Apellido y Nombre: email (@mi.unc.edu.ar): Nota:

Lenguajes y Compiladores

2do Parcial 2023

1. Considerá el lenguaje imperativo con input/output pero sin fallas. Sea $\omega \in \Omega$ con

$$\omega = \iota_{in}(f)$$

$$f(z) = \iota_{out}\langle z, \iota_{in}(g_z)\rangle)$$

$$g_z(z') = \iota_{out}\langle z * z', \bot\rangle)$$

Dar tres programas c_1, c_2, c_3 que satisfagan:

- (a) $\perp \sqsubseteq \llbracket c_1 \rrbracket \sigma \sqsubseteq \omega$.
- (b) $\omega \sqsubset \llbracket c_2 \rrbracket \sigma$.
- (c) $\llbracket c_3 \rrbracket \sigma = \iota_{in}(h)$, con h(0) incomparable con f(0) y h(n) = f(n) si $n \neq 0$.
- 2. Considerá el cálculo lambda puro.
 - (a) Proponé una expresión e que cumpla las siguientes condiciones simultáneamente:
 - i. bajo evaluación eager, ee' diverge para cualquiera expresión e'.
 - ii. bajo evaluación normal, e e' evalúa a una forma canónica para cualquier expresión e'.
 - (b) Realizá una reducción de $e\,I$ hasta llegar a una abstracción. Recordá que una reducción es una secuencia de β -contracciones.
- 3. La contracción (η) se especifica como $\ \overline{\ (\lambda x.e\,x)\to_\eta e}\ x\not\in FV(e)$.

Considerá la semántica denotacional normal del cálculo lambda. Recordá que $V^N \cong [D^N \to D^N]$ y $D^N = V_{\perp}^N$. Tu tarea es dar una expresión e concreta y mostrar que la semántica denotacional normal no respeta la contracción η . Para ello calculá la semántica de $\lambda x.e.x$ y la de e para ver que son distintas.

- 4. Ahora nos pasamos al lenguaje aplicativo eager.
 - (a) Proponé una regla de evaluación para expresiones con pattern-matching muy sencillo:

let
$$\langle \langle var \rangle, \langle var \rangle \rangle \equiv \langle exp \rangle$$
 in $\langle exp \rangle$

(b) Evaluá la siguiente expresión usando esa regla.

let
$$\langle x,y \rangle \equiv (\lambda n. \langle n,n*(-1) \rangle)(-4)$$
 in if $x < y$ then -1 else if $y = x$ then 0 else 1

5. Considerá la siguiente serie de naturales:

$$S = 1, 2, 3, 1, 2, 3, \dots$$

Dar una expresión e en el lenguaje aplicativo eager (sin división ni módulo) tal que la denotación de e e' sea $\iota_{int}(S(n))$ si la semántica de e' es $\iota_{int}(n)$ con n > 0.

6. Calcular la semántica denotacional eager de la expresión e.

Si necesitás compañía acá están algunes amigues de la cátedra:

$$K = \lambda x y.x$$

$$S = \lambda f g x.f x (g x)$$

$$I = \lambda x.x$$

$$\Delta = \lambda x.x x$$