Skew-Frobenius 写像を利用した超楕円曲線上の整数倍算について

IISEC 小崎 俊二, 松尾和人

2008年7月5日

Frobenius 写像を利用した高速な超楕円曲線暗号系曲線 C/\mathbb{F}_p に対する Jacobian $\mathbb{J}_C(\mathbb{F}_{p^n})$ の Frobenius 写像 ϕ_p を利用

- ullet ϕ_p は群演算と比較して効率的に計算可能
- ullet $\mathbb{Z}[\phi_p]\subset \operatorname{End}(\mathbb{J}_C)$ における整数の ϕ_p 展開整数倍算における群演算量の削減
- ullet $\mathbb{J}_C(\mathbb{F}_p)\subset \mathbb{J}_C(\mathbb{F}_{p^n})$ より、 $\sharp(\mathbb{J}_C(\mathbb{F}_{p^n})/\mathbb{J}_C(\mathbb{F}_p))pprox p^{g(n-1)}$
- $ullet g \geq 2$, p のサイズが大きい場合 拡大次数 n が小 $\Rightarrow \mathbb{J}_C(\mathbb{F}_p)$ によるロス大

超楕円曲線の skew-Frobenius 写像

楕円曲線の skew-Frobenius 写像 [lijima, Matsuo, Chao and Tsujii SCIS2002]

$$C/\mathbb{F}_p:Y^2=F(X)$$
 の \mathbb{F}_{p^n} 上 2 次ツイスト, $c\in\mathbb{F}_{p^n}$ の平方非剰余:

$$C_t/\mathbb{F}_{p^n}: Y^2 = F_t(X), \; F_t(X) = c^{2g+1}F(c^{-1}X)$$

Skew-Frobenius 写像:
$$\tilde{\phi}_p: \mathbb{J}_{C_t} \xrightarrow{\sim} \mathbb{J}_C \xrightarrow{\sim} \mathbb{J}_C \xrightarrow{\sim} \mathbb{J}_C \xrightarrow{\sim} \mathbb{J}_{C_t}$$

$$(U,V)\mapsto (ar U,ar V)$$
 ; \mathbb{J}_{C_t} の Mumford 表現

$$\begin{cases} U = X^{\ell} + \sum_{i=0}^{\ell-1} u_i X^i \\ V = \sum_{i=0}^k v_i X^i \end{cases} \mapsto \begin{cases} \bar{U} = X^{\ell} + \sum_{i=0}^{\ell-1} c^{(1-p)(\ell-i)} u_i^p X^i \\ \bar{V} = \sum_{i=0}^k c^{(1-p)\left(\frac{2g+1}{2}-i\right)} v_i^p X^i \end{cases}$$

- ullet $ilde{\phi}_p$ は効率的に計算可能 (高々2g 回のp 乗算と \mathbb{F}_{p^n} 乗算)
- ullet $ilde{\phi}_p$ は ϕ_p と同一の特性多項式を満足
- ullet $n=2^i$ の場合に $oxtimes_{C_t}(\mathbb{F}_{p^n})$ が素数となる C_t が存在

Skew-Frobenius 展開

整数 $kpprox p^{ng}$ に対する $ilde{\phi}_p$ 展開:

$$k\mathcal{D} = \sum_{i=0}^{n-1} k_i ilde{\phi}_p^i(\mathcal{D}), \; \max_{0 \leq i < n} \left(\lceil |k_i|
ceil
ight) pprox p^g$$

$$\mathcal{D}\in\mathbb{J}_{C_t}(\mathbb{F}_{p^n})$$
 に対して、 $ilde{\phi}_p^n(\mathcal{D})=-\mathcal{D}$

例:
$$g=3$$
, $n=2$, $p=2^7-1$
$$\tilde{\phi}_p^6-13\tilde{\phi}_p^5-55\tilde{\phi}_p^4+2003\tilde{\phi}_p^3-6985\tilde{\phi}_p^2-209677\tilde{\phi}_p+2048383=0$$

$$3457660716925\mathcal{D} = 1892989\mathcal{D} - 2091980\phi_p(\mathcal{D})$$

Skew-Frobenius 展開を利用した整数倍算

$$\mathcal{D}$$
, $ilde{\phi}_p^1(\mathcal{D})$, ..., $ilde{\phi}_p^{n-1}(\mathcal{D})$ を独立した n 個の元として、

$$k\mathcal{D}=k_0\mathcal{D}+k_1 ilde{\phi}_p^1(\mathcal{D})+\cdots+k_{n-1} ilde{\phi}_p^{n-1}(\mathcal{D})$$

 (k_0,k_1,\ldots,k_{n-1}) について multi-exponentiation を適用して計算

- Interleave 法 [Möller SAC 2001]
 - + Width w Non Adjacent Form (NAF $_w$) [Miyaji, Ono and Cohen ICICS 1997, Solinas CRYPTO 1997]
- Simultaneous 法 [Yen, Laih and Lenstra IEE Proc. Comput. Digit. Tech 1994, Straus Amer. Math. Montly 1964]
 - + Colexicographically Minimal Integer Representation (CMR $_w$) [Heuberger and Muir J. Math. Cryptol. 2007]
- n=2,4、skew-Frobenius 展開の整数倍算に対する事前計算量を削減 Interleave 法と simultaneous 法の群演算量を評価・比較

Interleave 法

```
Input: (k_0,\ldots,k_{n-1})\in\mathbb{Z}^n, \mathcal{D}_0,\ldots,\mathcal{D}_{n-1}\in\mathbb{J}_{C_t}(\mathbb{F}_{p^n}), w\in\mathbb{N}_{>1}
Output: \sum_{i=0}^{n-1} k_i \mathcal{D}_i \in \mathbb{J}_{C_t}(\mathbb{F}_{p^n})
 1: (k_{i,i})_{0 \le i \le \ell_i} \leftarrow k_iの \mathsf{NAF}_w 表現, \ell \leftarrow \max_{0 \le i \le n-1} \ell_i
 2: \{\mathcal{D}_0, 3\mathcal{D}_0, \dots, (2^{(w-1)}-1)\mathcal{D}_0, \dots, \mathcal{D}_{n-1}, \dots, (2^{(w-1)}-1)\mathcal{D}_{n-1}\}
 3: \mathcal{D}' \leftarrow \operatorname{sign}(k_{m,\ell-1})|k_{m,\ell-1}|\mathcal{D}_m, m s.t. k_{i,\ell-1}=0, i < m
  4: for i=m to n-1 do
  5: if k_{i,\ell-1} \neq 0 then
             \mathcal{D}' \leftarrow \mathcal{D}' + \mathsf{sign}(k_{i,\ell-1})(|k_{i,\ell-1}|\mathcal{D}_i) / * 事前計算利用 */
  7: for j=\ell-2 down to 0 do
 8: \mathcal{D}' \leftarrow 2\mathcal{D}'
  9: for i=0 to n-1 do
              if k_{i,j} \neq 0 then
10:
                  \mathcal{D}' \leftarrow \mathcal{D}' + \operatorname{sign}(k_{i,j})(|k_{i,j}|\mathcal{D}_i) / * 事前計算利用 */
11:
12: return \mathcal{D}'
```

例 -Interleave 法-

$$3457660716925\mathcal{D} = 1892989\mathcal{D} - 2091980 ilde{\phi}_p(\mathcal{D}), \ w = 4$$

$$\begin{pmatrix} 1892989 \\ -2091980 \end{pmatrix} = \begin{pmatrix} (00070000700005000000\overline{3})_{\mathsf{NAF}_4} \\ (\overline{1}00000000050001000\overline{3}00)_{\mathsf{NAF}_4} \end{pmatrix}$$

事前計算:

$$\left\{\mathcal{D}, 3\mathcal{D}, 5\mathcal{D}, 7\mathcal{D}, \tilde{\phi}_p(\mathcal{D}), 3\tilde{\phi}_p(\mathcal{D}), 5\tilde{\phi}_p(\mathcal{D}), 7\tilde{\phi}_p(\mathcal{D})
ight\}$$

メイン:

$$2\cdot 2\left(\left(\cdots\left(2\cdot 2\cdot 2\left(- ilde{\phi}_p(\mathcal{D})
ight)+7\mathcal{D}
ight)\cdots
ight)-3 ilde{\phi}_p(\mathcal{D})
ight)-3\mathcal{D}$$

Interleave 法の群演算量

$$m ilde{\phi}_p^i(\mathcal{D}) = ilde{\phi}_p^i(m\mathcal{D})$$
 より、 $m ilde{\phi}_p^i(\mathcal{D})~(1 \leq i < n)$ は事前計算不要 $\{\mathcal{D}, 3\mathcal{D}, \ldots, (2^{w-1}-1)\mathcal{D}, \ldots, ilde{\phi}_p^{n-1}(\mathcal{D}), \ldots, (2^{w-1}-1) ilde{\phi}_p^{n-1}(\mathcal{D})\}$ $o \{\mathcal{D}, 3\mathcal{D}, \ldots, (2^{w-1}-1)\mathcal{D}\}$

事前計算: 2倍算1回、加算 $2^{w-1}-2$ 回

 ℓ ビット整数の NAF_w 表現に対する平均 Hamming weight は $\frac{\ell}{w+1}$ メイン:加算 $\frac{n\ell-1}{w+1}$ 回、2 倍算 $\ell-1$ 回

Simultaneous 法

Input: $(k_0,\ldots,k_{n-1})\in\mathbb{Z}^n$, $\mathcal{D}_0,\ldots,\mathcal{D}_{n-1}\in\mathbb{J}_{C_t}(\mathbb{F}_{p^n})$, $w\in\mathbb{N}_{>1}$

Output: $\sum_{i=0}^{n-1} k_i \mathcal{D}_i \in \mathbb{J}_{C_t}(\mathbb{F}_{p^n})$

- 1: $((k_{i,j})_{0 \leq j < \ell})_{0 \leq i < n} \leftarrow (k_i)_{0 \leq i < n}$ の CMR_w 表現
 - /* 事前計算 */
- 2: $\left\{\sum_{m\leq i< n}d_i\mathcal{D}_i\mid 0\leq m< n-1,\; |d_i|<2^{w-1},\; d_m>0
 ight\}$ /* メイン */
- 3: $\mathcal{D}' \leftarrow \mathsf{sign}(k_{m,\ell-1}) \sum_{m < i < n} k_{i,\ell-1} \mathcal{D}_0$
- 4: for $j=\ell-2$ down to 0 do
- 5: $\mathcal{D}' \leftarrow 2\mathcal{D}'$
- 6: if $(k_{0,j}, \ldots, k_{n-1,j}) \neq (0, \ldots, 0)$ then
- 7: $\mathcal{D}' \leftarrow \mathcal{D}' + \mathsf{sign}(k_{m,j}) \sum_{m < i < n} k_{i,j} \mathcal{D}_i / *$ 事前計算利用 */
- 8: return \mathcal{D}'

例 -Simultaneous 法-

$$3457660716925\mathcal{D} = 1892989\mathcal{D} - 2091980 \phi_p(\mathcal{D}),$$
 $w=3$

$$\begin{pmatrix} 1892989 \\ -2091980 \end{pmatrix} = \begin{pmatrix} 10000\overline{3}000\overline{2}001002000\overline{1}01 \\ \overline{1}000000001002001000\overline{3}00 \end{pmatrix}_{\mathsf{CMR}_3}$$

事前計算:
$$\left\{ \begin{array}{l} \mathcal{D}, 2\mathcal{D}, 3\mathcal{D}, \tilde{\phi}_p(\mathcal{D}), 2\tilde{\phi}_p(\mathcal{D}), 3\tilde{\phi}_p(\mathcal{D}), \\ \mathcal{D} \pm \tilde{\phi}_p(\mathcal{D}), \mathcal{D} \pm 2\tilde{\phi}_p(\mathcal{D}), \mathcal{D} \pm 3\tilde{\phi}_p(\mathcal{D}), \\ \dots, 3\mathcal{D} \pm \tilde{\phi}_p(\mathcal{D}), 3\mathcal{D} \pm 2\tilde{\phi}_p(\mathcal{D}), 3\mathcal{D} \pm 3\tilde{\phi}_p(\mathcal{D}) \end{array} \right\}$$

メイン:

$$2\cdot 2\left(\left(\cdots\left(\mathcal{D}- ilde{\phi}_p(\mathcal{D})
ight)\cdots
ight)-\left(\mathcal{D}+3 ilde{\phi}_p(\mathcal{D})
ight)
ight)+\mathcal{D}$$

Simultaneous 法の事前計算量削減 n=2

$$ilde{\phi}_p^2(\mathcal{D}) = -\mathcal{D}$$
を利用

$$egin{aligned} i\mathcal{D}+j ilde{\phi}_p(\mathcal{D}) & \stackrel{ ilde{\phi}_p}{\longmapsto} & -j\mathcal{D}+i ilde{\phi}_p(\mathcal{D}), \ -\updownarrow & -\updownarrow & -\updownarrow \ -i\mathcal{D}-j ilde{\phi}_p(\mathcal{D}) & \stackrel{ ilde{\phi}_p}{\longmapsto} & j\mathcal{D}-i ilde{\phi}_p(\mathcal{D}) \end{aligned}$$

 $0\leq i,j\leq 2^{w-1}-1$ に対する $i\mathcal{D}+j ilde{\phi}_p(\mathcal{D})$ を事前計算すれば十分 $\{\mathcal{D},2\mathcal{D},\ldots,(2^{w-1}-1)\mathcal{D}\}$: 加算 $2^{w-1}-2$ 回 $\cup\left\{i\mathcal{D}+ ilde{\phi}_p(j\mathcal{D})\mid 1\leq i,j\leq 2^{w-1}-1
ight\}$: 加算 $(2^{w-1}-1)^2$ 回

事前計算量: 加算 $(2^{w-1})^2 - 2^{w-1} - 1$ 回

メイン: CMR_w の平均 joint Hamming Weight を利用して加算回数を評価

整数倍算に要する群演算回数 n=2

	事前計算		メイン		
	加算	2倍算	加算	2倍算	
Inter.	$2^{w-2}-1$	1	$\frac{2\ell-1}{w+1}$	$\ell-1$	
Simul.	$2^{2w-2}-2^{w-1}-1$	0	$rac{(3 \cdot 2^w + 4)(\ell - 1)}{3w2^w + 2^w + 4w - 4}$	$\ell-1$	

Simultaneous 法の事前計算量削減 n=4

$$ilde{\phi}_p^4(\mathcal{D}) = -\mathcal{D}$$
 を利用、 $i\mathcal{D} + j ilde{\phi}_p(\mathcal{D}) + k ilde{\phi}_p^2(\mathcal{D}) + l ilde{\phi}_p^3(\mathcal{D})$, $-2^{w-1} < i,j,k,l < 2^{w-1}$

$$egin{array}{c} \pm \left(egin{array}{c} i \ j \ k \end{array}
ight) \stackrel{ ilde{\phi}_p}{\longmapsto} \pm \left(egin{array}{c} -l \ i \ j \end{array}
ight) \stackrel{ ilde{\phi}_p}{\longmapsto} \pm \left(egin{array}{c} -j \ -l \ i \end{array}
ight) \ \stackrel{ ilde{\phi}_p}{\longmapsto} \pm \left(egin{array}{c} -j \ -k \ -l \ i \end{array}
ight) \end{array}$$

事前計算: 加算 $\frac{1}{8}((2^w-1)^4-1)-1$ 回

メイン: CMR_w の平均 joint Hamming Weight を利用して加算回数を評価

整数倍算に要する群演算回数 n=4

	事前計算		メイン	
	加算	倍算	加算	倍算
Inter.	$(2^{w-2}-1)$	1	$\frac{4\ell-1}{w+1}$	$oxed{\ell-1}$
Simul.	$\frac{1}{8}((2^w-1)^4-9)$	0	·	$\ell-1$

cf. http://www.opt.math.tu-graz.ac.at/~cheub/publications/colexi/Expectation_d_4_l_odd_u_odd.txt を利用

パラメータ設定

g=3 の場合、[Nagao JJIAM 2007, Gaudry, Thomé, Thériault and Diem Math. Comp. 2007] の Double large prime attack を考慮

		$oldsymbol{g}$		
		2	3	
$m{k}$	160 ビット	$n=2$, $\log_2 p=40$		
		$n=4$, $\log_2 p=20$	$n=4$, $\log_2 p=15$	
	224 ビット	$n=2$, $\log_2 p=56$		
		$n=4$, $\log_2 p=28$	$n=4$, $\log_2 p=21$	

 $\ell = \log_2 p^g$ として群演算量を評価

k: 160 ビット, g=2 の群演算回数

		事前	前計算	メイン		合計
		加算	2倍算	加算	2倍算	
	Interleave	8		105.5		113.5
n=2	w=5	7	1	26.5	79	113.3
	Simultaneous	11		104.1		115.1
	w=3	11	0	25.1	79	113.1
	Interleave		8	6	5.5	73.5
n=4	w=5	7	1	26.5	39	13.3
16 — 4	Simultaneous	9		64.1		73.1
	w=2	9	0	25.1	39	13.1

k: 160 ビットに対する整数倍算の群演算回数

		$oldsymbol{g}$	
		2	3
m-2	Interleave $w=5$	113.5	126.8
n=2	Simultaneous $w=3$	115.1	128.3
n=4	Interleave $w=5$	73.5	81.8
	Simultaneous $w=2$	73.1	81.3

kに対して NAF_w 表現を利用した場合の整数倍算の群演算回数: 193.5

k: 224 ビットに対する整数倍算の群演算回数

		\boldsymbol{g}	
		2	3
m - 2	Interleave $w=5$	156.2	174.8
n=2	Simultaneous $w=3$	157.3	175.8
n=4	Interleave $w=5$	100.2	111.8
	Simultaneous $w=2$	99.3	110.8

kに対して NAF_w 表現を利用した場合の整数倍算の群演算回数: 268.2

まとめ

- 拡大次数 n=2,4 に対する Interleave 法と Simultaneous 法それぞれ の事前計算量を skew-Frobenius 写像の性質を利用して削減
- Interleave 法と Simultaneous 法それぞれについて最適なウィンドウ幅 w に対する整数倍算の群演算量を評価
- k: 160 ビット,224 ビットに対して、Interleave 法と Simultaneous 法 は同程度の群演算量