ALINX 黑金 AX7020 开发板 用户手册

文档版本控制

文档版本	修改内容记录
REV1.0	创建文档
REV1.02	修正 AX7020 参数描述
REV1.03	修改了 J11 的管脚定义错误
REV2.0	PCB 改板, EEPROM 的 SDA 管脚修改
REV2.1	修改了 PMOD 管脚分配定义错误

黑金动力社区 2 / 43

版权申明:

本手册版权归属<u>芯驿电子公司(上海)有限公司</u>所有,并保留一切权力。非经本公司(书面形式),同意,任何单位及个人不得擅自摘录或修改本手册部分或全部内容,违者我们将追究其法律责任。

感谢您购买黑金开发板,在使用产品之前,请仔细地阅读该手册并且确保知道如何正确使用该产品,不合理的操作可能会损坏开发板,使用过程中随时参考该手册以确保正确使用。 此手册不断更新中,建议您使用时下载最新版本。

软件版本:

本手册使用 Xilinx 官方提供的 Vivado 版本,请从 Xilinx 网站下载正确的版本和使用我们提供的软件版本安装。

黑金官网:

Http://www.alinx.com.cn

黑金动力社区:

http://www.heijin.org

黑金官方淘宝店:

http://oshcn.taobao.com

联系方式:

021-67676997

目 录

一、简介	6
二、结构尺寸	8
三、电源	8
四、ZYNQ7000	10
1) JTAG 接口	
2) FPGA 供电系统	13
3) ZYNQ 启动配置	
五、时钟配置	14
5.1 PS 系统时钟源	14
5.2 PL 系统时钟源	15
六、PS 端的外设	16
6.1 QSPI FLASH	
6.2 DDR3 DRAM	17
6.3 干兆以太网接口	21
6.4 USB2.0	24
6.5 USB 转串口	25
6.6 SD 卡槽	27
6.7 PS PMOD 连接器	28
6.8 用户 LED	29
6.9 用户按键	30
七、PL 端的外设	31
7.1 HDMI 接口	31
7.2 EEPROM 24LC04	33
7.3 实时时钟 DS1302	34
7.4 扩展口 J10	36
7.5 扩展口 J11	38
7.6 用户 LED	41
7.7 用户按键	

黑金基于 XILINX ZYNQ7000 开发平台的开发板 2016 款正式发布了,型号为:AX7020。此款开发平台是 XILINX的 Zynq7000 SOC 芯片的解决方案。它采用 ARM+FPGA SOC 技术将双核 ARM Cortex-A9 和 FPGA 可编程逻辑集成在一颗芯片上。它采用的是 Xilinx 的 Zynq7000 系列 XC7Z020-2CLG400I 作为核心处理器,在 ARM 和 FPGA 上分别具有丰富的硬件资源和外围接口。设计上坚持"精致、实用、简洁"的设计理念,它不但适合于软件工作人员的前期的软件验证,也适合于硬件开发人员的硬件设计即软硬件的系统协作,加快项目的开发进程。

图 1-1 ZYNQ 开发板全貌

一、简介

在这里,对这款 ZYNQ7000 开发平台 AX7020 进行简单的功能介绍。

此款开发板使用的是 Xilinx 公司的 Zynq7000 系列的芯片 型号为 XC7Z020-2CLG400I, 400 个引脚的 FBGA 封装。ZYNQ7000 芯片可分成处理器系统部分 Processor System (PS) 和可编程逻辑部分 Programmable Logic (PL)。在 AX7020 开发板上,ZYNQ7000 的 PS部分和 PL部分都搭载了丰富的外部接口和设备,方便用户的使用和功能验证。另外开发板上集成了 Xilinx USB Cable 下载器电路,用户只要用一个 USB 线就可以对开发板进行下载和调试。图 1-2 为整个 AX7020 整个系统的结构示意图:

图 1-2 AX7020 结构示意图

通过这个示意图,我们可以看到,我们这个开发平台所能含有的接口和功能。

- +5V 电源输入,最大 2A 电流保护;
- Xilinx ARM+FPGA 芯片 Zyng-7000 XC7Z020-2CLG400I
- 两片大容量的 4Gbit(共 8Gbit)高速 DDR3 SDRAM,可作为 ZYNQ 芯片数据的缓存, 也可以作为操作系统运行的内存;
- 一片 256Mbit 的 QSPI FLASH, 可用作 ZYNQ 芯片的系统文件和用户数据的存储;
- 一路 10/100M/1000M 以太网 RJ-45 接口,可用于和电脑或其它网络设备进行以太网数据交换;
- 一路 HDMI 图像视频输入输出接口, 能实现 1080P 的视频图像传输;

黑金动力社区 6 / 43

- 一路高速 USB2.0 HOST 接口, 可用于开发板连接鼠标、键盘和 U 盘等 USB 外设;
- 一路高速 USB2.0 OTG 接口, 用于和 PC 或 USB 设备的 OTG 通信;
- 一路 USB Uart 接口,用于和 PC 或外部设备的串口通信;
- 一片的 RTC 实时时钟,配有电池座,电池的型号为 CR1220。
- 一片 IIC 接口的 EEPROM 24LC04;
- 6 个用户发光二极管 LED, 2 个 PS 控制, 4 个 PL 控制;
- 7 个按键, 1 个 CPU 复位按键, 2 个 PS 控制按键, 4 个 PL 控制按键;
- 板载一个 33.333Mhz 的有源晶振,给 PS 系统提供稳定的时钟源,一个 50MHz 的有源晶振,为 PL 逻辑提供额外的时钟;
- 2 路 40 针的扩展口 (2.54mm 间距), 用于扩展 ZYNQ 的 PL 部分的 IO。可以接7寸 TFT 模块、摄像头模块和 AD/DA 模块等扩展模块;
- 一个 12 针的扩展口 (2.54mm 间距), 用于扩展 ZYNQ 的 PS 系统的 MIO ;
- 一路 USB JTAG 口,通过 USB 线及板载的 JTAG 电路对 ZYNQ 系统进行调试和下载。
- 1路 Micro SD 卡座(开发板背面), 用于存储操作系统镜像和文件系统。

二、结构尺寸

开发板的尺寸为精简的 130mm x 90mm, PCB 采用 8 层板设计。板子四周有 4 个螺丝定位孔,用于固定开发板,定位孔的孔径为 3.5mm(直径),资料中提供 dxf 结构图。

三、电源

电源输入: 开发板供电电压为 DC5V, 请使用开发板自带的电源,不要用其他规格的电源, 以免损坏开发板。开发板上的电源设计示意图如下:

黑金动力社区 8/43

图 3-1 原理图中电源接口部分

开发板通过+5V 供电,通过四路 DC/DC 电源芯片 TLV62130RGT 转化成+3.3V ,+1.5V , +1.8V , +1.0V 四路电源 , 每路输出电流可高达 3A。通过一路 LDO SPX3819M5-3-3 产生 VCCIO 电源 ,VCCIO 最要是针对 ZYNQ 的 BANK35 进行供电 ,通过更换其它的 LDO 芯片 ,使得 BANK35 的 IO 适应不同的电压标准。1.5V 通过 TI 的 TPS51200 生成 DDR3 需要的 VTT 和 VREF 电压。各个电源分配的功能如下表所示:

电源	功能
+3.3V	ZYNQ VCCIO, 以太网, 串口, HDMI, RTC,
+3.3 V	FLASH, EEPROM 以及 SD card
+1.8V	ZYNQ 辅助电压, ZYNQ PLL, ZYNQ Bank501
+1.6V	VCCIO, 以太网 , USB2.0
+1.0V	ZYNQ,的核心电压
+1.5V	DDR3, ZYNQ Bank502
VREF, VTT	DDR3
VCCIO	ZYNQ Bank35

因为 ZYNQ 的 PS 和 PL 部分的电源有上电顺序的要求,在电路设计中,我们已经按照 ZYQN 的电源要求设计,上电依次为 $1.0V \to 1.8V \to 1.5 \ V \to 3.3V \to VCCIO$,图 3-2 为

电源的电路设计:

图3-2 开发板的电源设计

我们在设计 PCB 的时候,采用 8 层 PCB,预留了独立的电源层和 GND 层,使得整个开发板的电源,具有非常好的稳定性。在 PCB 板上我们预留了各个电源的测试点,以便用户确认板上的电压。

图 3-3 实物图中的电源测试点

四、ZYNQ7000

开发板使用的是 Xilinx 公司的 Zynq7000 系列的芯片,型号为 XC7Z020-2CLG400I。芯片的 PS 系统集成了两个 ARM Cortex™-A9 处理器,AMBA®互连,内部存储器,外部存储器接口和外设。这些外设主要包括 USB 总线接口,以太网接口,SD/SDIO 接口,I2C 总线接口,CAN 总线接口,UART 接口,GPIO 等。PS 可以独立运行并在上电或复位下启动。ZYNQ7000 芯片的总体框图如图 4-1 所示

黑金动力社区 10 / 43

图4-1 ZYNQ7000芯片的总体框图

其中 PS 系统部分的主要参数如下:

- 基于 ARM 双核 CortexA9 的应用处理器
- 每个 CPU 32KB 1 级指令和数据缓存,512KB 2 级缓存 2 个 CPU 共享
- 片上 boot ROM 和 256KB 片内 RAM
- 外部存储接口, 支持 16/32 bit DDR2、DDR3 接口
- 两个千兆网卡支持:发散-聚集 DMA , GMII , RGMII , SGMII 接口
- 两个 USB2.0 OTG 接口,每个最多支持 12 节点
- 两个 CAN2.0B 总线接口
- 两个 SD 卡、SDIO、MMC 兼容控制器
- 2 个 SPI, 2 个 UARTs, 2 个 I2C 接口
- 4组 32bit GPIO, 54(32+22)作为 PS 系统 IO, 64连接到 PL
- PS 内和 PS 到 PL 的高带宽连接

其中 PL 逻辑部分的主要参数如下:

- 逻辑单元 Logic Cells: 85K
- 查找表 LUTs: 53,200
- 触发器(flip-flops): 106,400
- 乘法器 18x25MACCs: 220
- Block RAM: 4.9 Mb
- 两个 AD 转换器,可以测量片上电压、温度感应和高达 17 外部差分输入通道, 1MBPS

XC7Z020-2CLG400I 芯片为 BGA 封装,400 个引脚,引脚间距为 0.8mm。再次说明一下 BGA 管脚,当我们使用 BGA 封装的芯片以后,引脚名称变为由字母+数字的形式,比如 E3,G3 等等,因此我们在看原理图的时候,看到的字母+数字这种形式的,就是代表了 BGA 的引脚。图 3.1 为开发板所用的 XC7Z020 芯片实物图。

图4-2 XC7Z020芯片实物

1) JTAG 接口

首先我们来说 AX7020 开发板的 JTAG 调试接口,在电路板上已经集成了 JTAG 的下载调试电路,所以用户无需购买额外的 Xilinx 下载器。只要一根 USB 线就能进行 ZYNQ 的开发和调试了。在 AX7020 开发板上通过一个 FTDI 的 USB 桥接芯片 FT232HL 实现 PC 的 USB 和 ZYNQ 的 JTAG 调试信号 TCK,TDO,TMS,TDI 进行数据通信。图 4-3 为开发板上 JTAG 口的原理图部分:

图4-3 原理图中JTAG接口部分

在 AX7020 开发板上, JTAG 接口的形式是 USB 接口方式的, 用户可以通过我们提供的

黑金动力社区 12 / 43

USB 线连接 PC 和 JTAG 接口进行 ZYNQ 的系统调试。

图4-4 JTAG接口实物图

2) FPGA 供电系统

接下来,我们说一下 AX7020 的电源设计部分。ZYNQ 芯片的电源分 PS 系统部分和 PL 逻辑部分,两部分的电源分别是独立工作。PS 系统部分的电源和 PL 逻辑部分的电源都有上电顺序,不正常的上电顺序可能会导致 ARM 系统和 FPGA 系统无法正常工作。

PS 部分的电源有 VCCPINT、VCCPAUX、VCCPLL 和 PS VCCO。VCCPINT 为 PS 内核供电引脚,接 1.0V;VCCPAUX 为 PS 系统辅助供电引脚,接 1.8V;VCCPLL 为 PS 的内部时钟 PLL 的电源供电引脚,也接 1.8V;PS VCCO 为 BANK 的电压,包含 VCCO_MIO0,VCCO_MIO1 和 VCCO_DDR,根据连接的外设不同,连接的电源电源也会不同,在 AX7020 开发板上, VCC_MIO0 连接 3.3V, VCCO_MIO1 连接 1.8V,VCCO_DDR 连接 1.5V。PS 系统要求上电顺序分别为先 VCCPINT 供电,然后 VCCPAUX 和 VCCPLL,最后为 PS VCCO。断电的顺序则相反。

PL 部分的电源有 VCCINT, VCCBRAM, VCCAUX 和 VCCO。VCCPINT 为 FPGA 内核供电引脚 ,接 1.0V; VCCBRAM 为 FPGA Block RAM 的供电引脚 ;接 1.0V; VCCAUX 为 FPGA 辅助供电引脚,接 1.8V; VCCO 为 PL 的各个 BANK 的电压,包含 BANK13,BANK34,BANK35,在 AX7020 开发板上,BANK 的电压连接 3.3V。PL 系统要求上电顺序分别为先 VCCINT 供电 再是 VCCBRAM,然后是 VCCAUX,最后为 VCCO。如果 VCCINT 和 VCCBRAM 的电压一样,可以同时上电。断电的顺序则相反。

3) ZYNQ 启动配置

AX7020 开发平台支持三种启动模式。这三种启动模式分别是 JTAG 调试模式,QSPI FLASH 和 SD 卡启动模式。ZYNQ702 芯片上电后会检测响应 MIO 口的电平来决定那种启动模式。用户可以通过核心板上的 J13 的跳线来选择不同的启动模式。J13 启动模式配置如下表4-1 所示。

J13	跳帽位置	启动模式
D R86	连接左边两个引脚	SD Card
S G , Ras	连接中间两个引脚	QSPI FLASH
J13 R16	连接右边边两个引脚	JTAG

表4-1 J13启动模式配置

五、 时钟配置

AX7020 开发板上分别为 PS 系统和 PL 逻辑部分提供了有源时钟,是 PS 系统和 PL 逻辑可以单独工作。

5.1 PS 系统时钟源

ZYNQ 芯片通过开发板上的 X1 晶振为 PS 部分提供 33.333MHz 的时钟输入。时钟的输入连接到 ZYNQ 芯片的 BANK500 的 PS_CLK_500 的管脚上。其原理图如图 5-1 所示:

图5-1 PS部分的有源晶振

图 5-2 为有源晶振实物图

黑金动力社区 14 / 43

图5-2 33.333Mhz有源晶振实物图

时钟引脚分配:

信号名称	ZYNQ 引脚
PS_CLK_500	E7

5.2 PL 系统时钟源

AX7020 开发板上提供了单端 50MHz 的 PL 系统时钟源, 3.3V 供电。晶振输出连接到 FPGA 的全局时钟(MRCC), 这个 GCLK 可以用来驱动 FPGA 内的用户逻辑电路。该时钟源的原理图如图 5-3 所示

图 5-3 PL系统时钟源

图 5-4 为有源晶振 50MHz 的实物图

图5-4 50Mhz有源晶振实物图

PL 时钟引脚分配:

信号名称	ZYNQ 引脚
PL_GCLK	U18

六、 PS 端的外设

因为 ZYNQ 是由 ARM 系统 PS 部分和 FPGA 逻辑 PL 部分组成,开发板上有些外设是连接到 PS 的 IO 上,有些外设是连接到开发板的 PL 的 IO 上。首先我们先对 PS 部分连接的外设做介绍。

6.1 QSPI Flash

开发板配有一片 256Mbit 大小的 Quad-SPI FLASH 芯片,型号为 W25Q256,它使用 3.3V CMOS 电压标准。由于 QSPI FLASH 的非易失特性,在使用中,它可以作为系统的启动设备来存储系统的启动镜像。这些镜像主要包括 FPGA 的 bit 文件、ARM 的应用程序代码以及其它的用户数据文件。QSPI FLASH 的具体型号和相关参数见表 6-1。

位号	芯片类型	容量	厂家
U6	W25Q256BV	32M Byte	Winbond

表6-1 QSPI Flash的型号和参数

QSPI FLASH 连接到 ZYNQ 芯片的 PS 部分 BANK500 的 GPIO 口上,在系统设计中需要配置这些 PS 端的 GPIO 口功能为 QSPI FLASH 接口。为图 6-1 为 QSPI Flash 在硬件连接示意图。

黑金动力社区 16 / 43

图6-1 QSPI Flash连接示意图

配置芯片引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号
QSPI_CLK	PS_MIO6_500	A5
QSPI_CS	PS_MIO1_500	A7
QSPI_D0	PS_MIO2_500	B8
QSPI_D1	PS_MIO3_500	D6
QSPI_D2	PS_MIO4_500	В7
QSPI_D3	PS_MIO5_500	A6

6.2 DDR3 DRAM

AX7020开发板上配有两个Micron(美光)的4Gbit (512MB)的DDR3芯片(共计8Gbit),型号为MT41J256M16HA-125(兼容MT41J256M16RA-125)。DDR的总线宽度共为32bit。DDR3 SDRAM的最高运行速度可达533MHz(数据速率1066Mbps)。该DDR3存储系统直接连接到了ZYNQ处理系统(PS)的BANK 502的存储器接口上。DDR3 SDRAM的具体配置如下表6-1所示。

表6-1 DDR3 SDRAM配置

位号

U8,U9	MT41J256M16HA-125	256M x 16bit	micron	Ī
-------	-------------------	--------------	--------	---

DDR3 的硬件设计需要严格考虑信号完整性,我们在电路设计和 PCB 设计的时候已经充分考虑了匹配电阻/终端电阻,走线阻抗控制,走线等长控制, 保证 DDR3 的高速稳定的工作。 DDR3 DRAM 的硬件连接示意图如图 6-2 所示:

图6-2 DDR3 DRAM原理图部分

图 6-3 为 DDR3 DRAM 实物图

黑金动力社区 18 / 43

图 6-3 DDR3 DRAM 实物图

DDR3 DRAM 引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号
DDR3_DQS0_P	PS_DDR_DQS_P0_502	C2
DDR3_DQS0_N	PS_DDR_DQS_N0_502	B2
DDR3_DQS1_P	PS_DDR_DQS_P1_502	G2
DDR3_DQS1_N	PS_DDR_DQS_N1_502	F2
DDR3_DQS2_P	PS_DDR_DQS_P2_502	R2
DDR3_DQS2_N	PS_DDR_DQS_N2_502	T2
DDR3_DQS3_P	PS_DDR_DQS_P3_502	W5
DDR3_DQS4_N	PS_DDR_DQS_N3_502	W4
DDR3_DQ[0]	PS_DDR_DQ0_502	C3
DDR3_DQ [1]	PS_DDR_DQ1_502	В3
DDR3_DQ [2]	PS_DDR_DQ2_502	A2
DDR3_DQ [3]	PS_DDR_DQ3_502	A4
DDR3_DQ [4]	PS_DDR_DQ4_502	D3
DDR3_DQ [5]	PS_DDR_DQ5_502	D1
DDR3_DQ [6]	PS_DDR_DQ6_502	C1

DDR3_DQ [7]	PS_DDR_DQ7_502	E1
DDR3_DQ [8]	PS_DDR_DQ8_502	E 2
DDR3_DQ [9]	PS_DDR_DQ9_502	E3
DDR3_DQ [10]	PS_DDR_DQ10_502	G3
DDR3_DQ [11]	PS_DDR_DQ11_502	H3
DDR3_DQ [12]	PS_DDR_DQ12_502	J3
DDR3_DQ [13]	PS_DDR_DQ13_502	H2
DDR3_DQ [14]	PS_DDR_DQ14_502	H1
DDR3_DQ [15]	PS_DDR_DQ15_502	J1
DDR3_DQ [16]	PS_DDR_DQ16_502	P1
DDR3_DQ [17]	PS_DDR_DQ17_502	P3
DDR3_DQ [18]	PS_DDR_DQ18_502	R3
DDR3_DQ [19]	PS_DDR_DQ19_502	R1
DDR3_DQ [20]	PS_DDR_DQ20_502	T4
DDR3_DQ [21]	PS_DDR_DQ21_502	U4
DDR3_DQ [22]	PS_DDR_DQ22_502	U2
DDR3_DQ [23]	PS_DDR_DQ23_502	U3
DDR3_DQ [24]	PS_DDR_DQ24_502	V1
DDR3_DQ [25]	PS_DDR_DQ25_502	Y3
DDR3_DQ [26]	PS_DDR_DQ26_502	W1
DDR3_DQ [27]	PS_DDR_DQ27_502	Y4
DDR3_DQ [28]	PS_DDR_DQ28_502	Y2
DDR3_DQ [29]	PS_DDR_DQ29_502	W3
DDR3_DQ [30]	PS_DDR_DQ30_502	V2
DDR3_DQ [31]	PS_DDR_DQ31_502	V3
DDR3_DM0	PS_DDR_DM0_502	A1
DDR3_DM1	PS_DDR_DM1_502	F1
DDR3_DM2	PS_DDR_DM2_502	T1
DDR3_DM3	PS_DDR_DM3_502	Y1
DDR3_A[0]	PS_DDR_A0_502	N2
DDR3_A[1]	PS_DDR_A1_502	K2
DDR3_A[2]	PS_DDR_A2_502	M3

6.3 干兆以太网接口

AX7020 开发板上通过 Realtek RTL8211E-VL 以太网 PHY 芯片用户提供网络通信服务。 以太网 PHY 芯片是连接到 ZYNQ 的 PS 端 BANK501 的 GPIO 接口上。RTL8211E-VL 芯片支持 10/100/1000 Mbps 网络传输速率,通过 RGMII 接口跟 Zynq7000 PS 系统的 MAC 层进行数据通信。RTL8211E-VL 支持MDI/MDX 自适应,各种速度自适应,Master/Slave 自适应,

支持 MDIO 总线进行 PHY 的寄存器管理。

RTL8211E-VL 上电会检测一些特定的 IO 的电平状态,从而确定自己的工作模式。表 6-2 描述了 GPHY 芯片上电之后的默认设定信息。

配置 Pin 脚	说明	配置值
PHYAD[2:0]	MDIO/MDC 模式的 PHY 地址	PHY Address 为 001
SELRGV	RGMII 1.8V 或 1.5V 电平选择	1.8V
AN[1:0]	自协商配置	(10/100/1000M)自适应
RX Delay	RX 时钟 2ns 延时	延时
TX Delay	TX 时钟 2ns 延时	延时

表 6-2 PHY 芯片默认配置值

当网络连接到干兆以太网时,FPGA和PHY芯片RTL8211E-VL的数据传输时通过RGMII总线通信,传输时钟为125Mhz,数据在时钟的上升沿和下降样采样。

当网络连接到百兆以太网时, FPGA 和 PHY 芯片 RTL8211E-VL 的数据传输时通过 RMII 总线通信,传输时钟为 25Mhz。数据在时钟的上升沿和下降样采样。

图 6-4 为 ZYNQ 与以太网 PHY 芯片连接示意图:

图 6-4 FPGA 与 PHY 连接示意图

图 6-5 为以太网 PHY 芯片的实物图

黑金动力社区 22 / 43

___ 图 6-5 以太网 PHY 芯片实物图

以太网引脚分配如下:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
ETH_GCLK	PS_MIO16_501	A19	RGMII 发送时钟
ETH_TXD0	PS_MIO17_501	E14	发送数据 bit 0
ETH_TXD1	PS_MIO18_501	B18	发送数据 bit1
ETH_TXD2	PS_MIO19_501	D10	发送数据 bit2
ETH_TXD3	PS_MIO20_501	A17	发送数据 bit3
ETH_TXCTL	PS_MIO21_501	F14	发送使能信号
ETH_RXCK	PS_MIO22_501	B17	RGMII 接收时钟
ETH_RXD0	PS_MIO23_501	D11	接收数据 BitO
ETH_RXD1	PS_MIO24_501	A16	接收数据 Bit1
ETH_RXD2	PS_MIO25_501	F15	接收数据 Bit2
ETH_RXD3	PS_MIO26_501	A15	接收数据 Bit3
ETH_RXCTL	PS_MIO27_501	D13	接收数据有效信号
ETH_MDC	PS_MIO52_501	C10	MDIO 管理时钟
ETH_MDIO	PS_MIO53_501	C11	MDIO 管理数据

6.4 USB2.0

AX7020使用的USB2.0收发器是一个1.8V的,高速的支持ULPI标准接口的USB3320C-EZK。ZYNQ的USB总线接口和USB3320C-EZK收发器相连接,实现高速的USB2.0Host模式和Slave模式的数据通信。USB3320C的USB的数据和控制信号连接到ZYNQ芯片PS端的BANK501的IO口上,一个24MHz的晶振为USB3320C提供系统时钟。

开发板上为用户提供了两个 USB 接口,一个是 Host USB 口,一个是 Slave USB 口。分别为扁型 USB 接口(USB Type A) 和微型 USB 接口(Micro USB),方便用户连接不同的 USB 外设。用户可以通过开发板上的 J5,J6 的跳线实现 Host 和 Slave 的切换。表 6-3 为模式切换说明:

2. 110-0.1200.00					
J5, J6 状态	USB 模式 说明				
J5 和 J6 安装跳线帽	HOST 模式	开发板作为主设备, USB 口连接鼠标, 键盘, USB 等从外设			
J5 和 J6 不安装跳线帽	Slave 模式	开发板作为从设备, USB 口连接电脑			

表 6-3 USB 接口模式切换说明

ZYNQ处理器和USB3320C-EZK芯片连接的示意图如6-6所示:

图 6-6 Zynq7000 和 USB 芯片间连接示意图

图 6-7 为 USB2.0 部分的实物图, U11 为 USB3320C, J3 为 Host USB 接口, J4 为 Slave USB 接口。 跳线帽 J5 和 J6 用于 Host 和 Slave 模式的选择。

黑金动力社区 24 / 43

图 6-7 USB2.0 部分的实物图

USB2.0 引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注	
OTG_DATA4	PS_MIO28_501	C16	USB 数据 Bit4	
OTG_DIR	PS_MIO29_501	C13	USB 数据方向信号	
OTG_STP	PS_MIO30_501	C15	USB 停止信号	
OTG_NXT	PS_MIO31_501	E16	USB 下一数据信号	
OTG_DATA0	PS_MIO32_501	A14	USB 数据 Bit0	
OTG_DATA1	PS_MIO33_501	D15	USB 数据 Bit1	
OTG_DATA2	PS_MIO34_501	A12	USB 数据 Bit2	
OTG_DATA3	PS_MIO35_501	F12	USB 数据 Bit3	
OTG_CLK	PS_MIO36_501	A11	USB 时钟信号	
OTG_DATA5	PS_MIO37_501	A10	USB 数据 Bit5	
OTG_DATA6	PS_MIO38_501	E13	USB 数据 Bit6	
OTG_DATA7	PS_MIO39_501	C18	USB 数据 Bit7	
OTG_RESETN	PS_MIO46_501	D16	USB 复位信号	

6.5 USB 转串口

AX7020开发板采用Silicon Labs CP2102GM的USB转UART芯片, USB接口采用Micro USB接口, 用户可以用一根Micro USB线连接到PC上进行串口通信。

UART的TX/RX信号与ZYNQ EPP 的PS BANK501的信号相连,因为该BANK的VCCMIO设置为1.8V,但CP2102GM的数据电平为3.3V,我们这里通过TXS0102DCUR电平转换芯片来连接。CP2102GM和ZYNQ连接的示意图如图6-8所示:

图 6-8 CP2102GM 连接示意图

图 6-9 USB 转串口实物图

ZYNQ 串口引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
UART_TX	PS_MIO48_501	B12	Uart数据输出
UART_RX	PS_MIO49_501	C12	Uart数据输入

Silicon Labs 为主机 PC 提供了虚拟 COM 端口 (VCP) 驱动程序。这些驱动程序允许

黑金动力社区 26 / 43

CP2102GM USB-UART 桥接设备在通信应用软件(例如, TeraTerm 或超级终端)显示为一个 COM 端口。VCP 设备驱动程序必须在 PC 主机与 AX7020 开发板板建立通信前进行安装。

6.6 SD 卡槽

AX7020开发板包含了一个Micro型的SD卡接口,以提供用户访问SD卡存储器,用于存储ZYNQ芯片的BOOT程序,Linux操作系统内核,文件系统以及其它的用户数据文件。

SDIO信号与ZYNQ的PS BANK501的IO信号相连,因为该BANK的VCCMIO设置为1.8V,但SD卡的数据电平为3.3V,我们这里通过TXS02612电平转换器来连接。Zynq7000 PS和SD卡连接器的原理图如图6-10所示。

图 6-10 SD 卡连接示意图

SD 卡槽在开发板的背面,图 6-11 SD 卡槽实物图

图 6-11 SD 卡槽实物图

SD 卡槽引脚分配

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
SD_CLK	PS_MIO40	D14	SD时钟信号
SD_CMD	PS_MIO41	C17	SD命令信号
SD_D0	PS_MIO42	E12	SD数据Data0
SD_D1	PS_MIO43	A 9	SD数据Data1
SD_D2	PS_MIO44	F13	SD数据Data2
SD_D3	PS_MIO45	B15	SD数据Data3
SD_CD	PS_MIO47	B14	SD卡插入信号

6.7 PS PMOD 连接器

AX7020 开发板预留了一个 12 针 2.54mm 间距的 PMOD 接口(J12)用于连接 PS BANK500 的 IO 和外部模块或电路。因为 BANK500 的 IO 是 3.3V 标准的,所以连接的外部设备和电路的信号也需要 3.3V 电平标准。PMOD 连接器的原理图如图 6-12 所示

图 6-12 PMOD 连接器原理图

图 6-13 为 PS PMOD 连接器的实物图

黑金动力社区 28 / 43

图 6-13 PS PMOD 连接器的实物图

PS PMOD 连接器的引脚分配

PMOD 管脚	信号名称	ZYNQ 引脚名	ZYNQ 引脚号
PIN1	PMOD_IO0	PS_MIO11_500	C6
PIN2	PMOD_IO2	PS_MIO9_500	B5
PIN3	PMOD_IO3	PS_MIO15_500	C8
PIN4	PMOD_IO4	PS_MIO7_500	D8
PIN5	GND	-	-
PIN6	+3.3V	-	-
PIN7	PMOD_IO1	PS_MIO10_500	E 9
PIN8	PMOD_IO6	PS_MIO8_500	D5
PIN9	PMOD_IO7	PS_MIO14_500	C5
PIN10	PMOD_IO5	PS_MIO12_500	D9
PIN11	GND	-	-
PIN12	+3.3V	-	-

6.8 用户 LED

AX7020 开发板上,PS 部分的 BANK500 IO 上连接了 2 个 LED 发光二极管,用户可以使用这两个 LED 灯来调试程序。当 BANK500 IO 电压为高时,LED 灯熄灭,当 BANK500 IO 电压为低时,LED 会被点亮。ZYNQ BANK500 IO 和 LED 灯连接的示意图如图 6-14 所示:

图 6-14 Zynq-7000 和 LED 灯连接示意图

图 6-15 为 PS 的 LED 灯实物图

图 6-15 PS 的 LED 灯实物图

PS LED 灯的引脚分配

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
MIO0_LED	PS_MIO0_500	E6	PS LED1灯
MIO13_LED	PS_MIO13_500	E8	PS LED2灯

6.9 用户按键

AX7020 开发板上, PS 部分的 BANK501 IO 上连接了 2 个用户按键, 用户可以使用这两个用户按键来测试输入信号和中断触发。设计中按键按下, 输入到 ZYNQ BANK501 IO 上的信号电压为低, 没有按下时, 信号为高。 ZYNQ BANK501 IO 和按键连接的示意图如图 6-16 所示:

黑金动力社区 30 / 43

图 6-16 Zyng-7000 和按键连接示意图

图 6-17 为 PS 的按键实物图

图 6-17 PS 的按键实物图

PS LED 灯的引脚分配

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
MIO_KEY1	PS_MIO50_501	B13	PS用户按键KEY1
MIO_KEY2	PS_MIO51_501	В9	PS用户按键KEY2

七、 PL 端的外设

下面我们再对 PL 部分 (FPGA 逻辑部分) 连接的外设做一下介绍。

7.1 HDMI 接口

HDMI,全称为高清晰度多媒体视频输出接口。AX7020 开发板上通过 FPGA 的差分 IO 直接连接到 HDMI 接口的差分信号和时钟,在 FPGA 内部实现 HMDI 信号的差分转并行再进行编解码,实现 DMI 数字视频输入和输出的传输解决方案,最高支持 1080P@60Hz 的输入和输出的功能。

HDMI 的信号连接到 ZYNQ 的 PL 部分的 BANK34 上 图 6-1-1 为 HDMI 设计的原理图,

当开发板作为 HDMI 显示设备时 (HDMI IN), HDMI 信号作为输入, HPD(hot plug detect) 信号作为输出。当开发板作为 HDMI 主设备 (HDMI OUT)时,则相反。

图 7-1 为 HDMI 设计的原理图

开发板在作为 HDMI 主设备(HDMI OUT)时,需要提供给 HDMI 显示设备一个+5V 的电源。电源输出控制电路如图 7-2 所示

图 7-2 HDMI 5V 输出电路

另外 HMDI 主设备会通过 IIC 总线读取 HDMI 显示设备的 EDID 设备信息。FPGA 的管脚电平是 3.3V, 但 HDMI 的电平是+5V, 这里我们需要电平转换芯片 GTL2002D 来连接。IIC 的转换电路如图 7-3 所示

图 7-3 GTL2002D 电平转换电路

图 7-4 为 HDMI 接口的实物图

黑金动力社区 32 / 43

图 7-4 HDMI 接口的实物图

HDMI 接口的引脚分配

信号名称	ZYNQ 引脚名	ZYNQ引脚号	备注
HDMI_CLK_P	IO_L13P_T2_MRCC_34	N18	HDMI时钟信号正
HDMI_CLK_N	IO_L13N_T2_MRCC_34	P19	HDMI时钟信号负
HDMI_D0_P	IO_L16P_T2_34	V20	HDMI数据0正
HDMI_D0_N	IO_L16N_T2_34	W20	HDMI数据0负
HDMI_D1_P	IO_L15P_T2_DQS_34	T20	HDMI数据1正
HDMI_D1_N	IO_L15N_T2_DQS_34	U20	HDMI数据1负
HDMI_D2_P	IO_L14P_T2_SRCC_34	N20	HDMI数据2正
HDMI_D2_N	IO_L14N_T2_SRCC_34	P20	HDMI数据2负
HDMI_SCL	IO_L20N_T3_34	R18	HDMI IIC时钟
HDMI_SDA	IO_L19P_T2_34	R16	HDMI IIC数据
HDMI_CEC	IO_L17P_T2_34	Y18	HDMI遥控器信号
HDMI_HPD	IO_L17N_T2_34	Y19	HDMI热插拔检测信号
HDMI_OUT_EN	IO_L18P_T2_34	V16	HDMI电源输出控制

7.2 EEPROM 24LC04

AX7020 开发板板载了一片 EEPROM,型号为 24LC04,容量为:4Kbit(2*256*8bit),由2个256byte的 block组成,通过 IIC总线进行通信。板载 EEPROM 就是为了学习 IIC 总线的通信方式。EEPROM的I2C信号连接的ZYNQ PL端的BANK34 IO口上。图7-5为EEPROM

的原理图

图 7-5 EEPROM 原理图部分

图 7-6 为 EEPROM 实物图

图 7-6 EEPROM 实物图

EEPROM 引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
EEPROM_I2C_SCL	IO_25_34	T19	IIC时钟信号
EEPROM_I2C_SDA	IO_L12N_T1_34	U19	IIC数据信号

7.3 实时时钟 DS1302

开发板板载了一片实时时钟 RTC 芯片,型号 DS1302,他的功能是提供到 2099 年内的日历功能,年月日时分秒还有星期。如果系统中需要时间的话,那么 RTC 就需要涉及到产品中。他外部需要接一个 32.768KHz 的无源时钟,提供精确的时钟源给时钟芯片,这样才能让 RTC

黑金动力社区 34 / 43

可以准确的提供时钟信息给产品。同时为了产品掉电以后,实时时钟还可以正常运行,一般需要另外配一个电池给时钟芯片供电,图 6-3-1 中为 BT1 为电池座,我们将纽扣电池(型号CR1220,电压为 3V)放入以后,当系统掉电池,纽扣电池还可以给 DS1302 供电,这样,不管产品是否供电,DS1302 都会正常运行,不会间断,可以提供持续不断的时间信息。RTC的接口信号也是连接到 ZYNQ PL端的 BANK34 和 BANK35 IO 口上。图 7-7 为 DS1302 原理图

图 7-7 DS1302 原理图

图 7-8 为 DS1302 实物图

图 7-8 DS1302 实物图

DS1302 接口引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
RTC _SCLK	IO_0_34	R19	RTC的时钟信号
RTC_RESET	IO_L22N_T3_AD7N_35	L15	RTC的复位信号
RTC _DATA	IO_L22P_T3_AD7P_35	L14	RTC的数据信号

7.4 扩展口 J10

扩展口 J10 为 40 管脚的 2.54mm 的双排连接器,为用户扩展更多的外设和接口,目前 ALINX 黑金提供的模块有: ADDA 模块,液晶屏模块,干兆以太网模块,音频输入输出模块,矩阵键盘模块,500W 双目视觉摄像头模块。扩展口上包含 5V 电源 1 路,3.3V 电源 2 路,地 3 路,IO 口 34 路。IO 口的信号连接到 ZYNQ PL的 BANK35 和 BANK35 上,电平默认为 3.3V,扩展口 J10 的部分 IO 可以通过更换开发板上电源芯片(SPX3819M5-3-3)改变 IO 的电平。切勿直接跟 5V 设备直接连接,以免烧坏 FPGA。如果要接 5V 设备,需要接电平转换芯片。

在扩展口和 FPGA 连接之间串联了 33 欧姆的排阻,用于保护 FPGA 以免外界电压或电流过高造成损坏。PCB 设计上 P 和 N 的走线使用差分走线,控制差分阻抗为 100 欧姆。扩展口(J10)的电路如图 7-9 所示:

الن	1	2	VCC5V
EX IOI 1N	3	4	EX YOT 1P
EX_IO1_2N	5	6	EX IO1 2P
EX IO1 3N	7	8	EX IO1 3P
EX IO1 4N	9	10	EX IO1 4P
EX IO1 5N	11	12	EX IO1 5P
EX IO1 6N	13	14	EX IO1 6P
EX IO1 7Nclk	15	16 clk	EX IO1 7P
EX IO1 8N	17	18	EX IO1 8P
EX IO1 9N	19	20	EX IO1 9P
EX IO1 10N	21	22	EX IO1 10P
EX IO1 11N	23	24	EX IO1 11P
EX IO1 12N	25	26	EX IO1 12P
EX IO1 13N	27	28	EX IO1 13P
EX IO1 14N	29	30	EX IO1 14P
EX IO1 15N	31	32	EX IO1 15P
EX IO1 16N	33	34	EX IO1 16P
EX IO1 17N	35	36	EX IO1 17P
	37	38	lı.
VCC3V3	39	40	VCC3V3
VCC3V3			VCC3V3
		 •	

图 7-9 J10 扩展口原理图

图 7-10 为 J10 扩展口实物图,扩展口的 Pin1, Pin2 和 Pin39, Pin40 已经在板上标示出。

图 7-10 J10 扩展口实物图

黑金动力社区 36 / 43

J10 扩展口引脚分配

J10 管脚	信号名称	ZYNQ 引脚名	ZYNQ 引脚号
PIN1	GND	-	-
PIN2	+5V	-	-
PIN3	EX_IO1_1N	IO_L22N_T3_34	W19
PIN4	EX_IO1_1P	IO_L22P_T3_34	W18
PIN5	EX_IO1_2N	IO_L6N_T0_34	R14
PIN6	EX_IO1_2P	IO_L6P_T0_34	P14
PIN7	EX_IO1_3N	IO_L7N_T1_34	Y17
PIN8	EX_IO1_3P	IO_L7P_T1_34	Y16
PIN9	EX_IO1_4N	IO_L10N_T1_34	W15
PIN10	EX_IO1_4P	IO_L10P_T1_34	V15
PIN11	EX_IO1_5N	IO_L8N_T1_34	Y14
PIN12	EX_IO1_5P	IO_L8P_T1_34	W14
PIN13	EX_IO1_6N	IO_L23N_T3_34	P18
PIN14	EX_IO1_6P	IO_L23P_T3_34	N17
PIN15	EX_IO1_7N	IO_L11N_T1_34	U15
PIN16	EX_IO1_7P	IO_L11P_T1_34	U14
PIN17	EX_IO1_8N	IO_L24N_T3_34	P16
PIN18	EX_IO1_8P	IO_L24P_T3_34	P15
PIN19	EX_IO1_9N	IO_L9N _T1_34	U17
PIN20	EX_IO1_9P	IO_L9P_T1_34	T16
PIN21	EX_IO1_10N	IO_L21_N_T3_34	V18
PIN22	EX_IO1_10P	IO_L21_P_T3_34	V17
PIN23	EX_IO1_11N	IO_L5N_T0_34	T15
PIN24	EX_IO1_11P	IO_L5P_T0_34	T14
PIN25	EX_IO1_12N	IO_L3N_T0_34	V13
PIN26	EX_IO1_12P	IO_L3P_T0_34	U13
PIN27	EX_IO1_13N	IO_L4N_T0_34	W13
PIN28	EX_IO1_13P	IO_L4P_T0_34	V12
PIN29	EX_IO1_14N	IO_L2N_T0_34	U12

PIN30	EX_IO1_14P	IO_L2P_T0_34	T12
PIN31	EX_IO1_15N	IO_L1N_T0_34	T10
PIN32	EX_IO1_15P	IO_L1P_T0_34	T11
PIN33	EX_IO1_16N	IO_L2N_T0_35	A20
PIN34	EX_IO1_16P	IO_L2P_T0_35	B19
PIN35	EX_IO1_17N	IO_L1N_T0_35	B20
PIN36	EX_IO1_17P	IO_L1P_T0_35	C20
PIN37	GND	-	-
PIN38	GND	-	-
PIN39	+3.3V	-	-
PIN40	+3.3V	-	-

7.5 扩展口 [11]

扩展口 J11 也为 40 管脚的 2.54mm 的双排连接器,为用户扩展更多的外设和接口,目前 ALINX 黑金提供的模块有: ADDA 模块,液晶屏模块,干兆以太网模块,音频输入输出模块,矩阵键盘模块,500W 双目视觉摄像头模块。扩展口上包含 5V 电源 1 路,3.3V 电源 2路,地 3路,IO口 34路。IO口的信号连接到 ZYNQ PL的 BANK35上,电平默认为 3.3V,扩展口 J11 的全部 IO 可以通过更换开发板上电源芯片(SPX3819M5-3-3)改变 IO 的电平。切勿直接跟 5V 设备直接连接,以免烧坏 FPGA。如果要接 5V 设备,需要接电平转换芯片。

在扩展口和 FPGA 连接之间串联了 33 欧姆的排阻,用于保护 FPGA 以免外界电压或电流过高造成损坏, PCB 设计上 P 和 N 的走线使用差分走线,控制差分阻抗为 100 欧姆。扩展口(J11)的电路如图 7-11 所示

黑金动力社区 38 / 43

.1	1	2	VCC5V.
EX_ICIP_1N	3	4	EX YOZ 1P
EX IO2 2N	5	6	EX IO2 2P
EX_IO2_3N	7	8	EX_IO2_3P
EX IO2 4N	9	10	EX IO2 4P
EX_IO2_5N	11	12	EX IO2 5P
EX_IO2_6N	13	14	EX_IO2_6P
EX IO2 7Nclk	15	16	clk EX_IO2_7P
EX_IO2_8N	17	18	EX_IO2_8P
EX_IO2_9N	19	20	EX_IO2_9P
EX_IO2_10N	21	22	EX_IO2_10P
EX IO2 11N	23	24	EX IO2 11P
EX_IO2_12N	25	26	EX_IO2_12P
EX_IO2_13N	27	28	EX_IO2_13P
EX_IO2_14N	29	30	EX_IO2_14P
EX_IO2_15N	31	32	EX_IO2_15P
EX IO2 16N	33	34	EX IO2 16P
EX_IO2_17N	35	36	EX_IO2_17P
ال	37	38	lı.
VCC3V3	39	40	VCC3V3
VCC3V3			V C C 3 V 3
		•	

图 7-11 J11 扩展口原理图

图 7-12 为 J11 扩展口实物图,扩展口的 Pin1,Pin2 和 Pin39,Pin40 已经在板上标示 出。

图 7-12 J11 扩展口实物图

J11 扩展口引脚分配

J11 管脚	信号名称	ZYNQ 引脚名	ZYNQ 引脚号
PIN1	GND	-	-
PIN2	+5V	-	-
PIN3	EX_IO2_1N	IO_L6N_T0_35	F17
PIN4	EX_IO2_1P	IO_L6P_T0_35	F16
PIN5	EX_IO2_2N	IO_L15N_T2_35	F20
PIN6	EX_IO2_2P	IO_L15P_T2_35	F19
PIN7	EX_IO2_3N	IO_L18N_T2_35	G20
PIN8	EX_IO2_3P	IO_L18P_T2_35	G19
PIN9	EX_IO2_4N	IO_L14N_T2_35	H18
PIN10	EX_IO2_4P	IO_L14P_T2_35	J18
PIN11	EX_IO2_5N	IO_L9N_T1_35	L20
PIN12	EX_IO2_5P	IO_L9P_T1_35	L19
PIN13	EX_IO2_6N	IO_L7N_T1_35	M20
PIN14	EX_IO2_6P	IO_L7P_T1_35	M19
PIN15	EX_IO2_7N	IO_L12N_T1_35	K18
PIN16	EX_IO2_7P	IO_L12P_T1_35	K17
PIN17	EX_IO2_8N	IO_L10N_T1_35	J19
PIN18	EX_IO2_8P	IO_L10P_T1_35	K19
PIN19	EX_IO2_9N	IO_L17N_T2_35	H20
PIN20	EX_IO2_9P	IO_L17P_T2_35	J20
PIN21	EX_IO2_10N	IO_L11N_T1_35	L17
PIN22	EX_IO2_10P	IO_L11P_T1_35	L16
PIN23	EX_IO2_11N	IO_L8N_T1_35	M18
PIN24	EX_IO2_11P	IO_L8P_T1_35	M17
PIN25	EX_IO2_12N	IO_L4N_T0_35	D20
PIN26	EX_IO2_12P	IO_L4P_T0_35	D19
PIN27	EX_IO2_13N	IO_L5N_T0_35	E19
PIN28	EX_IO2_13P	IO_L5P_T0_35	E18
PIN29	EX_IO2_14N	IO_L16N_T2_35	G18
PIN30	EX_IO2_14P	IO_L16P_T2_35	G17
PIN31	EX_IO2_15N	IO_L13N_T2_35	H17

黑金动力社区 40 / 43

PIN32	EX_IO2_15P	IO_L13P_T2_35	H16
PIN33	EX_IO2_16N	IO_L19N_T3_35	G15
PIN34	EX_IO2_16P	IO_L19P_T3_35	H15
PIN35	EX_IO2_17N	IO_L20N_T3_35	J14
PIN36	EX_IO2_17P	IO_L20P_T3_35	K14
PIN37	GND	-	-
PIN38	GND	-	-
PIN39	+3.3V	-	-
PIN40	+3.3V	-	-

7.6 用户 LED

AX7020 开发板的 PL 部分连接了 4 个 LED 发光二极管。4 个用户 LED 部分的原理图如图 6-6-1, LED 灯的信号连接到 PL 部分 BANK35 的 IO 上。当 PL 部分 BANK35 的 IO 引脚输出为逻辑 0 时,LED 会被点亮,出为逻辑 1 时,LED 会被熄灭。

图 7-13 PL 用户 LED 原理图

图 7-14 为这四个 LED 实物图

图 7-15 PL 用户 LED 实物图

PL 用户 LED 引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚 号	备注
LED1	IO_L23P_T3_35	M14	PL用户LED1灯
LED2	IO_L23N_T3_35	M15	PL用户LED2灯
LED3	IO_L24P_T3_35	K16	PL用户LED3灯
LED4	IO_L24N_T3_35	J16	PL用户LED4灯

7.7 用户按键

AX7020 开发板的 PL 部分板载了 4 个用户按键(KEY1~KEY4),按键的信号连接到 ZYNQ 的 BANK34 和 BANK35 的 IO 上。按键都为低电平有效,没有按下时,信号为高;按键按下时,信号为低。4 个用户按键的原理图如图 7-16 所示

图 7-16 个用户按键原理图

图 7-17 为连接到 PL 的 4 个用户按键实物图

黑金动力社区 42 / 43

图 7-17 4 个 PL 用户按键实物图

按键引脚分配:

信号名称	ZYNQ 引脚名	ZYNQ 引脚号	备注
KEY1	IO_L21P_T3_35	N15	PL用户按键1
KEY2	IO_L21P_T3_35	N16	PL用户按键2
KEY3	IO_L20P_T3_34	T17	PL用户按键3
KEY4	IO_L19N_T3_34	R17	PL用户按键4