My Project

Generated by Doxygen 1.8.13

Contents

Index

1	Mod	lules Ind	dex		1
	1.1	Module	es List		1
2	File	Index			3
	2.1	File Lis	st		3
3	Mod	lule Doc	umentatio	on	5
	3.1	olis_f9	Ostdlib Mo	dule Reference	5
		3.1.1	Function	Subroutine Documentation	5
			3.1.1.1	alloc_complex_eigenvects()	6
			3.1.1.2	alloc_complex_svd()	6
			3.1.1.3	c_inv2()	6
			3.1.1.4	complex_eigenvects()	7
			3.1.1.5	complex_svd()	7
			3.1.1.6	complextrace()	8
			3.1.1.7	matrixnorm()	8
			3.1.1.8	outerproduct()	8
			3.1.1.9	printvectors()	9
			3.1.1.10	randseed()	9
4	File	Docum	entation		11
	4.1	olis_f9	0stdlib.f90	File Reference	11

13

Modules Index

1	.1	//	^	d	ш	es	П	iet
-1	- 1	٧I	u	u	ш	C3	_	เอเ

Here is a list of all modules with brief descriptions:	
olis_f90stdlib	5

2 Modules Index

File Index

A 4	 	 	
") 7	 HI	ш	ct
C - I	 	_	Э1

Here is a list of all files with brief descriptions:	
olis_f90stdlib.f90	11

File Index

Module Documentation

3.1 olis_f90stdlib Module Reference

Functions/Subroutines

- subroutine alloc_complex_eigenvects (matrix, eigenvals, u, v)
 - allocates eigenvals, u & v arrays for eigenvals & eigenvects
- subroutine alloc_complex_svd (matrix, sigma, u, vt)
 - allocates sigma (singular vals), u and vt for complexSVD allocates temp work arrays too
- subroutine randseed (seed)
 - generates random seed
- subroutine printvectors (vect, desc, f)
 - print formatted matrices can take optional args for labels or write directly to a file
- complex(kind=dp) function, dimension(2, 2) outerproduct (a, b)
 - outerproduct of two complex vectors, returns a complex matrix
- complex(kind=dp) function complextrace (a)
 - computes the trace of a complex matrix
- subroutine complex_eigenvects (a, w, vl, vr)
 - computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack
- subroutine complex_svd (a, sigma, u, vt)
 - computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack
- complex(kind=dp) function, dimension(2, 2) c_inv2 (m_in)
 - inverse for a complex 2x2 matrix
- real(kind=dp) function matrixnorm (c)
 - computed Frobenieus matrix norm of complex matrix using lapack zlange

3.1.1 Function/Subroutine Documentation

6 Module Documentation

3.1.1.1 alloc_complex_eigenvects()

allocates eigenvals, u & v arrays for eigenvals & eigenvects

allocated temp work arrays also

Author

Oliver Thomas August 2018

Parameters

matrix	input complex matrix
eigenvals	1d array for eigenvalues, is overwriten on exit
и	2d array of left eigenvectors
V	3d array of right eigenvectors

3.1.1.2 alloc_complex_svd()

allocates sigma (singular vals), u and vt for complexSVD allocates temp work arrays too

Parameters

matrix	input complex matrix
sigma	real vector of singular values sorted in descending order
и	unitary matrix
vt	unitary matrix returns V**H NOT v

3.1.1.3 c_inv2()

inverse for a complex 2x2 matrix

Parameters

m⊷	is input complex 2x2 matrix
_in	

3.1.1.4 complex_eigenvects()

computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack

Parameters

а	input allocatable complex matrix to be diagonalised
W	output allocatable complex 1d array containing eigenvals
vl	output allocatable complex 2d array containing left eigenvectors
vr	output allocatable complex 2d array containing right eigenvectors

Note

need to check this is optimised

3.1.1.5 complex_svd()

computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack

Parameters

а	input allocatable complex matrix to be SVD'd
sigma	output allocatable complex 1d array containing ordered singular values
и	output allocatable complex 2d array containing u
vt	output allocatable complex 2d array containing v**H

8 Module Documentation

Note

need to check this is optimised

3.1.1.6 complextrace()

computes the trace of a complex matrix

Parameters

a is the complex matrix in

3.1.1.7 matrixnorm()

computed Frobenieus matrix norm of complex matrix using lapack zlange

Parameters

c input complex matrix

3.1.1.8 outerproduct()

outerproduct of two complex vectors, returns a complex matrix

Parameters

а	is input vector 1, ket>
b	is input vector 2, <bra< th=""></bra<>

3.1.1.9 printvectors()

print formatted matrices can take optional args for labels or write directly to a file

Parameters

vect	is the input complex matrix
desc	is the optional string to be written above the matrix
f	is the optional file output unit to write to, default is console

3.1.1.10 randseed()

generates random seed

Parameters

10 Module Documentation

File Documentation

4.1 olis_f90stdlib.f90 File Reference

Modules

· module olis_f90stdlib

Functions/Subroutines

- subroutine olis_f90stdlib::alloc_complex_eigenvects (matrix, eigenvals, u, v)
 - allocates eigenvals, u & v arrays for eigenvals & eigenvects
- subroutine olis_f90stdlib::alloc_complex_svd (matrix, sigma, u, vt)
 - allocates sigma (singular vals), u and vt for complexSVD allocates temp work arrays too
- subroutine olis_f90stdlib::randseed (seed)
 - generates random seed
- subroutine olis_f90stdlib::printvectors (vect, desc, f)
 - print formatted matrices can take optional args for labels or write directly to a file
- complex(kind=dp) function, dimension(2, 2) olis_f90stdlib::outerproduct (a, b)
 - outerproduct of two complex vectors, returns a complex matrix
- complex(kind=dp) function olis_f90stdlib::complextrace (a)
 - computes the trace of a complex matrix
- subroutine olis_f90stdlib::complex_eigenvects (a, w, vl, vr)
 - computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack
- subroutine olis_f90stdlib::complex_svd (a, sigma, u, vt)
 - computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack
- complex(kind=dp) function, dimension(2, 2) olis_f90stdlib::c_inv2 (m_in)
 - inverse for a complex 2x2 matrix
- real(kind=dp) function olis_f90stdlib::matrixnorm (c)
 - computed Frobenieus matrix norm of complex matrix using lapack zlange

12 File Documentation

Index

```
alloc_complex_eigenvects
     olis_f90stdlib, 5
alloc_complex_svd
    olis_f90stdlib, 6
c_inv2
     olis_f90stdlib, 6
complex_eigenvects
    olis_f90stdlib, 7
complex_svd
    olis_f90stdlib, 7
complextrace
    olis_f90stdlib, 8
matrixnorm
     olis_f90stdlib, 8
olis_f90stdlib, 5
     alloc_complex_eigenvects, 5
     alloc_complex_svd, 6
    c_inv2, 6
     complex_eigenvects, 7
     complex_svd, 7
    complextrace, 8
     matrixnorm, 8
     outerproduct, 8
     printvectors, 8
     randseed, 9
olis_f90stdlib.f90, 11
outerproduct
     olis_f90stdlib, 8
printvectors
    olis_f90stdlib, 8
randseed
     olis_f90stdlib, 9
```