Scenario generation for nongaussian time series via Quantile Regression

Marcelo Ruas and Alexandre Street

Oct 19, 2017

Scenario generation for nongaussian time series via Quantile Regression
Introduction

Introduction

Motivation

- Renewable energy scenarios are important in many fields in Power Systems:
 - 1. Energy trading;
 - 2. unit commitment;
 - 3. grid expansion planning;
 - 4. investment decisions
- In stochastic optimization problems, a set of scenarios is a needed input.
- ▶ Robust optimization requires bounds for probable values.

Change in paradigm: from predicting the conditional mean to predicting the conditional distribution

Probability Forecasting Approaches

- Parametric Models
 - Assume a distributional shape
 - Low computational costs
 - Faster convergence
 - Examples: Arima-GARCH, GAS
- Nonparametric Models
 - Don't require a distribution to be specified
 - High computational cost
 - Needs more data to produce a good approximation
 - Examples: Quantile Regression (Koenker and Bassett Jr (1978)), Kernel Density Estimation (Gallego-Castillo et al. (2016)), Artificial Intelligence (Wan et al. (2017))

Wind Power Time Series - Icaraizinho monthly data

Wind Power Time Series - Kaggle forecasting competition hourly data

Wind power density comparison across different months

The nongaussianity of Wind Power

- Renewables, such as wind and solar power have reportedly nongaussian behaviour
- Convenience of using a nonparametric approach, which doesn't rely on assuming a distribution
- Puantile regression is the chosen technique available to model this time series dynamics, by estimating a thin grid of α -quantiles at once and forming a data-driven conditional distribution

Objectives

- A nonparametric methodology to model the conditional distribution of renewables time series to produce scenarios.
- We propose a methodology that selects the global optimal solution with parsimony both on the selection of covariates as on the quantiles. Regularization methods are based on two techniques: Best Subset Selection (MILP) and LASSO (Linear Programming)
- Regularization techniques applied to an ensemble of quantile functions to estimate the conditional distribution, solving the issue of non-crossing quantiles. On regularizing quantiles, we propose a smoothness on the coefficients values across the sequence of quantiles.

Quantile Regression

Quantile Regression

Definition of the Conditional Quantile

Let the conditional quantile function of Y for a given value x of the d-dimensional random variable X, i.e., $Q_{Y|X}:[0,1]\times\mathbb{R}^d\to\mathbb{R}$, can be defined as:

$$Q_{Y|X}(\alpha,x) = F_{Y|X=x}^{-1}(\alpha) = \inf\{y : F_{Y|X=x}(y) \ge \alpha\}.$$

Conditional Quantile from a sample

Let a dataset be composed from $\{y_t, x_t\}_{t \in T}$ and let ρ be the check function

$$\rho_{\alpha}(x) = \begin{cases} \alpha x & \text{if } x \ge 0\\ (1 - \alpha)x & \text{if } x < 0 \end{cases}, \tag{1}$$

The sample quantile function for a given probability α is then based on a finite number of observations and is the solution to minimizing the loss function $L(\cdot)$:

$$\hat{Q}_{Y|X}(\alpha, \cdot) \in \underset{q(\cdot) \in \mathcal{Q}}{\arg \min} L_{\alpha}(q) = \sum_{t \in \mathcal{T}} \rho_{\alpha}(y_t - q(x_t)),$$
$$q(x_t) = \beta_0 + \beta^T x_t,$$

where Q is a space of functions. In this paper, we use Q as an affine functions space.

Conditional Quantile from a sample

For a single quantile, this problem can be solved by the following Linear Programming problem:

$$\begin{aligned} & \min_{\beta_0, \beta, \varepsilon_t^+, \varepsilon_t^-} & \sum_{t \in T} \left(\alpha \varepsilon_t^+ + (1 - \alpha) \varepsilon_t^- \right) \\ & \text{s.t.} & \varepsilon_t^+ - \varepsilon_t^- = y_t - \beta_0 - \beta^T x_t, & \forall t \in T, \\ & \varepsilon_t^+, \varepsilon_t^- \geq 0, & \forall t \in T. \end{aligned}$$

▶ The output are the coefficients β_0 and β (which is the same dimension as x_t), that describe the quantile function as an affine function.

The non-crossing issue

Figure 1: These graphs show how the addition of a constraint can contour the crossing quantile issue

Notation

Expression	Meaning
$Q_{Y X}(\alpha,x)$	The conditional quantile function
y_t	the time series we are modelling
x_t	explanatory variables of y_t in t
T	the set containing all observations indexes
J	the set containing all quantile indexes
$J_{(-1)}$	the set $Jackslash\{1\}$
α_j	a probability, might be indexed by j
A	the set of probabilities $\{\alpha_i \mid j \in J\}$
K	Maximum number of covariates on MILP regularization
λ	The Lasso penalization on the coefficients ℓ_1 -norm
γ	The penalization on the coefficients second-derivative with
, -	respect of the quantiles

Conditional Quantile as a Linear Programming Problem

$$\min_{\beta_{0j},\beta_{j},\varepsilon_{tj}^{+},\varepsilon_{tj}^{-}} \sum_{j \in J} \sum_{t \in T} \left(\alpha_{j} \varepsilon_{tj}^{+} + (1 - \alpha_{j}) \varepsilon_{tj}^{-} \right)$$

s.t.
$$\begin{split} \varepsilon_{tj}^{+} - \varepsilon_{tj}^{-} &= y_{t} - \beta_{0j} - \beta_{j}^{T} x_{t}, & \forall t \in T, \forall j \in J, \\ \varepsilon_{tj}^{+}, \varepsilon_{tj}^{-} &\geq 0, & \forall t \in T, \forall j \in J, \\ \beta_{0,j-1} + \beta_{j-1}^{T} x_{t} &\leq \beta_{0j} + \beta_{j}^{T} x_{t}, & \forall t \in T, \forall j \in J_{(-1)}, \end{split}$$

- ▶ Coefficients β_{0j} and β_j refer to the j^{th} quantile
- ▶ We apply QR to estimate the conditional distribution $\hat{Q}_{Y_{t+h}|X_{t+h},Y_t,Y_{t-1},...}(\alpha,\cdot)$ for a k-step ahead forecast of time serie $\{y_t\}$, where X_{t+h} is a vector of exogenous variables at the time we want to forecast.

Regularization of covariates

Regularization of covariates

Best Subset selection via MILP

- ▶ Mixed Integer Linear Programming (MILP) models allow only K variables to be used for each α -quantile.
- ▶ Only K coefficients β_{pj} may have nonzero values, for each α -quantile.
- It is guaranteed by constraints on the optimization model.
- ightharpoonup One model for each lpha-quantile

Best Subset selection via MILP

$$\begin{aligned} & \underset{\beta_{0j},\beta_{j},z_{pj},\varepsilon_{tj}^{+},\varepsilon_{tj}^{-}}{\min} & \sum_{j\in J} \sum_{t\in T} \left(\alpha_{j}\varepsilon_{tj}^{+} + (1-\alpha_{j})\varepsilon_{tj}^{-}\right) \\ & \text{s.t} & \varepsilon_{tj}^{+} - \varepsilon_{tj}^{-} = y_{t} - \beta_{0j} - \beta_{j}^{T}x_{t}, & \forall t\in T, \forall j\in J, \\ & \varepsilon_{tj}^{+},\varepsilon_{tj}^{-} \geq 0, & \forall t\in T, \forall j\in J, \\ & -Mz_{pj} \leq \beta_{pj} \leq Mz_{pj}, & \forall j\in J, \forall p\in P, \\ & \sum_{p\in P} z_{pj} \leq K, & \forall j\in J, \\ & z_{pj} \in \{0,1\}, & \forall j\in J, \forall p\in P, \\ & \beta_{0,j-1} + \beta_{j-1}^{T}x_{t} \leq \beta_{0j} + \beta_{j}^{T}x_{t}, & \forall t\in T, \forall j\in J_{(-1)}, \end{aligned}$$

• z_{pj} is a binary variable which indicates when $\beta_{pj} > 0$.

- ▶ Regularization by including the coefficients ℓ_1 -norm on the objective function.
- In this method, coefficients are shrunk towards zero by changing a continuous parameter λ , which penalizes the size of the ℓ_1 -norm.
- ▶ When the value of λ gets bigger, fewer variables are selected to be used.
- ► The optimization problem for a single quantile is presented below:

$$\min_{\beta_0,\beta} \sum_{t \in T} \rho_{\alpha}(y_t - (\beta_0 + \beta^T x_t)) + \lambda \|\beta\|_1,$$

▶ At first, we select variables using LASSO

$$\begin{aligned} & \underset{\beta_{0},\beta,\varepsilon_{tj}^{+},\varepsilon_{tj}^{-}}{\text{arg min}} & \sum_{j\in J} \sum_{t\in T} \left(\alpha_{j}\varepsilon_{tj}^{+} + (1-\alpha_{j})\varepsilon_{tj}^{-}\right) + \lambda \sum_{p=1}^{P} \xi_{pj} \\ & \text{s.t.} & \varepsilon_{tj}^{+} - \varepsilon_{tj}^{-} = y_{t} - \beta_{0j} - \sum_{p=1}^{P} \beta_{pj} \tilde{x}_{t,p}, & \forall t\in T, \forall j\in J, \\ & \varepsilon_{tj}^{+}, \varepsilon_{tj}^{-} \geq 0, & \forall t\in T, \forall j\in J, \\ & \xi_{p\alpha} \geq \beta_{pj}, & \forall p\in P, \forall j\in J, \\ & \beta_{0,j-1} + \beta_{j-1}^{T} x_{t} \leq \beta_{0j} + \beta_{j}^{T} x_{t}, & \forall t\in T, \forall j\in J_{(-1)}, \\ & \xi_{p\alpha} \geq -\beta_{pj}, & \forall p\in P, \forall j\in J. \end{aligned}$$

• We then define S_{λ} as the set of indexes of selected variables given by

$$S_{\lambda} = \{ p \in \{1, \dots, P\} | |\beta_{\lambda, p}^{*LASSO}| \neq 0 \}.$$

Hence, we have that, for each $p \in \{1, ..., P\}$,

$$\beta_{\theta,p}^{*LASSO} = 0 \Longrightarrow \beta_{\theta,p}^{*} = 0.$$

 \blacktriangleright On the second stage, we estimate coefficients using a regular QR where input variables are only the ones which belonging to S_λ

Regularization on the quantiles

Regularization on the quantiles

MILP - Defining groups for α -quantiles

$$\begin{array}{ll} \min \limits_{\beta_{0j},\beta_{j},\mathbf{z}_{pj},\varepsilon_{tj}^{+},\varepsilon_{tj}^{-}} & \sum_{j \in J} \sum_{t \in T} \left(\alpha_{j}\varepsilon_{tj}^{+} + (1-\alpha_{j})\varepsilon_{tj}^{-}\right) \\ \mathrm{s.t} & \varepsilon_{tj}^{+} - \varepsilon_{tj}^{-} = y_{t} - \beta_{0j} - \beta_{j}^{T}x_{t,p}, & \forall t \in T, \forall j \in J, \\ & \varepsilon_{tj}^{+},\varepsilon_{tj}^{-} \geq 0, & \forall t \in T, \forall j \in J, \\ & -Mz_{pjg} \leq \beta_{pj} \leq Mz_{pjg}, & \forall j \in J, \forall p \in P, \\ & & \forall g \in G \\ \\ & z_{pjg} := 2 - (1-z_{pg}) - I_{gj} \\ & \sum_{p=1}^{P} z_{pg} \leq K, & \forall j \in J, \\ & \beta_{0,j-1} + \beta_{j-1}^{T}x_{t} \leq \beta_{0j} + \beta_{j}^{T}x_{t}, & \forall t \in T, \forall j \in J_{(-1)}, \\ & I_{gj}, z_{pg} \in \{0,1\}, & \forall p \in P, \forall g \in G, \\ & z_{pg} \in \{0,1\}, & \forall j \in J, \forall p \in P, \end{array}$$

MILP - Penalization of derivative

$$\begin{split} & \underset{\beta_{0j},\beta_{j},z_{\varrho j} \varepsilon_{tj}^{+},\varepsilon_{tj}^{-}}{\min} & \sum_{j \in J} \sum_{t \in T} \left(\alpha_{k} \varepsilon_{tj}^{+} + (1-\alpha_{k}) \varepsilon_{t\alpha}^{-}\right) + \gamma \sum_{j \in J'} D2_{\varrho j} \\ & \text{s.t} & \varepsilon_{tj}^{+} - \varepsilon_{tj}^{-} = y_{t} - \beta_{0j} - \beta_{j}^{T} x_{t}, \quad \forall t \in T, \forall j \in J, \\ & \varepsilon_{tj}^{+},\varepsilon_{tj}^{-} \geq 0, & \forall t \in T, \forall j \in J, \\ & -Mz_{\varrho j} \leq \beta_{\varrho j} \leq Mz_{\varrho j}, & \forall j \in J, \forall \varrho \in P, \\ & \sum_{\varrho \in P} z_{\varrho j} \leq K, & \forall j \in J, \\ & z_{\varrho j} \in \{0,1\}, & \forall j \in J, \forall \varrho \in P, \\ & D^{2}_{\varrho j} = \frac{\left(\frac{\beta_{\varrho,j+1}-\beta_{\varrho j}}{\alpha_{j+1}-\alpha_{j}}\right)-\left(\frac{\beta_{\varrho,j}-\beta_{\varrho,j-1}}{\alpha_{j}-\alpha_{j-1}}\right)}{\alpha_{j+1}-2\alpha_{j}+\alpha_{j-1}} \\ & D2_{\varrho j} \geq \tilde{D}^{2}_{\varrho j} & \forall j \in J_{(-1)}, \forall \varrho \in P, \\ & D2_{\varrho j} \geq -\tilde{D}^{2}_{\varrho j} & \forall j \in J_{(-1)}, \forall \varrho \in P, \\ & \beta_{0,j-1}+\beta_{j-1}^{T}x_{t} \leq \beta_{0j}+\beta_{j}^{T}x_{t}, & \forall t \in T, \forall j \in J_{(-1)}, \end{split}$$

$$\underset{\beta_{0},\beta,\varepsilon_{tj}^{+},\varepsilon_{tj}^{-}}{\arg\min} \sum_{j\in J} \sum_{t\in T} \left(\alpha_{j}\varepsilon_{tj}^{+} + (1-\alpha_{j})\varepsilon_{tj}^{-}\right) + \lambda \sum_{p=1}^{P} \xi_{pj} + \gamma \sum_{j\in J'} D2_{pj} \tag{2}$$

s.t.
$$\varepsilon_{tj}^+ - \varepsilon_{tj}^- = y_t - \beta_{0j} - \sum_{p=1}^P \beta_{pj} \tilde{x}_{t,p}, \quad \forall t \in T, \forall j \in J,$$
 (3)

$$\varepsilon_{ti}^{+}, \varepsilon_{ti}^{-} \geq 0, \qquad \forall t \in T, \forall j \in J,$$
 (4)

$$\xi_{p\alpha} \ge \beta_{pj}, \qquad \forall p \in P, \forall j \in J,$$
 (5)

$$\tilde{D}_{\rho j}^{2}=\frac{\left(\frac{\beta_{\rho,j+1}-\beta_{\rho j}}{\alpha_{j+1}-\alpha_{j}}\right)-\left(\frac{\beta_{\rho,j}-\beta_{\rho,j-1}}{\alpha_{j}-\alpha_{j-1}}\right)}{\alpha_{j+1}-2\alpha_{j}+\alpha_{j-1}}\tag{6}$$

$$D2_{pj} > \tilde{D}_{pj}^2 \qquad \forall j \in J_{(-1)}, \forall p \in P, \tag{7}$$

$$D2_{pj} > -\tilde{D}_{pj}^2 \qquad \forall j \in J_{(-1)}, \forall p \in P, \tag{8}$$

$$\beta_{0,j-1} + \beta_{j-1}^T x_t \le \beta_{0j} + \beta_j^T x_t, \quad \forall t \in T, \forall j \in J_{(-1)},$$
 (9)

$$\xi_{p\alpha} \ge -\beta_{pj}, \qquad \forall p \in P, \forall j \in J.$$
 (10)

▶ We then define S_{θ} (where $\theta = \begin{bmatrix} \lambda & \gamma \end{bmatrix}^T$) as the set of indexes of selected variables given by

$$S_{\theta} = \{ p \in \{1, \dots, P\} | |\beta_{\theta, p}^{*LASSO}| \neq 0 \}.$$

Hence, we have that, for each $p \in \{1, \dots, P\}$,

$$\beta_{\theta,p}^{*LASSO} = 0 \Longrightarrow \beta_{\theta,p}^{*} = 0.$$

 \blacktriangleright On the second stage, we estimate coefficients using a regular QR where input variables are only the ones which belonging to S_λ

Figure 2

Figure 3

Figure 4

Estimation and Evaluation

Estimation and Evaluation

Evaluation Metrics

▶ We use a performance measurement which emphasizes the correctness of each quantile. For each probability $\alpha \in A$, a loss function is defined by

$$L_{\alpha}(q) = \sum_{t \in T} \rho_{\alpha}(y_t - q_{\alpha}(x_t)).$$

The loss score \mathcal{L} , which is the chosen evaluation metric to optimize, aggregates the score function over all elements of A:

$$\mathcal{L} = \frac{1}{|A|} \sum_{\alpha \in A} L_{\alpha}(q).$$

Time-series Cross-Validation

Figure 5: \mathcal{K} -fold CV and \mathcal{K} -fold with non-dependent data. Observations in blue are used to estimation and in orange for evaluation. Note that non-dependent data doesn't use all dataset in each fold.

Time-series Cross-Validation

► The CV score is given by the sum of the loss function for each fold. The optimum value of t in this criteria is the one that minimizes the CV score:

$$\theta^* = \operatorname{argmin}_{\theta} CV(\theta) = \sum_{k \in \mathcal{K}} \sum_{\alpha \in A} L_{\alpha}(q).$$

▶ To optimize CV function in θ , we use the Nelder-Mead algorithm, which is a known and widely used algorithm for black-box optimization.

Nonparametric model

Nonparametric model

Nonparametric model

$$\hat{Q}_{Y|X}(\alpha,\cdot) \quad \in \quad \mathop{\arg\min}_{q(\cdot) \in \mathcal{Q}} L_{\alpha}(q) = \sum_{t \in \mathcal{T}} \rho_{\alpha}(y_t - q(x_t)),$$

- ▶ On nonparametric models, q_{α} belongs to a space of limited second derivative function Q.
- ▶ The α -quantile function is flexible enough to capture nonlinearities on the quantile function.

Nonparametric model - Formulation

$$\begin{aligned} & \underset{q_{\alpha t}, \delta_{t}^{+}, \delta_{t}^{-}, \xi_{t}}{\min} & \sum_{\alpha \in A} \sum_{t \in T'} \left(\alpha \delta_{t \alpha}^{+} + (1 - \alpha) \delta_{t \alpha}^{-}\right) \\ & + \lambda_{1} \sum_{t \in T'} \gamma_{t \alpha} + \lambda_{2} \sum_{t \in T'} \xi_{t \alpha} \\ & s.t. & \delta_{t}^{+} - \delta_{t \alpha}^{-} = y_{t} - q_{t \alpha}, & \forall t \in T', \forall \alpha \in A, \\ & D_{t \alpha}^{1} = \frac{q_{\alpha t + 1} - q_{\alpha t}}{x_{t + 1} - x_{t}}, & \forall t \in T', \forall \alpha \in A, \\ & D_{t \alpha}^{2} = \frac{\left(\frac{q_{\alpha t + 1} - q_{\alpha t}}{x_{t + 1} - x_{t}}\right) - \left(\frac{q_{\alpha t} - q_{\alpha t - 1}}{x_{t} - x_{t - 1}}\right)}{x_{t + 1} - 2x_{t} + x_{t - 1}}. & \forall t \in T', \forall \alpha \in A, \\ & \gamma_{t \alpha} \geq D_{t \alpha}^{1}, & \forall t \in T', \forall \alpha \in A, \\ & \gamma_{t \alpha} \geq -D_{t \alpha}^{1}, & \forall t \in T', \forall \alpha \in A, \\ & \xi_{t \alpha} \geq D_{t \alpha}^{2}, & \forall t \in T', \forall \alpha \in A, \\ & \xi_{t \alpha} \geq -D_{t \alpha}^{2}, & \forall t \in T', \forall \alpha \in A, \\ & \xi_{t \alpha} \geq -D_{t \alpha}^{2}, & \forall t \in T', \forall \alpha \in A, \\ & \delta_{t \alpha}^{+}, \delta_{t \alpha}^{-}, \gamma_{t \alpha}, \xi_{t \alpha} \geq 0, & \forall t \in T', \forall \alpha \in A, \\ & q_{t \alpha} \leq q_{t \alpha'}, & \forall t \in T', \forall \alpha \in A, \end{aligned}$$

Nonparametric vs. Linear Model

► The nonparametric approach is more flexible to capture heteroscedasticity.

Figure 6: Estimated quantile functions, for different values of y_{t-1} . On the left using a linear model and using a nonparametric approach on the right.

Control of smoothing parameter

► This flexibility might lead to overfitting, if we don't select a proper smoothing parameter.

Control of smoothing parameter

▶ On the limit, when $\lambda \to \infty$, the nonparametric model approaches a linear model.

Present issues

- ▶ Difficult interpolation when x_t has dimension greater than 1.
- ► Control of smoothing parameter

Final

Final

References

Gallego-Castillo, Cristobal, Ricardo Bessa, Laura Cavalcante, and Oscar Lopez-Garcia. 2016. "On-Line Quantile Regression in the Rkhs (Reproducing Kernel Hilbert Space) for Operational Probabilistic Forecasting of Wind Power." Energy 113. Elsevier: 355–65.

Koenker, Roger, and Gilbert Bassett Jr. 1978. "Regression Quantiles." *Econometrica: Journal of the Econometric Society.* JSTOR, 33–50.

Wan, C., J. Lin, J. Wang, Y. Song, and Z. Y. Dong. 2017. "Direct Quantile Regression for Nonparametric Probabilistic Forecasting of Wind Power Generation." *IEEE Transactions on Power Systems* 32 (4): 2767–78. doi:10.1109/TPWRS.2016.2625101.