbf{F}((A \lor B) \to Z) S^{+} \\ 7.\mathbf{T}(A \lor B) & \alpha 6 \\ 8.\mathbf{F}Z & \alpha 6 \end{array}$$

$9.\mathbf{F}(X \wedge Y)\beta 5$										28. T Z β
10. T A β7					19. ΤΒ β7					* 8, 2
11. F A β1	12. T C β1				20. F <i>B</i> β2	21. T C β2				
* 10,11	13. F C β3 * 12, 13	14. T <i>X</i> β3			* 19,20	22. F C β3	23. T <i>X</i> β3			
		15. F C β4	16. T Υ β4			* 21, 22	24. F C β4	25. T Υ β4		
		* 12, 15	17. F X β9	18. F Υ β9			* 21, 24	26. F X β9		
			* 14,17	* 16,18	1			* 23, 26	* 25, 27	

Odstránenie problémov – nové pravidlá

Keby tablový kalkul obsahoval napríklad veľmi prirodzené pravidlá modus ponens, modus tolens a rez:

$$\frac{\mathbf{T}(X \to Y) \quad \mathbf{T}X}{\mathbf{T}Y} \tag{MP}$$

$$\frac{\mathbf{T}(X \to Y) \quad \mathbf{F} Y}{\mathbf{F} X} \tag{MT}$$

$$TX \mid FX$$
 (cut)

dôkaz v príklade by sa dal sprehľadniť a odstránila by sa duplicita.

Riešenie príkladu 5.31 s modus ponens a modus tolens

1.
$$T(A \rightarrow C)$$
 S^{+}
2. $T(B \rightarrow C)$ S^{+}
3. $T(C \rightarrow X)$ S^{+}
4. $T(C \rightarrow Y)$ S^{+}
5. $T((X \land Y) \rightarrow Z)$ S^{+}
6. $F((A \lor B) \rightarrow Z)$ S^{+}
7. $T(A \lor B)$ $\alpha 6$
8. FZ $\alpha 6$
9. $F(X \land Y)$ MT 5, 8
10. $TA \beta 7$ 16. $TB \beta 7$
11. $TC \text{ MP 1, 10}$ 17. $TC \text{ MP 2, 16}$
12. $TX \text{ MP 3, 11}$ 18. $TX \text{ MP 3, 17}$
13. $TY \text{ MP 4, 11}$ 19. $TY \text{ MP 4, 17}$
14. $FX \beta 9$ 15. $FY \beta 9$ $* 18, 20$ $* 19, 21$

Riešenie príkladu 5.31 s rezom, modus ponens a modus tolens

13. **F***X* β9 | 14. **F***Y* β9

* 11, 13 | * 12, 14

1.
$$T(A \to C)$$
 S^{+}
2. $T(B \to C)$ S^{+}
3. $T(C \to X)$ S^{+}
4. $T(C \to Y)$ S^{+}
5. $T((X \land Y) \to Z)$ S^{+}
6. $F((A \lor B) \to Z)$ S^{+}
7. $T(A \lor B)$ $\alpha 6$
8. FZ $\alpha 6$
9. $F(X \land Y)$ MT 5, 8
10. TC cut
11. TX MP 3, 10
12. TY MP 4, 10
16. TA $\beta 7$ 18. TB $\beta 7$
17. TC MP 1, 16 19. FB MT 2, 15

* 15, 17

* 18, 19

Ingrediencie korektnosti a úplnosti tabiel

Všimnite si:

Na dokázanie korektnosti tablového kalkulu stačilo, aby mali pravidlá vlastnosť:

$$\frac{\alpha}{\alpha_1} \quad \frac{\alpha}{\alpha_2}$$

$$\frac{\beta}{\beta_1 \mid \beta_2} \quad \frac{A^+}{A^+} \quad A^+ \in S^+$$

Nech v je ľubovoľné ohodnotenie, v ktorom je pravdivá S^+ . Ak je vo v pravdivá premisa, tak je vo v pravdivý aspoň jeden záver.

- Vďaka tejto vlastnosti zo splniteľnej množiny S⁺ skonštruujeme iba splniteľné tablá.
- Netreba opačnú implikáciu
 (ak je vo v pravdivý aspoň jeden záver, tak je vo v pravdivá premisa).

Na dôkaz **úplnosti** stačili pravidlá (S^+), α , β , pretože stačia na vybudovanie úplného tabla.

Nové pravidlo

Čo sa stane, ak pridáme nové pravidlo, napríklad modus ponens:

$$\frac{\mathbf{T}(X \to Y) \quad \mathbf{T}X}{\mathbf{T}Y} \qquad ? \tag{MP}$$

Upravíme definíciu priameho rozšírenia:

Úprava definície tabla

... Nech $\mathcal T$ je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* $\mathcal T$ ktorýmkoľvek z pravidiel:

MP: Ak sa na vetve π_y nachádzajú *obe* formuly $\mathbf{T}(X \to Y)$ a $\mathbf{T}X$, tak ako jediné dieťa y pripojíme nový vrchol obsahujúci $\mathbf{T}Y$.

Nové pravidlo vs. korektnosť a úplnosť

Korektnosť tabiel s MP:

Pri dôkaze lemy K1

Nech S^+ je množina označených formúl v jazyku \mathcal{L} , nech \mathcal{T} je tablo pre S^+ a v je ohodnotenie pre \mathcal{L} . Ak sú S^+ a \mathcal{T} pravdivé vo v, tak je vo v pravdivé aj každé priame rozšírenie tabla \mathcal{T} .

využijeme

Tvrdenie 5.32 (Korektnosť pravidla MP)

Nech X a Y sú ľubovoľné formuly a v je ľubovoľné ohodnotenie.

Ak sú vo v pravdivé $T(X \to Y)$ a TX, tak je vo v pravdivá TY.

Dôkaz.

 $\mathsf{Ked\check{z}e}\ v \models_{\mathtt{p}} \mathbf{T}(X \to Y), \mathsf{tak}\ v \models_{\mathtt{p}} (X \to Y), \mathsf{teda}\ v \not\models_{\mathtt{p}} X \mathsf{ alebo}\ v \models_{\mathtt{p}} Y.$

 $\mathsf{Preto\check{z}e} \; \mathsf{ale} \; v \models_{\mathsf{p}} \mathbf{T}X, \mathsf{tak} \; v \models_{\mathsf{p}} X. \; \mathsf{Tak\check{z}e} \; v \models_{\mathsf{p}} Y, \mathsf{a} \; \mathsf{teda} \; v \models_{\mathsf{p}} \mathbf{T}Y.$

Dôkaz lemy K2 a samotnej vety o korektnosti — bez zmeny.

Úplnosť – bez zmeny, úplné tablo vybudujú základné pravidlá.

Tablové pravidlá vo všeobecnosti — problém

Zadefinovať vo všeobecnosti, čo je pravidlo a kedy je korektné, nie je také jednoduché.

Potrebujeme zachytiť, že pravidlo:

- má premisy, ktoré nejaký tvar a zdieľajú nejaké podformuly, napr. moduls tolens (MT) má premisy T(X → Y) a FY;
- odvodzuje z nich závery, ktoré tiež zdieľajú podformuly s premisami, napr. FX (alebo medzi sebou v prípade rezu).

pre všetky možné zdieľané podformuly, v našom príklade X a Y.

Tablové pravidlá vo všeobecnosti — vzor

Pravidlo sa dá predstaviť nasledovne:

Pravidlo má vzor — dvojicu tvorenú vzormi premís a záverov, kde spoločné podformuly predstavujú konkrétne atómy, napr. vzor pravidla MT:

$$\frac{\textbf{T}(p(c) \to q(c)) \quad \textbf{F} \, q(c)}{\textbf{F} \, p(c)}$$

Tablové pravidlá vo všeobecnosti — inštancia

Každý konkrétny prípad — inštancia pravidla vznikne substitúciou ľubovoľných formúl za atómy vo vzore:

$$\begin{split} T(p(c) &\to q(c))[p(c)|(sedan(a) \wedge biely(a)), \ q(c)|kupi(B,a)] \\ & \quad Fq(c)[p(c)|(sedan(a) \wedge biely(a)), \ q(c)|kupi(B,a)] \\ \hline Fp(c)[p(c)|(sedan(a) \wedge biely(a)), \ q(c)|kupi(B,a)] \\ & \quad = \frac{T((sedan(a) \wedge biely(a)) \to kupi(B,a))}{F(sedan(a) \wedge biely(a))} \end{split}$$

Tablové pravidlá vo všeobecnosti – pravidlo

Samotné pravidlo je množina všetkých inštancií vzoru:

$$\mathsf{MT} = \left\{ \begin{array}{c} \mathsf{T}(\mathsf{p}(\mathsf{c}) \to \mathsf{q}(\mathsf{c}))_{[\mathsf{p}(\mathsf{c})|X,\;\mathsf{q}(\mathsf{c})|Y]} \\ \\ & \mathsf{F}\,\mathsf{q}(\mathsf{c})_{[\mathsf{p}(\mathsf{c})|X,\;\mathsf{q}(\mathsf{c})|Y]} \\ \\ \hline & \mathsf{F}\,\mathsf{p}(\mathsf{c})_{[\mathsf{p}(\mathsf{c})|X,\;\mathsf{q}(\mathsf{c})|Y]} \end{array} \right| X, Y \in \mathcal{E}_{\mathcal{L}} \right\}$$

Samozrejme, konkrétne pravidlo vieme zapísať aj bez substitúcie:

$$\mathsf{MT} = \left\{ \begin{array}{c|c} \mathbf{T}(X \to Y) & \mathbf{F} Y \\ \hline \mathbf{F} X & \end{array} \middle| X, Y \in \mathcal{E}_{\mathcal{L}} \right\}$$

Tablové pravidlá vo všeobecnosti

Definícia 5.33 (Vzor tablového pravidla)

Nech $n \ge 0$ a k > 0 sú prirodzené čísla, nech $P_1^+, ..., P_n^+, C_1^+, ..., C_{\nu}^+$ sú označené formuly.

Dvojicu tvorenú $n\text{-ticou}\,(P_1^+,\dots,P_n^+)$ a $k\text{-ticou}\,(C_1^+,\dots,C_k^+)$ a zapisovanú

$$\begin{array}{c|ccc} P_1^+ & \cdots & P_n^+ \\ \hline C_1^+ & \cdots & C_k^+ \end{array}$$

nazývame vzorom tablového pravidla.

Označené formuly P_1^+,\ldots,P_n^+ nazývame vzory premís, označené formuly C_1^+,\ldots,C_k^+ nazývame vzory záverov.

Tablové pravidlá vo všeobecnosti

Definícia 5.34 (Tablové pravidlo a jeho inštancia)

Nech

$$\begin{array}{c|ccc} P_1^+ & \cdots & P_n^+ \\ \hline C_1^+ & \cdots & C_k^+ \end{array}$$

je vzor tablového pravidla a $a_1, ..., a_m$ sú všetky atómy, ktoré sa vyskytujú v označených formulách $P_1^+, ..., P_n^+, C_1^+, ..., C_{\nu}^+$.

Tablové pravidlo R je množina

$$R = \left\{ \frac{P_1^+_{[a_1|X_1,\dots,a_m|X_m]} \cdots P_n^+_{[a_1|X_1,\dots,a_m|X_m]}}{C_1^+_{[a_1|X_1,\dots,a_m|X_m]} \mid \dots \mid C_k^+_{[a_1|X_1,\dots,a_m|X_m]}} \right| X_1,\dots,X_m \in \mathcal{E}_{\mathcal{L}} \right\},$$

Každý prvok množiny R nazývame inštanciou pravidla R.

Nové pravidlá vo všeobecnosti

Keď už vieme, čo je pravidlo, môžeme povedať, kedy je korektné:

Definícia 5.35 (Tablové pravidlo a jeho korektnosť)

Tablové pravidlo *R* je *korektné* vtt pre každú inštanciu pravidla *R*

$$\begin{array}{c|ccc} P_1^+ & \cdots & P_n^+ \\ \hline C_1^+ & \cdots & C_k^+ \end{array}$$

a pre každé ohodnotenie v platí, že ak sú vo v pravdivé všetky premisy $P_1^+, \ldots, P_n^+,$ tak je vo v pravdivý niektorý záver $C_1^+, \ldots, C_{\flat}^+$.

Nové pravidlá vo všeobecnosti

Úprava definície tabla

• • •

- ...
- Nech $\mathcal T$ je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* $\mathcal T$ ktorýmkoľvek z pravidiel:
 - :

R: Ak sa pre nejakú inštanciu pravidla R

$$\begin{array}{c|ccc} P_1^+ & \cdots & P_n^+ \\ \hline C_1^+ & \cdots & C_k^+ \end{array}$$

na vetve π_y nachádzajú v*šetky* premisy $P_1^+, ..., P_n^+,$ tak k uzlu y pripojíme k nových vrcholov obsahujúcich postupne závery $C_1^+, ..., C_k^+.$

Príklad: Korektnosť rezu

To, že rez

$$TX \mid FX$$

je korektné pravidlo, dokážeme veľmi ľahko:

Tvrdenie 5.36 (Korektnosť pravidla rezu)

Nech X je ľubovoľná formula a υ je ľubovoľné ohodnotenie. Potom je vo υ pravdivý niektorý zo záverov pravidla rezu $\mathbf{T} X$ alebo $\mathbf{F} X$.

Dôkaz.

Formula X je vo v buď pravdivá alebo nepravdivá.

V prvom prípade $v \models_{p} \mathbf{T}X$. V druhom prípade $v \models_{p} \mathbf{F}X$.

Teda v oboch prípadoch platí, že vo v je pravdivý niektorý zo

záverov TX alebo FX pravidla rezu.

Literatúra

Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.