**IA Géosciences** - Deep learning: Méthode de la descente du gradient

Romain Wenger (Laboratoire Image Ville Environnement)

#### Table des matières

01

#### **Préliminaires**

Minimiser la function de coût

02

## Descente du gradient

Ajuster les poids

03

## Régression linéaire

Démonstrations mathématiques appliquées à un problème linéaire 04

# Prédiction du prix des maisons

Exercice pratique

### Table des matières

01

#### **Préliminaires**

Minimiser la function de coût

02

# Descente du gradient

Ajuster les poids

03

## Régression linéaire

Démonstrations mathématiques appliquées à un problème linéaire 04

# Prédiction du prix des maisons

Exercice pratique

### **Préliminaires**

- 1. Définir un modèle (e.g. fonction linéaire)
- 2. Définir un objectif (e.g. fonction de coût)
- 3. Minimiser la fonction objective
  - Essayer avec la force brute (trop long)
  - Solution optimale (dérivée égale zéro)
  - Descente du gradient (signe de la dérivée)

## **Boston House Prices**

Prédire y en fonction de x



## Définir un modèle

Une hypothèse:

$$\hat{y} = h(x)$$

## Hypothèse : droite linéaire

$$\widehat{y} = h(x) = w * x + b$$



## Hypothèse: courbe

$$\hat{y} = h(x) = w_1 * x^2 + w_2 * x + b$$



## Hypothèse: cercle

$$\widehat{y} = h(x) = \pm \sqrt{x^2 - b^2}$$





## Hypothèse: ellipse

$$\widehat{y} = h(x) = \pm \sqrt{1 - w_1 * x^2}$$







## Hypothèse: ellipse

$$\widehat{y} = h(x) = \pm \sqrt{1 - w_1 * x^2}$$



## Hypothèse: fonction complexe

$$\widehat{y} = h(x) = f(x, w_1, w_2, ..., w_n)$$





## Définir un objectif

Fonction de coût:

L(h)

Objectif:

 $\min_{\boldsymbol{h}} \boldsymbol{L}(\boldsymbol{h})$ 

#### Définition de l'objectif est indépendante du choix du modèle



### Minimiser une fonction de coût



## Méthode par force brute



### Méthode par force brute



## Méthode par force brute

#### Ne pas appliquer la force brute car :

- Méthode très lente (si on a  $w_1, w_2, ... w_{1000}$ )
- Difficile de savoir avec quel w commencer
- On peut tomber sur un mauvais minimum

## Dérivée (ou gradient)

Dérivée augmentation partielle (très faible) de w



## Solution optimale

But: trouver w pour

$$\frac{dL}{dw} = 0$$

#### Plusieurs méthodes existent :

- Inverser les équations normales
- Décompositions orthogonales

#### **Limitations:**

- Méthodes très lentes surtout si le modèle est complexe
- Problème si plusieurs solutions existent pour l'équation cidessus

### Table des matières

01

#### **Préliminaires**

Minimiser la function de coût

02

# Descente du gradient

Ajuster les poids

03

## Régression linéaire

Démonstrations mathématiques appliquées à un problème linéaire 04

# Prédiction du prix des maisons

Exercice pratique

## Analogie de la descente du gradient





### Le coût diminue



### Le coût augmente



### Comment varier w?

#### Comment varier w?

- Si w augmente, le taux d'erreur L augmente
  - On est dans une montée
  - Il faut diminuer w
- Si w augmente, le taux d'erreur L diminue
  - On est dans une descente
  - Il faut augmenter w

#### Ok maintenant formalisons tout cela

#### Comment varier w?

$$w = w - \alpha \frac{dL}{dw}$$

- w: l'ensemble des paramètres à apprendre
- L: la fonction de coût qu'on veut minimiser
- ullet lpha : le taux d'apprentissage qui contrôle la variation de w
- – : (le signe moins) signifie qu'on varie w dans le sens inverse de la variation de  $L \diamondsuit$  on minimise l'erreur

## Pourquoi un taux d'apprentissage $\alpha$ ?



#### Bon choix de $\alpha$

#### Comment choisir $\alpha$ ?

- Un très grand  $\alpha$  peut amener à rater l'objectif
- Un très petit  $\alpha$  peut amener à une convergence trop lente nécessitant trop d'itérations
- Il faut choisir  $\alpha$  pour avoir un équilibre entre le temps de calcul disponible et la précision du minimum qu'on veut atteindre
- Un choix souvent empirique et basé sur les travaux d'autres personnes

### Notion de mini-batch

• L'algorithme « Batch Gradient Descent » optimise la fonction :

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} erreur(y_i, \hat{y}_i)$$

- Il faut calculer l'erreur sur l'ensemble du jeu d'entraı̂nement ce qui est problématique si n est très grand
- Notion de « mini-batch »
- $\Box$  Calculer *L* pour m < < < n

$$L(w) = \frac{1}{m} \sum_{i=s}^{s+m-1} erreur(y_i, \hat{y}_i) \ \forall s \in \{1, m, 2m, ..., N-m\}$$

- Une fois qu'on a passé tous les mini-batchs = une époque (epoch en anglais)
- On répète le processus d'entraînement sur plusieurs époques

#### Pseudo-code pour mini-batch gradient descent

Entrées: X, Yl'ensemble du jeu de données d'entrainement

**Sortie :** W les paramètres qui modélisent le mieux la relation  $X \Rightarrow Y$  Initialisation aléatoire de W

- 1: **Pour** epoque = 1 à 1000 **faire**
- 2: **Pour** chaque mini-batch  $X_m$  de taille m **faire**
- $\exists: predictions = model(X_m, W)$
- 4:  $erreurs = fonction_{erreur(Y_m, predictions)}$
- 5:  $gradient = \frac{dL(W)}{dW}$
- 6:  $W = W \alpha * gradient$
- 7: fin Pour
- 8: fin Pour
- 9: **Renvoyer** *W*

#### Variants de la méthode de descente du gradient

Soit m la taille du mini-batch

- Si  $m = n \Rightarrow Batch Gradient Descent$ 
  - Il faut passer sur tout l'ensemble pour mettre w à jour
- Si  $m = 1 \Rightarrow Stochastic Gradient Descent$ 
  - On perd la parallélisation du calcul sur plusieurs exemples
- Si  $1 < m < \ll n \Rightarrow Minibatch Gradient Descent$ 
  - On accélère une mise à jour de w en parallélisant sur m exemples

### Table des matières

01

#### **Préliminaires**

Minimiser la function de coût

02

# Descente du gradient

Ajuster les poids

03

## Régression linéaire

Démonstrations mathématiques appliquées à un problème linéaire 04

# Prédiction du prix des maisons

Exercice pratique

#### Fonction de coût

Forme générale

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} erreur(y_i, \hat{y}_i)$$

L'erreur quadratique moyenne

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i(w))^2$$

L'erreur quadratique moyenne pour la régression linéaire

$$L(w,b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w * x_i + b))^2$$

Pour la régression linéaire : deux paramètres à apprendre w et b

#### Calcul du gradient par rapport à w pour un modèle linéaire

$$\frac{dL(w,b)}{dw} = \frac{d(\frac{1}{n}\sum_{i=1}^{n} (y_i - (w * x_i + b))^2)}{dw}$$
$$\frac{dL(w,b)}{dw} = \frac{1}{n}\sum_{i=1}^{n} \frac{d(y_i - (w * x_i + b))^2}{dw}$$

Or,  $\frac{dy_i}{dw} = 0$  car  $y_i$  est independent de w:

$$\frac{dL(w,b)}{dw} = \frac{1}{n} \sum_{i=1}^{n} (-2x_i (y_i - (w * x + b)))$$

$$\frac{dL(w,b)}{dw} = -\frac{2}{n} \sum_{i=1}^{n} (x_i(y_i - \hat{y}_i))$$

Mise à jour de w:

$$w = w - \alpha * (-\frac{2}{n} \sum_{i=1}^{n} (x_i (y_i - \hat{y}_i)))$$

#### Calcul du gradient par rapport à b pour un modèle linéaire

$$\frac{dL(w,b)}{db} = \frac{d(\frac{1}{n}\sum_{i=1}^{n} (y_i - (w * x_i + b))^2)}{db}$$
$$\frac{dL(w,b)}{db} = \frac{1}{n}\sum_{i=1}^{n} \frac{d(y_i - (w * x_i + b))^2}{db}$$

Or,  $\frac{dy_i}{db} = 0$  car  $y_i$  est independant de b:

$$\frac{dL(w,b)}{db} = \frac{1}{n} \sum_{i=1}^{n} (-2(y_i - (w * x + b)))$$

$$\frac{dL(w,b)}{db} = -\frac{2}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)$$

Mise à jour de b:

$$b = b - \alpha * (-\frac{2}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i))$$

### Régression linéaire avec plusieurs variables

- Si l'instance possède plusieurs caractéristiques
- **Exemple**: prédire le prix d'une maison à partir nombre de pièces, population du quartier, le climat de la région, etc.
- Au lieu d'un seul w on aura  $W = (w_1, w_2, ..., w_r)$  pour r caractéristiques différentes
- On répète le même processus pour chaque  $w_i \in W$
- Le modèle devient alors :  $\hat{y_i} = b + \sum_{j=1}^r w_j * x_{i,j}$
- Avec  $x_{i,j}$  la  $j^{i \`{e}me}$  caractéristique du  $i^{i \`{e}me}$  individu de l'ensemble X d'entraînement

### Exemple de régression linéaire avec un neurone (Perceptron)



#### Normalisation des données en entrée

- Consiste à rendre chaque caractéristique entre 0 et 1
- C'est important pour que toutes les caractéristiques aient la même contribution
- Par exemple :
  - La surface d'une maison est entre 0 et  $1000 m^2$
  - Le nombre de pièce est entre 0 et 10

Sans normalisation ⇒ une petite variation du nombre de pièces n'a pas un grand effet par rapport aux valeurs énormes de la surface ⇒ le modèle aura des difficultés à apprendre

$$X_{:,i} = \frac{X_{:,i} - \min(X_{:,i})}{\max(X_{:,i}) - \min(X_{:,i})} \ \forall i \in [1, ..., r]$$

r étant le nombre de caractéristiques dans le jeu de données

#### Exercice (1/2)



**Exercice:** Trouver w en fixant b=0 et  $\alpha=0.2$  et initialiser w=1 Il faut qu'on arrive à une valeur proche de w=2 (la solution optimale)

#### Exercice (2/2)

#### Première époque

erreur = 
$$\frac{1}{3}[(2-1+1)^2 + (4-1*2)^2 + (6-1*3)^2] \approx 4.67$$
  
gradient =  $\frac{-2}{3}[1(2-1) + 2(4-2) + 3(6-3)] \approx -9.33$   
 $w = 1 - 0.2(-9.33) \approx 1.87$ 

#### Deuxième époque

$$erreur = \frac{1}{3}[(2 - 1.87 + 1)^2 + (4 - 1.87 * 2)^2 + (6 - 1.87 * 3)^2] \approx 0.08$$

$$gradient = \frac{-2}{3}[1(2 - 1.87) + 2(4 - 3.74) + 3(6 - 5.61)] \approx -1.21$$

$$w = 1.87 - 0.2(-1.21) \approx 2.112$$

On s'approche de w=2 (la solution optimale)

#### Table des matières

01

#### **Préliminaires**

Minimiser la function de coût

02

#### Descente du gradient

Ajuster les poids

03

#### Régression linéaire

Démonstrations mathématiques appliquées à un problème linéaire 04

#### Prédiction du prix des maisons

Exercice pratique

| Prix | CRIM   | ZN | INDUS | CHAS | NOX   | RM    |   |
|------|--------|----|-------|------|-------|-------|---|
| 18.2 | 0.7258 | 0. | 8.14  | 0.   | 0.538 | 5.727 |   |
| 20.3 | 0.3494 | 0. | 9.9   | 0.   | 0.544 | 5.972 |   |
| :    | ÷      | ÷  | ÷     | ÷    | ÷     | i     | ÷ |



- Une maison est représentée par le vecteur  $x_i = (x_{i,1}, x_{i,2} ..., x_{i,13})$
- 13 attributs  $\Rightarrow$  13  $w_i$  et 1 b
- Soit un vecteur  $W = (w_1, w_2, ..., w_{13})$

| Prix | CRIM   | ZN | INDUS | CHAS | NOX   | RM    |   |
|------|--------|----|-------|------|-------|-------|---|
|      | 0.7258 | 0. | 8.14  | 0.   | 0.538 | 5.727 |   |
| 20.3 | 0.3494 | 0. | 9.9   | 0.   | 0.544 | 5.972 |   |
| :    | :      | ÷  | :     | ÷    | ÷     | :     | ÷ |



But : prédire le prix en fonction des deux variables

$$prix = f(X) | X = [X_{:,1}, X_{:,2}]$$

Modèles à apprendre

$$\widehat{y} = W * X + B \Leftrightarrow \widehat{y} = w_1 * X_{:1} + w_2 * X_{:2} + b$$

Cette équation correspond à celle d'un plan dans un espace 3D



$$z = w_1 * x += w_2 * y + b$$

Avec

$$x=X_{:,1}$$
,  $y=X_{:,2}$ ,  $z=\widehat{y}$ 















#### Boston house prices (peut-être prédiction non linéaire ?)

- Non linéaire ⇒une interaction non linéaire entre les caractéristiques
- Par exemple :  $x_1 * x_2$  ou  $x_1^2$

$$\widehat{y} = w_1 * X_{:,1} + w_2 * X_{:,2} + w_3 * X_{:,3} + b$$

Avec

$$X_{:,3} = X_{:,1} * X_{:,2}$$

Les données deviennent ...

| Prix (y) | RM (X:,1) | LSTAT (X:,2) | $RM*LSTAT(X_{:,3})$ |
|----------|-----------|--------------|---------------------|
| 18.2     | 5.727     | 0.18         | 5.727*0.18=1.03     |
| 20.3     | 5.972     | 0.25         | 5.972*0.25=1.493    |
| :        | :         | :            | ÷                   |

#### De la théorie vers la pratique



Télécharger le fichier (<a href="https://github.com/r-wenger/cours\_m1-m2-OTG/blob/main/IA\_geosciences\_M2/CM/2\_DL\_Descente\_gradient.ipynb">https://github.com/r-wenger/cours\_m1-m2-OTG/blob/main/IA\_geosciences\_M2/CM/2\_DL\_Descente\_gradient.ipynb</a>) et l'importer sur Google Colab