Combining Inductive and Analytical Learning

- Why combine inductive and analytical learning?
- KBANN: prior knowledge to initialize the hypothesis
- TangentProp, EBNN: prior knowledge alters search objective
- FOCL: prior knowledge alters search operators

Inductive and Analytical Learning

Inductive learning

Analytical learning

Hypothesis fits data

Hypothesis fits domain theory

Statistical inference

Deductive inference

Requires little prior knowledge

Learns from scarce data

Syntactic inductive bias

Bias is domain theory

What We Would Like

Inductive learning

Analytical learning

Plentiful data
No prior knowledge

Scarce data

Perfect prior knowledge

- General purpose learning method:
- No domain theory → learn as well as inductive methods
- Perfect domain theory → learn as well as PROLOG-EBG
- Accommodate arbitrary and unknown errors in domain theory
- Accommodate arbitrary and unknown errors in training data

Domain Theory

Cup ← Stable, Liftable, OpenVessel

Stable ← BottomIsFlat

Liftable ← Graspable, Light

Graspable ← HasHandle

OpenVessel ← HasConcavity, ConcavityPointsUp

BottomIsFlat Light HasHandle HasConcavity ConcavityPointsUp

Training Examples

	Cups Non-Cups
BottomIsFlat	
ConcavityPointsUp	
Expensive	
Fragile	
HandleOnTop	
HandleOnSide	
HasConcavity	
HasHandle	
Light	
MadeOfCeramic	
MadeOfPaper	
MadeOfStyroForm	

KBANN

Knowledge Based Artificial Neural Networks

KBANN (data D, domain theory B)

- 1. Create a feedforward network h equivalent to B
- 2. Use BACKPROP to tune h to fit D

Neural Net Equivalent to Domain Theory

Creating Network Equivalent to Domain Theory

Create one unit per horn clause rule (an AND unit)

- Connect unit inputs to corresponding clause antecedents
- For each non-negated antecedent, corresponding input weight $w \leftarrow W$, where W is some constant
- For each negated antecedent, weight $w \leftarrow -W$
- Threshold weight $w_0 \leftarrow -(n .5)$ W, where n is number of non-negated antecedents

Finally, add additional connections with near-zero weights

 $Liftable \leftarrow Graspable, \neg Heavy$

Result of Refining the Network

KBANN Results

Classifying promoter regions in DNA (leave one out testing):

- Backpropagation: error rate 8/106
- KBANN: 4/106

Similar improvements on other classification, control tasks.

Hypothesis Space Search in KBANN

Hypothesis Space

EBNN

Explanation Based Neural Network

Key idea:

- Previously learned approximate domain theory
- Domain theory represented by collection of neural networks
- Learn target function as another neural network

Explanation in Terms of Domain Theory

Prior learned networks for useful concepts combined into a single target network

TangetProp

Assume x, f(x) and $\frac{\partial f(x)}{\partial x}\Big|_{x_i}$ provided as input

Modified objective for gradient descent:

$$E = \sum_{i} \left[(f(x_i) - \hat{f}(x_i))^2 + \mu_i \sum_{j} \left(\frac{\partial A(x)}{\partial x^j} - \frac{\partial \hat{f}(x)}{\partial x^j} \right)^2 (x = x_i) \right]$$

where

$$\mu_i \equiv 1 - \frac{\left| A(x_i) - f(x_i) \right|}{c}$$

- f(x) is target function
- $\hat{f}(x)$ is neural net approximation to f(x)
- A(x) is domain theory approximation to f(x)

Hypothesis Space Search in TangentProp

Hypothesis Space

FOCL

- Adaptation of FOIL that uses domain theory
- When adding a literal to a rule, not only consider adding single terms, but also think about adding terms from domain theory
- May also prune specializations generated

Search in FOCL

CS 5751 Machine Learning

Chapter 12 Comb. Inductive/Analytical

FOCL Results

Recognizing legal chess endgame positions:

- 30 positive, 30 negative examples
- FOIL: 86%
- FOCL: 94% (using domain theory with 76% accuracy)

NYNEX telephone network diagnosis

- 500 training examples
- FOIL: 90%
- FOCL: 98% (using domain theory with 95% accuracy)