# TINSTITUT DES HAUTES ÉTUDES SCIENTIFIQUES



SUR LES STRUCTURES BORÉLIENNES DU SPECTRE D'UNE C\*-ALGÈBRE

OPÉRATEURS DE RANG FINI DANS LES REPRÉSENTATIONS UNITAIRES

par Jacques DIXMIER

INTEGRAL POINTS ON CURVES

by Serge LANG

1960

Les Publications Mathématiques de l'Institut des Hautes Études Scientifiques paraissent par fascicules isolés, de façon non périodique et à des prix variables. Chaque fascicule peut être acheté séparément. Des conditions spéciales de souscription seront offertes pour l'ensemble des fascicules publiés chaque année.

RÉDACTION

Les manuscrits destinés à la publication (dactylographiés, double interligne, recto seul) doivent être envoyés à M. Jean Dieudonné, Professeur à l'Institut des Hautes Études Scientifiques, 5, Rond-Point Bugeaud, Paris (16e) Ils peuvent être rédigés dans l'une des langues suivantes : français, anglais, allemand, russe. L'auteur doit conserver une copie complète du manuscrit.

#### Administration

Toutes les communications relatives à la diffusion des *Publications Mathématiques* doivent être adressées aux Presses Universitaires de France, 108, Boulevard Saint-Germain, Paris (6e)

The Publications Mathématiques (Mathematical Publications)

of the Institut des Hautes Études Scientifiques (Institute for Advanced Scientific Studies) are published at irregular intervals and at different prices. Each issue may be bought separately. Special terms will be offered to yearly subscribers.

Manuscripts for publication (typewritten, double spacing, one side only) are to be sent to M. Jean Dieudonné, Professeur à l'Institut des Hautes Études Scientifiques, 5, Rond-Point Bugeaud, Paris (16e) They may be written in any of the following languages: French, English, German, Russian. The author must keep one complete copy of his manuscript.

All communications concerning the distribution of the « Mathematical Publications » must be addressed to the Presses Universitaires de France, 108, Boulevard Saint-Germain, Paris (6e)

Die Publications Mathématiques (Mathematische Veröffentlichungen) herausgegeben vom Institut des Hautes Études Scientifiques (Institut für vorgeschrittene wissenschaftliche Studien)

erscheinen in zwangloser Folge in einzelnen Heften zu verschiedenen Preisen. Jedes Heft ist einzeln erhältlich. Personen, die die gesamten jährlichen Ausgaben bestellen, erhalten besondere Vergünstigungen.

Die zur Veröffentlichung bestimmten Manuskripte (Schreibmaschinekopie, nur einseitig beschrieben, mit doppeltem Zwischenraum) sind zu senden an

M. Jean Dieudonné, Professeur à l'Institut des Hautes Études Scientifiques, 5, Rond-Point Bugeaud, Paris (16<sup>e</sup>) Sie können in einer der folgenden Sprachen verfasst werden: französisch, englisch, deutsch, russisch. Der Verfasser muss eine vollständige Durchschrift seines Manuskriptes aufbewahren.

Alle die Verbreitung der « Publications Mathématiques » betreffenden Mitteilungen sind zu senden an : Presses Universitaires de France, 108, Boulevard Saint-Germain, Paris (6e) PUBLICATIONS
MATHÉMATIQUES
Nº 6



# INSTITUT DES HAUTES ÉTUDES SCIENTIFIQUES



SUR LES STRUCTURES BORÉLIENNES DU SPECTRE D'UNE C\*-ALGÈBRE (p. 5 à 11)

OPÉRATEURS DE RANG FINI DANS LES REPRÉSENTATIONS UNITAIRES (p. 13 à 25)

par Jacques DIXMIER

## INTEGRAL POINTS ON CURVES

(p. 27 à 43)

by Serge LANG

# 1960

# PUBLICATIONS MATHÉMATIQUES, N° 6 5, ROND-POINT BUGEAUD — PARIS (XVI°)

DÉPOT LÉGAL

1<sup>re</sup> édition .. .. 4<sup>e</sup> trimestre 1960

TOUS DROITS réservés pour tous pays

© 1960, Institut des Hautes Études Scientifiques

# SUR LES STRUCTURES BORÉLIENNES DU SPECTRE D'UNE C\*-ALGÈBRE

#### par JACQUES DIXMIER

Dans la classification des  $C^*$ -algèbres, on est amené à étudier certaines catégories de  $C^*$ -algèbres particulièrement intéressantes :

- 1) Les GCR-algèbres au sens de Kaplansky [6], autrement dit les C\*-algèbres admettant une suite de composition à quotients CCR;
- 2) Les C\*-algèbres A dont le spectre  $\widehat{A}$  (ensemble des classes de représentations irréductibles de A muni d'une certaine topologie, cf. [4]) est un  $T_0$ -espace ;
- 3) Les C\*-algèbres A de spectre lisse (= smooth dual, cf. [9]), c'est-à-dire telles que la structure borélienne définie par Mackey sur soit dénombrablement séparée;
- 4) Les C\*-algèbres de type I, c'est-à-dire celles dont toutes les représentations factorielles sont de type I.

Limitons-nous désormais aux C\*-algèbres séparables (bien que certaines des implications ci-dessous ne nécessitent pas cette hypothèse). Kaplansky a montré [6] qu'une GCR-algèbre est de type I. Fell prouva ensuite que : 1) Si A est GCR, Â est un  $T_0$ -espace [5]; 2) Si est un  $T_0$ -espace, A est de type I (son raisonnement est signalé en remarque dans [3]), et est lisse [5]. Enfin, j'ai prouvé dans [3] que, si est un  $T_0$ -espace, A est GCR. La situation est résumée par le diagramme suivant :

Dans ce mémoire, nous montrerons que, si  $\hat{A}$  est lisse,  $\hat{A}$  est un  $T_0$ -espace. Nous aurons donc prouvé une partie de la conjecture de Mackey [9] selon laquelle  $\hat{A}$  est lisse si, et seulement si,  $\hat{A}$  est de type I.

Soit A une C\*-algèbre séparable. Rappelons quelques points concernant la topologie et la structure borélienne de Â. Soit H un espace hilbertien séparable. Soit  $\mathcal{R}_{\mathrm{H}}(A)$  l'ensemble des représentations de A dans H, c'est-à-dire des applications linéaires  $\pi$  de A dans  $\mathcal{L}(H)$  (ensemble des opérateurs linéaires continus dans H) telles que  $\pi(xy) = \pi(x)\pi(y)$  et  $\pi(x^*) = \pi(x)^*$  quels que soient  $x, y \in A$ . On sait qu'on a  $||\pi(x)|| \le ||x||$  quel que soit  $x \in A$ . Munissons  $\mathcal{R}_{\mathrm{H}}(A)$  de la topologie de la convergence simple forte, c'est-à-dire de la topologie la moins fine pour laquelle les applications  $\pi \to \pi(x)\xi$  de  $\mathcal{R}_{\mathrm{H}}(A)$  dans H  $(x \in A, \xi \in H)$  sont continues. Cette topologie est identique à la topologie de la convergence simple faible, en vertu de l'égalité

$$||\pi(x)\xi - \pi_0(x)\xi||^2 = (\pi(x^*x)\xi|\xi) - 2 \operatorname{Re}(\pi(x)\xi|\pi_0(x)\xi) + ||\pi_0(x)\xi||^2.$$

Soit  $\mathscr{I}_{\mathrm{H}}(\mathrm{A})$  le sous-ensemble de  $\mathscr{R}_{\mathrm{H}}(\mathrm{A})$  formé des représentations irréductibles non triviales de A dans H. La topologie précédente induit sur  $\mathscr{I}_{H}(A)$  une topologie  $\mathscr{F}.$ Soit  $\mathcal{B}$  la structure borélienne sur  $\mathcal{I}_{H}(A)$  sous-jacente à  $\mathcal{T}$ . Soit, d'autre part,  $\varphi$  l'application canonique de  $\mathscr{I}_H(A)$  dans  $\widehat{A}$  qui, à tout élément de  $\mathscr{I}_H(A)$ , fait correspondre sa classe. L'image  $\varphi(\mathscr{I}_H(A))$  est le sous-ensemble  $\widehat{A}_H$  de  $\widehat{A}$  formé des classes de représentations irréductibles non triviales de A dont la dimension hilbertienne est égale à celle de H. (Comme A est séparable, Â<sub>H</sub> n'est non vide que si dim H=1, 2, ..., X<sub>0</sub>.) Ceci posé, la topologie (resp. la structure borélienne de Mackey) induite sur Â<sub>H</sub> par celle de  $\hat{A}$  n'est autre que la topologie (resp. la structure borélienne) quotient de  $\mathcal{F}$  (resp.  $\mathscr{B}$ ) par  $\varphi$ . Mais la structure de Mackey de  $\hat{A}_H$ , évidemment plus fine que la structure borélienne sous-jacente à sa topologie, ne lui est pas en général identique, car un ensemble borélien de I<sub>H</sub>(A) saturé pour l'équivalence n'est pas toujours déduit par intersection et réunion dénombrable d'ensembles ouverts ou fermés saturés; par exemple, il peut arriver (si les seuls idéaux bilatères fermés de A sont { o } et A) que la topologie de Â soit la topologie la moins fine, alors que la structure borélienne de Mackey est toujours séparée. Nous avons donc à distinguer sur Â<sub>H</sub>, et plus généralement sur Â, la structure borélienne de Mackey et la « structure borélienne topologique ».

Il est bon de noter que l'équivalence des représentations définit dans  $\mathscr{R}_{\mathrm{H}}(A)$  une relation d'équivalence ouverte ; plus précisément, tout opérateur unitaire U dans H définit un homéomorphisme  $h_{\mathrm{U}}$  de  $\mathscr{R}_{\mathrm{H}}(A)$  sur lui-même, et la relation d'équivalence en question est déduite du groupe des homéomorphismes  $h_{\mathrm{U}}$ ; de même dans  $\mathscr{I}_{\mathrm{H}}(A)$ .

Ceci posé, le résultat principal du présent article est le théorème que voici :

THÉORÈME 1. — Soit A une C\*-algèbre séparable. Les conditions suivantes sont équivalentes :

- a) A est GCR;
- b) A est standard;
- c) La structure borélienne de Mackey sur est dénombrablement séparée;
- d) La structure borélienne de Mackey sur est identique à la structure borélienne topologique.

Le schéma de la démonstration est le suivant :

$$a) \stackrel{\nearrow}{\cong} \stackrel{b}{\cong} c) \Rightarrow a)$$

 $b) \Rightarrow c)$  est évident.

 $a) \Rightarrow d)$  résulte de [5].

 $d)\Rightarrow c)$ : supposons la structure borélienne de Mackey  $\mathcal{B}_1$  sur  $\hat{\mathbf{A}}$  identique à la structure borélienne topologique  $\mathcal{B}_2$ . La structure  $\mathcal{B}_1$  est séparée [9]. La structure  $\mathcal{B}_2$  est dénombrablement engendrée puisque la topologie de  $\hat{\mathbf{A}}$  admet une base dénombrable [5]. Donc  $\mathcal{B}_1=\mathcal{B}_2$  est dénombrablement séparée.

 $a)\Rightarrow b$ ) : supposons que A soit GCR. Il existe alors [6] une suite de composition croissante bien ordonnée  $(I_{\rho})_{\rho\in P}$  de A telle que les  $I_{\rho+1}/I_{\rho}$  soient des CCR-algèbres non nulles dont le spectre est localement compact. Pour tout  $\rho \in P$ , soit  $x_{\rho}$  un point de  $I_{\rho+1}$ dont la distance à  $I_{\rho}$  soit  $\geq 1$ . Si  $\rho > \rho'$ , on a  $||x_{\rho} - x_{\rho'}|| \geq 1$ . Comme A est séparable, P est nécessairement dénombrable. D'autre part, soit Up le spectre de Ip, qui s'identifie à une partie ouverte de A. Les Up forment une famille croissante bien ordonnée pour l'inclusion de parties ouvertes de  $\hat{A}$ , et l'une de ces parties est  $\hat{A}$ . Le spectre de  $I_{\rho+1}/I_{\rho}$ s'identifie à  $U_{\rho+1}-U_{\rho}=V_{\rho}$ , et l'espace topologique  $V_{\rho}$  est localement compact à base dénombrable. Les  $V_{\rho}$  sont évidemment deux à deux disjoints. Leur réunion est  $\hat{A}$ ; en effet, soit  $\pi \in \widehat{A}$ ; soit  $\rho$  le plus petit indice tel que  $\pi \in U_{\rho}$ ; pour  $\sigma < \rho$ , on a  $\pi \notin U_{\sigma}$ , donc le noyau N de  $\pi$  contient  $I_{\sigma}$ ; si  $\rho$  était un ordinal limite, on en conclurait que  $N \supset I_{\rho}$ , d'où  $\pi \in U_{\rho}$ , ce qui est absurde; donc  $\rho$  est de la forme  $\rho' + 1$ ; et on a  $\pi \in V_{\rho'}$ . Comme  $a \geqslant d$ , la structure borélienne de Mackey sur  $\hat{A}$  est identique à la structure borélienne topologique ; nous pouvons donc parler de parties boréliennes de A sans préciser. Comme P est dénombrable, une partie B de est borélienne si et seulement si les parties BoV, sont boréliennes. Donc, l'espace borélien est la somme des espaces boréliens  $V_{\rho}$ . Comme l'espace topologique  $V_{\rho}$  est localement compact à base dénombrable, l'espace borélien  $V_{\rho}$  est standard, donc [9] l'espace borélien  $\hat{A}$  est standard.

Il reste à montrer que  $c) \Rightarrow a$ , ce qui nécessitera plusieurs lemmes.

Lemme 1. — Soit H un espace hilbertien séparable. L'espace topologique  $\mathcal{R}_H(A)$  est polonais (i.e. [1] sa topologie se déduit d'une distance pour laquelle  $\mathcal{R}_H(A)$  est séparable complet).

Soit  $\mathscr{L}_s(H)$  l'ensemble  $\mathscr{L}(H)$  muni de la topologie forte. Il est quasi-complet ([2], chap. III, § 3, cor. 2 du th. 4). Soit  $\mathscr{L}_s(A, \mathscr{L}_s(H))$  l'espace des applications linéaires continues de A dans  $\mathscr{L}_s(H)$ , muni de la topologie de la convergence simple. Toute partie équicontinue et fermée de  $\mathscr{L}_s(A, \mathscr{L}_s(H))$  est un sous-espace uniforme complet de  $\mathscr{L}_s(A, \mathscr{L}_s(H))$  ([2], chap. III, § 3, th. 4). En particulier, l'ensemble des applications linéaires  $\pi$  de A dans  $\mathscr{L}_s(H)$  telles que  $||\pi(x)|| \le ||x||$  pour tout  $x \in A$  est un sous-espace uniforme complet B de  $\mathscr{L}_s(A, \mathscr{L}_s(H))$ . Soit  $(x_i)_{i \in I}$  une suite totale dans A telle que  $||x_i|| \le I$  pour tout i. Soit  $(\xi_i)_{j \in J}$  une suite totale dans H telle que  $||\xi_j|| \le I$  pour tout j. La structure uniforme de B admet pour système fondamental d'entourages l'ensemble des entourages définis par les inégalités

$$||\pi(x_i)\xi_j - \pi'(x_i)\xi_j|| \leq \frac{1}{k} \quad (i \in I, j \in J, k = 1, 2, \ldots).$$

Cette structure uniforme est donc métrisable. L'application  $\pi \to (\pi(x_i)\xi_j)_{i\in I, j\in J}$  de B sur un sous-espace de  $H^{I\times J}$  est bicontinue, donc B est séparable. Bref, B, muni de la topologie de la convergence simple forte, est un espace polonais. Enfin,  $\mathcal{R}_H(A)$  est l'ensemble des  $\pi \in B$  tels que  $\pi(xy) = \pi(x)\pi(y)$ ,  $\pi(x^*) = \pi(x)^*$  quels que soient  $x, y \in A$ . La deuxième condition équivaut à la condition  $(\pi(x^*)\xi|\eta) = (\xi|\pi(x)\eta)$  quels que

soient  $x \in A$ ,  $\xi$ ,  $\eta \in H$ . On voit donc que  $\mathcal{R}_H(A)$  est un sous-espace fermé de B, donc est un espace polonais.

Lemme 2. — Soient E et F deux espaces de Banach séparables,  $\mathbf{M}$  un espace topologique,  $m \rightarrow \mathbf{U}_m$  une application continue de  $\mathbf{M}$  dans  $\mathcal{L}_s(\mathbf{E},\mathbf{F})$  (ensemble des applications linéaires continues de  $\mathbf{E}$  dans  $\mathbf{F}$ , muni de la topologie de la convergence simple). Soit n un entier. L'ensemble des  $m \in \mathbf{M}$  tels que codim  $\overline{\mathbf{U}_m(\mathbf{E})} \leq n$  est un  $\mathbf{G}_\delta$  de  $\mathbf{M}$ .

Il suffit de reprendre la démonstration de [8], p. 202, l. 1-17 du bas, en remplaçant l'assertion « est mesurable » à la l. 11 (resp. 5) du bas, par « est ouvert » (resp. « est un  $G_{\delta}$  »).

Soient A une C\*-algèbre, H un espace hilbertien, et  $\pi$ ,  $\pi' \in \mathcal{R}_{H}(A)$ . Rappelons qu'on appelle opérateur d'entrelacement de  $\pi$  et  $\pi'$  un élément T de  $\mathcal{L}(H)$  tel que  $\pi(x)T = T\pi'(x)$  quel que soit  $x \in A$ . La dimension de l'espace vectoriel des opérateurs d'entrelacement de  $\pi$  et  $\pi'$  s'appelle le nombre d'entrelacement de  $\pi$  et  $\pi'$  et sera noté  $\mathcal{E}(\pi, \pi')$ .

Lemme 3. — Soient A une C\*-algèbre séparable, H un espace hilbertien séparable, et M un espace topologique. Soient  $m \to \pi_m$ ,  $m \to \pi'_m$  deux applications continues de M dans  $\mathscr{R}_H(A)$ . Soit n un entier. L'ensemble des  $m \in M$  tels que  $\mathscr{E}(\pi_m, \pi'_m) \leq n$  est un  $G_\delta$  de M.

Nous utilisons la démonstration de [8], p. 202, l. 11-26, mais il est nécessaire de la modifier légèrement. Soit  $\mathcal{F}(H)$  l'ensemble des opérateurs traçables dans H, muni de sa structure naturelle d'espace de Banach : si  $S \in \mathcal{F}(H)$ , la norme de S dans  $\mathcal{F}(H)$  est  $||S||_1 = \operatorname{Tr}(\operatorname{abs} S)$ , où abs  $S = (S^*S)^{1/2}$ . Alors  $\mathcal{L}(H)$  s'identifie au dual de  $\mathcal{F}(H)$ , la forme bilinéaire canonique sur  $\mathcal{F}(H) \times \mathcal{L}(H)$  étant  $\langle S, T \rangle = \operatorname{Tr}(ST)$ . Soient  $(x_i)_{i \in I}$  une suite totale dans S telle que  $||x_i|| \leq I$  pour tout S, if S is a l'espace de Banach des familles  $(\lambda_{ijk})_{i \in I, j \in J, k \in J}$  de nombres complexes bornés. Pour tout S is S in S

Alors,  $\mathscr{E}(\pi_m, \pi'_m)$  est la dimension du noyau de  $V_m$ . L'espace de Banach X est le dual de l'espace de Banach Y des familles  $(\mu_{ijk})_{i\in I,\,j\in J,\,k\in J}$  de nombres complexes telles que  $||(\mu_{ijk})|| = \sum_{i\in I,\,j\in J,\,k\in J} |\mu_{ijk}| < +\infty$ . Pour  $T\in \mathscr{L}(H)$  et  $(\mu_{ijk})\in Y$ , on a

$$\leq (\mu_{ijk}), V_m(T) \geq = \sum_{ijk} \mu_{ijk} ((\pi_m(x_i)T - T\pi'_m(x_i))\xi_j|\xi_k) = \sum_{ijk} \mu_{ijk} ((T\xi_j|\pi_m(x_i^*)\xi_k) - (T\pi'_m(x_i)\xi_j|\xi_k)).$$

Étant donnés deux vecteurs  $\eta$  et  $\zeta$  de H, notons  $R(\eta, \zeta)$  l'opérateur  $\xi \rightarrow (\xi | \zeta) \eta$ . On a  $||R(\eta, \zeta)||_1 = ||\eta||.||\zeta||$ , et, pour tout  $T \in \mathcal{L}(H)$ ,

$$TrTR(\eta, \zeta) = (TR(\eta, \zeta)\zeta | \zeta) = (T\eta | \zeta).$$

Donc

$$\begin{split} <\!(\mu_{ijk}),\, \mathbf{V}_{\!\mathit{m}}\!(\mathbf{T})\!> &= \! \boldsymbol{\Sigma}_{ijk} \mu_{ijk} \mathrm{Tr}(\mathbf{T}\mathbf{R}(\boldsymbol{\xi}_{\!\!j},\, \boldsymbol{\pi}_{\!\mathit{m}}\!(\boldsymbol{x}_{\!i}^*)\boldsymbol{\xi}_{\!\!k}) \!-\! \mathbf{T}\mathbf{R}(\boldsymbol{\pi}_{\!\mathit{m}}'\!(\boldsymbol{x}_{\!\!i})\boldsymbol{\xi}_{\!\!j},\, \boldsymbol{\xi}_{\!\!k})) \\ &= \! <\! \boldsymbol{\Sigma}_{ijk} \mu_{ijk} (\mathbf{R}(\boldsymbol{\xi}_{\!\!j},\, \boldsymbol{\pi}_{\!\mathit{m}}\!(\boldsymbol{x}_{\!i}^*)\boldsymbol{\xi}_{\!\!k}) \!-\! \mathbf{R}(\boldsymbol{\pi}_{\!\mathit{m}}'\!(\boldsymbol{x}_{\!\!i})\boldsymbol{\xi}_{\!\!j},\, \boldsymbol{\xi}_{\!\!k})),\, \mathbf{T}\!> \!. \end{split}$$

Ainsi,  $V_m$  est l'application linéaire transposée d'une application linéaire continue  $U_m$  de Y dans  $\mathcal{F}(H)$ , définie par

et  $\mathscr{E}(\pi_m, \pi_m')$  est la codimension de  $\overline{U_m(Y)}$ . Pour prouver le lemme 3, il suffit, en vertu du lemme 2, de prouver la continuité de l'application  $m \to U_m$  de M dans  $\mathscr{L}(Y, \mathscr{T}(H))$  muni de la topologie de la convergence simple. Pour  $(\mu_{ijk}) \in Y$  fixé, montrons donc que  $\Sigma_{ijk}\mu_{ijk}(R(\xi_i, \pi_m(x_i^*)\xi_k) - R(\pi_m'(x_i)\xi_j^*, \xi_k)) \in \mathscr{T}(H)$  dépend continûment de m. Comme

$$||\mu_{ijk}(R(\xi_{j}, \pi_{m}(x_{i}^{*})\xi_{k}) - R(\pi_{m}'(x_{i})\xi_{j}, \xi_{k}))||_{1} \leq 2 |\mu_{ijk}|,$$

il suffit de montrer que chaque terme  $R(\xi_j, \pi_m(x_i^*)\xi_k)$ ,  $R(\pi_m'(x_i)\xi_j, \xi_k)$  dépend continûment de m. Or, les applications  $m \to \pi_m(x_i^*)\xi_j$  et  $m \to \pi_m'(x_i)\xi_j$  de M dans H sont continues, et l'application  $(\eta, \zeta) \to R(\eta, \zeta)$  de  $H \times H$  dans  $\mathcal{F}(H)$  est continue en vertu de l'égalité  $||R(\eta, \zeta)||_1 = ||\eta||.||\zeta||$ .

Lemme 4. — Soient A une C\*-algèbre séparable, H un espace hilbertien séparable. L'espace topologique  $\mathscr{I}_H(A)$  des représentations irréductibles non triviales de A dans H est polonais.

L'ensemble des représentations irréductibles de A dans H est l'ensemble des  $\rho \in \mathscr{R}_H(A)$  telles que  $\mathscr{E}(\rho,\rho) \leqslant I$ . Appliquons le lemme 3 en prenant  $M = \mathscr{R}_H(A)$ ,  $\pi_\rho = \pi_\rho' = \rho$  pour toute  $\rho \in \mathscr{R}_H(A)$ . On voit que cet ensemble est un  $G_\delta$  dans  $\mathscr{R}_H(A)$ . Cet ensemble, éventuellement privé d'un point (la représentation triviale lorsque dim H = I) n'est autre que  $\mathscr{I}_H(A)$ . Donc  $\mathscr{I}_H(A)$  est un  $G_\delta$  dans l'espace polonais  $\mathscr{R}_H(A)$  et par suite est polonais ([I], § 6, th. I).

Lemme 5. — Soient A une C\*-algèbre séparable, H un espace hilbertien séparable, et  $\pi_0 \in \mathscr{I}_H(A)$ . L'ensemble des  $\pi \in \mathscr{I}_H(A)$  qui sont équivalentes à  $\pi_0$  est un  $F_\sigma$  dans  $\mathscr{I}_H(A)$ .

Considérons l'ensemble des  $\pi \in \mathscr{R}_H(A)$  telles que  $\mathscr{E}(\pi_0, \pi) \leqslant o$ . D'après le lemme 3, c'est un  $G_\delta$  dans  $\mathscr{R}_H(A)$ . Donc, l'ensemble des  $\pi \in \mathscr{I}_H(A)$  inéquivalentes à  $\pi_0$  est un  $G_\delta$  dans  $\mathscr{I}_H(A)$ . D'où le lemme.

Lemme 6. — Soient A une C\*-algèbre primitive séparable, H un espace hilbertien séparable de dimension infinie, et  $\mathscr S$  une partie fermée de  $\mathscr I_H(A)$ , saturée pour l'équivalence, distincte de  $\mathscr I_H(A)$ . Alors  $\mathscr S$  est rare dans  $\mathscr I_H(A)$ .

(Rappelons [1] qu'une partie d'un espace topologique est dite rare si son adhérence est sans point intérieur, maigre si elle est réunion dénombrable d'ensembles rares.)

Soit  $B \subset \widehat{A}$  l'ensemble des classes de représentations irréductibles de  $\widehat{A}$  de noyau  $\{0\}$ . Cet ensemble est non vide puisque  $\widehat{A}$  est primitive, et tout point de  $\widehat{B}$  est partout dense dans  $\widehat{A}$ . Si une représentation de  $\widehat{B}$  est de dimension finie,  $\widehat{A}$  est de dimension finie, et le lemme est trivial car  $\mathscr{I}_H(\widehat{A}) = \emptyset$ . On peut donc supposer  $\widehat{B} \subset \widehat{A}_H$ . Soit  $\widehat{F} = \varphi(\mathscr{S})$  l'image canonique de  $\mathscr{S}$  dans  $\widehat{A}_H$ . C'est une partie fermée dans  $\widehat{A}_H$ , distincte de  $\widehat{A}_H$ . Soit  $\widehat{U}$  l'inté-

rieur de F dans  $\hat{A}_H$ . Si  $U \neq \emptyset$ , tout point de B appartient à U, donc  $\overline{U} = \hat{A}_H$  et  $F = \hat{A}_H$ , contrairement à l'hypothèse. Donc F est rare dans  $\hat{A}_H$ , de sorte que  $\mathscr S$  est rare dans  $\mathscr I_H(A)$ .

Lemme 7. — Soient A une  $C^*$ -algèbre primitive séparable, H un espace hilbertien séparable de dimension infinie, et  $\mathcal{B}$  une partie borélienne de  $\mathcal{I}_H(A)$ , saturée pour l'équivalence. Alors,  $\mathcal{B}$  est maigre ou de complémentaire maigre.

Soit  $D(\mathcal{B})$  l'ensemble des  $\pi \in \mathcal{I}_H(A)$  telles que tout voisinage de  $\pi$  rencontre  $\mathcal{B}$  suivant un ensemble non maigre dans  $\mathcal{I}_H(A)$ . Puisque l'équivalence est définie par un groupe d'homéomorphismes de  $\mathcal{I}_H(A)$ ,  $D(\mathcal{B})$  est saturé pour l'équivalence. D'autre part, il est clair que  $D(\mathcal{B})$  est fermé. D'après le lemme 6,  $D(\mathcal{B})$  est rare ou égal à  $\mathcal{I}_H(A)$ . Enfin, la différence symétrique de  $\mathcal{B}$  et  $D(\mathcal{B})$  est maigre ([7], §§ 10-11). Si  $D(\mathcal{B}) = \mathcal{I}_H(A)$ , le complémentaire de  $\mathcal{B}$  dans  $\mathcal{I}_H(A)$  est maigre. Si  $D(\mathcal{B})$  est rare,  $\mathcal{B}$  est la réunion d'un ensemble maigre et d'un ensemble rare, donc est maigre.

Lemme 8. — Soient A une C\*-algèbre primitive séparable, H un espace hilbertien séparable de dimension infinie. On suppose la structure borélienne de Mackey sur  $\hat{A}_H$  dénombrablement séparée. Alors toutes les représentations irréductibles de noyau  $\{o\}$  de A sont équivalentes.

Par hypothèse, il existe une suite  $\mathscr{B}_1$ ,  $\mathscr{B}_2$ , ... de parties boréliennes de  $\mathscr{I}_H(A)$ saturées pour l'équivalence et telles que toute classe d'équivalence & dans  $\mathscr{I}_{\mathrm{H}}(\mathrm{A})$  soit l'intersection des  $\mathcal{B}_i$  qui la contiennent. Si  $\mathscr{C}$  est maigre, les  $\mathcal{B}_i$  contenant  $\mathscr{C}$  ne peuvent être toutes de complémentaires maigres (sinon, & serait maigre et de complémentaire maigre, contrairement au fait que  $\mathscr{I}_{H}(A)$  est un espace polonais). Donc, compte tenu du lemme 7,  $\mathscr{C}$  est contenue dans une  $\mathscr{B}_i$  maigre. Si toutes les classes d'équivalence dans  $\mathscr{I}_{H}(A)$  étaient maigres,  $\mathscr{I}_{H}(A)$  serait donc réunion de celles des parties  $\mathscr{B}_{i}$  qui sont maigres, contrairement au fait que  $\mathcal{I}_{H}(A)$  est un espace polonais. Donc, il existe une classe d'équivalence  $\mathscr{C}$  dans  $\mathscr{I}_{H}(A)$  qui est non maigre. Or,  $\mathscr{C} = \mathscr{F}_{1} \cup \mathscr{F}_{2} \cup \ldots$ , où les  $\mathscr{F}_{i}$ sont fermés dans  $\mathscr{I}_{\mathrm{H}}(A)$  (lemme 5). Les  $\mathscr{F}_{i}$  ne peuvent être tous rares. Donc  $\mathscr{C}$  contient une partie ouverte non vide  $\mathscr{U}$ . Le saturé de  $\mathscr{U}$  est nécessairement  $\mathscr{C}$  (puisque  $\mathscr{C}$  est une classe d'équivalence), donc & est ouverte. Donc, il existe dans Â<sub>H</sub> un point ouvert ρ<sub>0</sub>. Reprenons l'ensemble Bc des classes de représentations irréductibles de A de noyau {o}, ensemble considéré dans la démonstration du lemme 6. On peut supposer A de dimension infinie (sinon le lemme est trivial), et on a alors BcÂ<sub>H</sub>. Comme B est partout dense dans  $\widehat{A}_H$  et que  $\{\rho_0\}$  est ouvert, on a  $\rho_0 \in B$ . En outre, la topologie induite sur B par celle de  $\hat{A}$  est la topologie la moins fine ; donc  $B = \{\rho_0\}$ , ce qui prouve le lemme.

Fin de la démonstration du théorème 1. Soit A une C\*-algèbre séparable, et supposons la structure borélienne de Mackey sur  $\hat{A}$  dénombrablement séparée. Soit I un idéal primitif de A. Alors  $(A/I)^{\hat{}}$  s'identifie à une partie fermée de  $\hat{A}$ . Il est immédiat que la structure borélienne de Mackey sur  $(A/I)^{\hat{}}$  est induite par celle de  $\hat{A}$ , donc est dénombra-

blement séparée. D'après le lemme 8, toutes les représentations irréductibles de noyau I de A sont équivalentes. Autrement dit,  $\hat{A}$  est un  $T_0$ -espace, de sorte que [3] A est GCR.

Remarque. — Soit G un groupe localement compact séparable. Si la structure borélienne de Mackey sur le dual  $\hat{G}$  de G est dénombrablement séparée, le th. 1 montre que  $\hat{G}$  est standard et que la structure borélienne de Mackey n'est autre que la structure borélienne sous-jacente à la topologie de  $\hat{G}$ .

Les résultats du présent article ont été aussi obtenus par James Glimm, dans un mémoire à paraître.

#### **BIBLIOGRAPHIE**

- [1] N. Bourbaki, Topologie générale, chap. IX, 2e éd., Paris, Hermann, 1958.
- [2] N. BOURBAKI, Espaces vectoriels topologiques, chap. III, IV, V, Paris, Hermann, 1955.
- [3] J. DIXMIER, Sur les C\*-algèbres, Bull. Soc. math. France, 88 (1960), pp. 95-112.
- [4] J. M. G. Fell, The dual spaces of C\*-algebras, à paraître aux Trans. Amer. Math. Soc.
- [5] J. M. G. Fell, C\*-algebras with smooth dual, à paraître.
- [6] I. KAPLANSKY, The structure of certain operator algebras, Trans. Amer. Math. Soc., 70 (1951), pp. 219-255.
- [7] C. Kuratowski, Topologie I, 4e éd., Monografie Mat., t. 20, Varsovie, 1958.
- [8] G. W. MACKEY, Induced representations of locally compact groups II, Annals of Math., 58 (1953), pp. 193-221.
- [9] G. W. MACKEY, Borel structure in groups and their duals, Trans. Amer. Math. Soc., 85 (1957), pp. 134-165.

Reçu le 19 janvier 1960.



# OPÉRATEURS DE RANG FINI DANS LES REPRÉSENTATIONS UNITAIRES

par JACQUES DIXMIER

#### INTRODUCTION

Soient G un groupe de Lie semi-simple connexe, K un sous-groupe compact maximal de G, et  $\pi$  une représentation unitaire continue topologiquement irréductible de G dans un espace hilbertien H. On sait ([5] et [6]) que si  $\chi$  est un caractère de K identifié à une mesure bornée sur G, l'opérateur  $\pi(\chi)$  est de rang fini. De ce fait, on peut déduire [5] des propriétés intéressantes des idéaux de  $L^1(G)$  associés à  $\pi$  (noyau de  $\pi$  dans  $L^1(G)$ , annulateurs dans  $L^1(G)$  des éléments de H).

Étant donné un groupe localement compact G, nous envisagerons la propriété suivante :

(P) L'ensemble des  $f \in L^1(G)$ , telles que  $\pi(f)$  soit de rang fini pour toute représentation unitaire continue topologiquement irréductible  $\pi$  de G, est partout dense dans  $L^1(G)$ .

Le théorème rappelé plus haut entraîne aussitôt qu'un groupe de Lie semi-simple connexe possède la propriété (P). Le premier but de ce mémoire est de montrer qu'un groupe de Lie nilpotent connexe G la possède aussi. On sait déjà [2] que, si  $f \in L^1(G)$ , et si  $\pi$  est une représentation unitaire continue topologiquement irréductible de G, l'opérateur  $\pi(f)$  est compact. Pour passer de là à la propriété (P), nous établissons l'existence d'un « calcul symbolique » dans  $L^1(G)$ : si  $f \in L^1(G)$  et si  $\varphi$  est une fonction analytique dans un voisinage du spectre de f vérifiant  $\varphi(o) = 0$ , on sait bien d'après la théorie générale des algèbres de Banach, qu'on peut définir un élément  $\varphi\{f\} \in L^1(G)$ ; moyennant quelques conditions sur f, nous montrons ici qu'on peut encore définir  $\varphi\{f\}$  lorsque  $\varphi$  satisfait à des conditions convenables de différentiabilité. On utilise pour cela une intégrale vectorielle de Fourier déjà considérée par G. E. Silov dans [13], et utilisée récemment par P. Malliavin [12] dans le cas où G est abélien discret ; le point essentiel est de majorer la croissance à l'infini de la fonction de variable réelle  $\lambda \to ||e^{*i\lambda f}||$  (cf. cidessous pour les notations).

Le second but de ce mémoire est de développer quelques conséquences de la propriété (P). On verra par exemple que, si G possède la propriété (P), deux représentations unitaires continues topologiquement irréductibles de G, qui ont même noyau dans L¹(G), sont unitairement équivalentes.

#### Notations

Si G est un groupe localement compact, on choisit une fois pour toutes une mesure de Haar invariante à gauche sur G, et  $L^p(G)$  est l'espace de Banach des fonctions complexes de puissance p-ième intégrable sur G pour cette mesure ; on désigne par  $|| ||_p$  la norme dans cet espace. On désigne par  $\widetilde{L}^1(G)$  l'algèbre de Banach déduite de  $L^1(G)$  par adjonction d'un élément unité. On note \* le produit de convolution. Si  $f \in L^1(G)$ , on pose  $f^{*n} = f * f * \dots * f (n \text{ facteurs}), e^{* f} = \sum_{n=0}^{\infty} (n!)^{-1} f^{*n} \in \widetilde{L}^1(G)$ , et  $\widetilde{f}(s) = \overline{f(s^{-1})} \Delta(s^{-1})$  (où  $\Delta$  est le module de G) ; on sait que  $f \to \widetilde{f}$  est une involution isométrique de  $L^1(G)$ . On note  $\mathbf{R}$  l'ensemble des nombres réels,  $\mathbf{C}$  l'ensemble des nombres complexes. Si  $\varphi$  est une fonction complexe intégrable de variable réelle, on pose

$$(\mathscr{F}\varphi)(y) = \int_{-\infty}^{+\infty} e^{-ixy} \varphi(x) dx.$$

#### § 1. Les puissances d'une partie compacte dans un groupe de Lie nilpotent.

Soient g une algèbre de Lie nilpotente sur **R**, et G le groupe de Lie simplement connexe correspondant. Rappelons que la formule de Hausdorff  $xy = x + y + \frac{1}{2}[x, y] + \dots$  dans g ne comporte qu'un nombre fini de termes non nuls, que la loi de composition  $(x, y) \rightarrow xy$  définit sur g une structure de groupe, et que l'application exponentielle de g sur G est un isomorphisme pour cette structure de groupe.

LEMME 1. — Soient g une algèbre de Lie nilpotente sur  $\mathbf{R}$  de dimension n, et  $(g_0, g_1, \ldots, g_n)$  une suite décroissante d'idéaux de g de dimensions  $n, n-1, \ldots, o$ . Soit  $(e_1, \ldots, e_n)$  une base de g telle que  $(e_{i+1}, e_{i+2}, \ldots, e_n)$  soit une base de  $g_i$ . Si x, y sont deux éléments de g de coordonnées  $(x_1, \ldots, x_n)$ ,  $(y_1, \ldots, y_n)$ , les coordonnées  $(z_1, \ldots, z_n)$  du produit de Hausdorff z = xy sont fournies par des égalités de la forme

(1) 
$$z_i = x_i + y_i + P_i(x_1, y_1, \dots, x_{i-1}, y_{i-1})$$

où les P<sub>i</sub> sont des polynômes indépendants de x et y.

Le lemme est évident pour n=1. Supposons-le établi pour les algèbres de Lie nilpotentes de dimension n-1. Appliquant cette hypothèse de récurrence à  $g/g_{n-1}$ , on voit qu'on a des formules du type (1) pour  $i=1, 2, \ldots, n-1$ . D'autre part,  $g_n$  est dans le centre de g puisque g est nilpotente. Donc, dans la formule de Hausdorff  $xy=x+y+\Phi(x,y), \Phi(x,y)$  ne dépend que des classes de x et y modulo  $g_n$ . Ainsi,  $z_n-x_n-y_n$  est la n-ième coordonnée de  $\Phi(x_1e_1+\ldots+x_{n-1}e_{n-1},y_1e_1+\ldots+y_{n-1}e_{n-1})$ , c'est-à-dire un polynôme en  $x_1, y_1, \ldots, x_{n-1}, y_{n-1}$ . D'où le lemme.

Dans le lemme 2, nous conservons les notations du lemme 1. En outre, si  $x \in g$ , nous noterons systématiquement  $x_1, \ldots, x_n$  ses coordonnées, et nous poserons

$$||x|| = \sup(|x_1|, \ldots, |x_n|).$$

LEMME 2. — Soit H une partie compacte de g. Considérons les ensembles H, H<sup>2</sup>, ..., H<sup>m</sup>, ... (où H<sup>m</sup> se définit relativement au produit de Hausdorff de g). Il existe un entier N, dépendant de g, mais pas de H, tel que  $\sup_{x \in H^m} ||x|| = O(m^N)$  quand  $m \to +\infty$ .

Le lemme est évident pour  $n = \dim \mathfrak{g} = \mathfrak{1}$ . Supposons-le établi pour les algèbres de Lie nilpotentes de dimension  $n-\mathfrak{1}$ . Appliquant cette hypothèse de récurrence à  $\mathfrak{g}/\mathfrak{g}_{n-\mathfrak{1}}$ , on voit qu'il existe des constantes A>0,  $\alpha>0$ , telles que

(2) 
$$\sup_{x \in \mathbb{H}^m} (\sup(|x_1|, \ldots, |x_{n-1}|)) \leq A(1 + m^{\alpha}).$$

En outre, la constante  $\alpha$  est indépendante de H. D'autre part, il existe des constantes B>0,  $\beta>0$ , indépendantes de H, telles que

$$|P_n(x_1, y_1, \ldots, x_{n-1}, y_{n-1})| \leq B(1 + \sup(|x_1|, |y_1|, \ldots, |x_{n-1}|, |y_{n-1}|))^{\beta}.$$

Posons  $f(m) = \sup_{x \in \mathbb{H}^m} ||x||$ . Si  $x \in \mathbb{H}^m$ , on a x = x'x'' avec  $x' \in \mathbb{H}^{m-1}$ ,  $x'' \in \mathbb{H}$ . Alors  $\sup(|x_1'|, \ldots, |x_{n-1}'|) \leq A(1 + (m-1)^{\alpha})$ 

d'après (2). Compte tenu de (3), on a (en posant  $\sup_{x \in H} ||x|| = a$ )

$$\begin{aligned} |x_{n}| &= |x'_{n} + x''_{n} + P_{n}(x'_{1}, x''_{1}, \dots, x'_{n-1}, x''_{n-1})| \\ &\leq |x'_{n}| + a + B[1 + a + A(1 + (m-1)^{\alpha})]^{\beta} \\ &\leq f(m-1) + a + B[1 + a + A(1 + (m-1)^{\alpha})]^{\beta}. \end{aligned}$$

Rapprochant ceci de (2), on voit que

$$f(m) \leqslant f(m-1) + P(m),$$

où P est un polynôme dont le degré est indépendant de H. Donc

$$f(m) \leq f(1) + P(2) + P(3) + \ldots + P(m),$$

et le second membre de cette inégalité est, comme il est bien connu, un polynôme en m (dont le degré est indépendant de H). D'où le lemme.

Lemme 3. — Soient G un groupe de Lie nilpotent connexe,  $\mu$  la mesure de Haar de G. Il existe un entier N, ne dépendant que de G, tel que, pour toute partie compacte H de G, on ait  $\mu(H^m) = O(m^N)$  quand  $m \to +\infty$ .

Supposons d'abord G simplement connexe. Identifions alors G à son algèbre de Lie g muni du produit de Hausdorff. On a

$$\mu(\mathbf{H}^m) = \iint \dots \int_{\mathbf{H}^m} \mathbf{P}(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n,$$

où P est un polynôme ([2], lemme 1d). L'existence de l'entier N du lemme 3 résulte alors aussitôt du lemme 2.

Passons au cas général. Soit G' le groupe de recouvrement universel de G. Soit  $\phi$  l'application canonique de G' sur G. Il existe une partie compacte H' de G' telle que

 $\varphi(H') = H$ . Alors,  $\varphi(H'^m) = H^m$  pour tout m. Soit  $\mu'$  la mesure de Haar de G'. Pour une normalisation convenable de  $\mu$  et  $\mu'$ , on a

$$\mu'(\mathbf{H}^{\prime m}) = \int_{\mathbb{G}} p(g) \ d\mu(g)$$

où p est une fonction à valeurs entières sur G, majorant 1 sur  $H^m$ . Donc  $\mu(H^m) \leq \mu'(H^m)$ , et il suffit d'appliquer la première partie de la démonstration.

### $\delta$ 2. Calcul symbolique dans l'algèbre $L^1$ d'un groupe de Lie nilpotent.

Pour tout  $t \in \mathbf{C}$ , posons  $u(t) = e^{it} - 1$ . La fonction u est entière et s'annule à l'origine. Donc, si A est une algèbre de Banach et si  $x \in A$ , l'élément  $u(x) = \sum_{n=1}^{\infty} \frac{i^n x^n}{n!}$  existe dans A. Nous appliquerons ceci :

1º Au cas où A est une algèbre uniformément fermée d'opérateurs dans un espace hilbertien ;

2º Au cas où A est l'algèbre L1 d'un groupe localement compact.

Lemme 4. — Soient H un espace hilbertien, T un opérateur hermitien continu dans H. On a  $u(T)u(T)^* \leq T^2$ .

Soit  $T = \int_{-\infty}^{+\infty} \lambda dE_{\lambda}$  la décomposition spectrale de T. On a

$$u(\mathrm{T})u(\mathrm{T})^* = \int_{-\infty}^{+\infty} |u(\lambda)|^2 d\mathrm{E}_{\lambda^*}$$

Or  $|u(\lambda)|^2 = |e^{i\lambda} - 1|^2 \le \lambda^2$  pour tout  $\lambda \in \mathbf{R}$ . Donc

$$u(\mathbf{T})u(\mathbf{T})^* \leqslant \int_{-\infty}^{+\infty} \lambda^2 d\mathbf{E}_{\lambda} = \mathbf{T}^2.$$

Lemme 5. — Soient G un groupe localement compact unimodulaire, et f un élément de  $L^1(G) \cap L^2(G)$  tel que  $\widetilde{f} = f$ . Alors,  $u(f) \in L^1(G) \cap L^2(G)$  et  $||u(f)||_2 \leq ||f||_2$ .

On sait que  $L^1(G) \cap L^2(G)$  est muni de manière naturelle d'une structure d'algèbre hilbertienne. Soit  $\mathfrak{A} \subset L^2(G)$  l'algèbre hilbertienne achevée déduite de  $L^1(G) \cap L^2(G)$ . (Pour cette notion, et pour les propriétés utilisées des algèbres hilbertiennes, cf. par exemple [3], chapitre I, §§ 5 et 6). Soit A l'algèbre de von Neumann associée à gauche à  $\mathfrak{A}$ . Soit  $x \to L_x$  l'application canonique de  $\mathfrak{A}$  dans A. Soit  $\varphi$  la trace naturelle sur  $A^+$  définie par  $\mathfrak{A}$ . Rappelons que les opérateurs de A « de carré traçable » pour  $\varphi$  forment un idéal bilatère de A, que ce sont exactement les opérateurs de la forme  $L_x$  avec  $x \in \mathfrak{A}$ , et que  $\varphi(L_xL_x^*) = ||x||^2$  pour  $x \in \mathfrak{A}$ . Pour  $g \in L^1(G)$ , nous noterons aussi  $L_g$  l'opérateur de convolution à gauche par g dans  $L^2(G)$  (notation cohérente avec la précédente si  $g \in L^1(G) \cap L^2(G)$ ). Comme  $||L_g|| \le ||g||_1$  pour  $g \in L^1(G)$ , on a  $L_{u(f)} = u(L_f) \in A$ . Comme  $f = \widetilde{f}$ , l'opérateur  $L_f$  est hermitien. D'après le lemme 4,  $L_{u(f)} L_{u(f)}^* \in L_f^2$ . Or  $L_f^2$  est traçable pour  $\varphi$ , donc ([3], chapitre I, § 1, proposition 10)  $L_{u(f)} L_{u(f)}^*$  est traçable

pour  $\varphi$ , autrement dit  $L_{u(f)}$  est de carré traçable pour  $\varphi$ . Par suite, il existe un  $a \in \mathfrak{A}$  tel que  $L_{u(f)} = L_a$ . Pour fout  $x \in L^1(G) \cap L^2(G)$ , on a

$$u(f) * x = \mathbf{L}_{u(f)} x = \mathbf{L}_a x = a * x.$$

Prenons la fonction x positive, d'intégrale 1, nulle en dehors d'un voisinage de plus en plus petit de l'élément neutre. Alors u(f) \* x tend vers u(f) dans  $L^1(G)$ , et a \* x tend vers a dans  $L^2(G)$ . Donc  $u(f) = a \in L^2(G)$ . En outre

$$||u(f)||_2^2 = \varphi(\mathbf{L}_{u(f)}\mathbf{L}_{u(f)}^*) \le \varphi(\mathbf{L}_f^2) = ||f||_2^2.$$

Lemme 6. — Soient G un groupe localement compact unimodulaire, e son élément neutre,  $\mu$  sa mesure de Haar, A une partie mesurable de G telle que  $e \in A$ , et f une fonction de  $L^1(G) \cap L^2(G)$  nulle hors de A, telle que  $\widetilde{f} = f$ . On suppose qu'il existe un entier N tel que  $\mu(A^n) = O(n^N)$  quand  $n \to +\infty$ . Alors, dans  $\widetilde{L}^1(G)$ ,

$$||e^{*i\lambda t}||_1 = O(|\lambda|^{N+1})$$

quand  $|\lambda| \to +\infty$ .

En multipliant f par un scalaire convenable, on peut supposer  $||f||_1 \le 1$ . Soit n un entier >0. On a

$$||u(nf)||_1 = \int_{\mathbb{A}^{n^2-1}} |(u(nf))(x)| dx + \int_{\mathbb{G}-\mathbb{A}^{n^2-1}} |(u(nf))(x)| dx.$$

Compte tenu du lemme 5,

$$\int_{A^{n^{2}}-1} |(u(nf))(x)| dx \leq \left(\int_{A^{n^{2}}-1} |(u(nf))(x)|^{2} dx\right)^{1/2} \left(\int_{A^{n^{2}}-1} \mathbf{I}.dx\right)^{1/2}$$

$$\leq ||u(nf)||_{2} (\mu(A^{n^{2}-1}))^{1/2} \leq ||nf||_{2} (\mu(A^{n^{2}-1}))^{1/2} = O(n^{N+1}).$$

D'autre part

$$\int_{G-A^{n^2}-1} |(u(nf))(x)| dx = \int_{G-A^{n^2}-1} \left| \sum_{n=1}^{\infty} (p!)^{-1} i^n n^p f^{*p}(x) \right| dx.$$

Or  $f^{*p}$  est nulle hors de  $A^p$ . Comme  $e \in A$ , on a  $A \subset A^2 \subset ...$  Donc  $f, f^{*2}, \ldots, f^{*(n^2-1)}$  sont nulles sur  $G \longrightarrow A^{n^2-1}$ . Donc:

$$\int_{G-A^{n^{3}}-1} |(u(nf))(x)| dx \leq \left\| \sum_{p=n^{2}}^{\infty} (p!)^{-1} i^{p} n^{p} f^{*p} \right\|_{1}$$

$$\leq \sum_{p=n^{3}}^{\infty} (p!)^{-1} n^{p} \leq \frac{n^{n^{2}}}{(n^{2})!} e^{n} = O(n^{n^{3}} e^{n} (n^{2})^{-n^{3}} e^{n^{2}} n^{-1})$$

$$= O(n^{-n^{3}-1} e^{n^{2}+n})$$

donc tend vers o quand  $n \to +\infty$ . Ainsi,  $||u(nf)||_1 = O(n^{N+1})$  quand  $n \to +\infty$ . Désignons par  $[\lambda]$  la partie entière d'un nombre réel  $\lambda$ ; on a

$$\begin{aligned} ||e^{*i\lambda f}||_1 &\leq ||e^{*i[\lambda]f}||_1 ||e^{*i(\lambda-[\lambda])f}||_1 \\ &\leq (1+||u([\lambda]f)||_1)e^{||f||_1} = O(|[\lambda]|^{N+1}) = O(|\lambda|^{N+1}) \end{aligned}$$

quand  $|\lambda| \rightarrow +\infty$ .

REMARQUE 1. — Quand G est un groupe abélien discret, le lemme 6 a été établi dans [11], page 67, lignes 15-18, grâce à un calcul explicite utilisant les fonctions de Bessel.

Remarque 2. — On ne peut, dans le lemme 6, prendre pour f une fonction quelconque de L<sup>1</sup>(G) telle que  $f = \widetilde{f}$  (cf. [9], lemme 5).

Lemme 7. — Soient G un groupe de Lie nilpotent connexe, N un entier possédant la propriété du lemme 3, et f une fonction de  $L^1(G) \cap L^2(G)$  à support compact, telle que  $\widetilde{f} = f$ . Soit  $t \to \varphi(t)$   $(-\infty < t < +\infty)$  une fonction complexe admettant des dérivées d'ordre  $\leq N+3$ , continues et intégrables sur  $\mathbf{R}$ .

i. L'intégrale  $\frac{1}{2\pi}\int_{-\infty}^{+\infty}e^{*i\lambda f}(\mathscr{F}\phi)(\lambda)d\lambda$  converge absolument dans  $\widetilde{L}^1(G)$  vers un élément  $\phi\{f\}$ . Si  $\phi(o)=o$ , on a  $\phi\{f\}\in L^1(G)$ .

ii. Soit π une représentation unitaire continue de G. On a

$$\pi(\varphi\{f\}) = \varphi(\pi(f))$$

où  $\varphi(\pi(f))$  est défini par le calcul opérationnel usuel sur l'opérateur hermitien  $\pi(f)$ .

iii. Si  $\varphi(t) = t^p$  pour  $|t| \le ||f||_1$ , on a  $\varphi\{f\} = f^{*p}$ .

Les hypothèses faites sur  $\varphi$  entraînent l'existence d'une constante A telle que

$$|(\mathscr{F}\varphi)(\lambda)| \leq A(1+|\lambda|^{N+3})^{-1}$$

quel que soit  $\lambda \in \mathbb{R}$ . Alors, compte tenu du lemme 6,

$$||e^{*i\lambda f}||_1|(\mathscr{F}\phi)(\lambda)| \leq A'(1+|\lambda|^{N+1})(1+|\lambda|^{N+3})^{-1}$$

donc l'intégrale définissant  $\varphi\{f\}$  est bien absolument convergente dans  $\widetilde{\mathbf{L}}^1(\mathbf{G})$ . Si  $\varphi(\mathbf{o}) = \mathbf{o}$ , on a  $\int_{-\infty}^{+\infty} (\mathscr{F}\varphi)(\lambda) = \mathbf{o}$ , d'où

$$\varphi\{f\} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} u(f)(\lambda) (\mathscr{F}\varphi)(\lambda) d\lambda \in L^{1}(G).$$

Ceci prouve (i).

Comme  $\pi$  est une représentation continue de  $\widetilde{\mathrm{L}}^{\scriptscriptstyle 1}(G)$ , on a

$$\pi(\varphi\{f\}) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \pi(e^{*i\lambda f}) (\mathscr{F}\varphi)(\lambda) d\lambda$$
$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i\lambda\pi(f)} (\mathscr{F}\varphi)(\lambda) d\lambda.$$

Or, cette intégrale opératorielle est égale à  $\varphi(\pi(f))$ ; en effet, si  $\chi$  est un caractère de la C\*-algèbre commutative engendrée par 1 et  $\pi(f)$ , le nombre  $\chi(\pi(f))$  est réel et on a

$$\begin{split} \chi \bigg( \frac{\mathrm{I}}{2 \, \pi} \int_{-\infty}^{+ \, \infty} e^{i \lambda \pi(f)} (\mathscr{F} \varphi)(\lambda) d\lambda \bigg) &= \frac{\mathrm{I}}{2 \, \pi} \int_{-\infty}^{+ \, \infty} \chi(e^{i \lambda \pi(f)}) (\mathscr{F} \varphi)(\lambda) d\lambda \\ &= \frac{\mathrm{I}}{2 \, \pi} \int_{-\infty}^{+ \, \infty} e^{i \lambda \chi(\pi(f))} (\mathscr{F} \varphi)(\lambda) d\lambda = \varphi(\chi(\pi(f))) = \chi(\varphi(\pi(f))). \end{split}$$

Ceci prouve (ii).

Enfin, supposons  $\varphi(t) = t^p$  pour  $|t| \le ||f||_1$ . Soit  $\pi$  la représentation régulière de G dans  $L^2(G)$ . On a  $||\pi(f)|| \le ||f||_1$ , donc  $\varphi(\pi(f)) = \pi(f)^p$ . D'après (ii), ceci s'écrit  $\pi(\varphi\{f\}) = \pi(f^{*p})$ , d'où  $\varphi\{f\} = f^{*p}$  puisque  $\pi$  est fidèle sur  $L^1(G)$ .

# § 3. Opérateurs de rang fini dans les représentations des groupes de Lie nilpotents.

Lemme 8. — Soit  $t \to \varphi_0(t)$  (—  $\infty < t < + \infty$ ) une fonction complexe admettant des dérivées d'ordre  $\leq r$  continues et intégrables sur  $\mathbf{R}$ , telle que  $\varphi_0(t) = t^{r+1}$  dans un voisinage de 0. Pour tout  $\varepsilon > 0$ , il existe une fonction complexe  $t \to \varphi(t)$  (—  $\infty < t < + \infty$ ) possédant les propriétés suivantes :

```
1° \varphi(t) = \varphi_0(t) pour |t| \ge 1;

2° \varphi(t) = 0 dans un voisinage de 0;

3° \varphi admet des dérivées d'ordre \le r continues et intégrables sur \mathbf{R};

4° |\varphi^{(\alpha)}(t) - \varphi_0^{(\alpha)}(t)| \le \varepsilon quels que soient t et \alpha = 0, 1, \ldots, r.
```

Soit a un nombre tel que  $0 \le a \le 1$  et tel que  $\varphi_0(t) = t^{r+1}$  pour  $|t| \le a$ . Il existe une fonction  $\psi$  définie sur [-a, a], nulle dans un voisinage de 0, admettant des dérivées d'ordre  $\le r$  continues, et telle que  $|\psi^{(\alpha)}(t)-(t^{r+1})^{(\alpha)}| \le \varepsilon$  pour  $|t| \le a$  et  $0 \le \alpha \le r$ . (Ceci est évident pour r=0, et on passe de r à r+1 en remplaçant  $\psi$  par la fonction  $t \to (r+1)$   $\int_0^t \psi(t) dt$ ). On définit alors  $\varphi$  de la manière suivante :

```
1° \varphi(t) = \psi(t) pour |t| \leq a;

2° \varphi(t) = \varphi_0(t) pour |t| \geq 1;

3° On « raccorde » convenablement dans les intervalles [-1, -a] et [a, 1].
```

Soit maintenant G un groupe localement compact. Soit I l'ensemble des  $f \in L^1(G)$  telles que  $\pi(f)$  soit de rang fini pour toute représentation unitaire continue topologiquement irréductible  $\pi$  de G. Il est clair que I est un idéal bilatère de  $L^1(G)$  stable pour l'involution  $f \rightarrow \widetilde{f}$ .

THÉORÈME 1. — Tout groupe de Lie nilpotent connexe G possède la propriété suivante :

(P) L'idéal bilatère I est partout dense dans L1(G).

a. Soit N un entier possédant la propriété du lemme 3. Soit E l'ensemble des fonctions f de  $L^1(G) \cap L^2(G)$  à support compact, telles que  $\widetilde{f} = f$ . Soit E' l'ensemble des fonctions complexes  $t \to \varphi(t)$  ( $-\infty < t < +\infty$ ), nulles dans un voisinage de 0, admettant des dérivées d'ordre  $\leq N+3$  continues et intégrables sur **R**. Soient  $f \in E$  et  $\varphi \in E'$ . On a  $\varphi\{f\} \in L^1(G)$  (lemme 7 (i)). On va voir que  $\varphi\{f\} \in I$ . Soit  $\pi$  une représentation unitaire continue topologiquement irréductible de G. L'opérateur  $\pi(f)$  est hermitien et compact ([2], corollaire 3 du théorème 1). Puisque  $\varphi$  s'annule dans un voisinage de 0,  $\varphi(\pi(f))$  est de rang fini. Or  $\varphi(\pi(f)) = \pi(\varphi\{f\})$  (lemme 7 (ii)).

b. Soit V un voisinage de l'élément neutre e de G. Nous allons montrer qu'il existe une fonction positive non négligeable de  $L^1(G)$ , à support contenu dans V, et adhérente à I.

Il existe un voisinage compact W de e tel que  $W^{N+4} \subset V$ . Soit f une fonction positive non négligeable de  $L^1(G) \cap L^2(G)$  à support contenu dans W, telle que  $f = \widetilde{f}$ . Soit  $t \to \varphi_0(t)$  ( $-\infty < t < +\infty$ ) une fonction complexe admettant des dérivées d'ordre  $\leq N+3$  continues et intégrables sur  $\mathbb{R}$ , telles que  $\varphi_0(t) = t^{N+4}$  pour  $|t| \leq ||f||_1$ . On a  $\varphi_0\{f\} = f^{*(N+4)}$  (lemme 7 (iii)), donc  $\varphi_0\{f\}$  est une fonction positive non négligeable de  $L^1(G)$  à support contenu dans V. Reste à prouver, ce qui établira notre assertion, que  $\varphi_0\{f\} \in \overline{I}$ .

Soit  $\varepsilon > 0$ . D'après le lemme 8, il existe une  $\varphi \in E'$  telle que  $\varphi(t) = \varphi_0(t)$  pour  $|t| \ge 1$  et telle que  $|\varphi^{(\alpha)}(t) - \varphi_0^{(\alpha)}(t)| \le \varepsilon$  pour tout t et pour  $\alpha = 0, 1, \ldots, N+3$ . Alors

$$2 \pi || \varphi_0 \{f\} - \varphi \{f\}||_1 = || \int_{-\infty}^{+\infty} e^{*i\lambda f} (\mathscr{F} \varphi_0 - \mathscr{F} \varphi)(\lambda) d\lambda ||_1$$
 
$$\leq \int_{-\infty}^{+\infty} || e^{*i\lambda f} ||_1 || (\mathscr{F} \varphi_0 - \mathscr{F} \varphi)(\lambda) || d\lambda.$$

Or  $||e^{*i\lambda t}||_1 \leqslant A(1+|\lambda|^{N+1})$ , où A est une constante indépendante de  $\epsilon$ . D'autre part,

$$\begin{split} (\mathbf{1} + \lambda^2) (\mathbf{1} + |\lambda|^{N+1}) \, | \, (\mathscr{F}\phi_0 - \mathscr{F}\phi)(\lambda) \, | \\ \leqslant | \, \mathscr{F}(\phi_0 - \phi)(\lambda) \, | + | \, \mathscr{F}(\phi_0'' - \phi'')(\lambda) \, | + | \, \mathscr{F}(\phi_0^{(N+1)} - \phi^{(N+1)})(\lambda) \, | \\ + | \, \mathscr{F}(\phi_0^{(N+3)} - \phi^{(N+3)})(\lambda) \, | \leqslant 2 \, \epsilon, \end{split}$$

quel que soit  $\lambda$ ; donc

$$2 \pi || \varphi_0 \{f\} - \varphi \{f\} ||_1 \le \int_{-\infty}^{+\infty} 2 \operatorname{As}(1 + \lambda^2)^{-1} d\lambda = 2 \operatorname{As\pi}.$$

Or  $\varphi\{f\}\in I$  d'après la partie (a) de la démonstration. Donc  $\varphi_0\{f\}\in \overline{I}$ .

c. Soient  $g \in L^1(G)$  et  $\varepsilon > 0$ . Il existe un voisinage V de e dans G tel que, si h est une fonction positive de  $L^1(G)$  d'intégrale 1 à support contenu dans V, on ait  $||g-g*h||_1 \le \varepsilon$ . D'après la partie (b) de la démonstration, on peut choisir  $h \in \overline{I}$ . Alors  $g*h \in \overline{I}$ . Ceci prouve que  $\overline{I}$  est partout dense dans  $L^1(G)$ , d'où  $\overline{I} = L^1(G)$ .

### § 4. Irréductibilité topologique et irréductibilité algébrique.

Les théorèmes 2, 3 et 4 ci-dessous seront établis pour les groupes localement compacts satisfaisant à la propriété (P). Cette classe de groupes contient les groupes de Lie nilpotents connexes d'après le théorème 1. Elle contient aussi les groupes de Lie semi-simples connexes (cf. [6], lemme 33, et [5], théorème 2 et démonstration du théorème 7), ainsi que les « groupes de mouvements » (cf. [5], théorème 5 et démonstration du théorème 7), c'est-à-dire les groupes de la forme K.N, où K et N sont des sous-groupes (non nécessairement distingués) respectivement compacts et abéliens.

Pour les groupes semi-simples et les groupes de mouvements, les résultats (i), (ii), (iii) ci-dessous se trouvent essentiellement dans [5], pages 512-515; toutefois, la définition utilisée dans [5] du sous-espace H' fait intervenir un sous-groupe compact de G.

Théorème 2. — Soient G un groupe localement compact possédant la propriété (P),  $\pi$  une représentation unitaire continue topologiquement irréductible de G dans un espace hilbertien H, et J l'ensemble des  $f \in L^1(G)$  telles que  $\pi(f)$  soit de rang fini. Soit H' l'ensemble des combinaisons linéaires des éléments de la forme  $\pi(f)\xi$ , où  $\xi \in H$  et  $f \in J$ .

- i. H' est partout dense dans H;
- ii. H' est stable pour les opérateurs  $\pi(s)$   $(s \in G)$ , et aussi pour les opérateurs  $\pi(f)$   $(f \in L^1(G))$ . Pour  $f \in L^1(G)$ , notons  $\pi'(f)$  la restriction de  $\pi(f)$  à H';
- iii. H' est le plus petit sous-espace vectoriel non nul de H stable pour les opérateurs  $\pi(f)$   $(f \in J)$ . En particulier, la représentation  $\pi'$  de  $L^1(G)$  dans H' est algébriquement irréductible.
- iv. L'ensemble des opérateurs  $\pi(f)$ , où  $f \in J$ , est exactement l'ensemble des opérateurs linéaires continus T de rang fini dans H tels que  $T(H) \cap H'$  et  $T^*(H) \cap H'$ .

Puisque G possède la propriété (P), J est partout dense dans  $L^1(G)$ , d'où aussitôt (i). Si  $f \in J$  et si  $\mu$  est une mesure bornée sur G, l'opérateur  $\pi(\mu * f) = \pi(\mu)\pi(f)$  est de rang fini, donc  $\mu * f \in J$ . En particulier, si  $\xi \in H$ ,  $f \in J$  et  $f' \in L^1(G)$ , on a  $\pi(f')(\pi(f)\xi) = \pi(f'*f)\xi \in H'$ , donc  $\pi(f')(H') \in H'$ . De même, si  $\xi \in H$ ,  $f \in J$  et  $s \in G$ , on a  $\pi(s)(\pi(f)\xi) = \pi(\varepsilon_s * f)\xi \in H'$  (en notant  $\varepsilon_s$  la mesure de Dirac au point s), donc  $\pi(s)(H') \in H'$ . Ceci prouve (ii).

Soit H'' un sous-espace vectoriel non nul de H stable pour les opérateurs  $\pi(f)$   $(f \in J)$ . Soit  $\xi$  un élément non nul de H''. On va montrer, ce qui prouvera (iii), que  $\pi(J)\xi \supset H'$ . Soit  $g \in J$ . Il suffit de prouver que  $\pi(J)\xi \supset \pi(g)(H)$ . Or les vecteurs  $\pi(f)\xi$   $(f \in J)$  forment un sous-espace vectoriel partout dense de H puisque J est partout dense dans  $L^1(G)$  et que  $\pi$  est topologiquement irréductible. Donc les vecteurs  $\pi(g*f)\xi = \pi(g)\pi(f)\xi$   $(f \in J)$  forment un sous-espace vectoriel de  $\pi(g)(H)$ , partout dense dans  $\pi(g)(H)$ , donc égal à  $\pi(g)(H)$  puisque dim  $\pi(g)(H) < +\infty$ . D'où notre assertion.

Prouvons (iv). Il est clair que, si  $k \in J$ , on a  $\widetilde{k} \in J$ , donc  $\pi(k)(H)$  et  $\pi(k)^*(H)$  sont des sous-espaces de dimension finie de H'. Il s'agit d'établir une réciproque de cette propriété.

Soit K l'ensemble des opérateurs linéaires (continus ou non) dans H' permutables aux  $\pi'(f)$ , où f parcourt J. Montrons d'abord que  $K = \mathbb{C}$ . (Le raisonnement qui suit, plus simple que mon raisonnement initial, est dû à J. Dieudonné). D'après (iii) et le lemme de Schur, K est un corps, extension de  $\mathbb{C}$ . Soit  $f \in J$  telle que  $\pi'(f) \neq 0$ . Soit  $H_1 = \pi'(f)(H')$ , qui est un sous-espace vectoriel non nul de dimension finie de H'. Tout  $v \in K$  laisse stable  $H_1$ . Soit v' la restriction de v à  $H_1$ . L'application  $v \rightarrow v'$  est un homomorphisme de K dans l'algèbre des opérateurs linéaires de  $H_1$ , qui transforme 1 en 1. Comme K est un corps, cet homomorphisme est injectif. Donc K est de rang fini sur  $\mathbb{C}$  et par suite  $K = \mathbb{C}$ .

Alors, d'après le théorème de densité ([7], page 31), si  $\xi_1, \ldots, \xi_n$  sont des éléments linéairement indépendants de H' et  $\eta_1, \ldots, \eta_n$  des éléments quelconques de H', il existe une  $f \in J$  telle que  $\pi'(f)\xi_1 = \eta_1, \ldots, \pi'(f)\xi_n = \eta_n$ . Soit  $\xi$  un élément non nul de H'. Il existe une  $f \in J$  telle que  $\pi'(f)\xi = \xi$ . Soit  $(\xi, \xi_1, \ldots, \xi_p)$  une base de  $\pi(f)(H) \subset H'$ . Il existe

une  $f' \in J$  telle que  $\pi'(f')\xi = \xi$ ,  $\pi'(f')\xi_1 = \ldots = \pi'(f')\xi_p = o$ . Alors  $\pi(f'*f)(H) = \mathbf{C}\xi$ . Soit  $g = f'*f \in J$ . L'opérateur  $\pi(g*\widetilde{g}) = \pi(g)\pi(g)^*$  est hermitien  $\geqslant o$ , et son image est  $\mathbf{C}\xi$ . En multipliant g par un scalaire convenable, on a donc construit un  $h \in J$  tel que  $\pi(h)$  soit le projecteur orthogonal sur  $\mathbf{C}\xi$ . Soit alors T un opérateur linéaire continu de rang fini dans H tel que  $T(H) \cap H'$  et  $T^*(H) \cap H'$ . Alors  $\frac{1}{2}(T+T^*)$  et  $\frac{1}{2i}(T-T^*)$  sont des opérateurs hermitiens de rang fini dont les images sont contenues dans H'. Donc T est combinaison linéaire finie de projecteurs orthogonaux sur des droites de H'. D'après ce qui précède,  $T = \pi(h)$  avec une  $h \in J$ . Le théorème est démontré.

Remarque 3. — Nous allons montrer que  $H' \neq H$  en général. Soit  $\Gamma_3$  le groupe de Lie nilpotent de dimension 3 étudié dans [1], paragraphe 4. Ses points sont définis par 3 coordonnées réelles  $(\rho_1, \rho_2, \rho_3)$  et la loi de composition est

$$(\sigma_1, \sigma_2, \sigma_3) (\rho_1, \rho_2, \rho_3) = (\sigma_1 + \rho_1, \sigma_2 + \rho_2, \sigma_3 + \rho_3 - \sigma_1 \rho_2).$$

Ce groupe admet une représentation unitaire continue topologiquement irréductible  $\pi$  dans  $H = L^2(\mathbf{R})$ , définie de la manière suivante : si  $\gamma \in \Gamma_3$  admet les coordonnées  $\rho_1$ ,  $\rho_2$ ,  $\rho_3$ , et si  $\xi \in L^2(\mathbf{R})$ , on a :

$$(\pi(\gamma)\xi)(\theta) = e^{i(\rho_s - \rho_s \theta)}\xi(\theta + \rho_1).$$

Soit H' le sous-espace introduit dans le théorème 2. Soit  $\xi_0 \in H'$ , avec  $||\xi_0|| = 1$ . Il existe une  $F \in L^1(\Gamma_3)$  telle que  $\pi(F)$  soit le projecteur sur la droite  $C\xi_0$  (théorème 2 (iv)). Pour  $\xi$ ,  $\eta \in H$ , on a

(5) 
$$(\pi(\mathbf{F})\boldsymbol{\xi} \,|\, \boldsymbol{\eta}) = ((\boldsymbol{\xi} \,|\, \boldsymbol{\xi_0})\boldsymbol{\xi_0} \,|\, \boldsymbol{\eta}) = (\boldsymbol{\xi} \,|\, \boldsymbol{\xi_0})(\boldsymbol{\xi_0} \,|\, \boldsymbol{\eta})$$

$$= \iint \overline{\boldsymbol{\xi_0}(\boldsymbol{\rho_1})} \, \boldsymbol{\xi_0}(\boldsymbol{\theta}) \, \boldsymbol{\xi}(\boldsymbol{\rho_1}) \, \overline{\boldsymbol{\eta}(\boldsymbol{\theta})} \, d\boldsymbol{\rho_1} d\boldsymbol{\theta},$$

et d'autre part

$$(6) \qquad (\pi(F)\xi \mid \eta) = \int_{\Gamma_{s}} (\pi(\gamma)\xi \mid \eta)F(\gamma)d\gamma$$

$$= \iiint F(\rho_{1}, \rho_{2}, \rho_{3})d\rho_{1}d\rho_{2}d\rho_{3} \int e^{i(\rho_{3}-\rho_{4}\theta)}\xi(\theta+\rho_{1})\overline{\eta(\theta)}d\theta$$

$$= \iiint F(\rho_{1}-\theta, \rho_{2}, \rho_{3})e^{i(\rho_{3}-\rho_{3}\theta)}\xi(\rho_{1})\overline{\eta(\theta)}d\rho_{1}d\rho_{2}d\rho_{3}d\theta$$

$$= \iiint F(\rho_{1}-\theta, \rho_{2}, \rho_{3})e^{i(\rho_{3}-\rho_{3}\theta)}d\rho_{2}d\rho_{3} \Big]\xi(\rho_{1})\overline{\eta(\theta)}d\rho_{1}d\theta.$$

Comparant (5) et (6), on voit que, pour presque toutes les valeurs de  $\rho_1$  et  $\theta$ , on a

$$\overline{\xi_0(\rho_1)}\xi_0(\theta)=\iint \mathcal{F}(\rho_1-\!\!-\!\theta,\,\rho_2,\,\rho_3)e^{i(\rho_2-\!\!-\!\rho_2\theta)}d\rho_2d\rho_3$$

donc aussi

$$\xi_0(\rho_1+\theta)\xi_0(\theta)=G(\rho_1,\,\theta,\,-\!\!\!-\!1)$$

et désignant par G la transformée de Fourier de F par rapport aux deux dernières variables. Pour presque tout  $\rho_1$ , la fonction  $\theta \rightarrow G(\rho_1, \theta, -1)$  est continue. Donc, pour presque tout  $\rho_1$ , la fonction  $\theta \rightarrow \overline{\xi_0(\rho_1 + \theta)} \xi_0(\theta)$  est presque partout égale à une fonction

continue. Or, il est immédiat qu'il existe des éléments de H qui ne possèdent pas cette propriété.

REMARQUE 4. — Utilisons les notations du théorème 2. Si  $\xi$  est un élément non nul de H', l'annulateur de  $\xi$  dans L'(G) est un idéal à gauche maximal régulier puisque la représentation  $\pi'$  de L'(G) dans H' est algébriquement irréductible. Mais, puisque H'  $\neq$  H en général d'après la remarque 3, l'annulateur dans L'(G) d'un élément quelconque de H n'est pas en général un idéal à gauche maximal régulier. Ce phénomène avait été prévu par R. Godement ([5], page 513, lignes 9-10).

Rappelons par contre que, si on étend  $\pi$  à la C\*-algèbre de G (cf. [4]), la représentation ainsi obtenue de cette C\*-algèbre dans H est algébriquement irréductible ([8], théorème 1).

REMARQUE 5. — Reprenons l'exemple de la remarque 3. Soit  $D \subset H$  l'ensemble des vecteurs indéfiniment différentiables pour  $\pi$ . On peut montrer que  $D \subset H'$ ,  $D \neq H'$ . Comme D est stable pour les opérateurs  $\pi(s)$  ( $s \in G$ ), on voit que H' n'est pas algébriquement irréductible pour les opérateurs  $\pi(s)$  ( $s \in G$ ).

J'ignore si l'inclusion DcH' est un fait général.

REMARQUE 6. — En modifiant très légèrement la démonstration du théorème 2, on voit qu'on peut supprimer l'hypothèse que G possède la propriété (P), et supposer seulement qu'il existe des  $f \in L^1(G)$  telles que  $\pi(f)$  soit de rang fini et non nul.

#### § 5. Noyaux des représentations irréductibles.

Le théorème 3 (sauf en ce qui concerne le socle de  $L^1(G)/N$ ) est établi dans [5] pour les groupes semi-simples et les groupes de mouvements.

Théorème 3. — On conserve les hypothèses et les notations du théorème 2. Soit en outre  $N \subset L^1(G)$  le noyau de  $\pi$  considérée comme représentation de  $L^1(G)$ .

- i. N est un idéal primitif de  $L^1(G)$ , et J/N est le socle de  $L^1(G)/N$  et le plus petit idéal bilatère non nul de  $L^1(G)/N$ .
  - ii. N est maximal parmi les idéaux bilatères fermés de L<sup>1</sup>(G) distincts de L<sup>1</sup>(G).

Utilisons les notations du théorème 2. Alors N est aussi le noyau de  $\pi'$  (théorème 2 (i)). Comme  $\pi'$  est algébriquement irréductible (théorème 2 (iii)), N est primitif. L'algèbre  $L^1(G)/N$  est isomorphe à l'algèbre A des opérateurs  $\pi(f)$  ( $f \in L^1(G)$ ). Dans cet isomorphisme, J/N correspond à l'ensemble des opérateurs de rang fini de A, ensemble qui est algébriquement dense dans l'ensemble de tous les opérateurs linéaires de H' (théorème 2 (iv)). D'après [7], page 75 (« structure theorem »), J/N est le socle de  $L^1(G)/N$  et le plus petit idéal bilatère non nul de  $L^1(G)/N$ . D'où (i). Par suite, tout idéal bilatère de  $L^1(G)$  contenant N et distinct de N contient J. Comme  $\overline{J} = L^1(G)$  d'après la propriété (P), on obtient aussitôt (ii).

Remarque 7. — Soit I l'ensemble des  $f \in L^1(G)$  telles que  $\rho(f)$  soit de rang fini pour toute représentation unitaire continue topologiquement irréductible  $\rho$  de G. Alors, avec les notations précédentes, on a J=I+N. En effet, il est clair que  $I+N \subset J$ . D'autre part, (I+N)/N est un idéal bilatère de  $L^1(G)/N$ , non nul puisque  $\overline{I}=L^1(G)$ , donc égal à J/N d'après le théorème 3 (i).

Remarque 8. — Soit G le groupe des transformations affines  $x \to ax + b$  ( $a \ne 0$ ) de  $\mathbf{R}$ . On sait que la représentation régulière  $\pi$  de G dans  $L^2(G)$  est somme de représentations topologiquement irréductibles deux à deux équivalentes. Le noyau  $\mathbf{N}$  de  $\pi$  dans  $L^1(G)$  est  $\{0\}$ . Mais G possède des représentations unitaires continues de dimension  $\mathbf{I}$ , donc  $\mathbf{N}$  n'est pas maximal parmi les idéaux bilatères fermés de  $L^1(G)$ . Ainsi, G ne possède pas la propriété (P).

Théorème 4. — Soient G un groupe localement compact possédant la propriété (P),  $\pi$  et  $\pi_1$  deux représentations unitaires continues topologiquement irréductibles de G dans des espaces hilbertiens, telles que les noyaux de  $\pi$  et  $\pi_1$  dans  $L^1(G)$  soient égaux. Alors  $\pi$  et  $\pi_1$  sont unitairement équivalentes.

Soient H et  $H_1$  les espaces de  $\pi$  et  $\pi_1$ , et  $N \subset L^1(G)$  leur noyau commun. Introduisons les notations H',  $\pi'$  du théorème 2, et les notations analogues  $H'_1$ ,  $\pi'_1$  relatives à  $\pi_1$ . Nous diviserons la démonstration en plusieurs parties.

- a.  $\pi'$  et  $\pi'_1$  définissent deux représentations algébriquement irréductibles fidèles de  $L^1(G)/N$ . Le socle de  $L^1(G)/N$  est non nul. Donc ([7], page 45, proposition 2) ces deux représentations sont algébriquement équivalentes.
- b. D'après le théorème 2 (iv), il existe un élément hermitien  $f_0$  de  $L^1(G)$  tel que  $\pi(f_0)$  soit un projecteur orthogonal sur un sous-espace  $\mathbb{C}\xi$  de dimension 1 de H'. D'après (a), l'opérateur  $\pi'_1(f_0)$  est idempotent et de rang 1; donc  $\pi_1(f_0)$ , qui est hermitien, est un projecteur orthogonal sur un sous-espace  $\mathbb{C}\xi_1$  de dimension 1 de  $H'_1$ . Les vecteurs  $\xi$  et  $\xi_1$  admettent le même annulateur  $\mathfrak{m}$  dans  $L^1(G)$ .
- c. Pour  $f \in L^1(G)$ , posons  $\varphi(f) = (\pi(f)\xi \mid \xi)$ ,  $\varphi_1(f) = (\pi_1(f)\xi_1 \mid \xi_1)$ . Alors  $\varphi$  et  $\varphi_1$  sont des formes positives élémentaires sur  $L^1(G)$ . Pour prouver le théorème 4, il suffit de prouver que  $\varphi$  et  $\varphi_1$  sont proportionnelles.

Transposant à notre situation un raisonnement de R. V. Kadison sur les C\*-algèbres ([8], page 275, lignes 20-27), nous allons montrer que le noyau Q de  $\varphi$  est  $\mathfrak{m}+\widetilde{\mathfrak{m}}$  (où  $\widetilde{\mathfrak{m}}$  est l'image de  $\mathfrak{m}$  par l'involution  $\sim$  dans L¹(G)). D'abord, il est clair que  $\mathfrak{m} \subset \mathbb{Q}$ , donc  $\widetilde{\mathfrak{m}} \subset \widetilde{\mathbb{Q}} = \mathbb{Q}$ , donc  $\mathfrak{m}+\widetilde{\mathfrak{m}} \subset \mathbb{Q}$ . Maintenant, soit  $h \in \mathbb{Q}$ . On a  $(\pi(h)\xi|\xi)=0$ , donc  $\pi(f_0*h)\xi=\pi(f_0)\pi(h)\xi=0$ , donc  $f_0*h\in \mathfrak{m}$ . D'autre part,

$$\pi(\widetilde{h} - \widetilde{h} * f_0)\xi = \pi(\widetilde{h})\xi - \pi(\widetilde{h})\xi = 0$$

puisque  $\pi(f_0)\xi = \xi$ , donc  $\widetilde{h} - \widetilde{h} * f_0 \in \mathfrak{m}$ . Alors, tenant compte du fait que  $\widetilde{f}_0 = f_0$ , on a  $\widetilde{h} = (\widetilde{h} - \widetilde{h} * f_0) + (f_0 * h)^{\sim} \in \mathfrak{m} + \widetilde{\mathfrak{m}}$ . Donc  $Q = \widetilde{Q} \subset \mathfrak{m} + \widetilde{\mathfrak{m}}$ .

On a donc prouvé que  $Q = m + \widetilde{m}$ . Le même raisonnement, appliqué à  $\varphi_1$ , montre que le noyau de  $\varphi_1$  est  $m + \widetilde{m}$ . Donc  $\varphi$  et  $\varphi_1$  sont proportionnelles.

REMARQUE 9. — Soit A la C\*-algèbre de G (cf. [4]). Si on étend à A les représentations unitaires irréductibles de G, les analogues des théorèmes 3 et 4 sont vrais. Cela résulte du fait évident qu'un groupe qui possède la propriété (P) est un CCR-groupe (cf. [10]).

#### **BIBLIOGRAPHIE**

- [1] J. Dixmer, Sur les représentations unitaires des groupes de Lie nilpotents, III, Canadian J. Math., t. 10, 1958, pp. 321-348.
- [2] J. Dixmer, Sur les représentations unitaires des groupes de Lie nilpotents, V, Bull. Soc. math. France, t. 87, 1959, pp. 65-79.
- [3] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Paris, Gauthier-Villars, 1957.
- [4] J. M. G. Fell, The dual spaces of C\*-algebras, Trans. Amer. math. Soc. (à paraître).
- [5] R. GODEMENT, A theory of spherical functions, Trans. Amer. math. Soc., t. 73, 1952, pp. 496-556.
- [6] Harish-Chandra, Representations of a semi-simple Lie group on a Banach space, I, Trans. Amer. math. Soc., t. 75, 1953, pp. 185-243.
- [7] N. JACOBSON, Structure of rings. Providence, American mathematical Society, 1956 (Amer. math. Soc. Colloquium Publ., 37).
- [8] R. V. Kadison, Irreducible operator algebras, Proc. nat. Acad. Sc., U.S.A., t. 43, 1957, pp. 273-276.
- [9] J.-P. Kahane, Sur un théorème de Wiener-Lévy, C. R. Acad. Sc., Paris, t. 246, 1958, pp. 1949-1951.
- [10] I. KAPLANSKY, The structure of certain operator algebras, Trans. Amer. math. Soc., t. 70, 1951, pp. 219-255.
- [11] P. Malliavin, Impossibilité de la synthèse spectrale sur les groupes abéliens non compacts, *Publ. math. Inst. Hautes Études scient.*, t. II, 1959, pp. 61-68.
- [12] P. MALLIAVIN, Calcul symbolique et sous-algèbres de L<sub>1</sub>(G), Bull. Soc. Math. France, t. 87 (1959), pp. 187-190.
- [13] G. E. Šilov, Sur les anneaux normés réguliers, Travaux de l'Inst. math. de Stekloff, 1947.

Reçu le 23 février 1960.



#### INTEGRAL POINTS ON CURVES

by SERGE LANG (1)

Siegel has shown in [14] that an affine curve f(x, y) = 0 with coefficients in a number field and of genus  $\ge 1$  has only a finite number of points whose coordinates are integers of that field. Mahler [8] has conjectured that a similar statement holds for points having only a finite number of primes in their denominators, and proved this for curves of genus 1 over the rationals by his p-adic analogue of the Thue-Siegel theorem.

In view of Roth's recent result, and the progress which has been made in the theory of abelian varieties (especially the Jacobian) since Siegel and Mahler's papers appeared, it seemed worth while to reconsider the question, and I give below a modernized exposition of Siegel and Mahler's proof, which automatically carries with it a proof of Mahler's conjecture. The Jacobian is used in order to take a pull-back over the given curve of the standard covering given by  $u \rightarrow mu + a$  where m is a large integer, and  $a \in J$  is a suitable translation.

Aside from Roth's theorem (whose statement is reproduced in § 1) we use only the classical properties of heights and the weak Mordell-Weil theorem. This paper is thus a natural sequel of [7].

A proof of Mordell's conjecture [10] that a curve of genus  $\geq 2$  has only a finite number of rational points would of course supersede the Siegel-Mahler theorem for such curves, but I would conjecture that the latter holds in fact for abelian varieties: If A is an abelian variety defined over a number field K, if U is an open affine subset, and R a subring of K of finite type over  $\mathbf{Z}$ , then there is only a finite number of points of U in R. The difficulty in trying to extend the proof to abelian varieties lies in the fact that there is a whole divisor at infinity, whereas for curves, there is only a finite number of points, which are all algebraic.

It is easy to see that if the conjecture is true, then it remains true if K is replaced by a field of finite type over **Q**, and R by a subring of finite type over **Z**. In § 7 we shall carry this out for curves. This could be applied to strengthen in a like manner Siegel's result on curves of genus o as on p. 47 of [14]. There is no point in carrying this out here, but it is worth while to go deeper into one of Siegel's arguments.

We observe that if G is a group variety, and  $\Gamma$  a subgroup of finite type, then there is a field K of finite type over the prime field over which G is defined, and over which all points of  $\Gamma$  are rational.

Now the argument of Siegel can be used to prove the following theorem.

<sup>(1)</sup> Sloan Fellow.

Let K be a field of characteristic 0, and  $\Gamma$  a subgroup of finite type of its multiplicative group. Then the curve ax + by = 1 with  $a, b \in K$  and  $ab \neq 0$  has only a finite number of points with  $x, y \in \Gamma$ .

PROOF. If there were infinitely many, let m be an integer  $\geq 3$ . Then infinitely many x (resp. y) would lie in the same coset mod  $\Gamma^m$ , so that for such x and y we can write  $x = a_1 \xi^m$  and  $y = a_2 \eta^m$ , and we get infinitely many points in  $\Gamma \times \Gamma$  on the curve

$$aa_1\xi^m + ba_2\eta^m = 1$$

which has genus  $\geq 1$ . Contradiction.

The straight line just considered should in fact be regarded as a subvariety of the product of the multiplicative group with itself. Recall that an algebraic torus (torus for short) is a group variety which is a finite product of multiplicative groups. Infinitely many rational points on the line give rise to integral points on a curve of genus  $\geq 1$ , and using this same idea, we get more generally:

Let G be a torus in characteristic 0. Let C be a subvariety of dimension  $\tau$  of G. Let  $\Gamma$  be a subgroup of finite type of G. If C intersects  $\Gamma$  in an infinite number of points, then C is the translation in G of a subtorus of dimension  $\tau$ .

PROOF. We can find a field K of finite type over  $\mathbb{Q}$  over which G is written as an n-fold product of multiplicative groups, over which all points of  $\Gamma$  are rational, and over which G is defined. Let  $(x_1, \ldots, x_n)$  be a generic point of G over K. Then G has genus o, and we can write  $x_i = \varphi_i(t)$  where  $\varphi_i$  is a rational function of a parameter t, defined over K. We proceed as above. Let us take m large and relatively prime to the orders of zeros and poles of the functions  $\varphi_i(t)$ . For suitable elements  $a_1, \ldots, a_n \in K$ , the curve whose generic point is  $(\xi_1, \ldots, \xi_n)$  where  $\xi_i^m = a_i x_i$  (over possibly a finite extension of K) must also have genus o. Consider first a covering of the t-line given by the equation  $\xi^m = a\varphi(t)$  with a,  $\varphi$  any one of the  $a_i$ ,  $\varphi_i$ . We use the classical formula for the genus of a covering:

$$2 g' - 2 = m(2 g - 2) + \Sigma(e_p - 1).$$

Then  $\varphi(t)$  can have at most one zero and one pole. Indeed, the degree is m, and the ramification index above such a zero or pole is m also. We have m(2 g-2) = -2 m, and if there were at least 3 distinct zeros and poles, then the term  $\Sigma(e_P-1)$  would grow at least like 3(m-1), so we would get a covering of genus  $\geq 1$ , having infinitely many points with coordinates in  $\Gamma$ , which is impossible.

After a linear transformation, we can write say for i=1,

$$x_1 = a_1 t^{r_1}$$

for some integer  $r_1 \neq 0$ . From the same argument,  $x_i = a_i \varphi_i(t)$  where  $\varphi_i(t)$  is a power of some linear transformation of t. In fact,  $\varphi_i(t) = t^{r_i}$  because our covering has the intermediate covering defined by the equation

$$\xi^m = a_1 x_1 (a_i x_i)^{\pm 1} = a t^{r_1} \varphi_i(t)^{\pm 1}$$

which would be of genus  $\ge 1$  unless  $\varphi_i(t)$  is of the prescribed type. We thus conclude that C is the translation of a subtorus.

As Siegel already observed, the coset argument is formally the same as the one used to carry out the proof that curves of genus  $\geq 1$  have only a finite number of integral points, but using the Jacobian instead of the torus (cf. below Proposition 1).

The analogy between toruses and abelian varieties was again observed by Chabauty, who in two papers [2], [3] considers infinite intersections of a subvariety of a torus or an abelian variety with particular subgroups of finite type, namely subgroups of units and groups of rational points in a number field respectively. Thus one is led to generalize and reformulate a conjecture of Chabauty [2] in the following manner, which includes the Mordell conjecture.

Let G be torus (resp. an abelian variety) in characteristic o. Let V be a subvariety of G, having an infinite intersection with a subgroup of finite type  $\Gamma$  of G. Then V contains a finite number of translations of group subvarieties of G which contain all but a finite number of points of  $V \cap \Gamma$ .

This statement has been proved above when V is of dimension 1 and G is a torus. When G is an abelian variety and again V is of dimension 1, this is Mordell's conjecture. Of course, one may ask whether such a statement would not be valid also for a commutative group extension of an abelian variety by a torus.

Returning to the question of integral points, we shall see that our theorems have analogues in function fields K (finitely generated regular extensions) over arbitrary constant fields k of characteristic o, and the finiteness statement can be given a relative formulation: One proves that certain points have bounded heights (Theorems 2, 3). In view of Theorem 3 [7], one sees that the conjecture we made above concerning integral points on affine subsets of abelian varieties can also be formulated relatively: If A is defined over k, if  $(B, \tau)$  is a K/k-trace, then integral points of  $A_k$  lie in a finite number of cosets of  $\tau B_k$ .

In this connection, the Mordell conjecture becomes a conjecture in algebraic geometry, and it is worth while to make further comments on it here. Let k be as above, K = k(t) a function field over k, where t is the generic point of a variety T, and let C be a curve of genus  $\geq 2$ , defined over K. Then  $C = C_t$  can be viewed as the generic member of an algebraic family. The conjecture then asserts that if  $C_t$  has infinitely many rational points in k(t) (cross sections of the parameter variety T in the graph of the family), then  $C_t$  is birationally equivalent over k(t) to a curve  $C_0$  defined over k, and all but a finite number of these points arise from points of  $C_0$  in k.

Evidence for this comes from the special case where  $C_t = C_0$  is already defined over k, and then one obtains a classical theorem of de Franchis, to the effect that given a variety V and a curve C of genus  $\geq 2$  (in characteristic o) there exists only a finite number of generically surjective rational maps of V on C. We give a quick proof of this theorem. Taking a generic hyperplane section U of V and inducing the rational map on it, one reduces the theorem

to the case where V is itself a curve. Indeed, two distinct generically surjective rational maps f,  $f': V \rightarrow C$  induce distinct generically surjective maps on U, as one sees by taking the induced homomorphisms on the Albanese varieties, using Theorem 4 of [5], Chapter VIII, § 2.

Assuming now that V is a curve, we have the formula for the genus:

$$2.g(V)-2=d[2.g(C)-2]+\lambda$$

where  $\lambda \geq 0$ . Thus the degree of V over C is bounded. Taking suitable projective embeddings, we see that the degree of the graph of our rational maps f must be bounded. Hence these graphs  $\Gamma_f$  lie on finitely many algebraic families on  $V \times C$ . On the other hand, a generic element of such families is likewise a generically surjective rational map of V onto C (as one sees by projecting on both factors). Taking the induced homomorphisms on the Jacobians, and using the fact that an abelian variety has no algebraic family of abelian subvarieties, we see that all induced maps coming from the same family differ by translations. We use now the fact that C is not equal to a non-zero translation of itself in its Jacobian. (If it were, so would the divisor  $\Theta$ , and it isn't, even up to linear equivalence by Th. 3 of Ch. VI, § 3, [5].) We conclude that a graph  $\Gamma_f$  actually must constitute by itself a maximal algebraic family on  $V \times C$ , and thus finally that there is only a finite number of such graphs, or maps f. This concludes the proof. (When V is a curve, we do not need characteristic o, only the assumption that the map  $f: V \rightarrow C$  is separable, to be able to use the genus formula above.)

The Mordell conjecture thus gives rise to diophantine criteria for lowering fields of definition, and we can actually prove such a criterion in the context of integral points (Proposition 2).

One remark on notation to conclude this introduction: If O is a set of geometric objects, and K a field, we denote by  $O_K$  the subset of O consisting of those objects which are rational over K. For example, if V is a variety defined over K, then  $V_K$  denotes the set of its rational points in K.

#### § 1. Diophantine approximations.

Let K be a number field (by definition, a finite extension of the rationals  $\mathbf{Q}$ ) and let  $N = [K : \mathbf{Q}]$  be its degree over  $\mathbf{Q}$ . For each prime  $\mathfrak{p}$  of K (finite or archimedean) let  $N_{\mathfrak{p}} = [K_{\mathfrak{p}} : \mathbf{Q}_{\mathfrak{p}}]$  be the local degree of the completions. If  $\mathfrak{p}$  is archimedean, then  $\mathbf{Q}_{\mathfrak{p}} = \mathbf{R}$  is the field of real numbers. Otherwise, it is the field of p-adic numbers where p is a prime number. We denote by  $|\xi|_{\mathfrak{p}}$  the absolute value on K corresponding to the prime  $\mathfrak{p}$ , which induces on  $\mathbf{Q}$  the usual absolute value if  $\mathfrak{p}$  is archimedean, and otherwise the p-adic absolute value, so that  $|p|_{\mathfrak{p}} = \mathfrak{1}/p$ . We assume that this absolute value is extended to the algebraic closure  $\overline{K}$  of K in some way. This amounts to embedding  $\overline{K}$  in  $\overline{\mathbf{Q}}_{\mathfrak{p}}$  and taking the absolute value induced by that of  $\overline{\mathbf{Q}}_{\mathfrak{p}}$ .

If  $\beta$  is an element of K, we can define its height

$$H_{K}(\beta) = \prod_{\mathfrak{p}} sup(\mathbf{1}, |\beta|_{\mathfrak{p}})^{N_{\mathfrak{p}}}$$

the product being taken over all primes of K. More generally, if P is a point in projective n-space, with coordinates  $(\xi_0, \ldots, \xi_n)$  rational over K, then

$$H_{K}(P) = \prod_{\mathfrak{p}} \sup_{i} \left[ |\xi_{i}|_{\mathfrak{p}}^{N_{\mathfrak{p}}} \right].$$

The product formula [1] guarantees that this does not depend on the choice of coordinates. Thus  $H_K(\beta)$  is the height of the point having  $(1, \beta)$  as coordinates in  $\mathbf{P}^1$ , and if  $\beta \neq 0$  we see that  $H_K(\beta) = H_K(1/\beta)$ . If  $\beta = m/n$  is a rational number, with m, n relatively prime integers, then  $H_{\mathbf{Q}}(\beta) = \sup(|m|, |n|)$ .

If K is fixed, and the reference to a projective space is fixed throughout a discussion, then we write H instead of  $H_K$ .

We recall that one can define the absolute height

$$h(\mathbf{P}) = \mathbf{H}_{\kappa}(\mathbf{P})^{1/[\mathbf{K};\mathbf{Q}]}$$

which is then independent of the field in which P is rational. Thus  $H_K$  is a function on points in projective space rational over K while h is a function on points in projective space rational over  $\overline{K}$ . Note that  $h(P) \ge 1$  and  $H_K(P) \ge 1$ .

Two positive functions  $\lambda$ ,  $\lambda'$  on a set of points are called *equivalent* (we write  $\lambda \sim \lambda'$ ) if there exist two numbers  $c_1$ ,  $c_2 > 0$  such that

$$c_1 \lambda \leq \lambda' \leq c_2 \lambda$$
.

It will also be convenient to define  $\lambda$ ,  $\lambda'$  to be *quasi-equivalent* (we write  $\lambda \approx \lambda'$ ) if given  $\varepsilon > 0$ , there exist two numbers  $c_1, c_2 > 0$ , depending on  $\varepsilon$ , such that for all points P in the set, we have

$$c_1\lambda(P)^{1-\varepsilon} \leq \lambda'(P) \leq c_2\lambda(P)^{1+\varepsilon}$$
.

These relations are obviously equivalence relations (symmetric, reflexive, transitive).

On the set of elements  $\alpha \in K$  such that  $K = \mathbf{Q}(\alpha)$ , our function  $H_K$  is equivalent to the height function used for instance by Roth, i.e. the maximum value of the coefficients in the irreducible equation satisfied by  $\beta$  over  $\mathbf{Z}$ , the integers. This is trivially verified. If E is a subfield of K, then on E we have  $H_K = H_E^{[K:E]}$ . From this one sees immediately that the set of elements of K of bounded height is finite (such elements can satisfy only a finite number of equations over  $\mathbf{Z}$ ).

The Thue-Siegel-Mahler-Roth theorem (Roth's theorem for short) can be stated as follows. Let  $\alpha$  be algebraic over K. Let  $\kappa$  be a number > 2, and let S be a finite set of primes of K. Then the solutions  $\beta$  in K of the inequality

$$\prod_{\mathfrak{p}\,\in\,S}\!\inf(\,\mathbf{I}\,,\,|\,\alpha\!-\!-\!\beta\,|_{\mathfrak{p}})\!\leq\!\!\frac{\mathbf{I}}{H(\beta)^{\varkappa}}$$

have bounded height.

For a proof, see for instance [12], which follows Roth closely, includes the Mahler version, and obviously generalizes to number fields. Of course, the set of elements of K with bounded height is finite, but we have stated the theorem in the above form

so as to have a uniform terminology with the function field case (characteristic o). We discuss this below. The above statement can be slightly strengthened (as in Mahler): If b is the ideal which is the denominator in the ideal factorization of  $\beta$  in K, and if one defines  $|\mathfrak{b}|_{\mathfrak{p}}$  for finite primes  $\mathfrak{p}$  in the obvious manner, then one can replace  $|\alpha - \beta|_{\mathfrak{p}}$  by  $|\alpha - \beta|_{\mathfrak{p}} |\mathfrak{b}|_{\mathfrak{p}}$  in the above inequality, for the finite primes appearing in S.

Actually, for the sequel, we need only the approximation for one prime: The solutions  $\beta$  in K of

$$|\alpha - \beta|_{\mathfrak{p}} \leq \frac{1}{H(\beta)^{\kappa}}$$

have bounded height. In fact, we shall need it in the following context, as in Mahler [8].

Let G(Y) be a polynomial in K[Y], and assume that the multiplicity of its roots is at most r for some integer r > 0. Say G has leading coefficient I, so  $G(Y) = \prod (Y - \alpha_i)^{e_i}$ . Let c > 0 be a number, and p a prime of K. Then the solutions g in K of

$$|G(\beta)|_{\mathfrak{p}} \leq \frac{c}{H(\beta)^{\kappa r}}$$

have bounded height if x > 2.

It is a trivial matter to get this from the preceding statement. Indeed, our absolute value comes from an embedding of  $\overline{K}$  in  $\overline{K}_p$ . If  $\beta$  stays away from all the  $\alpha_i$ , our statement is clear. If  $\beta$  comes close to one of them, then its distance from the others is greater than some fixed lower bound. Thus in evaluating  $|G(\beta)|_p$  precisely one term  $|\alpha_i - \beta|_p^{e_i}$  becomes small, and we get

$$|\alpha_i - \beta|_{\mathfrak{p}}^{e_i} \leq \frac{c'}{H(\beta)^{\times r}}$$

for a suitable c' > 0, and a sequence of  $\beta'$ s such that  $H(\beta) \to \infty$ . Since  $e_i \le r$ , we can replace it by r, still preserving the inequality, and then take an r-th root. By making  $\varkappa$  a little smaller, but still > 2, one can omit the constant c', and thus reduce our statement to the previous one.

Note that if we put  $G(Y) = Y - \alpha$ , we recover Roth's theorem in its original form. We now discuss the function field case. Let K be a function field (of arbitrary dimension) over a constant field k of characteristic o. Let W be a projective model of K over k, non-singular in codimension 1. Let w be a generic point of W over k, so that we can write K = k(w). As in [7] we use W to compute heights. If p is a prime rational divisor of W over k, then deg(p) denotes its projective degree. We then have the absolute value

$$|\xi|_{\mathfrak{p}} = \gamma^{\deg(\mathfrak{p}) \operatorname{ord}_{\mathfrak{p}} \xi}$$

where  $\operatorname{ord}_{\mathfrak{p}}\xi$  is the order at the discrete valuation determined by  $\mathfrak{p}$ , and  $\gamma$  is a fixed number,  $o<\gamma<1$ . Thus

$$H(\xi) = H_w(\xi) = (1/\gamma)^{d(\xi)}$$

where  $d(\xi) = \deg(\xi)_{\infty}$  is the degree of the divisor of poles of  $\xi$ . More generally, if  $(\xi_0, \ldots, \xi_n)$  is a point in  $\mathbf{P}^n$  over K, then

$$H(P) = (I/\gamma)^{\deg \sup_i (\xi_i)_{\infty}}$$
.

Thus in function fields, it is convenient to take the log to the base  $\gamma$ .

For each  $\mathfrak p$  we suppose our absolute value extended to  $\overline{K}$  in some fixed way. Then the statement we gave above of Roth's theorem holds in the present situation. This is seen as follows. First, one reduces the situation to the case where K is of dimension  $\mathfrak l$  over k, by taking generic hyperplane sections. Let  $L_u$  be a generic hyperplane over k, and  $(w_1,\ldots,w_n)$  an affine generic point of W over k. Let  $t=u_1w_1+\ldots+u_nw_n$  and let  $k'=k(u_1,\ldots,u_n,t)$  (cf. [4], Ch. VIII, § 6). The generic hyperplane section  $W'=W.L_u$  is defined over k', assuming that  $\dim W \geq 2$ . If  $\mathfrak p$  is a prime rational divisor of W over k, then  $\mathfrak p'=\mathfrak p.L_u$  is a prime rational divisor of W' over k'. If  $\xi \in K$  is a function on W, and  $\xi'$  the induced function on W', then  $(\xi')_{\infty}=(\xi)_{\infty}.L_u$ . Thus the height remains invariant by going over to generic hyperplane sections:

$$H_{W}(P) = H_{W'}(P)$$

if P is a point in  $\mathbf{P}^n$  rational over K. (Geometrically speaking, the point P gives rise to a rational map of W into  $\mathbf{P}^n$  and the induced rational map of W' into  $\mathbf{P}^n$ .)

The absolute value  $|\cdot|_p$  described previously extends to the field  $\overline{K}(u_1, \ldots, u_n)$  in such a way that it is trivial on  $k(u_1, \ldots, u_n, t)$ , and corresponds to the prime divisor p'. Consequently, we see that if we prove Roth's theorem for the field  $K' = K(u_1, \ldots, u_n)$  viewed as function field over the constant field k', relative to the model W' (which is projective and non-singular in codimension 1) then it will follow for (K, k, W). This brings us to the function fields in one variable.

As for those, a prime p is then a conjugate set of points over k. One sees immediately that we may go over to the algebraic closure of k, and then, in terms of orders, to prove the theorem in the following form:

Let K be a function field of one variable over an algebraically closed constant field k of characteristic  $\alpha$ . Let  $\alpha$  be a finite set of primes of  $\alpha$  over  $\alpha$ . Let  $\alpha$  be algebraic over  $\alpha$ . Then the degrees  $\alpha$  of elements  $\alpha$  in  $\alpha$  satisfying the inequality

$$\sum_{\mathfrak{p} \in S} \operatorname{ord}_{\mathfrak{p}}(\alpha - \beta) \underline{\geq} \varkappa \operatorname{deg}(\beta)_{\infty} \tag{$\varkappa > 2$}$$

are bounded.

Actually, one gets a finiteness statement, because of the following remark: Let  $\beta_1$ ,  $\beta_2$  be solutions of the above inequality such that  $d(\beta_1) = d(\beta_2) = d$  is > 0. Then  $\beta_1 = \beta_2$ . Indeed, we get

$$\operatorname{ord}_{\mathfrak{p}}(\beta_1 - \beta_2) \geq \varkappa d.$$

But  $\deg(\beta_1 - \beta_2)_{\infty} \leq 2 d$ . If  $\beta_1 + \beta_2$ , then  $\beta_1 - \beta_2$  has more zeros than poles, which is impossible.

We observe that  $d(\beta) = 0$  if and only if  $\beta$  is constant, i.e. lies in k. (In terms of heights, this means  $H(\beta) = 1$ .) Thus finally, we can state Roth's theorem in dimension 1 in the following form, say for one prime  $\mathfrak{p}$ :

Let  $\alpha$  be algebraic over K. There is only a finite number of elements  $\beta \in K$  which are not constant (i.e. not in k) such that

$$\operatorname{ord}_{n}(\alpha - \beta) \geq \varkappa d(\beta)$$

if x > 2.

The proof of Roth's theorem for function fields in one variable is essentially the same as Roth's own proof. One must use the Riemann-Roch theorem precisely in the place where Roth does his counting to get his crucial polynomial. By the way, in number fields at this point, it is best to use the known estimates giving the number of algebraic integers in given parallelotopes (as in Artin-Whaples Theorem 4 [1]). For an exposition, cf. mimeographed notes to appear in the near future.

#### § 2. A geometric formulation of Roth's theorem.

In this section we give a formulation of Roth's theorem which is adapted to the use we wish to make of it afterwards. We let K be a global field: This means a number field, or a function field over a constant field k which we assume of characteristic zero for this section. In the function field case, heights are taken with respect to a model as described in  $\S$  1.

Theorem 1. Let W be a complete non-singular curve defined over K. Let z, y be two non-constant functions in K(W), and let r be the largest of the orders of the zeros of z. Assume that y has no zero or pole among the zeros of z, and that y gives an injective mapping of this set of zeros into  $\overline{K}$ . Let x be a number > 2, and c> 0. Then the points  $Q \in W_K$  such that

$$|z(\mathbf{Q})|_{\mathfrak{p}} \leq \frac{c}{\mathbf{H}(y(\mathbf{Q}))^{\kappa r}}$$

have bounded height H,

PROOF. Without loss of generality, we may assume that K(z,y) = K(W). If necessary, we may consider the complete non-singular curve which is a model of K(z,y) instead of W. Our assumptions will still be valid for this curve. We may also assume that the values  $|y(Q)|_p$  are bounded. Indeed, if there is an infinite sequence of points Q whose height  $H_y(Q) = H(y(Q))$  tends to infinity, and satisfying the above inequality, but with  $|y(Q)|_p$  unbounded, then we may consider I/y instead of y, together with an infinite subsequence of such points Q. Let  $\Phi$  be the set of zeros of z. Since y has no pole in  $\Phi$ , it is integral over the local ring  $\mathfrak o$  of the point z=0 in the function field K(z). Let F(Y) be its irreducible equation over  $\mathfrak o$ . Then

$$F(Y) \equiv G(Y) \pmod{z}$$

where G(Y) is a polynomial with coefficients in K, leading coefficient 1, and mod z means modulo the maximal ideal of  $\mathfrak o$  generated by z.

By hypothesis, y induces an injection  $Q \rightarrow y(Q)$  of  $\Phi$  into  $\overline{K}$ . The multiplicity of a root of G(Y) is thus  $\leq$  the multiplicity of a point on W in the inverse image of z=0, this being the multiplicity of a zero of z. (One can see this formally for instance as follows: Let  $(y^{(1)})$  be an affine generic point of W over K all of whose coordinates are integral over  $\mathfrak{o}$ . If  $(y^{(1)}, \ldots, y^{(M)})$  is a complete set of conjugates of  $(y^{(1)})$  over K(z), then the cycle on W which is the inverse image of z=0 consists of a specialization  $(\bar{y}^{(1)}, \ldots, \bar{y}^{(M)})$  of  $(y^{(1)}, \ldots, y^{(M)})$  over  $z \rightarrow 0$ . The conjugates of y correspond to the conjugates  $(y^{(1)}, \ldots, y^{(M)})$ , and one can then use [4], Theorem 2 of Chapter I, § 4, applied to the polynomial F(Y).)

We can write

$$F(Y) = G(Y) + zA(z, Y)$$

where A(z, Y) is a polynomial in Y with coefficients in  $\mathfrak{o}$ . Since  $A(\mathfrak{o}, Y)$  is defined, so is A(z(Q), Y) for small values of  $|z(Q)|_{\mathfrak{p}}$ , which is all that we need to consider. Thus the values

$$|\mathbf{A}(z(\mathbf{Q}), y(\mathbf{Q}))|_{\mathfrak{p}}$$

remain bounded since we could assume that  $|y(Q)|_{\mathfrak{p}}$  remains bounded. Since F(y) = 0, we get an estimate for G(y(Q)), namely

$$\begin{split} |\operatorname{G}(y(\mathbf{Q}))|_{\mathfrak{p}} & \leq c_1 |z(\mathbf{Q})|_{\mathfrak{p}} \\ & \leq \frac{c_2}{\operatorname{H}(y(\mathbf{Q}))^{\bowtie}} \end{split}$$

which puts us precisely in the situation described in § 1, and concludes the proof.

# § 3. Behaviour of heights under projection.

We use the same notation as in [7]. For this section, K is a global field. Property I F of [7] is still clearly valid without the restriction dim K=I, and so are the other Properties 2, 3, 4 and Theorem 3, where dim K=I is not assumed.

Let V be a variety defined over K. For each morphism  $\varphi: V \to \mathbf{P}^n$  (everywhere defined rational map) defined over K, we have height functions on  $V_K$  and  $V_{\bar{K}}$ , namely

$$H_{\varphi}(P) = H(\varphi(P))$$
 and  $h_{\varphi}(P) = h(\varphi(P))$ .

We do not repeat here the discussion establishing the correspondence between maps of V into  $\mathbf{P}^n$  and linear systems on V, but to fix the notation, if V is complete, normal, if X is a divisor on V rational over K, and  $\mathcal{L}(X)$  is its complete linear system, and if we assume that  $\mathcal{L}(X)$  is without fixed point, then we denote by  $H_X$  (or  $h_X$ ) the height associated with any map into projective space arising from this linear system. These are well defined up to equivalence.

Foremost among the properties of heights is Property 4 (due to Weil) that the heights associated with two linear systems without fixed points whose divisors are linearly equivalent to each other (i.e. having the same complete linear system) are equivalent. This property will be used constantly in what follows.

The local behaviour at a point on a variety is represented by local parameters, and it is frequently more convenient to deal with these than with the coordinates in a projective embedding. In the following discussion (which depends only on Property 4 of heights), we make a generic projection and compare the heights arising from the embedding and its projection. We adjust the discussion to the immediate application we have in mind, and thus restrict ourselves to the case of curves.

Let W be a projective non-singular curve defined over K. The height h (or H) is taken with respect to this embedding. Let  $(y_0, \ldots, y_n)$  with  $y_0 = 1$  be functions in K(W) determining our given embedding. Let  $\Phi$  be a finite set of points of W in  $\overline{K}$ . Then there is some polynomial equation such that if  $(a_0, \ldots, a_n, b_0, \ldots, b_n)$  are elements in k not satisfying this equation, then the function

$$y = \frac{a_0 y_0 + \ldots + a_n y_n}{b_0 y_0 + \ldots + b_n y_n}$$

has the following properties:

The function y is not constant, and has no zero or pole among the points of  $\Phi$ .

If  $h_y$  is the height determined by the mapping of W into  $P^1$  arising from the function y, then

$$h_{\nu}\sim h$$

and thus H<sub>v</sub>~H (as functions on W<sub>K</sub>).

The mapping

$$Q \rightarrow y(Q)$$

gives an injection of  $\Phi$  into  $\overline{K}$ .

These properties are easily proved. Indeed, let Q be a point of W in  $\overline{K}$ . If t is a function of order 1 at Q, then each  $y_i$  has an expansion as a power series in t, say  $y_i = \xi_i t^{e_i} + \ldots$  with an integer  $e_i$ , which may be negative. We see that there is a polynomial  $G_Q$  (linear) such that for any set of elements  $(a_0, \ldots, a_n)$  in k for which  $G_Q(a) \neq 0$ , then  $a_0 y_0 + \ldots + a_n y_n$  has order e at Q, where  $e = \inf e_i$ . Taking Q from a finite set  $\Phi$ ,

we then take the product of the  $G_{\mathbb{Q}}$  for  $\mathbb{Q} \in \Phi$ , and achieve the same thing for all  $\mathbb{Q} \in \Phi$ .

If  $a_0$  denotes the sup of the polar divisors of our given  $y_i$ , then we see that almost all linear combinations  $a_0y_0 + \ldots + a_ny_n$  have precisely  $a_0$  as polar divisor. Furthermore, applying the above remarks to zeros instead of poles, and taking into account that the linear system determined by  $(1, y_1, \ldots, y_n)$  is without fixed point, we see that we can make a sufficiently general choice of  $a_i$  and  $b_i$  such that the function y has no zero or pole in  $\Phi$ , and its divisor

$$(y) = (y)_0 - (y)_\infty$$

is such that  $(y)_{\infty}$  lies in the above linear system. According to Property 4 of heights, it follows that  $h_y$  is equivalent to h.

To insure that the map  $Q \rightarrow y(Q)$  is injective, we select among the  $y_i$  (for each Q) that function having the highest order pole at Q and denote it by  $y_Q$ . All quotients  $y_i|y_Q$  are defined at Q, and we have

$$y(Q) = \frac{a_0 w_0(Q) + \dots + a_n w_n(Q)}{b_0 w_0(Q) + \dots + b_n w_n(Q)}$$

where  $w_i = y_i/y_Q$ . (Strictly speaking, each  $w_i$  should carry Q also as an index.) We can choose the  $b_i$  so that the denominator does not vanish, and the condition that  $y(Q) \neq y(Q')$  when  $Q \neq Q'$  are two distinct points of  $\Phi$  is immediately seen to be implied by the non-vanishing of a polynomial in the  $a_i$  and  $b_i$ . This concludes the proof of our three statements.

REMARK. Given a subfield E of K(W) containing K, and such that K(W) is finite separable algebraic over E, then it is clear that in addition to the above conditions, we can also require y to be a generator of K(W) over E.

Putting the results of § 2 together with the technique of generic projections, we get a more useful version of Theorem 1:

Theorem 1'. Let W be a projective non-singular curve defined over a global field of characteristic 0. Let z be a non-constant function in K(W), and let r be the largest of the orders of the zeros of z. Let x be a number > 2 and c > 0. Then the points  $Q \in W_K$  such that

$$|z(\mathbf{Q})|_{\mathfrak{p}} \leq \frac{c}{\mathbf{H}(\mathbf{Q})^{\kappa r}}$$

have bounded height.

PROOF. We let  $\Phi$  be the set of zeros and poles of W, and apply Theorem 1, taking into account the properties of  $H_y$  and its relation to H, the height taken relative to the given embedding of W in a projective space.

# § 4. Another property of heights.

Let K be a global field. As pointed out already, linear equivalence of linear systems gives rise to equivalent height functions. We shall now prove that algebraic equivalence gives rise to quasi-equivalent height functions. We need a lemma from pure algebraic geometry.

LEMMA. Let V be a complete non-singular variety. Let X be a divisor on V such that some multiple eX is ample (e an integer >0). Then there exists an integer e'>0 such that for any divisor Z on V algebraically equivalent to 0, the divisor Z+e'X is ample.

PROOF. Let  $\hat{A}$  be the Picard variety of V. We can always find a Poincaré divisor D on  $V \times \hat{A}$  which is positive: If V is an abelian variety, this is Theorem 10 of Chapter IV,

 $\S$  4, [5], and otherwise, making a generic translation on D, the pull-back method of Weil gives a positive Poincaré divisor on  $V \times \hat{A}$  (*ibid.*, Theorem 1 of Chapter VI,  $\S$  1).

By hypothesis,  $Z \sim {}^tD(a) - {}^tD(o)$  for some point  $a \in \widehat{A}$ . The intersections are defined after making a generic translation on D. It is well known that there exists an integer  $e_1 > 0$  such that  $-{}^tD(o) + e_1X$  is ample (see for instance [9], Lemma 1). Furthermore, the divisors  ${}^tD(a)$  as a ranges over  $\widehat{A}$  are all algebraically equivalent to each other, are positive divisors, and have the same projective degree. Hence there exists an integer  $e_2 > 0$  such that  ${}^tD(a) + e_2X$  is ample, again by [9], Lemma 1. From this our lemma is immediate.

PROPERTY 5. Let V be a complete non-singular variety defined over K. Let X, Y>0 be two positive divisors on V, rational over K. Assume that a positive multiple of each is ample, and that the linear systems  $\mathcal{L}(X)$  and  $\mathcal{L}(Y)$  are without fixed points. If X and Y are algebraically equivalent, then  $h_X$  and  $h_Y$  are quasi-equivalent (and so are  $H_X$  and  $H_Y$ ).

PROOF. Using property 4, we shall reduce our assertion to a statement concerning linear equivalence classes of divisors on V. By the lemma, there exists an integer e > 0 such that for all n > 0 we have

$$n(X-Y) + eX \sim Z_n$$

where  $Z_n$  is a positive divisor on V, and  $\mathcal{L}(Z_n)$  is without fixed points. Since n(X-Y)+eX is rational over K, one may take  $Z_n$  rational over K. We get  $nX+eX\sim nY+Z_n$ , and taking heights,

$$h_{X}^{n+e} \sim h_{Y}^{n} h_{Z_{n}}$$
.

Since  $h_{\mathbb{Z}_n}(P) \ge 1$  for all P, taking an n-th root, we see that given  $\varepsilon > 0$ , there exists a number c > 0 such that

$$\operatorname{ch}_{\mathbf{X}}(\mathbf{P})^{1+\varepsilon} \geq h_{\mathbf{Y}}(\mathbf{P})$$

if we take n sufficiently large. The other inequality is obtained in a similar way, or by symmetry.

When V is a curve, the statement is due to Siegel [14] whose proof we essentially imitate here, except that of course Siegel uses the Riemann-Roch theorem where we have used the Picard variety (see for instance [15], p. 435). In the case of curves, algebraic equivalence is determined by the degree of the divisor, and hence if  $\deg(X) = d$  and  $\deg(Y) = d'$ , then  $h_X$  is quasi equivalent to  $h_Y^{a/d'}$ .

In particular, we note that if a set of points on the curve V has bounded height in some projective embedding, then it has bounded height in every projective embedding: The notion of a set of bounded height is independent of the embedding.

# § 5. Inequalities from the theory of heights.

We come now to the proof of the diophantine theorem proper.

Let C be a non-singular curve, of genus  $\geq$  1, imbedded in some projective space over the global field K. The height H as a function on  $C_K$  is determined by this embedding.

Let x be a function on C, defined over K and not constant. Then (x, x) determines a mapping of C into  $\mathbf{P}^1$ , and the corresponding linear system is of degree

$$r = [K(C) : K(x)],$$

a divisor in it being, for instance, the divisor of poles of x. We assume that K(C) over K(x) is separable. (At the very end, and only then, do we need characteristic o, to contradict Roth's theorem.)

Let S be a finite set of primes of K, containing the archimedean primes, and let R be a subring of K all of whose elements are p-integral for p not in S. Let  $\Re$  be the set of points of C rational over K, and such that x(P) lies in R. We wish to prove that the height of the points in  $\Re$  is bounded. We assume the contrary, derive a list of inequalities which eventually contradict Roth's theorem. We let  $\Re_1$  be a subsequence of  $\Re$  such that the height of the points in  $\Re_1$  tends to infinity.

By assumption, we have  $|\xi|_{\mathfrak{p}} \leq \mathfrak{1}$  for  $\mathfrak{p} \notin S$  and  $\xi \in R$ . Hence for all  $P \in \mathfrak{R}_1$ , we get

$$H(x(P)) = \prod_{\mathfrak{p} \in S} \sup(\tau, |x(P)|_{\mathfrak{p}}^{N_{\mathfrak{p}}})$$

where  $N_p$  is the local degree in number fields, and 1 in function fields. Let  $N=[K:\mathbf{Q}]$  in number fields, and 1 in function fields. Let s be the number of primes in S. Rewriting our product in terms of the absolute values, we see that we have at most Ns terms in it, of type

$$\sup(\mathbf{1}, |x(\mathbf{P})|_{\mathfrak{p}}).$$

Consequently, for each  $P \in \mathfrak{R}_1$ , there exists one  $\mathfrak{p}$  in S such that  $|x(P)|_{\mathfrak{p}} \geq H(x(P))^{1/Ns}$ . Hence there exists an infinite subset  $\mathfrak{R}_2$  of  $\mathfrak{R}_1$  such that for some  $\mathfrak{p}$  in S and all points P in  $\mathfrak{R}_2$  we have

$$H(x(P))^{1/Ns} \leq |x(P)|_{\mathfrak{p}}.$$

In view of Property 5, we can compare H(x(P)) and H(P). If d is the degree of C in its given projective embedding, and  $\varphi$  the mapping into  $P^1$  given by the function x, we conclude that there is a number  $c_3 > 0$  depending on  $\varepsilon$  such that for P in  $C_K$  we have

$$H(P)^{r/d-\varepsilon} \leq c_3 H(x(P)).$$

Combining this with the previous inequality, we see that there is a number  $\rho > 0$  such that for some  $p \in S$  and all  $P \in \Re_2$  we have for suitable  $c_4 > 0$ :

$$H(P)^{\rho} \leq c_4 |x(P)|_{p}$$

This inequality will be improved by going over to a covering of C, derived from the weak Mordell-Weil theorem. Furthermore, the arguments will prove the following improvement of Theorem 1', for curves of genus  $\geq 1$ .

Theorem 2. Let K be a global field of characteristic o. Let  $\rho$ , c be numbers > o. Let C be a curve of genus  $\geq 1$  defined over K, and x a non-constant function in K(C). Let p be a prime of K. Then the height of points P in  $C_K$  such that

$$|x(P)|_{\mathfrak{p}} \leq \frac{c}{H(P)^{\rho}}$$

is bounded.

(To apply the theorem, use the function 1/x instead of x.)

#### § 6. Inequalities from the Mordell-Weil theorem.

We assume that C is embedded in its Jacobian J over K, and take J embedded in projective space. We take the induced embedding on C. For any point  $P \in J_K$  we let H(P) be the height determined by our embedding, which remains fixed throughout.

In view of the definition of the height, and of  $|\cdot|_p$ , we may, without loss of generality, in the function field case, assume that the constant field is algebraically closed. This insures that for an integer m > 1 we have  $J_K/mJ_K$  finite.

PROPOSITION 1. Let m be an integer > 0, unequal to the characteristic of K. Let  $\mathfrak{S}$  be an infinite set of rational points of C in K. Then there exists an unramified covering  $\omega: W \to C$  defined over K, an infinite set of rational points  $\mathfrak{S}'$  of W in K such that  $\omega$  induces an injection of  $\mathfrak{S}'$  into  $\mathfrak{S}$ , and a projective embedding of W over K such that  $H \circ \omega$  is quasi-equivalent to  $H^{m^2}$ . (Of course, in  $H \circ \omega$  the H refers to the height on C, while in  $H^{m^2}$  it refers to the height on W.)

PROOF. Let  $a_1, \ldots, a_t$  be representatives of cosets of  $J_K/mJ_K$ . Infinitely many  $P \in S$  lie in the same coset, and so there exists one point, say  $a_1$ , and infinitely many points Q in  $J_K$  such that  $mQ + a_1$  lies in  $\mathfrak{S}$ . We let  $\mathfrak{S}'$  be this infinite set of points Q. The covering  $\omega: J \to J$  given by  $\omega u = mu + a_1$  is unramified, and its restriction W to C is non-degenerate, i.e. is an irreducible covering of the same degree [6]. The inverse image of a point in C lies in W. Thus  $\mathfrak{S}'$  is actually a subset of  $W_K$ . Restricting one's attention to a subset of  $\mathfrak{S}'$  guarantees that  $\omega$  induces an injection on this subset.

To prove the relation concerning the heights, we may work on the Jacobian itself since we take W in the projective embedding induced by that of J. If X is a hyperplane section of J, then

$$\omega^{-1}(X) = (m\delta)^{-1}(X_{a_1}) \equiv m^2 X$$

where  $\equiv$  is the equivalence of the square, known to be the same as algebraic equivalence. But  $h_{\omega^{-1}(X)} \sim h_X \circ \omega$  by Property 3 of heights (which is trivial) and  $h_{\omega^{-1}(X)}$  behaves essentially like  $h_{m^2X} \sim h_X^{m^2}$  by Property 5. Our proposition is now clear, since for rational points in K, these equivalences are valid for H.

We note that  $x(P) = x(\omega Q)$ . Let z be the function on W such that  $z(Q) = x(\omega Q)$ . Let  $\kappa$  be a number  $\geq 2$  and let m be large enough such that  $m^2 \rho > \kappa r$ . Then for a suitable constant  $c_5$  our inequality becomes

$$|z(\mathbf{Q})|_{\mathfrak{p}} \leq \frac{c_5}{\mathbf{H}(\mathbf{Q})^{\kappa r}}$$

which is precisely the case treated in Theorem 1'. The fact that W is unramified over C guarantees us that the orders of the zeros of z are bounded by r. This concludes the proof of the original statement and of Theorem 2.

It is striking that the use we made of the Jacobian is formally analogous to the one in class field theory [6]. In that case, Artin's reciprocity law was reduced to a formal computation in the isogeny  $u \rightarrow u^{(q)} - u$  of the Jacobian. In the present case, the heart of the proof is reduced to a formal computation of heights in the isogeny  $u \rightarrow mu + a$ .

### § 7. Extensions of finite type.

We shall extend the Siegel finiteness statement to rings of finite type over **Z**, and its analogue in function fields, including the relative case. We reduce our theorem to the case of dimension I (number fields, or function fields of one variable). We begin by giving a criterion which allows us to lower the field of definition of a curve.

Let K be a function field over the constant field  $K_0$ , which need not be algebraically closed, but which we assume to be of characteristic o. If its dimension is >1, we select a projective normal model, relative to which we take our heights.

Let C be a complete non-singular curve defined over K. If  $\Re$  is a subset of  $C_K$ , and the height of the points in  $\Re$  is bounded in some projective embedding of C, then it is bounded in any other, as mentioned above. The next proposition deals with such sets. For the  $K/K_0$ -trace, cf. [5], Chapter VIII.

PROPOSITION 2. Let K,  $K_0$  be as above, and C a complete non-singular curve of genus  $\geq 1$ , defined over K. Let  $\Re$  be an infinite subset of  $C_K$  of bounded height. Regard C as embedded in its Jacobian J over K, and let  $(B, \tau)$  be a  $K/K_0$ -trace of J. Then  $\tau$  is an isomorphism. The points of  $\Re$  lie in a finite number of cosets of  $\tau B_{K_0}$ , and if infinitely many of them lie in one coset, so are of type  $a+\tau b$  where a is some point of  $J_K$  and b ranges over an infinite subset of  $B_{K_0}$ , then  $C_0=\tau^{-1}(C_{-a})$  is defined over  $K_0$ , and  $\tau$  induces an isomorphism of  $C_0$  onto  $C_{-a}$ .

PROOF. We may assume J, B embedded in projective space. Using the auxiliary model of K over  $K_0$  as in [7], we see from Theorem 3 and Proposition 2 of [7] that the points of  $\Re$  lie in a finite number of cosets of  $\tau B_{K_0}$ . Say infinitely many lie in the coset  $a+\tau B_{K_0}$ . We know that  $\tau$  establishes an isomorphism between B and  $\tau(B)$  by Cor. 2 of Th. 9, Ch. VIII, [5]. Since infinitely many points of  $\tau B_{K_0}$  lie in  $C_{-a}$ , it follows that their K-closure in  $\tau B$  or in J is precisely  $C_{-a}$ . Put  $C_0 = \tau^{-1}(C_{-a})$ . Then  $C_0$  is a curve contained in B, and  $\tau$  induces an isomorphism  $\tau_0$  of  $C_0$  onto  $C_{-a}$ . Furthermore,  $C_0$  contains infinitely many points b of B rational over  $K_0$ . It is then a trivial matter to conclude that  $C_0$  is defined over  $K_0$  because these infinitely many points are both  $K_0$  and K-dense in  $C_0$ . Since  $\tau B$  contains a translation of C, it follows that  $\tau B = J$  is the Jacobian, i.e.  $\tau$  is an isomorphism.

Remark. If we do not assume characteristic o in Proposition 2, then  $\tau$  is merely bijective, and  $C_0$  may be defined over a purely inseparable extension of  $K_0$ .

COROLLARY. Let K,  $K_0$  be as above. Let C be a complete non-singular curve of genus  $\geq 2$  defined over K, and let  $\Re$  be an infinite subset of  $C_K$  consisting of points of bounded height. Then there exists a curve  $C_0$  defined over  $K_0$  and a birational transformation  $T: C_0 \rightarrow C$  defined over K such that all but a finite number of points of  $\Re$  are images under T of rational points of  $C_0$  in  $K_0$ .

PROOF. Since the genus is  $\geq 2$ , the curve cannot be equal to any translation of itself in its Jacobian. Hence there can only be one coset having infinitely many points of C and we apply the proposition.

Combining our corollary with the results obtained in the previous section, we get the relative formulation of Siegel's theorem.

THEOREM 3. Let K be a function field over a constant field k of characteristic o. Let R be a subring of K of finite type over k. Let C be a complete non-singular curve of genus  $\geq 1$  defined over K, and  $\varphi$  a non-constant function on C also defined over K. Let  $\Re$  be the subset of  $C_K$  consisting of those points P such that  $\varphi(P) \in \mathbb{R}$ . If  $\Re$  is infinite, then there exists a curve  $C_0$  defined over k, and a birational transformation  $T: C_0 \to C$  defined over K. If the genus is  $\geq 2$ , then all but a finite number of points of  $\Re$  are images under T of points of  $C_{0k}$ . If the genus is 1, then the points of  $\Re$  lie in a finite number of cosets of  $T(C_{0k})$ .

To deal with the absolutely algebraic case, we need a specialization argument.

Theorem 4. Let K be a field of finite type over  $\mathbf{Q}$ , and R a subring of K of finite type over  $\mathbf{Z}$ . Let C be a non-singular curve of genus  $\geq I$  defined over K, and let  $\phi$  be a function in K(C) which is not constant. Let  $\Re$  be the subset of  $C_K$  consisting of points P such that  $\phi(P) \in R$ . Then  $\Re$  is finite.

PROOF. We may assume C projective non-singular. Suppose  $\Re$  infinite. Let k be the algebraic closure of  $\mathbb{Q}$  in K. Then by Theorem 3, C is birationally equivalent over K to a curve  $C_0$  defined over k. If the genus of C is 1, we restrict our attention to an infinite subset of points of  $\Re$  which lie in the same coset of  $\mathrm{T}(C_{0k})$ . Then, without loss of generality, we may assume  $C = C_0$ , and that we have infinitely many points of C in K such that  $\varphi(P) \in \mathbb{R}$ , where  $\varphi$  is a function on C defined over K. We shall now prove our theorem by induction on the dimension of K over  $\mathbb{Q}$ .

Let F be a subfield of K containing k, and such that the dimension of K over F is 1. There exists a discrete valuation ring  $\mathfrak o$  of K containing F and R whose residue class field  $E = \mathfrak o/\mathfrak m$  is finite over F, and such that the reduction  $\varphi'$  of  $\varphi$  mod  $\mathfrak m$  is a non-constant function  $\varphi': C \to \mathbf P^1$  (of the same degree as  $\varphi$ ). For any point Q of  $C_K$ , we get a specialized point Q' in  $C_E$ , and  $\varphi'(Q') = \varphi(Q)'$ , using the compatibility of intersections and reductions, i.e. formally, using the graphs:

$$[\Gamma_{\!\scriptscriptstyle\boldsymbol{\phi}}\boldsymbol{.}\,(Q\!\times\!\boldsymbol{P}^{\!\scriptscriptstyle\boldsymbol{1}})]'\!=\!\Gamma'_{\!\scriptscriptstyle\boldsymbol{\phi}}\boldsymbol{.}\,(Q'\!\times\!\boldsymbol{P}^{\!\scriptscriptstyle\boldsymbol{1}})$$

the left hand side being  $Q \times \phi(Q)$  and the right hand side being  $Q' \times \phi'(Q')$ . This yields infinitely many points Q' of  $C_E$  such that  $\phi'(Q')$  lies in the ring R', image of R in

the homomorphism  $\mathfrak{o} \to \mathfrak{o}/\mathfrak{m}$ . Since E is of finite type over  $\mathbb{Q}$ , of dimension one less than that of K, and since R' is still of finite type over  $\mathbb{Z}$ , this concludes the proof.

REMARK. The theorem could also be proved by using Néron's theorem which implies that say for an affine curve f(X, Y) = 0 of genus  $\geq 1$  with coefficients in R, there exists a homomorphism  $R \rightarrow R'$  of R into a ring R' contained in a number field such that if f'(X, Y) = 0 is the specialized curve, then its genus is also  $\geq 1$  and the homomorphism  $R \rightarrow R'$  induces an injection of the points of f in R into those of f' in R'. (See [11], Th. 6.)

Columbia University, New York.

#### **BIBLIOGRAPHY**

- E. ARTIN and G. WHAPLES, Axiomatic characterization of fields by the product formula, Bull. Am. Math. Soc., vol. 51, no 7 (1945), pp. 469-492.
- [2] C. Chabauty, Sur les équations diophantiennes liées aux unités d'un corps de nombres algébriques fini, thèse, Annali di Math., 17 (1938), pp. 127-168.
- [3] Sur les points rationnels des variétés algébriques dont l'irrégularité est supérieure à la dimension, Comptes rendus Académie des Sciences, Paris, 212 (1941), pp. 1022-1024.
- [4] S. LANG, Introduction to algebraic geometry, Interscience, New York, 1959.
- [5] Abelian varieties, Interscience, New York, 1959.
- [6] Unramified class field theory over function fields in several variables, Annals of Math., vol. 64, nº 2 (1956), pp. 285-325.
- [7] S. Lang and A. Néron, Rational points of abelian varieties in function fields, Am. J. of Math., vol. 81, nº 1 (1959), pp. 95-118.
- [8] K. Mahler, Über die rationalen Punkte auf Kurven vom Geschlecht Eins, J. Reine angew. Math., Bd. 170 (1934), pp. 168-178.
- [9] T. Matsusaka, On algebraic families of positive divisors..., J. Math. Soc. Japan, vol. 5, no 2 (1953), pp. 118-136.
- [10] L. J. MORDELL, On the rational solutions of the indeterminate equation of the third and fourth degrees, Proc. of the Cambridge Philos. Soc., 21 (1922).
- [11] A. Néron, Problèmes arithmétiques et géométriques rattachés à la notion de rang d'une courbe algébrique dans un corps, Bull. Soc. Math. France, 80 (1952), pp. 101-166.
- [12] D. RIDOUT, The p-adic generalization of the Thue-Siegel-Roth theorem, Mathematika, 5 (1958), pp. 40-48.
- [13] К. F. Roth, Rational approximations to algebraic numbers, Mathematika, 2 (1955), pp. 1-20.
- [14] C. L. Siegel, Über einige Anwendungen Diophantischer Approximationen, Abh. Preussischen Akademie der Wissenschaften, Phys. Math. Klasse (1929), pp. 41-69.
- [15] A. Weil, Arithmetic on algebraic varieties, Annals of Math., vol. 53, no 3 (1951), pp. 412-444.
- [16] L'arithmétique sur les courbes algébriques, Acta Mathematica, 52 (1928), pp. 281-315.

Reçu le 20 mars 1960.

1960. — Imprimerie des Presses Universitaires de France. — Vendôme (France) ÉDIT. Nº 26 039 IMPRIMÉ EN FRANCE IMP. Nº 16 336 MAY CIRCULATE

#### **DIFFUSION**

# PRESSES UNIVERSITAIRES DE FRANCE

108, boulevard Saint-Germain PARIS (6°)