Answer 6.1

From lecture note, if $C = A^*B$, $c_{ij} = \sum_{k=1}^n a_{ik}^* b_{kj}$.

Now, we consider $A^{-1}*A=I$. Thus, we know, $\sum_{k=1}^n (a^{-1})_{ik}*a_{kj}=0$ if $i\neq j$ and $\sum_{k=1}^n (a^{-1})_{ik}*a_{kj}=1$ if i=j, where $(a^{-1})_{ik}$ is the (i,k) element in A^{-1} , not $1/(a_{ik})$

Let $(a^{-1})_i$ be the i-th row vector of A^{-1} and $a_{\cdot j}$ be the j-the column vector of A.

Thus, $\sum_{k=1}^n (a^{\text{-}1})_{ik}{}^*a_{kj} = (a^{\text{-}1})_{i\cdot}{}^\circ a_{\cdot j},$ where $^\circ$ represents dot product.

$$\frac{\partial (a^{-1})_{i} \cdot {}^{\circ} a_{\cdot j}}{\partial \alpha} = (a^{-1})_{i} \cdot {}^{\circ} \frac{\partial a_{\cdot j}}{\partial \alpha} + \frac{\partial (a^{-1})_{i} \cdot }{\partial \alpha} {}^{\circ} a_{\cdot j}$$

(page 48 in the note)

Put them in matrix form, we have

$$\frac{\partial A^{-1}A}{\partial \alpha} = A^{-1}\frac{\partial A}{\partial \alpha} + \frac{\partial A^{-1}}{\partial \alpha}A = \frac{\partial I}{\partial \alpha} = 0$$

Simplifying it, we have

$$\frac{\partial A^{-1}}{\partial \alpha} = -A^{-1} \frac{\partial A}{\partial \alpha} A^{-1}$$