Linear Model Selection and Regularization

In the regression setting, the standard linear model

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon \tag{6.1}$$

is commonly used to describe the relationship between a response Y and a set of variables X_1, X_2, \ldots, X_p . We have seen in Chapter 3 that one typically fits this model using least squares.

In the chapters that follow, we consider some approaches for extending the linear model framework. In Chapter 7 we generalize (6.1) in order to accommodate non-linear, but still additive, relationships, while in Chapter 8 we consider even more general non-linear models. However, the linear model has distinct advantages in terms of inference and, on real-world problems, is often surprisingly competitive in relation to non-linear methods. Hence, before moving to the non-linear world, we discuss in this chapter some ways in which the simple linear model can be improved, by replacing plain least squares fitting with some alternative fitting procedures.

Why might we want to use another fitting procedure instead of least squares? As we will see, alternative fitting procedures can yield better *prediction accuracy* and *model interpretability*.

• Prediction Accuracy: Provided that the true relationship between the response and the predictors is approximately linear, the least squares estimates will have low bias. If $n \gg p$ —that is, if n, the number of observations, is much larger than p, the number of variables—then the least squares estimates tend to also have low variance, and hence will perform well on test observations. However, if n is not much larger

G. James et al., An Introduction to Statistical Learning: with Applications in R, 203 Springer Texts in Statistics, DOI 10.1007/978-1-4614-7138-7_6,

© Springer Science+Business Media New York 2013

than p, then there can be a lot of variability in the least squares fit, resulting in overfitting and consequently poor predictions on future observations not used in model training. And if p>n, then there is no longer a unique least squares coefficient estimate: the variance is infinite so the method cannot be used at all. By constraining or shrinking the estimated coefficients, we can often substantially reduce the variance at the cost of a negligible increase in bias. This can lead to substantial improvements in the accuracy with which we can predict the response for observations not used in model training.

• Model Interpretability: It is often the case that some or many of the variables used in a multiple regression model are in fact not associated with the response. Including such irrelevant variables leads to unnecessary complexity in the resulting model. By removing these variables—that is, by setting the corresponding coefficient estimates to zero—we can obtain a model that is more easily interpreted. Now least squares is extremely unlikely to yield any coefficient estimates that are exactly zero. In this chapter, we see some approaches for automatically performing feature selection or variable selection—that is, for excluding irrelevant variables from a multiple regression model.

feature selection variable

There are many alternatives, both classical and modern, to using least selection squares to fit (6.1). In this chapter, we discuss three important classes of methods.

- Subset Selection. This approach involves identifying a subset of the p predictors that we believe to be related to the response. We then fit a model using least squares on the reduced set of variables.
- Shrinkage. This approach involves fitting a model involving all p predictors. However, the estimated coefficients are shrunken towards zero relative to the least squares estimates. This shrinkage (also known as regularization) has the effect of reducing variance. Depending on what type of shrinkage is performed, some of the coefficients may be estimated to be exactly zero. Hence, shrinkage methods can also perform variable selection.
- Dimension Reduction. This approach involves projecting the p predictors into a M-dimensional subspace, where M < p. This is achieved by computing M different linear combinations, or projections, of the variables. Then these M projections are used as predictors to fit a linear regression model by least squares.

In the following sections we describe each of these approaches in greater detail, along with their advantages and disadvantages. Although this chapter describes extensions and modifications to the linear model for regression seen in Chapter 3, the same concepts apply to other methods, such as the classification models seen in Chapter 4.

Subset Selection 6.1

In this section we consider some methods for selecting subsets of predictors. These include best subset and stepwise model selection procedures.

6.1.1 Best Subset Selection

To perform $best\ subset\ selection$, we fit a separate least squares regression $_{
m best\ subset}$ for each possible combination of the p predictors. That is, we fit all p models selection that contain exactly one predictor, all $\binom{p}{2} = p(p-1)/2$ models that contain exactly two predictors, and so forth. We then look at all of the resulting models, with the goal of identifying the one that is best.

The problem of selecting the best model from among the 2^p possibilities considered by best subset selection is not trivial. This is usually broken up into two stages, as described in Algorithm 6.1.

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using crossvalidated prediction error, C_p (AIC), BIC, or adjusted R^2 .

In Algorithm 6.1, Step 2 identifies the best model (on the training data) for each subset size, in order to reduce the problem from one of 2^p possible models to one of p+1 possible models. In Figure 6.1, these models form the lower frontier depicted in red.

Now in order to select a single best model, we must simply choose among these p+1 options. This task must be performed with care, because the RSS of these p+1 models decreases monotonically, and the R^2 increases monotonically, as the number of features included in the models increases. Therefore, if we use these statistics to select the best model, then we will always end up with a model involving all of the variables. The problem is that a low RSS or a high R^2 indicates a model with a low training error, whereas we wish to choose a model that has a low test error. (As shown in Chapter 2 in Figures 2.9–2.11, training error tends to be quite a bit smaller than test error, and a low training error by no means guarantees a low test error.) Therefore, in Step 3, we use cross-validated prediction

FIGURE 6.1. For each possible model containing a subset of the ten predictors in the Credit data set, the RSS and R^2 are displayed. The red frontier tracks the best model for a given number of predictors, according to RSS and R^2 . Though the data set contains only ten predictors, the x-axis ranges from 1 to 11, since one of the variables is categorical and takes on three values, leading to the creation of two dummy variables.

error, C_p , BIC, or adjusted R^2 in order to select among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$. These approaches are discussed in Section 6.1.3.

An application of best subset selection is shown in Figure 6.1. Each plotted point corresponds to a least squares regression model fit using a different subset of the 11 predictors in the Credit data set, discussed in Chapter 3. Here the variable ethnicity is a three-level qualitative variable, and so is represented by two dummy variables, which are selected separately in this case. We have plotted the RSS and R^2 statistics for each model, as a function of the number of variables. The red curves connect the best models for each model size, according to RSS or R^2 . The figure shows that, as expected, these quantities improve as the number of variables increases; however, from the three-variable model on, there is little improvement in RSS and R^2 as a result of including additional predictors.

Although we have presented best subset selection here for least squares regression, the same ideas apply to other types of models, such as logistic regression. In the case of logistic regression, instead of ordering models by RSS in Step 2 of Algorithm 6.1, we instead use the *deviance*, a measure that plays the role of RSS for a broader class of models. The deviance is negative two times the maximized log-likelihood; the smaller the deviance, the better the fit.

deviance

While best subset selection is a simple and conceptually appealing approach, it suffers from computational limitations. The number of possible models that must be considered grows rapidly as p increases. In general, there are 2^p models that involve subsets of p predictors. So if p = 10, then there are approximately 1,000 possible models to be considered, and if

p=20, then there are over one million possibilities! Consequently, best subset selection becomes computationally infeasible for values of p greater than around 40, even with extremely fast modern computers. There are computational shortcuts—so called branch-and-bound techniques—for eliminating some choices, but these have their limitations as p gets large. They also only work for least squares linear regression. We present computationally efficient alternatives to best subset selection next.

6.1.2 Stepwise Selection

For computational reasons, best subset selection cannot be applied with very large p. Best subset selection may also suffer from statistical problems when p is large. The larger the search space, the higher the chance of finding models that look good on the training data, even though they might not have any predictive power on future data. Thus an enormous search space can lead to overfitting and high variance of the coefficient estimates.

For both of these reasons, *stepwise* methods, which explore a far more restricted set of models, are attractive alternatives to best subset selection.

Forward Stepwise Selection

Forward stepwise selection is a computationally efficient alternative to best subset selection. While the best subset selection procedure considers all 2^p possible models containing subsets of the p predictors, forward stepwise considers a much smaller set of models. Forward stepwise selection begins with a model containing no predictors, and then adds predictors to the model, one-at-a-time, until all of the predictors are in the model. In particular, at each step the variable that gives the greatest additional improvement to the fit is added to the model. More formally, the forward stepwise selection procedure is given in Algorithm 6.2.

forward stepwise selection

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Unlike best subset selection, which involved fitting 2^p models, forward stepwise selection involves fitting one null model, along with p-k models in the kth iteration, for $k=0,\ldots,p-1$. This amounts to a total of $1+\sum_{k=0}^{p-1}(p-k)=1+p(p+1)/2$ models. This is a substantial difference: when p=20, best subset selection requires fitting 1,048,576 models, whereas forward stepwise selection requires fitting only 211 models.¹

In Step 2(b) of Algorithm 6.2, we must identify the *best* model from among those p-k that augment \mathcal{M}_k with one additional predictor. We can do this by simply choosing the model with the lowest RSS or the highest R^2 . However, in Step 3, we must identify the best model among a set of models with different numbers of variables. This is more challenging, and is discussed in Section 6.1.3.

Forward stepwise selection's computational advantage over best subset selection is clear. Though forward stepwise tends to do well in practice, it is not guaranteed to find the best possible model out of all 2^p models containing subsets of the p predictors. For instance, suppose that in a given data set with p=3 predictors, the best possible one-variable model contains X_1 , and the best possible two-variable model instead contains X_2 and X_3 . Then forward stepwise selection will fail to select the best possible two-variable model, because \mathcal{M}_1 will contain X_1 , so \mathcal{M}_2 must also contain X_1 together with one additional variable.

Table 6.1, which shows the first four selected models for best subset and forward stepwise selection on the Credit data set, illustrates this phenomenon. Both best subset selection and forward stepwise selection choose rating for the best one-variable model and then include income and student for the two- and three-variable models. However, best subset selection replaces rating by cards in the four-variable model, while forward stepwise selection must maintain rating in its four-variable model. In this example, Figure 6.1 indicates that there is not much difference between the three-and four-variable models in terms of RSS, so either of the four-variable models will likely be adequate.

Forward stepwise selection can be applied even in the high-dimensional setting where n < p; however, in this case, it is possible to construct submodels $\mathcal{M}_0, \ldots, \mathcal{M}_{n-1}$ only, since each submodel is fit using least squares, which will not yield a unique solution if $p \geq n$.

Backward Stepwise Selection

Like forward stepwise selection, backward stepwise selection provides an efficient alternative to best subset selection. However, unlike forward

backware stepwise selection

¹Though forward stepwise selection considers p(p+1)/2 + 1 models, it performs a guided search over model space, and so the effective model space considered contains substantially more than p(p+1)/2 + 1 models.

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income	rating, income,
	student, limit	student, limit

TABLE 6.1. The first four selected models for best subset selection and forward stepwise selection on the Credit data set. The first three models are identical but the fourth models differ.

stepwise selection, it begins with the full least squares model containing all p predictors, and then iteratively removes the least useful predictor, one-at-a-time. Details are given in Algorithm 6.3.

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here best is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Like forward stepwise selection, the backward selection approach searches through only 1+p(p+1)/2 models, and so can be applied in settings where p is too large to apply best subset selection.² Also like forward stepwise selection, backward stepwise selection is not guaranteed to yield the *best* model containing a subset of the p predictors.

Backward selection requires that the number of samples n is larger than the number of variables p (so that the full model can be fit). In contrast, forward stepwise can be used even when n < p, and so is the only viable subset method when p is very large.

²Like forward stepwise selection, backward stepwise selection performs a *guided* search over model space, and so effectively considers substantially more than 1+p(p+1)/2 models.

Hybrid Approaches

The best subset, forward stepwise, and backward stepwise selection approaches generally give similar but not identical models. As another alternative, hybrid versions of forward and backward stepwise selection are available, in which variables are added to the model sequentially, in analogy to forward selection. However, after adding each new variable, the method may also remove any variables that no longer provide an improvement in the model fit. Such an approach attempts to more closely mimic best subset selection while retaining the computational advantages of forward and backward stepwise selection.

6.1.3 Choosing the Optimal Model

Best subset selection, forward selection, and backward selection result in the creation of a set of models, each of which contains a subset of the p predictors. In order to implement these methods, we need a way to determine which of these models is best. As we discussed in Section 6.1.1, the model containing all of the predictors will always have the smallest RSS and the largest R^2 , since these quantities are related to the training error. Instead, we wish to choose a model with a low test error. As is evident here, and as we show in Chapter 2, the training error can be a poor estimate of the test error. Therefore, RSS and R^2 are not suitable for selecting the best model among a collection of models with different numbers of predictors.

In order to select the best model with respect to test error, we need to estimate this test error. There are two common approaches:

- 1. We can indirectly estimate test error by making an *adjustment* to the training error to account for the bias due to overfitting.
- 2. We can *directly* estimate the test error, using either a validation set approach or a cross-validation approach, as discussed in Chapter 5.

We consider both of these approaches below.

C_p , AIC, BIC, and Adjusted R^2

We show in Chapter 2 that the training set MSE is generally an underestimate of the test MSE. (Recall that MSE = RSS/n.) This is because when we fit a model to the training data using least squares, we specifically estimate the regression coefficients such that the training RSS (but not the test RSS) is as small as possible. In particular, the training error will decrease as more variables are included in the model, but the test error may not. Therefore, training set RSS and training set R^2 cannot be used to select from among a set of models with different numbers of variables.

However, a number of techniques for *adjusting* the training error for the model size are available. These approaches can be used to select among a set

FIGURE 6.2. C_p , BIC, and adjusted R^2 are shown for the best models of each size for the Credit data set (the lower frontier in Figure 6.1). C_p and BIC are estimates of test MSE. In the middle plot we see that the BIC estimate of test error shows an increase after four variables are selected. The other two plots are rather flat after four variables are included.

of models with different numbers of variables. We now consider four such approaches: C_p , Akaike information criterion (AIC), Bayesian information criterion (BIC), and adjusted R^2 . Figure 6.2 displays C_p , BIC, and adjusted R^2 for the best model of each size produced by best subset selection on the Credit data set.

 C_p Akaike information criterion
Bayesian information criterion adjusted R^2

For a fitted least squares model containing d predictors, the C_p estimate of test MSE is computed using the equation

$$C_p = \frac{1}{n} \left(\text{RSS} + 2d\hat{\sigma}^2 \right), \tag{6.2}$$

where $\hat{\sigma}^2$ is an estimate of the variance of the error ϵ associated with each response measurement in (6.1).³ Essentially, the C_p statistic adds a penalty of $2d\hat{\sigma}^2$ to the training RSS in order to adjust for the fact that the training error tends to underestimate the test error. Clearly, the penalty increases as the number of predictors in the model increases; this is intended to adjust for the corresponding decrease in training RSS. Though it is beyond the scope of this book, one can show that if $\hat{\sigma}^2$ is an unbiased estimate of σ^2 in (6.2), then C_p is an unbiased estimate of test MSE. As a consequence, the C_p statistic tends to take on a small value for models with a low test error, so when determining which of a set of models is best, we choose the model with the lowest C_p value. In Figure 6.2, C_p selects the six-variable model containing the predictors income, limit, rating, cards, age and student.

³Mallow's C_p is sometimes defined as $C_p' = \text{RSS}/\hat{\sigma}^2 + 2d - n$. This is equivalent to the definition given above in the sense that $C_p = \frac{1}{n}\hat{\sigma}^2(C_p' + n)$, and so the model with smallest C_p also has smallest C_p' .

The AIC criterion is defined for a large class of models fit by maximum likelihood. In the case of the model (6.1) with Gaussian errors, maximum likelihood and least squares are the same thing. In this case AIC is given by

$$AIC = \frac{1}{n\hat{\sigma}^2} \left(RSS + 2d\hat{\sigma}^2 \right),\,$$

where, for simplicity, we have omitted an additive constant. Hence for least squares models, C_p and AIC are proportional to each other, and so only C_p is displayed in Figure 6.2.

BIC is derived from a Bayesian point of view, but ends up looking similar to C_p (and AIC) as well. For the least squares model with d predictors, the BIC is, up to irrelevant constants, given by

$$BIC = \frac{1}{n} \left(RSS + \log(n) d\hat{\sigma}^2 \right). \tag{6.3}$$

Like C_p , the BIC will tend to take on a small value for a model with a low test error, and so generally we select the model that has the lowest BIC value. Notice that BIC replaces the $2d\hat{\sigma}^2$ used by C_p with a $\log(n)d\hat{\sigma}^2$ term, where n is the number of observations. Since $\log n > 2$ for any n > 7, the BIC statistic generally places a heavier penalty on models with many variables, and hence results in the selection of smaller models than C_p . In Figure 6.2, we see that this is indeed the case for the Credit data set; BIC chooses a model that contains only the four predictors income, limit, cards, and student. In this case the curves are very flat and so there does not appear to be much difference in accuracy between the four-variable and six-variable models.

The adjusted R^2 statistic is another popular approach for selecting among a set of models that contain different numbers of variables. Recall from Chapter 3 that the usual R^2 is defined as 1 - RSS/TSS, where TSS = $\sum (y_i - \overline{y})^2$ is the total sum of squares for the response. Since RSS always decreases as more variables are added to the model, the R^2 always increases as more variables are added. For a least squares model with d variables, the adjusted R^2 statistic is calculated as

Adjusted
$$R^2 = 1 - \frac{\text{RSS}/(n-d-1)}{\text{TSS}/(n-1)}$$
. (6.4)

Unlike C_p , AIC, and BIC, for which a *small* value indicates a model with a low test error, a *large* value of adjusted R^2 indicates a model with a small test error. Maximizing the adjusted R^2 is equivalent to minimizing $\frac{\mathrm{RSS}}{n-d-1}$. While RSS always decreases as the number of variables in the model increases, $\frac{\mathrm{RSS}}{n-d-1}$ may increase or decrease, due to the presence of d in the denominator.

The intuition behind the adjusted R^2 is that once all of the correct variables have been included in the model, adding additional *noise* variables

will lead to only a very small decrease in RSS. Since adding noise variables leads to an increase in d, such variables will lead to an increase in $\frac{RSS}{n-d-1}$, and consequently a decrease in the adjusted R^2 . Therefore, in theory, the model with the largest adjusted R^2 will have only correct variables and no noise variables. Unlike the R^2 statistic, the adjusted R^2 statistic pays a price for the inclusion of unnecessary variables in the model. Figure 6.2 displays the adjusted R^2 for the Credit data set. Using this statistic results in the selection of a model that contains seven variables, adding gender to the model selected by C_p and AIC.

 C_p , AIC, and BIC all have rigorous theoretical justifications that are beyond the scope of this book. These justifications rely on asymptotic arguments (scenarios where the sample size n is very large). Despite its popularity, and even though it is quite intuitive, the adjusted R^2 is not as well motivated in statistical theory as AIC, BIC, and C_p . All of these measures are simple to use and compute. Here we have presented the formulas for AIC, BIC, and C_p in the case of a linear model fit using least squares; however, these quantities can also be defined for more general types of models.

Validation and Cross-Validation

As an alternative to the approaches just discussed, we can directly estimate the test error using the validation set and cross-validation methods discussed in Chapter 5. We can compute the validation set error or the cross-validation error for each model under consideration, and then select the model for which the resulting estimated test error is smallest. This procedure has an advantage relative to AIC, BIC, C_p , and adjusted R^2 , in that it provides a direct estimate of the test error, and makes fewer assumptions about the true underlying model. It can also be used in a wider range of model selection tasks, even in cases where it is hard to pinpoint the model degrees of freedom (e.g. the number of predictors in the model) or hard to estimate the error variance σ^2 .

In the past, performing cross-validation was computationally prohibitive for many problems with large p and/or large n, and so AIC, BIC, C_p , and adjusted R^2 were more attractive approaches for choosing among a set of models. However, nowadays with fast computers, the computations required to perform cross-validation are hardly ever an issue. Thus, cross-validation is a very attractive approach for selecting from among a number of models under consideration.

Figure 6.3 displays, as a function of d, the BIC, validation set errors, and cross-validation errors on the Credit data, for the best d-variable model. The validation errors were calculated by randomly selecting three-quarters of the observations as the training set, and the remainder as the validation set. The cross-validation errors were computed using k=10 folds. In this case, the validation and cross-validation methods both result in a

FIGURE 6.3. For the Credit data set, three quantities are displayed for the best model containing d predictors, for d ranging from 1 to 11. The overall best model, based on each of these quantities, is shown as a blue cross. Left: Square root of BIC. Center: Validation set errors. Right: Cross-validation errors.

six-variable model. However, all three approaches suggest that the four-, five-, and six-variable models are roughly equivalent in terms of their test errors.

In fact, the estimated test error curves displayed in the center and righthand panels of Figure 6.3 are quite flat. While a three-variable model clearly has lower estimated test error than a two-variable model, the estimated test errors of the 3- to 11-variable models are quite similar. Furthermore, if we repeated the validation set approach using a different split of the data into a training set and a validation set, or if we repeated cross-validation using a different set of cross-validation folds, then the precise model with the lowest estimated test error would surely change. In this setting, we can select a model using the one-standard-error rule. We first calculate the standard error of the estimated test MSE for each model size, and then standardselect the smallest model for which the estimated test error is within one standard error of the lowest point on the curve. The rationale here is that if a set of models appear to be more or less equally good, then we might as well choose the simplest model—that is, the model with the smallest number of predictors. In this case, applying the one-standard-error rule to the validation set or cross-validation approach leads to selection of the three-variable model.

Shrinkage Methods 6.2

The subset selection methods described in Section 6.1 involve using least squares to fit a linear model that contains a subset of the predictors. As an alternative, we can fit a model containing all p predictors using a technique that constrains or regularizes the coefficient estimates, or equivalently, that shrinks the coefficient estimates towards zero. It may not be immediately obvious why such a constraint should improve the fit, but it turns out that shrinking the coefficient estimates can significantly reduce their variance. The two best-known techniques for shrinking the regression coefficients towards zero are ridge regression and the lasso.

6.2.1 Ridge Regression

Recall from Chapter 3 that the least squares fitting procedure estimates $\beta_0, \beta_1, \ldots, \beta_p$ using the values that minimize

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2.$$

Ridge regression is very similar to least squares, except that the coefficients ridge are estimated by minimizing a slightly different quantity. In particular, the regression ridge regression coefficient estimates $\hat{\beta}^R$ are the values that minimize

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2, \tag{6.5}$$

where $\lambda \geq 0$ is a tuning parameter, to be determined separately. Equation 6.5 trades off two different criteria. As with least squares, ridge regression seeks coefficient estimates that fit the data well, by making the RSS small. However, the second term, $\lambda \sum_j \beta_j^2$, called a *shrinkage penalty*, is small when β_1, \ldots, β_p are close to zero, and so it has the effect of *shrinking* penalty the estimates of β_i towards zero. The tuning parameter λ serves to control the relative impact of these two terms on the regression coefficient estimates. When $\lambda = 0$, the penalty term has no effect, and ridge regression will produce the least squares estimates. However, as $\lambda \to \infty$, the impact of the shrinkage penalty grows, and the ridge regression coefficient estimates will approach zero. Unlike least squares, which generates only one set of coefficient estimates, ridge regression will produce a different set of coefficient estimates, $\hat{\beta}_{\lambda}^{R}$, for each value of λ . Selecting a good value for λ is critical; we defer this discussion to Section 6.2.3, where we use cross-validation.

Note that in (6.5), the shrinkage penalty is applied to β_1, \ldots, β_p , but not to the intercept β_0 . We want to shrink the estimated association of each variable with the response; however, we do not want to shrink the intercept, which is simply a measure of the mean value of the response when $x_{i1} = x_{i2} = \ldots = x_{ip} = 0$. If we assume that the variables—that is, the columns of the data matrix X—have been centered to have mean zero before ridge regression is performed, then the estimated intercept will take the form $\hat{\beta}_0 = \bar{y} = \sum_{i=1}^n \bar{y}_i/n$.

FIGURE 6.4. The standardized ridge regression coefficients are displayed for the Credit data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{N}\|_{2}/\|\hat{\beta}\|_{2}$.

An Application to the Credit Data

In Figure 6.4, the ridge regression coefficient estimates for the Credit data set are displayed. In the left-hand panel, each curve corresponds to the ridge regression coefficient estimate for one of the ten variables, plotted as a function of λ . For example, the black solid line represents the ridge regression estimate for the income coefficient, as λ is varied. At the extreme left-hand side of the plot, λ is essentially zero, and so the corresponding ridge coefficient estimates are the same as the usual least squares estimates. But as λ increases, the ridge coefficient estimates shrink towards zero. When λ is extremely large, then all of the ridge coefficient estimates are basically zero; this corresponds to the null model that contains no predictors. In this plot, the income, limit, rating, and student variables are displayed in distinct colors, since these variables tend to have by far the largest coefficient estimates. While the ridge coefficient estimates tend to decrease in aggregate as λ increases, individual coefficients, such as rating and income, may occasionally increase as λ increases.

The right-hand panel of Figure 6.4 displays the same ridge coefficient estimates as the left-hand panel, but instead of displaying λ on the x-axis, we now display $\|\hat{\beta}_{\lambda}^R\|_2/\|\hat{\beta}\|_2$, where $\hat{\beta}$ denotes the vector of least squares coefficient estimates. The notation $\|\beta\|_2$ denotes the ℓ_2 norm (pronounced "ell 2") of a vector, and is defined as $\|\beta\|_2 = \sqrt{\sum_{j=1}^p \beta_j^2}$. It measures the distance of β from zero. As λ increases, the ℓ_2 norm of $\hat{\beta}_{\lambda}^R$ will always decrease, and so will $\|\hat{\beta}_{\lambda}^R\|_2/\|\hat{\beta}\|_2$. The latter quantity ranges from 1 (when $\lambda = 0$, in which case the ridge regression coefficient estimate is the same as the least squares estimate, and so their ℓ_2 norms are the same) to 0 (when $\lambda = \infty$, in which case the ridge regression coefficient estimate is a vector of zeros, with ℓ_2 norm equal to zero). Therefore, we can think of the x-axis in the right-hand panel of Figure 6.4 as the amount that the ridge

 ℓ_2 norm

regression coefficient estimates have been shrunken towards zero; a small value indicates that they have been shrunken very close to zero.

The standard least squares coefficient estimates discussed in Chapter 3 are scale equivariant: multiplying X_i by a constant c simply leads to a scaling of the least squares coefficient estimates by a factor of 1/c. In other equivariant words, regardless of how the jth predictor is scaled, $X_j \hat{\beta}_j$ will remain the same. In contrast, the ridge regression coefficient estimates can change substantially when multiplying a given predictor by a constant. For instance, consider the income variable, which is measured in dollars. One could reasonably have measured income in thousands of dollars, which would result in a reduction in the observed values of income by a factor of 1,000. Now due to the sum of squared coefficients term in the ridge regression formulation (6.5), such a change in scale will not simply cause the ridge regression coefficient estimate for income to change by a factor of 1,000. In other words, $X_j\hat{\beta}_{j,\lambda}^R$ will depend not only on the value of λ , but also on the scaling of the jth predictor. In fact, the value of $X_j \hat{\beta}_{j,\lambda}^R$ may even depend on the scaling of the *other* predictors! Therefore, it is best to apply ridge regression after standardizing the predictors, using the formula

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x}_j)^2}},$$
(6.6)

so that they are all on the same scale. In (6.6), the denominator is the estimated standard deviation of the jth predictor. Consequently, all of the standardized predictors will have a standard deviation of one. As a result the final fit will not depend on the scale on which the predictors are measured. In Figure 6.4, the y-axis displays the standardized ridge regression coefficient estimates—that is, the coefficient estimates that result from performing ridge regression using standardized predictors.

Why Does Ridge Regression Improve Over Least Squares?

Ridge regression's advantage over least squares is rooted in the bias-variance trade-off. As λ increases, the flexibility of the ridge regression fit decreases, leading to decreased variance but increased bias. This is illustrated in the left-hand panel of Figure 6.5, using a simulated data set containing p=45predictors and n = 50 observations. The green curve in the left-hand panel of Figure 6.5 displays the variance of the ridge regression predictions as a function of λ . At the least squares coefficient estimates, which correspond to ridge regression with $\lambda = 0$, the variance is high but there is no bias. But as λ increases, the shrinkage of the ridge coefficient estimates leads to a substantial reduction in the variance of the predictions, at the expense of a slight increase in bias. Recall that the test mean squared error (MSE), plotted in purple, is a function of the variance plus the squared bias. For values

FIGURE 6.5. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$. The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.

of λ up to about 10, the variance decreases rapidly, with very little increase in bias, plotted in black. Consequently, the MSE drops considerably as λ increases from 0 to 10. Beyond this point, the decrease in variance due to increasing λ slows, and the shrinkage on the coefficients causes them to be significantly underestimated, resulting in a large increase in the bias. The minimum MSE is achieved at approximately $\lambda=30$. Interestingly, because of its high variance, the MSE associated with the least squares fit, when $\lambda=0$, is almost as high as that of the null model for which all coefficient estimates are zero, when $\lambda=\infty$. However, for an intermediate value of λ , the MSE is considerably lower.

The right-hand panel of Figure 6.5 displays the same curves as the left-hand panel, this time plotted against the ℓ_2 norm of the ridge regression coefficient estimates divided by the ℓ_2 norm of the least squares estimates. Now as we move from left to right, the fits become more flexible, and so the bias decreases and the variance increases.

In general, in situations where the relationship between the response and the predictors is close to linear, the least squares estimates will have low bias but may have high variance. This means that a small change in the training data can cause a large change in the least squares coefficient estimates. In particular, when the number of variables p is almost as large as the number of observations n, as in the example in Figure 6.5, the least squares estimates will be extremely variable. And if p > n, then the least squares estimates do not even have a unique solution, whereas ridge regression can still perform well by trading off a small increase in bias for a large decrease in variance. Hence, ridge regression works best in situations where the least squares estimates have high variance.

Ridge regression also has substantial computational advantages over best subset selection, which requires searching through 2^p models. As we

discussed previously, even for moderate values of p, such a search can be computationally infeasible. In contrast, for any fixed value of λ , ridge regression only fits a single model, and the model-fitting procedure can be performed quite quickly. In fact, one can show that the computations required to solve (6.5), simultaneously for all values of λ , are almost identical to those for fitting a model using least squares.

6.2.2 The Lasso

Ridge regression does have one obvious disadvantage. Unlike best subset, forward stepwise, and backward stepwise selection, which will generally select models that involve just a subset of the variables, ridge regression will include all p predictors in the final model. The penalty $\lambda \sum \beta_j^2$ in (6.5) will shrink all of the coefficients towards zero, but it will not set any of them exactly to zero (unless $\lambda = \infty$). This may not be a problem for prediction accuracy, but it can create a challenge in model interpretation in settings in which the number of variables p is quite large. For example, in the Credit data set, it appears that the most important variables are income, limit, rating, and student. So we might wish to build a model including just these predictors. However, ridge regression will always generate a model involving all ten predictors. Increasing the value of λ will tend to reduce the magnitudes of the coefficients, but will not result in exclusion of any of the variables.

The lasso is a relatively recent alternative to ridge regression that overcomes this disadvantage. The lasso coefficients, $\hat{\beta}^L_{\lambda}$, minimize the quantity

asso

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$
 (6.7)

Comparing (6.7) to (6.5), we see that the lasso and ridge regression have similar formulations. The only difference is that the β_j^2 term in the ridge regression penalty (6.5) has been replaced by $|\beta_j|$ in the lasso penalty (6.7). In statistical parlance, the lasso uses an ℓ_1 (pronounced "ell 1") penalty instead of an ℓ_2 penalty. The ℓ_1 norm of a coefficient vector β is given by $\|\beta\|_1 = \sum |\beta_j|$.

As with ridge regression, the lasso shrinks the coefficient estimates towards zero. However, in the case of the lasso, the ℓ_1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently large. Hence, much like best subset selection, the lasso performs variable selection. As a result, models generated from the lasso are generally much easier to interpret than those produced by ridge regression. We say that the lasso yields sparse models—that is, models that involve only a subset of the variables. As in ridge regression, selecting a good value of λ for the lasso is critical; we defer this discussion to Section 6.2.3, where we use cross-validation.

sparse

FIGURE 6.6. The standardized lasso coefficients on the Credit data set are shown as a function of λ and $\|\hat{\beta}_{\lambda}^{L}\|_{1}/\|\hat{\beta}\|_{1}$.

As an example, consider the coefficient plots in Figure 6.6, which are generated from applying the lasso to the Credit data set. When $\lambda=0$, then the lasso simply gives the least squares fit, and when λ becomes sufficiently large, the lasso gives the null model in which all coefficient estimates equal zero. However, in between these two extremes, the ridge regression and lasso models are quite different from each other. Moving from left to right in the right-hand panel of Figure 6.6, we observe that at first the lasso results in a model that contains only the rating predictor. Then student and limit enter the model almost simultaneously, shortly followed by income. Eventually, the remaining variables enter the model. Hence, depending on the value of λ , the lasso can produce a model involving any number of variables. In contrast, ridge regression will always include all of the variables in the model, although the magnitude of the coefficient estimates will depend on λ .

Another Formulation for Ridge Regression and the Lasso

One can show that the lasso and ridge regression coefficient estimates solve the problems

minimize
$$\left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \le s$$

$$(6.8)$$

and

$$\underset{\beta}{\text{minimize}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} \beta_j^2 \le s,$$

$$(6.9)$$

respectively. In other words, for every value of λ , there is some s such that the Equations (6.7) and (6.8) will give the same lasso coefficient estimates. Similarly, for every value of λ there is a corresponding s such that Equations (6.5) and (6.9) will give the same ridge regression coefficient estimates. When p=2, then (6.8) indicates that the lasso coefficient estimates have the smallest RSS out of all points that lie within the diamond defined by $|\beta_1| + |\beta_2| \le s$. Similarly, the ridge regression estimates have the smallest RSS out of all points that lie within the circle defined by $\beta_1^2 + \beta_2^2 \leq s$.

We can think of (6.8) as follows. When we perform the lasso we are trying to find the set of coefficient estimates that lead to the smallest RSS, subject to the constraint that there is a *budget* s for how large $\sum_{j=1}^{p} |\beta_j|$ can be. When s is extremely large, then this budget is not very restrictive, and so the coefficient estimates can be large. In fact, if s is large enough that the least squares solution falls within the budget, then (6.8) will simply yield the least squares solution. In contrast, if s is small, then $\sum_{j=1}^{p} |\beta_j|$ must be small in order to avoid violating the budget. Similarly, (6.9) indicates that when we perform ridge regression, we seek a set of coefficient estimates such that the RSS is as small as possible, subject to the requirement that $\sum_{j=1}^{p} \beta_{j}^{2}$ not exceed the budget s. The formulations (6.8) and (6.9) reveal a close connection between the

lasso, ridge regression, and best subset selection. Consider the problem

minimize
$$\left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} I(\beta_j \neq 0) \leq s.$$
(6.10)

Here $I(\beta_i \neq 0)$ is an indicator variable: it takes on a value of 1 if $\beta_i \neq 0$, and equals zero otherwise. Then (6.10) amounts to finding a set of coefficient estimates such that RSS is as small as possible, subject to the constraint that no more than s coefficients can be nonzero. The problem (6.10) is equivalent to best subset selection. Unfortunately, solving (6.10) is computationally infeasible when p is large, since it requires considering all $\binom{p}{s}$ models containing s predictors. Therefore, we can interpret ridge regression and the lasso as computationally feasible alternatives to best subset selection that replace the intractable form of the budget in (6.10) with forms that are much easier to solve. Of course, the lasso is much more closely related to best subset selection, since only the lasso performs feature selection for s sufficiently small in (6.8).

The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in coefficient estimates that are exactly equal to zero? The formulations (6.8) and (6.9) can be used to shed light on the issue. Figure 6.7 illustrates the situation. The least squares solution is marked as $\hat{\beta}$, while the blue diamond and

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

circle represent the lasso and ridge regression constraints in (6.8) and (6.9), respectively. If s is sufficiently large, then the constraint regions will contain $\hat{\beta}$, and so the ridge regression and lasso estimates will be the same as the least squares estimates. (Such a large value of s corresponds to $\lambda=0$ in (6.5) and (6.7).) However, in Figure 6.7 the least squares estimates lie outside of the diamond and the circle, and so the least squares estimates are not the same as the lasso and ridge regression estimates.

The ellipses that are centered around $\hat{\beta}$ represent regions of constant RSS. In other words, all of the points on a given ellipse share a common value of the RSS. As the ellipses expand away from the least squares coefficient estimates, the RSS increases. Equations (6.8) and (6.9) indicate that the lasso and ridge regression coefficient estimates are given by the first point at which an ellipse contacts the constraint region. Since ridge regression has a circular constraint with no sharp points, this intersection will not generally occur on an axis, and so the ridge regression coefficient estimates will be exclusively non-zero. However, the lasso constraint has corners at each of the axes, and so the ellipse will often intersect the constraint region at an axis. When this occurs, one of the coefficients will equal zero. In higher dimensions, many of the coefficient estimates may equal zero simultaneously. In Figure 6.7, the intersection occurs at $\beta_1 = 0$, and so the resulting model will only include β_2 .

In Figure 6.7, we considered the simple case of p = 2. When p = 3, then the constraint region for ridge regression becomes a sphere, and the constraint region for the lasso becomes a polyhedron. When p > 3, the

FIGURE 6.8. Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso on a simulated data set. Right: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge (dashed). Both are plotted against their \mathbb{R}^2 on the training data, as a common form of indexing. The crosses in both plots indicate the lasso model for which the MSE is smallest.

constraint for ridge regression becomes a hypersphere, and the constraint for the lasso becomes a polytope. However, the key ideas depicted in Figure 6.7 still hold. In particular, the lasso leads to feature selection when p > 2 due to the sharp corners of the polyhedron or polytope.

Comparing the Lasso and Ridge Regression

It is clear that the lasso has a major advantage over ridge regression, in that it produces simpler and more interpretable models that involve only a subset of the predictors. However, which method leads to better prediction accuracy? Figure 6.8 displays the variance, squared bias, and test MSE of the lasso applied to the same simulated data as in Figure 6.5. Clearly the lasso leads to qualitatively similar behavior to ridge regression, in that as λ increases, the variance decreases and the bias increases. In the right-hand panel of Figure 6.8, the dotted lines represent the ridge regression fits. Here we plot both against their R^2 on the training data. This is another useful way to index models, and can be used to compare models with different types of regularization, as is the case here. In this example, the lasso and ridge regression result in almost identical biases. However, the variance of ridge regression is slightly lower than the variance of the lasso. Consequently, the minimum MSE of ridge regression is slightly smaller than that of the lasso.

However, the data in Figure 6.8 were generated in such a way that all 45 predictors were related to the response—that is, none of the true coefficients $\beta_1, \ldots, \beta_{45}$ equaled zero. The lasso implicitly assumes that a number of the coefficients truly equal zero. Consequently, it is not surprising that ridge regression outperforms the lasso in terms of prediction error in this setting. Figure 6.9 illustrates a similar situation, except that now the response is a

FIGURE 6.9. Left: Plots of squared bias (black), variance (green), and test MSE (purple) for the lasso. The simulated data is similar to that in Figure 6.8, except that now only two predictors are related to the response. Right: Comparison of squared bias, variance and test MSE between lasso (solid) and ridge (dashed). Both are plotted against their \mathbb{R}^2 on the training data, as a common form of indexing. The crosses in both plots indicate the lasso model for which the MSE is smallest.

function of only 2 out of 45 predictors. Now the lasso tends to outperform ridge regression in terms of bias, variance, and MSE.

These two examples illustrate that neither ridge regression nor the lasso will universally dominate the other. In general, one might expect the lasso to perform better in a setting where a relatively small number of predictors have substantial coefficients, and the remaining predictors have coefficients that are very small or that equal zero. Ridge regression will perform better when the response is a function of many predictors, all with coefficients of roughly equal size. However, the number of predictors that is related to the response is never known a priori for real data sets. A technique such as cross-validation can be used in order to determine which approach is better on a particular data set.

As with ridge regression, when the least squares estimates have excessively high variance, the lasso solution can yield a reduction in variance at the expense of a small increase in bias, and consequently can generate more accurate predictions. Unlike ridge regression, the lasso performs variable selection, and hence results in models that are easier to interpret.

There are very efficient algorithms for fitting both ridge and lasso models; in both cases the entire coefficient paths can be computed with about the same amount of work as a single least squares fit. We will explore this further in the lab at the end of this chapter.

A Simple Special Case for Ridge Regression and the Lasso

In order to obtain a better intuition about the behavior of ridge regression and the lasso, consider a simple special case with n = p, and **X** a diagonal matrix with 1's on the diagonal and 0's in all off-diagonal elements.

To simplify the problem further, assume also that we are performing regression without an intercept. With these assumptions, the usual least squares problem simplifies to finding β_1, \ldots, β_p that minimize

$$\sum_{j=1}^{p} (y_j - \beta_j)^2. \tag{6.11}$$

In this case, the least squares solution is given by

$$\hat{\beta}_j = y_j.$$

And in this setting, ridge regression amounts to finding β_1, \ldots, β_p such that

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$
 (6.12)

is minimized, and the lasso amounts to finding the coefficients such that

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (6.13)

is minimized. One can show that in this setting, the ridge regression estimates take the form

$$\hat{\beta}_j^R = y_j/(1+\lambda),\tag{6.14}$$

and the lasso estimates take the form

$$\hat{\beta}_{j}^{L} = \begin{cases} y_{j} - \lambda/2 & \text{if } y_{j} > \lambda/2; \\ y_{j} + \lambda/2 & \text{if } y_{j} < -\lambda/2; \\ 0 & \text{if } |y_{j}| \leq \lambda/2. \end{cases}$$
(6.15)

Figure 6.10 displays the situation. We can see that ridge regression and the lasso perform two very different types of shrinkage. In ridge regression, each least squares coefficient estimate is shrunken by the same proportion. In contrast, the lasso shrinks each least squares coefficient towards zero by a constant amount, $\lambda/2$; the least squares coefficients that are less than $\lambda/2$ in absolute value are shrunken entirely to zero. The type of shrinkage performed by the lasso in this simple setting (6.15) is known as soft-thresholding. The fact that some lasso coefficients are shrunken entirely to zero explains why the lasso performs feature selection.

softthresholding

In the case of a more general data matrix \mathbf{X} , the story is a little more complicated than what is depicted in Figure 6.10, but the main ideas still hold approximately: ridge regression more or less shrinks every dimension of the data by the same proportion, whereas the lasso more or less shrinks all coefficients toward zero by a similar amount, and sufficiently small coefficients are shrunken all the way to zero.

FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple setting with n = p and X a diagonal matrix with 1's on the diagonal. Left: The ridge regression coefficient estimates are shrunken proportionally towards zero, relative to the least squares estimates. Right: The lasso coefficient estimates are soft-thresholded towards zero.

Bayesian Interpretation for Ridge Regression and the Lasso

We now show that one can view ridge regression and the lasso through a Bayesian lens. A Bayesian viewpoint for regression assumes that the coefficient vector β has some *prior* distribution, say $p(\beta)$, where $\beta = (\beta_0, \beta_1, \ldots, \beta_p)^T$. The likelihood of the data can be written as $f(Y|X, \beta)$, where $X = (X_1, \ldots, X_p)$. Multiplying the prior distribution by the likelihood gives us (up to a proportionality constant) the *posterior distribution*, which takes the form

posterior distribution

$$p(\beta|X,Y) \propto f(Y|X,\beta)p(\beta|X) = f(Y|X,\beta)p(\beta),$$

where the proportionality above follows from Bayes' theorem, and the equality above follows from the assumption that X is fixed.

We assume the usual linear model,

$$Y = \beta_0 + X_1 \beta_1 + \ldots + X_p \beta_p + \epsilon,$$

and suppose that the errors are independent and drawn from a normal distribution. Furthermore, assume that $p(\beta) = \prod_{j=1}^{p} g(\beta_j)$, for some density function g. It turns out that ridge regression and the lasso follow naturally from two special cases of g:

• If g is a Gaussian distribution with mean zero and standard deviation a function of λ , then it follows that the *posterior mode* for β —that is, the most likely value for β , given the data—is given by the ridge regression solution. (In fact, the ridge regression solution is also the posterior mean.)

posterior node

FIGURE 6.11. Left: Ridge regression is the posterior mode for β under a Gaussian prior. Right: The lasso is the posterior mode for β under a double-exponential prior.

• If g is a double-exponential (Laplace) distribution with mean zero and scale parameter a function of λ , then it follows that the posterior mode for β is the lasso solution. (However, the lasso solution is *not* the posterior mean, and in fact, the posterior mean does not yield a sparse coefficient vector.)

The Gaussian and double-exponential priors are displayed in Figure 6.11. Therefore, from a Bayesian viewpoint, ridge regression and the lasso follow directly from assuming the usual linear model with normal errors, together with a simple prior distribution for β . Notice that the lasso prior is steeply peaked at zero, while the Gaussian is flatter and fatter at zero. Hence, the lasso expects a priori that many of the coefficients are (exactly) zero, while ridge assumes the coefficients are randomly distributed about zero.

6.2.3 Selecting the Tuning Parameter

Just as the subset selection approaches considered in Section 6.1 require a method to determine which of the models under consideration is best, implementing ridge regression and the lasso requires a method for selecting a value for the tuning parameter λ in (6.5) and (6.7), or equivalently, the value of the constraint s in (6.9) and (6.8). Cross-validation provides a simple way to tackle this problem. We choose a grid of λ values, and compute the cross-validation error for each value of λ , as described in Chapter 5. We then select the tuning parameter value for which the cross-validation error is smallest. Finally, the model is re-fit using all of the available observations and the selected value of the tuning parameter.

Figure 6.12 displays the choice of λ that results from performing leaveone-out cross-validation on the ridge regression fits from the Credit data set. The dashed vertical lines indicate the selected value of λ . In this case the value is relatively small, indicating that the optimal fit only involves a

FIGURE 6.12. Left: Cross-validation errors that result from applying ridge regression to the Credit data set with various value of λ . Right: The coefficient estimates as a function of λ . The vertical dashed lines indicate the value of λ selected by cross-validation.

small amount of shrinkage relative to the least squares solution. In addition, the dip is not very pronounced, so there is rather a wide range of values that would give very similar error. In a case like this we might simply use the least squares solution.

Figure 6.13 provides an illustration of ten-fold cross-validation applied to the lasso fits on the sparse simulated data from Figure 6.9. The left-hand panel of Figure 6.13 displays the cross-validation error, while the right-hand panel displays the coefficient estimates. The vertical dashed lines indicate the point at which the cross-validation error is smallest. The two colored lines in the right-hand panel of Figure 6.13 represent the two predictors that are related to the response, while the grey lines represent the unrelated predictors; these are often referred to as signal and noise variables, respectively. Not only has the lasso correctly given much larger coefficient estimates to the two signal predictors, but also the minimum crossvalidation error corresponds to a set of coefficient estimates for which only the signal variables are non-zero. Hence cross-validation together with the lasso has correctly identified the two signal variables in the model, even though this is a challenging setting, with p=45 variables and only n=50observations. In contrast, the least squares solution—displayed on the far right of the right-hand panel of Figure 6.13—assigns a large coefficient estimate to only one of the two signal variables.

signa

6.3 Dimension Reduction Methods

The methods that we have discussed so far in this chapter have controlled variance in two different ways, either by using a subset of the original variables, or by shrinking their coefficients toward zero. All of these methods