

Indice

1	Introduzione	9
2	Variabili casuali	11
2.1	Statistica univariata	11
2.2	Statistica multivariata	11
2.2.1	Distribuzioni di probabilità (con variabili discrete)	11
2.2.2 2.2.3	Teorema di Bayes	
2.2.3 2.2.4	Esempi nell'uso del teorema di Bayes	
3	Processi casuali	15
4	Introduzione all'intelligenza artificiale	17
4.1	Introduzione	17
4.2	Machine learning	17
4.2.1	Supervised learning	
4.2.2	Unsupervised learning	
4.2.3	Reinforcement learning	
4.3	Deep learning	18
	Bibilografia	19
	Indice	21
	Appendices	23
Α	Prima appendice	23

Elenco delle figure

Elenco delle tabelle

1. Introduzione

- motivazione della necessità della gestione delle incertezze
- approcci alla statistica
- ...

2. Variabili casuali

2.1 Statistica univariata

- definizione variabili casuali; variabili a valori discreti o continui
- distribuzioni di probabilità: proprietà (non-negatività, unitarietà); densità e proprietà cumulata
- esempi di distribuzione di probabilità
- teoremi: teorema del limite centrale e teorema dei grandi numeri

2.2 Statistica multivariata

- distribuzioni congiunte, marginali e condizionali
- formula di Bayes
- indicatori sintetici: media, correlazione

2.2.1 Distribuzioni di probabilità (con variabili discrete)

Siano date due variabili casuali X, Y, che possono assumere rispettivamente i valori $x \in \{x_1, x_2, \dots x_{N_x}, y \in \{y_1, y_2, \dots, y_{N_y}\}.$

Definition 2.1 — Densità di probabilità congiunta $p_{X,Y}(x,y)$. É una funzione che ha come argomenti i valori che possono assumere le variabili casuali e rappresenta la probabilità che si verifichino insieme gli eventi X = x, Y = y.

Unitarietà della probabilità congiunta. La somma delle probabilità di tutte le combinazione degli eventi è uguale a 1, cioè

$$1 = \sum_{i_{x}=1}^{N_{x}} \sum_{i_{y}=1}^{N_{y}} p(x_{i_{x}}, y_{i_{y}})$$
(2.1)

Definition 2.2 — Densità di probabilità marginale $p_X(x)$. É una funzione che ha come argomento i valori che può assumere la variabile casuale x e rappresenta la probabilità che si verifichi l'evento X = x, indipendentemente dal valore di Y.

Proprietà marginale come somma parziale. La proprietà marginale dell'osservazione $X = x_i$, $p(x_i)$, è la somma delle probabilità congiunte con tutte le possibili osservazioni dell'altra

variabile Y, cioè

$$p(x_{i_x}) = \sum_{i_y=1}^{N_y} p(x_{i_x}, y_{i_y}) , \qquad (2.2)$$

così che l'equazione 2.1 può essere riscritta

$$1 = \sum_{i_x=1}^{N_x} \sum_{i_y=1}^{N_y} p(x_{i_x}, y_{i_y}) = \sum_{i_x=1}^{N_x} p(x_{i_x}) , \qquad (2.3)$$

dimostrando l'unitarietà della probabilità marginale, come densità di probabilità su x.

Definition 2.3 — Densità di probabilittà condizionale $p_{Y|X}(y|x)$. É una funzione che ha come argomenti il valori che possono assumere la variabile casuale y e come "parametero" la variabile casuale x e rappresenta la probabilità che si verifichi l'evento Y = y, dato l'evento X = x.

Per ottenere la probabilità di osservare $Y = y_{i_y}$, condizionato all'osservazione di $X = x_{i_x}$ bisogna "scalare" la probabilità congiunta $p(x_{i_x}, y_{i_y})$ per la probabilità marginale di aver ottenuto $X = x_{i_x}$, cioè

$$p(y_{i_y}|x_{i_x}) = \frac{p(x_{i_x}, y_{i_y})}{p(x_{i_x})}.$$
 (2.4)

- Osservazione 2.1 La probabilità condizionale p(y|x) è ben definita quando la proprietà marginale p(x) > 0, ossia la probabilità di osservare il valore x non è nullo.
- Osservazione 2.2 La condizione di normalizzazione per la probabilità condizionale si ottiene dividendo l'espressione 2.2 per $p(x_{i_r})$,

$$1 = \sum_{i_y=1}^{N_y} \frac{p(x_{i_x}, y_{i_y})}{p(x_{i_x})} = \sum_{i_y=1}^{N_y} p(y_{i_y}|x_{i_x}) . \tag{2.5}$$

2.2.2 Teorema di Bayes

É possibile riscrivere l'equazione 2.4 nella forma

$$p(x,y) = p(y|x)p(x)$$
(2.6)

o alternativamente

$$p(x, y) = p(x|y)p(y). \tag{2.7}$$

Theorem 2.1 — Teorema di Bayes. Usando le equazioni 2.6, 2.7,

$$p(x,y) = p(y|x)p(x) = p(x|y)p(y)$$
, (2.8)

è possibile scrivere

$$p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(y|x)p(x)}{p(y)}.$$
 (2.9)

2.2.3 Esempi nell'uso del teorema di Bayes

2.2.4 Indicatori sintetici

Dopo aver raccolto le variabili casuali scalari X_i in una variabile casuale vettoriale \mathbf{X} , usando il formalismo matriciale

$$\mathbf{X} = \begin{bmatrix} X_1 \\ \dots \\ X_n \end{bmatrix} \tag{2.10}$$

possiamo definire alcuni indicatori sintetici.

2.2.4.1 Valore atteso (volgarmente chiamato media)

La media di una variabile casuale multivariata (o multidimensionale) viene definita come la media pesata di tutti i possibili valori \mathbf{x}_I della variabile casuale \mathbf{X}_I , pesati per il valore corrispondente della densità di probabilità

$$\mathbb{E}[\mathbf{x}] := \overline{\mathbf{X}} := \mu_X = \sum_I f(\mathbf{x}_I) \mathbf{x}_I . \tag{2.11}$$

2.2.4.2 Covarianza

La covarianza viene definita come il valore atteso del "prodotto tensoriale" della deviazione della media con sé stesso, cioé

$$\mathbf{C}_{XX} := \mathbb{E}[(\mathbf{X} - \overline{\mathbf{X}})(\mathbf{X} - \overline{\mathbf{X}})^T]. \tag{2.12}$$

Usando le proprietà della media, si può riscrivere la covarianza come

$$\mathbf{C}_{XX} = \mathbb{E}[(\mathbf{X} - \overline{\mathbf{X}})(\mathbf{X} - \overline{\mathbf{X}})^T] =$$

$$= \mathbb{E}[\mathbf{X}\mathbf{X}^T] - \mathbf{E}[\mathbf{X}\overline{\mathbf{X}}^T] - \mathbf{E}[\overline{\mathbf{X}}\mathbf{X}^T] + \overline{\mathbf{X}}\overline{\mathbf{X}}^T =$$

$$= \mathbb{E}[\mathbf{X}\mathbf{X}^T] - \mathbf{E}[\mathbf{X}]\overline{\mathbf{X}}^T - \overline{\mathbf{X}}\mathbf{E}[\mathbf{X}^T] + \overline{\mathbf{X}}\overline{\mathbf{X}}^T =$$

$$= \mathbb{E}[\mathbf{X}\mathbf{X}^T] - \mathbf{E}[\mathbf{X}]\overline{\mathbf{X}}^T - \overline{\mathbf{X}}\mathbf{E}[\mathbf{X}^T] + \overline{\mathbf{X}}\overline{\mathbf{X}}^T =$$

$$= \mathbb{E}[\mathbf{X}\mathbf{X}^T] - \overline{\mathbf{X}}\overline{\mathbf{X}}^T$$
(2.13)

3. Processi casuali

- definizione dei processi casuali
- esempi di processi casuali
 - catene di Markov
 - random walk

4. Introduzione all'intelligenza artificiale

- introduzione intelligenza artificiale
- machine learning:
 - supervised learning: regressione, classificazione
 - unsupervised learning: clustering, riduzione della dimensionalità
 - reinforcement learning
- deep learning: neural networks

4.1 Introduzione

Cosa si intende per intelligenza artificiale.

Nessun pasto è gratis – compromesso bias-varianza. https://it.wikipedia.org/wiki/Compromesso_bias-varianza

La maledizione della dimensionalità.

Deep learning.

4.2 Machine learning

4.2.1 Supervised learning

Il supervised learning (o apprendimento supervisionato) è un paradigma che permette di allenare un modello.

4.2.1.1 Regressione

La regressione consiste nell'approssimazione di funzioni continue.

Regressione lineare.

Regressione lineare generalizzata.

4.2.1.2 Classificazione

La classificazione consiste nell'identificazione di una categoria alla quale appartiene un oggetto.

4.2.2 Unsupervised learning

4.2.2.1 Dimensionality reduction

La riduzione delle dimensioni di un problema consente di:

- ridurre la complessità del problema
- mantenendo solo le informazioni principali

■ Example 4.1 — Compressione immagini.

4.2.2.2 Clustering

Il clustering è il raggruppamento di oggetti in insiemi che dimostrano caratteristiche simili.

4.2.3 Reinforcement learning

4.3 Deep learning

. . .

Bibiliografia

Indice analitico

С
Clustering
D
Deep learning
The second second
Intelligenza Aritificale
М
Machine learning17
R
Reinforcement learning
S
Statistica Introduzione
T
m
Teorema di Bayes
U
Unsupervised learning 17

A. Prima appendice

. . .