

Statistical Modeling to Predict the Trend in Lung Cancer Data in Utah using Joinpoint Regression Analysis

Riley Morgan, Gregory Schmidt

Advisors: Dr. Md Sazib Hasan & Dr. Vinodh Chellamuthu

Outline

Our goals

Brief background on Lung Cancer in Utah

Statistical models

Results per category

Conclusion

Future work

Our Goals

- We obtained data from the Surveillance Epidemiology and End Results Program website (SEER)
- We used the statistical methods:
 - 1. Linear Regression
 - 2. Time Series Analysis-ARIMA
 - 3. Joinpoint Regression
- Our simulation results will predict the trend of new total deaths

Lung Cancer

- Lung and bronchus cancer is the leading cause of cancer related deaths in Utah and in the United States
- In 2021, it is estimated that there was 131,880 deaths from lung cancer in the United States
- Nearly 90% of lung cancer deaths can be attributed to smoking

Model Advantages

Linear Regression:

- Simple
- Visually easy to understand

Time Series Analysis-ARIMA:

- Identifies and forecasts patterns over time
- Predicts future trends within a confidence interval

Joinpoint Regression:

Splits data into trend intervals

Results: Linear Regression of Lung Cancer Deaths

- By using linear regression, we get one simple line to fit the model
- In 2030, this model predicts 590 deaths

Time Series Analysis-ARIMA

ARIMA(p, d, q) can be used to make a future prediction

- p for the AR [Auto Regressive] term
- d for the I [Integrated] term
- q for the MA [Moving Average] term

Est. deaths by 2030: 550

What is Joinpoint? Why Joinpoint?

- Piecewise linear regression model
- Calculates and searches for peak points in trends
- Great for analyzing trends over time

Joinpoint Regression

Joinpoint Regression takes data and fits a model for a specific number of joinpoints

By using one joinpoint, a clear upward trend can be observed

How to Determine the Number of Joinpoints

			Model Selec	tion Method			
Model Selection Method Permutation Test							
			Test For Number	er of Joinpoints			
Test Number	Null Hypothesis	Alternate Hypothesis	Numerator Degrees of Freedom	Denominator Degrees of Freedom	Number of Permutations	P-Value	Significance Level~
#1	0 Joinpoint(s)	7 Joinpoint(s) ^	14	34	4500	0.0002222	0.0071429
#2	1 Joinpoint(s) ^	7 Joinpoint(s)	12	34	4500	0.7404444	0.0083333
#3	1 Joinpoint(s) ^	6 Joinpoint(s)	10	36	4500	0.7328889	0.0083333
#4	1 Joinpoint(s) ^	5 Joinpoint(s)	8	38	4500	0.7768889	0.0083333
#5	1 Joinpoint(s) ^	4 Joinpoint(s)	6	40	4500	0.6551111	0.0083333
#6	1 Joinpoint(s) ^	3 Joinpoint(s)	4	42	4500	0.6048889	0.0083333
#7	1 Joinpoint(s) ^	2 Joinpoint(s)	2	44	4500	0.3046667	0.0083333

Selected Model

Final Selected Model: 1 Joinpoint(s)

Uses the Permutation Test to compare each model

One Joinpoint was calculated to be the best fit for this model

Significance level for individual test (alpha = 0.05).

What is APC?

- Annual Percentage Change (APC) represents the degree of change over time
- Used for monitoring the growth rates of a specific set of data
- Positive values indicate a growth
- Negative values indicate a decay

Joinpoint - Annual Percent Change

- Our model is split into two trends
- Model has an average APC of 2.6
- The APC from 1969-1993 is 4.0
- The APC from 1993-2018 is 1.2
- Est. deaths in 2030: 551

Age Groups at Most Risk

As age increases, the risk of dying from lung cancer dramatically increases

Age: Linear Regression (per 100k)

75-79 Years Old:

Slope = -0.49

Correlation: r = -0.24

Total by 2030 = 143

80-84 Years Old:

Slope = 1.08

Correlation: r = 0.32

Total by 2030 = 193

85+ Years Old:

Slope = 1.41

Correlation: r = 0.58

Total by 2030 = 182

Age: ARIMA (Deaths per 100k)

- A decrease for ages
 75-79
- A steady increase for ages 80-84 and 85+

Age: Joinpoint (Deaths per 100k)

Ages 75-79

Ages 80-84

Ages 85+

In Year 2030

- Ages 75-79: 105 deaths
- Ages 80-84: 204 deaths
- Ages 85+: 188 deaths

Utah Counties at Most Risk

Average deaths per 100,000 by county with at least 10 deaths from 2014-2018

Counties with larger populations usually have smaller mortality rates

County: ARIMA (Deaths Per 100k)

- A slight downward trend for Salt Lake County and Utah County
- Steady upward trend for Davis County

County: Joinpoint (Deaths Per 100k)

Salt Lake County

Utah County

Davis County

In Year 2030

- Salt Lake County: 16 deaths
- Davis County: 11 deaths
- Utah County: 8 deaths

Gender

- 56.7% of Utah lung cancer deaths were males in 2018
- A 121% increase from 1969 to 2018 for male lung cancer deaths
- A 662% increase for female lung cancer deaths

Gender: Linear Regression

Men

Slope = 3.1

Correlation: r = 0.91

Total Deaths in the year 2030 = 322

Women

Slope = 4.2

Correlation: r = 0.98

Total Deaths in the year 2030 = 268

Gender: ARIMA

Total Female Lung Cancer Deaths ORDER(0, 1, 1) forecast deaths 250 95% confidence interval 200 Deaths 150 100 50 2000 2010 1970 1980 1990 2020 2030 Years

Est. Deaths by 2030: 292

Est. Deaths by 2030: 257

Gender: Joinpoint

Year 2030:

Males: 256 deaths Females: 273 deaths

Conclusion

- Almost all models show an increase in total deaths
- The most populated counties show a decreasing trend in deaths per 100k
- Male deaths indicate a stable trend
- Female deaths indicate an increasing trend

Future Work

- Look into incidence rates
- Compare incidence rates to mortality rates
- Explore trends within ethnicity demographics
- Use LSTM Model as a comparison
- Publish research paper

Acknowledgement

Funding: DSU Office of Undergraduate Research

