Review of Computer Organization

(Chapters 1.1, 1.2, 1.3)

CSC 360- Instructor: K. Wu

Agenda

- 1. Computer Organization
- 2. CPU
- 3. Memory
- 4. I/O
- 5. Architecture

CSC 360- Instructor: K. Wu

2. CPU (1)

Access

- pins: address, data, control, status

Internals

- program counter (PC)
- registers: address, data, control, flags
- arithmetic logic unit (ALU), FPU, etc

Benchmarks

- clock (GHz), instruction/cycle, MIPS

CSC 360- Instructor: K. Wu

2. CPU (2) operations

Fetch

retrieve instructions from memory (cache)

Decode

- instruction: operator, operands; microcode

Execute

- arithmetic/logic operation
- move data between register, memory, I/O
- change execution flow

CSC 360- Instructor: K. Wu

CSc 360Overview

.

3. Memory (1)

Access

- linear address
- segmented address: segment, index
- physical address: cylinder, header, sector (disk)

Benchmarks

- clock (MHz)
- width (bits)
- throughput (Mbps)

CSC 360- Instructor: K. Wu

CSc 360Overview

5

3. Memory (2): hierarchies

Speed vs. size

- registers: inside CPU
- cache: transparent to programs
- memory: main storage
 - DRAM, SDRAM, SRAM, etc
- disks: secondary storage
 - electronic, magnetic, optical, etc
- tapes: backup storage
- networked storage

Caching

CSC 360- Instructor: K. Wu

A large variety of input/output devices 4. I/O (1)

- keyboard/mouse, video, audio, network, etc

Access

- Address
 - port numbers
 - I/O vs. memory space
- Interrupt
- Direct memory access (DMA)

Synchronous vs asynchronous

CSC 360- Instructor: K. Wu

4. I/O (2): DMA

High-speed I/O, bulk data transfer

DMA controller

- source/destination address
- counter: the amount of data to be moved

DMA handling

- program DMA controller
- execute DMA concurrently
- issue an interrupt on DMA completion

Q: compare interrupt vs DMA

CSC 360- Instructor: K. Wu

CSc 360Overview

8

5. Computer architectures

Single-processor systems

Multi-processor systems

symmetric multiprocessing (SMP)

Cluster systems

- interconnected systems

CSC 360- Instructor: K. Wu

CSc 360Overview

Q