Pregunta 1 (2 puntos)(0,75+0,75+0,5)

Se definen las aplicaciones f y g mediante:

$$f: \mathbb{N}^2 \longrightarrow \mathbb{N}$$
$$(n,m) \longmapsto f(n,m) = mn$$

$$g: \mathbb{N} \longrightarrow \mathbb{N}^2$$

 $n \longmapsto g(n) = (n, (n+1)^2)$

- a) Determine razonadamente si f es inyectiva o sobreyectiva.
- b) Determine razonadamente si g es inyectiva o sobreyectiva.
- c) Determine $f \circ g$ y $g \circ f$.

Pregunta 2 (3 puntos)

Se define en \mathbb{N}^* la relación \ll dada por:

$$a \ll b$$
 si y sólo si existe $n \in \mathbb{N}^*$ tal que $b = a^n$

- a) Demuestre que \ll es una relación de orden parcial en \mathbb{N}^* .
- b) Si $A=\{2,4,8\}$, estudie la existencia, y en su caso explicítelos, de cotas superiores e inferiores, supremo e ínfimo, máximo y mínimo, maximales y minimales del conjunto A.

Pregunta 3 (2 puntos)

Se define por recurrencia la sucesión u_n mediante: $u_0 = 0$ y $u_{n+1} = \sqrt{\frac{1 + u_n}{2}} \ \forall n \in \mathbb{N}$. Demuestre por inducción que $\forall n \in \mathbb{N}^*$ se cumple:

$$\frac{1}{\sqrt{2}} \le u_n \le 1$$

Pregunta 4 (3 puntos)

Sea $f: \mathbb{C} \longrightarrow \mathbb{C}$ la aplicación definida mediante $f(z) = z^3 - 2z^2 + 16$. Se pide:

- a) Calcule f(-2), deduzca una factorización de f(z) y resuelva la ecuación f(z) = 0.
- b) Sean los números complejos $z_0=-2,\,z_1=2(1+i)$ y $z_2=2(1-i).$

Calcule el módulo y el argumento de los números z_0 , z_1 , z_2 y $\omega = \frac{z_0 z_1^2}{z_2^3}$.

c) Represente en el plano complejo los puntos M_0 , M_1 y M_2 cuyos afijos son respectivamente z_0 , z_1 y z_2 . Demuestre que el triángulo de vértices M_0 , M_1 y M_2 es isósceles pero no es equilátero.