C02H	
=	A-A-H
	N-2

	CPP32 IC ₅₀ (μ M)	>10 >50 2.48 5.62 49.8 >50 >50 >50	47.0
ONS IC ₅₀	mice ic ₅₀ (μ M)	0.177 11.7 0.531 5.52 3.34 34.7 0.393 0.313 1.63	0.064
TABLE 1 50% INHIBITORY CONCENTRATIONS IC ₅₀ FOR FORMULA A	A	Ala Val Val Gly Ala Ala Ala	l I
50% INHIBIT	R1	CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 CH 2 CH2 Ph CH2 O2 H CH2 O2 H	}
	Example	4 7 10 13 16 27 27 33	reference

Fig. 1

Title: METHODS, COMPOSITIONS AND KITS FOR PRESERVING ANTIGENICITY

Inventor(s): Teresa Aja et al. Express Mail No. EL897861705US Docket No. 480140.476

		Mch5	k_3/Ki (M-1s-1)	21,500	37,000	52,500	32,500	35,300	127,000	38,500	29,400	131,600	47,600	31,700	39,200	16,100	83,300
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mo	(kM)	0.062	0.099	0.054	0.077	0.043	0.038	0.026	0.102	0.038	0.063	0.063	0.051	0.062	0.018
		Mch2	k_3/K_1 (M-1s-1)	58,800	2	71,400	41,700	55,600	19,600	30,300	25,000	19,200	38,500	43,500	26,300	25,000	3,370
		×	(MM)	0.017	9	0.014	0.024	0.036	0.051	0.033	0.040	0.104	0.052	0.023	0.038	0.040	0.594
CO ₂ H	ATION RATE	CPP32	k_3/K_1 (M-1s-1)	13,400	25,900	72,700	33,700	74,200	58,700	21,200	44,200	56,000	38,900	7,910	21,800	31,800	14,600
ZI	INACTIV,	5	$\overset{\text{Ki}}{(\muM)}$	0.960	0.830	0.493	0.742	0.110	0.125	0.520	0.113	0.125	0.180	2.28	0.505	0.346	0.820
NE N	TABLE 2 DISSOCIATION CONSTANT KI AND INACTIVATION RATE k3/KI FOR FORMULA B	mICE	k_3/K_1 (M-1s-1)	2,860	6,150	7,120	45,100	8,900	16,800	41,700	7,560	18,300	21,400	1,540	14,200	14,900	278,000
Z-~	ON CONST		Ki (\mu_M)	1.40	1.68	1.10	0.133	0.843	0.327	0.240	0.397	0.327	0.234	4.56	0.632	0.739	0.015
	DISSOCIATION		×	工	=	<u>.</u>	=	=	=	=	L	I		=		0CH ₂ Ph	ì
			R2	CH ₃									I	$CH_2CH(CH_3)_2$	(CH2)2Ph	, , ,	i I
			.	CH3	CH ₃	CH ₃	(CH ₂) ₃ Ph	Ph	сн2с02н	CH ₃	CH ₃	(CH ₂) ₂ CH=CH ₂		CH3	CH3	7 CH3	!
			Example	43	46	49	25	22	28	9	62	63	64	65	99	29	reference

The state of the s

Fig. 2

Title: METHODS, COMPOSITIONS AND KITS FOR PRESERVING ANTIGENICITY

C02H	× °
CH3	CH ₃

Fig. 3

Title: METHODS, COMPOSITIONS AND KITS FOR PRESERVING ANTIGENICITY

	۵
A-N (CH2)n 0	XII
Z T	/ Z D

		2(TA 50% INHIBITORY FOR F	TABLE 4 INHIBITORY CONCENTRATIONS IC ₅₀ FOR FORMULA D	INS IC50		
Example No.	A	٦	mICE IC ₅₀ (μΜ)	CPP32 IC ₅₀ (μΜ)	MCH-2 IC ₅₀ (μM)	MCH-3 IC ₅₀ (μ M)	MCH-5 IC ₅₀ (µM)
78	Cbz	-	0.019	1.03	40.1	96.9	>10
82	Ac-Asp	hore	0.694	0.0014	6.47	0.145	2.09
85	succinyl	—	0.571	0.245	1.81	2.83	7.98
88	Cbz-Asp	-	960.0	0.00052	2	0.084	1.19
91	dihydrocinnamoyl	4	0.045	0.780	>10	32.6	18.7
94	Ac	-	3.07	3.87	>10	>50	>50
100	Benzoyl	-	0.159	8.77	>50	>50	4.63
6	1—Naphthoyl	—	0.010	2.91	>50	12.3	1.09
103	Cbz	2	0.026	0.437	32.0	-	2.06
reference	I	ı	0.064	47.0	>10	>10	2.96

Fig. 4

Title: METHODS. COMPOSITIONS AND KITS FOR PRESERVING ANTIGENICITY

	C02H		0
	Z Z		Example 106
	~ >=<	I	Exam
	\	=\	

TABLE 5 DISSOCIATION CONSTANT KI AND INACTIVATION RATE k_3/k_1 FOR EXAMPLE 106	Example 106	Ki (μM) k ₃ /Ki $(M^{-1}s^{-1})$ Ki (μM) k ₃ /Ki $(M^{-1}s^{-1})$	12,000,000		0.033 25,000 0.594 2,950	98,000 0.018
DISSOCIATION CONSTA k3/Ki FI	Example 106	Ki (μM) k ₃ /Ki (
		Enzyme	mICE	CPP32	MCH-2	MCH-5

Fig. 5

IC₅₀ - zVADfmk - Example 43 - Example 70 - Example 106 100 FACS Analysis of Propidium lodide Labelled Neutrophils: 48 Hour Time Point Concentration (μM) 0.1 1007 106 106 50 -80 70/ <u>-</u> 09 40 – 30 🗒 20-10 biolqiboqyH %

Title: METHODS. COMPOSITIONS AND KITS FOR PRESERVING ANTIGENICITY
Inventor(s): Teresa Aja et al. Express Mail No. EL897861705US Docket No. 480140.476

Neutrophil Survival and Burst Assay

Fig. 7