Using N-Gram LMs with SCFG TMs

March 20, 2013

Substitution sites / variables / non-terminals

For LM integration, we ignore the source!

For LM integration, we ignore the source!

{ (yesterday 's reading),
 reading from yesterday) }

How can we add the LM score to each string derived by the hypergraph?

LM Integration

- If LM features were purely local ...
 - "Unigram" model
 - Discriminative LM
- ... integration would be a breeze
 - Add an "LM feature" to every edge
- But, LM features are non-local!

Two problems:

Two problems:

Two problems:

Two problems:

- I. What is the content of the variables?
- 2. What will be the **left context** when this string is substituted somewhere?

- I. What is the content of the variables?
- 2. What will be the **left context** when this string is substituted somewhere?

- I. What is the content of the variables?
- 2. What will be the **left context** when this string is substituted somewhere?

- I. What is the content of the variables?
- 2. What will be the **left context** when this string is substituted somewhere?

Naive solution

- Extract the all (k-best?) translations from the translation model
- Score them with an LM
- What's the problem with this?

Outline of DP solution

- Use *n*-order Markov assumption to help us
 - In an *n*-gram LM, words more than *n* words away will not affect the local (conditional) probability of a word in context
 - This is not generally true, just the Markov assumption!
- General approach
 - Restructure the hypergraph so that LM probabilities decompose along edges.
 - Solves both "problems"
 - we will not know the full value of variables, but we will know "enough".
 - defer scoring of left context until the context is established.

- Note the following three facts:
 - If you know n or more consecutive words, the conditional probabilities of the nth, (n+1)th, ... words can be computed.
 - Therefore: add a feature weight to the edge for words.
 - (*n*-1) words of context to the **left** is enough to determine the probability of any word
 - Therefore: split nodes based on the (*n*-1) words on the **right** side of the span dominated by every node
 - (*n*-1) words on the **left** side of a span cannot be scored with certainty because the context is not known
 - Therefore: split nodes based on the (*n*-1) words on the **left** side of the span dominated by every node

- Note the following three facts:
 - If you know n or more consecutive words, the conditional probabilities of the nth, (n+1)th, ... words can be computed.

Split nodes by the (n-1) words on both sides of the convergent edges.

- (*n*-1) words on the left side of a span cannot be scored with certainty because the context is not known
 - Therefore: split nodes based on the (*n*-1) words on the **left** side of the span dominated by every node

- Algorithm ("cube intersection"):
 - For each node v (proceeding in topological order through the nodes)
 - For each edge e with head-node v, compute the (n-1) words on the left and right; call this q_e
 - Do this by substituting the (n-1)x2 word string from the tail node corresponding to the substitution variable
 - If node vq_e does not exist, create it, duplicating all outgoing edges from v so that they also proceed from vq_e
 - Disconnect e from v and attach it to vq_e
 - Delete v

-LM Viterbi:

the stain's the man

Let's add a bi-gram language model!

Let's add a bi-gram language model!

the man. 0.6 Every node "remembers" enough for edges to compute LM costs

Complexity

• What is the run-time of this algorithm?

Complexity

• What is the run-time of this algorithm?

$$O(|V||E||\Sigma|^{2(n-1)})$$

Going to longer n-grams is exponentially expensive!

- Expanding every node like this exhaustively is impractical
 - Polynomial time, but really, really big!
- Cube pruning: minor tweak on the above algorithm
 - Compute the k-best expansions at each node
 - Use an estimate (usually a unigram probability) of the unscored left-edge to rank the nodes

- Why "cube" pruning?
 - Cube-pruning only involves a "cube" when arity-2 rules are used!
 - More appropriately called "square" pruning with arity- I
 - Or "hypercube" pruning with arity > 2!

monotonic grid?

$$(\mathrm{VP}^{\,\,\mathrm{held}\,\,\star\,\,\mathrm{meeting}}_{\,3,6})$$

$$(\mathrm{VP} \ ^{\mathrm{held}}_{3,6} \ ^{\star} \ ^{\mathrm{talk}})$$

$$(\mathrm{VP}^{\;\mathrm{hold}\;\star\;\mathrm{conference}}_{3,6})$$

1.0 3.0 8.0 1.0 2.0 4.0 9.0 2.1 **4**. I 9.1 3.5 4.5 6.5 11.5

Huang and Chiang

non-monotonic grid due to LM combo costs

$$(\mathrm{VP}^{\,\,\mathrm{held}\,\,\star\,\,\mathrm{meeting}}_{\,3,6})$$

$$(\mathrm{VP}^{\,\,\mathrm{held}\,\,\star\,\,\mathrm{talk}}_{\,3,6})$$

$$(VP_{3,6}^{hold \star conference})$$

Huang and Chiang

	1.0	3.0	8.0
1.0	2.0 + 0.5	4.0 + 5.0	9.0 + 0.5
1.1	2.1 + 0.3	4.1 + 5.4	9.1 + 0.3
3.5	4.5 + 0.6	6.5 +10.5	11.5 + 0.6

bigram (meeting, with)

or ith palone

with * Shav

non-monotonic grid due to LM combo costs

$$(VP_{3,6}^{\text{held}} \star \underbrace{\text{meeting}})$$

$$(VP_{3,6}^{\text{held} \star \text{talk}})$$

$$(\mathrm{VP} \ ^{\mathrm{hold}}_{3,6} \ ^{\star} \ ^{\mathrm{conference}})$$

 1.0
 3.0
 8.0

 1.0
 2.0 + 0.5
 4.0 + 5.0
 9.0 + 0.5

 1.1
 2.1 + 0.3
 4.1 + 5.4
 9.1 + 0.3

 3.5
 4.5 + 0.6
 6.5 + 10.5
 11.5 + 0.6

Huang and Chiang

non-monotonic grid due to LM combo costs

$$(\mathrm{VP}^{\,\mathrm{held}\,\star\,\mathrm{meeting}}_{\,3,6})$$

$$(\mathrm{VP}^{\,\,\mathrm{held}\,\,\star\,\,\mathrm{talk}}_{\,3,6})$$

$$(VP_{3,6}^{hold \star conference})$$

Huang and Chiang

	1.0	3.0	8.0
1.0	2.5	9.0	9.5
1.1	2.4	9.5	9.4
3.5	5.1	17.0	12.1

k-best parsing

(Huang and Chiang, 2005)

- a priority queue of candidates
- extract the best candidate

(\mathbf{MD})	held	*	meeting
(VP)	3,6		meeting)

$$({
m VP}_{3,6}^{
m held}\star{
m talk})$$

$$(VP_{3,6}^{hold \star conference})$$

	1.0	3.0	8.0
1.0	2.5	9.0	9.5
1.1	2.4	9.5	9.4
3.5	5.1	17.0	12.1

Huang and Chiang

k-best parsing

(Huang and Chiang, 2005)

- a priority queue of candidates
- extract the best candidate
- push the two successors

(MD	held	*	meeting
(VP)	3,6		meeting)

$$(VP_{3,6}^{\text{held} \star \text{talk}})$$

$$(VP_{3,6}^{hold \star conference})$$

	1.0	3.0	8.0
1.0	2.5	9.0	9.5
1.1	2.4	9.5	9.4
3.5	5.1	17.0	12.1

Huang and Chiang

k-best parsing

(Huang and Chiang, 2005)

- a priority queue of candidates
- extract the best candidate
- push the two successors

(MD	held	*	meeting
(VP)	3,6		meeting)

$$(VP_{3,6}^{\text{held} \star \text{talk}})$$

$$(VP_{3,6}^{hold \star conference})$$

	1.0	3.0	8.0
1.0	2.5	9.0	9.5
1.1	2.4	9.5	9.4
3.5	5. I	17.0	12.1

Huang and Chiang

- Widely used for phrase-based and syntax-based
 MT
- May be applied in conjunction with a bottom-up decoder, or as a second "rescoring" pass
 - Nodes may also be grouped together (for example, all nodes corresponding to a certain source span)
- Requirement for topological ordering means translation hypergraph may not have cycles

LM Integration

Method	Settings	Time	BLEU	
rescore	$k = 10^4$	16	33.31	
rescore	$k = 10^5$	139	33.33	
intersect*		1455	37.09	
cube prune	$\varepsilon = 0$	23	36.14	
cube prune	$\varepsilon = 0.1$	35	36.77	
cube prune	$\varepsilon = 0.2$	111	36.91	