Раздел: «ОТАУ бакалавры. Часть 2.»

Лекция 3. Модели особых линейных систем. Системы с запаздыванием.

Уравнения непрерывных систем с запаздыванием. Устойчивости систем с запаздыванием. Исследование устойчивости систем с запаздыванием по линейному приближению. Классификация линейных управляемых систем с запаздыванием. Критерии устойчивости линейных систем с запаздыванием. Аналитический критерий Понтрягина. Частотные критерии устойчивости для линейных систем с «чистым» запаздыванием. Критерии управляемости и наблюдаемости. Типовые законы управления объектами с запаздыванием. Численные методы интегрирования уравнений с запаздывающим аргументом.

Уравнения непрерывных систем с запаздыванием.

Непрерывные системы с запаздыванием обычно описывают с помощью дифференциального уравнения n-го порядка с l отклонениями аргумента. Отклонения, в общем случае, носят переменный характер. Такое уравнение можно записать в следующем виде:

$$x^{(m0)} = f[t,x(t),...,x^{(m0-1)}(t),x(t-\tau_1(t)),....,x^{(m1)}(t-\tau_1(t)),....,x^{(ml)}(t-\tau_l(t))],$$
 где
$$0 < \tau_1(t) < ... < \tau_l(t), \ \max_{1 \leq i \leq l} [m_i] = n \ .$$
 Здесь, под обозначением $x^{(k)}(t-\tau_i(t))$ понимается k - я

производная от функции $\ x(z)$, взятая в точке $\ z=t- au_i(t)$. Пусть задана начальная точка $\ t_0$. Каждое отклонение $\ au_i>0$ определяет начальное множество $\ E_{t0}^i$, состоящее из точки $\ t_0$ и тех значений $\ t- au_i(t)$, для которых справедливы соотношения: $\ [t- au_i(t)] < t_0, \ t \ge t_0$. Введем

множество $E_{t0} = \sum_{i=1}^l E_{t0}^i$. Зададим на множестве E_{t0} непрерывные функции $\varphi_k(t), k=0,1,2,...n-1$.

Обычно, наиболее естественно, рассматривать случай, когда: $\varphi_k(t) \equiv \varphi_0^{(k)}(t), k = 0,1,2,...n-1$. Основная начальная задача для исходного дифференциального уравнения заключается в определении (n-1) раз непрерывного дифференцируемого решения x(t) при $t \geq t_0$ и условиях, задаваемых следующими соотношениями: $x^{(k)}(t_0+0) = x_0^{(k)} = \varphi_k(t_0), k = 0,1,...,(n-1)$ и $x^{(k)}(t-\tau_i(t)) \equiv \varphi_k(t-\tau_i(t))$, если $[t-\tau_i(t)] < t_0, i = 1,2,...,l$.

Уравнение n-го порядка с отклоняющимся аргументом можно заменить, так же, как и для уравнений без отклонений аргумента, соответствующей системой уравнений первого порядка. Однако, такая замена задач, не будет полностью эквивалентна при введении ограничения (наиболее естественного для различных приложений), что начальные функции $\varphi_k(t)$ должны быть производными одной и той же функции $\varphi_k(t) \equiv \varphi_0^{(k)}(t), k = 0,1,2,...n-1$. В этом случае приходится дополнительно решать задачу назначения начальных условий.

Свойства решений дифференциальных уравнений с запаздывающим аргументом. Метод интегрирования по шагам /Эльсгольц, Норкин с17/.

Рассмотрим основную начальную задачу для простейшего дифференциального уравнения первого порядка с одним запаздывающим аргументом: $\dot{x}(t)=f(t,x(t),x(t-\tau))$, где $\tau>0,x(t)=\varphi_0(t)$, при $t_0-\tau\leq t\leq t_0$. Наиболее естественным методом решения этой задачи является, так называемый, метод шагов, заключающийся в том, что решение x(t) рассматриваемой задачи определяется из дифференциальных уравнений без запаздывания: $\dot{x}(t)=f(t,x(t),\varphi_0(t-\tau))$ при $t_0\leq t\leq t_0+\tau$; $x(t_0)=\varphi_0(t_0)$. Если предположить, что решение $x(t)=\varphi_1(t)$ этой начальной задачи существует на всем отрезке t_0,t_0+t_1 , аналогично получим: $t_0,t_1,t_2,t_2,t_3,t_4,t_5$ при t_0,t_1,t_2,t_4,t_5 при t_0,t_1,t_2,t_5 на t_0,t_1,t_2,t_5 при t_0,t_1,t_2,t_3 при t_0,t_2,t_3 при t_0,t_3 при t_0,t_4,t_5 при t_0,t_5 при $t_$

 $t_0 + (i-1) au \le t \le t_0 + i au$. Этот метод дает возможность определить решение x(t) на некотором конечном отрезке и одновременно доказывает существование решения в окрестности точки $(t_0, \varphi_0(t_0))$, если функции φ, f непрерывны в рассматриваемой области переменных.

Единственность решения будет достигаться, если функция f удовлетворяет одному из условий, обеспечивающих единственность решения уравнения: $\dot{x}(t) = f(t,x(t),\varphi_0(t-\tau))$ без отклонений аргумента, например условию Липшица по второму аргументу.

 Π ример. Рассмотрим уравнение $\dot{x}(t) = -x(t-1)$, где $\varphi(t) = 1$ при $-1 \le t \le 0$ (au = 1). Применяя описанный

выше метод шагов, получим: x(t) = 1 - t при $0 \le t \le 1$; $x(t) = + \frac{(t-1)^2}{2!}$ при $1 \le t \le 2$; $x(t) = \frac{1}{2!} - \frac{(t-2)^3}{3!}$ при $2 \le t \le 3$;

Заметим, что решение имеет разрывные производные, несмотря на то, что правая часть дифференциального уравнения и начальная функция принадлежат C^{∞} . Это происходит из – за того, что начальная функция не удовлетворяет дифференциальному уравнению. Однако с каждым шагом τ эти разрывы все более сглаживаются.

Пример. Рассмотрим уравнение $\dot{x}(t) = -1.4 \cdot x(t-1)$, где начальные задачи задаются следующими функциями: а) $\varphi(t) = 0.8$ при $-1 \le t \le 0$; б) $\varphi(t) = 0.8 + t$ при $-1 \le t \le 0$; с) $\varphi(t) = 0.8 + 2t$ при $-1 \le t \le 0$. Из графиков , приведенных на рисунке, видно, что решения уравнения с запаздывающим аргументом зависят не только от начального условия, но и от всей истории процесса от $t_0 - \tau$ до t_0 .

Применение метода шагов становится затруднительным, если запаздывание au мало, по сравнению с отрезком, на котором требуется определить решение. Рассмотрим теперь более общее уравнение: $\dot{x}(t) = f(t, x(t- au_1),, x(t- au_l))$.

Теорема (существования и единственности решения начальной задачи) /Эльсгольц, Норкин c31/. Если в уравнении $\dot{x}(t) = f(t,x(t-\tau_1),....,x(t-\tau_l))$ все $\tau_i > 0, i = 1,2,...l$, а функция f непрерывна в окрестности точки $(t_0,\varphi(t_0),\varphi(t_0-\tau_1),...,\varphi(t_0-\tau_l))$ и удовлетворяет условию Липшица по всем аргументам, начиная со второго, а начальная функция φ непрерывна на начальном множестве E_{t0} , то существует единственное решение x(t) основной начальной задачи для рассматриваемого уравнения при $t \in [t_0,t_0+h]$, где h достаточно мало .

Устойчивость систем с запаздыванием.

Введем основные определения теории устойчивости применительно к дифференциальному уравнению с запаздывающим аргументом следующего вида: $\dot{x}(t) = f(t, x(t-\tau_1),, x(t-\tau_l))$. Определение устойчивости /Эльсгольц, Норкин с112/. Решение $x_{\varphi}(t)$ уравнения $\dot{x}(t) = f(t, x(t-\tau_1),, x(t-\tau_l))$ называется устойчивым, если для $\forall \varepsilon > 0$ существует такое

 $\delta(arepsilon)>0$, что из неравенства $|arphi(t)-\psi(t)|<\delta(arepsilon)$ на начальном множестве следует $|x_{arphi}(t)-x_{\psi}(t)|<arepsilon$ при $t\geq t_0$, где $|\psi(t)|$ - любая непрерывная начальная функция.

Определение асимптотической устойчивости в целом. Решение $x_{\varphi}(t)$ уравнения $\dot{x}(t)=f(t,x(t- au_1),....,x(t- au_l))$ называется <u>асимптотически устойчивым в целом,</u> если оно устойчиво и $\lim_{t\to\infty}|x_{\varphi}(t)-x_{\psi}(t)|=0$ при любых непрерывных начальных функциях $\psi(t)$.

Исследование устойчивости систем с запаздыванием по линейному приближению

Теорема (о свойстве линейной системы первого приближения /Элесгольц с149/). Нулевое

решение системы:
$$\dot{x}_i(t) = \sum_{k=1}^n \sum_{j=1}^l a_{ikj} x_k(t-\tau_j) + R_i(t,x_1(t),...,x_n(t),x_1(t-\tau_1),...,x_n(t-\tau_l))$$

асимптотически устойчиво, если для системы первого приближения $\dot{x}_i(t) = \sum_{k=1}^n \sum_{j=1}^l a_{ikj} x_k (t- au_j)$

, i=1,2,...,n , все корни характеристического уравнения: $|\sum_{j=1}^l A_j \exp[-\lambda au_j] - \lambda E| = 0$, где

 $A_j = \{a_{ikj}\}$, $\ j$ - фиксировано, имеют отрицательные действительные части; а

 $\mid R_i(t,u_1(t),....,u_{n(l+1)}(t)\mid \leq lpha \sum_{i=1}^{n(l+1)} \mid u_i\mid$, аде lpha - достаточно малая постоянная, все $\mid u_i\mid$ достаточно малы, то есть $\mid u_i\mid < H$ при $t\geq t_0$.

Линейные системы с запаздыванием. Характеристический квазиполином.

Рассмотрим линейное однородное уравнение вида: $\sum_{p=0}^{n}\sum_{j=0}^{l}a_{pj}x^{(p)}(t- au_{j})=0$. Найдем частные

решения этого уравнения в виде $x(t)=e^{kt}$, где k – некоторая постоянная. Тогда для определения значения k получим следующее характеристическое уравнение: $\sum_{p=0}^n \sum_{j=0}^l a_{pj} k^p \exp[-k \tau_j] = 0$. Левая

часть уравнения $\sum_{p=0}^{n} \sum_{j=0}^{l} a_{pj} k^p \exp[-k\tau_j] = 0$ называется характеристическим квазиполиномом.

Очевидно, что уравнение $\Phi(k)=0$ имеет бесконечное множество корней и каждому корню k_i соответствует решение e^{k_it} . Кратным корням k_i уравнения, имеющим кратность α_i , соответствуют не только решение e^{k_it} , но и решения te^{k_it} ,..., $t^{\alpha_i-1}e^{k_it}$ и, следовательно, если ряд $\sum_{i=1}^{\infty} P_i(t)e^{k_it}$, где $P_i(t)$ - многочлены с произвольными постоянными коэффициентами степени α_i-1 , сходится и допускает n-кратное дифференцирование, то его сумма является решением линейного однородного дифференциального уравнения $\sum_{n=0}^n \sum_{i=0}^l a_{pj} x^{(p)} (t-\tau_j) = 0$.

Классификация линейных управляемых систем с запаздыванием.

Как уже отмечалось выше, существенной особенностью целого ряда систем (объектов) является наличие каналов задержки сигналов, характеризуемых временем запаздывания $0 \le \tau_0 < \tau_1 < ... < \tau_l$, $0 \le \theta_0 < \theta_1 < ... < \theta_r$, соответственно для фазовых координат и управляющих воздействий. К таким системам относятся многие системы управления технологическими процессами, системы, в контурах управления которых, задействован оператор-человек.

Сформулируем свойства, которыми должна обладать модель системы с запаздыванием /Янушевский с15/.

- 1. Выходной сигнал системы, в данный момент времени, должен однозначно определяться входным сигналом и состоянием в данный момент времени.
- 2. Состояние в последующий момент времени t однозначно определяется входным сигналом $u(t,t_0)$ на интервале времени $[t_0,t)$ (либо сигналом $u(t,t_0-\theta_r)$ на интервале $[t_0-\theta_r,t)$ и состоянием $x(t_0,t_0-\tau_I)$ на интервале $[t_0-\tau_I,t_0)$).

Приведенные два условия можно записать в виде двух уравнений, называемых уравнениями состояния: $y(t) = g_1(x(t), u(t)); x(t) = g_2(x(t_0, t_0 - \tau_l), u(t, t_0 - \theta_r))$, где g_1, g_2 - однозначные функции. В данном курсе будут рассматриваться только стационарные линейные динамические модели систем управления с запаздыванием, уравнения состояния которых, имеют вид:

$$\dot{x}(t) = \sum_{i=0}^{l} A_i x(t-\tau_i) + \sum_{i=0}^{r} B_i u(t-\theta_i); \ y(t) = C x(t) + D u(t) \ , \ \text{где} \ \ x(t) = \varphi^x(t) \ , \ t_0 - \tau_l \leq t \leq t_0;$$

$$u(t) = \varphi^u(t) \ , \ t_0 - \theta_r \leq t \leq t_0 \ . \ \ \text{Здесь} \ \varphi^x(t) \quad \text{и} \ \ \varphi^u(t) \ - \text{начальные функции. Будем полагать, что}$$

$$y \in R^p \ ; u \in R^m \ ; x \in R^n \ , \ \text{а} \ \ A_i \ , B_i \ , C \ , D \ - \text{постоянные матрицы соответствующих размерностей.}$$
 Блок-схема, соответствующая этим уравнениям приведена на рисунке.

Приведенные уравнения состояния допускают невырожденное линейное преобразование вида: z(t) = Tx(t), где $\det(T) \neq 0$, с помощью которого можно заменять один вектор состояния другим.

Важный класс систем с запаздыванием образуют объекты, у которых запаздывание содержится лишь в управляющих сигналах (то есть матрицы $A_i=0; i\neq 0$). Эти объекты называются системами с запаздыванием в управлении. К данному классу принадлежит и широко распространенный подкласс систем с «чистым» запаздыванием ($A_i=0; i\neq 0; B_0=0$), которому относятся системы управления биореакторами, системы автоматического контроля и подачи жидкостей, различные модели человеческого поведения и многие другие.

Отдельный класс образуют объекты, содержащие запаздывание лишь в координатах ($B_i=0; i\neq 0$). Это, так называемые, системы с запаздыванием в координатах. Такие процессы характерны для реактивных двигателй, биотехнических и робототехнических систем.

Примером систем с запаздыванием общего типа могут быть системы управления биотехнологическими реакторами.

Решение дифференциально-разностных уравнений вида: $\dot{x}(t) = \sum_{i=0}^{l} A_i x(t-\tau_i) + \sum_{i=0}^{r} B_i u(t-\theta_i)$

y(t) = Cx(t) + Du(t), имеет вид /Беллман с198/, /Янушевский с27/ :

$$x(t) = \psi(t-t_0)x(t_0) + \sum_{i=1}^l \int_{t_0}^{t_0+\tau_i} \psi(t-\xi)A_ix(\xi-\tau_i)d\xi + \sum_{j=1}^r \int_{t_0}^t \psi(t-\xi)B_ju(\xi-\theta_j)d\xi \text{ , где } \psi(t) - \xi = 0$$

матричная функция (фундаментальная переходная матрица размерности $(n \times n)$),

удовлетворяющая матричному дифференциальному уравнению: $\dot{\psi}(t) = \sum_{i=0}^l A_i \psi(t-\tau_i)$,

$$\psi(0) = E; \psi(t) = 0; t < 0.$$

Критерии устойчивости линейных систем с запаздыванием.

Рассмотрим теперь линейное стационарное уравнение вида: $\sum_{k=1}^n \sum_{j=0}^l a_{kj} x^{(k)} (t-\tau_j) = f(t)$.

Очевидно, что все решения такого уравнения, либо одновременно устойчивы, либо неустойчивы. Любому ограниченному решению $x_f(t)$ неоднородного уравнения может быть заменой переменных $x(t)-x_f(t)$ сопоставлено тривиальное решение x(t) уравнения

$$\sum_{k=1}^{n}\sum_{j=0}^{l}a_{kj}x^{(k)}(t-\tau_{j})=0$$
 . Поэтому для исследования устойчивости достаточно исследовать

тривиальное решение однородного уравнения. Как уже отмечалось, если уравнение

$$\sum_{k=1}^{n}\sum_{j=0}^{l}a_{kj}x^{(k)}(t- au_{j})=0$$
 является уравнением с запаздывающим аргументом, то любое решение

x(t) при $(t_0 + \tau_l) \le t \le T$ может разложено в равномерно сходящийся ряд из основных решений:

$$x(t) = \sum_{i=1}^{\infty} P_i(t) e^{s_i t}$$
 . Здесь $P_i(t)$ - многочлены с произвольными постоянными коэффициентами

степени α_i –1, где α_i кратность корня s_i характеристического квазиполинома $\Phi(s) = \sum_{k=1}^n \sum_{j=0}^l a_{kj} s^k e^{-s \tau_j}$.

Если все корни характеристического квазиполинома имеют отрицательные действительные части, то можно показать, что решение x(t) будет асимптотически устойчивым. Если, хотя бы один корень s_i характеристического квазиполинома будет иметь положительную действительную часть, то решение x(t) является, очевидно, неустойчивым.

Аналитический критерий Понтрягина.

Критерий Понтрягина применим к характеристическому уравнению относительно квазиполинома:

$$\Phi(s)=\sum_{k=1}^n\sum_{j=0}^la_{kj}s^ke^{-s\, au_j}=0$$
 . Умножим уравнение на величину $e^{ au_ls}$, где $au_l=\max_j\{ au_j\}$.. Тогда

можно записать эквивалентное уравнение в следующем виде:

$$F(s,e^s) = \sum_{k=1}^n \sum_{i=0}^l a_{kj} s^k e^{s\lambda_j} = 0; \lambda_j = \tau_l - \tau_j$$
 /Гурецкий с128/.

Определение. Старшим членом квазиполинома $F(s,e^s)$ называется выражение $a_{kj}s^ke^{s\lambda_j}$, в котором показатели степени k и λ_j (k=0,1,2,...n; j=1,2,...l) имеют наибольшие значения.

Пример: $F(s,e^s) = 3s^2e^{4s} + 2se^s + 1$ имеет старший член $3s^2e^{4s}$. $F(s,e^s) = s^4e^{3s} + s^5e^{2s} + 1$ не имеет старшего члена.

Теорема Понтрягина (о необходимых условиях устойчивости). Квазиполином $F(s,e^s)$ без старшего члена имеет бесконечное множество корней с произвольно большой положительной действительной частью.

Определим значение квазиполинома при значении $s=i\omega$: $F(i\omega,e^{i\omega})=P(\omega)+iQ(\omega)$ и вычислим значение аргумента $\varphi(\omega)=\arg\{F(i\omega,e^{i\omega})\}$. Таким образом, если все нули полинома лежат слева от мнимой оси, то угол, очерченный вектором $F(i\omega,e^{i\omega})$, будет положительным, и должны выполняться неравенства: $\frac{d\varphi}{d\omega}>0$ или $P(\omega)\dot{Q}(\omega)-\dot{P}(\omega)Q(\omega)>0$.

Теорема Понтрягина (о необходимых и достаточных условиях устойчивости).

Необходимым и достаточным условием того, чтобы все нули квазиполинома $F(s,e^s)$ лежали слева от мнимой оси, является выполнение одного из трех следующих условий.

- 1. Неравенство $P(\omega)\dot{Q}(\omega) \dot{P}(\omega)Q(\omega) > 0$ должно выполняться, по крайней мере, для одного значения ω , а нули многочленов $P(\omega), Q(\omega)$ должны быть действительными и кратными.
- 2. Все нули многочлена $P(\omega)$ должны быть действительными, и для каждого из них должно выполняться неравенство $P(\omega)\dot{Q}(\omega) \dot{P}(\omega)Q(\omega) > 0$.
- 3. Все нули многочлена $Q(\omega)$ должны быть действительными, и для каждого из них должно выполняться неравенство $P(\omega)\dot{Q}(\omega) \dot{P}(\omega)Q(\omega) > 0$.

На практике обычно используют третье условие.

Частотные критерии устойчивости для линейных систем с «чистым» запаздыванием.

Рассмотрим звено «чистого» запаздывания, в котором зависимость между входным сигналом u(t) и выходом x(t) имеет вид: $x(t) = k \cdot u(t-\tau)$, где $\tau > 0$ - время запаздывания. Передаточная функция запаздывающего звена имеет вид /Ким т1 с51/ : $W(s) = k e^{-ts}$. Его частотные и временные функции имеют следующий вид: $W(i\omega) = k e^{-i\tau\omega} = k(\cos\tau\omega - i\sin\tau\omega)$, $A(\omega) = k$, $\varphi(\omega) = -\tau\omega$, $L(\omega) = 20\lg k$, $h(t) = k \cdot 1[t-\tau]$, $w(t) = k \cdot \delta[t-\tau]$.

Передаточная функция разомкнутой системы со звеном «чистого» запаздывания равна: $W_p(s) = W(s)e^{-\tau s}$, где $W(s) = \frac{B(s)}{A(s)}$ - передаточная функция разомкнутой системы без учета

запаздывания. Обычно, если в одноконтурной системе имеется несколько последовательно соединенных запаздывающих звеньев, то они могут быть заменены одним запаздывающим звеном. Это звено имеет эквивалентную постоянную времени запаздывания, равную сумме всех постоянных времен запаздывания /Воронов с167/. Если запаздывающее звено находится в прямой цепи разомкнутого контура, то передаточная функция замкнутой системы имеет вид:

$$W_{xu}(s) = \frac{W_p(s)}{1 + W_p(s)} = \frac{B(s)e^{-rs}}{A(s) + B(s)e^{-rs}}$$
 . Соответственно, если запаздывающее звено находится в цепи

обратной связи, то получим следующую передаточную функцию:
$$W_{xu}(s) = \frac{W(s)}{1 + W_p(s)} = \frac{B(s)}{A(s) + B(s)e^{-ts}}$$
.

Очевидно, что независимо от места включения звена с «чистым» запаздыванием характеристический многочлен системы имеет вид: $D(s,\tau)=A(s)+B(s)e^{-rs}$. То есть, характеристический многочлен является квазиполиномом относительно переменной s . К сожалению, решение задачи определения корней квазиполинома, как уже отмечалось выше, представляет собой достаточно сложную вычислительную задачу. Поэтому для анализа линейных систем с запаздыванием в инженерной практике используют методы, связанные с анализом критериев устойчивости. Следует иметь в виду, что алгебраические критерии устойчивости Раусса и Гурвица, в их обычной форме, для исследования систем с запаздыванием являются непригодными. Поэтому для исследования систем с запаздыванием обычно применяют критерии, основанные на принципе аргумента — критерии устойчивости Михайлова и Найквиста, аналитический критерий Понтрягина, а также метод D-разбиения. Рассмотрим замкнутую систему управления, передаточная функция разомкнутого контура которой имеет вид: $W_p(s) = W(s)e^{-rs}$,

$$W(s)=rac{B(s)}{A(s)}$$
 , где $B(s),A(s)$ - полиномы степени m,n соответственно ($m\leq n$).

Критерий Найквиста для систем с «чистым» запаздыванием /Ким т1 с103/.

Для того, чтобы замкнутая система, передаточная функция которой в разомкнутом состоянии имеет вид $W_p(s) = W(s)e^{-\tau s}$, была устойчива, необходимо и достаточно, чтобы амплитудно-фазовая частотная характеристика разомкнутой системы охватывала точку (-1,i0) в положительном направлении L/2 раз, где L – число правых нулей (корней) характеристического многочлена A(s) разомкнутой системы.

Рассмотрим влияние запаздывания на поведение АФЧХ системы. С ростом значения τ кривая АФЧХ будет приближаться к точке (-1,i0), и при некотором значении τ_k она может пересечь эту точку. Такое значение τ_k называется критическим. Обозначим через $\varphi_p(\omega) = \arg\{W_p(i\omega)\}$, $\varphi(\omega) = \arg\{W(i\omega)\}$. Очевидно, что справедливо следующее соотношение: $\varphi_p(\omega) = \varphi(\omega) - \tau\omega$. То есть появление запаздывания не меняет модуль АФЧХ, а только вносит дополнительный отрицательный фазовый сдвиг $-\tau\omega$, что приводит к закручиванию кривой АФЧХ.

АФЧХ системы с чистым запаздыванием

Критическое значение запаздывания находится из уравнений: $|W(i\omega)|=1$, $\varphi(\omega)-\tau\omega=-\pi$. Решив эти уравнения, можно определить значение критической частоты ω_k и критическое значения запаздывания τ_k .

Критерий Михайлова для систем с «чистым» запаздыванием.

Порядок применения критерия Михайлова: 1) Записывается характеристическое выражение замкнутой системы: $D(s,\tau) = A(s) + B(s)e^{-\tau s}$. 2) Подставляется $s = i\omega; D(i\omega,\tau) = U(\omega) + V(\omega)$.

3) Записывается уравнение годографа Михайлова $D(i\omega,\tau);\omega=[0,\infty)$ и строится кривая на комплексной плоскости.

Для устойчивой замкнутой системы необходимо и достаточно, чтобы годограф Михайлова, начинаясь при частоте $\omega = 0$ на положительной вещественной полуоси, обходил последовательно п квадрантов в положительном направлении (против часовой стрелки) при возрастании частоты ω от 0 до ∞ , где n - степень характеристического полинома.

Критерии управляемости и наблюдаемости для линейных систем с запаздыванием.

Определение. Линейная система с запаздыванием, описываемая уравнениями:

$$\dot{x}(t) = \sum_{i=0}^{l} A_i x(t-\tau_i) + \sum_{i=0}^{r} B_i u(t-\theta_i) \; ; \; y(t) = C x(t) + D u(t) \; , \; \text{ade} \quad x(t) = \varphi^x(t) \, , \; t_0 - \tau_l \leq t \leq t_0 \; ; \; x(t) = t \leq t_0 \; ; \; x($$

 $u(t)=arphi^u(t)$, $t_0- heta_r \leq t \leq t_0$, $arphi^x(t)$ и $arphi^u(t)$ - начальные функции, $y \in R^p$; $u \in R^m$; $x \in R^n$, а A_i, B_i, C, D - постоянные матрицы соответствующих размерностей, <u>относительно</u>

<u>управляема,</u> если для любых начальных функций $\varphi^x(t)$, $\varphi^u(t)$, и конечного времени T найдется такой вектор u(t), $0 \le t \le T$, при котором x(T) = 0.

Теорема. Линейная система с запаздыванием, описываемая системой уравнений:

$$\dot{x}(t) = \sum_{i=0}^{l} A_i x(t-\tau_i) + \sum_{i=0}^{r} B_i u(t-\theta_i) \; ; \; y(t) = Cx(t) + Du(t) \; , \; \text{ade} \; \; x(t) = \varphi^x(t) \; , \; t_0 - \tau_l \leq t \leq t_0 \; ; \; x(t) = t_0 \; , \; x(t)$$

 $u(t)=arphi^u(t)$, $t_0- heta_r\leq t\leq t_0$, $arphi^x(t)$ и $arphi^u(t)$ - начальные функции, $y\in R^p$; $u\in R^m$; $x\in R^n$, а A_i,B_i,C,D - постоянные матрицы соответствующих размерностей, <u>относительно</u> управляема, в том и только в том случае, если:

$$rank{F} = rank{B_0,..., B_r, A_0 \cdot B_0,..., A_l B_j,..., A_l B_r,..., A_l^{n-k} B_j,..., A_l^{n-1} B_r} = n$$

Определение. Линейная система с запаздыванием, описываемая уравнениями

$$\dot{x}(t) = \sum_{i=0}^{l} A_i x(t-\tau_i) + \sum_{i=0}^{r} B_i u(t-\theta_i) \; ; \; y(t) = Cx(t) + Du(t) \; , \; \text{ade} \; \; x(t) = \varphi^x(t) \; , \; t_0 - \tau_l \leq t \leq t_0 \; ;$$

 $u(t)=\varphi^u(t)$, $t_0-\theta_r\leq t\leq t_0$, $\varphi^x(t)$ и $\varphi^u(t)$ - начальные функции, $y\in R^p$; $u\in R^m$; $x\in R^n$, \underline{o} тиносительно наблюдаема в том и только в том случае, если при любых значениях x(0) и конечном времени T знание матриц A_i , C и реализации выхода y(t); $0\leq t\leq T$ при $u(t)\equiv 0$, $\varphi^x(t)=0$; $-\tau_1\leq t<0$ достаточно для однозначного определения вектора x(0).

Теорема. Линейная система с запаздыванием, описываемая уравнениями

$$\dot{x}(t) = \sum_{i=0}^{l} A_i x(t-\tau_i) + \sum_{i=0}^{r} B_i u(t-\theta_i) \, ; \ y(t) = C x(t) + D u(t) \ , \ \text{ade} \ \ x(t) = \varphi^x(t) \, , \ t_0 - \tau_l \leq t \leq t_0 \, ;$$

$$u(t) = \varphi^u(t) \, , \ t_0 - \theta_r \leq t \leq t_0 \, , \quad \varphi^x(t) \quad u \quad \varphi^u(t) \ - \text{начальные функции}, \quad y \in R^p \, ; u \in R^m \, ; x \in R^n \, ,$$

относительно наблюдаема в том и только в том случае, если:

$$rank\{H\} = rank\{C^{T}, A_{0}^{T}C^{T}, ..., A_{l}^{T}C^{T}, ..., (A_{l}^{T})^{j}C^{T}, ..., (A_{l}^{T})^{n-1}C^{T}\} = n$$

Типовые законы управления для систем с запаздыванием.

Выбор типа регулятора и определение его настроек зависит от следующих факторов:

- типа объекта, то есть статических и динамических характеристик, таких как время запаздывания au; значение постоянной (либо постоянные) времени T; порядок модели объекта управления: требований статичности (самовыравнивания) или астатичности объекта.
- допустимой ошибки в установившемся состоянии;
- допустимого времени регулирования;
- допустимого динамического отклонения.

Рассмотрим проблему выбора регулятора с одной доминирующей постоянной времени T_0 и одним

звеном «чистого» запаздывания: $W(s) = \frac{k_0}{T_0 s + 1} e^{-rs}$. Выбор типа регулятора для такого объекта

можно осуществлять в соответствии с рекомендациями следующей номограммы /Гурецкий с188/.

Здесь на диаграмме приняты следующие обозначения: m – отношение значения установившейся ошибки от возмущения к соответствующему значению установившейся ошибки от управляющего воздействия; значение $T=T_0/\tau$ характеризует относительную постоянную объекта; значение $T_{\gamma}=t_{\gamma}/\tau$ относительное время затухания переходного процесса при подаче на вход единичной функции Хевисайда. Как видно, применение И-регулятора ограничивается объектами, допусакющими большое время регулирования и большие установившиеся ошибки из-за наличия зоны нечувствительности, обусловленной запаздыванием.

Пропорциональные регуляторы могут использоваться в случаях, когда допустимы, либо большое время регулирования, либо большая величина установившейся ошибки. Малое время регулирования порядка 5τ при установившемся значении ошибки может быть получено только в случае объекта с малым временем запаздывания $\tau < 20T_0$. Время регулирования порядка $(4-6)\tau$ можно получить при использовании регуляторов типа ПИД. Дальнейшее уменьшение времени регулирования (не менее теоретического возможного значения, равного 2τ) возможно только при использовании специальных регуляторов Смита или Ресвика.

Рассмотрим теперь типовые схемы регуляторов Смита и Ресвика. Идея этих регуляторов основана на следующем. Если ни одна вспомогательная величина, не содержащая запаздывания, недоступна для измерений, то ее следует создать искусственно. Для этого используется математическая модель объекта, а именно той ее части, которая не содержит запаздывания. Конечно, при этом, также необходимо знать точно величину запаздывания.

Проанализируем работу регулятора Смита. На основе блок-схемы можно записать следующие уравнения: $w-y=\varepsilon$; $\varepsilon 1=\varepsilon-y_R(1-e^{-s\tau})$; $u=W_R\varepsilon 1$; $y=W_0e^{-s\tau}(u+z)$; $y_R=W_0u$. Исключая промежуточные переменные получим зависимость между величинами y,w,z:

$$y(s) = \frac{W_R(s)W_0(s)e^{-s\tau}}{1 + W_R(s)W_0(s)}w(s) + \frac{W_0(s)e^{-s\tau}(1 + W_R(s)W_0(s) - W_R(s)W_0(s)e^{-s\tau})}{1 + W_R(s)W_0(s)}z(s)$$

В полосе частот, где выполняется неравенство $|W_R(i\omega)W_0(i\omega)|>>1$, можно приближенно записать следующее соотношение: $y(s)\approx e^{-s\,\tau}w(s)+W_0(s)(e^{-s\,\tau}-e^{-2s\,\tau})z(s)$.

Таким образом, переходные процессы, вызванные скачкообразным изменением управляющего сигнала, заканчиваются за время, равное времени запаздывания τ , а переходные процессы, вызванные скачкообразным изменением возмущения, заканчиваются для объекта с передаточной функцией $W_0(s)=k_0$ в течение 2τ .

На аналогичном принципе строится регулятор, предложенный Ресвиком. Этот регулятор труден в реализации, так как в нем применяется оператор $W_0^{-1}(s)$. Для выхода системы можно записать

следующее соотношение:
$$y(s) = \frac{e^{-s\tau}}{1 + e^{-s\tau} - \beta e^{-s\tau}} w(s) + \frac{W_0(s)e^{-s\tau}(1 - \beta e^{-s\tau})}{1 + e^{-s\tau} - \beta e^{-s\tau}} z(s)$$

Здесь значение $\beta < 1$. В случае, когда $\beta = 1$, система будет находиться на границе устойчивости, и для уравнения выхода будет справедливо равенство : $y(s) \approx e^{-s\tau} w(s) + W_0(s)(e^{-s\tau} - e^{-2s\tau})z(s)$.

Оба регулятора имеют существенный недостаток с точки зрения практической реализации элемента запаздывания.

Численные методы интегрирования уравнений с запаздывающим аргументом.

Метод Эйлера. Пусть задана система нелинейных уравнений вида $\dot{y} = F(t, y(t), y(t-\tau))$, где $y(t), y(t-\tau) \in \mathbb{R}^n, \tau \in \mathbb{R}, \ F = (f_1,...,f_n)^T, \ y(t) = \varphi(t), t \in [t_0-\tau,t_0]$. Рассмотрим возможность интегрирования данной системы с постоянным аргументом запаздывания с помощью модифицированного метода Эйлера, который задается следующей схемой:

$$\begin{cases} y^{(\frac{k+1}{2})} = y^{(k)} + \frac{h}{2} f(t^{(k)}, y^{(k)}) \\ y^{(k+1)} = y^{(k)} + h f(t^{(\frac{k+1}{2})}, y^{(\frac{k+1}{2})}) \\ t^{(k+1)} = t^{(k)} + h \\ t^{(\frac{k+1}{2})} = t^{(k)} + \frac{h}{2} \end{cases}$$

Можно показать, что данная модификация метода Эйлера имеет второй порядок точности (p=2). Таким образом, для получения решения в точке $t^{(k)}$ надо получит предварительное решение в точке $t^{(\frac{k+1}{2})}=t^{(k)}+\frac{h}{2}$. Соответственно от этих точек надо брать запаздывание τ , то есть надо

найти значение решения в точках $t^{(k)}-\tau$ и $t^{(k)}+\frac{h}{2}-\tau$. Таким образом, чтобы определить значение $y(t^{(k)}-\tau)$ нужно выполнить следующие действия. Если значение $t^{(k)}-\tau$ лежит левее начальной точки $t^{(0)}$, то $y(t^{(k)}-\tau)$ определяется из начальных условий. Если $t^{(k)}-\tau$ совпадает с одним из узлов правее точки $t^{(0)}$, тогда $y(t^{(k)}-\tau)$ принимает значение функции в этом узле. Если величина $t^{(k)}-\tau$ не совпадает ни с одним узловым значением $t^{(k)}, k=0,1,2,...$, она лежит внутри некоторого отрезка $[t_i,t_{i+1}],i< k$ и можно, по значениям $y(t^{(i-1)}),y(t^{(i)}),y(t^{(i)})$, построить некоторый интерполяционный многочлен P_3 (например, многочлен Лежандра или кубический сплайн 3-го порядка) для определения приближенного значения $y(t^{(k)}-\tau)\approx P_3(t^{(k)}-\tau)$. Таким образом, схема расчета значения решения в новой точке для системы $\dot{y}=F(t,y(t),y(t-\tau))$ будет выглядеть следующим образом:

$$\begin{cases} y^{(\frac{k+1}{2})} = y^{(k)} + \frac{h}{2} f(t^{(k)}, y(t^{(k)} - \tau)) \\ y^{(k+1)} = y^{(k)} + h f(t^{(\frac{k+1}{2})}, y(t^{(\frac{k+1}{2})} - \tau) \\ t^{(k+1)} = t^{(k)} + h \\ t^{(\frac{k+1}{2})} = t^{(k)} + \frac{h}{2} \end{cases}$$

Применение методов Рунге-Кутты с постоянной длиной шага для постоянного запаздывания. При применении методов Рунге-Кутты, сразу возникает вопрос, как задавать, или вычислять значения в точках $(t^{(k)}+c_jh-\tau)$. Но если запаздывание постоянное и длина шага выбрана в соответствии со следующим соотношением $\tau=mh$, где m- некоторое целое число, то естественно использовать уже вычисленные m шагов назад значения решения. Это можно интерпретировать, как последовательное решение уравнения $\dot{y}=F(t,y(t),\varphi(t-\tau))$ для интервала

$$[t^{(0)},t^{(0)}+ au]$$
, а затем уравнений $egin{cases} \dot{y}=F(t,y(t),z^{(1)}(t)) \ \dot{z}^{(1)}=F(t- au,z^{(1)}(t),arphi(t-2 au)) \end{cases}$ для интервала $[t^{(0)}+ au,t^{(0)}+2 au]$.

Затем уравнений
$$\begin{cases} \dot{y} = F(t,y(t),z^{(1)}(t)) \\ \dot{z}^{(1)} = F(t-\tau,z^{(1)}(t),z^{(2)}(t)) \end{cases}$$
 для интервала $[t^{(0)}+2\tau,t^{(0)}+3\tau]$ и т.д. То $\dot{z}^{(2)} = F(t-2\tau,z^{(2)}(t),\varphi(t-3\tau))$

есть, это точный численный аналог приведенного выше «метода шагов». Таким образом, процесс решения уравнения $\dot{y} = F(t, y(t), y(t-\tau))$ с постоянной величиной запаздывания можно свезти к решению последовательности систем обыкновенных дифференциальных уравнений, решаемых методом Рунге-Кутты с постоянным шагом p- го порядка.

Методы с переменной длиной шага. Приведенный выше метод решения задач с запаздывающим аргументом не позволяет произвольно менять длину шага, и применение его к уравнениям с переменной величиной запаздывания вызывает значительные трудности. Для того, чтобы избежать этого, необходимо использование глобальной аппроксимации решения. Наиболее подходящими методами для реализации такого являются многошаговые методы типа Адамса или методы Рунге-Кутты с переменным шагом интегрирования, так называемые непрерывные методы.

В пакете MatLab имеется численная процедура **dde23**, которая автоматически определяет нарушения непрерывности в предыстории и определяет те точки нарушения непрерывности, порядок которых достаточно мал для того, чтобы повлиять на выполнение вычислений. Так как в процессе интегрирования системы с запаздывающим аргументом поведение системы сглаживается, то процедура проверяет возможность увеличения шага интегрирования со временем. Для получения общего решения используется кубическая полиномиальная аппроксимация, которая затем корректируется в процессе перевычисления формул.

Для реализации процедуры численного интегрирования уравнений с запаздывающим аргументом в пакете MathCad нет готовой функции. Поэтому пользователь должен сам осуществить построение соответствующей программы.

Контрольные вопросы к лекции 3.

Nº	Текст контрольного вопроса	Ranuauthi Otbata
	Текст контрольного вопроса	Варианты ответа
1	Задана система с запаздыванием $\dot{x} = F(t, x(t), x(t-\tau)); \tau > 0$, где функция F	1 начальные условия вида $x(t_0) = x^0$.
	удовлетворяет условиям Липшица по всем	2 начальные условия вида $x(t_0 - \tau) = x^0$.
	аргументам. Для нахождения решения этой системы достаточно задать	3 равенство $x(t) = \varphi(t); \forall t \in [t_0 - \tau, t_0]$,
		где $arphi(t)$ - некоторая заданная непрерывная
		функция на интервале $[t_0- au,t_0]$.
		4 задать функцию $ arphi(t) $, удовлетворяющую
		условию $\dot{arphi}(t) = F(arphi(t), arphi(t- au))$ на интервале
		$[t_0-\tau,t_0].$
2	Решение $x_{arphi}(t)$ системы	1 $ x(t_0) - x_{\varphi}(t_0) \le \delta(\varepsilon)$ следует
	$\dot{x} = F(t, x(t), x(t-\tau)), \tau > 0; x_{\varphi}(t) = \varphi(t); t \in [t_0 - \tau, t_0]$	$ x(t) - x_{\varphi}(t) \le \varepsilon; \forall t \ge t_0.$
	называется устойчивым, если для $orall_{\mathcal{E}}\!>\!0$	2 $ \psi(t) - \varphi(t) \le \delta(\varepsilon); \forall t \in [t_0 - \tau, t_0]$
	существует $\delta(arepsilon) > 0$ такое, что из неравенства	следует $\mid x_{\psi}(t) - x_{\varphi}(t) \mid \leq \mathcal{E}; \forall t \geq t_0$.
		3 $ \psi(t_0- au)-\varphi(t_0- au) \leq \delta(arepsilon)$ следует
		$ x_{\psi}(t) - x_{\varphi}(t) \le \varepsilon; \forall t \ge t_0$
3.	Общее решение линейного стационарного однородного уравнения с запаздыванием вида	$\int_{-\infty}^{\infty} P(t) e^{k_i t} \operatorname{sgn}(k_i \cdot i - 1.2) \operatorname{gappy}$
	n	1. $\sum_{i=0}^{n} P_i(t) e^{k_i t}$, где k_i ; $i=1,2,$ корни
	$\sum a_i x^{(i)}(t- au) = 0$ имеет следующий вид?	характеристического уравнения
	i=0	$\sum_{i=0}^n a_i k^i e^{-k_i au} = 0,\; P_i(t)$ - многочлены степени
		$lpha_i - 1$, где $lpha_i$ кратность корня k_i ; $i = 1, 2, \dots$
		2. $\sum_{i=0}^{s} P_i(t) e^{k_i(t- au)}$, где k_i ; $i=1,2,s$ корни
		характеристического уравнения

		$\sum_{i=0}^n a_i k^i e^{-k_i \tau} = 0 , \; P_i(t) \text{- многочлены степени}$ $\alpha_i - 1$, где α_i кратность корня $k_i ; i = 1, 2, s$. 3. $\sum_{i=0}^s P_i(t) e^{k_i t}$, где $k_i ; i = 1, 2, s$ корни характеристического уравнения $\sum_{i=0}^n a_i (-k \tau)^i = 0 , \; P_i(t) \text{- многочлены степени}$
		a. 1 a
		$lpha_i-1$, где $lpha_i$ кратность корня k_i ; $i=1,2,s$.
4	Передаточная функция замкнутой линейной системы с запаздыванием имеет вид	1. $ A(i\omega) + B(i\omega)e^{-i(\tau\omega)} = 1;$
	B(s)	$\arg\{A(i\omega) + B(i\omega)e^{-i(\tau\omega)}\} = -\pi; \ \omega \in [0,\infty).$
	$W_z(s) = rac{B(s)}{A(s) + B(s)e^{-s au}}$. Записать уравнения для	2. $\left \frac{B(i\omega)}{A(i\omega)} \right = 1$; $\arg \left\{ \frac{B(i\omega)}{A(i\omega)} \right\} - \tau \omega = -\pi$;
	определения критического значения запаздывания	$A(i\omega)$ $A(i\omega)$
	$ au_{kp}$, используя критерий Найквиста.	$\omega \in [0,\infty)$.
		$R(i\omega)$
		3. $\left \frac{B(i\omega)}{A(i\omega) + B(i\omega)e^{-i\omega\tau}} \right = 1;$
		$\arg\{A(\omega)\} - \arg\{B(i\omega)\} - \tau\omega = -\pi;$
_	П×	$\omega \in [0,\infty)$.
5	Линейная система с запаздываниями по состоянию и по управлению записывается следующей системой	1. $F \in \mathbb{R}^{2 \times 8}$; $H \in \mathbb{R}^{2 \times 4}$.
	уравнений $\dot{x} \equiv \sum_{i=1}^{2} A_i x(t-\tau_i) + \sum_{i=1}^{4} B_i u(t-\theta_i)$ гле	2. $F \in R^{2 \times 6}$; $H \in R^{2 \times 4}$.
	уравнений $\dot{x} = \sum_{i=0} A_i x(t- au_i) + \sum_{i=0} B_i u(t- heta_i)$, где	3. $F \in R^{2 \times 8}$; $H \in R^{2 \times 2}$
	$0 = \tau_0 < \tau_1 < \tau_2 < \infty; \ 0 = \theta_0 < \theta_1 < \infty.$	$F \in R^{2 \times 2}; H \in R^{2 \times 6}$
	Определить размерности матрицы относительной	
	управляемости F и относительной наблюдаемости H .	
6	Чему равно минимально достижимое время	1. $t_p = 3\tau$.
	$t_{\it p}$ затухания переходных процессов в замкнутых	$2. t_p = \tau.$
	линейных системах с величиной запаздывания $ au$?	$3. t_p = 2\tau.$
		$4. t_p = 4\tau$
		Γ
7	Чему должна быть равна длина шага интегрирования	1. Любое значение $h>0$
	h , при использовании метода Рунге-Кутты с постоянной длиной шага для численного	2. $h=\tau$.
	интегрирования уравнений системы с величиной	3. $h = 0.2\tau$.
	запаздывания $ au$?	4. $t_p = 1.5\tau$