

Introduction

- Thousands of lives are lost each year due to late detection of cancer
- Early diagnosis leads to the best patient outcomes
 - Early detection: 64%
 - Late-stage detection: 9%
- Up to **30–40**% of signs are missed in radiology screenings
 - Early-stage tumors are small and ambiguous.

Jorge Alejandro Cajiao

Our Solution

Ensemble of 5 pre-trained CNNs

Trained on ~600 chest CT scans from Kaggle dataset

Uses weighted averaging to boost prediction accuracy

Designed to **support doctors** in identifying
cancer from radiology
images

Yogesh Yadav

Project Flow

1. Data Preparation

Kaggle CT scans resized (224x224) using OpenCV library

Resizing: All images standardized to 224x224 pixels.

Normalization: Pixel values scaled to [0, 1] by dividing by 255.

Conversion: Images converted to NumPy arrays for training.

2. Model Selection

5 pre-trained CNN models

CNNs excel at recognizing patterns in medical images

Pre-trained models leverage learned features from large datasets

Ensemble learning combines strengths of multiple models for better performance.

Better-performing models get higher influence.

Formula: Weight (w_i) = (Accuracy of Model i) / (Sum of all accuracies) Example: If Xception has 99.8% accuracy, it gets the highest weight.

Classification accuracy, sensitivity, F1 score. Ensemble Model Performance:

Accuracy: 99%

Sensitivity (Recall): 100% (No False Negatives)

False Positives: 1 case (Normal scan misclassified as cancer)

squamous cell carcinoma

large cell carcinoma

Yogesh Yadav

Theory: What is a CNN? Why Ensemble?

The Convolution Neural Network (CNN) is a deep learning network architecture that learns from data by finding similar patterns in images, which recognizes objects, classes, and categories.

ResNet50_V2

Deep CNN with skip connections to prevent vanishing gradients

Inception_V3

Factorized convolutions for efficient feature extraction

Xception_V3

- Depth-wise separable convolutions to improve performance

DenseNet201

Densely connected layers for feature reuse and gradient flow for faster training

MobileNet V2

- Lightweight model with inverted residuals for mobile and edge devices

Confusion Matrix & Classification Report

Classification R	Report: precision	recall	f1-score	support
LUNG_CANCER NOT_LUNG_CANCER	0.9954 1.0000	1.0000 0.9815	0.9977 0.9907	21 <mark>8</mark> 54
accuracy macro avg weighted avg	0.9977 0.9963	0.9907 0.9963	0.9963 0.9942 0.9963	272 272 272

CNN Model Comparison

Table 1. Accuracy stats and assigned ensembling weights for each model

Model	Train Acc	Train Loss	Val Acc	Val Loss	Test Acc	Test Loss
mobilenet_v2	95.16%	0.1260	95.54%	0.1234	99.26%	0.0478
xception	99.80%	0.0101	99.11%	0.0341	99.26%	0.0443
resnet50_v2	97.58%	0.0637	98.21%	0.0349	99.63%	0.0219
densenet201	97.98%	0.0716	96.43%	0.1022	99.26%	0.0637
inception_v3	92.14%	0.2054	96.43%	0.1340	97.79%	0.1204

Training and Validation: Accuracy & Loss

Training and Validation: Accuracy & Loss

Najia Khan

Prediction: Cancer Prediction: Cancer Actual: Cancer Actual: Cancer Prediction: Normal Prediction: Normal Actual: Normal Actual: Normal

Prediction: Cancer Actual: Cancer

Prediction: Normal

Actual: Normal

Misclassification

Misclassification may be due to:

1. Feature
Similarity: Brighter regions trigger false positive

2. Class Imbalance:
Training set may
favor cancer,
skewing decision
boundary

Solution:

Use Grad-CAM for model interpretability

Prediction: Cancer Actual: Normal

Performance Benchmark CNN Ensemble vs Radiologists

Michael Darnall

Stretch Goal: Classifying Types of Cancer

Model	Train Accuracy	Valid Accuracy	Test Accuracy
resnet50_v2_best	98.86%	81.94%	71.11%
mobilenet_v2_best	98.86%	90.28%	76.19%
densenet201_best	97.39%	77.78%	69.21%
inception_v3_best	94.94%	75.00%	62.86%
xception_best	98.86%	80.56%	72.70%
Ensemble	99.18%	91.67%	82.54%

- Modified from classes from Cancer and No Cancer to four separate classifications
- Classify by not only whether a person has cancer, but what kind of cancer
- Around 82% ensemble test accuracy, with each individual model's test accuracy being 60-80%
- Should continue to refine this model, as it provides more long-term value.

Future Scope

Expand detection to **multiple** diseases

Integrate image **segmentation** techniques

Collaborate with medical professionals for real-time feedback and continuous data collection

