Lagrangian density
$-\frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta\chi} + h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \partial_{\beta}h_{\alpha\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\gamma} \partial_{\gamma}h_{\alpha\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\gamma} \partial_{\gamma}$
$\frac{1}{4} a_0 \Gamma^{\alpha}_{\alpha}^{\beta} \partial_{\beta} h^{\chi}_{\chi} + \frac{1}{4} a_0 \Gamma^{\alpha\beta}_{\alpha} \partial_{\beta} h^{\chi}_{\chi} - \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha}_{\alpha}^{\beta} + \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} -$
$\frac{1}{2} a_0 h_{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + \frac{11}{2} a_1 \partial^{\alpha} \Gamma^{\chi\delta}_{\delta} \partial_{\beta} \Gamma_{\chi\alpha}^{\beta} + \frac{1}{2} a_1 \partial^{\alpha} \Gamma_{\chi\alpha}^{\beta} \partial_{\beta} \Gamma^{\chi\delta}_{\delta} -$
$19a_1\partial^\alpha\Gamma^{\chi\delta}_{\chi}\partial_\beta\Gamma_{\delta\alpha}^{\beta} + \tfrac{1}{4}a_0h^{\alpha\beta}\partial_\beta\partial_\alpha h^{\chi}_{\chi} - \tfrac{1}{8}a_0\partial_\beta h^{\chi}_{\chi}\partial^\beta h^{\alpha}_{\alpha} +$
$\frac{1}{2} a_0 \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\chi} h_{\beta}{}^{\chi} + \frac{1}{4} a_0 \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\chi} h_{\beta}{}^{\chi} + \frac{37}{4} a_1 \partial_{\beta} \partial_{\alpha} h^{\delta}_{\delta} \partial_{\chi} \Gamma^{\alpha\beta\chi} +$
$\frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\chi} \partial_{\alpha} h^{\delta}_{ \delta} - \frac{1}{2} a_0 h^{\alpha\beta} \partial_{\chi} \partial_{\beta} h_{\alpha}^{ \chi} + \frac{1}{4} a_0 h^{\alpha}_{ \alpha} \partial_{\chi} \partial_{\beta} h^{\beta\chi} +$
$\frac{1}{4} a_0 h^{\alpha\beta} \partial_{\chi} \partial^{\chi} h_{\alpha\beta} - \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\chi} \partial^{\chi} h^{\beta}_{\beta} - \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + \frac{1}{8} a_0 \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta} +$
$\frac{1}{2} a_0 h_{\beta \chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma_{\chi}{}^{\delta}_{\delta} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\delta}_{\delta \chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} +$
$\frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta \delta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta \delta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\delta$
$\frac{3}{4} a_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{\delta} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{11}{2} a_1 \partial_{\beta} \Gamma^{\delta}_{\chi}{}^{\delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} + \frac{19}{2} a_1 \partial_{\beta} \Gamma^{\delta}_{\chi\delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} +$
$\frac{11}{2} a_1 \partial_{\chi} \Gamma_{\beta}{}^{\delta}{}_{\delta} \partial^{\chi} \Gamma^{\alpha\beta}{}_{\alpha} - \frac{1}{2} a_1 \partial_{\chi} \Gamma^{\delta}{}_{\beta\delta} \partial^{\chi} \Gamma^{\alpha\beta}{}_{\alpha} - \frac{37}{4} a_1 \partial_{\chi} \partial_{\beta} h^{\delta}{}_{\delta} \partial^{\chi} \Gamma^{\alpha\beta}{}_{\alpha} +$
$a_1 \partial_{\alpha} \Gamma_{\chi \delta}^{\delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\beta} - a_1 \partial_{\chi} \Gamma_{\alpha \delta}^{\delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\beta} - \frac{9}{2} a_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{\delta} \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} +$
$\frac{17}{8} a_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{\delta} \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} - \frac{1}{2} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha\beta}^{\delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha\chi}^{\delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\gamma} \partial_{\delta} \Gamma_{\alpha\chi}^{$
$\frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha}^{\ \delta}_{\chi} + \frac{19}{2} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\beta\alpha}^{\ \delta} + a_1 \partial^{\chi} \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \partial_{\delta} \Gamma_{\beta}^{\ \delta}_{\chi} +$
$\frac{1}{2} a_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma_{\chi\beta}{}^{\delta} + \frac{1}{2} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \Gamma_{\chi\beta}{}^{\delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi}_{\alpha} \partial_{\delta} \Gamma_{\chi}{}^{\delta}_{\alpha} +$
$\frac{1}{2} a_1 \partial^{\chi} \Gamma_{\beta \alpha}^{\ \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta \alpha} + a_1 \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} \partial_{\delta} \Gamma_{\chi \beta}^{\ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma_{\alpha}^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\chi \delta} +$
$a_1 \partial_{\beta} \Gamma^{\alpha}_{\ \alpha}{}^{\beta} \partial_{\delta} \Gamma^{\chi\delta}_{\ \chi} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\ \alpha} \partial_{\delta} \Gamma^{\chi\delta}_{\ \chi} - \frac{37}{4} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\alpha} h_{\beta}^{\ \delta} -$
$\frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\alpha} h_{\chi}^{\ \delta} - \frac{37}{4} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\beta} h_{\alpha}^{\ \delta} + \frac{3}{8} a_1 \partial_{\chi} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\alpha}^{\ \delta} +$
$\frac{37}{8} a_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{3}{4} a_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} -$
$\frac{3}{8} a_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{13}{4} a_1 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} - \frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\chi} h_{\alpha}^{\delta} -$
$\frac{43}{8} a_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} + \frac{3}{4} a_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}^{\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} + \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} +$
$\frac{77}{8} a_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} - \frac{29}{4} a_1 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} + a_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta} -$
$a_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial_{\chi} h^{\chi\delta} - \frac{1}{2} a_1 \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta} + a_1 \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial_{\chi} h^{\chi\delta} +$
$\frac{37}{4} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial^{\delta} h_{\alpha\beta} + \frac{17}{8} a_1 \partial_{\chi} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\alpha\beta} + \frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial^{\delta} h_{\alpha\chi} +$
$\frac{1}{4} a_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{3}{4} a_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial^{\chi} \partial^{\delta} h_{\beta\chi} - \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial^{\chi} \partial^{\lambda} \partial^{\delta} h_{\beta\chi} - \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial^{\lambda} \partial^{\delta} h_{\beta\chi} - \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial^{\lambda} \partial^{\delta} h_{\beta\chi} - \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial^{\lambda} \partial^{\lambda}$
$\frac{73}{8} a_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} + \frac{17}{4} a_1 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - a_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial^{\delta} h^{\chi}_{\chi} +$
$a_1 \partial_{\beta} \Gamma^{\alpha\beta}{}_{\alpha} \partial_{\delta} \partial^{\delta} h^{\chi}{}_{\chi} - \frac{1}{2} a_1 \partial_{\beta} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial^{\delta} h^{\chi}{}_{\chi} + \frac{1}{2} a_1 \partial_{\alpha} \Gamma_{\beta \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} +$
$a_1 \partial_\alpha \Gamma_{\beta \delta \chi} \partial^\delta \Gamma^{\alpha \beta \chi} + a_1 \partial_\alpha \Gamma_{\chi \beta \delta} \partial^\delta \Gamma^{\alpha \beta \chi} + \frac{1}{2} a_1 \partial_\alpha \Gamma_{\chi \delta \beta} \partial^\delta \Gamma^{\alpha \beta \chi} +$
$a_1 \partial_\alpha \Gamma_{\delta\beta\chi} \partial^\delta \Gamma^{\alpha\beta\chi} + a_1 \partial_\alpha \Gamma_{\delta\chi\beta} \partial^\delta \Gamma^{\alpha\beta\chi} - \tfrac{1}{2} a_1 \partial_\beta \Gamma_{\alpha\chi\delta} \partial^\delta \Gamma^{\alpha\beta\chi} - \tfrac{1}{2} a_1 \partial_\beta \Gamma_{\alpha\delta\chi} \partial^\delta \Gamma^{\alpha\beta\chi} - \tfrac{1}{2} a_2 \partial_\beta \Gamma_{\alpha\delta\chi} \partial^\delta \Gamma^{\alpha\beta\chi} - \tfrac{1}{2} a_3 \partial_\beta \Gamma_{\alpha\delta\chi} \partial^\delta \Gamma^{\alpha\delta\chi} - \tfrac{1}{2} \Delta^2 \partial^\delta \Gamma^{\alpha\delta\chi} - $
$\frac{1}{2} a_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{3}{2} a_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$
$\frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta \alpha \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + a_1 \partial_{\chi} \Gamma_{\beta \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \frac{3}{2} a_1 \partial_{\chi} \partial_{\alpha} h_{\beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$
$a_1 \partial_\delta \Gamma_{\alpha\beta\chi} \partial^\delta \Gamma^{\alpha\beta\chi} - a_1 \partial_\delta \Gamma_{\alpha\chi\beta} \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_1 \partial_\delta \Gamma_{\beta\alpha\chi} \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_1 \partial_\delta \Gamma_{\beta\chi\alpha} \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_1 \partial_\delta \Gamma_{\alpha\chi\beta} \partial^\delta \Gamma^{\alpha\gamma} - \frac{1}{2} a_1 \partial_\delta \Gamma_{\alpha\gamma} \partial^\delta \Gamma^{\alpha\gamma} - \frac{1}{2} a_1 \partial_\delta \Gamma^{\alpha\gamma} - \frac{1}{2} a_$
$\frac{1}{2} a_1 \partial_{\delta} \Gamma_{\chi\beta\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} + \frac{3}{2} a_1 \partial_{\delta} \partial_{\beta} h_{\alpha\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{3}{2} a_1 \partial_{\delta} \partial_{\chi} h_{\alpha\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} -$
$\frac{11}{2} a_1 \partial_{\beta} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma^{\alpha \chi}_{\ \chi} - \frac{1}{2} a_1 \partial^{\alpha} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma_{\beta \ \chi}^{\ \chi} + \frac{1}{2} a_1 \partial_{\beta} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma^{\chi \alpha}_{\ \chi} -$
$\frac{3}{4} a_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} + \frac{3}{2} a_1 \partial_{\chi} \partial_{\beta} h_{\alpha \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} - \frac{3}{4} a_1 \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta}$

${\mathcal T}_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	0	0	0	0	0	0	0
$\Delta_{1^{-}\alpha}^{\#6}$	0	0	0	0	$\frac{50 \sqrt{\frac{2}{3}} a_1 k^2}{a_0^2 - 33 a_0 a_1 k^2}$	$-\frac{a_0 - 28a_1 k^2}{6a_0^2 - 198a_0 a_1 k^2}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	$-\frac{7(a_0+2a_1k^2)}{3\sqrt{2}a_0(a_0-33a_1k^2)}$	$\frac{5}{3(a_0-33a_1k^2)}$	0
$\Delta_{1^{-}\alpha}^{\#5}$	0	0	0	0	$\frac{10a_1 k^2 (-11a_0 + 118a_1 k^2)}{\sqrt{3} a_0^2 (a_0 - 33a_1 k^2)}$	$-\frac{a_0^2 - 118 a_0 a_1 k^2 + 2560 a_1^2 k^4}{6 \sqrt{2} a_0^2 (a_0 - 33 a_1 k^2)}$	$\frac{\sqrt{\frac{5}{2}} (a_0-82 a_1 k^2)}{6 a_0 (a_0-33 a_1 k^2)}$	$\frac{17a_0^2 - 236a_0a_1 k^2 + 1280a_1^2 k^4}{6a_0^2 (a_0 - 33a_1 k^2)}$	$-\frac{7(a_0+2a_1k^2)}{3\sqrt{2}a_0(a_0-33a_1k^2)}$	0
$\Delta_{1^{-}}^{\#4}\alpha$	0	0	0	0	$-\frac{5\sqrt{10}}{a_0^{2-33}a_0a_1k^2}$	$\sqrt{5} (5a_0 - 164a_1 k^2)$ $12a_0 (a_0 - 33a_1 k^2)$	$\frac{1}{12a_0-396a_1k^2}$	$-\frac{\sqrt{\frac{5}{2}} (a_0-82 a_1 k^2)}{6 a_0 (a_0-33 a_1 k^2)}$	$-\frac{\sqrt{5}}{6(a_0-33a_1k^2)}$	0
$\Delta_{1}^{\#3}{}_{\alpha}$	0	0	0	0	$\frac{5\sqrt{\frac{2}{3}}a_1k^2(7a_0-236a_1k^2)}{a_0^2(a_0-33a_1k^2)}$	$\frac{-19a_0^2 + 472a_0a_1k^2 + 5120a_1^2k^4}{12a_0^2(a_0 - 33a_1k^2)}$	$\frac{\sqrt{5} (5a_0 - 164a_1 k^2)}{12a_0 (a_0 - 33a_1 k^2)}$	$-\frac{a_0^2 - 118 a_0 a_1 k^2 + 2560 a_1^2 k^4}{6 \sqrt{2} a_0^2 (a_0 - 33 a_1 k^2)}$	$-\frac{a_0 - 28a_1 k^2}{6a_0^2 - 198a_0 a_1 k^2}$	0
$\Delta_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2\sqrt{2}}{a_0}$	$\frac{2 \left(a_0^{2} - 30 a_0 a_1 k^2 + 401 a_1^2 k^4\right)}{a_0^{2} \left(a_0 - 33 a_1 k^2\right)}$	$\frac{5\sqrt{\frac{2}{3}}a_1k^2(7a_0-236a_1k^2)}{a_0^2(a_0-33a_1k^2)}$	$-\frac{5\sqrt{\frac{10}{3}}a_1k^2}{a_0^2-33a_0a_1k^2}$	$\frac{10a_1 k^2 (-11a_0 + 118a_1 k^2)}{\sqrt{3} a_0^2 (a_0 - 33a_1 k^2)}$	$\frac{50 \sqrt{\frac{2}{3}} a_1 k^2}{a_0^2 - 33 a_0 a_1 k^2}$	0
$\Delta_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0
$\Delta_{1}^{\#3}{}_{\alpha\beta}$	0	$\frac{40\sqrt{2}a_1k^2}{a_0^2-29a_0a_1k^2}$	$\frac{4}{a_0 \cdot 29 a_1 k^2}$	0	0	0	0	0	0	0
$\Delta_1^{\#_2^2}$	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2 \left(a_0^2 - 14 a_0 a_1 k^2 - 35 a_1^2 k^4\right)}{a_0^2 \left(a_0 - 29 a_1 k^2\right)}$	$\frac{40\sqrt{2} a_1 k^2}{a_0^2 - 29 a_0 a_1 k^2}$	0	0	0	0	0	0	0
$\Delta_1^{\#1}{}_+\alpha\beta$	0	$\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
	$\Delta_{1}^{#1} + \alpha \beta$	$\Delta_{1}^{#2} + \alpha \beta$	$\Delta_{1}^{\#3} + ^{\alpha \beta}$	$\Delta_{1}^{\#1} +^{\alpha}$	$\Delta_1^{\#2} +^{lpha}$	$\Delta_1^{#3} +^{lpha}$	$\Delta_1^{\#4} +^{lpha}$	$\Delta_1^{\#5} +^{lpha}$	$\Delta_1^{\#6} +^{lpha}$	$\mathcal{T}_1^{\#1} +^{\alpha}$

	$ \begin{array}{c} 0\\ -\frac{5a_1k^2}{\sqrt{3}}\\ 0\\ \frac{1}{6}(-a_0 + 20a_1k^2)\\ \frac{a_0+40a_1k^2}{6\sqrt{2}}\\ \frac{5}{6\sqrt{2}}(a_0-17a_1k^2)\\ 0\\ 0 \end{array} $	$ \begin{array}{c ccccc} 0 & 0 & 0 \\ 5 \sqrt{\frac{3}{2}} a_1 k^2 & -\frac{5a_1 k^2}{\sqrt{3}} \\ 0 & 0 & 0 \\ -\frac{a_0}{6\sqrt{2}} & \frac{1}{6} (-a_0 + 20a_1 k^2) \\ \frac{a_0}{6\sqrt{2}} & \frac{a_0 + 40a_1 k^2}{6\sqrt{2}} \\ & \frac{a_0 + 40a_1 k^2}{6\sqrt{2}} & \frac{5}{12} (a_0 - 17a_1 k^2) \\ & 0 & 0 & 0 \end{array} $	$ \begin{array}{c} 0\\ -\frac{5}{2}\sqrt{\frac{5}{3}}a_1k^2\\ 0\\ \frac{1}{6}\sqrt{5}(a_0-8a_1k^2)\\ \frac{1}{3}(a_0+7a_1k^2)\\ -\frac{1}{6}\sqrt{\frac{5}{2}}(a_0+16a_1k^2)\\ -\frac{1}{6}\sqrt{\frac{5}{2}}(a_0-5a_1k^2)\\ 0\\ 0 \end{array} $	$a_1 k^2$ $a_1 k^2$ $\frac{1}{2}$ $a_1 k^2$ $a_1 k^2$	10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\frac{1}{4}(a_0 - 29a_1k^2)}{0}$ 0 0 0 0 0 0 0 0		
0	0	0	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	
0	$-\frac{5a_1k^2}{\sqrt{3}}$	$5\sqrt{\frac{3}{2}}a_1k^2$	$-\frac{5}{2}\sqrt{\frac{5}{3}}a_1k^2$	$\frac{5}{2}\sqrt{3}a_1k^2$	$\frac{a_0}{2\sqrt{2}}$	$\frac{1}{4} (-a_0 - 3 a_1 k^2)$	0	0	
0	0	0	0	0	0		$\frac{1}{4} (a_0 - 29 a_1 k^2)$	0	$5a_1k^2$
0	0	0	0	0	0	0	0	0	$\frac{a_0}{2\sqrt{2}}$
0	0	0	0	0	0	0	$5a_1k^2$	$-\frac{a_0}{2\sqrt{2}}$	$\frac{1}{4} \left(-a_0 - 15 a_1 k^2 \right)$
$h_{1^-}^{\#1}\alpha$	$\Gamma_{1^-}^{\#6}$	$\Gamma_{1^{-}\alpha}^{\#5}$	$\Gamma_{1^{-}}^{\#4}\alpha$	$\Gamma_{1^{-}\alpha}^{\#3}$	$\Gamma_{1^-}^{\#2}$	$\Gamma_{1^-}^{\#1}{}_{\alpha}$	$\Gamma_{1}^{\#3}$	$\Gamma_{1}^{\#2}$	$\Gamma_{1}^{\#1}_{+}{}_{\alpha\beta}$

											$^{\alpha} + \Delta_{1}^{\#3}{}^{\alpha} == 0$		
$\Gamma_{2}^{#2}$ $_{\alpha eta \chi}$	0	0	0	0	0	$\frac{1}{4} (a_0 - 5 a_1 k^2)$	Source constraints	.ebs	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$\Delta_0^{++} + 2 \Delta_0^{++} + 3 \Delta_0^{++} = 0$ $\gamma_1^{++} = 0$	$\Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} +$		
$\Gamma_{2^{^{-}}\alpha\beta\chi}^{\#1}$	0	0	0	0	$\frac{1}{4} (a_0 - a_1 k^2)$	0	Source	SO(3) irreps	$\frac{T_{0+}^{\#2} = 0}{T_{0+}^{\#3} = 0}$	$\frac{\Delta_0^2 + 4 \Delta_0^2}{T_1^{*1}} = 0$	$2 \Delta_1^{\#6\alpha} + 1$	Total #:	
$h^{\#1}_{2^+lphaeta}$	$-\frac{11ia_1k^3}{4\sqrt{2}}$	$\frac{5ia_1k^3}{\sqrt{3}}$	$-\frac{5ia_1k^3}{\sqrt{6}}$	$-\frac{1}{8}k^2(a_0-11a_1k^2)$	0	0	$\Delta_{2^-}^{#1} \alpha_{\beta\chi} \Delta_{2^-}^{#2} \alpha_{\beta\chi}$	V-1 V-1	0 0	0 0	0 0		
$\Gamma_{2}^{\#3}$	$\frac{5a_1k^2}{\sqrt{3}}$	$-\frac{a_1k^2}{6\sqrt{2}}$	$\frac{1}{12} \left(3 a_0 + a_1 k^2 \right)$	$\frac{5ia_1k^3}{\sqrt{6}}$	0	0	${\mathcal T}_{2^+\alpha\beta}^{\#1}$		$\frac{44i\sqrt{2}a_1k}{a_0^2}$	$\frac{2}{\sqrt{3}a_0^2}$	$\frac{k^2}{2}$ 80 $i\sqrt{\frac{2}{3}}a_1k$	a ₀ ²	ſ
$\Gamma^{\#2}_{2^+ \alpha \beta}$	$-5\sqrt{\frac{2}{3}}a_1k^2$	$\frac{1}{6} (-3 a_0 + a_1 k^2)$	$-\frac{a_1 k^2}{6 \sqrt{2}}$	$\frac{5ia_1k^3}{\sqrt{3}}$	0	0	$\Delta_{2+\alpha\beta}^{#2}$ $\Delta_{2+\alpha\beta}^{#3}$	L	$\begin{array}{c c} 40 \sqrt{\frac{2}{3}} a_1 k^2 & -\frac{80 a_1 k^2}{\sqrt{3}} \\ a_0^2 & \sqrt{3} a_0^2 \end{array}$	$\frac{2(3a_0+a_1k^2)}{3a_0^2} = \frac{2\sqrt{2}a_1k^2}{3a_0^2}$	2 4 (3 a 0 - a 1	3a0 ² 3a0 ²	2
$\Gamma_{2}^{\#1}$	$\Gamma_{2+}^{\#1} + ^{\alpha\beta} \left \frac{1}{4} \left(a_0 + 11 a_1 k^2 \right) \right $	$-5\sqrt{\frac{2}{3}}a_1k^2$	$\frac{5a_1k^2}{\sqrt{3}}$	$\frac{11ia_1k^3}{4\sqrt{2}}$	0	0	$\Delta_{2}^{\#1}{}_{lphaeta}$		$\frac{4(a_0-11a_1k^2)}{a_0^2}$	$\frac{40\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$\frac{80a_1k^2}{\sqrt{5}}$	√3 a ₀ ²	L
	$\Gamma_{2}^{#1} + \alpha \beta$	$\Gamma_2^{#2} + \alpha \beta$	$\Gamma_{2}^{#3} + \alpha \beta$	$h_2^{#1} + \alpha \beta$	$\Gamma_{2}^{#1} + ^{\alpha\beta\chi}$	$\Gamma_2^{#2} + \alpha \beta X$			$\Delta_2^{\#1} + ^{lphaeta}$	$\Delta_2^{#2} + \alpha^{\beta}$	$\Delta_{2}^{#3} + ^{\alpha\beta}$	7	

 $\Gamma_{0+}^{\#1} + \left[\frac{1}{2} \left(-a_0 + 25 \, a_1 \, k^2 \right) \right] \quad 0 \quad \left[10 \, \sqrt{\frac{2}{3}} \, a_1 \, k^2 \right]$

 $\left| -\frac{a_0}{2\sqrt{2}} \right| -\frac{3a_0 + 46a_1 k^2}{6\sqrt{2}}$

 $10 \sqrt{\frac{2}{3}} a_1 k^2$

 $\frac{25 i a_1 k^3}{2 \sqrt{2}}$

 $\Gamma_{0}^{\#2}$ †

Γ₀^{#4} †

 $h_{0}^{#2}$ †

$\Delta_{2^{-}}^{\#1}{}_{lphaeta\chi}$ $\Delta_{2^{-}}^{\#2}{}_{lphaeta\chi}$	0	0	0	0	0	$\frac{4}{a_0-5a_1k^2}$
$\Delta_{2^{-}}^{\#1}\alpha\beta\chi$	0	0	0	0	$\frac{4}{a_0 - a_1 k^2}$	0
${\cal T}_{2}^{\#1}_{\alpha\beta}$	$-\frac{44i\sqrt{2}a_1k}{a_0^2}$	$-\frac{80ia_1k}{\sqrt{3}a_0^2}$	$-\frac{80 i \sqrt{\frac{2}{3}} a_1 k}{a_0^2}$	$-\frac{8(a_0+11a_1k^2)}{a_0^2k^2}$	0	0
$\Delta_{2}^{\#3}{}_{\alpha\beta}$	$-\frac{80a_1k^2}{\sqrt{3}a_0^2}$	$-\frac{2\sqrt{2}a_1k^2}{3a_0^2}$	$\frac{4(3a_0-a_1k^2)}{3a_0^2}$	$\frac{80 i \sqrt{\frac{2}{3}} a_1 k}{a_0^2}$	0	0
$\Delta_2^{\#_2^2}$	$-\frac{40\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$-\frac{2(3a_0+a_1k^2)}{3a_0^2}$	$-\frac{2\sqrt{2}a_1k^2}{3a_0^2}$	$\frac{80ia_1k}{\sqrt{3}a_0^2}$	0	0
$\Delta_{2}^{\#1}{}_{\alpha\beta}$	$\frac{4(a_0-11a_1k^2)}{a_0^2}$	$-\frac{40\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$-\frac{80a_1k^2}{\sqrt{3}a_0^2}$	$\frac{44i\sqrt{2}a_1k}{a_0^2}$	0	0
	$\Delta_{2}^{\#1} + ^{lphaeta}$	$\Delta_{2}^{#2} + \alpha^{eta}$	$\Delta_{2}^{#3} + \alpha \beta$	$\mathcal{T}_{2}^{\#1} \dagger^{\alpha\beta}$	$\Delta_2^{#1} +^{\alpha \beta \chi}$	$\Delta_{2}^{#2} +^{\alpha \beta \chi}$

 $-\frac{25 \, i \, a_1 \, k^3}{2 \, \sqrt{2}}$

 $-\frac{10\,i\,a_1\,k^3}{\sqrt{3}}$

 $5 i \sqrt{\frac{2}{3}} a_1 k^3$

0

 $0 \quad \frac{1}{2} \left(-a_0 + a_1 \, k^2 \right)$

 $-5 i \sqrt{\frac{2}{3}} a_1 k^3 \qquad \frac{1}{4} k^2 (a_0 + 25 a_1 k^2) \qquad 0$

 $-\frac{10a_1k^2}{\sqrt{3}}$

 $-\frac{3a_0+46a_1k^2}{6\sqrt{2}}$

 $\frac{1}{6} (3 a_0 + 23 a_1 k^2)$

0

= 0 3 1 1 # 8 3 3 1 1 #

$\Delta_{0}^{\#1}$	0	0	0	0	0	0	$-\frac{2}{a_0 - a_1 k^2}$
${\mathcal T}_{0}^{\#2}$	0	0	0	0	0	0	0
${\mathcal T}_0^{\#1}$	$-\frac{50i\sqrt{2}a_1k}{a_0^2}$	$\frac{20i\sqrt{3}a_1k}{a_0^2}$	$-\frac{20ia_1k}{\sqrt{3}a_0^2}$	$-\frac{20i\sqrt{\frac{2}{3}}a_1k}{a_0^2}$	$\frac{4(a_0-25a_1k^2)}{a_0^2k^2}$	0	0
$\Delta_0^{\#4}$	$\frac{20a_1k^2}{\sqrt{3}a_0^2}$	$-\frac{a_0-23a_1k^2}{2\sqrt{2}a_0^2}$	$-\frac{3a_0+23a_1k^2}{6\sqrt{2}a_0^2}$	$\frac{3a_0 - 23a_1 k^2}{6a_0^2}$	$\frac{20i\sqrt{\frac{2}{3}}a_1k}{a_0^2}$	0	0
$\Delta_{0}^{\#3}$	$\frac{10\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$\frac{5a_0 + 23a_1 k^2}{4a_0^2}$	$-\frac{9a_0+23a_1k^2}{12a_0^2}$	$\frac{3a_0 + 23a_1 k^2}{6 \sqrt{2} a_0^2}$	$\frac{20ia_1k}{\sqrt{3}a_0^2}$	0	0
$\Delta_0^{\#2}$	$\frac{10\sqrt{6}a_1k^2}{a_0^2}$	$-\frac{3(a_0+23a_1k^2)}{4a_0^2}$	$\frac{5a_0 + 23a_1k^2}{4a_0^2}$	$-\frac{a_0 - 23 a_1 k^2}{2 \sqrt{2} a_0^2}$	$-\frac{20i\sqrt{3}a_1k}{a_0^2}$	0	0
$\Delta_0^{\#1}$	$-\frac{2(a_0+25a_1k^2)}{a_0^2}$		$-\frac{10\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$-\frac{20a_1k^2}{\sqrt{3}a_0^2}$	$\frac{50i\sqrt{2}a_1k}{a_0^2}$	0	0
	$\Delta_{0}^{#1}$ †	$\Delta_{0}^{#2} +$	$\Delta_{0}^{#3}$ †	$\Delta_{0}^{\#4}$ †	$\mathcal{T}_{0}^{\#1} + \left \right $	$\mathcal{T}_{0}^{\#2} +$	$\Delta_{0^{\text{-}}}^{\#1} \uparrow$

** MassiveAnalysisOfSectorNull
