# Lecture 21: Shortest Paths with Negative Cycles CSCI 700 - Algorithms I

Andrew Rosenberg

### Last Time

- Kruskal's Algorithm to generate MSTs
- Path counting with matrix multiplication

# Today

- Negative Cycles
- Graph Recap

# Negative Cycles

A **negative cycle** is a cycle in a weighted graph whose total weight is negative.

Why are negative cycles problematic for most shortest path algorithm (like Dijkstra's)?

# Shortest path with Negative Weight edges

What is the shortest path between a and e?



Path: a,b,c,e=3



Path: a,b,c,d,b,c,e=2



Path: a,b,c,d,b,c,d,b,c,e = 1



Path: a,b,c,d,b,c,d,b,c,e=0



# Detecting Negative Cycles

#### Bellman-Ford(G,s)

```
for v \in V(G) do
   d[v] = \infty; parent[v] = \emptyset
end for
for i = 1 to |V(G)| - 1 do
   for (u, v) \in E(G) do
       Relax(u,v)
   end for
end for
for (u, v) \in E(G) do
   if d[v] > d[u] + w(u, v) then
       return False
   end if
   return TRUE
end for
```

#### Relax(u,v)

```
if d[v] > d[u] + w(u, v) then d[v] = d[u] + w(u, v) parent[v] = u end if
```

# Path-relaxation Property

**Path-relaxation Property**: If  $p = [v_0, v_1, \ldots, v_k]$  is the shortest path from  $s = v_0$  to  $v_k$  and the edges of p are relaxed in the order  $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$ , then  $d[v_k] = distance(s, v_k)$ . This property holds regardless of any other relaxation steps.

#### Proof of Bellman-Ford

**Claim**: At the end of the first for loop of Bellman-Ford, if G contains no negative cycles, d[v] = distance(s,v).

**Proof**: Let v be a vertex reachable from s. Let  $p=[v_0=s,v_1,\ldots,v_k=v]$  be an acyclic shortest path between s and v. Path p has at most |V|-1 edges. Each of the |V|-1

relaxes **all** edges E(G). Thus, each edge  $(v_{i-1}, v_i)$  is relaxed in the *i*th iteration. By the path-relaxation property,

$$d[v] = d[v_k] = distance(s, v_k) = distance(s, v)$$

## Proof of Bellman-Ford

**Claim**: If G contains no negative cycles, Bellman-Ford returns  $\mathrm{TRUE}$  and  $d[v] = \mathrm{distance}(s,v)$ . If G contains a negative cycle reachable from s, then algorithm returns FALSE.

**Proof**: By the previous proof, at the end of the first for loop d[v] = distance(s,v).

At termination, we have for all edges  $(u, v) \in E$ 

$$d[v] = distance(s, v)$$
  
 $\leq distance(s, u) + w(u, v)$   
 $= d[u] + w(u, v)$ 

So none of the tests return False.

## Proof of Bellman-Ford

Suppose that G contains a negative cycle,  $c = [v_0, v_1, \dots, v_k]$ . Thus,  $0 > \sum_{i=1}^{k} w(v_{i-1}, v_i)$ .

Assume not. Assume that Bellman-Ford returns **True**. Thus,  $d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i)$ .

If we sum around the cycle, we get

$$\sum_{i}^{k} d[v_{i}] \leq \sum_{i}^{k} (d[v_{i-1}] + w(v_{i-1}, v_{i}))$$

$$\leq \sum_{i}^{k} d[v_{i-1}] + \sum_{i}^{k} w(v_{i-1}, v_{i})$$

However,  $\sum_{i=1}^{k} d[v_i] = \sum_{i=1}^{k} d[v_{i-1}]$ . Thus

$$0 \leq \sum_{i}^{k} w(v_{i-1}, v_i)$$

**Contradiction**. Thus, Bellman-Ford returns FALSE if G contains a negative cycle.

# Graph Recap

#### What can we do with Graphs?

- Search/Traversal (BFS, DFS)
- Shortest Paths (Dijkstra's, Bellman-Ford)
- Minimum Spanning Trees (Kruskal's, Prim's)
- Cycle Detection (DFS)
- Sorting Vertices by discovery and finishing time
- Detection of Connected Components

# Bye

- Next time (12/3)
  - Hashing