Authors:

Erick Rosete Beas — er165@uni-freiburg.de Jessica Lizeth Borja Diaz — jb986@uni-freiburg.de

Principles of AI Planning Exercise Sheet 7

13.12.2019

Exercise 8.1 - Relaxed planning graph and heuristics

Consider the relaxed planning task Π^+ with variables $A = \{a, b, c, d, e\}$, operators $O = \{o_1, o_2, o_3\}$, $o_1 = \langle d, c \wedge (c \triangleright e) \rangle$, $o_2 = \langle c, a \rangle$, $o_3 = \langle a, b \rangle$, goal $\gamma = b \wedge e$ and initial states $s = \{a \mapsto 0, b \mapsto 0, c \mapsto 0, d \mapsto 1, e \mapsto 0\}$. Solve the following by drawing the relaxed planning graph for the lowest depth k that is necessary to extract a solution

(a) Calculate $h_{sa}(s)$ for Π^+

The heuristic value for the initial state is 4.

(b) Calculate $h_{FF}(s)$ for Π^+

The heuristic value for the initial state is 4.

Exercise 8.1 - Finite domain representation

FDR planning task $\Pi' = \langle V, I, O, \gamma \rangle$

$$V = \{above - a, above - b, above - c, below - a, below - b, below - c\}$$

$$\mathcal{D}_{above-a} = \{b, c, nothing\}$$

$$\mathcal{D}_{above-b} = \{a, c, nothing\}$$

$$\mathcal{D}_{above-c} = \{a, b, nothing\}$$

$$\mathcal{D}_{below-a} = \{b, c, table\}$$

$$\mathcal{D}_{below-b} = \{a, c, table\}$$

$$\mathcal{D}_{below-c} = \{a, b, table\}$$

$$I = \{above-a \mapsto nothing, above-b \mapsto a, above-c \mapsto nothing,$$

$$below-a \mapsto b, below-b \mapsto table, below-c \mapsto table\}$$

$$O = move-x-y-z, move-x-table-z, move-x-y-table$$

$$move-x-y-z = \langle above-y = x \land above-x = nothing \land above-z = nothing,$$

$$below-x := z \land above-y := nothing \land above-z := x \rangle$$

$$move\text{-}x\text{-}table\text{-}z = \langle above\text{-}x = nothing \land below\text{-}x = table \land above\text{-}z = nothing, \\ below\text{-}x := z \land above\text{-}z := x \rangle$$

$$move\text{-}x\text{-}y\text{-}table = \langle above\text{-}y = x \land above\text{-}x = nothing, \\ below\text{-}x := table \land above\text{-}y := nothing \rangle$$

for pair-wise distinct $x, y, z \in a, b, c$

$$\gamma = above - c = b \land above - a = c$$