Tutorial 2

September 22, 2019

- 1. Show that each of the following family is an exponential family:
 - (a) Binary distribution $bin(n, \theta)$, where n is fixed and $\theta \in (0, 1)$;
 - (b) Poisson distribution $P(\theta)$, $\theta > 0$;
 - (c) Negative binomial distribution $NB(r, \theta)$, where r is fixed and $\theta \in (0, 1)$;
 - (d) Exponential distribution $Exp(\theta), \theta > 0$;
 - (e) Gamma distribution $Ga(\alpha, \gamma)$ and $\theta = (\alpha, \gamma)$, where $\alpha > 0$ and $\gamma > 0$;
 - (f) Beta distribution $Be(\alpha, \beta)$ and $\theta = (\alpha, \beta)$, where $\alpha \in (0, 1)$ and $\beta \in (0, 1)$;
- 2. Suppose X is a Cauchy random variable, that is, the p.d.f. of X is

$$f(x) = \frac{1}{\pi} \frac{1}{1 + x^2}, -\infty < x < \infty$$

- (a) Prove the expectation does not exist.
- (b) Find the median.
- 3. If $X \sim Exp(\lambda)$, then $Y = X^{1/r}$. Y is said to have the Weibull distribution with two parameter γ and λ . Find the p.d.f and calculate the expectation, variance and α th quantiles, where α is given.
- 4. Suppose X is a discrete random variable and the possible values of X are non-negative integers. If E(x) exists, prove the following statements:
 - (a) $E(X) = \sum_{k=1}^{\infty} P(X \ge k);$
 - (b) $\sum_{k=0}^{\infty} kP(X > k) = \frac{1}{2}(E(X^2) E(X));$
- 5. Suppose X is a continuous random variable on the interval [a, b]. Prove that
 - (a) $a \leq E(X) \leq b$;
 - (b) $Var(X) \le \left(\frac{b-a}{2}\right)^2$
- 6. Let f(x) be a p.d.f. and let c be a real number such that, for all ϵ , $f(c+\epsilon) = f(c-\epsilon)$. Such a p.d.f. is said to be symmetric about the point c.
 - (a) Show that if f(x) is symmetric, then the median of X is the number c;
 - (b) Show that if f(x) is symmetric and E(X) exists, then E(X) = c;
 - (c) If c = 0, then $x_{\alpha} = -x_{1-\alpha}$.
- 7. Suppose X is a random variable and Y = a + bX for every real numbers $a, b(b \neq 0)$. Prove that they have the same coefficient of skewness and the same coefficient of kurtosis.

1