Module 2:

Deep Networks

State-of-the-Art Machine Learning

- Review of Notebooks 7.1 and 7.2:
 - Text generation with RNN (7.1):
 - Text vectorization
 - GRU cells
 - Model training and prediction
 - Time series forecasting (7.2) :
 - univariate time series
 - Multivariate time series
 - Single/multiple step model

Covid-19 Machine Learning

Open data projects and distributed computing to find Al-driven solutions to the pandemic, e.g. drug and vaccine development research Accelerating

Detection

Prevention

Response

Recovery

Early warning

Detecting anomalies and digital "smoke signals", e.g. BlueDot

Diagnosis

Pattern recognition using medical imagery and symptom data, e.g. *CT scans*

Prediction

Calculating a person's probability of infection, e.g. *EpiRisk*

Surveillance

To monitor and track contagion in real time, e.g. contact tracing

Information

Personalised news and content moderation to fight misinformation, e.g. via social networks

Delivery

Drones for materials' transport; robots for highexposure tasks at hospitals, e.g. CRUZR robot Service automation

Deploying triaging virtual assistants and chatbots, e.g. Canada's COVID-19 chatbot

Monitor

Track economic recovery through satellite, GPS and social media data, e.g. WeBank

State-of-the-Art Methods

State-of-the-art (2017-2018, from video)

	C. Istani Jahan Bilan	V' de la Cara	D. H. C.
	Subject/algorithm	Video time	Participant
1	BERT applications	11:25 – 14:00	Binder Gerhard
2	Tesla Autopilot Hardware v2+ : NN at scale	14:00 – 16:28	Bodmer André
3	AdaNet : AutoML with Ensembles	16:28 – 18.30	Ciullo Alessio
4	AutoAugment : Deep RL Data Augmentation	18:30 – 22:50	Desilvestro Valentino
5	Training Deep Networks with Synthetic Data	22:50 – 24:29	Freunek Michael
6	Segmentation Annotation with Polygon-RNN++	24:29 – 26:34	Gomez Chamorro Andrea
7	DAWNBench : Training Fast and Cheap	26.34 – 29:05	Janicek Radoslav
8	BigGAN: state of the art in image synthesis	29:05 – 30:11	Nikolayeva Tatyana
9	Video-to-video synthesis	30:11 – 32:12	Sandow Malte
10	Semantic segmentation (object detection)	32:12 – 33:38	Schneider Christa
11	Symmetric semantic segmentation	33:38 – 36:00	Sigrist Christine
12	AlphaGO	36:00 – 37.23	Vasconcelos Ivo
13	AlphaZero	37:23 – 40:38	Vaudroz Tamara
14	OpenAl Five	40:38 – 43:27	Wieland Fluri Anton Martin
15	Deep Learning Frameworks	43:27 – 46.24	Zeller Marcel

State-of-the-art (from 2019 conference)

Area	State-of-the-art algorithms	
Image classification	VGG, AlexNet, InceptionV3	
Object detection	Faster R-CNN, Yolo9000, YoloV2	
Semantic segmentation	Mask-R-CNN, SSD	
Speech recognition	DeepSpeech2	
Translation	Seq2se1, Transformer	
Sentiment analysis	Seq-CNN	
Recommender system	<u>NCF</u>	
Game play	MiniGo, DeepQ, A3C	
Generative model	Biggan	