University of New Mexico

Adaptive Mesh Based Surface Reconstruction For Noisy and Incremental Point Cloud Data Sets

A thesis proposal submitted in partial fulfilment for the degree of Masters of Science

Lucas Chavez lucasc@unm.edu

Department of Mechanical Engineering University of New Mexico

Advior Dr. Ron Lumia

December 2012

1 Approach

A clear idea of the algorithmic structure of the proposed system is given by the System Flow Diagram in Figure 1. A basic description of the main variables can be found in Table 1. The inputs to the system are RGB-D data from a Kinect-style sensor D and the pose of the sensor P. The end goal of the system is to update the current mesh representation in each iteration. This update is represented by the last step in the System Flow Diagram. We can see that the update step is primed by two distinct processes. In the diagram, each processes is signified by a blue background. On the left hand side we have a processes which is named the Triangulation Process. This process defines a triangulation T based on the current depth image. On the right hand side we have a processes

which is named the Categorization Process. This process categorizes the measurements based on the effect they will have on the model. This triangulation and categorization will be used by the update procedure to efficiently evolve the map based on the current sensor measurements.

Figure 1: System Flow Diagram

In the remaining sections of the Approach we will discuss the two processes which prime the update step in detail. Finally, we will discuss how the outputs are used to update the existing mesh map.

Variable Name	Description				
D	Depth image from RGB-D sensor				
F	Frequency response image				
K_S, K_L , and K_G	Image convolution operators				
V and C	Mesh vertices and connectivity of the current triangulation				
T	Current triangulation. Contains both V and C				
P	The known pose of the sensor				
E	Expected depth image				
D_u, D_s, D_n , and D_r	Regions of the D classified by the effect on the model				

Table 1: Basic description of the main variables

1.1 Triangulation Process

The goal of this process is to use the current depth image D to estimate a mesh of the current view of the of the environment. We can see a simplified system flow chart of this process in Figure 2. Also, we can see an example of the outputs of the process using an example input in Figure 3. It is important to remember that not all of these new elements will be used in the update. The decision of which elements from T to use will be based on the output of the Classification Process.

1.1.1 Frequency Response Image

The objective of this step is to use image processing techniques to quickly give an estimate of the frequency content in the depth image D. The end product will be an image F which is the same size as D and will have high values in regions with high change. In order to accomplish this we will use a sequence of image convolutions. Equation 1 gives the mechanics of the calculation. The Sobel operator K_S is used to give a response at corners since it is a first order differential operator. The Laplace operator K_L is used to generate a response in areas of curvature since it is a second order differential operator. The Gaussian operator K_G is used to spread the response to the neighboring areas.

$$F = (\mid D * K_S \mid + \mid D * K_L \mid) * K_G$$

$$K_S - \text{small Sobel operator}$$

$$K_L - \text{small Laplace operator}$$

$$K_G - \text{large Gaussian operator}$$
(1)

Figure 2: Flow Diagram of Current Triangulation Process

1.1.2 Histogram and Sample for Vertices

The objective of this section is to use the frequency response image F to create a set of vertices V. These vertices will be defined as locations in D. The idea is to have a denser number of vertices in regions of D which have a high frequency content. In order to accomplish this, we first define regions of similar frequency content by histogramming F. An example of this histogramming can be seen in Figure 3d. Next we will probabilistically sample F to define a set of vertices V. The probability of each pixel being sampled is given by Equation 2. The probability is calculated by the product of two different weights: W_F is based on the region of F where the measurement comes from and W_A is the proportional area of that region. The result of sampling for vertices can be seen in Figure 3e. In addition, because the probability of picking each pixel as a vertex can be calculated independently the process is parallelizable.

$$p(u,v) = W_F(u,v) * W_A(u,v)$$
(2)

1.1.3 Determine Connectivity

Here we will use 2D Delaunay triangulation to define a connectivity between the set of vertices V found in the previous step. We are able to define the connectivity in \mathbb{R}^2 space because the topology

Figure 3: An example of the Triangulation Process. The idea is to start with a input depth image D and output a triangulation T which has a topology which is adaptive to the frequency content of the scene.

is conserved as we project the elements into \mathbb{R}^3 .

1.2 Classification Process

The goal of the classification process is to use the difference between the actual depth image and the expected to classify regions of the depth image by the effect they will have on the model. In order to generate an expected depth image E we will use the existing mesh map M and the known pose of the sensor P to create an artificial depth map of the of what we expect the sensor to see E. We can then use image differencing and binary blob detection to segment regions of the depth map D.

1.2.1 Generate Expected Depth Image E

We will use an existing graphics code library named OpenGL to generate an expected depth image E. A similar approach was used by Fallon et al. in [?]. Figure 5 is a figure from Fallon's paper

Figure 4: Flow Diagram of Categorize Measurements Process

which gives a clear idea of the proposed method. The procedure will be to give the existing mesh model M and the current pose P to OpenGL and render a depth buffer. It is possible to define the intrinsic parameters of the sensor to match the actual sensor. Figure 5a and 5b give an example of this process. Figure 5b represents the output of this step being the expected depth image E.

1.2.2 Find Unknown Parts of the Scene

The objective of this step is to determine regions of the depth image D which correspond to areas of the environment which have never been seen before. This will be accomplished by finding regions of E which have no measurement. This occurs when the ray traced through the pixel never hits a mesh element. Regions which are unseen will be designated as D_U and the rest will be designated as D_S .

1.2.3 Find New and Removed Objects

The objective of this step is determine if measurements from the known region of the environment D_S correspond to new D_N or removed D_R objects in the scene. If they do not belong to D_N or D_R then they support an existing surface in the mesh map. Essentially they belong to a supporting region D_S until proven otherwise. In order to prove otherwise we will use image differencing be-

Figure 5: Work from [?] which generates an expected depth image E in the same way as the proposed method.

tween the expected E and the seen parts of the environment D_S . We will threshold the differenced image with $-\epsilon$ and $+\epsilon$ to make two distinct binary images. Blob analysis will then be run on this image to determine D_N and D_R .

1.3 Update Mesh

This is the last and most important step of the proposed method. Here we will combine the triangulation T found in the Triangulation Process and the regions D_N , D_S , D_R , and D_N found from the Classification Process to efficiently update the existing mesh map M.

1.3.1 Add or Remove Mesh Elements

If the measurements in D correspond to new objects D_S or to unseen parts of the environment D_N , new mesh elements will need to be added. The new elements will come from the triangulation defined in T. In order to successfully merge the new elements with the existing mesh M the bordering vertices of the region will need to be found and stitched. It is proposed that this merging operation can be done in D.

If the measurements in D correspond to removed objects D_R , then the elements are removed from M. This is done by marking the vertices within the D_R region and deleting them and their connections.

1.3.2 Adapt Existing Mesh

Regions of the depth map which support an existing surface of the mesh model will be used to adapt the mesh in order to better approximate the real world. The idea of this process can be seen in Figure 6. In this figure the real world is represented by the blue surface in Figure 6a. The red dots represent the measurements from D. The mesh M is represented by the green surface. In the figure we see a single vertex being adjusted. In Figure 6b a set of planes are defined at the surrounding vertices and through the measurements which correspond to this particular vertex. This neighborhood of measurements will be found by defining a neighborhood in D. In Figure 6c the vertex is adjusted. This adjustment will be done by applying the Quadratic Error Measurement (QEM). The QEM will adjust the vertex to minimize the distance between all planes which were found in Figure 6b.

Figure 6: This shows the process of adapting a single vertex with new measurements.

2 Validation

In order to evaluate and quantify the effectiveness of the proposed mapping methodology, a series of experiments will be run in simulation. The reason for validating through simulation is that we will have control of all aspects of the experiment. In addition, we will have a known position of the sensor in a known environment. This will allow us quantitatively measure our error. Figure 7 gives an idea of how the simulation will be accomplished. We will use a 3D modeling software named blender to create the environment and save it to a .ply file. Then, we will use OpenGl to open the .ply file and simulate readings from an RGB-D sensor. Finally, we will port these measurements to Matlab where the proposed mapping algorithm will be developed and tested.

Figure 7: The steps of the simulation pipeline. The pipeline will allow us to simulate a RGB-D sensor viewing a known environment with a known pose.

With this simulation pipeline we can design a set of experiments which will sequentially test the abilities of the proposed mapping system. The idea will be to start with the easiest tests first in order make sure the system can map the environment under the most ideal conditions. Then, each subsequent experiment will aim to test a particular part of the system. By testing in this sequential manner we will be able to isolate and troubleshoot problematic parts of the system. Consequently, we will gain greater insight on the behavior of the system as a whole and the final system will be robust. The last experiment will test the robustness of the system with real world data. The following lists the proposed experiments and briefly describes the intention behind each experiment. For discussion purposes we can envision an environment which is made of a table and a can on the table.

1. Static scene; static object; static sensor

Here we will test the system under the most ideal conditions. We want to see that the system will categorize all measurements as D_S after the initial mesh is created. We will also test the ability of the system to adapt the current mesh over time.

2. Static scene; static object; dynamic sensor

Here the sensor will move in the environment. For example, we can have it pan across the table by 1 meter. We want the system to recognize measurements which are from unseen parts of the environment and categorize them as D_U . Also, we want new elements to be added in unknown regions using the triangulation T from the Triangulation Process.

3. Dynamic scene; static object; static sensor

This experiment will test the ability of the system to detect new and removed objects. We will do this by spontaneously adding and removing a second object in the scene such as another cup on top of the table. We will be looking for the system to successfully categorize the measurements as either D_N or D_R . We will then test the ability of the system to quickly remove or add the corresponding mesh elements from the current mesh.

4. Dynamic scene; dynamic object; static sensor

This experiment will also test the ability of the system to react to new or removed object, however the object will be moved into place over time. This will be a much more thorough testing of the Categorization Process and the ability to quickly add and remove elements.

5. Dynamic scene; dynamic object; dynamic sensor

This experiment will test the entirety of the system in simulation. We can have the sensor circle the table while new elements are being added and removed.

6. Real world data

This test will show the ability of the system to work with real world data from a RGB-D sensor. We will make use of an open source data set which is complete with pose information.

3 Tasks

There are six major phases which will need to be completed for this research. The following sections will list the steps which must be completed for each phase.

3.1 Simulation Pipeline

• Model all needed environments and object in Blender.

- Simulate a RGB-D sensor viewing the environments using OpenGL.
- Read in the simulated sensor output to Matlab.

3.2 Triangulation Process

- Calculate frequency response image F
- \bullet Sample F to obtain vertices V
- \bullet Triangulate vertices to obtain T

3.3 Classification Process

- ullet Generate expected E from current mesh M
- Image differencing and blob analysis

3.4 Map Update

- Adaptation procedure
- Add/remove elements

3.5 Experiments

Run validation experiments 1-6 as discussed in the Validation section.

4 Gantt Chart

In order to complete this work it will be necessary plan the completion of the major tasks which were listed in the Tasks section. Figure 8 shows a Gantt Chart with the deadlines for each of the 5 major tasks and also shows the time needed for writing the Thesis. The Simulation Pipeline will be created first in order to have a database which will be used in code development of the other processes. It is important to note that some prior code development has been started and is represented by the gray portion of the task bars in Figure 8. I plan to defend my thesis April 15th.

	February	March				April	
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Simulation Pipeline							
Triangulation Process							
Classification Process							
Map Update Validation				: : :			
Validation							
Write Thesis							

Figure 8: Gantt Chart