CS540 - HW08

Jurijs Nazarovs
11/19/2017

Problem 1

- 1. $p \implies (q \implies r) \equiv \neg p \lor \neg q \lor r$ 2. $\neg \beta : \neg ((p \implies q) \implies (p \implies r))$ 2.1. $(p \implies q) \implies (p \implies r) \equiv \neg (\neg p \lor q) \lor (\neg p \lor r) \equiv (p \land \neg q) \lor (\neg p \lor r)$ 2.2. $\neg \beta : \neg (p \land \neg q) \land \neg (\neg p \lor r) \equiv (\neg p \lor q) \land p \land \neg q$
- 3. Result:
 - $3.1. \ \, \neg p \vee \neg q \vee r$
 - $3.2. \ \neg p \lor q$
 - 3.3. p
 - $3.4. \neg q$
- 4. Resolution:
 - 4.1. Consider 3.1 and 3.2 $\implies \neg p \lor q$
 - 4.2. Consider 4.1 and 3.3 $\implies r$
 - 4.3. Consider 4.2 and 3.4 $\implies \emptyset$

Thus, we have a negation. Thus, we prove $(p \implies q) \implies (p \implies r)$.

Problem 2

1. Jump

- 1. Everything that can jump, jumps higher than a building
- 2. Variables: x object in a real world.

Domain: literally everything - animals, people, words, punctuation marks and etc.

- 3. Predicates: canJump(x) ability to jump [boolean], jumpsHigher(x, constant) whether x jumps higher than 'constant' [boolean]
- 4. $\forall x \text{ jump}(x) \implies \text{jumpsHigher}(x, \text{Builiding})$

2. Politicians

- 1. Among 100 politicians at least 1 is Honest and for any 2 out of 100 at least 1 is Liar.
- 2. Variables: x, y politicians

Domain: 100 politicians in a party

- 3. Predicates: Honest(x) [boolean], Liar(x) [boolean]
- 4. $\exists x \; \text{Honest}(x) \land \forall x, y \; (\text{Liar}(x) \lor \text{Liar}(y))$

Problem 3

1.

	Madison	Seattle	Boston	Vancouver	Winnipeg	Montreal
Madison	0	1,617	931	1,654	597	800
Seattle	1,617	0	2,486	121	1,153	2,283
Boston	931	2,486	0	2,501	1,344	250
Vancouver	$1,\!654$	121	2,501	0	1,159	2,291
Winnipeg	597	1,153	1,344	1,159	0	1,132
Montreal	800	2,283	250	2,291	1,132	0

2.

For the following 2 problems:

- , separator for citites inside a cluster $\,$
- ; separator for clusters

every cluster is written on a new line

 $\operatorname{complete}$ linkage - greatest distance between classes

Iteration	closest pair of clusters	distance	all clusters
1	Vancouver;	121	Vancoever, Seattle;
	Seattle		Madison;
			Boston;
			Winnipeg;
			Montreal;
2	Boston;	250	Vancoever, Seattle;
	Montreal		Madison;
			Boston, Montreal;
			Winnipeg;
3	Madison;	597	Vancoever, Seattle;
	Winnipeg		Boston, Montreal;
			Madison, Winnipeg;
4	Boston, Montreal;	1,344	Vancoever, Seattle;
	Madison, Winnipeg	•	Boston, Montreal, Madison, Winnipeg;

3.

Iteration	closest pair of clusters	distance	all clusters
1	Madison;	931	Madison, Boston;
	Boston		Seattle;
			Vancoever;
			Winnipeg;
			Montreal
2	Montreal;	1,132	Madison, Boston;
	Winnipeg		Seattle;
			Vancoever;
			Winnipeg, Montreal
3	Vancoever;	2,291	Madison, Boston;
	Montreal, Winnipeg		Seattle;
			Vancoever, Montreal, Winnipeg
4	Madison, Boston;	2,486	Madison, Boston, Seattle;
	Seattle	•	Vancoever, Montreal, Winnipeg

Problem 4

1:
$$c_1 = 1$$
, $c_2 = 10$

	Iter 1	Iter 2
$\overline{y_1}$	1	1
y_2	1	1
y_3	1	1
y_4	2	2
y_5	2	2
y_6	2	2
c_1	2	2
c_2	7	7
Energy	8 + 2 = 10	10

2:
$$c_1 = 1, c_2 = 2$$

•	Iter 1	Iter 2	Iter 3
$\overline{y_1}$	1	1	1
y_2	2	1	1
y_3	2	2	2
y_4	2	2	2
y_5	2	2	2
y_6	2	2	2
c_1	0	1	1
c_2	5.4	6.25	6.25
Energy	0 + 23.2 = 23.2	2 + 8.75 = 10.75	10.75

3: Best solution

The first solution is better, since it results in less energy.