1 List of symbols

(1 indicates a dimensionless quantity and – indicates not applicable).

Symbol	Variable name	Units	Description
$\arctan 2(y,x)$	_	_	The four quadrant inverse tangent which returns values in
			the interval $[-\pi, \pi]$, inclusive.
c	c	ms^{-1}	Sound speed in water.
D(v)	filter_v[n]['D']	1	Integer filter decimation factor.
$DFT_{N}DFT(x)$		_	The discrete Fourier transform of length N_{DFT} of x .
f		${ m Hz}$	Frequency.
$f_{ m C}$		Hz	Frequency at centre of linear upsweep chirp pulse. Equiv-
			alent to $f_{\text{start}} + \frac{ f_{\text{stop}} - f_{\text{start}} }{2}$.
$f_{ m n}$	f_n	$_{ m Hz}$	Nominal operating frequency of a transducer.
$f_{ m S}$	f_s	Hz	Analogue to digital sampling frequency.
$f_{ m s,dec}$	f_s_dec	Hz	Decimated sampling frequency.
$f_{ m start}$	f_1	Hz	Start frequency of linear upsweep chirp pulse.
$f_{ m stop}$	f_2	Hz	Stop frequency of linear upsweep chirp pulse.
$g(\theta, \phi, f)$	g_theta_phi_m	1	Transducer gain as a function of echo arrival angle in the
			beam and frequency.
$g_0(f)$	g_0_m	1	Transducer gain along the main acoustic axis, i.e.
			$g(\theta, \phi, f)$ where $\theta = \phi = 0$.
$h_{\mathrm{bp}}(i,v)$	filter_v[n]['h_fl_i']1	Complex valued receiving filter coefficients.
i		1	Generic integer index.
$\Im(x)$		_	The imaginary part of x .
j			The square root of -1 .
m	m	1	Sample index in frequency domain.

$N_{ m u}$	N_u	1	Total number of transducer sectors/transceiver channels
			that are used to receive and process the acoustic signal.
$N_{ m V}$		1	Total number of filter stages.
N_w		1	Number of samples used in the sliding Hanning window.
n	n	1	Sample index in time domain.
$P_{\rm rx.e.t}(f)$		W	FT of the received electric power in a matched load for the
111,0,0			signal from a single target at frequency f .
$P_{\text{rx,e,t}}(f)$ $P_{\text{rx,e,t}}(m)$	P_rx_e_t_m	W	DFT of the received electric power in a matched load for
111,0,0			the signal from a single target.
$P_{\mathrm{rx,e,v}}(f)$		W	FT of the received electric power in a matched load for the
)-)-(**)			signal from a volume at frequency f .
$P_{\mathrm{rx,e,v}}(m)$	P_rx_e_v_m	$ m Wm^2$	DFT of the received electric power in a matched load for
)-)-(-)			the signal from a volume.
$p_{\rm rx,e}(n)$	p_rx_e_n	W	Received electric power in a matched load.
$p_{ m tx,e}$	p_tx_e	W	Transmitted electric power.
$p_{\mathrm{tx,auto}}(n)$	p_tx_auto	1	Square of the absolute value of the matched filter autocor-
2 021,000000	-		relation function.
$\Re(x)$		_	The real part of x .
r		m	Distance from transducer.
r_0		m	Reference distance.
r_c		m	Distance from the transducer to the centre of the range
			volume covered by t_w .
$r_c(n)$		m	$range_c$ at sample number n .
r(n)	r_n	m	Distance from transducer.
$S_p(n)$	Sp_n	$dB re 1 m^2$	Point scattering strength.
$S_{ m V}$	-	$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^{-1}$	Volume backscattering strength.
$S_{ m V}(f)$		$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^{-1}$	Volume backscattering strength at frequency f .
$S_{\mathbf{V}}(n)$	Sv_n	$\mathrm{dB}~\mathrm{re}~1~\mathrm{m}^{-1}$	Volume backscattering strength at sample index n .

TS		$dB re 1 m^2$	Target strength.
TS(f)		$dB re 1 m^2$	Target strength at frequency f .
TS(m)	TS_m	$dB re 1 m^2$	Target strength at frequency index m .
t		S	Time.
t_w	$t_{-}w$	S	Duration of sliding window for calculating volume
			backscattering strength.
u		1	Receiver channel number and transducer sector number.
u(i)		1	The Heaviside step function.
V		m^3	Volume occupied by scattering targets.
v		1	Filter stage.
w		1	The Hann window function.
w(i)	w_i	1	The Hann window function for index i, defined by $w(i) =$
			$0.5(1 + \cos(2\pi i/N_w)), -N_w/2 \le i \le N_w/2.$
$ ilde{w}(i)$	w_tilde_i	1	Normalised Hann window.
x^*		_	The complex conjugate of x .
$ x _2$		_	The l^2 -norm of x , also known as the Euclidean norm.
$Y_{\rm mf,auto}(m)$	Y_mf_auto_m	1	Discrete Fourier transform (DFT) of the autocorrelation
1111,0000			function for the matched filter.
$Y_{\rm mf,auto,red}(m)$	Y_mf_auto_m_red	1	DFT of the reduced autocorrelation function for the
iii,aato,rea			matched filter.
$Y_{\text{DC,t}}(m)$	$Y_pc_t_m$	V	DFT of the pulse compressed signal from a single target.
$Y_{\text{pc,t}}(m)$ $\widetilde{Y}_{\text{pc,t}}(m)$	Y_tilde_pc_t_m	Vm	DFT of the pulse compressed signal from a single tar-
pc, ov			get normalized by the DFT of the reduced autocorrelation
			function for the matched filter.
$Y_{\mathrm{pc,v}}(m)$	Y_pc_v_m	Vm	DFT of the pulse compressed signal from a volume. Com-
r -) · (/	•		pensated for spreading loss.

$ ilde{Y}_{ ext{pc,v}}(m)$	Y_tilde_pc_v_m	V	DFT of the pulse compressed signal from a single volume normalized by the DFT of the reduced autocorrelation function for the matched filter. Compensated for spreading loss.
$y_{ m mf}(n)$	y_mf_n	1	Matched filter. Signal used for pulse compression.
$y_{\mathrm{mf,auto}}(n)$	y_mf_auto_n	1	Autocorrelation function for the matched filter.
$y_{\mathrm{mf,auto,red}}(n)$	<pre>y_mf_auto_red_n</pre>	1	Reduced autocorrelation function for the matched filter.
$y_{\mathrm{pc}}(n)$	y_pc_n	V	Pulse compressed signal averaged over all transducer sectors.
$y_{\mathrm{PC}}(n,u)$	y_pc_nu	V	Pulse compressed signal from channel u .
$y_{\text{pc,aft}}(n)$	y_pc_aft_n	V	Pulse compressed signal from the aft transducer half.
$y_{\text{pc,fore}}(n)$	y_pc_fore_n	V	Pulse compressed signal from the forward transducer half.
$y_{\mathrm{pc,port}}(n)$	y_pc_port_n	V	Pulse compressed signal from the port transducer half.
$y_{\mathrm{pc,s}}(n)$	y_pc_s_n	Vm	Pulse compressed signal compensated for spherical spreading.
$y_{\mathrm{pc,star}}(n)$	y_pc_star_n	V	Pulse compressed signal from the starboard transducer half.
$y_{ m pc,t}(n)$	y_pc_t_n	V	Pulse compressed signal from a single target.
$y_{\text{TX}}(n, u)$	y_rx_nu	V	Received digitised, bandpass filtered, decimated complex signal after the final filter stage, $y_{\text{TX}}(n, u) = y_{\text{TX}}(n, u, N_{\text{V}})$.
$y_{\text{TX}}(n, u, v)$		V	Received digitised, bandpass filtered, decimated complex signal.
$y_{\rm rx,a}(t)$		Pa	Analogue acoustic signal received by the transducer.
$y_{\text{rx,e}}(t,u)$		V	Analogue electric signal received by each transceiver channel u .
$y_{\text{TX,org}}(n, u)$		V	Received digitised signal before the bandpass filtering and decimation stages, $y_{\text{TX,OTg}}(n, u) = y_{\text{TX}}(n, u, 0)$.

$ ilde{y}_{tx}(n)$ y_tilde_tx_n 1 Ideal normalized transmitted signal generated from transmit signal properties. $ ilde{y}_{tx}(n,v)$ y_tilde_tx_nv 1 Ideal normalized transmitted signal generated from transmit.	trans-
mit signal properties.	trans-
\tilde{u}_{i} (n a) \tilde{u}_{i} + ildo + v nv 1 Ideal normalized transmitted given I generated from the	
$\tilde{y}_{tx}(n, v)$ y_tilde_tx_nv 1 Ideal normalized transmitted signal generated from transmitted signal generated from transmitted signal properties after application of filter stage v	
$y_{ m tx,a}(t)$ Pa Analogue acoustic transmit signal.	
$y_{ m tx,e}(t)$ V Analogue electric transmit signal.	
$y_{\theta}(n)$ y_theta_n rad Electrical angle along the minor axis of the transde	educer
(alongship when ship-mounted).	aucci
$y_{\phi}(n)$ y_phi_n rad Electrical angle along the major axis of the transde	sducer
f(x) (athwartship when ship-mounted).	744001
$z_{ m rx,e}$ z_rx_e Ω Receiver electric impedance.	
$z_{ m td,e}$ $z_{ m td}$ z Transducer sector electric impedance.	
$\alpha(f)$ alpha_m dB m ⁻¹ Absorption coefficient at frequency f .	
γ_{θ} gamma_theta 1 Conversion factor between phase difference in signals f	s from
the fore and aft transducer halves and the physical arr	
angle of an echo.	
γ_{ϕ} gamma_phi 1 Conversion factor between phase difference in signals f	s from
the port and starboard transducer halves and the phys	ıysical
arrival angle of an echo.	
θ theta_n rad Angle coordinates along the minor axis of the transde	sducer
(alongship when ship-mounted).	
λ m Acoustic wavelength.	
λ_m lambda_m m Acoustic wavelength at frequency index m	
σ_{bs} Backscattering cross-section.	
au tau s Nominal transmit pulse duration.	
$ au_{ ext{eff}}$ tau_eff s Effective transmit pulse duration.	

ϕ	phi	rad	Angle coordinates along the major axis of the transducer
			(athwartship when ship-mounted).
$\psi(f)$	psi_m	sr	Two-way equivalent beam angle at frequency f .