With TF 1.0!

Lab I

TensorFlow Basics

Sung Kim < hunkim+ml@gmail.com>

Code: https://github.com/hunkim/DeepLearningZeroToAll/

Call for comments

Please feel free to add comments directly on these slides

Other slides: https://goo.gl/jPtWNt

With TF 1.0!

Lab I

TensorFlow Basics

Sung Kim < hunkim+ml@gmail.com>

Code: https://github.com/hunkim/DeepLearningZeroToAll/

An open-source software library for Machine Intelligence

GET STARTED

We're excited to announce the release of TensorFlow 1.0! Check out the migration guide to upgrade your code with ease.

UPGRADE NOW

Dynamic graphs in TensorFlow

We've open-sourced TensorFlow Fold to make it easier than ever to work with input data with varying shapes and sizes.

LEARN MORE

The 2017 TensorFlow Dev Summit

Thousands of people from the TensorFlow community participated in the first flagship event. Watch the keynote and talks.

WATCH VIDEOS

https://www.tensorflow.org

Call for comments

Please feel free to add comments directly on these slides

Other slides: https://goo.gl/jPtWNt

With TF 1.0!

Lab I

TensorFlow Basics

Sung Kim < hunkim+ml@gmail.com>

Code: https://github.com/hunkim/DeepLearningZeroToAll/

An open-source software library for Machine Intelligence

GET STARTED

We're excited to announce the release of TensorFlow 1.0! Check out the migration guide to upgrade your code with ease.

UPGRADE NOW

Dynamic graphs in TensorFlow

We've open-sourced TensorFlow Fold to make it easier than ever to work with input data with varying shapes and sizes.

LEARN MORE

The 2017 TensorFlow Dev Summit

Thousands of people from the TensorFlow community participated in the first flagship event. Watch the keynote and talks.

WATCH VIDEOS

https://www.tensorflow.org

TensorFlow

Deep learning libraries:
Accumulated GitHub metrics

100		
Aggr	egate po	pularity (30•contrib + 10•issues + 5•forks)•1e-3
#1:	172.29	tensorflow/tensorflow
#2:	89.78	BVLC/caffe
#3:	69.70	fchollet/keras
#4:	53.09	dmlc/mxnet
#5:	38.23	Theano/Theano
#6:	29.86	<pre>deeplearning4j/deeplearning4j</pre>
#7:	27.99	Microsoft/CNTK
#8:	17.36	torch/torch7
#9:	14.43	baidu/paddle
#10:	13.10	pfnet/chainer
#11:	12.37	NVIDIA/DIGITS
#12:	10.42	tflearn/tflearn
#13:	9.20	pytorch/pytorch

Deep learning libraries: growth over past three months

new	contributors	from 2016-10-09 to 2017-02-10	new	forks	from 2016-10-09	to 2017-02-10
#1:	192	tensorflow/tensorflow	#1:	6525	5	tensorflow/tensorflow
#2:	89	dmlc/mxnet	#2:	1822		BVLC/caffe
#3:	78	fchollet/keras	#3:	1316		fchollet/keras
#4:	42	baidu/paddle	#4:	999		dmlc/mxnet
#5:	29	Microsoft/CNTK	#5:	909		<pre>deeplearning4j/deeplearning4j</pre>
#6:	23	pfnet/chainer	#6:	887		Microsoft/CNTK
#7:	21	Theano/Theano	#7:	324		tflearn/tflearn
#8:	20	deeplearning4j/deeplearning4j	#8:	321		baidu/paddle
#9:	20	tflearn/tflearn	#9:	287		Theano/Theano
#10:	19	BVLC/caffe	#10:	257		torch/torch7
#11:	9	torch/torch7	#11:	175		NVIDIA/DIGITS
#12:	3	NVIDIA/DIGITS	#12:	142		pfnet/chainer

new	issues	from 2016-10-09 to 2017-02-10	aggr	egate m	etrics growth	from 2016-10-09 to 2017-02-10
#1:	1563	tensorflow/tensorflow	#1:	54.01		tensorflow/tensorflow
#2:	979	fchollet/keras	#2:	18.71		fchollet/keras
#3:	871	dmlc/mxnet	#3:	16.38		dmlc/mxnet
#4:	646	baidu/paddle	#4:	12.86		BVLC/caffe
#5:	486	Microsoft/CNTK	#5:	10.17		Microsoft/CNTK
#6:	361	deeplearning4j/deeplearning4j	#6:	9.32		baidu/paddle
#7:	318	BVLC/caffe	#7:	8.75		deeplearning4j/deeplearning4j
#8:	217	NVIDIA/DIGITS	#8:	4.21		Theano/Theano
#9:	214	Theano/Theano	#9:	3.89		tflearn/tflearn
#10:	167	tflearn/tflearn	#10:	3.14		NVIDIA/DIGITS
#11:	150	pfnet/chainer	#11:	2.90		pfnet/chainer
#12:	90	torch/torch7	#12:	2.46		torch/torch7

François Chollet 🤣 @fchollet · Feb 11

TensorFlow

- TensorFlow[™] is an open source software library for numerical computation using data flow graphs.
- Python!

What is a Data Flow Graph?

- Nodes in the graph represent mathematical operations
- Edges represent the multidimensional data arrays (tensors) communicated between them.

Installing TensorFlow

- Linux, Max OSX, Windows
 - (sudo -H) pip install --upgrade tensorflow
 - (sudo -H) pip install --upgrade tensorflow-gpu
- From source
 - bazel ...
 - https://www.tensorflow.org/install/install_sources
- Google search/Community help
 - https://www.facebook.com/groups/TensorFlowKR/

Check installation and version

```
Sungs-MacBook-Pro:hunkim$ python3
Python 3.6.0 (v3.6.0:41df79263a11, Dec 22 2016, 17:23:13)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more
information.
>>> import tensorflow as tf
>>> tf. version
'1.0.0'
>>>
```

https://github.com/hunkim/DeepLearningZeroToAll/

TensorFlow Hello World!

```
Hello TensorFlow!
In [2]: # Create a constant op
           # This op is added as a node to the default graph hello = tf.constant("Hello, TensorFlow!") - () 2 - 1 - (224) 3 1/42)

# seart a TF session HIME of an Alternational graph of the session () (omputational graph of the session)
            print(sess.run(hello)) > rune2 comparational graph? ) 3 22MI / 37
b) Hello, TensorFlow!
            # run the op and get result
           b Hello, TensorFlow!'
           b'String' 'b' indicates Bytes literals. http://stackoverflow.com/questions/6269765/
      Site String 6 WEZ -7
```

https://github.com/hunkim/DeepLearningZeroToAll/blob/master/lab-01-basics.ipynb

Computational Graph +2 adder_no... dayatype = = + = 1= In [4]: node1 = tf.constant (3.), tf.float32) node2 = tf.constant (3.) node2 = tf.constant(4.0) # also tf.float32 implicitly node3 = tf.add(node1, node2) - + 452 0000 Node3 = Node | + node2 In [5]: print("nodel:", nodel, "node2:", node2)) 24 323 print("node3: ", node3) node1: Tensor("Const 1:0", shape=(), dtype=float32) node2: Tensor("Const 2:0", shape=(), dtype Tensor("Add:0", shape=(), dtype=float32) 7 2450 452 279 sess = tf.Session() print("sess.run(node1, node2): ", sess.run([node1, node2])) print("sess.run(node3): ", sess.run(node3)) sess.run(node1, node2): [3.0, 4.0] sess.run(node3): 7.0

https://github.com/hunkim/DeepLearningZeroToAll/blob/master/lab-01-basics.ipynb

e=float32)

In [6]:

TensorFlow Mechanics

feed data and run graph (operation) sess.run (op)

Lygraph & 23%

Build graph using TensorFlow operations

> -) D tensentou too/3 22mg

2 7292 graph act 35.01

update 3144 act 35.6 return

update variables in the graph (and return values)

WWW.MATHWAREHOUSE.COM

Computational Graph

(1) Build graph (tensors) using TensorFlow operations

```
In [4]: Vnode1 = tf.constant(3.0, tf.float32)
       vnode2 = tf.constant(4.0) # also tf.float32 implicitly
        Vnode3 = tf.add(node1, node2)
                                                                        Pite update
             (2) feed data and run graph (operation)
                                                           (3) update variables in the graph
                sess.run (op)
                                                           (and return values)
                나서면 한글은 나사()은 이렇게 못하는 operation(Node)
를 내내서 신행시키(ch.
                                                                   zite return
In [6]: sess = tf.Session()
         print("sess.run(node1, node2): ", sess.run([node1, node2]))
         print("sess.run(node3): ", sess.run(node3))
         sess.run(node1, node2): [3.0, 4.0]
         sess.run(node3): 7.0
```

https://github.com/hunkim/DeepLearningZeroToAll/blob/master/lab-01-basics.ipynb

TensorFlow Mechanics

Everything is **Tensor**

Tensors

```
In [3]: 3 # a rank 0 tensor; this is a scalar with shape []
    [1.,2.,3.] # a rank 1 tensor; this is a vector with shape [3]
    [[1.,2.,3.],[4.,5.,6.]] # a rank 2 tensor; a matrix with shape [2, 3]
    [[[1.,2.,3.]],[[7.,8.,9.]]] # a rank 3 tensor with shape [2, 1, 3]
Out[3]: [[[1.0,2.0,3.0]],[[7.0,8.0,9.0]]]
```

```
t = tf.Constant([1., 2., 3.])
```

Tensor Ranks, Shapes, and Types

```
t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
```

Rank	Math entity	Python example
0	Scalar (magnitude only)	s = 483
1	Vector (magnitude and direction)	v = [1.1, 2.2, 3.3]
2	Matrix (table of numbers)	m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3	3-Tensor (cube of numbers)	t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n	n-Tensor (you get the idea)	••••

78U2PA

Tensor Ranks, Shapes, and Types

Rank	Shape	Dimension number	Example
0	口口主题	0-D	A 0-D tensor. A scalar.
1	[D0]	1-D	A 1-D tensor with shape [5].
2	10.0)	2-D	A 2-D tensor with shape [3, 4].
3	(D)(D),(D2) _{3,11}	3-D	A 3-D tensor with shape [1, 4, 3].
n	[D0, D1, Dn-1]	n-D	A tensor with shape [D0, D1, Dn-1].

https://www.tensorflow.org/programmers_guide/dims_types

Tensor Ranks, Shapes, and Types

t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]			
Data type	Python type	Description	
DT_FLOAT	tf.float32	32 bits floating point.	
DT_DOUBLE	tf.float64	64 bits floating point.	
DT_INT8	tf.int8	8 bits signed integer.	
DT_INT16	tf.int16	16 bits signed integer.	
DT_INT32	tf.int32	32 bits signed integer.	
DT_INT64	tf.int64	64 bits signed integer.	

. . .

TensorFlow Mechanics

feed data and run graph (operation)
sess.run (op, feed_dict={x: x_data})

Build graph using TensorFlow operations

update variables in the graph (and return values)

WWW.MATHWAREHOUSE.COM

Lab 2 Linear Regression

Sung Kim <hunkim+ml@gmail.com>

Variables

```
# Create two variables.
weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35),
                      name="weights")
biases = tf.Variable(tf.zeros([200]), name="biases")
. . .
# Add an op to initialize the variables.
init_op = tf.global_variables_initializer()
# Later, when launching the model
with tf.Session() as sess:
  # Run the init operation.
  sess.run(init_op)
  # Use the model
  . . .
```