Package 'ShrinkageBayesGlm'

September 23, 2022

Type Package
Title Bayesian Shrinkage Prior with Categorical, Count and Zero-Inflated Data
Version 0.1.0
Author Arinjita Bhattacharyya
Maintainer Arinjita Bhattacharyya <arinjita.b@gmail.com></arinjita.b@gmail.com>
Description Utilizes Bayesian shrinkage priors and Polya-gamma data augmentation for variable selection with categorical, count and zero-inflated responses. The models involved are multinomial regression, logistic regression, negative binomial regression, and zero-inflated negative binomial regression.
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
R topics documented: dirichlet_laplace_logistic_mc
horseshoe_logistic_mc
horseshoe_negative_binomial_mc
horseshoe_zinb_mc
Index 11

```
dirichlet_laplace_logistic_mc
```

Logistic regression with Dirichlet Laplace prior

Description

Logistic regression with Dirichlet Laplace prior

Usage

```
dirichlet_laplace_logistic_mc(Y, X, mc_length, a, beta_start)
```

Arguments

```
Y The binary response variable
X The design matrix
mc_length no. of MCMC iterations
beta_start initial parameters
```

Value

```
sample_beta: posterior samples of the coefficients beta W_all: posterior samples of the latent variable shi_all: posterior samples of the hyper-parameters phi_all: posterior samples of the hyper-parameters tau_sq_all: posterior samples of the hyper-parameters
```

```
dirichlet_laplace_mlogit_mc
```

Multinomial logistic regression with Dirichlet Laplace prior

Description

Multinomial logistic regression with Dirichlet Laplace prior

```
dirichlet_laplace_mlogit_mc(
   y,
   X,
   n = rep(1, nrow(as.matrix(y))),
   m.0 = array(0, dim = c(ncol(X), ncol(y))),
   sigma = array(0, dim = c(ncol(X), ncol(X), ncol(y))),
   samp = 1000,
   burn = 500,
   a = 0.8
)
```

Arguments

У	The categorical variable with more than two classes
Χ	The design matrix
n	sample size
m.0	initial mean parameters mostly zero, a matrix of dimension $P*J-1$, $p=no.$ of variables, $J=no.$ of categorical classes
sigma	initial variance covariance matrix of dimension P*P*J-1
samp	no. of MCMC samples, generally 1000
burn	burnin samples, generally 500

The set of a series 1 - and a late of the series of a series of a

Value

```
sample_beta: posterior samples of the coefficients beta w: posterior samples of the latent variable
```

```
dirichlet_laplace_negative_binomial_mc

Negative Binomial regression with Dirichlet Laplace prior
```

Description

Negative Binomial regression with Dirichlet Laplace prior

Usage

```
dirichlet_laplace_negative_binomial_mc(
   Y,
   X,
   h,
   mc_length,
   a,
   starting_beta = NULL
)
```

Arguments

Υ	The count response
Χ	The design matrix
h	The number of failures in negative binomial regression
mc_length	no. of MCMC samples
starting_beta	initial parameters

Value

```
sample_beta: posterior samples of the coefficients beta W_all: posterior samples of the latent variable shi_all: posterior samples of the hyper-parameters phi_all: posterior samples of the hyper-parameters tau_sq_all: posterior samples of the hyper-parameters
```

Examples

```
\label{local_dirichlet_laplace_negative_binomial_mc(Y=Y, X=X, h=h, mc_length=1000, a=0.8, starting\_beta=NULL)
```

```
dirichlet_laplace_zinb_mc
```

Zero-inflated Negative Binomial Regression with Dirichlet Laplace prior

Description

Zero-inflated Negative Binomial Regression with Dirichlet Laplace prior

Usage

```
dirichlet_laplace_zinb_mc(
   X = X,
   y = Y,
   mc_length = mc_length,
   a = a,
   burnin = burnin,
   thin = thin
)
```

Arguments

X design matrix

y zero-inflated count response

mc_length no. of MCMC iterations

burnin burnin

thin thinning parameter, generally set to 1

Value

Alpha: posterior samples of Alpha parameter

Beta: posterior samples of Beta parameter

R or R2: posterior samples of R parameter

shi_all: posterior samples of hyper-parameter of the prior for Beta

fi_all:posterior samples of hyper-parameter of the prior for Beta

tau_sq_all:posterior samples of hyper-parameter of the prior for Beta

shi_all1: posterior samples of hyper-parameter of the prior for Alpha

fi_all1:posterior samples of hyper-parameter of the prior for Alpha

tau_sq_all1:posterior samples of hyper-parameter of the prior for Alpha

```
double_pareto_logistic_mc
```

Logistic Regression with Double Pareto Prior

Description

Logistic Regression with Double Pareto Prior

Usage

```
double_pareto_logistic_mc(Y, X, mc_length, beta_start)
```

Arguments

```
Y The binary response variable
X The design matrix
mc_length no. of MCMC iterations
beta_start initial parameters
```

Value

```
sample_beta: posterior samples of the coefficients beta
W_all: posterior samples of the latent variable
lambda_sq_all: posterior samples of the local parameter in the shrinkage prior
tau_sq_all: posterior samples of the global parameter in the shrinkage prior
```

```
double_pareto_mlogit_mc
```

Multinomial logistic regression with Double Pareto prior

Description

Multinomial logistic regression with Double Pareto prior

```
double_pareto_mlogit_mc(
   y,
   X,
   n = rep(1, nrow(as.matrix(y))),
   m.0 = array(0, dim = c(ncol(X), ncol(y))),
   sigma = array(0, dim = c(ncol(X), ncol(X), ncol(y))),
   samp = 1000,
   burn = 500
)
```

Arguments

У	The categorical variable with more than two classes
Χ	The design matrix
n	sample size
m.0	initial mean parameters mostly zero, a matrix of dimension $P*J-1$, $p=no.$ of variables, $J=no.$ of categorical classes
sigma	initial variance covariance matrix of dimension P*P*J-1
samp	no. of MCMC samples, generally 1000
burn	burnin samples, generally 500

Value

sample_beta: posterior samples of the coefficients beta w: posterior samples of the latent variable

```
{\it double\_pareto\_negative\_binomial\_mc} \\ {\it Negative~Binomial~regression~with~Double~Pareto~prior}
```

Description

Negative Binomial regression with Double Pareto prior

Usage

```
double_pareto_negative_binomial_mc(Y, X, h, mc_length, starting_beta = NULL)
```

Arguments

Y	The count response
Χ	The design matrix
h	The number of failures in negative binomial regression

mc_length no. of MCMC samples starting_beta initial parameters

Value

sample_beta: posterior samples of the coefficients beta

W_all: posterior samples of the latent variable

lambda_sq_all: posterior samples of the local parameter in the shrinkage prior tau_sq_all: posterior samples of the global parameter in the shrinkage prior

double_pareto_zinb_mc

double_pareto_zinb_mc Zero-inflated Negative Binomial Regression with Double Pareto prior

Description

Zero-inflated Negative Binomial Regression with Double Pareto prior

Usage

```
double_pareto_zinb_mc(
  y = y,
  X = X,
  mc_length = mc_length,
  burnin = burnin,
  thin = 1
)
```

Arguments

y zero-inflated count response

X design matrix

mc_length no. of MCMC iterations

burnin burnin

thin thinning parameter, generally set to 1

Value

Alpha: posterior samples of Alpha parameter

Beta: posterior samples of Beta parameter

R or R2: posterior samples of R parameter

lambda_sq_all: posterior samples of hyper-parameter of the prior for Beta

tau_sq_all:posterior samples of hyper-parameter of the prior for Alpha

tau_sq_all1: posterior samples of hyper-parameter of the prior for Alpha

horseshoe_logistic_mc Logistic regression with Horseshoe prior

Description

Logistic regression with Horseshoe prior

```
horseshoe_logistic_mc(Y, X, mc_length, beta_start)
```

Arguments

Y The binary response variable
X The design matrix
mc_length no. of MCMC iterations
beta_start initial parameters

Value

sample_beta: posterior samples of the coefficients beta

W_all: posterior samples of the latent variable xi_all: posterior samples of hyper-parameter gamma_all: posterior samples of hyper-parameter

lambda_all: posterior samples of local parameter in the shrinkage prior tau_sq_all: posterior samples of global parameter in the shrinkage prior

horseshoe_mlogit_mc

Multinomial logistic regression with Horseshoe prior

Description

Multinomial logistic regression with Horseshoe prior

Usage

```
horseshoe_mlogit_mc(
    y,
    X,
    n = rep(1, nrow(as.matrix(y))),
    m.0 = array(0, dim = c(ncol(X), ncol(y))),
    sigma = array(0, dim = c(ncol(X), ncol(X), ncol(y))),
    samp = 1000,
    burn = 500
)
```

Arguments

У	The categorical variable with more than two classes
Χ	The design matrix
n	sample size
m.0	initial mean parameters mostly zero, a matrix of dimension $P*J-1$, $p=no.$ of variables, $J=no.$ of categorical classes
sigma	initial variance covariance matrix of dimension P*P*J-1
samp	no. of MCMC samples, generally 1000
burn	burnin samples, generally 500

Value

```
sample_beta: posterior samples of the coefficients beta w: posterior samples of the latent variable
```

```
horseshoe_negative_binomial_mc
```

Negative Binomial regression with Horseshoe prior

Description

Negative Binomial regression with Horseshoe prior

Usage

```
horseshoe_negative_binomial_mc(Y, X, h, mc_length, starting_beta = NULL)
```

Arguments

```
Y The count response

X The design matrix

h The number of failures in negative binomial regression

mc_length no. of MCMC samples

starting_beta initial parameters #' @export list of posterior samples of the parameters
```

Value

```
sample_beta: posterior samples of the coefficients beta
W_all: posterior samples of the latent variable
xi_all: posterior samples of hyper-parameter
gamma_all: posterior samples of hyper-parameter
lambda_all: posterior samples of local parameter in the shrinkage prior
tau_sq_all: posterior samples of global parameter in the shrinkage prior
```

horseshoe_zinb_mc

Zero-inflated Negative Binomial Regression with Horseshoe prior

Description

Zero-inflated Negative Binomial Regression with Horseshoe prior

```
horseshoe_zinb_mc(
  X = X,
  y = Y,
  mc_length = mc_length,
  burnin = burnin,
  thin = thin
)
```

10 horseshoe_zinb_mc

Arguments

X design matrix

y zero-inflated count response mc_length no. of MCMC iterations

burnin burnin

thin thinning parameter, generally set to 1

Value

Alpha: posterior samples of Alpha parameter Beta: posterior samples of Beta parameter R or R2: posterior samples of R parameter

xi: posterior samples of hyper-parameter of the prior for Beta gamma:posterior samples of hyper-parameter of the prior for Beta lambda:posterior samples of hyper-parameter of the prior for Beta tausq: posterior samples of hyper-parameter of the prior for Beta xi1:posterior samples of hyper-parameter of the prior for Alpha gamma1:posterior samples of hyper-parameter of the prior for Alpha lambda1:posterior samples of hyper-parameter of the prior for Alpha tausq1:posterior samples of hyper-parameter of the prior for Alpha

Index