Projection Methods & Iteration Schemes

Emile Alexandre Marin

emarin@ucdavis.edu

October 17, 2022

Re-re-revisiting the Neoclassical growth model

Consider the same model framework as last week

$$\begin{aligned} c_t^{-v} = & \mathbb{E}_t \left[\beta c_{t+1}^{-v} \alpha z_{t+1} k_{t+1}^{\alpha - 1} \right] \\ c_t + k_{t+1} = & z_t k_t^{\alpha} \\ & \ln \left(z_{t+1} \right) = & \rho \ln \left(z_t \right) + \varepsilon_{t+1} \\ & \varepsilon_{t+1} \sim \mathcal{N} \left(0, \sigma^2 \right) \\ & k_1, z_1 \text{ given} \end{aligned}$$

Re-re-revisiting the Neoclassical growth model

Consider the same model framework as last week

$$\begin{aligned} c_t^{-v} = & \mathrm{E}_t \left[\beta c_{t+1}^{-v} \alpha z_{t+1} k_{t+1}^{\alpha - 1} \right] \\ c_t + k_{t+1} = & z_t k_t^{\alpha} \\ & \ln \left(z_{t+1} \right) = & \rho \ln \left(z_t \right) + \varepsilon_{t+1} \\ & \varepsilon_{t+1} \sim \mathcal{N} \left(0, \sigma^2 \right) \\ & k_1, z_1 \text{ given} \end{aligned}$$

▶ But this time, we utilize a different solution method

True rational expectations solution

► The policy functions are given by:

$$c_{t} = c(k_{t}, z_{t})$$
$$k_{t+1} = k(k_{t}, z_{t})$$

True rational expectations solution

► The policy functions are given by:

$$c_{t} = c(k_{t}, z_{t})$$
$$k_{t+1} = k(k_{t}, z_{t})$$

Using the Euler equation (optimality):

$$e(k_t, z_t) = -c_t^{-\nu} + \operatorname{E}_t \left[\beta c_{t+1}^{-\nu} \alpha z_{t+1} k_{t+1}^{\alpha - 1} \right]$$

True rational expectations solution

► The policy functions are given by:

$$c_{t} = c(k_{t}, z_{t})$$
$$k_{t+1} = k(k_{t}, z_{t})$$

Using the Euler equation (optimality):

$$e(k_t, z_t) = -c_t^{-\nu} + \operatorname{E}_t \left[\beta c_{t+1}^{-\nu} \alpha z_{t+1} k_{t+1}^{\alpha - 1} \right]$$

* Only at the correct solution $c(k_t, z_t)$ and $k(k_t, z_t)$:

$$e(k_t, z_t) = 0 \forall k_t, z_t$$

$$c_t = c(k_t, z_t) \approx P_n(k_t, z_t; \eta_n)$$

▶ goal: solve for $P_n(k_t, z_t; \eta_n) \approx c(k_t, z_t)$

$$c_t = c(k_t, z_t) \approx P_n(k_t, z_t; \eta_n)$$

- ▶ goal: solve for $P_n(k_t, z_t; \eta_n) \approx c(k_t, z_t)$
 - $P_n(\cdot)$: from class of approximating functions (polynomials or splines)
 - ▶ *n* is fixed \Longrightarrow solve for η_n , a finite-dimensional object
 - structural parameters $(\alpha, \beta, \rho, \sigma)$ have fixed numerical values (thus not included as arguments in policy function)

$$c_t = c(k_t, z_t) \approx P_n(k_t, z_t; \eta_n)$$

- ▶ goal: solve for $P_n(k_t, z_t; \eta_n) \approx c(k_t, z_t)$
 - $P_n(\cdot)$: from class of approximating functions (polynomials or splines)
 - ▶ *n* is fixed \Longrightarrow solve for η_n , a finite-dimensional object
 - structural parameters $(\alpha, \beta, \rho, \sigma)$ have fixed numerical values (thus not included as arguments in policy function)
- \triangleright $k(k_t, z_t)$ implicitly defined by budget constraint

$$c_t = c(k_t, z_t) \approx P_n(k_t, z_t; \eta_n)$$

- ▶ goal: solve for $P_n(k_t, z_t; \eta_n) \approx c(k_t, z_t)$
 - $P_n(\cdot)$: from class of approximating functions (polynomials or splines)
 - ▶ *n* is fixed \Longrightarrow solve for η_n , a finite-dimensional object
 - structural parameters $(\alpha, \beta, \rho, \sigma)$ have fixed numerical values (thus not included as arguments in policy function)
- \blacktriangleright $k(k_t, z_t)$ implicitly defined by budget constraint
- One first-order equation left, namely Euler equation
 - NB: this is a different equation at each point in the state space ⇒ plenty of equations to determine N + 1 coefficients

Peeling the Euler equation

At M grid points $\{k_i, z_i\}$ with $M \ge N_n$ we would like the following to equal zero:

$$e(k_{i}, z_{i}; \eta_{n}) = -P_{n}(k_{i}, z_{i}; \eta_{n})^{-v} + \alpha\beta \times$$

$$E\begin{bmatrix} E \\ P_{n}(\{\mathbf{k'}\}, \{\mathbf{z'}\}; \eta_{n})^{-v} \times \\ \{\mathbf{z'}\} \times \\ (\{\mathbf{k'}\})^{\alpha-1} \end{bmatrix}$$

Peeling the Euler equation

At M grid points $\{k_i, z_i\}$ with $M \ge N_n$ we would like the following to equal zero:

$$e(k_{i}, z_{i}; \eta_{n}) = -P_{n}(k_{i}, z_{i}; \eta_{n})^{-v} + \alpha\beta \times$$

$$E\begin{bmatrix} E \\ P_{n}(\{\mathbf{k'}\}, \{\mathbf{z'}\}; \eta_{n})^{-v} \times \\ \{\mathbf{z'}\} \times \\ (\{\mathbf{k'}\})^{\alpha-1} \end{bmatrix}$$

- ▶ Goal: \forall grid points get an expression with η_n coefficients as only unknown
- Note that k_i and z_i are known

Expressing Euler as function $\{\eta_n\}$

$$E\begin{bmatrix} e(k_{i}, z_{i}; \eta_{n}) = -P_{n}(k_{i}, z_{i}; \eta_{n})^{-v} + \\ \alpha \beta \times \\ P_{n}(z_{i}k_{i}^{\alpha} - P_{n}(k_{i}, z_{i}; \eta_{n}), \exp \{\rho \ln(z_{i}) + \varepsilon'\}; \eta_{n})^{-v} \times \\ \exp \{\rho \ln(z_{i}) + \varepsilon'\} \times \\ (z_{i}k_{i}^{\alpha} - P_{n}(k_{i}, z_{i}; \eta_{n}))^{\alpha - 1} \end{bmatrix}$$

Expressing Euler as function $\{\eta_n\}$

$$E\begin{bmatrix} e(k_{i}, z_{i}; \eta_{n}) = -P_{n}(k_{i}, z_{i}; \eta_{n})^{-v} + \\ \alpha \beta \times \\ P_{n}(z_{i}k_{i}^{\alpha} - P_{n}(k_{i}, z_{i}; \eta_{n}), \exp \{\rho \ln (z_{i}) + \varepsilon'\}; \eta_{n})^{-v} \times \\ \exp \{\rho \ln (z_{i}) + \varepsilon'\} \times \\ (z_{i}k_{i}^{\alpha} - P_{n}(k_{i}, z_{i}; \eta_{n}))^{\alpha - 1} \end{bmatrix}$$

Still need to deal with expectations operator:

$$e(k_{i}, z_{i}; \eta_{n}) = -P_{n}(k_{i}, z_{i}; \eta_{n})^{-v} + \alpha \beta \times$$

$$P_{n}(z_{i}k_{i}^{\alpha} - P_{n}(k_{i}, z_{i}; \eta_{n}), \exp \{\rho \ln (z_{i}) + \sqrt{2}\sigma \zeta_{j}\}; \eta_{n})^{-v} \times$$

$$\exp \{\rho \ln (z_{i}) + \sqrt{2}\sigma \zeta_{j}\} \times$$

$$(z_{i}k_{i}^{\alpha} - P_{n}(k_{i}, z_{i}; \eta_{n}))^{\alpha-1} (\omega_{j}/\sqrt{\pi})$$

where $\{\omega_j,\zeta_j\}_{j=1}^J$ are the Gauss-Hermite quadrature nodes

Finding coefficients $\{\eta_n\}$

Reduced infinite-dimensional problem (unknown function) to finding ${\it N}$ scalar values

* $\{\eta_n\}$ chosen such that error terms are as small as possible.

Finding coefficients $\{\eta_n\}$

Reduced infinite-dimensional problem (unknown function) to finding ${\it N}$ scalar values

- * $\{\eta_n\}$ chosen such that error terms are as small as possible.
- ▶ True rational expect. solution gives zero error term $\forall (k_i, z_i)$
- ▶ Collocation $(M = N_n)$: Use equation solver to get errors exactly equal to zero on grid
- ▶ Galerkin $(M > N_n)$: Use minimization routine (and possibly smart weighting of error terms)

Solver vs. ilteration schemes

- ▶ In principle, can find coefficients by solving simultaneous equations (or minimization scheme).
- ▶ Instead, we will use iteration scheme (P_n appears on LHS and RHS of Euler):
 - 1. fixed-point iteration
 - 2. time iteration

Solver vs. ilteration schemes

- ▶ In principle, can find coefficients by solving simultaneous equations (or minimization scheme).
- ▶ Instead, we will use iteration scheme (P_n appears on LHS and RHS of Euler):
 - 1. fixed-point iteration
 - 2. time iteration
- + can deal with many coefficients
- + some iteration schemes are guaranteed to converge under reg. cond.
- + less of a black box
- does not use information on how best to update, e.g. like Newton Methods.

Iteration: Start with a grid

- Construct a grid with nodes for k and z
- ▶ At the nodes construct the basis functions of $P_n(k, z; \eta_n)$.
- ▶ For example, if

$$P_n(k, z; \eta_n) = \eta_{0,n} + \eta_{k,n}k + \eta_{z,n}z + \eta_{kk}k^2 + \eta_{kz}kz + \eta_{zz}z^2$$

then construct the matrix (where subscripts denote grid numbers)

$$X = \begin{bmatrix} 1 & k_1 & z_1 & k_1^2 & k_1 z_1 & z_1^2 \\ 1 & k_2 & z_2 & k_2^2 & k_2 z_2 & z_2^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & k_M & z_M & k_M^2 & k_M z_M & z_M^2 \end{bmatrix}$$

and calculate $(X'X)^{-1}X'$

Fixed Point Iteration Cookbook

The value of η_n used in the q^{th} iteration is referred to as η_n^q . At each grid point:

- 1. Calculate the RHS of the Euler equation using the latest value for η_n , i.e., η_n^{q-1}
- 2. Use RHS to calculate c_i , value for c at i^{th} grid point
- 3. Use values for c_i to obtain an estimate for η_n , denoted by $\hat{\eta}_n^q$
 - Polynomial: run a regression to get $\hat{\eta}_n^q$
 - **>** Spline: the values of c at the nodes are the new values of η_n
- 4. Update coefficients slowly: $\eta_n^q = \lambda \hat{\eta}_n^q + (1 \lambda) \eta_n^{q-1}$

Updating coefficients (1/2)

- ightharpoonup Calculate current consumption values implied by η_n^{j-1} at each grid point
- lacksquare Use η_n^{q-1} to calculate $k'=z_ik_i^{lpha}-P_n\left(k_i,z_i;\eta_n^{q-1}
 ight)$
- Use η_n^{q-1} to calculate $c' = P_n\left(k', z'; \eta_n^{q-1}\right)$
- ▶ Then, get c_i from:

$$(c_{i})^{-v} = P_{n}\left(z_{i}k_{i}^{\alpha} - P_{n}\left(k_{i}, z_{i}; \eta_{n}^{q-1}\right), \exp\left\{\rho \ln\left(z_{i}\right) + \sqrt{2}\sigma\zeta_{j}\right\}; \eta_{n}^{q-1}\right)^{-v} \times \exp\left\{\rho \ln\left(z_{i}\right) + \sqrt{2}\sigma\zeta_{j}\right\} \times \left(z_{i}k_{i}^{\alpha} - P_{n}\left(k_{i}, z_{i}; \eta_{n}^{q-1}\right)\right)^{\alpha-1}\left(\omega_{j}/\sqrt{\pi}\right)$$

Updating coefficient (2/2)

Step 2: Get new estimate for η_n by running a projection step

$$\blacktriangleright \text{ Let } Y = [c_1, c_2, \cdots, c_M]'$$

$$P_n(k, z; \eta_n) = \eta_{0,n} + \eta_{k,n}k + \eta_{z,n}z + \eta_{kk}k^2 + \eta_{kz}kz + \eta_{zz}z^2$$

then

$$\hat{\eta}_n^q = \left(X'X \right)^{-1} X'Y$$

$$P_n(k,z;\eta_n) = \exp\left(\eta_{0,n} + \eta_{k,n}k + \eta_{z,n}z + \eta_{kk}k^2 + \eta_{kz}kz + \eta_{zz}z^2\right)$$

then

$$\widehat{\eta}_n^q = (X'X)^{-1} X' \underbrace{\ln}(Y)$$

$$\eta_n^q = \lambda \widehat{\eta}_n^q + (1 - \lambda) \eta_n^{q-1}$$
 for $0 < \lambda \le 1$

Convergence and Fixed Point Iteration

- Fixed-point iteration does not always converge
- ightharpoonup Choosing a lower value of λ :
 - convergence more likely
 - slows down algorithm if lower value not needed for convergence

Convergence and Fixed Point Iteration

- Fixed-point iteration does not always converge
- ightharpoonup Choosing a lower value of λ :
 - convergence more likely
 - slows down algorithm if lower value not needed for convergence

Alternative is time iteration

Time Iteration

- ▶ At each grid point use η_n^{q-1} only for next period's choices
- ► Again solve for *c_i* at each grid point
 - * this is now a bit trickier (non-linear problem)
- ► Get n_n^q as with fixed-point iteration
- guaranteed to converge without dampening (under regularity conditions)

Time Iteration

- ▶ At each grid point use η_n^{q-1} only for next period's choices
- ► Again solve for c_i at each grid point
 - * this is now a bit trickier (non-linear problem)
- ▶ Get n_n^q as with fixed-point iteration
- guaranteed to converge without dampening (under regularity conditions)

Solve c_i from following non-linear equation

$$(c_i)^{-v} = \sum_{j=1}^{J} \begin{bmatrix} \alpha\beta \times \\ P_n \left(z_i k_i^{\alpha} - c_i, \exp\left\{\rho \ln\left(z_i\right) + \sqrt{2}\sigma\zeta_j\right\}; \eta_n^{q-1} \right)^{-v} \times \\ \exp\left\{\rho \ln\left(z_i\right) + \sqrt{2}\sigma\zeta_j\right\} \times \\ \left(z_i k_i^{\alpha} - c_i \right) \right)^{\alpha - 1} \\ \omega_j / \sqrt{\pi} \end{bmatrix}$$

Fixed-point versus time iteration

Fixed-point iteration uses η_n^{q-1} for all terms on the RHS, i.e. tomorrow's consumption choice and today's capital choice

Fixed-point versus time iteration

- Fixed-point iteration uses η_n^{q-1} for all terms on the RHS, i.e. tomorrow's consumption choice and today's capital choice
- Time iteration uses η_n^{q-1} only to evaluate next period's consumption

Fixed-point versus time iteration

- Fixed-point iteration uses η_n^{q-1} for all terms on the RHS, i.e. tomorrow's consumption choice and today's capital choice
- Time iteration uses η_n^{q-1} only to evaluate next period's consumption
- ► The structure of time iteration mimics the choice of value function iteration:
 - next period's behavior described by previous solution for value function
 - Bellman equation used to solve for choice of c and k simult.

Endogenous grid points

- ightharpoonup Simple idea: construct grid for k' instead of a grid for k
- Instead of solving for the choice k' given k, we now solve for the value of k that would have led to the choice k'

Endogenous grid points

- ightharpoonup Simple idea: construct grid for k' instead of a grid for k
- ▶ Instead of solving for the choice k' given k, we now solve for the value of k that would have led to the choice k'

In both cases you end up at each grid point with a set of values for k and a set of corresponding values for k'.

Endogenous grid points

- ightharpoonup Simple idea: construct grid for k' instead of a grid for k
- ► Instead of solving for the choice k' given k, we now solve for the value of k that would have led to the choice k'

In both cases you end up at each grid point with a set of values for k and a set of corresponding values for k'.

- ➤ You can use endogenous grid points both with fixed-point and with time iteration
- ► The added value with time iteration lies in getting rid of the non-linear problem of solving for today's choices

Endogenous grid points and time iteration

- ▶ Time iteration \implies use η_n^{q-1} for tomorrow's choices
- use η_n^q only for today's choices (which show up on both sides of the policy function

Then, get ci from:

$$(c_i)^{-\nu} = \sum_{j=1}^{J} \begin{bmatrix} \alpha\beta \times \\ P_n\left(k_i', \exp\left\{\rho\ln\left(z_i\right) + \sqrt{2}\sigma\zeta_j\right\}; \eta_n^{q-1}\right)^{-\nu} \times \\ \exp\left\{\rho\ln\left(z_i\right) + \sqrt{2}\sigma\zeta_j\right\} \times \\ (k_i')^{\alpha-1}\left(\omega_j/\sqrt{\pi}\right) \end{bmatrix}$$

and k_i from

$$k_i' + c_i = z_i k^{\alpha}$$

When can't you use projection methods?

- Not all solutions to optimization problems can be characterized by first-order conditions
- e.g. when objective function is not concave or budget set not convex

When can't you use projection methods?

- Not all solutions to optimization problems can be characterized by first-order conditions
- e.g. when objective function is not concave or budget set not convex
- ⇒ use Value Function.

When can't you use projection methods?

- Not all solutions to optimization problems can be characterized by first-order conditions
- e.g. when objective function is not concave or budget set not convex
- ⇒ use Value Function.

More challenges:

- Constructing a grid where all calculations are well defined may be tough
 - e.g., not get negative consumption/unemployment
- calculations should be possible also on path towards solution
- ⇒ Endogenize grid using simulations (Parameterized expectations)

Where to from here?

- introduce idiosyncratic (agent specific) uncertainty (e.g. employment risk) – Aiyagari
 - $* \implies$ distribution of assets becomes object of interest
 - questions of wealth inequality
 - distribution is constant
- allow for aggregate uncertainty (e.g. productivity risk) Krusell-Smith and others
 - st prices now depend on distribution \implies individual policy function very high dimensional
 - Assume prices only depend on mean
 - Generate K' distribution using simulation of individual policy rules (Approximate aggregation)

References

- ► Heer, B., and A. Maussner, 2009, Dynamic General Equilibrium Modeling.
- ▶ Judd, K. L., 1998, Numerical Methods in Economics.
- ▶ Rendahl, P., Economic Journal 2015, Inequality constraints in recursive economies.
 - shows that time-iteration converges even in the presence of inequality constraints
- Wouter den Haan Notes http://www.wouterdenhaan.com/notes