Mathematics GU4053 Algebraic Topology Assignment # 8

Benjamin Church

February 17, 2020

Problem 1.

Let $X = \Delta^2$ with all the vertices identified at α . Call the three "faces" of Δ^2 which are 1-simplices, a, b, and c. Finally, call the filled 2-simplex A. Now consider the chain complex,

$$0 \xrightarrow{\partial_3} \mathbb{Z}A \xrightarrow{\partial_2} \mathbb{Z}a \oplus \mathbb{Z}b \oplus \mathbb{Z}c \xrightarrow{\partial_1} \mathbb{Z}\alpha \xrightarrow{\partial_0} 0$$

The boundary maps take $\partial_2 A = a + b + c$ and $\partial_1 = 0$ because there is only one vertex so the endpoints of all 1-simplicies are the same. Now, we can calculate the homology of this complex,

$$H_0(\Delta) = \mathbb{Z}\alpha/\{0\} \cong \mathbb{Z}$$

$$H_1(\Delta) = \ker \partial_1 / \operatorname{Im}(\partial_2) = \mathbb{Z}a \oplus \mathbb{Z}b \oplus \mathbb{Z}c / \langle (1,1,1) \rangle \cong \mathbb{Z} \oplus \mathbb{Z}$$

and finally,

$$H_2(\Delta) = \ker \partial_2 / \operatorname{Im}(\partial_3) = 0$$

Problem 2.

Let X be the Δ -complex formed by taking Δ^n and identifying all faces of the same dimension. Call α^k the single k-simplex of X. Therefore, the chain complex of X becomes,

$$0 \xrightarrow{\partial_{n+1}} \mathbb{Z}\alpha^n \xrightarrow{\partial_n} \dots \xrightarrow{\partial_5} \mathbb{Z}\alpha^4 \xrightarrow{\partial_4} \mathbb{Z}\alpha^3 \xrightarrow{\partial_3} \mathbb{Z}\alpha^2 \xrightarrow{\partial_2} \mathbb{Z}\alpha^1 \xrightarrow{\partial_1} \mathbb{Z}\alpha^0 \xrightarrow{\partial_0} 0$$

Since a k-simplex has k+1 faces the boundary map acts as,

$$\partial_k \alpha^k = \sum_{i=0}^k (-1)^k \alpha^{k-1} = \begin{cases} \alpha^{k-1} & k \text{ is even} \\ 0 & k \text{ is odd} \end{cases}$$

Therefore,

$$\partial_k = \begin{cases} \phi_k & k \text{ is even} \\ 0 & k \text{ is odd} \end{cases}$$

where $\phi_k : \mathbb{Z}\alpha^k \to \mathbb{Z}\alpha^{k-1}$ is the map taking the generator to the generator and thus is the identity when these groups are viewed as the abstract cyclic group \mathbb{Z} . Now, consider the homology of this complex for 0 < k < n. If k is even,

$$H_k(X) = \ker \partial_k / \text{Im}(\partial_{k+1}) = \{0\}/\{0\} = 0$$

Furthermore, if k is odd,

$$H_k(X) = \ker \partial_k / \operatorname{Im}(\partial_{k+1}) = \mathbb{Z}\alpha^k / \mathbb{Z}\alpha^k = 0$$

Therefore for k < n we have $H_k(X) = 0$. We must now check the edge cases. For k = 0,

$$H_0(X) = \mathbb{Z}\alpha^0/\{0\} \cong \mathbb{Z}$$

which reflects the fact that X is connected. Finally, for k = n we have,

$$H_n(X) = \ker \partial_n / \operatorname{Im}(\partial_{n+1}) \cong \ker \partial_n \cong \begin{cases} \mathbb{Z} & n \text{ is odd} \\ 0 & n \text{ is even} \end{cases}$$

Problem 3.

Suppose that A is a retract of X then there exist maps $\iota: A \hookrightarrow X$ and $r: X \to A$ such that ι is the inclusion and $r \circ \iota = \mathrm{id}_A$. Since H_n is a functor, $(r \circ \iota)_* = r_* \circ \iota_* = (\mathrm{id}_A)_* = \mathrm{id}_{H_n(A)}$. Therefore, $\iota_*: H_n(A) \to H_n(X)$ is an injection and $r_*: H_n(X) \to H_n(A)$ is a surjection.

Problem 4.

Let $f: C \to D$ be an isomorphism in the category of $\mathbf{Ch}(\mathbf{Ab})$. Therefore there is a map $g: D \to C$ such that $f \circ g = \mathrm{id}_D$ and $g \circ f = \mathrm{id}_C$. Therefore, $(g \circ g)_n = g_n \circ f_n = (\mathrm{id}_C)_n = \mathrm{id}_{C_n}$. Similarly, $(f \circ g)_n = f_n \circ g_n = (\mathrm{id}_D)_n = \mathrm{id}_{D_n}$. Therefore each $f_n: C_n \to D_n$ is an isomorphism of groups.

Conversely, suppose that we have a sequence of isomorphisms of groups $f_n: C_n \to D_n$. Therefore, we have maps $g_n: C_n \to D_n$ such that $g_n \circ f_n = \mathrm{id}_{C_n}$ and $f_n \circ g_n = \mathrm{id}_{D_n}$. Therefore we have the commutative diagram,

$$\cdots \xrightarrow{\partial_{n+3}} C_{n+2} \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} C_{n-2} \xrightarrow{\partial_{n-2}} \cdots$$

$$\downarrow^{f_{n+2}} \qquad \downarrow^{f_{n+1}} \qquad \downarrow^{f_n} \qquad \downarrow^{f_{n-1}} \qquad \downarrow^{f_{n-2}}$$

$$\cdots \xrightarrow{\partial_{n+3}} D_{n+2} \xrightarrow{\partial_{n+2}} D_{n+1} \xrightarrow{\partial_{n+1}} D_n \xrightarrow{\partial_n} D_{n-1} \xrightarrow{\partial_{n-1}} D_{n-2} \xrightarrow{\partial_{n-2}} \cdots$$

$$\downarrow^{g_{n+2}} \qquad \downarrow^{g_{n+1}} \qquad \downarrow^{g_n} \qquad \downarrow^{g_{n-1}} \qquad \downarrow^{g_{n-2}}$$

$$\cdots \xrightarrow{\partial_{n+3}} C_{n+2} \xrightarrow{\partial_{n+2}} C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} C_{n-2} \xrightarrow{\partial_{n-2}} \cdots$$

The squares commute because,

$$(g_n \circ f_n) \circ \partial_{n+1} = g_n \circ (f_n \circ \partial_{n+1}) = g_n \circ (\partial_{n+1} \circ f_{n+1})$$
$$= (g_n \circ \partial_{n+1}) \circ f_{n+1} = \partial_{n+1} \circ (g_{n+1} \circ f_{n+1})$$

However, $g_n \circ f_n = \mathrm{id}_{C_n}$ so $g \circ f = \mathrm{id}_C$. An identical argument shows that $f \circ g = \mathrm{id}_D$. Therefore, f is an isomorphism in the category $\mathbf{Ch}(\mathbf{Ab})$.

Problem 5.

Suppose we have a complex A given by,

$$\cdots \xrightarrow{\partial_7} A_6 \xrightarrow{\partial_6} A_5 \xrightarrow{\partial_5} A_4 \xrightarrow{\partial_4} A_3 \xrightarrow{\partial_3} A_2 \xrightarrow{\partial_2} A_1 \xrightarrow{\partial_1} A_0 \xrightarrow{\partial_0} 0$$

such that each boundary map is zero i.e. $\partial_i = 0$. Therefore, the homology of this complex is,

$$H_i(A) = \ker \partial_i / \operatorname{Im}(\partial_{i+1}) = A_i / \{e\} \cong A_i$$

because the kernel of the zero map is the entire domain and the image of the zero map is trivial.

Problem 6.

Consider two maps $f, g: A \to B$ in the category $\mathbf{Ch}(\mathbf{Ab})$. Then we can take the sum f+g to be given by the component morphisms $(f+g)_n = f_n + g_n$ of abelian groups. Now, consider the action of this map on the homology groups, $f_*: H_n(A) \to H_n(B)$ takes,

$$(f+g)_*(\alpha \operatorname{Im}(\partial_{i+1}^A)) = (f+g)_n(\alpha) \operatorname{Im}(\partial_{i+1}^B) = (f_n+g_n)(\alpha) \operatorname{Im}(\partial_{i+1}^B) = f_n(\alpha) \operatorname{Im}(\partial_{i+1}^B) + g_n(\alpha) \operatorname{Im}(\partial_{i+1}^B)$$
$$= f_*(\alpha \operatorname{Im}(\partial_{i+1}^A)) + g_*(\alpha \operatorname{Im}(\partial_{i+1}^A))$$

Therefore $(f+g)_* = f_* + g_*$. In other notation, $H_n(f+g) = H_n(f) + H_n(g)$.

Problem 7.

Let $f: C \to D$ be a morphism in $\mathbf{Ch}(\mathbf{Ab})$. Define the kernel and image of f as the complexes ker f and $\mathrm{Im}(f)$ given by,

where the boundary maps are restricted to the groups $\ker f_n$ and $\operatorname{Im}(f_n)$. These maps are well-defined because if $f_{n+1}(x) = 0$ then $\partial_{n+1} \circ f_{n+1}(x) = f_n \circ \partial_n(x) = 0$. Therefore $\partial_{n+1} \ker f_{n+1} \subset \ker f_n$. Furthermore, if $y \in \operatorname{Im}(f_{n+1})$ then $y = f_{n+1}(x)$ we have $\partial_{n+1}(y) = \partial_{n+1} \circ f_{n+1}(x) = f_n \circ \partial_{n+1}(x)$ so $\partial_{n+1}(y) \in \operatorname{Im}(f_n)$ so $\partial_{n+1}\operatorname{Im}(f_{n+1}) \subset \operatorname{Im}(f_n)$. Furthermore, the property $\partial_n \circ \partial_{n+1} = 0$ holds for the restricted maps so each row is a complex.

From the fundamental theorem of group homomorphisms, we can form a short exact sequence in each column and an isomorphism $\phi_n : C_n / \ker f_n \to \operatorname{Im}(f_n)$. Therefore there is a morphisms of complexes $\phi : C / \ker f \to \operatorname{Im}(f)$ given by,

$$\cdots \xrightarrow{\partial_{n+3}} C_{n+2} / \ker f_{n+2} \xrightarrow{\partial_{n+2}} C_{n+1} / \ker f_{n+1} \xrightarrow{\partial_{n+1}} C_n / \ker f_n \xrightarrow{\partial_n} C_{n-1} / \ker f_{n-1} \xrightarrow{\partial_{n-1}} C_{n-2} / \ker f_{n-2} \xrightarrow{\partial_{n-2}} \cdots$$

$$\downarrow \phi_{n+2} \qquad \qquad \downarrow \phi_{n+1} \qquad \qquad \downarrow \phi_n \qquad \qquad \downarrow \phi_{n-1} \qquad \downarrow \phi_{n-2}$$

$$\cdots \xrightarrow{\partial_{n+3}} \operatorname{Im}(f_{n+2}) \xrightarrow{\partial_{n+2}} \operatorname{Im}(f_{n+1}) \xrightarrow{\partial_{n+1}} \operatorname{Im}(f_n) \xrightarrow{\partial_n} \operatorname{Im}(f_{n-1}) \xrightarrow{\partial_{n-1}} \operatorname{Im}(f_{n-2}) \xrightarrow{\partial_{n-2}} \cdots$$

where the boundary map decends to the quotient because $\partial_{n+1} \ker f_{n+1} \subset \ker f_n$. Because,

$$\partial_{n+1} \circ \phi_{n+1}(x \ker f_{n+1}) = \partial_{n+1}(f_{n+1}(x) \ker f_{n+1}) = \partial_{n+1}(f_{n+1}(x)) \ker f_n$$

= $f_n(\partial_{n+1}(x)) \ker f_n = f_n \circ \partial_{n+1}(x \ker f_{n+1})$

the squares commute so ϕ is a morphism in $\mathbf{Ch}(\mathbf{Ab})$. However, each ϕ_n is an isomorphism so by problem $4, \phi : C/\ker f \to \mathrm{Im}(f)$ is an isomorphism of complexes.