```
In [94]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: pd.set_option("display.max_columns", None)

```
In [3]: df = pd.read_csv("Alcohol.csv")
    df.head()
```

Out[3]:		Year	WHO region	Country	Beverage Types	Display Value
	0	1986	Western Pacific	Viet Nam	Wine	0.00
	1	1986	Americas	Uruguay	Other	0.50
	2	1985	Africa	Cte d'Ivoire	Wine	1.62
	3	1986	Americas	Colombia	Beer	4.27
	4	1987	Americas	Saint Kitts and Nevis	Beer	1.98

Write a Pandas program to select first 2 rows, 2 columns and specific two columns from World alcohol consumption dataset.

```
In [4]: print("First two rows")
    df.iloc[:2,:]
```

First two rows

Out[4]:		Year	WHO region	Country	Beverage Types	Display Value
	0	1986	Western Pacific	Viet Nam	Wine	0.0
	1	1986	Americas	Uruguay	Other	0.5

```
In [5]: print("First two Columns")
    df.iloc[:,:2]
```

First two Columns

Out[5]:		Year	WHO region
	0	1986	Western Pacific
	1	1986	Americas
	2	1985	Africa
	3	1986	Americas
	4	1987	Americas
	95	1984	Africa
	96	1985	Europe
	97	1984	South-East Asia
	98	1984	Africa
	99	1985	South-East Asia
	100	rows	× 2 columns

Write a Pandas program to find and drop the missing values from World alcohol consumption dataset.

In [7]: # Droping the missing values

df.dropna()

\circ		4	г-	7 7	
U	u	ı		′ 1	

	Year	WHO region	Country	Beverage Types	Display Value
0	1986	Western Pacific	Viet Nam	Wine	0.00
1	1986	Americas	Uruguay	Other	0.50
2	1985	Africa	Cte d'Ivoire	Wine	1.62
3	1986	Americas	Colombia	Beer	4.27
4	1987	Americas	Saint Kitts and Nevis	Beer	1.98
95	1984	Africa	Niger	Other	0.00
96	1985	Europe	Luxembourg	Wine	7.38
97	1984	South-East Asia	Indonesia	Wine	0.00
98	1984	Africa	Equatorial Guinea	Wine	0.00
99	1985	South-East Asia	Democratic People's Republic of Korea	Wine	0.00

95 rows × 5 columns

In [8]: df.isnull().sum()

Out[8]: Year

Year 0
WHO region 0
Country 0
Beverage Types 0
Display Value 5
dtype: int64

Write a Pandas program to remove the duplicates from 'WHO region' column of World alcohol consumption dataset

In [9]: df.drop_duplicates("WHO region")

Out[9]:

	Year	WHO region	Country	Beverage Types	Display Value
0	1986	Western Pacific	Viet Nam	Wine	0.00
1	1986	Americas	Uruguay	Other	0.50
2	1985	Africa	Cte d'Ivoire	Wine	1.62
13	1984	Eastern Mediterranean	Afghanistan	Other	0.00
18	1984	Europe	Norway	Spirits	1.62
20	1986	South-East Asia	Myanmar	Wine	0.00

Write a Pandas program to find out the alcohol consumption details in the year '1987' or

In [10]: df[(df["Year"]==1987) | (df["Year"]==1989)].head()

Out 1701.	
Out[10]: Vear WHO region Country	_

		Year	WHO region	Country	Beverage Types	Display Value
-	4	1987	Americas	Saint Kitts and Nevis	Beer	1.98
	5	1987	Americas	Guatemala	Other	0.00
	6	1987	Africa	Mauritius	Wine	0.13
	10	1987	Africa	Botswana	Wine	0.20
	11	1989	Americas	Guatemala	Beer	0.62

Write a Pandas program to find out the alcohol consumption details by the 'Americas' in the year '1985' from the world alcohol consumption dataset.

In [11]: df[(df["WHO region"]=="Americas") & (df["Year"]==1985)]

Out[11]: Year WHO region Country Beverage Types Display Value

35 1985 Americas Saint Kitts and Nevis Spirits 2.24

Write a Pandas program to find out the alcohol consumption details in the year '1986' where WHO region is 'Western Pacific' and country is 'VietNam' from the world alcohol consumption dataset.

Write a Pandas program to find out the alcohol consumption details in the year '1986' or '1989' where WHO region is 'Americas' from the world alcohol consumption dataset.

In [13]: df[((df["Year"]==1986) | (df["Year"]==1989)) & (df["WHO region"]=="Americas")]

Out[13]:

		Year	WHO region	Country	Beverage Types	Display Value
	1	1986	Americas	Uruguay	Other	0.50
	3	1986	Americas	Colombia	Beer	4.27
	8	1986	Americas	Antigua and Barbuda	Spirits	1.55
	11	1989	Americas	Guatemala	Beer	0.62
:	21	1989	Americas	Costa Rica	Spirits	4.51
	47	1986	Americas	Mexico	Other	0.04
;	55	1989	Americas	Suriname	Wine	0.04
(64	1989	Americas	Bolivia (Plurinational State of)	Beer	1.26
	74	1986	Americas	Bolivia (Plurinational State of)	Spirits	2.06
	78	1989	Americas	Jamaica	Other	0.00
;	86	1986	Americas	Bahamas	Wine	1.83

Write a Pandas program to find out the alcohol consumption details in the year '1985' or '1989' where WHO region is 'Americas' or 'Europe' from the world alcohol consumption dataset.

In [14]: df[((df["Year"]==1985) | (df["Year"]==1989)) & ((df["WHO region"]=="Americas")

Out[14]:

	Year	WHO region	Country	Beverage Types	Display Value
11	1989	Americas	Guatemala	Beer	0.62
21	1989	Americas	Costa Rica	Spirits	4.51
26	1985	Europe	United Kingdom of Great Britain and Northern I	Wine	1.36
35	1985	Americas	Saint Kitts and Nevis	Spirits	2.24
44	1985	Europe	Lithuania	Other	NaN
50	1985	Europe	Switzerland	Other	0.30
55	1989	Americas	Suriname	Wine	0.04
57	1989	Europe	Croatia	Wine	5.10
64	1989	Americas	Bolivia (Plurinational State of)	Beer	1.26
78	1989	Americas	Jamaica	Other	0.00
79	1989	Europe	Finland	Other	2.09
81	1985	Europe	Netherlands	Wine	2.54
91	1989	Europe	Bulgaria	Beer	4.43
94	1985	Europe	Ukraine	Spirits	3.06
96	1985	Europe	Luxembourg	Wine	7.38

Write a Pandas program to find out the 'WHO region, 'Country', 'Beverage Types' in the year '1986' or '1989' where WHO region is 'Americas' or 'Europe' from the world alcohol consumption dataset.

In [15]: temp = df[((df["Year"]==1985) | (df["Year"]==1989)) & ((df["WHO region"]=="Ame
 temp[["WHO region","Country","Beverage Types"]]

Out[15]:		WHO region	Country	Beverage Types
	11	Americas	Guatemala	Beer
	21	Americas	Costa Rica	Spirits
	26	Europe	United Kingdom of Great Britain and Northern I	Wine
	35	Americas	Saint Kitts and Nevis	Spirits
	44	Europe	Lithuania	Other
	50	Europe	Switzerland	Other
	55	Americas	Suriname	Wine
	57	Europe	Croatia	Wine
	64	Americas	Bolivia (Plurinational State of)	Beer
	78	Americas	Jamaica	Other
	79	Europe	Finland	Other
	81	Europe	Netherlands	Wine
	91	Europe	Bulgaria	Beer
	94	Europe	Ukraine	Spirits
	96	Europe	Luxembourg	Wine

Write a Pandas program to find out the records where consumption of beverages per person average >=5 and Beverage Types is Beer from world alcohol consumption dataset.

Write a Pandas program to filter those records where WHO region contains "Ea" substring from world alcohol consumption dataset.

In [17]: df[df["WHO region"].str.contains("Ea")].head()

Out[17]:

	Year	WHO region	Country	Beverage Types	Display Value
13	1984	Eastern Mediterranean	Afghanistan	Other	0.00
20	1986	South-East Asia	Myanmar	Wine	0.00
25	1984	Eastern Mediterranean	Tunisia	Other	0.00
27	1984	Eastern Mediterranean	Bahrain	Beer	2.22
36	1987	Eastern Mediterranean	Egypt	Beer	0.07

Write a Pandas program to filter those records where WHO region matches with multiple values (Africa, Eastern Mediterranean, Europe) from world alcohol consumption dataset.

In [18]: df[(df["WHO region"]=="Africa") | (df["WHO region"]=="Eastern Mediterranean")

\cap		Г101	
U	uι	1 10 1	

	Year	WHO region	Country	Beverage Types	Display Value
2	1985	Africa	Cte d'Ivoire	Wine	1.62
6	1987	Africa	Mauritius	Wine	0.13
7	1985	Africa	Angola	Spirits	0.39
9	1984	Africa	Nigeria	Other	6.10
10	1987	Africa	Botswana	Wine	0.20
93	1987	Africa	Madagascar	Other	NaN
94	1985	Europe	Ukraine	Spirits	3.06
95	1984	Africa	Niger	Other	0.00
96	1985	Europe	Luxembourg	Wine	7.38
98	1984	Africa	Equatorial Guinea	Wine	0.00

69 rows × 5 columns

Write a Pandas program to filter those records which not appears in a given list from world alcohol consumption dataset.

```
In [19]: list1 = ["Africa", "Eastern Mediterranean", "Europe"]

df[~df["WHO region"].isin(list1)].head()
```

Out	[19]	

	Year	WHO region	Country	Beverage Types	Display Value
(1986	Western Pacific	Viet Nam	Wine	0.00
1	1986	Americas	Uruguay	Other	0.50
3	1986	Americas	Colombia	Beer	4.27
4	1987	Americas	Saint Kitts and Nevis	Beer	1.98
Ę	1987	Americas	Guatemala	Other	0.00

Write a Pandas program to filter all records where the average consumption of beverages per person from .5 to 2.50 in world alcohol consumption dataset.

Out[20]:

	Year	WHO region	Country	Beverage Types	Display Value
2	1985	Africa	Cte d'Ivoire	Wine	1.62
4	1987	Americas	Saint Kitts and Nevis	Beer	1.98
8	1986	Americas	Antigua and Barbuda	Spirits	1.55
11	1989	Americas	Guatemala	Beer	0.62
17	1989	Africa	Seychelles	Beer	2.23

Write a Pandas program to filter rows based on row numbers ended with 0, like 0, 10, 20, 30 from world alcohol consumption dataset.

In [21]: df.iloc[::10, :]

Out[21]:

	Year	WHO region	Country	Beverage Types	Display Value
0	1986	Western Pacific	Viet Nam	Wine	0.00
10	1987	Africa	Botswana	Wine	0.20
20	1986	South-East Asia	Myanmar	Wine	0.00
30	1986	Africa	Sierra Leone	Other	4.48
40	1987	Europe	Austria	Spirits	1.90
50	1985	Europe	Switzerland	Other	0.30
60	1987	Eastern Mediterranean	Iran (Islamic Republic of)	Other	0.00
70	1986	Africa	Madagascar	Spirits	1.02
80	1985	Africa	Malawi	Other	0.84
90	1989	Africa	Malawi	Wine	0.01

Write a Pandas program to select consecutive columns and also select rows with Index label 0 to 9 with some columns from world alcohol consumption dataset.

In [22]: df.iloc[:10, ::2]

Out[22]:

	Year	Country	Display Value
0	1986	Viet Nam	0.00
1	1986	Uruguay	0.50
2	1985	Cte d'Ivoire	1.62
3	1986	Colombia	4.27
4	1987	Saint Kitts and Nevis	1.98
5	1987	Guatemala	0.00
6	1987	Mauritius	0.13
7	1985	Angola	0.39
8	1986	Antigua and Barbuda	1.55
9	1984	Nigeria	6.10

Write a Pandas program to find which years have all non-zero values and which years have any non-zero values from world alcohol consumption dataset.

In [23]: df.loc[:, df.all()]

Out[23]:

	Year	WHO region	Country	Beverage Types
0	1986	Western Pacific	Viet Nam	Wine
1	1986	Americas	Uruguay	Other
2	1985	Africa	Cte d'Ivoire	Wine
3	1986	Americas	Colombia	Beer
4	1987	Americas	Saint Kitts and Nevis	Beer
95	1984	Africa	Niger	Other
96	1985	Europe	Luxembourg	Wine
97	1984	South-East Asia	Indonesia	Wine
98	1984	Africa	Equatorial Guinea	Wine
99	1985	South-East Asia	Democratic People's Republic of Korea	Wine

100 rows × 4 columns

In [24]: df.loc[:, df.any()]

Out[24]:

	Year	WHO region	Country	Beverage Types	Display Value
0	1986	Western Pacific	Viet Nam	Wine	0.00
1	1986	Americas	Uruguay	Other	0.50
2	1985	Africa	Cte d'Ivoire	Wine	1.62
3	1986	Americas	Colombia	Beer	4.27
4	1987	Americas	Saint Kitts and Nevis	Beer	1.98
95	1984	Africa	Niger	Other	0.00
96	1985	Europe	Luxembourg	Wine	7.38
97	1984	South-East Asia	Indonesia	Wine	0.00
98	1984	Africa	Equatorial Guinea	Wine	0.00
99	1985	South-East Asia	Democratic People's Republic of Korea	Wine	0.00

100 rows × 5 columns

Write a Pandas program to filter all columns where all entries present, check which rows and columns has a NaN and finally drop rows with any NaNs from world alcohol consumption dataset.

```
In [25]: | df.isna().sum()
```

Out[25]: Year

Year 0
WHO region 0
Country 0
Beverage Types 0
Display Value 5
dtype: int64

In [26]: df = df.dropna()
 df.head()

Out[26]:

	Year	WHO region	Country	Beverage Types	Display Value
0	1986	Western Pacific	Viet Nam	Wine	0.00
1	1986	Americas	Uruguay	Other	0.50
2	1985	Africa	Cte d'Ivoire	Wine	1.62
3	1986	Americas	Colombia	Beer	4.27
4	1987	Americas	Saint Kitts and Nevis	Beer	1.98

Write a Pandas program to filter all records starting from the 2nd row, access every 5th row from world alcohol consumption dataset.

```
In [27]: df.iloc[1::5, :].head(10)
```

]: 	Year		WH	O region	Country	Beverage Type	s Disp	olay Value	
1	1986			Americas	Uruguay	Othe	er	0.50	
6	1987			Africa	Mauritius	Win	е	0.13	
11	1989			Americas	Guatemala	Вее	er	0.62	
16	1984			Americas	Costa Rica	Win	е	0.06	
21	1989			Americas	Costa Rica	Spirit	s	4.51	
27	1984	Eas	tern Medi	terranean	Bahrain	Bee	er	2.22	
33	1985			Africa	Mauritania	Othe	er	0.00	
38	1987	Eas	tern Medi	terranean	Qatar	Othe	er	0.00	
43	1984		Weste	rn Pacific	China	Win	е	0.03	
49	1986			Europe	Malta	Win	е	1.49	
	Ledf.h	eau ()						
				Manager	SalesMan	Item	Units	Unit price	Sale amt
		ate		Manager Martha	SalesMan Alexander	Item Television	Units 95	Unit_price	Sale_amt 113810.0
:	OrderE	Pate 018	Region			Television			
: 0	Order E	018 018	Region East	Martha	Alexander	Television	95	1198.0	113810.0
0	1/6/2 1/23/2	018 018 018	Region East Central	Martha Hermann	Alexander Shelli	Television Home Theater	95 50	1198.0	113810.0 25000.0
: 0 1 2	1/6/2 1/23/2 2/9/2	018 018 018 018	Region East Central Central	Martha Hermann Hermann	Alexander Shelli Luis	Television Home Theater Television	95 50 36	1198.0 500.0 1198.0	113810.0 25000.0 43128.0
: 0 1 2 3 4	1/6/2 1/23/2 2/9/2 2/26/2	018 018 018 018 018	Region East Central Central Central West	Martha Hermann Hermann Timothy	Alexander Shelli Luis David	Television Home Theater Television Cell Phone	95 50 36 27	1198.0 500.0 1198.0 225.0	113810.0 25000.0 43128.0 6075.0
:	OrderE 1/6/2 1/23/2 2/9/2 2/26/2 3/15/2 Ledf.id lass '	018 018 018 018 018 018 018 018 02 02 02 03 04 04 04 04 04 04 04 04 04 04 04 04 04	Region East Central Central West)	Martha Hermann Hermann Timothy Timothy	Alexander Shelli Luis David Stephen DataFrame to 42 mns):	Television Home Theater Television Cell Phone Television	95 50 36 27	1198.0 500.0 1198.0 225.0	113810.0 25000.0 43128.0 6075.0

Sale_amt 43 non-null float64 dtypes: float64(2), int64(1), object(5) memory usage: 2.8+ KB

Write a Pandas program to create a Pivot table and find the total sale amount region wise, manager wise.

```
In [30]: pd.pivot_table(saledf, index=["Region", "Manager"], values="Sale_amt", aggfunc=
```

Out[30]:

Sale_amt

Region	Manager	
	Douglas	124016.0
Central	Hermann	365108.5
Central	Martha	199690.0
	Timothy	140955.0
East	Douglas	48204.0
Easi	Martha	272803.0
\M>=4	Douglas	66836.0
West	Timothy	88063.0

Write a Pandas program to create a Pivot table and find the item wise unit sold.

```
In [31]: pd.pivot_table(saledf, index="Item", values="Units", aggfunc=np.sum)
```

Out[31]:

Units

Item	
Cell Phone	278
Desk	10
Home Theater	722
Television	716
Video Games	395

Write a Pandas program to create a Pivot table and count the manager wise sale and mean value of sale amount.

In [32]: pd.pivot_table(saledf, index="Manager", values="Sale_amt", aggfunc=[len, np.me

mean

Out[32]:

	_	
	Sale_amt	Sale_amt
Manager		
Douglas	8	29882.000000
Hermann	12	30425.708333
Martha	14	33749.500000
Timothy	9	25446.444444

len

Write a Pandas program to create a Pivot table and find manager wise, salesman wise total sale and also display the sum of all sale amount at the bottom.

Manager	SalesMan	
	John	124016.0
Douglas	Karen	48204.0
	Michael	66836.0
	Luis	206373.0
Hermann	Shelli	33698.0
	Sigal	125037.5
	Alexander	236703.0
Martha	Diana	36100.0
	Steven	199690.0
Timethy	David	140955.0
Timothy	Stephen	88063.0
All		1305675.5

Write a Pandas program to create a Pivot table and find the total sale amount region wise, manager wise, sales man wise where Manager = "Douglas".

```
In [34]: temp = pd.pivot_table(saledf, index=["Region", "Manager", "SalesMan"], values="5
temp.query('Manager==["Douglas"]')
```

Out[34]: Sale_amt

Region	Manager	SalesMan	
Central	Douglas	John	124016.0
East	Douglas	Karen	48204.0
West	Douglas	Michael	66836.0

Write a Pandas program to create a Pivot table and find the region wise Television and Home Theater sold.

```
In [35]: temp = pd.pivot_table(saledf, index=["Region","Item"], values="Units", aggfund
          temp.query('Item==["Television","Home Theater"]')
Out[35]:
                                Units
           Region
                          Item
                   Home Theater
                                 424
           Central
                      Television
                                 498
                   Home Theater
                                 234
             East
                      Television
                                 130
```

Write a Pandas program to create a Pivot table and find the maximum and minimum sale value of the items.

```
In [36]: pd.pivot_table(saledf, index="Item", values="Sale_amt", aggfunc=[np.max, np.mi
```

Out[36]:

Sale_amt Sale_amt

amin

amax

64

88

Item		
Cell Phone	21600.0	3375.0
Desk	625.0	250.0
Home Theater	47000.0	2000.0
Television	113810.0	8386.0
Video Games	5616.0	936.0

Home Theater

Television

West

```
In [37]: titanic = pd.read_csv("titanic.csv")
    titanic.head()
```

Out[37]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True
4											

Write a Pandas program to create a Pivot table and find survival rate by gender on various classes

Write a Pandas program to create a Pivot table and find survival rate by gender.

```
In [39]: titanic.groupby("sex")["survived"].mean()
Out[39]: sex
    female    0.742038
    male    0.188908
    Name: survived, dtype: float64
```

Write a Pandas program to create a Pivot table and find survival rate by gender, age of the different categories of various classes. Add the fare as a dimension of columns and partition fare column into 2 categories based on the values present in fare columns.

```
fare = pd.qcut(titanic['fare'], 2)
In [40]:
           age = pd.cut(titanic['age'], [0, 10, 30, 60, 80])
           titanic.pivot_table('survived', index=['sex', age], columns=[fare, 'pclass'])
Out[40]:
                      fare
                                     (-0.001, 14.454]
                                                                (14.454, 512.329]
                                        2
                                                           1
                                                                     2
                    pclass
                                                 3
                                                                              3
               sex
                      age
                                          0.800000
                                                    0.000000
                                                             1.000000
                    (0, 10] NaN
                                     NaN
                                                                       0.411765
                   (10, 30]
                           NaN
                                 0.933333
                                          0.568182
                                                    0.970588
                                                              0.904762 0.307692
            female
                   (30, 60]
                           NaN
                                 0.846154
                                           0.142857
                                                    0.979167
                                                              0.941176
                                                                       0.333333
                   (60, 80]
                           NaN
                                     NaN
                                           1.000000
                                                    1.000000
                                                                  NaN
                                                                           NaN
                    (0, 10] NaN
                                     NaN
                                          1.000000
                                                    1.000000
                                                             1.000000
                                                                       0.263158
                   (10, 30]
                                 0.034483
                                                    0.458333
                                                             0.000000
                                                                       0.130435
                           NaN
                                          0.140625
             male
                   (30, 601
                                 0.130435
                                                                       0.166667
                                          0.109375
                                                    0.440678
                                                             0.047619
                   (60, 80] NaN 0.333333 0.000000 0.083333
                                                                  NaN
                                                                           NaN
```

Write a Pandas program to create a Pivot table and find number of adult male, adult female and children.

```
In [41]: | titanic.groupby("who")["who"].count()
Out[41]: who
          child
                     83
                    537
          man
          woman
                    271
          Name: who, dtype: int64
In [42]: | df = pd.DataFrame({
          ord no':[70001,np.nan,70002,70004,np.nan,70005,np.nan,70010,70003,70012,np.na'
           'purch amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45,
           'ord date': ['2012-10-05','2012-09-10',np.nan,'2012-08-17','2012-09-10','2012-
           'customer_id':[3002,3001,3001,3003,3002,3001,3001,3004,3003,3002,3001,3001],
          'salesman_id':[5002,5003,5001,np.nan,5002,5001,5001,np.nan,5003,5002,5003,np.r
          df
Out[42]:
               ord no purch amt
                                   ord date
                                           customer id salesman id
              70001.0
                          150.50 2012-10-05
                                                   3002
                                                              5002.0
                  NaN
                          270.65
                                 2012-09-10
                                                   3001
                                                              5003.0
            2
              70002.0
                           65.26
                                                   3001
                                                              5001.0
                                       NaN
              70004.0
            3
                          110.50
                                 2012-08-17
                                                   3003
                                                               NaN
                  NaN
                          948.50 2012-09-10
                                                   3002
                                                              5002.0
              70005.0
                         2400.60 2012-07-27
                                                   3001
                                                              5001.0
            6
                  NaN
                         5760.00 2012-09-10
                                                   3001
                                                              5001.0
            7
              70010.0
                          1983.43 2012-10-10
                                                   3004
                                                               NaN
              70003.0
                         2480.40 2012-10-10
                                                   3003
                                                              5003.0
               70012.0
                          250.45 2012-06-27
                                                   3002
                                                              5002.0
                                                   3001
                                                              5003.0
           10
                 NaN
                           75.29 2012-08-17
           11 70013.0
                         3045.60 2012-04-25
                                                   3001
                                                               NaN
```

Write a Pandas program to identify the column(s) of a given DataFrame which have at least one missing value.

Write a Pandas program to find and replace the missing values in a given DataFrame which do not have any valuable information.

In [44]: df = pd.DataFrame({
 'ord_no':[70001,np.nan,70002,70004,np.nan,70005,"--",70010,70003,70012,np.nan,
 'purch_amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,"?",12.43,2480.4,250.4
 'ord_date': ['?','2012-09-10',np.nan,'2012-08-17','2012-09-10','2012-07-27','2
 'customer_id':[3002,3001,3001,3003,3002,3001,3001,3004,"--",3002,3001,3001],
 'salesman_id':[5002,5003,"?",5001,np.nan,5002,5001,"?",5003,5002,5003,"--"]})
 df

Out[44]:

	ord_no	purch_amt	ord_date	customer_id	salesman_id
0	70001	150.5	?	3002	5002
1	NaN	270.65	2012-09-10	3001	5003
2	70002	65.26	NaN	3001	?
3	70004	110.5	2012-08-17	3003	5001
4	NaN	948.5	2012-09-10	3002	NaN
5	70005	2400.6	2012-07-27	3001	5002
6		5760	2012-09-10	3001	5001
7	70010	?	2012-10-10	3004	?
8	70003	12.43	2012-10-10		5003
9	70012	2480.4	2012-06-27	3002	5002
10	NaN	250.45	2012-08-17	3001	5003
11	70013	3045.6	2012-04-25	3001	

Out[45]:

	ord_no	purch_amt	ord_date	customer_id	salesman_id
0	70001.0	150.50	NaN	3002.0	5002.0
1	NaN	270.65	2012-09-10	3001.0	5003.0
2	70002.0	65.26	NaN	3001.0	NaN
3	70004.0	110.50	2012-08-17	3003.0	5001.0
4	NaN	948.50	2012-09-10	3002.0	NaN
5	70005.0	2400.60	2012-07-27	3001.0	5002.0
6	NaN	5760.00	2012-09-10	3001.0	5001.0
7	70010.0	NaN	2012-10-10	3004.0	NaN
8	70003.0	12.43	2012-10-10	NaN	5003.0
9	70012.0	2480.40	2012-06-27	3002.0	5002.0
10	NaN	250.45	2012-08-17	3001.0	5003.0
11	70013.0	3045.60	2012-04-25	3001.0	NaN

Write a Pandas program to drop the rows where at least one element is missing in a given DataFrame.

In [46]: df = pd.DataFrame({
 'ord_no':[70001,np.nan,70002,70004,np.nan,70005,np.nan,70010,70003,70012,np.na
 'purch_amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45,
 'ord_date': ['2012-10-05','2012-09-10',np.nan,'2012-08-17','2012-09-10','2012 'customer_id':[3002,3001,3001,3003,3002,3001,3001,3004,3003,3002,3001,3001],
 'salesman_id':[5002,5003,5001,np.nan,5002,5001,np.nan,5003,5002,5003,np.r
df

Out[46]:

	ord_no	purch_amt	ord_date	customer_id	salesman_id
0	70001.0	150.50	2012-10-05	3002	5002.0
1	NaN	270.65	2012-09-10	3001	5003.0
2	70002.0	65.26	NaN	3001	5001.0
3	70004.0	110.50	2012-08-17	3003	NaN
4	NaN	948.50	2012-09-10	3002	5002.0
5	70005.0	2400.60	2012-07-27	3001	5001.0
6	NaN	5760.00	2012-09-10	3001	5001.0
7	70010.0	1983.43	2012-10-10	3004	NaN
8	70003.0	2480.40	2012-10-10	3003	5003.0
9	70012.0	250.45	2012-06-27	3002	5002.0
10	NaN	75.29	2012-08-17	3001	5003.0
11	70013.0	3045.60	2012-04-25	3001	NaN

In [47]: | df.dropna(axis="columns")

Out[47]:

	purch_amt	customer_id
0	150.50	3002
1	270.65	3001
2	65.26	3001
3	110.50	3003
4	948.50	3002
5	2400.60	3001
6	5760.00	3001
7	1983.43	3004
8	2480.40	3003
9	250.45	3002
10	75.29	3001
11	3045.60	3001

Write a Pandas program to read a dataset from diamonds DataFrame and modify the default columns values and print the first 6 rows

In [48]: diamond = pd.read_csv("diamond.csv")
 diamond.head(6)

Out[48]:

	carat	cut	color	clarity	depth	table	price	x	у	Z
0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
3	0.29	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.63
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
5	0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48

Write a Pandas program to create a new 'Quality -color' Series (use bracket notation to define the Series name) of the diamonds DataFrame.

In [49]: diamond["Quality-color"] = diamond.cut + ',' + diamond.color
diamond.head()

Out[49]:

	carat	cut	color	clarity	depth	table	price	X	у	z	Quality-color
0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43	Ideal,E
1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31	Premium,E
2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31	Good,E
3	0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63	Premium,I
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75	Good,J

Write a Pandas program to find the number of rows and columns and data type of each column of diamonds Dataframe.

```
In [50]: diamond.info() #Data Type
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 53940 entries, 0 to 53939
         Data columns (total 11 columns):
              Column
                            Non-Null Count Dtype
          #
                             _____
          0
              carat
                             53940 non-null float64
          1
                             53940 non-null object
              cut
                             53940 non-null object
          2
              color
          3
                             53940 non-null object
              clarity
          4
                             53940 non-null float64
              depth
          5
              table
                             53940 non-null float64
          6
              price
                             53940 non-null int64
          7
                             53940 non-null float64
              Х
                             53940 non-null float64
          8
              У
          9
                             53940 non-null float64
          10
              Quality-color 53940 non-null object
         dtypes: float64(6), int64(1), object(4)
         memory usage: 4.5+ MB
In [51]: diamond.shape #Rows and columns
Out[51]: (53940, 11)
```

Write a Pandas program to sort the entire diamonds DataFrame by the 'carat' Series in ascending and descending order.

In [52]: diamond.sort_values("carat") #Ascending

Out[52]:		carat	cut	color	clarity	depth	table	price	x	у	z	Quality-color
	31593	0.20	Premium	Е	VS2	61.1	59.0	367	3.81	3.78	2.32	Premium,E
	31597	0.20	Ideal	D	VS2	61.5	57.0	367	3.81	3.77	2.33	Ideal,D
	31596	0.20	Premium	F	VS2	62.6	59.0	367	3.73	3.71	2.33	Premium,F
	31595	0.20	Ideal	Е	VS2	59.7	55.0	367	3.86	3.84	2.30	Ideal,E
	31594	0.20	Premium	Е	VS2	59.7	62.0	367	3.84	3.80	2.28	Premium,E
	25999	4.01	Premium	J	I1	62.5	62.0	15223	10.02	9.94	6.24	Premium,J
	25998	4.01	Premium	1	I1	61.0	61.0	15223	10.14	10.10	6.17	Premium,I
	27130	4.13	Fair	Н	I1	64.8	61.0	17329	10.00	9.85	6.43	Fair,H
	27630	4.50	Fair	J	I1	65.8	58.0	18531	10.23	10.16	6.72	Fair,J
	27415	5.01	Fair	J	I1	65.5	59.0	18018	10.74	10.54	6.98	Fair,J

53940 rows × 11 columns

In [53]: diamond.sort_values("carat", ascending=False) #Descending

0	п	+	۲5	3	1	
\sim	u	•	_	_		•

	carat	cut	color	clarity	depth	table	price	x	у	z	Quality-color
27415	5.01	Fair	J	I1	65.5	59.0	18018	10.74	10.54	6.98	Fair,J
27630	4.50	Fair	J	I1	65.8	58.0	18531	10.23	10.16	6.72	Fair,J
27130	4.13	Fair	Н	I1	64.8	61.0	17329	10.00	9.85	6.43	Fair,H
25999	4.01	Premium	J	I1	62.5	62.0	15223	10.02	9.94	6.24	Premium,J
25998	4.01	Premium	I	I1	61.0	61.0	15223	10.14	10.10	6.17	Premium,I
31592	0.20	Premium	Е	VS2	59.0	60.0	367	3.81	3.78	2.24	Premium,E
31591	0.20	Premium	Е	VS2	59.8	62.0	367	3.79	3.77	2.26	Premium,E
31601	0.20	Premium	D	VS2	61.7	60.0	367	3.77	3.72	2.31	Premium,D
14	0.20	Premium	E	SI2	60.2	62.0	345	3.79	3.75	2.27	Premium,E
31596	0.20	Premium	F	VS2	62.6	59.0	367	3.73	3.71	2.33	Premium,F

53940 rows × 11 columns

Write a Pandas program to find the details of the diamonds where length>5, width>5 and depth>5

In [54]: diamond[(diamond.x > 5) & (diamond.y > 5) & (diamond.z > 5)]

Out[54]:

	carat	cut	color	clarity	depth	table	price	x	у	z	Quality-color
11778	1.83	Fair	J	I1	70.0	58.0	5083	7.34	7.28	5.12	Fair,J
13002	2.14	Fair	J	I1	69.4	57.0	5405	7.74	7.70	5.36	Fair,J
13118	2.15	Fair	J	I1	65.5	57.0	5430	8.01	7.95	5.23	Fair,J
13562	1.96	Fair	F	I1	66.6	60.0	5554	7.59	7.56	5.04	Fair,F
13757	2.22	Fair	J	I1	66.7	56.0	5607	8.04	8.02	5.36	Fair,J
27748	2.00	Very Good	G	SI1	63.5	56.0	18818	7.90	7.97	5.04	Very Good,G
27749	2.29	Premium	1	VS2	60.8	60.0	18823	8.50	8.47	5.16	Premium,I
48410	0.51	Very Good	Ε	VS1	61.8	54.7	1970	5.12	5.15	31.80	Very Good,E
49189	0.51	Ideal	Е	VS1	61.8	55.0	2075	5.15	31.80	5.12	Ideal,E
49905	0.50	Very Good	G	VVS1	63.7	58.0	2180	5.01	5.04	5.06	Very Good,G

1457 rows × 11 columns

```
In [55]: | auto = pd.read csv("auto.csv")
           auto
Out[55]:
                                   3
                                                       7
                   0
                      1
                            2
                                         4
                                              5
                                                  6
             0 18.0
                      8
                        307.0 130.0 3504 12.0
                                                 70 India
               15.0
                      8
                        350.0 165.0 3693
                                           11.5
                                                70 India
                18.0
                      8
                         318.0
                               150.0 3436
                                           11.0
                                                 70
                                                    India
                16.0
                         304.0
                               150.0
                                     3433
                                                 70
                      8
                                           12.0
                                                    India
                17.0
                      8
                         302.0
                               140.0
                                     3449
                                           10.5
                                                 70
                                                    India
            393
               27.0
                         140.0
                                86.0
                                     2790
                                          15.6
                                                 82
                                                    India
                      4
               44.0
                          97.0
                                52.0
                                     2130
                                           24.6
                                                 82
                                                     USA
           395 32.0
                      4 135.0
                                84.0 2295
                                           11.6 82
                                                    India
            396 28.0
                      4
                         120.0
                                79.0 2625
                                           18.6
                                                82
                                                    India
           397 31.0
                      4 119.0
                                82.0 2720
                                           19.4
                                                 82 India
           398 rows × 8 columns
In [56]: # Rename Columns
          auto.columns = ["MPG", "Cylinders", "Displacement", "Horsepower", "Weight", "A
           auto.head()
Out[56]:
              MPG Cylinders Displacement Horsepower Weight Acceleration Model Year
                                                                                        Origin
           0
               18.0
                           8
                                      307.0
                                                  130.0
                                                          3504
                                                                       12.0
                                                                                    70
                                                                                         India
           1
               15.0
                           8
                                      350.0
                                                  165.0
                                                          3693
                                                                       11.5
                                                                                    70
                                                                                         India
               18.0
                           8
                                      318.0
                                                  150.0
                                                          3436
                                                                       11.0
                                                                                    70
           2
                                                                                         India
               16.0
                           8
                                      304.0
                                                  150.0
                                                          3433
                                                                       12.0
                                                                                    70
                                                                                         India
               17.0
                                      302.0
                                                                                         India
                           8
                                                  140.0
                                                          3449
                                                                       10.5
                                                                                    70
In [57]: | auto.shape
Out[57]: (398, 8)
In [58]: auto.columns
Out[58]: Index(['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight',
                   'Acceleration', 'Model Year', 'Origin'],
                 dtype='object')
```

```
In [59]: list(auto.columns)
Out[59]: ['MPG',
           'Cylinders',
           'Displacement',
           'Horsepower',
           'Weight',
           'Acceleration',
           'Model Year',
           'Origin']
In [60]: auto.index
Out[60]: RangeIndex(start=0, stop=398, step=1)
In [61]: | auto.info()
          <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 398 entries, 0 to 397
         Data columns (total 8 columns):
          #
               Column
                             Non-Null Count
                                             Dtype
               _ _ _ _ _ _
                             -----
                                              _ _ _ _
               MPG
          0
                             398 non-null
                                              float64
               Cylinders
                             398 non-null
                                              int64
          1
          2
               Displacement 398 non-null
                                              float64
          3
               Horsepower
                             392 non-null
                                              float64
          4
                             398 non-null
                                              int64
               Weight
          5
               Acceleration 398 non-null
                                              float64
                                              int64
          6
               Model Year
                             398 non-null
          7
               Origin
                             398 non-null
                                              object
         dtypes: float64(4), int64(3), object(1)
         memory usage: 25.0+ KB
```

How the Numerical and Categorical columns are distributed in the data.

In [62]: auto.describe() Out[62]: **MPG** Cylinders Displacement Horsepower Weight Acceleration **Model Yea** count 398.000000 398.000000 398.000000 392.000000 398.000000 398.000000 398.00000 23.514573 5.454774 193.425879 2970.424623 15.568090 76.01005 mean 104.469388 1.701004 7.815984 104.269838 38.491160 846.841774 2.757689 3.69762 std min 9.000000 3.000000 68.000000 46.000000 1613.000000 8.000000 70.00000 25% 17.500000 4.000000 104.250000 75.000000 2223.750000 13.825000 73.00000 50% 23.000000 4.000000 93.500000 2803.500000 148.500000 15.500000 76.00000 75% 29.000000 8.000000 262.000000 126.000000 3608.000000 17.175000 79.00000 46.600000 8.000000 230.000000 5140.000000 82.00000 455.000000 24.800000 max

In [63]: auto.describe(include="object")

Out[63]:

	Origin
count	398
unique	3
top	India
freq	249

In [64]: auto.Origin.value_counts()

Out[64]: India 249 Germany 79 USA 70

Name: Origin, dtype: int64

In [65]: auto.Origin.value_counts().plot.bar()
plt.show()

In [66]: auto.head()

Out[66]:

	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	Origin
0	18.0	8	307.0	130.0	3504	12.0	70	India
1	15.0	8	350.0	165.0	3693	11.5	70	India
2	18.0	8	318.0	150.0	3436	11.0	70	India
3	16.0	8	304.0	150.0	3433	12.0	70	India
4	17.0	8	302.0	140.0	3449	10.5	70	India

Add column and display 1. Displacement per unit power 2. Weight per cylinder 3. Acceleration per unit power.

In [67]: auto["disp_per_unit_power"] = auto.Displacement/auto.Horsepower
auto.head()

Out[67]:

	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	Origin	disp_per_u
0	18.0	8	307.0	130.0	3504	12.0	70	India	
1	15.0	8	350.0	165.0	3693	11.5	70	India	
2	18.0	8	318.0	150.0	3436	11.0	70	India	
3	16.0	8	304.0	150.0	3433	12.0	70	India	
4	17.0	8	302.0	140.0	3449	10.5	70	India	
4		_		_	_		_		

In [68]: auto["Weignt_per_cylinder"] = auto.Weight/auto.Cylinders
auto.head()

Out[68]:

	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	Origin	disp_per_u
0	18.0	8	307.0	130.0	3504	12.0	70	India	
1	15.0	8	350.0	165.0	3693	11.5	70	India	
2	18.0	8	318.0	150.0	3436	11.0	70	India	
3	16.0	8	304.0	150.0	3433	12.0	70	India	
4	17.0	8	302.0	140.0	3449	10.5	70	India	
4									•

In [69]: auto["acc_per_unit"] = auto.Acceleration/auto.Horsepower
auto.head()

Out[69]:

	MPG	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	Origin	disp_per_u
0	18.0	8	307.0	130.0	3504	12.0	70	India	
1	15.0	8	350.0	165.0	3693	11.5	70	India	
2	18.0	8	318.0	150.0	3436	11.0	70	India	
3	16.0	8	304.0	150.0	3433	12.0	70	India	
4	17.0	8	302.0	140.0	3449	10.5	70	India	
4		_	_	_	_				•

In [223]: marketing = pd.read_csv("marketing_data.csv")
 marketing.head()

Out[223]:

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	R€
0	1826	1970	Graduation	Divorced	84835.0	0	0	6/16/2014	
1	1	1961	Graduation	Single	57091.0	0	0	6/15/2014	
2	10476	1958	Graduation	Married	67267.0	0	1	5/13/2014	
3	1386	1967	Graduation	Together	32474.0	1	1	5/11/2014	
4	5371	1989	Graduation	Single	21474.0	1	0	4/8/2014	
4									

In [71]: marketing.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 28 columns):

- 0. 00.	00-0		
#	Column	Non-Null Count	Dtype
0	ID	2240 non-null	int64
1	Year_Birth	2240 non-null	int64
2	Education	2240 non-null	object
3	Marital_Status	2240 non-null	object
4	Income	2216 non-null	object
5	Kidhome	2240 non-null	int64
6	Teenhome	2240 non-null	int64
7	Dt_Customer	2240 non-null	object
8	Recency	2240 non-null	int64
9	MntWines	2240 non-null	int64
10	MntFruits	2240 non-null	int64
11	MntMeatProducts	2240 non-null	int64
12	MntFishProducts	2240 non-null	int64
13	MntSweetProducts	2240 non-null	int64
4.4	M TC 11D 1	2240 33	

In [72]: marketing.set_index("ID", inplace=True)

Out[73]:		MntWines	MntFruits	MntMeatProducts	MntFishProducts	MntSweetProducts	MntGol
	ID						
	1826	189	104	379	111	189	
	1	464	5	64	7	0	_
	10476	134	11	59	15	2	_
	1386	10	0	1	0	0	_
	5371	6	16	24	11	0	_
							_
	10142	372	18	126	47	48	
	5263	5	10	13	3	8	
	22	185	2	88	15	5	

701

149

165

In [74]: # Display data from rows 7446 to 2114
temp.loc[7446:2114]

267

38

528

Out[74]:		MntWines	MntFruits	MntMeatProducts	MntFishProducts	MntSweetProducts	MntGoldPro
	ID						
	7446	520	42	98	0	42	
	87	0	7	5	26	2	
	10477	71	0	18	0	0	
	6072	918	57	842	99	38	1
	2518	5	4	5	4	2	
	1802	412	5	119	38	29	
	1162	124	83	267	85	59	
	10643	124	83	267	85	59	
	11112	736	114	279	82	76	1
	2114	1006	22	115	59	68	

155 rows × 6 columns

In [75]: marketing.reset_index(inplace=True)

In [76]: # Filter out every alternate rows from index 50 to 300 for the last 9 columns
marketing.iloc[50:301:2, -9:]

Out[76]:		NumWebVisitsMonth	AcceptedCmp3	AcceptedCmp4	AcceptedCmp5	AcceptedCmp1	Acce
	50	9	0	0	0	0	
	52	8	0	0	0	0	
	54	8	0	0	0	0	
	56	7	0	0	0	0	
	58	0	0	0	0	0	
	292	4	1	0	0	0	
	294	7	0	0	0	0	
	296	7	0	0	0	0	
	298	6	0	1	0	0	
	300	1	0	1	1	0	

126 rows × 9 columns

In [77]: land = pd.read_csv("LandSlide.csv")
land.head()

Out[77]:		id	date	time	country_name	state/province	population	landslide_type	trigger	fata
	0	34	3/2/2007	Night	United States	Virginia	16000	Landslide	Rain	
	1	42	3/22/2007	NaN	United States	Ohio	17288	Landslide	Rain	
	2	56	4/6/2007	NaN	United States	Pennsylvania	15930	Landslide	Rain	
	3	59	4/14/2007	NaN	Canada	Quebec	42786	Riverbank collapse	Rain	
	4	61	4/15/2007	NaN	United States	Kentucky	6903	Landslide	Downpour	

```
In [78]: # Checking the missing values
         land.isna().sum()
Out[78]: id
                               0
         date
                               3
         time
                            1065
         country_name
                               0
         state/province
                               1
         population
                               0
         landslide_type
                               1
                               2
         trigger
         fatalities
                             247
         dtype: int64
In [79]: land = land[~land.date.isna()] #Droping null values in date column
In [80]: land.isna().sum()
Out[80]: id
                               0
         date
                               0
         time
                            1065
         country_name
                               0
         state/province
                               1
         population
                               0
         landslide_type
                               1
         trigger
                               2
         fatalities
                             247
         dtype: int64
In [81]: land.time.value_counts()
Out[81]: Night
                           97
         Morning
                           87
         Afternoon
                           58
         Early morning
                           36
         3:00:00
                           12
         3:20:00
                            1
         1:13
                            1
         15:32
                            1
                            1
         11:50:00
         21:06
                            1
         Name: time, Length: 158, dtype: int64
```

```
In [82]: |land.time.fillna("Not Known", inplace=True)
         land.isnull().sum()
Out[82]: id
                              0
         date
                              0
         time
                              0
         country_name
                              0
         state/province
                              1
         population
         landslide_type
                              1
         trigger
                              2
         fatalities
                            247
         dtype: int64
In [83]: land.fatalities.fillna(land.fatalities.mean(), inplace=True)
In [86]: land.fatalities.isnull().sum()
Out[86]: 0
```

Which is the most landslide prone month.

In [88]:	1aı	nd.h	nead()							
Out[88]:		id	date	time	country_name	state/province	population	landslide_type	trigger	fa
	0	34	3/2/2007	Night	United States	Virginia	16000	Landslide	Rain	1.
	1	42	3/22/2007	Not Known	United States	Ohio	17288	Landslide	Rain	1.
	2	56	4/6/2007	Not Known	United States	Pennsylvania	15930	Landslide	Rain	1.
	3	59	4/14/2007	Not Known	Canada	Quebec	42786	Riverbank collapse	Rain	1.
	4	61	4/15/2007	Not Known	United States	Kentucky	6903	Landslide	Downpour	0.
	4									

```
In [92]: land.date = pd.to_datetime(land.date, format="%y%m%d")
         land.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 1690 entries, 0 to 1692 Data columns (total 10 columns):

	`	,	
#	Column	Non-Null Count	Dtype
0	id	1690 non-null	int64
1	date	1690 non-null	<pre>datetime64[ns]</pre>
2	time	1690 non-null	object
3	country_name	1690 non-null	object
4	state/province	1689 non-null	object
5	population	1690 non-null	int64
6	<pre>landslide_type</pre>	1689 non-null	object
7	trigger	1688 non-null	object
8	fatalities	1690 non-null	float64
9	Month	1690 non-null	int64

dtypes: datetime64[ns](1), float64(1), int64(3), object(5) memory usage: 145.2+ KB

In [93]: |land["Month"] = land.date.dt.month land.head()

Out[93]:

	id	date	time	country_name	state/province	population	landslide_type	trigger	fatalit
0	34	2007- 03-02	Night	United States	Virginia	16000	Landslide	Rain	1.4622
1	42	2007- 03-22	Not Known	United States	Ohio	17288	Landslide	Rain	1.4622
2	56	2007- 04-06	Not Known	United States	Pennsylvania	15930	Landslide	Rain	1.4622
3	59	2007- 04-14	Not Known	Canada	Quebec	42786	Riverbank collapse	Rain	1.4622
4	61	2007- 04-15	Not Known	United States	Kentucky	6903	Landslide	Downpour	0.0000

```
In [97]: sns.histplot(land.Month, bins=12)
plt.show()
```



```
In [98]: land.Month.value_counts()
Out[98]:
                210
                203
          9
                203
          4
                167
          3
                151
          8
                145
          6
                132
                126
          10
          12
                116
          11
                114
                 65
          1
                  58
          Name: Month, dtype: int64
```

We can see July has highes number of landslide

```
In [101]: land.time.value counts()
Out[101]: Not Known
                            1065
           Night
                              97
           Morning
                              87
           Afternoon
                              58
           Early morning
                              36
           3:20:00
                               1
           1:13
                                1
           9:40:00
                                1
           11:50:00
                               1
           21:06
                                1
           Name: time, Length: 159, dtype: int64
In [129]: # Formating the time column by removing ":"
          def format time(x):
               if ":" in x.lower():
                   if int(x.split(":")[0]) >= 12 and int(x.split(":")[0]) < 18:</pre>
                       x = "Afternoon"
                   elif int(x.split(":")[0]) < 12:</pre>
                       x = "Morning"
                   elif int(x.split(":")[0]) >= 18:
                       x = "Night"
               elif "morning" in x.lower() or "dawn" in x.lower():
                   x = "Morning"
               elif "afternoon" in x.lower():
                   x = "Afternoon"
               elif "night" in x.lower():
                   x = "Night"
               else:
                   x = "Not Known"
               return x
In [130]: land.time = land.time.apply(format time)
In [131]: land.time.value_counts()
Out[131]: Not Known
                        1086
          Morning
                         265
                         194
           Night
           Afternoon
                         145
           Name: time, dtype: int64
```

Extract customer who are married from the customer's data

[422]										
32]:		ID Ye	ar_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	
(0 18	326	1970	Graduation	Divorced	\$84,835.00	0	0	6/16/14	
	1	1	1961	Graduation	Single	\$57,091.00	0	0	6/15/14	
:	2 104	76	1958	Graduation	Married	\$67,267.00	0	1	5/13/14	
;	3 13	886	1967	Graduation	Together	\$32,474.00	1	1	5/11/14	
•	4 53	371	1989	Graduation	Single	\$21,474.00	1	0	4/8/14	
									•	
]: m	arket	ing["	Marital _.	_Status"]	.value_count	5()				
T S D W A Y	ogethingle ivore idow lone OLO bsure	ner e ced	864 580 480 232 77 3 2 2	us, dtype	· int6/					
5]: m	arket			-	l_Status"] ==	= "Married	l"]			
	arket	ing[m	arketin	g["Marita]				ne Teenho	me Dt_Custom	
		ing[m	arketin	g["Marita] th Educatio	l_Status"] == on Marital_Stat	us Incor	ne Kidhor	me Teenho	me Dt_Custom	
		ing[m	uarketin	g["Marita] th Education	l_Status"] == on Marital_Stat on Marri	us Incor ed \$67,267.	ne Kidhor			
	2	ing[m ID 10476	arketin Year_Bir	g["Marita] th Education 58 Graduation 54 2n Cyc	L_Status"] == on Marital_State on Marri ele Marri	us Incor ed \$67,267.	ne Kidhor	0	1 5/13/	
	2 6	ing[m ID 10476 4073	Year_Bir 198	g["Marita] th Education 58 Graduation 54 2n Cycle 54 Ph	L_Status"] == on Marital_Stat on Marri ele Marri nD Marri	us Incor ed \$67,267. ed \$63,564.	me Kidhor 00 00 00	0	1 5/13/ 0 1/29/	
	2 6 8	ID 10476 4073 4047	Year_Bir 198 198	g["Marita] th Education 58 Graduation 54 2n Cycl 54 Ph	L_Status"] == on Marital_State on Marri cle Marri nD Marri nD Marri	us Incor ed \$67,267. ed \$63,564. ed \$65,324.	me Kidhor 00 00 00 00	0 0 0	1 5/13/ 0 1/29/ 1 1/11/	
	2 6 8 9	ID 10476 4073 4047 9477	Year_Bir 198 198 198 198 198	g["Marital th Education 58 Graduation 54 2n Cycl 54 Ph 54 Ph 47 2n Cycl	L_Status"] == on Marital_State on Marri cle Marri nD Marri nD Marri	us Incor ed \$67,267. ed \$63,564. ed \$65,324. ed \$65,324.	me Kidhor 00 00 00 00	0 0 0 0	1 5/13/ 0 1/29/ 1 1/11/ 1 1/11/	
5]: _	2 6 8 9	ing[m 10476 4073 4047 9477 2079	Year_Bir 198 198 198 198 198	g["Marital th Education 58 Graduation 54 2n Cycl 54 Ph 54 Ph 47 2n Cycl	L_Status"] == on Marital_Stat on Marri cle Marri nD Marri cle Marri cle Marri	us Incor ed \$67,267. ed \$63,564. ed \$65,324. ed \$65,324. ed \$81,044.	me Kidhor 00 00 00 00 00 00	0 0 0 0	1 5/13/ 0 1/29/ 1 1/11/ 1 1/11/ 0 12/27/	
5]:	2 6 8 9 10	ing[m 10476 4073 4047 9477 2079	Year_Bir 198 198 198 198	g["Marital th Education 58 Graduation 54 2n Cycl 54 Ph 54 Ph 47 2n Cycl 74 2n Cycl	L_Status"] == on Marital_State on Marri ele Marri nD Marri ele Marri ele Marri ele Marri	us Incor ed \$67,267. ed \$63,564. ed \$65,324. ed \$65,324. ed \$81,044	me Kidhor 00 00 00 00 00	0 0 0 0 0	1 5/13/ 0 1/29/ 1 1/11/ 1 1/11/ 0 12/27/ 	
5]:	2 6 8 9 10 	ing[m 10476 4073 4047 9477 2079 2106	Year_Bir 199 199 199 199 199	g["Marital th Education 58 Graduation 54 2n Cycl 54 Ph 54 Ph 47 2n Cycl 74 2n Cycl 74 2n Cycl 74 2n Cycl	L_Status"] == on Marital_State on Marri ele Marri ele Marri ele Marri ele Marri ele Marri	us Incor ed \$67,267. ed \$63,564. ed \$65,324. ed \$65,324. ed \$81,044. ed \$20,130.	me Kidhor 00 00 00 00 00	0 0 0 0 0 	1 5/13/ 0 1/29/ 1 1/11/ 1 1/11/ 0 12/27/ 	
]: _	2 6 8 9 10 2229 2230	ing[m 10476 4073 4047 9477 2079 2106 3363	Year_Bir 199 199 199 199 199 197	g["Marital th Education 58 Graduation 54 2n Cycl 54 Ph 54 Ph 47 2n Cycl 74 2n Cycl 74 2n Cycl 77 2n Cycl 77 2n Cycl	L_Status"] == on Marital_State on Marri ele Marri	us Incor ed \$67,267. ed \$63,564. ed \$65,324. ed \$65,324. ed \$81,044 ed \$20,130.	me Kidhor 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 0 	1 5/13/ 0 1/29/ 1 1/11/ 1 1/11/ 0 12/27/ 0 3/17/	
]: _	2 6 8 9 10 2229 2230 2236	ing[m 10476 4073 4047 9477 2079 2106 3363 5263	Year_Bir 199 199 199 199 197 197	g["Marital th Education 58 Graduation 54 2n Cycl 54 Ph 54 Ph 47 2n Cycl 74 2n Cycl 77 2n Cycl 78 Graduation	n Marital_State on Marital_State on Marri	us Incor ed \$67,267. ed \$63,564. ed \$65,324. ed \$65,324. ed \$81,044 ed \$20,130. ed \$20,130. ed \$31,056.	me Kidhor 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 0 0	1 5/13/ 0 1/29/ 1 1/11/ 1 1/11/ 0 12/27/ 0 3/17/ 0 3/17/ 0 1/22/	
]: _	2 6 8 9 10 2229 2230 2236 2238 2239	ing[m 10476 4073 4047 9477 2079 2106 3363 5263 528 4070	Year_Bir 198 198 198 198 197 197 197	g["Marital th Education 58 Graduation 54 2n Cycl 54 Ph 54 Ph 47 2n Cycl 74 2n Cycl 77 2n Cycl 78 Graduation 69 Ph	n Marital_State on Marital_State on Marri	us Incor ed \$67,267. ed \$63,564. ed \$65,324. ed \$65,324. ed \$81,044 ed \$20,130. ed \$20,130. ed \$31,056. ed \$65,819.	me Kidhor 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 0 0 0	1 5/13/ 0 1/29/ 1 1/11/ 1 1/11/ 0 12/27/ 0 3/17/ 0 3/17/ 0 1/22/ 0 11/29/	

Extract a customers without a partner and who are born after 1990

In [157]: temp = marketing[~marketing["Marital_Status"].isin(["Married","Together"])]
temp[temp["Year_Birth"] > 1990]

Out	[157]

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Cus
173	3005	1992	Graduation	Single	\$83,528.00	0	0	
293	5080	1993	Graduation	Single	\$70,515.00	0	0	10
318	7600	1992	Basic	Single	\$15,253.00	1	0	10
639	10343	1991	2n Cycle	Single	\$61,618.00	0	0	ę (
671	5735	1991	Master	Single	\$90,638.00	0	0	2
672	5350	1991	Master	Single	\$90,638.00	0	0	2
687	10619	1994	Graduation	Single	\$95,529.00	0	0	1
697	10548	1995	Graduation	Single	\$71,163.00	0	0	
744	569	1991	Graduation	Single	\$90,273.00	0	0	12
924	7431	1991	PhD	Single	\$68,126.00	0	0	11
932	4055	1992	Basic	Single	\$18,746.00	1	0	5

Extract customers who have more than 5 web purchases.

In [161]: marketing[marketing.NumWebPurchases > 5]

$\overline{}$			F -		-	- 7
	ш	ıŦ	1 1	IЬ	VП	- 1

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Custom
1	1	1961	Graduation	Single	\$57,091.00	0	0	6/15/
6	4073	1954	2n Cycle	Married	\$63,564.00	0	0	1/29/
8	4047	1954	PhD	Married	\$65,324.00	0	1	1/11/
9	9477	1954	PhD	Married	\$65,324.00	0	1	1/11/
14	10311	1969	Graduation	Married	\$4,428.00	0	1	10/5/
2221	3846	1974	Graduation	Married	\$42,557.00	0	1	8/29/
2223	2831	1976	Graduation	Together	\$78,416.00	0	1	6/27/
2234	9977	1973	Graduation	Divorced	\$78,901.00	0	1	9/17/
2237	22	1976	Graduation	Divorced	\$46,310.00	1	0	12/3/
2239	4070	1969	PhD	Married	\$94,871.00	0	2	9/1/

[227]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer
	0	1826	1970	Graduation	Divorced	84835.0	0	0	6/16/2014
	2	10476	1958	Graduation	Married	67267.0	0	1	5/13/2014
	5	7348	1958	PhD	Single	71691.0	0	0	3/17/2014
	8	4047	1954	PhD	Married	65324.0	0	1	1/11/2014
	9	9477	1954	PhD	Married	65324.0	0	1	1/11/2014
	2226	1743	1974	Graduation	Single	69719.0	0	0	5/26/2014
	2234	9977	1973	Graduation	Divorced	78901.0	0	1	9/17/2013
	2235	10142	1976	PhD	Divorced	66476.0	0	1	3/7/2013
	2238	528	1978	Graduation	Married	65819.0	0	0	11/29/2012
	2239	4070	1969	PhD	Married	94871.0	0	2	9/1/2012
	←		3 columns rage amour	t of produc	et purchased b	pased or	n each mar	tial status	group
28]:	Find t	he aver	rage amour		et purchased t tus")[["Mntw)
-	Find t	he aver	rage amour	rital_Sta		lines","	MntFruits	","MntMea	atProducts"
-	Find t	he aver	rage amour roupby ("Ma MntWine	rital_Sta	tus")[["Mntw	lines","	MntFruits	","MntMea	atProducts"
-	Find t	he aver ting.g	rage amour roupby ("Ma MntWines	rital_Sta s MntFruits	tus")[["Mntk	lines"," ucts Mn	MntFruits	","MntMea	atProducts"
-	Find t	he aver	rage amour roupby ("Ma MntWines	MntFruits 0 84.500000	tus")[["Mntk MntMeatProd	lines"," ucts Mn	MntFruits tFishProduc	ts MntSwe	etProducts M
-	Find t	he aver	mage amour roupby ("Ma MntWines 3 1 355.50000 184.66666	MntFruits 0 84.500000 7 4.000000	tus")[["Mntk MntMeatProd	lines"," ucts Mn	MntFruits tFishProduc	ts MntSwe	etProducts N
-	Find t	ting.g	mage amour roupby ("Ma MntWines 3 1 355.50000 1 184.66666	MntFruits 9 84.500000 9 4.000000 9 27.426724	tus")[["Mntw MntMeatProd 312.500 26.333	lines"," ucts Mn 0000 3333	MntFruits tFishProduc 205.50000 7.66666	ts MntSwe	etProducts N 30.500000 7.000000
-	Find t	ting.g al_Status Absurc Alone	mage amour roupby ("Ma MntWines 1 355.50000 1 184.66666 1 324.84482	mital_Sta MntFruits 0 84.500000 7 4.000000 3 27.426724 4 25.734954	tus")[["Mntw MntMeatProd 312.500 26.333 150.206	Jines"," ucts Mn 0000 3333 6897	MntFruits tFishProduc 205.50000 7.66666 35.04310	ts MntSwe	atProducts" eetProducts M 30.500000 7.000000 26.818966
28]: 28]:	Find t	ting.g al_Status Absurc Alone Divorced Married	mage amour roupby ("Ma MntWines 1 355.50000 1 184.66666 1 324.84482 1 299.48032 2 288.33125	mital_Sta MntFruits 0 84.500000 7 4.000000 3 27.426724 4 25.734954 0 26.835417	tus")[["Mntw MntMeatProd 312.500 26.333 150.206 160.683	Jines"," ucts Mn 0000 3333 6897 1713	MntFruits tFishProduc 205.50000 7.66666 35.04310 35.38078	ts MntSwe	atProducts M 30.500000 7.000000 26.818966 26.701389
-	Find t	ting.g Alone Divorced Married	mage amour roupby ("Ma MntWines 1 355.50000 1 184.66666 1 324.84482 1 299.48032 2 288.33125 1 306.82586	MntFruits 9 84.500000 7 4.000000 9 27.426724 1 25.734954 1 26.835417 2 25.350000	tus")[["Mntw MntMeatProd 312.500 26.333 150.206 160.683 182.108	Jines"," ucts Mn 0000 3333 6897 1713 3333 3448	MntFruits tFishProduc 205.50000 7.66666 35.04310 35.38078 38.21666	ts MntSwee 00 67 03 87 67	30.500000 7.000000 26.818966 26.701389 27.262500

Median Income of Customer by education and Marital Status

```
In [232]: marketing.groupby(["Education", "Marital Status"])["Income"].median()
Out[232]: Education
                       Marital_Status
           2n Cycle
                       Divorced
                                          49118.0
                       Married
                                          46462.5
                       Single
                                          48668.5
                       Together
                                          45774.0
                       Widow
                                          47682.0
           Basic
                       Divorced
                                           9548.0
                       Married
                                          22352.0
                       Single
                                          16383.0
                       Together
                                          23179.0
                       Widow
                                          22123.0
           Graduation
                       Absurd
                                          79244.0
                       Alone
                                          34176.0
                       Divorced
                                          55635.0
                       Married
                                          50737.0
                       Single
                                          49973.5
                       Together
                                          53977.0
                       Widow
                                          58275.0
           Master
                       Absurd
                                          65487.0
          stock = pd.read_csv("Stock.csv")
In [253]:
           stock.head()
Out[253]:
```

	Unnamed: 0	AAPL	MSFT	XOM	SPX
0	1/2/2003 0:00	7.40	21.11	29.22	909.03
1	1/3/2003 0:00	7.45	21.14	29.24	908.59
2	1/6/2003 0:00	7.45	21.52	29.96	929.01
3	1/7/2003 0:00	7.43	21.93	28.95	922.93
4	1/8/2003 0:00	7.28	21.31	28.83	909.93

Calculate the Yearly stock return for four organizations

```
In [254]: stock.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 2214 entries, 0 to 2213
          Data columns (total 5 columns):
           #
               Column
                           Non-Null Count Dtype
                           -----
               ____
               Unnamed: 0 2214 non-null
           0
                                          object
           1
               AAPL
                           2214 non-null
                                          float64
                                          float64
           2
               MSFT
                           2214 non-null
           3
               MOX
                           2214 non-null
                                          float64
               SPX
                           2214 non-null
                                          float64
          dtypes: float64(4), object(1)
          memory usage: 86.6+ KB
```

```
In [260]: stock.rename(columns = {'Unnamed: 0':'Date'}, inplace = True)
           stock.Date = pd.to_datetime(stock.Date) # Conveting into date date type
          stock["Year"] = stock.Date.dt.year
In [263]:
           stock.head()
Out[263]:
                   Date AAPL MSFT XOM
                                            SPX Year
           0 2003-01-02
                         7.40 21.11 29.22 909.03
                                                2003
           1 2003-01-03
                         7.45 21.14 29.24
                                          908.59
                                                2003
           2 2003-01-06
                         7.45 21.52 29.96 929.01
                                                2003
           3 2003-01-07
                         7.43 21.93 28.95 922.93
                                                2003
                         7.28 21.31 28.83 909.93 2003
             2003-01-08
In [268]: stock.groupby("Year").mean()
```

Out[268]:

	AAPL	MSFT	XOM	SPX
Year				
2003	9.272619	20.595119	30.211111	965.227540
2004	17.763889	21.850437	38.875437	1130.649444
2005	46.675952	23.072421	51.045476	1207.229444
2006	70.810637	23.759363	58.458406	1310.461633
2007	128.273904	27.904422	75.767131	1477.184343
2008	141.979012	24.760593	76.525968	1220.042055
2009	146.814127	21.885397	67.124960	948.046389
2010	259.842460	26.262619	63.067976	1139.965516
2011	356.526834	25.825930	79.042663	1276.093015