8. Wektory i wartości własne

Zadania

- 1. W przestrzeni R^3 wyznaczyć macierz zmiany bazy od bazy $\mathcal{B} = \{[0, 1, 0], [0, 0, 1], [1, 0, 0]\}$ do bazy $\mathcal{C} = \{[-1, 2, 3], [2, -3, 1], [0, 0, 1]\}$.
- 2. Znaleźć wielomian charakterystyczny macierzy:

(a)
$$\begin{pmatrix} 2+i & 1 \\ 2 & 2-i \end{pmatrix}$$
,

(b)
$$\begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}.$$

- 3. Znaleźć wartości własne i wektory własne podanych liniowych przekształceń przestrzeni liniowych. Dla każdej wartości własnej λ znaleźć podprzestrzeń N_{λ} wektorów własnych.
 - (a) $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F([x_1, x_2]) = [x_1, x_1 + x_2]$
 - (b) $F: \mathbb{R}^3 \to \mathbb{R}^3$, $F([x_1, x_2, x_3]) = [x_1 x_3, 2x_2, x_1 + x_3]$.
 - (c) $F: \mathbb{C}^2 \to \mathbb{C}^2$, $F([x_1, x_2]) = [-x_2, x_1]$,
 - (d) $F: \mathbb{C}^3 \to \mathbb{C}^3$, $F([x_1, x_2, x_3]) = [x_1 x_3, 2x_2, x_1 + x_3]$.
- 4. Niech $F \colon V \to V$ będzie przekształceniem liniowym o podanej macierzy $A = M_{\mathcal{B}}^{\mathcal{B}}(F)$ w bazie standardowej \mathcal{B} przestrzeni $V(\mathbb{C})$. Sprawdzić, czy istnieje baza \mathcal{C} odpowiedniej przestrzeni wektorowej, w której $M_{\mathcal{C}}^{\mathcal{C}}(F)$ jest macierzą diagonalną. Jeśli tak, znaleźć macierze zmiany bazy: $M_{\mathcal{C}}^{\mathcal{B}}(Id_V)$ oraz $M_{\mathcal{B}}^{\mathcal{C}}(Id_V)$.

(a)
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

(d)
$$A = \begin{pmatrix} 3 & 0 & -2 \\ -2 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

(e)
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -3 & 0 & 4 \\ -1 & -1 & 3 \end{pmatrix}$$

(f)
$$A = \begin{pmatrix} 0 & -1 & 2 \\ -1 & 0 & 2 \\ -1 & -1 & 3 \end{pmatrix}$$