Mérték, integrál, ...

3. Előadás

1. Emlékeztető.

A. Lemma. Tegyük fel, hogy a $h_n \in C_0$ $(n \in \mathbb{N})$ lépcsősfüggvénysorozatra a következők teljesülnek:

1º minden $x \in [a, b]$ és $n \in \mathbb{N}$ mellett $0 \le h_{n+1}(x) \le h_n(x)$;

 2° valamilyen nullamértékű $\mathcal{N} \subset [a,b]$ halmazzal

$$\lim_{n \to \infty} h_n(x) = 0 \qquad (x \in [a, b] \setminus \mathcal{N}).$$

 $Ekkor \lim_{n\to\infty} \int_a^b h_n = 0.$

B. Lemma. Az előbbiekben szereplő $h_n \in C_0$ $(n \in \mathbb{N})$ lépcsősfüggvény-sorozatról most azt tegyük fel, hogy

1º minden $x \in [a,b]$ és $n \in \mathbb{N}$ mellett $h_n(x) \le h_{n+1}(x)$;

$$2^o$$
 az integrálok $\left(\int_a^b h_n\right)$ sorozata korlátos.

Ekkor egy alkalmas nullamértékű $\mathcal{M} \subset [a,b]$ halmazzal

$$\lim_{n \to \infty} h_n(x) < +\infty \qquad (x \in [a, b] \setminus \mathcal{M}).$$

2. Megjegyzések.

i) A Riesz-féle felépítésnek már az "első lépéseiből" is látszik (ld. A. Lemma és B. Lemma), hogy a határátmenet és az integrálás (bizonyos feltételek melletti) felcserélhetőségének a biztosítása az egyik alapvető szempont az új integrálfogalom megalkotásakor. Az ezzel kapcsolatos (és az egész Lebesgue-elméletet illetően meghatározó) állítás lesz majd az ún. Lebesgue-féle konvergencia-tétel (amit itt csak egy speciális esetben fogalmazunk meg). Tegyük fel ehhez, hogy az

$$f_n: [a,b] \to \mathbf{R} \qquad (n \in \mathbf{N})$$

Lebesgue-integrálható függvényekből álló sorozat rendelkezik az alábbi tulajdonságokkal: valamilyen $f:[a,b]\to \mathbf{R}$ függvényre és egy nullamértékű $Z\subset [a,b]$ halmazra

$$f(x) = \lim_{n \to \infty} f_n(x)$$
 $(x \in [a, b] \setminus Z),$

továbbá egy Lebesgue-integrálható $F:[a,b]\to [0,+\infty)$ függvénnyel és nullamértékű $Z_n\subset [a,b] \ (n\in {\bf N})$ halmazokkal

$$|f_n(x)| \le F(x)$$
 $(n \in \mathbb{N}, x \in [a, b] \setminus Z_n).$

Ekkor az f is Lebesgue-integrálható, a (Lebesgue-) integrálok $\left(\int_a^b f_n\right)$ sorozata konvergens, és

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}.$$

Az is igaz, hogy

$$\lim_{n\to\infty} \int_a^b |f_n - f| = 0,$$

más szóval az (f_n) sorozat az ún. integrálmetrika értelmében is konvergál az f-hez. Ez a helyzet speciálisan akkor, ha az f_n -ek egyenletesen korlátosak: az F-nek választható egy (alkalmas) konstansfüggvény. (Ez az ún. "kis" Lebesgue-tétel.)

ii) Kiderül majd, hogy minden $f \in R[a,b]$ függvény Lebesgue-integrálható is, és az f Lebesgue-integrálja megegyezik a Riemann-integráljával. Ezért az előbbi megjegyzésben szereplő (kis) Lebesgue-tétel megfogalmazható a Riemann-integrálható függvények körében, amikor is a következő állítást kapjuk: ha az $f_n \in R[a,b]$ $(n \in \mathbb{N})$ függvények sorozata egyenletesen korlátos, és (pontonként) konvergál egy Riemann-integrálható $f \in R[a,b]$ függvényhez, akkor

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}$$

(ahol most az integrálok Riemann-integrálok). Ez nem más, mint az Arzelà-Osgood-tétel.

3. Halmazrendszerek.

Azokat a halmazstruktúrákat vesszük sorra, amelyek a későbbiekben fontos szerepet fognak játszani. Legyen ehhez X egy tetszőleges halmaz, $\mathcal{P}(X)$

pedig jelentse az X hatványhalmazát (azaz az X részhalmazainak a halmazát).

Elsőként a majd mértékeknek nevezett halmazfüggvények értelmezési tartományaival, az ún. szigma-algebrákkal foglalkozunk.

- 1. **Definíció**. Azt mondjuk, hogy az $\Omega \subset \mathcal{P}(X)$ halmazrendszer (X-beli) szigma-algebra (σ -algebra), ha
 - i) $X \in \Omega$;
 - ii) bármely $A \in \Omega$ esetén $X \setminus A \in \Omega$;
- iii) tetszőleges $A_n \in \Omega$ $(n \in \mathbb{N})$ halmazsorozatra $\bigcup_{n=0}^{\infty} A_n \in \Omega$.
- Pl. $\mathcal{P}(X)$ nyilván σ -algebra. Legyen \mathbf{R}_0 az \mathbf{R} legfeljebb megszámlálható részhalmazainak a halmaza, és

$$\Omega := \{ A \in \mathcal{P}(\mathbf{R}) : A \in \mathbf{R}_0 \text{ vagy } \mathbf{R} \setminus A \in \mathbf{R}_0 \}.$$

Világos, hogy Ω egy σ -algebra.

A definícióból (és elemi halmazelméleti azonosságokból) rögtön adódik az, hogy minden Ω szigma-algebra esetén:

- a) $\emptyset \in \Omega$;
- b) ha $A_n \in \Omega$ $(n \in \mathbb{N})$, akkor $\bigcap_{n=0}^{\infty} A_n \in \Omega$;
- c) az Ω "zárt a véges unió- és metszetképzésre" is, azaz, ha $\mathcal{A}\subset\Omega$ egy véges halmaz, akkor

$$\bigcup_{A\in\mathcal{A}}A\in\Omega,\ \bigcap_{A\in\mathcal{A}}A\in\Omega;$$

d) minden $A, B \in \Omega$ mellett $A \setminus B \in \Omega$ is igaz.

Valóban, a ii) feltételben A := X-et írva az adódik, hogy $\emptyset = X \setminus X \in \Omega$. A De Morgan-azonosságok miatt a b)-beli A_n halmazokra

$$\bigcap_{n=0}^{\infty} A_n = X \setminus \left(X \setminus \bigcap_{n=0}^{\infty} A_n \right) = X \setminus \bigcup_{n=0}^{\infty} (X \setminus A_n)$$

teljesül, ezért a ii) feltétel alapján $X \setminus A_n \in \Omega$ $(n \in \mathbb{N})$. Tehát iii) szerint $B := \bigcup_{n=0}^{\infty} (X \setminus A_n) \in \Omega$, azaz ismét a ii)-t felhasználva

$$\bigcap_{n=0}^{\infty} A_n = X \setminus B \in \Omega.$$

Ha a c)-ben $\mathcal{A} := \{A_0, ..., A_n\}$ valamilyen $n \in \mathbb{N}, A_0, ..., A_n \in \Omega$ mellett, akkor az $A_k := A_n \quad (\mathbb{N} \ni k > n)$ jelöléssel

$$\bigcup_{A\in\mathcal{A}}=\bigcup_{k=0}^{\infty}A_k,\ \bigcap_{A\in\mathcal{A}}=\bigcap_{k=0}^{\infty}A_k,$$

így iii), ill. b) alapján c) is igaz. Végül, a d) állításhoz írjuk fel $A \setminus B$ -t

$$A \setminus B = A \cap (X \setminus B)$$

alakban, amiből az eddigiek szerint d) nyilvánvaló.

Alapvető fontosságú a halmazrendszer által generált σ -algebra fogalma. Ennek a definíciójához legyen adott egy $Y \subset \mathcal{P}(X)$ halmazrendszer, és tekintsük a következő $\Omega(Y)$ halmazt:

$$\Omega(Y) := \bigcap_{\Omega \in \Sigma_Y} \Omega,$$

ahol

$$\Sigma_Y := \{ \Omega \subset \mathcal{P}(X) : \Omega \text{ szigma-algebra, } Y \subset \Omega \}.$$

Mivel $\mathcal{P}(X) \in \Sigma_Y$, ezért $\Sigma_Y \neq \emptyset$. Könnyen ellenőrizhető, hogy az $\Omega(Y)$ halmazrendszer egy X-beli σ -algebra, amit az Y halmazrendszer által generált σ -algebrának nevezünk.

A definíció alapján nyilvánvaló, hogy minden olyan (X-beli) Ω szigmaalgebrára, amelyre $Y \subset \Omega$, egyúttal $\Omega(Y) \subset \Omega$. Ezért szokták $\Omega(Y)$ -t az Y halmazrendszert tartalmazó "legszűkebb" σ -algebrának is nevezni. Ha maga az Y rendszer σ -algebra, akkor nyilván $Y = \Omega(Y)$.

Az egyik legegyszerűbb a következő: legyen $A \in \mathcal{P}(X)$ és $Y := \{A\}$. Ekkor

$$\Omega(Y) = \{\emptyset, X, A, X \setminus A\}.$$

Az $A := \emptyset$ választással adódó $\{\emptyset, X\}$ halmazrendszert triviális σ -algebrának fogjuk nevezni.

A szigma-algebra ugyan nagyon egyszerűnek tűnik, ezzel együtt azonban esetenként egyszerre mégis "túl sokat" akaró előírás. Ezért – enyhítve a kívánalmakat – egyelőre kevesebb megszorításnak eleget tevő halmazrendszereket vezetünk be. Az ilyen rendszereket illetően elsőként a gyűrű fogalmával ismerkedünk meg.

2. Definíció. A $\emptyset \neq \mathcal{G} \subset \mathcal{P}(X)$ halmazrendszer (X-beli) gyűrű, ha bármely $A, B \in \mathcal{G}$ esetén $A \setminus B, A \cup B \in \mathcal{G}$.

Mivel $\mathcal{G} \neq \emptyset$, ezért tetszőleges $A \in \mathcal{G}$ segítségével

$$\emptyset = A \setminus A \in \mathcal{G}.$$

Minden gyűrű "zárt a véges unióképzésre", azaz, ha $\mathcal{A}\subset\mathcal{G}$ véges halmaz, akkor

$$\bigcup_{A\in\mathcal{A}}A\in\mathcal{G}.$$

Ez rögtön adódik az \mathcal{A} számossága szerinti teljes indukció segítségével. Továbbá minden $A, B \in \mathcal{G}$ esetén

$$A \cap B = A \setminus (A \setminus B),$$

ezért $A \cap B \in \mathcal{G}$. A szigma-algebrákkal kapcsolatban fentebb mondottakhoz hasonlóan akármilyen $\mathcal{A} \subset \mathcal{G}$ véges halmazt is véve

$$\bigcap_{A\in\mathcal{A}}A\in\mathcal{G}.$$

Az X-beli gyűrűk metszete is gyűrű. Ennek alapján definiálhatjuk a valamely halmazrendszer által generált gyűrű fogalmát: bármilyen $Y \subset \mathcal{P}(X)$ halmazrendszerhez egyértelműen megadható olyan $\mathcal{G}(Y) \subset \mathcal{P}(X)$ gyűrű, hogy $Y \subset \mathcal{G}(Y)$, és minden olyan X-beli \mathcal{G} gyűrűre, amelyre $Y \subset \mathcal{G}$, az is igaz, hogy $\mathcal{G}(Y) \subset \mathcal{G}$. Ha ui.

$$\mathcal{G}_Y := \{ \mathcal{G} \subset \mathcal{P}(X) : \mathcal{G} \text{ gyűrű}, Y \subset \mathcal{G} \},$$

akkor

$$\mathcal{G}(Y) = \bigcap_{\mathcal{G} \in \mathcal{G}_Y} \mathcal{G}.$$

A $\mathcal{G}(Y)$ gyűrűt az Y által generált gyűrűnek fogjuk hívni. Ezzel kapcsolatban is használatos az Y-t tartalmazó "legszűkebb" gyűrű elnevezés.

Tovább "enyhítjük" a szóban forgó halmazrendszerekkel szembeni elvárásainkat. A későbbi alkalmazásokban látni fogjuk, hogy a gyakorlat számára fontos speciális esetekben még a gyűrű axiómáinál is kevesebbel rendelkező halmazrendszerekből elegendő kiindulnunk. Ezek az ún. félgyűrűk.

Legyen tehát adott továbbra is egy X halmaz, és vezessük be a következő definíciót:

3. Definíció. Egy $\emptyset \neq \mathcal{H} \subset \mathcal{P}(X)$ halmazrendszert (X-beli) $f\acute{e}lgy\~u$ - $r\~unek$ nevezünk, ha tetszőleges $A, B \in \mathcal{H}$ halmazpárra $A \cap B \in \mathcal{H}$, és alkalmas, páronként diszjunkt $Q_0, ..., Q_n \in \mathcal{H}$ $(n \in \mathbb{N})$ halmazokkal

$$A \setminus B = \bigcup_{k=0}^{n} Q_k.$$

Nyilván minden gyűrű egyúttal félgyűrű is, de pl. a számegyenes összes intervalluma egy olyan (\mathbf{R} -beli) félgyűrűt alkot, amelyik nem gyűrű. Minden félgyűrű tartalmazza az üres halmazt. Ha ui. az előbbi definícióban A=B-t választunk (márpedig a $\mathcal{H} \neq \emptyset$ feltétel miatt ezt megtehetjük), akkor az

$$\emptyset = \bigcup_{k=0}^{n} Q_k$$

előállításhoz jutunk, amiből $\emptyset \in \mathcal{H}$ már triviálisan következik.

Tetszőleges félgyűrű egyúttal véges sok elemének a közös részét is tartalmazza. A korábbi halmazstruktúrákkal ellentétben azonban félgyűrűk metszete már nem feltétlenül lesz félgyűrű. Legyen pl. $B \neq \emptyset, \, B \subset A, B \neq A$, ekkor

$$\mathcal{H}_1 := \{\emptyset, A, B, A \setminus B\}$$

nyilván félgyűrű. HaC,Dolyan nem üres, diszjunkt halmazok, amelyekre $A \setminus B = C \cup D,$ és

$$\mathcal{H}_2 := \{\emptyset, A, B, C, D\},\$$

akkor \mathcal{H}_2 is félgyűrű, de $\mathcal{H}_1 \cap \mathcal{H}_2$ nem az.

Pl. az R-beli balról zárt, jobbról nyílt intervallumok félgyűrűt alkotnak.

1. Tétel. Legyen \mathcal{H} félgyűrű X-ben, $Y \subset X$. Ekkor $Y \in \mathcal{G}(\mathcal{H})$ azzal ekvivalens, hogy alkalmas $A_0, ..., A_n \in \mathcal{H}$ $(n \in \mathbb{N})$ páronként diszjunkt halmazokkal

$$Y = \bigcup_{k=0}^{n} A_k.$$

Bizonyítás. Jelöljük \mathcal{G} -vel az állításban szereplő $\bigcup_{k=0}^{n} A_k$ halmazok által alkotott halmazrendszert. Mivel $\mathcal{G}(\mathcal{H})$ gyűrű és $\mathcal{H} \subset \mathcal{G}(\mathcal{H})$, ezért $\mathcal{G} \subset \mathcal{G}(\mathcal{H})$. Belátjuk, hogy a \mathcal{G} gyűrű. Ha ui. $U, V \in \mathcal{G}$ és

$$U = \bigcup_{k=0}^{n} A_k, \ V = \bigcup_{i=0}^{m} B_i$$

a tételben szereplő előállítások, azaz $n, m \in \mathbb{N}$, és az $A_0, ..., A_n \in \mathcal{H}$ halmazok is, valamint a $B_0, ..., B_m \in \mathcal{H}$ halmazok is páronként diszjunktak, akkor

$$U \cap V = \bigcup_{k=0}^{n} \bigcup_{i=0}^{m} A_k \cap B_i$$

egy véges sok, páronként diszjunkt \mathcal{H} -beli halmazokból álló felbontása az $U \cap V$ halmaznak. Ezért $U \cap V \in \mathcal{G}$. Ezt felhasználva lássuk most be, hogy $U \setminus V \in \mathcal{G}$. Vegyük észre ehhez, hogy

$$U \setminus V = \bigcup_{k=0}^{n} \bigcap_{i=0}^{m} (A_k \setminus B_i) =: \bigcup_{k=0}^{n} X_k.$$

A félgyűrű axiómái és a \mathcal{G} halmaz definíciója miatt az előbbi felbontásban szereplő összes $A_k \setminus B_i$ halmaz eleme a \mathcal{G} -nek, ezért az előbbiekre tekintettel $X_k \in \mathcal{G}$ (k = 0, ..., n). Innen a \mathcal{G} értelmezése miatt már triviális, hogy $U \setminus V \in \mathcal{G}$.

Az eddigiekből már nem nehéz belátni, hogy $U, V \in \mathcal{G}$ esetén $U \cup V \in \mathcal{G}$. Valóban,

$$U \cup V = (U \setminus V) \cup V$$

egy diszjunkt, \mathcal{G} -beli halmazokból álló felbontása az $U \cup V$ -nek, így a fentiek alapján $U \cup V \in \mathcal{G}$.

Mivel $\mathcal{H} \subset \mathcal{G}$ nyilván igaz, ezért – lévén a \mathcal{G} gyűrű, és $\mathcal{G}(\mathcal{H})$ a \mathcal{H} -t lefedő "legszűkebb" gyűrű – $\mathcal{G}(\mathcal{H}) \subset \mathcal{G}$. Következésképpen a fenti $\mathcal{G} \subset \mathcal{G}(\mathcal{H})$ tartalmazást is figyelembe véve $\mathcal{G}(\mathcal{H}) = \mathcal{G}$.

Legyen adott a $\mathcal{H} \subset \mathcal{P}(X)$ félgyűrű, és tekintsük az általa meghatározott $\mathcal{S} := \mathcal{G}(\mathcal{H})$ gyűrűt. Ekkor

$$\Omega(\mathcal{S}) = \Omega(\mathcal{H}).$$

Ti. mivel $\mathcal{H} \subset \mathcal{S}$, ezért egyúttal $\mathcal{H} \subset \Omega(\mathcal{S})$. Következésképpen a "generált" σ -algebra értelmezése szerint $\Omega(\mathcal{H}) \subset \Omega(\mathcal{S})$. Ugyanakkor (ld. 1. Tétel) minden $A \in \mathcal{S}$ halmazra $A \in \Omega(\mathcal{H})$, így $\mathcal{S} \subset \Omega(\mathcal{H})$. Ezért $\Omega(\mathcal{S}) \subset \Omega(\mathcal{H})$ is igaz.

4. Halmazfüggvények.

Az (absztrakt) halmazok mérését (a mértéküknek az értelmezését) egy

$$\varphi \in \mathcal{P}(X) \to [0, +\infty]$$

függvény segítségével végezzük majd, ahol az X adott ("alap")halmaz. A φ függvényt illetően bizonyos elvárásokat (axiómákat) fogalmazunk meg, amelyeknek egy része a \mathcal{D}_{φ} értelmezési tartománnyal (a mérhető halmazok halmazrendszerével) lesz kapcsolatos.

¹Az $A \subset X$ halmazt (a φ -re nézve) *mérhetőnek* nevezve, ha $A \in \mathcal{D}_{\varphi}$. Az utóbbi esetben $\varphi(A)$ az A *mértéke*.

- 4. **Definíció.** Azt mondjuk, hogy a fenti φ függvény
 - i) additív, ha a

$$\varphi\Big(\bigcup_{k=0}^{n} A_k\Big) = \sum_{k=0}^{n} \varphi(A_k)$$

egyenlőség teljesül minden olyan $A_k \in \mathcal{D}_{\varphi}$ $(n \in \mathbb{N}, k = 0, ..., n)$ választással, amelyre az $A_0, ..., A_n$ halmazok páronként diszjunktak és $\bigcup_{k=0}^n A_k \in \mathcal{D}_{\varphi}$;

ii) szigma-additiv (σ -additiv), ha

$$\varphi\Big(\bigcup_{k=0}^{\infty} A_k\Big) = \sum_{k=0}^{\infty} \varphi(A_k)$$

igaz minden olyan esetben, amikor az $A_k \in \mathcal{D}_{\varphi}$ $(n \in \mathbf{N})$ halmazok páronként diszjunktak és $\bigcup_{k=0}^{\infty} A_k \in \mathcal{D}_{\varphi}$.

Ha a

$$\varphi \in \mathcal{P}(X) \to [0, +\infty]$$

függvényre $\emptyset \in \mathcal{D}_{\varphi}$ és $\varphi(\emptyset) < +\infty$ fennáll, valamint a φ additív, akkor

$$\varphi(\emptyset) = 0.$$

Valóban, az $\emptyset = \emptyset \cup \emptyset$ egyenlőség (és a φ additivitása) miatt

$$\varphi(\emptyset) = \varphi(\emptyset) + \varphi(\emptyset),$$

amiből $\varphi(\emptyset) < +\infty$ alapján az állításunk (egyszerűsítés után) már nyilvánvaló. A

$$\varphi(A) = \varphi(A) + \varphi(\emptyset)$$

egyenlőség miatt ez elmondható akkor is, ha (az additivitás és $\emptyset \in \mathcal{D}_{\varphi}$ mellett) a $\varphi(\emptyset) < +\infty$ feltétel helyett valamilyen $A \in \mathcal{D}_{\varphi}$ halmazzal

$$\varphi(A) < +\infty$$

teljesül. Világos, hogy mindez igaz akkor is, ha az előbbiekben a φ additivitása helyett annak a σ -additivitását tesszük fel.

Ha a $\varphi \in \mathcal{P}(X) \to [0, +\infty]$ függvény σ -additív, $\emptyset \in \mathcal{D}_{\varphi}$, és $\varphi(\emptyset) = 0$, akkor a φ additív is. Ui. tetszőlegesen választott, páronként diszjunkt $A_0, ... A_n \in \mathcal{D}_{\varphi}$ $(n \in \mathbb{N})$ halmazokra, amelyekre $\bigcup_{k=0}^n A_k \in \mathcal{D}_{\varphi}$, egyúttal

$$\bigcup_{k=0}^{n} A_k = \bigcup_{k=0}^{\infty} A_k,$$

ahol $A_k := \emptyset$ $(n < k \in \mathbf{N})$. Ezért (a σ -additivitás alapján)

$$\varphi\left(\bigcup_{k=0}^{n} A_k\right) = \varphi\left(\bigcup_{k=0}^{\infty} A_k\right) = \sum_{k=0}^{\infty} \varphi(A_k) = \sum_{k=0}^{n} \varphi(A_k).$$

Pl. legyen \mathcal{D}_{φ} az **R**-beli intervallumok által meghatározott halmazrendszer, és

$$\varphi(I) := |I| \qquad (I \in \mathcal{D}_{\varphi}).$$

Ekkor a φ additív. Később megmutatjuk (ez már nem annyira könnyű), hogy ez a φ nem csupán additív, hanem σ -additív is.

5. Megjegyzések.

i) A valamely halmaz részhalmazaiból álló σ -algebrak metszete is σ -algebra. Az analóg állítás már két σ -algebra egyesítésére vonatkozóan sem igaz. Legyen ugyanis pl. $X := \{0, 1, 2\}$, és

$$\Omega := \{\emptyset, X, \{0\}, \{1, 2\}\}, \quad \widetilde{\Omega} := \{\emptyset, X, \{0, 1\}, \{2\}\}.$$

Ekkor $\Omega, \tilde{\Omega}$ triviális módon σ -algebrák X-ben, de

$$\Omega \cup \widetilde{\Omega} = \{\emptyset, X, \{0\}, \{2\}, \{0, 1\}, \{1, 2\}\}$$

nem az, mert pl. $\{0\} \cup \{2\} = \{0,2\} \notin \Omega \cup \widetilde{\Omega}$.

ii) Ha Ω szigma-algebra az X-ben és $Y \subset X$, akkor

$$\Omega_Y := \{ A \cap Y \in \mathcal{P}(Y) : A \in \Omega \}$$

egy Y-beli σ -algebra (az Ω ún. nyoma (spurja) Y-ban). Nyilvánvaló, hogy amennyiben $Y \in \Omega$, akkor

$$\Omega_Y = \{ A \in \Omega : A \subset Y \} = \Omega \cap \mathcal{P}(Y).$$

iii) Tegyük fel, hogy valamilyen $\emptyset \neq Y$ halmazzal adott egy $T: X \to Y$ leképezés. Ekkor tetszőleges Y-beli Ω szigma-algebra esetén a

$$\{T^{-1}[A] \in \mathcal{P}(X) : A \in \Omega\}$$

halmazrendszer szigma-algebra az X-ben. (Emlékeztetünk arra, hogy

$$T^{-1}[A] = \{ x \in X : T(x) \in A \}$$

jelöli az A halmaznak a T leképezés által létesített ősképét.)

iv) Ha az előbbi megjegyzésben Ω egy X-beli σ -algebra, és " $T^{-1}[A]$ " helyett T[A]-t írunk (azaz az A halmaznak a T által létesített képét, a

$$T[A] = \{T(x) \in Y : x \in A\}$$

halmazt), akkor az így kapott

$$\{T[A] \in \mathcal{P}(Y) : A \in \Omega\}$$

halmazrendszer nem minden T függvényre lesz σ -algebra az Y-ban. Ha viszont a szóban forgó T bijektív leképezés, akkor az előbb említett halmazrendszer σ -algebra.

- v) Az $\{A \in \mathcal{P}(X) : A \text{ véges}\}$ halmazrendszer gyűrű.² A "véges" kitétel helyett "legfeljebb megszámlálható"-t írva is gyűrűt kapunk.
- vi) Minden $A \in X$ mellett $\{\emptyset, A\}$ nyilván gyűrű (ami akkor és csak akkor szigma-algebra, ha A = X). Speciálisan, az $A := \emptyset$ választással kapott $\{\emptyset\}$ halmazrendszer is gyűrű (szigma-algebra).
- vii) Az **R** összes korlátos részhalmazainak a halmaza **R**-beli gyűrű, de nyilván nem szigma-algebra: pl. maga az **R** nem korlátos.
- viii) Minden gyűrű tartalmazza bármely két elemének a különbségét is és a metszetét is. Fordítva a dolog nem igaz, azaz, ha egy halmazrendszer rendelkezik a most mondott tulajdonsággal, akkor nem feltétlenül gyűrű. Ugyanez mondható el akkor is, ha a szóban forgó halmazrendszer a két halmaz egyesítésének és metszetének képzésére nézve zárt, azaz egy ún. háló.
 - ix) Tegyük fel, hogy a $\mathcal{G} \subset \mathcal{P}(X)$ gyűrűre még $X \in \mathcal{G}$ is teljesül. Ekkor azt mondjuk, hogy a \mathcal{G} algebra. Nyilván minden σ -algebra egyúttal algebra is. Pl. az

$$\{A \in \mathcal{P}(X) : A \text{ vagy } X \setminus A \text{ véges}\}$$

halmazrendszer algebra. Elemi halmazműveleti meggondolásokkal látható be az alábbi ekvivalencia: a $\mathcal{G} \subset \mathcal{P}(X)$ algebra akkor és csak akkor σ -algebra, ha tetszőleges $A_n \in \mathcal{G}$ $(n \in \mathbf{N})$ páronként diszjunkt halmazokra $\bigcup_{n=0}^{\infty} A_n \in \mathcal{G}$.

²Az üres halmazt is végesnek tekintve.

x) Könnyű belátni, hogy egy X-beli $\mathcal G$ halmazrendszer akkor és csak akkor algebra, ha $X\in\mathcal G$ és

$$A \cup B, X \setminus A \in \mathcal{G}$$
 $(A, B \in \mathcal{G}).$

Ui. az állítás egyik fele triviális, a másikhoz pedig elég csak annyit megjegyezni, hogy bármelyik $A, B \in \mathcal{P}(X)$ halmazpárra

$$A \setminus B = X \setminus [(X \setminus A) \cup B].$$

xi) Egy halmazrendszer által generált gyűrű (szigma-algebra) tényleges megadása esetenként (a szóban forgó halmazrendszertől függően) eléggé bonyolult is lehet. A félgyűrű által generált gyűrű szerkezete viszont (ld. 1. Tétel) teljesen áttekinthető.