-> Representing tree mathematically $T(x;0) = \sum_{j=1}^{J} Y_j I(xe R_j)$ Ri- region 1) - prediction in region j 0 = { Rj, 7j}_{j=1 0 = argmin & E L (Yi, Yi) xi, yi - achial rabe fm (x) = M fm (x) = m=1 ⇒ Boosted tree $\hat{Om} = \underset{i=1}{\operatorname{argmin}} \stackrel{N}{\leq} L(y_i, f_{m-i}(x) + T(x_i, o_{mi})$ \Rightarrow For a differentiable loss function $N = L(f) = \sum_{i=1}^{N} L(y_i, f(x_i))$ $N = \sum_{i=1}^{N} L(y_i, f(x_i))$ N = no, of training examples gm = gradient at stage m (can be constant or using line source 8 = argmin L(f) 9m = step-size fo = ho cinihal guess) Jm = Ehm; hm ERN hm = -8m 9m evaluating $g_{m} = -\frac{5m}{3} \frac{3m}{5} \frac{1}{5} \frac$ at cm-1). 8m = argmin L (fm-1-8.9m) fm = fm.1 - gmgm

	In is unconstrained maximal descent direction.
	We want pasametric form to simplify it we sit 9m using a tree.
	we sit gm using a tree.
	$\widehat{Q}_{m} = \underset{\emptyset}{\operatorname{asgmin}} \underbrace{S\left(-g_{im} - T(D_{i}; 0)\right)^{2}}_{i=1}$
	Um = argmin & (-9,m-T(21:10))
	© t=1
	Jeast square.
	source could be seast square for any tend
	Above could be theast square for any find of original loss (ranking-ndeg, classification)
	Original loss gradient = 1 (yi-fai) ² 9m = yi-fai)
1	original loss gradient = 1 (yi-fai) ² gm = yi-fai)
	2 St 3000
	L = (Y1-fax) sign(Y0-fax)
	deviance I (Yi = GK) - PK(Xi)
	deviance I (Yi = GK) - PK(Xi)
	given L, find g and then do regression The decision tree Tim = argmin & L (Yi, Sm-1(Yi) + Y) Y xieki
	$\gamma \propto_{i} \in R_{j}$
ϵ	carlier for simpler pregression You were averages
4-1	Loss for O. and Y. were camp.
	Now I am to the same
	loss for Om and ym were same Now we are teeping them different.
	Might not be most ideal thing but
	works well in practice
233000000000000000000000000000000000000	