

MEMBANGUN MODEL

Mulia Sulistiyono, M.Kom

muliasulistiyono@amikom.ac.id

Learning Objective

Dalam pertemuan ini diharapkan:

- A. Mahasiswa mampu melakukan kegitan persiapan pemodelan seperti pembagian data, penyusunan skenario pemodelan
- B. Mahasiswa mampu melakukan mampu melakukan proses pemodelan klasifikasi

Outline

- Membangun Skenario Pemodelan :
 - Pembagian data: data latih-uji, k-fold cross validation
 - Menentukan Langkah Eksperimen
 - Parameter Evaluasi
- Membangun Model Klasifikasi :
 - Algoritma klasifikasi yang diimplementasi menggunakan library, yaitu : k-NN,
 Decision Tree, Naïve Bayes, Support Vector Machine dan Boosting
 - Matriks Performansi Klasifikasi

Pembagian Data

- Data dibagi menjadi 2 bagian :
 - Data Latih (*Training Data*): untuk mengembangkan model
 - Data Uji (Testing Data): untuk Mengukur performansi model

Pembagian Data

- Dataset Iris (https://archive.ics.uci.edu/ml/datasets/iris):
 - Data Latih (*Training Data*): 70%
 - o Data Uji (Testing Data): 30%

X_train				y_train	
Panjang Sepal	Lebar Sepal	Panjang Petal	Lebar Petal	Kelas	
5.1	3.5	1.4	0.2	Iris Setosa	1
6.3	3.3	6	2.5	Iris Virginica	1
7	3	4.6	1.4	Iris Versicolour	
	***				Training Data
	•••				70%
5.8	3.3	6	2.4	Iris Virginica	1
6.8	3.1	4.5	1.5	Iris Versicolour	1
4.9	3	1.4	0.2	Iris Setosa	Testing Data
	•••				30%
6.8	3.2	4.4	1.6	Iris Versicolour	30%
X_test				y_test	

Hands On

```
Data Latih: 70%
Data Uji: 30%

[5] from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.7)

[6] print("Banyak data latih setelah dilakukan Train-Test Split: ", len(X_train))
print("Banyak data uji setelah dilakukan Train-Test Split: ", len(X_test))

Banyak data latih setelah dilakukan Train-Test Split: 105
Banyak data uji setelah dilakukan Train-Test Split: 45

Output, jumlah data latih dan data uji
```


k-Fold Cross Validation

- k-Fold Cross Validation digunakan pada dataset dengan jumlah data yang relatif sedikit
- k-Fold Cross Validation dilakukan pada data latih
- Data latih dibagi menjadi k bagian kemudian secara iteratif, 1 bagian menjadi data validasi

Image Source : https://medium.com/the-owl/k-fold-cross-validation-in-keras-3ec4a3a00538

Hands On

```
[] from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC

5 Cross Validation

model = SVC(kernel = 'linear', C = 1)

scores = cross_val_score(model, X, y, cv = 5)

print("Akurasi model SVM untuk tiap fold: ", scores)

print("Akurasi model SVM dengan 5-Fold Cross Validation: ", scores.mean())

Akurasi model SVM untuk tiap fold: [0.96666667 1. 0.96666667 0.96666667 1. Akurasi model SVM dengan 5-Fold Cross Validation: 0.98000000000000001
```


Akurasi rata- rata dari seluruh fold

Training – Validation – Testing Data

- Model Selection: Mengestimasi performa model model yang berbeda untuk memilih model yang terbaik, yaitu model dengan minimum error
- Model Assessment : Dari model yang terpilih, mengestimasi error untuk data baru (data uji)

Menentukan Langkah Eksperimen

- Setiap metode memiliki parameter tertentu
- Dilakukan eksperimen dengan beberapa variasi parameter
- Parameter yang menghasilkan model performa terbaik akan digunakan selanjutnya
- Beberapa strategi pencarian parameter untuk menghasilkan model terbaik

Parameter Evaluasi

- Klasifikasi
 - o Akurasi
 - o Presisi
 - Recall/Sensitivity
 - Specificity
 - o F1-measure
 - 0 ...
- Regresi
 - MSE (Mean Squared Error)
 - MAPE (Mean Absolute Percentage Error)
 - 0 ...
- Klastering
 - Silhouette Score
 - Davies-Bouldin Index
 - 0 ...
- Parameter Evaluasi akan dijelaskan secara detail pada materi berikutnya

Outline

- Membangun Skenario Pemodelan :
 - Pembagian data: data latih-uji, k-fold cross validation
 - Menentukan Langkah Eksperimen
 - Parameter Evaluasi
- Membangun Model Klasifikasi :
 - Algoritma klasifikasi yang diimplementasi menggunakan library, yaitu : k-NN,
 Decision Tree, Naïve Bayes, Support Vector Machine dan Boosting
 - Matriks Performansi Klasifikasi

k – Nearest Neighbor (k-NN) Classifier

(a) 1-nearest neighbor

(b) 2-nearest neighbor

Nearest Neighbor terhadap data baru (x)

Algoritma :

- Menentukan nilai k
- Menghitung jarak antara data baru terhadap semua training data
- Mengidentifikasi k nearest neighbor
- Menentukan label/kelas data baru berdasarkan kelas k-nearest neighbor (dapat menggunakan voting)

Contoh kasus

- Terdapat 4 data latih (P1, P2, P3, P4). Data memiliki dua atribut (x1 dan x2)
- Data latih terdiri dari dua kelas (kelas BAD dan kelas GOOD)
- Diperlukan klasifikasi untuk menentukan kelas dari data uji (P5).

Points	X1(Acid Durability)	X2(Strength)	Y(Classification)
P1	7	7	BAD
P2	7	4	BAD
Р3	3	4	GOOD
P4	1	4	GOOD
P5	3	7	?

Contoh kasus (lanjutan)

	P1	P2	P3	P4
Euclidean Distance of	(7,7)	(7,4)	(3,4)	(1,4)
P5(3,7) from	Sqrt((7-3) 2 + (7-7) 2) = $\sqrt{16}$	Sqrt((7-3) 2 + (4-7) 2) = $\sqrt{25}$	Sqrt((3-3) 2 + (4-7) 2) = $\sqrt{9}$	Sqrt((1-3) 2 + (4-7) 2) = $\sqrt{13}$
	= 4	= 5	= 3	= 3.60
Class	BAD	BAD	GOOD	GOOD

Points	X1(Durability)	X2(Strength)	Y(Classification)
P1	7	7	BAD
P2	7	4	BAD
P3	3	4	GOOD
P4	1	4	GOOD
P5	3	7	GOOD

Kelebihan dan Kekurangan k-NN Classifier

- Cocok untuk data numerik
- Mudah dipahami dan diimplementasikan
- k-NN merupakan lazy learner (tidak membangun model secara eksplisit)
- Penentuan label/kelas data baru membutuhkan computational cost yang cukup tinggi
- Perlu menentukan nilai k yang sesuai
 - Jika k terlalu kecil, sensitif terhadap noise
 - Jika k terlalu besar, nearest neigbor mungkin mencakup data dari kelas lain

Hands On

Hands On (lanjutan)

Parameter	Keterangan	Contoh Nilai
n_neighbors	Jumlah Neighbor	- Bilangan Integer (1,2,3,4,) - Nilai default : 4

```
# Import kNN Classifier dari sklearn
from sklearn.neighbors import KNeighborsClassifier
```

knn = KNeighborsClassifier(n_neighbors=3) # memilih 3 sebagai banyaknya neighbor

MODEL EVALUATIONS METRICS

- ACCURACY
- PRECISSION
- RECALL
- F1 SCORE

Matriks Performansi Klasifikasi

Referensi

- CM Bishop, 2006, Pattern Recognition and Machine Learning, Springer
- https://medium.com/the-owl/k-fold-cross-validation-in-keras-3ec4a3a00538
- https://learnopencv.com/svm-using-scikit-learn-in-python/
- https://towardsdatascience.com/boosting-algorithms-explained-d38f56ef3f30
- https://www.analyticsvidhya.com/blog/2015/11/quick-introduction-boosting-algorithms-machinelearning
- https://www.datacamp.com/community/tutorials/adaboost-classifier-python
- https://medium.com/@MohammedS/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b

Summary

- Perancangan skenario eksperimen merupakan langkah yang dilakukan sebelum membangun model
- Perancangan scenario eksperimen terdiri dari beberapa item :
 - Pembagian Data
 - Strategi langkah eksperimen
 - Parameter evaluasi yang digunakan
- Model klasifikasi dibangun dengan beberapa pilihan algoritma
- Setiap algoritma klasifikasi memiliki kelebihan dan kekurangan
- Perlu dilakukan eksperimen yang komprehensif untuk mendapatkan model yang terbaik bagi suatu kasus/dataset

Tugas Harian

- Gunakan dataset Iris (https://archive.ics.uci.edu/ml/datasets/iris)
- Data dibagi dengan proporsi :
 - Data Latih (70%)
 - Data Uji (30%)
- Terapkan Semua algorithm yang ada dalam hands on dan lakukan analisa perbandingan terhadap performa yang dihasilkan.

Terima Kasih