Лабораторная работа 4.2.3.

Вязовцев Андрей, Б01-005

11.02.22

Цель работы: знакомство с устройством и принципом действия интерферометра Релея и с его применением для измерения показателей преломления газов.

В работе используются: технический интерферометр ИТР-1, светофильтр, баллон с углекислым газом, сильфон, манометр, краны.

Экспериментальная установка:

Интерферометр Релея — прибор для измерения разности показателей преломления — основан на явлении дифракции света на двух параллельных щелях.

Рис. 1. Устройство интерферометра Релея: а) вид сверху; б)вид сбоку

Ход работы:

- 1. Осмотрим установку и подготовим к работе: выравняем давления в камерах, продуем камеру с углекислым газом. Подождём, пока выравняются температуры. Совместим полосы (сначала боковые, потом центральные).
- 2. Возьмём красный светофильтр (диапазон волн $6200-7200\ \mathring{A})$ и откалибруем с помощью него компенсатор в единицах λ . Для этого будем последовательно совмещать подвижные полосы с нулевой неподвижной и зафиксируем показания микрометра. Результаты см. в таблице 1.

т (№ линии)	5	4	3	2	1	0	1	2
Z, MM	0.80	1.40	1.72	2.05	2.41	2.73	3.03	3.37
m (№ линии)	3	4	5	6	7	8	9	10

Таблица 1. Показания микрометра

3. Запишем характеристики установки:

Диапазон светофильтра: $6200 - 7200 \ A$ Длина волны светофильтра: $\lambda = 6700 \ \mathring{A}$

Длина кюветы: l = 10 см

4. Будем изменять давление в одной из камер, компенсатором совмещать нулевые полосы и записывать показания микрометра. Результаты см. в таблице 2. Стоит отметить, что здесь, видимо, у были перепутанны выходы на атмосферу и камеру. Далее все значения давления будут умножены на -1.

z, MM	4.07	3.92	3.74	3.65	3.54	3.45	3.23	3.14	3.00	2.86	2.76
ΔP , MM.B. CT.	-1000	-900	-800	-700	-600	-500	-400	-300	-200	-100	0

ΔP , mm.b. ct.	0	100	200	300	400	500	600	700	800	900	1000
z, MM	2.76	2.55	2.46	2.36	2.19	1.99	1.86	1.72	1.53	1.29	1.03

Таблица 2. Зависимость смещения от давления

5. Теперь одну камеру наполним углекислым газом, а другую — воздухом (обе при атмосферном давлении). Т.к. камеры могут «подтекать», положение равновесия будет смещаться со временем. Измерим зависимость показаний микрометра от времени. Результаты приведены в таблице 3.

t, мин	0	1	2	3	4	5	6	7	8	9	10
z, MM	9.90	8.86	7.89	7.50	6.58	6.00	5.42	5.07	4.81	4.45	4.30

Таблица 3. Зависимость смещения от времени

Повторим измерения (см. таблицу 4).

t, мин	0	1	2	3	4	5
z, MM	9.99	8.73	7.78	7.37	6.82	6.25

Таблица 4. Зависимость смещения от времени

- 6. Определим температуру и давление в лаборатории: $T=22.2^{\circ}C,$ P=100.2 кПа.
- 7. На месте оценим интервал δn , доступный для измерений. Можно считать, что коэфициент преломления не значительно отличается от табличного (n=1.00027). Точность прибора равна 0.01 мм., а диапазон его работы составляет 30 мм. Подставляя эти значения вместо Δ в формуле:

$$n = n_{ ext{возд}} + rac{\Delta}{l}$$

получим: $\delta n = [1.00037; 1.03]$

Обработка результатов:

- 8. Построим график z(m) по таблице 1. См. рис. ??.
- 9. Теперь с помощью предыдущего графика и таблицы 2 построим график $\Delta n(\Delta P)$ (см. рис. ??). Для этого воспользуемся формулой:

$$\Delta n = m \frac{\lambda}{l}$$

Далее, после построения, найдём среднюю поляризуемость молекулы воздуха:

$$\alpha = \frac{\Delta n}{\Delta P} \cdot \frac{kT}{2\pi}$$

После посчитаем показатель преломления воздуха в условиях опыта:

$$n = 1 + 2\pi\alpha \frac{P}{kT}$$

Теперь получим показатель преломления воздуха по формуле, сравним его с табличным:

Рис. 2. Калибровочный график

$$\frac{n_0 - 1}{n - 1} = \frac{T}{T_0} \cdot \frac{P_0}{P}$$

Коэффициент наклона этой прямой: $\frac{\Delta n}{\Delta P} = (2.90 \pm 0.5) \cdot 10^{-9}$ Следовательно, получаем:

$$\alpha = (1.7 \pm 0.2) \cdot 10^{-30} \text{ м}^3$$

$$n_{\text{возд}} = 1.00026 \pm 0.00003$$

$$n_{\text{возд-норм}} = 1.00033 \pm 0.00003$$

Что довольно близко к табличным значениям: $n_{\text{возд-норм}} = 1.00027$

Рис. 3. $\Delta n(\Delta P)$

10. Теперь можно вычислить показатель преломления углекислого газа по следующей формуле:

$$n=n_{ ext{возд}}+rac{\Delta}{l}$$

После можно, по аналогии с предыдущем пунктом, найти показатель преломления при нормальных условиях.

$$n_{CO_2} = 1.00040 \pm 0.00004$$

$$n_{CO_2-\text{Hopm}} = 1.00051 \pm 0.00005$$

Табличный же показатель преломления $n_{CO_2-\text{норм}}=1.00045,$ что согласуется с экспериментом.