(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 6 November 2003 (06.11.2003)

PCT

(10) International Publication Number WO 03/090694 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/US03/13015

(22) International Filing Date: 24 April 2003 (24.04.2003)

(25) Filing Language:

English

A61K

(26) Publication Language:

English

(30) Priority Data:

10/131,827

24 April 2002 (24.04.2002) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US Filed on 10/131,827 (CIP) 24 April 2002 (24.04.2002)

(71) Applicant (for all designated States except US): EXPRES-SION DIAGNOSTICS, INC. [US/US]; 384 Oyster Point Boulevard, Suite No. 6, South San Francisco, CA 94080 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WOHLGEMUTH, Jay [US/US]; 1165 Monte Rosa Drive, Menlo Park, CA 94025 (US). FRY, Kirk [US/US]; 2604 Ross Road, Palo Alto, CA 94303 (US). WOODWARD, Robert [US/US]; 1828 Rheem Court, Pleasanton, CA 94588 (US). LY, Ngoc

[US/US]; 2000 Crystal Springs Road 15-14, San Bruno, CA 94066 (US).

- (74) Agents: LITTLEFIELD, Otis, B. et al.; Morrison & Foerster LLP, 425 Market Street, San Francisco, CA 94105-2482 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND COMPOSITIONS FOR DIAGNOSING AND MONITORING AUTO IMMUNE AND CHRONIC INFLAMMATORY DISEASES

(57) Abstract: Methods of diagnosing or monitoring auto immune and chronic inflammatory diseases, particularly systemic lupus erythematosis and rheumatoid arthritis, in a patient by detecting the expression level of one or more genes in a patient, are described. Diagnostic oligonucleotides for diagnosing or monitoring auto immune and chronic inflammatory diseases, particularly systemic lupus erythematosis and rheumatoid arthritis and kits or systems containing the same are also described.

METHODS AND COMPOSITIONS FOR DIAGNOSING AND MONITORING AUTO IMMUNE AND CHRONIC INFLAMMATORY DISEASES

Related Applications

This application claims priority to U.S. Patent Application number 10/131,827 filed April 24, 2002, which is hereby incorporated by reference in its entirety.

Field of the Invention

This application is in the field of chronic inflammatory diseases. In particular, this invention relates to methods and compositions for diagnosing or monitoring chronic inflammatory diseases.

Background of the Invention

Many of the current shortcomings in diagnosis, prognosis, risk stratification and treatment of disease can be approached through the identification of the molecular mechanisms underlying a disease and through the discovery of nucleotide sequences (or sets of nucleotide sequences) whose expression patterns predict the occurrence or progression of disease states, or predict a patient's response to a particular therapeutic intervention. In particular, identification of nucleotide sequences and sets of nucleotide sequences with such predictive value from cells and tissues that are readily accessible would be extremely valuable. For example, peripheral blood is attainable from all patients and can easily be obtained at multiple time points at low cost. This is a desirable contrast to most other cell and tissue types, which are less readily accessible, or accessible only through invasive and aversive procedures. In addition, the various cell types present in circulating blood are ideal for expression profiling experiments as the many cell types in the blood specimen can be easily separated if desired prior to analysis of gene expression. While blood provides a very attractive substrate for the study of diseases using expression profiling techniques, and for the development of diagnostic technologies and the identification of therapeutic targets, the value of expression profiling in blood samples rests on the degree to which changes in gene expression in these cell types are associated with a predisposition to, and pathogenesis and progression of a disease.

There is an extensive literature supporting the role of leukocytes, e.g., T-and B-lymphocytes, monocytes and granulocytes, including neutrophils, in a wide range of disease processes, including such broad classes as cardiovascular diseases, inflammatory, autoimmune and rheumatic diseases, infectious diseases, transplant rejection, cancer and malignancy, and endocrine diseases.

Of particular interest is the role of leukocytes and leukocyte gene expression in chronic inflammatory diseases such as Systemic Lupus Erythematosis and Rheumatoid Arthritis. Systemic lupus erythematosis (SLE) and Rheumatoid Arthritis (RA) are chonic autoimmune and inflammatory disorders characterized by dysregulation of the immune system, which causes damage to a variety of organs. These diseases clearly involve differential expression of genes in leukocytes. Diagnostic and disease monitoring tools are severly lacking for these patients and their physicians. Leukocyte expression profiling can be applied to discover expression markers for SLE and RA and apply them as patient management tools in the clinical setting. In addition, osteoarthirtis is a degenerative joint

disease that can be confused with RA. This disease also involves leukocytes and expression profiling of leukocytes associated with osteoarthritis may lead to the discovery of new diagnostic and therapeutic approaches to the disease.

SLE in particular is a chronic, usually life-long, potentially fatal autoimmune disease characterized by unpredictable exacerbations and remissions with protean clinical manifestations. SLE is notable for unpredictable exacerbations and remissions and a predilection for clinical involvement of the joints, skin, kidney, brain, serosa, lung, heart, and gastrointestinal tract. The pathologic hallmark of the disease is recurrent, widespread, and diverse vascular lesions.

SLE is not a rare disorder. Although reported at both extremes of life (e.g. diagnosed in infants and in the tenth decade of life) chiefly it affects women of child bearing age. Among children, SLE occurs three times more commonly in females than in males. In the 60% of SLE patients who experience onset of their disease between puberty and the fourth decade of life the female to male ratio is 9:1. Thereafter, the female preponderance again falls to that observed in prepubescents.

The disorder is three times more common in African American blacks than American caucasians. SLE is also more common in Asians and in China may be more common than Rheumatoid Arthritis. The ethnic group at greatest risk is African Caribbean blacks. The annual incidence of SLE ranges from six to 35 new cases per 100,000 population in relatively low-risk to high-risk groups. The prevalence of SLE in the United States is an issue of some debate. Prevalence estimates of between 250,000 to 500,000 are contradicted by a recent nationwide telephone poll suggesting a prevalence of between one and two million.

The prognosis for patients with SLE has greatly improved over the last few decades with at least 80-90% of all patients surviving ten years. Thereafter life expectancy approximates that of age matched controls. This improvement reflects the general advancements in health care (i.e. dialysis, antibiotics, antihypertensives, newer immunosuppressives with more favorable efficacy to toxicity ration) but also the specialized care available for patients with SLE.

Such specialized medical care includes care by experienced clinicians with access to state of the art diagnostic and therapeutic measures will result in improved outcomes and the most cost-effective utilization of resources. Expert care of patients with SLE leads to fewer hospitalizations secondary to uncontrolled disease exacerbation, less severe renal disease with fewer patients experiencing end stage renal disease requiring chronic dialysis, fewer episodes of avascular necrosis requiring total joint replacement, and less severe osteoporosis and fractures. In addition, more judicious use of steroids and steroid sparing agents can also reduce the severity of atherosclerosis and resulting incidence of myocardial infarctions and cerebral vascular accidents, which now complicate the natural history of SLE. Improved monitoring, diagnosis and prognosis of SLE should aid clinicians in determining appropriate care for SLE patients, including which drugs to use and at what amounts.

At a molecular level, SLE is an autoimmune disease characterized by immune dysregulation resulting in the production of antinuclear antibodies (ANA), generation of circulating immune complexes, and activation of the complement system. SLE is futher characterized by end organ damage that results from deposition of circulating autoantibodies and subsequent complement- and Fc receptor-mediated inflammation. In addition, extensive immune system abnormalities, including altered

T lymphocyte function and spontaneous apoptosis, contribute to the lymphopenia and increased susceptibility to infection that confer considerable morbidity.

The clinical features of SLE are protean and may mimic infectious mononucleosis, lymphoma, or other systemic disease. Therefore, the American College of Rheumatology developed criteria to include patients with SLE and exclude those with other disorders. These criteria are best used to insure the appropriateness of subjects for epidemiological or research studies. Although many patients do not fulfill the rigid criteria at first encounter most will when followed over periods of time.

The etiology of SLE remains unknown. A genetic predisposition, sex hormones, and environmental trigger(s) likely result in the disordered immune response that typifies the disease.

A role for genetics is suggested by the increased percentage of two histocompatibility antigens in patients with SLE, HLA-DR2 and HLA-DR3. In addition, there is an increased frequency of the extended haplotype HLA-A1, B8, DR3. The role for heredity is further supported by the concordance for this illness among monozygotic twins. The polygenic nature, however, of this genetic predisposition as well as the contribution of environmental factors is suggested by the only moderate concordance rate which is reported to be between 25 and 60%.

The origin of autoantibody production in SLE is unclear but a role has been suggested for an antigen driven process, spontaneous B-cell hyper-responsiveness, or impaired immune regulation. Regardless of the etiology of autoantibody production, SLE is associated with the impaired clearance of circulating immune complexes secondary to decreased CR1 expression, defective Fc receptor function, or deficiencies of early complement components such as C4A.

More is known about the pathogenic cellular and molecular events that are responsible for vascular lesions in SLE than the origins of autoimmunity. Disease manifestations result from recurrent vascular injury due to immune complex deposition, leukothrombosis, or thrombosis. Additionally, cytotoxic antibodies can mediate autoimmune hemolytic anemia and thrombocytopenia, while antibodies to specific cellular antigens can disrupt cellular function. An example of the latter, is the association between anti-neuronal antibodies and neuropsychiatric SLE.

The health status of a patient with SLE is related not only to disease activity, but to the damage that results from recurrent episodes of disease flare (i.e. deforming arthropathy, shrinking lung, end stage renal disease, organic mental syndrome, etc.), as well as the adverse effects of treatment (i.e. avascular necrosis of bone, infections, and precocious atherosclerosis, etc.).

The accuracy of technologies based on expression profiling for the diagnosis, prognosis, and monitoring of disease would be dramatically increased if numerous differentially expressed nucleotide sequences, each with a measure of sensitivity and specificity for a disease in question, could be identified and assayed in a concerted manner. Using the expression of multiple genes (gene sets) for diagnostic applications helps overcome assay and population variability. PCT application WO 02/057414 "LEUKOCYTE EXPRESSION PROFILING" to Wohlgemuth identifies a set of differentially expressed nucleotides.

In order to achieve this improved accuracy, the appropriate sets of nucleotide sequences once identified need to be validated against numerous samples in combination with relevant clinical data.

Summary of the Invention

In order to meet these needs, the present invention identifies genes and gene sets that have clinical utility as diagnostic tools for the management of lupus patients and patients with a variety of chronic inflammatory and autoimmune diseases. The present invention is thus directed to a method of diagnosing or monitoring chronic autoimmune or inflammatory disease in a patient. The method of the invention involves detecting in a patient expression of one or more genes such as those genes depicted in Table 2E and surrogates derived therefrom. Exemplary surrogates are provided in Table 2D. The present invention is further directed to a method of diagnosing or monitoring an autoimmune or chronic inflammatory disease in a patient by detecting the expression level of one or more genes or surrogates derived therefrom in said patient to diagnose or monitor the autoimmune or chronic inflammatory disease in the patient wherein said genes include a nucleotide sequence selected from SEQ ID NO:503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ

ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:867, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894,

SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:922, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ I NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:950, SEQ I NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ:ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, NO:1002, SEQ ID NO:1003, SEQ ID NO:1004.

In the method of the invention, the diagnosing of monitoring may be performed by detecting the expression level of two or more genes, three or more genes, four or more genes, five or more genes, six or more genes, seven or more genes, eight or more genes, nine or more genes, ten or more genes, fifteen or more genes, twenty or more genes, thirty or more genes, fifty or more genes, one hundred or more genes, two hundred or more genes, or all five hundred and two of the genes.

The methods of the invention also includes diagnosing or monitoring auto immune and chronic inflammatory diseases in a patient by detecting the expression level of one or more genes in said patient to diagnose or monitor auto immune and chronic inflammatory diseases in said patient wherein said one or more genes identified by a nucleotide sequence selected from the following group: SEQ ID NO:503, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:566, SEQ ID NO:5

ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795,

:

SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004.

The methods of the invention may further include detecting the expression level of one or more additional genes in said patient to diagnose or monitor auto immune and chronic inflammatory diseases in a patient, wherein said one or more additional genes identified by a nucleotide sequence selected from the following group: SEQ ID NO:504, SEQ ID NO:507, SEQ ID NO:603, SEQ ID

NO:740, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:854, SEQ ID NO:867, SEQ ID NO:912, SEQ ID NO:922, SEQ ID NO:950, SEQ ID NO:971.

In the method of the invention, the chronic inflammatory disease or autoimmune disease may be systemic lupus erythematosis (SLE), Rheumatoid Arthritis, Cholecystitis, Sjogrens Disease, CREST syndrome, Scleroderma, Ankylosing Spondylitis, Crohn's, Ulcerative Colitis, Primary Sclerosing Cholangitis, Appendicitis, Diverticulitis, Primary Biliary Sclerosis, Wegener's Granulomatosis, Polyarteritis nodosa, Whipple's Disease, Psoriasis, Microscopic Polyanngiitis, Takayasu's Disease, Kawasaki's Disease, Autoimmune hepatitis, Asthma, Churg-Strauss Disease, Beurger's Disease, Raynaud's Disease, or Cholecystitis.

In one format, expression is detecting by measuring RNA levels or protein levels from the genes. Example of detecting of such detection include measuring protein in serum, measuring cell surface proteins, measuring using a a fluorescent activated cell sorter.

In the method of the invention, RNA may be isolated from the patient prior to detecting expression of a gene such as those depicted in Table 2E. RNA levels may be detected by PCR or hybridization. The nucleotide sequence may include comprises DNA, cDNA, PNA, genomic DNA, or synthetic oligonucleotides. The hybridization methods of the present invention may include high stringency, moderate stringency, or low stringency hybridization conditions.

In the methods of the invention, the RNA may be detected by hybridization to an oligonucleotide having a nucleotide sequence selected from SEQ ID NO:503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ

ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ I NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ I NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:754, SEQ ID NO:755, SEQ I NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ I NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:80 ID NO:811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850,

SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:867, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEO ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEO ID NO:885, SEO ID NO:886, SEQ ID NO:887, SEO ID NO:888, SEO ID NO:889, SEO ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEO ID NO:902, SEO ID NO:903, SEO ID NO:904, SEO ID NO:905, SEO ID NO:906, SEO ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:922, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004.

The methods of the present invention further includes detection of proteins expressed by one or more genes with an amino acid sequence encoded by a nucleotide sequence selected from the following group SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:56, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID

NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEO ID NO:106, SEO ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEO ID NO:111, SEO ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEO ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEO ID NO:134, SEO ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEO ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEO ID NO:191, SEO ID NO:192, SEQ ID'NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEO ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEO ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEO ID NO:236, SEQ ID NO:237, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:275, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:27 ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ

ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEQ ID NO:335, SEQ ID NO:336, SEQ ID NO:337, SEQ ID NO:338, SEQ ID NO:339, SEQ ID NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:343, SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID NO:347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350, SEQ ID NO:351, SEQ ID NO:353, SEQ ID NO:354, SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361, SEQ ID NO:362, SEQ ID NO:363, SEQ ID NO:364, SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID NO:369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:376, SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEQ ID NO:380, SEQ ID NO:381, SEQ ID NO:382, SEQ ID NO:383, SEQ ID NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:387, SEQ ID NO:388, SEQ ID NO:389, SEQ ID NO:390, SEQ ID NO:391, SEQ ID NO:392, SEQ ID NO:392, SEQ ID NO:392, SEQ ID NO:393, SEQ I NO:393, SEQ ID NO:394, SEQ ID NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:398, SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID NO:402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405, SEQ ID NO:406, SEQ ID NO:407, SEQ ID NO:408, SEQ ID NO:409, SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID NO:414, SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417, SEQ ID NO:418, SEQ ID NO:419, SEQ ID NO:421, SEQ ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID NO:425, SEQ ID NO:426, SEQ ID NO:427, SEQ ID NO:428, SEQ ID NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:432, SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ ID NO:436, SEQ ID NO:437, SEQ ID NO:438, SEQ ID NO:439, SEQ ID NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:443, SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID NO:447, SEQ ID NO:449, SEQ ID NO:450, SEQ ID NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:454, SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID NO:458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461, SEQ ID NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:465, SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472, SEQ ID NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476, SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID NO:480, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:483, SEQ ID NO:484, SEQ ID NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:488, SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID NO:492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495, SEQ ID NO:496, SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502.

The methods of the present invention further include detection of one or more proteins expressed by one or more additional genes with an amino acid sequence encoded by a nucleotide sequence selected from the following group SEQ ID NO:2, SEQ ID NO:5, SEQ ID NO:101, SEQ ID

NO:238, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:352, SEQ ID NO:365, SEQ ID NO:410, SEQ ID NO:420, SEQ ID NO:448, SEQ ID NO:469.

The present invention is further directed to a diagnostic oligonucleotide for detecting chronic or inflammatory disease wherein the oligonucleotide has a nucleotide sequence selected from SEQ ID NO:503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEO ID NO:583, SEO ID NO:584, SEO ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEO ID NO:595, SEO ID NO:596, SEO ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEO ID NO:600, SEO ID NO:601, SEO ID NO:602, SEQ ID NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEO ID NO:617, SEO ID NO:618, SEO ID NO:619, SEO ID NO:620, SEO ID NO:621, SEO ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEO ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEO ID NO:680, SEO ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEO ID NO:697, SEO ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID

NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NQ:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740, SEQ ID NO:741, SEO ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEO ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEO ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEO ID NO:776, SEO ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEO ID NO:787, SEO ID NO:788, SEO ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEO ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEO ID NO:833, SEO ID NO:834, SEO ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:854, SEO ID NO:855, SEO ID NO:856, SEO ID NO:857, SEO ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEO ID NO:867, SEO ID NO:868, SEO ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEO ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:922, SEO ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ

ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:955, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:953, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:966, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:987, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004. The diagnostic oligonucleotide of may include DNA, cDNA, PNA, genomic DNA, or synthetic oligonucleotides.

The method of the present invention may further comprise selecting an appropriate therapy based upon the diagnosis and or monitoring. Such therapies may include administering appropriate drugs such as drugs that target alpha-interferon.

The methods of the present invention may be applied to bodily fluids from or in a patient, including peripheral blood and urine.

The present invention is further directed to a system or kit for diagnosing or monitoring chronic inflammatory or autoimmune disease in a patient comprising an isolated DNA molecule wherein the isolated DNA molecule detects expression of a gene listed in Table 2E. In the system of the invention, the DNA molecules may be synthetic DNA, genomic DNA, PNA or cDNA. The isolated DNA molecule may be immobilized on an array. Such arrays may include a chip array, a plate array, a bead array, a pin array, a membrane array, a solid surface array, a liquid array, an oligonucleotide array, polynucleotide array or a cDNA array, a microtiter plate, a membrane and a chip.

The present invention is further directed to a system or detecting differential gene expression. In one format, the system has one or more isolated DNA molecules wherein each isolated DNA molecule detects expression of a gene selected from the group of genes corresponding to the oligonucleotides depicted in the Sequence Listing. It is understood that the DNA sequences and oligonucleotides of the invention may have slightly different sequences than those identified herein. Such sequence variations are understood to those of ordinary skill in the art to be variations in the sequence which do not significantly affect the ability of the sequences to detect gene expression.

The sequences encompassed by the invention have at least 40-50, 50-60, 70-80, 80-85, 85-90, 90-95 or 95-100% sequence identity to the sequences disclosed herein. In some embodiments, DNA molecules are less than about any of the following lengths (in bases or base pairs): 10,000; 5,000; 2500; 2000; 1500; 1250; 1000; 750; 500; 300; 250; 200; 175; 150; 125; 100; 75; 50; 25; 10. In some embodiments, DNA molecule is greater than about any of the following lengths (in bases or base pairs): 10; 15; 20; 25; 30; 40; 50; 60; 75; 100; 125; 150; 175; 200; 250; 300; 350; 400; 500; 750; 1000; 2000; 5000; 7500; 10000; 20000; 50000. Alternately, a DNA molecule can be any of a range of sizes

having an upper limit of 10,000; 5,000; 2500; 2000; 1500; 1250; 1000; 750; 500; 300; 250; 200; 175; 150; 125; 100; 75; 50; 25; or 10 and an independently selected lower limit of 10; 15; 20; 25; 30; 40; 50; 60; 75; 100; 125; 150; 175; 200; 250; 300; 350; 400; 500; 750; 1000; 2000; 5000; 7500 wherein the lower limit is less than the upper limit.

The gene expression system may be a candidate library, a diagnostic agent, a diagnostic oligonucleotide set or a diagnostic probe set. The DNA molecules may be genomic DNA, protein nucleic acid (PNA), cDNA or synthetic oligonucleotides.

In one format, the gene expression system is immobilized on an array. The array may be a chip array, a plate array, a bead array, a pin array, a membrane array, a solid surface array, a liquid array, an oligonucleotide array, a polynucleotide array, a cDNA array, a microfilter plate, a membrane or a chip.

Brief Description of the Sequence Listing

A brief description of the sequence listing is given below. There are 1065 entries. The Sequence Listing presents 50mer oligonucleotide sequences derived from human leukocyte, plant and viral genes. These are listed as SEQ IDs 503-1004. The 50mer sequences and the corresponding gene sequences are also listed Table 2. Most of these 50mers were designed from sequences of genes in Table 2 and the Sequence listing.

SEQ ID's 1-502 represent mRNA sequences of genes those expression was altered in persons with SLE.

SEQ ID's 2-1004 are 50 nucleotide oligonucleotides used as probes to monitor RNA expression in blood.

SEQ ID's 1005-1037 are PCR primers and probes used to monitor expression of selected genes from 1-502

SEO ID's 1038-1065 are sequences discussed in the Examples.

Brief Description of the Figures

Figure 1: Figure 1 is a schematic flow chart illustrating an instruction set for characterization of the nucleotide sequence and/or the predicted protein sequence of novel nucleotide sequences.

Figure 2: Figure 2 shows PCR Primer efficiency testing. A standard curve of Ct versus log of the starting RNA amount is shown for 2 genes.

Figure 3: Figure 3 describes kits useful for the practice of the invention. Figure 3A describes the contents of a kit useful for the discovery of diagnostic nucleotide sets using microarrays. Figure 3B describes the contents of a kit useful for the application of diagnostic nucleotide sets using microarrays. Figure 3C describes contents of a kit useful for the application of diagnostic nucleotide sets using real-time PCR.

Figure 4: Figure 4 depicts a graph comparing the median background subtracted expression signals for various leukocyte reference RNAs.

Figure 5: Figure 5 depicts Diagnostic genes, gene sets and diagnostic algorithms for Systemic Lupus Erythematosis are identified. Figure 5A shows the relative expression level of oligonucleotide and SEQ ID #16 (Sialyltransferase 4A) between Lupus and control samples is shown. The gene is

identified as having a false detection rate for differential expression from the SAM algorithm of 0.5%. Figure 5B shows the scaled ratios (non log) for Sialyltransferase (SEQ ID # 16) are given for the samples in the analysis. The average ratio of each group along with the standard deviation of the ratio is shown. The average fold change from control to Lupus is 1.48. Figure 5C shows CART gene expression models for diagnosis of SLE. For each model, the number of genes used, the relative cost with 10 fold cross validation, the SEQ ID, Locus accession number, the name and the position and values in the CART model are given. The CART values given are the expression level thresholds for classification of the sample as SLE after the node. For example, in the single gene model II, the first node of the decision tree asks if expression of gene SEQ ID NO 2 is >0.103. If yes, the sample is placed in the lupus class. Figure 5D shows the sensitivity and specificity of Model 1. The sensitivity and specificity are given for both the 2 and 3 gene models and both the training set and on cross validation. The relative cost is given for cross-validation. Figure 5E shows the CART Model I, 2 genes. The model uses 2 genes in a single node to classify samples as Lupus (Class 1) or non-Lupus (Class 2). Figure 5F shows CART Model I, 3 genes. The model uses a second node to classify all samples correctly as lupus (class 1) or non-lupus (class 2) for the training set. G2412 = SEQ ID 514, G2648 = SEQ ID 510, G1436 = SEQ ID 509.

Figure 6: Figure 6 shows endpoint testing of PCR primers. Electrophoresis and microfluidics are used to assess the product of gene specific PCR primers. Figure 6A is a β -GUS gel image. Lane 3 is the image for GUS primers. Lanes 2 and 1 correspond to the no-template control and –RT control, respectively. Figure 6B shows the electropherogram of β -GUS primers, a graphical representation of Lane 3 from the gel image. Figure 6C shows a β -Actin gel image. Lane 3 is the image for endpoint testing of actin primers. Lanes 2 and 1 correspond to the no-template control and –RT control, respectively. Figure 6D shows the electropherogram of β -Actin primers, a graphical representation of Lave 3 from the gel image.

Figure 7: Figure 7 shows the validation of differential expression of a gene discovered using microarrays using Real-time PCR. Figure 7A shows the Ct for each patient sample on multiple assays is shown along with the Ct in the R50 control RNA. Triangles represent -RT (reverse transcriptase) controls. Figure 7B shows the fold difference between the expression of Granzyme B and an Actin reference is shown for 3 samples from patients with and without CMV disease.

Figure 8: Real-time PCR control gene analysis. 11 candidate control genes were tested using real-time PCR on 6 whole blood samples (PAX) paired with 6 mononuclear samples (CPT) from the same patient. Each sample was tested twice. For each gene, the variability of the gene across the samples is shown on the vertical axis (top graph). The average Ct value for each gene is also shown (bottom graph). $2\mu g$ RNA was used for PAX samples and $0.5 \mu g$ total RNA was used for the mononuclear samples (CPT)

Brief Description of the Tables

Table 1: Samples used in array and PCR expression profiling experiments.

Samples were obtained from patients at a single medical center with appropriate IRB approval and informed consent. For each patient the primary clinical diagnosis is given according to American

College of Rheumatology criteria (SLE = Systemic Lupus Erythematosis, RA = Rheumatoid Arthritis, C = Healthy control, OA = Osteoarthritis). Dependent variables were defined for analysis from the patient clinical diagnoses. For Dx1, patients were classified as Lupus (1) or no Lupus (0). For Dx2, patients with either quiescent, uncertain or recently treated Lupus were removed from the analysis (2). PCR was done on the set of samples marked with an x.

Table 2: Gene expression markers for SLE and autoimmune disease

A: Significance analysis for Microarrays (SAM), Lupus/Autoimmune merkers. Each gene is identified by an oligonucleotide (SEQ ID 50 mer), Genbank accession number from VERSION (ACC), a full length (or longest known) RNA transcript (SEQ ID FL), and a unigene number VERSION (HS). Results for microarry analysis of blood gene expression (Example 11) are given as the false detection rate (SAM FDR) and a direction of expression change in Lupus patients / controls (SAM Up/Down).

B. Real-time PCR gene expression analysis. Real-time PCR was used to validate and quantify expression behavior of marker genes as described in Example 11. Each gene is identified by an oligonucleotide (SEQ ID 50 mer), Genbank accession number from VERSION (ACC), a full length (or longest known) RNA transcript (SEQ ID FL), and a unigene number VERSION (HS). The fold change between Lupus patients and controls (PCR fold) and results of an unpaired t-test (PCR p-value) are given

- C. Multiple Additive Regression Trees analysis of Microarray Data. The MART algorithm was used to identify marker genes and gene sets as described in Example 11. Each gene is identified by an oligonucleotide (SEQ ID 50 mer), Genbank accession number from VERSION (ACC), a full length (or longest known) RNA transcript (SEQ ID FL), and a unigene number VERSION (HS). The importance of the gene in the MART model (MART Importance), the error rate of the model that identified the gene (MART error) and the ratio of those 2 variables (Imp/error) are given.
- D. Identification of pathways and pathway genes with hierarchical clustering. Genes are identified by close coexpression to significant genes from the microarray or PCR analysis (Hierarchical Cluster SEQ ID). This analysis identifies distinct pathways of gene expression.
- Table 3: Table 3 lists some of the diseases or conditions amenable to study by leukocyte profiling. Table 4: Real-time PCR assay reporter and quencher dyes. Various combinations of reporter and quencher dyes are useful for real-time PCR assays. Reporter and quencher dyes work optimally in specific combinations defined by their spectra. For each reporter, appropriate choices for quencher dyes are given.

Detailed Description of the Invention

Definitions

Unless defined otherwise, all scientific and technical terms are understood to have the same meaning as commonly used in the art to which they pertain. For the purpose of the present invention, the following terms are defined below.

In the context of the invention, the term "gene expression system" refers to any system, device or means to detect gene expression and includes diagnostic agents, candidate libraries oligonucleotide, oligonucleotide sets or probe sets.

The terms "diagnostic oligonucleotide" or "diagnostic oligonucleotide set" generally refers to an oligonucleotide or to a set of two or more oligonucleotides that, when evaluated for differential expression their corresponding diagnostic genes, collectively yields predictive data. Such predictive data typically relates to diagnosis, prognosis, monitoring of therapeutic outcomes, and the like. In general, the components of a diagnostic oligonucleotide or a diagnostic oligonucleotide set are distinguished from oligonucleotide sequences that are evaluated by analysis of the DNA to directly determine the genotype of an individual as it correlates with a specified trait or phenotype, such as a disease, in that it is the pattern of expression of the components of the diagnostic oligonucleotide set, rather than mutation or polymorphism of the DNA sequence that provides predictive value. It will be understood that a particular component (or member) of a diagnostic oligonucleotide set can, in some cases, also present one or more mutations, or polymorphisms that are amenable to direct genotyping by any of a variety of well known analysis methods, e.g., Southern blotting, RFLP, AFLP, SSCP, SNP, and the like.

A "diagnostic gene" is a gene whose expression is detected by a diagnostic oligonucleotide or diagnostic oligonucleotide set.

A "disease specific target oligonucleotide sequence" is a gene or other oligonucleotide that encodes a polypeptide, most typically a protein, or a subunit of a multi-subunit protein that is a therapeutic target for a disease, or group of diseases.

A "candidate library" or a "candidate oligonucleotide library" refers to a collection of oligonucleotide sequences (or gene sequences) that by one or more criteria have an increased probability of being associated with a particular disease or group of diseases. The criteria can be, for example, a differential expression pattern in a disease state or in activated or resting leukocytes in vitro as reported in the scientific or technical literature, tissue specific expression as reported in a sequence database, differential expression in a tissue or cell type of interest, or the like. Typically, a candidate library has at least 2 members or components; more typically, the library has in excess of about 10, or about 100, or even more, members or components.

The term "disease criterion" is used herein to designate an indicator of a disease, such as a diagnostic factor, a prognostic factor, a factor indicated by a medical or family history, a genetic factor, or a symptom, as well as an overt or confirmed diagnosis of a disease associated with several indicators such as those selected from the above list. A disease criterian includes data describing a patient's health status, including retrospective or prospective health data, e.g. in the form of the patient's medical history, laboratory test results, diagnostic test result, clinical events, medications, lists, response(s) to treatment and risk factors, etc.

An autoimmune disorder is defined as a disease state in which a patient's immune system recognizes an antigen in that patient's organs or tissues as foreign and becomes activated. The activated immune cells can then cause damage to the inciting organ or tissue or can damage other organs or tissues. In some cases, the disorder may be caused by a dysregulation of the immune system cells, rather than by the recognition as a self-antigen as foreign. Dysregulated immune cells can secrete inflammatory cytokines that cause systemic inflammation or they can recognize self-antigens as foreign.

Examples of autoimmune diseases include: Autoimmune hepatitis, Multiple Sclerosis, Myasthenia Gravis, Type I diabetes, Rheumatoid Arthritis, Psoriasis, Systemic Lupus Erythematosis, Hashimoto's Thyroiditis, Grave's disease, Ankylosing Spondylitis Sjogrens Disease, CREST syndrome, Scleroderma and many more.

Most of the autoimmune diseases are also chronic inflammatory diseases. This is defined as a disease process associated with long-term (>6 months) activation of inflammatory cells (leukocytes). The chronic inflammation leads to damage of patient organs or tissues. Many diseases are chronic inflammatory disorders, but are not know to have an autoimmune basis. For example, Atherosclerosis, Congestive Heart Failure, Crohn's disease, Ulcerative Colitis, Polyarteritis nodosa, Whipple's Disease, Primary Sclerosing Cholangitis and many more.

The terms "molecular signature" or "expression profile" refers to the collection of expression values for a plurality (e.g., at least 2, but frequently about 10, about 100, about 1000, or more) of members of a candidate library. In many cases, the molecular signature represents the expression pattern for all of the nucleotide sequences in a library or array of candidate or diagnostic nucleotide sequences or genes. Alternatively, the molecular signature represents the expression pattern for one or more subsets of the candidate library. The term "oligonucleotide" refers to two or more nucleotides. Nucleotides may be DNA or RNA, naturally occurring or synthetic.

The term "healthy individual," as used herein, is relative to a specified disease or disease criterion. That is, the individual does not exhibit the specified disease criterion or is not diagnosed with the specified disease. It will be understood, that the individual in question, can, of course, exhibit symptoms, or possess various indicator factors for another disease.

Similarly, an "individual diagnosed with a disease" refers to an individual diagnosed with a specified disease (or disease criterion). Such an individual may, or may not, also exhibit a disease criterion associated with, or be diagnosed with another (related or unrelated) disease.

The term "monitoring" is used herein to describe the use of gene sets to provide useful information about an individual or an individual's health or disease status. "Monitoring" can include, determination of prognosis, risk-stratification, selection of drug therapy, assessment of ongoing drug therapy, prediction of outcomes, determining response to therapy, diagnosis of a disease or disease complication, following progression of a disease or providing any information relating to a patients health status over time, selecting patients most likely to benefit from experimental therapies with known molecular mechanisms of action, selecting patients most likely to benefit from approved drugs with known molecular mechanisms where that mechanism may be important in a small subset of a disease for which the medication may not have a label, screening a patient population to help decide on a more invasive/expensive test, for example a cascade of tests from a non-invasive blood test to a more invasive option such as biopsy, or testing to assess side effects of drugs used to treat another indication.

An "array" is a spatially or logically organized collection, e.g., of oligonucleotide sequences or nucleotide sequence products such as RNA or proteins encoded by an oligonucleotide sequence. In some embodiments, an array includes antibodies or other binding reagents specific for products of a candidate library.

When referring to a pattern of expression, a "qualitative" difference in gene expression refers to a difference that is not assigned a relative value. That is, such a difference is designated by an "all or nothing" valuation. Such an all or nothing variation can be, for example, expression above or below a threshold of detection (an on/off pattern of expression). Alternatively, a qualitative difference can refer to expression of different types of expression products, e.g., different alleles (e.g., a mutant or polymorphic allele), variants (including sequence variants as well as post-translationally modified variants), etc.

In contrast, a "quantitative" difference, when referring to a pattern of gene expression, refers to a difference in expression that can be assigned a value on a graduated scale, (e.g., a 0-5 or 1-10 scale, a + - +++ scale, a grade 1- grade 5 scale, or the like; it will be understood that the numbers selected for illustration are entirely arbitrary and in no-way are meant to be interpreted to limit the invention).

Gene Expression Systems and Methods of Detecting Gene Expression

The invention is directed to methods of detecting gene expression with a gene expression system having one or more DNA molecules wherein the one or more DNA molecules has a nucleotide sequence which detects expression of a gene corresponding to the oligonucleotides depicted in the Sequence Listing. In one format, the oligonucleotide detects expression of a gene that is differentially expressed in leukocytes. The gene expression system may be a candidate library, a diagnostic agent, a diagnostic oligonucleotide set or a diagnostic probe set. The DNA molecules may be genomic DNA, RNA, protein nucleic acid (PNA), cDNA or synthetic oligonucleotides. Following the procedures taught herein, one can identity sequences of interest for analyzing gene expression in leukocytes. Such sequences may be predictive of a disease state.

Diagnostic oligonucleotides of the invention

The invention relates to diagnostic oligonucleotides and diagnostic oligonucleotide set(s) comprising members of the leukocyte candidate library listed in Table 2 and the Sequence Listing, for which a correlation exists between the health status of an individual, and the individual's expression of RNA or protein products corresponding to the nucleotide sequence. In some instances, only one oligonucleotide is necessary for such detection. Members of a diagnostic oligonucleotide set may be identified by any means capable of detecting expression of RNA or protein products, including but not limited to differential expression screening, PCR, RT-PCR, SAGE analysis, high-throughput sequencing, microarrays, liquid or other arrays, protein-based methods (e.g., western blotting, proteomics, and other methods described herein), and data mining methods, as further described herein.

In one embodiment, a diagnostic oligonucleotide set comprises at least two oligonucleotide sequences listed in Table 2 or the Sequence Listing which are differentially expressed in leukocytes in an individual with at least one disease criterion for at least one leukocyte-implicated disease relative to the expression in individual without the at least one disease criterion, wherein expression of the two or more nucleotide sequences is correlated with at least one disease criterion, as described below.

In another embodiment, a diagnostic oligonucleotide set comprises at least one oligonucleotide having an oligonucleotide sequence listed in Table 2 or the Sequence Listing which is

differentially expressed, and further wherein the differential expression/correlation has not previously been described. In some embodiments, the diagnostic oligonucleotide set is immobilized on an array.

In another embodiment, diagnostic oligonucleotides (or oligonucleotide sets) are related to the members of the leukocyte candidate library listed in Table 2 and in the Sequence Listing, for which a correlation exists between the health status (or disease criterion) of an individual. The diagnostic oligonucleotides are partially or totally contained in (or derived from) full-length gene sequences (or predicted full-length gene sequences) for the members of the candidate library listed in Table 2 and the Sequence Listing.

The diagnostic oligonucleotides may also be derived from other genes that are coexpressed with the correlated sequence or full-length gene. Genes may share expression patterns because they are regulated in the same molecular pathway. Because of the similarity of expression, behavior genes are identified as surrogates in that they can substitute for a diagnostic gene in a diagnostic gene set. Example 4 demonstrates the discovery of surrogates from the data. Surrogate oligonucleotide and surrogate oligonucleotide sets can be utilized to detect expression of surrogate genes and thereby diagnose or monitor patients with a disease.

As used herein the term "gene cluster" or "cluster" refers to a group of genes related by expression pattern. In other words, a cluster of genes is a group of genes with similar regulation across different conditions, such as a patient having a chronic autoimmune or inflammatory disease or a patient without chronic autoimmune or inflammatory disease. The expression profile for each gene in a cluster should be correlated with the expression profile of at least one other gene in that cluster. Correlation may be evaluated using a variety of statistical methods. As used herein the term "surrogate" refers to a gene with an expression profile such that it can substitute for a diagnostic gene in a diagnostic assay. Such genes are often members of the same gene cluster as the diagnostic gene. For each member of a diagnostic gene set, a set of potential surrogates can be identified through identification of genes with similar expression patterns as described below.

Many statistical analyses produce a correlation coefficient to describe the relatedness between two gene expression patterns. Patterns may be considered correlated if the correlation coefficient is greater than or equal to 0.8. In preferred embodiments, the correlation coefficient should be greater than 0.85, 0.9 or 0.95. Other statistical methods produce a measure of mutual information to describe the relatedness between two gene expression patterns. Patterns may be considered correlated if the normalized mutual information value is greater than or equal to 0.7. In preferred embodiments, the normalized mutual information value should be greater than 0.8, 0.9 or 0.95. Patterns may also be considered similar if they cluster closely upon hierarchical clustering of gene expression data (Eisen et al. 1998). Similar patterns may be those genes that are among the 1, 2, 5, 10, 20, 50 or 100 nearest neighbors in a hierarchical clustering or have a similarity score (Eisen et al. 1998) of > 0.5, 0.7, 0.8, 0.9, 0.95 or 0.99. Similar patterns may also be identified as those genes found to be surrogates in a classification tree by CART (Breiman et al. 1994). Often, but not always, members of a gene cluster have similar biological functions in addition to similar gene expression patterns.

Correlated genes, clusters and surrogates are identified for the diagnostic genes of the invention. These surrogates may be used as diagnostic genes in an assay instead of, or in addition to, the diagnostic genes for which they are surrogates.

The invention also provides diagnostic probe sets. It is understood that a probe includes any reagent capable of specifically identifying a nucleotide sequence of the diagnostic nucleotide set, including but not limited to amplified DNA, amplified RNA, cDNA, synthetic oligonucleotide, partial or full-length nucleic acid sequences. In addition, the probe may identify the protein product of a diagnostic nucleotide sequence, including, for example, antibodies and other affinity reagents.

It is also understood that each probe can correspond to one gene, or multiple probes can correspond to one gene, or both, or one probe can correspond to more than one gene.

Homologs and variants of the disclosed nucleic acid molecules may be used in the present invention. Homologs and variants of these nucleic acid molecules will possess a relatively high degree of sequence identity when aligned using standard methods. The sequences encompassed by the invention have at least 40-50, 50-60, 70-80, 80-85, 85-90, 90-95 or 95-100% sequence identity to the sequences disclosed herein.

It is understood that for expression profiling, variations in the disclosed sequences will still permit detection of gene expression. The degree of sequence identity required to detect gene expression varies depending on the length of the oligomer. For a 60 mer, (an oligonucleotide with 60 nucleotides) 6-8 random mutations or 6-8 random deletions in a 60 mer do not affect gene expression detection. Hughes, TR, et al. "Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnology, 19:343-347(2001). As the length of the DNA sequence is increased, the number of mutations or deletions permitted while still allowing gene expression detection is increased.

As will be appreciated by those skilled in the art, the sequences of the present invention may contain sequencing errors. That is, there may be incorrect nucleotides, frameshifts, unknown nucleotides, or other types of sequencing errors in any of the sequences; however, the correct sequences will fall within the homology and stringency definitions herein.

The minimum length of an oligonucleotide probe necessary for specific hybridization in the human genome can be estimated using two approaches. The first method uses a statistical argument that the probe will be unique in the human genome by chance. Briefly, the number of independent perfect matches (Po) expected for an oligonucleotide of length L in a genome of complexity C can be calculated from the equation (Laird CD, Chromosoma 32:378 (1971):

$$Po=(1/4)^{L} * 2C$$

In the case of mammalian genomes, $2C = \sim 3.6 \times 10^9$, and an oligonucleotide of 14-15 nucleotides is expected to be represented only once in the genome. However, the distribution of nucleotides in the coding sequence of mammalian genomes is nonrandom (Lathe, R. J. Mol. Biol. 183:1 (1985) and longer oligonucleotides may be preferred in order to in increase the specificity of hybridization. In practical terms, this works out to probes that are 19-40 nucleotides long (Sambrook J et al., infra). The second method for estimating the length of a specific probe is to use a probe long enough to hybridize under the chosen conditions and use a computer to search for that sequence or

close matches to the sequence in the human genome and choose a unique match. Probe sequences are chosen based on the desired hybridization properties as described in Chapter 11 of Sambrook et al, infra. The PRIMER3 program is useful for designing these probes (S. Rozen and H. Skaletsky 1996,1997; Primer3 code available at genome.wi.mit.edu/genome_software/other/primer3.html, the website). The sequences of these probes are then compared pair wise against a database of the human genome sequences using a program such as BLAST or MEGABLAST (Madden, T.L et al.(1996) Meth. Enzymol. 266:131-141). Since most of the human genome is now contained in the database, the number of matches will be determined. Probe sequences are chosen that are unique to the desired target sequence.

In some embodiments, a diagnostic oligonucleotide or oligonucleotide probe set is immobilized on an array. The array is optionally comprises one or more of: a chip array, a plate array, a bead array, a pin array, a membrane array, a solid surface array, a liquid array, an oligonucleotide array, a polynucleotide array or a cDNA array, a microtiter plate, a pin array, a bead array, a membrane or a chip.

In some embodiments, the leukocyte-implicated disease is selected from the diseases listed in Table 3. In other embodiments, the disease is chronic autoimmune and inflammatory diseases, systemic lupus erythematosis (SLE) and rheumatoid arthritis.

In some embodiments, diagnostic oligonucleotides of the invention are used as a diagnostic gene set in combination with genes that are know to be associated with a disease state ("known markers"). The use of the diagnostic oligonucleotides in combination with the known markers can provide information that is not obtainable through the known markers alone. The known markers include those identified by the prior art listing provided.

General Molecular Biology References

In the context of the invention, nucleic acids and/or proteins are manipulated according to well known molecular biology techniques. Detailed protocols for numerous such procedures are described in, e.g., in Ausubel et al. <u>Current Protocols in Molecular Biology</u> (supplemented through 2000) John Wiley & Sons, New York ("Ausubel"); Sambrook et al. <u>Molecular Cloning - A Laboratory Manual</u> (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989 ("Sambrook"), and Berger and Kimmel <u>Guide to Molecular Cloning Techniques, Methods in Enzymology</u> volume 152 Academic Press, Inc., San Diego, CA ("Berger").

In addition to the above references, protocols for in vitro amplification techniques, such as the polymerase chain reaction (PCR), the ligase chain reaction (LCR), Q-replicase amplification, and other RNA polymerase mediated techniques (e.g., NASBA), useful e.g., for amplifying cDNA probes of the invention, are found in Mullis et al. (1987) U.S. Patent No. 4,683,202; PCR Protocols A Guide to Methods and Applications (Innis et al. eds) Academic Press Inc. San Diego, CA (1990) ("Innis"); Arnheim and Levinson (1990) C&EN 36; The Journal Of NIH Research (1991) 3:81; Kwoh et al. (1989) Proc Natl Acad Sci USA 86, 1173; Guatelli et al. (1990) Proc Natl Acad Sci USA 87:1874; Lomell et al. (1989) J Clin Chem 35:1826; Landegren et al. (1988) Science 241:1077; Van Brunt (1990) Biotechnology 8:291; Wu and Wallace (1989) Gene 4: 560; Barringer et al. (1990) Gene 89:117, and Sooknanan and Malek (1995) Biotechnology 13:563. Additional methods, useful for

cloning nucleic acids in the context of the present invention, include Wallace et al. U.S. Pat. No. 5,426,039. Improved methods of amplifying large nucleic acids by PCR are summarized in Cheng et al. (1994) Nature 369:684 and the references therein.

Certain polynucleotides of the invention, e.g., oligonucleotides can be synthesized utilizing various solid-phase strategies involving mononucleotide- and/or trinucleotide-based phosphoramidite coupling chemistry. For example, nucleic acid sequences can be synthesized by the sequential addition of activated monomers and/or trimers to an elongating polynucleotide chain. See e.g., Caruthers, M.H. et al. (1992) Meth Enzymol 211:3.

In lieu of synthesizing the desired sequences, essentially any nucleic acid can be custom ordered from any of a variety of commercial sources, such as The Midland Certified Reagent Company (mcrc@oligos.com), The Great American Gene Company (genco.com), ExpressGen, Inc. (expressgen.com), Operon Technologies, Inc. (operon.com), and many others.

Similarly, commercial sources for nucleic acid and protein microarrays are available, and include, e.g., Agilent Technologies, Palo Alto, CA and Affymetrix, Santa Clara, CA.

One area of relevance to the present invention is hybridization of oligonucleotides. Those of skill in the art differentiate hybridization conditions based upon the stringency of hybridization. For example, highly stringent conditions could include hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C, and washing in 0.1XSSC/0.1% SDS at 68° C. (Ausubel F. M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3). Moderate stringency conditions could include, e.g., washing in 0.2XSSC/0.1% SDS at 42°C. (Ausubel et al., 1989, supra).

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the DNA sequences of the present invention. Such hybridization conditions may be highly stringent or less highly stringent, as described above. In instances wherein the nucleic acid molecules are deoxyoligonucleotides ("oligos"), highly stringent conditions may refer, e.g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37°C. (for 14-base oligos), 48°C. (for 17-base oligos), 55°C. (for 20-base oligos), and 60°C. (for 23-base oligos). These nucleic acid molecules may act as target nucleotide sequence antisense molecules, useful, for example, in target nucleotide sequence regulation and/or as antisense primers in amplification reactions of target nucleotide sequence nucleic acid sequences. Further, such sequences may be used as part of ribozyme and/or triple helix sequences, also useful for target nucleotide sequence regulation. Still further, such molecules may be used as components of diagnostic methods whereby the presence of a disease-causing allele, may be detected.

Candidate library

Libraries of candidate genes that are differentially expressed in leukocytes are substrates for the identification and evaluation of diagnostic oligonucleotides and oligonucleotide sets and disease specific target nucleotide sequences.

The term leukocyte is used generically to refer to any nucleated blood cell that is not a nucleated erythrocyte. More specifically, leukocytes can be subdivided into two broad classes. The

first class includes granulocytes, including, most prevalently, neutrophils, as well as eosinophils and basophils at low frequency. The second class, the non-granular or mononuclear leukocytes, includes monocytes and lymphocytes (e.g., T cells and B cells). There is an extensive literature in the art implicating leukocytes, e.g., neutrophils, monocytes and lymphocytes in a wide variety of disease processes, including inflammatory and rheumatic diseases, neurodegenerative diseases (such as Alzheimer's dementia), cardiovascular disease, endocrine diseases, transplant rejection, malignancy and infectious diseases, and other diseases listed in Table 3. Mononuclear cells are involved in the chronic immune response, while granulocytes, which make up approximately 60% of the leukocytes, have a non-specific and stereotyped response to acute inflammatory stimuli and often have a life span of only 24 hours.

In addition to their widespread involvement and/or implication in numerous disease related processes, leukocytes are particularly attractive substrates for clinical and experimental evaluation for a variety of reasons. Most importantly, they are readily accessible at low cost from essentially every potential subject. Collection is minimally invasive and associated with little pain, disability or recovery time. Collection can be performed by minimally trained personnel (e.g., phlebotomists, medical technicians, etc.) in a variety of clinical and non-clinical settings without significant technological expenditure. Additionally, leukocytes are renewable, and thus available at multiple time points for a single subject.

Assembly of an initial candidate library

The initial candidate library was assembled from a combination of "mining" publication and sequence databases and construction of a differential expression library. Candidate oligonucleotide sequences in the library may be represented by a full-length or partial nucleic acid sequence, deoxyribonucleic acid (DNA) sequence, cDNA sequence, RNA sequence, synthetic oligonucleotides, etc. The nucleic acid sequence can be at least 19 nucleotides in length, at least 25 nucleotides, at least 40 nucleotides, at least 100 nucleotides, or larger. Alternatively, the protein product of a candidate nucleotide sequence may be represented in a candidate library using standard methods, as further described below. In selecting and validatating diagnostic oligonucleotides, an initial library of 8,031 candidate oligonucleotide sequences using nucleic acid sequences of 50 nucleotides in length was constructed as described below.

Candidate nucleotide library

We identified members of an initial candidate nucleotide library that are differentially expressed in activated leukocytes and resting leukocytes. From that initial candidate nucleotide library, a pool of 502 candidates were selected. Accordingly, the invention provides the candidate leukocyte nucleotide library comprising the nucleotide sequences listed in Table 2 and in the Sequence Listing. In another embodiment, the invention provides a candidate library comprising at least two nucleotide sequences listed in Table 2 and the Sequence Listing. In another embodiment, at least two nucleotide sequences are 18 nucleotides in length, at least 35 nucleotides, at least 40 nucleotides or at least 100 nucleotides. In some embodiments, the nucleotide sequences comprises deoxyribonucleic acid (DNA) sequence, ribonucleic acid (RNA) sequence, synthetic oligonucleotide sequence, or genomic DNA

sequence. It is understood that the nucleotide sequences may each correspond to one gene, or that several nucleotide sequences may correspond to one gene, or that a single nucleotide sequence may correspond to multiple genes.

The invention also provides probes to the candidate nucleotide library. In one embodiment of the invention, the probes comprise at least two nucleotide sequences listed in Table 2 or the Sequence Listing which are differentially expressed in leukocytes in an individual with a least one disease criterion for at least one leukocyte-related disease and in leukocytes in an individual without the at least one disease criterion, wherein expression of the two or more nucleotide sequences is correlated with at least one disease criterion. It is understood that a probe may detect either the RNA expression or protein product expression of the candidate nucleotide library. Alternatively, or in addition, a probe can detect a genotype associated with a candidate nucleotide sequence, as further described below. In another embodiment, the probes for the candidate nucleotide library are immobilized on an array.

The candidate nucleotide library of the invention is useful in identifying diagnostic nucleotide sets of the invention and is itself a diagnostic nucleotide set of the invention, as described below. The candidate nucleotide sequences may be further characterized, and may be identified as a disease target nucleotide sequence, as described below. The candidate nucleotide sequences may also be suitable for use as imaging reagents, as described below.

Generation of Expression Patterns

RNA, DNA or protein sample procurement

Following identification or assembly of a library of differentially expressed candidate nucleotide sequences, leukocyte expression profiles corresponding to multiple members of the candidate library are obtained. Leukocyte samples from one or more subjects are obtained by standard methods. Most typically, these methods involve trans-cutaneous venous sampling of peripheral blood. While sampling of circulating leukocytes from whole blood from the peripheral vasculature is generally the simplest, least invasive, and lowest cost alternative, it will be appreciated that numerous alternative sampling procedures exist, and are favorably employed in some circumstances. No pertinent distinction exists, in fact, between leukocytes sampled from the peripheral vasculature, and those obtained, e.g., from a central line, from a central artery, or indeed from a cardiac catheter, or during a surgical procedure which accesses the central vasculature. In addition, other body fluids and tissues that are, at least in part, composed of leukocytes are also desirable leukocyte samples. For example, fluid samples obtained from the lung during bronchoscopy may be rich in leukocytes, and amenable to expression profiling in the context of the invention, e.g., for the diagnosis, prognosis, or monitoring of lung transplant rejection, inflammatory lung diseases or infectious lung disease. Fluid samples from other tissues, e.g., obtained by endoscopy of the colon, sinuses, esophagus, stomach, small bowel, pancreatic duct, biliary tree, bladder, ureter, vagina, cervix or uterus, etc., are also suitable. Samples may also be obtained other sources containing leukocytes, e.g., from urine, bile, cerebrospinal fluid, feces, gastric or intestinal secretions, semen, or solid organ or joint biopsies.

Most frequently, mixed populations of leukocytes, such as are found in whole blood are utilized in the methods of the present invention. A crude separation, e.g., of mixed leukocytes from red blood cells, and/or concentration, e.g., over a sucrose, percoll or ficoll gradient, or by other methods

known in the art, can be employed to facilitate the recovery of RNA or protein expression products at sufficient concentrations, and to reduce non-specific background. In some instances, it can be desirable to purify sub-populations of leukocytes, and methods for doing so, such as density or affinity gradients, flow cytometry, Fluorescence Activated Cell Sorting (FACS), immuno-magnetic separation, "panning," and the like, are described in the available literature and below.

Obtaining DNA, RNA and protein samples for expression profiling

A variety of techniques are available for the isolation of RNA from whole blood. Any technique that allows isolation of mRNA from cells (in the presence or absence of rRNA and tRNA) can be utilized. In brief, one method that allows reliable isolation of total RNA suitable for subsequent gene expression analysis is described as follows. Peripheral blood (either venous or arterial) is drawn from a subject, into one or more sterile, endotoxin free, tubes containing an anticoagulant (e.g., EDTA, citrate, heparin, etc.). Typically, the sample is divided into at least two portions. One portion, e.g., of 5-8 ml of whole blood is frozen and stored for future analysis, e.g., of DNA or protein. A second portion, e.g., of approximately 8 ml whole blood is processed for isolation of total RNA by any of a variety of techniques as described in, e.g, Sambook, Ausubel, below, as well as U.S. Patent Numbers: 5,728,822 and 4,843,155.

Typically, a subject sample of mononuclear leukocytes obtained from about 8 ml of whole blood, a quantity readily available from an adult human subject under most circumstances, yields 5-20 µg of total RNA. This amount is ample, e.g., for labeling and hybridization to at least two probe arrays. Labeled probes for analysis of expression patterns of nucleotides of the candidate libraries are prepared from the subject's sample of RNA using standard methods. In many cases, cDNA is synthesized from total RNA using a polyT primer and labeled, e.g., radioactive or fluorescent, nucleotides. The resulting labeled cDNA is then hybridized to probes corresponding to members of the candidate nucleotide library, and expression data is obtained for each nucleotide sequence in the library. RNA isolated from subject samples (e.g., peripheral blood leukocytes, or leukocytes obtained from other biological fluids and samples) is next used for analysis of expression patterns of nucleotides of the candidate libraries.

In some cases, however, the amount of RNA that is extracted from the leukocyte sample is limiting, and amplification of the RNA is desirable. Amplification may be accomplished by increasing the efficiency of probe labeling, or by amplifying the RNA sample prior to labeling. It is appreciated that care must be taken to select an amplification procedure that does not introduce any bias (with respect to gene expression levels) during the amplification process.

Several methods are available that increase the signal from limiting amounts of RNA, e.g. use of the Clontech (Glass Fluorescent Labeling Kit) or Stratagene (Fairplay Microarray Labeling Kit), or the Micromax kit (New England Nuclear, Inc.). Alternatively, cDNA is synthesized from RNA using a T7- polyT primer, in the absence of label, and DNA dendrimers from Genisphere (3DNA Submicro) are hybridized to the poly T sequence on the primer, or to a different "capture sequence" which is complementary to a fluorescently labeled sequence. Each 3DNA molecule has 250 fluorescent molecules and therefore can strongly label each cDNA.

Alternatively, the RNA sample is amplified prior to labeling. For example, linear amplification may be performed, as described in U.S. Patent No. 6,132,997. A T7-polyT primer is used to generate the cDNA copy of the RNA. A second DNA strand is then made to complete the substrate for amplification. The T7 promoter incorporated into the primer is used by a T7 polymerase to produce numerous antisense copies of the original RNA. Fluorescent dye labeled nucleotides are directly incorporated into the RNA. Alternatively, amino allyl labeled nucleotides are incorporated into the RNA, and then fluorescent dyes are chemically coupled to the amino allyl groups, as described in Hughes et al. 2001. Other exemplary methods for amplification are described below.

It is appreciated that the RNA isolated must contain RNA derived from leukocytes, but may also contain RNA from other cell types to a variable degree. Additionally, the isolated RNA may come from subsets of leukocytes, e.g. monocytes and/or T-lymphocytes, as described above. Such consideration of cell type used for the derivation of RNA depends on the method of expression profiling used. Subsets of leukocytes can be obtained by fluorescence activated cell sorting (FACS), microfluidics cell seperation systems or a variety of other methods. Cell sorting may be necessary for the discovery of diagnostic gene sets, for the implementation of gene sets as products or both. Cell sorting can be achieved with a variety of technologies (See Galbraith et al. 1999, Cantor et al. 1975, see also the technology of Guava Technologies, Hayward, CA).

DNA samples may be obtained for analysis of the presence of DNA mutations, single nucleotide polymorphisms (SNPs), or other polymorphisms. DNA is isolated using standard techniques, e.g. *Maniatus, supra*.

Expression of products of candidate nucleotides may also be assessed using proteomics. Protein(s) are detected in samples of patient serum or from leukocyte cellular protein. Serum is prepared by centrifugation of whole blood, using standard methods. Proteins present in the serum may have been produced from any of a variety of leukocytes and non-leukocyte cells, and may include secreted proteins from leukocytes. Alternatively, leukocytes or a desired sub-population of leukocytes are prepared as described above. Cellular protein is prepared from leukocyte samples using methods well known in the art, e.g., Trizol (Invitrogen Life Technologies, cat # 15596108; Chomczynski, P. and Sacchi, N. (1987) Anal. Biochem. 162, 156; Simms, D., Cizdziel, P.E., and Chomczynski, P. (1993) Focus® 15, 99; Chomczynski, P., Bowers-Finn, R., and Sabatini, L. (1987) J. of NIH Res. 6, 83; Chomczynski, P. (1993) Bio/Techniques 15, 532; Bracete, A.M., Fox, D.K., and Simms, D. (1998) Focus 20, 82; Sewall, A. and McRae, S. (1998) Focus 20, 36; Anal Biochem 1984 Apr;138(1):141-3, A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids; Wessel D, Flugge UI. (1984) Anal Biochem. 1984 Apr;138(1):141-143.

The assay itself may be a cell sorting assay in which cells are sorted and/or counted based on cell surface expression of a protein marker. (See Cantor et al. 1975, Galbraith et al. 1999)

Obtaining expression patterns

Expression patterns, or profiles, of a plurality of nucleotides corresponding to members of the candidate library are then evaluated in one or more samples of leukocytes. Typically, the leukocytes are derived from patient peripheral blood samples, although, as indicated above, many other sample sources are also suitable. These expression patterns constitute a set of relative or absolute expression

values for some number of RNAs or protein products corresponding to the plurality of nucleotide sequences evaluated, which is referred to herein as the subject's "expression profile" for those nucleotide sequences. While expression patterns for as few as one independent member of the candidate library can be obtained, it is generally preferable to obtain expression patterns corresponding to a larger number of nucleotide sequences, e.g., about 2, about 5, about 10, about 20, about 50, about 100, about 200, about 500, or about 1000, or more. The expression pattern for each differentially expressed component member of the library provides a finite specificity and sensitivity with respect to predictive value, e.g., for diagnosis, prognosis, monitoring, and the like.

Clinical Studies, Data and Patient Groups

For the purpose of discussion, the term subject, or subject sample of leukocytes, refers to an individual regardless of health and/or disease status. A subject can be a patient, a study participant, a control subject, a screening subject, or any other class of individual from whom a leukocyte sample is obtained and assessed in the context of the invention. Accordingly, a subject can be diagnosed with a disease, can present with one or more symptom of a disease, or a predisposing factor, such as a family (genetic) or medical history (medical) factor, for a disease, or the like. Alternatively, a subject can be healthy with respect to any of the aforementioned factors or criteria. It will be appreciated that the term "healthy" as used herein, is relative to a specified disease, or disease factor, or disease criterion, as the term "healthy" cannot be defined to correspond to any absolute evaluation or status. Thus, an individual defined as healthy with reference to any specified disease or disease criterion, can in fact be diagnosed with any other one or more disease, or exhibit any other one or more disease criterion.

Furthermore, while the discussion of the invention focuses, and is exemplified using human sequences and samples, the invention is equally applicable, through construction or selection of appropriate candidate libraries, to non-human animals, such as laboratory animals, e.g., mice, rats, guinea pigs, rabbits; domesticated livestock, e.g., cows, horses, goats, sheep, chicken, etc.; and companion animals, e.g., dogs, cats, etc.

Methods for obtaining expression data

Numerous methods for obtaining expression data are known, and any one or more of these techniques, singly or in combination, are suitable for determining expression profiles in the context of the present invention. For example, expression patterns can be evaluated by northern analysis, PCR, RT-PCR, Taq Man analysis, FRET detection, monitoring one or more molecular beacon, hybridization to an oligonucleotide array, hybridization to a cDNA array, hybridization to a polynucleotide array, hybridization to a liquid microarray, hybridization to a microelectric array, molecular beacons, cDNA sequencing, clone hybridization, cDNA fragment fingerprinting, serial analysis of gene expression (SAGE), subtractive hybridization, differential display and/or differential screening (see, e.g., Lockhart and Winzeler (2000) Nature 405:827-836, and references cited therein).

For example, specific PCR primers are designed to a member(s) of a candidate nucleotide library. cDNA is prepared from subject sample RNA by reverse transcription from a poly-dT oligonucleotide primer, and subjected to PCR. Double stranded cDNA may be prepared using primers suitable for reverse transcription of the PCR product, followed by amplification of the cDNA using in

vitro transcription. The product of in vitro transcription is a sense-RNA corresponding to the original member(s) of the candidate library. PCR product may be also be evaluated in a number of ways known in the art, including real-time assessment using detection of labeled primers, e.g. TaqMan or molecular beacon probes. Technology platforms suitable for analysis of PCR products include the ABI 7700, 5700, or 7000 Sequence Detection Systems (Applied Biosystems, Foster City, CA), the MJ Research Opticon (MJ Research, Waltham, MA), the Roche Light Cycler (Roche Diagnositics, Indianapolis, IN), the Stratagene MX4000 (Stratagene, La Jolla, CA), and the Bio-Rad iCycler (Bio-Rad Laboratories, Hercules, CA). Alternatively, molecular beacons are used to detect presence of a nucleic acid sequence in an unamplified RNA or cDNA sample, or following amplification of the sequence using any method, e.g. IVT (In Vitro transcription) or NASBA (nucleic acid sequence based amplification). Molecular beacons are designed with sequences complementary to member(s) of a candidate nucleotide library, and are linked to fluorescent labels. Each probe has a different fluorescent label with non-overlapping emission wavelengths. For example, expression of ten genes may be assessed using ten different sequence-specific molecular beacons.

Alternatively, or in addition, molecular beacons are used to assess expression of multiple nucleotide sequences at once. Molecular beacons with sequence complimentary to the members of a diagnostic nucleotide set are designed and linked to fluorescent labels. Each fluorescent label used must have a non-overlapping emission wavelength. For example, 10 nucleotide sequences can be assessed by hybridizing 10 sequence specific molecular beacons (each labeled with a different fluorescent molecule) to an amplified or un-amplified RNA or cDNA sample. Such an assay bypasses the need for sample labeling procedures.

Alternatively, or in addition bead arrays can be used to assess expression of multiple sequences at once (See, e.g, LabMAP 100, Luminex Corp, Austin, Texas). Alternatively, or in addition electric arrays are used to assess expression of multiple sequences, as exemplified by the e-Sensor technology of Motorola (Chicago, Ill.) or Nanochip technology of Nanogen (San Diego, CA.)

Of course, the particular method elected will be dependent on such factors as quantity of RNA recovered, practitioner preference, available reagents and equipment, detectors, and the like. Typically, however, the elected method(s) will be appropriate for processing the number of samples and probes of interest. Methods for high-throughput expression analysis are discussed below.

Alternatively, expression at the level of protein products of gene expression is performed. For example, protein expression, in a sample of leukocytes, can be evaluated by one or more method selected from among: western analysis, two-dimensional gel analysis, chromatographic separation, mass spectrometric detection, protein-fusion reporter constructs, colorimetric assays, binding to a protein array and characterization of polysomal mRNA. One particularly favorable approach involves binding of labeled protein expression products to an array of antibodies specific for members of the candidate library. Methods for producing and evaluating antibodies are widespread in the art, see, e.g., Coligan, supra; and Harlow and Lane (1989) Antibodies: A Laboratory Manual, Cold Spring Harbor Press, NY ("Harlow and Lane"). Additional details regarding a variety of immunological and immunoassay procedures adaptable to the present invention by selection of antibody reagents specific for the products of candidate nucleotide sequences can be found in, e.g., Stites and Terr (eds.)(1991)

Basic and Clinical Immunology, 7th ed., and Paul, *supra*. Another approach uses systems for performing desorption spectrometry. Commercially available systems, e.g., from Ciphergen Biosystems, Inc. (Fremont, CA) are particularly well suited to quantitative analysis of protein expression. Indeed, Protein Chip® arrays (*see*, e.g., the website, ciphergen.com) used in desorption spectrometry approaches provide arrays for detection of protein expression. Alternatively, affinity reagents, (e.g., antibodies, small molecules, etc.) are developed that recognize epitopes of the protein product. Affinity assays are used in protein array assays, e.g. to detect the presence or absence of particular proteins. Alternatively, affinity reagents are used to detect expression using the methods described above. In the case of a protein that is expressed on the cell surface of leukocytes, labeled affinity reagents are bound to populations of leukocytes, and leukocytes expressing the protein are identified and counted using fluorescent activated cell sorting (FACS).

It is appreciated that the methods of expression evaluation discussed herein, although discussed in the context of discovery of diagnostic nucleotide sets, are also applicable for expression evaluation when using diagnostic nucleotide sets for, e.g. diagnosis of diseases, as further discussed below.

High Throughput Expression Assays

A number of suitable high throughput formats exist for evaluating gene expression. Typically, the term high throughput refers to a format that performs at least about 100 assays, or at least about 500 assays, or at least about 1000 assays, or at least about 10,000 assays, or more per day. When enumerating assays, either the number of samples or the number of candidate nucleotide sequences evaluated can be considered. For example, a northern analysis of, e.g., about 100 samples performed in a gridded array, e.g., a dot blot, using a single probe corresponding to a candidate nucleotide sequence can be considered a high throughput assay. More typically, however, such an assay is performed as a series of duplicate blots, each evaluated with a distinct probe corresponding to a different member of the candidate library. Alternatively, methods that simultaneously evaluate expression of about 100 or more candidate nucleotide sequences in one or more samples, or in multiple samples, are considered high throughput.

Numerous technological platforms for performing high throughput expression analysis are known. Generally, such methods involve a logical or physical array of either the subject samples, or the candidate library, or both. Common array formats include both liquid and solid phase arrays. For example, assays employing liquid phase arrays, e.g., for hybridization of nucleic acids, binding of antibodies or other receptors to ligand, etc., can be performed in multiwell, or microtiter, plates. Microtiter plates with 96, 384 or 1536 wells are widely available, and even higher numbers of wells, e.g., 3456 and 9600 can be used. In general, the choice of microtiter plates is determined by the methods and equipment, e.g., robotic handling and loading systems, used for sample preparation and analysis. Exemplary systems include, e.g., the ORCATM system from Beckman-Coulter, Inc. (Fullerton, CA) and the Zymate systems from Zymark Corporation (Hopkinton, MA).

Alternatively, a variety of solid phase arrays can favorably be employed in to determine expression patterns in the context of the invention. Exemplary formats include membrane or filter arrays (e.g., nitrocellulose, nylon), pin arrays, and bead arrays (e.g., in a liquid "slurry"). Typically,

probes corresponding to nucleic acid or protein reagents that specifically interact with (e.g., hybridize to or bind to) an expression product corresponding to a member of the candidate library are immobilized, for example by direct or indirect cross-linking, to the solid support. Essentially any solid support capable of withstanding the reagents and conditions necessary for performing the particular expression assay can be utilized. For example, functionalized glass, silicon, silicon dioxide, modified silicon, any of a variety of polymers, such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, or combinations thereof can all serve as the substrate for a solid phase array.

In a preferred embodiment, the array is a "chip" composed, e.g., of one of the above-specified materials. Polynucleotide probes, e.g., RNA or DNA, such as cDNA, synthetic oligonucleotides, and the like, or binding proteins such as antibodies, that specifically interact with expression products of individual components of the candidate library are affixed to the chip in a logically ordered manner, i.e., in an array. In addition, any molecule with a specific affinity for either the sense or anti-sense sequence of the marker nucleotide sequence (depending on the design of the sample labeling), can be fixed to the array surface without loss of specific affinity for the marker and can be obtained and produced for array production, for example, proteins that specifically recognize the specific nucleic acid sequence of the marker, ribozymes, peptide nucleic acids (PNA), or other chemicals or molecules with specific affinity.

Detailed discussion of methods for linking nucleic acids and proteins to a chip substrate, are found in, e.g., US Patent No. 5,143,854 "Large Scale Photolithographic Solid Phase Synthesis Of Polypeptides And Receptor Binding Screening Thereof" to Pirrung et al., issued, September 1, 1992; US Patent No. 5,837,832 "Arrays Of Nucleic Acid Probes On Biological Chips" to Chee et al., issued November 17, 1998; US Patent No. 6,087,112 "Arrays With Modified Oligonucleotide And Polynucleotide Compositions" to Dale, issued July 11, 2000; US Patent No. 5,215,882 "Method Of Immobilizing Nucleic Acid On A Solid Substrate For Use In Nucleic Acid Hybridization Assays" to Bahl et al., issued June 1, 1993; US Patent No. 5,707,807 "Molecular Indexing For Expressed Gene Analysis" to Kato, issued January 13, 1998; US Patent No. 5,807,522 "Methods For Fabricating Microarrays Of Biological Samples" to Brown et al., issued September 15, 1998; US Patent No. 5,958,342 "Jet Droplet Device" to Gamble et al., issued Sept. 28, 1999; US Patent 5,994,076 "Methods Of Assaying Differential Expression" to Chenchik et al., issued Nov. 30, 1999; US Patent No. 6,004,755 "Quantitative Microarray Hybridization Assays" to Wang, issued Dec. 21, 1999; US Patent No. 6,048,695 "Chemically Modified Nucleic Acids And Method For Coupling Nucleic Acids To Solid Support" to Bradley et al., issued April 11, 2000; US Patent No. 6,060,240 "Methods For Measuring Relative Amounts Of Nucleic Acids In A Complex Mixture And Retrieval Of Specific Sequences Therefrom" to Kamb et al., issued May 9, 2000; US Patent No. 6,090,556 "Method For Quantitatively Determining The Expression Of A Gene" to Kato, issued July 18, 2000; and US Patent 6,040,138 "Expression Monitoring By Hybridization To High Density Oligonucleotide Arrays" to Lockhart et al., issued March 21, 2000 each of which are hereby incorporated by reference in their entirety.

For example, cDNA inserts corresponding to candidate nucleotide sequences, in a standard TA cloning vector are amplified by a polymerase chain reaction for approximately 30-40 cycles. The amplified PCR products are then arrayed onto a glass support by any of a variety of well-known techniques, e.g., the VSLIPSTM technology described in US Patent No. 5,143,854. RNA, or cDNA corresponding to RNA, isolated from a subject sample of leukocytes is labeled, e.g., with a fluorescent tag, and a solution containing the RNA (or cDNA) is incubated under conditions favorable for hybridization, with the "probe" chip. Following incubation, and washing to eliminate non-specific hybridization, the labeled nucleic acid bound to the chip is detected qualitatively or quantitatively, and the resulting expression profile for the corresponding candidate nucleotide sequences is recorded. It is appreciated that the probe used for diagnostic purposes may be identical to the probe used during diagnostic nucleotide sequence discovery and validation. Alternatively, the probe sequence may be different than the sequence used in diagnostic nucleotide sequence discovery and validation. Multiple cDNAs from a nucleotide sequence that are non-overlapping or partially overlapping may also be used.

In another approach, oligonucleotides corresponding to members of a candidate nucleotide library are synthesized and spotted onto an array. Alternatively, oligonucleotides are synthesized onto the array using methods known in the art, e.g. Hughes, et al. *supra*. The oligonucleotide is designed to be complementary to any portion of the candidate nucleotide sequence. In addition, in the context of expression analysis for, e.g. diagnostic use of diagnostic nucleotide sets, an oligonucleotide can be designed to exhibit particular hybridization characteristics, or to exhibit a particular specificity and/or sensitivity, as further described below.

Hybridization signal may be amplified using methods known in the art, and as described herein, for example use of the Clontech kit (Glass Fluorescent Labeling Kit), Stratagene kit (Fairplay Microarray Labeling Kit), the Micromax kit (New England Nuclear, Inc.), the Genisphere kit (3DNA Submicro), linear amplification, e.g. as described in U.S. Patent No. 6,132,997 or described in Hughes, TR, et al., Nature Biotechnology, 19:343-347 (2001) and/or Westin et al. Nat Biotech. 18:199-204. In some cases, amplification techniques do not increase signal intensity, but allow assays to be done with small amounts of RNA.

Alternatively, fluorescently labeled cDNA are hybridized directly to the microarray using methods known in the art. For example, labeled cDNA are generated by reverse transcription using Cy3- and Cy5-conjugated deoxynucleotides, and the reaction products purified using standard methods. It is appreciated that the methods for signal amplification of expression data useful for identifying diagnostic nucleotide sets are also useful for amplification of expression data for diagnostic purposes.

Microarray expression may be detected by scanning the microarray with a variety of laser or CCD-based scanners, and extracting features with numerous software packages, for example, Imagene (Biodiscovery), Feature Extraction Software (Agilent), Scanalyze (Eisen, M. 1999. SCANALYZE User Manual; Stanford Univ., Stanford, CA. Ver 2.32.), GenePix (Axon Instruments).

In another approach, hybridization to microelectric arrays is performed, e.g. as described in Umek et al (2001) <u>J Mol Diagn.</u> 3:74-84. An affinity probe, e.g. DNA, is deposited on a metal surface. The metal surface underlying each probe is connected to a metal wire and electrical signal detection system. Unlabelled RNA or cDNA is hybridized to the array, or alternatively, RNA or cDNA sample

is amplified before hybridization, e.g. by PCR. Specific hybridization of sample RNA or cDNA results in generation of an electrical signal, which is transmitted to a detector. See Westin (2000) Nat Biotech. 18:199-204 (describing anchored multiplex amplification of a microelectronic chip array); Edman (1997) NAR 25:4907-14; Vignali (2000) J Immunol Methods 243:243-55.

In another approach, a microfluidics chip is used for RNA sample preparation and analysis. This approach increases efficiency because sample preparation and analysis are streamlined. Briefly, microfluidics may be used to sort specific leukocyte sub-populations prior to RNA preparation and analysis. Microfluidics chips are also useful for, e.g., RNA preparation, and reactions involving RNA (reverse transcription, RT-PCR). Briefly, a small volume of whole, anti-coagulated blood is loaded onto a microfluidics chip, for example chips available from Caliper (Mountain View, CA) or Nanogen (San Diego, CA.) A microfluidics chip may contain channels and reservoirs in which cells are moved and reactions are performed. Mechanical, electrical, magnetic, gravitational, centrifugal or other forces are used to move the cells and to expose them to reagents. For example, cells of whole blood are moved into a chamber containing hypotonic saline, which results in selective lysis of red blood cells after a 20-minute incubation. Next, the remaining cells (leukocytes) are moved into a wash chamber and finally, moved into a chamber containing a lysis buffer such as guanidine isothyocyanate. The leukocyte cell lysate is further processed for RNA isolation in the chip, or is then removed for further processing, for example, RNA extraction by standard methods. Alternatively, the microfluidics chip is a circular disk containing ficoll or another density reagent. The blood sample is injected into the center of the disc, the disc is rotated at a speed that generates a centrifugal force appropriate for density gradient separation of mononuclear cells, and the separated mononuclear cells are then harvested for further analysis or processing.

It is understood that the methods of expression evaluation, above, although discussed in the context of discovery of diagnostic nucleotide sets, are also applicable for expression evaluation when using diagnostic nucleotide sets for, e.g. diagnosis of diseases, as further discussed below.

Evaluation of expression patterns

Expression patterns can be evaluated by qualitative and/or quantitative measures. Certain of the above described techniques for evaluating gene expression (as RNA or protein products) yield data that are predominantly qualitative in nature. That is, the methods detect differences in expression that classify expression into distinct modes without providing significant information regarding quantitative aspects of expression. For example, a technique can be described as a qualitative technique if it detects the presence or absence of expression of a candidate nucleotide sequence, i.e., an on/off pattern of expression. Alternatively, a qualitative technique measures the presence (and/or absence) of different alleles, or variants, of a gene product.

In contrast, some methods provide data that characterize expression in a quantitative manner. That is, the methods relate expression on a numerical scale, e.g., a scale of 0-5, a scale of 1-10, a scale of + - +++, from grade 1 to grade 5, a grade from a to z, or the like. It will be understood that the numerical, and symbolic examples provided are arbitrary, and that any graduated scale (or any symbolic representation of a graduated scale) can be employed in the context of the present invention

to describe quantitative differences in nucleotide sequence expression. Typically, such methods yield information corresponding to a relative increase or decrease in expression.

Any method that yields either quantitative or qualitative expression data is suitable for evaluating expression of candidate nucleotide sequence in a subject sample of leukocytes. In some cases, e.g., when multiple methods are employed to determine expression patterns for a plurality of candidate nucleotide sequences, the recovered data, e.g., the expression profile, for the nucleotide sequences is a combination of quantitative and qualitative data.

In some applications, expression of the plurality of candidate nucleotide sequences is evaluated sequentially. This is typically the case for methods that can be characterized as low- to moderate-throughput. In contrast, as the throughput of the elected assay increases, expression for the plurality of candidate nucleotide sequences in a sample or multiple samples of leukocytes, is assayed simultaneously. Again, the methods (and throughput) are largely determined by the individual practitioner, although, typically, it is preferable to employ methods that permit rapid, e.g. automated or partially automated, preparation and detection, on a scale that is time-efficient and cost-effective.

It is understood that the preceding discussion, while directed at the assessment of expression of the members of candidate libraries, is also applies to the assessment of the expression of members of diagnostic nucleotide sets, as further discussed below.

Genotyping

In addition to, or in conjunction with the correlation of expression profiles and clinical data, it is often desirable to correlate expression patterns with the subject's genotype at one or more genetic loci or to correlate both expression profiles and genetic loci data with clinical data. The selected loci can be, for example, chromosomal loci corresponding to one or more member of the candidate library, polymorphic alleles for marker loci, or alternative disease related loci (not contributing to the candidate library) known to be, or putatively associated with, a disease (or disease criterion). Indeed, it will be appreciated, that where a (polymorphic) allele at a locus is linked to a disease (or to a predisposition to a disease), the presence of the allele can itself be a disease criterion.

Numerous well known methods exist for evaluating the genotype of an individual, including southern analysis, restriction fragment length polymorphism (RFLP) analysis, polymerase chain reaction (PCR), amplification length polymorphism (AFLP) analysis, single stranded conformation polymorphism (SSCP) analysis, single nucleotide polymorphism (SNP) analysis (e.g., via PCR, Taqman or molecular beacons), among many other useful methods. Many such procedures are readily adaptable to high throughput and/or automated (or semi-automated) sample preparation and analysis methods. Most, can be performed on nucleic acid samples recovered via simple procedures from the same sample of leukocytes as yielded the material for expression profiling. Exemplary techniques are described in, e.g., Sambrook, and Ausubel, supra.

Identification of the diagnostic oligonucleotides and oligonucleotide sets of the invention

Identification of diagnostic nucleotides and nucleotide sets and disease specific target nucleotide sequence proceeds by correlating the leukocyte expression profiles with data regarding the subject's health status to produce a data set designated a "molecular signature." Examples of data

regarding a patient's health status, also termed "disease criteria(ion)", is described below and in the Section titled "selected diseases," below. Methods useful for correlation analysis are further described elsewhere in the specification.

Generally, relevant data regarding the subject's health status includes retrospective or prospective health data, e.g., in the form of the subject's medical history, as provided by the subject, physician or third party, such as, medical diagnoses, laboratory test results, diagnostic test results, clinical events, or medication lists, as further described below. Such data may include information regarding a patient's response to treatment and/or a particular medication and data regarding the presence of previously characterized "risk factors." For example, cigarette smoking and obesity are previously identified risk factors for heart disease. Further examples of health status information, including diseases and disease criteria, is described in the section titled Selected diseases, below.

Typically, the data describes prior events and evaluations (i.e., retrospective data). However, it is envisioned that data collected subsequent to the sampling (i.e., prospective data) can also be correlated with the expression profile. The tissue sampled, e.g., peripheral blood, bronchial lavage, etc., can be obtained at one or more multiple time points and subject data is considered retrospective or prospective with respect to the time of sample procurement.

Data collected at multiple time points, called "longitudinal data", is often useful, and thus, the invention encompasses the analysis of patient data collected from the same patient at different time points. Analysis of paired samples, such as samples from a patient at different times, allows identification of differences that are specifically related to the disease state since the genetic variability specific to the patient is controlled for by the comparison. Additionally, other variables that exist between patients may be controlled for in this way, for example, the presence or absence of inflammatory diseases (e.g., rheumatoid arthritis) the use of medications that may effect leukocyte gene expression, the presence or absence of co-morbid conditions, etc. Methods for analysis of paired samples are further described below. Moreover, the analysis of a pattern of expression profiles (generated by collecting multiple expression profiles) provides information relating to changes in expression level over time, and may permit the determination of a rate of change, a trajectory, or an expression curve. Two longitudinal samples may provide information on the change in expression of a gene over time, while three longitudinal samples may be necessary to determine the "trajectory" of expression of a gene. Such information may be relevant to the diagnosis of a disease. For example, the expression of a gene may vary from individual to individual, but a clinical event, for example, a heart attack, may cause the level of expression to double in each patient. In this example, clinically interesting information is gleaned from the change in expression level, as opposed to the absolute level of expression in each individual.

When a single patient sample is obtained, it may still be desirable to compare the expression profile of that sample to some reference expression profile. In this case, one can determine the change of expression between the patient's sample and a reference expression profile that is appropriate for that patient and the medical condition in question. For example, a reference expression profile can be determined for all patients without the disease criterion in question who have similar characteristics, such as age, sex, race, diagnoses etc.

Generally, small sample sizes of 10-40 samples from 10-20 individuals are used to identify a diagnostic nucleotide set. Larger sample sizes are generally necessary to validate the diagnostic nucleotide set for use in large and varied patient populations, as further described below. For example, extension of gene expression correlations to varied ethnic groups, demographic groups, nations, peoples or races may require expression correlation experiments on the population of interest.

Expression Reference Standards

Expression profiles derived from a patient (i.e., subjects diagnosed with, or exhibiting symptoms of, or exhibiting a disease criterion, or under a doctor's care for a disease) sample are compared to a control or standard expression RNA to facilitate comparison of expression profiles (e.g. of a set of candidate nucleotide sequences) from a group of patients relative to each other (i.e., from one patient in the group to other patients in the group, or to patients in another group).

The reference RNA used should have desirable features of low cost and simplicity of production on a large scale. Additionally, the reference RNA should contain measurable amounts of as many of the genes of the candidate library as possible.

For example, in one approach to identifying diagnostic nucleotide sets, expression profiles derived from patient samples are compared to a expression reference "standard." Standard expression reference can be, for example, RNA derived from resting cultured leukocytes or commercially available reference RNA, such as Universal reference RNA from Stratagene. See Nature, V406, 8-17-00, p. 747-752. Use of an expression reference standard is particularly useful when the expression of large numbers of nucleotide sequences is assayed, e.g. in an array, and in certain other applications, e.g. qualitative PCR, RT-PCR, etc., where it is desirable to compare a sample profile to a standard profile, and/or when large numbers of expression profiles, e.g. a patient population, are to be compared. Generally, an expression reference standard should be available in large quantities, should be a good substrate for amplification and labeling reactions, and should be capable of detecting a large percentage of candidate nucleic acids using suitable expression profiling technology.

Alternatively, or in addition, the expression profile derived from a patient sample is compared with the expression of an internal reference control gene, for example, β-actin or CD4. The relative expression of the profiled genes and the internal reference control gene (from the same individual) is obtained. An internal reference control may also be used with a reference RNA. For example, an expression profile for "gene 1" and the gene encoding CD4 can be determined in a patient sample and in a reference RNA. The expression of each gene can be expressed as the "relative" ratio of expression the gene in the patient sample compared with expression of the gene in the reference RNA. The expression ratio (sample/reference) for gene 1 may be divided by the expression ration for CD4 (sample/reference) and thus the relative expression of gene 1 to CD4 is obtained.

The invention also provides a buffy coat control RNA useful for expression profiling, and a method of using control RNA produced from a population of buffy coat cells, the white blood cell layer derived from the centrifugation of whole blood. Buffy coat contains all white blood cells, including granulocytes, mononuclear cells and platelets. The invention also provides a method of preparing control RNA from buffy coat cells for use in expression profile analysis of leukocytes. Buffy coat fractions are obtained, e.g. from a blood bank or directly from individuals, preferably from a large

number of individuals such that bias from individual samples is avoided and so that the RNA sample represents an average expression of a healthy population. Buffy coat fractions from about 50 or about 100, or more individuals are preferred. 10 ml buffy coat from each individual is used. Buffy coat samples are treated with an erthythrocyte lysis buffer, so that erthythrocytes are selectively removed. The leukocytes of the buffy coat layer are collected by centrifugation. Alternatively, the buffy cell sample can be further enriched for a particular leukocyte sub-populations, e.g. mononuclear cells, Tlymphocytes, etc. To enrich for mononuclear cells, the buffy cell pellet, above, is diluted in PBS (phosphate buffered saline) and loaded onto a non-polystyrene tube containing a polysucrose and sodium diatrizoate solution adjusted to a density of 1.077+/-0.001 g/ml. To enrich for T-lymphocytes, 45 ml of whole blood is treated with RosetteSep (Stem Cell Technologies), and incubated at room temperature for 20 minutes. The mixture is diluted with an equal volume of PBS plus 2% FBS and mixed by inversion. 30 ml of diluted mixture is layered on top of 15 ml DML medium (Stem Cell Technologies). The tube is centrifuged at 1200 x g, and the enriched cell layer at the plasma: medium interface is removed, washed with PBS + 2% FBS, and cells collected by centrifugation at 1200 x g. The cell pellet is treated with 5 ml of erythrocyte lysis buffer (EL buffer, Qiagen) for 10 minutes on ice, and enriched T-lymphoctes are collected by centrifugation.

In addition or alternatively, the buffy cells (whole buffy coat or sub-population, e.g. mononuclear fraction) can be cultured *in vitro* and subjected to stimulation with cytokines or activating chemicals such as phorbol esters or ionomycin. Such stimuli may increase expression of nucleotide sequences that are expressed in activated immune cells and might be of interest for leukocyte expression profiling experiments.

Following sub-population selection and/or further treatment, e.g. stimulation as described above, RNA is prepared using standard methods. For example, cells are pelleted and lysed with a phenol/guanidinium thiocyanate and RNA is prepared. RNA can also be isolated using a silica gelbased purification column or the column method can be used on RNA isolated by the phenol/guanidinium thiocyanate method. RNA from individual buffy coat samples can be pooled during this process, so that the resulting reference RNA represents the RNA of many individuals and individual bias is minimized or eliminated. In addition, a new batch of buffy coat reference RNA can be directly compared to the last batch to ensure similar expression pattern from one batch to another, using methods of collecting and comparing expression profiles described above/below. One or more expression reference controls are used in an experiment. For example, RNA derived from one or more of the following sources can be used as controls for an experiment: stimulated or unstimulated whole buffy coat, stimulated or unstimulated peripheral mononuclear cells, or stimulated or unstimulated T-lymphocytes.

Alternatively, the expression reference standard can be derived from any subject or class of subjects including healthy subjects or subjects diagnosed with the same or a different disease or disease criterion. Expression profiles from subjects in two or more distinct classes are compared to determine which subset of nucleotide sequences in the candidate library can best distinguish between the subject classes, as further discussed below. It will be appreciated that in the present context, the term "distinct classes" is relevant to at least one distinguishable criterion relevant to a disease of interest, a "disease

criterion." The classes can, of course, demonstrate significant overlap (or identity) with respect to other disease criteria, or with respect to disease diagnoses, prognoses, or the like. The mode of discovery involves, e.g., comparing the molecular signature of different subject classes to each other (such as patient to control, patients with a first diagnosis to patients with a second diagnosis, etc.) or by comparing the molecular signatures of a single individual taken at different time points. The invention can be applied to a broad range of diseases, disease criteria, conditions and other clinical and/or epidemiological questions, as further discussed above/below.

It is appreciated that while the present discussion pertains to the use of expression reference controls while identifying diagnostic nucleotide sets, expression reference controls are also useful during use of diagnostic nucleotide sets, e.g. use of a diagnostic nucleotide set for diagnosis of a disease, as further described below.

Analysis of expression profiles

In order to facilitate ready access, e.g., for comparison, review, recovery, and/or modification, the molecular signatures/expression profiles are typically recorded in a database. Most typically, the database is a relational database accessible by a computational device, although other formats, e.g., manually accessible indexed files of expression profiles as photographs, analogue or digital imaging readouts, spreadsheets, etc. can be used. Further details regarding preferred embodiments are provided below. Regardless of whether the expression patterns initially recorded are analog or digital in nature and/or whether they represent quantitative or qualitative differences in expression, the expression patterns, expression profiles (collective expression patterns), and molecular signatures (correlated expression patterns) are stored digitally and accessed via a database. Typically, the database is compiled and maintained at a central facility, with access being available locally and/or remotely.

As additional samples are obtained, and their expression profiles determined and correlated with relevant subject data, the ensuing molecular signatures are likewise recorded in the database. However, rather than each subsequent addition being added in an essentially passive manner in which the data from one sample has little relation to data from a second (prior or subsequent) sample, the algorithms optionally additionally query additional samples against the existing database to further refine the association between a molecular signature and disease criterion. Furthermore, the data set comprising the one (or more) molecular signatures is optionally queried against an expanding set of additional or other disease criteria. The use of the database in integrated systems and web embodiments is further described below.

Analysis of expression profile data from arrays

Expression data is analyzed using methods well known in the art, including the software packages Imagene (Biodiscovery, Marina del Rey, CA), Feature Extraction Software (Agilent, Palo Alto, CA), and Scanalyze (Stanford University). In the discussion that follows, a "feature" refers to an individual spot of DNA on an array. Each gene may be represented by more than one feature. For example, hybridized microarrays are scanned and analyzed on an Axon Instruments scanner using GenePix 3.0 software (Axon Instruments, Union City, CA). The data extracted by GenePix is used for all downstream quality control and expression evaluation. The data is derived as follows. The data for all features flagged as "not found" by the software is removed from the dataset for individual

hybridizations. The "not found" flag by GenePix indicates that the software was unable to discriminate the feature from the background. Each feature is examined to determine the value of its signal. The median pixel intensity of the background (B_n) is subtracted from the median pixel intensity of the feature (F_n) to produce the background-subtracted signal (hereinafter, "BGSS"). The BGSS is divided by the standard deviation of the background pixels to provide the signal-to-noise ratio (hereinafter, "S/N"). Features with a S/N of three or greater in both the Cy3 channel (corresponding to the sample RNA) and Cy5 channel (corresponding to the reference RNA) are used for further analysis (hereinafter denoted "useable features"). Alternatively, different S/Ns are used for selecting expression data for an analysis. For example, only expression data with signal to noise ratios > 3 might be used in an analysis. Alternatively, features with S/N values < 3 may be flagged as such and included in the analysis. Such flagged data sets include more values and may allow one to discover expression markers that would be missed otherwise. However, such data sets may have a higher variability than filtered data, which may decrease significance of findings or performance of correlation statistics.

For each usable feature (i), the expression level (e) is expressed as the logarithm of the ratio (R) of the Background Subtracted Signal (hereinafter "BGSS") for the Cy3 (sample RNA) channel divided by the BGSS for the Cy5 channel (reference RNA). This "log ratio" value is used for comparison to other experiments.

$$R_{i} = \frac{BGSS_{sample}}{BGSS_{reference}} \tag{0.1}$$

$$e_i = \log r_i \tag{0.2}$$

Variation in signal across hybridizations may be caused by a number of factors affecting hybridization, DNA spotting, wash conditions, and labeling efficiency.

A single reference RNA may be used with all of the experimental RNAs, permitting multiple comparisons in addition to individual comparisons. By comparing sample RNAs to the same reference, the gene expression levels from each sample are compared across arrays, permitting the use of a consistent denominator for our experimental ratios. Alternative methods of analyzing the data may involve 1) using the sample channel without normalization by the reference channel, 2) using an intensity-dependent normalization based on the reference which provides a greater correction when the signal in the reference channel is large, 3) using the data without background subtraction or subtracting an empirically derived function of the background intensity rather than the background itself.

Scaling

The data may be scaled (normalized) to control for labeling and hybridization variability within the experiment, using methods known in the art. Scaling is desirable because it facilitates the comparison of data between different experiments, patients, etc. Generally the BGSS are scaled to a factor such as the median, the mean, the trimmed mean, and percentile. Additional methods of scaling include: to scale between 0 and 1, to subtract the mean, or to subtract the median.

Scaling is also performed by comparison to expression patterns obtained using a common reference RNA, as described in greater detail above. As with other scaling methods, the reference RNA facilitates multiple comparisons of the expression data, e.g., between patients, between samples, etc. Use of a reference RNA provides a consistent denominator for experimental ratios.

In addition to the use of a reference RNA, individual expression levels may be adjusted to correct for differences in labeling efficiency between different hybridization experiments, allowing direct comparison between experiments with different overall signal intensities, for example. A scaling factor (a) may be used to adjust individual expression levels as follows. The median of the scaling factor (a), for example, BGSS, is determined for the set of all features with a S/N greater than three. Next, the BGSS_i (the BGSS for each feature "i") is divided by the median for all features (a), generating a scaled ratio. The scaled ration is used to determine the expression value for the feature (e_i), or the log ratio.

$$S_i = \frac{BGSS_i}{a} \tag{0.3}$$

$$e_i = \log\left(\frac{Cy3S_i}{Cy5S_i}\right) \tag{0.4}$$

In addition, or alternatively, control features are used to normalize the data for labeling and hybridization variability within the experiment. Control feature may be cDNA for genes from the plant, *Arabidopsis thaliana*, that are included when spotting the mini-array. Equal amounts of RNA complementary to control cDNAs are added to each of the samples before they were labeled. Using the signal from these control genes, a normalization constant (*L*) is determined according to the following formula:

$$L_{j} = \frac{\sum_{i=1}^{N} BGSS_{j,i}}{N}$$

$$\frac{\sum_{j=1}^{K} \sum_{i=1}^{N} BGSS_{j,i}}{N}$$

$$K$$

where BGSS_i is the signal for a specific feature, N is the number of A. thaliana control features, K is the number of hybridizations, and L_j is the normalization constant for each individual hybridization.

Using the formula above, the mean for all control features of a particular hybridization and dye (e.g., Cy3) is calculated. The control feature means for all Cy3 hybridizations are averaged, and the control feature mean in one hybridization divided by the average of all hybridizations to generate a normalization constant for that particular Cy3 hybridization (L_I), which is used as a in equation (0.3). The same normalization steps may be performed for Cy3 and Cy5 values.

An alternative scaling method can also be used. The log of the ratio of Green/Red is determined for all features. The median log ratio value for all features is determined. The feature values are then scaled using the following formula: Log_Scaled_Feature_Ratio = Log_Feature_Ratio = Median Log Ratio.

Many additional methods for normalization exist and can be applied to the data. In one method, the average ratio of Cy3 BGSS / Cy5 BGSS is determined for all features on an array. This ratio is then scaled to some arbitrary number, such as 1 or some other number. The ratio for each probe is then multiplied by the scaling factor required to bring the average ratio to the chosen level. This is performed for each array in an analysis. Alternatively, the ratios are normalized to the average ratio across all arrays in an analysis. Other methods of normalization include forcing the distribution of signal strengths of the various arrays into greater agreement by transforming them to match certain points (quartiles, or deciles, etc.) in a standard distribution, or in the most extreme case using the rank of the signal of each oligonucleotide relative to the other oligonucleotides on the array

If multiple features are used per gene sequence or oligonucleotide, these repeats can be used to derive an average expression value for each gene. If some of the replicate features are of poor qualitay and don't meet requirements for analysis, the remaining features can be used to represent the gene or gene sequence.

Correlation analysis

Correlation analysis is performed to determine which array probes have expression behavior that best distinguishes or serves as markers for relevant groups of samples representing a particular clinical condition. Correlation analysis, or comparison among samples representing different disease criteria (e.g., clinical conditions), is performed using standard statistical methods. Numerous algorithms are useful for correlation analysis of expression data, and the selection of algorithms depends in part on the data analysis to be performed. For example, algorithms can be used to identify the single most informative gene with expression behavior that reliably classifies samples, or to identify all the genes useful to classify samples. Alternatively, algorithms can be applied that determine which set of 2 or more genes have collective expression behavior that accurately classifies samples. The use of multiple expression markers for diagnostics may overcome the variability in expression of a gene between individuals, or overcome the variability intrinsic to the assay. Multiple expression markers may include redundant markers (surrogates), in that two or more genes or probes may provide the same information with respect to diagnosis. This may occur, for example, when two or more genes or gene probes are coordinately expressed. For diagnostic application, it may be appropriate to utilize a gene and one or more of its surrogates in the assay. This redundancy may overcome failures (technical or biological) of a single marker to distinguish samples. Alternatively, one or more surrogates may have properties that make them more suitable for assay development, such as a higher baseline level of expression, better cell specificity, a higher fold change between sample groups or more specific sequence for the design of PCR primers or complimentary probes. It will be appreciated that while the discussion above pertains to the analysis of RNA expression profiles the discussion is equally applicable to the analysis of profiles of proteins or other molecular markers.

Prior to analysis, expression profile data may be formatted or prepared for analysis using methods known in the art. For example, often the log ratio of scaled expression data for every array probe is calculated using the following formula:

log (Cy 3 BGSS/ Cy5 BGSS), where Cy 3 signal corresponds to the expression of the gene in the clinical sample, and Cy5 signal corresponds to expression of the gene in the reference RNA.

Data may be further filtered depending on the specific analysis to be done as noted below. For example, filtering may be aimed at selecting only samples with expression above a certain level, or probes with variability above a certain level between sample sets.

The following non-limiting discussion consider several statistical methods known in the art. Briefly, the t-test and ANOVA are used to identify single genes with expression differences between or among populations, respectively. Multivariate methods are used to identify a set of two or more genes for which expression discriminates between two disease states more specifically than expression of any single gene.

t-test

The simplest measure of a difference between two groups is the Student's t test. See, e.g., Welsh et al. (2001) Proc Natl Acad Sci USA 98:1176-81 (demonstrating the use of an unpaired Student's t-test for the discovery of differential gene expression in ovarian cancer samples and control tissue samples). The t- test assumes equal variance and normally distributed data. This test identifies the probability that there is a difference in expression of a single gene between two groups of samples. The number of samples within each group that is required to achieve statistical significance is dependent upon the variation among the samples within each group. The standard formula for a t-test is:

$$t(e_i) = \frac{\overline{e}_{i,c} - \overline{e}_{i,t}}{\sqrt{(s_{i,c}^2/n_c) + (s_{i,t}^2/n_t)}},$$
(0.5)

where \bar{e}_i is the difference between the mean expression level of gene i in groups c and t, $s_{i,c}$ is the variance of gene x in group c and $s_{i,t}$ is the variance of gene x in group t. n_c and n_t are the numbers of samples in groups c and t.

The combination of the t statistic and the degrees of freedom $[\min(n_t, n_c)-1]$ provides a p value, the probability of rejecting the null hypothesis. A p-value of ≤ 0.01 , signifying a 99 percent probability the mean expression levels are different between the two groups (a 1% chance that the mean expression levels are in fact not different and that the observed difference occurred by statistical chance), is often considered acceptable.

When performing tests on a large scale, for example, on a large dataset of about 8000 genes, a correction factor must be included to adjust for the number of individual tests being performed. The most common and simplest correction is the Bonferroni correction for multiple tests, which divides the p-value by the number of tests run. Using this test on an 8000 member dataset indicates that a p value

PCT/US03/13015 **WO** 03/090694

of ≤0.00000125 is required to identify genes that are likely to be truly different between the two test conditions.

Significance analysis for microarrays (SAM)

Significance analysis for microarrays (SAM) (Tusher 2001) is a method through which genes with a correlation between their expression values and the response vector are statistically discovered and assigned a statistical significance. The ratio of false significant to significant genes is the False Discovery Rate (FDR). This means that for each threshold there are a set of genes which are called significant, and the FDR gives a confidence level for this claim. If a gene is called differentially expressed between 2 classes by SAM, with a FDR of 5%, there is a 95% chance that the gene is actually differentially expressed between the classes. SAM takes into account the variability and large number of variables of microarrays. SAM will identiy genes that are most globally differentially expressed between the classes. Thus, important genes for identifying and classifying outlier samples or patients may not be identified by SAM.

Non-Parametric Tests

Wilcoxon's signed ranks method is one example of a non-parametric test and is utilized for paired comparisons. See e.g., Sokal and Rohlf (1987) Introduction to Biostatistics 2nd edition, WH Freeman, New York. At least 6 pairs are necessary to apply this statistic. This test is useful for analysis of paired expression data (for example, a set of patients who have had samples taken before and after administration of a pharmacologic agent). The Fisher Exact Test with a threshold and the Mann-Whitney Test are other non-parametric tests that may be used

<u>ANOVA</u>

Differences in gene expression across multiple related groups may be assessed using an Analysis of Variance (ANOVA), a method well known in the art (Michelson and Schofield, 1996).

Multivariate analysis

Many algorithms suitable for multivariate analysis are known in the art (Katz 1999). Generally, a set of two or more genes for which expression discriminates between two disease states more specifically than expression of any single gene is identified by searching through the possible combinations of genes using a criterion for discrimination, for example the expression of gene X must increase from normal 300 percent, while the expression of genes Y and Z must decrease from normal by 75 percent. Ordinarily, the search starts with a single gene, then adds the next best fit at each step of the search. Alternatively, the search starts with all of the genes and genes that do not aid in the discrimination are eliminated step-wise.

Paired samples

Paired samples, or samples collected at different time-points from the same patient, are often useful, as described above. For example, use of paired samples permits the reduction of variation due to genetic variation among individuals. In addition, the use of paired samples has a statistical significance in that data derived from paired samples can be calculated in a different manner that recognizes the reduced variability. For example, the formula for a t-test for paired samples is:

$$t(e_x) = \frac{\overline{D}_{\bar{e}_x}}{\sqrt{\frac{\sum D^2 - (\sum D)^2 / b}{b - 1}}}$$
(0.5)

where D is the difference between each set of paired samples and b is the number of sample pairs.

 \overline{D} is the mean of the differences between the members of the pairs. In this test, only the differences between the paired samples are considered, then grouped together (as opposed to taking all possible differences between groups, as would be the case with an ordinary t-test). Additional statistical tests useful with paired data, e.g., ANOVA and Wilcoxon's signed rank test, are discussed above.

Diagnostic classification

Once a discriminating set of genes is identified, the diagnostic classifier (a mathematical function that assigns samples to diagnostic categories based on expression data) is applied to unknown sample expression levels.

Methods that can be used for this analysis include the following non-limiting list:

CLEAVER is an algorithm used for classification of useful expression profile data. See Raychaudhuri et al. (2001) Trends Biotechnol 19:189-193. CLEAVER uses positive training samples (e.g., expression profiles from samples known to be derived from a particular patient or sample diagnostic category, disease or disease criteria), negative training samples (e.g., expression profiles from samples known not to be derived from a particular patient or sample diagnostic category, disease or disease criteria) and test samples (e.g., expression profiles obtained from a patient), and determines whether the test sample correlates with the particular disease or disease criteria, or does not correlate with a particular disease or disease criteria. CLEAVER also generates a list of the 20 most predictive genes for classification.

Artificial neural networks (hereinafter, "ANN") can be used to recognize patterns in complex data sets and can discover expression criteria that classify samples into more than 2 groups. The use of artificial neural networks for discovery of gene expression diagnostics for cancers using expression data generated by oligonucleotide expression microarrays is demonstrated by Khan et al. (2001) Nature Med. 7:673-9. Khan found that 96 genes provided 0% error rate in classification of the tumors. The most important of these genes for classification was then determined by measuring the sensitivity of the classification to a change in expression of each gene. Hierarchical clustering using the 96 genes results in correct grouping of the cancers into diagnostic categories.

Golub uses cDNA microarrays and a distinction calculation to identify genes with expression behavior that distinguishes myeloid and lymphoid leukemias. See Golub et al. (1999) Science 286:531-7. Self organizing maps were used for new class discovery. Cross validation was done with a "leave one out" analysis. 50 genes were identified as useful markers. This was reduced to as few as 10 genes with equivalent diagnostic accuracy.

Hierarchical and non-hierarchical clustering methods are also useful for identifying groups of genes that correlate with a subset of clinical samples such as those with and without Lupus. Alizadeh used hierarchical clustering as the primary tool to distinguish different types of diffuse B-cell

lymphomas based on gene expression profile data. See Alizadeh et al. (2000) Nature 403:503-11. Alizadeh used hierarchical clustering as the primary tool to distinguish different types of diffuse B-cell lymphomas based on gene expression profile data. A cDNA array carrying 17856 probes was used for these experiments, 96 samples were assessed on 128 arrays, and a set of 380 genes was identified as being useful for sample classification.

Perou demonstrates the use of hierarchical clustering for the molecular classification of breast tumor samples based on expression profile data. See Perou et al. (2000) Nature 406:747-52. In this work, a cDNA array carrying 8102 gene probes was used. 1753 of these genes were found to have high variation between breast tumors and were used for the analysis.

Hastie describes the use of gene shaving for discovery of expression markers. Hastie et al. (2000) Genome Biol. 1(2):RESEARCH 0003.1-0003.21. The gene shaving algorithm identifies sets of genes with similar or coherent expression patterns, but large variation across conditions (RNA samples, sample classes, patient classes). In this manner, genes with a tight expression pattern within a diagnostic group, but also with high variability across the diagnoses are grouped together. The algorithm takes advantage of both characteristics in one grouping step. For example, gene shaving can identify useful marker genes with co-regulated expression. Sets of useful marker genes can be reduced to a smaller set, with each gene providing some non-redundant value in classification. This algorithm was used on the data set described in Alizadeh et al., supra, and the set of 380 informative gene markers was reduced to 234.

Supervised harvesting of expression trees (Hastie 2001) identifies genes or clusters that best distinguish one class from all the others on the data set. The method is used to identify the genes/clusters that can best separate one class versus all the others for datasets that include two or more classes or all classes from each other. This algorithm can be used for discovery or testing of a diagnostic gene set.

CART is a decision tree classification algorithm (Breiman 1984). From gene expression and or other data, CART can develop a decision tree for the classification of samples. Each node on the decision tree involves a query about the expression level of one or more genes or variables. Samples that are above the threshold go down one branch of the decision tree and samples that are not go down the other branch. See examples 10 and 16 for further description of its use in classification analysis and examples of its usefulness in discovering and implementing a diagnostic gene set. CART identifies surrogates for each splitter (genes that are the next best substitute for a useful gene in classification.

Multiple Additive Regression Trees (Friedman, JH 1999, MART) is similar to CART in that it is a classification algorithm that builds decision trees to distinguish groups. MART builds numerous trees for any classification problem and the resulting model involves a combination of the multiple trees. MART can select variables as it build models and thus can be used on large data sets, such as those derived from an 8000 gene microarray. Because MART uses a combination of many trees and does not take too much information from any one tree, it resists over training. MART identifies a set of genes and an algorithm for their use as a classifier.

A Nearest Shrunken Centroids Classifier can be applied to microarray or other data sets by the methods described by Tibshirani et al. 2002. This algorithms also identified gene sets for classification and determines their 10 fold cross validation error rates for each class of samples. The algorithm determines the error rates for models of any size, from one gene to all genes in the set. The error rates for either or both sample classes can are minimized when a particular number of genes are used. When this gene number is determined, the algorithm associated with the selected genes can be identified and employed as a classifier on prospective sample.

Once a set of genes and expression criteria for those genes have been established for classification, cross validation is done. There are many approaches, including a 10 fold cross validation analysis in which 10% of the training samples are left out of the analysis and the classification algorithm is built with the remaining 90%. The 10% are then used as a test set for the algorithm. The process is repeated 10 times with 10% of the samples being left out as a test set each time. Through this analysis, one can derive a cross validation error which helps estimate the robustness of the algorithm for use on prospective (test) samples.

Clinical data are gathered for every patient sample used for expression analysis. Clinical variables can be quantitative or non-quantitative. A clinical variable that is quantitative can be used as a variable for significance or classification analysis. Non-quantitative clinical variables, such as the sex of the patient, can also be used in a significance analysis or classification analysis with some statistical tool. It is appreciated that the most useful diagnostic gene set for a condition may be optimal when considered along with one or more predictive clinical variables. Clinical data can also be used as supervising vectors for a correlation analysis. That is to say that the clinical data associated with each sample can be used to divide the samples into meaningful diagnostic categories for analysis. For example, samples can be divided into 2 or more groups based on the presence or absence of some diagnostic criterion (a). In addition, clinical data can be utilized to select patients for a correlation analysis or to exclude them based on some undesirable characteristic, such as an ongoing infection, a medicine or some other issue. Clincial data can also be used to assess the pre-test probability of an outcome. For example, patients who are female are much more likely to be diagnosed as having systemic lupus erythematosis than patients who are male.

Once a set of genes are identified that classify samples with acceptable accuracy. These genes are validated as a set using new samples that were not used to discover the gene set. These samples can be taken from frozen archieves from the discovery clinical study or can be taken from new patients prospectively. Validation using a "test set" of samples can be done using expression profiling of the gene set with microarrays or using real-time PCR for each gene on the test set samples. Alternatively, a different expression profiling technology can be used.

Validation and accuracy of diagnostic nucleotide sets

Prior to widespread application of the diagnostic probe sets of the invention the predictive value of the probe set is validated. When the diagnostic probe set is discovered by microarray based expression analysis, the differential expression of the member genes may be validated by a less variable and more quantitive and accurate technology such as real time PCR. In this type of experiment the amplification product is measured during the PCR reaction. This enables the researcher to observe the

amplification before any reagent becomes rate limiting for amplification. In kinetic PCR the measurement is of C_T (threshold cycle) or C_P (crossing point). This measurement ($C_T=C_P$) is the point at which an amplification curve crosses a threshold fluorescence value. The threshold is set to a point within the area where all of the reactions were in their linear phase of amplification. When measuring C_T , a lower C_T value is indicative of a higher amount of starting material since an earlier cycle number means the threshold was crossed more quickly.

Several fluorescence methodologies are available to measure amplification product in real-time PCR. Taqman (Applied BioSystems, Foster City, CA) uses fluorescence resonance energy transfer (FRET) to inhibit signal from a probe until the probe is degraded by the sequence specific binding and Taq 3' exonuclease activity. Molecular Beacons (Stratagene, La Jolla, CA) also use FRET technology, whereby the fluorescence is measured when a hairpin structure is relaxed by the specific probe binding to the amplified DNA. The third commonly used chemistry is Sybr Green, a DNA-binding dye (Molecular Probes, Eugene, OR). The more amplified product that is produced, the higher the signal. The Sybr Green method is sensitive to non-specific amplification products, increasing the importance of primer design and selection. Other detection chemistries can also been used, such as ethedium bromide or other DNA-binding dyes and many modifications of the fluorescent dye/quencher dye Taqman chemistry, for example scorpions.

Real-time PCR validation can be done as described in Example 8.

Typically, the oligonucleotide sequence of each probe is confirmed, e.g. by DNA sequencing using an oligonucleotide-specific primer. Partial sequence obtained is generally sufficient to confirm the identity of the oligonucleotide probe. Alternatively, a complementary polynucleotide is fluorescently labeled and hybridized to the array, or to a different array containing a resynthesized version of the oligo nucleotide probe, and detection of the correct probe is confirmed.

Typically, validation is performed by statistically evaluating the accuracy of the correspondence between the molecular signature for a diagnostic probe set and a selected indicator. For example, the expression differential for a nucleotide sequence between two subject classes can be expressed as a simple ratio of relative expression. The expression of the nucleotide sequence in subjects with selected indicator can be compared to the expression of that nucleotide sequence in subjects without the indicator, as described in the following equations.

 $\sum E_x ai/N = E_x A$ the average expression of nucleotide sequence x in the members of group A;

 $\sum E_x bi/M = E_x B$ the average expression of nucleotide sequence x in the members of group B;

 $E_xA/ExB = \Delta E_xAB$ the average differential expression of nucleotide sequence x between groups A

and B:

where Σ indicates a sum; Ex is the expression of nucleotide sequence x relative to a standard; ai are the individual members of group A, group A has N members; bi are the individual members of group B, group B has M members.

Individual components of a diagnostic probe set each have a defined sensitivity and specificity for distinguishing between subject groups. Such individual nucleotide sequences can be employed in concert as a diagnostic probe set to increase the sensitivity and specificity of the evaluation. The database of molecular signatures is queried by algorithms to identify the set of nucleotide sequences (i.e., corresponding to members of the probe set) with the highest average differential expression between subject groups. Typically, as the number of nucleotide sequences in the diagnostic probe set increases, so does the predictive value, that is, the sensitivity and specificity of the probe set. When the probe sets are defined they may be used for diagnosis and patient monitoring as discussed below. The diagnostic sensitivity and specificity of the probe sets for the defined use can be determined for a given probe set with specified expression levels as demonstrated above. By altering the expression threshold required for the use of each nucleotide sequence as a diagnostic, the sensitivity and specificity of the probe set can be altered by the practitioner. For example, by lowering the magnitude of the expression differential threshold for each nucleotide sequence in the set, the sensitivity of the test will increase, but the specificity will decrease. As is apparent from the foregoing discussion, sensitivity and specificity are inversely related and the predictive accuracy of the probe set is continuous and dependent on the expression threshold set for each nucleotide sequence. Although sensitivity and specificity tend to have an inverse relationship when expression thresholds are altered, both parameters can be increased as nucleotide sequences with predictive value are added to the diagnostic nucleotide set. In addition a single or a few markers may not be reliable expression markers across a population of patients. This is because of the variability in expression and measurement of expression that exists between measurements, individuals and individuals over time. Inclusion of a large number of candidate nucleotide sequences or large numbers of nucleotide sequences in a diagnostic nucleotide set allows for this variability as not all nucleotide sequences need to meet a threshold for diagnosis. Generally, more markers are better than a single marker. If many markers are used to make a diagnosis, the likelihood that all expression markers will not meet some thresholds based upon random variability is low and thus the test will give fewer false negatives. Surrogate markers are useful for these purposes. These are markers or genes that are coordinately expressed. Surrogate markers essential provide redundant infomation, but this redundancy can improve accuracy by decreasing errors due to assay variability.

It is appreciated that the desired diagnostic sensitivity and specificity of the diagnostic nucleotide set may vary depending on the intended use of the set. For example, in certain uses, high specificity and high sensitivity are desired. For example, a diagnostic nucleotide set for predicting which patient population may experience side effects may require high sensitivity so as to avoid treating such patients. In other settings, high sensitivity is desired, while reduced specificity may be tolerated. For example, in the case of a beneficial treatment with few side effects, it may be important to identify as many patients as possible (high sensitivity) who will respond to the drug, and treatment of some patients who will not respond is tolerated. In other settings, high specificity is desired and reduced sensitivity may be tolerated. For example, when identifying patients for an early-phase clinical trial, it is important to identify patients who may respond to the particular treatment. Lower sensitivity is tolerated in this setting as it merely results in reduced patients who enroll in the study or requires that more patients are screened for enrollment.

To discover and validate a gene set that can be applied to accurately diagnose or classify patients across the country or around the world, it is necessary to ensure that the gene set was developed and validated using samples that represent the types of patients that will be encountered in the clinical setting. For example, diverse ethnicity, drug usage and clinical practice patterns must all be represented in the discovery and validation to ensure that the test works on this variety of patients.

Immune Monitoring

Leukocyte gene expression can be used to monitor the immune system. Immune monitoring examines both the level of gene expression for a set of genes in a given cell type and for genes which are expressed in a cell type selective manner gene expression monitoring will also detect the presence or absence of new cell types, progenitor cells, differentiation of cells and the like. Gene expression patterns may be associated with activation or the resting state of cells of the immune system that are responsible for or responsive to a disease state. For example, in the process of lupus and other autoimmune diseases, cells of the immune system are activated by self-antigens. Genes and gene sets that monitor and diagnose this process are providing a measure of the level and type of activation of the immune system. Genes and gene sets that are useful in monitoring the immune system may be useful for diagnosis and monitoring of all diseases that involve the immune system. Some examples are rheumatoid arthritis, lupus, inflammatory bowel diseases, multiple sclerosis, HIV/AIDS, and viral, bacterial and fungal infection. All disorders and diseases disclosed herein are contemplated. Genes and gene sets that monitor immune activation are useful for monitoring response to immunosuppressive drug therapy, which is used to decrease immune activation. Genes are found to correlate with immune activation by correlation of expression patterns to the known presence of immune activation or quiescence in a sample as determined by some other test.

Selected Diseases

In principle, individual oligonucleotides and diagnostic oligonucleotide sets of the invention may be developed and applied to essentially any disease, or disease criterion, as long as at least one subset of oligonucleotide sequences is differentially expressed in samples derived from one or more individuals with a disease criteria or disease and one or more individuals without the disease criteria or disease, wherein the individual may be the same individual sampled at different points in time, or the individuals may be different individuals (or populations of individuals). For example, the subset of oligonucleotide sequences may be differentially expressed in the sampled tissues of subjects with the disease or disease criterion (e.g., a patient with a disease or disease criteria) as compared to subjects without the disease or disease criterion (e.g., patients without a disease (control patients)).

Alternatively, or in addition, the subset of oligonucleotide sequence(s) may be differentially expressed in different samples taken from the same patient, e.g at different points in time, at different disease stages, before and after a treatment, in the presence or absence of a risk factor, etc.

Expression profiles corresponding to oligonucleotides and sets of oligonucleotide sequences that correlate not with a diagnosis, but rather with a particular aspect of a disease can also be used to identify the diagnostic oligonucleotide sets and disease specific target oligonucleotide sequences of the invention. For example, such an aspect, or disease criterion, can relate to a subject's medical or family

history, e.g., occurance of an autoimmune disease, childhood illness, cause of death of a parent or other relative, prior surgery or other intervention, medications, laboratory values and results of diagnostic testing (radiology, pathology, etc.), symptoms (including onset and/or duration of symptoms), etc. Alternatively, the disease criterion can relate to a diagnosis, e.g., chronic inflammatory disease such as lupus, rheumatoid arthritis, osteoarthritis, or prognosis (e.g., prediction of future diagnoses, events or complications), e.g., renal failure from lupus, joint replacement surgery for rheumatoid arthritis, rheumatoid arthritis or systemic lupus erythematosis disease activity or the like. In other cases, the disease criterion corresponds to a therapeutic outcome, e.g., response to a medication, response to a surgery or physical therapy for a joint. Alternatively, the disease criteria correspond with previously identified or classic risk factors and may correspond to prognosis or future disease diagnosis. As indicated above, a disease criterion can also correspond to genotype for one or more loci. Disease criteria (including patient data) may be collected (and compared) from the same patient at different points in time, from different patients, between patients with a disease (criterion) and patients respresenting a control population, etc. Longitudinal data, i.e., data collected at different time points from an individual (or group of individuals) may be used for comparisons of samples obtained from an individual (group of individuals) at different points in time, to permit identification of differences specifically related to the disease state, and to obtain information relating to the change in expression over time, including a rate of change or trajectory of expression over time. The usefulness of longitudinal data is further discussed in the section titled "Identification of diagnostic nucleotide sets of the invention".

It is further understood that diagnostic oligonucleotides and oligonucleotide sets may be developed for use in diagnosing conditions for which there is no present means of diagnosis. For example, in rheumatoid arthritis, joint destruction is often well under way before a patient experience symptoms of the condition. A diagnostic nucleotide or nucleotide set may be developed that diagnoses rheumatic joint destruction at an earlier stage than would be possible using present means of diagnosis, which rely in part on the presentation of symptoms by a patient. Diagnostic nucleotide sets may also be developed to replace or augment current diagnostic procedures. For example, the use of a diagnostic nucleotide or nucleotide set to diagnose lupus may replace or supplement the current diagnostic tests and strategies.

It is understood that the following discussion of diseases is exemplary and non-limiting, and further that the general criteria discussed above, e.g. use of family medical history, are generally applicable to the specific diseases discussed below.

In addition to leukocytes, as described throughout, the general method is applicable to oligonucleotide sequences that are differentially expressed in any subject tissue or cell type, by the collection and assessment of samples of that tissue or cell type. However, in many cases, collection of such samples presents significant technical or medical problems given the current state of the art.

Systemic Lupus Erythematosis (SLE)

SLE is a chronic, systemic inflammatory disease characterized by dysregulation of the immune system, which effects up to 2 million patients in the US. Symptoms of SLE include rashes, joint pain, abnormal blood counts, renal dysfunction and damage, infections, CNS disorders, arthralgias

and autoimmunity. Patients may also have early onset atherosclerosis. The diagnosis of SLE is difficult to make with certainty using current diagnostic tests and algorithms. Antibody tests can be specific for the disease, but often lack sensitivity. Clinical diagnosis may lack both high sensitivity and specificity. SLE is a disease that clearly involves differential gene expression in leukocytes compared to patients without the disease.

Diagnostic oligonucleotides and oligonucleotide sets are identified and validated for use in diagnosis and monitoring of SLE activity and progression. Disease criteria correspond to clinical data, e.g. symptom rash, joint pain, malaise, rashes, blood counts (white and red), tests of renal function e.g. creatinine, blood urea nitrogen (hereinafter, "bun") creative clearance, data obtained from laboratory tests, including complete blood counts with differentials, CRP, ESR, ANA, Serum IL6, Soluble CD40 ligand, LDL, HDL, Anti-DNA antibodies, rheumatoid factor, C3, C4, serum creatinine and any medication levels, the need for pain medications, cumulative doses or immunosuppressive therapy, symptoms or any manifestation of carotid atherosclerosis (e.g. ultrasound diagnosis or any other manifestations of the disease), data from surgical procedures such as gross operative findings and pathological evaluation of resected tissues and biopsies (e.g., renal, CNS), information on pharmacological therapy and treatment changes, clinical diagnoses of disease "flare", hospitalizations, death, response to medications, quantitative joint exams, results from health assessment questionnaires (HAQs), and other clinical measures of patient symptoms and disability. In addition, disease criteria correspond to the clinical score known as SLEDAI (Bombadier C, Gladman DD, Urowitz MB, Caron D, Chang CH and the Committee on Prognosis Studies in SLE: Derivation of the SLEDAI for Lupus Patients. Arthritis Rheum 35:630-640, 1992.). Diagnostic nucleotide sets may be useful for diagnosis of SLE, monitoring disease progression including progressive renal dysfunction, carotid atherosclerosis and CNS dysfunction, and predicting occurrence of side-effects, for example.

Rheumatoid Arthritis

Rheumatoid arthritis (RA) effects about two million patients in the US and is a chronic and debilitating inflammatory arthritis, particularly involving pain and destruction of the joints. RA often goes undiagnosed because patients may have no pain, but the disease is actively destroying the joint. Other patients are known to have RA, and are treated to alleviate symptoms, but the rate of progression of joint destruction can't easily be monitored. Drug therapy is available, but the most effective medicines are toxic (e.g., steroids, methotrexate) and thus need to be used with caution. A new class of medications (TNF blockers) is very effective, but the drugs are expensive, have side effects, and not all patients respond. Side-effects are common and include immune suppression, toxicity to organ systems, allergy and metabolic disturbances.

Diagnostic oligonucleotides and oligonucleotide sets of the invention are developed and validated for use in diagnosis and treatment of RA. Disease criteria correspond to disease symptoms (e.g., joint pain, joint swelling and joint stiffness and any of the American College for Rheumatology criteria for the diagnosis of RA, see Arnett et al (1988) <u>Arthr. Rheum.</u> 31:315-24), progression of joint destruction (e.g. as measured by serial hand radiographs, assessment of joint function and mobility), surgery, need for medication, additional diagnoses of inflammatory and non-inflammatory conditions, and clinical laboratory measurements including complete blood counts with differentials, CRP, ESR,

ANA, Serum IL6, Soluble CD40 ligand, LDL, HDL, Anti-DNA antibodies, rheumatoid factor, C3, C4, serum creatinine, death, hospitalization and disability due to joint destruction. In addition, or alternatively, disease criteria correspond to response to drug therapy and presence or absence of side-effects or measures of improvement exemplified by the American College of Rheumatology "20%" and "50%" response/improvement rates. See Felson et al (1995) Arthr Rheum 38:531-37. Diagnostic nucleotide sets are identified that monitor and predict disease progression including flaring (acute worsening of disease accompanied by joint pain or other symptoms), response to drug treatment and likelihood of side-effects.

In addition to peripheral leukocytes, surgical specimens of rheumatoid joints can be used for leukocyte expression profiling experiments. Members of diagnostic nucleotide sets are candidates for leukocyte target nucleotide sequences, e.g. as a candidate drug target for rheumatoid arthritis. Synovial specimens can be used for expression profiling or cells derived and sorted from that tissue (such as subsets of leukocytes) can be used. Cells can be separated by fluorescence activated cell sorting or magnetic affinity reagent techniques or some other technique. Synovial specimens and blood can be obtained from the same patient and gene expression can be compared between these 2 sample types.

Osteoarthritis

20-40 million patients in the US have osteoarthritis. Patient groups are heterogeneous, with a subset of patients having earlier onset, more aggressive joint damage, involving more inflammation (leukocyte infiltration). Leukocyte diagnostics can be used to distinguish osteoarthritis from rheumatoid arthritis and other differntial diagnoses, define likelihood and degree of response to NSAID therapy (non-steroidal anti-inflammatory drugs) or other anti-inflammatory therapies. Rate of progression of joint damage can also be assessed. Diagnostic nucleotide sets may be developed for use in selection and titration of treatment therapies. Disease criteria correspond to response to therapy, and disease progression using certain therapies, response to medications, need for joint surgery, joint pain and disability.

In addition to peripheral leukocytes, surgical specimens of osteoarthritic joints can be used for leukocyte expression profiling experiments. Diagnostic oligonucleotides and diagnostic oligonucleotide sets are candidates for leukocyte target nucleotide sequences, e.g. as a candidate drug target for osteoarthritis. Synovial specimens can be used for expression profiling or cells derived and sorted from that tissue (such as subsets of leukocytes) can be used. Cells can be separated by fluorescence activated cell sorting or magnetic affinity reagent techniques or some other technique. Synovial specimens and blood can be obtained from the same patient and gene expression can be compared between these 2 sample types.

In another example, diagnostic nucleotide sets are developed and validated for use in diagnosis and therapy of peri-prosthetic osteolysis. In this disease, a prosthetic joint such as a knee or hip is found to loosen over time and requires repeat surgery. Loosening may occur in some patients due to an inflammatory response incited by the foreign material of the prosthesis. Disease criteria include joint loosening, radiographic evidence of peri-prosthetic osteolysis, need for repeat surgery, response to pharmacological therapy, and/or histological (from biopsy or surgery) or biochemical (markers of bone metabolism such as alkaline phosphatase) evidence of osteolysis. Tissues used for

expression profiling can include peripheral leukocytes or leukocyte subsets, periprosthetic tissue, or synovial fluid. In addition, gene sets can be discovered using an *in vitro* model of the disease in which immune cells are exposed to prosthesis materials such as cement or titanium.

Pharmacogenomics

Pharmocogenomics is the study of the individual propensity to respond to a particular drug therapy (combination of therapies). In this context, response can mean whether a particular drug will work on a particular patient, e.g. some patients respond to one drug but not to another drug. One example of this would be prediction of a patient's response to drugs that target IFNs. Response can also refer to the likelihood of successful treatment or the assessment of progress in treatment. Titration of drug therapy to a particular patient is also included in this description, e.g. different patients can respond to different doses of a given medication. This aspect may be important when drugs with side-effects or interactions with other drug therapies are contemplated.

Diagnostic oligonucleotides and oligonucleotide sets are developed and validated for use in assessing whether a patient will respond to a particular therapy and/or monitoring response of a patient to drug therapy (therapies). Disease criteria correspond to presence or absence of clinical symptoms or clinical endpoints, presence of side-effects or interaction with other drug(s). The diagnostic nucleotide set may further comprise nucleotide sequences that are targets of drug treatment or markers of active disease.

Diagnostic oligonucleotides and oligonucleotide sets are developed and validated for use in assessing whether a patient has a particular drug toxicity or toxicity due to an environmental, work-related or other agent. Such exposures of the patient may also be related to biological or biochemical agents used in warfare. Diagnostic oligonucleotides and oligonucleotide sets may allow early diagnosis of a toxicity or exposure or may monitor the severity and course of toxic responses.

Methods of using diagnostic oligonucleotides and oligonucleotide sets.

The invention also provide methods of using the diagnostic oligonucleotides and oligonucleotide sets to: diagnose or monitor disease; assess severity of disease; predict future occurrence of disease; predict future complications of disease; determine disease prognosis; evaluate the patient's risk, or "stratify" a group of patients; assess response to current drug therapy; assess response to current non-pharmacological therapy; determine the most appropriate medication or treatment for the patient; predict whether a patient is likely to respond to a particular drug; and determine most appropriate additional diagnostic testing for the patient, among other clinically and epidemiologically relevant applications.

The oligonucleotides and oligonucleotide sets of the invention can be utilized for a variety of purposes by physicians, healthcare workers, hospitals, laboratories, patients, companies and other institutions. As indicated previously, essentially any disease, condition, or status for which at least one nucleotide sequence is differentially expressed in leukocyte populations (or sub-populations) can be evaluated, e.g., diagnosed, monitored, etc. using the diagnostic nucleotide sets and methods of the invention. In addition to assessing health status at an individual level, the diagnostic nucleotide sets of

the present invention are suitable for evaluating subjects at a "population level," e.g., for epidemiological studies, or for population screening for a condition or disease.

Collection and preparation of sample

RNA, protein and/or DNA are prepared using methods well-known in the art, as further described herein. It is appreciated that subject samples collected for use in the methods of the invention are generally collected in a clinical setting, where delays may be introduced before RNA samples are prepared from the subject samples of whole blood, e.g. the blood sample may not be promptly delivered to the clinical lab for further processing. Further delay may be introduced in the clinical lab setting where multiple samples are generally being processed at any given time. For this reason, methods that feature lengthy incubations of intact leukocytes at room temperature are not preferred, because the expression profile of the leukocytes may change during this extended time period. For example, RNA can be isolated from whole blood using a phenol/guanidine isothiocyanate reagent or another direct whole-blood lysis method, as described in, e.g., U.S. Patent Nos. 5,346,994 and 4,843,155. This method may be less preferred under certain circumstances because the large majority of the RNA recovered from whole blood RNA extraction comes from erythrocytes since these cells outnumber leukocytes 1000:1. Care must be taken to ensure that the presence of erythrocyte RNA and protein does not introduce bias in the RNA expression profile data or lead to inadequate sensitivity or specificity of probes.

Alternatively, intact leukocytes may be collected from whole blood using a lysis buffer that selectively lyses erythrocytes, but not leukocytes, as described, e.g., in (U.S. Patent Nos. 5,973,137, and 6,020,186). Intact leukocytes are then collected by centrifugation, and leukocyte RNA is isolated using standard protocols, as described herein. However, this method does not allow isolation of subpopulations of leukocytes, e.g. mononuclear cells, which may be desired. In addition, the expression profile may change during the lengthy incubation in lysis buffer, especially in a busy clinical lab where large numbers of samples are being prepared at any given time.

Alternatively, specific leukocyte cell types can be separated using density gradient reagents (Boyum, A, 1968.). For example, mononuclear cells may be separated from whole blood using density gradient centrifugation, as described, e.g., in U.S. Patents Nos. 4190535, 4350593, 4751001, 4818418, and 5053134. Blood is drawn directly into a tube containing an anticoagulant and a density reagent (such as Ficoll or Percoll). Centrifugation of this tube results in separation of blood into an erythrocyte and granulocyte layer, a mononuclear cell suspension, and a plasma layer. The mononuclear cell layer is easily removed and the cells can be collected by centrifugation, lysed, and frozen. Frozen samples are stable until RNA can be isolated. Density centrifugation, however, must be conducted at room temperature, and if processing is unduly lengthy, such as in a busy clinical lab, the expression profile may change.

Alternatively, cells can be separated using fluorescence activated cell sorting (FACS) or some other technique, which divides cells into subsets based on gene or protein expression. This may be desirable to enrich the sample for cells of interest, but it may also introduce cell manipulations and time delays, which result in alteration of gene expression profiles (Cantor et al. 1975; Galbraith et al. 1999).

The quality and quantity of each clinical RNA sample is desirably checked before amplification and labeling for array hybridization, using methods known in the art. For example, one microliter of each sample may be analyzed on a Bioanalyzer (Agilent 2100 Palo Alto, CA. USA) using an RNA 6000 nano LabChip (Caliper, Mountain View, CA. USA). Degraded RNA is identified by the reduction of the 28S to 18S ribosomal RNA ratio and/or the presence of large quantities of RNA in the 25-100 nucleotide range.

It is appreciated that the RNA sample for use with a diagnostic oligonucleotide or oligonucleotide set may be produced from the same or a different cell population, sub-population and/or cell type as used to identify the diagnostic nucleotide set. For example, a diagnostic oligonucleotide or oligonucleotide set identified using RNA extracted from mononuclear cells may be suitable for analysis of RNA extracted from whole blood or mononuclear cells, depending on the particular characteristics of the members of the diagnostic nucleotide set. Generally, diagnostic oligonucleotides or oligonucleotide sets must be tested and validated when used with RNA derived from a different cell population, sub-population or cell type than that used when obtaining the diagnostic gene set. Factors such as the cell-specific gene expression of diagnostic nucleotide set members, redundancy of the information provided by members of the diagnostic nucleotide set, expression level of the member of the diagnostic nucleotide set, and cell-specific alteration of expression of a member of the diagnostic nucleotide set will contribute to the usefullness of a different RNA source than that used when identifying the members of the diagnostic nucleotide set. It is appreciated that it may be desirable to assay RNA derived from whole blood, obviating the need to isolate particular cell types from the blood.

Rapid method of RNA extraction suitable for production in a clinical setting of high quality RNA for expression profiling

In a clinical setting, obtaining high quality RNA preparations suitable for expression profiling, from a desired population of leukocytes poses certain technical challenges, including: the lack of capacity for rapid, high-throughput sample processing in the clinical setting, and the possibility that delay in processing (in a busy lab or in the clinical setting) may adversely affect RNA quality, e.g. by a permitting the expression profile of certain nucleotide sequences to shift. Also, use of toxic and expensive reagents, such as phenol, may be disfavored in the clinical setting due to the added expense associated with shipping and handling such reagents.

A useful method for RNA isolation for leukocyte expression profiling would allow the isolation of monocyte and lymphocyte RNA in a timely manner, while preserving the expression profiles of the cells, and allowing inexpensive production of reproducible high-quality RNA samples. Accordingly, the invention provides a method of adding inhibitor(s) of RNA transcription and/or inhibitor(s) of protein synthesis, such that the expression profile is "frozen" and RNA degradation is reduced. A desired leukocyte population or sub-population is then isolated, and the sample may be frozen or lysed before further processing to extract the RNA. Blood is drawn from subject population and exposed to ActinomycinD (to a final concentration of 10 ug/ml) to inhibit transcription, and cycloheximide (to a final concentration of 10 ug/ml) to inhibit protein synthesis. The inhibitor(s) can be injected into the blood collection tube in liquid form as soon as the blood is drawn, or the tube can

be manufactured to contain either lyophilized inhibitors or inhibitors that are in solution with the anticoagulant. At this point, the blood sample can be stored at room temperature until the desired leukocyte population or sub-population is isolated, as described elsewhere. RNA is isolated using standard methods, e.g., as described above, or a cell pellet or extract can be frozen until further processing of RNA is convenient.

The invention also provides a method of using a low-temperature density gradient for separation of a desired leukocyte sample. In another embodiment, the invention provides the combination of use of a low-temperature density gradient and the use of transcriptional and/or protein synthesis inhibitor(s). A desired leukocyte population is separated using a density gradient solution for cell separation that maintains the required density and viscosity for cell separation at 0-4 \(\text{C}\). Blood is drawn into a tube containing this solution and may be refrigerated before and during processing as the low temperatures slow cellular processes and minimize expression profile changes. Leukocytes are separated, and RNA is isolated using standard methods. Alternately, a cell pellet or extract is frozen until further processing of RNA is convenient. Care must be taken to avoid rewarming the sample during further processing steps.

Alternatively, the invention provides a method of using low-temperature density gradient separation, combined with the use of actinomycin A and cyclohexamide, as described above.

Assessing expression for diagnostics

Expression profiles for the oligonucleotides or the set of diagnostic oligonucleotide sequences in a subject sample can be evaluated by any technique that determines the expression of each component oligonucleotide sequence. Methods suitable for expression analysis are known in the art, and numerous examples are discussed in the Sections titled "Methods of obtaining expression data" and "high throughput expression Assays", above.

In many cases, evaluation of expression profiles is most efficiently, and cost effectively, performed by analyzing RNA expression. Alternatively, the proteins encoded by each component of the diagnostic nucleotide set are detected for diagnostic purposes by any technique capable of determining protein expression, e.g., as described above. Expression profiles can be assessed in subject leukocyte sample using the same or different techniques as those used to identify and validate the diagnostic oligonucleotide or oligonucleotide set. For example, a diagnostic nucleotide set identified as a subset of sequences on a cDNA microarray can be utilized for diagnostic (or prognostic, or monitoring, etc.) purposes on the same array from which they were identified. Alternatively, the diagnostic nucleotide sets for a given disease or condition can be organized onto a dedicated sub-array for the indicated purpose. It is important to note that if diagnostic nucleotide sets are discovered using one technology, e.g. RNA expression profiling, but applied as a diagnostic using another technology, e.g. protein expression profiling, the nucleotide (or gene, or protein) sets must generally be validated for diagnostic purposes with the new technology. In addition, it is appreciated that diagnostic nucleotide sets that are developed for one use, e.g. to diagnose a particular disease, may later be found to be useful for a different application, e.g. to predict the likelihood that the particular disease will occur. Generally, the diagnostic nucleotide set will need to be validated for use in the second circumstance. As discussed herein, the sequence of diagnostic nucleotide set members may be

amplified from RNA or cDNA using methods known in the art providing specific amplification of the nucleotide sequences.

General Protein Methods

Protein products of the nucleotide sequences of the invention may include proteins that represent functionally equivalent gene products. Such an equivalent gene product may contain deletions, additions or substitutions of amino acid residues within the amino acid sequence encoded by the nucleotide sequences described, above, but which result in a silent change, thus producing a functionally equivalent nucleotide sequence product. Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved.

For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Functionally equivalent", as utilized herein, refers to a protein capable of exhibiting a substantially similar in vivo activity as the endogenous gene products encoded by the nucleotides described herein.

The gene products (protein products of the nucleotide sequences) may be produced by recombinant DNA technology using techniques well known in the art. Methods which are well known to those skilled in the art can be used to construct expression vectors containing novel nucleotide sequence protein coding sequences and appropriate transcriptional/translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Sambrook et al., 1989, supra, and Ausubel et al., 1989, supra. Alternatively, RNA capable of encoding novel nucleotide sequence protein sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in "Oligonucleotide Synthesis", 1984, Gait, M. J. ed., IRL Press, Oxford, which is incorporated by reference herein in its entirety.

A variety of host-expression vector systems may be utilized to express the nucleotide sequence coding sequences of the invention. Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, exhibit the protein encoded by the nucleotide sequence of the invention in situ. These include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing nucleotide sequence protein coding sequences; yeast (e.g. Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing the nucleotide sequence protein coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the nucleotide sequence protein coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing nucleotide sequence protein

coding sequences; or mammalian cell systems (e.g. COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5 K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the nucleotide sequence protein being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of antibodies or to screen peptide libraries, for example, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791;), in which the nucleotide sequence protein coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503;-5509); and the likes of pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione Stransferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target nucleotide sequence protein can be released from the GST moiety. Other systems useful in the invention include use of the FLAG epitope or the 6-HIS systems.

In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign nucleotide sequences. The virus grows in Spodoptera frugiperda cells. The nucleotide sequence coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of nucleotide sequence coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted nucleotide sequence is expressed. (E.g., see Smith et al., 1983, J. Virol. 46: 584; Smith, U.S. Pat. No. 4,215,051;).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the nucleotide sequence coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric nucleotide sequence may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing nucleotide sequence encoded protein in infected hosts. (E.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659;). Specific initiation signals may also be required for efficient translation of inserted nucleotide sequence coding sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire nucleotide sequence, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of the

nucleotide sequence coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., 1987, Methods in Enzymol. 153:516-544;).

In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the product of the nucleotide sequence in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include but are not limited to CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, etc.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the nucleotide sequence encoded protein may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express nucleotide sequence encoded protein. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the nucleotide sequence encoded protein.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223;), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026;), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817;) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527;); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072;); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1;); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30: 147; 147) genes.

An alternative fusion protein system allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88: 8972-8976). In this system, the nucleotide sequence of interest is subcloned into a vaccinia recombination plasmid such that the nucleotide sequence's open reading frame is translationally fused to an aminoterminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni.sup.2 +-nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

Where recombinant DNA technology is used to produce the protein encoded by the nucleotide sequence for such assay systems, it may be advantageous to engineer fusion proteins that can facilitate labeling, immobilization and/or detection.

Antibodies

Indirect labeling involves the use of a protein, such as a labeled antibody, which specifically binds to the protein encoded by the nucleotide sequence. Such antibodies include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments and fragments produced by an Fab expression library.

The invention also provides for antibodies to the protein encoded by the nucleotide sequences. Described herein are methods for the production of antibodies capable of specifically recognizing one or more nucleotide sequence epitopes. Such antibodies may include, but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')2 fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above. Such antibodies may be used, for example, in the detection of a nucleotide sequence in a biological sample, or, alternatively, as a method for the inhibition of abnormal gene activity, for example, the inhibition of a disease target nucleotide sequence, as further described below. Thus, such antibodies may be utilized as part of cardiovascular or other disease treatment method, and/or may be used as part of diagnostic techniques whereby patients may be tested for abnormal levels of nucleotide sequence encoded proteins, or for the presence of abnormal forms of the such proteins.

For the production of antibodies to a nucleotide sequence, various host animals may be immunized by injection with a protein encoded by the nucleotide sequence, or a portion thereof. Such host animals may include but are not limited to rabbits, mice, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum.

Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of animals immunized with an antigen, such as gene product, or an antigenic functional derivative thereof. For the production of polyclonal antibodies, host animals such as those described above, may be immunized by injection with gene product supplemented with adjuvants as also described above.

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, may be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Pat. No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region.

Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; Bird, 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward et al., 1989, Nature 334:544-546) can be adapted to produce nucleotide sequence-single chain antibodies. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments which recognize specific epitopes may be generated by known techniques For example, such fragments include but are not limited to: the F(ab')2 fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Disease specific target oligonucleotide sequences

The invention also provides disease specific target oligonucleotide sequences, and sets of disease specific target oligonucleotide sequences. The diagnostic oligonucleotide sets, subsets thereof, novel oligonucleotide sequences, and individual members of the diagnostic oligonucleotide sets identified as described above are also disease specific target oligonucleotide sequences. In particular, individual oligonucleotide sequences that are differentially regulated or have predictive value that is strongly correlated with a disease or disease criterion are especially favorable as disease specific target oligonucleotide sequences. Sets of genes that are co-regulated may also be identified as disease specific target oligonucleotide sets. Such oligonucleotide sequences and/or oligonucleotide sequence products are targets for modulation by a variety of agents and techniques. For example, disease specific target oligonucleotide sequences (or the products of such oligonucleotide sequences, or sets of disease specific target oligonucleotide sequences) can be inhibited or activated by, e.g., target specific monoclonal antibodies or small molecule inhibitors, or delivery of the oligonucleotide sequence or

gene product of the oligonucleotide sequence to patients. Also, sets of genes can be inhibited or activated by a variety of agents and techniques. The specific usefulness of the target oligonucleotide sequence(s) depends on the subject groups from which they were discovered, and the disease or disease criterion with which they correlate.

Identification of nucleotide sequence involved in leukocyte adhesion

The invention also encompasses a method of identifying nucleotide sequences involved in leukocyte adhesion. The interaction between the endothelial cell and leukocyte is a fundamental mechanism of all inflammatory disorders, including the diseases listed in Table 3. For example, the first visible abnormality in atherosclerosis is the adhesion to the endothelium and diapedesis of mononuclear cells (e.g., T-cell and monocyte). Insults to the endothelium (for example, cytokines, tobacco, diabetes, hypertension and many more) lead to endothelial cell activation. The endothelium then expresses adhesion molecules, which have counter receptors on mononuclear cells. Once the leukocyte receptors have bound the endothelial adhesion molecules, they stick to the endothelium, roll a short distance, stop and transmigrate across the endothelium. A similar set of events occurs in both acute and chronic inflammation. When the leukocyte binds the endothelial adhesion molecule, or to soluble cytokines secreted by endothelial or other cells, a program of gene expression is activated in the leukocyte. This program of expression leads to leukocyte rolling, firm adhesion and transmigration into the vessel wall or tissue parenchyma. Inhibition of this process is highly desirable goal in antiinflammatory drug development. In addition, leukocyte nucleotide sequences and epithelial cell nucleotide sequences, that are differentially expressed during this process may be disease-specific target nucleotide sequences.

Human endothelial cells, e.g. derived from human coronary arteries, human aorta, human pulmonary artery, human umbilical vein or microvascular endothelial cells, are cultured as a confluent monolayer, using standard methods. Some of the endothelial cells are then exposed to cytokines or another activating stimuli such as oxidized LDL, hyperglycemia, shear stress, or hypoxia (Moser et al. 1992). Some endothelial cells are not exposed to such stimuli and serve as controls. For example, the endothelial cell monolayer is incubated with culture medium containing 5 U/ml of human recombinant IL-1alpha or 10 ng/ml TNF (tumor necrosis factor), for a period of minutes to overnight. The culture medium composition is changed or the flask is sealed to induce hypoxia. In addition, tissue culture plate is rotated to induce sheer stress.

Human T-cells and/or monocytes are cultured in tissue culture flasks or plates, with LGM-3 media from Clonetics. Cells are incubated at 37 degree C, 5% CO2 and 95% humidity. These leukocytes are exposed to the activated or control endothelial layer by adding a suspension of leukocytes on to the endothelial cell monolayer. The endothelial cell monolayer is cultured on a tissue culture treated plate/ flask or on a microporous membrane. After a variable duration of exposures, the endothelial cells and leukocytes are harvested separately by treating all cells with trypsin and then sorting the endothelial cells from the leukocytes by magnetic affinity reagents to an endothelial cell specific marker such as PECAM-1 (Stem Cell Technologies). RNA is extracted from the isolated cells by standard techniques. Leukocyte RNA is labeled as described above, and hybridized to leukocyte candidate nucleotide library. Epithelial cell RNA is also labeled and hybridized to the leukocyte

candidate nucleotide library. Alternatively, the epithelial cell RNA is hybridized to a epithelial cell candidate nucleotide library, prepared according to the methods described for leukocyte candidate libraries, above.

Hybridization to candidate nucleotide libraries will reveal nucleotide sequences that are upregulated or down-regulated in leukocyte and/or epithelial cells undergoing adhesion. The
differentially regulated nucleotide sequences are further characterized, e.g. by isolating and sequencing
the full-length sequence, analysis of the DNA and predicted protein sequence, and functional
characterization of the protein product of the nucleotide sequence, as described above. Further
characterization may result in the identification of leukocyte adhesion specific target nucleotide
sequences, which may be candidate targets for regulation of the inflammatory process. Small molecule
or antibody inhibitors can be developed to inhibit the target nucleotide sequence function. Such
inhibitors are tested for their ability to inhibit leukocyte adhesion in the in vitro test described above.

Integrated systems

Integrated systems for the collection and analysis of expression profiles, and molecular signatures, as well as for the compilation, storage and access of the databases of the invention, typically include a digital computer with software including an instruction set for sequence searching and analysis, and, optionally, high-throughput liquid control software, image analysis software, data interpretation software, a robotic control armature for transferring solutions from a source to a destination (such as a detection device) operably linked to the digital computer, an input device (e.g., a computer keyboard) for entering subject data to the digital computer, or to control analysis operations or high throughput sample transfer by the robotic control armature. Optionally, the integrated system further comprises an image scanner for digitizing label signals from labeled assay components, e.g., labeled nucleic acid hybridized to a candidate library microarray. The image scanner can interface with image analysis software to provide a measurement of the presence or intensity of the hybridized label, i.e., indicative of an on/off expression pattern or an increase or decrease in expression.

Readily available computational hardware resources using standard operating systems are fully adequate, e.g., a PC (Intel x86 or Pentium chip- compatible DOS,TM OS2,TM WINDOWS,TM WINDOWS95,TM WINDOWS95,TM LINUX, or even Macintosh, Sun or PCs will suffice) for use in the integrated systems of the invention. Current art in software technology is similarly adequate (i.e., there are a multitude of mature programming languages and source code suppliers) for design, e.g., of an upgradeable open-architecture object-oriented heuristic algorithm, or instruction set for expression analysis, as described herein. For example, software for aligning or otherwise manipulating molecular signatures can be constructed by one of skill using a standard programming language such as Visual basic, Fortran, Basic, Java, or the like, according to the methods herein.

Various methods and algorithms, including genetic algorithms and neural networks, can be used to perform the data collection, correlation, and storage functions, as well as other desirable functions, as described herein. In addition, digital or analog systems such as digital or analog computer systems can control a variety of other functions such as the display and/or control of input and output files.

For example, standard desktop applications such as word processing software (e.g., Corel WordPerfectTM or Microsoft WordTM) and database software (e.g., spreadsheet software such as Corel Quattro ProTM, Microsoft ExcelTM, or database programs such as Microsoft AccessTM or ParadoxTM) can be adapted to the present invention by inputting one or more character string corresponding, e.g., to an expression pattern or profile, subject medical or historical data, molecular signature, or the like, into the software which is loaded into the memory of a digital system, and carrying out the operations indicated in an instruction set. For example, systems can include the foregoing software having the appropriate character string information, e.g., used in conjunction with a user interface in conjunction with a standard operating system such as a Windows, Macintosh or LINUX system. For example, an instruction set for manipulating strings of characters, either by programming the required operations into the applications or with the required operations performed manually by a user (or both). For example, specialized sequence alignment programs such as PILEUP or BLAST can also be incorporated into the systems of the invention, e.g., for alignment of nucleic acids or proteins (or corresponding character strings).

Software for performing the statistical methods required for the invention, e.g., to determine correlations between expression profiles and subsets of members of the diagnostic nucleotide libraries, such as programmed embodiments of the statistical methods described above, are also included in the computer systems of the invention. Alternatively, programming elements for performing such methods as principle component analysis (PCA) or least squares analysis can also be included in the digital system to identify relationships between data. Exemplary software for such methods is provided by Partek, Inc., St. Peter, Mo; at the web site partek.com.

Any controller or computer optionally includes a monitor which can include, e.g., a flat panel display (e.g., active matrix liquid crystal display, liquid crystal display), a cathode ray tube ("CRT") display, or another display system which serves as a user interface, e.g., to output predictive data. Computer circuitry, including numerous integrated circuit chips, such as a microprocessor, memory, interface circuits, and the like, is often placed in a casing or box which optionally also includes a hard disk drive, a floppy disk drive, a high capacity removable drive such as a writeable CD-ROM, and other common peripheral elements.

Inputting devices such as a keyboard, mouse, or touch sensitive screen, optionally provide for input from a user and for user selection, e.g., of sequences or data sets to be compared or otherwise manipulated in the relevant computer system. The computer typically includes appropriate software for receiving user instructions, either in the form of user input into a set parameter or data fields (e.g., to input relevant subject data), or in the form of preprogrammed instructions, e.g., preprogrammed for a variety of different specific operations. The software then converts these instructions to appropriate language for instructing the system to carry out any desired operation.

The integrated system may also be embodied within the circuitry of an application specific integrated circuit (ASIC) or programmable logic device (PLD). In such a case, the invention is embodied in a computer readable descriptor language that can be used to create an ASIC or PLD. The integrated system can also be embodied within the circuitry or logic processors of a variety of other digital apparatus, such as PDAs, laptop computer systems, displays, image editing equipment, etc.

The digital system can comprise a learning component where expression profiles, and relevant subject data are compiled and monitored in conjunction with physical assays, and where correlations, e.g., molecular signatures with predictive value for a disease, are established or refined. Successful and unsuccessful combinations are optionally documented in a database to provide justification/preferences for user-base or digital system based selection of diagnostic nucleotide sets with high predictive accuracy for a specified disease or condition.

The integrated systems can also include an automated workstation. For example, such a workstation can prepare and analyze leukocyte RNA samples by performing a sequence of events including: preparing RNA from a human blood sample; labeling the RNA with an isotopic or non-isotopic label; hybridizing the labeled RNA to at least one array comprising all or part of the candidate library; and detecting the hybridization pattern. The hybridization pattern is digitized and recorded in the appropriate database.

Automated RNA preparation tool

The invention also includes an automated RNA preparation tool for the preparation of mononuclear cells from whole blood samples, and preparation of RNA from the mononuclear cells. In a preferred embodiment, the use of the RNA preparation tool is fully automated, so that the cell separation and RNA isolation would require no human manipulations. Full automation is advantageous because it minimizes delay, and standardizes sample preparation across different laboratories. This standardization increases the reproducibility of the results.

The processes performed by the RNA preparation tool of the invention are as follows. A primary component of the device is a centrifuge. Tubes of whole blood containing a density gradient solution, transcription/translation inhibitors, and a gel barrier that separates erythrocytes from mononuclear cells and serum after centrifugation are placed in the centrifuge. The barrier is permeable to erythrocytes and granulocytes during centrifugation, but does not allow mononuclear cells to pass through (or the barrier substance has a density such that mononuclear cells remain above the level of the barrier during the centrifugation). After centrifugation, the erythrocytes and granulocytes are trapped beneath the barrier, facilitating isolation of the mononuclear cell and serum layers. A mechanical arm removes the tube and inverts it to mix the mononuclear cell layer and the serum. The arm next pours the supernatant into a fresh tube, while the erythrocytes and granulocytes remained below the barrier. Alternatively, a needle is used to aspirate the supernatant and transfer it to a fresh tube. The mechanical arms of the device opens and closes lids, dispenses PBS to aid in the collection of the mononuclear cells by centrifugation, and moves the tubes in and out of the centrifuge. Following centrifugation, the supernatant is poured off or removed by a vacuum device, leaving an isolated mononuclear cell pellet. Purification of the RNA from the cells is performed automatically, with lysis buffer and other purification solutions automatically dispensed and removed before and after centrifugation steps. The result is a purified RNA solution. In another embodiment, RNA isolation is performed using a column or filter method. In yet another embodiment, the invention includes an onboard homogenizer for use in cell lysis.

Other automated systems

Automated and/or semi-automated methods for solid and liquid phase high-throughput sample preparation and evaluation are available, and supported by commercially available devices. For example, robotic devices for preparation of nucleic acids from bacterial colonies, e.g., to facilitate production and characterization of the candidate library include, for example, an automated colony picker (e.g., the Q-bot, Genetix, U.K.) capable of identifying, sampling, and inoculating up to 10,000/4 hrs different clones into 96 well microtiter dishes. Alternatively, or in addition, robotic systems for liquid handling are available from a variety of sources, e.g., automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Beckman Coulter, Inc. (Fullerton, CA)) which mimic the manual operations performed by a scientist. Any of the above devices are suitable for use with the present invention, e.g., for high-throughput analysis of library components or subject leukocyte samples. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art.

High throughput screening systems that automate entire procedures, e.g., sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the relevant assay are commercially available. (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. Similarly, arrays and array readers are available, e.g., from Affymetrix, PE Biosystems, and others.

The manufacturers of such systems provide detailed protocols the various high throughput. Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

A variety of commercially available peripheral equipment, including, e.g., optical and fluorescent detectors, optical and fluorescent microscopes, plate readers, CCD arrays, phosphorimagers, scintillation counters, phototubes, photodiodes, and the like, and software is available for digitizing, storing and analyzing a digitized video or digitized optical or other assay results, e.g., using PC (Intel x86 or pentium chip- compatible DOSTM, OS2TM WINDOWSTM, WINDOWS NTTM or WINDOWS95TM based machines), MACINTOSHTM, or UNIX based (e.g., SUNTM work station) computers.

Embodiment in a web site.

The methods described above can be implemented in a localized or distributed computing environment. For example, if a localized computing environment is used, an array comprising a candidate nucleotide library, or diagnostic nucleotide set, is configured in proximity to a detector, which is, in turn, linked to a computational device equipped with user input and output features.

In a distributed environment, the methods can be implemented on a single computer with multiple processors or, alternatively, on multiple computers. The computers can be linked, e.g. through a shared bus, but more commonly, the computer(s) are nodes on a network. The network can be

generalized or dedicated, at a local level or distributed over a wide geographic area. In certain embodiments, the computers are components of an intra-net or an internet.

The predictive data corresponding to subject molecular signatures (e.g., expression profiles, and related diagnostic, prognostic, or monitoring results) can be shared by a variety of parties. In particular, such information can be utilized by the subject, the subject's health care practitioner or provider, a company or other institution, or a scientist. An individual subject's data, a subset of the database or the entire database recorded in a computer readable medium can be accessed directly by a user by any method of communication, including, but not limited to, the internet. With appropriate computational devices, integrated systems, communications networks, users at remote locations, as well as users located in proximity to, e.g., at the same physical facility, the database can access the recorded information. Optionally, access to the database can be controlled using unique alphanumeric passwords that provide access to a subset of the data. Such provisions can be used, e.g., to ensure privacy, anonymity, etc.

Typically, a client (e.g., a patient, practitioner, provider, scientist, or the like) executes a Web browser and is linked to a server computer executing a Web server. The Web browser is, for example, a program such as IBM's Web Explorer, Internet explorer, NetScape or Mosaic, or the like. The Web server is typically, but not necessarily, a program such as IBM's HTTP Daemon or other WWW daemon (e.g., LINUX-based forms of the program). The client computer is bi-directionally coupled with the server computer over a line or via a wireless system. In turn, the server computer is bi-directionally coupled with a website (server hosting the website) providing access to software implementing the methods of this invention.

A user of a client connected to the Intranet or Internet may cause the client to request resources that are part of the web site(s) hosting the application(s) providing an implementation of the methods described herein. Server program(s) then process the request to return the specified resources (assuming they are currently available). A standard naming convention has been adopted, known as a Uniform Resource Locator ("URL"). This convention encompasses several types of location names, presently including subclasses such as Hypertext Transport Protocol ("http"), File Transport Protocol ("ftp"), gopher, and Wide Area Information Service ("WAIS"). When a resource is downloaded, it may include the URLs of additional resources. Thus, the user of the client can easily learn of the existence of new resources that he or she had not specifically requested.

Methods of implementing Intranet and/or Intranet embodiments of computational and/or data access processes are well known to those of skill in the art and are documented, e.g., in ACM Press, pp. 383-392; ISO-ANSI, Working Draft, "Information Technology-Database Language SQL", Jim Melton, Editor, International Organization for Standardization and American National Standards Institute, Jul. 1992; ISO Working Draft, "Database Language SQL-Part 2:Foundation (SQL/Foundation)", CD9075-2:199.chi.SQL, Sep. 11, 1997; and Cluer et al. (1992) A General Framework for the Optimization of Object-Oriented Queries, Proc SIGMOD International Conference on Management of Data, San Diego, California, Jun. 2-5, 1992, SIGMOD Record, vol. 21, Issue 2, Jun., 1992; Stonebraker, M., Editor;. Other resources are available, e.g., from Microsoft, IBM, Sun and other software development companies.

Using the tools described above, users of the reagents, methods and database as discovery or diagnostic tools can query a centrally located database with expression and subject data. Each submission of data adds to the sum of expression and subject information in the database. As data is added, a new correlation statistical analysis is automatically run that incorporates the added clinical and expression data. Accordingly, the predictive accuracy and the types of correlations of the recorded molecular signatures increases as the database grows.

For example, subjects, such as patients, can access the results of the expression analysis of their leukocyte samples and any accrued knowledge regarding the likelihood of the patient's belonging to any specified diagnostic (or prognostic, or monitoring, or risk group), i.e., their expression profiles, and/or molecular signatures. Optionally, subjects can add to the predictive accuracy of the database by providing additional information to the database regarding diagnoses, test results, clinical or other related events that have occurred since the time of the expression profiling. Such information can be provided to the database via any form of communication, including, but not limited to, the internet. Such data can be used to continually define (and redefine) diagnostic groups. For example, if 1000 patients submit data regarding the occurrence of myocardial infarction over the 5 years since their expression profiling, and 300 of these patients report that they have experienced a myocardial infarction and 700 report that they have not, then the 300 patients define a new "group A." As the algorithm is used to continually query and revise the database, a new diagnostic nucleotide set that differentiates groups A and B (i.e., with and without myocardial infarction within a five year period) is identified. This newly defined nucleotide set is then be used (in the manner described above) as a test that predicts the occurrence of myocardial infarction over a five-year period. While submission directly by the patient is exemplified above, any individual with access and authority to submit the relevant data e.g., the patient's physician, a laboratory technician, a health care or study administrator, or the like, can do so.

As will be apparent from the above examples, transmission of information via the internet (or via an intranet) is optionally bi-directional. That is, for example, data regarding expression profiles, subject data, and the like are transmitted via a communication system to the database, while information regarding molecular signatures, predictive analysis, and the like, are transmitted from the database to the user. For example, using appropriate configurations of an integrated system including a microarray comprising a diagnostic nucleotide set, a detector linked to a computational device can directly transmit (locally or from a remote workstation at great distance, e.g., hundreds or thousands of miles distant from the database) expression profiles and a corresponding individual identifier to a central database for analysis according to the methods of the invention. According to, e.g., the algorithms described above, the individual identifier is assigned to one or more diagnostic (or prognostic, or monitoring, etc.) categories. The results of this classification are then relayed back, via, e.g., the same mode of communication, to a recipient at the same or different internet (or intranet) address.

Kits

The present invention is optionally provided to a user as a kit. Typically, a kit contains one or more diagnostic nucleotide sets of the invention. Alternatively, the kit contains the candidate

nucleotide library of the invention. Most often, the kit contains a diagnostic nucleotide probe set, or other subset of a candidate library, (e.g., as a cDNA, oligonucleotide or antibody microarray or reagents for performing an assay on a diagnostic gene set using any expression profiling technology), packaged in a suitable container. The kit may further comprise, one or more additional reagents, e.g., substrates, labels, primers, for labeling expression products, tubes and/or other accessories, reagents for collecting blood samples, buffers, e.g., erythrocyte lysis buffer, leukocyte lysis buffer, hybridization chambers, cover slips, etc., as well as a software package, e.g., including the statistical methods of the invention, e.g., as described above, and a password and/or account number for accessing the compiled database. The kit optionally further comprises an instruction set or user manual detailing preferred methods of using the diagnostic nucleotide sets in the methods of the invention. In one embodiment, the kit may include contents useful for the discovery of diagnostic nucleotide sets using microarrays. The kit may include sterile, endotoxin and RNAse free blood collection tubes. The kit may also include alcohol swabs, tourniquet, blood collection set, and/or PBS (phosphate buffer saline; needed when method of example 8 is used to derived mononuclear RNA). The kit may also include cell lysis buffer. The kit may include RNA isolation kit, substrates for labeling of RNA (may vary for various expression profiling techniques). The kit may also include materials for fluorescence microarray expression profiling, including one or more of the following: reverse transcriptase and 10x RT buffer, T7(dT)24 primer (primer with T7 promoter at 5' end), DTT, deoxynucleotides, optionally 100mM each, RNAse inhibitor, second strand cDNA buffer, DNA polymerase, Rnase H, T7 RNA polymerase ribonucleotides, in vitro transcription buffer, and/or Cy3 and Cy5 labeled ribonucleotides. The kit may also include microarrays containing candidate gene libraries, cover slips for slides, and/or hybridization chambers. The kit may further include software package for identification of diagnostic gene set from data, that contains statistical methods, and/or allows alteration in desired sensitivity and specificity of gene set. The software may further facilitate access to and data analysis by centrally a located database server. The software may further include a password and account number to access central database server. In addition, the kit may include a kit user manual.

In another embodiment, the kit may include contents useful for the application of diagnostic nucleotide sets using microarrays. The kit may include sterile, endotoxin and/or RNAse free blood collection tubes. The kit may also include, alcohol swabs, tourniquet, and/or a blood collection set. The kit may further include PBS (phosphate buffer saline; needed when method of example 7 is used to derived mononuclear RNA), cell lysis buffer, and/or an RNA isolation kit. In addition, the kit may include substrates for labeling of RNA (may vary for various expression profiling techniques). For fluorescence microarray expression profiling, components may include reverse transcriptase and 10x RT buffer, T7(dT)24 primer (primer with T7 promoter at 5' end), DTT, deoxynucleotides (optionally 100mM each), RNAse inhibitor, second strand cDNA buffer, DNA polymerase, Rnase H, T7 RNA polymerase, ribonucleotides, in vitro transcription buffer, and/or Cy3 and Cy5 labeled ribonucleotides. The kit may further include microarrays containing candidate gene libraries. The kit may also include cover slips for slides, and/or hybridization chambers. The kit may include a software package for identification of diagnostic gene set from data. The software package may contain statistical methods, allow alteration in desired sensitivity and specificity of gene set, and/or facilitate access to and data

analysis by centrally located database server. The software package may include a password and account number to access central database server. In addition, the kit may include a kit user manual.

In another embodiment, the kit may include contents useful for the application of diagnostic nucleotide sets using real-time PCR. This kit may include terile, endotoxin and/or RNAse free blood collection tubes. The kit may further include alcohol swabs, tourniquet, and/or a blood collection set. The kit may also include PBS (phosphate buffer saline; needed when method of example 7 is used to derived mononuclear RNA). In addition, the kit may include cell lysis buffer and/or an RNA isolation kit. The kit may laso include substrates for real time RT-PCR, which may vary for various real-time PCR techniques, including poly dT primers, random hexamer primers, reverse Transcriptase and RT buffer, DTT, deoxynucleotides 100 mM, RNase H, primer pairs for diagnostic and control gene set, 10x PCR reaction buffer, and/or Taq DNA polymerase. The kit may also include fluorescent probes for diagnostic and control gene set (alternatively, fluorescent dye that binds to only double stranded DNA). The kit may further include reaction tubes with or without barcode for sample tracking, 96-well plates with barcode for sample identification, one barcode for entire set, or individual barcode per reaction tube in plate. The kit may also include a software package for identification of diagnostic gene set from data, and /or statistical methods. The software package may allow alteration in desired sensitivity and specificity of gene set, and/or facilitate access to and data analysis by centrally located database server. The kit may include a password and account number to access central database server. Finally, the kit may include a kit user manual.

This invention will be better understood by reference to the following non-limiting Examples:

Examples:

- Example 1: Preparation of RNA from mononuclear cells for expression profiling
- Example 2: Preparation of Universal Control RNA for use in leukocyte expression profiling
- Example 3: Identification of diagnostic oligonucleotide sets for use in diagnosis of rheumatoid arthritis.
- Example 4: Identification of diagnostic oligonucleotide sets for diagnosis of Systemic Lupus
- Erythematosis
- Example 5: Design of oligonucleotide probes.
- Example 6: Production of an array of 8,000 spotted 50 mer oligonucleotides.
- Example 7: Amplification, labeling, and hybridization of total RNA to an oligonucleotide microarray
- Example 8: Real-time PCR validation of array expression results
- Example 9: Correlation and Classification Analysis
- Example 10: Assay sample preparation
- Example 11: Identification and validation of gene expression markers for diagnosis and monitoring of lupus and autoimmune diseases.

Examples

Example 1: Preparation of RNA from mononuclear cells for expression profiling

Blood was isolated from the subject for leukocyte expression profiling using the following methods:

Two tubes were drawn per patient. Blood was drawn from either a standard peripheral venous blood draw or directly from a large-bore intra-arterial or intravenous catheter inserted in the femoral artery, femoral vein, subclavian vein or internal jugular vein. Care was taken to avoid sample contamination with heparin from the intravascular catheters, as heparin can interfere with subsequent RNA reactions.

For each tube, 8 ml of whole blood was drawn into a tube (CPT, Becton-Dickinson order #362753) containing the anticoagulant Citrate, 25°C density gradient solution (e.g. Ficoll, Percoll) and a polyester gel barrier that upon centrifugation was permeable to RBCs and granulocytes but not to mononuclear cells. The tube was inverted several times to mix the blood with the anticoagulant. The tubes were centrifuged at 1750xg in a swing-out rotor at room temperature for 20 minutes. The tubes were removed from the centrifuge and inverted 5-10 times to mix the plasma with the mononuclear cells, while trapping the RBCs and the granulocytes beneath the gel barrier. The plasma/mononuclear cell mix was decanted into a 15ml tube and 5ml of phosphate-buffered saline (PBS) is added. The 15ml tubes were spun for 5 minutes at 1750xg to pellet the cells. The supernatant was discarded and 1.8 ml of RLT lysis buffer is added to the mononuclear cell pellet. The buffer and cells were pipetted up and down to ensure complete lysis of the pellet. The cell lysate was frozen and stored until it is convenient to proceed with isolation of total RNA.

Total RNA was purified from the lysed mononuclear cells using the Qiagen Rneasy Miniprep kit, as directed by the manufacturer (10/99 version) for total RNA isolation, including homogenization (Qiashredder columns) and on-column DNase treatment. The purified RNA was eluted in 50ul of water.

Some samples were prepared by a different protocol, as follows:

Two 8 ml blood samples were drawn from a peripheral vein into a tube (CPT, Becton-Dickinson order #362753) containing anticoagulant (Citrate), 25°C density gradient solution (Ficoll) and a polyester gel barrier that upon centrifugation is permeable to RBCs and granulocytes but not to mononuclear cells. The mononuclear cells and plasma remained above the barrier while the RBCs and granulocytes were trapped below. The tube was inverted several times to mix the blood with the anticoagulant, and the tubes were subjected to centrifugation at 1750xg in a swing-out rotor at room temperature for 20 min. The tubes were removed from the centrifuge, and the clear plasma layer above the cloudy mononuclear cell layer was aspirated and discarded. The cloudy mononuclear cell layer was aspirated, with care taken to rinse all of the mononuclear cells from the surface of the gel barrier with PBS (phosphate buffered saline). Approximately 2 mls of mononuclear cell suspension was transferred to a 2ml microcentrifuge tube, and centrifuged for 3min. at 16,000 rpm in a microcentrifuge to pellet the cells. The supernatant was discarded and 1.8 ml of RLT lysis buffer (Qiagen) were added to the mononuclear cell pellet, which lysed the cells and inactivated Rnases. The cells and lysis buffer were

pipetted up and down to ensure complete lysis of the pellet. Cell lysate was frozen and stored until it was convenient to proceed with isolation of total RNA.

RNA samples were isolated from 8 mL of whole blood. Yields ranged from 2 μ g to 20 μ g total RNA for 8mL blood. A260/A280 spectrophotometric ratios were between 1.6 and 2.0, indicating purity of sample. 2ul of each sample were run on an agarose gel in the presence of ethicium bromide. No degradation of the RNA sample and no DNA contamination were visible.

In some cases, specific subsets of mononuclear cells were isolated from peripheral blood of human subjects. When this was done, the StemSep cell separation kits (manual version 6.0.0) were used from StemCell Technologies (Vancouver, Canada). This same protocol can be applied to the isolation of T cells, CD4 T cells, CD8 T cells, B cells, monocytes, NK cells and other cells. Isolation of cell types using negative selection with antibodies may be desirable to avoid activation of target cells by antibodies.

Example 2: Preparation of Universal Control RNA for use in leukocyte expression profiling

Control RNA was prepared using total RNA from Buffy coats and/or total RNA from enriched mononuclear cells isolated from Buffy coats, both with and without stimulation with ionomycin and PMA. The following control RNAs were prepared:

Control 1: Buffy Coat Total RNA

Control 2: Mononuclear cell Total RNA

Control 3: Stimulated buffy coat Total RNA

Control 4: Stimulated mononuclear Total RNA

Control 5: 50% Buffy coat Total RNA / 50% Stimulated buffy coat Total RNA

Control 6: 50% Mononuclear cell Total RNA / 50% Stimulated Mononuclear Total RNA.

Some samples were prepared using the following protocol: Buffy coats from 38 individuals were obtained from Stanford Blood Center. Each buffy coat is derived from ~350 mL whole blood from one individual. 10 ml buffy coat was removed from the bag, and placed into a 50 ml tube. 40 ml of Buffer EL (Qiagen) was added, the tube was mixed and placed on ice for 15 minutes, then cells were pelleted by centrifugation at 2000xg for 10 minutes at 4°C. The supernatant was decanted and the cell pellet was re-suspended in 10 ml of Qiagen Buffer EL. The tube was then centrifuged at 2000xg for 10 minutes at 4°C. The cell pellet was then re-suspended in 20 ml TRIZOL (GibcoBRL) per Buffy coat sample, the mixture was shredded using a rotary homogenizer, and the lysate was then frozen at —80°C prior to proceeding to RNA isolation.

Other control RNAs were prepared from enriched mononuclear cells prepared from Buffy coats. Buffy coats from Stanford Blood Center were obtained, as described above. 10 ml buffy coat was added to a 50 ml polypropylene tube, and 10 ml of phosphate buffer saline (PBS) was added to each tube. A polysucrose (5.7 g/dL) and sodium diatrizoate (9.0 g/dL) solution at a 1.077 +/-0.0001 g/ml density solution of equal volume to diluted sample was prepared (Histopaque 1077, Sigma cat. no 1077-1). This and all subsequent steps were performed at room temperature. 15 ml of diluted buffy coat/PBS was layered on top of 15 ml of the histopaque solution in a 50 ml tube. The tube was centrifuged at 400xg for 30 minutes at room temperature. After centrifugation, the upper layer of the solution to within 0.5 cm of the opaque interface containing the mononuclear cells was discarded. The

opaque interface was transferred into a clean centrifuge tube. An equal volume of PBS was added to each tube and centrifuged at 350xg for 10 minutes at room temperature. The supernatant was discarded. 5 ml of Buffer EL (Qiagen) was used to resuspend the remaining cell pellet and the tube was centrifuged at 2000xg for 10 minutes at room temperature. The supernatant was discarded. The pellet was resuspended in 20 ml of TRIZOL (GibcoBRL) for each individual buffy coat that was processed. The sample was homogenized using a rotary homogenizer and frozen at -80C until RNA was isolated.

RNA was isolated from frozen lysed Buffy coat samples as follows: frozen samples were thawed, and 4 ml of chloroform was added to each buffy coat sample. The sample was mixed by vortexing and centrifuged at 2000xg for 5 minutes. The aqueous layer was moved to new tube and then repurified by using the RNeasy Maxi RNA clean up kit, according to the manufacturer's instruction (Qiagen, PN 75162). The yield, purity and integrity were assessed by spectrophotometer and gel electrophoresis.

Some samples were prepared by a different protocol, as follows. The further use of RNA prepared using this protocol is described in Example 7.

50 whole blood samples were randomly selected from consented blood donors at the Stanford Medical School Blood Center. Each buffy coat sample was produced from ~350 mL of an individual's donated blood. The whole blood sample was centrifuged at ~4,400 x g for 8 minutes at room temperature, resulting in three distinct layers: a top layer of plasma, a second layer of buffy coat, and a third layer of red blood cells. 25 ml of the buffy coat fraction was obtained and diluted with an equal volume of PBS (phosphate buffered saline). 30 ml of diluted buffy coat was layered onto 15 ml of sodium diatrizoate solution adjusted to a density of 1.077+/-0.001 g/ml (Histopaque 1077, Sigma) in a 50mL plastic tube. The tube was spun at 800 g for 10 minutes at room temperature. The plasma layer was removed to the 30 ml mark on the tube, and the mononuclear cell layer removed into a new tube and washed with an equal volume of PBS, and collected by centrifugation at 2000 g for 10 minutes at room temperature. The cell pellet was resuspended in 10 ml of Buffer EL (Qiagen) by vortexing and incubated on ice for 10 minutes to remove any remaining erthythrocytes. The mononuclear cells were spun at 2000 g for 10 minutes at 4 degrees Celsius. The cell pellet was lysed in 25 ml of a phenol/guanidinium thiocyanate solution (TRIZOL Reagent, Invitrogen). The sample was homogenized using a PowerGene 5 rotary homogenizer (Fisher Scientific) and Omini disposable generator probes (Fisher Scientific). The Trizol lysate was frozen at -80 degrees C until the next step.

The samples were thawed out and incubated at room temperature for 5 minutes. 5 ml chloroform was added to each sample, mixed by vortexing, and incubated at room temperature for 3 minutes. The aqueous layers were transferred to new 50 ml tubes. The aqueous layer containing total RNA was further purified using the Qiagen RNeasy Maxi kit (PN 75162), per the manufacturer's protocol (October 1999). The columns were eluted twice with 1 ml Rnase-free water, with a minute incubation before each spin. Quantity and quality of RNA was assessed using standard methods. Generally, RNA was isolated from batches of 10 buffy coats at a time, with an average yield per buffy coat of 870 µg, and an estimated total yield of 43.5 mg total RNA with a 260/280 ratio of 1.56 and a 28S/18S ratio of 1.78.

Quality of the RNA was tested using the Agilent 2100 Bioanalyzer using RNA 6000 microfluidics chips. Analysis of the electrophorgrams from the Bioanalyzer for five different batches demonstrated the reproducibility in quality between the batches.

Total RNA from all five batches were combined and mixed in a 50 ml tube, then aliquoted as follows: 2×10 ml aliquots in 15 ml tubes, and the rest in 100 μ l aliquots in 1.5 ml microcentrifuge tubes. The aliquots gave highly reproducible results with respect to RNA purity, size and integrity. The RNA was stored at -80° C.

Test hybridization of Reference RNA.

When compared with BC38 and Stimulated mononuclear reference samples, the R50 performed as well, if not better than the other reference samples as shown in Figure 4.

In an analysis of hybridizations, where the R50 targets were fluorescently labeled with Cy-5 using methods described herein and the amplified and labeled aRNA was hybridized (as in example 7) to the olignoucleotide array described in example 6. The R50 detected 97.3% of probes with a Signal to Noise ratio (S/N) of greater than three and 99.9 % of probes with S/N greater one.

Example 3: Identification of diagnostic oligonucleotides and oligonucleotide sets for use in monitoring treatment and/or progression of Rheumatoid arthritis

Rheumatoid arthritis (hereinafter, "RA") is a chronic and debilitating inflammatory arthritis. The diagnosis of RA is made by clinical criteria and radiographs. A new class of medication, TNF blockers, are effective, but the drugs are expensive, have side effects and not all patients respond to treatment. In addition, relief of disease symptoms does not always correlate with inhibition of joint destruction. For these reasons, an alternative mechanism for the titration of therapy is needed.

An observational study was conducted in which a cohort of patients meeting American College of Rheumatology (hereinafter "ARC") criteria for the diagnosis of RA was identified. Amett et al. (1988) Arthritis Rheum 31:315-24. Patients gave informed consent and a peripheral blood mononuclear cell RNA sample was obtained by the methods as described herein. When available, RNA samples were also obtained from surgical specimens of bone or synovium from effected joints, and synovial fluid. Also, T-cells were isolated from the peripheral blood for some patients for expression analysis. This was done using the protocol given in Example 1.

From each patient, the following clinical information was obtained if available: Demographic information; information relating to the ACR criteria for RA; presence or absence of additional diagnoses of inflammatory and non-inflammatory conditions; data from laboratory test, including complete blood counts with differentials, CRP, ESR, ANA, Serum IL6, Soluble CD40 ligand, LDL, HDL, Anti-DNA antibodies, rheumatoid factor, C3, C4, serum creatinine and any medication levels; data from surgical procedures such as gross operative findings and pathological evaluation of resected tissues and biopsies; information on pharmacological therapy and treatment changes; clinical diagnoses of disease "flare"; hospitalizations; quantitative joint exams; results from health assessment questionnaires (HAQs); other clinical measures of patient symptoms and disability; physical examination results and radiographic data assessing joint involvement, synovial thickening, bone loss and erosion and joint space narrowing and deformity. In some cases, data includes pathological evaluation of synovial memebranes and joint tissues from RA and control patients. Pathology scoring

systems were used to determine disease category, inflammation, type of inflammatory infiltrate, cellular and makeup of the synovial inflammation.

For some specimens of synovium, mononuclear cells or subsets of mononuclear cells (such as T cells) can be isolated for expression profiling. The relative number of lyphocyte subsets for some specimens can be determined by fluorescence activated cell sorting. Examples are determination of the CD4/CD8 T-cell ratio for a specimen. This information can be used as a variable to correlate to other outcomes or as an outcome for correlation analysis.

From these data, measures of improvement in RA are derived as exemplified by the ACR 20% and 50% response/improvement rates (Felson et al. 1996). Measures of disease activity over some period of time is derived from these data as are measures of disease progression. Serial radiography of effected joints is used for objective determination of progression (e.g., joint space narrowing, periarticular osteoporosis, synovial thickening). Disease activity is determined from the clinical scores, medical history, physical exam, lab studies, surgical and pathological findings.

The collected clinical data (disease criteria) is used to define patient or sample groups for correlation of expression data. Patient groups are identified for comparison, for example, a patient group that possesses a useful or interesting clinical distinction, verses a patient group that does not possess the distinction. Examples of useful and interesting patient distinctions that can be made on the basis of collected clinical data are listed here:

Samples from patients during a clinically diagnosed RA flare versus samples from these same or different patients while they are asymptomatic.

Samples from patients who subsequently have high measures of disease activity versus samples from those same or different patients who have low subsequent disease activity.

Samples from patients who subsequently have high measures of disease progression versus samples from those same or different patients who have low subsequent disease progression.

Samples from patients who subsequently respond to a given medication or treatment regimen versus samples from those same or different patients who subsequently do not respond to a given medication or treatment regimen (for example, TNF pathway blocking medications).

Samples from patients with a diagnosis of osteoarthritis versus patients with rheumatoid arthritis.

Samples from patients with tissue biopsy results showing a high degree of inflammation versus samples from patients with lesser degrees of histological evidence of inflammation on biopsy.

Expression profiles correlating with progression of RA are identified. Subsets of the candidate library (or a previously identified diagnostic nucleotide set) are identified, according to the above procedures, that have predictive value for the progression of RA.

Diagnostic nucleotide set(s) are identified which predict respond to TNF blockade. Patients are profiled before and during treatment with these medications. Patients are followed for relief of symptoms, side effects and progression of joint destruction, e.g., as measured by hand radiographs. Expression profiles correlating with response to TNF blockade are identified. Subsets of the candidate library (or a previously identified diagnostic nucleotide set) are identified, according to the above procedures that have predictive value for response to TNF blockade.

Example 4: Identification of diagnostic oligonucleotide and oligonucleotide sets for diagnosis of Systemic Lupus Erythematosis

SLE is a chronic, systemic inflammatory disease characterized by dysregulation of the immune system. Clinical manifestations affect every organ system and include skin rash, renal dysfunction, CNS disorders, arthralgias and hematologic abnormalities. SLE clinical manifestations tend to both recur intermittently (or "flare") and progress over time, leading to permanent end-organ damage.

An observational study was conducted in which a cohort of patients meeting American College of Rheumatology (hereinafter "ACR") criteria for the diagnosis of SLE were identified. See Tan et al. (1982) <u>Arthritis Rheum</u> 25:1271-7. Patients gave informed consent and a peripheral blood mononuclear cell RNA sample or a peripheral T cell sample was obtained by the methods as described in example 1.

From each patient, the following clinical information was obtained if available: Demographic information, ACR criteria for SLE, additional diagnoses of inflammatory and non-inflammatory conditions, data from laboratory testing including complete blood counts with differentials, CRP, ESR, ANA, Serum IL6, Soluble CD40 ligand, LDL, HDL, Anti-DNA antibodies, rheumatoid factor, C3, C4, serum creatinine (and other measures of renal dysfunction), medication levels, data from surgical procedures such as gross operative findings and pathological evaluation of resected tissues and biopsies (e.g., renal, CNS), information on pharmacological therapy and treatment changes, clinical diagnoses of disease "flare", hospitalizations, quantitative joint exams, results from health assessment questionnaires (HAQs), SLEDAIs (a clinical score for SLE activity that assess many clinical variables; Bombadier C, Gladman DD, Urowitz MB, Caron D, Chang CH and the Committee on Prognosis Studies in SLE: Derivation of the SLEDAI for Lupus Patients. Arthritis Rheum 35:630-640, 1992), other clinical measures of patient symptoms and disability, physical examination results and carotid ultrasonography.

The collected clinical data (disease criteria) is used to define patient or sample groups for correlation of expression data. Patient groups are identified for comparison, for example, a patient group that possesses a useful or interesting clinical distinction, verses a patient group that does not possess the distinction. Measures of disease activity in SLE are derived from the clinical data described above to divide patients (and patient samples) into groups with higher and lower disease activity over some period of time or at any one point in time. Such data are SLEDAI scores and other clinical scores, levels of inflammatory markers or complement, number of hospitalizations, medication use and changes, biopsy results and data measuring progression of end-organ damage or end-organ damage, including progressive renal failure, carotid atherosclerosis, and CNS dysfunction.

Expression profiles correlating with progression of SLE are identified, including expression profiles corresponding to end-organ damage and progression of end-organ damage. Expression profiles are identified predicting disease progression or disease "flare", response to treatment or likelihood of response to treatment, predict likelihood of "low" or "high" disease measures (optionally described using the SLEDAI score), and presence or likelihood of developing premature carotid

atherosclerosis. Subsets of the candidate library (or a previously identified diagnostic nucleotide set) are identified, according to the above procedures that have predictive value for the progression of SLE.

Further examples of useful and interesting patient distinctions that can be made on the basis of collected clinical data are listed here. Samples can be grouped and groups are compared to discover diagnostic gene sets:

- 1. Samples from patients during a clinically diagnosed SLE flare versus samples from these same or different patients while they are asymptomatic or while they have a documented infection.
- Samples from patients who subsequently have high measures of disease activity versus samples from those same or different patients who have low subsequent disease activity.
- 3. Samples from patients who subsequently have high measures of disease progression versus samples from those same or different patients who have low subsequent disease progression.
- 4. Samples from patients who subsequently respond to a given medication or treatment regimen versus samples from those same or different patients who subsequently do not respond to a given medication or treatment regimen.
- 5. Samples from patients with premature carotid atherosclerosis on ultrasonography versus patients with SLE without premature atherosclerosis.

Identification of a diagnostic oligonucleotide or oligonucleotide set for diagnosis of lupus

Mononuclear RNA samples were collected from patients with SLE and patients with Rheumatoid or Osteoarthritis (RA and OA) or controls using the protocol described in example 1. The patient diagnoses were determined using standard diagnostic algorithms such as those that are employed by the American College of Rheumatology (see example See Tan et al. (1982) Arthritis Rheum 25:1271-7; Arnett et al. (1988) Arthritis Rheum 31:315-24).

32 samples were included in the analysis. 15 samples were derived from patients with a clinical diagnosis of SLE and the remainder were derived from patients with RA (9), OA (4) and subjects without known disease (4) who served as controls. Samples from patients with SLE or RA were classified as "Active" or "Controlled" (with respect to disease activity) by the patient's physician based on objective and subjective criteria, such as patient history, physical exam and lab studies. An attempt was made to match SLE patients and controls with respect to important variables such as medication use, sex, age and secondary diagnoses.

After preparation of RNA (example 1), amplification, labeling, hybridization, scanning, feature extraction and data processing were done as described in Example 7 using the oligonucleotide microarrays described in Example 6. The resulting log ratio of expression of Cy3 (patient sample)/ Cy5 (R50 reference RNA) was used for analysis.

Initially, significance analysis for microarrays (SAM, Tusher 2001, Example 9) was used to discover that were differentially expressed between 7 of the Lupus samples and 17 control samples. 1 gene was identified that was expressed at a higher level in the lupus patients than in all controls. This gene had a 0.5% false detection rate using SAM. This means that there is statistically, a 99.5% chance that the gene is truly differentially expressed between the Lupus and control samples. This gene was oligonucleotide and SEQ ID # \$18. The oligonucleotide:

GCCTCTTGCTTGGCGTGATAACCCTGTCATCTTCCCAAAGCTCATTTATG detects a specific human gene: sialyltransferase (SIAT4A), Unigene: Hs.301698

Locus: NM_003033, GI: 4506950. Expression ratios for the gene are given for each sample in Figure 5A-B. The average fold change in expression between SLE and controls was 1.48.

When a larger data set was used, 15 SLE samples were compared to 17 controls. Using SAM, genes were identified as significantly differentially expressed between Lupus and controls. Supervised harvesting classification (X-Mine, Brisbane, CA) and CART (Salford Systems, San Diego CA) were also used on the same data to determine which set of genes best distinguish SLE from control samples (Example 9).

CART was used to build a decision tree for classification of samples as lupus or not lupus using the gene expression data from the arrays. The analysis identitifies sets of genes that can be used together to accurately identify samples derived from lupus patients. The set of genes and the identified threshold expression levels for the decision tree are referred to as "models". Multiple models for diagnosis of Lupus were derived by using different settings and parameters for the CART algorithm and using different sets of genes in the analysis. When using CART, it may be desirable to limit the number of independent variables. In the case of the genes on the arrays, a subset of ~8000 can be selected for analysis in CART based on significant differential expression discovered by using SAM or some other algorithm.

Model I was based on a data set consisting of thirty-two samples (fifteen SLE and seventeen non-SLE). These samples were used to derive the model and are referred to a the "training set'. Model I used the expression values for twenty-nine genes, which were found to be most significant in differentiating SLE and non-SLE samples in the analysis using SAM described above. SLE samples were designated as Class 1 and non-SLE samples were designated as Class 2. For this analysis, the following settings were used in the MODEL SETUP (CART, Salford Systems, San Diego, CA.). In the Model settings, the tree type selected for the analysis was classification. In the Categorical settings, the default values were used. In the Testing settings, V-fold cross-validation was selected with a value of 10. In the Select Cases settings, the default values were used. In the Best Tree settings, the default values were used. In the Method settings, Symmetric Gini was selected as the type of classification tree and Linear combinations for splitting was also selected. The default values were used for the linear combinations. In the Advance Settings, the default values were used. In the Priors settings, Equal was selected as the priors for Class. In the penalty settings, the default values were used.

From this analysis, CART built two models, a two-gene model and a three-gene model (Figures 5C-E). The sensitivity and specificity for the identification of lupus in the training set samples of the two genes model were 100% and 94%, respectively. The sensitivity and specificity for the 10-fold cross validation set of the two-gene model were 100% and 88%, respectively, with a relative cost of 0.118. The sensitivity and specificity for the training set of the three genes model were 100% and 100%, respectively. The sensitivity and specificity for the 10-fold cross validation set of the three genes model were 93% and 94%, respectively, with a relative cost of 0.125.

Model II was based on a data set consisted of thirty-two samples, fifteen SLE and seventeen non-SLE (training set) and six thousand forty-four genes with expression values for at least 80% of the samples. The MODEL SETUP for the analysis of this data set was the same as for the analysis above, except for the following correction. In the Method settings, Linear combination for splitting was unchecked after the analysis yielded no classification tree. The change in the linear combination setting resulted in the following.

The sensitivity and specificity for the training set of the one gene model were 87% and 82%, respectively. The sensitivity and specificity for the 10-fold cross validation set of the one gene model were 80% and 59%, respectively, with a relative cost of 0.612. The sensitivity and specificity for the training set of the three genes model were 100% and 88%, respectively. The sensitivity and specificity for the 10-fold cross validation set of the three genes model were 67% and 65%, respectively, with a relative cost of 0.686. The sensitivity and specificity for the training set of the five genes model were 100% and 94%, respectively. The sensitivity and specificity for the 10-fold cross validation set of the five genes model were 67% and 59%, respectively, with a relative cost of 0.745. Results and models are summarized in Figure 5 C and F.

Those genes that were found to be useful for classification are noted in Table 2.

These genes can be used alone or in association with other genes or variables to build a diagnostic gene set or a classification algorithm. These genes can be used in association with known gene markers for lupus (such as those identified in the prior art) to provide a diagnostic algorithm.

Primers for real-time PCR validation were designed for some of the genes as described in Example 8 and are listed in Table 2B.

Surrogates for some of the most useful genes were identified. Surrogates can be used in addition to or in place of a diagnostic gene in a method of detecting lupus or in diagnostic gene set. For genes that were splitters in CART, surrogates were identified and reported by the software. In these cases, the best available surrogates are listed. For other genes, hierarchical clustering of the data was performed with default settings (x-miner, X-mine, Brisbane, CA) and members of gene expression clusters were noted. A cluster was selected that included the gene of interest and the members of that cluster were recorded in Table 2D.

Example 5- Design of oligonucleotide probes

By way of example, this section describes the design of four oligonucleotide probes using Array Designer Ver 1.1 (Premier Biosoft International, Palo Alto, CA). The major steps in the process are given first.

1) Obtain best possible sequence of mRNA from GenBank. If a full-length sequence reference sequence is not available, a partial sequence is used, with preference for the 3' end over the 5' end. When the sequence is known to represent the antisense strand, the reverse complement of the sequence is used for probe design. For sequences represented in the subtracted leukocyte expression library that have no significant match in GenBank at the time of probe design, our sequence is used.

2) Mask low complexity regions and repetitive elements in the sequence using an algorithm such as RepeatMasker.

- 3) Use probe design software, such as Array Designer, version 1.1, to select a sequence of 50 residues with specified physical and chemical properties. The 50 residues nearest the 3' end constitute a search frame. The residues it contains are tested for suitability. If they don't meet the specified criteria, the search frame is moved one residue closer to the 5' end, and the 50 residues it now contains are tested. The process is repeated until a suitable 50-mer is found.
- 4) If no such 50-mer occurs in the sequence, the physical and chemical criteria are adjusted until a suitable 50-mer is found.
- 5) Compare the probe to dbEST, the UniGene cluster set, and the assembled human genome using the BLASTn search tool at NCBI to obtain the pertinent identifying information and to verify that the probe does not have significant similarity to more than one known gene.

Clone 40H12

Clone 40H12 was sequenced and compared to the nr, dbEST, and UniGene databases at NCBI using the BLAST search tool. The sequence matched accession number NM_002310, a 'curated RefSeq project' sequence, see Pruitt et al. (2000) Trends Genet. 16:44-47, encoding leukemia inhibitory factor receptor (LIFR) mRNA with a reported E value of zero. An E value of zero indicates there is, for all practical purposes, no chance that the similarity was random based on the length of the sequence and the composition and size of the database. This sequence, cataloged by accession number NM_002310, is much longer than the sequence of clone 40H12 and has a poly-A tail. This indicated that the sequence cataloged by accession number NM_002310 is the sense strand and a more complete representation of the mRNA than the sequence of clone 40H12, especially at the 3' end. Accession number "NM_002310" was included in a text file of accession numbers representing sense strand mRNAs, and sequences for the sense strand mRNAs were obtained by uploading a text file containing desired accession numbers as an Entrez search query using the Batch Entrez web interface and saving the results locally as a FASTA file. The following sequence was obtained, and the region of alignment of clone 40H12 is outlined:

 $\tt CTCTCTCCCAGAACGTGTCTCTGCTGCAAGGCACCGGGCCCTTTCGCTGCAGAACTGCACTTGCAAGA$ $\tt CTGCATTGCACAGATGATGGATATTTACGTATGTTTGAAACGACCATCCTGGATGGTGGACAATAAAAGA$ ${\tt ATGAGGACTGCTTCAAATTTCCAGTGGCTGTTATCAACATTTATTCTTCTATATCTAATGAATCAAGTAA}$ ${\tt TTGGAAAGCACCCTCTGGAACAGGCCGTGGTACTGATTATGAAGTTTGCATTGAAAACAGGTCCCGTTCT}$ TGTTATCAGTTGGAGAAAACCAGTATTAAAATTCCAGCTCTTTCACATGGTGATTATGAAATAACAATAA ATTCTCTACATGATTTTGGAAGTTCTACAAGTAAATTCACACTAAATGAACAAAACGTTTCCTTAATTCC AGATACTCCAGAGATCTTGAATTTGTCTGCTGATTTCTCAACCTCTACATTATACCTAAAGTGGAACGAC ${\tt AGGGGTTCAGTTTTCCACACCGCTCAAATGTTATCTGGGAAATTAAAGTTCTACGTAAAGAGAGTATGG}$ $\tt CTCAGATATGCCCTTGGAATGTGCCATTCATTTTGTGGAAATTAGATGCTACATTGACAATCTTCATTTT$ ${\tt TCTGGTCTCGAAGAGTGGAGTGACTGGAGCCCTGTGAAGAACATTTCTTGGATACCTGATTCTCAGACTA}$ ${\tt AGGTTTTTCCTCAAGATAAGTGATACTTGTAGGCTCAGACATAACATTTTGTTGTGTGAGTCAAGAAAA}$ ${\tt AGTGTTATCAGCACTGATTGGCCATACAAACTGCCCCTTGATCCATCTTGATGGGGAAAATGTTGCAATC}$ ÄAGATTCGTAATATTTCTGTTTCTGCAAGTAGTGGAACAAATGTAGTTTTTACAACCGAAGATAACATAT TTGGAACCGTTATTTTTGCTGGATATCCACCAGATACTCCTCAACAACTGAATTGTGAGACACATGATTT AAAAGAAATTATATGTAGTTGGAATCCAGGAAGGGTGACAGCGTTGGTGGGCCCACGTGCTACAAGCTAC

ACTTTAGTTGAAAGTTTTTCAGGAAAATATGTTAGACTTAAAAGAGCTGAAGCACCTACAAACGAAAGCT ATCAATTATTATTTCAAATGCTTCCAAATCAAGAAATATATAATTTTACTTTGAATGCTCACAATCCGCT GGGTCGATCACAATCAACAATTTTAGTTAATATAACTGAAAAAGTTTATCCCCATACTCCTACTTCATTC AAAGTGAAGGATATTAATTCAACAGCTGTTAAACTTTCTTGGCATTTACCAGGCAACTTTGCAAAGATTA ATTTTTTATGTGAAATTGAAATTAAGAAATCTAATTCAGTACAAGAGCAGCGGAATGTCACAATCAAAGG AGTAGAAAATTCAAGTTATCTTGTTGCTCTGGACAAGTTAAATCCATACACTCTATATACTTTTCGGATT CGTTGTTCTACTGAAACTTTCTGGAAATGGAGCAAATGGAGCAATAAAAAACAACATTTAACAACAGAAG CCAGTCCTTCAAAGGGGCCTGATACTTGGAGAGAGTGGAGTTCTGATGGAAAAAATTTAATAATCTATTG GAAGCCTTTACCCATTAATGAAGCTAATGGAAAAATACTTTCCTACAATGTATCGTGTTCATCAGATGAG GAAACACAGTCCCTTTCTGAAATCCCTGATCCTCAGCACAAAGCAGAGATACGACTTGATAAGAATGACT ACATCATCAGCGTAGTGGCTAAAAATTCTGTGGGCTCATCACCACCTTCCAAAATAGCGAGTATGGAAAT TCCAAATGATGATCTCAAAATAGAACAAGTTGTTGGGATGGGAAAGGGGATTCTCCTCACCTGGCATTAC ACTGGAGAAAAGTTCCCTCAAACAGCACTGAAACTGTAATAGAATCTGATGAGTTTCGACCAGGTATAAG ATATAATTTTTTCCTGTATGGATGCAGAAATCAAGGATATCAATTATTACGCTCCATGATTGGATATATA GAAGAATTGGCTCCCATTGTTGCACCAAATTTTACTGTTGAGGATACTTCTGCAGATTCGATATTAGTAA AATGGGAAGACATTCCTGTGGAAGAACTTAGAGGCTTTTTAAGAGGGATATTTGTTTTACTTTGGAAAAGG AGAAAGAGACACATCTAAGATGAGGGTTTTAGAATCAGGTCGTTCTGACATAAAAGTTAAGAATATTACT GACATATCCCAGAAGACACTGAGAATTGCTGATCTTCAAGGTAAAACAAGTTACCACCTGGTCTTGCGAG AATTATTGCCATTCTCATCCCAGTGGCAGTGGCTGTCATTGTTGGAGTGGTGACAAGTATCCTTTGCTAT CGGAAACGAGAATGGATTAAAGAAACCTTCTACCCTGATATTCCAAATCCAGAAAACTGTAAAGCATTAC AGTTTCAAAAGAGTGTCTGTGAGGGAAGCAGTGCTCTTAAAACATTGGAAATGAATCCTTGTACCCCAAA TAATGTTGAGGTTCTGGAAACTCGATCAGCATTTCCTAAAATAGAAGATACAGAAATAATTTCCCCAGTA GCTGAGCGTCCTGAAGATCGCTCTGATGCAGAGCCTGAAAACCATGTGGTTGTGTCCTATTGTCCACCCA TCATTGAGGAAGAAATACCAAACCCAGCCGCAGATGAAGCTGGAGGGACTGCACAGGTTATTTACATTGA TGTTCAGTCGATGTATCAGCCTCAAGCAAAACCAGAAGAAGAACAAGAAAATGACCCTGTAGGAGGGGCA GGCTATAAGCCACAGATGCACCTCCCCATTAATTCTACTGTGGAAGATATAGCTGCAGAAGAGACTTAG ATAAAACTGCGGGTTACAGACCTCAGGCCAATGTAAATACATGGAATTTAGTGTCTCCAGACTCTCCTAG ATCCATAGACAGCAACAGTGAGATTGTCTCATTTGGAAGTCCATGCTCCATTAATTCCCGACAATTTTTG ATTCCTCCTAAAGATGAAGACTCTCCTAAATCTAATGGAGGAGGGTGGTCCTTTACAAACTTTTTTCAGA GTTGCTACATCAGCACTGGGCATTCTTGGAGGGATCCTGTGAAGTATTGTTAGGAGGTGAACTTCACTAC ATGTTAAGTTACACTGAAAGTTCATGTGCTTTTAATGTAGTCTAAAAGCCAAAGTATAGTGACTCAGAAT CCTCAATCCACAAAACTCAAGATTGGGAGCTCTTTGTGATCAAGCCAAAGAATTCTCATGTACTCTACCT TCAAGAAGCATTTCAAGGCTAATACCTACTTGTACGTACATGTAAAACAAATCCCGCCGCAACTGTTTTC TGTTCTGTTGTTGTGGTTTTCTCATATGTATACTTGGTGGAATTGTAAGTGGATTTGCAGGCCAGGGAG AAAATGTCCAAGTAACAGGTGAAGTTTATTTGCCTGACGTTTACTCCTTTCTAGATGAAAACCAAGCACA GATTTTAAAACTTCTAAGATTATTCTCCTCTATCCACAGCATTCACAAAAATTAATATATTTTTAATGT AGTGACAGCGATTTAGTGTTTTGTTTGATAAAGTATGCTTATTTCTGTGCCTACTGTATAATGGTTATCA AACAGTTGTCTCAGGGGTACAAACTTTGAAAACAAGTGTGACACTGACCAGCCCAAATCATAATCATGTT GTTGGTTGCCCTAATATTTAAAATTTACACTTCTAAGACTAGAGACCCACATTTTTTAAAAATCATTTTA TTTTGTGATACAGTGACAGCTTTATATGAGCAAATTCAATATTATTCATAAGCATGTAATTCCAGTGACT ${ t TACTATGTGAGATGACTACTAAGCAATATCTAGCAGCGTTAGTTCCATATAGTTCTGATTGGATTTCGTT$ TGTTCCTCCCACTCATGAGTCTTTTCATCATGCCACATTATCTGATCCAGTCCTCACATTTTTAAATATA AAACTAAAGAGAGAATGCTTCTTACAGGAACAGTTACCCAAGGGCTGTTTCTTAGTAACTGTCATAAACT CCTTCAGCACAGCATCCTCTGCCCACCCTTGTTTCTCATAAGCGATGTCTGGAGTGATTGTGGTTCTTGG AAAAGCAGAAGGAAAAACTAAAAAGTGTATCTTGTATTTTCCCTGCCCTCAGGTTGCCTATGTATTTTAC TTTTTTGGTTGGTTTGTTTTTTTTTTTTCTCTGAGATTCTGTAATGTATTTGCAAATAATGGATCAATT AATTTTTTTTGAAGCTCATATTGTATCTTTTTAAAAACCATGTTGTGGAAAAAAGCCAGAGTGACAAGTG ACAAAATCTATTTAGGAACTCTGTGTATGAATCCTGATTTTAACTGCTAGGATTCAGCTAAATTTCTGAG AA (SEQ ID NO:1039)

The FASTA file, including the sequence of NM_002310, was masked using the RepeatMasker web interface (Smit, AFA & Green, P RepeatMasker at genome.washington.edu/RM/RepeatMasker.html, Smit and Green). Specifically, during masking, the following types of sequences were replaced with "N's": SINE/MIR & LINE/L2, LINE/L1, LTR/Malr, LTR/Retroviral, Alu, and other low informational content sequences such as simple repeats. Below is the sequence following masking:

GACTGCATTGCACAGATGATGGATATTTACGTATGTTTGAAACGACCATCCTGGATGGTGGACAATAAA AGAATGAGGACTGCTTCAAATTTCCAGTGGCTGTTATCAACATTTATTCTTCTATATCTAATGAATCAA TGTTCTTGGAAAGCACCCTCTGGAACAGGCCGTGGTACTGATTATGAAGTTTGCATTGAAAACAGGTCC CGTTCTTGTTATCAGTTGGAGAAAACCAGTATTAAAATTCCAGCTCTTTCACATGGTGATTATGAAATA ACAATAAATTCTCTACATGATTTTGGAAGTTCTACAAGTAAATTCACACTAAATGAACAAAACGTTTCC TTAATTCCAGATACTCCAGAGATCTTGAATTTGTCTGCTGATTTCTCAACCTCTACATTATACCTAAAG TGGAACGACAGGGGTTCAGTTTTTCCACACCGCTCAAATGTTATCTGGGAAATTAAAGTTCTACGTAAA GAGAGTATGGAGCTCGTAAAATTAGTGACCCACAACACACTCTGAATGGCAAAGATACACTTCATCAC AATCTTCATTTTTCTGGTCTCGAAGAGTGGAGTGACTGGAGCCCTGTGAAGAACATTTCTTGGATACCT GATTCTCAGACTAAGGTTTTTCCTCAAGATAAAGTGATACTTGTAGGCTCAGACATAACATTTTGTTGT GTGAGTCAAGAAAAGTGTTATCAGCACTGATTGGCCATACAAACTGCCCCTTGATCCATCTTGATGGG GAAAATGTTGCAATCAAGATTCGTAATATTTCTGTTTCTGCAAGTAGTGGAACAAATGTAGTTTTTACA ACCGAAGATAACATATTTGGAACCGTTATTTTTGCTGGATATCCACCAGATACTCCTCAACAACTGAAT TGTGAGACACATGATTTAAAAGAAATTATATGTAGTTGGAATCCAGGAAGGGTGACAGCGTTGGTGGGC CCACGTGCTACAAGCTACACTTTAGTTGAAAGTTTTTCAGGAAAATATGTTAGACTTAAAAGAGCTGAA GCACCTACAAACGAAAGCTATCAATTATTATTTCAAATGCTTCCAAATCAAGAAATATATAATTTTACT TTGAATGCTCACAATCCGCTGGGTCGATCACAATCAACAATTTTAGTTAATAACTGAAAAAGTTTAT ${\tt CCAGGCAACTTTGCAAAGATTAATTTTTTTTTGTGAAATTGAAATTAAGAAATCTAATTCAGTACAAGAG}$ CAGCGGAATGTCACAATCAAAGGAGTAGAAAATTCAAGTTATCTTGTTGCTCTGGACAAGTTAAATCCA TACACTCTATATACTTTTCGGATTCGTTGTTCTACTGAAACTTTCTGGAAATGGAGCAAATGGAGCAAT ${\tt AAAAACAACATTTAACAACAGAAGCCAGTCCTTCAAAGGGGCCTGATACTTGGAGAGAGTGGAGTTCT}$ GATGGAAAAATTTAATAATCTATTGGAAGCCTTTACCCATTAATGAAGCTAATGGAAAAATACTTTCC TACAATGTATCGTGTTCATCAGATGAGGAAACACAGTCCCTTTCTGAAATCCCTGATCCTCAGCACAAA CCACCTTCCAAAATAGCGAGTATGGAAATTCCAAATGATGATCTCAAAATAGAACAAGTTGTTGGGATG ${\tt GGAAAGGGGATTCTCCTCACCTGGCATTACGACCCCAACATGACTTGCGACTACGTCATTAAGTGGTGT}$ AACTCGTCTCGGTCGGAACCATGCCTTATGGACTGGAGAAAAGTTCCCTCAAACAGCACTGAAACTGTA ATAGAATCTGATGAGTTTCGACCAGGTATAAGATATAATTTTTTCCTGTATGGATGCAGAAATCAAGGA TATCAATTATTACGCTCCATGATTGGATATATAGAAGAATTGGCTCCCATTGTTGCACCAAATTTTACT

GTTGAGGATACTTCTGCAGATTCGATATTAGTAAAATGGGAAGACATTCCTGTGGAAGAACTTAGAGGC TTTTTAAGAGGATATTTGTTTTACTTTGGAAAAGGAGAAAGAGACACATCTAAGATGAGGGTTTTAGAA TCAGGTCGTTCTGACATAAAAGTTAAGAATATTACTGACATATCCCAGAAGACACTGAGAATTGCTGAT CTTCAAGGTAAAACAAGTTACCACCTGGTCTTGCGAGCCTATACAGATGGTGGAGTGGGCCCGGAGAAG GCTGTCATTGTTGGAGTGGTGACAAGTATCCTTTGCTATCGGAAACGAGAATGGATTAAAGAAACCTTC TACCCTGATATTCCAAATCCAGAAAACTGTAAAGCATTACAGTTTCAAAAGAGTGTCTGTGAGGGAAGC AGTGCTCTTAAAACATTGGAAATGAATCCTTGTACCCCAAATAATGTTGAGGTTCTGGAAACTCGATCA GCATTTCCTAAAATAGAAGATACAGAAATAATTTCCCCAGTAGCTGAGCGTCCTGAAGATCGCTCTGAT GCAGAGCCTGAAAACCATGTGGTTGTGTCCTATTGTCCACCCATCATTGAGGAAGAAATACCAAACCCA GCCGCAGATGAAGCTGGAGGGACTGCACAGGTTATTTACATTGATGTTCAGTCGATGTATCAGCCTCAA GCAAAACCAGAAGAAGAACAAGAAAATGACCCTGTAGGAGGGGCAGGCTATAAGCCACAGATGCACCTC $\tt CCCATTAATTCTACTGTGGAAGATATAGCTGCAGAAGAGGACTTAGATAAAACTGCGGGTTACAGACCT$ CAGGCCAATGTAAATACATGGAATTTAGTGTCTCCAGACTCTCCTAGATCCATAGACAGCAACAGTGAG ATTGTCTCATTTGGAAGTCCATGCTCCATTAATTCCCGACAATTTTTGATTCCTCCTAAAGATGAAGAC TCTCCTAAATCTAATGGAGGAGGGTGGTCCTTTACAAACTTTTTTCAGAACAAACCAAACGATTAACAG GCATTCTTGGAGGGATCCTGTGAAGTATTGTTAGGAGGTGAACTTCACTACATGTTAAGTTACACTGAA CAAGATTGGGAGCTCTTTGTGATCAAGCCAAAGAATTCTCATGTACTCTACCTTCAAGAAGCATTTCAA GGCTAATACCTACTTGTACGTACATGTAAAACAAATCCCGCCGCAACTGTTTTCTGTTCTGTTTGT GGTTTTCTCATATGTATACTTGGTGGAATTGTAAGTGGATTTGCAGGCCAGGGAGAAAATGTCCAAGTA ACAGGTGAAGTTTATTTGCCTGACGTTTACTCCTTTCTAGATGAAAACCAAGCACAGATTTTAAAACTT TTAGTGTTTTGTTTGATAAAGTATGCTTATTTCTGTGCCTACTGTATAATGGTTATCAAACAGTTGTCT CAGGGGTACAAACTTTGAAAACAAGTGTGACACTGACCAGCCCAAATCATAATCATGTTTTCTTGCTGT CCTAATATTTAAAATTTACACTTCTAAGACTAGAGACCCACATTTTTTAAAAATCATTTTATTTTGTGA TACAGTGACAGCTTTATATGAGCAAATTCAATATTATTCATAAGCATGTAATTCCAGTGACTTACTATG TGAGATGACTACTAAGCAATATCTAGCAGCGTTAGTTCCATATAGTTCTGATTGGATTTCGTTCCTCCT GAGGAGACCATGCCGTTGAGCTTGGCTACCCAGGCAGTGGTGATCTTTGACACCTTCTGGTGGATGTTC CTCCCACTCATGAGTCTTTTCATCATGCCACATTATCTGATCCAGTCCTCACATTTTTAAATATAAAAC TAAAGAGAGAATGCTTCTTACAGGAACAGTTACCCAAGGGCTGTTTCTTAGTAACTGTCATAAACTGAT TTCAGCACAGCATCCTCTGCCCACCCTTGTTTCTCATAAGCGATGTCTGGAGTGATTGTGGTTCTTGGA PAAGCAGAAGGAAAAACTAAAAAGTGTATCTTGTATTTTCCCTGCCCTCAGGTTGCCTATGTATTTTAC TTTTTTTGGTTGGTTGTTTGTTTTTTTTTTCATCTGAGATTCTGTAATGTATTTGCAAATAATGGATCAA TTAATTTTTTTTGAAGCTCATATTGTATCTTTTTAAAAACCATGTTGTGGAAAAAAGCCAGAGTGACAA GTGACAAAATCTATTTAGGAACTCTGTGTATGAATCCTGATTTTAACTGCTAGGATTCAGCTAAATTTC

PCT/US03/13015 WO 03/090694

CTATATAATAGTTCATAGAAATGTTCAGTAATGAAAAAATATATCCAATCAGAGCCATCCCGAAAAAAA (SEQ ID NO:1040). AAAAAAA

The length of this sequence was determined using batch, automated computational methods and the sequence, as sense strand, its length, and the desired location of the probe sequence near the 3' end of the mRNA was submitted to Array Designer Ver 1.1 (Premier Biosoft International, Palo Alto, CA). Search quality was set at 100%, number of best probes set at 1, length range set at 50 base pairs, Target Tm set at 75 C. degrees plus or minus 5 degrees, Hairpin max deltaG at 6.0 -kcal/mol., Self dimmer max deltaG at 6.0 -kcal/mol, Run/repeat (dinucleotide) max length set at 5, and Probe site minimum overlap set at 1. When none of the 49 possible probes met the criteria, the probe site would be moved 50 base pairs closer to the 5' end of the sequence and resubmitted to Array Designer for analysis. When no possible probes met the criteria, the variation on melting temperature was raised to plus and minus 8 degrees and the number of identical basepairs in a run increased to 6 so that a probe sequence was produced.

In the sequence above, using the criteria noted above, Array Designer Ver 1.1 designed a probe with the following sequence oligonucleotide SEQ ID NO:1041 and is indicated by underlining in the sequence above. It has a melting temperature of 68.4 degrees Celsius and a max run of 6 nucleotides and represents one of the cases where the criteria for probe design in Array Designer Ver 1.1 were relaxed in order to obtain an oligonucleotide near the 3' end of the mRNA (Low melting temperature was allowed).

Clone 463D12

Clone 463D12 was sequenced and compared to the nr, dbEST, and UniGene databases at NCBI using the BLAST search tool. The sequence matched accession number AI184553, an EST sequence with the definition line "qd60a05.x1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:1733840 3' similar to gb:M29550 PROTEIN PHOSPHATASE 2B CATALYTIC SUBUNIT 1 (HUMAN);, mRNA sequence." The E value of the alignment was 1.00×10^{-118} . The GenBank sequence begins with a poly-T region, suggesting that it is the antisense strand, read 5' to 3'. The beginning of this sequence is complementary to the 3' end of the mRNA sense strand. The accession number for this sequence was included in a text file of accession numbers representing antisense sequences. Sequences for antisense strand mRNAs were obtained by uploading a text file containing desired accession numbers as an Entrez search query using the Batch Entrez web interface and saving the results locally as a FASTA file. The following sequence was obtained, and the region of alignment of clone 463D12 is outlined:

 ${\tt TTTTTTTTTTTTTTTTTTTAAATAGCATTTATTTTCTCTCAAAAAGCCTATTATGTACTAACAAGTGTTCC}$ ${\tt TCTAAATTAGAAAGGCATCACTAAAATTTTATACATATTTTTTATATAAGAGAAGGAATATTGGGT$ TACAATCTGAATTTCTCTTTATGATTTCTCTTAAAGTATAGAACAGCTATTAAAATGACTAATATTGCT AAAATGAAGGCTACTAAATTTCCCCAAGAATTTCGGTGGAATGCCCAAAAATGGTGTTAAGATATGCAG

The FASTA file, including the sequence of AA184553, was then masked using the RepeatMasker web interface, as shown below. The region of alignment of clone 463D12 is outlined.

The sequence was submitted to Array Designer as described above, however, the desired location of the probe was indicated at base pair 50 and if no probe met the criteria, moved in the 3' direction. The complementary sequence from Array Designer was used, because the original sequence was antisense. The oligonucleotide designed by Array Designer has the following sequence oligonucleotide SEQ ID NO:1044 and is complementary to the underlined sequence above. The probe has a melting temperature of 72.7 degrees centigrade and a max run of 4 nucleotides.

Clone 72D4

Clone 72D4 was sequenced and compared to the nr, dbEST, and UniGene databases at NCBI using the BLAST search tool. No significant matches were found in any of these databases. When compared to the human genome draft, significant alignments were found to three consecutive regions of the reference sequence NT_008060, as depicted below, suggesting that the insert contains three spliced exons of an unidentified gene.

Residue numbers on Matching residue

clone 72D4 sequence	numbers on NT 008060
1 – 198	478646 - 478843
197 – 489	479876 – 480168
491 – 585	489271 – 489365

Because the reference sequence contains introns and may represent either the coding or noncoding strand for this gene, BioCardia's own sequence file was used to design the oligonucleotide. Two complementary probes were designed to ensure that the sense strand was represented. The sequence of the insert in clone 72D4 is shown below, with the three putative exons outlined.

The sequence was submitted to RepeatMasker, but no repetitive sequences were found. The sequence shown above was used to design the two 50-mer probes using Array Designer as described above. The probes are shown in bold typeface in the sequence depicted below. SEQ ID NO: 1046 and SEQ ID NO:1047

CAGGTCACACAGCACATCAGTGGCTACATGTGAGCTCAGACCTGGGTCTGCTGT
CTGTCTTCCCAATATCCATGACCTTGACTGATGCAGGTGTCTAGGGATACGTCCATC
CCCGTCCTGCTGGAGCCCAGAGCACGGAAGCCTGGCCCTCCGAGGAGACAGAAGGGA
GTGTCGGACACCATGACGAGAGCTTGGCAGAATAAATAACTTCTTTAAACAATTTTA
CGGCATGAAGAAATCTGGACCAGTTTATTAAATGGGATTTCTGCCACAAACCTTGGA
AGAATCACATCATCTTANNCCCAAGTGAAAACTGTGTTGCGTAACAAAGAACATGAC

TGCGCTCCACACATACATCATTGCCCGGCGAGGCGGACACAAGTCAACGACGAACCAACTTGAGACAGGCCTACAACTGTGCACGGGTCAGAAGCAAGTTTAAGCCATACTTGC
TGCAGTGAGACTACATTTCTGTCTATAGAAGATACCTGACTTGATCTGTTTTTCAGC
TCCAGTTCCCAGATGTGC

GTCAAGGGTCTACACG

GTGTTGTGGTCCCCAAGTATCACCTTCCAATTTCTGGGAG--→
CACAACACCAGGGGTTCATAGTGGAAGGTTAAAG-5'

CAGTGCTCTGGCCGGATCCTTGCCGCGCGGATAAAAACT---

Confirmation of probe sequence

Following probe design, each probe sequence was confirmed by comparing the sequence against dbEST, the UniGene cluster set, and the assembled human genome using BLASTn at NCBI. Alignments, accession numbers, gi numbers, UniGene cluster numbers and names were examined and the most common sequence used for the probe. The final probe set was compiled into Table 2. In this table, the sequence ID is given which corresponds to the sequence listing. The origin of the sequence for inclusion on the array is noted as coming from one of the cDNA libraries described in example 1, mining from databases as described in examples 2 and 11 or identification from the published literature. The unigene number, genebank accession and GI number are also given for each sequence when known. The name of the gene associated with the accession number is noted. Finally, the nucleotide sequence of each probe is also given.

Example 6 - Production of an array of 8000 spotted 50mer oligonucleotides

We produced an array of 8000 spotted 50mer oligonucleotides. Examples 11 and 12 exemplify the design and selection of probes for this array.

Sigma-Genosys (The Woodlands, TX) synthesized un-modified 50-mer oligonucleotides using standard phosphoramidite chemistry, with a starting scale of synthesis of 0.05 µmole (see, e.g., R. Meyers, ed. (1995) Molecular Biology and Biotechnology: A Comprehensive Desk Reference). Briefly, to begin synthesis, a 3' hydroxyl nucleoside with a dimethoxytrityl (DMT) group at the 5' end was attached to a solid support. The DMT group was removed with trichloroacetic acid (TCA) in order to free the 5'-hydroxyl for the coupling reaction. Next, tetrazole and a phosphoramidite derivative of the next nucleotide were added. The tetrazole protonates the nitrogen of the phosphoramidite, making it susceptible to nucleophilic attack. The DMT group at the 5'-end of the hydroxyl group blocks further addition of nucleotides in excess. Next, the inter-nucleotide linkage was converted to a phosphotriester bond in an oxidation step using an oxidizing agent and water as the oxygen donor. Excess nucleotides were filtered out and the cycle for the next nucleotide was started by the removal of the DMT protecting group. Following the synthesis, the oligo was cleaved from the solid support. The oligonucleotides were desalted, resuspended in water at a concentration of 100 or 200 µM, and placed

in 96-deep well format. The oligonucleotides were re-arrayed into Whatman Uniplate 384-well polyproylene V bottom plates. The oligonucleotides were diluted to a final concentration 30 μ M in 1X Micro Spotting Solution Plus (Telechem/arrayit.com, Sunnyvale, CA) in a total volume of 15 μ l. In total, 8,031 oligonucleotides were arrayed into twenty-one 384-well plates.

Arrays were produced on Telechem/arrayit.com Super amine glass substrates (Telechem/arrayit.com), which were manufactured in 0.1 mm filtered clean room with exact dimensions of 25x76x0.96 mm. The arrays were printed using the Virtek Chipwriter with a Telechem 48 pin Micro Spotting Printhead. The Printhead was loaded with 48 Stealth SMP3B TeleChem Micro Spotting Pins, which were used to print oligonucleotides onto the slide with the spot size being 110-115 microns in diameter.

Example 7- Amplification, labeling, and hybridization of total RNA to an oligonucleotide microarray Amplification, labeling, hybridization and scanning

Samples consisting of at least 0.5 to 2 µg of intact total RNA were further processed for array hybridization. When available, 2 µg of intact total RNA is used for amplification. Amplification and labeling of total RNA samples was performed in three successive enzymatic reactions. First, a single-stranded DNA copy of the RNA was made (hereinafter, "ss-cDNA"). Second, the ss-cDNA was used as a template for the complementary DNA strand, producing double-stranded cDNA (hereinafter, "ds-cDNA, or cDNA"). Third, linear amplification was performed by in vitro transcription from a bacterial T₇ promoter. During this step, fluorescent-conjugated nucleotides were incorporated into the amplified RNA (hereinafter, "aRNA").

For synthesis of the second cDNA strand, DNA polymerase and RNase were added to the previous reaction, bringing the final volume to 150 μl. The previous contents were diluted and new substrates were added to a final concentration of 20 mM Tris-HCl (pH 7.0) (Fisher Scientific, Pittsburgh, PA #BP1756-100), 90 mMKCl (Teknova, Half Moon Bay, CA, #0313-500), 4.6 mM MgCl₂ (Teknova, Half Moon Bay, CA, #0304-500), 10 mM(NH₄) ₂SO₄ (Fisher Scientific #A702-500)(1x Second Strand buffer, Invitrogen), 0.266 mM dGTP, 0.266 mM dATP, 0.266 mM dTTP, 0.266

mM dCTP, 40 U E. coli DNA polymerase (Invitrogen, #18010-025), and 2 U RNaseH (Invitrogen, #18021-014). The second strand synthesis took place at 16°C for 150 minutes.

Following second-strand synthesis, the ds-cDNA was purified from the enzymes, dNTPs, and buffers before proceeding to amplification, using phenol-chloroform extraction followed by ethanol precipitation of the cDNA in the presence of glycogen.

Alternatively, a silica-gel column is used to purify the cDNA (e.g. Qiaquick PCR cleanup from Qiagen, #28104). The volume of the column purified cDNA was reduced by ethanol precipitation in the presence of glycogen in which the cDNA was collected by centrifugation at >10,000 ×g for 30 minutes, the supernatant is aspirated, and 150 μ l of 70% ethanol, 30% water was added to wash the DNA pellet. Following centrifugation, the supernatant was removed, and residual ethanol was evaporated at room temperature. Alternatively, the volume of the column purified cDNA is reduce in a vacuum evaporator where the supernatant is reduce to a final volume of 7.4 μ l.

Linear amplification of the cDNA was performed by in vitro transcription of the cDNA. The cDNA pellet from the step described above was resuspended in 7.4 μl of water, and in vitro transcription reaction buffer was added to a final volume of 20 μl containing 7.5 mM GTP, 7.5 mM ATP, 7.5 mM TTP, 2.25 mM CTP, 1.025 mM Cy3-conjugated CTP (Perkin Elmer; Boston, MA, #NEL-580), 1x reaction buffer (Ambion, Megascript Kit, Austin, TX and #1334) and 1 % T₇ polymerase enzyme mix (Ambion, Megascript Kit, Austin, TX and #1334). This reaction was incubated at 37°C overnight. Following in vitro transcription, the RNA was purified from the enzyme, buffers, and excess NTPs using the RNeasy kit from Qiagen (Valencia, CA; # 74106) as described in the vendor's protocol. A second elution step was performed and the two eluates were combined for a final volume of 60 μl. RNA is quantified using an Agilent 2100 bioanalyzer with the RNA 6000 nano LabChip.

Reference RNA was prepared as described above, except Cy5-CTP was incorporated instead of Cy3CTP. Reference RNA from five reactions, each reaction started with 2 μ g total RNA, was pooled together and quantitated as described above.

Hybridization to an array

RNA was prepared for hybridization as follows: for an 18mm×55mm array, 20 µg of amplified RNA (aRNA) was combined with 20 µg of reference aRNA. The combined sample and reference aRNA was concentrated by evaporating the water to 10 µl in a vacuum evaporator. The sample was fragmented by heating the sample at 95°C for 30 minutes to fragment the RNA into 50-200 bp pieces. Alternatively, the combined sample and reference aRNA was concentrated by evaporating the water to 5 µl in a vacuum evaporator. Five µl of 20 mM zinc acetate was added to the aRNA and the mix incubated at 60°C for 10 minutes. Following fragmentation, 40 µl of hybridization buffer was added to achieve final concentrations of 5×SSC and 0.20 %SDS with 0.1 µg/ul of Cot-1 DNA (Invitrogen) as a competitor DNA. The final hybridization mix was heated to 98°C, and then reduced to 50°C at 0.1°C per second.

Alternatively, formamide is included in the hybridization mixture to lower the hybridization temperature.

The hybridization mixture was applied to a pre-heated 65°C microarray, surface, covered with a glass coverslip (Corning, #2935-246), and placed on a pre-heated 65°C hybridization chamber (Telechem, AHC-10). 15 ul of 5xSSC was placed in each of the reservoir in the hybridization chamber and the chamber was sealed and placed in a water bath at 62°C for overnight (16-20 hrs). Following incubation, the slides were washed in 2×SSC, 0.1% SDS for five minutes at 30°C, then in 2×SSC for five minutes at 30°C, then in 2×SSC for another five minutes at 30°C, then in 0.2×SSC for two minutes at room temperature. The arrays were spun at 1000×g for 2 minutes to dry them. The dry microarrays are then scanned by methods described above.

The microarrays were imaged on the Agilent (Palo Alto, CA) scanner G2565AA. The scan settings using the Agilent software were as follows: for the PMT Sensitivity (100% Red and 100% Green); Scan Resolution (10 microns); red and green dye channels; used the default scan region for all slides in the carousel; using the largest scan region; scan date for Instrument ID; and barcode for Slide ID. The full image produced by the Agilent scanner was flipped, rotated, and split into two images (one for each signal channel) using TIFFSplitter (Agilent, Palo Alto, CA). The two channels are the output at 532 nm (Cy3-labeled sample) and 633 nm (Cy5-labeled R50). The individual images were loaded into GenePix 3.0 (Axon Instruments, Union City, CA) for feature extraction, each image was assigned an excitation wavelength corresponding the file opened; Red equals 633 nm and Green equals 532 nm. The setting file (gal) was opened and the grid was laid onto the image so that each spot in the grid overlaped with >50% of the feature. Then the GenePix software was used to find the features without setting minimum threshold value for a feature. For features with low signal intensity, GenePix reports "not found". For all features, the diameter setting was adjusted to include only the feature if necessary.

The GenePix software determined the median pixel intensity for each feature (F_i) and the median pixel intensity of the local background for each feature (B_i) in both channels. The standard deviation (SDF_{i and} SDB_i) for each is also determined. Features for which GenePix could not discriminate the feature from the background were "flagged" as described below.

Following feature extraction into a ".gpr" file, the header information of the .gpr file was changed to carry accurate information into the database. An Excel macro was written to include the following information: Name of the original .tif image file, SlideID, Version of the feature extraction software, GenePix Array List file, GenePix Settings file, ScanID, Name of person who scanned the slide, Green PMT setting, Red PMT setting, ExtractID (date .gpr file was created, formatted as yyyyy.mm.dd-hh.mm.ss), Results file name (same as the .gpr file name), StorageCD, and Extraction comments.

Pre-processing with Excel Templates

Following analysis of the image and extraction of the data, the data from each hybridization was pre-processed to extract data that was entered into the database and subsequently used for analysis. The complete GPR file produced by the feature extraction in GenePix was imported into an excel file pre-processing template or processed using a AWK script. Both programs used the same processing logic and produce identical results. The same excel template or AWK script was used to process each

GPR file. The template performs a series of calculations on the data to differentiate poor features from others and to combine duplicate or triplicate feature data into a single data point for each probe.

The data columns used in the pre-processing were: Oligo ID, F633 Median (median value from all the pixels in the feature for the Cy5 dye), B633 Median (the median value of all the pixels in the local background of the selected feature for Cy5), B633 SD (the standard deviation of the values for the pixels in the local background of the selected feature for Cy5), F532 Median (median value from all the pixels in the feature for the Cy3 dye), B532 Median (the median value of all the pixels in the local background of the selected feature for Cy3), B532 SD (the standard deviation of the values for the pixels in the local background of the selected feature for Cy3), and Flags. The GenePix Flags column contains the flags set during feature extraction. "-75" indicates there were no features printed on the array in that position, "-50" indicates that GenePix could not differentiate the feature signal from the local background, and "-100" indicates that the user marked the feature as bad.

Once imported, the data associated with features with -75 flags was not used. Then the median of B633 SD and B532 SD were calculated over all features with a flag value of "0". The minimum values of B633 Median and B532 Median were identified, considering only those values associated with a flag value of "0". For each feature, the signal to noise ratio (S/N) was calculated for both dyes by taking the fluorescence signal minus the local background (BGSS) and dividing it by the standard deviation of the local background:

$$S/N = \frac{F_i - B_i}{SDB_i}$$

If the S/N was less than 3, then an adjusted background-subtracted signal was calculated as the fluorescence minus the minimum local background on the slide. An adjusted S/N was then calculated as the adjusted background subtracted signal divided by the median noise over all features for that channel. If the adjusted S/N was greater than three and the original S/N were less than three, a flag of 25 was set for the Cy5 channel, a flag of 23 was set for the Cy3 channel, and if both met these criteria, then a flag of 28 was set. If both the adjusted S/N and the original S/N were less than three, then a flag of 65 was set for Cy5, 63 set for Cy3, and 68 set if both dye channels had an adjusted S/N less than three. All signal to noise calculations, adjusted background-subtracted signal, and adjusted S/N were calculated for each dye channel. If the BGSS value was greater than or equal to 64000, a flag was set to indicate saturation; 55 for Cy5, 53 for Cy3, 58 for both.

The BGSS used for further calculations was the original BGSS if the original S/N was greater than or equal to three. If the original S/N ratio was less than three and the adjusted S/N ratio was greater than or equal to three, then the adjusted BGSS was used. If the adjusted S/N ratio was less than three, then the adjusted BGSS was used, but with knowledge of the flag status.

To facilitate comparison among arrays, the Cy3 and Cy5 data were scaled. The log of the ratio of Green/Red was determined for all features. The median log ratio value for good features (Flags 0,

23, 25, 28, 63) was determined. The feature values were scaled using the following formula: Log_Scaled_Feature_Ratio = Log_Feature_Ratio - Median_Log_Ratio.

The flag setting for each feature was used to determine the expression ratio for each probe, a choice of one, two or three features. If all features had flag settings in the same category (categories=negatives, 0 to 28, 53-58, and 63-68), then the average of the three scaled, anti log feature ratios was calculated. If the three features did not have flags in the same category, then the feature or features with the best quality flags were used (0>25>23>28>55>53>58>65>63>68). Features with negative flags were never used. When the best flags were two or three features in the same category, the anti log average was used. If a single feature had a better flag category than the other two then the anti log of that feature ratio was used.

Once the probe expression ratios were calculated from the one, two, or three features, the log of the scaled, averaged ratios was taken as described below and stored for use in analyzing the data. Whichever features were used to calculate the probe value, the flag from those features was carried forward and stored as the flag value for that probe. 2 different data sets can be used for analysis. Flagged data uses all values, including those with flags. Filtered data sets are created by removing flagged data from the set before analysis.

Example 8: Real-time PCR validation of array expression results

Leukocyte microarray gene expression was used to discover expression markers and diagnostic gene sets for clinical outcomes. It is desirable to validate the gene expression results for each gene using a more sensitive and quantitative technology such as real-time PCR. Further, it is possible for the diagnostic nucleotide sets to be implemented as a diagnostic test as a real-time PCR panel. Alternatively, the quantitative information provided by real-time PCR validation can be used to design a diagnostic test using any alternative quantitative or semi-quantitative gene expression technology.

To validate the results of the microarray experiments we used real-time, or kinetic, PCR. In this type of experiment the amplification product is measured during the PCR reaction. This enables the researcher to observe the amplification before any reagent becomes rate limiting for amplification. In kinetic PCR the measurement is of C_T (threshold cycle) or C_P (crossing point). This measurement $(C_T=C_P)$ is the point at which an amplification curve crosses a threshold fluorescence value. The threshold is set to a point within the area where all of the reactions were in their linear phase of amplification. When measuring C_T , a lower C_T value is indicative of a higher amount of starting material since an earlier cycle number means the threshold was crossed more quickly.

Several fluorescence methodologies are available to measure amplification product in real-time PCR. Taqman (Applied BioSystems, Foster City, CA) uses fluorescence resonance energy transfer (FRET) to inhibit signal from a probe until the probe is degraded by the sequence specific binding and Taq 3' exonuclease activity. Molecular Beacons (Stratagene, La Jolla, CA) also use FRET technology, whereby the fluorescence is measured when a hairpin structure is relaxed by the specific probe binding to the amplified DNA. The third commonly used chemistry is Sybr Green, a DNA-

binding dye (Molecular Probes, Eugene, OR). The more amplified product that is produced, the higher the signal. The Sybr Green method is sensitive to non-specific amplification products, increasing the importance of primer design and selection. Other detection chemistries can also been used, such as ethedium bromide or other DNA-binding dyes and many modifications of the fluorescent dye/quencher dye Taqman chemistry.

Sample prep and cDNA synthesis

The inputs for real time PCR reaction are gene-specific primers, cDNA from specific patient samples, and standard reagents. The cDNA was produced from mononuclear RNA (prepared as in example 1) by reverse transcription using Oligo dT primers (Invitrogen, 18418-012) and random hexamers (Invitrogen, 48190-011) at a final concentration of 0.5ng/µl and 3ng/µl respectively. For the first strand reaction mix, 0.5 µg of mononuclear total RNA or 2 µg of whole blood RNA and 1 µl of the Oligo dT/ Random Hexamer Mix, were added to water to a final volume of 11.5 µl. The sample mix was then placed at 70°C for 10 minutes. Following the 70°C incubation, the samples were chilled on ice, spun down, and 88.5 µl of first strand buffer mix dispensed into the reaction tube. The final first strand buffer mix produced final concentrations of 1X first strand buffer (Invitrogen, Y00146, Carlsbad, CA), 10 mM DTT (Invitrogen, Y00147), 0.5 mM dATP (NEB, N0440S, Beverly, MA), 0.5 mM dGTP (NEB, N0442S), 0.5mM dTTP (NEB, N0443S), 0.5 mM dCTP (NEB, N0441S), 200U of reverse transcriptase (Superscript II, Invitrogen, 18064-014), and 18U of RNase inhibitor (RNAGaurd Amersham Pharmacia, 27-0815-01, Piscataway, NJ). The reaction was incubated at 42°C for 90 minutes. After incubation the enzyme was heat inactivated at 70°C for 15 minutes, 2 U of RNAse H added to the reaction tube, and incubated at 37°C for 20 minutes.

PRIMER DESIGN

Two methods were used to design primers. The first was to use the software, Primer Expresstm and recommendations for primer design that are provided with the GeneAmp® 7700 Sequence Detection System supplied by Applied BioSystems (Foster City, CA). The second method used to design primers was the PRIMER3 ver 0.9 program that is available from the Whitehead Research Institute, Cambridge, Massachusetts at the web site genome.wi.mit.edu/genome_software/other/primer3.html. The program can also be accessed on the World Wide Web at the web site genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi. Primers and Taqman/hybridization probes were designed as described below using both programs.

The Primer Express literature explains that primers should be designed with a melting temperature between 58 and 60 degrees C. while the Taqman probes should have a melting temperature of 68 to 70 under the salt conditions of the supplied reagents. The salt concentration is fixed in the software. Primers should be between 15 and 30 basepairs long. The primers should produce and amplicon in size between 50 and 150 base pairs, have a C-G content between 20% and 80%, have no more than 4 identical base pairs next to one another, and no more than 2 C's and G's in the last 5 bases of the 3' end. The probe cannot have a G on the 5' end and the strand with the fewest G's should be used for the probe.

Primer3 has a large number of parameters. The defaults were used for all except for melting temperature and the optimal size of the amplicon was set at 100 bases. One of the most critical is salt

concentration as it affects the melting temperature of the probes and primers. In order to produce primers and probes with melting temperatures equivalent to Primer Express, a number of primers and probes designed by Primer Express were examined using PRIMER3. Using a salt concentration of 50 mM these primers had an average melting temperature of 3.7 degrees higher than predicted by Primer Express. In order to design primers and probes with equivalent melting temperatures as Primer Express using PRIMER3, a melting temperature of 62.7 plus/minus 1.0 degree was used in PRIMER3 for primers and 72.7 plus/minus 1.0 degrees for probes with a salt concentration of 50 mM.

The C source code for Primer3 was downloaded and complied on a Sun Enterprise 250 server using the GCC complier. The program was then used from the command line using a input file that contained the sequence for which we wanted to design primers and probes along with the input parameters as described by help files that accompany the software. Using scripting it was possible to input a number of sequences and automatically generate a number of possible probes and primers.

Primers for β -Actin (Beta Actin, Genbank Locus: NM_001101) and β -GUS: glucuronidase, beta, (GUSB, Genbank Locus: NM_000181), two reference genes, were designed using both methods and are shown here as examples:

The first step was to mask out repetitive sequences found in the mRNA sequences using RepeatMasker program that can be accessed at: the web site repeatmasker.genome.washington.edu/cgi-bin/RepeatMasker (Smit, AFA & Green, P "RepeatMasker" at the web site ftp.genome.washington.edu/RM/RepeatMasker.html).

The last 500 basepairs on the last 3' end of masked sequence was then submitted to PRIMER3 using the following exemplary input sequences:

PRIMER_SEQUENCE_ID=>GUSB (SEQ ID NO:1050)

SEQUENCE=GAAGAGTACCAGAAAAGTCTGCTAGAGCAGTACCATCTGGGTCTGGATCAAAAACGCAGA AAATATGTGGTTGGAGAGACCTCATTTGGAATTTTGCCGATTTCATGACTGAACAGTCACCGACGAGAGTG CTGGGGAATAAAAAGGGGGATCTTCACTCGGCAGAGACCAAAAAAGTGCAGCGTTCCTTTTGCGAGAG AGATACTGGAAGATTGCCAATGAAACCAGGTATCCCCACTCAGTAGCCAAGTCACAATGTTTGGAAAAC AGCCCGTTTACTTGAGCAAGACTGATACCACCTGCGTGTCCCTTCCTCCCCGAGTCAGGGCGACTTCCA CAGCAGCAGAACAAGTGCCTCCTGGACTGTTCACGGCAGACCAGAACGTTTCTGGCCTGGGTTTTGTGG TCATCTATTCTAGCAGGGAACACTAAAGGGTGGAAATAAAAGATTTTCTATTATGGAAATAAAAGATTTGG

After running PRIMER3, 100 sets of primers and probes were generated for ACTB and GUSB. From this set, nested primers were chosen based on whether both left primers could be paired with both right primers and a single Taqman probe could be used on an insert of the correct size. With more experience we have decided not use the mix and match approach to primer selection and just use several of the top pairs of predicted primers.

For ACTB this turned out to be: Forward 75 CACAATGTGGCCGAGGACTT(SEQ ID NO:1051), Forward 80 TGTGGCCGAGGACTTTGATT(SEQ ID NO:1052), Reverse 178 TGGCTTTTAGGATGGCAAGG(SEQ ID NO:1053), and Reverse 168 GGGGGCTTAGTTTGCTTCCT(SEQ ID NO:1054).

Upon testing, the F75 and R178 pair worked best.

For GUSB the following primers were chosen: Forward 59 AAGTGCAGCGTTCCTTTTGC(SEQ ID NO:1055), Forward 65 AGCGTTCCTTTTGCGAGAGA (SEQ ID NO:1056), Reverse 158 CGGGCTGTTTTCCAAACATT (SEQ ID NO:1057), and Reverse 197 GAAGGGACACGCAGGTGGTA (SEQ ID NO:1058).

No combination of these GUSB pairs worked well.

In addition to the primer pairs above, Primer Express predicted the following primers for GUSB: Forward 178 TACCACCTGCGTGTCCCTTC (SEQ ID NO:1059) and Reverse 242 GAGGCACTTGTTCTGCTGCTG (SEQ ID NO:1060). This pair of primers worked to amplify the GUSB mRNA.

The parameters used to predict these primers in Primer Express were: Primer Tm: min 58, Max=60, opt 59, max difference=2 degrees Primer GC: min=20% Max =80% no 3' G/C clamp Primer: Length: min=9 max=40 opt=20 Amplicon: min Tm=0 max Tm=85 min = 50 bp max = 150 bp Probe: Tm 10 degrees > primers, do not begin with a G on 5' end Other: max base pair repeat = 3 max number of ambiguous residues = 0 secondary structure: max consecutive bp = 4, max total bp = 8 Uniqueness: max consecutive match = 9 max % match = 75 max 3' consecutive match = 7

Granzyme B is a marker of transplant rejection.

For Granzyme B the following sequence (NM_004131) (SEQ ID:1061) was used as input for Primer3:

For Granzyme B the following primers were chosen for testing: Forward 81 ACGAGCCTGCACCAAAGTCT (SEQ ID NO:1062) Forward 63 AAACAATGGCATGCCTCCAC (SEQ ID NO:1063) Reverse 178 TCATTACAGCGGGGGCTTAG (SEQ ID NO:1064) Reverse 168 GGGGGCTTAGTTTGCTTCCT (SEQ ID NO:1065)

Testing demonstrated that F81 and R178 worked well.

Using this approach, primers were designed for all the genes that were shown to have expression patterns that correlated with allograft rejection. Primers can be designed from any region of a target gene using this approach.

PRIMER ENDPOINT TESTING

Primers were first tested to examine whether they would produce the correct size product without non-specific amplification. The standard real-time PCR protocol was used without the Rox and Sybr green dyes. Each primer pair was tested on cDNA made from universal mononuclear leukocyte reference RNA that was produced from 50 individuals as described in Example 2 (R50).

The PCR reaction consisted of 1X RealTime PCR Buffer (Ambion, Austin, TX), 2mM MgCl2 (Applied BioSystems, B02953), 0.2mM dATP (NEB), 0.2mM dTTP (NEB), 0.2mM dCTP (NEB), 0.2mM dGTP (NEB), .625U AmpliTaq Gold (Applied BioSystems, Foster City, CA), 0.3μM of each primer to be used (Sigma Genosys, The Woodlands, TX), 5μl of the R50 reverse-transcription reaction and water to a final volume of 19μl.

Following 40 cycles of PCR, 10 microliters of each product was combined with Sybr green at a final dilution of 1:72,000. Melt curves for each PCR product were determined on an ABI 7900 (Applied BioSystems, Foster City, CA), and primer pairs yielding a product with one clean peak were chosen for further analysis. One microliter of the product from these primer pairs was examined by agarose gel electrophoresis on an Agilent Bioanalyzer, DNA1000 chip (Palo Alto, CA). Results for 2 genes are shown in Figure 6. From the primer design and the sequence of the target gene, one can calculate the expected size of the amplified DNA product. Only primer pairs with amplification of the desired product and minimal amplification of contaminants were used for real-time PCR. Primers that produced multiple products of different sizes are likely not specific for the gene of interest and may amplify multiple genes or chromosomal loci.

PRIMER OPTIMIZATION/EFFICIENCY

Once primers passed the end-point PCR, the primers were tested to determine the efficiency of the reaction in a real-time PCR reaction. cDNA was synthesized from starting total RNA as described above. A set of 5 serial dilutions of the R50 reverse-transcribed cDNA (as described above) were made in water: 1:10, 1:20, 1:40, 1:80, and 1:160.

The Sybr Green real-time PCR reaction was performed using the Taqman PCR Reagent kit (Applied BioSystems, Foster City, CA, N808-0228). A master mix was made that consisted of all reagents except the primes and template. The final concentration of all ingredients in the reaction was 1X Taqman Buffer A (Applied BioSystems), 2mM MgCl2 (Applied BioSystems), 200 μ M dATP (Applied BioSystems), 200 μ M dCTP (Applied BioSystems), 200 μ M dGTP (Applied BioSystems), 400 μ M dUTP (Applied BioSystems), 1:400,000 diluted Sybr Green dye (Molecular Probes), 1.25U AmpliTaq Gold (Applied BioSystems). The PCR master mix was dispensed into two, light-tight tubes. Each β -Actin primer F75 and R178 (Sigma-Genosys, The Woodlands, TX), was added to one tube of PCR master mix and Each β -GUS primer F178 and R242 (Sigma-Genosys), was added to the other tube of PCR master mix to a final primer concentration of 300nM. 45 μ l of the β -Actin or β -GUS master mix was dispensed into wells, in a 96-well plate (Applied BioSystems). 5 μ l of the template

dilution series was dispensed into triplicate wells for each primer. The reaction was run on an ABI 7900 Sequence Detection System (Applied BioSystems) with the following conditions: 10 min. at 95°C; 40 cycles of 95°C for 15 sec, 60°C for 1 min; followed by a disassociation curve starting at 50°C and ending at 95°C.

The Sequence Detection System v2.0 software was used to analyze the fluorescent signal from each well. The high end of the baseline was adjusted to between 8 and 20 cycles to reduce the impact on any data curves, yet be as high as possible to reduce baseline drift. A threshold value was selected that allowed the majority of the amplification curves to cross the threshold during the linear phase of amplification. The disassociation curve for each well was compared to other wells for that marker. This comparison allowed identification of "bad" wells, those that did not amplify, that amplified the wrong size product, or that amplified multiple products. The cycle number at which each amplification curve crossed the threshold (C_T) was recorded and the file transferred to MS Excel for further analysis. The C_T values for triplicate wells were averaged. The data were plotted as a function of the \log_{10} of the calculated starting concentration of RNA. The starting RNA concentration for each cDNA dilution was determined based on the original amount of RNA used in the RT reaction, the dilution of the RT reaction, and the amount used (5 μ l) in the real-time PCR reaction. For each gene, a linear regression line was plotted through all of the dilutions series points. The slope of the line was used to calculate the efficiency of the reaction for each primer set using the equation:

$$E = 10^{\left(\frac{-1}{\text{slope}}\right)} - 1$$

Using this equation (Pfaffl 2001, Applied Biosystems User Bulletin #2), the efficiency for these β -actin primers is 1.28 and the efficiency for these β -GUS primers is 1.14 (Figure 6). This efficiency was used when comparing the expression levels among multiple genes and multiple samples. This same method was used to calculate reaction efficiency for primer pairs for each gene studied. A primer pair was considered successful if the efficiency was reproducibly determined to be between 0.7 and 2.4.

SYBR-GREEN ASSAYS

Once markers passed the Primer Efficiency QPCR (as stated above), they were used in real-time PCR assays. Patient RNA samples were reverse-transcribed to cDNA (as described above) and 1:10 dilutions made in water. In addition to the patient samples, a no template control (NTC) and a pooled reference RNA (see example 2) described in were included on every plate.

The Sybr Green real-time PCR reaction was performed using the Taqman Core PCR Reagent kit (Applied BioSystems, Foster City, CA, N808-0228). A master mix was made that consisted of all reagents except the primers and template. The final concentration of all ingredients in the reaction was 1X Taqman Buffer A (Applied BioSystems), 2mM MgCl2 (Applied BioSystems), 200µM dATP (Applied BioSystems), 200µM dCTP (Applied BioSystems), 200µM dGTP (Applied BioSystems), 400µM dUTP (Applied BioSystems), 1:400,000 diluted Sybr Green dye (Molecular Probes), 1.25U AmpliTaq Gold (Applied BioSystems). The PCR master mix was aliquotted into eight light-tight

tubes, one for each marker to be examined across a set of samples. The optimized primer pair for each marker was then added to the PCR master mix to a final primer concentration of 300nM. 18µl of the each marker master mix was dispensed into wells in a 384well plate (Applied BioSystems). 2µl of the 1:10 diluted control or patient cDNA sample was dispensed into triplicate wells for each primer pair. The reaction was run on an ABI 7900 Sequence Detection System (Applied BioSystems) using the cycling conditions described above.

The Sequence Detection System v2.0 software (Applied BioSystems) was used to analyze the fluorescent signal from each well. The high end of the baseline was adjusted to between 8 and 20 cycles to reduce the impact on any data curves, yet be as high as possible to reduce baseline drift. A threshold value was selected that allowed the majority of the amplification curves to cross the threshold during the linear phase of amplification. The disassociation curve for each well was compared to other wells for that marker. This comparison allowed identification of "bad" wells, those that did not amplify, that amplified the wrong size product, or that amplified multiple products. The cycle number at which each amplification curve crossed the threshold (C_T) was recorded and the file transferred to MS Excel for further analysis. The C_T value representing any well identified as bad by analysis of disassociation curves was deleted. The C_T values for triplicate wells were averaged. A standard deviation (Stdev) and a coefficient of variation (CV) were calculated for the triplicate wells. If the CV was greater than 2, an outlier among the three wells was identified and deleted. Then the average was re-calculated. In each plate, ΔC_T was calculated for each marker-control combination by subtracting the average C_T of the target marker from the average C_T of the control (β -Actin or β -GUS). The expression relative to the control marker was calculated by taking two to the power of the ΔC_T of the target marker. For example, expression relative to β -Actin was calculated by the equation:

$$ErA = 2^{(C_{T,Aciln} - C_{T,i \text{ argel}})}$$

All plates were run in duplicate and analyzed in the same manner. The percent variation was determined for each sample-marker combination (relative expression) by taking the absolute value of the value of the RE for the second plate from the RE for the first plate, and dividing that by the average. If more than 25% of the variation calculations on a plate are greater than 50%, then a third plate was run.

TAQMAN PROTOCOL

Real-time PCR assays were also done using Taqman PCR chemistry.

The Taqman real-time PCR reaction was performed using the Taqman Universal PCR Master Mix (Applied BioSystems, Foster City, CA, #4324018). The master mix was aliquoted into eight, light-tight tubes, one for each marker. The optimized primer pair for each marker was then added to the correctly labeled tube of PCR master mix. A FAM/TAMRA dual-labeled Taqman probe (Biosearch Technologies, Navoto, CA, DLO-FT-2) was then added to the correctly labeled tube of PCR master mix. Alternatively, different combinations of fluorescent reporter dyes and quenchers can be used such that the absorption wavelength for the quencher matches the emission wavelength for the reporter, as

shown in table 4. 18µl of the each marker master mix was dispensed into a 384well plate (Applied BioSystems). 2µl of the template sample was dispensed into triplicate wells for each primer pair. The final concentration of each reagent was: 1X TaqMan Universal PCR Master Mix, 300nM each primer, 0.25nM probe, 2µl 1:10 diluted template. The reaction was run on an ABI 7900 Sequence Detection System (Applied Biosystems) using standard conditions (95°C for 10 min., 40 cycles of 95°C for 15 sec, 60°C for 1 min.).

The Sequence Detector v2.0 software (Applied BioSystems) was used to analyze the fluorescent signal from each well. The high end of the baseline was adjusted to between 8 and 20 cycles to reduce the impact on any data curves, yet be as high as possible to reduce baseline drift. A threshold value was selected that allowed most of the amplification curves to cross the threshold during the linear phase of amplification. The cycle number at which each amplification curve crossed the threshold (C_T) was recorded and the file transferred to MS Excel for further analysis. The C_T values for triplicate wells were averaged. The C_T values for triplicate wells were averaged. A standard deviation (Stdev) and a coefficient of variation (CV) were calculated for the triplicate wells. If the CV was greater than 2, an outlier among the three wells was identified and deleted. Then the average was recalculated. In each plate, ΔC_T was calculated for each marker-control combination by subtracting the average C_T of the target marker from the average C_T of the control (β -Actin or β -GUS). The expression relative to the control marker was calculated by taking two to the power of the ΔC_T of the target marker. All plates were run in duplicate and analyzed in the same manner. The percent variation was determined for each sample-marker combination (relative expression) by taking the absolute value of the value of the RE for the second plate from the RE for the first plate, and dividing that by the average. If more than 25% of the variation calculations on a plate are greater than 50%, then a third plate was run.

BI-PLEXING

Variation of real-time PCR assays can arise from unequal amounts of RNA starting material between reactions. In some assays, to reduce variation, the control gene amplification was included in the same reaction well as the target gene. To differentiate the signal from the two genes, different fluorescent dyes were used for the control gene. β-Actin was used as the control gene and the TaqMan probe used was labeled with the fluorescent dye VIC and the quencher TAMRA (Biosearch Technologies, Navoto, CA, DLO-FT-2). Alternatively, other combinations of fluorescent reporter dyes and quenchers (table 4) can be used as long as the emission wavelength of the reporter for the control gene is sufficiently different from the wavelength of the reporter dye used for the target. The control gene primers and probe were used at limiting concentrations in the reaction (150 nM primers and 0.125 nM probe) to ensure that there were enough reagents to amplify the target marker. The plates were run under the same protocol and the data are analyzed in the same way, but with a separate baseline and threshold for the VIC signal. Outliers were removed as above from both the FAM and VIC signal channels. The expression relative to control was calculated as above, using the VIC signal from the control gene.

$$ErA = 2^{(C_{T,VIC} - C_{T,FAM})}$$

ABSOLUTE QUANTITATION

Instead of calculating the expression relative to a reference marker, an absolute quantitation can be performed using real-time PCR. To determine the absolute quantity of each marker, a standard curve is constructed using serial dilutions from a known amount of template for each marker on the plate. The standard curve may be made using cloned genes purified from bacteria or using synthetic complimentary oligonucleotides. In either case, a dilution series that covers the expected range of expression is used as template in a series of wells in the plate. From the average C_T values for these known amounts of template a standard curve can be plotted. From this curve the C_T values for the unknowns are used to identify the starting concentration of cDNA. These absolute quantities can be compared between disease classes (i.e. rejection vs. no-rejection) or can be taken as expression relative to a control gene to correct for variation among samples in sample collection, RNA purification and quantification, cDNA synthesis, and the PCR amplification.

CELL TYPE SPECIFIC EXPRESSION

Some markers are expressed only in specific types of cells. These markers may be useful markers for differentiation of rejection samples from no-rejection samples or may be used to identify differential expression of other markers in a single cell type. A specific marker for cytotoxic T-lymphocytes (such as CD8) can be used to identify differences in cell proportions in the sample. Other markers that are known to be expressed in this cell type can be compared to the level of CD8 to indicate differential gene expression within CD8 T-cells.

Control genes for PCR

As discussed above, PCR expression measurements can be made as either absolute quantification of gene expression using a standard curve or relative expression of a gene of interest compared to a control gene. In the latter case, the gene of interest and the control gene are measured in the same sample. This can be done in separate reactions or in the same reaction (biplex format, see above). In either case, the final measurement for expression of a gene is expressed as a ratio of gene expression to control gene expression. It is important for a control gene to be constitutively expressed in the target tissue of interest and have minimal variation in expression on a per cell basis between individuals or between samples derived from an individual. If the gene has this type of expression behavior, the relative expression ratio will help correct for variability in the amount of sample RNA used in an assay. In addition, an ideal control gene has a high level of expression in the sample of interest compared to the genes being assayed. This is important if the gene of interest and control gene are used in a biplex format. The assay is set up so that the control gene reaches its threshold Ct value early and its amplification is limited by primers so that it does not compete for limiting reagents with the gene of interest.

To identify an ideal control gene for an assay, a number of genes were tested for variability between samples and expression in both mononuclear RNA samples and whole blood RNA samples using the RNA procurement and preparation methods and real-time PCR assays described above. 6 whole-blood and 6 mononuclear RNA samples from transplant recipients were tested. The intensity levels and variability of each gene in duplicate experiments on both sample types are shown in figure 8.

Based on criteria of low variability and high expression across samples, β -actin, 18s, GAPDH, b2microglobulin were found to be good examples of control genes for the PAX samples. A single control gene may be incorporated as an internal biplex control is assays.

Controlling for variation in real time PCR

Due to differences in reagents, experimenters, and preparation methods, and the variability of pipetting steps, there is significant plate-to-plate variation in real-time PCR experiments. This variation can be reduced by automation (to reduce variability and error), reagent lot quality control, and optimal data handling. However, the results on replicate plates are still likely to be different since they are run in the machine at different times.

Variation can also enter in data extraction and analysis. Real-time PCR results are measured as the time (measured in PCR cycles) at which the fluorescence intensity (Δ Rn in Applied Biosystems SDS v2.1 software) crosses a user-determined threshold (CT). When performing relative quantification, the CT value for the target gene is subtracted from the CT value for a control gene. This difference, called Δ CT, is the value compared among experiments to determine whether there is a difference between samples. Variation in setting the threshold can introduce additional error. This is especially true in the duplexed experimental format, where both the target gene and the control gene are measured in the same reaction tube. Duplexing is performed using dyes specific to each of the two genes. Since two different fluorescent dyes are used on the plate, two different thresholds are set. Both of these thresholds contribute to each Δ CT. Slight differences in the each dye's threshold settings (relative to the other dye) from one plate to the next can have significant effects on the Δ CT.

There are several methods for setting the threshold for a PCR plate. Older versions of SDS software (Applied Biosystems) determine the average baseline fluorescence for the plate and the standard deviation of the baseline. The threshold is set to 10x the standard deviation of the baseline. In SDS 2.0 the users must set the baseline by themselves. Software from other machine manufacturers either requires the user to set the threshold themselves or uses different algorithms. The latest version of the SDS software (SDS 2.1) contains Automatic baseline and threshold setting. The software sets the baseline separately for each well on the plate using the ΔRn at cycles preceding detectable levels.

Variability among plates is dependent on reproducible threshold setting. This requires a mathematical or experimental data driven threshold setting protocol. Reproducibly setting the threshold according to a standard formula will minimize variation that might be introduced in the threshold setting process.

Additionally, there may be experimental variation among plates that can be reduced by setting the threshold to a component of the data. We have developed a system that uses a set of reactions on each plate that are called the threshold calibrator (TCb). The TCb wells are used to set the threshold on all plates.

- 1. The TCb wells contain a template, primers, and probes that are common among all plates within an experiment.
- 2. The threshold is set within the minimum threshold and maximum threshold determined above.

3. The threshold is set to a value in this range that results in the average CT value for the TCb wells to be the same on all plates.

Example 9: Correlation and Classification Analysis

After generation and processing of expression data sets from microarrays as described in Example 7, a log ratio value is used for most subsequent analysis. This is the logarithm of the expression ratio for each gene between sample and universal reference. The processing algorithm assigns a number of flags to data that are of low signal to noise, saturated signal or are in some other way of low or uncertain quality. Correlation analysis can proceed with all the data (including the flagged data) or can be done on filtered data sets where the flagged data is removed from the set. Filtered data should have less variability and noise and may result in more significant or predictive results. Flagged data contains all information available and may allow discovery of genes that are missed with the filtered data set.

After filtering the data for quality as described above and in example 7, missing data are common in microarray data sets. Some algorithms don't require complete data sets and can thus tolerate missing values. Other algorithms are optimal with or require imputed values for missing data. Analysis of data sets with missing values can proceed by filtering all genes from the analysis that have more than 5%, 10%, 20%, 40%, 50%, 60% or other % of values missing across all samples in the analysis. Imputation of data for missing values can be done by a variety of methods such as using the row mean, the column mean, the nearest neighbor or some other calculated number. Except when noted, default settings for filtering and imputation were used to prepare the data for all analytical software packages.

In addition to expression data, clinical data are included in the analysis. Continuous variables, such as the ejection fraction of the heart measured by echocardiography or the white blood cell count can be used for correlation analysis. Any piece of clinical data collected on study subjects can be used in a correlation or classification analysis. In some cases, it may be desirable to take the logarithm of the values before analysis. These variables can be included in an analysis along with gene expression values, in which case they are treated as another "gene". Sets of markers can be discovered that work to diagnose a patient condition and these can include both genes and clinical parameters. Categorical variables such as male or female can also be used as variables for correlation analysis. For example, the sex of a patient may be an important splitter for a classification tree.

Clinical data are used as supervising vectors (dependent variables) for the significance or classification analysis of expression data. In this case, clinical data associated with the samples are used to divide samples in to clinically meaningful diagnostic categories for correlation or classification analysis. For example, pathologic specimens from kidney biopsies can be used to divide lupus patients into groups with and without kidney disease. A third or more categories can also be included (for example "unknown" or "not reported"). After generation of expression data and definition of supervising vectors, correlation, significance and classification analysis are used to determine which set of genes and set of genes are most appropriate for diagnosis and classification of patients and patient samples.

Two main types of expression data analyses are commonly performed on the expression data with differing results and purposes. The first is significance analyses or analyses of difference. In this case, the goal of the analysis is to identify genes that are differentially expressed between sample groups and to assign a statistical confidence to those genes that are identified. These genes may be markers of the disease process in question and are further studied and developed as diagnostic tools for the indication.

The second major type of analysis is classification analysis. While significance analysis identifies individual genes that are differentially expressed between sample groups, classification analysis identifies gene sets and an algorithm for their gene expression values that best distinguish sample (patient) groups. The resulting gene expression panel and algorithm can be used to create and implement a diagnostic test. The set of genes and the algorithm for their use as a diagnostic tool are often referred to herein as a "model". Individual markers can also be used to create a gene expression diagnostic model. However, multiple genes (or gene sets) are often more useful and accurate diagnostic tools.

Significance analysis for microarrays (SAM)

Significance analysis for microarrays (SAM) (Tusher 2001) is a method through which genes with a correlation between their expression values and the response vector are statistically discovered and assigned a statistical significance. The ratio of false significant to significant genes is the False Discovery Rate (FDR). This means that for each threshold there are some number of genes that are called significant, and the FDR gives a confidence level for this claim. If a gene is called differentially expressed between two classes by SAM, with a FDR of 5%, there is a 95% chance that the gene is actually differentially expressed between the classes. SAM will identify genes that are differentially expressed between the classes. The algorithm selects genes with low variance within a class and large variance between classes. The algorithm may not identify genes that are useful in classification, but are not differentially expressed in many of the samples. For example, a gene that is a useful marker for disease in women and not men, may not be a highly significant marker in a SAM analysis, but may be useful as part of a gene set for diagnosis of a multi-gene algorithm.

After generation of data from patient samples and definition of categories using clinical data as supervising vectors, SAM is used to detect genes that are likely to be differentially expressed between the groupings. Those genes with the highest significance can be validated by real-time PCR (Example 8) or can be used to build a classification algorithm as described here.

Classification

Classification algorithms are used to identify sets of genes and formulas for the expression levels of those genes that can be applied as diagnostic and disease monitoring tests. The same classification algorithms can be applied to all types of expression and proteomic data, including microarray and PCR based expression data. The discussion below describes the algorithms that were used and how they were used.

Classification and Regression Trees (CART) is a decision tree classification algorithm (Breiman 1984). From gene expression and or other data, CART can develop a decision tree for the classification of samples. Each node on the decision tree involves a query about the expression level of

one or more genes or variables. Samples that are above the threshold go down one branch of the decision tree and samples that are not go down the other branch. Genes from expression data sets can be selected for classification building with CART by significant differential expression in SAM analysis (or other significance test), identification by supervised tree-harvesting analysis, high fold change between sample groups, or known relevance to classification of the target diseases. In addition, clinical data can be used as independent variables for CART that are of known importance to the clinical question or are found to be significant predictors by multivariate analysis or some other technique. CART identifies predictive variables and their associated decision rules for classification (diagnosis). CART also identifies surrogates for each splitter (genes that are the next best substitute for a useful gene in classification). Analysis is performed in CART by weighting misclassification costs to optimize desired performance of the assay. For example, it may be most important that the sensitivity of a test for a given diagnosis be > 90%. CART models can be built and tested using 10 fold cross-validation or v-fold cross validation (see below). CART works best with a smaller number of variables (5-50).

Multiple Additive Regression Trees (Friedman, JH 1999, MART) is similar to CART in that it is a classification algorithm that builds decision trees to distinguish groups. MART builds numerous trees for any classification problem and the resulting model involves a combination of the multiple trees. MART can select variables as it build models and thus can be used on large data sets, such as those derived from an 8000 gene microarray. Because MART uses a combination of many trees and does not take too much information from any one tree, it resists over training. MART identifies a set of genes and an algorithm for their use as a classifier.

A Nearest Shrunken Centroids Classifier can be applied to microarray or other data sets by the methods described by Tibshirani et al. 2002. This algorithms also identified gene sets for classification and determines their 10 fold cross validation error rates for each class of samples. The algorithm determines the error rates for models of any size, from one gene to all genes in the set. The error rates for either or both sample classes can are minimized when a particular number of genes are used. When this gene number is determined, the algorithm associated with the selected genes can be identified and employed as a classifier on prospective sample.

For each classification algorithm and for significance analysis, gene sets and diagnostic algorithms that are built are tested by cross validation and prospective validation. Validation of the algorithm by these means yields an estimate of the predictive value of the algorithm on the target population. There are many approaches, including a 10 fold cross validation analysis in which 10% of the training samples are left out of the analysis and the classification algorithm is built with the remaining 90%. The 10% are then used as a test set for the algorithm. The process is repeated 10 times with 10% of the samples being left out as a test set each time. Through this analysis, one can derive a cross validation error which helps estimate the robustness of the algorithm for use on prospective (test) samples. Any % of the samples can be left out for cross validation (v-fold cross validation, LOOCV). When a gene set is established for a diagnosis with an acceptable cross validation error, this set of genes is tested using samples that were not included in the initial analysis (test samples). These samples may be taken from archives generated during the clinical study.

Alternatively, a new prospective clinical study can be initiated, where samples are obtained and the gene set is used to predict patient diagnoses.

Example 10: Assay sample preparation

In order to show that the leukocyte-specific markers of the present invention can be detected in whole blood, we collected whole blood RNA using the PAXgene whole blood collection, stabilization, and RNA isolation kit (PreAnalytix). Varying amounts of the whole blood RNA were used in the initial RT reaction (1, 2, 4, and 8ug), and varying dilutions of the different RT reactions were tested (1:5, 1:10, 1:20, 1:40, 1:80, 1:160). We did real-time PCR assays with primers specific to XDx's markers and showed that we can reliably detect these markers in whole blood.

Total RNA was prepared from 14 mononuclear samples (CPT, BD) paired with 14 whole blood samples (PAXgene, PreAnalytix) from transplant recipients. cDNA was prepared from each sample using $2\mu g$ total RNA as starting material. Resulting cDNA was diluted 1:10 and Sybr green real-time PCR assays were performed.

For real-time PCR assays, Ct values of 15-30 are desired for each gene. If a gene's Ct value is much above 30, the result may be variable and non-linear. For PAX sample, target RNA will be more dilute than in CPT samples. cDNA dilutions must be appropriate to bring Ct values to less than 30.

Ct values for the first 5 genes tested in this way are shown in the table below for both whole blood RNA (PAX) and mononuclear RNA (CPT).

Gene	Ct PAX	Ct CPT
CD20	27.41512	26.70474
4761	28.45656	26.52635
3096	29.09821	27.83281
GranzymeB	31.18779	30.56954
II.4	33.11774	34.8002
Actin	19.17622	18.32966
B-GUS	26.89142	26.92735

With one exception, the genes have higher Ct values in whole blood. Using this protocol, all genes can be detected with Cts <35. For genes found to have Ct values above 30 in target samples, less diluted cDNA may be needed.

Example 11: Identification and validation of gene expression markers for diagnosis and monitoring of lupus and autoimmune diseases.

Patients were enrolled in a clinical study as described in example 4.

58 peripheral blood samples from 22 patients meeting ACR criteria for SLE, 20 patients with rheumatoid arthritis (RA), 6 patients with osteoarthritis (OA), and 10 healthy donors (HD) were collected (see Table 1). Within 1 hour of collection, samples were processed by density gradient centrifugation and mononuclear cells were lysed and frozen using the technique described in example 1. Total RNA was prepared from cell pellets, amplified and labeled with fluorescent Cy3, and hybridized to a custom oligonucleotide microarray of 8143 DNA sequences selected by virtue of

differential or specific expression in activated or resting leukocytes (methods used are described in examples 5-7). After normalization, the log ratio of Cy3 (donor sample) to Cy5 (pooled reference leukocyte RNA) was used for analysis of gene sequences differentially expressed by the SLE samples versus all non-SLE samples. SLE samples were divided into classic or highly probable SLE diagnosis according to American College of Rheumatology clinical criteria or patients with the clinical diagnosis of SLE, but less with fewer classic signs or symptoms or recent treatment with increased immunosuppression.

Significance analysis of microarrays (SAM, Tusher et al. 2001) was used to identify genes that are differentially expressed between Lupus patients and controls (Example 9). These data are shown in Table 2A where genes are listed that were over- or under-expressed in SLE and control samples at various levels of false detection rates (FDR). Each of these genes may have a correlation to disease or disease activity. Also using the methods of example 9, Multiple Additive Regression Trees (MART) was also used to identify genes that best distinguished SLE from control samples in using multi-gene classification models (Table 2C). This analysis identifies gene sets and formulae that relate the genes to create a diagnostic or monitoring assay for lupus. Genes that are a part of a multi-gene algorithm with a low classification error rate on patient samples and a high level of importance in the algorithm are high priority gene markers.

Real-time PCR by techniques described in example 8 was used to confirm and quantify differential expression of selected gene sequences (Table 2B). PCR primers for all marker genes can be designed by these same methods. Many of the genes tested were validated and showed highly significant correlation or anti-correlation to lupus samples.

Hierarchical cluster analysis (Eisen et al. 1998, Example 9) identified both known and undescribed genes that are coexpressed with genes that showed promise in either the array or PCR data as being markers of SLE (Table 2D). Genes were thus grouped into pathways.

Among the genes identified by the significance and classification analysis, at many are members of the IFN regulatory factor or interferon-induced gene families. The interferon alpha family of molecules and pathways have been implicated in the pathogenesis of Lupus for some time. Patients treated with interferon alpha for chronic viral infections can have the side effect of autoimmune phenomena and Lupus. IFN-a levels are elevated in sera from patients with SLE, RA, Sjogren's syndrome, and scleroderma. IFN-a may also be involved in the very earliest events that initiate autoimmunity. Identification of the specific IFN-a gene products expressed in SLE may allow selective therapeutic targeting of pathogenic cytokines while sparing those IFN's that are protective in the setting of virus infection.

Table 1: Samples used in array and PCR expression profiling experiments

atient	PrimaryDx	Dx1	Dx2	PCR
attent	C	0	0	
	c	0	0	x
	C	0	2	x
	c	0	0	
	c	0	0	x
	C	0	0	
	c	0	0	x
	C	0	0	x
	c	0	0	
	c	0	0	
0	OA .	0	0	x
1	OA OA	0	0	x
2		0	0	x
3	OA	0	0	х
4	OA	0	0	х
5	OA	0	0	
6	OA	0	0	x
7	RA	0	0	
.8	RA	 0	0	
9	RA		0	
20	RA	0	0	
21	RA	0	0	x
22	RA	0	0	
23	RA	0	0	х
24	RA	0	0	
25	RA	0	0	x
26	RA	0		X
27	RA	0	0	^
28	RA	0	0	x
29	RA	0		x
30	RA	0	0	
31	RA	0	2	X
32	RA	0	0	
33	RA	0	0	<u>x</u>
34	RA	0	0	
35	RA	0	0	
36	RA	0	0	
37	SLE	1	2	x
38	SLE	1	2	
39	SLE	1	1	
40	SLE	1	1	x
41	SLE	11	2	x
42	SLE	1	1	х
43	SLE	1	1	
44	SLE	1	1	x
45	SLE	1	2	x
46	SLE	1	2	x
47	SLE	1	1	x
48	SLE	1	1	x
49	SLE	1	1	x
50	SLE	1	1	
50 51 52	SLE	1	1	x
52	SLE	1	1	x

Table 1: Samples used in array and PCR expression profiling experiments

Patient	PrimaryDx	Dx1	Dx2	PCR
53	SLE	1	2	x
54	SLE	1	1	
55	SLE	1	2	x
56	SLE	1	2	x
57	SLE	1	1	
58	SLE	1	1	

SEQ ID	Į.	SEQ ID			SAM	SAM
ระนาบ 50mer	ACC		нѕ	Gene	FDR	SAM Up/Down
515	NM_031157			heterogeneous nuclear ribonucleoprotein A1	0.0909	down
	_			(HNRPA1), transcript variant 2, mRNA /cds=(104,1222)		
516	D23660	14	Hs.334822	Homo sapiens, Similar to ribosomal protein L4, clone MGC:2966 IMAGE:3139805, mRNA, complete cds /cds=(1616,2617)	0.0909	down
519	BE550944	17	Hs.61426	602329933F1 cDNA	0.0909	down
520	L13385	18	Hs.77318	Miller-Dieker lissencephaly protein (LIS1)	0.0909	down
521	AF315591	19	Hs.6151	pumilio (Drosophila) homolog 2 (PUM2)	0.0909	down
522	AK025620	20	Hs.5985	cDNA: FLJ21967 fis, clone HEP05652, highly similar to AF131831 clone 25186 mRNA sequence /cds=UNKNOWN	0.0909	down
523	AK026747	21	Hs.12969	cDNA: FLJ23094 fis, clone LNG07379	0.0909	down
524	NM_001731		Hs.77054	B-cell translocation gene 1, anti-proliferative (BTG1), mRNA /cds=(308,823)	0.0909	down
525	NM_004281		Hs.15259	BCL2-associated athanogene 3 (BAG3), mRNA /cds=(306,2033)	0.0909	down
526	XM_008738		Hs.79241	B-cell CLL/lymphoma 2 (BCL2), nuclear gene encoding mitochondrial protein, transcript variant alpha, mRNA /cds=(31,750)	0.0909	down
527	XM_018498	25	Hs.180946	ribosomal protein L5 pseudogene mRNA, complete cds /cds=UNKNOWN	0.0909	down
528	U67093	26	Hs.194382	ataxia telangiectasia (ATM) gene, complete cds /cds=(795,9965)	0.0909	down
529	<u> </u>	27		tumor protein, translationally-controlled 1 (TPT1), mRNA /cds=(94,612)	0.0909	down
530	NM_003133		Hs.75975	signal recognition particle 9kD (SRP9), mRNA /cds=(106,366)	0.1042	down
531	NM_004261	29	Hs.90606	15 kDa selenoprotein (SEP15), mRNA /cds=(4,492)	0.1042	down
532	NM_002300	30	Hs.234489	Homo sapiens, lactate dehydrogenase B, clone MGC:3600 IMAGE:3028947, mRNA, complete cds /cds=(1745,2749)	0.1071	down
533	NM_003853		Hs.158315	interleukin 18 receptor accessory protein (IL18RAP), mRNA /cds=(483,2282)	0.1071	down
534	X53777	32	Hs.82202	ribosomal protein L17 (RPL17), mRNA /cds=(286,840)	0.1071	down
535	N27575	33	Hs.75613	CD36 antigen (collagen type I receptor, thrombospondin receptor) (CD36), mRNA /cds=(132,1550)	0.1167	down
536	NM_006800	34	Hs.88764	male-specific lethal-3 (Drosophila)-like 1 (MSL3L1), mRNA /cds=(105,1670)	0.1167	down
537	NM_000734	35	Hs.97087	CD3Z antigen, zeta polypeptide (TiT3 complex) (CD3Z), mRNA /cds=(178,669)	0.141	down
538	NM_003756	36	Hs.58189	eukaryotic translation initiation factor 3, subunit 3 (gamma, 40kD) (EIF3S3), mRNA /cds=(5,1063)	0.141	down
539	NM_021950	37	Hs.89751	CD20 antigen	0.141	down
540	AK021632	38	Hs.11571	cDNA FLJ11570 fis, clone HEMBA1003309 /cds=UNKNOWN	0.141	down

SEQ ID		SEQ ID			SAM	SAM
50mer	ACC	length	нѕ	Gene	FDR	Up/Down
541	AK025583	39	Hs.82845	cDNA: FLJ21930 fis, clone HEP04301, highly similar to HSU90916 clone 23815 mRNA sequence /cds=UNKNOWN	0.141	down
542	NM_000661			Homo sapiens, clone MGC:15545 IMAGE:3050745, mRNA, complete cds /cds=(1045,1623)	0.141	down
543	NM_001057	41	Hs.161305	tachykinin receptor 2 (TACR2), mRNA /cds=(0,1196)	0.141	down
544	X60656	42	Hs.275959	eukaryotic translation elongation factor 1 beta 2 (EEF1B2), mRNA /cds=(235,912)	0.141	down
545	NM_004779	43	Hs.26703	CNOT8 CCR4-NOT transcription complex, subunit 8	0.1628	down
546	X58529	44	Hs.302063	rearranged immunoglobulin mRNA for mu heavy chain enhancer and constant region /cds=UNKNOWN	0.1628	down
547	NM_016091	45	Hs.119503	HSPC025 (HSPC025), mRNA /cds=(33,1727)	0.1705	down
548	NM_001006	46	Hs.77039	ribosomal protein S3A (RPS3A), mRNA /cds=(36,8	0.1739	down
549	NM_001568	47	Hs.106673	eukaryotic translation initiation factor 3, subunit 6 (48kD) (EIF3S6), mRNA /cds=(22,1359)	0.1739	down
550		48	Hs.77502	, methionine adenosyltransferase II, alpha, c	0.193	down
551	NM_000983	49	Hs.326249	ribosomal protein L22 (RPL22), mRNA /cds=(51,437)	0.193	down
552	NM_001006	50	Hs.155101	mRNA for KIAA1578 protein, partial cds /cds=(0,3608)	0.193	down
553	NM_001403	51	Hs.274466	eukaryotic translation elongation factor 1 alpha 1-like 14 (EEF1A1L14), mRNA /cds=(620,1816)	0.193	down
	NM_002796		Hs.89545	proteasome (prosome, macropain) subunit, beta type, 4 (PSMB4), mRNA /cds=(23,817)	0.193	down
	NM_016304			60S ribosomal protein L30 isolog (LOC51187), mRNA /cds=(143,634)	0.193	down
	NM_017918	i 		hypothetical protein FLJ20647 (FLJ20647), mRNA /cds=(90,836)	0.193	down
		55		/clone_end=3'	0.193	down
	NM_001961			eukaryotic translation elongation factor 2 (EEF2), mRNA /cds=(0,2576)		down
		57	Hs.12436	cDNA: FLJ22656 fis, clone HSI07655 /cds=UNKNOWN		down
		58	Hs.334807	Homo sapiens, ribosomal protein L30, clone MGC:2797, mRNA, complete cds /cds=(29,376)	0.1949	down
		59	Hs.1600	cds /cds=(0,1620)	0.1949	down
		60		heterogeneous nuclear ribonucleoprotein H2 (H') (HNRPH2), mRNA /cds≈(78,1427)	0.2131	down
563	U61267	61	Hs.30035		0.2133	down
		62		high affinity Fc receptor (FcRI) /cds=(36,116	0.2133	down
565	AF267856	63	Hs.8084	HT033 mRNA, complete cds /cds=(203,931)	0.2133	down
566	AK025306	64	Hs.2083			down

SEQ ID	}	SEQ ID			SAM	SAM
50mer	ACC	length	нѕ	Gene	FDR	Up/Down
567	AL162068	65		HSP22-like protein interacting protein (LOC64165), mRNA /cds=(0,155)	0.2133	down
568	NM_004768	66	Hs.11482	splicing factor, arginine/serine-rich 11 (SFRS11), mRNA /cds=(83,1537)	0.2133	
569	NM_005594	67	Hs.158164	transporter 1, ATP-binding cassette, sub-family B (MDR/TAP) (TAP1), mRNA /cds=(30,2456)	0.2133	down
570	Al440234	68	Hs.9614	Nucleophosmin (probe bad, mutations, wrong clone used) (nucleolar phosphoprotein B23, numatrin)	0.2133	down
571		69	Hs.203755	xm08h07.x1 cDNA, 3' end /clone=IMAGE:2683645 /clone_end=3'	0.2133	down
572	NM_005826	70	Hs.15265	heterogeneous nuclear ribonucleoprotein R (HNRPR), mRNA /cds=(90,1991)	0.2133	down
573	Al568695	71	Hs.75969	proline-rich protein with nuclear targeting signal (B4-2), mRNA /cds=(113,1096)	0.2133	down
574	AL110225	72	Hs.89434	drebrin 1 (DBN1), mRNA /cds=(97,2046)	0.2171	down
575	AL110151	73		mRNA; cDNA DKFZp586D0824 (from clone DKFZp586D0824); partial cds /cds=(0,1080)	0.2403	down
576	NM_006495	74	Hs.5509	ecotropic viral integration site 2B (EVI2B), mRNA /cds=(0,1346)	0.2628	down
577	M74002	75	Hs.11482	splicing factor, arginine/serine-rich 11 (SFRS11), mRNA/cds=(83,1537)	0.2759	down
578	AK002173	76	Hs.5518	cDNA FLJ11311 fis, clone PLACE1010102 /cds=UNKNOWN	0.2759	down
579	AK024976	77	Hs.323378	coated vesicle membrane protein (RNP24), mRNA /cds=(27,632)	0.2759	down
580	BC000967	78	Hs.195870	chronic myelogenous leukemia tumor antigen 66 mRNA, complete cds, alternatively spliced /cds=(232,1983)	0.2759	down
581	NM_016312	79	Hs.334811	Npw38-binding protein NpwBP (LOC51729), mRNA /cds=(143,2068)	0.2759	down
582	X57347	80	Hs.74405	tyrosine 3-monooxygenase/tryptophan 5- monooxygenase activation protein, theta polypeptide (YWHAQ), mRNA /cds=(100,837)	0.2759	down
583	BG424974	81	Hs.292457	Homo sapiens, clone MGC:16362 IMAGE:3927795, mRNA, complete cds /cds=(498,635)	0.276	down
584 ·	U89387	82	Hs.194638	polymerase (RNA) II (DNA directed) polypeptide D (POLR2D), mRNA /cds=(30,458)	0.2784	down
585	AB034205	83	Hs.278670	Acid-inducible phosphoprotein	0.3	down
586	XM_008062	84	Hs.17279	tyrosylprotein sulfotransferase 1 (TPST1), mRNA /cds=(81,1193)	0.3	down
587	NM_016099	85	Hs.7953	HSPC041 protein (LOC51125), mRNA /cds=(141,455)	0.3022	down
588	NM_022898	86	Hs.57987	B-cell lymphoma/leukaemia 11B (BCL11B), mRNA /cds=(267,2738)	0.3533	down
589	NM_006759	87	Hs.77837	UDP-glucose pyrophosphorylase 2 (UGP2), mRNA /cds=(84,1610)	0.367	down
590	AF079566	88	Hs.4311	SUMO-1 activating enzyme subunit 2 (UBA2), mRNA /cds=(25,1947)	0.3798	down
591	NM_001024	89	Hs.182979	cDNA: FLJ22838 fis, clone KAIA4494, highly similar to HUML12A ribosomal protein L12 mRNA /cds=UNKNOWN	0.3798	down
592	NM_017761	90	Hs.7862	hypothetical protein FLJ20312 (FLJ20312), mRNA /cds=(133,552)	0.3798	down

SEQ ID 50mer	ACC	SEQ ID Full length	нѕ	Gene	SAM FDR	SAM
593	U15085	91	Hs.1162	major histocompatibility complex, class II, DM beta	0.3798	Up/Down down
594	AW572538	92	Hs.42915	(HLA-DMB), mRNA /cds=(233,1024) ARP2 (actin-related protein 2, yeast) homolog (ACTR2),	0.3798	down
595	AK025557	93	Hs.110771	mRNA /cds=(74,1258) cDNA: FLJ21904 fis, clone HEP03585 /cds=UNKNOWN	0.3798	down
596	NM_003854	94	Hs.102865	interleukin 1 receptor-like 2 (IL1RL2), mRNA /cds=(134,1822)	0.3798	down
597	AF116679	95	Hs.288036	tRNA isopentenylpyrophosphate transferase (IPT), mRNA /cds=(60,1040)	0.38	down
598	AF148537	96	Hs.65450	reticulon 4a mRNA, complete cds /cds=(141,3719)	0.3857	down
599	NM_017892	97	Hs.107213	hypothetical protein FLJ20585 (FLJ20585), mRNA /cds=(99,746)	0.3972	down
600	NM_000967	98	Hs.119598	ribosomal protein L3 (RPL3), mRNA /cds=(6,1217)	0.4174	down
601	NM_000971	99	Hs.153	ribosomal protein L7 (RPL7), mRNA /cds=(10,756)	0.4174	down
602	AF012872	100		phosphatidylinositol 4-kinase 230 (pi4K230) mRNA, complete cds /cds=(0,6134)	0.4174	down
603	BC004900	101	Hs.151242	serine (or cysteine) proteinase inhibitor, clade G (C1 inhibitor), member 1 (SERPING1), mRNA /cds=(60,1562)	0.4174	down
604	NM_002298	102	Hs.76506	lymphocyte cytosolic protein 1 (L-plastin) (LCP1), mRNA /cds=(173,2056)	0.4174	down
605	X59405	103	Hs.83532	H.sapiens, gene for Membrane cofactor protein /cds=UNKNOWN	0.4174	down
606	AL049935	104	Hs.301763	mRNA; cDNA DKFZp564O1116 (from clone DKFZp564O1116) /cds=UNKNOWN	0.4174	down
607	NM_017860	105	Hs.79457	hypothetical protein FLJ20519 (FLJ20519), mRNA /cds=(74,604)	0.4181	down
608	J04142	106	Hs.1799	CD1D antigen, d polypeptide (CD1D), mRNA /cds=(164,1171)	0.4231	down
609	NM_016127	107	Hs.279921	HSPC035 protein (LOC51669), mRNA /cds=(16,1035)	0.4622	down
610	AK023379	108	Hs.155160	Homo sapiens, Similar to splicing factor, arginine/serine-rich 2 (SC-35)	0.4798	down
		109	Hs.3446	mitogen-activated protein kinase kinase 1 (MAP2K1), mRNA /cds=(72,1253)	0.4798	down
612	NM_002710		Hs.79081	protein phosphatase 1, catalytic subunit, gamma isoform (PPP1CC), mRNA /cds=(154,1125)	0.4798	down
613	NM_004380	111	Hs.23598	CREB binding protein (Rubinstein-Taybi syndrome) (CREBBP), mRNA /cds=(198,7526)	0.4798	down
614		112	Hs.135872	wv61h08.x1 cDNA, 3' end /clone=IMAGE:2534079 /clone_end=3'	0.4798	down
615	NM_001436	113	Hs.99853	fibrillarin (FBL), mRNA /cds=(59,1024)	0.484	down
616	AB007916	114	Hs.214646	mRNA for KIAA0447 protein, partial cds /cds=(233,1633)	0.5	down
617	AL137681	115	Hs.173912	eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2), mRNA /cds=(15,1238)	0.5	down
618	BC003090	116	Hs.75193	COP9 homolog (COP9), mRNA /cds=(49,678)	0.5	down
619	U15173	117	Hs.155596	BCL2/adenovirus E1B 19kD-interacting protein 2 (BNIP2), mRNA /cds=(211,1155)	0.5	down

SEQ ID	ACC	SEQ ID	116	Compa	SAM	SAM
50mer	ACC	length	HS	Gene	FDR	Up/Down
620 	NM_014210		Hs.70499	ecotropic viral integration site 2A (EVI2A), mRNA /cds=(219,917)	0.5301	down
621	NM_001011		Hs.301547	ribosomal protein S7 (RPS7), mRNA /cds=(81,665)	0.5331	down
622	U07802	120	Hs.78909	Tis11d gene, complete cds /cds=(291,1739)	0.5331	down
623	Al817153	121	Hs.86693	EST380760 cDNA	0.5331	down
624	NM_006791	122	Hs.6353	MORF-related gene 15 (MRG15), mRNA /cds=(131,1102)	0.56	down
625	NM_004500	123	Hs.182447	heterogeneous nuclear ribonucleoprotein C (C1/C2) (HNRPC), transcript variant 1, mRNA /cds=(191,1102)	0.5616	down
626	M16660	124	Hs.318720	Homo sapiens, clone MGC:12387 IMAGE:3933019, mRNA, complete cds /cds=(63,863)	0.588	down
627	NM_001000	125	Hs.300141	cDNA FLJ14163 fis, clone NT2RP1000409 /cds=UNKNOWN	0.5909	down
628	BC008737	126	Hs.164280	Homo sapiens, Similar to solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5, clone MGC:3042 IMAGE:3342722, mRNA, complete cds /cds=(88,984)	0.5938	down
629	BE222392	127	Hs.79914	lumican (LUM), mRNA /cds=(84,1100)	0.6062	down
630	BC010112	128	Hs.79037	Homo sapiens, heat shock 60kD protein 1 (chaperonin), clone MGC:19755 IMAGE:3630225, mRNA, complete cds /cds=(1705,3396)	0.6062	down
631	AK025586	129	Hs.27268	cDNA: FLJ21933 fis, clone HEP04337 /cds=UNKNOWN	0.6224	down
632	NM_015057	130	Hs.151411	KIAA0916 protein (KIAA0916), mRNA /cds=(146,14071)	0.6351	down
633	U10550	131	Hs.79022	GTP-binding protein overexpressed in skeletal muscle (GEM), mRNA /cds=(213,1103)	0.6433	down
634	NM_000986	132	Hs.184582	DPP7 alveolar r	0.6487	down
	NM_000993			ribosomal protein L31 (RPL31), mRNA /cds=(7,384)	0.6487	down
636	NM_001688	134		ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b, isoform 1 (ATP5F1), mRNA /cds=(32,802)	0.6487	down
637	Al356505	135	Hs.228874	qz22b04.x1 cDNA, 3' end /clone=IMAGE:2027599 /clone_end=3'	0.6487	down
638	AF119850	136	Hs.2186	Homo sapiens, eukaryotic translation elongation factor 1 gamma, clone MGC:4501 IMAGE:2964623, mRNA, complete cds /cds=(2278,3231)	0.6487	down
	AF132197	137	Hs.301824	hypothetical protein PRO1331 (PRO1331), mRNA /cds=(422,616)	0.6667	down
	NM_006925		Hs.166975	splicing factor, arginine/serine-rich 5 (SFRS5), mRNA /cds=(218,541)	0.6667	down
	NM_002001		Hs.897	Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide (FCER1A), mRNA /cds=(106,879)	0.6667	down
	BC036402	11	NA	116C9	0.6691	up
642	W00466	140	Hs.44189			up

SEQ ID	400	SEQ ID Full	uc.	Comp	SAM	SAM
50mer	ACC	length	HS	Gene	FDR	Up/Down
643	D17042	141	Hs.50651	Janus kinase 1 (a protein tyrosine kinase) (JAK1), mRNA /cds=(75,3503)	0.6867	down
644	NM_003380		Hs.297753		0.6867	down
645	NM_016824	143		adducin 3 (gamma) (ADD3), transcript variant 1, mRNA /cds=(31,2151)	0.6867	down
646	Al581383	144	Hs.327922	to71c02.x1 cDNA, 3' end /clone=IMAGE:2183714 /clone_end=3'	0.6867	down
647	BC005913	145	Hs.1074	surfactant, pulmonary-associated protein C (SFTPC), mRNA /cds=(27,620)	0.6994	down
648	NM_004811	146	Hs.49587	leupaxin (LPXN), mRNA /cds=(93,1253)	0.6994	down
649	AL357536	147	Hs.3576	Homo sapiens, Similar to RIKEN cDNA 5730494N06 gene, clone MGC:13348 IMAGE:4132400, mRNA, complete cds /cds=(132,494)	0.7029	down
650	NM_022570			C-type (calcium dependent, carbohydrate-recognition domain) lectin, superfamily member 12 (CLECSF12), mRNA /cds=(71,676)	0.7029	down
651	NM_004396	149	Hs.76053	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 5 (RNA helicase, 68kD) (DDX5), mRNA /cds=(170,2014)	0.7151	down
652	AK026372	150	Hs.143631	cDNA: FLJ22719 fis, clone HSI14307 /cds=UNKNOWN	0.7225	down
653	XM_012059	151	Hs.154938	hypothetical protein MDS025 (MDS025), mRNA /cds=(5,769)	0.7299	down
654	XM_011914	152	Hs.180450	ribosomal protein S24 (RPS24), transcript variant 1, mRNA /cds=(37,429)	0.7301	down
655	NM_020414	153	Hs.286233	sperm autoantigenic protein 17 (SPA17), mRNA /cds=(1210,1665)	0.7301	down
656	S73591	154	Hs.179526	upregulated by 1,25-dihydroxyvitamin D-3 (VDUP1), mRNA /cds=(221,1396)	0.7373	down
657	J00194	155	Hs.76807	major histocompatibility complex, class II, DR alpha (HLA-DRA), mRNA /cds=(26,790)	0.7989	down
658	AK021715	156	Hs.271541	cDNA FLJ11653 fis, clone HEMBA1004538 /cds=UNKNOWN	0.7989	down
	AK027187	157	Hs.289071	cDNA: FLJ22245 fis, clone HRC02612 /cds=UNKNOWN	0.7989	down
	AL117595	158	Hs.4055	DKFZp564C2063) /cds=UNKNOWN	0.7989	down
	NM_002823			prothymosin, alpha (gene sequence 28) (PTMA), mRNA /cds=(155,487)	0.7989	down
	NM_004327			breakpoint cluster region (BCR), transcript variant 1, mRNA /cds=(488,4303)	0.7989	down
	NM_017830			ovarian carcinoma immunoreactive antigen (OCIA), mRNA /cds=(167,904)	0.7989	down
	X06557	162	Hs.2014	mRNA for T-cell receptor delta /cds=UNKNOWN	0.7989	down
65	Al146787	163	Hs.156601	qb83f02.x1 cDNA, 3' end /clone=IMAGE:1706715 /clone_end=3'	0.7989	down
	Al568771	164	Hs.327876	th15h04.x1 cDNA, 3' end /clone=IMAGE:2118391 /clone_end=3'	0.7989	down
		165	Hs.253151	/clone_end=3'	0.7989	down
68	NM_016316	166	Hs.110347	REV1 (yeast homolog)- like (REV1L), mRNA /cds=(212,3967)	0.8132	down

eeo in		SEQ ID			SARA	SAM
SEQ ID 50mer	ACC	Full length	нѕ	Gene	SAM FDR	Up/Down
669	AV724531	167	Hs.76728	602570065F1 cDNA, 5' end /clone=IMAGE:4694321	0.8594	down
009	AV724331	107	115.70720	/clone_end=5'	0.0554	down
670	AK002059	168	Hs.92918	hypothetical protein (BM-009), mRNA /cds=(385,1047)	0.8594	down
671	NM_001503	169	Hs.272529	glycosylphosphatidylinositol specific phospholipase D1 (GPLD1), mRNA /cds=(32,2557)	0.8653	down
672	AA251806	170	Hs.177712	zs09c03.s1 cDNA, 3' end /clone=IMAGE:684676 /clone_end=3'	0.8734	up
517	NM_006276		Hs.184167	splicing factor, arginine/serine-rich 7 (35kD) (SFRS7) mRNA /cds=(105,490)	0.8883	down
673	NM_004315		Hs.75811	N-acylsphingosine amidohydrolase (acid ceramidase) (ASAH), mRNA /cds=(17,1204)	0.8883	down
674	NM_004371		Hs.75887	coatomer protein complex, subunit alpha (COPA), mRNA /cds=(466,4140)	0.8883	down
675	AF054284	173	{	splicing factor 3b, subunit 1, 155kD (SF3B1), mRNA /cds=(0,3914)		down
676		174		RNA binding motif protein, X chromosome (RBMX), mRNA /cds=(11,1186)	0.9257	down
677	NM_003367		Hs.93649	upstream transcription factor 2, c-fos intera	0.9542	ир
678	AB014522	176	Hs.11238	mRNA for KIAA0622 protein, partial cds /cds=(0,3869)		ир
679		177	Hs.8121	Notch (Drosophila) homolog 2 (NOTCH2), mRNA /cds=(12,7427)	0.9542	up
680	BF897042	178		FLJ32028 hypothetical protein FLJ32028	0.9542	up
681		179		proteasome (prosome, macropain) subunit, alpha type, 2 (PSMA2), mRNA /cds=(0,704)	0.9563	down
682	AL578975	180	Hs.5057	AL578975 cDNA /clone=CS0DK012YN01-(3-prime)	0.9563	down
683	NM_000988	181	Hs.111611	ribosomal protein L27 (RPL27), mRNA /cds≈(17,427)	0.9662	down
684	NM_003769	182	Hs.77608	splicing factor, arginine/serine-rich 9 (SFRS9), mRNA /cds=(52,717)	1.0167	down
685	U94855	183	Hs.7811	eukaryotic translation initiation factor 3, subunit 5 (epsilon, 47kD) (EIF3S5), mRNA /cds≃(6,1079)	1.0167	down
686	AV749844	184	Hs.26670	PAC clone RP3-515N1 from 22q11.2-q22 /cds=(0,791)		down
		185		hypothetical protein FLJ20030 (FLJ20030), mRNA /cds=(1,1239)	1.0236	down
688	AU135154	186	Hs.172028	a disintegrin and metalloproteinase domain 10 (ADAM10), mRNA /cds=(469,2715)	1.0327	down
689	AF208850	187	Hs.82911	BM-008 mRNA, complete cds /cds=(341,844)	1.0822	down
690	D29805	188	Hs.198248	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1 (B4GALT1), mRNA /cds=(72,1268)	1.0822	down
691	NM_006098	189	Hs.5662	guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1 (GNB2L1), mRNA /cds=(95,1048)	1.0822	down
692	NM_001755		Hs.179881	core-binding factor, beta subunit (CBFB), transcript variant 2, mRNA /cds≕(11,559)	1.0905	down
693	NM_007355	191	Hs.74335	heat shock 90kD protein 1, beta (HSPCB), mRNA /cds=(0,2174)	1.0905	down

Tubic 2	A. Olgillite	SEQ ID		Microarrays, Lupus/Autoimmune merkers	1	Γ
SEQ ID		Full			SAM	SAM
	ACC	length	HS	Gene	FDR	Up/Down
694	W47229	192	Hs.173334	ELL-RELATED RNA POLYMERASE II, ELONGATION FACTOR (ELL2), mRNA /cds=(0,1922)	1.1	
695	X51345	193	Hs.198951	jun B proto-oncogene (JUNB), mRNA /cds=(253,1296)	1.1	
506	NM_006417	4	Hs.82316	interferon-induced, hepatitis C-associated microtubular aggregate protein (44kD) (MTAP44), mRNA /cds=(0,1334)	1.1077	up
696	Al364677	194	Hs.368853	ESTs	1.1077	up
697	Al380594	195	Hs.231261	tf95h06.x1 cDNA, 3' end /clone=IMAGE:2107067 /clone_end=3'	1.1077	up
698	NM_001641	196	Hs.73722	APEX nuclease (multifunctional DNA repair enzyme) (APEX), mRNA /cds≃(205,1161)	1.1138	down
699	NM_002786	197	Hs.82159	proteasome (prosome, macropain) subunit, alpha type, 1 (PSMA1), mRNA /cds=(105,896)	1.1138	down
700	J02621	198	Hs.251064	high-mobility group (nonhistone chromosomal) protein 14 (HMG14), mRNA /cds=(150,452)	1.115	down
701	NM_019111	199	Hs.76807	major histocompatibility complex, class II, DR alpha (HLA-DRA), mRNA /cds=(26,790)	1.115	down
702	AF248966	200	Hs.183434	ATPase, H+ transporting, lysosomal (vacuolar proton pump) membrane sector associated protein M8-9 (APT6M8-9)	1.1336	down
703	D31767	201	Hs.75416	DAZ associated protein 2 (DAZAP2), mRNA /cds=(69,575)	1.1336	down
704	NM_006839	202	Hs.78504	inner membrane protein, mitochondrial (mitofilin) (IMMT), mRNA /cds=(92,2368)	1.1336	down
705	Al581732	203	Hs.229918	ar74f03.x1 cDNA, 3' end /clone=IMAGE:2128349 /clone_end=3'	1.1336	down
706	NM_019059	204	Hs.274248	hypothetical protein FLJ20758 (FLJ20758), mRNA /cds=(464,1306)	1.1438	down
707	NM_001033	205	Hs.2934	ribonucleotide reductase M1 polypeptide (RRM1), mRNA /cds=(187,2565)	1.1525	down
708	NM_002719	206	Hs.171734	protein phosphatase 2, regulatory subunit B (B56), gamma isoform (PPP2R5C), mRNA /cds≃(88,1632)	1.1525	down
709	NM_003791		Hs.75890	membrane-bound transcription factor protease, site 1 (MBTPS1), mRNA /cds=(496,3654)	1.1772	down
710	NM_001105	208	Hs.150402	activin A receptor, type I (ACVR1), mRNA /cds=(340,1869)	1.1833	down
711	BG179517	209	Hs.99093	chromosome 19, cosmid R28379 /cds=(0,633)	1.1833	down
712	BF940103	210	Hs.26136	hypothetical protein MGC14156 (MGC14156), mRNA /cds=(82,426)	1.1833	down
713	AF061736	211	Hs.169895	ubiquitin-conjugating enzyme E2L 6 (UBE2L6), mRNA /cds=(47,508)	1.6	
714	AK023680	212	Hs.17448	cDNA FLJ13618 fis, clone PLACE1010925 /cds=UNKNOWN	1.6	
715	NM_001295	213	Hs.301921	chemokine (C-C motif) receptor 1 (CCR1), mRNA /cds=(62,1129)	1.6	
716	NM_003811	214	Hs.1524	tumor necrosis factor (ligand) superfamily, member 9 (TNFSF9), mRNA /cds=(3,767)	1.6	
717	X02812	215	Hs.1103	transforming growth factor, beta 1 (TGFB1), mRNA /cds=(841,2016)	1.6	
718	NM_002205	216	Hs.149609	integrin, alpha 5 (fibronectin receptor, alpha polypeptide) (ITGA5), mRNA /cds=(23,3172)	1.6	

SEQ ID	ì	SEQ ID Full	}		SAM	SAM
	ACC	length	нѕ	Gene	FDR	Up/Down
	Al818777	217		wi11f10.x1 cDNA, 3' end /clone=IMAGE:2424619 /clone_end=3'	1.6	
720	NM_005892	218	Hs.100217	formin-like (FMNL), mRNA /cds=(39,1430)	1.6	
721	M26252	219	Hs.198281	pyruvate kinase, muscle (PKM2), mRNA /cds=(109,1704)	1.6	
722	AB002377	220	Hs.32556	mRNA for KIAA0379 protein, partial cds /cds=(0,3180)	1.6324	up
723	Al381586	221	Hs.87908	Snf2-related CBP activator protein (SRCAP), mRNA /cds=(210,9125)	1.6662	up
724	BG760189	222	Hs.37617	602144947F1 cDNA, 5' end /clone=IMAGE:4308683 /clone_end=5'		up
725	NM_006913			ring finger protein 5 (RNF5), mRNA /cds=(0,542)	2.0853	up
726	AF189011	224	Hs.49163	ribonuclease III (RN3) mRNA, complete cds /cds=(245,4369)	2.246	up
727	AK022834	225	Hs.58488	catenin (cadherin-associated protein), alpha-like 1 (CTNNAL1), mRNA /cds=(43,2247)	2.3244	up
728	NM_002878			RAD51 (S. cerevisiae)-like 3 (RAD51L3), mRNA /cds=(124,993)	2.3244	up
729	BF899464	227	NA	IL5-MT0211-011200-317-f03 MT0211 cDNA, mRNA sequence	2.3244	up
730	AW452510	228		Ul-H-BW1-ame-a-12-0-Ul.s1 cDNA, 3' end /clone=IMAGE:3069598 /clone_end=3'	2.3244	up
731	NM_005508			chemokine (C-C motif) receptor 4 (CCR4), mRNA /cds=(182,1264)	2.3244	up
732	X16354	230	Hs.50964	mRNA for transmembrane carcinoembryonic antigen BGPa (formerly TM1-CEA) /cds=(72,1652)	2.468	ир
733		231	<u> </u>	oe10d02.s1 cDNA /clone=IMAGE:1385475	2.468	up
734	NM_005485	232	Hs.271742	ADP-ribosyltransferase (NAD+; poly (ADP-ribose) polymerase)-like 3 (ADPRTL3), mRNA /cds=(246,1847)	2.468	up
735	NM_005816	233	Hs.142023	T cell activation, increased late expression (TACTILE), mRNA /cds=(928,2637)	2.468	up
736		234		transforming growth factor, beta-induced, 68kD (TGFBI), mRNA /cds=(47,2098)	2.468	up
		235	<u>[</u>	B-factor, properdin	2.468	ир
738	T25714	236		ESTDIR309 cDNA, 3' end /clone=CDDIRX9 /clone_end=3'	2.468	up
739	NM_022873			interferon, alpha-inducible protein (clone IFI-6-16) (G1P3), transcript variant 3, mRNA /cds=(107,523)	2.468	up
740	X99699	238	i i	XIAP associated factor-1 (HSXIAPAF1), mRNA /cds=(0,953)	2.67	
741	AF067519	239		PITSLRE protein kinase beta SV1 isoform (CDC2L2) mRNA, complete cds /cds=(79,2412)	2.7771	up
742	BG387694	240		cell cycle progression 2 protein (CPR2), mRNA /cds=(126,1691)	2.7771	up
743	AF104032	241	Hs.184601	complete cds /cds=(66,1589)	2.7771	up
744	NM_012177		Hs.272027	F-box only protein 5 (FBXO5), mRNA /cds=(61,1404)	2.7771	up
745	AL042370	243	Hs.79709	phosphotidylinositol transfer protein (PITPN), mRNA /cds=(216,1028)	2.9579	up

SEQ ID 50mer	ACC	SEQ ID Full length	нѕ	Gene	SAM FDR	SAM Up/Down
746	BC009469	244		mRNA for FLJ00043 protein, partial cds /cds=(0,4248)	2.9579	up
747	AA319163	245	Hs.424299	RPLP1 ;germinal	2.9579	up
748	Al393970	246	Hs.76239	hypothetical protein FLJ20608 (FLJ20608), mRNA /cds=(81,680)	2.9579	up
749	NM_014481	247	Hs.154149	Homo sapiens, apurinic/apyrimidinic endonuclease(APEX nuclease)-like 2 protein, clone MGC:1418 IMAGE:3139156, mRNA, complete cds /cds=(38,1594)	2.9579	up
750	NM_017774	248	Hs.306668	cDNA FLJ14089 fis, clone MAMMA1000257 /cds=UNKNOWN	2.9579	up
751	NM_017859	249	Hs.39850	hypothetical protein FLJ20517 (FLJ20517), mRNA cds=(44,1690)		up
752	R44202	250	Hs.240013	mRNA; cDNA DKFZp547A166 (from clone DKFZp547A166) /cds=UNKNOWN		up
753	NM_002904	251	Hs.106061	RD RNA-binding protein (RDBP), mRNA /cds=(108,1250)	2.9579	ир
754	AL133642	252	Hs.241471	mRNA; cDNA DKFZp586G1721 (from clone DKFZp586G1721); partial cds /cds=(0,669)	3.09	up
755	AF160973	253	Hs.258503	253 inducible protein		up
756	NM_001972	254	Hs.99863	elastase 2, neutrophil (ELA2),		up
757	AA282774	255	NA	cDNA clone IMAGE:713136 5'		up
758	AB000115	256	Hs.75470	hypothetical protein, expressed in osteoblast (GS3686), mRNA /cds=(241,1482)		up
759	AJ277247	257	Hs.287369	interleukin 22 (IL22), mRNA /cds=(71,610)	3.0908	up
760	D38081	258	Hs.89887	thromboxane A2 receptor (TBXA2R), mRNA /cds=(991,2022)	3.0908	up
761	NM_001250	259	Hs.25648	tumor necrosis factor receptor superfamily, member 5 (TNFRSF5), mRNA /cds=(47,880)	3.0908	up
762	Al524266	260	Hs.230874	th11g12.x1 cDNA, 3' end /clone=IMAGE:2118022 /clone_end=3'	3.0908	up
763	AL573787	261	Hs.21732	AL573787 cDNA /clone=CS0DI055YM17-(3-prime)	3.0908	up
764	AK001503	262	Hs.265891	cDNA FLJ10641 fis, clone NT2RP2005748 /cds=UNKNOWN	3.0908	up
765	X04430	263	Hs.93913	IFN-beta 2a mRNA for interferon-beta-2, T-cells, macrophages	3.0908	up
766	AF480557	264	NA	142E4	3.0908	up
767	AL550229	265	Hs.271599	cDNA FLJ12347 fis, clone MAMMA1002298 /cds=UNKNOWN	3.0908	up
768	AV727063	266	Hs.245798	<u> </u>	3.0908	up
769	NM_000389	267	Hs.179665	<u> </u>		up
770	NM_001761	268	Hs.1973	cyclin F (CCNF), mRNA /cds=(43,2403)		up
771	NM_002741	269	Hs.2499	protein kinase C-like 1 (PRKCL1), mRNA /cds=(84,2912)		up
772	NM_002880	270	Hs.279474		3.0908	up

Table 2A: Significance analysis for Microarrays, Lupus/Autoimmune merkers

050:-		SEQ ID				
SEQ ID	1	Full	ue	Cono	SAM FDR	SAM
50mer 773	ACC NM 014373	length	HS.97101	Gene putative G protein-coupled receptor (GPCR150), mRNA		Up/Down up
				/cds=(321,1337)		
774	U53347	272	Hs.183556	solute carrier family 1 (neutral amino acid transporter), member 5 (SLC1A5), mRNA /cds=(590,2215)	3.0908	up
775	W19201	273	Hs.17778	neuropilin 2 (NRP2), mRNA /cds=(0,2780)	3.0908	up
776	W79598	274	Hs.163846	putative N6-DNA-methyltransferase (N6AMT1), mRNA /cds=(29,673)	3.0908	up
777	XM_001939	275	Hs.55468	H4 histone, family 2	3.0908	up
778	AI270476	276	Hs.270341	602307338F1 cDNA, 5' end /clone=IMAGE:4398848 clone_end=5'		up
779	AA992299	277	Hs.129332	ot53b06.s1 cDNA, 3' end /clone=IMAGE:1620467 /clone_end=3'	3.0908	up
780	AF044595	278	Hs.248078	ymphocyte-predominant Hodgkin's disease case #7 mmunoglobulin heavy chain gene, variable region		up
781	BI091076	279	Hs.127128	ok13e12.s1 cDNA, 3' end /clone=IMAGE:1507726 /clone_end=3'	3.0908	up
782	H13491	280	Hs.303450	yj15f02.r1 cDNA, 5' end /clone=IMAGE:148827 3		ир
783	M55420	281	Hs.247930	gE chain, last 2 exons		up
784	NM_014271	282	Hs.241385	interleukin 1 receptor accessory protein-like 1 (IL1RAPL1), mRNA /cds=(510,2600)		up
785	Al378091	283	Hs.369056		3.0908	ир
786	Al381601	284	Hs.159025	td05g03.x1 cDNA, 3' end /clone=IMAGE:2074804 /clone_end=3'	3.0908	up
787	Al634972	285	Hs.319825	602021477F1 cDNA, 5' end /clone=IMAGE:4156915 /clone_end=5'	3.0908	up
788	AW005376	286	Hs.173280	ws94a12.x1 cDNA, 3' end /clone=IMAGE:2505598 /clone_end=3'	3.0908	up
789	AW088500	287	Hs.389655	EST, Weakly similar to A35098 MHC class III histocompatibility antigen HLA-B-associated transcript 3	3.0908	up
790	AW195270	288	Hs.330019	xn67c04.x1 cDNA, 3' end /clone=IMAGE:2699526 /clone_end=3'	3.0908	up
791	AW296797	289	Hs.255579	UI-H-BW0-ajb-e-07-0-UI.s1 cDNA, 3' end /clone=IMAGE:2731117 /clone_end=3'	3.0908	up
792	BF827734	290	Hs.156766	ESTs	3.0908	up
793	M11233	291	Hs.79572	cathepsin D (lysosomal aspartyl protease) (CTSD), mRNA /cds=(2,1240)	3.0908	ир
794	AL050218	292	Hs.15020	DNA sequence from clone 51J12 on chromosome 6q26- 27.	3.1014	up
795	NM_016063	293	Hs.32826	CGI-130 protein (LOC51020), mRNA /cds=(63,575)	3.1014	up
796	BU678165	294	Hs.377992	479H5, not in ref seq, Rab geranylgeranyltransferase, alpha subunit (RABGGTA),		ир
797	AL050371	295	Hs.8128	phosphatidylserine decarboxylase (PISD), mRNA /cds=(223,1350)	3.33	up

c,

SEQ ID		SEQ ID Full	}		SAM	SAM
	ACC	length	нѕ	Gene	FDR	Up/Down
798	NM_152545	296	Hs.335815	62C9, hypothetical protein FLJ31695	3.3318	up
799	XM_007156	297	Hs.159492	sacsin (SACS) gene, complete cds /cds=(76,11565)	3.3318	up
800	NM_014339	298	Hs.129751	interleukin 17 receptor (IL17R), mRNA /cds=(32,2632)	3.3318	ир
801	NM_019598	299	Hs.159679	kallikrein 12 (KLK12), mRNA /cds=UNKNOWN	3.3318	ир
802	Al081258	300	Hs.134590	oy67c11.x1 cDNA, 3' end /clone=IMAGE:1670900 clone_end=3'		up
803	AW468621	301	Hs.257743	ne42e03.x1 cDNA, 3' end /clone=IMAGE:2921692 clone_end=3'		up
804	NM_001873	302	Hs.75360	carboxypeptidase E (CPE), mRNA /cds=(290,1720)		up
805	NM_032839	303	Hs.11360	hypothetical protein FLJ14784 (FLJ14784), mRNA /cds=(133,1569)	3.369	up
806	X16277	304		zv26f06.r1 cDNA, 5' end /clone=IMAGE:754787 /clone_end=5'	3.4341	up
807	NM_000395	305	Hs.285401	colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage) (CSF2RB), mRNA /cds=(28,2721)	3.4341	
808	NM_013252	306	Hs.126355	C-type (calcium dependent, carbohydrate-recognition domain) lectin, superfamily member 5 (CLECSF5), nRNA /cds=(197,763)		up
809	129F10	307	NA	129F10, chromosome hit		up
810	AK024331	308	Hs.287631	cDNA FLJ14269 fis, clone PLACE1003864 /cds=UNKNOWN	3.7268	up
811	NM_000195	309	Hs.83951	Hermansky-Pudlak syndrome (HPS), mRNA /cds=(206,2308)	3.7268	ир
812	NM_030756		Hs.173638	transcription factor 7-like 2 (T-cell specific, HMG-box) (TCF7L2), mRNA /cds=(307,2097)	3.7268	up
813	M26683	311		interferon gamma treatment inducible mRNA Monocytes	3.7833	
814		312		LOC286530 hypothetical protein LOC286530	3.7833	up
815	j	313	Hs.82113	dUTP pyrophosphatase (DUT), mRNA /cds=(29,523)	3.7833	up
	AK026819			hypothetical protein FLJ12788 (FLJ12788), mRNA /cds=(9,866)	3.7833	up
817	L21961	315		Homo sapiens, clone MGC:12849 IMAGE:4308973, mRNA, complete cds /cds=(24,725)	3.7833	up
818	NM_001278			mRNA; cDNA DKFZp566L084 (from clone DKFZp566L084) /cds=UNKNOWN	3.7833	up
819	NM_002385		Hs.69547	myelin basic protein (MBP), mRNA /cds=(10,570)	3.7833 3.7833	up
820	NM_005121		Hs.11861	thyroid hormone receptor-associated protein, 240 kDa subunit (TRAP240), mRNA /cds=(77,6601)		up
821	NM_007220			carbonic anhydrase VB, mitochondrial (CA5B), nuclear gene encoding mitochondrial protein, mRNA /cds=(137,1090)		up
822	NM_012381		Hs.74420	origin recognition complex, subunit 3 (yeast homolog)- like (ORC3L), mRNA /cds=(26,2161)		ир
823	NM_014225	321	Hs.173902	protein phosphatase 2 (formerly 2A), regulatory subunit A (PR 65), alpha isoform (PPP2R1A), mRNA /cds=(138,1907)	3.7833	up

SEQ ID 50mer	ACC	SEQ ID Full length	нѕ	Gene	SAM FDR	SAM Up/Down
824	BF966028	322	Hs.5324	hypothetical protein (CL25022), mRNA /cds=(157,1047)	3.7833	up
825	AL157438	323	Hs.66151	mRNA; cDNA DKFZp434A115 (from clone DKFZp434A115) /cds=UNKNOWN	3.7833	up
826	NM_004488	324	Hs.73734	glycoprotein V (platelet) (GP5), mRNA /cds=(270,1952)	3.7833	up
827	NM_006929		Hs.153299	DOM-3 (C. elegans) homolog Z (DOM3Z), transcript variant 2, mRNA /cds=(129,1319)	3.7833 3.7833	up
828	NM_021976		Hs.79372	/cds=(179,1780)		up
829	T93822	327	Hs.294092	EST375308 cDNA		up
830	Al524202	328	Hs.171122	th10d11.x1 cDNA, 3' end /clone=IMAGE:2117877 clone_end=3'		ир
831	Al684022	329	Hs.90744	proteasome (prosome, macropain) 26S subunit, non- ATPase, 11 (PSMD11), mRNA /cds=(0,1268)	3.7833	up
832		330		UI-H-BW1-ame-d-12-0-UI.s1 cDNA, 3' end /clone=IMAGE:3069742 /clone_end=3'	3.7833 3.7833	ир
833	NM_153341	331	Hs.64239	DNA sequence from clone RP5-1174N9 on chromosome 1p34.1-35.3. Contains the gene for a novel protein with IBR domain, a (pseudo?) gene for a novel protein similar to MT1E (metallothionein 1E (functional)), ESTs, STSs, GSSs and two putative CpG islands /cd		up
834	BF698885	332	Hs.5890	hypothetical protein FLJ23306 (FLJ23306), mRNA /cds=(562,930)		ир
	NM_000073		Hs.2259	CD3G antigen, gamma polypeptide (TiT3 complex) (CD3G), mRNA /cds=(37,585)	3.8053	up
	NM_004761			RAB2, member RAS oncogene family-like (RAB2L), mRNA /cds=(0,2333)	3.8053	up
	NM_015898			HIV-1 inducer of short transcripts binding protein (FBI1), mRNA /cds=(0,1754)	3.8053	up
	NM_014348			similar to rat integral membrane glycoprotein POM121 (POM121L1), mRNA /cds=(0,1286)	3.8053	up
839	AW500534	337	Hs.145668	fmfc5 cDNA /clone=CR6-21	3.8053	up
840		338		EST380899 cDNA	3.8053	up
	AI084553	339	Hs.105621	HNC29-1-B1.R cDNA	3.8053	ир
842	Al523617	340	Hs.171098	/clone_end=3'	3.8053	up
843	Al969716	341	Hs.13034	hv63f09.x1 cDNA, 3' end /clone=IMAGE:3178121 /clone_end=3'	3.8053	ир
	NM_002076			glucosamine (N-acetyl)-6-sulfatase (Sanfilippo disease IIID) (GNS), mRNA /cds=(87,1745)	3.8053	up
925		423	Hs.86437	602411368F1 cDNA, 5' end /clone=IMAGE:4540096 /clone_end=5'		up
	BE965319	424		601659229R1 cDNA, 3' end /clone=IMAGE:3895783 /clone_end=3'		up
	NM_003264	425	Hs.63668	toll-like receptor 2 (TLR2), mRNA /cds=(129,2483)		up
928	BU540019	426	NA	485A6, EST	4.2464	up
929	AV719442	427	Hs.256959	AV719442 cDNA, 5' end /clone=GLCBNA01 /clone_end=5'		up

SEQ ID		SEQ ID Full	1		SAM	SAM
	ACC	length	нѕ	Gene	FDR	Up/Down
930	NM_000879	428	Hs.2247	interleukin 5 (colony-stimulating factor, eosinophil) (IL5), mRNA /cds=(44,448)	4.2464	up
931	NM_001916	429	Hs.289271	cytochrome c-1 (CYC1), mRNA /cds=(8,985)	4.2464	up
932	NM_002460		Hs.82132	interferon regulatory factor 4 (IRF4), mRNA /cds=(105,1460)	4.2464	ир
933	NM_002994		Hs.89714	small inducible cytokine subfamily B (Cys-X-Cys), member 5	4.2464	up
934	NM_007015		Hs.97932	chondromodulin I precursor (CHM-I), mRNA /cds=(0,1004)	4.2464 4.2464	up
935	NM_017644			cds=(25,1290)		up
936	X57025	434	Hs.85112	IGF-I mRNA for insulin-like growth factor I cds=(166,627)		up
937	BF892532	435	Hs.38664	L0-MT0152-061100-501-e04 cDNA		up
938		436		matrix Gla protein (MGP), mRNA /cds=(46,357)		up
939		437	Hs.167827	clone HH419 unknown mRNA /cds=(189,593)	4.2464	ир
940	AL136842	438		mRNA; cDNA DKFZp434A0530 (from clone DKFZp434A0530); complete cds /cds=(968,1732)		up
941		439		dq02e11.x1 cDNA, 5' end /clone=IMAGE:2846685 /clone_end=5'		up
942	AI538420	440		td06a03.x1 cDNA, 3' end /clone=IMAGE:2074828 /clone_end=3'		up
943	Al805144	441	NA	EST		up
944		442		SP0594 cDNA, 3' end /clone_end=3'		up
945		443		xb18g07.x1 cDNA, 3' end /clone=IMAGE:2576700 /clone_end=3'	4.2464	up
946		444	Hs.253747	xn71g08.x1 cDNA, 3' end /clone=IMAGE:2699966 /clone_end=3'	4.2464	up
947		445		UI-H-BW0-ajf-e-06-0-UI.s1 cDNA, 3' end /clone=IMAGE:2731499 /clone_end=3'	4.2464	up
948	NM_016095			HSPC037 protein (LOC51659), mRNA /cds=(78,635)	4.2464	up
	AK000575			hypothetical protein FLJ20568 (FLJ20568), mRNA /cds=(6,422)	4.2892	
950	NM_002462		Hs.76391	myxovirus (influenza) resistance 1, homolog of murine (interferon-inducible protein p78) (MX1), mRNA /cds=(345,2333)	4.2892	пb
951	NM_003841	449	Hs.119684	tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular domain (TNFRSF10C), mRNA /cds=(29,928)	4.2892	up
952	NM_004834	450	Hs.3628	mitogen-activated protein kinase kinase kinase 4 (MAP4K4), mRNA /cds=(79,3576)	4.2892	up
953	NM_013368	451	Hs.169138	RPA-binding trans-activator (RBT1), mRNA /cds=(291,881)		up
954	X12451	452	Hs.78056	cathepsin L (CTSL), mRNA /cds=(288,1289)		up
955	Y13936	453	Hs.17883	protein phosphatase 1G (formerly 2C), magnesium- dependent, gamma isoform (PPM1G), mRNA /cds=(24,1664)	4.2892	up

SEQ ID 50mer	ACC	SEQ ID Full length	нѕ	Gene	SAM FDR	SAM Up/Down
956	AW190635		Hs.15200	EST379783 cDNA	4.2892	ир
957	Al378123	455	Hs.327454	tc80e02.x1 cDNA, 3' end /clone=IMAGE:2072474 /clone_end=3'	4.2892	up
958	AJ275405	456	Hs.272362	partial IGVL1 gene for immunoglobulin lambda light chain V region	4.2892	ир
959	AA729508	457	Hs.307486	nx54a03.s1 cDNA /clone=IMAGE:1266028	4.2892	up
960	Al865603	458	Hs.341208	wk47g03.x1 cDNA, 3' end /clone=IMAGE:2418580 /clone_end=3'	4.2892	up
961	NM_080612	459	Hs.102630	128F5, GRB2-associated binding protein 3 (GAB3),	4.2892	пb
962	NM_014086	460	Hs.6975	PRO1073 protein (PRO1073),	4.3699	up
963	L11695	461	Hs.220	transforming growth factor, beta receptor I (activin A receptor type II-like kinase, 53kD) (TGFBR1), mRNA /cds=(76,1587)	4.3699	ир
964	NM_002995	462	Hs.3195	small inducible cytokine subfamily C, member 1 (lymphotactin) (SCYC1), mRNA /cds=(20,364)	4.3699	up
965	BF968963	463	Hs.5064	602490910F1 cDNA, 5' end /clone=IMAGE:4619835 /clone_end=5'	4.3699	up
966	BG286649	464	Hs.323950	zinc finger protein 6 (CMPX1) (ZNF6), mRNA /cds=(1265,3361)		пb
967	NM_014148	465	Hs.278944	HSPC048 protein (HSPC048), mRNA /cds=(87,419)	4.3699	up
968	BF195579	466	Hs.232257		4.3699	up
969		467		UI-H-BI4-apg-d-04-0-UI.s1 cDNA, 3' end /clone=IMAGE:3087390 /clone_end=3'	4.3699	up
970	AF118274	468	Hs.128740	DNb-5 mRNA, partial cds /cds=(0,1601)	4.4485	up
971	NM_005082	469	Hs.1579	zinc finger protein 147 (estrogen-responsive finger protein) (ZNF147), mRNA /cds≃(39,1931)	4.4485	up
972	AA576947	470	Hs.188886	nm82b04.s1 cDNA, 3' end /clone=IMAGE:1074703 /clone_end=3'	4.4485	up
973	AA628833	471	NA	EST	4.4485	up
974	Al631850	472	Hs.340604	wa36h07.x1 cDNA, 3' end /clone=IMAGE:2300221 /clone_end=3'		up
975		473	Hs.231987	602320903F1 cDNA, 5' end /clone=IMAGE:4424065 /clone_end=5'	4.4485	up
976	M94046	474	Hs.7647	MYC-associated zinc finger protein (purine-binding transcription factor) (MAZ), mRNA /cds=(91,1584)	4.4977	up
977	AB007861	475	Hs.118047	/clone_end=5'	4.5272	up
978	AF061944	476	Hs.432900	PRKWNK1 protein kinase, lysine deficient 1	4.5272	up
979	AL136797	477	Hs.273294	mRNA; cDNA DKFZp434N031 (from clone DKFZp434N031); complete cds /cds=(18,3608)	4.5272	up
980	D42040	478	Hs.75243	bromodomain-containing 2 (BRD2), mRNA /cds=(1701,4106)		up
	Al089359	479	Hs.130232			up
982	NM_004776	480	Hs.107526	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 5 (B4GALT5), mRNA /cds=(112,1278)	4.5272	up

SEQ ID	i	SEQ ID	}		SARA	SAM
	ACC	length	нѕ	Gene	SAM FDR	Up/Down
983	NM_020428			cDNA FLJ14613 fis, clone NT2RP1001113, highly	4.5272	up
000	11111_020420		113.100000	similar to CTL2 gene /cds=UNKNOWN	4.0212	Jup
984	NM_020530	482	Hs.248156	oncostatin M (OSM), mRNA /cds=(0,758)	4.5272	up
985	NM_003321	483	Hs.12084	Tu translation elongation factor, mitochondrial (TUFM)	4.5631	υp
986	BE901218	484		Homo sapiens, hypothetical protein FLJ21839, clone MGC:2851 IMAGE:2967512, mRNA, complete cds /cds=(444,2618)	4.5631	ир
987	Al361733	485	<u>. </u>	qz24b02.x1 cDNA, 3' end /clone=IMAGE:2027787 /clone_end=3'	4.5631	up
988	AK026410	486		hypothetical protein FLJ22757 (FLJ22757), mRNA /cds=(92,2473)	4.6078	up
989	BG254292	487	NA	cDNA clone IMAGE:4477042 5'	4.6078	up
990	NM_001504	488		G protein-coupled receptor 9 (GPR9), mRNA /cds=(68,1174)	4.6078	up
991	BE964596	489	Hs.184052	PP1201 protein (PP1201), mRNA /cds=(75,1010)	4.6078	up
992	AB011098	490	Hs.59403	serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), mRNA /cds=(188,1876)	4.6346	up
993	BE745645	491	Hs.127951	hypothetical protein FLJ14503 (FLJ14503), mRNA /cds=(19,2217)		up
994	AI827950	492	Hs.342617	ha15h10.x1 cDNA, 3' end /clone=IMAGE:2873827 clone_end=3'		up
995	AL521097	493	Hs.13144	HSPC160 protein (HSPC160), mRNA /cds=(53,514)		up
996	BE222032	494	Hs.128675	hr61g11.x1 cDNA, 3' end /clone=IMAGE:3133028 /clone_end=3'		иþ
997	AA516406	495	Hs.180201	hypothetical protein FLJ20671 (FLJ20671), mRNA /cds=(72,494)	4.7382	up
998	AJ277832	496	Hs.56247	mRNA for inducible T-cell co-stimulator (ICOS gene) /cds=(67,666)	4.7426	up
999	AV653169	497	Hs.5897	cDNA FLJ13388 fis, clone PLACE1001168. /cds=UNKNOWN	4.7426	up
1000	M36820	498	Hs.75765	GRO2 oncogene (GRO2), mRNA /cds=(74,397)	4.7432	up
1001	NM_015919			zinc finger protein mRNA, complete cds /cds=(1073,3133)	4.7432	up
1002	Al378109	500		7f19b03.x1 cDNA, 3' end /clone=IMAGE:3295085 /clone_end=3'	4.7432	up
1003	Al436418	501	Hs.369051	ESTs, Weakly similar to VAM5_HUMAN Vesicule- associated membrane protein 5 (VAMP-5) (Myobrevin) (HSPC191)	4.7432	up
1004	NM_022488	502	Hs.26367	PC3-96 protein (PC3-96), mRNA /cds=(119,586)	4.8445	up
845	AI760224	343	Hs.26873	wh62g06.x1 cDNA, 3' end /clone=IMAGE:2385370 /clone_end=3'	0.3142	up, down
504	W16552	2	Hs.306117		0,0	up
846	AL565736	344	Hs.181165	eukaryotic translation elongation factor 1 alpha 1 (EEF1A1), mRNA /cds=(53,1441)	0.0909, 1.6, 0.090	down
847	NM_004900	345	Hs.226307	phorbolin (similar to apolipoprotein B mRNA editing protein) (DJ742C19.2), mRNA /cds=(79,651)	0.25, 3.09	up

		SEQ ID	,			
SEQ ID	1.00	Full		0	SAM	SAM
	ACC	length 346	HS Hs.238954	Gene 602637935F1 cDNA, 5' end /clone=IMAGE:4765448	FDR 0.3142,	Up/Down
348	Al031624	340	ns.230934	/clone_end=5'	0.5638	up, down
849	BF059133	347	Hs.144583	cds /cds=(0,153)	0.669, 0.564	up, down
850	AB036432	348	Hs.184	advanced glycosylation end product-specific receptor (AGER), mRNA /cds=(0,1214)	0.6691, 0.9257	up, down
851	R64054	349	Hs.208603	7f01d11.x1 cDNA, 3' end /clone=IMAGE:3293397 /clone_end=3'	0.6845, 0.926	up, down
852	M81601	350	Hs.153179	fatty acid binding protein 5 (psoriasis-associated) (FABP5), mRNA /cds=(48,455)	1.03, 3.0908	up, down
853	AY004255	351	Hs.238990	Homo sapiens, Similar to cyclin-dependent kinase inhibitor 1B (p27, Kip1)	1.1, 0.0909	down
854	NM_002258	352	Hs.169824	killer cell lectin-like receptor subfamily B, member 1 (KLRB1), mRNA /cds=(60,737)	1.1, 0.1071	down
855	M11124	353	į	major histocompatibility complex, class II, DQ alpha 1 (HLA-DQA1), mRNA /cds=(43,810)	1.1, 0.193	down
514	NM_002946	12	Hs.79411	replication protein A2 (32kD) (RPA2)	1.1, 0.4174	down
856	AF073705	354	Hs.247721	clone mcg53-54 immunoglobulin lambda light chain variable region 4a mRNA, partial cds /cds=(0,324)	1.1, 0.9542	up
857	AJ271326	355	Hs.135187	unc93 (C.elegans) homolog B (UNC93B), mRNA /cds=(41,1834)	1.1, 1.437	up
858	NM_138391	356	Hs.17481	mRNA; cDNA DKFZp434G2415 (from clone DKFZp434G2415) /cds=UNKNOWN	1.1, 2.246	up
859	X97324	357	Hs.3416	adipose differentiation-related protein (ADFP), mRNA /cds=(0,1313)	1.1, 2.32	up
507	NM_006187		Hs.56009	2'-5'-oligoadenylate synthetase 3 (100 kD) (OAS3), mRNA /cds=(34,3297)	1.1, 2.47	up
860	NM_006289		Hs.18420	talin 1 (TLN1), mRNA /cds=(126,7751)	1.1, 3.0908	up
861	NM_002935		Hs.73839	ribonuclease, RNase A family, 3 (eosinophil cationic protein) (RNASE3), mRNA /cds=(63,545)	1.1, 4.56 1.6,	up
862	Y00345	360	Hs.172182			down
863	AL567986	361	Hs.77393	farnesyl diphosphate synthase		down
864	NM_000311		Hs.74621	prion protein (p27-30) (Creutzfeld-Jakob disease, Gerstmann-Strausler-Scheinker syndrome)	1.6, 0.141	down
865	NM_016523	363	Hs.183125	killer cell lectin-like receptor subfamily F, member 1 (KLRF1), mRNA /cds=(64,759)	1.6, 0.213	down

	SEQ ID		alcioarrays, Eupus/Autommune merkers		
	Full	•		SAM	SAM
ACC	length		Gene	FDR	Up/Down
AA701193	364	Hs.431104	histocompatibility antigen, DQ(1) alpha chain precursor (DC-4 alpha chain)	1.6, 0.2759	down
NM_004510	8	Hs.38125	/cds=(170,1396)	1.6, 1.12	up
AK026594	365	Hs.251653	tubulin, beta, 2 (TUBB2), mRNA /cds=(0,1337)	1.6, 2.32	up
NM_000389	1	Hs.179665	CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1)	1.6, 3.09	up
AW063509	366	Hs.279105	TN1012 cDNA, 3' end /clone_end=3'	1.6, 3.09	up
R14692	367		nRNA, 4516 nt] /cds=(577,3024)		up
NM_002831	368	Hs.63489			up
BE868389	369	Hs.179703	tripartite motif protein 14 (TRIM14), mRNA /cds=(10,1230)	1.6, 4.6	up
BC002409	7	Hs.288061	actin, beta (ACTB), mRNA	NA	
NM_003033	16	Hs.301698	BAC 180i23 chromosome 8 map 8q24.3 beta- galactoside alpha-2,3-sialyltransferase (SIAT4A) gene	NA	
AK090404	370	Hs.98531	53G7, FLJ00290 protein	NA	
AK024202	371	Hs.289088	heat shock 90kD protein 1, alpha (HSPCA), mRNA /cds=(60,2258)	NA	
AK024240	372	Hs.24115	cDNA FLJ14178 fis, clone NT2RP2003339 /cds=UNKNOWN	NA	
AK024756	373	Hs.12293	hypothetical protein FLJ21103 (FLJ21103), mRNA NA		
		Hs.166254	hypothetical protein DKFZp566I133 (DKFZP566I133), mRNA /cds=(133,1353)	NA	
			(DKFZP761D0211), mRNA /cds=(164,1822)	NA	
NM_015995	376	Hs.7104	mRNA; cDNA DKFZp761P06121 (from clone DKFZp761P06121) /cds=UNKNOWN	NA, 3.09	up
	AA701193 NM_004510 AK026594 NM_000389 AW063509 R14692 NM_002831 BE868389 BC002409 NM_003033 AK090404 AK024202 AK024240 AK024756 AK024969 AL136542	ACC length AA701193 364 NM_004510 8 AK026594 365 NM_000389 1 AW063509 366 R14692 367 NM_002831 368 BE868389 369 BC002409 7 NM_003033 16 AK090404 370 AK024202 371 AK024240 372 AK024756 373 AK024969 374	ACC length HS AA701193 364 Hs.431104 NM_004510 8 Hs.38125 AK026594 365 Hs.251653 NM_000389 1 Hs.179665 AW063509 366 Hs.279105 R14692 367 Hs.170222 NM_002831 368 Hs.63489 BE868389 369 Hs.179703 BC002409 7 Hs.288061 NM_003033 16 Hs.301698 AK090404 370 Hs.98531 AK024202 371 Hs.289088 AK024260 372 Hs.24115 AK024756 373 Hs.12293 AK024969 374 Hs.166254 AL136542 375 Hs.322456	Full Inlight Inlight	Full tength HS Gene SAM FDR FDR

Table 2B: Real-time PCR gene expression analysis

SEQ ID	ACC		HS	Gene		PCR p-	SEQ ID	Forward		Reverse
50mer		ID FL				value	forward	primer	reverse	
503	им_000389	1		CDKN1A cyclin- dependent kinase inhibitor 1A (p21, Cip1)		0.0000	1005	CTAACGTTG AGCCCCTGG AG		ATGGGGAG CCGAGAGAA AAC
504	W16552	2		PKR		0.0000	1007	TCGACATGG TGAGGTAGA GCA		TGTTCTGGC AGCACCTCA AG
505	NM_004031	3	,	interferon regulatory factor 7 (IRF7), transc		0.0001	1009	AGCGTGAGG GTGTGTCTT CC		GGCTGCTCC AGCTCCATA AG
506	NM_006417	4	Hs.82316	hepatitis C- associated	4.34	0.0001	1011	TGGGAGCTG GACCCTGTA AA		GCAGCCCAT AGCATTCGT CT
507	NM_006187	5	Hs.56009	2'-5'-oligoadenylate synthetase 3 (100 kD) (OAS3)	5.40	0.0001	1013	CGCAGTTGG GTACCTTCC AT	1014	TGCTCTGGT TCCCACCAT CT
508	NM_001548	6	Hs.20315	interferon-induced protein with tetratricopeptide repeats 1		0.0019	1015	CTGGAAAGC TTGAGCCTC CTT		CTCAGGGCC CGCTCATAG TA
509	BC002409	7	Hs.288061	actin, beta (ACTB), mRNA		0.0028	1017	CACAATGTG GCCGAGGA CTT		TGGCTTTTA GGATGGCAA GG
510	NM_004510	8	Hs.38125	interferon-induced protein 75, 52kD (IFI75)	1.36	0.0034	1019	CAAAGACGT GCTCGGTTT TCA	1020	TGAATCCTG AGGTGGGGA TG
511	NM_000269	9	Hs.183698	ribosomal protein L29 (RPL29)	1.38	0.0057	1021	CATCCATTT CCCCTCCTT CC	1022	CAGATGGTC GGGGATGGT AA
512	NM_138391	10	Hs.17481	Homo sapiens chromosome 1 open reading frame 37 (C1orf37)	1.15	0.0160	1023	TCTTGGAGA TTCGAGCAG CA	1	CTGCGACCA GAGTCAGTG GA
513	BC036402	11	NA	116C9	2.26	0.0258	1025	CCTGATTCG CCAATTTGT CC	1026	CCCAACCCC AAAATCCCTA A
514	NM_002946	12	Hs.79411	replication protein A2 (32kD) (RPA2)	0.88	0.0458	1027	CGTCATGGC AAGTGTGTC AA		TGGCCTCTG CCTGTTTTCA T
515	NM_031157	13	Hs.249495	heterogeneous nuclear ribonucleoprotein A1 (HNRPA1)	ł	0.0538	1029	TGGTAAATT TCCCCAACA GTGTG	1030	CACCAAGGT TTCCGAAGA CAA
516	D23660	14	Hs.334822	Homo sapiens, Similar to ribosomal protein L4	0.73	0.0650	1031	AGCACCACG CAAGAAGAT CC		CTGGCGAAG AATGGTGTT CC
517	NM_006276	15	Hs.184167	splicing factor, arginine/serine-rich 7 (35kD) (SFRS7)	0.85	0.3054	1033	TTGCGCAGA TACCTAGGC TTG		TCAGCCAGT CAAAATTCCA AAA
518	NM_003033	16	Hs.301698	beta-galactoside alpha-2,3- sialyltransferase (SIAT4A) gene	0.88	0.3680	1035	ACCCATCTA CCGGCATCC TC		GTGCCAGTT CCCTTTGCT GT
519	BE550944	17	Hs.61426	602329933F1 cDNA	0.95	0.5085	1037	CAAAACCTC GCTTACTGT CATGTG		TGGGAAAGG ACATCAGTC TTCA

Table 2C: Multiple Additive Regression Trees analysis of Microarray Data

SEQ ID	1	SEQ ID	}		MART	MADE	
อยนาบ 50mer	ACC	length	нѕ	Gene	Importanc e		lmm/array
515	NM_031157		Hs.249495		68.5	error 0.202	Imp/error 339.108911
				ribonucleoprotein A1 (HNRPA1), transcript variant 2, mRNA /cds=(104,1222)	!		
516	D23660	14	Hs.334822	Homo sapiens, Similar to ribosomal protein L4, clone MGC:2966 IMAGE:3139805, mRNA, complete cds /cds=(1616,2617)	68.71	0.202	340.148515
519	BE550944	17	Hs.61426	602329933F1 cDNA	100, 66.33	0.202	347.0, 328.22
537	NM_000734	35	Hs.97087	CD3Z antigen, zeta polypeptide (TiT3 complex) (CD3Z), mRNA /cds=(178,669)	67.49	0.202	334.108911
538	NM_003756		Hs.58189	eukaryotic translation initiation factor 3, subunit 3 (gamma, 40kD) (EIF3S3), mRNA /cds=(5,1063)	eukaryotic translation initiation factor , subunit 3 (gamma, 40kD) (EIF3S3),		996.521739
624	NM_006791		Hs.6353	MORF-related gene 15 (MRG15), mRNA /cds=(131,1102)	65.53	0.202	324.405941
517	NM_006276	15	Hs.184167	splicing factor, arginine/serine-rich 7 (35kD) (SFRS7) mRNA /cds=(105,490)	splicing factor, arginine/serine-rich 7 100 0 35kD) (SFRS7) mRNA		1086.95652
754	AL133642	252	Hs.241471	mRNA; cDNA DKFZp586G1721 (from clone DKFZp586G1721); partial cds /cds=(0,669)	42.88	0.288	148.888889
797	AL050371	295	Hs.8128	phosphatidylserine decarboxylase (PISD), mRNA /cds=(223,1350)	70.07	0.288	243.298611
927	NM_003264	425	Hs.63668	toll-like receptor 2 (TLR2), mRNA /cds=(129,2483)	49.97	0.288	173.506944
845	Al760224	343	Hs.26873	wh62g06.x1 cDNA, 3' end /clone=IMAGE:2385370	49.83	0.288	173.020833
862	Y00345	360	Hs.172182	poly(A)-binding protein, cytoplasmic 1 (PABPC1), mRNA /cds=(502,2403)	31.53	0.202	156.089109
511	NM_000269	9	Hs.183698	ribosomal protein L29 (RPL29), mRNA /cds=(29,508)	99.34	0.092	1079.78261
882	NM_003128	380	Hs.324648	cDNA FLJ13700 fis, clone PLACE2000216, highly similar to SPECTRIN BETA CHAIN, BRAIN /cds=UNKNOWN	100	0.202	495.049505
883	AL109669	381	Hs.172803	mRNA full length insert cDNA clone EUROIMAGE 31839 /cds≃UNKNOWN	55.24	0.202	273.465347
884	Al307808	382	Hs.238797	602081661F1 cDNA, 5' end /clone=IMAGE:4245999	33:2	0.202	164.356436
885	AF261087	383	Hs.174131	ribosomal protein L6 (RPL6), mRNA /cds=(26,892)	0.68	0.202	3.36633663
886	NM_002546		Hs.81791	tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin) (TNFRSF11B), mRNA /cds=(94,1299)	48.54	0.202	240.29703
887	NM_012237		Hs.44017	sirtuin (silent mating type information regulation 2, S.cerevisiae, homolog) 2 (SIRT2), transcript variant 1, mRNA /cds=(200,1369)	68.21	0.202	337.673267
888	X68060	386	Hs.75248	topoisomerase (DNA) II beta (180kD) (TOP2B), mRNA /cds=(0,4865)	48.14	0.288	167.152778

Table 2C: Multiple Additive Regression Trees analysis of Microarray Data

		SEQ ID			MART		
SEQ ID		Full	1		Importanc	MART	}
50mer	ACC	length	нѕ	Gene	е	error	Imp/error
889	Al660405	387	Hs.111941	qd92a04.x1 cDNA, 3' end /clone=IMAGE:1736910	51.11	0.288	177.465278
890	Al798114	388	Hs.210307	wh81c01.x1 cDNA, 3' end /clone=IMAGE:2387136	0.96	0.202	4.75247525
891	AW075948	389	Hs.265634	xa82b03.x1 cDNA, 3' end /clone=IMAGE:2573261	50.06	0.202	247.821782
892	AW294681	390	Hs.255336	UI-H-BW0-ail-g-10-0-UI.s1 cDNA, 3' end /clone=IMAGE:2729683 /clone_end=3'	50.28	0.384	130.9375
893	R40823	391	Hs.108082	602068988F1 cDNA, 5' end /clone=IMAGE:4067972	32.33	0.202	160.049505
894	AA806222	392	Hs.111554	ADP-ribosylation factor-like 7 (ARL7), mRNA /cds=(14,592)	44.47	0.288	154.409722
895	Al380390	393	Hs.158976	UI-H-BI2-ahi-a-03-0-UI.s1 cDNA, 3' end /clone=IMAGE:2726692 /clone_end=3'	54.86	0.202	271.584158
896	BF435621	394	Hs.293476	hypothetical protein FKSG44 (FKSG44), mRNA /cds=(126,1520)	100	0.285	350.877193
897	AK025781	395	Hs.5076	cDNA: FLJ22128 fis, clone HEP19543 /cds=UNKNOWN	51.37	0.288	178.368056
898	X06323	396	Hs.79086	mitochondrial ribosomal protein L3 (MRPL3), mRNA /cds=(76,1122)	47.57	0.288	165.173611
899	X72841	397	Hs.31314	retinoblastoma-binding protein 7 (RBBP7), mRNA /cds=(287,1564)	50.46	0.288	175.208333

Table 2D: Hierarchical Clustering of Lupus/Autoimmunity Markers

Table 2D.	Theraconcar C	SEQ ID	LupusiAut	oimmunity Markers	,
SEQ ID		Full			Lliamanahiaal
ระนาย 50mer	ACC	1	нѕ	Gene	Hierarchical
900	NM 001015	length	Hs.182740		Cluster OID
900	NNI_001015	398	ns. 102/40	ribosomal protein S11 (RPS11), mRNA	180
901	J02931	399	Hs.62192	/cds=(15,4 placental tissue factor (two forms)	180
901	302931	1299	175.02 192		180
914	NM_001778	412	Hs.901	mRNA, complete cd	100
914	NNI_001778	1412	ns.901	CD48 antigen (B-cell membrane	180
862	Y00345	360	Hs.172182	protein) (CD48), mRNA /cds=(36,767)	0477
002	1100345	1300	ITS.172102	poly(A)-binding protein, cytoplasmic 1 (PABPC1), mRNA /cds=(502,2403)	2177
524	NM 001731	22	Hs.77054	B-cell translocation gene 1, anti-	2177
J24	JIMM_001731	22	115.77054	proliferative (BTG1), mRNA	21//
	j		1	/cds=(308,823)	1
528	U67093	26	Hs.194382	ataxia telangiectasia (ATM) gene,	2177
J20	00/033	120	113.134302	complete cds /cds=(795,9965)	
529	AJ400717	27	Hs.279860	tumor protein, translationally-controlled	2177
020	וויטטדטטרוו	121	113.213000	1 (TPT1), mRNA /cds=(94,612)	12111
	1	}	}	(11 11), HINNA/CUS-(34,012)]
920	NM_014065	418	Hs.279040	HT001 protein (HT001), mRNA	3780
020	1 111 _0 14000	1710	113.273040	/cds=(241,1203)	3,00
563	U61267	61	Hs.30035	putative splice factor transformer2-	5067
000	001207	١٠.	1 13.00000	beta mRN	13007
680	BF897042	178	Hs.120219	FLJ32028 hypothetical protein FLJ32028	5067
	5. 00, 0,2	1	110.120210	1 2002020 Hypothothodi protent i 2002020	13007
506	NM 006417	4	Hs.82316	interferon-induced, hepatitis C-	5067
		1		associated microtubular aggregate	000.
		ł.		protein (44kD) (MTAP44), mRNA	j
		ł		/cds=(0,1334)	
504	W16552	2	Hs.306117	PKR	5067
507	NM_006187	5	Hs.56009	2'-5'-oligoadenylate synthetase 3 (100	5067
		1		kD) (OAS3), mRNA /cds=(34,3297)	[
715	NM_001295	213	Hs.301921	chemokine (C-C motif) receptor 1	5067
			<u></u>	(CCR1), mRNA /cds=(62,1129)	ł
739	NM_022873	237	Hs.265827	interferon, alpha-inducible protein	5067
				(clone IFI-6-16) (G1P3), transcript	}
				variant 3, mRNA /cds=(107,523)	
505	NM_004031	3	Hs.166120	interferon regulatory factor 7 (IRF7),	5067
	<u> </u>		1	transc	
508	NM_001548	6	Hs.20315	interferon-induced protein with	5067
			<u> </u>	tetratricopeptide repeats 1 (IFIT1)	
904	AF307339	402	Hs.47783	B aggressive lymphoma gene (BAL),	5067
				mRNA /cds=(228,2792)	
906	AK027260	404	Hs.152925	mRNA for KIAA1268 protein, partial cds	5067
			<u> </u>	/cds=(0,3071)	
907	AL360190	405	Hs.318501	stimulated trans-acting factor (50 kDa)	5067
			<u> </u>	(STAF50), mRNA /cds=(122,1450)	
917	NM_004031	415	Hs.166120	interferon regulatory factor 7 (IRF7),	5067
	ļ			transcript variant d, mRNA	
	ļ			/cds=(335,1885)	
921	NM_017523	419	Hs.139262	XIAP associated factor-1 (HSXIAPAF1),	5067
				mRNA /cds=(0,953)	
922	NM_021105	420	Hs.198282	phospholipid scramblase 1 (PLSCR1),	5067
	<u> </u>		<u> </u>	mRNA /cds=(256,1212)	<u>l</u>

Table 2D: Hierarchical Clustering of Lupus/Autoimmunity Markers

	T	SEQ ID	1	ommunity warkers	
SEQ ID		Full	1		Hierarchical
50mer	ACC	length	нѕ	Gene	Cluster OID
923	XM_005543	421	Hs.234642	aquaporin 3 (AQP3), mRNA	5067
 			<u> </u>	/cds=(64,942)	
642	W00466	140	Hs.44189	yz99f01.s1 cDNA, 3' end	5083
			<u> </u>	/clone=IMAGE:291193 /clone_end=3'	
679	AW137104	177	Hs.8121	Notch (Drosophila) homolog 2	5083
				(NOTCH2), mRNA /cds=(12,7427)	<u> </u>
848	Al031624	346	Hs.238954	602637935F1 cDNA, 5' end	5083
			 	/clone=IMAGE:4765448 /clone_end=5'	
677 	NM_003367	175	Hs.93649	upstream transcription factor 2, c-fos intera	6382
503	NM_000389	1	Hs.179665	CDKN1A cyclin-dependent kinase	6382
			1	inhibitor 1A (p21, Cip1)	
515	NM_031157	13	Hs.249495	heterogeneous nuclear	6444
	}		}	ribonucleoprotein A1 (HNRPA1),	
	ļ	1		transcript variant 2, mRNA	İ
	ļ. <u>.</u>	<u> </u>		/cds=(104,1222)	
516	D23660	14	Hs.334822	Homo sapiens, Similar to ribosomal	6444
	ĺ	1		protein L4, clone MGC:2966	1
	1	-		IMAGE:3139805, mRNA, complete cds	1
	<u> </u>	 	<u> </u>	/cds=(1616,2617)	
520	L13385	18	Hs.77318	Miller-Dieker lissencephaly protein (LIS1)	6444
527	XM 018498	25	Hs.180946	ribosomal protein L5 pseudogene	6444
021	XW_010430	23	115.100940	mRNA, complete cds /cds=UNKNOWN	0444
	İ)	Inkina, complete cus /cus=olikinoviii	
512	NM_138391	10	Hs.17481	Homo sapiens chromosome 1 open	6956
				reading frame 37 (C1orf37), mRNA	10000
902	D49950	400	Hs.83077	for interferon-gamma inducing	6956
	j	1		activated macrophages	
908	AV689330	406	Hs.189402	Similar to RIKEN cDNA 2210009G21	6956
		<u> </u>		gene, clone IMAGE:4807023	ŀ
909	BC002796	407	Hs.46446	lymphoblastic leukemia derived	6956
				sequence 1 (LYL1), mRNA /cds=(0,803)	1
		1			
910	BE899595	408	NA	cDNA clone IMAGE:3952215 5'	6956
912	NM_001111	410	Hs.7957	adenosine deaminase, RNA-specific	6956
		1		(ADAR), transcript variant ADAR-a,	<u> </u>
345	NIM DODAGO	440	11-000	mRNA /cds=(187,3867)	0050
915	NM_002463	413	Hs.926	myxovirus (influenza) resistance 2,	6956
				homolog of murine (MX2), mRNA	[
918	NM 006865	416	Hs.113277	/cds=(104,2251)	6056
918	14101_00000	410	ITS. 1132//	leukocyte immunoglobulin-like receptor,	6956
			[subfamily A (without TM domain),	
				member 3 (LILRA3), mRNA	
919	NM_013352	417	Hs.58636	/cds=(62,1381)	6956
513	1.4141_0.13352	1711	118.00000	squamous cell carcinoma antigen	10900
	1	1	ļ	recognized by T cell (SART-2), mRNA	
924	NM_009587	422	Hs.81337	/cds=(149,3025) lectin, galactoside-binding, soluble, 9	6956
<i></i> -	1.4141_009307	1724	13.01337	(galectin 9) (LGALS9), transcript variant	10930
				1	
	·		ــــــــــــــــــــــــــــــــــــــ	long, mRNA /cds=(56,1123)	L

Table 2D: Hierarchical Clustering of Lupus/Autoimmunity Markers

050 ID		SEQ ID			
SEQ ID	1000	Full	luc	Comp	Hierarchical
50mer	ACC	length	HS	Gene	Cluster OID
807	NM_000395	305	Hs.285401	colony stimulating factor 2 receptor, beta, low-affinity (granulocyte- macrophage) (CSF2RB), mRNA /cds=(28,2721)	7330
950	NM_002462	448	Hs.76391	myxovirus (influenza) resistance 1, homolog of murine (interferon-inducible protein p78) (MX1), mRNA /cds=(345,2333)	7330
905	AK024597	403	Hs.10362	cDNA: FLJ20944 fis, clone ADSE01780 /cds=UNKNOWN	7330
913	NM_001549	411	Hs.181874	interferon-induced protein with tetratricopeptide repeats 4 (IFIT4), mRNA /cds=(61,1533)	7330
916	NM_002759	414	Hs.274382	protein kinase, interferon-inducible double stranded RNA dependent (PRKR), mRNA /cds=(435,2090)	7330
911	K02766	409	Hs.1290	complement component 9 (C9), mRNA /cds=(4,1683)	7379
813	M26683	311	Hs.303649	interferon gamma treatment inducible mRNA Monocytes	7238, 6956
903	NM 001772	401	Hs.83731	CD33 antigen (gp67) (CD33), mRNA.	7238, 6956

lable	ZL.				Γ
	ŧ		SEQ ID	ł	
	SEQ ID		Full		
OID	50mer	ACC	length	ne	Gene
6382	503	NM 000389		Hs.179665	CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1)
5067	504	W16552	2	Hs.306117	PKR
41	505	NM_004031		Hs.166120	interferon regulatory factor 7 (IRF7), transc
2922	506			<u> </u>	
2922	500	NM_006417	 4	Hs.82316	interferon-induced, hepatitis C-associated microtubular
7238	507	NM 006187	5	Hs.56009	aggregate protein 2'-5'-oligoadenylate synthetase 3 (100 kD) (OAS3),
7200	307	14141_000107	آ	1 15.50009	mRNA /cds=(34,3297)
2139	508	NM_001548	6	Hs.20315	interferon-induced protein with tetratricopeptide repeats 1
]	_			(IFIT1)
1436		BC002409	7	Hs.288061	actin, beta (ACTB), mRNA
2648	510	NM_004510	8	Hs.38125	interferon-induced protein 75, 52kD (IFI75), mRNA
					/cds=(170,1396)
7576	511	NM_000269	9	Hs.183698	ribosomal protein L29 (RPL29), mRNA /cds=(29,508)
6956	512	NM 138391	10	Hs.17481	Homo sapiens chromosome 1 open reading frame 37
	,				(C1orf37), mRNA
6957	513	BC036402	11	NA	116C9
2412	514	NM_002946	12	Hs.79411	replication protein A2 (32kD) (RPA2)
					, , , , ,
6444	515	NM_031157	13	Hs.249495	heterogeneous nuclear ribonucleoprotein A1 (HNRPA1),
					transcript variant 2, mRNA /cds=(104,1222)
	516	D23660	14	Hs.334822	Homo sapiens, Similar to ribosomal protein L4
4143	517	NM_006276	15	Hs.184167	splicing factor, arginine/serine-rich 7 (35kD) (SFRS7)
4637	518	NM_003033	16	Hs.301698	mRNA /cds=(105,490) BAC 180i23 chromosome 8 map 8q24.3 beta-
4007	0.0	14141_003033	10	118.501090	galactoside alpha-2,3-sialyltransferase (SIAT4A) gene
6335	519	BE550944	17	Hs.61426	602329933F1 cDNA
219	520	L13385	18	Hs.77318	Miller-Dieker lissencephaly protein (LIS1)
827	521	AF315591	19	Hs.6151	pumilio (Drosophila) homolog 2 (PUM2)
	522	AK025620	20	Hs.5985	cDNA: FLJ21967 fis, clone HEP05652, highly similar to
_					AF131831 clone 25186 mRNA sequence
1125	523	AK026747	21	Hs.12969	cDNA: FLJ23094 fis, clone LNG07379
2177	524	NM_001731	22	Hs.77054	B-cell translocation gene 1, anti-proliferative (BTG1),
					mRNA /cds=(308,823)
2621	525	NM_004281	23	Hs.15259	BCL2-associated athanogene 3 (BAG3), mRNA
					/cds=(306,2033)
4114	526	XM_008738	24	Hs.79241	B-cell CLL/lymphoma 2 (BCL2), nuclear gene encoding
					mitochondrial protein, transcript variant alpha, mRNA
4444	507	V14 040400		100010	/cds=(31,750)
4141	527	XM_018498	25	Hs.180946	ribosomal protein L5 pseudogene mRNA, complete cds
4440	500	1107000	00	11- 404000	/cds=UNKNOWN
4142	528	U67093	26	Hs.194382	ataxia telangiectasia (ATM) gene, complete cds /cds=(795,9965)
7959	529	AJ400717	27	Hs.279860	tumor protein, translationally-controlled 1 (TPT1), mRNA
, 555	220	7.0700111	<u>~ 1</u>	19.27 3000	/cds=(94,612)
2459	530	NM_003133	28	Hs.75975	signal recognition particle 9kD (SRP9), mRNA
		000100			/cds=(106,366)
2620	531	NM_004261	29	Hs.90606	15 kDa selenoprotein (SEP15), mRNA /cds=(4,492)
					· · · · · · · · · · · · · · · · · · ·
			LJ		<u> </u>

Table 2E.

	SEQ ID		SEQ ID Full		
OID	50mer			HS	Gene
2278	532	NM_002300	30	Hs.234489	Homo sapiens, lactate dehydrogenase B, clone MGC:3600 IMAGE:3028947, mRNA, complete cds
4653	533	NM_003853	31	Hs.158315	interleukin 18 receptor accessory protein (IL18RAP), mRNA /cds=(483,2282)
8056	534	X53777	32	Hs.82202	ribosomal protein L17 (RPL17), mRNA /cds=(286,840)
1864		N27575	33	Hs.75613	CD36 antigen (collagen type I receptor, thrombospondin receptor) (CD36), mRNA /cds=(132,1550)
2963	536	NM_006800	34	Hs.88764	male-specific lethal-3 (Drosophila)-like 1 (MSL3L1), mRNA /cds=(105,1670)
1991	537	NM_000734	35	Hs.97087	CD3Z antigen, zeta polypeptide (TiT3 complex) (CD3Z), mRNA /cds=(178,669)
2547	538	NM_003756		Hs.58189	eukaryotic translation initiation factor 3, subunit 3 (gamma, 40kD) (EIF3S3), mRNA /cds=(5,1063)
275	539	NM_021950	37	Hs.89751	CD20 antigen
921	540	AK021632	38	Hs.11571	cDNA FLJ11570 fis, clone HEMBA1003309 /cds=UNKNOWN
1061	541	AK025583	39	Hs.82845	cDNA: FLJ21930 fis, clone HEP04301, highly similar to HSU90916 clone 23815 mRNA sequence
1987	542	NM_000661	40	Hs.157850	Homo sapiens, clone MGC:15545 IMAGE:3050745, mRNA, complete cds /cds=(1045,1623)
4552	543	NM_001057	41	Hs.161305	tachykinin receptor 2 (TACR2), mRNA /cds=(0,1196)
4903	544	X60656	42	Hs.275959	eukaryotic translation elongation factor 1 beta 2 (EEF1B2), mRNA /cds=(235,912)
2687	545	NM_004779	43	Hs.26703	CNOT8 CCR4-NOT transcription complex, subunit 8
3763	546	X58529	44	Hs.302063	rearranged immunoglobulin mRNA for mu heavy chain enhancer and constant region /cds=UNKNOWN
3262	547	NM_016091	45	Hs.119503	
218	548	NM_001006	46	Hs.77039	ribosomal protein S3A (RPS3A), mRNA /cds≃(36,8
2150	549	NM_001568	47	Hs.106673	eukaryotic translation initiation factor 3, subunit 6 (48kD) (EIF3S6), mRNA /cds=(22,1359)
221	550	BC001854	48	Hs.77502	, methionine adenosyltransferase II, alpha, c
2032	551	NM_000983	49	Hs.326249	ribosomal protein L22 (RPL22), mRNA /cds=(51,437)
2046	552	NM_001006	50	Hs.155101	mRNA for KIAA1578 protein, partial cds /cds=(0,3608)
2113	553	NM_001403	51	Hs.274466	eukaryotic translation elongation factor 1 alpha 1-like 14 (EEF1A1L14), mRNA /cds=(620,1816)
2374	554	NM_002796	52	Hs.89545	proteasome (prosome, macropain) subunit, beta type, 4 (PSMB4), mRNA /cds=(23,817)
3290	555	NM_016304	53	Hs.284162	
3353	556	NM_017918	54	Hs.234149	hypothetical protein FLJ20647 (FLJ20647), mRNA /cds=(90,836)
4192	557	AA788623	55	Hs.332583	yc77a06.s1 cDNA, 3' end /clone=IMAGE:21844 /clone_end=3'

| SEQ ID SUMP |
|--|-------------|
| SEQ ID Somer ACC Full HS Gene | |
| OID 50mer ACC length HS Gene eukaryotic translation elongation factor 2 (EEF / 248 558 NM_001981 566 Hs.75309 eukaryotic translation elongation factor 2 (EEF / 248 60,2576) AK026309 57 Hs.12436 CDNA: FLJ22656 fis, clone HSI07655 /cds=UI 1112 560 AK026528 58 Hs.334807 Homo sapiens, ribosomal protein L30, clone N mRNA, complete cds /cds=(29,376) AK026528 Hs.34807 Homo sapiens, ribosomal protein L30, clone N mRNA, complete cds /cds=(29,376) AK026309 Hs.278857 Homo sapiens, clone IMAGE:3543711, mRNA / 248 Cds=(0,1620) Homo sapiens, clone IMAGE:3543711, mRNA / 248 Cds=(0,1620) Homo sapiens, clone IMAGE:3543711, mRNA / 248 Cds=(0,1620) Hs.278857 Heterogeneous nuclear ribonucleoprotein H2 (HNRPH2), mRNA / 248 Cds=(78,1427) Ak025306 Hs.30035 Dutative splice factor transformer2-beta mRN / 248 Hs.2083 CDNA: FLU21653 fis, clone COL08586, highly HJMKINCDC protein kinase mRNA / 248 Ms.2083 CDNA: FLU21653 fis, clone COL08586, highly HJMKINCDC protein kinase mRNA / 248 Ms.2083 Hs.2083 Hs.2084 HSP22-like protein interacting protein (LOC64 mRNA / 248 Ms.2083 Splicing factor, arginine/serine-rich 11 (SFRS1 / 248 Cds=(3),1537) Cds=(33,1537) Hs.158164 Tansporter 1, ATP-binding cassette, sub-famil (MDRTAP) (TAP1), mRNA / 248 Gds=(30,2456) Hs.203755 Splicing factor, arginine/serine-rich 11 (SFRS1 / 248 Cds=(30,2456) Hs.203755 Sm08f07.x1 cDNA, 3' end / clone=IMAGE:268 / (269 Cds=(3),1537) Hs.75969 Proline-rich protein with nuclear targeting signs mRNA / 248 Gds=(3,1537) Hs.75969 Proline-rich protein with nuclear targeting signs mRNA / 248 Gds=(3,1537) Hs.128797 mRNA / 248 Gds=(3,1537) Hs.128797 mRNA / 248 Gds=(3,1537) Hs.128797 mRNA / 248 Gds=(3,1537) Hs.128797 MRNA / 248 Gds=(3,1537) Hs.128797 Ms.23378 Gds=(3,1537) Hs.13482 Gds=(3,1537) Hs.13480 Gds=(3,1537) Hs.13480 Gds=(3,1537) Hs.13480 Gds=(3,1537) Hs.13480 Gds=(3,1537) Hs.13480 Gds=(3,1537) G | |
| 7248 558 NM_001961 56 Hs.75309 eukaryotic translation elongation factor 2 (EEF/cds=(0,2576) 7631 559 AK026309 57 Hs.12436 cDNA: FLJ22656 fis, clone HSI07655 /cds=UI 1112 560 AK026528 58 Hs.334807 Homo sapiens, ribosomal protein L30, clone in mRNA, complete cds /cds=(29,376) 1450 561 BC002971 59 Hs.1600 Homo sapiens, clone IMAGE:3543711, mRNA cds /cds=(0,1620) 3572 562 U01923 60 Hs.278857 heterogeneous nuclear ribonucleoprotein H2 (MNRPH2), mRNA /cds=(78,1427) 140 563 U61267 61 Hs.30035 putative splice factor transformer2-beta mRN receptor (FcRI) /cds=(36,116 809 565 AF267856 63 Hs.3084 HT033 mRNA, complete cds /cds=(203,931) 1404 566 AK025306 64 Hs.2083 cDNA: FLU21653 fis, clone COL08586, highly HUMKINCDC protein kinase mRNA /cds=UNK 1262 567 AL162068 65 Hs.11482 splicing factor, arginine/serine-rich 11 (SFRS1 /cds=(3,1537) 2793 569 NM_005594 67 Hs.15816 | |
| | |
| Test | F2), mRNA |
| MRNA, complete cds /cds=(29,376) May | JNKNOWN |
| 1450 561 BC002971 59 Hs.1600 Homo sapiens, clone IMAGE:3543711, mRNA cds /cds=(0,1620) 3572 562 U01923 60 Hs.278857 heterogeneous nuclear ribonucleoprotein H2 (| MGC:2797, |
| Second Street | |
| 3572 562 U01923 60 | A, partial |
| 140 563 U61267 61 Hs.30035 putative splice factor transformer2-beta mRN 220 564 X14356 62 Hs.77424 high affinity Fc receptor (FcRI) / cds=(36,116 Hs.809 565 AF267856 63 Hs.8084 HT033 mRNA, complete cds / cds=(203,931) 1048 566 AK025306 64 Hs.2083 cDNA: FLJ21653 fis, clone COL08586, highly HUMKINCDC protein kinase mRNA / cds=UNK HSP22-like protein interacting protein (LOC64 mRNA / cds=(0,155) Hs.11482 splicing factor, arginine/serine-rich 11 (SFRS1 / cds=(83,1537) transporter 1, ATP-binding cassette, sub-famil (MDR/TAP) (TAP1), mRNA / cds=(30,2456) Hs.203755 AU140234 68 Hs.9614 Nucleophosmin (probe bad, mutations, wrong (nucleolar phosphoprotein B23, numatrin) S732 571 AW194379 69 Hs.203755 xm08h07.x1 cDNA, 3' end / clone=iMAGE:268 / clone end=3' heterogeneous nuclear ribonucleoprotein R (HmRNA / cds=(90,1991) Hs.75969 proline-rich protein with nuclear targeting signs mRNA / cds=(113,1096) Hs.128797 mRNA / cds=(97,2046) Hs.15860 Hs.1482 splicing factor, arginine/serine-rich 11 (SFRS1 / cds=(0,1346) Hs.5509 cotropic viral integration site 2B (EVI2B), mR / cds=(0,1346) Hs.5518 CDNA FLZP586D0824 (from clone DKFZp586D0824); partial cds / cds=(0,1080) cds=(0,1346) S76 AK002173 76 Hs.5518 cDNA FLZP131311 fis, clone PLACE1010102 / cds=UNKNOWN cotropic viral integration site 2B (EVI2B), mR / cds=(0,1346) Cds=(0, | (H') |
| 220 564 X14356 62 Hs.77424 high affinity Fc receptor (FcRI) /cds=(36,116 809 565 AF267856 63 Hs.8084 HT033 mRNA, complete cds /cds=(20,3931) 1048 566 AK025306 64 Hs.2083 cDNA: FLJ21653 fis, clone COL08586, highly HUMKINCDC protein kinase mRNA /cds=UNK MRNA /cds=(0,155) 1262 567 AL162068 65 Hs.302649 HSP22-like protein interacting protein (LOC64 mRNA /cds=(0,155) 2685 568 NM_004768 66 Hs.11482 splicing factor, arginine/serine-rich 11 (SFRS1 /cds=(83,1537) 2793 569 NM_005594 67 Hs.158164 transporter 1, ATP-binding cassette, sub-famil (MDR/TAP) (TAP1), mRNA /cds=(30,2456) 5210 570 Al440234 68 Hs.9614 Nucleophosmin (probe bad, mutations, wrong of (nucleolar phosphoprotein B23, numatrin) 5732 571 AW194379 69 Hs.203755 heterogeneous nuclear ribonucleoprotein R (HmRNA /cds=(90,1991) 5318 573 Al568695 71 Hs.75969 proline-rich protein with nuclear targeting signs mRNA /cds=(113,1096) 7965 574 AL1 | N |
| 809 565 AF267856 63 Hs.8084 HT033 mRNA, complete cds /cds=(203,931) 1048 566 AK025306 64 Hs.2083 cDNA: FLJ21653 fis, clone COL08586, highly HUMKINCDC protein kinase mRNA /cds=UNK 1262 567 AL162068 65 Hs.302649 HSP22-like protein interacting protein (LOC64 mRNA /cds=(0,155) 2685 568 NM_004768 66 Hs.11482 splicing factor, arginine/serine-rich 11 (SFRS1 /cds=(83,1537) 2793 569 NM_005594 67 Hs.158164 transporter 1, ATP-binding cassette, sub-famil (MDR/TAP) (TAP1), mRNA /cds=(30,2456) 5210 570 Al440234 68 Hs.9614 Nucleophosmin (probe bad, mutations, wrong of (nucleolar phosphoprotein B23, numatrin) 5732 571 AW194379 69 Hs.203755 xm08h07.x1 cDNA, 3' end /clone=IMAGE:268. /clone end=3' 2829 572 NM_005826 70 Hs.15265 heterogeneous nuclear ribonucleoprotein R (HmRNA /cds=(90,1991) 5318 573 Al568695 71 Hs.75969 proline-rich protein with nuclear targeting signal mRNA /cds=(113,1096) 7965 574 AL1101 | |
| 1048 566 | |
| 1262 567 | |
| mRNA /cds=(0,155) mRNA /cds=(0,155) splicing factor, arginine/serine-rich 11 (SFRS1 /cds=(83,1537) mRNA /cds=(83,1537) mRNA /cds=(30,2456) mM_005594 md. ms.158164 ms.15 | |
| | ,, |
| MDR/TAP) (TAP1), mRNA /cds=(30,2456) | 11), mRNA |
| 5210 570 Al440234 68 Hs.9614 Nucleophosmin (probe bad, mutations, wrong (nucleolar phosphoprotein B23, numatrin) 5732 571 AW194379 69 Hs.203755 xm08h07.x1 cDNA, 3' end /clone=IMAGE:268. /clone_end=3' 2829 572 NM_005826 70 Hs.15265 heterogeneous nuclear ribonucleoprotein R (HmRNA /cds=(90,1991) 5318 573 Al568695 71 Hs.75969 proline-rich protein with nuclear targeting signal mRNA /cds=(113,1096) 7965 574 AL110225 72 Hs.89434 drebrin 1 (DBN1), mRNA /cds=(97,2046) 1198 575 AL110151 73 Hs.128797 mRNA; cDNA DKFZp586D0824 (from clone DKFZp586D0824); partial cds /cds=(0,1080) 2933 576 NM_006495 74 Hs.5509 ecotropic viral integration site 2B (EVI2B), mR /cds=(0,1346) 1846 577 M74002 75 Hs.11482 splicing factor, arginine/serine-rich 11 (SFRS1 /cds=(83,1537) 917 578 AK002173 76 Hs.5518 cDNA FLJ11311 fis, clone PLACE1010102 /cds=(UNKNOWN) 1037 579 AK024976 77 Hs.323 | ily B |
| (nucleolar phosphoprotein B23, numatrin) | clone used) |
| 5732 571 AW194379 69 Hs.203755 xm08h07.x1 cDNA, 3' end /clone=IMAGE:268. /clone_end=3' 2829 572 NM_005826 70 Hs.15265 heterogeneous nuclear ribonucleoprotein R (HmRNA /cds=(90,1991) 5318 573 Al568695 71 Hs.75969 proline-rich protein with nuclear targeting signamRNA /cds=(113,1096) 7965 574 AL110225 72 Hs.89434 drebrin 1 (DBN1), mRNA /cds=(97,2046) 1198 575 AL110151 73 Hs.128797 mRNA; cDNA DKFZp586D0824 (from clone DKFZp586D0824); partial cds /cds=(0,1080) 2933 576 NM_006495 74 Hs.5509 ecotropic viral integration site 2B (EVI2B), mR /cds=(0,1346) 1846 577 M74002 75 Hs.11482 splicing factor, arginine/serine-rich 11 (SFRS1 /cds=(83,1537) 917 578 AK002173 76 Hs.5518 cDNA FLJ11311 fis, clone PLACE1010102 /cds=UNKNOWN 1037 579 AK024976 77 Hs.323378 coated vesicle membrane protein (RNP24), ml/cds=(27,632) 1415 580 BC000967 78 Hs.195870 chronic | , |
| 2829 572 NM_005826 70 Hs.15265 heterogeneous nuclear ribonucleoprotein R (HmRNA /cds=(90,1991) 5318 573 Al568695 71 Hs.75969 proline-rich protein with nuclear targeting signamRNA /cds=(113,1096) 7965 574 AL110225 72 Hs.89434 drebrin 1 (DBN1), mRNA /cds=(97,2046) 1198 575 AL110151 73 Hs.128797 mRNA; cDNA DKFZp586D0824 (from clone DKFZp586D0824); partial cds /cds=(0,1080) 2933 576 NM_006495 74 Hs.5509 ecotropic viral integration site 2B (EVI2B), mR /cds=(0,1346) 1846 577 M74002 75 Hs.11482 splicing factor, arginine/serine-rich 11 (SFRS1 /cds=(83,1537)) 917 578 AK002173 76 Hs.5518 cDNA FLJ11311 fis, clone PLACE1010102 /cds=UNKNOWN 1037 579 AK024976 77 Hs.323378 coated vesicle membrane protein (RNP24), mr /cds=(27,632) 1415 580 BC000967 78 Hs.195870 chronic myelogenous leukemia tumor antigen complete cds, alternatively spliced /cds=(232,1 | 83645 |
| 5318 573 Al568695 71 Hs.75969 proline-rich protein with nuclear targeting signal mRNA /cds=(113,1096) 7965 574 AL110225 72 Hs.89434 drebrin 1 (DBN1), mRNA /cds=(97,2046) 1198 575 AL110151 73 Hs.128797 mRNA; cDNA DKFZp586D0824 (from clone DKFZp586D0824); partial cds /cds=(0,1080) 2933 576 NM_006495 74 Hs.5509 ecotropic viral integration site 2B (EVI2B), mR /cds=(0,1346) 1846 577 M74002 75 Hs.11482 splicing factor, arginine/serine-rich 11 (SFRS1 /cds=(83,1537) 917 578 AK002173 76 Hs.5518 cDNA FLJ11311 fis, clone PLACE1010102 /cds=UNKNOWN 1037 579 AK024976 77 Hs.323378 coated vesicle membrane protein (RNP24), mr /cds=(27,632) 1415 580 BC000967 78 Hs.195870 chronic myelogenous leukemia tumor antigen complete cds, alternatively spliced /cds=(232,1) | HNRPR), |
| 7965 574 AL110225 72 Hs.89434 drebrin 1 (DBN1), mRNA /cds=(97,2046) 1198 575 AL110151 73 Hs.128797 mRNA; cDNA DKFZp586D0824 (from clone DKFZp586D0824); partial cds /cds=(0,1080) 2933 576 NM_006495 74 Hs.5509 ecotropic viral integration site 2B (EVI2B), mR /cds=(0,1346) 1846 577 M74002 75 Hs.11482 splicing factor, arginine/serine-rich 11 (SFRS1 /cds=(83,1537) 917 578 AK002173 76 Hs.5518 cDNA FLJ11311 fis, clone PLACE1010102 /cds=UNKNOWN 1037 579 AK024976 77 Hs.323378 coated vesicle membrane protein (RNP24), mr./cds=(27,632) 1415 580 BC000967 78 Hs.195870 chronic myelogenous leukemia tumor antigen complete cds, alternatively spliced /cds=(232,1) | nal (B4-2), |
| 1198 575 AL110151 73 Hs.128797 mRNA; cDNA DKFZp586D0824 (from clone DKFZp586D0824); partial cds /cds=(0,1080) 2933 576 NM_006495 74 Hs.5509 ecotropic viral integration site 2B (EVI2B), mR /cds=(0,1346) 1846 577 M74002 75 Hs.11482 splicing factor, arginine/serine-rich 11 (SFRS1 /cds=(83,1537) 917 578 AK002173 76 Hs.5518 cDNA FLJ11311 fis, clone PLACE1010102 /cds=UNKNOWN 1037 579 AK024976 77 Hs.323378 coated vesicle membrane protein (RNP24), mr/cds=(27,632) 1415 580 BC000967 78 Hs.195870 chronic myelogenous leukemia tumor antigen complete cds, alternatively spliced /cds=(232,1) | |
| DKFZp586D0824); partial cds /cds=(0,1080) 2933 576 NM_006495 74 Hs.5509 ecotropic viral integration site 2B (EVI2B), mR /cds=(0,1346) 1846 577 M74002 75 Hs.11482 splicing factor, arginine/serine-rich 11 (SFRS1 /cds=(83,1537)) 917 578 AK002173 76 Hs.5518 cDNA FLJ11311 fis, clone PLACE1010102 /cds=UNKNOWN 1037 579 AK024976 77 Hs.323378 coated vesicle membrane protein (RNP24), mr. /cds=(27,632) 1415 580 BC000967 78 Hs.195870 chronic myelogenous leukemia tumor antigen complete cds, alternatively spliced /cds=(232,1) | |
| /cds=(0,1346) 1846 577 M74002 75 Hs.11482 splicing factor, arginine/serine-rich 11 (SFRS1 /cds=(83,1537)) 917 578 AK002173 76 Hs.5518 CDNA FLJ11311 fis, clone PLACE1010102 /cds=UNKNOWN 1037 579 AK024976 77 Hs.323378 coated vesicle membrane protein (RNP24), mi/cds=(27,632) 1415 580 BC000967 78 Hs.195870 chronic myelogenous leukemia tumor antigen complete cds, alternatively spliced /cds=(232,1) | |
| 1846 577 M74002 75 Hs.11482 splicing factor, arginine/serine-rich 11 (SFRS1 /cds=(83,1537) 917 578 AK002173 76 Hs.5518 cDNA FLJ11311 fis, clone PLACE1010102 /cds=UNKNOWN 1037 579 AK024976 77 Hs.323378 coated vesicle membrane protein (RNP24), mi/cds=(27,632) 1415 580 BC000967 78 Hs.195870 chronic myelogenous leukemia tumor antigen complete cds, alternatively spliced /cds=(232,1) | RNA |
| 917 578 AK002173 76 Hs.5518 cDNA FLJ11311 fis, clone PLACE1010102 /cds=UNKNOWN 1037 579 AK024976 77 Hs.323378 coated vesicle membrane protein (RNP24), m/cds=(27,632) 1415 580 BC000967 78 Hs.195870 chronic myelogenous leukemia tumor antigen complete cds, alternatively spliced /cds=(232,1) | 11), mRNA |
| 1037 579 AK024976 77 Hs.323378 coated vesicle membrane protein (RNP24), m
/cds=(27,632) 1415 580 BC000967 78 Hs.195870 chronic myelogenous leukemia tumor antigen
complete cds, alternatively spliced /cds=(232,1) | |
| 1415 580 BC000967 78 Hs.195870 chronic myelogenous leukemia tumor antigen complete cds, alternatively spliced /cds=(232,1) | nRNA |
| complete cds, alternatively spliced /cds=(232,1 | 1 66 mRNA. |
| 0004 1504 1-114 040040170 | |
| 3291 581 NM_016312 79 Hs.334811 Npw38-binding protein NpwBP (LOC51729), n | |
| 3759 582 X57347 80 Hs.74405 tyrosine 3-monooxygenase/tryptophan 5- | |
| monooxygenase activation protein, theta polype | peptide |
| (YWHAQ), mRNA /cds=(100,837) | |
| 4045 583 BG424974 81 Hs.292457 Homo sapiens, clone MGC:16362 IMAGE:392 | 27795, |
| mRNA, complete cds /cds=(498,635) | |
| 4155 584 U89387 82 Hs.194638 polymerase (RNA) I (DNA directed) polypeptic (POLR2D), mRNA /cds=(30,458) | ide D |
| 153 585 AB034205 83 Hs.278670 Acid-inducible phosphoprotein | |

<u> </u>	3 4E.				
Ì			0== :=		
1	PEC 15	1	SEQ ID		
	SEQ ID	1	Full	[
OID		ACC		HS	Gene
4111		XM_008062		Hs.17279	tyrosylprotein sulfotransferase 1 (TPST1), mRNA /cds=(81,1193)
3263	587	NM_016099	85	Hs.7953	HSPC041 protein (LOC51125), mRNA /cds=(141,455)
3510		NM_022898	<u> </u>	Hs.57987	B-cell lymphoma/leukaemia 11B (BCL11B), mRNA /cds=(267,2738)
2956	589	NM_006759	87	Hs.77837	UDP-glucose pyrophosphorylase 2 (UGP2), mRNA /cds=(84,1610)
694	590	AF079566	88	Hs.4311	SUMO-1 activating enzyme subunit 2 (UBA2), mRNA /cds=(25,1947)
2055	591	NM_001024	89	Hs.182979	
3336	592	NM_017761	90	Hs.7862	hypothetical protein FLJ20312 (FLJ20312), mRNA /cds=(133,552)
3595		U15085	91	Hs.1162	major histocompatibility complex, class II, DM beta (HLA-DMB), mRNA /cds=(233,1024)
6004	594	AW572538	92	Hs.42915	ARP2 (actin-related protein 2, yeast) homolog (ACTR2), mRNA /cds=(74,1258)
1060	595	AK025557	93	Hs.110771	cDNA: FLJ21904 fis, clone HEP03585 /cds=UNKNOWN
4654	596	NM_003854	94	Hs.102865	
721	597	AF116679	95	Hs.288036	tRNA isopentenylpyrophosphate transferase (IPT), mRNA /cds=(60,1040)
743	598	AF148537	96	Hs.65450	reticulon 4a mRNA, complete cds /cds=(141,3719)
3348	599	NM_017892	97	Hs.107213	hypothetical protein FLJ20585 (FLJ20585), mRNA /cds=(99,746)
2020	600	NM_000967	98	Hs.119598	ribosomal protein L3 (RPL3), mRNA /cds=(6,1217)
6847	601	NM_000971	99	Hs.153	ribosomal protein L7 (RPL7), mRNA /cds=(10,756)
626	602	AF012872	100	Hs.334874	phosphatidylinositol 4-kinase 230 (pi4K230) mRNA, complete cds /cds=(0,6134)
1469	603	BC004900	101	Hs.151242	serine (or cysteine) proteinase inhibitor, clade G (C1 inhibitor), member 1 (SERPING1), mRNA /cds=(60,1562)
2277	604	NM_002298	102	Hs.76506	lymphocyte cytosolic protein 1 (L-plastin) (LCP1), mRNA /cds=(173,2056)
3765	605	X59405	103	Hs.83532	H.sapiens, gene for Membrane cofactor protein /cds=UNKNOWN
4444	606	AL049935	104	Hs.301763	mRNA; cDNA DKFZp564O1116 (from clone DKFZp564O1116) /cds=UNKNOWN
3431	607	NM_017860	105	Hs.79457	hypothetical protein FLJ20519 (FLJ20519), mRNA /cds=(74,604)
1686	608	J04142	106	Hs.1799	CD1D antigen, d polypeptide (CD1D), mRNA /cds=(164,1171)
3267	609	NM_016127	107	Hs.279921	HSPC035 protein (LOC51669), mRNA /cds=(16,1035)
970	610	AK023379	108	Hs.155160	Homo sapiens, Similar to splicing factor, arginine/serine-rich 2 (SC-35)
1710	611	L11284	109	Hs.3446	mitogen-activated protein kinase kinase 1 (MAP2K1), mRNA /cds=(72,1253)

1	ļ		0=0 15	j	
1	050 15		SEQ ID		
	SEQ ID		Full	l	
OID	50mer			HS	Gene
2358	612	NM_002710	110	Hs.79081	protein phosphatase 1, catalytic subunit, gamma isoform (PPP1CC), mRNA /cds=(154,1125)
2635	613	NM_004380	111	Hs.23598	CREB binding protein (Rubinstein-Taybi syndrome) (CREBBP), mRNA /cds=(198,7526)
8112	614	AW028193	112	Hs.135872	wv61h08.x1 cDNA, 3' end /clone=IMAGE:2534079
ļ			[/clone end=3'
2124	615	NM_001436	113	Hs.99853	fibrillarin (FBL), mRNA /cds=(59,1024)
453	616	AB007916	114	Hs.214646	mRNA for KIAA0447 protein, partial cds /cds=(233,1633)
1250	617	AL137681	115	Hs.173912	
1451	618	BC003090	116	Hs.75193	COP9 homolog (COP9), mRNA /cds=(49,678)
3596	619	U15173	117	Hs.155596	
					(BNIP2), mRNA /cds=(211,1155)
3127	620	NM_014210	118	Hs.70499	ecotropic viral integration site 2A (EVI2A), mRNA /cds=(219,917)
2049	621	NM_001011	119	Hs.301547	ribosomal protein S7 (RPS7), mRNA /cds=(81,665)
3585	622	U07802	120	Hs.78909	Tis11d gene, complete cds /cds=(291,1739)
	623	AI817153	121	Hs.86693	EST380760 cDNA
	624	NM_006791		Hs.6353	MORF-related gene 15 (MRG15), mRNA /cds=(131,1102)
4678	625	NM_004500	123	Hs.182447	heterogeneous nuclear ribonucleoprotein C (C1/C2) (HNRPC), transcript variant 1, mRNA /cds=(191,1102)
1768	626 ⁻	M16660	124	Hs.318720	Homo sapiens, clone MGC:12387 IMAGE:3933019,
<u> </u>					mRNA, complete cds /cds=(63,863)
	627	NM_001000		Hs.300141	cDNA FLJ14163 fis, clone NT2RP1000409 /cds=UNKNOWN
4486	628	BC008737	126	Hs.164280	Homo sapiens, Similar to solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5, clone MGC:3042 IMAGE:3342722, mRNA, complete cds /cds=(88,984)
	629	BE222392	127	Hs.79914	lumican (LUM), mRNA /cds=(84,1100)
7958	630	BC010112	128	Hs.79037	Homo sapiens, heat shock 60kD protein 1 (chaperonin), clone MGC:19755 IMAGE:3630225, mRNA, complete cds /cds=(1705,3396)
1062	631	AK025586	129	Hs.27268	cDNA: FLJ21933 fis, clone HEP04337 /cds=UNKNOWN
3220	632	NM_015057	130	Hs.151411	KiAA0916 protein (KIAA0916), mRNA /cds=(146,14071)
3590	633	U10550	131	Hs.79022	GTP-binding protein overexpressed in skeletal muscle (GEM), mRNA /cds=(213,1103)
2035	634	NM_000986	132	Hs.184582	DPP7 alveolar r
2039	635 _.	NM_000993	133	Hs.184014	ribosomal protein L31 (RPL31), mRNA /cds=(7,384)
	636	NM_001688	134	Hs.81634	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b, isoform 1 (ATP5F1), mRNA
4311	637	Al356505	135	Hs.228874	qz22b04.x1 cDNA, 3' end /clone=IMAGE:2027599 /clone_end=3'

lable	45.				,
l	j]]	
l			SEQ ID		
	SEQ ID		Full	[
OID		ACC		HS	Gene
7945	638	AF119850	136	Hs.2186	Homo sapiens, eukaryotic translation elongation factor 1
Ì	1		Ì		gamma, clone MGC:4501 IMAGE:2964623, mRNA,
		A = 1.00 1.00	107	11 00 100 1	complete cds /cds=(2278,3231)
739	639	AF132197	137	Hs.301824	hypothetical protein PRO1331 (PRO1331), mRNA
0000	-	104 00000	400	11 400075	/cds=(422,616)
2986	640	NM_006925	138	Hs.166975	splicing factor, arginine/serine-rich 5 (SFRS5), mRNA
4500	044	NIM 000004	400	11- 007	/cds=(218,541)
4589	641	NM_002001	139	Hs.897	Fc fragment of IgE, high affinity I, receptor for; alpha
5000	040	14/00 400	140	11- 44400	polypeptide (FCER1A), mRNA /cds=(106,879)
5066	642	W00466	140	Hs.44189	yz99f01.s1 cDNA, 3' end /clone=IMAGE:291193
4500	040	D47040	444	11- 50054	/clone_end=3'
1588	643	D17042	141	Hs.50651	Janus kinase 1 (a protein tyrosine kinase) (JAK1), mRNA
2505	644	NIM 002220	440	11- 007750	/cds=(75,3503)
2505	644	NM_003380	142	Hs.297753	vimentin (VIM), mRNA /cds=(122,1522)
2222	CAE	NIM 046004	112	11- 204470	- I - I - I - I - I - I - I - I - I - I
3322	645	NM_016824	143	Hs.324470	adducin 3 (gamma) (ADD3), transcript variant 1, mRNA
5332	CAC	A1504202	144	11- 207000	/cds=(31,2151)
0332	040	Al581383	144	Hs.327922	to71c02.x1 cDNA, 3' end /clone=IMAGE:2183714
4165	647	BC005913	145	110 4074	/clone_end=3'
4100	047	BC005913	145	Hs.1074	surfactant, pulmonary-associated protein C (SFTPC),
4604	648	NIM COARA	146	LIS 40507	mRNA /cds=(27,620)
4691	1040	NM_004811	140	Hs.49587	leupaxin (LPXN), mRNA /cds=(93,1253)
1265	640	AL357536	147	Hs.3576	Homo sapiens, Similar to RIKEN cDNA 5730494N06
1200	043	AL001000	1 ' 7 '	1 13.557 6	gene, clone MGC:13348 IMAGE:4132400, mRNA,
					complete cds /cds=(132,494)
3501	650	NM 022570	148	Hs.161786	
		02_07	1.70	110,101100	domain) lectin, superfamily member 12 (CLECSF12),
	[mRNA /cds=(71,676)
2636	651	NM 004396	149	Hs.76053	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 5 (RNA
			1	1.0.7 0000	helicase, 68kD) (DDX5), mRNA /cds=(170,2014)
1101	652	AK026372	150	Hs.143631	cDNA: FLJ22719 fis, clone HSI14307 /cds=UNKNOWN
4131	653	XM 012059		Hs.154938	hypothetical protein MDS025 (MDS025), mRNA
' ' '					/cds=(5,769)
4130	654	XM 011914	152	Hs.180450	
		_	ł		mRNA /cds=(37,429)
8031	655	NM 020414	153	Hs.286233	
		_	[/cds=(1210,1665)
3560	656	S73591	154	Hs.179526	
		i	ł	1	mRNA /cds=(221,1396)
1675	657	J00194	155	Hs.76807	major histocompatibility complex, class II, DR alpha (HLA
					DRA), mRNA /cds=(26,790)
924	658	AK021715	156	Hs.271541	cDNA FLJ11653 fis, clone HEMBA1004538
			j		/cds=UNKNOWN
1144	659	AK027187	157	Hs.289071	
1212	660	AL117595	158	Hs.4055	mRNA; cDNA DKFZp564C2063 (from clone
					DKFZp564C2063) /cds=UNKNOWN
2383	661	NM_002823	159	Hs.250655	prothymosin, alpha (gene sequence 28) (PTMA), mRNA
					/cds=(155,487)
2627	662	NM_004327	160	Hs.234799	breakpoint cluster region (BCR), transcript variant 1,
			L]	mRNA /cds=(488,4303)

- unic	2E.	r			·
1	1			j	
}	050 15	<u> </u>	SEQ ID	ļ	
0.5	SEQ ID		Full	l <u>.</u>	
OID	50mer	ACC	length		Gene
3343	663	NM_017830	161	Hs.132071	ovarian carcinoma immunoreactive antigen (OCIA), mRNA /cds=(167,904)
3717	664	X06557	162	Hs.2014	mRNA for T-cell receptor delta /cds=UNKNOWN
4244	665	Al146787	163	Hs.156601	qb83f02.x1 cDNA, 3' end /clone=IMAGE:1706715
			ļ.,		/clone_end=3'
5323	666	Al568771	164	Hs.327876	th15h04.x1 cDNA, 3' end /clone=IMAGE:2118391 /clone_end=3'
5733	667	AW195119	165	Hs.253151	xn66b07.x1 cDNA, 3' end /clone=IMAGE:2699413 /clone end=3'
3292	668	NM_016316	166	Hs.110347	REV1 (yeast homolog)- like (REV1L), mRNA /cds=(212,3967)
1324	669	AV724531	167	Hs.76728	602570065F1 cDNA, 5' end /clone=IMAGE:4694321
1.02		, , _ ,		110.70720	/clone end=5'
915	670	AK002059	168	Hs.92918	hypothetical protein (BM-009), mRNA /cds=(385,1047)
	671	NM_001503		Hs.272529	glycosylphosphatidylinositol specific phospholipase D1 (GPLD1), mRNA /cds=(32,2557)
4221	672	AA251806	170	Hs.177712	zs09c03.s1 cDNA, 3' end /clone=IMAGE:684676
					/clone end=3'
2626	673	NM_004315	171	Hs.75811	N-acylsphingosine amidohydrolase (acid ceramidase)
					(ASAH), mRNA /cds=(17,1204)
2633	674	NM_004371	172	Hs.75887	coatomer protein complex, subunit alpha (COPA), mRNA /cds=(466,4140)
664	675	AF054284	173	Hs.334826	splicing factor 3b, subunit 1, 155kD (SF3B1), mRNA /cds=(0,3914)
6046	676	BE613237	174	Hs.146381	RNA binding motif protein, X chromosome (RBMX),
278	677	NM_003367	175	Hs.93649	mRNA /cds=(11,1186) upstream transcription factor 2, c-fos intera
469	678	AB014522	176	Hs.11238	mPNA for KIAAACCO protein podiel ada (ada-(0.0000)
	679	AW137104	177	Hs.8121	mRNA for KIAA0622 protein, partial cds /cds=(0,3869) Notch (Drosophila) homolog 2 (NOTCH2), mRNA
					/cds=(12,7427)
	680	BF897042			FLJ32028 hypothetical protein FLJ32028
	681	BC002900	179	Hs.181309	proteasome (prosome, macropain) subunit, alpha type, 2 (PSMA2), mRNA /cds=(0,704)
6304		AL578975		Hs.5057	AL578975 cDNA /clone=CS0DK012YN01-(3-prime)
2037	683	NM_000988	181	Hs.111611	ribosomal protein L27 (RPL27), mRNA /cds=(17,427)
2550	684	NM_003769	182	Hs.77608	splicing factor, arginine/serine-rich 9 (SFRS9), mRNA /cds=(52,717)
3679	685	U94855	183	Hs.7811	eukaryotic translation initiation factor 3, subunit 5 (epsilon, 47kD) (EIF3S5), mRNA /cds=(6,1079)
1337	686	AV749844	184	Hs.26670	PAC clone RP3-515N1 from 22q11.2-q22 /cds=(0,791)
	687	BC003352	185	Hs.326456	hypothetical protein FLJ20030 (FLJ20030), mRNA /cds=(1,1239)
1298	688	AU135154	186	Hs.172028	a disintegrin and metalloproteinase domain 10 (ADAM10), mRNA /cds=(469,2715)
779	689	AF208850	187	Hs.82911	BM-008 mRNA, complete cds /cds=(341,844).
_	690	D29805	188	Hs.198248	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase,
					polypeptide 1 (B4GALT1), mRNA /cds=(72,1268)
2867	691	NM_006098	189	Hs.5662	guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1 (GNB2L1), mRNA /cds=(95,1048)

lable	ZE.			, <u> </u>	
1			SEQ ID		
	SEQ ID		Full		
OID		ACC		HS	Gene
2183	692	NM_001755	190	Hs.179881	core-binding factor, beta subunit (CBFB), transcript variant 2, mRNA /cds=(11,559)
3033	693	NM_007355	191	Hs.74335	heat shock 90kD protein 1, beta (HSPCB), mRNA
0000	604	M47000	400	11- 470004	/cds=(0,2174)
3692	694	W47229	192	Hs.173334	ELL-RELATED RNA POLYMERASE II, ELONGATION FACTOR (ELL2), mRNA /cds=(0,1922)
	695	X51345	193	Hs.198951	jun B proto-oncogene (JUNB), mRNA /cds=(253,1296)
5114	696	Al364677	194	Hs.368853	ESTs
5135	697	Al380594	195	Hs.231261	tf95h06.x1 cDNA, 3' end /clone=IMAGE:2107067 /clone_end≈3'
2158	698	NM_001641	196	Hs.73722	APEX nuclease (multifunctional DNA repair enzyme) (APEX), mRNA /cds≈(205,1161)
2369	699	NM_002786	197	Hs.82159	proteasome (prosome, macropain) subunit, alpha type, 1 (PSMA1), mRNA /cds=(105,896)
1676	700	J02621	198	Hs.251064	high-mobility group (nonhistone chromosomal) protein 14 (HMG14), mRNA /cds=(150,452)
3414	701	NM_019111	199	Hs.76807	major histocompatibility complex, class II, DR alpha (HLA DRA), mRNA /cds=(26,790)
801	702	AF248966	200	Hs.183434	ATPase, H+ transporting, lysosomal (vacuolar proton pump) membrane sector associated protein M8-9 (APT6M8-9)
1605	703	D31767	201	Hs.75416	DAZ associated protein 2 (DAZAP2), mRNA
2974	704	NM_006839	202	Hs.78504	inner membrane protein, mitochondrial (mitofilin) (IMMT), mRNA /cds=(92,2368)
5333	705	Al581732	203	Hs.229918	ar74f03.x1 cDNA, 3' end /clone=IMAGE:2128349 /clone_end≈3'
3411	706	NM_019059	204	Hs.274248	hypothetical protein FLJ20758 (FLJ20758), mRNA /cds=(464,1306)
2061	707	NM_001033	205	Hs.2934	ribonucleotide reductase M1 polypeptide (RRM1), mRNA /cds=(187,2565)
2361	708	NM_002719	206	Hs.171734	protein phosphatase 2, regulatory subunit B (B56), gamma isoform (PPP2R5C), mRNA /cds=(88,1632)
2553	709	NM_003791	207	Hs.75890	membrane-bound transcription factor protease, site 1 (MBTPS1), mRNA /cds=(496,3654)
2068	710	NM_001105	208	Hs.150402	activin A receptor, type I (ACVR1), mRNA /cds=(340,1869)
4153	711	BG179517	209	Hs.99093	chromosome 19, cosmid R28379 /cds=(0,633)
	712	BF940103	210	Hs.26136	hypothetical protein MGC14156 (MGC14156), mRNA /cds=(82,426)
668	713	AF061736	211	Hs.169895	ubiquitin-conjugating enzyme E2L 6 (UBE2L6), mRNA /cds=(47,508)
981	714	AK023680	212	Hs.17448	cDNA FLJ13618 fis, clone PLACE1010925 /cds=UNKNOWN
2102	715	NM_001295	213	Hs.301921	chemokine (C-C motif) receptor 1 (CCR1), mRNA /cds=(62,1129)
2560	716	NM_003811	214	Hs.1524	tumor necrosis factor (ligand) superfamily, member 9 (TNFSF9), mRNA /cds=(3,767)
3701	717	X02812	215	Hs.1103	transforming growth factor, beta 1 (TGFB1), mRNA /cds=(841,2016)

					
1	1		l		
]	l		SEQ ID		
1	SEQ ID		Fuli		
OID	50mer	ACC		нѕ	Gene
4601	718	NM_002205	216	Hs.149609	integrin, alpha 5 (fibronectin receptor, alpha polypeptide) (ITGA5), mRNA /cds=(23,3172)
5468	719	Al818777	217	Hs.229990	wl11f10.x1 cDNA, 3' end /clone=IMAGE:2424619
7044	700	NN4 005000	-	11- 400047	/clone_end=3'
7641	720	NM_005892		Hs.100217	formin-like (FMNL), mRNA /cds=(39,1430)
8015		M26252	219	Hs.198281	pyruvate kinase, muscle (PKM2), mRNA
446	722	AB002377	220	Hs.32556	mRNA for KIAA0379 protein, partial cds /cds=(0,3180)
4359	723	Al381586	221	Hs.87908	Snf2-related CBP activator protein (SRCAP), mRNA /cds=(210,9125)
5034	724	BG760189	222	Hs.37617	602144947F1 cDNA, 5' end /clone=IMAGE:4308683
					/clone_end=5'
4752	725	NM_006913	223	Hs.216354	ring finger protein 5 (RNF5), mRNA /cds=(0,542)
765	726	AF189011	224	Hs.49163	ribonuclease III (RN3) mRNA, complete cds /cds=(245,4369)
949	727	AK022834	225	Hs.58488	catenin (cadherin-associated protein), alpha-like 1 (CTNNAL1), mRNA /cds=(43,2247)
2398	728	NM_002878	226	Hs.125244	
7445	720	BF899464	227	NA	
17445	129	DF099404	221	IVA	IL5-MT0211-011200-317-f03 MT0211 cDNA, mRNA sequence
7748	730	AW452510	228	Hs 300479	UI-H-BW1-ame-a-12-0-UI.s1 cDNA, 3' end
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/clone=IMAGE:3069598 /clone end=3'
2778	731	NM_005508	229	Hs.184926	chemokine (C-C motif) receptor 4 (CCR4), mRNA /cds=(182,1264)
3734	732	X16354	230	Hs.50964	mRNA for transmembrane carcinoembryonic antigen BGPa (formerly TM1-CEA) /cds=(72,1652)
4364	733	AA581115	231	Hs.291129	oe10d02.s1 cDNA /clone=IMAGE:1385475
		NM 005485		Hs.271742	ADP-ribosyltransferase (NAD+; poly (ADP-ribose)
					polymerase)-like 3 (ADPRTL3), mRNA /cds=(246,1847)
2826	735	NM_005816	233	Hs.142023	T cell activation, increased late expression (TACTILE), mRNA /cds=(928,2637)
3987	736	BG033294	234	Hs.118787	transforming growth factor, beta-induced, 68kD (TGFBI), mRNA /cds=(47,2098)
4501	737	K01566	235	Hs.69771	B-factor, properdin
		T25714		Hs.330530	ESTDIR309 cDNA, 3' end /clone=CDDIRX9
7346		NM_022873		Hs.265827	
3827	740	X99699	238	Hs.139262	XIAP associated factor-1 (HSXIAPAF1), mRNA
676	741	AF067519	239	Hs.307357	/cds=(0,953) PITSLRE protein kinase beta SV1 isoform (CDC2L2)
					mRNA, complete cds /cds=(79,2412)
		BG387694	240	Hs.170980	cell cycle progression 2 protein (CPR2), mRNA /cds=(126,1691)
707	743	AF104032	241	Hs.184601	L-type amino acid transporter subunit LAT1 mRNA, complete cds /cds=(66,1589)
7351	744	NM_012177	242	Hs.272027	F-box only protein 5 (FBXO5), mRNA /cds=(61,1404)
1158	745	AL042370	243	Hs.79709	phosphotidylinositol transfer protein (PITPN), mRNA /cds=(216,1028)

Table 2	<u> </u>				
S	EQ ID	l l	SEQ ID Full		
OID 50	0mer	ACC	length	HS	Gene
4489 74	46	BC009469	244	Hs.287797	mRNA for FLJ00043 protein, partial cds /cds=(0,4248)
4924 74	47		245	Hs.424299	RPLP1 ;germinal
	48		246	Hs.76239	hypothetical protein FLJ20608 (FLJ20608), mRNA
					/cds=(81,680)
3157 74	49	NM 014481	247	Hs.154149	Homo sapiens, apurinic/apyrimidinic
	-	_			endonuclease(APEX nuclease)-like 2 protein, clone
1					MGC:1418 IMAGE:3139156, mRNA, complete cds
3338 7	50	NM 017774	248	Hs.306668	cDNA FLJ14089 fis, clone MAMMA1000257
					/cds=UNKNOWN
3346 7	51	NM_017859	249	Hs.39850	hypothetical protein FLJ20517 (FLJ20517), mRNA
1					/cds=(44,1690)
3544 7	52	R44202	250	Hs.240013	mRNA; cDNA DKFZp547A166 (from clone
					DKFZp547A166) /cds=UNKNOWN
4626 7	53	NM_002904	251	Hs.106061	RD RNA-binding protein (RDBP), mRNA
1 . [_		·	/cds=(108,1250)
7339 7	54	AL133642	252	Hs.241471	mRNA; cDNA DKFZp586G1721 (from clone
{				ļ	DKFZp586G1721); partial cds /cds=(0,669)
109 7	55	AF160973	253	Hs.258503	P53 inducible protein
285 7	56	NM_001972	254	Hs.99863	elastase 2, neutrophil (ELA2),
	57	AA282774	255	NA	cDNA clone IMAGE:713136 5'
436 7	58	AB000115	256	Hs.75470	hypothetical protein, expressed in osteoblast (GS3686),
				<u> </u>	mRNA /cds=(241,1482)
	59	AJ277247	257	Hs.287369	
1610 7	60	D38081	258	Hs.89887	thromboxane A2 receptor (TBXA2R), mRNA
					/cds=(991,2022)
2096 7	61	NM_001250	259	Hs.25648	tumor necrosis factor receptor superfamily, member 5
				<u> </u>	(TNFRSF5), mRNA /cds=(47,880)
5288 7	62	Al524266	260	Hs.230874	, -
 -					/clone_end=3'
5534 7		AL573787	261	Hs.21732	AL573787 cDNA /clone=CS0DI055YM17-(3-prime)
7347 7	'64	AK001503	262	Hs.265891	cDNA FLJ10641 fis, clone NT2RP2005748
		V0.4400	000	11- 00040	/cds=UNKNOWN
279 7	65	X04430	263	Hs.93913	IFN-beta 2a mRNA for interferon-beta-2, T-cells,
1240-12	100	AE 400EE7	2004	INIA	macrophages
	'66 '67	AF480557	264	NA	142E4 cDNA FLJ12347 fis, clone MAMMA1002298
1284 7	'67	AL550229	265	Hs.271599	CONA FLJ12347 fis, cione MAMMA 1002298
1200 -	260	A)/707000	266	Un 245700	
1328 7	68	AV727063	266	Hs.245798	nypotnetical protein DKF2p564(0422 (DKF2P564(0422), mRNA /cds=(510,1196)
1020 17	760	NM 000389	267	Hs.179665	
1939 7	769	14141-000298	201	1 15.17 8005	(CDKN1A), mRNA /cds=(75,569)
2186 7	770	NM 001761	268	Hs.1973	cyclin F (CCNF), mRNA /cds=(43,2403)
100 /	70	[**IVI_UU1/U1	1200	113.1373	Sysiii (OON), III (WA 1005 170,2100)
2364 7	71	NM 002741	269	Hs.2499	protein kinase C-like 1 (PRKCL1), mRNA /cds=(84,2912)
-007	, ,	002141	1-00		p. 5.5.5
2400 7	72	NM 002880	270	Hs.279474	HSPC070 protein (HSPC070), mRNA /cds=(331,1581)
"			1	,	, , , , , , , , , , , , , , , , , , , ,
12440 =	773	NM 014373	271	Hs.97101	putative G protein-coupled receptor (GPCR150), mRNA
3146 7	10	11111_011010		1	patatro o protoni coupled receptor (o. o. c. c. c.), illi alla

Table	ZE.				
Ì	}		050 10]	
)	SEO ID		SEQ ID		
OID	SEQ ID 50mer	l .	Full	lue	Gana
OID 3633	774	U53347	length 272	Hs.183556	Gene solute carrier family 1 (neutral amino acid transporter),
3033	\'\ ''	000047	212	118.163330	member 5 (SLC1A5), mRNA /cds=(590,2215)
3689	775	W19201	273	Hs.17778	neuropilin 2 (NRP2), mRNA /cds=(0,2780)
3695		W79598	274	Hs.163846	putative N6-DNA-methyltransferase (N6AMT1), mRNA
					/cds=(29,673)
4079		XM_001939		Hs.55468	H4 histone, family 2
4254	778	Al270476	276	Hs.270341	602307338F1 cDNA, 5' end /clone=IMAGE:4398848
<u> </u>					/clone_end=5'
4316	779	AA992299	277	Hs.129332	ot53b06.s1 cDNA, 3' end /clone=IMAGE:1620467 /clone_end=3'
4394	780	AF044595	278	Hs.248078	lymphocyte-predominant Hodgkin's disease case #7
			_, _		immunoglobulin heavy chain gene, variable region
4492	781	BI091076	279	Hs.127128	
ĺ				l	/clone_end=3'
4498	782	H13491	280	Hs.303450	yj15f02.r1 cDNA, 5' end /clone=IMAGE:148827
L					/clone_end=5'
4507		M55420	281		IgE chain, last 2 exons
4778	784	NM_014271	282	Hs.241385	interleukin 1 receptor accessory protein-like 1
	-	1	222		(IL1RAPL1), mRNA /cds=(510,2600)
5126		Al378091	283	Hs.369056	
5138	786	Al381601	284	Hs.159025	, ,
5347	787	Al634972	285	Hs.319825	/clone_end=3' 602021477F1 cDNA, 5' end /clone=IMAGE:4156915
3347	100	A1034912	203	118.319023	/clone end=5'
5561	788	AW005376	286	Hs.173280	
	1)		/clone end=3'
5706	789	AW088500	287	Hs.389655	
					histocompatibility antigen HLA-B-associated transcript 3
5735	790	AW195270	288	Hs.330019	xn67c04.x1 cDNA, 3' end /clone=IMAGE:2699526
					/clone_end=3'
5836	791	AW296797	289	Hs.255579	, · · · · · · · · · · · · · · · · · · ·
7400	700	DE007704	000	11. 450700	/clone=IMAGE:2731117 /clone_end=3'
7438 8009		BF827734	290 291	Hs.156766	
0009	793	M11233	291	Hs.79572	cathepsin D (lysosomal aspartyl protease) (CTSD), mRNA /cds=(2,1240)
1182	794	AL050218	292	Hs.15020	DNA sequence from clone 51J12 on chromosome 6q26-
3260	795	NM_016063	293	Hs.32826	CGI-130 protein (LOC51020), mRNA /cds=(63,575)
6702	796	BU678165	294	Hs.377992	479H5, not in ref seq, Rab geranylgeranyltransferase,
	<u></u>		L	l	alpha subunit (RABGGTA),
1186	797	AL050371	295	Hs.8128	phosphatidylserine decarboxylase (PISD), mRNA /cds=(223,1350)
330	798	NM 152545	296	Hs.335815	62C9, hypothetical protein FLJ31695
		,,,,_,,,			ozoo, nyposiosiosi, protosin'i zoo roco
	799	XM_007156		Hs.159492	sacsin (SACS) gene, complete cds /cds=(76,11565)
4780	800	NM_014339	298	Hs.129751	interleukin 17 receptor (IL17R), mRNA /cds=(32,2632)
4821	801	NM_019598	299	Hs.159679	kallikrein 12 (KLK12), mRNA /cds=UNKNOWN
5091	802	Al081258	300	Hs.134590	oy67c11.x1 cDNA, 3' end /clone=IMAGE:1670900
				1.75.75.75	/clone_end=3'
	•				l—————————————————————————————————————

Table 2E.

Table	4E.				
	SEQ ID	9	SEQ ID Full		
OID	50mer		length		Gene
6000	803	AW468621	301	Hs.257743	he42e03.x1 cDNA, 3' end /clone=IMAGE:2921692 /clone_end=3'
2202	804	NM_001873	302	Hs.75360	carboxypeptidase E (CPE), mRNA /cds=(290,1720)
4886	805	NM_032839	303	Hs.11360	hypothetical protein FLJ14784 (FLJ14784), mRNA /cds=(133,1569)
3733	806	X16277	304	Hs.339703	zv26f06.r1 cDNA, 5' end /clone=IMAGE:754787 /clone end=5'
4526	807	NM_000395	305	Hs.285401	colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage) (CSF2RB), mRNA /cds=(28,2721)
3085		NM_013252		Hs.126355	domain) lectin, superfamily member 5 (CLECSF5), mRNA /cds=(197,763)
343	809	129F10	307	NA	129F10, chromosome hit
	810	AK024331	308	Hs.287631	cDNA FLJ14269 fis, clone PLACE1003864 /cds=UNKNOWN
1911	811	NM_000195	309	Hs.83951	Hermansky-Pudlak syndrome (HPS), mRNA /cds=(206,2308)
7307	812	NM_030756	310	Hs.173638	transcription factor 7-like 2 (T-cell specific, HMG-box) (TCF7L2), mRNA /cds=(307,2097)
150	813	M26683	311	Hs.303649	interferon gamma treatment inducible mRNA Monocytes
399	814	AA214691	312	Hs.111377	
599	815	AB049113	313	Hs.82113	dUTP pyrophosphatase (DUT), mRNA /cds=(29,523)
1129	816	AK026819	314	Hs.20242	hypothetical protein FLJ12788 (FLJ12788), mRNA /cds=(9,866)
1717	817	L21961	315	Hs.181125	Homo sapiens, clone MGC:12849 IMAGE:4308973, mRNA, complete cds /cds=(24,725)
2101	818	NM_001278	316	Hs.306440	mRNA; cDNA DKFZp566L084 (from clone DKFZp566L084) /cds=UNKNOWN
2290	819	NM_002385	317	Hs.69547	myelin basic protein (MBP), mRNA /cds=(10,570)
2736	820	NM_005121	318	Hs.11861	thyroid hormone receptor-associated protein, 240 kDa subunit (TRAP240), mRNA /cds=(77,6601)
3018	821	NM_007220	319	Hs.283646	carbonic anhydrase VB, mitochondrial (CA5B), nuclear gene encoding mitochondrial protein, mRNA /cds=(137,1090)
3068	822	NM_012381	320	Hs.74420	origin recognition complex, subunit 3 (yeast homolog)- like (ORC3L), mRNA /cds=(26,2161)
3128	823	NM_014225	321	Hs.173902	protein phosphatase 2 (formerly 2A), regulatory subunit A (PR 65
3965	824	BF966028	322	Hs.5324	hypothetical protein (CL25022), mRNA /cds=(157,1047)
4450	825	AL157438	323	Hs.66151	mRNA; cDNA DKFZp434A115 (from clone DKFZp434A115) /cds=UNKNOWN
4677	826	NM_004488	324	Hs.73734	glycoprotein V (platelet) (GP5), mRNA /cds=(270,1952)
4753	827	NM_006929	325	Hs.153299	DOM-3 (C. elegans) homolog Z (DOM3Z), transcript variant 2, mRNA /cds=(129,1319)
4841	828	NM_021976	326	Hs.79372	retinoid X receptor, beta (RXRB), mRNA /cds=(179,1780)
4891	829	T93822	327	Hs.294092	EST375308 cDNA

Table 2E.

Table	<u> 45.</u>			г	
	}		SEQ ID		
	SEQ ID		Full		;
OID	50mer	ACC	length	ue	Gene
	830	AI524202	328	Hs.171122	th10d11.x1 cDNA, 3' end /clone=IMAGE:2117877
5204	030	A1324202	320	113.171122	/clone end≈3'
5359	831	Al684022	329	Hs.90744	proteasome (prosome, macropain) 26S subunit, non-
]]	ATPase, 11 (PSMD11), mRNA /cds=(0,1268)
5965	832	AW452545	330	Hs.257582	UI-H-BW1-ame-d-12-0-UI.s1 cDNA, 3' end
					/clone=IMAGE:3069742 /clone_end=3'
6434	833	NM_153341	331	Hs.64239	DNA sequence from clone RP5-1174N9 on chromosome
					1p34.1-35.3.
7175	834	BF698885	332	Hs.5890	hypothetical protein FLJ23306 (FLJ23306), mRNA
1884	835	NM 000073	222	Hs.2259	/cds=(562,930) CD3G antigen, gamma polypeptide (TiT3 complex)
1004	033	14141_000073	1333	IDS.2259	(CD3G), mRNA /cds=(37,585)
2683	836	NM 004761	334	Hs.170160	RAB2, member RAS oncogene family-like (RAB2L),
2000	1	11111_00-1701	001		mRNA /cds=(0,2333)
3240	837	NM 015898	335	Hs.104640	HIV-1 inducer of short transcripts binding protein (FBI1),
				1	mRNA /cds=(0,1754)
4781	838	NM_014348	336	Hs.296429	similar to rat integral membrane glycoprotein POM121
					(POM121L1), mRNA /cds=(0,1286)
4950		AW500534	337		fmfc5 cDNA /clone=CR6-21
5076		AA765569	338	Hs.104157	
5092		AI084553	339	Hs.105621	
5264	842	Al523617	340	Hs.171098	
5514	042	A1000740	341	11- 42024	/clone_end=3' hv63f09.x1 cDNA, 3' end /clone=IMAGE:3178121
0014	843	Al969716	341	Hs.13034	/clone end≈3'
7301	844	NM 002076	342	Hs.164036	
1001		W_002070	042]	IIID) (GNS), mRNA /cds=(87,1745)
5387	845	Al760224	343	Hs.26873	wh62g06.x1 cDNA, 3' end /clone=IMAGE:2385370
					/clone_end=3'
5530	846	AL565736	344	Hs.181165	eukaryotic translation elongation factor 1 alpha 1
					(EEF1A1), mRNA /cds=(53,1441)
7330	847	NM_004900	345	Hs.226307	phorbolin (similar to apolipoprotein B mRNA editing
					protein) (DJ742C19.2), mRNA /cds=(79,651)
5083	848	Al031624	346	Hs.238954	1
6130	040	BF059133	347	Hs.144583	/clone_end=5' Homo sapiens, clone IMAGE:3462401, mRNA, partial
0130	049	DF059133	347	ns. 144563	cds /cds=(0,153)
555	850	AB036432	348	Hs.184	advanced glycosylation end product-specific receptor
000		1	1040	113.104	(AGER), mRNA /cds=(0,1214)
3547	851	R64054	349	Hs.208603	
					/clone_end=3'
1849	852	M81601	350	Hs.153179	fatty acid binding protein 5 (psoriasis-associated)
	L				(FABP5), mRNA /cds=(48,455)
1390	853	AY004255	351	Hs.238990	Homo sapiens, Similar to cyclin-dependent kinase
				l.,	inhibitor 1B (p27, Kip1)
4604	854	NM_002258	352	Hs.169824	
4750	055	M11124	252	Up 400050	(KLRB1), mRNA /cds=(60,737)
1750	855	11/24	353	Hs.198253	major histocompatibility complex, class II, DQ alpha 1 (HLA-DQA1), mRNA /cds=(43,810)
4400	856	AF073705	354	Hs.247721	clone mcg53-54 immunoglobulin lambda light chain
1-700		1		1.10.277721	variable region 4a mRNA, partial cds /cds=(0,324)
		<u> </u>	ــــــــــــــــــــــــــــــــــــــ		[

Table	2E.				
			SEQ ID		
	SEQ ID		Full		
OID		ACC	length	الاو	 Gene
855	857	AJ271326	355	Hs.135187	unc93 (C.elegans) homolog B (UNC93B), mRNA
	<u> </u>	AJ27 1320	333		/cds=(41,1834)
6566	858	NM_138391	356	Hs.17481	mRNA; cDNA DKFZp434G2415 (from clone DKFZp434G2415) /cds=UNKNOWN
3825	859	X97324	357	Hs.3416	adipose differentiation-related protein (ADFP), mRNA
2895	860	NM_006289	358	Hs.18420	/cds=(0,1313) talin 1 (TLN1), mRNA /cds=(126,7751)
4631	861	NM_002935	359	Hs.73839	ribonuclease, RNase A family, 3 (eosinophil cationic protein) (RNASE3), mRNA /cds=(63,545)
3832,	862	Y00345	360	Hs.172182	poly(A)-binding protein, cytoplasmic 1 (PABPC1), mRNA
8069					/cds=(502,2403)
5531	863	AL567986	361	Hs.77393	farnesyl diphosphate synthase
4149		NM_000311		Hs.74621	prion protein (p27-30) (Creutzfeld-Jakob disease,
			ĺ	ľ	Gerstmann-Strausler-Scheinker syndrome)
3305	865	NM_016523	363	Hs.183125	killer cell lectin-like receptor subfamily F, member 1
			<u> </u>		(KLRF1), mRNA /cds=(64,759)
5074	866	AA701193	364	Hs.431104	EST, Weakly similar to HA21_HUMAN HLA class II
					histocompatibility antigen, DQ(1) alpha chain precursor (DC-4 alpha chain)
8095	867	AK026594	365	Hs.251653	tubulin, beta, 2 (TUBB2), mRNA /cds=(0,1337)
	868	AW063509	366	Hs.279105	TN1012 cDNA, 3' end /clone_end=3'
3541	869	R14692	367	Hs.170222	Na+/H+ exchanger NHE-1 isoform [human, heart, mRNA, 4516 nt] /cds=(577,3024)
2386	870	NM_002831	368	Hs.63489	protein tyrosine phosphatase, non-receptor type 6 (PTPN6), mRNA /cds=(144,1931)
1535	871	BE868389	369	Hs.179703	tripartite motif protein 14 (TRIM14), mRNA
328	872	AK090404	370	Hs.98531	53G7, FLJ00290 protein
	873	AK024202	371	Hs.289088	heat shock 90kD protein 1, alpha (HSPCA), mRNA
		711102-1202	07.	113.203000	/cds=(60,2258)
1003	874	AK024240	372	Hs.24115	cDNA FLJ14178 fis, clone NT2RP2003339
					/cds=UNKNOWN
1025	875	AK024756	373	Hs.12293	hypothetical protein FLJ21103 (FLJ21103), mRNA /cds=(88,1143)
1035	876	AK024969	374	Hs.166254	hypothetical protein DKFZp566I133 (DKFZP566I133), mRNA /cds=(133,1353)
1227	877	AL136542	375	Hs.322456	hypothetical protein DKFZp761D0211
3249	878	NM 015995	376	Hs.7104	(DKFZP761D0211), mRNA /cds=(164,1822) mRNA; cDNA DKFZp761P06121 (from clone
J273	0.0	14141_010990	370	Π5.7 IU 4	DKFZp761P06121) /cds=UNKNOWN
2060	879	NM_001032	377	Hs.539	ribosomal protein S29 (RPS29), mRNA /cds=(30,200)
4902	880	X58397	378	Hs.81220	CLL-12 transcript of unrearranged immunoglobulin V(H)5
5782	881	AW293895	379	Hs.255249	gene /cds=(39,425) UI-H-BW0-ain-f-10-0-UI.s1 cDNA, 3' end
J, UZ			513	1 10.200249	/clone=IMAGE:2729995 /clone_end=3'
7626	882	NM_003128	380	Hs.324648	cDNA FLJ13700 fis, clone PLACE2000216, highly similar
1195	883	AL109669	381	Hs.172803	to SPECTRIN BETA CHAIN, BRAIN /cds=UNKNOWN mRNA full length insert cDNA clone EUROIMAGE 31839
			JU 1	. 10. 17 2003	/cds=UNKNOWN

Table	ZE.				r
OID	SEQ ID 50mer	li e	SEQ ID Full length		Gene
	884	AI307808	382	Hs.238797	602081661F1 cDNA, 5' end /clone=IMAGE:4245999
		A1307606		115.230191	/clone_end=5'
805	885	AF261087	383	Hs.174131	ribosomal protein L6 (RPL6), mRNA /cds=(26,892)
2330	886	NM_002546	384	Hs.81791	tumor necrosis factor receptor superfamily, member 11b
<u> </u>		<u> </u>			(osteoprotegerin) (TNFRSF11B), mRNA /cds=(94,1299)
3053	887	NM_012237	385	Hs.44017	sirtuin (silent mating type information regulation 2,
1					S.cerevisiae, homolog) 2 (SIRT2), transcript variant 1,
		V2222	-		mRNA /cds=(200,1369)
3779	888	X68060	386	Hs.75248	topoisomerase (DNA) II beta (180kD) (TOP2B), mRNA
5353	889	Al660405	387	Hs.111941	/cds=(0,4865)
5555	009	A1000405	307	Ins.111941	qd92a04.x1 cDNA, 3' end /clone=IMAGE:1736910 /clone_end=3'
5442	890	AI798114	388	Hs.210307	
0442		11700114	000	113.2 10007	/clone_end=3'
5690	891	AW075948	389	Hs.265634	
	ĺ				/clone end=3'
5791	892	AW294681	390	Hs.255336	
					/clone=IMAGE:2729683 /clone_end=3'
6239	893	R40823	391	Hs.108082	
					/clone_end=5'
6260	894	AA806222	392	Hs.111554	
0070	205		222		/cds=(14,592)
6273	895	Al380390	393	Hs.158976	
6351	896	BF435621	394	Hs.293476	/clone=IMAGE:2726692 /clone_end=3'
0331	090	DF433021	394	ns.293476	hypothetical protein FKSG44 (FKSG44), mRNA /cds=(126,1520)
7171	897	AK025781	395	Hs.5076	cDNA: FLJ22128 fis, clone HEP19543 /cds=UNKNOWN
8053	898	X06323	396	Hs.79086	mitochondrial ribosomal protein L3 (MRPL3), mRNA
					/cds=(76,1122)
8065	899	X72841	397	Hs.31314	retinoblastoma-binding protein 7 (RBBP7), mRNA /cds=(287,1564)
78	900	NM_001015	398	Hs.182740	ribosomal protein S11 (RPS11), mRNA /cds=(15,4
174	901	J02931	399	Hs.62192	placental tissue factor (two forms) mRNA, complete cd
252	902	D49950		Hs.83077	for interferon-gamma inducing activated macrophages
255	903	NM_001772	401	Hs.83731	CD33 antigen (gp67) (CD33), mRNA.
824	904	AF307339	402	Hs.47783	B aggressive lymphoma gene (BAL), mRNA /cds=(228,2792)
1022	905	AK024597	403	Hs.10362	cDNA: FLJ20944 fis, clone ADSE01780
1155				Hs.152925	mRNA for KIAA1268 protein, partial cds /cds=(0,3071)
1270	907	AL360190	405	Hs.318501	stimulated trans-acting factor (50 kDa) (STAF50), mRNA /cds=(122,1450)
1301	908	AV689330	406	Hs.189402	Similar to RIKEN cDNA 2210009G21 gene, clone IMAGE:4807023
1443	909	BC002796	407	Hs.46446	lymphoblastic leukemia derived sequence 1 (LYL1), mRNA /cds=(0,803)
1561	910	BE899595	408	NA	cDNA clone IMAGE:3952215 5'
1695	911	K02766	409	Hs.1290	complement component 9 (C9), mRNA /cds=(4,1683)
2070	912	NM_001111	410	Hs.7957	adenosine deaminase, RNA-specific (ADAR), transcript variant ADAR-a, mRNA /cds=(187,3867)

2E				
	l	Full		
				Gene
913	_		Hs.181874	interferon-induced protein with tetratricopeptide repeats 4 (IFIT4), mRNA /cds=(61,1533)
914	NM_001778	412	Hs.901	CD48 antigen (B-cell membrane protein) (CD48), mRNA /cds=(36,767)
915	NM_002463	413	Hs.926	myxovirus (influenza) resistance 2, homolog of murine (MX2), mRNA /cds=(104,2251)
916	NM_002759	414	Hs.274382	protein kinase, interferon-inducible double stranded RNA dependent (PRKR), mRNA /cds=(435,2090)
917	NM_004031	415	Hs.166120	interferon regulatory factor 7 (IRF7), transcript variant d, mRNA /cds=(335,1885)
918	NM_006865	416	Hs.113277	leukocyte immunoglobulin-like receptor, subfamily A (without TM domain), member 3 (LILRA3), mRNA /cds=(62,1381)
919	NM_013352	417	Hs.58636	squamous cell carcinoma antigen recognized by T cell (SART-2), mRNA /cds=(149,3025)
920	NM_014065	418	Hs.279040	
921	NM_017523	419	Hs.139262	XIAP associated factor-1 (HSXIAPAF1), mRNA /cds=(0,953)
922	NM_021105	420	Hs.198282	phospholipid scramblase 1 (PLSCR1), mRNA /cds=(256,1212)
923	XM 005543	421	Hs.234642	aquaporin 3 (AQP3), mRNA /cds=(64,942)
924			Hs.81337	lectin, galactoside-binding, soluble, 9 (galectin 9) (LGALS9), transcript variant long, mRNA /cds=(56,1123)
925	BG505271	423	Hs.86437	602411368F1 cDNA, 5' end /clone=IMAGE:4540096 /clone end=5'
926	BE965319	424	Hs.286754	601659229R1 cDNA, 3' end /clone=IMAGE:3895783 /clone end=3'
927	NM_003264	425	Hs.63668	toll-like receptor 2 (TLR2), mRNA /cds=(129,2483)
928	BU540019	426	NA	485A6, EST
				AV719442 cDNA, 5' end /clone=GLCBNA01
930			Hs.2247	interleukin 5 (colony-stimulating factor, eosinophil) (IL5), mRNA /cds=(44,448)
931	NM_001916	429	Hs.289271	cytochrome c-1 (CYC1), mRNA /cds=(8,985)
932	NM_002460	430	Hs.82132	interferon regulatory factor 4 (IRF4), mRNA /cds=(105,1460)
933	NM_002994	431	Hs.89714	small inducible cytokine subfamily B (Cys-X-Cys), member 5
934	NM_007015	432	Hs.97932	chondromodulin I precursor (CHM-I), mRNA /cds=(0,1004)
935	NM_017644	433	Hs.246875	hypothetical protein FLJ20059 (FLJ20059), mRNA /cds=(25,1290)
936	X57025	434	Hs.85112	IGF-I mRNA for insulin-like growth factor I
937	BF892532	435	Hs.38664	IL0-MT0152-061100-501-e04 cDNA
938	BG028577	436	Hs.279009	matrix Gla protein (MGP), mRNA /cds=(46,357)
939	AF116909	437	Hs.167827	clone HH419 unknown mRNA /cds=(189,593)
940	AL136842	438	Hs.260024	mRNA; cDNA DKFZp434A0530 (from clone DKFZp434A0530); complete cds /cds=(968,1732)
	\$EQ ID 50mer 913 914 915 916 917 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939	SEQ ID ACC 913 NM_001549 914 NM_002463 916 NM_002463 917 NM_004031 918 NM_006865 919 NM_013352 920 NM_014065 921 NM_017523 922 NM_021105 923 XM_005543 924 NM_009587 925 BG505271 926 BE965319 927 NM_003264 928 BU540019 929 AV719442 930 NM_000879 931 NM_001916 932 NM_002460 933 NM_007015 935 NM_017644 936 X57025 937 BF892532 938 BG028577 939 AF116909	SEQ ID 50mer ACC length	SEQ ID 50mer ACC Ilength Full Ilength HS 913 NM_001549 411 Hs.181874 914 NM_001778 412 Hs.901 915 NM_002463 413 Hs.926 916 NM_002759 414 Hs.274382 917 NM_004031 415 Hs.166120 918 NM_00865 416 Hs.113277 919 NM_013352 417 Hs.58636 920 NM_014065 418 Hs.279040 921 NM_017523 419 Hs.139262 922 NM_021105 420 Hs.198282 923 XM_005543 421 Hs.234642 924 NM_009587 422 Hs.81337 925 BG505271 423 Hs.86437 926 BE965319 424 Hs.286754 927 NM_003264 425 Hs.63668 928 BU540019 426 NA 929 AV719442 427 Hs.256959

<u>Table</u>	able 2E.						
OID		ACC	SEQ ID Full length		Gene		
4463	941	AW327360	439	Hs.250605	dq02e11.x1 cDNA, 5' end /clone=IMAGE:2846685 /clone_end=5'		
5295	942	Al538420	440		td06a03.x1 cDNA, 3' end /clone=IMAGE:2074828 /clone_end=3'		
5452	943	Al805144	441	NA	EST		
5642			442	Hs.279141	SP0594 cDNA, 3' end /clone_end=3'		
5699			443	Hs.244816	xb18g07.x1 cDNA, 3' end /clone=IMAGE:2576700 /clone_end=3'		
5746	946	AW236252	444	Hs.253747	xn71g08.x1 cDNA, 3' end /clone=IMAGE:2699966 /clone_end=3'		
5841	947	AW297026	445	Hs.255600	UI-H-BW0-ajf-e-06-0-UI.s1 cDNA, 3' end /clone=IMAGE:2731499 /clone_end=3'		
7608	948	NM_016095	446	Hs.108196	HSPC037 protein (LOC51659), mRNA /cds=(78,635)		
877	949	AK000575	447	Hs.279581	hypothetical protein FLJ20568 (FLJ20568), mRNA /cds=(6,422)		
2311	950	NM_002462	448	Hs.76391	myxovirus (influenza) resistance 1, homolog of murine (interferon-inducible protein p78) (MX1), mRNA /cds=(345,2333)		
2566	951	NM_003841	449	Hs.119684	tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular domain (TNFRSF10C), mRNA /cds=(29,928)		
2693	952	NM_004834	450	Hs.3628	mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), mRNA /cds=(79,3576)		
3098	953	NM_013368	451	Hs.169138	RPA-binding trans-activator (RBT1), mRNA /cds=(291,881)		
3723	954	X12451	452	Hs.78056	cathepsin L (CTSL), mRNA /cds=(288,1289)		
3847	955	Y13936	453	Hs.17883	protein phosphatase 1G (formerly 2C), magnesium- dependent, gamma isoform (PPM1G), mRNA /cds=(24,1664)		
4324	956	AW190635	454	Hs.15200	EST379783 cDNA		
4373	957	Al378123	455	Hs.327454	tc80e02.x1 cDNA, 3' end /clone=IMAGE:2072474 /clone end=3'		
4429	958	AJ275405	456	Hs.272362	partial IGVL1 gene for immunoglobulin lambda light chain V region		
5075	959	AA729508	457	Hs.307486	nx54a03.s1 cDNA /clone=IMAGE:1266028		
5490		Al865603	458	Hs.341208	/clone_end=3'		
6958	961	NM_080612	459	Hs.102630	128F5, GRB2-associated binding protein 3 (GAB3),		
183	962	NM_014086	460	Hs.6975	PRO1073 protein (PRO1073),		
1712	963	L11695	461	Hs.220	transforming growth factor, beta receptor I (activin A receptor type II-like kinase, 53kD) (TGFBR1), mRNA /cds=(76,1587)		
2435	964	NM_002995	462	Hs.3195	small inducible cytokine subfamily C, member 1 (lymphotactin) (SCYC1), mRNA /cds=(20,364)		
3971	965	BF968963	463	Hs.5064	602490910F1 cDNA, 5' end /clone=IMAGE:4619835 /clone_end=5'		

lable					,
]	1		l		
ļ	ł .		SEQ ID		-
	SEQ ID	1	Full		
OID	50mer	ACC	length		Gene
4024	966	BG286649	464	Hs.323950	zinc finger protein 6 (CMPX1) (ZNF6), mRNA /cds=(1265,3361)
4773	967	NM_014148	465	Hs.278944	HSPC048 protein (HSPC048), mRNA /cds=(87,419)
6140	968	BF195579	466	Hs.232257	RST2302 cDNA
6164	969	BF509758	467	Hs.144265	UI-H-BI4-apg-d-04-0-UI.s1 cDNA, 3' end
					/clone=IMAGE:3087390 /clone_end=3'
724	970	AF118274	468	Hs.128740	DNb-5 mRNA, partial cds /cds=(0,1601)
2729	971	NM_005082	469	Hs.1579	zinc finger protein 147 (estrogen-responsive finger protein) (ZNF147), mRNA /cds=(39,1931)
4267	972	AA576947	470	Hs.188886	nm82b04.s1 cDNA, 3' end /clone=IMAGE:1074703 /clone end=3'
5073	973	AA628833	471	NA	EST
5345		Al631850	472	Hs.340604	wa36h07.x1 cDNA, 3' end /clone=IMAGE:2300221
				1,0,0	/clone end=3'
5564	975	AW006867	473	Hs.231987	
				1.0.201001	/clone end=5'
1856	976	M94046	474	Hs.7647	MYC-associated zinc finger protein (purine-binding
					transcription factor) (MAZ), mRNA /cds=(91,1584)
449	977	AB007861	475	Hs.118047	
		!			/clone end=5'
670	978	AF061944	476	Hs.432900	PRKWNK1 protein kinase, lysine deficient 1
		AL136797	477	Hs.273294	
	i i			•	DKFZp434N031); complete cds /cds=(18,3608)
1616	980	D42040	478	Hs.75243	bromodomain-containing 2 (BRD2), mRNA /cds=(1701,4106)
4268	981	Al089359	479	Hs.130232	qb05h03.x1 cDNA, 3' end /clone=IMAGE:1695413 /clone end=3'
4690	982	NM_004776	480	Hs.107526	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase,
4828	983	NM_020428	181	Hs.105509	polypeptide 5 (B4GALT5), mRNA /cds=(112,1278) cDNA FLJ14613 fis, clone NT2RP1001113, highly similar
7020	303	14141_020420	401	1 18. 100008	to CTL2 gene /cds=UNKNOWN
4829	9,84	NM_020530	482	Hs.248156	oncostatin M (OSM), mRNA /cds=(0,758)
300	985	NM_003321	483	Hs.12084	Tu translation elongation factor, mitochondrial (TUFM)
1562	986	BE901218	484	Hs.285122	Homo sapiens, hypothetical protein FLJ21839, clone
1002	1900	DE901210	404	118.200122	MGC:2851 IMAGE:2967512, mRNA, complete cds
	ł				/cds=(444,2618)
5112	987	Al361733	485	Hs.157811	qz24b02.x1 cDNA, 3' end /clone=IMAGE:2027787
					/clone_end=3'
1104	988	AK026410	486	Hs.236449	hypothetical protein FLJ22757 (FLJ22757), mRNA
		<u></u>			/cds=(92,2473)
4017		BG254292	487	NA	cDNA clone IMAGE:4477042 5'
4565	990	NM_001504	488	Hs.198252	G protein-coupled receptor 9 (GPR9), mRNA /cds=(68,1174)
6121	991	BE964596	489	Hs.184052	PP1201 protein (PP1201), mRNA /cds=(75,1010)
458		AB011098	490	Hs.59403	serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), mRNA /cds=(188,1876)
1519	993	BE745645	491	Hs.127951	hypothetical protein FLJ14503 (FLJ14503), mRNA
					/cds=(19,2217)

² WO 03/090694 PCT/US03/13015

Table	<u> </u>				
	SEQ ID		SEQ ID Full		
OID	50mer	ACC	length	HS	Gene
	994	A1827950	492	Hs.342617	ha15h10.x1 cDNA, 3' end /clone=IMAGE:2873827 /clone_end=3'
5522	995	AL521097	493	Hs.13144	HSPC160 protein (HSPC160), mRNA /cds=(53,514)
6026	996	BE222032	494	Hs.128675	/clone end=3'
4283	997	AA516406	495	Hs.180201	hypothetical protein FLJ20671 (FLJ20671), mRNA /cds=(72,494)
861	998	AJ277832	496	Hs.56247	mRNA for inducible T-cell co-stimulator (ICOS gene) /cds=(67,666)
5550	999	AV653169	497	Hs.5897	cDNA FLJ13388 fis, clone PLACE1001168 /cds≃UNKNOWN
1813	1000	M36820	498	Hs.75765	GRO2 oncogene (GRO2), mRNA /cds=(74,397)
3242	1001	NM_015919	499	Hs.145956	/cds=(1073,3133)
5128	1002	Al378109	500	Hs.283438	/clone end=3'
5195	1003	Al436418	501	Hs.369051	associated membrane protein 5 (VAMP-5) (Myobrevin)
3497	1004	NM_022488	502	Hs.26367	PC3-96 protein (PC3-96), mRNA /cds=(119,586)

Table 3

Table 3	5. (5.1)
Disease Classification	Disease/Patient Group
Endocrine Disease	Diabetes Mellitus I and II
	Thyroiditis
	Autoimmune polyglandular syndrome
	Autoimmune oophoritis
	Autoimmune hypophysitis
	Addisson's Disease
Inflammatory/Rheumatic	Rheumatoid Arthritis
	Systemic Lupus Erythematosis
	Sjogrens Disease
	CREST syndrome
	Scleroderma
	Ankylosing Spondylitis
	Crohn's
i	Ulcerative Colitis
	Primary Sclerosing Cholangitis
Inflammatory/Rheumatic	Appendicitis
	Diverticulitis
1	Primary Biliary Sclerosis
	Wegener's Granulomatosis
	Polyarteritis nodosa
	Whipple's Disease
	Psoriasis
	Microscopic Polyanngiitis
	Takayasu's Disease
	Kawasaki's Disease
	Autoimmune hepatitis
	Asthma
	Churg-Strauss Disease
,	Beurger's Disease
	Raynaud's Disease
	Cholecystitis
1	Sarcoidosis
	Asbestosis
]	Pneumoconioses
	Otic inflammatory disease
	Ophthalmic inflammatory disease
	Antinflammatory drug use
Neurological Disease	Alzheimer's Dementia
	Pick's Disease
	Multiple Sclerosis
	Guillain Barre Syndrome
	Post-viral neuropathies
	Peripheral Neuropathy

Table 4: Real-time PCR assay chemistries. Various combinations of reporter and quencher dyes are useful for real-time PCR assays.

Reporter	Quencher
	TAMRA
FAM	BHQ1
	TAMRA
TET	BHQ1
JOE	TAMRA
	BHQ1
	TAMRA
HEX	BHQ1
	TAMRA
VIC	BHQ1
ROX	BHQ2
TAMRA	BHQ2

We claim:

A method of diagnosing or monitoring auto immune and chronic inflammatory diseases in a 1. patient, comprising detecting the expression level of one or more genes in said patient to diagnose or monitor auto immune and chronic inflammatory diseases in said patient wherein said one or more genes comprise a nucleotide sequence selected from the group consisting of SEO ID NO:503, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEO ID NO:536, SEO ID NO:537, SEO ID NO:538, SEO ID NO:539, SEO ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID

NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEO ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEO ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEO ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEO ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEO ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEO ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEO ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID

NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004.

- 2. The method of claim 1, further comprising detecting the expression level of one or more additional genes in said patient to diagnose or monitor auto immune and chronic inflammatory diseases in a patient, wherein said one or more additional genes comprise a nucleotide sequence selected from the group consisting of: SEQ ID NO:504, SEQ ID NO:507, SEQ ID NO:603, SEQ ID NO:740, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:854, SEQ ID NO:867, SEQ ID NO:912, SEQ ID NO:922, SEQ ID NO:950, SEQ ID NO:971.
- 3. The method of claim 1 comprising detecting the expression level of at least two of said genes.
- 4. The method of claim 1 comprising detecting the expression level of at least ten of said genes.
- 5. The method of claim 1 comprising detecting the expression level of at least one hundred of said genes.
- 6. The method of claim 1 comprising detecting the expression level of all said genes.
- 7. The method of claim 1, wherein said auto immune and chronic inflammatory diseases is selected from the group consisting of: Rheumatoid Arthritis, Cholecystitis, Systemic Lupus Erythematosis, Sjogrens Disease, CREST syndrome, Scleroderma, Ankylosing Spondylitis, Crohn's, Ulcerative Colitis, Primary Sclerosing Cholangitis, Appendicitis, Diverticulitis, Primary Biliary Sclerosis, Wegener's Granulomatosis, Polyarteritis nodosa, Whipple's Disease, Psoriasis, Microscopic Polyanngiitis, Takayasu's Disease, Kawasaki's Disease,

Autoimmune hepatitis, Asthma, Churg-Strauss Disease, Beurger's Disease, Raynaud's Disease, and Cholecystitis.

- 8. The method of claim 1 wherein said diseases is Systemic Lupus Erythematosis.
- 9. The method of claim 1 wherein said diseases is Rheumatoid Arthritis.
- 10. The method of claim 1 wherein said expression level is detected by measuring the RNA level expressed by said one or more genes.
- 11. The method of claim 10, further including isolating RNA from said patient prior to detecting said RNA level expressed by said one or more genes.
- 12. The method of claim 10 wherein said RNA level is detected by PCR.
- 13. The method of claim 12 wherein said PCR uses primers consisting of nucleotide sequences selected from the group consisting of [SEQ ID NO: Z primer pairs].
- 14. The method of claim 10 wherein said RNA level is detected by hybridization.
- 15. The method of claim 10 wherein said RNA level is detected by hybridization to an oligonucleotide.
- The method of claim 15 wherein said oligonucleotide consists of a nucleotide sequence 16. selected from the group consisting of SEQ ID NO:503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:526, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:52 NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID

NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:660, SEQ ID NO:656, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:660, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:66 NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:720, SEQ ID NO:716, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:718, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:72 NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:820, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:82 NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:825, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:82

NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:840, SEQ ID NO:840, SEQ ID NO:850, SEQ ID NO:85 NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:867, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:870, SEQ ID NO:869, SEQ ID NO:86 NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:905, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:90 NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:922, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:95 NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:990, SEQ ID NO:990, SEQ ID NO:986, SEQ ID NO:986, SEQ ID NO:988, SEQ ID NO:98 NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004.

- 17. The method of claim 15 wherein said oligonucleotide comprises DNA, RNA, cDNA, PNA, genomic DNA, or synthetic oligonucleotides.
- 18. The method of claim 1 wherein said expression level is detected by measuring one or more proteins expressed by said one or more genes.

The method of claim 18 wherein said one or more proteins comprise an amino acid sequence 19. encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, S NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, S NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:97, SEQ ID NO:97, SEQ ID NO:98, S NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:133, SEQ ID NO:130, SEQ ID NO:13 NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:15 NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:16 NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:17 NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID

NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEQ ID NO:335, SEQ ID NO:336, SEQ ID NO:337, SEQ ID NO:338, SEQ ID NO:339, SEQ ID NO:340, SEQ ID NO:341, SEQ ID NO:34 NO:342, SEQ ID NO:343, SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID NO:347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350, SEQ ID NO:351, SEQ ID NO:353, SEQ ID NO:354, SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361, SEQ ID NO:362, SEQ ID NO:362, SEQ ID NO:361, SEQ ID NO:362, SEQ ID NO:36 NO:363, SEQ ID NO:364, SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID NO:369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:376, SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEQ ID NO:380, SEQ ID NO:381, SEQ ID NO:382, SEQ ID NO:383, SEQ ID NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:387, SEQ ID NO:388, SEQ ID NO:389, SEQ ID NO:390, SEQ ID NO:391, SEQ ID NO:392, SEQ ID NO:393, SEQ ID NO:394, SEQ ID NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:398, SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID NO:402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405, SEQ ID NO:406, SEQ ID NO:407, SEQ ID NO:408, SEQ ID

NO:409, SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID NO:414, SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417, SEQ ID NO:418, SEQ ID NO:419, SEQ ID NO:421, SEQ ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID NO:425, SEQ ID NO:426, SEQ ID NO:427, SEQ ID NO:428, SEQ ID NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:432, SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ ID NO:436, SEQ ID NO:437, SEQ ID NO:438, SEQ ID NO:439, SEQ ID NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:443, SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID NO:447, SEQ ID NO:449, SEQ ID NO:450, SEQ ID NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:454, SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID NO:458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461, SEQ ID NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:465, SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472, SEQ ID NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476, SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID NO:480, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:483, SEQ ID NO:484, SEQ ID NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:488, SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID NO:492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495, SEQ ID NO:496, SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502.

- The method of claim 2 wherein said expression level of said one or more genes is detected by measuring one or more proteins expressed by said one or more genes, and said expression level of said one or more additional genes is detected by measuring one or more proteins expressed by said one or more additional genes.
- The method of claim 20, wherein said one or more proteins expressed by said one or more 21. genes comprise an amino acid sequence encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, S NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID

NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID

NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEQ ID NO:335, SEQ ID NO:336, SEQ ID NO:337, SEQ ID NO:338, SEQ ID NO:339, SEQ ID NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:343, SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID NO:347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350, SEQ ID NO:351, SEQ ID NO:353, SEQ ID NO:354, SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361, SEQ ID NO:362, SEQ ID NO:363, SEQ ID NO:364, SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID NO:369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:376, SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEQ ID NO:380, SEQ ID NO:381, SEQ ID NO:382, SEQ ID NO:383, SEQ ID NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:387, SEQ ID NO:388, SEQ ID NO:389, SEQ ID NO:390, SEQ ID NO:391, SEQ ID NO:392, SEQ ID NO:393, SEQ ID NO:394, SEQ ID NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:398, SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID NO:402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405, SEQ ID NO:406, SEQ ID NO:407, SEQ ID NO:408, SEQ ID NO:409, SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID NO:414; SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417, SEQ ID NO:418, SEQ ID NO:419, SEQ ID NO:421, SEQ ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID NO:425, SEQ ID NO:426, SEQ ID NO:427, SEQ ID NO:428, SEQ ID NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:432, SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ ID NO:436, SEQ ID NO:437, SEQ ID NO:438, SEQ ID NO:439, SEQ ID NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:443, SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID NO:447, SEQ ID NO:449, SEQ ID NO:450, SEQ ID NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:454, SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID NO:458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461, SEQ ID NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:465, SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472, SEQ ID NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476, SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID NO:480, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:483, SEQ ID NO:484, SEQ ID NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:488, SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID NO:492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495, SEQ ID

PCT/US03/13015 **WO** 03/090694

NO:496, SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502, and

said one ore more proteins expressed by said one or more additional genes comprise an amino acid sequence encoded by a nucleotide sequence selected from the group consisting SEQ ID NO:2, SEQ ID NO:5, SEQ ID NO:101, SEQ ID NO:238, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:352, SEQ ID NO:365, SEQ ID NO:410, SEQ ID NO:420, SEQ ID NO:448, SEQ ID NO:469.

- The method of claim 18, wherein said measuring comprises measuring serum. 22.
- The method of claim 18, wherein said protein is a cell surface protein. 23.
- The method of claim 18, wherein said measuring comprises using a fluorescent activated cell 24. sorter
- The method of claim 1, wherein the expression level detected is expression level in the 25. patient's bodily fluid.
- The method of claim 25, wherein said bodily fluid is peripheral blood. 26.
- The method of claim 1, further comprising selecting an appropriate therapy. 27.
- The method of claim 27 wherein said therapy includes administration of a drug that targets 28. alpha-interferon.
- A system for detecting gene expression in body fluid comprising at least two isolated 29. polynucleotides wherein the isolated polynucleotides detect expression of a gene wherein the gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:503, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:509, SEQ ID NO:5000, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:520, SEQ ID NO:516, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:510, SEQ ID NO:51 NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:526, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:52 NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:550, SEQ ID NO:55 NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:550, SEQ ID NO:550, SEQ ID NO:546, SEQ ID NO:546, SEQ ID NO:550, SEQ ID NO:55 NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:570, SEQ ID NO:566, SEQ ID NO:566, SEQ ID NO:570, SEQ ID NO:566, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:56 NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:59 NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID

_ 41 %

NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:751, SEQ ID NO:75 NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID

, 44 H

NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:80 NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:81 NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:88 NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:89 NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:911, SEQ ID NO:909, SEQ ID NO:90 NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:96 NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:980, SEQ ID NO:978, SEQ ID NO:97 NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004 and the gene is differentially expressed in body fluid in an individual experiencing an auto immune or chronic

inflammatory disease related symptom compared to the expression of the gene in leukocytes in an individual not experiencing said symptom.

1/13

Figure 1: Novel Gene Sequence Analysis

Figure 2: Primer efficiency testing. A standard curve of Ct versus log of the starting RNA amount is shown for 2 genes.

Figure 3: Kits for discovery of, or application of diagnostic gene sets

A. Contents of kit for discovery of diagnostic gene sets using microarrays

- 1. Sterile, endotoxin and RNAse free blood collection tubes
- 2. Alcohol swabs, tourniquet, blood collection set
- 3.-PBS (phosphate buffer saline; needed when method of example 8 is used to derived mononuclear RNA)
- 4. Cell lysis buffer
- 5. RNA isolation kit
- 6. Substrates for labeling of RNA (may vary for various expression profiling techniques)

For fluorescence microarray expression profiling:

Reverse transcriptase and 10x RT buffer

T7(dT)24 primer (primer with T7 promoter at 5' end)

DTT

Deoxynucleotides 100mM each

RNAse inhibitor

2nd strand cDNA buffer

DNA polymerase

Rnase H

T7 RNA polymerase

Ribonucleotides

In Vitro transcription buffer

Cy3 and Cy5 labeled ribonucleotides

- 7. Microarrays containing candidate gene libraries
- 8. Cover slips for slides
- 9. Hybridization chambers
- 10. Software package for identification of diagnostic gene set from data Contains statistical methods.

Allows alteration in desired sensitivity and specificity of gene set.

Software facilitates access to and data analysis by centrally located database server.

- 11. Password and account number to access central database server.
- 12. Kit User Manual

B. Contents of kit for application of diagnostic gene sets using microarrays

- 1. Sterile, endotoxin and RNAse free blood collection tubes
- 2. Alcohol swabs, tourniquet, blood collection set
- 3.-PBS (phosphate buffer saline; needed when method of example 7 is used to derived mononuclear RNA)
- 4. Cell lysis buffer
- 5. RNA isolation kit
- 6. Substrates for labeling of RNA (may vary for various expression profiling techniques)

For fluorescence microarray expression profiling:

Reverse transcriptase and 10x RT buffer

T7(dT)24 primer (primer with T7 promoter at 5' end)

DTT

Deoxynucleotides 100mM each

RNAse inhibitor

2nd strand cDNA buffer

DNA polymerase

Rnase H

T7 RNA polymerase

Ribonucleotides

In Vitro transcription buffer

Cy3 and Cy5 labeled ribonucleotides

- 7. Microarrays containing candidate gene libraries
- 8. Cover slips for slides
- 9. Hybridization chambers
- 10. Software package for identification of diagnostic gene set from data

Contains statistical methods.

Allows alteration in desired sensitivity and specificity of gene set.

Software facilitates access to and data analysis by centrally located database server.

- 11. Password and account number to access central database server.
- 12. Kit User Manual

C. Contents of kit for application of diagnostic gene sets using Realtime RT-PCR

- 1. Sterile, endotoxin and RNAse free blood collection tubes
- 2. Alcohol swabs, tourniquet, blood collection set
- 3.-PBS (phosphate buffer saline; needed when method of example 7 is used to derived mononuclear RNA)
- 4. Cell lysis buffer
- 5. RNA isolation kit
- 6. Substrates for real time RT-PCR (may vary for various real-time PCR techniques:

poly dT primers, random hexamer primers

Reverse Transcriptase and RT buffer

DTT

Deoxynucleotides 100 mM

RNase H

primer pairs for diagnostic and control gene set

10x PCR reaction buffer

Taq DNA polymerase

Fluorescent probes for diagnostic and control gene set

(alternatively, fluorescent dye that binds to only double stranded DNA)

reaction tubes with or without barcode for sample tracking

96-well plates with barcode for sample identification, one barcode for entire set, or individual barcode per reaction tube in plate

7. Software package for identification of diagnostic gene set from data

Contains statistical methods.

Allows alteration in desired sensitivity and specificity of gene set.

Software facilitates access to and data analysis by centrally located database server

- 8. Password and account number to access central database server.
- 9. Kit User Manual

FIGURE 4

Median Cy3 Background Subtracted Signals

All columns use the same scale.

——— Mononuclear cells, resting and stimulated

-----10 Buffy Coats, resting
------Mononuclear cells, resting

All markers are connected and ordered by Features.

 $10 \mu g$ of each control RNA was labeled.

Figure 5: SLE diagnostic genes and algorithms

A.

B.

Lupus		Control	
Sample	Ratio	Sample	Ratio
16-0022-01	1.05	16-0025-01	0.60
16-0030-01	0.96	16-0029-01	0.75
16-0037-01	0.87	16-0031-01	0.63
16-0058-01	1.05	16-0033-01	0.62
16-0054-01	0.99	16-0040-01	0.61
16-0062-01	0.98	16-0015-01	0.72
16-0057-01	1.14	16-0016-01	0.78
		16-0020-01	0.79
		16-0023-01	0.71
		16-0024-01	0.69
		16-0036-01	0.65
		16-0045-01	0.59
		16-0007-01	0.77
		16-0013-01	0.60
	į	16-0010-01	0.57
		16-0049-01	0.75

Control

	Lupus s		
Average Ratio	1.00	0.68	
Std Dev of Ratio	0.08	0.08	

Fold Change 1.48

PCT/US03/13015

C.

Model	••	Relative Cost	SEQ ID 50mer	Locus	Nominal Description	CART Splitter	CART Value for Dx SLE
Model I		0.118	514	NM_002946	replication protein A2 (32kD)	co-1st	[(2412)*0.903 - (2648)*0.431] <= 0.1909
ļ			510	NM 004510	Interferon-induced protein 75	co-1st	[(2412)*0.903 - (2648)*0.431] <= 0.1909
Model I	3	0.125	514	NM_002946	replication protein A2 (32kD)	co-1st	[(2412)*0.903 - (2648)*0.431] <= 0.1909
{	}		510	NM_004510	interferon-induced protein 75	co-1st	[(2412)*0.903 - (2648)*0.431] <= 0.1909
ł	ł		509	BC002409	actin, beta (ACTB)	2nd	(G1436) > 0.0868
Model	1	0.612	504	W16552	PKR	1st	(5067) > 0.1030
Model	3	0.686	504	W16552	PKR	1st	(5067) > 0.1030
1	İ	İ	875	AK024756	hypothetical protein FLJ21103	2nd	(G1025) <= 0.3968
1	1)	876	AK024969	hypothetical protein DKFZp566i133	3rd	(G1035) <= 0.0073
Model I	5	0.745	504	W16552	PKR	1st	(5067) > 0.1030
1	ł	ł	874	AK024240	cDNA FLJ14178 fis	2nd	(G1003) > 0.2105
ļ	1		875	AK024756	hypothetical protein FLJ21103	2nd	(G1025) <= 0.3968
1	{		873	AK024202	heat shock 90kD protein 1, alpha	3rd	(G1001) <= - 0.3107
	ł	}	876	AK024969	hypothetical protein DKFZp566I133	3rd	(G1035) <= 0.0073

D.

	Model	Sensitivity	Specificity	Relative Cost
m · · · · · · · ·	Model 1 (2 genes)		94	
Training Set	Model 1 (3 genes)	100	100	
10-fold Cross	Model 1 (2 genes)	100	88	0.118
Validation	Model 1 (3 genes)	93	94	0.125

E.

Model I (2 genes)

F.

Model 1 (3 genes)

Figure 6. Endpoint testing of PCR primers

Figure 7: Validation of differential expression of Granzyme B in CMV patients using Real-time PCR

A.

B.

QPCR of Granzyme B

Figure 8

Intensity of Control Genes from PAX RNA (2ug) and CPT RNA (0.5 ug)

SEQUENCE LISTING

<110> EXPRESSION DIAGNOSTICS, INC.
Wohlgemuth, Jay
Fry, Kirk
Woodward, Robert
Ly, Ngoc

- <120> METHODS AND COMPOSITIONS FOR DIAGNOSING AND MONITORING AUTO IMMUNE AND CHRONIC INFLAMMATORY DISEASES
- <130> 506612000149
- <150> US 10/131,827
- <151> 2002-04-24
- <160> 1065
- <170> PatentIn version 3.2
- <210> 1
- <211> 2140
- <212> DNA
- <213> Homo sapiens

<400> 1 agetgaggtg tgageagetg cegaagteag tteettgtgg ageeggaget gggegeggat 60 tegecgagge accgaggeae teagaggagg egecatgtea gaaceggetg gggatgteeg 120 tcagaaccca tgcggcagca aggcctgccg ccgcctcttc ggcccagtgg acagcgagca 180 gctgagccgc gactgtgatg cgctaatggc gggctgcatc caggaggccc gtgagcgatg 240 gaacttcgac tttgtcaccg agacaccact ggagggtgac ttcgcctggg agcgtgtgcg 300 gggccttggc ctgcccaagc tctaccttcc cacggggccc cggcgaggcc gggatgagtt 360 gggaggaggc aggcggcctg gcacctcacc tgctctgctg caggggacag cagaggaaga 420 ccatgtggac ctgtcactgt cttgtaccct tgtgcctcgc tcaggggagc aggctgaagg 480 gtccccaggt ggacctggag actctcaggg tcgaaaacgg cggcagacca gcatgacaga 540 tttctaccac tccaaacgcc ggctgatctt ctccaagagg aagccctaat ccgcccacag 600 gaageetgea gteetggaag egegagggee teaaaggeee getetaeate ttetgeetta 660 gtctcagttt gtgtgtctta attattattt gtgttttaat ttaaacacct cctcatgtac 720 ataccctggc cgcccctgc cccccagcct ctggcattag aattatttaa acaaaaacta 780 ggcggttgaa tgagaggttc ctaagagtgc tgggcatttt tattttatga aatactattt 840 aaagcctcct catcccgtgt tctccttttc ctctctcccg gaggttgggt gggccggctt 900 catgocaget acttoctect ecceaettgt eegetgggtg gtaceetetg gaggggtgtg 960 geteetteee ategetgtea caggeggtta tgaaatteae eecettteet ggacaeteag 1020 acctgaattc tttttcattt gagaagtaaa cagatggcac tttgaagggg cctcaccgag 1080

```
tgggggcatc atcaaaact ttggagtccc ctcacctcct ctaaggttgg gcagggtgac
                                                                    1140
cctgaagtga gcacagccta gggctgagct ggggacctgg taccctcctg gctcttgata
                                                                    1200
ecceetetg tettgtgaag geagggggaa ggtggggtae tggageagae eacceegeet
                                                                    1260
gccctcatgg cccctctgac ctgcactggg gagcccgtct cagtgttgag ccttttccct
                                                                    1320
ctttggctcc cctgtacctt ttgaggagcc ccagcttacc cttcttctcc agctgggctc
                                                                    1380
tgcaattece etetgetget gteecteece ettgtettte cetteagtae eeteteatge
                                                                    1440
tccaggtggc tctgaggtgc ctgtcccacc cccaccccca gctcaatgga ctggaagggg
                                                                    1500
aagggacaca caagaagaag ggcaccctag ttctacctca ggcagctcaa gcagcgaccg
                                                                    1560
cccctcctc tagctgtggg ggtgagggtc ccatgtggtg gcacaggccc ccttgagtgg
                                                                    1620
ggttatctct gtgttagggg tatatgatgg gggagtagat ctttctagga gggagacact
                                                                    1680
ggcccctcaa atcgtccagc gaccttcctc atccacccca tccctcccca gttcattgca
                                                                    1740
ctttgattag cagcggaaca aggagtcaga cattttaaga tggtggcagt agaggctatg
                                                                    1800
gacagggcat gccacgtggg ctcatatggg gctgggagta gttgtctttc ctggcactaa
                                                                     1860
cgttgagccc ctggaggcac tgaagtgctt agtgtacttg gagtattggg gtctgacccc
                                                                     1920
aaacaccttc cagctcctgt aacatactgg cctggactgt tttctctcgg ctccccatgt
                                                                     1980
gtcctggttc ccgtttctcc acctagactg taaacctctc gagggcaggg accacaccct
                                                                     2040
gtactgttct gtgtctttca cagctcctcc cacaatgctg aatatacagc aggtgctcaa
                                                                     2100
                                                                     2140
taaatgatto ttagtgactt taaaaaaaaa aaaaaaaaaa
 <210>
       2
 <211>
       506
 <212>
       DNA
 <213> Homo sapiens
```

```
<220>
<221> misc_feature
<222> (462)..(462)
<223> n is a, c, g, t or u
<220>
<221> misc feature
      (491)..(491)
<222>
<223> n is a, c, g, t or u
<220>
<221>
      misc feature
      (498)..(498)
<222>
<223> n is a, c, g, t or u
<400> 2
ctgtacatct atcgacatgg tgaggtagag catgtttggg aggaaagacg ttgaatccca
```

tttggtgaca gtgagcttga ggtgctgcca gaacactgca ctgaagatag gaggagactg 120 taggaaatac aagataggaa aggtctccac tgaaatgtta actctttctc tctaaacggc 180 catccaggcc tcaatgtctg cagtttctga tctgtgatta tgacttatcc aaatcttaca 240 tttcttaaaa atagtcatag atgaagggaa tcacagttga tagttatatg gtgacattag 300 tggcttaaat tctaaataac tagaaactgt ataataggca aaactgtgag gcaaataaaa 360 tgcttctcaa actgtgtggc tcttatgggg ttaatttgat ttggacctgt attaattctt 420 atggctgcta tactaacaaa ttccacaact tggtggttta ancacacaca tttatctctt 480 506 ctgtctggag ncagaagnta aaatga

<210> 3 <211> 1940 <212> DNA

<213> Homo sapiens

<400> 3 acccagggtc cggcctgcgc cttcccgcca ggcctggaca ctggttcaac acctgtgact 60 teatgtgtge gegeeggeea cacetgeagt cacacetgta geceeetetg ecaagagate 120 cataccgagg cagcgtcggt ggctacaagc cctcagtcca cacctgtgga cacctgtgac 180 acctggccac acgacctgtg gccgcggcct ggcgtctgct gcgacaggag cccttacctc 240 ccctgttata acacctgaca gccacctaac tgcccctgca gaaggagcaa tggccttggc 300 tectgagagg taagageeeg geceaeeete tecagatgee agteeeegag egeeetgeag 360 ceggecetga eteteegegg cegggeacee geagggeage eccaegegtg etgtteggag 420 agtggctcct tggagagatc agcagcggct gctatgaggg gctgcagtgg ctggacgagg 480 540 cccgcacctg tttccgcgtg ccctggaagc acttcgcgcg caaggacctg agcgaggccg 600 acgcgcgcat cttcaaggcc tgggctgtgg cccgcggcag gtggccgcct agcagcaggg gaggtggccc gccccccgag gctgagactg cggagcgcgc cggctggaaa accaacttcc 660 720 gctgcgcact gcgcagcacg cgtcgcttcg tgatgctgcg agataactcg ggggacccgg ccgacccgca caaggtgtac gcgctcagcc gggagctgtg ctggcgagaa ggcccaggca 780 cggaccagac tgaggcagag gcccccgcag ctgtcccacc accacagggt gggcccccag 840 ggccattcct ggcacacaca catgctggac tccaagcccc aggccccctc cctgccccag 900 ctggtgacga gggggacctc ctgctccagg cagtgcaaca gagctgcctg gcagaccatc 960 1020 tgctgacagc gtcatggggg gcagatccag tcccaaccaa ggctcctgga gagggacaag 1080 aagggettee eetgaetggg geetgtgetg gaggeeeagg geteeetget ggggagetgt acgggtgggc agtagagacg acccccagcc ccgggcccca gcccgcggca ctaacgacag 1140

gegaggeege ggeeceagag teccegeace aggeagagee gtacetgtea ecetececaa 1200 gcgcctgcac cgcggtgcaa gagcccagcc caggggcgct ggacgtgacc atcatgtaca 1260 agggccgcac ggtgctgcag aaggtggtgg gacacccgag ctgcacgttc ctatacggcc 1320 ceccagacec agetyteegg gecacagace eccageaggt ageatteece agecetyeeg 1380 agctcccgga ccagaagcag ctgcgctaca cggaggaact gctgcggcac gtggcccctg 1440 ggttgcacct ggagcttcgg gggccacagc tgtgggcccg gcgcatgggc aagtgcaagg 1500 tgtactggga ggtgggcggc cccccaggct ccgccagccc ctccacccca gcctgcctgc 1560 tgcctcggaa ctgtgacacc cccatcttcg acttcagagt cttcttccga gagctggtgg 1620 aattccgggc acggcagcgc cgtggctccc cacgctatac catctacctg ggcttcgggc 1680 aggacctgtc agctgggagg cccaaggaga agagcctggt cctggtgaag ctggaaccct 1740 ggctgtgccg agtgcaccta gagggcacgc agcgtgaggg tgtgtcttcc ctggatagca 1800 gcagcctcag cctctgcctg tccagcgcca acagcctcta tgacgacatc gagtgcttcc 1860 ttatggaget ggageageee geetagaace cagtetaatg agaactecag aaagetggag 1920 1940 cagcccacct agagctggcc

<210> 4

<211> 1714

<212> DNA

<213> Homo sapiens

<400> 4 ggggcatttt gtgcctgcct agctatccag acagagcagc taccctcagc tctagctgat 60 actacagaca gtacaacaga tcaagaagta tggcagtgac aactcgtttg acacggttgc 120 acgaaaagat cctgcaaaat cattttggag ggaagcggct tagccttctc tataagggta 180 gtgtccatgg attccgtaat ggagttttgc ttgacagatg ttgtaatcaa gggcctactc 240 taacagtgat ttatagtgaa gatcatatta ttggagcata tgcggaagag agttaccagg 300 aaggaaagta tgcttccatc atcctttttg cacttcaaga tactaaaatt tcagaatgga 360 aactaggact atgtacacca gaaacactgt tttgttgtga tgttacaaaa tataactccc 420 caactaattt ccagatagat ggaagaaata gaaaagtgat tatggactta aagacaatgg 480 aaaatcttgg acttgctcaa aattgtacta tctctattca ggattatgaa gtttttcgat 540 gcgaagattc actggatgaa agaaagataa aaggggtcat tgagctcagg aagagcttac 600 tgtctgcctt gagaacttat gaaccatatg gatccctggt tcaacaaata cgaattctgc 660 tgctgggtcc aattggagct gggaagtcca gctttttcaa ctcagtgagg tctgttttcc 720 aagggcatgt aacgcatcag gctttggtgg gcactaatac aactgggata tctgagaagt 780

ataggacata ctctattaga gacgggaaag atggcaaata cctgccgttt attctgtgtg	840
actcactggg gctgagtgag aaagaaggcg gcctgtgcag ggatgacata ttctatatct	900
tgaacggtaa cattcgtgat agataccagt ttaatcccat ggaatcaatc aaattaaatc	960
atcatgacta cattgattcc ccatcgctga aggacagaat tcattgtgtg gcatttgtat	1020
ttgatgccag ctctattcaa tacttctcct ctcagatgat agtaaagatc aaaagaattc	1080
gaagggagtt ggtaaacgct ggtgtggtac atgtggcttt gctcactcat gtggatagca	1140
tggatttgat tacaaaaggt gaccttatag aaatagagag atgtgagcct gtgaggtcca	1200
agctagagga agtccaaaga aaacttggat ttgctctttc tgacatctcg gtggttagca	1260
attatteete tgagtgggag etggaceetg taaaggatgt tetaattett tetgetetga	1320
gacgaatgct atgggctgca gatgacttct tagaggattt gccttttgag caaataggga	1380
atctaaggga ggaaattatc aactgtgcac aaggaaaaaa atagatatgt gaaaggttca	1440
cgtaaatttc ctcacatcac agaagattaa aattcagaaa ggagaaaaca cagaccaaag	1500
agaagtatct aagaccaaag ggatgtgttt tattaatgtc taggatgaag aaatgcatag	1560
aacattgtag tacttgtaaa taactagaaa taacatgatt tagtcataat tgtgaaaaat	1620
agtaataatt tttcttggat ttatgttctg tatctgtgaa aaaataaatt tcttataaaa	1680
ctcggaaaaa aaaaaaaaaa aaaa	1714
<210> 5 <211> 6270 <212> DNA <213> Homo sapiens	
<400> 5 gccctgcttc cccttgcacc tgcgccgggc ggccatggac ttgtacagca ccccggccgc	60
tgcgctggac aggttcgtgg ccagaaggct gcagccgcgg aaggagttcg tagagaaggc	120
geggegeget etgggegeee tggeegetge eetgagggag egegggggee geeteggtge	180
tgctgccccg cgggtgctga aaactgtcaa gggaggctcc tcgggccggg gcacagctct	240
caagggtggc tgţgattctg aacttgtcat cttcctcgac tgcttcaaga gctatgtgga	300
ccagagggcc cgccgtgcag agatcctcag tgagatgcgg gcatcgctgg aatcctggtg	360
gcagaaccca gtccctggtc tgagactcac gtttcctgag cagagcgtgc ctggggccct	420
gcagttccgc ctgacatccg tagatcttga ggactggatg gatgttagcc tggtgcctgc	480
cttcaatgtc ctgggtcagg ccggctccgc ggtcaaaccc aagccacaag tctactctac	540
cctcctcaac agtggctgcc aagggggcga gcatgcggcc tgcttcacag agctgcggag	60

gaactttgtg aacattcgcc cagccaagtt gaagaaccta atcttgctgg tgaagcactg 660

gtaccaccag	gtgtgcctac	aggggttgtg	gaaggagacg	ctgcccccgg	tctatgccct	720
ggaattgctg	accatcttcg	cctgggagca	gggctgtaag	aaggatgctt	tcagcctagg	780
cgaaggcctc	cgaactgtcc	tgggcctgat	ccaacagcat	cagcacctgt	gtgttttctg	840
gactgtcaac	tatggcttcg	aggaccctgc	agttgggcag	ttcttgcagc	ggcacgttaa	900
gagacccagg	cctgtgatcc	tggacccagc	tgaccccaca	tgggacctgg	ggaatggggc	960
agcctggcac	tgggatttgc	atgcccagga	ggcagcatcc	tgctatgacc	acccatgctt	1020
tctgaggggg	atgggggacc	cagtgcagtc	ttggaagggg	cegggeette	cacgtgctgg	1080
atgctcaggt	ttgggccacc	ccatccagct	agaccctaac	cagaagaccc	ctgaaaacag	1140
caagagcctc	aatgctgtgt	acccaagagc	agggagcaaa	cctccctcat	gcccagctcc	1200
tggccccact	gcggagccag	catcgtaccc	ctctgtgccg	ggaatggcct	tggacctgtc	1260
tcagatcccc	accaaggagc	tggaccgctt	catccaggac	cacctgaagc	cgagccccca	1320
gttccaggag	caggtgaaaa	aggccatcga	catcatcttg	cgctgcctcc	atgagaactg	1380
tgttcacaag	gcctcaagag	tcagtaaagg	gggctcattt	ggccggggca	cagacctaag	1440
ggatggctgt	gatgttgaac	tcatcatctt	cctcaactgc	ttcacggact	acaaggacca	1500
ggggccccgc	cgcgcagaga	tccttgatga	gatgcgagcg	cacgtagaat	cctggtggca	1560
ggaccaggtg	cccagcctga	gccttcagtt	tcctgagcag	aatgtgcctg	aggctctgca	1620
gttccagctg	gtgtccacag	ccctgaagag	ctggacggat	gttagcctgc	tgcctgcctt	1680
cgatgctgtg	gggcagctca	gttctggcac	caaaccaaat	ccccaggtct	actcgaggct	1740
cctcaccagt	ggctgccagg	agggcgagca	taaggcctgc	ttcgcagagc	tgcggaggaa	1800
cttcatgaac	attcgccctg	tcaagctgaa	gaacctgatt	ctgctggtga	agcactggta	1860
ccgccaggtt	gcggctcaga	acaaaggaaa	aggaccagco	: cctgcctctc	tgcccccagc	1920
ctatgccctg	gagctcctca	ccatctttgc	ctgggagcag	ggctgcaggc	: aggattgttt	1980
caacatggcc	caaggcttcc	ggacggtgct	ggggctcgtg	g caacagcato	: agcagctctg	2040
tgtctactgg	acggtcaact	: atagcactga	ggacccagco	atgagaatgo	accttcttgg	2100
ccagcttcga	aaacccagac	ccctggtcct	ggaccccgct	gateccacet	ggaacgtggg	2160
ccacggtagc	tgggagctgt	tggcccagga	a agcagcagco	g ctggggatgo	aggcctgctt	2220
tctgagtaga	gacgggacat	ctgtgcagco	ctgggatgtg	g atgccagcco	tcctttacca	2280
aaccccagct	ggggacctt	g acaagttcat	cagtgaatt	t ctccagccc	a accgccagtt	2340
cctggcccag	gtgaacaag	g ccgttgatad	catctgttca	a tttttgaag	g aaaactgctt	2400
ccggaattct	cccatcaaa	g tgatcaaggt	t ggtcaaggg	t ggctcttca	g ccaaaggcac	2460

agctctgcga ggccgctcag atgccgacct cgtggtgttc ctcagctgct tcagccagtt 2520 cactgagcag ggcaacaagc gggccgagat catctccgag atccgagccc agctggaggc 2580 atgtcaacag gagcggcagt tcgaggtcaa gtttgaagtc tccaaatggg agaatccccg 2640 cgtgctgagc ttctcactga catcccagac gatgctggac cagagtgtgg actttgatgt 2700 gctgccagcc tttgacgccc taggccagct ggtctctggc tccaggccca gctctcaagt 2760 ctacgtcgac ctcatccaca gctacagcaa tgcgggcgag tactccacct gcttcacaga 2820 gctacaacgg gacttcatca tctctcgccc taccaagctg aagagcctga tccggctggt 2880 gaagcactgg taccagcagt gtaccaagat ctccaagggg agaggeteec tacceceaca 2940 gcacgggctg gaactcctga ctgtgtatgc ctgggagcag ggcgggaagg actcccagtt 3000 caacatggct gagggettee geacggteet ggagetggte acceagtace gecagetetg 3060 tatctactgg accatcaact acaacgccaa ggacaagact gttggagact tcctgaaaca 3120 gcagcttcag aagcccaggc ctatcatcct ggatccggct gacccgacag gcaacctggg 3180 ccacaatgcc cgctgggacc tgctggccaa ggaagctgca gcctgcacat ctgccctgtg 3240 ctgcatggga cggaatggca tccccatcca gccatggcca gtgaaggctg ctgtgtgaag 3300 ttgagaaaat cagcggtcct actggatgaa gagaagatgg acaccagccc tcagcatgag 3360 gaaattcagg gtcccctacc agatgagaga gattgtgtac atgtgtgtgt gagcacatgt 3420 gtgcatgtgt gtgcacacgt gtgcatgtgt gtgttttagt gaatctgctc tcccagctca 3480 cacactecce tgccteccat ggcttacaca ctaggateca gactecatgg tttgacacca 3540 geetgegttt geagettete tgteacttee atgaetetat ceteatacea ceactgetge 3600 ttcccaccca gctgagaatg ccccctcctc cctgactcct ctctgcccat gcaaattagc 3660 tcacatcttt cctcctgctg caatccatcc cttcctccca ttggcctctc cttgccaaat 3720 ctaaatactt tatataggga tggcagagag ttcccatctc atctgtcagc cacagtcatt 3780 tggtactggc tacctggagc cttatcttct gaagggtttt aaagaatggc caattagctg 3840 agaagaatta totaatcaat tagtgatgto tgccatggat gcagtagagg aaagtggtgg 3900 tacaagtgcc atgattgatt agcaatgtct gcactggata tggaaaaaag aaggtgcttg 3960 caggtttaca gtgtatatgt gggctattga agagccctct gagctcggtt gctagcagga 4020 gagcatgccc atattggctt actttgtctg ccacagacac agacagaggg agttgggaca 4080 tgcatgctat ggggaccctc ttgttggaca cctaattgga tgcctcttca tgagaggcct 4140 ccttttcttc accttttatg ctgcactcct cccctagttt acacatcttg atgctgtggc 4200 tcagtttgcc ttcctgaatt tttattgggt ccctgttttc tctcctaaca tgctgagatt 4260 ctgcatcccc acagcctaaa ctgagccagt ggccaaacaa ccgtgctcag cctgtttctc 4320

tetgecetet agageaagge ceaceaggte cat	ccaggag gctctcctga c	ctcaagtcc	4380
aacaacagtg tccacactag tcaaggttca gcc	cagaaaa cagaaagcac t	ctaggaatc	4440
ttaggcagaa agggatttta tctaaatcac tgg	aaaggct ggaggagcag a	aggcagagg	4500
ccaccactgg actattggtt tcaatattag acc	actgtag ccgaatcaga ç	ggccagagag	4560
cagccactgc tactgctaat gccaccacta ccc	ctgccat cactgcccca (catggacaaa	4620
actggagtcg agacctaggt tagattcctg caa	ccacaaa catccatcag	ggatggccag	4680
ctgccagagc tgcgggaaga cggatcccac ctc	cctttct tagcagaatc	taaattacag	4740
ccagacctct ggctgcagag gagtctgaga cat	gtatgat tgaatgggtg	ccaagtgcca	4800
gggggcggag tececageag atgeatectg geo	catctgtt gcgtggatga	gggagtgggt	4860
ctatctcaga ggaaggaaca ggaaacaaag aa	aggaagcc actgaacatc	ccttctctgc	4920
tccacaggag tgtcttagac agcctgactc tcc	cacaaacc actgttaaaa	cttacctgct	4980
aggaatgcta gattgaatgg gatgggaaga gc	cttccctc attattgtca	ttcttggaga	5040
gaggtgagca accaagggaa gctcctctga tt	cacctaga acctgttctc	tgccgtcttt	5100
ggctcagcct acagagacta gagtaggtga ag	ggacagag gacagggctt	ctaatacctg	5160
tgccatattg acagcctcca tccctgtccc cc	atcttggt gctgaaccaa	cgctaagggc	5220
accttettag acteacetea tegataetge et	ggtaatcc aaagctagaa	ctctcaggac	5280
cccaaactcc acctcttgga ttggccctgg ct	gctgccac acacatatcc	aagagctcag	5340
ggccagttct ggtgggcagc agagacctgc to	tgccaagt tgtccagcag	cagagtggcc	5400
ctggcctggg catcacaagc cagtgatgct cc	tgggaaga ccaggtggca	ggtcgcagtt	5460
gggtacette catteccace acacagaete tg	ggcctccc cgcaaaatgg	ctccagaatt	5520
agagtaatta tgagatggtg ggaaccagag ca	actcaggt gcatgataca	aggagaggtt	5580
gtcatctggg tagggcagag aggagggctt gc	tcatctga acaggggtgt	atttcattcc	5640
aggccctcag tctttggcaa tggccaccct gg	tgttggca tattggcccc	actgtaactt	5700
ttgggggctt cccggtctag ccacaccctc gg	atggaaag acttgactgc	ataaagatgt	5760
cagttctccc tgagttgatt gataggctta at	ggtcaccc taaaaacacc	cacatatgct	5820
tttcgatgga accagataag ttgacgctaa ag	sttcttatg gaaaaataca	cacgcaatag	5880
ctaggaaaac acagggaaag aagagttctg ag	gcagggcct agtcttagcc	aatattaaaa	5940
catactatga agcctctgat acttaaacag ca	atggcgctg gtacgtaaat	agaccaatgc	6000
agttaggtgg ctctttccaa gactctgggg aa	aaaaagtag taaaaagcta	aatgcaatca	6060
atcagcaatt gaaagctaag tgagagagcc ag	gagggcctc cttggtggta	aaagagggtt	6120

gcatttcttg cagccagaag gcagagaaag tgaagaccaa gtccagaact gaatcctaag 6180 aaatgcagga ctgcaaagaa attggtgtgt gtgtgtgtt gtgtgtgtt gtgtgtttaa 6240 tttttaaaaa gtttttattc ggaatccgcg 6270

<210> 6

<211> 1642

<212> DNA

Homo sapiens ccagatetea gaggageetg getaageaaa accetgeaga acggetgeet aatttacage <400> 6 60 aaccatgagt acaaatggtg atgatcatca ggtcaaggat agtctggagc aattgagatg 120 tcactttaca tgggagttat ccattgatga cgatgaaatg cctgatttag aaaacagagt 180 cttggatcag attgaattcc tagacaccaa atacagtgtg ggaatacaca acctactagc 240 ctatgtgaaa cacctgaaag gccagaatga ggaagccctg aagagcttaa aagaagctga 300 aaacttaatg caggaagaac atgacaacca agcaaatgtg aggagtctgg tgacctgggg 360 caactttgcc tggatgtatt accacatggg cagactggca gaagcccaga cttacctgga 420 caaggtggag aacatttgca agaagctttc aaatcccttc cgctatagaa tggagtgtcc 480 agaaatagac tgtgaggaag gatgggcctt gctgaagtgt ggaggaaaga attatgaacg 540 ggccaaggcc tgctttgaaa aggtgcttga agtggaccct gaaaaccctg aatccagcgc 600 tgggtatgcg atctctgcct atcgcctgga tggctttaaa ttagccacaa aaaatcacaa 660 gccattttct ttgcttcccc taaggcaggc tgtccgctta aatccagaca atggatatat 720 taaggttete ettgeeetga agetteagga tgaaggaeag gaagetgaag gagaaaagta 780 cattgaagaa gctctagcca acatgtcctc acagacctat gtctttcgat atgcagccaa 840 gttttaccga agaaaaggct ctgtggataa agctcttgag ttattaaaaa aggccttgca 900 ggaaacaccc acttctgtct tactgcatca ccagataggg ctttgctaca aggcacaaat 960 gatccaaatc aaggaggcta caaaagggca gcctagaggg cagaacagag aaaagctaga 1020 caaaatgata agatcagcca tatttcattt tgaatctgca gtggaaaaaa agcccacatt 1080 tgaggtggct catctagacc tggcaagaat gtatatagaa gcaggcaatc acagaaaagc 1140 tgaagagaat tttcaaaaat tgttatgcat gaaaccagtg gtagaagaaa caatgcaaga 1200 catacatttc tactatggtc ggtttcagga atttcaaaag aaatctgacg tcaatgcaat 1260 tatccattat ttaaaagcta taaaaataga acaggcatca ttaacaaggg ataaaagtat 1320 caattotttg aagaaattgg ttttaaggaa acttcggaga aaggcattag atctggaaag 1380 cttgagcctc cttgggttcg tctataaatt ggaaggaaat atgaatgaag ccctggagta 1440

ctatgagcgg	gccctgagac	tggctgctga	ctttgagaac	tctgtgagac	aaggtcctta	1500
ggcacccaga	tatcagccac	tttcacattt	catttcattt	tatgctaaca	tttactaatc	1560
atcttttctg	cttactgttt	tcagaaacat	tataattcac	tgtaatgatg	taattcttga	1620
ataataaatc	tgacaaaata	tt				1642

<210> 7

<211> 1858

<212> DNA

<213> Homo sapiens

<400> ggcacgaggc gtccgccccg cgagcacaga gcctcgcctt tgccgatccg ccgcccgtcc 60 acaccegeeg ecageteace atggatgatg atategeege getegtegte gacaacgget 120 ceggcatgtg caaggcegge ttegegggeg acgatgeece eegggeegte tteeceteea 180 tegtggggeg ceccaggeac cagggegtga tggtgggeat gggteagaag gatteetatg 240 tgggcgacga ggcccagagc aagagaggca tcctcaccct gaagtacccc atcgagcacg 300 gcatcgtcac caactgggac gacatggaga aaatctggca ccacaccttc tacaatgagc 360 tgcgtgtggc tcccgaggag caccccgtgc tgctgaccga ggcccccctg aaccccaagg 420 ccaaccgcga gaagatgacc cagatcatgt ttgagacctt caacacccca gccatgtacg 480 ttgctatcca ggctgtgcta tccctgtacg cctctggccg taccactggc atcgtgatgg 540 acteeggtga eggggteace cacactgtge ecatetacga ggggtatgee etececeatg 600 ccatcctgcg tctggacctg gctggccggg acctgactga ctacctcatg aagatcctca 660 ccgagcgcgg ctacagcttc accaccacgg ccgagcggga aatcgtgcgt gacattaagg 720 agaagetgtg ctacgtcgcc ctggacttcg agcaagagat ggccacggct gcttccagct 780 cctccctgga gaagagctac gagctgcctg acggccaggt catcaccatt ggcaatgagc 840 ggttccgctg ccctgaggca ctcttccagc cttccttcct gggcatggag tcctgtggca 900 tccacgaaac taccttcaac tccatcatga agtgtgacgt ggacatccgc aaagacctgt 960 1020 acgccaacac agtgctgtct ggcggcacca ccatgtaccc tggcattgcc gacaggatgc agaaggagat cactgccctg gcacccagca caatgaagat caagatcatt gctcctcctg 1080 agegeaagta eteegtgtgg ateggegget ceateetgge etegetgtee acetteeage 1140 agatgtggat cagcaagcag gagtatgacg agtccggccc ctccatcgtc caccgcaaat 1200 gcttctaggc ggactatgac ttagttgcgt tacacccttt cttgacaaaa cctaacttgc 1260 1320 tttttttttt tttggcttga ctcaggattt aaaaactgga acggtgaagg tgacagcagt 1380

cggttggagc	gagcatcccc	caaagttcac	aatgtggccg	aggactttga	ttgcacattg	1440
ttgtttttt	aatagtcatt	ccaaatatga	gatgcattgt	tacaggaagt	cccttgccat	1500
cctaaaagcc	accccacttc	tctctaagga	gaatggccca	gtcctctccc	aagtccacac	1560
aggggaggtg	atagcattgc	tttcgtgtaa	attatgtaat	gcaaaatttt	tttaatcttc	1620
gccttaatac	ttttttattt	tgttttattt	tgaatgatga	gccttcgtgc	cccccttcc	1680
cccttttttg	tcccccaact	tgagatgtat	gaaggctttt	ggtctccctg	ggagtgggtg	1740
gaggcagcca	gggcttacct	gtacactgac	ttgagaccag	ttgaataaaa	gtgcacacct	. 1800
taaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaa	1858

<210> 8

<211> 1962

<212> DNA

<213> Homo sapiens

<400> 8 gttttgcctg ctagcatctc cctgtaactc tcccaatctt gaggagtgat ccctgtccca 60 gcccctggaa aggggcagga acgacaaact caaagtccag gatgttcacc atgacaagag 120 ccatggaaga ggctcttttt cagcacttca tgcaccagaa gctggggatc gcctatgcca 180 tacacaagcc atttcccttc tttgaaggcc tcctagacaa ctccatcatc actaagagaa 240 tgtacatgga atctctggaa gcctgtagaa atttgatccc tgtatccaga gtggtgcaca 300 acatteteae ceaactggag aggaetttta acetgtetet tetggtgaea ttgtteagte 360 aaattaacct gcgtgaatat cccaatctgg tgacgattta cagaagcttc aaacgtgttg 420 gtgcttccta tgaacggcag agcagagaca caccaatcct acttgaagcc ccaactggcc 480 tagcagaagg aagctccctc cataccccac tggcgctgcc cccaccacaa ccccctcaac 540 caagetgtte accetgtgeg ccaagagtea gtgageetgg aacateetee cageaaageg 600 atgagatect gagtgagteg eccageceat etgaceetgt eetgeetete eetgeaetea 660 tccaggaagg aagaagcact tcagtgacca atgacaagtt aacatccaaa atgaatgcgg 720 aagaagactc agaagagatg cccagcctcc tcactagcac tgtgcaagtg gccagtgaca 780 840 acctgatccc ccaaataaga gataaagaag accctcaaga gatgccccac tctcccttgg gctctatgcc agagataaga gataattctc cagaaccaaa tgacccagaa gagccccagg 900 aggtgtccag cacaccttca gacaagaaag gaaagaaaag aaaaagatgt atctggtcaa 960 ctccaaaaag gagacataag aaaaaaagcc tcccaagagg gacagcctca tctagacacg 1020 gaatccaaaa gaagctcaaa agggtggatc aggttcctca aaagaaagat gactcaactt 1080 gtaactccac ggtagagaca agggcccaaa aggcgagaac tgaatgtgcc cgaaagtcga 1140

,	gatcagagga	gatcattgat	ggcacttcag	aaatgaatga	aggaaagagg	tcccagaaga	1200
	cgcctagtac	accacgaagg	gtcacacaag	gggcagcctc	acctgggcat	ggcatccaag	1260
	agaagctcca	agtggtggat	aaggtgactc	aaaggaaaga	cgactcaacc	tggaactcag	1320
	aggtcatgat	gagggtccaa	aaggcaagaa	ctaaatgtgc	ccgaaagtcc	agatcgaaag	1380
	aaaagaaaaa	ggagaaagat	atctgttcaa	gctcaaaaag	gagatttcag	aaaaatattc	1440
	accgaagagg	aaaacccaaa	agtgacactg	tggattttca	ctgttctaag	ctccccgtga	1500
	cctgtggtga	ggcgaaaggg	attttatata	agaagaaaat	gaaacacgga	tcctcagtga	1560
	agtgcattcg	gaatgaggat	ggaacttggt	taacaccaaa	tgaatttgaa	gtcgaaggaa	1620
	aaggaaggaa	cgcaaagaac	tggaaacgga	atatacgttg	tgaaggaatg	accctaggag	1680
	agctgctgaa	gagtggactt	ttgctctgtc	ctccaagaat	aaatctcaag	agagagttaa	1740
	atagcaagtg	aatttctact	accctctcag	tcaccatgtt	gcagactttc	cctgtctgga	1800
	ggctcacctt	agagcttctg	agtttccaag	ctctgagtca	cctccacatt	tgggcatggc	1860
	atcttcaaaa	caattaattt	gcatagttaa	tttgggatgg	ggaagcaaat	gactctaaaa	1920
	taaaaattaa	atgaaaaagc	tcaaaaaaaa	aaaaaaaaa	aa		1962

<210> 9 <211> 732

<212> DNA

<213> Homo sapiens

<400> 9 tgctgcgaac cacgtgggtc ccgggcgcgt ttcgggtgct ggcggctgca gccggagttc 60 aaacctaagc agctggaagg aaccatggcc aactgtgagc gtaccttcat tgcgatcaaa 120 ccagatgggg tccagcgggg tcttgtggga gagattatca agcgttttga gcagaaagga 180 ttccgccttg ttggtctgaa attcatgcaa gcttccgaag atcttctcaa ggaacactac 240 gttgacctga aggaccgtcc attctttgcc ggcctggtga aatacatgca ctcagggccg 300 gtagttgcca tggtctggga ggggctgaat gtggtgaaga cgggccgagt catgctcggg 360 gagaccaacc ctgcagactc caagcctggg accatccgtg gagacttctg catacaagtt 420 ggcaggaaca ttatacatgg cagtgattct gtggagagtg cagagaagga gatcggcttg 480 tggtttcacc ctgaggaact ggtagattac acgagctgtg ctcagaactg gatctatgaa 540 tgacaggagg gcagaccaca ttgcttttca catccatttc ccctccttcc catgggcaga 600 ggaccaggct gtaggaaatc tagttattta caggaacttc atcataattt ggagggaagc 660 tettggaget gtgagttete cetgtacagt gttaccatee eegaccatet gattaaaatg 720 732 cttcctccca gc

<210> 10 <211> 1759 <212> DNA <213> Homo sapiens

<400> 10 ggccgcggag ccgggcggag ctggcttgcg gctcccgggg ccggctctcc ggccggagac 60 atggcccggg ggcccggccc gctaggcagg cctcgccccg atacggtcgc catgcccaag 120 agaggaaagc gactcaagtt ccgggcccac gacgcctgct ccggccgagt gaccgtggcg 180 gattacgcca acteggatec ggeggtegtg aggtetggae gagteaagaa ageegtagee 240 aacgctgttc agcaggaagt aaaatctctt tgtggcttgg aagcctctca ggttcctgca 300 gaggaagete tttetgggge tggtgageee tgtgacatea tegacageag tgatgagatg 360 gatgcccagg aggaaagcat ccatgagaga actgtctcca gaaaaaagaa aagcaagaga 420 cacaaagaag aactggacgg ggctggagga gaagagtatc ccatggatat ttggctattg 480 ctggcctcct atatccgtcc tgaggacatt gtgaattttt ccctgatttg taagaatgcc 540 tggactgtca cttgcactgc tgccttttgg accaggttgt accgaaggca ctacacgctg 600 gatgcttccc tgcctttgcg tctgcgacca gagtcaatgg agaagctgcg ctgtctccgg 660 gcttgtgtga tccgatctct gtaccatatg tatgagccat ttgctgctcg aatctccaag 720 aatccagcca ttccagaaag caccccagc acattaaaga attccaaatg cttacttttc 780 tggtgcagaa agattgttgg gaacagacag gaaccaatgt gggaattcaa cttcaagttc 840 aaaaaacagt cccctaggtt aaagagcaag tgtacaggag gattgcagcc tcccgttcag 900 tacgaagatg ttcataccaa tccagaccag gactgctgcc tactgcaggt caccaccctc 960 aatttcatct ttattccgat tgtcatggga atgatattta ctctgtttac tatcaatgtg 1020 agcacggaca tgcggcatca tcgagtgaga ctggtgttcc aagattcccc tgtccatggt 1080 ggtcggaaac tgcgcagtga acagggtgtg caagtcatcc tggacccagt gcacagcgtt 1140 eggetetttg aetggtggea teeteagtae ceatteteee tgagagegta gttaetgett 1200 cccatccctt gggggcagcc tcgagtgtag tccattagta atcagattcc agtttggaca 1260 gggtggctgg attgtatatc tcgttagtaa tgtacatgct cttcaggttc tagggctcct 1320 gttaggggag ggagaaatgt tgaatcaaga gggaaaacaa ctactatgat ttataaacat 1380 attttaatgt aaaaatttgc atttaaaagg agtggccctg ttttctgtgt taaaacccca 1440 tttggtgcta ttgagtttgt tctttattct tttatcccag tgaaaattgt tgatcttgct 1500 gtagggaaaa attaaactct ttgaatctcc aaacaaggaa gtttcagcat tcccttatgg 1560 atcagaggaa ccttagaggc ctgaaattgt tgcttccagt ttagctgccc ctcaaattca 1620

agtgaatatt ttcccttctc cctttaccct tctccagaaa taaagcaggt gacagggttt	1680
tcagaatctt aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1740
aaaaaaaaa aaaaaaaaa	1759
<210> 11 <211> 3280 <212> DNA <213> Homo sapiens	
<400> 11 agcgggcgaa tctttttcat tgaatttgaa ccatttgtaa aatctgtgat gctgaagcag	60
agtgtgtcac aaagtgatga gaacattact aaaatccacg gacgcactgc gacctaaggg	120
ctcaacggct gactcggcag cgggcagcca ccccacgctc ccctgcggtc actcgcacac	180
cacageetga ageteececa gegeetgeae etegeacaea getaaggtea aagtteaaae	240
gcactccaca cggaagctca ttctataccc gaagagcagt ctcagaaagc aagattactt	300
ttgtgttttt taaaaaatga ttctttaatg tatttttcta aacattctga ttggaagtag	360
tggattccta aatgattcca aagtcatctg taattcttct gtttttgttt tgttctgtct	420
tttcttcatt ttggctttgg gtggggggag gggcaggtga cacaaaggat ttttttttt	480
tttttttaat ttttggaatc ttttccaata acaagctaaa gatttgcact gaaatacaac	540
ttgtatgcct tttgcatttt taaagcctgc ttcctggatt taagcagagt gatagtgttc	600
aaagagccag ttcagcctgt aacatatttg aaaaagatat gtctgcactt tgaggtccct	660
tttgaatgcc attcactaga cctctcaagc attttgtttc attgctacat ccaagcgcct	720
cacaagtcca caatgcggga cagcatcaaa agctcaagac tttggaaaaa gcttgtgggc	780
ttgcactggg ggagggaagg gaacaaaatt tgtgtacttc tttgtttaat ttagaaataa	840
ggcatccaag agatgccatt attttctgtg tttcaattgt tgtgcctttg agttaaactg	900
catttttgtc ttttggttga aatctgaaat gtactgtccc aatataaaac agtaattatt	960
tgacctttgc actgtttgtc tggtcctttt cagtttgatt gcatataaat gtggaacttg	1020
atagatetet atatttttaa tgeaettgtg ataaaetgge ageagggtta gaeattaett	1080
tcaaagettg aggtagaceg agteageatg etagacagge ttetetetet aaccaaaaet	1140
gtaatettea ggaccageaa aeteageeea aggeagetaa teeeeeaae eeeateetee	1200

1260

1320

1380

1440

gegeeeegtg eggetgateg geageeetga ttegeeaatt tgteetetet catteaetga

tccaccagcc tgactgctaa gagctatagt ctttttagtt gttttgtctt tttaagcaag

atgaaaacct ttctattagg gattttgggg ttgggagggg atgggcagag atataaaccc

cagcetttaa gaetttgaca attgtacgta aatacagatg tgtataaata taggcacatg

catattttta	tgtgaaagtt	gattttaaaa	aactaaaaaa	atctaaactg	cactcttatt	1500
gataccatca	taacgcaagt	gggaaaaata	agagtacgca	gtctaattta	atttcatgca	1560
gtgggaaaat	atatatgtgt	gcttctgtaa	catcctgaaa	acatagcttt	ccatcccctg	1620
ttggctttga	atggtgggcc	gagcacccag	gtcgtctgta	ttttggtttt	cttttgctaa	1680
gcagagatct	tgaattcttc	aaggtgctga	tagcaactgc	tggctccttt	ctgtagtcac	1740 .
acacctaatg	ctagtttagt	gattcaaaat	gcatcacatt	tttaggcagg	accțagattt	1800
tccctgtcaa	cctaagatga	aaataatttc	agtgttgatt	cagaactgaa	cattaagtag	1860
gccctcgtcc	tgcagttggc	cacttgagtg	ttttgttttg	tttttattt	ttaaggtggg	1920
cattttcctt	taacctctac	tttttcaaaa	gcaacaaagg	ggcctcaacc	tgagtttcct	1980
atgggcctct	cttctgcatc	cccaaagcgg	ccaagagcaa	atcctggggg	ataagaaaaa	2040
agtgtaaact	aggtaggatt	gtgatgctca	aaataaccat	ctagcaatat	cttggagctt	2100
gagaatagat	tttgtgggct	tatttcttct	tgcctcttcc	ccatcctttc	aagagagaac	2160
ttatttttga	aaagtatcta	tatatacaca	cacacacaca	cacacacata	ttattattta	2220
ggtttttata	ccatactgta	ttggcgagaa	taccactatc	attgtccttt	acagtctatt	2280
tcttccccca	agtcttggtc	tttttttatt	ttctattttt	tcatgaacca	cacaggagac	2340
tttaacatcc	tggtcttttc	tgtttcttct	ttgtttcccc	aagtttgtct	gtcccccttt	2400
gccttccctg	agtgttgaac	atcaggtagt	aaaaggctaa	acgcaatttc	ttgcatgtca	2460
atctattctt	tttctatgtt	tgactctgat	gcagtgtgtt	tagegtgtet	agtagctggc	2520
tactcctatt	taaaaactct	tcctggtaga	agacaaccca	aagacccttt	tcgatgaggt	2580
ggtttctcat	tctacatcct	ctgatctcta	. tagactgtag.	gatgctttgc	tttcaaagat	2640
aactgggtta	gagggtgggg	tgtgcaatag	gtgatttatc	atggttttt	tcattatcaa	2700
tattacatgg	atgattttct	cagattcttc	: tgaaagaaga	aattgacagg	cactgctaga	2760
ttcagctatt	gaatggctga	agagattgag	tatttgacct	tctctcaaaa	tcataaagtg	2820
agaattcata	aggcacccaa	tgttaagatt	: tatccagatt	tttacatttt	gatttcttct	2880
ctctgtgggg	tggcaagttg	g agggagcatt	cttcatttta	gcttttacct	gacaaccaaa	2940
cttgccttta	cccatccct	: agaattggtg	g ctcttggaat	attgctgtta	ccatcatttt	3000
tggggggcca	tcttcctaat	gctacacaca	a gcctgacagg	ggagcagcag	g atgaaagggt	3060
atgctattct	gtttccagat	gtttctttat	gtaaatatga	cgccaatgta	a aatcctgtgt	3120
caagatcata	gagaatggt	g ctttttacta	a cagttagcac	: atgcatttt	agaaactact	3180
acatgtttta	gagaatctt	gctgtgtata	a tgtaaactgt	attgttcaad	c tgttaacaaa	3240
taataaatta	tttcattat	aaagaaaaa	a aaaaaaaaa	ı		3280

<210> 12 <211> 1750 <212> DNA <213> Homo sapiens

<400> 12 60 ggcacgaggc ttcgtaaaga tggccgcgga ggcttttgga gccaactggg agcgcagtac gcgttttctg gagcatgggc agaggagaca ggaacaagcg tagcatccgt gagcaccgat 120 tggctgaagc gagcaccccg ggagctgact ggctccgcca ttcgcgggaa ggcgtttgtg 180 gtgccagaga aaagtagcca gagcggcgca gtggcggccg cgttctgtgg ttttccgcta 240 ttcccccaga cccgcacctt ctcggcctct ttgcggagaa tcgtgaccaa gatgtggaac 300 360 agtggattcg aaagctatgg cagctcctca tacgggggag ccggcggcta cacgcagtcc ccggggggct ttggatcgcc cgcaccttct caagccgaaa agaaatcaag agcccgagcc 420 cagcacattg tgccctgtac tatatctcag ctgctttctg ccactttggt tgatgaagtg 480 ttcagaattg ggaatgttga gatttcacag gtcactattg tggggatcat cagacatgca 540 600 gagaaggete caaccaacat tgtttacaaa atagatgaca tgacagetge acccatggac gttcgccagt gggttgacac agatgacacc agcagtgaaa acactgtggt tcctccagaa 660 acatatgtga aagtggcagg ccacctgaga tcttttcaga acaaaaagag cctggtagcc 720 780 tttaagatca tgcccctgga ggatatgaat gagttcacca cacatattct ggaagtgatc aatgcacaca tggtactaag caaagccaac agccagccct cagcagggag agcacctatc 840 900 agcaatccag gaatgagtga agcagggaac tttggtggga atagcttcat gccagcaaat ggcctcactg tggcccaaaa ccaggtgttg aatttgatta aggcttgtcc aagacctgaa 960 1020 gggttgaact ttcaggatct caagaaccag ctgaaacaca tgtctgtatc ctcaatcaag 1080 caagctgtgg attttctgag caatgagggg cacatctatt ctactgtgga tgatgaccat tttaaatcca cagatgcaga ataactggat ctaactgggt acctgagata ttttacagct 1140 1200 ggacctagtt tcacaatctg ttgtctccag ctctgcatat gtctggccag ggggcttcta 1260 ggaagtaggt ttcatctatc aaatgtctcc tctgacttcc ttttgaaact tactgctctt ctgttttatt ttgttttgtt tgaagctcag agggagatgg gcaattgaca gggatgcaat 1320 ccagggtggg atttcttgag gaagttacaa ataagcttgt tacaacatca agatagatgg 1380 aattggaagg atgctaccag gagagtactt acatagtgct caggagtttc tcttcttaaa 1440 atgtttactg ctgaaagatg agcaggacca gggcgttata ggcagagccc tagccgagaa 1500 acctgctggc ctctgcctgt tttcatttcc cactttggtt gtgtggcatt actttcagaa 1560 ttgcactttc ctgcttgtca tgactttttg acacacttgc catgacgtgt gtttctgtga 1620

the state of the s	.680
acatgaagtt ctgcggtagt gcctccaggg gcagaggaaa agaagaagtg ttactgcgtt 1	.740
ttgtacaaaa taaatacagt Catatyttta ataaaacagt tocatogoud additional	
aaaaaaaaaa	L750
<210> 13 <211> 1925 <212> DNA <213> Homo sapiens	
<400> 13 gagagggcga aggtaggctg gcagatacgt tcgtcagctt gctcctttct gcccgtggac	60
gccgccgaag aagcatcgtt aaagtctctc ttcaccctgc cgtcatgtct aagtcagagt	120
ctcctaaaga gcccgaacag ctgaggaagc tcttcattgg agggttgagc tttgaaacaa	180
ctgatgagag cctgaggagc cattttgagc aatggggaac gctcacggac tgtgtggtaa	240
tgagagatcc aaacaccaag cgctctaggg gctttgggtt tgtcacatat gccactgtgg	300
aggaggtgga tgcagctatg aatgcaaggc cacacaaggt ggatggaaga gttgtggaac	360
caaagagagc tgtctccaga gaagattctc aaagaccagg tgcccactta actgtgaaaa	420
agatatttgt tggtggcatt aaagaagaca ctgaagaaca tcacctaaga gattattttg	480
aacagtatgg aaaaattgaa gtgattgaaa tcatgactga ccgaggcagt ggcaagaaaa	540
ggggctttgc ctttgtaacc tttgacgacc atgactccgt ggataagatt gtcattcaga	600
aataccatac tgtgaatggc cacaactgtg aagttagaaa agccctgtca aagcaagaga	660
tggctagtgc ttcatccagc caaagaggtc gaagtggttc tggaaacttt ggtggtggtc	720
gtggaggtgg tttcggtggg aatgacaact tcggtcgtgg aggaaacttc agtggtcgtg	780
gtggctttgg tggcagccgt ggtggtggtg gatatggtgg cagtggggat ggctataatg	840
gatttggcaa tgatggtggt tatggaggag gcggccctgg ttactctgga ggaagcagag	900
gctatggaag tggtggacag ggttatggaa accagggcag tggctatggc gggagtggca	960
gctatgacag ctataacaac ggaggcggag gcggctttgg cggtggtagt ggaagcaatt	1020
ttggaggtgg tggaagctac aatgattttg ggaattacaa caatcagtct tcaaattttg	1080
gacccatgaa gggaggaaat tttggaggca gaagctctgg cccctatggc ggtggaggcc	1140
aatactttgc aaaaccacga aaccaaggtg gctatggcgg ttccagcagc agcagtagct	1200
atggcagtgg cagaagattt taattaggaa acaaagctta gcaggagagg agagccagag	1260
aagtgacagg gaagctacag gttacaacag atttgtgaac tcagccaagc acagtggtgg	1320
cagggcctag ctgctacaaa gaagacatgt tttagacaaa tactcatgtg tatgggcaaa	1380
aaactcgagg actgtatttg tgactaattg tataacaggt tattttagtt tctgttctgt	1440

ggaaagtgta aagcattcca acaaagggtt ttaatgtaga ttttttttt tgcaccccat 1500 gctgttgatt gctaaatgta acagtctgat cgtgacgctg aataaatgtc tttttttaa 1560 tgtgctgtgt aaagttagtc tactcttaag ccatcttggt aaatttcccc aacagtgtga 1620 agttagaatt ccttcagggt gatgccaggt tctatttgga atttatatac aacctgcttg 1680 ggtggagaag ccattgtctt cggaaacctt ggtgtagttg aactgatagt tactgttgtg 1740 acctgaagtt caccattaaa agggattacc caagcaaaat catggaatgg ttataaaagt 1800 gattgttggc acatcctatg caatatatct aaattgaata atggtaccag ataaaattat 1860 agatgggaat gaagcttgtg tatccattat catgtgtaat caataaacga tttaattctc 1920 1925 ttgaa

<210> 14

<211> 1418 <212> DNA

<213> Homo sapiens

<400> 14 cttttcctgt ggcagcagcc gggctgagag gagcgtggct gtctcctctc tccgccatgg 60 120 cgtgtgctcg cccactgata tcggtgtact ccgaaaaggg ggagtcatct ggcaaaaatg 180 tcactttgcc tgctgtattc aaggctccta ttcgaccaga tattgtgaac tttgttcaca ccaacttgcg caaaaacaac agacagccct atgctgtcag tgaattagca ggtcatcaga 240 300 ctagtgctga gtcttggggt actggcagag ctgtggctcg aattcccaga gttcgaggtg gtgggactca ccgctctggc cagggtgctt ttggaaacat gtgtcgtgga ggccgaatgt 360 ttgcaccaac caaaacctgg cgccgttggc atcgtagagt gaacacaacc caaaaacgat 420 acgccatctg ttctgccctg gctgcctcag ccctaccagc actggtcatg tctaaaggtc 480 atcgtattga ggaagttcct gaacttcctt tggtagttga agataaagtt gaaggctaca 540 agaagaccaa ggaagctgtt ttgctcctta agaaacttaa agcctggaat gatatcaaaa 600 aggtctatgc ctctcagcga atgagagctg gcaaaggcaa aatgagaaac cgtcgccgta 660 720 tccagcgcag gggcccgtgc atcatctata atgaggataa tggtatcatc aaggccttca gaaacatccc tggaattact ctgcttaatg taagcaagct gaacattttg aagcttgctc 780 ctggtgggca tgtgggacgt ttctgcattt ggactgaaag tgctttccgg aagttagatg 840 aattgtacgg cacttggcgt aaagccgctt ccctcaagag taactacaat cttcccatgc 900 acaagatgat taatacagat cttagcagaa tcttgaaaag cccagagatc caaagagccc 960 ttcgagcacc acgcaagaag atccatcgca gagtcctaaa gaagaaccca ctgaaaaact 1020 tgagaatcat gttgaagcta aacccatatg caaagaccat gcgccggaac accattcttc 1080

gecaggecag gaateacaag etecgggtgg ataaggeage tgetgeagea geggeaetae 1140
aagecaaate agatgagaag geggeggttg eaggeaagaa geetgtggta ggtaagaaag 1200
gaaagaagge tgetgttggt gttaagaage agaagaagee tetggtgga aaaaaggeag 1260
eagetaceaa gaaaceagee eetgaaaaga ageetgeaga gaagaaacet actacagagg 1320
agaagaagee tgetgeataa actettaaat ttgattatte eataaaggte aaateattt 1380
ggacagette ttttgaataa agaeetgatt atacagge 1418

<210> 15 <211> 2754

<211> 2/34 <212> DNA

<213> Homo sapiens

<400> 15 60 actegagece tgggegetge ttgetaaaga geegageaeg egggtetgte ateatgtege gttacgggcg gtacggagga gaaaccaagg tgtatgttgg taacctggga actggcgctg 120 gcaaaggaga gttagaaagg gctttcagtt attatggtcc tttaagaact gtatggattg 180 cgagaaatcc tccaagattt gcctttgtgg aattcgaaga tcctagagat gcagaagatg 240 cagtacgagg actggatgga aaggtgattt gtggctcccg agtgagggtt gaactatcga 300 360 caggcatgcc tcggagatca cgttttgata gaccacctgc ccgacgtccc tttgatccaa atgatagatg ctatgagtgt ggcgaaaagg gacattatgc ttatgattgt catcgttaca 420 480 gccggcgaag aagaagcagg tttcttcgtt tgagtcagtc gccttgattc agaatgtcac gagccttatg atatcatgct gaggcgcctt gcaaatccga caattaagat cctcctagac 540 cttgaggtga tcagcataag aggccagatc ccctcgagtc atctacacct agcttcacct 600 tattetttaa agggeagaaa atttgagaeg gtgategeeg taacagtaaa tttggettae 660 aattggggcc cccctccggt ttagaaagag gaacaccaga ttgaccacat tcccaactag 720 aaaaatcttc ttgcgtcaat caagcctcac ctggctcatt tggctgtcag tttgatcgtc 780 840 gttagattga agaaaacatc tagatgcagc gatcggctat agatacttct agatcgtcta gatctactag accatgggcc aaagagggtc gacctgcaaa cttgcaaggt cacggtctag 900 atcacattct cgatccagag gaaggcgata ctctcgctca cgcagcagga gcaggggacg 960 aaggtcaagg tcagcatctc ctcgacgatt aagatctatc tctcttcgta gatcaagatc 1020 agetteacte agaagateta ggtetggtte tataaaagga tegaggtatt tecaateece 1080 gtcgaggtca agatcaagat ccaggtctat ttcacgacca agaagcagcc gatcaaagtc 1140 1200 cagateteca tetecaaaaa gaagtegtte eecateagga agteetegea gaagtgeaag tcctgaaaga atggactgaa gctctcaagt tcacccttta gggaaaagtt attttgttta 1260

cattattata	agggatttgt	gatgtctgta	aagtgtaacc	taggaaagat	aattcaacca	1320
tctaatcaaa	atggatctgg	attactatgt	aaattcacag	cagtaagata	atataaattt	1380
tgttgaatgt	attaacatca	tatggtctga	aaatgtgggt	tttatttgg	cacatttaaa	1440
taaaatgttt	ctaactagat	ttttgatttg	tgttcaatat	taacacttct	taatttgata	1500
tatttgagag	tcagacatta	taattgttaa	ccttattcat	acatacctac	attcagaatt	1560
gaaaggtgtt	ggttaagtct	tgaacatcac	tattctatgc	ataaaacttg	gccaggatct	1620
taagggactt	tgaaaattcc	atcttaccct	tgtagctctg	ggtaagatga	cctgagtccc	1680
ttatgataca	gcctgaatgc	atcatgacag	atccttaagt	tagctaatcc	gtttgaagtt	1740
ggtgttagta	ggtattgtat	gatcagtggt	gaagcaagta	ggaccactga	tgtgtctaaa	1800
tgagcatgac	aggaactaaa	cgaaactgat	taaatgtatg	agaaatagaa	actgatttct	1860
ggatgatctt	tatactaatt	gcagctttca	ggctactagg	tggcatagtg	ttaattagga	1920
ctccccaaga	tatggggagt	tctactctca	atggtcttgt	ttctttgctt	tctacattag	1980
ttaaccagtt	ttataccaaa	aaatgcatgt	ttgaggaatt	gtctgaaatt	gggacaaaac	2040
accttcatgt	aaaccagctt	tgcaaaattt	tccagcccag	atactcttca	tctattcaaa	2100
tggattgtct	tattctgagc	aaagacctgt	tgttaatctt	caagctaggt	tttgcagttc	2160
ccaaccacaa	cattcttcta	ttttgccagg	ctggtgcaaa	gtaattaaag	atgtcaatca	2220
gaaatgtcaa	tgagactaaa	gtggttttgt	aaatctcagc	tatatttagc	aacactccat	2280
gtagctaata	ı ttttttggta	gcatctggta	gaccttagaa	tgttacatag	ccagtaggtt	2340 .
ctttattcaa	attttaagta	tcttaagaat	agtagggcag	taacagttac	ttttgagagt	2400
tttctggtca	agcttttacc	: aggcattctc	: tagccttggt	acaaaaaaaa	aaaaaacctg	2460
ctggttgcg	e agatacctac	g gcttgtccat	: tttatgcatt	tcagcaaagt	cattggatac	2520
tattgcaact	tgggaatact	ggtctgcato	: aagtttatto	ggtagtttga	ccgctagtat	2580
					, ttggtataaa	2640
gttatgtgta	a taactggcag	g gcttatttat	ctgttgcact	tggttagctt	taattgttct	2700
gtattattt	a aagataagti	tactcaacaa	a taaatctgca	a gagattgaad	c aaat	2754

<210> 16

<211> 2911 <212> DNA <213> Homo sapiens

<400> 16

ctccagcctc cgccggcgga gcccactatg ccagacagtt tcgacacttt gcaaagacaa 60 120

atgtgagctg	ggaagggggc	aagtgtccgg	gacacccaca	cccctgtatt	ctcctccgaa	180
cccttcatg (cccaaatccc	ggaaactcca	gcgtgtctcc	agccgtgttg	gtaccatttt	240
cagatttcat	cttcctaaac	tggaaatgtc	aatgagagga	aattaacacc	cccaagagct	300
gcagtgagca	aatgcattga	gcttgggtca	ggacaattcc	atttggggac	cagagatgga	360
cggtcactca	gcctatggag	atgaagaaac	tgaggttcag	agaggttaag	agactccact	420
gaggtcacac	agccgatgac	agacaacctt	ctgtgccttc	atcaagctgg	ttgtgtaccc	480
accatgtccc	tggcgacagg	atgggaaaga	aaaagcccta	attaaggatc	gtcagaaacc	540
acagttggag	gaggacggca	gagacagttt	ccctccccgc	tataccaaca	cccttccttc	600
gaggtcctcg	ctcctgaggg	accctggact	gtcacagaga	ttaatgaccc	cttatcttct	660
ttggatgtga	aaggaaatca	ctggttaaag	cttgatcgag	agacattatc	agctctttaa	720
ggattgcaga	agaataggct	actttattt	ctgaaaaggt	aaatatatgc	aagcaaagcc	780
aacatgccac	gaatggcgtt	ggtctaccac	acagccgtgt	ctgggacaca	gttgggggtc	840
atcccccagc	aggagtgaag	tcgagcttag	eggecettgt	gtcctccctt	ggaattcctg	900
ccatcccttt	tgattgagcc	tccacctctg	ggatttttct	tccatttttc	tcctctctta	960
ggagggagtt	cctgctaccc	atcgtgggag.	gccaccatca	ggactgcgaa	gatggtgacc	1020
ctgcggaaga	ggaccctgaa	agtgctcacc	ttcctcgtgc	tcttcatctt	cctcacctcc	1080
ttcttcctga	actactccca	caccatggtg	gccaccacct	ggttccccaa	gcagatggtc	1140
ctggagctct	ccgagaacct	gaagagactg	atcaagcaca	ggccttgcac	ctgcacccac	1200
tgcatcgggc	agcgcaagct	ctcggcctgg	ttcgatgaga	ggttcaacca	gaccatgcag	1260
ccgctgctga	ccgcccagaa	cgcgctcttg	gaggacgaca	cctaccgatg	gtggctgagg	1320
ctccagcggg	agaagaagcc	caataacttg	aatgacacca	tcaaggagct	gttcagagtg	1380
gtgcctggga	atgtggaccc	tatgctggag	aagaggtcgg	tgggetgeeg	gegetgegee	1440
gttgtgggca	actcgggcaa	cctgagggag	tcttcttatg	ggcctgagat	agacagtcac	1500
gactttgtcc	tcaggatgaa	caaggcgccc	acggcagggt	ttgaagctga	tgttgggacc	1560
aagaccaccc	accatctggt	gtaccctgag	agcttccggg	agctgggaga	taatgtcagc	1620
atgatcctgg	tgcccttcaa	gaccatcgac	: ttggagtggg	tggtgagcgc	catcaccacg	1680
ggcaccattt	cccacaccta	catcccggtt	cctgcaaaga	tcagagtgaa	a acaggataag	1740
atcctgatct	accacccago	cttcatcaag	g tatgtctttg	g acaactggct	gcaagggcac	1800
gggcgatacc	catctaccgg	catcctctcg	g gtcatcttct	: caatgcatgt	ctgcgatgag	1860
gtggacttgt	acggcttcgg	ggcagacago	aaagggaact	ggcaccacta	a ctgggagaac	1920
	cagattteat geagtgagea eggteactea gaggteacae accatgtece acagttggag gaggteeteg ttggatgtga ggattgeaga aacatgeeae ateceeage ecateeettt ggagggagtt etggaggagtt etgeggaaga ttetteetga etgeageggg gtgeetggg gtgeetggga gttgtggga gaetttgtee aagaeeaeee atgateetgg	cecctteatg cecaaatece cagattteat ettectaaac geagtgagea aatgeattga gaggteacea ageegatgae accatgtee tggaggagggagggagggagggagggagggagggaggga	ccccttcatg cccaaatccc ggaaactcca cagatttcat cttcctaaac tggaaatgtc gcagtgagca aatgcattga gcttgggtca cggtcactca gcctatggag atgaagaac gaggtcacac agccgatgac agacaacctt accatgtccc tggcgacagg atgggaaaga acagttggag gaggacggca gagacagttt gaggtcctcg ctcctgaggg accctggact ttggatgaa agaataggct acttattt aacatgccac gaatggcgtt ggtctaccac atccccagc aggagtgaag tcgagctagg catccctt tgattgagc tccaccctt tgattgagc tccaccctt ggagggaggt cctgcagaa agaccetgaa agacggaggaggt cctgcagaa aggacggta ggagggaggt cctgcagaa aggacctgaa agtgctcacc ttcttctga actactcca caccatggtg ctgaggaga gaccctgaa agtgctcacc ttcttcctga actactcca caccatggtg ccgctgctga ccgccagaa cgcgctcttg ccgctgctga agagaacacc gaagagacctg tgcaccgga agagaagacc caataacttg gtgcctgga actcgggaa actcgggaaa cctgagggag gactttgtcc tcaggatgaa cctgagggag gactttgtcc tcaggatgaa cacaggcgccaaaccc accatcggt gtaccctgg tgccctcaa accatcggt gtaccctgg tgccctcaa accatcggt gactttgtcc tcaggatgaa cacaggcgccaaaccc accatctggt gtaccctgag agaccaccc accatctggt gtaccctgag accatct accaccca accatccag cttcatcaa gagccacct accaccca accatccag cttcatcaa agagccacct accacccag catccaccc accatcaccca accatcaccca accatcacca accatc	ccccttcatg cccaaatccc ggaaactcca gcgtgtctcc cagattcat cttcctaaac tggaaatgtc aatgaggga gcagtgagca aatgcattga gcttgggtca ggacaatcc cggtcactca gcctatggag atgaagaac tgaggtcag gaggtcacca agccgatgac agacaacctt ctgtgccttc accatgtccc tggcgacagg atgggaaaga aaaagcccta acagttggag gaggacggca gagacagttt ccctcccgg gaggtcctcg ctcctgaggg accetggact gtcacagaga ttggatgtga aaggaaatca ctggttaaag cttgatcgag gaattgcaga agaataggct actttatttt ctgaaaaggt accatgccc gaatggcgtt ggtctaccac acagcgtgt atcccccagc aggagtgaag tcgagcttag cggcccttgt ccatccttt tgattgagcc tccacctctg ggattttct ggagggagg tcttctctga actactcca accatctgg gccaccacct ctggagctct ccgagaacct gaaggagagag tcttctctgagaga ggaccctgaa agtgctcacc ttcctcgtgc ttcttcctga actactcca caccatggtg gccaccacct ctggagctct ccgagaacct gaagagactg atcaagcaca tgcatcggga agcgcaagct ctcggcctgg ttcgatgaga ccgctgctga ccgccagaa cgcgctcttg gaggacgaca ttccagcggg agaagaagcc caataacttg aatgacacaa gtgcctggga accggcaagac ccaataacttg aatgacacaa gtgcctggga accggcaagac caataacttg aatgacacaa gtgcctggga accggagaaa caaggggaga tcttcttatag gactttgtcc tcaggatgaa caaggcgcc acggcagggt aagaccaccc accatctggt gtaccctgaa agcttccggg gactttgtcc tcaggatgaa caaggcgcc acggcagggt aagaccaccc accatctggt gtaccctgaa agcttccggg ggcaccattt cccacaccta catcccggtt cctgcaaagag ggcaccattt cccacaccta catcccggtt cctgcaaagag atcctggatca accaccacca catcaccag cttcatcaag tatgtctttg gggcgatacc catctaccag cttcatcaag tatgtctttg	ccccttcatg cccaaatcc ggaaactca gggtgtctc agccgtgtg cagatttcat cttcctaaac tggaaatgtc aatgagaga aattaacacc gcagtgagca aatgcattga gcttgggtca ggacaattcc atttggggac cggtcactca gcctatggag atgaagaac tgaggtcag agaggtcaacc agccgatgac agacaactt ctgtgccttc atcaagctgg accatgtccc tggcgacagg atgggaaaga aaaagcccta attaaggatc accatgtccc tggcgacagg atgggaaaga aaaagcccta attaaggatc acagttggag gaggacaggca gagacagttt ccctcccccc tataccaaca gaggtcctcg ctcctgaggg accctggact gtcacagaga ttaatgaccc ttggatgtga aagaaatca ctggttaaag cttgatcgag agacatatac ggattgcaga agaaataa ctggttaaag cttgatcgag agacatatac ggattgcaga agaataggct ggtctaccac acagccgtgt ctgggacaca atcccccac agaggtgaag tcgagcttag cggcccttgt gtcctccctt tgattgagag tcgagcttag cggcccttgt gtcctccctt cgatggagag ggacctgaa agtgctcacc ttcctctggaagag ggaccctgaa agtgctcacc ttcctctggaagag ggaccctgaa agtgctcacc ttcctctggaagag ggaccctgaa agtgctcacc ttcctctgtg gtctaccca accatgcgag ggacgaagac ccgagagact ccggagacaca accatgcgga agcgacacct gaagagactg gccaccacc ggattcccaa ctggaggct ccgagaacct gaagagactg accacacct ggttccccaa ctggaggctc ccgagaacct gaagagactg accacacct ggttccccaa ccgctgctga ccgcccagaa cgcgctcttg gaggacgaca cctaaccgatg gccctggaa agggcaagac ccaataacttg aatgacaca ggcttcaacca ccgctgctga acgcccagaa cgcgccttgg gaggacgaca cctaaccgatg gtccctggga accacacc tatgctggag accacacc accacacaca accacacacacacac	accetticate cecaatece gaaacteca gegtgtee ageegtgtee gaccattite eccetticate cecatteate cecaatece gaaacteca gegtgtee ageegtgtee gaccattite eccaatece gaaateca tetecaaatece gaaateca tetecaaatece gaaatecaa tegaaateca attagagaga aattaacace cecaagaget gacaateca accattgaga atgaagaaa tegagteaga agagteaaa ageegatgaa agacaacet etgtgeette atcaagetgg tegtgaaaace ageegatgaa agacaacet etgtgeette atcaagetgg tegtgaaaace acagttgaga gagacagga agagaaaga aaaageecaa attaaggate gecaaaace acagttgaga gagaacaga acctagace gacaagaga teaacaaca cectteette gaggteeteg etcetgagag accetggace gacaagaga teaacaaca cectteette teggatgaga agaaataca etggtaaaaga aaaageecaa agacaatate ageettataa gagattgaaga agaaataaca etggtaaaaga etaacaagaga teaacaaca cectteette teggatgaga aagaaataa etggtaaaaga etaacaaaa eetateetee teggatgaga agaaataaca etggtaaaaga etaacaagaga agaaatatac ageettataa agaatagagagatgaagagagatgaaga eetatattit etgaaaagga agaacattate ageetettaa agaacaceeta gaatgagaga tegagettaa eggeeettg geeeteett ggaatteete gaaataceet tegagagagaga tegagettag eggeeettg geeeteett ggaatteete teeattitte teetetetta ggaaggagaga gagaceetgaa agtgeteace etceteg ggattittee teeattitte teeteeteetteeteeteetteeteeteeteeteet

cgggggcttt	tcgcaagacg	ggggtgcacg	atgcagactt	tgagtctaac	1980
ccttggcctc	catcaataaa	atccggatct	tcaaggggag	atgacgcagt	2040
ggatggacgc	actgtcacac	ctctgcattt	ccagccccag	catcttgctg	2100
atcccggagc	ttggaggggc	agcctcaggt	gtgtgcctgg	gcaccgctca	2160
cacccagccg	ttggcagcat	ctactcagca	aggtcactaa	gctctgccag	2220
catgtcttgg	aacctgtctt	gagtggggac	aacgtccccc	cactgctgcc	2280
ggagacgctg	ggaaaggttc	aacctccaca	cactaaaatc	attttggctc	2340
cttggggaat	gaatgtggaa	gatgcctata	ttctgagaga	caggacagtt	2400
atgggcagag	acttgagtgg	cgattacctc	cagcacagag	acgtgccagg	2460
gctcggggcg	agatgctgcc	cttctttgca	cgaagcctgg	cctcttgctt	2520
ccctgtcatc	ttcccaaagc	tcatttatga	gccaccagag	gctcctaccc	2580
cacagaaact	tgaggccagg	tgccgtggct	cacacctgta	atctgaacac	2640
: cgaggcggga	ggatcacttg	agcccaggag	ttcaagacca	gcctgggcaa	2700
ctcctgtctc	tacaaaaata	aaagatttaa	aaaaattagc	caggcacggt	2760
: tgtagcccca	gctactaggg	aggctgagga	gggaggatct	cttgtgccta	2820
gctgcagtgg	gctgtgatca	. caccactgca	ctccagcctg	ggcaacagag	2880
, tctctgaaaa	aaaaaaaaa	a			2911
	ccttggcctc ggatggacgc atcccggagc cacccagccg catgtcttgg ggagacgctg cttggggaat atggcagag ccctgtcatc cacagaaact cgaggcgga ctcctgtctc tgtagccca ggctgcagtgg	ccttggcctc catcaataaa ggatggacgc actgtcacac atcccggagc ttggaggggc cacccagccg ttggcagcat catgtcttgg aacctgtctt ggagacgctg ggaaaggttc cttggggaat gaatgtggaa atgggcagag acttgagtgg gctcggggcg agatgctgcc cacagaaact tgaggccagg ccgaggcgga ggatcacttg ctgtagccca gctactaggg gctgcagtgg gctgtgatca	ccttggcctc catcaataaa atccggatct ggatggacgc actgtcacac ctctgcattt atcccggagc ttggaggggc agcctcaggt cacccagccg ttggcagcat ctactcagca catgtcttgg aacctgtctt gagtggggac ggagacgctg ggaaaggttc aacctccaca cttggggaat gaatgtggaa gatgcctata atgggcagag acttgagtgg cgattacctc gctcggggcg agatgctgcc cttctttgca ccctgtcatc ttcccaaagc tcatttatga cacagaaact tgaggccagg tgccgtggct cgaggcgga ggatcacttg agcccaggag actcctgtctc tacaaaaata aaagatttaa tgtagcccca gctactaggg aggctgagga	ccttggcctc catcaataaa atccggatct tcaaggggag ggatggacgc actgtcacac ctctgcattt ccagccccag atcccggagc ttggagggc agcctcaggt gtgtgcctgg cacccagccg ttggcagcat ctactcagca aggtcactaa catgtcttgg aacctgtctt gagtgggac aacgtccccc ggagacgctg ggaaaggttc aacctccaca cactaaaatc cttggggaat gaatgtggaa gatgcctata ttctgagaga atgggcagag acttgagtgg cgattacctc cagcacagag gctcggggcg agatgctgcc cttctttgca cgaagcctgg caccagaact tgaggccagg tgccgtggct cacacctgta cgaggcggaa ggatcacttg agcccaggag ttcaagacca ctcctgtctc tacaaaaata aaagatttaa aaaaattagc tgtagcccca gctactaggg aggctgagga gggaggatct gctgcagtgg gctgtgatca caccactgca ctccagcctg	ccttggcctc catcaataa atccggatct tcaaggggag atgacgcagt ggatggacgc actgtcacac ctctgcattt ccagccccag catcttgctg atcccggagc ttggagggac agcctcaggt gtgtgcctgg gcaccgctca cacccagccg ttggcagcat ctactcagca aggtcactaa gctctgccag catgtcttgg aacctgtctt gagtgggac acggtcacta acggagacgctg acctgtctt gagtgggac acgctcacac cactaaaatc attttggctc ggaagacgctg ggaaaggttc aacctccaca cactaaaatc attttggctc cttggggaat gaatgtggaa gatgcctata ttctgagaga caggacagtt atgggggac acggacagga acggacaggt ggatacctc cagcacagag acgtccagg ggatacctc cagcacagag acgtccagg agatgctgcc cttctttgca cgaagcctgg cctcttgctt ccctgtcatc ttcccaaagc tcattataga gccaccagag gctcctaccc cacagaaact tgaggccagg tgccgtggct cacacctgta atctgaacac cgaggcggaa agatcacttg agcccaggag ttcaagacca gcctgggcaa ctcctgtctc tacaaaaata aaagatttaa aaaaattagc caggacaggt tgaggcaggg ggctgcacaggg aggctgagga ggctgagga gggaggatct cttgtgccta gcctgcagtgg gctgtgatca caccactgca ctccagcctg ggcaacagag ttctctgaaaa aaaaaaaaa a

<210> 17

<211> 428 <212> DNA <213> Homo sapiens

<400> 17					
	tgtctg aataggcatc	ctcatctata	tttacccaaa	acctcgctta	60
ctgtcatgtg cact	acaaat tgcaatttgg	aaacctactg	tattgaaatt	ctgtcagttt	120
atggttcttg aaga	ctgatg tcctttccca	aacactggtt	actgcagcag	catttttaat	180
gtgtaagtga agaa	aaaagg ccactaaggc	caaagatttt	ttaagaatca	ttgtacaaat	240
cattatgtta aact	atctaa gctttgctgt	aatactgttt	tctcttcaat	atgtgatggt	300
acaggaagga tgtt	aaatga aggggtggta	ttgcaggaga	gcattttaaa	tggcagaagt	360
aaaaagttat aata	ıtttata attttgatgg	gtttaagttt	atttttgtag	ggaagatttt	420
teteceet					428

<210> 18 <211> 5243 <212> DNA

<213> Homo sapiens

<400> cggcggaggc ggcggtgcag cgctccggtg gaatgaatct tacttgttga atatcttctg 60 gttactagtt ggattcattt gtgaaagaat cattttcccc tgtgtggaag acacttagtg 120 gcatatttaa attataagtc cacggatcaa aaagcttttt gatttcccaa aggagggaca 180 taccactata tcagataagc ttgacattac agccaagatg gtgctgtccc agagacaacg 240 agatgaacta aatcgagcta tagcagatta tcttcgttca aatggctatg aagaggcata 300 ttcagttttt aaaaaggaag ctgaattaga tgtgaatgaa gaattagata aaaagtatgc 360 tggtcttttg gaaaaaaat ggacatctgt tattagatta caaaagaagg ttatggaatt 420 agaatcaaag ctaaatgaag caaaagaaga atttacgtca ggtggacctc ttggtcagaa 480 acgagaccca aaagaatgga ttccccgtcc gccagaaaaa tatgcattga gtggtcacag 540 gagtccagtc actcgagtca ttttccatcc tgtgttcagt gttatggtct ctgcttcaga 600 ggatgctaca attaaggtgt gggattatga gactggagat tttgaacgaa ctcttaaagg 660 acatacagac tetgtacagg acatttcatt egaceacage ggeaagette tggetteetg 720 ttctgcagat atgaccatta aactatggga ttttcagggc tttgaatgca tcagaaccat 780 gcacggccat gaccacaatg tttcttcagt agccatcatg cccaatggag atcatatagt 840 gtctgcctca agggataaaa ctataaaaat gtgggaagtg caaactggct actgtgtgaa 900 gacattcaca ggacacagag aatgggtacg tatggtacgg ccaaatcaag atggcactct 960 gatagccagc tgttccaatg accagactgt gcgtgtatgg gtcgtagcaa caaaggaatg 1020 caaggetgag eteegagage atgageatgt ggtagaatge attteetggg eteeagaaag 1080 ctcatattcc tccatctctg aagcaacagg atctgagact aaaaaaagtg gtaaacctgg 1140 gccattcttg ctgtctggat ccagagacaa gactattaag atgtgggatg tcagtactgg 1200 catgtgcctt atgaccctcg tgggtcatga taactgggta cgtggagttc tgttccattc 1260 tggggggaag tttattttga gttgtgctga tgacaagacc ctacgcgtat gggattacaa 1320 gaacaagcga tgcatgaaga ccctcaatgc gcatgaacac tttgttacct ccttggattt 1380 ccacaagacg gcaccctatg tcgtcactgg cagcgtagat caaacagtaa aagtgtggga 1440 gtgccgttga ttgtgtctcc ttcggcccct cctccctctt ttcctctgga tgcactctga 1500 tgataccatg gttaccccat tgagctctgt ttaaataaat attgtccttt catgtaaatt 1560 attctggatg tagattgagc ttattaaatg ttacacacaa agtattcatg catggtgaat 1620 ccaaattgta tactgtaaat ttacatacgt tgtctagaag taccataggg tttaaaaacc 1680 tgggctggca ttggtcacac caggcctaag aaggcagaag ttgaatcaat tgaactaggg 1740

cactaaactg	aatagttgac	agtgtcattt	tatgttggat	tattaattcc	tgtttttctt	1800
tctgctatct	gttggtgcct	gacttgatgg	cctcatttgg	ggaaaagtgg	tggttattag	1860
ggcttttcct	gaaatgtgta	tctatgtaac	atcacttaag	tgtgcttaat	aaatctcctg	1920
taaggatttt	agatgataag	gctacaattc	agaatcttct	gaaccatcta	tgtaatgaat	1980
ggggattata	cattggaatt	tttgtcatga	cacatttgcc	aaatcagtag	gatatatttg	2040
ttttggcagc	ctatcacgca	gaggctagtg	gtatatttat	gtaagaaaat	gactgtaaat	2100
ctcaagaaaa	atctcagcag	ctaatagcaa	ctcatttatt	tcattttggt	cttaatgctt	2160
tgtaaacagg	tcaaaaaata	ctgtcatact	ctaagcttct	attttccaca	ctggacatac	2220
ttctagttgt	attctccata	ctattagact	gtgtagtgat	gtgacttcca	agtagaattt	2280
aatctcccca	ı ttgagtgtgt	catggtacaa	atcactattc	gtttttggtg	ttttttaggg	2340
atgtgcaatg	g tgcattacat	aatgacagaa	atactgagaa	ggttctgtgt	gcccatttga	2400
aaggagtggg	g aggaatacag	cagtttgttt	ttcaacatga	atctgatatt	gatttaaact	2460
gtgtttcact	tacaagtttt	: aaaaaaatga	cagggtttaa	tggagcgtgc	ataaaaatgt	2520
actgttttca	a ccttttgttt	: atatgtaaat	gtttgtaagt	atatgggcct	atctgtaagt	2580
gggtaagtct	gtatgtgtgt	: atcatacaca	tcaacctcca	tgtccttagt	cctgggtttt	2640
tgaaaaagt	g ctaaaacgga	a caagtagaat	aaatgttgct	gtggaatgco	atgctttaga	2700
acaaaccct	t tttgatctta	a atgcttctga	a aaactaggto	tgactctggg	gattttttc	2760
cagccgaag	g aaaatcacti	ccgttatgto	c cccctctaat	ttagccgcto	gacattttac	2820
acaacccgg	a tatgttgta	t attttgacco	aaagttacag	g gtaggtttaa	a gagaattttt	2880
agccatgac	t tttggagca	c tattccatt	g tcagttatta	a ataaagaat	ccattgctta	2940
gctaaccaa	c aggtttttt	t tgtttccaa	g agagttatt	t gaaaagtta	a cagaacaatg	3000
agataacag	t gacagttta	a caaagataa	a attctgaac	t gcgttttat	t catttgtgta	3060
ctatgtgat	t ttttaaatg	t cccctttag	t atttaatgg	a aaattggtt	c ctgcaaaaga	3120
caaagggtg	a gagttagcg	t cctgtagat	a cacacagag	a ctaggccgt	a tattaactag	3180
aagcagctt	t atgtctagc	t tgtgtcttt	t tgtttgttt	g cttgtttgt	t tttagattcc	3240
tgagagatg	ıt ctctggaag	g gaaagtttt	g agaactaat	g gctatttt	g aggacaaaaa	3300
ttacatctt	a agctaatto	c ttaaataca	t acagtaggt	g aattttcag	g acaatattgc	3360
ctcacaaco	cc tgcttacat	t gaaaagtct	t tttccctta	g ctcttctga	c tggattttc	3420
tacaaaact	a tggaaaata	t ctttgttct	t gtttgctgc	t attttctgt	c ctattttgag	3480
aaatataaa	at acatagaaa	ıt ggtgcatct	t aacatttgt	t tgtacatgt	a taaatgtctt	3540
gtattttaa	at tcattttta	g catgaatto	_j t ttaagggta	a gccacaaca	t ctagaaatca	3600

PCT/US03/13015 WO 03/090694

						3660
	ttgaacaata					
tcccctgcag	cacacagcga	cttgcgttga	caaaggagga	ggaaacgatt	actctgtaaa	3720
caaagttatc	cttacttggg	agattgccac	agcctgctgc	tgagttgagt	taccagacat	3780
cctccatgtg	agaagcagcg	aacattgaat	ctcagggatg	gcccacaact	gggtccacat	3840
gtaatgagcc	ctgtttaata	acgaaggggt	gggggagagc	agtccgtcta	caacctggaa	3900
tcagatttgc	aaaatttcct	gcactgctgt	ctgacactgt	cctgttgatg	ccctttctga	3960
	tgttttctct					4020
	tactggtttg					4080
	ttgtcacttt					4140
	tcagatgatt					4200
					agagtgcatg	4260
					ggcatcttgc	4320
					tggtgtgccc	4380
					gagcgttcgc	4440
					g ctgccagtgc	4500
					ı tatcactcgt	4560
					ggatattttg	4620
					g aaggaaaagg	4680
					catctagatg	4740
						4800
					a aaggttttgg	4860
					ggctggactg	4920
					g tactgtccat	
					a actcttcgag	4980
ttaaagttg	a teetgacae	t gacatgaag	g caageettg	a tttcgtatg	a acgttgctga	5040
agtggtaat	t gaggaaaac	a gttccccag	a ttgttaaga	g ttcactgaa	g atattgacac	5100
aattttaaa	a aatcagtaa	a ggaatgtat	a taatattgc	t ctcgtgttt	t acagtaagat	5160
ttgttgctc	t cagactgtg	t aaaacaaaa	t ttattcatg	t tttctgcat	a ttaaaaaatc	5220
ttattgtac	c aactggtaa	a ccg				5243

<210> 19 <211> 6111 <212> DNA

<213> Homo sapiens

19 <400> aacaggtttg atctgtggat gaaatgaatc atgattttca agctcttgca ttagaatctc 60 ggggaatggg agagcttttg cctaccaaaa agttttggga acctgatgat tcaacaaaag 120 atggacaaaa aggcatattt cttggggatg atgaatggag agagactgca tggggagctt 180 ctcaccattc aatgtcccag cctattatgg tacagagaag atctggacag ggttttcatg 240 gaaacagtga agtaaatgca atactgtctc cgcgatcaga aagtggaggc cttggtgta 300 gcatggtaga atatgtatta agttcttctc ctgctgataa attggattct cgatttagga 360 agggaaattt tggcactaga gatgctgaaa cagatggacc tgagaaagga gatcaaaaag 420 gcaaggcttc tccatttgag gaggaccaaa acagagatct taaacaagga gatgatgatg 480 540 atcgtactcc tggaagtcgt caagcctctc caactgaagt agttgagcgc ttgggcccca 600 atactaatcc ctcagaagga ctggggcctc ttcctaatcc tacagctaat aaaccacttg 660 ttgaagaatt ttcaaatcct gaaactcaga atctggatgc catggaacaa gttggtctgg 720 aatccttaca gtttgactat cctggtaatc aggtaccaat ggactcttca ggagctactg 780 taggcctttt tgactacaat tcccagcagc agctctttca gaggactaat gcactaacag 840 900 ttcaacagtt aactgcagct caacagcagc aatatgcatt agcagcagct cagcagccac 960 atatagetgg tgtattetea geaggeettg etecagetge atttgtgeea aatecataca ttattagtgc tgctcctcca gggaccgatc cgtatactgc agcaggattg gctgcagcag 1020 ctacattagc aggtccagca gtggttccac ctcagtatta cggcgttcca tggggggtgt 1080 atccagccaa cttatttcag cagcaagctg cagctgcggc aaataacaca gccagtcagc 1140 1200 aagcagcatc acaagctcag cctggacagc aacaggttct ccgtgctgga gcaggtcagc gtcctcttac tcccaatcag ggtcagcaag ggcagcaagc agaatcactt gcggcagctg 1260 cagcagcaaa tccaacattg gcttttggtc agggtcttgc tactggcatg ccaggctatc 1320 aagtactagc tccaactgcc tattatgatc agactggtgc cttagtggtt ggccctggag 1380 caaggactgg ccttggagct ccagttcggt taatggctcc aacacctgtt ttaattagtt 1440 cagcagcagc acaagctgca gcagcagcag cagctggagg aactgcaagt agccttacag 1500 gcagcacaaa tggtctgttt cggccaattg gcactcagcc accacagcag cagcaacagc 1560 agccaagcac taatctgcaa tctaattcat tttatggaag cagttctttg actaatagct 1620 cccagagtag ttctttattt tctcatggac ctggtcaacc tggaagtaca tctcttggct 1680 ttggaagtgg taactetttg ggtgetgeta taggeteage eeteagtgga tttggtteat 1740

cagttggcag (ttctgcaagt	agtagtgcca	caaggagaga	gtctctatct	actagctctg	1800
acttgtacaa a	aagatctagt	agcagcctag	cacccatagg	gcaaccattt	tacaatagtc	1860
tgggattttc	ctcctctcca	agtccaatag	gcatgcctct	gccaagccaa	actccaggac	1920
attcacttac	gccaccgcca	tcactttcat	cacatggatc	ctcatccagt	ttgcatttag	1980
gaggactgac	aaatggtagt	ggtcgatata	tctctgcagc	acctggagca	gaagcaaaat	2040
atcgaagtgc	ttcaagcact	tccagtctat	ttagctccag	cagccagctc	tttcctcctt	2100
cccggcttcg	gtataatagg	tctgatatta	tgccttctgg	ccgcagtaga	ttattggaag	2160
atttcagaaa	caaccgcttc	ccaaaccttc	agcttagaga	cttgattgga	catatagttg	2220
agttttctca	agaccagcat	ggttctagat	tcatacagca	aaaactagag	agagctactc	2280
cagctgagcg	acagatggta	tttaatgaaa	ttctgcaagc	agcctatcaa	ttaatgactg	2340
atgtttttgg	caactatgtt	atacagaagt	tttttgagtt	tgggagtctg	gatcaaaaat	2400
tagccctggc	tactcgtatt	cgtggtcatg	ttctaccctt	agccttgcag	atgtatggct	2460
gccgcgttat	tcagaaagca	ttagaatcta	tttcttctga	ccagcagagt	gaaatggtaa	2520
aggagctgga	tggtcatgtg	ctcaaatgtg	tgaaagatca	gaatggaaac	catgttgtac	2580
aaaaatgtat	cgaatgtgtt	cagccacagt	cactacagtt	catcattgat	gctttcaagg	2640
gacaagtatt	tgtgctttca	actcatcctt	atggctgcag	agtaattcag	cgcatcctag	2700
agcattgcac	tgcagaacag	accttaccta	tcttagaaga	actccaccaa	catacagagc	2760
agttggtaca	ggatcagtat	ggcaattatg	ttattcagca	tgtactggaa	cacggtcgac	2820
ctgaagacaa	gagcaaaatt	gtttccgaaa	tcaggggaaa	ggttttagcc	ctgagtcaac	2880
acaaatttgc	cagcaatgta	gtagaaaagt	gtgttactca	tgcctcccgt	gctgagagag	2940
ctttactgat	tgacgaggtt	tgctgccaga	atgatggtcc	: tcacagtgcc	ttatacacca	3000
tgatgaagga	ccagtatgcc	: aattacgtgg	ttcaaaagat	gattgatatg	gctgaacctg	3060
ctcagagaaa	gataatcatg	g cacaagatto	gacctcacat	tactactttg	cgcaaataca	3120
catacgggaa	gcatatacto	g gccaagttgg	, aaaagtatta	a tttgaagaat	agcccggacc	3180
taggacctat	tggaggacca	a ccaaatggaa	tgctgtaaat	tacaggagca	agagaaagaa	3240
gataatttaa	ccatgtgaaa	a agaattttt	tgtgtgtga	a ttatcaaaac	acaactcaac	3300
tatgaatctt	caatttttt	ttaaagcaaa	a actatttat	t gactttatto	atccatttgt	3360
aaattttta	aggttcttgt	gtatatttgg	g ggggtgggg	g atgaattata	a aattatattc	3420
agccctgagt	ggagacctat	t cagattggat	tgctggcaa	a gcacagaat	g cctgtatatg	3480
atgtaactgt	: atcaaaaata	a aaaagctgto	c acatatttt	g taaattttt	a ccttgtaaag	3540
tcacaaaaat	agttttaa	a ggaaaaagt:	a cagtattct	t ttaataaac	t ggctcacagt	3600

ctggtaggtc tacaacccca tagcacaaca ggtttataga gatgtatata gaattatagt 3660 cettattttt tteetttgeg tgaaacettt tataacagat taacaatcaa etgeataaat 3720 attattaata ttttaaaaag agttaagttg tattttgata attcacaaac tatcatgcaa 3780 ataacgagta agtagacaag aataaagtgg tttgagatga aaagaaccta acattattta 3840 cagtagatgt ggttttaata caattactgc cctaaaatgt ctctggcaat gtacagaaat 3900 attgtatata cttacatatg taattgttgt aagagttaaa tacaaaatca tggtgacact 3960 tccaattaag tgcactaaat gaaaagttaa gtcacttatt aacttttcag tttggtttgc 4020 aatgagaaag agtggaaatt tgtattttgt tttgcttata gaattacaga catgttgagg 4080 aagtgttgag ctttattttg ctttttcata gaggcagaaa gtaggaacca gatagagatg 4140 aaaaggggcc actgaaaagt gaatttgata gctcagcatt taagcatgat tacatattca 4200 gatagetett tttgetttet ataaatatat geattgtgtg tgtagtaata gatgtaagtt 4260 tacactttga aaggaaatct tgtttcaatg tttattataa aagccttgct aatttagtag 4320 tgatgettte ettggttgta caggtgtaca tttgtaaace tteatgetgt aaatggaatt 4380 tgttttatct ctttgggata catttgcatt ttagtgtaca tttacgtccc tgccctcttt 4440 gacctggcaa tatagtgttg tataatgtaa atttatttct ccaaatcgag agtgattttt 4500 taaaaatttt ttatctttat atggtttcag aagtatgaac cagctttctt tttattattg 4560 tgagatcatt ttgttttata acatagttgt tgactgttaa tatggacctg ctagaatttg 4620 gatcactttc aattgaagtc agggtattgt gcataataga aagtattgga ctgagatatt 4680 4740 tgtacagaag agtactgtat ttttgaatag cctactccca agtaagagca aatctgtatg 4800 ataacatttt ttcctctgga cataagacat aacagtaaca cgatgtacat ttacaagcgg 4860 ccttatgtac atttcccaac aatcttttta aggcaaaatt gtgaccatat gtgtataatt 4920 aaaatcgttt ttaatccttt gcctatgaaa atattttgga aaaaaacttg ctgtgtatat 4980 tcagtttctg aaagataaag aaagtgcttt gtattttgtt gaagtcagta ttttgtataa 5040 acatttatgt tgacccactt atgttcagtg ctgaaaacta aaatgaacat gctattctgt 5100 cagctgaata tggaagagat cttttttac tagagatctg cagaagaaac gcaatcttct 5160 gagcacaata tggaatctaa aggttttatc acttagttgt tcatattatg aacctaaaaa 5220 taatggcata aagtttgggg atgccaggca tactttttca tgtttggtgt tgagttattt 5280 tacttttcta acccaacatt ccttggtgag accattaaat ccaaacactt gtcaccgttc 5340 cttctcatag tcactctggg tcatcagcat gtcccagtca ctgcagcaac gccttgtgtt 5400

cacacaaagc	cgctgtctca	ctttttccta	ctttaccaac	5460
atcgaacttt	tgttctcagt	atcagcccat	ggtttcagga	5520
attggtaatg	gctttcctgt	ctttgtacag	ttgaattcct	5580
ctctgttggc	acaggcatta	tctctgcaat	tttagaaaat	5640
ttgagaaact	aaaccctctt	cttggggtcc	tgatactcat	5700
acaacccaat	cttcccaata	ctttcaggcc	tgctctacaa	5760
attttacagt	ctgccatttt	gggtgcccac	cccaattttt	5820
gaaattttgg	taaaatctga	aaatcacatt	tcagaataaa	5880
aggctttact	cttgagtgtc	tccttttgat	agggattgtt	5940
tcctggctct	tattggttca	tatgaaataa	tgttaacttc	6000
taaattagaa	aatgaaaaat	gtgtgaataa	cattgtatga	6060
tttctctaga	taaaataaaa	atctgtacct	. c	6111
	atcgaacttt attggtaatg ctctgttggc ttgagaaact acaacccaat attttacagt gaaattttgg aggctttact tcctggctct taaattagaa	atcgaacttt tgttctcagt attggtaatg gctttcctgt ctctgttggc acaggcatta ttgagaaact aaaccctctt acaacccaat cttcccaata attttacagt ctgccatttt gaaattttgg taaaatctga aggctttact cttgagtgtc tcctggctct tattggttca taaattagaa aatgaaaaat	atcgaacttt tgttctcagt atcagcccat attggtaatg gctttcetgt ctttgtacag ctctgttggc acaggcatta tctctgcaat ttgagaaact aaaccctctt cttggggtcc acaacccaat cttcccaata ctttcaggcc attttacagt ctgccatttt gggtgcccac gaaattttgg taaaatctga aaatcacatt aggctttact cttgagtgtc tccttttgat tcctggctct tattggttca tatgaaataa taaattagaa aatgaaaaat gtgtgaataa	atcgaacttt tgttctcagt atcageccat ggtttcagga attggtaatg gctttcctgt ctttgtacag ttgaattcet ctctgttggc acaggcatta tctctgcaat tttagaaaat ttgagaact aaaccctctt cttggggtcc tgatactcat acaacccaat cttcccaata ctttcaggcc tgctctacaa attttacagt ctgccatttt gggtgcccac cccaattttt gaaattttgg taaaatctga aaatcacatt tcagaataaa aggctttact cttgagtgc tccttttgat agggattgtt tcctggctct tattggttca tatgaaataa tgttaacttc taaattagaa aatgaaaaat gtgtgaataa cattgtatga tttctctaga taaaataaaa

<210> 20

<211> 3045

<212> DNA

<213> Homo sapiens

<400> 20 tgagtgaatt ctggttgtgt ttcaactgct gtattgcaga acagcctcag cctaagaggc 60 gacggcggat tgacagaagt atgattggag agcccacaaa ctttgtgcat acagctcatg 120 ttggatcagg agacctgtcc agtggaatga attcagttag ctccattcag aaccaaatgc 180 agtccaaggg aggttatgga ggtggaatgc ctgccaatgt ccagatgcag ctcgtggata 240 cgaaggcggg atagccctgg tcctttctcc aaagtgtgat ggcaccttgt ccaccctgtc 300 gtgattattc cagtgagatg ttactgttct gctctgaaga agatactgtc agacgaaccc 360 tgcatttcct tcagctggca tgcatgcctt tggactcatg gacagagttc tttggattgt 420 cactgaattt tcaatgttta atcagtatgg atctgatctt cgcatgatct tttttgtgaa 480 tgctaacacc attttgcagt tttttttttc tattttaaac atttttcttt tcactgccga 540 cccctgcct tacgatttta ttggaaagca aggacctgct attatttgtt aatttgccat 600 catttatgta tattttggaa ggtatgagac ccacaagcac aatgatcatt tttatttgtt 660 tgtttgtttg aaacttcagc agaatagata tctgcatgct ttatgaagtt gttgcttcgg 720 taagageeea tgggatgeea gaaattaaea tttetttget geeatggget gatgatgetg 780 ctattagata aagtttagct gtggcaccaa agtcacatca ttttcataga aaaagattac 840 ttgtagctta ttttagaagt atgacctttt ggtctgtttg attgattgat tagaattgca 900

ataaaagaaa agcttgcatt cataaggcat tcattctgtt gtaaatgttc a	aatatattta	960
ttttgagagc aaggacctgt ggttgtaaac aggtgtggtt acaggtgtgg t	tatgtatct	1020
gagtgttgcg gtcatactct cctccagtcc aatcctgagc atcttcatct t	tattaattag	1080
ctgttcgttt ctttgtgcac tcattctttt atttttactt ctttttaatg	ttatggtatc	1140
cagttgtttc cagtagcagt ttcttgaact tctggcctgt actactaact	geggacetee	1200
agagtcactg gcctttctgt gctctacata ttattttagg ggccacatca	gttgccaaga	1260
gcaacataca taccgacctg gctgaattat tgccagtgaa aacaacctgt	acgaagcctt	1320
tgctcaggtt ctaaaatatg tttgtccttg cacgaatttt gtatatttca	aatatttctg	1380
taaaggtttc ttcttttctg ttagagtgtg gtgttaagcc agagtcagtg	gtttgtgttc	1440
tcattaaaat gtttgtttaa atcctatgtc caattcaagc ctatctaact	acatttggta	1500
ggattaacat ttcatataac aaatggggct taattaaaaa ctttaacttg	gaataaagga	1560
acagggatca ctttatcttc tgccttcatt taccttagtc caagattctt	gcaaaacagg	1620
caactgaaca aacattaggt ttatgtaggt aaaatgtgaa agcatttctc	ctccactttt	1680
taaaatttaa tttacccagt acagcggggc accagattac ttgatctttg	tattttgcag	1740
ttttgagcct ttgtgtcaat cccaagcaca gagaggatct gccaaggaaa	aacatttgca	1800
tcttcggagt agacattttg cagtttgttt aataacaact tctaaagtaa	gttgaattca	1860
tccattgtca ctgattcacc aagtggatgt tgcattgtgg aatttgcctg	agtactgttg	1920
tcattctgct cagccaggca cggtcagttt cttggccagg gacattgcta	tgtgctgtgt	1980
gcaagctctt tagaagagag attggatttt cttggcatta tcagcactca	tgctatttag	2040
tctacttcta ttttgactga ctctttaaat tagtacaatt tttctacttg	tcatataact	2100
cctggaacaa tagtacggga agccgtgatc cttttccctg actcatgatt	ttagtctttt	2160
tccaaatcgc tgttttttt tgttttttt tttttttgct gctccaacga	ccagcatgtg	2220
ttggagcaga tctccatggt aagccaaaag tggacttgtc agcctataac	tactctgcag	2280
ctgccactaa ctctacaggc acagtaacta cactttatac aggagcacat	gccaaagtgc	2340
ctgggaggtg ccaataaaat caagaaataa gaaaactaca aaaaaagata	cggtattaac	2400
cttggacata atttttttta gggaggcagc tttcccactt ttataaaggg	ggttgtaaat	2460
ctcaagaggt catttgttcc ccatagcagc atatctcatt tttaaattga	agcgaattaa	2520
ataggatttt actactcaac attcattata ctgttaatct ttgctgaaat	atatgctaac	2580
aaatgttaag caagggaaac tgaagactta gtcatgtgga ttgttagcag	tgatctgcat	2640
totgtaaaag aggtacttto ccatgatgta ggcatgaagt ggtgccagta	agcgtagagc	2700
ggaaatgttg actttagtta acattgggtt tagcatttcc agtgcagcat	tatcagtggg	2760

cetttaaaaa tacttegtaa gtacattage ttteaetttg ttgttaaatt gtageagaet 2820
cattatggag aacaagtttg cettgatttt gtttaaaatg aettetgeta ageaeceaga 2880
agataaaatt gacatatttt tataatataa geataetttt tttgtaeatt gtgtteatte 2940
ttgaataaaa tgagttetgt gttggettgt agataetaaa aagaaagtat tgattttgat 3000
teaataaatg ttttettea ateetgaaaa aaaaaaaaa aaaaa 3045

<210> 21 <211> 3009

<212> DNA

<213> Homo sapiens

<400> 21 tggcctactt ttcctggtca ttttcttcca cctacttaat gttcaacatc cagacctgat 60 ctgccacaat ctctttctga caggaaataa tgaaatgatt gatatgctac ctcattgccc 120 tttacagtca ttgtcagggt ccctggtatt ggattgttgt tctggaaagc tctatagagc 180 actgctcagc cagtcgtctt tattacagct tctgcagaac acttgcttag actgtgagaa 240 gatggctgcg ttgcactgtg cgctctactg cggtcaaggt gcgcagttcc tggaagccca 300 gattattcag tggatttctg agaatgtctc tgcctgccat tcatttgacc tcattcagga 360 atttataatt gcttctttat actggagtgt atattcagag acaagtaaca tggacatact 420 attgccacat tccttaatgc tcacttggaa tccagaaatt tctggaataa ctcttgtgaa 480 agaagacatt gcattgcctc ttatgaaggt gctcagcttt aagggctact gggaaaaact 540 gaactccaac ctagaatatg ttaagtacgc caagccacac ttccactata acaacagtgt 600 ggtcaggaga gagtggcaca acctgatctc tgaagaggta tgagtgggtc agtgagaaca 660 aagccagcag cgaggcatag tggactggat ccaggtgatg cctttaaatc ataaggctgg 720 cttccatgtg cagcactctt cccaattgcc agggacttga tcattgtcat tactgatctc 780 aatgggcaga gagcttctat gatctctgtt ctagggagga aactgaaaag cagaaagttt 840 aaggggacac acagcacatt catagtagaa gtatgattaa tatccatgtc tcagatgtgt 900 tctcaggtta cttatgtagt taaaaattga tattaaaaaa tctaggtgtt cccaacttag 960 tggtcattag gggttggggt agttggaggg agaatagtgg acgtgactca ctgtccaggg 1020 gtgacccagg gaaatctttg ggggtgatcg aagacttcta tgtgttgatt gtggtggtac 1080 attgtaggga catgaatcta aacatgataa aatgacatag aatgacacac acacattgtg 1140 ccaatgtcaa tttttgattt tgatattgtg ctctagttag gtaagatata agcactgagg 1200 agactgggtt gagggtacat tgcatctctc tctagtatcg ctgcatgtag attagtgttg 1260 ttgtgtgtag tatatagttg actcgcagtt tcctgtgaat ctgtaattgt ttcagaataa 1320

aatatttett aaaaetttaa aaaaaateta ggtgttetga ttaeetggaa agtatattte	1380
ttctctctga tgctcttaac tgtattgcat tatatccttg acgtgaaaaa gtcaccgata	1440
aaacctttac cttccacatt cctgacgtgt tctcactcct aggaaacagg aaaaagaagg	1500
tctgcggcat acgtgaggaa tattcttgat aatgcagtaa aggtgatttc taacctagaa	1560
gcaagaaatt cggggccaag attaacaccc ctcctgcagg aggaagacag ccaccagcgg	1620
ctgctcatgg ggctgatggt gtctgagcta aaagaccatt ttttgagaca cctacagggt	1680
gtagaaaaga agaaaattga acagatggtt ctggactaca tttcaaaact gctggatctc	1740
atttgccaca tcgtagaaac caattggagg aaacataatc ttcattcctg ggttctccac	1800
ttcaatagtc gtggcagtgc tgctgaattt gcagtttttc acatcatgac caggattctg	1860
gaagctacaa acagtttgtt tttacctctg cctcctggtt ttcatactct gcacaccatc	1920
ctcggggtcc agtgtctccc tttgcataac ctgctgcatt gcattgacag tggagtgttg	1980
cttctcactg aaacagctgt cataaggctc atgaaagatc tggataatac agagaaaaat	2040
gaaaaactga aattcagtat cattgtgcgg cttcctccgc ttattgggca gaagatttgt	2100
agactttggg atcatcctat gagttctaac atcatttcgc ggaaccacgt gacgcgactg	2160
cttcagaact ataagaaaca gcctcggaat tctatgatta acaagtcatc gttcagtgta	2220
gaatttctgc ctctgaacta cttcattgaa attctgacag atatagagtc ctccaatcaa	2280
gccctgtatc cttttgaagg acatgacaat gtggatgcag aatttataga ggaagcagct	2340
ctgaaacaca cegegatget tttaggetta tgaaaaagaa aacgeaattg gatetgetge	2400
tgccatttta atcttgctca ttaaccttac tcctttgaga attctttaac aatatttaaa	2460
attggtaaca aaaatagttt agccataatt gtttagccat gtgagtttca ggttggtaca	2520
cgttcagaca gaactgctgt atcacattcc aattttgaat agccagtgag caatcaagtg	2580
tagagaaatg ataaatggcc taagaaggca tacagtggca taaacgatgc tcttcctagt	2640
agcttaatag gccacaagct agtttctgtt gccctctgaa ataaaatatg ctttaaaaat	2700
gtagggacca gtgcttagaa aagcaaaaac taggtgtgtc attgaaataa taggcataaa	2760
aattaaatgt tacataagac ccctatttgg aaaaagggtc cttttaaaaa ctgaatttgt	2820
actaaatcag atttgccatg tccagtacag aataatttgt acttagtatt tgcagcaggg	2880
tttgtctttg tgaattcaga tgaaacatat ttatttttt ttatttataa aaggttgatt	2940
taggaatatt ttgtcagtca ttaaaaaccc tgaacccata aaaaaaaaaa	3000
aaaaaaaaa	3009

<210> 22

<211> 1783 <212> DNA

<213> Homo sapiens

cctctcggag ctggaaatgc agctattgag atcttcgaat gctgcggagc tggaggcgga <400> 60 ggcagctggg gaggtccgag cgatgtgacc aggccgccat cgctcgtctc ttcctctctc 120 ctgccgcctc ctgtgtcgaa aataactttt ttagtctaaa gaaagaaaga caaaagtagt 180 egteegeece teaegeecte tetteetete ageetteege eeggtgagga ageeeggggt 240 ggetgeteeg eegtegggge egegeegeeg ageeceageg eeeegggeeg eeeeegeaeg 300 ccgccccat gcatcccttc tacacccggg ccgccaccat gataggcgag atcgccgccg 360 ccgtgtcctt catctccaag tttctccgca ccaaggggct gacgagcgag cgacagctgc 420 agacetteag ecagageetg caggagetge tggcagaaca ttataaacat caetggttee 480 cagaaaagcc atgcaaggga tcgggttacc gttgtattcg catcaaccat aaaatggatc 540 ctctgattgg acaggcagca cagcggattg gactgagcag tcaggagctg ttcaggcttc 600 teccaagtga acteaeacte tgggttgaee eetatgaagt gteetaeaga attggagagg 660 atggetecat etgtgtgetg tatgaageet caccageagg aggtageact caaaacagea 720 ccaacgtgca aatggtagac agccgaatca gctgtaagga ggaacttctc ttgggcagaa 780 cgagcccttc caaaaactac aatatgatga ctgtatcagg ttaagatata gtctgtggat 840 ggatcatctg atgatgatcc ataaatttga tttttgcttt gggtgggctc ctcttgggga 900 tggattatgg aatttaaacc atgtcacagc tgtgaagatc tggcacaaga tagaatggta 960 aaaaaaaaa aaaattttaa gtgacagtgc catagtttgg acagtacctt tcaatgatta 1020 attttaatag cctgtgagtc caagtaaatg atcactttat ttgctaggga gggaagtcct 1080 agggtggttt cagtttctcc cagacatacc taaattttta catcaatcct tttaaagaaa 1140 atctgtattt caaagaatct ttctctgcag taaatctcgc aggggaattt gcactattac 1200 acttgaaagt tgttattgtt aaccttttcg gcagctttta ataggaaagt taaacgtttt 1260 aaacatggta gtactggaaa ttttacaaga cttttaccta gcacttaaat atgtataaat 1320 gtacataaag acaaactagt aagcatgacc tggggaaatg gtcagacctt gtattgtgtt 1380 tttggccttg aaagtagcaa gtgaccagaa tctgccatgg caacaggctt taaaaaagac 1440 cettaaaaag acaetgtete aactgtggtg ttagcaccag ecagetetet gtacatttge 1500 tagcttgtag ttttctaaga ctgagtaaac ttcttatttt tagaaagtgg aggtctggtt 1560 tgtaactttc cttgtactta attgggtaaa agtcttttcc acaaaccacc atctattttg 1620 tgaactttgt tagtcatctt ttatttggta aattatgaac tggtgtaaat ttgtacagtt 1680

·	
catgtatatt gattgtggca aagttgtaca gatttctata ttttggatga gaaatttttc	1740
ttctctctat aataaatcgt ttcttatctt ggcattttta acc	1783
<210> 23 <211> 2605 <212> DNA <213> Homo sapiens	
<400> 23 geggagetee geatecaace eegggeegeg gecaacttet etggaetgga eeagaagttt	60
ctagccggcc agttgctacc tccctttatc tcctccttcc cctctggcag cgaggaggct	120
atttccagac acttccaccc ctctctggcc acgtcacccc cgcctttaat tcataaaggt	180
	240
geceggegee ggetteeegg acaegtegge ggeggagagg ggeceaegge ggeggeeegg	300
ccagagacte ggegeeegga gecagegeee egeaceegeg ecceageggg cagaceecaa	360
cccagcatga gcgccgccac ccactcgccc atgatgcagg tggcgtccgg caacggtgac	420
cgcgaccett tgccccccgg atgggagate aagategace cgcagaccgg etggccette	
ttcgtggacc acaacagccg caccactacg tggaacgacc cgcgcgtgcc ctctgagggc	480
cccaaggaga ctccatcctc tgccaatggc ccttcccggg agggctctag gctgccgcct	540
gctagggaag gccaccctgt gtacccccag ctccgaccag gctacattcc cattcctgtg	600
ctccatgaag gcgctgagaa ccggcaggtg caccctttcc atgtctatcc ccagcctggg	660
atgcagcgat teegaaetga ggeggeagea geggeteete agaggteeca gteacetetg	720
cggggcatgc cagaaaccac tcagccagat aaacagtgtg gacaggtggc agcggcggcg	780
gcageccage ceccageete ceaeggaeet gageggteee agtetecage tgeetetgae	840
tgctcatcet catectecte ggccageetg cettecteeg gcaggageag cetgggcagt	900
caccagetee egegggggta catetecatt eeggtgatae aegageagaa egttaeeegg	960
ccagcagccc agccctcctt ccaccaagcc cagaagacgc actacccagc gcagcagggg	1020
gagtaccaga cccaccagcc tgtgtaccac aagatccagg gggatgactg ggagccccgg	1080
cccctgcggg cggcatcccc gttcaggtca tctgtccagg gtgcatcgag ccgggagggc	1140
tcaccagcca ggagcagcac gccactccac tccccctcgc ccatccgtgt gcacaccgtg	1200
gtcgacaggc ctcagcagcc catgacccat cgagaaactg cacctgtttc ccagcctgaa	1260
aacaaaccag aaagtaagcc aggcccagtt ggaccagaac tccctcctgg acacatccca	1320
attcaagtga teegeaaaga ggtggattet aaacetgttt ceeagaagee ceeaceteee	1380
totgagaagg tagaggtgaa agttocccot gotcoagtto ottgtoctoo toccagocot	1440
totgagaagg tagaggtgaa agttobeect getecagtee tetgeteece teedaggees	. = = -

ggcccttctg ctgtcccctc ttcccccaag agtgtggcta cagaagagag ggcagccccc 1500

agcactgccc	ctgcagaagc	tacacctcca	aaaccaggag	aagccgaggc	tcccccaaaa	1560
catccaggag	tgctgaaagt	ggaagccatc	ctggagaagg	tgcaggggct	ggagcaggct	1620
gtagacaact	ttgaaggcaa	gaagactgac	aaaaagtacc	tgatgatcga	agagtatttg	1680
accaaagagc	tgctggccct	ggattcagtg	gaccccgagg	gacgagccga	tgtgcgtcag	1740
gccaggagag	acggtgtcag	gaaggttcag	accatcttgg	aaaaacttga	acagaaagcc	1800
attgatgtcc	caggtcaagt	ccaggtctat	gaactccagc	ccagcaacct	tgaagcagat	1860
cagccactgc	aggcaatcat	ggagatgggt	gccgtggcag	cagacaaggg	caagaaaaat	1920
gctggaaatg	cagaagatcc	ccacacagaa	acccagcagc	cagaagccac	agcagcagcg	1980
acttcaaacc	ccagcagcat	gacagacacc	cctggtaacc	cagcagcacc	gtagcctctg	2040
ccctgtaaaa	atcagactcg	gaaccgatgt	gtgctttagg	gaattttaag	ttgcatgcat	2100
ttcagagact	ttaagtcagt	tggtttttat	tagctgcttg	gtatgcagta	acttgggtgg	2160
aggcaaaaca	ctaataaaag	ggctaaaaag	gaaaatgatg	cttttcttct	atattcttac	2220
tctgtacaaa	taaagaagtt	gcttgttgtt	tgagaagttt	aaccccgttg	cttgttctgc	2280
agccctgtct	acttgggcac	ccccaccacc	tgttagctgt	ggttgtgcac	tgtcttttgt	2340
agctctggac	tggaggggta	gatggggagt	caattaccca	tcacataaat	atgaaacatt	2400
tatcagaaat	gttgccattt	taatgagatg	attttcttca	. tctcataatt	aaaatacctg	2460
actttagaga	gagtaaaatg	tgccaggagc	: cataggaata	tctgtatgtt	ggatgacttt:	2520
aatgctacat	tttaaaaaaa	gaaaataaag	taataatata	actcaaaaaa	aaaaaaaaaa	2580
aaaaaaaaa	a aaaaaaaaa	aaaaa				2605

<210> 24

<211> 6030

<212> DNA

<213> Homo sapiens

<400> 24

gttggcccc gttgcttttc ctctgggaag gatggcgcac gctgggagaa cagggtacga 60 taaccgggag atagtgatga agtacatcca ttataagctg tcgcagaggg gctacgagtg 120 ggatgeggga gatgtgggeg cegegeeece gggggeegee eeegeaeegg geatettete 180 ctcccagccc gggcacacgc cccatccagc cgcatcccgg gacccggtcg ccaggacctc 240 gccgctgcag accccggctg cccccggcgc cgccgcgggg cctgcgctca gcccggtgcc 300 acctgtggtc cacctgaccc tccgccaggc cggcgacgac ttctcccgcc gctaccgccg 360 cgacttcgcc gagatgtcca gccagctgca cctgacgccc ttcaccgcgc ggggacgctt 420 tgccacggtg gtggaggagc tcttcaggga cggggtgaac tgggggagga ttgtggcctt 480

ctttgagttc	ggtggggtca	tgtgtgtgga	gagcgtcaac	cgggagatgt	cgcccctggt	540
ggacaacatc	gccctgtgga	tgactgagta	cctgaaccgg	cacctgcaca	cctggatcca	600
ggataacgga	ggctgggatg	cctttgtgga	actgtacggc	cccagcatgc	ggcctctgtt	660
tgatttctcc	tggctgtctc	tgaagactct	gctcagtttg	gccctggtgg	gagcttgcat	720
caccctgggt	gcctatctgg	gccacaagtg	aagtcaacat	gcctgcccca	aacaaatatg	780
caaaaggttc	actaaagcag	tagaaataat	atgcattgtc	agtgatgtac	catgaaacaa	840
agctgcaggc	tgtttaagaa	aaaataacac	acatataaac	atcacacaca	cagacagaca	900
cacacacaca	caacaattaa	cagtcttcag	gcaaaacgtc	gaatcagcta	tttactgcca	960
aagggaaata	tcatttattt	tttacattat	taagaaaaaa	agatttattt	atttaagaca	1020
gtcccatcaa	aactcctgtc	tttggaaatc	cgaccactaa	ttgccaagca	ccgcttcgtg	1080
tggctccacc	tggatgttct	gtgcctgtaa	acatagattc	gctttccatg	ttgttggccg	1140
gatcaccatc	tgaagagcag	acggatggaa	aaaggacctg	atcattgggg	aagctggctt	1200
tctggctgct	ggaggctggg	gagaaggtgt	tcattcactt	gcatttcttt	gccctggggg	1260
ctgtgatatt	aacagaggga	gggttcctgt	ggggggaagt	ccatgcctcc	ctggcctgaa	1320
gaagagactc	tttgcatatg	actcacatga	tgcatacctg	gtgggaggaa	aagagttggg	1380
aacttcagat	ggacctagta	cccactgaga	tttccacgcc	gaaggacagc	gatgggaaaa	1440
atgcccttaa	atcataggaa	agtattttt	taagctacca	attgtgccga	gaaaagcatt	1500
ttagcaattt	atacaatatc	atccagtacc	ttaagccctg	attgtgtata	ttcatatatt	1560
ttggatacgc	accccccaac	tcccaatact	ggctctgtct	gagtaagaaa	cagaatcctc	1620
tggaacttga	ggaagtgaac	atttcggtga	cttccgcatc	aggaaggcta	gagttaccca	1680
gagcatcagg	ccgccacaag	tgcctgcttt	taggagaccg	aagtccgcag	aacctgcctg	1740
tgtcccagct	tggaggcctg	gtcctggaac	tgagccgggg	ccctcactgg	cctcctccag	1800
ggatgatcaa	cagggcagtg	tggtctccga	atgtctggaa	gctgatggag	ctcagaattc	1860
cactgtcaag	g aaagagcagt	agaggggtgt	ggetgggeet	gtcaccctgg	ggccctccag	1920
gtaggcccgt	: tttcacgtgg	agcatgggag	g ccacgaccct	tcttaagaca	tgtatcactg	1980
tagagggaag	gaacagaggo	cctgggccct	tcctatcaga	aggacatggt	gaaggctggg	2040
aacgtgagga	a gaggcaatgg	ccacggccca	ttttggctgt	agcacatggc	acgttggctg	2100
tgtggccttg	g gcccacctgt	gagtttaaag	g caaggettta	aatgactttg	gagagggtca	2160
caaatcctaa	a aagaagcatt	gaagtgaggt	gtcatggatt	aattgacccc	tgtctatgga	2220
attacatgta	a aaacattato	: ttgtcactgt	agtttggttt	tatttgaaaa	cctgacaaaa	2280
aaaaagttco	aggtgtggaa	tatgggggt	atctgtacat	cctggggcat	taaaaaaaaa	2340

atcaatggtg gggaactata aagaagtaac aaaagaagtg acatcttcag caaataaact 2400 aggaaatttt tttttcttcc agtttagaat cagccttgaa acattgatgg aataactctg 2460 tggcattatt gcattatata ccatttatct gtattaactt tggaatgtac tctgttcaat 2520 gtttaatgct gtggttgata tttcgaaagc tgctttaaaa aaatacatgc atctcagcgt 2580 ttttttgttt ttaattgtat ttagttatgg cctatacact atttgtgagc aaaggtgatc 2640 gttttctgtt tgagattttt atctcttgat tcttcaaaag cattctgaga aggtgagata 2700 agccctgagt ctcagctacc taagaaaaac ctggatgtca ctggccactg aggagctttg 2760 tttcaaccaa gtcatgtgca tttccacgtc aacagaattg tttattgtga cagttatatc 2820 tgttgtccct ttgaccttgt ttcttgaagg tttcctcgtc cctgggcaat tccgcattta 2880 attcatggta ttcaggatta catgcatgtt tggttaaacc catgagattc attcagttaa 2940 aaatccagat ggcaaatgac cagcagattc aaatctatgg tggtttgacc tttagagagt 3000 tgctttacgt ggcctgtttc aacacagacc cacccagagc cctcctgccc tccttccgcg 3060 ggggetttet catggetgte etteagggte tteetgaaat geagtggtge ttaegeteea 3120 ccaagaaagc aggaaacctg tggtatgaag ccagacctcc ccggcgggcc tcagggaaca 3180 gaatgatcag acctttgaat gattctaatt tttaagcaaa atattatttt atgaaaggtt 3240 tacattgtca aagtgatgaa tatggaatat ccaatcetgt getgetatee tgeeaaaate 3300 attttaatgg agtcagtttg cagtatgctc cacgtggtaa gatcctccaa gctgctttag 3360 aagtaacaat gaagaacgtg gacgttttta atataaagcc tgttttgtct tttgttgttg 3420 ttcaaacggg attcacagag tatttgaaaa atgtatatat attaagaggt cacgggggct 3480 aattgctggc tggctgcctt ttgctgtggg gttttgttac ctggttttaa taacagtaaa 3540 tgtgcccagc ctcttggccc cagaactgta cagtattgtg gctgcacttg ctctaagagt 3600 agttgatgtt gcattttcct tattgttaaa aacatgttag aagcaatgaa tgtatataaa 3660 agcctcaact agtcattttt ttctcctctt cttttttttc attatatcta attattttgc 3720 agttgggcaa cagagaacca tccctatttt gtattgaaga gggattcaca tctgcatctt 3780 aactgetett tatgaatgaa aaaacagtee tetgtatgta eteetettta eactggeeag 3840 ggtcagagtt aaatagagta tatgcacttt ccaaattggg gacaagggct ctaaaaaaag 3900 ccccaaaagg agaagaacat ctgagaacct cctcggccct cccagtccct cgctgcacaa 3960 atactccgca agagaggcca gaatgacagc tgacagggtc tatggccatc gggtcgtctc 4020 cgaagatttg gcaggggcag aaaactctgg caggcttaag atttggaata aagtcacaga 4080 attaaggaag cacctcaatt tagttcaaac aagacgccaa cattctctcc acagctcact 4140

tacctctctg tgttcagatg tggccttcca tttatatgtg atctttgttt tattagtaaa 4200 tgcttatcat ctaaagatgt agctctggcc cagtgggaaa aattaggaag tgattataaa 4260 tcgagaggag ttataataat caagattaaa tgtaaataat cagggcaatc ccaacacatg 4320 tctagctttc acctccagga tctattgagt gaacagaatt gcaaatagtc tctatttgta 4380 attgaactta tcctaaaaca aatagtttat aaatgtgaac ttaaactcta attaattcca 4440 actgtacttt taaggcagtg gctgttttta gactttctta tcacttatag ttagtaatgt 4500 acacctactc tatcagagaa aaacaggaaa ggctcgaaat acaagccatt ctaaggaaat 4560 tagggagtca gttgaaattc tattctgatc ttattctgtg gtgtcttttg cagcccagac 4620 aaatgtggtt acacactttt taagaaatac aattctacat tgtcaagctt atgaaggttc 4680 caatcagatc tttattgtta ttcaatttgg atctttcagg gattttttt ttaaattatt 4740 atgggacaaa ggacatttgt tggaggggtg ggagggagga agaattttta aatgtaaaac 4800 attcccaagt ttggatcagg gagttggaag ttttcagaat aaccagaact aagggtatga 4860 aggacctgta ttggggtcga tgtgatgcct ctgcgaagaa ccttgtgtga caaatgagaa 4920 acattttgaa gtttgtggta cgacctttag attccagaga catcagcatg gctcaaagtg 4980 cageteegtt tggcagtgca atggtataaa tttcaagetg gatatgteta atgggtattt 5040 aaacaataaa tgtgcagttt taactaacag gatatttaat gacaaccttc tggttggtag 5100 ggacatctgt ttctaaatgt ttattatgta caatacagaa aaaaatttta taaaattaag 5160 caatgtgaaa ctgaattgga gagtgataat acaagtcctt tagtcttacc cagtgaatca 5220 ttctgttcca tgtctttgga caaccatgac cttggacaat catgaaatat gcatctcact 5280 ggatgcaaag aaaatcagat ggagcatgaa tggtactgta ccggttcatc tggactgccc 5340 cagaaaaata acttcaagca aacatcctat caacaacaag gttgttctgc ataccaagct 5400 gagcacagaa gatgggaaca ctggtggagg atggaaaggc tcgctcaatc aagaaaattc 5460 tgagactatt aataaataag actgtagtgt agatactgag taaatccatg cacctaaacc 5520 ttttggaaaa tctgccgtgg gccctccaga tagctcattt cattaagttt ttccctccaa 5580 ggtagaattt gcaagagtga cagtggattg catttctttt ggggaagctt tcttttggtg 5640 gttttgttta ttataccttc ttaagttttc aaccaaggtt tgcttttgtt ttgagttact 5700 ggggttattt ttgttttaaa taaaaataag tgtacaataa gtgtttttgt attgaaagct 5760 tttgttatca agattttcat acttttacct tccatggctc tttttaagat tgatactttt 5820 aagaggtggc tgatattctg caacactgta cacataaaaa atacggtaag gatactttac 5880 atggttaagg taaagtaagt ctccagttgg ccaccattag ctataatggc actttgtttg 5940 tgttgttgga aaaagtcaca ttgccattaa actttccttg tctgtctagt taatattgtg 6000

aagaaaaata aagtacagtg tgagatactg	6030
<210> 25 <211> 922 <212> DNA <213> Homo sapiens	
<400> 25	60
gcaggtctct gtcgagcagc ggacgccggt ctctgttccg caggatgggg tttgttaaag	120
ttgttaagaa taaggcctac tttaagagat accaagtgaa atttagaaga cgacgagagg	
gtaaaactga ttattatgct cggaaacgct tggtgataca agataaaaat aaatacaaca	180
cacccaaata caggatgata gttcgtgtga caaacagaga tatcatttgt cagattgctt	240
atgcccgtat agagggggat atgatagtct gcgcagcgta tgcacacgaa ctgccaaaat	300
atggtgtgaa ggttggcctg acaaattatg ctgcagccaa gtggaggtga ctggtgatga	360
atacaatgtg gaaagcattg atggtcagcc aggtgccttc acctgctatt tggatgcagg	420
ccttgccaga actaccactg gcaataaagt ttttggtgcc ctgaagggag ctgtggatgg	480
aggettgtet ateceteaca gtaccaaacg attecetggt tatgattetg aaagcaagga	540
atttaatgca gaagtacatc ggaagcacat catgggccag aatgttgcag attacatgcg	600
ctacttaatg gaagaagatg aagatgctta caagaaacag ttctctcaat acataaagaa	660
cagcgtaact ccagacatga tggaggagat gtataagaaa gctcatgctg ctatacgaga	720
gaatccagtc tatgaaaaga agcccaagaa agaagttaaa aagaagaggt ggaaccgtcc	780
caaaatgtcc cttgctcaga agaaggatcg ggtagctcaa aagaaggcaa gcttcctcag	840
agctcaggag cgggctgctg agagctaaac ccagcaattt tctatgattt tttcagatat	900
agataataaa cttatgaaca gc	922
<210> 26 <211> 3590 <212> DNA <213> Homo sapiens	
<400> 26 tetteagtat atgaattace ettteattea geetttagaa attatatttt ageetttatt	60
tttaacctgc caacatactt taagtaggga ttaatattta agtgaactat tgtgggtttt	120
tttgaatgtt ggttttaata cttgatttaa tcaccactca aaaatgtttt gatggtctta	180
aggaacatct ctgctttcac tctttagaaa taatggtcat tcgggctggg cgcagcggct	240
cacgcctgta atcccagcac tttgggaggc cgaggtgagc ggatcacaag gtcaggagtt	300
cgagaccagc ctggccaaga gaccagcctg gccagtatgg tgaaaccctg tctctactaa	360

aaatacaaaa attageegag catggtggeg ggeaeetgta ateeeageta etegagagge 420 tgaggcagga gaatctcttg aacctgggag gtgaaggttg ctgtgggcca aaatcatgcc 480 attgcactcc agcctgggtg acaagagcga aactccatct caaaaaaaaa aaaaaaaac 540 agaaacttat ttggattttt cctagtaaga tcactcagtg ttactaaata atgaagttgt 600 tatggagaac aaatttcaaa gacacagtta gtgtagttac tatttttta agtgtgtatt 660 aaaacttctc attctattct ctttatcttt taagcccttc tgtactgtcc atgtatgtta 720 tetttetgtg ataactteat agattgeett ctagtteatg aattetettg teagatgtat 780 ataatctctt ttaccctatc cattgggctt cttctttcag aaattgtttt tcatttctaa 840 ttatgcatca tttttcagat ctctgtttct tgatgtcatt tttaatgttt ttttaatgtt 900 ttttatgtca ctaattattt taaatgtctg tacctgatag acactgtaat agttctatta 960 aatttagttc ctgctgttta tatctgttga tttttgtatt tgataggctg ttcatccagt 1020 tttgtctttt tgaaaagtga gtttattttc agcaaggctt tatctatggg aatcttgagt 1080 gtctgtttat gtcatattcc cagggctgtt gctgcacaca agcccattct tattttaatt 1140 tcttggcttt agggtttcca tacctgaagt gtagcataaa tactgatagg agatttccca 1200 ggccaaggca aacacactte etecteatet eettgtgeta gtgggcagaa tatttgattg 1260 atgccttttt cactgagagt ataagcttcc atgtgtccca cctttatggc aggggtggaa 1320 ggaggtacat ttaattccca ctgcctgcct ttggcaagcc ctgggttctt tgctccccat 1380 atagatgtct aagctaaaag ccgtgggtta atgagactgg caaattgttc caggacagct 1440 acagcatcag ctcacatatt cacctctctg gtttttcatt cccctcattt ttttctgaga 1500 cagagtettg etetgteace caggetggag tgeagtggea tgateteage teactgaaac 1560 ctctgcctcc tgggttcaag caattctcct gcctcagcct cccgagtagc tgggactaca 1620 ggcgtgtgcc aacacgcccg gctaattttt tgtattttta ttagagacgg agtttcaccg 1680 tgttagccag gatggtctcg atcgcttgac ctcgtgatcc accctcctcg gcctcccaaa 1740 gtgctgggat tacaggtgtg agccaccgcg cccggcctca ttcccctcat ttttgaccgt 1800 aaggatttcc cctttcttgt aagttctgct atgtatttaa aagaatgttt tctacatttt 1860 atccagcatt tctctgtgtt ctgttggaag ggaagggctt aggtatctag tttgatacat 1920 aggtagaagt ggaacatttc tctgtccccc agctgtcatc atataagata aacatcagat 1980 aaaaagccac ctgaaagtaa aactactgac tcgtgtatta gtgagtataa tctcttctcc 2040 atccttagga aaatgttcat cccagctgcg gagattaaca aatgggtgat tgagctttct 2100 cctcgtattt ggaccttgaa ggttatataa attttttct tatgaagagt tggcatttct 2160 ttttattgcc aatggcaggc actcattcat atttgatctc ctcaccttcc cctcccctaa 2220

ć	aaccaatctc	cagaactttt	tggactataa	atttcttggt	ttgacttctg	gagaactgtt	2280
			caaattacaa				2340
			tatatattgg				2400
			tttaagaaag				2460
			tagataaatg				2520
			catcattaat				2580
			tattctaatc				2640
							2700
			gaaataacta				
	agatttttt	tttgtaattt	tagtagagac	agggttgcca	ttgtattcca	gccttggcga	2760
	cagagcaaga	ctctgcctca	aaaaaaaaa	aaaaaaggtt	ttggcaagct	ggaactcttt	2820
	ctgcaaatga	ctaagataga	aaactgccaa	ggacaaatga	ggagtagtta	gattttgaaa	2880
	atattaatca	tagaatagtt	gttgtatgct	aagtcactga	cccatattat	gtacagcatt	2940
	tctgatcttt	actttgcaag	attagtgata	ctatcccaat	acactgctgg	agaaatcaga	3000
	atttggagaa	ataagttgtc	caaggcaaga	agatagtaaa	ttataagtac	aagtgtaata	3060
						gccagtcagt	3120
	tgctcaaaag	gtcaatgaaa	accaaatagt	gaagctatca	gagaagctaa	taaattatag	3180
	actgcttgaa	cagttgtgtc	cagattaagg	gagataatag	ctttcccacc	ctactttgtg	3240
						ttggtcatta	3300
	tagtatatgo	: ctaaaatgta	tgcacttagg	aatgctaaaa	atttaaatat	ggtctaaagc	3360
						cttttaaaaa	3420
						: attttaattg	3480
						: attactttac	3540
			aagtgtttt				3590

<210> 27 <211> 5373

<400> 27
ggctcagcga tctcccagct cagctcctat agctggatac agcagcacac gcacccaata 60
attttatttg tgtgtgtg tgtgtgtat gagacaggtt tcagtagttg cctcccaaag 120
ttctgggatt acaggcatga gctaccatgc aggacctgtt ttgttttaat acttagtaat 180
tgggtgtaaa gtccttcaaa aaacaggtgg ggcaggtggg aaactccctt tgtgtgaccc 240

<212> DNA

<213> Homo sapiens

tctagcacca	gggataaaat	ttcaacttca	tcttaaagcg	acaacatact	tttccaagac	300
caagtgcgaa	atagtaaagg	gaagagctag	ctccgtagcc	gctcgccaca	gaatgccaca	360
agctttcaat	tatgggacaa	aattggaaca	catggaaacc	ctgtgcagac	tcccgcgaca	420
tetteectee	tctccaagtc	ccttcccaca	gaccttgcgc	cccacacgat	tattccccag	480
gggccgagca	ggacgacttg	ggtcccacta	tccggactca	geggtgeece	cacaaaagcg	540
tcccaaaaac	tccagctggg	gcagccctgg	ggcagatgct	gaaaagttgt	tcagaggccc	600
tcgggcagtc	ccgagatcta	ccccaggcca	gagggcctga	ccctccctaa	atgcgacgtt	660
ctcctacctt	ggttgatact	cacgttccca	gaaaagggtg	gaacctaggc	tggacgaggc	720
gcagggccaa	agtttaattc	ctctaagctc	cacccagctc	ccagcacctc	tccaggcggc	780
cccgtggggt	agggcggagc	cgggtcaaac	gtactccgct	tcccccgctc	cacccaccca	840
gggctaggga	gcgccccgag	agttggcctc	cctccccact	gggggcgcac	ctccccgccc	900
ccacccctac	ccgctggcgt	acccagtgga	acggagcctt	gtgtctccgc	ctcaagtccc	960
cggatgctca	cctccccgac	tegececege	tgtggccccg	ccccgcgcg	gctcttcgtg	1020
ccacgtcacc	gcctgcgtcg	cttccggagg	cgcagcgggc	gatgacgtca	cgggacgtgc	1080
cctctatatg	aggttgggga	geggetgagt	cggccttttc	cgcccgctcc	cccctcccc	1140
cgagcgccgc	: tccggctgca	ccgcgctcgc	tccgagtttc	aggctcgtgc	taagctagcg	1200
ccgtcgtcgt	ctcccttcag	tcgccatcat	gattatctac	cgggacctca	tcagccgtga	1260
gtcctcactg	cactatcctt	actgccgcac	acgggggtct	ggggtgcggg	tgggggcggg	1320
gaaggcgcag	g cegtegeggg	cctaggggac	geeggeggte	ttagccgagc	gcggaggggt	1380
cggtgcccgg	ggetegegee	: cagctctggt	gtgctacgga	ggggcagato	ccgcgtgcgg	1440
ccgccggcg	gggaaatgcg	ggaaatggcg	gegeegggeg	cacggtgatg	gccggtctgt	1500
gtatccggca	a gacgatgaga	tgttctccga	catctacaag	atccgggaga	tcgcggacgg	1560
gttgtgcctg	g gaggtggagg	ggaaggtgag	teggteggge	ctgcgcgtgg	g gggagtccgg	1620
gccgagcgg	g ctcgggtttc	ctccgctccc	: ccgcctgagg	g ttgtgcaato	ctccccgccg	1680
cctcctggc	g aggagacgct	ctttccggg	ttgggttttt	ctagaaaact	ggaggcggag	1740
tgatcctgg	a aataggcccg	g ccgcctcggc	geceatect	c ctcccggggt	tgtccgggac	1800
atgatgctt	c cggcttagga	a gcctggagto	c ctttcgtgtt	tgtcctgtc	c ccacttacca	1860
accggaggc	a tcacatgcco	c gcaactggaa	a acaactttt	aatgacccc	a ttttttgttc	1920
cggccaaca	g acaactctt	taagttaggt	cgttttgaga	a aatccacgg	g tcacaacttt	1980
attcccaaa	a tggtgcttti	t tttattttca	a gcaagaacta	a agaatactt	c ttatccgtga	2040

actattggcg	tggaaggtgc	tttggatgcg	tttgtgtctt	ttgcaattat	actgcttttt	2100
cttaatgcag	atggtcagta	ggacagaagg	taacattgat	gactcgctca	ttggtggaaa	2160
tgcctccgct	gaaggccccg	agggcgaagg	taccgaaagc	acagtaatca	ctggtgtcga	2220
tattgtcatg	aaccatcacc	tgcaggaaac	aagtttcaca	aaagaagcct	acaagaagta	2280
catcaaagat	tacatgaaat	cgtaagtgat	actggcagta	cctagctgat	gtctagaatc	2340
ttacaggatt	taaagattgg	ctaacttttg	aggttctttc	gcagtgggta	tacttttgtg	2400
aaagtccttg	cttttttatt	aatgagttca	cggaaaagag	tggttgcttt	tctataatat	2460
gagcatactg	aagcctgcag	tctgtttccg	tttagaatta	gaatagtatt	ttgaaaatag	2520
tcaacaagaa	atgtaaacat	tcttgaaaga	taccttctgt	gaactagtaa	tttcttaaca	2580
getggttgcc	tttttcagtg	ttttctttt	ttaagcttgg	atattttta	ctttaaaaat	2640
tgattttact	gaaaattcaa	tacttcaacc	tgttaatgaa	atgttgttt	agaatcaaag	2700
ggaaacttga	agaacagaga	ccagaaagag	taaaaccttt	tatgacaggg	gctgcagaac	2760
aaatcaagca	catccttgct	aatttcaaaa	actaccaggt	aaatacctta	agtatctgga	2820
tcaaaggatt	gtacaatttt	aactgcaaga	gcaaaaatta	agttgattaa	tcttcaattc	2880
tatactagta	ttccaggtgt	agaaagtggc	tttcccagct	cgcaggtgtt	tccaaatctt	2940
gtcttctgat	tgaaaatttg	cttcccagat	gacatttctc	agtttttctt	tttgtgaatt	3000
gcttaaccac	ctaagtgttc	tttcagtttt	ttgcttacaa	ttttaatgtg	tctcattgct	3060
actggtcctc	cttctaatgt	atctgagctt	gttaattcta	cttttggaaa	atgtcagtgg	3120
ctttcccttt	cctctaattt	tccagcttca	tgcatcccct	ggccataaga	tacttccaga	3180
ctgtatgata	tattctatca	ctgtcagcct	tatgttccct	gtggttgact	atataagcac	3240
gctttaggg	ttgggattgt	atttaggatt	gagagtaaag	gtttcctgaa	agcctagtgt	3300
tcctggattg	ctctgtaacg	ttatttttct	atttaggtca	ctattaaggt	gccttaatcc	3360
agtgaacaga	tgtctatgat	aagtgagcat	cagagctttt	gggtactgaa	gttttgattt	3420
ttgtggtggt	ctaaaccttc	ccttgtactg	tagtttgttt	tgaatggcat	gtatttgtat	3480
gtaatagtct	: aattctaggt	attttgtttg	cttcccaagt	tctttattgg	tgaaaacatg	3540
aatccagato	g gcatggttgc	: tctattggac	taccgtgagg	atggtgtgac	cccatatatg	3600
attttcttta	aggatggttt	agaaatggaa	aaatgtgtaa	gtacaaggaa	. gtgggttaaa	3660
ataaataat	g taaaaagaca	ttttagatgt	gatttgcaat	tgttttgtga	cactgagaat	3720
gagttttaca	a gcgttctgaa	a acatggtttt	agttttctct	ttggggatca	agagaattgt	3780
gtttcatate	g taaaacatto	: ttagggtata	acaggettag	catcttattt	gtggaaacgt	3840
tgagtgcaga	a tggggcataa	a taaagtacag	g tttaggctgg	gtgtggtggc	: tcacacctgt	3900

aatttcagca	cttgggacgc	cgaggtgggt	gcatcacctg	aggttgggag	ttcgagacca	3960
			gctaaaaata			4020
			gagcctgagg			4080
			accactgcac			4140
			tttaaatgct			4200
			tcacttcata			4260
			gtttactgat			4320
			agagetgaet			4380
			tcctatgttt			4440
					cagaaattac	4500
					g aggtttttgt	4560
						4620
					g ctaccgctga	4680
					tgttcttttg	4740
					t ttgtggcggc	4800
					g ttaatggtaa	4860
					t ttacagtaac	4920
					t gcttgtcatc	4980
					c ttcatttatt	5040
					t catgtaggtt	
					t taatgcatat	5100
					g taggctacta	5160
					aa aaaagaatca	
					ag tgccaacatc	
tgaagtgt	gg agccttac	cc atttcatc	ac ctacaacg	ga agtagtta	ac tggaagagat	
taccaaga	ga ataaaaag	ag actcatto	ag tgg			5373

<210> 28 <211> 1466 <212> DNA <213> Homo sapiens

<400> 28 ggggctgctg ggactcgtcg tcggttggcg actcccggac gttaggtagt ttgttgggcc 60 gggttctgag gccttgcttc tctttacttt tccactctag gccacgatgc cgcagtacca 120

gacctgggag gagttcagco	gcgctgccga	gaagctttac	ctcgctgacc	ctatgaaggc	180
acgtgtggtt ctcaaatata	ggcattctga	tgggaacttg	tgtgttaaag	taacagatga	240
tttagtttgt ttggtgtata	aaacagacca	agctcaagat	gtaaagaaga	ttgagaaatt	300
ccacagtcaa ctaatgcgad	: ttatggtagc	caaggaagcc	cgcaatgtta	ccatggaaac	360
tgagtgaatg gtttgaaatg	g aagactttgt	cgtgtactta	ggaagtaaat	atcttttgaa	420
ttagagaaag gttgggacag	, aaagtacttt	atgtaactaa	gtgggctgtt	cagaagctta	480
gaggtcattt tttgtaatt	tcttttaat	tactttagag	agctagggat	gcaaatgttt	540
tcagttagaa agcctttat	tacttttgga	aattgaacaa	gaaatgcatc	tgtcttagaa	600
actggagatt atttgatgt	: aggtaaaaca	tgtaattgtt	tctctggcaa	atttgtatca	660
gtaatttgaa aatgagata	: taggaaaaac	caattcttct	taaatttagt	tcatctttct	720
ttaaaagaac attaaatgt	a accattttgt	cagatccatg	tattttggag	cataaaatgt	780
atgctgttgt gaccaataa	a tataaaatat	ggtaattgga	attaactcca	caccatagta	840
tgcattgtta tacatactg	gtacctaatt	atgtatagca	gtgtagtctc	aattatatct	900
gaaagtaatt gtgactaac	a agtatgcttt	gccttatttc	cacatttaaa	ctacctgtta	960
atataaggga tttgtagta	cagcttgttg	agcaatgact	ttgaatctag	ttttcagtga	1020
tcagaagcag cagttattt	g agtgtatgaa	tggaatgatg	atcactgtgc	tataatgtac	1080
tgaaaccacc atattacag	a aatatttact	acatattttc	catctgtagt	ttctcagaag	1140
ggctatggat tagtttgaa	c tgtcaaatco	ttgcatactt	ctgtgacacc	cctgcccatt	1200
ttctgtcttt aattaacca	a ggtgttaggt	gtgactgtca	caactgttat	gttttccagt	1260
aaactagaag cacgatatt	t gataattata	. tttgtatttc	accacctaaa	tgtaatgttg	1320
attcctcaag aatgaaatg	a aggcactaca	ttgaaatatg	ttttgtataa	atttgtcatg	1380
ttgaacagca ttttagcat	g gtaagttccc	ttagctatat	gaattttggc	atgtttcaga	1440
gagatcagta aataaaata	t tagata				1466

<210> 29

<211> 1519

<212> DNA

<213> Homo sapiens

<400> 29

agcgatggcg gctgggccga gtgggtgtct ggtgccggcg tttgggctac ggttgttgtt 60 ggcgactgtg cttcaagcgg tgtctgcttt tggggcagag ttttcatcgg aggcatgcag 120 agagttaggc ttttctagca acttgctttg cagctcttgt gatcttctcg gacagttcaa 180 cctgcttcag ctggatcctg attgcagagg atgctgtcag gaggaagcac aatttgaaac 240

caaaaagctg tatgcaggag	ctattcttga	agtttgtgga	tgaaaattgg	gaaggttccc	300
tcaagtccaa gcttttgtta	ggagtgataa	acccaaactg	ttcagaggac	tgcaaatcaa	360
gtatgtccgt ggttcagaco	ctgtattaaa	gcttttggac	gacaatggga	acattgctga	420
agaactgagc attctcaaat	ggaacacaga	cagtgtagaa	gaattcctga	gtgaaaagtt	480
ggaacgcata taaatcttgo	: ttaaattttg	tcctatcctt	ttgttacctt	atcaaatgaa	540
atattacage acctagaaaa	taatttagtt	ttgcttgctt	ccattgatca	gtcttttact	600
tgaggcatta aatatctaa	taaatcgtga	aatggcagta	tagtccatga	tatctaagga	660
gttggcaagc ttaacaaaa	c ccattttta	taaatgtcca	tcctcctgca	tttgttgata	720
ccactaacaa aatgctttg	aacagacttg	cggttaatta	tgcaaatgat	agtttgtgat	780
aattggtcca gttttacga	a caacagattt	ctaaattaga	gaggttaaca	agacagatga	840
ttactatgcc tcatgtgct	g tgtgctcttt	gaaaggaatg	acagcagact	acaaagcaaa	900
taagatatac tgagcctca	a cagattgcct	gctcctcaga	gtctctccta	tttttgtatt	960
acccagcttt ctttttaat	a caaatgttat	ttatagttta	caatgaatgc	actgcataaa	1020
aactttgtag cttcattat	gtaaaacata	ttcaagatcc	tacagtaaga	gtgaaacatt	1080
cacaaagatt tgcgttaat	g aagactacac	agaaaacctt	tctagggatt	tgtgtggatc	1140
agatacatac ttggcaaat	t tttgagtttt	acattcttac	agaaaagtcc	atttaaaagt	1200
gatcatttgt aagaccaaa	a tataaataaa	aagtttcaaa	aatctatctg	aatttggaat	1260
tettetggtt tgttettte	a tgtttaaaaa	tgatgttttt	caatgcattt	ttttcatgta	1320
agcccttttt ttagccaaa	a tgtaaaaatg	gctgtaatat	ttaaaactta	taacatctta	1380
ttgttggtaa tagtgcttt	a tatttgtctg	attttattt	tcaaagtttt	ttcatttatg	1440
aacacatttt cattggtat	a ttatttaagg	aatatctctt	gatatagaat	tttatatta	1500
aaaatgattt ttctttggc					1519

<210> 30 <211> 1336 <212> DNA <213> Homo sapiens

<400> 30 ggggcttgca gagccggcgc cggaggagac gcacgcagct gactttgtct tctccgcacg actgttacag aggtctccag agccttctct ctcctgtgca aaatggcaac tcttaaggaa 120 aaactcattg caccagttgc ggaagaagag gcaacagttc caaacaataa gatcactgta 180 gtgggtgttg gacaagttgg tatggcgtgt gctatcagca ttctgggaaa gtctctggct 240 gatgaacttg ctcttgtgga tgttttggaa gataagctta aaggagaaat gatggatctg 300

cagcatggga	gcttatttct	tcagacacct	aaaattgtgg	cagataaaga	ttattctgtg	360
accgccaatt	ctaagattgt	agtggtaact	gcaggagtcc	gtcagcaaga	aggggagagt	420
cggctcaatc	tggtgcagag	aaatgttaat	gtcttcaaat	tcattattcc	tcagatcgtc	480
aagtacagtc	ctgattgcat	cataattgtg	gtttccaacc	cagtggacat	tcttacgtat	540
gttacctgga	aactaagtgg	attacccaaa	caccgcgtga	ttggaagtgg	atgtaatctg	600
gattctgcta	gatttcgcta	ccttatggct	gaaaaacttg	gcattcatcc	cagcagctgc	660
catggatgga	ttttggggga	acatggcgac	tcaagtgtgg	ctgtgtggag	tggtgtgaat	720
gtggcaggtg	tttctctcca	ggaattgaat	ccagaaatgg	gaactgacaa	tgatagtgaa	780
aattggaagg	aagtgcataa	gatggtggtt	gaaagtgcct	atgaagtcat	caagctaaaa	840
ggatatacca	actgggctat	tggattaagt	gtggctgatc	ttattgaatc	catgttgaaa	900
aatctatcca	ggattcatcc	cgtgtcaaca	atggtaaagg	ggatgtatgg	cattgagaat	960
gaagtcttcc	tgagccttcc	atgtatcctc	aatgcccggg	gattaaccag	cgttatcaac	1020
cagaagctaa	aggatgatga	ggttgctcag	ctcaagaaaa	gtgcagatac	cctgtgggac	1080
atccagaagg	acctaaaaga	cctgtgacta	gtgagctcta	ggctgtagaa	atttaaaaac	1140
tacaatgtga	ttaactcgag	cctttagttt	tcatccatgt	acatggatca	cagtttgctt	1200
tgatcttctt	caatatgtga	atttgggctc	acagaatcaa	agcctatgct	tggtttaatg	1260
cttgcaatct	gagctcttga	acaaataaaa	ttaactattg	tagtgcgaaa	aaaaaaaaaa	1320
aaaaaaaaa	aaaaaa					1336

<210> 31 <211> 2668 <212> DNA

<213> Homo sapiens

<400> 31 ctctctggat aggaagaaat atagtagaac cctttgaaaa tggatatttt cacatatttt 60 cgttcagata caaaagctgg cagttactga aataaggact tgaagttcct tcctcttttt 120 tttatgtctt aagagcagga aataaagaga cagctgaagg tgtagccttg accaactgaa 180 agggaaatct tcatcctctg aaaaaacata tgtgattctc aaaaaacgca tctggaaaat 240 tgataaagaa gcgattctgt agattctccc agcgctgttg ggctctcaat tccttctgtg 300 aaggacaaca tatggtgatg gggaaatcag aagctttgag accctctaca cctggatatg 360 aatccccctt ctaatactta ccagaaatga aggggatact cagggcagag ttctgaatct 420 caaaacactc tactctggca aaggaatgaa gttattggag tgatgacagg aacacgggag 480 aacaatgctc tgtttgggct ggatatttct ttggcttgtt gcaggagagc gaattaaagg 540

atttaatatt	tcaggttgtt	ccacaaaaaa	actcctttgg	acatattcta	caaggagtga	600
agaggaattt	gtcttatttt	gtgatttacc	agagccacag	aaatcacatt	tctgccacag	660
aaatcgactc	tcaccaaaac	aagtccctga	gcacctgccc	ttcatgggta	gtaacgacct	720
atctgatgtc	caatggtacc	aacaaccttc	gaatggagat	ccattagagg	acattaggaa	780
aagctatcct	cacatcattc	aggacaaatg	tacccttcac	tttttgaccc	caggggtgaa	840
taattctggg	tcatatattt	gtagacccaa	gatgattaag	agcccctatg	atgtagcctg	900
ttgtgtcaag	atgattttag	aagttaagcc	ccagacaaat	gcatcctgtg	agtattccgc	960
atcacataag	caagacctac	ttcttgggag	cactggctct	atttcttgcc	ccagtctcag	1020
ctgccaaagt	gatgcacaaa	gtccagcggt	aacctggtac	aagaatggaa	aactcctctc	1080
tgtggaaagg	agcaaccgaa	tcgtagtgga	tgaagtttat	gactatcacc	agggcacata	1140
tgtatgtgat	tacactcagt	cggatactgt	gagttcgtgg	acagtcagag	ctgttgttca	1200
agtgagaacc	attgtgggag	acactaaact	caaaccagat	attctggatc	ctgtcgagga	1260
cacactggaa	gtagaacttg	gaaagccttt	aactattagc	tgcaaagcac	gatttggctt	1320
tgaaagggtc	tttaaccctg	tcataaaatg	gtacatcaaa	gattctgacc	tagagtggga	1380
agtctcagta	cctgaggcga	aaagtattaa	atccacttta	aaggatgaaa	tcattgagcg	1440
taatatcatc	ttggaaaaag	tcactcagcg	tgatcttcgc	aggaagtttg	tttgctttgt	1500
ccagaactcc	attggaaaca	caacccagtc	cgtccaactg	aaagaaaaga	gaggagtggt	1560
gctcctgtac	atcctgcttg	gcaccatcgg	gaccctggtg	gccgtgctgg	cggcgagtgc	1620
cctcctctac	aggcactgga	ttgaaatagt	gctgctgtac	cggacctacc	agagcaagga	1680
tcagacgctt	ggggataaaa	aggattttga	tgctttcgta	tcctatgcaa	aatggagctc	1740
ttttccaagt	gaggccactt	catctctgag	tgaagaacac	ttggccctga	gcctatttcc	1800
tgatgtttta	gaaaacaaat	atggatatag	cctgtgtttg	cttgaaagag	atgtggctcc	1860
aggaggagtg	tatgcagaag	acattgtgag	cattattaag	agaagcagaa	gaggaatatt	1920
tatcttgagc	cccaactatg	tcaatggacc	cagtatcttt	gaactacaag	cagcagtgaa	1980
tcttgccttg	gatgatcaaa	cactgaaact	cattttaatt	aagttctgtt	acttccaaga	2040
gccagagtct	ctacctcatc	: tcgtgaaaaa	agctctcagg	gttttgccca	cagttacttg	2100
gagaggctta	aaatcagtto	ctcccaattc	: taggttctgg	gccaaaatgc	gctaccacat	2160
gcctgtgaaa	aactctcagg	gattcacgt9	gaaccagete	agaattacct	ctaggatttt	2220
tcagtggaaa	ggactcagta	gaacagaaac	cactgggagg	ageteecage	ctaaggaatg	2280
gtgaaatgag	g ccctggagcc	ccctccagtc	cagtccctgg	gatagagatg	ttgctggaca	2340

gaactcacag ct	ctgtgtgt	gtgtgttcag	gctgatagga	aattcaaaga	gtctcctgcc	2400
agcaccaagc aa	gcttgatg	gacaatggag	tgggattgag	actgtggttt	agagcctttg	2460
atttcctgga ct	ggactgac	ggcgagtgaa	ttctctagac	cttgggtact	ttcagtacac	2520
aacaccccta ag	gatttccca	gtggtccgag	cagaatcaga	aaatacagct	acttctgcct	2580
tatggctagg ga	actgtcat	gtctaccatg	tattgtacat	atgactttat	gtatacttgc	2640
aatcaaataa at	attattt	attagaaa				2668
<210> 32 <211> 770 <212> DNA <213> Homo s	sapiens					
<400> 32 aggacacctt to	ggattaata	atgaaaacaa	ctactctctg	agcagctgtt	cgaatcatct	60
gatatttata c	tgaatgagt	tactgtaagt	acgtattgac	agaattacac	tgtactttcc	120
tctaggtgat c	tgtgaaaat	ggttcgctat	tcacttgacc	cggagaaccc	cacgaaatca	180
tgcaaatcaa ga	aggttccaa	tcttcgtgtt	cactttaaga	acactcgtga	aactgctcag	240
gccatcaagg g	tatgcatat	acgaaaagcc	acgaagtatc	tgaaagatgt	cactttacag	300
aaacagtgtg ta	accattccg	acgttacaat	ggtggagttg	gcaggtgtgc	gcaggccaag	360
caatggggct g	gacacaagg	tcggtggccc	aaaaagagtg	ctgaatttt	gctgcacatg	420
cttaaaaacg c	agagagtaa	tgctgaactt	aagggtttag	atgtagattc	tctggtcatt	480
gagcatatcc a	agtgaacaa	agcacctaag	atgcgccgcc	ggacctacag	agctcatggt	540
cggattaacc c	atacatgag	ctctccctgc	cacattgaga	tgatccttac	ggaaaaggaa	600
cagattgttc c	taaaccaga	agaggaggtt	gcccagaaga	aaaagatatc	ccagaagaaa	660
ctgaagaaac a	aaaacttat	ggcacgggag	taaattcagc	attaaaataa	atgtaattaa	720
aaagaaaaaa a	aaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa		770
<210> 33 <211> 539 <212> DNA <213> Homo <220> <221> misc	feature					
<222> (82). <223> n is <220>		t or u				
<221> misc_ <222> (519) <223> n is	(519)	t or u				

<220> <221> misc_feature <222> (531)..(531) <223> n is a, c, g, t or u gaggccgagc aatagactga agagaccaca gcaattggct cctccatcta gagattttct 60 tggcagtatt ccatgggatg tnaagcaaag gaaaccaaag gaatcgtttc aaatggactc 120 atggcttaga aatctttatt cttagggcag tcagtagtat tctaaagctt tctgacaaga 180 taaaggaagt caccaaaatt tottttttta aattgtatot aatootcaac aacaaaccaa 240 aacagaacaa ttaaacagcc aaataaaacc tcagggacaa catttttggt gtatttgagc 300 cctcccagca agtttcacct tgggtttgta ttttaaatgt tttacaagaa ttgtccatgt 360 gcttccctag gctgagctgg cattggtctg ctgacctgtt tttgtgtttt tcttttttt 420 atacacaaca tttatttcaa actaattggg agggatgaga gtggcttaaa aacttcccac 480 cctacttttc caagagtgcc agttggattc tgaatctgna aagcccgccc nctggtctt 539 <210> 34 2305 <211> <212> DNA <213> Homo sapiens <400> 34 aaaatgaaag gaaaaatatt tcaacccggc tgtcggtcta aaagaggaga gaatgctttc 60 tttaaaaaag ggtctgtgaa ttagttttcc tgatctaact tctaattttc tgtatgttct 120 gccatttgtg ggaaatattt cttcgtttca gattgttgat gttattgttg ggaaagacga 180 aaaaggcaga aagatcccag aatatctgat ccattttaat ggttggaaca gaagctggga 240 tagatgggca gcagaagatc atgtgcttcg tgataccgat gaaaatcgta gattacagcg 300 taaattggca agaaaagctg tagctcgcct gaggagcaca ggaagaaaga agaagcgctg 360 caggttgcct ggtgtggact ctgtcttaaa aggcctcccc actgaagaaa aagatgaaaa 420 tgatgaaaac tcattaagca gttcctctga ctgtagtgaa aacaaggatg aagaaataag 480 tgaagaaagt gatattgaag aaaagactga agtgaaagaa gaaccagagc ttcaaacaag 540 aagggaaatg gaagaaagaa caataactat agaaatccct gaagttctga agaagcagct 600 ggaggatgat tgttactaca ttaacaggag gaaacggtta gtgaaacttc catgccagac 660 caacatcata acgattttgg aatcctatgt gaagcatttt gctatcaatg cagccttttc 720 agccaatgag aggcctcgtc accatcacgt tatgccacat gccaacatga acgtgcatta 780 tatcccagca gaaaagaatg ttgacctttg taaggagatg gtggatggat taagaataac 840 ctttgattac actctcccgt tggttttact ctatccatat gaacaagctc agtataaaaa 900

ggtgacttcg	tctaaatttt	ttcttccaat	taaggaaagt	gccacaagca	ctaacaggag	960
ccaggaggaa	ctctctccca	gtccgccttt	gttgaatcca	tccacgccac	agtccacaga	1020
gagtcagccg	accaccggtg	aaccagccac	ccccaaaagg	cgcaaagctg	agccagaagc	1080
attgcagtct	ctgaggcggt	ccacgcgcca	cagtgccaac	tgtgacaggc	tttctgagag	1140
cagcgcttca	cctcagccca	agcgccggca	gcaggacaca	teegeeagea	tgcccaagct	1200
cttcctgcac	ctggaaaaga	agacacctgt	gcatagcaga	tcatcttcac	ctattcctct	1260
gactcctagc	aaggaaggga	gtgctgtgtt	tgctggcttt	gaagggagaa	gaactaatga	1320
aataaacgag	gtcctctcct	ggaagcttgt	gcctgacaat	taccccccag	gtgaccagcc	1380
gcctccaccc	tcttacattt	atggggcaca	acatttgctg	cgattgtttg	tgaaacttcc	1440
agaaatcctt	ggaaagatgt	ccttttctga	gaagaatctg	aaggctttat	tgaagcactt	1500
tgatctcttt	ttgaggtttt	tagcagaata	ccacgatgac	ttcttcccag	agtcggctta	1560
tgtcgctgcc	tgtgaggcac	attacagcac	caagaacccc	cgggcaattt	attaaaatgt	1620
tgttggttct	gtaagagcaa	ctgctctgtc	tagtttggcg	ctctgggttc	caggtgaata	1680
actaacaagg	tggtgggtct	ttacccacag	cgcaaacaca	atgcccacct	tggggctctg	1740
ttgtttgagt	tgcccacata	ctgcagttat	tctgttagga	atgattccct	gggtgcctga	1800
aagtgctctg	acacgacact	tgttactttg	caggccatct	gtgatggcaa	ggaaaaagca	1860
actatgttca	cagtgaaata	ttcgtggaat	aggttaggcc	atttcagtag	acattgcagt	1920
tagttagcaa	gaaccacatt	gtctctttat	ttgttagcat	taaacaaatt	tttttttgca	1980
aattggtttt	attttttga	tgaagccgag	caactctgtc	caaaaaggtt	tagtttgtac	2040
tcggaaacca	caaagtagtc	: tcaaagtatt	ttagagggaa	tcgatattga	tggcaaaaga	2100
aaatttgcag	ctatgcattt	gcttctaacg	gttccctctc	: tgtgaaacat	tatttttggt	2160
gatctaaaga	aagcattgcc	: tttcttattt	gagattttac	: agctatactt	: tgttgtgtaa	2220
tgttatggtt	ccctttctgt	aaaatgttat	ttttggtgat	ctaaataaag	g cctgtcttgt	2280
ttgaaagaaa	aaaaaaaaa	aaaaa				2305

<210> 35

<211> 1723 <212> DNA

<213> Homo sapiens

<400> 35

gggggagtgc gaatttcttg gcctgtcggc aggtgctttc tcaaaggccc cacagtcctc 60 cactteetgg ggaggtaget geagaataaa accageagag acteettte teetaacegt 120 cccggccacc gctgcctcag cctctgcctc ccagcctctt tctgagggaa aggacaagat 180

gaagtggaag	gcgcttttca	ccgcggccat	cctgcaggca	cagttgccga	ttacagaggc	240
acagagcttt	ggcctgctgg	atcccaaact	ctgctacctg	ctggatggaa	tcctcttcat	300
ctatggtgtc	attctcactg	ccttgttcct	gagagtgaag	ttcagcagga	gcgcagacgc	360
ccccgcgtac	cagcagggcc	agaaccagct	ctataacgag	ctcaatctag	gacgaagaga	420
ggagtacgat	gttttggaca	agagacgtgg	ccgggaccct	gagatggggg	gaaagccgag	480
aaggaagaac	cctcaggaag	gcctgtacaa	tgaactgcag	aaagataaga	tggcggaggc	540
ctacagtgag	attgggatga	aaggcgagcg	ccggaggggc	aaggggcacg	atggccttta ·	600
ccagggtctc	agtacagcca	ccaaggacac	ctacgacgcc	cttcacatgc	aggccctgcc	660
ccctcgctaa	cagccagggg	atttcaccac	tcaaaggcca	gacctgcaga	cgcccagatt	720
atgagacaca	ggatgaagca	tttacaaccc	ggttcactct	tctcagccac	tgaagtattc	780
ccctttatgt	acaggatgct	ttggttatat	ttagctccaa	accttcacac	acagactgtt	840
gtccctgcac	tctttaaggg	agtgtactcc	cagggettae	ggccctgcct	tgggccctct	900
ggtttgccgg	tggtgcaggt	agacctgtct	cctggcggtt	cctcgttctc	cctgggaggc	960
gggcgcactg	cctctcacag	ctgagttgtt	gagtctgttt	tgtaaagtcc	ccagagaaag	1020
cgcagatgct	agcacatgcc	ctaatgtctg	tatcactctg	tgtctgagtg	gcttcactcc	1080
tgctgtaaat	ttggcttctg	ttgtcacctt	cacctccttt	caaggtaact	gtactgggcc	1140
atgttgtgcc	tccctggtga	gagggccggg	cagaggggca	gatggaaagg	agcctaggcc	1200
aggtgcaacc	agggagctgc	aggggcatgg	gaaggtgggc	gggcagggga	gggtcagcca	1260
gggcctgcga	gggcagcggg	agcctccctg	cctcaggcct	ctgtgccgca	ccattgaact	1320
gtaccatgtg	ctacaggggc	cagaagatga	acagactgac	cttgatgagc	tgtgcacaaa	1380
gtggcataaa	aaacagtgtg	gttacacagt	gtgaataaag	tgctgcggag	caagaggagg	1440
ccgttgattc	acttcacgct	ttcagcgaat	gacaaaatca	tctttgtgaa	ggcctcgcag	1500
gaagacgcaa	cacatgggac	ctataactgc	ccagcggaca	gtggcaggac	aggaaaaacc	1560
cgtcaatgta	ctagggtact	gctgcgtcat	tacagggcac	aggccatgga	tggaaaacgc	1620
tetetgetet	gcttttttc	tactgtttta	atttatactg	gcatgctatt	gccttcctat	1680
tttgcataat	aaatgcttca	gtgaaaatgc	agctttactc	taa		1723

<210> 36 <211> 1280 <212> DNA <213> Homo sapiens

<400> 36

gaaagatggc gtcccgcaag gaaggtaccg gctctactgc cacctcttcc agctccaccg

ccggcgcagc a	agggaaaggc	aaaggcaaag	geggeteggg	agattcagcc	gtgaagcaag	120
tgcagataga t	tggccttgtg	gtattaaaga	taatcaaaca	ttatcaagaa	gaaggacaag	180
gaactgaagt t	tgttcaagga	gtgcttttgg	gtctggttgt	agaagatcgg	cttgaaatta	240
ccaactgctt t	tcctttccct	cagcacacag	aggatgatgc	tgactttgat	gaagtccaat	300
atcagatgga a	aatgatgcgg	agccttcgcc	atgtaaacat	tgatcatctt	cacgtgggct	360
ggtatcagtc	cacatactat	ggctcattcg	ttacccgggc	actcctggac	tctcagttta	420
gttaccagca	tgccattgaa	gaatctgtcg	ttctcattta	tgatcccata	aaaactgccc	480
aaggatctct	ctcactaaag	gcatacagac	tgactcctaa	actgatggaa	gtttgtaaag	540
aaaaggattt	ttcccctgaa	gcattgaaaa	aagcaaatat	cacctttgag	tacatgtttg	600
aagaagtgcc	gattgtaatt	aaaattcac	atctgatcaa	tgtcctaatg	tgggaacttg	660
aaaagaagtc	agctgttgca	gataaacatg	aattgctcag	ccttgccagc	agcaatcatt	720
tggggaagaa	tctacagttg	ctgatggaca	gagtggatga	aatgagccaa	gatatagtta	780
aatacaacac	atacatgagg	aatactagta	aacaacagca	gcagaaacat	cagtatcagc	840
agcgtcgcca	gcaggagaat	atgcagcgcc	agagccgagg	agaacccccg	ctccctgagg	900
aggacctgtc	caaactcttc	aaaccaccac	agccgcctgc	caggatggac	tcgctgctca	960
ttgcaggcca	gataaacact	tactgccaga	acatcaagga	gttcactgcc	caaaacttag	1020
gcaagctctt	catggcccag	gctcttcaag	aatacaacaa	ctaagaaaag	gaagtttcca	1080
gaaaagaagt	taacatgaac	tcttgaagtc	acaccagggc	aactcttgga	agaaatatat .	1140
ttgcatattg	aaaagcacag	aggatttctt	tagtgtcatt	gccgattttg	gctataacag	1200
tgtctttcta	gccataataa	aataaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1260
aaaaaaaaa	aaaaaaaaa					1280

<210> 37

<211> 1653 <212> DNA

<213> Homo sapiens

<400> 37

60 agegatttca tettcaggee tggactacae caetcaceet eccagtgtge ttgagaaaca aactgcaccc actgaactcc gcagctagca tccaaatcag cccttgagat ttgaggcctt 120 180 ggagactcag gagttttgag agcaaaatga caacacccag aaattcagta aatgggactt 240 tcccggcaga gccaatgaaa ggccctattg ctatgcaatc tggtccaaaa ccactcttca ggaggatgtc ttcactggtg ggccccacgc aaagcttctt catgagggaa tctaagactt 300 tgggggctgt ccagattatg aatgggctct tccacattgc cctggggggt cttctgatga 360

tcccagcagg gatctatgc	a cccatctgtg	tgactgtgtg	gtaccctctc	tggggaggca	420
ttatgtatat tatttccgg	a tcactcctgg	cagcaacgga	gaaaaactcc	aggaagtgtt	480
tggtcaaagg aaaaatgat	a atgaattcat	tgagcctctt	tgctgccatt	tctggaatga	540
ttctttcaat catggacat	a cttaatatta	aaatttccca	tttttaaaa	atggagagtc	600
tgaattttat tagagctca	c acaccatata	ttaacatata	caactgtgaa	ccagctaatc	660
cctctgagaa aaactcccc	a tctacccaat	actgttacag	catacaatct	ctgttcttgg	720
gcattttgtc agtgatgct	g atctttgcct	tcttccagga	acttgtaata	gctggcatcg	780
ttgagaatga atggaaaag	a acgtgctcca	gacccaaatc	taacatagtt	ctcctgtcag	840
cagaagaaaa aaaagaaca	g actattgaaa	taaaagaaga	agtggttggg	ctaactgaaa	900
catcttccca accaaagaa	t gaagaagaca	ttgaaattat	tccaatccaa	gaagaggaag	960
aagaagaaac agagacgaa	c tttccagaac	ctccccaaga	tcaggaatcc	tcaccaatag	1020
aaaatgacag ctctcctta	a gtgatttctt	ctgttttctg	tttccttttt	taaacattag	1080
tgttcatagc ttccaagag	ga catgetgaet	ttcatttctt	gaggtactct	gcacatacgc	1140
accacatctc tatctggco	t ttgcatggag	tgaccatagc	tccttctctc	ttacattgaa	1200
tgtagagaat gtagccatt	g tagcagettg	tgttgtcacg	cttcttcttt	tgagcaactt	1260
tcttacactg aagaaaggo	ca gaatgagtgo	: ttcagaatgt	gatttcctac	taacctgttc	1320
cttggatagg ctttttag	a tagtatttt	tttgtcatt	ttctccatca	acaaccaggg	1380
agactgcacc tgatggaa	aa gatatatgac	: tgcttcatga	cattcctaaa	ctatctttt	1440
tttattccac atctacgt	t ttggtggagt	cccttttgca	tcattgtttt	aaggatgata	1500
aaaaaaaaat aacaacta	gg gacaatacag	aacccattcc	atttatcttt	ctacagggct	1560
gacattgtgg cacattct	ta gagttaccad	accccatgag	ggaagctcta	aatagccaac	1620
acccatctgt tttttgta	aa aacagcatag	g ctt			1653

<210> 38

<211> 1937

<212> DNA

<213> Homo sapiens

<400> 38

gataactgta tratatttt catctagcta taaaacttta atcttactct taatatcctg 60
gatttaattc aaactcctgt tgggttcttc acaaatgaga acttgttcaa aggatttatt 120
gaactggtat tgatttcact gaaaattttc cacaccacca ccattgttt tttgaattct 180
tggtgttgtg cttcccacct tctgtccttt tcgtttgttt agagaagatg aatttttaaa 240
aagcagataa attgctaatg agcaataatg accttatctt taccaaaaca ctgaaaatta 300

agagaggttc	agtgttgaag	aagcacaata	tgctgcggtg	tctttttcta	gaagtgaatg	360
gaaatcttgc	tcagttggca	tttcaagcag	gaaatgaaat	gcttgcttta	atggcaaagc	420
agcgttaaca	tttttcctgt	cgtgtagcag	agagtacaag	aatcatttca	gcaaagcagt	480
gactcaccat	gagacgttat	ctccatggag	ctgcgttttg	acttttccca	ctctcttact	540
catagaagga	ggacaaagga	acgaaatgaa	atcatgctca	caatgaactg	ttcattacat	600
caactgatct	ctctctctct	ctcttcctct	ctttctcttt	ctcccatacc	ccaaggcaaa	660
attttttaa	agaaatgact	ttaaaaacta	tcatttctgt	attttaatta	catctcttag	720
aaataaaatt	atgtttgcac	catagctttc	taagaaaaaa	aaatgtgttt	ttaactgagt	780
cttagttgct	tagtgctttt	atttgtgtta	tttttagact	gtattttaac	cacaactaca	840
aggatcatgt	ttcattgcac	ttacttattt	gccagtgtct	gcctgtcttt	gctaaataca	900
ttactatctc	caaattgcct	aaaatctgct	atgattctac	agtaaatagc	tcagggtatt	960
tctatttatc	actactaaaa	gggcaccata	gtatgttttg	gtactttagg	cagtaaacac	1020
tgcttggttt	atcattttgt	tattaaatta	gaacaagaac	atcaaatgga	tttgctgcac	1080
tagttattct	ttgtactgtt	gagcaacttg	gtgtgcttat	atgttgtgtt	ggttgaagaa	1140
ctcatccgtt	ttattgtctt	gtaatatgaa	gttagagtgc	ctttttatat	ttgtatattc	1200
tgaaaatgtt	ctgtggaatg	ttttgtattt	tttcatttga	gtgttatcag	agcaatatga	1260
taccagtgag	ttttcatttc	aacttttctt	tgaatgtata	aagtgtcttt	tttcctattt	1320
ccccttgtac	ttgcattgaa	atgaatatga	aaatgcttaa	gttttctata	ggaattgttt	1380
gattttgcag	tgctaaaatg	ctttcgtctt	acgaaactat	aaaccatagg	tcagtattat	1440
aggggaaaag	cattttaaga	tagtgacaat	ctgagtgttg	tataaaatgt	aattctatgc	1500
gtttcttatg	tgatctaaaa	attcaatgca	aatatctttt	atttggtagt	tttgtctaca	1560
tattttatgc	tctagcatgt	gcaatatatc	tttgtaaagc	acgatgatac	aaatctggtg	1620
ccagtgttat	attttgcata	acatatttgt	aacagcataa	aatattgttt	gatgatttca	1680
gtgggatttt	gtctataatg	ttttcttatg	taaattggag	ttgaatgact	ctggtaaatg	1740
tcatgactgt	aaaaatgggg	aaaatgactt	ttagttcagt	gaatgacttt	gaaacaatct	1800
gaatcttctc	aagcacagtt	taatactttt	gcaactactg	aatgctctaa	taacgtaatg	1860
aagtacttaa	ctgtaatata	ctatggaaat	gcattcagat	ggttatttt	acaaataaaa	1920
acggtacaaa	tattgtt					1937

<210> 39 <211> 2647 <212> DNA

<213> Homo sapiens

<400> 39 aaaccccatc cccgcttagg tgcgaggcat caccttctca caagtgttta gtttctttta 60 accacaagta tcattcttgg gtgataatat agtttcattc tacttaggga ttgtttagaa 120 aacaaagaaa gagccaatta aattttttag tttttgaaat ttttatttat atgtatactt 180 agatgagtat tttaagctgt cgacctttag tttgccatac gggtaggact gtatttcatg 240 ttaacaactg gtggtaatga taagcettet tetagegtat tttetettet tteetgteae 300 tttcctaagt ttttttttt taaagactgg aatttttttt ggctttatct tgtcttaccg 360 tagagatttg ttcaaaactc taagccctac cacctcccct ttaataagct ctttaaatag 420 ttgaatcatt aacaacctgg tgggaggcaa gtcatttaat tgaaccacta ggaagtgtat 480 540 tttcttttct ttttctgcca actttttggt ggcatttgta aaagctgata taaaaggctc 600 tgagatgtta ttttcagtta ttccataggc aagcettttt acagagcata tgtctccagt tggcagettg agatatttee gageateegg ttetagetae cagtgeetee caatgettag 660 tgcacagtac tgtagactgg ccatcacccc tctccttgga aaatgccact gtgctgtttg 720 aaaaaaagca gccttttagg gctagagtat tttatataaa cagaagagct aagttcctga 780 agactaagct agatagctgc agctatatgt aaattgtata tttttatgaa cttttgaagc 840 acacactcct gtttccctct gtgtagcttt gtggggattt catgtatata tgctgtctga 900 aagaatccag aggttggagt gccaatagaa aatgaaaaca aatgccttgt actacaggca 960 gcctctgaag gtgaccacat aactgtctcc actgtgacca atcggagtcc ctgcttgctt 1020 gtgaagaagg ggcttttgta ccttgttgga gatgccacct cagaagttca cactgtgcag 1080 gaaaaaggtt ttattetete etggeataca ttagaatgte agatgettge atecatgtgg 1140 accacgatgg gcctctaaaa attggtgggc agggggtttg cttatgagtt ttctctggaa 1200 accgatttta ctcctggatg tattgaatgc cccttgagct ttatgagata cgagtccaca 1260 tggataaaat gttagagagt ggagttctac agaggattcc aggaagaggc catgtctgtg 1320 cagtcctagt tccagacagg tgagaagctc caggaactac tggctacctt gacaagctgg 1380 gtaaatagtt atcattctgg gtaactggtt gaaactctga cttttggaca agtaattcct 1440 ggggttctgt ctttggtagc atcaccaggg atatttgggt gggacagaca gaagacacac 1500 agctgcctgt tctctcctgc ccatcatgtt tggcccacta gatgaagctg tactcagcaa 1560 1620 tttagggaat gtaacccttc tcagaactgg ccattttcag gggaagcttg ggagagcaat agtatggtga gccccttaga gatgagcgcc tactccttct tggcgaatgc tgccttcaga 1680 1740 tgcttaccaa gtggtcactg catctagtaa gattatattt ccagtacact tccttagggc

agaaacacca	tcctatcagg	tttggtcagt	cccttcttca	tgaagggagt	catggggaat	1800
tcctgaaaat	tttcttcctt	ctgcagacag	ttggatgagt	cccttagaga	aggcatccag	1860
agacataact	aaactgaata	tcatcccata	ttgattttag	gaattgactc	taaaactctg	1920
tgcagaatct	tgtgttggga	ttgtatcttg	acattcctgt	tgtgttattt	ttcttaactg	1980
gagtgtgtgc	tgcctttcag	gtacaatttt	tgtgtaataa	aagccagtgc	attaagttta	2040
tatagactac	tttctatgca	agactgagat	atggaataga	taggaagaga	tatgtactgc	2100
tgggtacatg	gacagtaagt	gtgttttcag	atggagtacc	agcaccgaaa	atgggttgag	2160
ggaggatggg	ttgtatgtat	gtttctgccc	actaattttg	agcagccata	ttatgaatta	2220
aatcgtcaca	gccaagtaat	aacccaagaa	tggtatgagt	ttcatgtgta	atagctcaaa	2280
tggaataagc	atgaatgcct	ggagtggacc	attatcctca	aatattctat	gtcacttctc	2340
atttaaagac	tcttgttatg	aactattaga	aactttaggc	aaaatcaaaa	gtatttgcgg	2400
caaaataaag	gcctattcta	ctcttattta	aagtgaaaca	ctgtatactt	gtttctctcc	2460
aaagcgaaat	taagtattta	taatttcaat	tgcctcgata	agtttccaag	tcactgaaat	2520
ctgctgaagg	ttttactgta	ttgttgcaca	actttaagat	aatttttgtc	tcaatgtcaa	2580
cttttttcac	tgaataaaaa	tttaactggg	tcaagaaaac	acctcattga	aaaaaaaaaa	2640
aaaaaaa						2647

<210> 40

<211> 716

<212> DNA

<213> Homo sapiens

<400> 40 ttctttcttt gctgcgtcta ctgcgagaat gaagactatt ctcagcaatc agactgtcga 60 cattccagaa aatgtcgaca ttactctgaa gggacgcaca gttatcgtga agggccccag 120 aggaaccctg cggagggact tcaatcacat caatgtagaa ctcagccttc ttggaaagaa 180 aaaaaagagg ctccgggttg acaaatggtg gggtaacaga aaggaactgg ctaccgttcg 240 gactatttgt agtcatgtac agaacatgat caagggtgtt acactgggct tccgttacaa 300 gatgaggtct gtgtatgctc acttccccat caacgttgtt atccaggaga atgggtctct 360 420 tgttgaaatc cgaaatttct tgggtgaaaa atacatccgc agggttcgga tgagaccagg tgttgcttgt tcagtatctc aagcccagaa agatgaatta atccttgaag gaaatgacat 480 tgagcttgtt tcaaattcag cggctttgat tcagcaagcc acaacagtta aaaacaagga 540 tatcaggaaa tttttggatg gtatctatgt ctctgaaaaa ggaactgttc agcaggctga 600 tgaataagat ctaagagtta cctggctaca gaaagaagat gccagatgac acttaagacc 660

tacttgtgat atttaaatga t	tgcaataaaa	gacctattga	tttggacctt	cttctt	716
<210> 41 <211> 1197 <212> DNA <213> Homo sapiens					
<400> 41 atggggacct gtgacattgt	gactgaagcc	aatatctcat	ctggccctga	gagcaacacc	60
acgggcatca cagcettete	catgcccagc	tggcagctgg	cactgtgggc	accagcctac	120
ctggccctgg tgctggtggc	cgtgacgggt	aatgccatcg	tcatctggat	catcctggcc	180
catcggagga tgcgcacagt	caccaactac	ttcatcgtca	atctggcgct	ggctgacctc	240
tgcatggctg ccttcaatgc	cgccttcaac	tttgtctatg	ccagccacaa	catctggtac	300.
tttggccgtg ccttctgcta	cttccagaac	ctcttcccca	tcacagccat	gtttgtcagc	360
atctactcca tgaccgccat	tgctgccgac	aggtacatgg	ccatcgtcca	ccccttccag	420
cctcggcttt cagctcccag	caccaaggcg	gttattgctg	gcatctggct	ggtggctctc	480
gecetggeet eccetcagtg	cttctactcc	accgtcacca	tggaccaggg	tgccaccaag	540
tgcgtggtgg cctggcccga	agacagcggg	ggcaagacgc	tcctcctgta	ccacctcgtg	600
gtgatcgccc tcatctactt	cctgccgctc	gcggtgatgt	ttgtagccta	cagcgtcatc	660
ggcctcacgc tctggaggcg	cgcagtgccc	ggacatcagg	cgcacggtgc	caacctccgc	720
catctgcagg ccaagaagaa	gtttgtgaag	accatggtgc	tggtggtgct	gacgtttgcc	780
atctgctggc tgccctacca	cctctacttc	atcctgggca	gcttccagga	ggacatctac	840
tgccacaagt tcatccagca	agtctacctg	gcactcttct	ggttggccat	gagctctacc	900
atgtacaatc ccatcatcta	ctgctgtctc	aaccacaggt	ttcgctctgg	gttccggctt	960
geetteeget getgeecatg	ggtcacaccc	accaaggaag	ataagctcga	gctgactccc	1020
acgacctccc tctccacgag	agtcaacagg	tgtcacacta	aggagacttt	gttcatggct	1080
ggggacacag ccccctccga	ggctaccagt	ggggaggcgg	ggcgtcccca	ggatggatca	1140
gggctatggt ttgggtatgg	tttgcttgcc	cccaccaaaa	ctcatgttga	aatttga	1197
<210> 42 <211> 818 <212> DNA <213> Homo sapiens					
<400> 42 gcctcgaggc gggcgtcttc	ggtcatctcc	: ggcgcttcta	ı gggctggtt	c ccgtcatctt	60
cgggagccgt ggagctctcg					120
ctgccggcct ccaggtgctc					180

tgcca	tcaca	agcagatgtg	gcagtatttg	aagccgtgtc	cagcccaccg	cctgccgact	240
tgtgt	catgc	cctacgttgg	tataatcaca	tcaagtctta	cgaaaaggaa	aaggccagcc	300
tgcca	aggagt	gaagaaagct	ttgggcaaat	atggtcctgc	cgatgtggaa	gacactacag	360
gaagt	ggagc	tacagatagt	aaagatgatg	atgacattga	cctctttgga	tctgatgatg	420
aggag	ggaaag	tgaagaagca	aagaggctaa	gggaagaacg	tcttgcacaa	tatgaatcaa	480
agaaa	agccaa	aaaacctgca	cttgttgcca	agtcttccat	cttactagat	gtgaaacctt	540
ggga	tgatga	gacagatatg	gcgaaattag	aggagtgcgt	cagaagcatt	caagcagacg	600
gctt	agtctg	gggctcatct	aaactagttc	cagtgggata	cggaattaag	aaacttcaaa	660
taca	gtgtgt	agttgaagat	gataaagttg	gaacagatat	gctggaggag	cagatcactg	720
cttt	tgagga	ctatgtgcag	tccatggatg	tggctgcttt	caacaagatc	taaaatccat	780
cctg	gatcat	ggcatttaaa	taaaagattg	aaagatta			818

<210> 43

<211> 2489

<212> DNA

<213> Homo sapiens

<400> 43 gcacgagggg gtagagggaa aagagctccg ggccaggggc tgccgtcgcc gccgtcgggg 60 agtcagcccg ccagcccgcc agctcgtcag cccgccacca gcttcgcggg ccctgtcggt 120 cccggtaagc gggcctgcgc ttaccggaaa gaggagcgta agatgaaaga gtatcagacc 180 aaacattgtc tggcttgcac tgtaaaacta gttagctgaa gacgacttct caggtttctt 240 caggatgcct gcagcacttg tggagaatag ccaggttatc tgtgaagtgt gggccagtaa 300 tctagaagaa gagatgagga agatccgaga aatcgtgccc agttacagtt atattgccat 360 ggacacagaa tttccaggtg ttgtggtgcg accaattggt gaatttcgta gttccataga 420 ttaccaatat cagcttctgc ggtgcaatgt tgacctttta aaaattatcc agctgggcct 480 540 tacattcaca aatgagaagg gagagtatcc ttctggaatc aatacttggc agttcaattt caaatttaac cttacagagg acatgtactc ccaggattcc atagatctcc ttgctaactc 600 aggactacag tttcagaagc atgaagagga agggattgac acactgcact ttgcagagct 660 gcttatgaca tcaggagtgg ttctctgtga caatgtcaaa tggctttcat ttcatagtgg 720 ctatgatttt ggctatatgg taaagttgct tacagattct cgtttgccag aagaggaaca 780 tgaattetta catattetga acettttete eecateeatt tatgatgtga aataeetgat 840 gaagagctgc aaaaatctta agggaggtct tcaggaagtt gctgatcagt tggatttgca 900 gaggattgga aggcagcacc aggcaggctc agactcactg ctgacaggaa tggctttctt 960

taggatgaaa	gagttgtttt	ttgaggacag	cattgatgat	gccaagtact	gtgggcggct	1020
ctatggctta	ggcacaggag	tggcccagaa	gcagaatgag	gatgtggact	ctgcccagga	1080
gaagatgagc	atcctggcga	ttatcaacaa	catgcagcag	tgatggcgcc	aggctctgca	1140
gggtgggcct	gatcccagag	tggtgcttac	tgtgctgact	gtgtacttat	cttccccaag	1200
agaaaatgct	tcttttgagc	acactgtacc	taccatctgc	attgagcaga	aagacttttg	1260
ttttactgaa	gacaaaagat	gtttttattt	tagacccaga	agagaggagt	ttgctctgaa	1320
tttgtaaata	agtcttcccc	attcctcata	ctcgagcctc	tectetetgg	ttgcctcctg	1380
ccaccagcat	ccatggctca	tttgacacct	ttttaaatat	caggacaagt	ctgaaacaaa	1440
gtagtaaaat	gtatataact	cttacctgtt	gtcattcttt	ttcttttaaa	tttgttgcta	1500
atctctgata	atgaagattc	ttactctgat	tctcagctga	gctgtgaggg	cttccaggga	1560
aaatggaaca	aaatggtgtt	cttaggtaat	gggttgtaga	tactgagtct	tcctttcctt	1620
ttctgaccct	tetegaggae	atttgctttc	ctcacacttt	tgtagtctct	ctttacatat	1680
tactatatgg	aaatgaattg	ctctgtgctg	aaatttgaag	accagataat	gaaactgaaa	1740
agcaaacaat	tttactgaa	tctgtctacc	ttcattcatg	agaactccag	aatgagtgtt	1800
gaccactgaa	gcatcttta	agtctgtgtt	ccattgtgcc	attcaggttt	gctgtcacat	1860
atgcatcato	: tgaaatcatt	tgaaatttt	gtacaataaa	atatcctgga	tttgatcctg	1920
aaggaaacta	a gtaagatcag	atttttgggt	catgtctgtt	gtattttcag	, taatgtgatt	1980
tcagatggto	atctggattc	: tcccacttct	ctactccatt	atttctctac	ttttccttcc	2040
agcaaacctt	gaaacgtgag	ggagatggat	: taatgtgagt	aacaggaatg	g tgtctttaaa	2100
aagctagagt	ggttacattt	aatcaggcag	g taagataatt	: tgggttcttg	g agttgttttg	2160
gagtaatat	c ccacaactgg	g ggtaggaago	tcaggacttt	tttctttaaa	a gctagtcatt	2220
tcaaaagca	t attgtattt	tttgaatgad	tacagtatgo	g acaatttca	a aaaccaaaac	2280
ccactttgg	a ttggtggaag	g taaaaactg	g taactcacto	aagtgaatg	a atggtcttgc	2340
attttaaaa	g cttatgggaa	a actcaattt	g aaatgattag	g aaaatgtca	a gtattataag	2400
ctggtattt	a agatgcttg	t aaatactat	t tatgttttt	a attttgtaa	a ataaagattt	2460
ctttttaaa	a aaaaaaaaa	a aaaaaaaaa				2489

<210> 44 <211> 2325 <212> DNA <213> Homo sapiens

<400> 44

ttttttaaag taagatgttt aagaaattaa acagtcttag ggagagttta tgactgtatt 60

caaaaagttt	tttaaattag	cttgttatcc	cttcatgtga	taactaatct	caaatacttt	120
ttcgatacct	cagagcatta	ttttcataat	gagctgtgtt	cacaatcttt	ttaggttaac	180
tcgttttctc	tttgtcatta	aggagaaaca	ctttgatatt	ctgatagagt	ggccttcatt	240
ttagtatttt	tcaagaccac	ttttcaacta	ctcactttag	gataagtttt	aggtaaaatg	300
tgcatcatta	tcctgaatta	tttcagttaa	gcatgttagt	tggtggcata	agagaaaact	360
caatcagata	gtgctgagac	aggactgtgg	agacacctta	gaaggacaga	ttctgttccg	420
aatcaccgat	gcggcgtcag	caggactggc	ctagcggagg	ctctgggagg	gtggctgcca	480
ggeceggeet	gggctttggg	tctccccgga	ctacccagag	ctgggatgcg	tggcttctgc	540
tgeegggeeg	actggctgct	cagccccagc	ccttgttaat	ggacttggag	gaatgattcc	600
atgccaaagc	tttgcaaggc	tegeagtgae	caggcgcccg	acatgggagt	gcatccgccc	660
caaccctttt	cccctcgtc	tcctgtgaga	attccccgtc	ggatacgagc	agcgtggccg	720
ttggctgcct	cgcacaggac	ttccttcccg	actccatcac	tttctcctgg	aaatacaaga	780
acaactctga	catcagcagc	acccggggct	tcccatcagt	cctgagaggg	ggcaagtacg	840
cagccacctc	acaggtgctg	ctgccttcca	aggacgtcat	gcagggcaca	gacgaacacg	900
tggtgtgcaa	agtccagcac	cccaacggca	acaaagaaaa	gaacgtgcct	cttccagtga	960
ttgccgagct	gcctcccaaa	gtgagcgtct	tcgtcccacc	ccgcgacggc	ttcttcggca	1020
acccccgcaa	gtccaagctc	atctgccagg	ccacgggttt	cagtccccgg	cagattcagg	1080
tgtcctggct	gcgcgagggg	aagcaggtgg	ggtctggcgt	caccacggac	caggtgcagg	1140
ctgaggcaaa	ggagtctggg	cccacgacct	acaaggtgac	cagcacactg	accatcaaag	1200
agagcgactg	gctcagccag	agcatgttca	cctgccgggt	ggatcacagg	ggcctgacct	1260
tccagcagaa	tgegteetee	atgtgtgtcc	ccgatcaaga	cacagccatc	cgggtcttcg	1320
ccatccccc	atcctttgcc	agcatcttcc	tcaccaagtc	caccaagttg	acctgcctgg	1380
tcacagacct	gaccacctat	gacagcgtga	ccatctcctg	gacccgccag	aatggccaag	1440
ctgtgaaaac	ccacaccaac	atctccgaga	gecaececaa	tgccactttc	agcgccgtgg	1500
gtgaggccag	catctgcgag	gatgactgga	ı attccgggga	. gaggttcacg	tgcaccgtga	1560
cccacacaga	cctgccctcg	ccactgaago	agaccatctc	ccggcccaaa	ggggtggccc	1620
tgcacaggco	cgatgtctac	: ttgctgccac	cagcccggga	gcagctgaac	ttgcgggagt	1680
cggccaccat	cacgtgcctg	gtgacgggct	teteteeege	ggacgtcttc	: gtgcagtgga	1740
tgcagagggg	g gcagcccttc	tccccggaga	a agtatgtgac	: cagegeeeca	atgcctgagc	1800
cccaggccc	aggccggtad	ttcgcccaca	a gcatcctgac	cgtgtccgaa	gaggaatgga	1860

acacggggga	gacctacacc	tgcgtggtgg	cccatgaggc	cctgcccaac	agggtcaccg	1920
agaggaccgt	ggacaagtcc	accgaggggg	aggtgagcgc	cgacgaggag	ggctttgaga	1980
acctgtgggc	caccgcctcc	accttcatcg	tcctcttcct	cctgagcctc	ttctacagta	2040
ccaccgtcac	cttgttcaag	gtgaaatgat	cccaacagaa	gaacatcgga	gaccagagag	2100
aggaactcaa	agggcgcagc	tccgggtctg	gggtcctgcc	tgcgtggcct	gttggcacgt	2160
gtttctcttc	cccgcccggc	ctccagttgt	gtgctctcac	acaggettee	ttctcgaccg	2220
gcaggggctg	gctggcttgc	aggcacgagg	tgggctctac	cccacactgc	tttgctgtgt	2280
atacgcttgt	tgccctgaaa	taaatatgca	cattttatcc	atgaa		2325

<210> 45

<211> 1901

<212> DNA

<213> Homo sapiens

<400> 45 gtctttccgg cggtgctcgc aagcgaggca gccatgtctt atcccgctga tgattatgag 60 tctgaggcgg cttatgaccc ctacgcttat cccagcgact atgatatgca cacaggagat 120 ccaaagcagg accttgctta tgaacgtcag tatgaacagc aaacctatca ggtgatccct 180 gaggtgatca aaaacttcat ccagtatttc cacaaaactg tctcagattt gattgaccag 240 aaagtgtatg agctacaggc cagtcgtgtc tccagtgatg tcattgacca gaaggtgtat 300 gagatccagg acatctatga gaacagctgg accaagctga ctgaaagatt cttcaagaat 360 acaccttggc ccgaggctga agccattgct ccacaggttg gcaatgatgc tgtcttcctg 420 attttataca aagaattata ctacaggcac atatatgcca aagtcagtgg gggaccttcc 480 ttggagcaga ggtttgaatc ctattacaac tactgcaatc tcttcaacta cattcttaat 540 gccgatggtc ctgctcccct tgaactaccc aaccagtggc tctgggatat tatcgatgag 600 ttcatctacc agtttcagtc attcagtcag taccgctgta agactgccaa gaagtcagag 660 gaggagattg actttcttcg ttccaatccc aaaatctgga atgttcatag tgtcctcaat 720 gtccttcatt ccctggtaga caaatccaac atcaaccgac agttggaggt atacacaagc 780 ggaggtgacc ctgagagtgt ggctggggag tatgggcggc actccctcta caaaatgctt 840 ggttacttca gcctggtcgg gcttctccgc ctgcactccc tgttaggaga ttactaccag 900 gccatcaagg tgctggagaa catcgaactg aacaagaaga gtatgtattc ccgtgtgcca 960 gagtgccagg tcaccacata ctattatgtt gggtttgcat atttgatgat gcgtcgttac 1020 caggatgcca tccgggtctt cgccaacatc ctcctctaca tccagaggac caagagcatg 1080 ttccagagga ccacgtacaa gtatgagatg attaacaagc agaatgagca gatgcatgcg 1140

ctgctggcca	ttgccctcac	gatgtacccc	atgcgtatcg	atgagagcat	tcacctccag	1200
ctgcgggaga	aatatgggga	caagatgttg	cgcatgcaga	aaggtgaccc	acaagtctat	1260
gaagaacttt	tcagttactc	ctgccccaag	ttcctgtcgc	ctgtagtgcc	caactatgat	1320
aatgtgcacc	ccaactacca	caaagagccc	ttcctgcagc	agctgaaggt	gttttctgat	1380
gaagtacagc	agcaggccca	gctttcaacc	atccgcagct	tcctgaagct	ctacaccacc	1440
atgcctgtgg	ccaagctggc	tggcttcctg	gacctcacag	agcaggagtt	ccggatccag	1500
cttcttgtct	tcaaacacaa	gatgaagaac	ctcgtgtgga	ccagcggtat	ctcagccctg	1560
gatggtgaat	ttcagtcagc	ctcagaggtt	gacttctaca	ttgataagga	catgatccac	1620
atcgcggaca	ccaaggtcgc	caggcgttat	ggggatttct	tcatccgtca	gatccacaaa	1680
tttgaggagc	ttaatcgaac	cctgaagaag	atgggacaga	gaccttgatg	atattcacac	1740
acattcagga	acctgttttg	atgtattata	ggcaggaagt	gtttttgcta	ccgtgaaacc	1800
tttacctaga	tcagccatca	gcctgtcaac	tcagttaaca	agttaaggac	cgaagtgttt	1860
caagtggatc	tcagtaaagg	atctttggag	ccagaaaaaa	a		1901

<210> 46

<211> 921

<212> DNA

<213> Homo sapiens

cgcgactccc acttccgccc ttttggctct ctgaccagca ccatggcggt tggcaagaac 60 120 aagcgcctta cgaaaggcgg caaaaaggga gccaagaaga aagtggttga tccattttct aagaaagatt ggtatgatgt gaaagcacct gctatgttca atataagaaa tattggaaag 180 acgctcgtca ccaggaccca aggaaccaaa attgcatctg atggtctcaa gggtcgtgtg 240 . tttgaagtga gtcttgctga tttgcagaat gatgaagttg catttagaaa attcaagctg 300 attactgaag atgttcaggg taaaaactgc ctgactaact tccatggcat ggatcttacc 360 cgtgacaaaa tgtgttccat ggtcaaaaaa tggcagacaa tgattgaagc tcacgttgat 420 gtcaagacta ccgatggtta cttgcttcgt ctgttctgtg ttggttttac taaaaaacgc 480 aacaatcaga tacggaagac ctcttatgct cagcaccaac aggtccgcca aatccggaag 540 aagatgatgg aaatcatgac ccgagaggtg cagacaaatg acttgaaaga agtggtcaat 600 aaattgattc cagacagcat tggaaaagac atagaaaagg cttgccaatc tatttatcct 660 ctccatgatg tcttcgttag aaaagtaaaa atgctgaaga agcccaagtt tgaattggga 720 aagctcatgg agcttcatgg tgaaggcagt agttctggaa aagccactgg ggacgagaca 780 ggtgctaaag ttgaacgagc tgatggatat gaaccaccag tccaagaatc tgtttaaagt 840

tcagacttca	aatagtggca	aataaaaagt	gctatttgtg	atggtttgct	tctgaaaaaa	900
aaaaaaaaa	aaaaaaaaa	a				921
<210> 47 <211> 1510 <212> DNA <213> Home	0 o sapiens					
<400> 47 ggactccctt	ttctttggca	agatggcgga	gtacgacttg	actactcgca	tegegeaett	60
tttggatcgg	catctagtct	ttccgcttct	tgaatttctc	tctgtaaagg	agatatataa	120
tgaaaaggaa	ttattacaag	gtaaattgga	ccttcttagt	gataccaaca	tggtagactt	180
tgctatggat	gtatacaaaa	acctttattc	tgatgatatt	cctcatgctt	tgagagagaa	240
aagaaccaca	gtggttgcac	aactgaaaca	gcttcaggca	gaaacagaac	caattgtgaa	300
gatgtttgaa	gatccagaaa	ctacaaggca	aatgcagtca	accagggatg	gtaggatgct	360
ctttgactac	ctggcggaca	agcatggttt	taggcaggaa	tatttagata	cactctacag	420
atatgcaaaa	ttccagtacg	aatgtgggaa	ttactcagga	gcagcagaat	atctttattt	480
ttttagagtg	ctggttccag	caacagatag	aaatgcttta	agttcactct	ggggaaagct	540
ggcctctgaa	atcttaatgc	agaattggga	tgcagccatg	gaagacctta	cacggttaaa	600
agagaccata	gataataatt	ctgtgagttc	tccacttcag	tctcttcagc	agagaacatg	660
gctcattcac	tggtctctgt	ttgttttctt	caatcacccc	aaaggtcgcg	ataatattat	720
tgacctcttc	ctttatcago	cacaatatct	taatgcaatt	cagacaatgt	gtccacacat	780
tcttcgctat	ttgactacag	cagtcataac	aaacaaggat	gttcgaaaac	gtcggcaggt	840
tctaaaagat	ctagttaaag	ttattcaaca	ggagtcttac	acatataaag	acccaattac	900
agaatttgtt	gaatgtttat	atgttaactt	tgactttgat	ggggctcaga	aaaagctgag	960
ggaatgtgaa	tcagtgcttg	tgaatgactt	cttcttggtg	gcttgtcttg	aggatttcat	1020
tgaaaatgco	cgtctcttca	tatttgagac	tttctgtcgc	atccaccagt	gtatcagcat	1080
taacatgttg	g gcagataaat	: tgaacatgac	tccagaagaa	gctgaaaggt	ggattgtaaa	1140
tttgattaga	a aatgcaagad	tggatgccaa	gattgattct	aaattaggto	atgtggttat	1200
gggtaacaat	gcagtctcad	cctatcagca	agtgattgaa	aagaccaaaa	gcctttcctt	1260
tagaagccag	g atgttggcca	a tgaatattga	ı gaagaaactt	aatcagaata	gcaggtcaga	1320
ggctcctaa	c tgggcaacto	aagattctgg	, cttctactga	. agaaccataa	agaaaagatg	1380
aaaaaaaaa	a ctatcaaaga	a aagatgaaat	: aataaaacta	ttatataaag	ggtgacttac	1440
attttggaaa	a caacatatta	a cgtataaatt	ttgaagaatt	ggaataaaat	tgattcattt	1500

taaaaaaaaa 1510

<210> 48
<211> 2828

<212> DNA

<213> Homo sapiens

<400> ggcacgaggc gcccgcctgc tacgagtaga acgctgtccg cagcttgcgc atttcgcagc 60 cgctgccgcc tcgccgctgc tccttcgtaa ggccacttcc gcacaccgac accaacatga 120 acggacaget caacggette cacgaggegt teategagga gggeacatte etttteacet 180 cagagtcggt cggggaaggc cacccagata agatttgtga ccaaatcagt gatgctgtcc 240 ttgatgccca ccttcagcag gatcctgatg ccaaagtagc ttgtgaaact gttgctaaaa 300 ctggaatgat ccttcttgct ggggaaatta catccagagc tgctgttgac taccagaaag 360 tggttcgtga agctgttaaa cacattggat atgatgattc ttccaaaggt tttgactaca 420 agacttgtaa cgtgctggta gccttggagc aacagtcacc agatattgct caaggtgttc 480 atcttgacag aaatgaagaa gacattggtg ctggagacca gggcttaatg tttggctatg 540 600 ccactgatga aactgaggag tgtatgcctt taaccattgt cttggcacac aagctaaatg ccaaactggc agaactacgc cgtaatggca ctttgccttg gttacgccct gattctaaaa 660 ctcaagttac tgtgcagtat atgcaggatc gaggtgctgt gcttcccatc agagtccaca 720 caattgttat atctgttcag catgatgaag aggtttgtct tgatgaaatg agggatgccc 780 taaaggagaa agtcatcaaa gcagttgtgc ctgcgaaata ccttgatgag gatacaatct 840 accacctaca gccaagtggc agatttgtta ttggtgggcc tcagggtgat gctggtttga 900 ctggacgcaa aatcattgtg gacacttatg gcggttgggg tgctcatgga ggaggtgcct 960 tttcaggaaa ggattatacc aaggtcgacc gttcagctgc ttatgctgct cgttgggtgg 1020 caaaatccct tgttaaagga ggtctgtgcc ggagggttct tgttcaggtc tcttatgcta 1080 ttggagtttc tcatccatta tctatctcca ttttccatta tggtacctct cagaagagtg 1140 agagagaget attagagatt gtgaagaaga atttegatet eegeeetggg gteattgtea 1200 gggatctgga tctgaagaag ccaatttatc agaggactgc agcctatggc cactttggta 1260 gggacagett eccatgggaa gtgcccaaaa agettaaata ttgaaagtgt tageettttt 1320 tecceagaet tgttggegta ggetacagag aageetteaa getetgaggg aaagggeeet 1380 ccttcctaaa ttttcctgtc ctctttcagc tcctgaccag ttgcagtcac tctagtcaat 1440 gacatgaatt ttagcttttg tgggggactg taagttgggc ttgctattct gtccctaggt 1500 gttttgttca ccattataat gaatttagtg agcataggtg atccatgtaa ctgcctagaa 1560

acaacactgt	agtaaataat	gctttgaaat	tgaacctttg	tgccctatca	cccaacgctc	1620
caaagtcata	attgcattga	ctttccccac	cagatgctga	aaatgtcctt	gtgatgtgca	1680
cgtaaagtac	ttgtagttcc	acttatagcc	tctgtctggc	aatgccacag	ccctgtcagc	1740
atgaatttgt	aatgtcttga	gctctattat	gaatgtgaag	ccttcccctt	atcctccctg	1800
taacttgatc	catttctaat	tatgtagctc	tttgtcaggg	agtgttccct	atccaatcaa	1860
tcttgcatgt	aacgcaagtt	cccagttgga	gctccagcct	gacatcaaaa	aaggcagtta	1920
ccattaaacc	atctccctgg	tgcttatgct	cttaattgcc	acctctaaca	gcaccaaatc	1980
aaaatctctc	cactttcagc	tgtcttttgg	aggacgtacg	taataaggtt	ttaatttagt	2040
aaaccaatcc	tatgcatggt	ttcagcacta	gccaaacctc	accaactcct	agttctagaa	2100
aaacaggcac	ttggcagcct	tgtgatgtca	tacagagaag	tcacagggca	gtacctgagg	2160
gtctgtaggt	tgcacacttt	ggtaccagat	aactttttt	tttctttata	agaaagcctg	2220
agtactccac	actgcacaat	aactcctccc	agggttttaa	ctttgtttta	ttttcaaaac	2280
caggtccaat	gagctttctg	aacagctggt	gtagctacag	agaaaccagc	ttccttcaga	2340
gagcagtgct	tttggcgggg	aggaggaaat	cccttcatac	ttgaacgttt	tctaattgct	2400
tatttattgt	attctggggt	atggcgtaag	tacagagaag	ccatcacctc	agatggcagc	2460
ttttaaaaga	tttttttt	ttctctcaac	accatgattc	ctttaacaac	atgtttccag	2520
cattcccagg	taggccaagg	tgtcctacag	aaaaaccttg	ggttagacct	acagggggtc	2580
tggctggtgt	taacagaagg	gagggcagag	ctggtgcggc	tggccatgga	gaaagctgac	2640
ttggctggtg	tggtacagag	aagccagctt	gtttacatgc	ttattccatg	actgcttgcc	2700
ctaagcagaa	agtgcctttc	aggatctatt	tttggaggtt	tattacgtat	gtctggttct	2760
caattccaac	agtttaatga	agatctaaat	aaaatgctag	gttctacctt	aaaaaaaaa	2820
aaaaaaaa						2828

<210> 49

<211> 574 <212> DNA <213> Homo sapiens

<400> 49

cctttctaac tccgctgccg ccatggctcc tgtgaaaaag cttgtggtga aggggggcaa 60 aaaaaagaag caagttctga agttcactct tgattgcacc caccctgtag aagatggaat 120 catggatgct gccaattttg agcagttttt gcaagaaagg atcaaagtga acggaaaagc 180 tgggaacctt ggtggagggg tggtgaccat cgaaaggagc aagagcaaga tcaccgtgac 240 atccgaggtg cctttctcca aaaggtattt gaaatatctc accaaaaaat atttgaagaa 300

gaataatcta cgtgactggt tgcgcgtagt tgctaacagc aaagagagtt acgaattacg	360
ttacttccag attaaccagg acgaagaaga ggaggaagac gaggattaaa tttcatttat	420
ctggaaaatt ttgtatgagt tcttgaataa aacttgggaa ccaaaatggt ggtttatcct	480
tgtatctctg cagtgtggat tgaacagaaa attggaaatc atagtcaaag ggcttccctt	540
ggttcgccac tcatttattt gtaacttgac ttct	574
<210> 50 <211> 921 <212> DNA <213> Homo sapiens	
<400> 50 cgcgactccc acttccgccc ttttggctct ctgaccagca ccatggcggt tggcaagaac	60
aagcgcctta cgaaaggcgg caaaaaggga gccaagaaga aagtggttga tccattttct	120
aagaaagatt ggtatgatgt gaaagcacct gctatgttca atataagaaa tattggaaag	180
acgctcgtca ccaggaccca aggaaccaaa attgcatctg atggtctcaa gggtcgtgtg	240
tttgaagtga gtcttgctga tttgcagaat gatgaagttg catttagaaa attcaagctg	300
attactgaag atgttcaggg taaaaactgc ctgactaact tccatggcat ggatcttacc	360
cgtgacaaaa tgtgttccat ggtcaaaaaa tggcagacaa tgattgaagc tcacgttgat	420
gtcaagacta ccgatggtta cttgcttcgt ctgttctgtg ttggttttac taaaaaacgc	480
aacaatcaga tacggaagac ctcttatgct cagcaccaac aggtccgcca aatccggaag	540
aagatgatgg aaatcatgac ccgagaggtg cagacaaatg acttgaaaga agtggtcaat	600
aaattgatto cagacagcat tggaaaagac atagaaaagg cttgccaatc tatttatcct	660
ctccatgatg tcttcgttag aaaagtaaaa atgctgaaga agcccaagtt tgaattggga	720
aageteatgg agetteatgg tgaaggeagt agttetggaa aageeactgg ggaegagaea	780
ggtgctaaag ttgaacgagc tgatggatat gaaccaccag tccaagaatc tgtttaaagt	840
tcagacttca aatagtggca aataaaaagt gctatttgtg atggtttgct tctgaaaaaa	900
aaaaaaaaa aaaaaaaaa a	921
<210> 51 <211> 2106 <212> DNA <213> Homo sapiens	
<400> 51 gtatacgaaa tcataaaatc tcatagatgt atcctgagta gggcggggcc cgtgaaaccc	60
totgaatotg oggocaccae coggtaagge taaatactaa toagacacog atagtgaact	120

tttacttaca agtggtccat ttacttacaa gtgtcagagc acgttaaagt gtgatggcgt 240 acatettgea gtatgggeeg gegagttatg ttaatatgea aggttaagea gaaaaaageg 300 gagccgtagg gaaaccgagt ctgaataggg cgactttagt atattggcat atacccgaaa 360 420 tcaggtgatc tatccatgag caggttgaag cttaggtaaa actaagtgga ggaccgaacc gtagtacgct aaaaagtgcc cggatggact tgtggatagt ggtgaaattc caatcgaacc 480 tggagatagc tggttctctt cgaaatagct ttagggctag cgtatagtat tgtttaatgg 540 gggtagagca ctgaatgtgg aatggcggca tctagctgta ctgactataa tcaaactccg 600 aataccatta aaattaagct atgcagtcgg aacgtggtat caccattgat atctccttgt 660 ggaaatttga gaccagcaag tactatgtga ctatcattga tgccccagga cacagagact 720 780 ttatccaaaa catgattaca gggacctctc aggctgactg tgctgtcctg attgttgctg 840 ctqqtqttqq tqaatttgaa gctggtatct ccaagaatgg gcagacccga gagcatgccc ttctggctta cacactgggt gtgaaacaac taattgtcgg tgttaacaaa atggattcca 900 ctgagccacc ctacagccag aagagatatg aggaaattgt taaggaagtc agcacttaca 960 ttaagaaaat tggctacaac cccgacacag tagcatttgt gccaatttct ggttggaatg 1020 gtgacaacat gctggagcca agtgctaaca tgccttggtt caagggatgg aaagtcaccc 1080 gtaaggatgg caatgccagt ggaaccacgc tgcttgaggc tctggactgc atcctaccac 1140 caactcgtcc aactgacaag cccttgggcc tgcctctcca ggatgtctac aaaattggtg 1200 gtattggtac tgttcctgtt ggccgagtgg agactggtgt tctcaaaccc ggtatggtgg 1260 1320 tcacctttgg tccagtcaac gttacaacgg aagtaaaatc tgtcgaaatg caccatgaag 1380 ctttgggtga agctcttcct ggggacaatg tgggcttcaa tgtcaagaat gtgtctgtca aggatgttcg tcgtggcaac gttgctggtg acagcaaaaa tgacccacca atggaagcag 1440 ctggcttccc tgctcaggtg attatcctga accatccagg ccaaataagc gccggctatg 1500 cccctgtatt ggattgccac acggctcaca ttgcatgcaa gtttgctgag ctgaaggaaa 1560 agattgatcg ccgttctggt aaaaagctgg aagatggccc taaattcttg aagtctggtg 1620 1680 atgctgccat tgttgatatg gttcctggca agcccatgtg tgttgagagc ttctcagact 1740 atccaccttt gggctgcttt gctgttcgtg atatgagaca gacagttgcg gtgggtgtca tcaaagcagt ggacaagaag gctgctggag ctggcaaggt caccaagtct gcccagaaag 1800 ctcagaaggc taaatgaata ttatccctaa tcctcccacc ccactcttaa tcagtggtgg 1860 1920 aagaccggtc tcagaactgt ttgtttcaat tgccatttaa gtttagtagt aaaagactgg ttaatgataa caatgcatcg taaaaccttt cagaaggaaa ggagaatgtt ttgtggacac 1980

gttggttttc ttttttgcgt gtggcagttt tagttattag tttttaaaat cagtactttt	2040
taatggaaac aacttgaccc ccaaatttgt cacagaattt tgggacccat taaaaggtta	2100
taatggaaac aactegaces country 5	2106
actggg	
<210> 52 <211> 925 <212> DNA <213> Homo sapiens	
<400> 52 ttttttctgc taccgtgact aagatggaag cgtttttggg gtcgcggtcc ggactttggg	60
cggggggtcc ggccccagga cagttttacc gcattccgtc cactcccgat tccttcatgg	120
atceggegte tgeaetttae agaggteeaa teaegeggae ceagaaeeee atggtgaeeg	180
ggacctcagt cctcggcgtt aagttcgagg gcggagtggt gattgccgca gacatgctgg	240
gatectaegg etecttgget egttteegea acateteteg cattatgega gteaacaaca	300
gtaccatgct gggtgcctct ggcgactacg ctgatttcca gtatttgaag caagttctcg	360
gccagatggt gattgatgag gagcttctgg gagatggaca cagctatagt cctagagcta	420
ttcattcatg gctgaccagg gccatgtaca gccggcgctc gaagatgaac cctttgtgga	480
acaccatggt catcggaggc tatgctgatg gagagagctt cctcggttat gtggacatgc	540
ttggtgtagc ctatgaagcc ccttcgctgg ccactggtta tggtgcatac ttggctcagc	600
ctctgctgcg agaagttctg gagaagcagc cagtgctaag ccagaccgag gcccgcgact	660
tagtagaacg ctgcatgcga gtgctgtact accgagatgc ccgttcttac aaccggtttc	720
aaatcgccac tgtcaccgaa aaaggtgttg aaatagaggg accattgtct acagagacca	780
actgggatat tgcccacatg atcagtggct ttgaatgaaa tacagatgca ttatccagaa	840
ctgaagttgc cctactttta actttgaact tggctagttc aaagatagac tcttcttttg	900
taaagtaaat aaattottoa aaatg	925
taaagtaaat aaateetta maarj	
<210> 53 <211> 1487 <212> DNA <213> Homo sapiens	
<400> 53 ctggtctaac agacccgcga gaacgaagga cgcttgcctt tttccggtcg gggaaggggg	60
aagaaggtaa cttccggtga cggggttgca tcacttcctc tcaagcttgg cgtttgtttg	120
gtggggttac acgcgggttc aacatgcgta tcgaaaagtg ttatttctgt tcggggccca	180
totatootgg acacggcatg atgttogtco gcaacgattg caaggtgtto agattttgca	240
aatctaaatg tcataaaaac tttaaaaaga agcgcaatcc tcgcaaagtt aggtggacca	
aatttaaaty toataaaaat totaaaaaaga ag ag	

aagcattccg	gaaagcagct	ggtaaagagc	ttacagtgga	taattcattt	gaatttgaaa	360
aacgtagaaa	tgaacctatc	aaataccagc	gagagctatg	gaataaaact	attgatgcga	420
tgaagagagt	tgaagaaatc	aaacagaagc	gccaagctaa	atttataatg	aacagattga	480
agaaaaataa	agagctacag	aaagttcagg	atatcaaaga	agtcaagcaa	aacatccatc	540
ttatccgagc	ccctcttgca	ggcaaaggga	aacagttgga	agagaaaatg	gtacagcagt	600
tacaagagga	tgtggacatg	gaagatgctc	cttaaaaatc	tctgtaacca	tttcttttat	660
gtacatttga	aaatgccctt	tggatacttg	gaactgctaa	attattttat	tttttacata	720
aggtcactta	aatgaaaagc	gattaaaaga	catctttcct	gcattgccat	ctacataata	780
tcagatatta	cggatgttag	attgcatctc	agtgttaaat	ctttactgat	agatgtactt	840
aagtaaatca	tgaaaattct	acttgtaact	atagaagtga	attgtggacg	taaaatggtt	900
gtgctatttg	gataatggca	ctaggcagca	tttgtatagt	aactaatggc	aaaaattcat	960
ggctagtgat	gtataaaata	aaatattctt	tgcagtaaaa	tattcccttt	gttaatgtta	1020
tagaaggggg	gatacaaaaa	ggaactaaca	atttgtatgg	cagtgtcaga	tatttttatt	1080
ttagtatttc	ctgttttggt	ttatttgcat	cttagaagag	cataatgaca	ttgtttgatg	1140
aagcctaatt	atgctggact	gttttgacct	ggtttaaccc	ttctgatagg	tagttgtgga	1200
tgctggggat	gagaactgaa	taatctttgc	ctggagtgac	actacactct	agaatttcca	1260
ctttggagaa	tactcagttc	caacttgtga	ttcctgatag	aacagacttt	acttttctag	1320
cccagcattg	atctagaagc	agaggaatcc	cagcgccttt	taaaagttgt	tatgtggttt	1380
tcttttaaaa	agctcctgtt	tttggaaagt	agaatttatg	ggtacaacgt	atgttcatta	1440
tttgtacata	aaataaaacc	atttaaaaag	taaaaaaaa	aaaaaaa		1487

<210> 54 <211> 1245

<212> DNA

<213> Homo sapiens

<400> 54

ggcacgaggc aggcgctgac gaggagcccg gctgagggag gatgcgccgc tgacgcctgc 60 gggagccgcg cgcctggggc gggaggatgc tccagagggg cctctggccg tggcgcacgc 120 ggctgctgcc gacccctggc acctggcgcc cagcgcgccc gtggccgctg ccgcctccgc 180 cccaggtttt gcgtgtgaag ctgtgtggaa atgtgaaata ctaccagtca caccattata 240 gtaccgtggt gccacctgat gaaataacag ttatttatag acatggcctt cccttggtaa 300 cacttacctt gccatctaga aaagaacgtt gtcaattcgt agtcaaacca atgttgtcaa 360 cagttggttc attccttcag gacctacaaa atgaagataa gggtatcaaa actgcagcca 420

tetteacage agatggeaae atgattteag ettetacett gatggatatt ttgetaatga 480 atgattttaa acttgtcatt aataaaatag catatgatgt gcagtgtcca aagagagaaa 540 aaccaagtaa tgagcacact gctgagatgg aacacatgaa atccttggtt cacagactat 600 ttacaatctt gcatttagaa gagtctcaga aaaagagaga gcaccattta ctggagaaaa 660 ttgaccacct gaaggaacag ctgcagcccc ttgaacaggt gaaagctgga atagaagctc 720 atteggaage caaaaccagt ggacteetgt gggetggatt ggeactgetg tecatteagg 780 gtggggcact ggcctggctc acgtggtggg tgtactcctg ggatatcatg gagccagtta 840 catacttcat cacatttgca aattctatgg tcttttttgc atactttata gtcactcgac 900 aggattatac ttactcagct gttaagagta ggcaatttct tcagttcttc cacaagaaat 960 caaagcaaca gcactttgat gtgcagcaat acaacaagtt aaaagaagac cttgctaagg 1020 ctaaagaatc cctgaaacag gcgcgtcatt ctctctgttt gcaaatgcaa gtagaagaac 1080 tcaatgaaaa gaattaatct tacagtttta aatgtcgtca gattttccat tatgtattga 1140 ttttgcaact taggatgttt ttgagtccca tggttcattt tgattgttta atctttgtta 1200 1245 ttaaattctt gtaaaacaga aaaaaaaaaa aaaaaaaaa aaaaa

<210> 55 <211> 440 <212> DNA

<213> Homo sapiens

<220>
<221> misc_feature
<222> (228)..(228)
<223> n is a, c, g, t or u

<400> 55 tttgatgtat gtgttgtcgt gcaggtagag gcttactaga gtgtaaaacg taggcttgga 60 ttaaggcgaa cgatttctag gatagtcagt agaattagaa ttgtgaagat gataagtgta 120 gagggaaggt taatggttga tattgctagg gtggtgcttc caattaggtg catgaagagg 180 tggcctgcag taatgttagc gcgttaggcg tacggccaga ggctattngg ttgaatgagt 240 aggctgatgg tttcgataat aactagtatg gggaataagg gtgtaagtgt tccctgtggt 300 aaaaaatagg ccaaggcaat tttaaaccta gagcgaaagc gcataaacac tgggcccgcg 360 cataaagggg ttgccacagc taaggttata gataaattgg tgggttgtgt aaaagagaga 420 440 ggcacgagtc cccggaggtt

<210> 56
<211> 3148

<212> DNA <213> Homo sapiens

<400> 56 cgccgccatc ctcggcgcga ctcgcttctt tcggttctac ctgggagaat ccaccgccat 60 ccgccaccat ggtgaacttc acggtagacc agatccgcgc catcatggac aagaaggcca 120 acatccgcaa catgtctgtc atcgcccacg tggaccatgg caagtccacg ctgacagact 180 ccctggtgtg caaggcgggc atcatcgcct cggcccgggc cggggagaca cgcttcactg 240 atacceggaa ggacgagcag gagegttgca teaccateaa gteaactgee atetecetet 300 tctacgagct ctcggagaat gacttgaact tcatcaagca gagcaaggac ggtgccggct 360 tecteateaa ecteattgae tecceeggge atgtegaett etecteggag gtgaetgetg 420 480 ccctccgagt caccgatggc gcattggtgg tggtggactg cgtgtcaggc gtgtgcgtgc agacggagac agtgctgcgg caggccattg ccgagcgcat caagcctgtg ctgatgatga 540 acaagatgga ccgcgccctg ctggagctgc agctggagcc cgaggagctc taccagactt 600· tccagcgcat cgtggagaac gtgaacgtca tcatctccac ctacggcgag ggcgagagcg 660 720 gccccatggg caacatcatg atcgatcctg tcctcggtac cgtgggcttt gggtctggcc tccacgggtg ggccttcacc ctgaagcagt ttgccgagat gtatgtggcc aagttcgccg 780 840 ccaaggggga gggccagttg gggcctgccg agcgggccaa gaaagtagag gacatgatga 900 agaagetgtg gggtgacagg tactttgace cagecaacgg caagttcage aagtcageca 960 ccagccccga agggaagaag ctgccacgca ccttctgcca gctgatcctg gaccccatct 1020 tcaaggtgtt tgatgcgatc atgaatttca agaaagagga gacagcaaaa ctgatagaga 1080 aactggacat caaactggac agcgaggaca aggacaaaga aggcaaaccc ctgctgaagg 1140 ctgtgatgcg ccgctggctg cctgccggag acgccttgtt gcagatgatc accatccacc 1200 tgccctcccc tgtgacggcc cagaagtacc gctgcgagct cctgtacgag gggcccccgg 1260 acgacgaggc tgccatgggc attaaaagct gtgaccccaa aggccctctt atgatgtata tttccaaaat ggtgccaacc tccgacaaag gtcggttcta cgcctttgga cgagtcttct 1320 1380 cggggctggt ctccactggc ctgaaggtca ggatcatggg gcccaactat acccctggga agaaggagga cctctacctg aagccaatcc agagaacaat cttgatgatg ggccgctacg 1440 1500 tggagcccat cgaggatgtg ccttgtggga acattgtggg cctcgtgggc gtggaccagt tcctggtgaa gacgggcacc atcaccacct tcgagcacgc gcacaacatg cgggtgatga 1560 1620 agttcagcgt cagccctgtt gtcagagtgg ccgtggaggc caagaacccg gctgacctgc 1680 ccaagctggt ggaggggctg aagcggctgg ccaagtccga ccccatggtg cagtgcatca tegaggagte gggagageae ateategegg gegeeggega getgeaeetg gagatetgee 1740

tgaaggacct	ggaggaggac	cacgcctgca	tccccatcaa	gaaatctgac	ceggtegtet	1800
cgtaccgcga	gacggtcagt	gaagagtcga	acgtgctctg	cctctccaag	tcccccaaca	1860
agcacaaccg	gctgtacatg	aaggcgcggc	ccttccccga	eggeetggee	gaggacatcg	1920
ataaaggcga	ggtgtccgcc	cgtcaggagc	tcaagcagcg	ggcgcgctac	ctggccgaga	1980
agtacgagtg	ggacgtggct	gaggcccgca	agatctggtg	ctttgggccc	gacggcaccg	2040
gccccaacat	cctcaccgac	atcaccaagg	gtgtgcagta	cctcaacgag	atcaaggaca	2100
gtgtggtggc	cggcttccag	tgggccacca	aggagggcgc	actgtgtgag	gagaacatgc	2160
ggggtgtgcg	cttcgacgtc	cacgacgtca	ccctgcacgc	cgacgccatc	caccgcggag	2220
ggggccagat	catccccaca	gcacggcgct	gcctctacgc	cagtgtgctg	accgcccagc	2280
cacgcctcat	ggagcccatc	taccttgtgg	agatccagtg	tccagagcag	gtggtcggtg	2340
gcatctacgg	ggttttgaac	aggaagcggg	gccacgtgtt	cgaggagtcc	caggtggccg	2400
gcacccccat	gtttgtggtc	aaggcctatc	tgcccgtcaa	cgagtccttt	ggcttcaccg	2460
ctgacctgag	gtccaacacg	ggcggccagg	cgttccccca	gtgtgtgttt	gaccactggc	2520
agatectgee	cggagacccc	ttcgacaaca	gcagccgccc	cagccaggtg	gtggcggaga	2580
cccgcaagcg	caagggcctg	aaagaaggca	teeetgeeet	ggacaacttc	ctggacaaat	2640
tgtaggcggc	ccttcctgca	gegeetgeeg	ccccggggac	tegeageace	cacagcacca	2700
cgtcctcgaa	ttctcagacg	acacctggag	actgtcccga	cacagcgacg	ctcccctgag	2760
aggtttctgg	ggcccgctgc	gtgccatcac	tcaaccataa	cacttgatgc	cgtttctttc	2820
aatatttatt	tccagagtcc	ggaggcagca	gacacgccct	cttagtaggg	acttaatggg	2880
ccggtcgggg	agggggaggc	gggatgggac	acccaacact	ttttccattt	cttcagaggg	2940
aaactcagat	gtccaaacta	attttaacaa	acgcattaag	aggtttattt	gggtacatgg	3000
cccgcagtgg	g cttttgcccc	agaaagggga	aaggaacacg	cgggtagatg	atttctagca	3060
ggcaggaagt	cctgtgcggt	gtcaccatga	gcacctccag	ctgtactagt	gccattggaa	3120
taataaattt	gataaggtgg	tgaaaaaa				3148

<210> 57

<211> 1404 <212> DNA <213> Homo sapiens

<400> 57 ctgtactgtc ttgtttagtg tagaagggaa gagaattggt gctgcagaag tgtacccgcc 60 atgaagccga tgagaaacct cgtgttagtc tgacatgcac tcactcatcc atttctatag 120 gatgcacaat gcatgtgggc cctaatattg aggccttatc cctgcagcta ggaggggag 180

gggttgttgc	tgctttgctt	cgtgttttct	tctaacctgg	caaggagaga	gccaggccct	240
ggtcagggct	cccgtgccgc	ctttggcggt	tctgtttctg	tgctgatctg	gaccatcttt	300
gtcttgcctt	ttcacggtag	tggtccccat	gctgaccctc	atctgggcct	gggccctctg	360
ccaagtgccc	ctgtgggatg	ggaggagtga	ggcagtggga	gaagaggtgg	tggtcgtttc	420
tatgcattca	ggctgccttt	ggggctgcct	cccttcttat	tcttccttgc	tgcacgtcca	480
tetetttee	tgtctttgag	attgacctga	ctgctctggc	aagaagaaga	ggtgtcctta	540
cagaggcctc	tttactgacc	aactgaagta	tagacttact	gctggacaat	ctgcatgggc	600
atcacccctc	cccgcatgta	acccaaaaga	ggtgtccaga	gccaaggctt	ctaccttcat	660
tgtccctctc	tgtgctcaag	gagttccatt	ccaggaggaa	gagatctata	ccctaagcag	720
atagcaaaga	. agataatgga	ggagcaattg	gtcatggcct	tggtttccct	caaaacaacg	780
ctgcagattt	atctgcacaa	acatctccac	ttttggggga	aaggtgggta	gattccagtt	840
ccctggacta	ccttcaggag	gcacgagagc	tgggagaaga	ggcaaagcta	caggtttact	900
tgggagccag	ctgagaagag	agcagactca	caggtgctgg	tgcttggatt	tagccaggct	960
cctccgagca	cctcatgcat	gtcccagccc	ctgggcccta	gccctttcct	gccctgcagt	1020
ctgcagtgcc	: agcacgcaaa	tcccttcacc	acagggtttc	gttttgctgg	cttgaagaca	1080
aatggtctta	gaattcattg	agacccatag	cttcatatgg	ctgctccagc	cccacttctt	1140
agcattctta	ctcctcttct	ggggctaatg	tcagcatcta	tagacaatag	actattaaaa	1200
aatcaccttt	: taaacaagaa	acggaaggca	tttgatgcag	aatttttgca	tgacaacata	1260
gaaataattt	: aaaaatagtg	tttgttctga	atgttggtag	acccttcata	gctttgttac	1320
aatgaaacct	tgaactgaaa	atatttaata	aaataacctt	taaacagtca	aaaaaaaaa	1380
aaaaaaaaa	a aaaaaaaaa	aaaa				1404
<210> 58						
<211> 148	_					
<212> DNA	_		`			
<213> Hor	no sapiens					

<400> 58
gacagtcgcc agggatggct gagcgtgaag atgcagcggg tgtccgggct gctctcctgg 60
acgctgagca gagtcctgtg gctctccggc ctctctgagc cgggagctgc ccggcagccc 120
cggatcatgg aagagaaagc gctagaggtt tatgatttga ttagaactat ccgggaccca 180
gaaaagccca atactttaga agaactggaa gtggtctcgg aaagttgtgt ggaagttcag 240
gagataaatg aagaagaata tctggttatt atcaggttca cgccaacagt acctcattgc 300
tctttggcga ctcttattgg gctgtgctta agagtaaaac ttcagcgatg tttaccattt 360

aaacataagt	tggaaatcta	catttctgaa	ggaacccact	caacagaaga	agacatcaat	420
aagcagataa	atgacaaaga	gcgagtggca	gctgcaatgg	aaaaccccaa	cttacgggaa	480
attgtggaac	agtgtgtcct	tgaacctgac	tgatagctgt	tttaagagcc	actggcctgt	540
aattgtttga	tatatttgtt	taaactcttt	gtataatgtc	agagactcat	gtttaataca	600
taggtgattt	gtacctcaga	gcattttta	aaggattctt	tccaagcgag	atttaattat	660
aaggtagtac	ctaatttgtt	caatgtataa	cattctcagg	atttgtaaca	cttaaatgat	720
cagacagaat	aatattttct	agttattatg	tgtaagatga	gttgctattt	ttctgatgct	780
cattctgata	caactatttt	tcgtgtcaaa	tatctactgt	gcccaaatgt	actcaattta	840
aatcattact	ctgtaaaata	aataagcaga	tgattcttaa	aaaaaaaaa	aaaaaaaaa	900
aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	960
acctttctcg	ttccccggcc	atcttagcgg	ctgctgttgg	ttgggggccg	tecegeteet	1020
aaggcaggaa	gatggtggcc	gcaaagaaga	cgaaaaagtc	gctggagtcg	atcaactcta	1080
ggctccaact	cgttatgaaa	agtgggaagt	acgtcctggg	gtacaagcag	actctgaaga	1140
tgatcagaca	aggcaaagcg	aaattggtca	ttctcgctaa	caactgccca	gctttgagga	1200
aatctgaaat	agagtactat	gctatgttgg	ctaaaactgg	tgtccatcac	tacagtggca	1260
ataatattga	actgggcaca	gcatgcggaa	aatactacag	agtgtgcaca	ctggctatca	1320
ttgatccagg	tgactctgac	atcattagaa	gcatgccaga	acagactggt	gaaaagtaaa	1380
ccttttcacc	tacaaaattt	cacctgcaaa	ccttaaacct	gcaaaatttt	cctttaataa	1440
aatttgcttg	tttaaaaaa	aaaaacaaaa	aaaaaaaaa	aaa		148

<210> 59 <211> 1934

<212> DNA

<213> Homo sapiens

<400> 59 giccatgggg accetegect tegatgaata tgggegeect tteeteatea teaaggatea 60 ggaccgcaag tcccgtctta tgggacttga ggccctcaag tctcatataa tggcagcaaa 120 ggctgtagca aatacaatga gaacatcact tggaccaaat gggcttgata agatgatggt 180 ggataaggat ggggatgtga ctgtaactaa tgatggggcc accatcttaa gcatgatgga 240 tgttgatcat cagattgcca agctgatggt ggaactgtcc aagtctcagg atgatgaaat 300 tggagatgga accacaggag tggttgtcct ggctggtgcc ttgttagaag aagcggagca 360 420 attgctagac cgaggcattc acccaatcag aatagccgat ggctatgagc aggctgctcg cgttgctatt gaacacctgg acaagatcag cgatagcgtc cttgttgaca taaaggacac 480

cgaacccctg	attcagacag	caaaaaccac	gctgggctcc	aaagtggtca	acagttgtca	540
ccgacagatg	gctgagattg	ctgtgaatgc	cgtcctcact	gtagcagata	tggagcggag	600
agacgttgac	tttgagctta	tcaaagtaga	aggcaaagtg	ggcggcaggc	tggaggacac	660
taaactgatt	aagggcgtga	ttgtggacaa	ggatttcagt	cacccacaga	tgccaaaaaa	720
agtggaagat	gcgaagattg	caattctcac	atgtccattt	gaaccaccca	aaccaaaaac	780
aaagcataag	ctggatgtga	cctctgtcga	agattataaa	gcccttcaga	aatacgaaaa	840
ggagaaattt	gaagagatga	ttcaacaaat	taaagagact	ggtgctaacc	tagcaatttg	900
tcagtggggc	tttgatgatg	aagcaaatca	cttacttctt	cagaacaact	tgcctgcggt	960
tcgctgggta	ggaggacctg	aaattgagct	gattgccatc	gcaacaggag	ggcggatcgt	1020
ccccaggttc	tcagagctca	cagccgagaa	gctgggcttt	gctggtcttg	tacaggagat	1080
ctcatttggg	acaactaagg	ataaaatgct	ggtcatcgag	cagtgtaaga	actccagagc	1140
tgtaaccatt	tttattagag	gaggaaataa	gatgatcatt	gaggaggcga	aacgatccct	1200
tcacgatgct	ttgtgtgtca	tccggaacct	catccgcgat	aatcgtgtgg	tgtatggagg	1260
aggggctgct	gagatatcct	gtgccctggc	agttagccaa	gaggcggata	agtgccccac	1320
cttagaacag	tatgccatga	gagcgtttgc	cgacgcactg	gaggtcatcc	ccatggccct	1380
ctctgaaaac	agtggcatga	atcccatcca	gactatgacc	gaagtccgag	ccagacaggt	1440
gaaggagatg	aaccctgctc	ttggcatcga	ctgtttgcac	aaggggacaa	atgatatgaa	1500
gcaacagcat	gtcatagaaa	ccttgattgg	caaaaagcaa	cagatatctc	ttgcaacaca	1560
aatggttaga	atgattttga	agattgatga	cattcgtaag	cctggagaat	ctgaagaatg	1620
aagacattga	gaaaactatg	tagcaagatc	cacttctgtg	attaagtaaa	tggatgtctc	1680
gtgatgcgtc	tacagttatt	tattgttaca	tccttttcca	gacactgtag	atgctataat	1740
aaaaatagct	gtttggtaac	catagtttca	cttgttcaaa	gctgtgtaat	cgtgggggta	1800
ctatctcaac	tgcttttgta	ttcattgtat	taaaagaatc	tgtttaaaca	acctttatct	1860
tctcttcggg	tttaagaaac	gtttattgta	acagtaatta	aatgctgcct	taattgaaaa	1920
aaaaaaaaa	aaaa					1934

<210> 60 <211> 2220 <212> DNA <213> Homo sapiens

<400> 60

ggaaaattac ccggtatcgt tagagctaca ccaaaattgc attgagccaa acttgccacc 60 aagagcccaa caatcaccat gatgctgagc acggaaggca gggaggggtt cgtggtgaag 120

gtcaggggcc	taccctggtc	ctgctcagcc	gatgaagtga	tgcgcttctt	ctctgattgc	180
aagatccaaa	atggcacatc	aggtattcgt	ttcatctaca	ccagagaagg	cagaccaagt	240
ggtgaagcat	ttgttgaact	tgaatctgaa	gaggaagtga	aattggcttt	gaagaaggac	300
agagaaacca	tgggacacag	atacgttgaa	gtattcaagt	ctaacagtgt	tgaaatggat	360
tgggtgttga	agcatacagg	tccgaatagc	cctgatactg	ccaacgatgg	cttcgtccgg	420
cttagaggac	tcccatttgg	ctgtagcaag	gaagagattg	ttcagttctt	ttcagggttg	480
gaaattgtgc	caaatgggat	gacactgcca	gtggactttc	aggggcgaag	cacaggggaa	540
gcctttgtgc	agtttgcttc	acaggagata	gctgagaagg	ccttaaagaa	acacaaggaa	600
agaatagggc	acaggtacat	tgagatcttc	aagagtagcc	gagctgaagt	tcgaacccac	660
tatgatcccc	ctcgaaagct	catggctatg	cageggeeag	gtccctatga	taggccgggg	720
gctggcagag	ggtataatag	cattggcaga	ggagctgggt	ttgaaaggat	gaggcgtggt	780
gcctatggtg	gagggtatgg	aggctatgat	gactatggtg	gctataatga	tggatatggc	840
tttgggtctg	atagatttgg	aagagacctc	aattactgtt	tttcaggaat	gtctgatcat	900
agatacggag	atggtgggtc	cagtttccag	agcaccacag	ggcactgtgt	acacatgagg	960
gggttacctt	acagagccac	tgagaatgat	atttataatt	tcttctcacc	tcttaatccc	1020
atgagagtac	atattgaaat	tggacccgat	ggcagagtta	ccggtgaggc	agatgttgaa	1080
tttgctactc	atgaagatgc	tgtggcagct	atggcaaaag	acaaagctaa	tatgcaacac	1140
agatatgtgg	agctcttctt	aaattctact	gcaggaacaa	gtgggggtgc	ttacgatcac	1200
agctatgtag	aactttttt	gaattctaca	gcaggggcaa	gtggtggcgc	ttatggtagc	1260
caaatgatgg	gagggatggg	cttatccaac	: cagtctagtt	atggaggtcc	tgctagccag	1320
cagctgagtg	gtggttatgg	aggtggttat	ggtggtcaga	gcagtatgag	tggatatgac	1380
caagttctgc	aggaaaacto	cagtgactat	: cagtcaaacc	ttgcttaggt	agagaaggag	1440
cactaaatag	ctactccaga	tataaaagct	gtacatttgt	gggagttgaa	tagaatggga	1500
gggatgttta	gtatatccag	tatgattggt	: aaatgggaaa	tataattgat	tctgatcact	1560
cttggtcagc	ttetettet	ttatctttct	gtctcctttt	ttaagaaaa	: gagttaagtt	1620
taacagtttt	gcattacagg	cttgtgatto	atgcttactc	, taaagtggaa	gttgagatta	1680
ttttaaaact	: tcaagctcag	g taattttgaa	a ccactgaaac	attcatctag	g gacataataa	1740
caaagttcag	, tattgaccat	: aactgttaaa	a acaatttta	gettteetea	a agttagttat	1800
gttgtaggag	g' tgtacctaag	g cagtaagcgt	atttaggtta	atgcagttto	acttatgtta	1860
aatgttgcto	ttataccaca	a aatacattga	a aaacttcgga	a tgcatgttga	gaaacatgcc	1920

tttctgtaaa	actcaaatat	aggagctgtg	tctacgattc	aaagtgaaaa	catttggcat	1980
gtttgttaat	tctagctttt	tggtttaata	tcctgtaagg	cacgtgagtg	tacacttttt	2040
tttttttaa	ggatacggga	caattttaag	atgtaatacc	aatactttag	aagtttggtc	2100
gtgtcgtttg	tatgaaaatc	tgaggctttg	gtttaaatct	ttccttgtat	tgtgatttcc	2160
atttagatgt	attgtactaa	gtgaaacttg	ttaaataaat	cttcctttta	aaaactggaa	2220

<210> 61

<211> 1972

<212> DNA

<213> Homo sapiens

<400> 61 gaatteggea egagggegae eggegegteg tgeggggetg eggeggagee teettaagga 60 aggtgcaaga ggttggcagc ttcgattgaa gcacatcgac cggcgacagc agccaggagt 120 catgagcgac agcggcgagc agaactacgg cgagcgggaa tcccgttctg cttccagaag 180 tggaagtgct cacggatcgg ggaaatctgc aaggcatacc cctgcaaggt ctcgctccaa 240 300 ggaagattcc aggcgttcca gatcaaagtc caggtcccga tctgaatcta ggtctagatc cagaagaagc tcccgaaggc attatacccg gtcacggtct cgctcccgct cccatagacg 360 atcacgtage aggtettaca gtegagatta tegtagaegg cacagecaca gecattetee 420 catgtctact cgcaggcgtc atgttgggaa tcgggcaaat cctgatccta actgttgtct 480 tggagtattt gggctgagct tgtacaccac agaaagagat ctaagagaag tgttctctaa 540 600 atatggtccc attgccgatg tgtctattgt atatgaccag cagtctaggc gttcaagagg atttgccttt gtatattttg aaaatgtaga tgatgccaag gaagctaaag aacgtgccaa 660 tggaatggag cttgatgggc gtaggatcag agttgatttc tctataacaa aaagaccaca 720 780 tacgccaaca ccaggaattt acatggggag acctacctat ggcagctctc gccgtcggga ttactatgac agaggatatg atcggggcta tgatgatcgg gactactata gcagatcata 840 cagaggagga ggtggaggag gaggaggatg gagagctgcc caagacaggg atcagattta 900 tagaaggcgg tcaccttctc cttactatag tcgtggagga tacagatcac gttccagatc 960 togatcatac tcacctogto gotattaaag catgaagact ttotgaaacc tgccctagag 1020 1080 ctgggatatt gtttgtgggc aatattttt attgtctctt gtttaaaaag tgaacagtgc ctagtgaagt taggtgactt ttacaccttt tacgatgact acttttggtg gagttgaaat 1140 gctgttttca ttctgcattt gtgtagtttg gtgctttgtt ccaagttaag tgttttcaga 1200 1260 aaagtatgtt ttgcatgtat ttttttacag tctaaatttt gactgctgag aagtttctat 1320 tgtacaaaac ttcatttaaa aggtttttct actgaatcca gggtattctg aagatcgaag

cctgtgtaaa	atgctaccaa	atggcaaaaa	gcaacaataa	acagtttgat	ttttactttt	1380
ctttctaaca	tatcaatgct	tagcagaact	attcagattg	tcagtagtaa	atttaaagac	1440
aaatgcccgt	tttcctccag	tccatgaaac	ataccatact	tatatacctg	caactaagtg	1500
tttaaaatta	tgctctgtaa	ctctgtactg	ctagtattag	aactaaaaat	cttaaaatac	1560
agccagtgct	taatgcttat	atcaatgtgg	atttgtcggc	ttttatgtaa	tctgtaatat	1620
gtatagcagg	aaatacgaag	agttacacag	tgtatgcctt	aaaaggctgt	ttcttaaagg	1680
tgttacaagg	ggataatggt	atttcaacta	gttatcagca	agtgacaata	cattccacca	1740
caaatacact	cttgttcttc	tagcttttag	actatatgaa	aaaaccgggt	gcttcaaagt	1800
acatgataag	ggaacactat	acctgtcatg	gatgaactga	agactttgcc	tgttcatttt	1860
ttaaatatta	ttttcaggtc	ctttgcttac	caaaggaggc	ccaatttcac	tcaaatgttt	1920
tgagaactgt	gtttaaataa	acgcaaatga	aaagaaaaaa	aaaaaaaaa	aa	1972

<210> 62

<211> 1321

<212> DNA

<213> Homo sapiens

60 qacaqatttc actqctccca ccaqcttgga gacaacatgt ggttcttgac aactctgctc ctttgggttc cagttgatgg gcaagtggac accacaaagg cagtgatctc tttgcagcct 120 ccatgggtca gcgtgttcca agaggaaacc gtaaccttgc actgtgaggt gctccatctg 180 cctgggagca gctctacaca gtggtttctc aatggcacag ccactcagac ctcgaccccc 240 agctacagaa tcacctctgc cagtgtcaat gacagtggtg aatacaggtg ccagagaggt 300 360 ctctcagggc gaagtgaccc catacagctg gaaatccaca gaggctggct actactgcag gtctccagca gagtcttcac ggaaggagaa cctctggcct tgaggtgtca tgcgtggaag 420 gataagctgg tgtacaatgt gctttactat cgaaatggca aagcctttaa gtttttccac 480 tggaattcta acctcaccat tctgaaaacc aacataagtc acaatggcac ctaccattgc 540 600 tcaggcatgg gaaagcatcg ctacacatca gcaggaatat ctgtcactgt gaaagagcta tttccagctc cagtgctgaa tgcatctgtg acatccccac tcctggaggg gaatctggtc 660 accetgaget gtgaaacaaa gttgetettg cagaggeetg gtttgeaget ttaettetee 720 ttctacatgg gcagcaagac cctgcgaggc aggaacacat cctctgaata ccaaatacta 780 actgctagaa gagaagactc tgggttatac tggtgcgagg ctgccacaga ggatggaaat 840 900 qtccttaagc gcagccctga qttggagctt caagtgcttg gcctccagtt accaactcct 960 gtctggtttc atgtcctttt ctatctggca gtgggaataa tgtttttagt gaacactgtt

ctctqqqtga	caatacgtaa	agaactgaaa	agaaagaaaa	agtgggattt	agaaatctct	1020
	gtcatgagaa					1080
	aatgtcagga					1140
					gaccgtcccc	1200
					aacaccagaa	1260
					caaaaaaaaa	1320
ctgtgtgtct	catggtatgt	aactcttaaa	gcaaacaaa	3		1321
a						

<210> 63

<211> 2972

<212> DNA

<213> Homo sapiens

ccggacgtag gaggtggagg ttgtggaatt cgccgttcga aagcagggac taaaagcccc <400> 63 60 acttcgtctt acgttccgaa aggaaggcgt ctgttgagcc tttctctcag tcgtgaggga 120 ggcgtcgacg gcgtgcggaa gtcctgagtt gaggcttgcg ggatcctttc cggagaaagc 180 gcaggctaaa gccgcaggtg aagatgtcca actacgtgaa cgacatgtgg ccgggctcgc 240 cgcaggagaa ggattcgccc tcgacctcgc ggtcgggcgg gtccagccgg ctgtcgtcgc 300 ggtctaggag ccgctctttt tccagaagct ctcggtccca ttcccgcgtc tcgagccggt 360 tttcgtccag gagtcggagg agcaagtcca ggtcccgttc ccgaaggcgc caccagcgga 420 agtacaggcg ctactcgcgg tcatactcgc ggagccggtc gcgatcccgc agccgccgtt 480 accgagagag gcgctacggg ttcaccagga gatactaccg gtctccttcg cggtaccggt 540 cccggtcccg tagcaggtcg cgctctcggg gaaggtcgta ctgcggaagg gcgtacgcga 600 tegegegggg acagegetae taeggetttg gtegeacagt gtaeceggag gageacagea 660 gatggaggga cagatccagg acgaggtcgc ggagcagaac cccctttcgc ttaagtgaaa 720 aagatcgaat ggagctgtta gaaatagcaa aaaccaatgc agcgaaagct ctaggaacaa 780 ccaacattga cttgccagct agtctcagaa ctgttccttc agccaaagaa acaagccgtg 840 gaataggtgt atcaagtaat ggtgcaaagc ctgaagtaag tattctaggt ttgtcggaac 900 aaaactttca gaaagccaac tgtcaaatct gattagccac ttatatctta gactatactt 960 tttgggaagt ctagagatgt atataatgtg ctaaattcaa agtagcaaat ctgaagatag 1020 gcaatgtcaa acccatgaaa atgggagatt aatgagcttt atttggccgt gcatggtgcc 1080 tcatgcctgt aatgaggcag atggcttgag tccaggagtt caagactagc ctgggcaatg 1140 tggcaaaacc gcgtgtttac aaaaaataca aaaattagcc aggcatggtg gtgcatgcct 1200

gtagtcccag	ctgtttggga	ggctgaggca	ggaggatctt	tgagcctagg	atgctaaggt .	1260
tgcagtgagc	caagatggca	ccattgcact	ctagcctggg	cagcagagcg	agaccctgtc	1320
tcaaaaaata	catttattt	tttcattttc	agttaacagt	gtactcttat	aacaccgtta	1380
ttagctggta	ctttggtgat	ttctattact	agtttttcta	agctatttac	agagtgtttg	1440
tagctttcat	ttgccagcat	tatgttcccc	acaaattctg	tactcagcat	atacagtata	1500
gtttatctgc	tctatttctg	tcttatagaa	atcatgaatg	tggtctgcag	acattgatga	1560
agaaaatctg	ttggtaattg	atacatgggc	taaagcatca	gaggtttaat	ttgaagttta	1620
tgttcacaca	ctgaaaactt	agttttttg	ttggtagatc	catgtgcatg	ctagaatttg	1680
ggacaggcac	tatttgcata	aagtattaaa	gtcaattttt	aaactaagca	aaggtacacg	1740
ttgtaacggt	ggggcatctg	tgaaaaagat	gtccctttca	taatatatgc	aatatattcc	1800
agatgttttg	agagattaca	gaagaggagg	cctgcttcac	ttgcagataa	gtttattata	1860
attctccaga	aatgtgcagg	atgtgcatta	gcaaattgca	ctgtactttt	cactccagcc	1920
tgggtgacag	agcaagactc	cgtctcgggg	gcttaaaaaa	aaaaaaatgc	tgtatctaaa	1980
tgaatctgtg	taattgggcc	cagatgtggg	tttgctcagt	attagtagac	aaggtctttg	2040
ttcagacgat	taggtgccta	actggcaaat	gccttagttt	cttaaaacgt	attttctgat	2100
gtggctttac	atttcaaaag	tgaacttgat	tcaacctgag	aaaactgatt	aaaaaattag	2160
tttaaatttg	ccagcaggga	agtaaaataa	ttatgggaag	agtgtcttaa	gcctaatatt	2220
aaatcagttt	tgttaagggg	aaaactcaat	agttctgtta	cttaggctgt	tagatccaag	2280
ttgatttttg	tgtctacagc	taaattttgt	ttacaattag	gctattttt	aatataggat	2340
ttagaaacca	agggtatgtg	ttttaaaatt	acactttttc	ttaacctgtc	tagctgtcgg	2400
aaaaggtaac	agaagatgga	actcgaaatc	ccaatgaaaa	acctacccag	caaagaagca	2460
tagcttttag	ctctaataat	tctgtagcaa	agccaataca	aaaatcagct	aaagctgcca	2520
cagaagaggc	atcttcaaga	tcaccaaaaa	tagatcagaa	aaaaagtcca	tatggactgt	2580
ggatacctat	ctaaaagaag	aaaactgatg	gctaagtttg	catgaaaact	gcactttatt	2640
gcaagttagt	gtttctagca	ttatcccatc	cctttgagcc	attcaggggt	acttgtgcat	2700
ttaaaaacca	acacaaaaag	atgtaaatac	ttaacactca	aatattaaca	ttttaggttt	2760
ctcttgcaga	tatgagagat	agcacagatg	gaccaaaggt	tatgcacagg	tgggagtctt	2820
ttgtatatag	ttgtaaatat	tgtcttggtt	atgtaaaaat	gaaattttt	agacacagta	2880
attgaactgt	attcctgttt	tgtatattta	ataaatttct	tgttttcatt	cttaaaaaaa	2940
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aa .			2972

<210> 64 <211> 3189 <212> DNA <213> Homo sapiens

<400> 64 agattagttg aaaattatta caaaatattc taaaagggtt ttttgtggta cttcaagaaa 60 cctgattagt tttgatctat tgaaatcaca aaagtagaac agggcatttt atttttgtat 120 aatttaggat taggtatgct tetttgttet aacaagteat gttttetaac eettetttea 180 ctaagcaaac cagaacagat ttgaactgtt atgggttata tattagtatg gagatcagct 240 cagatgacat taaaaatgcc gtagtgttat tcttgtatgc caaatctttt tttccccaaa 300 attagcactt taattttatt tactgttata atatttgttt tcttagatta ggtaggaaat 360 cttaatttgg ccaccgccta ctttgacaag taaatattac atcatacgat tttgcaacat 420 taaattagaa cactagaaac taaaaaatta tgtttcagtg aatgctacaa ctaagcattt 480 ttttttttta agaaaacaa ttgtattatg ttttgttgcc ttgccacttt gagtatctta 540 tetgaaaate tgtteettge catgttttte teetgttaac ataaactatg tgeeetgtga 600 atttctgggg actgaatttg aaattgctcc tgccaaccgt ttgtggcctg gcgtgtatct 660 gaatgeetga atateteece getgaatgaa tttegtatte tgeeetgaat teactegggt 720 atattgattg gctggatgat cttggtgccg cccacttgac gtttccagaa gagtcaccga 780 aggaaaagaa ccaggagtgt agaggatgat gaggagggtc acctgatctg tcagagtgga 840 gacgtactaa gtgcaagatg tatagaatat ttttcaacac ttattaactt ttcagataac 900 ataatctata tatagattaa gctttcaggg atttggaaat cttttttct ttctctttt 960 tgtttttgtt ttatttttcc atttcttttg gtggggggga ttgtattttt gctttcttta 1020 gaaatgtaat gtttgttata tagaacttcc agaacagtaa tcaaattaat gaaattagtc 1080 ctaataatta tgttttttga tggtgttgac caataaaata tctagtgata aggaaatttg 1140 tagcatcaac tagaataatc tacattgata gcatttattg tgataagtac attgtttcca 1200 cttcttgata tgactgagat ttatttctct cttttagatg aaattgttga tactttaggt 1260 gaaggagett ttggaaaagt tgtggagtge ategateata aagegggagg tagacatgta 1320 gcagtaaaaa tagttaaaaa tgtggataga tactgtgaag ctgctcgctc agaaatacaa 1380 gttctggaac atctgaatac aacagacccc aacagtactt tccgctgtgt ccagatgttg 1440 gaatggtttg agcatcatgg tcacatttgc attgtttttg aactattggg acttagtact 1500 tacgacttca ttaaagaaaa tggttttcta ccatttcgac tggatcatat cagaaagatg 1560 gcatatcaga tatgcaagtc tgtgaattgt aagttcttgg tatatcttcg ttaatttgct 1620 ggttttatcc attccacata tcaaaatgtg catcctaagt gtgtacaatt tttatttgat 1680

PCT/US03/13015 WO 03/090694

taaaaataaa	gggggaggaa	gaataggtat	gaagagattt	gattacaggc	tgttgatcca	1740
gcagtgtaca	tttcattcag	caagtaggat	atccaccata	taacaacgta	ctttgttgca	1800
gactatgatt	tagacttttc	tgatgcgcaa	aaatagtaac	ttcgaatgct	gggtaaaaat	1860
taaggcgtga	tatatctcat	aaaagaaagc	ttcataagag	gtagtaagtt	ttagttactg	1920
gtgattttct	agcagactgg	aatgttgacc	attctttggg	aaaggaatca	gaggttttt	1980
gttgggtttt	tttgttttt	gaaatggagt	ctcgctttgt	tgttcaggct	gaagtgcagt	2040
ggcgcagtct	tcactcactg	caaactctgc	ctccccagtt	caagtgattc	tcctgcctca	2100
gcctcccgag	tagctaggac	tacaggcaca	cgccaccaca	cccggccaat	ttttgtaatt	2160
ttggtagaga	cagggtttca	ccatattggt	caggctggtc	tcgaactcct	gacctcaggt	2220
gattacaggc	gtgagccact	gcacccggcc	tgttgtgggg	ttttgtgatt	tggtttggtt	2280
tggtgtttc	tgattacagc	aactttctct	ttattctcag	ttttgcacag	taataagttg	2340
actcacacag	acttaaagcc	tgaaaacatc	ttatttgtgc	agtctgacta	cacagaggcg	2400
tataatccca	aaataaaacg	tgatgaacgc	accttaataa	atccagatat	taaagttgta	2460
gactttggta	gtgcaacata	tgatgacgaa	catcacagta	cattggtatc	tacaagacat	2520
tatagagcac	ctgaagttat	tttagcccta	gggtggtccc	aaccatgtga	tgtctggagc	2580
ataggatgca	ttcttattga	atactatctt	gggtttaccg	tatttccaac	acacgatagt	2640
aaggagcatt	tagcaatgat	ggaaaggatt	cttggacctc	taccaaaaca	tatgatacag	2700
aaaaccagga	aacgtaaata	ttttcaccac	gatcgattag	actgggatga	acacagttct	2760
gccggcagat	atgtttcaag	acgctgtaaa	cctctgaagg	aatttatgct	ttctcaagat	2820
gttgaacatg	agcgtctctt	tgacctcatt	cagaaaatgt	tggagtatga	tccagccaaa	2880
agaattacto	: tcagagaagc	cttaaagcat	cctttctttg	accttctgaa	gaaaagtata	2940
tagatctgta	attggacago	tetetegaag	agatcttaca	gactgtatca	gtctaatttt	3000
taaattttaa	a gttattttgt	acagctttgt	aaattcttaa	catttttata	ttgccatgtt	3060
tattttgttt	gggtaatttg	gttcattaag	tacatagcta	aggtaatgaa	catcttttc	3120
agtaattgta	a aagtgattta	ı ttcagaataa	attttttgtg	cttatgaagt	: tgaaaaaaaa	3180
aaaaaaaaa						3189

<210> 65

<211> 3585

<212> DNA <213> Homo sapiens

<400> 65

ctgctcgcgg cgccgcctcc tgctcctccc gctgctgctg ccgctgccgc cctgagtcac 60

tgcctgcgca	gctccggccg	cctggctccc	catactagtc	gccgatattt	ggagttctta	120
caacatggca	gacattgaca	acaaagaaca	gtctgaactt	gatcaagatt	tggatgatgt	180
tgaagaagta	gaagaagagg	aaactggtga	agaaacaaaa	ctcaaagcac	gtcagctaac	240
tgttcagatg	atgcaaaatc	ctcagattct	tgcagccctt	caagaaagac	ttgatggtct	300
ggtagaaaca	ccaacaggat	acattgaaag	cctgcctagg	gtagttaaaa	gacgagtgaa	360
tgctctcaaa	aacctgcaag	ttaaatgtgc	acagatagaa	gccaaattct	atgaggaagt	420
tcacgatctt	gaaaggaagt	atgctgttct	ctatcagcct	ctatttgata	agcgatttga	480
aattattaat	gcaatttatg	aacctacgga	agaagaatgt	gaatggaaac	cagatgaaga	540
agatgagatt	tcggaggaat	tgaaagaaaa	ggccaagatt	gaagatgaga	aaaaggatga	600
agaaaaagaa	gaccccaaag	gaattcctga	attttggtta	actgttttta	agaatgttga	660
cttgctcagt	gatatggttc	aggaacacga	tgaacctatt	ctgaagcact	tgaaagatat	720
taaagtgaag	ttctcagatg	ctggccagcc	tatgagtttt	gtcttagaat	ttcactttga	780
acccaatgaa	tattttacaa	atgaagtgct	gacaaagaca	tacaggatga	ggtcagaacc	840
agatgattct	gatccctttt	cttttgatgg	accagaaatt	atgggttgta	cagggtgcca	900
gatagattgg	aaaaaaggaa	agaatgtcac	tttgaaaact	attaagaaga	agcagaaaca	960
caagggacgt	gggacagttc	gtactgtgac	taaaacagtt	tccaatgact	ctttctttaa	1020
cttttttgcc	cctcctgaag	ttcctgagag	tggagatctg	gatgatgatg	ctgaagctat	1080
ccttgctgca	gacttcgaaa	ttggtcactt	tttacgtgag	cgtataatcc	caagatcagt	1140
gttatatttt	actggagaag	ctattgaaga	tgatgatgat	gattatgatg	aagaaggtga	1200
agaagcggat	gaggaagggg	aagaagaagg	agatgaggaa	aatgatccag	actatgaccc	1260
aaagaaggat	caaaacccag	cagagtgcaa	gcagcagtga	agcaggatgt	atgtggcctt	1320
gaggataacc	tgcactgtaa	tagcctaaac	acaactctta	tttacttaca	gccttatgtt	1380
tttgtatttt	cttggtagac	taggtaattt	tttttaaag	gacaggaaac	tgatatttta	1440
aagaccaatt	tgttctacct	agcattttaa	ctagttttc	tgccagctat	gttgaatgca	1500
caaattctgt	cacgcatgtt	cattcattgc	tacataattt	ggttcttctg	gaatatttt	1560
atgtagctct	tggagtacag	ctatgaaaat	taacaactgt	taaaggaaat	acctttttt	1620
tttttttgta	atttttcct	tgaagaacca	aagtatttt	tcagctggtt	gttgaatagg	1680
gttaagtccg	cttggattag	ctgtgccttt	cattactttg	ttacagaaat	gcagtgactt	1740
atactaagac	aatttattgt	ttaaaaaaaa	aattggcaag	acaactatat	ggttaagaat	1800
ttccagtatg	accacaccca	ataactgtta	ttagagtgtt	aatggattat	tgtgttttag	1860

gtgacatagt taactgtaaa gtaacctgac tcagtatagt tactggtacc acagtgaggt	1920
gaataaaacg ggattttcag aagttagcct gaatttaact gtatttttaa atttaacctc	1980
cattaactaa gcatcttttc tttgtggtag ggtctacctt ctgcttccct ggaaaggatg	2040
aatttacatc atttgacaag cctattttca agttatttgt tgtttgtttg cttgtttttg	2100
tttttgcagc taaaataaaa atttcaaata caattttagt tcttacaaga taatgtctta	2160
attttgtacc aattcaggta gaagtagagg cctaccttga attaagggtt atactcagtt	2220
tttaacacat tgttgaagaa aaggtaccag ctttggaacg agatgctata ctaataagca	2280
agtgtaaaaa aaaaaaaaa aagaggaaga aaatcttaag tgattgatgc tgttttcttt	2340
taaaaaaaaa aaaaaaaaa ttcattttct ttgggttaga gctagagaga aggccccaag	2400
cttctatggt ttcttctaat tcttattgct taaagtatga gtatgtcact tacccgtgct	2460
tctgtttact gtgtaattaa aatgggtagt actgtttacc taactacctc atggatgtgt	2520
taaggcatat tgagttaaat ctcatataat gtttctcaat cttgttaaaa gctcaaaatt	2580
ttgggcctat ttgtaatgcc agtgtgacac taagcatttt gttcacacca cgctttgata	2640
actaaactgg aaaacaaagg tgttaagtac ctctgttctg gatctgggca gtcagcactc	2700
tttttagatc tttgtgtggc tcctattttt atagaagtgg agggatgcac tatttcacaa	2760
ggtccaagat ttgttttcag atatttttga tgactgtatt gtaaatacta cagggatagc	2820
actatagtat tgtagtcatg agacttaaag tggaaataag actatttttg acaaaagatg	2880
ccattaaatt tcagactgta gagccacatt tacaatacct caggctaatt actgttaatt	2940
ttggggttga actttttttg acagtgaggg tggattattg gattgtcatt agaggaaggt	3000
ctagatttcc tgctcttaat aaaattacat tgaattgatt tttagaggta atgaaaactt	3060
cctttctgag aagttagtgt taaggtcttg gaatgtgaac acattgtttg tagtgctatc	3120
cattcctctc ctgagatttt aacttactac tggaaatcct taaccaatta taatagcttt	3180
ttttctttat tttcaaaatg atttcctttg ctttgattag acactatgtg ctttttttt	3240
ttaaccatag ttcatcgaaa tgcagctttt tctgaacttc aaagatagaa tcccattttt	3300
aatgaactga agtagcaaaa tcatcttttt cattctttag gaaatagcta ttgccaaagt	3360
gaaggtgtag ataataccta gtcttgttac ataaagggga tgtggtttgc agaagaattt	3420
totttataaa attgaagttt taagggacgt cagtgtttat gccatttttc cagttccaaa	3480
atgattccat tccattctag aaatttgaag tatgtaacct gaaatcctta ataaaatttg	3540
gatttaattt taaaaaaaaa aaaaaaaaaa aaaaaaaa	3585

<210> 66 <211> 2775

<212> DNA <213> Homo sapiens

<400> gcagtccaga tgtcgtcagc accagcgcct gggctggagg acagagaagc cttttccgtt 60 120 geeggtgeeg geetagegte etggaattae tteaateaac aggagegaga accegageag cgccatgagc aacactaccg tcgtccccag cactgcaggt ccgggcccca gcggcgggcc 180 cggtggcgga ggtggtggtg gcggcggagg cggcggcacc gaggtaatcc aggtgactaa 240 tgtctccccg agcgctagct ctgagcagat gcggactctc ttcggtttcc taggcaagat 300 360 cgacgaactg cgcctcttcc cgccggatga ttcgcctttg ccagtctcat ctcgtgtctg ctttgttaag ttccatgatc cagactcagc agttgtggca cagcatctga caaacactgt 420 attcgttgac agagctttga tagtcgtacc atatgcagaa ggagttattc ctgatgaagc 480 taaagctttg tctctgttgg caccagctaa tgcagtggca ggtcttctgc ctggtggtgg 540 actcctgcct actcctaacc cacttaccca gattggcgct gttccactgg ctgctttggg 600 ggctcctact cttgatcctg cccttgctgc acttgggctt cctggagcaa acttgaactc 660 tcagtctctt gctgcagatc agttgctgaa gcttatgagt actgttgatc ccaagttgaa 720 tcatgtagct gctggtctcg tttcaccaag tctgaaatcg gatacctcta gtaaagaaat 780 840 agaggaaget atgaaaagag tacgagaage acagteeeta atttetgetg etatagaace agataagaaa gaagaaaaaa gaaggcattc aagatcaaga tcacgttcta ggaggaggag 900 960 gactccctca tettetagae acaggeggte aagaageaga tegagaegge ggteacatte taagtctagg agtcggcgac gatccaaaag cccaaggcgg agaagatctc attccagaga 1020 aagaggtaga aggtcaagga gcacatcaaa aacaagagac aaaaagaaag aagacaaaga 1080 aaagaaacgt tctaaaacac caccaaaaag ttacagcaca gccagacgtt ctagaagtgc 1140 1200 aagcagagag agacgacgac gaagaagcag gagtggcaca agatctccta aaaagcctcg gtctcctaaa agaaaattgt cccgctcacc atcccctagg agacataaaa aggagaagaa 1260 1320 gaaagataaa gacaaagaaa gaagtaggga tgaaagagaa cgatcaacaa gcaagaagaa 1380 gaagagtaaa gataaggaaa aggaccggga aagaaaatca gagagtgata aagatgtaaa acaggttaca cgggattatg atgaagagga acaggggtat gacagtgaga aagagaaaaa 1440 agaagagaag aaaccaatag aaacaggttc ccctaaaaca aaggaatgtt ctgtggaaaa 1500 gggaactggt gattcactaa gagaatccaa agtgaatggg gatgatcatc atgaagaaga 1560 catggatatg agtgactgaa tattgcctct gagggagtcc aactgtatac ctgcatcagt 1620 gtcattcctt tgtgtgattt cttaatgctg tatttgttca tctcaaacct agatgtatac 1680 agctctgagt tataaatggt tataaagctc ctgttactca tattagttat ttacatcaaa 1740

aagcttttag	aaaatggtac	gaggtaacca	attcttgtca	tggtgaaatc	tgattgagta	1800
accaagcagt	tttactattc	tggtgctgct	tcataacaaa	aatgaaaagc	tgcatgcatc	1860
tacagcaggc	atggattgtt	tatgtcgtat	gatatccttt	attaagtaag	ttcacttata	1920
gtatttctat	aatttgattc	attgccgtaa	tagagccatg	taggaaatgc	actgattgca	1980
tgttattgtg	gcaagaatat	cctaaatgtc	attaaaatcc	tccaacatga	tggatctact	2040
tatggtcttg	tttgttgaca	tgacaaatta	acattcttat	agttacatct	ggaaatgagc	2100
atttgaaata	gataatcctt	taagccttgt	ggcaaaattt	ttgtggcttt	tgtttaactt	2160
tgaaaggtta	ttatgcacta	acctttttg	gtggctaatt	agggtttaaa	tacagaaaca	2220
agatttcaaa	taaaactgtc	tttggcagtg	agtaaatagc	atattttgaa	gtagagttgt	2280
atacttttc	ataagatgtt	tgggaatttt	tttcctgaag	taataattta	ttccacatct	2340
acatcagtga	aagctatcta	cctatcctga	gtctatctta	aaggaaaaaa	agaaaaaaac	2400
cttatctctt	gcccttattt	tgaattttcc	actctttcat	taatttgttt	taagctccgt	2460
gttggaaaaa	aggggtagtg	cattttaaat	tgaccttcat	acgcttttaa	aataagacaa	2520
atctacttga	taatgtacct	ttatttgatc	tcaagttgta	taaaaccaat	aaatttgtgt	2580
tactgcagta	gtaatcttat	gcacacggtg	atttcatgtt	atatatgcaa	agtaggcaac	2640
tgttttctta	gttacagaag	tttcaagctt	cacttttgtg	cagtagaaac	aaaagtaggc	2700
tacagtctgt	gccatgttga	tgtacagttt	ctgaaattgt	tttacaagac	tttgataata	2760
aaacccttaa	actta					2775

<210> 67 <211> 797 <212> DNA

<213> Homo sapiens

<400> 67 cttggttccg cgttccctgc acaaaatgcc cggcgaagcc acagaaaccg tccctgctac 60 agagcaggag ttgccgcagc cccaggctga gacagggtct ggaacagaat ctgacagtga 120. tgaatcagta ccagagcttg aagaacagga ttccacccag gcaaccacac aacaagccca 180 gctggcggca gcagctgaaa ttgatgaaga accagtcagt aaagcaaaac agagtcggag 240 tgaaaagaag gcacggaagg ctatgtccaa actgggtctt cggcaggtta caggagttac 300 tagagtcact atccggaaat ctaagaatat actctttgtc atcacaaaac cagatgtcta 360 caagagccct gcttcagata cttacatagt ttttggggaa gccaagatcg aagatttatc 420 ccagcaagca caactagcag ctgctgagaa attcaaagtt caaggtgaag ctgtctcaaa 480 540 cattcaagaa aacacacaga ctccaactgt acaagaggag agtgaagagg aagaggtcga

tgaaacaggt gtagaagtta aggacattga attggtcatg tcacaagcaa atgtgtcgag	600
agcaaaggca gtccgagccc tgaagaacaa cagtaatgat attgtaaatg cgattatgga	660
attaacaatg taaccatatg gaagcaactt tttttggtgt ctcaaaggag taactgcagc	720
ttggtttgaa atttgtactg tttctatcat aaataaagtt atggcttctt gttggaaaaa	780
aaaaaaaaa aaaaaaa	797
•	
<210> 68 <211> 492	
<212> DNA <213> Homo sapiens	
<220> <221> misc feature	
<222> (115)(115) <223> n is a, c, g, t or u	
<220>	
<221> misc_feature	
<222> (210)(210) <223> n is a, c, g, t or u	
<400> 68	60
attaaaaaac tggggtttat ttcacatgga tatttttggc tccccaccat tttcatgtct	
gaccacccgt actactatgt cctatcataa cattcccata cattctttaa acccnagcaa	120
gggggggtt tecatettta aaacetaace aggettttgg gacaacacat teettgeaat	180
agaccetgga cacatttate aaacaeggtn gggaaagtet cactetgeat tataaaagga	240
cagccagata tcaactgttc agaaatgaaa ttagaccgga aattttttaa ccaaattgtt	300
aaacctattt ctttaagagg acttcctcca ctggccaaga tcttgaatag gcctcttggc	360
agtcatccgg aggcaattct tcacataatt gatgaatttg gcttccactt ttggaagaga	420
accaccettt ttettaactg ettgeatttt gettttatge ttetaegaaa caggeeetet	480
ttggggttta gg	492
<210> 69 <211> 420	
<212> DNA <213> Homo sapiens	
- <400> 69	
ttttttttt ttgcagtttt ataactttgt ttgatatagt tgacaatcag tgattagttc	60
tcatccacaa tgactgtcta tagatttttg aaagtggtaa caggtacata ggtaaccgaa	120
gtacagagct tatttgggga atcttcatcc tcattatatt ctttggacaa ctgcacatgg	180
attcggcatg ggacattcct tattcctttg gcccagacag ccttgttgag cctggtatca	240

PCT/US03/13015 WO 03/090694

300

gttgtgcaca tttagagttc ccatctcctt cctgacaaat ttccgaatct ctttgagtgc tcaaggggca tgcttcttga agcccactcc atggatgcac ttgtgaatgt tgatggggta 360 ttctcgggtc accacctcat tgatggcaga acggcccttt ttcttcttgc cacccttctt 420 70 <210> 2663 <212> DNA <213> Homo sapiens <400> 70 cgcgcgcgcc atttctagtc gttttcaaag cgcctcgcgc tgattctcac gggcccggct 60 gccggccccc gctctgccct gcataataaa atggctaatc aggtgaatgg taatgcggta 120 cagttaaaag aagaggaaga accaatggat acttccagtg taactcacac agaacactac 180 aagacactga tagaggcagg cctcccacag aaggtggcag aaagacttga tgaaatattt 240 cagacaggat tggtagctta tgtcgatctt gatgaaagag caattgatgc tctcagggaa 300 tttaatgaag aaggagctct gtctgtacta cagcagttca aggaaagtga cttatcacat 360 gttcagaaca aaagtgcatt tttatgtgga gttatgaaga cctacaggca gagagagaaa 420 caggggagca aggtgcaaga gtccacaaag ggacctqatg aagcgaagat caaggccttg 480 cttgagagaa ctggttatac tctggatgta accacaggac agaggaagta tggtggtcct 540 ccaccagaca gtgtgtactc tggcgtgcaa cctggaattg gaacggaggt atttgtaggc 600 aaaataccaa gggatttata tgaggatgag ttggtgcccc tttttgagaa ggccggaccc 660 atttgggatc tacgtcttat gatggatcca ctgtccggtc agaatagagg gtatgcattt 720 atcaccttct gtggaaagga agctgcacag gaagccgtga aactgtgtga cagctatgaa 780 attegecetg gtaaacacet tggagtgtge atttetgtgg caaacaacag actttttgtt 840 900 ggatccattc cgaagaataa gactaaagaa aacattttgg aagaattcag taaagtcaca 960 gagggtttgg tggacgttat tctctatcat caacccgatg acaaaaagaa gaatcggggg 1020 ttctgcttcc ttgaatatga ggatcacaag tcagcagcac aagccagacg ccggctgatg agtggaaaag taaaagtgtg gggaaatgta gttacagttg aatgggctga ccctgtggaa 1080 gaaccagatc cagaagtcat ggctaaggta aaagttttgt ttgtgagaaa cttggctact 1140 acggtgacag aagaaatatt ggaaaagtca ttttctgaat ttggaaaact cgaaagagta 1200 aagaagttga aagattatgc atttgttcat tttgaagaca gaggagcagc tgttaaggct 1260 1320 atggatgaaa tgaatggcaa agaaatagaa ggggaagaaa ttgaaatagt cttagccaag ccaccagaca agaaaaggaa agagcgccaa gctgctagac aggcctccag aagcactgcg 1380 tatgaagatt attactacca ccctcctcct cgcatgccac ctccaattag aggtcggggt 1440

PCT/US03/13015 WO 03/090694

cgtggtgggg ggagaggtgg ata	atggetae eetecagatt	actacggcta	tgaagattac	1500
tatgatgatt actatggtta tga	attatcac gactatcgtg	gaggctatga	agatccctac	1560
tacggctatg atgatggcta tgc	cagtaaga ggaagaggag	gaggaagggg	agggcgaggt	1620
gctccaccac caccaagggg gag	ggggagca ccacctccaa	gaggtagagc	tggctattca	1680
cagagggggg cacctttggg acc	caccaaga ggctctaggg	gtggcagagg	gggtcctgct	1740
caacagcaga gaggccgtgg tto	cccgtgga tctcggggca	atcgtggggg	caatgtagga	1800
ggcaagagaa aggcagatgg gta	acaaccag cctgattcca	agcgtcgtca	gaccaacaac	1860
caacagaact ggggttccca acc	ccatcgct cagcagccgc	ttcagcaagg	tggtgactat	1920
tctggtaact atggttacaa taa	atgacaac caggaatttt	atcaggatac	ttatgggcaa	1980
cagtggaagt agacaagtaa gg	gcttgaaa atgatactgg	caagatacga	ttggctctag	2040
atctacattc ttcaaaaaaa aa	aattggct taactgtttc	atctttaagt	agcattttgc	2100
tgccatttgt attgggctga ag	aaatcact attgtgtata	tactcaagtc	tttttatttt	2160
tcctcttttc ataaatgctc tt	ggacatta ttgggcttgc	agagttccct	tattctgggg	2220
attacaatgc ttttatcgtt tc	aggettea ttttagette	aaaacaagct	gggcacactg	2280
ttaaatcatg attttgcaga ac	ctttggtt ttggacagtt	tcatttttt	ggatttggga	2340
tagattacat aggagtatgg ag	tatgctgt aaataaaaat	acaagctagt	gctttgtctt	2400
agtagtttta agaaattaaa gc	aaacaaat ttaagttttc	ttgtattgaa	aataacctat	2460
gattgtatgt tttgcattcc ta	gaagtagg ttaactgtgt	ttttaaattg	ttataacttc	2520
acaccttttt gaaatctgcc ct	acaaaatt tgtttggctt	aaacgtcaaa	agccgtgaca	2580
atttgttctt tgatgtgatt gt	atttccaa tttcttgttc	atgtaagatt	tcaataaaac	2640
taaaaaatct attcaaaaca tt	a			2663
<210> 71 <211> 282 <212> DNA <213> Homo sapiens				
<400> 71 ttttttttt tttttttt tt	ttttttt tttttt	ttttttaaa	ggggggcca	60
aattttttt ttttaaaat tt	gattcccc ccaattttgt	tggcattaaa	attaaaggca	120
ttaagctgga atggtttttt co	ccaaaccca aaaattgggt	ttaccaaaaa	ggggaatagg	180
agttgttcag tattttcaaa tt	cacaaatca atttaaaaaa	acaaacccct	tgcttacatt	240
gtttgggcca caaatttaaa ct	tcaggggg gcattagaaa	ac		282

<210> 72 <211> 2870 <212> DNA <213> Homo sapiens

<400> 72 gggcggccgg acgcggccca gaggcgcggg gtcccgatgt ggggcccggg gccgcgtggc 60 cctgcgggag cccatccccc accctacccc ccgggcccgg gggacaggtg tgcacggggc 120 ggccaagggc accttcgcca ccttcgagcg ggcgaggtcc gggcggggac ggggcgggga 180 ccgagctagc ggagccagcg cagcctgccc ggctcagccc ggcccggcca cagcacaaag 240 300 gaaagcgagg gcgggggggg agcggagcgg gctgggggcc gggcgccccg cccaccgggg ggcctctcgg agtgggccgc cctccccccg aaacctgggc tggagtgagg tggaaggatg 360 420 tttgctgcca catggcgacc gcgaagtgac tcccttaccg ccgcgggtcg cggaggaggc 480 agggggaagg tgcccatctg gttcctaggc ctcctctccc tgctggcaga tgggaacagg ttcttcttga ggaaactgag gcaaagagga gggcaggtct gagggacccc gcttgggctg 540 600 gcctcacccg cacactggga gggcagccag gtggggactc tgacctgggg gcttctggag gagaggatga gatggctggg catccatggc atggtactgc agcactggcc agcagccagg 660 cctggaggga tggacgcgag agacaagctc tcgtgtcctg cagggctctg tacacatatg 720 780 aagatggete egatgaeete aagettgeag cateaggaga agggggettg eaggagettt cgggacactt tgagaaccag aaggtgatgt acggcttctg cagtgtcaag gactcccaag 840 900 ctgctctgcc aaaatacgtg ctcatcaact gggtgggcga agatgtgcct gatgcccgca agtgcgcttg tgccagccac gtggctaagg tggcagagtt cttccagggt gtcgacgtga 960 tegtgaacge cageagegtg gaagacatag acgegggtge categggeag eggeteteta 1020 1080 acgggctggc gcgactctcc agccctgtgc tgcaccgact gcggctgcga gaggatgaga 1140 acgcagagcc cgtgggcacc acctaccaga agacggatgc agctgtggaa atgaagcgga 1200 ttaaccgaga gcagttctgg gagcaggcca agaaggaaga agagctgcgg aaggaggagg agcggaagaa ggccctggat gagaggctca ggttcgagca ggagcggatg gagcaggagc 1260 1320 ggcaggagca agaggagcgc gagcggcgct accgggagcg ggagcagcag atcgaggagc acaggaggaa acagcagact ttagaagcgg aagaggccaa gaggcggttg aaggagcagt 1380 ctatctttgg tgaccatcgg gatgaggagg aagagaccca catgaagaag tcagagtcgg 1440 aggtggagga ggcagcagct attattgccc agcggcctga caacccaagg gagttcttca 1500 agcagcagga aagagtcgca tcggcctctg cgggcagctg tgatgtaccc tcgcccttca 1560 1620 accatcgacc aggcagccac ctggacagcc accggaggat ggcgcccact cccatcccca cgcggagccc gtctgactcc agcaccgcct ccacccctgt cgctgagcag atagagcggg 1680

ccctggatga	ggtcacctcc	tcgcagcctc	caccactgcc	accgccaccc	ccaccagccc	1740
	ggagcccagc					1800
	cggccccatg					1860
gcagccctgc	agaggacttg	atgttcatgg	agtctgcaga	gcaggctgtc	ctggctgctc	1920
ccgtggagcc	tgccacagct	gacgccacgg	aggtccacga	tgcagctgac	accattgaaa	1980
ctgacactgc	cactgctgac	accactgttg	ccaacaacgt	acccccgcc	gccaccagcc	2040
tcattgacct	atggcctggc	aacggggaag	gggcctccac	actccagggt	gagcccaggg	2100
ccccacgcc	accctcgggt	actgaggtca	ccctggcaga	ggtgcccctg	ctggatgagg	2160
tggctccgga	gccactgctg	ccagcaggcg	aaggctgtgc	caccettete	aactttgatg	2220
agctgcctga	gccgccagcc	accttctgtg	acccagagga	agtggaaggg	gagcccctgg	2280
ctgcccccca	gaccccaact	ctgccctcag	cccttgagga	gctggagcaa	gagcaggagc	2340
cggagcccca	cctgctaacc	aatggcgaga	ccacccagaa	ggaggggacc	caggccagtg	2400
aggggtactt	cagtcaatca	caggaggagg	agtttgccca	atcggaagag	ctctgtgcca	2460
aggeteegee	tcctgtgttc	tacaacaagc	ctccagagat	cgacatcaca	tgctgggatg	2520
; cagacccagt	tccagaagag	gaggagggct	tcgagggtgg	tgattagcgg	tggcgccagc	2580
cctaggctac	ccttgccaag	gccgcccacc	tgcatcagcc	tctggccaga	eggeeegeeg	2640
tgcctgcatt	cgcagcagct	ccgcctggca	cccactccgg	attccggccc	tggctgggga	2700
cttggccgct	tccctaccca	cagggcctga	cttttacagc	ttttctcttt	ttttaaaaag	2760
ttgataggaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2820
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa		2870

<210> 73 <211> 1329 <212> DNA

<213> Homo sapiens

<400> 73
gagctataag acaacaggac tgaacaggga gccaactgtt tctttgaaca gtaaatcagg 60
aacaccaatg gaccaaaatg aacacagtca ctggggacca catgcaaagg gccaatgtgc 120
cagcagatct gagctgagaa tcatcctggt gggcaaaaca ggaactggca aaagtgctgc 180
agggaacagc atcctcagga agcaagcatt tgaatcgaag ctgggttccc agaccttgac 240
taagacttgc agcaaaagtc agggaagctg gggaaataga gagattgtca ttattgacac 300
accagatatg ttttcttgga aggaccactg tgaagctctg tacaaagagg tgcagaggtg 360
ctacttgctc tctgcaccag gaccccatgt gctgctcctg gtgactcagc tgggccgcta 420

tacctcacag gaccagcagg ctgcacagag ggtgaaggag atctttggag aggatgccat 480 gggacacaca attgtcctct ttacccacaa ggaagacctc aatggtggct ccctgatgga 540 ttacatgcac gactcagata acaaagccct aagcaagctg gtggcagcat gtggtgggcg 600 aatctgtgcc tttaataacc gtgctgaagg gagcaatcag gatgaccaag tgaaggaact 660 aatggactgt attgaggatc tgttgatgga gaaaaatggt gatcactata ccaatgggtt 720 gtacagecta atacagaggt ctaaatgtgg acctgtggga teagatgaaa gagtaaagga 780 attcaaacag agccttataa agtacatgga aactcaaaga agttacacag ccttggctga 840 900 agcaaactgc ctaaaaggag ccttaatcaa aacacaactg tgtgttttat tttgtattca 960 gttgtttctc agattgataa ttctgtggct ttgcatactg cacagcatgt gcaatttgtt ttgttgctta ctctttagta tgtgcaattt attctgcagt ttgctgttta ttatacccaa 1020 aaagttaatg atatttttga gaacagttat tagactagaa cgcaagactc ctaggttata 1080 gttacagatc ccagttatta tttactcact atcatttagt gggtgaatca cagtaatttc 1140 cctgtaaaat gtggtacctg aagtcatatt tgagattcta tgaaatgttt aaatcttaac 1200 atcactccaa ttattaatga accaaatcat acgataagtt actgtttgca ttgaaatata 1260 1320 1329 aaaaaaaa

<210> 74

<211> 1983

<212> DNA

<213> Homo sapiens

<400> 74 gaattgaacc acccattttc ctttcttagc caaatcacca aaatgtccag ttagaacaag 60 aatttagcat tctgcaaaag aagttaacag ctgagataac gaggaaatat tctgaaatgg 120 180 atcccaaata tttcatctta attttqtttt gtggacacct gaacaataca tttttttcaa 240 agacagagac aattacaaca gagaagcagt cacagcctac cttattcaca tcatcaatgt 300 cacaggtatt ggctaattct caaaacacaa cagggaatcc tttgggtcaa ccaacacaat tcagcgacac tttttctgga caatcaatat cacctgccaa agtcactgct ggacaaccaa 360 420 caccagctgt ctatacctct tctgaaaaac cagaagcaca tacttctgct ggacaaccac 480 ttgcctacaa caccaaacaa ccaacaccaa tagccaacac ctcctcccag caagccgtgt 540 tcacctctgc cagacaacta ccatctgccc gtacttctac cacacaacca ccaaagtcat 600 ttgtctatac ttttactcaa caatcatcat ctgtccagat cccttctaga aaacaaataa ctgttcataa tccatccaca caaccaacat caactgtcaa aaattcacct aggagtacac 660

caggatttat	cttagatact	accagtaaca	aacaaacccc	acaaaaaac	aattataatt	720
caatagctgc	catactaatt	ggtgtacttc	tgacttctat	gttggtagct	ataatcatca	780
ttgtactttg	gaaatgctta	aggaaaccag	ttttaaatga	tcaaaattgg	gcaggtagat	840
ctccatttgc	tgatggagaa	acccctgaca	tttgtatgga	taacatcaga	gaaaatgaaa	900
tatccacaaa	acgtacatca	atcatttcac	ttacaccctg	gaaaccaagc	aaaagcacac	960
ttttagcaga	tgacttagaa	attaagttgt	ttgaatcaag	tgaaaacatt	gaagactcca	1020
acaaccccaa	aacagagaaa	ataaaagatc	aagtaaatgg	tacatcagaa	gatagtgctg	1080
atggttcaac	agttggaact	gctgtttctt	cttcagatga	tgcaggtctg	cctccaccac	1140
ctcccttct	ggatttggaa	ggacaggaaa	gtaaccaatc	tgacaaaccc	acaatgacaa	1200
ttgtatctcc	tcttccaaat	gattctacta	gtctccctcc	atctctggac	tgtctcaatc	1260
aagactgtgg	agatcataaa	tctgagataa	tacaatcatt	tccaccgctt	gactcactta	1320
acttgcccct	gccaccagta	gattttatga	aaaaccaaga	agattccaac	cttgagatcc	1380
agtgtcagga	gttctctatt	cctcccaact	ctgatcaaga	tcttaatgaa	tecetgecae	1440
ctccacctgc	agaactgtta	taaatattac	aacttgcttt	ttagctgatc	ttccatcctc	1500
aaatgactct	tttttcttta	tatgttaaca	tatataaaat	ggcaactgat	agtcaatttt	1560
gatttttatt	caggaactat	ctgaaatctg	ctcagagcct	atgtgcatag	atgaaacttt	1620
tttttaaaaa	aagttattta	acagtaatct	atttactaat	tatagtacct	atctttaaag	1680
tatagtacat	tttacatatg	taaatggtat	gtttcaataa	tttaagaact	ctgaaacaat	1740
ctacatatac	ttattaccca	gtacagtttt	ttttcccctg	aaaagctgtg	tataaaatta	1800
tggtgaataa	acttttatgt	ttccatttca	aagaccaggg	tggagaggaa	taagagacta	1860
agtatatgct	tcaagtttta	aattaatacc	tcaagtatta	aataaatatt	ccaagtttgt	1920
gggaatggga	gattaaaatg	catgtttgag	agtaaaaaaa	aaaaaaaaa	aaaaaaaaaa	1980
aaa						1983

<210> 75 <211> 2736 <212> DNA

<213> Homo sapiens

<400> 75

gagagaagcc ttttccgttg ccggtgccgg cctagcgtc tggaattact tcaatcaaca 60 ggagcgagaa cccgagcagc gccatgagca acactaccgt cgtccccagc actgcaggtc 120 cgggccccag cggcgggcc ggtggcggag gtggtggtgg cggcggaggc ggcggcaccg 180 aggtaatcca ggtgactaat gtctccccga gcgctagctc tgagcagatg cggactctct 240

tcggtttcct	aggcaagatc	gacgaactgc	gectettece	gccggatgat	tegeetttge	300
cagtctcatc	tegtgtetge	tttgttaagt	tccatgatcc	agactcagca	gttgtggcac	360
agcatctgac	aaacactgta	ttcgttgaca	gagctttgat	agtcgtacca	tatgcagaag	420
gagttattcc	tgatgaagct	aaagctttgt	ctctgttggc	accagctaat	gcagtggcag	480
gtcttctgcc	tggtggtgga	ctcctgccta	ctcctaaccc	acttacccag	attggcgctg	540
ttccactggc	tgctttgggg	gctcctactc	ttgatcctgc	ccttgctgca	cttgggcttc	600
ctggagcaaa	cttgaactct	cagtctcttg	ctgcagatca	gttgctgaag	cttatgagta	660
ctgttgatcc	caagttgaat	catgtagctg	ctggtctcgt	ttcaccaagt	ctgaaatcgg	720
atacctctag	taaagaaata	gaggaagcta	tgaaaagagt	acgagaagca	cagtccctaa	.780
tttctgctgc	tatagaacca	gataagaaag	aagaaaaaag	aaggcattca	agatcaagat	840
cacgttctag	gaggaggagg	actccctcat	cttctagaca	caggcggtca	agaagcagat	900
cgagacggcg	gtcacattct	aagtctagga	gtcggcgacg	atccaaaagc	ccaaggcgga	960
gaagatctca	ttccagagaa	agaggtagaa	ggtcaaggag	cacatcaaaa	acaagagaca	1020
aaaagaaaga	agacaaagaa	aagaaacgtt	ctaaaacacc	accaaaaagt	tacagcacag	1080
ccagacgttc	tagaagtgca	agcagagaga	gacgacgacg	aagaagcagg	agtggcacaa	1140
gatctcctaa	aaagcctcgg	tctcctaaaa	gaaaattgtc	ccgctcacca	tcccctagga	1200
gacataaaaa	ggagaagaag	aaagataaag	acaaagaaag	aagtagggat	gaaagagaac	1260
gatcaacaag	caagaagaag	aagagtaaag	ataaggaaaa	ggaccgggaa	agaaaatcag	1320
agagtgataa	agatgtaaaa	caggttacac	gggattatga	tgaagaggaa	caggggtatg	1380
acagtgagaa	. agagaaaaaa	gaagagaaga	aaccaataga	aacaggttcc	cctaaaacaa	1440
aggaatgttc	: tgtggaaaag	ggaactggtg	attcactaag	agaatccaaa	gtgaatgggg	1500
atgatcatca	tgaagaagac	: atggatatga	gtgactgaat	attgcctctg	agggagtcca	1560
actgtatacc	: tgcatcagtg	, tcattccttt	gtgtgatttc	ttaatgctgt	atttgttcat	1620
ctcaaaccta	gatgtataca	gctctgagtt	: ataaatggtt	ataaagctcc	tgttactcat	1680
attagttatt	tacatcaaaa	agcttttaga	aaatggtacg	aggtaaccaa	ttcttgtcat	1740
ggtgaaatct	gattgagtaa	ccaagcagtt	ttactattct	ggtgctgctt	cataacaaaa	1800
atgaaaagct	gcatgcatct	acagcaggca	a tggattgttt	atgtcgtatg	atatccttta	1860
ttaagtaagt	tcacttatag	g tatttctata	a atttgattca	ttgccgtaat	agagccatgt	1920
aggaaatgca	a ctgattgcat	gttattgtg	g caagaatato	ctaaatgtca	ttaaaatcct	1980
ccaacatgat	ggatctactt	atggtcttg	ttgttgacat	gacaaattaa	cattcttata	2040

gaaatgagca	tttgaaatag	ataatccttt	aagccttgtg	gcaaaatttt	2100
gtttaacttt	gaaaggttat	tatgcactaa	ccttttttgg	tggctaatta	2160
acagaaacaa	gatttcaaat	aaaactgtct	ttgggcagtg	agtaaatagc	2220
gtagagttgt	atacttttc	ataagatgtt	tgggaatttt	tttcctgaag	2280
ttcccacatc	tacatcagtg	aaagctatct	acctatcctg	agtctatctt	2340
aagaaaaaaa	ccttatctct	tgcccttatt	ttgaattttc	cactctttca	2400
ttaagctcct	gttggaaaaa	aaggggtagt	gcattttaaa	ttgaccttca	2460
aaataagaca	aatctacttg	ataatgtacc	tttatttgat	ctcaagttgt	2520
taaatttgtg	ttactgcagt	agtaatctta	tgcacacggt	gatttcatgt	2580
aagtaggcaa	ctgttttctt	agttacagaa	gtttcaagct	tcacttttgt	2640
caaaagtagg	ctacagtctg	tgccatgttg	atgtacagtt	tctgaaattg	2700
ctttgataat	aaaaccctta	aactta			2736
	gtttaacttt acagaaacaa gtagagttgt ttcccacatc aagaaaaaaa ttaagctcct aaataagaca taaatttgtg aagtaggcaa caaaagtagg	gtttaacttt gaaaggttat acagaaacaa gatttcaaat gtagagttgt atacttttc ttcccacatc tacatcagtg aagaaaaaaa ccttatctct ttaagctcct gttggaaaaa aaataagaca aatctacttg taaatttgtg ttactgcagt aagtaggcaa ctgttttctt caaaagtagg ctacagtctg	gtttaacttt gaaaggttat tatgcactaa acagaaacaa gatttcaaat aaaactgtct gtagagttgt atacttttc ataagatgtt ttcccacatc tacatcagtg aaagctatct aagaaaaaa ccttatctct tgcccttatt ttaagctcct gttggaaaaa aaggggtagt aaataagaca aatctacttg ataatgtacc taaatttgtg ttactgcagt agttacagaa agtaagcaa ctgttttctt aggttacagaa	gtttaacttt gaaaggttat tatgcactaa cctttttgg acagaaacaa gatttcaaat aaaactgtct ttgggcagtg gtagagttgt atacttttc ataagatgtt tgggaatttt ttcccacatc tacatcagtg aaagctatct acctactg aagaaaaaaa ccttatctct tgcccttatt ttgaattttc ttaagctcct gttggaaaaa aaggggtagt gcattttaaa aaataagaca aatctacttg ataatgtacc tttatttgat taaatttgtg ttactgcagt agtaatctta tgcacacggt aagtaggcaa ctgtttctt agttacagaa gtttcaagct caaaagtagg ctacagtctg tgccatgttg atgtacagtt	gaaatgagca tttgaaatag ataatcettt aagcettgtg geaaaatttt gtttaacttt gaaaggttat tatgeactaa eettttttgg tggetaatta acagaaacaa gattteaaat aaaactgtet ttgggeagtg agtaaatage gtagagttgt atactttte ataagatgtt tgggaatttt ttteetgaag tteecacate tacateagtg aaagetatet acetateetg agtetatett aagaaaaaaa eettatetet tgeeettatt ttgaatttte eactettea ttaageteet gttggaaaaa aaggggtagt geattttaaa ttgaeettea taaataagaca aatetaettg ataatgtaee tttatttgat eteaagttgt taaatttgtg ttaetgeagt agtaatetta tgeacaeggt gattteatgt aagtaggeaa etgttteett agttaeagaa gttteaaget teaetttgt caaaagtagg etaeagtetg tgeeatgttg atgtaeagtt tetgaaattg etttgataat aaaaceetta aactta

<210> 76

<211> 1839

<212> DNA

<213> Homo sapiens

<400> 76 tgaaaataat gtactgcccc atgtattact gttccaaaag gagaaagcta tgtagaaaga 60 tacattaagg gtgaaaatag caatacagta gatttgaata ccttgatgtt ttgcattact 120 tcatttatgt ttacatcatg tttagaaatg ttttcattta ctgtggtctt tggtcacttc 180 agctcaaaga cctagtgatg gatatttctt tgaggctttc atttatataa ttttattttg 240 tacaatgttt tttttaaatg tgcaaatact gtattcaagt gaaaaaaata cagtatttgt 300 agataaccat agctactaca cagttcttcg gtagtcccag tgtagttata tcagtgttta 360 ctgaagggaa catcaaaata ttaatggtat attataaaat aaagactttc ttaaaggaaa 420 attgcaccta ttttaccttt ttaagagtaa gccatgaaat cttgtaacat gtctcttaac 480 tatttataat gaaaagtggc atttgggtat agtcaccaca gcaatgttct acatccctaa 540 gattatctag gtaggacatg tcaaagatga ctgttgtcat tctggaggtc ctattagaga 600 atattataaa agggtgacct tgtaggaagg atctgagtcc tccccctgag gttctctttt 660 tcttggtgct ttattagcaa ctctggatat ttttataaaa ctagttacat tataaacggt 720 ttcaaacatg tttaatttac attaggtttt tatgtaagag tgtcatggaa gcactcagca 780 agcaggctga ttgcaataga ctcagacatg cgaataaatg taattgagag tctattcatg 840 gtgaggagta catcccagtg cctttaacct ggatttctaa tcttaagtga aatgggtgca 900

gcattccttt	ggaaaaaaaa	atctttttat	tttcaagtga	taattttgtg	ttttcctcat	960
ataagttttc	tccagagcac	ccaccttctc	ttccttcttg	gtctgtcatt	atattgcaaa	1020
atatttttcc	tctgaatgaa	attatcacag	gttgtctcaa	gcacaaccaa	ctgaatgtct	1080
cttaactgtg	gggaccaata	gggagagagc	ctggggtcta	caagaggaga	cacatcatca	1140
aatgtttgaa	tgatcacaaa	ttaagacatt	atcagcccag	taaatttctt	gcttaatgtt	1200
tttccaagtt	ctggcttgaa	tatttcttat	taaagctatc	ttatgtgggt	actttattt	1260
gaaaggtatt	atagtttgta	tatttaacag	taaggaggaa	actgtaacca	aaattagtat	1320
ttctctatac	gtattggtac	ttgaagattc	ctttcaaaag	aaatccagcg	ttttcctaat	1380
tttagtactt	aatttctctt	tttaatttaa	gtgatctttc	taattcgaaa	gctgtgttct	1440
ttttgaatac	cgtgcatggg	ggttaagctg	atgttaaaac	agtttgcaat	aaaaaaaat	1500
gaatcagctt	aagtcattta	atcatttcaa	gtgcattctg	catcctttaa	aaataagttt	1560
aagaaattta	agagaattgt	gttttcatta	agttttgcat	atcttttgtt	atgccatgta	1620
aattcccttt	ttcgtatgat	taaaggaagg	ttatgataaa	atgattagtt	catttacatt	1680
cacttgtage	aattacatga	. gaatttgaat	tttgtcgtgt	: ttgggtttgt	tcattcctgt	1740
gaatgatggt	acagttaggt	gagattttct	gttatggtac	ccaaactcac	catttggtcc	1800
tctttaatct	: ttgagggttt	: caataaaaat	tgttcactc			1839

<210> 77

<211> 1348

<212> DNA

<213> Homo sapiens

<400> tttttatttt ctgaactgta cactcacaac ttatgtttct ttgagattaa tagatattgg 60 gggaaaaacg cctttttagg aaaattatag tgaaaatttg acagttgatt ggcataattt 120 cttgtttgaa tgctgcctcc attatatagg tccttccagg aactcaaaca ctgtaagtga 180 aatatgggag tatagttttt attatttctt cttttccttt tgttttcata atataatgca 240 gtttgttcag gaaatcagca caaagcctga tagtacttta ctaaaatgac tgcattcttt 300 ggattccttc agtctatggt tcaagtcact aaagattcat ttttgttgag tccttatgag 360 aaacagcagt atgaatcttg acggtttctg cccgtcctaa tggcagagct ctctgacttg 420 ggtgtatgct gccaggctgg gtactttcat actttgtttt cttgttttgc tttaaaacta 480 cgactcagca tacattttcc cacatacatt tttacattgt accttaggac tcagtcatct 540 ccacttaaat tgatgacaca agcagctaat aaccatttct gggtttctgc ctaaccccct 600 aattgtctgt taaagccaat tctctgggtg tcccagtgag tggtggcttt ttttctttcc 660

acattggcac attcacttct cccactcttg gcatgtaaga aataagcatt tacataattg 720 gaaaaatctg gatttctgat gccaaagggt taaagcttct tggatttcat ttcattgata 780 tacagccact attttatttt tgatcagtgg cctttgggcc actgttcagg gtactgacca 840 tcagtgtcag cattagggtt ttggtttttg tttcttttgg gtatttcttt tttggcacat 900. 960 gtgaatcttg ttttgtgtaa aatgaaatta ctttctcttg ttctctgatg atgggtttaa aattaaaaga gcatccggtt ttggtatggg gatgatccag gattatgttg tgactgatac 1020 atattagtta cttgtgcttt ttttttttt ttggatcttt gcaagggcaa aactacaagt 1080 aacgagtttt atataattaa tttaaatttg ttacaggttt tcatgttcag gataaaccat 1140 acttccacct tgggtgagaa cacttgcaac agtttattaa tgaggtgact ttcaccttag 1200 gacaactgtt gcatgccaag ttttttgtgt gtgtgaaaca cttcaaaact gatttaaaag 1260 atgtaaattt aaaattggtt gtatctaata tgccccaggt tcggtaaata aacaattctt 1320 1348 tttaaaaaca aaaaaaaaa aaaaaaaa

<210> 78

<211> 2156

<212> DNA

<213> Homo sapiens

60 gcgcggacct ttcaacaagg gctttattaa ttctcacgct gcggccctgg aaagcgatgg 120 aggtggcggc taattgctcc ctacgggtga agagacctct gttggatccc cgcttcgagg 180 gttacaagct ctctcttgag ccgctgcctt gttaccagct ggagcttgac gcagctgtgg cagaggtaaa acttcgagat gatcaatata cactggaaca catgcatgct tttggaatgt 240 ataattacct gcactgtgat tcatggtatc aagacagtgt ctactatatt gatacccttg 300 360 gaagaattat gaatttaaca gtaatgctgg acactgcctt aggaaaacca cgagaggtgt 420 ttcgacttcc tacagatttg acagcatgtg acaaccgtct ttgtgcatct atccatttct 480 catcttctac ctgggttacc ttgtcagatg gaactggaag attgtatgtc attggaacag gtgaacgtgg aaatagcgct tctgaaaaat gggagattat gtttaatgaa gaacttgggg 540 600 atccttttat tataattcac agtatctcac tgctaaatgc tgaagaacat tctatagcta ccctacttct tcgaatagag aaagaggaat tggatatgaa aggaagtggt ttctatgttt 660 ctctggagtg ggtcactatc agtaagaaaa atcaagataa taaaaaatat gaaattatta 720 agegtgatat teteegtgga aagteagtge cacattatge tgetattgag cetgatggaa 780 atggtctaat gattgtatcc tacaagtctt tcacatttgt tcaggctggt caagatcttg 840 aagaaaatat ggatgaagac atatcagaga aaatcaaaga acctctgtat tactggcaac 900

agactgaaga	tgatttgaca	gtaaccatac	ggcttccaga	agacagtact	aaggaggaca	960
ttcaaataca	gtttttgcct	gatcacatca	acattgtact	gaaggatcac	cagtttttag	1020
aaggaaaact	ctattcatct	attgatcatg	aaagcagtac	atggataatt	aaagagagta	1080
atagcttgga	gatttccttg	attaagaaga	atgaaggact	gacctggcca	gagctagtaa	1140
ttggagataa	acaaggggaa	cttataagag	attcagccca	gtgtgctgca	atagctgaac	1200
gtttgatgca	tttgacctct	gaagaactga	atccaaatcc	agataaagaa	aaaccacctt	1260
gcaatgctca	agagttagaa	gaatgtgata	ttttctttga	agagagetee	agtttatgca	1320
gatttgatgg	caatacatta	aaaactactc	atgtggtgaa	tcttggaagc	aaccagtacc	1380
ttttctctgt	catagtggat	cctaaagaaa	tgccctgctt	ctgtttgcgc	catgatgttg	1440
atgccctact	ctggcaacca	cactccagca	aacaagatga	tatgtgggag	cacatcgcaa	1500
ctttcaatgc	tttaggctat	gtccaagcat	caaagagaga	caaaaaattt	tttgcctgtg	1560
ctccaaatta	ctcgtatgca	gccctttgtg	agtgccttcg	tcgagtattc	atctatcgtc	1620
agcctgctcc	catgtccact	gtactttaca	acagaaagga	aggcaggcaa	gtaggacagg	1680
ttgctaagca	gcaagtagca	agcctagaaa	ccaatgatcc	tattttagga	tttcaggcaa	1740
caaatgagag	attatttgtt	cttactacca	aaaacctctt	tttaataaaa	gtaaatacag	1800
agaattaatt	attctaacat	attggcctct	ttgtactgga	aaagtattca	gtggtacctg	1860
gaggtctgga	cagttatact	gtaacctctt	aagttttaat	gtgctaaata	tatcttgtat	1920
gatttttat	tttttaataa	cattggaaat	atattcaaga	gattatgatt	ctgtaaagct	1980
gtggaatgaa	gctgcagatt	tagagaacat	tggcttctga	aaaaaaaaa	gagtgaagat	2040
agtactagca	agtatactta	ttttttaaaa	caggctagaa	tctcatgttt	tatatgaaag	2100
atgtacaatt	cagtgtttaa	aaataaaaat	atttattgtg	taaaaaaaaa	aaaaaa	2156

<210> 79

<400> 79

agatggcggt agctgagggg ttgaccgaga gacccagttg aaggccttta cgaagtgaaa 60
gaggccggga gtcgcccct acccgcttct cgtagtcctg ggagcacagc agaagtgttt 120
ttctttttt aatgaacaag taaaccatac aaattgtcaa catgggacgg agatctacat 180
catccaccaa gagtggaaaa tttatgaacc ccacagacca agcccgaaag gaagcccgga 240
agaggatca aaagaagaac aaaaaacagc gcatgatggt tcgagctgca gttttaaaga 300
tgaaggatcc aaaacagata atccgagaca tggagaaatt ggatgaaatg gagtttaacc 360

<211> 2690

<212> DNA

<213> Homo sapiens

cagtgcaaca	gccacaatta	aatgagaaag	tactgaaaga	caagcgtaaa	aagctgcgtg	420
aaacctttga	acgtattcta	cgactctatg	aaaaagagaa	tccagatatt	tacaaagaat	480
tgagaaagct	agaagtagaa	tatgaacaga	agagggctca	acttagccaa	tattttgatg	540
ctgtcaagaa	tgctcagcat	gtggaagtgg	agagtattcc	tttgccagat	atgccacatg	600
ctccttccaa	cattttgatc	caggacattc	cacttcctgg	tgcccagcca	ccctctatcc	660
taaagaaaac	ctcagcctat	ggacctccaa	ctcgggcagt	ttctatcctt	cctcttcttg	720
gacatggtgt	tccacgtttg	cccctggca	gaaaacctcc	tggccctccc	cctggtccac	780
ctcctcctca	agtcgtgcag	atgtatggcc	gtaaagtggg	ttttgcccta	gatcttcccc	840
ctcgtaggcg	agatgaagac	atgttatata	gtcctgaact	tgcccagcga	ggtcatgatg	900
atgatgtttc	tagcaccagt	gaagatgatg	gctatcctga	ggacatggat	caagataagc	960
atgatgacag	tactgatgac	agtgacaccg	acaaatcaga	tggagaaagt	gacggggatg	1020
aatttgtgca	ccgtgataat	ggtgagagag	acaacaatga	agaaaagaag	tcaggtctga	1080
gtgtacggtt	tgcagatatg	cctggaaaat	caaggaagaa	aaagaagaac	atgaaggaac	· 1140
tgactcctct	tcaagccatg	atgcttcgta	tggcaggtca	agaaatccct	gaggagggac	1200
gggaagtaga	ggaattttca	gaggacgatg	atgaagatga	ttctgatgac	tctgaagcag	1260.
aaaagcaatc	acaaaagcag	cataaagagg	aatcccattc	tgatggcaca	tccactgctt	1320
cttcacagca	gcaggctccg	ccgcagtctg	ttcctccttc	tcagatacaa	gcacctccca	1380
tgccaggacc	accacctctt	ggaccaccac	ctgctccacc	attacggcct	cctgggccac	1440
ctacaggcct	tcctcctggt	ccacctccag	gagctcctcc	attcctgaga	ccacctggaa	1500
tgccaggact	ccgagggccc	ttaccccgac	ttttacctcc	aggaccacca	ccaggccgac	1560
cccctggccc	tcccccaggt	ccacctccag	gtctgcctcc	tggtccccct	cctcgtggac	1620
ccccaccaag	gctacctccc	cctgcacctc	caggtattcc	tccacctcgt	cctggcatga	1680
tgcgcccacc	tttggtgcct	ccccttggac	ctgcccccc	tgggctgttc	ccaccagctc	1740
ccttgccaaa	ccctggggtt	ttaagtgccc	cacccaactt	gattcagcga	cccaaggcgg	1800
atgatacaag	tgcagccacc	attgagaaga	aagccacagc	aaccatcagt	gccaagccac	1860
agatcactaa	tcccaaggca	gagattacto	gatttgtgcc	cactgcactg	agagtacgtc	1920
gggagaataa	aggggctact	getgeteece	aaagaaagto	: agaggatgat	tetgetgtge	1980
ctcttgccaa	agcagcacco	aaatctggto	cttctgttcc	: tgtctcagta	caaactaagg	2040
atgatgtcta	tgaggctttc	atgaaagaga	tggaagggct	actgtgacag	cttttgatgc	2100
cagaaaaggo	ttctgttcac	aacagtggco	: catggagaaa	gaggctctta	ttaaacttag	2160
atgaaagago	tgcttccatt	gtcagggtat	tttctaattt	cagttcaagg	, aatatcctaa	2220

aatttagcct tgttcagaat ttactgcaca taaaaaaggg tatttcatcc agaatagatc 2280 agttattgaa gcagtgctgc taacatccat tccctttcat accaccattt tcaccctgtt 2340 tetteceete etecagtiet tiggaaatti gigalegggg galettagti getlattigt 2400 tttgactctt gtgtgctgtg ggcactggag tagagatttc tggagaaaaa aaaacagttt 2460 atttcatctt gccttttgtg tttgagttat ttttaatatt ttcctgtaaa tattttgtaa 2520 tattttactt gtaatgaaat ggatcacaat gtcatttcct aatacaaggc aggatatgtg 2580 ggaagaatat gtacaattat ttgattaaaa ttatttccca ctgacctaaa ctttcagtga 2640 2690

<210> 80 <211> 1874 <212> DNA

<213> Homo sapiens

<400> 80 ggccgcggag acgtgaagct ctcgaggctc ctcccgctgc gggtcggcgc tcgccctcgc 60 tetectegee etcegeeceg geeceggeee egegeeegee atggagaaga etgagetgat 120 ccagaaggcc aagctggccg agcaggccga gcgctacgac gacatggcca cctgcatgaa 180 ggcagtgacc gagcagggcg ccgagctgtc caacgaggag cgcaacctgc tctccgtggc 240 ctacaagaac gtggtcgggg gccgcaggtc cgcctggagg gtcatctcta gcatcgagca 300 gaagaccgac acctccgaca agaagttgca gctgattaag gactatcggg agaaagtgga 360 gtccgagctg agatccatct gcaccacggt gctggaattg ttggataaat atttaatagc 420 caatgcaact aatccagaga gtaaggtctt ctatctgaaa atgaagggtg attacttccg 480 gtaccttgct gaagttgcgt gtggtgatga tcgaaaacaa acgatagata attcccaagg 540 agcttaccaa gaggcatttg atataagcaa gaaagagatg caacccacac acccaatccg . 600 cctggggctt gctcttaact tttctgtatt ttactatgag attcttaata acccagagct 660 720 tgcctgcacg ctggctaaaa cggcttttga tgaggccatt gctgaacttg atacactgaa tgaagactca tacaaagaca gcaccctcat catgcagttg cttagagaca acctaacact 780 ttggacatca gacagtgcag gagaagaatg tgatgcggca gaaggggctg aaaactaaat 840 ccatacaggg tgtcatcctt ctttccttca agaaaccttt ttacacatct ccattcctta 900 ttccacttgg atttcctata gcaaagaaac ccattcatgt gtatggaatc aactgtttat 960 agtettttea cactgeaget ttgggaaaae tteatteett gatttgtgtt tgtettggee 1020 1080 gtaactccca aacacttatg tagaggacta aaaatgtatc tggtatttaa gtaatctgaa 1140

```
ccagttctgc aagtgactgt gttttgtatt actgtgaaaa taagaaaatg tagttaatta
                                                                 1200
1260
gggtttcctt tcagtaagca acttttccat gctcttaatg tattcctttt tagtaggaat
                                                                 1320
ccggaagtat tagattgaat ggaaaagcac ttgccatctc tgtctagggg tcacaaattg
                                                                 1380
aaatggctcc tgtatcacat acggaggtct tgtgtatctg tggcaacagg gagtttcctt
                                                                 1440
attcactctt tatttgctgc tgtttaagtt gccaacctcc cctcccaata aaaattcact
                                                                 1500
tacacctect geetttgtag ttetggtatt caetttaeta tgtgatagaa gtgeatgttg
                                                                 1560
ctgccagaat acaagcattg cttttggcaa attaaagtgc atgtcatttc ttaatacact
                                                                 1620
agaaagggga aataaattaa agtacacaag tccaagtcta aaactttagt acttttccat
                                                                  1680
gcagatttgt gcacatgtga gagggtgtcc agtttgtcta gtgattgtta tttagagagt
                                                                  1740
tggaccacta ttgtgtgttg ctaatcattg actgtagtcc caaaaaagcc ttgtgaaaat
                                                                  1800
                                                                  1860.
gttatgccct atgtaacagc agagtaacat aaaataaaag tacattttat aaaccaaaaa
                                                                  1874
aaaaaaaaa aaaa
<210>
       81
<211>
       445
<212> DNA
<213> Homo sapiens
<400> 81
gtcggccttc gcgagcgtct gggcgggtgg taggaacaat ggcgctgtct taagtggcac
                                                                    60
agtggagcag ctctgaagat gcaaagatac acgaaaaaac ttccagaaca tctgggagaa
                                                                   120
tatttaatgg aaaatcgctt ggttaaaacc tgacactttt aacagtgaac agcgttctga
                                                                   180
gtgtggacga gtagccagtg aagataatga atgtcgaatg tgactgacta gcagcttcat
                                                                   240
tttgaatgag ggtcgctgtc tgcccattga tagaggccag attgtcttgg aagttccaaa
                                                                   300
gttgcaacga tttctggcta gtgccacgag gtttacttga ctgttgtgtg aaaagctgat
                                                                   360
                                                                   420
aagaaaacca tccagaaaaa agctcttcgt tttacaaaca tgaaaataaa acatgtattt
                                                                   445
 tggattatga aaaaaaaaaa aaaaa
       82
 <210>
```

```
<211> 13359
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (8374)..(8374)
```

<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (9044)..(9044)
<223> n is a, c, g, t or u

<400> 82 ggatcctaag gatgtgacac tggttttcaa caacatgctt agagaactca tgaagtggat 60 tgggtgtcaa cccagtgaac atgtttttat ttaatttatt ttttgaagtt tatgtggtga 120 tggtgtggct ttccgaaatg ggcaaatatt cagaaaatct tttgcatttt cttctgtcag 180 gaatggggaa ggggagtggg ggcacaatct gagaaaggac acctgtgctg ttctaggcat 240 cgctggcaag tttgtgggaa gggatgggca agggtgagtg ggtttgctcc acaccgtcct 300 gtgctgctcg agaggacctg ggacgtgcga gggaaacgtg ggtgacggtg cctaggctgc 360 ggcccttcac tgctgtgctg ggttcctgca gcctgctacg tttcccttgg caatgtaaat 420 gaagatggag gggtcgtttc gtgatttcct gctgctgaga ataaatgtct tgttaaaaac 480 gtggcaacgg ttactcttag gtgccatgga tcgatgtcag ggtggtcagc tctggactaa 540 gccacccacc tccaatttgt acaacagtat tgatacatag ggctacactc attactgttc 600 aagtgttcta tgttaagagt tgtgtttaat ttctaaagat taaaaaaaagc aaaaaaattg 660 gtgctaaacc ttcacccctg agcacgctca gtgagactgg tcatgcaagc atttacagtg 720 ccatgctcct caagccgatt ttttcttgta gaaatgttgc cctatttgtc ttctccaatg 780 tatggtatgt tattttattt tattatttta ttttatttta ttttatttta tcgaggggg 840 gtacgatacc tgccatttaa gaaaatgaat agaaaatttt aaaacccgag aaatggggga 900 aaaaaaatca gtgcacaaga attgggctgg ttaggcccag caccacactg aagtgggctc 960 agtggttttt ggagtgaaga agccttactc cctgcacatt ccctcatgct cccacacaag 1020 tecageaatg gaaatgettg ggtteetett getttgteag gggaeteagg agtegaeeaa 1080 gggaaaccat ttggccccgt gaggaatggg cattgtcagt atccgtcctg aacggggcct 1140 agtcaggaag cggtctagaa gtgtacggtc acggtcgcct catgaaagtg tgtagcaggt 1200 ggctctcagg aaaaatacca agtctggatc atccatgtgg cagctttgca tagggagagg 1260 atageteega aetggaactg aactgeette tetgeaeget tgaccaaage agtgatgaag 1320 gegetggtgg tggcgcgcgg cgcggcgcgg cgatggcggc gggtggcagc gatccgcggg 1380 ctggcgacgt agaggaggac gcctcacagc tcatctttcc taaaggttgg gctcggggct 1440 1500 gccaaactcc cccgcgccac ttcgcgtggt cgccgcaggc ctggcgttat gcgcgcttcg 1560 cccaaggccc tgcctaagcg gcggcttggg caagccccac cgcggcgtgg ggctggggag ggaacatggc cttgggaggg accatggcct tgggagggac cgcctgggca actgggttat 1620

tttatgtgat aaactgcgaa gttccgggga cctgtgtcaa agataaacaa agccggacac	1680
tcaggtggta aggacagatt tttaaacagt aatatactgt tgcactaggg aaaagagccc	1740
agcgtgaacc gaactcaact tcgattagta cagaacctct gggcgtttta acggagaatt	1800
agggaataag gatgtggtga gcgggagctc gggggagtcg gggaagtgag aaatgtaaaa	1860
aagcgggaag aggaggattg gtccgtgtga acgcagcttg gtttgttgac tggcgcacct	1920
gtggaagtta ggcccctacc ctcccacaga ggcagagaga cagagtccta tcttcagctg	1980
ttggctggaa caaattattt tggcagcctt gagttttctc acgcacgcac tttaagtggt	2040
tggggagggt attcctaggg atgaggtctt cagctcaaaa acttgaaaat gtatacagct	2100
gtcttacact ttattgattt attgatttat tgattgagat agggtctcgc cctcttgttg	2160
aggetggagt atagtggeat gateagagee caetgeaace teaacetete aacegeteaa	2220
gctatcctcc cacctcagcc tcccaagtag ctgagaccac agatgcacgc ccccatacct	2280
ggcccattaa aaaaattttt tcgtaaagac agggtctcac tatgtcgccc aggctggtct	2340
caaactcctg ggcttaagtt aatcacggca cctgacctat cttattcttt tattcattca	2400
ttcatttact tatttagaga cagagtctca ctctgttgcc caggctgggg tgcagtggta	2460
cgaactcggc tcactgcaac ctccgtctcc tgggctcaag tgattatcct gcctcagcct	2520
cccgagtagc tgggattaca ggtgcccacc accacacccg gctaattttt gtattttcag	2580
tagagetggg gtttcaccat gttggccage etgttetega aetegtgace teaggtgate	2640
cacccagctc ggcctcccag agtgctggga ttactgatgt gagccattgc ctggcaaaat	2700
aataaattta aaattaaaac ggaaatacta ccctctaaga aataaaaaat ataaaaatga	2760
aaaaatgttt attatgtgtt ttttgtattt tatggtttaa tacgttagaa cttactattt	2820
tagttgttaa tttattttt ttaatttttt ttttaatttt attttgagat agggtttcac	2880
tetgteacce aggetggagt geagtgatgt gatttegget eactgeaace taccectect	2940
agtttcaagc catcctgcct cagcctccca agtagctggg aatacaggcg cctgccacca	3000
tgcccagcta atttttgtgt ttttagtagg gacggtgttt caccatgttg gccaggctgg	3060
tctcgaactc ctgacctcaa gtgatccacc caccttggcc ttcccagtgc tgagattaca	3120
ggtgtgagcc acctcaccct gccttttttt ttttttttt tttttttt tttttttt	3180
tttgagacgg gatctcattc tgctacctag gttggagtgc agtggtgtga tcacagctca	3240
ctgcagcctc aaccttccct aggctcaggt tatcctctca cctcacttca gcctctggaa	3300
tacttgggac tacaagtgca ggccaccact cctggctaat ttttgtattt ttttgtggag	3360
acaaggtttc accatgtggc ccaggctggt cttgaactcc tgggctcagg taatctgccc	3420
gcctcgacca cccaaagtgt tagaaagtat aggtgtgagc cactgcacct ggcctattaa	3480

tggtggtaat	gacgtatcct	cggtaaaatt	tccagatgac	atacagccaa	ggagttgttt	3540
ttccttttt	agcaacagag	attaattatg	gccattgttc	ttaaaatatt	tgcacaagag	3600
aaaataacag	gcagatecce	tgatctattt	ccttttgttt	ctaaataaat	tgtgtgtgtg	3660
tgtgtgtgtg	tatgtgcgcg	cgtgtgcgcg	ccttcacttg	aaaatgttcc	ttgggattag	3720
ccatggggag	aagtcttgga	tccctcctct	ccatagttac	acaaaagtgt	ctgaactgcc	3780
tcccccatcc	ccattttgtt	gatgctgaat	cctgggaatg	cctcccaaaa	gctctgtggt	3840
aggtctcaga	caccactttc	ctaggcactc	tgagttacag	tttggctgcc	tcgaccttcc	3900
ttggttgaag	ggagtgaggg	taatgtatta	gtagtacttg	ggtattgttc	ttaatgagaa	3960
atagggacag	ttgaccagtt	tcctggtgtc	ctaaaagttc	cattcctttc	catttaacaa	4020
gtaatttggt	ttagtgcaga	aagggaccat	ctctctttt	tttttttt	ttttttttg	4080
agacggagtt	tcactgttgt	tgccttaggc	tggagtgcag	tggcacaatc	tcggctcact	4140
gcaacctcca	cctcccgggt	tcaagcaatt	ctcctgcctc	ggcctcctga	gtaggtggga	4200
gtacagtcat	gtgccaccac	tcccgactaa	tttttgtatt	tttagtagag	atggggtttc	4260
accatgttag	gctggtctcg	aactcctgac	ctcaggtgat	tcacctgcct	tggcctccca	4320
aagtgttggg	attacaggcg	tgagccactg	cgcttagcct	gggaggcatc	tcttaacatt	4380
gatttttcca	ggacctgtaa	aagcatcaaa	gttccaacaa	acagatttgt	aactgattag	4440
ctgctgcttc	ccttttttt	tttttttt	tggcctgatg	tcatttgtta	ctgtcacttc	4500
agagtttgga	ggttctgcag	tcctgataca	taatgccttt	tcctctactc	attgctgtga	4560
ggcagtagtt	tcttctgtac	ctacactgcc	tcagtgttaa	ggattaaaag	aggtaacttt	4620
ccctggtata	caaataggct	ctcactgtag	taaatccccc	tgttataggc	tagaagactg	4680
aaaaagaagg	tgttctgagg	ttttcgttta	aactctcctg	ccctcaggta	gaaaacagtt	4740
tttggttacc	tatttttaa	tttatattt	aattttattt	caatagtgct	ccaactgtat	4800
tggcagccta	ttctatttag	tagcaatgag	tacctttcaa	ataaaaatac	agtttcctcc	4860
tgacccacca	cttaaaacta	tctgtgttgt	aaaaggaaaa	tgaagctctt	gtcagttacc	4920
tggcttgaga	aatgggaagg	cattactctg	agggaggtgt	. tagtgatttc	cctgatagta	4980
aacagaccca	tagcacatct	aaatgtgaaa	ttgcaagtcg	ttttggcttt	tectcactgt	5040
tgcttcctct	tcagtgtggg	gttataaaca	tgaattcatg	, tttatgaatg	gttcctactc	5100
taagggaact	cactgttaag	agaaaggcag	, ataaaaacta	tctctaatac	: tttgagataa	5160
acattaggaa	a cataagatco	: tgcaggaacg	g taagggagag	g aatgatttto	ccaagggtaa	5220
cagcatttt	taacagaact	attgtagaaa	tgtagaaggt	cgccgtatat	: tatgaaaagg	5280

ggccatgggt ttcttttct ctcaaaccta attcttaaaa attgcttata acatttgtgt	5340
gtgcacaaaa atagattttg gggtacatta tatttatttc cagacacttg gccctattta	5400
acatgtaaca attettaaaa ttgagagtat aataetagea ttatggaagt aggaagatga	5460
tgagetgatg ceggetagag ggaaggaatt gteagtgtae tettgaaate agtaactagt	5520
ctatgtgtca ttacttagta gcatgtctag gtcaggtttt tggtgtcaga atctagctca	5580 ·
gacaagctaa atgttagtgt ctcgtgaact ccactgtgcc ttgtggtatg taactgtgcc	5640
ttgtggtatg taactgtggg tgaacttaaa gatgtggagt agctgcaggc ataaaaagga	5700
aggagatece ageetgggea gtgtggtgaa acceecatet etaccaacaa cacacagggt	5760
gtggtggcgt gtgcctgcag tccagctacc tgggaggccg agatggggat ggggcatcac	5820
ctgaactcag ggaggtcaag gctgcagtga attgtattca tgccactaca ctccagcctg	5880
ggtgacagat tgagactctg tctcaaaaaa aaaaataaaa gaacgaaatc atatcttttg	5940
cagcaacatg gatggagctg gaggccattc acttaagcaa ttaacacagg aacaaaagac	6000
caagcacctc acattcttat aagtgggagt taaaccttga gtacatatgg acagaaggga	6060
acaacagaca ctgaggccta gttgaggggg tgggtggtgc agattgaaaa actatgtatc	6120
agtactatgc ttatcacttg gatgacaaaa tagtctgttc gccaaacctt cacaacaccc	6180
attttcccct gtagtacaga cctgcacatg cactctgaac ctaaaataaa agttcaaaaa	6240
aaagcagatg tggagtagga aacccctcga tttctgcagg ggcagagaaa tgttcaaatg	6300
cacagtgaac atttagaagc aaacttttga aggagtattt tcagctgcca tttatgcttc	6360
ttacaaatag agtttgaaac agctgagaca cttctaaatt cagaagttca tatgcttctg	6420
gaacatcgaa agcagcagaa tgagagtgca gaggacgaac aggagctctc agaagtcttc	6480
atgaaaacat taaactacac agcccgtttc agtcgtttca aaaacagaga gaccattgcc	6540
agtgttcgta ggtgagtgct aaaagaaagt ttttattaat ccaaaccatt ggacaactgc	6600
atgtagaatg ctgtcccctc cccctttccc aggtgtcact tgtgaattta agtaaaataa	6660
tgttaggetg ggcatggtgg ctcacaccca gcactttgga aggttgagge agcagatcac	6720
ttgaggccag gtgttcaaga ccagcctggt cgatatagca aaaacccgtc tctgctaaaa	6780
atgcaaaaaa ttagctggtg gtacacacca ttaatcctag ctgctcagga ggccgaggcg	6840
ggagaatcgc ttgaatctgt aggccaaggt tgcagtgagc cgagattgcg caactgcact	6900
ccaacctggg caacttagaa gaccagaatt tcagccaggt gtggtggctt acacctgtaa	6960
tccacacttt gtggagctga ggtggaccag tctcttgagg ccaggagttc aagaccagca	7020
tgtgcaacat ggtgaaactc gtgtccctac aaaaaaaata cagaaattag ccaggtgtgg	7080
tggcaggtac ctgtggtcct agttacttgg gaggctgaag tgggaggatc atgtgagcct	7140

gggaggttga ggctttagtg	agctgtgatt	gtgccactgt	actccagtct	gggaacagat	7200
tcaaatatga atctgtcata	ttttgtgtaa	gtccagtatg	tgtgatctaa	atggtactgt	7260
tagtggggaa gtaacttttt	ttgttatttt	ttttagagat	ggggagactt	actatgttgt	7320
ccaggctggt ctcaaactcc	tggcctcaat	tgatcctcca	accttagccc	cccaaagtgc	7380
tgggattggc cgggtgcagt	ggctcatgcc	tgtaattcca	gcactttggg	agaccaagat	7440
gggcacatct cttgcggtca	ggagttcaag	accagcctga	ccaaaatggt	gaaatctcgt	7500
ctactaaaaa tacaaaaatt	agctgggcgt	ggtagcgcat	gcctgtagtc	ccagctactt	7560
gggagcctga gaaaggagaa	ttgcttgaac	ccgggagagg	gaggtagcag	tcagccaaga	7620
tcgtgccact gcactgcagc	ccgggtgaca	tagagtgaga	ctccatctca	aaaaaaacaa	7680
agtcctcgaa ttagaggtaa	gccaccatgt	ccagcctata	gatagataga	tagatagata	7740
atagtatttg tacctatgta	tgaggtacat	atgatatttt	gttacttaga	atgtgtaatg	7800
agtatgttag ggtattgagg	gtattgatca	tttctatgta	ttaggaacat	gtcaagtctc	7860
ccttagctat ttttatttta	tgtatttatt	cattgatttt	agagacaagg	tctcactgtg	7920
ttgcccaggc tgaagacgtc	ttgaactcct	ggactcaagt	gatcctcctg	ccttggcctc	7980
ccaaagtgct aggattacag	gcatgagctg	ctaagcctgg	cctcttctac	cttttttttg	8040
ttttgtttcg ttttgttttg	agacagtctc	acttcatcac	ccagattgga	gtgtagtggt	8100 [.]
gcggtcttgg ctcactgcaa	cctccacctc	ccaggttaaa	gcagttctca	tgcctcagcc	8160
ttccaaatag ctgggactac	agacacacac	caccacaccc	ggctaatttt	tttagttttt	8220
tgtttttttg gttttgtttg	tttgtttgtt	tgtctgtttt	gagacggagt	ctagttctgt	8280
cacccagget ggagtgcagt	ggcgtgatct	tggctcactg	cagcctccgc	ctcccgggtt	8340
caagcaattc tcctgcctca	gcctcccgag	tagntgggag	tagcccgcca	gtgcacccag	8400
ctaatttttg tgtttttagt	agagacgggg	tttcaccacg	ttggccaggc	: tggtcttgaa	8460
ctcctgacct ccgttgatco	accegeeteg	gcctcccaaa	gtgctgggat	tacaggcgtg	8520
agccactgcg ccttggcaat	ttttgtattt	ttagtagaga	cggggtttcg	g ccatggtgct	8580
caggetggte tegaaetee	cacgtcaagt	gattacccac	cttggcctct	: cagagtgctg	8640
gaattacagg tgtgagcca	c tacacctggc	: cgtctagata	tttttaaata	a ctagctacgt	8700
ttgatccctt ttttcctgt	t gattactctt	tgatttttgt	tgtttatttg	g tttttgatta	8760
ttttgatttt ttttttc	c ttttgattag	cttgctactc	cagaaaaag	ttcataagtt	8820
tgagttggcc tgtttggcc	a acctttgccc	: agagactgct	gaggagtcc	a aggctctaat	8880
cccaaggtta gtaccagtt	g tgataagtto	tctgtatact	ggataaatt	c ctacaaatag	8940

aattggtgtg	tctaaaatgt	gtatgcgtta	tatatttggg	tacataattg	ccaatattga	9000
atgaaagtgc	ctttttttt	tttttttt	tttttgaaac	ggantttcgc	tcttgttgcc	9060
caggctggag	tgcagtggtg	tgatctcggc	tcaccacaac	ctctgtctcc	tgggttcaag	9120
cgattctcct	gcctcagcct	cccgagtagc	tgggattaca	ggcacgcacc	accacacttg	9180
gctaattttg	tgtttttagt	agagatgggg	tatctccatg	ttggtcaggc	tagtcgcgaa	9240
ctcccagcct	cagttgatcc	acccgcctcg	gcctcccaga	gtgctgggat	tacaggcgtg	9300
agccaccgtg	cccagccaaa	agtgcccttt	taacagtgtg	tgagaatgat	ggttttatac	9360
cacaccaagt	gatacgcaaa	aatatgaaac	agctggaact	tctgtccgct	gatggtagga	9420
ttgtgagtgt	taattagaac	aatcattttg	gagagtgatt	tggctatgtc	tggtaaagat	9480
gaatatactc	caagttccaa	aaatccattc	ctggtacata	tcctaaaggt	aactcacaca	9540
aatttagaag	gagacgtata	ttttagtgtt	cattgctgca	ttgttttgtt	tttagtagac	9600
atggggtttc	accgtgttgg	ccaggctggt	ctcaaacttc	tggcctcaag	tgatctgcct	9660
gcctcagcct	cacaagtgct	gggattacag	gcatgagccg	cggtgcccag	cctcatgctc	9720
cactgctaat	gatagcagaa	atttgataat	ctcttggcca	gtaagaaaat	ggataaatga	9780
atcattgtat	aatcatacaa	tgtttattat	acagcagtaa	aaaaaaaatc	aatgaactag	9840
aaccacatgg	aatatcaaca	tatgccagaa	tgaattttga	ggaaaaaaat	tgcagaagga	9900
taaatacagt	atgatgccat	ttcttataaa	gtttgaaact	atgctgcata	ttatttacgt	9960
atccataaat	gtgtagtgag	tataaaaata	tgtatggcaa	aacaaatttt	ttttaaatgt	10020
atggcaatga	taaatactaa	attgaggatg	gtggttattt	ctggggaagg	agggaaggta	10080
ctggtctagg	agagtataca	cagccatcca	cttttcctgc	ttattaaaga	actctgggct	10140
gggcgcagtg	gtttaagcct	gtaatcccag	cactttggga	ggccgaggca	ggtggatcac	10200
aaggtcagga	ggttgagacc	atcctggcca	acatggtgga	actccatctc	tactaaaata	10260
caaaattagc	tgggtgtggt	ggtgtgcgac	tgtagtcccg	gctactcggg	aggctgaagt	10320
aggggaatca	ctggaacccg	agaggtgatg	gttgcagtga	gccgagattg	cgccactgca	10380
ctccagtttg	gcaatagagc	gacactctgt	cccaaaaaaa	aactctggcc	aggtgtggtg	10440
gctcacacct	gtcatcccag	cactttggga	ggttgatacc	attagaaaac	atgaagacag	10500
taaatgaaaa	aatgcagggc	cgggcgtggt	ggctcatgcc	tgtaatccca	gcactttggg	10560
aggttgagac	aggaggatca	ccctgaggtc	aggagttcga	gaccagcctc	gccagtggtg	10620
aaaccccgtc	tctactaaaa	atataaaaat	tagctgggtg	agggctgggt	gtggtggctt	10680
acgcctgtaa	teccageact	ttgggaggct	gaggcgggcg	gatcacgagg	tcaggagatc	10740
gagaccgtcc	tggataacac	agtgaaaccc	tgtctctact	aaaaatacaa	aaaattagct	10800

gggcgtggtg g	gegggeaeet	gcagtcccag	ctacttggga	ggctgaggca	ggagaatggt	10860
gggaatccgg a	aaggcggagc	ttgcagtgag	ccgagattgc	gccactgcac	tcccagcctg	10920
ggcgacagag (caagactccg	tttggtaggc	tgagacagga	gaatcacttg	aaccctggag	10980
gtggaggttt	tggtgagccg	agatcatgcc	acttcactct	agcctaagag	gcaagagcga	11040
aactccatct	caaaaaaag	aaaaaaaaa	acctctaagt	caagtggggc	taactgtaaa	11100
ggtatatttt	ttataccttt	tatcttttat	atgtttgaaa	tattttgtaa	tgttttatca	11160
ggaaaagtgg	aaaagaaatc	cagatgaaag	gtaaaggtgt	tagagatgtg	ggcagtagat	11220
tagcacgcct	caaagaagag	tgcggggaaa	ttgccagtcg	ccaaatcact	catttcttt	11280
cattttcttg	tagcttggag	ggacggtttg	aagatgagga	gctgcagcag	attcttgatg	11340
atatccagac	aaagcgcagc	tttcagtatt	aatctccaaa	catcactgct	gctcggagaa	11400
accacatccc	caggcataac	accaccttcc	cactgtctgg	ggctgacttg	cacagaaatt	11460
ctgttgaaga	cagttgagaa	ttcctttgga	gaaaacagcc	cagcttggcg	tggggttagg	11520
ttgctgtttc	aaataactca	caggcccagg	tgacatggaa	tcttggagca	gccttgtgca	11580
gtggcagcca	gtggcttcct	gaacgtgcct	ctgcgaagtg	tgagatgagg	ggtcacataa	11640
ccacactgtt	gactacctca	ttcctggttt	ttggcctcca	catcatcttt	tttcttaata	11700
tttcatgttt	taatttcagg	gtgtttatac	tttttgaaac	tagaccagaa	gatagtagac	11760
tttatagaga	aagaccagtt	ttacctagat	actaaaggaa	gaattaaacc	gctgttagtt	11820
tgaaatgctt	tttttttt	tttttaaatg	gagatagggt	cttaactctt	gtccaggctg	11880
gaggagtgca	gtcgtacagt	catggctcac	tgaagtcttg	accccgctgc	ctcagcctcc	11940
caaataactg	gggccacagg	tgtgcaccac	aactctcagc	taattttaa	aatttttat	12000
agaggtgggg	ttttactatg	ctgtccagac	tggtcttaaa	ctcctgggct	caagtgatcc	12060
ccctgccttg	gcctcccaaa	ctggtgagat	tacaggcatg	agccaccaca	actggcctga	12120
aattcttaaa	ggatgggagt	gtcgatgaca	gcaccttggc	atcgttgtgc	ctaacctggg	12180
agacggaaga	agcacgccat	gggaagtgtt	tacacttggg	ggacaagtgo	: taagtattgt	12240
ggagcccata	gccccttgag	atagatggct	actttgcctt	tcttcttgaa	ctgtcttgca	12300
gaatgtggat	ttggggtaag	tggtcttgaa	ggattcattt	agtcacccto	: aaattaagat	12360
ttttacttca	tctttcttgg	gcctgcacct	ccaagataac	: aaagaagaag	g caatggtcgt	12420
gccaaagagg	tccacaacca	ggtgtgcact	gttcactgca	gcccatttgc	tgtatgaact	12480
gtggttgttg	tgtgcccaat	gacaaggcta	ctaagaaatt	catcatttga	a aacgtagagg	12540
ccgcagcagt	cagcgatgtt	tctgaaatga	gcatccttga	cgcctgtgta	a cttcccaggc	12600

PCT/US03/13015 WO 03/090694

tggatgtgaa gctacattac catgtgagtt gtgccattca cagcacagtg gtgaggaatt gageteatga ageaggeaag gaeegaaeae etecaeeeea aegtagaeet geaggtgetg 12720 ccccatgacc tccaccaaag cccatataag gagcggagtt gttaaggact gaagaaaaac 12780 ttctctggag aaaaataaaa ttgcaattct acttaaaaaa aattttttt ttttttac 12840 ttcataggcc aggcttgaag ttctgaacac tttgaagtct ccaattatga gagatccagt 12900 ctaagcctct ggcctgctaa ttagcaataa gtgctttatt tggaaggagg gagtcatcca 12960 ctcttgagcc actgcagtga agtcacttga tctcagtctg ggggaaaaca cttcaatagc 13020 taaacattct agctttgatt tttctgaagg gaatacactt gttttcaatt ttggggtttt 13080 tetttgggge acttgettga etetgtatga acttgtgate caaggaaaaa ggagaaagaa 13140 cagtgttggc ttttaaaatc aggatggttt tatgtttgct acgaaataag gcaagaataa 13200 aaaattetta ttttattta tttatttatt ttttgagata gagtetgget gtgttgeeca 13260 ggatgcaatg gcgcaatctt ggctcactgc aacctctgcc ttctgggttc aagtgattct 13320 13359 cctgcctcag cctcccaagt agctgggatt acaggtacc

<210> 83 <211> 3451 <212> DNA

<213> Homo sapiens

<220>

<221> misc feature (2141) .. (2141) <222> <223> n is a, c, g, t or u

<400> 83

tetggttegg eccacetetg aaggttecag aatcaatagt gaattegtgg gattteggee 60 tgagagcggg ccgaggagat tggcgacggt gtcgcccgtg ttttcgttgg cgggtgcctg 120 ggctggtggg aacagccgcc cgaaggaagc accatgattt cggccgcgca gttgttggat 180 gagttaatgg gccgggaccg aaacctagcc ccggacgaga agcgcagcaa cgtgcggtgg 240 gaccacgaga gcgtttgtaa atattatctc tgtggttttt gtcctgcgga attgttcaca 300 aatacacgtt ctgatcttgg tccgtgtgaa aaaattcatg atgaaaatct acgaaaacag 360 tatgagaaga gctctcgttt catgaaagtt ggctatgaaa gagatttttt gcgatactta 420 cagagettae ttgcagaagt agaacgtagg atcagacgag gecatgeteg tttggcatta 480 teteaaaace ageagtette tggggeeget ggeecaacag geaaaaatga agaaaaatt 540 caggttctaa cagacaaaat tgatgtactt ctgcaacaga ttgaagaatt agggtctgaa 600 ggaaaagtag aagaagccca ggggatgatg aaattagttg agcaattaaa agaagagaga 660

• · · · · · · · · · · · · · · · · · · ·	720
gaactgctaa ggtccacaac gtcgacaatt gaaagctttg ctgcacaaga aaaacaaatg	780
gaagtttgtg aagtatgtgg agccttttta atagtaggag atgcccagtc ccgggtagat	
gaccatttga tgggaaaaca acacatgggc tatgccaaaa ttaaagctac tgtagaagaa	840
ttaaaagaaa agttaaggaa aagaaccgaa gaacctgatc gtgatgagcg tctaaaaaag	900
gagaagcaag aaagagaaga aagagaaaaa gaacgggaga gagaaaggga agaaagagaa	960
aggaaaagac gaagggaaga ggaagaaaga gaaaaagaaa gggctcgtga cagagaaaga	1020
agaaagagaa gtcgttcacg aagtagacac tcaagccgaa catcagacag aagatgcagc	1080
aggtctcggg accacaaaag gtcacgaagt agagaaagaa ggcggagcag aagtagagat	1140
cgacgaagaa gcagaagcca tgatcgatca gaaagaaaac acagatctcg aagtcgggat	1200
cgaagaagat caaaaagccg ggatcgaaag tcatataagc acaggagcaa aagtcgggac	1260
agagaacaag atagaaaatc caaggagaaa gaaaagaggg gatctgatga taaaaaaagt	1320
agtgtgaagt ccggtagtcg agaaaagcag agtgaagaca caaacactga atcgaaggaa	1380
agtgatacta agaatgaggt caatgggacc agtgaagaca ttaaatctga aggtgacact	1440
cagtccaatt aaaactgatc tgataagacc tcagatcaga	1500
ctcactttga ttagggcttt ttgttactgt ttgacagtgc agcgtaagta tgcacagatg	1560
aagatggaac taagccgagt aagaagacat acaaaagcct cttctgaagg aaaagacagt	1620
gtagtcctgc aaaacatttt gaggtacatt gttttgtctc agctattttg tagcagactc	1680
gtgccccat tagtgtgcct ctttggaaat tatcgcccac atttgtaata tagtcgccat	1740
tgaaaagtta attatccttt ttttagggat tttgatgtca tttcttttt tttttaata	1800
aaaaggttga actgtttttt tttttctttt tggtattaag tccatcttgt gttggtacat	1860
tggcagagac atatgcttta aaaacttaaa tatttcggag gcacatgttg gactactttg	1920
ttttaattaa actgctagta tttctttgtc aaggatgttt ctagtttttt gctttattgc	1980
cttgcattct aatgcagttt gttctgtaac tcgagagcca gtagcattgg attgatggaa	2040
gtgtagggtt tatgaattat tgcagctgac taccatacct cacacagcgt tggtgttgtg	2100
agoggoccat gaaaagocaa attaaaaato aaggattoag noaaactaag caggtactoa	2160
tgccaggtac tcctttctct acccacatcc atgtttgaat gctattgcct gtgatcttta	2220
cgcttaactg ttgtgtatct tttttgttct ttacaagaag tgcagagggg ttttttgtgt	2280
attgcgtgaa aacttataaa acaaatgtta acagaatgga atttttttc aactgtatgt	2340
agggctgcag tggtggccag aattagatat ctttaaagaa ttttaaatac aataaacact	2400
tcatattatt cgccttgtta cactcaatgc aattctcaag tctataagag gtatgtgctt	2460
aatatttcct actgtgtagg agaatttgca gtcagccata ggtatgtagg aatagtcact	2520
2200000000	

cactggctga	tacatttaaa	gcagcagtgt	gaatagcaag	gacagacacc	ttcaatttgt	2580
gaaatcaaag	aactgatgca	ctatatagaa	cgaatttggg	tttttaaaga	aatattaaaa	2640
gttaggtact	gtaagtgttc	ttaaaacctg	taaacttcat	tctgtgggct	agtggtgtgg	2700
gacaaaatat	tcctaatgaa	aggaagtacc	aattagttga	tttgttggtg	gcattcccct	2760
tttgggaaag	caatgtaagg	ttatgtctgt	gtatgtcatt	cacacttagg	caagcataca	2820
caggcacatg	gctttaagaa	ccacactgat	gccttgataa	ttaaaaagaa	tacaagcatt	2880
ccatgtacac	atgttaatta	gcagttagtg	actgggccaa	cactttctca	taaaaattgg	2940
ccttttacat	gttgtctaat	tatcattttt	ccccaaattg	ggcgttgtag	gactactgtt	3000
cgaagatttt	tggaagaata	ctgagaacgg	cataaagtga	agatcgacat	ttaaaaaatg	3060
aggtgaaaga	aagctatagt	ggcatagaaa	aagtataaag	ctcagttagt	ttttttatta	3120
ttattattat	taaaagttaa	ttcaggactg	atgtgaccta	ccagatttca	gaacatgtgt	3180
taatagtata	tatgccactg	aaaacttagg	tcctgtatca	tactttttc	tttaagactt	3240
tttaagaaat	attacttaaa	catgtggctt	gctcagtgtt	taattgcaag	ttttcaatct	3300
tggactttga	aaacaggatt	aaacgttagt	attcgtgtga	atcagactaa	gtgggatttc	3360
atttttacaa	ctctgctcta	cttagccttt	ggatttagaa	gtaaaaataa	agtatctctg	3420
actttctgtt	aaaaaaaaa	ı aaaaaaagct	t t			3451

<210> 84

<213> Homo sapiens

<400> 84 atggtgcgca t	tgaatgtcct	ggcagatgct	ctcaagagta	tcaacaatgc	cgaaaagaga	60
ggcaaacgcc a						120
atgatgaagc	atggttacat	tggcgaattt	gaaatcattg	atgaccacag	agctgggaaa	180
attgttgtga a	acctcacagg	caggctaaac	aagtgtgggg	tgatcagccc	cagatttgac	240
gtgcaactca	aagacctgga	aaaatggcag	aataatctgc	ttccatcccg	ccagtttggt	300
ttcattgtac	tgacaacctc	agctggcatc	atggaccatg	aagaagcaag	acgaaaacac	360
acaggaggga	aaatcctggg	attcttttc	tagggatgta	atacatatat	ttacaaataa	420
aatgcctcat	ggact					435

<211> 435

<212> DNA

<210> 85 <211> 1898 <212> DNA <213> Homo sapiens

<400> 85 agctggaggg	cagaggaggc	ggcgcggggt	gtcctgtcct	cgccatgagg	ccgcagcagg	60
cgccggtgtc	cggaaaggtg	ttcattcagc	gagactacag	cagtggcaca	cgctgccagt	120
	gttccctgcg					180
	taaataacct					240
gaaggttgtt	tggcttgttt	aacagcatat	accatcttcc	tatgcatgga	aactcattat	300
gagaaggtto	tgaagaaagt	ctccaaatac	attcaagagc	agaatgagaa	gatctatgct	360
ccacaaggco	: tcctcctgac	agaccctatt	gagcgaggac	tgcgagttat	tgaaattacc	420
atttatgaag	g acagaggcat	gagcagtgga	agataaaccg	aagaattaaa	gatcccactt	480
- ccagccggg	ccctcatgta	tccactggcc	gaccgcagag	tgtccctacc	tcctctccag	540
					aggactcact	600
ttctaaaati	ccacacctgg	g agtgacctct	agtcgctcag	catccacttt	gtgtctccaa	660
attgtgtag	g actctgtaat	cttttgatta	gtttctgaga	aaacacaatg	g aagcacttca	720
cttttttt	a ttcaaagcca	a tttaataaa	a cacagttggt	: cagcccagtg	g caaagcttgt	780
tatctgcca	c cagtacata	cattggttc	t cttcattcct	: tgggccagct	tctcaggtgg	840
					c taaattaata	900
					t gcacctccca	960
					t tctactattc	1020
agttcctca	a actgaagct	t attgaaaaa	a aaatgtata	a tgttatttg	t tttattatag	1080
caattatto	c taattaaag	c agtatttaa	t gcaatttcc	a gttatttct	t tggagaattt	1140
tatgtcatt	g ttccattac	c ttgaatgtt	g gaaagatat	g atacgtgct	g cttgttcatc	1200
acaaaaato	a gtaagcaca	a taaagtgga	t gccaaacca	t cagacacat	a aatgttcccg	1260
					a gttttgttat	1320
aaatataa	ct tatgagaaa	a aaatttgat	a ggaataata	c tgtatatta	c taatttttaa	1380
ctatcccta	aa ggcaaacct	t atgacccad	a gaattttct	c atatacagt	a ttcagtgcac	1440
agaaatct	ta tgattggct	c aagtacagt	a agttactto	t cagtaaaa	ct ctcaagtctg	1500
agtccata	tt tgtagctc	g cttttggct	tg tacgttcct	a ggatcgggg	gc tgcttatgcc	1560
tttcgttt	at ccttgggg	tt tgagagcg	ct gtatttggg	ga gagagttta	aa aaatacatta	1620
					ta atactggatt	1680
tcgtctca	ga tttaattt	ct tttatggg	tc tgttagtc	at tcaacaaa	tc ccataagtat	1740
gtgttaat	at tttaattg	tg taaaactc	at ttgttact	tt acagcctg	ta atagtgtgtc	1800

1860

tgcattttca acctgttgca ataactttgc tgaaatatta acacattaat aaaacttttc 1898 86 <210> 7603 DNA <213> Homo sapiens <400> 86 ttttcttgct tttcttccct ttttttctt tttgcaaaca aaacaaaaaa cagcatagaa 60 gaaagagcaa aataaagaag aagaagagga ggaagagagg gaaagagagg aagggaaaaa 120 aaacaccaac cegggeagag gaggaggtge ggeggeggeg geggeggegg cageggegge 180 ageggegegg eggeggeteg gaececetee eeeggeteee eeeateagtg eageteteeg 240 ggcgatgcca gaatagatgc cggggcaatg tcccgccgca aacagggcaa cccgcagcac 300 ttgtcccaga gggagctcat caccccagag gctgaccatg tggaggccgc catcctcgaa 360 gaagacgagg gtctggagat agaggagcca agtggcctgg ggctgatggt gggtggcccc 420 gaccetgace tgeteacetg tggeeagtgt caaatgaact teecettggg ggacateetg 480 gtttttatag agcacaaaag gaagcagtgt ggcggcagct tgggtgcctg ctatgacaag 540 gccctggaca aggacagccc gccaccctcc tcacgctccg agctcaggaa agtgtccgag 600 ceggtggaga tegggateca agteacece gacgaagatg accaectget eteacecacg 660 aaaggcatct gtcccaagca ggagaacatt gcaggtaaag atgagccttc cagctacatt 720 tgcacaacat gcaagcagcc cttcaacagc gcgtggttcc tgctgcagca cgcgcagaac 780 acgcacggct tecgcateta cetggageee gggeeggeea geageteget caegeegegg 840 ctcaccatcc cgccgccgct cgggccggag gccgtggcgc agtccccgct catgaatttc 900 ctgggcgaca gcaacccctt caacctgctg cgcatgacgg gccccatcct gcgggaccac 960 cegggetteg gegagggeeg eetgeeggge acgeegeete tetteagtee eeegeegege 1020 caccacctgg acccgcaccg cctcagtgcc gaggagatgg ggctcgtcgc ccagcacccc 1080 agtgccttcg accgagtcat gcgcctgaac cccatggcca tcgactcgcc cgccatggac 1140 ttctcgcggc ggctccgcga gctggcgggc aacagctcca cgccgccgcc cgtgtccccg 1200 1260 tteetgagea egeegeeget geegeecatg eeceetggeg geaegeegee eecgeageeg 1320 ccagccaaga gcaagtcgtg cgagttctgc ggcaagacct tcaagttcca gagcaatctc 1380 atcgtgcacc ggcgcagtca cacgggcgag aagccctaca agtgccagct gtgcgaccac 1440 gegtgetege aggecageaa geteaagege cacatgaaga egeacatgea caaggeegge 1500

agcegactgg cgggcgaggg cctcaaggcg gccgacggtg acttccgcac ccacgagagc 1620 gacccgtcgc tgggccacga gccggaggag gaggagagag aggaggagga ggaggaggag	tegetggeeg geegeteega egaegggete teggeegeea geteeceega geeeggeace 156	0
gagctgctack tggagaacga gaccggaggag gaggaggag aggaggagga ggaggaggag 16800 gagctgctack tggagaacga gagccggccc gagtcgagct tcagcatgga ctcggagctg 1740 agccgcaaacc gcgagaacga cggtggtggg gtgcccgggg tcccggggcg gggggggg	agcgagctgg cgggcgaggg cctcaaggcg gccgacggtg acttccgcca ccacgagagc 162	: 0
gagetgetac tggagaacga gageeggeee gagtegaget teageatgga eteggageeg 1740 ageeggeaacg gegagaacgg eggtggtggg gtgeeegggg teeegggege ggggggegge 1860 ageeggeeaagg egetggetga egagaaggeg etegtgetgg geaaggteat ggagaacgtg 1860 aggeetaggeg eategeegga gtaeeggegg eteetgggeeg acaagagaa gegeggeege 1920 tteetgaage gtgeggegg egggggaac geggggeag acaagagaa gegeggetge 1920 aggegeettee eegggetett eegggegaag eegggetgaa gegggetgeg geggetteeg geaagaacg gggggegggggggggggggggggggg		30
agcegcaaace gcgagaacegg cggtggtggg gtgcccgggg tcccggggg gggggggg		10
ttcctgaage gtgcggggg cggggggae gegggggae gegggggaeg gggggttege ggagggege 1980 ggggacggg geggggggg cgcggggae geggggaeg gegggttege geaggaege 2040 gaggacgettee cegggctctt cecggcaag ceeggegeg tgcccagece egggctcaac 2100 agegeegeca agegcatcaa ggtggagaag gacetggag tgccgccage egggctcaac 2100 cegtccgaga acgtgtacte geagtggct gtggggaag tgccgccage egggctcaac 2220 aaggaccett tectgggett cacggaege ggaggtage eggggtegeg geacttcat 2220 aaggaccet tectgggett cacggaege egacagege eggggtegeg geacttcat 2220 cactegteeg agaacggaag ectgegette tecacgcege eggggaect getggaegg 2280 ggcctctegg gecgcagegg cacggccage ggaggaaga eccegaacet ggggggaec 2440 ggcctctegg gecgcagegg cacggccage ggaggaaga eccegaacet ggggggaegg 2440 aaggtgttca agaactgcag caacttgacg gtgacacga gaagcaaca eggeggaegg 2520 cettacaagt gegagetgt caactacgeg tgegegaag gaagcaaca eggegaegg 2520 cettacaagt gegagetgt caactacgeg tgegegaag geagcaaaget cacggggaeg 2520 cettacaagt gegagetgt caactacgeg tgegegaag geagcaaget ecagggcaa 2580 atgaagacge acgggcagat eggeaagaag gtgtaccegt gegaacatet ecagggecac 2640 ttcagegtet acagcacect ggagaacac atgaaaaagt ggcacgggg geacttgetg 2700 actaacgaeg teaaaatega gcaggecgaa aggagctaag eggeggggae ecggegece 2760 gcacctgtac agtggaaceg ttgccaaccg agagactaag eggeggggae ecggegece 2760 gcacctgtac agtggaaceg ttgcaaccg aggagatga gaggggggaeggaeggaeggaeggaeggaeggaegga		00
9393 gracettee coggetest coccageaga gracegagaga gracegagagagagagagagagagagagagagagagagagag	gcggccaagg cgctggctga cgagaaggcg ctggtgctgg gcaaggtcat ggagaacgtg 186	50
ggggacgcgg gcgcggggg cgcggggaac gcgggggaac gcggggggg gcggcttcqc gccaggcacc 2040 gagcccttcc ccgggctctt cccgcgcaag cccgcgccgc tgcccagccc cgggctcaac 2100 agcgccgcaa agcgcatcaa ggtggaaaag gacctggaac tgccgacccc cgggctcaac 2100 ccgtccgaag acgtgtactc gcagtggctg gtgggctacg cgcgctcact 2160 ccgtccgaag acgtgtactc gcagtggctg gtgggctacg cgcgtccgc cgcgctcatc 220 aaggacccct tcctgggctt cacggacgca cgacagtcgc ccttcgccac gtcgtccgag 2280 cactcgtccg agaacggcag cctgcgccc cggggacct gctggacggc 2340 ggccctctcgg gccgcagcg cacggccagc ggaggcacc cccggaggacct gctggacggc 2400 ggccccgggc ggcccagct caaggagggc cgccgcagcg gaaggcacac gggggggcccg 2400 aaggtgttca agaactgcag caacttgacg gtgcaccggc ggaggcacac cggggagccg 2460 aaggtgttca agaactgcag caacttgacg gtgcaccggc ggaggcacac cggggagcgg 2520 ccttacaagt gcgagctgtg caactacgcg tgcgcgcaga gcagcaagct cacggcgac 2580 atgaagacg acgggagat cggcaagaag gtgtaccgct gcgaacacc cggggagccc 2640 ttcagcgtct acagcacct gggaaaacac atgaaaaagt ggcacagcga gcacttgctg 2700 actaacggc tcaaaaatcga gcaggacgag aggagctaag ggaactatct ccagcgcccc 2760 gcacctgtac agtggaaccg ttgccaaccg agagaatget gacctgactt gcctccgtgt 2820 caccgccacc ccgcacccc gcgtgtccccg gggcccaggg gaggcgaac tccaacctaa 2880 cctgtctc gcgaagtcct tggaaaccg agggttgatt aaggcagtac aaattgtgga 2940 gcctttaac tgtgcaataa tttctgtatt tattgggttt tgtaattttt ttggcatgtg 3000 caggtacttt ttattattat tttttctgtt tgaattcctt taagagattt tgttgggtat 3000 ccatcccttc ttttgtttttt ttttaacccg gtagtaccc gaggaggggagg	ggcctaggcg cactgccgca gtacggcgag ctcctggccg acaagcagaa gcgcggcgcc 192	20
aggcccttcc cegggctctt cecgcgcaag cecgcgcgc tgcccagcc cgggctcaac 2100 agcgccgcca agcgcatcaa ggtggagaag gacctggagc tgccgccgc cgcgctcatc 2160 ccgtccgaga acgtgtactc gcagtggctg gtgggctacg cggcgtcgcg gcacttcatg 2220 aaggaccct tcctgggctt cacggacgca cgacagtcgc ccttcgcaac gtcgtccgag 2280 cactcgtcg agaacggcag cctgcgcttc tccacgccgc ccggggacct gctggacggc 2340 ggcctctcgg gcgccagcg cacggccagc ggaggcagca ccccgcacct ggggggcccg 2400 aaggtctca agaactgcag caacttgacg gtgacccgga acacgtgga gtactgcgg 2460 aaggtgttca agaactgcag caacttgacg gtgacccgg ggaggcacac cggcgagcgg 2520 ccttacaagt gcgagctgg caactacgcg tgcgccagag gaggccacac cggcgagcgg 2520 atgaagaagc acgggaagtg caactacgcg tgcgcgcaga gcaactctg ccagaggcg 2580 atgaagacg acgggcagat cggcaagagag gtgtaccgct gcggacatct cacggccac 2640 ttcagcgtct acagcaccct ggagaaacac atgaaaaagt ggcacgggag gcacttgctg 2700 actaacgac tcaaaatcga gcaggccgag aggagctaag cggcggggcc ccggcgccc 2760 gcacctgtac agtggaaccg ttgccaaccg aggagatgtg gacctgactt gcctccgtgt 2820 caccgccac ccgcacccc cggcgcccc ggtgtccccg gggcccaggg gaggcggac tccaacctaa 2880 cctgtgtctg cgaagtccta tggaaacccg agggttgat aaggcagtac aaattgtgga 2940 gccttttaac tgtgcaataa tttctgtat tattgggtt tgtaatttt ttggcatgtg 3000 caggtacttt ttattatat tttttctgtt tgaattcctt taagagattt tgttagggtat 3000 ccatcccttc tttgttttt ttttaaacccg gtagtagcc gagggggggggg	ttcctgaagc gtgcggcggg cggcggggac gcgggcgacg acgacgacgc gggcggctgc 198	80
agegccettee cegggetett ceegegcaag deegegege tegetaagee egggeteate 2160 cegteegaga aegegtacte geagtgeeg gtgggetaeg eggegteege geaetteatg 2220 aaggaceet teetgggett caeggaegae egacagtege cetteegeae gtegteegag 2280 cactegteeg agaacegeag cetgegette teeacgeege eeggggaeet getggaegge 2340 ggcetetegg geegeagegg caeggeegg gaaggaegae eegeggagee ggegeeggg 2400 ggceeeggge ggeecagete eaaggaggge egeegeageg acaegtegae ggaggeege 2460 aaggtgttea agaactgeag caacttgaeg gtgeacegge ggaggeeace eggegagegg 2520 cettacaagt gegagetgt caactaegeg tgegeegag geageaaget eaeggegge 2580 atgaagaege aegggeagat eggeaaggag gtgtacege gegaacacae eggegageg 2580 atgaagaege aegggeagat eggeaaggag gtgtaceget gegaacatet eaeggeeac 2640 tteagegtet aeagcaceet ggagaaacae atgaaaaagt ggeaeggega geaettgetg 2700 actaacgaeg teaaaatega geaggeegag aggagetaag egeegggge eeggegeee 2760 geaectgtae agtggaaceg ttgecaaceg aggagtate gacetgaett geeteegtgt 2820 cacegeeace eegcaceeeg egtgteeeeg gggeecaggg gaggeggaa teeaacetaa 2880 cetgtgtetg egaagteeta tggaaaceeg agggttgatt aaggeagtae aaattgtgga 2940 geettttaac tgtgcaataa tttetgtatt tattgggtt tgtaatttt ttggeatgt 3000 caggtaettt ttattattat tttttetgtt tgaatteett taagagattt tgttgggtat 3060 ceatecette tttgttttt ttttaaceeg gtagtagee gaggaggggggggggggggagggagggagggaggg	ggggacgcgg gcgcgggcgg cgcggtcaac gggcgcgggg gcggcttcgc gccaggcacc 204	40
aaggacccct teetgggett eaeggacga egacagtege eetteegeaa geggeteega geaetteatg 2280 cactegteeg agaacggcag eetgegette teetaegeege eetgeggacet getggacgge 2340 ggeeteteeg geegeagegg eaeggecage ggaggeagea eeeggaggacet ggtggaegge 2400 ggeeceggge ggeecagete eaaggaggge egeegeageg acacgtgega gtaetgegge 2460 aaggtgttea agaactgcag caacttgaeg gtgeacegge ggagceacac eggegagegg 2520 cettacaagt gegagetgt eaactaegeg tgegegeaga geageaaget eaeggegageg 2520 cettacaagt gegagetgt eaactaegeg tgegegeaga geageaaget eaeggegaeg 2580 atgaagaege acgggeagat eggeaaggag gtgtaeeget gegacatetg eeaggecac 2640 tteagegtet acagcacet ggagaaacac atgaaaaagt ggeacaggag geaettgetg 2700 actaacgaeg teaaaatega geaggeegag aggagetaag eggegggge eeggegeee 2760 geaectgtae agtggaaceg ttgecaaceg aggagetaag egeeggggee eeggegeee 2880 cacegeeace eeggaceeeg egtgteeeeg gggeecaaggg gaageggae teeaacetaa 2880 cetgtgtetg egaagteeta tggaaaceeg agggttgatt aaggeagtae aaattgtgga 2940 geettttaac tgtgeaataa tttetgtatt tattgggttt tgtaattttt ttggeatgtg 3000 caggtaettt ttattattat tttttetgtt tgaatteett taagagattt tgttgggtat 3000 ceatecette tttgttttt ttttaaaceeg gtagtagee gagagggggggggggggagaegeagggaggggaagggagga	gagecettee eegggetett eeegegeaag eeegegeege tgeeeageee egggeteaac 21	00
aaggaccect teetgggett caeggacga egacagteeg eettegecae gtegteegag 2280 cactegteeg agaacggcag cetgegette teeacgeege ceggggacet getggacgge 2340 ggeeteteegg geegeagegg caeggeege ggaggeagea eeceggaceet gggeggeegg 2400 ggeeceggge ggeecagete eaaggaggge egeegageg acaegtgega gtaetgegge 2460 aaggtgttea agaactgeag caacttgacg gtgcacegge ggagceacae eggegagegg 2520 cettacaagt gegagetgtg caactageeg tgegegeaga geageaaget caeggegageg 2580 atgaagaege acgggeagat eggeaaggag gtgtaceget gegacatetg eaagtgeea 2640 tteagegtet acagcaceet ggagaaacae atgaaaaagt ggeacggeag geacttgetg 2700 actaacgaeg teaaaatega geaggeegag aggagetaag egegegggee eeggegeee 2760 geacetgtae agtggaaceg ttgceaaceg agagaatget gacetgaett geeteegtt 2820 caeeggeace eeggaceeeg egtgteeeeg gggeecaggg gaggeggeae teeaacetaa 2880 cetgtgtetg egaagteeta tggaaaceeg agggttgatt aaggeagtae aaattgtgga 2940 geettttaac tgtgcaataa tttetgtatt tattgggttt tgtaattttt ttggcatgtg 3000 caggtaettt ttattattat tttttetgtt tgaatteett taagagattt tgttgggtat 3000 tgttagaggg gaageatate tttttaaatta taatttgggg ggagggggg tgetgetttt 3180	agegeegeea agegeateaa ggtggagaag gaeetggage tgeegeeege egegeteate 21	.60
cactegteeg agaacggeag cetgegette tecacgeege ceeggggacet getggaegge 23400 ggeetetegg geegeagegg cacggeeage ggaggeagea eeeeegagee gggegeeeg 24600 ggeeceggge ggeecagete caaggaggge egeegeageg acacgtgega gtactgegge 24600 aaggtgttea agaactgeag caacttgaeg gtgeacegge ggaggeacaca eggegagegg 25200 cettacaagt gegagetgtg caactaegeg tgegegeaga geageaaget caeggegageg 25200 cettacaagt gegagetgtg caactaegeg tgegegeaga geageaaget caegegeace 25800 atgaagaega acgggeagat eggeaaggag gtgtaceget gegacatetg eeagatgee 26400 tteagegtet acageaceet ggagaaacac atgaaaaagt ggeacggega geacttgetg 27000 actaacgaeg teaaaatega geaggeegag aggagetaag eggegegge eegggegee 27600 geacetgtac agtggaaceg ttgeeaaceg aggagetaag eggeggggee eeggegeee 27600 geacetgtac agtggaaceg ttgeeaaceg aggaetgat gacetgaett geeteegtgt 28200 caeegeeace eegcaceeeg egtgteeeeg gggeeeaggg gaggeggaac teeaacetaa 28800 cetgtgtetg egaagteeta tggaaaceeg agggttgatt aaggeagtac aaattgtgga 29400 geettttaac tgtgcaataa tttetgtatt tattgggttt tgtaattttt ttggeatgtg 30000 caggtaettt ttattattat tttttetgtt tgaatteett taagagattt tgttgggtat 30000 ceatecette tttgttttt ttttaaaceeg gtagtageet gageaatgae tegcaageaa 31200 tggtaggggg gaageatate ttttaaatta taatttgggg ggaggggtgg tgetgetttt 31800	ccgtccgaga acgtgtactc gcagtggctg gtgggctacg cggcgtcgcg gcacttcatg 22	20
ggccccgggc ggcccagctc caaggaggc cgccgcagcg acacgtgcga gtactgcggc 2460 aaggtgttca agaactgcag caacttgacg gtgcaccggc ggagccacac cggcgagcgg 2520 ccttacaagt gcgagctgtg caactacgcg tgcgcgcag gcagcaagct cacgcgccac 2580 atgaagacgc acgggcagat cggcaaggag gtgtaccgct gcgacatctg ccagatgccc 2640 ttcagcgtct acagcaccct ggagaaacac atgaaaaagt ggcacggcga gcacttgct 2700 actaacgacg tcaaaatcga gcaggccgag aggagctaag cgcgcggga gcacttgct 2700 actaacgacg tcaaaatcga gcaggccgag aggagctaag cgcgcgggcc ccggcgccc 2760 gcacctgtac agtggaaccg ttgccaaccg agagatgct gacctgactt gcctccgtgt 2820 caccgccacc ccgcaccccg cgtgtccccg gggcccaggg gaggcggac tccaacctaa 2880 cctgtgtctg cgaagtccta tggaaacccg agggttgatt aaggcagtac aaattgtgga 2940 gcctttaac tgtgcaataa tttctgtatt tattgggttt tgtaattttt ttggcatgtg 3000 caggtacttt ttattattat tttttctgtt tgaattcctt taagagattt tgttgggtat 3060 tgttagaggg gaagcatatc ttttaaatta taatttgggg ggagggtgg tgctgctttt 3180	aaggacccct teetgggett caeggaegea egaeagtege eettegeeae gtegteegag 22	:80
ggccccgggc ggcccagctc caaggagggc cgccgaagcg acacgtgcga gtactgcggc 2460 aaggtgttca agaactgcag caacttgacg gtgcaccggc ggagccacac cggcgagcgg 2520 ccttacaagt gcgagctgtg caactacgcg tgcgcgcaga gcagcaagct cacgcgccac 2580 atgaagacgc acgggcagat cggcaaggag gtgtaccgct gcgacatctg ccagatgccc 2640 ttcagcgtct acagcaccct ggagaaacac atgaaaaagt ggcacggcga gcacttgctg 2700 actaacgacg tcaaaatcga gcaggccgag aggagctaag cgcgcgggcc ccggcgccc 2760 gcacctgtac agtggaaccg ttgccaaccg agagaatgct gacctgactt gcctccgtgt 2820 caccgccacc ccgcaccccg cgtgtccccg gggcccaggg gaggcggcac tccaacctaa 2880 cctgtgtctg cgaagtccta tggaaacccg agggttgatt aaggcagtac aaattgtgga 2940 gccttttaac tgtgcaataa tttctgtatt tattgggtt tgtaattttt ttggcatgtg 3000 caggtacttt ttattattat tttttctgtt tgaattcctt taagagattt tgttgggtat 3060 ccatcccttc tttgttttt ttttaacccg gtagtagcc gaggaggggg tgctgctttt 3180	cactegteeg agaaeggeag eetgegette tecaegeege eeggggaeet getggaegge 23	340
aaggtgttca agaactgcag caacttgacg gtgcaccggc ggagccacac cggcgagcgg 2520 ccttacaagt gcgagctgtg caactacgcg tgcgcgcaga gcagcaagct cacgcgccac 2580 atgaagacgc acgggcagat cggcaaggag gtgtaccgct gcgacatctg ccagatgccc 2640 ttcagcgtct acagcacct ggagaaacac atgaaaaagt ggcaccggcag gcacttgctg 2700 actaacgacg tcaaaatcga gcaggccgag aggagctaag cgcgcgggcc ccggcgccc 2760 gcacctgtac agtggaaccg ttgccaaccg agagaatgct gacctgactt gcctccgtgt 2820 caccgccacc ccgcaccccg cgtgtccccg gggcccaggg gaggcggcac tccaacctaa 2880 cctgtgtctg cgaagtccta tggaaacccg agggttgatt aaggcagtac aaattgtgga 2940 gccttttaac tgtgcaataa tttctgtatt tattgggttt tgtaatttt ttggcatgtg 3000 caggtacttt ttattattat tttttctgtt tgaattcctt taagagattt tgttgggtat 3060 ccatcccttc tttgttttt ttttaacccg gtagtagcc gagcaatgac tcgcaagcaa 3120 tgttagaggg gaagcatatc ttttaaatta taatttgggg ggagggtgg tgctgctttt 3180	ggcctctcgg gccgcagcgg cacggccagc ggaggcagca ccccgcacct gggcggcccg 24	100
cettacaagt gegagetgtg caactacgeg tgeggegaga geageaaget cacgegecac 2580 atgaagacge acgggcagat eggeaaggag gtgtaceget gegacatetg ceagatgeec 2640 ttcagegtet acageaceet gggaaacac atgaaaaagt ggeaeggega geaettgetg 2700 actaacgacg teaaaatega geaggeegag aggagetaag egegegggee eeggegeece 2760 geaeetgtac agtggaaceg ttgeeaaceg agagaatget gaeetgaett geeteegtgt 2820 eacegeeace eegeaeeeeg egtgteeeeg gggeeeaggg gaaggeggae teeaacetaa 2880 ectgtgtetg egaagteeta tggaaaceeg agggttgatt aaggeagtac aaattgtgga 2940 geetttaac tgtgeaataa tttetgtatt tattgggttt tgtaattttt ttggeatgtg 3000 eaggtaettt ttattattat tttttetgtt tgaatteett taagagattt tgttgggtat 3060 ecateeette tttgttttt ttttaaceeg gtagtageet gageaatgae tegeaagea 3120 tgttagaggg gaageatate ttttaaatta taatttgggg ggagggtgg tgetgetttt 3180	ggccccgggc ggcccagctc caaggagggc cgccgcagcg acacgtgcga gtactgcggc 24	160
atgaagacgc acggcagat cggcaaggag gtgtaccgct gcgacatctg ccagatgccc 2640 ttcagcgtct acagcaccct ggagaaacac atgaaaaagt ggcacggcga gcacttgctg 2700 actaacgacg tcaaaatcga gcaggccgag aggagctaag cgcgcggggcc ccggcgcccc 2760 gcacctgtac agtggaaccg ttgccaaccg agagaatgct gacctgactt gcctccgtgt 2820 caccgccacc ccgcaccccg cgtgtccccg gggcccaggg gaggcggcac tccaacctaa 2880 cctgtgtctg cgaagtccta tggaaacccg agggttgatt aaggcagtac aaattgtgga 2940 gcctttaac tgtgcaataa tttctgtatt tattgggttt tgtaattttt ttggcatgtg 3000 caggtacttt ttattattat tttttctgtt tgaattcctt taagagattt tgttgggtat 3060 ccatccctcc tttgttttt ttttaacccg gtagtagcct gagcaatgac tcgcaagcaa 3120 tgttagaggg gaagcatatc ttttaaatta taatttgggg ggagggtgg tgctgctttt 3180	aaggtgttca agaactgcag caacttgacg gtgcaccggc ggagccacac cggcgagcgg 25	520
ttcagcgtct acagcaccct ggagaaacac atgaaaaagt ggcacggcga gcacttgctg 2700 actaacgacg tcaaaatcga gcaggccgag aggagctaag cgcgcgggcc ccggcgcccc 2760 gcacctgtac agtggaaccg ttgccaaccg agagaatgct gacctgactt gcctccgtgt 2820 caccgccacc ccgcaccccg cgtgtccccg gggcccaggg gaggcggcac tccaacctaa 2880 cctgtgtctg cgaagtccta tggaaacccg agggttgatt aaggcagtac aaattgtgga 2940 gccttttaac tgtgcaataa tttctgtatt tattgggttt tgtaatttt ttggcatgtg 3000 caggtacttt ttattattat tttttctgtt tgaattcctt taagagattt tgttgggtat 3060 ccatcccttc tttgttttt ttttaacccg gtagtagcc gagcaatgac tcgcaagcaa 3120 tgttagaggg gaagcatatc ttttaaatta taatttggg ggagggtgg tgctgctttt 3180	ccttacaagt gcgagctgtg caactacgcg tgcgcgcaga gcagcaagct cacgcgccac 25	580
actaacgacg tcaaaatcga gcaggccgag aggagctaag cgcgcgggcc ccggcgccc 2760 gcacctgtac agtggaaccg ttgccaaccg agagaatgct gacctgactt gcctccgtgt 2820 caccgccacc ccgcaccccg cgtgtccccg gggcccaggg gaggcggcac tccaacctaa 2880 cctgtgtctg cgaagtccta tggaaacccg agggttgatt aaggcagtac aaattgtgga 2940 gccttttaac tgtgcaataa tttctgtatt tattgggttt tgtaattttt ttggcatgtg 3000 caggtacttt ttattattat tttttctgtt tgaattcctt taagagattt tgttgggtat 3060 ccatcccttc tttgttttt ttttaacccg gtagtagcct gagcaatgac tcgcaagcaa 3120 tgttagaggg gaagcatatc ttttaaatta taatttgggg ggaggggtgg tgctgctttt 3180	atgaagacgc acgggcagat cggcaaggag gtgtaccgct gcgacatctg ccagatgccc 26	640
geacetgtac agtggaaceg ttgccaaceg agagaatget gacetgaett geeteegtgt 2820 cacegecace cegeaceceg egtgteeceg gggcccaggg gaggeggae tecaacetaa 2880 cctgtgtetg cgaagteeta tggaaaceeg agggttgatt aaggeagtae aaattgtgga 2940 geettttaac tgtgcaataa tttetgtatt tattgggttt tgtaatttt ttggcatgtg 3000 caggtaettt ttattattat tttttetgtt tgaatteett taagagattt tgttgggtat 3060 ccatecette tttgttttt ttttaaceeg gtagtageet gageaatgae tegeaageaa 3120 tgttagaggg gaageatate ttttaaatta taatttgggg ggaggggtgg tgetgetttt 3180	ttcagcgtct acagcaccct ggagaaacac atgaaaaagt ggcacggcga gcacttgctg 2'	700
caccgccacc ccgcacccg cgtgtccccg gggcccaggg gaggcggcac tccaacctaa 2880 cctgtgtctg cgaagtccta tggaaacccg agggttgatt aaggcagtac aaattgtgga 2940 gccttttaac tgtgcaataa tttctgtatt tattgggtt tgtaattttt ttggcatgtg 3000 caggtacttt ttattattat tttttctgtt tgaattcctt taagagattt tgttgggtat 3060 ccatcccttc tttgttttt ttttaacccg gtagtagcct gagcaatgac tcgcaagcaa 3120 tgttagaggg gaagcatatc ttttaaatta taatttgggg ggaggggtgg tgctgctttt 3180	actaacgacg tcaaaatcga gcaggccgag aggagctaag cgcgcgggcc ccggcgcccc 2'	760
cacegorace cegeaceeg egtgteeceg gggettaggg gaggaggata eterate cetgtgtetg egaagteeta tggaaaceeg agggttgatt aaggeagtae aaattgtgga 2940 geettttaac tgtgcaataa tttetgtatt tattgggtt tgtaattttt ttggcatgtg 3000 caggtaettt ttattattat tttttetgtt tgaatteett taagagattt tgttgggtat 3060 ceatecette tttgttttt ttttaaceeg gtagtageet gagcaatgae tegcaageaa 3120 tgttagaggg gaagcatate ttttaaatta taatttggg ggaggggtgg tgetgetttt 3180	gcacctgtac agtggaaccg ttgccaaccg agagaatgct gacctgactt gcctccgtgt 2	820
gccttttaac tgtgcaataa tttctgtatt tattgggttt tgtaattttt ttggcatgtg 3000 caggtacttt ttattattat tttttctgtt tgaattcctt taagagattt tgttgggtat 3060 ccatcccttc tttgttttt ttttaacccg gtagtagcct gagcaatgac tcgcaagcaa 3120 tgttagaggg gaagcatatc ttttaaatta taatttggg ggaggggtgg tgctgctttt 3180	cacegecace eegeaceeeg egtgteeeeg gggeeeaggg gaggeggeae tecaacetaa 2	880
caggtacttt ttattattat tttttctgtt tgaattcctt taagagattt tgttgggtat 3060 ccatcccttc tttgtttttt ttttaacccg gtagtagcct gagcaatgac tcgcaagcaa 3120 tgttagaggg gaagcatatc ttttaaatta taatttgggg ggaggggtgg tgctgctttt 3180	cctgtgtctg cgaagtccta tggaaacccg agggttgatt aaggcagtac aaattgtgga 2	940
caggtacttt ttattatt tttttctgtt tgaatteett taagagade egessisses caggtacttt ttattattat tttttctgtt tgaatteett taagagade egessisses 3120 ccatcccttc tttgtttttt ttttaacccg gtagtagcct gagcaatgac tcgcaagcaa 3120 tgttagaggg gaagcatatc ttttaaatta taatttgggg ggaggggtgg tgctgctttt 3180	gccttttaac tgtgcaataa tttctgtatt tattgggttt tgtaattttt ttggcatgtg 3	000
tgttagaggg gaagcatate ttttaaatta taatttgggg ggaggggtgg tgctgctttt 3180	caggtacttt ttattattat tttttctgtt tgaattcctt taagagattt tgttgggtat 3	3060
tgttagaggg gaagdatatd ttttaaacca taacctgggg ggagggggg ggagggg	ccatcccttc tttgtttttt ttttaacccg gtagtagcct gagcaatgac tcgcaagcaa 3	3120
the salts again at the transpart of the salts of the salt	tgttagaggg gaagcatatc ttttaaatta taatttgggg ggaggggtgg tgctgctttt 3	3180
ttgaaattta agctaagcat gtgtaattto tegesaasta s	ttgaaattta agctaagcat gtgtaatttc ttgtgaagaa gccaacactc aaatgacttt 3	3240
taaagttgtt tactttttca ttccttcctt ttttttgtcc tgaaataaaa agtggcatgc 3300	taaagttgtt tactttttca ttccttcctt ttttttgtcc tgaaataaaa agtggcatgc	3300

agtttttttt ttaattattt tttaattttt tttttggttt ttgtttttgg ggtggggggt 3360 gtggatgtac agcggataac aatctttcaa gtcgtagcac tttgtttcag aactggaatg 3420 gagatgtagc actcatgtcg tcccgagtca agcggccttt tctgtgttga tttcggcttt 3480 catattacat aagggaaacc ttgagtggtg gtgctggggg aggcacccca cagactcagc 3540 gccgccagag atagggtttt tggagggctc ctctgggaaa tggcccgaca gcattctgag 3600 gttgtgcatg accagcagat actatectgt tggtgtgece tggggtgeca tggctgctat 3660 tcgctgtaga ttaggctaca taaaatgggc tgagggtacc tttttgggga gatggggtgg 3720 cctgcagtga cacagaaagg aagaaactag cggtgttctt ttaggcgttt tctggcttga 3780 cggcttctct cttttttaa atcaccccca ccacataaat ctcaaatcct atgttgctac 3840 aaggggtcat ccatcatttc ccaagcagac gaatgcccta attaattgaa gttagtgttc 3900 tctcatttaa tgcacactga tgatattgta gggatgggtg gggtggggat cttgcaaatt 3960 4020 tctattctct tttactgaaa aagcagggga tgagttccat cagaaggtgc ccagcgctac ttcccaggtt tttattttt ttttcctatc tcattaggtt ggaaggtact aaatattgaa 4080 ctgttaagat tagacatttg aattetgttg accegeaett taaagetttt gtttgeattt 4140 aaattaaatg gcttctaaac aagaaattgc agcatattct tctctttggc ccagaggtgg 4200 gttaaactgt aagggacagc tgagattgag tgtcagtatt gctaagcgtg gcattcacaa 4260 tactggcact ataaagaaca aaataaaata ataatttata ggacagtttt tctactgcca 4320 ttcaatttga tgtgagtgcc ttgaaaactg atcttcctat ttgagtctct tgagacaaat 4380 gcaaaacttt tttttgaaa tgaaaagact ttttaaaaaa gtaaaacaag aaaagtacat 4440 tctttagaaa ctaacaaagc cacatttact ttaagtaaaa aaaaaaaaa ttctggttga 4500 agatagagga tatgaaatgc cataagaccc aatcaaatga agaaataaac ccagcacaac 4560 cttggacatc cattagctga attatcctca gccccttttg tttttgggac aacgctgctt 4620 agatatggag tggaggtgat ttactgctga attaaaactc aagtgacaca agttacaagt 4680 tgatatcgtt gaatgaaaag caaaacaaaa acaattcagg aacaacggct aattttttct 4740 aaagttaaat ttagtgcact ctgtcttaaa aatacgttta cagtattggg tacatacaag 4800 ggtaaaaaaa aaattgtgtg tatgtgtgtt ggagcgatct tttttttca aagtttgctt 4860 aataggttat acaaaaatgc cacagtggcc gcgtgtatat tgttttcttt tggtgacggg 4920 gttttagtat atattatata tattaaaatt tcttgattac tgtaaaagtg gaccagtatt 4980 tgtaataatc gagaatgcct gggcatttta caaaacaaga aaaaaaatac ccttttcttt 5040 tccttgaaaa tgttgcagta aaatttaaat ggtgggtcta taaatttgtt cttgttacag 5100 taactgtaaa gtcggagttt tagtaaattt ttttctgcct tgggtgttga atttttattt 5160

caaaaaaaat gtatagaaac ttgtatttgg ggattcaaag gggattgcta caccatgtag 5220 aaaaagtatg tagaaaaaaa gtgcttaata ttgttattgc tttgcagaaa aaaaaaaaa 5280 cacatttctg acctgtactt atttttctct tcccgcctcc ctctggaatg gatatattgg 5340 ttggttcata tgatgtaggc acttgctgta tttttactgg agctcgtaat tttttaactg 5400 taagcttgtc cttttaaagg gatttaatgt acctttttgt tagtgaattt ggaaataaaa 5460 agaaaaaaaa aacaaaaca aacaggctgc cataatatat ttttttaatt tggcaggata 5520 aaatattgca aaaaaaacac atttgtatgt taagtcctat tgtacaggag aaaaagggtt 5580 gtttgacaac ctttgagaaa aagaaacaaa aggaagtagt taaatgcttt ggttcacaaa 5640 tcatttagtt gtatatattt tttgtcggaa ttggcctaca cagagaaccg ttcgtgttgg 5700 gettetetet gaacgeeeg aacettgeat caaggeteet tggtgtggee acageagace 5760 agatgggaaa ttatttgtgt tgagtggaaa aaaatcagtt tttgtaaaga tgtcagtaac 5820 attccacatc gtcctccctt tctctaagag gccatctcta agatgtcaga tgtagaggag 5880 agagagegag agaacatett cettetetac cateacteet gtggeggtea ceaccaceac 5940 ctctcccgcc cttaccagca gaaagcaatg caaactgagc tgctttagtc cttgagaaat 6000 tgtgaaacaa acacaaatat cataaaagga gctggtgatt cagctgggtc caggtgaagt 6060 gacctgctgt tgagaccggt acaaattgga tttcaggaag gagactccat cacagccagg 6120 acctttcgtg ccatggagag tgttggcctc ttgtctttct tccctgcttt gctgctttgc 6180 tetetgaaac etacatteeg teagttteeg aatgegaggg eetgggatga atttggtgee 6240 tttccatatc tcgttctctc tccttcccct gcgtttcctc tccatccttc atcctccatt 6300 ggtccttttt ttttctttca ttttttattt aatttctttt cttcctgtct gttcctcccc 6360 taatceteta ttttattttt attttttgta aagecaagta getttaagat aaagtggtgg 6420 tettttggat gagggaataa tgeattttta aataaaatae caatateagg aageeatttt 6480 ttatttcagg aaatgtaaga aaccattatt tcaggttatg aaagtataac caagcatcct 6540 tttgggcaat tccttaccaa atgcagaagc ttttctgttc gatgcactct ttcctccttg 6600 ccacttacct ttgcaaagtt aaaaaaaagg ggggagggaa tgggagagaa agctgagatt 6660 teagttteet actgeagttt ectacetgea gateeagggg etgetgttge etttggatge 6720 cccactgagg tcctagagtg cctccagggt ggtcttcctg tagtcataac agctagccag 6780 tgctcaccag cttaccagat tgccaggact aagccatccc aaagcacaag cattgtgtgt 6840 ctctgtgact gcagagaaga gagaattttg cttctgtttt gtgtttaaaa aaccaacacg 6900 gaagcagatg atcccgagag agaggcctct agcatgggtg acccagccga cctcaggccg 6960

gtttccgcac	tgccacaact	ttgttcaaag	ttgcccccaa	ttggaacctg	ccacttggca	7020
ttagagggtc	tttcatgggg	agagaaggag	actgaattac	tctaagcaaa	atgtgaaaag	7080
	agcctttcat					7140
	ccgtgatttt					7200
	tgtttgcatt					7260
					caagtttgga	7320
					ttttttatta	7380
					atatttattg	7440
					acaatgttga	7500
					tgttctggtt	7560
	aaaataaatt					7603
-						

<210> 87

<211> 1832

<212> DNA

<213> Homo sapiens

<400> aggagaggaa gagagacctg ccctgtagcg tgactcctct agaaaaaaaa aaaaaaagcc 60 ggagtatttt actaagcccc taaaatgtcg agatttgtac aagatcttag caaagcaatg 120 teteaagatg gtgettetea gtteeaagaa gteattegge aagagetaga attatetgtg 180 aagaaggaac tagaaaaaat actcaccaca gcatcatcac atgaatttga gcacaccaaa 240 aaagacctgg atggatttcg gaagctattt catagatttt tgcaagaaaa ggggccttct 300 gtggattggg gaaaaatcca gagaccccct gaagattcga ttcaacccta tgaaaagata 360 aaggccaggg gcctgcctga taatatatct tccgtgttga acaaactagt ggtggtgaaa 420 ctcaatggtg gtttgggaac cagcatgggc tgcaaaggcc ctaaaagtct gattggtgtg 480 aggaatgaga atacctttct ggatctgact gttcagcaaa ttgaacattt gaacaaaacc 540 tacaatacag atgtccctct tgttttaatg aactctttta acacggatga agataccaaa 600 aaaatactac agaagtacaa tcattgtcgt gtgaaaatct acactttcaa tcaaagcagg 660 tacccgagga ttaataaaga atctttacgg cctgtagcaa aggacgtgtc ttactcaggg 720 gaaaatacag aagcttggta ccctccaggt catggtgata tttacgccag tttctacaac 780 tctggattgc ttgatacctt tataggagaa ggcaaagagt atatttttgt gtctaacata 840 gataatctgg gtgccacagt ggatctgtat attcttaatc atctaatcaa cccacccaat 900 ggaaaacgct gtgaatttgt catggaagtc acaaataaaa cacgtgcaga tgtaaagggc 960

gggacactca	ctcaatatga	aggcaaactg	agactggtgg	aaattgctca	agtgccaaaa	1020
gcacatgttg	acgagttcaa	gtctgtatca	aagttcaaaa	tatttaatac	aaacaaccta	1080
tggatttctc	ttgcagcagt	taaaagactg	caggagcaaa	atgccattga	catggaaatc	1140
attgtgaatg	caaagacttt	ggatggaggc	ctgaatgtca	ttcaattaga	aactgcagta	1200
ggggctgcca	tcaaaagctt	tgagaattct	ctaggtatta	atgtgccaag	gagccgtttt	1260
ctgcctgtca	aaaccacatc	agatctcttg	ctggtgatgt	caaacctcta	tagtcttaat	1320
gcaggatctc	tgacaatgag	tgaaaagcgg	gaatttccta	cagtgccctt	ggttaaatta	1380
ggcagttctt	ttacgaaggt	tcaagattat	ctaagaagat	ttgaaagtat	accagatatg	1440
cttgaattgg	atcacctcac	agtttcagga	gatgtgacat	ttggaaaaaa	tgtttcatta	1500
aagggaacgg	ttatcatcat	tgcaaatcat	ggtgacagaa	ttgatatccc	acctggagca	1560
gtattagaga	acaagatagt	gtctggaaac	cttcgcatct	tggaccactg	aaatgaaaaa	1620
tactgtggac	acttaaataa	tgggctagtt	tcttacaatg	aaatgttctc	taggatttag	1680
gcactaaaag	gtactttact	atgttactgt	accctgcagt	gttgatttt	aaaatagagt	1740
tttctgcagt	atgcttttag	tctaagaaaa	gcacagatgg	tgcaatactt	tccttctttg	1800
aagagatccc	: aaagttagtt	actcttaagt	gc			1832

<210> 88

<211> 2683

<212> DNA

<213> Homo sapiens

<400> 88 ctagggacaa atgggtccag ggtggccctt tgattgtggt cccgggtgcg gattggcagg 60 gecteegeeg eggetegtgg ttgteeegee atggeaetgt egeggggget geceegggag 120 180 gageteetea agaatetegt geteaceggt tteteecaca tegaeetgat tgatetggat 240 actattgatg taagcaacct caacagacag tttttgtttc aaaagaaaca tgttggaaga 300 tcaaaggcac aggttgccaa ggaaagtgta ctgcagtttt acccgaaagc taatatcgtt 360 gcctaccatg acagcatcat gaaccctgac tataatgtgg aatttttccg acagtttata 420 ctggttatga atgctttaga taacagagct gcccgaaacc atgttaatag aatgtgcctg 480 gcagctgatg ttcctcttat tgaaagtgga acagctgggt atcttggaca agtaactact 540 atcaaaaagg gtgtgaccga gtgttatgag tgtcatccta agccgaccca gagaaccttt 600 cctggctgta caattcgtaa cacaccttca gaacctatac attgcatcgt ttgggcaaag 660 tacttgttca accagttgtt tggggaagaa gatgctgatc aagaagtatc tcctgacaga 720

gctgaccctg aagctgcctg ggaaccaacg gaagccgaag ccagagctag agcatgtaat	780
gaagatggtg acattaaacg tatttctact aaggaatggg ctaaatcaac tggatatgat	840
ccagttaaac tttttaccaa gctttttaaa gatgacatca ggtatctgtt gacaatggac	900
aaactatggc ggaaaaggaa acctccagtt ccgttggact gggctgaagt acaaagtcaa	960
ggagaagaaa cgaatgcatc agatcaacag aatgaacccc agttaggccg gaaagaccag	1020
caggttctag atgtaaagag ctatgcacgt ctttttcaa agagcatcga gactttgaga	1080
gttcatttag cagaaaaggg ggatggagct gagctcatat gggataagga tgacccatct	1140
gcaatggatt ttgtcacctc tgctgcaaac ctcaggatgc atattttcag tatgaatatg	1200
aagagtagat ttgatatcaa atcaatggca gggaacatta ttcctgctat tgctactact	1260
aatgcagtaa ttgctgggtt gatagtattg gaaggattga agattttatc aggaaaaata	1320
gaccagtgca gaacaatttt tttgaataaa caaccaaacc caagaaagaa gcttcttgtg	1380
ccttgtgcac tggatcctcc caaccccaat tgttatgtat gtgccagcaa gccagaggtg	1440
	1500
actgtgcggc tgaatgtcca taaagtgact gttctcacct tacaagacaa gatagtgaaa	1560
gaaaaatttg ctatggtagc accagatgtc caaattgaag atgggaaagg aacaatccta	1620
atatetteeg aagagggaga gaeggaaget aataateaca agaagttgte agaatttgga	1680
attagaaatg gcagccggct tcaagcagat gacttcctcc aggactatac tttattgatc	
aacatccttc atagtgaaga cctaggaaag gacgttgaat ttgaagttgt tggtgatgcc	1740
ccggaaaaag tggggcccaa acaagctgaa gatgctgcca aaagcataac caatggcagt	1800
gatgatggag ctcagccctc cacctccaca gctcaagagc aagatgacgt tctcatagtt	1860
gatteggatg aagaagatte tteaaataat geegaegtea gtgaagaaga gagaageege	1920
aagaggaaat tagatgagaa agagaatctc agtgcaaaga ggtcacgtat agaacagaag	1980
gaagagettg atgatgteat ageattagat tgaacagaaa tgeetetaaa cagaaeeete	2040
ttactattta gtttatctgg gcagaaccag attgttatgt cctttgttcc aaagggaaaa	2100
aattgacagc agtgacttga aaatgattet geteeetttg aaageattea ttttgetaga	2160
actgttagac acattgcagt atgctgtatt gaaagtagga atatagtttt aaaaaccctt	2220
tgaacaaagt gtgtgcataa ccagtcatga gataaaacaa cacaatgcat gttgcctttt	2280
taatgtaaat acccttaggt ätcattaata gtttcaaaat attgtggttt agtaaagttg	2340
atacctggtt ataaatatta tgcctttatt tttggctaga agaagaatta tttttagccc	2400
tagatoctaa coattttoat actottaact gattgaaaca gattoaaaga agtatogagt	2460
gctatgcatt gaaacttgtt tttaaatgtt agatggcact atgtatatta atgtaaaaca	2520
atgttaattt actcaagttt tcagtttgta ccgcctggta tgtctgtgta agaagccaat	2580
atgitaatti acteaagiii ilageeegea eegeeeggea egeeeggea egeeegge	

ttttgtgtat	tgttacagtt	tcaggttatt	tatattcgat	gttttgtaaa	actcaaataa	2640
cgactatact	tatggaccaa	ataaatggca	tctgcattct	tgt		2683
<210> 89 <211> 356 <212> DNA <213> Hom	o sapiens					
<400> 89 ctttctctct	cgcgcgcggt	gtggtggcag	caggcgcagc	ccagcctcga	aatgcagaac	60
gacgccggcg	agttcgtgga	cctgtacgtg	ccgcggaaat	gctccgctag	caatcgcatc	120
ateggtgeca	aggaccacgc	atccatccag	atgaacgtgg	ccgaggttga	caaggtcaca	180
ggcaggttta	atggccagtt	taaaacttat	gctatctgcg	gggccattcg	taggatgggt	240
gagtcagatg	attccattct	ccgattggcc	: aaggccgatg	gcatcgtctc	aaagaacttt	300
tgactggaga	gaatcacaga	tgtggaatat	: ttgtcataaa	ı taaataatga	aaacct	356
<400> 90 agaaggagaa	a ggtcgggttg	g tagaagctg	g ggtggccgg	c agctcgctca	a teggtgtteg	60
tgggctttg	t cggtccgtg	c ctcgtctct	c cctggaaag	g gagggaggc	t tcgacgtcga	120
gagggagcc	g ctgccgcgt	t agttccgag	c ttgaagtca	c taggacttc	t ctcaaacttg	180
tgtgctgag	g agactcaga	t gttggcctc	a gctcctagg	c tgaactcag	c agatcggccc	240
atgaaaact	t ctgtattga	g acaaaggaa	g ggatctgtc	a gaaagcaac	a cttgttatct	300
tgggcttgg	c agcaaggaa	g aggacaggt	a gtggagatc	c tgcaatctg	a aaagcagact	360
gaaaggtga	c aaagaagct	g aagatgggt	g gtggagaga	g gtataacat	t ccagcccctc	420
aatctagaa	a tgttagtaa	g aaccaacaa	ıc agcttaaca	g acagaagac	c aaggaacaga	480
attcccaga	t gaagattgt	t cataagaaa	a aagaaagag	g acatggtta	t aactcatcag	540
cagetgeet	g gcaggccat	g caaaatggg	gg ggaagaaca	a aaattttcc	a aataatcaaa	600
gttggaatt	c tagcttato	a ggtcccagg	gt tacttttt	a atctcaago	t aatcagaact	660
					a ccaccaagcc	720
					t caacttaaaa	780
ccttactta	aa agtacaggi	ta taaaataa	ga caaatgtt	ta aatttagti	a tgttcacgga	840
tagttgtc	aa ttggtctga	aa acaaattc	gc tagggaat	ct atttgtgt:	ag aactaattaa	900

PCT/US03/13015 WO 03/090694

•						
tgtaaaaaaa	acagaccatc	tcgtgttgtg	tgcactgtga	tataatggta	gtatcagtgc	960
aactttaatg	attgtacttg	atattaagtg	ttctcaactg	agtaactttt	aagtggaaac	1020
caagtttaga	tttggggagt	ggtaaaggaa	tcagcttttt	ctattgttag	gggaagacag	1080
		agtagattgt				1140
		aattaggtaa				1200
		cctgatgcac				1260
		tacagtgggt				1320
					tctgtcaaca	1380
					agctttcaaa	1440
					cctcatcatt	1500
					: taggggagaa	1560
					: tggcctttat	1620
					gactgttttt	1680
					gcccttgtgc	1740
					tcaaagtaaa	1800
					a tttttaagag	1860
					g attaactaga	1920
					a tacaggtagt	1980
					g tgcaacccaa	2040
					a tgttttgcca	2100
					g cttaaaaatt	2160
					c aggtaagcag	2220
					g ttaaatattg	2280
					t gaagcataaa	2340
		c attaaaaaa			5 -	2382
attaaataa	a attettecc	c accaaaaa	u adduddddad			

<210> 91 <211> 1362 <212> DNA <213> Homo sapiens

cctgtttggg acactggact cccgtgagct ggaaggaaca gatttaatat ctaggggctg 60 ggtatcccca catcactcat ttggggggtc aagggacccg ggcaatatag tattctgctc 120

•						
agtgtctgga	gatcatctac	ccaggctggg	gcttctggga	caggcgagga	cccacggacc	180
ctggaagagc	tggtccaggg	gactgaactc	ccggcatctt	tacagagcag	agcatgatca	240
cattcctgcc	gctgctgctg	gggctcagcc	tgggctgcac	aggagcaggt	ggcttcgtgg	300
cccatgtgga	aagcacctgt	ctgttggatg	atgctgggac	tccaaaggat	ttcacatact	360
gcatctcctt	caacaaggat	ctgctgacct	gctgggatcc	agaggagaat	aagatggccc	420
cttgcgaatt	tggggtgctg	aatagcttgg	cgaatgtcct	ctcacagcac	ctcaaccaaa	480
aagacaccct	gatgcagcgc	ttgcgcaatg	ggcttcagaa	ttgtgccaca	cacacccagc	540
	atcactgacc					600
ctccttttaa	cacgagggag	cctgtgatgc	tggcctgcta	tgtgtggggc	ttctatccag	660
cagaagtgac	tatcacgtgg	aggaagaacg	ggaagcttgt	catgcctcac	agcagtgcgc	720
acaagactgo	: ccagcccaat	ggagactgga	cataccagac	cctctcccat	ttagccttaa	780
cccctctta	cggggacact	tacacctgtg	tggtagagca	cattggggct	cctgagccca	840
tectteggga	ctggacacct	gggctgtccc	: ccatgcagac	cctgaaggtt	: tetgtgtetg	900
cagtgactct	gggcctgggc	ctcatcatct	: tatatattgg	tgtgatcago	: tggcggagag	960
ctggccacto	tagttacact	cetetteete	ggtccaatta	ttcagaagga	tggcacattt	1020
cctagaggca	a gaatcctaca	acttccacto	caagtgagaa	ggagattcaa	a actcaatgat	1080
gctaccatgo	c ctctccaaca	tcttcaacco	c cctgacatta	tcttggatco	tatggtttct	1140
ccatccaati	t ctttgaatt	cccagtctcc	c cctatgtaaa	a acttagcaa	c ttgggggacc	1200
tcattcctg	g gactatgct	g taaccaaati	t attgtccaag	g gctatattt	c tgggatgaat	1260
ataatctga	g gaagggagt	t aaagaccct	c ctggggctct	cagtgtgcc	a tagaggacag	1320
caactggtg	a ttgtttcag	a gaaataaac	t ttggtggaa	a aa		1362

<210> 92

<211> 470

<212> DNA

<213> Homo sapiens

caaaaggctg ggggtattta tataagaact tattccaaag tgactctaag atccatgttc	420
ccaagatcta gtacgggcta ttcatggttc tgaggcatgt ccagcatgca	470
<210> 93 <211> 2224 . <212> DNA <213> Homo sapiens	
<400> 93 ccagttacag accttttggg gttcaggatg ctatagattg acaccctcct gcctgttttt	60
ctctgcaccc caacctggcc aaggcccctc ctgtggggtg cccatctgtg cctttattcc	120
ggctgtgccc tcgactttcc agcttcccat gtttctttgg ttaggtttct ctcccttcct	180
tottteteet tecceaatee geetgttteg teagggeeca gtttgtttee teatacaeet	240
tcctcactac cccaccccac atggttgact ctttccctca gctccaccag ctcttcatca	300
tgccactcat ttcagaactt gagcaaaaca gggcagtcag gatctgatgt ctttctggtc	360
tecetaagaa aactaagete ttgagggaca geeettggea atgettteet atetgetgat	420
catggtgacc ttccttagga cttccagagt tcagttcctt ctggcagaga ggttttcttt	480
ctccatgcca tatggatgtg actcaaatga ggggtcccac agcttttcct ggctaccact	540
tgctgtgacc ttatacatgt tggggtttgc tcttaaagag gagagcagga agaaaggttg	600
gtttcagaaa ccaagagggt cggcagtgga cgcgtacatt ttgtcacgga gtccacagag	660
ctgagctttt gagcagactc tgagaagtat cattgcttgt gttgaaagaa tacaacagga	720
tttaagtttc tctttagaaa ttgcactgaa gaaaggccgg gcgcggtggc tccccctgta	780
atcccagcgc tttgggaggc cgaggcgggg ggatcacgag gtcaagagat cgagaccatc	840
ctggccaaca tggtgaaacc ccgtctctaa taaaaataca aaaattagcc gggcatggtg	900
acgtgcacct gtagtcccag ctactagata ggctgaggca ggagaattgc ttgaatccgg	960
gaggcggagg ttgcagtgag ccgagatcgt gccactgaac tccaacctgc caatagagcg	1020
agactccgtc tcaaaaaaaa aaaaaaaaaa gaaagaaata gcattgaaga aaataccgca	1080
catcagagga aagcttattt tctgcatggt gtcttttcaa agatagaata tttgaagcat	1140
gttttctagc gattgtgtgg atgagggtga gctggctgag gcatcgctca agctgggggg	1200
tggtgtgtaa gaagcacgtg gagccacaag aggcacctcc tatagtcagc taagggcttc	1260
cctttctgcg cccagctttt gggtgaaggg tgatttctat tagacacatc tgtgcttcag	1320
tcatagatgt taatagagga agcagttttc ctgctgcaga ttcctgaata gagttgctga	1380
aagagtotac ttotggaoto aggggaagtt gaaggooagt otgtgtagaa aggotgaggo	1440
aacggggaaa gacctgacag ctagttacat acgctctgac atagtgctcc catgatggct	1500

tccagtgaca	catgtgctga	tagaattcta	aacctctgga	atttccctgc	tggcgacttc	1560
tatggccgtt	gactgtacag	ggtaacctga	tgccagatgc	tatgggcgtg	atgagaacta	1620
gagcattgca	gcatggagga	aactgtgagg	caccagatcc	tgtgcttctg	caggccattt	1680
tctgaaaacc	cctgttagga	aggttggatt	tggcgtgact	tgcttgagca	agagtcctgg	1740
ggagagattt	tgaggtttaa	tttaacggta	tatccagagc	taacagtgac	tcaactcgtc	1800
tagttctgca	agtcagatgt	acacttagag	tctctctgtg	aagggtttgg	gtctgagctg	1860
tatagtatgt	caaactgcca	gtaagccagc	ccctcaccct	ctgatagata	ttcctttaat	1920
gcaccagact	tcgtgtttga	taaatgatta	atggttgaaa	ttgtttctct	tcttttgtgt	1980
tttcccagtt	aatagatggt	cactgtttcc	acaatgtttt	atactttcag	ctttttgtaa	2040
cttaactata	attacttaat	tttattttt	taaagcttgt	tgtggtctaa	tgagaagtat	2100
ttttcagtgc	ataatgtttt	tctgagcttc	tgtaaatgcc	atcccaatgt	ggtttggttt	2160
tgttgaacag	aaaccaaaat	aaatttcaaa	atgttaaagc	aaaaaaaaa	aaaaaaaaa	2220
aaaa						2224

<210> 94

<211> 1964

<212> DNA

<213> Homo sapiens

<400> 94

cccgcccacg gtggcgggga aatacctagg catggaagtg gcatgacagg gctcgtgtcc ctgtcatatt ttccactctc cacgaggtcc tgcgcgcttc aatcctgcag gcagcccggt 120 180 ttggggatgt ggtccttgct gctctgcggg ttgtccatcg cccttccact gtctgtcaca gcagatggat gcaaggacat ttttatgaaa aatgagatac tttcagcaag ccagcctttt 240 300 gcttttaatt gtacattccc tcccataaca tctggggaag tcagtgtaac atggtataaa 360 aattctagca aaatcccagt gtccaaaatc atacagtcta gaattcacca ggacgagact 420 tggattttgt ttctccccat ggaatggggg gactcaggag tctaccaatg tgttataaag 480 ggtagagaca gctgtcatag aatacatgta aacctaactg tttttgaaaa acattggtgt 540 gacacttcca taggtggttt accaaattta tcagatgagt acaagcaaat attacatctt 600 ggaaaagatg atagteteac atgteatetg cactteeega agagttgtgt tttgggteea 660 ataaagtgqt ataaggactg taacgagatt aaaggggagc ggttcactgt tttggaaacc 720 aggettttgg tgageaatgt eteggeagag gaeagaggga actaegegtg teaageeata ctgacacact cagggaagca gtacgaggtt ttaaatggca tcactgtgag cattacagaa 780 agagctggat atggaggaag tgtccctaaa atcatttatc caaaaaatca ttcaattgaa 840

•						
gtacagcttg	gtaccactct	gattgtggac	tgcaatgtaa	cagacaccaa	ggataataca	900
aatctacgat	gctggagagt	caataacact	ttggtggatg	attactatga	tgaatccaaa	960
cgaatcagag	aaggggtgga	aacccatgtc	tcttttcggg	aacataattt	gtacacagta	1020
aacatcacct	tcttggaagt	gaaaatggaa	gattatggcc	ttcctttcat	gtgccacgct	1080
ggagtgtcca	cagcatacat	tatattacag	ctcccagctc	cggattttcg	agcttacttg	1140
ataggagggc	ttatcgcctt	ggtggctgtg	gctgtgtctg	ttgtgtacat	atacaacatt	1200
tttaagatcg	acattgttct	ttggtatcga	agtgccttcc	attctacaga	gaccatagta	1260
gatgggaagc	tgtatgacgc	ctatgtctta	taccccaagc	cccacaagga	aagccagagg	1320
catgccgtgg	atgccctggt	gttgaatatc	ctgcccgagg	tgttggagag	acaatgtgga	1380
tataagttgt	ttatattcgg	cagagatgaa	ttccctggac	aagccgtggc	caatgtcatc	1440
gatgaaaacg	ttaagctgtg	caggaggctg	attgtcattg	tggtccccga	atcgctgggc	1500
tttggcctgt	tgaagaacct	gtcagaagaa	caaatcgcgg	tctacagtgc	cctgatccag	1560
gacgggatga	aggttattct	cattgagctg	gagaaaatcg	aggactacac	agtcatgcca	1620
gagtcaatto	agtacatcaa	acagaagcat	ggtgccatco	ggtggcatgg	ggacttcacg	1680
gagcagtcac	: agtgtatgaa	gaccaagttt	tggaagacag	tgagatacca	catgeegeee	1740
agaaggtgto	ggccgtttcc	: tccggtccag	ctgctgcagc	acacacctto	g ctaccgcacc	1800
gcaggcccag	g aactaggcto	aagaagaaag	g aagtgtacto	tcacgactg	g ctaagacttg	1860
ctggactgac	acctatggct	ggaagatgac	ttgttttgct	ccatgtctcc	c tcattcctac	1920
acctatttt	c tgctgcagga	a tgaggctagg	g gttagcatto	taga		1964

<210> 95

<211> 1222

<212> DNA

<213> Homo sapiens

cagatttgta actcaataga aagacagcag tgataataac tcacacatga gcagctcgca 60 aatttcaaag tctttggtct tcaagtccta tgtcacagct tcctcagtct gattccctcc 120 ttctctgtag aattccgaga actagtttgg ttcacttaat catctcaatg gagatggccc 180 tttcctgcca ttcactcaaa tctagaactc ccaatatgtg gctcacaaat acttcagtca 240 tctacaaaag catctggaaa ttagataatt ttagccagag tcagggacat aaaacttctt 300 taaagggatg cagtcaatcc tggtattcac cacaaagaag atcctcatgt ataaaaatgt 360 ggaatctgtg ctgcttttaa taatagaacc tttaaggttc aaagaaaaaa aaaatgcttt 420 cctgaactac atcatttcca gacacatcag ccacacaagg agctgacaag acctgctgtt 480

tctattatag	agaacgtgag	actttaaaac	cacatcaaaa	gaaaatggtg	ggagcttttc	540
tgctatgcag	agaattccgc	atagcactcc	tttgcccaga	ctgggagaca	aacatacccc	600
tccctcctga	actggatccc	caccaccttt	ccaaaggcca	ctggacatgt	ctcttaaacg	660
ctgcatttca	gctcttgatc	attctgccct	ggggatccct	tctctttagg	ttctttgtta	720
tggtctgggg	aaacactctg	actttctatg	gtgttgagag	cttctcagac	tatccacctt	780
tgggtcgctt	tgctgttcgt	gatatgagac	agacagttgc	ggtgggtgtc	atcaaagcag	840
tggacaagaa	ggctgctgga	gctggcaagg	tcaccaagtc	tgcccagaaa	gctcagaagg	900
ctaaatgaat	attatcccta	atacctgcca	cccactctt	aatcagtggt	ggaagaacgg	960
tctcagaact	gtttgtttca	attggccatt	taagtttagt	agtaaaagac	tggttaatga	1020
taacaatgca	tcgtaaaacc	ttcagaagga	aaggagaatg	ttttgtggac	cactttggtt	1080
ttcttttttg	cgtgtggcag	ttttaagtta	ttagttttta	aaatcagtac	tttttaatgg	1140
aaacaacttg	accaaaaatt	tgtcacagaa	ttttgagacc	cattaaaaaa	gttaaatgag	1200
aaaaaaaaaa	aaaaaaaaaa	aa				1222

<210> 96

<211> 4632

<212> DNA

213> Homo sapiens

<400> 96 gagecgteae caeagtaggt ceeteggete agteggeeea geeeetetea gteeteeeea 60 accccacaa ccgcccgcgg ctctgagacg cggccccggc ggcggcggca gcagctgcag 120 catcatctcc accctccagc catggaagac ctggaccagt ctcctctggt ctcgtcctcg 180 gacagcccac cccggccgca gcccgcgttc aagtaccagt tcgtgaggga gcccgaggac 240 300 gaggaggaag aagaggagga ggaagaggag gacgaggacg aagacctgga ggagctggag 360 gtgctggaga ggaagcccgc cgccgggctg tccgcggccc cagtgcccac cgccctgcc gccggcgcgc ccctgatgga cttcggaaat gacttcgtgc cgccggcgcc ccggggaccc 420 ctgccggccg ctcccccgt cgccccggag cggcagccgt cttgggaccc gagcccggtg 480 togtogacog tgcccgcgcc atccccgctg totgctgccg cagtotogcc ctccaagctc 540 cctgaggacg acgagectec ggeceggeet eccetteete ecceggecag egtgageeee 600 660 caggcagagc ccgtgtggac cccgccagcc ccggctcccg ccgcgccccc ctccaccccg 720 gccgcgccca agcgcagggg ctcctcgggc tcagtggatg agaccctttt tgctcttcct 780 gctgcatctg agcctgtgat acgctcctct gcagaaaata tggacttgaa ggagcagcca ggtaacacta tttcggctgg tcaagaggat ttcccatctg tcctgcttga aactgctgct 840

tetetteett etetgtetee teteteagee gettetttea aagaacatga atacettggt	900
aatttgtcaa cagtattacc cactgaagga acacttcaag aaaatgtcag tgaagcttct	960
aaagaggtet cagagaagge aaaaaeteta eteatagata gagatttaae agagttttea	1020
gaattagaat actcagaaat gggatcatcg ttcagtgtct ctccaaaagc agaatctgcc	1080
gtaatagtag caaatcctag ggaagaaata atcgtgaaaa ataaagatga agaagagaag	1140
ttagttagta ataacatcct tcataatcaa caagagttac ctacagctct tactaaattg	1200
gttaaagagg atgaagttgt gtcttcagaa aaagcaaaag acagttttaa tgaaaagaga	1260
gttgcagtgg aagctcctat gagggaggaa tatgcagact tcaaaccatt tgagcgagta	1320
tgggaagtga aagatagtaa ggaagatagt gatatgttgg ctgctggagg taaaatcgag	1380
agcaacttgg aaagtaaagt ggataaaaaa tgttttgcag atagccttga gcaaactaat	1440
cacgaaaaag atagtgagag tagtaatgat gatacttett teeccagtae gecagaaggt	1500
ataaaggatc gttcaggagc atatatcaca tgtgctccct ttaacccagc agcaactgag	1560
agcattgcaa caaacatttt tcctttgtta ggagatccta cttcagaaaa taagaccgat	1620
gaaaaaaaaa tagaagaaaa gaaggcccaa atagtaacag agaagaatac tagcaccaaa	1680
acatcaaacc cttttcttgt agcagcacag gattctgaga cagattatgt cacaacagat	1740
aatttaacaa aggtgactga ggaagtcgtg gcaaacatgc ctgaaggcct gactccagat	1800
ttagtacagg aagcatgtga aagtgaattg aatgaagtta ctggtacaaa gattgcttat	1860
gaaacaaaaa tggacttggt tcaaacatca gaagttatgc aagagtcact ctatcctgca	1920
gcacagettt geccateatt tgaagagtea gaagetaete etteaceagt tttgeetgae	1980
attgttatgg aagcaccatt gaattctgca gttcctagtg ctggtgcttc cgtgatacag	2040
cccagctcat caccattaga agcttcttca gttaattatg aaagcataaa acatgagcct	2100
gaaaaccccc caccatatga agaggccatg agtgtatcac taaaaaaagt atcaggaata	2160
aaggaagaaa ttaaagagcc tgaaaatatt aatgcagctc ttcaagaaac agaagctcct	2220
tatatateta tigeatgiga titaattaaa gaaacaaage titetgeiga accageiceg	2280
gatttctctg attattcaga aatggcaaaa gttgaacagc cagtgcctga tcattctgag	2340
ctagttgaag attcctcacc tgattctgaa ccagttgact tatttagtga tgattcaata	2400
cctgacgttc cacaaaaaca agatgaaact gtgatgcttg tgaaagaaag tctcactgag	2460
acttcatttg agtcaatgat agaatatgaa aataaggaaa aactcagtgc tttgccacct	2520
gagggaggaa agccatattt ggaatctttt aagctcagtt tagataacac aaaagatacc	2580
ctgttacctg atgaagtttc aacattgagc aaaaaggaga aaattccttt gcagatggag	2640
gagctcagta ctgcagttta ttcaaatgat gacttattta tttctaagga agcacagata	2700

agagaaactg	aaacgttttc	agattcatct	ccaattgaaa	ttatagatga	gttccctaca	2760
ttgatcagtt	ctaaaactga	ttcattttct	aaattagcca	gggaatatac	tgacctagaa	2820
gtatcccaca	aaagtgaaat	tgctaatgcc	ccggatggag	ctgggtcatt	gccttgcaca	2880
gaattgcccc	atgacctttc	tttgaagaac	atacaaccca	aagttgaaga	gaaaatcagt	2940
ttctcagatg	acttttctaa	aaatgggtct	gctacatcaa	aggtgctctt	attgcctcca	3000
gatgtttctg	ctttggccac	tcaagcagag	atagagagca	tagttaaacc	caaagttctt	3060
gtgaaagaag	ctgagaaaaa	acttccttcc	gatacagaaa	aagaggacag	atcaccatct	3120
gctatatttt	cagcagagct	gagtaaaact	tcagttgttg	acctcctgta	ctggagagac	3180
attaagaaga	ctggagtggt	gtttggtgcc	agcctattcc	tgctgctttc	attgacagta	3240
ttcagcattg	tgagcgtaac	agcctacatt	gccttggccc	tgctctctgt	gaccatcagc	3300
tttaggatat	acaagggtgt	gatccaagct	atccagaaat	cagatgaagg	ccacccattc	3360
agggcatatc	tggaatctga	agttgctata	tctgaggagt	tggttcagaa	gtacagtaat	3420
tctgctcttg	gtcatgtgaa	ctgcacgata	aaggaactca	ggcgcctctt	cttagttgat	3480
gatttagttg	attctctgaa	gtttgcagtg	ttgatgtggg	tatttaccta	tgttggtgcc	3540
ttgtttaatg	gtctgacact	actgattttg	gctctcattt	cactcttcag	g tgttcctgtt	3600
atttatgaac	ggcatcaggo	: acagatagat	cattatctag	gacttgcaa	a taagaatgtt	3660
aaagatgcta	ı tggctaaaat	ccaagcaaaa	atccctggat	tgaagcgcaa	a agctgaatga	3720
aaacgcccaa	a aataattagt	aggagttcat	ctttaaaggg	g gatattcati	t tgattatacg	3780
gatctttatt	tttagccate	g cactgttgtg	g aggaaaaatt	acctgtctt	g actgccatgt	3840
gttcatcato	c ttaagtatt	g taagctgcta	a tgtatggati	taaaccgta	a tcatatcttt	3900
ttcctatct	g aggcactgg	t ggaataaaa	a acctgtata	t tttactttg	t tgcagatagt	3960
cttgccgca	t cttggcaag	t tgcagagat	g gtggagcta	g aaaaaaaa	a aaaaaagccc	4020
ttttcagtt	t gtgcactgt	g tatggtccg	t gtagattga	t gcagatttt	c tgaaatgaaa	4080
tgtttgttt	a gacgagatc	a taccggtaa	a gcaggaatg	a caaagcttg	c ttttctggta	4140
tgttctagg	t gtattgtga	c ttttactgt	t atattaatt	g ccaatataa	g taaatataga	4200
ttatatatg	t atagtgttt	c acaaagctt	a gacctttac	c ttccagcca	c cccacagtgc	4260
ttgatattt	c agagtcagt	c attggttat	a catgtgtag	t tccaaagca	c ataagctaga	4320
					c acacacatag	4380
					g tcacagaatc	4440
tatggactg	ga atctaatgo	ct tccaaaaat	g ttgtttgtt	t gcaaatato	ca aacattgtta	4500

PCT/US03/13015 WO 03/090694

tgcaagaaat tattaattac	aaaatgaaga	tttataccat	tgtggtttaa	gctgtactga	4560
actaaatctg tggaatgcat	tgtgaactgt	aaaagcaaag	tatcaataaa	gcttatagac	4620
ttaaaaaaaa aa					4632

<210> 97 1954 <211>

DNA <212>

<213> Homo sapiens

<400> 97

gattcactaa tatgcttggt cagcctggat caactgcact tgatcttttc aagttttatg 60 ttgaggatct taaagcacag ttatcatgac gagaagaaga taataaaaga cattctaaag 120 gataaaggat ttgtagttga agtaaacact acttttgaag attttgtggc gataatcagt 180 tcaactaaaa gatcaactac attagatgct ggaaatatca aattggcttt caatagttta 240 ctagaaaagg cagaagcccc gtgaaccgtg aaagagaaaa agaagaggct ccggaagatg 300 aaaccgaaaa agaatctgca tttaagagta tgttaaaaca agctgctcct ccgatagaat 360 tggatgctgt ctgggaagat atccgtgaga gatttgtaaa agagccagca tttgaggaca 420 taactctaga atctgaaaga aaacgaatat ttaaagattt tatgcatgtg cttgagcatg 480 aatgtcagca tcatcattca aagaacaaga aacattctaa gaaatctaaa aaacatcata 540 ggaaacgttc ccgctctcga tcggggtcag attcagatga tgatgatagc cattcaaaga 600 aaaaaagaca gcgatcagag tctcgttctg cttcagaaca ttcttctagt gcagagtctg 660 agagaagtta taaaaagtca aaaaagcata agaagaaaag taagaagagg agacataaat 720 ctgactctcc agaatccgat gctgagcgag agaaggataa aaaagaaaaa gatcgggaaa 780 gtgaaaaaga cagaactaga caaagatcag aatcaaaaca caaatcgcct aagaaaaaga 840 ctggaaagga ttctggtaat tgggatactt ctggcagcga actgagtgaa ggggaattgg 900 aaaagcgcag aagaaccctt ttggagcaac tggatgatga tcaataaatt ataccaaata 960 tatgtttaca gtatgattta aagtctgatt cagaccaggg actctatttt aagttcaact 1020 gaaataacac tgggttttaa ttatatcaca ggaaaaaaaa agtgcattta agtattgtta 1080 tcgtggactt tataaaagca aaggaaattg aaagtaactt ttgattctgt atcaagaatc 1140 atattttcat acagtcataa ctgtctttct gtgacccttt cacagggcac tgtaggatgg 1200 1260 attaaaggtg gcaatttact gataactgca gatgtctcta ctttgttcta aaatctaagt catgaggtga tttgatttac tttatagaag ctggattttg aagatctaat gaaaaatttt 1320 ttgataatat agtagtacaa aaaaagcacc agcaactgat aaaaattgct tttttgtgcg 1380 ctacccaact ggttaaagcc aatgtgatct tttatggtga aactcctaag aaacaggtgg 1440

WO 03/090694	PCT/US03/13015
tgga aacttggtag acccttaatt atagtggtgc taatgagcac tactg	gtaata 1500

ttttgct taaagccacc attattttt tatcaaacat ctgaatacat tttacaaagg ctattgtgag 1560 1620 attgtaaatt aatttaaata tattgcctta aggccctact aaagaatgtg ccaccagact 1680 ttaagtgata gttgcaatat ccttgtctaa aaaaaaaaa aaaagttgac ttaaacattt 1740 tetttaacag ttgtetttt tttetaaati cagtetttet ettgettttt ttteeetget 1800 attgaggaag tattttgcct tccctactca ctgagaagta ttgacttcgt ggtacacatt 1860 ctaaagcatt totgatttga atatttttgt acatttttat caattattaa accttotott 1920 1954 ctagtgaaaa aaaaaaaaaa aaaaaaaaaa aaaa

<210> 98

<211> 1311

<212> DNA

<213> Homo sapiens

98 <400> ctctaccggc gggatttgat ggcgtgatgt ctcacagaaa gttctccgct cccagacatg 60 ggtccctcgg cttcctgcct cggaagcgca gcagcaggca tcgtgggaag gtgaagagct 120 tecctaagga tgaccegtee aageeggtee aceteacage ettectggga tacaaggetg 180 gcatgactca catcgtgcgg gaagtcgaca ggccgggatc caaggtgaac aagaaggagg 240 tggtggaggc tgtgaccatt gtagagacac cacccatggt ggttgtgggc attgtgggct 300 acgtggaaac ccctcgaggc ctccggacct tcaagactgt ctttgctgag cacatcagtg 360 atgaatgcaa gaggcgtttc tataagaatt ggcataaatc taagaagaag gcctttacca 420 agtactgcaa gaaatggcag gatgaggatg gcaagaagca gctggagaag gacttcagca 480 gcatgaagaa gtactgccaa gtcatccgtg tcattgccca cacccagatg cgcctgcttc 540 ctctgcgcca gaagaaggcc cacctgatgg agatccaggt gaacggaggc actgtggccg 600 agaagctgga ctgggcccgc gagaggcttg agcagcaggt acctgtgaac caagtgtttg 660 ggcaggatga gatgatcgac gtcatcgggg tgaccaaggg caaaggctac aaaggggtca 720 ccagtcgttg gcacaccaag aagctgcccc gcaagaccca ccgaggcctg cgcaaggtgg 780 cctgtattgg ggcatggcat cctgctcgtg tagccttctc tgtggcacgc gctgggcaga 840 aaggctacca tcaccgcact gagatcaaca agaagattta taagattggc cagggctacc 900 ttatcaagga cggcaagctg atcaagaaca atgcctccac tgactatgac ctatctgaca 960 agagcatcaa ccctctgggt ggctttgtcc actatggtga agtgaccaat gactttgtca 1020 tgctgaaagg ctgtgtggtg ggaaccaaga agcgggtgct caccctccgc aagtccttgc 1080

tggtgcagac gaagcggcgg gctctggaga agattgacct taagttcatt gacaccacct	1140
ccaagtttgg ccatggccgc ttccagacca tggaggagaa gaaagcattc atgggaccac	1200
tgaagaaaga ccgaattgca aaggaagaag gagcttaatg ccaggaacag attttgcagt	1260
tggtggggtc tcaataaaag ttattttcca ctgaaaaaaa aaaaaaaaa a	1311
<210> 99 <211> 838 <212> DNA <213> Homo sapiens	
<400> 99 cctctttttc cggctggaac catggagggt gtagaagaga agaagaagga ggttcctgct	60
gtgccagaaa cccttaagaa aaagcgaagg aatttcgcag agctgaagat caagcgcctg	120
agaaagaagt ttgcccaaaa gatgcttcga aaggcaagga ggaagcttat ctatgaaaaa	180
gcaaagcact atcacaagga atataggcag atgtacagaa ctgaaattcg aatggcgagg	240
atggcaagaa aagctggcaa cttctatgta cctgcagaac ccaaattggc gtttgtcatc	300
agaatcagag gtatcaatgg agtgagccca aaggttcgaa aggtgttgca gcttcttcgc	360
cttcgtcaaa tcttcaatgg aacctttgtg aagctcaaca aggcttcgat taacatgctg	420
	480
aggattgtag agccatatat tgcatggggg taccccaatc tgaagtcagt aaatgaacta	540
atctacaagc gtggttatgg caaaatcaat aagaagcgaa ttgctttgac agataacgct	
ttgattgctc gatctcttgg taaatacggc atcatctgca tggaggattt gattcatgag	600
atctatactg ttggaaaacg cttcaaagag gcaaataact tcctgtggcc cttcaaattg	660
tettetecae gaggtggaat gaagaaaaag accaeceatt ttgtagaagg tggagatget	720
ggcaacaggg aggaccagat caacaggctt attagaagaa tgaactaagg tgtctaccat	780
gattattttt ctaagctggt tggttaataa acagtacctg ctctcaaatt gaaaaaaa	838
<210> 100 <211> 6502 <212> DNA <213> Homo sapiens	
<400> 100 atgtgcccag tagattttca tgggatcttc cagttagatg aaagacggag agatgcagtg	60
attgcattgg gcatttttct gattgaatct gatcttcagc acaaagattg tgtggttcct	120
taccttcttc gacttctcaa aggtcttcca aaagtgtatt gggtagaaga aagcacagct	180
cggaaaggca gaggtgccct cccggttgca gagagcttca gcttctgctt ggtaactctg	240
ctgtctgatg tggcctatag ggatccttca cttagggatg agattttaga ggtgcttttg	300
caggttttgc atgtcctctt ggggatgtgc caggccttgg agattcaaga caaagaatac	360

ctttgcaagt	atgctatccc	atgcctgata	ggaatctcgc	gagcatttgg	gcgttacagc	420
aacatggaag	agtctctcct	ctcaaagctc	tttcccaaaa	tccctcctca	ttccctccgt	480
gtcctggaag	agcttgaagg	tgttcgaagg	cgttccttta	atgacttccg	ctccatcctc	540
cccagcaatc	tgctgactgt	ctgtcaggag	ggtaccctga	agaggaaaac	cagcagtgtg	600
tccagcatct	ctcaggtcag	ccctgaacgc	ggcatgcccc	ctcccagttc	ccctggagga	660
tetgeettte	actactttga	agcctcctgt	ttgcccgatg	ggactgccct	agagcctgag	720
tactactttt	caaccatcag	ctccagcttc	tcagtctctc	cccttttcaa	cggtgtcaca	780
tataaggagt	ttaacattcc	attggaaatg	cttcgggaac	tcttaaacct	ggtgaagaag	840.
atcgttgagg	aggctgttct	caaatctttg	gatgccattg	tagccagtgt	gatggaggcc	900
aaccccagtg	ctgatcttta	ctacacttcc	ttcagtgacc	ctctctacct	gaccatgttc	960
aagatgctgc	gtgacactct	gtactacatg	aaggacctcc	cgacctcttt	tgtgaaggag	1020
atccatgatt	ttgtgctgga	gcagttcaac	acgagccagg	gggagctcca	gaagattcta	1080
catgacgcag	accggatcca	caatgagctg	agccccctca	aactgcgctg	tcaggcgagt	1140
gctgcctgtg	tggacctcat	ggtgtgggct	gtgaaggacg	agcagggtgc	agaaaacctt	1200
tgcatcaagc	tatctgagaa	gctgcagtcc	aagacgtcca	gcaaagtcat	tattgctcac	1260
ttgcccctgc	tgatctgctg	tctgcagggt	ttgggccgcc	tgtgcgagag	gttcccggtg	1320
gtggtgcact	ctgtgacacc	gtccttgcga	gacttcctgg	tcatcccgtc	cccagttctg	.1380
gtgaagctct	acaagtacca	cagtcagtac	cacacagttg	ctggcaatga	tataaaaatc	1440
agtgtgacca	atgagcattc	cgagtcaacc	ctgaacgtca	tgtcgggtaa	gaagagccag	1500
ccctccatgt	acgagcagct	ccgagacatc	gctattgaca	acatctgcag	gtgcctgaag	1560
gctggattga	cggtggaccc	agtgattgtg	gaggcgttct	tggccagcct	gtccaaccgg	1620
ctctacatct	ctcaggagag	cgacaaggac	gctcacttga	ttcccgacca	cacaatccga	1680
gccttgggac	acattgcggt	ggccttgagg	gacaccccga	aggtcatgga	gcccattctg	1740
cagatcctac	agcagaaatt	ttgccagcca	ccctccccc	tcgatgtgct	gattattgac	1800
cagctgggct	gcctggttat	caccggaaat	caatacatct	atcaggaagt	gtggaacctc	1860
ttccagcaga	tcagtgtgaa	ggccagctcc	gttgtatact	cagccaccaa	agattacaag	1920
gaccacggct	ataggcattg	ctccctggca	gtgattaatg	ccctggccaa	catcgcggcc	1980
aacatccaag	acgagcacct	ggtggatgag	ctgctcatga	acctgttgga	gttgtttgtg	2040
cagctggggc	tggagggaa	gcgagccagc	gagagggcaa	gcgagaaggg	ccctgcccta	2100
aaggcttcta	gcagtgcagg	gaacttggga	gtactcattc	ctgtaatagc	tgtgctcacc	2160

cgacgactgc cacccatcaa agaagctaag cctcggttac agaagctctt ccgagacttc	2220
tggctgtatt ccgttctgat gggattcgct gtggagggct caggactctg gccagaagaa	2280
tggtacgagg gggtctgtga aatagccact aagtccccct tgctcacctt tcccagcaag	2340
gagccactgc ggtccgtcct ccagtataac tcagccatga agaatgacac ggtcaccccc	2400
gctgagctga gtgagctccg cagcactatc atcaacctgc tggacccccc tcccgaggtg	2460
teegeactea teaacaaget ggaettegee atgteeacet aceteetete tgtgtaeegg	2520
ctggagtaca tgagggtact gcgttcaaca gatcctgatc gcttccaggt aatgttctgc	2580
tactttgagg ataaagctat tcagaaagac aaatctggga tgatgcagtg tgtgattgca	2640
gtcgcggaca aagtattcga tgccttcctg aacatgatgg cggataaagc caagaccaag	2700
gagaacgagg aggagctgga gcggcacgct cagttcctgt tggtgaactt caaccacatc	2760
cacaagagga taaggagggt ggcagacaag tatctatctg gtctggtgga taagtttccc	2820
cacttgctct ggagcgggac tgtgctgaag accatgctgg acatcctgca gaccctgtca	2880
ctgtcactga gcgctgatat tcacaaggat cagccttact atgacatccc cgacgccccc	2940
taccggatca cggttcctga cacgtacgaa gcccgtgaga gcattgtgaa ggacttcgct	3000
gcacgctgtg ggatgatcct ccaggaggcc atgaagtggg cacctaccgt caccaagtcc	3060
cacctgcagg aatatctgaa caaacatcag aactgggtat cgggactgtc ccagcacaca	3120
gggctggcca tggccactga gagcatcctt cactttgctg gctacaacaa gcagaacaca	3180
actettgggg caacteaget gagegagege eeggeetgtg tgaagaaaga etacteeaae	3240
ttcatggcat ccctgaatct gcgcaaccgc tacgcgggcg aggtgtatgg aatgattcgg	3300
ttetcaggea ecacaggeca gatgtetgae etgaacaaaa tgatggteca ggatetacat	3360
tcagetttag acegeagtea teetcageae tacaegeagg ecatgtteaa getgaeegea	3420
atgeteatta geagtaaaga ttgtgaeeeg eageteette ateatetgtg etggggteee	3480
ctccggatgt tcaatgagca tggcatggag acggccctgg cctgctggga gtggctgctg	3540
gctggcaagg atggagtgga agtgccgttc atgcgggaga tggcaggggc ctggcacatg	3600
acggtggagc agaaatttgg cctgttttct gctgagataa aggaagcaga ccccctggct	3660
gcctcggaag çaagtcaacc caaaccctgt ccccccgaag tgacccccca ctacatctgg	3720
atcgacttcc tggtgcagcg gtttgagatc gccaagtact gcagctctga ccaagtggag	3780
atottotoca gootgotgoa gogotocatg tocotgaaca toggoggggo caaggggago	3840
atgaaccggc acgtggcggc catcgggccc cgcttcaagc tgctgaccct ggggctgtcc	3900
ctcctgcatg ccgatgtggt tccaaatgca accatccgca atgtgcttcg cgagaagatc	3960
tactccactg cctttgacta cttcagctgt cccccaaagt tccctactca aggagagaag	4020

cggctgcgtg aagacataag catcatgatt aaattttgga ccgccatgtt ctcagataag	4080
aagtacctga ccgccagcca gcttgttccc ccagataatc aggacacccg gagcaacctg	4140
gacataactg teggeteteg geaacaagee acceaagget ggateaacae atacceeetg	4200
tccagcggca tgtccaccat ctccaagaaa tcaggcatgt ctaagaaaac caaccggggc	4260
tcccagctgc acaaatacta catgaagcgc aggacgctgc tgctgtccct gctggccact	4320
gagatcgagc gtctcatcac atggtacaac ccgctgtcag ccccggaact ggaactagac	4380
caggccggag agaacagcgt ggccaactgg agatctaagt acatcagcct gagtgagaag	4440
cagtggaagg acaacgtgaa cctcgcctgg agcatctctc cctacctagc cgtgcagctg	4500
cctgccaggt ttaagaacac agaagccatt gggaacgaag tgacccgtct cgttcggttg	4560
gacccgggag ccgttagtga tgtgcctgaa gcaatcaagt tcctggtcac ctggcacacc	4620
atcgacgccg atgctccaga gctcagccat gtgctgtgct	4680
acaggeetet cetaettete cageatgtae eegeegeace eteteaegge geagtaeggg	4740
gtgaaagtcc tgcggtcctt ccctccggac gccatcctct tctacatccc ccagattgtg	4800
caggecetca ggtacgacaa gatgggetat gtgegggagt atattetgtg ggeagegtet	4860
aaatcccagc ttctggcaca ccagttcatc tggaacatga agactaacat ttatctagat	4920
gaagagggcc accagaaaga ccctgacatc ggcgacctcc tggatcagtt ggtagaggag	.4980
atcacagget cettgteegg eecagegaag gaettttace agegggagtt tgatttettt	5040
aacaagatca ccaacgtgtc ggctatcatc aagccctacc ctaaaggcga cgagagaaag	5100
aaggettgte tgteggeeet gtetgaagtg aaggtgeage egggetgeta eetgeeeage	5160
aaccctgagg ccattgtgct ggacatcgac tacaagtctg ggaccccgat gcagagtgct	5220
gcaaaagccc catatctggc caagttcaag gtgaagcgat gtggagttag tgaacttgaa	5280
aaagaaggtc tgcggtgccg ctcagactcc gaggatgagt gcagcacgca ggaggccgac	5340
ggccagaaga teteetggca ggcagecate tteaaggtgg gagaegaetg eeggcaggae	5400
atgctggccc tgcagatcat cgacctcttc aagaacatct tccagctggt cggcctggac	5460
ctctttgttt ttccctaccg cgtggtggcc actgcccctg ggtgcggggt gatcgagtgc	5520
atccccgact gcacctcccg ggaccagctg ggccgccaga cagacttcgg catgtacgac	5580
tacttcacac gccagtacgg ggatgagtcc accctggcct tccagcaggc ccgctacaac	5640
ttcatccgaa gcatggccgc ctacagcctc ctgctgttcc tgctgcagat caaggacaga	5700
cacaacggca acattatgct ggacaagaag ggccatatca tccacatcga ctttggcttc	5760
atgtttgaaa gctcgccggg cggcaatctc ggctgggaac ccgacatcaa gctgacggat	5820

gagatggtga	tgatcatggg	gggcaagatg	gaggccacac	ccttcaagtg	gttcatggag	5880
atgtgtgtcc	gaggctacct	ggctgtgcgg	ccctacatgg	acgcggtcgt	ctccctggtc	5940
actctcatgt	tggacacggg	cctgccctgt	tttcgcggcc	agacaatcaa	gctcttgaag	6000
cacaggttta	gccccaacat	gactgagcgc	gaggctgcaa	atttcatcat	gaaggtcatc	6060
cagagetget	tcctcagcaa	caggagccgg	acctacgaca	tgatccagta	ctatcagaat	6120
gacatcccct	actgaggagg	ggaccttcga	gggcctctgc	cccatgtgcc	ctcaaagctg	6180
tcccacaatc	atggagccct	gcgacctccc	tgccctgccg	ccacatgcag	tggaggagag	6240
gcctgtggcc	caaagaacct	ggtagcgcct	cctggggcag	cacgtgggtg	gegeageett	6300
ggtaacgcca	tggactgcag	cgacaatcaa	tggatggtgc	tgtctatgca	caggtgtgag	6360
tcctctgttt	gcactggaca	tattccctac	ctgtcttatt	tcataggtac	atgaagtatt	6420
gtgtataaaa	aaagagataa	gatttaacca	acatcaacaa	aataaaaacc	caaaatagta	6480
aaaacccaaa	aaaaaaaaa	aa				6502

۲

<210> 101

<211> 1128

<212> DNA

<213> Homo sapiens

<400> 101 ggcacgaggc ggaggtgcag gtcctggtgc ttgatggtcg aggccatcte ctgggccgcc 60 tggcggccat cgtggctaaa caggtactgc tgggccggaa ggtggtggtc gtacgctgtg 120 aaggcatcaa catttctggc aatttctaca gaaacaagtt gaagtacctg gctttcctcc 180 gcaageggat gaacaccaac cettecegag geceetacca etteegggee eccageegea 240 tettetggeg gacegtgega ggtatgetge cecacaaaac caagegagge caggeegete 300 tggaccgtct caaggtgttt gacggcatcc caccgcccta cgacaagaaa aagcggatgg 360 tggttcctgc tgccctcaag gtcgtgcgtc tgaagcctac aagaaagttt gcctatctgg 420 ggcgcctggc tcacgaggtt ggctggaagt accaggcagt gacagccacc ctggaggaga 480 agaggaaaga gaaagccaag atccactacc ggaagaagaa acagctcatg aggctacgga 540 aacaggccga gaagaacgtg gagaagaaaa ttgacaaata cacagaggtc ctcaagaccc 600 acggactect ggtetgagee caataaagae tgttaattee teatgegttg eetgeeette 660 ctccattgtt gccctggaat gtacgggacc caggggcagc agcagtccag gtgccacagg 720 cagccetggg acataggaag ctgggagcaa ggaaagggte ttagtcactg cetecegaag 780 ttgcttgaaa gcactcggag aattgtgcag gtgtcattta tctatgacca ataggaagag 840 caaccagtta ctatgagtga aagggagcca gaagactgat tggagggccc tatcttgtga 900

gtggggcatc	tgttggactt	tccacctggt	catatactct	gcagctgtta	gaatgtgcaa	960
gcacttgggg	acagcatgag	cttgctgttg	tacacagggt	atttctagaa	gcagaaatag	1020
actgggaaga	tgcacaacca	aggggttaca	ggcatcgccc	atgctcctca	cctgtatttt	1080
gtaatcagaa	ataaattgct	tttaaagaaa	aaaaaaaaa	aaaaaaaa		1128

<210> 102

<211> 3723

<212> DNA

<213> Homo sapiens

102 <400> tttttctttc ctggctgatg atttgtcatt ctagtcactt cctgccttgt gaccacacac 60 ccaggettga caaagetgtt etgeagatea gaaagaaggg gtteetggte atacaceagt 120 actaccaagg acagettttt teetgeaaga tetgttaeet aaageaataa aaaatggeea 180 gaggatcagt gtccgatgag gaaatgatgg agctcagaga agcttttgcc aaagttgata 240 ctgatggcaa tggatacatc agcttcaatg agttgaatga cttgttcaag gctgcttgct 300 tgcctttgcc tgggtataga gtacgagaaa ttacagaaaa cctgatggct acaggtgatc 360 tggaccaaga tggaaggatc agctttgatg agtttatcaa gattttccat ggcctaaaaa 420 gcacagatgt tgccaagacc tttagaaaag caatcaataa gaaggaaggg atttgtgcaa 480 teggtggtae tteagageag tetagegttg geacceaaca etectattea gaggaagaaa 540 agtatgcctt tgtcaactgg ataaacaaag ccctggaaaa tgatcctgat tgtcggcatg 600 660 tcatcccaat gaacccaaac acgaatgatc tctttaatgc tgttggagat ggcattgtcc tttgtaaaat gatcaacctg tcagtgccag acacaattga tgaaagaaca atcaacaaaa 720 agaagctaac ccctttcacc attcaggaaa atctgaactt ggctctgaac tctgcctcag 780 ccatcgggtg ccatgtggtc aacatagggg ctgaggacct gaaggagggg aagccttatc 840 tggtcctggg acttctgtgg caagtcatca agattgggtt gtttgctgac attgaactca 900 gcagaaatga agctctgatt gctcttttga gagaaggtga gagcctggag gatttgatga 960 aactctcccc tgaagagctc ttgctgaggt gggctaatta ccacctggaa aatgcaggct 1020 1080 gcaacaaaat tggcaacttc agtactgaca tcaaggactc aaaagcttat taccacctgc ttgagcaggt ggctccaaaa ggagatgaag aaggtgttcc tgctgttgtt attgacatgt 1140 1200 caggactgcg ggagaaggat gacatccaga gggcagaatg catgctgcag caggcggaga ggctgggctg ccggcagttt gtcacagcca cagatgttgt ccgagggaac cccaagttga 1260 acttggcttt tattgccaac ctctttaaca gataccctgc cctgcacaaa ccagagaacc 1320 1380 aggacattga ctggggggct cttgaaggtg agacgagaga agagcggaca tttaggaact

ggatgaactc	cctgggtgtt	aaccctcgag	tcaatcattt	gtacagtgac	ttatcagatg	1440
ccctggtcat	cttccagctc	tatgaaaaga	tcaaagttcc	tgttgactgg	aacagagtaa	1500
acaaaccgcc	ataccccaaa	ctgggaggca	atatgaagaa	gcttgagaat	tgtaactacg	1560
	ggggaagaat					1620
	aaaccgcact					1680
	cctcgaagaa					1740
	tgaaacattg					1800
	tagtacaagt					1860
					ctcaacaatg	1920
					ctgccagaag	1980
					atggggaaag	2040
					actcctgact	2100
gcccggcaca	a gatgctccag	ggatgattca	agccattcca	. aagttcaact	: tggtgacact	2160
ctataagatt	ccaaaaagca	a catattagto	g cagccaagta	geeteteete	g tatttaacaa	2220
aaagtgctto	attetttgea	ggaggcccaa	cctcctatat	: ataggtttct	attcttgatt	2280
tatttgctt	c ttcgaaaato	tagaggaaa	a gaaagaagtt	attttccag	g taccettete	2340
gcttttgcc	a ttagccaagg	g atagaagct	g cagtggtatt	aattttgata	a taatctttca	2400
aaccagctt	g ttgtggctt	c cettttett	t gttcaagatg	g agggccagg:	a ggggaaacat	2460
cacacctgc	c ctaaaccct	g ttcctggag	g tcagcattt	g atctgttgc	a agcccctctt	2520
tctgtcccc	t cttcctacc	c tgcctccca	t gactttgct	c ctcacactt	t tggaaccatg	2580
ccttccggg	g gggcccatc	t cttctggcg	g teettgtet	c tgggccact	t ggagtgtgtg	2640
ataaatcag	t caagctgtt	g aagtctcag	g agtctctgg	t agcctgcag	a agtaagcctc	2700
atcatcaga	g cettteete	a aaactggag	t cccaaatgt	c atcaggttt	t gtttttttc	2760
agccactaa	g aacccctct	g cttttaact	c tagaatttg	g gcttggacc	a gatctaacat	2820
cttgaatac	t ctgccctct	a gagccttca	g ccttaatgg	a aggttggat	c caaggaggtg	2880
taatggaat	c ggaatcaag	c cactcggca	ıg gcatggagc	t ataactaag	gc atccttaggg	2940
ttctgccto	t ccaggcatt	a gccctcaca	ıt tagatctag	t tactgtggt	a tggctaatac	3000
ctgtcaaca	at ttggaggca	a tcctacctt	g cttttgctt	c tagagetta	ag catatctgat	3060
tgttgtcag	gg ccatattat	c aatgtttad	et tttttggta	c tataaaag	t ttctgccacc	3120
cctaaacto	cc aggggggad	ca atatgtgc	ca atcaatago	a cccctacto	ca catacacaca	3180
cacctage	ca gctgtcaaq	gg gcagaatga	aa tctatgcto	gg ataagaaa	tg gtggaactgc	3240

gttatgaaga gctaatttac tggacaaaga attccaaagc aaaaccagaa cagtatgaat 3300 ttgagcaggt ctcataggtt gagcaatttc cccctaaacc aactgaaggc taaaaagcaa 3360 caggccattg tgaaccaatg caagacgccc tctatcatgg tgaaaagctc catcaatgag 3420 gtatcttctt tagtggtggt atgtaatgga acttagccat ttttcaaagc aattgaaatg 3480 cattgctctg gatctgttcc ttggcagtgg actcagaaag ccaacatgtg gctcctccca 3540 gcccataacc agtatttttg ctgcttctga atacaaattg gttggttttg acttcagatt 3600 gaacttactg tagcctcaga tgatttcccc cctccgcctc ccaggaagaa agaatgttac 3660 tgccttaata aaaaatgaaa agagaatgat gctcaaaatc tttccaaata aaatgttccc 3720 3723 tat

<210> 103

<211> 3318 <212> DNA

<213> Homo sapiens

<400> 103 gcccacctgt cctgcagcac tggatgcttt gtgagttggg gattgttgcg tcccatatct 60 ggacccagaa gggacttccc tgctcggctg gctctcggtt tctctgcttt cctccggaga 120 aataacageg tetteegege egegeatgga geeteeegge egeegegagt gteeetttee 180 ttcctggcgc tttcctgggt tgcttctggc ggccatggtg ttgctgctgt actccttctc 240 cgatgcctgt gaggagccac caacatttga agctatggag ctcattggta aaccaaaacc 300 ctactatgag attggtgaac gagtagatta taagtgtaaa aaaggatact tctatatacc 360 tectettgee acceatacta tttgtgateg gaatcataca tggetacetg teteagatga 420 cgcctgttat agagaaacat gtccatatat acgggatcct ttaaatggcc aagcagtccc 480 tgcaaatggg acttacgagt ttggttatca gatgcacttt atttgtaatg agggttatta 540 cttaattggt gaagaaattc tatattgtga acttaaagga tcagtagcaa tttggagcgg 600 taagccccca atatgtgaaa aggttttgtg tacaccacct ccaaaaataa aaaatggaaa 660 acacaccttt agtgaagtag aagtatttga gtatcttgat gcagtaactt atagttgtga 720 tectgcacct ggaccagate cattttcact tattggagag agcacgattt attgtggtga 780 caattcagtg tggagtcgtg ctgctccaga gtgtaaagtg gtcaaatgtc gatttccagt 840 agtcgaaaat ggaaaacaga tatcaggatt tggaaaaaaa ttttactaca aagcaacagt 900 tatgtttgaa tgcgataagg gtttttacct cgatggcagc gacacaattg tctgtgacag 960 taacagtact tgggatcccc cagttccaaa gtgtcttaaa gtgtcgactt cttccactac 1020 aaaatctcca gcgtccagtg cctcaggtcc taggcctact tacaagcctc cagtctcaaa 1080

ttatccagga tatcctaaac ctgaggaagg aatacttgac agtttggatg tttgggtcat 1	140
tgctgtgatt gttattgcca tagttgttgg agttgcagta atttgtgttg tcccgtacag 1	L200
atatetteaa aggaggaaga agaaaggeae atacetaaet gatgagaeee acagagaagt 1	L260
aaaatttact tctctctgag aaggagagat gagagaaagg tttgctttta tcattaaaag	1320
gaaagcagat ggtggagctg aatatgccac ttaccagact aaatcaacca ctccagcaga	1380
gcagagaggc tgaatagatt ccacaacctg gtttgccagt tcatcttttg actctattaa	1440
aatcttcaat agttgttatt ctgtagtttc actctcatga gtgcaactgt ggcttagcta	1500
atattgcaat gtggcttgaa tgtaggtagc atcctttgat gcttctttga aacttgtatg	1560
aatttgggta tgaacagatt gcctgctttc ccttaaataa cacttagatt tattggacca	1620
gtcagcacag catgcctggt tgtattaaag cagggatatg ctgtatttta taaaattggc	1680
aaaattagag aaatatagtt cacaatgaaa ttatattttc tttgtaaaga aagtggcttg	1740
aaatcttttt tgttcaaaga ttaatgccaa ctcttaagat tattctttca ccaactatag	1800
aatgtatttt atatatcgtt cattgtaaaa agcccttaaa aatatgtgta tactactttg	1860
gctcttgtgc ataaaaacaa gaacactgaa aattgggaat atgcacaaac ttggcttctt	1920
taaccaagaa tattattgga aaattctcta aaagttaata gggtaaattc tctatttttt	1980
gtaatgtgtt cggtgatttc agaaagctag aaagtgtatg tgtggcattt gttttcactt	2040
tttaaaacat ccctaactga tcgaatatat cagtaatttc agaatcagat gcatcctttc	2100
ataagaagtg agaggactct gacagccata acaggagtgc cacttcatgg tgcgaagtga	2160
acactgtagt cttgttgttt tcccaaagag aactccgtat gttctcttag gttgagtaac	2220
ccactctgaa ttctggttac atgtgttttt ctctccctcc ttaaataaag agaggggtta	2280
aacatgccct ctaaaagtag gtggttttga agagaataaa ttcatcagat aacctcaagt	2340
cacatgagaa tettagteca tttacattge ettggetagt aaaageeate tatgtatatg	2400
tettacetca tetectaaaa ggeagagtae aaagtaagee atgtatetea ggaaggtaae	2460
ttcattttgt ctatttgctg ttgattgtac caagggatgg aagaagtaaa tatagctcag	2520
gtagcacttt atactcaggc agatctcagc cctctactga gtcccttagc caagcagttt	2580
ctttcaaaga agccagcagg cgaaaagcag ggactgccac tgcatttcat atcacactgt	2640
taaaagttgt gttttgaaat tttatgttta gttgcacaaa ttgggccaaa gaaacattgc	2700
cttgaggaag atatgattgg aaaatcaaga gtgtagaaga ataaatactg ttttactgtc	2760
caaagacatg tttatagtgc tctgtaaatg ttcctttcct	2820
ctttaggaag ataaaagttt gaggagaaca aacaggaatt ctgaattaag cacagagttg	2880

aagtttatac	ccgtttcaca	tgcttttcaa	gaatgtcgca	attactaaga	agcagataat	2940
ggtgttttt	agaaacctaa	ttgaagtata	ttcaaccaaa	tactttaatg	tataaaataa	3000
atattataca	atatacttgt	atagcagttt	ctgcttcaca	tttgattttt	tcaaatttaa	3060
tatttatatt	agagatctat	atatgtataa	atatgtattt	tgtcaaattt	gttacttaaa	3120
tatatagaga	ccagttttct	ctggaagttt	gtttaaatga	cagaagcgta	tatgaattca	3180
agaaaattta	agctgcaaaa	atgtatttgc	tataaaatga	gaagtctcac	tgatagaggt	3240
tctttattgc	tcatttttta	aaaaatggac	tcttgaaatc	tgttaaaata	aaattgtaca	3300
tttggaaaaa	aaaaaaaa					3318

<210> 104

<211> 5957

<212> DNA

<213> Homo sapiens

<400> 104 ggggatgaca aactcatttc cagtctgtga actcctggac aaagcaaact aaccactgaa 60 aaactcgaaa atagggcaag acgacattaa ccttgtgaaa gtctgctttg aaaaaaggca 120 ttctgtcaag ctgtgtattt ttttcttgat tattcaaatt tatttcgtta ttcaaattta 180 attcagaaaa tagctcagtt ggtttcaggg ggaatggggt gggaggggtt tgggcacata 240 aatttatgat gataatttta aatgtacgat cattaagttg tatgcctcag tactataaca 300 ggtgaatctc tgtaatattg actaaacagt taaaagatat tttgtaaatt tcaggtccat 360 cgcatcaatg catgaaatat tagaaaacca aattccaaag aatcaggaat ttccatttcc 420 acccaaagta tacattatta tcttctagca gttgtctgtt aatataaaag cagcaaaatc 480 tcagctactt atataatttt ctccttttat ttgaaagtta cacttagaga ttaataatat 540 gtacagagaa getttteetg cetactetgt ttataaetee gteeaaettg eecacaaaca 600 ctgccctcct tcaacccatc tgatgtgggc aaagccactg ttttcttagg cccataactc 660 agtgcagctg ttttattttt ataatgccgg tcaacctttt tgtttgtgtg tgtgtgtg 720 tgtgtgtgtg tgtgtgtgt tgtgtgtgtg tgtgtctacg atgtgcttat ttaataattg 780 840 ccaaaatatt tagactagag taacttccgg tgggtcaatt ggattgtgac tttcttttgt 900 ggttttttgg ttcttcgatt gctctctgtt aaatattttc ataattcccc ccacagaata cgtgtgtata tactgcaact taaaaactaa aagcagtact cgaatgagtt gttttaatgt 960 tgtactttta tctgtttgtt ttatgggttc tcctgctgcc taatgacctt tctgttttta 1020 taactgccgg aaagccgcga agcctctcgc atggggagct aggtccccgc tgcggctccg 1080 1140 cacttgagtt tattataaac tctggggttc tgagtaagtt ttgtttgaat acagcaacat

gattgtctct ttctattctt atcctaaaag actctgtctg g	catctttta	gttgtaccct	1200
cgtatctgct tctctaataa atgttatatt ttttctcagt a			1260
tttcatgttt ccaagaaaat tattctgtgt aatatgaata t			1320
taatagggga ttttctagcc caatgctttt ttaaaaattc t			1380
tootttaaat gatggcacct cocctgtttc tgatcttgcg t			1440
totgtgtttc ttttgtttct tttctctctc cttgagatga a			1500
gcggaatgaa tacagaacaa caggttttcc ttttcaccaa a			1560
gaagagccaa gagtttcctt ctgagagaac tggaccttca t			1620
gaaattgatg catttettt etttettt ttttetggag t			1680
ccaagctgaa gtgcagtggt gtgatcctgg ctcgctgcag			1740
agccatcctt ccaactcatc ttcccgaata gtcgggacta			1800
ggttaatttt tttttaattt tttgtagaga tgaggtctgg			1860
gtettgaact cetgagetea tgeateetee etetteagee			1920
aggtatgage cactgeacee aaceteegtt teettttttt			1980
tgctctgttg tccaggctgg agtgcagtgg cccgatctca			2040
cctgggttga agcgattett ctgcctcagc ctcccaagta			2100
ccaccgcgcc aggctaattg ttgtattttt aatagagatg	ggttttcaco	atgttagcca	2160
ggctggtctt gaactectga cetegtgate tgcctgccte	aggeteccaa	a agtgctggga	2220
ttacaggcat gagccacggc gcccagcccc ggcctccgtt	tcttacttt	c tctcaaaact	2280
aaacttatga gaaagacgag ttggggcgga tggcctcatc	agtctcctg	t ttgggcttct	2340
cttaactctg aaggaaagac cagctaaagg ctagagagaa	aaccgtgaa	a gttcctcatc	2400
tcagacccgc cctgtggtaa ccgattgctc taagacgccc	cctcccatc	c ctcccctccc	2460
actaccetee ceteceaggg eggtgcagtt tgtagccaag	agcaaaatg	c ccgcctgaaa	2520
cccgcgcctt cctctctaac agagagtttc tctttctgtt	tctctttgt	g ttgtagattc	2580
ctagagggga gtgcctgcga gcctcgggtg agccttcctg	gaggagcct	c cgtctgcttg	2640
ttcccacagg cctccagcgc cctgccctgt ggacagccca	cccctccgc	a gccccatccc	2700
tgeggggegg tetetetete teteteeage atgeteeetg	cggccctgc	c ctcccgccca	2760
geeegggeea eetegtgggg gaeaagtete geeagegeee	accccato	g ctcgggtcag	2820
tectcatege tecceetece caceeegege aggeeactga	gacggtggg	ga cactcgcccc	2880
cacctgctcc ttcctgggcc ctcagtccac ccgggctcgt	cctggcago	ec cttccgcgct	2940
tcacacagtg cettttgtga aagtgtcatc acgggtcccc	tgaggaga	ca aggcaggtcc	3000

agcgcacatc	aggtggactg	agcactcgat	gtcatccgtg	tcgatgtcat	ccgtgtgtcc	3060
cagactgcct	gctgtagaaa	acacttcctc	ctctcctgag	tctgtgaagt	cctcagtggt	3120
cctttttgga	ttctaggctt	gcacctcata	ctaaacattg	accetttcac	tatgccctca	3180
acctgggagc	atctggcagg	caggggggca	ggtacacaca	cacccacagg	cacacccacc	3240
agtacacacg	cgtgcgcata	cacacatttt	ggtttgacgc	cctgttttca	gtggcctggg	3300
gaggtccaca	ctggaagtcg	aattccagct	cgccttgttg	actegeetgt	gtccaccggc	3360
catgaggagc	ccacgcctgt	cctccccatc	actttcctgt	ccctgagaac	tgtagatcat	3420
gcgcttgtga	gcgaggccct	cccctctgca	ccagctcatt	gcaaagcgaa	catcctctcc	3480
tttccaggag	ccccaggatt	agcatctgaa	aagggtagca	cttccttttt	tgttgttgtt	3540
tttttttt	tttgagacgg	gagtctcgct	ctattgttca	gactggagtg	cagtggcatg	3600
atctcggctc	actacaacct	ccacctcctg	ggttccagcg	attctcctgc	ctcagcctcc	3660
caaatagctg	tgattacagg	cgtgcaccac	cacgcccggc	taatgtttgt	atttttagta	3720
gagacagggt	ttcaccgtgt	tggtcaggct	ggtctcaaac	tectgacete	aggtgatccg	3780
cccgcctcag	cctcccaaag	tgctgagatt	acaggtgtga	gctaccgcac	cccgccgagg	3840
ttagcacttt	: catcaccaaa	gaccccgtgc	ctctcgtggt	cctttgaggg	atcccgccgc	3900
caccaccctt	gtatttato	acgtgctctt	cagggcatgt	ggaattcgtt	gagtttgctt	3960
ttagagccaa	gtttctttcc	: ctgtgtgggt	tttgaggaa	aacctgaggt	cccctaatct	4020
gtggccacca	a cccccccc	gccgccacgc	cttagagcag	agcagcccct	cctctcattt	4080
ggtgcagaaa	a cagtcaagag	gaaccattgg	g cctagagcto	: ctgtgaccga	gagcgccacg	4140
gaagcctgg	g gatgatgtco	g ggcagcttta	ttctttgctt	ggctttggta	a actaggtggt	4200
cccctcaag	c atcctcagtt	cctcttgctg	g tttatgaato	taagacaag	g aagtootata	4260
gaagccaaa	g ggacaggga	c ggaaaggaca	a ggtcccaagg	g gatggggctg	g tctttacttg	4320
tggaaacca	g gaaattgct	c ctctcagcca	a accaaggtto	g accacacac	c accetteegg	4380
agcagctca	g tcagccctc	g gggacgaga	a accacaagco	g cagagacgc	t gaggcccagg	4440
caggtgaag	a ggaagtggc	t ttgggtttt	t aaagtaggt	g agcgtgagc	c tctctgactg	4500
cttcttccc	c gggggggac	t gcaaaccgc	t cagggttgc	g gcagagcca	t ggacttccgg	4560
tecetgeaa	c gggtgacct	a agcgtggtg	c acccatcag	t cacgcagga	g gactgacttg	4620
acagacgaa	a gacaagccc	g gatgacaca	g ggtgagaag	a gtcagggcc	g cacctctgtc	4680
cctgcaaac	c aacaggtgc	a tggtgagtg	t ggcagtccc	c acageteca	c aatgggctcc	4740
cccgccaac	g gggacgaca	g ggatettea	g gaacttctg	a cctcaccaa	g tcaagtggac	4800

•	
cactetecae tecaegagga tgtgaaaegg ttetttaaaa tgggatttta gageeteggg	4860
aatgcatgtg cgtcgcatct ttcatattat gggtcaggat agattcattt cttgcaacat	4920
agtggaaaag atataagctg cagtaatttg ctctttgaat gaccgtcacc cccagtatag	4980
gatatgcttg tatcccccg tcactcctcc tcctgttttt taaacttttc caccacctgc	5040
gtccaaaaag aatgttatag cgagtgctct taaatgttga acctgggtgt tgcttccggg	5100
ccagtctgcg tggctccatg aaaagcccac tgctgcccca gccgggcttc ttagaggagg	5160
tcagttgtcc tatgtatcat catttactct gggaatccta ctgtgaaatc atgtctgtat	
ttttctggag cagttcacat agagtagaat gtggaatttc ccgtgaacgt ctccttcctc	
ccccgtatct gccgcctgtc acttcgccac cgtgctagaa tactgttgtg ttgtaagatg	
actaatttta aaagaacctg ccctgaaaag ttcttagaaa cgcaatgaaa gggaggaact	
tgtcctttac ccagtttttc ctttgtagga tgggaaagta taaaaaggca cagaaggttg	
tcatgggctg ttccttgggg gtttttatcc tgctcaccgt ggagataagc ctgcggcttg	
tctaaccagc gcagcgcaaa ggtctcaatg ccttttggta acatccgtca ttgcagaaga	
aagtttacac gacgtcaaaa agtgacgttc atgctaagtg tttttccaga aatattggtt	
tcatgtttct tattggctct gcctcctgtg cttatatcat ccaaaaactt tttaaaaaagg	
tocagaatto tattttaaco tgatgttgag cacotttaaa acgttogtat gtgtgttgoa	
ctaattctaa actttggagg cattttgctg tgtgaggccg atcgccactg taaaggtcc	
agagttgcct gtttgtctct ggagatggaa ttaaaccaaa taaagagctt ccactggag	
cttgtattga ccttgtaact atatgttaat ctcgtgttaa aataaaatat aacttgtga	
aaaaaaaaaa aaaaaaa	5957
<210> 105 <211> 2064 <212> DNA <213> Homo sapiens	

<400> 105
ggcacgaggggagcgaaggtaggaggcagggcttgcctcactggccacctcccaaccc60aagagcccagccccatggtccccgccgccggcgcgctgctgtgggtcctgctgctgaatc120tgggtccccgggcggcgggggcccaaggcctgacccagactccgaccgaaatgcagcggg180tcagtttacgctttgggggccccatgaccgcagctaccggagcaccgcccggactggtc240ttccccggaagacaaggataatcctagaggacgagaatgatgccatggccgacgccgacc300gcctggctggaccagcggctgccgagctcttggccgccacggtgtccaccggctttagcc360ggtcgtccgccattaacgaggaggatggtcttcagaagagggggttgtgattaatgccg420

gaaaggatag (caccagcaga (gagettecca (gtgcgactcc	caatacagcg	gggagttcca	480
gcacgaggtt t						540
geteeccegg g						600
ccacacctgg g	gtctaccccg	agccggtggc	cgtcaccctc	acccacagcc	atgccatctc	660
ctgaggatct (gcggctggtg	ctgatgccct	ggggcccgtg	gcactgccac	tgcaagtcgg	720
gcaccatgag	ccggagccgg	tctgggaagc	tgcacggcct	ttccgggcgc	cttcgagttg	780
gggcgctgag	ccagctccgc	acggagcaca	agccttgcac	ctatcaacaa	tgtccctgca	840
accgacttcg	ggaagagtgc	cccctggaca	caagtctctg	tactgacacc	aactgtgcct	900
ctcagagcac	caccagtacc	aggaccacca	ctaccccctt	ccccaccatc	cacctcagaa	960
gcagtcccag	cctgccaccc	gccagcccct	gcccagccct	ggctttttgg	aaacgggtca	1020
ggattggcct	ggaggatatt	tggaatagcc	tctcttcagt	gttcacagag	atgcaaccaa	1080
tagacagaaa	ccagaggtaa	tggccacttc	atccacatga	ggagatgtca	gtatctcaac	1140
ctctcttgcc	ctttcaatcc	tagcacccac	tagatatttt	tagtacagaa	aaacaaaact	1200
ggaaaacaca	ttgtttggtc	ttgtgtttct	ttacagaggt	acctgaggga	ggagagacat	1260
aaatcccttc	atccctaaga	ctgaactatg	taactagcag	cctctggctt	gttttctact	1320
ccctgtccct	caggataaaa	tgttgatatt	gctcattttc	ctcatttcca	acattgtttt	1380
aaaacaagta	cttcttttac	aggcttgaaa	aatctcaaat	aaacgctaag	aaaagggagt	1440
aggaagaaca	aggagttgag	cccttgaaag	atgacagtgg	tettettgee	: ttcatgcttg	1500
gccctctctc	ctcaaaaggg	caatgttggt	acaaaattcc	atctcagcca	ctttcgagga	1560
gttatcttca	ttagctatat	ccatccttta	atccaacaca	cacctgcaat	gattactgtg	1620
caactatttt	gcttaatttt	ttatttgaaa	aaatgtattt	aaaagtccaa	a caactttta	1680
atataaatta	cgactctcaa	acccattccc	atcactttat	tagtgatggt	agcatacata	1740
ttagagaagg	tagctaaagg	caagagagca	ccaaaggaaa	aagactgtc	c aaagaacagg	1800
tattagaatg	aggccgaaga	tcacggtgac	cagagatttc	: taggagtct	c taacctttcc	1860
accctatcct	gttaaccctt	tagatctcta	gtataacact	caggetact	g aggtatttta	1920
gagcaacaag	ctgggttact	ttcagagcaa	ccagcttgad	tggaactga	g agtaaattgg	1980
gaatgtatga	ccaatcttag	accctgaaaa	atggcagaaa	a atacatgga	a atttgaaaaa	2040
aaaaaaaaa	aaaaaaaaa	aaaa				2064

<210> 106 <211> 1903 <212> DNA <213> Homo sapiens

<400> 106 cagaagcagc aaaccgccgg caagcccagc gaggagggct gccggggtct gggcttggga	60
attggctggc acccagcgga aagggacgtg agctgagcgc gggggagaag agtgcgcagg	120
tcagagggcg gcgcgcagtc cgcgaggtcc ccacgccggg cgatatgggg tgcctgctgt	180
ttetgetget etgggegete etceaggett ggggaagege tgaagteeeg caaaggettt	240
tececeteeg etgeeteeag atetegteet tegeeaatag cagetggaeg egeacegaeg	300
gettggegtg getgggggag etgeagaege acagetggag caacgaeteg gaeacegtee	360
gctctctgaa gccttggtcc cagggcacgt tcagcgacca gcagtgggag acgctgcagc	420
atatatttcg ggtttatcga agcagcttca ccagggacgt gaaggaattc gccaaaatgc	480
tacgettate etatecettg gagetecagg tgteegetgg etgtgaggtg caccetggga	540
acgcctcaaa taacttcttc catgtagcat ttcaaggaaa agatatcctg agtttccaag	600
gaacttettg ggageeaace caagaggeee caetttgggt aaacttggee atteaagtge	660
tcaaccagga caagtggacg agggaaacag tgcagtggct ccttaatggc acctgccccc	720
aatttgtcag tggcctcctt gagtcaggga agtcggaact gaagaagcaa gtgaagccca	780
aggeetgget gtecegtgge cecagteetg geeetggeeg tetgetgetg gtgtgeeatg	840
tctcaggatt ctacccaaag cctgtatggg tgaagtggat gcggggtgag caggagcagc	900
agggcactca gccaggggac atcctgccca atgctgacga gacatggtat ctccgagcaa	960
ccctggatgt ggtggctggg gaggcagctg gcctgtcctg tcgggtgaag cacagcagtc	1020
tagagggcca ggacatcgtc ctctactggg gtgggagcta cacctccatg ggcttgattg	1080
cettggeagt cetggegtge ttgetgttee teetcattgt gggetttaee teeeggttta	1140
agaggcaaac ttcctatcag ggcgtcctgt gactcgcctt gccacatctg tgtctctgga	1200
acccaggacc tctggacctc aggttcccaa gacttcagtc ctggtctgct caggaattga	1260
agatgtaagg aattgaagat aggagagata ccttgaaaaa gtagagaaca gtcatgaggc	1320
agettteate acaccetttt aacatttate taaaagaatt taaattettt tteaaaaatt	1380
acactacaag tttataagcc caaatggctc tgtgaaatca gaagtgcaaa ggtgtgcaaa	1440
cttgtatctg aagacctacc agggacaagc aggtaagagc tgatgtgagt gtgtgtgatg	1500
ggatctgtaa ggaactggaa cacacatgtc ctatccaaag gaatcagctg cagctgcttg	1560
ttgtcaagta taaagtcagg acctggcttg gctttaaccg tttttcaaga aaactggaaa	1620
totggatttt cagogaacat gootgatttt aaaaggttga otcaagtttt tacaaaatac	1680
tatgtgggac acctcaaata catacctact gactgatgac aaacccagga gtttgtgt	1740
cttttataaa aagtttgccc tggatgtcat attggcagtt ggaggacaca gtttctattg	1800

taaatttgga tttacgact	g aagaaggaca	ttttctcttt	aaaagaaagt	taggttataa	1860
gaaacagagg cgtctcaca	t ttttacttgg	tgtaattaat	aaa		1903

<210> 107 <211> 1840 <212> DNA

<213> Homo sapiens

<400> 107 atcttcatcg agegecatgg cegeagectg egggeeggga geggeegggt aetgettget 60 ceteggettg catttgttte tgctgaccge gggccetgee etgggetgga acgaccetga 120 cagaatgttg ctgcgggatg taaaagctct taccctccac tatgaccgct ataccacctc 180 ccgcagctgg gatcccatcc cacagttgaa atgtgttgga ggcacagctg gttgtgattc 240 ttatacccca aaagtcatac agtgtcagaa caaaggctgg gatgggtatg atgtacagtg 300 ggaatgtaag acggacttag atattgcata caaatttgga aaaactgtgg tgagctgtga 360 aggetatgag teetetgaag accagtatgt actaagaggt tettgtgget tggagtataa 420 tttagattat acagaacttg gcctgcagaa actgaaggag tctggaaagc agcacggctt 480 tgcctctttc tctgattatt attataagtg gtcctcggcg gattcctgta acatgagtgg 540 attgattacc atcgtggtac tccttgggat cgcctttgta gtctataagc tgttcctgag 600 tgacgggcag tattctcctc caccgtactc tgagtatcct ccattttccc accgttacca 660 gagattcacc aactcagcag gacctcctcc cccaggcttt aagtctgagt tcacaggacc 720 acagaatact ggccatggtg caacttctgg ttttggcagt gcttttacag gacaacaagg 780 atatgaaaat tcaggaccag ggttctggac aggcttggga actggtggaa tactaggata 840 tttgtttggc agcaatagag cggcaacacc cttctcagac tcgtggtact acccgtccta 900 tectecetee taccetggea egtggaatag ggettaetea eccetteatg gaggeteggg 960 cagctattcg gtatgttcaa actcagacac gaaaaccaga actgcatcag gatatggtgg 1020 taccaggaga cgataaagta gaaagttgga gtcaaacact ggatgcagaa attttggatt 1080 tttcatcact ttctctttag aaaaaaagta ctacctgtta acaattggga aaaggggata 1140 ttcaaaagtt ctgtggtgtt atgtccagtg tagctttttg tattctatta tttgaggcta 1200 aaagttgatg tgtgacaaaa tacttatgtg ttgtatgtca gtgtaacatg cagatgtata 1260 ttgcagtttt tgaaagtgat cattactgtg gaatgctaaa aatacattaa tttctaaaac 1320 ctgtgatgcc ctaagaagca ttaagaatga aggtgttgta ctaatagaaa ctaagtacag 1380 aaatttcagt tttaggtggt tgtagctgat gagttattac ctcatagaga ctataatatt 1440 ctatttggta ttatattatt tgatgtttgc tgttcttcaa acatttaaat caagctttgg 1500

actaattatg ctaattt	gtg agttctgatc	acttttgagc	tctgaagctt	tgaatcattc	1560
agtggtggag atggcct					1620
aagcatctag aaggttg					1680
atttctttcg ttcataa					1740
aagcatgcag ttctctg					1800
aagaatcaat aaaaaca					1840

<210> 108

<211> 1966

<212> DNA

<213> Homo sapiens

attggagttc agctaccaaa aggaaacctt cctctgggtc ctggagtatt tggcctgaaa <400> 108 60 ttgggaactc ggaagttgct gctccagggc gctccctgcg gagctccgcc gcccgcctct 120 ccgcccggcc tttcccggcg tccccacgcg gggcgcaacc gcgagaaaga aacgcaggtc 180 gcaccgtcag cgcccagagc agcgccagtt tccgggcccg ggctgctctc ggagccatga 240 gctgcggccg ccccctccc gacgtggacg gcatgatcac cctcaaggtg gacaacctga 300 cctaccgcac ctctcccgac agcttgaggc gcgtgttcga gaagtacggg cgcgtgggcg 360 acgtgtacat cccgcgggag ccccacacca aggcgccccg gggcttcgct ttcgtccgct 420 ttcacgaccg gcgcgacgcc caagacgccg aggccgccat ggacggggcg gagctggacg 480 gacgcgagct gcgggtgcag gtggcgcgct atggccgccg ggacctgccc cgcagccgcc 540 agggagagcc acgcggcagg tccagaggcg gcggctacgg acggcggagc cgcagctacg 600 ggcggcggag ccgcagcccc aggcggcgac accgcagccg atcccggggt cccagctgct 660 ccaggtcccg cagccgatct cgctataggg gttctcgcta tagccggtct ccctacagcc 720 gatctcctta cagccggtcg cgctacagcc gctctcccta cagcagatct cgctacaggg 780 aatctcgcta cggcggatct cactacagct catctggtta cagtaactct cgctacagcc 840 gatatcacag cagceggtet cactegaagt etgggteete cactagetet egetetgeat 900 caacctccaa atcgagctct gcgcgacgat ccaagtcctc ctcggtctcc aggtctcgct 960 cgcggtccag gtcttcatct atgaccagga gtcctccccg ggtatccaag aggaaatcca 1020 agtcaaggtc gcgatccaag aggcccccca agtctcctga agaggaagga cagatgtcct 1080 cttaagaaaa tgatgcatca ggaagcaacg tgatggagga cttggggggaa aaggatcaca 1140 tactcagtct atggaagcaa cgtccctgtt gcagtgcaga gtgctgagct gcttcctgtt 1200 ttcttctgat tgctcctggg gaaaacacgc cttgtcctga agaacaaatg gctgtccagt 1260

ttattaaaat gcctgtcaac	tgcacttcca	gtcacccagg	ccttgcagat	aaataatgga	1320
gcatgcggtg agcacatcta					1380
aattgtaaat ctgatcatat					1440
aaatagttta taagtttgtt					1500
tttacgctaa ccattgtttc					1560
ataaaattag aaacttttga					1620
atttgtactt ttgagaaaat					1680
atccttaata ggcttttagc					1740
gtttctctct tttttcctca					1800
tccatttttg gctttcatca					1860
ctgcttatac ctttactago	aaagggaaaa	ataacaattt	ggtgtcaatg	atctggtgac	1920
aataggatta cattggagco					1966

<210> 109

<211> 2222 <212> DNA

<213> Homo sapiens

atteggeacg agggaggaag egagaggtge tgeceteece eeggagttgg aagegegtta <400> 109 60 cccgggtcca aaatgcccaa gaagaagccg acgcccatcc agctgaaccc ggcccccgac 120 ggctctgcag ttaacgggac cagctctgcg gagaccaact tggaggcctt gcagaagaag 180 ctggaggagc tagagcttga tgagcagcag cgaaagcgcc ttgaggcctt tcttacccag 240 aagcagaagg tgggagaact gaaggatgac gactttgaga agatcagtga gctgggggct 300 ggcaatggcg gtgtggtgtt caaggtctcc cacaagcctt ctggcctggt catggccaga 360 aagctaattc atctggagat caaacccgca atccggaacc agatcataag ggagctgcag 420 gttctgcatg agtgcaactc tccgtacatc gtgggcttct atggtgcgtt ctacagcgat 480 ggcgagatca gtatctgcat ggagcacatg gatggaggtt ctctggatca agtcctgaag 540 aaagctggaa gaattcctga acaaatttta ggaaaagtta gcattgctgt aataaaaggc 600 ctgacatatc tgagggagaa gcacaagatc atgcacagag atgtcaagcc ctccaacatc 660 ctagtcaact cccgtgggga gatcaagctc tgtgactttg gggtcagcgg gcagctcatc 720 gactecatgg ccaactectt cgtgggcaca aggtectaca tgtcgccaga aagactecag 780 gggactcatt actctgtgca gtcagacatc tggagcatgg gactgtctct ggtagagatg 840 gcggttggga ggtatcccat ccctcctcca gatgccaagg agctggagct gatgtttggg 900

tgccaggtgg aaggagatgc ggctgagacc ccacccaggc caaggacccc cgggaggcc	c 960
cttageteat aeggaatgga eageegaeet eecatggeaa tttttgagtt gttggatta	
atagtcaacg agcctcctcc aaaactgccc agtggagtgt tcagtctgga atttcaaga	
tttgtgaata aatgcttaat aaaaaacccc gcagagagag cagatttgaa gcaactcat	
gttcatgctt ttatcaagag atctgatgct gaggaagtgg attttgcagg ttggctctg	
tccaccatcg gccttaacca gcccagcaca ccaacccatg ctgctggcgt ctaagtgtt	
gggaagcaac aaagagcgag teecetgeee ggtggtttge catgtegett ttgggeete	
ttcccatgcc tgtctctgtt cagatgtgca tttcacctgt gacaaaggat gaagaaca	
gcatgtgcca agattctact cttgtcattt ttaatattac tgtctttatt cttattac	
ttattgttcc cctaagtgga ttggctttgt gcttggggct atttgtgtgt atgctgat	
tcaaaacctg tgccaggctg aattacagtg aaatttttgg tgaatgtggg tagtcatt	
tacaattgca ctgctgttcc tgctccatga ctggctgtct gcctgtattt tcggactt	
acatttgaca tttggtggac tttatcttgc tgggcatact ttctctctag gagggagc	
tgtgagatcc ttcacaggca gtgcatgtga agcatgcttt gctgctatga aaatgagc	
cagagagtgt acatcatgtt attttattat tattatttgc ttttcatgta gaactcag	
gttgacatcc aaatctagcc agagcccttc actgccatga tagctggggc ttcaccag	
tgtctactgt ggtgatctgt agacttctgg ttgtatttct atatttattt tcagtata	
gtgtgggata cttagtggta tgtctcttta agttttgatt aatgtttctt aaatggaa	
atttgaatgt cacaaattga tcaagatatt aaaatgtcgg atttatcttt ccccatat	
aagtaccaat gctgttgtaa acaacgtgta tagtgcctaa aattgtatga aaatcctt	
aaccatttta acctagatgt ttaacaaatc taatctctta ttctaataaa tatacta	
aataaaaaaa aaaggagaaa gctaaaaaaa aaaaaaaaaa	
aa	2222

<210> 110 <211> 2263 <212> DNA

<213> Homo sapiens

gcttcaggag aatgaaatca gaggactgtg cttaaagtct cgtgaaatct ttctcagtca	300
gcctatccta ctagaacttg aagcaccact caaaatatgt ggtgacatcc atggacaata	360
ctatgatttg ctgcgacttt ttgagtacgg tggtttccca ccagaaagca actacctgtt	420
tcttggggac tatgtggaca ggggaaagca gtcattggag acgatctgcc tcttactggc	480
ctacaaaata aaatatcctg agaattttt tcttctcaga gggaaccatg aatgtgccag	540
catcaacaga atttatggat tttatgatga atgtaaaaga agatacaaca ttaaactatg	600
gaaaactttc acagactgtt ttaactgttt accgatagca gccatcgtgg atgagaagat	660
attetgetgt catggaggtt tatcaccaga tettcaatet atggageaga tteggegaat	720
tatgcgacca actgatgtac cagatcaagg tettetttgt gatettttgt ggtetgacce	780
cgataaagat gtcttaggct ggggtgaaaa tgacagagga gtgtccttca catttggtgc	840
agaagtggtt gcaaaatttc tccataagca tgatttggat cttatatgta gagcccatca	900
ggtggttgaa gatggatatg aattttttgc aaagaggcag ttggtcactc tgttttctgc	960
gcccaattat tgcggagagt ttgacaatgc aggtgccatg atgagtgtgg atgaaacact	1020
aatgtgttct tttcagattt taaagcctgc agagaaaaag aagccaaatg ccacgagacc	1080
tgtaacgcct ccaaggggta tgatcacaaa gcaagcaaag aaatagatgt cgttttgaca	1140
ctgcctagtc gggacttgta acatagagta tataaccttc atttttaaga ctgtaatgtg	1200
tactggtcag cttgctcaga tagatctgtg tttgtggggg cccttccttc catttttgat	1260
ttagtgaatg gcatttgctg gttataacag caaatgaaag actcttcact ccaaaaagaa	1320
aagtgttttg ttttttaatt ctctgttcct tttgcaaaca attttaatga tggtgttaaa	1380
gctgtacacc ccaggacagt ttatcctgtc tgaggagtaa gtgtacaatt gatcttttt	1440
aattcagtac aacccataat catgtaaatg ctcattttct ttaggacata aagagagccc	1500
tagggtgctc tgaatctgta catgttcttg tcataaaatg catactgttg atacaaacca	1560
ctgtgaacat tttttatttg agaattttgt ttcaaaggga ttgctttttc ctctcattgt	1620
cttgttatgt acaaactagt ttttatagct atcaacatta ggagtaactt tcaaccttgc	1680
cagcatcact ggtatgatgt atatttaatt aaagcacact tttccccgac cgtatactta	1740
aaatgacaaa gccattcttt taaatatttg tgactctttc ctaaagccaa agtttctgtt	1800
gaattatgtt ttgacacacc cctaagtaca aggtggtatg gttgtataca catgctgcct	1860
tottggggat toaaaaacag gtttttgatt ttgaatagca attagtgata tagtgctgtt	1920
taagctacta acgataaaag gtaataacat tttatacaat ttccatatag tctattcatt	1980
aagtaatett tttacagttg catcaggeet gaaceegtee atteagaaag etteaaatta	2040
-	

tagaaacaat actgttctat	acgagtgacc	gattatgctt	tctttggcct	acattcttta	2100
ttctgcggtg aagttgagg	: ttataagtta	aaacaaagga	actaacttac	tgtccaccag	2160
tttatacaga actcacagta	a cctatgactt	ttttaaacta	agatctgtta	aaaaagaaat	2220
ctqtttcaac agatgaccg	gtacaatacc	gtgtggtgaa	aat		2263

<210> 111

<211> 8694

<212> DNA

<213> Homo sapiens

<400> 111 tgaggaatca acageegeea tettgtegeg gaeeegaeeg gggettegag egegatetae 60 teggeecege eggteeeggg ceceacaace geeegegete geteetetee etegeageeg 120 gcagggcccc cgacccccgt ccgggccctc gccggcccgg ccgccgtgc ccggggctgt 180 tttcgcgagc aggtgaaaat ggctgagaac ttgctggacg gaccgcccaa ccccaaaaga 240 gccaaactca gctcgcccgg tttctcggcg aatgacagca cagattttgg atcattgttt 300 360 gacttggaaa atgatcttcc tgatgagctg atacccaatg gaggagaatt aggcctttta aacagtggga accttgttcc agatgctgct tccaaacata aacaactgtc ggagcttcta 420 cgaggaggca gcggctctag tatcaaccca ggaataggaa atgtgagcgc cagcagcccc 480 gtgcagcagg gcctgggtgg ccaggctcaa gggcagccga acagtgctaa catggccagc 540 ctcagtgcca tgggcaagag ccctctgagc cagggagatt cttcagcccc cagcctgcct 600 aaacaggcag ccagcacctc tgggcccacc cccgctgcct cccaagcact gaatccgcaa 660 gcacaaaagc aagtggggct ggcgactagc agccctgcca cgtcacagac tggacctggt 720 atctgcatga atgctaactt taaccagacc cacccaggcc tcctcaatag taactctggc 780 catagettaa ttaateagge tteacaaggg caggegeaag teatgaatgg atetettggg 840 getgetggca gaggaagggg agetggaatg cegtaceeta etecageeat geagggegee 900 tcgagcagcg tgctggctga gaccctaacg caggtttccc cgcaaatgac tggtcacgcg 960 ggactgaaca ccgcacaggc aggaggcatg gccaagatgg gaataactgg gaacacaagt 1020 ccatttggac agccctttag tcaagctgga gggcagccaa tgggagccac tggagtgaac 1080 ccccagttag ccagcaaaca gagcatggtc aacagtttgc ccaccttccc tacagatatc 1140 aagaatactt cagtcaccaa cgtgccaaat atgtctcaga tgcaaacatc agtgggaatt 1200 gtacccacac aagcaattgc aacaggcccc actgcagatc ctgaaaaacg caaactgata 1260 cagcagcagc tggttctact gcttcatgct cataagtgtc agagacgaga gcaagcaaac 1320 1380 ggagaggttc gggcctgctc gctcccgcat tgtcgaacca tgaaaaacgt tttgaatcac

atgacgcatt gtcaggctgg gaaagcctgc caagttgccc attgtgcatc ttcacgacaa 14	140
·	500
	560
	620
	680
	740
	800
	860
	.920
	.980
	2040
	2100
	2160
	2220
	2280
	2340
	2400
	2460
	2520
	2580
	2640
	2700
atgctggggc ctcaggccag ccagctacct tgccctccag tgacacagtc accactgcac	2760
ccaacacege ctectgette caeggetget ggeatgeeat etetecagea caegacacea	2820
cctgggatga ctcctcccca gccagcagct cccactcagc catcaactcc tgtgtcgtct	2880
teegggeaga eteecaceee gaeteetgge teagtgeeea gtgetaceea aaceeagage	2940
accectacag tecaggeage ageceaggee caggtgaeee egeageetea aacceeagtt	3000
cagcccccgt ctgtggctac ccctcagtca tcgcagcaac agccgacgcc tgtgcacgcc	3060
cagecteetg geacaceget tteecaggea geagecagea ttgataacag agteectace	3120
ccetectegg tggccagege agaaaccaat teccageage caggaeetga egtacetgtg	3180
ctggaaatga agacggagac ccaagcagag gacactgagc ccgatcctgg tgaatccaaa	3240

ggggagccca ggtctgagat gatggaggag gatttgcaag gagcttccca agttaaagaa	3300
gaaacagaca tagcagagca gaaatcagaa ccaatggaag tggatgaaaa gaaacctgaa	3360
gtgaaagtag aagttaaaga ggaagaagag agtagcagta acggcacagc ctctcagtca	3420
acateteett egeageegeg caaaaaaate tttaaaeeag aggagttaeg eeaggeeete	3480
atgccaaccc tagaagcact gtatcgacag gacccagagt cattaccttt ccggcagcct	3540
gtagatecee agetectegg aattecagae tattttgaea tegtaaagaa teecatggae	3600
ctctccacca tcaagcggaa gctggacaca gggcaatacc aagagccctg gcagtacgtg	3660
gacgacgtet ggeteatgtt caacaatgee tggetetata ategeaagae atecegagte	3720
tataagtttt gcagtaagct tgcagaggtc tttgagcagg aaattgaccc tgtcatgcag	3780
tecettggat attgetgtgg aegeaagtat gagtttteee eacagaettt gtgetgetat	3840
gggaagcagc tgtgtaccat tcctcgcgat gctgcctact acagctatca gaataggtat	3900
catttctgtg agaagtgttt cacagagatc cagggcgaga atgtgaccct gggtgacgac	3960
ccttcacage cccagacgac aatttcaaag gatcagtttg aaaagaagaa aaatgatacc	4020
ttagaccccg aacctttcgt tgattgcaag gagtgtggcc ggaagatgca tcagatttgc	4080
gttctgcact atgacatcat ttggccttca ggttttgtgt gcgacaactg cttgaagaaa	4140
actggcagac ctcgaaaaga aaacaaattc agtgctaaga ggctgcagac cacaagactg	4200
ggaaaccact tggaagaccg agtgaacaaa tttttgcggc gccagaatca ccctgaagcc	4260
ggggaggttt ttgtccgagt ggtggccagc tcagacaaga cggtggaggt caagcccggg	4320
atgaagtcac ggtttgtgga ttctggggaa atgtctgaat ctttcccata tcgaaccaaa	4380
gctctgtttg cttttgagga aattgacggc gtggatgtct gcttttttgg aatgcacgtc	4440
caagaatacg getetgattg ecceeteca aacaegagge gtgtgtacat ttettatetg	4500
gatagtatte atttetteeg gecaegttge eteegeacag eegtttaeca tgagateett	4560
attggatatt tagagtatgt gaagaaatta gggtatgtga cagggcacat ctgggcctgt	4620
cctccaagtg aaggagatga ttacatcttc cattgccacc cacctgatca aaaaataccc	4680
aagccaaaac gactgcagga gtggtacaaa aagatgctgg acaaggcgtt tgcagagcgg	4740
atcatccatg actacaagga tattttcaaa caagcaactg aagacaggct caccagtgcc	4800
aaggaactgc cctattttga aggtgatttc tggcccaatg tgttagaaga gagcattaag	4860
gaactagaac aagaagaaga ggagaggaaa aaggaagaga gcactgcagc cagtgaaacc	4920
actgagggca gtcagggcga cagcaagaat gccaagaaga agaacaacaa gaaaaccaac	4980
aagaacaaaa gcagcatcag ccgcgccaac aagaagaagc ccagcatgcc caacgtgtcc	5040

aatgacctgt cccagaagct gtatgccacc atggagaagc acaaggaggt cttcttcgtg	5100
	5160
	5220
	5280
	5340
	5400
	5460
agccagggcg agccacagtc aaagagcccc caggagtcac gccgggtgag catccagegc	5520
tgcatccagt cgctggtgca cgcgtgccag tgccgcaacg ccaactgctc gctgccatcc	5580
tgccagaaga tgaagcgggt ggtgcagcac accaagggct gcaaacgcaa gaccaacggg	5640
ggctgcccgg tgtgcaagca gctcatcgcc ctctgctgct accacgccaa gcactgccaa	5700
gaaaacaaat gccccgtgcc cttctgcctc aacatcaaac acaagctccg ccagcagcag	5760
atccagcacc gcctgcagca ggcccagctc atgcgccggc ggatggccac catgaacacc	5820
cgcaacgtgc ctcagcagag tctgccttct cctacctcag caccgcccgg gacccccaca	5880
cagcagccca gcacacccca gacgeegeag eccectgeee ageeccaace etcaceegtg	5940
agcatgtcac cagetggett ecceagegtg geeeggaete ageeeceae caeggtgtee	6000
acagggaage ctaccageca ggtgeeggee eccecacece eggeecagee eccteetgea	6060
geggtggaag eggeteggea gategagegt gaggeeeage ageageagea eetgtaeegg	6120
gtgaacatca acaacagcat gcccccagga cgcacgggca tggggacccc ggggagccag	6180
atggcccccg tgagcctgaa tgtgccccga cccaaccagg tgagcgggcc cgtcatgccc	6240
agcatgcctc ccgggcagtg gcagcaggcg ccccttcccc agcagcagcc catgccaggc	6300
ttgcccaggc ctgtgatatc catgcaggcc caggcggccg tggctgggcc ccggatgccc	6360
agegtgeage cacceaggag cateteacee agegetetge aagacetget geggaeeetg	6420
aagtegeeca geteecetea geageaacag eaggtgetga acatteteaa ateaaaceeg	6480
cagctaatgg cagctttcat caaacagcgc acagccaagt acgtggccaa tcagcccggc	6540
atgcagcccc agcctggcct ccagtcccag cccggcatgc aaccccagcc tggcatgcac	6600
cagcagecea geetgeagaa eetgaatgee atgeaggetg gegtgeegeg geeeggtgtg	6660
cctccacagc agcaggcgat gggaggcctg aacccccagg gccaggcctt gaacatcatg	6720
aacccaggac acaaccccaa catggcgagt atgaatccac agtaccgaga aatgttacgg	6780
aggeagetge tgeageagea geageaaeag eageageaae aacageagea acageageag	6840
cagcaaggga gtgccggcat ggctgggggc atggcggggc acggccagtt ccagcagcct	6900

caaggacccg g	gaggctaccc a	accggccatg	cagcagcagc	agcgcatgca	gcagcatctc	6960
cccctccagg g						7020
gggcagccgg g						7080
attctgcagc a						7140
agcccccagc a						7200
atcgccacgt (7260
cagtcccagc	ctccacattc	cagcccgtca	ccacggatac	agccccagcc	ttcgccacac	7320
cacgtctcac	cccagactgg	ttccccccac	cccggactcg	cagtcaccat	ggccagctcc	7380
atagatcagg	gacacttggg	gaaccccgaa	cagagtgcaa	tgctccccca	gctgaacacc	7440
cccagcagga	gtgcgctgtc	cagcgaactg	tccctggtcg	gggacaccac	gggggacacg	7500
ctagagaagt	ttgtggaggg	cttgtagcat	tgtgagagca	tcaccttttc	cctttcatgt	7560
tcttggacct	tttgtactga	aaatccaggc	atctaggttc	tttttattcc	tagatggaac	7620
tgcgacttcc	gagccatgga	agggtggatt	gatgtttaaa	gaaacaatac	aaagaatata	7680
tttttttgtt	aaaaaccagt	tgatttaaat	atctggtctc	tctctttggt	ttttttttgg	7740
cgggggggtg	ggggggttc	tttttttcc	gttttgttt	tgtttggggg	gaggggggtt	7800
ttgtttggat	tctttttgtc	gtcattgctg	gtgactcatg	cctttttta	acgggaaaaa	7860
caagttcatt	atattcatat	tttttatttg	tattttcaag	actttaaaca	tttatgttta	7920
aaagtaagaa	gaaaaataat	attcagaact	gattcctgaa	ataatgcaag	cttataatgt	7980
atcccgataa	ctttgtgatg	tttcgggaag	attttttct	atagtgaact	ctgtgggcgt	8040
ctcccagtat	taccctggat	gataggaatt	gacteeggeg	tgcacacacg	tacacaccca	8100
cacacatcta	tctatacata	atggctgaag	g ccaaacttgt	cttgcagato	tagaaattgt	8160
					actcttagac	8220
catgctaatg	ttactagaga	agaagcctto	c ttttctttct	tctatgtgaa	a acttgaaatg	8280
					a tacgaaactc	8340
gagaagattc	aatcactgta	tagaatggt:	a aaataccaa	c tcatttctt	a tatcatattg	8400
ttaaataaac	tgtgtgcaad	agacaaaaa	g ggtggtccti	t cttgaattc	a tgtacatggt	8460
attaacactt	agtgttcggg	g gttttttgt	t atgaaaatg	c tgttttcaa	c attgtatttg	8520
gactatgcat	gtgttttt	c cccattgta	t ataaagtac	c gcttaaaat	t gatataaatt	8580
actgaggttt	ttaacatgta	a ttctgttct	t taagatccc	c tgtaagaat	g tttaaggttt	. 8640
ttatttattt	atatatatt	t tttggtctg	t tctttgtaa	a aaaaaaaa	a aaaa	8694

```
<210> 112
     383
<211>
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (383)..(383)
<223> n is a, c, g, t or u
<400> 112
ttttttttt tttttttt tttttttt tttttaaaaa aaaagagttt atttaaaaag
                                                                      60
gttcataggg gaaacaaaca aattggcccc ctttgatttt cttggaatac aaaactcggg
                                                                     120
atgcaaagct gaagttgggg ggccaaaact cttgacaggt gggcttcttt aggggggggg
                                                                     180
ggttttttaa aaaaagaatt atctgggaac cctacgggat taataaagat ttcctttaag
                                                                     240
ggagaggggg ggcgagatgc tggtgttatc ttctgcctca aacagacagt ataagggggc
                                                                     300
ttggttctaa aattoctacc cccgttactt tgggccaagt ttccccatcc ccttgcgttt
                                                                      360
                                                                      383
ggggggggg tgaaaaatgt tgn
<210> 113
<211> 1135
<212> DNA
 <213> Homo sapiens
 <400> 113
ggateeggea acgaaggtae catggeegga eteeggagee geacaaacea gggetegeea
                                                                       60
tgaagccagg attcagtccc cgtgggggtg gctttggcgg ccgagggggc tttggtgacc
                                                                      120
 gtggtggtcg tggaggccga gggggctttg gcgggggccg aggtcgaggc ggaggcttta
                                                                      180
 gaggtcgtgg acgaggagga ggtggaggcg gcggcggcgg tggaggagga ggaagaggtg
                                                                      240
 gtggaggctt ccattctggt ggcaaccggg gtcgtggtcg gggaggaaaa agaggaaacc
                                                                      300
 agtcggggaa gaatgtgatg gtggagccgc atcggcatga gggtgtcttc atttgtcgag
                                                                      360
 gaaaggaaga tgcactggtc accaagaacc tggtccctgg ggaatcagtt tatggagaga
                                                                      420
 agagagtete gattteggaa ggagatgaca aaattgagta eegageetgg aaceeettee
                                                                       480
 gctccaagct agcagcagca atcctgggtg gtgtggacca gatccacatc aaaccggggg
                                                                       540
 ctaaggttct ctacctcggg gctgcctcgg gcaccacggt ctcccatgtc tctgacatcg
                                                                       600
 ttggtccgga tggtctagtc tatgcagtcg agttctccca ccgctctggc cgtgacctca
                                                                       660
 ttaacttggc caagaagagg accaacatca ttcctgtgat cgaggatgct cgacacccac
                                                                       720
 acaaataccg catgctcatc gcaatggtgg atgtgatctt tgctgatgtg gcccagccag
                                                                       780
 accagacccg gattgtggcc ctgaatgccc acaccttcct gcgtaatgga ggacactttg
                                                                       840
```

tgatttccat	taaggccaac	tgcattgact	ccacagcctc	agccgaggcc	gtgtttgcct	900
ccgaagtgaa	aaagatgcaa	caggagaaca	tgaagccgca	ggagcagttg	acccttgagc	960
catatgaaag	agaccatgcc	gtggtcgtgg	gagtgtacag	gccacccccc	aaggtgaaga	1020
actgaagttc	agcgctgtca	ggattgcgag	agatgtgtgt	tgatactgtt	gcacgtgtgt	1080
ttttctatta	aaagactcat	ccgtcaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaa	1135

<210> 114

<211> 5932

<212> DNA

<213> Homo sapiens

<400> 114 ggggcactga ggagcggcgc ccgcggggca gcgaggagcc cgatgcaggg ttctgcgcgt 60 catttccggt cccgcgggcg ccccgtgaag cccacctgga tccgccagcg ctgtgccact 120 ecccagtgcc gagetccgag etgtetccgc ggcetcgcgc ecggececte caccgegcac 180 ctcttaggcc ccgcccgcca gcgtcccttt gttgtgaagg cgccggggcc tagcgctatg 240 cetgeggegg agactgcate aggetetege gtetgettet gegetttgee tgggagagge 300 cctggtggcc tcgttcctgg cgcccggagt ccctgctgcg gccccacccc cgggcggtca 360 eggtgaccca tgctgcccag cctggaggta aaatcgttcg tggctgtggc ttcagcatgt 420 cgtcctcggt gaaaacccca gcactggaag agctggttcc tggctccgaa gagaagccga 480 aaggcaggtc gcctctcagc tggggctctc tgtttggtca ccgaagtgag aagattgttt 540 ttgccaagag cgacggcggc acagatgaga acgtactgac cgtcaccatc acggagacca 600 cggtcatcga gtcagacttg ggtgtgtgga gctcgcgggc gctgctctac ctcacgctgt 660 ggttettett cagettetge acgetettee teaacaagta cateetgtee etgetgggag 720 gegageecag catgetaggt geggtgeaga tgetgtecae caeggttate gggtgtgtga 780 aaaccctcgt tccttgctgt ttgtatcagc acaaggcccg gctttcctac ccacccaact 840 teettatgae gatgetgttt gtgggtetga tgaggtttge aactgtggtt ttgggtttgg 900 tcagcctgaa aaatgtggcg gtttcgtttg ctgagacggt gaagagctcc gccccatct 960 tcacggtgat catgtctcgg atgattctgg gggagtacac agggctgctg gtcaacctct 1020 ccctcatccc agtcatgggc gggctggcgc tgtgcacggc cactgagatc agcttcaatg 1080 tectggggtt eteggeegea etgtecacea acateatgga etgtttgcaa aatgttttt 1140 caaaaaagct gctcagcggg gacaaataca ggttctcggc cccggagctg cagttctaca 1200 ccagcgccgc tgcggtggcc atgctcgtcc cggcccgggt tttctttacg gacgtcccag 1260 tgatcgggag gagcgggaag agcttcagct acaaccagga cgtggtgctg ctgcttctga 1320

cagacggagt	cctgttccac	cttcagagcg	tcacggcgta	cgccctcatg	gggaaaatct	1380
ccccggtgac	tttcagcgtc	gccagcaccg	tgaaacatgc	cttgtccatc	tggctcagcg	1440
		atcaccagct				1500
		aaagccaggc				1560
		ccagacgaca				1620
					actgcatccc	1680
					catggggagc	1740
					gaaactcaaa	1800
					gactgtgtcc	1860
					tgggggtgcc	1920
					tccagtgcca	1980
					: agccatcgaa	2040
					: agagcagggc	2100
					g gtgggcactc	2160
					agaggcatcg	2220
					a ggccgttcag	2280
					c tatcccttcc	2340
					c tacctgtggg	2400
					g gagatgtgta	2460
					t ccccgtgggg	2520
					c acctgtccgg	2580
					t acgtggcgtt	2640
					t ctggggcgcg	2700
					g tacggcacac	2760
					ıg ggcgcaggag	2820
					a tgtctgagct	2880
					g ttgccagcca	2940
					cc agtggtcccg	
					tt cactggtttt	
					ta aaatcgttca	
ccatttgg	it toloacet	y yaaataca	LA LAULGUO.		_	

•		
gaaacagagc aataattctg actcatt	aac ttctacctac tcaaaaaagt ctgccatgat 3180	
gatggaccga agtgaggctt tttaacc	cac aagtaacctt tttatttttt tgagacggtc 3240	
ttgctctgtc acccaggctg gagtgca	gtg gcatgatctt ggctcgctgc agcctcgact 3300	
tectgggete aagtgateca eeteage	ctc ccatgtggct ggaaccgcag gcacgtgcca 3360	
ccatgcctgg ctatttttt gttgagc	tgg getetegett tgttgeeeag getggtettg 3420	
aactcctcgg ctcaagcaat ccttccc	act cagcetectg tagtgtegag aatataggeg 3480	
tgggctacta cacctgcttc agccgct	tct ataaaaccgc tgacctgtgt gtggaggaca 3540	
ggccaggtgt gtgctcactg cgctgcg	gaag atgttttgtc acgtgacttt ccctgggttt 3600	
ccatttettt ttttetgett teeteaa	aaaa ctaatagaag accggctgcg gtagctcagg 3660	
cctctagtcc cagcactttg ggaggct	gca gatggcggat cacaaggcca ggagttcgag 3720	
accageetgg ccaacatgat gaaacco	ctgt ctctaccaaa aatacaaaaa ttagctgggt 3780	
gtgatggtgg gtgcctgtgg tctcag	ctac tcaggaggct gaggcaggag aattgtttga 3840	
gccccagagg cggaggttgc agtgag	ccaa gatcgtgcca ttgcactcca gcctgggcaa 3900	•
cagggcaaga ttccgtctca aaaaca	aaca ctattagaaa atgctctgga ggtggcgggg 3960	
agttgttgat ttgtgaggac agattg	aaag caactcccag ggtggccttg tccacctccc 4020	
catcgagaat atggctgccg gcctct	ttga agattgtggt ctggcataag gagaggtgca 4080	
ggcgcctggt tctgagcacc ttggaa	tttc cagccgcaca gcatctggtg ccctcccctc 4140	
caccctcaca aggagctgcc atcctg	tttg gattttctgt ttgtggacca gaaacaaacg 4200	
tttttccaaa ggattagcaa ataggt	tgat ttcctgtgta acgctgctct ggggcctctt 4260	
cctcatcctg gcagaaggag cctgga	gccc atgaggcagc cagcactgtg cccttgctca 4320	
gtcgtgctgt cccctccctc tccctc	agtc tcttctccat gcccaagtca gtttccagcc 4380	ı
gctggtcttc atggcattcc cagcac	agct ggacaccaag aggcaaaacc caaggcctgg 4440	1
cttggccgtg ttaacgattg tacaga	acatt tttttaaata actttgtgta atacttttct 4500)
agaatagtaa gttcttgttg aactgt	caca gatgagette taggaacaca eegggtgtgg 4560)
ttacttccac tgggtgtgtc catggt	cgtg gtctgtgcct ttgtaaacaa acagaacact 4620)
tgaaccacct tccgaattgg gtcato	egget tetttacatt gataettaga gatttgeage 4680)
tctctaactt tcaaggaaac ttccc	ctact gaaaggcata aaaaggttaa aaaagaaaat 4740)
ccgagagtcc caattccctg tataa	cagca ttaaaataat ctgcctgcct ggaaagatga 4800	0
gaacactgtt gcacaaccca aaatg	tgttt ttaatttgtg aaaaattacc atggtgagtc 4860	0
agacagtcat tttaaacagc tgaac	agaga ctatcatcag caaatagagc tcagctttgt 4920	0
agctgccttt aaaatccttg tccca	aatcc ggtgagetet gettgetgee geegegetee 4980	0

tgggtgatca o	ctcagacggg	tcagtgggaa	taacgggcca	acaagacagc	tttttacatg	5040
tgtccaaagg a						5100
gaatgacatt (5160
ggggtttctt						5220
agagcatccg a						5280
gtgggacatc						5340
agtatttcct						5400
cactcaacga						5460
				ttgctcattt		5520
					ccacagtcag	5580
					tcacagccaa	5640
					acacaaaacg	5700
					gtgctttcta	5760
					aagttgatac	5820
					g cagccgtggt	5880
				tgttaaatat		5932

<210> 115 <211> 3926

<212> DNA

<213> Homo sapiens

<400> 115 caactgtgaa gaatttaaaa cttagtataa attggtccta ccagatccct ccttttaatt 60 gtccatgcat gcagggagtt tttgttgaaa gttttaaaag aactgggtat gcaggtatgg 120 tttgtagggt tgtatactaa tagattgaga atccgaagcg ctctcttgga tgtactagat 180 ctgtccccat tttttaagtt tgaatgcagt tgtgcaacat gaaaactgca gtgacatgtt 240 accatttgac tgtctccgta gttcgtgatg catctgttgc atgctatgtt ttcaaagctc 300 actgctatat tggctttgaa gtaaaccttc ctaataaagc tgtaggcttt attgaggtca 360 ggattatata aggcacaata ccctctgggg gaaaaaaatc atttgcccta gctgtaatta 420 cagaacataa atttcactac gtactcccta cctacagtga agaataatgt aggaaacgtt 480 attettgaat tgtetagetg atgegtggag cageageate ceaagtttga caaggeataa 540 gaaagacatt aagggaattt taccttgcag cagttaggtc gtctgcattt taagcttgga 600 agtagttttg tgctgtgcat gcataaaagc tgttggcaga ccagattata tttgccttta 660

tgctttaaaa at	ttagtgatt (ratectogag	ttctgcggaa	taataattaa	ggcttgggtt	720
ttagatccaa aa						780
						840
cattggtgga a						900
tgttgttggt a						
atggatcaaa a						960
tcaaatctat g						1020
cccctcttaa a	ggtagagat	ggggtttatt	taatgcaggt	actgttacaa	tacaactgat	1080
gtgttttgct g	tegtteece	ctgcttaaag	cacttgatgc	ataactctgt	ctaccttcat	1140
tccgtagtaa g	Jacagagacg	cttggcttca	gacattttcc.	tttgggtatt	aatgtgtaag	1200
ttgtgctaca a	ıcataatttt	ctctttttaa	ggttgtgttg	ctttctgcca	caatgccaac	1260
tgatgtgttg g	gaagtgacca	aaaaattcat	gagagatcca	attcgaattc	tggtgaaaaa	1320
ggaagaattg a	acccttgaag	gaatcaaaca	gttttatatt	aatgttgaga	gagaggaatg	1380
gaagttggat a	acactttgtg	acttgtacga	gacactgacc	attacacagg	ctgttatttt	1440
tctcaatacg a						1500
agtttctgct (1560
ccggtcaggg t						1620
					cctttgccaa	1680
					acttagtata	1740
					caattttaa	1800
					: ttggttataa	1860
			·		: agcatcttgg	1920
					y taacatcaaa	1980
						2040
					taaatttgta	2100
					a gattgtggac	2160
					a gtgatgttct	
					t ggtgtcgcct	2220
					a ataaattgaa	2280
ttgtactttg	ttatatgatg	g taaaaaaag	a ctttttaaa:	a aatacagga	g tcgatagcag	2340
cagttggtga	cgagatggca	a ctcagaaac	g gcgttgacg	t aatttagga	c gtggaatcat	2400
aagcgaaaca	gcacactgtt	tgaataaag	a gcgagtcgg	t atttatatt	t gtttttcttt	2460

PCT/US03/13015 WO 03/090694

, , , , , , , , , , , , , , , , , , ,	520
tgtcatgatt atttgatttt taagttgctc cagctaagge atttettige usbugsing	
ctattaggga acctttctta ttaggtggtt tgtattgtct ggtttctdd dogonggong	580
ctgtttggca gttaaacacg tttagagtaa tttgagttac aacgtgtgaa actgagcaaa 2	2640
	2700
	2760
	2820
	2880
	2940
	3000
	3060
	3120
	3180
gctataaact ttggttactg aagaagacaa gaggattctt cgtgacattg agactttcta	3240
caatactaca gtggaggaga tgcccatgaa tgtggctgac cttatttaat tcctgggatg	3300
agagttttgg atgcagtgct cgctgttgct gaataggcga tcacaacgtg cattgtgctt	3360
ctttctttgg gaatatttga atcttgtctc aatgctcata acggatcaga aatacagatt	3420
ttgatagcaa agcgacgtta gtcgtgagct cttgtgagga aagtcattgg ctttatcctc	3480
tttagagtta gactgttggg gtgggtataa aagatggggt ctgtaaaatc tttctttctt	3540
agaaatttat ttoctagtto tgtagaaatg gttgtattag atgttotota toatttaata	3600
atatacttgt ggactaaaag atataagtgc tgtataaaat cagccaatta tgttaaacta	3660
gcatatctgc ctttattgtg tttgtcatta gcctgagtag aaaggccttt aaaatttttt	3720
	3780
tagaaagcat ttgaatgcat tttgtttggt attgtattta ttcaataaag tatttaatta	3780
gtgctaagtg tgaactggac cctgttgcta agccccagca agcaatccta ggtagggttt	3840
aatccccagt aaaattgcca tattgcacat gtcttaatga agtttgaatg ttaaataaat	3900
tgtatattca ctttaaaaaa aaaaaa	3926

<210> 116 <211> 1637 <212> DNA <213> Homo sapiens

<400> 116 ctggggtttg gctgtccgga cggtgcagcg gcgaggccgg ccgcgaagat gccagtggcg 60 gtgatggcgg aaagcgcctt tagtttcaaa aagttgctgg atcagtgcga gaaccaggag 120

•						
			ccagtgtatg			180
ttgctccata	atgacatgaa	taatgcaaga	tatctttgga	aaagaatacc	acctgctata	240
aaatctgcaa	attctgaact	tgggggaatt	tggtcagtag	gacaaagaat	ctggcagaga	300
gatttccctg	ggatctatac	aaccatcaac	gctcaccagt	ggtctgagac	ggtccagcca	360
attatggaag	cacttagaga	tgcaacaagg	agacgcgcct	ttgccctggt	ctctcaagcg	420
tatacttcaa	tcatcgccga	tgattttgca	gcctttgttg	gacttcctgt	agaagaggct	480
gtgaaaggca	tattagaaca	aggatggcaa	gctgattcca	ccacaagaat	ggttctgccc	540
agaaagccag	ttgcaggggc	cctggatgtt	tcctttaaca	agtttattcc	cttatcagag	600
cctgctccag	ttcccccaat	acccaatgaa	cagcagttag	ccagactgac	ggattatgtg	660
gctttccttg	aaaactgatt	tatcactctg	agttcaagat	tcatcttcag	aatcctgtat	720
actgacaaac	gtagaaatgt	aaagtttgta	tttcaattt	attggatggo	ttaagcacct	780
cagcattcct	tactatgtga	taaaatacat	atagaatata	agatatacta	tatacatttt	840.
gtccataaac	gttatgctga	atagttgttg	aaacagttct	. cattttgtag	tatttaataa	900 .
tctggatgga	gcctgtcagt	attacagtta	gttttctagt	gactcataaa	ataagatttc	960
ctgtttcatg	, tagaatagt	, tttgtcaact	gtctttctc	: tgtcccagca	catgccgtac	1020
tcttatatgt	accattggtt	gataattata	a atgattcatt	tggacttgaa	a gaaagattgt	1080
ccccaggcad	agtatctgaa	tcactgggga	a ttatgattca	a ccctctttgg	g agaacatgct	1140
ctcttttcac	c ccccacct	c ctgagagcca	a ctaatgtaag	g atacagaaa	atagctgagg	1200
aacaaataga	a ccatttccat	t actaaacca	g tttgttaaci	ttagatttt	t tocaatagtg	1260
tgagtatat	c cattgctgg	c agtggaggg	c ttgccatga	a aatgcaact	t atttaagaca	1320
tttatgaga	c atattaact	t gtgctgtcg	c cttttagaa	g gagaaactt	a agtgtggaat	1380
gcattatat	g ggcaaagaa	g ctatgaaga	t acatgatac	a ctttgtaca	a ctatcctgca	1440
gcccattgg	t tgcttatat	t tatcgcttg	g ctcaagttc	t geeetttgg	a gaaatactga	1500
					t tgttgtaact	1560
					t atttaactga	1620
	a aaaaaaa					1637

<210> 117 <211> 2382 <212> DNA <213> Homo sapiens

<400> 117 agtaccgctg cggccggggg attgggccgg ggtctccacc gccgaccgag gggagcggcg

teegetegge cetgettttt gegaeetgee gteageeeca egtegeegge etggagggge	120
gaagaggacg aggggcgcaa ggcttcctcc ggggacattg gctccctgga ttatcaagca	180
gtttgtagtt gacattgaat ccaggctgag gatggaaggt gtggaactta aagaagaatg	240
gcaagatgaa gattttccga tacctttacc agaagatgat agtattgaag cagatatact	300
agctataact ggaccagagg accagcctgg ctcactagaa gttaatggaa ataaagtgag	360
aaagaaacta atggctccag acattagcct gacactggat cctagtgatg gctctgtatt	420
gtcagatgat ttggatgaaa gtggggagat tgacttagat ggcttagaca caccgtcaga	480
gaatagtaat gagtttgagt gggaagatga tcttccaaaa cccaagacta ctgaagtaat	540
taggaaaggc tcaattactg aatacacagc agcagaggaa aaagaagatg gacgacgctg	600
gcgtatgttc aggattggag aacaggacca cagggttgat atgaaggcaa ttgaacccta	660
taaaaaagtt atcagccatg ggggatatta tggggatgga ttaaatgcca ttgttgtatt	720
tgctgtctgt ttcatgcctg aaagtagtca gcctaactat agatacctga tggacaatct	780
ttttaaatat gttattggca ctttggagct attagtagca gaaaactaca tgatagttta	840
tttaaatggt gcaacaactc gaagaaaaat gcccagtctg ggatggctca ggaaatgtta	900
tcagcaaatt gatagaaggt tacggaaaaa tctaaaaatcc ctaatcattg tacatccttc	960
ttggtttatc agaacacttc tggctgttac aagaccattt attagctcga aattcagcca	1020
aaaaattaga tacgtgttta atttggcaga actagcagaa cttgtcccca tggaatacgt	1080
tggcatacca gaatgcataa aacaagttga tcaagaactt aatggaaaac aagatgaacc	1140
gaaaaatgaa cagtaagttt ggcatctagt ccaaacaaga ctgaagaatg tgctgatgga	1200
gcagtgctgt ttctgcattc ataatgcatt tattggccca tatttttatg taacctgtta	1260
caaaatagac ttgacttttt cataatggac ttttgtatta tacaagggac tgttcactgc	1320
tgtactggtt tgcaaatttc ttgaatttag ctctttaata gctaactgta ttattatcgt	1380
tttatatttt atattgctaa atagagaacc acactttata taaagtagtt tttgcatttg	1440
tttattgaat gatgcatctt cttcggtgaa atatttatat gcataaatgg caaaggaaag	1500
aaataatata tatttttatg tcattgagca atatttttc aatgtgtacc tgtcttatgg	1560
aagaaatatg caggtatata agaccacgat tttctaagct gccatataag aatttttgtt	1620
tttgtaaatg gttaaataca tttcctgggt aacttaggaa attaagcttt ttcataaggc	1680
aacagatggt aaactgattg tcatgaatac ccaaagatca tgtatataat cgaagtgtat	1740
tagtaccatc ccaaggtttt tttctcattt aacatatttg tttcataatt cagcaagtac	1800
agatgcaagc gcattgcaca ctttttcctt tctaaactta aagacaagtc aaaaagccat	1860
tcttagaact agaggattta agcagggtcg gaattacggg tttgtatata tgtatatact	1920

cgtttgtata	tatgtatata	ctgggacatt	ttatcttctg	gcccaaagtc	agaactttat	1980
aaaaatcttg	agtttgttca	cttaatgtga	aataagctat	gtgtccaggg	tattgctccc	2040
ctgagtgtat	atgagtgctg	agtagtattg	cagagaatgt	gatgagttat	cactgtcaca	2100
actttttcta	tagaaaacag	gggctgcttt	taaactctca	ctatgggaca	ctttaccaaa	2160
atacttccat	atcaattatt	tgaacccggt	agtttgtttg	acctagttag	attgtggtgt	2220
ttattcaagt	ttgaaatcat	gtttgacaat	actgtaaatt	aggttaattt	tgaagtctta	2280
gcatcatcat	attgtgctgt	tttggataac	acgtttgttc	aagaacattt	aaactgtttc	2340
tttggtgtcc	tttacattga	aataaattgt	gtttgtgcct	cc		2382

<210> 118 <211> 1563

<212> DNA

<213> Homo sapiens

<400> 118 60 gcacatatcc ttttttactg cagatttact ttaaggctca tattctccaa gtctattctg 120 ctttaaaaag aagacaagaa aagaagtggt ttatcaaaat cacgttataa tcagattttg 180 accaagcatt ttgtaagatt gccaagtatg cccacggaca tggaacacac aggacattac 240 ctacatcttg cctttctgat gacaacagtt ttttctttgt ctcctggaac aaaagcaaac 300 tataccegte tgtgggetaa cagtacttet teetgggatt cagttattea aaacaagaca 360 ggcagaaacc aaaatgaaaa cattaacaca aaccctataa ctcctgaagt agattataaa 420 ggtaattcta caaacatgcc tgaaacatct cacatcgtag ctttaacttc taaatctgaa 480 caggagettt atatacette tgtegteage aacagteett caacagtaca gageattgaa 540 aacacaagca aaagtcatgg tgaaattttc aaaaaggatg tctgtgcgga aaacaacaac 600 aacatggcta tgctaatttg cttaattata attgcagtgc tttttcttat ctgtaccttt 660 ctatttctat caactgtggt tttggcaaac aaagtctctt ctctcagacg atcaaaacaa 720 gtaggcaagc gtcagcctag aagcaatggc gattttctgg caagcggtct atggcccgct 780 gaatcagaca cttggaaaag aacaaaacag ctcacaggac ccaacctagt gatgcaatct 840 actggagtgc tcacagctac aagggaaaga aaagatgaag aaggaactga aaaacttact 900 aacaaacaga taggttagtg aagaaaaatg caaagtagca atgagaaggc ttatggagta 960 aaaatgaagt cagttggtat ttaatcccaa agtgttgttc tgattatcta aaatttgaca 1020 tggtagacct tgcaatttag aatcaagcag gtgagacagg gagaagtatg cctgcttaat 1080 tatttaaact gtgtactttt gttttgacac tgaatatttt aaaaagcaaa taataaaata 1140

actaagcatt tgaggaaaat	tttaaggata	aattgaggaa	actgattaat	agagatagca	1200
agggataatt aaataaatat	tccctatgta	gcaacagtgg	ttagatgatc	tttgtctgaa	1260
tgtaataaaa ctttgaatag	ttttagtgtg	tccttaaagc	caagtatatg	ctttaacatc	1320
aaatggaagt caaattccta	atgcatagat	agagagagct	aaactgtgta	atttaatggt	1380
atcttccttg ctggatgtgg					1440
agaataggtc ctttatcttt					1500
attaaattaa aacctttact					1560
cgt					1563
<210> 119 <211> 729					
<212> DNA <213> Homo sapiens					
<400> 119				taataaacca	60
cttgcttcgg acgccggatt					
gcgctcggca agttctccca					120
cccaatggcg agaagccgga	cgagttcgag	tccggcatct	: cccaggctct	tctggagctg	180
gagatgaact cggacctcaa	ggctcagctc	agggagctga	atattacggo	c agctaaggaa	240
attgaagttg gtggtggtcg	g gaaagctato	ataatctttc	ttcccgttc	c tcaactgaaa	300
tetttecaga aaatecaagt	ccggctagta	a cgcgaattgg	g agaaaaagti	t cagtgggaag	360
catgtcgtct ttatcgctca	a gaggagaatt	ctgcctaag	c caactcgaaa	a aagccgtaca	420
aaaaataagc aaaagcgtc	c caggagccgt	t actctgacaq	g ctgtgcacg	a tgccatcctt	480
gaggacttgg tcttcccaa	g cgaaattgt	g ggcaagaga	a teegegtea	a actagatggc	540
agccggctca taaaggttc	a tttggacaa	a gcacagcag	a acaatgtgg	a acacaaggtt	600
gaaacttttt ctggtgtct	a taagaagct	c acgggcaag	g atgttaatt	t tgaattccca	660
gagtttcaat tgtaaacaa	a aatgactaa	a taaaaagta	t atattcaca	g taaaaaaaaa	720
aaaaaaaa					729
<210> 120 <211> 5504					
<212> DNA <213> Homo sapiens					
<400> 120					
aagctttttg tggcaacct					60
atcgttccta ctggggctg	ıt cagcggctt	t agctcacto	g gcgctagat	g ggagtgtece	120

ctccgtaccc (ggacgaaggc	ggggcgcccg	ctggcaaagc	gcattttcca	gcgcaagctg	180
tttggggtgc (240
ctgtgcagcc						300
caaaggctgg						360
geccaggetg						420
		agcagcagga				480
		tectgteete				540
					caaagccgac	600
					ccctgtttac	660
					aagactgccg	720
					gtegggetgg	780
					caccetttgc	840
					cccgcgccca	900
					a cagggcaggg	960
					ctccgaccgc	1020
					actggggccg	1080
					ggagcaccct	1140
					c tgacgtccgc	1200
					t cccctcccc	1260
					g cgctcggcgg	1320
					g ggcgggccgg	1380
					c cgcactccgc	1440
					c cccggcaaac	1500
					g gecaegeege	1560
					a tccagaaaca	1620
					ıg gtaggccagg	1680
					g tccccaggtt	1740
					gg tttgcaaaag	1800
					cc actgccgacc	1860
					eg geageegggg	1920
					cc ctctcccgct	1980
-55455						

ccgtccagca	agatcttgct	ggttttgcgc	gtgtataggt	ggagggtgga	ggcgagtcgg	2040
gatccgccaa	gagtgggga	aaaaaaggaa	aagaatcagc	tgggagttcc	tctgcggctc	2100
		ttccgttttt				2160
gacagagaaa	tccctggcca	acctcaacct	gaacaacatg	ctggacaaga	aggcggtggg	2220
gacgcctgtg	geegeegeee	ccagctcggg	cttcgcgccg	ggattcctcc	gacggcactc	2280
ggccagcaac	ctgcatgcac	tegeceacce	cgcgcccagc	cccggcagct	gctcgcccaa	2340
gttcccgggc	gccgctaacg	gcagcagctg	cggcagcgcg	geggeeggeg	gtccggacct	2400
ctacggcacc	cttaaggagc	cgtcgggggg	cggcggcaca	gccctgctca	acaaggagaa	2460
caaattccgg	gaccgctcgt	ttagcgagaa	. cggcgatcgc	agccagcacc	tcctgcacct	2520
					acaagaccga	2580
gctgtgccgg	cccttcgagg	agagcggcac	gtgcaagtac	: ggcgaaaagt	gccagttcgc	2640
gcatggcttc	cacgagetge	gcagcctgad	tcgccatccg	g aagtacaaga	a ccgagctgtg	2700
ccgcaccttt	cataccatc <u>c</u>	gettetgeed	ctatgggccg	g cgctgccact	tcatccacaa	2760
cgcggacgag	gegegeeeg	g cgccgtcggg	g gggcgcctco	ggggacctto	gtgcctttgg	2820
cacgcgcgat	gcgttgcaco	tgggcttcc	c gegggagee	g cggcccaag	t tgcaccacag	2880
cctcagctto	tegggette	c egtegggee	a ccatcagcc	c cegggegge	c tcgagtcgcc	2940
gctgctgct	gacagecec	a cgtcgcgca	c geegeegee	g ccctcctgc	t cttcggcctc	3000
gtcctgctc	c teeteegee	t cctcctgtt	c ctcggcctc	c geggeetee	a cgccctcggg	3060
cgccccgac	a tgctgcgcc	t ccgcggccg	c tgcggccgc	t ctgctgtac	g gcaccggggg	3120
cgccgagga	c ctgctggcg	c cgggggccc	c gtgcgcggc	c tgctcgtcg	g cctcgtgcgc	3180
caacaacgc	c ttcgccttc	g gtccggagc	t cagcagcct	c atcacgccg	c tegecateca	3240
gacccacaa	c tttgccgcc	g tggccgccg	c cgcctacta	c cgcagtcag	c agcagcagca	3300
gcagcaggg	c ctggcgccc	c ccgcgcago	c gccggcgcc	g cccagcgcg	ga eccteceege	3360
cggggccgc	c gcacctccc	t cgccgccct	t cagetteea	g ctgccgcgc	cc gcctgtccga	3420
ctcgcccgt	g ttcgacgc <u>c</u>	c ccccagc	cc cccggacto	eg ctgtcggad	cc gcgacagcta	3480
cctaagcgg	c tecetgage	t ccggcagc	ct cagcggcto	ct gagtetee	ca gcctcgaccc	3540
tggccgccg	gc ctgccaato	et teageege	ct ctccatct	cc gacgactg	ag gcaagagggc	3600
gccagtgag	gg aggaaggg	aa ggcggttc	ag agatgttg	ga ggacaccc	ct cgccatctcg	3660
cccttgctg	gg gggcacggg	ga gtgggggg	gg tgacatgg	gc cctaggca	gt ctgcaagccc	3720
taccgagca	ac ttggactc	ga actctgtg	cc gggagggg	cc cccacccc	tc ctttttcggt	3780

•						2040
	ctttttttt					3840
gtcgaacttt	ttctgttgaa	taaaatattc	acaacagggc	agttgtgata	cgaatagaac	3900
aaaaaaaaa	aaaaaaacac	ttaaactttg	ttaggactcc	gatgagtttg	ggacttcagg	3960
aaaaatcaac	ccagcaccag	cagctaccaa	ccaccattcc	atctcttcac	ttgaacagca	4020
ttagttaagt	ccagatgtgg	gaacccttct	cttggaagaa	gttcctaatt	gtgtctcaga	4080
ccggtgtaaa	caaaccagcc	agccgccacc	ttgctaaacc	tataagcttt	ttaaaatcca	4140
atatattctg	ccaagaatat	gccttgatag	ttagccctca	gcccataggt	gttttttgtt	4200
tttaacaga	attatatatg	tctgggggtg	aaaaaaccct	tgcattccaa	agctccatac	4260
tggttacttg	gtttcattgc	caccacttag	tggatgttca	gtttagaacc	attttgtctg	4320
ctccctctgg	aagccttgcg	cagagcttac	tttgtaattg	ttggagaata	actgctgaat	4380
tttagctgt	tttgagtgat	tcgcaccact	gcaccacaac	tcaatatgaa	aactatttaa	4440
cttatttatt	atcttgtgaa	aaatatacaa	tgaaaatttt	gttcatactg	tatttatcaa	4500
gtatgatgaa	aagcaataga	tatatattct	tttattatgt	taaattatga	ttgccattat	4560
taatcggcaa	aatgtggagt	gtatgttctt	ttcacagtaa	tatatgcctt	ttgtaacttc	4620
acttggttat	tttattgtaa	atgagtacaa	aattcttaat	ttaagagatt	gtatgtaata	4680
tttatttcat	taatttcttt	ccttgtttac	gtaaattttg	aaagattgca	tgatttcttg	4740
acagaaatcg	atcttgatgc	tgtggaagta	gtttgaggaa	catcctatga	gttttcttag	4800
aatgtataaa	ggttgtagco	catccaactt	caatgaaaaa	aatgaccaca	a tactttgcaa	4860
tcaggctgaa	atgtggcatg	cttttctaat	tccaacttta	taaactagca	a aaaaagtgtt	4920
tgcttattcc	accagttcta	ı ctgtgacata	ctcgagtata	aagacatgta	a gccataacgg	4980
ggagtgggg	g gggagtctco	atgcctttga	agggcccgac	tgccttaaa	t cttcctcaac	5040
caaatacgta	a ttttattagt	gattgagaga	a atctgaatgt	aggatgggt	t caactgcaca	5100
aaaggaaaa	g atttttacca	a cttttttat	atagatataa	a agtgaagca	a cccgccttag	5160
tgctgaaat	a tgtagtacat	gaatatgcci	tgtttaatta	a cagaaaatt	c caaaacttgt	5220
actatttt	t tttccatgta	a gaaaggcag	g aatgtctcct	aagctttcc	t ggcagcagat	5280
gaatcagcg	g tagctttag	t ttgtcgtag	g tacagttgg:	a gcactatat	g tactctctgg	5340
actactttg	g acagaagta	g gtttttgaa	t gtaacaaga	t aagtcaact	t gagttgtaat	5400
atattttgg	g aaatcagct	c actacaaat	t gtagactgt:	a aacattgta	c tgtaaatgtt	5460
ttgtagttt	t cccccaata	a aatttttgg	g aaaaaaggg	a attc		5504

<210> 121 <211> 521

<212> DNA <213> Homo sapiens

ggggaatgtc ttccactagt ggtcgctaaa aatgtagaaa tatcataggg agtgcaaatt <400> 121 60 acattgtete tttacetgee acaatetgge ageacteate atgtageaaa tgeecaaata 120 atagactaca gattatagtg acttcaccct aggttaacat tatttctagg taaggtacta 180 gtatatctga attgaaaagt ggggcagctg ttgactcaga ttcggcattt taattacatt 240 gtttccaagt atgatattct gagagtgtct atagcactta gtgtctgctt catataaact 300 accagttatt atatatttat gatgcaagta gttttccaaa tgtggtgaaa gtctgagtct 360 ttttatcccc atgggtaaaa tctgaatctg gctctctgtg tctctcagtg cttgtttatt 420 gctggtcaga gagtaaattc ttgataaaag ctgttgactt ggctctcaca gtttatgcag 480 521 acattggaga gacaatttgg ttatttcaaa catcacagga t

<210> 122 1766 <211> <212> DNA <213> Homo sapiens

<400> 122 ggcaaatccg gcccaggatg tagagctggc agtgcctgac ggcgcgtctg acgcggagtt 60 gggtggggta gagagtaggg ggcggtagtc gggggtggtg ggagaaggag gaggcggcga 120 atcacttata aatggcgccg aagcaggacc cgaagcctaa attccaggag ggtgagcgag 180 tgctgtgctt tcatgggcct cttctttatg aagcaaagtg tgtaaaggtt gccataaagg 240 acaaacaagt gaaatacttc atacattaca gtggttggaa taaaaattgg gatgaatggg 300 ttccggagag cagagtactc aaatacgtgg acaccaattt gcagaaacag cgagaacttc 360 aaaaagccaa tcaggagcag tatgcagagg ggaagatgag aggggctgcc ccaggaaaga 420 agacatctgg tctgcaacag aaaaatgttg aagtgaaaac gaaaaagaac aaacagaaaa 480 cacctggaaa tggagatggt ggcagtacca gtgagacccc tcagcctcct cggaagaaaa 540 gggcccgggt agatcctact gttgaaaatg aggaaacatt catgaacaga gttgaagtta 600 aagtaaagat tootgaagag otaaaacogt ggottgttga tgactgggac ttaattacca 660 ggcaaaaaca gctcttttat cttcctgcca agaagaatgt ggattccatt cttgaggatt 720 atgcaaatta caagaaatct cgtggaaaca cagataataa ggagtatgcg gttaatgaag 780 ttgtggcagg gataaaagaa tacttcaacg taatgttggg tacccagcta ctctataaat 840 ttgagagacc acagtatgct gaaattcttg cagatcatcc cgatgcaccc atgtcccagg 900 tgtatggagc gccacatctc ctgagattat ttgtacgaat tggagcaatg ttggcttata 960

•						
cacctctgga	tgagaagagc	cttgctttat	tactcaatta	tcttcacgat	ttcctaaagt	.1020
acctggcaaa	gaattctgca	actttgttca	gtgccagcga	ttatgaagtg	gctcctcctg	1080
	gaaagctgtg					1140
	gttcttagtc					1200
	atgtttgttt					1260
	tttcttcttt					1320
	acagagggat					1380
					atgttaatgc	1440
					tataactgaa	1500
					gagcccatcc	1560
tttgcaagto	atccatgttg	ttacttaggc	attttatctt	ggctcaaatt	gttgaagaat	1620
ggtggcttgt	: ttcatggttt	ttgtatttgt	gtctaatgca	cgttttaaca	tgatagacgc	1680
					ttttcagatc	1740
	tttttctta					1766

<210> 123 <211> 1732 <212> DNA

<213> Homo sapiens

<400> 123 ttttgtgaag agacgaagac tgagcggttg tggccgcgtt gccgacctcc agcagcagtc 60 ggcttctcta cgcagaaccc gggagtagga gactcagaat cgaatctctt ctccctcccc 120 ttcttgtgag atttttttga tcttcagcta cattttcggc tttgtgagaa accttaccat 180 caaacacgat ggccagcaac gttaccaaca agacagatcc tcgctccatg aactcccgtg 240 tattcattgg gaatctcaac actcttgtgg tcaagaaatc tgatgtggag gcaatctttt 300 cgaagtatgg caaaattgtg ggctgctctg ttcataaggg ctttgccttc gttcagtatg 360 ttaatgagag aaatgcccgg gctgctgtag caggagagga tggcagaatg attgctggcc 420 aggttttaga tattaacctg gctgcagagc caaaagtgaa ccgaggaaaa gcaggtgtga 480 aacgatctgc agcggagatg tacggctcct cttttgactt ggactatgac tttcaacggg 540 actattatga taggatgtac agttacccag cacgtgtacc tcctcctcct cctattgctc 600 gggctgtagt gccctcgaaa cgtcagcgtg tatcaggaaa cacttcacga aggggcaaaa 660 gtggcttcaa ttctaagagt ggacagcggg gatcttccaa gtctggaaag ttgaaaggag 720 atgacettea ggeeattaag aaggagetga eecagataaa acaaaaagtg gattetetee 780

tggaaaacct ggaaa	aaaatg gaaaaggaad	c agagcaaaca	agcagtagag	atgaagaatg	840
ataagtcaga agag	gagcag agcagcagc	t ccgtgaagaa	agatgagact	aatgtgaaga	900
tqqaqtctga gggg	ggtgca gatgactct	g ctgaggaggg	ggacctactg	gatgatgatg	960
ataatgaaga togg	ggggat gaccagctg	g agttgatcaa	ggatgatgaa	aaagaggctg	1020
	gacaga gacagcgcc				1080
	atcccat tatttcttt				1140
	ccctagt atcttcago				1200
	aattcat attgccccg				1260
	gttaagt cttacccts				1320
	aaaaagg atgtatggt				1380
					1440
	acagttc ttttcatto				
gcaaaggcaa tct	catttag ttgagtag	ct cttgaaagc	a gctttgagtt	agaagtatgt	1500
gtgttacacc ctc	acattag tgtgctgt	gt ggggcagtt	c aacacaaatg	taacaattat	1560
	agttggc atgtcaaa				1620
	tttctaa agttgata				1680
	tcaaaat aaacaagt				1732

<210> 124

<211> 2543

<212> DNA

<213> Homo sapiens

<400> 124 ctccggcgca gtgttgggac tgtctgggta tcggaaagca agcctacgtt gctcactatt 60 acgtataatc cttttctttt caagatgcct gaggaagtgc accatggaga ggaggaggtg 120 gagacttttg cctttcaggc agaaattgcc caactcatgt ccctcatcat caataccttc 180 tattccaaca aggagatttt ccttcgggag ttgatctcta atgcttctga tgccttggac 240 aagatteget atgagageet gacagaeeet tegaagttgg acagtggtaa agagetgaaa 300 attgacatca tececaacce teaggaacgt accetgactt tggtagacae aggeattgge 360 atgaccaaag ctgatctcat aaataatttg ggaaccattg ccaagtctgg tactaaagca 420 ttcatggagg ctcttcaggc tggtgcagac atctccatga ttgggcagtt tggtgttggc 480 ttttattctg cctacttggt ggcagagaaa gtggttgtga tcagaaagca caacgatgat 540 gaacagtatg cttgggagtc ttctgctgga ggttccttca ctgtgcgtgc tgaccatggt 600 gagcccattg gcatgggtac caaagtgatc ctccatctta aagaagatca gacagagtac 660

ctagaagaga ggcgggtcaa agaagtagtg aagaagcatt ctcagttcat aggctatccc	720
	780
	840
	900
	960
	.020
	L080
	1140
	1200
	1260
	1320
	1380
	1440
	1500
	1560
caggtggcca actcagcttt tgtggagcga gtgcggaaac ggggcttcga ggtggtatat	1620
atgaccgagc ccattgacga gtactgtgtg cagcagctca aggaatttga tgggaagagc	1680
ctggtctcag ttaccaagga gggtctggag ctgcctgagg atgaggagga gaagaagaag	1740
atggaagaga gcaaggcaaa gtttgagaac ctctgcaagc tcatgaaaga aatcttagat	1800
aagaaggttg agaaggtgac aatctccaat agacttgtgt cttcaccttg ctgcattgtg	1860
accagcacct acggctggac agccaatatg gagcggatca tgaaagccca ggcacttcgg	1920
gacaacteca ceatgggeta tatgatggee aaaaageace tggagateaa eeetgaeeac	1980
cccattgtgg agacgctgcg gcagaaggct gaggccgaca agaatgataa ggcagttaag	2040
gacctggtgg tgctgctgtt tgaaaccgcc ctgctatctt ctggcttttc ccttgaggat	2100
ccccagaccc actccaaccg catctatcgc atgatcaagc taggtctagg tattgatgaa	2160
gatgaagtgg cagcagagga acccaatgct gcagttcctg atgagatccc ccctctcgag	2220
ggcgatgagg atgcgtctcg catggaagaa gtcgattagg ttaggagttc atagttggaa	2280
aacttgtgcc cttgtatagt gtccccatgg gctcccactg cagcctcgag tgcccctgtc	2340
ccacctggct ccccctgctg gtgtctagtg ttttttccc tctcctgtcc ttgtgttgaa	2400
ggcagtaaac taagggtgtc aagccccatt ccctctctac tcttgacagc aggattggat	2460
gttgtgtatt gtggtttatt ttattttctt cattttgttc tgaaattaaa gtatgcaaaa	2520

2543 taaagaatat gccgttttta tac 125 <210> 401 <211> <212> DNA <213> Homo sapiens <400> 125 cttccgccag cttccctcct cttcctttct ccgccatcgt ggtgtgttct tgactccgct 60 getegecatg tetteteaca agaettteag gattaagega tteetggeca agaaacaaaa 120 gcaaaatcgt cccattcccc agtggattcg gatgaaaact ggaaataaaa tcaggtacaa 180 ctccaaaagg agacattgga gaagaaccaa gctgggtcta taaggaattg cacatgagat 240 ggcacacata tttatgctgt ctgaaggtca cgatcatgtt accatatcaa gctgaaaatg 300 tcaccactat ctggagattt cgacgtgttt tcctctctga atctgttatg aacacgttgg 360 401 ttggctggat tcagtaataa atatgtaagg cctttctttt t <210> 126 <211> 1466 <212> DNA <213> Homo sapiens ggcacgaggc tgagccagcg acgccctcca ttcactctcc gcgcccgttc tccggctgtc <400> 126 60 ctcccgttcc gctgcccgcc ctgccaccat gacggaacag gccatctcct tcgccaaaga 120 cttcttggcc ggaggcatcg ccgccgccat ctccaagacg gccgtggctc cgatcgagcg 180 ggtcaagctg ctgctgcagg tccagcacgc cagcaagcag atcgccgccg acaagcagta 240 caagggcatc gtggactgca ttgtccgcat ccccaaggag cagggcgtgc tgtccttctg 300 gaggggcaac cttgccaacg tcattcgcta cttccccact caagccctca acttcgcctt 360 caaggataag tacaagcaga tetteetggg gggegtggae aageaeaege agttetggag 420 gtactttgcg ggcaacctgg cctccggcgg tgcggccggc gcgacctccc tctgcttcgt 480 gtaccegetg gatttegeea gaaccegeet ggeageggae gtgggaaagt caggeacaga 540 gcgcgagttc cgaggcctgg gagactgcct ggtgaagatc accaagtccg acggcatccg 600 gggcctgtac cagggcttca gtgtctccgt gcagggcatc atcatctacc gggcggccta 660 cttcggcgtg tacgatacgg ccaagggcat gctccccgac cccaagaaca cgcacatcgt 720 ggtgagctgg atgatcgcgc agaccgtgac ggccgtggcc ggcgtggtgt cctacccctt 780 cgacacggtg cggcggcgca tgatgatgca gtccgggcgc aaaggagctg acatcatgta 840 cacgggcacc gtcgactgtt ggaggaagat cttcagagat gaggggggca aggccttctt 900

•	
caagggtgcg tggtccaacg tcctgcgggg catggggggc gccttcgtgc tggtcctgta	960
cgacgagete aagaaggtga tetaagggee geggeeteet ecacacacac acacacaca	1020
ggggaaccaa gagaaccacg tagaatcctc aaccgtgcgg accatcaacc ttcgagaaat	1080
tccagttgtc tttttcccag ccgcatcctg cctgtagatg gccggggaag gctctagaaa	1140
aggggcgcat tgcgatccaa ccatcggcag ccgattccgt gtcttgatca cggggtggga	1200
gggaaccgtg gcgtccctgc gtggggccca tgggtgagac actccagtac tgagacctag	1260
agtccagatg cttgtaggag ccaagtcgtg ttctaagtat ttatttaaaa caaaagaatc	1320
acgttttccc atttgtactt cagcgctagc ccctgttttg cacagccgag tactggcgag	1380
tatgttctat gttgggcctc ctgctgcaaa acaataaaca gaggacgcag aaaaaaaaaa	1440
aaaaaaaaa aaaaaaaa aaaaaa	1466
<pre><210> 127 <211> 477 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (462)(462) <223> n is a, c, g, t or u</pre>	
<400> 127 tttggtgttc agttttgcca attttattga accaataaaa ttcctactaa taacaatgaa	60
ataaatttct gcaagtataa atgtgataca gtttaacaaa acccattgtt ctgtacctat	120
aaatagattt tcaaaatgtc ataaaaagtg cagttatgaa ttgttaacat gttaatacac	180
agtteettta ttteagatgt gtttgtettg aeteaetaae agtteettet geatetgtee	240
aaataatgtt accctccctc caaagaaaaa aagagtcatt aaagcactag aatattacac	300
ataaactgat ccatttaggt cagctttagt cagaactgta aaatcagcaa acataagaaa	360
aacaaaacct agtaatacat acaaaagctt tcatgggttc tagaaccttc ttaactgctg	420
attcatgtgg agggcattaa gagttgaaaa ggcttatatg gntaactacc ttagact	477
<210> 128 <211> 3875 <212> DNA <213> Homo sapiens	
<400> 128 ggcacgaggg taaatatggc ataagttaat aacacttttc cccaaaatgg tgctttggat	60
ttgaaaaggg tctgatgggg agaaggagaa cgtatcatcc tagcttcctc tcttaataaa	120
cctagaaaaa cgggtagtaa actgtggata gtcaggaaaa cacccagcaa gggacacagc	180

tataagaaa t	gaatcttcc	CCCCAACCCC	caccatgcag	atggatagac	agaatctttc	240
			ttggatttgt			300
			tggtctataa			360
			cccctggagt			420
			cccctagaaa			480
			atggctggtt			540
			gtcctctgga			600
			ctctggacac			660
			ggagagttgg			720
			ggcacactcg			780
			tttgccttac			840
			ttcatatcta			900
			attgttaagc			960
			gtgccagtcc			1020
					tgagctccca	1080
					atatgtgaat	1140
					agcacgcaga	1200
					gtatttttgt	1260
					: aaacaaatgg	1320
					g caattcagct	1380
					gtacaaggtt	1440
					a atctgaaatt	1500
					g gataatttgt	1560
					c actgagaata	1620
						1680
					a gttctctcct	1740
					g ctcctcatct	1800
					t taatgettea	1860
					g gaagaacagt	1920
					a ctgttgcaaa	1980
gtcaattgac	: ttaaaagat	a aatacaaga	a caccygage	c adactigit	c aagatgttgc	

caataacaca aatgaagaag ctggggatgg cact	accact g	ctactgtac	tggcacgctc	2040
tatagccaag gaaggcttcg agaagattag caaa				2100
aggtgtgatg ttagctgttg atgctgtaat tgct				2160
gaccacccct gaagaaattg cacaggttgc tacg				2220
tggcaatatc atctctgatg caatgaaaaa agtt				2280
ggatggaaaa acactgaatg atgaattaga aatt	tattgaa g	gcatgaagt	ttgatcgagg	2340
ctatatttct ccatacttta ttaatacatc aaaa	aggtcag a	aatgtgaat	tccaggatgc	2400
ctatgttctg ttgagtgaaa agaaaatttc tag	tatccag t	ccattgtac	ctgctcttga	2460
aattgccaat gctcaccgta agcctttggt cat	aatcgct c	gaagatgttg	atggagaagc	2520
tctaagtaca ctcgtcttga ataggctaaa ggt	tggtctt o	caggttgtgg	cagtcaaggc	2580
tccagggttt ggtgacaata gaaagaacca gct	taaagat a	atggctattg	ctactggtgg	2640
tgcagtgttt ggagaagagg gattgaccct gaa	itcttgaa g	gacgttcagc	ctcatgactt	2700
aggaaaagtt ggagaggtca ttgtgaccaa aga	egatgcc a	atgctcttaa	aaggaaaagg	2760
tgacaaggct caaattgaaa aacgtattca aga	aatcatt (gagcagttag	atgtcacaac	2820
tagtgaatat gaaaaggaaa aactgaatga acg	ggcttgca	aaactttcag	atggagtggc	2880
tgtgctgaag gttggtggga caagtgatgt tga	aagtgaat	gaaaagaaag	acagagttac	2940
agatgccctt aatgctacaa gagctgctgt tga	aagaaggc	attgttttgg	gagggggttg	3000
tgccctcctt cgatgcattc cagccttgga ctd	cattgact	ccagctaatg	aagatcaaaa	3060
aattggtata gaaattatta aaagaacact caa	aaattcca	gcaatgacca	ttgctaagaa	3120
tgcaggtgtt gaaggatctt tgatagttga gaa	aaattatg	caaagttcct	cagaagttgg	3180
ttatgatgct atggctggag attttgtgaa ta	tggtggaa	aaaggaatca	ttgacccaac	3240
aaaggttgtg agaactgctt tattggatgc tg	ctggtgtg	gcctctctgt	taactacagc	3300
agaagttgta gtcacagaaa ttcctaaaga ag	agaaggac	cctggaatgg	g gtgcaatggg	3360
tggaatggga ggtggtatgg gaggtggcat gt	tctaactc	ctagactagl	t getttacett	3420
tattaatgaa ctgtgacagg aagcccaagg ca	gtgttcct	caccaataa	c ttcagagaag	3480
tcagttggag aaaatgaaga aaaaggctgg ct	gaaaatca	ctataacca	t cagttactgg	3540
tttcagttga caaaatatat aatggtttac tg	gctgtcatt	gtccatgcc	t acagataatt	3600
tattttgtat ttttgaataa aaaacatttg ta	acattcctg	atactgggt	a caagagccat	3660
gtaccagtgt actgctttca acttaaatca ct	gaggcatt	tttactact	a ttctgttaaa	3720
atcaggattt tagtgcttgc caccaccaga tg				3780
tgagaataat tgtgtacaaa gtagagaagt at	tccaattat	gtgacaacc	t ttgtgtaata	3840

aaaatttgtt taaagttaaa aaaaaaaaaa aaaaa

3875

129 <210> 2058 <211> DNA Homo sapiens <400> 129 ttttgaacaa attgttttaa atgtaatata agagaattag tttaaggaag taaagagaat 60 catttgcttg tgttacattt tcagtgagga ttcagtttaa gagtcattct taggacttcc 120 atttcctaat atttattcat gggtaatgaa gaaatggttt gcattttgtg gccagtccta 180 atttattttc cagctgagcc ctaacttccg gctcccacct acctccacgg acttcctaac 240 agagacttaa gaataccagg atgtgttttt gttaagtcag gttcaattcg ttgcccctgt 300 cagttttata gagtgtgagg gtcactccat taaagatctc tcctgggtgg atcctacttg 360 gatgttcagg tgattttgaa aactgctaac atttttaaaa ggctagaaca tcctttgact 420 tcttgaaaat ctgcatgtct ggcttgggtt ttattaccac atgcctgagt tcttcaagaa 480 tggaaggete aagtattete atetteeatt tgecaaaett eetteetgat ttgagteaeg 540 tgttccactt ggaaagaaag ggaacagaga gcctcctcca tggacagtgt atgaatttca 600 ttgggaatct tgctctccc cgcctctatg cctttctctc tttttaacct tactttacat 660 aatattatag atgggccaag aaaagaaaag atgacataac attttgatga attacaccta 720 ttccattctt cacgtttcag aattggtcga ctttgttaga agataattga agtagccttg 780 ggtcaaaagc aaccttttca attgtgatca tacctaaaac atataaaaac cctgccgtag 840 attaaaagca attataaaat cataaaattg aatgtttgca gaatcctgga gcagtagatt 900 teettgtett tggeetgegg actagaaaga gggeageagt agtatgetgg agetteeetg 960 ggataccagc cacatggttt cttttcatta gatctgattt ttgtttccca ctgtagatct 1020 gattttgtag ttgaaaacat ttcaccacca tcaaacacta tttctgaata ttgtgccttt 1080 ttatacctag cctagatgaa aaccgatgcc attettatte agaaaateee cccatectae 1140 atgactgtta tctagacata aagcaaagtg catttaattc aaaatttggt tcacaatata 1200 agtattttgt aaaagccagc tgaaccagca ttttatcagg tggaaatctc tgcaagccaa 1260 attgctgata ctccttcatg cagatcaact tggtgtccca gtcagaatag aacagcataa 1320 ttacctggag ttagggggag tatttctgca ctattacttg tcagggagag aagaaactta 1380 gaattgtccc tcaaaggagt gtcaagaagt atgaataaat gtcctttcac cagctcacag 1440 gccagaaatg gaggacccaa gtcaactagg tgaaactact agcagaccca gctttcccat 1500 aataacctaa tctgcaaatt gttctattaa agtctcattg ttttcaggat gcaatgaaag 1560

aaggctttgg	aaaaataagt	ggaacatgac	tgatcttgaa	aaaaaagca	1620
tatttgatac	aagtttactt	agctacaaca	tactttacat	tgttgccttt	1680
caggcactga	cattttatat	ttagaaaata	cttttaatct	ttctaatctt	1740
tattagtgtc	cattctgtat	gactcgctaa	cctactttgc	aaggctttgg	1800
, agctcattaa	cttcaagatg	atgtgtcatc	tgtataggtc	aaagaatggg	1860
					1920
atttttgttg	aagtttttg	taaaaaaaaa	ttatttacaa	tgttatttga	1980
					2040
					2058
	tatttgatac caggcactga tattagtgtc agctcattaa tgaggaattt attttgttg	tatttgatac aagtttactt caggcactga cattttatat tattagtgtc cattctgtat agctcattaa cttcaagatg tgaggaattt gctgttgaca atttttgttg aagttttttg taaatgctgt gaatctatat	tatttgatac aagtttactt agctacaaca caggcactga cattttatat ttagaaaata tattagtgtc cattctgtat gactcgctaa agctcattaa cttcaagatg atgtgtcatc tgaggaattt gctgttgaca gccaaagtat attttgttg aagttttttg taaaaaaaaa taaatgctgt gaatctatat ttgttgtttt	tatttgatac aagtttactt agctacaaca tactttacat caggcactga cattttatat ttagaaaata cttttaatct tattagtgtc cattctgtat gactcgctaa cctactttgc agctcattaa cttcaagatg atgtgtcatc tgtataggtc tgaggaattt gctgttgaca gccaaagtat agtgtacaag atttttgttg aagttttttg taaaaaaaaa ttatttacaa taaatgctgt gaatctatat ttgttgtttt gtatataaa	aaggetttgg aaaaataagt ggaacatgae tgatettgaa aaaaaaagea tatttgatae aagtttaett agetacaaca taetttaeat tgttgeettt eaggeactga eattttatat ttagaaaata ettttaatet ttetaatett tattagtgte eattetgat gaetegetaa eetaetttge aaggetttgg ageteattaa etteaagatg atgtgteate tgtataggte aaagaatggg tgaggaattt getgttgaea geeaaagtat agtgtaeaag attgatgtaa atttttgttg aagttttttg taaaaaaaa

<210> 130

<211> 14807

<212> DNA <213> Homo sapiens

<400> 130 tettggageg tteteagttt eteaacagat etteaettge taggeageea gaageeggeg 60 gcagtggcgg caccgcctcc tcctcacatt cccggggtgg cggggttaga tgagcggccc 120 cagtegegge geegggggeg etgtteatge eggtteeega eggeteegtg getgetgegg 180 ggctggggct ggggctaccc gccgcggact ccccgggtca ctaccagctg ctgctgtcag 240 geegggeeet ggeegaeege taeeggagga tttataeege tgegeteaat gaeagggaee 300 aggggggggg cagcgctgga cacccagcct ccaggaataa gaaaatttta aataagaaga 360 aattgaaaag aaaacagaag agcaaatcaa aagtgaagac aagaagcaag tctgaaaact 420 tagagaatac agtaatcata ccagatatca aactacatag caatccttct gctttcaata 480 tttactgtaa tgtacgccat tgcgttctgg aatggcagaa aaaggaaata tcattggcag 540 ccgcatctaa gaactctgtg cagagtggag aatcagatag tgatgaagaa gaggaatcca 600 aagagccccc tatcaagctt ccaaagatta ttgaggttgg cctttgtgaa gtttttgaat 660 tgatcaaaga gacacgattt tctcatccat ccctgtgtct caggagtctc caagccctgc 720 tcaacgtgct gcagggccag cagccagaag tgctccagtc tgagccacct gaggtcctag 780 agtctctctt ccagcttctt ttggaaatca ccgttcgaag tactgggatg aatgacagca 840 caggacagtc cttaacagca ctttcctgtg cttgcctctt tagtctggtg gcttcttggg 900 gagaaacagg aaggacactt caggccatct ctgctatcct caccaacaat ggaagccatg 960 cttgccaaac tattcaggtg ccaacaattc taaattcgct acagagaagt gtacaagcag 1020 ttttggtggg aaaaattcaa attcaggact ggtttagtaa tggcattaag aaagcagctt 1080

gaaatgatgg aktittitett tatetatata geaaggatgg attatataaa ataggatetgg 1200 gatacagtgg aacagttagg ggccatatat acaattetac atcecgtatt agaaacagaa 1260 aagaaaaaaaa gtettggtta gggtatgetc agggttatt attatataag gatgtgaata 1320 accacagcat gacagccata aggataagcc ctgaaacact ggagcaagat ggatctgaa 1380 tgttaccagt ttgccacact gaaggtcaaa atattttat cactgatgg gaatatatta 1440 accgtgttet acagcaagaa ttgcacactt aactggtcag aatatttgcc acaagcactg 1560 gtatetcatt acaagaagact ttgcatatta aagacaggaa ttgaaacaga 1680 attattacac tdtggtaac agaacgaagt ttgcactat aaaacagaca attggaagaa 1680 tatattacac tdggaaatac caaagatag acacttctca gttggaacag 1800 tatattacac tggacagata ttgcacaaca atctttaca gttggacaaga 1800 gtaaaggatga gatagaga	taatgcacaa gtggccatta aaagaaatat ctgttgatga	agatgaccaa	tgtctacttc	1140
gatacagtgg acaagtaagg ggctatata acaattctac acceptate agaaacagaa 1220 aagaaaaaaa gtcttgtta gggtatgct agggtattt attatataga gatgtgaata 1320 accacagcat gacagccata aggataagcc ctgaaacact gagacagat gatactgtga 1380 tgttaccaga ttgccacact gaagtcaaa atattttat cactgatgga gaatatatta 1440 accatgtagt ttgccacata acatgtgctag aatatttgc cacagcacact 1500 acctgttct acagcagaa ttgcactta aactggctag attgatagg 1620 gtatctcatat attcgacact gacagagagt ttgcgctata aagaacagga attgatagag 1680 tatattaca ttggcaaata caaagacaga ttgcgctata aattgagaga 1740 aatgggttga gctaccaatt acaaaactc caaagatag acatttaca 1920 ataggettcac aggatggaa tcaattaaga gaaagagga attcttaca 1920 gtaaagagaa ttctgtatta gaagagagat taatt	•			1200
aagaaaaaaa gtcttggtta gggtatgctc agggtattt attataaga gatgtgaata 1330 accacagcat gacagccata aggataagcc ctgaaacact ggagcaagat ggtactgtga 1380 tgttaccaga ttgccacact gaaggtcaaa atatttatt cactgatgga gaatatatta 1440 atcagatagc tgcttcaaga gatgatggct ttgttgtcag aatatttgcc acaagcactg 1500 aacctgttct acagcaagaa ttgcaactta aactggctag aaaatgctta catgcctgtcc 1560 gtatctcatt attcgatctg gaaaaggact tgcatattat aagtacagga tttgatgagg 1620 agtatataca tggcaagaa tcttgggcag ggacgaggt ttgcgctaat gaaaacagca aatggaaaga 1680 tatattacac tggcaaatac cagagtcttg gaatcaaaca aggtggtcct tcagcaggaa 1740 aatgggttga gctaccaatt acaaaatctc caaagatagt acacttctca gttggacacg 1800 atgggtctcta cgccctttta gttgcagaag atgggagcat atcettaca ggtaggacacg 1800 atggctctca cgccctttta gttgcagaag atgggagcat atcettaca ggatctgcta 1860 gtaaaggaga agatggagaa tcaattaaga gcaaagagca atccaaacct tataaaccta 1920 aaaagataat taagatggaa ggaaagattg tggtatatac agcctgcaat aatggaaga 1980 gttctgttat ttctaaagat ggaaagattg tggtatatac agcctgcaat aatggaaga 1980 atagttcaag tttggtaact gatttgaagg gccattttg aactcaagat gctatgggca 2100 aaggacagtg tggaacgaga actggggggaa actgggggggggg				1260
tgttaccaga tgcacata aggataagcc ctgaaacac ggagcaagat ggtactgtga 1400 tgttaccaga ttgccacact gaaggtcaaa atatttatt cactgatgga gaatatatta 1440 atcagatagc tgcttcaaga gatgatggct ttgttgtcag aatatttgc acaagcactg 1500 aacctgttct acagcaagaa ttgcaactta aactggctag aaaatgctta catgcctgtc 1560 gtatctcatt attcgatctg gaaaaggact tgcatatta aagtacagga tttgatgagg 1620 agtcagcaat tcttggtgca ggacgagggt ttgcgctaat gaaaacagca aatggaagga 1740 aatgggttga gctaccaatt acaaaatctc caaagatagt acacttca gttggacacg 1800 atgggctctca cgccctttta gttgcagaag atgggagcat attcttaca gttggacacg 1800 atggactata taagatggaa tcaattaaga gcagacgga atccaaacct tataaaccta 1920 aaaaggataat taagatggaa ggaaagattg tggtatatac agcctgcaat aatggaagga 1980 gttctgttat ttctaaagat ggagaactct acatgttgg aaaagatgc atttactctg 2040 atagtccacac ttgtgttta atgaagaag gccattttg aactcaggta gctattggg 2100 aaagctcacac ttgtgttta atgaagaag gcagagggg gacatttggt gtaaataata 2160 aaagacagg tggacgaga actggacga actggacga attggaaggg tttggaggggg 220 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actagatgg gacatttggt gtaaataata 2160 aaggacagg ggagcttgt ggttgtgca tggaagaaga actagatga aaagatgga 220 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actagatga aaagatggg 220 aaaatatggc agactgtaca ggttatggag ccagctggt gagacaggg tttggagttg 220 aagtccacac ttgtgttta atgaagaaga ccagaagac ggaagagg tttggagatg 220 aagtctatgat gtgccctcca ggcatgcac aatggaagac gagaagagg tttggagatg 220 aagtccagg aggatctgt ggttgtggt ccgagagac gagaagag aggcagaga 220 gagtccccgg agggatctgt ggttgtggt ccgagagac ttggttggt gtgtgtggt 220 atgcagagaa agaatgaa ccttcag ttacgacaa aagaaaaacg gaaacagg aagacaaga 220 acattgaaga acaccttcag ttacgacaa aagaaaaacg gcaacgtga atcagaggc 220 acattgaaga acaccttcag ttacgacaa aagaaaaacg gcaacgtga atcagaggc 220 acattgaaga agaaagaag ggccccttg tatttgctgg tcctatttt atgaaccatc 220 acagaacaaga tggaaggaag gccccttg tatttgctgg tcctatttt atgaaccatc 220 acagaacaaga tggaaggaag gacaccatc atccagcac cgtaaagca aaccgaaa 2200 acagaacaaaga tggaaggaag gaaaagaggc aaaaagagaga aagaaaaacg aaaacgaaaacga 2200 acagaacaaag				1320
atcagatage tgetteaaga gatgatgget ttgttgteag aatattttatt cactgatgga gaatatatta 1400 aacctgttet acagcaagaa ttgeaactta aactggetag aaatatttge acagcactg 1500 gtateteatt attegatetg gaaaaggact tgeatattat aagtacagga tttgatgagg 1620 agtateteat tettggtgea ggacgagagt ttgegetaat gaaaacagca aatggaaaga 1680 tatattacac tggeaaatac cagagtettg gaatcaaaca aggtggteet teagcaggaa 1740 aatgggttga getaccaatt acaaaatete caaagatagt acacteteca gttggacacg 1800 atggetetea getacaagaa atgggaggaa atgggatetea ateetataca ggateggaa aaaggaggaa teaattaaga geagaggga ateetataa aggateggaa ateetatea ggateggaa aaaggagaga aggatggagaa teaattaaga geagacgga ateetataca ggatetgeta 1860 gttacaaggaa agatggagaa teaattaaga geagacgga ateetatea ggatetgeta 1800 aaaggataat taagatggaa ggaaagattg tggtatatac ageetgcaat aatggaagta 1920 aaaagteea ttetaaagat ggagaactet acatgtttgg aaaagatgec atttactetg 2040 atagteeaag tttggtaact gatttgaagg gecattttgt aactcaggta getatgggaa 2220 aageetgaaga acaggaagaga actggtgeea actgggagaga agatggaga actggtgeea aggagagggga gaaattaggga 2220 aaaaatatgge aacagcaatg gatgaagace tggaagaaga actagatgaa aaagatgaga 2280 aggeeteegg aggagatetee ggatgagaga caggaggggga aggagaggg tttggaggaggagggaggeeeggaaggaggagggagagggagga				1380
acctgatage tgetteaaga gatgatgget ttgttgtag aatatttgee acaagcateg 1500 aacctgttet acagcaagaa ttgcaactta aactggetag aaaatgetta catgeetgte 1560 gtateteatt attegatetg gaaaaggaet tgcatattat aagtacagga tttgatgagg 1620 agtateteatt attegatetg gaaaaggaet ttgcgetaat gaaaacagca aatggaaaga 1680 tatattateaca tggcaaatac cagagtettg gaatcaaaca aggtggteet teagcaggaa 1740 aatgggttga getaccaatt acaaaatete caaagatagt acaettetea gttggacacg 1800 atgggetetea cgccetttta gttgcagaag atgggagca atcetatea ggatetgeta 1860 gtaaaggaaga agatggagaa teaattaaga gcagacggca atceaacet tataaaceta 1920 aaaagataat taagatgga ggaaagattg tggatataca agcetgcaat aatggaagta 1980 gttetgttat ttetaaagat ggaagacet acaettetga aacacgaatag atggagaga atggtgaca atteatetg 2040 aagcetcacac ttgtgttta atgaagaatg gccattttg aactcaggta getatggga 2100 aaggacacaca ttgtgttta atgaagaatg gagaggtgg gacatttgg gacatttgg gtaaataata 2160 aaggacagge tggacagaga accggaaca actggagaga acaeggagga acaeggagga acaeggaggaga actggagaga acaeggaggaga acaeggaggagagagagagagagagagagagagagagaga	· · · · · · · · · · · · · · · · · · ·			1440
aacctgttct acagcaagaa ttgcaactta aactggctag aaaatgctta catgcctgtc gtatctcatt attcgatctg gaaaaggact tgcatattat aagtacagga tttgatgagg 1620 agtcagcaat tcttggtgca ggacgagagt ttgcgctaat gaaaacagca aatggaaaga 1680 tatattacac tggcaaatac cagagtcttg gaatcaaaca aggtggtcct tcagcaggaa 1740 aatgggttga gctaccaatt acaaaatctc caaagatagt acacttctca gttggacacg 1800 gtaaaaggaga agatggagaa tcaattaaga gcagacgga atccaaacct tataaaccta 1920 aaaagataat taagatggaa ggaaagattg tggtatatac agcctgcaat aatggaagta 1980 gttctgttat ttctaaagat ggaaagattg tggtatatac agcctgcaat aatggaagta 1980 gttctgttat ttctaaagat ggaaagattg tggtatatac agcctgcaat aatggaagta 2040 aaggctcacac ttgtgttta atgaagaaga ggaaggtgg gcattttgt aactcaggta gctatggga 2100 aaggcaagtg tggacgagat actggtgcaa tggaagagg ttggagggg 2220 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actggaagag ggagggggg 3230 gggaaaggg tttggagttg 2220 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actggaagag 2280 aggtctgtgg agactgga gggagggg 3230 gggagggg 3230 gggagggg 3230 gggagggg 3230 gggagggg 3230 gggagggg 3230 gggagggg 3230 gggagggg 3230 gggagggg 3230 gggagggg 3230 gggagaggg 3230 gggagggggaggggggggggggggggggggggggggg				1500
agtcagcaat tettggtgca ggacgaggt ttgcgtaat aagtacagga tttgatgagg 1620 agtcagcaat tettggtgca ggacgaggt ttgcgctaat gaaaacagca aatggaaaga 1680 tatattacac tggcaaatac cagagtettg gaatcaaaca aggtggteet teagcaggaa 1740 aatgggttga gctaccaatt acaaaatete caaagatagt acacttetca gttggacacg 1800 atggctetca cgccetttta gttgcagaag atgggagcat attetttaca ggatetgcta 1860 gtaaaaggaga agatggagaa teaattaaga gcagacggca atccaaacet tataaaceta 1920 aaaagataat taagatggaa ggaaagattg tggtatatac agcetgcaat aatggaagta 1980 gttetgttat teetaaagat ggagaactet acatgtttgg aaaagatgc atttactetg 2040 atagttcaag tttggtaact gatttgaagg gccattttgt aactcaggta gctatgggca 2100 aagctcacac ttgtgttta atgaagaatg gagaggtgtg gacatttggt gtaaataata 2160 aaggacagtg tggacgagat actggtgcca tggaacaagg tgggaaaggg tttggagttg 2220 aaaatatggc aacagcaatg gatgaagace tggaagaaga actagatgaa aaagatgag 2280 agtctatgat gtgccetcca ggcatgcaca aatggaagat gggagagtgc atggtttgca 2340 ctgtctgtgg agactgtaca ggttatggag ccagctgtgt cagtagtgga cggccagaca 2400 gagtccccgg agggatetgt ggttgtggt cccgagagate tggttgtggt 2520 atgcaaggc ctgtgcaaga gagttagatg gtcaagagge aagacaaaga ggaattettg 2520 atgcagtgaa agaaatgata cctttagate ttcttttage tgtcccagtg cccggggtta 2520 acattgaaga acaccttcag ttacgacaag aagaaaaaag gcaacgtgta atcagaagge 2640 acagattaga ggaaggaaga ggccccttg tatttgctgg tcctatttt atgaaccate 2700 gagaacagg tctagccag ctcagaaca ctcagatcc atccagcaca cgtaaagca aaacgggaca 2700 gagaacagg tccaaaaga ggaaggagg acaaaggcg aaaaggacaaaaaa aacgggaca 2700 gagaacaaga tggaaggaaga ggcccccttg tatttgctgg tcctatttt atgaaccate 2700 gagaacaaga tggaagtgga gaaagaggc aaaaagagcg aaacagaacaaaacaacacacac				1560
tatattacac tggcaaatac cagagtcttg gaatcaaaca aggtggtcct tcagcaggaa 1740 aatgggttga gctaccaatt acaaaatctc caaagatagt acacttctca gttggacacg 1800 atggctctca cgccctttta gttgcagaag atgggagcat attctttaca ggatctgcta 1860 gtaaaggaga agatggagaa tcaattaaga gcagacggca atccaaacct tataaaccta 1920 aaaagataat taagatggaa ggaaagattg tggtatatac agcctgcaat aatggaagta 1980 gttctgttat ttctaaagat ggagaactct acatgtttgg aaaagatgc attactctg 2040 atagttcaag tttggtaact gatttgaagg gccattttgt aactcaggta gctatggca 2100 aagctcacac ttggtttta atgaagaatg gagaggtgtg gacatttggt gtaaataata 2160 aaggacagtg tggacgagat actggtgcca tgaaccaagg tgggaaaggg tttggagttg 2220 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actagatgaa aaagatgaga 2280 agtctatgat gtgccctcca ggcatgcaca aatggaagct gaggcagtgc atggtttgca 2340 ctgtctgtgg agactgtaca ggttatgga ccagctgtgt cagtagtgga cggccagaca 2400 gagtccccgg agggatctgt ggttgtggtt ccggagaatc tggttgtgct gtgtgtggat 2520 atgcagtgaa agaaatgata cctttagatc ttcttttagc tgtcccagtg cccggggtta 2520 acattgaaga acaccttcag ttacgacaag aagaaaaacg gcaacgtgta atcagaaggc 2640 acagattaga ggaaggaaga ggccccttg tatttgctgg tcctatttt atgaaccatc 2700 gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2700 gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 gagaacagag tggaaggaaga ggcccccttg tatttgctgg tcctatttt atgaaccatc 2700 gagaacagag tggaaggaga gaaagaggc aaaagagacg aagcaaaaga aaacgggaca 2760 gagaacagag tggaaggaga ggaaggagg aaaaggacg aaacgaaaga aaacgagaca 2760 gagaacagag tggaaggaga gaaagaggc aaaagagacg aaacagaaca aaacgggaca 2760 gagaacagag tggaaggaag agaagaggg aaaaagagac aaacgaaaaca 2760 gagaacaaaga tggaaggaga gaaagaggc aaaaagagac aaacgaaaaca aaacgggaca 2760 gagaacaaaga tggaaggaaga gaaaaagaggc aaaaagagac aaacgaaaaca aaacgggaca 2760				1620
aatgggttga gctaccaatt acaaaatctc caaagatagt acacttctca gttggacacg 1800 atggctctca cgccctttta gttgcagaag atgggagcat attcttaca ggttggacacg 1800 gtaaaggaga agatggagaa tcaattaaga gcagacggca atccaaacct tataaaccta 1920 aaaagataat taagatggaa ggaaagattg tggtatatac agcctgcaat aatggaagta 1980 gttctgttat ttctaaagat ggagaactct acatgtttgg aaaagatgcc atttactctg 2040 atagttcaag tttggtaact gattgaagg gccattttgt aactcaggta gctatgggca 2100 aaggccacac ttgtgtttta atgaagaatg gagaggtgg gacatttggt gtaaataata 2160 aaagacagtg tggacgagat actggtgcca tgaaccaagg tgggaaaggg tttggagttg 2220 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actagatgaa aaagatgaga 2280 agtctatgat gtgccctcca ggcatgcaca aatggaagct ggagcagtgc atggtttgca 2340 ctgtctgtgg agactgtaca ggttatggag ccagctgtg cagtagtgga cggccagaca 2400 gagtccccgg agggatctgt ggttgtggt ccggagaatc tggttgtgct gtgtgtggat 2520 atgcaggac ctgtgcaaga gagttagatg gtcaagagg aagacaaaga ggaattcttg 2520 atgcagtgaa agaaatgata cctttagatc ttctttagc tgtcccagtg cccggggtta 2580 acattgaaga acaccttcag ttacgacaa aagaaaaacg gcaacgtgta atcagaagg 2640 acagattaga ggaaggaaga ggcccccttg tatttgctgg tcctatttt atgaaccatc 2700 gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aacagcaca 2760 agcacaaaga tggaagtgga gaaagaggcg aaaaggagca aagcaaaatc acaacatacc 2820				1680
gtaaaggaga agatggagaa tcaattaaga gcagacggca atccaaacct tataaaccta 1920 aaaaggaga agatggagaa tcaattaaga gcagacggca atccaaacct tataaaccta 1920 gttctgttat tagaaggaga ggaaagattg tggtatatac agcctgcaat aatggaagta 1980 gttctgttat ttctaaagat ggagaactct acatgtttgg aaaagatgc atttactctg 2040 atagttcaag tttggtaact gatttgaagg gccattttgt aactcaggta gctatgggca 2100 aagctcacac ttgtgtttta atgaagaatg gagaggtgg gacatttggt gtaaataata 2160 aaaggacagtg tggacgagat actggtgcca tgaaccaagg tgggaaaggg tttggagttg 2220 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actagatgaa aaagatgaga 2280 agtctatgat gtgccctcca ggcatgcaca aatggaagct ggagcagtgc atggtttgca 2340 ctgtctgtgg agactgtaca ggttatggag ccagctgtg cagtagtgga cggccagaca 2400 gagtccccgg agggatctgt ggttgtggt ccggagaatc tggttgtgct gtgtgtggat 2460 gttgcaaggc ctgtgcaaga gagttagatg gtcaagagg aagacaaaga ggaattcttg 2520 atgcagtgaa agaaatgata cctttagatc ttcttttagc tgtcccagtg cccggggtta 2580 acattgaaga acaccttcag ttacgacaag aagaaaaacg gcaacgtgta atcagaaggc 2640 acagattaga ggaaggaaga ggcccccttg tatttgctgg tcctatttt atgaaccatc 2700 gagaacaagg tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 agcacaaaga tggaagtgga gaaagaggcg aaaaggatgc aagcaaaatc acaacatacc 2820				1740
gtaaaggaga agatggagaa tcaattaaga gcagacggca atccaaacct tataaaccta 1920 aaaagataat taagatggaa ggaaagattg tggtatatac agcctgcaat aatggaagta 1980 gttctgttat ttctaaagat ggagaactct acatgtttgg aaaagatgcc atttactctg 2040 atagttcaag tttggtaact gatttgaagg gccattttgt aactcaggta gctatgggca 2100 aagctcacac ttgtgtttta atgaagaatg gagaggtgtg gacatttggt gtaaataata 2160 aaggacagtg tggacgagat actggtgcca tgaaccaagg tgggaaaggg tttggagttg 2220 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actagatgaa aaagatgaga 2280 agtctatgat gtgccetcca ggcatgcaca aatggaagct ggagcagtgc atggtttgca 2340 ctgtctgtgg agactgtaca ggttatggag ccagctgtg cagtagtgga cggccagaca 2400 gagtccccgg agggatctgt ggttgtggt ccgagaatc tggttgtgc gtgtgtggat 2460 gttgcaaggc ctgtgcaaga gagttagatg gtcaagagg aagacaaaga ggaattcttg 2520 atgcagtgaa agaaatgata cctttagatc ttcttttagc tgtcccagtg cccggggtta 2580 acattgaaga acaccttcag ttacgacaag aagaaaaacg gcaacgtgta atcagaaggc 2640 acagattaga ggaaggaaga ggcccccttg tatttgctgg tcctatttt atgaaccatc 2700 gagaacaagg tctagccaga ctcagatcc accagcaca cgtaaagcat aaacgggaca 2760 agcacaaaga tggaagtgga gaaaggggg aaaaggatgc aagcaaaatc acaacatacc 2820	aatgggttga gctaccaatt acaaaatctc caaagatag	t acacttctca	gttggacacg	1800
aaaagataat taagatggaa ggaaagattg tggtatatac agcctgcaat aatggaagta 1980 gttctgttat ttctaaagat ggaagactct acatgtttgg aaaagatgcc atttactctg 2040 atagttcaag tttggtaact gatttgaagg gccattttgt aactcaggta gctatgggca 2100 aagctcacac ttgtgtttta atgaagaatg gagaggtgtg gacatttggt gtaaataata 2160 aaggacagtg tggacgagat actggtgcca tgaaccaagg tgggaaaggg tttggagttg 2220 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actagatgaa aaagatgaga 2280 agtctatgat gtgccctcca ggcatgcaca aatggaagct ggagcagtgc atggtttgca 2340 ctgtctgtg agactgtaca ggttatggag ccagctgtg cagtagtga agggtcccgg agggatctgt ggttgtggtt ccggagaatc tggttgggt ggcatggat 2460 gttgcaaggc ctgtgcaaga gagttagatg gtcaagagc aagacaaaga ggaattcttg 2520 atgcagtgaa agaaatgata cctttagatc ttcttttagc tgtcccagtg cccggggtta 2580 acattgaag agaagaaga ggccccttg tatttgctgg tcctatttt atgaaccatc 2700 gagaacaggc tctagccaga ctcagatcc atccagcaca cgtaaagca aaccggaca 2760 agcacaaaga tggaagtgga gaaagaggg aaaagaggc aaagacaaaac acacatacc 2820 agcacaaaga tggaagtgga gaaagaggc aaaagaggc aagacaaatc acaacatacc 2820 agcacaaaga tggaagtgga gaaagaggcg aaaagggcg aaggaaaca ccgtaaaagca aaccggaca 2760 agcacaaaga tggaagtgga gaaagaggg aaaagaggcg aaaaggatg aagcacaaaca 2820	atggctctca cgccctttta gttgcagaag atgggagca	t attctttaca	a ggatctgcta	1860
gttctgttat ttctaaagat ggagaactct acatgtttgg aaaagatgc atttactctg 2040 atagttcaag tttggtaact gatttgaagg gccattttgt aactcaggta gctatgggca 2100 aagctcacac ttgtgtttta atgaagaatg gagaggtgtg gacatttggt gtaaataata 2160 aaggacagtg tggacgagat actggtgcca tgaaccaagg tgggaaaggg tttggagttg 2220 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actagatgaa aaagatgaga 2280 agtctatgat gtgccctcca ggcatgcaca aatggaagct ggagcagtgc atggtttgca 2340 ctgtctgtgg agactgtaca ggttatggag ccagctgtgt cagtagtgga cggccagaca 2400 gagtccccgg agggatctgt ggttgtggtt ccggagaatc tggttgtgct gtgtgtggat 2460 gttgcaaggc ctgtgcaaga gagttagatg gtcaagaggc aagacaaaga ggaatcttg 2520 atgcagtgaa agaaatgata cctttagatc ttcttttagc tgtcccagtg cccggggtta 2580 acattgaaga acaccttcag ttacgacaag aagaaaaacg gcaacgtgta atcagaaggc 2640 acagattaga ggaaggaaga ggcccccttg tatttgctgg tcctatttt atgaaccatc 2700 gagaacaaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 agcacaaaga tggaagtgga gaaagaggcg aaaaggatgc aagcaaaatc acaacatacc 2820	gtaaaggaga agatggagaa tcaattaaga gcagacggc	a atccaaacct	tataaaccta	1920
atagttcaag tttggtaact gatttgaagg gccattttgt aactcaggta gctatgggca 2100 aagctcacac ttgtgtttta atgaagaatg gagaggtgtg gacatttggt gtaaataata 2160 aaggacagtg tggacgagat actggtgcca tgaaccaagg tgggaaaggg tttggagttg 2220 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actagatgaa aaagatgaga 2280 agtctatgat gtgccctcca ggcatgcaca aatggaagct ggagcagtgc atggtttgca 2340 ctgtctgtgg agactgtaca ggttatggag ccagctgtgt cagtagtgga cggccagaca 2400 gagtccccgg agggatctgt ggttgtggtt ccggagaatc tggttgtgct gtgtgtggat 2460 gttgcaaggc ctgtgcaaga gagttagatg gtcaagaggc aagacaaaga ggaattcttg 2520 atgcagtgaa agaaatgata cctttagatc ttcttttagc tgtcccagtg cccggggtta 2580 acattgaaga acaccttcag ttacgacaag aagaaaaacg gcaacgtgta atcagaaggc 2640 acagattaga ggaaggaaga ggcccccttg tatttgctgg tcctatttt atgaaccatc 2700 gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 agcacaaaga tggaagtgga gaaagaggcg aaaaggatgc aagcaaaatc acaacatacc 2820	aaaagataat taagatggaa ggaaagattg tggtatata	c agcctgcaat	aatggaagta	1980
aagetcacac ttgtgtttta atgaagaatg gagaggtgtg gacatttggt gtaaataata 2160 aaggacagtg tggacgagat actggtgcca tgaaccaagg tgggaaaggg tttggagttg 2220 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actagatgaa aaagatgaga 2280 agtctatgat gtgccctcca ggcatgcaca aatggaagct ggagcagtgc atggtttgca 2340 ctgtctgtgg agactgtaca ggttatggag ccagctgtgt cagtagtgga cggccagaca 2400 gagtccccgg agggatctgt ggttgtggtt ccggagaatc tggttgtgct gtgtgtggat 2460 gttgcaaggc ctgtgcaaga gagttagatg gtcaagaggc aagacaaaga ggaattcttg 2520 atgcagtgaa agaaatgata cctttagatc ttcttttagc tgtcccagtg cccggggtta 2580 acattgaaga acaccttcag ttacgacaag aagaaaaacg gcaacgtgta atcagaaggc 2640 acagattaga ggaaggaaga ggcccccttg tatttgctgg tcctatttt atgaaccatc 2700 gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 agcacaaaga tggaagtgga gaaagaggcg aaaaggatgc aagcaaaatc acaacatacc 2820	gttctgttat ttctaaagat ggagaactct acatgtttg	g aaaagatgc	atttactctg	2040
aaggacagtg tggacgagat actggtgcca tgaaccaagg tgggaaaggg tttggagttg 2220 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actagatgaa aaagatgaga 2280 agtctatgat gtgccctcca ggcatgcaca aatggaagct ggagcagtgc atggtttgca 2340 ctgtctgtgg agactgtaca ggttatggag ccagctgtgt cagtagtgga cggccagaca 2400 gagtccccgg agggatctgt ggttgtggtt ccggagaatc tggttgtgct gtgtgtggat 2460 gttgcaaggc ctgtgcaaga gagttagatg gtcaagaggc aagacaaaga ggaattcttg 2520 atgcagtgaa agaaatgata cctttagatc ttcttttagc tgtcccagtg cccggggtta 2580 acattgaaga acaccttcag ttacgacaag aagaaaaacg gcaacgtgta atcagaaggc 2640 acagattaga ggaaggaaga ggcccccttg tatttgctgg tcctatttt atgaaccatc 2700 gagaacaaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 agcacaaaga tggaagtgga gaaagaggcg aaaaggatgc aagcaaaatc acaacatacc 2820	atagttcaag tttggtaact gatttgaagg gccattttg	t aactcaggt	a gctatgggca	2100
aagacagtg tggacgagat actggtgcca tgaaccaagg tggacdagas 2280 aaaatatggc aacagcaatg gatgaagacc tggaagaaga actagatgaa aaagatgaga 2280 agtctatgat gtgccctcca ggcatgcaca aatggaagct ggagcagtgc atggtttgca 2340 ctgtctgtgg agactgtaca ggttatggag ccagctgtgt cagtagtgga cggccagaca 2400 gagtccccgg agggatctgt ggttgtggtt ccggagaatc tggttgtgct gtgtgtggat 2460 gttgcaaggc ctgtgcaaga gagttagatg gtcaagaggc aagacaaaga ggaattcttg 2520 atgcagtgaa agaaatgata cctttagatc ttcttttagc tgtcccagtg cccggggtta 2580 acattgaaga acaccttcag ttacgacaag aagaaaaacg gcaacgtgta atcagaaggc 2640 acagattaga ggaaggaaga ggcccccttg tatttgctgg tcctatttt atgaaccatc 2700 gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 agcacaaaga tggaagtgga gaaagaggcg aaaaggatgc aagcaaaatc acaacatacc 2820	aagctcacac ttgtgtttta atgaagaatg gagaggtgt	g gacatttgg	t gtaaataata	2160
agatetatgat gtgeceteca ggeatgeaca aatggaaget ggageagtge atggtttgea 2340 ctgtetgtgg agaetgtaca ggttatggag ceagetgtt cagtagtgga eggeeagaca 2400 gagteecegg agggatetgt ggttgtggtt eeggagaate tggttgtget gtgttgtgat 2460 gttgeaagge etgtgeaaga gagttagatg gteaagagge aagacaaaga ggaattettg 2520 atgeagtgaa agaaatgata eetttagate ttettttage tgteeceagtg eeggggtta 2580 acattgaaga acacetteag ttacgacaag aagaaaaacg geaacgtgta ateagaagge 2640 acagattaga ggaaggaaga ggeeecettg tatttgetgg teetatttt atgaaceate 2700 gagaacagge tetageeaga etcagateee ateeageaca egtaaagcat aaacgggaca 2760 ageacaaaga tggaagtgga gaaagaggeg aaaggatge aagcaaaate acaacatace 2820	aaggacagtg tggacgagat actggtgcca tgaaccaag	g tgggaaagg	g tttggagttg	2220
ctgtctgtgg agactgtaca ggttatggag ccagctgtgt cagtagtgga cggccagaca 2400 gagtccccgg agggatctgt ggttgtggtt ccggagaatc tggttgtgct gtgttgtggat 2460 gttgcaaggc ctgtgcaaga gagttagatg gtcaagaggc aagacaaaga ggaattcttg 2520 atgcagtgaa agaaatgata cctttagatc ttcttttagc tgtcccagtg cccggggtta 2580 acattgaaga acaccttcag ttacgacaag aagaaaaacg gcaacgtgta atcagaaggc 2640 acagattaga ggaaggaaga ggcccccttg tatttgctgg tcctatttt atgaaccatc 2700 gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 agcacaaaga tggaagtgga gaaagaggcg aaaaggatgc aagcaaaatc acaacatacc 2820	aaaatatggc aacagcaatg gatgaagacc tggaagaag	ga actagatga	a aaagatgaga	2280
gagtcccgg agggatctgt ggttgtggtt ccggagaatc tggttgtgct gtgttgtggat 2460 gttgcaaggc ctgtgcaaga gagttagatg gtcaagaggc aagacaaaga ggaattcttg 2520 atgcagtgaa agaaatgata cctttagatc ttcttttagc tgtcccagtg cccggggtta 2580 acattgaaga acaccttcag ttacgacaag aagaaaaacg gcaacgtgta atcagaaggc 2640 acagattaga ggaaggaaga ggcccccttg tatttgctgg tcctatttt atgaaccatc 2700 gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 agcacaaaga tggaagtgga gaaagaggcg aaaaggatgc aagcaaaatc acaacatacc 2820	agtotatgat gtgccctcca ggcatgcaca aatggaago	t ggagcagtg	c atggtttgca	2340
atgcagga agaatgata cetttagate ttettttage tgteccagtg eeegggtta 2580 acattgaaga acacetteag ttacgacaag aagaaaaacg gcaacgtgta atcagaagge 2640 acagattaga ggaaggaaga ggeeceettg tatttgetgg teetatttt atgaaceate 2700 gagaacagge tetagecaga ctcagateee atceagcaca egtaaagcat aaacgggaca 2760 agcacaaaga tggaagtgga gaaagaggeg aaaaggatge aagcaaaate acaacatace 2820	ctgtctgtgg agactgtaca ggttatggag ccagctgtg	gt cagtagtgg	a cggccagaca	2400
atgeagtgaa agaaatgata cetttagate ttettttage tgteecagtg ceeggggtta 2580 acattgaaga acacetteag ttacgacaag aagaaaaacg geaacgtgta atcagaagge 2640 acagattaga ggaaggaaga ggeeceettg tatttgetgg teetatttt atgaaceate 2700 gagaacagge tetagecaga etcagateee atceageaca egtaaageat aaacgggaca 2760 agcacaaaga tggaagtgga gaaagaggeg aaaaggatge aagcaaaate acaacatace 2820	gagtccccgg agggatctgt ggttgtggtt ccggagaa	cc tggttgtgc	t gtgtgtggat	2460
acattgaaga acaccttcag ttacgacaag aagaaaaacg gcaacgtgta atcagaaggc 2640 acagattaga ggaaggaaga ggcccccttg tatttgctgg tcctattttt atgaaccatc 2700 gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 agcacaaga tggaagtgga gaaagaggcg aaaaggatgc aagcaaaatc acaacatacc 2820	gttgcaaggc ctgtgcaaga gagttagatg gtcaagag	gc aagacaaag	a ggaattcttg	2520
acattgaaga acaccttcag ttacgacaag aagaaaaacg gcaacgtgaa ucongasses acagattaga ggaaggaaga ggcccccttg tatttgctgg tcctattttt atgaaccatc 2700 gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 agcacaaaga tggaagtgga gaaagaggcg aaaaggatgc aagcaaaatc acaacatacc 2820	atgcagtgaa agaaatgata cctttagatc ttctttta	gc tgtcccagt	g cccggggtta	2580
gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca 2760 agcacaaaga tggaagtgga gaaagaggcg aaaaggatgc aagcaaaatc acaacatacc 2820	acattgaaga acaccttcag ttacgacaag aagaaaaa	cg gcaacgtgt	a atcagaaggc	2640
agcacaaaga tggaagtgga gaaagaggcg aaaaggatgc aagcaaaatc acaacatacc 2820	acagattaga ggaaggaaga ggcccccttg tatttgct	gg tootattt	t atgaaccatc	2700
agcacaaaga tggaagtgga gaaagaggeg aaaaggaege dageadadee acaas	gagaacagge tetagecaga etcagatece atecagea	ca cgtaaagca	at aaacgggaca	2760
ctccaggctc tgtgcgattt gactgtgagc tccgggcagt ccaagtcagc tgtggatttc 2880	agcacaaaga tggaagtgga gaaagaggcg aaaaggat	gc aagcaaaa	tc acaacatacc	2820
	ctccaggctc tgtgcgattt gactgtgagc tccgggca	gt ccaagtca	gc tgtggatttc	2880

accattcagt ggttttaatg gaaaatggag atgtctatac atttggttat gggcagcatg 2	2940
	3000
	3060
	3120
	3180
	3240
	3300
	3360
ggagttgtaa aacttttaat gactcagaac aagaggatct gcaaggattt ggtgtgtgtc	3420
ttgatcctgt atatgatgta atttggaggt ttcgaccaaa tactagagag ctgtggtgtt	3480
acaatgeggt ggttgetgat gecaggette eetetgeage agacatgeag tecagatgta	3540
gtatectaag teetgaaett geettaeeaa eaggateaag ggeeeteaet accegatete	3600
atgcagettt gcacatttta ggttgtettg atacettgge agetatgeag gaettaaaaa	3660
tgggtgttgc aagtacagag gaagagactc aagcagtaat gaaggtttat tctaaagaag	3720
attatagtgt ggtaaacagg tttgaaagtc atggaggagg ctggggttat tctgcccatt	3780
cagtagaagc tatacgtttc agtgccgaca ctgatatttt acttggtggt cttggtctgt	3840
ttggaggtag aggagaatat actgctaaaa ttaagctgtt tgaattgggt cctgatggag	3900
gagatcatga aactgatggt gaccttcttg cagagactga tgtattggct tatgactgtg	3960
ctgctagaga aaaatatgca atgatgtttg atgagcctgt tctcctgcaa gctgggtggt	4020
ggtatgtggc atgggcccga gtgtcaggac ccagcagtga ctgtggatct catggacagg	4080
catctattac cacagatgat ggggttgttt tccagttcaa gagttcaaag aaatcaaata	4140
atggtacaga tgttaatgcg ggtcagatac ctcagttatt atacagactt ccaaccagtg	4200
atggcagtgc ttcaaaaggc aaacagcaaa ccagtgaacc tgtacacatt ttaaagaggt	4260
cttttgcaag aactgtctca gtggaatgtt ttgagtcatt gttgagtatt cttcactgga	4320
gctggaccac cttagtctta ggagttgaag aacttagagg attaaaagga ttccagttca	4380
cagctacact cctagattta gagagactgc gctttgtggg tacctgttgt ctgaggttat	4440
tgcgtgtcta tacctgtgaa atttacccag tgtcagctac aggaaaagca gttgtagaag	4500
aaactagcaa attagcagag tgtattggaa aaaccagaac tttgttaaga aaaattttat	4560
cagaaccact tgatcactgc atggtgaaat tggataatga tcctcaagga tatctcagtc	4620
aaccettgag tettetagaa getgteette aggaatgtea taataettte aetgeetget	4680
ttcattcttt ctacccaact cctgccttac agtgggcttg cctttgtgat ctgctgaatt	4740

gtttggatca ggatatccaa gaagcaaact t	caagacatc	aagtagccga	ctccttgcag	4800
ctgttatgtc agctctgtgt cacacgtctg t				4860
atgatggaga agtattacta cgatcaattg t				4920
cactagttca tcgttttccc cttttggtgg				4980
agaatatctc agggatgaca agcttccgtg				5040
tgctaccagt caggaacagc ctgaggagag				5100
ctaacacctg tggattactg gccagcattg				5160
ctgaggttga tggacttaat tctcttcact				5220
aaacaagtca gggcagaagt tggaacactg				5280
cagtagacaa acctggaata gttgtggttg				5340
atgaatatga attagaggtg ttggttgatg				5400 ·
cccacagatg gacatctctg gaattagtga				5460
gtgatatagc tgagatcaga cttgacaaag				5520
ctgtgcgctt gaggaactat ggaagccgta				5580 .
ttcagtgccc tgatggtgtg acattcacat				5640
caaaccaaac cagaggacag atcccacaga				5700
atttacaatc ccaacttctg agtaaagcca				5760
tgtctgttgt aagcactgtc gttcgagcct				5820
tggatgctga tgacattcca gaactgctga				5880
cccttattat agcctacata ggaccagtag				5940
tetttggeet tgtccaacaa ttgetteegt				6000
cgcctgcctt caaccctaat cagtcgacag				6060
geetetetge ttgtacaace tecagteact				6120
aacctgcctg tgtgatgcat tacaaggtga				6180
tcgaatttga ccctcagtgt ggtactgcac				6240
ctgtcagaac tgttcagaat tcaggatat				6300
ttaattcatg gatagaatta aagaaattt				6360
tggtgttgcc aggaaatgag gcccttttt				6420
atgacaaagc ttctttctat ggttttatg				
gacctgatga gggagtcatc caattggaa				

cagcagctct gatgaagaag gacctagcac ttcctattgg taatgaatta gaagaagacc	6600
ttgaaattct tgaggaggct gcattgcagg tgtgcaaaac ccattctgga attcttggaa	6660
agggtctagc tctttctcat tcaccaacta tattagaagc acttgaggga aatttaccac	6720
tocaaatoca aagcaatgaa cagtotttto tggatgattt tattgootgt gtoccaggat	6780
caagtggtgg aaggettgea aggtggette agecagatte atatgeggat eetcagaaaa	6840
catctttgat cctgaataag gatgatattc gttgtggttg gcctaccacc ataactgttc	6900
aaacaaaaga ccagtatggg gatgtggtac atgttcccaa tatgaaggtg gaagtgaaag	6960
ctgtccctgt ttctcagaaa aaaatgtctt tacaacaaga tcaagcaaag aaacctcaaa	7020
ggattcctgg cagtcctgca gtaacagctg catcttctaa tactgacatg acttatggag	7080
ggctggcatc accaaagcta gatgtttcat atgaaccaat gatagtgaag gaagctcgat	7140
atattgccat aacaatgatg aaggtttatg aaaattattc atttgaagaa ctacgttttg	7200
catcaccaac tcctaagaga cccagtgaga atatgctgat ccgtgtcaat aatgatggga	7260
cttattgtgc aaattggact ccaggggcta ttggactcta cactcttcat gttaccattg	7320
atggcattga aatcgatgct ggtctggaag taaaagtaaa agacccacca aaagggatga	7380
taccaccagg aactcagttg gtcaaaccaa agtctgaacc tcagcctaat aaggttcgaa	7440
aatttgtggc caaggacagt gcggggcttc gcatccgtag ccacccttcc cttcagagtg	7500
agcagatagg catagtgaaa gtcaatggaa ctatcacttt tattgatgag atccataatg	7560
atgatggtgt gtggctgagg ctgaatgatg agacaataaa gaagtatgtc cctaacatga	7620
atggttacac tgaagcctgg tgcctctctt ttaatcaaca tcttggcaag agtcttctgg	7680
tccctgttga cgaatctaaa actaatactg atgacttttt caaagacata aactcctgct	7740
gcccacagga agcaacaatg caagaacaag atatgccatt cttgcgagga gggccaggca	7800
tgtacaaggt agtgaagacg ggaccttcag gtcacaacat cagaagctgc cctaacctta	7860
gaggtatccc aattggaatg ttagttctgg gaaacaaagt caaagcagtg ggagaggtaa	7920
ccaattotga agggacatgg gtgcaactgg atcagaacag catggtagag ttctgtgaga	7980
gtgatgaagg agaggcatgg tccttagcta gagacagagg cggaaaccag tacctccgac	8040
atgaagatga acaagctett etggateaga atteteaaae teeteeteea agecetttet	8100
cagtgcaagc ttttaataaa ggggcaagtt gcagtgccca aggatttgat tatggactcg	8160
gaaatagcaa aggtgatcga ggaaacatct caacatcttc taaaccagcc tctacatcag	8220
gaaaatcaga gctgtcctct aaacacagca gatcgcttaa acctgatgga cgtatgagcc	8280
ggactactgc tgatcagaag aagccaaggg gcacagaaag tttatctgct agtgaatccc	
tcatcttaaa atctgatgct gcaaagttga ggtcagattc ccacagtagg tcattatccc	

ataggictag cocategggt telegitgic catetectaa gecaaagact etecageea 8520 ataggictag cocategggt getagitete cacgotecte eteaceact gataaaaate 8580 tacetecaaaa aagaactget cetgitaaga caaagetiga teeteetigg gaacgiteta 8640 aatecagaate Eteacacat gatacaaate 2620 gaacgiteta 8640 aatecagaate Eteacacat gatecagata eceteeggaa gaagaaaatg coceteacag 8700 aacettigag aggacggtea acgicaccaa aaceaaaate agaacacaag gaitetacag 8760 attecectig atetgaaaat agageteect etecocatgi ggiacaggaa aacetecaca 8820 gigaggiggig cgaagidaga etitaaagagi etitaaaaac aaatagieta acagacaga 8880 eetiggaggiggi cgaagidaga titaagaggi tiggatiggagi ticaaataaa giteatitta 8940 gigagatigga cagaagigaa ateagaagaa agaaagagaa agaaagagaa agaaagagaa agaaagagaa eagaagagaa agaagaga eagaagaga eagaagaga eagaagaga eagaagaga eagaagaga eagaagaga eagaagaga eagaagaga eagaagaga eagaagaga eagaagaga eagaagaga eagaagaga eagaagaga eagaagaaa eagaagaaa eagaagaaga eagaagaga eagaagagaa eagaagagaa eagaagagaa eagaagagaa eagaagagaa eagaagagaa eagaagagaa eagaagagaa eagaagagaa eagaagagaa eagaagagaa eagaagaagaa eagaagagaa eagaagagaa eagaagagaa eagaagagaa eagaagagaa eagaagagaa eagaagagaa eagaagagaa eagaagaagaa eagaagaagaa eagaagaagaa eagaagaagaa eagaagaagaa eagaagagaa eagaagaagaa eagaagagaa caaccataa (caccttgcag	acattgaaat	ctgatgggag	gatgccttct	agctccagag	8460	
aatcagacte ttacacacte gatccagata coctecgaa gaagaaaatg cocctcacag 8700 aacctttgag aggacggtca acgtcaccaa aaccaaaate agtaccaaag gattctacaag 8700 attcccctgg atctgaaaat agagetcccc ctcccatgt ggtacaggaa aacctccaca 8820 gtgaggtggt cgaagtetge acctcaagta ctttaaaaac aaatagtcta acagacagca 8880 cctgcgatga cagcagtgaa tttaagagtg tggatgaagg ttcaaataaa gttcatttta 8940 gcattggaaa agcaccactg aaagatgaac aggaaatgag agcatctccc aaaataagtc 9000 gaaaatgtgc taatagacac accaggccca aaaaagaaaa atcgagttt cttttcaaag 9600 gagatggatc caagccttta gagccagcca agcaagcaat gtctccttct gtggccgaat 9120 gtgccagagc tgtgtttgct tccttcctct ggcatgaagg catagtacat gatgcaatgg 9180 cttgttcttc tttcctaaag tttcatcctg aacttccca agaacatgct cctataagga 9240 gtagtttaaa tagccaacaa cctacagaag aaaaagaaac caagttaaaa aatagcatt 9300 cattagaaat atcatctgca ctgaatatgt ttaatattgc acccatgga ccagatatat 9360 ctagagatggg tagcatcaac aaaaacaagg tattgctatt gcttaaggaa ccacctctgc 9420 atgaaaaatg tgaggatgg aaaaccgaga ccacttttga aatgccatg cataacacaa 9480 tctactttggc tactatcaaa gctgcttccc agaatagat ttttccaagt tttccatcatt tacaacattt agtggctttt tgggaagaca 9540 gtgcaggttct taaaaagaaa gagtgtgaga aaggaaggaa taagaagtcc aaaaaggaaa 9660 gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa tttttccaagt cctggttcct 9600 gtgcagttct taaaaagaaa gagtgtgaga aaggaagga tttttccaagt cctggttcct 9720 agctggcagt aggaggacca gagaaagata ccactctgtga actgtgtggg gagtcacatc 9780 gacaaggtta caataccaa gagaaagaa ccactctgga actgtgggg gagtcacatc 9780 gacaaggtta caatagcatt gggcattttt gtggaggatg ggctggtaac tgggggaaagga agaaggata caatagcagg ttggggaaaagga agaaggaa ccactctggg gagtcacatc 9780 gacaaggtta caatagcatt gggcattttt gtggaggatg ggctggtaac tggggggaaaggaaggaaggaaggaaggaaggaaggaag	ctgaatcccc a	aggaccaggt	tctcggttgt	catctcctaa	gccaaagact	ctcccagcca	8520
aatcaqaatt ttacacactt gatccagata coctecgcaa gaagaaaatg cocctacacg 8700 aacctttgag aggacggtca acgtcaccaa aaccaaaatc agtaccaaag gattctacaag 8760 attcccctgg atctgaaaat agagctccct ctccccatgt ggtacaggaa aacctccaca 8820 gtgaggtggt cgaagtctgc acctcaagta ctttaaaaac aaatagtcta acagacagca 8880 cctgcgatga cagcagtgaa tttaagagtg tggatgaagg ttcaaataaa gttcattta 8940 gcattggaaa agcaccactg aaagatgaac aggaaatgag agcatctccc aaaataagtc 9000 gaaaatgtgc taatagacac accaggccca aaaaagaaaa atcgagttt cttttcaaag 9060 gagatggatc caagccttta gagccagca agcaagcat gtctccttc gtggccgaat 9120 gtgccagagc tgtgtttgct tccttcctct ggcatgaagg catagtacat gatgcaatgg 9180 cttgttcttc tttcctaaag tttcatcctg aactttccaa agaacatgct cctataagga 9240 gtagtttaaa tagccaacaa cctacagaag aaaaagaaac caagttaaaa aatagacatt 9300 cattagaaat atcatctgca ctgaatatgt ttaatattgc accccatgga ccagatatat 9360 ctaagaaggg tagcatcaac aaaaacaagg tattgctat gcttaaggaa ccacctctgc 9420 atgaaaaatg tgaggatggg aaaaccgaga ccacttttga aatgccatg actaacacaa 9480 tctcttttggc tactatcaaa gctgcttccc agaatatgat tttccaagt ctggaagaca 9540 tctcttttggc tactatcaaa gctgcttccc agaatatgat ttttccaagt ctggaagaca 9540 gtgcagttct taaaaagaaa gagtgtgaga aaggaagga taagaagcc caagatata 9600 gtgcagttct taaaaagaaa gagtgtgaga aaggaagga ttttgtttg	ataggtctag (ccatcgggt	gctagttctc	cacgctcctc	ctcaccacat	gataaaaatc	8580
accetttgag aggacggtca acgtcaccaa aaccaaaatc agtaccaaag gattctacag attcccctgg atctgaaaat agagctccct etceccatgt ggtacaggaa aacctccaca ggagggggggggg	tacctcaaaa a	aagtactgct	cctgttaaga	caaagcttga	tectectegg	gaacgttcta	8640
sttccctgg atctgaaaat agagctcct ctcccatgt ggtacaggaa aacctccaca gtgaggtggt cgaagtctgc acctcaagta ctttaaaaac aaatagtcta acagacagca cctgcgatga cagcagtgaa tttaagagtg tggatgaagg ttcaaataaa gttcatttta gcattggaaa agcaccactg aaagatgaac aggaaatgag agcatctccc aaaataagtc gaaaatgtgc taatagacac accaggccca aaaaagaaaa atcgagtttt cttttcaaag gagatggatc caagcettta gagccagcca agcaagccat gtctccttct gtggccgaat gtgccagagc tgtgtttgct tccttcctct ggcatgaagg catagtacat gatgcaatgg gtagtttaaa tagccaacaa cctacagaag aaaatgaac caagttaaaa aatagacatt gtagtttaaa tagccaacaa cctacagaag aaaaagaaac caagttaaaa aatagacatt gtagtttaaa tacatctgca ctgaatatgt ttaatattgc accccatgga ccagatata ctaagaatgg tagcatcaac aaaaacaagg tattgctat gcttaaggaa ccacctctgc atgaaaaatg tgaggatggg aaaaccgaga ccacttttga aatgtccatg cataacacaa g480 tcaagatgg tactcctctt cccttaactt tacaacattt agtggctttt tgggaagaca gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa taagaagtcc aaaaaaggaaa gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa ttttccaagt cctggttcct gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa ttttgttgga gagatggccc ggcagaaaaaa agaaaaggca gagaagaaa ccactctgtga acttgttgga gagtacacatc gacaggtta caatagcatt gggcatttt gtggaggat ggctgtaac tgtggtggt gacaaggtta caatagcatt gggcatttt gtggaggat ggctggtaac tgtggtggt gacaaggtta caatagcatt gggcatttt gtggaggat ggctggtaac tgtggtggt gacaaggtta caatagcatt gggcattttt gtggaggatg ggctggtaac tgtggtggt gcgaaaaaca ggctgctgca aggagaagg tcaaacaca taggagaaa ccactctgtg gcgaaaaaca ggctgctgca aggagaagg tcaaacacac taggagaaa ccacccagg ttgtggcataa gagaagacac tggtatctgg tatgtgatcg ctgtaagaa aaatacctcc ggcgaaaaaca ggctgctgca aggagaagg tcaaacaac taggagaaa ccaaccaca gcggaaaaaca ggctgctgca aggagaagg tcaaacaac taggagaaa ccaaccaca tcggaaaaaca ggctgctgca aggagaaagg tcaaacaaca tcaggagaaa ccaatgcaag tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac tcctctcctgct gccccacacatgg aagctcacca ggtgattaaa gccaatgcac toolaaacacaa gccaccccacacag aacccacaca ggtgattaaa gccaatgcac tcctctcctgct gccccacacagg aacccgacac ggtgattaca cacccacacacacacacaccacac	aatcagactc	ttacacactt	gatccagata	ccctccgcaa	gaagaaaatg	cccctcacag	8700
gtgaggtggt cgaagtetga accteaagta etttaaaaac aaatagteta acagacagca 8880 ectgegatga cagcagtgaa tttaagagtg tggatgaagg tteaaataaa gtteatttta 8940 gcattggaaa ageaccactg aaagatgaac aggaaatgag gacateteec aaaataagte 9000 gaaaatggge taatagacac accaggeeca aaaaagaaaa ategagttt ettteaaag 9060 gagatggate caageettta gageeageea ageaageeat gteteettet gtggeegaat 9120 gtgeeagage tgtgtttget teetteetet ggeatgaagg catagtacat gatgeaatgg 9180 ettgttette ttteetaaag ttteateetg aacttteeaa agaacatget eetaaagga 9240 gtagtttaaa tageeaacaa ectacagaag aaaaagaaac caagttaaaa aatagacatt 9300 eatagaataa ateatetgea etgaatatgt ttaatattge acceeatgga ecagatatat 9360 etaagaatggg tageatcaaca aaaaacaagg tattgettat gettaaggaa ecacetetge 9420 atgaaaaatg tgaggatgga aaaaccgaga ecactttega aatgteeatg eataacacaa 9480 etaagatetaa gteteetet ecettaactt tacaacattt agtggetttt tgggaagaca 9540 etetetttgge tactateaaa getgetteee agaatatgat tttteeaagt eetggtteet 9600 gtgcagttet taaaaagaaa gagtgtgaga aaggaaggaa taagaagee eaaaaaggaaa 9660 aaaagaaaaa agaaaaggea gaagttagge ecaggggtaa tttgtttgga gagatggee 9720 agetggeagt aggaaggaca gagaaagaa ecactetgtga actgtgtggg gagteacate 9780 eaaacaggtta caatagaat gggeagaagaa teaggaggaa tatgtggeega tatgetggtg 9900 gacaaggtta caatagaat gggeagattt gtggaagaag ttggagaaaagaa ecacetetgg 9900 gegaaaaaca ggetgetgea agggagaagg teaaacaaca taggagaaa caacacaa eggegaaaaaca ggetgetgea agggagaagg teaaacaaca taggagaaa aaatacetee 9960 gegaaaaaca ggetgetgea agggagaagg teaaacaaca taggagaaaa caacacaaca eggegaaaaaca ggetgetgea agggagaagg teaaacaaca taggagaaa caacacaca eggegaaaaaca ggetgetgaa agggagaagg teaaacaaca taggagaaaa caacacaca eggegaaaaac ecaatgeaag 10020 teaagacee tegtgeettg eccaccatgg aagetcacac ggggaaaaa caacacacaca ggetgettaa eggeaatgaac tegtgaacac tegtgaaaacac eccactegga aggaagace aggaagaaga tacacaca ggtgattaaa gccaatgcac 10080 tetteetget gteeetgag agggagaaga aaccgagaca tectegtgaa agggagaaca accacacaca ggtgattaaa gccaatgcac 10080 tetteetget gteeetgaga agggagaaga aaccgagaca tecteggac aaccacacaca ggtgaatac caaccacaca aaccacacacacacacacacaca	aacctttgag	aggacggtca	acgtcaccaa	aaccaaaatc	agtaccaaag	gattctacag	8760
cctgcgatga cagcagtgaa tttaagagtg tggatgaagg ttcaaataaa gttcatttta 8940 gcattggaaa agcaccactg aaagatgaac aggaaatgag agcatctccc aaaataagtc 9000 gaaaatgtgc taatagacac accaggccca aaaaagaaaa atcgagtttt cttttcaaag 9060 gagatggatc caagccttta gagccagcca agcaagccat gtctccttct gtggccgaat 9120 gtgccagagc tgtgtttgct tccttcctct ggcatgaagg catagtacat gatgcaatgg 9180 cttgttcttc tttcctaaag tttcatcctg aactttccaa agaacatgct cctataagga 9240 gtagtttaaa tagccaacaa cctacagaag aaaaagaaac caagttaaaa aatagacatt 9300 cattagaaat atcatctgca ctgaatatg ttaatattgc accccatgga ccagatatat 9360 ctaagatggg tagcatcaac aaaaacaagg tattgtctat gcttaaggaa ccacctctgc 9420 atgaaaaaatg tgaggatgga aaaaccgaga ccacttttga aatgtccatg cataacacaa 9480 tgaagtctaa gtctcctctt cccttaactt tacaacatt agtggcttt tgggaagaca 9540 tctctttggc tactatcaaa gctgcttccc agaatatgat ttttccaagt cttgggaagaca 9600 gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa taagaagtcc aaaaaggaaa 9660 aaaagaaaaa agaaaaggac gaagttaggc ccaggggtaa tttgtttgga gagtggccc 9720 agctggcagt aggaagaca gagaagata ccactctgtga actgtggg gagtcacatc 9780 catacccggt gacctatcac atgagacaag ctcacccagg ttgtggcga tatgctggt 9900 gtggcatagg aggaagcact tggtatctgg tatgtgatg ggctggtaac tggtggtag 9900 gtggcatagg aggaagcact tggtatctgg tatgtgatg ggctggtaac tggtggtag 9900 gcgaaaaaca ggctgctgca agggagaagg tcaaacaaca ttaggagaaa ccaatgcac 10080 tctaccgct tgtcctggccg agtgcacatg aggagaagac ccaccatgg aagctcacca ggtgataaaa ccaatgcac 10080 tcttcctgct gtccctgagc agtgcacatg aggagaaga acaccacaca ggtgattaaa accaatgcac 10080 tcttcctgct gtccctgagc agtgcacatg aagccacatc agggaaaaacc tgggagaagg tcaaacaac tcaggagaaa accaatgcac 10080 tcttcctgct gtccctgagc agtgcacatg agagccacacac ggtgattaaa agccaatgcac 10080 tcttcctgct gtccctgagc agtgcacaagaagaacacacacaggcacacacacacaggca	attcccctgg	atctgaaaat	agagctccct	ctccccatgt	ggtacaggaa	aacctccaca	8820
gcattggaaa agcaccactg aaagatgaac aggaaatgag agcatctcc aaaataagtc 9000 gaaaatgtgc taatagacac accaggccca aaaaagaaaa atcgagttt cttttcaaag 9060 gagatggatc caagccttta gagccagcca agcaagccat gtctccttct gtggccgaat 9120 gtgccagagc tgtgtttgct tccttcctct gggcatgaagg catagtacat gatgcaatgg 9180 cttgttcttc tttcctaaag tttcatcctg aactttccaa agaacatgct cctataagga 9240 gtagtttaaa tagccaacaa cctacagaag aaaaagaaac caagttaaaa aatagacatt 9300 cattagaaat atcatctgca ctgaatatgt ttaatattgc accccatgga ccagatatat 9360 ctaagatggg tagcatcaac aaaaacaagg tattgtctat gcttaaggaa ccacctctgc 9420 atgaaaaatg tgaggatggg aaaaccgaga ccacttttga aatgtccatg cataacacaa 9480 tgaagtctaa gtctcctctt cccttaactt tacaacattt agtggctttt tgggaagaca 9540 tctcttttggc tactatcaaa gctgcttccc agaatatgat ttttccaagt cctggttcct 9600 gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa taagaagtcc aaaaaggaaa 9660 aaaagaaaaa agaaaaggca gaagttaggc ccaggggtaa tttgtttgga gagatggccc 9720 agctggcagt aggagacca gagaaagata ccacccagg ttgtgggg gagtcacatc 9780 catacccggt gacctatcac atgagacaag ctcacccagg ttgtggcga tatgctggtg 9840 gacaaggtta caatagcatt gggcattttt gtggaggatg ggctggtaac tgtggtggt 99840 gacaaggtta caatagcatt gggcattttt gtggaggatg ggctggtaac tgtggtggt 99900 gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 9960 gcgaaaaaca ggctgctgca agggagaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagaccce tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagaa aggcagcac agggagaag tcaaacaaca tcggggataaa ccacctcgcaa 10080	gtgaggtggt	cgaagtctgc	acctcaagta	ctttaaaaac	aaatagtcta	acagacagca	8880
gcattggaaa agcaccactg aaagatgaac aggaaatgag agcatctcc aaaataagtc 9000 gaaaatgtgc taatagacac accaggccca aaaaagaaaa atcgagttt cttttcaaag 9060 gagatggatc caagccttta gagccagcca agcaagccat gtctccttct gtggccgaat 9120 gtgccagagc tgtgtttgct tccttcctct gggcatgaagg catagtacat gatgcaatgg 9180 cttgttcttc tttcctaaag tttcatcctg aactttccaa agaacatgct cctataagga 9240 gtagtttaaa tagccaacaa cctacagaag aaaaagaaac caagttaaaa aatagacatt 9300 cattagaaat atcatctgca ctgaatatgt ttaatattgc accccatgga ccagatatat 9360 ctaagatggg tagcatcaac aaaaacaagg tattgtctat gcttaaggaa ccacctctgc 9420 atgaaaaatg tgaggatggg aaaaccgaga ccacttttga aatgtccatg cataacacaa 9480 tgaagtctaa gtctcctctt cccttaactt tacaacattt agtggctttt tgggaagaca 9540 tctcttttggc tactatcaaa gctgcttccc agaatatgat ttttccaagt cctggttcct 9600 gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa taagaagtcc aaaaaggaaa 9660 aaaagaaaaa agaaaaggca gaagttaggc ccaggggtaa tttgtttgga gagatggccc 9720 agctggcagt aggagacca gagaaagata ccacccagg ttgtgggg gagtcacatc 9780 catacccggt gacctatcac atgagacaag ctcacccagg ttgtggcga tatgctggtg 9840 gacaaggtta caatagcatt gggcattttt gtggaggatg ggctggtaac tgtggtggt 99840 gacaaggtta caatagcatt gggcattttt gtggaggatg ggctggtaac tgtggtggt 99900 gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 9960 gcgaaaaaca ggctgctgca agggagaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagaccce tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagaa aggcagcac agggagaag tcaaacaaca tcggggataaa ccacctcgcaa 10080	cctgcgatga	cagcagtgaa	tttaagagtg	tggatgaagg	ttcaaataaa	gttcatttta	8940
gaaaatgtgc taatagacac accaggccca aaaaagaaaa atcgagtttt ctttcaaag 9060 gagatggatc caagccttta gagccagcca agcaagccat gtctccttct gtggccgaat 9120 gtgccagagc tgtgtttgct tccttcctct ggcatgaagg catagtacat gatgcaatgg 9180 cttgttcttc tttcctaaag tttcatcctg aactttccaa agaacatgct cctataagga 9240 gtagtttaaa tagccaacaa cctacagaag aaaaagaaac caagttaaaa aatagacatt 9300 cattagaaat atcatctgca ctgaatatgt ttaatattgc acccatgga ccagatatat 9360 ctaagatggg tagcatcaac aaaaacaagg tattgtctat gcttaaggaa ccacctctgc 9420 atgaaaaatg tgaggatggg aaaaccgaga ccacttttga aatgtccatg cataacacaa 9480 tgaagtctaa gtctcctctt cccttaactt tacaacattt agtggctttt tgggaagaca 9540 gtgcagttct taaaaaggaaa gagtgtgaga aaggaaggaa tatgagcttta tgggaagaaca 9560 aaaagaaaaa agaaaaggca gaagttaggc ccaggggtaa tttgtttgga gagatggccc 9720 agctggcagt aggagacca gagaaagata ccactctgtga actgtgggg gagtcacatc 9780 cataacceggt gacctatcac atgagacaag ctcacccagg ttgtggcga tatgctggtg 9840 gacaaggtta caatagcatt gggcatttt gtggaggatg ggctggtaac tgtggtggt 9900 gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 99600 gcgaaaaaca ggctgctga agggagaaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagaccc tcgtgcctg agggagaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgag agggagaagaa aaccgagcat tctgtgttaca agccaatgcac 10080 tcttcctgct gtccctgag agggagaagaa aaccgagcat tctgtgttaca catcctgcaa 10080							9000
gagatggatc caagcettta gagecagea ageaageat gteteettet gtggeegaat 9120 gtgeeagage tgtgtttget teetteetet ggeatgaagg catagtacat gatgeaatgg 9180 ettgttette ttteetaaag ttteateetg aacttteeaa agaacatget eetataagga 9240 gtagtttaaa tagecaacaa eetacagaag aaaaagaaac caagttaaaa aatagacatt 9300 eattagaaat ateatetgea etgaatatgt ttaatattge acceeatgga eeagatatat 9360 etaagatggg tageateaac aaaaacaagg tattgetat gettaaggaa eeaceetetge 9420 atgaaaatgt tgaggatggg aaaacegaga eeacttttga aatgteeatg eataacacaa 9480 etaetettgge taetateaa getgettee agaatatgat ttteeaagt eetgggaagaca 9540 eteetettgge taetateaaa getgetteee agaatatgat ttteeaagt eetggtteet 9600 gtgeagttet taaaaagaaa gagtgtgaga aaggaaggaa taaggaagtee aaaaaggaaa 9660 aaaagaaaaa agaaaaggaa gaagttagge eeaggggaaa tttgtttgga gagatggeee 9720 agetggaga aggaggaca gagaaagata eeaceeagg ttgtgtggg gagteacate 9780 eataceeggt gacetateae atgagacaag etcaceeagg ttgtggega tatgetggg 9840 gacaaggtta eaatageatt gggeatttt gtggaggatg ggetggtaac tgtgtgtgg 9840 gagaaaggat caatageat tgggaatttt gtggaggatg ggetggtaac tgtgtgtgg 9900 gtggcatagg aggaageac tggtatetgg tatgtgateg etgtagagaa aaatacetee 9960 gegaaaaaca ggetgetga agggagaagg teaaacaate taggagaaaa ecaatgeaag 10020 teaagacee tegtgeettg eeeaceatgg aageteacea ggtgattaaa geeaatgeac 10080 teetteetget gteeetgag aggagaagg teaaacaate taggagaaaa ecaatgeaag 10020 teaagacee tegtgeettg eeeaceatgg aageteacea ggtgattaaa geeaatgeae 10080 teetteetget gteeetgga agtgeagga aacegageat teetgtgtae eaceetgeaa 10080							9060
cttgttcttc tttcctaaag tttcatcctg aactttccaa agaacatgct cctataagga 9240 gtagtttaaa tagccaacaa cctacagaag aaaaagaaac caagttaaaa aatagacatt 9300 cattagaaat atcatctgca ctgaatatgt ttaatattgc accccatgga ccagatatat 9360 ctaagatggg tagcatcaac aaaaacaagg tattgtctat gcttaaggaa ccacctctgc 9420 atgaaaaatg tgaggatggg aaaaccgaga ccacttttga aatgtccatg cataacacaa 9480 tgaagtctaa gtctcctctt cccttaactt tacaacattt agtggctttt tgggaagaca 9540 tctcttttggc tactatcaaa gctgcttccc agaatatgat ttttccaagt cctggttcct 9600 gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa taagaagtcc aaaaaggaaa 9660 aaaagaaaaa agaaaaggca gaagttaggc ccaggggtaa tttgtttgga gagtcgccc 9720 agctggcagt aggaggacca gagaaagata ccatctgtga actgtgtggg gagtcacatc 9780 catacccggt gacctatcac atgagacaag ctcacccagg ttgtggccga tatgctggtg 9840 gacaaggtta caatagcatt gggcattttt gtggaggatg ggctggtaac tggtgtgatg 9900 gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 9960 gcgaaaaaca ggctgctgca agggagaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagcaa aaccgagcat tctgtgttac catcctgcaa 10140							9120
gtagtttaaa tagccaacaa cctacagaag aaaaagaaac caagttaaaa aatagacatt 9300 cattagaaat atcatctgca ctgaatatgt ttaatattgc accccatgga ccagatatat 9360 ctaagatggg tagcatcaac aaaaacaagg tattgtctat gcttaaggaa ccacctctgc 9420 atgaaaaatg tgaggatggg aaaaccgaga ccacttttga aatgtccatg cataacacaa 9480 tgaagtctaa gtctccttt cccttaactt tacaacattt agtggctttt tgggaagaca 9540 tctctttggc tactatcaaa gctgcttccc agaatatgat ttttccaagt cctggttcct 9600 gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa taagaagtcc aaaaaggaaa 9660 aaaagaaaaa agaaaaggca gaagttaggc ccaggggtaa tttgtttgga gagatggccc 9720 agctggcagt aggaggaca gagaaagata ccatctgtga actggtggg gagtcacatc 9780 catacccggt gacctatcac atgagacaag ctcacccagg ttgtggccga tatgctggtg 9840 gacaaggtta caatagcatt gggcatttt gtggaggatg ggctggtaac tgtggtgatg 9900 gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 9960 gcgaaaaaca ggctgctgca agggagaaag tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagcag aaccgagcat tctgtgttac catcctgcaa 10140	gtgccagagc	tgtgtttgct	tccttcctct	ggcatgaagg	catagtacat	gatgcaatgg	9180
cattagaaat atcatctgca ctgaatatgt ttaatattgc accccatgga ccagatatat 9360 ctaagatggg tagcatcaac aaaaacaagg tattgtctat gcttaaggaa ccacctctgc 9420 atgaaaaatg tgaggatggg aaaaccgaga ccacttttga aatgtccatg cataacacaa 9480 tgaagtctaa gtctcctctt cccttaactt tacaacattt agtggctttt tgggaagaca 9540 tctctttggc tactatcaaa gctgcttccc agaatatgat ttttccaagt cctggttcct 9600 gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa taagaagtcc aaaaaggaaa 9660 aaaagaaaaa agaaaaggca gaagttaggc ccaggggtaa tttgtttgga gagatggccc 9720 agctggcagt aggaggacca gagaaagata ccatctgtga actgtgtggg gagtcacatc 9780 catacccggt gacctatcac atgagacaag ctcacccagg ttgtggccga tatgctggtg 9840 gacaaggtta caatagcatt gggcatttt gtggaggatg ggctggtaac tgtggtgatg 9900 gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 9960 gcgaaaaaca ggctgctgca agggagaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagcag aaccgagcat tctgtgttac catcctgcaa 10140	cttgttcttc	tttcctaaag	tttcatcctg	aactttccaa	agaacatgct	cctataagga	9240
ctaagatgg tagcatcaac aaaaacaagg tattgtctat gcttaaggaa ccacctctgc atgaaaaatg tgaggatggg aaaaccgaga ccacttttga aatgtccatg cataacacaa 9480 tgaagtctaa gtctcctctt cccttaactt tacaacattt agtggctttt tgggaagaca 9540 tctcttttggc tactatcaaa gctgcttccc agaatatgat ttttccaagt cctggttcct 9600 gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa taagaagtcc aaaaaggaaa 9660 aaaagaaaaa agaaaaggca gaagttaggc ccaggggtaa tttgtttgga gagatggccc 9720 agctggcagt aggaggacca gagaaagata ccatctgtga actgtgtggg gagtcacatc 9780 catacccggt gacctatcac atgagacaag ctcacccagg ttgtggccga tatgctggtg 9840 gacaaggtta caatagcatt gggcatttt gtggaggatg ggctggtaac tgtggtgatg 9900 gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 9960 gcgaaaaaca ggctgctgca agggagaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagcag aaccgagcat tctgtgttac catcctgcaa 10140	gtagtttaaa	tagccaacaa	cctacagaag	aaaaagaaac	caagttaaaa	aatagacatt	9300
tgaagtctaa gtctcctctt cccttaactt tacaacattt agtggctttt tgggaagaca 9540 tctctttggc tactatcaaa gctgcttccc agaatatgat ttttccaagt cctggttcct 9600 gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa taagaagtcc aaaaaggaaa 9660 aaaagaaaaa agaaaaggca gaagttaggc ccaggggtaa tttgtttgga gagatggccc 9720 agctggcagt aggaggacca gagaaagata ccatctgtga actgtgtggg gagtcacatc 9780 catacccggt gacctatcac atgagacaag ctcacccagg ttgtggccga tatgctggtg 9840 gacaaggtta caatagcatt gggcattttt gtggaggatg ggctggtaac tgtggtgatg 9900 gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 9960 gcgaaaaaca ggctgctgca agggagaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagcag aaccgagcat tctgtgttac catcctgcaa 10140	cattagaaat	atcatctgca	ctgaatatgt	ttaatattgc	accccatgga	ccagatatat	9360
tgaagtctaa gtctcctctt cccttaactt tacaacattt agtggctttt tgggaagaca 9540 tctctttggc tactatcaaa gctgcttccc agaatatgat ttttccaagt cctggttcct 9600 gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa taagaagtcc aaaaaggaaa 9660 aaaagaaaaa agaaaaggca gaagttaggc ccaggggtaa tttgtttgga gagatggccc 9720 agctggcagt aggaggacca gagaaagata ccatctgtga actgtgtggg gagtcacatc 9780 catacccggt gacctatcac atgagacaag ctcacccagg ttgtggccga tatgctggtg 9840 gacaaggtta caatagcatt gggcatttt gtggaggatg ggctggtaac tgtggtgatg 9900 gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 9960 gcgaaaaaca ggctgctgca agggagaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagcag aaccgagcat tctgtgttac catcctgcaa 10140	ctaagatggg	tagcatcaac	aaaaacaagg	tattgtctat	gcttaaggaa	ccacctctgc	9420
tetetttgge tactateaa getgetteee agaatatgat titteeaagt eetggiteet 9600 gigeagitet taaaaagaaa gagigigaga aaggaaggaa taagaagtee aaaaaggaaa 9660 aaaagaaaaa agaaaaggea gaagitagge eeaggggtaa tittgiitigga gagatggeee 9720 agetggeagi aggaggacea gagaaagata eeatetgiga aetgiitigga gagiteacate 9780 cataceeggi gacetateae atgagacaag eteaceeagg tigiiggeega tatgetggig 9840 gacaaggita eaatageati gggeatitii giiggaggati ggetggtaae tgiiggiiggiiggiiggiiggiiggiiggiiggiiggi	atgaaaaatg	tgaggatggg	aaaaccgaga	ccacttttga	aatgtccatg	g cataacacaa	9480
gtgcagttct taaaaagaaa gagtgtgaga aaggaaggaa taagaagtcc aaaaaggaaa 9660 aaaagaaaaa agaaaaggca gaagttaggc ccaggggtaa tttgtttgga gagatggccc 9720 agctggcagt aggaggacca gagaaagata ccatctgtga actgtgtggg gagtcacatc 9780 catacceggt gacctatcac atgagacaag ctcacccagg ttgtggccga tatgctggtg 9840 gacaaggtta caatagcatt gggcattttt gtggaggatg ggctggtaac tgtggtgatg 9900 gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 9960 gcgaaaaaca ggctgctgca agggagaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagcag aaccgagcat tctgtgttac catcctgcaa 10140	tgaagtctaa	gtctcctctt	cccttaactt	tacaacattt	agtggcttt	tgggaagaca	9540
aaaagaaaaa agaaaaggca gaagttaggc ccaggggtaa tttgtttgga gagatggccc 9720 agctggcagt aggaggacca gagaaagata ccatctgtga actgtgtggg gagtcacatc 9780 catacccggt gacctatcac atgagacaag ctcacccagg ttgtggccga tatgctggtg 9840 gacaaggtta caatagcatt gggcattttt gtggaggatg ggctggtaac tgtggtgatg 9900 gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 9960 gcgaaaaaca ggctgctgca agggagaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagcag aaccgagcat tctgtgttac catcctgcaa 10140	tctctttggc	tactatcaaa	getgettece	agaatatgat	ttttccaag	cctggttcct	9600
agctggcagt aggaggacca gagaaagata ccatctgtga actgtgtgg gagtcacatc 9780 catacccggt gacctatcac atgagacaag ctcacccagg ttgtggccga tatgctggtg 9840 gacaaggtta caatagcatt gggcatttt gtggaggatg ggctggtaac tgtggtgatg 9900 gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 9960 gcgaaaaaca ggctgctgca agggagaagg tcaaaccatc taggagaaaa ccaatgcaag 10020 tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagcag aaccgagcat tctgtgttac catcctgcaa 10140	gtgcagttct	taaaaagaaa	ı gagtgtgaga	aaggaaggaa	taagaagtc	c aaaaaggaaa	9660
catacceggt gacctateae atgagacaag eteacecagg ttgtggeega tatgetggtg 9840 gacaaggtta caatageatt gggeattttt gtggaggatg ggetggtaae tgtggtgatg 9900 gtggeatagg aggaageaet tggtatetgg tatgtgateg etgtagagaa aaatacetee 9960 gegaaaaaca ggetgetgea agggagaagg teaaacaate taggagaaaa ecaatgeaag 10020 teaagacece tegtgeettg eccaccatgg aageteacea ggtgattaaa geeaatgeae 10080 tetteetget gteeetgage agtgeageag aacegageat tetgtgttae eateetgeaa 10140	aaaagaaaaa	agaaaaggca	gaagttaggc	ccaggggtaa	tttgtttgg	a gagatggccc	9720
gacaaggtta caatagcatt gggcattttt gtggaggatg ggctggtaac tgtggtgatg 9900 gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 9960 gcgaaaaaca ggctgctgca agggagaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagcag aaccgagcat tctgtgttac catcctgcaa 10140	agctggcagt	aggaggacca	a gagaaagata	ccatctgtga	actgtgtgg	g gagtcacatc	9780
gtggcatagg aggaagcact tggtatctgg tatgtgatcg ctgtagagaa aaatacctcc 9960 gcgaaaaaca ggctgctgca agggagaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagcag aaccgagcat tctgtgttac catcctgcaa 10140	catacccggt	gacctatcac	c atgagacaag	ctcacccagg	ttgtggccg	a tatgctggtg	9840
gtggcatagg aggaagcact tggtatetgg tatgtgateg etgtagagat databases gegaaaaaca ggctgctgca agggagaagg tcaaacaatc taggagaaaa ccaatgcaag 10020 tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagcag aaccgagcat tctgtgttac catcctgcaa 10140	gacaaggtta	caatagcatt	gggcattttt	gtggaggatg	g ggctggtaa	c tgtggtgatg	9900
tcaagacccc tcgtgccttg cccaccatgg aagctcacca ggtgattaaa gccaatgcac 10080 tcttcctgct gtccctgagc agtgcagcag aaccgagcat tctgtgttac catcctgcaa 10140	gtggcatagg	aggaagcact	t tggtatctgg	tatgtgatco	g ctgtagaga	a aaatacctcc	9960
tetteetget gteectgage agtgeageag aacegageat tetgtgttae cateetgeaa 10140	gcgaaaaaca	ggctgctgc	a agggagaagg	g tcaaacaat	c taggagaaa	a ccaatgcaag	10020
	tcaagacccc	tcgtgcctt	g cccaccatgo	g aagctcacca	a ggtgattaa	a gccaatgcac	10080
agccattcca atctcagttg cccagtgtaa aagaaggcat ttctgaggat cttcctgtga 10200	tcttcctgct	gtccctgag	c agtgcagcag	g aaccgagca	t tctgtgtta	c catcctgcaa	10140
	agccattcca	. atctcagtt	g cccagtgtaa	a aagaaggca	t ttctgagga	t cttcctgtga	10200

aaatgeettg tetgtaeetg eagaeattag etaggeatea teatgaaaat tttgtggget 1026	0
atcaagatga caatctattc caggatgaaa tgagatatct acgttcaaca tctgtacctg 1032	0
ccccgtatat atcagtaact cctgatgcaa gtcctaatgt atttgaagag ccagagagca 1038	0
atatgaagto tatgocacca agtttagaaa ccagtoccat aactgatact gatottgoaa 1044	0
agagaactgt cttccaaaga tcatactcag ttgttgcttc cgaatatgat aaacaacact 1050	0
ccattttacc tgcacgagtt aaagctattc ctagaagaag agttaacagt ggagacactg 1056	0
aagttggttc ttcccttttg agacatccgt ctcctgagct ttctcggcta atctcagccc 1062	20
acagctctct ttctaaagga gaacgaaatt tccagtggcc agttttagct tttgttatac 1068	30
aacatcatga tctagaaggt cttgaaatag caatgaaaca ggccctaagg aaatctgctt 1074	10
gtcgagtttt tgctatggag gctttcaact ggcttctgtg taatgtcatc caaaccactt 1080	00
ctctccatga tattctgtgg cattttgtgg catcactgac tcctgcacca gtggaaccag 1086	50
aggaagaaga ggatgaagaa aataaaacaa gcaaagaaaa ttcagaacaa gagaaagata 1092	20
caagagtatg tgaacatcca ctctcagaca tagtgattgc cggggaacgt gctcatcctt 109	80
taccacacac ctttcaccgc ttgctgcaga ccatctcaga ccttatgatg tctctcccca 110	40
gcggcagttc attacagcaa atggccctga ggtgctggag tctcaaattc aagcaatctg 111	00
atcaccagtt ccttcatcag agcaacgtct ttcatcacat taacaatatt ttgtcaaagt 111	60
cagatgatgg cgatagtgaa gagagtttta gcatcagtat acagtctggc tttgaagcta 112	20
tgagtcagga attatgcata gtaatgtgct taaaggactt aaccagcatt gttgacataa 112	80
aaacttcaag ccgacctgcc atgattggca gtttgacaga cggctccaca gaaacctttt 113	40
gggaatcagg agatgaagat aaaaacaaaa ctaagaacat caccatcaac tgtgtaaaag 114	00
gaatcaatgc ccgctatgtg tctgttcacg tggacaattc ccgagatctt gggaataaag 114	160
ttacctcaat gaccttctta actggcaaag cagtagaaga tttgtgcaga ataaagcagg 115	520
ttgatctgga ttccaggcac attggctggg taacaagtga acttccagga ggggataatc 115	580
acatcataaa aattgaatta aaaggeeeag aaaatacada gagagoo-ga s	640
tectgggetg gaaagatggt gaaagcacaa aaacagcegg coagaccaa gaarg	700
cccagcagag gaactgtgaa gctgagactc tgcgagtatt cagactgatt acgtctcaag 11	760
tatttggaaa gctcatctct ggagatgctg aacctacacc agaacaagag gaaaaagcac 11	820
tattgtcatc acctgaagga gaagaaaaag tatacaatgc aacatcagat gctgacctga 11	.880
aagaacatat ggttggaatc atattcagca ggagtaagct gactaactta caaaaacagg 11	.940
tgtgtgctca tattgtccaa gctattcgca tggaagctac cagagcoogo gangan 333	000
aacatgctat atcaagcaaa gaaaatgcca attctcagcc aaatgatgaa gatgcctcct 12	060

ctgatgccta	ctgctttgag	ctgctctcta	tggttttagc	actgagtggc	tctaacgttg	12120
gccggcaata	tctggctcaa	cagctaaccc	tgcttcagga	tetetteteg	ctgcttcaca	12180
cagcctctcc	tagagtccag	agacaggtaa	cctctttact	aagaagagtt	ttgcctgaag	12240
	tegtetggee					12300
	tcactcaaca					12360
	cattgccaaa					12420
	tggtaccact					12480
	ttatctccga					12540
	agagatcatc					12600
aagcttggtc	ccgagtgaca	aaaaatgcta	ttgcagaaac	catcattgcc	ttgaccaaga	12660
	atttaggtct					12720
tcgcatccct	atgtgttctt	gatcaggacc	acgtagatcg	tctctcctcg	gggagatgga	12780
tgggaaagga	tggacaacaa	aaacaaatgc	ctatgtgtga	taaccatgat	gatggtgaaa	12840
ctgcagcaat	cattttatgc	aatgtctgtg	gaaatttatg	tacagactgt	gacagattcc	12900
ttcaccttca	tcgaagaacc	aaaactcatc	aaagacaggt	cttcaaagaa	gaagaagaag	12960
ctataaaggt	tgaccttcat	gaaggttgtg	gtagaaccaa	attgttctgg	ttgatggcac	13020
tggcagatto	taaaacaatg	aaggcaatgg	ı tggaattccg	agaacacaca	ggcaaaccca	13080
ccacgagtag	g ctcagaagca	tgtcgcttct	gtggttccag	gagtggaaca	gagttatctg	13140
ctgttggcag	g tgtttgttct	gatgcagatt	gccaggaata	cgctaagata	a gcctgtagta	13200
agacgcatc	c ttgtggccat	ccatgcggg	g gtgttaaaaa	cgaagagca	tgtctgccct	13260
gtctacacg	g ctgtgacaaa	a agtgccacaa	a gcctgaagca	agacgccgat	t gacatgtgca	13320
tgatatgtt	t caccgaagc	g ctctcggca	g caccagccat	t tcagctgga	t tgtagtcaca	13380
tattccact	t acagtgctg	t cggcgagta	t tagaaaatc	g atggettgg	c ccaaggataa	13440
catttggat	t tatatcttg	t cccatttgc	a agaacaaaa	t taatcacat	a gtactaaaag	13500
acctacttg	a tccaataaa	a gaactctat	g aggatgtca	g aagaaaagc	c ttaatgagat	13560
tggaatatg	a aggtctgca	t aagagtgaa	g ctatcacaa	c tcctggtgt	g aggttttata	13620
atgacccag	c tggctatgc	a atgaataga	t atgcatatt	a tgtgtgcta	c aaatgcagaa	13680
aggcatatt	t tggtggtga	a gctcgctgc	g atgctgagg	c tggacgggg	a gatgattato	13740
atcccagag	ga gctcatttg	t ggtgcctgt	t ctgatgttt	c cagggetca	g atgtgtccca	13800
aacatggca	ac agacttttt	g gaatataaa	t gtcgctact	g ctgttcagt	g gctgttttt	13860

PCT/US03/13015 WO 03/090694

tctgttttgg aacaacacat ttttgtaatg cttgtcatga tgattttcaa agaatgacta 13920 gcattcctaa ggaagaacta ccacactgtc ctgcaggtcc caaaggcaag cagttagaag 13980 gaactgaatg tccactccat gttgttcatc cacccactgg ggaagagttt gctctgggat 14040 gtggagtgtg cagaaatgcc cacacttttt agaacacgca gatcctttgt ctacagagag aaaaattgcc ttcatccccc aagaggatgc ggtgaagttt aaactctgct caccataagg 14160 acgggaccat ttttacatcc atgaaaatga accattcaca gtgcaagaag gataccaaat 14220 accatgtaca taattettge tatgaaaagt tteeccatta ttttggttta tettettttg 14280 aacaaatgac atcaaacttg tgaggtgttt gcatgtggcc attaccgtca ttggcctgtg 14340 aagcattgga catttataga taattgatat aaaagaatcg ccatgcccat ggactaagaa 14400 cgatgctggc tttcaagcaa aaaagaaaaa taatcattgt ttattgtata ctgccttttt 14460 gtaatcctgt acaattgcat cacgggtggg gataaaaaga ggaatattct ggtttatttc 14520 ctagactgtt atttaaaaaa aaaaaaaaca ttgtgttagg acagcatata aatgtaataa 14580 gtatcacact gtatataaac atatcaatgt ttgtcctgta taagaattac taaattacaa 14640 atgcaatttc atttaaactt ctaggttaag tttgagcctg aaattttaat gaagtgcaat 14700 actgagtgtg cctcattatc ttgcagctgt aaacatattg gaatgtacat gtcaataaaa 14760 14807 ccactgtaca tttttataca gtgataaagt ctaaaaaaaa aaaaaaa

<210> 131 2156

DNA

Homo sapiens

131

agegeageae teccegeteg ttggeeeggg tateceageg eggaeeeaeg egataegetg 60 acgccccgac gccgatccgg ccgagccaag taagggggac ggcccgagac ggagaaggga 120 gagagtggga gtttcccagc ccgcagaact ttcgaagttg agaagagaac ccctggaacg 180 tgcgctcagc actgggattt tctggactca acgatgactc tgaataatgt caccatgcgc 240 cagggcactg tgggcatgca gccacagcag cagcgctgga gcatcccagc tgatggcagg 300 catctgatgg tccagaaaga gccccaccag tacagccacc gcaaccgcca ttctgctacc 360 cetgaggace actgeegeeg aagetggtee tetgaeteea cagaeteagt cateteetet 420 gagtcaggga acacctacta ccgagtggtg ctcatagggg agcagggggt gggcaagtcc 480 actctggcca acatctttgc aggtgtgcat gacagcatgg acagcgactg cgaggtgctg 540 ggagaagata catatgaacg aaccctgatg gttgatgggg aaagtgcaac gattatactc 600 ctggatatgt gggaaaataa gggggaaaat gaatggctcc atgaccactg catgcaggtc 660

ggggacgcat	acctgattgt	ctactcaatc	acagaccgag	cgagcttcga	gaaggcatct	720
gagctgcgaa	tccagctccg	cagggcccgg	cagacagagg	acattcccat	aattttggtt	780
ggcaacaaaa	gtgacttagt	gcggtgccga	gaagtgtctg	tatcagaagg	gagagcctgt	840
gcagtggtgt	ttgactgcaa	gttcatcgag	acctctgcag	ctgtccagca	caacgtgaag	900
gagctgtttg	agggcattgt	gcgacaggtg	cgccttcggc	gggacagcaa	ggagaagaat	960
gaacggcggc	tggcctacca	gaaaaggaag	gagagcatgc	ccaggaaagc	caggcgcttc	1020
tggggcaaga	tcgtggccaa	aaacaacaag	aatatggcct	tcaagctcaa	gtccaaatcc	1080
tgccatgacc	tctctgtact	ctaggaaccc	agggtcaccc	agatgtccct	ttgatggccc	1140
ttgttgaagg	ccattgggac	caataatcta	tattagattg	aatacttaag	ttagatgtgg	1200
tttcccccat	tgtagcaggg	agctagcgta	ttagccttgt	gggcaacatg	atgcatggga	1260
aatgaaagat	ttttgtaaaa	agtcagtatt	tatttccagg	aaaagcctga	ccttgctatt	1320
tgaacaccca	agactcttta	gaggatgtgt	ttggtgttca	catgtgtttc	ttctattttg	1380
gatagtaggg	aagtaaagct	tacaaagaat	gcctagaaca	agaacttttc	atcattaaaa	1440
atttttccca	gtgttctgat	atgtgacttt	gaggccaatg	agtcataaac	aaatataaga	1500
aagctgtcaa	tgagtttctt	caaaggaggg	aaaactttct	acgaatctaa	gatccatgga	1560
gctagaattg	tagaactagg	ctcatcagaa	tcgtgactat	tattgctcca	tcaaactgtg	1620
aaaagaaatg	atgtggacct	tgctggaaac	aaaggcttag	caaacaattt	ttgttcaatg	1680
cccaccgaga	catatagaat	tgggaactga	tacatgtgtc	ccttataggc	tcaaaaatta	1740
tatcttacaa	tttcttattt	agggggaaat	: tatttgaatc	agattctatt	tagtcaaacc	1800
accttttatg	, ttttattatt	tttgaattca	tggagccatc	ataaaaatat	tttaaaatc	1860
agaattattg	, ataccctgta	gtgcaaaatg	g tcaattttta	atgtataato	: agaagtctga	1920
attttcataa	a aacatatago	ataaaaacct	ccagtacttt	ggttgaccct	: tgtatgtcac	1980
					g ataaagcata	2040
					ctatctttt	2100
caaaatatgo	c aagtttttad	c ctatatgtc	t tataataaaa	ı gaaataaaat	: atttga	2156

<210> 132

<400> 132

tettttegee atettttgte ttteegtgga getgtegeea tgaaggtega getgtgeagt tttagcgggt acaagatcta ccccggacac gggaggcgct acgccaggac cgacgggaag 120

<211> 556 <212> DNA

<213> Homo sapiens

gttttccagt t	tcttaatgc	gaaatgcgag	tcggctttcc	tttccaagag	gaatcctcgg	180
cagataaact g	ggactgtcct	ctacagaagg	aagcacaaaa	agggacagtc	ggaagaaatt	240
caaaagaaaa g	gaacccgccg	agcagtcaaa	ttccagaggg	ccattactgg	tgcatctctt	300
gctgatataa t	eggecaagag	gaatcagaaa	cctgaagtta	gaaaggctca	acgagaacaa	360
gctatcaggg (ctgctaagga	agcaaaaaag	gctaagcaag	catctaaaaa	gactgcaatg	420
gctgctgcta a	aggcacctac	aaaggcagca	cctaagcaaa	agattgtgaa	gcctgtgaaa	480
gtttcagctc	cccgagttgg	tggaaaacgc	taaactggca	gattagattt	ttaaataaag	540
attggattat	aactct					556
	sapiens	,				
<400> 133 cttcctttcc	aacttggacg	ctgcagaatg	gctcccgcaa	agaagggtgg	cgagaagaaa	60
aagggccgtt	ctgccatcaa	cgaagtggta	acccgagaat	acaccatcaa	cattcacaag	120
cgcatccatg	gagtgggctt	caagaagcgt	gcacctcggg	cactcaaaga	gattcggaaa	180
tttgccatga	aggagatggg	aactccagat	gtgcgcattg	acaccagget	caacaaagct	240
gtctgggcca	aaggaataag	gaatgtgcca	taccgaatcc	gtgtgcggct	gtccagaaaa	300
cgtaatgagg	atgaagattc	accaaataag	ctatatactt	tggttaccta	tgtacctgtt	360
accactttca	aaaatctaca	gacagtcaat	gtggatgaga	actaatcgct	gatcgtcaga	420
tcaaataaag	ttataaaatt	gc				442
<210> 134 <211> 1230 <212> DNA <213> Homo	o sapiens					
<400> 134 ggggagactt	gtgagcggcc	atcttggtco	: tgccctgaca	a gattctccta	a tcggggtcac	60
					g tggtactttc	120
					c caggggtatt	180
					c cacctcttcc	240
					c agtttcttta	300
					t tgtacgcttt	360
					g tactaggtgt	420
aatqqtctat	ggaattaaaa	aatatggtc	c ctttgttgc	a gactttgct	g ataaactcaa	480

tgagcaaaaa	cttgcccaac	tagaagaggc	gaagcaggct	tccatccaac	acatccagaa	540
tgcaattgat	acggagaagt	cacaacaggc	actggttcag	aagcgccatt	acctttttga	600
tgtgcaaagg	aataacattg	ctatggcttt	ggaagttact	taccgggaac	gactgtatag	660
agtatataag	gaagtaaaga	atcgcctgga	ctatcatata	tctgtgcaga	acatgatgcg	720
tcgaaaggaa	caagaacaca	tgataaattg	ggtggagaag	cacgtggtgc	aaagcatctc	780
cacacagcag	gaaaaggaga	caattgccaa	gtgcattgcg	gacctaaagc	tgctggcaaa	840
gaaggctcaa	gcacagccag	ttatgtaaat	gtatctatcc	caattgagac	agctagaaac	900
agttgactga	ctaaatggaa	actagtctat	ttgacaaagt	ctttctgtgt	tggtgtctac	960
tgaagttata	gtttaccctt	cctaaaaatg	aaaagtttgt	ttcatatagt	gagagaacga	1020
aatctctatc	ggccagtcag	atgtttctca	teettettge	tctgcctttg	agttgttccg	1080
tgatcactto	tgaataagca	gtttgccttt	ataaaaactt	gctgcctgac	taaagattaa	1140
caggttatag	tttaaatttg	taattaattc	taccatcttg	caataaagtg	acaattgaat	1200
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa				1230
<400> 135	A No sapiens					
tttttttt					tttttacaaa	60
					tetaegggte	120
					gggttttgta	180
					tccccacagg	240
					g gctggctgat	300
ttaaatttt	t ttcaccatt	t teeggaggg	a ggccccatag	ggggtcccgt	atttaccgac	360
aaacccgac	t tttttggga	c gtttgggca	t gtcgccgcaa	CC		402
<212> DN	66					
<400> 13 aagataata	6 a gaacaatgc	a tctgacaaa	g ctgttagato	c gtgaggtca	a gaacaagtct	60
					a attgttgatg	120
					t tttaagatac	180

•						
ctgaaacagt	ttgtttttaa	cagaaaatag	agctccacat	ttccaaaaga	aaaaaaaatg	240
tttttggtct	gcagataaac	ttcctacctc	tcgatctttg	agtttcatgg	cgagtaccaa	300
ctgatgcctg	tggttagtga	gagcctcccg	gtaatttcct	ttggagaaga	atgcagagcc	360
cagattccca	tgagctcggc	attctcctgt	ctggtcacct	ggattgaatt	gagaaaaaaa	420
aaaagaaaaa	atttctctaa	gttataatgt	tatttataac	atataatggt	catcttaatt	480
taagagccac	agatttatta	gctaagattt	cacttatctt	ctattagaaa	agtatttgtt	540
tcttccacaa	gaccctatgt	ggggagttac	tgccctagaa	tttaaatctc	tggataacaa	600
ctgcttttat	tgtcataaca	tacaactgca	gacagggact	taggtgtctt	agaaacaaaa	660
ggttaaagac	cttaacacaa	actagctgct	gtttgagtcc	tcattgccct	gctaatgacc	720
tttgattcta	aacaaccatc	agcttgttgg	ttcagtcatt	tgactccaaa	tctacaaaaa	780
aatatcttta	caagtatgct	ggtggtagat	gcaccttatc	ccttctctta	ctccaatcct	840
gtaagtcctt	gaataatcac	catagcggct	gggaccctgt	acacgtatcc	tgaaaactgg	900
agggccttca	. aggctctcat	cgctgctcag	tacagcgggg	ctcaggtccg	cgtgctctcc	960
gcaccacccc	acttccattt	tggccaaacc	aaccgcaccc	ctgaatttct	ccgcaaattt	1020
cctgccggca	aggtcccago	atttgagggt	gatgatggat	tctgtgtgtt	tgagagcaac	1080
gccattgcct	actatgtgag	caatgaggag	ctgcggggaa	gtactccaga	ggcagcagcc	1140
caggtggtgc	: agtgggtgag	ctttgctgat	tccgatatag	tgcccccagc	cagtacctgg	1200
gtgttcccca	ccttgggcat	catgcaccac	aacaaacagg	ccactgagaa	tgcaaaggag	1260
gaagtgaggo	gaattctggg	gctgctggat	gcttacttga	agacgaggac	ttttctggtg	1320
ggcgaacgag	g tgacattggc	: tgacatcaca	gttgtctgca	ccctgttgtg	gctctataag	1380
caggttctag	g agccttcttt	cegeeaggee	tttcccaata	ccaaccgctg	gttcctcacc	1440
tgcattaaco	agccccagtt	ccgggctgtc	ttgggcgaag	tgaaactgtg	tgagaagatg	1500
gcccagttt	g atgctaaaaa	a gtttgcagag	acccaaccta	aaaaggacac	accacggaaa	1560
gagaagggti	t cacgggaaga	a gaagcagaag	ccccaggetg	agcggaagga	ggagaaaaag	1620
gcggctgcc	c ctgctcctga	a ggaggagatg	gatgaatgtg	agcaggcgct	ggctgctgag	1680
cccaaggcc	a aggacccct	t cgctcacctc	g cccaagagta	cctttgtgtt	: ggatgaattt	1740
aagcgcaag	t actccaatg	a ggacacacto	tctgtggcac	tgccatattt	ctgggagcac	1800
tttgataag	g acggctggt	c cctgtggtad	tcagagtato	getteeetga	a agaactcact	1860
cagaccttc	a tgagctgca	a tctcatcact	ggaatgttco	e agcgactgga	a caagctgagg	1920
aagaatgcc	t tcgccagtg	t catcctttt	ggaaccaaca	a atagcageto	c catttctgga	1980
gtctgggtc	t tccgaggcc	a ggagettge	c tttccgctga	a gtccagatto	g gcaggtggac	2040

tacgagtcat acacatggcg gaaactggat cctggcagcg aggagaccca gacgctggtt 2100
cgagagtact tttcctggga gggggccttc cagcatgtgg gcaaagcctt caatcagggc 2160
aagatcttca agtgaacatc tcttgccatc acctagctgc ctgcacctgc ccttcaggga 2220
gatgggggtc attaaaggaa actgaacatt gaaaaaaaaa aaaaaa 2266

<210> 137

<211> 1634

<212> DNA

<213> Homo sapiens

<400> 137 acgatgaagt cagtgaggag gaggaatagt aattgtcaat gagcttttaa taccaagata 60 cacccctgc ccccaaagaa gagtcctctt ttagggaatc agaaccttca ttgtcctaga 120 180 agctgaaaga ttcttggaac attttagctt ttactctcaa cttgctgttc tctttacatt ccttaagtta gactttcggg tgtggcttct ctctcagggg taacatttac ttccattttc 240 tagaccgaac caaaagtett etgeagaate teecaccgag tgtggtaaga aggaaggaca 300 aaaggettta ggatataaat tteatgttae agageatgte attgteaaag gaaatetgtg 360 420 gccctgagat tttaagaaca taaaatgtga catttgatat ttctccagcc cagggaagta 480 agatggttag caatggttgc cttaatcaaa tggtcccatt tttaacccca aaggaagtgc 540 ccacagcaag aggtttgtgt gatgcactta tgtcctccgg tgaggaaagg gggccacata 600 tgaaaggccc cttaggtcag atcctgagag tagcacattt gagtgcagat tcctgggccc cacctcaaac ctactaattc tgaatctctg ggaatagggc caggaaatct gccctttcta 660 720 caaactaccc aagttgttct gttgcacatc aatgtttggg aaccactgct gtaagggaat 780 cattctggtc accttgagct ttgagctacc actaagccat gaaagaaaat acatcataca 840 gggaagagag aagggaggag gttccaagta gtaactggca gatcctcctg tctggaggta ccaccttcta ttctggtttc tgacttttcc ttcttgatga ccatagatgt gttccagagg 900 caaaagagac acattatccc agatggcaga acatgctttc aaaacatata aaatgtcaaa 960 1020 qttccaqatc cttctacatc tttagtcctg tctgaggatg gtagctggct ctctgtagct 1080 gatagatggc tagagttcca tccaaatcct tgaccacgac ttcatggaga tttgaataat 1140 ctatttgatg agatttctat ttcaataacc cacctctctc accccacatt catatcccta 1200 aatttgaccc tctgggccga gtcacattac cttcaggaga cttgatccca gtagactgag gtcttccctt tcagcagaaa gatttcattt ccctggcttg ccagtggcac tgatttccga 1260 acacccaatg agtttaatat totttoctoo ttggcattac tgccccagcc gcttttttt 1320 tttttttgtg tgtgtctaat aaccaggaaa aaaataaagc ttaggtttta aaaagtttta 1380

193

aaaataat	ct gtttcagaaa	ctgtcaaatg	taccatattt	gtattaagag	ttgttgggaa	1440
tttttgta	ca atgaatttac	atttatttat	ggtgacatat	ttacgcttgt	gatcaaataa	1500
tgatgtta	aa ttcttaaatc	atatttgcta	tgcagctgaa	gatgatattt	tgatttgtat	1560
tttggggg	ta cctgtgttga	gttgataaac	atttccatct	tcattaaaac	tgcttccaaa	1620
ctaaaaaa	aa aaaa					1634
<210> 1	38					

<210> 138 <211> 1865 <212> DNA

<213> Homo sapiens

<400> 138 60 gcgtggaggt cgacgactcc gtcgcagact acggacctgt ctgggtctca gccgccaaag accccgtccg gtaggtgagt ggctcacttt gagggcaagc cttctcggat cgaggcttct 120 tcatggccgc tcagatcgtg agcggccggg gctgctctct ttgcggagga tggcgtctaa 180 240 tgagcgcagt tgattcgagg aagtactagc cggacatcat gagtggctgt cgggtattca tegggagaet aaateeageg geeagggaga aggaegtgga aagattette aagggatatg 300 gacggataag agatattgat ctgaaaagag gctttggttt tgtggaattt gaggatccaa 360 gggatgcaga tgatgctgtg tatgagcttg atggaaaaga actctgtagt gaaagggtta 420 ctattgaaca tgctagggct cggtcacgag gtggaagagg tagaggacga tactctgacc 480 gttttagtag tcgcagacct cgaaatgata gacggtatgt gaagggtgga tggctgcatt 540 gaacaattat tgtaggggta gcatttaaga ttcaggagtc attagcagtg atgattttgg 600 660 gacctgccgt ataatctgtt cttctattcc cacgttagcc aattgttctt gatgaatcta 720 tatgagtcat agaacacaaa tctattgacg gaagtcatta gaatggcttg tgatatctga 780 tggcttgaac ttgcccacag ttgaacacaa gtgctgtcat tgcatttctt ccattgtgaa 840 tacgaatttt cttcctcaga aatgctccac ctgtaagaac agaaaatcgt cttatagttg agaatttatc ctcaagagtc agctggcagg atctcaaaga tttcatgaga caagctgggg 900 aagtaacgtt tgcggatgca caccgaccta aattaaatga aggggtggtt gagtttgcct 960 cttatggtga cttaaagaat gctattgaaa aactttctgg aaaggaaata aatgggagaa 1020 1080 aaataaaatt aattgaaggc agcaaaaggc acaggtcaag aagcaggtct cgatcccgga ccagaagttc ctctaggtct cgtagccgat cccgttcccg tagtcgcaaa tcttacagcc 1140 ggtcaagaag caggagcagg agccggagcc ggagcaagtc ccgttctgtt agtaggtctc 1200 ccgtgcctga gaagagccag aaacgtggtt cttcaagtag atctaagtct ccagcatctg 1260 tggatcgcca gaggtcccgg tcccgatcaa ggtccagatc agttgacagt ggcaattaaa 1320

ctgtaaat	taa	cttgccctgg	gggccttttt	ttttaaaaaa	caaaaaccac	aaaaattccc	1380
aaaccata	act	tgctaaaaat	tctggtaagt	atgtgctttt	ctgtgggggt	gggatttgga	1440
agggggg	ttg	ggttgggctg	gatatctttg	tagatgtgga	ccaccaaggg	gttgttgaaa	1500
actaatt	gta	ttaaatgtct	tttgataagc	cttctgctca	catttttgtg	aatgtctgaa	1560
gtatata	gtt	tgtgtatatt	gacagagctc	ttttataact	aaagcaaatt	taatttttt	1620
gtactag	aaa	aaaatttgaa	cattttagtt	cttggttata	aaaatgttaa	ttcagaatta	1680
gtttaat	gcc	ttaattaaac	taattaatag	ctttggacac	ttaaaagagc	tctaaatttg	1740
cttgtac	ata	aaggcttaat	ttgttttcct	tgttagggtc	aagggtgtcc	tccactcttt	1800
aacagct	gct	ggacagacac	attagagcag	ctgtttgtta	ttgataataa	aatattataa	1860
aacta							1865

<210> 139

<211> 1198 <212> DNA

<213> Homo sapiens

<400> 139 tactaagagt ctccagcatc ctccacctgt ctaccaccga gcatgggcct atatttgaag 60 cettagatet etecageaca gtaageacca ggagteeatg aagaagatgg etectgeeat 120 ggaatcccct actctactgt gtgtagcctt actgttcttc gctccagatg gcgtgttagc 180 agtccctcag aaacctaagg tctccttgaa ccctccatgg aatagaatat ttaaaggaga 240 gaatgtgact cttacatgta atgggaacaa tttctttgaa gtcagttcca ccaaatggtt 300 ccacaatggc agcctttcag aagagacaaa ttcaagtttg aatattgtga atgccaaatt 360 tgaagacagt ggagaataca aatgtcagca ccaacaagtt aatgagagtg aacctgtgta 420 cctggaagtc ttcagtgact ggctgctcct tcaggcctct gctgaggtgg tgatggaggg 480 ccagcccctc ttcctcaggt gccatggttg gaggaactgg gatgtgtaca aggtgatcta 540 ttataaggat ggtgaagctc tcaagtactg gtatgagaac cacaacatct ccattacaaa 600 tgccacagtt gaagacagtg gaacctacta ctgtacgggc aaagtgtggc agctggacta 660 tgagtctgag cccctcaaca ttactgtaat aaaagctccg cgtgagaagt actggctaca 720 attttttatc ccattgttgg tggtgattct gtttgctgtg gacacaggat tatttatctc 780 aactcagcag caggtcacat ttctcttgaa gattaagaga accaggaaag gcttcagact 840 tctgaaccca catcctaagc caaaccccaa aaacaactga tataattact caagaaatat 900 ttgcaacatt agtttttttc cagcatcagc aattgctact caattgtcaa acacagcttg 960 caatatacat agaaacgtct gtgctcaagg atttatagaa atgcttcatt aaactgagtg 1020

aaactggtta agtggcatgt aatagtaagt gctcaattaa cattggttga ataaatgaga 1080 1140 tataaaacca tgtaacagaa tgcttctgag taaaaaaaaa aaaaaaaaa aaaaaaaa 1198 <210> 140 <211> 453 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (182)..(182) <223> n is a, c, g, t or u <400> 140 gaatgggttt caagtgattg taccaaaata ggaaaactat aaatatatat tcatacatat 60 agtaaaatgt taagactgag atttagaatt catttaatga gcccaaattg tattttatgt 120 atgagtaaac tgaggcacag taagactaag ttaactgccc aaactcttcc acctggttag 180 tngggaaaat aacatttcca accetgatet ttetggttee tgaaccagga tagetggaet 240 gtacttcccc atttttgaaa aagctgctaa aaacttggtt acaaacttta agtgacacgt 300 ttctccattt atgtggtggt tatagcaacg gtacaactct ctatttataa attaaacctt 360 gagaaacacc catctccact tcctagacaa accaatgaac attagtctta tttttctccc 420 453 agaaaatgtc agagggtgtt acagtggcta cac <210> 141 <211> 222 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (159)..(159) <223> n is a, c, g, t or u aggacttcct ctttaaattt ggtaccagta acttagtgac acataatgac aaccaaaata 60 tttgaaagca cttaagcact cctccttgtg gaaagaatat accaccattt catctggcta 120 gttcaccatc acaactgcat taccaaaagg ggatttttnc aaacgcggag ttgaccaaaa 180 222 taatatotga ggatgattgo ttttccctgo tgccagctga to <210> 142 <211> 1851 <212> DNA

196

<213> Homo sapiens

<400> 142 gggcgcgcca gagacgcagc cgcgctccca ccacccacac ccaccgcgcc ctcgttcgcc 60 tetteteegg gagecagtee gegecacege egeegeecag gecategeea eeeteegeag 120 ccatgtccac caggtccgtg tectegtect cetacegeag gatgttcgge ggcccgggca 180 cegegageeg geegagetee ageeggaget aegtgaetae gteeaceege acetacagee 240 tgggcagcgc gctgcgcccc agcaccagcc gcagcctcta cgcctcgtcc ccgggcggcg 300 tgtatgccac gcgctcctct gccgtgcgcc tgcggagcag cgtgcccggg gtgcggctcc 360 tgcaggactc ggtggacttc tcgctggccg acgccatcaa caccgagttc aagaacaccc 420 gcaccaacga gaaggtggag ctgcaggagc tgaatgaccg cttcgccaac tacatcgaca 480 aggtgcgctt cctggagcag cagaataaga tcctgctggc cgagctcgag cagctcaagg 540 gccaaggcaa gtcgcgccta ggggacctct acgaggagga gatgcgggag ctgcgccggc 600 aggtggacca gctaaccaac gacaaagccc gcgtcgaggt ggagcgcgac aacctggccg 660 aggacatcat gcgcctccgg gagaaattgc aggaggagat gcttcagaga gaggaagccg 720 aaaacaccct gcaatctttc agacaggatg ttgacaatgc gtctctggca cgtcttgacc 780 ttgaacgcaa agtggaatct ttgcaagaag agattgcctt tttgaagaaa ctccacgaag 840 aggaaatcca ggagctgcag gctcagattc aggaacagca tgtccaaatc gatgtggatg 900 tttccaagcc tgacctcacg gctgccctgc gtgacgtacg tcagcaatat gaaagtgtgg 960 ctgccaagaa cctgcaggag gcagaagaat ggtacaaatc caagtttgct gacctctctg 1020 aggotgocaa coggaacaat gacgocotgo gocaggoaaa goaggagtoo actgagtaco 1080 ggagacaggt gcagtccctc acctgtgaag tggatgccct taaaggaacc aatgagtccc 1140 tggaacgcca gatgcgtgaa atggaagaga actttgccgt tgaagctgct aactaccaag 1200 acactattgg ccgcctgcag gatgagattc agaatatgaa ggaggaaatg gctcgtcacc 1260 ttcgtgaata ccaagacctg ctcaatgtta agatggccct tgacattgag attgccacct 1320 acaggaagct gctggaaggc gaggagagca ggatttetet geetetteea aactttteet 1380 ccctgaacct gagggaaact aatctggatt cactccctct ggttgatacc cactcaaaaa 1440 ggacattcct gattaagacg gttgaaacta gagatggaca ggttatcaac gaaacttctc 1500 agcatcacga tgaccttgaa taaaaattgc acacactcag tggcaggcga tatattaccc 1560 aggcaagaat aaaaaagaaa tcccatatct taaagaaaca gctttcaagt gcctttctgc 1620 agtttttcag gagcgcaaga tagatttgga ataggaataa gctctagttc ttaacaaccg 1680 acactectae aagatttaga aaaaagttta caacataate tagtttacag aaaaatettg 1740

PCT/US03/13015 WO 03/090694

tgctagaata ctttttaaaa ggtattttga ataccattaa aactgctttt ttttttccag 1800 caagtatcca accaacttgg ttctgcttca ataaatcttt ggaaaactcc a 1851

143 <210> 2864 <211> DNA <212>

Homo sapiens <213>

<400> 143 agataacaag agtaatccac agacttaaaa catgagctca gatgccagcc aaggcgtgat 60 taccactcct cctcctccca gcatgcctca caaagagaga tattttgacc gcatcaatga 120 aaatgaccca gaatacatta gggagaggaa catgtctcct gatctacgac aagacttcaa 180 catgatggag cagaggaaac gagttactca gatcctgcaa agtcctgcct ttcgggaaga 240 cttggaatgc cttattcaag aacagatgaa gaaaggccac aacccaactg gattactagc 300 attacagcag attgcagatt acatcatggc caattettte tegggttttt etteacetee 360 tctcagtctt ggcatggtca cacctatcaa tgaccttcct ggtgcagata catcctcata 420 tgtgaaggga gaaaaactta ctcgctgtaa acttgccagc ctgtacagac ttgtagactt 480 gtttggatgg gcacacctgg caaataccta tatctcagta agaataagta aggagcaaga 540 ccacattata ataattccca gaggcctatc tttttctgaa gctacagcct ccaatttggt 600 gaaagtcaat ataataggag aagtggttga ccagggaagt accaatttga aaattgacca 660 tacaggattc agtccccatg ctgcaatcta ttcaacacgt cctgatgtta agtgtgtcat 720 acacatccat accettgcaa cagcagetgt atcetecatg aaatgtggga teettecaat 780 ttctcaagag tctcttcttc tgggagatgt tgcctattat gactaccaag ggtcacttga 840 agaacaggag gagagaattc aactgcagaa ggttctggga ccaagttgta aggtgctggt 900 actcaggaat catggtgtgg ttgcacttgg agaaacatta gaggaggctt ttcattatat 960 ttttaatgtg caactagcct gtgagattca ggtgcaggcc ctagcaggtg caggtggagt 1020 agacaatctc catgtactgg actttcagaa gtataaagct ttcacttaca ctgtagcagc 1080 gtctggtgga ggaggtgtga atatgggttc ccatcaaaaa tggaaggttg gcgaaattga 1140 gtttgaaggg cttatgagga ctctggacaa cttggggtat agaacaggct atgcttacag 1200 gcatcctctc attcgagaga agcctaggca caagagtgat gtggaaatcc cagcaactgt 1260 gactgctttt tcctttgaag acgatacagt gccactctct cctctcaaat acatggcaca 1320 gaggcaacag cgtgaaaaaa caagatggct gaactcacca aatacttaca tgaaagtgaa 1380 tgtgcctgag gagtctcgga acggagaaac cagtccccga accaaaatca cgtggatgaa 1440 agcagaagac tcatctaaag ttagtggtgg aacacctatc aaaattgaag atccaaatca 1500

198

PCT/US03/13015 WO 03/090694

•						
gtttgttcct	ttaaacacaa	acccgaatga	ggtactagaa	aagagaaata	agattcggga	1560
acaaaatcga	tatgacttga	aaacagcagg	accacaatct	cagttgcttg	ctggaattgt	1620
tgtggataag	ccaccttcta	ctatgcaatt	tgaagatgat	gatcatggcc	caccagetee	1680
tcctaaccca	tttagtcatc	tcacagaagg	agaacttgaa	gagtataaga	ggacaatcga	1740
acgtaaacaa	caaggcctag	aagatgctga	gcaggaatta	ctctcagatg	acgcttcatc	1800
tgtttcacaa	attcagtctc	aaactcagtc	accgcaaaat	gtccctgaaa	aattagaaga	1860
aaaccatgag	ctgttttcca	agagcttcat	ctccatggaa	gtgcctgtca	tggtagtaaa	1920
tggcaaggat	gatatgcatg	atgttgaaga	tgagcttgct	aagcgagtga	gtaggttaag	1980
cacaagtaca	accatagaaa	acatcgagat	tactattaag	tctccagaga	aaatcgaaga	2040
agtcctgtca	cctgaaggct	ccccttcaaa	atcgccatcc	aagaaaaaga	agaaattccg	2100
cactccttct	tttctgaaaa	agaacaaaaa	aaaggagaaa	gttgaggcct	aaataaagtc	2160
tttttataat	tattattata	acaatgtgac	attgcacatc	taaataccac	atttaagttg	2220
atcattaata	tgcaatggta	gatcagattg	ggggatgtag	caaactggac	tttaagaact	2280
ggaaagaggt	tttacaaaag	aaaaactttc	agattcatct	ctcattttat	atgtccagaa	2340
atggctttga	attttaagca	attactagtt	ttaattagct	ctgccctcat	gaagtattat	2400
tataattcac	cataaacago	tatctgtctg	, aattacttca	ggccttctcc	ataatatctg	2460
ttagaaagaa	attgccagtg	agcaagtgag	, aatttttatt	tctcaatacc	: tgcttcactt	2520
gataatcata	ttataattt	ttatcatgat	tattgactat	atttttggag	tcccattgtt	2580
tcagtgggca	a ttaacagaat	gctttaaaaa	t cttctaagac	aagaatctat	agcattagta	2640
tacactggca	a cataatttt	taaaaagttt	taagaaaaga	ttcatttgga	a attttattca	2700
cagtataaaa	a tttcctcaco	tgaagtaact	ttgtttgcca	aaaaagttgt	tttaataaac	2760
tataatttti	t gaaaacttc	ttttttatta	a gtttagaaag	g ccccttatt	t ttcaacaaag	2820
gggattttg	t acacataaca	a tgggttatt	t agtttaacto	tggc		2864
		•				

<210> 144

<211> 360

<212> DNA

<213> Homo sapiens

<400> 144

60 taaaaaaatc ttttcattgc aaacatgttt ggctgttggg tagtattcaa aaacatcaca 120 gaaagggcag tttcttcaat gggggggtag ccctcaataa ttatatataa aatggctgcc 180 aaaccagtaa gactgctttt atacatccat cattttcagg attgggggaa accggggcat 240

199

attttcccca aataactttg	cctccttggg	cacaaggccc	aattcgctca	catttactta	300
aatgacagtc ccttgggaat	aacacccaaa	gttgatccag	gggggataag	gatttttctt	360
<210> 145 <211> 876 <212> DNA <213> Homo sapiens					
<400> 145 gaggagagga gagcatagca	cctgcagcaa	gatggatgtg	ggcagcaaag	aggtcctgat	60
ggagagcccg ccggactact	ccgcagctcc	ccggggccga	tttggcattc	cctgctgccc	120
agtgcacctg aaacgccttc	ttatcgtggt	ggtggtggtg	gtcctcatcg	tcgtggtgat	180
tgtgggagcc ctgctcatgg	gtctccacat	gagccagaaa	cacacggaga	tggṭtctgga	240
gatgagcatt ggggcgccgg	aagcccagca	acgcctggcc	ctgagtgagc	acctggttac	300
cactgccacc ttctccatcg	gctccactgg	cctcgtggtg	tatgactacc	agcagctgct	360
gatcgcctac aagccagccc	ctggcacctg	ctgctacatc	atgaagatag	ctccagagag	420
catccccagt cttgaggctc	tcaatagaaa	agtccacaac	ttccagatgg	aatgctctct	480
gcaggccaag cccgcagtgc	ctacgtctaa	gctgggccag	gcagaggggc	gagatgcagg	540
ctcagcaccc tccggagggg	acccggcctt	cctgggcatg	gccgtgaaca	ccctgtgtgg	600
cgaggtgccg ctctactaca	tctaggacgc	ctccgggtca	gtggaagccc	caacgggaaa	660
ggaaacgccc cgggcaaagg	gtcttttgca	gcttttgcag	acgggcaaga	agctgcttct	720
gcccacaccg cagggacaaa	ccctggagaa	atgggagctt	ggggagagga	tgggagtggg	780
cagaggtggc acccaggggc	ccgggaactc	ctgccacaac	agaataaagc	agcctgattg	840
aaaagcaaaa aaaaaaaaaa	aaaaaaaaa	aaaaaa			876
<210> 146 <211> 1875 <212> DNA <213> Homo sapiens					
<400> 146 aaagcatcca gttcctttgc	ggtcctcttc	ttcagcacat	gccaaagctg	ttcctcacgg	60
cctgtgagac aagagcatct	tggatgtagg	acaatggaag	agttagatgo	cttattggag	120
gaactggaac gctccaccct	tcaggacagt	gatgaatatt	ccaacccago	tectettece	180
ctggatcagc attccagaaa	ggagactaac	cttgatgaga	cttcggagat	cctttctatt	240
caggataaca caagtccctt	gccggcgcag	g ctcgtgtata	ctaccaatat	ccaggagete	300
aatgtctaca gtgaagccca	agagccaaag	gaatcaccac	caccttctaa	a aacgtcagca	360
gctgctcagt tggatgagct	: catggctcac	: ctgactgaga	tgcaggccaa	a ggttgcagtg	420

agagcagatg	ctggcaagaa	gcacttacca	gacaagcagg	atcacaaggc	ctccctggac	480
tcaatgcttg	ggggtctgga	gcaggaattg	caggaccttg	gcattgccac	agtgcccaag	540
ggccattgtg	catcctgcca	gaaaccgatt	gctgggaagg	tgatccatgc	tctagggcaa	600
tcatggcatc	ctgagcattt	tgtctgtact	cattgcaaag	aagagattgg	ctccagtccc	660
ttctttgagc	ggagtggctt	ggcctactgc	cccaacgact	accaccaact	tttttctcca	720
cgctgtgctt	actgcgctgc	tcccatcctg	gataaagtgc	tgacagcaat	gaaccagacc	780
tggcacccag	agcacttctt	ctgctctcac	tgcggagagg	tgtttggtgc	agaaggcttt	840
catgagaagg	acaagaagcc	atattgccga	aaggatttct	tagccatgtt	ctcacccaag	900
tgtggtggct	gcaatcgccc	agtgttggaa	aactaccttt	cagccatgga	cactgtctgg	960
cacccagagt	gctttgtttg	tggggactgc	ttcaccagtt	tttctactgg	ctccttcttt	1020
gaactggatg	gacgtccatt	ctgtgagctc	cattaccatc	accgccgggg	aacgctctgc	1080
catgggtgtg	ggcagcccat	cactggccgt	tgtatcagtg	ccatggggta	caagttccat	1140
cctgagcact	ttgtgtgtgc	tttctgcctg	acacagttgt	. cgaagggcat	tttcagggag	1200
cagaatgaca	agacctattg	tcaaccttgc	ttcaataago	: tcttcccact	gtaatgccaa	1260
ctgatccata	gcctcttcag	attccttata	aaatttaaac	caagagagga	gaggaaaggg	1320
taaattttct	gttactgacc	ttctgcttaa	tagtcttata	a gaaaaaggaa	aggtgatgag	1380
caaataaagg	, aacttctaga	ctttacatga	ctaggctgat	aatcttattt	: tttaggcttc	1440
tatacagtta	a attctataaa	ttctctttct	cectetett	c tccaatcaaq	g cacttggagt	1500
tagatctag	g teettetate	: tcgtccctct	acagatgtat	t tttccactt	g cataattcat	1560
gccaacact	g gttttcttag	g gtttctccat	tttcacctc	t agtgatggc	c ctactcatat	1620
cttctctaa	t ttggtcctg	a tacttgttto	c ttttcacgt	t ttcccattt	g ccctgtggct	1680
cactgtctt	a caatcactg	tgtggaatc	a tgataccac	t tttagctct	t tgcatcttcc	1740
ttcagtgta	t ttttgttt	t caagaggaa	g tagatttta	a ctggacaac	t ttgagtactg	1800
acatcattg	a taaataaac	t ggcttgtgg	t ttcaataaa	a aaaaaaaaa	a aaaaaaaaaa	1860
aaaaaaaa	a aaaaa					1875

<210> 147

<211> 1161

<212> DNA

<213> Homo sapiens

<400> 147
ggcgcctttc tcattattat aggctccctc ctgctgtcag gctacatcag caaagggggg 60
gcagaccggg ccgttccagt gctgatcatt ggcattctgg tgttcctacc cggattttac 120

cacctgcgca	tcgcttacta	tgcatccaaa	ggctaccgtg	gttactccta	tgatgacatt	180
ccagactttg	atgactagca	cccaccccat	agctgaggag	gagtcacagt	ggaactgtcc	240
cagctttaag	atatctagca	gaaactatag	ctgaggacta	aggaattctg	cagcttgcag	300
atgtttaaga	aaataatggc	cagattttt	gggtccttcc	caaagatgtt	aagtgaacct	360
acagttagct	aattaggaca	agctctattt	ttcatccctg	ggccctgaca	agtttttcca	420
caggaatatg	tatcatggaa	gaatagaggt	tattctgtaa	tggaaaagtg	ttgcctgcca	480
ccaccctctg	tagagctgag	catttctttt	aaatagtctt	cattgccaat	ttgttcttgt	540
agcaaatgga	acaatgtggt	atggctaatt	tcttattatt	aagtaattta	ttttaaaaat	600
atctgagtat	attatcctgt	acacttatcc	ctaccttcat	gttccagtgg	aagaccttag	660
taaaatcaaa	gatcagtgag	ttcatctgta	atatttttt	tacttgcttt	cttactgaca	720
gcaaccagga	attttttta	tcctgcagag	caagttttca	aaatgtaaat	acttcctctg	780
tttaacagtc	cttggaccat	tctgatccag	ttcaccagta	ggttggacag	catataattt	840
gcatcatttt	gtcccttgta	aatcaagatg	ttctgcagat	tattccttta	acggccggac	900
ttttggctgt	ttcctaatga	aacatgtagt	ggttattatt	tagagtttat	agccgtattg	960
ctagcacctt	gtagtatgtc	atcattctgc	tcatgattcc	aaggatcagc	ctggatgcct	1020
agaggactag	atcaccttag	tttgattcta	. ttttttagct	tgcaaaaagt	gacttatatt	1080
ccaaagaaat	taaaatgttg	. aaatccaaat	cctagaaata	aaatgagtta	acttcaaaca	1140
tttcaaaaaa	aaaaaaaaa	. a				1161

<210> 148

<211> 2354

<212> DNA

<213> Homo sapiens

<400> 148 agegeegetg aattetagge agaaagaaaa gageteecaa atgetatate tateagggge 60 tctcaagaac aatggaatat catcctgatt tagaaaattt ggatgaagat ggatatactc 120 aattacactt cgactctcaa agcaatacca ggatagctgt tgtttcagag aaaggatcgt 180 gtgctgcatc tcctccttgg cgcctcattg ctgtaatttt gggaatccta tgcttggtaa 240 tactggtgat agctgtggtc ctgggtacca tgggggttct ttccagccct tgtcctccta 300 attggattat atatgagaag agctgttatc tattcagcat gtcactaaat tcctgggatg 360 gaagtaaaag acaatgctgg caactgggct ctaatctcct aaagatagac agctcaaatg 420 aattgggatt tatagtaaaa caagtgtctt cccaacctga taattcattt tggataggcc 480 tttctcggcc ccagactgag gtaccatggc tctgggagga tggatcaaca ttctcttcta 540

acttatttca gatcagaacc acagctaccc aagaaaaccc atctccaaat tgtgtatgga	600
ttcacgtgtc agtcatttat gaccaactgt gtagtgtgcc ctcatatagt atttgtgaga	660
agaagttttc aatgtaagag gaagggtgga gaaggagaga gaaatatgtg aggtagtaag	720
gaggacagaa aacagaacag aaaagagtaa cagctgaggt caagataaat gcagaaaatg	780
tttagagagc ttggccaact gtaatcttaa ccaagaaatt gaagggagag gctgtgattt	840
ctgtatttgt cgacctacag gtaggctagt attattttc tagttagtag atccctagac	900
atggaatcag ggcagccaag cttgagtttt tattttttat ttatttattt ttttgagata	960
gggteteact ttgttaceca ggetggagtg cagtggeaca atetegaete aetgeageta	1020
tetetegeet cageceetea agtagetggg actaeaggtg catgecacea tgecaggeta	1080
atttttggtg ttttttgtag agactgggtt ttgccatgtt gaccaagctg gtctctaact	1140
cctgggctta agtgatctgc ccgccttggc ctcccaaagt gctgggatta cagatgtgag	1200
ccaccacacc tggccccaag cttgaatttt cattctgcca ttgacttggc atttaccttg	1260
ggtaagccat aagcgaatct taatttctgg ctctatcaga gttgtttcat gctcaacaat	1320
gccattggag tgcacggtgt gttgccacga tttgaccctc aacttctagc agtatatcag	1380
ttatgaactg agggtgaaat atatttctga atagctaaat gaagaaatgg gaaaaaatct	1440
tcaccacagt cagagcaatt ttattatttt catcagtatg atcataatta tgattatcat	1500
cttagtaaaa agcaggaact cctacttttt ctttatcaat taaatagctc agagagtaca	1560
tetgecatat etetaataga atetttttt ttttttttt tttgagacag agtttegete	1620
ttgttgccca ggctggagtg caacggcacg atctcggctc accgcaacct ccgccccctg	1680
ggttcaagca attctcctgc ctcagcctcc caagtagctg ggattacagt caggcaccac	1740
cacacccggc taattttgta tttttttagt agagacaggg tttctccatg tcggtcaggg	1800
tagtecegaa eteetgaeet caagtgatet geetgeeteg geeteecaag tgetgggatt	1860
acaggegtga gecaetgeae ecageetaga atettgtata atatgtaatt gtagggaaae	1920
tgctctcata ggaaagtttt ctgcttttta aatacaaaaa taccataaaa atacataaaa	1980
tctgatgatg aatataaaaa gtaaccaacc tcattggaac aagtattaac attttggaat	2040
atgttttatt agttttgtga tgtactgttt tacaattttt accatttttt tccagtaatt	2100
acctgtaaaa tggtattatt ggaatgaaac tatatttcct catgtgctga tttgtcttat	2160
ttttttcata ctttcccact ggtgctattt ttatttccaa tggatatttc tgtattacta	2220
gggaggcatt tacagtcctc taatgttgat taatatgtga aaagaaattg taccaatttt	2280
actaaattat gcagtttaaa atggatgatt ttatgttatg	2340

aaaaactctt atta

<210> 149 <211> 2325 <212> DNA <213> Homo sapiens

<400> 149 acctcattca tttctaccgg tctctagtag tgcagcttcg gctggtgtca tcggtgtcct 60 tecteegetg eegeeeege aaggettege egteategag gecattteea gegaettgte 120 gcacgetttt etatataett egtteecege caacegeaac cattgaegee atgtegggtt 180 attcgagtga ccgagaccgc ggccgggacc gagggtttgg tgcacctcga tttggaggaa 240 gtagggcagg gcccttatct ggaaagaagt ttggaaaccc tggggagaaa ttagttaaaa 300 agaagtggaa tottgatgag otgootaaat ttgagaagaa tttttatcaa gagcaccotg 360 atttggctag gcgcacagca caagaggtgg aaacatacag aagaagcaag gaaattacag 420 ttagaggtca caactgcccg aagccagttc taaattttta tgaagccaat ttccctgcaa 480 atgtcatgga tgttattgca agacagaatt tcactgaacc cactgctatt caagctcagg 540 gatggccagt tgctctaagt ggattggata tggttggagt ggcacagact ggatctggga 600 aaacattgtc ttatttgctt cctgccattg tccacatcaa tcatcagcca ttcctagaga 660 gaggcgatgg gcctatttgt ttggtgctgg caccaactcg ggaactggcc caacaggtgc 720 agcaagtagc tgctgaatat tgtagagcat gtcgcttgaa gtctacttgt atctacggtg 780 gtgctcctaa gggaccacaa atacgtgatt tggagagagg tgtggaaatc tgtattgcaa 840 cacctggaag actgattgac tttttagagt gtggaaaaac caatctgaga agaacaacct 900 accttgtcct tgatgaagca gatagaatgc ttgatatggg ctttgaaccc caaataagga 960 agattgtgga tcaaataaga cctgataggc aaactctaat gtggagtgcg acttggccaa 1020 aagaagtaag acagcttgct gaagatttcc tgaaagacta tattcatata aacattggtg 1080 cacttgaact gagtgcaaac cacaacattc ttcagattgt ggatgtgtgt catgacgtag 1140 aaaaggatga aaaacttatt cgtctaatgg aagagatcat gagtgagaag gagaataaaa 1200 ccattgtttt tgtggaaacc aaaagaagat gtgatgagct taccagaaaa atgaggagag 1260 atgggtggcc tgccatgggt atccatggtg acaagagtca acaagagcgt gactgggttc 1320 taaatgaatt caaacatgga aaagctccta ttctgattgc tacagatgtg gcctccagag 1380 ggctagatgt ggaagatgtg aaatttgtca tcaattatga ctaccctaac tcctcagagg 1440 attatattca tcgaattgga agaactgctc gcagtaccaa aacaggcaca gcatacactt 1500 tetttacacc taataacata aagcaagtga gcgaccttat ctctgtgctt cgtgaagcta 1560

204

atcaagcaat	taatcccaag	ttgcttcagt	tggtcgaaga	cagaggttca	ggtcgttcca	1620
ggggtagagg	aggcatgaag	gatgaccgtc	gggacagata	ctctgcgggc	aaaaggggtg	1680
gatttaatac	ctttagagac	agggaaaatt	atgacagagg	ttactctagc	ctgcttaaaa	1740
gagattttgg	ggcaaaaact	cagaatggtg	tttacagtgc	tgcaaattac	accaatggga	1800
gctttggaag	taattttgtg	tctgctggta	tacagaccag	ttttaggact	ggtaatccaa	1860
cagggactta	ccagaatggt	tatgatagca	ctcagcaata	cggaagtaat	gttccaaata	1920
tgcacaatgg	tatgaaccaa	caggcatatg	catatcctgc	tactgcagct	gcacctatga	1980
ttggttatcc	aatgccaaca	ggatattccc	aataagactt	tagaagtata	tgtaaatgtc	2040
tgtttttcat	aattgctctt	tatattgtgt	gttatctgac	aagatagtta	tttaagaaac	2100
atgggaattg	cagaaatgac	tgcagtgcag	cagtaattat	ggtgcacttt	ttcgctattt	2160
aagttggata	tttctctaca	ttcctgaaac	aatttttagg	tttttttgt	actagaaaat	2220
					atgaaggcaa	2280
	tccaataaaa					2325

<210> 150

<211> 2304

<212> DNA

<213> Homo sapiens

<400> 150 atttcggagc gagagccgag gccgggggaa gttcctgcgg agtgctcaag ggcagaagag 60 gtgccgcgtc ccgaagaggg gaagcggaga agtttgctgc tgcccgggtc gcctcgcgac 120 gctgagagaa tcgcccagcc ctccgcagcc gcccagcgag aaccggagct gcggccccgc 180 accggcgtga gtccagctga gctgacacgc cgagccggtt gtgcctttcc gagggaggaa 240 300 tgtgccgtgg aatccaaact ttggaaaacg tcccacccga attcccagcg agcagcaagg agaccagagc gtcgatggag ccaccgttag ttgcgggtgg gctgtcccca agaggaattc 360 atcactgtcg tccgctggga gggaccaacc ttgaaatggg gttggtggag agagggatag 420 agaagagccg gcgtgcttat aaataacaaa acttagctat gaacccttcc gattcccaag 480 tggggaagat ggggtaaaat tctaagtgac ttctcgctcc gaagagggat accacaaaaa 540 geggagegea gggtaettgg egtataataa geeatcaata atttatgggt gaaattgaga 600 660 gccaaatata agatgataaa ctgaagaata aaaacagctg acaaatactg tatagaaaag attgcgttgg aatcataact gtggattgga agtgatgtta aggattattg gattgagtat 720 780 ttgtagctga atttctgctg gcatttctat cagtggggaa agccctcaca gctccatagg taatttttgt taggggagga agaagtgttg ttctgtcacc cacccccagg caaagagtcg 840

PCT/US03/13015 WO 03/090694

ctgatctagt tctccatttc tttctttctt tcctttcttt ccttcctt	900
cetteettee tteetteett cetteettee eteceteet tteettteet	960
	1020
	1080
ceteageete ceaagtaget gggattacag gegeaegeea eegeaeeegg gtaattttgt	1140
atttttaata gagacggggt ttcaccatgt tggccaggct gtttgaactc ctgacctcaa	1200
gtgatccgcc cgcctcggcc tctcaaagtg ctgggattac aggcgcgago cascang	1260
tgcctaatct cctttttata gttgaggaaa gctagtaact tgactgaags soonen a	1320
agagetgtaa etgaagttit taagtgtete aattetgeaa etatetges taasa	1380
tcactgtttg gcatatatat agcgggaaaa ggaaaggctg gaaattagtt gaccacacac	1440
tgattaagct tgaaacatat ttctactgga gaaaaaaagg tactgtaatt ttggcatagg	1500
catcacatat tgctggagtg gaaagaccca tgcactcagg tcctgctttc tataatctgt	1560
gaceteggge cagteactee attteteetg aactagatea etgatgatet gttgaaagaa	1620
aaaatatggc tagtaatgcc ttaattatct cacagaggtt ttacatggag caaaaagaca	1680
atgtattttt aaatgtactt tgttgaaggt gtgtgttgtc gagacaatac agcagtgaag	1740
agaaggcatg caaagctgtc ttgttggagt ctggctaaag agcaccaaag cagcctgttg	1800
tgggatgtcc tctgggggcc acctggactt gctatgttaa catggaggga ctaggcaggg	1920
gtatgaagaa ggaagcccag cagagcagga ggcagcagca acaatgagag attggttatc	1980
catatgactt ggatctgtgt ccccacccaa atctcatgtt gaattgtaat ccccaatgtt	2040
ggaggtgggg actggtggga ggtgactgga tcatgggggt ggatttctta tgaatggttt	2100
agtaccatcc actttgtatt gtccccgtgg taatgagtga gttcttaaga aatctggtca	2160
ttgaaaaata tgtggcacct cctccctctc tcttttgctc ctgccccggc tatatgatgc	2220
aatttgtctt cagccatgat tgtaagtttc ccgaggcctc cccagaagct gagcagatgc	2280
cagcatcatg cttcctgtac agcctgcctt ccatgagcca attaaacttc tttcctttac	2304
aaattaaaaa aaaaaaaaaa aaaa	-

<210> 151 <211> 1582 <212> DNA <213> Homo sapiens

<400> 151 taatggccgc tggctatctt gggggagcca gctgttggac tatgccccac tgccaggaaa 60 caggcgccgg aaggttetet gacaagatet egettteeta gggcggtgaa ggegtteaaa 120

PCT/US03/13015 WO 03/090694

•					
ggtcgggaag gggcgctggg					180
tctgtctgtg aagagaccca	gtttcgtggg	accacggtgg	cgcctgcgct	gggaggtgag	240
cttgtgacag agcgaaaact	acaattccca	gcattcctgt	ggtgccagaa	ctaccttgcc	300
cgaaagcctg tgcgagattt	accccgtctt	ccgcctccct	cccaccggaa	aactctgagg	360
acatgaatag tcgccaggct					420
tttcaaggcc ccgcgggcat					480
ccaaggaggg atatgatagg					540·
cttttgatac ccatgcattg					600
cagaaacaat tgtatcagcg					660
aagagatggt cactcaagct					720
atgctatcag gaaagacatg					780
agaatgagaa aatgaaaatt					840
gtcgaatcag agcagataat					900
tgtttacaga tcaagaaaag					960
ctcaaaccaa aagtattatt					1020
taaaaacact gatggaatct					1080
ttacttgcct ggcaatagca					1140
cctgctgtgg ctgttggctt					1200
tcagttgcag caaaaattta					1260
aagtgtttta gaatgagaag					1320
gtgtctttat tatattgaa					1380
gtccttttga tagttaata					1440
tgtaaatcat acaggattt					1500
acatatttat tactgaatt					1560
aatgaaagat tattacaac					1582

<210> 152

<211> 515

<212> DNA

<213> Homo sapiens

<400> 152

cttttcctcc ttggctgtct gaagatagat cgccatcatg aacgacaccg taactatccg 60 cactagaaag ttcatgacca accgactact tcagaggaaa caaatggtca ttgatgtcct 120

tcaccccggg	aaggcgacag	tgcctaagac	agaaattcgg	gaaaaactag	ccaaaatgta	180
caagaccaca	ccggatgtca	tctttgtatt	tggattcaga	actcattttg	gtggtggcaa	240
gacaactggc	tttggcatga	tttatgattc	cctggattat	gcaaagaaaa	atgaacccaa	300
acatagactt	gcaagacatg	gcctgtatga	gaagaaaaag	acctcaagaa	agcaacgaaa	360
ggaacgcaag	aacagaatga	agaaagtcag	ggggactgca	aaggccaatg	ttggtgctgg	420
caaaaagccg	aaggagtaaa	ggtgctgcaa	tgatgttagc	tgtggccact	gtggattttt	480
cgcaagaaca	ttaataaact	aaaaacttca	tgtgt			515

<210> 153

<211> 2967

<212> DNA

<213> Homo sapiens

<400> 153 ccggaactgc agttgctgct gcagctgagg tacagcggcg gtttctgagg ttcttcactc 60 gcgactgacg gagctgcggt ggcgtctcca cacgcaacca tgaagttgaa ggacacaaaa 120 tcaaggccaa agcagtcaag ctgtggcaaa tttcagacaa agggaatcaa agttgtggga 180 aaatggaagg aagtgaagat tgacccaaat atgtttgcag atggacagat ggatgacttg 240 gtgtgctttg aggaattgac agattaccag ttggtctccc ctgccaagaa tccctccagt 300 ctcttctcaa aggaagcacc caagagaaag gcacaagctg tttcagaaga agaggaggag 360 gaggagggaa agtctagctc accaaagaaa aagatcaagt tgaagaaaag taaaaatgta 420 480 gcaactgaag gaaccagtac ccagaaagaa tttgaagtga aagatcctga gctggaggcc cagggagatg acatggtttg tgatgatccg gaggctgggg agatgacatc agaaaacctg 540 gtccaaactg ctccaaaaaa gaagaaaaat aaagggaaaa aagggttgga gccttctcag 600 agcactgctg ccaaggtgcc caaaaaagcg aagacatgga ttcctgaagt tcatgatcag 660 aaagcagatg tgtcagcttg gaaggacctg tttgttccca ggccggttct ccgagcactc 720 agetttetag gettetetge acceacacea atecaagece tgacettgge acctgecate 780 cgtgacaaac tggacatcct tggggctgct gagacaggaa gtgggaaaac tcttgccttt 840 gccatcccaa tgattcatgc ggtgttgcag tggcagaaga ggaatgctgc ccctcctcca 900 agtaacaccg aagcaccacc tggagagacc agaactgagg ccggagctga gactagatca 960 ccaggcaagg ctgaagctga gtctgatgca ttgcctgacg atactgtaat tgagagtgaa 1020 gcactgccca gtgatattgc agccgaggcc agagccaaga ctggaggcac tgtctcagac 1080 caggogttgc totttggtga cgatgatgot ggtgaagggc ottottccct gatcagggag 1140 aaacctgttc ccaaacagaa tgagaatgag gaggaaaatc ttgataaaga gcagactgga 1200

aatctaaaac	aggagttgga	tgacaaaagc	gccacctgta	aggcatatcc	aaagcgtcct	1260
ctgcttggac	tggttctgac	tcccactcga	gagctggccg	tccaggtcaa	acagcacatt	1320
gatgctgtgg	ccaggtttac	aggaattaaa	actgctattt	tggttggtgg	aatgtccacg	1380
cagaaacagc	agaggatgct	gaaccgtcgt	cctgagattg	tggttgctac	tccaggccgg	1440
ctgtgggaat	taattaaaga	aaagcattat	catttgagga	accttcggca	gctcaggtgc	1500
ctggtagtgg	atgaggctga	ccggatggtt	gagaaaggcc	attttgctga	gctctcacag	1560
ctgctagaga	tgctcaatga	ctcccaatac	aacccaaaga	gacaaacgct	tgttttttct	1620
gccacactca	ccctggtgca	tcaggctcct	gctcgaatcc	ttcataagaa	gcacaccaag	1680.
aaaatggata	aaacagccaa	acttgacctc	cttatgcaga	aaattggcat	gaggggcaag	1740
cccaaggtca	ttgacctcac	aaggaatgag	gccacggtgg	agacgctaac	agagaccaag	1800
atccattgtg	agactgatga	gaaagacttc	tacttgtact	acttcctgat	gcagtatcca	1860
ggccgcagct	tagtgtttgc	caacagtatc	tcctgcatca	aacgcctctc	tgggctcctc	1920
aaagtccttg	atatcatgcc	cttgaccctg	catgcctgta	tgcaccagaa	gcagaggctc	1980
agaaacctgg	agcagtttgc	ccgtctggaa	gactgtgttc	tcttggcaac	agatgtggca	2040
gctcggggtc	tggatattcc	taaagtccag	catgtcatcc	attaccaggt	cccacgtacc	2100
tcggagattt	atgtccaccg	aagtggtcga	actgctcgag	ctaccaatga	aggcctcagt _.	2160
ctgatgctca	ttgggcctga	ggatgtgatc	aactttaaga	agatttacaa	aacgctcaag	2220
aaagatgagg	atatcccact	gttccccgtg	cagacaaaat	acatggatgt	ggtcaaggag	2280
cgaatccgtt	tagctcgaca	gattgagaaa	tctgagtatc	ggaacttcca	ggcttgcctg	2340
cacaactctt	ggattgagca	ggcagcagct	gccctggaga	ttgagctgga	agaagacatg	2400
tataagggag	gaaaagctga	ccagcaagaa	gaacgtcgga	gacaaaagca	gatgaaggtt	2460
ctgaagaagg	agctgcgcca	cctgctgtcc	cagccactgt	ttacggagag	ccagaaaacc	2520
aagtatccca	ctcagtctgg	caagccgccc	ctgcttgtgt	ctgccccaag	taagagcgag	2580
tctgctttga	gctgtctctc	caagcagaag	aagaagaaga	caaagaagcc	gaaggagcca	2640
cagccggaac	agccacagcc	aagtacaagt	gcaaattaac	tggtcaagtg	tgtcagtgac	2700
tgcacattgg	tttctgttct	ctggctattt	gcaaaacctc	tcccaccctt	gtgtttcact	2760
ccaccaccaa	ccccaggtaa	aaaagtctcc	ctctcttcca	ctcacaccca	tagcgggaga	2820
gacctcatgo	agatttgcat	tgttttggag	taagaattca	atgcagcagc	ttaatttttc	2880
tgtattgcag	tgtttatagg	cttcttgtgt	gttaaacttg	atttcataaa	ttaaaaacaa	2940
tggtcagaaa	aaaaaaaaaa	aaaaaaa				2967

<210> 154 <211> 2704 <212> DNA <213> Homo sapiens

154 <400> gcttagtgta accagcggcg tatatttttt aggcgccttt tcgaaaacct agtagttaat 60 attcatttgt ttaaatctta ttttattttt aagctcaaac tgcttaagaa taccttaatt 120 ccttaaagtg aaataatttt ttgcaaaggg gtttcctcga tttggagctt ttttttctt 180 ccaccgtcat ttctaactct taaaaccaac tcagttccat catggtgatg ttcaagaaga 240 tcaagtettt tgaggtggte tttaacgace etgaaaaggt gtaeggeagt ggegagaggg 300 tggctggccg ggtgatagtg gaggtgtgtg aagttactcg tgtcaaagcc gttaggatcc 360 tggcttgcgg agtggctaaa gtgctttgga tgcagggatc ccagcagtgc aaacagactt 420 cggagtacct gcgctatgaa gacacgcttc ttctggaaga ccagccaaca ggtgagaatg 480 agatggtgat catgagacct ggaaacaaat atgagtacaa gttcggcttt gagcttcctc 540 aggggcctct gggaacatcc ttcaaaggaa aatatgggtg tgtagactac tgggtgaagg 600 cttttcttga ccgcccgagc cagccaactc aagagacaaa gaaaaacttt gaagtagtgg 660 720 aagttteetg catgtteatt eetgatggge gggtgtetgt etetgetega attgacagaa 780 aaggattetg tgaaggtgat gagattteca tecatgetga etttgagaat acatgtteee 840 gaattgtggt ccccaaagct gccattgtgg cccgccacac ttaccttgcc aatggccaga 900 ccaaggtgct gactcagaag ttgtcatcag tcagaggcaa tcatattatc tcagggacat 960 gcgcatcatg gcgtggcaag agccttcggg ttcagaagat caggccttct atcctgggct 1020 gcaacatcct tcgagttgaa tattccttac tgatctatgt tagcgttcct ggatccaaga 1080 aggtcatect tgacetgeee etggtaattg geageagate aggtetaage ageagaacat 1140 ccagcatggc cagccgaacc agctctgaga tgagttgggt agatctgaac atccctgata 1200 ccccagaagc tcctccctgc tatatggatg tcattcctga agatcaccga ttggagagcc 1260 caacaactcc tctgctagat gacatggatg gctctcaaga cagccctatc tttatgtatg 1320 cccctgagtt caagttcatg ccaccaccga cttatactga ggtggatccc tgcatcctca 1380 acaacaatgt gcagtgagca tgtggaagaa aagaagcagc tttacctact tgtttctttt 1440 tgtctctctt cctggacact cactttttca gagactcaac agtctcgtca atggagtgtg 1500 ggtccacctt agcctctgac ttcctaatgt aggaggtggt cagcaggcaa tctcctgggc 1560 cttaaaggat gcggactcat cctcagccag cgcccatgtt gtgatacagg ggtgtttgtt 1620 ggatgggttt aaaaataact agaaaaactc aggcccatcc attttctcag atctccttga 1680

aaattgaggc	cttttcgata	gtttcgggtc	aggtaaaaat	ggcctcctgg	cgtaagcttt	1740
tcaaggtttt	ttggaggctt	tttgtaaatt	gtgataggaa	ctttggacct	tgaacttacg	1800
tatcatgtgg	agaagagcca	atttaacaaa	ctaggaagat	gaaaagggaa	attgtggcca	1860
aaactttggg	aaaaggaggt	tcttaaaatc	agtgtttccc	ctttgtgcac	ttgtagaaaa	1920
aaaagaaaaa	ccttctagag	ctgatttgat	ggacaatgga	gagagctttc	cctgtgatta	1980
taaaaaagga	agctagctgc	tctacggtca	tctttgctta	gagtatactt	taacctggct	2040
tttaaagcag	tagtaactgc	cccaccaaag	gtcttaaaag	ccatttttgg	agcctattgc	2100
actgtgttct	cctactgcaa	atattttcat	atgggaggat	ggttttctct	tcatgtaagt	2160
ccttggaatt	gattctaagg	tgatgttctt	agcactttaa	ttcctgtcaa	attttttgtt	2220
ctccccttct	gccatcttaa	atgtaagctg	aaactggtct	actgtgtctc	tagggttaag	2280
ccaaaagaca	aaaaaaattt	tactactttt	gagattgccc	caatgtacag	aattatataa	2340
ttctaacgct	taaatcatgt	gaaagggttg	ctgctgtcag	ccttgcccac	tgtgacttca	2400
aacccaagga	ggaactcttg	atcaagatgc	ccaaccctgt	gatcagaacc	tccaaatact	2460
gccatgagaa	actagagggc	aggtgttcat	aaaagccctt	tgaaccccct	tcctgccctg	2520
tgttaggaga	tagggatatt	ggcccctcac	tgcagctgcc	agcacttggt	cagtcactct	2580
cagccatagc	actttgttca	ctgtcctgtg	tcagagcact	gagctccacc	cttttctgag	2640
agttattaca	gccagaaagt	gtgggctgaa	gatggttggt	ttcatgtggg	ggtattatgt	2700
accc						2704
	og No sapiens					
<400> 155 actcccaacg		g aagaaaatgg	ccataagtgg	agtccctgtg	ctaggatttt	60
tcatcatago	tgtgctgatg	g agcgctcagg	aatcatgggc	tatcaaagaa	gaacatgtga	120
tcatccaggo	cgagttctat	ctgaatcctg	accaatcagg	cgagtttatg	tttgactttg	180
atggtgatga	a gattttccat	gtggatatgg	raaagaagga	gacggtctgg	g cggcttgaag	240
aatttggac	g atttgccago	tttgaggcto	aaggtgcatt	ggccaacata	a gctgtggaca	300
aagccaacct	ggaaatcato	g acaaagcgct	ccaactatac	teegateace	aatgtacctc	360
cagaggtaad	c tgtgctcac	g aacagccctg	g tggaactga <u>c</u>	agagcccaac	gtcctcatct	420
gtttcatcga	a caagttcac	ccaccagtgg	g tcaatgtcac	gtggcttcga	a aatggaaaac	480

540

ctgtcaccac aggagtgtca gagacagtct tcctgcccag ggaagaccac cttttccgca

agttccacta	tctccccttc	ctgccctcaa	ctgaggacgt	ttacgactgc	agggtggagc	600
actggggctt	ggatgagcct	cttctcaagc	actgggagtt	tgatgctcca	agccctctcc	660
				tgtgggtctg		720
				caatgcagca		780
				gagaagatca		840
				ccttgacctc		900
				gtggttatgc		960
				gccttttcct		1020
				tctggaataa		1080
				tgtacttatt		1140
				gatgatcttg		1199

<210> 156 <211> 1603

<211> 1005 <212> DNA

<213> Homo sapiens

<400> 156 ttttttttt ttttctttct tttttgggcc ctcataataa gcattgttac tattggaagt 60 tgttttcaca ttctttccaa tattaaatat gtatttttt aagtaatgat aatattttcc 120 agtggctcat ttggatgaga actaccctct atttttaata ttaaaactac atccaactca 180 tcatttagcc tttggttgta cagttgtgta atgggctatg gactgttaca caccttacca 240 cctctaggcc tatgtttttt ctttccccat atattctgat ggggataaat actgttttgc 300 ctctcccata ggaatggaat acatttattc taaaatgatc tttcacagaa gtaagagaga 360 gggaaaccta aatatacctc taaattgttt gaagttggtc ccagcagcat aaaatgggtt 420 ggccccaaag ggttggaggg tgggcttggt tatcagtatt tgttttcaga atgagatggg 480 agcatctttc ctttgccacg tgctttgtgc ttgataacat catgcttggt tcaaacgaca 540 actcagcaca aagccttgag tataaattgt tggaatcaaa acatctcatt ctgatgacgt 600 ggtttaattt tttaattttt ttttttaata ggggtgggag ggagggtact ttgccccaaa 660 agggagggtg tctgcactaa ggatttagaa acactttgga agctcataac ctcatcagaa 720 actgccttta gccacactcc tgaccttcta gatgagtaac aaaaaaatga aataagttct 780 tggaaattaa gccatttatt ttaatttgct attttttca atgttctagg tatctttaaa 840 tattgtggaa tcattttcct gccagatacc tttatcaaaa ttattggcct catgagagct 900 gaagtaagtc agctttttgg tgaactttag tggacttctg tgagattgta gttgtacttt 960

gtatctctaa	atctaaagat	agttttttaa	aactcccaaa	gaaaatctgc	tctcctttct	1020
gatctaaaaa	ctcatctttg	gggtaaagag	ttaagtgtcc	aaaggttgtc	acagttcatg	1080
aggtcagagg	gagctagcct	ggcacctgga	ctctgcccat	ccacagctga	cagattccaa	1140
			atgctgggta			1200
ttattaagat	acaggctgct	gtattttaca	ttggttatgg	gggaagggga	gcctggagaa	1260
aacaaagtca	ctattccctt	ttttgaaaca	ggaaaaaaaa	ttattttttg	ttcagtaaaa	1320
atggtagaga	attccaatgt	ccctagccac	aagggaccag	ttccactgag	aagtgaacag	1380
tgggaactca	aaatttcaga	aacattgggg	gaagggaaaa	ttggctttct	cttaattggc	1440
					atgttgtatg	1500
					ggtaaaatct	1560
			ccactggaac			1603

<210> 157

<211> 2439

<212> DNA

<213> Homo sapiens

157 <400> gcctactgga attggccagc atcatcatga tctttctgac tgcactggcc acgttcatcg 60 tcatcctgcc tggcattcgg ggaaagacga ggctgttctg gctgcttcgg gtggtgacca 120 gcttattcat cggggctgca atcctggctg tgaatttcag ttctgagtgg tctgtgggcc 180 aggtcagcac caacacatca tacaaggcct tcagttctga gtggatcagc gctgatattg 240 ggctgcaggt cgggctgggt ggagtcaaca tcacactcac agggaccccc gtgcagcagc 300 tgaatgagac catcaattac aacgaggagt tcacctggcg cctgggtgag aactatgctg 360 aggagtatgc aaaggctctg gagaaggggc tgccagaccc tgtgttgtac ctagctgaga 420 agttcactcc aagaagccca tgtggcctat accgccagta ccgcctggcg ggacactaca 480 cetcagecat getatgeagg tagaagtace tgggceagte etcaetgggt cetggetete 540 cagggtggca ttcctctgct ggctgctggc caatgtgatg ctctccatgc ctgtgctggt 600 atatggtggc tacatgctat tggccacggg catcttccag ctgttggctc tgctcttctt 660 ctccatggcc acatcactca cctcaccctg tcccctgcac ctgggcgctt ctgtgctgca 720 tactcaccat gggcctgcct tctggatcac attgaccaca ggactgctgt gtgtgctgct 780 gggcctggct atggcggtgg cccacaggat gcagcctcac aggctgaagg ctttcttcaa 840 ccagagtgtg gatgaagacc ccatgctgga gtggagtcct gaggaaggtg gactcctgag 900 ccccgctac cggtccatgg ctgacagtcc caagtcccag gacattcccc tgtcagaggc 960

213

ttcctccacc	aaggcatact	gtaaggaggc	acaccccaaa	gatcctgatt	gtgctttata	1020
acattcctcc	ccgtggaggc	cacctggact	tccagtctgg	ctccaaacct	cattggcgcc	1080
ccataaaacc	agcagaactg	ccctcagggt	ggctgttacc	agacacccag	caccaatcta	1140
cagacggagt	agaaaaagga	ggctctatat	actgatgtta	aaaaacaaaa	caaaacaaaa	1200
agccctaagg	gactgaagag	atgctgggcc	tgtccataaa	gcctgttgcc	atgataaggc	1260
caagcagggg	ctagcttatc	tgcacagcaa	cccagccttt	ccgtgctgcc	ttgcctcttc	1320
aagatgctat	tcactgaaac	ctaacttcac	ccccataaca	ccagcagggt	gggggttaca	1380
tatgattctc	ctatggtttc	ctctcatccc	teggeacete	ttgttttcct	ttttcctggg	1440
ttccttttgt	tcttccttta	cttctccagc	ttgtgtggcc	ttttggtaca	atgaaagaca	1500
gcactggaaa	ggaggggaaa	ccaaacttct	catcctaggt	ctaacattaa	ccaactatgc	1560
cacattcttt	teegtggege	ctcggaggcg	ttcagctgct	tcaagatgaa	gctgaacatc	1620
tectteceag	g ccactggcct	gccagaaact	cattgaagtg	gacggatgaa	cgcaaacttc	1680
gtactttcta	tgagaagcgt	atggccacag	aagttgctgc	tgacgctctg	ggtgaagaat	1740
ggaagggtta	tgtggtccga	atcagtggtg	ggaacgacaa	acaaggtttc	cccatgaagc	1800
agggtgtctt	gacccatggc	cgtgtccgcc	: tgctactgag	taaggggcat	tcctgttaca	1860
gaccaaggag	g aactggagaa	agaaagagaa	aatcagttcg	tggttgcatt	gtggatgcaa	1920
atctgagcg	tctcaacttg	gttattgtaa	aaaaaggaga	gaaggatatt	cctggactga	1980
ctgatacta	c agtgcctcgc	: cgcctgggcc	ccaaaagagc	tagcagaatc	cgcaaacttt	2040
tcaatctct	taaagaagat	gatgtccgc	agtatgttgt	aagaaagccc	ttaaataaag	2100
aaggtaaga	a acctaggaco	: aaagcaccca	a agattcagcg	tcttgttact	ccacgtgtcc	2160
tgcagcaca	a acggcggcgt	attgctctga	a agaagcagcg	, taccaagaaa	aataaagaag	2220
aggctgcag	a atatgctaaa	a ccttttggc	c aagagaatga	aggaggctaa	ggagaagege	2280
caggaacaa	a ttgcgaaga	g acgcagact	t teetetetge	gagcttctac	ttctaagtct	2340
gaatccagt	c agaaataag	a ttttttgag	t aacaaataaa	a taagatcaga	a ctctgaaaaa	2400
aaaaaaaa	a aaaaaaaaa	a aaaaaaaaa	a aaaaaaaaa			2439

<210> 158 <211> 1444

<212> DNA

<213> Homo sapiens

<400> 158
gtttctctta tttatgcctt gaggactaat ttctggttt ctagctgtta atgcactgtt
gaccttcata atggtgcctt acgcaagcga tcccttctgt gggggtctca tacaggggtg 120

					.	100
tgggcgatgc	atgctttatt	aaggctcttg	tttcacctgg	cagtgtactg	tatcaacgta	180
taatacagaa	aaaaaatctc	tttaaggtcc	tccttcacaa	agacatagag	tgaaactccc	240
tttacatgtc	agtatttgtt	caacacttta	ggcaacttga	ctgtcagtgt	taaaatggaa	300
aacaggaaaa	tggaaaaatc	tgaccaattc	tgccaccctg	agactttcat	atagaccttg	360
cacaacaatt	gtatagatca	cacaccggct	gtatttaata	tgtaacattt	tcacacatat	420
taaagataca	gaagtattaa	aaaaccccca	atgttaatgt	atttgcttaa	aaggcacaag	480
tttcacatat	ctgtctagct	atctgttggt	aatacagaaa	gtatactact	tttttaaaaa	540
agtgggcaga	attcttgtgt	atgtatattt	gtgtgtacag	tatgtgtatg	tgtgtatata	600
tatatattat	atatatagat	aatatataaa	tattttttt	aaggagaaac	tagaacgttt	660
agctagaaaa	ttccacagcc	tgtgaagaaa	tatttcaaaa	tggccataaa	ggaggtaaaa	720
atgaaaaaco	ataacctaac	ttttatagag	gctttatctt	taatttaacg	atgtgcggag	780
gactttcttg	g cttgaatctg	ttccgggctg	tctgctctgt	ccatcaaatg	ggcaggtctg	840
gaatgaggca	ccttcggccg	ttcagaagtg	gcctgaacag	aatgctggaa	cccaggctgg	900
actcggacac	actaaggttt	tgattttgaa	tttcagcctt	attagaagat	ctaacctaag	960
agtaagctaa	a ccacagggat	tcttttgtag	aacacttttt	atgcagatga	agctattttt	1020
tccagcaagt	agattcttcc	agtttttcca	aggagtaatt	tccccgaatt	ggcataccac	1080
ggcgtggaca	a gctgatattt	cacccagctg	ctggcttgtg	ggtgtggctc	tttgctttat	1140
atatatata	c acacatgtga	gtctggctgg	gctggtattt	tgtttgatct	tcctggaaat	1200
gagcagtga	c taacgctcac	: ataactggtt	ttttttttt	atctgggctg	atgaatacat	1260
ttacctaag	a aactcattto	gttttactta	agaggggaag	tgcagttttc	ttttggcagt	1320
tcagaatcc	a agcacttgat	ttgctgggtt	tggaaaactc	cttttttggc	cttctatgtg	1380
cttagccat	a acaattccat	taagcaagaa	ggtaagcaaa	agacaaaaa	aaaaaaaaa	1440
aaaa						1444

<210> 159

<400> 159
ccccactggc tgctctgaaa agccatcttt gcattgttcc tcatccgcct ccttgctcgc 60

cgcagccgcc tccgccgcg gcctcctccg ccgccgcga ctccggcagc tttatcgcca 120

gagtccctga actctcgctt tcttttaat cccctgcatc ggatcaccgg cgtgccccac 180

catgtcagac gcagccgtag acaccagctc cgaaatcacc accaaggact taaaggagaa 240

<211> 1233

<212> DNA

<213> Homo sapiens

gaaggaagtt gtggaagagg cagaaaatgg aagagacgcc cctgctaacg ggaatgctaa	300
tgaggaaaat ggggagcagg aggctgacaa tgaggtagac gaagaagagg aagaaggtgg	360
ggaggaagag gaggaggaag aagaaggtga tggtgaggag gagggtggag atgaagatga	420
ggaagctgag tcagctacgg gcaagcgggc agctgaagat gatgaggatg acgatgtcga	480
taccaagaag cagaagaccg acgaggatga ctagacagca aaaaaggaaa agttaaacta	540
aaaaaaaaa ggccgccgtg acctattcac cctccacttc ccgtctcaga atctaaacgt	600
ggtcaccttc gagtagagag gcccgcccgc ccaccgtggg cagtgccacc cgcagatgac	660
acgcgctctc caccacccaa cccaaaccat gagaatttgc aacaggggag gaaaaaagaa	720
ccaaaacttc caaggccctg ctttttttct taaaagtact ttaaaaagga aatttgtttg	780
tatttttat ttacatttta tatttttgta catattgtta gggtcagcca tttttaatga	840
teteggatga ccaaaccage etteggageg ttetetgtee taettetgae tttaettgtg	900
gtgtgaccat gttcattata atctcaaagg agaaaaaaaa ccttgtaaaa aaagcaaaaa	960
tgacaacaga aaaacaatct tattccgagc attccagtaa cttttttgtg tatgtactta	1020
gctgtactat aagtagttgg tttgtatgag atggttaaaa aggccaaaga taaaaggttt	1080
cttttttttt ccttttttgt ctatgaagtt gctgtttatt ttttttggcc tgtttgatgt	1140
atgtgtgaaa caatgttgtc caacaataaa caggaatttt attttgctga gttgttctaa	1200
cagaaaaaaa aaaaaaaaa aaaaaaaaaa aaa	1233
<210> 160 <211> 4739 <212> DNA <213> Homo sapiens	
<400> 160 ggggagatag gtaggagtag cgtggtaagg gcgatgagtg tgggccgggc gggagtgcgg	60
cgagagccgg ctggctgagc ttagcgtccg aggaggcggc ggcggcggcg gcggcagcgg	120
cggcggcggg gctgtggggc ggtgcggaag cgagaggcga ggagcgcgcg ggccgtggcc	180
agagtetgge ggeggeetgg eggageggag ageagegeee gegeetegee gtgeggagga	240
gccccgcaca caatagcggc gcgcgcagcc cgcgcccttc cccccggcgc gccccgcccc	300
gcgcgccgag cgccccgctc cgcctcacct gccaccaggg agtgggcggg cattgttcgc	360
cgccgccgcc gccgcgcggg gccatggggg ccgcccggcg cccgggggccg ggcctggcga	420
ggccgccgcg ccgccgctga gacgggcccc gcgcgcagcc cggcggcgca ggtaaggccg	480
geegegeeat ggtggaeeeg gtgggetteg eggaggegtg gaaggegeag tteeeggaet	540

cagageeece gegeatggag etgegeteag tgggegacat egageaggag etggageget 600

gcaaggcctc (cattcggcgc	ctggagcagg	aggtgaacca	ggagcgcttc	cgcatgatct	660
		aaggaaaaga				720
		gacggcgcct				780
		gccgacccgc				840
		aaggccaggc				900
		cggggacccc				960
		catggccagc				1020
		gagcgcggcc			•	1080
		agccaggcca				1140
		gatgcatcca				1200
		gactacgagg				1260
		ggcggtagca				1320
		gggggcatga				1380
		caggagaagc				1440
		ggaggcggct				1500
				•	ccaagcccca	1560
ccacctaccg	catgttccgg	gacaaaagcc	getetecete	gcagaactcg	caacagtcct	1620
tcgacagcag	cagtccccc	acgccgcagt	gccataagcg	gcaccggcac	tgcccggttg	1680.
tcgtgtccga	ggccaccatc	gtgggcgtcc	gcaagaccgg	gcagatctgg	cccaacgatg	1740
gcgagggcgc	cttccatgga	gacgcagatg	getegttegg	aacaccacct	ggatacggct	1800
gcgctgcaga	ccgggcagag	gagcagcgcc	: ggcaccaaga	tgggctgccc	tacattgatg	1860
actcgccctc	ctcatcgccc	cacctcagca	ı gcaagggcag	gggcagccgg	g gatgcgctgg	1920
tctcgggagc	cctggagtco	actaaagcga	a gtgagctgga	cttggaaaag	g ggcttggaga	1980
tgagaaaatg	ggtcctgtcg	g ggaatcctgo	g ctagcgagga	a gacttacct	g agccacctgg	2040
aggcactgct	gctgcccato	g aagcctttga	a aagccgctgo	caccacctc	t cagccggtgc	2100
tgacgagtca	gcagatcgag	g accatcttc	t tcaaagtgc	c tgagctcta	c gagatccaca	2160
aggagttcta	tgatgggct	c ttcccccgc	g tgcagcagt	g gagccacca	g cagcgggtgg	2220
gcgacctctt	ccagaagct	g gccagccag	c tgggtgtgt	a ccgggcctt	c gtggacaact	2280
acggagttgo	catggaaat	g gctgagaag	t gctgtcagg	c caatgetea	g tttgcagaaa	2340
tctccgagaa	a cctgagagc	c agaagcaac	a aagatgcca	a ggatccaac	g accaagaact	2400

ctctggaaac tctgctctac aagcctgtgg accgtgtgac gaggagcacg ctggtcctcc 2	460
	2520
	2580
	2640
	2700
	2760
	2820
	2880
	2940
	3000
gccgcaacgg caagagttac acgttcctga tctcctctga ctatgagcgt gcagagtgga	3060
gggagaacat ccgggagcag cagaagaagt gtttcagaag cttctccctg acatccgtgg	3120
agctgcagat gctgaccaac tcgtgtgtga aactccagac tgtccacagc attccgctga	3180
ccatcaataa ggaagatgat gagtctccgg ggctctatgg gtttctgaat gtcatcgtcc	3240
actcagccac tggatttaag cagagttcaa atctgtactg caccctggag gtggattcct	3300
ttgggtattt tgtgaataaa gcaaagacgc gcgtctacag ggacacagct gagccaaact	3360
ggaacgagga atttgagata gagctggagg gctcccagac cctgaggata ctgtgctatg	3420
aaaagtgtta caacaagacg aagatcccca aggaggacgg cgagagcacg gacagactca	3480
tggggaaggg ccaggtccag ctggacccgc aggccctgca ggacagagac tggcagcgca	3540
ccgtcatcgc catgaatggg atcgaagtaa agctctcggt caagttcaac agcagggagt	3600
tcagcttgaa gaggatgccg tcccgaaaac agacaggggt cttcggagtc aagattgctg	3660
tggtcaccaa gagagagagg tccaaggtgc cctacatcgt gcgccagtgc gtggaggaga	3720
tegagegeeg aggeatggag gaggtgggea tetacegegt gteeggtgtg geeaeggaea	3780
tccaggcact gaaggcagcc ttcgacgtca ataacaagga tgtgtcggtg atgatgagcg	3840
agatggacgt gaacgccatc gcaggcacgc tgaagctgta cttccgtgag ctgcccgagc	3900
ccctcttcac tgacgagttc taccccaact tcgcagaggg catcgctctt tcagacccgg	3960
ttgcaaagga gagetgcatg etcaaeetge tgetgteeet geeggaggee aaeetgetea	4020
ccttcctttt ccttctggac cacctgaaaa gggtggcaga gaaggaggca gtcaataaga	4080
tgtccctgca caacctcgcc acggtctttg gccccacgct gctccggccc tccgagaagg	4140
agagcaaget eeetgeeaae eeeageeage etateaceat gaetgaeage tggteettgg	4200
aggtcatgtc ccaggtccag gtgctgctgt acttcctgca gctggaggcc atccctgccc	4260

СĈ	gacagcaa	gagacagagc	atcctgttct	ccaccgaagt	ctaaaggtcc	cagtccatct	4320
cc	tggaggca	gacagatggc	ctggaaacct	ctggctaatc	gggccatccg	tagagcggga	4380
ac	ccttcctga	ggtgtccttg	ggccaccccc	aagtgttggg	ccatctgcca	agagacagcg	4440
a	cccaaagcc	gaaggacagg	tggcctgggc	agatctcgcc	caggtctggg	agccccaggc	4500
t	ggcctcaga	ctgtggtttt	ttatgtggcc	acccgagggc	gccccaagcc	agttcatctc	4560
a	gagtccagg	cctgaccctg	ggagacaggg	tgaagggagt	gatttttatg	aacttaactt	4620
a	gagtctaaa	agatttctac	tggatcactt	gtcaagatgc	gccctctctg	gggagaaggg	4680
a	acgtgaccg	gattccctca	ctgttgtatc	ttgaataaac	gctgctgctt	catcctgtg	4739

<210> 161

<211> 1434

<212> DNA

<213> Homo sapiens

<400> 161 gageceetgt etggatgaet tettgegget gttetaeece teeceeteee egeggtaeet 60 tgcacttttc tccctccttg cccctctcg agtccaccct ccgggccttc tgcccctgat 120 cgcttggttt tccttgcagt cgcctgctgc tgtcgtcggg aggaaagatg aatgggaggg 180 ctgattttcg agagccgaat gcagaggttc caagaccaat tccccacata gggcctgatt 240 acattccaac agaggaagaa aggagagtct tcgcagaatg caatgatgaa agcttctggt 300 tcagatctgt gcctttggct gcaacaagta tgttgattac tcaaggatta attagtaaag 360 gaatactttc aagtcatccc aaatatggtt ccatccctaa acttatactt gcttgtatca 420 tgggatactt tgctggaaaa ctttcttatg tgaaaacttg ccaagagaaa ttcaagaaac 480 ttgaaaattc cccccttgga gaagctttac gatcaggaca agcacgacga tcttcaccac 540 ctgggcacta ttatcaaaag tcaaaatatg actcaagtgt gagtggtcaa tcatcttttg 600 tgacatecce ageageagae aacatagaaa tgetteetea ttatgageea attecattea 660 gttcttctat gaatgaatct gctcccactg gtattactga tcatattgtc caaggacctg 720 atcccaacct tgaagaaagt cctaaaagaa aaaatattac atatgaggaa ttaaggaata 780 agaacagaga gtcatatgaa gtatctttaa cacaaaagac tgacccctca gtcaggccta 840 tgcatgaaag agtgccaaaa aaagaagtca aagtaaacaa gtatggagat acttgggatg 900 agtgaaaaat tacatcattg gacatgaagg agtttcaaca tccagcttca tctaggtggt 960 catgattacc tgcatgcttt gagctcagca gcagtcttca taaacacatt taaaacaaga 1020 tcctgggttt ttgtggtttg acttctatgg tgttttaaaa aaacacagat ttttagtgtt 1080 aatattgtgt aaatgtactc accttaggga ttcatttgaa tgatggtatt ataccatgat 1140

tgtatacagt ttgtgaaatt gttgcaaggg caaagataac tcttaaaaaa ccgtcgagat	1200
tacaatgctc tagaatcagc atataagaaa ataaatgata tctgcatgtt gaattggggt	1260
ggatgggggg agcaagcata atttttaagt gtgaagcttt gcatcaagaa attattaaaa	1320
agettttttt etecagtatt ttetgtatta tettaatgtt tatggeaaat aaaatgtaaa	1380
ggaacatgcc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1434
<210> 162	
<211> 1161	
<212> DNA	
<213> Homo sapiens	
<400> 162	, 60
caaagagcta catgccacat gctgttctcc agcctgctgt gtgtatttgt ggccttcagc	80
tactctggat caagtgtggc ccagaaggtt actcaagccc agtcatcagt atccatgcca	120

180 ttttggtaca agcaacttcc cagcaaagag atgattttcc ttattcgcca gggttctgat 240 gaacagaatg caaaaagtgg tcgctattct gtcaacttca agaaagcagc gaaatccgtc 300 gccttaacca tttcagcctt acagctagaa gattcagcaa agtacttttg tgctcttggg 360 acgggggtga ggggactcca ggacaccgat aaactcatct ttggaaaagg aacccgtgtg 420 actgtggaac caagaagtca gcctcatacc aaaccatccg tttttgtcat gaaaaatgga 480 acaaatgtcg cttgtctggt gaaggaattc taccccaagg atataagaat aaatctcgtg 540 tcatccaaga agataacaga gtttgatcct gctattgtca tctctcccag tgggaagtac 600 aatgctgtca agcttggtaa atatgaagat tcaaattcag tgacatgttc agttcaacac 660 gacaataaaa ctgtgcactc cactgacttt gaagtgaaga cagattctac agatcacgta 720 aaaccaaagg aaactgaaaa cacaaagcaa ccttcaaaga gctgccataa acccaaagcc 780 atagttcata ccgagaaggt gaacatgatg tccctcacag tgcttgggct acgaatgctg 840 900 tttgcaaaga ctgttgccgt caattttctc ttgactgcca agttattttt cttgtaaggc 960 tgactggcat gaggaagcta cactcctgaa gaaaccaaag gcttacaaaa atgcatctcc ttggcttctg acttctttgt gattcaagtt gacctgtcat agccttgtta aaatggctgc 1020 tagccaaacc actttttctt caaagacaac aaacccagct catcctccag cttgatggga 1080 agacaaaagt cctggggaag gggggtttat gtcctaactg ctttgtatgc tgttttataa 1140 1161 agggatagaa ggatataaaa a

<210> 163 <211> 387

```
<212> DNA
<213> Homo sapiens
<400> 163
ttttttttt tttttttt tttttttt ttcagttttt cacatggttt tattacaaaa
                                                                  60
caagccacaa aacagtttta aaaaattttt gctacatccc aattaggaaa tcacataaaa
                                                                 120
ggaaaagcgt aacagtttcc atgccctcag cctaaagctt acagggaggg cttttcacag
                                                                 180
ttgaaacatc actgttttaa aacacaaaat catgctcccc cttcataagc agaggggag
                                                                 240
gaggtcaaac agtttgtttt tgccaaacgt tggctttatc tgaactctat ctagtatgaa
                                                                 300
ggactggctg ccgcaggcaa taccccagag gggaaaggga ccaaaggaaa aaaggggtgc
                                                                 360
                                                                 387
tggcaaacaa aatttaacaa acctgtc
<210> 164
<211> 538
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (410)..(410)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222>
      (532)..(532)
<223> n is a, c, g, t or u
<400> 164
60
ccccaggagg gctttatttt tttttttaaa aatccggttt gggggtttcc ttggtttttt
                                                                  120
ttgcccgtat cccaaaaacc cgggcgttgg cccggcccat acggaaacta gcaaaggttt
                                                                  180
tgaaattttt tttttcctaa gggaggaccc gagctttttc ctttttataa acgttccgga
                                                                . 240
cgggcataac cggcccggcc agttgggggg ccagtttaat tttttaaaaa aaactgtttc
                                                                  300
 cctttttggg ggccgagggc ttcctgggga aaaggataat tttggagcgg tcctccttca
                                                                  360
 cccgttgcac gttggcctga agggactccg gggacttgtt ccccctcctn ggatccaaaa
                                                                  420
 aaatgccgat ggtccggccc acctttttgt gaatgccggc caccetgagc tcctccaggt
                                                                  480
 taaagccggg gcccggccgc accttttgtg tgtaccaaac cgtggggcaa cncacgat
                                                                  538
 <210> 165
       272
 <211>
 <212> DNA
 <213> Homo sapiens
 <400> 165
```

•	
tttttaaacg ataacaacaa aagttttttt taatgcgtgc tgtctttaaa caaaataaaa	60
ggaaatcctc acgtggtaga aatggaagag agaaaccaca gccaaagcag taagtataag	120
ctggaaacct agagcccatg gaaattgcag aggagccaaa tttaggctct agagactggg	180
ctgaaattaa agcacctgtg tgagaatagg acatgtggcc ttaggcttgc ttggaggaga	240
gaaaatggtt ttttcatttg tttgttttaa ga	272
<210> 166 <211> 4276 <212> DNA <213> Homo sapiens	
<400> 166 agagccaccg cggagcgcgc gcggggttgg ttgccgcgag cgtgggggag cgtggaccgc	60
ggcgctgctc agcggtgggg ctgccttccc ccggccctcc tccctggtcc ctggcgaggg	120
cactggcggc ggcggggccg gggtccgcaa ggccggagaa ggccgccggg cccgggcatg	180
gtggtctggg gcaacgcgga agaagctcca ccatgaggcg aggtggatgg aggaagcgag	240
ctgaaaatga tggctgggaa acatggggtg ggtatatggc tgccaaggtc cagaaattgg	300
aggaacagtt tcgatcagat gctgctatgc agaaggatgg gacttcatct acaattttta	360
gtggagttgc catctatgtt aatggataca cagateette egetgaggaa ttgagaaaac	420
taatgatgtt gcatggaggt caataccatg tatattattc cagatctaaa acaacacata	480
ttattgccac aaatcttccc aatgccaaaa ttaaagaatt aaagggggaa aaagtaattc	540
gaccagaatg gattgtggaa agcatcaaag ctggacgact cctctcctac attccatatc	600
agctgtacac caagcagtcc agtgtgcaga aaggtctcag ctttaatcct gtatgcagac	660
ctgaggatcc tctgccaggt ccaagcaata tagccaaaca gctcaacaac agggtaaatc	720
acatcgttaa gaagattgaa acggaaaatg aagtcaaagt caatggcatg aacagttgga	780
atgaagaaga tgaaaataat gattttagtt ttgtggatct ggagcagacc tctccgggaa	840
ggaaacagaa tggaatteeg cateecagag ggageaetge catttttaat ggacacaete	900
ctagctctaa tggtgcctta aagacacagg attgcttggt gcccatggtc aacagtgttg	960
ccagcaggct ttctccagcc ttttcccagg aggaggataa ggctgagaag agcagcactg	1020
atttcagaga ctgcactctg cagcagttgc agcaaagcac cagaaacaca gatgctttgc	1080
ggaatccaca cagaactaat totttotoat tatcacottt gcacagtaac actaaaatca	1140

atggtgctca ccactccact gttcaggggc cttcaagcac aaaaagcact tcttcagtat

ctacgtttag caaggcagca ccttcagtgc catccaaacc ttcagactgc aattttattt

caaacttcta ttctcattca agactgcatc acatatcaat gtggaagtgt gaattgactg

1200

1260

1320

agtttgtcaa taccctacaa agacaaagta atggtatctt tccaggaagg gaaaagttaa 1380 aaaaaatgaa aacaggcagg tctgcacttg ttgtaactga cacaggagat atgtcagtat 1440 tgaattctcc cagacatcag agctgtataa tgcatgttga tatggattgc ttctttgtat 1500 cagtgggtat acgaaataga ccagatctca aaggaaaacc agtggctgtt acaagtaaca 1560 gaggcacagg aagggcacct ttacgtcctg gcgctaaccc ccagctggag tggcagtatt 1620 accagaataa aatcctgaaa ggcaaagcag cagatatacc agattcatca ttgtgggaga 1680 atccagattc tgcgcaagca aatggaattg attctgtttt gtcaagggct gaaattgcat 1740 cttgtagtta tgaggccagg caacttggca ttaagaacgg aatgtttttt gggcatgcta 1800 aacaactatg teetaatett caagetgtte catacgattt teatgeatat aaggaagteg 1860 cacaaacatt gtatgaaaca ttggcaagct acactcataa cattgaagct gtcagttgtg 1920 atgaagcgct ggtagacatt accgaaatcc ttgcagagac caaacttact cctgatgaat 1980 ttgcaaatgc tgttcgtatg gaaatcaaag accagacgaa atgtgctgcc tctgttggaa 2040 ttggttctaa tattctcctg gctagaatgg caactagaaa agcaaaacca gatgggcagt 2100 accacctaaa accagaagaa gtagatgatt ttatcagagg ccagctagtg accaatctac 2160 caggagttgg acattcaatg gaatctaagt tggcatcttt gggaattaaa acttgtggag 2220 acttgcagta tatgaccatg gcaaaactcc aaaaagaatt tggtcccaaa acaggtcaga 2280 tgctttatag gttctgccgt ggcttggatg atagaccagt tcgaactgaa aaggaaagaa 2340 aatctgtttc agctgagatc aactatggaa taaggtttac tcagccaaaa gaggcagaag 2400 cttttcttct gagtctttca gaagaaattc aaagaagact agaagccact ggcatgaagg 2460 gtaaacgtct aactctcaaa atcatggtac gaaagcctgg ggctcctgta gaaactgcaa 2520 aatttggagg ccatggaatt tgtgataaca ttgccaggac tgtaactctt gaccaggcaa 2580 cagataatgc aaaaataatt ggaaaggcga tgctaaacat gtttcataca atgaaactaa 2640 atatatcaga tatgagaggg gttgggattc acgtgaatca gttggttcca actaatctga 2700 accettecae atgreecagt egeceateag treagteaag ceaettreet agreggteat 2760 actctgtccg tgatgtcttc caagttcaga aagctaagaa atccaccgaa gaggagcaca 2820 aagaagtatt tegggetget gtggatetgg aaatateate tgettetaga aettgeaett 2880 tettgecace tttteetgea catetgeega ecagteetga taetaacaag getgagtett 2940 cagggaaatg gaatggtcta catactcctg tcagtgtgca gtcgagactt aacctgagta 3000 tagaggtccc gtcaccttcc cagctggatc agtctgtttt agaagcactt ccacctgatc 3060 teegggaaca agtagageaa gtetgtgetg teeageaage agagteacat ggegacaaaa 3120 agaaagaacc agtaaatggc tgtaatacag gaattttgcc acaaccagtt gggacagtct 3180

tgttgcaaat a	ccagaacct	caagaatcga	acagtgacgc	aggaataaat	ttaatagccc	3240
ttccagcatt t	tcacaggtg	gaccctgagg	tatttgctgc	ccttcctgct	gaacttcaga	3300
gggagctgaa a						3360
agtcagccag (egcatctgtg	ccaaagaatc	ctttacttca	tctaaaggca	gcagtgaaag	3420
aaaagaaaag	aaacaagaag	aaaaaacca	ttggttcacc	aaaaaggatt	cagagtcctt	3480
tgaataacaa (3540
					cccctggaag	3600
					gacccagctg	3660
					gatgtgaaga	3720
					attctccaag	3780
ttgtgaaata	ctgtactgat	ctaatagaag	aaaaagattt	ggaaaaactg	gatctagtta	3840
					: atggcatttg	3900
					acattaaaag	3.960
					a agtgcttgtg	4020
					a aatttctttt	4080
					t attgcatgta	4140
					g tttgtttata	4200
					a ctgtatgtaa	4260
aaaaaaaaa						4276

<210> 167

567

<212> DNA

<213> Homo sapiens

<400> 167 aaaagcatgg tcactcactg ctcatctcca aagttacctg gattatccct attagtcact 60 gaaaatgacc taacaaagga ccccagcagg tgatggcagt tagtaaaaaa tatgacacaa 120 gtaaaactga taaaaaaatc cctcaaccaa ataaaataca ataaaaaata aacggttgcc 180 cgacaatcat ttctccagtt tccaacaaca ggtaaattaa ggagtatgtg tttccataca 240 tacaccacag atccccattt ttgaataccc attttaagac aagagaaacc tagaaggttg 300 attacagett aattittatt actgagatgg aggagtaaac ttategtgtt ttgagetttg 360 ttagtgcaaa taacaatttg gtggtcactt actaaattga ctatagcatc ctgaaaaaag 420 aaatatttcc aattacggga tagccctgtt attttaattc tgacattctt agggatttaa

480

acagaatgga cctggagttt ccaggagaaa aataatcacc tttgaaggtt tttagagcat	540
gtgaaattag tcaaaaaaaa aaaaaaa	567
<210> 168 <211> 2022 <212> DNA <213> Homo sapiens	
<400> 168 aaacggcggc ggcggcggca ccggaggctc cgaggctcct gcgctcccgc gccgcgctcc	60
cctcgtccgc ccgggccgcc aggagaagaa actgaggcct ggaatttgat taactcattc	120
aaggttaccc agttggtaat tcatttgcac acctgttagc aagaaacaga agttgaagga	180
ctggaacaag tgaactagga aagagggaac gccaatccaa ggatagaagg acaaggacag	240
aatcaccagc actggctgaa ggcctcctgt ttcctgcgct ttctcctttt cctgtgaaat	300
ctccgaggag aagaaagaat gatggacagt ttatcctttc actgccacaa ggcctgttta	360
cttggcagta ccttaacatg gggaatcttc ttaaagtttt gacatgcaca gaccttgagc	420
aggggccaaa tttttcctt gattttgaaa atgcccagcc tacagagtct gagaaggaaa	480
tttataatca ggtgaatgta gtattaaaag atgcagaagg catcttggag gacttgcagt	540
catacagagg agctggccac gaaatacgag aggcaatcca gcatccagca gatgagaagt	600
tgcaagagaa ggcatggggt gcagttgttc cactagtagg caaattaaag aaattttacg	660
aattttctca gaggttagaa gcagcattaa gaggtcttct gggagcctta acaagtaccc	720
catattetee cacecageat etagagegag ageaggetet tgetaaacag titgeagaaa	780
ttetteattt cacaeteegg tttgatgaae teaagatgae aaateetgee atacagaatg	840
atttcagcta ttatagaaga acattgagtc gtatgaggat taacaatgta ccggcagaag	900
gagaaaatga agtaaataat gaattggcaa atcgaatgtc tttgttttat gctgaggcaa	960
ctccaatgct gaaaaccttg agtgatgcca caacaaaatt tgtatcagag aataaaaatt	1020
taccaataga aaataccaca gattgtttaa gcacaatggc tagtgtatgc agagtcatgc	1080
tggaaacacc ggaatacaga agcagattta caaatgaaga gacagtgtca ttctgcttga	1140
gggtaatggt gggtgtcata atactctatg accacgtaca tccagtggga gcatttgcta	1200
aaacttccaa aattgatatg aaaggttgta tcaaagttct taaggaccaa cctcctaata	1260
gtgtggaagg tottotaaat gotottaggt acacaacaaa acatttgaat gatgagacta	1320
cctccaagca aattaaatcc atgctgcaat aacaattctg gaataagcac ctgctgtaga	1380
cagaagacag tattctgcaa tgactgagaa tgcagttttt tagtgattgc aattactatc	1440
teatttatte ttgettttat ttettteete tgtteetett ceetetttt taateatgtt	1500
Calleacto Etgotocat Coottocat S	

cttaagactt	cttttctgtg	ccaaaatcag	taaagttaca	ctctgaaggg	atatcatcct	1560
ttcaaacggg	ccatctaagc	cagctaatta	tgcattgcat	tggggtctct	actgagaaaa	1620
attctgtgac	ttgaactaaa	tatttttaaa	tgtggatttt	ttttgaaact	aatatttaat	1680
attgcttctc	ctgcatggca	agactgccta	ttctgctatt	taaaaaccct	caatgacttt	1740
attttctact	gccgcctttt	tcatgtgcaa	ccaaaatgag	aatgtttaaa	ttaactgtgt	1800
tgtacgaatg	gtacccaaca	caaacttttt	ttaaattagt	aatacttttg	tttaaagttt	1860
taagtttgca	ttttgacttt	ttttgtaagg	atgtatgttg	tgtgtttaac	ctttattaac	1920
taacgttaaa	agctgtgatg	tgtgcgtaga	atattacgta	tgcatgttca	tgtctaaaga	1980
atggctgttg	atgataaaat	aaaaatcagc	tttcatttt	ct		2022

<210> 169

<211> 3489

<212> DNA

<213> Homo sapiens

<400> 169 gtgacctgct tagagagaag cggtgggtct gcacctggat tttggagtcc cagtgctgct 60 gcagctctga gcattcccac gtcaccagag aagccggtgg gcaatgagat catgtctgct 120 ttcaggttgt ggcctggcct gctgatcatg ttgggttctc tctgccatag aggttcaccg 180 tgtggccttt caacacacgt agaaatagga cacagagctc tggagtttct tcagcttcac 240 300 aatgggcgtg ttaactacag agagctgtta ctagaacacc aggatgcgta tcaggctgga atcgtgtttc ctgattgttt ttaccctagc atctgcaaag gaggaaaatt ccatgatgtg 360 tctgagagca ctcactggac tccgtttctt aatgcaagcg ttcattatat ccgagagaac 420 tatccccttc cctgggagaa ggacacagag aaactggtag ctttcttgtt tggaattact 480 tctcacatgg cggcagatgt cagctggcat agtctgggcc ttgaacaagg attccttagg 540 accatgggag ctattgattt tcacggctcc tattcagagg ctcattcggc tggtgatttt 600 ggaggagatg tgttgagcca gtttgaattt aattttaatt accttgcacg acgctggtat 660 gtgccagtca aagatctact gggaatttat gagaaactgt atggtcgaaa agtcatcacc 720 gaaaatgtaa tcgttgattg ttcacatatc cagttcttag aaatgtatgg tgagatgcta 780 gctgtttcca agttatatcc cacttactct acaaagtccc cgtttttggt ggaacaattc 840 caagagtatt ttcttggagg actggatgat atggcatttt ggtccactaa tatttaccat 900 ctaacaagct tcatgttgga gaatgggacc agtgactgca acctgcctga gaaccctctg 960 ttcattgcat gtggcggcca gcaaaaccac acccagggct caaaaatgca gaaaaatgat 1020 tttcacagaa atttgactac atccctaact gaaagtgttg acaggaatat aaactatact

gaaagaggag tgttctttag tgtaaattcc tggaccccgg attccatgtc ctttatctac	1140
aaggetttgg aaaggaacat aaggacaatg tteataggtg geteteagtt gteacaaaag	1200
cacgtctcca gccccttagc atcttacttc ttgtcatttc cttatgcgag gcttggctgg	1260
gcaatgacct cagctgacct caaccaggat gggcacggtg acctcgtggt gggcgcacca	1320
ggctacagce geceeggeea catecacate gggegegtgt aceteateta eggeaatgae	1380
ctgggcctgc cacctgttga cctggacctg gacaaggagg cccacaggat ccttgaaggc	1440
ttccagccct caggtcggtt tggctcggcc ttggctgtgt tggactttaa cgtggacggc	1500
gtgcctgacc tggccgtggg agctccctcg gtgggctccg agcagctcac ctacaaaggt	1560
gccgtgtatg tctactttgg ttccaaacaa ggaggaatgt cttcttcccc taacatcacc	1620
atttettgee aggacateta etgtaaettg ggetggaete tettggetge agatgtgaat	1680
ggagacagtg aacccgatct ggtcatcggc tccccttttg caccaggtgg agggaagcag	1740
aagggaattg tggctgcgtt ttattctggc cccagcctga gcgacaaaga aaaactgaac	1800
gtggaggcag ccaactggac ggtgagaggc gaggaagact tctcctggtt tggatattcc	1860
cttcacggtg tcactgtgga caacagaacc ttgctgttgg ttgggagccc gacctggaag	1920
aatgccagca ggctgggcca tttgttacac atccgagatg agaaaaagag ccttgggagg	1980
gtgtatggct acttcccacc aaacggccaa agctggttta ccatttctgg agacaaggca	2040
atggggaaac tgggtacttc cctttccagt ggccacgtac tgatgaatgg gactctgaaa	2100
caagtgctgc tggttggagc ccctacgtac gatgacgtgt ctaaggtggc attcctgacc	2160
gtgaccctac accaaggegg agccactege atgtacgcac teacatetga egegeageet	2220
ctgctgctca gcaccttcag cggagaccgc cgcttctccc gatttggtgg cgttctgcac	2280
ttgagtgacc tggatgatga tggcttagat gaaatcatca tggcagcccc cctgaggata	2340
gcagatgtaa cctctggact gattggggga gaagacggcc gagtatatgt atataatggc	2400
aaagagacca cccttggtga catgactggc aaatgcaaat catggataac tccatgtcca	2460
gaagaaaagg cccaatatgt attgatttct cctgaagcca gctcaaggtt tgggagctcc	2520
ctcatcaccg tgaggtccaa ggcaaagaac caagtcgtca ttgctgctgg aaggagttct	2580
ttgggagece gaeteteegg ggeaetteae gtetatagee ttggeteaga ttgaagattt	2640
cactgcattt ccccactctg cccacctctc tcatgctgaa tcacatccat ggtgagcatt	2700
ttgatggaca aagtggcaca tecagtggag eggtggtaga teetgataga eatggggete	2760
ctgggagtag agagacacac taacagccac accctctgga aatctgatac agtaaatata	2820
tgactgcacc agaaatatgt gaaatagcag acattctgct tactcatgtc tccttccaca	2880

WO 03/090694 PC	T/US03/13015
gtttacttcc tcgctccctt tgcatctaaa cctttcttct ttcccaactt attgcctgta	2940
gtcagacctg ctgtacaacc tatttcctct tcctcttgaa tgtctttcca atggctggaa	3000
aggtccctct gtggttatct gttagaacag tctctgtaca caattcctcc taaaaacatc	3060
ctttttaaa aaaagaattg ttcagccata aagaaagaac aagatcatgc cctttgcagg	3120
gacatggatg gagctggagg ccattatcct tcataaacta ttgcaggaac agaaaaccaa	3180
acactccata ttctcacttg taagtgggag ctaaatgaga acacgtggac acatagaggg	3240
aaacaacaca cactggggcc tatgagaggg cggaaggtgg gaggagggag agatcaggaa	3300
aaataactaa tggatactta gggtgatgaa ataatctgtg taacaaaccc ccatgacaca	3360
cctttatgta tgtaacaaac cagcacttcc tgcgcatgta cccctgaact taaaagttaa	3420
aaaaaagttg aacttaaaaa taacagattg gcccatgcca atcaaagtat aatagaaagc	3480
atagtatac	3489
<pre><210> 170 <211> 341 <212> DNA <213> Homo sapiens <400> 170 ttttttttt ttttttttt tttttttt tttttttta tttctttc</pre>	60 120 180 240 300 341
<210> 171 <211> 2333 <212> DNA <213> Homo sapiens <400> 171	
ggcacgaggc tagagcgatg ccgggccgga gttgcgtcgc cttagtcctc ctggctgccg	60
ccgtcagctg tgccgtcgcg cagcacgcgc cgccgtggac agaggactgc agaaaatcaa	120
cctatcctcc ttcaggacca acgtacagag gtgcagttcc atggtacacc ataaatcttg	
acttaccacc ctacaaaaga tggcatgaat tgatgcttga caaggcacca atgctaaagg	
ttatagtgaa ttctctgaag aatatgataa atacattcgt gccaagtgga aaagttatgc	300

360

420

aggtggtgga tgaaaaattg cctggcctac ttggcaactt tcctggccct tttgaagagg

aaatgaaggg tattgccgct gttactgata tacctttagg agagattatt tcattcaata

ttttttatga attatttacc atttgtactt caatagtagc agaagacaaa aaaggtcatc	480
taatacatgg gagaaacatg gattttggag tatttcttgg gtggaacata aataatgata	540
	600
cctgggtcat aactgagcaa ctaaaacctt taacagtgaa tttggatttc caaagaaaca	660
acaaaactgt cttcaaggct tcaagctttg ctggctatgt gggcatgtta acaggattca	
aaccaggact gttcagtctt acactgaatg aacgtttcag tataaatggt ggttatctgg	720
gtattctaga atggattctg ggaaagaaag atgccatgtg gatagggttc ctcactagaa	780
cagttctgga aaatagcaca agttatgaag aagccaagaa tttattgacc aagaccaaga	840
tattggcccc agcctacttt atcctgggag gcaaccagtc tggggaaggt tgtgtgatta	900
cacgagacag aaaggaatca ttggatgtat atgaactcga tgctaagcag ggtagatggt	960
atgtggtaca aacaaattat gaccgttgga aacatccctt cttccttgat gatcgcagaa	1020
cgcctgcaaa gatgtgtctg aaccgcacca gccaagagaa tatctcattt gaaaccatgt	1080
atgatgtcct gtcaacaaaa cctgtcctca acaagctgac cgtatacaca accttgatag	1140
atgttaccaa aggtcaattc gaaacttacc tgcgggactg ccctgaccct tgtataggtt	1200
ggtgagcaca cgtctggcct acagaatgcg gcctctgaga catgaagaca ccatctccat	1260
gtgaccgaac actgcagctg tctgaccttc caaagactaa gactcgcggc aggttctctt	1320
tgagtcaata gcttgtcttc gtccatctgt tgacaaatga cagatctttt ttttttccc	1380
cctatcagtt gatttttctt atttacagat aacttcttta ggggaagtaa aacagtcatc	1440
	1500
tagaattcac tgagttttgt ttcactttga catttgggga tctggtgggc agtcgaacca	1560
tggtgaactc cacctccgtg gaataaatgg agattcagcg tgggtgttga atccagcacg	1620
tctgtgtgag taacgggaca gtaaacactc cacattcttc agtttttcac ttctacctac	
atatttgtat gtttttctgt ataacagcct tttccttctg gttctaactg ctgttaaaat	1680
taatatatca ttatctttgc tgttattgac agcgatatta ttttattaca tatcattaga	1740
gggatgagac agacattcac ctgtatattt cttttaatgg gcacaaaatg ggcccttgcc	1800
tctaaatagc actttttggg gttcaagaag taatcagtat gcaaagcaat cttttataca	1860
ataattgaag tgttcccttt ttcataatta ctctacttcc cagtaaccct aaggaagttg	1920
ctaacttaaa aaactgcatc ccacgttctg ttaatttagt aaataaacaa gtcaaagact	1980
tgtggaaaat aggaagtgaa cccatatttt aaattctcat aagtagcatt gatgtaataa	2040
acaggttttt agtttgttct tcagattgat agggagtttt aaagaaattt tagtagttac	2100
taaaattatg ttactgtatt tttcagaaat caaactgctt atgaaaagta ctaatagaac	2160
ttgttaacct ttctaacctt cacgattaac tgtgaaatgt acgtcatttg tgcaagaccg	2220
2092044000	

			•			
tttgtccact	tcattttgta	taatcacagt	tgtgttcctg	acactcaata	aacagtcact	2280
ggaaagagtg	ccagtcagca	gtcatgcacg	ctgataaaaa	aaaaaaaaa	aaa	2333
<210> 172 <211> 5064 <212> DNA <213> Homo	sapiens					
<400> 172 gagaagggga	ccttcaggtc	caggcaaagg [.]	gggaacttct	gtcgtgggaa	cgaaaaagaa	60
	cagggtgggg					120
gtcgcaccgg	ggccgatccg	agagttcccc	ttagagaacg	gagctcacgg	gcggggaggc	180
ctcacctgct	agtaggacgc	agaaagacag	aaggcgaagg	agaccccctg	ccgtagccat	240
cttgcctctc	tgctgagcgg	aagcccccgt	teggeteetg	tctgttagcg	gcctctctag	300
gctaccactg	acaccgtctc	tgtggcccgg	agcctaagag	accggaagtt	cgtgtttcca	360
ggegetteeg	gaaaccgcgg	gagagggtcg	ctgacgtgga	ggcgtccgaa	gggcagcagg	420
gtgtgtcggg	gctcggatta	agacatcgga	gtcggagacc	tgagagatgt	taaccaaatt	480
cgagaccaag	agcgcgcggg	tcaaagggct	cagctttcac	cccaaaagac	cttggatcct	540
gactagttta	cataatgggg	tcatccagtt	atgggactat	cggatgtgca	ctctcattga	600
caagtttgat	gaacatgatg	gtccagtgcg	aggcattgac	ttccataagc	agcagccact	660
gttcgtctct	ggaggagatg	actataagat	taaggtttgg	aattacaagc	ttcggcgctg	720
tcttttcaca	ttgcttgggc	acttagatta	tattcgcacc	acgttttttc	atcatgaata	780
tccctggatt	ctgagtgcct	ccgatgatca	gaccatccga	gtgtggaatt	ggcaatctag	840
aacctgtgtt	tgtgtgttaa	cagggcacaa	ccattatgtg	atgtgtgctc	agttccaccc	900
cacagaagac	ttggtagtat	cagccagcct	ggaccagact	gtgcgcgttt	gggatatttc	960
tggtctgagg	aaaaaaacc	tgtcccctgg	tgcggtggaa	tcggatgtga	gaggaataac	1020
tggggttgat	ctatttggaa	ctacagatgc	agtggtgaag	catgtactag	agggtcacga	1080
tcgtggagta	aactgggctg	ccttccaccc	cactatgccc	cttattgtat	ctggggcaga	1140
tgatcgtcaa	gtgaagatct	ggcgcatgaa	tgaatcaaag	gcatgggagg	ttgatacctg	1200
ccggggccat	tacaacaatg	tatcttgtgc	cgtcttccac	cctcgccaag	agttgatcct	1260
cagcaattct	gaggacaaga	gtattcgagt	ctgggatatg	tctaagcgga	ctggggttca	1320
gactttccgc	agagaccatg	atcgtttctg	ggtcctagct	gctcacccta	accttaacct	1380
ctttgcagca	ggccatgatg	gtggtatgat	tgtgtttaag	ctggaacggg	aacggccagc	1440
ctatgctgtt	catggcaata	tgctacacta	tgtcaaggac	cgattcttac	gacagctgga	1500
		-				

tttcaacagc	tccaaagatg	tagctgtgat	gcagttgcgg	agtggttcca	agtttccagt	1560
attcaatatg	tcatacaatc	cagcagaaaa	tgcagtcctg	ctttgtacaa	gagctagcaa	1620
tctagagaat	agtacctatg	acctgtacac	catccctaaa	gatgctgact	cccagaatcc	1680
tgatgcgcct	gaagggaaac	gatcctcagg	cctgacagcc	gtttgggtcg	ctcgaaatcg	1740
gtttgctgtc	ctagatcgga	tgcattcgct	tctgatcaag	aatctgaaga	atgagatcac	1800
caaaaaggta	caggtgccca	actgtgatga	gatcttctat	gctggcacag	gcaatctcct	1860
gcttcgagat	gcggactcta	tcacactctt	tgacgtacag	cagaagcgga	ctctggcatc	1920
tgtgaagatt	tctaaagtga	aatacgttat	ctggtcagca	gacatgtcac	atgtagcact	1980
actagccaaa	cacgccattg	tgatctgtaa	ccgcaaactg	gatgctttat	gtaacattca	2040
tgagaacatt	cgtgtcaaga	gtggggcctg	ggatgagagt	ggggtattta	tctataccac	2100
aagcaaccac	atcaaatatg	ctgtcaccac	tggggaccac	gggatcattc	gaactctgga	2160
tttacccatc	tatgtcacac	gggtgaaggg	caacaatgta	tactgcctag	acagggagtg	2220
tcgtccccgg	gtactcacca	ttgatcccac	tgagttcaaa	ttcaagctgg	ccctgatcaa	2280
cagaaaatat	gatgaggtac	tgcacatggt	gaggaatgcc	aaactagttg	gccagtctat	2340
tattgcttat	ctccagaaga	agggctatcc	tgaagtggca	ctgcattttg	tcaaggatga	2400
gaaaactcgc	tttagtctgg	cactggagtg	tggaaacatt	gagattgctc	tggaagcagc	2460
caaagcactg	gatgacaaga	actgctggga	aaagctggga	gaagtggccc	tgctgcaggg	2520
gaaccaccag	attgtggaaa	tgtgctatca	gcgtaccaaa	aactttgaca	aagtttcctt	2580
cctgtatctt	atcactggca	acttagaaaa	acttcgcaag	atgatgaaga	ttgctgagat	2640
cagaaaggac	atgagtggcc	actatcagaa	tgccctatac	ctgggtgatg	tgtcagagcg	2700
tgtgcggatc	ctgaagaact	gtggacagaa	gtccctggcc	tatctcacag	ctgctaccca	2760
tggcttagat	gaagaagctg	agagcctaaa	ggagacattt	gacccagaga	aggagacaat	2820
cccagacatt	gaccctaatg	ccaagctgct	ccagccacct	gcacctatca	tgccattgga	2880
taccaattgg	cctttattga	ctgtatccaa	aggattttt	gaaggcacca	ttgccagcaa	2940
agggaaggga	ggagcactgg	ctgctgacat	tgacattgac	actgttggta	cagagggctg	3000
gggagaggat	gcagagctgc	agttggatga	agatgggttt	gtggaggcta	cagaaggttt	3060
gggggatgat	gctcttggca	agggacagga	agaaggaggt	ggctgggatg	tagaagaaga	3120
tctggagctc	cctcctgagc	tggatatatc	ccctggggca	gctggtgggg	ctgaagatgg	3180
tttctttgtg	ccccaacca	agggaacaag	tccaactcag	atctggtgta	ataactctca	3240
gcttccagtt	gatcacatcc	tggcaggctc	tttcgaaaca	gccatgcggc	tccttcatga	3300
ccaagtaggg	gtaatccagt	ttggccccta	caagcaactg	ttcctacaga	catacgcccg	3360

aggccgcaca	acctatcagg	ctctgccctg	cctaccctcc	atgtatggct	atcctaatcg	3420
caactggaag	gatgcagggc	tgaagaatgg	tgtaccagct	gtgggcctga	agcttaatga	3480
cctcatccaa	cggttgcagc	tgtgctacca	gctcaccaca	gttggcaaat	ttgaggaggc	3540
tgtggaaaaa	ttccgttcca	tccttctcag	tgtgccactt	cttgttgtgg	acaataaaca	3600
agagattgca	gaggcccagc	agctcatcac	catttgccgt	gagtacattg	tgggtttgtc	3660
.cgtggagaca	gaaaggaaga	agctgcccaa	agagactcta	gaacagcaga	agcgcatctg	3720
tgagatggca	gcctatttca	cccactcaaa	cctgcagcct	gtgcacatga	tcctggtgct	3780
gcgtacagcc	ctcaatctgt	tcttcaagct	caagaacttc	aagacagctg	ccacctttgc	3840
teggegeeta	ctagaactcg	ggcccaagcc	tgaggtggcc	caacagaccc	gaaaaatcct	3900
gtctgcctgt	gagaagaatc	ccacagatgc	ctaccagctc	aattatgaca	tgcacaaccc	3960
ctttgacatt	tgtgctgcat	catatcggcc	catctaccgt	ggaaagccag	tagaaaagtg	4020
tccactcagt	ggggcctgct	attcccctga	gttcaaaggt	caaatctgca	gggtcaccac	4080
agtgacagag	attggcaaag	atgtgattgg	tttaaggatc	agtcctctgc	agtttcgcta	4140
aggccccctt	tgtgtgcatg	ggtcagtcac	catatgttcc	ccccagagaa	tgtgtctata	4200
tcctccttct	aacagcacct	tccccctgca	gctactcttc	agatctggct	ctctgtaccc	4260
taaaacctag	tatcttttc	tcttctatgg	aaaatccgaa	ggtctaaact	tgacttttt	4320
gaggtcttct	caacttgact	acagttgtgc	tcataattgt	ccttgccttt	ccagcttaat	4380
tattttaagg	aacaaatgaa	aactctgggc	tgggtggagt	ggctcatacc	tgtaatccca	4440
gcactttggg	aggctacggt	gggcagatca	tctgaggcca	ggagttcgag	acctgcctgg	4500
ccaacatggc	aacaccccgt	ctctaataaa	aatataaaaa	ttagcctggc	atggtagcat	4560
gcgcctatag	tcccagctgc	tcaggaggct	gaggcatgag	aatcgcttga	acctaggagg	4620
tggaggttgc	attcaactga	gatcatacca	cttcattcca	geetgggtga	cagagcaaga	4680
ctctgtctca	aaaaaaaaa	aaaaaaaaa	. aaaaaaaaaa	aaaggaaaac	tctgtgatgg	4740
acatttgttt	agtaaatccc	ttcagtattt	atccctcctt	tccccacago	agctttcttt	4800
cctgtcaact	: agaaaggagc	aggatgtaat	aaatacattt	tggtgtgact	aggccacacc	4860
aactcttaat	catctcccat	tttccttaga	catttaaatt	tcaaggcagg	taccctctgt	4920
gtactcagaa	atttgaagaa	gttatttggt	tttccaaaat	gcacactgcg	g ggttattgat	4980
ttgttcttta	caactattgt	tctcatattt	ctcacactaa	ataaatctct	atgagagctt	5040
cttgaaaaaa	aaaaaaaaa	agcg				5064

<210> 173

<211> 4259 <212> DNA

<400>

<213> Homo sapiens

173

atggcgaaga tcgccaagac tcacgaagat attgaagcac agattcgaga aattcaaggc 60 aagaaggcag ctcttgatga agctcaagga gtgggcctcg attctacagg ttattatgac 120 caggaaattt atggtggaag tgacagcaga tttgctggat acgtgacatc aattgctgca 180 actgaacttg aagatgatga cgatgactat tcatcatcta cgagtttgct tggtcagaag 240 300 tatgatccat ttgctgagca cagacctcca aagattgcag accgggaaga tgaatacaaa 360 aagcataggc ggaccatgat aatttcccca gagcgtcttg atccttttgc agatggaggg 420 aagacccctg atcctaaaat gaatgttagg acttacatgg atgtaatgcg agaacaacac 480 ttgactaaag aagaacgaga aattaggcaa cagctagcag aaaaagctaa agctggagaa 540 ctaaaagtcg tcaatggagc agcagcgtcc cagcctccat caaaacgaaa acggcgttgg 600 gatcaaacag ctgatcagac teetggtgee acteccaaaa aactatcaag ttgggatcag 660 gcagagaccc ctgggcatac tccttcctta agatgggatg agacaccagg tcgtgcaaag 720 ggaagcgaga ctcctggagc aaccccaggc tcaaaaatat gggatcctac acctagccac 780 acaccagegg gagetgetae teetggaega ggtgatacae caggecatge gacaccagge 840 catggaggcg caacttccag tgctcgtaaa aacagatggg atgaaacccc caaaacagag 900 agagatacte etgggeatgg aagtggatgg getgagaete etegaacaga tegaggtgga 960 gattetattg gtgaaacace gaeteetgga geeagtaaaa gaaaateaeg gtgggatgaa 1020 acaccageta gteagatggg tggaageact ceagttetga eeeetggaaa gacaccaatt 1080 ggcacaccag ccatgaacat ggctacccct actccaggtc acataatgag tatgactcct 1140 gaacagette aggettggeg gtgggaaaga gaaattgatg agagaaateg cecaetttet 1200 gatgaggaat tagatgctat gttcccagaa ggatataagg tacttcctcc tccagctggt 1260 tatgttccta ttcgaactcc agctcgaaag ctgacagcta ctccaacacc tttgggtggt 1320 atgactggtt tccacatgca aactgaagat cgaactatga aaagtgttaa tgaccagcca 1380 tctggaaatc ttccattttt aaaacctgat gatattcaat actttgataa actattggtt 1440 gatgttgatg aatcaacact tagtccagaa gagcaaaaag agagaaaaat aatgaagttg 1500 cttttaaaaa ttaagaatgg aacaccacca atgagaaagg ctgcattgcg tcagattact 1560 gataaagctc gtgaatttgg agctggtcct ttgtttaatc agattcttcc tctgctgatg 1620 tctcctacac ttgaggatca agagcgtcat ttacttgtga aagttattga taggatactg 1680

tacaaacttg	atgacttagt	tcgtccatat	gtgcataaga	tcctcgtggt	cattgaaccg	1740
ctattgattg	atgaagatta	ctatgctaga	gtggaaggcc	tagagatcat	ttctaatttg	1800
gcaaaggctg	ctggtctggc	tactatgatc	tctaccatga	gacctgatat	agataacatg	1860
gatgagtatg	tccgtaacac	aacagctaga	gcttttgctg	ttgtagcctc	tgccctgggc	1920
attccttctt	tattgccctt	cttaaaagct	gtgtgcaaaa	gcaagaagtc	ctggcaagcg	1980
agacacactg	gtattaagat	tgtacaacag	atagctattc	ttatgggctg	tgccatcttg	2040
ccacatctta	gaagtttagt	tgaaatcatt	gaacatggtc	ttgtggatga	gcagcagaaa	2100
gttcggacca	tcagtgcttt	ggccattgct	gccttggctg	aagcagcaac	tccttatggt	2160
atcgaatctt	ttgattctgt	gttaaagcct	ttatggaagg	gtatccgcca	acacagagga	2220
aagggtttgg	ctgctttctt	gaaggctatt	gggtatctta	ttcctcttat	ggatgcagaa	2280
tatgccaact	actatactag	agaagtgatg	ttaatcctta	ttcgagaatt	ccagtctcct	2340
gatgaggaaa	tgaaaaaaat	tgtgctgaag	gtggtaaaac	agtgttgtgg	gacagatggt	2400
gtagaagcaa	actacattaa	aacagagatt	cttcctccct	ttttaaaca	cttctggcag	2460
cacaggatgg	ctttggatag	aagaaattac	cgacagttag	ttgatactac	tgtggagttg	2520
gcaaacaaag	taggtgcagc	agaaattata	tccaggattg	tggatgatct	gaaagatgaa	2580
gccgaacagt	acagaaaaat	ggtgatggag	acaattgaga	aaattatggg	caatttggga	2640
gcagcagata	ttgatcataa	acttgaagaa	caactgattg	atggtattct	ttatgctttc	2700
caagaacaga	ctacagagga	ctcagtaatg	ttgaacggct	ttggcacagt	ggttaatgct	2760
cttggcaaac	gagtcaaacc	atacttgcct	cagatctgtg	gtacagtttt	gtggcgttta	2820
aataacaaat	ctgctaaagt	taggcaacag	gcagctgact	tgatttctcg	aactgctgtt	2880
gtcatgaaga	cttgtcaaga	ggaaaaattg	atgggacact	tgggtgttgt	attgtatgag	2940
tatttgggtg	aagagtaccc	tgaagtattg	ggcagcattc	ttggagcact	gaaggccatt	3000
gtaaatgtca	taggtatgca	taagatgact	ccaccaatta	aagatctgct	gcctagactc	3060
acccccatct	taaagaacag	acatgaaaaa	gtacaagaga	attgtattga	tottgttggt	3120
cgtattgctg	acaggggagc	tgaatatgta	tctgcaagag	agtggatgag	gatttgcttt	3180
gagcttttag	agctcttaaa	agcccacaaa	aaggctattc	gtagagccac	agtcaacaca	3240
tttggttata	ttgcaaaggc	cattggccct	catgatgtat	tggctacact	tctgaacaac	3300
ctcaaagttc	aagaaaggca	gaacagagtt	tgtaccactg	tagcaatagc	tattgttgca	3360
gaaacatgtt	caccctttac	agtactccct	gccttaatga	atgaatacag	agttcctgaa	3420
ctgaatgttc	aaaatggagt	gttaaaatcg	ctttccttct	tgtttgaata	tattggtgaa	3480
atgggaaaag	actacattta	tgccgtaaca	ccgttacttg	aagatgcttt	aatggataga	3540

gaccttgtac	acagacagac	ggctagtgca	gtggtacagc	acatgtcact	tggggtttat	3600
ggatttggtt	gtgaagattc	gctgaatcac	ttgttgaact	atgtatggcc	caatgtattt	3660
gagacatctc	ctcatgtaat	tcaggcagtt	atgggagccc	tagagggcct	gagagttgct	3720
attggaccat	gtagaatgtt	gcaatattgt	ttacagggtc	tgtttcaccc	agcccggaaa	3780
gtcagagatg	tatattggaa	aatttacaac	tccatctaca	ttggttccca	ggacgctctc	3840
atagcacatt	acccaagaat	ctacaacgat	gataagaaca	cctatattcg	ttatgaactt	3900
gactatatct	tataatttta	ttgtttattt	tgtgtttaat	gcacagctac	ttcacacctt	3960
aaacttgctt	tgatttggtg	atgtaaactt	ttaaacattg	cagttcagtg	tagaactggt	4020
catagaggaa	gagctagaaa	tccagtagca	tgatttttaa	ataacctgtc	tttgtttttg	4080
atgttaaaca	gtaaatgcca	gtagtgacca	agaacacagt	gattatatac	actatactgg	4140
agggatttca	tttttaattc	atctttatga	agatttagaa	ctcattcctt	gtgtttaaag	4200
ggaatgttta	attgagaaat	aaacatttgt	gtacaaaatg	ctaaaaaaaa	aaaaaaaa	4259
	o sapiens					
<400> 174 aagtgatcta	cagacgtaag	tctatgttca	actaccagtt	aaacaaggaa	aacattttct	60
gtatcattct	gttttacaac	cagtataaac	ccagaagaat	caagatctga	ttccttttcc	120
acacatctgo	taggtcagta	aactatcaaa	caggtatctg	gtcattttaa	catactcctt	180
atattcctat	ttggtacaat	ctctatatcc	tatactatct	tcaagatatc	taaatatctt	240
aaatatttag	ggtatctcaa	gagccagaag	gtcctcacag	aagcgttaac	ccaagtaatc	300
gtaagagtat	agaaagattg	ggctaagaca	actatggagt	gcaaaaacca	cataaatttg	360
gtcattacco	ttgtggtctg	tgattagtag	taggttgtca	aatgagagtt	aaaaatgttg	420
tattatccct	. agttgcaaat	gttccaaata	agacagtgcc	: ataactacac	gacaaaaaca	480
aaaaaaaaa	tcatataagt	tgggttagtt	cctctaatco	aac aac		523
	79 A Mo sapiens					
<400> 175 atggacatgo		g tctggatcc	getgeetegg	g ccaccgctgo	tgccgccgcc	60
anccacnac	a adddadddda	a dacadadaa	a agegtegage	c tocaggaag	g cggggacggc	120

PCT/US03/13015 WO 03/090694

ccaggagcgg	aggagcagac	ageggtggee	atcaccagcg	tccagcaggc	ggcgttcggc	180
gaccacaaca	tccagtacca	gttccgcaca	gagacaaatg	gaggacaggt	gacataccgc	240
gtagtccagg	tgactgatgg	tcagctggac	ggccagggcg	acacagctgg	cgccgtcagc	300
gtcgtgtcca	ccgctgcctt	cgcggggggg	cagcaggctg	tgacccaggt	gggtgtggac	360
ggggcagccc	agcgcccggg	ccccgccgct	gcctctgtgc	ccccaggtcc	tgcagcgccc	420
ttcccgctgg	ctgtgatcca	aaatcccttc	agcaatggtg	gcagtccggc	ggccgaggct	480
gtcagcgggg	aggcacgatt	tgcctatttc	ccagcgtcca	gtgtgggaga	tactacggct	540
gtgtccgtac	agaccacaga	ccagagcttg	caggctggag	gccagttcta	cgtcatgatg	600
acgccccagg	atgtgcttca	gacaggaaca	cagaggacga	tcgccccccg	gacacaccct	660
			ccccgagatg			720
aacgaagtgg	agcggaggcg	gagggacaag	atcaacaact	ggatcgtcca	gctttcgaaa	780
					agggatcctg	840
					gcaggagacc	900
ttcaaagagg	ccgagcggct	gcagatggac	aacgagctcc	tgaggcagca	gatcgaggag	960
ctgaagaatg	agaacgccct	gcttcgagco	cagctgcagc	agcacaacct	ggagatggtg	1020
ggcgagggca	. cccggcagtg	acgcccgcca	ccaccacgca	geegeegeeg	cccacgccgg	1080
cctctgctgc	: ccccttcccc	agcccttago	acagagaggg	acacatgcco	: ctcccccagc	1140
tgcgttttt	: tatagtagat	: ttttaacaaa	aaacggggag	aaataatgca	tttctgtgga	1200
tacagtgccc	accgccctcc	tccacttgga	a aacggtatcc	tecetgeee	teegtetgte	1260
					acctggaggc	1320
aagagggagg	g gtacagagco	c tctgccaac	g tecegetggt	gcctcctgct	ctctggaggt	1380
					c cggggcctgg	1440
					t gctccccttt	1500
gggggtgtg	t gtgtgtgtti	t taattttct	t tatggaaaaa	ttgacaaaa	a aaaaatagag	1560
agagaggta	t ttaactgca					1579

<210> 176 <211> 6951 <212> DNA <213> Homo sapiens

<400> 176 aacagacctt cctctgctag ttctacatca tccaaggctc caccaagttc tcggagaaac 60 gttggaatgg gaaccacccg ccggcttggt tcatccaccc ttggatccaa gtcttcagct 120

gcaaaagaag	gagctggtgc	tgttgatgaa	gaggatttta	ttaaagcatt	tgatgatgta	180
cctgtagtac	agatttattc	cagccgagac	cttgaggaat	ccataaacaa	aattagggaa	240
atattatctg	atgacaagca	tgattgggag	cagagagtaa	atgctctaaa	aaagattaga	300
tctttacttt	tggctggtgc	tgctgagtat	gataacttct	ttcaacattt	gcgtcttttg	360
gatggagcct	ttaaactctc	tgctaaggac	ctgcggtctc	aggtagtgcg	ggaggcttgt	420
atcacgttgg	ggcatctgtc	atcagttctg	gggaataagt	ttgaccatgg	agctgaagcc	480
attatgccaa	ctatctttaa	tttaattcca	aacagtgcca	aaattatggc	cacatctggt	540
gttgtagctg	ttaggttaat	tattcggcac	acacacatcc	ctaggttaat	acctgtcata	600
acaagcaact	gtacctctaa	gtctgtcgca	gttagaaggc	gctgttttga	atttttagat	660
ttgcttttac	aagaatggca	gacacattca	ctagaacgac	acatatcagt	attagctgaa	720
acaataaaga	agggaataca	tgatgctgat	tccgaagcaa	gaatagaagc	cagaaaatgt	780
tactggggtt	tccacagtca	cttcagcaga	gaagcagagc	acttgtacca	caccttggag	840
tcctcctacc	agaaagccct	gcagtcccac	ctgaagaact	cagacagcat	agtgtctctg	900
cctcagtcag	accgctcatc	ttccagctct	caagagagtc	taaatcgtcc	gctgtctgcc	960
aaaagaagtc	ctactggaag	taccacatct	agagcttcta	cagttagtac	caaatctgtg	1020
tcaacgactg	ggtccctcca	gcgatctcga	agtgatattg	atgtgaacgc	agcagccagt	1080
gccaaatcca	aagtctcctc	atcttcgggc	acgacgcctt	tcagctctgc	agcagctttg	1140
cctccagggt	catacgcatc	cttaggtcgg	atccgcacaa	gacggcaaag	ctctgggagt	1200
gccaccaacg	tcgcctctac	acctgataac	cggggccgca	gtcgcgctaa	agtggtttca	1260
cagtcccagc	gatccagatc	tgctaatcct	gctggtgctg	gcagccggtc	aagttcccca	1320
ggaaaattgt	tgggaagtgg	ttatggtgga	cttactgggg	gctcctcacg	aggcccacct	1380
gtgacaccgt	cttcagaaaa	gcgaagcaag	attcccagga	gccagggatg	tagccgggaa	1440
acaagtccaa	accgaatagg	attagcacgg	agcagccgta	tccctcgacc	cagcatgagt	1500
caggggtgca	gccgcgatac	cagccgtgag	agcagccgag	atacaagccc	tgctcggggc	1560
tttcctccac	ttgatcggtt	tgggcttggc	cagccaggaa	gaatacctgg	ttctgtgaat	1620
gccatgagag	ttctgagcac	aagtacagat	cttgaagctg	ctgttgctga	tgctttgaag	1680
aagcctgtga	ggaggagata	tgagccgtat	gggatgtatt	ctgacgatga	tgccaacagt	1740
gatgcctcaa	gtgtttgctc	tgagcgctca	tatggctcca	ggaatggtgg	cattccccat	1800
tatctgcggc	agactgagga	tgtagcagaa	gttctcaacc	actgtgctag	ttcaaactgg	1860
tcagaaagga	aagaagggct	tctgggcctg	cagaacttac	tgaagagcca	aagaacactg	1920
agtcgagttg	aactgaaaag	gttgtgtgag	atcttcactc	ggatgtttgc	tgaccctcat	1980

agcaagagag	ttttcagtat	gtttttggag	actcttgtgg	attttataat	aattcataag	2040
gatgatttac	aagactggct	ttttgttctt	ctcacacaat	tacttaagaa	aatgggagca	2100
gatttacttg	gatctgtgca	agcaaaagtt	caaaaggctc	tagatgtcac	aagggactcc	2160
tttccatttg	atcaacaatt	taacattttg	atgagattta	ttgtggatca	aactcaaact	2220
ccaaacctca	aggtcaaagt	tgcaatcctg	aaatacattg	agtctctggc	cagacagatg	2280
gatccaacag	attttgtaaa	ctctagtgag	acaaggcttg	ctgtttctag	aatcataacc	2340
tggacaacag	aaccaaagag	ttcagacgtg	agaaaggcag	cacagattgt	gctaatctct	2400
ctgtttgaat	tgaatactcc	tgaatttacc	atgttacttg	gtgccttgcc	aaaaacattc	2460
caggatggtg	ccaccaaact	cctgcacaac	cacctcaaga	attccagtaa	caccagtgtg	2520
ggctctccaa	gcaatacgat	tggccggacg	ccctcccgac	acaccagcag	caggaccagc	2580
cccctgacct	cacccaccaa	ctgttcccat	gggggtctgt	ctccaagtcg	gttatggggt	2640
tggagtgccg	acgggttagc	gaagcaccca	cctccctttt	ctcagcctaa	ctccatcccc	2700
accgctccct	cccacaaggc	tctcaggcgc	tcttactctc	ccagcatgct	ggactatgat	2760
acagagaacc	tgaactctga	agaaatctat	agttctctac	gtggagttac	agaagccatt	2820
gaaaagttta	gttttcgaag	ccaagaagat	ctgaatgagc	caattaaacg	agatggcaaa	2880
aaggagtgtg	atattgtgtc	ccgcgatggg	ggcgctgcct	cccctgccac	tgagggccgg	2940
gggggtagtg	aagtagaagg	aggccggaca	gctctggata	acaagacctc	actactcaac	3000
acccagcctc	: cgcgcgcctt	ceeggggeeg	cgggcgcgag	actacaaccc	gtacccctac	3060
tcagatgcca	tcaacaccta	cgacaagacc	gccctgaaag	aggctgtgtt	cgatgacgac	3120
atggagcago	: ttcgagacgt	gcccatcgac	cattctgacc	tggtggctga	ccttctgaaa	3180
gagctgtcca	accacaatga	gcgagtggag	gaacggaagg	gagccctgct	ggagctgctc	3240
aagatcacgo	gggaagacag	g ccttggtgtc	: tgggaggagc	acttcaagac	cattctgctc	3300
ctgctgctgg	g agaccettgg	g agacaaagac	cattcaattc	gagcactggc	gttaagagtt	3360
ttgagggaaa	a ttctgagaaa	a tcaaccagca	agatttaaaa	actacgccga	gctgacgatt	3420
atgaagacto	tggaagccca	a caaagactco	cataaggagg	tggtgagagc	ggctgaggag	3480
gctgcgtcca	a cactggccag	g ttccatccac	c ccggagcagt	gcatcaaggt	getetgeece	3540
atcatccaga	a eggeegaeta	a ccccatcaac	c cttgctgcca	tcaagatgca	gaccaaagtc	3600
gtcgagagga	a togcaaagga	a gtcattgctg	g cagctccttg	, tcgacatcat	cccaggettg	3660
ctgcagggt	t atgacaaca	c cgaaagtagt	gtgcgtaagg	g ccagcgtgtt	ttgcttagtg	3720
gcaatttat	t ccgtaatcg	g agaagacct	g aaacctcacc	ttgcacagct	cacagggagc	3780

aagatgaagc tactaaactt atacataaag agggcccaga ccaccaacag caacagcagc	3840
tcctcctccg atgtctccac gcacagctaa tggcagtacc tgtctcttgt gtagacctag	3900
aagcaatcgg tggtgcctct cagagacctt tccccacccc cttcatcggc tgcccagtca	3960
gtacaaggag gcccacaaat atttattaca atcagtattt tggtcccttc cagcttttct	4020
gtagaatett aetggtattg aatgtaaagg aagcaaggee tgtattgeag tetteataca	4080
aaacaaaagg aataagaaca gaaaagagcc atactgaaac atgtettgta cageetgetg	4140
agatggcgaa accctgtgtg tggggtgcag tttttaaaaa tcagagcgct ctagccacta	4200
cttggtagaa agtagcattt ttttttcag ttaataacat atttgggggt ggggtggggt	4260
gttactttgt gttcttcctc cttagcctat tttcttgtgc gtatggtctg tgtggggccc	4320
ctttcacagc tgacaccacg aaaggtgata tatctttaag ttgtgttctg agacctacta	4380
aaaatgggaa tcaagtcttg gcaagaacag tctgaagatg gccttttaac aaacgctggg	4440
aattttgctt gtcatatcca gactggaggc cgactgccct ggctttcagc gtagaattgg	4500
gagtgcaccc tgacagtctc cttccagctc tccctaatcg actccaccga caaggtccct	4560
accccagage ttecatgeaa aggaattett caagtttaaa tetggacaca aaaataagat	4620
aaatgtatgg catcatttag ggatgcctga gatggcagtt catgaagcac agaagataaa	4680
gaagaagtet tteatettta etgetgagat eettgggaae aetgttgtea tgggggetet	4740
gccaagaccc tcatctctgg gctacacggt gattcagatt gagcaccaac ttgtttcctc	4800
ccctcaaagt tctgcctaag ccgttcagtt ctaacatggt ctcagttaat ctggtaaatg	4860
gcatctttac catcttagtt ctgacttctc agtttaatgt gggattaaga gccaagaaaa	4920
gcctagagag actggatatc acaatttttt ttaattttat aaactgaagt agttccttga	4980
atgtctgttg atgaaatagt cactgtttaa ggaaaaaagt aattatgagg tgtagcagat	5040
tgcagaaaaa caggattaga aacacactta aaaagaacac acatttagag tctctcttcc	5100
tcctcagcga accactaggc cccctttttt aaaaacacct ttagagccta attactccaa	5160
taaaagtaac tagaggtttg gagtctggtt aaataaattc tgagtaaaat tcttaagcca	5220
aatggaaatt cttaatgcaa tcatgaggac ttctattgtc tcttactgtt gtattagatc	5280
ctataaattg aactgatttt tccataagga aaatgcttct tttgagatta attctaataa	5340
cgtatttgct attgcagtgc agagcccact gcaactgcta ggactgaaag cagaggctgg	5400
gtgccagagc acgtgattct taacatcatt tccacagacc cctctgccct gaccctctgc	5460
attggatgca ggaagctggg aaagactgat gttgatttgg aaacatgggc tgaaaatgaa	5520
ggccccatag tgcataggaa cagtaaagcc agggtgctga cgtgtgtgtg tgtgtgtgt	5580
tgtgtgtgtg tgtgtgtggt gttgtgtgtg tttgtgcgtg caccctacac atgtgtggta	5640

PCT/US03/13015 WO 03/090694

cctcactgct gctgtttagg	gaacttgagg	gacgcgtttc	aaggggttgg	gtattactga	5700
cgagctttgg ctcaaaatat	agcaggacca	ggtcttttgt	tgataagtac	tgtttgttta	5760
ttaatatgtc attaatggta	tttcttttt	acactctaca	agtgaattag	ggagtctctt	5820
gttgacccct ttgttgcagg	aatgtgcgtc	gggctaggtt	atccatgagt	ttctttattc	5880
ctaatgcagt tagaaagacc	tttctccttg	agctctttga	ctcccagaag	gtaccccagt	5940
ccccagtgta cttagaaagg	atctcgaaca	ttgctggacg	tcctcatagt	actcacaaag	6000
ggctagcctt gaatgtcact	cgcccagtct	tcagtctcct	gacttagaga	tacaatcacg	6060
tcacaggtct cttggcctca	atctgaaaac	tgctgccgcc	gcgccgagga	gactcgcatg	6120
ccgccaccac ctcactggga	gggcgccgag	cccaccgtcg	ccccctagac	cctgacagct	6180
gcagetgcct tgccttgccg	ccgcctccct	gcagggcccc	tgttccaatg	aaaaacagaa	6240
cacaaaagag cagagcacct	aagcctgtct	ctgcctccct	gtctaccgga	ctggccaggg	6300
cccaagaccc ccgctgctcc	actgcggggc	tgggcgggct	gactccctgc	ttcctccaag	6360
ctgctgcctc ccctgcagcc	agggtctggg	cagggtgcag	ccggtcctcg	gggcacgcag	6420
cttccttcaa gtacactgtg	tgtgcttccc	ggacctgcgg	cgatgccacg	ggcctgcctt	6480
ttctatgcgc ctcactagct	taccaccctg	tgcaggtaat	gcaactgact	ttgtctcatc	6540
agtettttte ttteeetgee	accctttatt	tatcaagcgt	aatgttacac	tttaaaggac	6600
agcaaataag aactttgtag	aatcccacca	ggactttgct	aacaataatg	tttggaaata	6660
aagaagtgct ctgaaaaaat	atcagccacc	aaaatagtta	tgttggcact	gtgttcacac	6720
gcatggtccc cacaccccca	ggttgggtgg	gtttttttgt	tttttgggtt	tttttggggg	6780
gggggctttt tcatgttaca	tccatatctg	tatttatatc	ttatttgttt	cactttcaag	6840
tgtatcatgg caaatgtaca	gatttttttg	ttaataatgt	gctaggattt	gctaaaaaag	6900
aaaaaaaaa aacccttttg	agtttgccct	agaataaatg	agacttaatt	t	6951
<210> 177 <211> 570 <212> DNA <213> Homo sapiens					
<400> 177 ttttttttt ttttttcag	tttaaagcac	tttattaacc	acacatacat	attttccagt	60
gtctaattct catcgtgttc	ttttccattc	cagacttccc	tgtctctttc	ccagagctct	120

gttcctcttc tcactgtttc tggaaggcag ttgcactcaa aagtgaagtc accagtctgc

cgacaggtgc ctccattgac acaaggcgag ggtgcacagg gcacatacag gctgtcacag

tactggcctg tgaagccctg aaggcactgg cactggtagg aaccaggcag gttgaggcag

180

240

300

gtgccaccat gctggc	agtg tcctggaatg	tcacactcat	tgacatcagt (ctcacacttc	360
tgccctgtga agcctg	tgag gcatttgcag	gagaactggt	tggccacagt (ggtacaggta	420
cttccatttg cacagg	gatg agacaggcag	gcatcggtcc	attggcactc	cttacctgta	480
aacccgactt gacagg	tgca ctcataggta	teceggetga	gcatatggca	tgtgccgcca	540
ttcaggcaag gtcgag	cctc gtgccgaatt				570
<210> 178 <211> 381 <212> DNA <213> Homo sapie	ens				
<400> 178 ggtggagaag gaggcg	gggtg atgtgctcac	ttctgatcaa	catgtgttgc	ctcctctcag	60
ccaacttcta gctcac					120
cattccttag ggccta					180
ccagctttgg ataatt					240
aggaactttt ctcgag					300
aatgaataca ccatco					360
gtgtccacag tcctga					381
<210> 179 <211> 867 <212> DNA <213> Homo sapic	ens	·			
<400> 179 ggcacgaggg ctgac	tacat tcagcccgt	c tggtaaactt	gtccagattg	aatatgcttt	60
ggctgctgta gctgg	aggag ccccgtccg	t gggaattaaa	gctgcaaatg	gtgtggtatt	120
agcaactgag aaaaa	acaga aatccattc	t gtatgatgag	cgaagtgtac	acaaagtaga	180
accaattacc aagca	tatag gtttggtgt	a cagtggcatg	ggccccgatt	acagagtgct	240
tgtgcacaga gctcg	aaaac tagctcaac	a atactatctt	gtgtaccaag	aacccattcc	300
tacageteag etggt	acaga gagtagctt	c tgtgatgcaa	gaatatactc	agtcaggtgg	360
tgttcgtcca tttgg	agttt ctttactta	t ttgtggttgg	g aatgagggac	gaccatattt	420
atttcagtca gatco	atctg gagcttact	t tgcctggaaa	gctacagcaa	tgggaaagaa	480
ctatgtgaat gggaa	ıgactt tccttgaga	a aagatataat	gaagatctgg	g aacttgaaga	540
tgccattcat acago	catct taaccctaa	a ggaaagcttt	gaagggcaaa	tgacagagga	600
taacatagaa gttgg	gaatct gcaatgaag	c tggatttagg	g aggettaete	c caactgaagt	660

taaggattac ttggctgcca tagcataaca atgaagtgac tgaaaaatcc agaatttcag	720
ataatctatc tacttaaaca tgtttaaagt atgttttgtt ttgcagactt tttgcatact	780
tatttctaca tggtttaaat cgactgtttt taaaatgaca cttataaatc ctaataaact	840
gttaaaccca aaaaaaaaa aaaaaaa	867
<210> 180 <211> 953	
<212> DNA <213> Homo sapiens	
<400> 180	60
attcaatagt cattaattca gcaaatccca ttcaagtaaa agtkaccaaa gataaagcaa	120
tcaatcacac tgggccaaat atacaatatg tttcctttct gggagatgac aaagtcccaa	180
agcaaatccc ttcaatgagc attgcaagca ttcctcaact ggataggatc ccactcacta	
cccaagtgtt cagcaaaatg catcaaaact gaagggtctt tetttetgaa atgaettggg	240
cacatettae tgaactacat aateaataca agtacatgta cacaggeaga caetttgaae	300
attacctact caatcacttt gcttttatta aggagctggg aaggaagaag gcttacaaac	360
tgatcaccag gacaaagccc atgccttgtg agtaaagaaa ggcacaactc agatttaggc	420
aaatttetta ataetatgat aettaettge egecataaet eeaaggaaat ggaaagtete	480
tcggagaaac actgaagaaa tgcattcccc atcccatatg gcttcaatgc cttaagcggt	540
taatatatto taatattaga ttagacccgc aaataaaaga cagggcaggg	600
agtettagta gteaggtate etatacatte aegettetag gtaacacaag etgggaaagt	660
cttgttttcc agctaaatgc attatttaaa agttcattga agatcaagac ttatagcaga	720
atttggtttt totttoagga aatattacta aaataactat gtgtatgtto atttotttaa	780
aaattttaca catgettaar aggeatggee tecagecaet gagatgtaca gttaaagaca	840
tatttgatcc aagagagaag tacatgtgaa aggtatcctc tagtgaagac caatgataac	900
aaagcaaagc ttgtcacatt aactttgttt cacttgctgt aatgtcccaa gca	953
<210> 181 <211> 513	
<212> DNA <213> Homo sapiens	
<400> 181	
tccttctttc ctttttgctg taggcccggg tggttgctgc cgaaatgggc aagttcatga	60
aacctgggaa ggtggtgctt gtcctggctg gacgctactc cggacgcaaa gctgtcatcg	120
tgaagaacat tgatgatggc acctcagatc gcccctacag ccatgctctg gtggctggaa	180
ttgaccgcta cccccgcaaa gtgacagctg ccatgggcaa gaagaagatc gccaagagat	240

caaagataaa atcttttgtg a	aaagtgtata	actacaatca	cctaatgccc	acaaggtact	300
ctgtggatat ccccttggac a	aaaactgtcg	tcaataagga	tgtcttcaga	gatcctgctc	360
ttaaacgcaa ggcccgacgg	gaggccaagg	tcaagtttga	agagagatac	aagacaggca	420
agaacaagtg gttcttccag a	aaactgcggt	tttagatgct	ttgttttgat	cattaaaaat	480
tataaagaaa aaaaaaaaa a	aaaaaaaaa	aaa			513
<210> 182 <211> 1069 <212> DNA <213> Homo sapiens					
<400> 182 ggcggcggcg gcgacgtggg	ctgcggcggg	cccgcggcgt	cgggcggtgc	ggatgtcggg	60
ctgggcggac gagcgcggcg	gcgagggcga	cgggcgcatc	tacgtgggga	accttccgac	120
cgacgtgcgc gagaaggact	tggaggacct	gttctacaag	tacggccgca	tccgcgagat	180
cgagctcaag aaccggcacg	gcctcgtgcc	cttcgccttc	gtgcgcttcg	aggacccccg	240
agatgcagag gatgctattt	atggaagaaa	tggttatgat	tatggccagt	gtcggcttcg	300
tgtggagttc cccaggactt	atggaggtcg	gggtgggtgg	ccccgtggtg	ggaggaatgg	360
gcctcctaca agaagatctg	atttccgagt	tcttgtttca	ggacttcctc	cgtcaggcag	420
ctggcaggac ctgaaggatc	acatgcgaga	agctggggat	gtctgttatg	ctgatgtgca	480
gaaggatgga gtggggatgg	tcgagtatct	cagaaaagaa	gacatggaat	atgccctgcg	540
taaactggat gacaccaaat	tccgctctca	tgagggtgaa	acttcctaca	tccgagttta	600
tcctgagaga agcaccagct	atggctactc	acggtctcgg	tctgggtcaa	ggggccgtga	660
ctctccatac caaagcaggg	gttccccaca	ctacttctct	cctttcaggc	cctactgaga	720
caggtgatgg gaatttttc	tttattttt	aggttaactg	agctgctttg	tgctcagaat	780
ctacattcca gattgaggat	ttagtgtctt	aggaaatttt	tttaatttt	tttttttaaa	840
gaagaaaaaa aactacataa	tttctaccag	ggccatatta	gcagtgaaac	attttaaact	900
gcagaaattg tggttttggt	tcagaaacaa	gttgtatatt	tttcacccct	gattatggga	960
aaaaatcgtt ctgtctttgt	ggggttcgct	ctactatgga	gatcaacagt	tactgtgact	1020
gagteggeee attetgttta	gaaatatatt	: ttaaatgttt	agtaattga		1069

<210> 183 <211> 1231 <212> DNA

<213> Homo sapiens

<400> 183

gacaagatgg	ccacaccggc	ggtaccagta	agtgctcctc	cggccacgcc	aaccccagtc	60
ccggcggcgg	ccccagcctc	agttccagcg	ccaacgccag	caccggctgc	ggctccggtt	120
cccgctgcgg	ctccagcctc	atcctcagac	cctgcggcag	cagcggctgc	aactgcggct	180
cctggccaga	ccccggcctc	agcgcaagct	ccagcgcaga	ccccagcgcc	cgctctgcct	240
ggtcctgctc	ttccagggcc	cttccccggc	ggccgcgtgg	tcaggctgca	cccagtcatt	300
ttggcctcca	ttgtggacag	ctacgagaga	cgcaacgagg	gtgctgcccg	agttatcggg	360
accctgttgg	gaactgtcga	caaacactca	gtggaggtca	ccaattgctt	ttcagtgccg	420
cacaatgagt	cagaagatga	agtggctgtt	gacatggaat	ttgctaagaa	tatgtatgaa	480
ctgcataaaa	aagtttctcc	aaatgagctc	atcctgggct	ggtacgctac	gggccatgac	540
atcacagagc	actctgtgct	gatccatgag	tactacagcc	gagaggcccc	caaccccatc	600
cacctcactg	tggacacaag	tctccagaac	ggccgcatga	gcatcaaagc	ctacgtcagc	660
actttaatgg	gagtccctgg	gaggaccatg	ggagtgatgt	tcacgcctct	gacagtgaaa	720
tacgcgtact	acgacactga	acgcatcgga	gttgacctga	tcatgaagac	ctgctttagc	780
cccaacagag	tgattggact	ctcaagtgac	ttgcagcaag	taggagggg	atcagctcgc	840
atccaggatg	ccctgagtac	agtgttgcaa	tatgcagagg	atgtactgto	tggaaaggtg	900
tcagctgaca	atactgtggg	ccgcttcctg	atgagcctgg	ttaaccaagt	accgaaaata	960
gttcccgatg	actttgagac	catgctcaac	agcaacatca	atgacctttt	gatggtgacc	1020
tacctggcca	acctcacaca	gtcacagatt	gcactcaatg	aaaaacttgt	aaacctgtga	1080
atggacccca	agcagtacac	ttgctggtct	aggtattaad	cccaggacto	: agaagtgaag	1140
gagaaatggg	ttttttgtgg	tcttgagtca	. cactgagata	gtcagttgtg	g tgtgactcta	1200
ataaacggag	cctacctttt	gtaaaaaaaa	ı a			1231

<210> 184 <211> 586

<212> DNA

<213> Homo sapiens

<400> 184
gcaccaaggg ctgctccca agtgggcctg aagcaggtgg tcctgcgggc gtccaggtca 60
gcaccttcct gtagggcact ggggctaggg tcacagccc taactcataa agcaatcaaa 120
gaaccattag aaagggctca ttaagccgga cacaggaccc cagagaggaa aaagtgactt 180
gcccaaggtc gtaagcaagc tactggcatg gcaagagccc agcttcctga cggagcgcaa 240
catttctcca ctgcactgtg ctagcagctc agcagggcct ctaacctgtg atgtcacact 300
caagaggcct tggcagctcc tagccataga gcttcctttc cagaaccctt ccactgcca 360

```
atgtggagac aggggttagt ggggctttct atggagccat ctgctttggg gacctagacc
                                                                  420
480
ctataaaggc atttctctat atacatgttt tatatacctc attctgacac ctgcatatag
                                                                  540
                                                                  586
tgtgggaaat tgctctgcat ttgacttaat taaaaaaaaa aaaaaa
<210> 185
<211> 852
<212> DNA
<213> Homo sapiens
<400> 185
cccacgcgtc cgcccctccc cccgagcgcc gctccggctg caccgcgctc gctccgagtt
                                                                   60 -
tcaggctcgt gctaagctag cgccgtcgtc gtctcccttc agtcgccatc atgattatct
                                                                  120
accgggacct catcagccac gatgagatgt tctccgacat ctacaagatc cgggagatcg
                                                                  180
cggacgggtt gtgcctggag gtggagggga agatggtcag taggacagaa ggtaacattg
                                                                   240
atgactcgct cattggtgga aatgcctccg ctgaaggccc cgagggcgaa ggtaccgaaa
                                                                   300
gcacagtaat cactggtgtc gatattgtca tgaaccatca cctgcaggaa acaagtttca
                                                                   360
                                                                   420
caaaagaagc ctacaagaag tacatcaaag attacatgaa atcaatcaaa gggaaacttg
                                                                   480
aagaacagag accagaaaga gtaaaacctt ttatgacagg ggctgcagaa caaatcaagc
acatccttgc taatttcaaa aactaccagt tctttattgg tgaaaacatg aatccagatg
                                                                   540
gcatggttgc tctattggac taccgtgagg atggtgtgac cccatatatg attttcttta
                                                                   600
aggatggttt agaaatggaa aaatgttaac aaatgtggca attattttgg atctatcacc
                                                                   660
tgtcatcata actggcttct gcttgtcatc cacacaacac caggacttaa gacaaatggg
                                                                   720
actgatgtca tcttgagctc ttcatttatt ttgactgtga tttatttgga gtggaggcat
                                                                  780
tgtttttaag aaaaacatgt catgtaggtt gtctaaaaat aaaatgcatt taaactcaaa
                                                                   840
                                                                   852
aaaaaaaaa aa
<210>
       186
<211>
       787
<212>
       DNA
<213> Homo sapiens
<220>
       misc_feature
<221>
       (722)..(722)
<222>
<223> n is a, c, g, t or u
<220>
<221> misc_feature
       (735)..(735)
<222>
<223> n is a, c, g, t or u
```

```
<220>
<221> misc_feature
      (744)..(744)
<222>
<223> n is a, c, g, t or u
<220>
<221> misc_feature
      (752)..(752)
<222>
<223> n is a, c, g, t or u
<220>
<221> misc_feature
      (764)..(764)
<222>
<223> n is a, c, g, t or u
<400>
      186
caaggctagg aggctcgacc acctcaacat tggagacatc acttgccaat gtacatacct
                                                                      60
tgttatatgc agacatgtat ttcttacgta cactgtactt ctgtgtgcaa ttgtaaacag
                                                                     120
aaattgcaat atggatgttt ctttgtatta taaaattttt ccgctcttaa ttaaaaatta
                                                                     180
ctgtttaatt gacatactca ggataacaga gaatggtggt attcagtggt ccaggattct
                                                                      240
gtaatgettt acacaggeag ttttgaaatg aaaatcaatt tacetttetg ttaegatgga
                                                                      300
gttggttttg atactcattt tttctttatc acatggctgc tacgggcaca agtgactata
                                                                      360
ctgaagaaca cagttaagtg ttgtgcaaac tggacatagc agcacatact acttcagagt
                                                                      420
tcatgatgta gatgtctggt ttctgcttac gtcttttaaa ctttctaatt caattccatt
                                                                      480
tttcaattaa taggtgaaat tttattcatg ctttgataga aattatgtca atgaaatgat
                                                                      540
tetttttatt tgtageetae ttatttgtgt ttttcatata tetgaaatat getaattatg
                                                                      600
ttttctgtct gatatggaaa agaaaagctg tgtctttatc aaaatattta aacggttttt
                                                                      660
tcagcatatc atcactgatc attggtaacc actaaagatg agtaatttgc ttaagtagta
                                                                      720
                                                                      780
anttaaaaat tgtanatagg gccntcctga cnattttttt cccnaaaatt tttaacaagc
                                                                      787
aattgaa
<210> 187
<211> 3256
<212> DNA
<213> Homo sapiens
 <400>
tgacctacac ttttaacttg tctcactagt gcctaaatgt agtaaaggct gcttaagttt
                                                                       60
tgtatgtagt tggatttttt ggagtccgaa gtattccatc tgcagaaatt gaggcccaaa
                                                                      120
 ttgaatttgg attcaagtgg attctaaata ctttgcttat cttgaagaga gaagcttcat
                                                                      180
 aaggaataaa caagttgaat agagaaaaca ctgattgata ataggcattt tagtggtctt
                                                                      240
 tttaatgttt tctgctgtga aacatttcaa gatttattga ttttttttt tcactttccc
                                                                      300
```

360 catcacactc acacgcacgc tcacactttt tatttgccat aatgaaccgt ccagccctg tggagatete etatgagaae atgegtttte tgataaetea caaccetace aatgetaete 420 tcaacaagtt cacagaggaa cttaagaagt atggagtgac gactttggtt cgagtttgtg 480 540 atgetacata tgataaaget eeagttgaaa aagaaggaat eeaegtteta gattggeeat 600 ttgatgatgg agctccaccc cctaatcaga tagtagatga ttggttaaac ctgttaaaaa ccaaatttcg tgaagagcca ggttgctgtg ttgcagtgca ttgtgttgca ggattgggaa 660 gggcacctgt gctggttgca cttgctttga ttgaatgtgg aatgaagtac gaagatgcag 720 ttcagtttat aagacaaaaa agaagggag cgttcaattc caaacagctg ctttatttgg 780 agaaataccg acctaagatg cgattacgct tcagagatac caatgggcat tgctgtgttc 840 agtagaagga aatgtaaacg aaggctgact tgattgtgcc atttagaggg aactcttggt 900 960 acctggaaat gtgaatctgg aatattacct gtgtcatcaa agtagtgatg gattcagtac tcctcaacca ctctcctaat gattggaaca aaagcaaaca aaaaagaaat ctctctataa 1020 aatgaataaa atgtttaaga aaagagaaag agaaaaggaa ttaattcagt gaaggatgat 1080 tttgctccta gttttggagt ttgaatttct gccaggattg aattattttg aaatctcctg 1140 tctttttaaa ctttttcaaa ataggtctct aaggaaaacc agcagaacat taggcctgtg 1200 caaaaccatc tgtttgggga gcacactctt ccattatgct tggcacatag atctccctgt 1260 ggtgggattt ttttttccc tttttttgtg ggggagggtt ggtggtatat ttttcccctc 1320 ttttttcctt cctctcctac atctcccttt tcccccgatc caagttgtag atggaataga 1380 agccettgtt getgtagatg tgegtgeagt etggeageet taagceeace tgggeaettt 1440 tagataaaaa aaaaaaaaa caaaaaacaa caccaaaaaa acagcagtga tatatatatt 1500 1560 ccaggtggtt tttagtcttt actgatgaaa gggtgttcat gttagtttct tcaaaaccct 1620 tggagaaatg gcattttaag aggagtetet teteaaetta eetgagagte gaattettet 1680 cttccctaac caatgaagct aagtggttat cccagaaact tgtcttctaa aagggaggac 1740 tccaggccat caataaagat gtccaggcag tgagcgtact ttttacaccc tgtagaattg 1800 tgggctgtag cgttactctg attttctgtc tagtatcaga gaatgctggt agcttaaaat 1860 ttttatttta ggacttgtac tctgaatttt caggaaccgt caaaggagca gcagcaaatt 1920 1980 cacatatttt cgacttgaga aatgcttgtg gtatgtgttt tccaaactgc cccctatatg 2040 taaagttcag tttaaccact gattgccttg ttattactag gttttttgag attaaaaaaa aaaaatccct ggtttaaaac caacaatgat gcctagtgag tatgtgtcca caggccataa 2100

cagggtagaa	gagagacatc	gtgcaaccca	atgagtagtg	aagggactgt	gttgcttgtg	2160
aagcggtgta	gtagcatttt	tgcagattct	tggctgggtt	tagtgtactg	atctagaaaa	2220
gctgtttttc	tgctcctttg	tggaaggcag	ttatgatcag	gctgcatgga	caaagcaggt	2280
agaggggcac	catcaggggc	tcttgcacta	ttttcacctc	taaatattac	gtactcagta	2340
gtgccctgct	tctagggctc	tgaatacggg	cttaaagtca	tcttgtcctg	ctggaatttg	2400
ctgtgcagag	ccataagcct	cccattttgt	tagcgtcagc	taggccaata	ggaacagacc	2460
gggaccttgt	ctcacactga	tgatacctca	catgttgacc	ggctatgtga	actgcctatt	2520
tcctatgctg	gagttttgat	ttttaactaa	acgcaaatct	gtagattctc	tectetecca	2580
tcccagaaaa	caaaacaaaa	taatgctttt	cgaaattgtt	tctaggactt	taaaacataa	2640
tggtatatcc	aaaattcttt	atttcagaat	gcaacaatag	attccattaa	tatagactca	2700
agatcaaaac	agcatacctg	ctaagctaag	atagatggtg	ttgattccac	tgggttttga	2760
tcaatacaat	aacaaacctt	tttcctttga	catactctga	attttgttgt	ttggggggag	2820
ggggtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtattgtgt	gtgtgtgtgt	gtgcacgcgc	2880
agtgtccatc	agtatcagtg	cctgcctgag	ttaggaaaat	tacattcctg	gttctgtatt	2940
gaggagaagg	atgtataaag	caacatgaaa	cattagccct	ccttttattt	taaagactaa	3000
tgttaattgt	tettaaaaet	ggatttttt	tccttaaagc	aattttttc	ttttcgattt	3060
aatgaagtat	tgctagctga	agccagtttg	acatagagag	atgtcagatt	gatttgaaag	3120
gtgtgcagco	: tgatttaaaa	. ccaaaccctg	aaccctttta	aagaacaata	aaacatattt	3180
tacacgctca	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	ааааааааа	aaaaaaaaaa	3240
aaaaaaaaa	ı, aaaaaa					3256

<210> 188

<211> 4080

<212> DNA

<213> Homo sapiens

<400 > 188
gcgcctgcgg cgccgcggc gggtcgcctc ccctctgta gcccacaccc ttcttaaagc 60
ggcggcggga agatgaggct tcgggagccg ctcctgagcc ggagcgccgc gatgccaggc 120
gcgtccctac agcgggcctg ccgcctgctc gtggccgtct gcgctctgca ccttggcgtc 180
accctcgttt actacctggc tggccgcac ctgagccgcc tgcccaact ggtcggagtc 240
tccacaccgc tgcagggcgg gtcgaacagt gccgccgca tcgggcagtc ctccggggac 300
ctccggaccg gaggggcccg gccgccct cctctaggcg cctcctcca gccgcgccg 360
ggtggcgact ccagccagt cgtggattct ggccctggcc ccgctagcaa cttgacctcg 420

gtcccagtgc cccacaccac cgcactgtcg ctgcccgcct gccctgagga gtccccgctg 480 cttgtgggcc ccatgctgat tgagtttaac atgcctgtgg acctggagct cgtggcaaag 540 cagaacccaa atgtgaagat gggcggccgc tatgccccca gggactgcgt ctctcctcac 600 aaggtggcca tcatcattcc attccgcaac cggcaggagc acctcaagta ctggctatat 660 tatttgcacc cagtcctgca gcgccagcag ctggactatg gcatctatgt tatcaaccag 720 gegggagaca ctatattcaa tegtgetaag etecteaatg ttggetttea agaageettg 780 aaggactatg actacacctg ctttgtgttt agtgacgtgg acctcattcc aatgaatgat 840 cataatgcgt acaggtgttt ttcacagcca cggcacattt ccgttgcaat ggataagttt 900 ggattcagcc taccttatgt tcagtatttt ggaggtgtct ctgcttcaag taaacaacag 960 tttctaacca tcaatggatt tcctaataat tattggggct ggggaggaga agatgatgac 1020 atttttaaca gattagtttt tagaggcatg tctatatctc gcccaaatgc tgtggtcggg 1080 1140 acgtgtcgca tgatccgcca ctcaagagac aagaaaaatg aacccaatcc tcagaggttt gaccgaattg cacacacaaa ggagacaatg ctctctgatg gtttgaactc actcacctac 1200 1260 caggtgctgg atgtacagag atacccattg tatacccaaa tcacagtgga catcgggaca 1320 ccgagctagc gttttggtac acggataaga gacctgaaat tagccaggga cctctgctgt 1380 gtgtctctgc caatctgctg ggctggtccc tctcattttt accagtctga gtgacagctc 1440 cccttggctc atcattcaga tggctttcca gatgaccagg acaggtggga tattttgccc 1500 ccaacttggc tcggcatgtg aattcttagc tctgcaaggt gtttatgcct ttgcgggttt 1560 cttgatgtgt tcgcagtgtc acccaagagt cagaactgta gacatcccaa aatttggtgg ccgtggaaca cattcccggt gatagaattg ctaaattgtc gtgaaatagg ttagaatttt 1620 1680 tctttaaatt atggttttct tattcgcgaa aattcggaga gtgctgctaa aattggattg 1740 gtgtcatctt tttggtagtt gtaatttaac agaaaaacac aaaatttcaa ccattcttaa 1800 tgttacgtcc tccccccacc cccttctttc agtggtatgc aaccactgca atcaatgtgt 1860 catatgtctt ttcttagcaa aaggatttaa aacttgagcc ctggaccttt tgcctatgtg tgtggattcc agggcaactc tagcatcaga gcaaaagcct tgggtttctc gcattcagtg 1920 gcctatctcc agattgtctg atttctgaat gtaaagttgt tgtgtttttt tttaaatagt 1980 2040 aggtttgtag tattttaaag aaagaacaga tcgagttcta attatgatct agcttgattt tgtgttgatc caaatttgca tagctgttta atgttaagtc atgacaattt atttttcttg 2100 2160 gcatgctatg taaacttgaa tttcctaagt atttttattc tggtgtttta aatatgggga ggggtattga gcatttttta gggagaaaaa taaatatatg ctgtagtggc cacaaatagg 2220 cctatgattt agctggcagg ccaggttttc tcaagagcaa aatcaccctc tggccccttg 2280

2340 gcaggtaagg cctcccggtc agcattatcc tgccagacct cggggaggat acctgggaga cagaagcete tgcacetact gtgcagaact ctccaettee ccaaceetee ccaggtggge 2400 agggcggagg gagcctcagc ctccttagac tgacccctca ggcccctagg ctggggggtt 2460 2520 gtaaataaca gcagtcaggt tgtttaccag ccctttgcac ctccccaggc agagggagcc 2580 tctgttctgg tgggggccac ctccctcaga ggctctgcta gccacactcc gtggcccacc ctttgttacc agttcttcct ccttcctctt ttcccctgcc tttctcattc cttccttcgt 2640 ctcccttttt gttcctttgc ctcttgcctg tcccctaaaa cttgactgtg gcactcaggg 2700 tcaaacagac tatccattcc ccagcatgaa tgtgcctttt aattagtgat ctagaaagaa 2760 gttcagccgc acccacaccc caactccctc ccaagaactt cggtcctaaa gcctcctgtt 2820 2880 ccacctcagg ttttcacagg tgctcacacc acagttgagg ctcacacac ggtctgtctg 2940 3000 tectaceact gagegeettt gteeaggtge cageetggge teaggtteea agaeteaget 3060 gcctaatccc agggttgagc cttgtgctcg tgtcggaccc caaaccactg ccctcctggt accagecete agtgtggagg etgagetggt geetggeece agtettatet gtgeetttae 3120 tgctttgcgc atctcagatg ctaacttggt tctttttcca gaaggctttg tattggttaa 3180 aaattatttt ctattgcaga gagcagctgt gactcatgca aaaagtattt tctctgtcag 3240 3300 atccccactc tataccaagg atattattaa aactagaaat gactgcattg agagggagtt gtgggaaata agaagaatga aagcctctct ttctgtccgc agatcctgac ttttccaaag 3360 3420 tgccttaaaa gaaatcagac aaatgccctg agtggtaact tctgtgttat tttactctta 3480 aaaccaaact ctaccttttc ttgttttttt ttttttttt ttttttttt ttggttacct totoattoat gtoaagtatg tggttoatto ttagaaccaa gggaaatact gotococca 3540 tttgctgacg tagtgctctc atgggctcac ctgggcccaa ggcacagcca gggcacagtt 3600 3660 aggeotggat gtttgcotgg teegtgagat geegegggte etgttteett actggggatt tcagggctgg gggttcaggg agcatttcct tttcctggga gttatgtacc gcgaagtgtg 3720 teatgtgeeg tgeeetttte tgtttetgtg tateetattg etggtgaete tgtgtgaaet 3780 3840 ggcctttggg aaagatcaga gaggcagagg tggcacagga cagtaaagga gatgctgtgc 3900 tgcctacage etggacaggg tetetgetgt aetgecaggg gegggggete tgcatageca ggatgacgcc tttcatgtcc cagagacctg ttgtgctgtg tattttgatt tcctgtgtat 3960 4020 gcaaatgtgt gtatttacca ttgtgtaggg ggctgtgtct gatcttggtg ttcaaaacag 4080 aactgtattt ttgcctttaa aattaaataa tataacgtga ataaatgacc ctaactttgt

, ÷,

7.89 <210% 1093 DNA <212> Homo sapiens 189 <400> ctgcaaggcg gcggcaggag aggttgtggt gctagtttct ctaagccatc cagtgccatc 60 ctcgtcgctg cagcgacacc gctctcgccg ccgccatgac tgagcagatg acccttcgtg 120 gcacceteaa gggccacaae ggctgggtaa cecagatege tactaceeeg cagtteeegg 180 240 acatgatect eteegeetet egagataaga eeateateat gtggaaaetg accagggatg 300 agaccaacta tggaattcca cagcgtgctc tgcggggtca ctcccacttt gttagtgatg tggttatete etcagatgge cagtttgece tetcaggete etgggatgga accetgegee 360 tctgggatct cacaacgggc accaccacga ggcgatttgt gggccatacc aaggatgtgc 420 tgagtgtggc cttctcctct gacaaccggc agattgtctc tggatctcga gataaaacca 480 tcaagctatg gaataccctg ggtgtgtgca aatacactgt ccaggatgag agccactcag 540 agtgggtgtc ttgtgtccgc ttctcgccca acagcagcaa ccctatcatc gtctcctgtg 600 660 gctgggacaa gctggtcaag gtatggaacc tggctaactg caagctgaag accaaccaca ttggccacac aggctatctg aacacggtga ctgtctctcc agatggatcc ctctgtgctt 720 ctggaggcaa ggatggccag gccatgttat gggatctcaa cgaaggcaaa cacctttaca 780 cgctagatgg tggggacatc atcaacgccc tgtgcttcag ccctaaccgc tactggctgt 840 gtgctgccac aggccccagc atcaagatct gggatttaga gggaaagatc attgtagatg 900 aactgaagca agaagttatc agtaccagca gcaaggcaga accaccccag tgcacttccc 960 1020 tggcctggtc tgctgatggc cagactctgt ttgctggcta cacggacaac ctggtgcgag 1080 tgtggcaggt gaccattggc acacgctaga agtttatggc agagctttac aaataaaaaa 1093 aaaatggctt ttc 190 <210> 2883 <211> <212> DNA <213> Homo sapiens 190 <400> 60 agggcgggaa gatgccgcgc gtcgtgcccg accagagaag caagttcgag aacgaggagt tttttaggaa gctgagccgc gagtgtgaga ttaagtacac gggcttcagg gaccggcccc 120 180 acgaggaacg ccaggcacgc ttccagaacg cctgccgcga cggccgctcg gaaatcgctt ttgtggccac aggaaccaat ctgtctctcc aattttttcc ggccagctgg cagggagaac 240 300 agcgacaaac acctagccga gagtatgtcg acttagaaag agaagcaggc aaggtatatt

tgaaggctcc catgattctg aatggagtct gtgttatctg gaaaggctgg attgatctcc 360 aaagactgga tggtatgggc tgtctggagt ttgatgagga gcgagcccag caggaggatg 420 cattagcaca acaggccttt gaagaggctc ggagaaggac acgcgaattt gaagatagag 480 acaggtetea tegggaggaa atggaggtga gagttteaca getgetggea gtaaetggea 540 agaagacaac aagaccctag tcctggttcc aatttaggtg gtggtgatga cctcaaactt 600 cgttaattaa tagcacagca gatgtgtgct gcccatcttt acatacacat tgcttctagt 660 tggcagaaat aattgattaa aagaccagaa actgtgataa ctggaggtac tacggtctat 720 780 ttctcaacct taggcagtaa tagacatcac aaactgccat ggttttgcac tatgattata atacctgcat ttctaatttt ttaagcatgt agccagtaat aatttgaagt tttttttcta 840 tgcaagctta ccttgttggc attattttag ggagttgaaa ctatcaactg taaagctcct 900 tttcttccac tttaatttaa aagttcatgt catttaaaaa caagtcaaga aattaaaatt 960 gtatcagagg gttttctcta atcatttttt ctatttttt ttttgtactt ctagatgttt 1020 1080 cttttgtgtt tttatagtct atagcatttt aaaactgctg atgttgtttg cattatttac 1140 aggctaaaaa cttagtagca tagagctgtc tgccacagcc ttctgacaaa gtttacagtt 1200 attaaagttg cagtatcctt ttaaatgcta gtaatcagca ctctttcttt tttttttt 1260 taatagagac agggtctcgc agtgttgccc aggctggtct cgaactcctg gcatcaagcg 1320 atcctcctgc cttagcctcc cagagtactg ggattacagg ctctttcttt ttaaacataa 1380 1440 aatcatgagt ttggttggag atattctcca tagatgatct tctactgaaa tgcctaaaga 1500 agtcacaggc tggcttctgt tttattcagg gattttttta aaaagtcaat cagaaaaggg 1560 atactggagc ttcttcatgt atgtaacagc atattaaact ggagacagtg atgaatcagc 1620 1680 tacaaaggta atattgtatt aaaatcatgt ttaagatagc tgcttttatg tgtattttat 1740 attgcatgct tttgtaaaaa catgctgggt gatgaaagat tagttttaga gagaaaatgt tcatctgtgc agaggatgca ttttcttcca ttaattctgg aaaaaacgtt cacagttata 1800 tatatggtat tttgcaaaag gactattaat agaacctttt gagatgaatt aatgtaagaa 1860 tattttttaa ataggettae tgteaaattg caaettttt tttagataea gagtggaaaa 1920 cagtgctaag tcatttggca cctccttaca aatatttttt catggtcaca tttattaaat 1980 gttactacat ttctgaattt ttgaaaaatg tattttatca ttaaatggca ttattttcaa 2040 agggtgaaaa actgacacag tcaattcaga aaatggactg aagtctgaat aaggtcattg 2100

catttaaaaa	gcatataact	gtacttgact	gatgagggag	gtgttacttt	cattgtatat	2160
aggtcttatt	tcataaacag	atatcctgta	tcaaataaaa	gtatttgtta	tatatttgaa	2220
gttatgcatg	gaaaggagtg	tgtttaaatt	gttacaaaca	ataatgcgtc	attaaaggcc	2280
atgctgatct	tgcataacta	taagtactat	gaatgaattt	ggttggtttt	ggtgttgtac	2340
agctcacatg	tttacacact	cagtgcccta	atttcccctg	agggaatcgc	tttttaagtg	2400
atccttacag	tggtgtttta	tgttacttta	ttacagagct	ccttggtttt	ttacttctgc	2460
acttaaattt	ttttaaataa	catgatgatg	gtacattttc	ctctattgtc	tagctaaggg	2520
ctttcggtcc	accagtaaat	aagatcaaat	gctcttaaat	gttcctgtta	ccatcctaat	2580
gtaaatactg	gatttttctg	tcatttagca	ccatgctgct	tctgtctgtc	ttaatgctgg	2640
cattaagatc	atgagccctt	tttctccagt	agtacaggct	ttgaaaacta	cttctattaa	2700
gttattgatg	caatttgata	ttttttcata	atctatattt	aaacaaaatt	acatcattgc	2760
atcatctttt	ctaaattcat	ctccattaaa	acttgcctta	agctaccaga	ttgcttttgc	2820
caccattggc	catactgtgt	gtttgtttgt	ttaatttact	ttcacaataa	acttctgtgt	2880
agt						2883

<210> 191

<211> 2567

<212> DNA

<213> Homo sapiens

<400> 191 ctccggcgca gtgttgggac tgtctgggta tcggaaagca agcctacgtt gctcactatt 60 acgtataatc cttttctttt caagatgcct gaggaagtgc accatggaga ggaggaggtg 120 gagacttttg cctttcaggc agaaattgcc caactcatgt ccctcatcat caataccttc 180 tattccaaca aggagatttt ccttcgggag ttgatctcta atgcttctga tgccttggac 240 300 aagattogot atgagagoot gacagacoot togaagttgg acagtggtaa agagotgaaa attgacatca tccccaaccc tcaggaacgt accctgactt tggtagacac aggcattggc 360 atgaccaaag ctgatctcat aaataatttg ggaaccattg ccaagtctgg tactaaagca 420 ttcatggagg ctcttcaggc tggtgcagac atctccatga ttgggcagtt tggtgttggc 480 ttttattctg cctacttggt ggcagagaaa gtggttgtga tcacaaagca caacgatgat 540 gaacagtatg cttgggagtc ttctgctgga ggttccttca ctgtgcgtgc tgaccatggt 600 gagcccattg gcaggggtac caaagtgatc ctccatctta aagaagatca gacagagtac 660 720 ctagaagaga ggcgggtcaa agaagtagtg aagaagcatt ctcagttcat aggctatccc atcacccttt atttggagaa ggaacgagag aaggaaatta gtgatgatga ggcagaggaa 780

253

gagaaaggtg agaaagaaga	ggaagataaa	gatgatgaag	aaaaacccaa	gatcgaagat	840
gtgggttcag atgaggagga	tgacagcggt	aaggataaga	agaagaaaac	taagaagatc	900
aaagagaaat acattgatca	ggaagaacta	aacaagacca	agcctatttg	gaccagaaac	960
cctgatgaca tcacccaaga	ggagtatgga	gaattctaca	agagcctcac	taatgactgg	1020
gaagaccact tggcagtcaa	gcacttttct	gtagaaggtc	agttggaatt	cagggcattg	1080
ctatttattc ctcgtcgggc	tccctttgac	ctttttgaga	acaagaagaa	aaagaacaac	1140
atcaaactct atgtccgccg	tgtgttcatc	atggacagct	gtgatgagtt	gataccagag	1200
tatctcaatt ttatccgtgg	tgtggttgac	tctgaggatc	tgcccctgaa	catctcccga	1260
gaaatgctcc agcagagcaa	aatcttgaaa	gtcattcgca	aaaacattgt	taagaagtgc	1320
cttgagctct tctctgagct	ggcagaagac	aaggagaatt	acaagaaatt	ctatgaggca	1380
ttctctaaaa atctcaagct	tggaatccac	gaagactcca	ctaaccgccg	ccgcctgtct	1440
gagctgctgc gctatcatac	ctcccagtct	ggagatgaga	tgacatctct	gtcagagtat	1500
gtttctcgca tgaaggagac	acagaagtcc	atctattaca	tcactggtga	gagcaaagag	1560
caggtggcca actcagcttt	tgtggagcga	gtgcggaaac	ggggcttcga	ggtggtatat	1620
atgaccgagc ccattgacga	gtactgtgtg	cagcagctca	aggaatttga	tgggaagagc	1680
ctggtctcag ttaccaagga	gggtctggag	ctgcctgagg	atgaggagga	gaagaagaag	1740
atggaagaga gcaaggcaaa	gtttgagaac	ctctgcaagc	tcatgaaaga	aatcttagat	1800
aagaaggttg agaaggtgac	aatctccaat	agacttgtgt	cttcaccttg	ctgcattgtg	1860,
accagcacct acggctggac	agccaatatg	gagcggatca	tgaaagccca	ggcacttcgg	1920
gacaactcca ccatgggcta	tatgatggcc	aaaaagcacc	tggagatcaa	ccctgaccac	1980
cccattgtgg agacgctgcg	gcagaaggct	gaggccgaca	agaatgataa	ggcagttaag	2040
gacctggtgg tgctgctgtt	tgaaaccgcc	ctgctatctt	ctggcttttc	ccttgaggat	2100
ccccagaccc actccaaccg	catctatcgc	atgatcaagc	taggtctagg	tattgatgaa	2160
gatgaagtgg cagcagagga	acccaatgct	gcagttcctg	atgagatccc	ccctctcgag	2220
ggcgatgagg atgcgtctcg	r catggaagaa	gtcgattagg	ttaggagttc	atagttggaa	2280
aacttgtgcc cttgtatagt	gtccccatgg	geteceactg	cagcctcgag	tgcccctgtc	2340
ccacctggct ccccctgctg	gtgtctagtg	ttttttccc	tetectgtee	ttgtgttgaa	2400
ggcagtaaac taagggtgto	aagccccatt	cectetetae	tcttgacago	aggattggat	2460
gttgtgtatt gtggtttatt	ttattttctt	cattttgttc	tgaaattaaa	gtatgcaaaa	2520
taaagaatat gccgttttaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaa		2567

<210> 192 <211> 418 <212> DNA Homo sapiens <213> <400> gggatccagt gtccacactt aaaagttgta tgtgtttaaa aaacaacaac agtaatgtgc 60 aaggtgaaat gcttttggga taaacgtaag cctattttct gacgtttctt aatgcaaact 120 ctttgcctta aatggtagaa tatttagaaa tttgcacaaa attaaaaaaa taaacattgt 180 cttggagggt taaaaaatag aaaggtgtat gtgtatagat tcacatacac atatgtatat 240 300 acaggotgac ttgatctaga acattaaatc cgccctgcaa gttaaccccc cattgcaatg gttgccttaa ggtgtttgct agttgtgtac atagtgtggt taatcattag ctacactgct 360 teccaettga ttagageaat gggaageata etgtggeeta ceageatetg gaagtgtg 418 <210> 193 <211> 1797 <212> DNA Homo sapiens <213> <400> 193 ccagcaggga gctgggagct gggggaaacg acgccaggaa agctatcgcg ccagagaggg 60 cgacgggggc tcgggaagcc tgacagggct tttgcgcaca gctgccggct ggctgctacc 120 cgcccgcgcc agcccccgag aacgcgcgac caggcaccca gtccggtcac cgcagcggag 180 agetegeege tegetgeage gaggeeegga geggeeeege agggaeeete eecagaeege 240 ctgggccgcc cggatgtgca ctaaaatgga acagcccttc taccacgacg actcatacac 300 agctacggga tacggccggg cccctggtgg cctctctcta cacgactaca aactcctgaa 360 accgagectg geggteaacc tggeegaece ctaceggagt ctcaaagege etggggeteg 420 cggacccggc ccagagggcg gcggtggcgg cagctacttt tctggtcagg gctcggacac 480 cggcgcgtct ctcaagctcg cctcttcgga gctggaacgc ctgattgtcc ccaacagcaa 540 cggcgtgatc acgacgacgc ctacaccccc gggacagtac ttttaccccc gcgggggtgg 600 cagcggtgga ggtgcagggg gcgcaggggg cggcgtcacc gaggagcagg agggcttcgc 660 cgacggcttt gtcaaagccc tggacgatct gcacaagatg aaccacgtga caccccccaa 720 cgtgtccctg ggcgctaccg gggggccccc ggctgggccc gggggcgtct acgccggccc 780 ggagccacct cccgtttaca ccaacctcag cagctactcc ccagcctctg cgtcctcggg 840 900 aggegeeggg getgeegteg ggaeegggag etegtaeeeg acgaeeacea teagetaeet 960 cccacacgcg ccgcccttcg ccggtggcca cccggcgcag ctgggcttgg gccgcggcgc 1020

•						
gccggtgtcc	cccatcaaca	tggaagacca	agagcgcatc	aaagtggagc	gcaagcggct	1080
gcggaaccgg	ctggcggcca	ccaagtgccg	gaagcggaag	ctggagcgca	tcgcgcgcct	1140
ggaggacaag	gtgaagacgc	tcaaggccga	gaacgcgggg	ctgtcgagta	ccgccggcct	1200
cctccgggag	caggtggccc	agctcaaaca	gaaggtcatg	acccacgtca	gcaacggctg	1260
tcagctgctg	cttggggtca	agggacacgc	cttctgaacg	tcccctgccc	ctttacggac	1320
accccctcgc	ttggacggct	gggcacacgc	ctcccactgg	ggtccaggga	gcaggcggtg	1380
ggcacccacc	ctgggaccta	ggggcgccgc	aaaccacact	ggactccggc	cccctaccc	1440
tgcgcccagt	ccttccacct	cgacgtttac	aagcccccc	ttccactttt	ttttgtatgt	1500
ttttttctg	ctggaaacag	actcgattca	tattgaatat	aatatatttg	tgtatttaac	1560
agggaggga	agagggggcg	atcgcggcgg	agctggcccc	gccgcctggt	actcaagccc	1620
gcggggacat	tgggaagggg	accccgccc	cctgccctcc	cctctctgca	ccgtactgtg	1680
gaaaagaaac	acgcacttag	tctctaaaga	gtttatttta	agacgtgttt	gtgtttgtgt	1740
gtgtttgttc	tttttattga	atctatttaa	gtaaaaaaaa	aattggttct	ttattaa	1797
<210> 194 <211> 215 <212> DNA <213> Hom	o sapiens					
	actttcaaat	agttgaagta	actcagcctc	agacttcaga	caaagttcct	60
cattaggatt	atgctataaa	ccctcactta	tggctcacac	agggtgacca	tattgcttcc	120
tccaactggc	atttctcagg	gtgatcaggg	tcctgtggtg	acagccggcc	cacagecate	180
agcagcttgt	cttgggaggg	ccaggttgca	ggtct			215
	o sapiens		-			·
<400> 195		tttttttt	tttttttc	ccaaaggccc	cttttataaa	60
aaaaaatggo	: cctaaaaatt	aaaaatcccc	caagcccggg	gaattttccg	gagtccccag	120
gcttgctggg	ggaccggcag	gcatccaccc	cttggggcag	ccgggcaggg	gccgcgtggg	180
ggcaaaccac	: caggcccaaa	gcaggagctc	aggggcatac	cccacacctc	cacctgagca	240
ccccttttc	: cggggctgga	aacaaagggg	ggggggggg	taaaactacc	cccatgccgg	300
caacagggga	gggggcaaa	ccttacaatt	ttattaacac	aaagcacccc	tccagggccc	360
cggcccacag	ggcgatctag	ggagaaagct	ctcctaaaca	ctttggggg	caaacccccg	420

gcccaggagg	tggaaccaag	caatgcgggg	gcttgaaatg	gtagggccca	teeteaggag	480
aacatgcaac	ccccaggccc	gcaacagttg	ttgcccgcaa	acag		524
<210> 196 <211> 1576 <212> DNA <213> Homo	a o sapiens					
<400> 196 cagacagacc	aatcacgcgc	attettegge	cacgacaagc	gcgcctctga	tcacgtgacc	60
aggtccgcta	cccacgtggg	ggctcagcgt	gcacccttct	ttgtgctcgg	gttaggagga	120
gctaggctgc	catcgggccg	gtgcagatac	ggggttgctc	ttttgctcat	aagaggggct	180
tegetggeag	tctgaacggc	aagcttgagt	caggaccctt	aattaagatc	ctcaattggc	240
tggagggcag	atctcgcgag	tagggcaacg	cggtaaaaat	attgcttcgg	tgggtgacgc	300 -
ggtacagctg	cccaagggcg	ttcgtaacgg	gaatgccgaa	gcgtgggaaa	aagggagcgg	360
tggcggaaga	cggggatgag	ctcaggacag	agccagaggc	caagaagagt	aagacggccg	420
caaagaaaaa	tgacaaagag	gcagcaggag	agggcccagc	cctgtatgag	gaccccccag	480
atcagaaaac	ctcacccagt	ggcaaacctg	ccacactcaa	gatctgctct	tggaatgtgg	540
atgggcttcg	agcctggatt	aagaagaaag	gattagattg	ggtaaaggaa	gaagccccag	600
atatactgtg	ccttcaagag	accaaatgtt	cagagaacaa	actaccagct	gaacttcagg	660
agctgcctgg	actctctcat	caatactggt	cagctccttc	ggacaaggaa	gggtacagtg	720
gcgtgggcct	gettteeege	cagtgcccac	tcaaagtttc	ttacggcata	ggcgatgagg	780
agcatgatca	ggaaggeegg	gtgattgtgg	ctgaatttga	. ctcgtttgtg	ctggtaacag	840
catatgtacc	: taatgcaggo	cgaggtctgg	tacgactgga	gtaccggcag	g cgctgggatg	900
aagcctttcg	g caagttootg	aagggcctgg	g cttcccgaaa	gccccttgtg	g ctgtgtggag	960
acctcaatgt	ggcacatgaa	gaaattgaco	ttcgcaaccc	: caaggggaac	aaaaagaatg	1020
ctggcttcac	c gccacaagag	g cgccaaggct	: tcggggaatt	actgcaggct	gtgccactgg	1080
ctgacagctt	taggcaccto	taccccaaca	a caccctatgo	ctacacctt	tggacttata	1140
tgatgaatgo	c togatocaag	g aatgttggtt	ggcgccttga	ttacttttt	g ttgtcccact	1200
ctctgttac	c tgcattgtgt	gacagcaaga	a teegtteeaa	a ggccctcgg	c agtgatcact	1260
gtcctatca	c cctataccta	a gcactgtga	c accaccccta	a aatcacttt	g agcctgggaa	1320
ataagcccc	c tcaactacca	a ttccttctt	t aaacactct	t cagagaaat	c tgcattctat	1380
ttctcatgt	a taaaactag	g aatcctcca	a ccaggctcc	t gtgatagag	t tcttttaagc	1440
ccaagattt	t ttatttgagg	g gttttttgt	t ttttaaaaa	a aaattgaac	a aagactacta	1500

atgactttgt	ttgaattatc	cacatgaaaa	taaagagcca	tagtttcaaa	aaaaaaaaa	1560
aaaaaaaaa	aaaa					1574
<210> 197 <211> 1238 <212> DNA <213> Homo	s o sapiens					
<400> 197 aaactcccgc	agacttctct	gtagatcgct	gagcgatact	ttcggcagca	cctccttgat	60
tctcagtttt	gctggaggcc	gcaaccaggc	cegegeegee	accatgtttc	gaaatcagta	120
tgacaatgat	gtcactgttt	ggagccccca	gggcaggatt	catcaaattg	aatatgcaat	180
ggaagctgtt	aaacaaggtt	cagccacagt	tggtctgaaa	tcaaaaactc	atgcagtttt	240
ggttgcattg	aaaagggcgc	aatcagagct	tgcagctcat	cagaaaaaaa	ttctccatgt	300
tgacaaccat	attggtatct	caattgcggg	gcttactgct	gatgctagac	tgttatgtaa	360
ttttatgcgt	caggagtgtt	tggattccag	atttgtattc	gatagaccac	tgcctgtgtc	420
tcgtcttgta	tctctaattg	gaagcaagac	ccagatacca	acacaacgat	atggccggag	480
accatatggt	gttggtctcc	ttattgctgg	ttatgatgat	atgggccctc	acattttcca	540
aacctgtcca	tctgctaact	attttgactg	cagagccatg	tccattggag	cccgttccca	600
atcagctcgt	acttacttgg	agagacatat	gtctgaattt	atggagtgta	atttaaatga	660
actagttaaa	. catggtctgc	gtgccttaag	agagacgctt	cctgcagaac	aggacctgac	720
tacaaagaat	gtttccattg	gaattgttgg	taaagacttg	gagtttacaa	tctatgatga	780
tgatgatgtg	tctccattcc	tggaaggtct	tgaagaaaga	ccacagagaa	aggcacagcc	· 840
tgctcaacct	gctgatgaac	ctgcagaaaa	ggctgatgaa	ccaatggaac	: attaagtgat	900
aagccagtct	: atatatgtat	tatcaaatat	gtaagaatac	: aggcaccaca	tactgatgac	960
aataatctat	actttgaacc	: aaaagttgca	ı gagtggtgga	atgctatgtt	: ttaggaatca	1020
gtccagatgt	gagtttttc	: caagcaacct	cactgaaaco	tatataatgg	g aatacatttt	1080
tctttgaaag	g ggtctgtata	atcattttct	agaaagtato	g ggtatctata	a ctaatgtttt	1140
tatatgaaga	a acataggtgt	ctttgtggtt	ttaaagacaa	a ctgtgaaata	a aaattgtttc	1200
accgcctggt	c aaaaaaaaaa	a aaaaaaaaa	a aaaaaaaa			1238

<210> 198

<211> 1249 <212> DNA <213> Homo sapiens

<400> 198

•				•		
gaattcgggt	ctcagcagct	cgggcggcgg	gaggagtggc	ageggeaagg	cagcccagtt	60
tcgcgaaggc	tgtcggcgcg	ccgcggcccg	caggcacccg	gcacgcgcct	teccegeagg	120
cacccggcac	gcgccttccc	cgccgccacg	atgcccaaga	ggaaggtcag	ctccgccgaa	180
ggcgccgcca	aggaagagcc	caagaggaga	tcggcgcggt	tgtcagctaa	acctcctgca	240
aaagtggaag	cgaagccgaa	aaaggcagca	gcgaaggata	aatcttcaga	caaaaaagtg	300
caaacaaaag	ggaaaagggg	agcaaaggga	aaacaggccg	aagtggctaa	ccaagaaact	360
aaagaagact	tacctgcgga	aaacggggaa	acgaagactg	aggagagtcc	agcctctgat	420
gaagcaggag	agaaagaagc	caagtctgat	taataaccat	ataccatgtc	ttatcagtgg	480
tecetgtete	ccttcttgta	caatccagag	gaatatttt	atcaactatt	ttgtaatgca	540
agttttttag	tagctctaga	aacattttta	agaaggaggg	aatcccacct	catcccattt	600
tttaagtgta	aatgcttttt	ttaagaggtg	aaatcatttg	, ctggttgttt	attttttggt	660
acaaccagaa	aatagtgtgg	gatattgaat	tatgggaggc	tctgactgtc	tcgggtgtca	720
gcttaacatt	ccacagatgg	ggggttagtt	tttatatcct	ataatacaaa	gcatattaaa	780
tggcaatatg	gagtcagtcc	tgcatttaat	gtcttgaaca	tttaaatta	cttctattac	840
catgttgttt	tttagtagaa	ttgtttccta	aagaaaacca	ctctttgatc	atggctctct	900
ctgccagaat	tgtgtgcact	ctgtaacatc	tttggttgtg	gtagtcctgt	tttcctaata	960
actttgttac	tgtgctgtga	aagattacag	atttgaacat	gtagtgtacg	tgctattgag	1020
ttgtgaactg	gtgggccgta	tgtaacagct	gaccaacgtg	aagatactgg	tacttgatag	1080
cctcttaagg	aaaatttgct	tccaaatttt	aagctggaaa	gtcactggaa	taactttaaa	1140
aaagaattac	aatacatggc	tttttagaat	: ttcgttacgt	: atgttaagat	: ttgtgtacaa	1200
attgaaatgt	ctgtactgat	cctcaaccaa	taaaatctca	gccgaattc		1249

<210> 199

<211> 1237

<212> DNA

<213> Homo sapiens

<400> 199
attcttgtct gttctgcctc actcccgagc tctactgact cccaaaagag cgcccaagaa 60
gaaaatggcc ataagtggag tccctgtgct aggattttc atcatagctg tgctgatgag 120
cgctcaggaa tcatgggcta tcaaagaaga acatgtgatc atccaggccg agttctatct 180
gaatcctgac caatcaggcg agtttatgtt tgactttgat ggtgatgaga ttttccatgt 240
ggatatggca aagaaggaga cggtctggcg gcttgaagaa tttggacgat ttgccagctt 300
tgaggctcaa ggtgcattgg ccaacatagc tgtggacaaa gccaacctgg aaatcatgac 360

aaagcgctcc	aactatactc	cgatcaccaa	tgtacctcca	gaggtaactg	tgctcacgaa	420
cagccctgtg	gaactgagag	agcccaacgt	cctcatctgt	ttcatcgaca	agttcacccc	480
accagtggtc	aatgtcacgt	ggcttcgaaa	tggaaaacct	gtcaccacag	gagtgtcaga	540
gacagtcttc	ctgcccaggg	aagaccacct	tttccgcaag	ttccactatc	teceetteet	600
gccctcaact	gaggacgttt	acgactgcag	ggtggagcac	tggggcttgg	atgagcctct	660
tctcaagcac	tgggagtttg	atgctccaag	ccctctccca	gagactacag	agaacgtggt	720
gtgtgccctg	ggcctgactg	tgggtctggt	gggcatcatt	attgggacca	tcttcatcat	780
caagggagtg	cgcaaaagca	atgcagcaga	acgcaggggg	cctctgtaag	gcacatggag	840
gtgatgatgt	ttcttagaga	gaagatcact	gaagaaactt	ctgctttaat	gactttacaa	900
agctggcaat	attacaatcc	ttgacctcag	tgaaagcagt	catcttcagc	gttttccagc	960
cctatagcca	ccccaagtgt	ggttatgcct	cctcgattgc	tccgtactct	aacatctagc	1020
tggctttccc	tgtctattgc	cttttcctgt	atctattttc	ctctatttcc	tatcatttta	1080
ttatcaccat	gcaatgcctc	tggaataaaa	catacaggag	tctgtctctg	ctatggaatg	1140
ccccatgggg	ctctcttgtg	tacttattgt	ttaaggtttc	ctcaaactgt	gatttttctg	1200
aacacaataa	actattttga	tgatcttggg	tggaaaa		•	1237

<210> 200

<211> 2049

<212> DNA

<213> Homo sapiens

<400> 200 gggagetgga egagteegag egegteacet ceteaegetg eggetgtege eegtgteeeg 60 ceggecegtt eegtgtegee eegcagtget geggeegeeg eggeaceatg getgtgtttg 120 tegtgeteet ggegttggtg gegggtgttt tggggaacga gtttagtata ttaaaatcae 180 cagggtctgt tgttttccga aatggaaatt ggcctatacc aggagagcgg atcccagacg 240 tggctgcatt gtccatgggc ttctctgtga aagaagacct ttcttggcca ggactcgcag 300 tgggtaacct gtttcatcgt cctcgggcta ccgtcatggt gatggtgaag ggagtgaaca 360 aactggctct acccccaggc agtgtcattt cgtacccttt ggagaatgca gttcctttta 420 gtcttgacag tgttgcaaat tccattcact ccttattttc tgaggaaact cctgttgttt 480 tgcagttggc tcccagtgag gaaagagtgt atatggtagg gaaggcaaac tcagtgtttg 540 aagacettte agteacettg egecagetee gtaategeet gttteaagaa aactetgtte 600 tcagttcact cccctcaat tctctgagta ggaacaatga agttgacctg ctctttcttt 660 ctgaactgca agtgctacat gatatttcaa gcttgctgtc tcgtcataag catctagcca 720

260

aggatcattc	tcctgattta	tattcactgg	agctggcagg	tttggatgaa	attgggaagc	780
gttatgggga	agactctgaa	caattcagag	atgcttctaa	gatccttgtt	gacgctctgc	840
aaaagtttgc	agatgacatg	tacagtcttt	atggtgggaa	tgcagtggta	gagttagtca	900
ctgtcaagtc	atttgacacc	tccctcatta	ggaagacaag	gactatcctt	gaggcaaaac	960
gagcgaagaa	cccagcaagt	ccctataacc	ttgcatataa	gtataatttt	gaatattccg	1020
tggttttcaa	catggtactt	tggataatga	tegeettgge	cttggctgtg	attatcacct	1080
cttacaatat	ttggaacatg	gatcctggat	atgatagcat	catttatagg	atgacaaacc	1140
agaagattcg	aatggattga	atgttacctg	tgccagaatt	agaaaagggg	gttggaaatt	1200
ggctgttttg	ttaaaatata	tcttttagtg	tgctttaaag	tagatagtat	actttacatt	1260
tataaaaaaa	aatcaaattt	tgttctttat	tttgtgtgtg	cctgtgatgt	ttttctagag	1320
tgaattatag	tattgacgtg	aatcccactg	tggtatagat	tccataatat	gcttgaatat	1380
tatgatatag	ccatttaata	acattgattt	cattctgttt	aatggatttg	gaaatatgca	1440
ctgaaagaaa	tgtaaaacat	ttagaatagc	tcgtgttatg	gaaaaaagtg	cactgaattt	1500
attagacaaa	cttacgaatg	cttaacttct	ttacacagca	taggtgaaaa	tcatatttgg	1560
gctattgtat	actatgaaca	atttgtaaat	gtcttaattt	gatgtaaata	actctgaaac	1620
aagagaaaag	gtttttaact	tagagtagco	ctaaaatatg	gatgtgctta	tataatcgct	1680
tagttttgga	actgtatctg	agtaacagag	gacagctgtt	: ttttaaccct	cttctgcaag	1740
tttgttgacc	tacatgggct	aatatggata	ctaaaaatac	: tacattgato	: taagaagaaa	1800
ctagccttgt	ggagtatata	gatgcttttc	: attatacaca	a caaaaatcc	tgagggacat	1860
tttgaggcat	gaatataaaa	catttttatt	: tcagtaactt	ttccccctgt	gtaagttact	1920
atggtttgtg	gtacaactto	attctataga	atattaagto	g gaagtgggtg	g aattctactt	1980
tttatgttgg	agtggaccaa	tgtctatcaa	a gagtgacaaa	a taaagttaa	t gatgattcca	2040
aaaaaaaa						2049

<210> 201

<211> 1897

<212> DNA

<213> Homo sapiens

ctccgaacag gaagaggacg aaaaaaataa ccgtccgcga cgccgagaca aaccggaccc 60 gcaaccacca tgaacagcaa aggtcaatat ccaacacagc caacctaccc tgtgcagcct 120 cctgggaatc cagtataccc tcagaccttg catcttcctc aggctccacc ctataccgat 180 gctccacctg cctactcaga gctctatcgt ccgagctttg tgcacccagg ggctgccaca 240

261

gtccccacca tgtcagccgc atttcctgga gcctctctgt atcttcccat ggcccagtct	300
gtggctgttg ggcctttagg ttccacaatc cccatggctt attatccagt cggtcccatc	360
tatccacctg gctccacagt gctggtggaa ggagggtatg atgcaggtgc cagatttgga	420
gctggggcta ctgctggcaa cattcctcct ccacctcctg gatgccctcc caatgctgct	480
cagettgeag teatgeaggg agecaaegte etegtaaete ageggaaggg gaaettette	540
atgggtggtt cagatggtgg ctacaccatc tggtgaggaa ccaaggccac ctctgtgccg	600
ggaaagacat cacatacctt cagcacttct cacaatgtaa ctgctttagt catattaacc	660
tgaagttgca gtttagacac atgttgttgg ggtgtctttc tggtgcccaa actttcaggc	720
acttttcaaa tttaataagg aaccatgtaa tggtagcagt acctccctaa agcattttga	780
ggtaggggag gtatccattc ataaaatgaa tgtgggtgaa gccgccctaa ggattttcct	840
ttaatttctc tggagtaata ctgtaccata ctggtctttg cttttagtaa taaaacatca	900
aattaggttt ggagggaact ttgatcttcc taagaattaa agttgccaaa ttattctgat	960
tggtctttaa tctcctttaa gtctttgata tatattactt gttataaatg gaacgcatta	1020
gttgtctgcc ttttcctttc catcccttgc cccacccatc ccatctccaa ccctagtctt	1080
ccatttcctc ccgccagtct ccattgaatc aatggtgcag gacagaaagc cagtcagact	1140
aatttccttc tttcctcgca cttctcccca ctcgtcatct tttaactagt gtttcacaag	1200
gatectetga aaccetetet gtgeeccaag tacagatgee attacttetg etttegtate	1260
tecteaggea aaagtggagg gtgeettatg ggeeeteete ataggttgte tetgeataca	1320
cgaacctaac ccaaatttgc tttggtgcca gaaaaactga gctatgtttg aacaaagatg	1380
tcgtgcaaac tgtactgtga acaacagttg gtttaaaata tgaggggcaa ggaggaggat	1440
gcatttcaaa agcttgattg atgtgttcag agctaaatta agaggagttt tcagatcaaa	1500
aactggttac cattttttgt cagagtgtct gatgcggcca ctcattcggc tccccagaat	1560
tcctagactg ggttaatagg gtcatattgt gaatgtctca ctacaaaatg acttgagtcc	1620
agtgaaatct cattagggtt taagaatatt tcagggatcc ttaatgtttt gatttttgtt	1680
ttctgaaatt ggattttatt ttattttatc ttataatttc agttcatcta aattgtgtgt	1740
totgtacatg tgatgtttga otgtacoatt gactgttatg gaagttcago gttgtatgto	1800
tctctctaca ctgtggtgca cttaacttgt ggaattttta tactaaaaat gtagaataaa	1860
gactattttg aagatttgaa taaagtgatg aagttgc	1897

<210> 202 <211> 2697 <212> DNA <213> Homo sapiens

<400> 202 acgegggeae geacacaegg aageaegeet eeaettaaet egegeegeeg eggeageteg 60 agtccaccag cagcgccgtc cgcttgaccg agatgctgcg ggcctgtcag ttatcgggtg 120 tgaccgccgc cgcccagagt tgtctctgtg ggaagtttgt cctccgtcca ttgcgaccat 180 gccgcagata ctctacttca ggcagctctg ggttgactac tggcaaaatt gctggagctg 240 gccttttgtt tgttggtgga ggtattggtg gcactatcct atatgccaaa tgggattccc 300 atttccggga aagtgtagag aaaaccatac cttactcaga caaactcttc gagatggttc 360 ttggtcctgc agcttataat gttccattgc caaagaaatc gattcagtcg ggtccactaa 420 aaatctctag tgtatcagaa gtaatgaaag aatctaaaca gtctgcctca caactccaaa 480 aacaaaaggg agatactcca gcttcagcaa cagcacctac agaagcggct caaattattt 540 ctgcagcagg tgataccctg tcggtcccag cccctgcagt tcagcctgag gaatctttaa 600 aaactgatca ccctgaaatt ggtgaaggaa aacccacacc tgcactttca gaagaagcat 660 cctcatcttc tataagggag cgaccacctg aagaagttgc agctcgcctt gcacaacagg 720 aaaaacaaga acaagttaaa attgagtctc tagccaagag cttagaagat gctctgaggc 780 aaactgcaag tgtcactctg caggctattg cagctcagaa tgctgcggtc caggctgtca 840 atgcacactc caacatattg aaagccgcca tggacaattc tgagattgca ggcgagaaga 900 aatctgctca gtggcgcaca gtggagggtg cattgaagga acgcagaaag gcagtagatg 960 aagctgccga tgcccttctc aaagccaaag aagagttaga gaagatgaaa agtgtgattg 1020 aaaatgcaaa gaaaaaagag gttgctgggg ccaagcctca tataactgct gcagagggta 1080 aacttcacaa catgatagtt gatctggata atgtggtcaa aaaggtccaa gcagctcagt 1140 1200 ctgaggctaa ggttgtatct cagtatcatg agctggtggt ccaagctcgg gatgacttta aacgagagct ggacagtatt actccagaag teetteetgg atggaaagga atgagtgttt 1260 1320 cagacttage tgacaagete tetactgatg atetgaacte ceteattget catgeacate 1380 tcacgttagc cttggagaaa caaaagctgg aagaaaagcg ggcatttgac tctgcagtag 1440 1500 caaaagcatt agaacatcac agaagtgaaa tacaggctga acaggacaga aagatagaag 1560 aagtcagaga tgccatggaa aatgaaatga gaacccagct tcgccgacag gcagctgccc acactgatca cttgcgagat gtccttaggg tacaagaaca ggaattgaag tctgaatttg 1620 1680 agcagaacct gtctgagaaa ctctctgaac aagaattaca atttcgtcgt ctcagtcaag 1740 agcaagttga caactttact ctggatataa atactgccta tgccagactc agaggaatcg aacaggetgt teagageeat geagttgetg aagaggaage cagaaaagee caccaactet 1800

ggctttcagt	ggaggcatta	aagtacagca	tgaagacctc	atctgcagaa	acacctacta	1860
tecegetggg	tagtgcagtt	gaggccatca	aagccaactg	ttctgataat	gaattcaccc	1920
aagctttaac	cgcagctatc	cctccagagt	ccctgacccg	tggggtgtac	agtgaagaga	1980
cccttagagc	ccgtttctat	gctgttcaaa	aactggcccg	aagggtagca	atgattgatg	2040
aaaccagaaa	tagcttgtac	cagtacttcc	tctcctacct	acagtccctg	ctcctattcc	2100
cacctcagca	actgaagccg	ccccagagc	tctgccctga	ggatataaac	acatttaaat	2160
tactgtcata	tgcttcctat	tgcattgagc	atggtgatct	ggagctagca	gcaaagtttg	2220
tcaatcagct	gaagggggaa	tccagacgag	tggcacagga	ctggctgaag	gaagcccgaa	2280
tgaccctaga	aacgaaacag	atagtggaaa	tcctgacagc	atatgccagc	gccgtaggaa	2340
taggaaccac	tcaggtgcag	ccagagtgag	gtttaggaag	attttcataa	agtcatattt	2400
catgtcaaag	gaaatcagca	gtgatagatg	aagggttcgc	agcgagagtc	ccggacttgt	2460
ctagaaatga	gcaggtttac	aagtactgtt	ctaaatgtta	acacctgttg	catttatatt	2520
ctttccattt	gctatcatgt	cagtgaacgc	caggagtgct	ttctttgcaa	cttgtgtaac	2580
attttctgtt	: ttttcaggtt	ttactgatga	ggcttgtgag	gccaatcaaa	ataatgtttg	2640
tgatctctac	: tactgttgat	tttgccctcg	gagcaaactg	aataaagcaa	caagatg	2697
<210> 203 <211> 353 <212> DNF	3 A					
	no sapiens					
<400> 203		: tttttttt	tttattcgg	gtcaacctaa	teetttttgg	60
agccacccaa	a aggccaaact	: tagggctagg	, aagaagatta	aaaaaaggga	tgacataact	120
attaggggca	a ggttaattgt	ttggagggc	catgggaggg	gaaaaagggg	ggcaatttct	180
aaaacaaata	a ataaaaaggg	g aatagctcct	: aaaaaaaatt	ttatggaaaa	agggacccgg	240
gcgggggata	a tagggtcca	a ccccaccc	aaagggggg	g atttttctat	gtaccccgtg	300
agttggggg	a gccaaaagg	g aataattatt	aaaaataagg	g ctaggagggt	gtt	353

<210> 204

:

<211> 487 <212> DNA <213> Homo sapiens

<220>

<221> misc_feature
<222> (22)..(22)
<223> n is a, c, g, t or u

<pre><400> 204 ccgtgatgtg gcgcctgcac antcctttcc ctttcggatt cccgacgctg tggttgctg</pre>	t 60
aaggggtcct ccctgcgcca cacggccgtc gccatggtga agctgagcaa agaggccaa	g \120
cagagactac agcagctett caaggggage cagtttgeca ttegetgggg etttatece	t 180
cttgtgattt acctgggatt taagaggggt gcagatcccg gaatgcctga accaactgt	t 240
ttgagcctac tttggggata aaggattatt tggtcttctg gatttggagg caatcagcg	g 300
acagcatgga agatgtgtgc tctggctcgg ataagagatg ggacatcatt cagtcacta	g 360
ttggatggca caaggctctt cacagacgca tctgtagcag agtggaactt gtactaact	t 420
atgatagaat gtatcagaat aaatgttttt aacagtgtaa aaaaaaaaaa	ıa 480
aaaaaaa	487
<210> 205	
<211> 3117 <212> DNA	
<213> Homo sapiens	
<400> 205	
attcgaaccc cgtcgcgccc ctttgtgcgt cacgggtggc gggcgcggga aggggatt	tg 60
gattgttgcg cctctgctct gaagaaagtg ctgtctggct ccaactccag ttctttcc	cc 120
tgagcagcgc ctggaaccta accettecca etetgteace ttetegatee egeeggeg	ct 180
ttagageege agteeagtet tggateette agageeteag ceaetagetg egatgeat	gt 240
gatcaagcga gatggccgcc aagaacgagt catgtttgac aaaattacat ctcgaatc	ca 300
gaagetttgt tatggaetea atatggattt tgttgateet geteagatea eeatgaaa	gt 360
aatccaaggc ttgtacagtg gggtcaccac agtggaacta gatactttgg ctgctgaa	ac 420
agctgcaacc ttgactacta agcaccctga ctatgctatc ctggcagcca ggatcgct	gt 480
ctctaacttg cacaaagaaa caaagaaagt gttcagtgat gtgatggaag acctctat	aa 540
ctacataaat ccacataatg gcaaacactc tcccatggtg gccaagtcaa cattggat	at 600
tgttctggcc aataaagatc gcctgaattc tgctattatc tatgaccgag atttctct	ta 660
caattacttc ggctttaaga cgctagagcg gtcttatttg ttgaagatca atggaaaa	gt 720
ggctgaaaga ccacaacata tgttgatgag agtatctgtt gggatccaca aagaagac	at 780
tgatgcagca attgaaacat ataatcttct ttctgagagg tggtttactc atgcttcg	gcc 840
cactetette aatgetggta ecaacegeee acaaettțet agetgtttte ttetgagt	at 900
gaaagatgac agcattgaag gcatttatga cactctaaag caatgtgcat tgatttct	aa 960
gtctgctgga ggaattggtg ttgctgtgag ttgtattcgg gctactggca gctacatt	gc 1020

tgggactaat	ggcaattcca	atggccttgt	accgatgctg	agagtatata	acaacacagc	1080
tagatatgtg	gatcaaggtg	ggaacaagcg	tcctggggca	tttgctattt	acctggagcc	1140
ttggcattta	gacatctttg	aattccttga	tttaaagaag	aacacaggaa	aggaagagca	1200
gcgtgccaga	gatcttttct	ttgctctttg	gattccggat	ctcttcatga	aacgagtgga	1260
gactaatcag	gactggtctt	tgatgtgtcc	aaatgagtgt	cctggtctgg	atgaggtttg	1320
gggagaggaa	tttgagaaac	tatatgcaag	ttatgagaaa	caaggtcgtg	tccgcaaagt	1380
tgtaaaagct	cagcagcttt	ggtatgccat	cattgagtct	cagacggaaa	caggcacccc	1440
gtatatgctc	tacaaagatt	cctgtaatcg	aaagagcaac	cagcagaacc	tgggaaccat	1500
caaatgcagc	aacctgtgca	cagaaatagt	ggagtacacc	agcaaagatg	aggttgctgt	1560
ttgtaatttg	gcttccctgg	ccctgaatat	gtatgtcaca	tcagaacaca	catacgactt	1620
taagaagttg	gctgaagtca	ctaaagtcgt	tgtccgaaac	ttgaataaaa	ttattgatat	1680
aaactactat	cctgtaccag	aggcatgcct	atcaaataaa	cgccatcgcc	ccattggaat	1740
tggggtacaa	ggtctggcag	atgcttttat	cctgatgaga	tacccttttg	agagtgcaga	1800
agcccagtta	ctgaataagc	agatctttga	aactatttat	tatggtgctc	tggaagccag	1860
ctgtgacctt	gccaaggagc	agggcccata	cgaaacctat	gagggetete	cagttagcaa	1920
aggaattctt	cagtatgata	tgtggaatgt	tactcctaca	gacctatggg	actggaaggt	1980
tctcaaggag	aagattgcaa	agtatggtat	aagaaacagt	ttacttattg	ccccgatgcc	2040
tacagcttcc	actgctcaga	tcctggggaa	taatgagtcc	attgaacctt	acaccagcaa	2100
catctatact	cgcagagtct	tgtcaggaga	atttcagatt	gtaaatcctc	acttattgaa	2160
agatcttacc	gagcggggcc	tatggcatga	agagatgaaa	aaccagatta	ttgcatgcaa	2220
tggctctatt	cagagcatac	cagaaattcc	tgatgacctg	aagcaacttt	ataaaactgt	2280
gtgggaaatc	tctcagaaaa	ctgttctcaa	gatggcagct	gagagaggtg	ctttcattga	2340
tcaaagccaa	tctttgaaca	tccacattgc	tgagcctaac	tatggcaaac	tcactagtat	2400
gcacttctac	ggctggaagc	agggtttgaa	gactgggatg	tattatttaa	ggacaagacc	2460
agcagctaat	ccaatccagt	tcactctaaa	taaggagaag	ctaaaagata	aagaaaaggt	2520
atcaaaagag	gaagaagaga	aggagaggaa	cacagcagcc	atggtgtgct	ctttggagaa	2580
tagagatgaa	tgtctgatgt	gtggatcctg	aggaaagact	tggaagagac	cagcatgtct	2640
tcagtagcca	aactacttct	tgagcataga	taggtatagt	gggtttgctt	gaggtggtaa	2700
ggctttgctg	gaccctgttg	caggcaaaag	gagtaattga	tttaaagtac	tgttaatgat	2760
gttaatgatt	: tttttttaaa	ctcatatatt	gggattttca	ccaaaataat	gcttttgaaa	2820
aaaagaaaaa	aaaaacggat	atattgagaa	tcaaagtaga	agttttagga	atgcaaaata	2880

agtcatcttg catacaggga gtggttaagt aaggtttcat cacccattta gcatgctttt 2940 ctgaagactt cagttttgtt aaggagattt agttttactg ctttgactgg tgggtctcta 3000 gaagcaaaac tgagtgataa ctcatgagaa gtactgatag gacctttatc tggatatggt 3060 cctataggtt attctgaaat aaagataaac atttctaagt gaaaaaaaa aaaaaaa 3117

<210> 206

<211> 4064

<212> DNA

<213> Homo sapiens

<400> 206 ctgcggccgc ctggtttctt gccttaagga gcccattgcc tttcccgctg aagtctagat 60 gttgacatgt aataaagcgg gcagcaggat ggtggtggat gcggccaact ccaatgggcc 120 tttccagccc gtggtccttc tccatattcg agatgttcct cctgctgatc aagagaagct 180 ttttatccag aagttacgtc agtgttgcgt cctctttgac tttgtttctg atccactaag 240 tgacctaaag tggaaggaag taaaacgagc tgctttaagt gaaatggtag aatatatcac 300 ccataatcgg aatgtgatca cagagcctat ttacccagaa gtagtccata tgtttgcagt 360 taacatgttt cgaacattac caccttcctc caatcctacg ggagcggaat ttgacccgga 420 ggaagatgaa ccaacgttag aagcagcctg gcctcatcta cagcttgttt atgaattttt 480 cttaagattt ttagagtctc cagatttcca acctaatata gcgaagaaat atattgatca 540 gaagtttgta ttgcagcttt tagagetett tgacagtgaa gateeteggg agagagattt 600 tettaaaace accetteaca gaatetatgg gaaatteeta ggettgagag ettacateag 660 aaaacagata aataatatat tttataggtt tatttatgaa acagagcatc ataatggcat 720 780 agcagagtta ctggaaatat tgggaagtat aattaatgga tttgccttac cactaaaaga 840 agagcacaag attttcttat tgaaggtgtt actacctttg cacaaagtga aatctctgag tgtctaccat ccccagctgg catactgtgt agtgcagttt ttagaaaagg acagcaccct 900 cacggaacca gtggtgatgg cacttctcaa atactggcca aagactcaca gtccaaaaga 960 1020 agtaatgttc ttaaacgaat tagaagagat tttagatgtc attgaaccat cagaatttgt gaagatcatg gaacccctct tccggcagtt ggccaaatgt gtctccagcc cacacttcca 1080 ggtggcagag cgagctctct attactggaa taatgaatac atcatgagtt taatcagtga 1140 caacgcagcg aagattctgc ccatcatgtt tccttccttg taccgcaact caaagaccca 1200 ttggaacaag acaatacatg gcttgatata caacgccctg aagctcttca tggagatgaa 1260 ccaaaagcta tttgatgact gtacacaaca gttcaaagca gagaaactaa aagagaagct 1320 aaaaatgaaa gaacgggaag aagcatgggt taaaatagaa aatctagcca aagccaatcc 1380

ccagtacaca gtgtatagtc aagccagcac catgagcatt ccggttgcaa tggagacaga 1440 tgggccttta tttgaagatg tgcagatgct gagaaagaca gtgaaggacg aggctcatca 1500 ggcacagaaa gatccgaaga aggaccgtcc tettgcactc cgcaagtccg agctgcctca 1560 ggacccccac accaagaaag ccttggaagc tcactgcagg gccgatgagc tggcctccca 1620 ggacggccgc tagcctccgg ggcgccgcgt cggggccggg cccgccagtt cttttccgga 1680 ttctgtagaa aatacatact tcctgtgcca taccaatcag ttacactcaa agctttcttg 1740 gaccccgttc cgtaggcaat aacgtgcgtc cgcctcagcg cgagattagg agttcaaaca 1800 atggtgactt cccagagccc gctggcagag ccgcgggttg acgacggtgt cctcgcagtg 1860 tegeegecae eccagegtag tecaagteag actattteae aaagteagag egataggaaa 1920 gcaccctgcc cttcatcttc atgttctccc aaatggaact taggatcttt taacataggt 1980 ggttctgtga taacatcagt gttttccaaa tcaaaggaac gctttaaaaa ataggaccta 2040 ttttttaaga ctttacagcc tttgaaatgg tttccacgtg attgttacgc cagcagttct 2100 tttgtttgtt tttcaatctc agtgaaatgg ctctttgctt tcgagttctc acgcaacgta 2160 ctgggcaaat gacaatcctc agccgctggt attttctaag gggtctcttc actttgatga 2220 2280 gtgacatgaa caccgtgtct ccttctcttg tgtgtaccta aagccatatt tccaagtctg tggtactcca ggattccagg agtaagcctg tagaagagat ttattttaaa agagattgct 2340 ctgaaattta tottaaaaga gottgototg totacottga cagaaattgg agttttaaaa 2400 2460 ttatgtgtta atatttttat ttgcagattt cgtttccgtc aacttaaaca ttgttgccct tcaacaaggc tcttgaatta ataaaattat agtctctaag aattccacat tttatggaaa 2520 gttagagcaa aatcattttg agttaagcca gttcttagcc taatgcaaac tgcagcgcct 2580 ttaagcataa agtaacacaa cagcattgca cggggccggc actgccgctg ccttcactga 2640 2700 aggetgeagt getgttetga gagettggag gaggeaceag egaggatgae gtttagtgga 2760 gctctttctg ttgaaaagag ctcacgttat caacaccttg taaggaaaat acagtgtctg agttttcatc ggtcttcaca tgctgctata tattccacag agttccttgc atgtactgag 2820 2880 cttttgtttt agatggaata gcacaaggag aaaaatcttt aaacttagtg ctttgtctat totttattto totcagggtg gocagtattt tgacttattt atcctgcttg aaagctactt 2940 gagatgtgta ctgctattct aaacacgtga tctagtttct ttcatctctg gcataagatt 3000 atataactta atgttaagtg tcttgaggca taaaagacaa aatgtggctt attttaggat 3060 ctgttttttc atcgaggtct cgggtatcct ttcaaagata gtgagaagca gacactgctc 3120 cttgtgcagc tctggtacct cctgcccact gctgtcactt caagccactg gcaatgcttc 3180

tgtcctcgtg	tcttggagga	aaatcacctg	gggggagggg	acttcttgtg	gtaagagcaa	3240
gtgcaggtat	gaaatgcgaa	gattgcccca	gctaaaagtg	gacaagtccg	ctttgtgaga	3300
tgaatacttc	ctgagaaact	tgacaagtat	ctctccattt	taccattatg	aaaactatca	3360
ttaaaaaaaa	cagtttagat	gccttctcct	tttgagggaa	aaagggtgct	ttttattgta	3420
taaagcagcg	tcttatgtat	tttgatatac	cattgtttga	acttccgtct	ttagctgata	3480
gattctcaaa	tatccttgat	tttggatgtt	cagtatgttt	gtgagagagg	tttctgggaa	3540
gactctcttt	ttgccctcgg	gaaaaagcaa	aatatcaatg	tttgggtgac	tgtgtaaagc	3600
tcagtgtgta	agaacatctt	tttgtctagg	ttttctttct	gctctttatt	gaagacaaac	3660
actcaccaaa	aagaaaaata	aaagttttca	gagaaactaa	ttttctttgg	caagagtatt	3720
acttaatatt	ttggcctcct	aaagtttccc	tagttagtac	tcggactcct	gtgctaattg	3780
tcagcttaca	tatcattgta	tagagactgt	ttattctgta	ccaaactgat	ttcaaaagta	3840
ctacattgaa	aataaaccgg	tgactgtttt	tcttcataaa	gttctgcgtt	tggcatcttc	3900
actctttcca	aaatgtatct	gtacatcaga	aatgtcacta	ttccaagtgt	ctttttagtg	3960
tggcctttag	tatggcttcc	ttttaatatt	gtacatacat	tgtatctttg	ttttatggta	4020
ataagtaata	aaaatgtaga	cttcaaaaaa	aaaagcggcc	gcag		4064

<210> 207

<211> 4338

<212> DNA

<213> Homo sapiens

<400> 207 cagggcacgc tgggtcggcg gagctgaggc tcccagctgt gggcctcgct ggcccggtcg 60 cccagtctcg cgagagttgg gagtaaacag ccccgaatgg agtgcccagg cgtgttcgcc 120 180 geggaggege egttateceg ggecegeegg ceetgagete eeggeggege agattggete acagtggttg attgatcaac cccattggac gttggttctg tggtacaaat ggagtacagg 240 actcagtcgt cacggcctga gtgagagaag ccttatttcc aagatggaga agaagcggag 300 aaagaaatga aagcctctct tcaggctgaa ccacaaaagg ccatgggatt taacttttat 360 ttatgttggg caagactgta agatggctga tcagtaatgt tgcagctttt agctgaaaca 420 aaaattcact tttaatcaag aagaaaaaag tgtgatttga atatatgcaa ttttatgatc 480 atattcgctt gtgaccatga agcttgtcaa catctggctg cttctgctcg tggttttgct 540 600 ctgtgggaag aaacatctgg gcgacagact ggaaaagaaa tcttttgaaa aggccccatg ccctggctgt tcccacctga ctttgaaggt ggaattctca tcaacagttg tggaatatga 660 atatattgtg gctttcaatg gatactttac agccaaagct agaaattcat ttatttcaag 720

269

•						700
	agcagtgaag					780
tgactaccct	agtgattttg	aggtgattca	gataaaagaa	aaacagaaag	cggggctgct	840
aacacttgaa	gatcatccaa	acatcaaacg	ggtcacgccc	caacgaaaag	tctttcgttc	900
cctcaagtat	gctgaatctg	accccacagt	accctgcaat	gaaacccggt	ggagccagaa	960
gtggcaatca	tcacgtcccc	tgcgaagagc	cagcctctcc	ctgggctctg	gcttctggca	1020
tgctacggga	aggcattcga	gcagacggct	gctgagagcc	atcccgcgcc	aggttgccca	1080
gacactgcag	gcagatgtgc	tctggcagat	gggatataca	ggtgctaatg	taagagttgc	1140
tgtttttgac	actgggctga	gcgagaagca	tccccacttc	aaaaatgtga	aggagagaac	1200
caactggacc	aacgagcgaa	cgctggacga	tgggttgggc	catggcacat	tcgtggcagg	1260
tgtgatagcc	agcatgaggg	agtgccaagg	atttgctcca	gatgcagaac	ttcacatttt	1320
cagggtcttt	accaataatc	aggtatctta	cacatcttgg	tttttggacg	ccttcaacta	1380
tgccatttta	aagaagatcg	acgtgttaaa	cctcagcatc	ggcggcccgg	acttcatgga	1440
tcatccgttt	gttgacaagg	tgtgggaatt	aacagctaac	aatgtaatca	tggtttctgc	1500
tattggcaat	gacggacctc	tttatggcac	tctgaataac	cctgctgatc	aaatggatgt	1560
gattggagta	ggcggcattg	actttgaaga	taacatcgcc	cgcttttctt	caaggggaat	1620
gactacctgg	gagctaccag	gaggetaegg	tcgcatgaaa	cctgacattg	tcacctatgg	1680
tgctggcgtg	cggggttctg	gcgtgaaagg	ggggtgccgg	gccctctcag	ggaccagtgt	1740
tgcttctcca	gtggttgcag	gtgctgtcac	cttgttagtg	agcacagtco	: agaagcgtga	1800
gctggtgaat	: cccgccagta	tgaagcaggo	cctgatcgcg	tcagcccgga	ggctccccgg	1860
ggtcaacatg	; tttgagcaag	gccacggcaa	a gctcgatctg	r ctcagagcct	: atcagatcct	1920
caacagctac	aagccacagg	caagtttgag	g ccccagctac	: atagatctga	a ctgagtgtcc	1980
ctacatgtgg	g ccctactgct	cccagcccat	ctactatgga	ggaatgccga	a cagttgttaa	2040
tgtcaccato	c ctcaacggca	a tgggagtca	c aggaagaatt	gtagataag	c ctgactggca	2100
gccctattt	g ccacagaacq	g gagacaacat	t tgaagttgco	tteteetae	t cctcggtctt	2160
atggccttg	g tegggetace	c tggccatct	c catttctgtg	g accaagaaa	g cggcttcctg	2220
ggaaggcati	t gctcagggc	c atgtcatga	t cactgtggct	t tececagea	g agacagagtc	2280
					a agataattcc	2340
					c gctatccacc	2400
					t ggaatggtga	2460
					g gctactttgt	2520
					a ctttgctgat	2580

ggtggacagt gaggaggagt acttccctga agagatcgcc aagctccgga gggacgtgga 2640 caacggcctc tcgctcgtca tcttcagtga ctggtacaac acttctgtta tgagaaaagt 2700 gaagttttat gatgaaaaca caaggcagtg gtggatgccg gataccggag gagctaacat 2760 cccagctctg aatgagctgc tgtctgtgtg gaacatgggg ttcagcgatg gcctgtatga 2820 aggggagttc accctggcca accatgacat gtattatgcg tcagggtgca gcatcgcgaa 2880 gtttccagaa gatggcgtcg tgataacaca gactttcaag gaccaaggat tggaggtttt 2940 aaagcaggaa acagcagttg ttgaaaacgt ccccattttg ggactttatc agattccagc 3000 tgagggtgga ggccggattg tactgtatgg ggactccaat tgcttggatg acagtcaccg 3060 acagaaggac tgcttttggc ttctggatgc cctcctccag tacacatcgt atggggtgac 3120 accgcctage ctcagtcact ctgggaaccg ccagcgccct cccagtggag caggctcagt 3180 cactccagag aggatggaag gaaaccatct tcatcggtac tccaaggttc tggaggccca 3240 tttgggagac ccaaaacctc ggcctctacc agcctgtcca cgcttgtctt gggccaagcc 3300 acagcettta aacgagacgg cgcccagtaa cetttggaaa catcagaage tactetecat 3360 tgacctggac aaggtggtgt tacccaactt tcgatcgaat cgccctcaag tgaggccctt 3420 gtcccctgga gagagcggcg cctgggacat tcctggaggg atcatgcctg gccgctacaa 3480 ccaggaggtg ggccagacca ttcctgtctt tgccttcctg ggagccatgg tggtcctggc 3540 cttctttgtg gtacaaatca acaaggccaa gagcaggccg aagcggagga agcccagggt 3600 3660 gaagcgcccg cagctcatgc agcaggttca cccgccaaag accccttcgg tgtgaccggc agcctggctg accgtgaggg ccagagagag ccttcacgga cggcgctggt gggtgagccg 3720 agctgtggtg gcggctggtt taaaagggat ccagtttcca gctgcaggtt tgttagagtc 3780 tgttctacat gggcctgccc tcctgtgatg ggcagaggct cctggtacat cgagaagatt 3840 cctgtggatc ccgtcaggag ggacttagtg gctctgccgc cagtgagact tcccgccggc 3900 3960 agctgtgcgc accaaagact cgggagaact ggaaaggctg tctggggtct tctgactgca 4020 ggggaaggat gtactttcca aacaaatgat acaaccctga ccaagctaaa agacgcttgt taaaggctat tttctatatt tattgttggg aaaagtcact ttaaagactt gtgctatttg 4080 gaagcaaagc tattttttt gtcagtggaa tgcagttttt ttactattcc atcatgagga 4140 acaacataga ttccatgatc tttttaatga cagtacagac tgagatttga aggaaacatg 4200 4260 cacaaatctg taaaacatag accttcgctt tatttttgta agtatcacct gccaccatgt tttgtaattt gaggtettga ttteaceatt gteggtgaag aaaattttea ataaatatgt 4320 4338 attacccgtc tgaagctt

<210> 208 <211> 2952 <212> DNA <213> Homo sapiens

208 <400> gaagcgaata gcgttttcag agatattggg cggctcaagg gtcttactct gtcgcccagt 60 ctgtaatgca gtgctgtgac catagcccac tgcagcctcc acctcccagg ctcaagcagt 120 ccttcccccc tcgccctcat gaatagctgg gactacagcc tggagcattg gtaagcgtca 180 cactgccaaa gtgagagctg ctggagaact cataatccca ggaacgcctc ttctactctc 240 cgagtacccc agtgaccaga gtgagagaag ctctgaacga gggcacgcgg cttgaaggac 300 tgtgggcaga tgtgaccaag agcctgcatt aagttgtaca atggtagatg gagtgatgat 360 tetteetgtg ettateatga ttgetetece eteceetagt atggaagatg agaageeeaa 420 ggtcaacccc aaactctaca tgtgtgtgtg tgaaggtctc tcctgcggta atgaggacca 480 ctgtgaaggc cagcagtgct tttcctcact gagcatcaac gatggcttcc acgtctacca 540 gaaaggetge ttecaggttt atgageaggg aaagatgaee tgtaagaeee egeegteeee 600 tggccaaget gtggagtgct gccaagggga ctggtgtaac aggaacatca cggcccaget 660 gcccactaaa ggaaaatcct tccctggaac acagaatttc cacttggagg ttggcctcat 720 tattctctct gtagtgttcg cagtatgtct tttagcctgc ctgctgggag ttgctctccg 780 840 aaaatttaaa aggcgcaacc aagaacgcct caatccccga gacgtggagt atggcactat 900 cgaagggctc atcaccacca atgttggaga cagcacttta gcagatttat tggatcattc gtgtacatca ggaagtggct ctggtcttcc ttttctggta caaagaacag tggctcgcca 960 gattacactg ttggagtgtg tcgggaaagg caggtatggt gaggtgtgga ggggcagctg 1020 gcaaggggaa aatgttgccg tgaagatctt ctcctcccgt gatgagaagt catggttcag 1080 ggaaacggaa ttgtacaaca ctgtgatgct gaggcatgaa aatatcttag gtttcattgc 1140 1200 ttcagacatg acatcaagac actccagtac ccagctgtgg ttaattacac attatcatga aatgggatcg ttgtacgact atcttcagct tactactctg gatacagtta gctgccttcg 1260 aatagtgctg tccatagcta gtggtcttgc acatttgcac atagagatat ttgggaccca 1320 agggaaacca gccattgccc atcgagattt aaagagcaaa aatattctgg ttaagaagaa 1380 tggacagtgt tgcatagcag atttgggcct ggcagtcatg cattcccaga gcaccaatca 1440 1500 gcttgatgtg gggaacaatc cccgtgtggg caccaagcgc tacatggccc ccgaagttct 1560 agatgaaacc atccaggtgg attgtttcga ttcttataaa agggtcgata tttgggcctt tggacttgtt ttgtgggaag tggccaggcg gatggtgagc aatggtatag tggaggatta 1620

•						
caagccaccg	ttctacgatg	tggttcccaa	tgacccaagt	tttgaagata	tgaggaaggt	1680
agtctgtgtg	gatcaacaaa	ggccaaacat	acccaacaga	tggttctcag	acccgacatt	1740
aacctctctg	gccaagctaa	tgaaagaatg	ctggtatcaa	aatccatccg	caagactcac	1800
agcactgcgt	atcaaaaaga	ctttgaccaa	aattgataat	tccctcgaca	aattgaaaac	1860
tgactgttga	cattttcata	gtgtcaagaa	ggaagatttg	acgttgttgt	cattgtccag	1920
ctgggaccta	atgctggcct	gactggttgt	cagaatggaa	tccatctgtc	tccctcccca	1980
aatggctgct	ttgacaaggc	agacgtcgta	cccagccatg	tgttggggag	acatcaaaac	2040
caccctaacc	tcgctcgatg	actgtgaact	gggcatttca	cgaactgttc	acactgcaga	2100
gactaatgtt	ggacagacac	tgttgcaaag	gtagggactg	gaggaacaca	gagaaatcct	2160
aaaagagatc	tgggcattaa	gtcagtggct	ttgcatagct	ttcacaagtc	tcctagacac	2220
tececaeggg	aaactcaagg	aggtggtgaa	tttttaatca	gcaatattgc	ctgtgcttct	2280
cttctttatt	gcactaggaa	ttctttgcat	tccttacttg	cactgttact	cttaatttta	2340
aagacccaac	ttgccaaaat	gttggctgcg	tactccactg	gtctgtcttt	ggataatagg	2400
aattcaattt	ggcaaaacaa	aatgtaatgt	cagactttgc	tgcattttac	acatgtgctg	2460
atgtttacaa	tgatgccgaa	. cattaggaat	tgtttataca	caactttgca	aattatttat	2520
tacttgtgca	cttagtagtt	tttacaaaac	tgctttgtgc	atatgttaaa	gcttattttt	2580
atgtggtctt	atgattttat	tacagaaatg	tttttaacac	tatactctaa	aatggacatt	2640
ttcttttatt	atcagttaaa	atcacatttt	aagtgcttca	catttgtatg	tgtgtagact	2700
gtaactttt	ttcagttcat	: atgcagaacg	tatttagcca	ttacccacgt	gacaccaccg	2760
aatatattat	: cgatttagaa	gcaaagattt	cagtagaatt	ttagtcctga	acgctacggg	2820
gaaaatgcat	: tttcttcaga	attatccatt	acgtgcattt	aaactctgcc	: agaaaaaaat	2880
aactatttt	g ttttaatcta	a ctttttgtat	ttagtagtta	tttgtataaa	a ttaaataaac	2940
tgttttcaag	g tc					2952
<210> 209	.					

<211> 828

<212> DNA

<213> Homo sapiens

<400> 209

geagecgeeg cegeagagee ggageggggg eegeeggegg eegeaateee tetetacetg 60
ccaacateet gtattagaga acttgtggee ggaggtgtgg etgtggagag etggeegggg 120
agggaegetg eteagetget getetgetee tgteteetgt eeceteeeee ggteatgaea 180
gagaecegtg ageeagetga gaetggggge taegeeaget tggaagaaga tgatgaagae 240

·		
ctttccccag gctggaaggg agtggcgcaa tcatggctca aatgcagcct	ggaactcctc	300
ggctcaagtg atcctcccgc ctcagcctcc cgagaagctg gtactacag	g ccccgagcat	360
tectetgatt cagaatacae teteteagag ceggaeteeg aagaggaag	a agatgaggag	420
gaggaggaag aggagaccac tgacgatcct gaatatgatc ctggctaca	a ggtgaagcag	480
cgccttggcg ggggccgtgg tggcccatcc cgccgggccc ccccgtgca	g cccagccccg	540
gcccagcett gccagctctg tggccgctca ccccttgggg gaggcccca	g caggggaacc	600
ccacctgccg gtactgctgc ccctgctaca gcccccaggg aagcaccag	g cccctgaagg	660
cacggeeete gggeaggeaa gacgeggaee aceteggget ggggaggge	g acacttgggc	720
gggagaggag gagaacacgg ggggagggac caccacgtac gaatgggag	g teetegacae	780
ctggggaact gcggactatg cggcagcccg gggagggagc acccaagg		828
<210> 210 <211> 476		
<212> DNA		
<213> Homo sapiens		
<400> 210	a aatgaaggta	60
aggaaagtgt caacatgttt attgctaata taagcattta atgtcaaag		
attttacaaa ctcagttttt gtaagtacat gaagtttcta tttgattat	g tggttttata	120
tcacattcgt tcaaatgcat ttctctccct tagagggact attccaaca	t cactcctttg	180
gaattatttc agtcatcctt aacatgtgac tttaccaaag accttgaag	gc taaacaaaca	240
agcaaaacaa aatttcaatg actcttagat gaatggaata agaaatagt	c atcacatgtc	300
aattagggat gttcatctcc aaccaagaca ctgtcaaaat gtttcttct	g atacagcagt	360
tataagtcag agccttcaaa aaacaagggc agaacaagag tacaataaa	aa gaagcatctg	420
caacttaagc ctcccacagt cctaagcctg atatgcgcaa agcaaagc	et etttee	476
<210> 211 <211> 1223 <212> DNA <213> Homo sapiens		
<400> 211 agctcggtcc tgctggaggc cacgggtgcc acacactcgg tcccgaca	tg atggcgagca	60
tgcgagtggt gaaggagctg gaggatcttc agaagaagcc tcccccat		120
tgtccagcga tgatgccaat gtcctggtgt ggcacgctct cctcctac	cc gaccaacctc	180
cctaccacct gaaagccttc aacctgcgca tcagcttccc gccggagt	at ccgttcaagc	240
ctcccatgat caaattcaca accaagatct accaccccaa cgtggacg	ag aacggacaga	300
tttgcctgcc catcatcagc agtgagaact ggaagccttg caccaaga	ct tgccaagtcc	360

tggaggccct	caatgtgctg	gtgaatagac	cgaatatcag	ggagcccctg	cggatggacc	420
tcgctgacct	gctgacacag	aatccggagc	tgttcagaaa	gaatgccgaa	gagttcaccc	480
tccgattcgg	agtggaccgg	ccctcctaac	tcatgttctg	accctctgtg	cactggatcc	540
tcggcatagc	ggacggacac	acctcatgga	ctgaggccag	agccccctgt	ggcccattcc	600
ccattcattt	ttcccttctt	aggttgttag	tcattagttt	gtgtgtgtgt	gtggtggagg	660
gaagggagct	atgagtgtgt	gtgttgtgta	tggactcact	cccaggttca	cctggccaca	720
ggtgcaccct	tcccacaccc	tttacattcc	ccagagccaa	gggagtttaa	gtttgcagtt	780
acaggccagt	tctccagctc	tccatcttag	agagacaggt	caccttgcag	gcctgcttgc	840
aggaaatgaa	tccagcagcc	aactcgaatc	cccctagggc	tcaggcactg	agggcctggg	900
		ggagacagat				960
					cacggatgag	1020
					accacttgcc	1080
					atatcctcca	1140
					aaagtcagag	1200
	aaaaaaaaa					1223

<210> 212

<211> 2148

<212> DNA

<213> Homo sapiens

<400> 212 gtaaaaatga cttggattga aaatatgtgg tagccttttt atttctacat taagttctac - 60 ctaggatatt tccaaggact gccacaaaac ccatatgtgc agtactttac tactttggga 120 aagctgcatc tttctaccac attttaacat ctaatatatt taatttcttt gaagagggtt 180 ctgtgtacgt tattgtagtt cccagtttaa tatagttctt tgtatctctt aacaggttga 240 agttattgca aaacactctg gaaagtaata attacatcat aatcatttat tttttaaact 300 taaaagccta gaaatttcct agaaagaaaa taggagacat ctcagagcaa tttggttttg 360 gtgtatatgt tctcaacaga aaaccagtgt taatgaatat catgcctcag cactgtcact 420 tttaaaacct gtcaggatcc caccgtaaaa ttggaaatgg gcagttctga attttcacgt 480 ttgaaatgta aaatataaac ttcagtcaat atccaggttt attgtgtcct actatttaat 540 aatgagagaa gtaatggcaa ggcctttact ttcaggaaag gatagaagta tagattaatg 600 actggaaagt tttaatatat ttagcccaaa ggttactttg aattgaagtc tttgcattga 660 ctgtttgtgt ttggtttatt tgtttagctt tacaaggtac acataagtta ggttgagggg 720

ttattaaccc	ttccataatc	tgctttcatt.	ccatatactt	cctgtcacag	gtaatggaaa	780
		ctcttagttt				840
						900
		gttactacct				
tttctatcca	gttctaagaa	ctgcctccac	tgtttatata	ttcataatta	aacacattga	960
gaatgcaaca	ctataaaagc	tggtcaaatt	tttgcagagc	ccttattctg	tgtgttttt	1020
gtttttttct	ttttttttg	agacagagtc	tcgttcggtc	ccccagcttg	gagtgcagtg	1080
gcgcgatctc	ggctcactgc	aacctccgcc	tcctgggttc	acgcgattct	cctgcctcag	1140
cctcccgagt	agctgggatt	acaggcacac	accaccacgc	ccggctaatt	ttttgtgtct	1200
ttttagtaga	gacggggttt	cgctatgttg	gccagactgg	tcttgaactg	ctgacctcgt	1260
gatccgcccg	cctcggcctc	tcaaagtgct	gggattctgt	gtgttttgtg	cacctccact	·1320
ttaggtaatc	atagggagca	catttacagg	atggtctaat	aacatgaaaa	caggctagtt	1380
tcaagcaaca	gcaatgtcgg	ttggaaagca	ggcgtcattt	gccttgaaaa	aagccttttg	1440
acaacataca	ggcattcttt	taaaaccagg	ctgaaacatt	ttatttccga	gacttaacgt	1500
tgtgtttcct	gtttcttaaa	cctagcacct	ctgtgtattt	gaaaataatg	agacatcttt	1560
cattggattt	tggaaaattg	ttccccatgg	gattctaacc	tcactaccaa	atgagtgaaa	1620
gcttgattaa	gagttcttcc	atatactagc	ctccttggaa	gaagtgatca	gaaggtgata	1680
agaaggacag	aaaggactat	tttaaagttg	gactgaagga	gaaaaaagca	aaattcttgt	1740
ttcatcccaa	ttctagttag	aacaaagtta	aacccccgta	atcttaaaga	gaaaatcttt	1800
ggaggtttta	attaaacatt	ttatacattt	aaagtcttgt	taatggtgct	ttaagtgtca	1860
atgtagcatg	, taaaaggctt	tgtacagaca	ggtaaaagtt	ccatttctga	gtgatgaaat	1920
gtaacactto	: ttcatcttta	acttgaaatc	aaaactatca	gattttattt	ttgtataatt	1980
taaggaaggt	: aaagttaggg	g gactagaaga	ctctaaattg	gcttctacag	g atcaataatt	2040
taaatgtaad	tagttgggat	: tttatagtta	aaattatatt	tgtgtatata	a acataattaa	2100
tctgtaaatt	gtaataaata	a tatttgcaat	: tattaaatgt	taagtgat		2148
<210> 213 <211> 215						
<212> DN2	A no sapiens					
<400> 213	_					
ggcacgagc	c cagaaacaa	a gacttcacgo	g acaaagtccc	: ttggaacca	g agagaagccg	60

ggatggaaac tccaaacacc acagaggact atgacacgac cacagagttt gactatgggg

atgcaactcc gtgccagaag gtgaacgaga gggcctttgg ggcccaactg ctgcccctc

60

120

180

tgtactcctt	ggtatttgtc	attggcctgg	ttggaaacat	cctggtggtc	ctggtccttg	240
tgcaatacaa	gaggctaaaa	aacatgacca	gcatctacct	cctgaacctg	gccatttctg	300
acctgctctt	cctgttcacg	cttcccttct	ggatcgacta	caagttgaag	gatgactggg	360
tttttggtga	tgccatgtgt	aagatcctct	ctgggtttta	ttacacaggc	ttgtacagcg	420
agatcttttt	catcatcctg	ctgacgattg	acaggtacct	ggccatcgtc	cacgccgtgt	480
ttgccttgcg	ggcacggacc	gtcacttttg	gtgtcatcac	cagcatcatc	atttgggccc	540
tggccatctt	ggcttccatg	ccaggcttat	acttttccaa	gacccaatgg	gaattcactc	600
accacacctg	cagccttcac	tttcctcacg	aaagcctacg	agagtggaag	ctgtttcagg	660
ctctgaaact	gaacctcttt	gggctggtat	tgcctttgtt	ggtcatgatc	atctgctaca	720
cagggattat	aaagattctg	ctaagacgac	caaatgagaa	gaaatccaaa	gctgtccgtt	780
tgatttttgt	catcatgatc	atctttttc	tcttttggac	cccctacaat	ttgactatac	840
ttatttctgt	tttccaagac	ttcctgttca	cccatgagtg	tgagcagagc	agacatttgg	900
acctggctgt	gcaagtgacg	gaggtgatcg	cctacacgca	ctgctgtgtc	aacccagtga	960
tctacgcctt	cgttggtgag	aggttccgga	agtacctgcg	gcagttgttc	cacaggcgtg	1020
tggctgtgca	cctggttaaa	tggctcccct	tcctctccgt	ggacaggctg	gagagggtca	1080
gctccacatc	tccctccaca	ggggagcatg	aactctctgc	tgggttctga	ctcagaccat	1140
aggaggccaa	cccaaaataa	gcaggcgtga	cctgccaggc	acactgagcc	agcagcctgg	1200
ctctcccagc	caggttctga	ctcttggcac	agcatggagt	cacagccact	tgggatagag	1260
agggaatgta	atggtggcct	ggggcttctg	aggcttctgg	ggcttcagtc	ttttccatga	1320
acttctcccc	tggtagaaag	aagatgaatg	agcaaaacca	aatattccag	agactgggac	1380
taagtgtacc	agagaagggc	ttggactcaa	gcaagatttc	agatttgtga	ccattagcat	1440
ttgtcaacaa	agtcacccac	ttcccactat	tgcttgcaca	aaccaattaa	acccagtagt	1500
ggtgactgtg	ggctccattc	aaagtgagct	cctaagccat	gggagacact	gatgtatgag	1560
gaatttctgt	tcttccatca	cetececec	cccgccaccc	tcccactgcc	aagaacttgg	1620
aaatagtgat	ttccacagtg	actccactct	gagtcccaga	gccaatcagt	agccagcatc	1680
tgcctcccct	tcactcccac	: cgcaggattt	gggctcttgg	aatcctgggg	aacatagaac	1740
tcatgacgga	agagttgaga	cctaacgaga	ı aatagaaatg	ggggaactac	tgctggcagt	1800
ggaactaaga	aagcccttag	g gaagaatttt	tatatccact	aaaatcaaac	aattcaggga	1860
gtgggctaag	, cacgggccat	atgaataaca	tggtgtgctt	cttaaaatag	ccataaaggg	1920
gagggactca	tcatttccat	ttacccttct	tttctgacta	tttttcagaa	tctctcttct	1980

·	
tttcaagttg ggtgatatgt tggtagattc taatggcttt attgcagcga ttaataac	ag 2040
gcaaaaggaa gcagggttgg tttcccttct ttttgttctt catctaagcc ttctggtt	tt 2100
atgggtcaga gttccgactg ccatcttgga cttgtcagca aaaaaaaaaa	2156
<210> 214 <211> 1645 <212> DNA <213> Homo sapiens <400> 214	
agtetetegt catggaatae geetetgaeg etteaetgga eecegaagee eegtggee	tc 60
ccgcgccccg cgctcgcgcc tgccgcgtac tgccttgggc cctggtcgcg gggctgct	gc 120
tgctgctgct gctcgctgcc gcctgcgccg tcttcctcgc ctgcccctgg gccgtgtc	cg 180
gggctcgcgc ctcgcccggc tccgcggcca gcccgagact ccgcgagggt cccgagct	tt 240
cgcccgacga tcccgccggc ctcttggacc tgcggcaggg catgtttgcg cagctggt	.gg 300
cccaaaatgt tctgctgatc gatgggcccc tgagctggta cagtgaccca ggcctggc	ag 360
gcgtgtccct gacgggggc ctgagctaca aagaggacac gaaggagctg gtggtggc	ca 420
aggetggagt ctactatgte ttettteaac tagagetgeg gegegtggtg geeggega	igg 480
gctcaggctc cgtttcactt gcgctgcacc tgcagccact gcgctctgct gctgggg	cg 540
ccgccctggc tttgaccgtg gacctgccac ccgcctcctc cgaggctcgg aactcgg	ct 600
teggttteca gggeegettg etgeacetga gtgeeggeea gegeetggge gteeatet	tc 660
acactgaggc cagggcacgc catgcctggc agcttaccca gggcgccaca gtcttggg	gac 720
tetteegggt gacceecgaa ateccageeg gacteeette accgaggteg gaataacg	gcc 780
cagcctgggt gcagcccacc tggacagagt ccgaatccta ctccatcctt catggaga	acc 840
cctggtgctg ggtccctgct gctttctcta cctcaagggg cttggcaggg gtccctg	ctg 900
ctgacctccc cttgaggacc ctcctcaccc actccttccc caagttggac cttgata	ttt 960
attctgagcc tgagctcaga taatatatta tatatattat atatatat atatttc	tat 1020
ttaaagagga tootgagttt gtgaatggao tttttagag gagttgtttt ggggggg	ggg 1080
tettegacat tgeegagget ggtettgaae teetggaett agaegateet eetgeet	cag 1140
cctcccaagc aactgggatt catcctttct attaattcat tgtacttatt tgcctat	ttg 1200
tgtgtattga gcatctgtaa tgtgccagca ttgtgcccag gctagggggc tatagaa	aca 1260
tctagaaata gactgaaaga aaatctgagt tatggtaata cgtgaggaat ttaaaga	ctc 1320
atccccagcc tccacctcct gtgtgatact tgggggctag ctttttctt tctttct	ttt 1380
ttttgagatg gtcttgttct gtcaaccagg ctagaatgca gcggtgcaat catgagt	caa 1440

tgcagcctcc agcctcgacc	tcccgaggct	caggtgatcc	tcccatctca	gcctctcgag	1500
tagctgggac cacagttgtg	tgccaccaca	cttggctaac	tttttaattt	ttttgcggag	1560
acggtattgc tatgttgcca	aggttgttta	catgccagta	caatttataa	taaacactca	1620
ttttcctca aaaaaaaaa	aaaaa				1645

<210> 215

<211> 2745

<212> DNA

<213> Homo sapiens

<400> 215 60 acctccctcc gcggagcagc cagacagcga gggccccggc cgggggcagg ggggacgccc cgtccggggc acccccccg gctctgagcc gcccgcgggg ccggcctcgg cccggagcgg 120 aggaaggagt cgccgaggag cagcctgagg ccccagagtc tgagacgagc cgccgccgcc 180 cccgccactg cggggaggag ggggaggagg agcgggagga gggacgagct ggtcgggaga 240 agaggaaaaa aacttttgag acttttccgt tgccgctggg agccggaggc gcggggacct 300 cttggcgcga cgctgccccg cgaggaggca ggacttgggg accccagacc gcctcccttt 360 gccgccgggg acgcttgctc cctccctgcc ccctacacgg cgtccctcag gcgcccccat 420 teeggaceag ceetegggag tegeegacee ggeeteeege aaagaetttt eeceagaeet 480 egggegeace ecetgeacge egeetteate eceggeetgt etectgagee ecegegeate 540 ctagaccett tetectecag gagaeggate teteteegae etgecacaga teccetatte 600 aagaccaccc accttctggt accagatcgc gcccatctag gttatttccg tgggatactg 660 agacaccccc ggtccaagcc tcccctccac cactgcgccc ttctccctga ggagcctcag 720 ctttccctcg aggccctcct accttttgcc gggagacccc cagcccctgc aggggcgggg 780 840 cctccccacc acaccagccc tgttcgcgct ctcggcagtg ccgggggggcg ccgcctcccc catgeegeee teegggetge ggetgetgee getgetgeta eegetgetgt ggetaetggt 900 960 gctgacgcct ggcccgccgg ccgcgggact atccacctgc aagactatcg acatggagct ggtgaagegg aagegeateg aggeeateeg eggeeagate etgteeaage tgeggetege 1020 cagccccccg agccaggggg aggtgccgcc cggcccgctg cccgaggccg tgctcgccct 1080 gtacaacagc accegegace gggtggeegg ggagagtgea gaaceggage eegageetga 1140 ggccgactac tacgccaagg aggtcacccg cgtgctaatg gtggaaaccc acaacgaaat 1200 ctatgacaag ttcaagcaga gtacacacag catatatatg ttcttcaaca catcagagct 1260 ccgagaagcg gtacctgaac ccgtgttgct ctcccgggca gagctgcgtc tgctgaggag 1320 gctcaagtta aaagtggagc agcacgtgga gctgtaccag aaatacagca acaattcctg 1380

PCT/US03/13015 WO 03/090694

gcgatacctc	agcaaccggc	tgctggcacc	cagegaeteg	ccagagtggt	tatcttttga	1440
tgtcaccgga	gttgtgcggc	agtggttgag	ccgtggaggg	gaaattgagg	gctttcgcct	1500
tagcgcccac	tgctcctgtg	acagcaggga	taacacactg	caagtggaca	tcaacgggtt	1560
cactaccggc	cgccgaggtg	acctggccac	cattcatggc	atgaaccggc	ctttcctgct	1620
tctcatggcc	accccgctgg	agagggccca	gcatctgcaa	agctcccggc	accgccgagc	1680
cctggacacc	aactattgct	tcagctccac	ggagaagaac	tgctgcgtgc	ggcagctgta	1740
cattgacttc	cgcaaggacc	tcggctggaa	gtggatccac	gagcccaagg	gctaccatgc	1800
caacttctgc	ctcgggccct	gcccctacat	ttggagcctg	gacacgcagt	acagcaaggt	1860
cctggccctg	tacaaccagc	ataacccggg	cgcctcggcg	gcgccgtgct	gcgtgccgca	1920
ggcgctggag	ccgctgccca	tcgtgtacta	cgtgggccgc	aagcccaagg	tggagcagct	1980 ·
gtccaacatg	atcgtgcgct	cctgcaagtg	cagctgaggt	cccgccccgc	cccgccccgc	2040
cccggcaggc	ccggccccac	cccgccccgc	ccccgctgcc	ttgcccatgg	gggctgtatt	2100
taaggacacc	gtgccccaag	cccacctggg	gccccattaa	agatggagag	aggactgcgg	2160
atctctgtgt	cattgggcgc	ctgcctgggg	tctccatccc	tgacgttccc	ccactcccac	2220
tecetetete	tecetetetg	cctcctcctg	cctgtctgca	ctattccttt	gcccggcatc	2280
aaggcacagg	ggaccagtgg	ggaacactac	tgtagttaga	tctatttatt	gagcaccttg	2340
ggcactgttg	aagtgcctta	cattaatgaa	ctcattcagt	caccatagca	acactctgag	2400
atggcaggga	. ctctgataac	acccatttta	aaggttgagg	aaacaagccc	agagaggtta	2460
agggaggagt	tectgeceae	caggaacctg	ctttagtggg	ggatagtgaa	gaagacaata	2520
aaagatagta	gttcaggcca	ggcggggtgc	tcacgcctgt	aatcctagca	cttttgggag	2580
gcagagatgg	gaggatactt	gaatccaggo	atttgagacc	agcctgggta	acatagtgag	2640
accctatcto	: tacaaaacac	: ttttaaaaaa	tgtacacctg	tggtcccagc	: tactctggag	2700
gctaaggtgg	g gaggatcact	tgatcctggg	aggtcaaggc	: tgcag		2745
<210> 216 <211> 420 <212> DNI <213> Hor	04 A no sapiens					

<400> 216 caggacaggg aagagcgggc gctatgggga gccggacgcc agagtcccct ctccacgccg tgeagetgeg etggggeece eggegeegae eccegetegt geegetgetg ttgetgeteg

60 120

tgccgccgcc acccagggtc gggggcttca acttagacgc ggaggcccca gcagtactct cggggccccc gggctccttc ttcggattct cagtggagtt ttaccggccg ggaacagacg

240

180

280

gggtcagtgt gctggtggga gcacccaagg ctaataccag ccagccagga gtgctgcagg	300
gtggtgctgt ctacctctgt ccttggggtg ccagcccac acagtgcacc cccattgaat	360
ttgacagcaa aggctctcgg ctcctggagt cctcactgtc cagctcagag ggagaggagc	420
ctgtggagta caagteettg cagtggtteg gggeaacagt tegageeeat ggeteeteea	480
tettggeatg egetecaetg tacagetgge geacagagaa ggagecaetg agegaeeeeg	540
tgggcacctg ctacctctcc acagataact tcacccgaat tctggagtat gcaccctgcc	600
gctcagattt cagctgggca gcaggacagg gttactgcca aggaggcttc agtgccgagt	660
tcaccaagac tggccgtgtg gttttaggtg gaccaggaag ctatttctgg caaggccaga	720
tectgtetge caeteaggag cagattgeag aatettatta eecegagtae etgateaace	780
tggttcaggg gcagctgcag actcgccagg ccagttccat ctatgatgac agctacctag	840
gatactctgt ggctgttggt gaattcagtg gtgatgacac agaagacttt gttgctggtg	900
tgcccaaagg gaacctcact tacggctatg tcaccatcct taatggctca gacattcgat	960
ccctctacaa cttctcaggg gaacagatgg cctcctactt tggctatgca gtggccgcca	1020
cagacgtcaa tggggacggg ctggatgact tgctggtggg ggcacccctg ctcatggatc	1080
ggacccctga cgggcggcct caggaggtgg gcagggtcta cgtctacctg cagcacccag	1140
ccggcataga gcccacgccc acccttaccc tcactggcca tgatgagttt ggccgatttg	1200
geageteett gaceceetg ggggacetgg accaggatgg etacaatgat gtggeeateg	1260
gggctccctt tggtggggag acccagcagg gagtagtgtt tgtatttcct gggggcccag	1320
gagggctggg ctctaagcct tcccaggttc tgcagcccct gtgggcagcc agccacaccc	1380
cagacttett tggetetgee ettegaggag geegagaeet ggatggeaat ggatateetg	1440
atctgattgt ggggtccttt ggtgtggaca aggctgtggt atacaggggc cgccccatcg	1500
tgtccgctag tgcctccctc accatcttcc ccgccatgtt caacccagag gagcggagct	1560
gcagcttaga ggggaaccct gtggcctgca tcaaccttag cttctgcctc aatgcttctg	1620
gaaaacacgt tgctgactcc attggtttca cagtggaact tcagctggac tggcagaagc	1680
agaagggagg ggtacggcgg gcactgttcc tggcctccag gcaggcaacc ctgacccaga	1740
ccctgctcat ccagaatggg gctcgagagg attgcagaga gatgaagatc tacctcagga	1800
acgagtcaga atttcgagac aaactetege egatteacat egeteteaae tteteettgg	1860
acccccaagc cccagtggac agccacggcc tcaggccagc cctacattat cagagcaaga	1920
gccggataga ggacaaggct cagatettge tggactgtgg agaagacaac atetgtgtge	1980
ctgacctgca gctggaagtg tttggggagc agaaccatgt gtacctgggt gacaagaatg	2040
ccctgaacct cactttccat gcccagaatg tgggtgaggg tggcgcctat gaggctgagc	2100

ttcgggtcac	cgcccctcca	gaggctgagt	actcaggact	cgtcagacac	ccagggaact	2160
tctccagcct	gagctgtgac	tactttgccg	tgaaccagag	ccgcctgctg	gtgtgtgacc	2220
tgggcaaccc	catgaaggca	ggagccagtc	tgtggggtgg	ccttcggttt	acagtccctc	2280
atctccggga	cactaagaaa	accatccagt	ttgacttcca	gatcctcagc	aagaatctca	2340
acaactcgca	aagcgacgtg	gtttcctttc	ggctctccgt	ggaggctcag	gcccaggtca	2400
ccctgaacgg	tgtctccaag	cctgaggcag	tgctattccc	agtaagcgac	tggcatcccc	2460
gagaccagcc	tcagaaggag	gaggacctgg	gacctgctgt	ccaccatgtc	tatgagctca	2520
tcaaccaagg	ccccagctcc	attagccagg	gtgtgctgga	actcagctgt	ccccaggctc	2580
tggaaggtca	gcagctccta	tatgtgacca	gagttacggg	actcaactgc	accaccaatc	2640
accccattaa	cccaaagggc	ctggagttgg	atcccgaggg	ttccctgcac	caccagcaaa	2700
aacgggaagc	tccaagccgc	agctctgctt	cctcgggacc	tcagatcctg	aaatgcccgg	2760
aggctgagtg	tttcaggctg	cgctgtgagc	tegggeeeet	gcaccaacaa	gagagccaaa	2820
gtctgcagtt	gcatttccga	gtctgggcca	agactttctt	gcagcgggag	caccagccat	2880
ttagcctgca	gtgtgaggct	gtgtacaaag	ccctgaagat	gccctaccga	atcctgcctc	2940
ggcagctgcc	ccaaaaagag	cgtcaggtgg	ccacagctgt	gcaatggacc	aaggcagaag	3000
gcagctatgg	cgtcccactg	tggatcatca	tcctagccat	cctgtttggc	ctcctgctcc	3060
taggtctact	catctacatc	ctctacaagc	ttggattctt	caaacgctcc	ctcccatatg	3120
gcaccgccat	ggaaaaagct	cageteaage	ctccagccac	ctctgatgcc	tgagtcctcc	3180
caatttcaga	ctcccattcc	tgaagaacca	gtcccccac	cctcattcta	ctgaaaagga	3240
ggggtctggg	tacttcttga	aggtgctgac	ggccagggag	aagctcctct	ccccagccca	3300
gagacatact	tgaagggcca	gagccagggg	ggtgaggagc	: tggggatccc	tccccccat	3360
gcactgtgaa	ggacccttgt	: ttacacatac	cctcttcatg	gatgggggaa	ctcagatcca	3420
gggacagagg	cccagcctcc	ctgaagcctt	tgcattttgg	g agagtttcct	gaaacaactg	3480
gaaagataac	taggaaatco	attcacagtt	ctttgggcca	a gacatgccad	aaggacttcc	3540
tgtccagctc	caacctgcaa	a agatctgtco	tcagccttgo	cagagatcc	a aaagaagccc	3600
ccagtaagaa	cctggaacti	t ggggagttaa	a gacctggcag	g ctctggaca	g ccccaccctg	3660
gtgggccaac	: aaagaacact	t aactatgcat	ggtgccccag	g gaccagctca	a ggacagatgc	3720
cacaaggata	gatgctggc	c cagggccaga	a gcccagctco	c aaggggaat	agaactcaaa	3780
tggggccaga	tccagcctg	g ggtctggagt	t tgatctggaa	a cccagactc	a gacattggca	3840
ccaatccago	g cagatccag	g actatattt	g ggcctgctc	c agacctgat	c ctggaggccc	3900

agttcaccct	gatttaggag	aagccaggaa	tttcccagga	cctgaagggg	ccatgatggc	3960
aacagatctg	gaacctcagc	ctggccagac	acaggccctc	cctgttcccc	agagaaaggg	4020
gagcccactg	tcctgggcct	gcagaatttg	ggttctgcct	gccagctgca	ctgatgctgc	4080
ccctcatctc	tctgcccaac	ccttccctca	ccttggcacc	agacacccag	gacttattta	4140
aactctgttg	caagtgcaat	aaatctgacc	cagtgccccc	actgaccaga	actagaaaaa	4200
aaaa						4204
<210> 217 <211> 543 <212> DNA <213> Hom	o sapiens					
<400> 217	tttttttt	tttttttt	tttttttt	tcccaggtca	agtttaatac	60
aaaccacaaa	agattaaggg	ggggccctac	taatacatca	tacaaaccag	gggccggccc	120
ccaaccccaa	ctcaggccat	tcctaccaaa	ggaaaaaagg	gtggtctctc	cccccctgt	180
gggaaaggcc	ggccttgtga	aacaccacaa	ttcggctgaa	tctgaagtct	tgggttttac	240
taagggaaaa	. aaaaaatcca	aaaaagggtt	tgttctcatg	ggtgccccc	gcagcctggc	300
cctaaaacag	cccagcgctc	acttttgctg	ggaaaaatat	tetttgetet	ttgggacatc	360
aggcttgagg	ggatcactgo	caggtttcca	gccagctggg	cccacttccc	: catgtttgtc	420
agggaactgg	g aaggeetgaa	ctagtctcaa	agtctcatco	: acagagcggc	caacagggag	480
gtcatttcag	ggatctgccg	aagaacccct	tatcatcaat	gataagaggg	ccccgtgacg	540
aga						543
	34 A no sapiens					
<400> 218 aaaacagcta		c gcaaggagtt	ggagaccct	g cgggagcgc	t tcagcgaatc	60
gaccgccat	g ggegeetee	a ggcgtcccc	c agageetga	g aaagcgcct	e eegetgeeee	120
gacgcggcc	c teggecetg	g agctgaagg	t ggaggagct	g gaggagaag	g ggttaatccg	180
tattctgcg	g gggccgggg	g atgctgtct	c catcgagat	c ctccccgtc	g ctgtggcaac	240
teegagegg	c ggtgatgct	c cgactccgg	g ggtgccgac	c ggctccccc	a geceagatet	300
cgcacctgc	a gcagagccg	g ctcccggag	c agcgccacc	g cegeegeee	c cactgcccgg	360
cctcccctc	c ccgcaggaa	g ccccgccct	c tgcgcccc	a caggccccg	c ctctccctgg	420
anaaaaaaa	a cacacacat	a caccaccac	t gcccggaga	c ctaccaccc	c cacccccgcc	480

accgccacca	cctccgggca	ctgacgggcc	ggtgcctccg	ccgccgccgc	cgccgccgcc	540
gcctcccgga	ggtcctcctg.	atgccctagg	aagacgcgac	tcagaattgg	gcccaggagt	600
gaaggccaag	aagcccatcc	agactaagtt	ccgaatgcca	ctcttgaact	gggtggcact	660
gaaacccagc	cagatcaccg	gcactgtctt	cacagagete	aatgatgaga	aggtgctgca	720
ggagctagac	atgagtgatt	ttgaggaaca	gttcaagacc	aagtcccaag	gccccagcct	780
ggacctcagc	gctctcaaga	gtaaggcagc	ccagaaggcc	cccagcaagg	cgacactcat	840
tgaggccaac	cgggccaaga	acttggccat	caccctgcgg	aagggcaacc	tgggggccga	900
gcgcatctgc	caagccattg	aggcgtacga	cctgcaggct	ctgggcctgg	acttcctgga	960
gctgctgatg	cgcttcctgc	ccacagagta	tgagcgcagc	ctcatcaccc	gctttgagcg	1020
ggagcagcgg	ccaatggagg	agctgtcaga	ggaggaccgc	ttcatgctat	gcttcagccg	1080
catcccgcgc	ctgccggagc	gcatgaccac	actcaccttc	ctgggcaact	tcccggacac	1140
agcccagctg	ctcatgccgc	aactgaatgc	catcattgca	gcctcaatgt	ccatcaagtc	1200
ctctgacaaa	ctccgccaga	tcctggagat	tgtcctggcc	tttggcaact	acatgaacag	1260
tagcaagcgt	ggggcagcct	atggcttccg	gctccagagc	ctggatgcgc	tgttggagat	1320
gaagtcgact	gatcgcaagc	agacgctgct	gcactacctg	gtgaaggtca	ttgctgagaa	1380
gtacccgcaa	ctcacaggct	tccacagcga	cctgcacttc	ctggacaagg	cgggctcagt	1440
gtccctggac	agtgtcctgg	cggacgtgcg	ctccctgcag	cgaggcctag	agttgacaca	1500
gagagagttt	gtgcggcagg	atgactgcat	ggtgctcaag	gagttcctga	gggccaactc	1560
gcccaccatg	gacaagctgc	tggcagacag	caagacggct	caggaggcct	ttgagtctgt	1620
ggtggagtac	ttcggagaga	accccaagac	cacatcccca	ggcctgttct	tctccctctt	1680
tagccgcttc	attaaggcct	acaagaaagc	tgagcaggag	gtggaacagt	ggaaaaaaga	1740
agccgctgcc	caggaggcag	gcgctgatac	cccgggcaaa	ggggagcccc	cagcacccaa	1800
gtcaccgcca	aaggcccggc	ggccacagat	ggacctcatc	tctgagctga	aacggaggca	1860
gcagaaggag	ccactcattt	atgagagcga	. ccgtgatggg	gccattgaag	acatcatcac	1920
agatctgcgg	aaccagccct	acateegege	agacacaggc	cgccgcagtg	cccgtcggcg	1980
teceeeggge	cececaetge	aggtcacctc	: cgacctctcg	ctgtagccgc	tatttctgca	2040
ggtggattct	gcaggggtgt	ggggccgtgg	g acaggetgag	gctcaaggaa	ggtggtcctc	2100
agctcggctg	gccgggcago	ceetectees	g ctgtggcccg	cctcaaacgg	gctggtgcat	2160
cctcctcttg	gccacagagg	g gcagcatcgo	cegeceette	ccccaaatgc	tgcttgcagc	2220
acccacccta	aageceete	caaatagcca	tacttagcct	cagcaggagc	ctggcctgta	2280

2340

acttataaag tgcacctcgc ccccgcaagc cccagccccg aggaccgtcc atggacctta 2384 tttttatatg agattaataa agatgtttgc aaaagaaaaa aaaa <210> 219 <211> 2306 <212> DNA <213> Homo sapiens <400> 219 gggcgggagc tgcacgcgcc gtggctccgg atctcttcgt ctttgcagcg tacgcccgag 60 teggteageg eeggaggaee teageageea tgtegaagee eeatagtgaa geegggaetg 120 ccttcattca gacccagcag ctgcacgcag ccatggctga cacattcctg gagcacatgt 180 gccgcctgga cattgattca ccacccatca cagcccggaa cactggcatc atctgtacca 240 ttggcccagc ttcccgatca gtggagacgt tgaaggagat gattaagtct ggaatgaatg 300 tggctcgtct gaacttctct catggaactc atgagtacca tgcggagacc atcaagaatg 360 tgcgcacagc cacggaaagc tttgcttctg accectacct ctaccggccc gttgctgtgg 420 ctctagacac taaaggacct gagateegaa etgggeteat caagggeage ggeaetgeag 480 agctggagct gaagaaggga gccactctca aaatcacgct ggataacgcc tacatggaaa 540 agtgtgacga gaacatcctg tggctggact acaagaacat ctgcaaggtg gtggaagtgg 600 gcagcaagat ctacgtggat gatgggctta tttctctcca ggtgaagcag aaaggtgccg 660 acttectggt gacggaggtg gaaaatggtg geteettggg cagcaagaag ggtgtgaace 720 ttcctggggc tgctgtggac ttgcctgctg tgtcggagaa ggacatccag gatctgaagt 780 ttggggtcga gcaggatgtt gatatggtgt ttgcgtcatt catccgcaag gcatctgatg 840 tccatgaagt taggaaggtc ctgggagaga agggaaagaa catcaagatt atcagcaaaa 900 tcgagaatca tgagggggtt cggaggtttg atgaaatcct ggaggccagt gatgggatca 960 tggtggctcg tggtgatcta ggcattgaga ttcctgcaga gaaggtcttc cttgctcaga 1020 agatgatgat tggacggtgc aaccgagctg ggaagcctgt catctgtgct actcagatgc 1080 tggagagcat gatcaagaag ccccgcccca ctcgggctga aggcagtgat gtggccaatg 1140 cagtcctgga tggagccgac tgcatcatgc tgtctggaga aacagccaaa ggggactatc 1200 ctctggaggc tgtgcgcatg cagcacctga ttgcccgtga ggcagaggct gccatctacc 1260 acttgcaatt atttgaggaa ctccgccgcc tggcgcccat taccagcgac cccacagaag 1320 ccaccgccgt gggtgccgtg gaggcctcct tcaagtgctg cagtggggcc ataatcgtcc 1380 teaccaagte tggcaggtet geteaceagg tggccagata cegeceaegt gececeatea 1440 ttgctgtgac ccggaatccc cagacagctc gtcaggccca cctgtaccgt ggcatcttcc 1500

ctgtgctgtg	caaggaccca	gtccaggagg	cctgggctga	ggacgtggac	ctccgggtga	1560
actttgccat	gaatgttggc	aaggcccgag	gcttcttcaa	gaagggagat	gtggtcattg	1620
tgctgaccgg	atggcgccct	ggctccggct	tcaccaacac	catgcgtgtt	gttcctgtgc	1680
cgtgatggac	cccagagccc	ctcctccagc	ccctgtccca	ccccttccc	ccagcccatc	1740
cattaggcca	gcaacgcttg	tagaactcac	tctgggctgt	aacgtggcac	tggtaggttg	1800
ggacaccagg	gaagaagatc	aacgcctcac	tgaaacatgg	ctgtgtttgc	agcctgctct	1860
agtgggacag	cccagagcct	ggctgcccat	catgtggccc	cacccaatca	agggaagaag	1920
gaggaatgct	ggactggagg	cccctggagc	cagatggcaa	gagggtgaca	gcttcctttc	1980
ctgtgtgtac	tctgtccagt	tcctttagaa	aaaatggatg	cccagaggac	tcccaaccct	2040
ggcttggggt	caagaaacag	ccagcaagag	ttaggggcct	tagggcactg	ggctgttgtt	2100
ccattgaagc	cgactctggc	cctggccctt	acttgcttct	ctagctctct	aggcctctcc	2160
agtttgcacc	tgtccccacc	ctccactcag	ctgtcctgca	gcaaacactc	caccctccac	2220
cttccatttt	ccccactac	tgcagcacct	ccaggcctgt	tgctatagag	cctacctgta	2280
tgtcaataaa	caacagctga	agcacc				2306

<210> 220

<211> 4408

<212> DNA

<213> Homo sapiens

<400> 220 gggcgcggag gcgaccgcca tggcgttcct caaactccgt gaccagccat cactggtgca 60 agctatattt aacggagatc ctgatgaagt tcgagcacta atatttaaga aagaagatgt 120 taactttcag gacaatgaaa agcgaacccc attgcacgcc gcagcttacc ttggagatgc 180 agaaatcatt gaacttotta ttttatotgg agotagagtt aatgocaaag acagcaaatg 240 gttgacacct ttacacagag cagttgcatc ttgtagtgag gaagcagttc aggtactttt 300 gaagcattct gcagatgtta atgctcgaga caaaaattgg caaacccctt tacatatagc 360 420 tgctgctaat aaagctgtaa agtgtgctga agctttggta cctcttctga gtaatgtaaa cgtatctgat cgagcaggga ggactgcatt acatcatgca gctttcagtg gacatggtga 480 gatggtcaaa ctactcttgt ctagaggtgc caatattaat gcttttgaca agaaagatag 540 gcgtgctatc cattgggcag catatatggg tcacattgaa gtagtgaaat tgcttgtgtc 600 gcatggagct gaagtgacat gcaaggataa aaagtcttat acacctcttc atgcagcagc 660 ctctagtgga atgatcagcg tagtcaagta ccttctagat cttggagttg atatgaatga 720 accaaatgcc tatggaaata cacctcttca tgtagcctgc tataatggac aagatgttgt 780

agtgaatgaa cttatagact g	gtggtgctat (tgtgaatcaa	aagaatgaaa	aaggatttac	840
teetttgeac tttgetgetg	catcaacaca	tggagcattg	tgtttagagc	ttctagttgg	900
caatggggcc gatgtcaata t	gaagagtaa :	agatgggaaa	accccactac	acatgactgc	960
tctccacggt agattctccc g	gatcacaaac	cattatccag	agtggagctg	taatcgactg	1020
tgaggataag aatggaaata d	ccctttgca	catagcagca	cggtatggcc	atgagctgct	1080
gatcaacact cttattacaa g	gtggtgctga	cactgcaaag	cgtggcatac	atggaatgtt	1140
cccctccat ttggcagcct	taagcggctt	ttcagattgc	tgcagaaaac	ttctttcttc	1200
aggatttgat atagataccc	cagatgattt	tggcaggact	tgtctacatg	cagctgcagc	1260
tggagggaat ttggagtgcc	taaaccttct	gctgaatact	ggtgcagact	ttaataaaaa	1320
ggacaaattt gggagatctc	cactgcacta	cgctgctgcc	aactgcaatt	accagtgcct	1380
gtttgctctt gtgggatcag	gagcaagtgt	gaatgacctt	gatgaaagag	gctgcacacc	1440
cctgcactat gcagctacat	cagacacaga	tggcaagtgc	ctggaatact	tattaagaaa	1500
cgatgcaaat ccagggatcc	gtgataagca	aggatacaac	gcagttcatt	attcagctgc	1560
ttatggtcac cgtctatgtc	ttcagctgat	tgcaagtgaa	actcctctag	atgttttaat	1620
ggaaacctca ggaacagaca	tgctgagtga	ttcagataat	agagcaacaa	taagcccttt	1680
acacttggct gcctatcatg	gtcaccatca	agcactggaa	gtgttggtac	agtctttgtt	1740
agatcttgat gtcagaaata	gtagtggaag	aacaccccta	gatcttgcag	cttttaaggg	1800
ccatgttgaa tgtgtggatg	tactcattaa	tcagggagcc	tcaatcttag	taaaagatta	1860
cattttgaag aggacaccta	ttcatgcagc	agcaacaaat	ggtcattcag	aatgcttacg	1920
gctattaata ggaaatgcag	aaccacagaa	tgcagtggat	attcaagatg	gaaatggaca	1980
gacgcctctg atgctatctg	ttctcaacgg	gcacacagac	tgtgtttact	cattgctgaa	2040
caaaggagca aatgtagatg	ccaaagataa	gtggggaagg	acagcgttgc	atagaggggc	2100
agttacaggc catgaagaat	gtgtagatgc	attacttcaa	catggtgcta	agtgcttact	2160
tcgggatagc aggggccgga	cgcctataca	cctgtctgct	gcctgtggac	acattggtgt	2220
tcttggagcc cttttgcagt	cagcagcatc	tatggatgca	aatccagcca	. cagcagacaa	2280
tcatggatat acggcacttc	actgggcttg	ctacaatggt	cacgagacat	gtgtagaact	2340
gcttttagaa caggaagttt	tccagaaaac	ggaaggaaat	gcttttagtc	cattgcattg	2400
tgccgtgata aatgacaacg	aaggtgctgc	tgagatgtta	attgatacat	taggtgccag	2460
cattgtgaac gccacagatt	caaaaggaag	aactcctctc	catgcagcc <u>c</u>	, ccttcacaga	2520
ccatgtagag tgtttacagc	tgctgctcag	ccataatgct	caagtcaatt	ctgtggactc	2580
tacagggaaa acacctctta	tgatggctgc	agaaaatgga	caaacaaata	ı cagttgagat	2640

gctggttagc	agtgctagtg	cagaactgac	tttacaagat	aacagtaaaa	atactgccct	2700
ccatttggct	tgtagcaagg	gtcatgaaac	tagtgccttg	ttaatactgg	aaaagataac	2760
agatagaaac	ctcatcaatg	caaccaacgc	agccttgcaa	acacctctgc	atgttgctgc	2820
ccgaaatggg	ctaacaatgg	tggttcagga	acttttggga	aaaggagcaa	gtgtgcttgc	2880
agtagatgaa	aatggctata	ccccagcttt	ggcctgtgct	cccaataagg	atgtggctga	2940
ttgcctggct	ctcattttgg	ccaccatgat	gcctgtctca	tcaagtagtc	ctttatcatc	3000
cttaacattc	aatgccatta	accgttatac	caacacctca	aaaacagtca	gctttgaagc	3060
tttgcccatc	atgaggaatg	aacctagctc	ctattgcagt	ttcaataaca	ttggagggga	3120
acaggagtac	ttatacactg	acgtggatga	gctcaacgac	tccgattctg	agacctactg	3180
agaggctgag	gaggagggag	ttctcacagt	aaagcttcaa	actgtgcttt	ttcaggaaaa	3240
aggcactttg	atattcacgt	agaaattcaa	cctaagagga	aagatcccac	agtgagccaa	3300
tgttaagaga	tctgatggca	ttaggaggaa	gagttttaaa	ggaattctct	tctgaattcc	3360
ctgagggaat	tttctagaat	ctcagaattg	aaagagacct	gaggttcatc	cagtctctaa	3420
cctcttaaca	aatgcaggag	tcccttctac	aagggtgatc	tttccacctt	gaacacttcc	3480
aagtgactct	acctcaccaa	gcagtccatt	cagttgttga	gcagctctaa	ctgttagaaa	3540
ggtcttcctt	agatggagtt	gaagcctccc	tcccggtaac	ttctgtcttt	gggcctgggt	3600
ctgtcctcca	agagaaccct	gagaatgttg	gaaggatgaa	tctcgcacat	tctgccatgt	3660
cttctcttt	acaggctgtt	tgacttctct	gctgaagtga	tttccagaag	gactcatttg	3720
acacactatt	agatttacca	catctaatga	aatccaaggt	gtagctataa	agtgacaagc	3780
tgtttttaat	ttatcacata	caccagaact	tctatcctgc	atcacttata	tgtaaatgat	3840
gctgttacca	aaaacattaa	ggtagttctt	gcgaatgcca	ccccactaag	aaaactattt	3900
cattactttt	gtaatccatc	tgtgagagtc	tgcccccag	cttaaccact	tcctttgatc	3960
tgcacccaat	gaagggaaac	cccaaagtac	tgtctcaaat	ggtatttgaa	ctacgccagt	4020
attgttggaa	. taagtacatt	aattacttga	atgaatgaad	acagcaccgt	agaaatttcc	4080
tttatggtta	caccttgtat	gtctaaagca	ttcaggccct	gttctgtagt	gtttcttatc	4140
ctcacacaga	gtagaaaago	: ctgtttgctt	tatttaactt	atacataaaa	gatgacatct	4200
gaaatatctg	atgtgtatta	taataccago	: ttctgctcta	gaactacttt	gggtgaaatg	4260
gtggtaatag	caaatgacct	: cctttaacaa	gacactcato	tcaaacaat	g ccatttagtt	4320
caggagatct	ctaagtgtag	g ctgtaaattt	tggggttaat	ttggcttata	ttggaccttt	4380
.	aaagttttt	: aatgcaat				4408

			•			
<210> 221 <211> 479 <212> DNA <213> Home	o sapiens					
<400> 221 gtcagtagaa	ggtagctgtt	atttattgtt	ctattctggg	gtaaaggtat	cagattctca	60
aagggattct	taatctagaa	agtttgcgaa	gagatggcaa	aggtgtttga	aagctatcag	120
gaaaccatcc	tcgcgtaaaa	cgaagcagcg	ctacagaagt	gggctgccat	gggaatcggg	180
aggcccaggt	tccactgcta	acttgctgca	gcttactggg	tgatctgtaa	ataaaaaggg	240
aggtggcggt	ggtccgagct	ggcagccgca	atgcagcccc	aggtagatct	aggggcaaac	300
ggtaaaggcg	ctccgaggaa	gggcgagcgc	gcagcctctg	ggagactaca	cctcccaggc	360
tgccttgcgc	accgtgctgc	accctacgct	agcacgcgag	cctccccgtt	ccccaccct	420
ccagttactg	tctctcgcga	gaagacgggc	cgcgccggcg	atagcgattc	cgagcgagt	479
	o sapiens					
<400> 222 ggtactccgt	ggaaggcttc	atcgacaaga	acagagattt	cctcttccag	gacttcaagc	60
ggctgctgta	caacagcacg	gaccccactc	tacgggccat	gtggccggac	gggcagcagg	120
acatcacaga	ggtgaccaag	cgccccctga	cggctggcac	actcttcaag	aactccatgg	180
tggccctggt	ggagaacctt	gcctccaagg	agcccttcta	cgtccgctgc	atcaagccca	240
atgaggacaa	ggtagctggg	aagctggatg	agaaccactg	tcgccaccag	gtcgcatacc	300
tggggctgct	ggagaatgtg	agggtccgca	gggctggctt	cgcttcccgc	cagccctact	360
ctcgattcct	gctcaggtac	aagatgacct	gtgaatacac	atgggccaac	cacctgctgg	420
gctccgacaa	ggcagccgtg	agcgctctcc	tggagcagca	cgggctgcag	ggggacgtgg	480
cctttggcca	cagcaagctg	ttcatccgct	caccccggac	actggtcaca	ctggagcaga	540
, agccgagccc	gcctcatccc	catcattgtg	ctgctattgc	agaaggccac	tgacaatccc	600
acagcatcaa	gcctgtccgc	tcagcgacta	aagacacttc	aggacaaagc	atggcttcgg	660
ggctgtgctc	ttttccaagc	catgtccgca	aggtgaaccg	cttccacaag	atccggaacc	720
gggccctcct	gctcacagac	caggaactct	acaagctgga	ccctgaccgg	cagtaccgag	780
<210> 223						

<211> 543 <212> DNA <213> Homo sapiens

<400> 223 atggcagcag cggaggagga ggacg	ggggc cccgaagggc	caaatcgcga	gcggggcggg	60
gcgggcgcga ccttcgaatg taata	atatgt ttggagactg	ctcgggaagc	tgtggtcagt	120
gtgtgtggcc acctgtactg ttgg	catgt cttcatcagt	ggctggagac	acggccagaa	180
cggcaagagt gtccagtatg taaa	gctggg atcagcagag	agaaggttgt	cccgctttat	240
gggcgaggga gccagaagcc ccag	gatccc agattaaaaa	ctccaccccg	ccccagggc	300
cagagaccag ctccggagag caga	ggggga ttccagccat	ttggtgatac	cgggggcttc	360
cacttctcat ttggtgttgg tgct	tttccc tttggctttt	tcaccaccgt	cttcaatgcc	420
catgageett teegeegggg taca	ggtgtg gatctgggac	agggtcaccc	agcctccagc	480
tggcaggatt ccctcttcct gttt	ctcgcc atcttcttct	ttttttggct	gctcagtatt	540
tga				543
<210> 224 <211> 4764 <212> DNA <213> Homo sapiens				
<400> 224 ctgtcttggt acctgcggta gtag	cctggc tttgctctga	cggcgatctc	geggeeegag	60
agcettttat aggttgettt tece	ggggat gtgaaggata	cagaaatgac	tgtgaatcaa	120
cccatatcat caaggagctg ataa	tctagt ggaagagtta	gacgtgtgca	tacttcacta	180
tgatatgagg cagtctctga gctt	atattc tctgtggaag	atgtgacata	tccaggcgga	240
acatcatgat gcagggaaac acat	gtcaca gaatgtcgtt	ccacccggga	cgagggtgtc	300
cccgaggacg aggaggacat ggag	ccagac cctcagcacc	atcctttagg	ccccaaaatc	360
tgaggctgct tcaccctcag cago	ctcctg tgcaatatca	atatgaacct	ccaagtgccc	420
cttccaccac tttctcaaac tctc	cagece ccaattttct	ccctccacga	ccagactttg	480
taccettece eccacecatg cete	egteag egeaaggeed	tettecccc	tgcccaatca	540
ggccgccttt ccccaaccac caga	tgaggc accccttccc	agttcctcct	tgttttcctc	600
ccatgccacc accaatgcct tgto	cctaata accccccagt	ccctggggca	cctcctggac	660
aaggcacttt ccccttcatg atgo	eccete cetecatge	tcatcccccg	cccctccag	720
tcatgccgca gcaggttaat tato	eagtacc ctccgggcta	ttctcaccac	aacttcccac	780
ctcccagttt taatagtttc caga	aacaacc ctagttcttt	cctgcccagt	gctaataaca	840
gcagtagtee teattteaga cate	ctccctc catacccact	cccaaaggct	cccagtgaga	900
gaaggtcccc agaaaggctg aaa	cactatg atgaccacag	g gcaccgagat	cacagtcatg	960

ggcgaggtga	gaggcatcgg	tccctggatc	ggcgggagcg	aggccgcagt	cccgacagga	1020
gaagacaaga	cagccggtac	agatctgatt	atgaccgagg	gagaacacca	tetegecace	1080
gcagctacga	acggagcaga	gagcgagaac	gggagagaca	caggcatcga	gacaaccgaa	1140
gatcaccatc	tctggaaagg	tcctacaaaa	aagagtataa	gagatctgga	aggagttacg	1200
gtttatcggt	tgttcctgaa	cctgctggat	gcacaccaga	attacctggg	gagattatta	1260
aaaatacaga	ttcttgggcc	ccacccctgg	agattgtgaa	tcatcgctcc	ccaagtaggg	1320
agaagaagag	agctcgttgg	gaggaagaaa	aagaccgttg	gagtgacaac	cagagttctg	1380
gcaaagacaa	gaactatacc	tcaatcaagg	aaaaagagcc	cgaggagacc	atgcctgaca	1440
agaatgagga	ggaagaagaa	gaacttctta	agcctgtgtg	gattcgatgc	actcattcag	1500
aaaactacta	ctccagtgac	cccatggatc	aggtgggaga	ttctacagtg	gttggaacga	1560
gtaggcttcg	tgacttatat	gacaaatttg	aggaggagtt	ggggagcagg	caagaaaagg	1620
ccaaagctgc	teggeeteeg	tgggaacctc	caaagacgaa	gctcgatgaa	gatttagaga	1680
gttccagtga	atccgagtgt	gagtctgatg	aggacagcac	ctgttctagc	agctcagact	1740
ctgaagtttt	tgacgttatt	gcagaaatca	aacgcaaaaa	ggcccaccct	gaccgacttc	1800
atgatgaact	ttggtacaac	gatccaggcc	agatgaatga	tggaccactc	tgcaaatgca	1860
gcgcaaaggc	aagacgcaca	ggaattaggc	acagcattta	tcctggagaa	gaggccatca	1920
agccctgtcg	tcctatgacc	aacaatgctg	gcagactttt	ccactaccgg	atcacagtct	1980
ccccgcctac	gaacttttta	actgacaggc	caactgttat	agaatacgat	gatcacgagt	2040
atatctttga	aggattttct	atgtttgcac	atgccccct	gaccaatatt	ccactgtgta	2100
aagtaattag	attcaacata	gactacacga	ttcatttcat	tgaagagatg	atgccggaga	2160
atttttgtgt	gaaagggctt	gaactctttt	cactgttcct	attcagagat	attttggaat ,	2220
tatatgactg	gaatcttaaa	ggtcctttgt	ttgaagacag	ccctccctgc	tgcccaagat	2280
ttcatttcat	gccacgtttt	gtaagatttc	ttccagatgg	aggaaaggaa	gtgctgtcca	2340
tgcaccagat	tctcctgtac	ttgttaaggt	gcagcaaagc	cctggtgcct	gaggaggaga	2400
ttgccaatat	gcttcagtgg	gaggagctgg	agtggcagaa	atatgcagaa	gaatgcaaag	2460
gcatgattgt	taccaaccct	gggacgaaac	caagctctgt	ccgtatcgat	caactggatc	2520
gtgaacagtt	caaccccgat	gtgattactt	ttccgattat	cgtccacttt	gggatacgcc	2580
ctgcacagtt	gagttatgca	ggagacccac	agtaccaaaa	actgtggaag	agttatgtga	2640
aacttcgcca	cctcctagca	aatagtccca	aagtcaaaca	aactgacaaa	cagaagctgg	2700
cacagaggga	ggaagccctc	caaaaaatac	ggcagaagaa	tacaatgaga	cgagaagtaa	2760
cggtggagct	aagtagccaa	ggattctgga	aaactggcat	ccgttctgat	gtctgtcagc	2820

atgcaatgat	gctacctgtt	ctgacccatc	atatccgcta	ccaccaatgc	ctaatgcatt	2880
tggacaagtt	gataggatat	actttccaag	atcgttgtct	gttgcagctg	gccatgactc	2940
atccaagtca	tcatttaaat	tttggaatga	atcctgatca	tgccaggaat	tcattatcta	3000
actgtggaat	teggeagece	aaatacggag	acagaaaagt	tcatcacatg	cacatgcgga	3060
agaaagggat	taacaccttg	ataaatatca	tgtcacgcct	tggccaagat	gacccaactc	3120
cctcgaggat	taaccacaat	gaacggttgg	aattcctggg	tgatgctgtt	gttgaatttc	3180
tgaccagcgt	ccatttgtac	tatttgtttc	ctagtctgga	agaaggagga	ttagcaacct	3240
atcggactgc	cattgttcag	aatcagcacc	ttgccatgct	agcaaagaaa	cttgaactgg	3300
atccatttat	gctgtatgct	cacgggcctg	acctttgtag	agaatcggac	cttcgacatg	3360
caatggccaa	ttgttttgaa	gcgttaatag	gagctgttta	cttggaggga	agcctggagg	3420
aagccaagca	gttatttgga	cgcttgctct	ttaatgatcc	ggacctgcgc	gaagtctggc	3480
tcaattatcc	tctccaccca	ctccaactac	aagagccaaa	tactgatcga	caacttattg	3540
aaacttctcc	agttctacaa	aaacttactg	agtttgaaga	agcaattgga	gtaattttta	3600
ctcatgttcg	acttctggca	agggcattca	cattgagaac	tgtgggattt	aaccatctga	3660
ccctaggcca	caatcagaga	atggaattcc	taggtgactc	cataatgcaa	ctggtagcca	3720
cagagtactt	attcattcat	ttcccagatc	atcatgaagg	acacttaact	ttgttgcgaa	3780
gctctttggt	gaataataga	actcaggcca	aggtagcgga	ggagctgggc	atgcaggagt	3840
acgccataac	caacgacaag	accaagaggc	ctgtggcgct	tcgcaccaag	accttggcgg	3900
accttttgga	atcatttatt	gcagcgctgt	acactgataa	ggatttggaa	tatgttcata	3960
ctttcatgaa	tgtctgcttc	tttccacgat	tgaaagaatt	cattttgaat	caggattgga	4020
atgaccccaa	atcccagctt	cagcagtgtt	gcttgacact	taggacagaa	ggaaaagagc	4080
cagacattcc	tctgtacaag	actctgcaga	cagtgggccc	atcccatgcc	cgaacctaca	4140
ctgtggctgt	ttatttcaag	ggagaaagaa	taggctgtgg	gaaaggacca	agtattcagc	4200
aagcggaaat	gggagcagca	atggatgcgc	ttgaaaaata	taattttccc	cagatggccc	4260
atcagaagcg	gttcatcgaa	cggaagtaca	gacaagagtt	aaaagaaatg	aggtgggaaa	4320
gagagcatca	agagagagag	ccagatgaga	ctgaagacat	caagaaataa	aggagggcat	4380
gcaagtgtgg	agtatttact	tgctcagtaa	ctgtgactgt	tgtctattga	gacctagcct	4440
agttttcctg	cagacaatga	acgaagtgtg	ctcattgaaa	taaaatacag	agtcaaatcg	4500
ctattgttgt	tttaatgatc	tgtttttagc	tggatggtct	ttattacaaa	gtattagatt	4560
tttcttctat	ttaacggaaa	acttgacttt	ggtgaatgtg	cattacttcc	ttttattttg	4620

60

ctctttaaat aataaaattc aagaagcata ttctatgtgg aatagatcct gtttttccat 4680 ctgtgtccca gattgtgacc ctagactttc aattgacaag taaaaaattg actttactag 4740 4764 taaaaaaaa aaaaaaaaa aaaa

225 <210>

2488 <211>

<212> DNA

Homo sapiens

<400> 225

cctgtcgccg ccgcctcggg cgggtgggct gactggcggc aggctcgccg cggcgcggag teceggetge gggatagace gagggeeatg geegeetete eeggaeeege eggegttgge 120 ggcgccggag cagtctacgg ctccggctct tcgggcttcg ccctcgactc gggactggag 180 atcaaaactc gctcggtgga gcagacgcta ctcccgctgg tttctcagat caccacgctt 240 attaatcata aagataatac caaaaagtct gataaaactc tgcaagcaat tcagcgtgta 300 ggacaagctg tcaacttggc agttggaaga tttgttaaag taggagaagc tatagccaat 360 420 gaaaactggg atttgaaaga agaaataaat attgcttgta ttgaagctaa acaagcagga 480 gaaacaattg cagcacttac agacataacc aacttgaacc atctggaatc tgatgggcag atcacaattt ttacagacaa aacaggagtg ataaaggctg caagattact tctttcttca 540 gtgacaaaag tgttgttgct ggcagaccga gtagtcatta aacagataat aacatcaaga 600 aataaggttc tcgcaactat ggaaagacta gagaaagtga atagctttca agagtttgtc 660 caaatattca gaatttggaa atgaaatggt ggagtttgca catctgagtg gagatagaca 720 aaatgatttg aaagatgaaa agaaaaaggc aaaaatggca gcagctaggg cagttcttga 780 aaagtgtaca atgatgcttc tcacagcttc aaagacatgt ctgaggcatc ctaactgcga 840 900 atcagcccat aaaaacaaag aaggagtatt tgaccgtatg aaagtggcat tggataaggt 960 cattgaaatt gtgactgact gtaaaccgaa tggagagact gacatttcat ctatcagtat ttttactgga attaaggaat tcaagatgaa tattgaagct cttcgggaga atctttattt 1020 tcagtccaaa gagaaccttt ctgtgacatt ggaagtcatc ttggagcgta tggaggactt 1080 tactgattct gcctacacca gccatgagca cagagaacgc atcttggaac tgtcaactca 1140 ggcgagaatg gaactgcagc agttaatttc tgtgtggatt caagctcaaa gcaagaaaac 1200 aaaaagcatc gctgaagaac tggaactcag tattttgaaa atcagtcaca gtcttaatga 1260 1320 acttaagaaa gaacctcata gtacagcgac acagctggca gcagatctat taaaatacca 1380 tgctgatcat gtggttctaa aagcattaaa acttactgga gtagaaggaa atttagaagc 1440 tttggctgaa tatgcctgta aactctctga acagaaagag cagcttgttg agacctgtcg

293

attgttacga	cacatatctg	ggacagaacc	tctggaaata	acctgtatac	atgcagagga	1500
gacatttcag	gtgattggcc	aacagataat	ttctgctgct	gaaacattga	cattgcatcc	1560
atctagtaaa	attgctaaag	aaaacctaga	tgtattttgt	gaagcttggg	aatcccaaat	1620
tagtgacatg	tcaacactgc	tgagagaaat	caatgacgtg	tttgaaggaa	gacgaggaga	1680
gaagtatggc	tacctttcac	ttccaaagcc	aatgaagaat	aatgcaaacc	tgaaatcatt	1740
aaagccagac	aagcctgact	ctgaggagca	agccaagata	gcaaagcttg	gacttaagct	1800
gggtttgctc	acctctgacg	ctgactgcga	aattgagaag	tgggaagatc	aggagaatgg	1860
gattgttcaa	tatggacgga	acatgtccag	tatggcctat	tctctgtatt	tatttactag	1920
aggagagggg	ccactgaaaa	cttcccagga	tttaattcat	caactagagg	tttttgctgc	1980
agagggttta	aagcttactt	ccagtgttca	agctttttca	aaacagctga	aagacgatga	2040
caagcttatg	cttctcctgg	aaataaacaa	gctaattcct	ctatgccacc	agetecagae	2100
agtaactaag	acttctttgc	agaataaagt	atttctaaag	gttgacaagt	gtattacgaa	2160
gacaagatcc	atgatggctc	tcttagtcca	acttctttca	ctttgttata	aactgctgaa	2220
gaagcttcag	atggaaaata	acggatgggt	ctcagttaca	aataaggaca	ctatggatag	2280
taaaacttga	gaagcttttg	gggtcagatc	tctggaacat	catgtgatga	agctgacatt	2340
tttaaaaatc	aaatgatcct	ttatcttttc	agaaattcat	caattttata	aagaaaacaa	2400
tattgaaatt	ttgctctatt	ttctgatcat	gaaactgatt	gtaaagcttt	ttgacaacta	2460
ataaatgtct	tggtaattgc	tagattct				2488

<210> 226

<211> 1849

<212> DNA

<213> Homo sapiens

<400> 226

60 ctggaacccg gaagcggcag cgcggcgcga cccggcgggc gggctctggg cgcgggaatc ceggeggate eeggeggge ggatgacece eagecetace ettggtgeeg eetceteete 120 teteetttet eeteeggeag ceagegegee tgtgteetet etaggaaggg gtaggggagg 180 ggcgtctgga gaggaccccc cgcgaatgcc cacgtgacgt gcagtccccc tggggctgtt 240 ceggeetgeg gggaacatgg gegtgeteag ggteggaetg tgeeetggee ttacegagga 300 gatgatccag cttctcagga gccacaggat caagacagtg gtggacctgg tttctgcaga 360 cctggaagag gtagctcaga aatgtggctt gtcttacaag gccctggttg ccctgaggcg 420 480 ggtgctgctg gctcagttct cggctttccc cgtgaatggc gctgatctcc acgaggaact gaagacetet actgecatee tgtecactgg cattggcagt cttgataaac tgcttgatge 540

PCT/US03/13015 WO 03/090694

•						
tggtctctat a	actggagaag	tgactgaaat	tgtaggaggc	ccaggtagcg	gcaaaactca	600
ggtatgtctc t	tgtatggcag	caaatgtggc	ccatggcctg	cagcaaaacg	tcctatatgt	660
agattccaat	ggagggctga	cagetteeeg	cctcctccag	ctgcttcagg	ctaaaaccca	720
ggatgaggag (gaacaggcag	aagctctccg	gaggatccag	gtggtgcatg	catttgacat	780
cttccagatg	ctggatgtgc	tgcaggagct	ccgaggcact	gtggcccagc	aggtgactgg	840
ttcttcagga	actgtgaagg	tggtggttgt	ggactcggtc	actgcggtgg	tttccccact	900
tctgggaggt	cagcagaggg	aaggcttggc	cttgatgatg	cagctggccc	gagagctgaa	960
gaccctggcc	cgggaccttg	gcatggcagt	ggtggtgacc	aaccacataa	ctcgagacag	1020
ggacagcggg	aggctcaaac	ctgccctcgg	acgctcctgg	agctttgtgc	ccagcactcg	1080
gattctcctg	gacaccatcg	agggagcagg	agcatcaggc	ggccggcgca	tggcgtgtct	1140
ggccaaatct	tcccgacagc	caacaggttt	ccaggagatg	gtagacattg	ggacctgggg	1200
gacctcagag	cagagtgcca	cattacaggg	tgatcagaca	tgacctgtgc	tgttgtttgg	1260
gaaacaggga	agcattgggg	acccctccca	acttttcttc	ccagtaacgc	ctgctgttta	1320
ctgccacctg	gcactggtga	ctacagacgt	tctcaggctg	gccagaagag	acatcttggg	1380
ttccttggcc	tcactctctg	taagcatata	aaccacaggc	gaaagaggat	gctgcattgc	1440
gaggacccag	aaattcatac	tggtgccacg	tttccttccc	ttatttctaa	cgtgtatgtt	1500
tctggtggaa	accaagttca	ccctggctgg	gagcatctct	gatgaggcat	gctggcgact	1560
ggatggataa	tcctgtgcat	caccattgtg	tcctgtgctc	cctcctagcg	cagtggccaa	1620
gccgggaaag	cctctaactt	gcctttgctg	ctgctgcctt	ttttttcttt	tgtetetgee	1680
tttccatttg	ttagatgggg	gcccactctt	ccttagctct	gtctctgagt	tactgggtgg	1740
aaataagctt	ataaatgaaa	tactcttctt	catctctgtt	ttgctcttaa	aaatataaaa	1800
aggcaattcc	ccgaaaaaaa	aaaaaaaaaa	a aaaaaaaaa	a aaaaaaaaa		1849

<210> 227

<211> 486

<212> DNA

<213> Homo sapiens

tggtgactca catctgtagt ctcagcattt tgggaggcaa aggcgggtgg atcgcctgag 60 cccggggatt gagaccagct gggcaatgtg gcgaaaaccc gtctctacaa aaaatacaaa 120 aattagccat agggatgggg gtgggaggat ggcttgagcg caggagatcg aggctgcagc 180 agtgaactga gactgcgcta cggcaatcca gcctgggcaa cagagtgagt ccctgtctcc 240 aaaaagtgga tgtaagaaga aaaaaatcaa atgaagatta aattccaaac tcctatgcca 300

actcctctgt	cttcactact	agagtgtaga	ttggactcag	atactccatg	gctatgatga	360
gagcaggtaa	acttgctggg	ctttcctcca	cgagttttat	tctataagag	taatccacat	420
cccagggaca	gtcacaatga	cctacggctt	tagctgtccc	tgcggtgggt	catgtcttat	480
acccgg						486
<210> 228 <211> 286 <212> DNA <213> Home	o sapiens					
<400> 228	ttttttaggt	tcagcactgg	cctctgaaaa	tggccttgcc	caggtctcca	60
aggagtgaag	ggtagtagtg	aggtgcagag	atactggtga	accgaatact	gggacatgtt	120
aaaagagatg	tctacctgac	agactctttc	cccagacctc	catctccctc	taccactagc	180
ctacacgttc	aaattaacct	ctcctgttct	tttccttatg	ttatagggtg	atcgcacaac	240
ctgcatcttt	agtgctttct	tgtcagtggc	gttgggcctc	gtgccg		286
<210> 229 <211> 167 <212> DNA <213> Hom	7				·	
<400> 229 cgggggtttt	gatcttcttc	cccttcttt	cttccccttc	: ttctttcctt	cctccctccc	60
tctctcattt	cccttctcct	tctccctcag	tctccacatt	caacattgac	: aagtccattc	120
agaaaagcaa	gctgcttctg	gttgggccca	gacctgcctt	gaggagcctg	, tagagttaaa	180
aaatgaacco	cacggatata	gcagatacca	. ccctcgatga	a agcatatac	: agcaattact	240
atctgtatga	aagtatcccc	: aagccttgca	ccaaagaagg	g catcaaggca	a tttggggagc	300
tetteetgee	cccactgtat	tecttggttt	ttgtatttgg	g tetgettgga	a aattctgtgg	360
tggttctggt	cctgttcaaa	tacaagcgg	c tcaggtccat	gactgatgt	g tacctgctca	420
accttgccat	ctcggatctg	g ctcttcgtgt	ttteeetee	tttttgggg	c tactatgcag	480
cagaccagt	g ggtttttggg	g ctaggtctg	t gcaagatgat	t ttcctggate	g tacttggtgg	540
gcttttacag	g tggcatatto	tttgtcatg	c tcatgagca	t tgatagata	c ctggcgatag	600
					c accagtttgg	660
					c acttgttata	720
					g acgtggaagg	780
					g atcatgctgt	840
tttgctact	c catgatcat	c aggaccttg	c agcattgta	a aaatgagaa	g aagaacaagg	900

cggtgaagat	gatctttgcc	gtggtggtcc	tcttccttgg	gttctggaca	ccttacaaca	960
tagtgctctt	cctagagacc	ctggtggagc	tagaagtcct	tcaggactgc	acctttgaaa	1020
gatacttgga	ctatgccatc	caggccacag	aaactctggc	ttttgttcac	tgctgcctta	1080
atcccatcat	ctacttttt	ctgggggaga	aatttcgcaa	gtacatccta	cagctcttca	1140
aaacctgcag	gggccttttt	gtgctctgcc	aatactgtgg	gctcctccaa	atttactctg	1200
ctgacacccc	cagctcatct	tacacgcagt	ccaccatgga	tcatgatctt	catgatgctc	1260
tgtaggaaaa	atgaaatggt	gaaatgcaga	gtcaatgaac	ttttccacat	tcagagctta	1320
ctttaaaatt	ggtatttta	ggtaagagat	ccctgagcca	gtgtcaggag	gaaggcttac	1380
acccacagtg	gaaagacagc	ttctcatcct	gcaggcagct	ttttctctcc	cactagacaa	1440
gtccagcctg	gcaagggttc	acctgggctg	aggcatcctt	cctcacacca	ggcttgcctg	1500
caggcatgag	tcagtctgat	gagaactctg	agcagtgctt	gaatgaagtt	gtaggtaata '	1560
ttgcaaggca	aagactattc	ccttctaacc	tgaactgatg	ggtttctcca	gagggaattg	1620
cagagtactg	gctgatggag	taaatcgcta	ccttttgctg	tggcaaatgg	geeeceg	1677

<210> 230

<211> 3464

<212> DNA

<213> Homo sapiens

<400> 230 cagccgtgct cgaagcgttc ctggagccca agctctcctc cacaggtgaa gacagggcca 60 gcaggagaca ccatggggca cctctcagcc ccacttcaca gagtgcgtgt accetggcag 120 gggcttctgc tcacagcctc acttctaacc ttctggaacc cgcccaccac tgcccagctc 180 actactgaat ccatgccatt caatgttgca gaggggaagg aggttcttct ccttgtccac 240 300 aatctgcccc agcaactttt tggctacagc tggtacaaag gggaaagagt ggatggcaac 360 cgtcaaattg taggatatgc aataggaact caacaagcta ccccagggcc cgcaaacagc ggtcgagaga caatataccc caatgcatcc ctgctgatcc agaacgtcac ccagaatgac 420 acaggattct acaccctaca agtcataaag tcagatcttg tgaatgaaga agcaactgga 480 cagttccatg tatacccgga gctgcccaag ccctccatct ccagcaacaa ctccaaccct 540 600 gtggaggaca aggatgctgt ggccttcacc tgtgaacctg agactcagga cacaacctac ctgtggtgga taaacaatca gagcctcccg gtcagtccca ggctgcagct gtccaatggc 660 720 aacaggaccc tcactctact cagtgtcaca aggaatgaca caggacccta tgagtgtgaa 780 atacagaacc cagtgagtgc gaaccgcagt gacccagtca ccttgaatgt cacctatggc ccggacaccc ccaccatttc cccttcagac acctattacc gtccaggggc aaacctcagc 840

	ctctcctgct a	atgcagcctc	taacccacct	gcacagtact	cctggcttat	caatggaaca	900
	ttccagcaaa g	gcacacaaga	gctctttatc	cctaacatca	ctgtgaataa	tagtggatcc	960
	tatacctgcc a	acgccaataa	ctcagtcact	ggctgcaaca	ggaccacagt	caagacgatc	1020
	atagtcactg	agctaagtcc	agtagtagca	aagccccaaa	tcaaagccag	caagaccaca	1080
	gtcacaggag	ataaggactc	tgtgaacctg	acctgctcca	caaatgacac	tggaatctcc	1140
	atccgttggt	tcttcaaaaa	ccagagtctc	ccgtcctcgg	agaggatgaa	gctgtcccag	1200
	ggcaacacca	ccctcagcat	aaaccctgtc	aagagggagg	atgctgggac	gtattggtgt	1260
	gaggtcttca	acccaatcag	taagaaccaa	agcgacccca	tcatgctgaa	cgtaaactat	1320
	aatgctctac	cacaagaaaa	tggcctctca _.	cctggggcca	ttgctggca <u>t</u>	tgtgattgga	1380
	gtagtggccc	tggttgctct	gatagcagta	gccctggcat	gttttctgca	tttcgggaag	1440
	accggcaggg	caagcgacca	gcgtgatctc	acagagcaca	aaccctcagt	ctccaaccac	1500
	actcaggacc	actccaatga	cccacctaac	aagatgaatg	aagttactta	ttctaccctg	1560
	aactttgaag	cccagcaacc	cacacaacca	acttcagcct	ccccatccct	aacagccaca	1620
	gaaataattt	attcagaagt	aaaaaagcag	taatgaaacc	tgtcctgctc	actgcagtgc	1680
	tgatgtattt	caagtctctc	accctcatca	ctaggagatt	cctttcccct	ctagggtaga	1740
	ggggtgggga	cagaaacaac	tttctcctac	tetteettee	taataggcat	ctccaggctg	1800
	cctggtcact	gcccctctct	cagtgtcaat	agatgaaagt	acattgggag	tctgtaggaa	1860
	acccaacctt	cttgtcattg	aaatttggca	. aagctgactt	tgggaaagag	ggaccagaac	1920
•	ttcccctccc	ttcccctttt	cccaacctgg	acttgtttta	aacttgcctg	ttcagagcac	1980
	tcattccttc	ccacccccag	tcctgtccta	tcactctaat	teggatttge	catageettg	2040
	aggttatgtc	cttttccatt	aagtacatgt	gccaggaaac	: agcgagagag	g agaaagtaaa	2100
	cggcagtaat	gcttctccta	tttctccaaa	gccttgtgtg	g aactagcaaa	gagaagaaaa	2160
	ccaaatatat	aaccaatagt	gaaatgccac	aggtttgtcc	actgtcaggg	ttgtctacct	2220
	gtaggatcag	ggtctaagca	ı ccttggtgct	tagctagaat	accacctaat	ccttctggca	2280
	agcctgtctt	cagagaacco	actagaagca	a actaggaaaa	a atcacttgco	c aaaatccaag	2340
	gcaattcctg	atggaaaatg	g caaaagcaca	a tatatgtttt	aatatcttta	a tgggctctgt	2400
	tcaaggcagt	gctgagaggg	g aggggttata	a gcttcaggag	g ggaaccagct	tctgataaac	2460
	acaatctgct	aggaacttgg	g gaaaggaat	c agagagctgo	c ccttcagcga	a ttatttaaat	2520
	tattgttaaa	gaatacacaa	a tttggggta	t tgggatttt	t ctccttttc	t ctgagacatt	2580
	ccaccatttt	aatttttgta	a actgcttat	t tatgtgaaa	a gggttattt	t tacttagctt	2640

•	
agctatgtca gccaatccga ttgccttagg tgaaagaaac caccgaaatc cctcaggtcc	2700
cttggtcagg agcctctcaa gatttttttt gtcagaggct ccaaatagaa aataagaaaa	2760
ggttttcttc attcatggct agagctagat ttaactcagt ttctaggcac ctcagaccaa	2820
tcatcaacta ccattctatt ccatgtttgc acctgtgcat tttctgtttg cccccattca	2880
ctttgtcagg aaaccttggc ctctgctaag gtgtatttgg tccttgagaa gtgggagcac	2940
cctacaggga cactatcact catgctggtg gcattgttta cagctagaaa gctgcactgg	3000
tgctaatgcc ccttgggaaa tggggctgtg aggaggagga ttataactta ggcctagcct	3060
cttttaacag cctctgaaat ttatcttttc ttctatgggg cttataaatg tatcttataa	3120
taaaaaggaa ggacaggagg aagacaggca aatgtactte teacecagte ttetacacag	3180
atggaatete tttggggeta agagaaaggt tttattetat attgettace tgateteatg	3240
ttaggcctaa gaggctttct ccaggaggat tagcttggag ttctctatac tcaggtacct	3300
ctttcagggt tttctaaccc tgacacggac tgtgcatact ttccctcatc catgctgtgc	3360
tgtgttattt aatttttcct ggctaagatc atgtctgaat tatgtatgaa aattattcta	3420
tgtttttata ataaaaataa tatatcagac atcgaaaaaa aaaa	3464
<210> 231 <211> 329 <212> DNA <213> Homo sapiens	
<400> 231 gtagagacga atcttcccct gttgcccagg ctggattctt aggctcaagc gatcctcccc	60
gctcatcttc aaagtctttg ttgaggctgt tcccacctcc ctggactctt gattagcgga	120
aaaggaagca gcagcaagaa gacctaggcc ccagcagcaa gaggaaagca ggcagtggca	180
gaaggccata gtcctgggtt cagagctgac tcccttcaca cccgaggttg ctgtctctgg	240
ttctccttcc ctgacatagg ctggaaaaag cttgagtctc catggggctg gcagagaaga	300
tgaaggctgg tggtgaaatg gcttcagga	329
<210> 232 <211> 2240 <212> DNA <213> Homo sapiens	
<400> 232 tgggactggt cgcctgactc ggcctgccc agcctctgct tcaccccact ggtggccaaa	60
tagecgatgt ctaateceee acacaagete ateceeggee tetgggattg ttgggaatte	120
tetecetaat teaegeetga ggeteatgga gagttgetag acetgggaet geeetgggag	180
gegeacacaa ccaggeeggg tggeageeag gaceteteee atgteeetge ttttettggg	240

acagccatgg	ctccaaagcc	gaagccctgg	gtacagactg	agggccctga	gaagaagaag	300
ggccggcagg	caggaaggga	ggaggacccc	ttccgctcca	ccgctgaggc	cctcaaggcc	360
atacccgcag	agaagcgcat	aatccgcgtg	gatccaacat	gtccactcag	cagcaacccc	420
gggacccagg	tgtatgagga	ctacaactgc	accctgaacc	agaccaacat	cgagaacaac	480
aacaagaagt	tctacatcat	ccagctgctc	caagacagca	accgcttctt	cacctgctgg	540
aaccgctggg	gccgtgtggg	agaggtcggc	cagtcaaaga	tcaaccactt	cacaaggcta	600
gaagatgcaa	agaaggactt	tgagaagaaa	tttcgggaaa	agaccaagaa	caactgggca	660
gagcgggacc	actttgtgtc	tcacccgggc	aagtacacac	ttatcgaagt	acaggcagag	720
gatgaggccc	aggaagctgt	ggtgaaggtg	gacagagccc	cagtgaggac	tgtgactaag	780
cgggtgcagc	cctgctccct	ggacccagcc	acgcagaagc	tcatcactaa	catcttcagc	840
aaggagatgt	tcaagaacac	catggccctc	atggacctgg	atgtgaagaa	gatgcccctg	900
ggaaagctga	gcaagcaaca	gattgcacgg	ggtttcgagg	ccttggaggc	gctggaggag	960
gccctgaaag	gccccacgga	tggtggccaa	agcctggagg	agctgtcctc	acacttttac	1020
accgtcatcc	cgcacaactt	cggccacagc	cagcccccgc	ccatcaattc	ccctgagctt	1080
ctgcaggcca	agaaggacat	gctgctggtg	ctggcggaca	tcgagctggc	ccaggccctg	1140
caggcagtct	ctgagcagga	gaagacggtg	gaggaggtgc	cacaccccct	ggaccgagac	1200
taccagcttc	tcaagtgcca	gctgcagctg	ctagactctg	gagcacctga	gtacaaggtg	1260
atacagacct	acttagaaca	gactggcagc	aaccacaggt	gccctacact	tcaacacatc	1320
tggaaagtaa	accaagaagg	ggaggaagac	agattccagg	cccactccaa	actgggtaat	1380
cggaagctgc	tgtggcatgg	caccaacatg	gccgtggtgg	ccgccatcct	cactagtggg	1440
ctccgcatca	tgccacattc	tggtgggcgt	gttggcaagg	gcatctactt	tgcctcagag	1500
aacagcaagt	cagctggata	tgttattggc	atgaagtgtg	gggcccacca	tgtcggctac	1560
atgttcctgg	gtgaggtggc	cctgggcaga	gagcaccata	tcaacacgga	caaccccagc	1620
ttgaagagcc	cacctcctgg	cttcgacagt	gtcattgccc	gaggccacac	cgagcctgat	1680
ccgacccagg	acactgagtt	ggagctggat	ggccagcaag	tggtggtgcc	ccagggccag	1740
cctgtgccct	gcccagagtt	cagcagctcc	acattctccc	agagcgagta	cctcatctac	1800
caggagagcc	agtgtcgcct	gcgctacctg	ctggaggtcc	acctctgagt	gcccgccctg	1860
tcccccgggg	tcctgcaagg	ctggactgtg	atcttcaatc	atcctgccca	tctctggtac	1920
ccctatatca	ctccttttt	tcaagaatac	aatacgttgt	tgttaactat	agtcaccatg	1980
ctgtacaaga	tccctgaact	tatgcctcct	aactgaaatt	ttgtattctt	tgacacatct	2040

gcccagtccc tctcctccca	gcccatggta	accagcattt	gactctttac	ttgtataagg	2100
gcagctttta taggttccac	atgtaagtga	gatcatgcag	tgtttgtctt	tctgtgcctg	2160
gcttatttca ctcagcataa	tgtgcaccgg	gttcacccat	gttttcataa	atgacaagat	2220
ttcctcctca aaaaaaaaa					2240
<210> 233 <211> 4517 <212> DNA <213> Homo sapiens					
<400> 233 acacaaattt cagagaacaa	tttcaacatt	gttctgtcga	acgttatact	cagtcctgaa	60
ccacattact ttcctgtcta					120
caggcgtgtg tggtagagtt					180
aaaacatcaa ttgactttgt					240
atggagaaaa aatggaaata					300
ggagtttggg aaaaaacagt		•			360
gtcaacctga cctgccaaac					420
gtcaccaata agatagacct					480
tatgggagac cctgtgagtc					540
tggactctgc acttaaggaa					600
gttctgtatc cagagggcat					660
acagcagatg aatggaacag					720
ataccatgct ttcaaaatag					780
gtggaggata atggaactca					840
acattactta aagatagagt					900
caaatetteg atgatgggeg					960
ttgaggagct ccaccacagt					1020
aataactcca cggatgtctt					1080
cccaaagcaa atatcacatg					1140
atatatatta ctaatgaaga					1200
ttaacaaggg tacatagtaa					1260
getetgtete cagteccage					1320
ctcttaggtt ctgaaatttc					1380

gacacccaac cttctccagc	cagcagtgta	tctcctgcaa	gatatccagc	tacatcttca	1440
gtgacccttg tagatgtgag	tgccttgagg	ccaaacacca	ctcctcaacc	cagcaattcc	1500
agtatgacta cccgaggctt	caactatccc	tggacctcca	gtgggacaga	taccaaaaaa	1560
tcagtttcac ggatacctag	tgaaacatac	agttcatccc	cctcaggtgc	aggctcaaca	1620
cttcatgaca atgtctttac	cagcacagcc	agagcatttt	cagaagtccc	cacaactgcc	1680
aatggatcta cgaaaactaa	tcacgtccat	atcactggta	ttgtggtcaa	taagcccaaa	1740
gatggaatgt cctggccagt	gattgtagca	gctttactct	tttgctgcat	gatattgttt	1800
ggtcttggag tgagaaaatg	gtgtcagtac	caaaaagaaa	taatggaaag	acctccacct	1860
ttcaagccac caccacctcc	catcaagtac	acttgcattc	aagagcccaa	cgaaagtgat	1920
ctgccttatc atgagatgga	gaccctctag	tctcgtgaga	ctttgcccca	tggcagaact	1980
ctgctggaat cctattgaga	aggtagacat	tgtgctttat	taatatagtc	gctcttcagc	2040
catgcctttg ctgcagctga	aatggaagtc	agaagtgagt	gacctgtttt	cccagcaact	2100
caccctcttt catctccaaa	cgcctgaagc	ttaaccaaga	gtgagaggat	atgtcatgtt	2160
cacactcaat gcaattcgta	gtggttttct	tgcttattgt	aagaagtaca	tattagtctg	2220
ccatctttaa aaaaaataca	gtattttcat	ttaaattctc	tgatggaggg	acaacaatgg	2280
tttcaactgt atgcccatgc	ctgatcctct	tatttgaaca	tctatcaaca	ttgtaaactc	2340
tttgccaaaa tcctggggct	ttgctgcatt	ccctaagata	attataggaa	aaagaaaatg	2400
taaaagtgct aacaaggctg	ccaagtaatg	gagaagtatg	gttagccttc	atattgaaat	2460
tctgttgctt attttcatgg	aaggaaacag	aatactttgc	acaggaacca	cattttcaat	2520
cctccttcac tgtcttccta	ccatgttcag	cccagactcc	tgccacatgg	accaggatga	2580
agagggatca aagagataat	tagccaaaaa	cccagtagcc	tagaagatac	aaaactccac	2640
tggcctctaa aattatatta	gccaagagtg	gtttcatttg	agtgccttcg	tgtgtatgtc	2700
catcaaactg gaaccaaact	gttttgtaag	taaacaggca	gcctaagccc	aaccctactt	2760
tctaattccg gttattctct	ttttcatctg	gggatttacc	tgttcattta	atctgcctgt	2820
tttgatctgt tttgaaaaag	ataaagagcc	tcaaatcaga	ccagcactga	ttaattaacc	2880
ctgctcctac caatctttt	taaagcagtt	gaagcagaat	gtataggtgt	cagagaagaa	2940
acctagtcag ccagacgtgo	: tctgtattca	gcaatagttt	gtgaatgaat	aaattactaa	3000
tcctccttgt cgcttgaaac	cttcccacac	tccctgctcc	aggagggaaa	aacagatgtt	3060
gttgacagat agagtgatag	gcaaattetg	tgtggacttt	agtcccaaaa	ggaaacttta	3120
gttcacttgc agtatgctta	tccttgactg	cacatgagaa	tgccttgtgc	agagttattt	3180
ggagattatg tctttttctt	: aaacaccatg	gctgtcacac	ttcagttcaa	ttaaatcaga	3240

atgtctgagg agtgag	gacac aggcatcaac	actctcaaat	gattcacatg	ttcagccaaa	3300
gttgagaacc atcga	gcctg tggaagttct	ttctcatggc	tcagaatctt	aggtaggtgc	3360
ttaactcttg tggtg	gccag cctccaagat	gagccccagt	gttcttgcct	cctactattc	3420
acatctttat gtggt	cccct ccaatgctga	atacagatga	tttgtgtaac	ctgaggccag	3480
gattaaggtg aggca	atcaa tgtacctagg	gaaaaaattt	aaggaggtat	tcacactcag	3540
ggtcatgcac ttgca	caatg ttgagaatga	gtaccactct	caccattggt	atagccaaaa	3600
aaagcttgga agtga	ccaag gctaggtcac	aaaatacact	gtggcttctt	ctttgatctc	3660
tctttgacca tactg	gacact gggaaaagcc	cattcccatg	ccatgaagac	accaaggcag	3720
ccctattgag aaatc	tacct gtcgtggccg	ggcgcagtgg	ctcacgcctg	taatcccagc	3780
actttgggag gccga	nggtgg gtggatcacg	aggtcaggag	atcgagacca	tcctggctaa	3840
cacagtgaaa ccccg	gtetet actaaaaata	caaaaattag	ccgggtgtgg	tgtcgggcac	3900
ctgtagtccc agcta	actcag gaggctgagg	caggagaagg	gtgggaaccc	gggaggcaga	3960
gcttgcagtg agccg	gagatt gtgccactgc	acactccaat	ctgggtgaaa	gaccgagact	4020
ccgcctcaaa aaaaa	aaaaaa aaagaaagaa	agaaagaaag	aaagaaagaa	atctacctgt	4080
caaggaacta aggta	attttg ctaacaagca	ccaacttgcc	agccatgtaa	gggagccatc	4140
ttggaagcag atcct	ccagc ctccagtcaa	gtcttcagat	aattgcaact	tcagttgatc	4200
ttttgaccaa gacct	caaga gagccagaac	tacccagcta	agccttttac	taaatttctg	4260
aacttctaac actat	tagat aataagtgct	tattgtttaa	caccattaat	tttgagtata	4320
atttgttaca tagcg	gacaga taactataca	gctcaacaac	tagaaaaata	aactgtttac	4380
ctgccttaat tattt	tatctt tagttcctta	ttagttctca	agaaacaaat	gctagcttca	4440
tatgtatggc tgttg	gctttg cttcatgtgt	atggctattt	gtatttaaca	agacttaatc	4500
atcagtaatt tgtat	tac				4517
010 004					
<210> 234 <211> 990					
<212> DNA <213> Homo sapi	iens				
<400> 234	caatat tatcaccatt	· tattttatta	ctccaottct	tecagetata	60
	tggatt cttgtgccc				120
	cttcct agcaccacca				180
•					240
	tccaga gagccctggt				300
aacatgeaga caeti	tggtgg acttatgtta	. Guggggttg	LLALACTAGG	geecagegg	500

```
tcagtgctag tatttatgta tgttaaccca cgctgtgctt tggattcagg ctatttcaaa
                                                                     360
                                                                      420
ttttagataa tatggtacat atattattaa taccactagt tactacattg gtacttttca
gcaaaatata tctaagtggg atcaaatgag actgtaaata gctttacatc agttcaggtc
                                                                      480
agttatgttg ctaaattact tttggcatta agtttaggga aaaaaaatgg gtttgggatt
                                                                      540
tttggtttca acatttgtga ttgagagact atggacctgt aataagtcca agaacagcag
                                                                      600
ttgcagtgta acaggactgt tactggaatc gggtcattta gaaacagtca gacttcgctg
                                                                      660
tgtgcatgtg ggttagggaa gccagggcac cacctcaggt cctttagaac tgtcaggctg
                                                                      720 -
aagccatage gattggaatt ccaggaatct ctcccattgt ggtggccggt gcggggtgca
                                                                      780
cacacaccac gggcgacact ctctggagat tgagaattcc ccttgaaaaa aaaagaattt
                                                                      840
tccgcgggaa aggcggttct gaaacacaaa agagttaaca gacaccaaaa cggagtcacc
                                                                      900
ggccgacaac ggaaactctg tctctaccac catgtgacag acgcgttgat gcgtccaaag
                                                                      960
                                                                      990
aaacgcggcg aacaacaacc atatcatcag
```

```
<210> 235
<211> 2088
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (292)..(324)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (490)..(501)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (688)..(696)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (949)..(966)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
      (1720)..(1734)
<222>
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (1834)..(1860)
<223> n is a, c, g, t or u
```

<220>
<221> misc_feature
<222> (1984)..(1992)
<223> n is a, c, g, t or u

<400> 235 caagaccaaa agactgtcag gaaggcagag tgcagagcaa tccactgtcc aagaccacac 60 gacttcgaga acggggaata ctggccccgg tctccctact acaatgtgag tgatgagatc 120 tctttccact gctatgacgg ttacactctc cggggctctg ccaatcgcac ctgccaagtc 180 aatggccgat ggagtgggca gacagcgatc tgtgacaacg gagcggggta ctgctccaac 240 ccgggcatcc ccattggcac aaggaaggtg ggcagccagt accgccttga gnnnnnnnn 300 nnnnnnnn nnnnnnnnn nnnnaccetg egtggeteec ageggegaac gtgteaggaa 360 420 qqtqqctctt ggagcgggac ggagccttcc tgccaagact ccttcatgta cgacacccct caagaggtgg ccgaagcttt cctgtcttcc ctgacagaga ccatagaagg agtcgatgct 480 gaggatgggn nnnnnnnnnn ngaacaacag aagcggaaga tcgtcctgga cccttcaggc 540 tccatgaaca tctacctggt gctagatgga tcagacagca ttggggccag caacttcaca 600 ggagccaaaa agtgtctagt caacttaatt gagaagctgg caagttatgg tgtgaagcca 660 agatatggtc tagtgacata tgccacannn nnnnnnattt gggtcaaagt gtctgaagca 720 gtcagcagta atgcagactg ggtcacgaag cagctcaatg aaatcaatta tgaagaccac 780 aagttgaagt cagggactaa caccgaagaa gccctccaag cagtgtacag catgatgagc 840 900 tggccagatg acgtccctcc tgaaggctgg aaccgcaccc gccatgtcat catcctcatg actgatggat tgcacaacat gggcggggac ccaattactg tcattgatnn nnnnnnnnn 960 1020 nnnnntaca ttggcaagga tcgcaaaaac ccaagggagg attatctgga tgtctatgtg 1080 tttggggtcg ggcctttggt gaaccaagtg aacatcaatg ctttggcttc caagaaagac aatgagcaac atgtgttcaa agtcaaggat atggaaaacc tggaagatgt tttctaccaa 1140 atgatcgatg aaagccagtc tctgagtctc tgtggcatgg tttgggaaca caggaagggt 1200 1260 accgattacc acaagcaacc atggcaggcc aagatctcag tcattcgccc ttcaaagggc cacgagaget gtatggggge tgtggtgtet gagtaetttg tgetgaeage ageaeattgt 1320 1380 ttcactgtgg atgacaagga acactcaatc aaggtcagcg taggagggga gaagcgggac 1440 ctagagatag aagtagtact atttcacccc aactacaaca ttaatgggaa aaaagaagca ggaattcccg aattttatga ctatgacgtt gccctgatca agctcaagaa taagctgaaa 1500 tatggccaga ctatcaggcc catttgtctc ccctgcaccg agggaacaac tcgagctttg 1560 aggetteete caactaccae ttgecageaa caaaaggaag agetgeteee tgeacaggat 1620

```
atcaaagctc tgtttgtgtc tgaggaggag aaaaagctga ctcggaagga ggtctacatc
                                                                   1680
aagaatgggg ataagaaagg cagctgtgag agagatgctn nnnnnnnnn nnnntatgac
                                                                   1740
aaagtcaagg acatctcaga ggtggtcacc cctcggttcc tttgtactgg aggagtgagt
                                                                   1800
ccctatgctg accccaatac ttgcagaggt gatnnnnnn nnnnnnnnn nnnnnnnnn
                                                                   1860
agaagtegtt teatteaagt tggtgtaate agetggggag tagtggatgt etgeaaaaae
                                                                    1920
cagaagegge aaaageaggt accegeteae geeegagaet tteacateaa eetettteaa
                                                                    1980
gtgnnnnnn nnctgaagga gaaactccaa gatgaggatt tgggttttct ataaggggtt
                                                                    2040
tcctgctgaa caggggcgtg ggattgaatt aaaacagctg cgacaaca
                                                                    2088
<210> 236
<211> 111
<212> DNA
<213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (62)..(62)
 <223> n is a, c, g, t or u
 <220>
 <221> misc feature
 <222> (66)..(67)
 <223> n is a, c, g, t or u
 <220>
 <221> misc feature
 <222> (86)..(86)
 <223> n is a, c, g, t or u
 <220>
 <221> misc_feature
 <222> (90)..(91)
 <223> n is a, c, g, t or u
 <220>
 <221> misc_feature
 <222> (100)..(101)
 <223> n is a, c, g, t or u
 gcaacaggat ccggtttatt ctgccttcag gtggtcctga gagtggtggg tgccaccctg
                                                                       60
 tneggnnegg agagaggee egaggnagtn naggeeaatn ngggagaage a
                                                                      111
  <210> 237
  <211> 841
  <212> DNA
  <213> Homo sapiens
  <400> 237
  gaaccgttta ctcgctgctg tgcccatcta tcagcaggct ccgggctgaa gattgcttct
                                                                        60
```

cttctctcct	ccaaggtcta	gtgacggagc	ccgcgcgcgg	cgccaccatg	cggcagaagg	120
cggtatcgct	tttcttgtgc	tacctgctgc	tcttcacttg	cagtggggtg	gaggcaggtg	180
agaatgcggg	taaggatgca	ggtaagaaaa	agtgctcgga	gagctcggac	agcggctccg	240
ggttctggaa	ggccctgacc	ttcatggccg	tcggaggagg	actcgcagtc	gccgggctgc	300
ccgcgctggg	cttcaccggc	gccggcatcg	cggccaactc	ggtggctgcc	tcgctgatga	360
gctggtctgc	gatcctgaat	gggggcggcg	tgcccgccgg	ggggctagtg	gccacgctgc	420
agagcctcgg	ggctggtggc	agcagcgtcg	tcataggtaa	tattggtgcc	ctgatgggct	480
acgccaccca	caagtatctc	gatagtgagg	aggatgagga	gtagccagca	gctcccagaa	540
cctcttcttc	cttcttggcc	taactcttcc	agttaggatc	tagaactttg	ccttttttt	600
tttttttt	ttttttgag	atgggttctc	actatattgt	ccaggctaga	gtgcagtggc	660
tattcacaga	tgcgaacata	gtacactgca	gcctccaact	cctagcctca	agtgatcctc	720
ctgtctcaac	ctcccaagta	ggattacaag	catgcgccga	cgatgcccag	aatccagaac	780
tttgtctatc	actctcccca	acaacctaga	tgtgaaaaca	gaataaactt	cacccagaaa	840
a						841

<210> 238

<211> 1326

<212> DNA

<213> Homo sapiens

238 <400> atggaaggag acttctcggt gtgcaggaac tgtaaaagac atgtagtctc tgccaacttc 60 120 accetecatg aggettactg cetgeggtte etggteetgt gteeggagtg tgaggageet 180 gtccccaagq aaaccatgga ggagcactgc aagcttgagc accagcaggt tgggtgtacg atgtgtcagc agagcatgca gaagtcctcg ctggagtttc ataaggccaa tgagtgccag 240 gagcgccctg ttgagtgtaa gttctgcaaa ctggacatgc agctcagcaa gctggagctc 300 360 cacgagtect actgtggeag eeggacagag etetgeeaag getgtggeea gtteateatg caccgcatgc tcgcccagca cagagatgtc tgtcggagtg aacaggccca gctcgggaaa 420 480 ggggaaagaa tttcagctcc tgaaagggaa atctactgtc attattgcaa ccaaatgatt 540 ccagaaaata agtatttcca ccatatgggt aaatgttgtc cagactcaga gtttaagaaa 600 cactttcctg ttggaaatcc agaaattctt ccttcatctc ttccaagtca agctgctgaa aatcaaactt ccacgatgga gaaagatgtt cgtccaaaga caagaagtat aaacagattt 660 720 cctcttcatt ctgaaagttc atcaaagaaa gcaccaagaa gcaaaaacaa aaccttggat 780 ccacttttga tgtcagagcc caagcccagg accagctccc ctagaggaga taaagcagcc

tatgacattc tgaggagatg t	ttctcagtgt	ggcatcctgc	ttcccctgcc	gatcctaaat	840
caacatcagg agaaatgccg	gtggttagct	tcatcaaaaa	ggaaaacaag	tgagaaattt	900
cagctagatt tggaaaagga	aaggtactac	aaattcaaaa	gatttcactt	ttaacactgg	960
cattcctgcc tacttgctgt g	ggtggtcttg	tgaaaggtga	tgggttttat	tcgttgggct	1020
ttaaaagaaa aggtttggca	gaactaaaaa	caaaactcac	gtatcatctc	aatagataca	1080
gaaaaggctt ttgataaaat	tcaacttgac	ttcatgttaa	aaaccctcaa	caaaccaggc	1140
gtcgaaggaa catacctcaa	aataataaga	gccatctatg	acaaaaccac	agccaacatc	1200
atactgaatg agcaaaagct	ggagcattac	tcttgagaag	tagaacaagg	cacttcagtc	1260
ctattcaaca tagtactgga	agtctcgcca	cagcaatcag	gcaagagaaa	gaagtaaaag	1320
gcaccc					1326
<210> 239 <211> 2439 <212> DNA <213> Homo sapiens					
<400> 239 gatacttctg gcgagcgcgg	ttgctgtttc	ttctcaggct	cagggaccgg	ccgcggcccc	60
gtagggtgtt ttaactcaaa	tgggtgatga	aaaggactct	tggaaagtga	aaactttaga	120
tgaaattctt caggaaaaga	aacgaaggaa	ggaacaagag	gagaaagcag	agataaaacg	180
cttaaaaaat tctgatgacc	gggattccaa	gcgggattcc	cttgaggagg	gggagctgag	240
agatcactgc atggagatca	caataaggaa	ctccccgtat	agaagagaag	actcaatgga	300
agacagagga gaagaagatg	attctttggc	catcaaacca	ccccagcaaa	tgtcttggaa	360
agaaaaagtt catcacagaa	aagatgaaaa	gaggaaagaa	aaatgtaggc	atcatagcca	420
ttcagcagaa ggggggaagc	atgctagagt	gaaagaaaga	gagcacgaac	gtcggaaacg	480
acatcgagaa gaacaggata	aagctcgccg	ggaatgggaa	agacagaaga	gaagggaaat	540
ggcaagggag cattccagga	gagaaaggga	ccgcttggag	cagttagaaa	ggaagcggga	600
gcgggagcgc aagatgcggg	agcagcagaa	ggagcagcgg	gagcagaagg	agcgcgagcg	660
gcgggcggag gagcggcgca	aggagcggga	ggcccgcagg	gaagtgtctg	cacatcaccg	720
aacgatgaga gaggactaca	gcgacaaagt	gaaagccagc	cactggagtc	gcagcccgcc	780
teggeegeeg egggageggt	tcgagttggg	agacggccgg	aagccagtaa	aagaagagaa	840
aatggaagaa agggacctgc	tgtccgactt	acaggacatc	agcgacagcg	agaggaagac	900
cageteggee gagteetegt	cagcagaatc	aggctcaggt	tctgaggaag	aagaggagga	960

1020

ggaggaagag gaggaggagg aagggagcac cagtgaagaa tcagaggagg aagaggaaga

ggaggaggag	gagaccggca	gcaactctga	ggaggcatca	gagcagtctg	ccgaagaagt	1080
aagtgaggaa	gaaatgagtg	aagatgaaga	acgagaaaat	gaaaaccacc	tcttggttgt	1140
tccagagtca	cggttcgacc	gagattccgg	ggagagtgaa	gaagcagagg	aagaagtggg	1200
tgagggaacg	ccgcagagca	gcgccctgac	agagggcgac	tatgtgcccg	actcccctgc	1260
cctgttgccc	atcgagctca	agcaggagct	gcccaagtac	ctgccggccc	tgcagggctg	1320
ccggagcgtc	gaggagttcc	agtgcctgaa	caggatcgag	gagggcacct	atggagtggt	1380
ctacagagca	aaagacaaga	aaacagatga	aattgtggct	ctaaagcggc	tgaagatgga	1440
gaaggagaag	gagggcttcc	cgatcacgtc	cctgagggag	atcaacacca	tcctcaaggc	1500
ccagcatccc	aacattgtca	ccgttagaga	gattgtggtg	ggcagcaaca	tggacaagat	1560
ctacatcgtg	atgaactatg	tggagcacga	cctcaagagc	ctgatggaga	ccatgaaaca	1620
gcccttcctg	ccaggggagg	tgaagaccct	gatgatccag	ctgctgcgtg	gggtgaaaca	1680
cctgcacgac	aactggatcc	tgcaccgtga	cctcaagacg	tccaacctgc	tgctgagcca	1740
cgccggcatc	ctcaaggtgg	gtgattttgg	gctggcgcgg	gagtacggat	cccctctgaa	1800
ggcctacacc	ccggtcgtgg	tgacccagtg	gtaccgcgcc	ccagagctgc	tgcttggtgc	1860
caaggaatac	tccacggccg	tggacatgtg	gtcagtgggc	tgcatcttcg	gggagctgct	1920
gactcagaag	cctctgttcc	ccgggaattc	ggaaatcgat	cagatcaaca	aagtgttcaa	1980
ggagctgggg	acccccagtg	agaaaatctg	gcccggctac	agtgagctcc	cagtagtcaa	2040
gaagatgacc	ttcagcgagc	acccctacaa	caacctccgc	aagcgcttcg	gggctctgct	2100
ctcagaccag	ggcttcgacc	tcatgaacaa	gttcctgacc	tacttccccg	ggaggaggat	2160
cagcgctgag	gacggcctca	agcatgagta	tttccgcgag	accccctcc	ccatcgaccc	2220
ctccatgttc	cccacgtggc	ccgccaagag	cgagcagcag	cgtgtgaagc	ggggcaccag	2280
cccgaggccc	cctgagggag	gcctgggcta	cagccagctg	ggtgacgacg	acctgaagga	2340
gacgggcttc	caccttacca	ccacgaacca	gggggcctct	gccgcgggcc	ccggcttcag	2400
cctcaagttc	tgaaggtcag	agtggacccc	gtcatgggg			2439

<210> 240

<211> 675

<212> DNA

<213> Homo sapiens

<400> 240

atggaaggat gtggaactgt ccttgcccat cctcgctatt tgcagcacca cattaaatac 60 cagcatttgc tgaagaagaa atatgtatgt ccccatccct cctgtggacg actcttcagg 120 cttcagaagc aacttctgcg acatgccaaa catcatacag atcaaaggga ttatatctgt 180

gaatattgtg ctcgggcctt	caagagttcc	cacaatctgg	cagtgcaccg	gatgattcac	240
actggcgaga agccattaca	atgtgagatc	tgtggattta	cttgtcgaca	aaaggcatct	300
cttaattggc acatgaagaa	acatgatgca	gactccttct	accagttttc	ttgcaatatc	360
tgtggcaaaa aatttgagaa	gaaggacagc	gtagtggcac	acaaggcaaa	aagccaccct	420
gaggtgctga ttgcagaagc	tctggctgcc	aatgcaggcg	ccctcatcac	cagcacagat	480
atcttgggca ctaacccaga	gtccctgacg	cagccttcag	atggtcaggg	tcttcctctt	540
cttcctgagc ccttgggaaa	ctcaacctct	ggagagtgcc	tactgttaga	agctgaaggg	600
atgtcaaagt catactgcag	tgggacggaa	cgggtgaagc	ctgatggctg	atgcggcacg	660
atcttgcggg caagg					675
<210> 241 <211> 4670 <212> DNA <213> Homo sapiens <400> 241					
geggegegea caetgetege	tgggccgcgg	ctcccgggtg	tcccaggccc	ggccggtgcg	60
cagagcatgg cgggtgcggg	cccgaagcgg	cgcgcgctag	cggcgccggc	ggccgaggag	120
aaggaagagg cgcgggagaa	gatgctggcc	gccaagagcg	cggacggctc	ggcgccggca	180
ggcgagggcg agggcgtgac	cctgcagcgg	aacatcacgc	tgctcaacgg	cgtggccatc	240
atcgtgggga ccattatcgg	ctcgggcatc	ttcgtgacgc	ccacgggcgt	gctcaaggag	300
gcaggctcgc cggggctggc	gctggtggtg	tgggccgcgt	gcggcgtctt	ctccatcgtg	360
ggcgcgctct gctacgcgga	gctcggcacc	accatctcca	aatcgggcgg	cgactacgcc	420
tacatgctgg aggtctacgg	ctcgctgccc	gccttcctca	agctctggat	cgagctgctc	480
atcatccggc cttcatcgca	gtacatcgtg	gccctggtct	tcgccaccta	cctgctcaag.	540
ccgctcttcc ccacctgccc	ggtgcccgag	gaggcagcca	agctcgtggc	ctgcctctgc	600
gtgctgctgc tcacggccgt	gaactgctac	agcgtgaagg	ccgccacccg	ggtccaggat	660
gcctttgccg ccgccaagct	cctggccctg	gccctgatca	tectgetggg	cttcgtccag	720
atcgggaagg gtgatgtgtc	caatctagat	cccaacttct	catttgaagg	caccaaactg	780
gatgtgggga acattgtgct	ggcattatac	agcggcctct	ttgcctatgg	aggatggaat	840
tacttgaatt tcgtcacaga	ggaaatgatc	aacccctaca	gaaacctgcc	cctggccatc	900
atcatctccc tgcccatcgt	gacgctggtg	tacgtgctga	ccaacetggc	ctacttcacc	960
accctgtcca ccgagcagat	gctgtcgtcc	gaggccgtgg	ccgtggactt	cgggaactat	1020
cacctgggcg tcatgtcctg	gatcatcccc	gtcttcgtgg	gcctgtcctg	cttcggctcc	1080

gtcaatgggt	ccctgttcac	atcctccagg	ctcttcttcg	tggggtcccg	ggaaggccac	1140
ctgccctcca	tcctctccat	gatccaccca	cageteetea	ccccgtgcc	gtccctcgtg	1200
ttcacgtgtg	tgatgacgct	gctctacgcc	ttctccaagg	acatcttctc	cgtcatcaac	1260
ttcttcagct	tcttcaactg	gctctgcgtg	gccctggcca	tcatcggcat	gatctggctg	1320
cgccacagaa	agcctgagct	tgagcggccc	atcaaggtga	acctggccct	gcctgtgttc	1380
ttcatcctgg	cctgcctctt	cctgatcgcc	gtctccttct	ggaagacacc	cgtggagtgt	1440
ggcatcggct	tcaccatcat	cctcagcggg	ctgcccgtct	acttcttcgg	ggtctggtgg	1500
aaaaacaagc	ccaagtggct	cctccagggc	atcttctcca	cgaccgtcct	gtgtcagaag	1560
ctcatgcagg	tggtccccca	ggagacatag	ccaggaggcc	gagtggctgc	cggaggagca	1620
tgcgcagagg	ccagttaaag	tagatcacct	cctcgaaccc	actccggttc	cccgcaaccc	1680
acageteage	tgcccatccc	agtccctcgc	cgtccctccc	aggtcgggca	gtggaggctg	1740
ctgtgaaaac	tctggtacga	atctcatccc	tcaactgagg	gccagggacc	caggtgtgcc	1800
tgtgctcctg	cccaggagca	gcttttggtc	teettgggee	ctttttccct	tccctccttt	1860
gtttacttat	atatatattt	tttttaaact	taaattttgg	gtcaacttga	caccactaag	1920
atgattttt	aaggagctgg	gggaaggcag	gagccttcct	tteteetgee	ccaagggccc	1980
agaccctggg	caaacagagc	tactgagact	tggaacctca	ttgctacgac	agacttgcac	2040
tgaagccgga	cagctgccca	gacacatggg	cttgtgacat	tcgtgaaaac	caaccctgtg	2100
ggcttatgtc	tctgccttag	ggtttgcaga	gtggaaactc	agccgtaggg	tggcactggg	2160
agggggtggg	ggatctgggc	aaggtgggtg	attcctctca	ggaggtgctt	gaggccccga	2220
tggactcctg	accataatcc	tagccctgag	acaccatcct	gagccaggga	acagccccag	2280
ggttgggggg	tgccggcatc	tcccctagct	caccaggcct	ggcctctggg	cagtgtggcc	2340
tcttggctat	ttctgtgtcc	agttttggag	gctgagttct	ggttcatgca	gacaaagccc	2400
tgtccttcag	tcttctagaa	acagagacaa	gaaaggcaga	cacaccgcgg	ccaggcaccc	2460
atgtgggcgc	ccaccctggg	ctccacacag	cagtgtcccc	tgccccagag	gtcgcagcta	2520
ccctcagcct	ccaatgcatt	ggcctctgta	ccgcccggca	gccccttctg	gccggtgctg	2580
ggttcccact	cccggcctag	gcacctcccc	gctctccctg	tcacgctcat	gtcctgtcct	2640
ggtcctgatg	cccgttgtct	aggagacaga	gccaagcact	gctcacgtct	ctgccgcctg	2700
cgtttggagg	cccctgggct	ctcacccagt	ccccacccgc	ctgcagagag	ggaactaggg	2760
caccccttgt	ttctgttgtt	cccgtgaatt	tttttcgcta	tgggaggcag	ccgaggcctg	2820
gccaatgcgg	cccactttcc	tgagctgtcg	ctgcctccat	ggcagcagcc	aaggaccccc	2880

1						
agaacaagaa g	gacccccccg	caggatccct	cctgagctcg	gggggctctg	ccttctcagg	2940
ccccgggctt	cccttctccc	cagccagagg	tggagccaag	tggtccagcg	tcactccagt	3000
gctcagctgt	ggctggagga	gctggcctgt	ggcacagccc	tgagtgtccc	aagccgggag	3060
ccaacgaagc	cggacacggc	ttcactgacc	agcggctgct	caagccgcaa	gctctcagca	3120
agtgcccagc	ggagcctgcc	gcccccacct	gggcaccggg	acccctcac	catccagtgg	3180
gcccggagaa	acctgatgaa	cagtttgggg	actcaggacc	agatgtccgt	ctctcttgct	3240
tgaggaatga	agacctttat	tcacccctgc	cccgttgctt	cccgctgcac	atggacagac	3300
ttcacagcgt	ctgctcatag	gacctgcatc	cttcctgggg	acgaattcca	ctcgtccaag	3360
ggacagccca	cggtctggag	gccgaggacc	accagcaggc	aggtggactg	actgtgttgg	3420
gcaagacctc	ttccctctgg	gcctgttctc	ttggctgcaa	ataaggacag	cagctggtgc	3480
cccacctgcc	tggtgcattg	ctgtgtgaat	ccaggaggca	gtggacatcg	taggcagcca	3540
cggccccggg	tccaggagaa	gtgctccctg	gaggcacgca	ccactgcttc	ccactggggc	3600
cggcggggcc	cacgcacgac	gtcagcctct	taccttcccg	cctcggctag	gggtcctcgg	3660
gatgccgttc	tgttccaacc	tectgetetg	ggacgtggac	atgcctcaag	gatacaggga	3720
gccggcggcc	tctcgacggc	acgcacttgc	ctgttggctg	ctgcggctgt	gggcgagcat	3780
gggggctgcc	agcgtctgtt	gtggaaagta	gctgctagtg	aaatggctgg	ggccgctggg	3840
gtccgtcttc	acactgcgca	ggtctcttct	gggcgtctga	gctggggtgg	gagctcctcc	3900
gcagaaggtt	ggtgggggt	ccagtctgtg	atccttggtg	ctgtgtgccc	cactccagcc	3960
tggggacccc	acttcagaag	gtaggggccg	tgtcccgcgg	tgctgactga	ggcctgcttc	4020
cccctcccc	tcctgctgtg	ctggaattcc	acagggacca	gggccaccgc	aggggactgt	4080
ctcagaagac	ttgatttttc	cgtccctttt	tctccacact	ccactgacaa	acgtccccag	4140
cggtttccac	ttgtgggctt	caggtgttt	caagcacaac	ccaccacaac	aagcaagtgc	4200
attttcagtc	gttgtgcttt	tttgttttgt	gctaacgtct	tactaattta	aagatgctgt	4260
cggcaccatg	tttatttatt	tccagtggtc	atgctcagcc	ttgctgctct	gegtggegea	4320
ggtgccatgc	ctgctccctg	tetgtgteec	agccacgcag	ggccatccac	: tgtgacgtcg	4380
gccgaccagg	ctggacaccc	tetgeegagt	aatgacgtgt	gtggctggga	ccttcttat	4440
tctgtgttaa	tggctaacct	gttacactgg	gctgggttgg	gtagggtgtt	: ctggcttttt	4500
tgtggggttt	ttatttttaa	agaaacacto	aatcatccta	aaaaaaaaaa	a aaaaaaaaaa	4560
aaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	a aaaaaaaaa	ı aaaaaaaaa	a aaaaaaaaaa	4620
aaaaaaaaa	aaaaaaaaa	a aaaaaaaaa	a aaaaaaaaa	a aaaaaaaaaa	ı	4670
	agaacaagaa eccegggett eccaecagaagacecaggggggggggggggggggggggg	agaacaagaa gaccccccg ccccgggctt cccttetccc gctcagctgt ggctggagga ccaacgaagc cggacacggc agtgccagc ggagcctgcc gcccggagaa acctgatgaa tgaggaatga agacctttat ttcacagcgt ctgctcatag ggacagccca cggtctggag gcaagacctc ttcccttgg cccacctgcc tggtgcattg cggccccggg tccaggagaa cggcggggcc cacgcacgac gatgccgttc tgttccaacc gccggcggcc tctcgacggc ggaggctgcc agcgtctgtt gtccgtcttc acactgcgca gcagaaggtt ggtgggggt tggggacccc acttcagaag cccctcccc tcctgctgg ctcagaagac ttgattttc cggtttccac ttgtgggctt atttcagtc gttgtgcttt ggtgccatgc ctgcacccc tctgtgttaa tggctaaccc ttgtgggttt ttattttaa aaaaaaaaa aaaaaaaaa	agaacaagaa gaccccccg caggatccct ccccgggctt cccttctccc cagccagagg gctcagctgt ggctgaagga gctggcctgt ccaacgaagg ggtgccagc ggacacggc ttcactgaccagggagaccggagaa acctgatgaa cagtttgggg tgaggaatga agacctttat tcacccctgc ttcacagagac cggacatgagagaccggaagacca cggtctgaga gccgaggacc gcaagaccac ttcccctgc ttcacagcg ttccctggagagaa gccgaggacca cggacagacaggaa gccgaggacca cggccccggg tccaggagaa gtgctccctg cggcggggcc cacgacgac gccagcact tgtgcgggac tccaggagaa gtgctccctg gatgccggcc tccagaagac tccagaagac tccagaagac gccgacgacagac gccgaggacc gccgaggacc acgcactgc ggggggctc acactgcga ggcgagaagac ggggggggc cacgtctgggggggggg	agaacaagaa gaccccccg caggatccct cctgagctcg ccccgggctt cccttctccc cagccagagg tggagccaag gctcagctgt ggctggagga gctggcctgt ggcacagccc ccaacgaagc cggacacggc ttcactgacc agcggctgct agtgcccagc ggagcctgcc gccccacct gggcaccggg gcccggagaa acctgatgaa cagtttgggg actcaggacc tgaggaatga agacctttat tcacccctgc cccgttgctt ttcacagcgt ctgctcatag gacctgatc cttcctgggg gcaagacctc cggtctggag gccgaggacc accagcaggc gcaagacctc ttccctctgg gcctgttctc ttggctgaa cccacctgcc tggtgcattg ctgttgaat ccaggaggca cggcccggg tccaggagaa gtgctccctg gaggcacgca cggcggggcc cacgcacgac gtcagcctc taccttcccg gatgcgggcc cacgcacgac gtcagctct taccttcccg gatgcggtcc agcgtctgtt gtggaaagta gctgctgtg gcaggaggct caccgcacgac gtcagctct cggcggtggc gcagaaggtt ggtggggg ccagttgc cggcacttgc gcagaaggtt ggtgggggg ccagttgc ggtcgtga gcagaaggtt ggtgggggg ccagtctgt gtggaaagta gcagaaggtt ggtgggggg ccagtctgt ggggggcg ccctccccc tcctgacgga gtagggccg tgtcccggg cccctccccc tcctgctgtg ctggaattcc acagggacca ctcagaagac ttgattttc cgtcctttt tcccacact cggtttcaac ttgtgggtt caggtttt tcacacct cggtttccac ttgtgggctt caggtttt caaggaccac atttcagtc gttgtgcttt tttgttttgt gctaacgtct cggcaccatg tttatttatt tccagtggt atgccacac ggtgcaccacg ctggacaccc tctgcgagt aatgacgtgt tctgtgttaa tggctaaccc tctgccgagt aatgacgtgt tctgtgttaa tggctaaccc gttacactg gctgggtttga aaaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaa	agaacaagaa gaccccccg caggatccct cetgagctcg gggggctctg ccccgggctt cccttctccc cagccagagg tggagccaag tggtccagcg gctcagctgt ggctggagga gctggcctgt ggcacagccc tgagtgtccc ccaacgaagc cggacacggc ttcactgacc agcggctgct caagccgcaa agtgcccagc ggagcctgcc gccccacct gggcaccggg accccctcacc gcccggagaa acctgatgaa cagtttgggg actcagggc agaattcca ggaagacca cggtctgaa gacctgcac cccqtcacc ggaagacca cggtctgaag gccgagacc accagcagg acgaattcca ggaagacca cggtctgag gccgaggacc accagcaggc aggtggactg gcaagaccc ttccctctgg gcctgttcc ttggctgaa ataaggacag cccacctgcc tggtgcattg ctgtgtgaat ccaggagga gtggaactg cggcccggg tccaggagaa gtgctcctg gaggacgca cactggcttc cggcggggcc cacgcacgac gtcagcctt taccttcccg gccggggggc ggaggggggggggggggggggggg	agaacaagaa gaccccccc caggaccagag tegagcccag tegagccagc tectccagc caccagagct tectcacc cagccagagg tegagccaag tegagccagc teactcagcag gaccagcag tegagcagg tegagcagg tegagcagg teactcagcag gaccagcag gaccagcag tecacagcag agagccagag cagacagga caccagagagaa acctgatgaa cagtttgggg accacagga agagacaga atcagagaacaggaa gaccagaagaa cagacagaagaa cagacaga

<210> 242 <211> 2082 <212> DNA <213> Homo sapiens

<400> 242

gacaggtetg tgaagcagge aggttgetea getgeeeeg gageggttee teeacetgag 60 quaqueteca egteggetgg catgageegg egecetgea getgegeeet aeggeeacee 120 cgctgctcct gcagcgccag ccccagcgca gtgacagccg ccgggcgccc tcgaccctcg 180 240 gatagttgta aagaagaaag ttctaccctt tctgtcaaaa tgaagtgtga ttttaattgt aaccatgttc attccggact taaactggta aaacctgatg acattggaag actagtttcc 300 tacacccctg catatttgga aggttcctgt aaagactgca ttaaagacta tgaaaggctg 360 420 tcatgtattg ggtcaccgat tgtgagccct aggattgtac aacttgaaac tgaaagcaag cgcttgcata acaaggaaaa tcaacatgtg caacagacac ttaatagtac aaatgaaata 480 540 gaagcactag agaccagtag actttatgaa gacagtggct attcctcatt ttctctacaa 600 agtggcctca gtgaacatga agaaggtagc ctcctggagg agaatttcgg tgacagtcta 660 caatcctgcc tgctacaaat acaaagccca gaccaatatc ccaacaaaaa cttgctgcca gttcttcatt ttgaaaaagt ggtttgttca acattaaaaa agaatgcaaa acgaaatcct 720 aaagtagatc gggagatgct gaaggaaatt atagccagag gaaattttag actgcagaat 780 ataattggca gaaaaatggg cctagaatgt gtagatattc tcagcgaact ctttcgaagg 840 900 ggactcagac atgtcttagc aactatttta gcacaactca gtgacatgga cttaatcaat 960 qtqtctaaag tgagcacaac ttggaagaag atcctagaag atgataaggg ggcattccag 1020 ttgtacagta aagcaataca aagagttacc gaaaacaaca ataaattttc acctcatgct 1080 tcaaccagag aatatgttat gttcagaacc ccactggctt ctgttcagaa atcagcagcc 1140 cagacttctc tcaaaaaaga tgctcaaacc aagttatcca atcaaggtga tcagaaaggt tctacttata gtcgacacaa tgaattctct gaggttgcca agacattgaa aaagaacgaa 1200 1260 agoctcaaag cotgtattog otgtaattoa ootgcaaaat atgattgota tttacaacgg gcaacctgca aacgagaagg ctgtggattt gattattgta cgaagtgtct ctgtaattat 1320 1380 catactacta aagactgttc agatggcaag ctcctcaaag ccagttgtaa aataggtccc 1440 ctgcctggta caaagaaaag caaaaagaat ttacgaagat tgtgatctct tattaaatca attgttactg atcatgaatg ttagttagaa aatgttaggt tttaacttaa aaaaaattgt 1500 attgtgattt tcaattttat gttgaaatcg gtgtagtatc ctgaggtttt tttcccccca 1560 1620 gaagataaag aggatagaca acctcttaaa atatttttac aatttaatga gaaaaagttt 1680 aaaattctca atacaaatca aacaatttaa atattttaaq aaaaaaggaa aagtagatag

313

tgatactgag ggtaaaaaaa aaattgattc aattttatgg taaaggaaac ccatgcaatt 1740 1800 ttacctagac agtcttaaat atgtctggtt ttccatctgt tagcatttca gacattttat gttcctctta ctcaattgat accaacagaa atatcaactt ctggagtcta ttaaatgtgt 1860 1920 tqtcaccttt ctaaaqcttt ttttcattgt gtgtatttcc caagaaagta tcctttgtaa aaacttqctt qttttcctta tttctgaaat ctgttttaat atttttgtat acatgtaaat 1980 atttctgtat tttttatatg tcaaagaata tgtctcttgt atgtacatat aaaaataaat 2040 2082 <210> 243 <211> 688 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (678)..(678) <223> ·n is a, c, g, t or u <400> 243 cagaacccga ccaaagtagg ctggtgagga agtccaggct ccaggggaac agacgctgcc 60 cagtgttcat agcttcctgc aacttgacag agcctgagtt tgcctcttag tgggagaatg 120 agagagaget gtagtgteac etgacattee ecaaacettg tgaageaegt tggeetaagt 180 gtgccgtgat cccagcccac actagcctgg gtgcatctgc taatgggaga ccaaatcttt 240 300 gtccgggaag caagaagtgg gtgggagaat gtatcctgtt tttgtcagtt tgtttgcctt actcatttct aaqtqcaata aqqqaqtqtc tcacaggatt gcacctgtga catcctgatg 360 420 gatgcttccc tgtggccctc ctggggcaag ggtggacaga ctcagacccc cagcatggtt 480 agegetgace tteattgagg teeetttgga accagatgte ttgttacaga cacetteete tgtgtaagtc tcctcacctt gaggggtctt tagtaatgca tctgggtagc atctcaactg 540 ctggtagcat ttatctgact tggaaagttg gagaagaggc attcctactg gagaaaaatg 600 660 tcagtgtttt cctataagct ctgtgttagc tattcattat atttggtgct taaagatgtt 688 ccttcattca tcaactangg ggaaagtt <210> 244 <211> 2309 <212> DNA <213> Homo sapiens <400> 244 ctgggctgca acggttccag gacacaagtc agtacgtgtg tgcagagctg caggccctgg 60

aacaggagca gaggcagata gatgggcggg cggctgaggt ggagatgcag ctgaggagcc 120	
tcatggagtc aggtgccaac aagctgcagg aggaggtgct gatccaggag tggttcaccc 180	
tggtcaacaa gaagaacgct ctcatccgga ggcaggacca gctgcagctg ctcatggagg 240	
agcaggactt ggagcgaagg ttcgagctgc tgagccgcga gctgcgggcc atgctggcca 300	•
togaagaotg goagaaaacg toogotoago agoacogaga goagotoota otggaggago 360)
tggtgtcgct ggtgaaccag cgcgatgagc tagtccggga cctggaccac aagtagcgga 420)
tcgccctgga ggaggacgag cgcctggagc gcggcctgga acagcggcgc cgcaagctga 480)
gccggcagtt gagccggcgg gagcgctgcg tgctgagctg aggccgccgg cccgggtggc 540)
ccataactte tegegteece ggegteegee geegeecegg geetgegetg eggaegaece 600)
ggccgtcccg gaggccgcgc gcgtgtccgc taggggccgc cggcgccctt ccccgtatag 660	0
ggcagggcgg atccccgacc ccacgggcgg ggcggccgcc gtatttattt gtcaccgagg 720	0
gtgtgtgcgc gctcgcggcg ggtgcggggt cctccccgac ggcacggccg ggccggcggc 78	0
ctcggggaga gggatgcctg ggcactaccg ccccgcgctg gcttgccctc ctgttctcca 84	0 .
gagcaataaa gttggacgag actaaaaaaa aaaaaaaaaa	0
ttgctggacc agcaggagaa gctgctggcg gtgatcgagg agcagcacaa ggagatccac 96	0
cagcagaggc aggaggacga ggaggataaa cccaggcagg tggaggtgca tcaagagccc 102	0
ggggcagcgg tgcccagagg ccaggaggcc cctgaaggca aggccaggga gacggtggag 108	0
aatctgcctc ccctgccttt ggaccctgtc ctcagagctc ctgggggccg ccctgctcca 114	0
teccaggace ttaaccageg etecetggag caetetgagg ggeetgtggg cagagaceet 120	0 •
gctggccctc ctgacggcgg ccctgacaca gagcctcggg cagcccaggg caagctgaga 126	50
gatggccaga aggatgccgc ccccagggca gctggcactg tgaaggagct ccccaagggc 132	20
ccggagcagg tgcccgtgcc agaccccgcc agggaagccg ggggcccaga ggagcgcctc 138	80
gcagaggaat tccctgggca aagtcaggac gttactggcg gttcccaaga caggaaaaaa 14	40
cctgggaagg aggtggcagc cactggcacc agcattctga aggaagccaa ctggctcgtg 15	00
gcagggccag gagcagagac gggggaccct cgcatgaagc ccaagcaagt gagccgagac 15	60
ctgggccttg cagcggacct gcccggtggg gcggaaggag cagctgcaca gccccaggct 16	20
gtgttacgcc agccggaact gcgggtcatc tctgatggcg agcagggtgg acagcagggc 16	08
caceggetgg accatggegg teacetggag atgagaaagg eeegeggggg ggaeeatgtg 17	40
cetgtgtece acgageagee gagaggeggg gaggaegeeg eegeeagga geeaggarg	800
aggccagagc cagagctggg gctcaaacga gctgtcccgg ggggccagag gccggacaat 18	360
gccaagccca accgggacct gaaactgcag gctggctccg acctccggag gcgacggcgg 19	920

```
gaccttggcc ctcatgcaga gggtcagctg gccccgaggg atggggtcat tggccttaac
                                                                   1980
cccctgcctg atgtccaggt gaacgacctc cgtggcgccc tggatgccca gctccgccag
                                                                    2040
gctgcggggg gagctctgca ggtggtccac agccggcagc ttagacaggc gcctgggcct
                                                                    2100
ccagaggagt cctagcacct gctggccatg agggccacgc cagccactgc cctcctcggc
                                                                    2160
cagcagcagg tetgtetcag cegcatecca gecaaactet ggaggteaca etegeetete
                                                                    2220
cccagggttt catgtctgag gccctcacca agtgtgagtg acagtataaa agattcactg
                                                                    2280
                                                                    2309
tggcatcgtt aaaaaaaaaa aaaaaaaaa
<210> 245
<211> 171
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (72)..(72)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (137)..(137)
<223> n is a, c, g, t or u
<400> 245
ggaaagaata ttcatttgag tgtttcagga agtttggatt tttttttac caacatatta
                                                                      60
tttgtaaaag gngggaaatc agctgcctca ggaggttctt aacatatagg aatgtaatta
                                                                     120
tcagattcaa agctgancag tagtgcgttg ccctgtaacc taagtcttgg c
                                                                     171
<210> 246
<211> 302
<212> DNA
<213> Homo sapiens
<400> 246
geggeegeee tegggeactt eeggteegte eecaagtegg eecegategg eageggeeae
                                                                      60
ceggeggtte ctacgeacag egecegetgg egteetegeg geceeegett etgeattgge
                                                                     120
tcaggccccg ccgggcccga aaggcgacgg tttccggtta gtggaatcac ggtcccagtc
                                                                     180
ctcgcgcggt tcctcagctc cgcctggtcc cttacggagg caaaaaacta catttcccac
                                                                     240
aatcccaggg ggtgcgggcc ctggatatac ccgcaggtcc agaatcgttt ccggaccacc
                                                                     300
                                                                     302
ca
```

<210> 247 <211> 1991

<212> DNA

<213> Homo sapiens

<400> 247 tggccaactt ctgaacagga agcagttcgc tcgcgcctag gttggcgcgg gctgggaggt 60 gttccagccc tttaagatgt tgcgcgtggt gagctggaac atcaatggga ttcggagacc 120 cctgcaaggg gtggcaaatc aggaacccag caactgtgcc gccgtggccg tggggcgcat 180 tttggacgag ctggatgcgg atatcgtctg tctccaggaa accaaagtga ccagggatgc 240 actgacagag cccctggcta tcgttgaggg ttataactcc tatttcagct tcagccgcaa 300 cegtagegge tattetggtg tagecacett etgtaaggae aatgetaeee eagtggetge 360 tgaagaaggc ctgagtggcc tgtttgccac ccagaatggg gatgttggtt gctatggaaa 420 catggatgag tttacccaag aggaactccg ggctctggat agtgagggca gggccctcct 480 cacacagcat aagateegea catgggaagg taaggagaag acettgaeee taateaaegt 540 gtactgcccc catgcggacc ctgggaggcc tgagcggcta gtctttaaga tgcgcttcta 600 tegtttgctg caaateegag cagaageest eetggeggea ggeageeatg tgateattet 660 gggtgacctg aatacagccc accgccccat tgaccactgg gatgcagtca acctggaatg 720 ctttgaagag gacccagggc gcaagtggat ggacagettg ctcagtaact tggggtgcca 780 gtctgcctct catgtagggc ccttcatcga tagctaccgc tgcttccaac caaagcagga 840 gggggccttc acctgctggt cagcagtcac tggcgcccgc catctcaact atggctcccg 900 gcttgactat gtgctggggg acaggaccct ggtcatagac acctttcagg cctctttcct 960 gctgcctgag gtgatgggct ctgaccactg ccctgtgggt gcagtcttga gtgtgtcctc 1020 tgtgcctgca aaacagtgcc cacctctgtg cacccgcttc ctccctgagt ttgcaggcac 1080 ccagctcaag atccttcgct tcctagttcc tctcgaacaa agtcctgtgt tggagcagtc 1140 gacgctgcag cacaacaatc aaacccgggt acagacatgc caaaacaaag cccaagtgcg 1200 ctcaaccagg cctcagccca gtcaggttgg ctctagcaga ggccagaaaa acctgaagag 1260 ctactttcag ccctccccta gctgtcccca agcctctcct gacatagagc tgcctagcct 1320 1380 accactgatg agegeeetca tgacceegaa gacteeagaa gagaaggeag tggeeaaagt ggtgaagggg caggccaaga cttcagaagc caaagatgag aaggagttac ggacctcatt 1440 ctggaagtet gtgctggcgg ggcccttgcg cacacccctc tgtgggggcc acagggagcc 1500 atgtgtgatg cgtactgtga agaagccagg acccaacttg ggccgccgct tctacatgtg 1560 tgccaggccc cggggtcctc ccactgaccc ctcctcccgg tgcaacttct tcctctggag 1620 caggcccagc tgaaccaatg gaggcctggg gacatctggc atggtcaccc ctgcacatga 1680 tetgaggeca geteceette cetgagetge etectgette teceteaaag tetectaeee 1740

ttctcttcct cttttaagcc	ctctcttcct	cgctttcctt	cctacctagc	tccttgttgg	1800
tgagcttctt gtgccttaat	cctgtgaccc	agccccttac	accactttcc	accttcctgt	1860
ccgaagtaca cggacactag	ctgccccagg	aagttgtgtg	attttaaatc	acttctgtct	1920
ttgctggaaa gtgtatttgt	gcataaataa	agtctgtgta	tttgtttcag	ggttgcaaaa	1980
aaaaaaaaa a					1991
<210> 248 <211> 2642 <212> DNA <213> Homo sapiens					
<400> 248 gcgggttgat tttctcactt	tggactggtt	tttacttccc	gacttctgga	ctcatctttc	60
aagaggactt tagactaatt	gcagataatt	aaggtggtag	agaatatgcc	ttctgcatcc	120
tgtgatacac tactggatga	catcgaagat	atcgtgtctc	aggaagattc	aaaaccacaa	180
gataggcatt ttgtaagaaa	ggatgttgtc	ccgaaggtac	gaaggcgaaa	tacccaaaaa	240
tatttgcaag aggaagaaaa	cagtccacca	agtgacagca	ctattccagg	catacagaaa	300
atttggatac gaacatgggg	ttgttctcat	aataattcag	atggagaata	tatggctgga	360
cagctagctg cttatggcta	taaaattaca	gaaaatgcat	ccgatgcaga	tttatggctc	420
ctgaacagtt gcactgtaaa	aaacccagct	gaagaccact	ttagaaactc	aattaaaaaa	480
gctcaagagg agaacaagaa	aatcgtactg	gctggatgcg	ttcctcaagc	ccagcctcgc	540
caggactacc ttaagggact	gagtatcatt	ggggttcagc	agatagatcg	tgtggtagaa	600
gttgtggagg agacaattaa	aggtcactct	gtgagactgc	tgggtcagaa	aaaggataat	660
ggaaggcggc ttgggggagc	acgattggat	ttgccgaaga	ttaggaagaa	tccactgata	720
gaaatcattt ccatcagtac	cgggtgtctc	aatgcttgta	cctactgcaa	aactaaacac	780
gccagaggaa atttggccag	ttatccaatt	gatgaactag	tagatagagc	caaacaatct	840
tttcaagagg gtgtttgtga	gatatggttg	accagtgaag	acacgggggc	ttatggcaga	900
gatattggca ccaatctccc	cacactcctg	tggaaactgg	ttgaagtgat	tcctgaggga	960
gcaatgctga ggcttggcat	gacaaatccg	ccctatattt	tagagcatct	ggaggaaatg	1020
gcaaaaatcc ttaatcaccc	cagagtetae	gettttetge	acataccagt	ccagtctgcc	1080
tccgacagcg tactcatgga	aatgaaaaga	gaatactgtg	tggctgactt	caaaagagta	1140
gtggattttc tgaaagagaa	agttcctgga	ataactattg	ctacagatat	tatctgtggt	1200
tttcctggag aaacagatca	ggattttcaa	gaaacagtga	aacttgttga	agagtacaaa	1260
ttcccaagcc tgtttattaa	ccaattttac	ccaagaccag	gaactcctgc	tgcaaaaatg	1320

gaacaagttc cagcacaagt gaaaaagcaa aggacaaaag atctttctcg ggtgtttcat	1380
	1440
	1500
aagaaccctg cgttcatggg gaagatggtt gaagtggaca tctatgaatc aggcaaacat	1560
	1620
ctagcaaagg gagaagtctc aggtttgaca aaggacttca gaaatgggct tgggaaccag	1680
ctgagttcag gatcccacac ctctgctgca tctcagtgtg actcagcgag ttccagaatg	1740
gtgctgccca tgccaaggct acatcaagac tgtgcgctga ggatgtccgt gggcttggct	1800
ctgctgggtc ttctttttgc tttttttgtc aaggtctata attagaatac aactaatgga	1860 .
aacatctata aagaagaata catttctaat taaaatcttc aatgaacagg aaagcgacat	1920
ctccattctc,caagggcaat aatttgtact ggtcatgctg cctccttctc agccactctt	1980
cttaatgagg ctccccctgt ctcacattga gttgggccca ttggttattt gacctaaaac	2040
ctaatcaccg ctaccatagc acatccttca aattaaactg cttttggttt acttttagca	2100
agaaatgcaa gcggttgcat tttttctgtt tgtttcaatc tctaatcttt aagtcagaac	2160
ctaattgtac agtggctctg gccatctttt cctcatgtgg aagaattttc tatctttaat	2220
aaactttttc tttgtttttt ttttccagat ggagtttcgc tcttgtcccc caggctggag	2280
tggtgcagtg gcacgatctc aggtcactgc aacctctgcc tcctgggttc aaacgattct	2340
cctacctcag cctccctaat agccaggggc tacaggcata taccaccatg cccaactaat	2400
tttttaattt tttgtagaga tgagtgtcac tatgttgccc aggcttgcct ggaactccta	2460
gcctcaagca gtcttcttgc ctcagcctcc caaagtgctg ggattacagg cgtgagccac	2520
tccacccagc ccagattaaa tgtttttatt tctacctgcc atcattggtc tttactaagt	2580
gaagtgactt ctttctttaa caataaatgg aattggtata ctaagcaaaa aaaaaaaaaa	2640
aa	2642
<210> 249 <211> 1847 <212> DNA <213> Homo sapiens	
<400> 249 ttgcgcgccg cccggccagg cccgcaaaga ggcctccgag cgccatggct gcgcccccgg	60
cccgcgcgga cgctgatcct tcgcccacgt cgccacctac ggcccgagac acaccaggcc	120
ggcaggctga gaaaagcgag accgcgtgcg aggaccgcag caatgcagag tccctggaca	180
	0.40

240

ggctcctgcc acctgtgggc actgggcgct ctccccggaa gcggaccacc agccagtgca

agtcagagcc	tcccctgctg	cgtacaagca	agcgtaccat	ctacaccgcc	gggcggccgc	300
cctggtacaa	tgaacacggc	acgcaatcca	aagaggcctt	cgccatcggc	ttgggaggcg	360
gcagtgcctc	tgggaagacc	actgtggcca	gaatgatcat	cgaggccctg	gatgtgccct	420
gggtggtctt	gctgtccatg	gactccttct	acaaggtgct	gactgagcag	cagcaggaac	480
aggccgcaca	caacaacttc	aacttcgacc	acccagatgc	ctttgacttc	gacctcatca	540
tttccaccct	caagaagctg	aagcagggga	agagtgtcaa	ggtgcccatt	tatgacttca	600
ccacgcacag	ccggaagaag	gactggaaaa	cactgtatgg	tgcaaacgtc	atcatctttg	660
agggcatcat	ggcctttgct	gacaagacac	tgttggagct	cctggacatg	aagatctttg	720
tggacacaga	ctccgacatc	cgcctggtac	ggcggctgcg	ccgggacatc	agtgagcgcg	780
gccgggacat	cgagggtgtc	atcaagcagt	acaacaagtt	tgtcaagccc	teettegace	840
agtacatcca	gcccaccatg	cgcctggcag	acatcgtggt	ccccagaggg	agcggcaaca	900
cggtggccat	caacctgatt	gtgcagcacg	tgcacagcca	gctggaggag	cgtgaactca	960
gcgtcagggc	tgcgctggcc	teggcacace	agtgccaccc	getgeeeegg	acgctgagcg	1020
tcctgaagag	cacgccgcag	gtacggggca	tgcacaccat	catcagggac	aaggagacca	1080
gtcgcgacga	gttcatcttc	tactccaaga	gactgatgcg	gctgctcatc	gagcacgcgc	1140
tctccttcct	gccctttcag	gactgcgtcg	tacagacccc	gcaggggcag	gactatgcgg	1200
gcaagtgcta	tgcggggaag	cagatcaccg	gtgtgtccat	tetgegegee	ggtgaaacca	1260
tggagcccgc	gctgcgcgct	gtgtgcaaag	acgtgcgcat	cggcaccatc	ctcatccaga	1320
ccaaccagct	taccggggag	cccgagctcc	actacctgag	gctgcccaag	gacatcagcg	1380
atgaccacgt	gatcctcatg	gactgcaccg	tgtccacggg	cgcggcggcc	atgatggcag	1440
tgcgcgtgct	cctggaccac	gacgtgcctg	aggacaagat	ctttttgctg	tegetgetea	1500
tggcagagat	gggcgtgcac	tcagtggcct	atgcatttcc	gcgagtgaga	atcatcacca	1560
cggcggtgga	caagcgggtc	aatgaccttt	teegeateat	cccaggcatt	gggaactttg	1620
gcgaccgcta	ctttgggaca	gacgcggtcc	ccgatggcag	tgacgaggag	gaagtggcct	1680
acacgggtta	gctgcccagt	gagecatece	gtccccacca	ccctcctcct	gcctcctgac	1740
ccaggactgt	tgaatacaaa	gatgttaatt	tttaaaatgt	tactagtata	atttattcta	1800
tgcattttat	aaaataaata	aagctttaga	ı aaaaaaaaa	aaaaaaa		1847

<210> 250 <211> 271 <212> DNA <213> Homo sapiens

<220> <221> misc feature <222> (173)..(173) <223> n is a, c, g, t or u tttttttttt agattcttaa tttctatttt atatttttaa aacatgatat tagtatataa <400> 250 60 gataatatag ctagccagtg ttagtaaaga agtcatgatt gagtcttaaa aaagaacaat 120 ccagtgttgc agttcagaga ggttagcatg tcagggcgca ggctcggcga ggntgtgctt 180 tgcatttagg gacacagccc ggagccgcag aaggtcagca gggagcacgt ctgggcacct 240 271 tcagtaccag ggctgggtga gagagcccgg a <210> 251 <211> 1464 <212> DNA <213> Homo sapiens <400> 251 egtttteege teetegetae gteategttg tgageeeget ateageggee agegeggeg 60 cggccggaga ccgtggggcc cccggttgcc gcccctcgg gagccaccat gttggtgata 120 cccccggac tgagcgagga agaggaggct ctgcagaaga aattcaacaa gctcaagaaa 180 aagaaaaagg cattgctggc tctgaagaag caaagtagca gcagcacaac cagccaaggt 240 ggtgtcaaac gctcactatc agagcagcct gtcatggaca cagccacagc aacagagcag 300 gcaaagcagc tggtgaagtc aggagccatc agtgccatca aggctgagac caagaactca 360 ggcttcaagc gttctcgaac ccttgagggg aagttaaagg accccgagaa gggaccagtc 420 cccactttcc agccgttcca gaggagcata tctgctgatg atgacctgca agagtcatcc 480 agacgtcccc agaggaaatc tctgtatgag agctttgtgt cttctagtga tcgacttcga 540 gaactaggac cagatggaga agaggcagag ggcccagggg ctggtgatgg tccccctcga 600 agetttgact ggggetatga agaacgeagt ggtgeeeact eeteageete eeeteeeega 660 agccgcagcc gggaccgcag ccatgagagg aaccgggaca gagaccgaga tcgggagegg 720 gatcgagacc gggatcgaga cagagacaga gagcgggaca gggatcggga tcgggatcga 780 gatcgagacc gggaacggga cagggatcgg gagcgggatc gagaccgaga ccgagagggt 840 cctttccgca ggtcggattc attccctgaa cggcgagccc ctaggaaagg gaatactctc 900 tatgtatatg gagaagacat gacacccacc cttctccgtg gggccttctc tccttttgga 960 aacatcattg acctctccat ggacccaccc agaaactgtg ccttcgtcac ctatgaaaag 1020 atggagtcag cagatcaggc cgttgctgag ctcaacggga cccaggtgga gtctgtacag 1080 ctcaaagtca acatagcccg aaaacagccc atgctggatg ccgctactgg caagtctgtc 1140

tggggctccc	tcgctgtcca	gaacagccct	aagggttgcc	accgggacaa	gaggacccag	1200
attgtctaca	gtgatgacgt	ctacaaggaa	aaccttgtgg	atggcttcta	gggaacagag	1260
ctggattcct	tgtgcctcat	atgccccaat	gctggtctca	gtaaaacact	gaggtggaag	1320
cttacacatc	tccctcagcc	tctggttttt	cagcacttgg	gattggggtt	aagcctttaa	1380
aaacggctgt	caggtttgat	ctcagtgtaa	cgacatggcc	agtgcctgtt	ccccactccc	1440
ttgccccaaa	aggatctgga	acac				1464
<210> 252			·			

<210> 252 <211> 2917

<212> DNA

<213> Homo sapiens

<400> 252 60 catcctccca ccaggacatc cttcatctgc agccagcgcc cccgtctcat gtagtgggcc tecacegeee eccecacee cagteceace tecacecaet ggggetacee caceteeeee 120 acccccactg ccagccggag gagcccaggg gtccagccac gacgagagct ccatgtcagg 180 actggccgct gccatagctg gggccaagct gagaagagtc caacggccag aagacgcatc 240 300 tggaggetee agteceagtg ggaeeteaaa gteegatgee aacegggeaa geageggggg 360 tggcggagga ggcctcatgg aggaaatgaa caaactgctg gccaagagga gaaaagcagc 420 ctcccagtca gacaagccag ccgagaagaa ggaagatgaa agccaaatgg aagatcctag tacctccccc tctccgggga cccgagcagc cagccagcca cctaactcct cagaggctgg 480 ccggaagccc tgggagcgga gcaactcggt ggagaagcct gtgtcctcga ttctgtccag 540 aaccccgtct gtggcaaaga gccccgaagc taagagcccc cttcagtcgc agcctcactc 600 taggtaccga acaaccetee tgeteacatg tececeaggg tttggggete etetgteece 660 cgtcccgtga ctaacaccct tgcacgctgt ctcacgtcct ggcatttaac aacttgctct 720 gcgaaggtgg tctgttcttt cagacccagg acctcggggt cctgtcagtc agctgctccg 780 tcttttccct ctgagagaga gaccaagggc aaggaggca gtgacctgtc cacagaggta 840 gtgcaggggg ggccaacatg gagtcccagc tctggactca ctacgtgtga cagtgggcaa 900 960 gttaggggac ctctccaage ctctgttttc cccccacaaa gtgaggtctg ttaacccctg ctgcacaggg tggtggtggg gacagctgtg agcaacagct ggacatgggg tgtggtcact 1020 agccagggct gcaccctaca gttcaaccag tcctagcact ggcgctgagc cctacccctt 1080 tcctccagcc cagagtcctt cctctgcggc cggcacacag aatcagtttc cccacagaca 1140 tactgaccat atttcccaag ccaaaagctg gcatgacaac atgatagaat atttggaact 1200 gagattgccc aaaaaggcag aggcagccag ccacatagta tctggaggta catgtggcct 1260

PCT/US03/13015 WO 03/090694

	1320
gaattggaag gcctctagaa cctgcgtcaa gaatgtctcc attgccacca cadattgaas	1380
ggaaaccacc cttatcacag agcaggaggc attgaaactg gccttgcaga gccgaacag	
tggtgagagc agagcagtgc aggtggacag agatgaggaa gtettagcag tcagetgggg	1440
tttgtccaag gcttgtggtc agccaggccg tgtgctgggg acagtccctg cctgcaaaga	1500
	1560
	1620
ggcattttcg ttgacccgga cgaggaggag tctgctctgc	1680
cccaagctga aggaagggta agtgccaggg ccctgagcct gcagccaccc gccaagctcc	1740
cccgcacctc cacctggaag cagacaggcc atggggcagg ggaacgggaa gggtgaggaa	1,800
gagggtgtgg gggagcgcgg agttagaagt ttgcattgtg ttcatgcgca gggcccagtc	1860
atggaacttg aggcacaggg tgccatggtg gaggctggga aggggaaggc aaccagagtg	1920
ggcaaaacga gggccctgga gcagacacgg cagcaagggg agcctgcagc gctcccagcg	1980
gactccgcca cgtcctgctg gtggagcaaa ggcgggctgc catgttgtga gtggccaagg	2040
gtcgctcact gggcaggaac attgtcaagg ccattcatgc ttggaatagg gtctctcttc	2100
agctctgagg caaatctgtt ctctaatttt cagatgactt caaggggaac gtgtaccacc	2160
accectetgg tgcgtcacat tgcttaggaa gcctgctgtg tttatcactg ggtggctgtc	2220
agggetgaga tggagaggge cagggeetgg egaggtggag cagteggeee aggtgteeca	2280
gcaattgttg ctggaacagg gtctggaacc cacaggagag gcctgaagga cccagggccc	2340
totggotgga tgogtttgco tatoaggaco cagaattact tacagacotg tttagggota	2400
ggcttggcct ctttcttgag ctcatctgga ggggtgtggc aacactcatt cttcatcctt	2460
attetecetg getgtgggea acaetggtee teagtgteae cagatggtee teetetgtge	2520
ccatgacccc tcagcagcca aggctggccc tgccagataa atgtgtgtgc ccatgatcac	2580
acccaggggc acaggccaca tacgtttccc tgaaaccttg ggctccagcc tccatcccgt	2640
ccatgtggga gggaacttgg gtcccagcag tgtgtctttc agcaccaagt catgtttaaa	2700
agaccagaga gacaagcatt ttgccaagat cttccaggga agatgcatgt gtgacacatt	2760
aacattcaaa tcaggccagc gcggtgctca tgcctgtcat cccagcactt tgggaggccg	2820
aggegggagg atcaettgag eccaggaett ggagaecagt etgggeaaca eagtgagaee	2880
	2917
ccatctctac aaaaagtcaa aaaaaaaaa aaaaagg	

<210> 253 <211> 4035 <212> DNA

<213> Homo sapiens

253 <400> teccetggae cegeegeaga gecagtgeag aatacagaaa etgeageeat gaeeaegeae 60 gtcaccetgg aagatgccct gtccaacgtg gacctgcttg aagagcttcc cctccccgac 120 cagcagccat gcatcgagcc tccaccttcc tccatcatgt accaggctaa ctttgacaca 180 aactttgagg acaggaatgc atttgtcacg ggcattgcaa ggtacattga gcaggctaca 240 gtccactcca gcatgaatga gatgctggag gaaggacatg agtatgcggt catgctgtac 300 acctggcgca gctgttcccg ggccattccc caggtgaaat gcaacgagca gcccaaccga 360 gtagagatct atgagaagac agtagaggtg ctggagccgg aggtcaccaa gctcatgaag 420 ttcatgtatt ttcagcgcaa ggccatcgag cggttctgca gcgaggtgaa gcggctgtgc 480 catgccgagc gcaggaagga ctttgtctct gaggcctacc tcctgaccct tggcaagttc 540 atcaacatgt ttgctgtcct ggatgagcta aagaacatga agtgcagcgt caagaatgac 600 cactetgeet acaagaggge ageacagtte etgeggaaga tggcagatee ecagtetate 660 caggagtcgc agaacctttc catgttcctg gccaaccaca acaggatcac ccagtgtctc 720 caccagcaac ttgaagtgat cccaggctat gaggagctgc tggctgacat tgtcaacatc 780 tgtgtggatt actacgagaa caagatgtac ctgactccca gtgagaaaca tatgctcctc 840 aaggtgatgg gctttggcct ctacctaatg gatggaaatg tcagtaacat ttacaaactg 900 gatgccaaga agagaattaa tcttagcaaa attgataaat tctttaagca gctgcaggtg 960 gtgccccttt tcggcgacat gcagatagag ctggccagat acattaagac cagtgctcac 1020 tatgaagaga acaagtccaa gtggacgtgc acccagagca gcatcagccc ccagtacaat 1080 atetgegage agatggttea gateegggat gaceacatee getteatete egageteget 1140 cgctacagca acagtgaggt ggtgacgggc tcagggctgg acagccagaa gtcagacgag 1200 gagtategeg agetettega cetagecetg eggggtetge agettetate caagtggage 1260 gcccacgtca tggaggtgta ctcttggaag ctggttcatc ccacagacaa gttctgcaac 1320 aaggactgtc ctggcaccgc ggaggaatat gagagagcca cacgctacaa ttacaccagt 1380 gaggaaaaat ttgccttcgt tgaggtgatc gccatgatca aaggcctgca ggtgctcatg 1440 ggcaggatgg agagcgtctt caaccaggcc atcaggaaca ccatctacgc ggcattgcag 1500 gacttegece aggtgaeget gegtgagece etgeggeagg eggtaeggaa gaagaagaat 1560 gtcctcatca gcgtcctaca ggcaattcga aagaccatct gtgactggga gggagggcga 1620 gagcccccta atgacccatg cttgagaggg gagaaggacc ccaaaggtgg atttgatatc 1680 aaggtgcccc ggcgtgctgt ggggccatcc agcacacagc tgtacatggt gcggaccatg 1740

cttgaatcac	tcattgcaga	caaaagcggc	tccaagaaga	ccctgaggag	cagcctggat	1800
ggacccattg	tcctcgccat	agaggacttt	cacaaacagt	ccttcttctt	cacacatctg	1860
ctcaacatca	gtgaagccct	gcagcagtgt	tgtgacctct	cccagctctg	gttccgagaa	1920
ttetteetgg	agttaaccat	gggccgacga	atccagttcc	ccatcgagat	gtccatgccc	1980
tggattctaa	cggaccatat	cctggaaacc	aaagaacctt	ccatgatgga	gtatgtcctc	2040
taccctctgg	atctgtacaa	cgacagcgcc	tactatgctc	tgaccaagtt	taaaaagcag	2100 -
ttcctgtacg	atgagataga	agctgaggtg	aacctgtgtt	ttgatcagtt	tgtctacaag	2160
ctggcagacc	agatctttgc	ttactacaaa	gccatggctg	gcagtgtcct	gttggataaa	2220
cgttttcgag	ctgagtgtaa	gaattatggc	gtcatcattc	cgtatccacc	gtccaatcgc	2280
tatgaaacac	tgctgaagca	gagacacgtc	cagctgttgg	gtagatcaat	tgacttgaac	2340
agactcatta	cccagcgcat	ctctgccgcc	atgtataaat	ccttggacca	agctatcagc	2400
cgctttgaga	gtgaggacct	gacctccatt	gtggagctgg	agtggctgct	ggagattaac	2460
cggctcacgc	atcggctgct	ctgtaagcat	atgacgctgg	acagettega	tgccatgttc	2520
cgagaggcca	atcacaatgt	gtccgccccc	tatggccgta	tcaccctgca	tgtcttctgg	2580
gaactgaact	ttgactttct	ccccaactac	tgctacaatg	ggtccactaa	ccgttttgtg	2640
cggactgcca	ttcctttcac	ccaagaacca	caacgagaca	aacctgccaa	cgtccagcct	2700
tattacctct	atggatccaa	gcctctcaac	attgcctaca	gccacatcta	cagctcctac	2760
aggaatttcg	tggggccacc	tcatttcaag	actatctgca	gactcctggg	ttatcagggc	2820
atcgctgtgg	tcatggagga	actgctaaag	attgtgaaga	gcttgctcca	aggaaccatt	2880
ctccagtatg	tgaaaacact	gatagaggtg	atgcccaaga	tatgccgctt	gccccgacat	2940
gagtatggct	ccccagggat	cctggagttc	ttccaccacc	agctgaagga	catcattgag	3000
tacgcagagc	tcaaaacaga	cgtgttccag	agcctgaggg	aagtgggcaa	tgccatcctc	3060
ttctgcctcc	tcatagagca	agctctgtct	caggaggagg	tctgcgattt	gctccatgcc	3120
gcacccttcc	aaaacatctt	gcctagagtc	tacatcaaag	agggggagcg	cctggaggtc	3180
cggatgaaac	gtctggaagc	caagtatgcc	ccgctccacc	tggtccctct	gatcgagcgg	3240
ctggggaccc	ctcagcaaat	cgccattgct	cgcgagggtg	acctcctgac	caaggagcgg	3300
ctgtgctgtg	gcctgtccat	gttcgaggtc	atcctgaccc	gcattcggag	ctacctgcag	3360
gaccccatct	ggeggggeee	accgcccacc	aatggcgtca	tgcacgtcga	tgagtgtgtg	3420
gagttccacc	ggctgtggag	cgccatgcag	ttcgtgtact	gcatccctgt	gggaaccaac	3480
gagttcacag	ctgagcagtg	tttcggcgat	ggcttgaact	gggctggttg	ctccatcatt	3540
gtectgetgg	gccagcagcg	tegetttgae	: ctgttcgact	tctgttacca	cctgctaaaa	3600

gtgcagaggc	aggacgggaa	ggatgaaatc	attaagaatg	tgcccctgaa	gaagatggcc	3660
gaccggatca	ggaagtatca	gatcttgaac	aatgaggttt	ttgccatcct	gaacaaatac	3720
atgaagtccg	tggagacaga	cagttccact	gtggagcatg	tgcgctgctt	ccagccaccc	3780
atccaccagt	ccttggccac	cacttgctaa	gcagaagatc	ctgcagaccc	ttatctggag	3840
gaggaagaga	agcaggagag	agaaagccac	agccagcctg	ccataggatc	caactggaca	3900
acgtgtggga	tggacctgga	aacaagcacc	tccccaaaca	catcaccact	ccctagggcg	3960
gggcctgtgc	atgctctccc	atgacatctc	catgctggtt	tctccatagc	ataaatgaaa	4020
aaaaaaaaa	aaaaa					4035
<210> 254 <211> 920 <212> DNA <213> Homo	o sapiens				·	
<400> 254 gcacggaggg	gcagagaccc	cggagcccca	gccccaccat	gaccctcggc	cgccgactcg	60
cgtgtctttt	cctcgcctgt	gtcctgccgg	ccttgctgct	ggggggcacc	gcgctggcct	120
cggagattgt	ggggggccgg	cgagcgcggc	cccacgcgtg	gcccttcatg	gtgtccctgc	180
agctgcgcgg	aggccacttc	tgcggcgcca	ccctgattgc	gcccaacttc	gtcatgtcgg	240
ccgcgcactg	cgtggcgaat	gtaaacgtcc	gcgcggtgcg	ggtggtcctg	ggagcccata	300
acctctcgcg	gcgggagccc	acccggcagg	tgttcgccgt	gcagcgcatc	ttcgaaaacg	360
gctacgaccc	cgtaaacttg	ctcaacgaca	tcgtgattct	ccagctcaac	gggtcggcca	·420
ccatcaacgc	caacgtgcag	gtggcccagc	tgccggctca	gggacgccgc	ctgggcaacg	480
gggtgcagtg	cctggccatg	ggctggggcc	ttctgggcag	gaaccgtggg	atcgccagcg	540
					aacgtctgca	600
ctctcgtgag	gggccggcag	gccggcgtct	gtttcgggga	ctccggcagc	cccttggtct	660
					tcagggctct	720
					atcatccaac	780
					aggacccact	840
gagaagggct	gcccgggtca	cctcagctgc	ccacacccac	actctccago	atctggcaca	900
ataaacattc	tctgttttgt					920

<210> 255 <211> 429 <212> DNA <213> Homo sapiens

<400> 255 caggtacatc tacatgctta t	caaaaacaa (cagcaaaacc	acctaccatg	acaaatacta	60
ttgcagcaaa accgaacaaa t	aaattctgt (gccataaagt	ttcctaaacc	tcatctattt	120
tgtagaaatc tagtcacttg a	agtatcatcc	ttcacaaagt	tctttctatt	ttttctactg	180
tacaaagttt tctgttgtca a	aatagcaaga (gatctctgtt	ttctacttgg	aatgggcctg	240
gagaagggag acagcacccg	ctccctccac	cccttgtccc	tgagcacagc	atggtgacct	300
gccaagccag agggtgacct	ggacactcat	aactcaatgc	agggccaact	gtagcctctg	360
ggeggtgtee etgagtgagg	gcaaagttgt	aataacactt	gttctctcct	tttctccaat	420
ttgctccca					429
<210> 256 <211> 2058 <212> DNA <213> Homo sapiens					
<400> 256 gcacgaggaa gccacagatc	tcttaagaac	tttctgtctc	caaaccgtgg	ctgctcgata	60
aatcagacag aacagttaat	cctcaattta	agcctgatct	aacccctaga	aacagatata	120
gaacaatgga agtgacaaca	agattgacat	ggaatgatga	aaatcatctg	cgcaactgct	180
tggaaatgtt tctttgagtc	ttctctataa	gtctagtgtt	catggaggta	gcattgaaga	240
tatggttgaa agatgcagcc	gtcagggatg	tactataaca	atggcttaca	ttgattacaa	300
tatgattgta gcctttatgc	ttggaaatta	tattaattta	cgtgaaagtt	ctacagagcc	360
aaatgattcc ctatggtttt	cacttcaaaa	gaaaaatgac	accactgaaa	tagaaacttt	420
actcttaaat acagcaccaa	aaattattga	tgagcaactg	gtgtgtcgtt	tatcgaaaac	480
ggatattttc attatatgtc	gagataataa	aatttatcta	gataaaatga	taacaagaaa	540
cttgaaacta aggttttatg	gccaccgtca	gtatttggaa	tgtgaagttt	: ttcgagttga	600
aggaattaag gataacctag	acgacataaa	gaggataatt	aaagccagag	g agcacagaaa	660
taggetteta geagacatea	gagactatag	gccctatgca	gacttggttt	cagaaattcg	720
tattcttttg gtgggtccag	ttgggtctgg	aaagtccagt	: tttttcaatt	cagtcaagtc	780
tatttttcat ggccatgtga	ctggccaagc	cgtagtgggg	g tctgatacca	a ccagcataac	840
cgagcggtat aggatatatt	ctgttaaaga	tggaaaaaat	ggaaaatct	c tgccatttat	900
gttgtgtgac actatggggc	tagatggggc	agaaggagca	a ggactgtgc	a tggatgacat	960
tccccacatc ttaaaaggtt	gtatgccaga	cagatatcag	g tttaattcc	c gtaaaccaat	1020
tacacctgag cattctactt	ttatcaccto	tccatctct;	g aaggacagg	a ttcactgtgt	1080

ggcttatgtc	ttagacatca	actctattga	caatctctac	tctaaaatgt	tggcaaaagt	1140
gaagcaagtt	cacaaagaag	tattaaactg	tggtatagca	tatgtggcct	tgcttactaa	1200
agtggatgat	tgcagtgagg	ttcttcaaga	caacttttta	aacatgagta	gatctatgac	1260
ttctcaaagc	cgggtcatga	atgtccataa	aatgctaggc	attcctattt	ccaatatttt	1320
gatggttgga	aattatgctt	cagatttgga	actggacccc	atgaaggata	ttctcatcct	1380
ctctgcactg	aggcagatgc	tgcgggctgc	agatgatttt	ttagaagatt	tgcctcttga	1440
ggaaactggt	gcaattgaga	gagcgttaca	gccctgcatt	tgagataagt	tgccttgatt	1500
ctgacatttg	gcccagcctg	tactggtgtg	ccgcaatgag	agtcaatctc	tattgacagc	1560
ctgcttcaga	ttttgctttt	gttcgttttg	ccttctgtcc	ttggaacagt	catatctcaa	.1620
gttcaaaggc	caaaacctga	gaagcggtgg	gctaagatag	gtcctactgc	aaaccacccc	1680
tccatatttc	cgtaccattt	acaattcagt	ttctgtgaca	tctttttaaa	ccactggagg	1740
aaaaatgaga	tattctctaa	tttattcttc	tataacactc	tatatagagc	tatgtgagta	1800
ctaatcacat	tgaataatag	ttataaaatt	attgtataga	catctgcttc	ttaaacagat	1860
tgtgagttct	ttgagaaaca	gcgtggattt	tacttatctg	tgtattcaca	gagcttagca	1920
cagtgcctgg	taatgagcaa	gcatacttgc	cattactttt	ccttcccact	ctctccaaca	1980
tcacattcac	tttaaatttt	tctgtatata	gaaaggaaaa	ctagcctggg	caacatgatg	2040
aaaccccatc	tccactgc					2058

<210> 257 <211> 690

<212> DNA

<213> Homo sapiens

tgcacaagca gaatcttcag aacaggttct ccttccccag tcaccagttg ctcgagttag 60 aattgtctgc aatggccgcc ctgcagaaat ctgtgagctc tttccttatg gggaccctgg 120 ccaccagetg ceteettete ttggecetet tggtacaggg aggageaget gegeecatea 180 gctcccactg caggcttgac aagtccaact tccagcagcc ctatatcacc aaccgcacct 240 tcatgctggc taaggaggct agcttggctg ataacaacac agacgttcgt ctcattgggg 300 agaaactgtt ccacggagtc agtatgagtg agcgctgcta tctgatgaag caggtgctga 360 acttcaccct tgaagaagtg ctgttccctc aatctgatag gttccagcct tatatgcagg 420 aggtggtgcc cttcctggcc aggctcagca acaggctaag cacatgtcat attgaaggtg 480 atgacctgca tatccagagg aatgtgcaaa agctgaagga cacagtgaaa aagcttggag 540 agagtggaga gatcaaagca attggagaac tggatttgct gtttatgtct ctgagaaatg 600

PCT/US03/13015 WO 03/090694

60

•				aggesttts	cctgctagaa	660
cotocatttq	accagagcaa	agctgaaaaa	tgaataacta	acceceee	cctgctagaa	
						690
ataacaatta	gatgccccaa	agcgattttt				

258 <210>

2932 <211>

<212> DNA

Homo sapiens <213>

gtaatgcaga gataataaaa cttcttaggt ccataggtct tataataatt taataaccta aacatggtat acaaattcct ccaaacccaa taacataatt atagtttcaa aaagttcccc 120 aaactttcaa gttagatttt attgctttga tgagtggctt taaatatgaa aagtcttgcc 180 tgtgaagggc aatcetttte eegtggaetg ggatetatag aaatacagaa atgtgeecag 240 gggttcatct ccctaataac catcattcac atttctcaac ctccctaata accagccacc 300 360 atgtgagaag gatccacagt tactgtttat gactataatt aactagtacc tgggactggt cagtggagtt ggttgcaacc tgatgctaag gatgtcaaag ttgtctcggc ctctgttccc 420 agccagtaag taattccctg gcctcgggcc atacccccta atcttggtca gctgattatg 480 acaggcagac agcacagtaa ataacactat atattaagaa aacccaaagc atatgtatca 540 atggtatata cccaacagca tcctaggaat ggagagtctg tagcaagggc ctccaatgtg 600 aaggtcaaca cagtcactgt gatgcgtgta tttccatttt gtaaagcatg atctctggtg 660 gtcattttta tcttcctaac ttattggaaa agtctcctgt tttgggggcc cgccctggt 720 780 cacagocaga ctgactcagt ttccctggga ggtcccgctc gagcccgtcc ttcccctccc 840 tetgecegee eccagecete gececaceet eggegeeege acatetgeet geteagetee agacggcgcc cggacccccg ggcgcgggat ccagccaggt gggagccccg cagatgaggt 900 ctctgaaggt gtgcctgaac cagtgccagc ctgccctgtc tgcagcatcg gcctgatggg 960 gtggtgactg atccctcagg gctccggagc catgtggccc aacggcagtt ccctggggcc 1020 ctgtttccgg cccacaaca ttaccctgga ggagagacgg ctgatcgcct cgccctggtt 1080 cgccgcctcc ttctgcgtgg tgggcctggc ctccaacctg ctggccctga gcgtgctggc 1140 gggcgcgcgg cagggggtt cgcacacgcg ctcctccttc ctcaccttcc tctgcggcct 1200 1260 cgtcctcacc gacttcctgg ggctgctggt gaccggtacc atcgtggtgt cccagcacgc egegetette gagtggcaeg cegtggaece tggetgeegt etetgteget teatgggegt 1320 cgtcatgatc ttcttcggcc tgtccccgct gctgctgggg gccgccatgg cctcagagcg 1380 ctacctgggt atcacccggc ccttctcgcg cccggcggtc gcctcgcagc gccgcgcctg 1440 ggccaccgtg gggctggtgt gggcggccgc gctggcgctg ggcctgctgc ccctgctggg 1500

329

cgtgggtcgc	tacaccgtgc	aatacccggg	gtcctggtgc	ttcctgacgc	tgggcgccga	1560
gtccggggac	gtggccttcg	ggctgctctt	ctccatgctg	ggcggcctct	cggtcgggct	1620
gtccttcctg	ctgaacacgg	tcagcgtggc	caccctgtgc	cacgtctacc	acgggcagga	1680
		gggactccga				1740
catggtggtg	gccagcgtgt	gttggctgcc	ccttctggtc	ttcattgccc	agacagtgct	1800
gcgaaacccg	cctgccatga	gccccgccgg	gcagctgtcc	cgcaccacgg	agaaggagct	1860
		ccacctggaa				1920
gttccgccgc	gccgtgctcc	ggcgtctcca	geetegeete	agcacccggc	ccaggtcgct	1980
gtccctccag	ccccagctca	cgcagcgctc	cgggctgcag	taggaagtgg	acagagcgcc	2040
cctcccgcgc	ctttccgcgg	agcccttggc	ccctcggaca	gcccatctgc	ctgttctgag	2100
gattcagggg	ctgggggtgc	tggatggaca	gtgggcatca	gcagcagggt	tttgggttga	2160
ccccaatcca	acccggggac	ccccaactcc	tccctgatcc	ttttaccaag	cactctccct	2220
teeteggeee	ctttttccca	tccagagctc	ccaccccttc	tctgcgtccc	tcccaacccc	2280
aggaagggca	tgcagacatt	ggaagagggt	cttgcattgc	tattttttt	tttagacgga	2340
gtcttgctct	gtcccccagg	ctggagtgca	gtggcgcaat	ctcagctcac	tgcaacctcc	2400
acctcccggg	ttcaagcgat	tctcctgcct	cagcctcctg	agtagctggg	actataggcg	2460
cgcgccacca	cgcccggcta	atttttgtat	ttttagtaga	gacggggttt	caccgtgttg	2520
gccaggctgg	tcttgaactc	ctgacctcag	gtgattcacc	agcctcagcc	tcccaaagtg	2580
ctgggatcac	aggcatgaac	caccacacct	ggccattttt	tttttttt	tagacggagt	2640
ctcactctgt	ggcccagcct	ggagtacagt	ggcacgatct	cggctcactg	caacctccgc	2700
ctcccgggtt	caagcgattc	tegtgeetea	gcctcccgag	cagctgggat	tacaggcgta	2760
agccactgcg	cccggccttg	catgctcttt	gaccctgaat	ttgacctact	tgctggggta	2820
cagttgcttc	cttttgaacc	tccaacaggg	aaggctctgt	ccagaaagga	ttgaatgtga	2880
aacgggggca	ccccttttc	ttgccaaaat	atatctctgc	ctttggtttt	at	2932

<210> 259

<400> 259

<211> 1177

<212> DNA

<213> Homo sapiens

gccaaggctg gggcaggga gtcagcagag gcctcgctcg ggcgcccagt ggtcctgccg 60 cctggtctca cctcgctatg gttcgtctgc ctctgcagtg cgtcctctgg ggctgcttgc 120 tgaccgctgt ccatccagaa ccacccactg catgcagaga aaaacagtac ctaataaaca 180

•						
gtcagtgctg	ttctttgtgc	cagccaggac	agaaactggt	gagtgactgc	acagagttca	240
ctgaaacgga	atgccttcct	tgcggtgaaa	gcgaattcct	agacacctgg	aacagagaga	300
cacactgcca	ccagcacaaa	tactgcgacc	ccaacctagg	gettegggte	cagcagaagg	360
gcacctcaga	aacagacacc	atctgcacct	gtgaagaagg	ctggcactgt	acgagtgagg	420
cctgtgagag	ctgtgtcctg	caccgctcat	getegeeegg	ctttggggtc	aagcagattg	480
ctacaggggt	ttctgatacc	atctgcgagc	cctgcccagt	cggcttcttc	tccaatgtgt	540
catctgcttt	cgaaaaatgt	cacccttgga	caagctgtga	gaccaaagac	ctggttgtgc	600
aacaggcagg	cacaaacaag	actgatgttg	tctgtggtcc	ccaggatcgg	ctgagagccc	660
tggtggtgat	ccccatcatc	ttcgggatcc	tgtttgccat	cctcttggtg	ctggtcttta	720
tcaaaaaggt	ggccaagaag	ccaaccaata	aggcccccca	ccccaagcag	gaaccccagg	780
agatcaattt	tcccgacgat	cttcctggct	ccaacactgc	tgctccagtg	caggagactt	840
tacatggatg	ccaaccggtc	acccaggagg	atggcaaaga	gagtcgcatc	tcagtgcagg	900
agagacagtg	aggctgcacc	cacccaggag	tgtggccacg	tgggcaaaca	ggcagttggc	960
cagagagcct	ggtgctgctg	ctgctgtggc	gtgagggtga	ggggctggca	ctgactgggc	1020
atagctcccc	gcttctgcct	gcacccctgc	agtttgagac	aggagacctg	gcactggatg	1080
cagaaacagt	tcaccttgaa	gaacctctca	cttcaccctg	gagcccatcc	agtctcccaa	1140
cttgtattaa	agacagaggc	agaaaaaaa	aaaaaaa			1177
	o sapiens					
-400- 260						

. 4 0 0 .	260						
		tttttttt	tttttttt	tttttttt	tttttcaaac	ccccgggact	60
ttattgo	aaa	aaagccccgc	agggctggag	cccaccctag	gcgggggctg	cccctgctgg	120
cgcccgg	ıgga	acccagtctg	gtttttgtag	gggggcaggg	gggggcccac	ccagggccca	180
aaggggg	gga	cccggccccc	acggggggg	cccaacacgg	gggccttact	tgaggacagt	240
cgtttac	cag	tcctgaacac	cttactgggg	cttaatactc	cggatgaccg	ggcgaggtca	300
ctgttac	agc	cctttacaaa	tgaagcggca	caaagaggcc	gggtaactcc	cccgggggta	360
cagtcgg	gga	aggagtccgt	ccggggaccc	cctgcaaagc	tgcctttgcc	cactggattc	420
cggtttt	gaa	aaaagg					436
	ttttttt ttattgc cgcccgg aaggggg cgtttac ctgttac cagtcgg	ttattgcaaa cgcccgggga aaggggggga cgtttaccag ctgttacagc cagtcgggga	ttttttttt tttttttt ttattgcaaa aaagccccgc cgcccgggga acccagtctg aagggggga cccggcccc cgtttaccag tcctgaacac ctgttacagc cctttacaaa	ttttttttt tttttttt tttttttt ttattgcaaa aaagccccgc agggctggag cgcccgggga acccagtctg gtttttgtag aaggggggga cccggcccc acgggggggg cgtttaccag tcctgaacac cttactgggg ctgttacagc cctttacaaa tgaagcggca cagtcgggga aggagtccgt ccggggaccc	ttttttttt tttttttt tttttttt ttttttttt ttattgcaaa aaagccccgc agggctggag cccaccctag cgcccgggga acccagtctg gtttttgtag gggggcaggg aaggggggga cccggccccc acgggggggg cccaacacgg cgtttaccag tcctgaacac cttactgggg cttaatactc ctgttacagc cctttacaaa tgaagcggca caaagaggcc cagtcgggga aggagtccgt ccggggaccc cctgcaaagc	ttattettt tttttttt tttttttt tttttttt tttttt	ttttttttt tttttttt tttttttt tttttttt tttt

<210> 261 <211> 878 <212> DNA

<213> Homo sapiens <220> <221> misc_feature <222> (1)..(1) <223> n is a, c, g, t or u <220> <221> misc_feature <222> (579)..(579) <223> n is a, c, g, t or u <400> 261 ntaatteett tgtttettge eccetttagt gtttteecee cacatttaat ttteatttge 60 tccccactcc cttttwtaaa tagaatgcaa acaaccatcc tgaagtgtct gargggcacc 120 tgcccycacm tccctgccct ccaaaatgca gactgagaag ccaacagact gccttttctt 180 ttcttaatca ggtcactagt tcyaaatatg gtggcctgga ggtcccatag aaaaagcaaa 240 ggggtgtkaa cagtatgtat aacagcgtat ttacagggag tcacatgcgg acaaaaagct .300 acaatactga gtatcagacg acgcargkga kaacaaaggg ccgggggtgg gggsagagaa 360 ccccatgggc aaagaaaccc caggaaacgt taaactggta aatcaatggc gagttaaggc 420 ttaaaaagtg tataaaaata acacagttaa tattcaaaac ggaactccas atacagaata 480 tatagatgag tttctgtcta gttttctttt ttttcccggg gggatgatag gagggcttct 540 ctgggctctg taaatarttc ctatatacac cgacacgcnt ggctttcaga ttggggtgtg 600 tetgtggggg etrggggcag ggtetgetee tggraactge etmccegggg atceetteee 660 trcagagrgg cctagggcct cggcwggggg aatcmcactc catagmaggg aagacaaata 720 accetecet agggeactge ecceatetgw gaggaaatte tggagggaag wemcarawee 780 aggeceacte ectececate eccewgeema cagtetgggt atggtgggag aggtageega 840 878 aaggtttcct ggccagcacc gaggtagamt ggggtggt <210> 262 <211> 2451 <212> DNA <213> Homo sapiens atgtagaaaa acatttaggc ataggtcagg ccttatgcag catcagagaa cacacaccag 60 agtttaactc tgtgggtaag agttgtacaa ttgtgaaatg caaggagttc actgtagggg 120 tgagactcca cagaaaagaa aagtttcctg agagcagaac ttctgtcctt ccctcccagt 180 tcggtactat aagaagacat gcacacaaag atgtttgtta tgattattga agtgttaaat 240 ggaagaaaaa tgttacccaa gtcttctcca aaaagaatgg tagatatttc cttgaaatgc 300

•	
ctaacccatt tctggatgag actcatcaat atccccttca ctccactctc tgccaactca	360
gatataattt ccattgggca ccttcacagt aatgccagga ttggggcaga gatcctgaaa	420
gagettetta taagatggea aatgtgeetg geaagageat ttgtattttg teaggtggag	480
gcatgtgctg agagttattc aactatctga aatgttgaat ttggaggttg tgaaaatatt	540
gaattatgct attagtttaa taatatctga ggcagtaaaa tagtacctga ggaatggtgc	600
ctcattctgc ccccttgcca gttgtctcct caatcctgag cttcctgctg aggttaattc	660
aagtctacta gtttattgag cacctgctat gtgctaggca ttgaggtaga cctggtcatt	720
gccctcccag agttaagggc taataggata tgcatatata ctaaacagta attacagtaa	780
agtgtggtaa gtgctttggt aggaaaaatg cgggtttcca tcaaagtaca tggcagggat	840
acctaaatct ggtctatgag tcactaaaga cttcctggat atgatggtat ctcagacgta	900
aaggtgggta gaaggtagca agggcagggg agaagagaac aggatctgga gacactccat	960
gaagactett etetaetgea gaaattgtea tagaeetaat tittaaaaaa atgaatetga	1020
gggagtaatt caacaaatat ttattgccct caagtataat agctcagggc ctgcaagcct	1080
ggtaaggagg ggtgtgggca gggaatgggg aatagcagag cctgggaagg cagatcaccg	1140
tgttccttta tacttcccac tgcctgagtc ccagagtcat gggacacaaa cactccagtc	1200
cccactgtct ctctagcctc tgatatgcat tctttccctg tgtatataca tgccttttcc	1260
cataaaatgc accagtctct caccacacta attctgagta cttcagagtc tcacaggtca	1320
ttctgggtct agaataggct ccccaactca gtgattataa gtaggaagag gaaaagcaac	1380
acatggggat tetgageeag getttatgae aactaattee tgetggagag aagagteetg	1440
atgatgggct gtctccagat cctatcttat cttcatgcca ttgtatggcc tataacctct	1500
gcctgtaact ctctctgcta atttttattt tggcagtttt aattaaccca caattgctga	1560
gggcaattaa tacctaaaag aaagtttgat tcctcttcta agatatccta ggtagtgtca	1620
tttctaaaga agacttggtg atcactgctt gtattagtcc attttcacag tgctatgaag	1680
atactacctg atactgggta atttattaaa aaaaaaaaag aggtttaatt gactgacagt	1740
tetgeaggge tggggaggee teaggaaaet taaateatgg tggaaggega aggggaagea	1800
agcacettet teacaaggtg geaagagaga gtgeagggga aatgetagge aettateaat	1860
cagccaaatc tcatgagaat tcactatcat gagaacaagg gggaaatctg ctcccatgat	1920
ctaatcaccc cccaccacga ccctccctca acacctgggg attactattg gagatttggg	1980
tggggacaca agagccaaac catatcgctg ctgttgtggg taatagggga ggtgaaattg	2040
gggggacaat tcggcctctt tgtgtccaga ggttgtgcag ttatcgagtg aggtcgatca	2100
gaagtotaaa gggatottto aaatggatag tgagttgoot tttootatag gtgacaatca	2160
gaagtotaaa gggatotto aaatggatta tagagatta tagagatta tagagatta tagagatta tagagatta tagagatta tagagatta tagagatta	

gagatttaat gttttaagta tcatataata ggtttttctc ctgattgtga attgtaagtg	2220
ttggtaatac agaaaatgag aaagtataaa ccaccccaa tcccaatgcc catagaaacg	2280
ttgttaacat tttggagtac tttctattag tgtttatttt tcccaatcct agtattttta	2340
gtaaaactac tgtttagtaa atgatttttg gtaactaatt tcaaaattta tacttcaacc	2400
gtttattatt agaatgtaat gcaagatgta ttgcaataaa acttgagttt t	2451
<210> 263 <211> 1145 <212> DNA <213> Homo sapiens	
<400> 263 aggactggag atgtctgagg ctcattctgc cctcgagccc accgggaacg aaagagaagc	60
totatotoco otocaggago coagotatga actoottoto cacaagogoo ttoggtocag	120
ttgeettete cetggggetg etectggtgt tgeetgetge ettecetgee eeagtacece	180
caggagaaga ttccaaagat gtagccgccc cacacagaca gccactcacc tcttcagaac	240
gaattgacaa acaaattegg tacateeteg aeggeatete ageeetgaga aaggagaeat	300
gtaacaagag taacatgtgt gaaagcagca aagaggcact ggcagaaaac aacctgaacc	360
ttccaaagat ggctgaaaaa gatggatgct tccaatctgg attcaatgag gagacttgcc	420
tggtgaaaat catcactggt cttttggagt ttgaggtata cctagagtac ctccagaaca	480
gatttgagag tagtgaggaa caagccagag ctgtccagat gagtacaaaa gtcctgatcc	540
agttcctgca gaaaaaggca aagaatctag atgcaataac cacccctgac ccaaccacaa	600
atgccagcct gctgacgaag ctgcaggcac agaaccagtg gctgcaggac atgacaactc	660
-	

atctcattct gcgcagcttt aaggagttcc tgcagtccag cctgagggct cttcggcaaa

tgtagcatgg gcacctcaga ttgttgttgt taatgggcat tccttcttct ggtcagaaac

ctgtccactg ggcacagaac ttatgttgtt ctctatggag aactaaaagt atgagcgtta

ggacactatt ttaattattt ttaatttatt aatatttaaa tatgtgaagc tgagttaatt

tatgtaagtc atattttata tttttaagaa gtaccacttg aaacatttta tgtattagtt

ttgaaataat aatggaaagt ggctatgcag tttgaatatc ctttgtttca gagccagatc

atttcttgga aagtgtaggc ttacctcaaa taaatggcta actttataca tatttttaaa

gaaatattta tattgtattt atataatgta taaatggttt ttataccaat aaatggcatt

720

780

840

900

960

1020

1080

1140

1145

ttaaa

<210> 264 <211> 81

```
DNA
<212>
<213> Homo sapiens
<400> 264
accttgtcgg gtagcttatc agactgatgt tgactgttga atctcatggc aacaccagtc
                                                                      60
                                                                      81
qatqqqctgt ctgacatttt g
<210> 265
<211> 1024
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (13)..(13)
<223> n is a, c, g, t or u
<400> 265
ggcgcggaga cgngaagcgg gtggcgctgg gacgcatgct ctgggggaga tgagtataat
                                                                       60
gacccgcgtt tgtccgccgc ccgtgccccg ctcaatcccc gcatcaatcc cgtgaggccg
                                                                      120
tttctcccgt tggctccact gtaccggggg ctgaggccca gggaggtctc gcggctccct
                                                                      180
aggttatcca gctagtaaga ggcgaactgg aattctcact gtgggcccat tccatggctt
                                                                      240
ttgccagagc gccagggaca cactcagttc accttctagc agggaagacc caaagatgcg
                                                                      300
cgcccctggc agccagggcg tcggaccagg caattcctac tgtccagcat cacctcctcc
                                                                      360
aggestateg gatgestatg ttgggasags taagttests ttsaaagast caatttestg
                                                                      420
gtcataagct gtaaacagat tctactcccg ctttttcttc tttgtcgcac gtctacccta
                                                                      480
tttgggaaag tttaaacctt agccaatcgg gatcagctca gattgtgcgg tccaaccccc
                                                                      540
cagccaatgg ggaaaggaca cagaaacagg aactgcgtta gggttaaaaa ccacttccct
                                                                      600
cctttgttgg cgggtgctct tgggattgca accagcgcaa gcagcaccct tctgcagaag
                                                                      660
taaagatgcc ttgctgggaa gtcttctgtc tcagtgctgg tttttcttga ctacactgag
                                                                      720
cacttgtttt caacaaattt gagggtcttc tgggatccat tctcctttgg gaggggtagc
                                                                      780
gattactttt cctcgtgaga cacgtcccac tgccttgttg cagtggccca aggagcggag
                                                                      840
gatcgggtcc acccaaagtg aggaataaat ccggactttc agcaacgtgg gcaggaagga
                                                                      900
gccttaaaat tcccaggcaa gtgggtaact ctgtgcacag accaagccgc cgacgggacc
                                                                      960
 atcacaaaag ctttacaagg ccttaccacc ctggcaaatg aattagccga aaattctgga
                                                                      1020
                                                                      1024
 ctag
 <210> 266
```

<210> 266 <211> 687

<212> DNA

<213> Homo sapiens

<220> <221> misc feature <222> (503)..(503) <223> n is a, c, g, t or u <400> 266 gatcccccgg gctgcaggaa ttcggcacca gatcagtttc cacaggtaac ctgggcaggg 60 agtgggggtg acggaaactg gagttcctat tgtggctatc tcttgtgtgg aaggaacagg 120 aggattctgc taattctaat aactttccca gctggtagca gggaagcatc gtatgtcctt 180 tgtgtttctc aaatctgccc aattgttctc tgctttcggg gaagctttac tcattttcta 240 300 aaagaaatcc aagtactgtt tggtcattac cccttagtaa aaaaaagtaa caggaggata 360 togtaatttt ctactgtttt attoctotgt tagacogggo cttgacatga atgacgcogt aagggagaaa gagatettee caateageaa teacegtaaa ageetgetgt gtteeegtta 420 480 aaattaggaa attctcacta gatgaattga catgggaggc atttagattt ctaatagtca catagtaatt ctgcggagga atngagtcat ctttgatagc catgggatta agcgatgtta 540 600 attaaagtgc aaaagattac ctttctggtc ttactagaat agagtaataa aaagaaccct aggtttcttt tgtttgctgg aagaaaaatc aaaattcttt aagtctgtca aaccagaact 660 687 ctttgaagca ctttgaacaa tgccctg <210> 267 <211> 2140 <212> DNA <213> Homo sapiens <400> 267 agctgaggtg tgagcagctg ccgaagtcag ttccttgtgg agccggagct gggcgcggat 60 tegeegagge acegaggeae teagaggagg egeeatgtea gaaceggetg gggatgteeg 120 tcagaaccca tgcggcagca aggcctgccg ccgcctcttc ggcccagtgg acagcgagca 180 gctgagccgc gactgtgatg cgctaatggc gggctgcatc caggaggccc gtgagcgatg 240 gaacttcgac tttgtcaccg agacaccact ggagggtgac ttcgcctggg agcgtgtgcg 300 gggccttggc ctgcccaagc tctaccttcc cacggggccc cggcgaggcc gggatgagtt 360 gggaggaggc aggcggcctg gcacctcacc tgctctgctg caggggacag cagaggaaga 420 ccatgtggac ctgtcactgt cttgtaccct tgtgcctcgc tcaggggagc aggctgaagg 480 540 gtccccaggt ggacctggag actctcaggg tcgaaaacgg cggcagacca gcatgacaga 600 tttctaccac tccaaacgcc ggctgatctt ctccaagagg aagccctaat ccgcccacag gaagcctgca gtcctggaag cgcgagggcc tcaaaggccc gctctacatc ttctgcctta 660

gtctcagttt	gtgtgtctta	attattattt	gtgttttaat	ttaaacacct	cctcatgtac	720
ataccctggc	cgcccctgc	ccccagcct	ctggcattag	aattatttaa	acaaaaacta	780
ggcggttgaa	tgagaggttc	ctaagagtgc	tgggcatttt	tattttatga	aatactattt	840
aaagcctcct	catcccgtgt	tctccttttc	ctctctcccg	gaggttgggt	gggccggctt	900
catgccagct	acttcctcct	cccacttgt	ccgctgggtg	gtaccctctg	gaggggtgtg	960
gctccttccc	atcgctgtca	caggcggtta	tgaaattcac	cccctttcct	ggacactcag	1020
acctgaattc	tttttcattt	gagaagtaaa	cagatggcac	tttgaagggg	cctcaccgag	1080
tgggggcatc	atcaaaaact	ttggagtccc	ctcacctcct	ctaaggttgg	gcagggtgac	1140
cctgaagtga	gcacagccta	gggctgagct	ggggacctgg	taccctcctg	gctcttgata	1200
ccccctctg	tcttgtgaag	gcagggggaa	ggtggggtac	tggagcagac	caccccgcct	1260
gccctcatgg	cccctctgac	ctgcactggg	gagcccgtct	cagtgttgag	ccttttccct	1320
ctttggctcc	cctgtacctt	ttgaggagcc	ccagcttacc	cttcttctcc	agctgggctc	1380
tgcaattccc	ctctgctgct	gtccctcccc	cttgtctttc	ccttcagtac	cctctcatgc	1440
tccaggtggc	tctgaggtgc	ctgtcccacc	cccaccccca	gctcaatgga	ctggaagggg	1500
aagggacaca	caagaagaag	ggcaccctag	ttctacctca	ggcagctcaa	gcagcgaccg	1560
cccctcctc	tagctgtggg	ggtgagggtc	ccatgtggtg	gcacaggccc	ccttgagtgg	1620
ggttatctct	gtgttagggg	tatatgatgg	gggagtagat	ctttctagga	gggagacact	1680
ggcccctcaa	atcgtccagc	gaccttcctc	atccacccca	tccctcccca	gttcattgca	1740
ctttgattag	cageggaaca	aggagtcaga	cattttaaga	tggtggcagt	agaggctatg	1800
gacagggcat	gccacgtggg	ctcatatggg	gctgggagta	gttgtctttc	ctggcactaa	1860
cgttgagccc	: ctggaggcac	tgaagtgctt	agtgtacttg	gagtattggg	gtctgacccc	1920
aaacacctto	: cagctcctgt	aacatactgg	cctggactgt	tttctctcgg	ctccccatgt	1980
gtcctggtto	cogtttetec	acctagactg	taaacctctc	gagggcaggg	g accacaccct	2040
gtactgttct	gtgtctttca	cageteetee	cacaatgctg	aatatacago	aggtgctcaa	2100
taaatgatto	ttagtgactt	: taaaaaaaa	aaaaaaaaa			2140

<210> 268

<211> 4238 <212> DNA <213> Homo sapiens

<400> 268

gcgctctcag gcgggctccg gcggcagcga cgcgagcgcg gcgatgggga gcggcggcgt 60 ggtccactgt aggtgtgcca agtgtttctg ttatcctaca aagcgaagaa taaggaggag 120

gccccgaaac	ctgaccatct	tgagtctccc	cgaagatgtg	ctctttcaca	tcctgaaatg	180
gctttctgta	gaggacatcc	tggccgtccg	agctgtacac	tcccagctga	aggacctggt	240
ggacaaccac	gccagtgtgt	gggcatgtgc	cagcttccag	gagctgtggc	cgtctccagg	300
gaacctgaag	ctctttgaaa	gggctgctga	aaaggggaat	ttcgaagctg	ctgtgaagct	360
	tacctctaca					420
gaatggcctg	aaggcctctc	gcttcttcag	tctcgctgag	cggctgaatg	tgggtgccgc	480
acctttcatc	tggctcttca	teegeeetee	gtggtcggtg	agcggaagct	gctgcaaggc	540
cgtggttcac	gagagcctca	gggcagagtg	ccagctgcag	aggactcaca	aagcatccat	600
attgcactgc	ttgggcagag	tgctgagtct	gttcgaggat	gaggagaagc	agcagcaggc	660
	tttgaggagg					720
					gcttccgaaa	780
				•	ccaaagcctg	840
					f tctgccagct	900
					agggactcaa	960
tgacacaatg	g aggtacatto	tgatcgacts	g gctggtggaa	a gttgccacca	a tgaatgactt	1020
					ggaggaggct	1080
					t gcacccggtt	1140
					a acacttacaa	1200
gtacgagga	c ctggtgaga	a tgatgggcg	a gatcgtctc	c gccttggaa	g ggaagattcg	1260
					g tggagctgag	1320
					a gcctgtccgc	1380
					a cgcacgggca	1440
					g aagacctcat	1500
					a aggactacag	1560
					g gagaaatcag	1620
					ja cacaagacag	1680
					ea getetecete	1740
					ag gcagcttcgt	1800
					ca gcttcctcga	1860
					gg gcgagaagga	1920

gggcgacgtg acagctccca gcggcatcct	cgatgtcacc	gtggtctacc	tgaacccaga	1980
acagcattgc tgccaggaat ccagtgatga	ggaggcttgt	ccagaggcaa	agggacccca	2040
ggacccacag gcactggcgc tggacaccca	gatccctgca	acccctggac	ccaaacccct	2100
ggtccgcacc agccgggagc cagggaagga	cgtcacgacc	tcagggtact	cctccgtcag	2160
caccgcaagt cccacaagct ccgtggacgg	tggcttgggg	gccctgcccc	aacctacctc	2220
agtgctgtcc ctgcacagtg actcgcacac	acagecetge	caccatcagg	ccaggaagtc	2280
atgtttacag tgtcgtcccc caagtccccc	ggagagcagt	gttccccagc	aacaggtgaa	2340
gcggataaac ctatgcatac acagtgagga	ggaggacatg	aacctgggcc	ttgtgaggct	2400
gtaagtgtgt cagcacattt gccgcagtgg	atgtgtactg	agggggctgg	aggcgaaggg	2460
tgggagcata gcataggaac gctgcataga	ccatggaggc	ctttgcgcag	agagcagaga	2520
ggatgacttg cggccaccaa gtttctgtct	ccgcgggagt	cccgtgcaag	ccatcagaat	2580
gttgaaatga gggtgaagag ctcagatcco	tctctttgga	aagtttagcc	tggaagcagt	2640
tggccacact gtgtggaggg cacctctctç	g tecetteegt	gtctcactgt	ctctggaagc	2700
ttcagcccat gtgtgtcctg gtgttccca	g ccccaccaga	gccccgtgcc	gggagctgac	2760
agettteacg ettaaggeac gtgtgacet	g ggtagtcaga	caccacttga	geceetgeee	2820
acatctgctg gtttggggct tcagtgggg	a gctgacagct	gtgagcacac	cactgtcccc	2880
tcatccacct cggcctgcat ggggcaccc	a cttccttctg	ggtggggctt	ccatggtaag	2940
ggggcctgcg tccctgcaca ctgcgagga	c tgccttgcca	caggcccact	ccctacgaca	3000
cgtgactcgt tttagagctc tgtcccaga	g gcgttcgtat	gtgacccaca	gatggcgtca	3060
atgtgaacac ctctctttgt gctgaattt	c tgggccattc	ttttcctgtc	ttatttctaa	3120
atttccttct tccaagatga aaacaaaag	a aaaacttaaa	acagaaggta	ttaaaaaaac	3180
aagagattcc caccattatt taggttcac	c tgcaaaacaa	aaatcttact	ccagcccctc	3240
aatgccatcc tgacacactt tatgcaaaa	a gaattttccc	: agataggcta	gccagaaaaa	3300
acttcaagtc ctctgtaaca tctgaggtg	a ccaagaggca	gaagagcaga	gcagtcgggg	3360
gccgtgtcct ggctgatccc aactgcagc	t ctgctgtggg	ggcccgtggg	agggaggcag	3420
accectggge tttectgctg gccacggag	a ctctgctcct	gcatggaaag	ggagcctggg	3480
agccagcagc ccacgcctgg ggagcctgc	c tggggccatg	tgaccatggo	: ctctccctgg	3540
gaacgggctg accacaacac accctgctg	c catccactto	tgtttactct	gcaaatgtaa	3600
gaaagaacca cttggccaga agtgtcccc	c agatgctttt	ttttttttt	: ttttggagac	3660
agttttgctc ttgtctcccc ggctggagt	g cagtggcatg	g atctcaacto	tcaactcact	3720
gtaacctccg cctcccggat actcctgcc	t cagcctcctg	g ggtagctggg	g attacaagca	3780

cccaaccacg	cccagctaat	ttttgtattt	tcggtagaga	cgggatttca	ccatgttggc	3840
caggctagtc	tcgaactcat	gacctcaagt	gatccgccca	cttcggtctc	ccaaagtgct	3900
gggattacag	gcatgagcca	cggcgcctgg	ccccaaatg	ctcttgaacc	ggaaacccag	3960
ggatgggaga	tgctcactga	gctgctgctt	ttatgtgtgc	tggtgctatg	tgtgttcatg	4020
tccgcggcag	ctgtcttttt	gctactataa	gggaattctg	gccaccctgg	gtggggtgtg	4080
gtcggggtga	gaacccaagc	gttggaactg	tagacccgtc	ctgtcgactg	tgtgcccctg	4140
ggcatgtgtg	agcctcagtt	tcctcatctg	taaggggggc	aatgatacct	acctcacagg	4200
gggttgtgag	gattaaatgt	gaggaggata	gtggcaac			4238

<210> 269 <211> 3001 <212> DNA

<213> Homo sapiens

<400> 269 tgagtaaatc gatacatcat acgcgcgctc ctctggccgc ccctccctcc gacgatcggg 60 gaccctggcg ggcggcagga ggacatggcc agcgacgccg tgcagagtga gcctcgcagc 120 tggtccctgc tagagcagct gggcctggcc ggggcagacc tggcggcccc cggggtacag 180 cagcagctgg agctggagcg ggagcggctg cggcgggaaa tccgcaagga gctgaagctg 240 aaggagggtg ctgagaacct gcggcgggcc accactgacc tgggccgcag cctgggcccc 300 gtagagetge tgetgegggg etectegege egeetegace tgetgeacea geagetgeag 360 gagetgeacg cecaegtggt gettecegae eeggeggeea eecaegatgg eeceeagtee 420 cctggtgcgg gtggccccac ctgctcggcc accaacctga gccgcgtggc gggcctggag 480 aagcagttgg ccattgagct gaaggtgaag cagggggcgg agaacatgat ccagacctac 540 agcaatggca gcaccaagga ccggaagctg ctgctgacag cccagcagat gttgcaggac 600 660 agtaagacca agattgacat catccgcatg caactccgcc gggcgctgca ggccgaccag ctggagaacc aggcagcccc ggatgacacc caagggagtc ctgacctggg ggctgtggag 720 ctgcgcatcg aagagctgcg gcaccacttc cgagtggagc acgcggtggc cgagggtgcc 780 840 aagaacgtac tgcgcctgct cagcgctgcc aaggccccgg accgcaaggc agtcagcgag 900 gcccaggaga aattgacaga atccaaccag aagctggggc tgctgcggga ggctctggag 960 cggagacttg gggagctgcc cgccgaccac cccaaggggc ggctgctgcg agaagagctc gctgcggcct cctccgctgc cttcagcacc cgcctggccg ggccctttcc cgccacgcac 1020 tacagcaccc tgtgcaagcc cgcgccgctc acagggaccc tggaggtacg agtggtgggc 1080 tgcagagacc tcccagagac catcccgtgg aaccctaccc cctcaatggg gggacctggg 1140

accccagaca	gccgccccc	cttcctgagc	cgcccagccc.	ggggccttta	cagccgaagc	1200
ggaagcctca	gtggccggag	cagcctcaaa	gcagaagccg	agaacaccag	tgaagtcagc	1260
actgtgctta	agctggataa	cacagtggtg	gggcagacgt	cttggaagcc	atgtggcccc	1320
aatgcctggg	accagagctt	cactctggag	ctggaaaggg	cacgggaact	ggagttggct	1380
gtgttctggc	gggaccagcg	gggcctgtgt	gccctcaaat	tcctgaagtt	ggaggatttc	1440
ttggacaatg	agaggcatga	ggtgcagctg	gacatggaac	cccagggctg	cctggtggct	1500
gaggtcacct	tccgcaaccc	tgtcattgag	aggattcctc	ggctccgacg	gcagaagaaa	1560
attttctcca	agcagcaagg	gaaggcgttc	cagcgtgcta	ggcagatgaa	catcgatgtc	1620
gccacgtggg	tgcggctgct	ccggaggctc	atccccaatg	ccacgggcac	aggcaccttt	1680
agccctgggg	cttctccagg	atccgaggcc	cggaccacgg	gtgacatatc	ggtggagaag	1740
ctgaacctcg	gcactgactc	ggacagctca	cctcagaaga	gctcgcggga	tectecttee	1800
agcccatcga	gcctgagctc	ccccatccag	gaatccactg	ctcccgagct	gccttcggag	1860
acccaggaga	ccccaggccc	cgccctgtgc	agccctctga	ggaagtcacc	tetgaceete	1920
gaagatttca	agttcctggc	ggtgctgggc	cggggtcatt	ttgggaaggt	gctcctctcc	1980
gaattccggc	ccagtgggga	gctgttcgcc	atcaaggctc	tgaagaaagg	ggacattgtg	2040
gcccgagacg	aggtggagag	cctgatgtgt	gagaagcgga	tattggcggc	agtgaccagt	2100
gcgggacacc	ccttcctggt	gaacctcttc	ggctgtttcc	agacaccgga	gcacgtgtgc	2160
ttcgtgatgg	agtactcggc	cggtggggac	ctgatgctgc	acatccacag	cgacgtgttc	2220
tctgagcccc	gtgccatctt	ttattccgcc	tgcgtggtgc	tgggcctaca	gtttcttcac	· 2280
gaacacaaga	tcgtctacag	ggacctgaag	ttggacaatt	tgctcctgga	caccgagggc	2340
tacgtcaaga	tcgcagactt	tggcctctgc	aaggaggga	tgggctatgg	ggaccggacc	2400
agcacattct	gtgggacccc	ggagttcctg	gcccctgagg	tgctgacgga	cacgtcgtac	2460
acgcgagctg	tggactggtg	gggactgggt	gtgctgctct	acgagatgct	ggttggcgag	2520
tccccattcc	caggggatga	tgaggaggag	gtcttcgaca	gcatcgtcaa	cgacgaggtt	2580
cgctacccc	gcttcctgtc	ggccgaagcc	atcggcatca	tgagaaggct	gcttcggagg	2640
aacccagagc	ggaggctggg	atctagcgag	agagatgcag	aagatgtgaa	gaaacagccc	2700
ttcttcagga	ctctgggctg	ggaagccctg	ttggcccggc	gcctgccacc	gccctttgtg	2760
cccacgctgt	ccggccgcac	cgacgtcagc	aacttcgacg	aggagttcac	cggggaggcc	2820
cccacactga	. gcccgccccg	cgacgcgcgg	cccctcacag	ccgcggagca	ggcagccttc	2880
ctggacttcg	acttcgtggc	cgggggctgc	tagececete	ccctgcccct	gcccctgccc	2940

3000

3001 а <210> 270 <211> 2977 <212> DNA <213> Homo sapiens <400> 270 60 ccgaatgtga ccgcctcccg ctccctcacc cgccgcgggg aggaggagcg ggcgagaagc tgccgccgaa cgacaggacg ttggggcggc ctggctccct caggtttaag aattgtttaa 120 gctgcatcaa tggagcacat acagggagct tggaagacga tcagcaatgg ttttggattc 180 aaagatgccg tgtttgatgg ctccagctgc atctctccta caatagttca gcagtttggc 240 tatcagegee gggeatcaga tgatggeaaa etcacagate ettetaagae aageaacaet 300 atccgtgttt tcttgccgaa caagcaaaga acagtggtca atgtgcgaaa tggaatgagc 360 ttgcatgact gccttatgaa agcactcaag gtgaggggcc tgcaaccaga gtgctgtgca 420 gtgttcagac ttctccacga acacaaaggt aaaaaagcac gcttagattg gaatactgat 480 gctgcgtctt tgattggaga agaacttcaa gtágatttcc tggatcatgt tcccctcaca 540 acacacact ttgctcggaa gacgttcctg aagcttgcct tctgtgacat ctgtcagaaa 600 ttcctgctca atggatttcg atgtcagact tgtggctaca aatttcatga gcactgtagc 660 accaaagtac ctactatgtg tgtggactgg agtaacatca gacaactctt attgtttcca 720 aattocacta ttggtgatag tggagtocca gcactacett etttgaetat gegtegtatg 780 cgagagtctg tttccaggat gcctgttagt tctcagcaca gatattctac acctcacgcc 840 ttcaccttta acacctccag tccctcatct gaaggttccc tctcccagag gcagaggtcg 900 acatccacac ctaatgtcca catggtcagc accacgctgc ctgtggacag caggatgatt 960 gaggatgcaa ttcgaagtca cagcgaatca gcctcacctt cagccctgtc cagtagcccc 1020 aacaatctga gcccaacagg ctggtcacag ccgaaaaccc ccgtgccagc acaaagagag 1080 cgggcaccag tatctgggac ccaggagaaa aacaaaatta ggcctcgtgg acagagagat 1140 1200 tcaagctatt attgggaaat agaagccagt gaagtgatgc tgtccactcg gattgggtca ggctcttttg gaactgttta taagggtaaa tggcacggag atgttgcagt aaagatccta 1260 aaggttgtcg acccaacccc agagcaattc caggccttca ggaatgaggt ggctgttctg 1320 cgcaaaacac ggcatgtgaa cattctgctt ttcatggggt acatgacaaa ggacaacctg 1380 gcaattgtga cccagtggtg cgagggcagc agcctctaca aacacctgca tgtccaggag 1440 1500 accaagtttc agatgttcca gctaattgac attgcccggc agacggctca gggaatggac

tatttgcatg	caaagaacat	catccataga	gacatgaaat	ccaacaatat	atttctccat	1560
gaaggcttaa	cagtgaaaat	tggagatttt	ggtttggcaa	cagtaaagtc	acgctggagt	1620
ggttctcagc	aggttgaaca	acctactggc	tctgtcctct	ggatggcccc	agaggtgatc	1680
cgaatgcagg	ataacaaccc	attcagtttc	cagtcggatg	tctactccta	tggcatcgta	1740
ttgtatgaac	tgatgacggg	ggagcttcct	tattctcaca	tcaacaaccg	agatcagatc	1800
atcttcatgg	tgggccgagg	atatgcctcc	ccagatctta	gtaagctata	taagaactgc	1860
cccaaagcaa	tgaagaggct	ggtagctgac	tgtgtgaaga	aagtaaagga	agagaggcct	1920
ctttttcccc	agatcctgtc	ttccattgag	ctgctccaac	actctctacc	gaagatcaac	1980
cggagcgctt	ccgagccatc	cttgcatcgg	gcagcccaca	ctgaggatat	caatgcttgc	2040
acgctgacca	cgtccccgag	gctgcctgtc	ttctagttga	ctttgcacct	gtcttcaggc	2100
tgccagggga	ggaggagaag	ccagcaggca	ccacttttct	gctccctttc	tccagaggca	2160
gaacacatgt	tttcagagaa	gctctgctaa	ggaccttcta	gactgctcac	agggccttaa	2220
cttcatgttg	ccttctttc	tatccctttg	ggccctggga	gaaggaagcc	atttgcagtg	2280
ctggtgtgtc	ctgcťccctc	cccacattcc	ccatgctcaa	ggcccagcct	tctgtagatg	2340
cgcaagtgga	tgttgatggt	agtacaaaaa	gcaggggccc	agccccagct	gttggctaca	2400
tgagtattta	gaggáagtaa	ggtagcaggc	agtccagccc	tgatgtggag	acacatggga	2460
ttttggaaat	cagcttctgg	aggaatgcat	gtcacaggcg	ggactttctt	cagagagtgg	2520
tgcagcgcca	gacattttgc	acataaggca	ccaaacagcc	caggactgcc	gagactctgġ	2580
ccgcccgaag	gagcctgctt	tggtactatg	gaacttttct	taggggacac	gtcctccttt	2640
cacagettet	aaggtgtcca	gtgcattggg	atggttttcc	aggcaaggca	ctcggccaat	2700
ccgcatctca	gccctctcag	gagcagtctt	ccatcatgct	gaattttgtc	ttccaggagc	2760
tgcccctatg	gggcgggccg	cagggccagc	ctgtttctct	aacaaacaaa	caaacaaca	2820
gccttgtttc	tctagtcaca	tcatgtgtat	acaaggaagc	caggaataca	ggttttcttg	2880
atgatttggg	ttttaatttt	gtttttattg	cacctgacaa	aatacagtta	tctgatggtc	2940
cctcaattat	gttattttaa	taaaataaat	taaattt			2977

<210> 271

<211> 1749

<212> DNA

<213> Homo sapiens

<400> 271

gtggcctcga ggtggtggca gggccgccc ctgcagtccg gagacgaacg cacggaccgg 60 gcctccggag gcaggttcgg ctggaaggaa ccgctctcgc ttcgtcctac acttgcgcaa 120

atgtctccga	gcttactcac	atagcatatt	ggtatatcaa	aatgaaatgc	aaggaaccaa	180
aaataacata	attgaaggca	gtaaaagtga	aattaaatag	gaagatcatc	agtcaaggaa	240
gacccactgg	agaggacaga	aaatgaagca	gtgttttatc	atgtgtattt	cagcaggtct	300
tcttgaaatt	taactaaaaa	tatgactgct	ctctcttcag	agaactgctc	ttttcagtac	360
cagttacgtc	aaacaaacca	gcccctagac	gttaactatc	tgctattctt	gatcatactt	420
gggaaaatat	tattaaatat	ccttacacta	ggaatgagaa	gaaaaaacac	ctgtcaaaat	480
tttatggaat	atttttgcat	ttcactagca	ttcgttgatc	ttttactttt	ggtaaacatt	540
tccattatat	tgtatttcag	ggattttgta	cttttaagca	ttaggttcac	taaataccac	600
atctgcctat	ttactcaaat	tatttccttt	acttatggct	ttttgcatta	tccagttttc	660
ctgacagctt	gtatagatta	ttgcctgaat	ttctctaaaa	caaccaagct	ttcatttaag	720
tgtcaaaaat	tattttattt	ctttacagta	attttaattt	ggatttcagt	ccttgcttat	780
gttttgggag	acccagccat	ctaccaaagc	ctgaaggcac	agaatgctta	ttctcgtcac	840
tgtcctttct	atgtcagcat	tcagagttac	tggctgtcat	ttttcatggt	gatgatttta	·900
tttgtagctt	tcataacctg	ttgggaagaa	gttactactt	tggtacaggc	tatcaggata	960
acttcctata	tgaatgaaac	tatcttatat	tttccttttt	catcccactc	cagttatact	1020
gtgagatcta	aaaaaatatt	cttatccaag	ctcattgtct	gttttctcag	tacctggtta	1080
ccatttgtac	tacttcaggt	aatcattgtt	ttacttaaag	ttcagattcc	agcatatatt	1140
gagatgaata	ttccctggtt	atactttgtc	aatagttttc	tcattgctac	agtgtattgg	1200
tttaattgtc	acaagcttaa	tttaaaagac	attggattac	ctttggatcc	atttgtcaac	1260
tggaagtgct	gcttcattcc	acttacaatt	cctaatcttg	agcaaattga	aaagcctata	1320
tcaataatga	tttgttaata	ttattaatta	aaagttacag	ctgtcataag	atcataattt	1380
tatgaacaga	aagaactcag	gacatattaa	aaaataaact	gaactaaaac	aacttttgcc	1440
ccctgactga	tagcatttca	gaatgtgtct	tttgaagggc	tataccagtt	attaaatagt	1500
gttttatttt	aaaaacaaaa	taattccaag	aagtttttat	agttattcag	ggacactata	1560
ttacaaatat	tactttgtta	ttaacacaaa	aagtgataag	agttaacatt	tggctatact	1620
gatgtttgtg	ttactcaaaa	aaactactgg	atgcaaactg	ttatgtaaat	ctgagatttc	1680
actgacaact	ttaagatatc	aacctaaaca	tttttattaa	atgttcaaat	gtaagcaaga	1740
aaaaaaaa						1749

<210> 272 <211> 2885 <212> DNA <213> Homo sapiens

<400> 272 cggcacgccc gggaggcttt ctctggctgg taaccgctac tcccggacac cagaccaccg 60 120 cetteegtac acaggggeec geateceace etceeggace taagageetg ggteecetgt ttccggagtc cgcttcccgg cccccagatt ctggcatccc agccctcagt gtccaagacc 180 caggcagece gggteceege eteceggate caggegteeg ggatetgege caccagaace 240 tagectectg cagacetecg ceatetgggg geacteaace teetggagee aagggeecea 300 cgtcccaccc agagaaactc tcgtattccc agctcctagg gccaaggaac ccgggcgctc 360 cgaactccca gctttcggac atctggcaca cggggcagag cagagaagcc tcagcgccca 420 gcctggggaa tttaaacact ccagcttcca agagccaagg aacttcagtg ctgtgaactc 480 540 acaactctaa ggagccctcc aaagttccag tctccaggtg ctgttactca actcagtcct aggaacgtcg ggtcctggga aggagcccaa gcgctcccag ccagcttcca ggcgctaaga 600 aaccccggtg cttcccatca tggtggccga tcctcctcga gactccaagg ggctcgcagc 660 ggcggagcca ccgccaacgg gggcctggca gctggcctcc atcgaggacc aaggcgcggc 720 agcaggcggc tactgcggtt cccgggacct ggtgcgccgc tgccttcgag ccaacctgct 780 tgtgctgctg acagtggtgg ccgtggtggc cggcgtggcg ctgggactgg gggtgtcggg 840 ggccgggggt gcgctggcgt tgggcccggg agcgcttgag gccttcgtct tcccgggcga 900 960 gctgctgctg cgtctgctgc ggatgatcat cttgccgctg gtggtgtgca gcttgatcgg cggcgccgcc agcctggacc ccggcgcgct cggccgtctg ggcgcctggg cgctgctctt 1020 tttcctggtc accacgctgc tggcgtcggc gctcggagtg ggcttggcgc tggctctgca 1080 geegggegee geeteegeeg ceateaacge eteegtggga geegegggea gtgeegaaaa 1140 1200 tgcccccagc aaggaggtgc tcgattcgtt cctggatctt gcgagaaata tcttcccttc caacctggtg tcagcagcct ttcgctcata ctctaccacc tatgaagaga ggaatatcac 1260 cggaaccagg gtgaaggtgc ccgtggggca ggaggtggag gggatgaaca tcctgggctt 1320 1380 ggtagtgttt gccatcgtct ttggtgtggc gctgcggaag ctggggcctg aaggggagct gcttatccgc ttcttcaact ccttcaatga ggccaccatg gttctggtct cctggatcat 1440 gtggtacgcc cctgtgggca tcatgttcct ggtggctggc aagatcgtgg agatggagga 1500 1560 tgtgggttta ctctttgccc gccttggcaa gtacattctg tgctgcctgc tgggtcacgc catccatggg ctcctggtac tgcccctcat ctacttcctc ttcacccgca aaaaccccta 1620 ccgcttcctg tggggcatcg tgacgccgct ggccactgcc tttgggacct cttccagttc 1680 cgccacgctg ccgctgatga tgaagtgcgt ggaggagaat aatggcgtgg ccaagcacat 1740 cagccgtttc atcctgccca tcggcgccac cgtcaacatg gacggtgccg cgctcttcca 1800

gtgcgtggcc gcagtgttca	ttgcacagct	cagccagcag	tccttggact	tcgtaaagat	1860
catcaccatc ctggtcacgg	ccacagcgtc	cagcgtgggg	gcagcgggca	tccctgctgg	1920
aggtgtcctc actctggcca	tcatcctcga	agcagtcaac	ctcccggtcg	accatatctc	1980
cttgatcctg gctgtggact	ggctagtcga	ccggtcctgt	accgtcctca	atgtagaagg	2040
tgacgctctg ggggcaggac	tcctccaaaa	ttatgtggac	cgtacggagt	cgagaagcac	2100
agagcctgag ttgatacaag	tgaagagtga	gctgcccctg	gatccgctgc	cagtccccac	2160
tgaggaagga aacccctcc	tcaaacacta	tcgggggccc	gcaggggatg	ccacggtcgc	2220
ctctgagaag gaatcagtca	tgtaaacccc	gggagggacc	ttccctgccc	tgctgggggt	2280
gctctttgga cactggatta	tgaggaatgg	ataaatggat	gagcțagggc	tctgggggtc	2340
tgcctgcaca ctctggggag	ccaggggccc	cagcaccctc	caggacagga	gatctgggat	2400
gcctggctgc tggagtacat	gtgttcacaa	gggttactcc	tcaaaacccc	cagttctcac	2460
tcatgtcccc aactcaaggo	tagaaaacag	caagatggag	aaataatgtt	ctgctgcgtc	2520
cccaccgtga cctgcctggc	ctcccctgtc	tcagggagca	ggtcacaggt	caccatgggg	2580
aattctagcc cccactgggg	ggatgttaca	acaccatgct	ggttattttg	gcggctgtag	2640
ttgtggggg atgtgtgtgt	gcacgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	2700
tctgtgacct cctgtcccca	tggtacgtcc	caccctgtcc	ccagatcccc	tattccctcc	2760
acaataacag aaacactccc	agggactctg	gggagaggct	gaggacaaat	acctgctgtc	2820
actccagagg acatttttt	tagcaataaa	attgagtgtc	aactattaaa	aaaaaaaaa	2880
aaaaa ຸ					2885
<210> 273 <211> 438 <212> DNA <213> Homo sapiens <220> <221> misc_feature					
<222> (417)(418) <223> n is a, c, g,	t or u				
<400> 273	- ataga-ta	attar	n erek en n er	gaaggagaa	60
acgaactaca acttcgagc					120
aagtgctgct ccgaggcat					180
aagaggggct ggggaagat					
tcaaaccgat ccagaatac					240
gggagatgca gccgcacag	g ggatgattac	cctcctagga	ccgcggtggc	: taagtcattg	300

caggaacggg gctgtgttct	ctgctgggac	aaaacaggag	ctcatctctt	tggggtcaca	360
gttctatttt gtttgtgagt	ttgtattatt	attattatta	ttattattat	attttanntc	420
tttggtctgt gagcaact					438
.210. 274					
<210> 274 <211> 484					
<212> DNA <213> Homo sapiens					
-					
<220> <221> misc feature					
<222> (457)(457)					
<223> n is a, c, g,	t or u	٠			
<220> <221> misc feature					
<222> (483)(483) <223> n is a, c, g,	t or 11				
<400> 274	. O. u				
cctgcccttc cttgcagctg	tggctcagac	aggtagcatg	ggctcaccaa	ttagacataa	60
ctgtgtgaaa tctggaagca	agtactttgc	agacaagagt	agtatgagat	acattttgtt	120
gaacggagca gtgatgtggt	tttcaaggca	gcagtggcag	aggtcccatg	taatggtgca	180
aggtgtggag gctttgctta	gcagtttttc	ccccgcagct	gctccaaggt	ataaaaatgg	240
gcatttttgg gggctccgta	gtcctgacct	ccacgcctgt	gacttgtgag	ccattttatt	300
ctgtttgttt aaactagcta	gtgtagatcc	tgttgtttgt	aaccaagagt	gttgacatac	360
agccactatt taattgtaac	cactgtcaac	cttttcctt	atttacttca	gatccttttg	420
tgtttaaata aaggaaaagc	tgcacatcca	aaaaagnaga	gaaaaaaaga	tggcggccga	480
agng					484
<210> 275 <211> 931					
<212> DNA <213> Homo sapiens					
- <400> 275					
agcggtcatg tccggcagag	gaaagggcgg	aaaaggctta	ggcaaagggg	gcgctaagcg	60
ccaccgcaag gtcttgagag	acaacattca	gggcatcacc	aagcctgcca	ttcggcgtct	120
agctcggcgt ggcggcgtta	agcggatctc	tggcctcatt	tacgaggaga	cccgcggtgt	180
gctgaaggtg ttcctggaga	atgtgattcg	ggacgcagtc	acctacaccg	agcacgccaa	240
gcgcaagacc gtcacagcca	tggatgtggt	gtacgcgctc	aagcgccagg	ggcgcaccct	300
gtacggcttc ggaggctagg	ccgccgctcc	agctttgcac	gtttcgatcc	caaaggccct	360

ttttagggcc	gaccacttgc	tcatctgagg	agttggacac	ttgactgcgt	aaagtgcaac	420
agtaacgatg	ttggaaggct	tatgatttta	ctgtgtatgt	atttgggaga	agaaattctg	480
tcagctccca	aaggataaac	cagcagttgc	tttattggtc	ttcagatgtg	gctgcaaaca	540
cttgagactg	aactaagctt	aaaacacggt	acttagcaat	cgggttgcca	gcaaagcact	600
ggatgcaagc	cttgccttcc	agaagcttac	cagtcgggtt	gccagcaaag	cagtggatgc	660
aagacttgcc	ctccaggagc	ttaccatcac	aacgaagaag	acaaataaat	gcataatata	720
tagacgacat	aaatccatac	tgtacacatt	taagaataaa	cagtccagta	gtaagaggca	780
gtacatattc	aatctgctga	gaaatgtaga	caataactac	tataagaatc	ctaatgctac	840
agaagtcact	ggctgctggg	aaaccgggga	aaacttggct	atggacgtgg	gggcttgtgt	900
cggactctga	ataaagagca	gaatgattgg	С			931
<210> 276 <211> 405 <212> DNA <213> Homo	o sapiens					
	gagtcttact	ctgttgccca	ggctggagtg	cagtggtggg	atctcggctc	60
actgcaacct	ccacctcccg	ggttcaagcg	attctcctgc	ctcagcctcc	tgagtagctg	120
ggactacagg	cgcccgccac	cacgcctggc	taatttttgt	atttttagta	gagacggggt	180
ttcaccatgt	tggtcaggct	ggtctcgatc	tcttgacctc	gcgatccact	cgcctcagcc	240
tcccaaagtg	ctgggattac	aggcctgagc	cactgcgcct	ggcagaccac	ctatattact	300
tttaaccaca	aatgaaatag	atgacttctt	agaaaaacat	aaaagcagag	ctgtctcaaa	360
aaccaacaga	atatctgcat	agcctaaaaa	ccataaagaa	agcag		405
<210> 277 <211> 368 <212> DNA <213> Home	o sapiens				·	
<400> 277 tttgagagta	ctgtatattt	tattttcatg	aaaaatttat	aataaaccac	cacgttactc	60
cctgtctctg	tggctgggct	gcctggacat	ttcatagaaa	tgggatcaca	cacggcatgt	120
cctctgtgtc	tggcgtgtct	cattgagcct	ggagtgtctc	attgagcctg	gcgtcctgaa	180
ggtgcgtcca	cgccgtgcct	gagtcagagc	ttcttccttt	tcatggctgg	gttgtgttcc	240
agtgcatgga	gggccacact	acgcctcctc	ctctgctgac	ggccatctgg	gttgtagcca	300
ccgtccggct	gctggagtcc	acggcggcgt	ctgcgcacgg	gcttctgcgt	ggctgcgggc	360

ttccactc	08
<210> 278 <211> 239 <212> DNA <213> Homo sapiens	
	60
tcgtgaaggg ccgatttatc atctccagag acaattccaa gaacacgctc tatctgtaaa 12	20
tgaacaccct gagagtcgag gacacggcta tatattattg cgcgagagac cgagggaaat 18	80
tatattgtag tggtggtatt tgctttccgc ctgttggcta cttcgacccc tggggccaa 23	39
<210> 279 <211> 335 <212> DNA <213> Homo sapiens	
<400> 279 ggggagaget catgtcagtg aatatagatc attctgttga taccettett tgaatattet	60
agtgtattaa tataccatgt ttaatttaat catgtcttat taatggactg gctgttttca 1	20
catatttgat atatcaagtg tcttcacaac tgtgcttgca tattctttcc caaaatattg 1	80
aaagtccata tatttccttg tacattttta aagttgatat ctaaatcttt catgtagttg 2	40
caaagcatgt aatttcttgg gggagggggg ctgtaaatat tgacatttta aaataaaact 3	00
tttaaatcag ccttaaaaaa aaaaaaaaaa aaaaa 3	35
<210> 280 <211> 430 <212> DNA <213> Homo sapiens	
<220> <221> misc_feature <222> (374)(374) <223> n is a, c, g, t or u	
<220> <221> misc_feature <222> (417)(417) <223> n is a, c, g, t or u	
<220> <221> misc_feature <222> (425)(425) <223> n is a, c, g, t or u	
<400> 280 agatteggaa egaggeetaa eeetaagtee tgtgeacaga geeetgtage egeeeetaee	60

cagagcaggc actgacaag	c ccacccattt	ctagtgctgc	ccaaggtgga	ctcagcccac	120
aaaggcccca gccccagcc	t ttgcggatag	gtttcctccg	tggtgccaac	aactcttgtg	180
gatttgaaag aggcaacct	t tttcctcgcg	tttctaaagg	cctatgaaaa	gggcacgtcg	240
ggaagtgcac ataagacgt	t gaacatcgtt	gcatgagatg	ttgaagaagt	acaagatttc	300
gttcttcctt ccattaaag	t acaatctccc	tggggagaga	cacacaagt	acacatttag	360
agaccagtta tttntttt	c cagattcgtt	teceggtgee	tttttcctag	gttaagnagc	420
ttttncctgg					430
<210> 281 <211> 972 <212> DNA <213> Homo sapiens					
<400> 281 gageteaege atcetteeg	a gggccctgag	tgaggcggcc	actgctgtgc	cgaggggttg	60
ggtccttctc tggggaggg	gc gtggggtcta	gagaggcgga	gtggaggtaa	ccagaggtca	120
ggagagaagc cgtaagaac	a gagggaaaat	ggggccagag	teggggegea	gggacgagag	180
gtcaggagtg gtcggcctg	g ccctgggcgt	tgactgactc	gggacctggg	tgcccaccct	240
cagggetgge tggeggete	c gcgcagtccc	agagggcccc	ggatagggtg	ctctgccact	300
ccggacagca gcagggact	g ccgagagcag	caggaggctc	tgtcccccac	ccccgctgcc	360
actgtggagc cgggaggg	t gactggccag	gtcccccaga	gctggacgtg	tgcgtggagg	420
aggccgaggg cgaggcgc	g tggacgtgga	ccggcctctg	catcttcgcc	gcactcttcc	480
tgctcagcgt gagctacag	jc gccgccctca	cgctcctcat	ggtgggcacc	cacctccagg	540
ggcccagcca gggcaggg	gg ttgggcagag	cagcagagcc	cctgacccac	gccctcccct	600
caggtgcagc ggttcctct	c agccacgcgg	caggggaggc	cccagacctc	cctcgactac	660
accaacgtcc tccagccc	ca cgcctagccg	cgggccactc	acgctccacc	aggcccagct	720
ttttctctgc cagcgcctg	ga gcctccctcg	ggctgcaccc	tgccctgggt	gggaaaaggg	780
aagcagacaa gaaaagggg	gg catcaaggtc	actactgtgg	gctgatggcc	agtgaacctg	840
agccagaggg gccgctcag	gc cgcaaggtta	caggcgccga	gagaaccacc	agtcgcaggc	900
cccacccgaa aaccgtgto	ct gtcccttcaa	cagagtcatc	gaggaggggt	ggctgctagc	960
cgtctcgagc tc					972

<210> 282 <211> 3624 <212> DNA <213> Homo sapiens

<400> 282 cagtactgta	caaggaaaac	cccgtcggat	ctgttattgc	gggatacttg	tgaaatatac	60
ataggattct	ttcttatggc	tgcatcccgg	atctggaaat	tttacttggg	gaccaggagg	120
atttgaaagg	ctgcatgtac	tcagaagatt	tgcaagcaac	actccaattc	ttgtcataga	180
gctcgcagac	ttctcactta	tcggcttttt	tccttcctta	ttttttaaga	attattctta	240
ttttcccctc	tcttttctg	ctctctcctc	tctcagtctc	tccttttcta	tctgcctctt	300
catttttctc	ctagtctgtt	tttttttc	ctgctctgca	cctggattgt	atcttcagca	360
aacaatcggg	cactttgaga	actaactgga	gacagtcttg	tagggaagat	ctgtatggaa	420
ttatctgctt	ttatggtgaa	cttggcattt	gtgaatggga	atcttgttca	caatattaat	480
tgctagcaaa	aacaagaaaa	agaacacagg	agtaaaacgt	ggatttttct	gaatacgcat	540
tgtgatgacc	agcaattacc	ttaccgacta	atatccagag	gagaataatt	tggaagactg	600
ttgtggggaa	cagcctttaa	gagctggaag	atgaaagctc	cgattccaca	cttgattctc	660
ttatacgcta	cttttactca	gagtttgaag	gttgtgacca	aaagaggctc	cgccgatgga	720
tgcactgact	ggtctatcga	tatcaagaaa	tatcaagttt	tggtgggaga	gcctgttcga	780
atcaaatgtg	cactctttta	tggttatatc	agaacaaatt	actcccttgc	ccaaagtgct	840
ggactcagtt	tgatgtggta	caaaagttct	ggtcctggag	actttgaaga	gccaatagcc	900
tttgacggaa	gtagaatgag	caaagaagaa	gactccattt	ggttccggcc	aacattgcta	960
caggacagtg	gtctctacgc	ctgtgtcatc	agaaactcca	cttactgtat	gaaagtatcc	1020
atctcactga	cagtgggtga	aaatgacact	ggactctgct	ataattccaa	gatgaagtat	1080
tttgaaaaag	ctgaacttag	caaaagcaag	gaaatttcat	gccgtgacat	agaggatttt	1140
ctactgccaa	ccagagaacc	tgaaatcctt	tggtacaagg	aatgcaggac	aaaaacatgg	1200
aggccaagta	ttgtattcaa	aagagatact	ctgcttataa	gagaagtcag	agaagatgac	1260
attggaaatt	atacctgtga	attaaaatat	ggaggctttg	ttgtgagaag	aactactgaa	1320
ttaactgtta	cageceetet	gactgataag	ccacccaagc	ttttgtatcc	tatggaaagt	1380
aaactgacaa	ttcaggagac	ccagctgggt	gactctgcta	atctaacctg	cagagctttc	1440
tttgggtaca	gcggagatgt	cagtccttta	atttactgga	tgaaaggaga	aaaatttatt	1500
gaagatctgg	atgaaaatcg	agtttgggaa	agtgacatta	gaattcttaa	ggagcatctt	1560
ggggaacagg	aagtttccat	ctcattaatt	gtggactctg	tggaagaagg	tgacttggga	1620
aattactcct	gttatgttga	aaatggaaat	ggacgtcgac	acgccagcgt	tctccttcat	1680
aaacgagagc	taatgtacac	agtggaactt	gctggaggcc	ttggtgctat	actcttgctg	1740
cttgtatgtt	tggtgaccat	ctacaagtgt	tacaagatag	aaatcatgct	cttctacagg	1800

aatcattttg	gagctgaaga	gctcgatgga	gacaataaag	attatgatgc	atacttatca	1860
tacaccaaag	tggatcctga	ccagtggaat	caagagactg	gggaagaaga	acgttttgcc	1920
cttgaaatcc	tacctgatat	gcttgaaaag	cattatggat	ataagttgtt	tataccagat	1980
agagatttaa	tcccaactgg	aacatacatt	gaagatgtgg	caagatgtgt	agatcaaagc	2040
aagcggctga	ttattgtcat	gaccccaaat	tacgtagtta	gaaggggctg	gagcatcttt	2100
gagctggaaa	ccagacttcg	aaatatgctt	gtgactggag	aaattaaagt	gattctaatt	2160
gaatgcagtg	aactgagagg	aattatgaac	taccaggagg	tggaggccct	gaagcacacc	2220
atcaagctcc	tgacggtcat	taaatggcat	ggaccaaaat	gcaacaagtt	gaactccaag	2280
ttctggaaac	gtttacagta	tgaaatgcct	tttaagagga	tagaacccat	tacacatgag	2340
caggctttag	atgtcagtga	gcaagggcct	tttggggagc	tgcagactgt	ctcggccatt	2400
tccatggccg	cggccacctc	cacagctcta	gccactgccc	atccagatct	ccgttctacc	2460
tttcacaaca	cgtaccattc	acaaatgcgt	cagaaacact	actaccgaag	ctatgagtac	2520
gacgtacctc	ctaccggcac	cctgcctctt	acctccatag	gcaatcagca	tacctactgt	2580
aacatcccta	tgacactcat	caacgggcag	cggccacaga	caaaatcgag	cagggagcag	2640
aatccagatg	aggcccacac	aaacagtgcc	atcctgccgc	tgttgccaag	ggagaccagt	2700
atatccagtg	tgatatggtg	acagaaaagc	aagggacatc	ccgtccctgg	gaggttgagt	2760
ggaatctgca	gtccagtgcc	tggaactaaa	tectegactg	ctgctgttaa	aaaacatgca	2820
ttagaatctc	tagaacacga	ggaaaaacag	ggtcttgtac	atatgttttt	tggaatttct	2880
ttgtagcatc	agtgtcctcc	tgttttacca	tgtcttttac	cattacattt	tttgactttg	2940
ttttatatgt	cgttggaatt	tgtaaattta	cattttttt	aaagaagaga	ctgatgtgta	3000
gatagaaaac	ccttttttg	cttcattagt	ttagttttag	aatgggtttt	tattttattt	3060
ccttttttaa	aattttactt	tgcttttaac	atttccttgg	ggtgcttgga	caaatctatc	3120
cgatgggaca	aggagcaccg	gattctttct	cgggttctgc	ctagcatcaa	ctgggccacg	3180
tcggccttca	gagaacagtg	caacaaatgc	cagcattgcc	attcggggga	aaaaaaaaa	3240
aaaaaaaaa	agatgagaag	aacacttgtt	cataggaggg	ccccaccagt	cagageeetg	3300
aatctcttcc	ttgtcccacc	tcattcccca	cctctacctt	tctaatggcg	gcatgatgtg	3360
taaactctgt	gcaggggtgg	gggcgggtct	aactgtctta	acattcaagt	cactgctctt	3420
cagaatacac	tctagaccca	aaggtgtgct	aatcacttca	cagtgaccac	tacagagtac	3480
taagaagaga	agatcaaggg	catgaaattg	gggaagagtg	ttatttccgt	tttttaaatg	3540
agttgatgta	cccttatata	tatatacata	tatatataaa	tataaatata	tataaaaaca	3600
acaaaacaaa	acaaaaaag	aaaa				3624

```
<210> 283
<211> 456
 <212> DNA
<213> Homo sapiens
 <400> 283
tttttagatt gcctggatag cacagggtta ggaatgcagg ctctggggta gaacatctgg
                                                                     60
gtttttcctt attcatctga ccctatgtaa actccatttg tggtatctct ggatttcagt
                                                                    120
 taccttatct gcaaaatagg catataagta atattaatct ccaatggctg tcatgagcat
                                                                    180
 taaaccaacc gccacagagt agatgttcaa tcaaagtgag ctgttaatga caaggttatt
                                                                    240
 tttqttqtct tttacccctt ttcacggttt catttccctt cctttgtcct ctaggtactt
                                                                    300
 acatectett eccateteca teaetteett tetgagtete tetacatgae egeetttete
                                                                    360
 tttgaatatt cctqctcttg aacaacatcc tcacatttaa atttgtcccc tcttctgcca
                                                                    420
 tcaccaagtt tctcccgtga tataagaaat atacat
                                                                    456
 <210> 284
 <211> 406
 <212> DNA
 <213> Homo sapiens
 <400> 284
 60
 ttttttattt tggtaatttt ttcccccac caacaggggt ttttttataa tcaaaaaaac
                                                                    120
aaaaaaccct cgcaaaaaag ggaagggctg ggtgggctcc tggccacggg gccccccaag
                                                                    180
 caggatttgg aagggteetg ggetttggag tecaaaaaee aaetggggee eeceaggttt
                                                                    240
 taacctcccc agctgtaatg caaagtatgc cccccaggg aggactcctc acctggtttt
                                                                    300
 gccccttccc aaccattcca ccaccacca aaagggccta gggtggggg cttgcactgt
                                                                    360
                                                                    406
 gaaaggccca agcaaggagg ggacccaaag gccctggccc aaccca
 <210> 285
 <211> 473
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
<222> (379)..(379)
 <223> n is a, c, g, t or u
 <220>
 <221> misc feature
 <222> (433)..(433)
<223> n is a, c, g, t or u
```

<400> 285 qaqtttaaca	cagattttat	tgccctatag	acaggtatga	tgtgaccagt	ggatatcaat	60
	aattatttga					120
	aagctctgcg					180
	aaaagcaaaa					240
	gagagagaat					300
					tggaaaatcc	360
taggtagaaa	gacactctnt	ctatgttcct	accacttctg	agtggacctg	aataaacaga	420
tattactggt	atntttattt	tttcctctgt	tccatattct	acagagatta	gct	473
<210> 286 <211> 500 <212> DNA <213> Hom						
<400> 286 gcggccgctg	; g ctgccgagtc	: aaggaggaaa	ccttcatgca	cggaagtttc	tcgggggcgg	60
ccgggctttg	j ttegegeeag	aggcgctcga	gacatctccg	ggagggagc	gegggeggag	120
					e acgcgacgtc	180
					g tegggtgeee	240
tegegttge	t gttgggctco	c cctgaccag	g gaggatggaa	a aggaaggag	aggcaggctt	300
agctgccct	a gaccggccct	t agaccgggaa	a cctggaagca	a gatctgacti	ccacttccaa	360
gggagaaac	c geeteeege	a ctggcgccc	c gaggggagag	g agaagccca	g ctaggtttcc	420
gcgtggtcc	g cgtggttgg	t gaaccctca	g gctggggg	t geeeegett	g gcgtgcaagg	480
ccctctttg	g agctgccgt	g	•			500
<210> 28 <211> 36 <212> DN <213> Ho	4					
<400> 28 gatcatcat	7 c aaacccccg	Jc ggagcatta	a ccaacccct	a ccgactgtc	c ttcgggcctt	60
					c tgaacctctg	120
					t ccaactgcct	180
tagcatcco	ca gctcacago	cc tctgaaaaa	aa acatcttgg	gg gccctcaco	cc tgcatcaact	240
tgcttctat	t gacaagcat	ta ccactgag	gt aggcatcad	ct catagggg	et gttgattaca	300
tccgcaga	ct ctgatatto	cc agctggat	ta aattgacco	ca ttctgtggg	gg actgtccttg	360

ccct	364
<210> 288 <211> 364 <212> DNA <213> Homo sapiens	
<400> 288 tttttttt tttttttt tttttttt	t tittittt tittittt 60
ttttttttt aaccegggcc ttcccaaatt tatttgggg	c ccccccaaa aaaggccccc 120
ccccaaaaa aaagggggg gccctttggg gggaaaacc	g ggtttgggcc aaccgcccaa 180
aaccccgggg ggcaacggaa aattaatttt gaaatcggg	a aaatttttaa aaccccccc 240
gggggacttt gtggcccgaa accccccac cttaaaaaa	a taaaaggaag gggcccgggc 300
ccggggccgg gccaccattt tttttgtaaa acttgggga	a aaaccccct ggggggaaa 360
aggc	364
<210> 289 <211> 479 <212> DNA <213> Homo sapiens	
<pre><400> 289 ttttttttt ttttgttacc ttatccatta acctgttac</pre>	ca acaattaatt cagggttcat 60
tgtgtccaga gcagtttatt agaaaggggt acagactco	ca gaagcataac ccctggtatg 120
tggtcagggg actgttagtc agggatacat tttatggaa	ag ttacaattta tagagctgga 180
aactttcaag cacagttctt tgtccaactt agtttcaac	ct ttaacaaaca caagagtact 240
tgtagagaga aattctcctc caacgcatac tcttctggt	g attaccagca ggtccactgg 300
cagcagctag attgagtgtt tgagtcagcc tggctgatt	ca cottaatogo ottaatoata 360
gaatctaccc tccctggaat gggcttaaca tggagagtg	gg cagaatggca gaataaccac 420
tctaagctga aaatttcttg ttagaacggg ttctgatgo	cc tttaatgaag agcttgcga 479
<210> 290 <211> 403 <212> DNA <213> Homo sapiens	
<400> 290 gaccgcaccc tgccatttac tccatggcct tcaggaagg	ga atgagccagc cgagccaaag 60
accgcttctt ctgtgctctc agccagcact cctcttgac	cc cctgccctcc tgcaatgcat 120
gagggaggct ttgcaatcac tccctgtcac tctgtccca	ag ctctcagtcc aacagtgata 180
addttttgca aatctcctca ctggacttta gaaatacga	at totactcagg aacctaacag 240

tgctgacttt tcctggcatg ccattatgct acgttcaagt ttccaccagg ttgtt	ttgcct 300
tggcatgttt ctttgcatga agtgatccac ttggagctgc tactggtccc attg	agtect 360
atagtacttc agtgactctc aggttagcca tggagtagat ggc	403
<210> 291 <211> 2038 <212> DNA <213> Homo sapiens	
<pre><400> 291 ggctataagc gcacggcctc ggcgaccctc tccgacccgg ccgccgccgc catg</pre>	cagccc 60
tecageette tgeegetege cetetgeetg etggetgeae eegeeteege gete	gtcagg 120
atcccgctgc acaagttcac gtccatccgc cggaccatgt cggaggttgg gggc	tctgtg 180
gaggacctga ttgccaaagg ccccgtctca aagtactccc aggcggtgcc agcc	gtgacc 240
gaggggccca ttcccgaggt gctcaagaac tacatggacg cccagtacta cggg	gagatt 300
ggcatcggga cgcccccca gtgcttcaca gtcgtcttcg acacgggctc ctcc	aacctg 360
tgggtcccct ccatccactg caaactgctg gacatcgctt gctggatcca ccac	aagtac 420
aacagcgaca agtccagcac ctacgtgaag aatggtacct cgtttgacat ccac	tatggc 480
togggcagec totoogggta cotgagecag gacactgtgt eggtgecetg coag	stcagcg 540
tcgtcagcct ctgccctggg cggtgtcaaa gtggagaggc aggtctttgg ggag	ggccacc 600
aagcagccag gcatcacctt catcgcagcc aagttcgatg gcatcctggg catg	gcctac 660
ccccgcatct ccgtcaacaa cgtgctgccc gtcttcgaca acctgatgca gcag	gaagetg 720
gtggaccaga acatcttctc cttctacctg agcagggacc cagatgcgca gcct	gggggt 780
gagetgatge tgggtggeae agaeteeaag tattacaagg gttetetgte etac	cctgaat 840
gtcacccgca aggcctactg gcaggtccac ctggaccagg tggaggtggc cago	egggetg 900
accetgtgca aggagggetg tgaggeeatt gtggacacag gcactteect cate	ggtgggc 960
ccggtggatg aggtgcgcga gctgcagaag gccatcgggg ccgtgccgct gatt	ccagggc 1020
gagtacatga teccetgtga gaaggtgtee accetgeeeg egateacaet gaag	gctggga 1080
ggcaaaggct acaagctgtc cccagaggac tacacgctca aggtgtcgca ggc	egggaag 1140
accetetgee tgageggett catgggeatg gacatecege cacceagegg gees	actctgg 1200
atcctgggcg acgtcttcat cggccgctac tacactgtgt ttgaccgtga caac	caacagg 1260
gtgggcttcg ccgaggctgc ccgcctctag ttcccaaggc gtccgcgcgc cag	cacagaa 1320
acagaggaga gtcccagagc aggaggcccc tggcccagcg gcccctccca cac	acaccca 1380
cacactogoc ogoccactgt cotgggogoc otggaageog goggoccaag coo	gacttgc 1440

tgttttgttc tgtggttttc	ccctccctgg	gttcagaaat	gctgcctgcc	tgtctgtctc	1500
tccatctgtt tggtgggggt	agagctgatc	cagagcacag	atctgtttcg	tgcattggaa	1560
gaccccaccc aagcttggca	gccgagctcg	tgtatcctgg	ggctcccttc	atctccaggg	1620
agtecectee eeggeeetae	cagcgcccgc	tgggctgagc	ccctacccca	caccaggccg	1680
tecteceggg ceetecettg	gaaacctgcc	ctgcctgagg	gcccctctgc	ccagcttggg	1740
cccagctggg ctctgccacc	ctacctgttc	agtgtcccgg	gcccgttgag	gatgaggccg	1800
ctagaggcct gaggatgagc	tggaaggagt	gagagggac	aaaacccacc	ttgttggagc	1860
ctgcagggtg gtgctgggac	tgagccagtc	ccaggggcat	gtattggcct	ggaggtgggg	1920
ttgggattgg gggctggtgc	cagccttcct	ctgcagctga	cctctgttgt	cctccccttg	1980
ggcggctgag agccccagct	gacatggaaa	tacagttgtt	ggcctccggc	ctcccctc	2038
<210> 292 <211> 1282 <212> DNA <213> Homo sapiens					
<400> 292 gctttgatca gacaaataca	gaccgctgtc	atgccaaacg	gaactcctca	cccaactgct	60
gcaatagttc ctccagggcc	cgaagctggt	ttaatctata	caccctatga	gtacccctac	120
acattggcac cagctacato	aatccttgag	tatcctattg	aacctagtgg	tgtattaggt	180
gcggtggcta ctaaagttcg	aaggcacgat	atgcgtgtcc	atccttacca	aaggattgtg	240
accgcagacc gagccgccac	cggcaactaa	cctatgacct	tctgacctct	gaactcttca	300
cccaatgatg acctgaccat	gcctgcctgc	tgatcagtta	actggtaatc	gcctttgctt	360
gcctgtcgtc agtgcagcga	gctgaggcac	ttgtccgttc	gtcttaccat	ctaaccaaac	420
aaaagacaaa gaaattgttg	tcctccaact	cagcttttt	tttttttc	ctgtttgggt	480
gaaagtggtt ctagaaactg	cactgaatag	tagtaaagca	ataaggccca	attcatccca	540
cagcactgat catcttttaa	tatcccaccc	taagcgaacg	gtaagaaggc	ctctcttaag	600
aaggggagac agatggtcct	taactactca	atgacagagg	cagttactgt	gagagacttc	660
taggaatett tttettetea	tagcgaagtc	aaagctctct	ctgaatgtac	tgtgtgatga	720
tgcatcatgc atgaacctto	ggtcagggat	atcattggtg	aagtgattto	aaaaagtatt	780
caaaatttga tatgctgttt	agtcactaca	gtgccctcaa	agggcagaag	ttgcagcctt	840
ttttatattg cctgccaaaa	ı tttgaagtat	tagaagaaag	tgtgccatga	gagaaaaact	900
taaggagttt tgaaaagtaa	tgcaaataac	aaaactgcaa	cactatttt	. aaaaagataa	960

atatctgagt taaaattact gaatctttat tttacaccta aaaaaatatg agaacaaggt 1020

acatgcatta tgtgtcacat	tactgggcaa	actgttcaag	tattttttt	taaacctccc	1080
tgtatagaaa aaaatcatta	aggatgtaaa	agccatgctt	gcctatttgc	tgtatacatg	1140
taatgaaatt gtagataaag	tgtagtgcat	tgaaacaaat	gaacaaaaag	tagatacttt	1200
tactatacaa gggtgctggt	gcagaaaaaa	atatatatat	ttttggaaat	gtagcatttt	1260
atactttcaa gtgttataaa	aa				1282
<210> 293 <211> 1372 <212> DNA <213> Homo sapiens					
<400> 293 gattcggcac tagcggggag	gagcttcccg	cggcctgctc	cgccagccgg	ggtcggtggc	60
cgcatggctt cggtctcctc	tgcgaccttc	tcgggccacg	gggctcggtc	cctactgcag	120
ttcctgcggc tggtagggca	gctcaagaga	gtcccacgaa	ctggctgggt	atacagaaat	180
gtccagaggc cggagagcgt	ttcagatcac	atgtaccgga	tggcagttat	ggctatggtg	240
atcaaagatg accgtcttaa	caaagacccg	gaagctatga	agcagataac	ccagctccta	300
ccagaggacc tcagaaagga	gctctatgaa	ctttgggaag	agtacgagac	ccaatctagt	360
gcagaagcca aatttgtgaa	gcagctagac	caatgtgaaa	tgattcttca	agcatctgaa	420
tatgaagacc ttgaacacaa	acctgggaga	ctgcaagact	tctatgattc	cacagcagga	480
aaattcaatc accctgagat	agtccagctt	gtttctgaac	ttgaggcaga	aagaagcact	540
aacatagctg cagctgccag	tgagccacac	tcctgagaca	ctctctaaat	tgctgcactc	600
ctgtaacaaa cattatttt	ccatttcatt	gtattgtgtt	ttgccattgt	tggtctgttg	660
atttccctag atgtgagtct	gtttgttttc	aattgtctga	acttcagcaa	gaaatgtgat	720
acaacttggg cactaaaaga	agccacagaa	caggaagcgg	tcatgaaagt	gccatggatg	780
aacactggag gtggcagtgc	ctgtttatga	actaaataaa	taaatattaa	acacctaaaa	840
tattagaata tttattggag	atttaaaatc	atcttattct	gacttaatta	ccgatatccc	900
cgaaggctag gttcattgaa	taatagaaaa	tttcattatg	attgctttta	agaacagatt	960
cttcagctga tttagtgata	agaatccaga	aaagaaaatg	tactagtgat	gtattctctc	1020
cccagatgaa attgctgcct	tattcagatt	tactctcttg	agccagattt	tgaatttcac	1080
tgcagactgc ttcagacttc	taatcatagg	cttgtaaacc	tactaatagg	ctctgcccct	1140
cttcccaata ctttttgtca	tttagagata	taaaccgggg	catataaaaa	tgcaacttgt	1200
attcctttgt atattttcc	ctgtctgact	tataaatctt	gagaccttta	ttgtaaaagc	1260
atttatcatc aggtgagaaa	tataaatagg	aactggggtc	attgagcctc	aggtagggaa	1320

tatatcaacc cgatttcttc ctctcttttc ccttttatag gataaataat cc 1372 <210> 294 <211> 690 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (21)..(21) <223> n is a, c, g, t or u <220> <221> misc feature <222> (653)..(653) <223> n is a, c, g, t or u <400> 294 ttttttttt tttttttgg nagcctgaga gggcctctcc attctttatt cagtcccaat 60 aagttaaagg gcaagggtag ggggcagggc ctcttaggtg aggacgctgc taactgaagg 120 cagcagttca gccagttgct ccaagatgcc caccgcttgg cacagcgggt taccctgcag 180 gttgaggagg accagectgg ggcaggagge aagaggetgg agcaetgeag getgetggag 240 gcggttgttg cacagtagca gctcctgcag ccggggtagg ttggtgacgc cgtctaggga 300 360 ctctatggca ttatcactgg cctgcagcac ctgggggcag gaagggcagg gaggcaggac aggcgctgtc agccagggat ggttcagcaa ctgaggagct cagggtgacg ggtccacaga 420 gcacagaggg gctcacaggg tcaggctgcg tgatggaggt ggaaggcacg cagttacctg 480 ttcggggtgg agggtcctgc acatctcctt gtaggatggg cacacttctg agggagagga 540 agaggaaaag aaccacccgt gacagggacg gagacatggg tactttacct caaggcagcg 600 cagggcagcc agtgcaggtg gcagggttcg gagacgattg tgtgacaagt cangatgggt 660 690 gaccaagagc agctgttcca gatggcagag <210> 295 <211> 2549 <212> DNA <213> Homo sapiens <400> 295 agacaagatg gcgacgtccg tggggcaccg atgtctggga ttactgcacg gggtcgcgcc 60 gtggcggagc agcctccatc cctgtgagat cactgccctg agccaatccc tacagccctt 120 acggaagctg ccttttagag cctttcgcac agatgccaga aaaatccaca ctgcccctgc 180 240 ccgaaccatg ttcctgctgc gtcccctgcc cattctgttg gtgacaggcg gcgggtatgc agggtaccgg cagtatgaga agtacaggga gcgagagctg gagaagctgg gattggagat 300

tccacccaaa	cttgctggtc	actgggaggt	ggctttgtac	aagtcagtgc	caacgcgctt	360
gctgtcacgg	gcctggggtc	gcctcaatca	ggtggagctg	ccacactggc	tgcgcaggcc	420
cgtctacagc	ctgtacatct	ggacgtttgg	ggtgaacatg	aaagaggccg	ctgtggagga	480
cctgcatcac	taccgcaacc	tcagcgagtt	cttccggcgc	aagctgaagc	cgcaggcccg	540
gcctgtctgt	ggcctgcaca	gcgtggtgag	gcctgaccct	ttcctcctgc	aggaaacagg	600
actttttcct	gcctccccag	cacageeeee	ctggtctcca	gcgtatctgg	aaggggcagg	660
atgacaaggg	gaggtggggg	ctgtctcctg	gggggaggag	accctgctct	ccctggcagc	720
aagcctctcc	tgcccttcca	gattagccca	tcggatggaa	ggatcctcaa	ctttgggcag	780
gtgaagaact	gtgaggtgga	gcaggtaaag	ggggtcacct	actccctgga	gtcgttcctg	840
ggcccgcgta	tgtgcacaga	ggacctgccc	ttcccaccag	ccgcgtcgtg	tgactccttc	900
aagaaccagc	tggtcacccg	ggaagggaat	gagctctatc	actgtgtcat	ctacctggcc	960
cctggggact	accactgctt	ccactccccc	accgactgga	ctgtgtccca	ccggcgccac	1020
ttcccaggct	ccctgatgtc	agtgaaccct	ggcatggctc	gctggatcaa	agagctcttc	1080
tgccataacg	agcgggtggt	cctgacgggg	gactggaaac	atggcttctt	ctcactgaca	1140
gctgtggggg	ccaccaacgt	gggctccatt	cgcatctact	ttgaccggga	cctgcacaca	1200
aacagcccaa	ggcacagcaa	gggctcctac	aatgacttca	gcttcgtgac	gcacaccaat	1260
agagagggcg	tccccatgcg	taagggcgag	cacctgggcg	agttcaacct	gggctccacc	1320
atcgtgctca	tcttcgaggc	ccccaaggac	ttcaatttcc	agctgaaaac	aggacagaaa	1380
atccgctttg	gggaagccct	gggctcgctc	tagagtctct	ttcctgatta	tggctgctaa	1440
gggatctttt	ccaaacagag	tgagggtctt	ttcaagaggg	aggcccatga	ggccatccag	1500
gtaagggcct	gcctcagcgt	ggttgggagt	ctgaccaggt	aggacttgaa	tgattcggct	1560
cccacctgtt	ccagaggtgc	agacaagagg	tggcgagagc	ccccgtcatg	cccctcaacc	1620
tatcccgttc	cttctgccta	caaataaaaa	gtgcaggctg	gaatgatctc	agtcacattt	1680
ggatctttt	aaacactgta	tagacggaag	agcctgcatt	cctgaccgaa	ccttcagttg	1740
gtctcggttg	tcgtttttc	ttgctgctcc	tccccccatc	acctgagctg	ttttctgttg	1800
gccccttttg	ttttttggcc	ttaacgctcc	tgctgcacag	ggtgaggtac	ctccttggca	1860
cagactgtgg	atgeetetee	cccagcagag	ccacacagcc	ttcgtgacaa	ctgctttccg	1920
ttcccacatt	cacctcatcc	tgctctttag	aaaaagcagt	ctttgtgctt	gtggctgaac	1980
gcatcaccct	ggactctgct	agtgtcttct	gaggacactg	atgacactga	ttaatgatac	2040
agacctttgc	aggacctgat	gagtgaccct	tetggagetg	gccaggtcct	ctgcagcagg	2100

caagaccaat caatcactga acctgcctca tggc	accaga gtgaacaggg caggcaggta 2160
gtaggcccag ctggggaaat gggagagttc ctgt	cccct ccacatatcc ctacatgaaa 2220
tatgggaaag ttgctgctat tgattcaggg tctg	tettgg aggeagagga eeettggtgg 2280
atagttggtc aatgcctgga aaacctgtcc cagt	ttatca ggaacgcagg cctggggagc 2340
ccccagtggc ggggacaggg ccagatttca tgtt	gaccct ggggatgctg tgaatttctc 2400
ctgcaggaga gacatcattg aatttttca actg	tatcag tagcacagta tttttgtatg 2460
aaaagtggga gacttctgaa cagtaattca ttta	attgca aagcattttg aaataaaaaa 2520
aatcaaactt aaaaaaaaaa aaaaaaaaa	2549
<210> 296 <211> 2269 <212> DNA <213> Homo sapiens	
<400> 296 agtataaaca aggaacccga ctggttagac agat	tttgtt tttcttcttc ccgcgcgctt 60
tagctccctg tcctttggtc gcatttgtgg gcgc	geggea egeageeggg aggeegagga 120
ctcggagttc acctgcagga aagtatgcct caga	actecte cetttteage aatgtttgae 180
agcagtggtt acaatcgaaa cctctatcag tctg	gcagagg acagctgtgg agggttgtat 240
taccatgaca acaacctcct ctctggatcc ctgg	gaagcac tcatccagca cttagtacct 300
aatgtggatt actatccaga tagaacatac atat	ttacct tcctactcag ttctcggtta 360
tttatgcatc cgtatgagct aatggccaaa gttt	cgccact tatgtgttga gcaccagaga 420
ctaagtgatc ctgatagtga taagaaccag atga	agaaaaa ttgcacccaa aatccttcaa 480
ctcctcacgg aatggacgga aacatttccc tatg	gattttc gggatgaaag aatgatgaga 540
aacttaaaag atctggctca ccgaatagcc agtg	ggcgaag agcagacata cagaaagaat 600
gtccagcaaa tgatgcagtg tctgatccgc aag	cttgctg cgctcagcca gtacgaagaa 660
gtcctggcaa aaatcagctc cacatccaca gat	cggctca cagttctcaa gaccaagcca 720
cagtetatae aaagggatat eattaetgte tge	aacgacc cttacacgtt ggcccagcag 780
ctgactcata tagagctgga gaggctcaat tat	attgggc cagaagaatt tgttcaggcg 840
ttcgtgcaga aggacccttt ggataatgac aag	agttgct acagtgaacg gaagaaaaca 900

960

1020

1080

1140

cgaaacttag aagcttacgt ggaatggttt aatcgcctca gctacttggt tgctacagaa

atctgtatgc ctgttaagaa aaaacaccga gcaagaatga ttgagtattt cattgacgta

gctcgggagt gttttaacat tggcaacttc aactccttga tggcgataat ctctggtatg

aatatgagcc cagtctctcg actaaaaaaa acttgggcca aagtgaagac tgcaaaattt

cgtggggcag cacaaaggtc tttaactgct catagtagta gagaaaagat tgtgatacca 1260 ttcttcagtc tcttaatcaa agatatttat ttcctcaatg agggttgtgc caaccgcctt 1320
ttcttcagtc tcttaatcaa agatatttat ttcctcaatg agggttgtgc caaccgcctt 1320
cccaatggcc atgtcaattt tgagaaattt tgggaactgg ccaaacaagt gagtgaattt 1380
atgacatgga aacaagtgga gtgtccattt gagagggacc ggaagatctt gcagtatctg 1440
ctcacagtac cagtcttcag tgaagatgct ctctacttgg cttcttatga gagtgaagga 1500
cctgaaaatc atatagagaa agacagatgg aagtctttaa ggtcgagcct cttaggcaga 1560
gtttaacaca tgggagctgc ctgcctgctg ctgctgctgc ttcctgcaga tcatggaggg 1620
getggeettt gttttetgge atetegtace aegaaegete atgaagaeee tgeagteatt 1680
ggagcacccg ggtcagcaaa gcacacaagc tcactcaaga ccagatggag aacttatttc 1740
ctgcagctga cagatagact cagattttgt gagactgaaa tgttcactga agacacttga 1800
gaaagaatcc tctaaaaatc ccggctctgc acattattca tctcctggaa tttccatgtg 1860
aatcacagct ctgcacctgg atggagtttt cttttgtgtg tgtgtgtttt ttttaatttg 1920
gttgaacatt tgctgctaat gggacttgcc cagctgagtg ctggctctga ggaagcccac 1980
gtttcttttg ttaacttaaa tgaagaaagg agtggaggga ggggatctaa aacccccccg 2040
tttagatccc aaaccttagc tcaaccagta ttgccagaga ggggtaagac tggttggaag 2100
ctgactgcag actttgtttc cccttagtat gtgctgtgtt gtaaattttt ctcctccctc 2160
ctcctacaag gttttgagtt ggctgctggt tagcaaactc ctttttaccc atataagtta 2220
tttaatataa taatgaagct caacactgtg gtaggaaaat agccactag 2269

<210> 297

<211> 11490

<212> DNA

<213> Homo sapiens

<400> 297

atgaatacat totggcotgg cagagaattg attgttcaat ggtatocatt tgatgaaaac 60 agaaatcacc catctgtttc atggcttaag atggtttgga aaaatcttta tatacatttt 120 tcagaggatt tgactttatt tgatgagatg ccacttatcc ccagaactat actagaggaa 180 ggtcaqacat qtqtqqaact cattagactc aggattccat cgttagtcat tttagacgat 240 gaatctgaag cacagcttcc agaattttta gcagacattg tacaaaaact tggagggttt 300 gtccttaaaa aattagatgc atctatacaa catccgctta ttaaaaaata tattcattca 360 ccattaccaa gtgctgtttt gcagataatg gagaagatgc cattgcagaa attgtgtaat 420 caaataactt cgctacttcc aacacacaaa gatgccctga ggaagttctt ggctagttta 480

accgatagca	gtgagaaaga	gaaaagaatt	attcaagaat	tggcaatatt	caagcgcatt	540
aaccattctt	ctgatcaggg	aatttcctct	tatacaaaat	tgaaaggttg	taaagtctta	600
caccatactg	ccaaactccc	agcagatctg	cgactttcta	tttcagtaat	agacagtagt	660
gatgaagcta	ctattcgtct	ggcaaacatg	ttgaaaatag	aacagttaaa	gaccactagc	720
tgcttaaagc	ttgttttaaa	agatattgaa	aatgcatttt	attcacatga	agaggtaaca	780
cagcttatgt	tatgggtcct	tgagaatcta	tcttctctta	aaaatgagaa	tccaaatgtg	840
cttgagtggt	taacaccatt	aaaattcatc	cagatatcac	aggaacagat	ggtatcagct	900
ggtgaactct	ttgaccctga	tatagaagta	ctaaaggatc	tcttttgtaa	tgaagaagga	960
acctatttcc	caccctcagt	ttttacctca	ccagatattc	ttcactcctt	aagacagatt	1020
ggtttaaaaa	acgaagccag	tctcaaagaa	aaggatgttg	tgcaagtggc	aaaaaaaatt	1080
gaagccttac	aggtcggtgc	ttgtcctgat	caagatgttc	ttctgaagaa	agccaaaacc	1140
ctcttactgg	ttttaaataa	gaatcacaca	ctgttgcaat	catctgaagg	aaagatgaca	1200
ttgaagaaaa	taaaatgggt	tccagcctgc	aaggaaaggc	ctccaaatta	tccaggctct	1260
ttggtctgga	aaggagatct	ctgtaatctc	tgtgcaccac	cagatatgtg	tgatgtaggc	1320
catgcaattc	tcattggctc	ctcacttcct	cttgttgaaa	gtatccatgt	aaacctggaa	1380
aaagcattag	ggatcttcac	aaaacctagc	cttagtgctg	tcttaaaaca	ctttaaaatt	1440
gttgttgatt	ggtattcttc	aaaaaccttt	agtgatgaag	actactatca	attccagcat	1500
attttgcttg	agatttacgg	attcatgcat	gatcatctaa	atgaagggaa	agattctttt	1560
agagccttaa	aatttccatg	ggtttggact	ggcaaaaagt	tttgtccact	tgcccaggct	1620
gtgattaaac	caatccatga	tcttgacctt	cagccttatt	tgcataatgt	acctaaaacc	1680
atggcaaaat	tccaccaact	atttaaggtc	tgtggttcaa	tagaggagtt	gacatcagat	1740
catatttcca	tggttattca	gaagatatat	ctcaaaagtg	accaagatct	cagtgaacaa	1800
gaaagcaaac	aaaatcttca	tcttatgttg	aatattatca	gatggctgta	tagcaatcag	1860
attccagcaa	gccccaacac	accagttcct	atacatcata	gcaaaaatcc	ttctaaactt	1920
atcatgaagc	caattcacga	atgctgttat	tgtgacatta	aagttgatga	ccttaatgac	1980
ttacttgaag	attctgtgga	accaatcatt	ttggtgcatg	aggacatacc	catgaaaact	2040
gcagaatggc	taaaagttcc	atgccttagt	acaagactga	taaatcctga	aaacatggga	2100
tttgagcagt	caggacaaag	agagccactt	actgtaagaa	ttaaaaatat	tctggaagaa	2160
tacccttcag	tgtcagatat	ttttaaagaa	ctacttcaaa	acgctgatga	tgcaaatgca	2220
acagaatgca	gtttcttgat	tgatatgaga	agaaatatgg	acataagaga	gaatctccta	2280
gacccaggga	tggcagcttg	tcatggacct	gctttgtggt	cattcaacaa	ttctcaattc	2340

tcagattcag	attttgtgaa	cataactagg	ttaggagaat	ctttaaaaag	gggagaagtt	2400
gacaaagttg	gaaaatttgg	tcttggattt	aattctgtgt	accatatcac	tgacattccc	2460
atcattatga	gtcgggaatt	catgataatg	ttcgatccaa	acataaatca	tatcagtaaa	2520
cacattaaag	acaaatccaa	tectgggate	aaaattaatt	ggagtaaaca	acagaaaaga	2580
cttagaaaat	ttcctaatca	gttcaaacca	tttatagatg	tatttggctg	tcagttacct	2640
ttgactgtag	aagcacctta	cagctataat	ggaacccttt	tccgactgtc	ctttagaact	2700
caacaggaag	caaaagtgag	tgaagttagt	agtacgtgct	acaatacagc	agatatttat	2760
tctcttgtgg	atgaatttag	tctctgtgga	cacaggctta	tcattttcac	tcagagtgta	2820
aagtcaatgt	atttgaagta	cttgaaaatt	gaggaaacca	accccagttt	agcacaagat	2880
acagtaataa	ttaaaaaaaa	atcctgctct	tccaaagcat	tgaacacacc	tgtcttaagt	2940
gttttaaaag	aggetgetaa	gctcatgaag	acttgcagca	gcagtaataa	aaagcttccc	3000
agtgatgaac	caaagtcatc	ttgcattctt	cagatcacag	tggaagaatt	tcaccatgtg	3060
ttcagaagga	ttgctgattt	acagtcgcca	ctttttagag	gtccagatga	tgacccagct	3120
gctctctttg	aaatggctaa	gtctggccaa	tcaaaaaagc	catcagatga	gttgtcacag	3180
aaaacagtag	agtgtaccac	gtggcttctg	tgtacttgca	tggacacagg	agaggctctg	3240
aagttttccc	tgagtgagag	tggaagaaga	ctaggactgg	ttccatgtgg	ggcagtagga	3300
gttcagctgt	cagaaatcca	ggaccagaag	tggacagtga	aaccacacat	tggagaggtg	3360
ttttgctatt	tacctttacg	aataaaaaca	ggcttgccag	ttcatatcaa	tgggtgcttt	3420
gctgttacat	caaataggaa	agaaatctgg	aaaacagata	caaaaggacg	atggaatacc	3480
acgttcatga	gacatgttat	tgtgaaagct	tacttacagg	tactgagtgt	cttacgggac	3540
ctggccacta	gtggggagct	aatggattat	acttactatg	cagtatggcc	cgatcctgat	3600
ttagttcatg	atgatttttc	tgtaatttgc	caaggatttt	atgaagatat	agctcatgga	3660
aaagggaaag	aactgaccaa	agtettetet	gatggatcta	cttgggtttc	catgaagaac	3720
gtaagatttc	tagatgactc	tatacttaaa	agaagagatg	ttggttcagc	agccttcaag	3780
atatttttga	aatacctcaa	gaagactggg	tccaaaaacc	tttgtgctgt	tgaacttcct	3840
tcttcggtaa	aattaggatt	tgaagaagct	ggctgcaaac	agatactact	tgaaaacaca	3900
ttttcagaga	aacagttttt	ttctgaagtg	ttttttccaa	atattcaaga	aattgaagca	3960
gaacttagag	atcctttaat	gatctttgtt	ctaaatgaaa	aagttgatga	gttctcggga	4020
gttcttcgtg	ttactccatg	tattccttgt	tccttggagg	ggcatccttt	ggttttgcca	4080
traagattga	tecaceces	aggacgagtt	gcaaagttat	ttgatattaa	agatgggaga	4140

ttcccttatg (gttctactca	ggattatctc	aatcctatta	ttttgattaa	actagttcag	4200
ttaggtatgg						4260
gctgaaatta						4320
						4380
		aataagggat				4440
		atttctgaca				4500
		aaccatgttt				4560
		gcaaccaatt				
		tgttaaagag				4620
gatctggtta	taaaccaatt	gaaagaagta	gcaaaatcag	ttgatgatgg	aattacactg	4680
taccaggaga	atatcaccaa	tgcttgctac	aaataccttc	atgaagcctt	gatgcaaaat	4740
gaaatcacta	agatgtcaat	tattgataag	ttaaaaccct	ttagcttcat	tctagttgag	4800
aatgcatatg	ttgactcaga	aaaggtttct	tttcatttaa	attttgaggc	ggcaccatac	4860
ctttatcagt	tgcctaataa	gtataaaaat	aatttccgcg	aactttttga	aaccgtgggt	4920
gtgaggcagt	catgcactgt	tgaagatttt	gctcttgttt	tggaatctat	tgatcaagaa	4980
agaggaacaa	agcaaataac	agaagagaat	tttcagcttt	gccgacgaat	aatcagtgaa	5040
ggaatatgga	gtctcattag	agaaaagaaa	caagaatttt	gtgagaaaaa	ttatggcaag	5100
atattattgc	cagatactaa	tcttatgctt	ctccctgcta	aatcgttatg	ctacaatgat	5160
tgcccttgga	taaaagtaaa	ggataccact	gtaaaatatt	gtcatgctga	catacccagg	5220
gaagtagcag	taaaactagg	agcagtccca	aagcgacaca	aagccttaga	aagatatgca	5280
tccaatgtct	gttttacaac	acttggcaca	gaatttgggc	agaaagaaaa	attgaccagc	5340
agaattaaga	gcatccttaa	tgcatatcct	tctgaaaagg	aaatgttgaa	agagcttctt	5400
caaaatgctg	atgatgcaaa	ggcgacagaa	atctgttttg	tgtttgatcc	tagacagcat	5460
					actttgtgtg	5520
					tggaaaaggc	5580
					ttctgtgtat	5640
					ttttgatcct	5700
					. tagagatttg	5760
					aacccatttt	5820
					ggcaaaagtt	5880
						5940
					ggacaaactg	6000
cgctcagatg	gggcagaact	cctaatgttt	. cctaaccaca	ı cyyaaaaaaı	ttctatttgt	3000

gaaatagata	agagtactgg	agctctaaat	gtgctgtatt	cagtaaaggg	caaaatcaca	6060
gatggagaca	gattgaaaag	gaaacaattt	catgcatctg	taattgatag	tgttactaaa	6120
aagaggcagc	tcaaagacat	accagttcaa	caaataacct	atactatgga	tactgaggac	6180
tctgaaggaa	atcttactac	gtggctaatt	tgtaatagat	caggcttttc	aagtatggag	6240
aaagtatcta	aaagtgtcat	atcagctcac	aagaaccaag	atattactct	tttcccacgt	6300
ggtggagtag	ctgcctgcat	tactcacaac	tataaaaaac	cccatagggc	cttctgtttt	6360
ttgcctcttt	ctttggagac	tgggctgcca	tttcatgtga	atggccactt	tgcactggat	6420
tcagccagaa	ggaacctgtg	gcgtgatgat	aatggagttg	gtgttcgaag	tgactggaat	6480
aacagtttaa	tgacagcatt	aatagctcct	gcatatgttg	aattgctaat	acagttaaaa	6540
aaacggtatt	tccctggttc	tgatccaaca	ttatcagtgt	tacagaacac	ccctattcat	6600
gttgtaaagg	acactttaaa	gaagtttta	tegtttttee	cagttaaccg	tcttgatcta	6660
cagccagatt	tatattgtct	agtgaaagca	ctttacaatt	gcattcacga	agacatgaaa	6720
cgtcttttac	ctgttgtgcg	ggctccaaat	attgatggct	ctgacttgca	ctctgcagtt	6780
ataattactt	ggatcaatat	gtctacttct	aataaaacta	gaccattttt	tgacaattta	6840
ctacaggatg	aattacaaca	ccttaaaaat	gcagattata	atatcaccac	acgcaaaaca	6900
gtagcagaga	atgtctatag	gctgaaacat	ctccttttag	aaattggttt	caacttggtt	6960
tataactgtg	atgaaactgc	taatctttac	cactgtctta	tagatgcaga	tattcctgtt	7020
agttatgtga	cccctgctga	tatcagatct	tttttaatga	cattttcctc	tcctgacact	7080
aattgccata	ttgggaagct	gccttgtcgt	ctgcagcaga	ctaatctaaa	actttttcat	7140
agtttaaaac	ttttagttga	ttattgtttt	aaagatgcag	aagaaaatga	gattgaagtt	7200
gagggattgc	cccttctcat	cacactggac	agtgttttgc	aaacttttga	tgcaaaacga	7260
cccaagtttc	taacaacata	tcatgaattg	attccatccc	gcaaagactt	gtttatgaat	7320
acattatatt	tgaaatatag	taatatttta	ttgaactgta	aagttgcaaa	agtgtttgac	7380
atttccagct	ttgctgattt	gttatcctct	gtgttgcctc	gagaatataa	gaccaaaagt	7440
tgcacaaagt	ggaaagacaa	ttttgcaagt	gagtcttggc	ttaagaatgc	atggcatttt	7500
attagtgaat	ctgtaagtgt	gaaagaagat	caggaagaaa	caaaaccaac	atttgacatt	7560
gttgttgata	ctctaaaaga	ctgggcattg	cttccaggaa	caaagtttac	tgtttcagcc	7620
aaccagcttg	tggttcctga	aggagatgtt	ctgcttcctc	tcagccttat	gcacattgca	7680
gtttttccaa	atgcccagag	tgataaagtt	tttcatgctc	taatgaaagc	tggctgtatt	7740
cagettgett	tgaacaaaat	ctgttccaaa	gacagtgcat	ttgttccttt	gttgtcatgt	7800

cacacagcaa atatagagag ccccacaagc atcttgaagg ctctacatta tatggtccaa	7860
acttcaacat ttagagcaga aaaattagta gaaaatgatt ttgaggcact tttgatgtat	7920
ttcaactgca atttgaatca tttgatgtcc caagatgata taaaaattct aaagtcactt	7980
ccgtgctata aatccatcag tggccgctat gtaagcattg gaaaatttgg aacatgctac	8040
gtacttacaa aaagtatccc ttcagctgaa gtggagaaat ggacacagtc atcatcatct	8100
gcatttcttg aagaaaaaat acacttaaaa gaactatatg aggtgattgg ttgtgtacct	8160
gtagatgatc ttgaggtata tttgaaacac ctcttaccaa aaattgaaaa tctctcttat	8220
gatgcaaaat tagagcactt gatctacctt aagaatagat tatcaagtgc tgaggaatta	8280
tcagagatta aggaacaact ttttgaaaaa ctggaaagtt tattgataat ccatgatgct	8340
aacagtagac taaagcaagc aaagcatttc tatgatagaa ctgtgagagt ttttgaagtt	8400
atgcttcctg aaaaattgtt tattcctaat gatttcttta agaaattgga acaacttata	8460
aaacccaaaa atcatgttac atttatgaca tcctgggtgg aattcttaag aaatattgga	8520
ctaaaataca tactttctca gcagcagttg ttacagtttg ctaaggaaat cagtgtgagg	8580
gctaatacag aaaactggtc caaagaaaca ttgcaaaata cagttgatat ccttctgcat	8640
catatattcc aagaacgaat ggatttgtta tctggaaatt ttctgaaaga actatcttta	8700
ataccattct tatgtcctga gcgggccccc gcggaattca ttagatttca tcctcaatat	8760
caagaggtaa atggaacact tcctcttata aagttcaatg gagcacaggt aaatccaaaa	8820
ttcaagcaat gtgatgtact ccagctgtta tggacatcct gccctattct tccagagaaa	8880
gctacaccct taagcattaa agaacaagaa ggtagtgacc ttggtccaca agaacagctt	8940
gaacaagttt taaatatgct taatgttaac ctggatcctc ctcttgataa ggtaatcaat	9000
aactgcagaa acatatgcaa cataacgacg ttggatgaag aaatggtaaa aactagagca	9060
aaagtottaa ggagoatata tgaattooto agtgoagaaa aaagggaatt togttttoag	9120
ttgcgagggg ttgcttttgt gatggtagaa gatggttgga aacttctgaa gcctgaggag	9180
gtagtcataa acctagaata tgaatctgat tttaaacctt atttgtacaa gctaccttta	9240
gaacttggca catttcacca gttgttcaaa cacttaggta ctgaagatat tatttcaact	9300
aagcaatatg ttgaagtgtt gagccgcata tttaaaaatt ctgagggcaa acaattagat	9360
cctaatgaaa tgcgtacagt taagagagta gtttctggtc tgttcaggag tctacagaat	9420
gattcagtca aggtgaggag tgatctcgag aatgtacgag accttgcgct ttacctccca	9480
agccaggatg gtagattggt aaagtcaagc atcttagtgt ttgacgatgc gccacattat	9540
aaaagtagaa tccaggggaa tattggtgtg caaatgttag ttgatctcag ccagtgctac	9600
ttagggaaag accatggatt tcacactaag ttgataatgc tctttcctca aaaacttaga	9660

cctcgattat	tgagcagtat	acttgaagaa	caattagatg	aagagactcc	caaagtttgt	9720
cagtttggag	cgttgtgttc	tcttcaagga	agattgcagt	tactcttgtc	ttctgaacag	9780
ttcattacag	gactgattag	aattatgaag	catgaaaatg	ataatgcttt	tctggccaat	9840
gaagaaaaag	ccataagact	ttgcaaagcc	ctaagagaag	gattgaaagt	atcctgcttt	9900
gaaaagcttc	aaacaacatt	aagagttaaa	ggttttaatc	ctattcccca	cagcagaagt	9960
gaaacttttg	cttttttgaa	gcgatttggt	aatgcagtca	tcttgctcta	cattcaacat	10020
tcagacagta	aagacattaa	tttcctgtta	gcattggcaa	tgactcttaa	atcagcaact	10080
gacaatttga	tttctgacac	ttcatattta	attgctatgc	taggatgcaa	tgatatttac	10140
aggattggtg	agaaacttga	cagtttagga	gtgaaatatg	actcttcgga	gccatcaaaa	10200
ctggaacttc	caatgcctgg	cacaccaatt	cctgctgaaa	ttcattacac	tctgcttatg	10260
gacccaatga	atgttttta	cccgggagaa	tatgttgggt	accttgttga	tgctgaaggt	10320
ggtgatatct	atggatcata	ccagccaaca	tacacatatg	caattattgt	acaagaagtt	10380
gaaagagaag	atgctgacaa	ttctagtttt	ctaggaaaga	tatatcagat	agatattggt	10440
tatagtgaat	ataaaatagt	tagctctctt	gatctgtata	agttttcaag	acctgaggaa	10500
agctctcaaa	gcagggacag	tgctccttct	acaccaacca	gccccactga	gttcctcacc	10560
cctggcctga	gaagcattcc	tcctctttc	tctggtagag	agagccacaa	gacttcttcc	10620
aaacatcagt	cccccaaaaa	gcttaaggtt	aattctttac	cagaaatctt	aaaagaagtg	10680
acatctgtgg	tggagcaagc	atggaagctt	ccagaatcgg	aacgaaaaaa	gattattagg	10740
cggttgtatt	tgaaatggca	tcctgacaaa	aatccagaga	accatgacat	tgccaatgaa	10800
gtttttaaac	atttgcagaa	tgaaatcaac	agattagaaa	aacaggcttt	tctagatcaa	10860
aatgcagaca	gggcctccag	acgaacattt	tcaacctcag	catcccgatt	tcagtcagac	10920
aaatactcat	ttcagagatt	ctatacttca	tggaatcaag	aagcaacgag	ccataaatct	10980
gaaagacagc	aacagaacaa	agaaaaatgc	ccccttcag	ccggacagac	ttactctcaa	11040
aggttctttg	ttcctcccac	tttcaagtcg	gttggcaatc	cagtggaago	acgcagatgg	11100
ctaagacaag	, ccagagcaaa	cttctcagct	gccaggaatg	accttcataa	aaatgccaat	11160
gagtgggtgt	gctttaaatg	ttacctttct	accaagttag	ctttgattgc	: agctgactat	11220
gctgtgaggg	gaaagtctga	taaagatgta	aaaccaactg	g cacttgctca	gaaaatagag	11280
gaatatagto	agcaacttga	aggactgaca	ı aatgatgtto	acacattgg	agcttatggt	11340
gtagacagtt	: taaaaacaag	ataccctgat	ttgcttccct	ttcctcagat	cccaaatgac	11400
aggttcactt	ctgaggttgc	: tatgagggtg	g atggaatgta	ctgcctgtat	cataataaaa	11460

cttgaaaatt ttatgcaaca aaaagtgtga

11490

<210> 298 3429 <211> <212> DNA <213> Homo sapiens <400> 298 ggctggaagc cggaagcgag caaagtggag ccgactcgaa ctccaccggc acgagggcgg 60 aaaagaaagc ctcagaacgt tcgctcgctg cgtccccagc cggggccgag ccctccgcga .120 cgccacccgg gccatggggg ccgcacgcag cccgccgtcc gctgtcccgg ggcccctgct 180 ggggctgctc ctgctgctcc tgggcgtgct ggccccgggt ggcgcctccc tgcgactcct 240 ggaccaccgg gcgctggtct gctcccagcc ggggctaaac tgcacggtca agaatagtac 300 ctgcctggat gacagctgga ttcaccctcg aaacctgacc ccctcctccc caaaggacct 360 gcagatccag ctgcactttg cccacaccca acaaggagac ctgttccccg tggctcacat 420 cgaatggaca ctgcagacag acgccagcat cctgtacctc gagggtgcag agttatctgt 480 540 cctgcagctg aacaccaatg aacgtttgtg cgtcaggttt gagtttctgt ccaaactgag 600 qcatcaccac aggcggtggc gttttacctt cagccacttt gtggttgacc ctgaccagga 660 atatgaggtg accettcacc acctgcccaa gcccatccct gatggggacc caaaccacca 720 gtccaagaat ttccttgtgc ctgactgtga gcacgccagg atgaaggtaa ccacgccatg 780 catgagetea ggeageetgt gggaeeecaa cateaeegtg gagaeeetgg aggeeeaeca gctgcgtgtg agcttcaccc tgtggaacga atctacccat taccagatcc tgctgaccag 840 900 ttttccgcac atggagaacc acagttgctt tgagcacatg caccacatac ctgcgcccag accagaagag ttccaccagc gatccaacgt cacactcact ctacgcaacc ttaaagggtg 960 ctgtcgccac caagtgcaga tccagccctt cttcagcagc tgcctcaatg actgcctcag 1020 acacteegeg actgttteet geecagaaat geeagaeact eeagaaceaa tteeggaeta 1080 catgcccctg tgggtgtact ggttcatcac gggcatctcc atcctgctgg tgggctccgt 1140 catcctqctc atcqtctqca tgacctggag gctagctggg cctggaagtg aaaaatacag 1200 tgatgacacc aaatacaccg atggcctgcc tgcggctgac ctgatccccc caccgctgaa 1260 1320 gcccaggaag gtctggatca tctactcagc cgaccacccc ctctacgtgg acgtggtcct gaaattegee cagtteetge teacegeetg eggeaeggaa gtggeeetgg acetgetgga 1380 agagcaggcc atctcggagg caggagtcat gacctgggtg ggccgtcaga agcaggagat 1440 1500 ggtggagage aactetaaga teategteet gtgeteeege ggeaegegeg ceaagtggea ggcgctcctg ggccgggggg cgcctgtgcg gctgcgctgc gaccacggaa agcccgtggg 1560

ggacctgttc	actgcagcca	tgaacatgat	cctcccggac	ttcaagaggc	cagcctgctt	1620
cggcacctac	gtagtctgct	acttcagcga	ggtcagctgt	gacggcgacg	tccccgacct	1680
gttcggcgcg	gcgccgcggt	acccgctcat	ggacaggttc	gaggaggtgt	acttccgcat	1740
ccaggacctg	gagatgttcc	agccgggccg	catgcaccgc	gtaggggagc	tgtcggggga	1800
caactacctg	cggagcccgg	gcggcaggca	gctccgcgcc	gccctggaca	ggttccggga	1860
ctggcaggtc	cgctgtcccg	actggttcga	atgtgagaac	ctctactcag	cagatgacca	1920
ggatgccccg	tccctggacg	aagaggtgtt	tgaggagcca	ctgctgcctc	cgggaaccgg	1980
catcgtgaag	cgggcgcccc	tggtgcgcga	gcctggctcc	caggcctgcc	tggccataga	2040
cccgctggtc	ggggaggaag	gaggagcagc	agtggcaaag	ctggaacctc	acctgcagcc	2100
ccggggtcag	ccagcgccgc	agcccctcca	caccctggtg	ctcgccgcag	aggaggggc	2160
cctggtggcc	gcggtggagc	ctgggcccct	ggctgacggt	gccgcagtcc	ggctggcact	2220
ggcgggggag	ggcgaggcct	gcccgctgct	gggcagcccg	ggcgctgggc	gaaatagcgt	2280
cctcttcctc	cccgtggacc	ccgaggactc	gccccttggc	agcagcaccc	ccatggcgtc	2340
tcctgacctc	cttccagagg	acgtgaggga	gcacctcgaa	ggcttgatgc	tctcgctctt	2400
cgagcagagt	ctgagctgcc	aggcccaggg	gggctgcagt	agacccgcca	tggtcctcac	2460
agacccacac	acgccctacg	aggaggagca	gcggcagtca	gtgcagtctg	accagggcta	2520
catctccagg	agctccccgc	agccccccga	gggactcacg	gaaatggagg	aagaggagga	2580
agaggagcag	gacccaggga	agccggccct	gccactctct	cccgaggacc	tggagagcct	2640
gaggagcctc	cagcggcagc	tgcttttccg	ccagctgcag	aagaactcgg	gctgggacac	2700
gatggggtca	gagtcagagg	ggcccagtgc	atgagggcgg	ctccccaggg	accgcccaga	2760
tcccagcttt	gagagaggag	tgtgtgtgca	cgtattcatc	tgtgtgtaca	tgtctgcatg	2820
tgtatatgtt	cgtgtgtgaa	atgtaggctt	taaaatgtaa	atgtctggat	tttaatccca	2880
ggcatccctc	ctaacttttc	tttgtgcagc	ggtctggtta	tcgtctatcc	ccaggggaat	2940
ccacacagcc	cgctcccagg	agctaatggt	agagcgtcct	tgaggctcca	ttattcgttc	3000
attcagcatt	tattgtgcac	ctactatgtg	gcgggcattt	gggataccaa	gataaattgc	3060
atgcggcatg	gccccagcca	tgaaggaact	taaccgctag	tgccgaggac	acgttaaacg	3120
aacaggatgg	gccgggcacg	gtggctcacg	cctgtaatcc	cagcacactg	ggaggccgag	3180
gcaggtggat	cactctgagg	tcaggagttt	gagccagcct	ggccaacatg	gtgaaacccc	3240
atctccacta	aaaatagaaa	aattagccgg	gcatggtgac	acatgcctgt	agtcctagct	3300
acttgggagg	ctgaggcagg	agaattgctt	gaatctggga	ggcagaggtt	gcagtgagcc	3360
gagattgtgc	çattgcactg	cagcctggat	gacagagcga	gactctatct	caaaaaaaaa	3420

3429 aaaaaaaa <210> 299 <211> 945 <212> DNA <213> Homo sapiens <400> 299 gcaggtaggt ggacggagag atagcagcga cgaggacagg ccaaacagtg acagccacgt 60 agaggatetg geagacaaag agacaaggtg agaaggagae tttggaagtg acceaceatg 120 gggctcagca tctttttgct cctgtgtgtt cttgggctca gccaggcagc cacaccgaag 180 attttcaatg gcactgagtg tgggcgtaac tcacagccgt ggcaggtggg gctgtttgag 240 ggcaccagec tgegetgegg gggtgteett attgaccaca ggtgggteet cacagegget 300 cactgcagcg gcagcaggta ctgggtgcgc ctgggggaac acagcctcag ccagctcgac 360 tggaccgagc agatccggca cagcggcttc tctgtgaccc atcccggcta cctgggagcc 420 tegaegagee acgageacga ceteeggetg etgeggetge geetgeeegt eegegtaace 480 ageagegtte aaccectgee cetgeccaat gaetgtgeaa cegetggeae egagtgecae 540 gtetcagget ggggcateae caaccaceca eggaacecat teeeggatet getecagtge 600 ctcaacctct ccatcgtctc ccatgccacc tgccatggtg tgtatcccgg gagaatcacg 660 agcaacatgg tgtgtgcagg cggcgtcccg gggcaggatg cctgccaggg tgattctggg 720 ggccccctgg tgtgtggggg agtccttcaa ggtctggtgt cctgggggtc tgtggggccc 780 tgtggacaag atggcatece tggagtetae acetatattt geaacteeae tettgttgge 840 ctgggaactt cttggaactt taactcctgc cagcccttct aagacccacg agcggggtga 900 945 gagaagtgtg caatagtctg gaataaatat aaatgaagga ggggc 300 <210> <211> 513 <212> DNA Homo sapiens <213> <400> tattttagcc attgacttta ttatttcttg ctccatataa ttaacatcat ggctaaaaac 60 aaggcagaaa ttcttttagg aataaaattg tcacaagccc tgcctttccc ttccccataa 120 ggttgatcta actccattaa ctgtcagtct ttgatgtaaa gtatcttacc tgaccttcct 180 tettagecee tactgagaat ccaaagtaat ctaagagetg tgcattecat tggcaattgg 240 catcttgtag ttgccaattt ggagaaaata ataatctccc ctatacttca cctttgtgga 300 tgtattttcc ttattgtttg agaggaacat aatacaacag taagcagatc aactggaacc 360

cttcaatctg taaataaaag ggcattgtaa gctacatgtt acacagaact catttgccca	120
gaaatctgat tttattgtta ggaattggca gcccatcccc aaacatgcac ttttaatttt	180
tcctgaaaag accactattt ttgtactgat act	513
-210. 301	
<210> 301 <211> 412	
<212> DNA <213> Homo sapiens	
<400> 301	60
tggagaatca acaaatttaa ttagcaatga ttacagaaaa cttaaatagc acacacaact	120
autooutoota gaaggaaaga aoageegeen ageegenggg gemeggmen g gg, g	180
	240
cagtccaggg ctcacaagac tcccttcgct tcaggcctga ctttgctgaa ctggtgatct	300
attgggacag agacaggett tggcaatagt taccaaagee tgtcatcata tetgcaccae	360
caccagtccc gaccggaggg cctggctgcc aggtagtttt cagtctaact ga	412
<210> 302	
<211> 2443 <212> DNA	
<213> Homo sapiens	
<400> 302	60
aaatggcgtg cccgtctctc cgccggcccc ctgcctcgca gtggtttctc ctgcagctcc	
cctgggctcc gcggccagta gtgcagcccg tggagccgcg gctttgcccg tctcctctgg	120.
gtggccccag tgcgcgggct gacactcatt cagccgggga aggtgaggcg agtagaggct	180
ggtgcggaac ttgccgcccc cagcagcgcc ggcgggctaa gcccagggcc gggcagacaa	240
aagaggccgc ccgcgtagga aggcacggcc ggcggcggcg gagcgcagcg atggccgggc	300
gagggggcag cgcgctgctg gctctgtgcg gggcactggc tgcctgcggg tggctcctgg	360
gcgccgaagc ccaggagccc gggggcgcccg cggcgggcat gaggcggcgc cggcggctgc	420
agcaagagga cggcatctcc ttcgagtacc accgctaccc cgagctgcgc gaggcgctcg	480
tgtccgtgtg gctgcagtgc accgccatca gcaggattta cacggtgggg cgcagcttcg	540
agggccggga gctcctggtc atcgagctgt ccgacaaccc tggcgtccat gagcctggtg	600
agcctgaatt taaatacatt gggaatatgc atgggaatga ggctgttgga cgagaactgc	660
tcattttctt ggcccagtac ctatgcaacg aataccagaa ggggaacgag acaattgtca	720
acctgatcca cagtacccgc attcacatca tgccttccct gaacccagat ggctttgaga	780
aggcagcgtc tcagcctggt gaactcaagg actggtttgt gggtcgaagc aatgcccagg	840

C	
gaatagatet gaaceggaae tttecagaee tggataggat agtgtaegtg aatgagaaag	900
aaggtggtcc aaataatcat ctgttgaaaa atatgaagaa aattgtggat caaaacacaa	960
agettgetee tgagaccaag getgteatte attggattat ggatatteet tttgtgettt	1020
ctgccaatct ccatggagga gaccttgtgg ccaattatcc atatgatgag acgcggagtg	1080
gtagtgctca cgaatacage teeteeceag atgaegeeat ttteeaaage ttggeeeggg	1140
catactette tttcaaceeg gecatgtetg acceeaateg gecaecatgt egcaagaatg	1200
atgatgacag cagctttgta gatggaacca ccaacggtgg tgcttggtac agcgtacctg	1260
gagggatgca agacttcaat taccttagca gcaactgttt tgagatcacc gtggagctta	1320
gctgtgagaa gttcccacct gaagagactc tgaagaccta ctgggaggat aacaaaaact	1380
ccctcattag ctaccttgag cagatacacc gaggagttaa aggatttgtc cgagaccttc	1440
aaggtaaccc aattgcgaat gccaccatct ccgtggaagg aatagaccac gatgttacat	1500
ccgcaaagga tggtgattac tggagattgc ttatacctgg aaactataaa cttacagcct	1560
cagctccagg ctatctggca ataacaaaga aagtggcagt tccttacagc cctgctgctg	1620
gggttgattt tgaactggag tcattttctg aaaggaaaga agaggagaag gaagaattga	1680
tggaatggtg gaaaatgatg tcagaaactt taaattttta aaaaggcttc tagttagctg	1740
ctttaaatct atctatataa tgtagtatga tgtaatgtgg tcttttttt agattttgtg	1800
cagttaatac ttaacattga tttattttt aatcatttaa atattaatca actttcctta	1860
aaataaatag cctcttaggt aaaaatataa gaacttgata tatttcattc tcttatatag	1920
tattcatttt cctacctata ttacacaaaa aagtatagaa aagatttaag taattttgcc	1980
atcctaggct taaatgcaat attcctggta ttatttacaa tgcagaattt tttgagtaat	2040
tctagctttc aaaaattagt gaagttcttt tactgtaatt ggtgacaatg tcacataatg	2100
aatgctattg aaaaggttaa cagatacagc tcggagttgt gagcactcta ctgcaagact	2160
taaatagttc agtataaatt gtcgtttttt tcttgtgctg actaactata agcatgatct	2220
tgttaatgca tttttgatgg gaagaaaagg tacatgttta caaagaggtt ttatgaaaag	2280
aataaaaatt gacttettge ttgtacatat aggageaata etattatatt atgtagteeg	2340
ttaacactac ttaaaagttt agggttttct cttggttgta gagtggccca gaattgcatt	2400
ctgaatgaat aaaggttaaa aaaaaatccc cagtgaaaaa aaa	2443

<210> 303 <211> 2106 <212> DNA <213> Homo sapiens

<400> 303 accaggegeg	gtccggaggc	cgagggcgac	cacagcagcc	teegeeteet	gctgctccgg	60
actattctgc	gctgggctag	tcggcggtga	cccggactgc	gcccggcagt	ggcttcgcgg	120
gcgacgcgtc	gccatgggct	ctcgctggag	cagcgaagag	gagaggcagc	cgctgctggg	180
gecegggete	gggcctgggc	tgggggcctc	ctggagaagc	cgggaggcgg	cggcggcggc	240
getgeeegeg	gcggtcccgg	gtcccgggcg	ggtatacggg	cgccgctggc	tggtgctgct	300
gctcttctcg	ctgctggcgt	tcgttcaggg	cctggtctgg	aacacctggg	gtcccatcca	360
gaactcggcg	cgccaggcct	acggcttctc	cagctgggac	atcgcgctgc	tcgtgctgtg	420
ggggcccatc	ggcttcctgc	cctgcttcgc	gttcatgtgg	ctcctggaca	agagaggtct	480
ccggataact	gtgctcctga	catccttcct	tatggttttg	ggaactggtc	taagatgcat	540
acctatatca	gacttaatcc	ttaaaagaag	attaattcat	ggaggacaga	tgttaaatgg	600
attggcaggt	ccaactgtaa	tgaatgcagc	accatttctc	tctacgacgt	ggttttctgc	660
agatgaaagg	gccacagcca	cagctattgc	atcaatgctc	agttatcttg	ggggagcatg	720
tgcattttta	gttggaccac	ttgttgttcc	agctcccaat	gggacatcac	ctcttcttgc	780
tgcagagagc	agcagggcgc	atattaaaga	tcgcatagag	gctgtgttat	atgcagaatt	840
tggagttgtc	tgcttaatat	tttctgcaac	actagcttat	ttcccacccc	gacctcctct	900
tcctcccagt	gttgctgcag	ctagccagcg	gctgagttat	cggagaagcg	tttgtagatt	960
attaagcaat	tttcgatttt	tgatgattgc	tttagcatat	gccataccac	ttggtgtatt	1020
tgctggctgg	tctggagttc	tggacttaat	tttaacacca	gcgcatgtca	gccaagtaga	1080
tgctggctgg	attggatttt	ggtccatagt	tggaggctgt	gttgttggaa	tagctatggc	1140
aaggtttgca	gattttatca	ggggtatgct	gaaactaatt	cttctcctcc	tgttttcggg	1200
agctacactg	tcatccacgt	ggttcaccct	gacctgtttg	aacagcatca	cacacctacc	1260
tttaaccaca	gtgacattgt	atgcctcctg	tattctcctg	ggagtgttct	tgaatagcag	1320
cgtgcctata	ttttttgagc	tttttgtgga	aactgtctac	ccagttccag	aaggaattac	1380
ttgtggagtt	gtcacttttt	taagtaatat	gtttatggga	gtacttttat	tttttctcac	1440
attttatcat	acagagttgt	cttggttcaa	ctggtgcctt	cccgggtcgt	gtttgctcag	1500
tetectecte	attctgtgct	tcagggaatc	ctatgacaga	ctctatcttg	atgtggttgt	1560
ctccgtttaa	tagcacagac	ttgaaggagt	ttaaaaggag	gctggaaatc	aatactgcac	1620
actgcacatt	tgctcagaat	tgcacatcta	acaggaaaag	agggagaaga	aagaaacttc	1680
attcagaggt	tttgttaggt	tacagattat	cacattaatt	taattactac	taggtaataa	1740
taatgggaga	cttgagtgat	aataggggat	tttaaaactc	tacagatggc	atacctgtgc	1800

ctgcttctgg	ggttggaagt	gtgacttctt	acacataaag	cactacctaa	gtaattctct	1860
ctctgttttg	tgccagtgct	aaactactga	ttacttgtaa	ttatgaaaag	aaataaaggg	1920
tgtctatcat	atgaagataa	cgccttccct	aagtcacata	tcagaatagg	aagatatgcc	1980
actaacttct	aaagaagttc	aaaccctgta	tccaatttta	atgataaaat	agccaagagg	2040
tatatcgatg	atggaaatta	gccacatgta	cactacattt	tttctaataa	agccatttct	2100
tatatg						2106

<210> 304

<211> 9043

<212> DNA

<213> Homo sapiens

<400> 304

ggatccgggt cccctcacgc tcctggctga gtccctggct tcacagggga aactacctcc 60 qcaggccagg acccatctag ttacaggata cctcgatgtt acaaagacga ggcttccagc 120 gegggggegt ggaggeget geeageeetg ceegeagegt getggegaee eeegggaege 180 . cccttccctc ccgcgcctct gctccctagc tggtgggagc agagcgcacc gggatcactt 240 ccaggtccct tgcaccggag gaatgggcgg cagcagggtc cggagtcggc ccggcggggc 300 ccacgtggcc agcacatcgg tcctccgctc gcgatttccc ttttccgctc tcgggcacga 360 ggtactgaac gccaggtgga agcacagctg tgcagctaca ggctctgccg ttcagctgcc 420 480 gegggeegg geeggggeet geggegtegt gegegtgege ggaecagtte caggegggeg 540 agaccgccgc agggcggggc ggggcgaggc ggccgcaggg cggggagggc ggggagaggc 600 ggccgcaggg cggggagggc ggggcgcgaa gccgggggcg ggggccacgc gtggggcagg 660 eggtgetegg eteggetgae gteggeeege eggegeeeca ecageteege gegggeeegg 720 gctggtttga gctggtgcgt ctccatggcg acccgccggt gctataagta gggagcggcg 780 tgccgtgggg ctttgtcagt ccctcctgta gccgccgccg ccgccgcccg ccgcccctct 840 gccagcagct ccggcgccac ctcgggccgg cgtctccggc gggcgggagc caggcgctga 900 cgggcgcggc gggggcggcc gagcgctcct gcggctgcga ctcaggctcc ggcgtctgcg 960 cttccccatg gggctggcct gcggcgctg ggcgctctga ggtgagggac tccccggccg 1020 1080 cacgtgtgcg gcgcgcctcg ccggcctgca gagacacgtg gtcgccgagc gggccacgac 1140 cttgaggcgc cgcttcctcc cggcccgggg ttctcccgcg gctggataag ggtgatccgg 1200 gcgcctcgtt ctgcccccgt cttcacagct cggggctgga ggggcctagg ggagacccac 1260

ceggagacce tgeggeeeeg egeeggeete ttteeeaace etteggegge egegetgg 1320 ccggggagcc gttggggagg ccctggcggc cgcgcagcag gtgcaggggc gcagagcctg 1380 ggctcgcctt ggtacagacg agcggccccg gccttggcgc cttcagtttc cttccagttt 1440 ttattttcgc tgtgtctaca gagcagatga caccaatttg gaaacccgcg agagtgggta 1500 gagctaagat agtcttgctg tagtagctgt gatattagat gctcggccat gacttagagg 1560 tgtttattta aggactgtga atgactcggt gatttcggaa aagcttggct tagatgaacg 1620 gacatacaca ggggagacag ccctaaggtt tgcagaaaag gctgattgtg ctgtttgcga 1680 agtcgaaata attggtgaaa gtgtagaagg cagaacctct caggaatgtc tggggaggac 1740 aaagaatgtg ttggctgact ttgtttaaac ataaaattgg gcagacttta attgatttgt 1800 gaaatttttt tcaaagtttg tttgaattag cccctatctc ttctaacatt atcctcttgt 1860 gctaattgat tgaccatttt aaataactta gctgttacag aaagaccgaa aggtgttctt 1920 cagtaaaata tattcaagta agttacttaa gtaacgcctt aaaagataca gaaaagcaaa 1980 aaagtattgg cgtattaaaa agaaatcaaa actttccaag tttaggcctg aacattgcct 2040 taaaaatatt taataaggcc tcaaatgacc cagtccgaga ctgcatgagc ctatttatta 2100 ttaaattgta aatattette atataaacaa aaatatataa eeatgtetgt aacaaaaatg 2160 gttttgctag cgttgttact ctcttccctt ctccgagggg tgatttaggc aacttcggag 2220 gttgacaatg ccaagcagtc acaatagata gagctttaaa gcaaattcta tgcatgggtt 2280 tggatttatg acaggcccgt caccctgggc ctgtcatagt accccatgcc agagcaaact 2340 gtgtccccga accattgcct ggcctctgtg cccgtaggct gctggcactg aagtgggttg 2400 cacagtggaa aagaagaaag ctctacctgg cagaaatttt taaaggttaa aataaataat 2460 tttaagaaag ctggttcaca aggtgccaca tttgatgaaa gcaaaataca gtggctttta 2520 ttgttactag agtgatgttc ttgcttgttt ttcttttttg gtgaagttag ccccaaatta 2580 ttctcatagc taagcaaata cgagagtgac tgtaaggaca gttggcattc ccggaattgc 2640 taaacttggt aggcaacgct ggtttaagaa tactgagttc tagccgggcg tggtggctca 2700 cgcctgtaat cccaacactt tgggaggctg aggcaggcgg atcacctgag gtcgggagtt 2760 ggagaccagc ctgactaaca tggagaaacg ccatctccac taaaaatata aaattagcca 2820 ggccccgggt gtggtggcac atgccggtaa tcccagctac tcgggagact gaggcaggag 2880 aatcgcttga acccaggagg cggaggttga ggtgagccga gatcatgcca ttgcactcca 2940 3000 gatcaggtaa cagcaactgt aatacaatgt gataagttga cttgaagatt acagttttta 3060 agaagtatat acccagctaa tacatgaaaa ttaactcgta aaatctcaaa tgctccagac 3120

atttccatga	tgcctgttgg	tcagtaaaaa	tcattctaag	acttagtgga	agtaggaaat	3180
gtttgtatgg	ctgtgtataa	aggctataat	gtaatcccag	cactttggaa	gaccgaggcg	3240
ggtggatcac	ctggggtcag	gagtttgaga	cccacctgga	caacgtggtg	aaatcctgtc	3300
tctactaaaa	acacaaaaat	tagccgggca	tggtggcagg	cgcctgtaat	cccagctgct	3360
ggggaggctg	, aggcaggaga	atcgcttgaa	cccgggaggc	agaggttgca	gtgagccaag	3420
attgcaccgc	tgcactccag	cctgggtgac	agcgtgagac	tctgtctcaa	aaaaaataaa	3480
aaagtctata	atgctatttt	aagtttctaa	ggaactgaaa	ctgctctgaa	ataaatcaga	3540
ccattataag	acttttttcc	atatcagtga	gctaagtgca	gataagcttc	tgaaacttgc	3600
atgctagatt	tttttggtac	aaatatttga	aatgcttagt	gtgctgcctt	ggaaaaacct	3660
ggtattttt	gttgtgtcct	tatactgcca	aggtttatgg	aatcatgtac	cttatgccta	3720
gtaataatta	ggatgaccag	gccagtgagt	ggttcatatc	cggggcatga	ttagctctgc	3780
gtgtgctcag	ccagtgcccc	atcttcaact	cgatgtgttc	ctaaggtaga	cagcaaattc	3840
cctattttat	ttctcagatt	gtcactgctg	ttccaagggc	acacgcagag	ggatttggaa	3900
ttcctggaga	gttgcctttg	tgagaagctg	gaaatatttc	tttcaattcc	atctcttagt	3960
tttccatgta	agtattcagt	ttacatttat	gttgcaggtt	aatcttaaga	attgtattgc	4020
taaggcttct	aagtgaattt	ctccactcta	tttgcatttt	gttgcatttc	agaggaacat	4080
caagaaatca	tgaacaactt	tggtaatgaa	gagtttgact	gccacttcct	cgatgaaggt	4140
tttactgcca	aggacattct	ggaccagaaa	attaatgaag	tttcttcttc	tgtaagtata	4200
tgaggcccat	gctggcagtg	cagctgagag	tgccaggcaa	gtggaaaact	ttggcaaggt	4260
ctaaggaaga	gcaatgaggc	ttacatgtct	tgttatggaa	tgtagaaatt	aattcactgg	4320
tggtaaatta	atagtgataa	tggtgatact	catatcagtg	gctagactca	aaagagcagg	4380
attcattgtg	actgatggga	atgaaggtcg	ctggctattg	gtgtggtgtg	g tggtgaggct	4440
gctagtgagt	cacctgtgac	cactcttgtt	tcaggatgat	: aaggatgcct	tctatgtggc	4500
agacctggga	gacattctaa	agaaacatct	gaggtggtta	a aaagctctcc	c ctcgtgtcac	4560
ccccttttat	gcagtcaaat	gtaatgatag	g caaagccato	gtgaagacco	ttgctgctac	4620
cgggacagga	tttgactgtg	g ctagcaaggt	aagcgatago	agcaggccto	e aaaagcgttg	4680
tataaaatgg	geetggtatt	ccccacgagg	g cagatacaa	g ttgtgtttt	t tgggcaataa	4740
atgctcacta	aaggcaaatg	g 3 93c99999	g gtacatgaca	a acttcccat	g cttttctgtt	4800
tattccacgt	gttaagcca	atatggatag	g catgacacca	a ctcttcttt	t tcagactgaa	4860
atacagttgg	tgcagagtc	t gggggtgcct	ccagagagg	a ttatctatg	c aaatccttgt	4920

aaacaagtat	ctcaaattaa	gtatgctgct	aataatggag	tccagatgat	gacttttgat	4980
agtgaagttg	agttgatgaa	agttgccaga	gcacatccca	aagcaaagtg	agttattccc	5040
ccatctgagg	gcaagatcgg	gagcataaga	tatgtggatt	cttatcaaac	aaacttaaat	5100
ttctgattat	tatatttcta	tactttagta	gaaagtagtt	gaaaccccca	ttgagtcatg	5160
aagcctggga	ctcaaactac	agaatatatc	agcgacagta	tttagaacag	gattgttttt	5220
attttaattg	tggctataag	tgaacatcta	tcatgagaca	tttgctgcac	tttccttgct	5280
tgtaggttgg	ttttgcggat	tgccactgat	gattccaaag	cagtctgtcg	tctcagtgtg	5340
aaattcggtg	ccacgctcag	aaccagcagg	ctccttttgg	aacgggcgaa	agagctaaat	5400
atcgatgttg	ttggtgtcag	gtgagatttt	ggtgggatag	ctagaggtca	agacattgaa	5460
cagtttgagt	tttacaggct	ttctcctagt	gtttgctatt	attttaagaa	atactaagac	5520
acagtgtctc	gtctctttat	tttaccccag	cttccatgta	ggaagcggct	gtaccgatcc	5580
tgagaccttc	gtgcaggcaa	tctctgatgc	ccgctgtgtt	tttgacatgg	gggtgagtat	5640
acgtgaccct	gttagggaag	ggcgggacac	aactgacaat	aactagtctt	aattctagag	5700
ttaacttttt	atggcagttg	gttctgtatt	acatgggttt	cagcctatct	gctgcataca	5760
tttttgttat	tagctgtgga	tctggctgac	ttattttctt	gattctaggc	tgaggttggt	5820
ttcagcatgt	atctgcttga	tattggcggt	ggctttcctg	gatctgagga	tgtgaaactt	5880
aaatttgaag	aggtaattta	gaacaaaact	gtaatactca	gtagccgttc	taataaattc	5940
ctttttggaa	tatttcaaaa	tttaagtgtc	ttaactaata	ccacaatggg	ctgaagtgtc	6000
ttggtgtgat	attttgagtg	atttctttgt	gctgtctgac	attacacttg	ataccatttg	6060
gttttctaaa	gtgtgaatca	gctttcccag	aagtcttgga	taattggtta	cattggaaat	6120
catggctcac	acctgtaatc	cagcacttgg	ggaggccaag	gtggtaggat	cacttgagcc	6180
caggagtttg	agaccagcct	gggcaacaca	gtgagacccc	atctctacaa	aaaaaatttt	6240
aaaattagcc	tggtgtggtg	gcgggcacct	gtaatcccag	ctacttggaa	ggctgaggtg	6300
ggaggatcac	ttgagcccag	gaggttgagg	ctgcagtgag	ccatgatcat	gccactgcac	6360
tcagcctggg	ctacagagtg	agaccctgtc	tcaaaaaaaa	aaaagaaaaa	gcatgttgct	6420
gtgggcttcc	tagagaatat	gctgactgta	gcacatcatc	accccaaatg	tgctttgcta	6480
gacctatgct	tcctctcctt	aaaatacttg	aaatgtttag	tcacttagga	agttaagcca	6540
ttatattggt	gcttgaattt	ataaaataca	tccacatggt	ttgttaaaat	catgacgtag	6600
gcagaatagg	atttttatcc	tgttggcatg	tatttgttaa	aatgttttga	catcttgatg	6660
ccttcctagg	tagtagttag	ttgcgtactg	ttctttgata	aaaatcatac	ccataacatc	6720
ctaaaggaga	tagggtgcct	ggaggggaat	gaaaacgagc	cacctgggat	atgtagcctg	6780

gttttcaggg	agatgttgat	gtttttttgc	ttttgttact	ttaatgataa	acctgtctgt	6840
tgatgcctgg	tctcatgatg	tcatgtcaca	aggccctgtg	atgttactcc	cccatgtgaa	6900
tttcccacaa	tgaaggctgc	tctttcttt	ctgtttcact	ctcttagatc	accggcgtaa	6960
tcaacccagc	gttggacaaa	tactttccgt	cagactctgg	agtgagaatc	atagctgagc	7020
ccggcagata	ctatgttgca	tcagctttca	cgcttgcagt	taatatcatt	gccaagaaaa	7080
ttgtattaaa	ggaacagacg	ggctctgatg	gtatgtataa	aggacgaatc	acttcatgta	7140
taactgaaag	ctgatgcaaa	aagtcattaa	gattgttgat	ctgcctttct	agacgaagat	7200
gagtcgagtg	agcagacctt	tatgtattat	gtgaatgatg	gcgtctatgg	atcatttaat	7260
tgcatactct	atgaccacgc	acatgtaaag	çcccttctgc	aaaaggtaat	ttctgagcat	7320
actgtataaa	acaattaaga	ggactggtca	caacacgtgt	aattaagtag	tacttcctct	7380
ctccgtctct	ttatatagag	acctaaacca	gatgagaagt	attattcatc	cagcatatgg	7440
ggaccaacat	gtgatggcct	cgatcggatt	gttgagcgct	gtgacctgcc	tgaaatgcat	7500
gtgggtgatt	ggatgctctt	tgaaaacatg	ggcgcttaca	ctgttgctgc	tgcctctacg	7560
ttcaatggct	tccagaggcc	gacgatctac	tatgtgatgt	cagggcctgc	gtggtaagta	7620
agccatgcat	gttgatggtg	ctgccaagaa	taggcacctt	cttggatgtg	tgcttcttgt	7680
ctagacgaat	aagaaattgt	cttgcctaag	attaaatata	tatggatatt	tttcctaaga	7740
aaagttttag	aaaagactga	tgagtgtatt	tctatgtaat	tggaatatat	ttaagttcat	7800
gccatgtgtc	ttgtggtttc	cttattacca	aaacggtgac	tgaagaaacg	cttgctttag	7860
aaatacattg	aattggccag	gtgtgctggc	tcacacctga	aatcacaaca	cattgggagg	7920
ccaaggcaga	aggatcactt	gagcccagga	gttcgagcct	gggcaacata	gtgagaccct	7980
gtctctacaa	aaaattaaaa	aattagttgg	ccatggtagt	gggcgcctgt	agtcccagct	8040
gcttggctaa	ggtgagaggt	ttgcttgagc	ctgggaggtt	gaggctgcgg	tgagctatga	8100
tagcaccatt	gtattccagc	ctgagtaaca	gagaaagacc	ctgtctcaga	aaaaaaaaa	8160
atacattgaa	ttgtttcctg	atgggaagta	aatactctca	tgcccagtta	ggagtgagtc	8220
agggtttta	atatgccact	ttttctttct	caggcaactc	atgcagcaat	tccagaaccc	8280
cgacttccca	cccgaagtag	aggaacagga	tgccagcacc	ctgcctgtgt	cttgtgcctg	8340
ggagagtggg	atgaaacgcc	acagagcagc	ctgtgcttcg	gctagtatta	atgtgtagat	8400
agcactctgg	tagctgttaa	ctgcaagttt	agcttgaatt	aagggatttg	gggggaccat	8460
gtaacttaat	tactgctagt	tttgaaatgt	ctttgtaaga	gtagggtcgc	catgatgcag	8520
ccatatggaa	gactaggata	tgggtcacac	ttatctgtgt	tcctatggaa	actatttgaa	8580

tatttgtttt atatggattt ttattcactc ttcagacacg ctactcaaga gtgcccctca	8640
gctgctgaac aagcatttgt agcttgtaca atggcagaat gggccaaaag cttagtgttg	8700
tgacctgttt ttaaaataaa gtatcttgaa ataattaggc attgggacgt ttttatggtg	8760
tgttcattcc agacagttca cgaatcccgt atagctcgct ctgattctca gagaacaatg	8820
agtgggtcca cccacacaca ggtaggagga caggtgagac ggaagcccca tcctcccatg	8880
tggacggtgc acatetgetc ageceaecec acatgtecag agttggetge aaacteettg	8940
tccagagcct ctggtggtgg gacctactta agtctgacgg acctgtcctg tccaggccag	9000
tgcccaggga aggtgtggga ggccctttga gcctggcctg	9043
<210> 305 <211> 2996 <212> DNA <213> Homo sapiens	
<400> 305 gcctgcctgt ccagagctga ccagggagat ggtgctggcc caggggctgc tctccatggc	60
cctgctggcc ctgtgctggg agcgcagcct ggcaggggca gaagaaacca tcccgctgca	120
gaccetgege tgetacaaeg actacaecag ceacateaee tgeaggtggg cagacaecea	180
ggatgcccag cggctcgtca acgtgaccct cattcgccgg gtgaatgagg acctcctgga	240
gccagtgtcc tgtgacctca gtgatgacat gccctggtca gcctgccccc atccccgctg	300
cgtgcccagg agatgtgtca ttccctgcca gagttttgtc gtcactgacg ttgactactt	360
ctcattccaa ccagacaggc ctctgggcac ccggctcacc gtcactctga cccagcatgt	420
ccageetect gageecaggg acetgeagat cageacegae caggaecaet teetgetgae	480
ctggagtgtg gcccttggga gtccccagag ccactggttg tccccagggg atctggagtt	540
tgaggtggtc tacaagcggc ttcaggactc ttgggaggac gcagccatcc tcctctccaa	600
cacctcccag gccaccctgg ggccagagca cctcatgccc agcagcacct acgtggcccg	660
agtacggacc cgcctggccc caggttctcg gctctcagga cgtcccagca agtggagccc	720
agaggtttgc tgggactccc agccagggga tgaggcccag ccccagaacc tggagtgctt	780
ctttgacggg gccgccgtgc tcagctgctc ctgggaggtg aggaaggagg tggccagctc	840
ggtctccttt ggcctattct acaagcccag cccagatgca ggggaggaag agtgctcccc	900
agtgctgagg gaggggctcg gcagcctcca caccaggcac cactgccaga ttcccgtgcc	960
cgaccccgcg acccacggcc aatacatcgt ctctgttcag ccaaggaggg cagagaaaca	1020
cataaagagc tcagtgaaca tccagatggc ccctccatcc ctcaacgtga ccaaggatgg	1080

agacagetae ageetgeget gggaaacaat gaaaatgega taegaacaca tagaccacac 1140

atttgagatc	cagtacagga	aagacacggc	cacgtggaag	gacagcaaga	ccgagaccct	1200
		ccctgccagc				1260
		gcaccggcta				1320
		cggtgctgcc				1380
		tggccctccg				1440
		tccccaaccc				1500
		gcagcatgtc				1560
		tccctgagct				1620
		ccatagagga				1680
		cctcagatct		•		1740
aggcccgcct	geegeeteee	acacacctga	gaaacagģct	tccagctttg	acttcaatgg	1800
gccctacctg	gggeegeeee	acagccgctc	cctacctgac	atcctgggcc	agccggagcc	1860
cccacaggag	ggtgggagcc	agaagtcccc	acctccaggg	tccctggagt	acctgtgtct	1920
gcctgctggg	gggcaggtgc	aactggtccc	tctggcccag	gcgatgggac	cgggacaggc	1980
cgtggaagtg	gagagaaggo	: cgagccaggg	ggctgcaggg	agtccctccc	tggagtccgg	2040
gggaggccct	geecetects	g ctcttgggcc	aagggtggga	ggacaggacc	aaaaggacag	2100
ccctgtggct	atacccatga	gctctgggga	. cactgaggac	cctggagtgg	cctctggtta	2160
tgtctcctct	gcagacctgg	g tattcacccc	aaactcaggg	geetegtetg	tetecetagt	2220
tecetatat	g ggaatacaat	cagaccagac	: ccccagctta	tgtcctggg	: tggccagtgg	2280
accccctgg	a gccccaggc	c ctgtgaagto	agggtttgag	g ggctatgtgg	agctccctcc	2340
aattgaggg	c cggtccccc	a ggtcaccaag	gaacaatcct	gtccccctg	g aggccaaaag	2400
ccctgtcct	g aacccaggg	g aacgcccggo	agatgtgtco	c ccaacatcco	cacagcccga	2460
gggcctcct	t gtcctgcag	c aagtgggcga	a ctattgctto	c ctccccggc	tggggcccgg	2520
ccctctctc	g ctccggagt	a aaccttctt	c cccgggacc	c ggtcctgaga	a tcaagaacct	2580
agaccaggc	t tttcaagtc	a agaagcccc	c aggccaggc	t gtgccccag	g tgcccgtcat	2640
tcagctctt	c aaagccctg	a agcagcagg	a ctacctgtc	t ctgcccct	t gggaggtcaa	2700
caagcctgg	g gaggtgtgt	t gagaccccc	a ggcctagac	a ggcaagggg	a tggagagggc	2760
ttgccttcc	c teeegeetg	a ccttcctca	g tcatttctg	c aaagccaag	g ggcagcctcc	2820
tgtcaaggt	a gctagaggo	c tgggaaagg	a gatagcctt	g ctccggccc	c cttgaccttc	2880
agcaaatca	c ttctctccc	t gegeteaca	c agacacaca	c acacacacg	t acatgcacac	2940
atttttcct	g tcaggttaa	c ttatttgta	g gttctgcat	t attagaact	t tctaga	2996
	•	•				

<210> 306 <211> 3510 <212> DNA <213> Homo sapiens

<400> 306 60 caggaagagg tatttcttgg ggatgctacc aaggcagaga ctgtgaagaa ggaagaacgt 120 tgcttgggca aaaggagcat attctcagga gacggggccc ctgcctgcca caccaagcat taggccacca ggaagacccc catctgcaag caagcctagc cttccaggga gaaagaggcc 180 cctgcagctc cttcatcatg aactggcaca tgatcatctc tgggcttatt gtggtagtgc 240 300 ttaaagttgt tggaatgacc ttatttctac tttatttccc acagattttt aacaaaagta acgatggttt caccaccacc aggagctatg gaacagtctc acagattttt gggagcagtt 360 420 ccccaaqtcc caacqqcttc attaccacaa ggagctatgg aacagtctgc cccaaagact 480 gggaatttta tcaagcaaga tgttttttct tatccacttc tgaatcatct tggaatgaaa gcagggactt ttgcaaagga aaaggatcca cattggcaat tgtcaacacg ccagagaaac 540 tgaagtttct tcaggacata actgatgctg agaagtattt tattggctta atttaccatc 600 gtgaagagaa aaggtggcgt tggatcaaca actctgtgtt caatggcaat gttaccaatc 660 agaatcagaa tttcaactgt gcgaccattg gcctaacaaa gacatttgat gctgcatcat 720 780 gtgacatcag ctaccgcagg atctgtgaga agaatgccaa atgatcacag ttccctgtga 840 caagaactat acttgcaact ctttttgaat ccatacaggt cgtctggcca atgattcttt tacttaccta tetgtetace agtageggte ettgeecatt tgggaaactg agettettte 900 960 ttctgcactg ggggactgga tgctagccat ctccaggaga caggatcagt tttacggaaa 1020 caactcagtt agtatagaga tgaggtccgc ttctgtagta ctgagcattt ctgactgatc aaaaaggcct agtctgttga cagggtttgt tttattttag cctcagagta taccatacta 1080 ctagggagta actgtagagt gagaaattat aaacattatt tagggattac catggtggaa 1140 gagggataaa cataggteet gtgaettegt etetgttete aagggaacee catteacatg 1200 1260 cccctcctaa ctccacaagc gagggtagca gaggctctcc tcagtctgaa ctaaggcttg 1320 gccttgggga gggctcctag tgctgagctt ggagcagcac ggacagcagc attgtttatg ggaatggaga gaggtctggg caggatagga accttcttgg agaccccttt gaagaaaacc 1380 aggcagccaa gggagccaaa cacactagat ttctgttctt cagcaaagcc ctgaagagac 1440 1500 acttaagcta aaaattccct tgtcatattt ctgaaactcc attataacat atgtaactcc tttgtaacca aaatttaggt aagcaggctt cetttgetet gaaggttttg agtacetgge 1560 tgtatttgtt gagtattttt aaaattttgg atagtctctt aggcaacaat aatcacaata 1620

tattcatccc	ttcagttctg	gagaaagcct	gataccagca	cagcctactg	accccaagga	1680
gcctggcact	gattggcatc	acattgatct	aagaactggt	ccagccgacg	aagagtagga	1740
aaagagaagg	gctgctcagg	gaaacattgg	ctgggggcac	ggaataagca	catagtaaaa	1800
agggaacatc	agggtcaaat	ggaaatcacc	tgagacagga	aacagggagt	tcatttggcc	1860
acactggaag	aaaggcaaga	aagaggaaga	caagtcttgg	ggtaccctgg	ctgttctcca	1920
cactcacaag	acatcagcta	tatactctgc	ttggtgcata	agagagagaa	aagagatgcc	1980
ttttgtgttt	tgagtaagaa	taattaaacc	ataaggaaga	ccatgtataa	aactgatgga	2040
aataatagtc	accaaagtac	agcacatacc	attttgtgtc	taataacaat	gtagcacagt	2100
aatgactgta	catgtcattg	tatgtatacc	aaacaagatt	gttgṭaaatc	atattttta	2160
ttacaacact	aagttctgct	tctgcattcc	taggtttcat	catttttggc	tccttagcat	2220
ggccacttac	aattttttaa	catgagataa	cacatcaggt	gtcagaactt	gcttgaaggg	2280
aattaccaga	agtaatttgt	gtttgagatg	gggtggaaat	tggaattata	ttagtagccg	2340
gtggagatac	aagttctctg	actgtgttgg	gaaaggataa	gtgctaccgt	tgagaaggga	2400
agaaaggctg	agtctaggtg	gagaaaaata	tcaacagaac	tctagccaaa	ggcaagcccc	2460
agaactcaga	caacagaaag	gaaatcctaa	tccttctgtt	ttgagaagag	agaactgtag	2520
ttgcttcact	tectatttca	tgacagaata	actgcaaact	tttaagatca	ggaaatgtag	2580
acatctagtg	atttctttag	tagacagttt	aatttccccc	aagattagga	gacacttctg	2640
tgcaggttct	aaaaggagcc	caatggcctg	gggtgggagt	ggggagtaga	tagggaatat	2700
gtgggatttg	gtttaagttc	atcattggga	gagttcctgg	atccttgcaa	gcttagataa	2760
atgtgatctt	: tattagatag	cagtggcatg	cttttaaaaa	aaaaaaggca	atgaaaattt	2820
agcaagcca	tgaatttgag	ttttcacttt	gtttctaata	tgctgtgtga	atcagtacag	2880
ttttcttacc	c ctttcttggt	cttaatttcc	ttactgataa	aatggggtag	taatacctat	2940
ctcaaaaaat	attgcacata	ttaaataaca	ttcctctatg	tatctcaatg	gcattagaca	3000
ttaggagaag	g cattttgtgg	g aggatttgaa	gttgagatct	tcatccaaga	agtagctttt	3060
caatttgcta	a gaagcttaat	gtaggcaago	cacttcattt	ttcagaactt	gtttactcat	3120
ttataatat	g ggaataaaa	a tttgtgcaag	g tcagagaagg	gtgccttaaa	aatgttgtgg	3180
ccaagccac	a tgagatcaa	a gacacacttt	tcatgacctc	: aaatgtggg	ccagcctagg	3240
tcagccaac	c cccatccaa	c ccttagacto	e acgaacaaat	ccacctgaga	tcagcagagc	3300
caccctaga	t cagctgaaa	c tctaagcaca	a aaaataaaaa	cttatcacto	g tataccactg	3360
gagttttct	g gttatctct	c gtatagcaa	a atctaactga	tgcaatctco	atctggcctt	3420

catcettete cetttattgt cetttegtgt attgtteate cageaaceag gatgatettg

3510 ttaaaacatt aaacagattc tgtcactctt <210> 307 <211> 818 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (18)..(18) <223> n is a, c, g, t or u <220> <221> misc feature <222> (287)..(287) <223> n is a, c, g, t or u <220> <221> misc feature <222> (461)..(461) <223> n is a, c, g, t or u <220> <221> misc feature <222> (474)..(528) <223> n is a, c, g, t or u <220> <221> misc feature <222> (577)..(577) <223> n is a, c, g, t or u <220> <221> misc feature <222> (615)..(615) <223> n is a, c, g, t or u <400> 307 aagcaggctg tgcactangg acctagtgac cttactagaa aaaactcaaa ttctctgagc 60 cacaagtcct catgggcaaa atgtagatac caccacctaa ccctgccaat ttcctatcat 120 180 tgtgactatc aaattaaacc acaggcagga agttgccttg aaaacttttt atagtgtata ttactqttca catagataag caattaactt tacatatacc cgtttttaaa agatcagtcc 240 300 tgtgattaaa agtctggctg ccctaattca cttcgattat acattangtt aaagccatat aaaagaggca ctacgtcttc ggagagatga atggatatta caagcagtaa ttttggcttt 360 ggaatataca cataatgtcc acttgacctc atctatttga cacaaaatgt aaactaaatt 420 atgagcatca ttagatacct tggccttttc aaatcacaca nggtcctaga tctnnnnnnn 480 540 attctatatc ttgtcagctg tcaacttcat gttttangtt aaattctatc catagtcatc 600

ccaatatacc to	gctntagat	gatacaaaac	ttcaaagatc	cgctcttcct	tgtaaacgtg	660
gaggacaaac at	caaggggt	ttgtagtaag	aaaggcaccg	ctcggcaaaa	cgcacctggc	720
acaacagaac ga	aataataca	gaagctggat	gacgttgctc	catcttcact	ctgttaatga	780
gacatgatat ct	taaatgcta	gagtctaact	tgtaaatt			818
<210> 308 <211> 2485 <212> DNA <213> Homo s	sapiens					
<400> 308 acagtgtgat tt	tattctaac	ttgacaagag	aacaggcccc	tgacatcagt	cctaaatctg	. 60
acaccttaac g	gattctcag	atagacagag	accttcacaa	attatcttta	ctagctcaag	120
ccagtgttat ta	acgttccca	tccgattcac	ctcagaactc	atcgcagctg	caaaggaaag	180
taaaagaaga ta	aaaagatgt	ttcacagcta	accaaaataa	tgttggagat	acctcccgtg	240
gacaggttat ta	attatttca	gattctgatg	atgatgatga	tgaaagaatc	ctgagtcttg	300
agaaactcac ta	aaacaggac	aaaatatgcc	ttgagaggga	acatccagag	cagcacgttt	360
caacagttaa ta	agtaaggag	gaaaagaatc	cagtaaagga	agaaaagaca	gagactcttt	420
ttcagtttga g	gaatctgat	tctcagtgtt	ttgagtttga	aagttcatct	gaagtgtttt	480
cagtttggca ag	gatcatcca	gacgataata	attcagttca	agatggtgag	aaaaaatgtt	540
tggctcctat ag	gccaatact	acaaatggtc	agggttgtac	agattatgta	tctgaagttg	600
ttaaaaaagg a	gcagagggc	attgaagaac	acacaagacc	acggagtatt	tctgttgaag	660
aatgttgtga a	attgaagta	aaaaagccta	agagaaaacg	atctgaaaaa	ccaatggctg	720
aagatcctgt g	aggccttca	tcttctgtca	gaaatgaggg	ccagtctgat	actaataaga	780
gagatettgt g	ggaaatgat	tttaaaagta	ttgatagaag	gacttcaact	cccaattcac	840
gtattcagag a	gccactacg	gtttcacaaa	agaagtette	aaagctttgt	acttgtacag	900
aacccatcag g	aaagttcca	gtttctaaga	cccctaagaa	aactcattca	gatgccaaaa	960
aaggacagaa t	agaagttca	aattacctaa	gttgtagaac	aactcctgct	atagtgccgc	1020
caaagaaatt t	cgtcagtgt	cctgagccaa	cttcaacagc	tgagaaactt	ggcctgaaaa	1080
agggtcctcg t	aaggcatat	gagttgtccc	agcggtcttt	ggattatgta	gctcaattac	1140
gtgatcatgg c	aaaactgtt	ggagtagttg	atacccgaaa	aaagactaaa	ttaatttctc	1200
ctcagaacct g	tctgtcaga	aataataaga	aacttctgac	tagtcaagaa	cttcagatgc	1260
aaaggcagat c	agacccaaa	tcacaaaaaa	atagacgaag	actttctgat	tgtgaaagta	1320
cagatgttaa a	agagcaggg	tcacatacag	cacagaattc	tgacatattt	gtaccagaat	1380

ctgataggtc ag	attataat	tgtacaggag	gaactgaggt	acttgccaac	agtaacagaa	1440
aacagttaat aa	aatgcatg	ccttctgaac	cagaaaccat	aaaagcaaaa	catgggtctc	1500
cagcaactga tg	atgcttgc	cctttgaacc	agtgtgattc	tgtagtgtta	aatggaacag	1560
taccaacaaa tg	aagtaatt	gtctccactt	cagaagaccc	tctgggtgga	ggtgatccaa	1620
cagcacgtca ta	tagagatg	gcagctttga	aagaaggaga	gcctgactcc	agcagtgatg	1680
cagaggaaga ta	acttattt	ttaacccaaa	atgatcctga	agatatggat	ttatgttcac	1740
aaatggagaa tg	acaattat	aaactcattg	aactaattca	tggaaaagat	acagttgagg	1800
.ttgaagaaga tt	ctgtaagt	cggcctcagt	tggaatcttt	gagtggcaca	aagtgtaagt	1860
acaaagattg tc	ttgaaacc	acaaaaaacc	agggtgaata	ctgcccaaaa	cactctgaag	1920
tgaaagcagc ag	atgaagat	gtatttcgta	aacctggctt	gcctcctcct	gcatctaaac	1980
ctttgagacc ta	ccactaag	atttttagct	caaagagtac	ttcacgaatt	gctggtcttt	2040
ctaaatcttt gg	aaacttct	tcagcacttt	caccgtctct	aaaaaataag	tcaaagggga	2100
tacagtcgat tt	tgaaagta	ccacagccag	ttcccctcat	agctcagaag	ccagttggtg	2160
aaatgaagaa tt	cgtgcaat	gttcttcatc	ctcagtctcc	gaataattcc	aacaggcaag	2220
gttgcaaagt tc	catttggt	gaaagcaaat	attttccatc	ttcctctcca	gtaaacattc	2280
ttttgtcatc ac	agtctgtc	tctgacacct	tcgttaaaga	ggtcttaaaa	tggaaatatg	2340
aaatgttttt ga	actttggt	cagtgtgggc	cccctgcaag	tctttgtcag	tccatctcaa	2400
gacctgtgcc tg	tcagattt	cacaattatg	gagattattt	taatgtttt	ttccctttga	2460
tggtattgaa ta	cttttgaa	acagt				2485
<210> 309 <211> 3673 <212> DNA <213> Homo s	apiens					
gggcgctgtg cg	cgccgcga	tccggtacgt	gggcctccgg	gctgtcccct	ctgggggcga	60
tectecetee gg	agcccccc	ttcaaccctc	ccggaagtga	ggaccaggga	tgctgtgctg	120
ctctcccatg ag	ccagtcac	cgagtcggtc	tgctgcagcc	ctttctgaac	ctctggccgt	180
ctggatgctc ca	ctgtgctt	gccaagatga	agtgcgtctt	ggtggccact	gagggcgcag	240
aggteetett et	actggaca	gatcaggagt	ttgaagagag	tctccggctg	aagttcgggc	300

agtcagagaa tgaggaagaa gagctccctg ccctggagga ccagctcagc accctcctag

ccccggtcat catctcctcc atgacgatgc tggagaagct ctcggacacc tacacctgct

tetecaegga aaatggcaae tteetgtatg teetteaeet gtttggagaa tgeetgttea

ttgccatcaa	tggtgaccac	accgagagcg	agggggacct	gcggcggaag	ctgtatgtgc	540
tcaagtacct	gtttgaagtg	cactttgggc	tggtgactgt	ggacggtcat	cttatccgaa	600
aggagctgcg	gccccagac	ctggcgcagc	gtgtccagct	gtgggagcac	ttccagagcc	660
tgctgtggac	ctacagccgc	ctgcgggagc	aggagcagtg	cttcgccgtg	gaggccctgg	720
agcgactgat	tcacccccag	ctctgtgagc	tgtgcataga	ggcgctggag	cggcacgtca	780
tccaggctgt	caacaccagc	cccgagcggg	gaggcgagga	ggccctgcat	gccttcctgc	840
tcgtgcactc	caagctgctg	gcattctact	ctagccacag	tgccagctcc	ctgcgcccgg	900
ccgacctgct	tgccctcatc	ctcctggttc	aggacctcta	ccccagcgag	agcacagcag	960
aggacgacat	tcagccttcc	ccgcggaggg	cccggagcag	ccagaacatc	cccgtgcagc	1020
aggcctggag	ccctcactcc	acgggcccaa	ctggggggag	ctctgcagag	acggagacag	1080
acagettete	cctccctgag	gagtacttca	caccagetee	ttcccctggc	gatcagagct	1140
caggtagcac	catctggctg	gagggggca	cccccccat	ggatgccctt	cagatagcag	1200
aggacaccct	ccaaacactg	gttccccact	gccctgtgcc	ttccggcccc	agaaggatct	1260
tcctggatgc	caacgtgaag	gaaagctact	gccccctagt	gccccacacc	atgtactgcc	1320
tgcccctgtg	gcagggcatc	aacctggtgc	tcctgaccag	gagccccagc	gcgcccctgg	1380
ccctggttct	gtcccagctg	atggatggct	tctccatgct	ggagaagaag	ctgaaggaag	1440
ggccggagcc	cggggcctcc	ctgcgctccc	agcccctcgt	gggagacctg	cgccagagga	1500
tggacaagtt	tgtcaagaat	cgaggggcac	aggagattca	gagcacctgg	ctggagttta	1560
aggccaaggc	tttctccaaa	agtgagcccg	gatectectg	ggagctgctc	caggcatgtg	1620
ggaagctgaa	gcggcagctc	tgcgccatct	accggctgaa	ctttctgacc	acagccccca	1680
gcaggggagg	cccacacctg	ccccagcacc	tgcaggacca	agtgcagagg	ctcatgcggg	1740
agaagctgac	ggactggaag	gacttcttgc	tggtgaagag	caggaggaac	atcaccatgg	1800
tgtcctacct	agaagacttc	ccaggcttgg	tgcacttcat	ctatgtggac	cgcaccactg	1860
ggcagatggt	ggcgccttcc	ctcaactgca	gtcaaaagac	ctcgtcggag	ttgggcaagg	1920
ggccgctggc	tgcctttgtc	aaaactaagg	tctggtctct	gatccagctg	gcgcgcagat	1980
acctgcagaa	gggctacacc	acgctgctgt	tccgggaggg	ggatttctac	tgctcctact	2040
tcctgtggtt	cgagaatgac	atggggtaca	aactccagat	gatcgaggtg	cccgtcctct	2100
ccgacgactc	agtgcctatc	ggcatgctgg	gaggagacta	ctacaggaag	ctcctgcgct	2160
actacagcaa	gaaccgccca	accgaggctg	tcaggtgcta	cgagctgctg	gccctgcacc	2220
tgtctgtcat	ccccactgac	ctgctggtgc	agcaggccgg	ccagctggcc	cggcgcctct	2280

gggaggcctc	ccgtatcccc	ctgctctagg	ccaaggtggc	cgcagtctgc	ctttgcatcc	2340
tgtcctccag	ccacccttgc	ttgccactgt	tccccatgac	gagagcctcc	tgtctgcagt	2400
ggccatcctg	aggatagggc	agagtgccca	gggtggcccc	agggcttcta	aaaccccacc	2460
tagaccaccc	tccatgtcag	gtactgagca	aggccccaga	tecttetete	tggaggaaga	2520
gggaagccca	ggggtcctgt	ttgtaaaaca	acggtggcaa	cagctcctct	tccagagctg	2580
cctctgcctt	tatcctggga	gatggggagg	aagccccatc	tctgctgttc	cctgcgtgga	2640
ggaagcccac	ccagcaagct	ctctcctacc	ccaggtaaaa	ggtgctcctt	tgcctgggtt	2700
tgaattccag	cgctgccact	tcctctctgc	acctcctggc	aagtttcttc	tattccccac	2760
gtttaaagcg	atggcacctc	cgtcccaggg	tggtgtgagg	attacccagt	gtggtaggtg	2820
ctcaataaat	gttggtcatt	gttatcactg	aagcccaaca	tgctagtgct	tctagaccct	2880
tctgtcagtg	ctgataagcc	cttgctaagt	cccagcccct	tcatgcttgg	ctggcgtctg	2940
ccctagggct	ggggttctca	agcccctggc	cctggcccag	agatttggat	tcccttggcg	3000
gccgtggagc	ccaggctttg	atgtctttca	aagcttctgt	ggtgcgccct	ggattgagaa	3060
ccaccacccg	aggggtacag	cccctctctt	ccaaccgaga	agttcctgtc	cagaatggac	3120
ccagggacaa	gagaccctga	gagccctggg	actgggagtg	tetgeteete	tgagccagga	3180
ggccggtgct	gggccagaga	ggacggcgtg	gcgaaagtca	gcgtccactg	cagcacagga	3240
tcagatggcc	gtgtgctgtg	catgcaggag	cctcgccttc	tgtgtcttta	gtcttgagcc	3300
aaaatttgct	caaaagactg	atctcttcct	tgcagggaac	agctttgggg	ctgggggaac	3360
tagaacccac	atgttggtct	aaaccctgag	aaggtggcag	tgaggaagta	tcccctcagg	3420
tgactggatc	tgtgttcctc	cttaacatca	tctgatggaa	tggcaatgaa	aagcgtggat	3480
tgtggaaaat	acagaaaaac	ataaaggaaa	aaactccaat	cccctgagcc	caccactgtt	3540
caggacccct	gcttttgtca	cctactattt	ccctttagtt	tttagcagcg	gctggatgtg	3600
atatgtctag	tttaaccagt	ccccttgatc	tttctatata	ataaataaca	caggagtgaa	3660
catcctgaat	cag					3673

<210> 310 <211> 2444

<212> DNA

<213> Homo sapiens

<400> 310

ggttttttt ttttacccc ctttttatt tattatttt ttgcacattg agcggatcct 60
tgggaacgag agaaaaaga aacccaaact cacgcgtgca gaagatctcc cccccttcc 120
cctcccctcc tccctcttt cccctccca ggagaaaaag accccaagc agaaaaagt 180

tcaccttgga	ctcgtctttt	tcttgcaata	ttttttgggg	gggcaaaact	ttgagggggt	240
gattttttt	ggcttttctt	cctccttcat	ttttcttcca	aaattgctgc	tggtgggtga	300
aaaaaaaatg	ccgcagctga	acggcggtgg	aggggatgac	ctaggcgcca	acgacgaact	360
gatttccttc	aaagacgagg	gcgaacagga	ggagaagagc	tccgaaaact	cctcggcaga	420
gagggattta	gctgatgtca	aatcgtctct	agtcaatgaa	tcagaaacga	atcaaaacag	480
ctcctccgat	tccgaggcgg	aaagacggcc	tccgcctcgc	tccgaaagtt	tccgagacaa	540
atcccgggaa	agtttggaag	aagcggccaa	gaggcaagat	ggagggctct	ttaaggggcc	600
accgtatccc	ggctacccct	tcatcatgat	ccccgacctg	acgagcccct	acctccccaa	660
cggatcgctc	tcgcccaccg	cccgaaccta	tctccagatg	aaatggccac	tgcttgatgt	720
ccaggcaggg	agcctccaga	gtagacaagc	cctcaaggat	gcccggtccc	catcaccggc	780
acacattgtc	tctaacaaag	tgccagtggt	gcagcaccct	caccatgtcc	acccctcac	840
gcctcttatc	acgtacagca	atgaacactt	cacgccggga	aacccacctc	cacacttacc	900
agccgacgta	gaccccaaaa	caggaatccc	acggcctccg	caccctccag	atatatcccc	960
gtattaccca	ctatcgcctg	gcaccgtagg	acaaatcccc	catccgctag	gatggttagt	1020
accacagcaa	ggtcaaccag	tgtacccaat	cacgacagga	ggattcagac	acccctaccc	1080
cacagctctg	accgtcaatg	cttccgtgtc	caggttccct	ccccatatgg	teccaccaca	1140
tcatacgcta	cacacgacgg	gcattccgca	tccggccata	gtcacaccaa	cagtcaaaca	1200
ggaatcgtcc	cagagtgatg	tcggctcact	ccatagttca	aagcatcagg	actccaaaaa	1260
ggaagaagaa	aagaagaagc	cccacataaa	gaaacctctt	aatgcattca	tgttgtatat	1320
gaaggaaatg	agagcaaagg	tcgtagctga	gtgcacgttg	aaagaaagcg	cggccatcaa	1380
ccagatcctt	gggcggaggt	ggcatgcact	gtccagagaa	gagcaagcga	aatactacga	1440
gctggcccgg	aaggagcgac	agcttcatat	gcaactgtac	cccggctggt	ccgcgcggga	1500
taactatgga	aagaagaaga	agaggaaaag	ggacaagcag	ccgggagaga	ccaatgaaca	1560
cagegaatgt	ttcctaaatc	cttgcctttc	acttcctccg	attacagacc	tcagcgctcc	1620
taagaaatgc	cgagcgcgct	ttggccttga	tcaacagaat	aactggtgcg	gcccttgcag	1680
gagaaaaaaa	aagtgcgttc	gctacataca	aggtgaaggc	agctgcctca	gcccaccctc	1740
ttcagatgga	agcttactag	attcgcctcc	ccctccccg	aacctgctag	gctcccctcc	1800
ccgagacgcc	aagtcacaga	ctgagcagac	ccagcctctg	tegetgtece	tgaagcccga	1860
ccccctggcc	cacctgtcca	tgatgcctcc	gccacccgcc	ctcctgctcg	ctgaggccac	1920
ccacaaggcc	teegeeetet	gtcccaacgg	ggccctggac	ctgcccccag	ccgctttgca	1980
gcctgccgcc	ccctcctcat	caattgcaca	gccgtcgact	tcttggttac	attcccacag	2040

ctccctggcc gggacccagc	cccagccgct	gtegetegte	accaagtctt	tagaatagct	2100
ttagcgtcgt gaaccccgct	gctttgttta	tggttttgtt	tcacttttct	taatttgccc	2160
cccaccccca ccttgaaagg	ttttgttttg	tactctctta	attttgtgcc	atgtggctac	2220
attagttgat gtttatcgag	ttcattggtc	aatatttgac	ccattcttat	ttcaatttct	2280
ccttttaaat atgtagatga	gagaagaacc	tcatgattgg	taccaaaatt	tttatcaaca	2340
gctgtttaaa gtctttgtag	cgtttaaaaa	atatatatat	atacataact	gttatgtagt	2400
tcggatagct tagttttaaa	agactgatta	aaaaacaaaa	aaaa		2444
<210> 311 <211> 1011 <212> DNA <213> Homo sapiens					
<400> 311 ggtttatttt ccagatgcaa	tcaatgcccc	agtcacctgc	tgttataact	tcaccaatag	60
gaagatetea gtgeagagge	tcgcgagcta	tagaagaatc	accagcagca	agtgtcccaa	120
acaagctgtg atgtgagttc	agcacaccaa	ccttccctgg	cctgaagttc	ttccttgtgg	180
agcaagggac aagcctcata	aacctagagt	cagagagtgc	actatttaac	ttaatgtaca	240
aaggttccca atgggaaaac	tgaggcacca	agggaaaaag	tgaaccccaa	catcactctc	300
cacctgggtg cctattcaga	acacccaatt	tctttagctt	gaagtcagga	tggctccacc	360
tggacaccta taggagcagt	ttgccctggg	ttccctcctt	ccacctgcgt	tcctcctcta	420
gctcccatgg cagccctttg	gtgcagaatg	ggctgcactt	ctagaccaaa	actgcaaagg	480
aacttcatct aactctgtcc	tccctcccca	cagcttacag	accattgtgg	caaggagatc	540
tgtgctgacc ccaagcagaa	gtgggttcag	gattccatgg	accacctgga	caagcaaacc	600
caaactccga agacttgaac	actcactcca	caacccaaga	atctgcagct	aacttatttt	660
tccctagctt tccccagaca	ccttgtttat	tttattataa	tgaattttgt	ttgttgatgt	720
gaaacattat gccttaagta	atgttaattc	ttatttaagt	tattgatgtt	ttaagtttat	780
ctttcatggt actagtgttt	tttagataca	gagacttggg	gaaattgctt	ttcctcttga	840
accacagttc tacccctggg	atgttttgag	ggtctttgca	agaatcatta	atacaaagaa	900
tttttttaa cattccaatg	cattgctaaa	atattattgt	ggaaatgaat	attttgtaac	960

1011

<210> 312

<211> 459

<212> DNA

<213> Homo sapiens

<400> 312					
atggaggctg aagctgctgt	teggaggeee	tctattggtg	cctctctcct	gccgtcatca	60
ctatggcagg aaaacagaga	tggtttagta	atgaattatc	attcccaaac	ccgtgtccac	120
ctggaacatc aggatgggac	catgtttgaa	aatcgggtct	ttccaaatgt	aattaagtaa	180
ggcgaggcca tactgcattt	acaatgggcc	caatccagtg	tccctatgag	agacggaaga	240
ggagacacag acacaaagca	ggaggccaca	taaagacaga	ggcagagact	gaagtgatgc	300
tgccccaagc ccaggggatg	cctggagtcc	ccaggagctg	ggagaggcag	gaagggaccc	360
tcccctagag tctcttggag	ggaactgata	caattgcaga	gtgcactaaa	cagttgcccc	420
aaaagacata tcttgtttta	aggcccagac	ctgaaattt			459
<210> 313 <211> 1816 <212> DNA <213> Homo sapiens <400> 313					
ctcgccttct ggctctgcca	tgccctgctc	tgaagagaca	cccgccattt	cacccagtaa	60
gegggeeegg cetgeggagg	tgggcggcat	gcagctccgc	tttgcccggc	tctccgagca	120
cgccacggcc cccacccggg	gctccgcgcg	cgccgcgggc	tacgacctgt	acagtgccta	180
tgattacaca ataccaccta	tggagaaagc	tgttgtgaaa	acggacattc	agatagcgct	240
cccttctggg tgttatggaa	gagtggctcc	acggtcaggc	ttggctgcaa	aacactttat	300
tgatgtagga gctggtgtca	tagatgaaga	ttatagagga	aatgttggtg	ttgtactgtt	360
taattttggc aaagaaaagt	ttgaagtcaa	aaaaggtgat	cgaattgcac	agctcatttg	420
cgaacggatt ttttatccac	, aaatagaaga	agttcaagcc	ttggatgaca	ccgaaagggg	480
ttcaggaggt tttggttcca	ctggaaagaa	ttaaaattta	tgccaagaac	agaaaacaag	540
aagtcatacc tttttcttaa	aaaaaaaaa	aaagtttttg	cttcaagtgt	tttggtgttt	600
tgcacttctg taaacttact	agctttacct	tctaaaagta	ctgcattttt	tactttttt	660
tatgatcaag gaaaagatc	, ttaaaaaaaa	acacaaagaa	gtttttcttt	gtgtttggat	720
caaaaagaaa ctttgtttt	ccgcaattga	aggttgtatg	taaatctgct	ttgtggtgac	780
ctgatgtaaa cagtgtctto	ttaaaatcaa	atgtaaatca	attacagatt	aaaaaaaaa	840
gcctgtattt aactcatate	atctcccttc	agcaacttat	tttgctttaa	ttgctttaaa	900
tcttaagcaa tatttttat	tcagtaaaca	aattctttca	caaggtacaa	aatcttgcat	960
aagctgaact aaaataaaa	tgaaaaggag	agattaaagg	tattccttgt	tcttcccttc	1020
tcttcactag tctaaaaact	tcttttaat	cttaagattc	tttgtgatga	gggtgagaaa	1080

aagaatcctc	agtttatttt	tccactatta	atctttcttt	tgataaatcc	tctattgact	1140
gggtagaggt	atgtttgtga	aagacatgta	acttggggat	ttgttacttt	aggtttgttc	1200
ccttgaattt	catctcatca	ggcaaattgt	actagttgta	gttacgagtt	ttccctcagt	1260
gaagtagcaa	taggctgtaa	tcaagaaaat	atgccattta	tagagataag	ataaatgaaa	1320
taatacttca	gccaccaggt	ttttctgtct	cacatacata	agcagcattt	cattgcagat	1380
atgggactga	ttctgtggct	taccttgatt	aacatctttt	ggaagttttg	ctagtgtgct	1440
ttcctttctt	tactatgttt	ctcagattcc	tttgtatcag	ggttttgggt	gtcacttagg	1500
ttttgtccat	cagattctgt	gagacaccag	gcatcgtttt	gaggatgtgg	gttatacaca	1560
tggagtgctt	ctggaactat	cagcccactt	gaccacccag	tttgtggaag	cacaggcaag	1620
agtgttcttt	tctggtgatt	ctccaggcca	tttaataccc	tgcaatgtaa	ttgtccctct	1680
gtggctcaca	tttcattagt	gagccatgaa	atcaactcag	tgggacatag	ccagcatttt	1740
tgcataccag	gttgggctat	aaaatatttc	tgttgtcaat	aaattttaaa	tgttttcctg	1800
ctaaaaaaaa	aaaaaa					1816

<210> 314

<211> 1941

<212> DNA

<213> Homo sapiens

<400> 314

tcagagaggc agctgctgtg tttcaggaaa ctctgagagg tgggtcccag cctgacgcag 60 cccgagaget ccgctcttgc cttctccacc tcacactggt aagggggcca ggcacactgt 120 180 catgctgagg cggttatcag ggagaattgg ctgggactgc aataccaagc ctcaggtggc taaggagggt gcggggaagg atgggtggaa tgagaggcat gggctgtcct gcttaaaaga aggatetggt gecettetet etecettete ageagggtea gegaggagga atetgtgeae 300 360 cacctctgtc acctggggcc ctccagccac ttccccatgc tgagctggca ccctcaggcc 420 taccttccct caggtgccct cgaagcactg ctttgaggtc ccctggcctg tctccactct 480 tgcattatec ttcatgtcae egaagecaee ceaaceagee ceteteceag acteagagta gaaggcccca tcctctcaag ccccaggacc cttcaaaggg ctgggacatc ctgggacttg 540 ggctccagca tctgtctcag gccagatgag ggggcaccgg tccctcatag ggcagggcca 600 tgtatatatc cettggtggg ggacatagtg tggtgacagt tcactgcata ttttgagacc 660 ttattctcta gatccatagt taatgatgcc ctggcagtca ttcctcttgc catggggaag 720 cttctgatga gagaaaggag ccccacatcc actgaaacat cctttggttc tcaagcttct 780 840 tctggaggca gtaaggaaaa ataaaaccca ccaaggctca agaagggaac tatagaaaag

WO 03/090694 PCT/US03/13015 .

ttcaggtttt taggctatag	cagagacagt	gagaaagcat	ctgggccttt	ctcttcctct	900
tggtccaggg gacctcattc	accaactaga	gcttggtgta	caggaacggg	gtcacagtgc	960
tgaggggct tgagtcccac	ctttcagctt	gatggatgct	cacctcttct	cagccccagc	1020
tegtgeeetg tttttetage	catagccccc	agattactca	cageteetea	tgccatttcc	1080
tgtccagatt gctatgtatg	actctgacct	ctcttgtcca	gtggtctggt	gctcacctcc	1140
tctcactgct agaatattca	ccaagggttt	gcatttggga	agtcccttac	cagctcctgc	1200
ttagagctgg tagggccata	catgtccaca	ctcccaactg	gtggctctcc	cgctgaatgg	1260
ggcctcagca ggtgcccagg	ctgctacaac	cttggccact	ctgtttctcc	accccagcac	1320
tgggcatggt aattagcctt	tccccatgtt	aatttattca	gttttttcaa	gggtcaactg	1380
aattccccac ttcctgggta	agaagcatga	tctcctttta	atttcacgtc	taagatcctg	1440
gcagcttccc ctagctggtt	cctctgtagt	cctgctggga	ctgtcagctc	atttaaatgt	1500
gggtctgcag aaggctttag	gtctccccca	accccttac	ctttcacaga	ggaacctttc	1560
atcaggacaa atgattattg	ctgccctgtg	ggtcttgctc	aatactgttc	atacctggag	1620
agagaaggta ttgaaacatc	tcctttatgt	gtgactttcc	caaattttta	aaaattgttt	1680
atggtttagg ccccttaaat	actgtgtagc	aggatgaagt	ctaccattac	cagctgggtc	1740
accttggatg ggtctgtcaa	catctaagcc	tcagttccct	cacctgtaaa	aatgagggta	1800
gtccctacct cataagggat	attgtgagga	tggaaagcga	aagtgtgaga	aaatacctcc	1860
caagtgcctg gtacatagtg	ggtgctaaat	aaaccacttt	ttgtctgcaa	aaaaaaaaa	1920
aaaaaaaaaa aaaaaaaaaa	a				1941

<210> 315

<400> 315

cagtctcagc	tgactcagcc	ggcctcggtg	tccgtgtccc	caggacagac	agccaccatc	60
ccctgctctg	gagataattt	gggggataaa	tatgcttcct	ggtttcagca	gaagccaggc	120
cagtcccctg	tcctggtcat	ctatcaagat	aacaagcggc	cctcagggat	ccctgagcga	180
ttctccggct	ccaactctgg	gagcacagcc	actctgacca	tcagcgggac	ccaggctatg	240
gatgaggctg	actattactg	tcaggcgtgg	gacaccaaca	ctgcggtatt	cggcggaggg	300
accaaggtga	ccgtcctag					319

<211> 319 <212> DNA <213> Homo sapiens

<210> 316 <211> 3579 <212> DNA

<213> Homo sapiens

<400> 316 cacgcgtccg cgagaaggag gactcgcaag cctcggcggc ccggaaccgg cctcggactg 60 120 togacggaac otgaggcogo ttgccotoco gocccatgga goggcocccg gggotgcggo cgggcgcggg cgggccctgg gagatgcggg agcggctggg caccggcggc ttcgggaacg 180 240 tctgtctgta ccagcatcgg gaacttgatc tcaaaatagc aattaagtct tgtcgcctag 300 aqctaaqtac caaaaacaga gaacgatggt gccatgaaat ccagattatg aagaagttga accatgccaa tqttqtaaaq gcctgtgatg ttcctgaaga attgaatatt ttgattcatg 360 420 atgtgcctct tctagcaatg gaatactgtt ctggaggaga tctccgaaag ctgctcaaca 480 aaccagaaaa ttgttgtgga cttaaagaaa gccagatact ttctttacta agtgatatag 540 ggtctgggat tcgatatttg catgaaaaca aaattataca tcgagatcta aaacctgaaa 600 acatagttet teaggatgtt ggtggaaaga taatacataa aataattgat etgggatatg 660 ccaaagatgt tgatcaagga agtctgtgta catcttttgt gggaacactg cagtatctgg 720 ccccagagct ctttgagaat aagccttaca cagccactgt tgattattgg agctttggga ccatggtatt tgaatgtatt gctggatata ggcctttttt gcatcatctg cagccattta 780 cctggcatga gaagattaag aagaaggatc caaagtgtat atttgcatgt gaagagatgt 840 caggagaagt tcggtttagt agccatttac ctcaaccaaa tagcctttgt agtttaatag 900 tagaacccat ggaaaactgg ctacagttga tgttgaattg ggaccctcag cagagaggag 960 1020 gacctqttqa ccttactttg aagcagccaa gatgttttgt attaatggat cacattttga 1080 atttgaagat agtacacatc ctaaatatga cttctgcaaa gataatttct tttctgttac cacctgatga aagtcttcat tcactacagt ctcgtattga gcgtgaaact ggaataaata 1140 ctggttctca agaacttctt tcagagacag gaatttctct ggatcctcgg aaaccagcct 1200 1260 ctcaatgtgt tctagatgga gttagaggct gtgatagcta tatggtttat ttgtttgata aaagtaaaac tgtatatgaa gggccatttg cttccagaag tttatctgat tgtgtaaatt 1320 atattqtaca ggacagcaaa atacagcttc caattataca gctgcgtaaa gtgtgggctg 1380 1440 aagcagtqca ctatqtqtct qqactaaaag aagactatag caggctcttt cagggacaaa gggcagcaat gttaagtctt cttagatata atgctaactt aacaaaaatg aagaacactt 1500 tgatctcagc atcacaacaa ctgaaagcta aattggagtt ttttcacaaa agcattcagc 1560 ttgacttgga gagatacagc gagcagatga cgtatgggat atcttcagaa aaaatgctaa 1620 aagcatggaa agaaatggaa gaaaaggcca tccactatgc tgaggttggt gtcattggat 1680 acctggagga tcagattatg tctttgcatg ctgaaatcat ggagctacag aagagcccct 1740

. . . .

atggaagacg	tcagggagac	ttgatggaat	ctctggaaca	gcgtgccatt	gatctatata	1800
agcagttaaa	acacagacct	tcagatcact	cctacagtga	cagcacagag	atggtgaaaa	1860
tcattgtgca	cactgtgcag	agtcaggacc	gtgtgctcaa	ggagctgttt	ggtcatttga	1920
gcaagttgtt	gggctgtaag	cagaagatta	ttgatctact	ccctaaggtg	gaagtggccc	1980
tcagtaatat	caaagaagct	gacaatactg	tcatgttcat	gcagggaaaa	aggcagaaag	2040
aaatatggca	tctccttaaa	attgcctgta	cacagagttc	tgcccggtcc	cttgtaggat	2100
ccagtctaga	aggtgcagta	acccctcaga	catcagcatg	gctgccccg	acttcagcag	2160
aacatgatca	ttctctgtca	tgtgtggtaa	ctcctcaaga	tggggagact	tcagcacaaa	2220
tgatagaaga	aaatttgaac	tgccttggcc	atttaagcac	tattattcat	gaggcaaatg	2280
aggaacaggg	caatagtatg	atgaatcttg	attggagttg	gttaacagaa	tgagttgtca	2340
cttgttcact	gtccccaaac	ctatggaagt	tgttgctata	catgttggaa	atgtgttttt	2400
ccccatgaa	accattcttc	agacatcagt	caatggaaga	aatggctatg	aacagaaact	2460
acatttctac	tatgatcaga	agaacatgat	tttacaagta	taacagtttt	gagtaattca	2520
agcctctaaa	cagacaggaa	tttagaaaaa	gtcaatgtac	ttgtttgaat	atttgtttta	2580
ataccacagc	tatttagaag	catcatcacg	acacatttgc	cttcagtctt	ggtaaaacat	2640
tacttattta	actgattaaa	aataccttct	atgtattagt	gtcaactttt	aacttttggg	2700
cgtaagacaa	agtgtagttt	tgtatacaga	gaagaaaacc	tcaagtaata	ggcattttaa	2760
gtaaaagtct	acctgtgttt	ttttctaaaa	aggctgctca	caagttctat	ttcttgaaga	2820
ataaattcta	cctccttgtg	ttgcactgaa	caggttctct	tcctggcatc	ataaggagtt	2880
ggtgtaatca	ttttaaattc	cactgaaaat	ttaacagtat	ccccttctca	tcgaagggat	2940
tgtgtatctg	tgcttctaat	attagttggc	tttcataaat	catgttgttg	tgtgtatatg	3000
tatttaagat	gtacatttaa	taatatcaaa	gagaagatgc	ctgttaattt	ataatgtatt	3060
tgaaaattac	atgtttttc	atttgtaaaa	atgagtcatt	tgtttaaaca	atctttcatg	3120
tcttgtcata	caaatttata	aaggtctgca	ctcctttatc	tgtaattgta	attccaaaat	3180
ccaaaaagct	ctgaaaacaa	ggtttccata	agcttggtga	caaaattcat	ttgcttgcaa	3240
tctaatctga	actgaccttg	aatctttta	tcccatttag	tgtgaatatt	cctttatttt	3300
gctgcttgat	gatgagaggg	agggctgctg	ccacagactg	tggtgagggc	tggttaatgt	3360
agtatggtat	atgcacaaaa	ctacttttct	aaaatctaaa	atttcataat	tctgaaacaa	3420
cttgccccaa	gggtttcaga	gaaaggactg	tggacctcta	tcatctgcta	agtaatttag	3480
aagatattat	ttgtcttaaa	aaatgtgaaa	tgcttttata	ttctaatagt	ttttcacttt	3540
gtgtattaaa	tggtttttaa	attaaaaaaa	aaaaaaaa			3579

	_					
<211> 123	_					
<212> DNA <213> Hon	no sapiens					
(213) HOII	o saprens					
<400> 317						
cctggatgtç	atggcgtcac	agaagagacc	ctcccagagg	cacggatcca	agtacctggc	60
cacagcaagt	accatggacc	atgccaggca	tggcttcctc	ccaaggcaca	gagacacggg	120
catccttgac	: tccatcgggc	gcttctttgg	cggtgacagg	ggtgcgccca	agcggggctc	180
tggcaaggta	ccctggctaa	agccgggccg	gagccctctg	ccctctcatg	cccgcagcca	240
gcctgggctg	g tgcaacatgt	acaaggactc	acaccacccg	gcaagaactg	ctcactacgg	300
ctccctgccc	c cagaagtcac	acggccggac	ccaagatgaa	aaccccgtag	tccacttctt	360
caagaacatt	gtgacgcctc	gcacaccacc	cccgtcgcag	ggaaaggggg	ccgaaggcca	420
gagaccagga	a tttggctacg	gaggcagagc	gtccgactat	aaatcggctc	acaagggatt	480
caagggagto	gatgcccagg	gcacgctttc	caaaattttt	aagctgggag	gaagagatag	540
tegetetgga	a tcacccatgg	ctagacgctg	aaaacccacc	tggttccgga	atcctgtcct	600
cagcttctta	a atataactgc	cttaaaactt	taatcccact	tgcccctgtt	acctaattag	660
agcagatgad	c ccctccccta	atgcctgcgg	agttgtgcac	gtagtagggt	caggccacgg	720
cagcctacco	g gcaatttccg	gccaacagtt	aaatgagaac	atgaaaacag	aaaacggtta	780
aaactgtcc	tttctgtgtg	aagatcacgt	tccttcccc	gcaatgtgcc	cccagacgca	840
cgtgggtcti	cagggggcca	ggtgcacaga	cgtccctcca	cgttcacccc	tccacccttg	900
gactttctt	tegeegtgge	tgcggcaccc	ttgcgctttt	gctggtcact	gccatggagg	960
cacacaget	g cagagacaga	gaggacgtgg	gcggcagaga	ggactgttga	catccaagct	1020
tcctttgtt	t ttttttcctg	teettetete	acctcctaaa	gtagacttca	tttttcctaa	1080
caggattag	a cagtcaagga	gtggcttact	acatgtggga	gcttttggta	tgtgacatgc	1140
gggctgggc	a gctgttagag	tccaacgtgg	ggcagcacag	agagggggcc	acctccccag	1200
gccgtggct	g cccacacacc	ccaattagct	g			1231
<210> 31 <211> 73 <212> DN	89 A					
<213> Ho	mo sapiens					
<400> 31 gtttctctc		gcggcggtaa	tggcggatgg	tgggttgtgg	cgccggcggc	60
~~		. sataaataat	taataaaaa	0000000000	ctagaagatt	120

gtcactgtaa	cctcttctgc	ctggctgact	tgacaggaat	taagtggaaa	aaatatgtat	180
ggcaaggccc	aacttctgcc	cctattctgt	ttcctgtgac	agaagaagac	cccattttga	240
gcagttttag	tcgctgcctt	aaggcagatg	tacttggtgt	ttggcggcga	gatcaaagac	300
ctggaagaag	agaattgtgg	atattttggt	ggggtgaaga	cccagttttg	ctgaccttat	360
tcaccatgac	ttatcagaag	aagaagatgg	aatgtgggag	aatggacttt	cctatgaatg	420
ccgtactctg	cttttccaaa	gcagttcaca	atctattgga	acggtgttta	atgaacagga	480
attttgtacg	tattggcaag	tggtttgtaa	agccttatga	aaaagatgaa	aaacctataa	540
ataaaagtga	acacttgtcc	tgctccttca	cctttttctt	gcatggagac	agcaatgttt	600
gtaccagtgt	ggaaattaac	caacatcaac	ctgtatacct	tctcagtgaa	gagcatatca	660
cccttgctca	acagtctaat	agcccatttc	aagttatctt	atgcccattt	ggactaaatg	720
gcactctcac	aggacaggca	ttcaagatgt	ctgattcagc	tacaaaaaaa	ttaattggtg	780
aatggaaaca	gttctatcct	atctcatgtt	gcttgaagga	gatgtctgaa	gaaaaacagg	840
aagatatgga	ttgggaagat	gattctttag	ctgcagtaga	agttcttgtt	gctggtgtcc	900
gaatgatcta	cccagcatgc	tttgttctag	tccctcagtc	agacattcct	actcctagcc	960
ctgtgggatc	cactcactgt	tcatcttctt	gcttgggtgt	ccaccaagtg	cctgcttcca	1020
caagagatcc	tgctatgtct	tcggttacgc	ttacaccacc	tacgtctcct	gaggaagtcc	1080
aaacagttga	tcctcagtct	gtccagaagt	gggtcaaatt	ttcttcagta	tctgatggct	1140
tcaactccga	tagtactagc	caccatggtg	ggaaaatacc	cagaaaatta	gcaaatcatg	1200
tggtggatag	agtttggcaa	gaatgcaata	tgaacagagc	acagaacaag	aagaagtatt	1260
ctgcttcatc	aggtggtcta	tgcgaagaag	cgacagctgc	taaagtggca	tcctgggatt	1320
ttgttgaagc	cacacaaga	acaaattgca	gttgtttgag	gcacaaaaat	ctcaagtcaa	1380
gaaatgctgg	acaacaagga	caggcaccat	ctttaggtca	gcaacaacaa	atacttccta	1440
agcacaagac	caatgagaag	caagaaaaga	gtgaagagcc	acagaaacgc	cccttgactc	1500
cttttcacca	tcgtgtgtct	gttagtgatg	atgttggcat	ggacgcagat	tcagccagcc	1560
aaagacttgt	gatctctgct	ccagacagtc	aagtgagatt	ttcaaatatc	cgaactaatg	1620
atgtagcaaa	gactcctcag	atgcatggca	ccgaaatggc	aaattcacct	caaccacccc	1680
cacttagtcc	tcacccttgt	gatgtggttg	atgaaggagt	gactaaaaca	ccttcaactc	1740
ctcagagtca	acatttttat	caaatgccaa	caccagatcc	cttggttcct	tctaaaccaa	1800
tggaagatag	gatagacagt	ttgtcccagt	ctttcccacc	tcaatatcag	gaagctgtag	1860
aacctacagt	atatgttggt	acagcagtaa	acttggaaga	agatgaagcc	aatatagcct	1920
ggaagtatta	caagttccca	aagaaaaaag	atgtagagtt	tttaccacct	caacttccaa	1980

2040 gtgataaatt caaggatgat ccagttggac cttttggaca ggaaagtgta acatcagtta cagagttaat ggtgcaatgt aagaaacctt taaaagtttc tgatgaatta gtgcagcaat 2100 atcaaattaa aaaccagtgt ctttcagcaa tagcatctga tgcagaacaa gaacctaaaa 2160 ttgatccata tgcatttgtt gaaggagatg aggaattcct ttttcctgat aaaaaagata 2220 gacaaaatag tgagagagaa gctggaaaaa aacacaaggt agaagatggg acatctagtg 2280 taacagtgtt atcacatgaa gaagatgcta tgtcattatt tagtccctct atcaagcaag 2340 2400 atgetecacg cectactagt catgecegte etceateaac aagtttgatt tatgacteag acctggctgt ctcttatact gaccttgata atctcttcaa ttctgatgaa gatgaactaa 2460 cacctggatc taaaagatca gcaaatggat cagatgataa agccagctgc aaggaatcaa 2520 2580 agacaggaaa tetggaceeg ttatettgea taageactge agatetteat aaaatgtate 2640 ctacaccacc atcattggaa caacatatta tgggattttc cccaatgaat atgaataata aagaatatgg tagtatggat acaacacctg gaggaactgt tctagaagga aatagttcta 2700 2760 gtataggagc gcagttcaaa attgaggttg atgagggatt ctgtagcccc aaaccttctg 2820 aaattaaaga tttttcttat gtctataagc ctgaaaattg tcaaattcta gtgggatgtt ccatgtttgc acctctaaaa actctaccaa gccaatatct gccccttatc aaattgccag 2880 2940 aagagtgtat ttaccgtcag agttggactg ttggaaaatt ggaattgctt tcttcagggc 3000 cttcaatgcc attcatcaaa gagggtgatg gaagtaatat ggatcaagaa tatggcactg 3060 cttatacacc tcaaactcat acttcttgtg ggatgcctcc tagcagtgca cctcctagta 3120 acageggage aggaattett cettetecat ceaceceteg gtttecaact ceaaggacte caaggactee teggacteet egtggagetg gtggacetge tagtgeteaa ggtteagtea 3180 aatatgaaaa ttcagacttg tattcaccag cttctacccc atctacatgc agacccctta 3240 3300 attetgttga acetgeaact gteeetteea teeetgaage acaeagtett tatgtaaace 3360 tcatcctttc agaatcagtt atgaatttgt ttaaagactg taactctgat agttgttgca 3420 tctgtgtttg caacatgaac atcaagggtg ccgatgttgg agtttacatt ccagatccaa cgcaggaagc acaatatagg tgtacctgtg gcttcagtgc tgtcatgaac agaaaatttg 3480 gaaacaattc aggattattt cttgaagatg aactagatat cataggacgc aatacagact 3540 gtggcaaaga agcagaaaaa cgttttgaag ctctcagggc tacctctgct gaacatgtta 3600 atggaggact aaaggaatct gaaaaattat ctgatgattt gatattattg ctacaagatc 3660 agtgcactaa tttattttca ccctttggag cagcagacca agatcctttt cctaaaagtg 3720 gtgtaattag caattgggta cgtgttgaag agcgtgactg ttgcaatgac tgctaccttg 3780

cattagaaca	tgggcgtcag	ttcatggata	acatgtcagg	aggaaaagtt	gatgaagcac	3840
ttgtgaaaag	ttcatgctta	cacccctggt	ccaaaagaaa	cgatgtgagt	atgcagtgct	3900
cacaggatat	acttcgaatg	ctcctctctc	ttcagccagt	tcttcaggat	gccattcaga	3960
aaaaaagaac	agtaagacct	tggggtgttc	agggtcctct	cacttggcaa	caatttcata	4020
aaatggctgg	ccgaggctct	tatggaactg	atgaatcccc	agaaccactg	ccaatcccca	4080
catttttgtt	gggttatgat	tatgattatc	tggtgctttc	tccatttgct	cttccttatt	4140
gggagagact	tatgctggaa	ccctatggat	ctcaaagaga	tatagcctat	gttgtactgt	4200
gtccagaaaa	tgaagccttg	ttaaatggag	caaaaagctt	ttttagagat	cttactgcaa	4260
tatatgagtc	ctgtcgatta	ggtcaacata	gacctgtttc	tcgactgtta	acagatggga	4320
tcatgagagt	tggatctact	gcatcaaaga	aactatcaga	aaagttggta	gcagaatggt	4380
tttctcaggc	agctgatggt	aacaatgaag	cattttctaa	actcaagctt	tatgcacaag	4440
tctgcagata	tgacctaggt	ccttatcttg	cttccctgcc	attggacagc	tctctacttt	4500
cccagccaaa	tttagttgcc	cctacaagtc	agtctttgat	tactccacct	cagatgacaa	4560
atactggaaa	tgctaatact	ccatctgcca	ccttagcatc	tgcagcgagc	agcactatga	4620
cagtgacttc	aggtgttgcc	atatctactt	cagttgccac	agctaattca	actttgacca	4680
cagcttcaac	ttcatcttca	tcatcctcca	acttgaatag	tggagtatca	tcaaataaac	4740
taccttcgtt	tccacccttt	ggcagtatga	acagtaatgc	tgcaggatcc	atgtctacac	4800
aagcaaatac	agttcagagt	ggtcagctag	gagggcaaca	gacatcagct	ctacagacag	4860
ctgggatttc	tggagaatca	tcttcacttc	ccactcagcc	gcatcctgat	gtgtctgaaa	4920
gcacgatgga	tcgggataaa	gtgggaatcc	ccacagatgg	tgattcacat	gcagtcacgt	4980
atccacctgc	aattgttgtt	tatataattg	atccttttac	atacgaaaat	acagacgaga	5040
gcactaactc	ttctagtgtg	tggacattgg	ggctacttcg	atgctttcta	gaaatggtcc	5100
agactcttcc	tcctcatatc	aagagtactg	tttctgtaca	gattattcct	tgtcagtacc	5160
tgttgcaacc	tgtgaagcat	gaagatagag	aaatctatcc	ccagcattta	aaatccctgg	5220
ctttttcggc	ctttacccag	tgtcggaggc	cacttccaac	atcaaccaat	gtgaaaacat	5280
tgactggctt	tggtccaggt	ttagccatgg	aaactgccct	tagaagtcct	gatagaccag	5340
agtgtattcg	actttatgca	cctcctttta	ttctggctcc	agtgaaggac	aaacagacag	5400
agctaggaga	aacatttgga	gaagctggac	agaaatataa	tgttcttttt	gtgggatact	5460
gtttatcaca	tgatcaaagg	tggattcttg	catcttgcac	agatctatat	ggagaacttt	5520
tagaaacttg	tatcattaac	atcgatgttc	caaatagggc	tcgtcggaaa	aaaagttctg	5580
ctagaaaatt		aaactttggg	agtggtgctt	aggacttgta	caaatgagtt ·	5640
	· 1					

WO 03/090694 PCT/US03/13015 *

cattgccatg	gagagttgta	attggtcgtc	taggaaggat	tggtcatgga	gaattgaaag	5700
attggagctg	tttgctgagt	cgtcgaaact	tgcagtctct	aagtaaaagg	ctcaaagaca	5760
tgtgtagaat	gtgtggtata	tctgctgcag	actcccctag	cattctcagt	gcttgcttgg	5820
tggcaatgga	gccgcaaggc	tcttttgtta	ttatgccaga	ttctgtgtca	actggttctg	5880
tatttggaag	aagcacgact	ctaaatatgc	agacatctca	gctaaatacc	ccacaggata	5940
catcatgtac	tcatatactt	gtgtttccta	cttctgcttc	tgtgcaagta	gcttcagcta	6000
cttataccac	tgaaaatttg	gatttagctt	tcaatcccaa	caatgatgga	gcagatggaa	6060
tgggtatctt	tgatttgtta	gacacaggag	atgatcttga	ccctgatatc	attaatatcc	6120
ttcctgcttc	tccaactggt	tctcctgtac	attctccagg	atctcattac	ccccatggag	6180
gtgatgcggg	caagggtcag	agtactgatc	ggctactatc	aacagaacct	catgaggaag	6240
tacctaatat	tcttcagcaa	ccattggccc	ttggttactt	tgtatcaact	gccaaagcag	6300
gtccattacc	tgactggttc	tggtcagcat	gtcctcaagc	acaatatcag	tgtccccttt	6360
ttcttaaggc	ctctttgcac	ctccacgtgc	cttcagtgca	atctgacgag	ctgcttcaca	6420
gtaaacactc	ccacccactt	gactcaaatc	agacttcaga	tgtcctcagg	tttgttttgg	6480
aacagtacaa	tgcactctcc	tggctaacct	gtgaccctgc	aacccaggac	agacgctcat	6540
gtctcccaat	tcattttgtg	gtgctgaatc	agttatataa	ctttattatg	aatatgctgt	6600
gatcttcatt	tgatggaact	gtgcaagaaa	agaacaagga	aaaatggatg	tttcgctgca	6660
ggattaagtt	acaattatct	tctcagtgaa	ggtcatttgt	gatggggtct	aattcttatt	6720
acttcaacaa	atattgtttt	gacttggggg	gaggggctat	aaccctgcta	tttttcattg	6780
actctattga	actctttagg	atgatgactg	atcatacaaa	acgtattata	acattttcgt	6840
agcaaaatta	acctttttt	tttccagtca	cagtatttgt	gaaaagtaat	gagccatagt	6900
acccagtcat	gttaaatgaa	tattaaaagc	atggagagga	aacatgagga	acaatgaatt	6960
tcaacatatg	gcttcagaac	atgaagatgt	tcttgtatgg	attatagtat	ctagtattca	7020
aaaatgcctg	catctcttct	cttatttatt	gtaagttttt	aaatgtataa	attgtcttat	7080
atttcttaac	ctcttttata	aaaattttcc	tagaaggttt	atactgcctt	cttgctttaa	7140
agcaattggt	ctaaaatata	tgtaatcgtc	ttaattaaaa	agttgcagta	gggttgcttt	7200
tagagtatta	tttttttgta	agggggtggg	tgggacagta	aatttgtatt	gtctcgatgt	7260
acagtttaac	ggggatagag	ggggaataat	gtccatacca	ttgtgtgtgg	aggatttaca	7320
gctaagctgt	agttgcagag	tacatgtaca	gtaatgaagt	tcactgtgtt	tataaattga	7380
aaaggtacc						7389

- . 4

<210> 319

<211> 1164 <212> DNA <213> Homo sapiens <400> 319 60 cgtagtttcg atgccggaac gtgcaggttg cgaatccccg taggcgagcg agcggctagg ttcgtgatct ggagagacgc tcagattatt aagttcctgc aacttaactg ggaactgatc 120 aagatttcaa gctaaagatg gtggtgatga acagcctgag ggtcattctt caagcctctc 180 caggcaaatt gctgtggaga aagttccaga ttccgagatt catgccagcg aggccctgca 240 gcctctatac ttgtacttac aaaacccgga accgagcctt gcatccactc tgggagagcg 300 tggacctggt teetggggge gategeeagt cacceateaa catteggtgg agggacagtg 360 tttatgatcc cggcttaaaa ccactgacca tctcttatga cccagccacc tgcctccacg 420 tctggaataa tgggtactct ttcctcgtgg aatttgaaga ttctacagat aaatcagtga 480 tcaagggagg acccctggaa cacaactacc gattgaagca gttccatttt cactgggggg 540 ccatcgatgc ctggggttct gagcacaccg tggacagcaa atgcttccca gcagagctgc 600 acttagtgca ttggaacgca gtcagatttg aaaactttga ggatgcagca ctggaagaaa 660 atggtttggc tgtgatagga gtatttttaa agctaggcaa acatcataag gagctacaga 720 aattagtgga tactttgccg tcaattaagc ataaggacgc ccttgtggaa tttgggtcat 780 840 ttgaccette etgeetgatg cetacetgee cagattactg gacctactea gggtetetga 900 ctaccccacc cctctccgag tctgtcacct ggatcattaa gaagcaacca gtagaggttg atcatgatca gcttgagcaa tttcggaccc tgcttttcac ttccgaaggg gagaaagaga 960 aaagaatggt ggacaacttc cgccccttc agccactgat gaatcgcact gttcgttcat 1020 1080 ccttccggca tgattatgtg ctgaatgtac aagcaaaacc caagccggcc accagccaag caaccccta aaacattcat atctaggcag tattttgctt ttgctttaat atatactagc 1140 1164 ttactataaa ttgttaacta gact <210> 320 <211> 2510 <212> DNA <213> Homo sapiens <400> 320 ctggaatacg cagagtcagt aagaccatgg ctacgtcctc gatgtctaag ggttgctttg 60 tttttaagcc aaactccaaa aagagaaaga tctctctgcc aatagaggac tattttaaca 120 180 agcagatgaa atctgaaaat gagcgactac aagaggaatt aaataaaaac ttgtttgaca 240

atctgattga atttctgcaa aaatcacatt ctggattcca gaagaattca agagacttgg 300 gcggtcaaat aaaactcaga gaaattccaa ctgctgctct tgttcttggt gtgaatgtca 360 cagatcatga tttgacattc ggaagtctaa cagaggccct tcagaataat gtcacaccat 420 atgtagtete attgcaaget aaagattgte cagatatgaa acattttttg caaaagttga 480 tctcacagtt gatggactgc tgtgtagata taaaatccaa agaggaggaa agtgttcacg 540 tcacccaaag aaagacacat tattcaatgg attcactttc cagttggtat atgactgtca 600 cacagaagac ggacccaaaa atgctaagca aaaaaaggac tacttctagc caatggcagt 660 ctcctcctgt tgtcgttatc ttgaaggata tggaaagctt tgccacaaaa gtactacaag 720 acttcataat tatcagcagt caacatctcc atgaatttcc actaatactc atttttggaa 780 tagccacatc tectattate atecacegat tgetteetea tgeagtatea tetetattgt 840 gcatagaact gttccaatct ttgtcttgta aggagcacct gactacggta ctcgataagc 900 tacttcttac aactcagttt ccctttaaaa taaatgaaaa agtattacag gttctgacca 960 acatcttttt gtatcatgat ttctcagttc aaaactttat aaaaggactt cagctttctc 1020 tattagagca tttctattcc cagcccttaa gtgtcctgtg ctgtaatctt ccagaagcca 1080 aaagaagaat aaatttttta tcaaataatc aatgtgaaaa catccgacgt ctaccatctt 1140 ttaggaggta cgtggaaaag caagcttcag aaaagcaagt tgcgctcttg accaatgaga 1200 gatatttgaa ggaggaaaca caattattac tagaaaacct gcatgtttat catatgaatt 1260 acttcctggt tttgagatgt cttcataagt tcacctcttc tcttcccaag tatccactag 1320 gtcgacagat cagagagttg tactgtacat gtttagaaaa gaacatatgg gattcagagg 1380 agtatgcatc agtcttgcag ctgctgagga tgttggcaaa ggatgaactg atgaccatac 1440 ttgagaaatg tttcaaggtt tttaagtctt attgtgaaaa ccaccttggc agcacagcta 1500 agagaataga ggagttcctg gcccagtttc agagcctcga tgaaaccaaa gaagaagaag 1560 atgettetgg gteacageea aaggggette agaagaeaga eetetateat etteagaagt 1620 ccttattgga aatgaaggag tttagaagaa gtaagaagca aaccaaattt gaagtactca 1680 1740 gagaaaatgt tgtgaacttc attgactgtc tagtgagaga ataccttctg cctcctgaga cacagoctct ccatgaggtg gtgtacttca gtgctgccca tgcccttcgt gagcatttaa 1800 atgctgctcc gcgaattgcc ctccatactg cactcaacaa tccttactat tatctcaaga 1860 atgaagcact gaaaagcgaa gaaggctgca ttccgaatat cgccccagac atctgcatag 1920 catacaaact gcacctagag tgtagcaggc tcatcaacct cgtggactgg tcagaggctt 1980 ttgcaacagt tgtgacagct gctgaaaaaa tggatgcaaa ttctgcaacc tcagaagaaa 2040

tqaatqaaat tatccatgct cggtttatta gagctgtttc tgaactagaa cttttaggat 2100 ttataaaacc taccaaacag aagactgacc atgtggcaag actaacatgg ggaggctgct 2160 2220 aqaaagcaaa taagcaaagc cagaactatc acatttagct taagagaaaa aggtgaccag 2280 tcatatttac atatattaqa qqagcctgtt ttgttgagaa gataaatgtg taacccccat tgatgtttaa ccagaaaagt acattgctaa ccccaaacag gcatgtatca aaacacctgt 2340 ggagtacttt agactccaac aaataataat gtaactaaaa ctgctcacac attttactgt 2400 actttccaaa gtcattacta aattgtgagt aaatcattct tgaacttaga gtatgtaaat 2460 2510

<210> 321

<211> 2291

<212> DNA

<213> Homo sapiens

<400> 321

ggcacgaggc agcgctggcc gcagtctgac aggaaaggga cggagccaag atggcggcgg 60 120 ccgacggcga cgactcgctg taccccatcg cggtgctcat agacgaactc cgcaatgagg acqttcagct tcgcctcaac agcatcaaga agctgtccac catcgccttg gcccttgggg 180 ttqaaaqqac ccgaagtgag cttctgcctt tccttacaga taccatctat gatgaagatg 240 aggteeteet ggeeetggea gaacagetgg gaacetteae taccetggtg ggaggeeeag 300 aqtacqtqca ctgcctgctg ccaccgctgg agtcgctggc cacagtggag gagacagtgg 360 tgcqqqacaa qgcagtggag tccttacggg ccatctcaca cgagcactcg ccctctgacc 420 tggaggcgca ctttgtgccg ctagtgaagc ggctggcggg cggcgactgg ttcacctccc 480 540 gcacctcggc ctgcggcctc ttctccgtct gctacccccg agtgtccagt gctgtgaagg cggaacttcg acagtacttc cggaacctgt gctcagatga cacccccatg gtgcggcggg 600 660 ccgcagcctc caagctgggg gagtttgcca aggtgctgga gctggacaac gtcaagagtg 720 agatcatccc catgttctcc aacctggcct ctgacgagca ggactcggtg cggctgctgg cggtggaggc gtgcgtgaac atcgcccagc ttctgcccca ggaggatctg gaggccctgg 780 840 tgatgccac tctgcgccag gccgctgaag acaagtcctg gcgcgtccgc tacatggtgg 900 ctgacaaqtt cacagagctc cagaaagcag tggggcctga gatcaccaag acagacctgg tccctgcctt ccagaacctg atgaaagact gtgaggccga ggtgagggcc gcagcctccc 960 acaaggtcaa agagttctgt gaaaacctct cagctgactg tcgggagaat gtgatcatgt 1020 1080 cccagatctt gccctgcatc aaggagctgg tgtccgatgc caaccaacat gtcaagtctg ccctggcctc agtcatcatg ggtctctctc ccatcttggg caaagacaac accatcgagc 1140

acctettgee cetetteetg	gctcagctga	aggatgagtg	ccctgaggta	cggctgaaca	1200
tcatctctaa cctggactgt	gtgaacgagg	tgattggcat	ccggcagctg	tcccagtccc	1260
tgctccctgc cattgtggag	ctggctgagg	acgccaagtg	gcgggtgcgg	ctggccatca	1320
ttgagtacat gcccctcctg	gctggacagc	tgggagtgga	gttctttgat	gagaaactta	1380
actccttgtg catggcctgg	cttgtggatc	atgtatatgc	catccgcgag	gcagccacca	1440
gcaacctgaa gaagctagtg	gaaaagtttg	ggaaggagtg	ggcccatgcc	acaatcatcc	1500
ccaaggtctt ggccatgtcc	ggagacccca	actacctgca	ccgcatgact	acgctcttct	1560
gcatcaatgt gctgtctgag	gtctgtgggc	aggacatcac	caccaagcac	atgctaccca	1620
cggttctgcg catggctggg	gacccggttg	ccaatgtccg	cttcaatgtg	gccaagtctc	1680
tgcagaagat agggcccatc	ctggacaaca	gcaccttgca	gagtgaagtc	aagcccatcc	1740
tagagaaget gacccaggac	caggatgtgg	acgtcaaata	ctttgcccag	gaggctctga	1800
ctgttctgtc tctcgcctga	tgctggaaga	ggagcaaaca	ctggcctctg	gtgtccaccc	1860
tccaaccccc acaagtccct	ctttggggag	acactggggg	gcctttggct	gtcactccct	1920
gtgcatggtc tgaccccagg	ccccttcccc	cagcacggtt	cctcctctcc	ccagcctggg	1980
aagatgtete aetgteeace	tcccaacggg	ctaggggagc	acggggttgg	acaggacagt	2040
gaccttggga ggaaggggct	actccgccca	cgtcagggag	agatgtgagc	atcccgggtc	2100
actggatect getgetgtaa	tgggaacccc	tcccccattt	acttctccac	ctcccgtcct	2160
ccccatcatt ggttttttt	tgtgtgtcaa	ctgtgccgtt	tttattttat	tccttttatt	2220
ttcccccttt tcacagagaa	ataaaggtct	agaagtaaaa	aaaaaaaaa	aaaaaaaaa	2280
aaaaaaaaa a					2291
<210> 322 <211> 814 <212> DNA <213> Homo sapiens					
<400> 322 gttgtgcagt ggtgtactgt	tatacttcag	agaaagggta	agagtacatc	tagttcagtt	60
cctatgaggt agctgtaacc	cttaaaaatg	aaacgtcaac	tctagggtac	atttgacatt	120
gaaagaatag ttaggaaata	acttggtttt	gatagggtca	tgattaagaa	atgatatatt	180
ggttttattt atggaattgt	tttatagtgc	atacaaatca	gcgatcagcc	agcaaatatt	240

300

360

420

tttctttgag cttgtgaaag ctctgtgttc ttttgccttc aatctgttgt cttcaaaaca

aacaaacaaa aaaagcttct tgcgcctttc cctcccctgt tttcttcctt tttctttttg

cttgtatgca caaggtagga cttacttcgt aagaaacaaa atgccagtat tttcttaagc

catgatgtga aaccaatgac cctgtgacca catggcacag aacactaaat tttggtccca 480
tggctgaaac ttgagggtga ctaaaagtaa tgcctgtgaa acatgatatc tatctgggat 540
ggccatttga tctctaaaag gaattttgta cactccacag aactcctatc tatagtaaaa 600
ttgattttca gttttaaatg tgggcaaaaa ggcattttct ccagatttta aaactaattc 660
ttattttaa atggctttac caaacattgt cagtaccttt acgtgttaga aggcatttta 720
aaaatcattt ctaacagcct ttgactttag tcagtctcta ctctttattt tgtttatcaa 780
agattatgac ctccttcttt gaataaaata attg 814

<210> 323

<211> 6676

<212> DNA

<213> Homo sapiens

<400> 323

ctgttttctc tttatttgct tatatgttaa tatggttttt aaattggtaa cttttatata 60 gtatggtaac agtatgttaa tacacacata catatgcaca catgctttgg gtccttccat 120 aatactttta tatttgtaaa tcaatgtttt ggagcaatcc caagtttaag ggaaatattt 180 ttgtaaatgt aatggttttg aaaatctgag caatcctttt gcttatacat ttttaaagca 240 tttgtgcttt aaaattgtta tgctggtgtt tgaaacatga tactcctgtg gtgcagatga 300 gaagctataa cagtgaatat gtggtttctc ttacgtcatc caccttgaca tgatgggtca 360 gaaacaaatg gaaatccaga gcaagtcctc cagggttgca ccaggtttac ctaaagcttg 420 ttgccttttc ttggctgttt atccgtgtag agcactcaag aaagttctga aactgctttg 480 540 tatctqcttt qtactgttgg tgccttcttg gtattgtacc ccaaaattct gcatagatta tttagtataa tggtaagtta aaaaatgtta aaggaagatt ttattaagaa tctgaatgtt 600 tattcattat attgttacaa tttaacatta acatttattt gtggtatttg tgatttggtt 660 aatctgtata aaaattgtaa gtagaaaggt ttatatttca tcttaattct tttgatgttg 720 taaacgtact ttttaaaaga tggattattt gaatgtttat ggcacctgac ttgtaaaaaa 780 aaaaaactac aaaaaaatcc ttagaatcat taaattgtgt ccctgtatta ccaaaataac 840 acagcaccgt gcatgtatag tttaattgca gtttcatctg tgaaaacgtg aaattgtcta 900 gtccttcgtt atgttcccca gatgtcttcc agatttgctc tgcatgtggt aacttgtgtt 960 agggctgtga gctgttcctc gagttgaatg gggatgtcag tgctcctagg gttctccagg 1020 tggttcttca gaccttcacc tgtggggggg ggggtaggcg gtgcccacgc ccatctcctc 1080 atcctcctga acttctgcaa ccccactgct gggcagacat cctgggcaac cccttttttc 1140 agagcaagaa gtcataaaga taggatttct tggacatttg gttcttatca atattgggca 1200

ttatgtaatg	acttatttac	aaaacaaaga	tactggaaaa	tgttttggat	gtggtgttat	1260
ggaaagagca	caggccttgg	acccatccag	ctgggttcag	aactaccccc	tgcttataac	1320
tgcggctggc	tgtgggccag	tcattctgcg	tctctgcttt	cttcctctgc	ttcagactgt	1380
cagctgtaaa	gtggaagcaa	tattacttgc	cttgtatatg	gtaaagatta	taaaaataca	1440
tttcaactgt	tcagcatagt	acttcaaagc	aagtactcag	taaatagcaa	gtctttttaa	1500
atgctgcttt	atttcactaa	attttgttgt	gaggtgtcac	taaaatgcct	gcaaacaaac	1560
gtaactgcta	atctgagagg	aaaccctctt	actaatcaga	gaagaaaccc	tcctgtcaga	1620
aaccttcagg	gaagtgagct	gatcacacct	aaactgggag	tttgcaatgg	ggtatttgaa	1680
gcactgtggg	agtattccac	tggccccctc	cctgagagac	ttaacagtct	tccctgttgt	1740
ccagattctg	tataaggcaa	tcagaataat	catcttcctt	gttcagcaga	ggagcctggt	1800
cccattttcc	ccactttgtg	atgggcttct	ctcagcggta	gctcagcagt	tccagatggc	1860
agtttggacc	agcatctagg	ctggccagtt	cgctgtgttt	acttagaacc	aacacgttca	1920
gagctggcct	ggaccatctg	aggggaacag	gaaacacccc	taggctgtgg	aagcaagtgc	1980
agacccccac	ccccggccct	gaagccaagg	gggcagggtt	tgggagtggc	caaagagaag	2040
cagtgcaggg	atgggttttc	ctagggacag	gcttagcatt	cctgactcta	ggaagaagga	2100
gcagtgaggc	ggagaaacag	tggaggggat	ggtggcattg	ggccccatgg	ggccgagatg	2160
gacacagggc	togttotott	gagtctggtg	ccaaggacag	ctgaagacga	catcattttc	2220
aggtggagag	gagagagtgg	agggagatca	tgccctgtga	tgtgtctttt	gcaggtgaag	2280
gtgggagaca	aggtctctgc	tgacgatgag	gcagagccac	cgtgaaagtt	gtaataggag	2340
gactgcccgc	cgctggaagg	gcctgcagtg	acgctaggac	accetetgee	tgcatgtcac	2400
gttagctggg	ctgggcgaag	tagaagacca	aggggaagag	gtgcagtggg	gagaccaggt	2460
gggatgcaac	cacaggacca	gtggagggc	tgtggcacgt	ąggcggagac	tgagtggctg	2520
ggcatgtgtt	gtggctgagc	atgtggtgtg	ggcagtggtc	ctagaccccg	ccatgtccgg	2580
acaatgatat	agagcgtctc	agcatcgcca	gtctagactg	tctatggaga	gcagaaagtt	2640
gtctagggct	gcctggggaa	ctgtgaggcc	agctatatca	ccgtcgctga	tggtgacatt	2700
acggtggtgg	caggagcaag	gagagagga	agaaggaccc	cgtccagctt	tagtcacaaa	2760
atacccaatg	gaagatgcca	gtgccaatcc	tgtgggtttc	cttgggactt	cacactggct	2820
ttcttatctg	ctccagatcc	attcagtagt	cactgagttc	ctgccaaata	ctttgtagcg	2880
ccagaagcca	ggagcggggt	ctgcagcagg	gcagtccccg	ttttcaggaa	atgcctggag	2940
ctgctggtcc	ctgagagaaa	ggaaaacatc	tttcagccgt	acgcaggcca	agaaggccaa	3000
tgtccagtag	ctttgtgatt	ttttttatat	ttttttattt	atttatttt	gagatagagt	3060

cttgctctgt	cgctcaggct	ggagtgcagt	ggcgtgatct	ccactcactg	caacttccgc	3120
ctcctggggt	caagcagttc	tgcctcagcc	tcccgagtag	ctgggattac	aggcacacgc	3180
caccacaccc	agctaatttt	tgtgtttta	gtagagacgg	tttcaccatg	teggeeagge	3240
tggtctcaaa	ctcctgacct	cagatgattc	agcctcccaa	agtgctggga	ttacaggtgt	3300
gagccactgc	acccagcctg	tgatgtttct	gtggggttcc	acaaatgtgt	gtgtgtgtaa	3360
aagctgatga	ttacagcaag	aatgtgaaca	gtagcagttt	tccatttgaa	ggcaagtttt	3420
gtctttatct	gggtatcaga	aggaccctct	gggccattgt	cgcttcctgt	actcagagcc	3480
accctagtac	tacgggcaca	cacagaaaac	agcagcctgc	gtactttcaa	aggaaaggca	3540
tctttaatca	ccaatgcctg	gaaaaattat	tttgtttccc	tetteettee	gtcttgtttc	3600
ctaacttctt	accaaagttt	agagtctgag	tttttcgtat	aataatgtcc	cacatccaca	3660
catcgggcct	acagatgctc	tcccttgaat	cgactggaaa	catgacaccg	gttccatgct	3720
ctggaactgt	cacctgtgat	gtgctgggct	gtgtcccaag	cacaggaatc	ccagcagttt	3780
cagctcgatg	cagaaccacc	atgctccaga	cacaggettg	ggaaagacac	gtcaaaatta	3840
aaatactagg	taagagaagc	acctgattgg	gtagaagttg	gagaggaatc	ctggaatttt	3900
gtggccagaa	ggagccactg	ccccttttgt	ttagtaagac	tagacagtaa	cagaagccag	3960
ttgtcagcta	tgaaagtggt	gggtgaagca	ggggaggctc	ctctatggtg	ggaccctgga	4020
caagggaagc	cgaatgtgtg	aagaaggggt	gcgggggtgt	geggtgeeet	aggacactag	4080
ggcaaaggtt	tcaaacctgg	aacaaggcac	tggaggaaga	tctgctgcca	gtcagcagtg	4140
cgggccctcg	agttagcagt	ccgtgcgcag	aggggccagt	tctgagacca	gtttggagag	4200
tcaggcagtg	acccattggc	catgtcataa	ttccttcagc	ctgcctcctc	tttaatccca	4260
gagagtgctc	tttcttcata	cttcctttaa	aatactaaat	tgttcccatt	ccatggggag	4320
ctggctaggc	tttacaggct	aggaaatgta	ggttttctga	gatggaacca	tctacacaag	4380
gaggaggaag	gcactaagac	tacagatgag	acccatgaca	gggctgagca	tttggaagcc	4440
aaccctggtt	gcttttcaag	aattgctttg	tggctgggtg	cagtggttca	cacctgtaat	4500
tgcagcactt	tgggaggctg	aggcaggtgg	attgcttgaa	cccaggagtt	cgagaccagc	4560
ctgggcaaca	tatgggacac	cccaccgccc	ccggctctgc	aaaaaaatta	aaaattagcc	4620
aggcgtggtg	tcatgagcct	gtggtctcaa	ctactcagga	ggctgaggct	ggaggatcgc	4680
ttgaacctgg	gaggtcaagg	ctccagtgaa	ccataattgt	gccactgcac	tgcagcctgg	4740
gcgacaattt	gttttctaaa	ttgcttttga	aagtctactg	cattacatat	tccaaaaagc	4800
agtggttttc	aaatactttt	atcaccgata	tccttttatg	aaatgaaatc	agtagaactt	4860

tctctgctct	gaataagcaa	gggtgggaac	ctgtctacct	cccacagata	gcataatgtg	4920
cctgccatag	aggagccaaa	aaatggtgat	gggaactgag	aggagagcaa	atgtcacaaa	4980
agactgagca	attgagaaaa	caaaacaaga	ccacagatga	ctgttaacgc	ctccacagtg	5040
gaccaagaaa	ggacagagag	ctggcagcat	gggcatcact	gtctggtcgg	cagcaggaag	5100
gcctcgctag	ggaattgagt	acagtcatct	aactagttta	aaagtacagg	aaggatgatt	5160
aaggctattg	gagaggtcat	acaaataggg	gaggggcagg	caatggctga	taagacatga	5220
atttgtaagg	cgatgagtat	tgcagtcagc	aaaacaaacg	agactgctct	cccaacacat	5280
aactcagcag	ggaggccagg	cattggttta	accatttaat	ataaagaagt	taaaattaca	5340
aatgcgctaa	gtgcctaaag	aagaataagt	gcaggaatga	gagcagcatg	gactgccaca	5400
gttttagaat	aagcactgtc	actgctagat	tggaaacaaa	aatccataaa	tttggcccgg	5460
tgtggtggcg	gacgcctgta	gtcccagcta	cttggaggct	gaggcgtgag	aatcgcttga	5520
acccgggagg	cggaggttgc	agtgagccga	gatggcgcca	ctgcactcca	gcctgggcgt	5580
cagagtgaga	actctgtatc	aaaaaataaa	aaaaaaaaa	agtccataaa	tctgcaatgt	5640
ctcagttaag	aaagaaagac	tgggccaatg	cagatttcaa	accggagaaa	gtcatactgt	5700
cagtgaaggc	cgcctgtggc	cggaaggcgc	caggggatta	gcaccctgga	ctcagtgttg	5760
ctgggaaaca	gggccccaag	gctgggagca	cagtgtttaa	agggcatcta	cccaagaagg	5820
gagcacaggg	caaggaggag	ctgcaggggg	tettggetge	caaagtgaat	tctgaggaga	5880
gagctattgc	tgcctacgat	atgcaggctg	cacagaacac	aagtggaatc	agcaggcagg	5940
agaggcagct	aacgacgcag	cccgtttctt	atttctgttt	tctcacaagc	gatgaaagtg	6000
gaaaagaggg	tgagcaggtg	gcccacacat	gtgcctccag	tgctgcggcc	cctccgggga	6060
ccatcggcca	ggccccgggg	agggagccag	ccacagtgtg	tccggctctt	ctctgaaggg	6120
aagagagcct	tgaatagact	gaagcgaaga	cggttctgca	aggacaaggc	agaccgaagg	6180
cattggtttt	tttttttcag	ataaggagaa	ttagactccc	aagtagacac	cagagtcact	6240
gtttggttgg	tgggtgatag	tggggtcaca	gtggctgcct	gtgctccccc	agggtgagcg	6300
tgactgtgct	aacctgggtg	gggcagcatg	cacacccctc	tggcagccct	ttgttgctcg	6360
ctgatgacaa	gtttggatga	tcccgccaaa	cagcttgcta	agatgtagto	cccagtgttg	6420
gaggtggggc	ctgatgggag	gtgctaccct	tgtgagataa	ggttgtgtaa	aagcctgtgg	6480
cacctcccca	cactgacgct	ctcacccctg	ctctggccat	gtgccgcgcc	tgctcccact	6540
tccccttctg	ccaggagtaa	aagcccccga	gacctcccag	aagccaagca	gatgctagtg	6600
ccatgcttcc	tctgcagcct	gcagaactgt	gagccaatta	aacctcttt	ctctataaaa	6660
aaaaaaaaa	aaaaaa					6676

<210> 324 <211> 5207 <212> DNA <213> Homo sapiens

<400> 324 agagttatat tgtgccattt atggaaaaac tctccccact gctcttggct ttgacagtag 60 120 gaatcaggtt atatatggtc tctcggtttg aagatatttg tcattaaaaa ccagaacaag ggctctgaga tagggtcctt tcctgaccta ctctggtaaa gtctttatcc tcaggatgca 180 aggataccac cctcttcctg tggaaagtgt cgaatcacat gcagagctct aagtctttca 240 gttactttgg agtgcagaac catttcagac atgctgaggg ggactctact gtgcgcggtg 300 ctcgggcttc tgcgcgccca gcccttcccc tgtccgccag cttgcaagtg tgtcttccgg 360 gacgccgcgc agtgctcggg gggcgacgtg gcgcgcatct ccgcgctggg cctgcccacc 420 480 aacctcacgc acatcctgct cttcggaatg ggccgcggcg tcctgcagag ccagagcttc ageggeatga eegteetgea gegeeteatg ateteegaea gecaeattte egeegttgee 540 600 cccggcacct tcagtgacct gataaaactg aaaaccctga ggctgtcgcg caacaaaatc acgcatcttc caggtgcgct gctggataag atggtgctcc tggagcagtt gtttttggac 660 720 cacaatgcgc taaggggcat tgaccaaaac atgtttcaga aactggttaa cctgcaggag 780 ctcgctctga accagaatca gctcgatttc cttcctgcca gtctcttcac gaatctggag aacctgaagt tgttggattt atcgggaaac aacctgaccc acctgcccaa ggggttgctt 840 qqaqcacagg ctaagctcga gagacttctg ctccactcga accgccttgt gtctctggat 900 960 toggggotgt tgaacagoot gggogoootg acggagotgo agttocacog aaatcacato cgttccatcg cacceggggc cttcgaccgg ctcccaaacc tcagttcttt gacgctttcg 1020 agaaaccacc ttgcgtttct cccctctgcg ctctttcttc attcgcacaa tctgactctg 1080 ttgactctgt tcgagaaccc gctggcagag ctcccggggg tgctcttcgg ggagatgggg 1140 ggcctgcagg agctgtggct gaaccgcacc cagctgcgca ccctgcccgc cgccgccttc 1200 cgcaacctga gccgcctgcg gtacttaggg gtgactctga gcccgcggct gagcgcgctt 1260 ccgcagggcg ccttccaggg ccttggcgag ctccaggtgc tcgccctgca ctccaacggc 1320 1380 ctgaccgccc tccccgacgg cttgctgcgc ggcctcggca agctgcgcca ggtgtccctg cgccgcaaca ggctgcgcgc cctgccccgt gccctcttcc gcaatctcag cagcctggag 1440 agcgtccagc tcgaccacaa ccagctggag accctgcctg gcgacgtgtt tggggctctg 1500 1560 ccccggctga cggaggtcct gttggggcac aactcctggc gctgcgactg tggcctgggg ecetteetgg ggtggetgeg geageaceta ggeetegtgg geggggaaga geeceeaegg 1620

tgcgcaggcc	ctggggcgca	cgccggcctg	ccgctctggg	ccctgccggg	gggtgacgcg	1680
gagtgcccgg	gccccgggg	cccgcctccc	cgccccgctg	cggacagctc	ctcggaagcc	1740
cctgtccacc	cagccttggc	tcccaacagc	tcagaaccct	gggtgtgggc	ccagccggtg	1800
accacgggca	aaggtcaaga	tcatagtccg	ttctgggggt	tttattttct	gcttttagct	1860
gttcaggcca	tgatcaccgt	gatcatcgtg	tttgctatga	ttaaaattgg	ccaactcttt	1920
cgaaaattaa	tcagagagag	agcccttggg	taaaccaatg	ggaaaatctt	ctaattactt	1980
agaacctgac	cagatgtggc	tcggagggga	atccagaccc	gctgctgtct	tgctctccct	2040
cccctcccca	ctcctcctct	cttcttcctc	ttctctctca	ctgccacgcc	ttcctttccc	2100
toctcctccc	cctctccgct	ctgtgctctt	cattctcacg	ggcccgcaac	ccctcctctc	2160
tetgteeceg	cccgtctctg	gaaactgagc	ttgacgtttg	taaactgtgg	ttgcctgcct	2220
tcccagctcc	acgcggtgtg	cgctgacact	gccggggggc	tggactgtgt	tggacccatc	2280
cttgccccgc	tgtgcctggc	ttggcctctg	gtggagagag	ggacctcttc	agtgtctact	2340
gagtaagggg	acagetecag	gccggggctg	tctcctgcac	agagtaagcc	ggtaaatgtt	2400
tgtgaaatca	atgcgtggat	aaaggaacac	atgccatcca	agtgatgatg	gcttttcctg	2460
gagggaaagg	ataggctgtt	gctctatcta	attttttgtt	tttgtttttg	gacagtctag	2520
ctctgtggcc	caggctggcg	tgcagtgggc	cgtctcagtt	cactgcagcc	teegeeetee	2580
aggttcaagt	gattctcatg	cctcagcgtt	ctgagtagct	gggattagag	gcgtgtgcca	2640
ctacacccgg	ctaatttttg	tactttttaa	agtagagacg	ggctttgcca	tattggcctg	2700
gctgatctca	aactcctggt	cttgaactcc	tggccacaag	tgatctgccc	gccttagcct	2760
cccaaagtgc	tgggattaca	ggcgcaagcc	actacacctg	ccctcttcat	cgaattttat	2820
ttgagaagta	gagctcttgc	cattttttcc	cttgctccat	ttttctcact	ttatgtctct	2880
ctgacctatg	ggctacttgg	gagagcactg	gactccattc	atgcatgagc	attttcagga	2940
taagcgactt	ctgtgaggct	gagagaggaa	gaaaacacgg	agccttccct	ccaggtgccc	3000
agtgtaggtc	cagcgtgttt	cctgagcctc	ctgtgagttt	ccacttgctt	tacatccatg	3060
caacatgtca	ttttgaaact	ggattgattt	gcatttcctg	gaactctgcc	acctcatttc	3120
acaagcattt	atggagcagt	taacatgtga	ctggtattca	tgaatataat	gataagcttg	3180
attctagttc	agctgctgtc	acagtctcat	ttgttcttcc	aactgaaagc	cgtaaaacct	3240
ttgttgcttt	aattgaatgt	ctgtgcttat	gagaggcagt	ggttaaaaca	ttttctggcg	3300
agttgacaac	tgtgggttca	aatcccagct	ctaccactta	ctaactgcat	gggactttgg	3360
gtaagacacc	tgcttacatt	ctctaagcct	tggtttcctg	aaccttaaaa	caggataaca	3420

tagtacctgc	ttcatagagt	tttgtgagaa	ttaaaggcaa	taaagcatat	aatgacttag	3480
cccagcggcc	tgcagacaat	acatgttaat	gaatgttagc	tattattact	aaagatgagc	3540
aattattatt	ggcatcatga	tttctaaaga	agagctttga	gttggtattt	ttctctgtgt	3600
ataagggtaa	gtccgaactt	tctcatactg	gaggttacat	tcacatcagt	ctgtcttccc	3660
ctgcggatgg	cctcagccct	gggtggccag	gctctgtgct	cacagtccag	agcaatggat	3720
cctccaacac	caccaggtgg	atgtggagca	ggagagctgg	atcgtggcat	ttgtttctgg	3780
gttctgcagt	tgggagttgg	tttctgggtt	ctccattggt	ctacttgtct	agtcccatac	3840
cagactcacg	gtctccatta	ttggagcttt	aataatttt	ggtatagggt	catctctcca	3900
ccttgttttt	cttctattct	tggttctttg	caattctatg	aatatttcag	ggtcagcatg	3960
tcaactccat	tgaaaaaccc	tgctgggatt	ttaatagaac	ttacagctca	cgcctgtaat	4020
cccagcactt	tgggaggctg	aggtgggtgg	atcacaggtc	aggagtttga	gaacagctgg	4080
ccaagatggt	gaaaccccgt	ctctactaaa	aatacaaaaa	ttagctgggt	gcggtggcag	4140
gtgcctgtag	tcccagctac	ttgggacacc	gaggcaggag	aatcacttga	acccgggagg	4200
cggaggttgc	agtgagccga	gatcgtgcca	ctgcactcta	gcctgggcga	cagagcgaga	4260
ctccatctca	aaaaaaaga	aaaagaaaat	tgcagtaaat	ttaaaactaa	tttggggaag	4320
aatctgtatt	tttacaatac	ctagtgttct	tgccagtaag	catggttcat	cttcccattt	4380
atttacgtca	ttttaaatct	ttcagtgatg	ttttagaatt	ttttttataa	aaaccttcac	4440
tataagaaca	gaaaaccaaa	caccgcatgt	tctcactcat	aggtgggaat	tgaacaatga	4500
gaacacttgg	acacagggcg	gggaacgtca	cacgcctgga	ctgttggggg	ggtggctggg	4560
agagggatag	tgttaggaga	aatacctaat	gtaaatgacg	agttaatggt	gcagccaacc	4620
aacctggcac	atgtattcat	atgtaacaaa	cctgcacgtt	gtgcacatgt	accctagaac	4680
ttaaagtata	ttaaaaaaag	aaaccttggc	actgattttg	ttagatttat	tcctaggtat	4740
ccttcctctt	ttttgatttg	tcattgctat	tgtagatggc	atctttttaa	aaagttatat	4800
tttctaaagc	aaaaaataaa	aaaagttgta	tttctaattt	ttattaccaa	tatataagaa	4860
tgtaatttat	ttttacataa	ttatcttatg	tctagtaata	attctgataa	tttgcttctt	4920
cctattaaaa	ccttacaccc	attattgatt	tatttttctg	ttttaaaata	tcttcctgca	4980
ctggctaaaa	cctccactat	aatgttgagc	agaacagtga	ggcatcctta	gaactatctt	5040
ggttgcaaag	ggtaggtctc	taatgtttca	tcaataaatg	tgatgtttct	agtctgagtt	5100
tgctaagtat	attttaaaat	aatcagtaaa	gttagatttt	atccatttt	atcttaacta	5160
ttgagatgct	catatcattt	ttcttcttca	atgtgttaaa	atggtga		5207

<210> 325 <211> 4187 <212> DNA <213> Homo sapiens

<400> 325 cgtagcgccc gcagagcaac gcaaagagga agaacagaga aacggctatg agaaaaaggg 60 ccgaagagtg agaagcagag ggccttaccc gagggggcgg caaccggggg ccccacggtc 120 teeggeegeg eeegetgg eegetgatag egggeteaca aegatgaegt agegaggage 180 ggaaaacgcg gtaaccaagg cggccccagg cgcgcacttc cgcccggcct tccaccggtc 240 caggtctgcc cctccgcagc gatagttcac gctctcggcg gggctgtacc ggaagttgcc 300 tctacttccg cccgttccgg ggcggggctt acttcgcagc gactacttgc cgcacttccg 360 ggctgccagg cagctgctgt ggctccagga tgatggagac agagcgactt gtgctacccc 420 480 ctccagatcc cctggaccta ccccttcggg ccgtggagct cggatgcacg gggcactggg agetgetgaa ettgeetgga geteeagaga gtageettee ecatggeete eeteettgtg 540 · 600 ccccagatct gcagcaagaa gcagaacagt tgtttctgtc atccccagcc tggctgcctc tgcatggtgt ggagcactca gcccgaaaat ggcagaggaa gacggatccc tggtctcttt 660 720 tgqctqtcct gggagcccca gtcccatccg acctacaggc ccaaagacac ccaaccacag 780 gccagatact gggttacaaa gaggtcttgc tggagaacac aaatctctcg gctacaacct 840 ccttgtctct tcgccggcct ccagggccag cctcccagtc cttatgggga aatccaactc 900 ggtatccctt ctggccaggg gggatggatg aacccaccat aacagatctg aacacacggg aggaggctga ggaggagata gactttgaga aagatcttct tactattcca cctggtttca 960 1020 aqaaaqqcat ggactttgca ccaaaagatt gtccaactcc agctcctgga ctactaagcc ttagctgtct gttggagcct ctggatttgg gtgggggtga cgaggatgag aatgaggcag 1080 tgggacagcc aggaggtccc agaggggaca ctgtttcagc ctctccctgc agtgctcccc 1140 tggcccgagc aagcagcttg gaagacctag tgttgaagga agcgtccaca gctgtatcca 1200 ccccagaggc cccagagcct ccatctcagg agcagtgggc catccctgtg gacgccacct 1260 cccctgttgg tgatttctat cgcctcattc cccagccagc cttccagtgg gcatttgagc 1320 cagatgtgtt tcagaaacag gccatcctgc acttggaacg gcatgactct gtctttgtcg 1380 cageteacae atetgeagga aaaacagttg tggetgaata tgccattgee etggeecaga 1440 aacacatgac acgcaccatc tacacttcgc ccatcaaggc cctgagcaac cagaagttcc 1500 1560 gggacttccg aaacacattc ggggatgtgg ggctgctcac cggggatgta cagctgcatc cggaggecte etgeeteate atgaceaeag agateetteg etceatgetg tacagtgget 1620 cagatgttat tcgggacctg gagtgggtca tctttgatga ggttcactat atcaacgatg 1680

tcgagcgtgg	ggtcgtgtgg	gaggaggtgc	ttatcatgct	acctgaccac	gtttctatca	1740
tccttctgag	tgccaccgtc	cccaacgccc	ttgagtttgc	tgactggatt	gggcggctga	1800
agcgtcgtca	gatctatgtg	attagcactg	taacccgccc	cgtgcccctg	gagcactatc	1860
ttttcacagg	gaacagctcc	aagacccagg	gggagctctt	tttgttgctg	gactcccgag	1920
gagccttcca	tacaaaaggg	tactatgcag	ctgtggaggc	caagaaggag	agaatgagca	1980
aacacgccca	gacctttggg	gccaagcagc	ccacacatca	ggggggccct	gcacaggacc	2040
gcggagtgta	cctgtccctc	ctggcctccc	tccgcacacg	tgcccagttg	cccgtggtgg	2100
tgttcacctt	ctcccggggc	cgctgtgatg	agcaggcctc	aggcctcacc	tcccttgacc	2160
tcaccaccag	ttcggagaag	agcgagatcc	acctcttcct	gcagcgctgc	cttgctcgcc	2220
tccgtggctc	tgaccgccag	ctgccccagg	tcctgcacat	gtcagagctc	ctgaatcgcg	2280
gcctgggtgt	gcaccatagc	ggcatcctgc	ccatcctcaa	ggagatcgtg	gagatgctct	2340
tcagccgtgg	cctggtcaag	gtcttgtttg	ccacagagac	ctttgccatg	ggagtaaaca	2400
tgcctgctcg	tacagtagtg	tttgactcca	tgcgcaaaca	cgatggctcc	accttccggg	2460
acctgctccc	tggggagtat	gtgcagatgg	caggccgggc	agggcggagg	ggcctggacc	2520
ccacaggcac	cgttatcctg	ctctgcaagg	gccgagtgcc	cgagatggca	gacctgcacc	2580
gcatgatgat	ggggaagccg	tcccagctgc	agtcccagtt	ccgcctcacg	tacactatga	2640
tcctcaactt	gctgcgagtg	gatgccctca	gggtggagga	catgatgaag	aggagcttct	2700
ctgagtttcc	ctcccgcaaa	gacagcaagg	cccatgaaca	ggccctggct	gaactgacca	2760
agaggctggg	agctttggag	gagcctgaca	tgactggcca	actggtcgac	ctgcctgaat	2820
attacagctg	gggggaggaa	ctgacagaga	cccagcacat	gatccagcga	cgcatcatgg	2880
agtctgtgaa	cgggctgaag	tctctctcag	caggaagggt	ggtggttgtg	aagaatcagg	2940
agcatcacaa	cgcattggga	gtgatcctac	aggtctcctc	gaactccacc	agcagagtat	3000
tcacaaccct	ggtcttgtgt	gataagccct	tgtcccagga	cccacaggac	agggggccag	3060
ccactgcaga	ggtgccctat	ccagatgacc	tcgtgggatt	caagctgttc	ctgcctgaag	3120
ggccttgtga	ccacaccgtg	gtcaagctcc	agccaggaga	tatggctgcc	atcaccacca	3180
aggtgctccg	ggtgaatggg	gagaagatct	tggaggactt	cagcaagagg	cagcagccaa	3240
aattcaagaa	ggatcctccc	cttgcagccg	tgaccactgc	tgtccaggaa	ctgctgcgtc	3300
tggctcaggo	ccacccagcc	ggacctccca	ccctcgaccc	tgtcaatgac	ctgcagctca	3360
aagatatgto	agttgtagag	ggtgggctcc	gggcccggaa	gctggaggag	ctgatccagg	3420
gggctcagtg	tgtacacago	ccccgttttc	ctgcccagta	cctgaagctg	cgggagcgaa	3480

tgcagataca gaaggagatg	gagcggctgc	gcttcctact	gtcggatcag	tcattgctgc	3540
tgcttcctga gtaccatcag	cgagtagagg	tgctccgaac	cctgggttac	gtggacgagg	3600
tgggcactgt gaagctggca	gggcgggtgg	cttgtgccat	gagcagccat	gagttgctcc	3660
tcactgagct catgtttgac	aatgcactga	gcaccctgcg	gcctgaggag	attgctgcct	3720
tgctctctgg cctggtctgc	cagagccctg	gggacgctgg	ggatcagctc	ccaaacaccc	3780
tcaagcaggg aatagaacgt	gtccgggctg	tggccaagcg	gattggtgag	gtccaggtgg	3840
cttgtggcct gaaccagacg	gtggaggaat	ttgtggggga	gctgaatttt	gggctggttg	3900
aggttgtata tgagtgggcc	cggggcatgc	ccttctccga	gttggcaggg	ctctcaggga	3960
cccctgaggg cctggtggtc	cgctgcattc	agcgcctggc	tgagatgtgt	cgctcactgc	4020
ggggggcagc ccgcctggta	ggagagcctg	tgctgggtgc	caagatggag	acagcggcta	4080
ccttgctacg gcgggacatc	gtatttgcgg	ccagcctcta	cacccagtga	atgccccatg	4140 ⁻
taaaaacatg atgataaaac	agcaaagcac	aaaaaaaaa	aaaaaaa		4187

<210> 326

<211> 2892

<212> DNA

<213> Homo sapiens

<400> 326 caaagatggc tgccacattg gcgctgtcat tttggtactg agcagagcga cgggcttaat 60 tegacecaat ecaggecaga gtetttetet caggggette etegtgetea getaateete 120 cgatcaatcc ttgggaatcc ctgggacctc ttcggtatcc ctactctcag ccagggatca 180 tgtcttgggc cgctcgcccg cccttcctcc ctcagcggca tgccgcaggg cagtgtgggc 240 cggtgggggt gcgaaaagaa atgcattgtg gggtcgcgtc ccggtggcgg cggcgacggc 300 cctggctgga tcccgcagcg gcggcggcgg cggcggtggc aggcggagaa caacaaaccc 360 cggagccgga gccaggggag gctggacggg acgggatggg cgacagcggg cgggactccc 420 gaageccaga cageteetee ccaaateece tteeccaggg agteeeteec cetteteete 480 ctgggccacc cctacccct tcaacagctc catcccttgg aggctctggg gccccacccc 540 caccccgat gccaccaccc ccactgggct ctccctttcc agtcatcagt tcttccatgg 600 ggtcccctgg tctgcccct ccagctcccc caggattctc cgggcctgtc agcagccccc 660 agattaactc aacagtgtca ctccctgggg gtgggtctgg cccccctgaa gatgtgaagc 720 caccagtett aggggteegg ggeetgeact gtecaceece tecaggtgge eetggggetg 780 gcaaacggct atgtgcaatc tgcggggaca gaagctcagg caaacactac ggggtttaca 840 gctgtgaggg ttgcaagggc ttcttcaaac gcaccatccg caaagacctt acatactctt 900

gccgggacaa caaagactgc	acagtggaca	agcgccagcg	gaaccgctgt	cagtactgcc	960
gctatcagaa gtgcctggcc	actggcatga	agagggaggc	ggtacaggag	gagcgtcagc	1020
ggggaaagga caaggatggg	gatggggagg	gggctggggg	agcccccgag	gagatgcctg	1080
tggacaggat cctggaggca	gagcttgctg	tggaacagaa	gagtgaccag	ggcgttgagg	1140
gtcctggggg aaccgggggt	agcggcagca	gcccaaatga	ccctgtgact	aacatctgtc	1200
aggcagctga caaacagcta	ttcacgcttg	ttgagtgggc	gaagaggatc	ccacactttt	1260
cctccttgcc tctggatgat	caggtcatat	tgctgcgggc	aggctggaat	gaactcctca	1320
ttgcctcctt ctcacaccga	tccattgatg	ttcgagatgg	catcctcctt	gccacaggtc	1380
ttcacgtgca ccgcaactca	gcccattcag	caggagtagg	agccatcttt	gatcgggtgc	1440
tgacagagct agtgtccaaa	atgcgtgaca	tgaggatgga	caagacagag	cttggctgcc	1500
tgagggcaat cattctgttt	aatccagatg	ccaagggcct	ctccaaccct	agtgaggtgg	1560
aggtcctgcg ggagaaagtg	tatgcatcac	tggagaccta	ctgcaaacag	aagtaccctg	1620
agcagcaggg acggtttgcc	aagctgctgc	tacgtcttcc	tgccctccgg	tccattggcc	1680
ttaagtgtct agagcatctg	tttttcttca	agctcattgg	tgacaccccc	atcgacacct	1740
tcctcatgga gatgcttgag	gctccccatc	aactggcctg	agctcagacc	cagacgtggt	1800
gcttctcaca ctggaggagc	acacatccaa	gagggactcc	aagccctggg	gcagggtggg	1860
gggccatgtt cccagaacct	tgatggggtg	agaagtacag	ggcagaacca	agaacataaa	1920
ccctccaagg gatctgcttg	atatcccaag	ttggaaggga	ccccagatac	ctgtgaggac	1980
tggttgtctc tcttcggtgg	ccttgagtct	ctgaatttgt	cgggttctcc	catgatttgg	2040
ggtgatttct caccctctgt	ccttccccca	gcacaaagca	ctggccttgc	ctccaggacc	2100
ttgcttcctt ctcatcttgc	ctcattttgc	ttcccatctg	aagagtggaa	atggggaact	2160
cccccagagg tggatactgg	ggggcaggcc	tcccaagctg	atggacatga	gagtagggcc	2220
ctgacaggcc ttcctcctct	caaacctggc	agatgggggc	ctctctggaa	gagggagggg	2280
ccctgtcact gtccagagtc	tcttttaca	cttcacctcc	ttctgcagtc	agactgaaat	2340
ataaaaaagg tggtggtggt	ggtgaagggg	ctggtggaga	tgtaggaacc	gatctgctat	2400
ttttaatttc ctgtgaggat	agagacttgc	agttagactc	aaagaagtac	tgtactttcc	2460
caggttgact aagaaatgco	agtggtggag	gtgggtgttt	gggaaaggca	gggccctgaa	2520
atggeetgte eetagggete	tccaagcact	agccttccca	gcttcccgcc	gcccccccta	2580
tetetteetg tetaaettge	ggaaggggcc	tgggctgtga	ggacagggcc	cccacagggg	2640
atggtttcac gagtgtagtc	: ccggaggcct	tccctttaca	gctctcctcc	agccctgggc	2700
acatagcata ggctggggad	acaggatect	ggcctgagaa	ttgaggggag	gtggccagcc	2760

2820

cgcagaggtg gggtgctggg gctgcatgat ttttgccctg cgtcccttct ctttggggct

```
cctttcccct ctcatacata aaatcgcttt caaattaaaa tcgctgtttt ctggaaaaaa
                                                                   2880
                                                                    2892
aaaaaaaaa aa
<210> 327
<211> 262
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (74)..(74)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (100)..(100)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (145)..(145)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (154)..(154)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (181)..(181)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (191)..(191)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (241)..(241)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (246)..(246)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (252)..(252)
<223> n is a, c, g, t or u
<400> 327
ttagaaagaa aagtetttta ttagtactgt gtagggaagg ctaaagaaat atacatttaa
                                                                      60
```

ttcagaataa	tttntaagaa	aaaacgtggg	gttccaagan	atggtgattt	acattcaaat	120
gaacatgtac	atttgcaaac	ctggntaagt	aganattttc	atgaagcacg	ctacaagaaa	180
nttcacacag	nattatttgt	ttttcaaagg	cctctttcaa	agtacaggct	ccaagtccat	240
ngcgantacc	cntgggcatg	at				262
<210> 328 <211> 521 <212> DNA <213> Home	o sapiens					
<400> 328 ttaaaccagc	atcaacttta	tttgatcttg	aaatagaaaa	tacttttgct	taattcagcc	60
tgtcagccaa	ggaagaaatc	tgtcttctag	caggaggagt	gacatcttgt	gagaaggaaa	120
ttcagcataa	aagattaagt	acaatcccac	tcaataatta	agaacaactc	tttatagtgt	180
aactacttta	tttgaaatgc	taaaaattcc	caaaatatca	gatatattca	taagaagaaa	240
actacattat	tcatgctacc	acttacttcc	aaatgtatct	ataattaagg	gctgacttta	300
taagttattg	ttttaaatag	cctatttccc	ttaaaattac	tcaagatgag	taggtttttt	360
taaagtggcc	atctgttcag	gttgtgatgt	gagcgcctcc	ctctatttcc	tgcttgattg	420
gcgaggcctt	atttttatgt	gtgactggat	ggagtctata	ctgacagtct	cctattctct	480
aactgcaccc	ctgtgggcta	caatatagga	ttatactagc	g		521
<210> 329 <211> 390 <212> DNA <213> Home	o sapiens		·			
<400> 329 ttttttttt		tttttttt	ttccttttac	aaaatataaa	tttattatga	60
aaacctggaa	ggataatcca	aggaaggtaa	aaaaagaaaa	aaggaggcca	ccaaaaaaag	120
gcaggaagga	gaggaaaaga	aaaaaagaca	aagaggagat	gagagaaaaa	aatccagttc	180
agcacaacaa	aagtgcaaaa	gctcacctac	ccaaatggca	ttaaagcctc	gttgtgtaat	240
cgtgtcagaa	aacaaagcat	actgacacat	agggctttac	ttcccatcca	cttgagtttt	300
aagaggtaaa	ttaaaaagct	ccttgggaag	gggacatgag	gttgttcaaa	aacccaacaa	360
agaaaattaa	aaaaaaaaga	gagagagaaa				390
<210> 330 <211> 455 <212> DNA <213> Hom						

⁴¹⁷

<400> 330 ttttttttt tttttaaag aaaaaaacaa taaacaagaa aaagaattac atgaaataat	60
tatgaagtac atcccaattt cagaacatta acgtggagta ggcgtgggag tggggctcca	120
tcaaggaacc tagaatagca gtggctaaat agggtagaca aacttggaga tgcaatttga	180
	240
ggtccctatt tggatcctgt gcctacctcc ttgggcgacc cacttaactc ctctgcacct	
ctagcttctc gtgtataaaa taagaatgca ggattacatg agagctaagg tcccagttag	300
cggcaaattt aattgggatc tagacttact gatgtttctc tgactcagtt cctgacaaga	360
gtctctttgg ataaaaatgt ccgctgcctg ttgcttgtgc ctttgtgaag agacacttta	420
aattccctcc tctttcaagc ttctcaattg gggct	455
<pre><210> 331 <211> 1988 <212> DNA <213> Homo sapiens</pre>	
<pre><400> 331 catgctgcgc cgctacctag cctcggaccc cgactgccgc tggtgcccgg ccccggactg</pre>	60
cggttatgct gttattgcct atggctgtgc cagctgcccg aagctaactt gtgagaggga	120
aggttgccag actgagttct gctaccactg caagcagata tggcatccaa atcagacatg	180
cgatatggcc cgtcaacaga gggcccagac tttacgagtt cggaccaaac acacttcagg	240
tctcagttat gggcaagaat ctggaccagc agatgacgtc aagccatgcc cacgatgcag	300
tgcatacatt atcaagatga atgatggaag ctgtaatcac atgacctgtg cagtgtgtgg	360
ctgtgaattc tgttggcttt gtatgaaaga gatctcagac ttgcattacc tcagccctc	420
tggctgtaca ttctggggca agaagccatg gagccgtaag aagaaaattc tttggcagct	480
gggcacgttg attggtgctc cagtggggat ttctctcatt gctggcattg ccattcctgc	540
catggtcatt ggcattcctg tttatgttgg aaggaagatt cacagcaggt atgagggaag	600
gaaaacctcc aaacacaaga ggaatttggc tatcactgga ggagtgactt tgtcggtcat	660
tgcatcccca gttattgctg cagttagtgt tggtattggt gtccccatta tgctggcata	720
tgtttatggg gttgtgccca tttctctttg tcgtggaggc ggctgtggag ttagcacagc	780
caacggaaaa ggagtgaaaa ttgaatttga tgaagatgat ggtccaatca cagtggcaga	840
tgcctggaga gccctcaaga atcccagcat tggggaaagc agcattgaag gcctgactag	900
tgtattgagc actagtggaa gccctacaga tggacttagt gttatgcaag gtccttacag	960
cgaaacggcc agctttgcag ccctctcagg gggcacgctg agtggcggca ttctcccag	1020
tggcaaggga aaatatagca ggttagaagt tcaagccgat gtccaaaagg aaattttccc	1080
caaagacaca gccagtcttg gtgcaattag tgacaacgca agcactcgtg ctatggccgg	1140

ttccataatc agttcctaca acccacagga cagagaatgc aacaatatgg aaatccaagt

			.5 5 5		_	
ggacattgaa gc	caaaccaa	gccactatca	gctggtgagt	ggaagcagca	cggaggactc	1260
gctccatgtt ca	tgctcaga	tggcagagaa	tgaagaagaa	ggtagtggtg	gcggaggcag	1320
tgaagaggat cc	cccctgca	gacaccaaag	ctgtgaacag	aaagactgcc	tggccagcaa	1380
accttgggac at	cagcctgg	cccagcctga	aagcatccgc	agtgacctag	agagttctga	1440
tgcacagtca ga	cgatgtgc	cagacatcac	ctcagatgag	tgtggctccc	cccgctccca	1500
tactgcagcc tg	cccctcga	ccccagagc	ccaaggtgca	ccgagcccaa	gtgcccatat	1560
gaacctctct gc	cctagccg	agggacaaac	tgtcttgaag	ccagaaggtg	gagaagccag	1620
agtatgaagt gg	aatgaatg	ctcctgttct	gagaagcaca	cttgtaactg	catcttttgg	1680
aattttttt tt	ttttttt	ccaaggggta	gagatttatg	tattttattt	cacagattct	1740
ctggtcacag gt	ttttgccc	agggaaattc	tgagaaattc	acaatttctt	accagataaa	1800
acatgaaaag tt	tgccgtta	gttcccctcc	cctccctcc	ctctttttag	ttttaattta	1860
ttggttaaac tg	atggcagc	aatccatgag	gtgtgtcaaa	gagtgtacat	atgtatgtgt	1920
gtatattgaa tg	ctaaacat	attactgaaa	gacacatttt	aataaagatt	tctgtcataa	1980
ttcaactt						1988
<210> 332 <211> 1529 <212> DNA <213> Homo s	apiens					
<400> 332 ggaccaatag aa	tatgtgat	gtgtgaattt	tctttaaaaa	acttaaggag	tcttggctac	60
cttctgcttg tg	agttgttt	gggcattcat	attaaaagcc	agcatctcac	tatttattgg	120
acaggtgggc tg	tgtgtgtg	cgcatgtgtg	tatacatttc	caggcgtgcc	tgtgtcctgt	180
agctttttaa aa	ggaaaccc	agtcatccca	ctatgaatct	ggcatcttct	tatgcttcta	240
gtgttttggc ca	tacatcaa	ccaaggggtt	taatttatcc	aatgcttgac	gacatgttca	300
ggaggggctg ga	tcaaattt	tgagagggtt	atgggaaagg	gagggggaga	agaaattgac	360
atttatttat ta	tttattt	aaatgtttac	atcttcttta	tgttgtatca	agcctgaata	420
gaaactgata go	attaaaat	actcccgttc	ctctctctct	tetegettee	tttttttt	480
tcaaatttag ga	tacccaat	ttgtgttccc	acagegeteg	ggactggcgg	gtatacctgg	540
ttaaaggtcc gg	ataaacag	ggatcacatc	ctctggacag	ggtcgcacaa	atctcttgtc	600
ggcaacccgg ga	actcgcgc	ttccaaaaat	ttcccgtgtt	gaaggtcccc	atagcgggtc	660

ctcctggaga acaatctggt atagccgggc aaagaaggtc tagtcttccc cttatcatct 720

tgtttacatt ccgcctcact	acctttttt	tcacacaaca	caccaacaac	acccacccac	780
ccccaccaa ccccacaccc	accccaccca	ggcgctgaag	aggaggcgag	ageegeegea	840
cacgeggacg agegegggeg	aggcgagggc	gggagcgggg	gagggggac	gagggacggg	900
ggacgcgggg gggagagagg	cggggaaggg	ggaggcgagg	aggagagcgc	tacagcgcca	960
cgacgagcga ggacagcaaa	ggagaggaaa	cgcgaggcgg	ggcgagacag	gagagaaagg	1020
acacaaaagg gagcgcgaca	gggagagaaa	cggcagcgac	aaagaagaga	cgagagagac	1080
gacacagagg agagacaggc	ggagagaaga	gaaacgtaag	cagagaatag	aggaagaa	1140
ggaaccagag cacaagaggg	gacgcggaca	acagaggcgc	agagaaccaa	gagacagaga	1200
gagacaggaa cgagaggcaa	gagcaaacaa	ccagaagcaa	aaagagacca	cgcgagagca	1260
cgagaggaag cgagagcaca	cagcaggaag	ccgagcccaa	agcagaggca	gagacgcaga	1320
aggcaacgaa aggcacgcaa	gcccgaagca	gcgcaccaca	gacacacgaa	aacccagcaa	1380
gcacgaacac caccaaacac	agcaccagca	agcgacgaag	ccgacacaga	aaccacaaga	1440
caaacaccag cgacacaccg	caacagcacc	acgacgcgaa	gaccaagaga	gacaacagac	1500
gcagcaaaca gccgaagcac	cagacaaca				1529
<210> 333 <211> 822 <212> DNA <213> Homo sapiens					•
<211> 822 <212> DNA	cggagacaga	gactgacatg	gaacagggga	agggcctggc	60
<211> 822 <212> DNA <213> Homo sapiens <400> 333					60 120
<211> 822 <212> DNA <213> Homo sapiens <400> 333 gggctgctcc acgcttttgc	ttcttcttca	aggtactttg	gcccagtcaa	tcaaaggaaa	
<211> 822 <212> DNA <213> Homo sapiens <400> 333 gggctgctcc acgcttttgc tgtcctcatc ctggctatca	ttcttcttca actatcaaga	aggtactttg agatggttcg	gcccagtcaa gtacttctga	tcaaaggaaa cttgtgatgc	120
<211> 822 <212> DNA <213> Homo sapiens <400> 333 gggctgctcc acgcttttgc tgtcctcatc ctggctatca ccacttggtt aaggtgtatg	ttcttcttca actatcaaga ggtttaaaga	aggtactttg agatggttcg tgggaagatg	gcccagtcaa gtacttctga atcggcttcc	tcaaaggaaa cttgtgatgc taactgaaga	120 180
<211> 822 <212> DNA <213> Homo sapiens <400> 333 gggctgctcc acgcttttgc tgtcctcatc ctggctatca ccacttggtt aaggtgtatg agaagccaaa aatatcacat	ttcttcttca actatcaaga ggtttaaaga gaagtaatgc	aggtactttg agatggttcg tgggaagatg caaggaccct	gcccagtcaa gtacttctga atcggcttcc cgagggatgt	tcaaaggaaa cttgtgatgc taactgaaga atcagtgtaa	120 180 240
<pre><211> 822 <212> DNA <213> Homo sapiens <400> 333 gggctgctcc acgcttttgc tgtcctcatc ctggctatca ccacttggtt aaggtgtatg agaagccaaa aatatcacat taaaaaaaaa tggaatctgg</pre>	ttcttcttca actatcaaga ggtttaaaga gaagtaatgc aaccactcca	aggtactttg agatggttcg tgggaagatg caaggaccct agtgtattac	gcccagtcaa gtacttctga atcggcttcc cgagggatgt agaatgtgtc	tcaaaggaaa cttgtgatgc taactgaaga atcagtgtaa agaactgcat	120 180 240 300
<pre><211> 822 <212> DNA <213> Homo sapiens <400> 333 gggctgctcc acgcttttgc tgtcctcatc ctggctatca ccacttggtt aaggtgtatg agaagccaaa aatatcacat taaaaaaaaa tggaatctgg aggatcacag aacaagtcaa</pre>	ttcttcttca actatcaaga ggtttaaaga gaagtaatgc aaccactcca tatctggctt	aggtactttg agatggttcg tgggaagatg caaggaccct agtgtattac tctctttgct	gcccagtcaa gtacttctga atcggcttcc cgagggatgt agaatgtgtc gaaatcgtca	tcaaaggaaa cttgtgatgc taactgaaga atcagtgtaa agaactgcat gcattttcgt	120 180 240 300 360
<pre><211> 822 <212> DNA <213> Homo sapiens <400> 333 gggctgctcc acgcttttgc tgtcctcatc ctggctatca ccacttggtt aaggtgtatg agaagccaaa aatatcacat taaaaaaaaa tggaatctgg aggatcacag aacaagtcaa tgaactaaat gcagccacca</pre>	ttcttcttca actatcaaga ggtttaaaga gaagtaatgc aaccactcca tatctggctt tcattgctgg	aggtactttg agatggttcg tgggaagatg caaggaccct agtgtattac tctctttgct acaggatgga	gcccagtcaa gtacttctga atcggcttcc cgagggatgt agaatgtgtc gaaatcgtca gttcgccagt	tcaaaggaaa cttgtgatgc taactgaaga atcagtgtaa agaactgcat gcattttcgt cgagagcttc	120 180 240 300 360 420
<pre><211> 822 <212> DNA <213> Homo sapiens <400> 333 gggctgctcc acgcttttgc tgtcctcatc ctggctatca ccacttggtt aaggtgtatg agaagccaaa aatatcacat taaaaaaaaa tggaatctgg aggatcacag aacaagtcaa tgaactaaat gcagccacca ccttgctgtt ggggtctact</pre>	ttcttcttca actatcaaga ggtttaaaga gaagtaatgc aaccactcca tatctggctt tcattgctgg ccaatgacca	aggtactttg agatggttcg tgggaagatg caaggaccct agtgtattac tctctttgct acaggatgga gctctaccag	gcccagtcaa gtacttctga atcggcttcc cgagggatgt agaatgtgtc gaaatcgtca gttcgccagt cccctcaagg	tcaaaggaaa cttgtgatgc taactgaaga atcagtgtaa agaactgcat gcatttcgt cgagagcttc atcgagaaga	120 180 240 300 360 420 480
<pre><211> 822 <212> DNA <213> Homo sapiens <400> 333 gggctgctcc acgcttttgc tgtcctcatc ctggctatca ccacttggtt aaggtgtatg agaagccaaa aatatcacat taaaaaaaaa tggaatctgg aggatcacag aacaagtcaa tgaactaaat gcagccacca ccttgctgtt ggggtctact agacaagcag actctgttgc</pre>	ttcttcttca actatcaaga ggtttaaaga gaagtaatgc aaccactcca tatctggctt tcattgctgg ccaatgacca aaggaaacca	aggtactttg agatggttcg tgggaagatg caaggaccct agtgtattac tctctttgct acaggatgga gctctaccag gttgaggagg	gcccagtcaa gtacttctga atcggcttcc cgagggatgt agaatgtgtc gaaatcgtca gttcgccagt cccctcaagg aattgaactc	tcaaaggaaa cttgtgatgc taactgaaga atcagtgtaa agaactgcat gcatttcgt cgagagcttc atcgagaaga aggactcaga	120 180 240 300 360 420 480 540
<pre><211> 822 <212> DNA <213> Homo sapiens <400> 333 gggctgctcc acgcttttgc tgtcctcatc ctggctatca ccacttggtt aaggtgtatg agaagccaaa aatatcacat taaaaaaaaa tggaatctgg aggatcacag aacaagtcaa tgaactaaat gcagccacca ccttgctgtt ggggtctact agacaagcag actctgttgc tgaccagtac agccaccttc</pre>	ttcttctca actatcaaga ggtttaaaga ggattaaaga gaagtaatgc aaccactcca tatctggctt tcattgctgg ccaatgacca aaggaaacca ctattcagtt	aggtactttg agatggttcg tgggaagatg caaggaccct agtgtattac tctctttgct acaggatgga gctctaccag gttgaggagg cccagaatca	gcccagtcaa gtacttctga atcggcttcc cgagggatgt agaatgtgtc gaaatcgtca gttcgccagt cccctcaagg aattgaactc aagcaatgca	tcaaaggaaa cttgtgatgc taactgaaga atcagtgtaa agaactgcat gcattttcgt cgagagcttc atcgagaaga aggactcaga ttttggaaag	120 180 240 300 360 420 480 540

aaatactgtg tttcagaagc g	gccacctatt	ggggaaaatt	gt		822
<210> 334 <211> 2918 <212> DNA <213> Homo sapiens					
<400> 334 acggaaaagc cggggagggg a	acteggteeg	gggccggaga	ccgacggcaa	cagcggctca	60
ggacccacgc tgcccccacc c	cctcccgagc	aggcgccccc	atggcccgac	cccgctgatt	120
ccttcactcg gccatgctcc c	egeggeeeet	gcggctgctt	ttggacacga	gccccccgg	180
gggagtcgta ctgagcagct t	ccgaagccg	ggaccccgaa	gagggtgggg	gcccaggtgg	240
cctggtcgtg ggcgggggc a	aggaggaaga	ggaggaggaa	gaagaagagg	cccctgtgtc	300
cgtctgggat gaggaggagg a	atggtgccgt	gtttaccgtc	acaagccgcc	aatatcgacc	360
tcttgatccc ttggtcccta t	tgectecccc	acgttcctcc	cgacggctcc	gagctggcac	420
tctggaggcc ctggtcagac a	acctactgga	tacccggaca	tcagggactg	atgtgagctt	480
catgtcagcc ttcctggcta c	ccaccgggc	cttcacctcc	acgcctgcct	tgctagggct	540
tatggctgac aggctggaag c	cccttgaatc	tcatcctacc	gacgaactag	agaggacaac	600
agaggtagcc atctctgtac t	tgtcaacctg	gctggcctct	caccctgagg	attttggctc	660
tgaggccaag ggtcagcttg a	accggcttga	gagcttctta	cttcagacag	ggtatgcagc	720
agggaagggt gttggggggg g	gcagcgctga	cctcatccgc	aatctccggt	cccgggtgga	780
cccccaggcc cccgaccttc c	ctaagcccct	ggccctcccc	ggcgatcccc	ctgctgaccc	840
cacggatgtc ctggtgttcc t	tegetgacea	cttggccgaa	cagctgaccc	tgctagatgc	900
ggaacttttt ctcaatttga t	tcccctctca	gtgcctggga	ggcctgtggg	gtcacagaga	960
ccggccagga cattctcacc t	tctgcccatc	tgtccgagct	actgtcacac	agtttaacaa	1020
ggtggcaggg gcagtggtta g	gttctgtcct	gggggctact	tccactggag	agggacctgg	1080
ggaggtgacc atacggccac t	tccgtcccc	acagagggcc	cggctcctgg	agaagtggat	1140
ccgcgtggca gaggagtgcc g	ggctgctccg	aaacttctct	tcagtttatg	ccgtggtgtc	1200
agecetgeag tecagececa t	tccacaggct	tcgggcagcc	tggggggaag	caaccaggga	1260
cagecteaga gtetttteea g	gcctctgcca	gattttctcc	gaggaggata	attattccca	1320
gagtcgggag ctgctcgtgc a	aggaggtgaa	gctgcagtct	cctctggagc	cacactccaa	1380
gaaggccccg aggtctggct c	cccggggtgg	gggtgtggtc	ccataccttg	gcaccttcct	1440
gaaggacctt gtgatgctgg a	atgcagcctc	caaggatgag	ttggagaatg	gatacatcaa	1500
ttttgacaag cggaggaagg a	agtttgcagt	cctttctgag	ttgcgacggc	tccagaatga :	1560

atgtcgtggc tataacctcc aacctgacca tgatat	ccag aggtggctac aggggctccg 1620
gccactgaca gaggetcaga gccatcgtgt atcctg	tgag gtggagccac ctggttccag 1680
tgaccetect geoceaeggg tgetteggee aacatt	ggtc atctcgcagt ggacagaggt 1740
tttgggctct gttggggtcc ctaccccgct tgtgtc	ctgt gaccggccca gtactggggg 1800
agatgaggcg cctacaactc ctgctcctct gctgac	tegg etggeecage acatgaagtg 1860
gccatctgtc tcgtcactag actctgcctt ggaaag	cagt ccatccctgc acagtccagc 1920
tgaccccagc cacctctccc caccagcctc ctcccc	tagg cettetegag gteacegeeg 1980
ctcagectee tgtggeteee egetgagtgg gggtge	agaa gaggceteeg gggggaetgg 2040
atatggggga gagggatctg ggccaggggc ctctga	ttgc cgtatcatcc gagtccagat 2100
ggagttgggg gaagatggca gtgtctataa gagcat	tttg gtgacaagcc aggacaaggc 2160
tccaagtgtc atcagtcgtg tccttaagaa aaacaa	tegt gaetetgeag tggetteaga 2220
gtatgagctg gtacagctgc taccagggga gcgaga	gctg actatcccag cctcggctaa 2280
tgtattctac gccatggatg gagcttcaca cgattt	cete etgeggeage ggegaaggte 2340
ctctactgct acacctggcg tcaccagtgg cccgtc	tgcc tcaggaactc ctccgagtga 2400
gggaggaggg ggctcctttc ccaggatcaa ggccac	aggg aggaagattg cacgggcact 2460
gttctgagga ggaagccccg ttggcttaca gaagtc	atgg tgttcatacc agatgtgggt 2520
agccatcctg aatggtggca attatatcac attgag	acag aaattcagaa agggagccag 2580
ccaccetggg gcagtgaagt gccactggtt taccag	acag ctgagaaatc cagccctgtg 2640
ggaactggtg tcttataacc aagttggata cctgtg	tata getteceace ttecatgagt 2700
gcagcacaca ggtagtgctg gaaaaacgca tcagtt	tetg attettggce atateetaac 2760
atgcaagggc caagcaaagg cttcaaggct ctgag	ccca gggcagaggg gaatggcaaa 2820
atgtaggtcc tcgcaggagc tcttcttccc actct	gggg tttctatcac tgtgacaaca 2880
ctaagataat aaaccaaaac actacctgaa aaaaaa	2918
<210> 335 <211> 1755 <212> DNA <213> Homo sapiens	
<pre><400> 335 atggccggcg gcgtggacgg ccccatcggg atcccg</pre>	yttcc ccgaccacag cagcgacatc · 60
ctgagtgggc tgaacgagca gcggacgcag ggcctg	getgt gegaegtggt gateetggtg 120
gagggeegeg agtteeceae geacegeteg gtgete	gccg cctgcagcca gtacttcaag 180
aagctgttca cgtcgggcgc cgtggtggac cagcaq	gaacg tgtacgagat cgacttcgtc 240

agcgccgagg	cgctcaccgc	gctcatggac	ttcgcctaca	cggccacgct	caccgtcagc	300
acagccaacg	tgggtgacat	cctcagcgcc	gcccgcctgc	tggagatece	cgccgtgagc	360
cacgtgtgcg	ccgacctcct	ggaccggcag	atcctggcgg	ccgacgcggg	cgccgacgcc	420
gggcagctgg	accttgtaga	tcaaattgat	cagcgcaacc	tcctccgcgc	caaggagtac	480
ctcgagttct	tccagagcaa	ccccatgaac	agcctgcccc	ccgcggccgc	cgccgccgct	540
gccagcttcc	cgtggtccgc	ctttggggcg	tccgatgatg	acctggatgc	caccaaggag	600
gccgtggccg	ccgctgtggc	cgccgtggcc	gcgggcgact	gcaacggctt	agacttctat	660
gggccgggcc	ccccggccga	geggeeeeg	acgggggacg	gggacgaggg	cgacagcaac	720
ccgggtctgt	ggccagagcg	ggatgaggac	gcccccaccg	ggggtctctt	teegeegeeg	780
gtggccccgc	cggccgccac	gcagaacggc	cactacggcc	gcggcggaga	ggaggaggcc	840
gcctcgctgt	cggaggcggc	ccccgagccg	ggcgactctc	cgggcttcct	gtcgggagcg	900
gccgagggcg	aggacgggga	cgggcccgac	gtggacgggc	tggcggccag	cacgctgctg	. 960
cagcagatga	tgtcatcggt	gggccgggcg	ggggccgcgg	cgggggacag	cgacgaggag	1020
tegegggeeg	acgacaaggg	cgtcatggac	tactacctga	agtacttcag	cggcgcccac	1080
gacggcgacg	tctacccggc	ctggtcgcag	aaggtggaga	agaagatccg	agccaaggcc	1140
ttccagaagt	gccccatctg	cgagaaggtc	atccagggcg	ccggcaagct	gccgcgacac	1200
atccgcaccc	acacgggcga	gaagccctac	gagtgcaaca	tctgcaaggt	ccgcttcacc	1260
aggcaggaca	agctgaaggt	gcacatgcgg	aagcacacgg	gcgagaagcc	gtacctgtgc	1320
cagcagtgcg	gegeegeett	tgcccacaac	tacgacctga	agaaccacat	gcgcgtgcac	1380
acgggcctgc	gcccctacca	gtgcgacagc	tgctgcaaga	ccttcgtccg	ctccgaccac	1440
ctgcacagac	acctcaagaa	agacggctgc	aacggcgtcc	cctcgcgccg	cggccgcaag	1500
ccccgcgtcc	ggggcggggc	gcccgacccc	agcccggggg	ccaccgcgac	ccccggcgcc	1560
cccgcccagc	ccagctcccc	cgacgcccgg	cgcaacggcc	aggagaagca	ctttaaggac	1620
gaggacgagg	acgaggacgt	ggccagcccc	gacggcttgg	gccggttgaa	tgtagcgggc	1680
gccggtggag	gaggtgacag	cggaggtggc	cccggggccg	ccaccgacgg	taacttcaca	1740
gccggactcg	cctaa					1755

<210> 336 <211> 1287 <212> DNA <213> Homo sapiens

<400> 336

atggactete tgtggggece aggageeggg agteaceeet ttggggteea caacaceegg 60

ctgtccccag	acttgtgtcc	agggaagata	gtgttgaggg	ccctcaagga	gagcggggca	120
gggatgcctg	agcaggacaa	ggaccctaga	gtccaagaga	atcctggtga	tcagagaagg	180
gtcccggagg	tcaccgggga	tgcaccgtct	gcatttcggc	ccctgcggga	caatggaggc	240
ctctctccct	ttgtgcccgg	gcccgggcct	ctgcagacag	acctccatgc	ccagaggtca	300
gaaatcagat	ataaccagac	atcccagacc	tcctggacga	gctcctgcac	caaccgaaat	360
gccatctcca	gctcctacag	ctccacggga	ggcttgccgg	ggctaaagcg	gaggagggg	420
ccagcctcat	cccactgcca	gctgaccctc	agttcctcaa	agacagtgag	tgaggacagg	480
cctcaggctg	tctcttcagg	tcacacccag	tgtgaaaagg	cagcagatat	agcaccaggg	540
cagacactca	ccctcaggaa	tgactcctcc	acatccgagg	cctctaggcc	cagtacacac	600
aagtttcccc	tgctgccatg	caggcgaggg	gagcctttga	tgctgccacc	tcccttagag	660
ctggggtacc	gggtcactgt	tgaagacctt	gaccgggaga	aggaggcggc	attccagcgc	720
atcaacagtg	cactgcaagt	tgaggacaag	gccatctcgg	actgcagacc	ctcacggcct	780
tcccacactt	tgtcctcact	tgcaacaggg	gcttctggtc	tgcctgccgt	ttctaaagca	840
cccagtatgg	atgcacagca	ggagacacac	aagtcccaag	actgcctggg	cctactggcc	900
cccttagcat	ctgctgcaga	ggtcccctct	acagctccca	tgtctgggaa	gaagcacaga	960
ccaccaggcc	ccctgttctc	ctcctcagat	ccccttcctg	ccacctcttc	ccattcccag	1020
gactcagccc	aggtcacctc	gctgattcct	gccccttcc	cagctgcaag	catggatgcg	1080
ggcatgagaa	gaacaaggcg	tggcacttct	gctcctgcag	ctgccgcagc	agcccctccc	1140
ccctccgcat	tgaaccccac	gttggggtca	ctactggagt	ggatggaggc	ccttcacatt	1200
tetgggeete	agccacagct	gcagcaggtg	cccagaggtc	agaaccagag	atcgcagacc	1260
tcccggacca	gctcgtgccc	caaatga				1287
	o sapiens			٠.		
<400> 337 cacgaggaca	gacatgaaaa	agctatggga	aaattgtgaa	gataaatgaa	agttttaatt	60
ctaggattct	ggaaacagag	acagtaagag	ttctccaagg	attttgcctt	ttttgtttgt	120
ttttgagatg	gagtctcgct	cttgtcgccc	aggctggagt	gcagtggcac	gatctcagct	180
ccctgcaacc	teegeeteee	gggttcatgt	gattctcctg	cctcagcctc	cccagtagct	240
gggaatacag	gcacccgcca	ccatgcccgg	ctaatttttg	tagttttagt	agagacgggg	300

tttcatcatg ttggacaggc tggtctcgaa ctcctgacct caggtgatcc atcagcctgg 360

gcctcccaaa	gtactgggat	tacaggcatg	agccaccaca	cctggcccca	ttttttattt	420
attacaaaat	caaagacatg	ggtgatgcct	ggcacatgtt	gtctggagtc	tggcacactg	480
gttatcaata	gcacattcag	tgtattcagt	gatgtcattc	tttatttatt	tttgagaca	539
<210> 338 <211> 396 <212> DNA <213> Homo	o sapiens			·		
<400> 338 ccgctgccat	ggcgaagtgg	caaattcacc	aaacggctca	gcaagcctgg	cacggcggct	60
gacgccggca	gagcgtgtct	gaggccgtgc	ggggctccgt	ggtgctggaa	aaggccaaag	120
ttgttgagcc	cctggactat	gagaatgtta	ttgcccaaag	aaaaacccag	atttacagcg	180
accccctccg	agatctgctt	atgttcccaa	tggaagatat	atctatctcg	gtgataggtc	240
gtcaacgcag	aacggtgcag	tctactgtac	cagaagatgc	tgaaaagagg	gcccagagtt	300
tatttgttaa	agagtgtatt	aaaacctata	gcacagattg	gcacgtggta	aactacaagt	360
atgaggactt	ctctggggac	tttcgaatgt	tgccat			396
	o sapiens					
<400> 339 ggatccatcc	cgcctcccgg	cgtctcactg	tgtgccctac	cctttgaaac	acgcccccgc	60
gcccgccctg	ccgtagacca	ggcagcgagg	aagcccacag	teteeggggg	cgctgccgaa	120
tgttagcacg	tgcttctcga	aacaccgcat	ccccgggtc	ccgcccgcc	cggcgcgcgc	180
actcgaaccc	gcccagagag	cgttgcgtgg	cgctgggtgc	gagcagggtc	tagccacccc	240
caccctcacc	tcacctcagg	ccaccttgct	tttttcaggt	tcatcaaggt	ttgcgcagtg	300
gateegegaa	tgaagccagc	ctggaagatc	cccagtctcg	agacagagcc	tgacaggggc	360
agatgcactg	gaaggaccct	gtctgggttt	agcaaccaag	cagccatcc		409
<210> 340 <211> 552 <212> DNA <213> Home						
<220> <221> mis <222> (36 <223> n i		t'or u				

<400> 340						
		tttttttt	tttttttt	tttttttt	tttttttt	60
aaaacccctg	gggggatttt	aaaaaccccc	cagtttattt	ggaaaaattc	aggatttgga	120
cattttctaa	aaaaacccaa	aaattccctt	acateggeet	aaacatttat	taaagggggg	180
ggaaaaaacc	tttttcaatt	tttaagcggg	ccaaaaaaaa	accctttccc	caacttttaa	240
aattttttaa	aaaaaaagc	caatttatat	gggacattgg	gggtcccggg	gcataaaaaa	300
acaggcattt	tccccaacgg	gccaaaaacc	aacaaacaag	gggccttttt	ttggggggaa	360
attaantttc	aaaggcaaag	gggttcaaag	gggacccaag	gggctgcccc	ccccaggaag	420
aaaaccccac	aaaaataatg	aagtttggag	ggggccaccg	ccgggtccca	aaaagggttc	480
tttcttccct	attttttaaa	aaaacaaggg	ggccctaggg	gggggagaa	aaaaaaacca	540
ctttaatata	ga					552
<210> 341 <211> 474 <212> DNA <213> Home <400> 341	o sapiens					
	tttgatttta	acaatgaatt	tcaggtttaa	tgattttta	cctttcctct	60
gaaagacagt	tgaaaaggac	acaaatgatt	cacaacagag	gtttatgttt	gaggtgatca	120
ccactaatac	acactttgaa	aagtaccatc	accatatata	tatttgcttt	aaaaaattat	180
gacaagcttc	aggtaaaaat	aatttttaaa	gggtccattt	ttcatttacg	tacaatcagt	240
acatcttatt	tacatatatg	actggatctt	tattctattt	tcttcatata	agatatttta	300
actggtaggt	aactgctcta	ttctgttttt	atagaaagac	taaacacctt	atttacaggc	360
agttttgatg	atgctagttt	gtctccaaat	tacgtactga	atatagttaa	aatcttaatg	420
aataacataa	aaattaagat	ccggtattaa	cagactattt	tatgggtcac	actg	474
<210> 342 <211> 2379 <212> DNA <213> Homo	e sapiens					
<400> 342 ggaattccgg	teggeetete	gcccttcagc	tacctgtgcg	tccctccgtc	ccgtcccgtc	60
ccggggtcac	cccggagcct	gtccgctatg	cggctcctgc	ctctagcccc	aggtcggctc	120
ggcggggca	gcccccgcca	cctgccctcc	tgcagcccag	cgctgctact	gctggtgctg	180
ggcggctgcc	tgggggtctt	cggggtggct	gcgggaaccc	ggaggcccaa	cgtggtgctg	240
ctcctcacaa	acqaccagga	cgaagtgctc	gacaacataa	caccactass	gaaaaccaaa	300

gctctcatcg	gagagatggg	gatgactttt	tccagtgctt	atgtgccaag	tgctctctgc	360
tgccccagca	gagccagtat	cctgacagga	aagtacccac	ataatcatca	cgttgtgaac	420
aacactctgg	aggggaactg	cagtagtaag	tcctggcaga	agatccaaga	accaaatact	480
ttcccagcaa	ttctcagatc	aatgtgtggt	tatcagacct	tttttgcagg	gaaatattta	540
aatgagtacg	gagccccaga	tgcaggtgga	ctagaacacg	ttcctctggg	ttggagttac	600
tggtatgcct	tggaaaagaa	ttctaagtat	tataattaca	ccctgtctat	caatgggaag	660
gcacggaagc	atggtgaaaa	ctatagtgtg	gactacctga	cagatgtttt	ggctaatgtc	720
tccttggact	ttctggacta	caagtccaac	tttgagccct	tcttcatgat	gatcgccact	780
ccagcgcctc	attcgccttg	gacagctgca	cctcagtacc	agaaggcttt	ccagaatgtc	840
tttgcaccaa	gaaacaagaa	cttcaacatc	catggaacga	acaagcactg	gttaattagg	900
caagccaaga	ctccaatgac	taattcttca	atacagtttt	tagataatgc	atttaggaaa	960
aggtggcaaa	ctctcctctc	agttgatgac	cttgtggaga	aactggtcaa	gaggctggag	1020
ttcactgggg	agctcaacaa	cacttacatc	ttctatacct	cagacaatgg	ctatcacaca	1080
ggacagtttt	ccttgccaat	agacaagaga	cagctgtatg	agtttgatat	caaagttcca	1140
ctgttggttc	gaggacctgg	gatcaaacca	aatcagacaa	gcaagatgct	ggttgccaac	1200
attgacttgg	gtcctactat	tttggacatt	gctggctacg	acctaaataa	gacacagatg	1260
gatgggatgt	ccttattgcc	cattttgaga	ggtgccagta	acttgacctg	gcgatcagat	1320
gtcctggtgg	aataccaagg	agaaggccgt	aacgtcactg	acccaacatg	cccttccctg	·1380
agtcctggcg	tatctcaatg	cttcccagac	tgtgtatgtg	aagatgctta,	taacaatacc	1440
tatgcctgtg	tgaggacaat	gtcagcattg	tggaatttgc	agtattgcga	gtttgatgac	1500
caggaggtgt	ttgtagaagt	ctațaatctg	actgcagacc	cagaccagat	cactaacatt	1560
gctaaaacca	tagacccaga	gcttttagga	aagatgaact	atcggttaat	gatgttacag	1620
tcctgttctg	ggccaacctg	togcactoca	ggggtttttg	accccggata	caggtttgac	1680
ccccgtctca	tgttcagcaa	tegeggeagt	gtcaggactc	gaagattttc	caaacatctt	1740
ctgtagcgac	ctcacacagc	ctctgcagat	ggatccctgc	acgcctcttt	ctgatgaagt	1800
gattgtagta	ggtgtctgta	gctagtcttc	aagaccacac	ctggaagagt	ttctgggctg	1860
gctttaagtc	ctgtttgaaa	aagcaaccca	gtcagctgac	ttcctcgtgc	aatgtgttaa	1920
actgtgaact	ctgcccatgt	gtcaggagtg	gctgtctctg	gtctcttcct	ttagctgaca	1980
aggacactcc	tgaggtcttt	gttctcactg	tattttttt	atcctggggc	cacagttctt	2040
gattattcct	cttgtggtta	aagactgaat	ttgtaaaccc	attcagataa	atggcagtac	2100
tttaggacac	acacaaacac	acagatacac	cttttgatat	gtaagcttga	cctaaagtca	2160

```
aaggacctgt gtagcatttc agattgagca cttcactatc aaaaatacta acatcacatg
                                                                      2220
 gcttgaagag taaccatcag agctgaatca tccaagtaag aacaagtacc attgttgatt
                                                                      2280
 gataagtaga gatacatttt ttatgatgtt catcacagtg tggtaaggtt gcaaattcaa
                                                                      2340
 aacatgtcac ccaagctctg ttcatgtttt tgtgaattc
                                                                      2379
 <210>
       343
 <211>
       558
 <212> DNA
 <213> Homo sapiens
<400> 343
ttttgttttt ttaaaaatat gcctttatag atttttatat atgtatatta taaaatccat
                                                                        60
acatgtattt acatgattgc tacatacaaa attacagcac tgtggtatgt acacatctac
                                                                       120
aggtacattc ttgccgcgca tccctgctgt gctttcccca cgtgagggag ggagggagac
                                                                       180
tgaatcggtt gttagcagct gagggctggc cgggccgcgg agcctctgag ttggggcctg
                                                                       240
ggttgaggag gatgtactat tgtcacacat tcatcaacta ttatctgctc tttttccaa
                                                                       300
tetttttgca atttetteet ettateteat ettaceteet etttegetag taatgaacta
                                                                      360
actececaae gttgttetae atteegteeg actettttta taaeteteta taeatgttae
                                                                      420
tgcattctta tacattctta acatactagc tgcggatgta atagctactt ctgttcgttt
                                                                      480
gattaacatc ctatttcaac ttattagatt gctatgttcc cttcatattt tactagattt
                                                                      540
cgggtcgtat tattttga
                                                                      558
<210>
       344
<211>
       569
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222>
       (15)..(15)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222>
      (122)..(122)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222>
      (127)...(127)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (131)..(131)
```

```
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (133)..(133)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (136)..(138)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (146)..(148)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (156)..(156)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (162)..(162)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (164)..(165)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (172)..(173)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (175)..(175)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (177)..(177)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
 <222> (179)..(179)
 <223> n is a, c, g, t or u
 <220>
 <221> misc_feature
 <222> (190)..(190)
 <223> n is a, c, g, t or u
 <220>
 <221> misc feature
 <222> (194)..(194)
 <223> n is a, c, g, t or u
```

```
<220>
<221> misc_feature
<222> (197)..(197)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (202)..(203)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (205)..(206)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (211)..(211)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (214)..(214)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (217)..(217)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (222)..(222)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (228)..(228)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (230)..(231)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (241)..(241)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (248)..(248)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (259)..(259)
<223> n is a, c, g, t or u
```

```
<220>
<221> misc_feature
<222> (261)..(262)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (268)..(268)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (271)..(272)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (286)..(286)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (291)..(291)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (296)..(296)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (307)..(307)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (325)..(326)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (330)..(331)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (333)..(333)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (335)..(335)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (342)..(342)
<223> n is a, c, g, t or u
 <220>
```

<221> misc feature <222> (344)..(344) <223> n is a, c, g, t or u <400> 344 gggtgtttgg ggtgntgtte gtttggcett etgggettte tggggggget tggtggeett 60 gcsggctccg gcggcsttct tgtcccctgc tttggtggca cccccgcaa ctgtctgtct 120 entttenegg nengennnge ggeeennngg tgggtngtet gngnngetet ennenenent 180 ggggttgssn gggncenttt ennenntggs ngenteneeg gnetteengn nttttgggee 240 ntcttccngc ttttttccng nncggcgntc nntgcgtttt ccttcngctc ngcggncttg 300 cgtgsgntgt ggcgcgtgt ggcgnntccn ntncnggggc gntngccggc gcttatttgg 360 cctggmtggt tcaggataat cacctgagca gtgaagccag ctgcttccat tggtgggtca 420 tttttgctgt caccagcaac gttgccacgc cgcacatcct tgccagmcac attcttgccm 480 ttgcagcccm cattgtcccc cggcagmgct tcactcaaag cttcatggtg catttcgaca 540 gattttactt ccgttgtwac gttgactgg 569 <210> 345 <211> 1536 <212> DNA <213> Homo sapiens <400> 345 acagagette aaaaaaagag egggacaggg acaagegtat etaagagget gaacatgaat 60 ccacagatca gaaatccgat ggagcggatg tatcgagaca cattctacga caactttgaa 120 aacgaaccca teetetatgg teggagetae aettggetgt getatgaagt gaaaataaag 180 aggggccgct caaatctcct ttgggacaca ggggtctttc gaggccaggt gtatttcaag 240 cctcagtacc acgcagaaat gtgcttcctc tcttggttct gtggcaacca gctgcctgct 300 tacaagtgtt tccagatcac ctggtttgta tcctggaccc cctgcccgga ctgtgtggcg 360 aagctggccg aattcctgtc tgagcacccc aatgtcaccc tgaccatctc tgccgcccgc 420 ctctactact actgggaaag agattaccga agggcgctct gcaggctgag tcaggcagga 480 gcccgcgtga cgatcatgga ctatgaagaa tttgcatact gctgggaaaa ctttgtgtac 540 aatgaaggtc agcaattcat gccttggtac aaattcgatg aaaattatgc attcctgcac 600 cgcacgctaa aggagattct cagatacctg atggatccag acacattcac tttcaacttt 660 aataatgacc ctttggtcct tcgacggcgc cagacctact tgtgctatga ggtggagcgc 720 ctggacaatg gcacctgggt cctgatggac cagcacatgg gctttctatg caacgaggct 780 aagaatette tetgtggett ttaeggeege catgeggage tgegettett ggaeetggtt 840 cettetttge agttggacce ggcccagate tacagggtca cttggttcat ctcctggage 900

ccctgcttct	cctggggctg	tgccggggaa	gtgcgtgcgt	tccttcagga	gaacacacac	960
gtgagactgo	gcatettege	tgcccgcatc	tatgattacg	accccctata	taaggaggcg	1020
ctgcaaatgc	: tgcgggatgc	tggggcccaa	gtctccatca	tgacctacga	tgagtttgag	1080
tactgctggg	acacctttgt	gtaccgccag	ggatgtccct	tccagccctg	ggatggacta	1140
gaggagcaca	gccaagccct	gagtgggagg	ctgcgggcca	ttctccagaa	tcagggaaac	1200
tgaaggatgg	gcctcagtct	ctaaggaagg	cagagacctg	ggttgagcag	cagaataaaa	1260
gatcttcttc	caagaaatgc	aaacagaccg	ttcaccacca	tctccagctg	ctcacagaca	1320
ccagcaaagc	aatgtgctcc	tgatcaagta	gattttttaa	aaatcagagt	caattaattt	1380
taattgaaaa	tttctcttat	gttccaagtg	tacaagagta	agattatgct	caatattccc	1440
agaatagttt	tcaatgtatt	aatgaagtga	ttaattggct	ccatatttag	actaataaaa	1500
cattaagaat	cttccataat	tgtttccaca	aacact			1536
<210> 346 <211> 476 <212> DNA <213> Hom <400> 346	o sapiens					
	catctgtata	ctcatctcct	cctggttcct	ccacaccttt	agcctccata	60
ctgtcagcct	tettetgace	tttggacttc	tcttccttgg	cctctgtctc	ttccctactc	120
ccttctctca	atctgacttt	tgtctcttgg	cttcccccag	cctcccctct	atcctcactg	180
gcctttccag	cctccacctt	ggtctctgga	cttccctctg	cctcttccct	gatgtctagc	240
ctgcctccag	gctcagcctg	cttgtcctcc	ccaacttccc	agcatgcctg	ctcttcccca	300
ccctgtccca	gagcctgcct	tccacatcct	gctgcctctc	cctccagact	ccctgaaccc	360
ttccagattg	ggggtttagg	tcccagaagg	ggacttaggt	catcataggc	actcaggaaa	420
acttcctccc	cattttcctc	ctcaacttca	ggcctggggc	cagcggagtc	caggga	476
<210> 347 <211> 412 <212> DNA <213> Homo	o sapiens					
<400> 347	taaaagtcag	aagtgttttg	tctcatttta	atatctcatc	agetttaese	60
	gtcttaaata					60 120
	actttcagtg					180
	tttttttt					240
			_		J	

tgttacaggo	caccctgccg	cggccagggc	gagacaggct	gggcccaccc	agaggtagaa	300
agtagtttta	tgtttttaa	aaatttttt	aagtttttt	ttttttcctc	ctattacctg	360
agtttcaggo	gtggttccca	cgccgtctga	caaactccag	agaaactgaa	at	412
<210> 348 <211> 126 <212> DNA <213> Hom	8					
<400> 348 gccaggacco	tggaaggaag	caggatggca	gccggaacag	cagttggagc	ctgggtgctg	60
	tgtgggggc					120
	tgaagtgtaa					180
	gccggacaga					240
gacagtgtgg	ctcgtgtcct	tcccaacggc	tccctcttcc	ttccggctgt	cgggatccag	300
gatgagggga	ttttccggtg	ccaggcaatg	aacaggaatg	gaaaggagac	caagtccaac	360
taccgagtcc	gtgtctacca	gattcctggg	aagccagaaa	ttgtagattc	tgcctctgaa	420
ctcacggctg	gtgttcccaa	taaggtgggg	acatgtgtgt	cagagggaag	ctaccctgca	480
gggactctta	gctggcactt	ggatgggaag	cccctggtgc	ctaatgagaa	gggagtatct	540
gtgaaggaac	agaccaggag	acaccctgag	acagggctct	tcacactgca	gtcggagcta	600
atggtgaccc	cagcccgggg	aggagatccc	cgtcccacct	tctcctgtag	cttcagccca	660
ggccttcccc	gacaccgggc	cttgcgcaca	gccccatcc	agccccgtgt	ctgggagcct	720
gtgcctctgg	aggaggtcca	attggtggtg	gagccagaag	gtggagcagt	agctcctggt	780
ggaaccgtaa	ccctgacctg	tgaagtccct	gcccagccct	ctcctcaaat	ccactggatg	840
aaggatggtg	tgcccttgcc	ccttccccc	agccctgtgc	tgatcctccc	tgagataggg	900
cctcaggacc	agggaaccta	cagctgtgtg	gccacccatt	ccagccacgg	gccccaggaa	960
agccgtgctg	tcagcatcag	catcatcgaa	ccaggcgagg	aggggccaac	tgcaggctct	1020
gtgggaggat	cagggctggg	aactctagcc	ctggccctgg	ggatcctggg	aggcctgggg	1080
acagccgccc	tgctcattgg	ggtcatcttg	tggcaaaggc	ggcaacgccg	aggagaggag	1140
aggaaggccc	cagaaaacca	ggaggaagag	gaggagcgtg	cagaactgaa	tcagtcggag	1200
gaacctgagg	caggcgagag	tagtactgga	gggccttgag	gggcccacag	acagatccca	1260
tccatcag						1268
<210> 349						

<210> 349 <211> 475 <212> DNA

```
<213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (393)..(393)
 <223> n is a, c, g, t or u
 <220>
 <221> misc_feature
 <222> (413)..(413)
 <223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (432)..(432)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (443)..(443)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (472)..(472)
<223> n is a, c, g, t or u
<400> 349
gggaaactga ggctcagaga agttaaatca ttcactccag gccatacatc tgctaaatgt
                                                                     60
gtcatgctac atccactttg cacctagttt gaacaggttt acaaagcaag tcagtaaccc
                                                                    120
ctgcatgcct gggtgcctga agttgaaaag gggtggctct aagatgtggt ctactacctc
                                                                    180
tectggactg ttgcagttgg gtgtggctga tttgaaattg tgcttcaaaa gaatgagttc
                                                                    240
tagtccctga atagaggagc tcacaccaca gtgcactgta gatctttgtg atccagaagt
                                                                    300
cctccagatg ttcccaaaag gatcttctta aggtgtttgc tgggggatgt tgtgtgtatt
                                                                    360
aggggagtgt ttcccttggg gggccttttg agncctcctg gggagagaag gcntcatagg
                                                                    420
ttaatgggca tnccccagaa aantttacaa tttgggattt ggggacccca antta
                                                                    475
<210> 350
<211> 2634
<212> DNA
<213> Homo sapiens
geogeogeog egegggette gttegtaagg aagggggeet aggeogggee
                                                                     60
tgcggtggtg ggggttgctg cgcgccgggg gtcgctcctg ctgtgtcttc cgctccagct
                                                                    120
tegeceactt eccettacea geggggtggg egeggagaag acetgeegga gecatggagg
                                                                    180
acgaagtggt ccgctttgcc aagaagatgg acaagatggt gcagaagaag aacgcggctg
                                                                    240
gagcattgga tttgctaaag gagcttaaga atattcctat gaccctggaa ttactgcagt
                                                                    300
```

ccacaagaat	cggaatgtca	gttaatgcta	ţtcgcaagca	gagtacagat	gaggaagtta	360
catctttggc	aaagtctctc	atcaaatcct	ggaaaaaatt	attagatggg	ccatcaactg	420
agaaagacct	tgacgaaaag	aagaaagaac	ctgcaattac	atcgcagaac	agccctgagg	480
caagagaaga	aagtacttcc	agcggcaatg	taagcaacag	aaaggatgag	acaaatgctc	540
gagatactta	tctttcatcc	tttcctcggg	caccaagcac	ttctgattct	gtgcggttga	600
agtgtaggga	gatgcttgct	gcagctcttc	gaacagggga	tgactacatt	gcaattggag	660
ctgatgagga	agaattagga	tctcaaattg	aagaagctat	atatcaagaa	ataaggaata	720
cagacatgaa	atacaaaaat	agagtacgaa	gtaggatatc	aaatcttaaa	gatgcaaaaa	780
atccaaattt	aaggaaaaat	gtcctctgtg	ggaatattcc	tcctgactta	tttgctagaa	840
tgacagcaga	ggaaatggct	agtgatgagc	tgaaagagat	gcggaaaaac	ttgaccaaag	900
aagccatcag	agagcatcag	atggccaaga	ctggtgggac	ccagactgac	ttgttcacat	960
gtggcaaatg	taaaaagaag	aattgcactt	acacacaggt	acaaacccgt	agtgctgatg	1020
aaccaatgac	aacatttgtt	gtctgtaatg	aatgtggaaa	tcgatggaag	ttctgttgag	1080
ttggaagaat	tggcaaaata	tctggaccat	taagaaaacg	gattttgtaa	ctagctttaa	1140
actaggccaa	gcaactagtt	ttcctgcaaa	tcaaattttt	aaagcaactt	gggttagact	1200
ttgtttttga	cctaacatcc	cttccttaaa	tgccttctgt	agtttcagat	cagtagggag	1260
accatataat	aattgtatgg	tacctgtttc	aaaacatatt	ttttctgttt	ttataagtaa	1320
gttgatatta	attaaactct	tggcaatatt	tcttcttct	taaaggaaaa	tataccttaa	1380
cttttttct	tttacactgt	gaaacataca	cagtagaaat	tctgttactc	tctgttatta	1440
atacataaat	gaaaatacat	ttttttccat	attggcatgt	agctacaaat	attaaaggag	1500
gagaaaaggt	aatataattt	taggtttacc	aaatatggtg	tgtattcaaa	taatacttga	1560
ccagcttatc	taaaatgtac	ataattttga	ggtagcttat	gaatttgatt	ttaattatta	1620
tgttcacaag	cttggaatat	tagatattat	tttgcatctg	taactaaccg	tgatcatcat	1680
ttcttgtaat	ttcttgtaca	tgtatattac	ttgttcttaa	tagatttttg	gaaacaagac	1740
tttattgaga	tcagtttggt	tttcctgtta	atttacctgt	ttgactttat	aatgtgtttt	1800
agttttgcag	aagaacactg	ttgtagttta	gaaggctttt	cataaatccc	ctcataggca	1860
aagatgaaaa	cttcccacta	ttttttccc	ctcttaggaa	gacatactgg	aaagaaaatg	1920
tttagcatct	tagtgtagta	tagctattgt	aaacagttca	tgactagatt	ttgattcgga	1980
aatctatact	gaccaaggat	taatcttaag	gattgtataa	ttcattaaag	ctgtggtctt	2040
tccatgtgga	gactgataga	aaataatttt	gtcccaagtc	ttatttgctg	actttttctg	2100

tcatgagtga gattgttgaa	caaactgaat	atatgggcta	tagcaagtag	ctttacagta	2160
cagatettae aattaagttt	tgcttttgtt	aaagtgtgta	ccatttttc	tgtttggagt	2220
aagacaaaaa ttgttttgac	ataggttccc	tagggtacac	ttgctctagc	atactttaaa	2280
ggccactgtt gcaaagtcta	cattttatgc	tgaatctgca	ttctgtcagg	cacccataga	2340
aagacetcag tacatgettt	gcactctcct	ttgctccctt	tttccaattt	cttattgcat	2400
atcattttgt tgtaatacag	aaagcagcat	ttttaaatgt	ccgtgttaag	aattggcccg	2460
ctggtaccaa ctcacctcta	ttttgtcagt	tcatagttga	agattttgtt	ttatttcaaa	2520
aagaaagtac atttttgaaa	taatgtttca	gaataaaata	atctcacttt	taagtgatcc	2580
attttaaaat ttgtaattca	ataaagtttt	ttttgttgtt	aaacataaaa	aaaa	2634
<210> 351 <211> 2090 <212> DNA <213> Homo sapiens <400> 351					
gggccgtggc tcgtcggggt	cagtgtcttt	tggctccgag	ggcagtcgct	gggcttccga	60
gaggggttcg ggccgcgtag	gggcgctttg	ttttgttcgg	ttttgtttt	ttgagagtgc	120
gagagaggeg gtegtgeaga	cccgggagaa	agatgtcaaa	cgtgcgagtg	tctaacggga	180
gccctagcct ggagcggatg	gacgccaggc	aggcggatca	ccccaagccc	tcggcctgca	240
ggaacctctt cggcccggtg	gaccacgaag	agttaacccg	ggacttggag	aagcactgca	300
gagacatgga agaggcgagc	cagcgcaagt	ggaatttcga	ttttcagaat	cacaaacccc	360
tagagggcaa gtacgagtgg	caagaggtgg	agaagggcag	cttgcccgag	ttctactaca	420
gacccccgcg gccccccaaa	ggtgcctgca	aggtgccggc	gcaggagagc	caggatggca	480
gegggageeg eeeggeggeg	cctttaattg	gggctccggc	taactctgag	gacacgcatt	540
tggtggaccc aaagactgat	ccgtcggaca	gccagacggg	gttagcggag	caatgcgcag	600
gaataaggaa gcgacctgca	accgacgatt	cttctactca	aaacaaaaga	gccaacagaa	660
Cagaagaaaa tgtttcagac	ggttccccaa	atgccggttc	tgtggagcag	acgcccaaga	720
agcctggcct cagaagacgt	caaacgtaaa	cagctcgaat	taagaatatg	tttccttgtt	780
tatcagatac atcactgctt	gatgaagcaa	ggaagatata	catgaaaatt	ttaaaaatac	840

900

960

1020

1080

atatcgctga cttcatggaa tggacatcct gtataagcac tgaaaaacaa caacacaata

acactaaaat tttaggcact cttaaatgat ctgcctctaa aagcgttgga tgtagcatta

tgcaattagg tttttcctta tttgcttcat tgtactacct gtgtatatag tttttacctt

ttatgtagca cataaacttt ggggaaggga gggcagggtg gggctgacga actgacgtgg

agcggggtat	gaagagcttg	ctttgattta	cagcaagtag	ataaatattt	gacttgcatg	1140
aagagaagca	attttgggga	agggtttgaa	ttgttttctt	taaatatgta	atgtcccttt	1200
cagagacagc	tgatacttca	tttaaaaaaa	tcacaaaaat	ttgaacactg	gctaaagata	1260
attgctattt	atttttacaa	gaagtttatt	ctcatttggg	agatctggtg	atctcccaag	1320
ctatctaaag	tttgttagat	agctgcatgt	ggctttttta	aaaaagcaac	agaaacctat	1380
cctcactgcc	ctccccagtc	tctcttaaag	ttggaattta	ccagttaatt	actcagcaga	1440
atggtgatca	ctccaggtag	tttggggcaa	aaatccgagg	tgcttgggag	ttttgaatgt	1500
taagaattga	ccatctgctt	ttattaaatt	tgttgacaaa	attttctcat	tttcttttca	1560
cttcgggctg	tgtaaacaca	gtcaaaataa	ttctaaatcc	ctcgatattt	ttaaagatct	1620
gtaagtaact	tcacattaaa	aaatgaaata	ttttttaatt	taaagcttac	tetgtecatt	1680
tatccacagg	aaagtgttat	ttttaaagga	aggttcatgt	agagaaaagc	acacttgtag	1740
gataagtgaa	atggatacta	catctttaaa	cagtatttca	ttgcctgtgt	atggaaaaac	.1800
catttgaagt	gtacctgtgt	acataactct	gtaaaaacac	tgaaaaatta	tactaactta	1860
tttatgttaa	aagattttt	ttaatctaga	caatatacaa	gccaaagtgg	catgttttgt	1920
gcatttgtaa	atgctgtgtt	gggtagaata	ggttttcccc	tcttttgtta	aataatatgg	1980
ctatgcttaa	aaggttgcat	actgagccaa	gtataatttt	ttgtaatgtg	tgaaaaagat	2040
gccaattatt	gttacacatt	aagtaatcaa	taaagaaaac	ttccatagct		2090

<210> 352

<211> 738

<212> DNA

<213> Homo sapiens

<400> 352 aaagcagaat tgagagtttg ttcttacaca caagtttaat gccaccttcc tctgtctgcc 60 atggaccaac aagcaatata tgctgagtta aacttaccca cagactcagg cccagaaagt 120 180 tetteacett catetettee tegggatgte tgteagggtt cacettggea teaatttgee ctgaaactta gctgtgctgg gattattctc cttgtcttgg ttgttactgg gttgagtgtt 240 tcagtgacat ccttaataca gaaatcatca atagaaaaat gcagtgtgga cattcaacag 300 agcaggaata aaacaacaga gagaccgggt ctcttaaact gcccaatata ttggcagcaa 360 ctccgagaga aatgcttgtt attttctcac actgtcaacc cttggaataa cagtctagct 420 gattgttcca ccaaagaatc cagcctgctg cttattcgag ataaggatga attgatacac 480 acacagaacc tgatacgtga caaagcaatt ctgttttgga ttggattaaa tttttcatta 540 tcagaaaaga actggaagtg gataaacggc tcttttttaa attctaatga cttagaaatt 600

agaggtgatg	ctaaagaaaa	cagctgtatt	tccatctcac	agacatctgt	gtattctgag	660
tactgtagta	cagaaatcag	atggatetge	caaaaagaac	taacacctgt	gagaaataaa	720
gtgțatcctg	actcttga					738
<210> 353 <211> 835 <212> DNA <213> Homo	o sapiens					
<400> 353 agcccttgtg	gagctgacca	cgttgcctct	tacggtgtaa	acttgtacca	gtcttatggt	60
ccctctgggc	agtacagcca	tgaatttgat	ggagacgagg	agttctatgt	ggacctggag	120
aggaaggaga	ctgtctggca	gttgcctctg	ttccgcagat	ttagaagatt	tgacccgcaa	180
tttgcactga	caaacatcgc	tgtgctaaaa	cataacttga	acatcgtgat	taaacgctcc	240
aactctaccc	ctgctaccaa	tgaggttcct	gaggtcacag	tgttttccaa	gtctcccgtg	300
acactgggtc	agcccaacac	cctcatctgt	cttgtggaca	acatctttcc	tcctgtggtc	360
aacatcacct	ggctgagcaa	tgggcactca	gtcacagaag	gtgtttctga	gaccagcttc	420
ctctccaaga	gtgatcattc	cttcttcaag	atcagttacc	tcaccttcct	cccttctgat	480
gatgagattt	atgactgcaa	ggtggagcac	tggggcctgg	atgageetet	tctgaaacac	540
tgggagcctg	agattccaac	acctatgtca	gacctcacag	agactgtggt	ctgcgccctg	600
gggttgtctg	tgggcctcgt	gggcattgtg	gtggggaccg	tcttgatcat	ccgaggcctg	660
cgttcagttg	gtgcttccag	acaccaaggg	cccttgtgaa	tcccatcctg	aaaaggaagg	720
tgttacctac	taagagatgc	ctggggtaag	ccgcccagct	acctaattcc	tcagtaacat	780
cgatctaaaa	tctccatgga	agcaataaat	tccctttaag	agatctatgt	caaat	835
<210> 354 <211> 325 <212> DNA <213> Homo	o sapiens				·	
<400> 354 cagcctgtgc	tgactcaatc	atcctctgcc	tetgettece	tgggatcctc	ggtcaagctc	60
acctgcactc	tgagcagtgg	gcacagtagc	tacatcatcg	catggcatca	gcagcagcca	120
gggaaggccc	ctcggtactt	gatgaagctt	gaaggtagtg	gaagctacaa	caaggggagc	180
ggagttcctg	atcgcttctc	aggctccagc	tctggggctg	accgctacct	caccatctcc	240
aacctccagt	ttgaggatga	ggctgattat	tactgtgaga	cctgggacag	taacattcgg	300
gtgttcggcg	gagggaccaa	gctga				325

<210> 355 <211> 2282 <212> DNA <213> Homo sapiens

<400> 355 gacteegggg egacegeege gagteegeag tagtteggge catggaggeg gageegeege 60 tetaccegat ggcggggct gcggggccgc agggcgacga ggacctgctc ggggtcccgg 120 acgggcccga ggccccgctg gacgagctgg tgggcgcgta ccccaactac aacgaggagg 180 aggaggagcg ccgctactac cgccgcaagc gcctgggcgt gctcaagaac gtgctggctg 240 ccagcgccgg gggcatgctc acctacggcg tctacctggg cctcctgcag atgcagctga 300 tectgeacta egacgagace tacegegagg tgaagtatgg caacatgggg etgeeegaca 360 tcgacagcaa aatgctgatg ggcatcaacg tgactcccat cgccgccctg ctctacacac 420 ctgtgctcat caggtttttt ggaacgaagt ggatgatgtt cctcgctgtg ggcatctacg 480 ccctctttgt ctccaccaac tactgggagc gctactacac gcttgtgccc tcggctgtgg 540 ccctgggcat ggccatcgtg cctctttggg cttccatggg caactacatc accaggatgg 600 cgcagaagta ccatgagtac tcccactaca aggagcagga tgggcagggg atgaagcagc 660 ggcctccgcg gggctcccac gcgccctatc tcctggtctt ccaagccatc ttctacagct 720 tettecatet gagettegee tgegeeeage tgeeeatgat ttattteetg aaccactace 780 tgtatgacct gaaccacacg ctgtacaatg tgcagagctg cggcaccaac agccacggga 840 tecteagegg etteaacaag aeggttetge ggaegeteee geggagegga aaceteattg 900 tggtggagag cgtgctcatg gcagtggcct tcctggccat gctgctggtg ctgggtttgt 960 gcggagcegc ttaccggccc acggaggaga tcgatctgcg cagcgtgggc tggggcaaca 1020 tettecaget gecetteaag caegtgegtg actaeegeet gegeeacete gtgeetttet 1080 ttatctacag cggcttcgag gtgctctttg cctgcactgg tatcgccttg ggctatggcg 1140 tgtgctcggt ggggctggag cggctggctt acctcctcgt ggcttacagc ctgggcgcct 1200 cagcogocto actootgggo ctgctgggco tgtggctgcc acgcccggtg cccctggtgg 1260 ccggagcagg ggtgcacctg ctgctcacct tcatcctctt tttctgggcc cctgtgcctc 1320 gggtcctgca acacagctgg atcctctatg tggcagctgc cctttggggt gtgggcagtg 1380 ccctgaacaa gactggactc agcacactcc tgggaatctt gtacgaagac aaggagagac 1440 aggacttcat cttcaccatc taccactggt ggcaggctgt ggccatcttc accgtgtacc 1500 tgggctcgag cctgcacatg aaggctaagc tggcggtgct gctggtgacg ctggtggcgg 1560 ccgcggtctc ctacctgcgg attgagcaga agctgcggcg gggcgtggcc ccgcgccagc 1620 ceegeateee geggeeeeag cacaaggtge geggttaeeg etaettggag gaggacaaet 1680

cggacgagag	cgacgcggag	ggcgagcatg	gggacggcgc	ggaggaggag	gcgccgcccg	1740
cagggcccag	geetggeeee	gagcccgctg	gactcggccg	ccggccctgc	ccgtacgaac	1800
aggcgcaggg	gggagacggg	ccggaggagc	agtgaggggc	cgcctggtcc	ccggactcag	1860
cctccctcct	cgccggcctc	agtttaccac	gtctgaggtc	ggggggaccc	cctccgagtc	1920
ccgcgctgtc	ttcaaaggcc	cctgtctccc	ctccccgacg	ttggggacgc	ccctcccaga	1980
gcccaggtca	cctccgggct	tccgcagccc	cctccaaggc	ggagtggagc	cttgggaacc	2040
cctcggccaa	gcacaggggt	tcgaaaatac	agctgaaacc	ccgcgggccc	ttagcacgcg	2100
ccccagcgcc	ggagcacggt	cagggtcttc	ttgcgacccg	gcccgctcca	gatccccaca	2160
gctttcggcc	gcggacccgg	gccgcgtgtg	_agcgcacttt	gcacctccta	tccccagggt	2220
ccgccgagag	ccacgatttt	ttacagaaaa	tgagcaataa	agagattttg	tactgtcaaa	2280
aa						2282
<210> 356 <211> 1759 <212> DNA <213> Homo	e o sapiens					
<400> 356 ggccgcggag	ccgggcggag	ctggcttgcg	gctcccgggg	ccggctctcc	ggccggagac	60
atggcccggg	ggcccggccc	gctaggcagg	catagaacag	atacggtcgc	catgcccaag	120
agaggaaagc	gactcaagtt	ccgggcccac	gacgcctgct	ccggccgagt	gaccgtggcg	180
gattacgcca	actcggatcc	ggcggtcgtg	aggtctggac	gagtcaagaa	agccgtagcc	240
aacgctgttc	agcaggaagt	aaaatctctt	tgtggcttgg	aagcctctca	ggttcctgca	300
gaggaagctc	tttctggggc	tggtgagccc	tgtgacatca	tcgacagcag	tgatgagatg	360
gatgcccagg	aggaaagcat	ccatgagaga	actgtctcca	gaaaaaagaa	aagcaagaga	420
cacaaagaag	aactggacgg	ggctggagga	gaagagtatc	ccatggatat	ttggctattg	480
ctggcctcct	atatccgtcc	tgaggacatt	gtgaatttt	ccctgatttg	taagaatgcc	540
tggactgtca	cttgcactgc	tgccttttgg	accaggttgt	accgaaggca	ctacacgctg	600
gatgcttccc	tgcctttgcg	tctgcgacca	gagtcaatgg	agaagctgcg	ctgtctccgg	660
gcttgtgtga	tccgatctct	gtaccatatg	tatgagccat	ttgctgctcg	aatctccaag	720
aatccagcca	ttccagaaag	cacccccagc	acattaaaga	attccaaatg	cttacttttc	780
tggtgcagaa	agattgttgg	gaacagacag	gaaccaatgt	gggaattcaa	cttcaagttc	840
aaaaaacagt	cccctaggtt	aaagagcaag	tgtacaggag	gattgcagcc	tecegtteag	900
tacgaagatg	ttcataccaa	tccagaccag	gactgctgcc	tactgcaggt	caccaccctc	960
•						

aatttcatct ttattccgat tgtcatggga atgatattta ctctgtttac tatcaatgtg	1020
agcacggaca tgcggcatca tcgagtgaga ctggtgttcc aagattcccc tgtccatggt	1080
ggtcggaaac tgcgcagtga acagggtgtg caagtcatcc tggacccagt gcacagcgtt	1140
cggctctttg actggtggca tcctcagtac ccattctccc tgagagcgta gttactgctt	1200
cccatccctt gggggcagcc tcgagtgtag tccattagta atcagattcc agtttggaca	1260
gggtggctgg attgtatatc tcgttagtaa tgtacatgct cttcaggttc tagggctcct	1320
gttaggggag ggagaaatgt tgaatcaaga gggaaaacaa ctactatgat ttataaacat	1380
attttaatgt aaaaatttgc atttaaaagg agtggccctg ttttctgtgt taaaacccca	1440
tttggtgcta ttgagtttgt tctttattct tttatcccag tgaaaattgt tgatcttgct	1500
gtagggaaaa attaaactct ttgaatctcc aaacaaggaa gtttcagcat tcccttatgg	1560
atcagaggaa cettagagge etgaaattgt tgetteeagt ttagetgeee etcaaattea	1620
agtgaatatt ttcccttctc cctttaccct tctccagaaa taaagcaggt gacagggttt	1680
tcagaatctt aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1740
aaaaaaaaa aaaaaaaaa	1759
<210> 357 <211> 1314 <212> DNA <213> Homo sapiens	
<400> 357 atggcatccg ttgcagttga tccacaaccg agtgtggtga ctcgggtggt caacctgccc	60
ttggtgagct ccacgtatga cctcatgtcc tcagcctatc tcagtacaaa ggaccagtat	120
ccctacctga agtctgtgtg tgagatggca gagaacggtg tgaagaccat cacctccgtg	180
gccatgacca gtgctctgcc catcatccag aagctagagc cgcaaattgc agttgccaat	240
acctatgeet gtaagggget agacaggatt gaggagagae tgeetattet gaateageea	300
tcaactcaga ttgttgccaa tgccaaaggc gctgtgactg gggcaaaaga tgctgtgacg	360
actactgtga ctggggccaa ggattctgtg gccagcacga tcacaggggt gatggacaag	420
accaaagggg cagtgactgg cagtgtggag aagaccaagt ctgtggtcag tggcagcatt	480
aacacagtet tggggagteg gatgatgeag etegtgagea gtggegtaga aaatgeacte	540
accaaatcag agctgttggt agaacagtac etceetetea etgaggaaga actagaaaaa	600
gaagcaaaaa aagttgaagg atttgatctg gttcagaagc caagttatta tgttagactg	660
ggatccctgt ctaccaagct tcactcccgt gcctaccagc aggctctcag cagggttaaa	
2 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	720

gaatttgcca	ggaagaatgt	gtatagtgcc	aatcagaaaa	ttcaggatgc	tcaggataag	840
ctctacctct	catgggtaga	gtggaaaagg	agcattggat	atgatgatac	tgatgagtcc	900
cactgtgctg	agcaatttga	gtcacgtact	cttgcaattg	cccgcaacct	gactcagcag	960
ctccagacca	cgtgccacac	cctcctgtcc	aacatccaag	gtgtaccaca	gaacatccaa	1020
gatcaagcca	agcacatggg	ggtgatggca	ggcgacatct	actcagtgtt	ccgcaatgct	1080
gcctccttta	aagaagtgtc	tgacagcctc	ctcacttcta	gcaaggggca	gctgcagaaa	1140
atgaaggaat	ctttagatga	cgtgatggat	tatcttgtta	acaacacgcc	cctcaactgg	1200
ctggtaggtc	ccttttatcc	tcagctgact	gagtctcaga	atgctcagga	ccaaggtgca	1260
gagatggaca	agagcagcca	ggagacccag	cgatctgagc	ataaaaçtca	ttaa	1314

<210> 358

<211> 8187

<212> DNA

<213> Homo sapiens

<400> 358 cccgagaagc ggcggggcgg cgggccggcg ggcggggcgc agagccaggc agcgcaggta 60 tagccaggct ggagaaaaga agctgccacc atggttgcac tttcactgaa gatcagcatt 120 gggaatgtgg tgaagacgat gcagtttgag ccgtctacca tggtgtacga cgcctgccgc 180 240 atcattcgtg agcggatccc agaggcccca gctggtcctc ccagcgactt tgggctcttt ctgtcagatg atgaccccaa aaagggtata tggctggagg ctgggaaagc tttggactac 300 360 tacatgctcc gaaatgggga cactatggag tacaggaaga aacagagacc cctgaagatc cgtatgctgg atggaactgt gaagacgatc atggtggatg actctaagac tgtcactgac 420 atgeteatga ceatetgtge eegcattgge ateaceaate atgatgaata tteattggtt 480 cgagagctga tggaagagaa aaaggaggaa ataacaggga ccttaagaaa ggacaagaca 540 ttgctgcgag atgaaaagaa gatggagaaa ctaaagcaga aattgcacac agatgatgag 600 660 ttgaactggc tggaccatgg tcggacactg agggagcagg gtgtagagga gcacgagacg ctgctgctgc ggaggaagtt cttttactca gaccagaatg tggattcccg ggaccctgta 720 cagetgaace teetgtatgt geaggeacga gatgacatee tgaatggete eeaceetgte 780 tcctttgaca aggcctgtga gtttgctggc ttccaatgcc agatccagtt tgggccccac 840 aatgagcaga agcacaaggc tggcttcctt gacctgaagg acttcctgcc caaggagtat 900 gtgaagcaga agggagagcg taagatcttc caggcacaca agaattgtgg gcagatgagt 960 gagattgagg ccaaggtccg ctacgtgaag ctagcccgtt ctctcaagac ttacggtgtc 1020 teettettee tggtgaagga aaaaatgaaa gggaagaaca agetagtgee caggettetg 1080

ggcatcacca	aggagtgtgt	gatgcgagtg	gatgagaaga	ccaaggaagt	gatccaggag	1140
tggaacctca	ccaacatcaa	acgctgggct	gcgtctccca	aaagcttcac	cctggatttt	1200
ggagattacc	aagatggcta	ttactcagta	cagacaactg	aaggggagca	gattgcacag	1260
ctcattgccg	gctacatcga	tatcatcctg	aagaagaaaa	aaagcaagga	tcactttggg	1320
ctggaaggag	atgaggagtc	tactatgctg	gaggactcag	tgtcccccaa	aaagtcaaca	1380
gtcctgcagc	agcaatacaa	ccgggtgggg	aaagtggagc	atggctctgt	ggccctgcct	1440
gccatcatgc	gctctggagc	ctctggtcct	gagaatttcc	aggtgggcag	catgccccct	1500
gcccagcagc	agattaccag	cggccagatg	caccgaggac	acatgcctcc	tctgacttca	1560
gcccagcagg	cactcactgg	aaccattaac	tccagcatgc	aggccgtgca	ggctgcccag	1620
gccaccctgg	atgactttga	cactctgccg	cctcttggcc	aggatgctgc	ctctaaggcc	1680
tggcgtaaaa	acaagatgga	tgaatcaaag	catgagatcc	actctcaggt	agatgccatc	1740
acagctggta	ctgcgtctgt	ggtgaacctg	acagcagggg	accctgctga	gacagactat	1800
accgcagtgg	gctgtgcagt	caccacaatc	tcctccaacc	tgacggagat	gtcccgtggg	1860
gtgaagctgc	tggctgcctt	gctggaggac	gaaggcggca	gtggtcggcc	cctgttgcag	1920
gcagcaaagg	gccttgcggg	agcagtgtca	gaactgctgc	gcagtgccca	accagccagt	1980
gctgagcccc	gtcagaacct	gctgcaagca	gctgggaacg	tgggccaggc	cagtggggag	2040
ctgttgcaac	aaattgggga	aagtgatact	gacccccact	tccaggatgc	gctaatgcag	2100
ctcgccaaag	ctgtggcaag	tgctgcagct	gccctggtcc	tcaaggccaa	gagtgtggcc	2160
cagcggacag	aggactcggg	acttcagacc	caagttattg	ctgcagcaac	acagtgtgcc	2220
ctatccactt	cccaactagt	ggcctgtact	aaggtggtgg	cacctacaat	cagctcacct	2280
gtctgccaag	agcaactggt	ggaggctgga	cgactggtag	ccaaagccgt	ggagggctgt	2340
gtgtctgcct	cccaggcagc	tacagaggat	gggcaactgt	tgcgaggggt	aggagcagca	2400
gccacagctg	tcacccaggc	cctaaatgag	ctgctgcagc	atgtgaaagc	ccatgccaca	2460
ggggctgggc	ctgctggccg	ttatgaccag	gctactgaca	ccatcctaac	cgtcactgag	2520
aacatcttta	gctccatggg	tgatgctggg	gagatggtgg	gacaggcccg	catcctggcc	2580
caagccacat	ctgacctggt	caatgccatc	aaggctgatg	ctgaggggga	aagtgatctg	2640
gagaactccc	gcaagctctt	aagtgctgcc	aagatcctag	ctgatgccac	agccaagatg	2700
gtagaggctg	ccaagggagc	agctgcccac	cctgacagtg	aggagcagca	gcagcggctg	2760
cgggaggcag	ctgaggggct	gcgcatggcc	accaatgcag	ctgcgcagaa	tgccatcaag	2820
aaaaagctgg	tgcagcgcct	ggagcatgca	gccaagcagg	ctgcagcctc	agccacacag	2880

			•			
accatcgctg	cagctcagca	cgcagcctct	acccccaaag	cctctgccgg	ccccagccc	2940
ctgctggtgc	agagctgcaa	ggcagtggca	gagcagattc	cactgctggt	gcagggcgtc	3000
cgaggaagcc	aagcccagcc	tgacagcccc	agcgctcagc	ttgccctcat	tgctgccagc	3060
cagagcttcc	tgcagccagg	tgggaagatg	gtggcagctg	caaaggcctc	agtgccaacg	3120
attcaggacc	aggcttcagc	catgcagctg	agtcagtgtg	ccaagaacct	gggcaccgcg	3180
ctggctgaac	tccggacggc	tgcccagaag	gctcaggaag	catgtggacc	tttggagatg	3240
gattctgcac	tgagtgtggt	acagaatcta	gagaaagatc	tacaggaagt	gaaggcagca	3300
gctcgagatg	gcaagcttaa	acccttacct	ggggagacaa	tggagaagtg	tacccaggac	3360
ctgggcaaca	gcaccaaagc	cgtgagctca	gccatcgccc	agctactggg	agaggttgcc	3420
cagggcaatg	agaattatgc	aggtattgca	gctcgggatg	tggcaggtgg	gctgcggtca	3480
ctggcccagg	ccgctagggg	agtcgctgca	ctgacgtcag	atcctgcagt	gcaggccatt	3540
gtacttgata	cggccagtga	tgtgctggac	aaggʻccagca	gcctcattga	ggaggcgaaa	3600
aaggcagctg	gccatccagg	ggaccctgag	agecagcage	ggcttgccca	ggtggctaaa	3660
gcagtgaccc	aggctctgaa	ccgctgtgtc	agctgcctac	ctggccagcg	cgatgtggat	3720
aatgccctga	gggcagttgg	agatgccagc	aagcgactcc	tgagtgactc	getteeteet	3780
agcactggga	catttcaaga	agctcagagc	cggttgaatg	aagctgctgc	tgggctgaat	3840
caggcagcca	cagaactggt	gcaggcctct	cggggaaccc	ctcaggacct	ggctcgagcc	3900
tcaggccgat	ttggacagga	cttcagcacc	ttcctggaag	ctggtgtgga	gatggcaggc	3960
caggeteega	gccaggagga	ccgagcccaa	gttgtgtcca	acttgaaggg	catctccatg	4020
tcttcaagca	aacttcttct	ggctgccaag	gccctgtcca	cggaccctgc	tgcccctaac	4080
ctcaagagtc	agctggctgc	agctgccagg	gcagtaactg	acagcatcaa	tcagctcatc	4140
actatgtgca	cccagcaggc	acccggccag	aaggagtgtg	ataacgccct	gcgggaattg	4200
gagacggtcc	gggaactcct	ggagaaccca	gtccagccca	tcaatgacat	gtcctacttt	4260
ggttgcctgg	acagtgtaat	ggagaactca	aaggtgctgg	gcgaggccat	gactggcatc	4320
teccaaaatg	ccaagaacgg	aaacctgcca	gagtttggag	atgccatttc	cacagcctca	4380
aaggcacttt	gtggcttcac	cgaggcagct	gcacaggctg	catatctggt	tggtgtctct	4440
gaccccaata	gccaagctgg	acagcaaggg	ctagtggagc	ccacacagtt	tgcccgtgca	4500
aaccaggcaa	ttcagatggc	ctgccagagt	ttgggagagc	ctggctgtac	ccaggcccag	4560
gtgctctctg	cagccaccat	tgtggctaaa	cacacctctg	cactgtgtaa	cagetgtege	4620
ctggcttctg	cccgtaccac	caatcctact	gccaagcgcc	agtttgtaca	gtcagccaag	4680
gaggtggcca	acagcacagc	taatcttgtc	aagaccatca	aggcgctaga	tggggccttc	4740

acagaggaga	accgtgccca	gtgccgagca	gcaacagccc	ctctgctgga	ggctgtggac	4800
aatctgagtg	cctttgcgtc	caaccctgag	ttctccagca	ttcctgccca	gatcagccct	4860
gagggtcggg	ctgccatgga	gcccattgtg	atctctgcca	agacaatgtt	agagagtgcc	4920
gggggactca	tccagacagc	ccgggccctc	gcagtcaatc	cccgggaccc	cccgagctgg	4980
teggtgetgg	ccggccactc	ccgtactgtc	tcagactcca	tcaagaagct	aattacaagc	5040
atgagggaca	aggctccagg	gcagctggag	tgtgaaacgg	ccattgcagc	tctgaacagt	5100
tgtctacggg	acctagacca	ggcttccctc	gctgcagtca	gccagcagct	tgctccccgt	5160
gagggaatct	ctcaagaggc	cttgcacact	cagatgctca	ctgcagtcca	agagatetee	5220
catctcattg	agccgctggc	caatgctgcc	cgggctgaag	cctcccagct	gggacacaag	5280
gtgtcccaga	tggcgcagta	ctttgagccg	ctcaccctgg	ctgcagtggg	tgctgcctcc	5340
aagaccctga	gccacccgca	gcagatggca	ctcctggacc	agactaaaac	attggcagag	5400
tetgeeetge	agttgctata	cactgccaag	gaggctggtg	gtaacccaaa	gcaagcagct	5460
cacacccagg	aagccctgga	ggaggctgtg	cagatgatga	ccgaggccgt	agaggacctg	5520
acaacaaccc	tcaacgaggc	agccagtgct	gctggggtcg	tgggtggcat	ggtggactcc	5580
atcacccagg	ccatcaacca	gctagatgaa	ggaccaatgg	gtgaaccaga	aggttccttc	5640
gtggattacc	aaacaactat	ggtgcggaca	gccaaggcca	ttgcagtgac	cgttcaggag	5700
atggttacca	agtcaaacac	cagcccagag	gagctgggcc	ctcttgctaa	ccagctgacc	5760
agtgactatg	gccgtctggc	ctcggaggcc	aagcctgcag	cggtggctgc	tgaaaatgaa	5820
gagataggtt	cccatatcaa	acaccgggta	caggagctgg	gccatggctg	tgccgctctg	5880
gtcaccaagg	caggcgccct	gcagtgcagc	cccagtgatg	cctacaccaa	gaaggagctc	5940
atagagtgtg	cccggagagt	ctctgagaag	gtctcccacg	tcctggctgc	gctccaggct	6000
gggaatcgtg	gcacccaggc	ctgcatcaca	gcagccagcg	ctgtgtctgg	tatcattgct	6060
gacctcgaca	ccaccatcat	gttcgccact	gctggcacgc	tcaatcgtga	gggtactgaa	6120
actttcgctg	accaccggga	gggcatcctg	aagactgcga	aggtgctggt	ggaggacacc	6180
aaggtcctgg	tgcaaaacgc	agctgggagc	caggagaagt	tggcgcaggc	tgcccagtcc	6240
tccgtggcga	ccatcacccg	cctcgctgat	gtggtcaagc	tgggtgcagc	cagcctggga	6300
gctgaggacc	ctgagaccca	ggtggtacta	atcaacgcag	tgaaagatgt	agccaaagcc	6360
ctgggagacc	tcatcagtgc	aacgaaggct	gcagctggca	aagttggaga	tgaccctgct	6420
gtgtggcagc	taaagaactc	tgccaaggtg	atggtgacca	atgtgacatc	attgcttaag	6480
acagtaaaag	ccgtggaaga	tgaggccacc	aaaggcactc	gggccctgga	ggcaaccaca	6540

gaacacatac	ggcaggagct	ggcggttttc	tgttccccag	agccacctgc	caagacctct	6600
accccagaag	acttcatccg	aatgaccaag	ggtatcacca	tggcaaccgc	caaggccgtt	6660
gctgctggca	attcctgtcg	ccaggaagat	gtcattgcca	cagccaatct	gageegeegt	6720
gctattgcag	atatgcttcg	ggcttgcaag	gaagcagctt	accacccaga	agtggcccct	6780
gatgtgcggc	ttcgagccct	gcactatggc	cgggagtgtg	ccaatggcta	cctggaactg	6840
ctggaccatg	tactgctgac	cctgcagaag	ccaagcccag	aactgaagca	gcagttgaca	6900
ggacattcaa	agcgtgtggc	tggttccgtc	actgagctca	tccaggctgc	tgaagccatg	6960
aagggaacag	aatgggtaga	cccagaggac	cccacagtca	ttgctgagaa	tgagctcctg	7020
ggagetgeag	ccgccattga	ggctgcagcc	aaaaagctag	agcagctgaa	gccccgggcc	7080
aaacccaagg	aggcagatga	gtccttgaac	tttgaggagc	agatactaga	agctgccaag	7140
tccattgcag	cagccaccag	tgcactggta	aaggctgcgt	cggctgccca	gagagaacta	7200
gtggcccaag	ggaaggtggg	tgccattcca	gccaatgcac	tggacgatgg	gcagtggtcc	7260
cagggcctca	tttctgctgc	ccggatggtg	gctgcggcca	ccaacaatct	gtgtgaggca	7320
gccaatgcag	ctgtacaagg	ccatgccage	caggagaagc	tcatctcatc	agccaagcag	7380
gtagctgcct	ccacagecca	gctccttgtg	gcctgcaagg	tcaaggctga	ccaggactcg	7440
gaggcaatga	aacgacttca	ggctgctggc	aacgcagtga	agcgagcctc	agataatctg	7500
gtgaaagcag	cacagaaggc	tgcagccttt	gaagagcagg	agaatgagac	agtggtggtg	7560
aaagagaaga	tggttggcgg	cattgcccag	atcatcgcag	cacaggaaga	aatgcttcgg	7620
aaggaacgag	agctggaaga	ggcgcggaag	aaactggccc	agatccggca	gcagcagtac	7680
aagtttctgc	cttcagaget	tcgagatgag	cactaaagaa	gcctcttcta	tttaatgcag	7740
acccggccca	gagactgtgc	gtgccactac	caaagccttc	tgggctgtcg	gggcccaacc	7800
tgcccaaccc	cagcactccc	caaagtgcct	gccaaacccc	agggcctggc	cccgcccagt	7860
cccgcagtac	atcccctgtc	ccctccccaa	ccccaagtgc	cttcatgccc	tagggccccc	7920
caagtgcctg	cccctcccca	gagtattaac	gctccaagag	tattattaac	gctgctgtac	7980
ctcgatctga	atctgccggg	gccccagccc	actccaccct	gccagcagct	tccagccagt	8040
ccccacagcc	tcatcagctc	tcttcaccgt	tttttgatac	tatcttcccc	caccccagc	8100
tacccatagg	ggctgcagag	ttataagccc	caaacaggtc	atgctccaat	aaaaatgatt	8160
ctacctacaa	aaaaaaaaa	aaaaaaa				8187

<210> 359
<211> 726
<212> DNA
<213> Homo sapiens

<400> 359						
	aacaaccagc	tggatcagtt	ctcacaggag	ccacagetca	gagactggga	60
aacatggttc	caaaactgtt	cacttcccaa	atttgtctgc	ttcttctgtt	ggggcttatg	120
ggtgtggagg	gctcactcca	tgccagaccc	ccacagttta	cgagggctca	gtggtttgcc	180
atccagcaca	tcagtctgaa	ccccctcga	tgcaccattg	caatgcgggc	aattaacaat	240
tatcgatggc	gttgcaaaaa	ccaaaatact	tttcttcgta	caacttttgc	taatgtagtt	300
aatgtttgtg	gtaaccaaag	tatacgctgc	cctcataaca	gaactctcaa	caattgtcat	360
cggagtagat	teegggtgee	tttactccac	tgtgacctca	taaatccagg	tgcacagaat	420
atttcaaact	gcaggtatgc	agacagacca	ggaaggaggt	tctatgtagt	tgcatgtgac	480
aacagagatc	cacgggattc	tccacggtat	cctgtggttc	cagttcacct	ggataccacc	540
atctaagctc	ctgtatcagc	agtcctcatc	atcactcatc	tgccaagctc	ctcaatcata	600
gccaagatcc	catccctcca	tgtactctgg	gtatcagcaa	ctgtcctcat	cagtctccat	660
accccttcag	ctttcctgag	ctgaagtcct	tgtgaaccct	gcaataaact	gctttgcaaa	720
ttcatc						726
<210> 360						
<211> 2843 <212> DNA <213> Home	sapiens					
<211> 2843 <212> DNA <213> Home <400> 360		gctgagagtg	cggagtgtgt	gctccgggct	cggaacacac	60
<211> 284 <212> DNA <213> Home <400> 360 ccttctccc	o sapiens					60 120
<211> 284: <212> DNA <213> Home <400> 360 ccttctcccc atttattatt	sapiens ggcggttagt	aaaaaaatct	aaaaaaatct	tttaaaaaac	cccaaaaaaa	
<211> 284: <212> DNA <213> Home <400> 360 ccttctcccc atttattatt tttacaaaaa	ggcggttagt	aaaaaaatct	aaaaaaatct	tttaaaaaac	cccaaaaaaa	120
<211> 284: <212> DNA <213> Home <400> 360 ccttctcccc atttattatt tttacaaaaa aaaataaccc	ggcggttagt aaaaaatcca atccgcgtct	aaaaaaatct cccccgccgg ccgagaccga	aaaaaaatct agacttttat cccgcccgcc	tttaaaaaac tttttttctt cgcggccccg	cccaaaaaaa cctctttat cagcagctcc	120 180
<211> 284: <212> DNA <213> Home <400> 360 ccttctcccc atttattatt tttacaaaaa aaaataaccc aagaaggaac	ggcggttagt aaaaaatcca atccgcgtct ggtgaagcag	aaaaaaatct cccccgccgg ccgagaccga aggccttccc	aaaaaaatct agacttttat cccgcccgcc gctgcccgga	tttaaaaaac tttttttctt cgcggccccg cccgacaccg	cccaaaaaaa cctctttat cagcagctcc ccaccctcgc	120 180 240
<211> 284: <212> DNA <213> Home <400> 360 ccttctcccc atttattatt tttacaaaaa aaaataaccc aagaaggaac tccccgccgg	ggcggttagt aaaaaatcca atccgcgtct ggtgaagcag caagagaccg	aaaaaaatct cccccgccgg ccgagaccga aggccttccc ccagcggcag	aaaaaaatct agacttttat cccgcccgcc gctgcccgga tggatcgacc	tttaaaaaac tttttttctt cgcggccccg cccgacaccg ccgttctgcg	cccaaaaaaa cctctttat cagcagctcc ccaccctcgc gccgttgagt	120 180 240 300
<211> 284: <212> DNA <213> Home <400> 360 ccttctcccc atttattatt tttacaaaaa aaaataaccc aagaaggaac tccccgccgg agtttcaat	ggcggttagt aaaaaatcca atccgcgtct ggtgaagcag caagagaccg cagccggcag	aaaaaaatct cccccgccgg ccgagaccga aggccttccc ccagcggcag ttttgtccct	aaaaaaatct agacttttat cccgcccgcc gctgcccgga tggatcgacc ctgcgcttgc	tttaaaaaac tttttttctt cgcggccccg cccgacaccg ccgttctgcg tccccgctcc	cccaaaaaaa cctctttat cagcagctcc ccaccctcgc gccgttgagt cctcccccg	120 180 240 300 360
<pre><211> 284: <212> DNA <213> Home <400> 360 ccttctcccc atttattatt tttacaaaaa aaaataaccc aagaaggaac tccccgccgg agtttcaat gctccggccc</pre>	ggcggttagt aaaaaatcca atccgcgtct ggtgaagcag caagagaccg cagccggcag tccggttgat	aaaaaaatct cccccgccgg ccgagaccga aggccttccc ccagcggcag ttttgtccct cactcgctct	aaaaaaatct agacttttat cccgcccgcc gctgcccgga tggatcgacc ctgcgcttgc cctcctctca	tttaaaaaac tttttttctt cgcggccccg cccgacaccg ccgttctgcg tccccgctcc cggaaaggtc	cccaaaaaaa cctctttat cagcagctcc ccaccctcgc gccgttgagt cctcccccg	120 180 240 300 360 420
<pre><211> 284 <212> DNA <213> Home <400> 360 ccttctcccc atttattatt tttacaaaaa aaaataaccc aagaaggaac tccccgccgg agtttcaat gctccggccc ccctgcgggc</pre>	ggcggttagt aaaaaatcca atccgcgtct ggtgaagcag caagagaccg cagccggcag tccggttgat ccagccccgg	aaaaaaatct cccccgccgg ccgagaccga aggccttccc ccagcggcag ttttgtccct cactcgctct agatgaaccc	aaaaaaatct agacttttat cccgcccgcc gctgcccgga tggatcgacc ctgcgcttgc cctcctctca cagtgccccc	tttaaaaaac tttttttctt cgcggccccg cccgacaccg ccgttctgcg tccccgctcc cggaaaggtc agctaccca	cccaaaaaaa cctctttat cagcagctcc ccaccctcgc gccgttgagt cctcccccg gcggcctgtg tggcctcgct	120 180 240 300 360 420 480
<pre><211> 284: <212> DNA <213> Home <400> 360 ccttctcccc atttattatt tttacaaaaa aaaataaccc aagaaggaac tccccgccgg agtttcaat gctccggccc ccctgcgggc ctacgtgggg</pre>	ggcggttagt aaaaaatcca atccgcgtct ggtgaagcag caagagaccg cagccggcag tccggttgat ccagccccgg	aaaaaaatct cccccgccgg ccgagaccga aggccttccc ccagcggcag ttttgtccct cactcgctct agatgaaccc ccgacgtgac	aaaaaaatct agacttttat cccgcccgcc gctgcccgga tggatcgacc ctgcgcttgc cctcctctca cagtgccccc cgaggcgatg	tttaaaaaac tttttttctt cgcggccccg cccgacaccg ccgttctgcg tccccgctcc cggaaaggtc agctacccca ctctacgaga	cccaaaaaaa cctctttat cagcagctcc ccaccctcgc gccgttgagt cctcccccg gcggcctgtg tggcctcgct	120 180 240 300 360 420 480 540
<pre><211> 284 <212> DNA <213> Home <400> 360 ccttctcccc atttattatt tttacaaaaa aaaataaccc aagaaggaac tccccgccgg agtttcaat gctccggccc ccctgcgggc ctacgtggg< ggccgggccc</pre>	ggcggttagt aaaaaatcca atccgcgtct ggtgaagcag caagagaccg cagccggcag tccggttgat ccagccccgg agccgtcccg	aaaaaaatct cccccgccgg ccgagaccga aggccttccc ccagcggcag ttttgtccct cactcgctct agatgaaccc ccgacgtgac tccgggtctg	aaaaaaatct agacttttat cccgcccgcc gctgcccgga tggatcgacc ctgcgcttgc cctcctctca cagtgccccc cgaggcgatg cagggacatg	tttaaaaaac ttttttctt cgcggccccg cccgacaccg ccgttctgcg tccccgctcc cggaaaggtc agctacccca ctctacgaga atcacccgcc	cccaaaaaaa cctctttat cagcagctcc ccaccctcgc gccgttgagt cctcccccg gcggcctgtg tggcctcgct agttcagccc gctccttggg	120 180 240 300 360 420 480 540

tcgcaaaagt	ggagtaggca	acatattcat	taaaaatctg	gacaaatcca	ttgataataa	. 840
agcactgtat	gatacatttt	ctgcttttgg	taacatcctt	tcatgtaagg	tggtttgtga	900
tgaaaatggt	tccaagggct	acggatttgt	acactttgag	acgcaggaag	cagctgaaag	960
agctattgaa	aaaatgaatg	gaatgctcct	aaatgatcgc	aaagtatttg	ttggacgatt	1020
taagtctcgt	aaagaacgag	aagctgaact	tggagctagg	gcaaaagaat	tcaccaatgt	1080
ttacatcaag	aattttggag	aagacatgga	tgatgagcgc	cttaaggatc	tetttgggee	1140
tgccttaagt	gtgaaagtaa	tgactgatga	aagtggaaaa	tccaaaggat	ttggatttgt	1200
aagctttgaa	aggcatgaag	atgcacagaa	agctgtggat	gagatgaacg	gaaaggagct	1260
caatggaaaa	caaatttatg	ttggtcgagc	tcagaaaaag	gtggaacggc	agacggaact	1320
taagcgcaaa	tttgaacaga	tgaaacaaga	taggatcacc	agataccagg	gtgttaatct	1380
ttatgtgaaa	aatcttgatg	atggtattga	tgatgaacgt	ctccggaaag	agttttctcc	1440
atttggtaca	atcactagtg	caaaggttat	gatggagggt	ggtcgcagca	aagggtttgg	1500
ttttgtatgt	tteteeteee	cagaagaagc	cactaaagca	gttacagaaa	tgaacggtag	1560
aattgtggcc	acaaagccat	tgtatgtagc	tttagctcag	cgcaaagaag	agcgccaggc	1620
tcacctcact	aaccagtata	tgcagagaat	ggcaagtgta	cgagctgttc	ccaaccctgt	1680
aatcaacccc	taccagccag	cacctccttc	aggttacttc	atggcagcta	tcccacagac	1740
tcagaaccgt	gctgcatact	atcctcctag	ccaagttgct	caactaagac	caagtcctcg	1800
ctggactgct	cagggtgcca	gacctcatcc	attccaaaat	atgcccggtg	ctatccgccc	1860
agctgctcct	agaccaccat	ttagtactat	gagaccagct	tcttcacagg	ttccacgagt	1920 [.]
catgtcaaca	cagcgtgttg	ctaacacatc	aacacagaca	atgggtccac	gtcctgcagc	1980
tgcagccgct	gcagctactc	ctgctgtccg	caccgttcca	cagtataaat	atgctgcagg	2040
agttcgcaat	cctcagcaac	atcttaatgc	acagccacaa	gttacaatgc	aacagcctgc	2100
tgttcatgta	caaggtcagg	aacctttgac	tgcttccatg	ttggcatctg	cecetectea	2160
agagcaaaag	caaatgttgg	gtgaacggct	gtttcctctt	attcaagcca	tgcaccctac	2220
tettgetggt	aaaatcactg	gcatgttgtt	ggagattgat	aattcagaac	ttcttcatat	2280
gctcgagtct	ccagagtcac	tccgttctaa	ggttgatgaa	gctgtagctg	tactacaagc	2340
ccaccaaget	aaagaggctg	cccagaaagc	agttaacagt	gccaccggtg	ttccaactgt	2400
ttaaaattga	tcagggacca	tgaaaagaaa	cttgtgcttc	accgaagaaa	aatatctaaa	2460
catcgaaaaa	cttaaatatt	atggaaaaaa	aacattgcaa	aatataaaat	aaataaaaaa	2520
aggaaaggaa	actttgaacc	ttatgtaccg	agcaaatgcc	aggtctagca	aacataatgc	2580
tagtcctaga	ttacttattg	atttaaaaac	aaaaaaacac	aaaaaatagt	aaaatataaa	2640

2700 aacaaattaa tgttttatag accctgggaa aaagaatttt cagcaaagta caaaaattta aagcattcct ttctttaatt ttgtaattct ttactgtgga atagctcaga atgtcagttc 2760 2820 tqttttaaqt aacagaattg ataactgagc aaggaaacgt aatttggatt ataaaattct 2848 tgctttaata aaaattcctt aaacagtg <210> 361 <211> 524 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (254)..(254) <223> n is a, c, g, t or u <220> <221> misc feature <222> (257)..(257) <223> n is a, c, g, t or u <400> 361 tettettgge attggsgtge teettetege cateaattee tgeetgeggg ggggggggg 60 ttaataagcc aaaccccagg ggtgccggca tcttcctggc tgcttcctcc catggggtct 120 tgccctactg cagccccaaa tctttcctct ctcttcagac atcttggctt ccctgaccta 180 gacagteetg actgatggte cageeteaat eccaettatt tttggetagg cetteetggg 240 agtcataaaa gagntgnatc cattctagag gtgcacagcc tgtctcttcc ctcacaaatg 300 teagteecea agreatetg atceacette etaatatttt tgeeacetee aacttettte 360 aagatgaaaa ggaaatgtag agaagcaagg wcagggtaga cacttaatcc cactgactgt 420 ctwtaatcca ctcttctccc tctcwacctg gatgatctcc acactcctat ccatactcag 480 524 atwcaggata tattgttccc ctatttatgt gctaagcact ttca <210> 362 <211> 2415 <212> DNA <213> Homo sapiens <400> eggegeegeg agetteteet eteeteaega eegaggeaga geagteatta tggegaacet 60 tggetgetgg atgetggtte tetttgtgge cacatggagt gacetgggee tetgeaagaa 120 gcgcccgaag cctggaggat ggaacactgg gggcagccga tacccggggc agggcagccc 180 tggaggcaac cgctacccac ctcagggcgg tggtggctgg gggcagcctc atggtggtgg 240

300

ctgggggcag cctcatggtg gtggctgggg gcagccccat ggtggtggct ggggacagcc

tcatggtggt	ggctggggtc	aaggaggtgg	cacccacagt	cagtggaaca	agccgagtaa	360
gccaaaaacc	aacatgaagc	acatggctgg	tgctgcagca	gctggggcag	tggtgggggg	420
ccttggcggc	tacatgctgg	gaagtgccat	gagcaggccc	atcatacatt	teggeagtga	480
ctatgaggac	cgttactatc	gtgaaaacat	gcaccgttac	cccaaccaag	tgtactacag	540
gcccatggat	gagtacagca	accagaacaa	ctttgtgcac	gactgcgtca	atatcacaat	600
caagcagcac	acggtcacca	caaccaccaa	gggggagaac	ttcaccgaga	ccgacgttaa	660
gatgatggag	cgcgtggttg	agcagatgtg	tatcacccag	tacgagaggg	aatctcaggc	720
ctattaccag	agaggatcga	gcatggtcct	cttctcctct	ccacctgtga	tcctcctgat	780
ctctttcctc	atcttcctga	tagtgggatg	aggaaggtct	tcctgttttc	accatctttc	840
taatcttttt	ccagcttgag	ggaggcggta	tccacctgca	gcccttttag	tggtggtgtc	900
tcactctttc	ttctctcttt	gtcccggata	ggctaatcaa	tacccttggc	actgatgggc	960
actggaaaac	atagagtaga	cctgagatgc	tggtcaagcc	ccctttgatt	gagttcatca	1020
tgagccgttg	ctaatgccag	gccagtaaaa	gtataacagc	aaataaccat	tggttaatct	1080
ggacttattt	ttggacttag	tgcaacaggt	tgaggctaaa	acaaatctca	gaacagtctg	1140
aaataccttt	gcctggatac	ctctggctcc	ttcagcagct	agagctcagt	atactaatgc	1200
cctatcttag	tagagatttc	atagctattt	agagatattt	tccattttaa	gaaaacccga	1260
caacatttct	gccaggtttg	ttaggaggcc	acatgatact	tattcaaaaa	aatcctagag	1320
attcttagct	cttgggatgc	aggctcagcc	cgctggagca	tgagctctgt	gtgtaccgag	1380
aactggggtg	atgttttact	tttcacagta	tgggctacac	agcagctgtt	caacaagagt	1440
aaatattgtc	acaacactga	acctctggct	agaggacata	ttcacagtga	acataactgt	1500
aacatatatg	aaaggcttct	gggacttgaa	atcaaatgtt	tgggaatggt	gcccttggag	1560
gcaacctccc	attttagatg	tttaaaggac	cctatatgtg	gcattccttt	ctttaaacta	1620
taggtaatta	aggcagctga	aaagtaaatt	gccttctaga	cactgaaggc	aaatctcctt	1680
tgtccattta	cctggaaacc	agaatgattt	tgacatacag	gagagctgca	gttgtgaaag	1740
caccatcatc	atagaggatg	atgtaattaa	aaaatggtca	gtgtgcaaag	aaaagaactg	1800
cttgcatttc	tttatttctg	tctcataatt	gtcaaaaacc	agaattaggt	caagttcata	1860
gtttctgtaa	ttggcttttg	aatcaaagaa	tagggagaca	atctaaaaaa	tatcttaggt	1920
tggagatgac	agaaatatga	ttgatttgaa	gtggaaaaag	aaattctgtt	aatgttaatt	1980
aaagtaaaat	tattccctga	attgtttgat	attgtcacct	agcagațatg	tattactttt	2040
ctgcaatgtt	attattggct	tgcactttgt	gagtatctat	gtaaaaatat	atatgtatat	2100

aaaatatata	ttgcatagga	cagacttagg	agttttgttt	agagcagtta	acatctgaag	2160
tgtctaatgc	attaactttt	gtaaggtact	gaatacttaa	tatgtgggaa	acccttttgc	2220
gtggtcctta	ggcttacaat	gtgcactgaa	tcgtttcatg	taagaatcca	aagtggacac	2280
cattaacagg	tctttgaaat	atgcatgtac	tttatatttt	ctatatttgt	aactttgcat	2340
gttcttgttt	tgttatataa	aaaaattgta	aatgtttaat	atctgactga	aattaaacga	2400
gcgaagatga	gcacc					2415

<210> 363

<211> 1242

<212> DNA

<213> Homo sapiens

<400> 363

atttcatgtt atacttaata aaacaaaaca tacctgtata cacacacatt cactcacatt 60 gaagatgcaa gatgaagaaa gatacatgac attgaatgta cagtcaaaga aaaggagttc 120 tgcccaaaca tctcaactta catttaaaga ttattcagtg acgttgcact ggtataaaat 180 cttactggga atatctggaa ccgtgaatgg tattctcact ttgactttga tctccttgat 240 cctgttggtt tctcagggag tattgctaaa atgccaaaaa ggaagttgtt caaatgccac 300 tcagtatgag gacactggag atctaaaagt gaataatggc acaagaagaa atataagtaa 360 taaggacett tgtgettega gatetgeaga eeagacagta etatgeeaat eagaatgget 420 caaataccaa gggaagtgtt attggttctc taatgagatg aaaagctgga qtqacagtta 480 tgtgtattgt ttggaaagaa aatctcatct actaatcata catgaccaac ttgaaatggc 540 ttttatacag aaaaacctaa gacaattaaa ctacgtatgg attgggctta actttacctc 600 cttgaaaatg acatggactt gggtggatgg ttctccaata gattcaaaga tattcttcat 660 aaagggacca gctaaagaaa acagctgtgc tgccattaag gaaagcaaaa ttttctctga 720 aacctgcagc agtgttttca aatggatttg tcagtattag agtttgacaa aattcacagt 780 gaaataatca atgatcacta tttttggcct attagtttct aatattaatc tccaggtgta 840 agattttaaa gtgcaattaa atgccaaaat ctcttctccc ttctccctcc atcatcgaca 900 ctggtctagc ctcagagtaa cccctgttaa caaactaaaa tgtacacttc aaaattttta 960 cgtgatagta taaaccaatg tgacttcatg tgatcatatc caggattttt attcgtcgct 1020 tattttatgc caaatgtgat caaattatgc ctgtttttct gtatcttgcg ttttaaattc 1080 ttaataaggt cctaaacaaa atttettata tttetaatgg ttgaattata atgtgggttt 1140 atacattttt tacccttttg tcaaagagaa ttaactttgt ttccaggctt ttgctactct 1200 tcactcagct acaataaaca tcctgaatgt tttcttaaaa aa 1242

<210> 364 <211> 493 <212> DNA <213> Homo	o sapiens					
(243) Home	Dapieno					
<400> 364 gacatagatc	tcttaaaggg	aatttattgc	ttccatggga	gatttagata	gatgttactg	60
agggattaag	tagctgggcg	gcttaaccca	ggcatcctct	taatagggaa	aaacctcctt	120
ttcaggaagg	gaatcacaag	gggccttggt	gtctggaagc	cacaactgga	agcaggcctc	180
ggatgagtaa	gaaggttccc	accaaaatgg	ccaagagggc	cacagaaaac	cccagggggc	240
aggacacagt	ttttgtgagg	tctggaataa	gtgttggaat	cttagggtcc	cagtgtttta	300
gaagaaggtc	atacaaggcc	cagtggtcca	ccttggagtt	cttaatttca	tctatcgaaa	360
ggaggaaggt	gaggtgactg	gtctttaaga	aggaatgatt	aatcctggag	aggaagctgg	420
gttcagaaac	accetetgtg	actgagtggc	cattgtctcg	ccaggtgatg	ttggacccaa	480
gagagaagaa	gtt					493
<210> 365 <211> 158' <212> DNA <213> Home	7 o sapiens					
<400> 365 agcactctgc	gcgcccgctc	ttctgctgct	gtttgtctac	ttcctcctgc	ttccccgccg	60
ccgccgccgc	catcatgagg	gaaatcgtgc	acttgcaggc	cgggcagtgc	ggcaaccaaa	120
tcggcgccaa	gttttgggag	gtgatcagcg	atgagcacgg	categacece	acgggcacct	180
accacgggga	cagcgacctg	cagctggaac	gcatcaacgt	gtactacaat	gaggccaccg	240
gcggcaagta	cgtgccccgc	gccgtgctcg	tggatctgga	gcccggcacc	atggactccg	300
tgcgctcggg	gcccttcggg	cagatettee	ggccggacaa	cttcgttttc	ggtcagagtg	360
gtgctgggaa	caactgggcc	aaggggcact	acacagaagg	cgcggagctg	gtggactcgg	420
tgctggatgt	tgtgagaaag	gaggctgaga	gctgtgactg	cctgcagggt	ttccagctga	480
cccactccct	gggtggggg	actgggtctg	ggatgggtac	cctcctcatc	agcaagatcc	540
gggaggagta	cccagacagg	atcatgaaca	cgtttagtgt	ggtgccttcg	cccaaagtgt	600
cagacacagt	ggtggagccc	tacaacgcca	ccctctcagt	ccaccagete	gtagaaaaca	660
cagacgagac	ctactgcatt	gataacgaag	ctctctacga	catttgcttc	agaaccctaa	720
agctgaccac	gcccacctat	ggtgacctga	accacctggt	gtctgctacc	atgagtgggg	780
tcaccacctg	cctgcgcttc	ccaggccagc	tcaatgctga	cctgcggaag	ctggctgtga	840
acatggtccc	gtttccccgg	ctgcacttct	tcatgcccgg	ctttgcccca	ctgaccagcc	900

```
ggggcagcca gcagtaccgg gcgctgaccg tgcccgagct cacccagcag atgtttgatg
                                                                     960
                                                                    1020
ccaagaacat gatggctgcc tgcgaccccc gccatggccg ctacctgacg gttgccgccg
tgttcagggg ccgcatgtcc atgaaggagg tggatgagca aatgcttaat gtccaaaaca
                                                                    1080
aaaacagcag ctattttgtt gagtggatcc ccaacaatgt gaaaacggct gtctgtgaca
                                                                    1140
                                                                    1200
teccaceteg ggggetaaaa atgteegeea cetteattgg caacageacg gecatecagg
                                                                    1260
agctgttcaa gcgcatctcc gagcagttca cggccatgtt ccggcgcaag gccttcctgc
actggtacac gggcgagggc atggacgaga tggagttcac cgaggccgag agcaacatga
                                                                    1320
atgacetggt gteegagtae cageagtaee aggatgeeae ageegaggag gagggegagt
                                                                    1380
tcgaggagga ggctgaggag gaggtggcct agagccttca gtcactgggg aaagcaggga
                                                                    1440
                                                                    1500
agcagtgtga actctttatt cactcccage ctgtcctgtg gcctgtccca ctgtgtgcac
ttgctgtttt ccctgtccac atccatgctg tacagacacc accattgaag cattttcata
                                                                    1560
                                                                    1587
gtgaaaaaaa aaaaaaaa aaaaaaa
<210>
      366
      385
<211>
<212>
      DNA
<213>
      Homo sapiens
<400> 366
togatgtgaa tottgttgto caacaacogo gtoaggootg ottgotoggo cagggooato
                                                                      60
accgggacca ggcccgcgca ggacacgaga ttgtcctcgt cgaacacagc agagtcaggg
                                                                     120
ccgaacgtgt gggacacttg cactggaagt gcctttcttg aaccggtcag atcgttgcgt
                                                                     180
agagaacacc aatctttcca gttcagaggg cactttcatc attccgacac ccggacaacc
                                                                     240
agcctgttta tcggtggatc aaggctaagc ccagcggttc gcaagcaact tgaaactcgg
                                                                     300
catgtcctcc agaaacacca gcgcctcata gatccgctga tacccggggg ctggggatcc
                                                                     360
                                                                     385
gccaagcacc gtcctcatcc ttgcg
<210>
      367
<211>
      290
<212>
      DNA
<213> Homo sapiens
<220>
<221> misc_feature
      (283)..(283)
<222>
      n is a, c, g, t or u
<223>
<400> 367
acatqqctqq gggagggact gctgacccac caaqqtctca cactcctcct gccagctctg
                                                                      60
```

tcaccctggc caccacccaa cctgtcctta ctcagagctg cgggctga	agg gcatctctga 120
gtgtctctgc ctgggagcag gggtggtttc tacggtgaca gtgacgtg	gac tcagagettt 180
togaactgtg ctcccacggg gaccactggg cccttcaggg gaagctgo	cta ggggaaggac 240
tggcctggct ccagaatgtt gttgcctttt taagttttgt ttnttcac	290
<210> 368 <211> 2161 <212> DNA <213> Homo sapiens	
<400> 368 agtggagtgg cagcccaga actgggacca ccgggggtgg tgaggcgg	gcc cggcactggg 60
agetgeatet gaggettagt ecetgagete tetgeetgee cagactag	
attccctgcg cccccttcct ctccggaagc ccccaggatg gtgaggtg	•
cctcagtggg ctggatgcag agaccctgct caagggccga ggtgtcca	
ggctcggccc agtcgcaaga accagggtga cttctcgctc tccgtcag	
ggtgacccat attcggatcc agaactcagg ggatttctat gacctgta	atg gaggggagaa 360
gtttgcgact ctgacagagc tggtggagta ctacactcag cagcaggg	gtg teetgeagga 420
cegegaegge accateatee aceteaagta eeegetgaae tgeteega	atc ccactagtga 480
gaggtggtac catggccaca tgtctggcgg gcaggcagag acgctgct	gc aggccaaggg 540
cgagccctgg acgtttcttg tgcgtgagag cctcagccag cctggaga	act tegtgettte 600
tgtgctcagt gaccagccca aggctggccc aggctccccg ctcagggt	ca cccacatcaa 660
ggtcatgtgc gagggtggac gctacacagt gggtggtttg gagacctt	cg acagcctcac 720 .
ggacctggtg gagcatttca agaagacggg gattgaggag gcctcagg	gcg cetttgteta 780
cctgcggcag ccgtactatg ccacgagggt gaatgcggct gacattga	aga accgagtgtt 840
ggaactgaac aagaagcagg agtccgagga tacagccaag gctggctt	ct gggaggagtt 900
tgagagtttg cagaagcagg aggtgaagaa cttgcaccag cgtctgga	ag ggcagcggcc 960
agagaacaag ggcaagaacc gctacaagaa cattctcccc tttgacca	ca gccgagtgat 1020
cctgcaggga cgggacagta acatccccgg gtccgactac atcaatgo	ca actacatcaa 1080
gaaccagctg ctaggccctg atgagaacgc taagacctac atcgccag	gcc agggctgtct 1140
ggaggccacg gtcaatgact tctggcagat ggcgtggcag gagaacag	gcc gtgtcatcgt 1200
catgaccacc cgagaggtgg agaaaggccg gaacaaatgc gtcccata	act ggcccgaggt 1260
gggcatgcag cgtgcttatg ggccctactc tgtgaccaac tgcgggga	gc atgacacaac 1320
cgaatacaaa ctccgtacct tacaggtctc cccgctggac aatggaga	ecc tgattcggga 1380

gatctggcat	taccagtacc	tgagctggcc	cgaccatggg	gtccccagtg	agcctggggg	1440
tgtcctcagc	ttcctggacc	agatcaacca	gcggcaggaa	agtctgcctc	acgcagggcc	1500
catcatcgtg	cactgcagcg	ccggcatcgg	ccgcacaggc	accatcattg	tcatcgacat	1560
gctcatggag	aacatctcca	ccaagggcct	ggactgtgac	attgacatcc	agaagaccat	1620
ccagatggtg	cgggcgcagc	gctcgggcat	ggtgcagacg	gaggcgcagt	acaagttcat	1680
ctacgtggcc	atcgcccagt	tcattgaaac	cactaagaag	aagctggagg	tcctgcagtc	1740
gcagaagggc	caggagtcgg	agtacgggaa	catcacctat	ccccagcca	tgaagaatgc	1800
ccatgccaag	gcctcccgca	cctcgtccaa	acacaaggag	gatgtgtatg	agaacctgca	1860
cactaagaac	aagagggagg	agaaagtgaa	gaagcagcgg	tcagcagaca	aggagaagag	1920
caagggttcc	ctcaagagga	agtgagcggt	gctgtcctca	ggtggccatg	cctcagccct	1980
gaccctgtgg	aagcatttcg	cgatggacag	actcacaacc	tgaacctagg	agtgccccat	2040
tcttttgtaa	tttaaatggc	tgcatccccc	ccacctctcc	ctgaccctgt	atatagccca	2100
gccaggcccc	aggcagggcc	aacccttctc	ctcttgtaaa	taaagccctg	ggatcactgt	2160
g						2161

<210> 369

<211> 914

<212> DNA

<213> Homo sapiens

<400> 369 60. ggttctactt gtttgaacat aaataaagag tatgcagcac gtttaataaa atcagaactc ttaatggctt atgcccaggt ctaggctgag aagtcctttt tcttcttccc acctttattt 120 180 cettagttte tgtecacett aategaaaca acacatggtt atgtettttt cetgetacaa 240 ctacagggta cttgagcctt tcccctcaag tgcattcgaa gtcacccagg atgatcctca ctaqtaqcct gcttggcagt gtggcttttg cacacttgcc ctgtcttcct gagactactt 300 360 cagtaagcca tgcttccttc ttccccactt ttatttggtg tcatgaatag aaacttccaa atgtaaccat ggaagetaag ttggeetget tgetttttag tetecacace atgggeagaa 420 ctgctgtctt tactacttca tctcacccaa gtcccgttcc caggcagcca gggcctgggt 480 ttqaataatt qcaqggccag cctgcatgat ctttctcact tactcctctc ccattcagca 540 atcaaccaga ctaaggagtt tgatccctag tgattacagc ctgaagaaaa ttaaatctga 600 attaatttta catggcttcc gtgatcttac tgctgttctt actttttcga atgtagttgg 660 gggtgggagg gacaggtatg gtattcaaga gattaacttt tgcctacgtg tttgtcacca 720 gtagatetet ggtaacagtg tetgteteat teaatettea tgtggaccag teacagtgte 780

caggaatact tagtccttac ggtgtaggac tcataagttt cattctcaca aaggaaggta 840 ttacaaggat tggggggcaa agaaagtaca ttgggtgaaa atttaaaaag gtatggagca 900 914 ttgaaaatgt aatt <210> 370 5590 DNA <213> Homo sapiens <400> 370 ttttaccacq atqtaaacaa acaaacaaaa aactctcggc attgccccca ctccctggca 60 gtgtctattg tgggaggaga gaccgaaatt ctcaggacac acccaggcct caagacttct 120 180 cqcccaatcc qtcaccactt cctggcgcag acatcggact gttaaggccc ctccacttcc 240 cgctcaggtt acagacccca gggcacatcc ccccatcctc acccgcctgc atgaccaggc 300 tgccccttgc cccqcacacc tctctctgag tagcctcctg tcttccctct ggcagctgag 360 tragettrae caretrarty ggtetggaar agreaacter tgaracttre acactearag aggtggagca ggggcacggg ggctgggcac caccagtgtg tgggcagcac ccaggcatta 420 aacacagcag aggatggcgc aggcacccct gttctcctcc cagagccaag cttcaggcca 480 tgtccagcgg gggaggctgt gagtcacctc tgcctcatgt gggtgatcat aggagggtgt 540 gagtcagctc tgtccacatg gttgctcatg ggagggtatg agtcagctct gtcaatgtgg 600 gtggtgggtg gtcacgggag ggtgtgagtc agctctgtcc acgtggttgc tcataggagg 660 720 ttgtgagtca gctctgtcca tgtggggtgc tcacaggagg gtgtgtgtca gctctgtctg 780 tgtgggtggt cacgggaggg tgtgagtcag ctctgtctgt gggtggtcac aggagggtgt gagtcagctc tgtctgagtg ggtggtcacg ggagggtgtg tgtcagctct gtctgtgtgg 840 gtggtcacgg gagggtgtgt gtcagctctg tccgtgtggg tgctcacggg agggtgtgag 900 960 teagetetgt etgtgtgggt ggteaeagga gggtgtgtgt eagetetgte tgtgtgggtg ctcacgggag ggtgtgagtc agetctgtct gtgtgggtgg tcacagaagg gtgtgtgtca 1020 1080 getetgtgtg ggtgeteacg ggagggtgtg agteagetet gtetgtgtgg gtggteacag 1140 gagggtgtgt gtcagctctg tctgtgtggg tggtcacggg agggtgtgag tcagctctgt ctgtgtgggt ggtcacagga gggtgtgagt cagctctgtc tgtgtgggtg gtcacaggag 1200 1260 ggtgtgagtc agctctgtcc atgtgggtgc tcacgggagg ttgtgagtca gctctgtctg tgtgggtggt cacaggaggg tgtgagtcac ctctgcctgt gggtggtcac gggagggtgt 1320 gagtcagctc tgtctgtgtg ggtggtcaca ggagggtgtg agtcagctct gggtggtcac 1380 1440 gggagggtgt gagtcagctc tgtctgtgtg ggtggtcacg ggagggtgtg agtcagctct

457

gtctgtgtgg	gtgctcacgg	gagggtgtga	gtcagctctg	tctgtgtggg	tgctcacagg	1500
agggtgtgag	tcagctctgt	ctgtgtgggt	ggtcacggga	gggtgtgagt	cagctttgtc	1560
tgtgtgggtg	ctcacaggag	ggtgtgagtc	agttctgtgt	gggtggtcac	aggagggtgt	1620
gagtcagctc	tgtgtgggtg	gtcacgggag	ggtgtgagtc	agctctgtct	gtgtgggtgc	1680
tcacaggagg	gtgtgagtca	gctctgtctg	tgtgggtggt	cacgggaggg	tgtgtgtcag	1740
ctttgtctgt	gtgggtgctc	acaggagggt	gtgagtcagc	tctgtccgtg	tgggtgctca	1800
caggagggtg	tgagtcagct	ctgtgtgggt	tgtcacggga	gggtgtgagt	cagctctgtc	1860
tgtgtgggtg	gtcacaggag	ggtgtgagtc	agctctgtct	ctgtgggtgg	tcacaggcgg	1920
gtgtgagtca	gctctgtctc	tggggtggtc	acaggcgggt	gtgagtcagc	tctgtctctg	1980
tgggtggtca	ccggcgggtg	tgagtcagct	ctgtccgtgt	gggtgctcac	aggagggtgt	2040
gtgtcagctc	tgtctctgtg	ggtggtcaca	gtagcgtgtg	agtcagctct	gtctgtgtgg	2100
gtggtcacgg	gagcgtgtga	gtcagctctg	tctgtgtggg	tgctcacagg	agggtgtgag	2160
tcagctctgt	gtgtgtgggt	ggtcacagga	gagtgtgagt	cagctctgtg	tgtgtgggtg	2220
gtcacaggag	ggtgtgagtc	agctctgtct	ctgtgggtgg	tcacgggagg	gtgtgagtca	2280
gctgtacgtc	atgtagttgg	tcatctgtgt	gttccacctg	catcctgggg	tagcctgttg	2340
gccatttttg	ttgccactat	aaagccctga	gtgtggctag	gaagggggtg	ctgggtggga	2400
ccgtatgatc	acgtgtgctc	agtttggcat	gtgtgatcgt	catgtgactg	ggctcacaga	2460
aaggagettg	tccctaatga	tttccaacct	teggaetgtg	tcctgacctg	gcctgtagtc	2520
ctgctgtctg	ggtttgcatg	gccccgagag	cccttctgaa	caaaggatgc	tgatggattc	2580
aagccagctt	ggtgggtgcc	gggccctccc	tcccacctcc	tttagtcttt	atgttgacct	2640
tgagctgggg	tggtcctggg	accccgaggt	tcgtgagcgg	aagggcttgc	aggagggcac	2700
acagcagggg	agctgggaga	gggggcttgt	ttgcctcagc	attgggggag	ccgaggaaac	2760
gttcatgaaa	gcttctgaaa	gggaagcagg	aaggattttc	accccagggc	tgcagcttca	2820
gggactacat	gagggtatgg	gtggggatga	ggggaaggcc	cacagggtgt	tattcccatc	2880
tcatcgtcct	cctctggctt	tgctttgtgt	tgcgaacccg	catcctgagg	ctgacttcag	2940
aatgttaaga	aaggcagccc	tgagcctttg	atcaccccag	gagttccaga	aggcaccagg	3000
gagtcctctc	gggtcccatg	cccctcccag	ccccttgggg	tcaccctgat	cggcctggcc	3060
aaggtcgcca	gctgcctggg	gactggggag	cagccacatg	ccctctgcag	gggagtagtt	3120
gccaggaagg	tgcaggcgga	ggccctgctc	tccatcacag	cggtcctgat	tatgagatcg	3180
tcactctcaa	gaggccaaaa	gttatgacca	aacttcaaga	gaaactccca	gtaaagtagt	3240
atttccacag	cagacagttg	ggatgcaggt	ccacccacag	ccagctctga	gctgacacag	3300

gggccctggc	cagggttcca	ccctgctctg	cctgcctggg	gccctggcta	gcctgcagat	3360
aacatcaagt	agtttcgtaa	tttccacaca	cagcacttcc	agagcctcat	aatcaaccat	3420
ctataaagtc	tcaagaagcc	atgttgcttc	ctcatggcac	ctgctttcct	tcctctgtgg	3480
tctcgggcag	ggtcagagag	agggccattt	agttgagaat	ggaagggagg	ggccgctggc	3540
ttctcactcc	tcaggaaggc	gcccctgctg	ctgccccttg	agctgggagt	gtccggcact	3600
gtggtctcag	cacgttccag	gccccccgg	cccctgtgtt	ctctgctggg	cctccccttc	3660
ccgaggggac	taggggaggc	agctgggatc	tgcccagagc	ttggtcctca	ccctcctgtt	3720
cctgggctcc	ccagcctgtc	agacccttgc	tggctctttg	ctatgaccac	acagttggat	3780
ggaggcttct	ccaaggaaaa	ggcagagacc	aggggccagc	aactcccctg	cggctgaaca	3840
tggaactctc	aggccaagag	gagccctggg	gtgagcaaca	gccctgtggc	cttgctttcg	3900
ggttcaggtg	gtgcagggag	ccaccccgga	cctccgtgaa	ggccagtgaa	atggacagga	3960
caaggtgctt	ggeetgegge	tggagagccc	atcttcttac	cccctggcca	catggttctg	4020
ggaaggcact	gacgctttgt	aaaacttgcc	tggtgtggaa	aatgatggcg	gtcatatgta	4080
gtaccttaga	aggctgtgct	gggagttaac	gatataacat	agcgcaaatg	cctgacccct	4140
gggagagggg	cagtgagagt	ttgttgaagt	tggcatgtga	agtcgaggct	ctcagtgagg	4200
tgcagacttt	tcctgtccag	gaatgggaga	çaaggagctg	tcattcactc	aagcccttcg	4260
tctgccagcc	cctggcctgt	tatacacccc	ttttcaatcc	tgtaaggtaa	gtgttcttat	4320
ctccaacttc	caggtgggaa	gtctgaagct	cagagagcct	gggccaatgg	tacaggtcac	4380 [.]
acagcacatc	agtggctaca	tgtgagctca	gacctgggtc	tgctgctgtc	tgtcttccca	4440
atatccatga	ccttgactga	tgcaggtgtc	tagggatacg	tccatccccg	tcctgctgga	4500
gcccagagca	cggaagcctg	gccctccgag	gagacagaag	ggagtgtcgg	acaccatgac	4560
gagagettge	cacgaaatat	gcagcttcct	ttccctgaga	aaatggcaaa	gaaaattcaa	4620
cacagaaggc	cagggagggt	gtgtggaaac	gattcacatg	ttcaaaagat	ttatatgtgt	4680
agaagaaagc	tgtgaagtgt	gaagtatatt	ttctattgta	gaatggatga	aaatggaata	4740
aaaataatat	cctttgctag	gcagaataaa	taacttcttt	aaacaatttt	acggcatgaa	4800
gaaatctgga	ccagtttatt	aaatgggatt	tctgccacaa	accttggaag	aatcacatca	4860
tcttagccca	aggtgaaaac	tgtgttgcgt	aacaaagaac	atgactgcgc	tccacacata	4920
catcattgcc	cggcgaggcg	ggacacaagt	caacgacgga	acacttgaga	caggcctaca	4980
actgtgcacg	gttcagaagc	aggtttaago	catacttgct	gcagtgagac	tacatttctg	5040
tctaaagaag	atgtgagtcc	taagcagact	taaagccaag	aaaataagaa	gaggaaagag	5100

WO 03/090694	PCT/US03/13015
--------------	----------------

agagggcctg co	cttaaccac	ctgtggtgct	gacttggaca	attccaggtc	aagaggaact	5160
gtctactttc ga	actttgtgt	gatagtaact	ttttaagcag	tggaccggga	gcccaagact	5220
cagatgcagc as	agctttgca	aggetgaega	gagctgagat	cttcagtggc	cgatgggtac	5280
agggctgctg gg	gagcgtagc	cacgtctgct	ccaaggtggc	ttgaatgagg	cagtgcccaa	5340
gtccttttga c	tggctgagg	tgagcctgtg	gctcagtcac	actttgtccc	tctcgtaata	5400
agtgcatttc co	cagacagca	gctccttggt	gtcatgcaac	tgaggaacct	aattgtctgg	5460
gtgggttgtt c	ccatccaac	ttccacctgt	cacgaaggtt	gctttttcag	atcagtctcc	5520
acagctacca to	cttgtcggg	cacagagccg	ggcatcaaca	agtgtatgtt	gaataaagaa	5580
tgaattgatg						5590

<210> 371

<211> 3027

<212> DNA

<213> Homo sapiens

<400> 371 gtgtgttggg ggtggtgaga atgcgctctc ttcggcccgc cccgtccttt ccaaagaaac 60 gtgctcataa tggggtgacc taattacatc gcaatggaac tcaatcttag ccactccgca 120 gcaccgggtt tcataacaga ctcggcggcc tcgagtgctg ggaagaaacg tgcgagggcc 180 gaggggggg gcggagcccg cgtggaaatc ggaaagaagc gcagccctgc gacttccgcc 240 tgggtcatca cgccagcagt cgggccaagg cgcagggggc gggtgggggga cacgttaact 300 ttttatttgg gtgggcggca tccaaaccta acagtatata ttttatcatt ttcaagggag 360 420 tcatgctcca ttgcgggccc ttcggtttcg tggctcccat gtccccctct ccacctcccg ccaaaacqqc qcaqcqtgac aagccatatg ttccactccg gtgggggcga gagagaagca 480 acaataagtt aaaagtgccg cctccctcca cctctttacc ttcattctta ccaaagtaac 540 600 ttgtggcgcc gcccagaatt cggagcgcgc gtggaaagta gtgagttgct cggtgggctt 660 tttctgggag gaaggggcat tcaggaagga ttagggtttt cttgactaaa aagtttaaag 720 780 attggatgcg tgaaaagaaa cggcacgcct aggcctggta aaacaaacaa tcgtcccggg 840 ttgtggtctt tttttgcggc gcccccacc cgcccacacc cggagagcgc cggctgcaaa 900 gcgagcgcga gtgtcgacgc gtgcgacgca ctaaattgtg ccgcgctcgc gcccgccaga ccatgtcctc ctggggaaaa agtttcccta gtccccccag caccgcgccc caccctacgc 960 cccgctggaa aaaaaaacag caacataaaa tcctaggctt gaacattctg tgcgtcccaa 1020 atttctaatg tcctcggcct gcccggtttg ccgaagggag ccgagtgtcg aagagaagtc 1080

gggaaaaggt	aagttgtgca	. gacacttggg	gaagtttcaa	ggagaccgcc	agctcaagat	1140
ggaaaccgcg	gcccgggcgc	taagaacggg	cttcagctcc	cgctggcaaa	aagagaaagt	1200
cgagcccgcc	: ttcctgccca	acaaaaaaca	acaacatgac	aacaagaacc	ccggagggag	1260
tggaatgagt	gacgtcacag	ccgcgctctg	aggctgacaa	aggagggggc	gcgcccctcc	1320
cgctctgcgc	cegegeggee	ccggagaggg	ggcgcctgaa	gcgccgggta	gggaagtcag	1380
ccgacttgaa	acttttcctc	ttaaagaaaa	aaaaaaaaa	gttgtgcgcg	gctcacagtg	1440
gggtttttt	ttttccgcct	tetttteteg	tctcccctcc	cccttcttcc	ttttgaaagt	1500
ttetteteet	cccctgccc	cccctccccg	cctgaccgca	tggctgattc	aactccagtg	1560
tcaatcaact	tcttttcct	cctcttcctc	atttaaataa	gtttaaagct	cctcctcccc	1620
ccggcccacc	aaatctgaac	tttataaatt	gggctttgcg	cgccccagcc	cggagtcaga	1680
aaggcgaggg	gcgccgggaa	ctggcgtgtg	ggactccaga	caggagaggc	tgcgccttcc	1740
ccgcaccggg	accttcgcga	cacaccagat	cctcgcccct	ggctcgcgcg	aacgcacagg	1800
atgaccacca	ccctcgtgtc	tgccaccatc	ttcgacttga	gcgaagtttt	atgcaagggt	1860
aacaagatgc	tcaactatag	tgctcccagt	gcagggggtt	gcctgctgga	cagaaaggca	1920
gtgggcaccc	ctgctggtgg	gggcttccct	cggaggcact	cagtcaccct	gcccagctcc	1980
aagttccacc	agaaccagct	cctcagcagc	ctcaagggtg	agccagcccc	cgctctgagc	2040
tcgcgggaca	gccgcttccg	agaccgctcc	ttctcggaag	ggggcgagcg	gctgctgccc	2100
acccggaagc	agcccggggg	cggccaggtc	aactccagcc	gctacaagac	ggagctgtgc	2160
cgcccctttg	aggaaaacgg	tgcctgtaag	tacggggaca	agtgccagtt	cgcacacggc	2220
atccacgagc	tccgcagcct	gacccgccac	cccaagtaca	agacggagct	gtgccgcacc	2280
ttccacacca	tcggcttttg	cccctacggg	ccccgctgcc	acttcatcca	caacgctgaa	2340
gagcgccgtg	ccctggccgg	ggcccgggac	ctctccgctg	accgtccccg	cctccagcat	2400
agctttagct	ttgctgggtt	tcccagtgcc	gctgccaccg	ccgctgccac	cgggctgctg	2460
gacagcccca	cgtccatcac	cccaccccct	attctgagcg	ccgatgacct	cctgggctca	2520
cctaccctgc	ccgatggcac	caataaccct	tttgccttct	ccagccagga	gctggcaagc	2580
ctctttgccc	ctagcatggg	gctgcccggg	ggtggctccc	cgaccacctt	cctcttccgg	2640
cccatgtccg	agtcccctca	catgtttgac	tctcccccca.	gccctcagga	ctctctctcg	2700
gaccaggagg	gctacctgag	cagctccagc	agcagccaca	gtggctcaga	ctccccgacc	2760
ttggacaact	caagacgcct	gcccatcttc	agcagacttt	ccatctcaga	tgactaagcc	2820
agggtctgca	ggaaggaagg	ctgaaaaagc	ggacgaagat	tttgacttaa	gtgggacttt	2880
gtgatttaat	tttttcttt	ttttaagtgg	ggaggaaggg	gaagctagat	ggactaggag	2940

agacttgatt ttggtgctaa agttccccag ttcatatgtg acatcttttt aaaaaaaata 3000 3027 acaacaaaaa aaaatgagag aaaagct 372 <210> 2750 <211> DNA <213> Homo sapiens <400> 372 aatttagggt tggggtacaa tttgtttcta ttaagcaagt accagtttac caatacatga 60 gtaactgaag tgtaactgtt aaatgcttgt atactagttt ttctttctga ttgtcagtga 120 tttataagct ataaatgacc aaggtcctca gactgctttt agcatctgca acttaaaaaa 180 atgggagtta gaaaaagaac aaatgctaaa tagagtaaca gttaaatgta tgtgtacact 240 cttcccaaat gccaagagtg cagcggtggg gtgagattca gatattcatt tatttctaag . 300 360 totgtagtta acatttatgt tooctactoo otacgtaago cagactttgg caacagtgat agttgattcc aggcttattt gacttaaagt cactgaagtg gaaactaaga agtggcagtt 420 agtgttttac ccagcatttc tgccttctct cttttcttca tgtgtttttg tctctagcct 480 atgtgtattt gtgtagaata atgtgggata cctgaataat agatttaaaa ggaccaagtg 540 gtaaaattgg gcccaagctg aagtacaggc aaacttgatg tttgaaagat aagttttgag 600 aaatgtcatt gtattttgga gtaaaagagg ctatcttagt aataaggaat aaacttccat 660 aacactaggt tagaccaccc aataaatcta gaaatcagct tttaaaaaata ttgtctgaag 720 tctaacaaaa gttttcacct ctaatgtgtt ctttaagaaa tttaaggaac ttagccttgg 780 atteetgaat agaaaggtaa gaattetate attetggagt tgatgaaaac ataaatttte 840 900 aggatgtgaa atgaacagtg atttataaaa tggaaatcaa attgtacatt agcagagttc ttaagctttt tgaattgaag gagacctaat aattgtgtct ttttggttat ttagtgacaa 960 1020 acgtggcttt caaactatgc ttaaaaagtt ccggctggac acggtggctc acacctataa tcctagcact tggggaggct gaggcagatg gattacctga ggtcaggagt tcgagaccaa 1080 1140 cctggccgac atggtgaaac gctgtctcta ctaaaaatat aaaaaattag ccgggtgcag 1200 tggcgtgcac ctgtaatccc agctactctg gaggctgagg caggagaatc acctgaacct 1260 gggaggtgga ggtttcagtg agctgagatc ctgccactgc actccagcct gggcgcaaga 1320 1380 ggtctggtag tttgcaaaat ggtgtgcttt tggggagata cactagcaat ttttttaaaa

1440

1500

aatggaacag tgtgatagga agcctgctgg atgatttctt aaatattcta aaatgtaagt

caaatatgtt ttaataacaa agacttaaat ggcttttctc cctagagact gaaactagta

ttcattgtgt	tcagaactta	attgggcttg	aactgagatt	taaatctaat	aaacaagtta	1560
ataaatgtgt	atgttttgtt	gtgggtttgg	tagtgatctg	tggttctata	gggtttaata	1620
ggaattgctt	ttgatttgtt	tctggcttta	gaatgtgagg	caaattttac	attcttggtt	1680
ctattaagat	tttcttaggc	atgctaacat	gccaacaaaa	agccatgtaa	gtattgtata	1740
aaaagattca	cattgttaat	ttagccattt	tgaaattcag	atgagtgagc	aagttgataa	1800
tggcctcatc	tctgacctga	gaaaaaacaa	ctttgaccct	tgttcttaaa	atgctttaac	1860
cttgaagttg	cttgagactt	aagaggtcat	gttgctttag	gtttaataaa	tagccttaac	1920
tatttggagg	ggaaaagatg	ggtcaacttt	tttttttt	ttggcgtttg	catgtacaac	1980
tttctatttt	tagcctatat	ttggaaagaa	agcacttaac	attttaggaa	ttctttttaa	2040
agctgcttgc	aaagtgttgg	tgattttact	gaaaactttt	gagatcttca	ttttacaggc	2100
agacctgtct	aactacaagc	cagacttggg	ttttctcctg	tagtttgaag	acacactgac	2160
tcctgacaaa	atgcagcctg	caacttcctg	gagaacaact	cagtgtcaca	ttaaagttta	2220
ttatgtattt	aatgatacac	tgtttaattg	acagttttgc	atagtttgtc	taactttaga	2280
gaattaagag	cctctcaact	gagcagtaaa	ggtaaggaga	gctcaatctg	cacagagcca	2340
gtttttagtg	tttgatggaa	ataagatcat	catgcccact	tgagacttca	gattattctt	2400
tagcttagtg	gttgtatgag	ttacatctta	ttaaagtcga	aattaatgta	gttttctgcc	2460
ttgataacat	ttcatatgtg	gtattagttt	taaagggtca	ttaggaaaat	gcacatattc	2520
catgaatttt	aagacccata	gaaaagttga	agaatgctta	attttcttat	ccagtaatgt	2580
aaacacagag	acagaacatt	gagatgtgcc	tagttccgta	tttacagttt	ggtctggctg	2640
tttgagttct	agcgcattta	atgttaataa	ataaaatact	gaattttaaa	gctgttaaga	2700
aattgtccag	aacgagaata	ttgaaataaa	aacttcaagg	ttataatcgc		2750

<210> 373

<400> 373
agctggagta gtggcgtttg gaggagactc ggatatacct tctcagaagc tgcacaggag 60
gaaagcagtg acaaagaaag aagttgtcat tctttgcacg aaactggatg gcttctacag 120
ggagccaggc ctctgatata gacgagattt ttggattctt caacgatggc gaacctccca 180
ccaaaaagcc caggaagctg cttccaagct taaaaactaa gaagcctcga gaacttgtgc 240
tagtgattgg aacaggcatt agtgctgcag ttgcgcccca agttccagcc ctcaaatcct 300
ggaaggggtt aattcaggcc ttactggatg ctgccattga ttttgatctt ttagaagatg 360

<211> 1623

<212> DNA

<213> Homo sapiens

420

480

aggagagcaa aaagtttcag aaatgtctcc atgaagacaa gaacctggtc catgttgccc

atgacettat ecagaaacte teteetegta ecagtaatgt tegateeaca tittteaagg

actgtttata	tgaagtattt	gatggcttgg	agtcaaagat	ggaagattct	ggaaaacagc	540
tacttcagtc	agttctccac	ctgatggaaa	atggagccct	cgtattaact	acaaattttg	600
ataatctctt	ggaactgtat	gcagcagatc	aggggaaaca	gcttgaatcc	cttgacctta	660
ctgatgagaa	aaaggtcctc	gagtgggctc	aggagaagcg	taagctgagc	gtgttgcata	720
ttcacggagt	ctacaccaac	cctagtggca	ttgtccttca	tccggctgga	tatcagaacg	780
tgctcaggaa	cactgaagtc	atgagagaaa	ttcagaaact	ctacgaaaac	aagtcatttc	840
ttttcctggg	ctgtggctgg	actgtggatg	acaccacttt	ccaggccctt	ttcttggagg	900
ctgtcaagca	taaatctgac	ctagaacatt	tcatgctggt	tcggagagga	gacgtagatg	960
agttcaaaaa	gcttcgagaa	aacatgctgg	acaaggggat	taaagtcatc	tcctatggag	1020
atgactatgc	cgatcttcca	gaatatttca	agcgactgac	atgtgagatc	tccacaaggg	1080
gtacatcagc	agggatggtg	agagaaggtc	agctaaatgg	ctcatctgca	gcacacagtg	1140
aaataagagg	ctgtagtaca	tgagcgagct	agagaaatca	ccaccgttta	gaccaagctg	1200
taaggcccta	ctacagacag	tgtttaacaa	gtaaacttac	aagaacccaa	cacaattccc	1260
agaaagtaac	aatagccaga	ggttgaaggg	cggggtagaa	gagggggaa	tgttgcagcg	1320
taatccttca	taccacctgg	ttcttgatat	tetgeegeet	gttcaagttc	aagaataaaa	1380
gcgacagcag	gacccaaatg	cagctcccaa	cccactcccc	aggctagaca	tgcttgtgtc	1440
cacacagcac	accaatgtga	tacttccact	gaccggctgc	agctctgcat	gaaggactcg	1500
gggtctggat	gccatggaat	cactgtggct	cttgttgcag	ttttgtactc	tatacttggt	1560
ttttcaatta	agcttaatgg	cttttttaaa	acatgacttg	aagctcaaaa	aaaaaaaaa	1620
aaa						1623
<210> 374 <211> 204 <212> DNA <213> Home						
<400> 374 gcgggttccg	gttgtctgga	gcccagcggc	gggtgtgaga	gtccgtaagg	agcagcttcc	60
aggatcctga	gatccggagc	agccggggtc	ggagcggctc	ctcaagagtt	actgatctat	120
gaaatggcag	agaatggaaa	aaattgtgac	cagagacgtg	tagcaatgaa	caaggaacat	180
cataatggaa	atttcacaga	cccctcttca	gtgaatgaaa	agaagaggag	ggagcgggaa	240
daaaddcada	atattqtcct	ataaaaaaa	CCCctcatta	cettacaata	tttttctcta	300

gaaatccttg	taatcttgaa	ggaatggacc	tcaaaattat	ggcatcgtca	aagcattgtg	360
gtgtcttttt	tactgctgct	tgctgtgctt	atagctacgt	attatgttga	aggagtgcat	420
caacagtatg	tgcaacgtat	agagaaacag	tttcttttgt	atgcctactg	gataggetta	480
ggaattttgt	cttctgttgg	gcttggaaca	gggctgcaca	cctttctgct	ttatctgggt	540
ccacatatag	cctcagttac	attagctgct	tatgaatgca	attcagttaa	ttttcccgaa	600
ccaccctatc	ctgatcagat	tatttgtcca	gatgaagagg	gcactgaagg	aaccatttct	660
ttgtggagta	tcatctcaaa	agttaggatt	gaagcctgca	tgtggggtat	cggtacagca	720
atcggagagc	tgcctccata	tttcatggcc	agagcagctc	gcctctcagg	tgctgaacca	780
gatgatgaag	agtatcagga	atttgaagag	atgctggaac	atgcagagtc	tgcacaagac	840
tttgcctccc	gggccaaact	ggcagttcaa	aaactagtac	agaaagttgg	attttttgga	900
attttggcct	gtgcttcaat	tccaaatcct	ttatttgatc	tggctggaat	aacgtgtgga	960
cactttetgg	tacctttttg	gaccttcttt	ggtgcaaccc	taattggaaa	agcaataata	1020
aaaatgcata	tccagaaaat	ttttgttata	ataacattca	gcaagcgcat	agtggagcaa	1080
atggtggctt	tcattggtgc	tgtccccggc	ataggtccat	ctctgcagaa	gccatttcag	1140
gagtacctgg	aggctcaacg	gcagaagctt	caccacaaaa	gcgaaatggg	cacaccacag	1200
ggagaaaact	ggttgtcctg	gatgtttgaa	aagttggtcg	ttgtcatggt	gtgttacttc	1260
atcctatcta	tcattaactc	catggcacaa	agttatgcca	aacgaatcca	gcagcggttg	1320
aactcagagg	agaaaactaa	ataagtagag	aaagttttaa	actgcagaaa	ttggagtgga	1380
tgggttctgc	cttaaattgg	gaggactcca	agccgggaag	gaaaattccc	ttttccaacc	1440
tgtatcaatt	tttacaactt	ttttcctgaa	agcagtttag	tccatacttt	gcactgacat	1500
actttttcct	tctgtgctaa	ggtaaggtat	ccaccctcga	tgcaatccac	cttgtgtttt	1560
cttagggtgg	aatgtgatgt	tcagcagcaa	acttgcaaca	gactggcctt	ctgtttgtta	1620
ctttcaaaag	gcccacatga	tacaattaga	gaattcccac	cgcacaaaaa	aagttcctaa	1680
gtatgttaaa	tatgtcaagc	tttttaggct	tgtcacaaat	gattgctttg	ttttcctaag	1740
tcatcaaaat	gtatataaat	tatctagatt	ggataacagt	cttgcatgtt	tatcatgtta	1800
caatttaata	ttccatcctg	cccaaccctt	cctctcccat	cctcaaaaaa	gggccatttt	1860
atgatgcatt	gcacaccctc	tggggaaatt	gatctttaaa	ttttgagaca	gtataaggaa	1920
aatctggttg	gtgtcttaca	agtgagctga	caccatttt	tattctgtgt	atttagaatg	1980
aagtcttgaa	aaaaacttta	taaagacatc	tttaatcatt	ccaaaaaaaa	aaaaaaaaa	2040
aaaaaa						2047

<210> 375 <211> 2939 <212> DNA <213> Homo sapiens

<400> 375 ggcgggtgag aggccgcggc ggcaggtcca cctgggcttg cgaaggcaca gattccccgt 60 ccacagetea egaceagatg caceageagg agtecacate gaggaegtee teegggeact 120 cccacgacca gtgaccagga gttaaacttt gggatgtgcc cgtgatgttg gaccacaagg 180 acttagaggc cgaaatccac cccttgaaaa atgaagaaag aaaatcgcag gaaaatctgg 240 gaaatccatc aaaaaatgag gataacgtga aaagcgcgcc tccacagtcc cggctctccc 300 ggtgccgagc ggcggcgttt tttctttcat tgtttctctg cctttttgtg gtgttcgtcg 360 totcattogt catcoogtgt coagacoggo oggogtcaca gogaatgtgg aggatagact 420 480 acagtgccgc tgttatctat gactttctgg ctgtggatga tataaacggg gacaggatcc aagatgttct ttttctttat aaaaacacca acagcagcaa caatttcagc cgatcctgtg 540 tggacgaagg cttttcctct ccctgcacct ttgcagctgc tgtgtcgggg gccaacggca 600 gcacgetetg ggagagaeet gtggeecaag aegtggeeet egtggagtgt getgtgeeee 660 720 agccaagagg cagtgaggca ccttctgcct gcatcctggt gggcagaccc agttctttca ttgcagtcaa cttgttcaca ggggaaaccc tgtggaacca cagcagcagc ttcagcggga 780 atgegtecat ectgageeet etgetgeagg tgeetgatgt ggaeggegat ggggeeeeag 840 acctgctggt tctcacccag gagcgggagg aggttagtgg ccacctctac tccggcagca 900 ccgggcacca gattggcctc agaggcagcc ttggtgtgga cggggaaagt ggcttcctcc 960 ttcacgtcac caggacaggt gcccactaca tcctctttcc ctgcgcaagc tccctctgcg 1020 gctgctctgt gaagggtctc tacgagaagg tgaccgggag cggcggcccg ttcaagagtg 1080 accegeactg ggagageatg etcaatgeea ceaccegeag gatgetttee cacagetetg 1140 gagcagtgcg ctacctgatg catgtcccag ggaacgccgg tgcagatgtg cttcttgtgg 1200 gctcagaggc cttcgtgctg ctggacgggc aggagctgac gcctcgctgg acacccaagg 1260 cagoccatgt cotgagaaaa cocatottog googotacaa accagacaco ttggotgtag 1320 1380 ccgttgaaaa cggaactggc accgacagac agatcctgtt tctggacctt ggcactggag cegtectgtg tagectagee etceegagee tecetggggg tecactgtee gecageetge 1440 1500 cgaccgcaga ccaccgctca gccttcttct tctggggcct ccacgagctg gggagcacca gcgagacgga gaccggggag gcccggcaca gcctgtacat gttccacccc accctgccgc 1560 gcgtgctgct ggagctggcc aatgtctcta cccacattgt cgcctttgac gccgtcctgt 1620

ttgagccaag	ccgccacgcc	gcctacatcc	ttctgacagg	cccggcagac	tcagaggcac	1680
ccggcctggt	ctctgtgatc	aagcacaagg	tgcgggacct	tgtcccaagc	agcagggtgg	1740
tccgcctggg	tgagggtggg	ccagacagtg	accaagccat	cagggaccgg	ttctcccggc	1800
tgcggtacca	gagtgaggcg	tagaggcacg	ccagccagag	cctgtggaga	gactccgcct	1860
gctgacacta	aacgtcctgg	gaagtgggcc	cttccctggg	tctctgcact	gactccccca	1920
ctcctgaccc	tggtgatggt	cgccactggg	cagcagcagc	cttaccagtc	ctccatgatc	1980
acacccaggg	acctgcatgg	gtgaggggac	accctgggcc	teteteeege	ccagcatcct	2040
ccctgagtcc	ccacacaggg	cctcactctg	caccccacca	gggtcccgct	cacaccaggc	2100
agccttcata	gtggtctccc	tggccacctt	gggcagagct	gggtcatgca	gcaccccatc	2160
cttacccggt	gccctctcct	tgccagcttc	tccccaggcc	agagcggcca	tcgcgtagaa	2220
agaaccaggg	tgtccccggg	acaggccgtc	ccccacccca	tcctgtagag	tccattcccc	2280
ttttccctcc	tgtgctctgt	ccccaagga	gtcatggaac	tcagggtact	gggcctcaac	2340
gggaacctga	gacagcttcc	agcttcgcag	cccttcccgg	agctacaggg	ggatcctcta	2400
gcatgggggg	tgtgacttgg	ttcctttgac	caggtcctgt	gaggaagcct	ggagcaaggg	2460
tctcccccag	caggatgggt	ggggcctgct	ctggagctga	gecegtggec	gctcacaggt	2520
gtccttagtg	gtgttgcagc	tgtctactgg	ctgcatgtgc	tgtgaatatc	ccaaggaact	2580
ggctgtggaa	tgcgtgtttg	ggtcagtctg	tgccctctca	gtagacactg	gagctgctct	2640
gtccctgaag	aggccccgtg	ccccaggcat	ggcaagcgcc	tgcctctccc	cttccggtgc	-2700
tcacacgccc	acgccgtgcc	acccgatgca	ggactcacct	ctgtgccttg	ctgctcctga	2760
ġgcccaaggġ	cagccatggt	gctctgtact	gctcgggčcg	cccaggtcac	āgagcctgag	2820
cttcgtagcc	aaagcagcct	gatgacccac	ccaccaagga	agaaagcaga	ataaacattt	2880
ttgcactgcc	tgaaaaaccc	cggtggtcag	gcgtgagcct	aaaaaaaaa	aaaaaaaa	2939

<210> 376

<400> 376

<211> 1079

<212> DNA

<213> Homo sapiens

ctgacgactt gaagccagag gcaccgccag ttggccccag cccgcagcat ggcagccgcc 60
gcctatgtgg accacttcgc cgccgagtgc ctcgtgtcca tgtcgagccg cgcggtcgtg 120
cacgggccgc gggaggggcc ggagtcccgg cccgagggcg cgtccgtggc cgccaccccc 180
acgctgcccc gcgtcgagga gcgccgcgac ggtaaggaca gcgcctcgct cttcgtggta 240
gcgcggatcc tagcggacct caaccagcaa gcgccggcgc ccgccccggc ggagcgcagg 300

gagggegeeg eggeeeggaa ggegaggaee eeetgeegee tgeegeegee egeeeeatg	360
ageceaeete eeeeggeget gaaggegegg egageegege eeeeeageee ggegtggage	420
gagccggagc ccgaggcggg gctggagccc gagcgggagc cggggcccgc ggggagcggc	480
gageceggee teagacaaag ggteeggegg ggeegaagte gegeegaeet egagteeeeg	540
cagaggaagc acaagtgcca ctacgcgggc tgcgagaaag tttacgggaa atcttcgcac	600
ctcaaggcgc acctgagaac tcacacaggt gagaggccct tcgcctgcag ctggcaggac	660
tgcaacaaga agttcgcgcg ctccgacgag ctggcgcggc actaccgcac acacacgggc	720
gagaagaagt tcagctgccc catctgcgag aagcgcttca tgcgcagcga ccacctgacc	780
aagcacgege geegeeaege caactteeae eegggaatge tgeageggeg eggegggge	840
tegeggaceg geteeeteag egactacage egeteegaeg ceageagece caccateage	900
ceggecaget egecetgage eegeacagee atgageagee geteecacee cetegtgagt	960
ccctggcctt tccttttgtt ataagaaaga agagagagaa cttgatgcca agtccacgaa	1020
aaaacaattt ttttcacctc aggtgtcaaa gtaaatttgt taaaaaaaaa aaaaaaaaa	1079
<210> 377 <211> 346 <212> DNA	
<213> Homo sapiens <400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac	60
<400> 377	60 120
<400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac	
<400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg	120
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc</pre>	120 180
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc ggtttcatta agttggacta aatgctcttc cttcagagga ttatccgggg catctactca</pre>	120 180 240
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc ggtttcatta agttggacta aatgctcttc cttcagagga ttatccgggg catctactca atgaaaaacc atgataattc tttgtatata aaataaacat ttgaaaaaaa aaaaaaaaa aaaaaaaaaa aaaaaaaaaa</pre>	120 180 240 300
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc ggtttcatta agttggacta aatgctcttc cttcagagga ttatccgggg catctactca atgaaaaacc atgataattc tttgtatata aaataaacat ttgaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaa</pre>	120 180 240 300
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc ggtttcatta agttggacta aatgctcttc cttcagagga ttatccgggg catctactca atgaaaaacc atgataattc tttgtatata aaataaacat ttgaaaaaaa aaaaaaaaa aaaaaaaaaa aaaaaaaaa aaaaaa</pre>	120 180 240 300 346
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc ggtttcatta agttggacta aatgctcttc cttcagagga ttatccgggg catctactca atgaaaaacc atgataattc tttgtatata aaataaacat ttgaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaa</pre>	120 180 240 300 346
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc ggtttcatta agttggacta aatgctcttc cttcagagga ttatccgggg catctactca atgaaaaacc atgataattc tttgtatata aaataaacat ttgaaaaaaa aaaaaaaaa aaaaaaaaaa aaaaaaaaa aaaaaa</pre>	120 180 240 300 346

300

gggatcatet atcetggtga etetgatace agatacagee egteetteea aggeeaggte

accatctcag	ccgacaagtc	catcagcacc	gcctacctgc	agtggagcag	cctgaaggcc	360
teggacaceg	ccatgtatta	ctgtgcgaga	cacacagtga	gagaaaccag	ccccgagccc	420
gtctaaaacc	ctccacaccg	caggtgcaga	gtgagctgct	agagactcac	tccccagggg	480
cctctctatt	catctgggga	ggaaacactg	gctgtttgtg	tcctcaggag	caagaaccag	540
agaacaatgt	gggagggttc	ccagccccta	aggcaactgt	ataggggacc	tgaccatggg	600
aggtggattc	tctgacgggg	ctcttgtgtg	ttctacaagg	ttgttcatgg	tgtatattag	660
atggttaaca	tcaaaaggct	gcctaacagg	cacctctcca	atatgatagt	attttaatta	720
gtgaaaattt	tacacagttc	atcattgctt	gcttgccttc	ctccctcctg	tccgctctca	780
ctcactcctt	cttttattt	ctacttaatt	ttacaaaatc	atttaacccc	tttttgaact	840
attaataggt	tatctttgtt	tggtgattgt	ttttctttta	ataatatgta	ctgaataatt	900
catctttgta	ccaattcata	agtattctgg	tgtaataaag	acttctttca	aaaaaaaaa	960
aaaaaa						967
	o sapiens					
<400> 379 ttttttttt	tttttgtgat	tctggaaaga	aagaaggagg	gagggaggga	gaaaatacag	60
tttgagcacc	tgctatgtat	caattacttg	tacattactt	gtatttatct	tcacaatgac	120
cttgtcagca	aggtcttgta	ttctcacttt	ataaaagagg	agatt <u>g</u> agac	tcagatctct	180
tggtgtetit	aattecaagt	ccaaagagtt	geggagtett	ttgattccaa	gtctgaattc	240
ctaatattta	tttccttcct	gaatgttgtg	gtattgacgt	taaataagac	cattctatt	299
<210> 380 <211> 7563 <212> DNA <213> Home	_					
<400> 380 gtgagctgaa	gcagggcagg	gcatcaactc	acccaggaag	tgcaaggggt	ttggggattt	60
tcctttccta	gccaagggaa	ggcatgacag	actgtacctg	gaaaaacagg	acactcttgc	120
ccaaatactg	cactttttgc	acagtcttag	caactggcag	accaggagat	teteteetgt	180
gcctgattca	ttgggtccca	cacccatagg	gccttgctta	ctgccagtgc	agcagtctga	240
gattaacacc	ccatccccgg	gagaactcta	agaaggagct	gatgtggagg	agcagctgag	300
acaqttcaaq	atgacgacca	caqtaqccac	agactatgac	aacattgaga	tccaqcaqca	360

gtacagtgat	gtcaacaacc	gctgggatgt	cgacgactgg	gacaatgaga	acagetetge	420
geggettttt	gagcggtccc	gcatcaaggc	tctggcagat	gagcgtgaag	ccgtgcagaa	480
gaagaccttc	accaagtggg	tcaattccca	ccttgcccgt	gtgtcctgcc	ggatcacaga	540
cctgtacact	gaccttcgag	atggacggat	gctcatcaag	ctgctggagg	tectetetgg	600
agagaggctg	cctaaaccca	ccaagggacg	aatgcgcatc	cactgcttag	agaatgtgga	660
caaggccctt	cagttcctga	aggagcagag	agtccatctt	gagaacatgg	ggtcccatga	720
catcgtggat	ggaaaccacc	ggctgaccct	tggcctcatc	tggaccatca	tcctgcgctt	780
ccagatccag	gatatcagtg	tggaaactga	agacaacaaa	gagaagaaat	ctgccaagga	840
tgcattgctg	ttgtggtgcc	agatgaagac	agctgggtac	cccaatgtca	acattcacaa	900
tttcaccact	agctggaggg	acggcatggc	cttcaatgca	ctgatacaca	aacaccggcc	960
tgacctgata	gattttgaca	aactaaagaa	atctaacgca	cactacaacc	tgcagaatgc	1020
atttaatctg	gcagaacagc	acctcggcct	cactaaactg	ttggaccccg	aagacatcag	1080
cgtggaccat	cctgatgaga	agtccataat	cacttatgtg	gtgacttatt	accactactt	1140
ctctaagatg	aaggccttag	ctgttgaagg	aaaacgaatt	ggaaaggtgc	ttgacaatgc	1200
tattgaaaca	gaaaaaatga	ttgaaaagta	tgaatcactt	gcctctgacc	ttctggaatg	1260
gattgaacaa	accatcatca	ttctgaacaa	tcgcaaattt	gccaattcac	tggtcggggt	1320
tcaacagcag	cttcaggcat	tcaacactta	ccgcactgtg	gagaaaccac	ccaaatttac	1380
tgagaagggg	aacttggaag	tgctgctctt	caccattcag	agcaagatga	gggccaacaa	1440
ccagaaggtc	tacatgcccc	gggagggaa	gctcatctct	gacatcaaca	aggcctggga	1500
aagactggaa	*aaagcggaac	acgaaagaga	actggctttg	cggaatgagc	tcataagaca ***	1560
ggagaaactg	gaacagctcg	cccgcagatt	tgatcgcaag	gcagctatga	gggagacttg	1620
gctgagcgaa	aaccagcgtc	tggtgtctca	ggacaacttt	gggtttgacc	ttcctgcagt	1680
tgaggccgcc	acaaaaaagc	acgaggccat	tgagacagac	attgccgcat	acgaggagcg	1740
tgtgcaggct	gtggtagccg	tggccaggga	gctcgaggcc	gagaattacc	acgacatcaa	1800
gcgcatcaca	gcgaggaagg	acaatgtcat	ccggctctgg	gaatacctac	tggaactgct	1860
cagggcccgg	agacagcggc	tcgagatgaa	cctggggctg	cagaagatat	tccaggaaat	1920
gctctacatt	atggactgga	tggatgaaat	gaaggtgcta	gtattgtctc	aagactatgg	1980
caaacactta	cttggtgtgg	aagacctgtt	acagaagcac	accctggttg	aagcagacat	2040
tggcatccag	gcagagcggg	tgagaggtgt	caatgcctcc	gcccagaagt	tcgcaacaga	2100
cggggaaggt	tacaagccct	gtgaccccca	ggtgatccga	gaccgcgtgg	cccacatgga	2160
gttctgttat	caagagcttt	gccagctggc	ggctgagcgc	agggcccgtc	tggaagagtc	2220

ccgccgcctc	tggaagttct	tctgggagat	ggcagaagag	gaaggctgga	tacgggagaa	2280
ggagaagatc	ctgtcctcgg	acgattacgg	gaaagacctg	accagcgtca	tgcgcctgct	2340
cagcaagcac	cgggcgttcg	aggacgagat	gagcggccgc	agtggccact	ttgagcaggc	2400
catcaaggaa	ggcgaagaca	tgatcgcgga	ggagcacttc	gggtcggaga	agatccgtga	2460
gaggatcatt	tacatccggg	agcagtgggc	caacctagag	cagctctcgg	ccattcggaa	2520
gaagcgcctg	gaggaggcct	ccctgctgca	ccagttccag	gcagatgctg	atgacattga	2580
tgcctggatg	ctggacatcc	tcaagattgt	ctccagcagc	gacgtgggcc	acgatgagta	2640
ttccacacag	tctctggtca	agaaacacaa	ggacgtggcg	gaagagatcg	ccaattacag	2700
gcccaccctt	gacacgctgc	acgaacaagc	cagegeeete	ccccaggagc	atgccgagtc	2760
tecagaegtg	aggggcaggc	tgtcgggcat	cgaggagcgg	tataaggagg	tggcagagct	2820
gacgcggctg	cggaagcagg	cactccagga	cactctggcc	ctgtacaaga	tgttcagcga	2880
ggctgatgcc	tgtgagctct	ggatcgacga	gaaggagcag	tggctcaaca	acatgcagat	2940
cccagagaag	ctggaggatc	tggaggtcat	ccagcacaga	tttgagagcc	tagaaccaga	3000
aatgaacaac	caggetteec	gggttgcagt	ggtgaaccag	attgcacgcc	agctgatgca	3060
cagcggccac	ccaagtgaga	aggaaatcaa	agcccagcag	gacaaactca	acacaaggtg	3120
gagccagttc	agagaactgg	ttgacaggaa	gaaggatgcc	ctcctgtctg	ccctgagcat	3180
ccagaactac	cacctcgagt	gcaatgaaac	caaatcctgg	attcgggaaa	agaccaaggt	3240
catcgagtcc	acccaggacc	tgggcaatga	cctggctggc	gtcatggccc	tgcagcgcaa	3300
getgacegge	atggageggg	acttggtggc	cattgaggca	aagctgagtg	acctgcagaa	3360
	aagctggagt	ccgagcaccc	cgaccaggcc	caggccatcc	tgtctcggct	3420
ggccgagatc	agcgacgtgt	gggaggagat	gaagaccacc	ctgaaaaacc	gagaggcctc	3480
cctgggagag	gccagcaagc	tgcagcagtt	cctacgggac	ttggacgact	tccagtcctg	3540
gctctctagg	acccagacag	cgatcgcctc	ggaggacatg	ccaaacaccc	tgaccgaggc	3600
tgagaagctg	ctcacgcagc	acgagaacat	caagaatgag	atcgacaact	acgaggagga	3660
ctaccagaag	atgagggaca	tgggcgagat	ggtcacccag	gggcagaccg	atgcccagta	3720
catgtttctg	cggcagcggc	tgcaggccct	ggacactgga	tggaacgagc	tccacaagat	3780
gtgggagaac	agacaaaatc	tcctatccca	gtcacatgcc	taccagcagt	tectcagaga	3840
cacgaagcaa	gccgaagcct	ttcttaacaa	ccaggagtat	gttctggctc	acactgaaat	3900
gcctaccacc	ttggaaggag	ctgaagcagc	aattaaaaag	caagaggact	tcatgaccac	3960
catggacgcc	aatgaggaga	agatcaatgc	tgtggtggag	actggccgga	ggctggtgag	4020

cgatgggaac	atcaactcag	atcgcatcca	ggagaaggtg	gactctattg	atgacagaca	4080
taggaagaat	cgtgagacag	ccagtgaact	tttgatgagg	ttgaaggaca	acagggatct	4140
acagaaattc	ctgcaagatt	gtcaagagct	gtctctctgg	atcaatgaga	agatgctcac	4200
agcccaggac	atgtcttacg	atgaagccag	aaatctgcac	agtaaatggt	tgaagcatca	4260
agcatttatg	gcagaacttg	catccaacaa	agaatggctt	gacaaaatcg	agaaggaagg	4320
aatgcagctc	atttcagaaa	agcctgagac	ggaagctgtg	gtgaaggaga	aactcactgg	4380
tttacataaa	atgtgggaag	tccttgaatc	cactacccag	acaaaggccc	agcggctctt	4440
tgatgcaaac	aaggccgaac	ttttcaccca	gagctgtgca	gatctagaca	aatggctgca	4500
cggcctggag	agtcagattc	agtctgatga	ctatggcaaa	cacctgacca	gtgtcaatat	4560
cctgctgaaa	aagcaacaga	tgctggagaa	tcagatggaa	gtgcggaaga	aggagatcga	4620
agagctccaa	agccaagccc	aggccctgag	tcaggaaggg	aagagcaccg	acgaggtaga	4680
cagcaagcgc	ctcaccgtgc	agaccaagtt	catggagttg	ctggagccct	tgaacgagag	4740
gaagcataac	ctgctggcct	ccaaagagat	ccatcagttc	aacagggatg	tggaggacga	4800
gatcttgtgg	gttggagaga	ggatgccttt	ggcaacttcc	acggatcatg	gccacaacct	4860
ccagactgtg	cagctgttaa	taaagaaaaa	tcagaccctc	cagaaagaaa	tccaggggca	4920
ccagcctcgc	attgacgaca	tctttgagag	gagccaaaac	atcgtcactg	acagcagcag	4980
cctcagcgct	gaggccatca	gacagaggct	tgccgacctg	aagcagctgt	ggggtctcct	5040
cattgaggag	acagagaaac	gccacaggcg	gctggaggag	gcgcacaggg	cccagcagta	5100
ctactttgac	gctgctgagg	ccgaagcctg	gatgagcgag	caggagctgt	acatgatgtc	5160
agaggagaag	ģccaagģātg	agcağagtgc	tgtctccatg	ttgaagaagc	accagatett	5220
agaacaagct	gtggaggact	atgcagagac	cgtgcatcag	ctctccaaga	ccagccgggc	5280
cctggtggcc	gacagccatc	ctgaaagtga	gcgcattagc	atgcggcagt	ccaaagtgga	5340
taaactgtac	gctggtctga	aagaccttgc	tgaagagaga	agaggcaagc	tggatgagag	5400
acacaggtta	ttccagctca	accgggaggt	ggacgacctg	gagcagtgga	tegetgagag	5460
ggaggtggtc	gcagggtccc	atgaactggg	acaggactat	gagcatgtca	cgatgttaca	5520
agaacgattc	cgggagtttg	cccgagacac	: cgggaacatt	gggcaggagc	gcgtggacac	5580
ggtcaatcac	ctggcagatg	agctcatcaa	ctctggacat	tcagatgccg	ccaccatcgc	5640
tgaatggaag	gatggcctca	atgaagcctg	ggccgacetc	ctggagctca	ttgacacaag	5700
aacacagatt	cttgccgctt	cctatgaact	gcacaagttt	taccacgatg	ccaaggagat	5760
ctttgggcgt	atacaggaca	aacacaagaa	actccctgag	gagettggga	gagatcagaa	5820
cacagtggag	accttacaga	gaatgcacac	tacatttgag	catgacatco	aggctctggg	5880

A 100 Sec. 15.

cacacaggtg	aggcagctgc	aggaggatgc	agcccgcctc	caggcggcct	atgcgggtga	5940
caaggccgac	gatatccaga	agcgcgagaa	cgaggtcctg	gaagcctgga	agtccctcct	6000
ggacgcctgt	gagagccgca	gggtgcggct	ggtggacaca	ggggacaagt	tccgcttctt	6060
cagcatggtg	cgcgacctca	tgctctggat	ggaggatgtc	atccggcaga	tcgaggccca	6120
ggagaagcca	agggatgtat	catctgttga	actcttaatg	aataatcatc	aaggcatcaa	6180
agctgaaatt	gatgcacgta	atgacagttt	cacaacctgc	attgaacttg	ggaaatccct	6240
gttggcgaga	aaacactatg	catctgagga	gatcaaggaa	aaattactgc	agttgacgga	6300
aaagaggaaa	gaaatgatcg	acaagtggga	agaccgatgg	gaatggttaa	gactgattct	6360
ggaggtccat	cagttctcaa	gagacgccag	tgtggccgag	gcctggctgc	ttggacagga	6420
gccgtaccta	tccagccgag	agataggcca	gagcgtggac	gaggtggaga	agctcatcaa	6480
gcgccacgag	gcatttgaaa	agtctgcagc	aacctgggat	gagaggttct	ctgccctgga	6540
aaggctgact	acattggagt	tactggaagt	gcgcagacag	caagaggaag	aggagaggaa	6600
gaggcggccg	ccttctcccg	ageegageae	gaaggtttca	gaggaagccg	agtcccagca	6660
gcagtgggat	acttcaaaag	gagaacaagt	ttcccaaaac	ggtttgccag	ctgaacaggg	672⁄0
atctccacgg	atggcagaaa	cggtggacac	aagcgaaatg	gtcaacggcg	ctacagaaca	6780
aaggacgagc	tctaaagagt	ccagccccat	cccctccccg	acctctgatc	gtaaagccaa	6840
gactgccctc	ccagcccaga	gtgccgccac	cttaccagcc	agaacccagg	agacaccttc	6900
ggcccagatg	gaaggcttcc	tcaatcggaa	acacgagtgg	gaggcccaca	ataagaaagc	6960
ctcaagcagg	tcctggcaca	atgtttattg	tgtcataaat	aaccaagaaa	tgggtttcta	7020
caaagatgca	aagactgctg	cttctggaat	tccctaccac	agcgaggtcc	ctgtgagttt	7080
gaaagaagct	gtctgcgaag	tggcccttga	ttacaaaaag	aagaaacacg	tattcaagct	7140
aagactaaat	gatggcaatg	agtacctctt	ccaagccaaa	gacgatgagg	aaatgaacac	7200
atggatccag	gctatctctt	ccgccatctc	ctctgataaa	cacgaggtgt	ctgccagcac	7260
ccagagcacg	ccagcatcca	gccgcgcgca	gaccetecce	accagegteg	tcaccatcac	7320
cagcgagtcc	agtcccggca	agcgggaaaa	ggacaaagag	aaagacaaag	agaagcggtt	7380
cagccttttt	ggcaaaaaga	aatgaactcc	tttccttcac	ctcctgccct	tctcttacct	7440
tttcagtgaa	attccagcat	gcaagctcag	aaccaacaca	ttactctctg	tgcctaatgt	7500
tcctcaatgt	ggttgattta	tttttttt	taatttatag	agcatttcgg	ggggggtggg	7560
g						7561

<210> 381

<211> 2779 <212> DNA

<400>

<213> Homo sapiens

381

gcctggccaa agggatattt ggtttggcca tctctggatg cctgattgcc aagctcagga 60 ccaggcaatg tgactttgca tcagcaacaa ccagcatccc ttgaccaggc ctgggccaga 120 gtattggtct cctctcagcc cctgatcctg tgaagtaagg atgtggggga agacctggca 180 240 aggacacaga tgaaacacaa acaatagtaa ttctcaggcc atcatcagtg gagccatgtt 300. aatgtaatot gatggottot coagggtoca caggaagtga agaatotgtt toocagcagt ggactcaaaa cccatctggg ctcctaacct tcctgtaaac ccctttagtg gcttcattag 360 agcaggcgtt cagctcactg ttctattcat ctcaaggaat aatgggctta gagcagtttc 420 480 tgtcctgctg gttaacttgt ttggcctatt ccattctgga ttttgtcaag cagtagacaa 540 qcaattagac aagaacttgg aggcaccatt tgtatccact ttttagactt aatagaaaca ttqaaqatqa acataatcta ccaacgaaag acgtgattca attcaacact cccttcccat 600 gacccaggct gggcaaggag gccacgtgat gtggagggca cattccttgc ctgcacaaac 660 720 tcaccatctg tgcacgcagt ggccttccct aaaatcaggg aattgtttta agtcttatca 780 agcagccaag ggatgaaaga gaaggtgggt tttcatcaag actggaaggt ggggacaggg atqaqcatqq aqctqqccqt gggcctgggg taccaagaga ctccttgaga gaccaggcaa 840 agcaagtgat tgggacagag gttatctgtc ccaggttatc tgggcataga tgcaggtgag 900 960 cccatggccc tcccagtacc tcctgtctct ggcctgtttt agaaggttct ctcctcccca aggagacaca acaactccta gggccactga agatataact attgcccagg tttctggtct 1020 ctaggctggg gaagtcctct gggtaggaat cagcaagaag atcctaaaac aaaagctcat 1080 ccatttgcgt tccatgatgc tgggatttac acttgaggct tagctttgct cctgccaact 1140 tetteagage tgacacagga tgaaggeaat gecateetea aacaetgeag geateacage 1200 1260 taacaattgt gaagtcgtct taactcacca taaaaaggaa tccactccca ggcagcccta cttctttgct ttgcccagca ttttactgat tcatacatta tctcacttgt gccaacactc 1320 aagaagcagg ctacactgac actggtattc ctgcctccat attttcttta aaagacaaat 1380 caaagcagat atattaagtg actgttcaag agcacacttg gcccaagtgg cagagcttgg 1440 1500 actggatgca tgttttccag ctcctcatcc agggctctga ccagtttaac ctgatgcagt cacqtqqagg agcagtgcag gcacagtatg tcccataggc ccagtgagat gcattcttgg 1560 1620 ttggctggcc ttccacttgg ctacacaggg atgtacaagg cgatcccatc ttgataagac caccacctca gagtatggag ctcagagagg gcaggcatga agtttccttg gctggtgcac 1680

ctagaattgg	ctgaactcat	gagaagttga	tatagaacag	tgcttgccac	agagcgggga	1740
ctcggtaagc	acttaacgaa	tgaatgaatt	ctaagtcaat	ccaagagtct	gatgatttct	1800
tgaaaagggt	gttagctaaa	ggatcttagg	catgactgta	gaatttgtag	ttgcaataga	1860
acagagaaag	aggaagcttt	ctgtctcctt	aacactgagc	tgtcatgttt	taaagcttgc	1920
tcacatcttg	gcacatttaa	gagacagtca	ccccaggact	caaaaatagg	gaagtaacag	1980
taacgcaggg	gaaacgtttt	ctgtttggag	gagcaaaggc	tgagaacact	gtgaaaacat	2040
tttgcgcgca	caatagtaac	ctgggtaaat	gcagcgtgaa	gggattttag	tcacacgtgg	2100
tctttcttac	aaggaaggtg	gtgggggtgc	agatgaggtt	gctagagaat	gttagaggat	2160
ccctctctgg	attggagata	gggaaagaaa	gttgcacggc	tgctgaggcc	ccttctaggt	2220
ggcaaggctg	tgctccctgg	ttctgatgat	gtgcctgggt	ggacatggcc	cctgtgagtt	2280
tgtacagtct	tgcagcagga	tctagagggg	ggatttccag	ccagggctgc	tagacggagg	2340
cctactcttc	catctttcct	gatggcagga	tggcctggcc	agggcctgga	agacagagac	2400
ctcctgcctc	cgcctcagta	agacgacaag	gaaaggcaaa	tgcccaaggg	aaagaaaagg	2460
aaggetette	tccccagagt	tccccatgca	gacatgagtg	cgtgctcagt	tcagaatcac	2520
ttctgagaac	tcatccctaa	tgctgcagat	ttgggctgga	acagattcac	actgtctggt	2580
ttcaccgagg	acatgaaact	ccaccttgcg	gggataaaga	gagaaaaaca	aattcatcaa	2640
atggaagaca	cattgaaagt	gtttttcctt	aatgcttatc	ctgtttttaa	accattattt	2700
ccaagttgac	acctttttta	aggaaaaata	aatattttgc	ggcattaaag	ctatataaaa	2760
aaaaaaaaa	aaaaaaaa					2779

```
<210> 382
```

<220>

<400> 382

ttttttcact tgcgaaagat tatttattgc acaatttatc agtgggtact aagaataaca 60 cagatcctat tattctcaac ctctaaattc agtacatagt aaaattcatt ttctcaaact 120 aaggttctat acataatcgg agtaaaccct ctgttactga gttaggatag ggaaaacaaa 180 ttccttagag ttcatgaaac cacttcacaa atcctagaag gcacacatta tatttcctat 240 catagtaagt acatttaagt acttcatatt taaaaaagac aaagctgtac agaatacaaa 300

والمتعارضة ومعارضا والمناز والمعارضة ومنازي والمراز والمراز والماران والماران والمارا والمارا والمعارض والمجر

<211> 622

<212> DNA

<213> Homo sapiens

<221> misc_feature <222> (304)..(304)

<223> n is a, c, g, t or u

aagngtaatt tgagtccatt aagcaaattt acaactttta cgattagtta	ttacagtaga	360
actgacctaa cattcacatc taaataatta tcacccagtt caatagagcg	aacaaagagc	420
tgtgctcatt tatttatttg ataaggctaa taacatttta tattcacagt	agatcagtaa	480
gtgtcttgga gctcatattg taaaataaaa aggtttgggc cctattgagt	cactgggctc	540
attgttaaat aacteettga aaggtgaagg attetggggg ataaaateat	tggctatccc	600
tggaaagatc caaaactctg ta		622
<210> 383 <211> 937 <212> DNA <213> Homo sapiens		
<400> 383 gctctctttc ccatcttgca agatggcggg tgaaaaagtt gagaagccag	atactaaaga	60
gaagaaaccc gaagccaaga aggttgatgc tggtggcaag gtgaaaaagg	gtaacctcaa	120
agctaaaaag cccaagaagg ggaagcccca ttgcagccgc aaccctgtcc	ttgtcagagg	180
aattggcagg tattcccgat ctgccatgta ttccagaaag gccatgtaca	agaggaagta	240
ctcagccgct aaatccaagg ttgaaaagaa aaagaaggag aaggttctcg	caactgttac	300
aaaaccagtt ggtggtgaca agaacggcgg tacccgggtg gttaaacttc	gcaaaatgcc	360
tagatattat cctactgaag atgtgcctcg aaagctgttg agccacggca	aaaaaccctt	420
cagtcagcac gtgagaaaac tgcgagccag cattaccccc gggaccattc	tgatcatcct	480
cactggacgc cgcaggggca agaattgggt ggttttcctg aagcagctgg	ctagtggctt	540
attacttgtg actggacctc tggtcctcaa tcgagttcct ctacgaagaa	cacaccagaa	600
atttgtcatt gccacttcaa ccaaaatcga tatcagcaat gtaaaaatcc		660
tactgatgct tacttcaaga agaagaagct gcggaagccc agacaccagg	aaggtgagat	720
cttcgacaca gaaaaagaga aatatgagat tacggagcag cgcaagattg	atcagaaagc	780
tgtggactca caaattttac caaaaatcaa agctattcct cagctccagg	gctacctgcg	840
atctgtgttt gctctgacga atggaattta tcctcacaaa ttggtgttct	aaatgtctta	900
agaacctaat taaatagctg actaccgaaa aaaaaaa		937
<210> 384 <211> 2291 <212> DNA <213> Homo sapiens		
<400> 384 ctttccgccc cagccctgaa agcgttaacc ctggagcttt ctgcacaccc	cccgaccgct	60
cccgcccaag cttcctaaaa aagaaaggtg caaagtttgg tccaggatag	aaaaatgact	120

gatcaaaggc	aggcgatact	tcctgttgcc	gggacgctat	atataacgtg	atgagcgcac	180
gggctgcgga	gacgcaccgg	agcgctcgcc	cageegeege	ctccaagccc	ctgaggtttc	240
cggggaccac	aatgaacaag	ttgctgtgct	gcgcgctcgt	gtttctggac	atctccatta	300
agtggaccad	ccaggaaacg	tttcctccaa	agtaccttca	ttatgacgaa	gaaacctctc	360
atcagctgtt	gtgtgacaaa	tgtcctcctg	gtacctacct	aaaacaacac	tgtacagcaa	420
agtggaagac	cgtgtgcgcc	ccttgccctg	accactacta	cacagacagc	tggcacacca	480
gtgacgagtg	tctatactgc	agccccgtgt	gcaaggagct	gcagtacgtc	aagcaggagt	540
gcaatcgcac	ccacaaccgc	gtgtgcgaat	gcaaggaagg	gcgctacctt	gagatagagt	600
tctgcttgaa	acataggagc	tgccctcctg	gatttggagt	ġgtgcaagct	ggaaccccag	660
agcgaaatac	agtttgcaaa	agatgtccag	atgggttctt	ctcaaatgag	acgtcatcta	720
aagcaccctg	tagaaaacac	acaaattgca	gtgtctttgg	tctcctgcta	actcagaaag	780
gaaatgcaac	acacgacaac	atatgttccg	gaaacagtga	atcaactcaa	aaatgtggaa	840
tagatgttac	cctgtgtgag	gaggcattct	tcaggtttgc	tgttcctaca	aagtttacgc	900
ctaactggct	tagtgtcttg	gtagacaatt	tgcctggcac	caaagtaaac	gcagagagtg	960
tagagaggat	aaaacggcaa	cacageteae	aagaacagac	tttccagctg	ctgaagttat	1020
ggaaacatca	aaacaaagac	caagatatag	tcaagaagat	catccaagat	attgacctct	1080
gtgaaaacag	cgtgcagcgg	cacattggac	atgctaacct	caccttcgag	cagcttcgta	1140
gcttgatgga	aagcttaccg	ggaaagaaag	tgggagcaga	agacattgaa	aaaacaataa	1200
aggcatgcaa	acccagtgac	cagatectga	agctgctcag	tttgtggcga	ataaaaaatg	1260
gcgaccaaga	caccttgaag	ggcctaatgc	acgcactaaa	gcactcaaag	acgtaccact	1320
ttcccaaaac	tgtcactcag	agtctaaaga	agaccatcag	gttccttcac	agcttcacaa	1380
tgtacaaatt	gtatcagaag	ttatttttag	aaatgatagg	taaccaggtc	caatcagtaa	1440
aaataagctg	cttataactg	gaaatggcca	ttgagctgtt	tcctcacaat	tggcgagatc	1500
ccatggatga	gtaaactgtt	tctcaggcac	ttgaggcttt	cagtgatatc	tttctcatta	1560
ccagtgacta	attttgccac	agggtactaa	aagaaactat	gatgtggaga	aaggactaac	1620
atctcctcca	ataaacccca	aatggttaat	ccaactgtca	gatctggatc	gttatctact	1680
gactatattt	tcccttatta	ctgcttgcag	taattcaact	ggaaattaaa	aaaaaaaac	1740
tagactccat	tgtgccttac	taaatatggg	aatgtctaac	ttaaatagct	ttgagatttc	1800
agctatgcta	gaggctttta	ttagaaagcc	atatttttt	ctgtaaaagt	tactaatata	1860
tctgtaacac	tattacagta	ttgctattta	tattcattca	gatataagat	ttgtacatat	1920

tatcatccta	taaagaaacg	gtatgactta	attttagaaa	gaaaattata	ttctgtttat	1980
tatgacaaat	gaaagagaaa	atatatattt	ttaatggaaa	gtttgtagca	tttttctaat	2040
aggtactgcc	atatttttct	gtgtggagta	tttttataat	tttatctgta	taagctgtaa	2100
tatcatttta	tagaaaatgc	attatttagt	caattgttta	atgttggaaa	acatatgaaa	2160
tataaattat	ctgaatatta	gatgctctga	gaaattgaat	gtaccttatt	taaaagattt	2220
tatggtttta	taactatata	aatgacatta	ttaaagtttt	caaattattt	tttaaaaaaa	2280
aaaaaaaaa	a					2291

<210> 385

<211> 1963

<212> DNA

<213> Homo sapiens

<400> 385

gtgttgtacg aaagcgcgtc tgcggccgca atgtctgctg agagttgtag ttctgtgccc 60 120 agcagtcggt gacgggacac agtggttggt gacgggacag agcggtcggt gacagcctca 180 agggetteag cacegegeee atggeagage cagacecete teacectetg gagacecagg 240 300 cagggaaggt gcaggaggct caggactcag attcagactc tgagggagga gccgctggtg gagaagcaga catggacttc ctgcggaact tattctccca gacgctcagc ctgggcagcc 360 agaaggagcg tetgetggac gagetgaeet tggaaggggt ggeeeggtae atgeagageg 420 aacgctgtcg cagagtcatc tgtttggtgg gagctggaat ctccacatcc gcaggcatcc 480 540 cegaettteg etetecatee aceggeetet atgacaacet agagaagtae catetteeet 600 acccagaggc catctttgag atcagctatt tcaagaaaca tccggaaccc ttcttcgccc tegecaagga aetetateet gggeagttea agecaaceat etgteactae tteatgegee 660 tgctgaagga caaggggcta ctcctgcgct gctacacgca gaacatagat accctggagc 720 gaatagccgg gctggaacag gaggacttgg tggaggcgca cggcaccttc tacacatcac 780 actgcgtcag cgccagctgc cggcacgaat acccgctaag ctggatgaaa gagaagatct 840 tetetgaggt gacgeceaag tgtgaagaet gtcagageet ggtgaageet gatategtet 900 tttttggtga gagcctccca gcgcgtttct tctcctgtat gcagtcagac ttcctgaagg 960 tggacetect cetggteatg ggtacetect tgcaggtgca gecetttgee teceteatea 1020 gcaaggcacc cctctccacc cctcgcctgc tcatcaacaa ggagaaagct ggccagtcgg 1080 accettteet ggggatgatt atgggeeteg gaggaggeat ggaetttgae tecaagaagg 1140 1200 cetacaggga cgtggcetgg ctgggtgaat gcgaccaggg ctgcctggcc cttgctgagc

tccttggatg gaagaaggag	ctggaggacc	ttgtccggag	ggagcacgcc	agcatagatg	1260
cccagtcggg ggcgggggtc	eccaacccca	gcacttcagc	ttcccccaag	aagteeeege	1320
cacctgccaa ggacgaggcc	aggacaacag	agagggagaa	accccagtga	cagctgcatc	1380
tcccaggcgg gatgccgagc	tcctcaggga	cagctgagcc	ccaaccgggc	ctggccccct	1440
cttaaccagc agttcttgtc	tggggagete	agaacatccc	ccaatctctt	acageteect	1500
ccccaaaact ggggtcccag	caaccctggc	ccccaacccc	agcaaatctc	taacacctcc	1560
tagaggccaa ggcttaaaca	ggcatctcta	ccagccccac	tgtctctaac	cactcctggg	1620
ctaaggagta acctccctca	tctctaactg	ccccacggg	gccagggcta	ccccagaact	1680
tttaactctt ccaggacagg	gagcttcggg	ccccactct	gtctcctgcc	cccgggggcc	1740
tgtggctaag taaaccatac	ctaacctacc	ccagtgtggg	tgtgggcctc	tgaatataac	1800
ccacacccag cgtaggggga	gtctgagccg	ggagggctcc	cgagtctctg	ccttcagctc	1860
ccaaagtggg tggtgggccc	ccttcacgtg	ggacccactt	cccatgctgg	atgggcagaa	1920
gacattgctt attggagaca	aattaaaaac	aaaaacaact	aac		1963

<210> 386

<211> 4866

<212> DNA

<213> Homo sapiens

<400> 386 atggccaagt cgggtggctg cggcgcggaa gccggcgtgg gcggcggcaa cggggcactg 60 acctgggtga acaatgctgc aaaaaaagaa gagtcagaaa ctgccaacaa aaatgattct 120 tcaaagaagt tgtctgttga gagagtgtat cagaagaaga cacaacttga acacattctt 180 cttcgtcctg atacatatat tgggtcagtg gagccattga cgcagttcat gtgggtgtat 240 300 gatgaagatg taggaatgaa ttgcagggag gttacctttg tgccaggttt atacaagatc tttgatgaaa ttttggttaa tgctgctgac aataaacaga gggataagaa catgacttgt 360 attaaagttt ctattgatcc tgaatctaac attataagca tttggaataa tgggaaaggc 420 attccagtag tagaacacaa ggtagagaaa gtttatgttc ctgctttaat ttttggacag 480 cttttaacat ccagtaacta tgatgatgat gagaaaaaag ttacaggtgg tcgtaatggt 540 tatggtgcaa aactttgtaa tattttcagt acaaagttta cagtagaaac agcttgcaaa 600 gaatacaaac acagttttaa gcagacatgg atgaataata tgatgaagac ttctgaagcc 660 aaaattaaac attttgatgg tgaagattac acatgcataa cattccaacc agatctgtcc 720 aaatttaaga tggaaaaact tgacaaggat attgtggccc tcatgactag aagggcatat 780 gatttggctg gttcgtgtag aggggtcaag gtcatgttta atggaaagaa attgcctgta 840

aatggatttc	gcagttatgt	agatctttat	gtgaaagaca	aattggatga	aactggggtg	900
gccctgaaag	ttattcatga	gcttgcaaat	gaaagatggg	atgtttgtct	cacattgagt	960
gaaaaaggat	tccagcaaat	cagctttgta	aatagtattg	caactacaaa	aggtggacgg	1020
cacgtggatt	atgtggtaga	tcaagttgtt	ggtaaactga	ttgaagtagt	taagaaaaag	1080
aacaaagctg	gtgtatcagt	gaaaccattt	caagtaaaaa	accatatatg	ggtttttatt	1140
aattgcctta	ttgaaaatcc	aacttttgat	tctcagacta	aggaaaacat	gactctgcag	1200
cccaaaagtt	ttgggtctaa	atgccagctg	tcagaaaaat	tttttaaagc	agcctctaat	1260
tgtggcattg	tagaaagtat	cctgaactgg	gtgaaattta	aggeteagae	tcagctgaat	1320
aagaagtgtt	catcagtaaa	atacagtaaa	atcaaaggta	ttcccaaact	ggatgatgct	1380
aatgatgctg	gtggtaaaca	ttccctggag	tgtacactga	tattaacaga	gggagactct	1440
gccaaatcac	tggctgtgtc	tggattaggt	gtgattggac	gagacagata	cggagttttt	1500
ccactcaggg	gcaaaattct	taatgtacgg	gaagcttctc	ataaacagat	catggaaaat	1560
gctgaaataa	ataatattat	taaaatagtt	ggtctacaat	ataagaaaag	ttacgatgat	1620
gcagaatctc	tgaaaacctt	acgctatgga	aagattatga	ttatgaccga	tcaggatcaa	1680
gatggttctc	acataaaagg	cctgcttatt	aatttcatcc	atcacaattg	gccatcactt	1740
ttgaagcatg	gttttcttga	agagttcatt	actcctattg	taaaggcaag	caaaaataag	1800
caggaacttt	ccttctacag	tattcctgaa	tttgacgaat	ggaaaaaaca	tatagaaaac	1860
cagaaagcct	ggaaaataaa	gtactataaa	ggattgggta	ctagtacagc	taaagaagca	1920
aaggaatatt	ttgctgatat	ggaaaggcat	cgcatcttgt	ttagatatgc	tggtcctgaa	1980
gatgatgctg	ccattacctt	ggcatttägt	aagaagaaga	ttgatgacag	aaaagaatgg	2040
ttaacaaatt	ttatggaaga	ccggagacag	cgtaggctac	atggcttacc	agagcaattt	2100
ttatatggta	ctgcaacaaa	gcatttgact	tataatgatt	tcatcaacaa	ggaattgatt	2160
ctcttctcaa	actcagacaa	tgaaagatct	ataccatctc	ttgttgatgg	ctttaaacct	2220
ggccagcgga	aagttttatt	tacctgtttc	aagaggaatg	ataaacgtga	agtaaaagtt	2280
gcccagttgg	ctggctctgt	tgctgagatg	tcggcttatc	atcatggaga	acaagcattg	2340
atgatgacta	ttgtgaattt	ggctcagaac	tttgtgggaa	gtaacaacat	taacttgctt	2400
cagcctattg	gtcagtttgg	aactcggctt	catggtggca	aagatgctgc	aagccctcgt	2460
tatattttca	caatgttaag	cactttagca	aggctacttt	ttcctgctgt	ggatgacaac	2520
ctccttaagt	teetttatga	tgataatcaa	cgtgtagagc	ctgagtggta	tattcctata	2580
attcccatgg	tttaataaa	tggtgctgag	ggcattggta	ctggatgggc	ttgtaaacta	2640
cccaactatg	atgctaggga	aattgtgaac	aatgtcagac	gaatgctaga	tggcctggat	2700

cctcatccca	tgcttccaaa	ctacaaaaac	tttaaaggca	cgattcaaga	acttggtcaa	2760
aaccagtatg	cagtcagtgg	tgaaatattt	gtagtggaca	gaaacacagt	agaaattaca	2820
gagettecag	ttagaacttg	gacacaggta	tataaagaac	aggttttaga	acctatgcta	2880
aatggaacag	ataaaacacc	agcattaatt	tctgattata	aagaatatca	tactgacaca	2940
actgtgaaat	ttgtggtgaa	aatgactgaa	gagaaactag	cacaagcaga	agctgctgga	3000
ctgcataaag	tttttaaact	tcaaactact	cttacttgta	attccatggt	actttttgat	3060
catatgggat	gtctgaagaa	atatgaaact	gtgcaagaca	ttctgaaaga	attctttgat	3120
ttacgattaa	gttattacgg	tttacgtaag	gagtggcttg	tgggaatgtt	gggagcagaa	3180
tctacaaagc	ttaacaatca	agcccgtttc	attttagaga	agatacaagg	gaaaattact	3240
atagagaata	ggtcaaagaa	agatttgatt	caaatgttag	tccagagagg	ttatgaatct	3300
gacccagtga	aagcctggaa	agaagcacaa	gaaaaggcag	cagaagagga	tgaaacacaa	3360
aaccagcatg	atgatagttc	ctccgattca	ggaactcctt	caggcccaga	ttttaattat	3420
attttaaata	tgtctctgtg	gtctcttact	aaagaaaaag	ttgaagaact	gattaaacag	3480
agagatgcaa	aagggcgaga	ggtcaatgat	cttaaaagaa	aatctccttc	agatctttgg	3540
aaagaggatt	tagcggcatt	tgttgaagaa	ctggataaag	tggaatctca	agaacgagaa	3600
gatgttctgg	ctggaatgtc	tggaaaagca	attaaaggta	aagttggcaa	acctaaggtg	3660
aagaaactcc	agttggaaga	gacaatgccc	tcaccttatg	gcagaagaat	aattcctgaa	3720
attacagcta	tgaaggcaga	tgccagcaaa	aagttgctga	agaagaagaa	gggtgatctt	3780
gatactgcag	cagtaaaagt	ggaatttgat	gaagaattca	gtggagcacc	agtagaaggt	3840
gcaggagaag	aggcattgac	tccatcagtt	cctataaata	aaggtcccaa	acctaagagg	3900
gagaagaagg	agcctggtac	cagagtgaga	aaaacaccta	catcatctgg	taaacctagt	3960
gcaaagaaag	tgaagaaacg	gaatccttgg	tcagatgatg	aatccaagtc	agaaagtgat	4020
ttggaagaaa	cagaacctgt	ggttattcca	agagattctt	tgcttaggag	agcagcagcc	4080
gaaagaccta	aatacacatt	tgatttctca	gaagaagagg	atgatgatgc	tgatgatgat	4140
gatgatgaca	ataatgattt	agaggaattg	aaagttaaag	catctcccat	aacaaatgat	4200
gggaagatg	aatttgttcc	ttcagatggg	ttagataaag	atgaatatac	attttcacca	4260
ggcaaatcaa	aagccactcc	agaaaaatct	ttgcatgaca	aaaaaagtca	ggattttgga	4320
aatctcttct	catttccttc	atattctcag	aagtcagaag	atgattcagc	taaatttgac	4380
agtaatgaag	aagattctgc	ttctgttttt	tcaccatcat	ttggtctgaa	acagacagat	4440
aaagttccaa	gtaaaacggt	agctgctaaa	aagggaaaac	cgtcttcaga	tacagtccct	4500

aagcccaaga gagccccaaa acagaagaaa gtagtagagg ctgtaaactc tgactcggat	4560
tcagaatttg gcattccaaa gaagactaca acaccaaaag gtaaaggccg aggggcaaag	4620
aaaaggaaag catctggctc tgaaaatgaa ggcgattata accctggcag gaaaacatcc	4680
aaaacaacaa gcaagaaacc gaagaagaca tcttttgatc aggattcaga tgtggacatc	4740
ttcccctcag acttccctac tgagccacct tctctgccac gaaccggtcg ggctaggaaa	4800
gaagtaaaat attttacaga gtctgatgaa gaagaagatg atgttgattt tgcaatgttt	4860
aattaa	4866
<210> 387 <211> 319	
<212> DNA <213> Homo sapiens	
<400> 387	
getteggggt egeegetggg tgagteeeae teeecegegt tgeaggtgae eteaeteeee	60
ggtgcctggc ccctgggggc cggcagctgc gatcactcca gccggtgtgg ttacagcccc	120
actgggetee tecaeeeggg acettttgae etegggetet eeagtggaag aggeggagge	180
agaggeggtg gtggeagtgg etggggtgtg gtggeegtgg eegegaegge tgetgetgge	240
teettgggee ecacetegea caceegggtg accaeeaceg gegeggatga actegettgg	300
gtcgcaagga gctgcaaag	319
<210> 388 <211> 408	319
<210> 388	319
<210> 388 <211> 408 <212> DNA <213> Homo sapiens <400> 388	·
<210> 388 <211> 408 <212> DNA <213> Homo sapiens <400> 388 ttttttttt tttttttt tttttttt tttttttt tttt	60
<210> 388 <211> 408 <212> DNA <213> Homo sapiens <400> 388 ttttttttt tttttttt tttttttt tttttttt tttt	60 120
<pre><210> 388 <211> 408 <212> DNA <213> Homo sapiens <400> 388 ttttttttt tttttttt tttttttt tttttttt tttt</pre>	60 120 180
<pre><210> 388 <211> 408 <212> DNA <213> Homo sapiens <400> 388 ttttttttt tttttttt tttttttt tttttttt tttt</pre>	60 120 180 240
<pre><210> 388 <211> 408 <212> DNA <213> Homo sapiens <400> 388 ttttttttt tttttttt tttttttt tttttttt tttt</pre>	60 120 180 240 300
<pre><210> 388 <211> 408 <212> DNA <213> Homo sapiens <400> 388 ttttttttt tttttttt tttttttt tttttttt tttt</pre>	60 120 180 240 300 360
<pre><210> 388 <211> 408 <212> DNA <213> Homo sapiens <400> 388 ttttttttt tttttttt tttttttt tttttttt tttt</pre>	60 120 180 240 300
<pre><210> 388 <211> 408 <212> DNA <213> Homo sapiens <400> 388 ttttttttt tttttttt tttttttt tttttttt tttt</pre>	60 120 180 240 300 360

```
ttacaataaa ccagtaatag ttttattcac ttaaagatga aaacaatctg cttttgtaca
                                                                      60
gcaagggtca tgaaaaataa agttaatgga caactagagt aaaaatattt ttaacatatg
                                                                     120
acaaggagct aataccccaa tatatacaga gctcagaagt tattatgaaa gacattaaca
                                                                     180
tatagcaaaa caagcaatgg ccatgtggta tcacagaaaa ttctggaatt tcatatcaag
                                                                     240
ggtgatagga ggctcttttg ttttagtgag acaatttttt tttttttt tgagacacag
                                                                     300
tctcgctctg tcacccaggc tggagtgaag tggtgcgatc tcggctcact gcaagctccg
                                                                     360
cctcccaggt tcacgccatt ctcctgcctc agcctcccga gtagctggga ctacaggtgc
                                                                     420
ccgccaccaa gcctggctaa ttttttgtat ttttagtaga ga
                                                                     462
<210>
      390
<211>
      598
<212>
      DNA
<213> Homo sapiens
<400> 390
ttttttttt ttttttaga gagataaaca atgtagctaa ttttgtagga aaggccaaag
                                                                      60
tagctaattt tgtaggggac ctgattttta gtccagcttg gctggcaact aattttaggt
                                                                     120
ctgtaaaggt tcaqaaagca tatcctgaac acaagccctc ctcaqttacq ttatttaaaq
                                                                     180
tgttaaatac tcaagccaac cgaaacacaa accaaagtaa agaatttaga taagaaagac
                                                                     240
atgtgaaaag gaggctactg gtaagtacag aactcagtta aatgtaaata attatgaatt
                                                                     300
aattgtatta tctttttatt taaaaatcta ataaattctg atttttctct ccccaacttc
                                                                      360
ctgtgatata actaagaaaa aacaaagaga aactagtttc tgtaaaactg gaaactccga
                                                                     420
gaatteetea gtgatatgee aggaaacagg aagaattţee actageeaaa gttetgagga
                                                                     480
agttacaggc aggaaaaaag ataagggtta ccatctttt ttagtcaata aagctatgcc
                                                                      540
cactctaggt actttcctta gaaacatgga gtcttcccag cagagaaagg aaagctag
                                                                      598
<210>
      391
<211>
       383
<212>
      DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222>
      (341)..(341)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222>
      (346)..(346)
<223> n is a, c, g, t or u
<220>
```

÷ .

```
<221> misc_feature
      (365)..(365)
<222>
<223> n is a, c, g, t or u
<400> 391
tttttttttg gtacacaaat tcagaagtct ttattttgaa aaaaattctt ccaacagtat
                                                                      60
ttcacaatga acaagaactt aaccaaattt atctatcata ctaaagtatt tcagaaatga
                                                                     120
atattgaaaa cagcctgtaa gttttcatcc aatatttaaa accacctcct ggaactaaaa
                                                                     180
ttggtcttca aaaatcatgg gcgtattaac attttccaaa catgccctgc tggactagga
                                                                     240
aggtcctgtt attctttctt ttgaacttcc cagtaagttt ccttgttccc tattcctagg
                                                                     300
gtttaaagtg gcaaagggac tttttatgag gctattaggg ncaagntttc ttccattgga
                                                                     360
                                                                     . 383
aaatnaaact tttggcggga aat
<210> 392
<211> 573
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (521)..(521)
<223> n is a, c, g, t or u
<400> 392
gattgtataa ataatttatt tctgttcaca gcatcatata tgcattataa aaggctatgg
                                                                       60
aaacaaaaga gaaggatgat gagacagaga attacagcag tagaaaggaa aacagaaacc
                                                                      120
agggcacaca gttccaacac cagaacagag aatttgggaa gataattgct ctgaaacaga
                                                                      180
actggcctcc ctgtgtctat tagaaaacat ttccaaagct cacggaggga ggccaacttc
                                                                      240
ccctatggga aacccattca ctcgccaaag ggcagaaggc atcataaatc acccattgat
                                                                      300
acattggtgg ggggctcctg tccccctggt gaccactcca aggtgatttg atctgtgctt
                                                                      360
cctctgttgg gtcagagacg aaacgggcta ttattaggtc aaacattaca gaaatcaact
                                                                      420
                                                                      480
gagactetta actagtagtt gatacaccae agggetttae tttaetgeae aattaetaae
agttgattgc accettaagt attgattatg caaaaaacaa natcatctcg catcagtttt
                                                                      540
                                                                      573
aaagcatgac agggtttgaa cagtgatctt gaa
<210> 393
<211> 497
 <212> DNA
<213> Homo sapiens
<400> 393
cacacacata tottttatt tgagagttta aaaggaaato tgaggtccag aggatcacag
                                                                       60
```

:

agcctcttgt tctgctatca aaggaccaat aagaagcaaa ctgatattac agggcaaatg	120
ttcccagaca gcccagcctg ctccccttag gaatgagtgt ccctggaggg ggagagcctg	180
gaaccaaagc cccgccagga actgcttccc ctaaactgag gttctctgaa aaaaatgttc	240
gcctggctga taaagccgcc tcttaacaga gcccagacac ttctgtgctt cccctgggtt	300
gctaattgag gacactaaag ccctaagaga taccccaggt cgggggaagg ggccccaaga	360
cctagacctc cggtggcgac catgcccttg agaggatggg agctgaattg gagcacgaga	420
ttatttatca tcgctggatg aagctccage tagagetcag tatttcctet ttttctgggc	480
tcagacagac acagact	497
<210> 394 <211> 505 <212> DNA <213> Homo sapiens	
<400> 394 ttttttttttg ttagaaactg attttaataa gtcacatgat acaaaagaat gagaacattc	60
aaagaatgag taaaatactg ctttgtccca aaggacaagc agaaaatgtt aaggcacaac	120
ggatgeteag aaaaegtaag aagetgaagg gaaaacacat catetgtgta eteagacaca	180
cacactccaa cccatcacac gaacacacce tegecegece atcagagaag aattegeetg	240
gaatcagctg ggggcggtgg ctcacgccta taatcccagc actttgggag gttgaggcgg	300
gcagatcatg aggtcaggag ttcacgacca gcctgaccaa catggtgaaa ccctatctct	360
actaaaaata caaaaatcag cggggcctgg tggcatgcac ctgtaatccc agctactcag	420
gaggetgagg caggagaate gettgagaca gaggttgeag tgageegaga tgegeeactg	480
cacteetgee tgggcaacag ageaa	. 505
<210> 395 <211> 2283 <212> DNA <213> Homo sapiens <400> 395	
ttgatgctgc aagttcaggg gatttttctt actcttaggt ttaaccaaga acactgagca	60
gggaaaaacc ctgcctttcc taactgcatg tattttttcc tttttggaaa ggtggtagag	120
actcagaagc tttccttgtt ttcttcaggc ctgctcccag ttttcttaac agtttctttt	180
gttgctttct ctctcccttg ttgctttcca tggcagtaat cctcctagag tccaagcagt	240
ctgttgtatg gagcagggtg tgtgggtttt ctgggcccat cattatggct gcttcagagt	300
cagaagaaag ccatagggca gtaggggagc tcctattgcc tagcccctct ccctttgtgg	360
ctcccactct agctgcctat ttttgctcat cagctggtga gtcagtatgg gccagcagtt	420

ctccctccct	aagcccttgc	tactttatgg	gttagctttg	caggtttggt	ggcttgaggg	480
gtgggggcaa	ctcaccactg	ccaggtaact	ccctgaaggg	tgggagtgga	ttatcttcta	540
ggctcttacc	cgcggtaggg	aagggcatca	acactgtctt	ccttccattc	tectttecce	600
catcccattt	agtgctgcca	cagggcagaa	gcacacaaac	caaccacaca	gtctctgact	660
tctcctaagc	actttgagtt	gttgaatggg	gctcaggggc	aagagttttt	gctgccctcc	720
ccagcgtggt	cacagggtta	ttgaactgcc	tgcacttgtt	tctcatgcaa	ctccagcatt	780
ttccccagaa	gttgaactat	ggatagcagc	ttggtatgga	tttcctaaat	cttaacattt	840
gaagcagctt	cttgaggctg	gcaactatcc	tggtttctgt	cttggagggg	gtggtttgtt	900
tgctggggcc	caacgtctgt	cccaagtggt	ggggtgagag	taagttaact	ttggtgccag	960
gtgagaggtg	ggggctcttt	gcttagactc	cctatcatgg	aaagattgga	gttttctatg	1020
cagggcactg	gggaaaagga	ttgctgattc	tgactgaccc	tgatcagaga	gattaggatt	1080
gtattttgac	ataggatttg	gaacccatct	aaatgttgaa	gttccctgag	acagctctcc	1140
agctgctgag	cctgcgccag	gggctaagca	gcccctaatg	agaggctctg	ctccctttcc	1200
cacctcgcca	atgttgttgt	tgctgccttt	ttgatttgta	tcctctgtta	tagacatttt	1260
ttaaaaacga	tttcctcttt	cattgtgcac	aagtgctgag	agtctgaggc	cccatttctg	1320
ctgtgtatat	atatcctgac	tcggggcttt	tattcagcaa	actgttcatt	cttctgtcag	1380
acaatgtcat	attcaactct	gttcatatta	aaccactgtg	aagcaagcct	ctgttttcct	1440
gcttaagttg	taaatttagt	attctttagt	gtctaggata	tgctgggtat	tatgcagaaa	1500
tcatacagtg	tggccagtgt	cctgaggtaa	tgttttgcat	ttaaattttt	ttagaaagca	1560
gaatcttaac	ttatcttaat	gatatttacc	tatccttttt	gcaactcaca	actgactttg	1620
tcacagaggt	aatgcatctg	cttgcaggaa	gtagctgtag	gctcagtacc	tgttgtttga	1680
gtcagattta	gcagatttgg	tttttaagct	tgtgggtttg	tgctaatttg	ggcagaatat	1740
atttattata	tatgtgtgtg	tgtatgtgtg	tatgtgtgtg	tctgcatatg	taatacatgt	1800
acataaacac	acatgcatgt	gttcatcctc	tgacacaccc	acacaacacc	aacaaacatt	1860
tcttctatag	gctttttatc	tcaactgaca	ctgtttttt	tcccaaataa	atttgacaca	1920
ggcagaaagg	tgggtgaact	ctcagaactt	ttggtgggtg	gatattcatc	tgaccagtga	1980
gctctgaaat	ggtttcccta	cacagagtgg	gttttggcaa	gggttggaat	gaggggaggt	2040
agcagtcttg	tcatttagaa	aatcaagcta	gttttgatgt	agctcaacat	ggaaagaagg	2100
tacagaaagt	gatgtgttca	aaacattagc	aaattaaggc	tgaatgtggt	tggctcatgc	2160
ctgtaatccc	agcattttgg	gaggctgagg	caggaggatt	gcttgagccc	aggaggttga	2220

gactagectg ggcaaccaga gtgagacact gtetetacaa aaattteaaa aaaaaaaaa 2280
aaa 2283

<210> 396 <211> 1634 <212> DNA

<213> Homo sapiens

<400> 396 ggtggcgtgg ggactccctg aaagcagagc ggcagggcgc ccggaagtcg tgagtcgagt 60 cttcccgggc taatccatgc cgggttggag gctgctgacg caggtcggcg cccaggtgct 120 gggtcgactc ggggacggcc tgggtgctgc cctgggcccg gggaacagaa cacacatctg 180 gctttttgtt agaggtcttc atggaaagag tggtacatgg tgggatgagc atctttctga 240 agaaaatgtc ccattcatta agcagttggt ctctgatgaa gataaagccc aattagcaag 300 taaactgtgt cctctgaaag atgaaccatg gcctatacat ccttgggaac caggttcctt 360 tagagttggt cttattgcct tgaagctggg catgatgcct ttatggacca aggatggtca 420 aaagcatgtg gtcacattac ttcaggtaca agactgtcat gtcttaaaat atacgtcaaa 480 ggaaaactgt aatggaaaaa tggcaaccct gtctgtagga ggaaaaactg tatcacgttt 540 tegtaaaget acatecatat tggaatttta eegggaaett ggattgeege egaaacagae 600 agttaaaatc tttaatataa cagataatgc tgcaattaaa ccaggcactc ctctttatgc 660 tgctcacttt cgtccaggac agtatgtgga tgtcacagcc aaaactattg gtaaaggttt . 720 tcaaggtgtc atgaaaagat ggggatttaa aggccagcct gctacgcatg gtcaaacgaa 780 aacccacagg agacctggag ctgttgcaac tggtgatatt ggcagagtet ggcctggaac 840 taaaatgcct ggaaaaatgg gaaacatata caggacagaa tatggactga aagtgtggag 900 aataaacaca aagcacaaca taatctatgt aaatggctct gtacctggac ataaaaattg 960 cttagtaaag gtcaaagatt ctaaactgcc tgcatataag gatctcggta aaaatctacc 1020 attocctaca tattttcctg atggagatga agaggaactg ccagaagatt tgtatgatga 1080 aaacgtgtgt cagcccggtg cgccttctat tacatttgcc taacatcttt ggacgtggca 1140 gaaccttaca tattctgtga gcttcgatga gccagagtga tatcataacc accagaaatc 1200 atactctcct ttcttagtca caacaaaatc acacatgtca tctttgtcaa gggcataaat 1260 atatcattca tacccccatt aaattttgtt agaaaaatta ccacattaaa tatatgagtt 1320 aagtagattg gatttgctga aattggtgtt gggcatatta gcaaaatatt cttaatttgt 1380

1440

1500

ggactcgatt cttttttact acatatttcc caagttatct taagatgtct gtaaatttaa

cttttattaa agttttgtca atctttgtga aatagtggtt gtggaacagt agaaaaccat

atggggacta tagtgcaacc tatttgggta aagaaaccat ttgctaaaat ggagaaagta 1560
aatagatttt tatttaaatt acagaaacat gttaaaggcc ggacaaagga aagacaataa 1620
aatcataaat tatc ' 1634

<210> 397

<211> 1943

<212> DNA

<213> Homo sapiens

<400> 397

gcctcgtcag ctgcctgggc gggctgggag gcgcgggttg aaaagtctcg ttccaagttt 60 ggagagagag agaagagcgc ctcagacctc ggtacccgcg agcggggagg aggcaggaaa 120 gaaggacgcg gcgtctgggg agcacccagg cagcaagacg gggcccgggc tttcgacagt 180 ggggagtgtg acgcgcttgg gaaaggcagg agcgccacgt cgggctgctc ttggctaacg 240 agaggagtec gaggeggegg egaggggega acgaccegac geaagatgge gagtaaagag 300 atgtttgaag atactgtgga ggagcgtgtc atcaatgaag aatataaaat ctggaagaag 360 aatacaccgt ttctatatga cctggttatg acccatgctc ttcagtggcc cagtcttacc 420 gttcagtggc ttcctgaagt gactaaacct gaaggaaaag attatgccct tcattggcta 480 gtgctgggga ctcatacgtc tgatgagcag aatcatctgg tggttgctcg agtacatatt 540 cccaatgatg atgcacagtt tgatgcttcc cattgtgaca gtgacaaggg tgaatttggt 600 ggctttggtt ctgtaacagg aaaaattgaa tgtgaaatta aaatcaatca cgaaggagaa 660 gtaaaccgtg ctcgttacat gccgcagaat cctcacatca ttgctacaaa aacaccatct 720 tctgatgtgt tggtttttga ctatacaaaa caccctgcta aaccagaccc aagtggagaa 780 tgtaatcctg atctcagatt aagaggtcac cagaaggaag gctatggtct ctcctggaat 840 tcaaatttga gtggacatct cctaagtgca tctgatgacc atactgtttg tctgtgggat 900 ataaacgcag gaccaaaaga aggcaaaatt gtggatgcta aagccatctt tactggccac 960 tcagctgttg tagaggatgt ggcctggcac ctgctgcacg agtcattgtt tggatctgtt 1020 gctgatgatc agaaacttat gatatgggac accaggtcca ataccacctc caagecgagt 1080 cacttggtgg atgcgcacac tgccgaagtc aactgcctct cattcaatcc ctacagcgaa 1140 tttattctag ccaccggctc tgcggataag accgtagctt tatgggatct gcgtaactta 1200 aaattaaaac tccatacctt cgaatctcat aaagatgaaa ttttccaggt ccactggtct 1260 ccacataatg aaactattct ggcttcaagt ggtactgacc gccgcctgaa tgtgtgggat 1320 ttaagtaaaa ttggggaaga acaatcagca gaagatgcag aagatgggcc tccagaactc 1380 ctgtttattc atggaggaca cactgctaag atttcagatt ttagctggaa ccccaatgag 1440

488

ccttgggtca tttgctcagt	gtctgaggat	aacatcatgc	agatatggca	aatggctgaa	1500
aatatttaca atgatgaaga	gtcagatgtc	acgacatccg	aactggaggg	acaaggatct	1560
taaacccaaa gtacgagaaa	tgtttctgtt	gaatgtaatg	ctacatgaat	gcttgattta	1620
tcaagcgcca aaaaggcatt	gtatagtagg	aaatgtaagt	ggggtggctt	atggcttctt	1680
tatcctctga ttctagcatt	tcaagtgagc	tgttgcgtac	tgtatcatat	tgtagctatt	1740
agggaagaga agaatgttgc	ttaagaaaga	acatcaccat	tgattttaaa	tacaagtagc	1800
agggtattgc ctttgattca	actgttttaa	gtcctcattt	tctcaaacta	agtgcttgct	1860
gttcccaaat atgcaagaat	aacttttaca	ctttttcctt	ccaacacttc	ttgattggct	1920
ttgcagaaat aaagttttaa	aat				1943
<210> 398 <211> 594 <212> DNA <213> Homo sapiens <400> 398				`	·
ctgccccttt cttttttca	ggcggccggg	aagatggcgg	acattcagac	tgagcgtgcc	60
taccaaaagc agccgaccat	ctttcaaaac	aagaagaggg	tcctgctggg	agaaactggc	120
aaggagaagc teeegeggta	ctacaagaac	atcggtctgg	gcttcaagac	acccaaggag	180
gctattgagg gcacctacat	tgacaagaaa	tgccccttca	ctggtaatgt	gtccattcga	240
gggcggatec tetetggcgt	ggtgaccaag	atgaagatgc	agaggaccat	tgtcatccgc	300
cgagactatc tgcactacat	ccgcaagtac	aaccgcttcg	agaagcgcca	caagaacatg	360
tctgtacacc tgtccccctg	cttcagggac	gtccagatcg	gtgacatcgt	cacagtgggc	420
gagtgccggc ctctgagcaa	gacagtgcgc	ttcaacgtgc	tcaaggtcac	caaggctgcc	480
ggcaccaaga agcagttcca	gaagttctga	ggctggacat	cggcccgctc	cccacaatga	540
aataaagtta ttttctcatt	ccaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaa	594
<210> 399 <211> 2141 <212> DNA <213> Homo sapiens					
<400> 399 cgggcgaacc ccctcgcact	ccctctggcc	ggcccagggc	gccttcagcc	caacctcccc	60
agccccacgg gcgccacgga	acccgctcga	tctcgccgcc	aactggtaga	catggagacc	120
cetgeetgge eeegggteee	gcgccccgag	accgccgtcg	ctcggacgct	cctgctcggc	180
tgggtcttcg cccaggtggc	cggcgcttca	ggcactacaa	atactgtggc	agcatataat	240
ttaacttgga aatcaactaa	tttcaagaca	attttggagt	gggaacccaa	acccgtcaat	300

caagtctaca	ctgttcaaat	aagcactaag	tcaggagatt	ggaaaagcaa	atgcttttac	360
acaacagaca	cagagtgtga	cctcaccgac	gagattgtga	aggatgtgaa	gcagacgtac	420
ttggcacggg	tcttctccta	cccggcaggg	aatgtggaga	gcaccggttc	tgctggggag	480
cctctgtatg	agaactcccc	agagttcaca	ccttacctgg	agacaaacct	cggacagcca	540
acaattcaga	gttttgaaca	ggtgggaaca	aaagtgaatg	tgaccgtaga	agatgaacgg	600
actttagtca	gaaggaacaa	cactttccta	agcctccggg	atgtttttgg	caaggactta	660
atttatacac	tttattattg	gaaatcttca	agttcaggaa	agaaaacagc	caaaacaaac	720
actaatgagt	ttttgattga	tgtggataaa	ggagaaaact	actgtttcag	tgttcaagca	780
gtgattccct	cccgaacagt	taaccggaag	agtacagaca	gcccggtaga	gtgtatgggc	840
caggagaaag	gggaattcag	agaaatattc	tacatcattg	gagctgtggt	atttgtggtc	900
atcatccttg	tcatcatcct	ggctatatct	ctacacaagt	gtagaaaggc	aggagtgggg	960
cagagctgga	aggagaactc	cccactgaat	gtttcataaa	ggaagcactg	ttggagctac	1020
tgcaaatgct	atattgcact	gtgaccgaga	acttttaaga	ggatagaata	catggaaacg	1080
caaatgagta	tttcggagca	tgaagaccct	ggagttcaaa	aaactcttga	tatgacctgt	1140
tattaccatt	agcattctgg	ttttgacatc	agcattagtc	actttgaaat	gtaacgaatg	1200
gtactacaac	caattccaag	ttttaatttt	taacaccatg	gcaccttttg	cacataacat	1260
gctttagatt	atatattccg	cacttaagga	ttaaccaggt	cgtccaagca	aaaacaaatg	1320
ggaaaatgtc	ttaaaaaatc	ctgggtggac	ttttgaaaag	ctttttttt	tttttttt	1380
tgagacggag	tcttgctctg	ttgcccaggc	tggagtgcag	tagcacgatc	teggeteact	1440
tgcaccctcc	gtctctcggg	ttcaagcaat	tgtctgcctc	agcctcccga	gtagctggga	1500
ttacaggtgc	gcactaccac	gccaagctaa	tttttgtatt	ttttagtaga	gatggggttt	1560
caccatcttg	gccaggctgg	tcttgaattc	ctgacctcag	tgatccaccc	accttggcct	1620
cccaaagatg	ctagtattat	gggcgtgaac	caccatgccc	agccgaaaag	cttttgaggg	1680
gctgacttca	atccatgtag	gaaagtaaaa	tggaaggaaa	ttgggtgcat	ttctaggact	1740
tttctaacat	atgtctataa	tatagtgttt	aggttctttt	ttttttcagg	aatacatttg	1800
gaaattcaaa	acaattgggc	aaactttgta	ttaatgtgtt	aagtgcagga	gacattggta	1860
ttctgggcag	cttcctaata	tgctttacaa	tctgcacttt	aactgactta	agtggcatta	1920
aacatttgag	agctaactat	atttttataa	gactactata	caaactacag	agtttatgat	1980
ttaaggtact	taaagcttct	atggttgaca	ttgtatatat	aatttttaa	aaaggttttt	2040
ctatatgggg	attttctatt	tatgtaggta	atattgttct	atttgtatat	attgagataa	2100

tttatttaat atactttaaa taaaggtgac tgggaattgt t

2141

cccaccaa acacccaaa cac	aggegae egggaaeege			
<210> 400 <211> 1102 <212> DNA <213> Homo sapiens				
<400> 400 gcctggacag tcagcaagga att	tgtctccc agtgcatttt	geceteetgg (ctgccaactc	60
tggctgctaa agcggctgcc acc	stgctgca gtctacacag	cttcgggaag a	aggaaaggaa	120
cctcagacct tccagatcgc tto	cctctcgc aacaaactat	ttgtcgcagg a	aataaagatg	180
gctgctgaac cagtagaaga caa	attgcatc aactttgtgg	caatgaaatt (tattgacaat	240
acgctttact ttatagctga aga	atgatgaa aacctggaat	cagattactt (tggcaagctt	300
gaatctaaat tatcagtcat aag	gaaatttg aatgaccaag	ttctcttcat	tgaccaagga	360
aatcggcctc tatttgaaga ta	tgactgat tctgactgta	gagataatgc	accccggacc	420
atatttatta taagtatgta taa	aagatagc cagcctagag	gtatggctgt	aactatctct	480
gtgaagtgtg agaaaatttc aa	ctctctcc tgtgagaaca	aaattatttc	ctttaaggaa	540
atgaateete etgataaeat ea	aggataca aaaagtgaca	tcatattctt	tcagagaagt	600
gtcccaggac atgataataa ga	tgcaattt gaatcttcat	catacgaagg	atactttcta	660
gcttgtgaaa aagagagaga cc	tttttaaa ctcattttga	aaaaagagga	tgaattgggg	720
gatagatcta taatgttcac tg	ttcaaaac gaagactagc	tattaaaatt	tcatgccggg	780
cgcagtggct cacgcctgta at	cccagccc tttgggaggc	tgaggcgggc	agatcaccag	840
aggtcaggtg ttcaagacca gc	ctgaccaa catggtgaaa	cctcatctct	actaaaaata	900
ctaaaaatta gctgagtgta gt	gacgcatg ccctcaatcc	cagctactca	agaggctgag	960
gcaggagaat cacttgcact cc	ggaggtag aggttgtggt	gagccgagat	tgcaccattg	1020
cgctctagcc tgggcaacaa ca	gcaaaact ccatctcaaa	aaataaaata	aataaataaa	1080
caaataaaaa attcataatg tg	ſ			1102
<210> 401 <211> 1437 <212> DNA <213> Homo sapiens				
<400> 401 gcttcctcag acatgccgct gc	tgctactg ctgcccctgc	tgtgggcagg	ggccctggct	60
atggatccaa atttctggct gc				120
gtcctcgtgc cctgcacttt ct				180
catggttact ggttccggga ag				240
•				

aagctagatc	aagaagtaca	ggaggagact	cagggcagat	teegeeteet	tggggatccc	300
agtaggaaca	actgctccct	gagcatcgta	gacgccagga	ggagggataa	tggttcatac	360
ttctttcgga	tggagagagg	aagtaccaaa	tacagttaca	aatctcccca	gctctctgtg	420
catgtgacag	acttgaccca	caggcccaaa	atcctcatcc	ctggcactct	agaacccggc	480
cactccaaaa	accttacctg	ctctgtgtcc	tgggcctgtg	agcagggaac	acccccgatc	540
ttctcctggt	tgtcagctgc	ccccacctcc	ctgggcccca	ggactactca	ctcctcggtg	600
ctcataatca	ccccacggcc	ccaggaccac	ggcaccaacc	tgacctgtca	ggtgaagttc	660
gctggagctg	gtgtgactac	ggagagaacc	atccagctca	acgtcaccta	tgttccacag	720
aacccaacaa	ctggtatctt	tccaggagat	ggctcaggga	aacaagagac	cagagcagga	780
ctggttcatg	gggccattgg	aggagctggt	gttacagccc	tgctcgctct	ttgtctctgc	840
ctcatcttct	tcatagtgaa	gacccacagg	aggaaagcag	ccaggacagc	agtgggcagc	900
aatgacaccc	accctaccac	agggtcagcc	tccccgaaac	accagaagaa	ctccaagtta	960
catggcccca	ctgaaacctc	aagctgttca	ggtgccgccc	ctactgtgga	gatggatgag	1020
gagctgcatt	atgcttccct	caactttcat	gggatgaatc	cttccaagga	cacctccacc	1080
gaatactcag	aggtcaggac	ccagtgagga	accctcaaga	gcatcaggct	cagctagaag	1140
atccacatcc	tctacaggtc	ggggaccaaa	ggctgattct	tggagattta	actccccaca	1200
ggcaatgggt	ttatagacat	tatgtgagtt	tcctgctata	ttaacatcat	cttgagactt	1260
tgcaagcaga	gagtcgtgga	atcaaatctg	tgctctttca	tttgctaagt	gtatgatgtc	1320
acacaagctc	cttaaccttc	catgtctcca	ttttcttctc	tgtgaagtag	gtataagaag	1380
tcctatctca	tagggatgct	gtgagcatta	aataaaggta	cacatggaaa	acaccag	1437
<210> 402 <211> 3133 <212> DNA	8					

<213> Homo sapiens

<400> 402

gggcttegtg ttectgggtg etgacegtge acteceegee geeegaggae ttagagetet 60 ggaagtaget etecagette ettegtacte gggggeegga ettgtacace egeaegagga 120 geggggaegg egggeegaa agtgggeeae catatetgga aactacagte tatgetttga 180 agegeaaaag ggaataaaca tttaaagaet eeeegggga eetggaggat ggaettttee 240 atggtggeeg gageageage ttacaatgaa aaateagaga etggtgetet tggagaaaac 300 tatagttgge aaatteeeat taaceacaat gaetteaaaa ttttaaaaaa taatgagegt 360 eagetgtgtg aagteeteea gaataagttt ggetgtatet etaceetggt eteteeagtt 420

caggaaggca	acagcaaatc	tctgcaagtg	ttcagaaaaa	tgctgactcc	taggatagag	480
ttatcagtct	ggaaagatga	cctcaccaca	catgctgttg	atgctgtggt	gaatgcagcc	540
aatgaagatc	ttctgcatgg	gggaggcctg	gccctggccc	tggtaaaagc	tggtggattt	600
gaaatccaag	aagagagcaa	acagtttgtt	gccagatatg	gtaaagtgtc	agctggtgag	660
atagctgtca	cgggagcagg	gaggetteec	tgcaaacaga	tcatccatgc	tgttgggcct	720
cggtggatgg	aatgggataa	acagggatgt	actggaaagc	tgcagagggc	cattgtaagt	780
attctgaatt	atgtcatcta	taaaaatact	cacattaaga	cagtagcaat	tecageettg	840
agctctggga	tttttcagtt	ccctctgaat	ttgtgtacaa	agactattgt	agagactatc	900
cgggttagtt	tgcaagggaa	gccaatgatg	agtaatttga	aagaaattca	cctggtgagc	. 960
aatgaggacc	ctactgttgc	tgcctttaaa	gctgcttcag	aattcatcct	agggaagagt	1020
gagctgggac	aagaaaccac	cccttcttc	aatgcaatgg	tcgtgaacaa	cctgaccctc	1080
cagattgtcc	agggccacat	tgaatggcag	acggcagatg	taattgttaa	ttctgtaaac	1140
ccacatgata	ttacagttgg	acctgtggca	aagtcaattc	tacaacaagc	aggagttgaa	1200
atgaaatcgg	aatttcttgc	cacaaaggct	aaacagtttc	aacggtccca	gttggtactg	1260
gtcacaaaag	gatttaactt	gttctgtaaa	tatatatacc	atgtactgtg	gcattcagaa	1320
tttcctaaac	ctcagatatt	aaaacatgca	atgaaggagt	gtttggaaaa	atgcattgag	1380
caaaatataa	cttccatttc	ctttcctgcc	cttgggactg	gaaacatgga	aataaagaag	1440
gaaacagcag	cagagatttt	gtttgatgaa	gttttaacat	ttgccaaaga	ccatgtaaaa	1500
caccagttaa	ctgtaaaatt	tgtgatcţtt	ccaacagatt	tggagatata	taaggctttc	1560
agttctgaaa	tggcaaagag	gtccaagatg	ctgagtttga	acaattacag	tgtcccccag	1620
tcaaccagag	aggagaaaag	agaaaatggg	cttgaagcta	gatctcctgc	catcaatctg	1680
atgggattca	acgtggaaga	gatgtgtgag	gcccacgcat	ggatccaaag	aatcctgagt	1740
ctccagaacc	accacatcat	tgagaataat	catattctgt	accttgggag	aaaggaacat	1800
gacattttgt	ctcagcttca	gaaaacttca	agtgtctcca	tcacagaaat	tatcagccca	1860
ggaaggacag	agttagagat	tgaaggagcc	cgggctgacc	tcattgaggt	ggttatgaac	1920
attgaagata	tgctttgtaa	agtacaggag	gaaatggcaa	ggaaaaagga	gcgaggcctt	1980
tggcgctcgt	taggacagtg	gactattcag	caacaaaaaa	cccaagacga	aatgaaagaa	2040
aatatcatat	ttctgaaatg	tcctgtgcct	ccaactcaag	agcttctaga	tcaaaagaaa	2100
cagtttgaaa	aatgtggttt	gcaggttcta	aaggtggaga	agatagacaa	tgaggtcctt	2160
atggctgcct	ttcaaagaaa	gaagaaaatg	atggaagaaa	aactgcacag	gcaacctgtg	2220

agccataggc	tgtttcagca	agtcccatac	cagttctgca	atgtggtatg	cagagttggc	2280
tttcaaagaa	tgtactcgac	accttgcgat	ccaaaatacg	gagctggcat	atacttcacc	2340
aagaacetea	aaaacctggc	agagaaggcc	aagaaaatct	ctgctgcaga	taagctgatc	2400
tatgtgtttg	aggctgaagt	actcacaggc	ttcttctgcc	agggacatcc	gttaaatatt	2460
gttcccccac	cactgagtcc	tggagctata	gatggtcatg	acagtgtggt	tgacaatgtc	2520
tecageeetg	aaacctttgt	tatttttagt	ggcatgcagg	ctatacctca	gtatttgtgg	2580
acatgcaccc	aggaatatgt	acagtcacaa	gattactcat	caggaccaat	gagacccttt	2640
gcacagcatc	cttggagggg	attcgcaagt	ggcagccctg	ttgattaatc	tctacatcat	2700
tttaacagct	ggtatggcct	taccttgggt	gaactaacca	aataatgacc	atcgatggct	2760
caaagagtgg	cttgaatata	tcccatgggt	tatctgtatg	gactgactgg	gttattgaaa	2820
ggactagcca	catactagca	tcttagtgcc	tttatctgtc	tttatgtctt	ggggttgggg	2880
taggtagata	ccaaatgaaa	cactttcagg	accttccttc	ctcttgcagt	tgttctttaa	2940
tctcctttac	tagaggagat	aaatattttg	catataatga	agaaatttt	ctagtatata	3000
acgcaggcct	tttattttct	aaaatgatga	tagtataaaa	atgttaggat	aacagaatga	3060
ttttagattt	tccagagaat	attataaagt	gctttaggta	tgaaaataaa	tcatctttgt	3120
ctgattaaaa	aaaaaaa					3138

<210> 403

<211> 2490

<212> DNA

<213> Homo sapiens

<400> 403

aagcctgtgt tggatttgtg attcagggtc atggtgaccc tgatccagtt tgggtggaaa 60 tecttectaa gtateataag aageatettg geagagatge tttggtggea geeatgaget 120 ttgctggagg ccttgcttcc catagccttg gctgtggggc aaggaactct gccaggcgag 180 9999atgctg ccctggatca acagaagcct ggtgggtttg ctcgtgttag agtgtcctgc 240 cttcttactg acaactcttc tcggtgatag cctctcttcc ctggattgtg acatatggaa 300 tgacagtgca ggtaccaccg aggctagcac agtcaagcct ccagctaagc tggatccctg 360 aagcetgeta teaegeagae aggetatgeg getgeetegg accatgetag gecaettget 420 999gtgtcaa cctaccacca aaggggtctt ttagcaaacc tcatggggaa caggaacatt 480 cctgctcatc cctggccaca ggctgcagac ccagcactgg cccttgcgtg agtcagagcc 540 tggggctggc cctagccct tctactgact tcctcattta agccaattat ataagctcac 600 attgatcagg gagggaggga aagagctaaa gagggtcaca caagtggcta ttttccctgc 660

agtgtttctg tgtggt	gaaa ataacccagt	ccactaaggg (gcggggagtg	aatggatggc	720
tggattttcc ccaage					780
gcctcttata gtgaaa					840
cttcctataa tatgaa					900
tggatatttg agaatg					960
caggeteaga acaett					1020
atcggtgtca tctcct					1080
aaagacatcc ctgcaa					1140
gaagaaaagt tottto					1200
gattttctga aacgaa		_		•	1260
ggaggagtag aatge					1320
tgagggcaac agtgag					1380
					1440
gaccctctgt ttaaa					1500
ttggagttgt aaatt					1560
gagacettae ataac					1620
aggaaccttt gtatc					
cgctctgttc accac					1680
gggaacactc tgata					1740
ctctcctaga cccag	gtact ggggactgto	tcagtccgtg	tggcatgata	a aataaaaggt	1800
taggatcaag tcttt	gtátt títcaagttg	g tggtagctga	ttattcctgl	tttaagtact	1860
ctgaaattga tctgt	gatca ataatactaa	a tatgttatct	tttaccgta	t tetgeetete	1920
actattgatt ttaat	tagtt aggagtatt	t gagctgttat	ttcttgagc	t taatatttt	1980
ttagagttaa ctctt	ttaagg agataatca	t ggctgtagac	c aaggccagg	g ctggctgacg	2040
tgccttagaa ggttt	tgaatg caataaagc	g gtgtttggcg	g ttatactga	a ttgtagtgcg	2100
	tttgtt cgtcatact				2160
ggctactgcc cagg	gacetg cccaggccc	c acccaaggg	c tcccaaggg	t tgagatttct	2220
	agcaca cttagtcct				2280
	tcagac cgatagggt				2340
	gggaaa gcaggagag				2400
	atggag gtgtgaggg				2460
	tataat aaaaagctt				2490

<210> 404 <211> 2560 <212> DNA <213> Homo sapiens

<400> 404 60 agggaaccta ttttgctgtc aatgccaatt attctgccaa tgatacgtac tccagaccag atgcaaatgg gagaaagcat gtgtattatg tgcgagtact tactggaatc tatacacatg 120 180 gaaatcattc attaattgtg cctccttcaa agaaccctca aaatcctact gacctgtatg acactgtcac agataatgtg caccatccaa gtttatttgt ggcattttat gactaccaag 240 catacccaga gtaccttatt acgtttagaa aataacactt tggtatcctt cccacaaaat 300 tattctccat ttgtacatat ctagttgtaa aacaagtttt agcttttttt ttaattcctc 360 ttaacagatt tttctaatat ccaaggatca ttctttgtcg ctgcagtcag tctttcttca 420 gcttctcttt cataatggaa atgaacttat tatcttgaga gcaaataact tggaaaattt 480 540 aaatgagata atgcagttgc aactgtgtgt ccacaagtat ggacatcaaa tctgtgggaa aagaacaggt ttgtattttc aggaaggaga gaataacagt cttatagaca gagggcacag 600 ctaagcacag ctgccactgc aggagacagg ccccatgtca ggatgccata gtgctgtggg 660 720 gagcacagta ttacccagtg ggtagggctt ctgtcttccc tgggagcagg gatggtatct tagtcaattt ttttcccttg agatgaggtc tgtgcctgat gtacaacgga tactccataa 780 atgtttgaca aaccaacgaa gaatgaaaaa aagcctagtc agactcccat ccaaagtagg 840 aactatetet ttaacattet tgaeteacta teaetttaee teaaattgaa eagatteeat 900 gacggaactt cattetteac aaactageet gacatgtggg acagetetgg ccagggetet 960 1020 gggactgcag tgtacttgcg ctctgcacgg tccaggagct gtgatgtggc tgtggtctag 1080 gggaatcctg cctgccccat ggagttgcgc agcacaaccc tggctccaat tgccagaagg 1140 cttgttgccc aggctggagt gcaatggcgc gatctcagct cactgcagcc actgcctccc 1200 aggttcaagt gattctcctg cctcagccac ccgagtagct gggattacag gcatgcgcta 1260 acacacccag ctaattttgt atttttagta gagacgaggt ttctccatgt tcgacaggct 1320 1380 ggtctcgaac tcccacctca gcctcccaaa ctgctgggat tacaggtgtg agccaccgtg 1440 accagccaat gtgccttctt atagtgtcta ctcattggtc tttgttctgc ccagtgataa 1500 caatgggata acgcctgcta cacatcttca ttgtgaaacc cttcccctgt gctgagatta aatgaactct aagattatta aatagtatat tttccttgac agcctagcgt ttgatgattt 1560 taaagcctta tgtataaata aaccaaagga agtaagcagt catattgcta atttgctaac 1620

tcctatctat	tgaatggtga	agttttaaaa	atttccccag	gtaagtttaa	gattcaaaca	1680
ccatctattg	agcacctaca	ttgtgtgcca	ggtagtaaaa	taggtgcttt	catacacatc	1740
gtctcaattc	ctgtgaggtc	ggaattatct	ctgcatttga	aacttgagga	aacatgctca	1800
gagtgcaaga	agetteettg	cctgagatca	cctagaaagg	aaccctcaga	gccggcaact	1860
gaatcttggt	ccctgtgatg	tcaagcccat	tgctctccca	ctgcagaaca	tggcctctag	1920
attaatgcca	ccgattcagg	aacacctccg	acagtettga	aataccccca	tgttgccttg	1980
tttgttttt	ccttctggct	tcttctatta	cagtctcttc	attggaagct	ctgtaggcca	2040
aggccagagc	tgatactgac	acggagccaa	tgcagatagc	acatcagatg	ctaggggtcg	2100
ctgggaggat	taagggactt	aatctgctag	gaacacctgt	acttgaagtg	gaggaggcta	2160
gggggccaca	gttgctgctt	cattaacata	gaggttttgg	attttttct	cttgtggttt	2220
gttttttaag	tggattggca	gactccttgt	tgcttaagag	tggctttcta	ggcaggccac	2280
tggcatctga	attcatcatt	gacaataaat	gtaagaaatt	ggaataaaaa	agagagacct	2340
gctgttattc	gcttttgttc	tccagtgatt	tgattaactc	agggcaaggc	tgaatatcag	2400
agtgtatcgc	actgaagaat	aataatccat	tcagtaatgt	tatagttatc	ctcagtctaa	2460
atatgtcaac	tgtcattttg	ctgcttttca	aataaaatac	ttgaaaactg	taaaaaaaaa	2520
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa			2560

<210> 405

<211> 1441

<212> DNA

<213> Homo sapiens

<400> 405 ggtatggcta ctgggttata ggattacaga atacatgtga atataatgct tttgaggact 60 cetectette tgateceaag gttttgacte tetttatgge tgtgeeteee tgtegtattg 120 gggttttcct agactatgag gcaggcattg tctcattttt caatgtcaca aaccacggag 180 cactcatcta caagttetet ggatgteget tttetegace tgettateeg tattteaate 240 cttggaactg cctagtcccc atgactgtgt gcccaccgag ctcctgagtg ttctcattcc 300 tttacccact tetgcatagt agecettgtg etgagactca gattetgcac etgagtteat 360 ctctactgag accatetett cetttette ceettetttt acttagaatg tetttgtatt 420 catttgctag ggcttccata gcaaagcatc atagattgct gatttaaact gtaattgtat 480 tgccgtactg tgggctggaa atcccaaatc tagattccag cagagttggt tctttctgag 540 gtotgcaagg aagggototg ttocatgoot ototoottgg ottgtagaag gcatottgto 600 cctatgactc ttcacattgt ctttatgtac atctctgtgc ccaagttttc cctttttatt 660

```
aagacaccag tcatactggc tcagggccca ccgctaatgc cttaatgaaa tcattttaac
                                                                 720
attatattct ctacaaagac cttatttcca aataagataa tatttggagg tattgggaat
                                                                 780
aaaaactcca acatataaat ttgaggaagg cacgatttca ctcataacaa tcttaccctt
                                                                 840
tcttgcaaga gatgcttgta cattattttc ctaatacctt ggtttcacta gtagtaaaca
                                                                 900
ttattatttt ttttatattt gcaaaggaaa catatctaat ccttcctata gaaagaacag
                                                                 960
tattgctgta attccttttc ttttcttcct catttcctct gccccttaaa agattgaaga
                                                                1020
aagagaaact tgtcaactca tatccacgtt atctagcaaa gtacataaga atctatcact
                                                                1080
aagtaatgta teetteagaa tgtgttggtt taccagtgae accecatatt catcacaaaa
                                                                1140
ttaaagcaag aagtccatag taatttattt gctaatagtg gatttttaat gctcagagtt
                                                                1200
totgaggtca aattttatot tttcacttac aagctctatg atcttaaata atttacttaa
                                                                1260
tgtattttgg tgtattttcc tcaaattaat attggtgttc aagactatat ctaattcctc
                                                                1320
tgatcacttt gagaaacaaa cttttattaa atgtaaggca cttttctatg aattttaaat
                                                                1380
1440
                                                                1441
а
```

```
<210>
      406
<211>
      620
<212>
      DNA
<213> Homo sapiens
<220>
<221> misc_feature
      (455) . . (455)
<222>
<223> n is a, c, g, t or u
<220>
<221> misc_feature
      (538)..(538)
<222>
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222>
      (589)..(589)
<223> n is a, c, g, t or u
<400>
      406
cccatctgaa agttatggct ttcaaatcac agcctatttc ctcaagagag ggatacgcct
                                                                       60
tegetgeate aggageaeae agaatgetga actetgtgta tteeetgaea gatttgtggt
                                                                      120
ttgtgtcagt cagcttgcat tcagtcgtga tcttttagca agtcagaatg aagatttgga
                                                                      180
taaccagage accattgeet getteettet teetgaagga aggggteeae cetteacaat
                                                                      240
taaagteetg geactgagee acatteagag gaggetgate tatgeeette caataceagg
                                                                      300
```

ggtgtcccag acagaagcat c	etggcagcta	cccaaggaat	tctggggtcc	tgcagaatcc	360
aagtttacaa accaccagaa c	caaggttttg	cttcaggata	gtgtttgact	tcactgctgc	420
gaaatgactg tctcctggct a	agtaggatct	agatntetee	ctccctttga	ccccaccttg	480
tggaaaccca gctgtctact g	ggcagacatt	ggtgagaaag	cggagctacg	ctagggcnag	540
gagatgtcat ggcctcaact o	ettegetgte	cgggtcctca	ggccacctnc	ccaatgagcc	600
ctgctcatgc acggatcccg	~		•		620
<210> 407 <211> 1519 <212> DNA <213> Homo sapiens <400> 407					
ggcacgaggc agcctggccc t	tatctgcac	tgggccagca	tcctccggcc	gctgcgccgc	60
caggggtgag agggaggaaa c	ccgggccgcc	gggggcgggg	agaaggcggg	ccggcccggg	120
agccgctcac tttccctggg g	gggacctac	gcggagacct	cggctatcct	ggccttccga	180
ggcccacgag gaggcgcggc c	ccaacgccgg	ggcctggagc	attgaggccg	gaccctcgcg	240
agacagcaga gcctggcctg a	acgctggaaa	ccacaccetg	gcccagactg	ccagccctga	300
cgggacagag ccagggcact c	caccaggetg	caagaacagt	gctggggtga	gtacccccac	360
gtcggggtcc atgtgcccgc c	ctcaggcaca	ggcagaggtg	ggccccacca	tgactgagaa	420
ggcagagatg gtgtgtgccc c	ccagcccagc	gcctgcccca	ccccctaagc	ctgcctcgcc	480
tgggcccccg caggtggagg a	aggtgggcca	ccgaggaggc	tectegecee	ccaggctgcc	540
acctggtgta ccagtgatca g	gcctgggcca	cagcaggccc	ccaggggtag	ccatgcccac	600
cacagagetg ggcaetetge g	ggcccccgct	gctgcaactc	tccaccctgg	gaactgcccc	660
gcccactttg gccctgcact a	accaccctca	ccccttcctc	aacagtgtct	acattgggcc	720
agcaggacct tttagcatct t	ccctagcag	ccggttgaag	cggagaccaa	gccactgtga	780
gctggacctg gctgaggggc a	accagcccca	gaaggtggcc	cggcgcgtgt	tcaccaacag	840
ccgggagcgc tggcggcagc a	agaacgttaa ,	cggcgccttc	gccgagctga	ggaagctgct	900
gccgacgcac ccgcccgacc g	ggaagctgag	caagaacgag	gtgctccgcc	tagccatgaa	960
gtacatcggc ttcctggtgc g	ggctgctgcg	cgaccaagcc	gcagctctgg	ccgcaggccc	1020
cacccctccc gggcctcgca a	aacggccggt	gcaccgggtc	ccagacgacg	gcgcccgccg	1080
gggatccgga cgcagggccg a	aggcggcagc	gcgctcgcag	cccgcgcccc	cggccgaccc	1140
cgacggcagc cccggtggag c	cggcccggcc	catcaagatg	gagcaaaccg	ctttgagccc	1200
agaggtgcgg tgaccgcacg c	eggeageace	tetgageegg	agggcaccag	ggactcggcc	1260

```
cagggccgtc aaggaaaggg cagtggacgt gctgcgcatg ttcgggagcg aactcccccg
                                                                    1320
aagaaggacc agtgaagacg tcaggggcaa ggtctcgggg gtccggaagg gtgatcatcg
                                                                    1380
acccccaagg gaccegcaga cccttaaaaa aatcacccac aaccctctgg aagtggcctt
                                                                    1440
geceggteee etteecaggg gegaggtegg caaagcaaca tggcagagca gteataggaa
                                                                    1500
                                                                    1519
aaaaaaaaa aaaaaaaaa
<210> 408
<211>
      777
<212>
      DNA
<213> Homo sapiens
<400> 408
ggtctttgga gtagataacc tgtgaggaaa ggtattcctg ctaatgctag gctgccaatg
                                                                      60
gtgagggagg ttgaagtgag aggtatggtt ttgagtagtc ctcctatttt tcgaatatct
                                                                     120
tgttcattgt taaggttgtg gatgatggac ccggagcaca taaatagtat ggctttgaag
                                                                     180
aaggegtggg tacagatgtg caggaatgct aggtgtggtt ggttgatgcc gattgtaact
                                                                     240
attatgagtc ctagttgact tgaagtggag aaggctacga ttttttttgat gtcattttgt
                                                                     300
gtaagggege agactgetge gaacagagtg gtgatagege ctaagcatag tgttagagtt
                                                                     360
tggattagtg ggctattttc tgctaggggg tggaagcgga tgagtaagaa gattcctgct
                                                                     420
acaactatag tgcttgagtg gagtagggct gagactgggg tggggccttc tatggctgag
                                                                     480
gggagtcagg ggtggagacc taattgggct gatttgcctg ctgctgctag gaggaggcct
                                                                     540
agtagtgggg tgaggcttgg attagcgttt agaagggcta tatgtggtgg gtctcatgag
                                                                     600
ttggagtgta ggataaatca tgctaaggcg gaggatgaaa ccgatatcgc cgatacggtg
                                                                     660
tgtataggat ttgcttgaat tggtgctgtg ttgggatctg ctcgggcgta tcatcaactg
                                                                     720
gtgagcccga agggatatta tttctaaggc ctcttagcga tgaaacagtg ggaaagg
                                                                     777
<210> 409
<211>
      2461
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (34)..(34)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (47)..(47)
<223> n is a, c, g, t or u
```

<400> 409						
	ggagetttge	agttgcaatc	tgcnttttag	aaataancat	cctcacagca	60
cagtacacga	ccagttatga	cccagagcta	acagaaagca	gtggctctgc	atcacacata	120
gaccgcagaa	tgageceetg	gagtgaatgg	tcacaatgcg	atccttgtct	cagacaaatg	180
tttcgttcaa	gaagcattga	ggtctttgga	caatttaatg	ggaaaagatg	caccgacgct	240
gtgggagaca	gacgacaatg	tgtgcccaca	gagccctgtg	aggatgctga	ggatgactgc	300
ggaaatgact	ttcaatgcag	tacaggcaga	tgcataaaga	tgcgacttcg	gtgtaatggt	360
gacaatgact	gcggagactt	ttcagatgag	gatgattgtg	aaagtgagcc	cegtcccccc	420
tgcagagaca	gagtggtaga	agagtctgag	ctggcacgaa	cagcaggcta	tgggatcaac	480
attttaggga	tggatcccct	aagcacacct	tttgacaatg	agttctacaa	tggactctgt	540
aaccgggatc	gggatggaaa	cactctgaca	tactaccgaa	gaccttggaa	cgtggcttct	600
ttgatctatg	aaaccaaagg	cgagaaaaat	ttcagaaccg	aacattacga	agaacaaatt	660
gaagcattta	aaagtatcat	ccaagagaag	acatcaaatt	ttaatgcagc	tatatctcta	. 720
aaatttacac	ccactgaaac	aaataaagct	gaacaatgtt	gtgaggaaac	agcctcctca	780
atttctttac	atggcaaggg	tagttttcgg	ttttcatatt	ccaaaaatga	aacttaccaa	840·
ctatttttgt	catattette	aaagaaggaa	aaaatgtttc	tgcatgtgaa	aggagaaatt	900
catctgggaa	gatttgtaat	gagaaatcgc	gatgtgctca	caacaacttt	tgtggatgat	960
ataaaagctt	tgccaactac	ctatgaaaag	ggagaatatt	ttgccttttt	ggaaacctat	1020
ggaactcact	acagtagctc	tgggtctcta	ggaggactct	atgaactaat	atatgttttg	1080
gataaagctt	ccatgaagcg	gaaaggtgtt	gaactaaaag	acataaagag	atgccttggg	1140
tatcatctgg	atgtatetet	ggctttctct	gaaatctctg	ttggagctga	atttaataaa	1200
gatgattgtg	taaagagggg	agagggtaga	gctgtaaaca	tccccagtga	aaacctcata	1260
gatgatgttg	tttcactcat	aagaggtgga	accagaaaat	atgcatttga	actgaaagaa	1320
aagcttctcc	gaggaaccgt	gattgatgtg	actgactttg	tcaactgggc	ctcttccata	1380
aatgatgctc	ctgttctcat	tagtcaaaaa	ctgtctccta	tatataatct	ggttccagtg	1440
aaaatgaaaa	atgcacacct	aaagaaacaa	aacttggaaa	gagccattga	agactatatc	1500
aatgaattta	gtgtaagaaa	atgccacaca	tgccaaaatg	gaggtacagt	gattctaatg	1560
gatggaaagt	gtttgtgtgc	ctgcccattc	aaatttgagg	gaattgcctg	tgaaatcagt	1620
aaacaaaaa	tttctgaagg	attgccagcc	ctagagttcc	ccaatgaaaa	atagagctgt	1680
tggcttctct	gagctccagt	ggaagaagaa	aacactagta	ccttcagatc	ctacccctga	1740
agataatctt	agctgccaag	taaatagcaa	catgcttcat	gaaaatccta	ccaacctctg	1800

aagtctcttc	tctcttaggt	ctataatttt	tttttaattt	ttcttcctta	aactcctgtg	1860
atgtttccat	tttttgttcc	ctaatgagaa	gtcaacagtg	aaatacgcga	gaactgcttt	1920
atcccacgga	aaaagccaat	ctcttctaaa	aaaaaacaa	aattaaatta	aaaacagaat	1980
gttggtttaa	aaaacttcaa	agtaattttc	aaacggcttt	gtatggttaa	catattctgc	2040
caggtccatg	accacacgtc	tgtaccatgc	aatttaactc	ttatttacat	tgttatgttt	2100
agtttggtta	tttgcttagg	tgtgcataca	ttcattcagc	aaatgctgag	caccagccac	2160
gtgcacagca	gttgctttta	ctagtcttag	ctctacgatt	taaatccatg	tgtccaaggg	2220
ggaaaacata	ttatatttgt	aaccaaaaac	tactagttta	ccagaggact	gaagggagat	2280
aaagaggagt	tggttaatgg	gtacaaaaat	ccagttagat	gaaaggaata	atatagatag	2340
tgttcagtag	cagaatagaa	tgaacataaa	ctattagttt	aaattatgtg	aaattccttc	2400
tatttgatca	tattttacaa	gaaaaaacat	caattttata	tagtccaact	taatacctag	2460
С						2461

<210> 410

<211> 6628

<212> DNA

<213> Homo sapiens

<400> 410

cgaaattgaa ccggagccat cttgggcccg gcgcgcagac ccgcggagtt tcccgtgccg 60 acgccccggg gccacttcca gtgcggagta gcggaggcgt gggggcctcg aggggctggc 120 180 gggcgcaatg aatcogcggc aggggtattc cctcagcgga tactacaccc atccatttca 240 aggetatgag cacagacage teagatacea geageetggg ceaggatett cececagtag 300 tttcctgctt aagcaaatag aatttctcaa ggggcagctc ccagaagcac cggtgattgg 360 aaagcagaca ccgtcactgc caccttccct cccaggactc cggccaaggt ttccagtact 420 acttgcctcc agtaccagag gcaggcaagt ggacatcagg ggtgtcccca ggggcgtgca 480 teteggaagt caggggetee agagagggtt ceageateet teaceaegtg geaggagtet 540 gccacagaga ggtgttgatt gcctttcctc acatttccag gaactgagta tctaccaaga 600 660 acatgatetg tetgggaaac ttgggaetee gaagaaagaa atcaategag ttttataete 720 cctggcaaag aagggcaagc tacagaaaga ggcaggaaca ccccctttgt ggaaaatcgc 780 ggtctccact caggcttgga accagcacag cggagtggta agaccagacg gtcatagcca 840 aggagcccca aactcagacc cgagtttgga accggaagac agaaactcca catctgtctc 900

agaagatctt	cttgagcctt	ttattgcagt	ctcagctcag	gcttggaacc	agcacagcgg	960
agtggtaaga	ccagacagtc	atagccaagg	atccccaaac	tcagacccag	gtttggaacc	1020
tgaagacagc	aactccacat	ctgccttgga	agatcctctt	gagtttttag	acatggccga	1080
gatcaaggag	aaaatctgcg	actatctctt	caatgtgtct	gactcctctg	ccctgaattt	1140
ggctaaaaat	attggcctta	ccaaggcccg	agatataaat	gctgtgctaa	ttgacatgga	1200
aaggcagggg	gatgtctata	gacaagggac	aacccctccc	atatggcatt	tgacagacaa	1260
gaagcgagag	aggatgcaaa	tcaagagaaa	tacgaacagt	gttcctgaaa	ccgctccagc	1320
tgcaatccct	gagaccagaa	gaaacgcaga	gttcctcacc	tgtaatatac	ccacatcaaa	1380
tgcctcaaat	aacatggtaa	ccacagaaaa	agtggagaat	gggcaggaac	ctgtcataaa	1440
gttagaaaac	aggcaagagg	ccagaccaga	accagcaaga	ctgaaaccac	ctgttcatta	1500
caatggcccc	tcaaaagcag	ggtatgttga	ctttgaaaat	ggccagtggg	ccacagatga	1560
catcccagat	gacttgaata	gtatccgcgc	agcaccaggt	gagtttcgag	ccatcatgga	1620
gatgccctcc	ttctacagtc	atggcttgcc	acggtgttca	ccctacaaga	aactgacaga	1680
gtgccagctg	aagaacccca	tcagcgggct	gttagaatat	gcccagttcg	ctagtcaaac	1740
ctgtgagttc	aacatgatag	agcagagtgg	accaccccat	gaacctcgat	ttaaattcca	1800
ggttgtcatc	aatggccgag	agtttccccc	agctgaagct	ggaagcaaga	aagtggccaa	1860
gcaggatgca	gctatgaaag	ccatgacaat	tctgctagag	gaagccaaag	ccaaggacag	1920
tggaaaatca	gaagaatcat	cccactattc	cacagagaaa	gaatcagaga	agactgcaga	1980
gtcccagacc	cccacccctt	cagccacatc	cttctttct	gggaagagcc	ccgtcaccac	2040
actgcttgag	tgtatgcaca	aattggggaa	ctcctgcgaa	ttccgtctcc	tgtccaaaga	2100
aggccctgcc	catgaaccca	agttccaata	ctgtgttgca	gtgggagccc	aaactttccc	2160
cagtgtgagt	gctcccagca	agaaagtggc	aaagcagatg	gccgcagagg	aagccatgaa	2220
ggccctgcat	ggggaggcga	ccaactccat	ggcttctgat	aaccagcctg	aaggtatgat	2280
ctcagagtca	cttgataact	tggaatccat	gatgcccaac	aaggtcagga	agattggcga	2340
gctcgtgaga	tacctgaaca	ccaaccctgt	gggtggcctt	ttggagtacg	cccgctccca	2400
tggctttgct	gctgaattca	agttggtcga	ccagtccgga	cctcctcacg	agcccaagtt	2460
cgtttaccaa	gcaaaagttg	ggggtcgctg	gttcccagcc	gtctgcgcac	acagcaagaa	2520
gcaaggcaag	caggaagcag	cagatgcggc	tctccgtgtc	ttgattgggg	agaacgagaa	2580
ggcagaacgc	atgggtttca	cagaggtaac	cccagtgaca	ggggccagtc	tcagaagaac	2640
tatgctcctc	ctctcaaggt	ccccagaagc	acagccaaag	acactccctc	tcactggcag	2700
caccttccat	gaccagatag	ccatgctgag	ccaccggtgc	ttcaacactc	tgactaacag	2760

cttccagccc tccttgctcg gccgcaagat tctggccgcc at	tcattatga a	aaaaagactc	2820
tgaggacatg ggtgtcgtcg tcagcttggg aacagggaat cg	gctgtgtta	aaggagattc	2880
tctcagccta aaaggagaaa ctgtcaatga ctgccatgca ga	aaataatct	cccggagagg	2940
cttcatcagg tttctctaca gtgagttaat gaaatacaac to	cccagactg	cgaaggatag	3000
tatatttgaa cctgctaagg gaggagaaaa gctccaaata aa	aaaagactg	tgtcattcca	3060
tetgtatate ageactgete egtgtggaga tggegecete tt	ttgacaagt	cctgcagcga	3120
cegtgetatg gaaagcacag aatecegeca etaceetgte th	tcgagaatc	ccaaacaagg	3180
aaagctccgc accaaggtgg agaacggaga aggcacaatc co	ctgtggaat	ccagtgacat	3240
tgtgcctacg tgggatggca ttcggctcgg ggagagactc cg	gtaccatgt	cctgtagtga	3300
caaaatccta cgctggaacg tgctgggcct gcaaggggca c	tgttgaccc	acttcctgca	3360
gcccatttat ctcaaatctg tcacattggg ttaccttttc ag	ıgccaagggc	atctgacccg	3420
tgctatttgc tgtcgtgtga caagagatgg gagtgcattt g	gaggatggac	tacgacatcc	3480
ctttattgtc aaccacccca aggttggcag agtcagcata t	atgattcca	aaaggcaatc	3540
cgggaagact aaggagacaa gcgtcaactg gtgtctggct g	gatggctatg	acctggagat	3600
cctggacggt accagaggca ctgtggatgg gccacggaat g	gaattgtccc	gggtctccaa	3660
aaagaacatt tttcttctat ttaagaagct ctgctccttc c	egttaccgca	gggatctact	3720
gagactetee tatggtgagg ccaagaaage tgecegtgae t	tacgagacgg	ccaagaacta	3780
cttcaaaaaa ggcctgaagg atatgggcta tgggaactgg a	attagcaaac	cccaggagga	3840
aaagaacttt tatctctgcc cagtatagta tgctccagtg a	acagatggat	tagggtgtgt	3900
catactaggg tgtgagagag gtaggtcgta gcattcctca t	tcacatggtc	aggggatttt	3960
tttttctcct ttttttttc tttttaagcc ataattggtg a	atactgaaaa	ctttgggttc	4020
ccatttatcc tgctttcttt gggattgcta ggcaaggtct g	ggccaggccc	ccctttttc	4080
ccccaagtga agaggcagaa acctaagaag ttatcttttc t	tttctaccca	aagcatacat	4140
agtcactgag cacctgcggt ccatttcctc ttaaaagttt t	tgttttgatt	tgtttccatt	4200
tectttecet ttgtgtttge tacactgace tettgeggte t	ttgattaggt	ttcagtcaac	4260
tetggateat gteagggaet gataatttea tttgtggatt a	acgcagaccc	ctctacttcc	4320
cetettteee ttetgagatt ettteettgt gatetgaatg	teteetttte	cccctcagag	4380
ggcaaagagg tgaacataaa ggatttggtg aaacatttgt	aagggtagga	gttgaaaact	4440
gcagttccca gtgccacgga agtgtgattg gagcctgcag	ataatgccca	gecatectec	4500
cateetgeae tttageeage tgeagggegg geaaggeaag	gaaagctgct	tecctggaag	4560

tgtatcactt	tctccggcag	ctgggaagtc	tagaaccagc	cagactgggt	taagggagct	4620
gctcaagcaa	tagcagaggt	ttcacccggc	aggatgacac	agaccacttc	ccagggagca	4680
cgggcatgcc	ttggaatatt	gccaagcttc	cagctgcctc	ttctcctaaa	gcattcctag	4740
gaatattttc	cccgccaatg	ctgggcgtac	accctagcca	acgggacaaa	tcctagaggg	4800
tataaaatca	tctctgctca	gataatcatg	acttagcaag	aataagggca	aaaaatcctg	4860
ttggcttaac	gtcactgttc	cacccggtgt	aatatctctc	atgącagtga	çaçcaaggga	4920
agttgactaa	gtcacatgta	aattaggagt	gttttaaaga	atgccataga	tgttgattct	4980
taactgctac	agataacctg	taattgagca	gatttaaaat	tcaggcatac	ttttccattt	5040
atccaagtgc	tttcattttt	ccagatggct	tcagaagtag	gctcgtgggc	agggcgcaga	5100
cctgatcttt	ctagggttga	catagaaagc	agtagttgtg	ggtgaaaggg	caggttgtct	5160
tcaaactctg	tgaggtagaa	tcctttgtct	atacctccat	gaacattgac	tegtgtgttc	5220
agagcctttg	gcctctctgt	ggagtctggc	tctctggctc	ctgtgcattc	tttgaatagt	5280
cactcgtaaa	aactgtcagt	gcttgaaact	gtttccttta	ctcatgttga	agggactttg	5340
ttggctttta	gagtgttggt	catgactcca	agagcagagc	agggaagagc	ccaagcatag	5400
acttggtgcc	gtggtgatgg	ctgcagtcca	gttttgtgat	gctgctttta	cgtgtccctc	5460
gataacagtc	agctagacac	actcaggagg	actactgagg	ctctgcgacc	ttcaggaget	5520
gagcctgcct	ctctccttta	gatgacagac	cttcatctgg	gaacgtgctg	agccagcacc	5580
ctcagatgat	ttccctccaa	actgctgact	aggtcatcct	ctgtctggta	gagacattca	5640
catctttgct	tttattctat	gctctctgta	cttttgacca	aaaattgacc	aaagtaagaa	5700
aatgcaagtt	ctaaaaatag	actaaggatg	cctttgcaga	acaccaaagc	átcccaagga	5760
actggtaggg	aagtggcgcc	tgtctcctgg	agtggaagag	gcctgctccc	tggctctggg	5820
tctgctgggg	gcacagtaaa	tcagtcttgg	cacccacatc	cagggcagag	aggtctgtgg	5880
ttctcagcat	cagaaggcag	cgcagcccct	ctcctcttca	ggctacaggg	ttgtcacctg	5940
ctgagtcctc	aggttgtttg	gcctctctgg	tccatcttgg	gcattaggtt	ctccagcaga	6000
gctctggcca	gctgcctctt	ctttaactgg	gaacacaggc	tctcacaaga	tcagaacccc	6060
cactcacccc	caagatctta	tctagcaagc	ctgtagtatt	cagtttctgt	tgtaggaaga	6120
gagcgaggca	tccctgaatt	ccacgcatct	gctggaaacg	agccgtgtca	gatcgcacat	6180
ccctgcgccc	ccatgccccc	atgcccctct	gagtcacaca	ggacagagga	ggcagagctt	6240
ctgcccactg	ttatcttcac	tttctttgtc	cagtcttttg	tttttaataa	gcagtgaccc	6300
tccctactct	tctttttaat	gatttttgta	gttgatttgt	ctgaactgtg	gctactgtgc	6360
attccttgaa	taatcacttg	taaaaattgt	cagtgcttga	agctgtttcc	tttactcaca	6420

ttgaagggac ttcgttggtt ttttggagtc ttggttgtga ctccaagagc agagtgagga 6480
agacccccaa gcatagactc gggtactgtg atgatggctg cagtccagtt ttatgattct 6540
gcttttatgt gtcccttgat aacagtgact taacaatata cattcctcat aaataaaaa 6600
aaaacaagaa tctgaattcc tgcagccc 6628

<210> 411

<211> 1919

<212> DNA

<213> Homo sapiens

<400> 411

ctgaagaaca aatcagcctg gtcaccagct tttcggaaca gcagagacac agagggcagt 60 catgagtgag gtcaccaaga attccctgga gaaaatcctt ccacagctga aatgccattt 120 cacctggaac ttattcaagg aagacagtgt ctcaagggat ctagaagata gagtgtgtaa 180 ccagattgaa tttttaaaca ctgagttcaa agctacaatg tacaacttgt tggcctacat 240 aaaacaccta gatggtaaca acgaggcagc cctggaatgc ttacggcaag ctgaagagtt 300 aatccagcaa gaacatgctg accaagcaga aatcagaagt ctagtcactt ggggaaacta 360 cgcctgggtc tactatcact tgggcagact ctcagatgct cagatttatg tagataaggt 420 gaaacaaacc tgcaagaaat tttcaaatcc atacagtatt gagtattctg aacttgactg 480 tgaggaaggg tggacacaac tgaagtgtgg aagaaatgaa agggcgaagg tgtgttttga 540 gaaggetetg gaagaaaage ceaacaacee agaattetee tetggaetgg caattgegat 600 gtaccatctg gataatcacc cagagaaaca gttctctact gatgttttga agcaggccat 660 tgagetgagt cetgataacc aatacgteaa ggttetettg ggeetgaaac tgeagaagat 720 gaataaagaa gctgaaggag agcagtttgt tgaagaagcc ttggaaaagt ctccttgcca 780 aacagatgtc ctccgcagtg cagccaaatt ttacagaaga aaaggtgacc tagacaaagc 840 tattgaactg tttcaacggg tgttggaatc cacaccaaac aatggctacc tctatcacca 900 gattgggtgc tgctacaagg caaaagtaag acaaatgcag aatacaggag aatctgaagc 960 tagtggaaat aaagagatga ttgaagcact aaagcaatat gctatggact attcgaataa 1020 agctcttgag aagggactga atcctctgaa tgcatactcc gatctcgctg agttcctgga 1080 gacggaatgt tatcagacac cattcaataa ggaagtccct gatgctgaaa agcaacaaca 1140 atcccatcag cgctactgca accttcagaa atataatggg aagtctgaag acactgctgt 1200 gcaacatggt ttagagggtt tgtccataag caaaaaatca actgacaagg aagagatcaa 1260 agaccaacca cagaatgtat ctgaaaatct gcttccacaa aatgcaccaa attattggta 1320 tetteaagga ttaatteata ageagaatgg agatetgetg caagecaaat gttatgagaa 1380

ggaactgggc	cgcctgctaa	gggatgcccc	ttcaggcata	ggcagtattt	tcctgtcagc	1440
atctgagctt	gaggatggta	gtgaggaaat	gggccagggc	gcagtcagct	ccagtcccag	1500
agagctcctc	tctaactcag	agcaactgaa	ctgagacaga	ggaggaaaac	agagcatcag	1560
aagcctgcag	tggtggttgt	gacgggtagg	aggataggaa	gacagggggc	ccaacctggg.	1620
attgctgagc	agggaagctt	tgcatgttgc	tctaaggtac	atttttaaag	agttgtttt	1680
tggccgggcg	cagtgctcat	gcctgtaatc	ccagaacttt	gggaggccga	ggtgggcgga	1740
tcacgaggtc	tggagtttga	gaccatcctg	gctaacacag	tgaaatcccg	tctctactaa	1800
aaatacaaaa	aattagccag	gcgtggtggc	tggcacctgt	agtcccagct	acttgggagg	1860
ctgaggcagg	agaatggcgt	gaacctggaa	ggaagaggtt	gcagagagcc	aagattgcg	1919

<210> 412

<211> 1099 <212> DNA

<213> Homo sapiens

<400> 412 tectgegttg etgggaagtt etggaaggaa geatgtgete eagaggttgg gattegtgte 60 tggctctgga attgctactg ctgcctctgt cactcctggt gaccagcatt caaggtcact 120 tggtacatat gaccgtggtc tccggcagca acgtgactct gaacatctct gagagcctgc 180 ctgagaacta caaacaacta acctggtttt atactttcga ccagaagatt gtagaatggg 240 attccagaaa atctaagtac tttgaatcca aatttaaagg cagggtcaga cttgatcctc 300 agagtggcgc actgtacatc tctaaggtcc agaaagagga caacagcacc tacatcatga 360 gggtgttgaa aaagactggg aatgagcaag aatggaagat caagctgcaa gtgcttgacc 420 ctgtacccaa gcctgtcatc aaaattgaga agatagaaga catggatgac aactgttatt 480 540 tgaaactgtc atgtgtgata cctggcgagt ctgtaaacta cacctggtat ggggacaaaa 600 ggcccttccc aaaggagctc cagaacagtg tgcttgaaac cacccttatg ccacataatt actccaggtg ttatacttgc caagtcagca attctgtgag cagcaagaat ggcacggtct 660 gectcagtec accetgtace etggceeggt cetttggagt agaatggatt geaagttgge 720 tagtggtcac ggtgcccacc attcttggcc tgttacttac ctgagatgag ctcttttaac 780 tcaagcgaaa cttcaaggcc agaagatctt gcctgttggt gatcatgctc ctcaccagga 840 cagagactgt ataggctgac cagaagcatg ctgctgaatt atcaacgagg attttcaagt 900 taacttttaa atactggtta ttatttaatt ttatatccct ttgttgtttt ctagtacaca 960 gagatataga gatacacatg cttttttccc acccaaaatt gtgacaacat tatgtgaatg 1020 ttttattatt ttttaaaata aacatttgat ataattatca attaactgaa aaaaaaaaa 1080 aaaaaaaaa aaaaaaaaa 1099

<210> 413 <211> 2961

<212> DNA

<213> Homo sapiens

<400> 413 aagagatgat tteteeatee tgaaegtgea gegagettgt caggaagate ggaggtgeea 60 agtagcagag aaagcatccc ccagctctga cagggagaca gcacatgtct aaggcccaca 120 agccttggcc ctaccggagg agaagtcaat tttcttctcg aaaatacctg aaaaaagaaa 180 tgaatteett ecageaacag ecacegeeat teggeacagt gecaceacaa atgatgttte 240 ctccaaactg gcagggggca gagaaggacg ctgettteet egecaaggae tteaacttte 300 tcactttgaa caatcagcca ccaccaggaa acaggagcca accaagggca atggggcccg 360 agaacaacct gtacagccag tacgagcaga aggtgcgccc ctgcattgac ctcatcgact 420 ccctgcgggc tctgggtgtg gagcaggace tggccctgcc agccatcgcc gtcatcgggg 480 accagagete gggeaagage tetgtgetgg aggeaetgte aggagtegeg etteecagag 540 gcagcggaat cgtaaccagg tgtccgctgg tgctgaaact gaaaaagcag ccctgtgagg 600 catgggccgg aaggatcagc taccggaaca ccgagctaga gcttcaggac cctggccagg 660 tggagaaaga gatacacaaa gcccagaacg tcatggccgg gaatggccgg ggcatcagcc 720 atgageteat cageetggag ateacetece etgaggttee agaeetgace ateattgace 780 ttcccggcat caccagggtg gctgtggaca accagccccg agacatcgga ctgcagatca 840 aggeteteat caagaagtac atccagagge ageagaegat caacttggtg gtggtteeet 900 gtaacgtgga cattgccacc acggaggcgc tgagcatggc ccatgaggtg gacccggaag 960 gggacaggac catcggtatc ctgaccaaac cagatctaat ggacaggggc actgagaaaa 1020 gcgtcatgaa tgtggtgcgg aacctcacgt accccctcaa gaagggctac atgattgtga 1080 agtgccgggg ccagcaggag atcacaaaca ggctgagctt ggcagaggca accaagaaag 1140 aaattacatt ctttcaaaca catccatatt tcagagttct cctggaggag gggtcagcca 1200 cggttccccg actggcagaa agacttacca ctgaactcat catgcatatc caaaaatcgc 1260 tcccgttgtt agaaggacaa ataagggaga gccaccagaa ggcgaccgag gagctgcggc 1320 9ttgcggggc tgacatcccc agccaggagg ccgacaagat gttctttcta attgagaaaa 1380 tcaagatgtt taatcaggac atcgaaaagt tagtagaagg agaagaagtt gtaagggaga 1440 atgagacccg tttatacaac aaaatcagag aggattttaa aaactgggta ggcatacttg 1500 caactaatac ccaaaaagtt aaaaatatta tccacgaaga agttgaaaaa tatgaaaagc 1560

agtatcgag	g caaggagctt	ctgggatttg	tcaactacaa	gacatttgag	atcatcgtgc	1620
atcagtaca	c ccagcagctg	gtggagcccg	cccttagcat	gctccagaaa	gccatggaaa	1680
ttatccagc	a agctttcatt	aacgtggcca	aaaaacattt	tggcgaattt	ttcaacctta	1740
accaaactg	tcagagcacg	attgaagaca	taaaagtgaa	acacacagca	aaggcagaaa	1800
acatgatcc	a acttcagttc	agaatggagc	agatggtttt	ttgtcaagat	cagatttaca	1860
gtgttgttc	gaagaaagtc	cgagaagaga	tttttaaccc	tctggggacg	cctfcacaga	1920
atatgaagt	gaactctcat	tttcccagta	atgagtcttc	ggtttcctcc	tttactgaaa	1980
taggcatcc	a cctgaatgcc	tacttcttgg	aaaccagcaa	acgtctcgcc	aaccagatcc	2040
catttataa	tcagtatttt	atgctccgag	agaatggtga	ctccttgcag	aaagccatga	2100
tgcagatac	acaggaaaaa	aatcgctatt	cctggctgct	tcaagagcag	agtgagaccg	2160
ctaccaaga	g aagaatcctt	aaggagagaa	tttaccggct	cactcaggcg	cgacacgcac	2220
tctgtcaat	ctccagcaaa	gagatccact	gaagggcggc	gatgcctgtg	gttgttttct	2280
tgtgcgtac	cattcattct	aaggggagtc	ggtgcaggat	geegettetg	ctttggggcc	2340
aaactcttc	gtcactatca	gtgtccatct	ctactgtact	ccctcagcat	cagagcatgc	2400
atcaggggt	c cacacaggct	cagctctctc	caccacccag	ctcttccctg	accttcacga	2460
agggatggc	ctccagtcct	tgggtcccgt	agcacacagt	tacagtgtcc	taagatactg	2520
ctatcattc	tcgctaattt	gtatttgtat	tcccttcccc	ctacaagatt	atgagacccc	2580
agaggggaa	a ggtctgggtc	aaattcttct	tttgtatgtc	cagtctcctg	cacagcacct	2640
gcagcattg	aactgcttaa	taaatgacat	ctcactgaac	gaatgagtgc	tgtgtaagtg	2700
atggagata	c ctgaggctat	tgctcaagcc	caggccttgg	acatttagtg	actgttagcc	2760
ggtcccttt	c agatecagtg	gccatgcccc	ctgcttccca	tggttcactg	tcattgtgtt	2820
tcccagcct	c tccactcccc	cgccagaaag	gagcctgagt	gattctcttt	tcttcttgtt	2880
tccctgatt	a tgatgagctt	ccattgttct	gttaagtett	gaagaggaat	ttaataaagc	2940
aaagaaact	tttaaaaacg	t				2961
-210- 41	4					

<400> 414

gcggcggcgg cggcgcagtt tgctcatact ttgtgacttg cggtcacagt ggcattcagc 60 tccacacttg gtagaaccac aggcacgaca agcatagaaa catcctaaac aatcttcatc 120 gaggcatcga ggtccatccc aataaaaatc aggagaccct ggctatcata gaccttagtc 180

<210> 414 <211> 2808 <212> DNA

<213> Homo sapiens

ttcgctggta	tactcgctgt	ctgtcaacca	gcggttgact	ttttttaagc	cttcttttt	240
ctcttttacc	agtttctgga	gcaaattcag	tttgccttcc	tggatttgta	aattgtaatg	300
acctcaaaac	tttagcagtt	cttccatctg	actcaggttt	gettetetgg	cggtcttcag	360
aatcaacatc	cacacttccg	tgattatctg	cgtgcatttt	ggacaaagct	tccaaccagg	420
atacgggaag	aagaaatggc	tggtgatctt	tcagcaggtt	tcttcatgga	ggaacttaat	480
acataccgtc	agaagcaggg	agtagtactt	aaatatcaag	aactgcctaa	ttcaggacct	540
ccacatgata	ggaggtttac	atttcaagtt	ataatagatg	gaagagaatt	tccagaaggt	600
gaaggtagat	caaagaagga	agcaaaaaat	gccgcagcca	aattagctgt	tgagatactt	660
aataaggaaa	agaaggcagt	tagtccttta	ttattgacaa	caacgaattc	ttcagaagga	720
ttatccatgg	ggaattacat	aggccttatc	aatagaattg	cccagaagaa	aagactaact	780
gtaaattatg	aacagtgtgc	atcgggggtg	catgggccag	aaggatttca	ttataaatgc	840
aaaatgggac	agaaagaata	tagtattggt	acaggttcta	ctaaacagga	agcaaaacaa	900
ttggccgcta	aacttgcata	tcttcagata	ttatcagaag	aaacctcagt	gaaatctgac	960
tacctgtcct	ctggttcttt	tgctactacg	tgtgagtccc	aaagcaactc	tttagtgacc	1020
agcacactcg	cttctgaatc	atcatctgaa	ggtgacttct	cagcagatac	atcagagata	1080
aattctaaca	gtgacagttt	aaacagttct	tcgttgctta	tgaatggtct	cagaaataat	1140
caaaggaagg	caaaaagatc	tttggcaccc	agatttgacc	ttcctgacat	gaaagaaaca	1200
aagtatactg	tggacaagag	gtttggcatg	gattttaaag	aaatagaatt	aattggctca	1260
ggtggatttg	gccaagtttt	caaagcaaaa	cacagaattg	acggaaagac	ttacgttatt	1320
aaacgtgtta	aatataataa	cgagaaggcg	gagcgtgaag	taaaagcatt	ggcaaaactt	1380
gatcatgtaa	atattgttca	ctacaatggc	tgttgggatg	gatttgatta	tgatcctgag	1440
accagtgatg	attctcttga	gagcagtgat	tatgatcctg	agaacagcaa	aaatagttca	1500
aggtcaaaga	ctaagtgcct	tttcatccaa	atggaattct	gtgataaagg	gaccttggaa	1560
caatggattg	aaaaaagaag	aggcgagaaa	ctagacaaag	ttttggcttt	ggaactcttt	1620
gaacaaataa	caaaaggggt	ggattatata	cattcaaaaa	aattaattca	tagagatctt	1680
aagccaagta	atatattctt	agtagataca	aaacaagtaa	agattggaga	ctttggactt	1740
gtaacatctc	tgaaaaatga	tggaaagcga	acaaggagta	agggaacttt	gcgatacatg	1800
agcccagaac	agatttcttc	gcaagactat	ggaaaggaag	tggacctcta	cgctttgggg	1860
ctaattcttg	ctgaacttct	tcatgtatgt	gacactgctt	ttgaaacatc	aaagtttttc	1920
acagacctac	gggatggcat	catctcagat	atatttgata	aaaaagaaaa	aactcttcta	1980

cagaaattac	tctcaaagaa	acctgaggat	cgacctaaca	catctgaaat	actaaggacc	2040
ttgactgtgt	ggaagaaaag	cccagagaaa	aatgaacgac	acacaťgtta	gagcccttct	2100
gaaaaagtat	cctgcttctg	atatgcagtt	ttccttaaat	tatctaaaat	ctgctaggga	2160
atatcaatag	atatttacct	tttattttaa	tgtttccttt	aattttttac	tatttttact	2220
aatctttctg	cagaaacaga	aaggttttct	tctttttgct	tcaaaaacat	tcttacattt	2280
tactttttcc	tggctcatct	ctttattctt	tttttttt	ttaaagacag	agtctcgctc	. 2340
tgttgcccag	gctggagtgc	aatgacacag	tcttggctca	ctgcaacttc	tgcctcttgg	2400
gttcaagtga	ttetectgee	tcagcctcct	gagtagctgg	attacaggca	tgtgccaccc	2460
acccaactaa	tttttgtgtt	tttaataaag	acagggtttc	accatgttgg	ccaggctggt	2520
ctcaaactcc	tgacctcaag	taatccacct	gcctcggcct	cccaaagtgc	tgggattaca	2580
gggatgagcc	accgcgccca	gcctcatctc	tttgttctaa	agatggaaaa	accaccccca	2640
aattttcttt	ttatactatt	aatgaatcaa	tcaattcata	tctatttatt	aaatttctac	2700
cgcttttagg	ccaaaaaaat	gtaagatcgt	tctctgcctc	acatagctta	caagccagct	2760
ggagaaatat	ggtactcatt	aaaaaaaaa	aaaaagtgat	gtacaacc		2808

<210> 415

<211> 1940

<212> DNA

<213> Homo sapiens

<400> 415

60 acccagggtc cggcctgcgc cttcccgcca ggcctggaca ctggttcaac acctgtgact tcatgtgtgc gcgccggcca cacctgcagt cacacctgta gccccctctg ccaagagatc 120 cataccgagg cagcgtcggt ggctacaagc cctcagtcca cacctgtgga cacctgtgac 180 acctggccac acgaectgtg gccgcggcct ggcgtctgct gcgacaggag cccttacctc 240 ccctgttata acacctgaca gccacctaac tgcccctgca gaaggagcaa tggccttggc 300 tectgagagg taagageeeg geeeaceete tecagatgee agteeeegag egeeetgeag 360 ceggecetga eteteegegg eegggeacee geagggeage eecaegegtg etgtteggag 420 agtggeteet tggagagate ageagegget getatgaggg getgeagtgg etggaegagg 480 cccgcacctg tttccgcgtg ccctggaagc acttcgcgcg caaggacctg agcgaggccg 540 acgcgcgcat cttcaaggcc tgggctgtgg cccgcggcag gtggccgcct agcagcaggg 600 gaggtggccc gcccccgag gctgagactg cggagcgcgc cggctggaaa accaacttcc 660 gctgcgcact gcgcagcacg cgtcgcttcg tgatgctgcg agataactcg ggggacccgg 720 cegaccegea caaggtgtac gegeteagee gggagetgtg etggegagaa ggeecaggea 780

cggaccagac	tgaggcagag	gcccccgcag	ctgtcccacc	accacagggt	gggcccccag	840
ggccattcct	ggcacacaca	catgctggac	tccaagcccc	aggccccctc	cctgccccag	900
ctggtgacga	gggggacctc	ctgctccagg	cagtgcaaca	gagctgcctg	gcagaccatc	960
tgctgacagc	gtcatggggg	gcagatccag	tcccaaccaa	ggctcctgga	gagggacaag	1020
aagggcttcc	cctgactggg	gcctgtgctg	gaggcccagg	gctccctgct	ggggagctgt	1080
acgggtgggc	agtagagacg	acccccagcc	ccádacccca	gecegęggea	ctaacgacag ,	1140
gcgaggccgc	ggccccagag	tccccgcacc	aggcagagcc	gtacctgtca	ccctccccaa	1200
gcgcctgcac	cgcggtgcaa	gagcccagcc	caggggcgct	ggacgtgacc	atcatgtaca	1260
agggccgcac	ggtgctgcag	aaggtggtgg	gacacccgag	ctgcacgttc	ctatacggcc	1320
ccccagaccc	agctgtccgg	gccacagacc	cccagcaggt	agcattcccc	agccctgccg	1380
agctcccgga	ccagaagcag	ctgcgctaca	cggaggaact	gctgcggcac	gtggcccctg	1440
ggttgcacct	ggagcttcgg	gggccacagc	tgtgggcccg	gcgcatgggc	aagtgcaagg	1500
tgtactggga	ggtgggcggc	ccccaggct	ccgccagccc	ctccacccca	gcctgcctgc	1560
tgcctcggaa	ctgtgacacc	cccatcttcg	acttcagagt	cttcttccga	gagctggtgg	1620
aattccgggc	acggcagcgc	cgtggctccc	cacgctatac	catctacctg	ggcttcgggc	1680
aggacctgtc	agctgggagg	cccaaggaga	agagcctggt	cctggtgaag	ctggaaccct	1740
ggctgtgccg	agtgcaccta	gagggcacgc	agcgtgaggg	tgtgtcttcc	ctggatagca	1800
gcagcctcag	cctctgcctg	tccagcgcca	acagcctcta	tgacgacatc	gagtgcttcc	1860
ttatggagct	ggagcagccc	gcctagaacc	cagtctaatg	agaactccag	aaagctggag	1920
cagcccacct	agagetggee					1940

<210> 416

<211> 1571

<212> DNA

<213> Homo sapiens

<400> 416

60 ceatgacete cateeteacg gteetgatet gteteggget gageetggae ceeaggacee 120 acgtgcaggc agggcccctc cccaagccca ccctctgggc tgagccaggc tctgtgatca 180 cccaagggag tcctgtgacc ctcaggtgtc aggggagcct ggagacgcag gagtaccatc 240 tatatagaga aaagaaaaca gcactctgga ttacacggat cccacaggag cttgtgaaga 300 agggccagtt ccccatccta tccatcacct gggaacatgc agggcggtat tgctgtatct 360 atggcagcca cactgcaggc ctctcagaga gcagtgaccc cctggagctg gtggtgacag 420

gagcctacag	caaacccacc	ctctcagctc	tgcccagccc	tgtggtgacc	tcaggaggga	480
atgtgaccat	ccagtgtgac	tcacaggtgg	catttgatgg	cttcattctg	tgtaaggaag	540
gagaagatga	acacccacaa	tgcctgaact	cccattccca	tgcccgtggg	tcatcccggg	600
ccatcttctc	cgtgggcccc	gtgagcccaa	gtcgcaggtg	gtcgtacagg	tgctatggtt	660
atgactcgcg	cgctccctat	gtgtggtctc	tacccagtga	teteetgggg	ctcctggtcc	720
caggtgtttc	taagaagcca	tcactctcag	tgcagccggg	tcctgtcgtg	gcccctgggg	780
agaagctgac	cttccagtgt	ggctctgatg	ccggctacga	cagatttgtt	ctgtacaagg	840
agtggggacg	tgacttcctc	cagcgccctg	gccggcagcc	ccaggctggg	ctctcccagg	900
ccaacttcac	cctgggccct	gtgagccgct	cctacggggg	ccagtacaca	tgctccggtg	960
catacaacct	ctcctccgag	tggtcggccc	ccagcgaccc	cctggacatc	ctgatcacag	1020
gacagatccg	tgccagaccc	ttcctctccg	tgcggccggg	ccccacagtg	gcctcaggag	1080
agaacgtgac	cctgctgtgt	cagtcacagg	gagggatgca	cactttcctt	ttgaccaagg	1140
agggggcagc	tgattccccg	ctgcgtctaa	aatcaaagcg	ccaatctcat	aagtaccagg	1200
ctgaattccc	catgagtcct	gtgacctcgg	cccacgcggg	gacctacagg	tgctacggct	1260
cactcagctc	caacccctac	ctgctgactc	accccagtga	cccctggag	ctcgtggtct	1320
caggagcagc	tgagaccctc	agcccaccac	aaaacaagtc	cgactccaag	gctggtgagt	1380
gaggagatgc	ttgccgtgat	gacgctgggc	acagagggtc	aggtcctgtc	aagaggagct	1440
gggtgtcctg	ggtggacatt	tgaagaatta	tattcattcc	aacttgaaga	attattcaac	1500
acctttaaca	atgtatatgt	gaagtacttt	attctttcat	attttaaaaa	taaaagataa	1560
ttatccatga	a					1571

<210> 417

<211> 3998

<212> DNA

<213> Homo sapiens

<400> 417

ccgggagccc gggcgccctg gagtgaggag gaccgggagc tggctctgga ggctgcggag 60 gcgacgccgg agagaacgaa gcctcggctg ggagcggatc tttcgaagat ggtttggctg 120 ccttggagat ttggagatct gatgccacga tgaggactca cacacggggg gctcccagtg 180 tgttttcat atatttgctt tgctttgtgt cagcctacat caccgacgag aacccagaag 240 ttatgattcc cttcaccaat gccaactacg acagccatcc catgctgtac ttctccaggg 300 cagaagtggc ggagctgcag ctcagggctg ccagctcgca cgagcacatt gcagcccgcc 360 tcacggaggc tgtgcacacg atgctgtcca gccccttgga atacctccct ccctgggatc 420

ccaaggacta	cagtgcccgc	tggaatgaaa	tttttggaaa	caacttgggt	gccttggcaa	480
tgttctgtgt	gctgtatcct	gagaacattg	aagcccgaga	catggccaaa	gactacatgg	540
agaggatggc	agcgcagcct	agttggttgg	tgaaagatgc	tccttgggat	gaggtcccgc	600
ttgctcactc	cctggttggt	tttgccactg	cttatgactt	cttgtacaac	tacctgagca	660
agacacaaca	ggagaagttt	cttgaagtga	ttgccaatgc	ctcagggtat	atgtatgaaa	720
cttcatacag	gagaggatgg	ggatttcaat	acctgcacaa	tcatcagccc	accaactgta	780
tggctttgct	cacgggaagc	ctagtcctga	tgaatcaagg	atatcttcaa	gaagectact	840
tatggaccaa	acaagttctg	accatcatgg	agaaatctct	ggtcttgctc	agggaggtga	900
cggatggctc	cctctatgaa	ggagttgcgt	atggcagcta	caccactaga	tcactcttcc	960
aatacatgtt	tctcgtccag	aggcacttca	acatcaacca	ctttggccat	ccgtggctta	1020
aacaacactt	tgcatttatg	tatagaacca	tcctgccagg	gtttcaaagg	actgtggcta	1080
ttgcggactc	aaattacaac	tggttttatg	gtccagaaag	ccaattagtg	ttccttgata	1140
aatttgtcat	gcgtaatggc	agtggtaact	ggctagctga	ccaaatcaga	aggaaccgtg	1200
tggtggaagg	tccaggaaca	ccatccaaag	ggcagcgctg	gtgcactctg	cacacagaat	1260
ttctctggta	tgatggcagc	ttgaaatcgg	ttcctcctcc	agactttggc	acccctacac	1320
tgcattattt	tgaagactgg	ggtgtcgtga	cttatggaag	tgcactacct	gcagaaatca	1380
atagatcttt	cctttccttc	aagtctggaa	aactgggggg	acgtgcaata	tatgacattg	1440
tccacagaaa	caaatacaaa	gattggatca	aaggatggag	aaattttaat	gcagggcatg	1500
aacatcctga	tcaaaactca	tttacttttg	ctcccaatgg	tgtgcctttc	attactgagg	1560
ctctgtacgg	gccaaagtac	accttcttca	acaatgtttt	gatgttttcc	ccagctgtgt	1620
caaagagctg	cttttctccc	tgggtgggtc	aggtcacaga	agactgctca	tcaaaatggt	1680
ctaaatacaa	gcatgacctg	gcagctagtt	gtcaggggag	ggtggttgca	gcagaggaga	1740
aaaatggggt	ggttttcatc	cgaggagaag	gtgtgggagc	ttataacccc	cagctcaacc	1800
tgaagaatgt	tcagaggaat	ctcatcctcc	tacatccaca	getgettete	cttgtagacc	1860
aaatacacct	gggagaggag	agtcccttgg	agacagcagc	gagcttcttc	cataatgtgg	1920
atgttccttt	tgaggagact	gtggtagatg	gtgtccatgg	ggctttcatc	aggcagagag	1980
atggtctcta	taaaatgtac	tggatggacg	atactggcta	cagcgagaaa	gcaacctttg	2040
cctcagtgac	atatcctcgg	ggctatccct	acaacgggac	aaactatgtg	aatgtcacca	2100
tgcacctccg	aagtcccatc	accagggcag	cttacctctt	catagggcca	tctatagatg	2160
ttcagagctt	cactgtccac	ggagactete	agcaactgga	tgtgttcata	gccaccagca	2220
aacatgccta	cgccacatac	ctgtggacag	gtgaggccac	aggacagtct	gcctttgcac	2280

aggtcattgc	tgatcgtcac	aaaattctgt	ttgaccggaa	ttcagccatc	aagagcagca	2340
ttgtccctga	ggtgaaggac	tatgctgcta	ttgtggaaca	gaacttgcag	cattttaaac	2400
cagtgtttca	gctgctggag	aagcagatac	tgtcccgagt	ccggaacaca	gctagcttta	2460
ggaagactgc	tgaacgcctg	ctgagatttt	cagataagag	acagactgag	gaggccattg	2520
acaggatttt	tgccatatca	cagcaacagc	agcagcaaag	caagtcaaag	aaaaaccgaa	2580
gggcaggcaa	acgctataaa	tttgtggatg	ctgtccctga	tatttttgca	cagattgaag	2640
tcaatgagaa	aaagattaga	cagaaagctc	agattttggc	acagaaagaa	ctacccatag	2700
atgaagatga	agaaatgaaa	gaccttttag	attttgcaga	tgtaacatac	gagaaacata	2760
aaaatggggg	cttgattaaa	ggccggtttg	gacaggcacg	gatggtgaca	actacacaca	2820
gcagggcccc	atcactgtct	gcttcctata	ccaggttgtt	cctgattctg	aacattgcta	2880
ttttctttgt	catgttggca	atgcaactga	cttatttcca	gagggcccag	agcctacatg	2940
gccaaagatg	tctttatgca	gttcttctca	tagatagctg	tattttatta	tggttgtact	3000
cttcttgttc	ccaatcacag	tgttagcact	gaagctataa	attacctggt	cattttgtga	3060
tcacaagagt	ctatgcaaaa	aaaaaaattt	ctttacccca	gattatcaga	ttttttccc	3120
tcagattcat	tttaacaaat	taagggaaga	tattttgaca	caagaaagca	ggaacgtgga	3180
gaaattggag	caggaaaaga	aattatcaaa	gcaatagaaa	tagcttggtg	gtcctatggt	3240
gtttttggaa	gtatttggca	ttgctaattg	agcagtccat	atagtactac	ttttagaaga	3300
aacaaaaagt	ctatttttta	aagtaatgtt	ttttcttatg	agaaaaaggt	ttagatagaa	3360
ttgggtttta	ttaatattaa	tttaatgcta	ttagcaattt	ccatatacta	tattgtggaa	3420
aagactgaag	aatacaattc	tgagaaatat	aaaaaaattt	taatggtata	ctcatgttga	3480
aagataaatg	ttgctaagtc	ctggtatgat	ggtgtgagct	tccttgggga	agtacttctt	3540
gagttatgta	actaacagga	tgttttacta	cagatctgga	tggctattca	gataacatgg	3600
caaaaaatga	tagcagaaga	tcattaaaaa	cttaaaatat	attttattag	aaaacattta	3660
tctatgaatg	aatatttcct	tgatgctggt	ctctgcacac	atatgcttgg	ttacttgcat	3720
gcattcattg	gttgttcaat	aagtgagatg	attacagata	atactgtatt	ttccttatat	3780
ggaaaaccgt	tatagaccca	ataacaacta	aacctttcaa	aagaaaatat	tttctattat	3840
gaatgttgat	tttcatacca	aagaagatgg	agagtctaaa	atttggatat	gattcttatg	3900
ttttttaat	agaaaacctt	cttcaagttt	attttcctaa	ataaacatca	taattgtgaa	3960
aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaa			3998

<210> 418

<211> <212> <213>	1402 DNA Homo	sapiens					
400-	410						
<400>	418 ccca	agaagagtcg	agaaaatgtt	aaggaacttc	tetgetgtte	catggaagaa	60
taccaa	cagt	ccccggtgaa	gctgcaggac	ttcttccagt	atggtagtta	tgtctgtacg	120
gacgctt	tcgg	atctgggtct	accagagtgg	gtgctaggag	ctctggccaa	agcgcgtacc	180
accttt	catc	agtgatgctt	tggtgctccg	aaggaccttt	cttcacacac	aggtagaaaa	240
catgcag	gcgg	ccaaatgctc	acagaatatc	tcagcccatc	aggcaaatca	tctatgggct	300
tctttt	aaat	gcctcaccac	atctggacaa	gacatcctgg	aatgcattgc	ctcctcagcc	360
tctagct	tttc	agtgaagtgg	aaaggattaa	taaaaatatc	agaacctcaa	tcattgatgc	420
agtaga	actg	gccaaggatc	attetgaett	aagcagattg	actgagctct	ccttgaggag	480
gcggca	gatg	cttctgttag	aaaccctgaa	ggtgaaacag	accattctgg	agccaatccc	540
tacttca	actg	aagttgccca	ttgctgtcag	ttgctactgg	ttgcagcaca	ccgagaccaa	600
agcaaa	gcta	catcatctac	aatccttact	gctcacaatg	ctagtggggc	ccttgattgc	660
cataat	caac	agccctggta	aggaagagct	gcaggaagat	ggtgctaaga	tgttgtatgc	720
agagtt	ccaa	agagtgaagg	cgcagacacg	gctgggcaca	agactggact	tagacacagc	780
tcacat	cttc	tgtcagtggc	agtectgtet	ccagatgggg	atgtatctca	accagctgct	840
gtccac	tcct	ctcccagagc	cagacctaac	tcgactgtac	agtggaagcc	tggtgcacgg	900
actatg	ccag	caactgctag	catcgacctc	tgtagaaagt	ctcctgagca	tatgtcctga	960
ggctaa	gcaa	ctttatgaat	atctattcaa	tgccacaagg	tcatatgccc	ccgctgaaat	1020
attcct	acca	aaaggtagat	caaattcaaa	aaaaaaagg	cagaagaaac	agaataccag	1080
ctgttc	taag	aacagaggga	gaaccactgc	acacaccaag	tgttggtatg	agggaaacaa	1140
ccggtt	tggg	ttgttaatgg	ttgaaaactt	agaggaacat	agtgaggcct	ccaacattga	1200
ataaaa	ctca	gtttgcatca	aactagatgt	atttaatata	atccttactt	aaaattcttc	126
cgttac	cacc	cttgaaacaa	ttagcttttt	ctttaggact	gacctgttag	gggataaaca	132
tcacaa	taat	ctgaattcca	agttattttg	tattttgttt	ttaataaata	caacctgatt	138
taagaa	aaaa	aaaaaaaaa	aa				140
<210><211><211><212><213>	419 1320 DNA Home						

<400> 419

atggaaggag acttctcggt gtgcaggaac tgtaaaagac atgtagtctc tgccaacttc 60

					atecagaata i	taaqqaqcct	120
				ctggtcctgt			100
				aagcttgagc			180
i	atgtgtcagc	agagcatgca	gaagtcctcg	ctggagtttc	ataaggccaa	tgagtgccag	240
,	gagcgccctg	ttgagtgtaa	gttctgcaaa	ctggacatgc	agctcagcaa	gctggagctc	300
	cacgagtcct	actgtggcag	ccggacagag	ctctgccaag	gctgtggcca	gttcatcatg	360
	caccgcatgc	tegeceagea	cagagatgtc	tgtcggagtg	aacaggccca	gctcgggaaa	420
				atctactgtc			480
				aaatgttgtc			540
	cactttcctg	ttggaaatcc	agaaattctt	ccttcatctc	ttccaagtca	agctgctgaa	600
				cgtccaaaga			660
				gcaccaagaa			720
				accagctccc			780
				ggcatcctgc			840
				tcatcaaaaa			900
				aaattcaaaa			960
				g tgaaaggtga			1020
						aatagataca	1080
						caaaccaggc	1140
						: agccaacatc	1200
						g cacttcagtc	1260
						a gaagtaaaag	1320
	gcaccc						1326
	-						

<210> 420

<211> 2077

<212> DNA

<213> Homo sapiens

<400> 420
ccgagcgcca gcgcggggaa ccggggaaaag gaaaccgtgt tgtgacgta agattcagga 60
aacgaaacca ggagccgcgg gtgttggcgc aaaggttact cccagaccet tttccggctg 120
acttctgaga aggttgcgca cagctgtgc cggcagtcta gaggcgcaga agaggaagcc 180
atcgcctggc cccggctctc tggaccttgt ctcgctcggg agcggaaaca gcggcagcaa 240
gagaactgtt ttaatcatgg acaaacaaaa ctcacagatg aatgcttctc acccggaaac 300

aaacttgcca gttgggtatc ctcctcagta tccaccgaca gcattccaag gacctccagg 360 atatagtggc taccctgggc cccaggtcag ctacccaccc ccaccagccg gccattcagg 420 tectggeeca getggettte etgteecaaa teageeagtg tataateage eagtatataa 480 tcagccagtt ggagctgcag gggtaccatg gatgccagcg ccacagcctc cattaaactg 540 tccacctgga ttagaatatt taagtcagat agatcagata ctgattcatc agcaaattga 600 acttctggaa gttttaacag gttttgaaac taataacaaa tatgaaatta agaacagctt 660 tggacagagg gtttactttg cagcggaaga tactgattgc tgtacccgaa attgctgtgg 720 gccatctaga ccttttacct tgaggattat tgataatatg ggtcaagaag tcataactct 780 ggagagacca ctaagatgta gcagctgttg ttgtccctgc tgccttcagg agatagaaat 840 ccaageteet eetggtgtae caataggtta tgttatteag aettggeace catgtetaee 900 aaagtttaca attcaaaatg agaaaagaga ggatgtacta aaaataagtg gtccatgtgt 960 tgtgtgcagc tgttgtggag atgttgattt tgagattaaa tctcttgatg aacagtgtgt 1020 ggttggcaaa atttccaagc actggactgg aattttgaga gaggcattta cagacgctga 1080 taactttgga atccagttcc ctttagacct tgatgttaaa atgaaagctg taatgattgg 1140 tgcctgtttc ctcattgact tcatgttttt tgaaagcact ggcagccagg aacaaaaatc 1200 aggagtgtgg tagtggatta gtgaaagtct cctcaggaaa tctgaagtct gtatattgat 1260 tgagactatc taaactcata cctgtatgaa ttaagctgta aggcctgtag ctctggttgt 1320 atacttttgc ttttcaaatt atagtttatc ttctgtataa ctgatttata aaggtttttg 1380 tacatttttt aatactcatt gtcaatttga gaaaaaggac atatgagttt ttgcatttat 1440 taatgaaact teetttgaaa aactgetttg aattatgate tetgatteat tgteeatttt 1500 actaccaaat attaactaag gccttattaa tttttatata aattatatct tgtcctatta 1560 aatctagtta caatttattt catgcataag agctaatgtt attttgcaaa tgccatatat 1620 tcaaaaaagc tcaaagataa ttttctttac tattatgttc aaataatatt caatatgcat 1680 attatcttta aaaagttaaa tgttttttta atcttcaaga aatcatgcta cacttaactt 1740 ctcctagaag ctaatctata ccataatatt ttcatattca caagatatta aattaccaat 1800 tttcaaatta ttgttagtaa agaacaaaat gattctctcc caaagaaaga cacattttaa 1860 atactccttc actctaaaac tctggtatta taacttttga aagttaatat ttctacatga 1920 aatgtttagc tettacacte tateetteet agaaaatggt aattgagatt aeteagatat 1980 taattaaata caatatcata tatatattca cagagtataa acctaaataa tgatctatta 2040 2077 gattcaaata tttgaaataa aaacttgatt tttttgt

<210> 421 <211> 1450 <212> DNA <213> Homo sapiens

<400> 421 tgctcgctgc gccaccgcct cccgccaccc ctgcccgccc gacagcgccg ccgcctgccc 60 cgccatgggt cgacagaagg agctggtgtc ccgctgcggg gagatgctcc acatccgcta 120 ccggctgctc cgacaggcgc tggccgagtg cctggggacc ctcatcctgg tgatgtttgg 180 ctgtggctcc gtggcccagg ttgtgctcag ccggggcacc cacggtggtt tcctcaccat 240 caacctggcc tttggctttg ctgtcactct gggcatcctc atcgctggcc aggtctctgg 300 ggcccacetg aaccetgeeg tgacetttge catgtgette etggetegtg agecetggat 360 caagetgeee atetacacee tggcacagae getgggagee ttettgggtg etggaatagt 420 ttttgggctg tattatgatg caatctggca cttcgccgac aaccagcttt ttgtttcggg 480 ccccaatggc acagccggca tctttgctac ctacccctct ggacacttgg atatgatcaa 540 tggcttcttt gaccagttca taggcacagc ctcccttatc gtgtgtgtgc tggccattgt 600 tgacccctac aacaaccccg tcccccgagg cctggaggcc ttcaccgtgg gcctggtggt 660 cctggtcatt ggcacctcca tgggcttcaa ctccggctat gccgtcaacc ctgcccggga 720 ctttggcccc cgccttttta cagcccttgc gggctggggc tctgcagtct tcacgaccgg 780 ccagcattgg tggtgggtgc ccatcgtgtc cccactcctg ggctccattg cgggtgtctt 840 cgtgtaccag ctgatgatcg gctgccacct ggagcagccc ccaccctcca acgaggaaga 900 gaatgtgaag ctggcccatg tgaagcacaa ggagcagatc tgagtgggca ggggccatct 960 ccccactccg ctgccctggc cttgagcatc cactgactgt ccaagggcca ctcccaagaa 1020 gececettea egatecacee ttteaggeta aggagetece tatetaceet caceceacga 1080 gacageceet teaggattte caetggacet tgeceaaata geacettagg ceaetgeece 1140 taagctgggg tggaaccgga atttgggtca atacatcctt ttgtctccca agggaagaga 1200 atgggcagca ggtatgtgtg tgtgtgcatg tgtgtgcatg tgtgtgcatg tgtgtgcagg 1260 ggtgtgtgtg tgtggggggg gttcccagat attcagggca agggaccagt cggaagggat 1320 tetggetatt gggggagece agagacaggg gaaggeagee tgtecatetg tgcataagga 1380 gaggaaagtt ccagggtgtg tatgtttcag gggcttcaca tggaggagct gcagatagat 1440 1450 atgtgtttct

<210> 422 <211> 1696

<212> DNA

<213> Homo sapiens

<400> 422 caaaggactt cctagtgggt gtgaaaggca gcggtggcca cagaggcggc ggagagatgg 60 cettcagegg tteccagget cectacetga gtecagetgt eccettttet gggactatte 120 aaggaggtet ecaggacgga etteagatea etgteaatgg gacegttete ageteeagtg 180 gaaccaggtt tgctgtgaac tttcagactg gcttcagtgg aaatgacatt gccttccact 240 tcaaccctcg gtttgaagat ggagggtacg tggtgtgcaa cacgaggcag aacggaagct 300 gggggcccga ggagaggaag acacacatgc ctttccagaa ggggatgccc tttgacctct 360 gcttcctggt gcagagctca gatttcaagg tgatggtgaa cgggatcctc ttcgtgcagt 420 acttccaccg cgtgcccttc caccgtgtgg acaccatctc cgtcaatggc tctgtgcagc 480 tgtcctacat cagcttccag aacccccgca cagtccctgt tcagcctgcc ttctccacgg 540 tgccgttctc ccagcctgtc tgtttcccac ccaggcccag ggggcgcaga caaaaacctc 600 ceggegtgtg geetgecaac ceggetecca ttacccagac agteatecac acagtgcaga 660 gcgcccctgg acagatgttc tctactcccg ccatcccacc tatgatgtac ccccaccccg 720 780 cetateegat geettteate accaecatte tgggaggget gtacecatee aagteeatee tectgteagg cactgteetg eccagtgete agaggtteea cateaacetg tgetetggga 840 accacatege ettecacetg aacceeegtt ttgatgagaa tgetgtggte egeaacacee 900 agatcgacaa ctcctggggg tctgaggagc gaagtctgcc ccgaaaaatg cccttcgtcc 960 gtggccagag cttctcagtg tggatcttgt gtgaagctca ctgcctcaag gtggccgtgg 1020 atggtcagca cctgtttgaa tactaccatc gcctgaggaa cctgcccacc atcaacagac 1080 tggaagtggg gggcgacatc cagctgaccc atgtgcagac ataggcggct tectggccct 1140 ggggccgggg gctggggtgt ggggcagtct gggtcctctc atcatcccca cttcccaggc 1200 ccagcettte caaccetgee tgggatetgg getttaatge agaggeeatg teettgtetg 1260 gtcctgcttc tggctacagc caccctggaa cggagaaggc agctgacggg gattgccttc 1320 ctcagccgca gcagcacctg gggctccagc tgctggaatc ctaccatccc aggaggcagg 1380 cacagecagg gagagggag gagtgggcag tgaagatgaa geeccatget cagteeeete 1440 ccatccccca cgcagctcca ccccagtccc aagccaccag ctgtctgctc ctggtgggag 1500 gtggcctcct cagcccctcc tctctgacct ttaacctcac tctcaccttg caccgtgcac 1560 caaccettca cccctcctgg aaagcaggee tgatggette ccactggeet ccaccacetg 1620 1680 accagagtgt tctcttcaga ggactggctc ctttcccagt gtccttaaaa taaagaaatg 1696 aaaatgcttg ttggca

<210> 423 <211> 817 <212> DNA	
<213> Homo sapiens	
<400> 423 gtatattcag cagggtattt aagtgctagg gctggtcaca cacaaccaac tgaaaaagac	60
tagagggatt agtacaaact cctcttatac agaaggcaaa tctgaggttc cacagaagtc	120
tggaaccaag actattcagt tggttaaata aagaggttag tctagactgg gcctgctcat	180
tctaggtcac cacattttcc atctccaaat agccaggccc tctctccctc aagaaatgcc	240
cagatgtaga aattcatcag tgcctattgg tcttccagaa ttttccatct tccgtatctc	300
ccaggcatga gactaccaag tttgtttgtt ttctttccaa tttgggaatt tatacttcag	360
tatggtttca acgcagttat gtttccagag aacatctaga agtggctgga aaccagaagc	420
tggggattcc agggacccca cttagtgctc tatttccttt ataggtttta tttctggtca	480
tagagagaga aggacctttg actttttctt cgttgaggct tctgaggagg aaaaacaaac	540
taaaatagaa atacagtcag cetttcaaat ccatgggttc tgtgtccgtg gattcaacca	600
agcttggatc aaacaatatt tgacaaaaaa tctaccaagt tccaaaaagc aaaacttgaa	660
tttgggtgca tgccaagaaa gtatggttgg aattcctggt acactgaagt ggatgttgta	720
aggcattgta ttacgatatt ataggaaatt ctagaaatgg attttaaagc attacaggca	780
ggatgtgcgc ttaggttatt atggcgaatt attatgg	817
<210> 424 <211> 832	
<212> DNA <213> Homo sapiens	
<400> 424	60
ttttttttt tttttttt tttaaaaaat cgaatacctt tattggggct cccttaagca	120
gctggtgaaa aggggagtga cctcagcaga ggccgggtat cttggcccgt gtggaaaacc	180
caaaatotoa gotgootagt ogggggtttt caaacagaag taaaagaggg gggggccaco	240
tocagtgctg tatccgggag gaggtccggg tcagcacggg gcaaggtagg tagctagctg	300
cettgacee tagtegggg tgggaactte ggttggeetg agataagggg atgteagtee	360
aaaagattgc tccacatggt gtcttcttct gcaggggtaa aagggcgggt cctggaatgg	420
gccgggagtg taccctaggg gaggcccagg ggctctttgg gatcagggat cctgaaaaaa	480
gctgccctgg gaggcccttg aaataacata gggagcaaga atgagtgctc gagtcgtcgc	540
tgacacagtc cagctcacac ggccatcaca gaggctgatg tgagcagtca cccagggggg	600
ggctccagct cattccatcc ccagggggca aggtgactag agggtaagaa gcccccgagt	550

aagccagggc ct	ctcccgct g	gtccaacccc	gaggaataac	ttccagcggt	ccaagcacac	660
gaagtcggag ga	tgccaaaa '	taccggccct	ggctgtacca	agtctcccct	cggggaggcc	720
tcgaagtagt ct	acctcgag	tgagaaccgt	ggcaacagtg	ggccccgggg	tgcccaaatg	780
gcagacacca gt	aacacact	gggggaccgt	caaggaagag	gggggggga	ac	832
<210> 425 <211> 2621						
<212> DNA <213> Homo s	sapiens				•	
<400> 425						CO
cagtgtttgg to						60
agtgaccaag to	gaaggtacc	tgtggggctc	attgtgccca	ttgctctttc	actgctttca	120
actggtagtt g	tgggttgaa	gcactggaca	atgccacata	ctttgtggat	ggtgtgggtc	180
ttgggggtca to	catcagcct	ctccaaggaa	gaatcctcca	atcaggcttc	tctgtcttgt	240
gaccgcaatg g	tatctgcaa	gggcagctca	ggatctttaa	actccattcc	ctcagggctc	300
acagaagctg t	aaaaagcct	tgacctgtcc	aacaacagga	tcacctacat	tagcaacagt	360
gacctacaga g	gtgtgtgaa	cctccaggct	ctggtgctga	catccaatgg	aattaacaca	420
atagaggaag a	ttcttttc	ttccctgggc	agtcttgaac	atttagactt	atcctataat	480
tacttatcta a						540
ttactgggaa a						600
ttgcaaatcc t						660
gctggactta c						720
ccaaaaagtt t						, 780
attttactgc t						840
gatactgatt t						900
attaaaaagt t						960
aaacttttga a						1020
					g taaagtggaa	1080
					a tctgagcact	1140
						1200
					a agtttttctg	1260
					cagtgaaaat	
					ctctctacaa	1320
actttaattt	taaggcaaaa	tcatttggc	a tcattggaaa	a aaaccggaga	a gactttgctc	1380

actetgaaaa acttgactaa cattgatate agtaagaata gttttcatte tatgeetgaa 1440 acttgtcagt ggccagaaaa gatgaaatat ttgaacttat ccagcacacg aatacacagt 1500 gtaacaggct gcattcccaa gacactggaa attttagatg ttagcaacaa caatctcaat 1560 ttattttctt tgaatttgcc gcaactcaaa gaactttata tttccagaaa taagttgatg 1620 actctaccag atgcctccct cttacccatg ttactagtat tgaaaatcag taggaatgca 1680 ataactacgt tttctaagga gcaacttgac tcatttcaca cactgaagac tttggaagct 1740 ggtggcaata acttcatttg ctcctgtgaa ttcctctcct tcactcagga gcagcaagca 1800 ctggccaaag tcttgattga ttggccagca aattacctgt gtgactctcc atcccatgtg 1860 cgtggccagc aggttcagga tgtccgcctc tcggtgtcgg aatgtcacag gacagcactg 1920 gtgtctggca tgtgctgtgc tctgttcctg ctgatcctgc tcacgggggt cctgtgccac 1980 cgtttccatg gcctgtggta tatgaaaatg atgtgggcct ggctccaggc caaaaggaag 2040 cccaggaaag ctcccagcag gaacatctgc tatgatgcat ttgtttctta cagtgagcgg 2100 gatgcctact gggtggagaa ccttatggtc caggagctgg agaacttcaa tccccccttc 2160 aagttgtgtc ttcataagcg ggacttcatt cctggcaagt ggatcattga caatatcatt 2220 gactccattg aaaagagcca caaaactgtc tttgtgcttt ctgaaaactt tgtgaagagt 2280 gagtggtgca agtatgaact ggacttctcc catttccgtc tttttgatga gaacaatgat 2340 getgecatte teattettet ggageceatt gagaaaaaag ceatteecea gegettetge 2400 aagctgcgga agataatgaa caccaagacc tacctggagt ggcccatgga cgaggctcag 2460 cgggaaggat tttgggtaaa tctgagagct gcgataaagt cctaggttcc catatttaag 2520 accagtettt gtetagttgg gatetttatg teactagtta tagttaagtt catteagaea 2580 2621 taattatata aaaactacgt ggatgtaccg tcatttgagg a

```
<210> .426
<211> 975
<212> DNA
<213> Homo sapiens
```

<220>
<221> misc_feature
<222> (792)..(793)

<223> n is a, c, g, t or u

<400> 426
ggattctgaa atagatatgg ctgtgctaga atgaaggaat ctagaaagga atgcccctgg 60
aagctcatct tgaagagagg atcttttca gcagatcagc aaaacgctgg ctcagcacct 120
ctgagttagc tcagtgaaag aaaaggctga cgcctgccag tgagctccgg aggcttcccc 180

tttctaacaa ggtcatttct tcaaataggg agttcccatt gtttcagagt cacttagatg 240 ttccaggcac taagacaggt ctctctctag ggtcttccca atttagccag cgtaaaaaca 300 atggtggaaa ggaaaaacct ggaaactttg cacagcccag agcctggtca tgggccacac 360 ccgctataag ggaagctgag acacatagct cctagctgag cagctacatg cccagaaaag 420 actcgtatta ccacgaaagc atgagcgcaa tctcactgga gctagtagcc tctgcaatgc 480 tgggtgggat aggcaggttg taagtgattt ttctggaagc tgtgaactct gtaaaaatgt 540 ttacttggat ggtcccagaa cttaaattag tatatggttc atgaggatcc ttccccaccc 600 ccagttctga atggaaactg ccacgaacaa gaatgtatct cttgaagatg gcagcctttg 660 ctgacagaac cacatgaaag gcaggaagga gatccggcac gctcccaccg ttacgctaac 720 gtcgcagtat ctcctaggtg aactgcattt gtttctcaga ttctttttag ttttctttt 780 catcttccct annaaaaata ttaataataa gattttggga cttgggaaga gagagagaga 840 gagagacccc cttctgtgtt tctgtgacaa cactttcaga gacaaaaaaa aaacgccctc 900 tggctttttc cttggatggg tgactgtctg cccaattatt cccttttaac ccacgaacat 960 975 agggggaaaa ggccc

<210> 427 <211> 632 <212> DNA

<213> Homo sapiens

<220>
<221> misc_feature
<222> (13)..(13)
<223> n is a, c, g, t or u

<400> 427 tggggatact gtngacaaag atacagtttt attaatgctg aattattaat atgaaaagcc 60 ttgćaatcaa attaggagag cgčttgataa aacaagccct cttcttgcga gtaatttgaa 120 agaataactg cttttcatta caatctcagc tcccagcagg tcctacataa accaagccag 180 ctgcggttca agaaaaggtc caaaggagga cccactcgag gtgaggataa atcacaattg 240 tgatcacaga ccaggtttct atctttttta ttccctttaa taaattgggc ttgacctgaa 300 actccaagaa agttaattta taacagccaa aataattttt tttacgtaac agcccacctt 360 tetttttett ttaaaettaa accattatga caaatggaga tttattacat accataaaca 420 480 catgtggctt gagcactggt atttagtctg gaaactcaga tggggcagta agctgctgct gcaatcagga aatgccatgt gacattcttg ataaagacga aacacacaca catttcacag 540 cacttattgt ggccacagtg gttttggcca ttgtgtgggc accacagtct cagtgcaggg 600

ctgggaagtg aaagacgatt caccagacca ag	632
<210> 428 <211> 816 <212> DNA <213> Homo sapiens	
<400> 428 atgcactttc tttgccaaag gcaaacgcag aacgtttcag agccatgagg atgcttctgc	60
atttgagttt gctagctctt ggagctgcct acgtgtatgc catccccaca gaaattccca	120
caagtgcatt ggtgaaagag accttggcac tgctttctac tcatcgaact ctgctgatag	180
ccaatgagac tctgaggatt cctgttcctg tacataaaaa tcaccaactg tgcactgaag	240
aaatetttea gggaatagge acaetggaga gteaaaetgt geaagggggt actgtggaaa	300
gactattcaa aaacttgtcc ttaataaaga aatacattga cggccaaaaa aaaaagtgtg	360
gagaagaaag acggagagta aaccaattcc tagactacct gcaagagttt cttggtgtaa	420
tgaacaccga gtggataata gaaagttgag actaaactgg tttgttgcag ccaaagattt	
tggaggagaa ggacatttta ctgcagtgag aatgagggcc aagaaagagt caggccttaa	a 540
ttttcagtat aatttaactt cagagggaaa gtaaatattt caggcatact gacactttg	600
cagaaagcat aaaattotta aaatatattt cagatatcag aatcattgaa gtattttoo	
ccaggcaaaa ttgatatact tttttcttat ttaacttaac	
acttaatagt atttatgaaa tggttaagaa tttggtaaat tagtatttat ttaatgtta	
gttgtgttct aataaaacaa aaatagacaa ctgttc	816
<210> 429 <211> 1273 <212> DNA <213> Homo sapiens	
<400> 429 caagatgggg cttcgcttcg cggggtagtg ttgggcccgc ggggcgcgg	g 60
gctcccgggc gcgcgtgccc ggggtctgct gtgcagcgcg cggcccgggc agctcccgc	
acggacacct caggcagtgg cettgtcgtc gaagtetggc etttecegag geeggaaag	
gatgetgtca gegetgggea tgetggegge agggggtgeg gggetggeeg tggetetge	
ttcggctgtg agtgccagtg acctggagct gcacccccc agctatccgt ggtctcacc	
tggcctcctc tcttccttgg accacaccag catccggagg ggtttccagg tatataagc	_
ggtgtgcgcc tcctgccaca gcatggactt cgtggcctac cgccacctgg tgggcgtgt	
ctacacggag gatgaagcta aggagctggc tgcggaggtg gaggttcaag acggcccca	

tgaagatggg gagatgttca	tgcggccagg	gaagctgttc	gactatttcc	caaaaccata	540
ccccaacagt gaggetgete	gagctgccaa	caacggagca	ttgccccctg	acctcagcta	600
catcgtgcga gctaggcatg	gtggtgagga	ctacgtcttc	tccctgctca	cgggctactg	660
cgagccaccc accggggtgt	cactgcggga	aggtctctac	ttcaacccct	actttcctgg	720
ccaggccatt gccatggccc	ctcccatcta	cacagatgtc	ttagagtttg	acgatggcac	780
cccagctacc atgtcccaga	tagcçaagga	tgtgtgcacc	ttcctgcgct	gggcatctga	840
gccagagcac gaccatcgaa					900
ggtgcccctg gtctacacca	taaagcggca	caagtggtca	gtcctgaaga	gtcggaagct	960
ggcatatcgg ccgcccaagt	gaccctgtcc	agtgtctgct	tgccatcctg	ccagaacagg	1020
ccctcaagcc caagagccat	cccaggcctg	ttcaggcctc	agctaagcct	ctcttcatct	1080
ggaagaagag gcaagggggc	aggagaccag	gctctagctc	tgggccctcc	ttcagccccc	1140
atcatgggaa taaattaatt	ttctcaatgt	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1200
aaaaaaaaaa aaaaaaaaaa					1260
aaaaaaaaa aaa					1273

<210> 430

<211> 5065

<212> DNA

<213> Homo sapiens

<400> 430 cgctcgatct tgggacccac cgctgccctc agctccgagt ccagggcgag tgcagagcac 60 agcgggcgga ggaccccggg cgcgggcgcg gacggcacgc ggggcatgaa cctggagggc 120 ggcggccgag gcggagagtt cggcatgagc gcggtgagct gcggcaacgg gaagctccgc 180 cagtggctga tcgaccagat cgacagcggc aagtaccccg ggctggtgtg ggagaacgag 240 gagaagagca tetteegcat cecetggaag cacgegggca ageaggacta caacegegag 300 gaggacgccg cgctcttcaa ggcttgggca ctgtttaaag gaaagttccg agaaggcatc 360 gacaagccgg acceteceae etggaagacg egeetgeggt gegetttgaa caagagcaat 420 gactttgagg aactggttga gcggagccag ctggacatct cagacccgta caaagtgtac 480 aggattgttc ctgagggagc caaaaaagga gccaagcagc tcaccctgga ggacccgcag 540 atgtccatga gccacccta caccatgaca acgccttacc cttcgctccc agcccagcag 600 gttcacaact acatgatgcc acccctcgac cgaagctgga gggactacgt cccggatcag 660 ccacaccegg aaatcccgta ccaatgtccc atgacgtttg gacceegegg ccaccactgg 720 caaggcccag cttgtgaaaa tggttgccag gtgacaggaa ccttttatgc ttgtgcccca 780

cctgagtccc	aggctcccgg	agtccccaca	gagccaagca	taaggtctgc	cgaagccttg	840
gcgttctcag	actgccggct	gcacatctgc	ctgtactacc	gggaaatcct	cgtgaaggag	900
ctgaccacgt	ccagccccga	gggctgccgg	atctcccatg	gacatacgta	tgacgccagc	960
aacctggacc	aggtcctgtt	cccctaccca	gaggacaatg	gccacaggaa	aaacattgag	1020
aacctgctga	gccacctgga	gaggggcgtg	gtcctctgga	tggcccccga	cgggctctat	1080
gcgaaaagac	tgtgccagag	cacgatctac	tgggacgggc	ccctggcgct	gtgcaacgac	1140
			tgcaagctct			1200
tcagagctgc	aagcgtttgc	tcaccacggc	cgctccctgc	caagattcca	ggtgactcta	1260
tgctttggag	aggagtttcc	agaccctcag	aggcaaagaa	agctcatcac	agctcacgta	1320
gaacctctgc	tagccagaca	actatattat	tttgctcaac	aaaacagtgg	acatttcctg	1380
aggggctacg	atttaccaga	acacatcagc	aatccagaag	attaccacag	atctatccgc	1440
cattcctcta	ttcaagaatg	aaaaatgtca	agatgagtgg	ttttctttt	ccttttttt	1500
					ggagtgcagt	1560
gacacaatct	cagctcactg	tgacctccgc	ctcctgggtt	caagagactc	tcctgcctca	1620
gcctccctgg	tagctgggat	tacaggtgtg	agccactgca	cccacccaag	acaagtgatt	1680
ttcattgtaa	. atatttgact	ttagtgaaag	cgtccaattg	actgccctct	tactgttttg	1740
aggaactcag	aagtggagat	ttcagttcag	cggttgagga	gaattgcggc	gagacaagca	1800
tggaaaatca	gtgacatctg	attggcagat	gagcttattt	: caaaaggaag	ggtggctttg	1860
cattttcttg	, tgttctgtag	actgccatca	ttgatgatca	ctgtgaaaat	tgaccaagtg	1920
atgtgtttac	: atttactgaa	atgegetett	: taațttgttg	, tagattaggt	cttgctggaa	1980
gacagagaaa	acttgccttt	cagtattgac	c actgactaga	a gtgatgacto	g cttgtaggta	2040
tgtctgtgc	: atttctcago	gaagtaagat	gtaaattgaa	a gaagcctcad	c acgtaaaaga	2100
aatgtattaa	tgtaťgťagg	g agctgcaġtt	cttgtggaag	g acacttgctg	g agtgaaggaa	2160
atgaatctt	gactgaagc	gtgcctgtag	g ccttggggag	g gcccatccc	cacctgccag	2220
cggtttcctg	g gtgtgggtc	ctatgadaa	a ccctccttc	c cattggctt	t ctctccttgg	2280
cctttcctg	g aagccagtt:	a gtaaacttc	c tattttctt	g agtcaaaaa	a catgagcgct	2340
actcttgga	t gggacattt	t tgtctgtcc	t acaatctag	t aatgtctaa	g taatggttaa	2400
gttttcttg	t ttctgcatc	t ttttgaccc	t cattcttta	g agatgctaa	a attcttcgca	2460
taaagaagaa	a gaaattaag	g aacataaat	c ttaatactt	g aactgttgc	c cttctgtcca	2520
agtacttaa	c tatctgttc	c cttcctctg	t gccacgctc	c tctgtttgt	t tggctgtcca	2580
gcgatcagc	c atggcgaca	c taaaggagg	a ggagccggg	g actcccagg	c tggagagcac	2640

ctttataaatta cttggctttt tocaaatget totattata gaaatoccaa agacetocaa 2820 ttgcttaagt atacetatca cttacatttt tgtggttttg agaaagtaca gcagtagact 2880 ggggcgtcac ctccaggccg tttctcatac tacaggatat ttactattac tocaaggatt 2940 attcattcaa caagcaccta gtaagtgcct getgatcce tacattacac agttcagcct 3000 attcattcaa caagcaccta gtaagtgcct getgatcce tacattacac agttcagcct 3000 ttatcaagct tagtgagcag tgagcactga aacattattt tttaatgttt aaaaagtttc 3120 taatattaaa gtcagaatat taatacaatt aatattaata ttacactacag aaaagaccaa 3180 cagtagagaa cagcaaaaaa ataaaaaagga tctccttttt tcccagcca aattcctcc 3240 tctaaaagtg tccacaaggaa ggggtgtta ttcttcaac acatttcact tttctgtaaa 3300 tatacataaa cttaaaaaga aaacccatg gagcacttg gagcacttt tccatgcagt 3360 gctctttgta gctaaacagt gaagatttac ctcgttctg tcagaggcct tgctgtggag 3420 ctccactgcc atgtacccag tagggtttga cattcatta gccatgaaca atggatatgt 3480 attgggcagc agactgttt tcgtgaactg cagtgatgat tacactctta agatgcaaag 3540 tattttgggg tatattatcc taagggaag aaaagatgat ataagaact gctgtttcac 3600 ggggccctta cctgtgaccc tctttgctga agaatattta accccacaca gcacttcaaa 3600 ggggccctta cctgtgaccc tcttgctga agaatattta accccacaca gcacttcaaa 3600 ggggccctta cctgtgaccc tcttgctga agaatattta accccacaca gcacttcaaa 3600 ggggccctta cctgtgaccc tcttgctga agaatattta accccacaca gcacttcaaa 3600 ggagccctta cttggtagct tctcaggagc accctgtctt cttaattctc caagcggatg 3720 ctccatttca attgctttgt gacttcttct tctttgttt tttaaatatt atgctgcttt 3780 acagtggaa ctagatttc tggaaaatgc tctttggtg gggcactac ctcctttcct 3840 atcttacat ctatgcttat gttgactttt taaaattctg agtgactcag gtatgaccc 3990 acggaatgaa ctagctatgg aaataacca gggttaggaa tcctagcact tgtctcagga 3900 ctctgaaaag gaacggcttc ctcattcctt gtcttgataa agtggaattg gcaaaccaga 3900 ctctgaaaag gaacagaat atgggctcc caagtgatga ttaatactc ctggaaccc 4000 atttagtttg tactcagtgg acagtgctgt tgaagattg aggaaccc tgcttttc 4100 attaggaacc agaggattag acggaaccc caagcagtaa ttaatactc ctggaaccc 4000 attaggaacc aagtgaccg ctcatttaca actgaaaccc aggaaccc tgagccct 4200 ataaaaagagac tgtgccatgg tgagaaaacag aaacccaaca aggaaccc taggtcttg 42	tgccaggacc caccactgga agcaggatgg agctgactac ggaactgcac actcagtggg	2700
ttgcttaagt atacctatca cttacatttt tgtggttttg agaaagtaca gcagtagact 2880 ggggcgtcac ctccaggcg tttctcatac tacaggatat ttactattac tcccaggatt 2940 cagcagaaga ttgcgttage tctcaaatgt gtgttcctgc ttttctaatg gatatttaa 3000 attcattcaa caagcaccta gtaagtgcct gctgtatcc tacattacac agttcagcct 3060 ttatcaagct tagtgagcag tgagcactga aacattattt tttaatgttt aaaaagttcc 3120 taatattaaa gtcagaatat taatacaatt aatattaata ttaactacag aaaagacaaa 3180 cagtagagaa cagcaaaaaa ataaaaagga tctccttttt tcccagccca aattctcctc 3240 ttataaaagg tccacaagaa ggggtgttta ttcttccaac acatttcact tttctgtaaa 3300 tatacataaa cttaaaaagga aaacctcatg gagtcatctt gcacacactt ttcatgcagt 3360 gctctttgta gctaaacag gaagatttac ctcgttctgc tcagaggcct tgctgtggag 3420 ctccactgcc atgtacccag tagggtttga catttcatta gccatgcaac atgggatagt 3480 attgggcagc agactgtgt tcgtgaactg cagtgatgta tacatctat agatgcaaag 3540 tattttgggg tatattatcc taagggaaga taaagatgat ataaagaact gccgtttcaa 3600 ggggccctta cctgtgacc tctttgctga agaatattta accccacaca gcacttcaaa 3660 gaagctgtct tggaagtcg tctcaggaaga acactggatga agaatattta accccacaca gcacttcaaa 3600 gaagctgtct tggaagtcg tctcaggagc accctgtctt cttaattcc caagcggatg 3720 ctccattca attgctttgt gacttcttc tctttgctga agaatattta accccacaca gcacttcaaa 3600 gaagctgtct tggaagtcg tctcaggaag ctcattctc tctttgctga gggccactac ctcctttcct 3840 accctattca attgcttgt gacttcttc tctttgtgtt tttaaatatt atgctgcttt 3780 accgggaatgaa ctaggtatgg aaatattc tggaaaatg tctcaggaag gggaatgaa ctcatggtat gtgaaatttc tggaaaatga tcctagcact tgctccagga 3900 agggaatgaa ctaggtatgg aaataacca gggttaggaa tcctagcact tgctccagga 3900 ctctgaaaag gaacggctc ctcattcctt gtcttgataa agtggaattg gcaaactaga 4020 atttagtttg tactcagtgg acagtgctgt tgaagattg aggaattgt taagtcttg 4140 tcttgaaaa gaagaacca aagtgaccg ccaattcaca acagcagaacca aagtgacca 4200 aattagtatt ttgaatatt aggaaaaccc caagcagtaa ttaatatcc ctggaacacc 4200 aaaaaaacaa gaagagcaca aagtgaccga ctcatttaca actgaaaccc aggaagccc tgagtcctga 4260 gggaaaaacaa aagtgaccga ctcatttaca actgaaaccc aggaagccc tgagtcctga 4260 gcgaaaacaa aagtgacaga cccatattaca accaacacca aggaagccc	ctgtttctgc ttatttcatc tgttctatgc ttcctcgtgc caattatagt ttgacagggc	2760
ggggggtcac ctccaggccg tttctcatac tacaggatat ttactattac tcccaggatt 2940 cagcagaaga ttgcgttagc tctcaaatgt gtgttcctgc ttttctaatg gatatttaa 3000 attcatcaa caagcaccta gtaagtgcct gctgtatccc tacattacac agttcagcct 3060 ttatcaagct tagtgagcag tgagcactga accattatt tttaatgttt aaaaagttcc tactataaa gtcagaatat taatacaatt aatattaata ttaactacag aaaagacaaa 3180 cagtagagaa cagcaaaaaa ataaaaagga tctcctttt tcccagccca aattctcctc 3240 tctaaaagtg tcccacaagaa ggggtgtta ttcttccaac acatttcact tttctgtaaa 3300 tatacataaa cttaaaaaga aaacctcatg gagtcatctt gcacacactt ttcatgcagt gctctttgta gctaaacagt gaagatttac ctcgttctgc tcagaggcct tgctgtggag 3420 ctccactgcc atgtacccag tagggtttga catttcatta gccatgcaac atggatatgt 3480 attgggcag agactgtgt tcgtgaactg cagtgatga tacactctat agatgcaaag 3540 tattttgggg tatattacc taagggaag accetgtgtt cgtgagaga accetgtct ctaggagcc tctaggagccttcaa 3600 gaagctgtct tggaagtctg tctcaggagc accetgct tctaggagcc tctcattcaa 3600 gaagctgtct tggaagtctg tctcaggagc accetgtctt cttaattcc caagggatg 3720 ctccattca attgcttgt gacttctct tctttgttt tttaaatatt atgctgcttt 3780 aacagtggag ctgaattttc tggaaaatgc ttcttggttg gggccactac ctcctttcct 3840 atctttacat ctatgtgtat gttgacttt taaaattctg agtgaccag ggtatgacct 3900 agggaatgaa ctagctatgg aaataactca gggttaggaa tcctagcact tgtctcagga 3960 ctctgaaaag gaacggcttc ctcattcctt gtcttgataa agtggaattg gcaaactaga 4020 attagtttg tactcagtgg acagtgctgt tgaagatttg aggacttgtt aaagagcact 4080 gggtcatatg gaaaaaaatg atgtgtctcc ccagtgcat tttcttggtt aaagaccac 4080 gggtcatatg gaaaaaaatg atgtgtctcc ccagtgcat tttcttggtt tagaccttt taagtcttg tatgtcttg 4140 tcttgagaat ttgtatattt aggaaaacc caagcagtaa ttaatatct ctggaacacc 4200 ataaggaacc aagtgacca ctcatttaca actgaaacc aaggagccc tgagtcctga 4260 gcgaaaacag gagagttagt cgccctacag aaaacccag ctcattcaa actgaaaccc aggaagccc tgagtcctga 4260 gcgaaaacag gagagttagt cgccctacag aaaacccagc tagactattg ggtatgaact 4200 ataaggaacca aagtgacca ctcatttaca actgaaaccc aaggaagccc tgagtcctga 4260 gcgaaaacag gagagttagt cgccctacag aaaacccagc tagactattg ggtatgaact 4260 gcgaaaacag gagagttagt cgccctacag aa	cttaaaatta cttggctttt tccaaatgct tctatttata gaaatcccaa agacctccac	2820
cagcagaaga ttgcgttagc tetecaaatgt gtgtteetge ttttetaatg gatatttaa 3000 atteatteaa caagcaccta gtaagtgeet getgtateee tacattacae agtteageet 3060 ttateaaget tagtgageag tgagcactga aacattattt tttaatgttt aaaaagttee 1200 taatattaaa gteagaatat taatacaatt aatataata ttaactacag aaaagacaaa 3180 cagtagagaa cagcaaaaaa ataaaaagga teteetttt teecageeca aatteteete 3240 tetaaaaagt teecacaagaa ggggtgtta teetecaac acattecaet tttetgtaaa 3300 tatacataaa ettaaaaagg aaaceteatg gagteatett gcacacactt tteatgeagt 3360 getetttga getaaacaag gaagatttae etegteetge teagaggeet tgetggagg 3420 etecaetgee atgtacecag tagggtttga cattecatta gecatgeaac atggatatgt 3480 attgggeage agactgtgt tegtgaaactg cagtgatga tacactetat agatgeaaag 3540 tattttgggg tatattace taagggaaga taaagatgat attaagaact getgtteac 3600 gagggeette teggaagtetg teetaggaga accetgtett ettaattee caageggatg 3720 etecattea attgettgt gactteetet tetttgttt tttaaatatt atgetgettt 3780 aacagtggg etgaatttee tggaaaatge teettggttg gggeeactae eteetteet 3840 atetttacat etatgtgtat gttgacttet tetttgttt ttaaaatatt atgetgettt 3780 aacagtggag etgaatttee tggaaaatge teettggetg gggeeactae eteettteet 3840 atetttacat etatgtgtat gttgacttet taaaattetg agtgatecag ggatatgaect 3900 agggaatgaa etagetatgg aaataactea gggttaggaa teetageact tgteteagga 3960 etetgaaaag gaacggette eteatteett gtettgataa agtggaattg geaaaataga 4020 atttagttg tacteagtg acagtgetg tgaagatttg aggacttgt aaagagact 4080 gggtcatatg gaaaaaaatg atggetee eeagggeat tteettggtt aagaattg geaaaactaga 4020 atttagttg tacteagtg acagtgetg tgaagatttg aggacttgt aaagagact 4080 gggtcatatg gaaaaaaatg atggetee eeagggeat tteettggtt tatgtettgt tatgtettg 4140 tettgagat ttgtatattt aggaaaacct caagcagtaa ttaatatee etggaacact 4200 atagagaacc aagtgaccga eteattaaa actgaaacce aaggageece tgagteetga 4260 gegaaaacag gagagttagt egecectacag aaaacccage tagactattg ggtatgaact 4200 atagagaacca aagtgacca etecattaca actgaaacca aggaageece tgagteetga 4260 gegaaaacag gagagttagt egecectacag aaaacccage tagactattg ggtatgaact 4200 atagagaaaca gagaggttagt egecectacag aaaacccage tagactattg ggtatgaact	ttgcttaagt atacctatca cttacatttt tgtggttttg agaaagtaca gcagtagact	2880
ttatcaagct tagtgagcag tgagcactg acactatatt tttaatgtt aaaaagttc taatataaa gtcagaatat taatacaatt aatattaata ttaactacag aaaagacaaa 3180 cagtagagaa cagcaaaaaa ataaaaagga tctccttttt tcccagccca aattctcctc 3240 tctaaaagtg tccacaagaa ggggtgttta ttcttcaac acatttcact tttctgtaaa 3300 tatacataaa cttaaaaaga aaacctcatg gagtcatctt gcacacactt ttcatgaag 3360 gctctttgta gctaaacagt gaagatttac ctcgttctge tcagaggcct tgctgtggag 3420 ctccactgcc atgtacccag tagggtttga catttcatta gccatgcaac atggatatgt 3480 attgggcagc agactgtgtt tcgtgaactg cagtgatgat tacatcttat agatgcaaag 3540 tattttgggg tatattatcc taagggaaga taaagatgat ataagaact gctgtttcac 3600 ggggccctta cctgtgaccc tctttgctga agaatatta acccacaca gcacttcaaa 3660 gaagctgtct tggaagtctg tctcaggagc accctgtctt cttaattctc caagcggatg 3720 ctccattca attgctttg gacttcttct tctttggtt tttaaatatt atgctgcttt 3780 aacagtggag ctgaattttc tggaaaatgc ttcttggtg gggccactac ctcctttcct 3840 atctttacat ctatgtgtat gttgactttt taaaattctg agtgatccag ggtatgacct 3900 agggaatgaa ctagctatgg aaataactca gggttaggaa tcctagcact tgtctcagga 3900 ctctgaaaag gaacggcttc ctcattcctt gtcttgataa agtggaattg gcaaactaga 4020 atttagtttg tactcagtgg acagtgctg tgaagattg aggacttgt taagaact 4080 gggtcatatg gaaaaaatg atgtgtccc ccagtgcat tttcttggtt tatgtcttgt 4140 tcttgagatt ttgtatattt aggaaaaccc caagcagtaa ttaatatcc ctggaccacc 4200 atagggaacc aagtgaccga ctcatttaca actgaaaccc aggaagccc tgagtcctga 4260 gcgaaaacag gagagttag cgccctacaa accagcagtaa ttaatatcc ctggaacacc 4200 accgaaaacca aggagacca ctcatttaca actgaaaccc aggaagccc tgagtcctga 4260 gcgaaaacag gagagttag cgccctacaa accgaaccc aggaaccc tgagtcctga 4260 gcgaaaacag gagagttag cgccctacaa accgaaccc aggaaccc tgagtcctga 4260 gcgaaaacag gagagttag cgccctacaa accgaaccc aggaaccc tgagtcctga 4260 gcgaaaacag gagagttag cgccctacaa accgaaccc aggaaccca accgaaccc tgagtcctga 4260	ggggcgtcac ctccaggccg tttctcatac tacaggatat ttactattac tcccaggatt	2940
ttatcaagct tagtgagcag tgagcactga aacattattt tttaatgttt aaaaagtttc taatattaaa gtcagaatat taatacaatt aatattaata ttaactacag aaaagcaaaa 3180 cagtagagaa cagcaaaaaa ataaaaaagga teteetttt teecagceca aatteteett teetaaaaggg teecacaagaa ggggtgttta ttetteeaae acattteaet tttetgtaaa 3300 tatacataaa ettaaaaaga aaacetcatg gagteatett geacacactt tteatgeagt 3360 getetttgta getaaacagt gaagatttae etegttetge teagaggeet tgetgtggag 3420 etecactgee atgtacecag tagggtttga cattteatta gecatgeaae atggatatgt 3480 attgggcage agactgtgtt tegtgaactg cagtgatgta tacatettat agatgeaaag 3540 tattttgggg tatattatee taagggaaga taaagatgat attaagaact getgtteae 3600 ggagceetta eetgtgacee tetttgetga agaatattta accecacaca geactteaaa 3660 gaagetgtet tggaagtetg teteaggage accetgtet ettaattee caageggatg 3720 etecatttea attgetttgt gacttettet tetttgttt tttaaatatt atgetgettt 3780 aacagtggag etgaatttte tggaaaatge ttettggetg gggecactae eteetteet 3840 atetttacat etatgetgtat gtegacttt taaaattetg agtgatecag ggtatgacet 3900 agggaatgaa etagetatgg aaataactea gggttaggaa teetagcact tgteteagga 3960 etetgaaaag gaacggette eteatteett gtettgataa agtggaattg geaaactaga 4020 atttagtttg tactcagtgg acagtgetg tgaagatttg aggacttgt aaagagcact 4080 gggtcatatg gaaaaaatg atgtgtetee ecagtgeat tttettggtt tatgtettgt 4140 tettgagatt ttgtatattt aggaaaacc caageagtaa ttaatatete etggaacact 4200 atagagaace aagtgacega eteatttaca actgaaacet aggaagece tgagteetga 4260 gegaaaacag gaaggttagt egecetacag aaaacccage tagacettatg ggtatgacet 4200 atagagaace aagtgacega eteatttaca actgaaacet aggaagecee tgagteetga 4260 gegaaaacag gagagttagt egecetacag aaaacccage tagacetatg ggtatgacet 4200 atagagaace aagtgacega eteatttaca actgaaacet aggaagecee tgagteetga 4260 gegaaaacag gagagttagt egecetacag aaaacccage tagaccattg ggtatgacet 4200	cagcagaaga ttgcgttagc tctcaaatgt gtgttcctgc ttttctaatg gatattttaa	3000
cagtagagaa cagcaaaaaa ataaaaagga teteetttt teecagecca aatteteete 3240 tetaaaaggg teecacaagaa ggggtgttta ttetteeaa acatteeaet tttetgtaaa 3300 tatacataaa ettaaaaaga aaaceteatg gagteatett geacacaett tteatgeagt 3360 getetttgta getaaacagt gaagatttae etegtteetge teagaggeet tgetgtggag 3420 etecacatgee atgtacecag tagggtttga catteatta gecatgeaac atggatatgt 3480 attggggaag agactgtgt tegtgaacet caggagtat ateaatetta agatgeaaag 3540 tattttgggg tatattatee taagggaaga taaagatgat attaagaact getgtteea 3600 gaagetgtet tegtgaace tetttgetga agaatatta accecacaa geaetteaaa 3600 gaagetgtet teggaagetg teeteaggage accetgtet ettaattee caageggatg 3720 etceattea attgettgt gactteetet tetttgette tettaattee caageggatg 3780 etceatteea attgettetg gactteetet tetttgette tettaattee caageggatg 3780 aacagtggag etgaattte teggaaaatge teeteggegggeeatae eteetteet 3880 etcettaaat attgetgett gaagaatgaa etagetatga gtgaacet ggggeeatae eteetteet 3890 etcetgaaaag gaagggaatgaa etagetatga aaataactea gggttaggaa teetageact tgteteagga 3960 etcetgaaaag gaacggette eteatteett gtettgataa agtggaattg geaaactaga 4020 atttagttg tacteagtg acagtgetgt tgaagatttg aggacttgt aaagagacet 4080 gggtcatatg gaaaaaaatg atgtgtetee ecaggtgaa ttetettggtt tatgtettgt tatgtettgt tettgagatt ttgaagattt aggaacttgt tatgtettgt 4140 tettgagatt ttgtatattt aggaaaacet caageagtaa ttaatatee etggaacet 4200 ataggagaace aagtgacea etcatttaca actgaaacet aggaagecee tgagteetga 4260 gegaaaacag gaaggttagt egeecacacag aaaaccag tagaacet aggaagecee tgagteetga 4260 gegaaaacag gaaggttagt egeecacacag aaaaccag etcatttaca actgaaacet aggaagecee tgagteetga 4260 gegaaaacag gaaggttagt egeecacacag aaaaccag etcatttaca actgaaacct aggaagecee tgagteetga 4260 gegaaaacag gaaggttagt egeecacacag aaaaccag etcatttaca actgaaacct aggaagecee tgagteetga 4260 gegaaaacag gaaggttagt egeecacacag aaaaccag aaaaccag aaaaccag etcatttaca actgaaacca aggaagecee tgagteetga 4260 gegaaaacag gagagttagt egeecacaca actgaaacca aaggaagecee tgagteetga 4260 gegaaaacag gagaggttag egeecacaca actgaaacca aaggaagecee tgagteetga 4260 gegaaaacag gagaggttag egeecac	attcattcaa caagcaccta gtaagtgcct gctgtatccc tacattacac agttcagcct	3060
cagtagagaa cagcaaaaaa ataaaaagga totoottttt toccagcoca aattotooto 3240 totaaaagtg toccacaagaa ggggtgttta ttottecaac acatttcact tttotgtaaa 3300 tatacataaa cttaaaaaga aaacctcatg gagtcatott gcacacactt ttotgtaaa 3360 gctotttgta gctaaacagt gaagatttac otogttotge toagaggoot tgotgtggag 3420 otocactgoc atgtacocag tagggtttga cattteatta gccatgoaac atggatatgt 3480 attgggcagc agactgtgt togtgaactg cagtgatga tacacttat agatgoaaag 3540 tattttgggg tatattatoc taagggaaga taaagatgat attaagaact gctgtttcac 3600 ggggocotta octgtgacoc totttgotga agaatatta accocacaca gcacttcaaa 3660 gaagotgtot tggaagotg totoaggaga accotgtot ottaattot caagoggatg 3720 otocattca attgottgt gacttottot totttgttt titaaatatt atgotgottt 3780 aacagtggag otgaatttic tggaaaatgc ttottggcig gggccactac otcotttoot 3840 atottacat otatggtat gttgacttit taaaattotg agtgatocag ggtatgacoc 3900 agggaatgaa ctagotatgg aaataactca gggttaggaa toctagoact tgtctcagga 3900 otocattacat ctatgtgtat gttgacttit taaaattotg agtgatocag ggtatgacoc 3900 agggaatgaa ctagotatgg acagtgotg tgaagattg gcaaactaga 4020 atttagtitg tactcagtgg acagtgotg tgaagattg aggaattg gcaaactaga 4020 atttagtitg tactcagtgg acagtgotg tgaagattg aggacttgt tatgtottgt tatgtattg tatgaaaacct caagcagtaa ttatatoc octggaacact 4200 atagagaac aagtgacoga occattacaa actgaaacct aggaagcoc tgagtcotga 4260 gcgaaaacag ggaggttagt cgccctacag aaaacccag bagactattg ggtatgaact 4200 atagagaaca aagtgacoga occatacaa actgaaaccc aggaagcoc tgagtcotga 4260 gcgaaaacag ggaggttagt cgccctacag aaaacccag bagactattg ggtatgaacc 4200 atagagaaca aagtgacoga occatttaca actgaaaccc aggaagcoc tgagtcotga 4260 gcgaaaacag ggaggttagt cgccctacag aaaacccag bagactattg ggtatgaacc	ttatcaagct tagtgagcag tgagcactga aacattattt tttaatgttt aaaaagtttc	3120
tetaaaagtg tecacaagaa ggggtgttta teettecaac acattecact tetetgtaaa 3300 tatacataaa ettaaaaaga aaaceteatg gagteatett geacacactt teettgeagt 3360 getetttgta getaaacagt gaagatttae etegttetge teagaggeet tgetgtggag 3420 etecactgee atgtacecag tagggtttga cattecatta gecatgeaac atggatatgt 3480 attgggcage agactgtgt tegtggaactg eagtgatgta tacatettat agatgeaaag 3540 tattettgggg tatattatee taagggaaga taaagatgat attaagaact getgtteac 3600 gaagetgtet tggaagtet tettgetga agaatatta accecacaca geactteaaa 3660 gaagetgtet tggaagtetg teetaaggag accetgtett ettaattete eaageggatg 3720 etecattee attgettgt gacttetet tetttgttt tetaaatatt atgetgett 3780 aacagtggag etgaatttte tggaaaatge teettggetg gggecactae eteetteet 3840 atettacat etatgtgtat gttgacttt taaaattetg agtgatecag ggtatgacet 3900 agggaatgaa etagetatgg aaataactea gggttaggaa teetageact tgteteagga 3960 etetgaaaag gaacggette eteatteett gtettgataa agtggaateg geaaactaga 4020 atttagttt tacteagtgg acagtgetgt tgaagattg aggaettgt aaagageact 4080 gggtcatatg gaaaaaaatgt atgtgteee eeaggtgeat tetettggtt tatgtettgt tatgtettgt 4140 teetgagatt ttgtatattt aggaaaacet eaageagtaa ttaatatee etggaacact 4200 atagagaace aagtgaceg eteattaca actgaaacet aggaageece tgagteetga 4260 geggaaaacag gagagttag egecetacaa actgaaacet aggaageece tgagteetga 4260 geggaaaacag gagagttag egecetacaa actgaaacet aggaageece tgagteetga 4260 geggaaaacag gagagttag egecetacaa actgaaacet aggaageece tgagteetga 4260 geggaaaacag gagagttag egecetacaa actgaaacet aggaageece tgagteetga 4260 geggaaaacag gagagttag egecetacaa actgaaacet aggaageece tgagteetga 4260 geggaaaacag gagagttag egecetacaa actgaaacee taggaageece tgagteetga 4260 geggaaaacag gagagttag egecetacaag aaaacecag tagaacace taggaageece tgagteetga 4260 geggaaaacag gagagttag egecetacaag aaaacecag tagaacace taggaageece tgagteetga 4260 geggaaaacag gagagttag egecetacaag aaaacecag tagaacace taggaageece tagagteetga 4260	taatattaaa gtcagaatat taatacaatt aatattaata ttaactacag aaaagacaaa	3180 .
getetttgta getaaacagt gaagatttae etegttetge teagaggeet tgetgggag 3420 etecactgee atgtacecag tagggtttga cattreatta gecatgeaac atggatatgt 3480 attgggcage agactgtgtt tegtggaactg eagtgatgta tacatettat agatgeaaag 3540 tatttttgggg tatattatee taagggaaga taaagatgat attaagaact getgttteae 3600 gaagetgtet tegtgaacee tetttgetga agaatattta acceeaacaa geaetteaaa 3660 gaagetgtet tggaagtetg tetteaggage accetgtett ettaattee caageggatg 3720 etecatteea attgetttgt gaettette tetttgettt tttaaatatt atgetgett 3780 aacagtggag etgaatttee tggaaaatge tteettggetg gggeeactae eteettteet 3840 atetttaeat etatgetgtat getgaettet taaaattetg agtgateeag ggtatgaeet 3900 agggaatgaa etagetgga acagtgetg tettagatag gggtaagae tetetgaeag gggtatgaeet 3960 etettgaaaag gaacggette eteatteett gtettgataa agtggaattg geaaactaga 4020 atttagttg tacteagtgg acagtgetgt tgaagatttg aggaettgt aaagageet 4080 gggteatatg gaaaaaatgt atggtetee eeaggtgeat tttettggtt tattettggtt tattgettgt 4140 tettgagatt ttgtatattt aggaaaacet eaageagtaa ttaatatete etggaacact 4260 geggaaaacaag gaaggttagt eeecetaacag aaaacceag tagaaccee tggateetga 4260 geggaaaacaag gaaggttagt egeectaacag aaaacceag tagaaccee tggateetga 4260 geggaaaacaag gaaggttagt egeectacag aaaaacceag tagaaccee tagaaccee tggateetga 4260	cagtagagaa cagcaaaaaa ataaaaagga tctccttttt tcccagccca aattctcctc	3240
gctctttgta gctaaacagt gaagatttac ctcgttctgc tcagaggcct tgctgtggag 3420 ctccactgcc atgtacccag tagggtttga catttcatta gccatgcaac atggatatgt 3480 attgggcagc agactgtgtt tcgtgaactg cagtgatgta tacatcttat agatgcaaag 3540 tatttttgggg tatattatcc taagggaaga taaagatgat attaagaact gctgtttcac 3600 ggggccctta cctgtgaccc tctttgctga agaatattta accccacaca gcacttcaaa 3660 gaagctgtct tggaagtctg tctcaggagc accctgtctt cttaattctc caagcggatg 3720 ctccatttca attgctttgt gacttcttct tctttgttt tttaaatatt atgctgcttt 3780 aacagtggag ctgaattttc tggaaaatgc ttcttggctg gggccactac ctcctttcct 3840 atctttacat ctatgtgtat gttgacttt taaaattctg agtgatccag ggtatgacct 3900 agggaatgaa ctagctatgg aaataactca gggttaggaa tcctagcact tgtctcagga 3960 ctctgaaaag gaacggcttc ctcattcctt gtcttgataa agtggaattg gcaaactaga 4020 atttagttt tactcagtgg acagtgctgt tgaagatttg aggacttgtt aaagagcact 4080 gggtcatatg gaaaaaatgt atgtgctcc ccaggtgcat tttcttggtt tatgtcttgt 4140 tcttgagat ttgtatattt aggaaaacct caagcagtaa ttaatatctc ctggaacact 4200 atagagaacc aagtgaccg ctcatttaca accgaacct aggaagcccc tggatcctga 4260 gcgaaaacaag gagagttagt cgccctacag aaaacccag tagacctattg ggtatgaact 4320	tctaaaagtg tccacaagaa ggggtgttta ttcttccaac acatttcact tttctgtaaa	3300
attgggcage agactgtgtt tegtgaactg cagtgatgta tacatettat agatgcaaaag 3540 tattttgggg tatattatee taagggaaga taaagatgat attaagaact getgttteae 3600 ggggceetta eetgtgacee tetttgetga agaatattta acceeacaaa geaetteaaa 3660 gaagetgtet tggaagtetg teteaggage accetgtett ettaattee eaageggatg 3720 etceatttea attgetttgt gaetteette tetttgettt tttaaatatt atgetgettt 3780 aacagtggag etgaattte tggaaaatge ttettggetg gggecaetae etcetteet 3840 atetttacat etatgtgtat gttgaettt taaaattetg agtgateeag ggtatgaeet 3900 agggaatgaa etagetatgg aaataactea gggttaggaa teetageaet tgtetcagga 3960 etetgaaaag gaacggette etcatteett gtettgataa agtggaattg geaaactaga 4020 atttagtttg taeteagtgg acagtgetgt tgaagatttg aggaettgt tatgtettgt 4140 tettgagatt ttgtatattt aggaaaaeet eaageagtaa ttaatatete etggaacaet 4200 atagggaace aagtgaeega etcatttaca aetgaaaeet aggaageeee tgagteetga 4260 gegaaaacag gagagttagt egeectacag aaaaceege tagaetattg ggtatgaact 4320	tatacataaa cttaaaaaga aaacctcatg gagtcatctt gcacacactt ttcatgcagt	3360
attgggcage agactgtgtt tegtgaactg cagtgatgta tacatettat agatgcaaag 3540 tattttgggg tatattatee taagggaaga taaagatgat attaagaact getgttteae 3600 ggggceetta eetgtgacee tetttgetga agaatattta acceacaca geactteaaa 3660 gaagetgtet tggaagtetg teteaggage accetgtett ettaattete caageggatg 3720 etceatttea attgettgt gaettettet tetttgttt tttaaatatt atgetgettt 3780 aacagtggag etgaattte tggaaaatge ttettggetg gggceactae etcetteet 3840 atetttacat etatgtgtat gttgaettt taaaattetg agtgatecag ggtatgaeet 3900 agggaatgaa etagetatgg aaataactea gggttaggaa teetageaet tgteteagga 3960 etctgaaaag gaacggette etcatteett gtettgataa agtggaattg geaaactaga 4020 attagttt taeteeggg acagtgetg tgaagattg aggaettgt aaagageaet 4080 gggteatatg gaaaaaatgt atgtgtetee eeaggtgeat tttettggtt tatgtettgt 4140 tettgagatt ttgtatattt aggaaaacet eaggagaacet aggaageee tgagteetga 4260 gegaaaacag gaaggttagt etcatttaca actgaaacet aggaageee tgagteetga 4260 gegaaaacag gaaggttagt eccetacag aaaacccage tagactattg ggtatgaact 4260 gegaaaacag gaaggttagt eccetacag aaaacccage tagactattg ggtatgaact 4320	gctctttgta gctaaacagt gaagatttac ctcgttctgc tcagaggcct tgctgtggag	3420
tattttgggg tatattatec taagggaaga taaagatgat attaagaact getgttteac 3600 ggggceetta cetggaece tetttgetga agaatatta accecacaca geactteaaa 3660 gaagetgtet tggaagtetg teteaggage accetgtett ettaattete caageggatg 3720 etceattea attgettgt gaetteette tetttgettt tettaaatatt atgetgettt 3780 aacagtggag etgaatttte tggaaaatge teettggetg gggceactac etcettteet 3840 atettacat etatggtat gttgaettt taaaattetg agtgatecag ggtatgaect 3900 agggaatgaa etagetatgg aaataactea gggttaggaa teetageact tgteteagga 3960 etctgaaaag gaacggette etcatteett gtettgataa agtggaattg geaaactaga 4020 atttagttg tactcagtgg acagtgetgt tgaagatttg aggaettgt aaagageact 4080 gggtcatatg gaaaaaatg atgtgetee ecaggtgeat tttettggtt tatgetetgt 4140 teettgagat ttgatattt aggaaaacct caageagtaa ttaatatete etggaacact 4200 atagagaace aagtgaecga etcatttaca actgaaacet aggaagecee tgagteetga 4260 gegaaaacag gagagttagt egeectacag aaaacccage tagaetattg ggtatgaact 4320	ctccactgcc atgtacccag tagggtttga catttcatta gccatgcaac atggatatgt	3480
ggggccctta cctgtgacce tetttgctga agaatattta accccacaa gcacttcaaa 3660 gaagctgtct tggaagtctg tetcaggagc accetgtctt ettaattete caagcggatg 3720 etccatttca attgettgt gacttettet tetttgttt tttaaatatt atgetgettt 3780 aacagtggag etgaattte tggaaaatge teettggetg gggccactac etcettteet 3840 atctttacat etatgtgat gttgactttt taaaattetg agtgatecag ggtatgacet 3900 agggaatgaa etagetatgg aaataactea gggttaggaa teetagcaet tgteteagga 3960 etctgaaaag gaacggette etcatteett gtettgataa agtggaattg gcaaactaga 4020 atttagtttg taetcagtgg acagtgetgt tgaagatttg aggacttgtt aaaagagcaet 4080 gggtcatatg gaaaaaatgt atgtgtetee ecaggtgeat tttettggtt tatgtettgt 4140 teettgagat ttgtatattt aggaaaacet caagcagtaa ttaatatete etggaacaet 4200 atagagaace aagtgacega etcatttaca actgaaacet aggaagecee tgagteetga 4260 gegaaaacag gagagttagt egecetacag aaaacccage tagactattg ggtatgaact 4320	attgggcagc agactgtgtt tcgtgaactg cagtgatgta tacatcttat agatgcaaag	3540
gaagctgtet tggaagtetg teteaggage accetgtett ettaattete caageggatg 3720 etecattea attgetttgt gacttettet tetttgttt tttaaatatt atgetgettt 3780 aacagtggag etgaatttte tggaaaatge ttettggetg gggeeactae eteettteet 3840 atetttacat etatgtgtat gttgacttt taaaattetg agtgatecag ggtatgacet 3900 agggaatgaa etagetatgg aaataactea gggttaggaa teetageact tgteteagga 3960 etetgaaaag gaaeggette eteatteett gtettgataa agtggaattg geaaactaga 4020 atttagtttg taeteagtgg acagtgetgt tgaagatttg aggaettgt aaagageact 4080 gggteatatg gaaaaaatgt atgtgtetee eeaggtgeat tttettggtt tatgtettgt 4140 tettgagatt ttgtatattt aggaaaacet caagcagtaa ttaatatete etggaacact 4200 atagagaace aagtgaeega eteatttaca actgaaacet aggaageece tgagteetga 4260 gegaaaacag gagagttagt egeectacag aaaacecage tagaetattg ggtatgaact 4320	tattttgggg tatattatcc taagggaaga taaagatgat attaagaact gctgtttcac	3600
accagtggag ctgaattttc tggaaaatge ttettggetg gggccactac etecttteet 3840 atetttacat ctatgtgtat gttgacttt taaaattetg agtgatecag ggtatgacet 3900 agggaatgaa ctagetatgg aaataactea gggttaggaa teetageaet tgteteagga 3960 etetgaaaag gaacggette eteatteett gtettgataa agtggaattg geaaactaga 4020 atttagtttg taeteagtgg acagtgetgt tgaagatttg aggaettgtt aaagageaet 4080 gggtcatatg gaaaaaatgt atgtgtetee ecaggtgeat tttettggtt tatgtettgt 4140 tettgagatt ttgtatatt aggaaaacet caagcagtaa ttaatatete etggaacaet 4200 atagagaace aagtgacega eteatttaca actgaaacet aggaageee tgagteetga 4260 gegaaaacag gagagttagt egeectacag aaaacecage tagaetattg ggtatgaact 4320	ggggccctta cctgtgaccc tctttgctga agaatattta accccacaca gcacttcaaa	3660
aacagtggag ctgaatttte tggaaaatge ttettggetg gggecactae eteetteet 3840 atetttacat ctatgtgtat gttgacttt taaaattetg agtgatecag ggtatgacet 3900 agggaatgaa ctagetatgg aaataactea gggttaggaa teetageaet tgteteagga 3960 etetgaaaag gaacggette eteatteett gtettgataa agtggaattg geaaactaga 4020 atttagtttg taeteagtgg acagtgetgt tgaagatttg aggaettgtt aaagageaet 4080 gggteatatg gaaaaaatgt atgtgtetee eeaggtgeat tttettggtt tatgtettgt 4140 tettgagatt ttgtatattt aggaaaacet caageagtaa ttaatatete etggaacaet 4200 atagagaace aagtgacega eteatttaca aetgaaacet aggaageeee tgagteetga 4260 gegaaaacag gagagttagt egeectacag aaaacecage tagaetattg ggtatgaact 4320	gaagetgtet tggaagtetg teteaggage accetgtett ettaattete caageggatg	3720
atetttacat ctatgtgtat gttgactttt taaaattctg agtgatccag ggtatgacct 3900 agggaatgaa ctagctatgg aaataactca gggttaggaa tcctagcact tgtctcagga 3960 ctctgaaaag gaacggcttc ctcattcctt gtcttgataa agtggaattg gcaaactaga 4020 atttagtttg tactcagtgg acagtgctgt tgaagatttg aggacttgtt aaagagcact 4080 gggtcatatg gaaaaaatgt atgtgtctcc ccaggtgcat tttcttggtt tatgtcttgt 4140 tcttgagatt ttgtatattt aggaaaacct caagcagtaa ttaatatctc ctggaacact 4200 atagagaacc aagtgaccga ctcatttaca actgaaacct aggaagcccc tgagtcctga 4260 gcgaaaacag gagagttagt cgccctacag aaaacccagc tagactattg ggtatgaact 4320	ctccatttca attgctttgt gacttcttct tctttgtttt tttaaatatt atgctgcttt	3780
agggaatgaa ctagctatgg aaataactca gggttaggaa tcctagcact tgtctcagga 3960 ctctgaaaag gaacggctte ctcattcctt gtcttgataa agtggaattg gcaaactaga 4020 atttagtttg tactcagtgg acagtgctgt tgaagatttg aggacttgtt aaagagcact 4080 gggtcatatg gaaaaaatgt atgtgtctee ccaggtgcat tttcttggtt tatgtcttgt 4140 tcttgagatt ttgtatattt aggaaaacct caagcagtaa ttaatatcte ctggaacact 4200 atagagaacc aagtgaccga ctcatttaca actgaaacct aggaagccce tgagtcctga 4260 gcgaaaacag gagagttagt cgccctacag aaaacccage tagactattg ggtatgaact 4320	aacagtggag ctgaattttc tggaaaatgc ttcttggctg gggccactac ctcctttcct	3840
ctctgaaaag gaacggcttc ctcattcctt gtcttgataa agtggaattg gcaaactaga 4020 atttagtttg tactcagtgg acagtgctgt tgaagatttg aggacttgtt aaagagcact 4080 gggtcatatg gaaaaaatgt atgtgtctcc ccaggtgcat tttcttggtt tatgtcttgt 4140 tcttgagatt ttgtatattt aggaaaacct caagcagtaa ttaatatctc ctggaacact 4200 atagagaacc aagtgaccga ctcatttaca actgaaacct aggaagcccc tgagtcctga 4260 gcgaaaacag gagagttagt cgccctacag aaaacccagc tagactattg ggtatgaact 4320	atetttaeat etatgtgtat gttgaetttt taaaattetg agtgateeag ggtatgaeet	3900
atttagtttg tactcagtgg acagtgctgt tgaagatttg aggacttgtt aaagagcact 4080 gggtcatatg gaaaaaatgt atgtgtctcc ccaggtgcat tttcttggtt tatgtcttgt 4140 tcttgagatt ttgtatattt aggaaaacct caagcagtaa ttaatatctc ctggaacact 4200 atagagaacc aagtgaccga ctcatttaca actgaaacct aggaagcccc tgagtcctga 4260 gcgaaaacag gagagttagt cgccctacag aaaacccagc tagactattg ggtatgaact 4320	agggaatgaa ctagctatgg aaataactca gggttaggaa tcctagcact tgtctcagga	3960
gggtcatatg gaaaaaatgt atgtgtctcc ccaggtgcat tttcttggtt tatgtcttgt 4140 tcttgagatt ttgtatattt aggaaaacct caagcagtaa ttaatatctc ctggaacact 4200 atagagaacc aagtgaccga ctcatttaca actgaaacct aggaagcccc tgagtcctga 4260 gcgaaaacag gagagttagt cgccctacag aaaacccagc tagactattg ggtatgaact 4320	ctctgaaaag gaacggcttc ctcattcctt gtcttgataa agtggaattg gcaaactaga	4020
tcttgagatt ttgtatattt aggaaaacct caagcagtaa ttaatatctc ctggaacact 4200 atagagaacc aagtgaccga ctcatttaca actgaaacct aggaagcccc tgagtcctga 4260 gcgaaaacag gagagttagt cgccctacag aaaacccagc tagactattg ggtatgaact 4320	atttagtttg tactcagtgg acagtgctgt tgaagatttg aggacttgtt aaagagcact	4080
atagagaacc aagtgaccga ctcatttaca actgaaacct aggaagcccc tgagtcctga 4260 gcgaaaacag gagagttagt cgccctacag aaaacccagc tagactattg ggtatgaact 4320	gggtcatatg gaaaaaatgt atgtgtctcc ccaggtgcat tttcttggtt tatgtcttgt	4140
gcgaaaacag gagagttagt cgccctacag aaaacccagc tagactattg ggtatgaact 4320	tcttgagatt ttgtatattt aggaaaacct caagcagtaa ttaatatctc ctggaacact	4200
	atagagaacc aagtgaccga ctcatttaca actgaaacct aggaagcccc tgagtcctga	4260
aaaaagagac tgtgccatgg tgagaaaaat gtaaaatcct acagtggaat gagcagccct 4380	gcgaaaacag gagagttagt cgccctacag aaaacccagc tagactattg ggtatgaact	4320
	aaaaagagac tgtgccatgg tgagaaaaat gtaaaatcct acagtggaat gagcagccct	4380
tacagtgttg ttaccaccaa gggcaggtag gtattagtgt ttgaaaaagc tggtctttga 4440	tacagtgttg ttaccaccaa gggcaggtag gtattagtgt ttgaaaaagc tggtctttga	4440

gcgagggcat	aaatacagct	agccccaggg	gtggaacaac	tgtgggagtc	ttgggtactc	4500
gcacctcttg	gctttgttga	tgctccgcca	ggaaggccac	ttgtgtgtgc	gtgtcagtta	4560
cttttttagt	aacaattcag	atccagtgta	aacttccgtt	cattgctctc	cagtcacatg	4620
ccccacttc	cccacaggtg	aaagttttc	tgaagtgttg	ggattggtta	aggtctttat	4680
ttgtattacg	tatctcccca	agtcctctgt	ggccagctgc	atctgtctga	atggtgcgtg	4740
aaggctctca	gaccttacac	accattttgt	aagttatgtt	ttacatgccc	cgtttttgag	4800
actgatctcg	atgcaggtgg	atctccttga	gatcctgata	gcctgttaca	ggaatgaagt	4860
aaaggtcagt	tttttttgta	ttgattttca	cagctttgag	gaacatgcat	aagaaatgta	4920
gctgaagtag	aggggacgtg	agagaagggc	caggccggca	ggccaaccct	cctccaatgg	4980
aaattcccgt	gttgcttcaa	actgagacag	atgggactta	acaggcaatg	gggtccactt	5040
cccctcttc	agcatcccc	gtacc				5065

<210> 431

<400> 431 gecacagtge teeggatest ceaatetteg etectecaat etecgeteet ceacceagtt 60 caggaacceg cgaccgctcg cagcgctctc ttgaccacta tgagcctcct gtccagccgc 120 geggeeegtg teeceggtee ttegagetee ttgtgegege tgttggtget getgetgetg 180 ctgacgcagc cagggcccat cgccagcgct ggtcctgccg ctgctgtgtt gagagagctg 240 cgttgcgttt gtttacagac cacgcaagga gttcatccca aaatgatcag taatctgcaa 300 gtgttcgcca taggcccaca gtgctccaag gtggaagtgg tagcctccct gaagaacggg 360 aaggaaattt gtcttgatcc agaagcccct tttctaaaga aagtcatcca gaaaattttg 420 gacggtggaa acaaggaaaa ctgattaaga gaaatgagca cgcatggaaa agtttcccag 480 tetteageag agaagtttte tggaggtete tgaacecagg gaagacaaga aggaaagatt 540 ttgttgttgt ttgtttattt gtttttccag tagttagctt tcttcctgga ttcctcactt 600 660 tttagcatag tacctctgct atttgctgtt attttatctg ctatgctatt gaagttttgg 720 caattgacta tagtgtgagc caggaatcac tggctgttaa tctttcaaag tgtcttgaat 780 tgtaggtgac tattatattt ccaagaaata ttccttaaga tattaactga gaaggctgtg 840 gatttaatgt ggaaatgatg tttcataaga attctgttga tggaaataca ctgttatctt 900 cacttttata agaaatagga aatattttaa tgtttcttgg ggaatatgtt agagaatttc 960

<211> 1502

<212> DNA

<213> Homo sapiens

cttactcttg attgtggga	actatttaat	tatttcactt	tagaaagctg	agtgtttcac	1020
accttatcta tgtagaata	atttccttat	tcagaatttc	taaaagttta	agttctatga	1080
gggctaatat cttatcttc	c tataatttta	gacattcttt	atctttttag	tatggcaaac	1140
tgccatcatt tacttttaa	a ctttgatttt	atatgctatt	tattaagtat	tttattagga	1200
gtaccataat tctggtagc	t aaatatatat	tttagataga	tgaagaagct	agaaaacagg	1260
caaattcctg actgctagt	t tatatagaaa	tgtattcttt	tagtttttaa	agtaaaggca	1320
aacttaacaa tgacttgta	c tctgaaagtt	ttggaaacgt	attcaaacaa	tttgaatata	1380
aatttatcat ttagttata	a aaatatatag	cgacatcctc	gaggccctag	catttctcct	1440
tggatagggg accagagag	a gcttggaatg	tcaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1500
aa			•		1502

<210> 432

<211> 1328

<212> DNA

<213> Homo sapiens

<400> 432 atgacagaga actccgacaa agttcccatt gccctggtgg gacctgatga cgtggaattc 60 tgcagccccc cggcgtacgc tacgctgacg gtgaagccct ccagccccgc gcggctgctc 120 aaggtgggag ccgtggtcct catttcggga gctgtgctgc tgctctttgg ggccatcggg 180 gccttctact tctggaaggg gagcgacagt cacatttaca atgtccatta caccatgagt 240 atcaatggga aactacaaga tgggtcaatg gaaatagacg ctgggaacaa cttggagacc 300 tttaaaatgg gaagtggagc tgaagaagca attgcagtta atgatttcca gaatggcatc 360 acaggaattc gttttgctgg aggagagaag tgctacatta aagcgcaagt gaaggctcgt 420 attectgagg tgggcgccgt gaccaaacag agcateteet ccaaactgga aggcaagate 480 atgccagtca aatatgaaga aaattctctt atctgggtgg ctgtagatca gcctgtgaag 540 600 gacaacagct tottgagtto taaggtgtta gaactotgog gtgacottoo tattttotgg cttaaaccaa cctatccaaa agaaatccag agggaaagaa gagaagtggt aagaaaaatt 660 720 gttccaacta ccacaaaaag accacacagt ggaccacgga gcaacccagg cgctggaaga · 780 ctgaataatg aaaccagacc cagtgttcaa gaggactcac aagccttcaa tcctgataat ccttatcatc agcaggaagg ggaaagcatg acattcgacc ctagactgga tcacgaagga 840 900 atctgttgta tagaatgtag gcggagctac acccactgcc agaagatctg tgaacccctg 960 gggggctatt acccatggcc ttataattat caaggctgcc gttcggcctg cagagtcatc atgccatgta gctggtgggt ggcccgtatc ttgggcatgg tgtgaaatca cttcatatat 1020

cacgtgctgt	aaaataagaa	ctagctgaag	agacaaccaa	agaagcatta	aggcaggttg	1080
atgctgatgg	gaccataaaa	tatttttaca	cgcagcctga	gcggttattc	ttgacactct	1140
taacagaatt	ttttaatcg	ttttccagaa	ctttagtata	tgcaaatgca	ctgaaagggt	1200
agttcaagtc	taaaatgcca	taaccccgtt	atttgttatt	ttttatttgc	attgatttgc	1260
cataagtctt	cccttgcttg	catcttccaa	agctatttcg	aaataaacac	gaaaatttac	1320
agtttgcc						1328

<210> 433

<211> 1817

<212> DNA

<213> Homo sapiens

<400> 433 gatcaatggt attttagctg aagctatgga atgttttttg cagtatgttt atactggaaa 60 ggtgaagatc actacagaga atgtacagta tctctttgag acatcaagcc tctttcagat 120 tagtgttctc cgtgatgcat gtgccaagtt cttggaggag caacttgatc cttgtaattg 180 cttaggaatc cagcgctttg ctgataccca ttcactcaaa acactcttca caaaatgcaa 240 aaattttgcg ttacagactt ttgaggatgt atcccagcac gaagaatttc ttgagcttga 300 caaagatgaa cttattgatt atatttgtag tgatgaactt gttattggta aagaggagat 360 ggtttttgaa gccgtcatgc gttgggtcta tcgtgccgtt gatctgagaa gaccactgtt 420 acacgagete etgacacatg tgagactece tetgttgeat eccaactact ttgttcaaac 480 agttgaagtg gaccaattga tccagaattc tcctgagtgt tatcagttgt tgcatgaagc 540 aagacggtac cacatacttg ggaatgaaat gatgtcccca aggactaggc cacgcaggtc 600 cactggctat tctgaggtga tagttgtcgt tggaggatgt gagcgagttg gaggatttaa 660 tcttccatac actgagtgct acgatcctgt aacaggagaa tggaagtctt tggctaagct 720 tocagaattt accaaatcag agtatgcagt ctgtgctcta aggaatgaca ttcttgtttc 780 aggtggaaga atcaacagcc gtgatgtctg gatttataac tcacagttaa atatttggat 840 cagagttgcc tctctcaata aaggcagatg gcgtcacaaa atggctgtcc tccttggtaa 900 960 agtatatgtt gtcggtggct atgatgggca aaacagactt agcagcgtag aatgttatga ttccttttca aatcgatgga ctgaagttgc tccccttaag gaagccgtga gttctcctgc 1020 agtgactagc tgtgtaggca aactgtttgt gattggtgga ggacctgatg ataatacttg 1080 ttctgataag gttcaatctt atgatccaga aaccaattct tggctacttc gtgcagctat 1140 cegaattgcc aaaaggtgta taacagctgt atccctaaac aacctgatct atgttgccgg 1200 tggactgacc aaggcaatat actgttacga tccagttgaa gattactgga tgcacgtaca 1260

531

gaatacattc	agccgtcagg	taataacatg	aagcagtaca	aaagaaaaat	aaatctaaga	1320
gggaccaagt	acataatcat	tattaataca	ctggaatttc	aattttaaaa	tatttcaggc	1380
tgggcgtggt	ggctcacgcc	tgtggtccca	gcactttggg	aggccgaggt	ggatagatca	1440
cttgaggtca	ggagttcaag	accagcctgg	ctaatatggt	gaaaccccgt	ctctactaaa	1500
aaattatggc	caggcgtggt	ggttcatgcc	tgtaatccca	gcactttggg	aggctgaggc	1560
aggccaatca	ccțgaggtcg	ggagttcgag	accagcctga	ccaacatgga	gaaaccccgt	1620
ctctgctaaa	aatacaaaat	tagctgggcg	tggtggcgca	ttgcctgtaa	teccagetae	1680
tagggaggct	gcggcaggag	aattgcttga	acccgggagg	tggaggtcgc	ggtgagccga	1740
gatcgagcca	ttgcactcca	gcctggacag	caggagcgaa	actccgtctc	aaaaataaat	1800
aaaaaaaaa	aaaaaaa					1817

<210> 434

<211> 7260

<212> DNA

<213> Homo sapiens

tcactgtcac tgctaaattc agagcagatt agagcctgcg caatggaata aagtcctcaa 60 aattgaaatg tgacattgct ctcaacatct cccatctctc tggatttcct tttgcttcat 120 tattcctgct aaccaattca ttttcagact ttgtacttca gaagcaatgg gaaaaatcag 180 cagtetteca acceaattat ttaagtgetg ettttgtgat ttettgaagg tgaagatgea 240 caccatgtcc tectegeate tettetacet ggegetgtge etgeteacet teaccagete 300 tgccacggct ggaccggaga cgctctgcgg ggctgagctg gtggatgctc ttcagttcgt 360 gtgtggagac aggggctttt atttcaacaa gcccacaggg tatggctcca gcagtcggag 420 ggcgcctcag acaggcatcg tggatgagtg ctgcttccgg agctgtgatc taaggaggct 480 ggagatgtat tgcgcacccc tcaagcctgc caagtcagct cgctctgtcc gtgcccagcg 540 ccacaccgac atgcccaaga cccagaagga agtacatttg aagaacgcaa gtagagggag 600 tgcaggaaac aagaactaca ggatgtagga agaccctcct gaggagtgaa gagtgacatg 660 ccaccgcagg atcctttgct ctgcacgagt tacctgttaa actttggaac acctaccaaa 720 aaataagttt gataacattt aaaagatggg cgtttccccc aatgaaatac acaagtaaac 780 attccaacat tgtctttagg agtgatttgc accttgcaaa aatggtcctg gagttggtag 840 attgctgttg atcttttatc aataatgttc tatagaaaag aaaaaaaaat atatatat 900 atatatetta gteeetgeet eteaagagee acaaatgeat gggtgttgta tagateeagt 960 tgcactaaat tcctctctga atcttggctg ctggagccat tcattcagca accttgtcta 1020

agtggtttat	gaattgtttc	cttatttgca	cttctttcta (cacaactcgg	gctgtttgtt	1080
ttacagtgtc	tgataatctt	gttagtctat	acccaccacc	tcccttcata	acctttatat	1140
ttgccgaatt	tggcctcctc	aaaagcagca	gcaagtcgtc	aagaagcaca	ccaattctaa	1200
cccacaagat	tccatctgtg	gcatttgtac	caaatataag	ttggatgcat	tttattttag	1260
acacaaagct	ttatttttcc	acatcatgct	tacaaaaaag	aataatgcaa	atagttgcaa	1320
ctttgaggcc	aatcattțtt	aggcatatgt	țttaaacata	gaaagtttct	tcaactcaaa	1380
agagttcctt	caaatgatga	gttaatgtgc	aacctaatta	gtaactttcc	tctttttatt	1440
ttttccatat	agagcactat	gtaaatttag	catatcaatt	atacaggata	tatcaaacag	1500
tatgtaaaac	tctgttttt	agtataatgg	tgctattttg	tagtttgtta	tatgaaagag	1560
tctggccaaa	acggtaatac	gtgaaagcaa	aacaataggg	gaagcctgga	gccaaagatg	1620
acacaagggg	aagggtactg	aaaacaccat	ccatttggga	aagaaggcaa	agtcccccca	1680
gttatgcctt	ccaagaggaa	cttcagacac	aaaagtccac	tgatgcaaat	tggactggcg	1740
	ggaaactgtg					1800
gtttctttt	ctcatggaag	aaatgaacat	ctgccagctg	tgtcatggac	tcaccactgt	1860
gtgaccttgg	g gcaagtcact	tcacctctct	gtgcctcagt	ttcctcatct	gcaaaatggg	1920
ggcaatatgt	: catctaccta	cctcaaaggg	gtggtataag	gtttaaaaag	ataaagattc	1980
agatttttt	accctgggtt	gctgtaaggg	tgcaacatca	gggcgcttga	gttgctgaga	2040
tgcaaggaat	tctataaata	acccattcat	agcatagcta	gagattggtg	aattgaatgc	2100
tcctgacato	c tcagttcttg	g tcagtgaago	: tatccaaata	actggccaac	tagttgttaa	2160
aagctaaca	g ctcaatctct	taaaacactt	: ttcaaaatat	gtgggaagca	tttgattttc	2220
aatttgatt	t tgaattctgo	atttggtttt	atgaatacaa	agataagtga	aaagagagaa	2280
· aggaaaaga	a aaaggagaaa	a aacaaagaga	tttctaccag	tgaaagggga	attaattact	2340
ctttgttag	c acticactga	c tettetátgö	agttactaca	tatctagta	aaccttgttt	2400
aatactata	a ataatattc	t attcatttt	g aaaaacacaa	tgattccttd	ttttctaggc	2460
aatataagg	a aagtgatcc	a aaatttgaaa	a tattaaaata	atatctaata	a aaaagtcaca	2520
aagttatct	t ctttaacaa	a ctttactct	t attcttagct	gtatataca	ttttttaaaa	2580
agtttgtta	a aatatgctt	g actagagtt	t cagttgaaag	g gcaaaaact	ccatcacaac	2640
aagaaattt	c ccatgcctg	c tcagaaggg	t agcccctago	tctctgtga	a tgtgttttat	2700
ccattcaac	t gaaaattgg	t atcaagaaa	g tccactggtt	agtgtacta	g tccatcatag	2760
cctagaaaa	t gatccctat	c tgcagatca	a gattttctca	a ttagaacaa	t gaattatcca	2820
gcattcaga	it ctttctagt	c accttagaa	c tttttggtta	a aaagtaccc	a ggcttgatta	2880

tttcatgcaa	attctatatt	ttacattctt	ggaaagtcta	tatgaaaaac	aaaaataaca	2940
tcttcagttt	ttctcccact	gggtcacctc	aaggatcaga	ggccaggaaa	aaaaaaaag	3000
actccctgga	tctctgaata	tatgcaaaaa	gaaggcccca	tttagtggag	ccagcaatcc	3060
tgttcagtca	acaagtattt	taactctcag	tccaacatta	tttgaattga	gcacctcaag	3120
catgcttagc	aatgttctaa	tcactatgga	cagatgtaaa	agaaactata	catcattttt	3180
gecetetgee	tgttttccag	acatacaggt	tctgtggaat	aagatactgg	actcctcttc	3240
ccaagatggc	acttcttttt	atttcttgtc	cccagtgtgt	accttttaaa	attattccct	3300
ctcaacaaaa	ctttataggc	agtcttctgc	agacttaaca	tgttttctgt	catagttaga	3360
tgtgataatt	ctaagagtgt	ctatgactta	tttccttcac	ttaattctat	ccacagtcaa	3420
aaatccccca	aggaggaaag	ctgaaagatg	caactgccaa	tattatcttt	cttaactttt	3480
		<u> </u>	taaataaatt			3540
attcactatt	ttattttta	atgaattaaa	actagaaaac	aaattgatgc	aaaccctgga	3600
agtcagttga	ttactatata	ctacagcaga	atgactcaga	tttcatagaa	aggagcaacc	3660
aaaatgtcac	aaccaaaact	ttacaagctt	tgcttcagaa	ttagattgct	ttataattct	3720
tgaatgaggc	aatttcaaga	tatttgtaaa	agaacagtaa	acattggtaa	gaatgagctt	3780
tcaactcata	ggcttatttc	caatttaatt	gaccatactg	gatacttagg	tcaaatttct	3840
gttctctctt	gcccaaataa	tattaaagta	ttatttgaac	tttttaagat	gaggcagttc	3900
ccctgaaaaa	gttaatgcag	ctctccatca	gaatccactc	ttctagggat	atgaaaatct	3960
cttaacaccc	accctacata	cacagacaca	a cacacacaca	cacacacaca	cacacacaca	4020
cacacattca	a ccctaaggat	ccaatggaat	: actgaaaaga	aatcacttcc	ttgaaaattt	4080
tattaaaaa	a caaacaaaca	aacaaaag	c ctgtccaccc	ttgagaatcc	ttcctctcct	4140
tggaacgtca	a atgtttgtgt	agatgaaac	atctcatgct	ctgtggctcc	agggtttctg	4200
ttactattt	atgcacttgg	g gagaaggcti	t agaataaaag	atgtagcaca	ttttgctttc	4260
ccatttatt	g tttggccago	c tatgccaat	g tggtgctatt	gtttcttaa	gaaagtactt	4320
gactaaaaa	a aaaagaaaa	a aagaaaaaa	a agaaagcata	gacatattt	: tttaaagtat	4380
aaaaacaac	a attctataga	a tagatggct	t aataaaatag	g cattaggtct	atctagccac	4440
caccacctt	t caacttttt	a tcactcaca	a gtagtgtact	gttcaccaaa	ttgtgaattt	4500
gggggtgca	g gggcaggag	t tggaaattt	t ttaaagttag	g aaggeteeat	tgttttgttg	4560
					gatcaagagc	4620
atggagaat	a aacgcggga	a aaaagatct	t ataggcaaal	agaagaatt	t aaaagataag	4680

taagttcctt	attgattttt	gtgcactctg	ctctaaaaca	gatattcagc	aagtggagaa	4740
aataagaaca	aagagaaaaa	atacatagat	ttacctgcaa	aaaatagctt	ctgccaaatc	4800
cccttgggt	attctttggc	atttactggt	ttatagaaga	cattctccct	tcacccagac	4860
atctcaaaga	gcagtagctc	tcatgaaaag	caatcactga	tctcatttgg	gaaatgttgg	4920
aaagtatttc	cttatgagat	gggggttatc	tactgataaa	gaaagaattt	atgagaaatt	4980
gttgaaagag	atggctaaca	atctgtgaag	attttttgtt	tettggtttt	gtttttttt	5040
tttttttac	tttatacagt	ctttatgaat	ttcttaatgt	tcaaaatgac	ttggttcttt	5100
tcttctttt	tttatatcag	aatgaggaat	aataagttaa	acccacatag	actctttaaa	5160
actataggct	agatagaaat	gtatgtttga	cttgttgaag	ctataatcag	actatttaaa	5220
atgttttgct	atttttaatc	ttaaaagatt	gtgctaattt	attagagcag	aacctgtttg	5280
gctctcctca	gaagaaagaa	tctttccatt	caaatcacat	ggctttccac	caatattttc	5340
aaaagataaa	tctgatttat	gcaatggcat	catttatttt	aaaacagaag	aattgtgaaa	5400
gtttatgccc	ctcccttgca	aagaccataa	agtccagatc	tggtaggggg	gcaacaacaa	5460
aaggaaaatg	ttgttgattc	ttggttttgg	attttgttt	gttttcaatg	ctagtgttta	5520
atcctgtagt	acatatttgc	ttattgctat	. tttaatattt	tataagacct	tcctgttagg	5580
tattagaaag	, tgatacatag	atatctttt	: tgtgtaattt	ctatttaaaa	aagagagaag	5640
actgtcagaa	gctttaagtg	catatggtac	: aggataaaga	tatcaattta	aataaccaat	5700
tcctatctgg	g aacaatgctt	ttgttttta	aagaaaccto	tcacagataa	gacagaggcc	5760
caggggattt	: ttgaagctgt	ctttattctg	g ccccatccc	: aacccagcc	: ttattatttt	5820
agtatctgcò	tcagaatttt	: atagagggct	gaccaagcto	, aaactctaga	attaaaggaa	5880
cctcactgaa	a aacatatatt	tcacgtgttc	c cctctcttt	ttttcctttt	tgtgagatgg	5940
ggtctcgcad	c tgtcccccaç	g gctggagtg	c agtggcatga	tctcggctca	a ctgcaacctc	6000
cacctcctg	g gtttaagcga	a ttáfactác	c tcagcctcct	gagtagetg	j gattacaggc	6060
acccaccact	t atgcccggct	t aattttttg	g atttttaata	a gagacgggg	t tttaccatgt	6120
tggccaggt	t ggactcaaa	c teetgacet	t gtgatttgc	c cgcctcagc	c tcccaaattg	6180
ctgggatta	c aggcatgag	c caccacacc	c tgcccatgt	g ttccctctt	a atgtatgatt	6240
acatggatc	t taaacatga	t ccttctctc	c tcattcttc	a actatcttt	g atggggtctt	6300
tcaagggga	a aaaaatcca	a gcttttta	a agtaaaaaa	a aaaaaagag	a ggacacaaaa	6360
ccaaatgtt	a ctgctcaac	t gaaatatga	g ttaagatgg	a gacagagtt	t ctcctaataa	6420
ccggagctg	a attaccttt	c actttcaaa	a acatgacct	t ccacaatcc	t tagaatctgc	6480
ctttttta	t attactgag	g cctaaaagt	a aacattact	c attttattt	t gcccaaaatg ,	6540

. . . . WO 03/090694 PCT/US03/13015

cactgatgta	aagtaggaaa	aataaaaaca	gagctctaaa	atccctttca	agccacccat	6600
tgaccccact	caccaactca	tagcaaagtc	acttctgtta	atcccttaat	ctgattttgt	6660
ttggatattt	atcttgtacc	cgctgctaaa	cacactgcag	gagggactct	gaaacctcaa	6720
gctgtctact	tacatctttt	atctgtgtct	gtgtatcatg	aaaatgtcta	ttcaaaatat	6780
caaaaccttt	caaatatcac	gcagcttata	ttcagtttac	ataaaggccc	caaataccat	6840
gtcagatctt	tttggtaaaa	gagttaatga	actatgagaa	ttgggattac	atcatgtatt	6900
ttgcctcatg	tatttttatc	acacttatag	gccaagtgtg	ataaataaac	ttacagacac	6960
tgaattaatt	tcccctgcta	ctttgaaacc	agaaaataat	gactggccat	tcgttacatc	7020
tgtcttagtt	gaaaagcata	ttttttatta	aattaattct	gattgtattt	gaaattatta	7080
ttcaattcac	ttatggcaga	ggaatatcaa	tcctaatgac	ttctaaaaat	gtaactaatt	7140
gaatcattat	cttacattta	ctgtttaata	agcatatttt	gaaaatgtat	ggctagagtg	7200
tcataataaa	atggtatatc	tttctttagt	äattacaaaa	aaaaaaaaa	aaaaaaaaa	7260
<210> 435 <211> 563 <212> DNA <213> Hom						
<400> 435	aagagacatt	ccagaggagg	attgccttcg	tcagggtaac	: ggggtgggct	60
					ctcccatctc	120
actctgcgtg	, tacaatctto	catatccgca	agttcactgg	g cactcttctc	g gcacctgggc	180
aagatcccag	g aacagaggat	ggagtgåctg	gcctcacaga	gcttagtgc	cgactcaggg	240
					a gtctgaaatt	300
caaagcaac	c agcttgaagi	ggtttgagaa	a gctggaagca	a aacatgggc	t agagagatag	360
					g gaagcatgaa	420
					c aaaagtgctt	480
acgtgaaat	t ccagcccag	a gtactcatg	a cttgagaga	c gtggacgga	g ccagcttcta	540
	g acgtctctc					563
<210> 43 <211> 68 <212> DN <213> Ho	4					

60

ggcagtcatg cctcaaaaga tgccaaccag gttcactcca ctaccaggag gaatagcaac

<400> 436

agtccgccct	ctccgtcctc	tatgaaccaa	agaaggctgg	gccccagaga	garagagage	120
caggtagcag	gcaacacagg	agġactggag	ccagtgcacc	ctgccagcct	cccggactcc	180
tctctggcaa	ccagtgcccc	gctgtgctgc	accctctgcc	acgagcggct	ggaggacacc	240
cattttgtgc	agtgcccgtc	cgtcccttcg	cacaagttct	gcttcccttg	ctccagacaa	300
agcatcaaac	agcagggagc	tagtggagag	gtctattgtc	ccagtgggga	aaaatgccct	360
cttgtgggct	ccaatgtccc	ctgggccttt	atgcaagggg	aaattgcaac	catcettget	420
ggagatgtga	aagtgaaaaa	agagagagac	tcgtgacttt	tccggtttca	gaaaaaccca	480
atgattaccc	ttaattaaaa	ctgcttgaat	tgtatatata	tctccatata	tatatatatc	540
caagacaagg	gaaatgtaga	cttcataaac	atggctgtat	aattttgatt	ttttttgaat	600
acattgtgtt	tctatattt	ttttgacgac	aaaaggtatg	tacttataaa	agacattttt	660
tttcttttgt	taacgttatt	agca				684

<210> 437

<211> 894

<212> DNA

<213> Homo sapiens

<400> 437 taccttcagg tggtttactt attctgtaaa gaatatgtgt aaatattttg tacagagccc 60 tgtgtcaaat aaacagccat atgtggttac taatcacctc ttctgtcatt ccgtccttgg 120 ccaccgctca gtgggaatgg tctctgatct ggatgctccc accttccatg tcaggcccag 180 aactgtgcca tggtctgtgg actcctggtc agccttgact ggctaggaga ccttgggcag 240 tacctacagt cttgctgttt ctgtttcatc tgcaagaatt atgacccaca cactccagct 300 gcagcccagg gcactgtgat attttatacg tgtgtagatg tttttgtcca cagttcctgg 360 ttcatcactc ccataaccct ttgttataat gttgggacac tgcaggcctc agaaaacgga 420 atctctgtct gtgaccttct cctgccccat ttcacttgct caacaccaga ctttaatctg 480 actgtagctc ataagaccct cattccagag agggtgctgc cccatacccg gaaggaggaa 540 cgctgcacag agaggccaag aagcatctgg acagacaggc cttgctgggt ttagacctta 600 tgctttttgt ccagtttcat ctcaacacag ctgccatgct tcagccatgc ctatccaatg 660 acgtctccat aaaaggccca ggaacacggg agcttctgaa gagctgaaca tgtggaggga 720 ggggaacgag aacttgtcca tgtgccaaga gggtggcgca ccccactcc atggggacag 780 aagctccagc atttgcccag gacccgtcca gacctcaccc tgtgtgtatc ttcatctggc 840 tgtttactta tttgtatcct tttctaataa tgtttgtaat aaactggtaa acat 894

<210> 438

<211> 2768 <212> DNA

<213> Homo sapiens

ggcctggccg gggcggcgca ctcaggtggc ctcgcttccc tgcgggtcac cgcccgccac 60 tegcacaget aggteggeet gttgggateg ggagaggtgg gegeaegagt tttagtgegg 120 gagtccgggg tgcgggcgga gtcctattgt ccccgtgcac ccgggcggca gcacctccgg 180 gtccctcttt aaaccgagcg tccggcgacc tttctttgtg cttagggagt cgaaagcggc 240 atcttctccg agagaagtcg cctactgggg ggtggcgctg gggaggtaac aatgggcgcc 300 cattgteete egagggteea aeggtgaeee eeeeegetge geaegegeee ggeeaeeggt 360 tggccccggg ccagggcaca ggtaccgcgg ccgggagggt cggccccgct gcccgcgccc 420 teegeceege ceeagtgagt ceeegegeeg eeggeeeege eeegegeege eeegeeetee 480 gcaggttcag teetegegte eggeegeece gegeteagte gegegeacet tetetegegg 540 ccgggggacc gcagcgcggg gctagcccgg agacccggcc accggcctgg ggcgccttca 600 cgccgtctcg gagcggataa tgcggtgagc aggcaccacg ccggcagact cggctggatc 660 tgegcacage ggcagggatt gegtgegece gegggaggee eggggcageg getgggatee 720 tcagcggcgg ccggtttgtc ctggttgtgg tcaagactgg atgatgtaac tggctctcta 780 ggaagcctca cttggccgta acctcaggaa ggttctcttt gaccccatct catttcgaag 840 ccacttctga agccacttga gaaaaatgat gtgacagttc ctatcaaaaa ggattcagaa 900 acatatacca tetgtgaaga aagtggeeet tteteeeget tgeaaaatag acatteteaa 960 attccaaaat gccagccaag accccaattt acctgaaagc agccaataac aagaaaggaa 1020 agaaatttaa actgagggac attctgtctc ctgatatgat cagtcccccg cttggagact 1080· ttcgccacac catccacatt ggcaaagagg gccagcacga tgtctttgga gatatttcct 1140 ttetteaagg gaactacgag ettttacetg gaaaccagga gaaagcacae etgggecagt 1200 tecetgggea taatgagtte tteegggeea acageacete ggaetetgtg tteacagaaa 1260 cgccctcccc ggtgctcaaa aatgccatct ccctcccgac cattggagga tcccaagctc 1320 tcatgttgcc cttattgtca ccagtgacat ttaattccaa acaggagtcc ttcgggccag 1380 caaagctgcc caggcttagc tgcgagcccg tcatggagga aaaagctcag gagaaaagca 1440 gtctgttgga gaatgggaca gtccaccagg gagacacctc gtggggctcc agcggttctg 1500 catctcagtc cagccaaggc agagacagcc actcctccag cetgtccgaa cagtaccccg 1560. actggccage egaggacatg tttgaccate ecaceccatg egageteate aagggaaaga 1620 ctaagtcaga ggagtccctc tctgacctta caggttccct cctctccctg cagcttgatc 1680

ttgggccctc	acttttggat	gaggtgctga	atgtaatgga	taaaaataag	taacaagatg	1740
ccaacttttt	tcctttgggg	taaaaggtac	aaaaacaaac	taaccacagt	tgaagagaag	1800
ggcttccgga	gctgtatttg	cagttttgtg	ttgggttttc	taaaataata	ttcttacaaa	1860
gtatttttt	acctgttatg	ccctgtttgc	aaaaacaatt	tagaaaaaaa	caacaaagca	1920
aaacctatct	tggcaaaaaa	aggaagtgag	tcagagccca	ttttcaggag	gcattggtga	1980
tgttcggctc	acatattgtt	tgcagacaca	çaagaaatct	ggcttggcca	ggattggcac	2040
tagctatgaa	gggctgagcg	agtcacatta	aggaacttca	cggaacttta	tagcactccg	2100
acattttctg	agcaagagga	agtcaaaatt	tatttaacac	ctaagccttt	ttgtagactc	2160
ttttctatat	attgcttagg	ctcaccatag	cgaattctcc	agtgttaaaa	cttttctgtt	2220
ttcacatttg	aactttatgg	gttttgggga	ttttcttgta	gttcttatat	atccctatat	2280
attatatcta	tattgcaaaa	ttttgactgt	cagctacatg	ttggtaagac	acaggcaaag	2340
tattactgta	actaagttat	ttttaaagtt	aaaatatatt	tttacgtgcc	tttggctttt	2400
tattgcagag	tctacatttt	atagattcta	catcagatgt	tgtcacttat	ttccattggg	2460
attccattgt	aagctgtgta	tgtgcgtgtt	tggaaaagtg	tattcatact	tagttttttt	2520
ttcttcatct	gttatcatac	ttttaacagc	aaccaataac	ggattgtaaa	gtgtaaaggc	2580
acaggttact	catgatgctt	ctgcagagac	tgtgggctac	accacatatg	ttatttggaa	2640
atataggtat	tttagtacag	tacatacttg	cattacatag	gtacttcaag	caacacaata	2700
aaaagtaaat	gataaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	2760
aaaaaag						2768

```
<210> 439
<211> 616
```

<212> DNA

<220>

<221> misc_feature

<222> (5)..(6)

<223> n is a, c, g, t or u

400> 439

tagcnnagtt ttagtagaga eggggtttea eegtgttgge eaggatggte tegateteet 60 gaceteatga teegeeegee teggeeteee aaagtgetgg gattacagge gtgageeace 120 gegeeeagee agaaatagtt ttaaaaaaag aaataaggag egtgeggeee gegggggaag 180 egeetttace agetegagee tgeageeee eaggeegege egteetegge teeeeeggge 240 agegeegggg ttttgteagg egegegetge tgtttgeetg gattgegete attetgaeee 300

<213> Homo sapiens

•	
tgaagccagc ggccccactg acacgccctg aaaagtggga gccacacgcg ggatccggag	360
accgcgctaa agtcccacgc acgacggcgc ccgccggcga gtccacgccc gcacgtcggc	420
gcatgcgcgc ggccaagccg gtgcccgcgc ccaccagcgc gcatgcgcgc cccgtccctt	480
ccctccccc gtgctctgcc ccgatggttc ggtccgcgcc gggggcgggg ccagggggga	540
tttctttagc ccaagagtgg.aggctaagct acttacttcc aagcctgggt gatcaaaaaa	600
aaaaaaaaa aattto	616
<210> 440 <211> 463 <212> DNA <213> Homo sapiens	
<400> 440 ttttttttt tttttttt tttttttt tttttttt taagggcca aaaaccctt	60
	120
ttttgggcac gtcccccgaa aagcaccctc aggcgtcctg gtagtagttg ttgaagttga	180
tgcccaaaaa aaagtcctcc agggggggct ggtagccggg gttcaccagt ttggtcacca	240
ttttgaaaaa aaagggggag tagtacttga aggtgttgta ggactgctgc atgagtgcaa	300
agttggggtg ctttgccccc cgcgggcccc cagggggccc ccaggcctgg gaaataacct	
ggctgcggaa cttgaccaca aggttaaaaa tgctggggat gactttaatg acgggccccg	360
cettttccgg gagcaggccc ctgaaaacgg ccttgtgcag gtactttggg tgcccacgct	420
ggattteete caggtegeee aegggggeea aeetggeeet gaa	463
<210> 441 <211> 508 <212> DNA <213> Homo sapiens	
<400> 441 tttttttt tttttttt ttttttt ttttttt tttttt	60
ttttttcccc ccaaaattct gggcttttgg ggaaaaaaaa aagggggccc ttgaaggggg	120
ggggaaaccc aaaggggccc ccccaaaacc cccagggggg ggggggaccc ccaaaaccca	180
ggggagggcc cctcaggccc aaattccaaa ggggttttgg ggggaacccc cccccaaac	240
cccacccttg ggaaaggggg ggcccccaa aatttaaaat ttcccccaaa cccaaaagga	300
acccaaatgg ggggggaaac gggggctca ttttttgggg ggggcccccc aattccaaaa	360
aaacgggaaa agcacatggg gcccccttt tttcccaggg gggggaaggg gggaccctta	420
ggccccatca gggccaaaac caacatttat tgggtggggg cacgggcttc ttcccgggag	480
ggctaaattg ccccccggg ggctgggg	508

<210> 442					
<211> 240					
<212> DNA					
<213> Homo sapiens					
<400> 442					
caaaccccgc gccattccag	acgctctgcg	tacggccttt	gccgacgaga	gcagcgcggg	60
					200
tacacactca gagcaggaga	taaagcgtgg	aagctaacgt	cgtcgaccat	tectecatgt	120
		tacaattaat	aatoctoacc	ctaattacca	180
ggagcctggt cagcagtgcc	agegregeag	cgcagccggc	aacgoogaoo	005500500	
catcggtgac ttcatggatc	atgatctttc	agcgcagcaa	cctgctgcgt	gccggtcgac	240
33 3	-				
<210> 443 <211> 255					
<211> 255 <212> DNA					
<213> Homo sapiens			•		
· -					
<400> 443			+++	atotacettt	60
ttttttttt tttttttt	tttttttt	tttttttt	tttcaggggg	acycaccec	00
ttttgagtaa aggaaaaagg	gaattccccc	ccttgatcca	aaggttccag	ttgatcaaag	120
ggcccaaacc cccttcctgt	ttgcgtgatg	ggaacccccc	caccccccgg	ggcccccgga	180
			tanaanaata	ataataatta	240
accccctgcc ccaaggaaat	ggttccccct	ctcccccca	tgaccagete	ciggicatic	240
ccaaaaggca agggc					255
codddaggod dgggo					
<210> 444			•		
<211> 447					
<212> DNA <213> Homo sapiens					
<213> Homo sapiens					
<400> 444	•				
gtggtgtgtt tgttttaatt	ccacttgagg	gcactgtcta	cttcagcaag	aatgggatca	60
	 	~+~~~~~~	atatattaaa	acaatataaa	120
atttatattt gccacttata	Laagacaccu	grggaaacce	Ctaccingac	acaacacaa	220
caaaactcct tataagggct	gcccaaacaq	ctatccaacc	cctcaatttg	gttggattcc	180
tttaaaggac caaactgaag	tgttggttct	ttttgaccaa	aatgctttta	acatgtcaac	240
			tastatstas	ttatgactgt	300
actttccaca agaaaatgtc	CCCACCCCC	. Lettigateat	igatgtatta	ccacgacege	500
aaattatttt gcataactct	tgatctgcaa	ggctgttatt	ttgttaaaag	gctgtatctt	360
atgetteetg aggtegegaa	tgctttctac	agatctactg	tctagagttt	tcccttgcaa	420
	antanta				447
tcagccattt tctgtggttt	cetgetg				/
<210> 445					
<211> 444					
<212> DNA					
<213> Homo sapiens					
<400> 445					
ヘモリロン せきご					

tttttttt	ttttttaat	ggacaaattc	tgtttattt	ggaggtattg	gttcttacag	60
ccatcaataa	agacaccaat	tatgtactaa	catatataag	tccccggaag	gagacaaatt	120
tatattatgt	tagcaaattg	actgtaaaat	cctcttttc	tggaaagatg	atcttcttt	180
gggaggaaaa	cacagatctc	ctagagagag	tttcctcata	gctgatatgt	ctgaggacgc	240
ctgcctagat	ttgcatttcc	tgacattttc	ctgtagttgt	gtgtcatgca	ttttaatcta	300
gtgactctag	cagtttggtt	gcttaatgga	tttagtaata	ggagttttt	aaataacaca	360
caatcagatg	aaacacaatg	ccaacatatc	aactggtgcc	aagcacaaat	atttgtttag	420
tgaacgagca	agacacatgt	ggga				444

<210> 446

<211> 1182

<212> DNA

<213> Homo sapiens

<400> 446 geggeeggeg gegteteete eegggaeget gagggeeeg aggagaeegt gaggetetgg 60 cctgcagctc gcgccgccat ggacgctgcc gaggtcgaat tcctcgccga gaaggagctg 120 180 gttaccatta tececaaett cagtetggae aagatetaee teateggggg ggaeetgggg ccttttaacc ctggtttacc cgtggaagtg cccctgtggc tggcgattaa cctgaaacaa 240 agacagaaat gtcgcctgct ccctccagag tggatggatg tagaaaagtt ggagaagatg 300 agggatcatg aacgaaagga agaaactttt accccaatgc ccagccctta ctacatggaa 360 cttacgaagc teetgttaaa teatgettea gacaacatee egaaggeaga egaaateegg 420 480 accetggtca aggatatgtg ggacactegt atagecaaae teegagtgte tgetgacage tttgtgagac agcaggaggc acatgccaag ctggataact tgaccttgat ggagatcaac 540 accagoggga ctttcctcac acaagogcto aaccacatgt acaaactcog cacgaaccto 600 cagectetgg agagtactea gteteaggae ttetagagaa aggeetggtg caggeggett 660 gctgggggat gtgagcgctc aggatgtgat gaggtactcg tggttctgga gctctagaaa 720 cacttctgat gcatgaaaaa tgtgtgatgg tgcaaggaat ggattcagga tgttgttgga 780 gaaacaagtt tgtgattagt ccttaaaact tagctccctg ggacattctt caattccaca 840 900 tctgtttcta gaaaccagcc ctttttcccc ccacttttga gaaataaaaa agccttaggt aaataagtca ttctccctag cagagccact tgggtctcct gcatggaagc cgtcacactt 960 gggcaggtgt tcagtgactg gtaggtgtag atacagcagg agtggccatg tggtccacgg 1020 1080 ctttttaccc cttcttgatc ctgatttctt gggctgaatt tagactctct cacagaggtg gctcacagag aaggatggca gatggtgcag ccaacaatgc tgaccggtgc ttatcctcta 1140

542

agccctgatc cacaataaaa atggacccaa ctcaaaaaaa aa

1182

	•						
<210><211><212><212><213>	447 671 DNA Homo	sapiens		·			
<400>	447 atga	tcctgcagca	gcccttgcag	cgaggccccc	agggaggggc	ccagcgcctc	60
					gctcccctct		120
					agcctctgcg		180
					gcctgcacaa		240
					cactcaggag		300
					aggccctccg		360
					ctggggacat		420
						aagagaccag	480
						tgggcaccaa	540
						ggggtgggag	600
						gagcaaaaaa	660
catgg	gaagg	gaggeateee	acccccaga	agaaoogaao			671
aaaaa	aaaaa	. a					
<210><211><212><213>	278 DNA	17	. v	and the second second			
<400>	448	3 g cogcactoca	a gcactgcgca	a gggaccgcct	tggaccgcag	g ttgccggcca	60
						a cctgctcacc	120
						c tgggtcggag	180
						a tccagccacc	240
						g acattacttt	300
						t tgtttccgaa	360
						t gaatggagat	420
						g cagccagtat	480
						t aggtgtggag	540
						gg caagagetee	60
							66
gtgt	tggag	g cactgtcag	y agttgecet	·	,	gt gaccagatgc	

ccgctggtgc	tgaaactgaa	gaaacttgtg	aacgaagata	agtggagagg (caaggtcagt	720
taccaggact	acgagattga	gatttcggat	gcttcagagg	tagaaaagga (aattaataaa	780
gcccagaatg	ccatcgccgg	ggaaggaatg	ggaatcagtc	atgagctaat	caccctggag	840
atcagctccc	gagatgtccc	ggatctgact	ctaatagacc	ttcctggcat	aaccagagtg	900
gctgtgggca	atcagcctgc	tgacattggg	tataagatca	agacactcat	caagaagtac	960
atccagaggc	aggagacaat	cagcctggtg	gṫggtcccca	gtaatgtgga	catcgccacc	1020
acagaggctc	tcagcatggc	ccaggaggtg	gaccccgagg	gagacaggac	catcggaatc	1080
ttgacgaagc	ctgatctggt	ggacaaagga	actgaagaca	aggttgtgga	cgtggtgcgg	1140
aacctcgtgt	tccacctgaa	gaagggttac	atgattgtca	agtgccgggg	ccagcaggag	1200 .
atccaggacc	agctgagcct	gtccgaagcc	ctgcagagag	agaagatctt	ctttgagaac	1260
cacccatatt	tcagggatct	gctggaggaa	ggaaaggcca	cggttccctg	cctggcagaa	1320
aaacttacca	gcgagctcat	cacacatatc	tgtaaatctc	tgcccctgtt	agaaaatcaa	1380
atcaaggaga	ctcaccagag	aataacagag	gagctacaaa	agtatggtgt	cgacataccg	1440
gaagacgaaa	atgaaaaaat	gttcttcctg	atagataaaa	ttaatgcctt	taatcaggac	1500
atcactgcto	: tcatgcaagg	agaggaaact	gtaggggagg	aagacattcg	gctgtttacc	1560
agactccgac	acgagttcca	caaatggagt	acaataattg	aaaacaattt	tcaagaaggc	1620
cataaaattt	tgagtagaaa	aatccagaaa	tttgaaaatc	agtatcgtgg	tagagagctg	1680
ccaggctttg	g tgaattacag	gacatttgag	acaatcgtga	aacagcaaat	caaggcactg	1740
gaagagccg	g ctgtggatat	gctacacacc	gtgacggata	tągtccggct	tgctttcaca	1800
gatgtttcg	a taaaaaattt	tgaagagttt	tttaacctcc	acagaaccgc	caagtccaaa	1860
attgaagac	a ttagagcaga	a acaagagaga	gaaggtgaga	agctgatccg	cctccacttc	1920
cagatggaa	c agattgtcta	a ctgccaggac	: caggtataca	ggggtgcatt	gcagaaggtc	1980
agagagaag	g agctggaaga	a agaaaagaag	g aagaaatcct	gggattttgg	ggctttccag	2040
tccagctcg	g caacagacto	c ttccatggag	g gagatettte	agcacctgat	ggcctatcac	2100
caggaggcc	a gcaagcgca	t ctccagccad	atccctttga	tcatccagtt	cttcatgctc	2160
cagacgtac	g gccagcagc	t tcagaaggco	atgctgcago	tcctgcagga	caaggacacc	2220
tacagctgg	c tcctgaagg	a gcggagcga	c accagegaca	agcggaagtt	cctgaaggag	2280
cggcttgca	c ggctgacgc	a ggctcggcg	c cggcttgccc	agttccccgg	ttaaccacac	2340
tctgtccag	c cccgtagac	g tgcacgcac	a ctgtctgccc	ccgttcccgg	gtagecactg	2400
gactgacga	c ttgagtgct	c agtagtcag	a ctggatagto	c cgtctctgct	: tatccgttag	2460

ccgtggtgat	ttagcaggaa	gctgtgagag	cagtttggtt	tctagcatga	agacagagcc	2520
ccaccctcag	atgcacatga	gctggcggga	ttgaaggatg	ctgtcttcgt	actgggaaag	2580
ggattttcag	ccctcagaat	cgctccacct	tgcagctctc	cccttctctg	tattcctaga	2640
aactgacaca	tgctgaacat	cacagcttat	ttcctcattt	ttataatgtc	ccttcacaaa	2700
cccagtgttt	taggagcatg	agtgccgtgt	gtgtgcgtcc	tgtcggagcc	ctgtctcctc	2760
tctctgtaat	aaactcattt	ctagcag _				2787

<210> 449

<211> 1404

<212> DNA

<213> Homo sapiens

<400> 449 ggcagtgcag ctgtgggaac ctctccacgc gcacgaactc agccaacgat ttctgataga 60 tttttgggag tttgaccaga gatgcaaggg gtgaaggagc gcttcctacc gttagggaac 120 tetggggaca gagegeeeeg geegeetgat ggeegaggea gggtgegaee caggaeeeag 180 gacggcgtcg ggaaccatac catggcccgg atccccaaga ccctaaagtt cgtcgtcgtc 240 atcgtcgcgg tcctgctgcc agtcctagct tactctgcca ccactgcccg gcaggaggaa 300 gttccccagc agacagtggc cccacagcaa cagaggcaca gcttcaaggg ggaggagtgt 360 ccagcaggat ctcatagatc agaacatact ggagcctgta acccgtgcac agagggtgtg 420 gattacacca acgettecaa caatgaacct tettgettee catgtacagt ttgtaaatca 480 gatcaaaaac ataaaagttc ctgcaccatg accagagaca cagtgtgtca gtgtaaagaa 540 ggcaccttcc ggaatgaaaa ctccccagag atgtgccgga agtgtagcag gtgccctagt 600 ggggaagtcc aagtcagtaa ttgtacgtcc tgggatgata tccagtgtgt tgaagaattt 660 ggtgccaatg ccactgtgga aaccccagct gctgaagaga caatgaacac cagcccgggg 720 actectgece cagetgetga agagacaatg aacaccagee cagggactee tgeeccaget 780 gctgaagaga caatgaccac cagcccgggg actcctgccc cagctgctga agagacaatg 840 accaccagee eggggaetee tgeeccaget getgaagaga caatgaccae cageeegggg 900 actcctgcct cttctcatta cctctcatgc accatcgtag ggatcatagt tctaattgtg 960 cttctgattg tgtttgtttg aaagacttca ctgtggaaga aattccttcc ttacctgaaa 1020 ggttcaggta ggcgctggct gagggcgggg ggcgctggac actctctgcc ctgcctccct 1080 ctgctgtgtt cccacagaca gaaacgcctg cccctgcccc aagtcctggt gtctccagcc 1140 tggctctatc ttcctccttg tgatcgtccc atccccacat cccgtgcacc ccccaggacc 1200 ctggtctcat cagtccctct cctggagctg ggggtccaca catctcccag ccaagtccaa 1260

545

gagggcaggg c	cagttcctc	ccatcttcag	gcccagccag	gcagggggca	gtcggctcct	1320
caactgggtg a	ıcaagggtga	ggatgagaag	tggtcacggg	atttattcag	ccttggtcag	1380
agcagaaaaa a	aaaaaaaaa	aaaa .				1404

<210> 450 <211> 3817 <212> DNA

<213> Homo sapiens

<400> 450 cacagagega cagagacatt tattgttatt tgttttttgg tggcaaaaag ggaaaatggc 60 gaacgactcc cctgcaaaaa gtctggtgga catcgacctc tcctccctgc gggatcctgc 120 tgggattttt gagctggtgg aagtggttgg aaatggcacc tatggacaag tctataaggg 180 tcgacatgtt aaaacgggtc agttggcagc catcaaagtt atggatgtca ctgaggatga 240 agaggaagaa atcaaactgg agataaatat gctaaagaaa tactctcatc acagaaacat 300 tgcaacatat tatggtgctt tcatcaaaaa gagccctcca ggacatgatg accaactctg 360 420 gettgttatg gagttetgtg gggetgggte cattacagae ettgtgaaga acaccaaagg 480 gaacacactc aaagaagact ggatcgctta catctccaga gaaatcctga ggggactggc acatcttcac attcatcatg tgattcaccg ggatatcaag ggccagaatg tgttgctgac 540 tgagaatgca gaggtgaaac ttgttgactt tggtgtgagt gctcagctgg acaggactgt 600 660 ggggcggaga aatacgttca taggcactcc ctactggatg gctcctgagg tcatcgcctg tgatgagaac ccagatgcca cctatgatta cagaagtgat ctttggtctt gtggcattac 720 780 agccattgag atggcagaag gtgctccccc tctctgtgac atgcatccaa tgagagcact gtttctcatt cccagaaacc ctcctccccg gctgaagtca aaaaaatggt cgaagaagtt 840 900 ttttagtttt atagaagggt gcctggtgaa gaattacatg cagcggccct ctacagagca 960 gcttttgaaa catcctttta taagggatca gccaaatgaa aggcaagtta gaatccagct taaggatcat atagatcgta ccaggaagaa gagaggcgag aaagatgaaa ctgagtatga 1020 gtacagtggg agtgaggaag aagaggagga agtgcctgaa caggaaggag agccaagttc 1080 cattgtgaac gtgcctggtg agtctactct tcgccgagat ttcctgagac tgcagcagga 1140 gaacaaggaa cgttccgagg ctcttcggag acaacagtta ctacaggagc aacagctccg 1200 ggagcaggaa gaatataaaa ggcaactgct ggcagagaga cagaagcgga ttgagcagca 1260 gaaagaacag aggcgacggc tagaagagca acaaaggaga gagcgggaag ctagaaggca 1320 gcaggaacgt gaacagcgaa ggagagaaca agaagaaaag aggcgtctag aggagttgga 1380 1440 gagaaggcgc aaagaagaag aggagaggag acgggcagaa gaagaaaaga ggagagttga

aagagaacag gagtatatca ggcgacagct agaagaggag cagcggcact tggaagtcct 1	500
	.560
	.620
	L680
	L740
	T8 <u>'</u> 00
	1860
	1920
	1980
	2040
cgcactggcc aaagagcttc gagcagtgga agatgtacgg ccacctcaca aagtaacgga 2	2100
	2160
	2220
tttgagcaat ggtgaaacgg aatctgtgaa aaccatgatt gtccatgatg atgtagaaag	2280
tgagccggcc atgaccccat ccaaggaggg cactctaatc gtccgccaga ctcagtccgc	2340
tagtagcaca ctccagaaac acaaatcttc ctcctccttt acacctttta tagaccccag	2400
attactacag atttctccat ctagcggaac aacagtgaca tctgtggtgg gattttcctg	2460
tgatgggatg agaccagaag ccataaggca agatcctacc cggaaaggct cagtggtcaa	2520
tgtgaateet accaacacta ggccacagag tgacaceeeg gagattegta aatacaagaa	2580
gaggtitaac tetgagatte tgtgtgetge ettatgggga gtgaatttge tagtgggtae	2640
agagagtggc ctgatgctgc tggacagaag tggccaaggg aaggtctatc ctcttatcaa	2700
ccgaagacga tttcaacaaa tggacgtact tgagggcttg aatgtcttgg tgacaatatc	2760
tggcaaaaag gataagttac gtgtctacta tttgtcctgg ttaagaaata aaatacttca	2820
caatgatcca gaagttgaga agaagcaggg atggacaacc gtaggggatt tggaaggatg	2880
tgtacattat aaagttgtaa aatatgaaag aatcaaattt ctggtgattg ctttgaagag	2940
ttctgtggaa gtctatgcgt gggcaccaaa gccatatcac aaatttatgg cctttaagtc	3000
atttggagaa ttggtacata agccattact ggtggatctc actgttgagg aaggccagag	3060
gttgaaagtg atctatggat cetgtgetgg attecatget gttgatgtgg atteaggate	3120
agtetatgae atttatetae caacacatgt aagaaagaae eeacaeteta tgatecagtg	3180
tagcatcaaa ccccatgcaa tcatcatcct ccccaataca gatggaatgg agcttctggt	3240
gtgctatgaa gatgaggggg tttatgtaaa cacatatgga aggatcacca aggatgtagt	3300

tctacagtgg ggag	gagatgc ctacatcagt	: agcatatatt	cgatccaatc	agacaatggg	3360
ctggggagag aagg	gccatag agatccgato	tgtggaaact	ggtcacttgg	atggtgtgtt	3420
catgcacaaa agg	gctcaaa gactaaaat	cttgtgtgaa	cgcaatgaca	aggtgttctt	3480
tgcctctgtt cgg	tctggtg gcagcagtc	a ggtttatttc	atgaccttag	gcaggacttc	3540
tettetgage tgg	tagaagc agtgtgatc	c agggattact	ggcctccaga	gtcttcaaga	3600
tcctgagaacittg	gaattcc ttgtaactg	g agctcggagc	tgcaccgagg	gcaaccagga	3660
cagctgtgtg tgc	agacctc atgtgttgg	g ttctctcccc	tccttcctgt	tcctcttata	3720
taccagttta tcc	ccattct ttttttt	t cttactccaa	aataaatcaa	ggctgcaatg	3780
cagctggtgc tgt	tcagatt ctaaaaaaa	a aaaaaaa			3817

<210> 451

<211> 1542

<212> DNA

<213> Homo sapiens

<400> 451 tetgtactag aataggaaac tgaggeeetg agaattgact catteagate actteceatg 60 atcacgcagc tgagcagttt ccaatacaga attcagattt ggggttccct acttcgaatc 120 caggtetetg tgetecacae ttgtettteg tgetecatgt ttgaagaaat taatattgtg 180 gaagaacagt tttaaggctt agaggaactt gagttaggat ccgtacttgg cagatgagga 240 aattgattct catggatgta aattcactgt ttgaggccac aacagggcat catggtggga 300 ggcttgaaga ggaaacactc tgatttggaa gaggaggagg agaggtggga gtggagtcca 360 gcaggeette agagetacea gcaageeetg etecgeatet ecetagaeaa agteeagege 420 agcctgggcc cccgagcacc cagcctccgc aggcatgtcc tcatccataa caccctccaa 480 cagctgcagg ctgcacttcg cctggctccc gcccctgccc tgccccccga gcccctcttc 540 ctgggcgagg aggatttctc cctgtcagcc accattggct ctatcctcag ggagctggac 600 acctccatgg atgggactga gccccctcag aatccagtga ctccccttgg cctccagaat 660 gaagtgccac cccagcctga tccagtcttc ttagaagctc tgagctcccg gtacttgggg 720 gactctggcc tggatgactt ctttctggac attgacacat ctgcggtaga aaaggagcct 780 gcacgggccc caccagagcc tcctcacaac ctcttctgtg ccccaggttc ttgggagtgg 840 aatgaactgg atcacatcat ggaaatcatt ctggggtcct aaaactgtga tagaggggat 900 cgatccttcc tcatgtcatc ttcggtggcc tggatccctg aatgcaactc tgggtgtgtg 960 tttttgtggg ggctcgaagc agtgactatg gcctcctttg ttcccatttc agggttccac 1020 aaactgtctt gcatgtgtgt gtgtgtctgg ttaccccgac cttctgtgaa ggtgggtctt 1080

cctgaattaa tttatctatt ccaaatgcct taacgagact ctgtttctgg gagtctgatt 1140 ttccacttac acatttcttc cacctttcct gctagttccc actcccctgt gaccactggg 1200 gcctcaggga agataaagaa agctgggcct gtcgaaggat gacagggatg tgctgccagg 1260 ttgctataga aacccaggct ctgcctcttg caccttgagg gggtgggagg ggctggtgtc 1320 ctccctccag gctgaacccc acttcctcgg caggacccca gtctcagcag cctcctgatt 1380 tcataaccag gccggaccac gtgcaatagg gtggaaacca aactgctcca tgccgggtta 1440 1500 1542

<210> 452

<211> 1575 <212> DNA

<213> Homo sapiens

<400> 452 agaaccgcga cctccgcaac cttgagcggc atccgtggag tgcgcctgca gctacgaccg 60 cagcaggaaa gcgccgccgg ccaggcccag ctgtggccgg acagggactg gaagagaga 120 cgcggtcgag taggtgtgca ccagccctgg caacgagagc gtctaccccg aactctgctg 180 gccttgaggt ggggaagccg gggagggcag ttgaggaccc cgcggaggcg cgtgactggt 240 tgagcgggca ggccagcctc cgagccgggt ggacacaggt tttaaaacat gaatcctaca 300 ctcatccttg ctgccttttg cctgggaatt gcctcagcta ctctaacatt tgatcacagt 360 ttagaggcac agtggaccaa gtggaaggcg atgcacaaca gattatacgg catgaatgaa 420 gaaggatgga ggagagcagt gtgggagaag aacatgaaga tgattgaact gcacaatcag 480 gaatacaggg aagggaaaca cagcttcaca atggccatga acgcctttgg agacatgacc 540 agtgaagaat tcaggcaggt gatgaatggc tttcaaaacc gtaagcccag gaaggggaaa 600 gtgttccagg aacctctgtt ttatgaggcc cccagatctg tggattggag agagaaaggc 660 tacgtgactc ctgtgaagaa tcagggtcag tgtggttctt gttgggcttt tagtgctact 720 ggtgctcttg aaggacagat gttccggaaa actgggaggc ttatctcact gagtgagcag 780 aatctggtag actgctctgg gcctcaaggc aatgaaggct gcaatggtgg cctaatggat 840 tatgctttcc agtatgttca ggataatgga ggcctggact ctgaggaatc ctatccatat 900 gaggcaacag aagaatcctg taagtacaat cccaagtatt ctgttgctaa tgacaccggc 960 1020 tttgtggaca tccctaagca ggagaaggcc ctgatgaagg cagttgcaac tgtggggccc atttctgttg ctattgatgc aggtcatgag tccttcctgt tctataaaga aggcatttat 1080 tttgagccag actgtagcag tgaagacatg gatcatggtg tgctggtggt tggctacgga 1140

tttgaaagca	cagaatcaga	taacaataaa	tattggctgg	tgaagaacag	ctggggtgaa	1200
gaatggggca	tgggtggcta	cgtaaagatg	gccaaagacc	ggagaaacca	ttgtggaatt	1260
gcctcagcag	ccagctaccc	cactgtgtga	gctggtggac	ggtgatgagg	aaggacttga	1320
ctggggatgg	cgcatgcatg	ggaggaattc	atcttcagtc	taccagcccc	cgctgtgtcg	1380
gatacacact	cgaatcattg	aagatccgag	tgtgatttga	attctgtgat	attttcacac	1440
tggtaaatgt	tacctctatt	ttaattactg	ctataaatag	gtttatatta	ttgattcact	1500
tactgacttt	gcattttcgt	ttttaaaagg	atgtataaat	ttttacctgt	ttaaataaaa	1560
tttaatttca	aatgt					1575

<210> 453 <211> 1932

<212> DNA

<213> Homo sapiens

<400> 453 tgaggccgcc ggccagccgc cgccatgggt gcctacctct cccagcccaa cacggtgaag 60 tgctccgggg acggggtcgg cgcccgcgc ctgccgctgc cctacggctt ctccgccatg 120 caaggetgge gegteteeat ggaggatget cacaactgta tteetgaget ggacagtgag 180 240 aaatatotto otgatatoat caaagatoag aaggootaca aggaaggoaa gotacagaag 300 gctttagaag atgccttctt ggctattgac gccaaattga ccactgaaga agtcattaaa 360 gagctggcac agattgcagg gcgacccact gaggatgaag atgaaaaaga aaaagtagct 420 gatgaagatg atgtggacaa tgaggaggct gcactgctgc atgaagaggc taccatgact 480 attgaagagc tgctgacacg ctacgggcag aactgtcaca agggccctcc ccacagcaaa 540 tctggaggtg ggacaggcga ggaaccaggg tcccagggcc tcaatgggga ggcaggacct 600 660 gaggactcaa ctagggaaac teetteacaa gaaaatggee eeacageeaa ggeetacaea ggcttttcct ccaactcgga acgtgggact gaggcaggcc aagttggtga gcctggcatt 720 cccactggtg aggctgggcc ttcctgctct tcagcctctg acaagctgcc tcgagttgct 780 aagtccaagt tctttgagga cagtgaggat gagtcagatg aggcggagga agaagaggaa 840 gacagtgagg aatgcagcga ggaagaggat ggctacagca gtgaggaggc agagaatgag 900 gaagatgagg atgacaccga ggaggctgaa gaggacgatg aagaagaaga agaagagatg 960 atggtgccag ggatggaagg caaagaggag cetggetetg acagtggtac aacageggtg 1020 gtggccctga tacgagggaa gcagttgatt gtagccaacg caggagactc tcgctgtgtg 1080 gtatctgagg ctggcaaagc tttagacatg tcctatgatc acaaaccaga ggatgaagta 1140

gaactagcac <u>c</u>	gcatcaagaa i	tgctggtggc	aaggtcacca	tggatgggcg	agtcaacggg	1200
ggcctcaacc t	ctccagagc (cattggggac	cacttctata	agagaaacaa	gaacctgcca	1260
cctgaggaac a	agatgatttc	agcccttcct	gacatcaagg	tgctgactct	cactgacgac	1320
catgaattca 1	tggtcattgc	ctgtgatggc	atctggaatg	tgatgagcag	ccaggaagtt	1380
gtagatttca 1	ttcaatcaaa	gatcagccag	cgtgatgaaa	atggggagct	tcggttattg	1440
tcatccattg	tggaagagct	gctggatcag	tgcctggcac	cagacacttc	tggggatggt	1500
acagggtgtg	acaacatgac	ctgcatcatc	atttgcttca	agccccgaaa	cacagcagag	1560
ctccagccag	agagtggcaa	gcgaaaacta	gaggaggtgc	tctctactga	gggggctgaa	1620
gaaaatggca	acagcgacaa	gaagaagaag	gccaagcgag	actagcagtc	atccagaccc	1680
ctgcccacct	agactgtttt	ctgagccctc	cggacctgag	actgagtttt	gtctttttcc	1740
tttagcctta	gcagtgggta	tgaggtgtgc	agggggagct	gggtggcttc	actccgccca	1800
ttccaaagag	ggctctccct	ccacactgca	gccgggagcc	tctgctgtcc	ttcccagccg	1860
cctctgctcc	tcgggctcat	caccggttct	gtgcctgtgc	tctgttgtgt	tggagggaag	1920
gactggcggt	tc					1932
<400> 454	sapiens	attacaacat	acaattcact	ctctqctqct	gggaatetga	60
					agcccagaag	120
					gatgttttc	180
					aaaaccttct	240
			CCCASSCAS	990000		261
aagtgagtaa	atgagccctt	9				
<210> 455 <211> 399 <212> DNA <213> Homo	o sapiens					
<400> 455	tttttttt	tttttttt	: ttttttttt	tttttttt	tttttttt	60
					a agggaaaacc	120
					a cccctggggg	180
					cccaagcggg	24
	دد درررون	-	-	•		

***************************************				- 0	1,0500,100
gcaggcgaca aaggcgggga a	ttaaccaaa	aaacaaaac	cccccagga	aattttttta	300
aaaacccccc aaagtttggg g	cccccaag	tcccaccccc	aaaggccggg	aggggggga	360
ctaacagccc ccccctccc c	cggggccgg	gggaacccc			399
<210> 456 <211> 278 <212> DNA <213> Homo sapiens					
<220> <221> misc_feature <222> (181)(181) <223> n is a, c, g, t	or u			·	·
<400> 456 gaagcctcgg tgtcagggac c	gtgggacag	agggtcaccc	tctcctgtag	tggaaacaca	60
aacaacgttg gaagttatgc t					120
actatgatgt ttggaaactg t					180
nctggggcct cagcctccct g					240
tattgttcaa tacagcctca g	gtgcgagggg	tettegge			278
<210> 457 <211> 258 <212> DNA <213> Homo sapiens					
<400> 457 ttttttttt aaggcaggag a	agacaaagaa	tgagctttaa	agtgcatgtt	tacagaaatg	60
atcaagggtt tgacggtgtg	gtaaaagcac	aggccactaa	cecagaetec	atcaggggaa	120
tggagaggcc ctgtactccg	ctctttgatg	ccacctgacc	: tggaccagcc	ctccacgctg	180
catgctttta aaagcgaggc	gagttgtgca	tttccacttg	tgcctgttct	ccccaccagg	240
tccaagcctt tcaattac					258
<210> 458 <211> 309 <212> DNA <213> Homo sapiens					
<400> 458 ttttttttt ttttgagaca	agatettaet	ctqtcaccct	gqctqqaqtq	g cagtgatgca	60
atcacggtca ctgcagcctt					120
tgtctctact ttcctccaac					180
tgggactgca gcaggcacac					240

WO 03/090694

PCT/US03/13015

gtaaacatgg ggtttcgcca tgtt	gcccag gctggcctcg	tgccgaattc t	tggcctcga	300
gggccaaat				309
<210> 459 <211> 4731 <212> DNA <213> Homo sapiens				
<400> 459 cccagctgga ggaagcggcg gcg	geggeca egatgagtge	gggcgacgca	gtgtgcaccg	60
gctggctcgt taagtcgccc cccq	gagagga agctacagcg	ctacgcctgg	cgcaagcgct	120
ggtttgtcct ccggcgaggc cgc	atgagcg gcaaccccga	tgtcttggag	tactacagga	180
acaagcactc cagcaagccc atc	cgggtga tagacctcag	cgagtgtgca	gtgtggaagc	240
atgtgggccc cagctttgtt cgg	aaggaat ttcagaataa	tttcgtgttc	attgtcaaga	300
ctacttcccg tacattctac ctg	gtggcca aaactgagca	agaaatgcag	gtgtgggtgc	360
acagcatcag tcaggtctgc aac	cttggcc acctggagga	tggtgcagat	tccatggaga	420
geetetetta caegeeetee tee	ctgcagc catcctctgc	cageteeett	cttaccgccc	480
atgctgccag ctcctctttg cca	agagatg acccaaacac	taatgccgta	gccactgagg	540
aaaccagaag tgagtcagag ctt	ctcttcc ttccagatta	tctggttttg	tccaactgcg	600
agactggaag actgcaccat acc	agtctac ccaccagatg	tgatagctgg	tcaaactcag .	660
accgttcatt ggaacaggct tca	tttgatg atgtttttgt	tgactgcctg	cageegetee	720
cctccagtca tttggtccac ccc	tcatgcc atggcagtgg	agctcaggag	gtgccatcct	780
cgaggcctca ggctgccctg ato	tggagta gagaaatcaa	tgggccaccc	agggaccact	840
tgtcttcttc accattgctg gaa	agttcct taagttccac	c cattcaggta	gataaaaatc	900
aaggtteett accetgtgga gea	aaagaac tagacattat	gtccaacact	ccacctcccc	960
gccccctaa gccaagccat ctc	stetgaae ggegeeaag	a ggagtggagt	acacacagtg	1020
gtagcaagaa gccagaatgc act	ctggttc caagaagaat	ctccctctct	ggtttagaca	1080
acatgagaac ctggaaagct gat	gtagaag gccaatcct	t aagacaccga	gacaagcggc	1140
ttagtttgaa tttgccatgc agg	gttctccc cgatgtacc	c cacagettca	gccagtatcg	1200
aagacagcta tgtgcccatg ago	ccccagg ctggtgcct	c tggtcttgga	ccccactgca	1260
gccctgatga ctacattcca atq	gaactcag gaagcatct	c aagcccgttg	cctgagctgc	1320
ctgcaaacct ggaacctccc cc	agtgaata gagatctca	a gcctcagagg	aaatcacggc	1380
cacctcctct ggacctgaga aa	cctctcga tcatccggg	a acatgcatct	cttaccagga	1440
cccgcactgt gccttgcagt cg	aaccagct ttctctctc	c agaaagaaat	ggtattaatt	1500

ctgcaagatt ttttgctaat cctgtttcca gagaagacga agaaagctac atcgaaatgg 1560 aggagcaccg aacagccagt tccctgagca gtggtgccct tacgtggaca aagaaattca 1620 gcctagatta tttggccctg gacttcaatt cagcatcacc agcccccatg cagcagaaac 1680 ttctcctttc agaagaacaa agagtagact atgtccaagt ggatgagcag aagacacagg 1740 ctctccagag cacaaaacag gagtggacgg atgaaaggca atccaaagta tgagaggtgc 1800 gggcttgtgc catgtgtgaa acagggaagc ttggggctca gtttgagttt tttcttttt 1860 tttttttttt gtccactaaa aacacactga tggtcaacac aggtcaaaac caagagagaa 1920 tgtgtagttt tcaaggtctt ggccagaacc tttaggaaag aagacctgtt tatacattga 1980 aggaagaaaa gaaggaagca gttgccttcc ggagggggct ctgagagaat ctagcctccc 2040 ctctgtccta ttggagcaaa gattggagtg agtgttgcca ccaacaggat tttatcgttt 2100 gactccaata cctgaaattc tgacttctct cctgtgcttc aatgagaatg ataaattatc 2160 ctagcaaagg ggcctctgga gaccatcttg ttccagcctc tgaagacagt tgaggagatc 2220 aagcccagca atggtggcag aatcttactc cacagacttc agcagactag tcatttcaat 2280 acccaaagaa agacaagtga caggggcaat ggatctcagg ctctgagata agtatatcag 2340 atgacactgg tggctctaag gatattgcaa ttaagcagct acctgtagcc aggtattctg 2400 ctgctcttgg ccttttccca cgcatcgtct cgtgtcttct ccgaaagacc ttggaagata 2460 2520 aacactttgc ccaagattac tcacaaagcc aagacccaga gtccagctta gagaatagag 2580 ttgttcaggc tgccaattgc aagctcattc ctctacctca tacttcctct gaggattttg 2640 acaaaatgga ttaattgggt gagccttgga gacatgtggg aaacacctgc agacacaaaa 2700 tgagtagtca tectgtetee ettteaatag ggatetgaae aggtgttttg ataettgaaa 2760 gatgtgcatg tcaagtgagg gtttctttct gcgatgttca actggaactc tcccatcagt 2820 agttacaatt agaaatacct actgatggtt agtctgaagg ccattctcat ggtcacctat 2880 acagtgtgtt tecetgtgag ctagcagaca caatgaccag gaaaaaacct atgaatteca 2940 ttcttaggtt tcccagccaa ttgctccctt ctgctttaga agtgactagg tactgagagt 3000 acaaacactc ccactttata atgaaggcgt catgtcaccc cttcctttac aggtcctggg 3060 gtccaggaga cccagaatga aggtgtcagt tgggcatgaa gtgttattta gtgtccattc 3120 ttgatccttc tgagcaccta cagctggaaa ctaagcagat actggtcctg cattctgact 3180 gagattgtgt cttctttatg aggatagatc aaattggcag tcaggcccat gatagtcagt 3240 gcagttgggg cagttgtaga ctttgctaca ggatttcagg gtttccaatc accccacagg 3300 taagtgaatg ccaaagtctt ctttttcag accatacaag aagtcatttt gattttcaaa 3360

gaagccgttt	tgattttcaa	agaagcaggt	tctggtgaca	ttattttctt	ccttggacaa	3420
agtgggggga	aatttctaag	tattttaact	gagttcaggg	tccttagtga	gcctggacag	3480
agcaaggaga	gggctcccca	ctccctaagc	cccacagcca	gttctgcatc	accacacaca	3540
gccagagcct	gtgaggagct	gccttcttcc	ccatgtgact	tgcaaagagt	ctcaggcaag	3600
aaaccagggc	ttcaaactgc	tagttcccat	ggagggtagt	tecetegtgt	ggagcacttg	3660
tgttaggatc	actgattatc	tgacaaaggc	tggtgcagaa	aaaaaattgt	aggcccaagt	3720
gtcaagaacc	acaccagatt	ggagatagaa	aagaatagct	gaaattatgt	cagtggtgaa	3780
atgtcactcc	attgacccac	cgaaaaaaga	aaagaaatct	gtttctacca	aacatttcca	3840
gaaacgtatt	tatagcatga	agaaacacac	atgggtagtg	tgacctgttt	ggatgtgatt	3900
acttaaaaat	ggaatgctct	gaataggcac	tctctacatt	aaaggtatgg	aaggcgatag	3960
gggtcagaat	tttaaaaatt	taattttgaa	aaaggtgact	cacccctcat	ttccagagtg	4020
taggcaatta	tgtcctgctt	tgataaaact	gctagaggat	ggctatgcaa	aagcataacg	4080
attcaaggaa	acaaagtaca	ggtagttttt	gagctgacag	cagcaaaggc	accataagtc	4140
aaaatattgg	ttttggtgga	gatgatcgat	gtgtgtgtgt	gagagagag	tatgtttcta	4200
accaagggcc	taatgtttgt	tacagaaatg	atcccagaga	. cctacaagat	gtgggaatca	4260
gcataacagg	gcaatgcagc	aattaacccc	acatcgtttt	ctgtagttcc	: tttttgtttc	4320
attttcttct	gtotcaccto	gttagaaaat	tecteccagt	caggggtcgt	ccagtgcagg	4380
acgggggacc	: caagggtctc	: aagcctgcaa	gtccagaagg	tgacaaaccc	aggagcactg	4440
ggagttaago	tttccttggg	gagggaagag	ccttgatgtc	: cagcacacaç	g cctggctata	4500
aagacacgaa	gcgacctacc	cactgtacag	tccacttcac	aggatcagct	gaatcatgac	4560
ctttaaaagt	: tccgagttga	a aactgaaggo	tctcctcaga	a cctggctttt	tcctcagtcc	4620
ctgttcatac	c catctctgca	a cccacaatca	a cactgatttt	tcaaattcat	t tttgtttttg	4680
ctgtttcatt	tctggcatta	a ataaaagtct	tataaggaaa	a aaaaaaaaa	a a	4731
	1 A mo sapiens					
<400> 460 atgcagata	u a tgttctcat	c agtagtaag	a atctcaggg	t tatgcttat	t ccccaatgga	60
ggtatgaca	t ataatcttt	t ctgccttta	c ttatcaatt	c accaaggag	c tgttttctct	120

174

gcatctaggc catcatactg ccaggctggt tatgactcag aagatgttat ctga

<210> 461 <211> 2308 <212> DNA <213> Homo sapiens

<400> 461 60 eggtggegge gggaccatgg aggeggeggt egetgeteeg egteeeegge tgeteeteet 120 cgtgctggcg gcggcggcgg cggcggcggc ggcgctgctc ccggggggcga cggcgttaca 180 gtgtttctgc cacctctgta caaaagacaa ttttacttgt gtgacagatg ggctctgctt 240 tgtctctgtc acagagacca cagacaaagt tatacacaac agcatgtgta tagctgaaat 300 tgacttaatt cctcgagata ggccgtttgt atgtgcaccc tcttcaaaaa ctgggtctgt 360 gactacaaca tattgctgca atcaggacca ttgcaataaa atagaacttc caactactgt 420 aaagtcatca cctggccttg gtcctgtgga actggcagct gtcattgctg gaccagtgtg 480 cttcgtctgc atctcactca tgttgatggt ctatatctgc cacaaccgca ctgtcattca 540 ccatcgagtg ccaaatgaag aggaccette attagatcge cettttattt cagagggtae 600 tacgttgaaa gacttaattt atgatatgac aacgtcaggt tctggctcag gtttaccatt 660 gcttgttcag agaacaattg cgagaactat tgtgttacaa gaaagcattg gcaaaggtcg 720 atttggagaa gtttggagag gaaagtggcg gggagaagaa gttgctgtta agatattctc 780 ctctagagaa gaacgttcgt ggttccgtga ggcagagatt tatcaaactg taatgttacg 840 tcatgaaaac atcctgggat ttatagcagc agacaataaa gacaatggta cttggactca 900 gctctggttg gtgtcagatt atcatgagca tggatccctt tttgattact taaacagata 960 cacagttact gtggaaggaa tgataaaact tgctctgtcc acggcgagcg gtcttgccca 1020 tcttcacatg gagattgttg gtacccaagg aaagccagcc attgctcata gagatttgaa 1080 1140 atcaaagaat atcttggtaa agaagaatgg aacttgctgt attgcagact taggactggc agtaagacat gattcagcca cagataccat tgatattgct ccaaaccaca gagtgggaac 1200 aaaaaggtac atggcccctg aagttctcga tgattccata aatatgaaac attttgaatc 1260 cttcaaacgt gctgacatct atgcaatggg cttagtattc tgggaaattg ctcgacgatg 1320 ttccattggt ggaattcatg aagattacca actgccttat tatgatcttg taccttctga 1380 cccatcagtt gaagaaatga gaaaagttgt ttgtgaacag aagttaaggc caaatatccc 1440 aaacagatgg cagagctgtg aagccttgag agtaatggct aaaattatga gagaatgttg 1500 gtatgccaat ggagcagcta ggcttacagc attgcggatt aagaaaacat tatcgcaact 1560 cagtcaacag gaaggcatca aaatgtaatt ctacagcttt gcctgaactc tccttttttc 1620 ttcagatctg ctcctgggtt ttaatttggg aggtcagttg ttctacctca ctgagaggga 1680

acagaaggat	attgcttcct	tttgcagcag	tgtaataaag	tcaattaaaa	acttcccagg	1740
atttctttgg	acccaggaaa	cagccatgtg	ggtcctttct	gtgcactatg	aacgcttctt	1800
tcccaggaca	gaaaatgtgt	agtctacctt	tattttttat	taacaaaact	tgttttttaa	1860
aaagatgatt	gctggtctta	actttaggta	actctgctgt	gctggagatc	atctttaagg	1920
gcaaaggagt	tggattgctg	aattacaatg	aaacatgtct	tattactaaa	gaaagtgatt	1980
tactcctggt	tagtacattc	tcagaggatt	ctgaaccact	agagtttcct	tgattcagac	2040
tttgaatgta	ctgttctata	gtttttcagg	atcttaaaac	taacacttat	aaaactctta	2100
tcttgagtct	aaaaatgacc	tcatatagta	gtgaggaaca	taattcatgc	aattgtattt	2160
tgtatactat	tattgttctt	tcacttattc	agaacattac	atgccttcaa	aatgggattg	2220
tactatacca	gtaagtgcca	cttctgtgtc	tttctaatgg	aaatgagtag	aattgctgaa	2280
agtctctatg	ttaaaaccta	tagtgttt				2308

<210> 462

<211> 1222

<212> DNA <213> Homo sapiens

<400> 462 ageteageag gaceteagee atgagaette teateetgge ceteettgge atetgetete 60 tcactgcata cattgtggaa ggtgtaggga gtgaagtctc agataagagg acctgtgtga 120 gecteactae ceagegactg ceggttagea gaateaagae etacaceate aeggaagget 180 ccttgagagc agtaattttt attaccaaac gtggcctaaa agtctgtgct gatccacaag 240 ccacatgggt gagagacgtg gtcaggagca tggacaggaa atccaacacc agaaataaca 300 tgatccagac caagccaaca ggaacccagc aatcgaccaa tacagctgtg actctgactg 360 getagtagte tetggeacce tgteegtete cageeageea geteatttea etttacaege 420 tcatggactg agtttatact caccttttat gaaagcactg catgaataaa attattcctt 480 tgtattttta cttttaaatg tcttctgtat tcacttatat gttctaatta ataaattatt 540 tattattaag aatagttccc tagtctattc attatattta gggaaaggta gtgtatcatt 600 gttgtttgat ttctgacctt gtacctctct ttgatggtaa ccataatgga agagattctg 660 gctagtgtct atcagaggtg aaagctatat caatctctct tagagtccag cttgtaatgg 720 ttctttacac atcagtcaca agttacagct gtgacaatgg caacaatttg agatgtattt 780 caacttgtct ctataataga attctgttta tagaataagg gagaaaataa tccagtcttc 840 actgggttcc cattctgagg gtccactact caaaaatttg cttcactcaa tttttttcac 900 ctctttgtgt tttattttgg tgtcctatta aaggaataaa atgacacaac ttgtcccttt 960

tttgtcccat tagcaaaaat tagaattttg gtataaagaa actttattca agtaaaaatc 10	020
aataccettt gaattggaca ataateteac tacettatta ggatttetgt atttgecatt 1	080
aataccettt gaattggaca ataatettae tussessa getttaatge tecaaatget 1	140
acgctagtta tcatgcatgt tatgctttac tgcgaataag cttttaatgc tccaaatgct 1	200
gacccatgca atatttcctc atgtgatcac aatttgcagt aaacttttaa ttaaatgctc 1	.222
atctggtaac tcaacacccc ag	
<210> 463 <211> 928 <212> DNA <213> Homo sapiens <400> 463 atttggaaaa ttacacagct ttggaagaat ccactaaagt ttcttctttg gatttcttga	60
cagtatgatt tagtaaatga aatttgacca aatggaagaa tcatgttagt tctgacctca	120 .
cagtatgatt tagtaaatga aatttgatsa aargy , , , atactatagt aacttttagg cgtgggtgta gaagtttata ggtttctatt gacagttatt	180
gtaaattagc atttactgtg gtacaaattc tttataactg acttagtcat ttgccgctta	240
gtaaattagc atttactgtg gtacaacts street gtggggaaaa gtgactttag attatgaact gcagtttata tactgaaatg aaaacatctt gtggggaaaa gtgactttag attatgaact	300
gcagtttata tactgaaatg aaaacactee geggg tootattttg gacaaaggaa attaagaatg	360
caattcaaat gaactctatt taaaatgggg teetattos 5	420
taaaagtcag aacagtcttg aggtaaaaag tgtgctttgg cttaaaaggg atacagtata	480
ttaattacat cttttattat tattgtttat ttcttagaat catttctggc tttctcaaaa	540
caaaataata ttaatgagta cttctatttg ctgcattttt cttattacag cctttgagac	600
agctggtaat tataagtcat tttccatttt ttaaaacata attttataaa gaattctctt	660
atotogacta tgtagaatag cacctactgg acagaacaat ttttgtatoc aaaactggca	720
tttcttagag atgggttgga ggagtacact atggtttaag ttgggtaaaa tgcaacactg	780
tgtccttgga acccgttttt tgtggtaagc gatgtaatgt gaagttttaa gtatgggata	840
aaaaccatgt ttttctctgt tgaccagtgg ggggtaaaat tggtacaagg gaaggattct	900
tetttaaeta gtaaggeett gtaaaaatga atggtgggga gaaaaaaggg gggeaeagte	928
atgatcggct cttataatta attaatgt	920
<210> 464 <211> 977 <212> DNA <213> Homo sapiens	
<400> 464 gatattccca aaaagaggct gagacaggag gttattttca attttatttt	60
actttttcc ctttattact gttgtagtcc ctcacttgga tatacctctg ttttcacgat	120

agaaataagg gaggtctaga gcttctattc cttggccatt gtcaacggag agctggccaa 180 gtcttcacaa acccttgcaa cattgcctga agtttatgga ataagatgta ttctcactcc 240 cttgatctca agggcgtaac tctggaagca cagcttgact acacgtcatt tttaccaatg 300 attttcaggt gacctgggct aagtcattta aactgggtct ttataaaagt aaaaggccaa 360 catttaatta ttttgcaaag caacctaaga gctaaagatg taatttttct tgcaattgta 420 aatcttttgt gtctcctgaa gacttccctt aaaattagct ctgagtgaaa aatcaaaaga 480 gacaaaagac atcttcgaat ccatatttca agcctggtag aattggcttt tctagcagaa 540 cctttccaaa agttttatat tgagattcat aacaacacca agaattgatt tgtagccaac 600 attcattcaa tactgttata tcagaggagt aggagagagg aaaaatttga ctttatctgg 660 gaaaagcaaa atgtacttaa gaataagaat acatggtcca ttcaacttta tgttatagat 720 atgtcgttgg gtaaatcatc tggttgagtt tcaaagaatg gcccaatgtc ctctgtgctg 780 gtcaatgacc acgttatgtg cctgacttcg aggacaccct ctctggtttg gtattttggg 840 900 ggcgaaaatg ggaaccatat tattttcggt ggaccttgga aataggggct agagagagca aaaaaggggg ggatcacggg ggaaccagat ggaaggcgaa cttaaaggcg ccggagacaa 960 977 ggtagaggga caaaact

<210> 465

<211> 710

<212> DNA

<213> Homo sapiens

gagaggtgga ggcgctttga aaggtgagag cgcgagggcg gtgcggggct gtctcccggc 60 tgggactcgc tcgcgctccc ggtgctaatg gtttatgaga gggcggggga agccgtgcct 120 cctcgcggac taagagaaaa attcccgcgg gcgctctttg ggtgggccgg agaacgcccc 180 tcagcccttt gcgcctctaa ccctcctcag ctgagctgca gtgggcgcgg tgcccgttat 240 ttccgccttg gggaggtgct tggaactgat gtagggagct cggttggtga tttctcgggt 300 ttctggcctt tccagaccct tgtaattgtt ttctcggtgc agagctcttt tggggtctgg 360 gggtttccgt cgtcctgcgc gcgtcatcgc gaagcttggc ctgagggtcc ggtttcctag 420 ctactgtgcc cctccctcct ggaggcagag tgacggacta gtgggctagc gggcgctggg 480 ttcctgcgtc ccgccaaaga ggtttgtaat catgaaagtt cacccttccg ggtgttaatt 540 cctgagagga tctactccac tgtctaccac tcattcctgc tgcattaacc ttcattgtta 600 acggatttta atgaataata tagttatccc ggataccatg ctggcaggat ccactttgcg 660 710 aaattgtgga ctgttggact gtgattctaa gtgggggaaa taggctttag

```
<210>
      466
<211>
      630
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222>
      (469)..(469)
<223> n is a, c, g, t or u
<400> 466
teegegaegt ceaegegagg caccageece acgegeageg eegegeetgg agetegeggg
                                                                   60
agcccccac ggccgccgcc gccgccgccg ctgctgggca ccgtgtcgtc gcccagctcg
                                                                  120
tegeceacee acetgtggae eggegaggtg agegeggeee caceeeage eegegteegg
                                                                  180
catcggagga ggtctccgga gcagagccga agctcgccgg agaagaggag ccccagcgcc
                                                                  240
ceggtttgca aagcaggtga caaaacacga cagcettett caageeeete cagtattate
                                                                  300
cgacgcactt cctccctgga tactcttgct gcaccgtatc ttgctggaca ctggcctcgg
                                                                  360
gatagccatg ggcaagctgc accttgcatg agggacaaag ctacacagac agagagtgca
                                                                   420
tgggctgaag aatactctga aaagaagaaa gggtctcaca agcgctcanc atcgttgggc
                                                                   480
agtacagatc aacttaatga gatagcaaaa ttacaccagc agttgcagag aagtaaacac
                                                                   540
atcagtcggc atcatcgaga taaagaaaga cagtctccat ttcattgcaa ccatgcagct
                                                                   600
                                                                   630
atttaacaat gtcaggctgc tgttccaaaa
<210> 467
<211>
       485
<212>
       DNA
<213> Homo sapiens
<400> 467
60
                                                                   120
tcacccagge tggaatgcag tagcacaatg tcggctcact gcaacctctg caataagagt
                                                                   180
gaaactccgt ctcaaaacaa aaagaaaaag aaaggagcca tggagcccca ggtaggccag
ggctgatgga acggcccttg ctctaaggcc ttgcggcgtc actttctggg ctgtgacaga
                                                                   240
 aatggagaat ggctggaaga tcacagcacc gggatggcat ctgtacttgt tgggtagaca
                                                                   300
 cagggcgaac caagctctgg aaggtgccac catctagaag agctgcactc gcagattgag
                                                                   360
 acacatgcag ttaatttcta cagtagtgac cagaggaggg gcctggagtg ccccagctgg
                                                                   420
 gagcaggcta tagctgagta tgtgattcac ctttactgtc catttgacac cacttccttg
                                                                   480
                                                                   485
 tctgt
```

<210> 468 1748 <211> <212> DNA <213> Homo sapiens <220> misc feature <221> (41) . . (41) <222> <223> n is a, c, g, t or u <400> 468 aagaacgggc ccaccgcgtt cggggttctc ctcccgsrga ngggaaccca aaccctgtct 60 ctttccccak gtttcggagg aggctttgga tacgtcctcg gcggaatcca ctgggataaa 120 acgggcttcg ggagggccct ggggggacag ttccgagtca twwacctctt cactgcggtc 180 accetgagyg teaceacegt cetgaecetg gteageatee etgagaggee getgeggeeg 240 ccgagtgaga agcgggcagc catgaagagc cccagcctcc cgctgccccc gtccccgccc 300 gtcctgccag aggaaggccc tggcgacagc ctcccgtcgc acacggccac caacttctcc 360 agccccatct cgccgcccag cccctcacg cccaagtacg gcagcttcat cagcagggac 420 480 agctccctga cgggcatcag cgagttcgcc tcatcctttg gcacggccaa catagacagc gtcctcattg actgcttcac gggcggccac gacagctacc tggccatccc tggcagcgtc 540 cccaggccgc ccatcagcgt cagcttcccc cgggcccccg acggcttcta ccgccaggac 600 cgtggacttc tggagggcag agagggtgcc ctgacctccg gctgtgacgg ggacattctg 660 agggtgggct ccttggacac ctctaagcca aggtcatcag ggattctgaa gagacctcag 720 accttggcca tcccggacgc agccggagga gggggtcccg aaaccagcag gagaaggaat 780 gtgacettca gtcagcaggt ggccaatate etgetcaaeg gegtgaagta tgagagegag 840 ctgacgggct ccagcgagcg cgcggagcag cctctgtccg tggggcgcct ctgctccacc 900 atctgcaaca tgcccaaggc gctacgcacc ctctgcgtca accacttcct ggggtggctc 960 tcattcgagg ggatgttgct cttctacaca gacttcatgg gcgaggtggt gtttcagggg 1020 gaccccaagg ccccgcacac atcagaggcg tatcagaagt acaacagcgg cgtgaccatg 1080

ggctgctggg gcatgtgtat ctacgccttc agtgctgcct tctactcagc tatcctggag

aagctggagg agttcctcag cgtccgcacc ctctacttca tcgcctatct cgccttcggc

ctggggaccg ggcttgccac cctctccagg aacctctacg tggtcctgtc gctctgcata

acctacggga ttttattttc caccctgtgc accttgcctt actcgctgct ctgcgattac

tatcagagta agaagtttgc agggtccagt gcggacggca cccggcgggg catgggcgtg

gacatetete tgetgagetg ceagtaette etggeteaga ttetggtete eetggteetg

gggcccctga cctcggccgt gggcagtgcc aacggggtga tgtacttctc cagcctcgtg

1140

1200

1260

1320

1380

1440

1500

teetteetgg getgeetgta eteeteetg tittgteatti atgaaattee teeeagegae 1560
getgeagaeg aggageaeeg geeeteetg etgaaegtet gacategegg ageetegaet 1620
eeggagaege geetgeaeet gggggtetgg ageaggeega eeagtgagga eeaaagggee 1680
tigtiggaea gggggaeagg etgeetaetg gaatgtaaat atgtgataaa ataataaatg 1740
acaagege

<210> 469 <211> 2317 <212> DNA

<213> Homo sapiens

gtttcctcgg cggcctcgga gcgcgggtgc agcagttgtg tcccgacccc tgggagcgcc 60 atggcagage tgtgccccct ggccgaggag ctgtcgtgct ccatctgcct ggagcccttc 120 aaggageegg teaceaetee gtgeggeeae aacttetgeg ggtegtgeet gaatgagaeg 180 tgggcagtcc agggctcgcc atacctgtgc ccgcagtgcc gcgccgtcta ccaggcgcga 240 ccgcagctgc acaagaacac ggtgctgtgc aacgtggtgg agcagttcct gcaggccgac 300 ctggcccggg agccacccgc cgacgtctgg acgccgcccg cccgcgcctc tgcacccagc 360 ccgaatgccc aggtggcctg cgaccactgc ctgaaggagg ccgccgtgaa gacgtgcttg 420 gtgtgcatgg cctccttctg tcaggagcac ctgcagccgc acttcgacag ccccgccttc 480 caggaccacc cgctgcagcc gcccgttcgc gacctgttgc gccgcaaatg ttcccagcac 540 aatcggctgc gggaattttt ctgccccgag cacagcgagt gcatctgcca catctgcctg 600 gtggagcata agacetgete tecegegtee etgageeagg ecagegeega eetggaggee 660 accetgagge acaaactaac tgtcatgtac agtcagatca acggggegte gagageactg gatgatgtga gaaacaggca gcaggatgtg cggatgactg caaacagaaa ggtggagcag 780 ctacaacaag aatacacgga aatgaaggct ctcttggacg cctcagagac cacctcgaca 840 aggaagataa aggaagagga gaagagggtc aacagcaagt ttgacaccat ttatcagatt 900 ctcctcaaga agaagagtga gatccagacc ttgaaggagg agattgaaca gagcctgacc 960 aagagggatg agttcgagtt tctggagaaa gcatcaaaac tgcgaggaat ctcaacaaag 1020 ccagtctaca tccccgaggt ggaactgaac cacaagctga taaaaggcat ccaccagagc 1080 accatagacc tcaaaaacga gctgaagcag tgcatcgggc ggctccagga gctcaccccc 1140 agttcaggtg accetggaga gcatgaceca gegtecacae acaaatecae aegeeetgtg 1200 aagaaggtet ecaaagagga aaagaaatee aagaaaeete eeeetgteee tgeettaeee 1260 agcaagette ceaegtttgg ageceeggaa eagttagtgg atttaaaaca agetggettg 1320

gaggetgeag ccaaageeae cageteaeat eegaaeteaa eateteteaa ggeeaaggtg 1380 ctggagacct tcctggccaa gtccagacct gagctcctgg agtattacat taaagtcatc 1440 ctggactaca acaccgccca caacaaagtg gctctgtcag agtgctatac agtagcttct 1500 gtggctgaga tgcctcagaa ctaccggccg catccccaga ggttcacata ctgctctcag 1560 gtgctgggcc tgcactgcta caagaagggg atccactact gggaggtgga gctgcagaag 1620 aacaacttct gtggggtagg catctgctac ggaagcatga accggcaggg cccagaaagc 1680 aggeteggee geaacagege etectggtge gtggagtggt teaacaceaa gatetetgee 1740 tggcacaata acgtggagaa aaccctgccc tecaccaagg ccacgcgggt gggcgtgctt 1800 ctcaactgtg accaeggett tgtcatette ttegetgttg eegacaaggt eeacetgatg 1860 tataagttca gggtggactt tactgaggct ttgtacccgg ctttctgggt attttctgct 1920 ggtgccacac tctccatctg ctcccccaag taggcaggct gtaggcactt gggctgactg 1980 cctgcagaag tcccaagacc ctagtgaaaa tacagcaggc agaactctcc ttggataatt 2040 cccccaagag gtccccaagg attgggagca tgggagggga gctggcggga gggtgggagg 2100 tgggatttag ccaggaaagg ggtgagagtg attgtgttgt gggcgaggag gcgtttccac 2160 cccctggtgc ctatcagggc agggtgacct actccccatt gttctggaaa tctccaggct 2220 gctgggcagc tgggcagagc tctgggaagt gaagtcatga gtgcccgatt cctcttagag 2280 2317 aaaatccata gccttcagat cttggtgttt tgaattc

<210> 470 <211> 241 <212> DNA <213> Homo sapiens

<220>
<221> misc_feature
<222> (53)..(53)
<223> n is a, c, g, t or u

<400> 470
gccgaggctg ccgatagtcc gggagcagag gcggcggcgg cacggtcagc gantcccggg 60
gtcccgagcc gcgagacagg attcagcagg ctcggcggac gacgaagcaa atgcacttcc 120
caaagcgatg agtctccagc aaaagccggg ggaacttttt cgcggcgctc gggatcctga 180
gcgtcctggg ctccgggcgt gtatgagagc gagcgagacg cgctcagaga gagtgactgt 240
g

<210> 471 <211> 389

```
<212> DNA
<213> Homo sapiens
ttttgaccca atagggaagg agatatggtt ctaaatatat cattttagaa cagatccatt
<400> 471
                                                                      60
tcactaaacg aaattcattt gataaacaag ataggacaaa ctacggcgta acgagtcttt
                                                                     120
ttcatttttt atccttttc tgttatattt tatctaacaa ccttgatcca tgacaatgtg
                                                                     180
aaaaaaaaag acaataagtt ttcttctatg tgacttacag caacatagca agtatgttac
                                                                     240
gatattaaat attttatttt ctaacettte aaaattaaga aettatgaat aaatgagatg
                                                                     300
actctcagaa tatgaacaga aaagtctact tctgaacata aaaatgtaat cagaaacaat
                                                                     360
                                                                      389
gtttccacag aataagatgt aaaggtatc
<210> 472
<211>
       491
 <212>
       DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
       (487)..(487)
 <222>
 <223> n is a, c, g, t or u
 ttttttttcg cttcacaccg tttttattga ccgatcgcag cccagcaaga ttgatcgagc
 <400> 472
                                                                       60
 tggaatggga agggacttet ectececcag geccageteg ecagggeete gggeegtget
                                                                       120
 gcagtttctg gcctttggtg tcgctccccg cccccagcc ccgcaaaatc ccggcttctt
                                                                       180
 ttctgtctgc gcggccggga ccgcccaggc aggcgccggg gctccggggc tccggggga
                                                                       240
 gggactegge ggcteggete ggcteegett ettteteetg eetgeaaata tttgetgeet
                                                                       300
 cgctggaaat ccgacgattt cgcgcgcgct ctgcttgcaa agtctttaag taaacacgct
                                                                       360
 caaatgaccg ccccgggcgg cccgaggcac gctctctccc cctccgcggg attagtaact
                                                                       420
  ttaggacttc gaccccgggg ctccgctttg cctgttaccc aggtcgggca gcgcgcgggc
                                                                       480
                                                                       491
  gcccggngcc g
  <210>
         473
  <211>
         557
         DNA
  <212>
        Homo sapiens
  <213>
  <220>
         misc_feature
  <221>
         (499)..(499)
  <222>
  <223> n is a, c, g, t or u
```

<220>

<221> misc_feature (554)..(554) <222> <223> n is a, c, g, t or u <400> 473 aactgtgtca tactccttag aagaagaaag cctcaagaag ttctgcgttt gtcggagtta 60 cggctcgcag agcctcgtgc tacccggggg gtgttttcac cgggttctgc agcagctgct 120 gacatccatc taagacaaaa gcatatctct tttctgaggt ttcaccagag attgttataa 180 attatccaca gctgcaagca gataatttct gcaaagcaga agtaattttc aagccaagga 240 aatttagaaa tagcaataaa aagagtatca gtgactcata gaagctaacc ttccatttaa 300 gatgtttcca ggtcagcagg aaccatcatg aaaagctcag cccgttcaat acctggctgg 360 getggtacet gactatgeca geaggggeaa egeetettee eteettagat eeaggtteea 420 gatgaacagg cagaactggc atccctcagt gccccaaggc tctgagtctc tgagagagga 480 caaagttgaa caggcgctnt ctctgaagat cactgcaatt caccgctgat tccgagtatt 540 557 ctttctcatt cggngag <210> 474 <211> 2389 <212> DNA . <213> Homo sapiens <400> 474 cggctcagcg ggggccgagg ccatgttccc ggtgtttcct tgcacgctgc tggcccccc 60 cttccccgtg ctgggcctgg actcccgggg ggtgggcggc ctcatgaact ccttcccgcc 120 180 acctcagggt cacgcccaga accccctgca ggtcggggct gagctccagt cccgcttctt tgcctcccag ggctgcgccc agagtccatt ccaggccgcg ccggcgcccc cgcccacgcc 240 ccaggccccg gcggccgagc ccctccaggt ggacttgctc ccggtgctcg ccgccgccca 300 ggagtccgcc gcggctgctg cggccgctgc cgccgctgct gccgccgtcg ctgccgcgcc 360 cccggcccct gccgccgcct ctacggtgga cacagcggcc ctgaagcagc ctccggcgcc 420 ccctccgcca ccccgccag tgtcggcgcc cgcggccgag gccgcgcccc ccgcctccgc 480 540 cgccactatc gccgcggcgg cggccaccgc cgtcgtagcc ccaacctcga cggtcgccgt 600 ggccccggtc gcgtctgcct tggagaagaa gacaaagagc aaggggccct acatctgcgc tctgtgcgcc aaggagttca agaacggcta caatctccgg aggcacgaag ccatccacac 660 720 gggagccaag gccggccggg tcccctcggg tgctatgaag atgccgacca tggtgcccct 780 gagecteetg agegtgeece agetgagegg ageeggeggg ggagggggag aggegggtge cggcggcggc gctgccgcag tggccgccgg tggcgtggtg accacgaccg cctcggggaa 840

gcgcatccgg aagaaccatg cctgcgagat gtgtggcaag gccttccgcg acgtctacca	900
cctgaaccga cacaagctgt cgcactcgga cgagaagccc taccagtgcc cggtgtgcca	960
gcagcgcttc aagcgcaagg accgcatgag ctaccacgtg cgctcacatg acggcgctgt	1020
	1080
	1140
	1200
	1260
cagccagggt cctcaccatg tctgtgagct ctgcaacaaa ggtactggtg aggtttgtcc	1320
aatggeggeg geageggeag eggeggeage ggeageageg geageagtag eageceetee	1380
cacagotgtg ggotcootet ogggggggga gggggtgoot gtgagototo agcoacttoo	1440
ctcccaaccc tggtgagctc caagttggtt gcgggggaga ggggagaatg gagtagagtc	1500
cettggtaca agetectete ecceetettt teccaecaae tectatttee etaccaacca	1560
aggagcctcc agaaggaaag gaggaagaaa tgttttctta ggggaattcg ctaggtttta	1620
acgatttgct tetectgete etettetate agacetgace ceacacaaac etgteecete	1680
ggttgtgttg aagtcccctg gacagtgggc aggggtggca gaggacacga gcagccactg	1740
cccgtacccc ctctcctctc tgtaagccca tgccctgtct tcccagggac ttgtgagcct	1800
dtteectega eggteetett eteteettee agteetetee ecetgetgte tgeageceet	1860
ccccggggag ttggtgcttt cttttccttt ttttttttt ttccaggggg agggaggaga	1920
ggaaggaggg ggatcagagc tgtcccaaag agggaaagcg gtgaggtttg aggaggggca	1980
gaagcagggc cggcaaaggt tgtaccttca taaggtggta tcggggggtt ggggtcaggc	2040
cctgaacatc gtcctacttg agaatctgtc aggggaaaaa gtcaagggga gcaggaggaa	2100
gagccaggag ggccagaggc agagaagaga tggagtctta ggggccaggg tgagccaggg	2160
gtccagggcc tagaggtgct tctggggggg ggggaatgca gccagtgtcc ccctcccctc	2220
ttccacccca gctccagccc tggtcttgtc ttttcatccc tcttccccac gacagaagaa	2280
gttgtggccc tggcatgtca tcgtgttcct gtgtcccctg catgtacccc accctccacc	2340
ccttcctttt gcgcggaccc cattacaata aattttaaat aaaatcctg	2389

PCT/US03/13015

WO 03/090694

<210> 475 <211> 6454 <212> DNA <213> Homo sapiens

ctgagtttgc cgagctgccc agccaggctg ttcccacaga cgcccaccac cccactcctc 60

accaccagca geetgegtae ecaggeecca aggagtatet getteecaag geeceectae	120
tocactoagt gtocagggac coctocoot ttgcccagag ctccaactgc tacaacagat	180
ccatcaagca agagccagta gacccgctga cccaggctga gcctgtgccc agagacgctg	240
gcaagatggg caagacacct ctgtccgagg tgtctcagaa tggaggaccc agtcaccttt	300
ggggacagta ctcaggaggc ccaagcatgt cccccaagag gactaacggt gtgggtggca	360
gctggggtgt gttctcgtct ggggagagtc ctgccatcgt ccctgacaag ctcagttcct	420
ttggggccag ctgcctggcc ccttcccact tcacagatgg ccagtggggg ctgttccccg	480
gtgaggggca gcaggcagct tcccactctg gaggacggct gcgaggcaaa ccgtggagcc	540
cctgcaagtt tgggaacagc acctcggcct tggctgggcc cagcctgact gagaagccgt	600
gggcgctggg ggcaggggat ttcaactcgg ccctgaaagg tagtcctggg ttccaagaca	660
agctgtggaa ccccatgaaa ggagaggagg gcaggattcc agccgcaggg gccagccagc	720
tggtcttcta ccagcacaag aacctcaacc agcccaacca cgggctggcc ctctgggaag	780
ccaagatgaa gcagctggcg gagagggcac gggcacggca ggaggaggct gcccggctgg	840
gcctgggcca gcaggaggcc aagctctacg ggaagaagcg caagtggggg ggcactgtgg	900
ttgctgagcc ccagcagaaa gagaagaagg gggtcgtccc cacccggcag gcactggctg	960
tgcccacaga ctcggcggtc accgtgtcct cctatgccta cacgaaggtc actggcccct	1020
acageegetg gatetaggtg ecagggagee agegtacete agegteggge etggeeegag	1080
ctgtctctgt ggtgcttttg ccctcatacc tgggggcggg ttgggggtgc agaagtcttt	1140
ttatctctat atacatatat agatgcgcat atcatatata tgtatttatg gtccaaacct	1200
cagaactgac cegeceetee ettaceecea etteceeage aetttgaaga agaaactaeg	1260
gctgtcgggt gatttttccg tgatcttaat atttatatct ccaagttgtc ccccccttg	1320
tctggggggt ttttattttt attttctctt tgtttttaaa actctatcct tgtatatcac	1380
aataatggaa agaaagttta tagtatcctt tcacaaagga gtagttttaa attccattta	1440
aaatgtgtat ttattggatt ttttaaaagc gacaatagta atggtaaagg atgggcagga	1500
aaggccagta gtgctccccc gcccagtctc gctgggtctg gcgagccaag cccctcgggc	1560
gctggcgagg tcctcagcca tctgcccctc gagagccaag cgcggacggt agccacccag	1620
ttcatccctc ccgacataca ccccttccct ttggggaagg gagcctcagg acagcttctg	1680
teetetetga taggatggga gagtetgeag aaaaceatet ggggteeett tteeagteee	1740
cggcttggag tcgaagggca gatgcacccc aggccagccc cacgagatgc tggcatagct	1800
ttccccagaa accaggttgg aagtagatgg cttcaagctt gctagtctcc acactgaatc	1860
ctctgtccgt tatttatgga gtcacacgat gtcatggttc actaggcagc acctcacgct	1920

ggagctggag tgcgaggttc ttaggggccg tgcccaccat gttgccaagc caatgcatgc 1980 tgagctgaag gaatttgtct tagtggcagt tttttaaaaa atgcccccaa agtctatgct 2040 gatactgaaa aagggctact gtatctttaa aaacaggaag ttgaacccaa gctgtgaaaa 2100 gccagtggtg ctctgtgcat ggtgctgtgc ggagcctggt gctgtagtgt tgtgctggga 2160 ctttcttgac tcttgggcag gtcacatcct acaggagctc agcagaccag tgtaacaaca 2220 gttaatgcat ctatcctgat ccctgaattt ccacattgga caatggtgca tgcctcacac 2280 ctgagcctgc ttcctccatg ctgtcattgg gttcgggggc ctacacttaa caattttaaa 2340 gtgcaagagt caaacatttt caacaggttg ctataatttt cctccctaat tggtgccatt 2400 tetecatttg ateattttet ttttteett teteceetet teatceaett taatataget 2460 gttctgaaat tctggtgcat tcattcggtt ctttgaaatg agaatgtggt gcttaatttt 2520 tgtgacgttg tcgagagagg ttgggcctga tgggagcaac actcatcatc accaagtcaa 2580 actttgttgg agtgttggtt tttcttgtga tattagcaga aatgatctca tgctagccat 2640 gtggatgtgt gtgtggtgaa tggggggctt catcaggaca cacagagggg aatgtggcca 2700 cacggtggat gaccaccaag ccctgagatg aacaggtatt tactgagcag ttgtattcag 2760 atatgggtct tcatgaatca tgtttaacaa tcagatgacc gctataggca agttcctgag 2820 cttccgggtg ccttgagtaa gagctgagaa ccggcctgct gggtgtttac tgtatctgtt 2880 tggaagcact ggcggagggt cgttgtaaga tgtcctgagc atttatgtgg tctggtttta 2940 actgtaaata gtgaaagatt tttttaagca cttttgccta gatttaaaca gcaacttgaa 3000 aaaaaaagta tgttttaaca tgtaattgtg ggagaaattg taaatagtag ccgaatattt 3060 aatgtgcttt gtctatcctc cacttttacc atattctgta aagttgcatt tattttacag 3120 gacaaaaaaa tgaaatatta ttgcttttga aataaatacc caagagctta tcaggactta 3180 gaattattca gaactcagat ttataggaaa acctctgacc ttcagtttga caagctaaag 3240 gaagcagagt ctttaatgag catgctaatt ttctagtttt gaggaaaaat tgggtccttt 3300 aaatgctatt ttgcttatcg catcagtact tttatgcagg tctcatttga ctccgtgctt 3360 aggtagatgc gggggtgcct tgaaaacttc attttaaatg atcttaagca agaaatacaa 3420 tattttacga aacatttgga gaatgtgacc gtctgtatga cccgtggaag ccccaggttg 3480 gctgttggtt tggaaggtcc cgagtgtaac ccaggtgatt ctgatacttg gcatgtgta 3540 atcttcctga tgtatgttaa ataaactctt cccctcatca ccctttggta ggaaagccat 3600 tagatgaaag gagaaaccaa tacaagctaa aagcatgcga cgtctgtccc ccagcccaaa 3660 cagcettggt teatcagttt etgeagtagg agataggetg etgagaggtg agteaagagg 3720

cagtetecat tggatgtece caeteceege agaatggegt ttecagagtt aggeggtgtg 3780 gttgccgtgc tcaagcccat gctgatttgt acactacatg tctaacctac ctcaaatctc 3840 agtcattaaa attagcatgc tttagacata tatttaaaaa gtaactatgc acagctcttt 3900 atcccccct tgctgctgaa gctttcttaa agagaaaaat caaattttta ttttttactg 3960 gcactatcat tttttaagtc ctaaagatga ttaacagaca tttttatcat gagaagaaaa 4020 ataaagccat tgcaactaaa gaacctaaca gcatgaccaa gttcgaagag tcatattata 4080 gcaacggaaa tcgatggcgt cttagtcatc tccccagtgt gccctgtcca cggacaccat 4140 ccacgtgcag tgcaaacatt tggttccttt tctgctctgt tttgttttcc ctgcctgttg 4200 cgtgcaaggg aagtgcttgt aaagttctgt gctacgagat ttttaaaata aaaatcgctt 4260 cgcagcaggt tctcacaaaa taactggtgc tagctcaaga aatcatcatc tgaccatcag 4320 aaatettgae taaaggtgtt geatggattt gggggtettt eggtttttgg ttttgggtet 4380 ggettttage agggeeaatg ttteccacae eceggettea tgggtactge tttgeettet 4440 caccaaggtg acgatggtgt gcgtggaaag agatgatacc ccaccgcccc ctcttggtcc 4500 ttccaccagc ctcttttggg aacagtagtt tgcagagcaa gggattttta aagcgctaaa 4560 ggaaagaagt agcagagctt aactgctttg taccacacag cagtagatgt gcaaggacgg 4620 ttgacaatga gtcgatgata acctaatttc attgagagaa acccagccag acttgcttct 4680 agaggtttaa tcaccatgag atctcaaacc aaggcaaagc tggtggaaaa ctatatgata 4740 tecetgaegt geeteaacea gtatetettt cettttgtta etgaagtgtg ttttatggae 4800 taggaagcat ttttatgaat tgaaatagtc taaataaaat ggtgctatgg tgttttaatg 4860 tgactgtccc tgatcctgtc ttgctgaggt gctatcaacg ttctgaaacc acaaccaacc 4920 aaaaacaagg tgggctccag tctcttggct ttttttttt ttccctcccc tcttttggtg 4980 ctgtcttaga cccgtttacc gtgctataat ctgctctgag cagtgttgtg ttgtgttgta 5040 ttgttcttcc cttggtggcc aaacaaagca agtcgagaag gcagctatct ccctttctgt 5100 gatcgggagt gggcctgcct ggcttggcag gtgctttttg gttccacacc tgtcttctca 5160 ggcttgatgt gaaagaaagg gcgaagggtt ttttgagttt ttgtttttga ggaaggggag 5220 ttgggtactt ctgcctctcc tagcatgata ggcattctca tagccaggga cagattttct 5280 cctgcagccc agggtgctaa gcagacatct ctgggagtcc caagggcaca ccaagggaga 5340 ccagatggat ctccttcctc ccctggcact ggctgggacc atggtgggca ggggcttcat 5400 tetetgacce agegttgett etgeetetea ttggtaacce ettatgtteg gaetaaagga 5460 aggagettte tttgctcact egatgecact gaggetgett tttagttggt getaacetaa 5520 atttcttctt gggtccacag aagttgatgt tttaaaaact caccaggaag ctccattttg 5580

tgtcatccac	tgtcacaata	atttttttaa	atacctcaaa	aacaggacat	catgacaact	5640
			acctgcaggt			5700
			tttcattctt			5760
			tttcatgttt			5820
			ctttctcagt			5880
			cagctgcctc			5940
			aggtgcatac			60'00
			cactccgcga			6060
					agcaataggc	6120
					tttttgccta	6180
					tcagggatgc	6240
					ttcaggggta	6300
					gtgaacattc	6360
					ggggagaaaa	6420
		: ttttcatgta				6454
	_					

<210> 476

<211> 2653

<212> DNA

<213> Homo sapiens

ماميرين ووالتان ويعتودون والمعتبي ₹4005 476 ceggeeette geetetggge gatgggegae etgtgaggee ggteeeate getgggggeg 60 cgtgtgggag gaggcggccg cccgagtgac cgggagccgg gccgcggcct tccctcgccc 120 geoteggee eteccactee tetgeceegg ggeogecace geoegggegt eggacetggt 180 eccgtgeteg eggtgeegee geeetetggg ectageeege ecagetegge gageggegge 240 300 atgactgegg egeetetget gecacegeee geeeggeege egetegeege aggatggatg 360 eggacegtge ggegetaace ecegtggete ageteeegaa tegeeegeet tegageeete 420 ctcgtgagcc gcagcagcct cggtgccagc ccccgccgca gctgggccca gcggtccgcc 480 tgtccctcgt tgcggcttgt cggtgctgag tgaggcgtcg tccgggtcgg cgcgaacccg 540 cccggccgcg gtgccctgca gacctctgcg cgggcggctc ggcccttcac gcccttttcg 600 ttcacgaatc cgageceget egectetete cagegaaceg accatgtetg geggegeege 660 agagaagcag agcagcacte ceggtteeet gtteeteteg eegeeggete etgeeecaa 720

gaatggctcc	agctccgatt	cctccgtggg	ggagaaactg	ggagccgcgg	ccgccgacgc	780
tgtgaccggc	aggaccgagg	agtacaggcg	ccgccgccac	actatggaca	aggacagccg	840
tggggcggcc	gcgaccacta	ccaccactga	gcaccgcttc	ttccgccgga	gcgtcatctg	900
cgactccaat	gccactgcac .	tggagcttcc	cggccttcct	ctttccctgc	cccagcccag	960
catccccgcg	gctgtcccgc	agagtgctcc	accggagccc	caccgggaag	agaccgtgac	1020
cgccaccgcc	acttcccagg	tagcccagca	gcctccagcc	gctgccgccc	ctggggaaca	1080
ggccgtcgcg	ggccctgccc	cctcgactgt	ccccagcagt	accagcaaag	accgcccagt	1140
gtcccagcct	agccttgtgg	ggagcaaaga	ggagccgccg	ccggcgagaa	gtggcagcgg	1200
cggcggcagc	gccaaggagc	cacaggagga	acggagccag	cagcaggatg	atatcgaaga	1260
gctggagacc	aaggccgtgg	gaatgtctaa	cgatggccgc	tttctcaagt	ttgacatcga	1320
aatcggcaga	ggctccttta	agacggtcta	caaaggtctg	gacactgaaa	ccaccgtgga	1380
agtcgcctgg	tgtgaactgc	aggatcgaaa	attaacaaag	tctgagaggc	agagatttaa	1440
agaagaagct	gaaatgttaa	aaggtcttca	gcatcccaat	attgttagat	tttatgattc	1500
ctgggaatcc	acagtaaaag	gaaagaagtg	cattgttttg	gtgactgaac	ttatgacgtc	1560
tggaacactt	aaaacgtatc	tgaaaaggtt	taaagtgatg	aagatcaaag	ttctaagaag	1620
ctggtgccgt	cagatcctta	aaggtcttca	gtttcttcat	actcgaactc	cacctatcat	1680
tcaccgcgat	cttaaatgtg	acaacatctt	tatcaccggc	cctactggct	cagtcaagat	1740
tggagacctc	ggtctggcaa	ccctgaagcg	ggcttcttt	gccaagagtg	g tgataggtac	. 1800
cccagägtto	atggcccctg	agatgtatga	ggagaaatat	gatgaatcc	ttgacgttta	1860
tgcttttggg	atgtgcatgo	ttgagatggo	tacatctgaa	tatccttact	cggagtgcca	1920
aaatgctgcg	cagatetace	gtcgcgtgad	c cagtggggtg	g aagccagcca	gttttgacaa	1980
agtagcaatt	cctgaagtga	aggaaattat	tgaaggatgo	c atacgacaa	a acaaagatga	2040
aagatattco	atcaaagaco	ttttgaacca	a tgccttcttc	c caagaggaaa	a caggagtacg	2100
. ggtagaatta	a gcagaagaag	g atgatggaga	a aaaaatagco	c ataaaatta	t ggctacgtat	2160
tgaagatatt	aagaaattaa	agggaaaata	a caaagataat	t gaagctatt	g agttttcttt	2220
tgatttagag	g agagatgtco	c cagaagatg	t tgcacaagaa	a atggtagag	t ctgggtatgt	2280
ctgtgaaggt	z gatcacaaga	a ccatggcta	a agctatcaa	a gacagagta	t cattaattaa	2340
gaggaaacga	a gagcagcgg	c agttggtac	g ggaggagca	a gaaaaaaaa	a agcaggaaga	2400
gagcagtcto	c aaacagcag	g tagaacaat	c cagtgcttc	c cagacagga	a tcaagcagct	2460
cccttctgc	t agcaccggc	a tacctactg	c ttctaccac	t tcagcttca	g tttctacaca	2520

agtagaacct	gaagaacctg	aggcagatca	acatcaacaa	ctacagtacc	agcaacccag	2580
tatatctgtg	ttatctgatg	ggacggttga	cagtggtcag	ggatcctctg	tcttcacaga	2640
atctcgaggg	999					2653

<210> 477 <211> 5277

<212> DNA

<213> Homo sapiens

<400> gctgcataaa gctgagagat gcctacagct gagagtgaag caaaagtaaa aaccaaagtt 60 cgctttgaaa aattgcttaa gacccacagt gatctaatgc gtgaaaagaa aaaactgaag 120 aaaaaacttg tcaggtctga agaaaacatc tcacctgaca ctattagaag caatcttcac 180 tatatgaaag aaactacaag tgatgatccc gacactatta gaagcaatct tccccatatt 240 aaagaaacta caagtgatga tgtaagtgct gctaacacta acaacctgaa gaagagcacg 300 agagtcacta aaaacaaatt gaggaacaca cagttagcaa ctgaaaatcc taatggtgat 360 gctagtgtag aggaagacaa acaaggaaag ccaaataaaa aggtgataaa gacggtgccc 420 cagttgacta cacaagacct gaaaccggaa actcctgaga ataaggttga ttctacacac 480 cagaaaacac atacaaagcc acagccaggc gttgatcatc agaaaagtga gaaggcaaat 540 gagggaagag aagagactga tttagaagag gatgaagaat tgatgcaagc atatcagtgc 600 660 catgtaactg aagaaatggc aaaggagatt aagaggaaaa taagaaagaa actgaaagaa cagttgactt actttccctc agatacttta ttccatgatg acaaactaag cagtgaaaaa 720 aggaaaaaga aaaaggaagt tocagtotto totaaagotg aaacaagtac attgaccato 780 tctggtgaca cagttgaagg tgaacaaaag aaagaatctt cagttagatc agtttcttca 840 gattctcatc aagatgatga aataagctca atggaacaaa gcacagaaga cagcatgcaa 900 gatgatacaa aacctaaacc aaaaaaaaca aaaaagaaga ctaaagcagt tgcagataat 960 1020 aatgaagatg ttgatggtga tggtgttcat gaaataacaa gccgagatag cccggtttat cccaaatgtt tgcttgatga tgaccttgtc ttgggagttt acattcaccg aactgataga 1080 cttaagtcag attttatgat ttctcaccca atggtaaaaa ttcatgtggt tgatgagcat 1140 actggtcaat atgtcaagaa agatgatagt ggacggcctg tttcatctta ctatgaaaaa 1200 gagaatgtgg attatattct tcctattatg acccagccat atgattttaa acagttaaaa 1260 tcaagacttc cagagtggga agaacaaatt gtatttaatg aaaattttcc ctatttgctt 1320 cgaggctctg atgagagtcc taaagtcatc ctgttctttg agattcttga tttcttaagc 1380 1440 gtggatgaaa ttaagaataa ttctgaggtt caaaaccaag aatgtggctt tcggaaaatt

ç	gcctgggcat	ttcttaagct	tctgggagcc	aatggaaatg	caaacatcaa	ctcaaaactt	1500
(egettgeage	tatattaccc	acctactaag	cctcgatccc	cattaagtgt	tgttgaggca	1560
i	tttgaatggt	ggtcaaaatg	tccaagaaat	cattacccat	caacactgta	cgtaactgta	1620
i	agaggactga	aagttccaga	ctgtataaag	ccatcttacc	gctctatgat	ggctcttcag	1680
•	gaggaaaaag	gtaaaccagt	gcattgtgaa	cgtcaccatg	agtcaagctc	agtagacaca	1740
!	gaacctggat	tägaagagtc	aaaggaagta	ataaagtgga	aacgactccc	tgggcaggct	1800
	tgccgtatcc	caaacaaaca	cctcttctca	ctaaatgcag	gagaacgagg	atgtttttgt	1860
	cttgatttct	cccacaatgg	aagaatatta	gcagcagctt	gtgccagccg	ggatggatat	1920
	ccaattattt	tatatgaaat	tccttctgga	cgtttcatga	gagaattgtg	tggccacctc	1980
	aatatcattt	atgatctttc	ctggtcaaaa	gatgatcact	acatccttac	ttcatcatct	2040
	gatggcactg	ccaggatatg	gaaaaatgaa	ataaacaata	caaatacttt	cagagtttta	2100
	cctcatcctt	cttttgttta	cacggctaaa	ttccatccag	ctgtaagaga	gctagtagtt	2160
	acaggatgct	atgattccat	gatacggata	tggaaagttg	agatgagaga	agattctgcc	2220
	atattggtcc	gacagtttga	tgttcacaaa	agttttatca	actcactttg	ttttgatact	2280
	gaaggtcatc	atatgtattc	aggagattgt	acaggggtga	ttgttgtttg	gaatacctat	2340
	gtcaagatta	atgatttgga	acattcagtg	caccactgga	ctataaataa	ggaaattaaa	2400
	gaaactgagt	ttaagggaat	tccaataagt	tatttggaga	ttcatcccaa	tggaaaacgt	2460
	ttgttaatcc	ataccaaaga	cagtactttg	agaattatgg	atctccggat	attagtagca	2520
	aggaagtttg	taggagcagc	aaattatcgg	gagaagattc	atagtacttt	gactccatgt	2580
	gggacttttc	tgtttgctgg	aagtgaggat	ggtatagtgt	atgtttggaa	cccagaaaca	2640
	ggagaacaag	tagccatgta	ttetgaettg	ccattcaagt	cacccattcg	agacatttct	2700
	tatcatccat	ťtgaaaatat	ggttgcattc	: tgtgcatttg	ggcaaaatga	gccaattctt	2760
	ctgtatattt	acgatttcca	tgttgcccag	caggaggctg	aaatgttcaa	acgctacaat	2820
	ggaacatttc	cattacctgg	aatacaccaa	agtcaagatg	ccctatgtac	ctgtccaaaa	2880
	ctaccccatc	aaggctcttt	tcagattgat	gaatttgtco	: acactgaaag	ttcttcaacg	2940
	aagatgcago	: tagtaaaaca	gaggettgaa	a actgtcacag	g aggtgatacg	ttcctgtgct	3000
	gcaaaagtca	acaaaaatct	ctcatttact	tcaccaccag	g cagtttcctc	: acaacagtct	3060
	aagttaaago	: agtcaaacat	getgaeeget	caagagatto	tacatcagtt	tggtttcact	3120
	cagaccggga	ttatcagcat	agaaagaaa	g ccttgtaaco	atcaggtaga	tacagcacca	3180
	acggtagtgg	g ctctttatga	a ctacacage	g aatcgatcaq	g atgaactaac	c catccatcgc	3240
	ggagacatta	tccgagtgtt	tttcaaaga	t aatgaagact	ggtggtatgg	g cagcatagga	3300
	•					•	

aagggacagg aaggttattt tccagctaat catgtggcta gtgaaacact gtatcaagaa	3360
ctgcctcctg agataaagga gcgatcccct cctttaagcc ctgaggaaaa aactaaaata	3420
gaaaaatete cageteetea aaageaatea ateaataaga acaagteeea ggaetteaga	3480
ctaggctcag aatctatgac acattctgaa atgagaaaag aacagagcca tgaggaccaa	3540
ggacacataa tggatacacg gatgaggaag aacaagcaag caggcagaaa agtcactcta	3600
atagagtaaa gaattgaaga aaagttaaga gctgccgaaa tgcacagagg tgaaaatgac	3660
aaaccaaatg gaatttctct tcagagttca gaattttcag atactaagga ggaagaaagg	3720
atccactact tcttgttctt atgaatgact ctagaaaaat cagaatcaag ttgtgggtgg	3780
aaaaatcaac gtggcctttg agttcagttg ttataaacca ttgtgactat tgttggtcaa	3840
agtattggta cttatattgt tagtaattgc atcataatta cattaccagt gttggaaaac	3900
taatgaagaa aacactgtaa ttgctactca gcaaatgtga ataaaaggtg tttgcgttat	3960
taggatgtct gttaagtaat catttaatat tattatattg gtaatggttg tatgtgtgat	4020
gctatgccca gaatatgaag tatctgtttt tgaaattcac tttatttaaa agataagcag	4080
ctgactgggc acggtgcctc atgcctgtaa tcctagcacc ttgggaggct gaggcaggtg	4140
gatcacctaa ggtcaggagt tcaacaacac cagcctgacc aacatggtga aaccccatct	4200
ctactaaaaa tacaaaaatc agccgggtct catggcaggc acctgtaatc ccatctactg	4260
aggcaggaga attgcttgac ccaggaggca gaggttgcag tgagccaaga tcacgccatt	4320
gcactccagc ctgggggaca gagcaagact ctatctccaa aaaacaaaaa agataagcag	4380
ctttagaata tggcgcattc aaaacagtct cagtaacaaa gacattaaaa gaaaacaatt	4440
tactttctaa ttaaaatttt gtgtttctta agatcaaatc atataggtaa cttcatagac	4500
ctaaattaaa agtgattttt ggctggactg gcaacaatgt tcccaatgtc tttacttttt	4560
aaaaaaggct tttcatattt aagcacatac ctattttgta gacttacatt gtttaatatt	4620
tattttaatc ttaatatttt tacattatta tattgcatta tttatttttt ctaagttcca	4680
gaataatagt gtcattatta tagactatat gttttgaagt ttgatattat aatgggatat	4740
tcattttttg ttcttttctt gactcctttc tcaagtgtgt gataaggtct gctgataaaa	4800
tatttaaccc caagaaagtg aaaactaata taaaattaga aagacctatc caaattagac	4860
agtcaattcc attaaaataa gaagtgagaa aaacaatgtt gggcattgag gtgtaaattt	4920
tgcccagatg tatacccagt gtgaaatatc ttctaataaa aatatatttg gctcttatcc	4980
ctgcacatgt agaggcataa aaattggtaa acatgtcccg ctgtgtagaa ctttaaaaaa	5040
aaggcatttt tgaaagtgtt gagtggcact gataactggt gaagcctaca gccatccgcc	5100

PCT/US03/13015 WO 03/090694

caaaagtctg ttctgatggc actgagtttt cattgttctg gatgtataag tctgtgtgtc 5160 aggtacaget gggeecagee agettgagte actettgtae aagettgttt ttttetgtet 5220 tgtgaatgca cttgataatt taaaaataaa aatatctgtt tctctgcaaa aaaaaaa 5277

478 <210> 4664 <211> DNA

<212>

Homo sapiens <213>

<400> 478 ggactgcggg ataggaagct ggggatatgg acaagcagca gcgttatagc gctctgggtt 60 tegggacata ggeetgggee atgeggeece ettggeecet tggegegaee eecaggaaeg 120 ttcggaaagc tggtcctcgt ggctggggga aaggcggggg gtggggggga agcgggcacg 180 tgaccccggt cagccaatct gggtgctgct gacgtggccg cgcggccccg atgctctccc 240 cacccccca gcccgttccg gaagggaggg gctgggggct acgcccctc ccccagcacg 300 gettegtttt etgggggggg gttgacacce eggattacat acceegtace aageegaggg 360 caactttgga ggccccctgg aaggctttag gatccagatt cttcgctgct gctgccttac 420 cgccgagaac caccacccgc caggcgtctt gcggccacac ccctggcggg ttcaggcagg 480 ctacgeccac gegaeccete cegttteeet getttggeca atggaggage tacgaatgge 540 acgacctgct cgagcttggc agtctccagt tgggctgtgc atggaagctt gggaagactt 600 tgttggaagg ggaggcgggg agagagtgct ggaggctctg gggcgatggc ttccgcacct 660 cttccaacca ccctctttcc ctggagtcgg cggaccacag ctcagccaat tggcttggag 720 atgtggcggg ttgccacttc cctgtgggtc tctgcggcac tcttctgcct ggtgactgac 780 accttggaaa tgaagtttat gacgtcatcg ctgcggctgg ccaatagaaa aagctcccgc 840 ggagaggtgt teetteeeet tegaeteage ttetteacee gegtgagega gegegegege 900 geggaggggg tggggaaaat eteaageagg gtggegegea tgageggega ageteeteet 960 1020 ccccgcctat atataaaggg ctggcgcggg gctcggcggc gccatttcgt gctggagtgg agcageetet agaacgaget ggaggattet geetacegat acagageett egagtegtee 1080 ggggccgcca ttacaatcca cctccatccg cttggaaatg gccttcgtcc cggcctatga 1140 ctggtcccag cgggcagtac agacccccta gaagcccctg gagctcccct ttttcgggcc 1200 cegeceaate eteggagtet gtecaeeece tetaeteege eeteaagagg attteaaaga 1260 tggaggegge ggctccctaa accactttte gtgttcatce gectccatce gagategaaa 1320 cgggaceteg teggeeeegt aggggeeega caagaagagg gaateeetge agaceaacag 1380 cgggctatat tgacgacggt gtctgagatc ggggaccgtc ttttgaagag tcagtccctc 1440

cttagttgcc	cgcctcagct	gaggccgccg	ccattttctt	gctgtccgcc	gtctgcagag	1500
cgcgccaagc	tgcccggagc	tctccgagag	gccccaaaga	gactgctttc	gtgccggcca	1560
ggcagggggt	ttgtcgcctg	gaggcccaag	aggaacggcc	tcccccaac	ttagcgggtt	1620
atgctggacc	gggcggtgag	ggaaaccgag	gccacccgga	ctttccgcgg	ctgagggcag	1680
cgccggttcc	ttgcggtcaa	gatgctgcaa	aacgtgactc	cccacaataa	geteectggg	1740
gaagggaatg	cagggttgct	ggggctgggc	ccagaagcag	cagcaccagg	gaaaaggatt	1800
cgaaaaccct	ctctcttgta	tgagggcttt	gagagcccca	caatggcttc	ggtgcctgct	1860
ttgcaactta	cccctgccaa	cccaccaccc	ccggaggtgt	ccaatcccaa	aaagccagga	1920
cgagttacca	accagctgca	atacctacac	aaggtagtga	tgaaggctct	gtggaaacat	1980
cagttcgcat	ggccattccg	gcagcctgtg	gatgctgtca	aactgggtct	accggattat	2040
cacaaaatta	taaaacagcc	tatggacatg	ggtactatta	agaggagact	tgaaaacaat	2100
tattattggg	ctgcttcaga	gtgtatgcaa	gattttaata	ccatgttcac	caactgttac	2160
atttacaaca	agcccactga	tgatattgtc	ctaatggcac	aaacgctgga	aaagatattc	2220
ctacagaagg	ttgcatcaat	gccacaagaa	gaacaagagc	tggtagtgac	catccctaag	2280
aacagccaca	agaaggggg	caagttggca	gcgctccagg	gcagtgttac	cagtgcccat	2340
caggtgcctg	ccgtctcttc	tgtgtcacac	acagccctgt	atactcctcc	acctgagata	2400
cctaccactg	tcctcaacat	tecceaccea	tcagtcattt	cctctccact	tctcaagtcc	2460
ttgcactctg	ctggacccc	gctccttgct	gttactgcag	ctcctccago	ccagcccctt	2520
gccaagaaaa	aaggcgtaaa	gcggaaagca	gatactacca	cccctacacc	tacagecate	2580
ttggctcctg	gttctccago	tagccctcct	gggagtcttg	agcctaaggo	. ágcacggctt	2640
ccccctatgo	gtagagagag	tggtcgcccc	: atcaagcccc	cacgcaaaga	cttgcctgac	2700
tctcagcaac	aacaccagag	ctctaagaaa	ggaaagcttt	cagaacagtt	aaaacattgc	2760
aatggcattt	tgaaggagtt	actctctaag	aagcatgctg	cctatgcttg	g gcctttctat	2820
aaaccagtgg	atgcttctgo	acttggcctg	g catgactacc	: atgacatcat	taagcacccc	2880
atggacctca	gcactgtcaa	a gcggaagatg	g gagaaccgtg	attaccggga	a tgcacaggag	2940
tttgctgctg	g atgtacggct	tatgttctcc	aactgctata	agtacaatco	c cccagatcac	3000
gatgttgtgg	g caatggcac	g aaagctacag	g gatgtatttg	g agttccgtta	a tgccaagatg	3060
ccagatgaad	cactagaac	agggccttta	a ccagtctcta	a ctgccatgc	c ccctggcttg	3120
gccaaatcgt	cttcagagto	c ctccagtgag	g gaaagtagca	a gtgagagcto	c ctctgaggaa	3180
gaggaggagg	g aagatgagga	a ggacgaggag	g gaagaagaga	a gtgaaagct	c agactcagag	3240
gaagaaaggg	g ctcatcgct	t agcagaact	a caggaacago	c ttcgggcag	t acatgaacaa	3300

etggetgete t	gtcccaggg	tccaatatcc	aagcccaaga	ggaaaagaga	gaaaaaagag	3360
aaaagaaga a	acggaaggc	agagaagcat	cgaggccgag	ctggggccga	tgaagatgac	3420
				ccaagaaagc		3480
				cttctggagg		3540
				tgcctacagg		3600
	•			agcggcagct		3660
				atataatcca		3720
				attttgaaac		3780
				țacgtaagaa		3840
				aactggcttt		3900
				tcaattctac		3960
				agcaagtagc		4020
				cttcctcgtc		4080
				atggggcagg		4140
				cccctttgc		4200
					ggggagggat	4260
					: cagccccatt	4320
					agggtgggag	4380
					cttctaaggg	4440
					a àaaaaaaaa	4500
					ttttttacgt	4560
					g gggccctggg	4620
			a aatggagcg			4664
ggcccagce	4000000					
<210> 479 <211> 448 <212> DNA						
<213> Hom	o sapiens					
<400> 479 gatgaaaaca	. aacatttat	t gaacacgaa	c tatgtgcta	g atgtaccct	t tgtctttatg	60
					t tataagtttt	120
					a gtctagttta	180

240

gggaatcagg ggaaggcatc tctgcataag gaatatttga gctgagatcc agaggatgag

aggaagttag agcaggatgc agggagcagt acatgtgtgg gcttcccttg aacttaggaa	300
gaaagggtgt ctaatgggca gcaggaagta ctaagctcca cctctctact gtgaactggg	360
gcttgcccca tccacactgt ggatctcgac tcctcatttg tcatgagtgg ttggctgaga	420
gggcctgtgc tgacctggac tctgggct	448
<210> 480 <211> 4646 <212> DNA <213> Homo sapiens	
<400> 480 gggaggeggt ggeegaggee caggeggtgg eggeggeegge eeaggaggeg geggaegggg	60
agctgcggga gcaggcccgg gcctggctct ctagcggccg cctggctgca gcatgcgcgc	120
ccgccggggg ctgctgcggc tgccgcgccg ctcgctgctc gccgcgctct tcttctttc	180
tetetegtee tegetgetgt acttegteta tgtggegeee ggeatagtga acacetacet	240
cttcatgatg caagcccaag gcattctgat ccgggacaac gtgagaacaa tcggtgctca	300
ggtttatgag caggtgcttc ggagtgctta tgccaagagg aacagcagtg taaatgactc	360
agattatect ettgaettga accaeagtga aacetteetg caaactacaa catttettee	420
tgaagacttc acctactttg caaaccatac ctgccctgaa agactccctt ccatgaaggg	480
cccaatagac ataaacatga gtgaaattgg aatggattac attcatgaac tcttctccaa	540
agacccaacc atcaagctcg gaggtcactg gaagccttct gattgcatgc ctcggtggaa	600
ggtggcgatc cttatcccct tccggaaccg ccacgagcac ctcccagtcc tgttcagaca	660
cctgcttccc atgctccagc gccagcgctt gcagtttgca ttttatgtgg ttgaacaagt	720
tggtacccaa ccctttaatc gagccatgct tttcaacgtt ggctttcaag aggcaatgaa	780
agacttggat tgggactgtt tgatttttca tgatgtagat cacataccgg aaagtgatcg	840
caactattat ggatgtggac agatgccgag gcattttgca accaaattgg ataagtatat	900
gtatctgctt ccttataccg agttctttgg cggagtgagt ggcttaacag tggaacaatt	960
teggaaaate aatggettte etaatgettt etggggttgg ggtggagaag atgaegaeet	1020
ctggaacaga gtacagaatg caggctattc tgtgagccgg ccagagggtg acacaggaaa	1080
gtacaagtcc attcctcatc accatcgagg agaagtccag tttcttggaa ggtatgctct	1140
gctgaggaag tcaaaagaac ggcaagggct ggatggcctc aacaacctga actactttgc	1200
aaacatcaca tacgacgcct tgtataaaaa cataactgtc aacctgacac ccgagctggc	1260
tcaggtgaac gagtactgag aggagagaat gtacgtttgc tttacccacc gccaccaaga	1320
aagcagtccg atgagatttt tttttggagg ggggagggtc tacacagcaa gagaacagaa	1380

atactgtgtc	tcatgaagga	tcacagagtt	cagggggaaa	atgtgacagc	acacgcacaa	1440
acgccttcac	tggatcagcc	gctggaactg	agggagtgag	cttggggact	tccttcgtca	1500
gcactggctt	tctgttttca	caagacagac	gtctgtcccg	ctgctctctc	cccatctcct	1560
accccacatc	ctgtcttagc	cgcagtctcc	agaacccatg	atgaactgtg	atctgccgtg	1620
gtcctgccgt	ggtcctgccg	tggagcctgt	ccctacacat	gaccttggag	cctcttggcc	1680
ttcagagcag	aggcaaaccc	accacagggc	agctgcgttt	taggaagagc	aaatgaaact	1740
ccacaccatt	cttctagatc	tctggtgttc	tetttggttt	cattttttta	aaaaattacc	1800
ttctttgggt	ggggattgag	ggtggagggg	agggtgtttg	ggaaagataa	atagacataa	1860
atatataaca	atcacttctt	gaagaagtat	aattgtaaat	aagccatgta	aaatgccttt	1920
ttaaaattta	attttctagc	tggctccaat	tcaaattgag	gatttatgta	ttaggccact	1980
tacttggttg	gcaagtgcag	gaactcagtt	aaaatgcagt	tgaagaatgt	catctcccga	2040
attgctgtca	ctttggcgag	ggagtggata	tagggcatgt	cacaaaagaa	caaaataacc	2100
cgacctttat	tgctgggagc	tggcttctgt	ccctttcttc	cccccccac	gagtcttgcc	2160
cttgacttct	gctctggatt	cactcttccc	tgtcggccgc	gcatgtgctc	atcccactct	2220
ccgctaagcg	ggaggctgct	gttagagcag	gctgcttcct	gcctaaagca	ggcccttcgg	2280
ggctcgctgc	acacacatct	ctggctctcc	aggcttcgtg	ttctgtcttt	tcatcagcat	2340
ggcggggcgg	9999099999	gcgggggtgt	gtatgggaat	ccctcccct	cttacttttt	2400
ctcttgtgga	acttggccac	agtttctgaa	caatgtgcct	acattaccag	ctggcttcag	2460
tgattcctct	gtgtcccttt	ttggtttctg	gaaagattct	ttgtcaacat	tagtaactga	2520
tacatagaac	caaggagcac	tcaaataggg	agccaggagc	cagggagctg	gtgacacttg	2580
tgtgctgtgg	ggcagctggg	atccaggtaa	gaccggattg	aagctttgaa	attagactaa	2640
caaagctcca	gacagcaaga	gcccaggtgc	actgctcaca	ccccacctg	cattttgaag	2700
tcatattatt	ttttgttttg	ttttttaaga	cggtctggct	ctgtcgccta	agctggagtg	2760
tggtggcacg	atcacagete	actgcagcct	ccatctccta	ggctcaagcc	attttcccac	2820
ctcagcctcc	: cgagtagctg	ggactacagg	j tgcacaccac	cacacctggc	taatttttg	2880
tatttttagt	: agagacaggg	gtttcttcca	tgttgcccag	gctggtctcg	aactcctgga	2940
ctcaagcaat	ccgcccacct	tgacttccca	a aagtgctggg	attatgggcg	ggtgtgagcc	3000
attgcgccca	gccttgaagt	catgttctaa	a attgtatttg	aatttgtgcc	: tctttgtttt	3060
tccccaaaco	: aaagccctca	aattgtagto	c tetgtegget	tctgcagaat	: tctggaaaat	3120
gccagttttc	ctccccgcc	cttgttttc	c ataaaacata	tttatatatt	: gtgatgagga	3180

gtactttctg	aagagtactt	cgtattttt	tttaattgcc	ttgtttgcct	tcaacttcct	3240
tgattttcat	agtttacatg	ggtgtgtgta	ggggtgtgtg	tgtgtatgtg	tgtgggttag	3300
ggctttttc	gttgcatgtg	atggttctgt	ggacạtatga	tccccacaaa	ctgtgggagt	3360
gattggccag	gccttgtttt	gtttgtttgt	ttgtttgtgt	ttttgttctt	ttgaagaata	3420
gagtggtatt	tagaaaataa	attgcattgc	aaagctctta	tcggctcata	tgagagagca	3480
ggttcctgcc	cttgaaaatg	ccggtaagct	atagcatatg	ttttttaaga	cttaagcatt	3540
tcatgcttta	aaataccttc	acaagtgaac	attacacaca	gaagttcatt	tggttttcct	3600
ttgttttatg	gtgcatatag	caataaagac	cccctccac	cctgcaaccc	ccatccccca	3660
ccgggccttt	gtccctgcct	tggcttttct	ccccttctca	ttctcctctc	ccctttcctc	3720
actgaaggct	gtgagttgct	ttcaatgtga	caacactatg	atgtcatttg	gaaggatttg	3780
ccaggacaga	ctgattctga	gtcctgggtg	ccgtatgtgt	atgeggeagt	gttgtcaggc	3840
gatcttgttt	gaagctctat	gttgccataa	ttaccatcaa	gtacacactg	ttggcaaaag	3900
gctaacacct	gactttagaa	aatgctgatt	tgagaacaaa	aggaaaggtc	ttttttcact	3960
gcttaaagtg	gggtcacttt	gatacctttg	cggtcatgtc	tgtgtctgat	gagtgtagaa	4020
tctctggatg	tgcactgtca	gtcatgtgtc	caccaggcct	cgaatatcat	atgggaaatg	4080
tcatagttaa	aaacgtacag	ccaggcccgt	gtgctgttaa	tagtgtgaaa	ttgtcatgtt	4140
aaaaaaaaa	acaggaacca	aatgtgacct	tgtgcatata	ttggtagctg	aaaatcttca	4200
aggctactga	tgggtggccc	cttaatcttg	tctttgattg	ctgtgtgcag	ggaaaggtgt	4260
ccccgtttgt	tcatgctgtt	ttggggggtg	ggggggtatt	tgcaagaata	ctcattttga	4320
cataataggt	cctcttgtca	gagatectet	accacagaca	ttaatagctg	agcaggagcc	4380
acatggattg	attgtatcca	ctcaccattg	acgatggcat	tgagcgtagc	tagcttattt	4440
ccatcactac	gtgttttga	gcttgctctt	acgttttaag	aggtgccagg	ggtacatttt	4500
tgcactgaaa	tctaaagatg	tttaaaaaa	cacttttcac	aaaaatagto	ctttgtcatt	4560
acattattta	ctcatgtgtt	tgtacatttt	tgtatgttaa	tttatgaatg	attttttcag	4620
taaaaaata	: atattcaaga	accaaa				4646

<210> 481

<211> 2121 <212> DNA <213> Homo sapiens

<220>

<221> misc_feature
<222> (1524)..(1524)
<223> n is a, c, g, t or u

<400> 481 atgggggacg agcggcccca ctactacggg aaacacggaa cgccacagaa gtatgatccc 60 actttcaaag gacccattta caataggggc tgcacggata tcatatgctg tgtgttcctg 120 ctcctggcca ttgtgggcta cgtggctgta ggcatcatag cctggactca tggagaccct 180 cgaaaggtga tctaccccac tgatagccgg ggcgagttct gcgggcagaa gggcacaaaa 240 aacgagaaca aaccctatct gttttatttc aacattgtga aatgtgccag ccccctggtt 300 ctgctggaat tccaatgtcc cactccccag atctgcgtgg aaaaatgccc cgaccgctac 360 : ctcacgtacc tgaatgctcg cagctcccgg gactttgagt actataagca gttctgtgtt 420 cctggcttca agaacaataa aggagtggct gaggtgcttc gagatggtga ctgccctgct 480 gtecteatee ecageaaace ettggeeegg agatgettee eegetateea egeetacaag 540 ggtgtcctga tggtgggcaa tgagacgacc tatgaggatg ggcatggctc ccggaaaaac 600 atcacagacc tggtggaggg cgccaagaaa gccaatggag tcctagaggc gcggcaactc 660 gccatgcgca tatttgaaga ttacaccgtc tcttggtact ggattatcat aggcctggtc 720 attgccatgg cgatgagcct cctgttcatc atcetgcttc gcttcctggc tggtattatg 780 gtctgggtga tgatcatcat ggtgattctg gtgctgggct acggaatatt tcactgctac 840 atggagtact cccgactgcg tggtgaggcc ggctctgatg tctctttggt ggacctcggc 900 tttcagacgg atttccgggt gtacctgcac ttacggcaga cctggttggc ctttatgatc 960 attctgagta tccttgaagt cattatcatc ttgctgctca tctttctccg gaagagaatt 1020 ctcatcgcga ttgcactcat caaagaagcc agcagggctg tgggatacgt catgtgctcc 1080 ttgctctacc cactggtcac cttcttcttg ctgtgcctct gcatcgccta ctgggccagc 1140 actgctgtct tcctgtccac ttccaacgaa gcggtctata agatctttga tgacagcccc 1200 tgcccattta ctgcgaaaac ctgcaaccca gagaccttcc cctcctccaa tgagtcccgc 1260 caatgeecca atgeeegttg ceagttegee ttetaeggtg gtgagteggg etaecaeegg 1320 gccctgctgg gcctgcagat cttcaatgcc ttcatgttct tctggttggc caacttcgtg 1380 ctggcgctgg gccaggtcac gctggccggg gcctttgcct cctattactg ggccctgcgc 1440 aageeggaeg acetgeegge etteeegete ttetetgeet ttggeeggge geteaggtae 1500 cacacagget cectggeett tggngegete atcetggeea ttgtgeagat cateegtgtg 1560 atactcgagt acctggatca gcggctgaaa ggtgcagaga acaagtttgc caagtgcctc 1620 atgacetgte teaaatgetg ettetggtge etggagaagt teateaaatt eettaatagg 1680 aatgeetaca teatgattge catetaegge aecaatttet geaeetegge caggaatgee 1740 ttetteetge teatgagaaa cateateaga gtggetgtee tggataaagt taetgaette 1800

ctcttcctgt	tgggcaaact	tctgatcgtt	ggtagtgtgg	ggatcctggc	tttcttcttc	1860
ttcacccacc	gtatcaggat	cgtgcaggat	acagcaccac	ccctcaatta	ttactgggtt	1920
					cagcgtctat	1980
					gaatgacggc	2040
					caagaccaac	2100
	cggagtcctg					2121

<210> 482

<211> 1880

<212> DNA

<213> Homo sapiens

<400> 482 agccgagagg tgtcaccccc agcgggcgcg ggccggagca cgggcaccca gcatgggggt 60 actgeteaca cagaggaege tgeteagtet ggteettgea eteetgtte caageatgge 120 gagcatggcg gctataggca gctgctcgaa agagtaccgc gtgctccttg gccagctcca 180 gaagcagaca gatctcatgc aggacaccag cagactcctg gacccctata tacgtatcca 240 aggcctggat gttcctaaac tgagagagca ctgcagggag cgccccgggg ccttccccag 300 tgaggagacc ctgaggggc tgggcaggcg gggcttcctg cagaccctca atgccacact 360 gggctgcgtc ctgcacagac tggccgactt agagcagcgc ctccccaagg cccaggattt 420 ggagaggtct gggctgaaca tcgaggactt ggagaagctg cagatggcga ggccgaacat 480 cctcgggctc aggaacaaca tctactgcat ggcccagctg ctggacaact cagacacggc 540 tgagcccacg aaggctggcc ggggggcctc tcagccgccc acccccaccc ctgcctcgga 600 tgcttttcag cgcaagctgg agggctgcag gttcctgcat ggctaccatc gcttcatgca 660 ctcagtgggg cgggtcttca gcaagtgggg ggagagcccg aaccggagcc ggagacacag 720 ccccaccag gccctgagga agggggtgcg caggaccaga ccctccagga aaggcaagag 780 actcatgacc aggggacagc tgccccggta gcctcgagag caccccttgc cggtgaagga 840 tgcggcaggt gctctgtgga tgagaggaac catcgcagga tgacagctcc cgggtcccca 900 aacctgttcc cctctgctac tagccactga gaagtgcact ttaagaggtg ggagctgggc 960 agacccctct acctcctcca ggctgggaga cagagtcagg ctgttgcgct cccacctcag 1020 ccccaagttc cccaggccca gtggggtggc cgggcgggcc acgcgggacc gactttccat 1080 tgattcaggg gtctgatgac acaggctgac tcatggccgg gctgactgcc cccctgcctt 1140 gctccccgag gcctgccggt ccttccctct catgacttgc agggccgttg cccccagact 1200 tecteettte egtgtttetg aaggggaggt cacageetga getggeetee tatgeeteat 1260

catgtcccaa	accagacacc	tggatgtctg	ggtgacctca	ctttaggcag	ctgtaacagc	1320
ggcagggtgt	cccaggagcc	ctgatccggg	ggtccaggga	atggagctca	ggtcccaggc	1380
cagccccgaa	gtcgccacgt	ggcctggggc	aggtcacttt	acctctgtgg	acctgttttc	1440
tctttgtgaa	gctagggagt	tagaggctgt	acaaggcccc	cactgcctgt	cggttgcttg	1500
gattccctga	cgtaaggtgg	atattaaaaa	tctgtaaatc	aggacaggtg	gtgcaaatgg	1560
cgctgggagg	tgtacacgga	ggtctctgta	aaagcagacc	cacctcccag	cgccgggaag	1620
cccgtcttgg	gtcctcgctg	ctggctgctc	cccctggtgg	tggatcctgg	aattttctca	1680
cgcaggagcc	attgctctcc	tagagggggt	ctcagaaact	gcgaggccag	ttccttggag	1740
ggacatgact	aatttatcga	tttttatcaa	tttttatcag	ttttatattt	ataagcctta	1800
tttatgatgt	atatttaatg	ttaatattgt	gcaaacttat	atttaaaact	tgcctggttt	1860
ctaaaaaaaa	aaaaaaaaa					1880

<210> 483

<211> 1636

<212> DNA

<213> Homo sapiens

<400> 483 ggcacgagge ttctgtgcgc tcgggctcct ggtcccggct ccccggttac cggggcgcga 60 gtatgaccac aatggcggcc gccaccctgc tgcgcgcgac gccccacttc agcggtctcg 120 ccgccggccg gaccttcctg ctgcagggtc tgttgcggct gctgaaagcc ccggcattgc 180 . ctctcttgtg ccgcggcctg gccgtggagg ccaagaagac ttacgtgcgc gacaagccac 240 atgtgaatgt gggtaccatc ggccatgtgg accacgggaa gaccacgctg actgcagcca 300 tcacgaagat tctagctgag ggaggtgggg ctaagttcaa gaagtacgag gagattgaca 360 atgccccgga ggagcgagct cggggtatca ccatcaatgc ggctcatgtg gagtatagca 420 ctgccgcccg ccactacgcc cacacagact gcccgggtca tgcagattat gttaagaata 480 tgatcacagg cactgcaccc ctcgacggct gcatcctggt ggtagcagcc aatgacggcc 540 ccatgcccca gacccgagag cacttattac tggccagaca gattggggtg gagcatgtgg 600 tggtgtatgt gaacaaggct gacgctgtcc aggactctga gatggtggaa ctggtggaac 660 tggagatccg ggagctgctc accgagtttg gctataaagg ggaggagacc ccagtcatcg 720 taggetetge tetetgtgee ettgagggte gggaeeetga gttaggeetg aagtetgtge 780 agaagctact ggatgctgtg gacacttaca tcccagtgcc cgcccgggac ctggagaagc 840 ctttcctgct gcctgtggag gcggtgtact ccgtccctgg ccgtggcacc gtggtgacag 900 gtacactaga gcgtggcatt ttaaagaagg gagacgagtg tgagctccta ggacatagca 960

agaacatccg cactgtggtg acaggcattg agatgttcca caagagcctg gagagggccg 1020 1080 aggccggaga taacctcggg gccctggtcc gaggcttgaa gcgggaggac ttgcggcggg gcctggtcat ggtcaagcca ggttccatca agccccacca gaaggtggag gcccaggttt 1140 acatceteag caaggaggaa ggtggeegee acaageeett tgtgteeeae tteatgeetg 1200 tcatgttctc cctgacttgg gacatggcct gtcggattat cctgccccca gagaaggagc 1260 ttgccatgcc cggggaggac ctgaagttca acctaatctt gcggcagcca atgatcttag 1320 agaaaggcca gcgtttcacc ctgcgagatg gcaaccggac tattggcacc ggtctagtca 1380 ccaacacgct ggccatgact gaggaggaga agaatatcaa atggggttga gtgtgcagat 1440 ctctgctcag cttcccttgc gtttaaggcc tgccctagcc agggctccct cctgcttcca 1500 1560 gtaccctctc atggcatagg ctgcaaccca gcagagggca gctagatgga catttcccct gctcggaagg gttggcctgc ctggctgggg aggtcagtaa actttgaata gtaaaaaaaa 1620 1636 aaaaaaaaa aaaaaa <210> 484 <211> 641 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (535)..(535) <223> n is a, c, g, t or u <400> 484 tttttttttt tttttaaaa ggtctatatt ttaatattgg gggggaggga gtagaaaagc 60 aagcccctat acggggccct attcaggggc agcttctggt cccataggat ataaggaaga 120 180 ctctgaggaa ataaaagtgg ttgggaaaaa tccaggtgta gtggcttggt atgtggtgag 240 tgggtagaag ggatgaagtg aagtgtgaag gcccctcata ccctccatct ggcctcagac 300 tatgtccggg aacccgtggg gcggagaaag cgccactttc attccggctt ctggggatgg ttgacggcca cgtagtgata gagaacgaca agcaaagaag agcggacacg cccagcatgg 360 ttgggcagaa agatgggcgg agctggcacg tccggggatc atcctggacc agtccgggct 420 cggctccgac gccaccaggg aacctgggga acagagccct tggcgtcctc cctcagaatg 480 aacgggagac cagaatctca gagttgttta ggcccaagaa aagcggggat tccgntcagc 540 acttctccca gaatcgtaag ggggctgacg gaggatgaga ggggggcaccc agagatcgga 600

gagtgctatg gccgcggctc aaggaggtcc gggagtacaa g

641

<210> 485 <211> 317 <212> DNA <213> Homo sapiens 60 cccctttaa aaaaaacagg ggggggggt catggaacag aaaaaagggg ggaaaaaagg 120 cccattaaca accacaaaaa aacctttgtc catgtttacc ccctggaaaa ggggggcagc 180 agggcacaag, ggggctggac ccacccctat ttgaaaagga tatcgtaggg cccagcccgg 240 aaaaaaagga aaaccttggc ctcggacccc taaggaaaaa tgggcggatg ggggggcccc 300 317 ccctccccgg ggcccat <210> 486 <211> 2811 <212> DNA <213> Homo sapiens <400> 486 acacaggaag ctgagccggc ttggggccca gcatacacag gcccccagga cccctgggga 60 gagggccccg ctgggctggc cctgcaggga ccatggaatc cagagctgaa gggggctccc 120 180 ccatcctgcg gcagttccct ccagacttca gggaccagga agctatgcag atggtgccta 240 aattotgott coettttgat gtggaaaggg agccccccag ccccgccgtg cagcatttca 300 cettegeect cacagacett geeggeaace geagatttgg tttetgeege etgegggegg 360 gtacccagag ctgtctctgc atcctcagcc acctgccttg gttcgaggtg ttttacaagc 420 tattgaacac agtgggagac ctcctagccc aggaccaagt caccgaggca gaggaacttc 480 ttcaaaatct gtttcagcag tccctgtctg ggccccaggc ctcagtgggg cttgagctgg 540 gcagcggagt gacggtctcc agcgggcagg gtatcccccc ccctacccgg gggaatagca 600 agccgctttc ctgcttcgtg gccccggact ccggccgcct gccatccatc cctgagaaca 660 ggaacctaac ggagctggtg gtggccgtga ctgacgagaa catcgtgggg ctgttcgcgg 720 cgctcctggc cgagagaaga gtcctgctca ccgccagcaa actcagcacc ctgacctcgt 780 gegtecaege gteetgegeg etectgtace ceatgegetg ggageaegtg etgateceea 840 cgctgccccc acacctgctg gactactgct gcgcgcccat gccctacctc attggagtgc 900 acgccagtet cgccgagaga gtacgagaaa aagccctgga ggacgtcgtg gtgctgaacg 960 tggacgccaa taccttggag acgaccttta acgacgtgca ggcgctgcct.ccagacgtgg 1020 tgtccctgct gaggctccgg ctcaggaagg tcgccctggc ccccggggaa ggggtgtccc 1080

gtctcttcct caaag	cccag gccctgctc	t tcggggggta	ccgcgacgca	ctcgtctgca	1140
gcccgggcca gccag	tgacc ttcagtgag	g aagtcttctt	ggcccagaag	cctggggcac	1200
ctctgcaggc cttcc	accgg cgggctgtg	c acctgcagct	gttcaaacag	ttcatcgaag	1260
cccggctgga gaagc	ctcaac aagggggag	g gcttctcaga	tcaattcgag	caggagatca	1320
ctggctgcgg ggcct	cccca ggggccctt	c gatectatea	gctctgggcc	gacaatctaa	1380
agaaaggtgg tggcg	gccctc ctgcactca	ıg tcaaggccaa	gacccaacca	gccgtcaaga	1440
acatgtaccg ctcgg	gccaag agtggcttg	ga agggggtgca	gagccttcta	atgtataagg	1500
atggggactc tgtcc	ctgcag aggggggg	t ctctgaggg	cccagccctc	cccagccgct	1560
cagaccgcct gcago	caacgc ctcccaatc	ca ctcagcactt	tggaaagaac	cggccccttc	1620
gccccagcag gagac	cgccag ctggaagag	gg gaacttccga	gcccccaggg	gcggggacac	1680
ccccactgag ccctg	gaggat gaggggtg	cc cgtgggcaga	a agaagctctg	gacagcagct	1740
tettggggte tggag	gaagaa ctggattt	gt tgagcgagat	tctggacagt	cttagcatgg	1800
gagccaagag cgcag	ggcagc ctgagacc	ga gccagagtt	agactgctgt	cacagaggag	1860
acctggacag ctgct	ttcagc ctgcccaa	ca tactaagat	g gcaaccagac	gataagaaac	1920
taccagagee ggage	ccccag cccctttc	cc tgccatccc	t gcaaaatgco	tcgtctttgg	1980
atgccaccag ctctt	tcaaag gactccag	gt cccagctga	t accctcagag	tccgaccaag	2040
aagtcacgtc tccat	teccag tectcaac	ag cttctgcag	a cccaagcatc	tggggggacc	2100
ccaaaccctc tccto	ctcaca gagecect	aa ttcttcatc	t caccccttcc	cacaaggcag	2160
ctgaagattt taca	gcccag gaaaaccc	ca ctccctggc	t ctccactgca	cccactgagc	2220
ccagccctcc agaa	agcccc caaattct	gg cccccacaa	a gcccaacttt	gatatagcct	2280
ggacgtccca gccc	cttgat ccttcctc	ag accccagtt	c tctggaggad	cccagagccc	2340
ggcctcccaa agcc	ctgctg gcagagcg	cg ctcacctcc	a gccacgggag	g gaaccaggag	2400
ccctgaattc ccct	gctaca cccaccag	ca actgtcaaa	a gtcccagcc	agcaagccgg	2460
cccagagtcg ctga	atcttaa gaagtgct	tt gagggttaa	g aatcaggggt	ccaagagaga	2520
ccccagtccc tcaa	ataaagc cacaagag	cc caaaaaagc	t ggtttttt	c ctggtgaatt	2580
tctctggtgc cctc	cactctg ctcggaaa	tc cateceace	c acctctgtc	c ctccaagggc	2640
agceteteta aetg	ggctcct agcaggga	at tccaggaag	je eteetggte	t tctagaatcc	2700
tggcaacctt acaa	attecte teggeatt	tg tcacttcca	t ctcagctaa	t gcacccacca	2760
gctcaaacac acca	aataaag cttttgtt	ac tctcaaaaa	a aaaaaaaa	a a	2811

<210> 487

<211> 796

<212> DNA <213> Homo sapiens

<400> 487 cacaaacact tagttaacag ctaagcaccc taatcaactg gcttcaatct acttctcccg 60 ccgccgggaa aaaaggcggg agaagccccg gcaggtttga agctgcttct tcgaatttgc 120 aattcaatat gaaaatcacc tcggagctgg taaaaagagg cctaacccct gtctttagat 180 ttacagtcca atgcttcact cagccatttt acctcacccc cactgatgtt cgccgaccgt 240 tgactattct ctacaaacca caaagacatt ggaacactat acctattatt cggcgcatga 300 gctggagtcc taggcacagc tctaagcctc cttattcgag ccgagctggg ccagccaggc 360 aaccttctag gtaacgacca catctacaac gttatcgtca cagcccatgc atttgtaata 420 atcttcttca tagtaatacc catcataatc ggaggctttg gcaactgact agttccccta 480 ataatcggtg cccccgatat ggcgtttccc cgcataaaca acataagctt ctgactctta 540 cctccctctc tcctactcct gctcgcatct gcatatagtg gaggcccgga gcaagagaac 600 agggttgaac agtctacccc tcccctttag cagggcaacc tcctccccca gcctggtagc 660 cttccggtaa aacctaaacc atctttcttc ctttaaacta agccaggtgg tccctcctaa 720 cttaaggggg ccaatcaagt tcatcgcaac attatccatt taaacccctg cataacccat 780 796 taccaaaqcc ctcttg

<210> 488

<211> 1670 <212> DNA

<213> Homo sapiens

<400> 488 ccaaccacaa gcaccaaagc agaggggcag gcagcacacc acccagcagc cagagcacca 60 gcccagccat ggtccttgag gtgagtgacc accaagtgct aaatgacgcc gaggttgccg 120 ccctcctgga gaacttcagc tcttcctatg actatggaga aaacgagagt gactcgtgct 180 gtacctcccc gccctgccca caggacttca gcctgaactt cgaccgggcc ttcctgccag 240 300 ccctctacag cctcctcttt ctgctggggc tgctgggcaa cggcgcggtg gcagccgtgc tgctgagccg gcggacagcc ctgagcagca ccgacacctt cctgctccac ctagctgtag 360 cagacacget getggtgetg acactgeege tetgggeagt ggaegetgee gtecagtggg 420 tetttggete tggeetetge aaagtggeag gtgeeetett caacatcaac ttetacgeag 480 gagecetect getggeetge atcagetttg acceptacet gaacatagtt catgecacee 540 600 agetetaceq cegggggeee ceggecegeg tgacceteae etgeetgget gtetggggge tetgeetget tttegeeete ceagaettea tetteetgte ggeeeaceae gaegagegee 660

teaacgccac ccactgccaa tacaacttcc cacaggtggg ccgcacggct ctgcgggtgc 720 tgcagctggt ggctggcttt ctgctgcccc tgctggtcat ggcctactgc tatgcccaca 780 tectggeegt getgetggtt tecaggggee ageggegeet gegggeeatg eggetggtgg 840 tggtggtcgt ggtggccttt gccctctgct ggacccccta tcacctggtg gtgctggtgg 900 acatecteat ggaeetggge getttggeee geaactgtgg eegagaaage agggtagaeg 960 tggccaagtc ggtcacctca ggcctgggct acatgcactg ctgcctcaac ccgctgctct 1020 atgcctttgt aggggtcaag ttccgggagc ggatgtggat gctgctcttg cgcctgggct 1080 gccccaacca gagagggctc cagaggcagc catcgtcttc ccgccgggat tcatcctggt 1140 ctgagacete agaggeetee tacteggget tgtgaggeeg gaateeggge teeeettteg 1200 eccacagtet gaetteeceg cattecagge tectecetee etetgeegge tetggetete 1260 cccaatatcc tcgctcccgg gactcactgg cagccccagc accaccaggt ctcccgggaa 1320 gccaccetee cagetetgag gaetgeacea ttgetgetee ttagetgeea ageeceatee 1380 tgccgcccga ggtggctgcc tggagcccca ctgcccttct catttggaaa ctaaaacttc 1440 atettececa agtgegggga gtacaaggea tggegtagag ggtgetgeee catgaageea 1500 cagcccaggc ctccagctca gcagtgactg tggccatggt ccccaagacc tctatatttg 1560 ctcttttatt tttatgtcta aaatcctgct taaaactttt caataaacaa gatcgtcagg 1620 1670

```
<210> 489
<211> 1143
<212> DNA
<213> Homo sapiens
```

<220>
<221> misc_feature
<222> (655)..(655)

<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (688)..(688)
<223> n is a, c, g, t or u

<400> 489
tttttttt tttttaactt ctagaacata aattttatta catttatagt tgtatccctt 60
ggtgtgatat agttaggatt tctctattaa gtaattaatc ctaactatat ccttgggctg
gattggattt ctggcgccc acccgacaga ctgaccctgt gtcccccttc cccattccag 180
ctcaaggcac ttaatattac aaaagaaggc agtgggctgg gctgggaaga gatggggcct 240
caatgtcaag aaatcccca gtggcaatct taagacaaac agagaagaat gtcaccttcc 300

ttcttaggac	cctcccgggg	ttagcagaaa	ggaaagaacc	cagaaagttc	ttcagtacca	360
cagtaggctt	cggttattct	ccctaagcca	ggtgagggac	ccccaggcta	ttctccctgg	420
cccgcaccga	gtctcttgtt	caccctgggc	taatcttcct	gggccacaac	tgttattgac	480
tcctggcccc	ttaactttct	ggcgtctgga	gctggcctgg	aataacggga	agcaagagtt	540
cactctggac	cagagatcca	aaagccttgc	aaggaggccc	cagaagcttt	tcaaaaattg	600
gggagcaaat	tggccacatg	tgttggccgt	gcctcgtgtc	ttatagcgtc	aaaangccaa	660
ggagcaagcc	cagggggaaa	tgctgtcnca	tgcttggccg	gtatacggtc	acttggcttc	720
gttcatatta	tetggteece	catcccttaa	ccagataacc	aatcacatta	ttgtcctgaa	780
accacgaagg	gtttgaccgc	agggagaccc	atgggcacaa	gattctcttc	tacctttcct	840
ggagctaaag	aatgccaagg	ccaaggaatc	acggataggg	gctatgtgtc	caggagggcc	900
gggggaacaa	ggetetetgt	gggtttgggg	gcgcgaaaaa	aatagtctca	cattagttct	960
ctataaacct	gtgaacaatg	tcgagggga	acctctgacc	ttgaaggctt	ttcacttata	1020
tttcctttaa	tatagcacca	cgtccggagc	gggggtaaaa	tccggactct	cagcaggcac	1080
actgcttttg	aaagtatact	ggtgacaaac	acagggtagg	atgtaattat	cctccacaca	1140
gag						1143

<210> 490 <211> 6814 <212> DNA

<213> Homo sapiens

<400> 490 ccttggccga gaccggtcct ctgcggagag ggccccgccc tctgtgaagg cccgcccggg 60 120 aattggcggc ggcgctgcag ccatttccgg tttcggggag gtgggtgggg tgcggagcgg 180 gacttggagc agccgccgcc gctgccaccg cctacagagc ctgccttgcg cctggtgctg 240 ccaggaagat gcggccggag cccggaggct gctgctgccg ccgcacggtg cgggcgaatg 300 gctgcgtggc gaacggggaa gtacggaacg ggtacgtgag gagcagcgct gcagccgcag 360 ccgcagccgc cgccggccag atccatcatg ttacacaaaa tggaggacta tataaaagac cgtttaatga agcttttgaa gaaacaccaa tgctggttgc tgtgctcacg tatgtggggt 420 480 atggcgtact caccctcttt ggatatcttc gagatttctt gaggtattgg agaattgaaa 540 agtgtcacca tgcaacagaa agagaagaac aaaaggactt tgtgtcattg tatcaagatt 600 ttgaaaactt ttatacaagg aatctgtaca tgaggataag agacaactgg aatcggccaa 660 tctgtagtgt gcctggagcc agggtggaca tcatggagag acagtctcat gattataact ggtccttcaa gtatacaggg aatataataa agggtgttat aaacatgggt tcctacaact 720

atcttggatt	tgcacggaat	actggatcat	gtcaagaagc	agccgccaaa	gtccttgagg	780
agtatggagc	tggagtgtgc	agtactcggc _.	aggaaattgg	aaacctggac	aagcatgaag	840
aactagagga	gcttgtagca	aggttcttag	gagtagaagc	tgctatggcg	tatggcatgg	900
gatttgcaac	gaattcaatg	aacattcctg	ctcttgttgg	caaaggttgc	ctgattctga	960
gtgatgaact	gaaccatgca	tcactggttc	tgggagccag	actgtcagga	gcaaccatta	1020
gaatcttcaa	acacaacaat	atgcaaagcc	tagagaagct	attgaaagat	gccattgttt	1080
atggtcagcc	tcggacacga	aggccctgga	agaaaattct	catccttgtg	gaaggaatat	1140
atagcatgga	gggatctatt	gttcgtcttc	ctgaagtgat	tgccctcaag	aagaaataca	1200
aggcatactt	gtatctggat	gaggctcaca	gcattggcgc	cctgggcccc	acaggccggg	1260
				tgttatgatg		1320
caaagagttt	tggtgcttct	ggaggatata	ttggaggcaa	gaaggagctg	atagactacc	1380
				gtcacctcct		1440
agatcatcac	ctccatgaag	tgcatcatgg	ggcaggatgg	caccagcctt	ggtaaagagt	1500
gtgtacaaca	gttagctgaa	aacaccaggt	atttcaggag	acgcctgaaa	gagatgggct	1560
				gatgctctac		1620
aaattggcgc	ctttggacgg	gagatgctga	agcggaacat	cggtgtcgtt	gtggttggat	1680
ttcctgccac	cccaattatt	gagtccagag	ccaggttttg	cctgtcagca	gctcatacca	1740
aagaaatact	tgatactgct	ttaaaggaga	tagatgaagt	tggggaccta	ttgcagctga	1800
agtattcccg	tcatcggttg	gtacctctac	tggacaggcc	ctttgacgag	acgacgtatg	1860
aagaaacaga	agactgagcc	tttttggtgc	tccctcagag	gaactctccc	tcacccagga	1920
					tctcacgtga	1980
					tttgtaaata	2040
					gaaggtgact	2100
cactttgctt	tttcagtcca	ttaaaaaaac	attttattt	gcaaccatto	: tacttgtgaa	2160
			•		ctcccagcac	2220
					ctggatactt	2280
					aggtctcaga	2340
					ggaagttttc	2400
					gctgaaaggc	2460
					c accagatgat	2520
-,-						

ttcttccttt	accatcaaat	acttcttcat	aatggtcaca	gtctgaggat	gtgcgcaaat	2580
tctggttctt	cccaagctct	aaccgtaaca	cgtcccaccc	cctttttaaa	gcacttactg	2640
ttttcagagc	acccatatcc	caccctggtg	agaaggccac	tctcacatct	gagtgttggg	2700 ·
tacaaagctg	ctccgtagag	tgatgtgcač	tcctggtggg	tgaggggcag	gggcagtggc	2760
agtgtgcaaa	gaattgatta	ctccttgcag	agcctgtggc	ttgcatttcc	tactgctttc	2820
tacgtttgaa	aațtatgaca	gtctctggct	aggtctgggt	ccagattagg	atttaaactg	2880
ataaaggaaa	ctgttggtaa	atcctctgct	cagaaagcat	ttatcatgtt	cctatttaag	2940
gattaggttt	attaatttag	gcctcttaga	agctaaccca	cttaaatatt	actcttctga	3000
atgctagttc	tcttttattc	ttgatgtcct	aagtcaattg	aatctggcat	ctggggctag	3060
ggtetgeetg	tctacatatt	ttttatttt	ttctgagaaa	ttctgaacac	atagatetet	3120
ttcctaaact	gacattttct	attttgactg	ttttcatact	ataaccaggt	aaagggactt	3180
ctttcagaga	gctttatact	gcctgaccaa	agaacaaatc	tgaaaatcac	cattttaaag	3240
ttatttttc	agttgaacca	aagtttaagt	gaagaggact	tttggcatat	tatacccagg	3300
atcagtttgt	ctttttgtat	ccatcaagta	ttacaggaga	aggattggga	acagaatgga	3360
aaaacagtgt	atgaaagtca	tgttacaggc	cgagtgcggt	ggctcacacc	tgtaatccta	3420
gcactttggg	aggctgaggc	aggtggctca	cttgaggtca	ggaattcaag	accagcctgg	3480
ccaacatggt	gaaaccccgt	ctctactaaa	aagacaaaaa	attagctggg	cgtggtggcg	3540
ggcacctata	atcccaccta	cttggtaggc	tgaggcagga	gaatcgcttg	aacccaggag	3600
gcggaggttg	cagtgagacg	agattgtgcc	actgcactct	agcctgggtg	acagagcaaa	3660
actgtgtctc	aaaaaaaaaa	aagtcatgtt	acacatttaa	gtttttgaaa	ttgctccttt	3720
tatcggtaaa	gattctcaat	ccaaattctc	: ctgggtgtgt	tgtcatcagc	tgtgatatgt	3780
ttgtgcacat	: tacgtatago	agaggatgta	agcaatatta	ttgtttgtga	agttttgttt	3840
ttaatgtctt	gagtatgagt	tatgtttagt	cactgtcago	atctgagaac	tttaataagc	3900
ccttgagata	ttccaaagtt	ttattttact	tttttaaaga	acagaaaaag	atgaatgaaa	3960
gaaccaagga	a gagatgcaga	gactatattt	agcatgtata	ggttaaagta	agaaggaggt	4020
tgtggtaact	aaataggagt	cctataaaat	caaatacatt	gtcaaccttt	tctgcacatc	4080
tagtttccta	a ccatagaato	ccactggaat	accacatago	ttttgcactg	cagttactat	4140
ttactaatgt	aaacgtaggg	g tttgtaaaa	g tcacaaactt	ataagcaatg	aacttacctg	4200
ctagtcttt	tattttggct	tgcatgaag	t cactgcaaat	tcaaatgtca	gtaccggcat	4260
ttaaaatata	a tctatatcac	: tttgttggta	a caaagttatt	tcaagataag	g tgtaattttg	4320
ttacaagtt	t attttgaaga	gacaaatct	c ctgtgatcta	a tgcaggacct	ctgtactttc	4380

taaagaacaa aatgttatgt agacattata catggttggt tgtctcttct tgaaactgta	4440
atgtaaatct agggtccagt catatcctag gtatcatcat ttatccaagt acttggagga	4500
atacaagtat atataaatac agtcattgag aataagtcga tttgaggcat acaagagtag	4560
tttcttacac agtttaacac agcctgattc aagactctga taggattcaa acagataccg	4620
gttaaccatg actaccaaaa ctgatcatct gagtcgattg atagaggtgt gactagtcct	4680
tagcactttt totoattoot otttttatto agcattgotg ttacctattt caggtttata	4740
agacctettt cagcagatca catcagaage caggaaatge atagetagga gatgtcaaaa	4800
gcccatatga ggagtggacc aagcagcagt ggcggtttct cctcgcatct ttttttttt	4860
aagetttaae ttageagggg catggaettt atageaettt tteaaetttt tgetttgett	4920
tggataagaa atccttacct ttaaaaaaaag cttctagtct ccataacccc caaagtactg	4980
cttatttgtt tgaagaatcc agccatcgta gtgctttagt cactatcgta aacattcatg	5040
atagggcaag gattttaaaa caggattett gettetgtag teatcaaggt gaacagaage	5100
atcctacaca accactaagg gctctatgtt tgtgtcatgc ctcttcaaac accaaggagt	5160
tgaacatgct tccagtgatt tgtctccgta atgccttctt cctttatttg gcctttcttt	5220
ctttctgtac cttcaagttc ttgattttta aaattccaac tctagagaaa accaatatat	5280
ggtggtgctg ggctttgaag atagcatatc agacgccttg gttctgtttg tacacttagc	5340
cttacatttc aggaggaggc ttttcattag gggcttaagc tagctccttt ggcttttaaa	5400
aaaaattttt tttcaaattt cttcattacc taagggagcc tgcatctaaa tttctcaact	5460
agttcagcct agctgaattt tctagtgtgt aatacacttt gcttccttct tattggtgaa	5520
aaccaggggg atgagtggct tccatggaga gatttcctga tttctcaggg aggaaaaaag	5580
tgatgacatt taccactact tttatgtttt tccccttttt ccaaattgat aaggatttct	5640
ggttcctagt gatccgggat tgggcaacag tgcagaactg ccagtcatgc cgtaggccgt	5700
gaagaaagaa tgtgagtaac tgttgttttg caaggatttg tagggttatg ggcagttgtt	5760
gtttgaagca ttgctatgac ctaattccca aggtatcttt cctctcttgg tgttctaggt	5820
aagccaatga gctttaatct ctacttgcta taaccgtgtg cttagaaaaa gaggtgagag	5880
tagtggtttt ccttcaaact gtccacattc atgaagatta tgaattgtta ggacagccag	5940
ggcaagatag accetgtete tacaaaaatt tttttetaaa ttaaceggge atggtggtge	6000
ctgcctgtag tcccacctgt gtgggagaat cacttgagcc tgggaggtca aggctgcagt	6060
gagecatgat tgcaeccetg caetecagee tgggtgacag agtgagacee tggeteaata	6120
agagggggaa aaaaaattgt taggagctgg gtgcggatgc agcctgcaat cccagctact	6180

tgagaggctg	aggccggagg	attgcttaaa	cccaagaatt	tgagcgtagc	ctgggcaaca	6240
cagcaagacc	ccatctaaga	aaaaaatgtt	ttttaaatca	gcttagccca	aaggggttgt	6300
gaatggggag	gtataaaaag	caaagattat	tttttggcta	ctaagccaag	aacttacagg	6360
gattttttt	ttcagtccca	gaacctacag	ataccctgct	acttgcttca	cgtggatgct	6420
cagtgcccag	cagccatctt	aatacattaa	accagtttaa	aaaatacctt	ccatgtggag	6480
aaaaacatgt	ctttttctcg	cctcaacttt	atccacatga	aatgtgtgcc	catggctggg	6540
cgcagtggct	cacctgtaat	cccaacactt	tgggaggctg	aagcaggcag	attgcttgag	6600
gccaggagtt	cgagaacagt	ctggccaaca	tggcgaaacc	tcatctctac	taaaattaca	6660
aaaattagcc	gggcatggtg	gcacatgcct	gtaatcccag	ctacgtcagg	aggctgaggc	6720
acaggaattg	cttgaaccca	agaggcagag	gatgcaatga	gccaagatca	caccactgca	6780
ctccagcctt	ggcgacagag	ggagactctg	tctc			6814

<210> 491

<211> 925

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (681)..(681)

<223> n is a, c, g, t or u

<400> 491 cgtgtcacac cttaaaatct tcatgctgta gtcactccag accatggagt ggctttccag 60 ctgaatgaat cctatgtctc gcgtgcaggt ggttggtttt caatgttctt gctaattttt 120 tttctatgga tcttgggagt tttcttgttg ctcctgtgtt gcccagcttt aataaaacca 180 ggcgcaaaca aaaaccatag cattctgaaa caataggggg cccacatgga cccagtatgt 240 cactttaatg gacttcaaga aaaaatctga atgggaaaaa tgacactaga atgtatactc 300 cacacatttt atgccatata atggtgtgtt ttcttaattt gtttcttgtg gcgaaatgtg 360 gctttcaaat taaaatgacc ttttcttctt tgaaactttt cgttttgact tgtataatta 420 agggttggaa agattcataa ttctgagaga ggtttgcaac caggagatac aaagaagtct 480 cagtagtaat cttgttcatg tgcttttaca gccagctaca tttaagaatg tattagttac 540 agaaattata tgtctgtgtg tgtctctact caataaagta catgcctcca cataatgcgg 600 tgctgtccat ctcggcaaat actggccagt ccctttatga caggcacaca gaaaccatag 660 catgggtctg gtttcagaaa natggctctc atctttcctg ggaaccttat tttgcttaat 720 gtttggtttc tggtgattct gttggtacct cacagcacat tgtgacatgg tgatgcctca 780

593

ttgctgatat	ggtcctgtgg	ttatgtgcac	tettteettg	agagtccaaa	caaaaaaaa	840
ctgcggtttt	ttggggggga	aaggtagaag	ggcggcatgg	tgccgccctt	taaaggaagg	900
gcccatgagt	aaaacgtaaa	gaaca				925
<210> 492 <211> 486 <212> DNA <213> Hom	o sapiens					
<400> 492 aactgctgtt	tttcatttta	ttttctaaat	ttttcaagtt	ttctacaatg	actttgtgtt	60
			caacagtatg			120
			țacatcacaa			180
			gaggaggtct			240
			ggaatgtccc			300
			ccccagaggc			360
					gagcctctca	420
					gagttcaaaa	480
ccagcc						486
<210> 493 <211> 884 <212> DNF <213> Hom	:					
<400> 493		tgttgcccag	g getggteteg	aactcctgag	g ctcaggtgat	60
					geceggeetg	120
aatcttgtct	: tttgacaata	. ccaaagaaat	agggggtagc	: tagagtaaag	g aacctagggc	180
ctggacctgg	g gctggacagt	gtatccctt	aggkgtggga	actgggtatt	tecetggggt	240
ckgtatgcct	ttgtcttgtc	: atttgcttt	agggcagatg	g acacttttt	ccaccctttt	300
aaagckacaa	a gtctatcttc	: tttcttgac	c catttcaggg	g gggggccct	c tcctttakcc	360
kgatataat	a ttkaaragad	agaacaaga	a agcatgtago	c cctaakgaka	a ggrgattatc	420
gcatagrgt	t cagagackgg	g raackgaat	t kkccckcgad	kttcacttt	g ggggtaaatc	480
acccaattt	t aggcgckkt}	c cggcaaggg	g ggccaaaatl	c aakcatkkk	k aaraagtaga	540
ttcakgccc	a ctgcccttg	3 33333333	a ggaatacgg	ggtgcccag	a agcccccagg	600
tgatccaag	g gtttgtatt	ttttttta	a gtttgttca	t atttgtatg	t acatgactat	660
ttaaagcca	g gggattatci	ttctataaa	t gtataactg	g caacctgta	t cttccctctt	720

tgttgcccat	atagccggag	ccctttttct	catttgagaa	tctcttccct	actaagtgtt	780
aagcttagag	tgaagggcac	tcctactgga	ccaaaggaga	ggggattgga	gaattgtttt	840
aagttttata	cattaggtca	gtattccatc	ttcccacccc	cagc		884
<210> 494						
<211> 529			٠			
<212> DNA <213> Homo	sapiens				•	
<400> 494	aastasaaa	gccccgcgga	gcaccccagc	accctatata	ctcactcact	60
						120
		gcctggaatc			-	180
		gctccagctg				
					ctttctttca	240
cttttaaatc	agccgtgcct	cttccggcct	aaacctcagg	tagctacagc	gtgcagtact	300
tgacgctgtg	tttatatcag	acagcactgc	cagtctgaaa	caaaactttc	tgaatttcct	360
aatccccaga	gccagcgtga	gaagtagact	tgagcctgtt	ctcttccctt	gaacttttct	420
tttacacgag	tacaacaaaa	aacaagaaca	gagacaagtc	gtagtgttgc	tagtgataag	480
gcagatttt	caccaagcct	aaaaagcttt	taaaaatctg	gtcccataa		529
<210> 495 <211> 406						
<212> DNA <213> Hom	o sapiens					
<400> 495						
		cgattcaaac	agtgtgaagg	aggaagcaac	: taattatctc	60
cctctcctga	tttttcataa	tttattaaa	tcatcactgg	gtaaactaat	ggtttgcgta	120
tcacacaatt	acactacaat	ctgataggag	tggtaaaacc	agccaatgga	atccaggtaa	180
agtacaaaaa	cgccaccttt	tattgtcctg	tcttatttct	cgggaaggag	g ggttctactt	240
tacacattto	atgagccago	agtggacttg	agttacaato	tgtaggttc	ttgtggttat	300
					a gaagcaaact	360
		tgcttagatt				406
ageagaeeg			. J			
<210> 496						
<211> 264 <212> DN						
<213> Hor	mo sapiens					
<400> 496		cagctttgaa	a cactgaacg	c gaggactgt	t aactgtttct	60
		cagetttga:	a cactgaacg	c gaggactgt	t aactgtttct	6

ggcaaacatg aagtcaggcc tctggtattt ctttctcttc tgcttgcgca ttaaagtttt	120
aacaggagaa atcaatggtt ctgccaatta tgagatgttt atatttcaca acggaggtgt	180
acaaatttta tgcaaatatc ctgacattgt ccagcaattt aaaatgcagt tgctgaaagg	240
ggggcaaata ctctgcgatc tcactaagac aaaaggaagt ggaaacacag tgtccattaa	300
gagtetgaaa ttetgeeatt eteagttate eaacaacagt gtetetttt ttetatacaa	360
cttggaccat tctcatgcca actattactt ctgcaaccta tcaatttttg atcctcctcc	420
ttttaaagta actcttacag gaggatattt gcatatttat gaatcacaac tttgttgcca	480
gctgaagttc tggttaccca taggatgtgc agcctttgtt gtagtctgca ttttgggatg	540
catacttatt tgttggctta caaaaaagaa gtattcatcc agtgtgcacg accctaacgg	600
tgaatacatg ttcatgagag cagtgaacac agccaaaaaa tctagactca cagatgtgac	660
cctataatat ggaactctgg cacccaggca tgaagcacgt tggccagttt tcctcaactt	720
gaagtgcaag attotottat ttoogggaco acggagagto tgacttaact acatacatot	780
tctgctggtg ttttgttcaa tctggaagaa tgactgtatc agtcaatggg gattttaaca	840
gactgccttg gtactgccga gtcctctcaa aacaaacacc ctcttgcaac cagctttgga	900
gaaagcccag ctcctgtgtg ctcactggga gtggaatccc tgtctccaca tctgctccta	960
gcagtgcatc agccagtaaa acaaacacat ttacaagaaa aatgttttaa agatgccagg	1020
ggtactgaat ctgcaaagca aatgagcagc caaggaccag catctgtccg catttcacta	1080
tcatactacc tcttctttct gtagggatga gaattcctct tttaatcagt caagggagat	1140
gcttcaaagc tggagctatt ttatttctga gatgttgatg tgaactgtac attagtacat	1200
actcagtact ctccttcaat tgctgaaccc cagttgacca ttttaccaag actttagatg	1260
ctttcttgtg ccctcaattt tctttttaaa aatacttcta catgactgct tgacagccca	1320
acagecacte teaatagaga getatgtett acattettte etetgetget caatagtttt	1380
atatatctat gcatacatat atacacacat atgtatataa aattcataat gaatatattt	1440
gcctatattc tccctacaag aatatttttg ctccagaaag acatgttctt ttctcaaatt	1500
cagttaaaat ggtttacttt gttcaagtta gtggtaggaa acattgcccg gaattgaaag	1560
caaatttatt ttattatcct attttctacc attatctatg ttttcatggt gctattaatt	1620
acaagtttag ttctttttgt agatcatatt aaaattgcaa acaaaatcat ctttaatggg	1680
ccagcattct catggggtag agcagaatat tcatttagcc tgaaagctgc agttactata	1740
ggttgctgtc agactatacc catggtgcct ctgggcttga caggtcaaaa tggtccccat	1800
cagcetggag cageceteca gaeetgggtg gaattecagg gttgagagae teeeetgage	1860

cagaggccac	taggtattct	tgctcccaga	ggctgaagtc	accctgggaa	tcacagtggt	1920
ctacctgcat	tcataattcc	aggatctgtg	aagagcacat	atgtgtcagg	gcacaattcc	1980
ctctcataaa	aaccacacag	cctggaaatt	ggccctggcc	cttcaagata	gccttcttta	2040
gaatatgatt	tggctagaaa	gattcttaaa	tatgtggaat	atgattattc	ttagctggaa	2100
tattttctct	acttcctgtc	tgcatgccca	aggcttctga	agcagccaat	gtcgatgcaa	2160
caacatttgt	aactttaggt	aaactgggat	tatgttgtag	tttaacattt	tgtaactgtg	2220
tgcttatagt	ttacaagtga	gacccgatat	gtcattatgc	atacttatat	tatcttaagc	2280
atgtgtaatg	ctggatgtgt	acagtacagt	actgaacttg	taatttgaat	ctagtatggt	2340
gttctgtttt	cagctgactt	ggacaacctg	actggctttg	cacaggtgtt	ccctgagttg	2400
tttgcaggtt	tctgtgtgtg	gggtggggta	tggggaggag	aaccttcatg	gtggcccacc	2460
tggcctggtt	gtccaagctg	tgcctcgaca	catcctcatc	cccagcatgg	gacacctcaa	2520
gatgaataat	aattcacaaa	atttctgtga	aatcaaatcc	agttttaaga	ggagccactt	2580
atcaaagaga	ttttaacagt	agtaagaagg	caaagaataa	acatttgata	ttcagcaact	2640
g						2641

<210> 497

<211> 613

<212> DNA

<213> Homo sapiens

<400> 497 gcaaagtggt tattaaggat cctccaccac cacgcgtccc tgcaccaaaa gaggaggaag 60 aagaaccttt gcctactaaa aagtggccaa ctgtggatgc ttcctattat ggtggtcgag 120 gggttggagg aattaaacag aatggaggtt cgttggggtg ataaaggatc tactgaggaa 180 ggtgcaaggc tagagaaagc caaaaatgct gtggtgaaga ttcctgaaga aacagaggaa 240 cccatcaagc ctagaccacc tcgacccaga cccacacacc agtctcctca gacaaaatgg 300 tacaccccaa ttaaaggtcg tcttgatgct ctctgggctt tgttgacgcg gcagtatgac 360 cgggtttctt tgatgcgacc tcaggaagga gatgagggcc ggtgcataaa cttatcccga 420 gttccatctc agttgatgtt catccaaatg aacgacatca agtgcatttc agaagctttt 480 ggagagcagc ttaattgctc tcactcggga aatgttttct ctgccttatg ctatgcttgc 540 accaaacatt tctaaacact tgtgtctgca tctccatggg aggtgatgaa actcagtggt 600 613 aactcatgat taa

<210> 498

<211> 1110

<212> DNA

<213> Homo sapiens

<400> 498 gacagagece gggccaegga geteettgee ageteteete etegeaeage egetegaace 60 gestgetgag esscatgges egegesaege tetesgesge esscagsaat esseggetes 120 tgcgggtggc gctgctgctc ctgctcctgg tggccgccag ccggcgcgca gcaggagcgc 180 ccctggccac tgaactgcgc tgccagtgct tgcagaccct gcagggaatt cacctcaaga 240 acatccaaag tgtgaaggtg aagtcccccg gaccccactg cgcccaaacc gaagtcatag 300 ccacactcaa gaatgggcag aaagcttgtc tcaaccccgc atcgcccatg gttaagaaaa 360 tcatcgaaaa gatgctgaaa aatggcaaat ccaactgacc agaaggaagg aggaagctta 420 ttggtggctg ttcctgaagg aggccctgcc ttacaggaac agaagaggaa agagagacac 480 agctgcagag gccacctggc ttgcgcctaa tgtgtttgag catacttagg agaagtcttc 540 tatttattta tttatttatt tatttgtttg ttttagaaga ttctatgtta atattttatg 600 tgtaaaataa ggttatgatt gaatctactt gcacactctc ccattatatt tattgtttat 660 tttaggtcaa acccaagtta gttcaatcct gattcatatt taatttgaag atagaaggtt 720 tgcagatatt ctctagtcat ttgttaatat ttcttcgtga tgacatatca catgtcagcc 780 actgtgatag aggctgagga atccaagaaa atggccagta agatcaatgt gacggcaggg 840 aaatgtatgt gtgtctattt tgtaactgta aagatgaatg tcagttgtta tttattgaaa 900 960 tgatttcaca gtgtgtggtc aacatttctc atgttgaagc tttaagaact aaaatgttct aaatatccct tggcatttta tgtctttctt gtaagatact gccttgttta atgttaatta 1020 tgcagtgttt ccctctgtgt tagagcagag aggtttcgat atttattgat gttttcacaa 1080 1110 agaacaggaa aataaaatat ttaaaaatat 499 <210> 805 <211> <212> DNA <213> Homo sapiens <400> 499 gcccttcgta gcagccatct tttcctggct ttggtgattc ttccctgact tctcaaaaag 60 cactgcacag aggaggaggc agcagaaccc cacttcagct tcttaggact ctgcacttcc 120 ccagaaggaa gaattaaaaa tgaatatgtt caaggaagca gtgaccttca aggacgtggc 180 tgtggccttc acggaggagg aattggggct gctgggccct gcccagagga agctgtaccg 240 300 agatgtgatg gtggagaact ttaggaacct gctgtcagtg gggcatccac ccttcaaaca agatgtatca cctatagaaa gaaatgagca gctttggata atgacgacag caacccgaag 360 acagggaaat ttagatacct tacctgtaaa agctcttttg ctctatgacc tggctcaaac 420

ttaaacttgg	atttgaagtt	agaagaaatg	ttggaagtca	tttatatatg	aagaaatgtt	480
ggaaggactc	atatatgcat	acattccttg	agtgactatg	aatgactgcc	gggcagtaac	540
ttctgggctg	tggttgtaaa	ctgtgagcac	tacaaaatgt	ttttccttat	tgataccata	600
ttatggtagg	aaagacatgg	aataaaaaat	ttagatagta	tgtcagtagt	tgtgttttta	660
aatgggtttc	attagtgctt	agcaattggg	agcttggtgg	accatctctt	ggttttggac	720
catctcttgg	tttctgtcag	tatgtaaacc	agaaacttca	aatgtgtcac	aaaagatgag	780
cagaactatc	ccgaggttca	ttaaa				805
	o sapiens					
<400> 500 tttcagccaa	ggcagacctc	acccagggac	cctccaccca	ggcagcgtgg	aagtgccagg	60
gcccacagac	agcaccccc	cgcccccgc	cggcctcctc	acccccttcg	aaggagactc	120
caggcctgct	gtgcactcct	gtggcatcgg	aaaacaaaaa	gcaagcatca	cagtcatagg	180
gagtgtgagg	cgcccagaat	gggggctcca	cagtcaggcc	tgcaccccgg	ctgcaggata	240
ccagatcctg	tggttcactg	tgagacetee	gcctctctcg	tetgeettae	gctgcccct	300
cgcaccccca	aggtatgacg	gcatttgaac	aatgcacgtg	cccatctaga	gccttggggt	360
gggcctgtga	gagagtgg					378
<210> 501 <211> 601 <212> DNA <213> Hom						
<222> (49	sc_feature 99)(499) .s a, c, g,	t or u				
<222> (54	sc_feature 10)(540) 1s a, c, g,	t or u				
<400> 501 tgttaggaat		c cactcttgta	a gttattttg:	a tctatacata	a atttttttt	60
tttaatcago	tttcactgag	g cttcaggtgg	g ggctggccc	g gcatggccag	g tatggcaggg	120
tgccctcgag	g ggccagtct	g tggcatgaca	a agaaatgcag	g gggtgcacg	gttggggctg	180
ccctttggca	a ctcactggg	g tgggtcaggg	g gagagcaaa	e accaaggtt	c tetggagace	240

ggaaccagcc agtgcagcca tttggcttct ccctcaggac cagctgtcag tccccaggcc	300
ctgaggtggt gcctgcatcc taggtctgtg gggcattact ggtgtcactc tgagggagaa	360
agatggccag ctgctcaatc aggatgatga gcaggctacc acccaccact agccccaagt	420
agatetggea atggatgtte teecageact tettetggge cagggtettt gttgtettge	480
tgaaggetga geteatatne eagagttggt etgaaegetg etceagtteg gteagetttn	540
catcatgctc caggaccttg tcaaagttgt taagcgtgat ttccgtcacc tttgtcgctt	600
g	601
<210> 502 <211> 1381 <212> DNA <213> Homo sapiens	
<400> 502 ggcacgaggc gggtgctgat gcgagtcggt ggcagcgagg acattttctg actccctggc	60
ccctgacacg gctgcacttt ccatcccgtc gcggggccgg ccgctactcc ggccccagga	120
tgcagaatgt gattaatact gtgaagggaa aggcactgga agtggctgag tacctgaccc	180
cggtcctcaa ggaatcaaag tttaaggaaa caggtgtaat taccccagaa gagtttgtgg	240
cagctggaga tcacctagtc caccactgtc caacatggca atgggctaca ggggaagaat	300
tgaaagtgaa ggcataccta ccaacaggca aacaattttt ggtaaccaaa aatgtgccgt	360
gctataagcg gtgcaaacag atggaatatt cagatgaatt ggaagctatc attgaagaag	420
atgatggtga tggcggatgg gtagatacat atcacaacac aggtattaca ggaataacgg	480
aagccgttaa agagatcaca ctggaaaata aggacaatat aaggcttcaa gattgctcag	540
cactatgtga agaggaagaa gatgaagatg aaggagaagc tgcagatatg gaagaatatg	600
aagagagtgg attgttggaa acagatgagg ctaccctaga tacaaggaaa atagtagaag	660
cttgtaaagc caaaactgat gctggcggtg aagatgctat tttgcaaacc agaacttatg	720
acctttacat cacttatgat aaatattacc agactccacg attatggttg tttggctatg	780
atgagcaacg gcagccttta acagttgagc acatgtatga agacatcagt caggatcatg	840
tgaagaaaac agtgaccatt gaaaatcacc ctcatctgcc accacctccc atgtgttcag	900
ttcacccatg caggcatgct gaggtgatga agaaaatcat tgagactgtt gcagaaggag	960
ggggagaact tggagttcat atgtatcttc ttattttctt gaaatttgta caagctgtca	1020
ttccaacaat agaatatgac tacacaagac acttcacaat gtaatgaaga gagcataaaa	1080
tctatcctaa ttattggttc tgatttttaa agaattaacc catagatgtg accattgacc	1140
atattcatca atatatacag tttctctaat aagggactta tatgtttatg cattaaataa	1200

aaatatgi	ttc cactaccagc	cttacttgtt	taataaaaat	cagtgcaaag	aaaaaaaaa	1260
aaaaaaa	aaa aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1320
aaaaaaa	aaa aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1380
a						1381
<210>	503					
	50					
<212>						
<213>	Homo sapiens					
	503					50
gagtagt	tgt ctttcctggc	actaacgttg	agctcgtgta	cgcactgaag		30
-210-	504					•
	50					
<211>						
	Homo sapiens					
<400>	504					
	agg caaataaaat	gcttctcaaa	ctgtgtggct	cttatggggt		50
5 5						
<210>	505					
<211>	50					
<212>	DNA					
<213>	Homo sapiens					
<400>	505					
ctgtcca	igcg ccaacagcct	ctatgacgac	atcgagtgct	tccttatgga	L	50
<210>	506					
<211>	50					
<213>	Homo sapiens					
<400>	506			annatataa		50
tgccttt	tga gcaaatagg	g aatctaagg <u>c</u>	aggaaattat	. caactytyca	ı	30
<210>	507					
<210> <211>	50					
<212>						
<213>						
<400>	507					
	ggcc ctcagtctt	t ggcaatggc	accctggtgt	tggcatatt	3	50
•						
<210>	508					
<211>	50					
<212>	DNA					
<213>	Homo sapiens					
<400>	508					

ctgagactgg ctgctgactt tgagaactct gtgagacaag gtccttaggc	50
<210> 509	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 509	
ccaacttgag atgtatgaag gcttttggtc tccctgggag tgggtggagg	50
<210> 510	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 510	F.0
aggaagcaat gtggttggac ctggttaagg gaaaggctga ttacggaaat	50
<210> 511	
<211> 50 <212> DNA	
<213> Homo sapiens	
AND DEFECTION	
<400> 511	5∙0
acttcatcat aatttggagg gaagctcttg gagctgtgag ttctccctgt	50
<210> 512	
<210> 512 <211> 50	
<211> 50 <212> DNA	
<213> Homo sapiens	
- · · · · · · · · · · · · · · · · · · ·	
<400> 512	50
gtacagagat cggatcacac aagcccggag acagtgcagc ttctccactg	
<210> 513	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 513 aatgcacttg tgataaactg acagcagggt tagacattac tttcaaagct	50
aatgcactty tyataaacty acayongggo tagaana	
<210> 514	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 514	
ggtagtgcct ccaggggcag aggaaaagaa gaagtgttac tgcattttgt	50
<210> 515	
<211> 50	
<212> DNA	
<213> Homo sapiens	

	•
<400> 515	50
cccatgctgt tgattgctaa atgtaacagt ctgatcgtga cgctgaataa	
<210> 516	
<211> 50	
<212> DNA	
<213> Homo sapiens	
•	
<400> 516	50
cagagaagaa acctactaca gaggagaaga agcctgctgc ataaactctt	
<210> 517	
<210> 517 <211> 50	
<211> 30 <212> DNA	
<213> Homo sapiens	
(213) 110mg 12F - 12mg	
<400> 517	50
actggcaggc ttatttatct gttgcacttg gttagcttta attgttctgt	30
010 510	
<210> 518 <211> 50	
<211> 50 <212> DNA	
<213> Homo sapiens	
Value of the second of the sec	
<400> 518	50
geetettget tggegtgata accetgteat etteceaaag eteatttatg	30
010 510	
<210> 519 <211> 50	
<211> 50 <212> DNA	
<213> Homo sapiens	•
<400> 519	50
gcacatgaca gtaagcgagg ttttgggtaa atatagatga ggatgcctat	50
010. 500	
<210> 520 <211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 520	50
cgttgctgaa gtggtaattg aggaaaacag ttccccagat tgttaagagt	30
	•
.010	
<210> 521	
<211> 50 <212> DNA	
<212> DNA <213> Homo sapiens	
-272\ VO!!!!! Pak	
<400> 521	50
agggattgtt tetggaccag tttgtetaag teetggetet tattggttea	50
	•
4210. E22	
<210> 522 <211> 50	
7417 JA	

WO 03/090694 PCT/US03/13015 <212> DNA <213> Homo sapiens <400> 522 agaacaagtt tgccttgatt ttgtttaaaa tgacttctgc taagcaccca 50 <210> 523 <211> 50 <212> DNA <213> Homo sapiens <400> 523 50 tttgccatgt ccagtacaga ataatttgta cttagtattt gcagcagggt <210> 524 <211> 50 <212> DNA <213> Homo sapiens <400> 524 aagtetttte cacaaaccae catetatttt gtgaactttg ttagteatet 50 <210> 525 <211> 50 <212> DNA <213> Homo sapiens <400> 525 atacctgact ttagagagag taaaatgtgc caggagccat aggaatatct 50 <210> 526 <211> 50 <212> DNA <213> Homo sapiens <400> 526 ttgtgttgtt ggaaaaagtc acattgccat taaactttcc ttgtctgtct 50 <210> 527 <211> 50 <212> DNA <213> Homo sapiens gctcaggagc gggctgctga gagctaaacc cagcaatttt ctatgatttt 50 <210> 528 <211> 50 <212> DNA <213> Homo sapiens <400> 528 50 aaagaaagcc agtatattgg tttgaaatat agagatgtgt cccaatttca

<210><211><211><212><213>	529 50 DNA Homo sapiens	
<400> catctg	529 aagt gtggagcctt acccatttca tcacctacaa cggaagtagt	50
<210><211><212><212><213>	530 50 DNA Homo sapiens	
<400>		50
<210><211><211><212>	DNA	
<400>	Homo sapiens 531 aaga tttgcgttaa tgaagactac acagaaaacc tttctaggga	50
<210><211><211><212><213>	50 DNA	
<400>	532 Ettgg gctcacagaa tcaaagccta tgcttggtag ctcttgaaca	50
<210><211><211><212>	50	
<400>	533 ettet geettatgge tagggaactg teatgtetae eatgtattgt	50
<210><211><212><213>	50 DNA	
<400>		50
<210><211><212><213>	50 DNA	
<400>		50

<210>	536				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	-				
<400>	536				
acaccta	tac tttgttgtgt	aatgttatgg	ttccctttct	gtaaaatgtt	50
acagood	icae eccyclycyc			_	
		•		¢	
<210>					
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	-				
<400>	537				
	gcc ttcctatttt	gcataataaa	tacttcaata	aaaatgcagc	50
cyctati	egec ececeaters	gcacaacaaa	09000000		
<210>	538				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	_				
<400>	538				
	ttaa catgaactct	tgaagtgaga	ccaggggaac	tettggaaga	50
aayaay	ttaa tatgaattet	cgaagccaca	0005550000	0000955	
<210>	539				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	_				
<400>	539				
	tcca tttatctttc	tacagggctg	acattotooc	acattcttag	50
acceae	coca cocacosos			5	
	5 40				
<210>	540				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	_				
<400>	540				
	taaa gcacgatgat	acaaatctgg	taccaatatt	atattttqca	50
Juliug					
.010	F 4.7				
<210>					
<211>					
<212>					
<213>	Homo sapiens				
<400>	541				
	cgat aagtttccaa	qtcactqaaa	tctqctqaaq	gttttactgt	50
223000	-33	J = = = = = = = = = = = = = = = = = = =			
-711 0.	E40				
<210>					
<211>					
<212>					
<213>	Homo sapiens				

WO 03/090694 PCT/US03/13015 <400> 542 ggctacagaa agaagatgcc agatgacact taagacctac ttgtgatatt 50 <210> 543 <211> 50 <212> DNA <213> Homo sapiens <400> 543 50 caacaggtgt cacactaagg agactttgtt catggctggg gacacagccc <210> 544 <211> 50 <212> DNA <213> Homo sapiens <400> 544 50 tggatgtggc tgctttcaac aagatctaaa atccatcctg gatcatggca <210> 545 <211> 50 <212> DNA <213> Homo sapiens <400> 545 50 tggtggaagt aaaaactggt aactcactca agtgaatgaa tggtcttgca <210> 546 <211> 50 <212> DNA <213> Homo sapiens <400> 546 50 cccacactgc tttgctgtgt atacgcttgt tgccctgaaa taaatatgca <210> 547 <211> 50 <212> DNA <213> Homo sapiens <400> 547 aggaccgaag tgtttcaagt ggatctcagt aaaggatctt tggagccaga 50 <210> 548 <211> 50 <212> DNA <213> Homo sapiens <400> 548 cactggggac gagacaggtg ctaaagttga acgagctgat ggatatgaac 50 <210> 549

<211> 50 <212> DNA

<213>	Homo sapiens	٠			
<400> agaggci	549 coct aactgggcaa	ctcaagattc	tggcttctac	tgaagaacca	50
<212>	550 50 DNA Homo sapiens		•·•	•	
<400> agtgcc	550 tttc aggatctatt	tttggaggtt	tattacgtat	gtctggttct	50
	Homo sapiens		·		
<400> ttggaa	551 atca tagtcaaagg	gcttccttgg	ttcgccactc	atttatttgt	50
<210><211><212><212><213>	_				
<400> gctaaa	552 gttg aacgagctga	tggatatgaa	. ccaccagtcc	aagaatctgt	50
<210><211><212><213>	553 50 DNA Homo sapiens				
<400> aaatca	553 agtac tttttaatgg	aaacaactto	g acccccaaat	ttgtcacaga	50
<210><211><211><212><213>	DNA				
<400> tgcat	554 catcc agaactgaag	ttgccctact	tttaacttto	g aacttggcta	50
<210><211><211><212><213>	50 DNA				
<400> atggc	555 actag gcagcattto	g tatagtaac	t aatggcaaa	a attcatggct	50
<210>	556				

WO 03/090694 PCT/US03/13015 <211> 50 <212> DNA <213> Homo sapiens <400> 556 50 tgattttgca acttaggatg tttttgagtc ccatggttca ttttgattgt <210> 557 <211> 50 <212> DNA <213> Homo sapiens <400> 557 50 gctgtaaatc tctgtctcat catccttctc ttttgtttcc atagcctttt <210> 558 <211> 50 <212> DNA <213> Homo sapiens <400> 558 tagatgattt ctagcaggca ggaagtcctg tgcggtgtca ccatgagcac 50 <210> 559 <211> 50 <212> DNA <213> Homo sapiens <400> 559 tgttctgaat gttggtagac ccttcatagc tttgttacaa tgaaaccttg 50 <210> 560 <211> 50 <212> DNA <213> Homo sapiens <400> 560 50 ttcacctaca aaatttcacc tgcaaacctt aaacctgcaa aattttcctt <210> 561 <211> 50 <212> DNA <213> Homo sapiens <400> 561 agctgtttgg taaccatagt ttcacttgtt caaagctgtg taatcgtggg 50 <210> 562 <211> 50 <212> DNA <213> Homo sapiens

50

acgggacaat tttaagatgt aataccaata ctttagaagt ttggtcgtgt

<400> 562

	563 50 DNA Homo sapiens				•	
<400>	563 Ettc attctgcatt	tgtgtagttt	ggtgctttgt	tccaagttaa		50
	564 50 DNA					
<400>	Homo sapiens 564 gtga gcactgcgta	caaacatcca	aaagttcaac	aacaccagaa		50
<210>	565					
<211> <212> <213>	50 DNA Homo sapiens					
<400> agagat	565 agca cagatggacc	aaaggttatg	cacaggtggg	agtcttttgt		50
<210><211><211>	566 50 DNA					
<213> <400>	Homo sapiens					
	attg gacagetete	tcgaagagat	cttacagact	gtatcagtct		50
<210><211><212><213>						
<400> ttgaag	567 tttt aagggacgtc	agtgtttatg	ccatttttcc	agttccaaaa		50
<210><211>	568 50				·	
<212> <213>						
<400> tgtgca	568 gtag aaacaaaagt	aggctacagt	ctgtgccatg	ttgatgtaca		50
<210><211><212><213>	569 50 DNA Homo sapiens					
<400>	569					

🕻 😘 💮	1 0 17 0 5 0 0 7 1 5 0
tctcaaagga gtaactgcag cttggtttga aatttgtact gtttctatca	50
<210> 570 <211> 50 <212> DNA <213> Homo sapiens	
<400> 570 tgataggaca tagtagtacg ggtggtcaga catgaaaatg gtggggagcc	50
• • • • • • • • • • • • • • • • • • • •	
<210> 571 <211> 50 <212> DNA <213> Homo sapiens	
<400> 571 cccaaataag ctctgtactt cggttaccta tgtacctgtt accactttca	50
<210> 572 <211> 50 <212> DNA <213> Homo sapiens	
<400> 572 gccgtgacaa tttgttcttt gatgtgattg tatttccaat ttcttgttca	50
<210> 573 <211> 50 <212> DNA <213> Homo sapiens	
<400> 573 aaaaccattc cagcttaatg cctttaattt taatgccaac aaaattgggg	50
<210> 574 <211> 50 <212> DNA <213> Homo sapiens	
<400> 574 ttggccgctt ccctacccac agggcctgac ttttacagct tttctctttt	50
<210> 575 <211> 50 <212> DNA <213> Homo sapiens	
<400> 575 agtgggtgaa tcacagtaat ttccctgtaa aatgtggtac ctgaagtcat	50
<210> 576 <211> 50 <212> DNA <213> Homo sapiens	

PCT/US03/13015

WO 03/090694

<400> tccaacc	576 ttg agatccagtg	tcaggagttc	tctattcctc	ccaactctga	50	
	577 50 DNA Homo sapiens			·		
<400> tgtgcag	577 gtag aaacaaagt	aggctacagt	ctgtgccatg	ttgatgtaca .	50)
	578 50 DNA Homo sapiens					
<400> tggtac	578 ccaa actcaccatt	tggtcctctt	taatctttga	gggtttcaat	50)
<210><211><211><212><213>	579 50 DNA Homo sapiens				•	
<400> gggtga	579 gaac acttgcaaca	gtttattaat	gaggtgactt	tcaccttagg	50)
<210><211><211><212><213>	580 50 DNA Homo sapiens					
	580 tgta aagetgtgga	atgaagctgo	: agatttagag	aacattggct	5	a
<210><211><211><212><213>	581 50 DNA Homo sapiens					
<400> atttga	581 Ittaa aattatttco	c cactgaccta	a aactttcagt	gatttgtggg	5	0
<210><211><212><212><213>	50					
<400> aaaago	582 cettg tgaaaatgt	t atgccctate	g taacagcaga	a gtaacataaa	5	50
<210><211>						

WO 03/090694 PCT/US03/13015 <212> DNA <213> Homo sapiens <400> 583 tgtgaaaagc tgataagaaa accatccaga aaaaagctct tcgttttaca 50 <210> 584 <211> 50 <212> DNA <213> Homo sapiens <400> 584 50 tgacctccac caaagcccat ataaggagcg gagttgttaa ggactgaaga <210> 585 <211> 50 <212> DNA <213> Homo sapiens <400> 585 tcgtgtgaat cagactaagt gggatttcat ttttacaact ctgctctact 50 <210> 586 <211> 50 <212> DNA <213> Homo sapiens <400> 586 50 catgaagaag caagacgaaa acacacagga gggaaaatcc tgggattctt <210> 587 <211> 50 <212> DNA <213> Homo sapiens <400> 587 50 agtttcactg tcagagatat tgtaggtgct aatactggat ttcgtctcag <210> 588 <211> 50 <212> DNA <213> Homo sapiens agcatgtgtc tgccatttca tttgtacgct tgttcaaaac caagtttgtt 50 <210> 589 <211> 50 <212> DNA <213> Homo sapiens <400> 589 50 agcacagatg gtgcaatact ttccttcttt gaagagatcc caaagttagt

<211> 50 <212> DNA <213> Homo sapiens <400> 590 actcaagttt tcagtttgta ccgcctggta tgtctgtgta agaagccaat	
<213> Homo sapiens <400> 590	
<400> 590	
<400> 590 actcaagttt tcagtttgta ccgcctggta tgtctgtgta agaagccaat	
<400> 590 actcaagttt tcagtttgta ccgcctggta tgtctgtgta agaagccaat	
actcaagttt tcagtttgta ccgcctggta tgtctgtgta agaagccaat	F.0
	50
<210> 591	
<211> 50	
<212> DNA	
<213> Homo sapiens	
-	
<400> 591	
gatggcatcg tctcaaagaa cttttgactg gagagaatca cagatgtgga	50
<210> 592	
<211> 50	
<212> DNA	
<213> Homo sapiens	
(21) None Baptens	
<400> 592	
cctcttgatg cctaagcagg taagcagatg cctaagctgt atttctccaa	50
ecceptgatg cotaageagg taageagatg cotaageage	
<210> 593	
<211> 50	
<212> DNA	
<213> Homo sapiens	
500	
<400> 593	50
ggctctcagt gtgccataga ggacagcaac tggtgattgt ttcagagaaa	
<210> 594	
<211> 50	
<211> 50 <212> DNA	
<211> 50	
<211> 50 <212> DNA <213> Homo sapiens	
<211> 50 <212> DNA <213> Homo sapiens <400> 594	50
<211> 50 <212> DNA <213> Homo sapiens	50
<211> 50 <212> DNA <213> Homo sapiens <400> 594	50
<211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagagc atttatcgtt tgtcccttga	50
<211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagagc atttatcgtt tgtcccttga <210> 595	50
<211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagagc atttatcgtt tgtcccttga <210> 595 <211> 50	50
<211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagagc atttatcgtt tgtcccttga <210> 595 <211> 50 <212> DNA	50
<211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagagc atttatcgtt tgtcccttga <210> 595 <211> 50	50
<211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagagc atttatcgtt tgtcccttga <210> 595 <211> 50 <212> DNA <213> Homo sapiens	50
<211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagagc atttatcgtt tgtcccttga <210> 595 <211> 50 <212> DNA <213> Homo sapiens <400> 595	
<211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagagc atttatcgtt tgtcccttga <210> 595 <211> 50 <212> DNA <213> Homo sapiens	5 0
<211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagagc atttatcgtt tgtcccttga <210> 595 <211> 50 <212> DNA <213> Homo sapiens <400> 595	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagagc atttatcgtt tgtcccttga <210> 595 <211> 50 <212> DNA <213> Homo sapiens <400> 595 gcttctgtaa atgccatccc aatgtggttt ggttttgttg aacagaaacc</pre>	
<211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagagc atttatcgtt tgtcccttga <210> 595 <211> 50 <212> DNA <213> Homo sapiens <400> 595 gcttctgtaa atgccatccc aatgtggttt ggttttgttg aacagaaacc <210> 595 <210> 595	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagagc atttatcgtt tgtcccttga <210> 595 <211> 50 <212> DNA <213> Homo sapiens <400> 595 gcttctgtaa atgccatccc aatgtggttt ggttttgttg aacagaaacc</pre>	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagac atttatcgtt tgtcccttga <210> 595 <211> 50 <211> DNA <213> Homo sapiens <400> 595 gcttctgtaa atgccatccc aatgtggttt ggttttgttg aacagaaacc <210> 596 <211> 50 <211> 50 <211> DNA</pre>	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagac atttatcgtt tgtcccttga <210> 595 <211> 50 <212> DNA <213> Homo sapiens <400> 595 gcttctgtaa atgccatccc aatgtggttt ggttttgttg aacagaaacc <210> 596 <211> 50</pre>	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagac atttatcgtt tgtcccttga <210> 595 <211> 50 <211> DNA <213> Homo sapiens <400> 595 gcttctgtaa atgccatccc aatgtggttt ggttttgttg aacagaaacc <210> 596 <211> 50 <211> 50 <211> DNA</pre>	
<pre><211> 50 <212> DNA <213> Homo sapiens <400> 594 tggaatggac tcttaaaaca atgaaagac atttatcgtt tgtcccttga <210> 595 <211> 50 <211> DNA <213> Homo sapiens <400> 595 gcttctgtaa atgccatccc aatgtggttt ggttttgttg aacagaaacc <210> 596 <211> 50 <211> 50 <211> DNA</pre>	

<210>	597				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	597				
	taa aaccttcaga	2002220020	aatattttat	ggaccacttt	50
Lycalcy	caa aaccccaga	aggaaaggag	aacgccccgc	9940040	
				֥	
<210>	598				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	598				
	taa gctgtactga	actaaatctq	tggaatgcat	tgtgaactgt	. 50
-5-55-	333	•			
.010.	E00				
<210>	599				
<211>	50				
	DNA				
<213>	Homo sapiens				
<400>	599				
ttttccc	tgc tattgaggaa	gtattttgcc	ttccctactc	actgagaagt	50
<210>	600				
<211>	50				
<212>					
<213>	Homo sapiens				
<400>	600			1 .1	50
aagaag	gage ttaatgccag	gaacagattt	tgcagttggt	ggggtctcaa	50
<210>	601				·
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	Dup1				
<400>	601				
		tassatssta	tagaagggtg	attataacaa	50
CCCaac	etga agtcagtaaa	Lyaactaatt	cacaagegeg	gccacggcaa	30
<210>	602				
<211>	50				
<212>					
<213>	Homo sapiens				
	=				
<400>	602				
	gtcc tctgtttgca	ctggacatat	tccctaccto	tcttatttca	50
J-5-54	J-20 20250-200	- JJ			
-21A-	602				
<210>					
<211>					
<212>					
<213>	Homo sapiens				

· WO 03/090694	PCT/US03/13015
<400> 603	
ggcatcgccc atgctcctca cctgtatttt gtaatcagaa ataaattgct	50
<210> 604	
<211> 50 <212> DNA	
<213> Homo sapiens	
<400> 604 tccccctcc gcctcccagg aagaaagaat gttactgcct taataaaaa	50
Ecccoccoc decrecada aadaaadaar dreacedeee caacaaaaa	
<210> 605	
<211> 50 . <212> DNA	
<213> Homo sapiens	
<400> 605 agagaccagt tttctctgga agtttgttta aatgacagaa gcgtatatga	50
<210> 606 <211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 606 gettecactg gaggettgta ttgacettgt aactatatgt taatetegtg	50
<210> 607 <211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 607	50
tgactggaac tgagagtaaa ttgggaatgt atgaccaatc ttagaccctg	50
<210> 608	
<211> 50 <212> DNA	
<213> Homo sapiens	
<400> 608	F.0
agtttgccct ggatgtcata ttggcagttg gaggacacag tttctattgt	50
<210> 609	
<211> 50 <212> DNA	
<212> DNA <213> Homo sapiens	
<400> 609 agcatgcagt tctctgtgaa atctcaaata ttgttgtaat agtctgtttc	· 50
ayeacycayr recorgegaa acecedaara regeogeaar ayeeryttio	20
<210> 610	
<211> 50 <212> DNA	
•	

<213> Homo sapiens	
<400> 610 ttggtgtcaa tgatctggtg acaataggat tacattggag ccaattgaat	50
<210> 611 <211> 50 <212> DNA <213> Homo sapiens	
<400> 611 ttccccatat ccaagtacca atgctgttgt aaacaacgtg tatagtgcct	50
<210> 612 <211> 50 <212> DNA <213> Homo sapiens	
<400> 612 aaaagaaatc tgtttcaaca gatgaccgtg tacaataccg tgtggtgaaa	50
<210> 613	
<400> 613 gctgttttca acattgtatt tggactatgc atgtgttttt tccccattgt	-50
<210> 614 <211> 50 <212> DNA <213> Homo sapiens	
<400> 614 tttgcatccc gagttttgta ttccaagaaa atcaaagggg gccaatttgt	50
<210> 615 <211> 50 <212> DNA <213> Homo sapiens	
<400> 615 gtcaggattg cgagagatgt gtgttgatac tgttgcacgt gtgtttttct	50
<210> 616 <211> 50 <212> DNA <213> Homo sapiens	
<400> 616 ttgtccaaac gaagcagccg tggtagtagc tgtctatgat tcttgctcag	50
<210> 617	

WO 03/090694 PCT/US03/13015 <211> 50 <212> DNA <213> Homo sapiens <400> 617 50 aggtagggtt taatccccag taaaattgcc atattgcaca tgtcttaatg <210> 618 <211> 50 <212> DNA <213> Homo sapiens <400> 618 50 tgtcgccttt tagaaggaga aacttaagtg tggaatgcat tatatgggca <210> 619 <211> 50 <212> DNA <213> Homo sapiens <400> 619 aaactgtttc tttggtgtcc tttacattga aataaattgt gtttgtgcct 50 <210> 620 <211> 50 <212> DNA <213> Homo sapiens <400> 620 50 ggcagaatcc acaccagctt atcaaccaac acagctaatt ttagaatagg <210> 621 <211> 50 <212> DNA <213> Homo sapiens 50 tggtgtctat aagaagctca cgggcaagga tgttaatttt gaattcccag <210> 622 <211> 50 <212> DNA <213> Homo sapiens <400> 622 ggtacagttg gagcactata tgtactctct ggactacttt ggacagaagt 50 <210> 623 <211> 50 <212> DNA <213> Homo sapiens

50

gccagattgt ggcaggtaaa gagacaatgt aatttgcact ccctatgata

<400> 623

```
<210> 624
<211> 50
<212> DNA
<213> Homo sapiens
<400> 624
tgcattgtgt agctagtttt ctggaaaagt caatctttta ggaattgttt
                                                                     50
<210> 625
<211> 50
<212> DNA
<213> Homo sapiens
<400> 625
                                                                     50
aaagttgata ctgtgggatt tttgtgaaca gcctgatgtt tgggaccttt
<210> 626
<211> 50
<212> DNA
<213> Homo sapiens
<400> 626
                                                                     50
cttccttagc tcctgttctt ggcctgaagc ctcacagctt tgatggcagt
<210> 627
<211> 50
<212> DNA
<213> Homo sapiens
<400> 627
tctgttatga acacgttggt tggctggatt cagtaataaa tatgtaaggc
                                                                     50
<210> 628
<211> 50
<212> DNA
<213> Homo sapiens
<400> 628
actggcgagt atgttctatg ttgggcctcc tgctgcaaaa caataaacag
                                                                      50
<210> 629
<211> 50
<212> DNA
<213> Homo sapiens
<400> 629
atttggacag atgcagaagg aactgttagt gagtcaagac aaacacatct
                                                                      50
<210> 630
<211> 50
<212> DNA
<213> Homo sapiens
<400> 630
```

WO 03/090694	PCT/US03/13015
agcagccttt ctgtggagag tgagaataat tgtgtacaaa gtagagaagt	50
aggageetee eegeggaggeg egest	
<210> 631	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 631	50
acttctgaac tgaggaattt gctgttgaca gccaaagtat agtgtacaag	
<210> 632	
<211> 50	
<211> 30 <212> DNA	
<213> Homo sapiens	
<400> 632	50
tgcctcatta tcttgcagct gtaaacatat tggaatgtac atgtcaataa	
<210> 633	
<211> 50	
<211> 30	
<213> Homo sapiens	
<400> 633	50
tggttgaccc ttgtatgtca cagetetget etatttatta ttattttgca	50
<210> 634	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 634	50
gtttcagctc cccgagttgg tggaaaacgc taaactggca gattagattt	
<210> 635	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 635	50
atctacagac agtcaatgtg gatgagaact aatcgctgat caaataacgt	30
<210> 636 <211> 50	
<212> DNA <213> Homo sapiens	
<400> 636	50
ttgcctttat aaaaacttgc tgcctgacta aagattaaca ggttatagtt	
<210> 637	
<211> 50	
<212> DNA	
<213> Homo sapiens	

<400> 637 agactgaagg ggttgaaaga cccgtagacg ctcctttcct cttttagacc	50
<210> 638 <211> 50 <212> DNA <213> Homo sapiens	
<400> 638 tcaagtgaac atctcttgcc atcacctagc tgcctgcacc tgcccttcag	50
<210> 639 <211> 50 <212> DNA <213> Homo sapiens	
<400> 639 ggggtacctg tgttgagttg ataaacattt ccatcttcat taaaactgct	50
<210> 640 <211> 50 <212> DNA	
<213> Homo sapiens <400> 640	
ggtcaagggt gtcctccact ctttaacagc tgctggacag acacattaga	50
<210> 641 <211> 50 <212> DNA <213> Homo sapiens	
<213> Homo sapiens <400> 641 aattgtcaaa cacagcttgc aatatacata gaaacgtctg tgctcaagga	50
<210> 642	
<211> 50 <212> DNA <213> Homo sapiens	
<400> 642 ccttgagaaa cacccatctc cacttcctag acaaaccaat gaacattagt	50
<210> 643 <211> 50	
<212> DNA <213> Homo sapiens <400> 643	
gcggagttga ccaaaataat atctgaggat gattgctttt ccctgctgcc	50
<210> 644 <211> 50	

<212> DNA <213> Homo sapiens	
<400> 644 tttccagcaa gtatccaacc aacttggttc tgcttcaata aatctttgga	50
<210> 645	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 645	50
tcaacaaagg ggattttgta cacataacat gggttattta gtttaactct	30
<210> 646	
<211> 50	
<212> DNA <213> Homo sapiens	
(213) 1101110 0451-1111	
<400> 646	50
tgaagaaact gccctttctg tgatgttttt gaatactacc caacagccaa	
<210> 647	
<211> 50 <212> DNA	
<213> Homo sapiens	
<400> 647	
gacaaaccct ggagaaatgg gagcttgggg agaggatggg agcgggeaga	50
gacaaaccct ggagaaatgg gagcttgggg agaggatggg agtgggcaga	50
	50
gacaaaccct ggagaaatgg gagcttgggg agaggatggg agtgggcaga <210> 648 <211> 50	50
<210> 648 <211> 50 <212> DNA	50
<210> 648 <211> 50	50
<210> 648 <211> 50 <212> DNA <213> Homo sapiens	
<210> 648 <211> 50 <212> DNA <213> Homo sapiens	50
<210> 648 <211> 50 <212> DNA <213> Homo sapiens	
<210> 648 <211> 50 <212> DNA <213> Homo sapiens <400> 648 actggacaac tttgagtact gacatcattg ataaataaac tggcttgtgg <210> 649	
<210> 648 <211> 50 <212> DNA <213> Homo sapiens <400> 648 actggacaac tttgagtact gacatcattg ataaataaac tggcttgtgg <210> 649 <211> 50	
<210> 648 <211> 50 <212> DNA <213> Homo sapiens <400> 648 actggacaac tttgagtact gacatcattg ataaataaac tggcttgtgg <210> 649 <211> 50 <212> DNA	
<210> 648 <211> 50 <212> DNA <213> Homo sapiens <400> 648 actggacaac tttgagtact gacatcattg ataaataaac tggcttgtgg <210> 649 <211> 50	
<210> 648 <211> 50 <212> DNA <213> Homo sapiens <400> 648 actggacaac tttgagtact gacatcattg ataaataaac tggcttgtgg <210> 649 <211> 50 <212> DNA <213> Homo sapiens <400> 649	
<210> 648 <211> 50 <212> DNA <213> Homo sapiens <400> 648 actggacaac tttgagtact gacatcattg ataaataaac tggcttgtgg <210> 649 <211> 50 <212> DNA <213> Homo sapiens	50
<210> 648 <211> 50 <212> DNA <213> Homo sapiens <400> 648 actggacaac tttgagtact gacatcattg ataaataaac tggcttgtgg <210> 649 <211> 50 <212> DNA <213> Homo sapiens <400> 649 catgattcca aggatcagcc tggatgccta gaggactaga tcaccttagt	50
<210> 648 <211> 50 <212> DNA <213> Homo sapiens <400> 648 actggacaac tttgagtact gacatcattg ataaataaac tggcttgtgg <210> 649 <211> 50 <212> DNA <213> Homo sapiens <400> 649 catgatcca aggatcagce tggatgccta gaggactaga tcaccttagt <20> 650	50
<pre><210> 648 <211> 50 <212> DNA <213> Homo sapiens <400> 648 actggacaac tttgagtact gacatcattg ataaataaac tggcttgtgg <210> 649 <211> 50 <212> DNA <213> Homo sapiens <400> 649 catgatcca aggatcagcc tggatgccta gaggactaga tcaccttagt <210> 650 <211> 50</pre>	50
<pre><210> 648 <211> 50 <212> DNA <213> Homo sapiens </pre> <pre><400> 648 actggacaac tttgagtact gacatcattg ataaataaac tggcttgtgg</pre> <pre><210> 649 <211> 50 <212> DNA <213> Homo sapiens </pre> <pre><400> 649 catgattcca aggatcagcc tggatgccta gaggactaga tcaccttagt</pre> <pre><210> 650 <211> 50 <212> DNA</pre>	50
<pre><210> 648 <211> 50 <212> DNA <213> Homo sapiens </pre> <pre><400> 648 actggacaac tttgagtact gacatcattg ataaataaac tggcttgtgg</pre> <pre><210> 649 <211> 50 <212> DNA <213> Homo sapiens </pre> <pre><400> 649 catgattcca aggatcagcc tggatgccta gaggactaga tcaccttagt</pre> <pre><210> 650 <211> 50 <212> DNA <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100< 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100> 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650 <100< 650</pre>	50
<pre><210> 648 <211> 50 <212> DNA <213> Homo sapiens </pre> <pre><400> 648 actggacaac tttgagtact gacatcattg ataaataaac tggcttgtgg</pre> <pre><210> 649 <211> 50 <212> DNA <213> Homo sapiens </pre> <pre><400> 649 catgattcca aggatcagcc tggatgccta gaggactaga tcaccttagt</pre> <pre><210> 650 <211> 50 <212> DNA</pre>	50

<210>	651				
<211>	50				
<212>	DNA			•	
	Homo sapiens				
\21J/	nome papaene				
	651				r 0
aagtaaa	tgt acagtgattt	gaaatacaat	aatgaaggca	atgcatggcc	50
<210>	652				
<211>	50				
	DNA				
<213>	Homo sapiens				
<400>	652				
	igaa ggaagcccag	cadadcadda	aacaacaaca	acaatgagag	50
gtatga	igaa ggaageeeag	cagageagga	ggcagcagca		
				•	
<210>	653				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	653				
tattta	ttg aacagttgtg	taaatcatac	aggattttgt	gggtattggt	50
.010.	CE 4				
<210>	654				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	-				
<400>	654				
		taaaaataat	agaataatat	tagetatage	50
etggea	aaaa gccgaaggag	taaaggtget	gcaacgacgc	cagcigige	50
<210>	655				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	655				
qcaqca	gctt aatttttctg	tattqcaqtq	tttataggct	tcttgtgtgt	50
J J	3	5 5 5			
-010	CEC				
<210>	656				
<211>	50				
<212>	DNA				
<213>	Homo sapiens ·				
4400-	CE C				
<400>					50
ccagaa	agtg tgggctgaag	atggttggtt	tcatgtgggg	gtattatgta	50
<210>	657				
<211>					
			•		
<212>					
<213>	Homo sapiens				
<400>	657				
	gctc tcttgtgtac	ttattgttta	aggtttcctc	aaactgtgat	50
uaryyy	gott tettgegeat				-

```
<210> 658
<211>
      50
<212> DNA
<213> Homo sapiens
<400> 658
                                                                    50
tggaccggag tctgctgagt ttataaggtt ccaaaaatat ggtaaaatct
<210> 659
<211> 50
<212> DNA
<213> Homo sapiens
<400> 659
caagagaatg aaggaggcta aggagaagcg ccaggaacaa attgcgaaga
                                                                   - 50
<210> 660
<211> 50
<212> DNA
<213> Homo sapiens
<400> 660
ggccttctat gtgcttagcc ataacaattc cattaagcaa gaaggtaagc
                                                                    50
<210> 661
<211> 50
<212> DNA
<213> Homo sapiens
<400> 661
tttggcctgt tttgatgtat gtgtgaaaca atgttgtcca acaataaaca
                                                                    50
<210> 662
<211> 50
<212> DNA
<213> Homo sapiens
<400> 662
                                                                    50
tgaccggatt ccctcactgt tgtatcttga ataaacgctg ctgcttcatc
<210> 663
<211> 50
<212> DNA
<213> Homo sapiens
<400> 663
gttgaattgg ggtggatggg gggagcaagc ataattttta agtgtgaagc
                                                                     50
<210> 664
<211> 50
<212> DNA
<213> Homo sapiens
```

<400> 664 ggggtttatg tcctaactgc tttgtatgct gttttataaa gggatagaag	50
<210> 665	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 665	50
agetttagge tgagggeatg gaaactgtta egetttteet tttatgtgat	50
<210> 666	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 666	50
attateettt teeccaggaa geeeteggee eecaaaaagg gaaacagttt	30
<210> 667	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 667	
gccacatgtc ctattctcac acaggtgctt taatttcagc ccagtctcta	50
<210> 668	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 668	50
aaagcaagtg ttttgtacat ttcttttcaa aaagtgccaa atttgtcagt	30
<210> 669	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 669	
tggagtttcc aggagaaaaa taatcacctt tgaaggtttt tagagcatgt	50
· <210> 670	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 670	
tgtgtgcgta gaatattacg tatgcatgtt catgtctaaa gaatggctgt	50
<210> 671	
<211> 50	
<212> DNA	

WO 03/090694 PCT/US03/13015 <213> Homo sapiens <400> 671 tctccttcca cagtttattt cctcgcttcc tttgcatcta aacctttctt 50 <210> 672 <211> 50 <212> DNA <213> Homo sapiens <400> 672 tgtttccact tcatgggata tgactccatc acaatgaaaa tgggtccagt 50 <210> 673 <211> 50 <212> DNA <213> Homo sapiens <400> 673 ataatcacag ttgtgttcct gacactcaat aaacagtcac tggaaagagt 50 <210> 674 <211> 50 <212> DNA <213> Homo sapiens <400> 674 50 tgcgggttat tgatttgttc tttacaacta ttgttctcat atttctcaca <210> 675 <211> 50 <212> DNA <213> Homo sapiens <400> 675 tgccagtagt gaccaagaac acagtgatta tatacactat actggaggga 50 <210> 676 <211> 50 <212> DNA <213> Homo sapiens <400> 676 50 actgacctag cagatgtgtg gaaaaggaat cagatcttga ttcttctggg <210> 677 <211> 50 <212> DNA <213> Homo sapiens 50 ctctctggag qtactgagac agggtgctga tgggaaggag gggagccttt

<210> 678

<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	. ·	
caccaa	aata gttatgttgg cactgtgttc acacgcatgg tccccacacc	50
<210>	679	
<211>	50	
<212>		
<213>	Homo sapiens	
400	600	
<400>		50
gctctg	ggaa agagacaggg aagtctggaa tggaaaagaa cacgatgaga	50
<210>	680	
<211>		
<212>	DNA	
<213>	Homo sapiens	
	•	
<400>	680	
gtcagt	aagc tctgcctgcc aagaagacac agtgagaggt gtccacagtc	50
5 5		
<210>	681	
<211>		
<212>		
<213>		
(213)	none saptems	
<400>	681	
	ctgc catagcataa caatgaagtg actgaaaaat ccagaatttc	50
actigg	cigo catagoacaa caatgaageg aceguaaaa coaguacee	
.210.	682	
<210>		
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	682·	50
ttggcc	cagt gtgattgatt gctttatctt tggtactttt acttgaatgg	50
<210>	683	
<2 11 >	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	683	
gaacaa	gtgg ttcttccaga aactgcggtt ttagatgctt tgttttgatc	50
<210>	684	
<211>	50	
<212>		
	Homo sapiens	
<400>	684	
	getet actatggaga teaacagtta etgtgaetga gteggeeeat	50
77-7	,	

	•	
<210>	685	
	50	
<211>		
	DNA	
<213>	Homo sapiens	
<400>	685	
agaatia.	agat agtcagttgt gtgtgactct aataaacgga gcctaccttt	50
acactg	agac ageouges 3-3-3	
<210>	686	
<211>	50	
<212>		
	•	
<213>	NOMO Sapremo	
		•
<400>	686	50
acctca	ttct gacacctgca tatagtgtgg gaaattgctc tgcatttgac	
	·	
.0105	687	
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<400>	687	
V4007	agtgg aggcattgtt tttaagaaaa acatgtcatg taggttgtct	50 ·
tttgga	aging agginates to the same and	
<210>	688	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	688	50
tggac	atagc agcacatact acttcagagt tcatgatgta gatgtctggt	
<210>	689	
<211>		
<212>		
<213>	· Homo sapiens	
~400×	689	
	tgatt tgaaaggtgt gcagcctgat ttaaaaccaa accctgaacc	50
cagat	tgatt tgaaaggege geugeeegat semm	
<210>	- 690	
<211>		
	> DNA	
	- Homo sapiens	
<413	. Homo Saprome	
<400	> 690	50
aggg	ggctgt gtctgatctt ggtgttcaaa acagaactgt atttttgcct	
<210	> 691	
<211		
<212		
<213	> Homo sapiens	
<400	> 691	

W O 05/070074	
ggcaggtgac cattggcaca cgctagaagt ttatggcaga gctttacaaa	50
<210> 692 <211> 50 <212> DNA <213> Homo sapiens	
<400> 692 cttgccttaa gctaccagat tgcttttgcc accattggcc atactgtgtg	50
<210> 693 <211> 50 <212> DNA <213> Homo sapiens	
<400> 693 gacagcagga ttggatgttg tgtattgtgg tttattttat	. 50
<210> 694 <211> 50 <212> DNA <213> Homo sapiens	• *
<400> 694 ttgattagag caatgggaag catactgtgg cctaccagca tctggaagtg	50
<210> 695 <211> 50 <212> DNA <213> Homo sapiens <400> 695	50
tgaatataat atatttgtgt atttaacagg gaggggaaga gggggcgatc	30
<211> 50 <212> DNA <213> Homo sapiens	
<400> 696 agcataatcc taatgaggaa ctttgtctga agtctgaggc tgagttactt	50
<210> 697 <211> 50 <212> DNA <213> Homo sapiens	
<400> 697 gtttggcccc caaagtgttt aggagagett teteeetaga tegeeetgtg	50
<210> 698 <211> 50 <212> DNA <213> Homo sapiens	

WO 03/090694

PCT/US03/13015

	698				F.0
ttctcat	gta taaaactagg	aatcctccaa	ccaggctcct	gtgatagagt	50
<210>	699				
	50				
	DNA				
<213>	Homo sapiens				
	699				50
ctttgtg	gtt ttaaagacaa	ctgtgaaata	aaattgtttc	accgcctggt	50
		•			
<210>	700				
	50				
<212>					
<213>	Homo sapiens			•	•
	700				F 0
acaaatt	gaa atgtctgtac	tgatcctcaa	ccaataaaat	ctcagccgaa	50
<210>	701				
	50				
	DNA				
<213>	Homo sapiens				
	701				= 0
catgggg	ctc tcttgtgtac	ttattgttta	aggtttcctc	aaactgtgat	50
<210>	702				
<211>	50				
	DNA				
<213>	Homo sapiens				
<400>	702				50
aagtgga	agt gggtgaattc	tactttttat	gttggagtgg	accaatgtct	50
<210>	703				
<211>	50				
<212>	DNA	•			
<213>	Homo sapiens				
<213>	HOMO Saprens				
<400>					F.0
acatgto	gatg tttgactgta	ccattgactg	ttatggaagt	tcagcgttgt	50
					:
<210>	704				
<211>	50				
<212>					
/CT3>	Homo sapiens				
.400					
<400>	704			<u> </u>	E0.
tgaggct	ttgt gaggccaatc	aaaataatgt	tigigatete	tactactgtt	50
<210>	705				
<211>	50				

	DNA	
<213>	Homo sapiens	
<400>	705	50
cttccta	agcc ctaagtttgg cctttgggtg gctccaaaaa ggattaggtt	50
<210>	706	
<211> <212>	50 DNA	
	Homo sapiens	
.400-	706	
<400>	706 ggat aagagatggg acatcattca gtcactagtt ggatggcaca	50
- 33		
<210>	707	
<211>	50 .	
	DNA	
<213>	Homo sapiens	
<400>	707	50
gagtga	taac tcatgagaag tactgatagg acctttatct ggatatggtc	30
<210>	708	
<211> <212>	50 DNA	
<213>		
	708	
	gegt ttggcatett caetetttee aaaatgtate tgtacateag	50
2		
<210>	709	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	709	50
acctgo	cacc atgttttgta atttgaggtc ttgatttcac cattgtcggt	50
<210> <211>		
<212>		
<213>	Homo sapiens	
<400>	710	
agcaaa	agatt tcagtagaat tttagtcctg aacgctacgg ggaaaatgca	50
<210>	711	
<211>		
<212> <213>		
~~>	nomo papione	
<400>	711	50
gtacga	aatgg gaggtcctcg acacctgggg aactgcggac tatgcggcag	

PCT/US03/13015

WO 03/090694

	712 50 DNA Homo sapiens	
<400>	712 aaag gagtgatgtt ggaatagtcc ctctaaggga gagaaatgca	50
<210><211><211>	713 50 DNA	
<213>	Homo sapiens	
<400> gtatat	713 atcc tccagcattc agtccagggg gagccacgga aaccatgttc	50
<210>	714	•
<211> <212>	50 DNA	
<213>	Homo sapiens	
<400> aaggaa	714 ggta aagttagggg actagaagac tctaaattgg cttctacaga	50
<210>	715	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	715	50
tgttct	tcat ctaagcette tggttttatg ggtcagagtt eegaetgeea	
<210>	716	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	716 gctag ggggctatag aaacatctag aaatagactg aaagaaaatc	50
cccag	gotag ggggetatag addoctory man by the g	
<210>	717	
<211>		
	DNA	
<213>	Homo sapiens	
<400>	717	50
cacca	ggaac ctgctttagt gggggatagt gaagaagaca ataaaagata	
<210>	718	
<211>		
<212>		
<213>	Homo sapiens	
<400>	718 ccttg gcaccagaca cccaggactt atttaaactc tgttgcaagt	50

<210> <211>	719 50	
<212>	DNA	
<213>	Homo sapiens	
<400>	719	50
taaaac	ccaa gacttcagat tcagccgaat tgtggtgttt cacaaggccg	
<210>	720	
<211>	50	
<212> <213>	•	
<213>	HOMO Sapiens	
<400>	720	
taggga	tact tagcctcagc aggagcctgg cctgtaactt ataaagtgca	50
cagoon		
<210>	721	
<211>	50	
<212>		
<213>	Homo sapiens	
		•
<400>	721	. 50
attgaa	gccg actctggccc tggcccttac ttgcttctct agctctctag	
<210>	722	
<211>		
<211>		
	Homo sapiens	
\Z.Z.J.		
<400>	722	50
agttc	aggag atctctaagt gtagctgtaa attttggggt taatttggct	50
_		
<210>	723	
<211>		
<212>		
<213>	Homo sapiens	
<400>	723	• •
C4002	atggt ttcctgatag ctttcaaaca cctttgccat ctcttcgcaa	50
cgagg	atggt toootguetg tree	
<210>	724	
<211>		
<212>	DNA	
<213>	Homo sapiens	
<400>	724	50
cctgo	tcaca gaccaggaac tctacaagct ggaccctgac cggcagtacc	
<210:	725	
<211:		
<211:	·	
	Homo sapiens	

<400> 725 ctttttcacc accgtcttca atgcccatga gcctttccgc cggggtacag	50
<210> 726 <211> 50 <212> DNA <213> Homo sapiens	
<400> 726 tttccatctg tgtcccagat tgtgacccta gactttcaat tgacaagtaa	50
<210> 727 <211> 50 <212> DNA	
<213> Homo sapiens <400> 727 agcttttggg gtcagatctc tggaacatca tgtgatgaag ctgacatttt	50
<210> 728 <211> 50	
<212> DNA <213> Homo sapiens	
<400> 728 tottottcat ototgttttg otottaaaaa tataaaaagg caattoocog	50
<210> 729 <211> 50 <212> DNA	
<213> Homo sapiens <400> 729 agagtaatcc acatcccagg gacagtcaca atgacctacg gctttagctg	50
<210> 730 <211> 50	
<212> DNA <213> Homo sapiens	
<400> 730 gtatetetge aceteaetae taccetteae teettggaga eetgggeaag	50
<210> 731 <211> 50 <212> DNA <213> Homo sapiens	
<400> 731 ccttctaacc tgaactgatg ggtttctcca gagggaattg cagagtactg	50
<210> 732 <211> 50 <212> DNA	

11 0 001020021	101,0500,1001
<213> Homo sapiens	
<400> 732	
tttctaaccc tgacacggac tgtgcatact ttccctcatc catgctgtgc	50
<210> 733	
<211> 50 <212> DNA	
<213> Homo sapiens	
<400> 733	
ttccttttcc gctaatcaag agtccaggga ggtgggaaca gcctcaacaa	50
<210> 734	
<211> 50	
<212> DNA <213> Homo sapiens	•
<400> 734 tectgeaagg etggaetgtg atetteaate atectgeeca tetetggtae	50
<210> 735	
<211> 50	<i>i</i>
<212> DNA <213> Homo sapiens	•
<400> 735 tggctgttgc tttgcttcat gtgtatggct atttgtattt aacaagactt	50
<210> 736	
<211> 50	•
<212> DNA <213> Homo sapiens	
	•
<400> 736 gacaacggaa actctgtctc taccaccatg tgacagacgc gttgatgcgt	50
gacaacggaa accesgace careassas, spaces, g g g g c	
<210> 737	
<211> 50	
<212> DNA <213> Homo sapiens	
(213) Nomo Saptem	
<400> 737 gggttttcta taaggggttt cctgctgaac aggggcgtgg gattgaatta	s 50
gggttttta taaggggtt tetgetgaat aggggegegg gattgaatt	
<210> 738	
<210> 736 <211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 738	g 50
acccaccact ctcaggacca cctgaaggca gaataaaccg gatcctgttg	, 50
010 520	
<210> 739	

PCT/US03/13015

WO 03/090694

	DNA Homo sapiens	
<400> tccagaa	739 actt tgtctatcac tctccccaac aacctagatg tgaaaacaga	50
<210>	740	
<211><212><213>	50 DNA Homo sapiens	
<400>	740	
tacttg	ctgt ggtggtcttg tgaaaggtga tgggttttat tcgttgggct	50
<210>	741	
<211> <212>	50 DNA	
	Homo sapiens	
<400>	741	50
gtgacg	acga cotgaaggag acgggottoo acottaccao cacgaaccag	
<210>	742	
<211> <212>	50 DNA	
<213>		
<400>	742 ctgg agagtgccta ctgttagaag ctgaagggat gtcaaagtca	50
Caacci	cegg agagegeed eegecagaag eegaagggar jeraang	
<210>	743	
<211> <212>	50 DNA	
	Homo sapiens	
<400>	743 gtgt taatggetaa eetgttaeae tgggetgggt tgggtagggt	50
cacco	39090 0440330044 000300040 0333 333 333 320	
<210>		
<211><212>		
	Homo sapiens	٠
<400>	744	50
aggtc	ccctg cctggtacaa agaaaagcaa aaagaattta cgaagattgt	50
<210>		
<211> <212>		
	Homo sapiens	
<400>	745 tggta gcatttatct gacttggaaa gttggagaag aggcattcct	50
actgc	tggta gcatttattt gatttggada gttggadg aggadestat	

<210>	746	
<211>	50	
	DNA	
<213>	Homo sapiens	
<400>	746	50
cccagg	gttt catgtctgag gccctcacca agtgtgagtg acagtataaa	
<210>	747	
<211>	50	
<212>	Homo sapiens	
<213>	none supreme	
<400>	747	F.0
agctgc	ctca ggaggttctt aacatatagg aatgtaatta tcagattcaa	50
-5-5		•
<210>	748	
<211>	50	
<212>		
<213>	Homo sapiens	
	E40	
<400>	748 stggg accgtgattc cactaaccgg aaaccgtcgc ctttcgggcc	50
gaggac	riggy accycyated cadeaudogy manneys 5	
<210>	749	
<211>		
<212>		
<213>	•	
<400>	749	50
acttc	tgtct ttgctggaaa gtgtatttgt gcataaataa agtctgtgta	
010	750	
<210>		
<211> <212>		
<213>	•	
\Z_1J/	Manie sagatas	
<400>	750	
acctg	ccatc attggtcttt actaagtgaa gtgacttctt tctttaacaa	50
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<400>	• 751	
agtga	acgagg aggaagtggc ctacacgggt tagctgccca gtgagccatc	50
~5-96		
<210:	> 752	
<211:	> 50	
<212:		
<213:	> Homo sapiens	
	are.	
<400:	> 752	

' WO 03/090694 50 ctttgcattt agggacacag cccggagccg cagaaggtca gcagggagca <210> 753 <211> 50 <212> DNA <213> Homo sapiens <400> 753 aaagccttta aaaacggctg tcaggtttga tctcagtgta acaacatggc 50 <210> 754 <211> 50 <212> DNA <213> Homo sapiens <400> 754 50 tcagcaccaa gtcatgttta aaagaccaga gagacaagca ttttgccaag <210> 755 <211> 50 <212> DNA <213> Homo sapiens <400> 755 50 agaccettat etggaggagg aagagaagca ggagagagaa agceacagee <210> 756 <211> 50 <212> DNA <213> Homo sapiens <400> 756 acatcgtgat tetecagete aacgggtegg ceaccateaa egecaacgtg 50 <210> 757 <211> 50 <212> DNA <213> Homo sapiens <400> 757 50 ccggtgtccc tgagtgaggg caaagttgta ataacacttg ttctctcctt <210> 758 <211> 50 <212> DNA <213> Homo sapiens <400> 758 acttgccatt acttttcctt cccactctct ccaacatcac attcacttta 50 <210> 759 <211> 50 <212> DNA <213> Homo sapiens

PCT/US03/13015

	759 ccc ctttccctgc ta	agaaataac	aattagatgc	cccaaagcga	50
<211> <212>	760 50 DNA Homo sapiens				
	760				
	cca acagggaagg c	tctgtccag	aaaggattga	atgtgaaacg	50
<211> <212>	761 50 DNA Homo sapiens				
	761				
	atg gcaaagagag t	cgcatctca	gtgcaggaga	gacagtgagg	50
	762 50 DNA				
<213>	Homo sapiens				
	762 agt aaggtgttca g	gactggtaa	acgactgtcc	tcaagtaagg	50
<210><211><211><212><213>	763 50 DNA Homo sapiens				
<400>	763				
gcattct	att taaaaaggga g	ıtggggagca	aatgaaaatt	aaatgtgggg	50
<210><211><211><212><213>	_				
<.400>	764				
	ttc aaatggatag t	gagttgcct	tttcctatag	gtgacaatca	50
<210><211><211><212><213>	765 50 DNA Homo sapiens				
<400>					
	ggca aatgtagcat g	gggcacctca	gattgttgtt	gttaatgggc	50
<210>	766 50				

<212>	DNA	
<213>	Homo sapiens	
<400>	766 tcgg gtagettate agaetgatgt tgaetgttga ateteatgge	50
accetg		
<210>	767	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	767	50
ctcctc	cagg cctctcggat gcctctgttg ggacagctaa gttcctcttc	30
-0105	768	
<210> <211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	768	50
tcttta	agtc tgtcaaacca gaactctttg aagcactttg aacaatgccc	50
<210><211>	769 50	•
<211>		
<213>		
<400>	769	50
ccctg	gaggc actgaagtgc ttagtgtact tggagtattg gggtctgacc	30
<210>		
<211><212>	•	
<213>		
<400>	770	50
gtgtg	gtcgg ggtgagaacc caagcgttgg aactgtagac ccgtcctgtc	50
<210>		
<211>	DNA	
	Homo sapiens	
	· 771	
cagag	cggag gctgggatct agcgagagag atgcagaaga tgtgaagaaa	50
<210:		
<211:		
	> DNA > Homo sapiens	
<400:	> 772	
ctag	gctctg ggcacatttc ctgttcttga attctgctcc tgaagagggt	50

<210>	773		•			
<211>	50	•				
	DNA					
	Homo sapiens					
<213>	HOWO Saprens					
	773					
gcatttc	aga atgtgtcttt	tgaagggcta	taccagttat	taaatagtgt	5	0
•						
<210>	774					
<211>	50					
<212>	DNA					
	Homo sapiens					
1210-	1100 Dap=0112					
	554					
<400>	774				-	_
ctgggga	gag gctgaggaca	aatacctgct	gtcactccag	aggacatttt	5	U
<210>	775					
<211>	50					
<212>	DNA					
<213>	Homo sapiens				•	
	-					
<400>	775					
				~~~~~~~~	5	0
gtggcta	agt cattgcagga	aeggggetgt	gttetetget	gggacaaaac	3	U
				•		
				•		
<210>	776 ·					
<211>	50					
<212>	DNA .					
<213>	Homo sapiens					
<400>	776					
	gatc cttttgtgtt	taaataaagg	aaaagctgca	catccaaaaa	· 5	0
accccas	gace eccessiges	Dadadaaagg				
<210>	777					
<211>	50					
<212>	DNA		•			
<213>						
<213>	Homo sapiens					
<400>	777					
cttcgga	aggc taggccgccg	ctccagcttt	gcacgtttcg	atcccaaagg	5	50
23 O ·	778					
<210>						
<211>	50					
<212>	DNA					
<213>	Homo sapiens					
	-					
<400>	778					
						= 0
tatggt	tttt aggctatgca	gatattctgt	tggtttttga	gacagetetg	=	50
<210>	779					
<211>	50					
<212>						
<213>	Homo sapiens					
<400>	779					
	aaca caacccagcc	atoaaaaoo	agaaggtgtg	actcaggcac	<u> </u>	50
-accyg	anda daaddcagtt	acgaaaagga			•	

<210> <211> <212> <213>	780 50 DNA Homo sapiens	
<400> ttatatt	780 Egta gtggtggtat ttgettteeg eetgttgget aettegaeee	50
<211> <212>		
-400 <b>&gt;</b>	781 gete atgteagtga atatagatea ttetgttgat accettettt	50
<210><211><212><212><213>	50	
<400>	782 acaa gatttcgttc ttccttccat taaagtacaa tctccctggg	50
<210><211><211><212><213>		
<400>	783 gtgt ctgtcccttc aacagagtca tcgaggaggg gtggctgcta	50
<210><211><211>	DNA	
<213> <400> tcacaç	Homo sapiens 784 gtgac cactacagag tactaagaag agaagatcaa gggcatgaaa	50
<210><211><211><212><213>	50	
<400> acctt	785 gtcat taacagctca ctttgattga acatctactc tgtggcggtt	50

<400> ccagtto	786 ggtt tttggactcc	aaagcccagg	acccttccaa	atcctgcttg	50
<210>	787				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	787				
	ttc attgatatcc	actggtcaca	tcatacctgt	ctatagggca	50
<210>	788				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	788				
gagaaa	cttc cgtgcatgaa	ggtttcctcc	ttgactcggc	agcagcggcc	50
<210>	789				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	789				
	tcag aggttcagga	gagttacagg	cagcaggtgc	ggtataatat	50
3.33		3 3 3 23	3 33 3		
<210>	790				
<211>	52				
<212>	DNA				
<213>	Homo sapiens				
<400>	790				
	ttaa aaattttccc	gatttcaaaa	ttaattttcc	gttgececc gg	52
<210>	791				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	791				
gagtct	gtac ccctttctaa	taaactgctc	tggacacaat	gaaccctgaa	50
<210>	792				
<211>					
<212>					
<213>	Homo sapiens				
<400> 792					
gtgatc	cact tggagctgct	actggtccca	ttgagtccta	tagtacttca	50
<210>	793				
<211>					
<212>	DNA				

and the second one	
<213> Homo sapiens	
<400> 793	50
<400> 793 ctgaggatga gctggaagga gtgagagggg acaaaaccca ccttgttgga	
<210> 794	
<211> 50 <212> DNA	
<212> DNA <213> Homo sapiens	
<400> 794 aacaaggtac atgcattatg tgtcacatta ctgggcaaac tgttcaagta	50
aacaaggtac atgcattatg tgtowoods 555	
<210> 795	
<211> 50 <212> DNA	
<213> Homo sapiens	
<400> 795	۳٥
<400> 795 ggtcattgag cctcaggtag ggaatatatc aacccgattt cttcctctct	50
55000.50	
<210> 796	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 796	50
<400> 796 tetgtgetet gtggaceegt caccetgage teetcagttg etgaaceate	50
<210> 797	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 797	50
<400> 797 agggccagat ttcatgttga ccctggggat gctgtgaatt tctcctgcag	
<210> 798	
<211> 50	
<212> DNA <213> Homo sapiens	
<213> HOMO Baptone	
<400> 798	50
<400> 798 ctcatgcctg cagtgctgct catgttgccc ccttggaatt acttgttcaa	
<210> 799	
<211> 50	
<212> DNA <213> Homo sapiens	
<400> 799 tgacaggttc acttctgagg ttgctatgag ggtgatggaa tgtactgcct	50
tgacaggttc acttctgagg ttgctatgas agegacages to	
<210> 800	

<211><212><213>	50 DNA Homo sapiens				
<400>	800	t			50
cttttc	tttg tgcagcggtc	tggttategt	ctatececag	gggaacecae	50
<210>	801 50				
<212>				·	
	801				
<400> acttct	tgga actttaactc	ctgccagccc	ttctaagacc	cacgagcggg	50
	000				
<210><211>	802 50			•	
<212>	<u>.</u>				
<213>	Homo sapiens				
<400>	802 agat caaccttatg	aaasaaass	aggagggt	tataecaett	50
ggagu	agac caaccccatg	gggaagggaa	aggeagggee	cycyacaacc	
<210>	803				
<211>					
<212> <213>				•	
<400>	803				
cagtca	agatg ttggaattgg	gggtagaggg	attatagagt	tgtgtgtgtt	50
<210>	804				
<211>					
<212><213>					
	_				
<400> actta	804 aaagt ttagggtttt	ctcttggttg	tagagtggcc	cagaattgca	50
<210>					
<211><212>					
<213>					
<400>	805				
agcca	agagg tatatcgatg	atggaaatta	gccacatgta	cactacattt	50
-010	205				
<210><211>					
<212>					
<213>					
<400>					ΕΛ
cttaa	gtctg acggacctgt	cctgtccagg	ccagtgccca	gggaaggege	50·

<210>	807	
	50	
<211>		
<212>		
<213>	Homo sapiens	
<400>	807	50
gagatag	geet tgeteeggee eeettgaeet teageaaate aettetetee	
<210>	808	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	808	<b>-</b> 0
tcactg	tata ccactggagt tttctggtta tctctcgtat agcaaaatct	50
_		•
<210>	809	
<211>	50	
<212>		
	Homo sapiens	•
12		
<400>	809	
atcatc	cage ttetgtatta ttegttetgt tgtgccaggt gegttttgcc	50
gccacc		
<210>	810 ·	
<211>		
<211>		
<213>	Homo sapiens	
400	010	
<400>	810 catc tcaagacctg tgcctgtcag atttcacaat tatggagatt	50
teagte	cate teaagacety typetyteag accededate cabgarage	
<210>	811	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	811	50
agcago	ggct ggatgtgata tgtctagttt aaccagtccc cttgatcttt	30
<210>	812	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	812	
tttgtg	gccat gtggctacat tagttgatgt ttatcgagtt cattggtcaa	50
<210>	813	
<211>		
<212>		
<213>		
	•	
<400>	813	

gaaattg	ctt ttcctcttga	accacagttc	tacccctggg	atgttttgag	50
			•		
	814				
	50 DNA				
	Homo sapiens				
		•			
<400>	814			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50
tgcacta	aac agttgcccca	aaagacatat	Cityticiaa	ggcccagacc	
<210>	815				
	50				
	DNA Homo sapiens				
\Z13>	nomo saprens				
	815			haranta atau	50
tggtgat	tct ccaggccatt	taataccctg	caatgtaatt	gteeetetgt	50
<210>	816				
<211>	50				
	DNA				
<213>	Homo sapiens				
<400>	816				
acctgga	gag agaaggtatt	gaaacatctc	ctttatgtgt	gactttccca	50
<210>	817				
<211>	50				
	DNA				
<213>	Homo sapiens				
<400>	817				
agtcccc	tgt cctggtcatc	: tatcaagata	acaagcggc	: ctcagggatc	50
<210>	818				•
<211>	50			•	
<212>	DNA				
<213>	Homo sapiens				
<400>	818				
ggcaaat	tgag gaacagggca	a atagtatgat	gaatcttgat	tggagttggt	50
<210>	819				
<211>	50				
	DNA				
<213>	Homo sapiens				
<400>	819				
	cggg ctgggcagci	t gttagagtc	c aacgtgggg	c agcacagaga	50
<210>	820				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				

<400> tccatac	820 cat tgtgtgtgga g	gatttacag	ctaagctgta	gttgcagagt	50
<210>	821				
<211>	50				
	DNA				
	Homo sapiens				
72137	110 mo bapicilo				
<400>	821				
	gcc aagcaacccc c	taaaacatt	catatctagg	cagtattttg	50
<b>J</b>	55				
<210>	822				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	822				
cccaaa	agg catgtatcaa a	acacctgtg	gagtacttta	gactccaaca	50
<210>	823				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	823		L 1		50
gacagga	acag tgaccttggg a	aggaaggggc	tactccgcca	teettaaaag	50
<210>	824				
<211>	50				
<212>	DNA				
	Homo sapiens	•			
12137	nomo bupaons				
<400>	824				
	aaat ggctttacca a	aacattgtca	gtacctttac	gtgttagaag	50
				J-JJ	
			_	5-555	
			_	3-333	
<210>	825		-		
<211>	50				
<211> <212>	50 DNA				
<211>	50 DNA				
<211> <212> <213>	50 DNA Homo sapiens				
<211> <212> <213>	50 DNA Homo sapiens				50
<211> <212> <213>	50 DNA Homo sapiens	tgtttggttg			50
<211> <212> <213>	50 DNA Homo sapiens	tgtttggttg			50
<211> <212> <213> <400> caagta	50 DNA Homo sapiens 825 gaca ccagagtcac	tgtttggttg			50
<211> <212> <213> <400> caagta	50 DNA Homo sapiens 825 gaca ccagagtcac	tgtttggttg			50
<211> <212> <213> <400> caagta <210> <211>	50 DNA Homo sapiens 825 gaca ccagagtcac 826 50	tgtttggttg			50
<211> <212> <213> <400> caagta <210> <211> <212>	50 DNA Homo sapiens  825 gaca ccagagtcac  826 50 DNA	tgtttggttg			50
<211> <212> <213> <400> caagta <210> <211> <212>	50 DNA Homo sapiens 825 gaca ccagagtcac 826 50	tgtttggttg			50
<211> <212> <213> <400> caagta <210> <211> <211> <212> <213>	50 DNA Homo sapiens  825 gaca ccagagtcac  826 50 DNA Homo sapiens	tgtttggttg			50
<211> <212> <213> <400> caagta <210> <211> <211> <212> <213> <400>	50 DNA Homo sapiens  825 gaca ccagagtcac  826 50 DNA Homo sapiens  826		gtgggtgata	gtggggtcac	50
<211> <212> <213> <400> caagta <210> <211> <211> <212> <213> <400>	50 DNA Homo sapiens  825 gaca ccagagtcac  826 50 DNA Homo sapiens		gtgggtgata	gtggggtcac	
<211> <212> <213> <400> caagta <210> <211> <211> <212> <213> <400>	50 DNA Homo sapiens  825 gaca ccagagtcac  826 50 DNA Homo sapiens  826		gtgggtgata	gtggggtcac	
<211> <212> <213> <400> caagta <210> <211> <211> <212> <213> <400>	50 DNA Homo sapiens  825 gaca ccagagtcac  826 50 DNA Homo sapiens  826		gtgggtgata	gtggggtcac	

<212> DNA <213> Homo sapiens	
<400> 827 acatcgtatt tgcggccagc ctctacaccc agtgaatgcc ccatgtaaaa	50
<210> 828 <211> 50	
<212> DNA <213> Homo sapiens	
<400> 828 atacctgtga ggactggttg tctctcttcg gtgcccttga gtctctgaat	50
<210> 829 <211> 50	
<212> DNA <213> Homo sapiens	
<400> 829 ttagaaagaa aagtctttta ttagtactgt gtagggaagg ctaaagaaat	50
<210> 830 <211> 50 <212> DNA <213> Homo sapiens	
<400> 830 cctcctgcta gaagacagat ttcttccttg gctgacaggc tgaattaagc	50
<210> 831 <211> 50	
<212> DNA <213> Homo sapiens	
<400> 831 ttctgacacg attacacaac gaggctttaa tgccatttgg gtaggtgagc	50
<210> 832 <211> 50	
<212> DNA <213> Homo sapiens	
<400> 832 ttagccactg ctattctagg ttccttgatg gagccccact cccacgccta	50
<210> 833 <211> 50	
<212> DNA <213> Homo sapiens	
<400> 833 acatgacctg tgcagtgtgt ggctgtgaat tctgttggct ttgtatgaaa	50

<210><211><212><212><213>	834 50 DNA Homo sapiens	
<400> gaagac	834 caag agagacaaca gacgcagcaa acagccgaag caccagacaa	50
<210><211><211><212><213>		
<400> aaaaat	835 aaaa acaaatactg tgtttcagaa gcgccaccta ttggggaaaa	50
<210><211><211>		
<213> <400> ctttco		50
<210> <211> <212>	50 DNA	
<213> <400> caacg		50
<210> <211> <212>	50 DNA	
<213> <400> ccacg		50
<210><211><211>		
<213>	Homo sapiens	50
<210:	gcacat gttgtctgga gtctggcaca ctggttatca atagcacatt	
<211: <212:	> 50 > DNA > Homo sapiens	
<400 acat	> 840 tctcat agtccagggg ctcaacaact ttggcctttt ccagcaccac	50

	·	
<210>	841	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
	•	
<400>	841	-0
astaaci	tgct tggttgctaa acccagacag ggtccttcca gtgcatctgc	50
guegge		
<210>	842	
<211>	50	
	DNA	
	Homo sapiens	
(213/	Nome Uspa single	
<400>	842	
222220	gccc cttgtttgtt ggtttttggc ccgttgggga aaatgcctgt	50
aaaaag	3000 000300301 33	
	ı'	
<210>	843	
<211>	50	
<212>	DNA	
	Homo sapiens	
<213>	Notice Supreme	
<400>	843	
<400>	gtgaa tcatttgtgt ccttttcaac tgtctttcag aggaaaggta	50
ctgttg	gegaa ceaceegege cooperation 15.	
010	044	
<210>	844	
<211>		
<212>	•	
<213>	Homo sapiens	
<400>	844 acagt gtggtaaggt tgcaaattca aaacatgtca cccaagctct	50
tcatc	acagt grades racadated duality of	
	OAT.	
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<400>	845	50
gatgo	gcggc aagaatgtac ctgtagatgt gtacatacca cagtgctgta	
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<400:	846	50
agct	ggette actgeteagg tgattateet gaaceaceag gecaaataag	
<210:		
<211:		
<212		
<213	> Homo sapiens	

<400> 847 agctgctcac agacaccagc aaagcaatgt gctcctgatc aagtagattt	50
<210> 848	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 848	
gctgacagta tggaggctaa aggtgtggag gaaccaggag gagatgagta	50
<210> 849	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 849	50
cggcagggtg gcctgtaaca atttcagttt tcgcagaaca ttcaggtatt	50
<210> 850	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 850	50
agaactgaat cagtcggagg aacctgaggc aggcgagagt agtactggag	50
<210> 851	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 851	
ctctcctgga ctgttgcagt tgggtgtggc tgatttgaaa ttgtgcttca	50
<210> 852	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 852	
tcatcacttt ggacaggagt taattaagag aatgaccaag ctcagttcaa	50
<210> 853	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 853	50
acaagccaaa gtggcatgtt ttgtgcattt gtaaatgctg tgttgggtag	50
<210> 854	
<211> 50	
<212> DNA	

PCT/US03/13015 WO 03/090694 <213> Homo sapiens <400> 854 tggatctgcc aaaaagaact aacacctgtg agaaataaag tgtatcctga 50 <210> 855 <211> 50 <212> DNA <213> Homo sapiens <400> 855 agccgcccag ctacctaatt cctcagtaac atcgatctaa aatctccatg 50 <210> 856 <211> 50 <212> DNA <213> Homo sapiens <400> 856 50 . tccaacctcc agtttgagga tgaggctgat tattactgtg agacctggga <210> 857 <211> 50 <212> DNA <213> Homo sapiens <400> 857 50 cacaaggtgc gcggttaccg ctacttggag gaggacaact cggacgagag <210> 858 <211> 50 <212> DNA <213> Homo sapiens <400> 858 50 cagtggagaa gctgcactgt ctccgggctt gtgtgatccg atctctgtac <210> 859 <211> 50 <212> DNA <213> Homo sapiens <400> 859 50 ctgactgagt ctcagaatgc tcaggaccaa ggtgcagaga tggacaagag <210> 860 <211> 50 <212> DNA <213> Homo sapiens 50 ctctccaaga gtattattaa cgctgctgta cctcgatctg aatctgccgg

<210> 861

<211>	50	
<212>	DNA	
<213>	Homo sapiens	
~2.07		
<400>	861	
<b></b>	caac tgtcctcatc agtctccata ccccttcagc tttcctgagc	50
caccago	saac tgtcctcate ageococata ecococaty	
<210>	862	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	862	
atotca	gttc tgttttaagt aacagaattg ataactgagc aaggaaacgt	50
	•	
<210>	863	
<211>	50	
<211>		
<213>	Homo sapiens	
	863	50
agtcag	gact gtctaggtca gggaagccaa gatgtctgaa gagagaggaa	30
<210>	864	
<211>	50	
<212>	DNA	
	Homo sapiens	
1000		
<400>	864	
acacto	maatc gtttcatgta agaatccaaa gtggacacca ttaacaggtc	50
geaceg		
<210>	865	
<211>		
<212>		
<213>	Homo sapiens	
<400>	865	50
ttccag	gett ttgetaetet teacteaget acaataaaca teetgaatgt	30
<210>	866	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
	-	
<400>	866	
agggg	cccag ctacttaatc cctcagtaac atctatctaa atctcccatg	50
~5005		
<210>	867	
<211>		
<212>		
<213>	Homo sapiens	
<400>	867	50
gaaag	caggg aagcagtgtg aactetttat teacteceag eetgteetgt	50

	868 50 DNA Homo sapiens	
<400> gtccca	868 cacg ttcggccctg actctgctgt gttcgacgag gacaatctcg	50
<210><211><211><212><213>	869 50 DNA Homo sapiens	
<400> gaagct	869 gcta ggggaaggac tggcctggct ccagaatgtt gttgcctttt	· 50
<210><211><211><212><213>	•	
<400> gcgatg	870 ggaca gactcacaac ctgaacctag gagtgcccca ttcttttgta	50
<210><211><211><212><213>	50	
<400> ggggg	871 caaag aaagtacatt gggtgaaaat ttaaaaaggt atggagcatt	50
<210><211><212><213>	50 DNA	
<400> aaata	872 agaag aggaaagaga gaggcetgce etaacecact gttgtgetga	50
<210><211><211><212><213>	50 DNA	
<400> tggad	873 stagga gagacttgat tttggtgcta aagttcccca gttcatatgt	50
<210: <211: <212: <213:	> 50 > DNA	
<400:	> 874	

acagaacatt gagatgtgcc tagttccgta tttacagttt ggtctggctg	50
<210> 875	
<211> 50	
<212> DNA	
<213> Homo sapiens	•
<400> 875	50
tagacatgct tgtgtccaca cagcacacca atgtgatact tccactgacc	50
<210> 876	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 876 gggccatttt atgatgcatt gcacaccctc tggggaaatt gatctttaaa	50
gggccatttt atgatgcatt gcacaccctt tgggggaund garage	
,	
<210> 877	
<211> 50	
<213> Homo sapiens	
(213) 1101110 11011111	
<400> 877	
tgacccaccc accaaggaag aaagcagaat aaacattttt gcactgcctg	50
<210> 878	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 878	50
aagaaagaag agagagaact tgatgccaag tccacgaaaa aacaattttt	
<210> 879	
<211> 50	
<212> DNA	
<213> Homo sapiens	
•	
<400> 879	50
gccagtgttt ccgtcagtac gcgaaggata tcggtttcat taagttggac	30
<210> 880	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 880	
<400> 880 ttcatcattg cttgcttgcc ttcctccctc ctgtccgctc tcactcactc	50
<210> 881	
<211> 50	
<212> DNA	
<213> Homo sapiens	

<400>	881 aaa ctgtattttc	tecetecete	cctccttctt	tctttccaga	5	50
JJ - J -	-					
<210>	882					
	50					
<212>						
	Homo sapiens					
<400>	882					
tcttccq	cca tctcctctga	taaacacgag	gtgtctgcca	gcacccagag	!	50
_						
<210>	883					
<211>	50					
<212>	DNA .					
<213>	Homo sapiens			•		
<400>	883					
ttcacco	agg acatgaaact	ccaccttgcg	gggataaaga	gagaaaaaca		50
<210>	884					
<211>	50					
<212>						
<213>	Homo sapiens					
<400>	884					<b>-</b> 0
aaggaat	ttg ttttccctat	cctaactcag	, taacagaggg	tttactccga		50
<210>	885					
<211>	50					
<212>	_					
<213>	Homo sapiens	•				
<400>	885					
cgatct	gtgt ttgctctgac	: gaatggaatt	tatcctcaca	a aattggtgtt		50
<210>	886					
<211>	50					
<212>	DNA .					
<213>	Homo sapiens					
<400>	886					
ggtaac	cagg tccaatcagt	t aaaaataag	c tgcttataa	z tggaaatggc		50
<210>	887					
<211>	50					
<212>	DNA					
<213>	Homo sapiens					
<400>	887			L ##0#5		50
cccact	tccc atgctggate	g ggcagaaga	c attgettat	t ggagacaaat		50
<210>	888					
<211>	50					

PCT/US03/13015 WO 03/090694 <212> DNA <213> Homo sapiens <400> 888 tttgatcagg attcagatgt ggacatcttc ccctcagact tccctactga 50 <210> 889 <211> 51 <212> DNA <213> Homo sapiens <400> 889 caccgcctct gcctccgcct cttccactgg agagcccgag gtcaaaaggt c 51 <210> 890 <211> 50 <212> DNA <213> Homo sapiens <400> 890 50 tccgtcccat tcccccggaa aacaaggttt tgaattggcc cgtaaaaggg <210> 891 <211> 50 <212> DNA <213> Homo sapiens <400> 891 50 ctatcaccct tgatatgaaa ttccagaatt ttctgtgata ccacatggcc <210> 892 <211> 50 <212> DNA <213> Homo sapiens <400> 892 50 atcaggtccc ctacaaaatt agctactttg gcctttccta caaaattagc <210> 893 <211> 50 <212> DNA <213> Homo sapiens 50 agttccagga ggtggtttta aatattggat gaaaacttac aggctgtttt <210> 894 <211> 50 DNA <212> <213> Homo sapiens

50

getgtaatte tetgteteat cateettete ttttgtttee atageetttt

<400> 894

	895 50 DNA Homo sapiens	
<400> gtcctt	895 tgat agcagaacaa gaggctctgt gatcctctgg acctcagatt	50
<210> <211> <212> <213>	•	
<400> cgtttt	896 ctga gcatccgttg tgccttaaca ttttctgctt gtcctttggg	50
<210><211><212><213>		
<400> gctcaa	897 acatg gaaagaaggt acagaaagtg atgtgttcaa aacattagca	50
<210><211><212><213>	50 DNA	
<400> tgggg	898 actat agtgcaacct atttgggtaa agaaaccatt tgctaaaatg	50
<210> <211> <212> <213>	50	
<400> aactt	899 ttaca ctttttcctt ccaacacttc ttgattggct ttgcagaaat	50
<210><211><211><212><213>	50	
<400> aggct	900 ggaca toggooogot ooccacaatg aaataaagtt attttotoat	50
<210><211><211><212><213>	> 50	
<400; tgtgt	> 901 ttaagt gcaggagaca ttggtattct gggcaccttc ctaatatgct	50

```
<210> 902
<211> 50
<212> DNA
<213> Homo sapiens
<400> 902
tgacatcata ttctttcaga gaagtgtccc aggacatgat aataagatgc
                                                                     50
<210> 903
<211> 50
<212> DNA
<213> Homo sapiens
<400> 903
ctagaagatc cacatcctct acaggtcggg gaccaaaggc tgattcttgg
                                                                     50
<210> 904
<211> 50
<212> DNA
<213> Homo sapiens
<400> 904
gaaacacttt caggaccttc cttcctcttg cagttgttct ttaatctcct
                                                                     50
<210> 905
<211> 50
<212> DNA
<213> Homo sapiens
<400> 905
gttcctcttc gggaagcttt tgataaggaa ttctcagacc gatagggtgt
                                                                     50
<210> 906
<211> 50
<212> DNA
<213> Homo sapiens
ccagtgattt gattaactca gggcaaggct gaatatcaga gtgtatcgca
                                                                     50
<210> 907
<211> 50
<212> DNA
<213> Homo sapiens
<400> 907
atccttcaga atgtgttggt ttaccagtga caccccatat tcatcacaaa
                                                                     50
<210> 908
<211>
      50
<212> DNA
<213> Homo sapiens
```

<400> ctttgac	908 cccc accttgtgga aacccagctg tctactggca gacattggtg	50
<210>	909	
<211>	50	
<212>		
<213>	•	
1220-		
<400>	909	
cagtga	agac gtcaggggca aggtctcggg ggtccggaag ggtgatcatc	50
5-5	,	
<210>	910	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	910	
ggcgta	tcat caactggtga geeegaaggg atattattte taaggeetet	50
<210>	911 .	
<211>	50 -	
<212>	DNA	
<213>	Homo sapiens	
<400>	911	r 0
ttgctt	ttac tagtcttagc tctacgattt aaatccatgt gtccaagggg	50
<210>		
<211>		
<212>		
<213>	Homo sapiens	
	010	
<400>	912	50
tgcttt	tatg tgtcccttga taacagtgac ttaacaatat acattcctca	•
<210>	913	
	50	
<211> <212>	DNA	
<213>		
<413>	nomo sapiens	
<400>	913	
acaaa	gaagc tttgcatgtt gctctaaggt acatttttaa agagttgttt	50
50455		
<210>	914	
<211>		
<212>		
	Homo sapiens	
<400>	914	
ggtgc	ccacc attettggee tgttaettae etgagatgag etettttaae	50
<210>		
<211>		
<212>	DNA	

PCT/US03/13015 WO 03/090694 <213> Homo sapiens <400> 915 tttccctgat tatgatgagc ttccattgtt ctgttaagtc ttgaagagga 50 <210> 916 <211> 50 <212> DNA <213> Homo sapiens <400> 916 50 tgcagaaaca gaaaggtttt cttctttttg cttcaaaaac attcttacat <210> 917 <211> 50 <212> DNA <213> Homo sapiens <400> 917 50 cttccttatg gagctggagc agcccgccta gaacccagtc taatgagaac <210> 918 <211> 50 <212> DNA <213> Homo sapiens <400> 918 gatgacgctg ggcacagagg gtcaggtcct gtcaagagga gctgggtgtc 50 <210> 919 <211> 50 <212> DNA <213> Homo sapiens 50 gcatgcattc attggttgtt caataagtga gatgattaca gataatactg <210> 920 <211> 50 <212> DNA <213> Homo sapiens <400> 920 50 aatccttact taaaattctt ccgttaccac ccttgaaaca attagctttt <210> 921 <211> 50 <212> DNA <213> Homo sapiens 50 tacttgctgt ggtggtcttg tgaaaggtga tgggttttat tcgttgggct

<210> 922

<211> 50 <212> DNA <213> Homo sapiens <400> 922 50 ttctacatga aatgtttagc tcttacactc tatccttcct agaaaatggt <210> 923 <211> 50 <212> DNA <213> Homo sapiens <400> 923 50 tccatctgtg cataaggaga ggaaagttcc agggtgtgta tgttttcagg <210> 924 <211> 50 <212> DNA <213> Homo sapiens <400> 924 50 ctccaccacc tgaccagagt gttctcttca gaggactggc tcctttccca <210> 925 <211> 50 <212> DNA <213> Homo sapiens 50 gggtgcatgc caagaaagta tggttggaat tcctggtaca ctgaagtgga <210> 926 <211> 50 <212> DNA <213> Homo sapiens 50 ctgagatttt gggttttcca cacgggccaa gatacccggc ctctgctgag <210> 927 <211> 50 <212> DNA <213> Homo sapiens <400> 927 agcgggaagg attttgggta aatctgagag ctgcgataaa gtcctaggtt 50 <210> 928 <211> 50 <212> DNA <213> Homo sapiens <400> 928 50 ctttccaggt tttccctttc cgccattgtt ttcccgctcg ctaaagtgac

WO 03/090694

PCT/US03/13015

<210> <211> <212> <213>	929 50 DNA Homo sapiens	
<400> caccaca	929 agtc tcagtgcagg gctgggaagt gaaagacgat tcaccagacc	50
<210><211><211><212><213>	930 50 DNA Homo sapiens	
<400> tcagag	930 ggaa agtaaatatt tcaggcatac tgacactttg ccagaaagca	50
<210><211><212><212><213>	931 50 DNA Homo sapiens	
<400> cttcat	931 ctgg aagaagaggc aagggggcag gagaccaggc tctagctctg	50
<210><211><212><213>	DNA	
<400> tggaaa	932 attcc cgtgttgctt caaactgaga cagatgggac ttaacaggca	50
<210><211><212><213>	50 DNA	
<400> tcctg	933 tgatg gaaatacaac tggtatcttc acttttttag gaattgggaa	50
<210><211><211><212><213>	50	
<400> ttgat	934 Ettgcc ataagtette eettgettge atettecaaa getatttega	50
<210: <211: <212: <213:	DNA	
<400:	> 935	

ggatgcacgt acagaataca ttcagccgtc aggtaataac atgaagcagt	50
<210> 936	
<211> 50 <212> DNA	
<212> DNA <213> Homo sapiens	
2213> Homo Sapiens	
<400> 936	
cccctgctac tttgaaacca gaaaataatg actggccatt cgttacatct	50
. ,	
<210> 937	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 937	
agtactcatg acttgagaga cgtggacgga gccagcttct accttgcttg	50
ageacecatg accegagaga cgcggacgga goongeone and g	
<210> 938	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 938 cacgageggc tggaggacac ccattttgtg cagtgcccgt ccgtcccttc	50
cacgagegge tygaggacae ceaettegtg cagegeeege eegeeees	
<210> 939	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 939	50 ⁻
tggctaggag accttgggca gtacctacag tcttgctgtt tctgtttcat	
<210> 940	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 940	50
aacagcaacc aataacggat tgtaaagtgt aaaggcacag gttactcatg	30
<210> 941	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 941	50
tttctttagc ccaagagtgg aggctaagct acttacttcc aagcctgggt	50
<210> 942	
<211> 50	
<212> DNA	
<213> Homo sapiens	

<400> 942	
tttgggcatc aacttcaaca actactacca ggac	geetga gggtgetttt 50
<210> 943	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 943	
gggaagaagc ccgtgccccc acccaataaa tgtt	ggtttt ggccctgatg 50
0.7.0	
<210> 944 <211> 50	
<211> 50 <212> DNA	•
<212> DNA <213> Homo sapiens	
<22133 Homo Baptems	
<400> 944	states cacactacts 50
gttagettee acgetttate teetgetetg agtg	tgtacc cgcgctgctc
<210> 945	
<211> 51	
<212> DNA	
<213> Homo sapiens	
<400> 945	tggaagg tttggatgaa g 51
aaacaggaag ggggtttggg ccctttgatc aac	ggaadd titiggaldaa g
<210> 946	
<211> 50	
<212> DNA	•
<213> Homo sapiens	
<400> 946	ggtgaag tggaattaaa 50
aattgatccc attcttgctg aagtagacag tgc	cctcaag tggaattaaa
<210> 947	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 947	
gatctgtgtt ttcctcccaa aagaagatca tct	ttccaga aaaagaggat 50
gatetgeget edecodecum majary	-
<210> 948	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 948	
gccaacaatg ctgaccggtg cttatcctct aag	
<del>-</del>	gccctgat ccacaataaa 50
	gccctgat ccacaataaa 50
<210> 949	gccctgat ccacaataaa 50

<212> DNA <213> Homo sapiens <400> 949 50 cagagtaggc atctgggcac caagaccttc cctcaacaga ggacactgag <210> 950 <211> 50 <212> DNA <213> Homo sapiens <400> 950 cgtcctgcgg agccctgtct cctctctctg taataaactc atttctagcc 50 <210> 951 <211> 50 <212> DNA <213> Homo sapiens <400> 951 aagggtgagg atgagaagtg gtcacgggat ttattcagcc ttggtcagag 50 <210> 952 <211> 50 <212> DNA <213> Homo sapiens <400> 952 actccaaaat aaatcaaggc tgcaatgcag ctggtgctgt tcagattcca 50 <210> 953 <211> 50 <212> DNA <213> Homo sapiens <400> 953 ctgatttcat aaccaggccg gaccacgtgc aatagggtgg aaaccaaact 50 <210> 954 <211> 50 <212> DNA <213> Homo sapiens <400> 954 tcgaatcatt gaagatccga gtgtgatttg aattctgtga tattttcaca 50 <210> 955 <211> 50 <212> DNA <213> Homo sapiens <400> 955 ctcatcaccg gttctgtgcc tgtgctctgt tgtgttggag ggaaggactg 50

WO 03/090694

PCT/US03/13015

<210>	956				
<211>	50	•			
<212>	DNA				
<213>	Homo sapiens				
<400>	956				
tcacaat	cag tctcagattc	ccaqcaqcaq	agagtgaatt	gtatgttgta 5	0
	,			3 3 3	
	•				
<210>	957				
<211>	50				
<212>	DNA				
				,	
<213>	Homo sapiens				
<400>	957				
agatte	aggg ggttttccct	ttacccattt	agecetagat	ttaataaaaa 5	0
999000	233 55000000	00500500	3500005550		
				,	
<210>	958				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	958			•	
	gact atctcgggcc	totagootga	ggacgaggct	gattattatt 5	0
CCCCCC	gace acceegggee	cccagcccga	ggacgagger	Jaccaccacc	
	•				
<210>	959				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	959				
	gtgc ttttaccaca	ccatcaaacc	cttoatcatt	tctgtaaaca 5	0
cggcccs	gege ecceaceaca	cegecaaace	cccgaccacc	coegeaaaca 3	
<210>	960				
<211>	50				
<212>					
	DNA				
<213>	Homo sapiens				
<400>	960				
	gtgg gggtgctttt	asaattaasa	naaantanan	acadddaaac 5	0
rgrgrg	grad addractrr	gaggccggag	gaaagtagag	acagegaaac	, 0
<210>	961				
<211>	50				
<212>					
<213>	Homo sapiens				
<400>	961	•			
	tca ggaaactgcc	tatteaatee	tectecaatt	caattaaget	50
oouces.	35	0300033030	Joodaaaaa		
<210>	962				
<211>	50				
<212>					
<213>	Homo sapiens				
<400>	962				
	gcat ctaggccatc	atactoccao	actaattata	actcagaaga 5	50
	,		J JJ G		-

<210> <211>	963 50			•	
<212>			•	•	
<213>	Homo sapiens				
<400>	963				
tgggatt	gta ctataccagt	aagtgccact	tctgtgtctt	tctaatggaa	50
<210>	964		•	•	•
<211>	50				
<212>					
	Homo sapiens				
<213>	nomo saprens				
<400>	964				
aatttg	agt aaacttttaa	ttaaatgctc.	atctggtaac	tcaacacccc	50
<210>	965				
<211>	50				
<212>					
<213>	2				
(213/	nomo saprens				
.400-	0.65				
<400>	965				
gaatggi	ggg gagaaaaaag	gggggcacag	tcatgatcgg	ctcttataat	50
<210>	966				
<211>	50				
<212>	DNA				
	Homo sapiens				
	Dup_000				
<400>	966				
		++ ~~~~~~	aaatatataa	+++~~+-++	50
gaccac	gtta tgtgcctgac	ttegaggaea	ecceccing	cciggiatit	50
<210>	967				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	-				
<400>	967			•	
	attg tggactgttg	gactgtgatt	ctaagtgggg	gaaataggct	50
-5-5-444		Jacobase	בבבב-ב	Janacaggee	30
-210:	060				
<210>	968				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	968				
taatac	gga ggggcttgaa	gaaggctgtc	gtgttttatc	acctqctttq	50
		5 55 -55	5 5 5 - 0		
<210>	969				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				

0
0
50
50
50
50
5

<213>	Homo sapiens				
<400>	976			•	
	cac cccttccttt	tacacaaacc	ccattacaat	aaattttaaa	50
Caccet	.cac cccccccc	0303033400			
<210>	977				
<211>	50				
	DNA				
<213>	Homo sapiens				
	-			. •.	
<400>	977		•		
aggggaa	aaag aggggagaaa	aacaggagtg	atgtcatttc	tttttcatgt	50
<210>	978				
<211>	50				
<212>	DNA .				
<213>	Homo sapiens				
	0.70				
<400>	978	tatastaaas	aaattaaaa	taataaaaa	50
aaccca	gtat atctgtgtta	LCLyalggga	cggttgacag	cggccaggga	30
	;				
<210>	979				
<211>	50				
<211>	DNA				
<213>					
(213)	Homo sapiens				
<400>	979				
	aaaa gtctgttctg	atggcactga	gttttcattg	ttctggatgt	50
	J J J	33 3	•		
<210>	980				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	980				
gccctg	atct ggagttacct	gaggccatag	ctgccctatt	cacttctaag	50
.010	0.01				
<210>	981				
<211>					
<212>					
<213>	Homo sapiens				
<400>	981				
	tcac agtagagagg	tagaacttag	tacttcctgc	tgcccattag	50
cccage	ccac agragagag	0334300043		-9	
<210>	982		•		
<211>					
<212>					
	Homo sapiens				
	•				
<400>	982				
tgagct	tgct cttacgtttt	aagaggtgcc	aggggtacat	ttttgcactg	50
_					
<210>	983				

WO 03/090694

PCT/US03/13015

<211>	50				
<212>	DNA				
<213>	Homo sapiens	•	•		
	•				
<400>	983				
	ccac cctcaagaaa	ctcttgaaca	agaccaacaa	gaaggcagcg	50
cgcccc		00000		5555	
-210-	984				
<210>					
<211>	50				
<212>	•				
<213>	Homo sapiens				
	-				
<400>	984				
gcagga	ccag accetecagg	aaaggcaaga	gactcatgac	caggggacag	50
<210>	985				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	-				
<400>	985				
	agga ggagaagaat	atcaaatggg	attaaatata	cagatetetg !	50
034003	-99- 99-99		55-5-5-5		
<210>	986				
<211>	50				
<212>	_				
<213>	Homo sapiens				
<400>	986				
ccagaa	tcgt aagggggctg	acggaggatg	agagggggca	cccagagatc	50
<210>	987				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	_				
<400>	987				
	atat ccttttcaaa	taggggtggg	tccaqccccc	ttqtqccctq	50
		3333-333	<b>J</b> = = = <b>2</b> -		
<210>	988				
<211>					
<212>					
<213>	Homo sapiens				
	005				
<400>			<b>.</b>		E 0
acttcc	atct cagctaatgc	acccaccage	ccaaacacac	caacaaagcc	50
<210>	989				
<211>					
<212>	DNA				
<213>	Homo sapiens				
<400>	989				
cgcaac	atta tccatttaaa	cccctgcata	acccattacc	aaagccctct	50

	990 50 DNA Ḥomo sapiens	
<400> aaactaa	990 aaac ttcatcttcc ccaagtgcgg ggagtacaag gcatggcgta	50
<210> <211> <212> <213>	991 50 DNA Homo sapiens	
<400> gcgcca	991 gaaa tocaatocag oocaaggata tagttaggat taattactta	50
<210><211><211><212><213>	992 50 DNA Homo sapiens	
<400> , aaacat	992 gtct ttttctcgcc tcaactttat ccacatgaaa tgtgtgccca	50.
<210><211><212><213>	993 50 DNA Homo sapiens	
<400> attgtg	993 Jacat ggtgatgcct cattgctgat atggtcctgt ggttatgtgc	50
<210><211><211><212><213>		
<400> tgtggg	994 gtttt gattgacata ctgttgttca tgctgaagtt tgagtgtcgt	50
<210><211><212><213>		
<400> gatac	995 actgt ccagcccagg tccaggccct aggttcttta ctctagctac	50
<210><211><211><212><213>	50 DNA	
<400>	996	

PCT/US03/13015 WO 03/090694 agetetggag cetttgette etcaaatacg agegggaact gegttgageg 50 <210> 997 <211> 50 <212> DNA <213> Homo sapiens <400> 997 50 atcaggagag ggagataatt agttgcttcc tccttcacac tgtttgaatc <210> 998 <211> 50 <212> DNA <213> Homo sapiens <400> 998 gcctcgacac atcctcatcc ccagcatggg acacctcaag atgaataata 50 <210> 999 <211> 50 <212> DNA <213> Homo sapiens <400> 999 50 ctttttagta ggcaaaggtt cttcttcctc ctcttttggt gcagggacgc <210> 1000 <211> 50 <212> DNA <213> Homo sapiens <400> 1000 50 atgcagtgtt tccctctgtg ttagagcaga gaggtttcga tatttattga <210> 1001 <211> 50 <212> DNA <213> Homo sapiens <400> 1001 accagaaact tcaaatgtgt cacaaaagat gagcagaact atcccgaggt 50 <210> 1002 <211> 50 <212> DNA <213> Homo sapiens <400> 1002 gtaaggcaga cgagagaggc ggaggtctca cagtgaacca caggatctgg 50 <210> 1003 <211> 50 <212> DNA

<213> Homo sapiens

<400> ggccatg	1003 ccg ggccagcccc acctgaagct cagtgaaagc tgattaaaaa	50
<212>	1004 50 DNA Homo sapiens	
<400> tgttcca	1004 lota ccagoottao ttgtttaata aaaatcagtg caaagagaaa	50
<210><211><211><212><213>	1005 20 DNA Homo sapiens	
<400> ctaacgi	1005 ctga gcccctggag	20
<210><211><212><212><213>	1006 20 DNA Homo sapiens	
<400> atgggg	1006 agcc gagagaaaac	20
<210><211><211><212><213>	1007 21 DNA Homo sapiens	
<400> tcgaca	1007 tggt gaggtagagc a	21
<210><211><211><212><213>	1008 20 DNA Homo sapiens	
<400>	· · · · · · · · · · · · · · · · · · ·	20
<210><211><211><212><213>	DNA	
<400>		20
<210> <211>	1010 20	

<212>	DNA			
<213>	Homo sapiens			
<400>	1010	20		
ggetge	teca getecataag			
<210>				
<211>				
<212>	Homo sapiens			
(2137	nomo sapiens			
<400>	1011			
tgggag	ctgg accctgtaaa	20		
<210>	1012			
	20			
<212>				
<213>	Homo sapiens			
<400>	1012			
	cata gcattcgtct	20		
٠, ٠				
	1012			
<210> <211>	1013 20			
<212>				
	Homo sapiens			
<400>	1013 tggg taccttccat	20		
cgcage	taggg taccettat			
	1014			
<211> <212>	20			
	Homo sapiens			
,				
<400>	1014			
tgctctggtt cccaccatct 20				
<210>	1015			
<211>	21			
<212>	DNA			
<213>	Homo sapiens			
<400>	1015			
	aget tgagecteet t	21		
.010.	1016			
<210> <211>				
<212>				
<213>				
	1016			
<400>	1016 ggccc gctcatagta	20		
uccage	73 J <del></del>			

PCT/US03/13015

WO 03/090694

PCT/US03/13015 ' WO 03/090694 <210> 1017 <211> 20 <212> DNA <213> Homo sapiens <400> 1017 20 cacaatgtgg ccgaggactt <210> 1018 <211> 20 <212> DNA <213> Homo sapiens <400> 1018 20 tggcttttag gatggcaagg <210> 1019 <211> 21 <212> DNA <213> Homo sapiens . . . . <400> 1019 . 21 caaagacgtg ctcggttttc a <210> 1020 <211> 20 <212> DNA <213> Homo sapiens <400> 1020 20 tgaatcctga ggtggggatg <210> 1021 <211> 20 <212> DNA <213> Homo sapiens <400> 1021 20 catccatttc ccctccttcc <210> 1022 <211> 20 <212> DNA <213> Homo sapiens <400> 1022 20 cagatggtcg gggatggtaa <210> 1023 <211> 20 <212> DNA <213> Homo sapiens

20

<400> 1023

tcttggagat tcgagcagca

<210>	1024	
<211>	20	
<212>	DNA	
<213>	Homo sapiens	
<400>	1024	
		20
Cigogai	ccag agtcagtgga	
	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	
<210>	1025	
<211>	20	
<212>	DNA	
<213>	Homo sapiens	
<400>	1025	
	tcgc caatttgtcc	20
000940		
.210-	1000	
<210>	1026	
<211>	20	
<212>	DNA	
<213>	Homo sapiens	
<400>	1026	
cccaac	ccca aaatccctaa	20
<210>	1027	
<211>	20	
<212>	DNA	
<213>	Homo sapiens	
<400>	1027	
cgtcat	ggca agtgtgtcaa `	20
<210>	1028	
<211>	20	
<212>	DNA	
<213>	Homo sapiens	
<400>	1028	
tggcct	ctgc ctgttttcat	20
<210>	1029	
<211>	23	
<212>		
<213>		
~2137	nomo papaono	
4400:	1020	
<400>	1029	23
tggtaa	attt ccccaacagt gtg	43
<210>	1030	
<211>	21	
<212>	DNA	
	Homo sapiens	

WO 03/090694 PCT/US03/13015 <400> 1030 21 caccaaggtt tccgaagaca a <210> 1031 <211> 20 <212> DNA <213> Homo sapiens <400> 1031 20 agcaccacgc aagaagatcc <210> 1032 <211> 20 <212> DNA <213> Homo sapiens <400> 1032 20 ctggcgaaga atggtgttcc <210> 1033 . . . <211> 21 <212> DNA <213> Homo sapiens <400> 1033 21 ttgcgcagat acctaggctt g <210> 1034 <211> 22 <212> DNA <213> Homo sapiens <400> 1034 22 tcagccagtc aaaattccaa aa <210> 1035 <211> 20 <212> DNA <213> Homo sapiens <400> 1035 20 acccatctac cggcatcctc <210> 1036 <211> 20 <212> DNA <213> Homo sapiens <400> 1036 20 gtgccagttc cctttgctgt

<210> 1037

24

DNA

<211>

<212>

<213> Homo sapiens					
<400> 1037 caaaacctcg cttactgtca	tgtg		•		24
<210> 1038 <211> 22 <212> DNA	•				
<213> Homo sapiens					
<400> 1038 tgggaaagga catcagtctt	ca				22
<210> 1039 <211> 5252 <212> DNA <213> Homo sapiens					
<400> 1039					
ctctctccca gaacgtgtct	ctgctgcaag	gcaccgggcc	ctttcgctct	gcagaactgc	60
acttgcaaga ccattatcaa	ctcctaatcc	cagctcagaa	agggagcctc	tgcgactcat	120
tcatcgccct ccaggactga	ctgcattgca	cagatgatgg	atatttacgt	atgtttgaaa	180
cgaccatcct ggatggtgga	caataaaaga	atgaggactg	cttcaaattt	ccagtggctg	240
ttatcaacat ttattcttct	atatctaatg	aatcaagtaa	atagccagaa	aaagggggct	300
cctcatgatt tgaagtgtgt	aactaacaat	ttgcaagtgt	ggaactgttc	ttggaaagca	360
ccctctggaa caggccgtgg	tactgattat	gaagtttgca	ttgaaaacag	gtcccgttct	420
tgttatcagt tggagaaaac	cagtattaaa	attccagctc	tttcacatgg	tgattatgaa	480
ataacaataa attctctaca	tgattttgga	agttctacaa	gtaaattcac	actaaatgaa	540
caaaacgttt ccttaattcc	agatactcca	gagatcttga	atttgtctgc	tgatttctca	600
acctctacat tatacctaaa	gtggaacgac	aggggttcag	tttttccaca	ccgctcaaat	660
gttatctggg aaattaaagt	tctacgtaaa	gagagtatgg	agctcgtaaa	attagtgacc	720
cacaacacaa ctctgaatgg	caaagataca	cttcatcact	ggagttgggc	ctcagatatg	780
cccttggaat gtgccattca	ttttgtggaa	attagatgct	acattgacaa	tcttcatttt	840
tctggtctcg aagagtggag	tgactggagc	cctgtgaaga	acatttcttg	gatacctgat	900
tctcagacta aggtttttcc	tcaagataaa	gtgatacttg	taggctcaga	cataacattt	960
tgttgtgtga gtcaagaaaa	agtgttatca	gcactgattg	gccatacaaa	ctgccccttg	1020
atccatcttg atggggaaaa	tgttgcaatc	aagattcgta	atatttctgt	ttctgcaagt	1080
agtggaacaa atgtagtttt	tacaaccgaa	gataacatat	ttggaaccgt	tatttttgct	1140
ggatatccac cagatactco	tcaacaactg	aattgtgaga	cacatgattt	aaaagaaatt	1200

						1260
	ggaatccagg					1260
actttagttg	aaagtttttc	aggaaaatat	gttagactta	aaagagctga	agcacctaca	1320
aacgaaagct	atcaattatt	atttcaaatg	cttccaaatc	aagaaatata	taattttact	1380
ttgaatgctc	acaatccgct	gggtcgatca	caatcaacaa	ttttagttaa	tataactgaa	1440
aaagtttatc	cccatactcc	tacttcattc	aaagtgaagg	atattaattc	aacagctgtt	1500
aaactttctt	ggcatttacc	aggcaacttt	gcaaagatta	attttttatg	tgaaattgaa	1560
attaagaaat	ctaattcagt	acaagagcag	cggaatgtca	caatcaaagg	agtagaaaat	1620
tcaagttatc	ttgttgctct	ggacaagtta	aatccataca	ctctatatac	ttttcggatt	1680
cgttgttcta	ctgaaacttt	ctggaaatgg	agcaaatgga	gcaataaaaa	acaacattta	1740
acaacagaag	ccagtccttc	aaaggggcct	gatacttgga	gagagtggag	ttctgatgga	1800
aaaaatttaa	taatctattg	gaagccttta	cccattaatg	aagctaatgg	aaaaatactt	1860
tcctacaatg	tatcgtgttc	atcagatgag	gaaacacagt	ccctttctga	aatccctgat	1920
cctcagcaca	aagcagagat	acgacttgat	aagaatgact	acatcatcag	cgtagtggct	1980
aaaaattctg	tgggctcatc	accaccttcc	aaaatagcga	gtatggaaat	tccaaatgat	2040
gatctcaaaa	tagaacaagt	tgttgggatg	ggaaagggga	ttctcctcac	ctggcattac	2100
gaccccaaca	tgacttgcga	ctacgtcatt	aagtggtgta	actcgtctcg	gtcggaacca	2160
tgccttatgg	actggagaaa	agttccctca	aacagcactg	aaactgtaat	agaatctgat	2220
gagtttcgac	: caggtataag	atataatttt	ttcctgtatg	gatgcagaaa	tcaaggatat	2280
caattattac	gctccatgat	tggatatata	gaagaattgg	ctcccattgt	tgcaccaaat	2340
tttactgttg	g aggatactto	tgcagattcg	, atattagtaa	aatgggaaga	cattcctgtg	2400
gaagaactta	a gaggcttttt	aagaggatat	: ttgttttact	ttggaaaagg	agaaagagac	2460
acatctaaga	a tgagggtttt	agaatcaggt	cgttctgaca	taaaagttaa	gaatattact	2520
gacatatcc	e agaagacact	gagaattgct	gatcttcaag	gtaaaacaag	ttaccacctg	2580
gtcttgcgag	g cctatacaga	a tggtggagtg	g ggcccggaga	agagtatgta	tgtggtgaca	2640
aaggaaaati	t ctgtgggatt	aattattgc	c attctcatco	: cagtggcagt	ggctgtcatt	2700
gttggagtg	g tgacaagta	cctttgcta	t cggaaacgag	g aatggattaa	agaaaccttc	2760
taccctgat	a ttccaaatc	c agaaaactg	t aaagcattac	agtttcaaaa	gagtgtctgt	2820
gagggaagc	a gtgctctta:	a aacattgga	a atgaatcctt	gtaccccaaa	taatgttgag	2880
gttctggaa	a ctcgatcag	c atttcctaa	a atagaagata	a cagaaataat	: ttccccagta	2940
gctgagcgt	c ctgaagatc	g ctctgatgc	a gagcctgaaa	a accatgtggt	tgtgtcctat	3000
tgtccaccc	a tcattgagg	a agaaatacc	a aacccagcc	g cagatgaago	tggagggact	3060
				_		

gcacaggtta t	ttacattga	tgttcagtcg	atgtatcagc	ctcaagcaaa	accagaagaa	3120
gaacaagaaa a	atgaccctgt	aggagggca	ggctataagc	cacagatgca	cctccccatt	3180
aattctactg 1	tggaagatat	agctgcagaa	gaggacttag	ataaaactgc	gggttacaga	3240
cctcaggcca a	atgtaaatac	atggaattta	gtgtctccag	actctcctag	atccatagac	3300
agcaacagtg a	agattgtctc	atttggaagt	ccatgctcca	ttaattcccg	acaatttttg	3360
attcctccta	aagatgaaga	ctctcctaaa	tctaatggag	gagggtggtc	ctttacaaac	3420
ttttttcaga (	acaaaccaaa	cgattaacag	tgtcaccgtg	tcacttcagt	cagccatctc	3480
aataagctct	tactgctagt	gttgctacat	cagcactggg	cattcttgga	gggatcctgt	3540
gaagtattgt	taggaggtga	acttcactac	atgttaagtt	acactgaaag	ttcatgtgct	3600
tttaatgtag	tctaaaagcc	aaagtatagt	gactcagaat	cctcaatcca	caaaactcaa	3660
gattgggagc	tctttgtgat	caagccaaag	aattctcatg	tactctacct	tcaagaagca	3720
tttcaaggct'	aatacctact	tgtacgtaca	tgtaaaacaa	atcccgccgc	aactgttttc	3780
tgttctgttg	tttgtggttt	tctcatatgt	atacttggtg	gaattgtaag	tggatttgca	3840
ggccagggag	aaaatgtcca	agtaacaggt	gaagtttatt	tgcctgacgt	ttactccttt	3900
ctagatgaaa	accaagcaca	gattttaaaa	cttctaagat	tattctcctc	tatccacagc	3960
attcacaaaa	attaatataa	tttttaatgt	agtgacagcg	atttagtgtt	ttgtttgata	4020
aagtatgctt	atttctgtgc	ctactgtata	atggttatca	aacagttgtc	tcaggggtac	4080
aaactttgaa	aacaagtgtg	acactgacca	gcccaaatca	taatcatgtt	ttcttgctgt	4140
gataggtttt	gcttgccttt	tcattatttt	ttagctttta	tgcttgcttc	cattatttca	4200
gttggttgcc	ctaatattta	aaatttacac	ttctaagact	agagacccac	attttttaaa	4260
aatcatttta	ttttgtgata	cagtgacagc	tttatatgag	caaattcaat	attattcata	4320
agcatgtaat	tccagtgact	tactatgtga	gatgactact	aagcaatatc	tagcagcgtt	4380
agttccatat	agttctgatt	ggatttcgtt	cctcctgagg	agaccatgco	gttgagcttg	4440
gctacccagg	cagtggtgat	ctttgacacc	ttctggtgga	tgttcctccc	actcatgagt	4500
cttttcatca	tgccacatta	tctgatccag	tcctcacatt	tttaaatata	aaactaaaga	4560
gagaatgctt	cttacaggaa	cagttaccca	agggctgttt	cttagtaact	gtcataaact	4620
gatctggatc	catgggcata	cctgtgttcg	aggtgcagca	a attgcttggt	gagctgtgca	4680
gaattgattg	ccttcagcac	agcatcctct	gcccaccctt	gtttctcata	agcgatgtct	4740
ggagtgattg	tggttcttgg	aaaagcagaa	ggaaaaacta	a aaaagtgtat	cttgtatttt	4800
ccctgccctc	aggttgccta	tgtattttac	cttttcatat	ttaaggcaaa	a agtacttgaa	4860

aattttaagt gtccgaataa gatatgtctt ttttgtttgt ttttttgtt tggttgtttg 4920
ttttttatca tctgagattc tgtaatgtat ttgcaaataa tggatcaatt aattttttt 4980
gaagctcata ttgtatcttt ttaaaaacca tgttgtggaa aaaagccaga gtgacaagtg 5040
acaaaatcta tttaggaact ctgtgtatga atcctgattt taactgctag gattcagcta 5100
aatttctgag ctttatgatc tgtggaaatt tggaatgaaa tcgaattcat tttgtacata 5160
catagtatat taaaactata taatagttca tagaaatgtt cagtaatgaa aaaatatatc 5220
caatcagagc catcccgaaa aaaaaaaaa aa 5252

<210> 1040

<211> 5252

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (3967)..(3988)

<223> n is a, c, g, t or u

<400> 1040 ctctctccca gaacgtgtct ctgctgcaag gcaccgggcc ctttcgctct gcagaactgc 60 acttgcaaga ccattatcaa ctcctaatcc cagctcagaa agggagcctc tgcgactcat 120 tcatcgccct ccaggactga ctgcattgca cagatgatgg atatttacgt atgtttgaaa 180 cgaccatect ggatggtgga caataaaaga atgaggactg cttcaaattt ccagtggctg 240 ttatcaacat ttattcttct atatctaatg aatcaagtaa atagccagaa aaagggggct 300 cctcatgatt tgaagtgtgt aactaacaat ttgcaagtgt ggaactgttc ttggaaagca 360 ccctctggaa caggccgtgg tactgattat gaagtttgca ttgaaaacag gtcccgttct 420 tgttatcagt tggagaaaac cagtattaaa attccagctc tttcacatgg tgattatgaa 480 ataacaataa attototaca tgattttgga agttotacaa gtaaattcac actaaatgaa 540 600 caaaacgttt ccttaattcc agatactcca gagatcttga atttgtctgc tgatttctca acctctacat tatacctaaa gtggaacgac aggggttcag tttttccaca ccgctcaaat 660 gttatctggg aaattaaagt tctacgtaaa gagagtatgg agctcgtaaa attagtgacc 720 cacaacacaa ctctgaatgg caaagataca cttcatcact ggagttgggc ctcagatatg 780 cccttggaat gtgccattca ttttgtggaa attagatgct acattgacaa tcttcatttt 840 tetggteteg aagagtggag tgaetggage cetgtgaaga acatttettg gatacetgat 900 tctcagacta aggtttttcc tcaagataaa gtgatacttg taggctcaga cataacattt 960 tgttgtgtga gtcaagaaaa agtgttatca gcactgattg gccatacaaa ctgccccttg 1020

atccatcttg atggggaaaa tgttgcaatc aagattcgta atatt	tetgt ttetgcaagt 1	1080
agtggaacaa atgtagtttt tacaaccgaa gataacatat ttgga		1140
ggatatccac cagatactcc tcaacaactg aattgtgaga cacat		1200
atatgtagtt ggaatccagg aagggtgaca gcgttggtgg gccca	acgtgc tacaagctac	1260
actttagttg aaagtttttc aggaaaatat gttagactta aaaga		1320
aacgaaagct atcaattatt atttcaaatg cttccaaatc aaga		1380
ttgaatgctc acaatccgct gggtcgatca caatcaacaa tttt		1440
aaagtttatc cccatactcc tacttcattc aaagtgaagg atat	taattc aacagctgtt	1500
aaactttctt ggcatttacc aggcaacttt gcaaagatta attt	tttatg tgaaattgaa	1560
attaagaaat ctaattcagt acaagagcag cggaatgtca caat		1620
tcaagttatc ttgttgctct ggacaagtta aatccataca ctct		1680
cgttgttcta ctgaaacttt ctggaaatgg agcaaatgga gcaa		1740
acaacagaag ccagtccttc aaaggggcct gatacttgga gaga		1800
aaaaatttaa taatctattg gaagccttta cccattaatg aagc		1860
tectacaatg tategtgtte ateagatgag gaaacacagt eect	ttctga aatccctgat	1920
cctcagcaca aagcagagat acgacttgat aagaatgact acat		1980
aaaaattctg tgggctcatc accaccttcc aaaatagcga gta		2040
gatctcaaaa tagaacaagt tgttgggatg ggaaagggga ttc	tcctcac ctggcattac	2100
gaccccaaca tgacttgcga ctacgtcatt aagtggtgta act		2160
tgccttatgg actggagaaa agttccctca aacagcactg aaa	ctgtaat agaatctgat	2220
gagtttcgac caggtataag atataatttt ttcctgtatg gat	gcagaaa tcaaggatat	2280
caattattac gctccatgat tggatatata gaagaattgg ctc	ccattgt tgcaccaaat	2340
tttactgttg aggatacttc tgcagattcg atattagtaa aat	gggaaga cattcctgtg	2400
gaagaactta gaggcttttt aagaggatat ttgttttact ttg	gaaaagg agaaagagac	2460
acatctaaga tgagggtttt agaatcaggt cgttctgaca taa	aagttaa gaatattact	2520
gacatatece agaagacaet gagaattget gatetteaag gta	aaaacaag ttaccacctg	2580
gtcttgcgag cctatacaga tggtggagtg ggcccggaga aga	agtatgta tgtggtgaca	2640
aaggaaaatt ctgtgggatt aattattgcc attctcatcc cag	gtggcagt ggctgtcatt	2700
gttggagtgg tgacaagtat cctttgctat cggaaacgag aa	tggattaa agaaaccttc	2760
taccetgata ttecaaatee agaaaaetgt aaageattae ag	tttcaaaa gagtgtctgt	2820
gagggaagca gtgctcttaa aacattggaa atgaatcctt gt	accccaaa taatgttgag	2880

gttctggaaa ctcgatcagc atttcctaaa atagaagata cagaaataat ttccccagta 2940 gctgagcgtc ctgaagatcg ctctgatgca gagcctgaaa accatgtggt tgtgtcctat 3000 tgtccaccca tcattgagga agaaatacca aacccagccg cagatgaagc tggagggact 3060 gcacaggtta tttacattga tgttcagtcg atgtatcagc ctcaagcaaa accagaagaa 3120 gaacaagaaa atgaccetgt aggaggggca ggctataage cacagatgca ectecceatt 3180 aattotactg tggaagatat agotgcagaa gaggacttag ataaaactgc gggttacaga 3240 cctcaggcca atgtaaatac atggaattta gtgtctccag actctcctag atccatagac 3300 agcaacagtg agattgtctc atttggaagt ccatgctcca ttaattcccg acaatttttg 3360 attoctocta aagatgaaga ototootaaa țotaatggag gagggtggto otttacaaac 3420 ttttttcaga acaaaccaaa cgattaacag tgtcaccgtg tcacttcagt cagccatctc 3480 aataagetet taetgetagt gttgetacat cageactggg cattettgga gggateetgt 3540 gaagtattgt taggaggtga acttcactac atgttaagtt acactgaaag ttcatgtgct 3600 tttaatgtag tctaaaagcc aaagtatagt gactcagaat cctcaatcca caaaactcaa 3660 gattgggagc tctttgtgat caagccaaag aattctcatg tactctacct tcaagaagca 3720 tttcaaggct aatacctact tgtacgtaca tgtaaaacaa atcccgccgc aactgttttc 3780 tgttctgttg tttgtggttt tctcatatgt atacttggtg gaattgtaag tggatttgca 3840 ggccagggag aaaatgtcca agtaacaggt gaagtttatt tgcctgacgt ttactccttt 3900 ctagatgaaa accaagcaca gattttaaaa cttctaagat tattctcctc tatccacagc 3960 attcacnnnn nnnnnnnnn nnnnnnnngt agtgacagcg atttagtgtt ttgtttgata 4020 aagtatgett atttetgtge etaetgtata atggttatea aacagttgte teaggggtae 4080 aaactttgaa aacaagtgtg acactgacca gcccaaatca taatcatgtt ttcttgctgt 4140 gataggtttt gcttgccttt tcattatttt ttagctttta tgcttgcttc cattatttca 4200 gttggttgcc ctaatattta aaatttacac ttctaagact agagacccac attttttaaa 4260 aatcatttta ttttgtgata cagtgacagc tttatatgag caaattcaat attattcata 4320 agcatgtaat tecagtgaet tactatgtga gatgaetaet aagcaatate tagcagegtt 4380 agttccatat agttctgatt ggatttcgtt cctcctgagg agaccatgcc gttgagcttg 4440 gctacccagg cagtggtgat ctttgacacc ttctggtgga tgttcctccc actcatgagt 4500 cttttcatca tgccacatta tctgatccag tcctcacatt tttaaatata aaactaaaga 4560 gagaatgctt cttacaggaa cagttaccca agggctgttt cttagtaact gtcataaact 4620 gatctggatc catgggcata cctgtgttcg aggtgcagca attgcttggt gagctgtgca 4680

gaattgattg cetteageae ageateetet geceaecett gttteteata agegatgtet	4740
	4800
	4860
aattttaagt gtccgaataa gatatgtctt ttttgtttgt tttttttggt tggttgtttg	4920
ttttttatca tctgagattc tgtaatgtat ttgcaaataa tggatcaatt aattttttt	4980
gaageteata ttgtatettt ttaaaaaeea tgttgtggaa aaaageeaga gtgacaagtg	5040
acaaaatcta tttaggaact ctgtgtatga atcctgattt taactgctag gattcagcta	5100
aatttctgag ctttatgatc tgtggaaatt tggaatgaaa tcgaattcat tttgtacata	5160
catagtatat taaaactata taatagttca tagaaatgtt cagtaatgaa aaaatatatc	5220
caatcagagc catcccgaaa aaaaaaaaaa aa	5252
<210> 1041 <211> 50 <212> DNA <213> Homo sapiens	
<400> 1041 agaaatgaaa aaatatatcc aatcagagcc atcccgaaaa	50
<210> 1042 <211> 841 <212> DNA <213> Homo sapiens	
<400> 1042 ttttttttt ttttcttaaa tagcatttat tttctctcaa aaagcctatt atgtactaac	60.
aagtgtteet etaaattaga aaggeateae taetaaaatt ttatacatat titttatata	120
agagaaggaa tattgggtta caatctgaat ttctctttat gatttctctt aaagtataga	180
acagctatta aaatgactaa tattgctaaa atgaaggcta ctaaatttcc ccaagaattt	240
cggtggaatg cccaaaaatg gtgttaagat atgcagaagg gcccatttca agcaaagcaa	300
tctctccacc ccttcataaa agatttaagc taaaaaaaaa aaaaaaagaa gaaaatccaa	360
cagotgaaga cattgggota tttataaato ttotocoagt coccoagaca gootcacatg	420
ggggctgtaa acagctaact aaaatatctt tgagactctt atgtccacac ccactgacac	480
aaggagagct gtaaccacag tgaaactaga ctttgctttc ctttagcaag tatgtgccta	540
tgatagtaaa ctggagtaaa tgtaacagta ataaaacaaa tttttttaa aaataaaaat	600
tatacctttt tctccaacaa acggtaaaga ccacgtgaag acatccataa aattaggcaa	660
ccagtaaaga tgtggagaac cagtaaactg tcgaaattca tcacattatt ttcatacttt	720
aatacagcag ctttaattat tggagaacat caaagtaatt aggtgccgaa aaacattgtt	780

840

attaatgaag ggaacccctg acgtttgacc ttttctgtac catctatagc cctggacttg

a	841
<210> 1043 <211> 841 <212> DNA <213> Homo sapiens	
<220> <221> misc_feature <222> (94)(121) <223> n is a, c, g, t or u	
<220> <221> misc_feature <222> (569)(604) <223> n is a, c, g, t or u	
<400> 1043 ttttttttt ttttcttaaa tagcatttat tttctctcaa aaagcctatt atgtactaac	60
aagtgttcct ctaaattaga aaggcatcac tacnnnnnn nnnnnnnnn nnnnnnnnn	120
ngagaaggaa tattgggtta caatctgaat ttctctttat gatttctctt aaagtataga	180
acagctatta aaatgactaa tattgctaaa atgaaggcta ctaaatttcc ccaagaattt	240
cggtggaatg cccaaaaatg gtgttaagat atgcagaagg gcccatttca agcaaagcaa	300
tetetecace cetteataaa agatttaage taaaaaaaaa aaaaaaagaa gaaaatecaa	360
cagetgaaga cattgggeta tttataaate tteteceagt eeeecagaca geeteacatg	420
ggggctgtaa acagctaact aaaatatctt tgagactctt atgtccacac ccactgacac	480
aaggagaget gtaaccacag tgaaactaga ctttgctttc ctttagcaag tatgtgccta	540
tgatagtaaa ctggagtaaa tgtaacagnn nnnnnnnnn nnnnnnnnn nnnnnnnnn	600
nnnncctttt tctccaacaa acggtaaaga ccacgtgaag acatccataa aattaggcaa	660
ccagtaaaga tgtggagaac cagtaaactg tcgaaattca tcacattatt ttcatacttt	720
aatacagcag ctttaattat tggagaacat caaagtaatt aggtgccgaa aaacattgtt	780
attaatgaag ggaacccctg acgtttgacc ttttctgtac catctatagc cctggacttg	846
a	843
<210> 1044 <211> 50 <212> DNA <213> Homo sapiens	
<400> 1044 gggcattcca ccgaaattct tggggaaatt tagtagcctt cattttagca	5

```
<210> 1045
<211> 609
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (303)..(304)
<223> n is a, c, g, t or u
<400> 1045
caggicacac agcacatcag tggctacatg tgagctcaga cctgggtctg ctgctgtctg
                                                                           60
tetteccaat atceatgace ttgactgatg caggtgteta gggatacgte cateccegte
                                                                          120
ctgctggagc ccagagcacg gaagcctggc cctccgagga gacagaaggg agtgtcggac
                                                                          180
accatgacga gagcttggca gaataaataa cttctttaaa caattttacg gcatgaagaa
                                                                          240
atctggacca gtttattaaa tgggatttct gccacaaacc ttggaagaat cacatcatct
                                                                          300
tanncccaag tgaaaactgt gttgcgtaac aaagaacatg actgcgctcc acacatacat
                                                                           360
cattgcccgg cgaggcggga cacaagtcaa cgacggaaca cttgagacag gcctacaact
                                                                           420
gtgcacgggt cagaagcaag tttaagccat acttgctgca gtgagactac atttctgtct
                                                                           480
atagaagata cctgacttga tctgtttttc agctccagtt cccagatgtg cgtgttgtgg
                                                                           540
tecccaagta teacetteca atttetggga geagtgetet ggeeggatee ttgeegegeg
                                                                           600
                                                                           609
 gataaaaac
 <210> ... 1046
<211> ... 50
                   والمفاح ومنا فسيوها والتناز فالفراها والرائح والمفاوي والمارا والأراب والتروي والمراكز والروافع المارية
 <212> DNA
 <213> Homo sapiens
 <400> 1046
                                                                            50
 cagttcccag atgtgcgtgt tgtggtcccc aagtatcacc ttccaatttc
 <210> 1047
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <400> 1047
                                                                             50
 gtcccttagg ggagggagag ttgtcctctt tgcccacagt ctaccctcag
 <210> 1048
        63
 <211>
 <212> DNA
 <213> Homo sapiens
 <400> 1048
```

WO 03/090694 PCT/US03/13015 ggccagtgaa ttgtaatacg actcactata gggaggcggt ttttttttt tttttttt 60 63 ttt <210> 1049 463 <211> DNA <212> <213> Homo sapiens <400> 1049 ttggcttgac tcaggattta aaaactggaa cggtgaaggt gacagcagtc ggttggacga 60 gcatccccca aagttcacaa tgtggccgag gactttgatt gcacattgtt gttttttaat 120 agtcattcca aatatgagat gcattgttac aggaagtccc ttgccatcct aaaagcaccc 180 240 cacttetete taaggagaat ggeecagtee teteecaagt ecacacaggg gagggatage attgctttcg tgtaaattat gtaatgcaaa attttttaa tettegeett aatetttttt 300 attttgtttt attttgaatg atgageette gtgeeeeece tteeeeettt ttteeeeeaa 360 cttgagatgt atgaaggett ttggteteec tgggagtggg tggaggeage egggettaee 420 463 tgtacactga cttgagacca gttgaataaa agtgcacacc tta <210> 1050 <211> 491 <212> DNA <213> Homo sapiens <400> 1050 gaagagtacc agaaaagtct gctagagcag taccatctgg gtctggatca aaaacgcaga 60. aaatatgtgg ttggagagct catttggaat tttgccgatt tcatgactga acagtcaccg 120 acgagagtgc tggggaataa aaaggggatc ttcactcggc agagacaacc aaaaagtgca 180 gcgttccttt tgcgagagag atactggaag attgccaatg aaaccaggta tccccactca 240 gtagccaagt cacaatgttt ggaaaacagc ccgtttactt gagcaagact gataccacct 300 gegtgteeet teeteeega gteagggega etteeaeage ageagaacaa gtgeeteetg 360 gactgttcac ggcagaccag aacgtttctg gcctgggttt tgtggtcatc tattctagca 420 480 gggaacacta aaggtggaaa taaaagattt tctattatgg aaataaagag ttggcatgaa 491 agtcgctact g 1051 <210> <211> 20 DNA <212> Homo sapiens <213>

20

<400> 1051

cacaatgtgg ccgaggactt

<210>	1052		
<211>	20		
<212>	DNA		
<213>	Homo sapiens		
	<del>-</del> •		
<400>	1052		
	gag gactttgatt		20
cg cg g o	3949 94-1-19		
.010.	1052		
<210>	1053	•	
<211>	20		
	DNA		
<213>	Homo sapiens		
<400>	1053		20
tggctt	ttag gatggcaagg		20
<210>	1054		
<211>	20		
	DNA		
	Homo sapiens		
(213/	1100 249-0	•	
<400>	1054		
	ttag tttgcttcct		20
99999	ctag cttgctccc		
<210>	1055		
<211>			
<212>			
<213>	Homo sapiens		
<400>	1055		
aagtgo	agcg ttccttttgc		20
<210>	1056		
<211>	20	101000000000000000000000000000000000000	
<212>	DNA		
<213>	Homo sapiens		
\21J/	nomo bapicas		
<400>	1056		
			20
agegu	cctt ttgcgagaga	•	
<210>	1057		
<211>			
<212>			
<213>	Homo sapiens		
		•	
<400>	1057		~ ~
cgggc	tgttt tccaaacatt		20
<210>	1058		
<211>			
<212>			
<213>			
(CI)	mono paptema		
<400>	1058		
<4UU>	T430		

gaaggga	cac gcaggtggta					20
<211>	1059 20 DNA					
	Homo sapiens					
	1059 '		<del>*</del> *, .	•	•	20
taccacc	tgc gtgtcccttc				٥	20
			•			
<210>	1060					
<211> <212>	21 DNA					
	Homo sapiens					
<400>	1060					2.1
gaggcad	ettg ttetgetget	g				21
<210>	1061					
<211> <212>	327 DNA	•				
	Homo sapiens					
<400>	1061					
ggggac	tctg gaggccctct	tgtgtgtaac	aaggtggccc	agggcattgt	ctcctatgga	60
cgaaac	aatg gcatgcctco	acgagcctgc	accaaagtct	caagctttgt	acactggata	120
aagaaa	acca tgaaacgcta	ctaactacag	gaagcaaact	aagcccccgc	tgtaatgaaa	180
cacctt	ctct ggagccaagt	ccagatttac	actgggagag	gtgccagcaa	ctgaataaat	240:
acctct	ccca gtgtaaatct	ggagccaagt	ccagatttac	actgggagag	gtgccagcaa	300
ctgaat	aaat acctcttago	tgagtgg			٠	327
<210>	1062					
<211>	20					
<212>	_					
<213>	Houro saprens					
<400>	1062	<u>_</u>				20
acgago	cetge accaaagte	L				
	1067					
<210>						
<212>						
<213>	Homo sapiens					
<400>	1063					20
aaacaa	atggc atgcctcca	C				20
<210>						
<211> <212>						
~2127						

PCT/US03/13015

WO 03/090694

> Homo sapiens
1064
> 1064 . tacagc gggggcttag
> 1065
> 20
> DNA
> Homo sapiens
> 1065
gettag tttgetteet

PCT/US03/13015

WO 03/090694