國立成功大學 工程科學系 試題

2016/06/20

電子學 (共 5 題 , 總分 100 分) 學號戶(代

學號上94036063姓名張凱淳

1. For the circuits in Fig.1, find values for the labeled node voltages and branch currents. Assume β to be very high. (15%)

2. In the circuit shown in Fig.2, the transistor has $\beta = 40$.

(a) Find the values of V_B , V_E , and V_C If R_B is raised to $100k\Omega$, what voltages result? (10%)

With $R_B = 100k\Omega$, what values of β if the voltage is fixed at the value that you obtain from (a)? (10%)

下頁還有題目

- 3. The NMOS transistor in the CS amplifier shown in Fig.3 has $V_t = 1V$, $k'_n(W/L) = 0.5mA/V^2$ and $V_A = 50V$.
 - (a) Find I_D and dc voltage at the drain.
 - (b) Find R_{in} and $A_v \equiv v_o/v_{sig}$. (10%)(10%)

- 4. The MOSFET parameters in the circuit are $k'_n(W/L) = 1mA/V^2$, $V_t = 1V$.
 - (a) Calculate the value V_{DS} and g_m of the MOSFET.
 - (b) Sketch the small signal equivalent circuit. (4%)
 - (c) Find the voltage gain v_o/v_i and input resistance R_i . (4%)
 - (d) What's the largest allowable signal swing (amplitude) of v_i ? (8%)

Fig.4

下頁還有題目

- 5. The BJT in the circuit of Fig.5 has $\beta = 100$.
 - (a) Find the dc voltage at the collector V_C

(10%)

(b) Draw the small-signal equivalent circuit of the amplifier. Analyze the resulting

circuit to determine the voltage gain $A_v \equiv \frac{v_o}{v_i}$, and R_{in}

(13%

