FONDEMENTS I

www.eleves.ens.fr/home/yhuang

8.1 Section

Soient A et B deux ensembles.

- 1) Montrer que si $A \hookrightarrow B$ alors $B \twoheadrightarrow A$.
- 2) A-t-on la réciproque (on passera sous silence tout ce qui concerne AC... 1)?

8.2 Théorème de Cantor-Schröder-Bernstein

Soient A et B deux ensembles.

Montrer que si A s'injecte dans B et B s'injecte dans A alors A et B sont en bijection.

8.3 Points fixes

Soient E un ensemble et $\phi: E \to E$ une application. On dit que x est un point fixe de ϕ si $\phi(x) = x$. Maintenant on se donne deux ensemble X et Y, et deux applications $f: X \to Y$, $g: Y \to X$. Montrer que l'application $f \circ g$ admet autant de points fixes que $g \circ f$.

8.4 Préimage, partitions, quotients

Soit $f: E \to F$ une application entre deux ensembles.

- 1) Déterminer la relation entre $f(f^{-1}(Y))$ et Y.
- 2) Même question pour $f^{-1}(f(X))$ et X.
- 3) Montrer que si f est surjective, alors on obtient sur E une partition induite par f.
- 4) Étant donnée une partition sur E, quel est le plus petit cardinal de F pour que la partition soit celle induite par f?
- 5*) Propriété universelle du quotient.

8.5 Théorème de Cantor

Soit A un ensemble.

- 1) Il n'existe pas de bijection entre A et $\mathcal{P}(A)$.
- 2*) Montrer que l'ensemble des nombres réels n'est pas dénombrable.

 $^{^{1*}}$ Montrer que la réciproque est équivalente à l'existence de la fonction de choix.

8.6 Diagrammes, dessins, etc.²

Les constructions suivantes sont très générales, mais restons dans le cas ensembliste.

1) **Égalisateur**.

Soient f, g deux applications de X dans Y. On définit $Eq(f,g) = \{x \in X | f(x) = g(x)\}$, qui est un sous-ensemble de X. On note i l'inclusion canonique de Eq dans X.

Montrer que si Z est un ensemble et $m:Z\to X$ une application telle que $f\circ m=g\circ m$, alors il existe une unique application u de Z dans Eq(f,g) telle que $m=i\circ u$.

2) Pullback.

Soient X, Y, Z trois ensembles et $f: X \to Z, g: Y \to Z$ deux applications. Montrer qu'il existe un ensemble P et deux applications $u: P \to X$ et $v: P \to Y$ tels que:

- 1) $f \circ u = g \circ v$;
- 2) Pour tout ensemble Q muni de deux applications $u': Q \to X$, $v': Q \to Y$ tel que $f \circ u' = g \circ v'$, il existe une unique application $\phi: Q \to P$ telle que $u' = u \circ \phi$ et $v' = v \circ \phi$.
- *Montrer que un tel ensemble P est unique à unique isomorphisme près.

8.7 Permutation de \mathbb{N}^3

Pour une permutation σ , i.e. une application bijective de \mathbb{N} dans \mathbb{N} , on note $A = \{n \in \mathbb{N} | \sigma(n) \geq n\}$ et $B = \{n \in \mathbb{N} | \sigma(n) < n\}$. Exhiber un exemple, ou démontrer le contraire, des assertions suivantes:

- 1) Il existe une permutation σ telle que A soit fini et que B soit fini.
- 2) Il existe une permutation σ telle que A soit infini et que B soit fini.
- 3) Il existe une permutation σ telle que A soit infini et que B soit infini.
- 4) Il existe une permutation σ telle que A soit fini et que B soit infini.

8.8 Exercices sur les ensembles⁴

8.8.1 Exercice "avancé" 50

On construit par récurrence les ensembles A_n et B_n de la façon suivante:

- 1) $A_1 = \emptyset$, $B_1 = \{1\}$;
- 2) $A_{n+1} = \{x + 1 | x \in B_n\}, B_{n+1} = A_n \Delta B_n.$

Déterminer l'ensemble des entiers n tels que $B_n = \{0\}$.

8.8.2 Exercice "avancé" 51

Soit S un ensemble à n éléments. On se donne un sous-ensemble $\mathcal{A} = \{A_i\}_{1 \leq i \leq k}$ de $\mathcal{P}(S)$ à k éléments tel que $\forall 1 \leq i_1, i_2, i_3, i_4 \leq k$, on ait $|A_{i_1} \cup A_{i_2} \cup A_{i_3} \cup A_{i_4}| \leq n-2$. Montrer que $k \leq 2^{n-2}$. On pourra commencer par regarder le supremum de k si on suppose seulement que la réunion de deux éléments dans \mathcal{A} admet pour cardinal plus petit ou égal n-1.

²Cf. http://www.j-paine.org/cgi-bin/webcats/webcats.php

³Exercice communiqué par Hongzhou.

⁴Tirés de 102 Combinatoriel Problems. Les énoncés sont consultables sur Google Books.