Bibliography

- [1] Spacetime Physics. W. H. Freeman and Co., 1992.
- [2] Central Intelligence Agency. *The World Factbook*. Central Intelligence Agency, 2007. https://www.cia.gov/library/publications/the-world-factbook/.
- [3] B. S. Bloom. The 2 sigma problem: The search for methods of group instruction as effective as one-to-one tutoring. *Educational Researcher*, 13(6):4–16, 1984.
- [4] Jonathan Borwein and David Bailey. *Mathematics by Experiment: Plausible Reasoning in the 21st century.* A K Peters, 2003.
- [5] Richard A. Dunlap. *The Golden Ratio and Fibonacci Numbers*. World Scientific, 1997.
- [6] Leah Edelstein-Keshet. *Mathematical models in biology*. SIAM, Philadelphia, 2005.
- [7] Albert Einstein. Zur elektrodynamik bewegter kÃűrper [On the electrodynamics of moving bodies]. *Annalen der Physik*, 17:891–921, 1905.
- [8] David Epstein and Sylvio Levy. Experimentation and proof in mathematics. *Notices of the American Mathematical Society*, pages 670–674, June/July 1995.
- [9] Richard Feynman and Ralph Leighton (contributor). Surely You're Joking, Mr. Feynman! Adventures of a Curious Character. W. W. Norton, 1985.
- [10] Fibonacci. Liber Abaci., 1202.
- [11] Hermann Minkowski H. A. Lorentz Albert Einstein and Hermann Weyl. *The Principle of Relativity: A Collection of Original Memoirs*. Dover, 1952.
- [12] Tom R. Halfhill. An error in a lookup table created the infamous bug in Intel's latest processor. *BYTE*, March 1995. http://www.byte.com/art/9503/sec13/art1.htm.
- [13] Jan Brett (illustrator). Goldilocks and the Three Bears. Dodd, 1987.
- [14] David Bailey Jonathan Borwein and Roland Girgensohn. *Experimentation in Mathematics: Computational Paths to Discovery*. A K Peters, 2004.
- [15] G. A. Miller. The magical number seven, plus or minus two: Some limits on our capacity for processing information. *Psychological Review*, 63:81–97, 1956.
- [16] P. Ribenboim. *The New Book of Prime Number Records*. Springer–Verlag, New York, 1996.

- [17] William McC. Siebert. *Circuits, Signals, and Systems*. MIT Press, Cambridge, MA, 1986.
- [18] Tjalling J. Ypma. Historical development of the Newton–Raphson method. *SIAM Review*, 37(4):531-551,, 1995.

Index

Note: An italic page number refers to a problem on that page.

~ 24	calculus
RC circuit 64	finite differences, of 18
	change
abstraction 40	loose 25
whole-signal 33, 41	chunks 41
acceleration 71	clearing fractions 86
accumulator 45	closed form 4, 29, 52
aggressive 82	code
analogy 45	Python 29
analysis	compounding
sample by sample 41	annual 21
angular velocity 84	conjectures 67
approximation	continuity argument 63, 67, 68
discrete-space 70	controller 83
Aristotle x	control variable 83
artificial intelligence 85	convolution 67
associative array	coupled oscillator 71
awk 53	courage 24
	cross multiplying 60
backward Euler 76	curly braces 42
Binet formula 57	
binomial theorem 47, 69	danger 85
black box 51	data
block diagram	playing with,play 67
elements in operator notation 43	deforming systems 68
operator 45	delay element 42
block diagrams 33	dendrite 70
boundary conditions 17	derivative
brick wall 85	continuous time 72
buffer 64	derivative control 96
	derivatives 72
	desert island 53
	descrit island 55

design 19 dictionary Python 53 difference equation 17 differentiator continuous time 38 discrete time 38, 46 dimensions 22 discretization 65 distinctions	Fibonacci sequence decomposition 51 forcing function 74 forward-Euler approximation 84 forward Euler 64,72 function decreasing 69 increasing 69 fund 21
finite or infinite 21 division incorrect floating-point 52 donor 21 double root 64 drawdown 21	gain increasing 86 golden ratio 54 grammar 40 block diagrams 44 graphing calculator 53
Einstein, Albert 40 elegance 19 endowment 21 engineering design 83 equation first-order difference 23 second-order difference 4, 28	growth exponential 5, 24, 29 logarithmic 5, 29 polynomial 5, 29 rate 18 guess solution to a difference equation 24 guess and check 60
equation hygiene 64 equivalence system 59 error signal 84, 85 experiment 30 experimental mathematics 52	guessing 70 hash Perl 53 implicit Euler 76
explicit recipe 72 exponent notation 43 extreme-case large n 69 extreme case small n 69 extreme cases 24	implicit recipe 76 impulse 28 input signal arbitrary 23 insight 33 instability 86 intuition 21
gain 86 feedback 83 feedback control 85 feedforward 45, 83 Feynman, Richard 21 Fibonacci function memoized 53	Inverse Symbolic Calculator 54 language 40 leaky tank 64 leapfrog 79 left-shift operator 42 letter capital 23 lowercase 23

like terms 64	philosophy 18
linear combination 72	physical meaning 71
linear equations 60	pole
loop gain 96	farthest 87
	poles 74
mathematical definition 71	complex 71
mathematical translation	population
incomplete 25	growth 17
matrix inversion 76	United States 18
maxim 21	probe 52
meaningless objects 52	probes
mind	computational 51
amazing feats 40	product
Minkowski, Hermann 40	increasing with decreasing function
MIT 21	69
mode 51	programming
amplitude 55	object-oriented 20
shape 55	proportional control 86
model	Python 53
population growth 19	1 ython 55
modes 63	anadratic formula 75
modular formulation 19	quadratic formula 75
	rabbits 25
modularity 17, 23	
multiple representations 33	system 26
mythical controller 85	ratio
	dimensionless 64
negative contribution 24	recurrence relation 18
negative delay 84	relativity
notation	special 40
entire signal 23	repeated root 63
one sample 23	representation 22
number theory 52	mathematical 17, 22
	operator 34
operator notation 42	residual signal 56
operator representation 42	right-shift operator 42
operators 33, 57	robot 85
oscillations 30	
output signal 22	sensor
	real 85
parameter sensitivity 85	shift
partial fractions 59, 68	left 76
party	signals and systems 20, 26
graduation 25	simulation 20, 65, 66
passive 82	simulation data 67
pattern 67	sine wave 71
peeling away 55	space 40

spacetime 40	time 40
spiral 73	time constant 8,64
spreadsheet 53	time machine 86
spring	time travel 84
ideal 71	translate
stability 86	derivatives 72
step function 46, 47	trapezoidal 79
successive ratios 52	tutorial teaching x
symmetry 76	twin-prime conjecture 52
synthetic division 47	
system	unit circle 71,87
coupled 74	unit sample 28
first-order 23	unknowns
second-order 28	two 24
system characterization 52	
system functional 44	variables
with feedback 45	eliminating 27
	voltage 84
taking out the big part 67	volume elements 20
Taylor series 47	
tea 84	warmup 22
techniques	Wheeler, John 21
take out the big part 55	

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.