Boolean Combinations of Weighted Voting Games

Juan Pablo Royo Sales

Universitat Politècnica de Catalunya

January 18th, 2021

Agenda

- Introduction
- Preliminary Definitions
- Formal Definition BWVG
- Representational Complexity
- Decision Problems in BWVG
- Shapley Value
- The Core
- 8 Conclusions

Agenda

- Introduction
- 2 Preliminary Definitions
- Formal Definition BWVG
- 4 Representational Complexity
- Decision Problems in BWVG
- 6 Shapley Value
- 7 The Core
- 8 Conclusions

Introduction

Basic Notions

- Based on Boolean Combinations of Weighted Voting Games paper BWVG¹
- It is a natural Generalization over Weighted Voting Games
- Intuitively is a decision making process via multiple committees
- Each committee has the authority to decide the outcome "yes" or "no" about an issue.
- And each committee is a WVG
- Individuals can appear in multiple committees
- Different committees can have different Threshold values

¹Piotr Faliszewski, Edith Elkind, and Michael Wooldridge. 2009. Boolean combinations of weighted voting games. In Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems - Volume 1 (AAMAS '09). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 185–192.

Introduction

Questions to be answered?

- Which coalitions might be able to bring the goal about?
- How important is a particular individual with respect to the achievement of the goal?

Introduction

Goals of the Paper

- Formal Definition of BWVG
- Investigate Computational Properties of BWVG

Agenda

- Introduction
- Preliminary Definitions
- 3 Formal Definition BWVG
- 4 Representational Complexity
- Decision Problems in BWVG
- 6 Shapley Value
- The Core
- 8 Conclusions

Propositional Logic

- Let $\Phi = \{p, q, \dots\}$ be a fixed non-empty vocabulary of Boolean variables
- Let $\mathcal L$ denote the set of formulas of propositional logic over Φ , constructed using conventional Boolean operators:

$$\wedge, \vee, \Longrightarrow, \Longleftrightarrow, \neg$$

Propositional Logic

- Let $\Phi = \{p, q, \dots\}$ be a fixed non-empty vocabulary of Boolean variables
- Let $\mathcal L$ denote the set of formulas of propositional logic over Φ , constructed using conventional Boolean operators:

$$\land, \lor, \Longrightarrow, \Longleftrightarrow, \lnot$$

• If " \vee " and " \wedge " are the only operators appearing in formula φ , se say that φ is **monotone**

Propositional Logic

- Let $\Phi = \{p, q, \dots\}$ be a fixed non-empty vocabulary of Boolean variables
- Let $\mathcal L$ denote the set of formulas of propositional logic over Φ , constructed using conventional Boolean operators:
 - $\land, \lor, \implies, \iff, \lnot$
- If " \vee " and " \wedge " are the only operators appearing in formula φ , se say that φ is **monotone**
- If $\xi \subseteq \Phi$, we write $\xi \models \varphi$ mean that φ is true satisfied by valuation ξ

Simple Games

- A coalitional game is Simple if $v(C) \in \{0,1\} \forall C \subseteq N$
- C wins if v(C) = 1 and C losses otherwise.
- A Simple Game is **monotone** if $v(C) = 1 \implies v(C') = 1$ for any $C \subseteq C'$.
- In this paper authors consider both monotone and non-monotone Simple Games.
- They assume games with finite numbers of players |N| = n, $N = \{1, ..., n\}$

Weighted Voting Games

- Given $N = \{1, \dots, n\}$ players
- A list of n weights $w = (w_1, \ldots, w_n) \in \mathbb{R}^n$
- A threshold $T \in \mathbb{R}$
- When N is clear from the context $q = (T; w_1, \ldots, w_n)$ to denote a WVG g
- w(C) total weight of coalition C, $w(C) = \sum_{i \in C} w_i$
- Characteristic function given by v(C) = 1 if $w(C) \ge T$ and v(C) = 0 otherwise.
- If all Weights are non-negative the game is monotone.

Computational Complexity

• P, NP, coNP, Σ_2^p , Π_2^p

Computational Complexity

- P, NP, coNP, Σ_2^p , Π_2^p
- D^p : A Language $L \in D^p$ if $L = L_1 \cap L_2$, for some language $L_1 \in NP$ and $L_2 \in coNP$

Computational Complexity

- P, NP, coNP, Σ_2^p , Π_2^p
- D^p : A Language $L \in D^p$ if $L = L_1 \cap L_2$, for some language $L_1 \in NP$ and $L_2 \in coNP$
- D_2^p : A Language $L \in D_2^p$ if $L = L_1 \cap L_2$, for some language $L_1 \in \Sigma_2^p$ and $L_2 \in \Pi_2^p$

Agenda

- Introduction
- 2 Preliminary Definitions
- Second Second
- 4 Representational Complexity
- Decision Problems in BWVG
- 6 Shapley Value
- The Core
- 8 Conclusions

Definition

A **BWVG** is a tuple $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$, where:

- $N = \{1, ..., n\}$ is a set of players;
- $\mathcal{G} = \{g^1, \dots, g^m\}$ is a Set of **WVG** over N, where jth game, g^j , is given by a vector of weights $w^j = (w_1^j, \dots, w_n^j)$ and a Threshold T^j . \mathcal{G} is called the **component games** of G;
- $\Phi = \{p^1, \dots, p^m\}$ Set of Propositional Variables, in which each p^j correspond with the **component** g^j ;
- φ is a propositional formula over Φ .

Shorthand Definition

Example:

 $\bullet \ g^1 \wedge g^2 \equiv \langle \textit{N}, \{g^1, g^2\}, \{p^1, p^2\}, p^1 \wedge p^2 \rangle$

Winning Coalition

We say that C is a wins G if:

$$\exists \xi_1 \subseteq \Phi_C : \forall \xi_2 \subseteq (\Phi \setminus \Phi_C) : \xi_1 \cup \xi_2 \models \varphi$$
 (1)

Winning Coalition

We say that C is a wins G if:

$$\exists \xi_1 \subseteq \Phi_C : \forall \xi_2 \subseteq (\Phi \setminus \Phi_C) : \xi_1 \cup \xi_2 \models \varphi$$
 (2)

Intuitively 3

A coalition C wins if it is able to fix variables under its control in such a way that the goal formula φ is guaranteed to be **True**.

Winning Coalition

We say that C is a wins G if:

$$\exists \xi_1 \subseteq \Phi_C : \forall \xi_2 \subseteq (\Phi \setminus \Phi_C) : \xi_1 \cup \xi_2 \models \varphi$$
 (3)

Intuitively 3

A coalition C wins if it is able to fix variables under its control in such a way that the goal formula φ is guaranteed to be **True**.

Notes

It is allowed BWVG to contain negative weights

Agenda

- Introduction
- 2 Preliminary Definitions
- Formal Definition BWVG
- 4 Representational Complexity
- **5** Decision Problems in BWVG
- 6 Shapley Value
- The Core
- 8 Conclusions

Universitat Politècnica de Catalunya

Preliminaries

• Any Simple Game with n players can be represented as a K-Vector Weighted Voting Game for $k = O(2^n)$, and therefore as a **BWVG** with $O(2^n)$ component games \mathcal{G} .

Preliminaries

- Any Simple Game with n players can be represented as a K-Vector Weighted Voting Game for $k = O(2^n)$, and therefore as a **BWVG** with $O(2^n)$ component games \mathcal{G} .
- That worst-case unfortunately cannot be improved in BWVG

Proposition

The total number of Boolean weighted voting games with |N|=n and $|\varphi|=s$ is most $2^{O(sn^2\log(sn))}$

Proposition

The total number of Boolean weighted voting games with |N|=n and $|\varphi|=s$ is most $2^{O(sn^2\log(sn))}$

Proof.

• Any weighted voting game² can be represented using Integer weights whose absolute values do not exceed $2^{O(n \log n)}$

Proposition

The total number of Boolean weighted voting games with |N| = n and $|\varphi| = s$ is most $2^{O(sn^2 \log(sn))}$

- Any weighted voting game 3 can be represented using Integer weights whose absolute values do not exceed $2^{O(n \log n)}$
- ullet w.l.g. we assumed that $|\mathcal{G}|=|\Phi|$ and $|\Phi|\leq |arphi|=s$

Proposition

The total number of Boolean weighted voting games with |N| = n and $|\varphi| = s$ is most $2^{O(sn^2 \log(sn))}$

- Any weighted voting game⁴ can be represented using Integer weights whose absolute values do not exceed $2^{O(n \log n)}$
- ullet w.l.g. we assumed that $|\mathcal{G}|=|\Phi|$ and $|\Phi|\leq |arphi|=s$
- Given a **BWVG** G with n players and $|\varphi| = s$, we can find a equivalent representation using $O(sn^2\log n)$ bits to represent all weights in ALL components, plus another $O(s\log s)$ bits to represent \mathcal{G}, Φ and φ .

⁴S. Muroga. Threshold Logic and its Applications. Wiley, 1971.

Proposition

The total number of Boolean weighted voting games with |N|=n and $|\varphi|=s$ is most $2^{O(sn^2\log(sn))}$

- Any weighted voting game⁵ can be represented using Integer weights whose absolute values do not exceed $2^{O(n \log n)}$
- ullet w.l.g. we assumed that $|\mathcal{G}|=|\Phi|$ and $|\Phi|\leq |arphi|=s$
- Given a **BWVG** G with n players and $|\varphi| = s$, we can find a equivalent representation using $O(sn^2 \log n)$ bits to represent all weights in ALL components, plus another $O(s \log s)$ bits to represent \mathcal{G} , Φ and φ .
- Therefore, the total number of **distinct games** can be represented as **BWVG** with |N| = n and $|\varphi| = s$ is $2^{O(sn^2 \log(sn))}$

Linear Representation - Specific Case

 We are going to show that for some specific instance that captures realistic voting scenarios that can be improve with linear representation.

Linear Representation - Specific Case

 We are going to show that for some specific instance that captures realistic voting scenarios that can be improve with linear representation.

Theorem

Consider a **BWVG** $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$ where $\mathcal{G} = \{g^1, g^2\}, g^1 = (k; 1, 0, \dots, 1, 0), g^2 = (k; 0, 1, \dots, 0, 1), |N| = 2k$ and $\varphi = p^1 \vee p^2$. To represent G as a conjunction of m weighted voting games requires $m \geq k/2$ component games \mathcal{G}

Proof.

Poof by contradiction

- Poof by contradiction
- A coalition C to win in G has to contain either even players or odd players

- Poof by contradiction
- A coalition C to win in G has to contain either even players or odd players
- Any maximal losing coalition (MLC) in G is of the form $N \setminus \{2i, 2j 1\}$ where $i, j \in \{1, ..., k\}$, denote as $C_{i,j}$

- Poof by contradiction
- A coalition C to win in G has to contain either even players or odd players
- Any maximal losing coalition (MLC) in G is of the form $N \setminus \{2i, 2j 1\}$ where $i, j \in \{1, ..., k\}$, denote as $C_{i,j}$
- There are exactly k^2 MLC

- Poof by contradiction
- A coalition C to win in G has to contain either even players or odd players
- Any maximal losing coalition (MLC) in G is of the form $N \setminus \{2i, 2j 1\}$ where $i, j \in \{1, ..., k\}$, denote as $C_{i,j}$
- There are exactly k^2 MLC
- 2 MLC $C_{i,j}$ and $C_{i',j'}$ clashes if i=i' or j=j', if $C_{i,j} \cup C_{i',j'} \neq N$

- Poof by contradiction
- A coalition C to win in G has to contain either even players or odd players
- Any maximal losing coalition (MLC) in G is of the form $N \setminus \{2i, 2j 1\}$ where $i, j \in \{1, ..., k\}$, denote as $C_{i,j}$
- There are exactly k^2 MLC
- 2 MLC $C_{i,j}$ and $C_{i',j'}$ clashes if i=i' or j=j', if $C_{i,j} \cup C_{i',j'} \neq N$
- Suppose that G can be represented as $\langle N, \{h^1, \dots, h^m\}, \{q^1, \dots, q^m\}, q^1 \wedge \dots \wedge q^m \rangle$ with m < k/2

Proof.

- Poof by contradiction
- A coalition C to win in G has to contain either even players or odd players
- Any maximal losing coalition (MLC) in G is of the form $N \setminus \{2i, 2j 1\}$ where $i, j \in \{1, ..., k\}$, denote as $C_{i,j}$
- There are exactly k^2 MLC
- 2 MLC $C_{i,j}$ and $C_{i',j'}$ clashes if i=i' or j=j', if $C_{i,j}\cup C_{i',j'}\neq N$
- Suppose that G can be represented as $\langle N, \{h^1, \dots, h^m\}, \{q^1, \dots, q^m\}, q^1 \wedge \dots \wedge q^m \rangle$ with m < k/2
- Each component has to lose in at least one game h^1, \ldots, h^m . By **pigeonhole principle**, there must be at least 1 component game (w.l.g.) that is lost by at least 2k distinct MLC.

Proof Cont.

• Fix an arbitrary MLC $C_{i,j}$ that loses in h^1

Proof Cont.

- Fix an arbitrary MLC $C_{i,j}$ that loses in h^1
- Among 2k MLCs that loses in h^1 there can be at most k-1 MLCs of the form $C_{i,j'}, j' \neq j$ and $C_{i',j}, i' \neq i$

Proof Cont.

- Fix an arbitrary MLC $C_{i,j}$ that loses in h^1
- Among 2k MLCs that loses in h^1 there can be at most k-1 MLCs of the form $C_{i,j'}, j' \neq j$ and $C_{i',j}, i' \neq i$
- There must be a $C_{x,y}$ that loses in h^1 and don't clashes with $C_{i,j}$.

Proof Cont.

- Fix an arbitrary MLC $C_{i,j}$ that loses in h^1
- Among 2k MLCs that loses in h^1 there can be at most k-1 MLCs of the form $C_{i,j'}, j' \neq j$ and $C_{i',j}, i' \neq i$
- There must be a $C_{x,y}$ that loses in h^1 and don't clashes with $C_{i,j}$.
- Let $h^1 = (T; w_1, ..., w_n)$, we have

$$w(N) - w_{2i} - w_{2j-1} < T; w(N) - w_{2x} - w_{2y-1} < T$$
 (4)

Proof Cont.

- Fix an arbitrary MLC $C_{i,j}$ that loses in h^1
- Among 2k MLCs that loses in h^1 there can be at most k-1 MLCs of the form $C_{i,j'}, j' \neq j$ and $C_{i',j}, i' \neq i$
- There must be a $C_{x,y}$ that loses in h^1 and don't clashes with $C_{i,j}$.
- Let $h^1 = (T; w_1, \dots, w_n)$, we have $w(N) w_{2i} w_{2i-1} < T; w(N) w_{2x} w_{2y-1} < T$ (5)
- Also, $C_{i,j}\setminus\{2y-1\}\cup\{2i\}$ and $C_{x,y}\setminus\{2y-1\}\cup\{2i\}$ are wining in G and hence in h^1

$$w(N) - w_{2j-1} - w_{2y-1} \ge T; w(N) - w_{2i} - w_{2x} \ge T$$
 (6)

Equation 5 and 6 give a contradiction Therefore $m \ge k/2$.

Agenda

- Introduction
- Preliminary Definitions
- Formal Definition BWVG
- 4 Representational Complexity
- 5 Decision Problems in BWVG
- 6 Shapley Value
- The Core
- 8 Conclusions

Winning Coalitions

Given a game $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$ and a coalition $C \subseteq N$, deciding whether C wins in G is Σ_2^P -complete. This results holds even if there are 2 players and the weights of all players in all components are in $\{0,1\}$. However, the problem is in P if the underlying formula is monotone.

Winning Coalitions

Given a game $G=\langle N,\mathcal{G},\Phi,\varphi\rangle$ and a coalition $C\subseteq N$, deciding whether C wins in G is Σ_2^p -complete. This results holds even if there are 2 players and the weights of all players in all components are in $\{0,1\}$. However, the problem is in P if the underlying formula is monotone.

Proof Sketch.

• By definition of Winning coalition of **BWVG** is easy to see that is in Σ_2^p for the general case

Winning Coalitions

Given a game $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$ and a coalition $C \subseteq N$, deciding whether C wins in G is Σ_2^p -complete. This results holds even if there are 2 players and the weights of all players in all components are in $\{0,1\}$. However, the problem is in P if the underlying formula is monotone.

- By definition of Winning coalition of **BWVG** is easy to see that is in Σ_2^p for the general case
- In the case of monotonicity of propositional formula testing whether a Coalition C is winning we need to set all all the controlled variables by C in **True**, while All others in \bot .

Winning Coalitions

Given a game $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$ and a coalition $C \subseteq N$, deciding whether C wins in G is Σ_2^p -complete. This results holds even if there are 2 players and the weights of all players in all components are in $\{0,1\}$. However, the problem is in P if the underlying formula is monotone.

- By definition of Winning coalition of **BWVG** is easy to see that is in Σ_2^p for the general case
- In the case of monotonicity of propositional formula testing whether a Coalition C is winning we need to set all all the controlled variables by C in **True**, while All others in \bot .
- With formulas with few variables we can enumerate all possible truth assignments.

Winning Coalitions

Given a game $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$ and a coalition $C \subseteq N$, deciding whether C wins in G is Σ_2^p -complete. This results holds even if there are 2 players and the weights of all players in all components are in $\{0,1\}$. However, the problem is in P if the underlying formula is monotone.

- By definition of Winning coalition of **BWVG** is easy to see that is in Σ_2^p for the general case
- In the case of monotonicity of propositional formula testing whether a Coalition C is winning we need to set all all the controlled variables by C in True, while All others in ⊥.
- With formulas with few variables we can enumerate all possible truth assignments.
- For the case of unrestricted formulas we do a reduction from QSAT₂

Swing Player: Definition

i is a swing player for C in game G if C loses in G but $C \cup \{i\}$ wins in G. The problem of deciding if i is Swing Player or not, is easy if φ is monotone or its size is bounded by a constant, but in general is Computationally hard.

Swing Player: Definition

i is a swing player for C in game G if C loses in G but $C \cup \{i\}$ wins in G. The problem of deciding if i is Swing Player or not, is easy if φ is monotone or its size is bounded by a constant, but in general is Computationally hard.

Swing Player

SWINGPLAYER is D_2^p -complete. This holds even for 3 players and all components are of the form $\{0,1\}$. However, the problem is in P if the underlying formula is monotone.

Proof Sketch.

• The case of monotone formulas follows directly from previous theorem of Winning Coalitions.

- The case of monotone formulas follows directly from previous theorem of Winning Coalitions.
- We must exhibit 2 languages L_1 and L_2 , such that $L_1 \in \Sigma_2^p$, $L_2 \in \Pi_2^p$ and $SWINGPLAYER = L_1 \cap L_2$.

$$L_1 = \{ \langle G, C, i \rangle : C \cup \{i\} \text{ wins in } G \}$$
 (7a)

$$L_2 = \{ \langle G, C, i \rangle : C \text{ does not win in } G \}$$
 (7b)

Proof Sketch.

- The case of monotone formulas follows directly from previous theorem of Winning Coalitions.
- We must exhibit 2 languages L_1 and L_2 , such that $L_1 \in \Sigma_2^p$, $L_2 \in \Pi_2^p$ and $SWINGPLAYER = L_1 \cap L_2$.

$$L_1 = \{ \langle G, C, i \rangle : C \cup \{i\} \text{ wins in } G \}$$
 (8a)

$$L_2 = \{ \langle G, C, i \rangle : C \text{ does not win in } G \}$$
 (8b)

• Clearly $L_1 \in \Sigma_2^p$ and $L_2 \in \Pi_2^p$

- The case of monotone formulas follows directly from previous theorem of Winning Coalitions.
- We must exhibit 2 languages L_1 and L_2 , such that $L_1 \in \Sigma_2^p$, $L_2 \in \Pi_2^p$ and $SWINGPLAYER = L_1 \cap L_2$.

$$L_1 = \{ \langle G, C, i \rangle : C \cup \{i\} \text{ wins in } G \}$$
 (9a)

$$L_2 = \{ \langle G, C, i \rangle : C \text{ does not win in } G \}$$
 (9b)

- Clearly $L_1 \in \Sigma_2^p$ and $L_2 \in \Pi_2^p$
- By definition $SWINGPLAYER = L_1 \cap L_2$

- The case of monotone formulas follows directly from previous theorem of Winning Coalitions.
- We must exhibit 2 languages L_1 and L_2 , such that $L_1 \in \Sigma_2^p$, $L_2 \in \Pi_2^p$ and $SWINGPLAYER = L_1 \cap L_2$.

$$L_1 = \{ \langle G, C, i \rangle : C \cup \{i\} \text{ wins in } G \}$$
 (10a)

$$L_2 = \{ \langle G, C, i \rangle : C \text{ does not win in } G \}$$
 (10b)

- Clearly $L_1 \in \Sigma_2^p$ and $L_2 \in \Pi_2^p$
- By definition $SWINGPLAYER = L_1 \cap L_2$
- To show D_2^p -hardness a reduction can be provided from D_2^p -complete problem $SAT_2^{\Sigma} UNSAT_2^{\Sigma}$, which is a generalization of SAT UNSAT problem.

Dummy Player: Definition

i is a **dummy player** for *C* in game *G* if $v(C) = v(C \cup \{i\})$ for all $C \subseteq N \setminus \{i\}$.

Dummy Player

DUMMYPLAYER is coNP-hard even if all weights in all component games are in $\{0,1\}$, and G is in an m-vector weighed voting game.

- The proof can be done following a reduction from the clasic NP-complete problem X3C (Exact Cover by 3-Sets)
- An instance \mathcal{E} of this problem is given

- The proof can be done following a reduction from the clasic NP-complete problem X3C (Exact Cover by 3-Sets)
- ullet An instance ${\mathcal E}$ of this problem is given
- ullet It is an "yes"-instance if ${\mathcal E}$ can be covered by ${\mathcal K}$, "no"-otherwise

- The proof can be done following a reduction from the clasic NP-complete problem X3C (Exact Cover by 3-Sets)
- ullet An instance ${\mathcal E}$ of this problem is given
- ullet It is an "yes"-instance if ${\mathcal E}$ can be covered by ${\mathcal K}$, "no"-otherwise
- Basically given this $\mathcal E$ a **BWVG** is constructed, where the games $\mathcal G$ are of size 3K+1.

- The proof can be done following a reduction from the clasic NP-complete problem X3C (Exact Cover by 3-Sets)
- ullet An instance ${\mathcal E}$ of this problem is given
- ullet It is an "yes"-instance if ${\mathcal E}$ can be covered by ${\mathcal K}$, "no"-otherwise
- Basically given this $\mathcal E$ a **BWVG** is constructed, where the games $\mathcal G$ are of size 3K+1.
- A Coalition C wins the first 3K games if and only if corresponds to a valid cover of $\mathcal E$

- The proof can be done following a reduction from the clasic NP-complete problem X3C (Exact Cover by 3-Sets)
- ullet An instance ${\mathcal E}$ of this problem is given
- ullet It is an "yes"-instance if ${\mathcal E}$ can be covered by ${\mathcal K}$, "no"-otherwise
- Basically given this $\mathcal E$ a **BWVG** is constructed, where the games $\mathcal G$ are of size 3K+1.
- A Coalition C wins the first 3K games if and only if corresponds to a valid cover of \mathcal{E}
- ullet Analyzing the "no"-instance and the reminding players +1 establish the Dummy player or not.

- The proof can be done following a reduction from the clasic NP-complete problem X3C (Exact Cover by 3-Sets)
- ullet An instance ${\mathcal E}$ of this problem is given
- ullet It is an "yes"-instance if ${\mathcal E}$ can be covered by ${\mathcal K}$, "no"-otherwise
- Basically given this $\mathcal E$ a **BWVG** is constructed, where the games $\mathcal G$ are of size 3K+1.
- A Coalition C wins the first 3K games if and only if corresponds to a valid cover of $\mathcal E$
- \bullet Analyzing the "no"-instance and the reminding players +1 establish the Dummy player or not.
- Therefore, a "no"-instance of X3C is an "yes"-instance of DUMMYPLAYER.

Agenda

- Introduction
- Preliminary Definitions
- Formal Definition BWVG
- 4 Representational Complexity
- 5 Decision Problems in BWVG
- 6 Shapley Value
- 7 The Core
- 8 Conclusions

Shapley Value in BWVG

 In WVG it is known that computing Shapley Value is hard (#P-complete).

Shapley Value in BWVG

- In WVG it is known that computing Shapley Value is hard (#P-complete).
- This implies that the problem is as least as hard to BWVG

Shapley Value in BWVG

- In WVG it is known that computing Shapley Value is hard (#P-complete).
- This implies that the problem is as least as hard to BWVG
- However there is a poly-time algorithm for computing Shapley Value in WVG with unary-encoded weights.

Shapley Value in BWVG

- In WVG it is known that computing Shapley Value is hard (#P-complete).
- This implies that the problem is as least as hard to BWVG
- However there is a poly-time algorithm for computing Shapley Value in WVG with unary-encoded weights.
- But this is not true for BWVG

Shapley Value

Computing a player's Shapley value in a **BWVG** is #P-hard even if the game in question is a **VWVG** and all weights in all component games are in $\{0,1\}$.

Shapley Value

Computing a player's Shapley value in a **BWVG** is #P-hard even if the game in question is a **VWVG** and all weights in all component games are in $\{0,1\}$.

Proof.

- For the probe it is use a reduction of X3C (Exact Cover by 3-Sets), where an instance of this problem is giving and a BWVG is constructed based on this.
- Given that there is a q which is a swing player for exactly N_k combinations, where N_k is the number of exact covers of \mathcal{E} , and the size of each such coalition is exactly K.
- Hence the Shapley Value for the q player is exactly $N_k \frac{K!(\ell+1-K)!}{(\ell+1)!}$
- N_K can be compute given sh_q^G , ℓ , and K
- As computing N_K is #P-complete, it follows the statement.

Conclusion

- Shapley value requires to decide whether a given players is a SWINGPLAYER or not.
- Since SWINGPLAYER is in D_2^p -complete as we have seen, this hardness cannot be improved as it seems.

Conclusion

- Shapley value requires to decide whether a given players is a SWINGPLAYER or not.
- Since SWINGPLAYER is in D_2^p -complete as we have seen, this hardness cannot be improved as it seems.

Poly-time

Shapley value can be still computed in poly-time if both the weights
are given in unary and the number of component games is bounded by
a constant.

Theorem: Shapley Value in Poly-Time

Given a BWVG $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$ and a player $p \in N$, Shapley value of p can be computed in time $O((n^2 + s)(4nW)^m)$, where

 $|\Phi| = m, |\varphi| = s, |W| = \max_{i,j} |w_i^j|$

Theorem: Shapley Value in Poly-Time

Given a BWVG $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$ and a player $p \in N$, Shapley value of p can be computed in time $O((n^2 + s)(4nW)^m)$, where $|\Phi| = m, |\varphi| = s, |W| = \max_{i,j} |w_i^j|$

Proof.

- Proof using Dynamic Programming.
- Given an Integer vector $z = (z^1, ..., z^m) \in [-nW, nW]^m$, any k = 1, ..., n 1, and t = 1, ..., k

Theorem: Shapley Value in Poly-Time

Given a BWVG $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$ and a player $p \in N$, Shapley value of p can be computed in time $O((n^2 + s)(4nW)^m)$, where $|\Phi| = m, |\varphi| = s, |W| = \max_{i,j} |w_i^j|$

Proof.

- Proof using Dynamic Programming.
- Given an Integer vector $z = (z^1, ..., z^m) \in [-nW, nW]^m$, any k = 1, ..., n 1, and t = 1, ..., k
- Let N(z, t, k) be the number of coalitions $C \subseteq N$, such that $w^{j}(C) = z^{j}$ for j = 1, ..., m, |C| = t, and $C \subseteq \{1, ..., k\}$.

Theorem: Shapley Value in Poly-Time

Given a BWVG $G = \langle N, \mathcal{G}, \Phi, \varphi \rangle$ and a player $p \in N$, Shapley value of p can be computed in time $O((n^2 + s)(4nW)^m)$, where $|\Phi| = m, |\varphi| = s, |W| = \max_{i,j} |w_i^j|$

Proof.

- Proof using Dynamic Programming.
- Given an Integer vector $z = (z^1, ..., z^m) \in [-nW, nW]^m$, any k = 1, ..., n 1, and t = 1, ..., k
- Let N(z, t, k) be the number of coalitions $C \subseteq N$, such that $w^{j}(C) = z^{j}$ for j = 1, ..., m, |C| = t, and $C \subseteq \{1, ..., k\}$.
- For k=1, N(z,t,1)=1 if t=1 and $w_1^j=z^j$ and N(z,t,1)=0 otherwise.

$$N(z,t,k+1) = N(z,t,k) + N(z_{k+1},t-1,k)$$
 (11)

Proof Cont. Poly-Time.

ullet First summand Coalitions without k+1 player, Second summand with k+1 player

Proof Cont. Poly-Time.

- ullet First summand Coalitions without k+1 player, Second summand with k+1 player
- So all N(z, t, k) can be compute in $O(n^2(2nW)^m)$

Proof Cont. Poly-Time.

- ullet First summand Coalitions without k+1 player, Second summand with k+1 player
- So all N(z, t, k) can be compute in $O(n^2(2nW)^m)$
- Let $I(z,t) = v(C \cup \{n\}) v(C)$
- Computing the value of φ under a truth assignment can be done in O(s), and for a fixed vector z in $O(s2^m)$. Hence all I(z,t) requires $O(s2^m(2nW)^m)$

Proof Cont. Poly-Time.

- First summand Coalitions without k+1 player, Second summand with k+1 player
- So all N(z, t, k) can be compute in $O(n^2(2nW)^m)$
- Let $I(z,t) = v(C \cup \{n\}) v(C)$
- Computing the value of φ under a truth assignment can be done in O(s), and for a fixed vector z in $O(s2^m)$. Hence all I(z,t) requires $O(s2^m(2nW)^m)$
- Shapley value can be computed as follows:

Proof Cont. Poly-Time.

- ullet First summand Coalitions without k+1 player, Second summand with k+1 player
- So all N(z, t, k) can be compute in $O(n^2(2nW)^m)$
- Let $I(z, t) = v(C \cup \{n\}) v(C)$
- Computing the value of φ under a truth assignment can be done in O(s), and for a fixed vector z in $O(s2^m)$. Hence all I(z,t) requires $O(s2^m(2nW)^m)$
- Shapley value can be computed as follows:

$$sh_n = \frac{1}{n!} \sum_{z \in [-nW, nW]^m} \sum_{t=1}^{n-1} N(z, t, n-1) I(z, t) t! (n-1-t)!$$
 (12)

• Therefore, overall running time: $O(n^2(2nW)^m) + s2^m(2nW)^m) = O((n^2 + s)(4nW)^m)$

Agenda

- Introduction
- 2 Preliminary Definitions
- Formal Definition BWVG
- 4 Representational Complexity
- Decision Problems in BWVG
- 6 Shapley Value
- The Core
- 8 Conclusions

The Core

The Core and BWVG

- Problem InCore we are given a BWVG G and a payoff vector x and we are asked if x belongs to G's core.
- Problem CoreNonEmpty we are given a BWVG G and we ask if its core is nonempty
- Problem Veto we are given a BWVG G and a player i and we ask if i is a veto player in G

The Core

InCore, CoreNonEmpty and Veto

InCore, CoreNonEmpty and Veto are Π_2^p -complete even if |N|=2 and all weights in all components games are either 0 or 1. However for non-negative weights these problems are in P if the underlying formulas are monotone.

Proof

Authors Do Not provide any proof due to space restrictions.

Agenda

- Introduction
- 2 Preliminary Definitions
- Formal Definition BWVG
- 4 Representational Complexity
- 5 Decision Problems in BWVG
- 6 Shapley Value
- The Core
- 8 Conclusions

Conclusions

• BWVG are more expressive than VWVG, in particular when formulas are monotone

Conclusions

- BWVG are more expressive than VWVG, in particular when formulas are monotone
- Although expressiveness gain, BWVG are worst in terms of Computational Complexity

Conclusions

- BWVG are more expressive than VWVG, in particular when formulas are monotone
- Although expressiveness gain, BWVG are worst in terms of Computational Complexity
- Unrestricted BWVG leads to increase Complexity

Conclusions

- BWVG are more expressive than VWVG, in particular when formulas are monotone
- Although expressiveness gain, BWVG are worst in terms of Computational Complexity
- Unrestricted BWVG leads to increase Complexity
- As we have seen there are trade-off to deal with this increase of Complexity and gain in expressiveness

Thank you!!