

DUBLIN CITY UNIVERSITY

SEMESTER 2 EXAMINATIONS 2012/2013

SEIVIESTER 2 EXAMINATIONS 2012/2013			
MODULE:	CA446 – Statistical Machine Translation		
PROGRAMME(S): CASE	BSc in Computer Applications (Sft.Eng.)		
YEAR OF STUDY:	4		
EXAMINERS:	Dr Jennifer Foster (Ext:5263) Dr. James Power Dr. Michael Manzke		
TIME ALLOWED:	2 Hours		
INSTRUCTIONS:	Answer Question One and two other questions.		
The use of programmable or te Please note that where a cand	R THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO xt storing calculators is expressly forbidden. date answers more than the required number of questions, the s attempted and then select the highest scoring ones.		
Requirements for this paper (Plant Log Tables Graph Paper Dictionaries Statistical Tables	Thermodynamic Tables Actuarial Tables MCQ Only – Do not publish		

Answer EIGHT of the following ten short questions. Each question is worth 5 marks.

- 1. State three reasons why machine translation (MT) is a difficult problem.
- 2. Derive Bayes' theorem from the definition of conditional probability.
- 3. What roles do a *language model* and *translation model* play in statistical machine translation (SMT)?
- 4. Why is it not feasible to directly compute the probability of an entire sentence in SMT? How do we approximate the probability of a sentence?
- 5. Briefly explain how the *perplexity* measure is used in language modelling in SMT.
- 6. Define what is meant by a *parallel corpus* and briefly explain its role in an SMT system.
- 7. State the rules that are used when building a translation model to decide whether a phrase pair is consistent with a word alignment.
- 8. Explain what is meant by the term *pruning* and briefly discuss its role in the SMT decoding process.
- 9. Briefly explain two advantages that human evaluation has over automatic evaluation when assessing the quality of the translations produced by an MT system.
- 10. Apart from translation *quality*, name two other attributes that are desirable in an MT system and explain why these are important.

[End of Question 1]

QUESTION 2

[TOTAL MARKS: 30]

Answer all parts of the question.

Q 2(a)

[12 Marks]

Given the following pairs:

The table

table

An bord

bord

State what the following translation probabilities will be after *two* iterations of the Expectation Maximisation algorithm and show all the steps followed to arrive at these values:

- i. t(bord|The)
- ii. t(An|The)
- iii. t(bord|table)
- iv. t(An|table)

Q 2(b) [10 Marks]

Explain how the factoring-out trick is used to more efficiently compute word alignments.

Q 2(c) [8 Marks]

Explain why word-based translation models in SMT were augmented by phrase-based models. To what extent are the word-based models still useful?

[End of Question 2]

Answer all parts of the question.

Q 3(a) [10 Marks]

Explain the difference between a unigram, bigram and trigram language model and provide examples which demonstrate the superior modelling power of a bigram language model over a unigram model and a trigram language model over a bigram model.

Q 3(b) Consider the following data: [10 Marks]

Count	Count of Counts
1	4000
2	2200
3	1600
4	800
5	500

Readjust the following three bigram counts using Good-Turing smoothing.

Count	Bigram	
4	Tea drinker	
4	Tea time	
3	Tea cup	

Q 3(c)

[10 Marks]

Show, using an example, how the stack decoding algorithm works.

[End of Question 3]

QUESTION 4

[TOTAL MARKS: 30]

Answer all parts of the question.

Q 4(a)

[12 Marks]

Show how you would calculate the BLEU score for the following two translations:

Translation 1: *Salmons swim in river*. **Translation 2**: *Fish swim in the river*.

Translation 3: *The salmon swam in the river.*

Reference: Salmon swim in the river.

Q 4(b)

[5 Marks]

Perform a "human evaluation" on Translation 1, Translation 2 and Translation 3 above.

Q 4(c)

[5 Marks]

Briefly explain why it is better to use more than one reference when carrying out automatic machine translation evaluation.

Q 4(d)

[8 Marks]

Discuss the limitations of the BLEU metric using the example in (a) above.

[End of Question 4]

[END OF EXAM]