Dark Science with Deep Learning

Einführung in modernes Maschinelles Lernen mit Python

Fabian Witt

fabian.witt@redheads.de www.redheads.de

Über mich ...

• Fabian Witt

• Technical Lead Data Science bei Redheads Ltd. in Erlangen

- Masterstudium
 - Data & Knowledge Engineering
 - Universität Magdeburg

Agenda

Einrichtung der Entwicklungsumgebung

Grundlagen zum Thema KI, ML und DL

- Übungen
 - Grundlagen zu Python & den Bibliotheken
 - Grundlagen zu TensorFlow & Keras
 - Übungen zum Thema Deep Learning
- Ausblick

• 9:40 Beginn

• 11:00 – 11:15 Kaffeepause

• 13:00 – 14:00 Mittagspause

• 16:00 – 16:30 Kaffeepause

• ca. 18:30 Ende

Einrichtung der Entwicklungsumgebung

https://github.com/wittfabian/dl-workshop

Alle Schritte zur Einrichtung finden Sie auf der Webseite

Einordnung: KI, ML, DL: Wat?

Grundlagen des Maschinellen Lernen (ML)

- Was ist Lernen?
 - T. Mitchell: "Learning is improving through experience."
- Welche Arten von ML gibt es
 - Überwachtes Lernen (engl. supervised learning)
 - Teilüberwachtes Lernen (engl. semi-supervised learning)
 - Unüberwachtes Lernen (engl. unsupervised learning)
 - Bestärkendes Lernen (engl. reinforcement learning)
 - Aktives Lernen (engl. active learning)

Neural Networks (NNs)

hidden layer 1 hidden layer 2

https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/

Quelle: http://bit.ly/2vFuRcu

Quelle: http://bit.ly/2hBabgz

Grundlagen TensorFlow

Open-Source-Programmbibliothek

Plattformunabhängig

 Für maschinelles Lernen mit neuronalen Netzen (Deep Learning)

https://www.tensorflow.org/

Grundlagen Keras

Open-Source-Programmbibliothek

Für Python

Nutzbar mit TensorFlow, Theano oder CNTK als Backend

https://keras.io/

Grundlagen TensorFlow & Keras

https://keras.io/layers/about-keras-layers/

Convolutional Neural Networks (CNNs)

Quelle: http://bit.ly/2vwlegO

input neurons

Visualization of 5 x 5 filter convolving around an input volume and producing an activation map

http://cs231n.github.io/convolutional-networks/

Quelle: http://bit.ly/2vHdSHG

CNN – Pooling Layer

Example of Maxpool with a 2x2 filter and a stride of 2

Quelle: http://bit.ly/2qnkXd1

CNN – Netzwerkarchitektur

A Full Convolutional Neural Network (LeNet)

Quelle: http://bit.ly/2qnkXd1

CNN – Beispiel

Quelle: http://bit.ly/2wmghoe

Convolutional Neural Networks (CNNs)

https://keras.io/layers/convolutional/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Quelle: http://bit.ly/2uF0nZ8

Recurrent Neural Networks (RNNs)

Das Wiederholungsmodul in einem Standard-RNN enthält eine einzelne Schicht.

Quelle: http://bit.ly/2w9l7l5

Long Short Term Memory (LSTM)

Das Wiederholungsmodul in einem LSTM enthält vier wechselwirkende Schichten.

Quelle: http://bit.ly/2i1FOjH

https://keras.io/layers/recurrent/

Vielen Dank!

Fabian Witt

fabian.witt@redheads.de