

METODE NEWTON RAPHSON & METODE SECANT

- Metode Newton Raphson adalah suatu cara iterasi yang memakai satu titik awal dan mendekatinya dengan gradient pada titik tersebut.
- Metode ini paling banyak digunakan untuk mencari akar-akar dari suatu persamaan.

Titik pendekatan n+1 dituliskan dengan rumus :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Langkah-langkah penyelesaian:

- 1. Tentukan nilai awal untuk akar persamaan x_0 .
- 2. Evaluasi f(x) dan f'(x) pada $x = x_0$
- 3. Hitung nilai taksiran akar selanjutnya

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- 4. Setelah mendapatkan pendekatan akar persamaan yang baru yaitu x_n' , maka jadikan x_n' tersebut sebagai x_n
- 5. Ulangi langkah ke 2 hingga 4 sampai diperoleh $\Delta x < \varepsilon$ (batas toleransi)

Ilustrasi:

Tentukan salah satu akar persamaan $f(x) = x^3 - 5x + 2$ menggunakan metode Newton Rapshon dengan batas toleransi 0,003 dan tebakan awal x = 3

Penyelesaian:

Persamaan Tak linear

$$f(x) = x^3 - 5x + 2$$

Diketahui tebakan awal $x_0 = 3$.

$$f(3) = (3)^3 - 5(3) + 2 = 14$$

Tentukan fungsi f'(x) dan hitung $f'(x_0)$.

$$f'(x) = 3x^2 - 5$$

 $f'(x_0) = f'(3) = 3x^2 - 5 = 3(3)^2 - 5 = 22$

- Lakukan Iterasi n=0
- Hitung nilai taksiran akar selanjutnya

$$x_{n+1} = x_{0+1} = x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = x_0 - \frac{f(3)}{f'(3)} = 3 - \frac{14}{22} = 2,364$$

- Iterasi berhenti jika $f(x_n) = 0 \ dan \ \Delta x < \varepsilon \ (batas \ toleransi)$
- Iterasi n = 1

Diperoleh $x_1 = 2,364$

Hitung $f(x_1)$ dan $f'(x_1)$

- $f(x_n) = f(x_1) = f(2,364) = x^3 5x + 2 = (2,364)^3 5(2,364) + 2 = 3,391$
- $f'(x_n) = f(x_1) = f'(2,364) = 3x^2 5 = 3(2,364)^2 5 = 11,765$

Nilai taksiran akar selanjutnya:

$$x_{n+1} = x_{1+1} = x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = x_1 - \frac{f(2,364)}{f'(2,364)} = 2,364 - \frac{3,391}{11,765} = 2,075$$

Iterasi berhenti jika
$$f(x_n) = 0 \ dan \ \Delta x \le \varepsilon \ (batas \ toleransi)$$

$$\Delta x = |x_0 - x_1| = |3 - 2,364| = 0,636$$

Buat tabel penolong sebagai berikut :

n	x_n	$f(x_n)$	$f'(x_n)$	x_{n+1}	Δx
0	$x_0 = 3$	f(3)	f'(3)	14	-
		= 14	= 22	$x_1 = 3 - {22}$	
				= 2,364	
1	x_1	3,391	11,765	$x_2 = 2,075$	3 - 2,364
	= 2,364				= 0,636
2	2,075	0,559	7,917	2,004	0,071
3	2,004	0,028	7,048	2,000	0,004
4	2,000	0	7	2,000	0,000

Lanjutkan sampai $\Delta x < \varepsilon$ (batas toleransi) maka iterasi berhenti Maka kita mendapatkan salah satu akar persamaan soal di atas adalah **x =2** (lihat tabel penolong)

Buat tabel penolong sebagai berikut :

n	x_n	$f(x_n)$	$f'(x_n)$	x_{n+1}	Δx
0	$x_0 = 3$	f(3)	f'(3)	14	-
		= 14	= 22	$x_1 = 3 - {22}$	
				= 2,364	
1	x_1	3,391	11,765	$x_2 = 2,075$	3 - 2,364
	= 2,364				= 0,636
2	2,075	0,559	7,917	2,004	0,071
3	2,004	0,028	7,048	2,000	0,004
4	2,000	0	7	2,000	0,000

Lanjutkan sampai $\Delta x < \varepsilon$ (batas toleransi) maka iterasi berhenti Maka kita mendapatkan salah satu akar persamaan soal di atas adalah **x =2** (lihat tabel penolong)

METODE SECANT

- Metode secant, persamaannya hampir dekat dengan Metode Newton Rapshon, namun yang membedakannya adalah dalam menghitung turunan fungsinya.
- Metode newton rapshon untuk mengitungnya menggunakan turunan fungsi dengan cara analitis, sedangakan metode secant menggunakan pendekatan numerik (aritmatika).

• Metode ini bekerja dengan garis bujur (secant) sesuai dengan judulnya, yang menghubungkan 2 titik kurva y = f(x), sehingga secara geometris dapat membentuk "kesebangunan segitiga".

Untuk lebih jelasnya dapat di tulis dalam bentuk rumus formula sebagai berikut :

$$x_{n+1} = x_n - \frac{f(x_n).(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

• Adapun kriteria iterasi akan berhenti jika : Harga fungsi $f(x_{n+1})$ sudah sangat kecil menuju nol atau sama dengan nol

Ilustrasi

Tentukan salah satu akar persamaan $f(x) = x^3 + x^2 - 3x - 3 = 0$ menggunakan metode *secant* dan tebakan awal $x_1 = 1 \ dan \ x_2 = 2$!

Penyelesaian:

Iterasi pertama, diambil dua nilai awal yaitu $x_1 = 1 \ dan \ x_2 = 2$ Untuk $x_1 = 1 \ maka \ f(1) = x^3 + x^2 - 3x - 3 = 1^3 + 1^2 - 3(1) - 3 = -4$ Untuk $x_2 = 2 \ maka \ f(2) = x^3 + x^2 - 3x - 3 = 2^3 + 2^2 - 3(2) - 3 = 3$

Dengan menggunakan rumus formula maka,

$$x_{n+1} = x_n - \frac{f(x_n) \cdot (x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

$$x_{2+1} = x_2 - \frac{f(x_2) \cdot (x_2 - x_{2-1})}{f(x_2) - f(x_{2-1})}$$

$$x_3 = 2 - \frac{3 \cdot (2-1)}{3 - (-4)} = 1,57142$$

Iterasi kedua menggunakan $x_2 = 2 \ dan \ x_3 = 1,5714$ Untuk $x_2 = 2 \ maka \ f(1) = x^3 + x^2 - 3x - 3 = 2^3 + 2^2 - 3(2) - 3 = 3$ Untuk $x_3 = 1,57142$ $maka \ f(1,57142) = x^3 + x^2 - 3x - 3 = 1,57142^3 + 1,57142^2 - 3(1,57142) - 3 = -1,36449$.

Dengan menggunakan rumus formula maka,

$$x_{n+1} = x_n - \frac{f(x_n) \cdot (x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

$$x_{3+1} = x_3 - \frac{f(x_3) \cdot (x_3 - x_{3-1})}{f(x_3) - f(x_{3-1})}$$

$$x_4 = 1,57142 - \frac{-1,36449 \cdot (1,57142 - 2)}{-1,36449 - 3} = 1,70540$$

Hitungan seperti prosedur di atas dilanjutkan sampai memenuhi salah satu kriteria metode secant, maka hasilnya akan terlihat seperti berikut :

\mathbf{x}_{n-1}	x _n	$f(x_{n-1})$	$f(x_n)$	x_{n+1}	$f(x_{n+1})$
$x_1 = 1$	$x_2 = 2$	-4	3	1,571143	-1,36449
$x_2 = 2$	$x_3 = 1,57142$	3	-1,36449	1,70540	-0,24774
$x_3 = 1,57142$	$x_4 = 1,70540$	-1,36449	-0,24774	1,73514	0,02925
$x_4 = 1,70540$	$x_5 = 1,73514$	-0,24774	0,02925	1,73200	-0,00051
$x_5 = 1,73514$	$x_6 = 1,73200$	0,02925	-0,00051	1,73205	0,00000

 $f(x_{n+1}) = 0$ maka iterasi berhenti, maka solusi Akar persamaanya adalah = 1,73205

Latihan

- 1. Tentukan salah satu akar dari persamaan tak linear $f(x) = x^2 5x + 6$ dengan menggunakan Metode Newton Raphson. Jika diketahui nilai awal $x_0 = 0$ dan toleransi galat relatif x adalah 0.02 serta ketelitian hingga 3 desimal.
- 2. Tentukan salah satu akar dari persamaan tak linear $f(x) = e^x 5x^2$ dengan menggunakan Metode Secant. Jika diketahui nilai awal $x_0 = 0.5$ dan $x_1 = 1$. Toleransi galat relatif x adalah 0.00001 serta ketelitian hingga 5 desimal.

TERIMA KASIH