

Politechnika Wrocławska

Systemy wbudowane w strukturach programowalnych

Adam Kokot, 171075 Mateusz Kocur, 171044 Łukasz Glapiński, 171021

Plan prezentacji

- Struktury programowalne
- Systemy wbudowane
- Budowa, zalety i wady
- Dostępne struktury programowalne
- Dostępne procesory
- Dostępne peryferia i bloki funkcjonalne
- Programowanie
- Źródła

Struktury programowalne

- Co to jest układ PLD (ang. Programmable Logic Device)?
- Typ układów PLD:
 - SPLD (Simple Programmable Logic Device)
 - CPLD (Complex Programmable Logic Device)
 - FPGA (Field Programmable Gate Array)
- Języki opisu sprzętu:
 - VHDL (very-high-speed-integrated-circuits hardware description language)
 - AHDL (Altera Hardware Description Language)
 - Verilog

Systemy wbudowane - budowa

- Co to jest system wbudowany (ang. embedded system) ?
- Budowa systemu wbudowanego w strukturze PLD

Systemy wbudowane w PLD - zalety

- Zalety realizacji systemów wbudowanych w strukturach PLD:
 - o całość systemu zrealizowana w jednym układzie scalonym
 - wysoka szybkość działania (częstotliwość taktowania)
 - możliwość dobudowania dowolnych peryferiów w dowolnych ilościach
 - możliwość wykorzystania kilku procesorów w jednym układzie
 - o dowolność przypisania wyprowadzeń układu do peryferiów
 - elastyczność i możliwość łatwej modyfikacji systemu
 - możliwość wykorzystania, gdy brak odpowiedniego układu ASIC lub jego projektowanie jest nieopłacalne

Systemy wbudowane w PLD - wady

- Wady realizacji systemów wbudowanych w strukturach PLD:
 - większy pobór energii niż układy ASIC
 - większe koszty systemu w zależności od aplikacj
 - konieczność stosowania zewnętrznych konfiguratorów

Dostępne struktury programowalne

Features:	Artix-7	Kintex-7	Virtex-7	Spartan-6	Virtex-6	Cyclone V	Stratix V	Arria V
Logic Cells	352000	480000	2000000	150000	760000	301000	359000	503500
BlockRAM	19Mb	34Mb	85Mb	4.8Mb	38Mb	11,6Mb	52Mb	24Mb
DSP Slices	1040	1920	5280	180	2016	-	-	-
Transceiver Count	16	32	96	8	72	12	36/48	36
Transceiver Speed(Gb/s)	6.6	12.5	28.05	3.2	11.18	5	14.1	10.3
I/O Pins	600	500	1200	576	1200	448	840	668

Dostępne procesory

- Soft-procesory:
 - PicoBlaze (8-bit, 26 plastrów)
 - o MicroBlaze (32-bit, MMU, FPU, cache, Linux 2.6)
 - o ARM Cortex -M1 (32-bit, Thumb/Thumb2, ok. 2k LUTów)
 - o OpenRISC (32-bit, MMU, 6k LUTów, Linux)
 - o i inne np. Nios/Nios II, OpenSPARC, pAVR, TSK51/52, CPU86...
- Sprzętowe procesory:
 - o ARM Cortex-A9 (1 lub 2) Altera Cyclone V, XilinxZync 7000
 - ARM Cortex-M3 Actel SmartFusion (a nawet peryferia analogowe)
 - o PowerPC Xilinx Virtex 5

Dostępne peryferia

- Peryferia programowalne
 - Układy DVB
 - Kontrolery zewnętrznych pamięci
 - Bloki systemów telekomunikacyjnych (np. UMTS/3G)
 - Moduły szyfrujące (np. MD5, SHA-1)
 - Bloki cyfrowego przetwarzania sygnałów
 - Magistrale (np. PCI Express)
 - o Porty szeregowe, równoległe, Ethernet itd.
- Peryferia zewnętrzne

Programowanie

- Systemy operacyjne
 - Linux
 - Systemy typu RTOS (dla układów bez MMU)
- Języki
 - Program: Assembler, C/C++
 - Sprzęt: VHDL, AHDL, Verilog
- Kompilatory
 - Eclipse
 - o KCPSM3
- Metody programowania

Źródła

- http://www.xilinx.com/products/intellectual-property/picoblaze.htm
- http://www.zsk.ict.pwr.wroc.pl/zsk/repository/dydaktyka/fpga/rodz08_i.pdf
- http://pl.wikipedia.org/wiki/System_wbudowany
- http://www.xilinx.com/tools/microblaze.htm
- http://pl.wikipedia.org/wiki/Microblaze
- http://en.wikipedia.org/wiki/MicroBlaze
- http://www.arm.com/products/processors/cortex-m/cortex-m1.php
- http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0338g/Chdhbjjb.html
- http://en.wikipedia.org/wiki/Soft_microprocessor
- http://opencores.org/
- http://www.altera.com/

Politechnika Wrocławska

Systemy wbudowane w strukturach programowalnych

Adam Kokot, 171075 Mateusz Kocur, 171044 Łukasz Glapiński, 171021