Лабораторная работа №5.5.1

Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергии

Автор работы: Хоружий Кирилл

От: 20 октября 2021 г.

Цель работы

- 1. Ознакомиться с работой сцинтилляционного счетчика.
- 2. С помощью сцинтилляционного счетчика измерить линейные коэффициенты μ ослабления потока γ -лучей в свинце, железе и алюминии; по их величине определить энергию γ -квантов.

Оборудование

Сцинтилляционный счетчик, штангенциркуль, диски пробки, алюминия, железа и свинца.

Экспериментальная установка

Схкма установки, используемой в работе, показана на рис. 1. Свинцовый коллиматор выделяет узкий, почти параллельный пучок γ -квантов, проходящий через набор поглотителей Π и регистрируемый сцинтиляционным счетчиком. Сигналы от счётчика усиливаются и регистрируются пересчетным прибором $\Pi\Pi$. Высоковольтный выпрямитель обеспечивает питание сцинтиляционного счетчика.

Рис. 1: Блок-схема установки. И – источник γ -лучей, Pb – свинцовый контейнер с колиматорным каналом, П – набор поглотителей, С – сцинтиллятор, Φ – формирователь-выпрямитель.

Основные формулы

Коэффициент ослабления:

$$\mu = \frac{1}{l} \ln \frac{N_0}{N},\tag{1}$$

где l – толщина образца, N_0 – число падающих частиц и N – число частиц прошедших через образец.

Ниже, на рисунке 2, приведена зависимость полного коэффициента ослабления потока γ -лучей для алюминия, железа и свинца, по которой можно восстановить энергию γ -квантов.

Рис. 2: Полные коэффициенты ослабления потока у-лучей в алюминии, железе и свинце.

Измерения

При установленной заглушке в течение 100 секунд измерялся фон $N_{\rm bias}$ (в начале и в конце работы):

$$N_{\text{bias}} = \text{mean}([2034, 1980, 2099, 2143])/100 \,\text{s} = (20.6 \pm 0.6) \,\text{s}^{-1},$$

что соответствует погрещности в районе 3%.

При открытой заглушке, измерялся свободный поток частиц N_0 :

$$N_0 = \text{mean}([820832, 830346, 825628])/100 \text{ s} = (8256 \pm 39) \text{ s}^{-1},$$

что соответствует погрешности в 0.5%.

Далее при различных временах измерялось количество пройденных частиц, при различных толщинах погрощающих веществ, а именно сняты данные по алюминию (Al), железу (Fe), пробке (Cork) и свинцу (Pb). Полные данные приведены в приложении, усредненные значения в таблице 1, где n – количество установленных образнов.

Таблина 1:	Усредненные значения	прохожления γ -лучей

\overline{n}	$N_{\mathrm{Fe}}/s,\mathrm{c}^{-1}$	$N_{ m Al}/s,{ m c}^{-1}$	$N_{\rm Pb}/s, { m c}^{-1}$	$N_{\rm Cork}/s, { m c}^{-1}$
1	4559	5581	4813	
2			2840	7994
3	1488	2414	1636	
4			958	7729
5	493	1069	554	
6			328	
7	158	472	209	
8		329		7284

С помощью штангенциркуля измерим длину каждого кусочка поглощающего матриала, использованного в работе.

Обработка данных

Погрешнсть измерений. Для начала заметим, что процесс рассеяния носит вероятностный характер, так что, возможно, адеквантно оценивать погрешность измерения N, как \sqrt{N} . Проверим это, рассмотрев σ для свинца, и сравнив с \sqrt{N} для соответствующего результата. Значения σ/\sqrt{N} лежат в диапазоне [0.2, 0.6], что говорит об адекватности оценки погрешности, как по \sqrt{N} .

При измерениях в некоторый промежуток времени получалось бы, что

$$N_1 = \frac{N}{t} = \frac{1}{t} \left(N \pm \sqrt{N} \right), \quad \Rightarrow \quad \sigma_{N_1} = \frac{\sqrt{N}}{t}.$$
 (2)

Измерения длины препятствий будут складываться. Считая, что погрешность измерения каждого кусочки $\sigma_{l_1}=0.2$ мм, может найти, что $\sigma_{n\cdot l}=n\sigma_{l_1}$, где n – количество кусочков.

Коэффициент ослабления. Из формулы (1), можем найти, что

$$\ln \frac{N_0}{N} = \mu l,$$

так что построим данные из таблицы 1 в логарифмическом масштабе (рис. 3).

Рис. 3: Зависимость детектированных в секунду у-частиц, от толщины образца

Из полученной завимисти можем оценить $\chi^2/{\rm ndf}$, а также найти через линейную регрессию значения μ для различных материалов. Результаты приведены в таблице 2.

Таблица 2: Измеренные значения μ и оценки χ^2/ndf

	μ , m^{-1}	σ , m^{-1}	χ^2/ndf
Pb	101.2	0.9	1.93
Fe	56.3	0.3	1.86
Al	20.3	0.1	0.35
Cork	0.80	0.02	0.03

По рисунку 2 можно восстановить, что для алюминия и железа такие значения коэффициентов ослабления соответсвуют энергии в

$$E \approx 0.8 \text{ M} \cdot \text{B}$$
,

однако для свинца получился коэффицент ослабления $E\approx 0.7$ МэВ, что в контексте большой производной этого участка графика вполне позволяет сказать, о том что в пределах погрешности указанное значение E совпало для всех трёх веществ.

Выводы

Исследована зависимость пропускающей способности от толщины образца для свинца, железа, алюминия и пробки. Можно заметитьЮ что чем плотнее вещество, тем выше коэффциент ослабления. Измерены коэффциенты ослабления для указанных веществ.

По значениям коэффциента ослабления, получено значение энергии γ -квантов: $E\approx 0.8$ МэВ. В пределах погрешности значения энергии для трёх веществ совпали.

Счётчик Гейгера

Также, параллельно с вышеописанной работой было произведено знакомство с прибором для измерения радиационного фона.

На рабочем месте уровень радиации составил 15 мкP/час. Вблизи пучка счётчик начинает зашкаливать на значениях более 999 мкP/чаc. Отдаляясь на 5 см от пучка, наблюдалось значение в районе 60 мкP/чаc, и на расстояние в районе 10 см, уже 26 мкр/чаc – пучок действительно коллимированный.

Приложение

Таблица 3: Измерение прохождения γ -лучей через железо (Fe)

n, iiit.	t, c
1	100
3	100
5	10
5	10
5	10
7	10
7	10
7	10
	1 3 5 5 5 7 7

Таблица 5: Измерение прохождения γ -лучей через железо (Pb)

N, IIIT.	n, iiit.	t, c
483437	1	100
16376	3	10
16601	3	10
16746	3	10
28994	2	10
28311	2	10
28524	2	10
9786	4	10
5733	5	10
5622	5	10
5890	5	10
3535	6	10
3488	6	10
3454	6	10
2308	7	10
2230	7	10
2361	7	10

Таблица 4: Измерение прохождения γ -лучей через пробку (Cork)

N, iiit.	n, iiit.	t, c
72820	8	10
72144	8	10
74198	8	10
80443	2	10
79852	2	10
77126	4	10
77511	4	10
77865	4	10

Таблица 6: Измерение прохождения γ -лучей через пробку (Al)

N, iiit.	n, iiit.	t, c
34421	8	100
3440	8	10
3581	8	10
3549	8	10
244309	3	100
56018	1	10
24511	3	10
24118	3	10
49268	7	100
11114	5	10
10664	5	10
10919	5	10