Department of Electrical and Computer Engineering

Name:	
Student Number:	Date:
Lab Section:	
Instructor:	
Lab Partner:	

ENG 1450 Introduction to Electrical and Computer Engineering Lab 4 - RC Circuit

Required equipment:

The equipment required for this lab exercise includes:

- Project board
- Digital multimeters (DMM)
- Oscilliscope
- Function generator
- Capacitors: $C1 = 1 \mu F$ and C2 = 470 nF
- Resistors: R1 = 1 k Ω and R2 = 2.2 k Ω

RC Circuit Waveforms

Build the circuit shown in Figure 1 for ${\bf R}=R1=1~{\rm K}\Omega$ and ${\bf C}=C1=1~{\rm \mu}F$. For the input voltage V_{in} use function generator to make a square wave with frequency of 100 Hz and minimum and maximum voltages of 0 V and 5 V, respectively. Use the oscilloscope to find the voltage of the capacitor and plot it on Table 1. Use the Ohm's law to find current i. Record your results in Table 1. Use the oscilloscope to find the voltage of the capacitor, ${\bf V_c}$, and record your result in Table 1.

Figure 1: RC circuit.

Table 1: Case 1: $\mathbf{R} = \mathrm{R1} = 1 \mathrm{K}\Omega$, $\mathbf{C} = \mathrm{C1} = 1 \mu\mathrm{F}$, and frequency = 100 Hz

	1010 1. Cube 1. IX	111 1 1122,	. 01 1 pt1 , tt	na mequency	100 112
Input	5V 0V				
Vc					
i					

Describe how you can find the time constant of the RC circuit based on your experimental results. What is the time constant?

$$\tau$$
 = -----s

What is the theoretical time constant of the circuit shown in Figure 1?

$$\tau = -----s$$

Repeat this experiment for the following cases and measure the capacitor voltage.

Table 2: Case 2: $\mathbf{R} = R1 = 1 \text{ K}\Omega$, $\mathbf{C} = C2 = 470 \text{ nF}$, and frequency = 100Hz

 140	710 2. Cuse 2. IV 1	1 1132, 0	, C2 1/0 III ,	and nequency	100112
	5V				
Input					
	ov				
V _C					

Table 3: Case 3: $\mathbf{R} = R2 = 2.2 \text{ K}\Omega$, $\mathbf{C} = C1 = 1 \mu\text{F}$, and frequency = 100Hz

	5V		
Input	ov		
V _c			

Table 4: Case 4: $\mathbf{R} = R2 = 2.2 \text{ K}\Omega$, $\mathbf{C} = C1 = 470 \text{ nF}$, and frequency = 100 Hz

	5V		
Input			
_	0) (
	0V		
V _C			

Table 5: Case 5: $\mathbf{R} = R1 = 1 \text{ K}\Omega$, $\mathbf{C} = C1 = 1 \mu\text{F}$, and frequency = 50 Hz

Input	5V	•	
ov	ov		
Vc			

Table 6: Case 6: $\mathbf{R} = R1 = 1 \text{ K}\Omega$, $\mathbf{C} = C1 = 1 \mu\text{F}$, and frequency = 200 Hz

	5V			
Inpu	t			
	ov	_		
V _C				

Compare the time constant in case 1 with that in cases 2 - 6 and complete the following table.

	Time constant has (circle one)	By looking at the V _C curve, explain why the time constant has increased, decreased or remained the same.
Case 2	increased decreased remained the same	
Case 3	increased decreased remained the same	
Case 4	increased decreased remained the same	
Case 5	increased decreased remained the same	
Case 6	increased decreased remained the same	