K-Means

Maisy Samai Vázquez Sánchez

2022-06-01

INTRODUCCIÓN

Es un método de clasificación **NO** supervisado el cual clasifica a objetos en K grupos dependiendo sus similitudes.

Librerias

```
library(cluster)
```

Matriz de datos.

```
X<-as.data.frame(state.x77)
colnames(X)

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"
## [6] "HS Grad" "Frost" "Area"</pre>
```

Transformacion de datos

1.- Transformacion de las variables x1,x3 y x8 con la funcion de logaritmo.

```
X[,1]<-log(X[,1])
colnames(X)[1]<-"Log-Population"

X[,3]<-log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

Metodo k-means

dim(X)

```
## [1] 50 8
```

```
n<-dim(X)[1]
p<-dim(X)[2]</pre>
```

2.- Estandarizacion univariante.

```
X.s<-scale(X)</pre>
```

3.- Algoritmo k-medias (3 grupos) cantidad de subconjuntos aleatorios que se escogen para realizar los calculos de algoritmo.

```
Kmeans.3<-kmeans(X.s, 3, nstart=25)</pre>
```

Centroides

Kmeans.3\$centers

```
##
    Log-Population
                        Income Log-Illiteracy
                                                                         HS Grad
                                               Life Exp
                                                               Murder
         -0.7900149 0.2080926
                                  -0.93960948 0.5642988 -0.71791785 0.7707484
## 2
          0.5693805 0.5486843
                                   0.05412021 \quad 0.1388564 \ -0.01977495 \quad 0.1203417
## 3
          0.2360549 -1.2266128
                                   1.31921387 -1.0778757 1.10983501 -1.3566922
##
          Frost
                  Log-Area
## 1 0.8803670 0.4093602
## 2 -0.3291597 -0.4878988
## 3 -0.7719510 0.1991243
```

Cluster de pertenencia

Kmeans.3\$cluster

##	Alabama	Alaska	Arizona	Arkansas	California
##	3	1	2	3	2
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	1	2	2	2	3
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	2	1	2	2	1
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	1	3	3	1	2
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	2	2	1	3	2
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	1	1	1	1	2

```
##
       New Mexico
                        New York North Carolina
                                                   North Dakota
                                                                           Ohio
##
                                               3
                                                              1
         Oklahoma
                          Oregon
                                    Pennsylvania
                                                   Rhode Island South Carolina
##
##
     South Dakota
                       Tennessee
##
                                           Texas
                                                           Utah
                                                                        Vermont
##
##
         Virginia
                      Washington West Virginia
                                                      Wisconsin
                                                                        Wyoming
##
```

4.- SCDG

```
SCDG<-sum(Kmeans.3$withinss)
SCDG
```

[1] 203.2068

5.- Clusters

```
cl.kmeans<-Kmeans.3$cluster
cl.kmeans</pre>
```

##	Alabama	Alaska	Arizona	Arkansas	California
##	3	1	2	3	2
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	1	2	2	2	3
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	2	1	2	2	1
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	1	3	3	1	2
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	2	2	1	3	2
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	1	1	1	1	2
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	3	2	3	1	2
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	2	1	2	2	3
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	1	3	3	1	1
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	2	2	3	1	1

6.- Scatter plot con la division de grupos obtenidos (se utiliza la matriz de datos centrados).

```
col.cluster<-c("blue", "red", "green")[cl.kmeans]
pairs(X.s, col=col.cluster, main="k-means", pch=19)</pre>
```

k-means

Visualizacion con las dos componentes principales

Dos primeras componentes principales

These two components explain 62.5 % of the point variability.

Dos primeras componentes principales

These two components explain 62.5 % of the point variability.

Silhouette

Representacion grafica de la eficacia de clasificacion de una observacion dentro de un grupo.

1.- Generacion de los calculos

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.kmeans<-silhouette(cl.kmeans, dist.Euc)</pre>
```

2.- Generacion del grafico

```
plot(Sil.kmeans, main="Silhouette for k-means",
col="blue")
```

Silhouette for k-means

Average silhouette width: 0.28