EXERCICE N°4 Comment résoudre des inéquations ?

Résoudre les inéquations suivantes dans \mathbb{R} .

L'idée est de comparer un produit de facteurs à zéro.

Pourquoi?

Parce qu'on pourra facilement étudier le signe de chaque facteur et que l'on pourra appliquer ensuite la règle des signes pour obtenir le signe du produit (et donc la comparaison à zéro...)

Exemples généraux :

1)
$$2x^2+11x-6 \le 4x^2-10x+4$$

Notons S l'ensemble des solutions de cette inéquation. Pour $x \in \mathbb{R}$, les assertions suivantes sont équivalentes.

$$x \in S$$

$$2x^2 + 11x - 6 \le 4x^2 - 10x + 4$$

$$2x^2+11x-6 - (4x^2-10x+4) \le 0$$

On ne change pas le sens d'une d'inégalité en soustrayant un même nombre à chaque membre (et oui $4x^2-10x+4$ est un nombre même si il dépend du nombre x)

$$-2x^2 + 21x - 10 \le 0$$

Posons $\Delta = 21^2 - 4 \times (-2) \times (-10) = 361$ le discriminant de ce dernier trinôme. $\Delta > 0$, il y a donc deux racines :

$$x_1 = \frac{-21 - 19}{2 \times (-2)} = 10$$
 et $x_2 = \frac{-21 + 19}{2 \times (-2)} = -\frac{1}{2}$

La dernière inéquation est donc équivalente à :

$$-2(x-10)\left(x+\frac{1}{2}\right) \leqslant 0$$

Or:

Soit f une fonction polynomiale de degré 2 telle que pour tout $x \in \mathbb{R}$, $f(x) = ax^2 + bx + c$ avec a; b et c des réels, $a \ne 0$ et possédant deux racines distinctes alors

Si
$$a < 0$$

x	$-\infty$	x_1	x_2	+∞
f(x)	-	•	+ 0	-

~ •			\sim
Si	α	>	0
	- 11	_	١,,

\boldsymbol{x}	$-\infty$		x_1	x_1		x_2	
f(x)		+	•	_	ø	+	

On retient avec l'une des deux phrases suivantes :

Le trinôme est du signe de moins a entre les racines.

 O_{11}

Le trinôme est du signe de *a* à l'extérieur des racines.

(Retenez en une sur les deux et oubliez l'autre!)

On en déduit le tableau de signes suivant :

x	$-\infty$	_	$\frac{1}{2}$:	LO		+∞
$-2(x-10)\left(x+\frac{1}{2}\right)$		_	•	+	•	_	

On en déduit que S =

$$S = \left| -\infty ; -\frac{1}{2} \right| \cup \left[10 ; +\infty \right]$$

2)
$$9x^2 - 6x + 1 > 4x^2 + 20x + 25$$

Notons S l'ensemble des solutions de cette inéquation.

$$x \in S \Leftrightarrow 9x^2 - 6x + 1 > 4x^2 + 20x + 25 \Leftrightarrow 5x^2 - 26x - 24 > 0$$

Posons $\Delta = (-26)^2 - 4 \times 5 \times (-24) = 1156$ le discriminant de ce dernier trinôme. $\Delta > 0$, il y a donc deux racines :

$$x_1 = \frac{-(-26)-34}{2 \times 5} = -\frac{4}{5}$$
 et $x_2 = \frac{-(-26)+34}{2 \times 5} = 6$

La dernière inéquation est donc équivalente à :

$$5(x-6)\left(x+\frac{4}{5}\right) > 0$$

On en déduit que $S = \left[-\infty ; -\frac{4}{5} \right] \cup \left[6 ; +\infty \right]$

Des cas particuliers :

3)
$$5x^2 - 7x + 21 < 3x^2 - 5x + 2$$

Notons S l'ensemble des solutions de cette inéquation.

$$x \in S \Leftrightarrow 5x^2 - 7x + 21 < 3x^2 - 5x + 2 \Leftrightarrow 2x^2 - 2x + 19 < 0$$

Posons $\Delta = (-2)^2 - 4 \times 2 \times 19 = -148$ le discriminant de ce dernier trinôme. $\Delta < 0$, il n'y a donc aucune racine.

Dans ce cas, la parabole ne coupe pas l'axe des abscisses, ce qui signifie que le signe ne change pas. Il reste à le déterminer : c'est le signe de a dans $ax^2 + bc + c$ (revenez aux jeux)

On en déduit que le trinôme est du même signe que son coefficient dominant 2 > 0.

On en déduit que $S = \emptyset$

4)
$$x^2 \ge 64$$

C'est dans le <u>cours de seconde</u> : propriétés n°6 et 7

Cette équation admet comme ensemble de solutions : $S =]-\infty; -8[\cup]8; +\infty[$