$$T(n)= a T(n/b) + f(n)$$

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

a.
$$T(n) = 2T(n/2) + \log n$$

$$\log_2 2 = 1$$

$$f(n) = \log n$$

Case 1: Is
$$f(n) = \log n O(n^{1-e})$$
? True for $e = 1/2 > 0$

Therefore, $T(n) = \Theta(n)$

d.
$$T(n)=7T(n/3) + n$$

$$log_3 7 = 1.xxxx$$

Case 1: Is
$$f(n)=n$$
 O($n^{1.xxxx}$ -e)? True for $e \le 0.xxxx$

Therefore,
$$T(n) = \Theta(n^{1.xxxx})$$

If Dictionary D is binary search tree based, then the items are iterated in key-sorted order. Whereas, if D is hash table based, then the iteration is in a non-specified order. In the Java library, a LinkedHashMap iterates in the order the items were inserted into the Map.

What is the syntax for iterating through the items in a Dictionary D?

One was is using the for each syntax:

for each (k, e) in D.items() do

Another way is using an iterator and a while-loop as follows:

iter <- D.items()

while iter.hasNext() do

(k, e) <- iter.nextObject()

Master Theorem:

$$T(n)= a T(n/b) + f(n)$$

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

$$b.T(n) = 8T(n/2) + n^2$$

 $\log_2 8 = 3$, Is $f(n)=n^2$ $O(n^{3-e})$, yes for e=1 or less, so case 1 applies Therefore, $T(n)=\Theta(n^3)$

c.
$$T(n) = 16T(n/2) + (nlogn)^4$$

$$\log_2 16 = 4$$
, so $n^{\log_a b} = n^4$

Case 2: Is $f(n) = (n^4 \log^4 n) \Theta(n^4 \log^k n)$ for some k? Yes for k=4.

Therefore, $\Theta(n^4 \log^5 n)$

e. $T(n) = 9T(n/3) + (n^3 \log n)$ Case 3 applies. Must solve for δ .