04 septembre 2025

Définition 0.1. (Caractérisation séquentielle de la limite) Soient $A \subset E$, $f: A \to F$, $a \in \overline{A}$ et $l \in F$.

 $\lim f(x) = l \iff (\forall (x_n) \in A^{\mathbb{N}}, x_n \to a \implies f(x_n) \to l)$

Définition 0.2. (Caractérisation de la limite avec la norme) Soient $A \subset E$ et $V \subset F$, $f : A \to B$. Soient $a \in \overline{A}$ et $l \in V$.

 $\lim_{x \to a} f(x) = l$ $\iff \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in A, \ ||x - a||_E < \delta \implies ||f(x) - l||_F < \varepsilon$ $\iff \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in (B(a, \delta) \cap A) \implies f(x) \in B(l, \varepsilon)$

Mettre le dessin

à faire d'ici

Equivalence:

si $\lim_{x\to a} f(x) = b$, soit $(x_n)_n$ une suite de U convergeant vers a.

Soit $\varepsilon > 0, \exists \delta > 0, x \in B(a, \delta) \implies f(x) \in B(b, \varepsilon).$

Soit $n_0, \forall n \ge n_0, ||x_n - a|| < \delta$

On a alors $||f(x_n) - b|| \le \varepsilon$.

On a deduit que $\lim_{n\to+\infty} ||f(x_n)-b||=0 \implies \lim_{n\to+\infty} f(x_n)=b$

Remarque 0.1. Et c'est vrai pour n'importe quel suite $(x_n)_n$ avec $\lim_{n\to+\infty} x_n = 0$.

Contraposition:

Supposons que $\lim_{x\to a} f(x) = b$ soit faux. Alors $\exists \varepsilon > 0, \forall \delta > 0, \exists x \in B(a,\delta), f(x) \in B(b,\varepsilon)$.

Soit $\varepsilon > 0$ une telle quantité $\forall n \exists x_n \in B(a, \frac{1}{n})$ ne converge pas sur 0 (minorée par ε). Donc $(f(x_n))_n$ ne converge pas vers b.

Définition 0.3.

(Théorème des gendarmes)

Soit $(E, ||.||_E)$ un espace vectoriel normé. Soient $f, g, h : V \to \mathbb{R}$ avec $V \subset E$. Soit $a \in adh(V)$. S'il existe $\delta > 0, \forall x \in V \cap B(a, \delta)$ on a $f(x) \leq g(x) \leq h(x)$ et $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = b$ alors $\lim_{x \to a} g(x) = b$.

Démonstration 0.1.

Soit $(x_n)_n$ un suite de V convergeant vers a. Pour n suffisamment grand, $f(x_n) \leq g(x_n) \leq h(x_n)$. et $\lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} h(x_n) = b$. Donc par le théorème des gendarmes pour les suites, on a $\lim_{n \to +\infty} g(x_n) = b$. ??? $\lim_{x \to a} g(x) = b$.

Exemples:

1. $E = (\mathbb{R}^2, ||.||_2), f(x, y) = (x+y, x-y).$ Montrons que: $\lim_{(x,y)\to(a,b)} f(x,y) = (a,b).$

Soit $((x_n, y_n))_n$ convergeant vers (a, b). $||f(x_n, y_n) - f(a, b)|| = ||x_n + y_n - (a - b)|| = ||(x_n - a, -(y_n - b) + (y_n - b, x_n - a))|| \le ||(x_n - a, (y_n - b))|| + ||(y_n - b, x_n - a)||.$

Or $||(x,v)|| = ||(x,-v)|| = ||(v,x)|| \implies 0 \le ||f(x_n,y_n) - f(a,b)|| \le 2||(x_n - a, y_n - b)|| = 2||(x_n, y_n) - (a,b)|| \implies \lim_{n \to +\infty} ||f(x_n, y_n) - f(a,b)|| = 0 \implies \lim_{n \to +\infty} f(x_n, y_n) = f(a,b).$ Donc Voila ref to montrons

2. $E = (\mathbb{R}^2, ||.||_2), F = (\mathbb{R}, |.|), f : \mathbb{R}^2$ $\{(0,0)\} \to \mathbb{R} \ f(x,y) = \frac{xy}{x^2 + y^2}.$

Montrons que $\nexists \lim_{(x,y)\to(0,0)} f(x,y)$.

Supposons que $\lim_{(x,y)\to(0,0)} f(x,y) = b$. $(x_n) := (\frac{1}{n},0)$, $\lim_{n\to+\infty} x_n = (0,0)$. $b = \lim_{n\to+\infty} f(\frac{1}{n},0) = \lim_{n\to+\infty} \frac{\frac{1}{n}\cdot 0}{(\frac{1}{n})^2+0^2} = 0$. $(y_n) := (\frac{1}{n},\frac{1}{n})$, $\lim_{n\to+\infty} y_n = (0,0)$. $b = \lim_{n\to+\infty} f(\frac{1}{n},\frac{1}{n}) = \lim_{n\to+\infty} \frac{\frac{1}{n}\cdot \frac{1}{n}}{(\frac{1}{n})^2+(\frac{1}{n})^2} = \frac{1}{2}$. Absurde $\frac{1}{2} \neq 0$. Donc f n'admet pas de limite en (0,0).

Définition 0.4.

Soient E, F deux espaces vectoriels normés. $A \subset E, f : A \to F, a \in adh(A), B \subset E$.

Soit $b \in F$ (ou éventuellement) $b \in \{-\infty, +\infty, d^+, d^-\}$ si $F = \mathbb{R}, d \in \mathbb{R}$. On considère $f|_{A \cap B} : \{A \cap F \to F ???x \to f(x) \text{ On dit que } \lim_{x \to a, x \in B} f(x) = b \text{ si } \lim_{x \to a, x \in B} f|_{A \cap B} = b.$

Remarque 0.2. Si $A = B \cup C$, $\lim_{x \to a, x \in B} f(x) = b$ et $\lim_{x \to a, x \in C} f(x) = b$ alors $\lim_{x \to a} f(x) = b$.

 $Si \lim_{x \to a, x \in V} f(x) = b \ pour \ V \ ouvert \ contenant \ a \ alors \lim_{x \to a} f(x) = b$

Définition 0.5.

Soient $(E, ||.||_E)$, $(F, ||.||_F)$ deux EVNs. $U \subset E$, $V \subset F$, $f : U \to V$ Pour $a \in U$ on dit que f est continue en a si $\lim_{x\to a} f(x) = f(a)$

Remarque 0.3. Pour le montrer il suffit de démontrer que $\lim_{x\to a, x\neq a} f(x) = f(a)$

Soit $U \subset A$ un ouvert de $E, f : A \to F$. f est continue en tout point de V si et seulement si $f|_V$ est continue en tout point.

Démonstration 0.2.

Pour $a \in V$, $f(a) = \lim_{x \to a} f(x) \iff f(a) = \lim_{x \to a, x \in U} f(x)$.

Exemples:

1. $f(x) = ||x||_E$, $F = \mathbb{R}$, $||.||_F = |.|$ f est continue en tout point de E en effet: $\forall x, a \in E, 0 \le |||x|| - ||a||| \le ||x - a||$ Soit $(x_n)_n \to_{n \to +\infty} a$ $0 \le |||x_n|| - ||a||| \le ||x_n - a|| \implies \lim_{n \to +\infty} ||x_n|| = ||a||$.

Proposition 0.1: Composition des limites

 $(E, ||.||_E), (F, ||.||_F), (G, ||.||_G)$ EVNs. $f: U \to V, g: V \to W$ avec $U \subset E, V \subset F, W \subset G$. Soient $a \in \text{adh}(U), b \in \text{adh}(V), c \in \text{adh}(W)$. Si $\lim_{x\to a} f(x) = b$ et $\lim_{y\to b} g(x) = c$ alors $\lim_{x\to a} g(f(x)) = c$. En partie si f est continue en a, g en b = f(a) alors $g \circ f$ est continue en a.

Démonstration 0.3.

Soit (x_n) une suite de U convergeant vers a alors $(f(x_n))$ est un suite de V convergeant vers b = f(x) alors $(g(f(x_n)))_n$ est une suite de W convergeant vers c cela implique $\lim_{x\to a} f(x) = c$.

Exemple

 $f: \{(\mathbb{R}^2, ||.||_2) \to (\mathbb{R}, |.|)???(x, y) \to \{\frac{x^y}{x^2 + y^2} \text{si}(x, y) \neq (0, 0) \text{0sinon} \}$ Montrons que f est continue en (0, 0) Soit $(x, y) \neq (0, 0), 0 \leq |f(x, y) - f(0, 0)| = |\frac{x^y}{x^2 + y^2} = \frac{x^y}{||(x, y)||_2^2} \leq \frac{||(x, y)||_2}{||(x, y)||_2^2} = ||(x, y)||_2^2$

Or $\lim_{(x,y)\to(0,0)\in(x,y)\neq(0,0)} |f(x,y)-f(0,0)| = 0$ donc f est continue en (0,0).

Définition 0.6.

(Prolongement et prolongement par continuité) Soient $(E, ||.||_E)$, $(F, ||.||_F)$ deux EVNs, $U \subset E, V \subset F$ et $f: U \to F$. On dit que $g: V \to F$ est un prolongement de f si $\forall x \in U, g(x) = f(x)$ c'est un prolongement par continuité sur V de f si $V \subset adh(U)$ et $\forall a \in V \setminus U, \lim_{x \to a} f(x) = g(a)$

Remarque 0.4. Si g est un prolongement par continuité alors g est continue en tout point de $V \setminus U$ en effet: Soit $a \in V \setminus U$, $(x_n)_n \in V^{\mathbb{N}}$ convergeant vers a.

Soit $n \in \mathbb{N}$ si $x_n \in V$ on pose $y_n := x_n$ Sinon on rend $g_n \in V$ tel que $y_n \in B(x_n, \frac{1}{n})$ On a défini $(g_n)_n \in V^{\mathbb{N}}$ tel que $\lim_{n \to +\infty} //t$ todo voir les 4 photos

à faire jusqu'à compacité