

Instruction Tuning

Yu Meng

University of Virginia yumeng5@virginia.edu

Nov 04, 2024

Reminder

Join at slido.com #3947 182

Assignment 4 is due today 11:59pm!

Overview of Course Contents

- Week 1: Logistics & Overview
- Week 2: N-gram Language Models
- Week 3: Word Senses, Semantics & Classic Word Representations
- Week 4: Word Embeddings
- Week 5: Sequence Modeling and Neural Language Models
- Week 6-7: Language Modeling with Transformers (Pretraining + Fine-tuning)
- Week 8: Large Language Models (LLMs) & In-context Learning
- Week 9-10: Reasoning, Knowledge, and Retrieval-Augmented Generation (RAG)
- Week 11: LLM Alignment
- Week 12: Language Agents
- Week 13: Recap + Future of NLP
- Week 15 (after Thanksgiving): Project Presentations

(Recap) Hallucination

- Hallucination: LM generates information that is factually incorrect, misleading, or fabricated, even though it may sound plausible or convincing
- Why does hallucination happen?
 - Limited knowledge: LLMs are trained on finite datasets, which don't have access to all
 possible information; when asked about topics outside their training data, they may
 generate plausible-sounding but incorrect responses
 - Overgeneralization: LLMs may apply patterns they've learned from one context to another where they don't apply, leading to incorrect conclusions
 - Lack of common sense: While LLMs can process and generate human-like text, they often lack the ability to apply commonsense reasoning to their outputs
 - ...

(Recap) Non-parametric Knowledge

- Non-parametric knowledge: (external) information not stored in the model's parameters but can be accessed or retrieved when needed
- Examples:
 - External knowledge bases/graphs
 - Pretraining corpora
 - User-provided documents/passages
- Non-parametric knowledge is typically used to augment parametric knowledge (typically via retrieval) for more accurate factoid question answering
- Benefits of non-parametric knowledge
 - Incorporate more information without increasing model size
 - Easier updates and modifications to the knowledge base
 - Improve model interpretability

(Recap) Sparse vs. Dense Retrieval

- Sparse retrieval: based on traditional IR techniques where the representations of documents and queries are sparse (most vector values are zero)
 - Example: TF-IDF
 - Pros: simple and interpretable
 - Cons: lack semantic understanding
- Dense retrieval: encode documents and queries into dense vectors (embeddings) using deep neural networks
 - Example: BERT-based encoding methods
 - Pros: semantic & contextualized understanding
 - Cons: computationally more expensive and less interpretable

(Recap) TF-IDF for Sparse Retrieval

Example query and mini-corpus:

Query: sweet love

Doc 1: Sweet sweet nurse! Love?

Doc 2: Sweet sorrow

Doc 3: How sweet is love?

Doc 4: Nurse!

Query & document vectors:

Query							
word	cnt	tf	df	idf	tf-idf	$\mathbf{n'lized} = \text{tf-idf}/ q $	
sweet	1	1	3	0.125	0.125	0.383	
nurse	0	0	2	0.301	0	0	
love	1	1	2	0.301	0.301	0.924	
how	0	0	1	0.602	0	0	
sorrow	0	0	1	0.602	0	0	
is	0	0	1	0.602	0	0	

			Docur	nent 1	Document 2			
word	cnt	tf	tf-idf	n'lized	cnt	tf	tf-idf	n'lized
sweet	2	1.301	0.163	0.357	1	1.000	0.125	0.203
nurse	1	1.000	0.301	0.661	0	0	0	0
love	1	1.000	0.301	0.661	0	0	0	0
how	0	0	0	0	0	0	0	0
sorrow	0	0	0	0	1	1.000	0.602	0.979
is	0	0	0	0	0	0	0	0

$$\cos(\boldsymbol{q}, \boldsymbol{d}_1) = 0.747$$

$$\cos(\boldsymbol{q}, \boldsymbol{d}_2) = 0.078$$

(Recap) Dense Retrieval

- Motivation: sparse retrieval (e.g., TF-IDF) relies on the exact overlap of words between the query and document without considering semantic similarity
- Solution: use a language model to obtain (dense) distributed representations of query and document
- The retriever language model is typically a small text encoder model (e.g., BERT)
 - Retrieval is a natural language understanding task
 - Encoder-only models are more efficient than LLMs for this purpose
- Both query and document representations are computed by text encoders

(Recap) Dense Retrieval: Cross-encoder

- Process query-document pairs together
- Relevance score produced directly by the model output
- (+) Capture intricate interactions between the query and the document
- (-) Not scalable to large retrieval corpus
- Good for small document sets

Figure source: https://web.stanford.edu/~jurafsky/slp3/14.pdf

(Recap) Dense Retrieval: Bi-encoder

- Independently encode the query and the document using two separate (but often identical) encoder models
- Use cosine similarity between the query and document vectors as relevance score
- (+) Document vectors can be precomputed
- (-) Cannot capture query-document interactions
- Common choice for large-scale retrieval

(Recap) Evaluation of IR Systems

- Assume that each document returned by the IR system is either relevant to our purposes or not relevant
- Given a query, assume the system returns a set of ranked documents T
 - A subset R of these are relevant (The remaining N = T R is irrelevant)
 - There are U documents in the entire retrieval collection that are relevant to this query
- **Precision:** the fraction of the returned documents that are relevant

$$Precision = \frac{|R|}{|T|}$$

• **Recall:** the fraction of all relevant documents that are returned

$$Recall = \frac{|R|}{|U|}$$

(Recap) RAG vs. Direct Prompting

Prompting relies on LM's parametric knowledge to directly answer the question:

```
P(w|Q): Who wrote the book 'The Origin of Species'? A: prompt
```

RAG prepends the set of retrieved passages to the question

```
retrieved passage 1

retrieved passage 2

Returned by the retriever

retrieved passage n

Based on these texts, answer this question: Q: Who wrote the book 'The Origin of Species"? A:
```


(Recap) RAG: A Latent Variable Model

The retrieved documents are treated as latent variables (z) for generation

(Recap) RAG & Long Context Issues in LLMs

- RAG significantly increases the input sequence length to LLMs ("long context") by prepending multiple retrieved passages
- **Inefficiency**: the complexity of self-attention is quadratic wrt number of tokens
- Irrelevant information: LLMs might get distracted by irrelevant retrieval content
- Lost in the middle: LLMs tend to focus more on the beginning and end of the input sequence, but missing important information located in the middle of a long context
- **Performance saturation**: LLMs do not always effectively use the extra context (more retrieved documents)

(Recap) Primacy & Recency Bias

- Exactly one of the documents contains the answer, with other "distractor" documents
- Vary the position of the gold document
- U-shaped performance curve: LLMs are better at using relevant information that
 occurs at the very beginning (primacy bias) or end of its input context (recency bias)

(Recap) Performance Saturation

- Retriever recall always improves with more retrieved docs
- LLM performance saturates long before retriever performance saturates (using more than 20 retrieved documents only marginally improves LLM performance)

Agenda

- Introduction to LLM Alignment
- Instruction Tuning

The Evolution of GPT Models: ChatGPT

- GPT-1: decoder-only Transformer pretraining
- GPT-2: language model pretraining is multi-task learning
- GPT-3: scaling up & in-context learning
- ChatGPT: language model alignment

GPT-1	GPT-2	GPT-3	ChatGPT (GPT-3.5)	
2018	2019	2020	2022	

Overview: Language Model Alignment

- Ensure language models behaviors are aligned with human values and intent
- "HHH" criteria (Askell et al. 2021):
 - **Helpful**: Efficiently perform the task requested by the user
 - Honest: Give accurate information & express uncertainty
 - Harmless: Avoid offensive/discriminatory/biased outputs

Language Model Alignment: Post-training

- Pretrained language models are **not** aligned
- Objective mismatch
 - Pretraining is to predict the next word in a sentence
 - Does not involve understanding human intent/values
- Training data bias
 - Text from the internet can contain biased, harmful, or misleading information
 - LMs don't distinguish between good and bad behavior in training data
- (Over-)generalization issues
 - LMs' generalization can lead to outputs that are inappropriate in specific contexts
 - Might not align with intended ethics/honesty standard

Language Model Alignment Techniques

Reinforcement Learning from Human Feedback (RLHF)

Overview: Instruction Tuning

- Train an LM using a diverse set of tasks
 - Each task is framed as an instruction followed by an example of the desired output
 - The goal is to teach the model to follow specific instructions (human intent) effectively
- The resulting model can perform a variety of tasks **zero-shot** (w/o requiring in-context demonstrations)
- The instructions can also be in chat format tuning an LM into a chatbot

```
    meta-llama/Llama-3.2-1B
    Text Generation • Updated 8 days ago • ± 1.05M • ↑ • ♡ 725

    meta-llama/Llama-3.2-1B-Instruct
    Instruction-tuned
    (post-trained) model
```


Overview: RLHF

- Human feedback collection
 - Generate multiple responses using the model given the same prompt
 - Human evaluators rank responses of the model based on helpfulness/honesty/safety...
- Reward model training
 - A reward model is trained on human feedback data to predict the quality of responses
 - Higher reward = more preferred by human evaluators
- Policy optimization
 - Use reinforcement learning algorithms to further train the LM to maximize the reward predicted by the reward model
 - Encourage the model to produce outputs that align better with human preferences

Agenda

- Introduction to LLM Alignment
- Instruction Tuning

Instruction Tuning: Introduction

- **Setting**: fine-tune LLMs with task-specific instructions on diverse tasks
- Goal: enable LLM to better understand user prompts and generalize to a wide range of (unseen) tasks zero-shot

FINETUNED LANGUAGE MODELS ARE ZERO-SHOT LEARNERS

Jason Wei*, Maarten Bosma*, Vincent Y. Zhao*, Kelvin Guu*, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le Google Research

Instruction Tuning: Method

Join at slido.com #3947 182

Prompt

- Input: task description
- Output: expected response or solution to the task

• Train LLMs to generate response tokens given prompts $\min_{m{ heta}} - \log p_{m{ heta}}(m{y}|m{x})$

Paper: https://arxiv.org/pdf/2109.01652

Instruction Tuning vs. Other Paradigms

- Task-specific fine-tuning does not enable generalization across multiple tasks
- In-context learning requires few-shot demonstrations

 Instruction tuning enables zero-shot cross task generalization

Instruction Tuning vs. Pretraining

- Both instruction tuning and pretraining are multi-task learning paradigms
- Supervision
 - Pretraining: self-supervised learning (raw data w/o human annotation)
 - Instruction tuning: supervised learning (human annotated responses)
- Task format
 - Pretraining: tasks are implicit (predicting next tokens)
 - Instruction tuning: tasks are explicit (defined using natural language instructions)
- Goal
 - Pretraining: teach LMs a wide range of linguistic patterns & general knowledge
 - Instruction tuning: teach LMs to follow specific instructions and perform a variety of tasks

FLAN: Collection of Instruction Tuning Datasets

62 datasets (12 task clusters) covering a wide range of understanding + generation tasks

Generalization Improves with More Clusters

- Held out three clusters from instruction tuning: Commonsense, NLI, Closed-book QA
- More clusters and tasks used in instruction tuning => better generalization to unseen clusters

Instruction Tuning with Different Model Sizes

- Instruction tuning can hurt small model (< 8B) generalization
- Instruction tuning substantially improves generalization for large models

Chat-style Instruction Tuning

- Instruction tuning can also be used to build chatbots for multi-turn dialogue
- Instructions may not correspond strictly to one NLP task, but mimic a human-like dialogue
- Multi-turn instruction tuning training data example:

```
{"role": "user", "content": "What's the weather like today?"},
{"role": "assistant", "content": "It's sunny with a high of 75 degrees."},
{"role": "user", "content": "Great! What about tomorrow?"},
{"role": "assistant", "content": "Tomorrow will be partly cloudy with a high of 72 degrees."}
```


Further Reading on Instruction Tuning

- Multitask Prompted Training Enables Zero-Shot Task Generalization [Sanh et al., 2021]
- <u>Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP</u>
 <u>Tasks</u> [Wang et al., 2022]
- <u>Self-Instruct: Aligning Language Models with Self-Generated Instructions</u> [Wang et al.,
 2022]
- <u>LIMA: Less Is More for Alignment</u> [Zhou et al., 2023]

Thank You!

Yu Meng

University of Virginia

yumeng5@virginia.edu