```
In [1]: # keyless dict - set
         s1 = \{1,2,1,2,3,4,5,1,2,1\}
In [2]: s1
Out[2]: {1, 2, 3, 4, 5}
In [7]: 11 = [12,34,56,32,12,3,4,57,54,46,56,78,99,100,23]
Out[7]: [12, 34, 56, 32, 12, 3, 4, 57, 54, 46, 56, 78, 99, 100, 23]
In [4]: import pandas as pd
In [5]: # pd.Series(l1/t1/d1/s1)
         ser1 = pd.Series(l1)
In [8]:
         ser1
Out[8]: 0
                12
                34
         1
         2
                56
         3
                32
         4
                12
         5
                 3
         6
                 4
         7
                57
                54
                46
         10
                56
                78
         11
         12
                99
         13
               100
         14
                23
         dtype: int64
In [11]: # indexes
         # list/tuple/dict/set/pd.Series
         # always from 0 to n-1
         # for pd.Series, indexes can also be user defined
         ser2 = pd.Series(l1, index= range(1,len(l1)+1))
         # index takes a list as input -
                   i. elements should be unique
         #
                   ii. the size of the list should be same as the size of the series
```

```
In [12]: ser2
Out[12]: 1
                  12
          2
                  34
          3
                  56
          4
                  32
          5
                  12
                   3
          7
                   4
          8
                  57
          9
                  54
          10
                  46
                  56
          11
          12
                  78
          13
                  99
          14
                 100
          15
                  23
          dtype: int64
In [13]: ser3 = pd.Series(l1, index = ['a','b','c','d','e','f','g','h','i','j','k','l',
           'm','n','o'])
In [14]:
          ser3
Out[14]: a
                 12
                 34
                 56
          c
          d
                 32
                 12
                  3
                  4
                 57
                 54
          i
                 46
                 56
          1
                 78
                 99
          n
                100
                 23
          dtype: int64
```

index to series can be # 1. Default 0 to n-1 - .iloc[] if user doesn't ginve any index, int and ext indexes are from 0 - n-1 # 2. User defined - .loc[] int - default index ext - user def index

```
In [15]: 11[3]
Out[15]: 32
In [20]: # ser2
# access fourth element - element with def index as 3
ser2.iloc[3]
Out[20]: 32
```

```
In [21]: | ser2.loc[4]
Out[21]: 32
In [22]: ser3.loc["d"]
Out[22]: 32
In [23]: ser3.iloc[3]
Out[23]: 32
In [26]: ser1.iloc[0:8]
          ser2.iloc[0:8]
               12
Out[26]: 1
          2
               34
          3
               56
               32
               12
                3
          7
                4
               57
          dtype: int64
         ser2.loc[1:9] # Contrary to the regular 1,2,3,4,5,6,7,8 a colon op in .loc wil
          l get 1,2,3,4,5,6,7,8,9
Out[28]: 1
               12
               34
          2
               56
          3
          4
               32
          5
               12
          6
                3
          7
                4
               57
               54
          dtype: int64
In [34]: # Apply conditions to series
          # fetch elements > 30n and < 80
          [x for x in 11 if x > 30 and x < 80] # List comprehension
          res = []
          for i in l1:
              if i > 30 and i < 80:
                  res.append(i)
          print res
          [34, 56, 32, 57, 54, 46, 56, 78]
```

```
In [36]: ser1 > 30
Out[36]: 0
                 False
          1
                  True
          2
                  True
          3
                  True
          4
                 False
          5
                 False
          6
                 False
          7
                  True
          8
                  True
          9
                  True
          10
                  True
          11
                  True
          12
                  True
          13
                  True
                 False
          14
          dtype: bool
In [37]: ser1[ser1 > 30]
Out[37]: 1
                  34
          2
                  56
          3
                  32
          7
                  57
          8
                  54
          9
                  46
          10
                  56
          11
                  78
                  99
          12
          13
                 100
          dtype: int64
In [39]: ser1[(ser1 > 30) & (ser1 < 80)]</pre>
          #and &
          #or
          #not -
Out[39]:
         1
                 34
          2
                 56
          3
                 32
          7
                 57
          8
                 54
                 46
          9
          10
                 56
                 78
          11
          dtype: int64
```

```
In [41]: ser1.loc[(ser1 > 30) & (ser1 < 80)]</pre>
Out[41]: 1
                 34
          2
                 56
          3
                 32
          7
                 57
                 54
          8
          9
                 46
          10
                 56
          11
                 78
          dtype: int64
```

In [44]: # functions associated with series print(dir(11))

```
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__del
slice__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '_
_getitem__', '__getslice__', '__gt__', '__hash__', '__iadd__', '__imul__', '__
_init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__
new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__
_', '__setattr__', '__setitem__', '__setslice__', '__sizeof__', '__str__', '__
_subclasshook__', 'append', 'count', 'extend', 'index', 'insert', 'pop', 'rem
ove', 'reverse', 'sort']
```

In [45]: print(dir(ser1))

['T', '_AXIS_ALIASES', '_AXIS_IALIASES', '_AXIS_LEN', '_AXIS_NAMES', '_AXIS_N UMBERS', '_AXIS_ORDERS', '_AXIS_REVERSED', '_AXIS_SLICEMAP', '__abs__', '__ad d__', '__and__', '__array__ d_', '_and_', '_array_', '_array_prepare_', '_array_priority_', '_a
rray_wrap_', '_bool_', '_bytes_', '_class_', '_contains_', '_copy_
_', '_deepcopy_', '_delattr_', '_delitem_', '_dict_', '_dir_', '_d
iv_', '_divmod_', '_doc_', '_eq_', '_finalize_', '_float_', '_flo
ordiv_', '_format_', '_ge_', '_getattr_', '_getattribute_', '_getit
em_', '_getstate_', 'gt_', '_hash_', '_iadd_', '_iand_', '_idiv_
_', '_ifloordiv_', '_imod_', '_imul_', '_init_', '_int_', '_invert
_', '_ior_', '_ipow_', '_isub_', '_iter_', '_itruediv_', '_ixor_
_', '_le_', '_len_', '_long_', '_lt_', '_mod_', '_module_', '_mu
l_', '_ne_', '_neg_', '_new_', '_nonzero_', '_or_', '_pow_', '_
radd_', '_rand_', '_rdiv_', '_reduce_', '_reduce_ex_', '_repr_',
'_rfloordiv_', '_rmod_', '_rmul_', '_ror_', '_round_', '_rpow_',
'_rsub_', '_rtruediv_', '_rxor_', '_setattr_', '_setitem_', '_sets
tate_', '_sizeof_', '_str_', '_sub_', '_subclasshook_', '_truediv_
_', '_unicode_', '_weakref_', '_xor_', '_accessors', '_add_numeric_oper
ations', '_add_series_only_operations', '_add_series_or_dataframe_operation ', '__array_prepare__', '__array_priority__', ations', '_add_series_only_operations', '_add_series_or_dataframe_operation s', '_agg_by_level', '_agg_doc', '_aggregate', '_aggregate_multiple_funcs', _align_frame', '_align_series', '_allow_index_ops', '_at', '_binop', '_box_i tem_values', '_builtin_table', '_can_hold_na', '_check_inplace_setting', ' eck_is_chained_assignment_possible', '_check_percentile', '_check_setitem_cop y', '_clear_item_cache', '_clip_with_one_bound', '_clip_with_scalar', '_conso lidate', '_consolidate_inplace', '_construct_axes_dict', '_construct_axes_dic t_for_slice', '_construct_axes_dict_from', '_construct_axes_from_arguments',
'_constructor', '_constructor_expanddim', '_constructor_sliced', '_convert', '_create_indexer', '_cython_table', '_deprecations', '_dir_additions', '_dir_ deletions', '_drop_axis', '_expand_axes', '_formatting_values', '_from_axes', '_get_axis', '_get_axis_name', '_get_axis_number', '_get_axis_resolvers', '_g et_block_manager_axis', '_get_bool_data', '_get_cacher', '_get_index_resolver s', '_get_item_cache', '_get_numeric_data', '_get_value', '_get_values', '_ge t_values_tuple', '_get_with', '_gotitem', '_iat', '_iget_item_cache', '_ilo c', '_index', '_indexed_same', '_info_axis', '_info_axis_name', '_info_axis_n umber', '_init_mgr', '_internal_names', '_internal_names_set', '_ _is_builtin_f _is_cached', '_is_numeric_mixed_type', '_is_view', '_ix', '_ixs', '_loc', '_maybe_c ache_changed', '_maybe_update_cacher', '_metadata', '_needs_reindex_multi', _obj_with_exclusions', '_protect_consolidate', '_reduce', '_reindex_axes', reindex_axis', '_reindex_indexer', '_reindex_multi', '_reindex_with_indexer s', '_repr_data_resource_', '_repr_latex_', '_reset_cache', '_reset_cacher', _selected_obj', '_selection', '_selection_list', '_selection_name', '_set_as _cached', '_set_axis', '_set_axis_name', '_set_is_copy', '_set_item', '_set_l abels', '_set_name', '_set_subtyp', '_set_value', '_set_values', '_set_with', '_set_with_engine', '_setup_axes', '_shallow_copy', '_slice', '_stat_axis', _____stat_axis_name', '_stat_axis_number', '_take', '_to_dict_of_blocks', '_try_ aggregate_string_function', '_typ', '_unpickle_series_compat', '_update_inpla ce', '_validate_dtype', '_values', '_where', '_xs', 'abs', 'add', 'add_prefi x', 'add_suffix', 'agg', 'aggregate', 'align', 'all', 'any', 'append', 'appl y', 'argmax', 'argmin', 'argsort', 'as_matrix', 'asfreq', 'asobject', 'asof', 'astype', 'at', 'at_time', 'autocorr', 'axes', 'base', 'between', 'between_ti me', 'bfill', 'bool', 'clip', 'clip_lower', 'clip_upper', 'combine', 'combine _first', 'compound', 'compress', 'copy', 'corr', 'count', 'cov', 'cummax', 'c ummin', 'cumprod', 'cumsum', 'data', 'describe', 'diff', 'div', 'divide', t', 'drop', 'drop_duplicates', 'dropna', 'dtype', 'dtypes', 'duplicated', 'em pty', 'eq', 'equals', 'ewm', 'expanding', 'factorize', 'ffill', 'fillna', 'fi lter', 'first', 'first_valid_index', 'flags', 'floordiv', 'from_array', 'ftyp e', 'ftypes', 'ge', 'get', 'get_dtype_counts', 'get_ftype_counts', 'get_value

s', 'groupby', 'gt', 'hasnans', 'head', 'hist', 'iat', 'idxmax', 'idxmin', 'i loc', 'imag', 'index', 'infer_objects', 'interpolate', 'is_copy', 'is_monoton ic', 'is_monotonic_decreasing', 'is_monotonic_increasing', 'is_unique', 'isi n', 'isna', 'isnull', 'item', 'items', 'itemsize', 'iteritems', 'ix', 'keys', 'kurt', 'kurtosis', 'last', 'last_valid_index', 'le', 'loc', 'lt', 'mad', 'ma p', 'mask', 'max', 'mean', 'median', 'memory_usage', 'min', 'mod', 'mode', 'm ul', 'multiply', 'name', 'nbytes', 'ndim', 'ne', 'nlargest', 'nonzero', 'notn a', 'notnull', 'nsmallest', 'nunique', 'pct_change', 'pipe', 'plot', 'pop', 'pow', 'prod', 'product', 'ptp', 'put', 'quantile', 'radd', 'rank', 'ravel', 'rdiv', 'real', 'reindex', 'reindex_axis', 'reindex_like', 'rename', 'rename_ axis', 'reorder_levels', 'repeat', 'replace', 'resample', 'reset_index', 'rfl oordiv', 'rmod', 'rmul', 'rolling', 'round', 'rpow', 'rsub', 'rtruediv', 'sam ple', 'searchsorted', 'select', 'sem', 'set_axis', 'shape', 'shift', 'size',
 'skew', 'slice_shift', 'sort_index', 'sort_values', 'squeeze', 'std', 'stride
s', 'sub', 'subtract', 'sum', 'swapaxes', 'swaplevel', 'tail', 'take', 'to_cl ipboard', 'to_csv', 'to_dense', 'to_dict', 'to_excel', 'to_frame', 'to_hdf', 'to_json', 'to_latex', 'to_msgpack', 'to_period', 'to_pickle', 'to_sparse', 'to_sql', 'to_string', 'to_timestamp', 'to_xarray', 'tolist', 'transform', 't ranspose', 'truediv', 'truncate', 'tshift', 'tz convert', 'tz localize', 'uni que', 'unstack', 'update', 'valid', 'value counts', 'values', 'var', 'view', 'where', 'xs']

```
In [47]: # sum mean quantiles/deciles median sd var skewness kurtosis max min
         ser1.sum()
Out[47]: 666
In [48]: ser1.mean()
Out[48]: 44.4
In [49]: ser1.median()
Out[49]: 46.0
In [50]: ser1.max()
Out[50]: 100
In [51]: ser1.min()
Out[51]: 3
In [53]: ser1.quantile([0,0.25,0.5,0.75,1])
Out[53]: 0.00
                   3.0
         0.25
                  17.5
         0.50
                  46.0
         0.75
                  56.5
         1.00
                 100.0
         dtvpe: float64
```

```
In [56]: ser1.astype(bool)
Out[56]: 0
                True
          1
                True
          2
                True
          3
                True
                True
          4
          5
                True
                True
          6
          7
                True
          8
                True
          9
                True
         10
                True
         11
                True
         12
                True
          13
                True
         14
                True
         dtype: bool
 In [ ]: 1,2,4,6,8,10,1000,15,20
          > 15
          4,4,4,6,8,10,15,15,15
In [71]: res = ser1.describe()
In [74]: | type(res)
Out[74]: pandas.core.series.Series
 In [ ]: 4,4,4,6,8,10,15,15,15
          Y,N,N,Y,Y,Y,Y,N,N
In [58]: ser1.head(3)
Out[58]: 0
               12
          1
               34
               56
         dtype: int64
In [59]:
         ser1.tail(3)
Out[59]: 12
                 99
          13
                100
          14
                 23
         dtype: int64
In [61]: ser1.index
Out[61]: RangeIndex(start=0, stop=15, step=1)
```

```
In [63]: ser3.index.tolist()
Out[63]: ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o']
In [66]: | ser3.loc["a"]
         #ser3.iloc["a"] # incorrect
         ser3.ix["d"] # can accept both loc and iloc
Out[66]: 32
In [68]: ['to_hdf', 'to_json', 'to_latex', 'to_msgpack', 'to_period', 'to_pickle', 'to_
         sparse', 'to_sql', 'to_string', 'to_timestamp', 'to_xarray', 'tolist']
         ser1.tolist()
Out[68]: [12L, 34L, 56L, 32L, 12L, 3L, 4L, 57L, 54L, 46L, 56L, 78L, 99L, 100L, 23L]
In [70]: ser1.to_csv("text.csv")
In [75]: # Working directory
         import os
         os.getcwd()
         # either use \\ or a single /
Out[75]: 'C:\\Users\\admin\\pandas'
In [76]: # setting a wd
         os.chdir("C:/Users/admin/pandas/DataSets")
In [78]: os.getcwd()
Out[78]: 'C:\\Users\\admin\\pandas\\DataSets'
In [79]: # read a csv (stores.csv) from the DataSets folder
         stores = pd.read csv("stores.csv")
In [83]: # read an excel file into pandas
         Auto1 = pd.read excel("AutoInsurance.xlsx", sheet = 1)
In [84]: # read an excel file into pandas
         Auto2 = pd.read_excel("AutoInsurance.xlsx", sheet = "AutoClaims")
In [85]: # read SAS
         # stores.csv -> stores.sas7bdat
         stores sas = pd.read sas("stores.sas7bdat")
In [87]: type(stores)
Out[87]: pandas.core.frame.DataFrame
```

In [88]: stores

Out[88]:

	StoreCode	StoreName	StoreType	Location	OperatingCost	Staff_Cnt	TotalSales
0	STR101	Electronics Zone	Electronincs	Delhi	21.0	60	160.0
1	STR102	Apparel Zone	Apparel	Delhi	21.0	60	160.0
2	STR103	Super Bazar	Super Market	Delhi	22.8	40	108.0
3	STR104	Super Market	Super Market	Delhi	21.4	60	258.0
4	STR105	Central Store	Super Market	Delhi	18.7	80	360.0
5	STR106	Apparel Zone	Apparel	Delhi	18.1	60	225.0
6	STR107	Fashion Bazar	Apparel	Delhi	14.3	80	360.0
7	STR108	Digital Bazar	Electronincs	Delhi	24.4	40	146.7
8	STR109	Electronics Zone	Electronincs	Chennai	22.8	40	140.8
9	STR110	Apparel Zone	Apparel	Chennai	19.2	60	167.6
10	STR111	Super Bazar	Super Market	Chennai	17.8	60	167.6
11	STR112	Super Market	Super Market	Chennai	16.4	80	275.8
12	STR113	Central Store	Super Market	Chennai	17.3	80	275.8
13	STR114	Apparel Zone	Apparel	Chennai	15.2	80	275.8
14	STR115	Fashion Bazar	Apparel	Chennai	10.4	80	472.0
15	STR116	Digital Bazar	Electronincs	Chennai	10.4	80	460.0
16	STR117	Electronics Zone	Electronincs	Mumbai	14.7	80	440.0
17	STR118	Apparel Zone	Apparel	Mumbai	32.4	40	78.7
18	STR119	Super Bazar	Super Market	Mumbai	30.4	40	75.7

	StoreCode	StoreName	StoreType	Location	OperatingCost	Staff_Cnt	TotalSales
19	STR120	Super Market	Super Market	Mumbai	33.9	40	71.1
20	STR121	Central Store	Super Market	Mumbai	21.5	40	120.1
21	STR122	Apparel Zone	Apparel	Mumbai	15.5	80	318.0
22	STR123	Fashion Bazar	Apparel	Mumbai	15.2	80	304.0
23	STR124	Digital Bazar	Electronincs	Mumbai	13.3	80	350.0
24	STR125	Electronics Zone	Electronincs	Kolkata	19.2	80	400.0
25	STR126	Apparel Zone	Apparel	Kolkata	27.3	40	79.0
26	STR127	Super Bazar	Super Market	Kolkata	26.0	40	120.3
27	STR128	Super Market	Super Market	Kolkata	30.4	40	95.1
28	STR129	Central Store	Super Market	Kolkata	15.8	80	351.0
29	STR130	Apparel Zone	Apparel	Kolkata	19.7	60	145.0
30	STR131	Fashion Bazar	Apparel	Kolkata	15.0	80	301.0
31	STR132	Digital Bazar	Electronincs	Kolkata	21.4	40	121.0

In [91]: # get descriptive stats
 stores.head(5) # first n rows

Out[91]:

	StoreCode	StoreName	StoreType	Location	OperatingCost	Staff_Cnt	TotalSales	T
0	STR101	Electronics Zone	Electronincs	Delhi	21.0	60	160.0	1
1	STR102	Apparel Zone	Apparel	Delhi	21.0	60	160.0	1
2	STR103	Super Bazar	Super Market	Delhi	22.8	40	108.0	9
3	STR104	Super Market	Super Market	Delhi	21.4	60	258.0	1
4	STR105	Central Store	Super Market	Delhi	18.7	80	360.0	1

In [92]: stores.tail(3)

Out[92]:

	StoreCode	StoreName	StoreType	Location	OperatingCost	Staff_Cnt	TotalSales
29	STR130	Apparel Zone	Apparel	Kolkata	19.7	60	145.0
30	STR131	Fashion Bazar	Apparel	Kolkata	15.0	80	301.0
31	STR132	Digital Bazar	Electronincs	Kolkata	21.4	40	121.0

```
In [94]: stores.columns.tolist()
```

```
In [95]: stores.info()
# 1. Row - 32 entries with 0 - 31 and Data columns (total 15 columns)
# 2. All columns - followed by it's data types
# object - strings
# number of non missing values in that column
# 3. Freq table of the data types
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32 entries, 0 to 31
Data columns (total 15 columns):
                  32 non-null object
StoreCode
                  32 non-null object
StoreName
StoreType
                  32 non-null object
Location
                  32 non-null object
                  32 non-null float64
OperatingCost
                  32 non-null int64
Staff_Cnt
TotalSales
                  32 non-null float64
Total Customers
                  32 non-null int64
AcqCostPercust
                  29 non-null float64
BasketSize
                  32 non-null float64
ProfitPercust
                  32 non-null float64
OwnStore
                  32 non-null int64
OnlinePresence
                 32 non-null int64
Tenure
                  32 non-null int64
StoreSegment
                  32 non-null int64
dtypes: float64(5), int64(6), object(4)
memory usage: 3.8+ KB
```

In [96]: stores.describe()

Out[96]:

	OperatingCost	Staff_Cnt	TotalSales	Total_Customers	AcqCostPercust	Basket
count	32.000000	32.000000	32.000000	32.000000	29.000000	32.000
mean	20.090625	61.875000	230.721875	146.687500	3.651034	3.2172
std	6.026948	17.859216	123.938694	68.562868	0.532664	0.9784
min	10.400000	40.000000	71.100000	52.000000	2.760000	1.5130
25%	15.425000	40.000000	120.825000	96.500000	3.150000	2.5812
50%	19.200000	60.000000	196.300000	123.000000	3.730000	3.3250
75%	22.800000	80.000000	326.000000	180.000000	3.920000	3.6100
max	33.900000	80.000000	472.000000	335.000000	4.930000	5.4240

```
In [97]: # I - Structural
```

```
In [99]: # Try to extract columns

# 1. Use of the . operator
TS = stores.TotalSales
type(TS)

Out[99]: pandas.core.series.Series

In [102]: # 2. use a simple []
Case1 = stores["TotalSales"]

Case2 = stores[["Location","TotalSales","OperatingCost"]]
```

```
In [107]: # 3. Use .loc[] and .iloc[]
# For using loc and iloc, it's nesessary to pass both column and row
# [r,c] -> left of comma - row indexes/conditions and right is for column name
s
stores.loc[:,["Location","TotalSales","OperatingCost"]]
```

Out[107]:

	Location	TotalSales	OperatingCost
0	Delhi	160.0	21.0
1	Delhi	160.0	21.0
2	Delhi	108.0	22.8
3	Delhi	258.0	21.4
4	Delhi	360.0	18.7
5	Delhi	225.0	18.1
6	Delhi	360.0	14.3
7	Delhi	146.7	24.4
8	Chennai	140.8	22.8
9	Chennai	167.6	19.2
10	Chennai	167.6	17.8
11	Chennai	275.8	16.4
12	Chennai	275.8	17.3
13	Chennai	275.8	15.2
14	Chennai	472.0	10.4
15	Chennai	460.0	10.4
16	Mumbai	440.0	14.7
17	Mumbai	78.7	32.4
18	Mumbai	75.7	30.4
19	Mumbai	71.1	33.9
20	Mumbai	120.1	21.5
21	Mumbai	318.0	15.5
22	Mumbai	304.0	15.2
23	Mumbai	350.0	13.3
24	Kolkata	400.0	19.2
25	Kolkata	79.0	27.3
26	Kolkata	120.3	26.0
27	Kolkata	95.1	30.4
28	Kolkata	351.0	15.8
29	Kolkata	145.0	19.7
30	Kolkata	301.0	15.0
31	Kolkata	121.0	21.4

In [113]: # Extract ["Location", "TotalSales", "OperatingCost"] first 10 rows
stores.loc[0:9,["Location", "TotalSales", "OperatingCost"]]

Out[113]:

	Location	TotalSales	OperatingCost
0	Delhi	160.0	21.0
1	Delhi	160.0	21.0
2	Delhi	108.0	22.8
3	Delhi	258.0	21.4
4	Delhi	360.0	18.7
5	Delhi	225.0	18.1
6	Delhi	360.0	14.3
7	Delhi	146.7	24.4
8	Chennai	140.8	22.8
9	Chennai	167.6	19.2

Data types str() object float() float64 long() int64 int() bool() bool dates datetime64 and datetime64[ns]

```
In [122]: stores.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 32 entries, 0 to 31
          Data columns (total 15 columns):
          StoreCode
                             32 non-null object
                             32 non-null object
          StoreName
          StoreType
                             32 non-null object
                             32 non-null object
          Location
                          32 non-null float64
32 non-null int64
          OperatingCost
                             32 non-null int64
          Staff Cnt
          TotalSales
                             32 non-null object
          Total_Customers
                             32 non-null int64
          AcqCostPercust
                             29 non-null float64
                             32 non-null float64
          BasketSize
          ProfitPercust
                             32 non-null float64
          OwnStore
                             32 non-null int64
                             32 non-null int64
          OnlinePresence
          Tenure
                             32 non-null int64
          StoreSegment
                            32 non-null int64
          dtypes: float64(4), int64(6), object(5)
          memory usage: 3.8+ KB
In [124]:
          stores["TotalSales"] = pd.to numeric(stores.TotalSales)
In [126]:
          stores.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 32 entries, 0 to 31
          Data columns (total 15 columns):
          StoreCode
                             32 non-null object
          StoreName
                             32 non-null object
          StoreType
                             32 non-null object
                             32 non-null object
          Location
          OperatingCost
                             32 non-null float64
          Staff Cnt
                             32 non-null int64
          TotalSales
                             32 non-null float64
          Total_Customers 32 non-null int64
          AcqCostPercust
                             29 non-null float64
          BasketSize
                             32 non-null float64
          ProfitPercust
                             32 non-null float64
                             32 non-null int64
          OwnStore
          OnlinePresence 32 non-null int64
          Tenure
                             32 non-null int64
          StoreSegment
                           32 non-null int64
          dtypes: float64(5), int64(6), object(4)
          memory usage: 3.8+ KB
In [127]:
          # date
          date1 = "25Feb2018"
          date2 = "1/1/18"
          date3 = "01/23/1986"
          date4 = "Sunday 25 Feb 2018"
```