Proposition 1. in der Kategorie der R-Algebren existieren Coprodukte und Differenzenkokerne, wobei:

- **1.** Das Coprodukt einer endlichen Familie von R Algebren $\{B_i\}_{i\in\Lambda}$ entspricht deren Tesorprodukt $\bigotimes_{i\in\Lambda} B_i$.
- **2.** Der Differenzenkokern zweier R-Algebra-Homomorphismen $f,g:S_1 \longrightarrow S_2$ einspricht dem Homomorphismus $q:S_2 \longrightarrow C_2/Q$, $y \longmapsto [y]$, wobei $Q:=\{f(x)-g(x)\mid x\in C_2\}$ das Bild der Differenz von f und g ist.

Beweis. Zu 1.:

Sei $\mathcal{F}:\{B_i\}\hookrightarrow (R-Algebren)$ der Inklusionsfunktor. Nutze die universellen Eigenschaften des Tensorproduktes und des Kähler-Differenzials um einen Isomorphismus zwischen $\lim \mathcal{F}$ und $\bigotimes_{i\in\Lambda} B_i$ zu finden.

Es sind der Morphismus $\psi: \mathcal{F} \longrightarrow \varinjlim \mathcal{F}$ und die bilineare Abbildung $g: \oplus_i B_i \longrightarrow \otimes_i B_i$ gegeben.

Konstruiere den Morphismus $\psi': \mathcal{F} \longrightarrow \otimes_i B_i$ durch $\psi'_i: B_i \longrightarrow \otimes_i B_i$, $b_i \longmapsto g(1,..,1,b_i,1,..,1)$ für $i \in \lambda$ und die bilineare Abbildung $f: \oplus_i B_i \longrightarrow \varinjlim \mathcal{F}$, $b \longmapsto \prod_i \psi_i b_i$.

Somit liefern uns die universellen Eigenschaften folgende zwei R-Algebra-Homomorphismen:

$$\varphi: \lim_{\longrightarrow} \mathcal{F} \longrightarrow \bigotimes_{i} B_{i}$$
$$\phi: \bigotimes_{i} B_{i} \longrightarrow \lim_{\longrightarrow} \mathcal{F}.$$

Die Eindeutigkeit der universellen Eigenschaften liefert uns, das φ und ϕ zueinander Inverse sind und somit haben wir unsere gesuchten Isomorphismen zwischen $\lim \mathcal{F}$ und $\bigotimes_i B_i$ gefunden.

Zu 2.:

$$q \circ f = q \circ g$$
 gilt, da $kern(q) = Q = \{f(x) - g(x) \mid x \in C_2\}$

Sei nun eine Funktion $q' \in Hom_{\mathcal{A}}(C_2,T')$ mit $q' \circ f = q' \circ$ gegeben.

$$\begin{split} q'\circ (f-g) &= 0 \Rightarrow Q \ \ \textit{ist Untermodul von } Q' \coloneqq \textit{kern}(q'). \\ \textit{Nach HOMOMORPHIESATZ [kommutative Algebra 2.10] gilt somit } C_2/Q' \simeq (C_2/Q)/(Q'/Q)). \\ &\Rightarrow q': C_2 \longrightarrow (C_2/Q)/(Q'/Q)) \,, \ y \longmapsto [y]' \ \ \textit{ist eine isomorphe Darstellung von } q': C_2 \longrightarrow T' \\ &\Rightarrow \exists ! \varphi: C_2/Q \longrightarrow (C_2/Q)/(Q'/Q) \,, \ [y] \longmapsto [y]' \ \ \textit{mit } (\varphi \circ q) = q'. \end{split}$$