БРОЙНИ СИСТЕМИ

TEMA 2

ИЗБОР НА БРОЙНА СИСТЕМА ЗА ИЗПОЛЗВАНЕ В КОМПЮТРИТЕ. ДВОИЧНА БРОЙНА СИСТЕМА И ДВОИЧНА АРИТМЕТИКА

Ключови думи:

Двоична бройна система
Основна и вспомагателни бройни системи
Осмична и шестнадесетична бройни системи
Двоична аритметика

Цели:

След запознаване с материала Вие трябва да можете:

- ✓ да обясните по какви съображения се извършва изборът на бройна система за използване в компютрите;
- ✓ да посочите коя бройна система се използва като основна и кои като вспомагателни в съвременните компютри;
- ✓ да обясните как се представят числата в двоичната бройна система;
- ✓ да извършвате ръчно всички аритметични действия с двоични числа:
- ✓ да обясните най-общо как се извършват тези операции в компютъра.

1. Избор на бройна система за използване в компютрите

В компютрите се използват предимно позиционни еднородни бройни системи (най-често с постоянни тегла на разрядите и с естествен порядък на теглата). Този избор съществено облекчава конструирането на основните възли на компютъра, тъй като при р; е р = const всички разряди на отделните възли (регисти, броячи, суматори и др.) се получават еднакви.

Основата р на бройната система се избира от съображения за:

- облекчаване общуването на човека с машината 10-ична;
- опростяване на техническата реализация на необходимите запомнящи елементи 2-ична;
- осигуряване на максимално възможната шумоустойчивост 2ична;
- използване на формален математически апарат за синтез и анализ на изчислителни устройства 2-ична;
- опростяване и ускоряване извършването на различни аритметични действия 2-ична;
- минимизиране стойността на компютъра 3-ична, (2, 4), 5, 6, 7,

8, 9, 10,

Забележка: Горното подреждане на изискванията към величината на основата р е условно. То е различно във всеки конкретен случай.

Тъй като системата с p=2 по икономичност отстъпва незначително на системата с p=3, а по болшинството останали показатели е на първо място, то тя се използва като **основна** в преобладаващата част от създадените до настоящия момент компютри.

Недостатък на двоичната система е необходимостта от преобразуване на входните данни от десетичната система в двоичната, а на резултатите от двоичната система в десетичната, която се използва като вспомагателна при обмена на информация между човека и машината. Като вспомагателни се използват също така осмичната и шестнадесетичната системи, преводът от които в двоичната и обратно става сравнително лесно и бързо.

В долната таблица е показано съответствието между първите няколко числа, респ. цифри на тези четири системи.

"10"	"2"	"8"	"16"
0	0	0	0
1	1	1	1
1 2 3	10	1 2 3	1 2 3
3	11	3	3
4 5 6	100	4 5	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	9 A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	B C D E
15	1111	17	F
16	10000	20	10

От тази таблица се вижда, че

- във всички системи основата се записва като 10;
- колкото по-малка е основата р толкова по-голям е броят разряди на числото.

2. Двоична бройна система (р=2)

В двоичната система всяко число се представя като последователност от двоични цифри, т.е. във вида:

$$A_2 = a_n a_{n-1} \dots a_2 a_1, a_{-1} a_{-2} \dots a_{-k} ; a_i = 0 \div 1.$$

Използва се и следната форма на представяне (когато трябва да се премине от двоичната към десетичната система):

$$A_2 = a_n 2^{n-1} + a_{n-1} 2^{n-2} + ... + a_2 2 + a_1 + a_{-1} 2^{-1} + a_{-2} 2^{-2} + ... + a_{-k} 2^{-k}$$
 2^i - тегло на единиците в (i+1) -вия разряд.

$$(1011,01)_2 = 1.2^3 + 0.2^2 + 1.2 + 1 + 0.2^{-1} + 1.2^{-2} = (11,25)_{10}$$

3. Двоична аритметика

Аритметичните правила във всички позиционни системи са еднакви. Следователно аритметичните действия с двоични числа се извършват по същия начин както с десетични, но с отчитане на правилата за поразрядно двоично събиране, изваждане, умножение и деление, които са показани по-долу в таблична форма:

Събиране (a+b)

a _i	b _i	Si	пренос
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Изваждане (a - b)

a _i	b _i	R _i	заем
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Забележка: Взетата "на заем" от старшия разряд единица е равна на две единици от младшия разряд.

Умножение a.b

a _i	b _i	Mi
0	0	0
0	1	0
1	0	0
1	1	1

Деление a/b

Horrison on to		
a _i	b _i	Di
0	0	?
0	1	0
1	0	?
1	1	1

Забележка: Тези правила се използват само при ръчно извършване на аритметични действия с двоични числа.

Примери:

1101,101	1101,101
+ 110,001	- 110,001
10011,110	111,100
110,01 x 10,101	10000,01101 : 10,10100 = 110,01 1010100
11001	1011110 1010100
11001 11001 	1010100 1010100
10000,01101	0

В компютрите чрез използване на специални кодове аритметичните действия с двоични числа се свеждат към поредица от аритметични събирания на техните кодове. Това се налага, т.к. в АЛУ обикновено има само суматор, който може да извършва само операцията "аритметично събиране".

Контролни въпроси:

- 1. От какви съображения се избира величината на основата на бройната система?
- 2. Какъв тип бройни системи се използват в компютрите и какво е характерно за тях? Коя се използва като основна и кои като вспомагателни?
 - 3. Как се представят числата в двоичната бройна система?
- 4. Какви са правилата за ръчно извършване на аритметичните действия с двоични числа?
 - 5. Как се извършват тези действия в компютъра?