36-755: Advanced Statistical Theory

Fall 2017

Lecture 4: September 13

Lecturer: Alessandro Rinaldo Scribe: Robin Dunn

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 Maximal Inequality

Let X_1, \ldots, X_d be centered random variables such that $\log \mathbb{E}[e^{\lambda X_i}] \leq \psi(\lambda)$ for some convex function $\psi(\cdot)$ and for all λ that satisfy $|\lambda| < \frac{1}{h}$, $b \geq 0$. Then

$$\mathbb{E}\left[\max_{1\leq i\leq d}X_i\right]\leq \inf_{\lambda\in(0,\frac{1}{b})}\left\{\frac{\log(d)+\psi(\lambda)}{\lambda}\right\}.$$

We proved this inequality in the previous class. Here we consider an example.

Suppose $\psi(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}$ for all $\lambda \in \mathbb{R}$. This means that $X_i \in SG(\sigma^2)$. Applying the maximal inequality, we see

$$\mathbb{E}\left[\max_{1\leq i\leq d} X_i\right] \leq \inf_{\lambda>0} \left\{\frac{\log(d) + \frac{\lambda^2 \sigma^2}{2}}{\lambda}\right\}$$

$$\leq \frac{\log(d) + \frac{2\log(d)}{\sigma^2} \frac{\sigma^2}{2}}{\sqrt{\frac{2\log(d)}{\sigma^2}}} \quad \text{setting } \lambda = \sqrt{\frac{2\log(d)}{\sigma^2}} \text{ (optimal)}$$

$$= \frac{2\log(d)}{\sqrt{\frac{2\log(d)}{\sigma^2}}}$$

$$= \sqrt{2\sigma^2 \log(d)}.$$

This tells us that when we have sub-Gaussian X_1, \ldots, X_d , $\mathbb{E}\left[\max_{1 \leq i \leq d} X_i\right]$ grows on the order of $\sqrt{\log(d)}$.

Also, by the union bound,

$$\mathbb{P}\left(\max_{i} X_{i} \ge t\right) \le \sum_{i=1}^{d} \mathbb{P}(X_{i} \ge t) \le de^{-t^{2}/(2\sigma^{2})} = e^{-t^{2}/(2\sigma^{2}) + \log(d)}.$$

This probability goes to 0 if $\frac{t^2}{2\sigma^2} \gg \log(d)$.

A maximal inequality for another characterization of the X_i s comes from Lemma 2.1 from [M07]:

Lemma 4.1 Suppose that X_1, \ldots, X_d are centered random variables such that $\log \mathbb{E}\left[e^{\lambda X_i}\right] \leq \psi(\lambda), \ |\lambda| < \frac{1}{b}, b \geq 0$ for some function $\psi(\cdot)$ that satisfies

- $\psi(\cdot)$ is convex
- $\psi(\cdot)$ is continuously differentiable on $[0,\frac{1}{h}]$
- $\psi(0) = \psi'(0) = 0$.

Let
$$\psi^*(t) = \sup_{\lambda \in (0, \frac{1}{b})} \{\lambda t - \psi(\lambda)\}$$
. Then for all $\mu > 0$, $\psi^{*-1}(\mu) = \inf_{\lambda \in (0, \frac{1}{b})} \left\{ \frac{\mu + \psi(\lambda)}{\lambda} \right\} = \inf\{t \ge 0 : \psi^*(t) > \mu\}$.

This expression $\psi^{*-1}(\mu)$ is called the generalized inverse of ψ^{*} . For more details, see [M07] or [BLM13].

Example: Suppose X_1, \ldots, X_d satisfy the conditions of Lemma 4.1, where $\psi(\lambda) = \frac{\lambda^2 \nu^2}{2(1-\lambda b)}$, $\lambda \in (0, \frac{1}{b})$. Then $\psi^{*-1}(\mu) = \sqrt{2\nu^2 \mu} + b\mu$ for $\mu > 0$, and

$$\mathbb{E}\big[\max_i X_i\big] \leq \inf_{\lambda \in (0,\frac{1}{b})} \left\{ \frac{\log(d) + \psi(\lambda)}{\lambda} \right\} = \psi^{*-1}(\log(d)) = \sqrt{2\nu^2 \log(d)} + b \log(d).$$

4.2 Bounded Differences

Suppose X_1, \ldots, X_n are independent random variables. So far, most of the concentration inequalities that we have considered have worked with $\sum_{i=1}^n X_i$. More generally, we may be interested in concentration inequalities on arbitrary functions $f(X_1, \ldots, X_n)$. That is, if we let $Z = f(X_1, \ldots, X_n)$, can we place a useful upper bound on $P(|Z - \mathbb{E}(Z)| \ge t)$ for t > 0?

We begin by considering the expression $Z - \mathbb{E}(Z)$. Set

$$Z_{0} = \mathbb{E}[f(X_{1}, \dots, X_{n})]$$

$$Z_{k} = \mathbb{E}[f(X_{1}, \dots, X_{n}) | X_{1}, \dots, X_{k}] \quad \text{for } 1 \leq k \leq n - 1$$

$$Z_{n} = \mathbb{E}[f(X_{1}, \dots, X_{n}) | X_{1}, \dots, X_{n}] = f(X_{1}, \dots, X_{n}).$$

Then we can re-write

$$Z - \mathbb{E}(Z) = Z_n - Z_0 = \sum_{k=1}^n (Z_k - Z_{k-1}) = \sum_{k=1}^n D_k,$$

where $D_k = Z_k - Z_{k-1}$ for $1 \le k \le n$. These terms D_k are not independent, but they are an example of a martingale difference. Martingales can be considered as a first step away from independence. We now turn our attention to martingales.

4.3 Martingales

We begin by defining a martingale.

Definition 4.2 (Martingale.) Let (Ω, \mathcal{F}) be a measurable space, and let $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Let $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \cdots \subseteq \mathcal{F}$ be a sequence of sub- σ -fields. Let $\{Y_k\}_{k=0,1,2,...}$ be a sequence of random variables such that Y_k is \mathcal{F}_k -measurable.

Then the sequence $\{Y_k\}_{k=0,1,2,...}$ is a martingale adapted to the filtration $\{\mathcal{F}_k\}_{k=0,1,2,...}$ if $\mathbb{E}[|Y_k|] < \infty$ and $\mathbb{E}[Y_k|\mathcal{F}_{k-1}] = Y_{k-1}$ for all k.

Example: Doob construction.

One way to create a martingale is through the process of Doob construction. Suppose X_1, \ldots, X_n are random variables. Let $Z = f(X_1, \ldots, X_n)$ for some function f, subject to the condition that Z is integrable. Define the generated σ -fields $\mathcal{F}_k = \sigma(X_1, \ldots, X_k)$ for $k \geq 1$. Let $Y_k = \mathbb{E}[Z|\mathcal{F}_k]$. Then the sequence $\{Y_k\}_{k=1,2,\ldots}$ is a martingale.

Proof: We see that $\mathbb{E}[|Y_k|] = \mathbb{E}[|\mathbb{E}[Z|\mathcal{F}_k]|] < \infty$ because Z is integrable. Also, for $k \ge 1$,

$$\mathbb{E}[Y_k|\mathcal{F}_{k-1}] = \mathbb{E}[\mathbb{E}[Z|\mathcal{F}_k]|\mathcal{F}_{k-1}] = \mathbb{E}[Z|\mathcal{F}_{k-1}] = Y_{k-1},$$

where the second equality holds by the Tower Property. We conclude that $\{Y_k\}_{k=1,2,...}$ is a martingale.

Exercise: Martingale difference.

Sometimes we work with the difference of consecutive terms of a martingale. Suppose $\{Y_k\}_{k=0,1,2,...}$ is a martingale adapted to the filtration $\{\mathcal{F}_k\}_{k=0,1,2,...}$. Let $\{D_m\}_{m=1,2,...}$ be the sequence defined by $D_m = Y_m - Y_{m-1}$. Then $\mathbb{E}[D_m|\mathcal{F}_{m-1}] = 0$ for all m and $\{D_m\}_{m=1,2,...}$ is adapted to the filtration $\{\mathcal{F}_m\}_{m=1,2,...}$.

Proof: We see that

$$\mathbb{E}[D_m|\mathcal{F}_{m-1}] = \mathbb{E}[Y_m - Y_{m-1}|\mathcal{F}_{m-1}] = \mathbb{E}[Y_m|\mathcal{F}_{m-1}] - \mathbb{E}[Y_{m-1}|\mathcal{F}_{m-1}] = Y_{m-1} - Y_{m-1} = 0.$$

 D_m is \mathcal{F}_m -measurable because $D_m = Y_m - Y_{m-1}$, and Y_m and Y_{m-1} are both \mathcal{F}_m -measurable.

Now we relate martingale differences to the concept of sub-exponential variables.

Theorem 4.3 Let $\{D_k\}_{k=1,2,...}$ be a martingale difference with respect to $\{\mathcal{F}_k\}_{k=1,2,...}$ such that $\mathbb{E}\left[e^{\lambda D_k}|\mathcal{F}_{k-1}\right] \leq e^{\lambda^2 \nu_k^2/2}$ a.s. for $|\lambda| < \frac{1}{\alpha_k}$ and $\nu_k, \alpha_k > 0$. Then

- 1. $\sum_{k=1}^{n} D_k \in SE\left(\sum_{k=1}^{n} \nu_k^2, \max \alpha_k\right)$
- 2. Where $\nu_*^2 = \sum_{k=1}^n \nu_k^2$, $\alpha_* = \max_k \alpha_k$, and $t \ge 0$,

$$\mathbb{P}\left(\left|\sum_{k=1}^{n} D_{k}\right| \ge t\right) \le \begin{cases} 2e^{-t^{2}/(2\nu_{*}^{2})} & : t \le \frac{\nu_{*}^{2}}{\alpha_{*}} \\ 2e^{-t/(2\alpha_{*})} & : t > \frac{\nu_{*}^{2}}{\alpha_{*}} \end{cases}$$

Proof: To prove statement 1, we see that for $|\lambda| < \frac{1}{\max \alpha_k}$,

$$\mathbb{E}\left[e^{\lambda \sum_{k=1}^{n} D_{k}}\right] = \mathbb{E}\left[\mathbb{E}\left[e^{\lambda \sum_{k=1}^{n} D_{k}} | \mathcal{F}_{n-1}\right]\right]$$
(4.1)

$$= \mathbb{E}\left[e^{\lambda \sum_{k=1}^{n-1} D_k} \mathbb{E}\left[e^{\lambda D_n} | \mathcal{F}_{n-1}\right]\right]$$
(4.2)

$$\leq e^{\lambda^2 \nu_n^2 / 2} \mathbb{E} \left[e^{\lambda \sum_{k=1}^{n-1} D_k} \right] \tag{4.3}$$

$$\leq e^{\lambda^2 \sum_{k=1}^n \nu_k^2 / 2} \tag{4.4}$$

(4.1) holds by the Tower Property. (4.2) holds because $e^{\lambda \sum_{k=1}^{n-1} D_k}$ is \mathcal{F}_{n-1} -measurable. (4.3) holds by the assumptions of Theorem 4.3. (4.4) can be derived by iterating the process of (4.1)-(4.3) n-1 more times. This shows that $\sum_{k=1}^{n} D_k \in SE\left(\sum_{k=1}^{n} \nu_k^2, \max \alpha_k\right)$.

Statement 2 follows directly by applying the concentration bound on means (sums, in this case) of sub-exponential random variables from the 9-11-17 lecture notes.

Corollary 4.4 (Azuma inequality.) Let $\{D_k\}_{k=1,2,...}$ be a martingale difference with respect to $\{\mathcal{F}_k\}_{k=1,2,...}$. Suppose $a_k \leq D_k \leq b_k$ a.s. for all k. Then for $t \geq 0$ and $n \in \mathbb{N}$,

$$\mathbb{P}\left(\left|\sum_{k=1}^{n} D_k\right| \ge t\right) \le 2 \exp\left\{-\frac{2t^2}{\sum_{k=1}^{n} (b_k - a_k)^2}\right\}.$$

Proof: This is a direct consequence of Theorem 4.3. Since $a_k \leq D_k \leq b_k$ a.s., D_k is sub-Gaussian with parameter at most $\sigma_k^2 = \frac{(b_k - a_k)^2}{4}$. (See properties of sub-Gaussian random variables from 8-30-17 lecture notes.) That implies that $\mathbb{E}[e^{\lambda D_k}] \leq e^{\lambda^2 \sigma_k^2/2}$ a.s., so $\mathbb{E}[e^{\lambda D_k} | \mathcal{F}_{k-1}] \leq e^{\lambda^2 \sigma_k^2/2}$ a.s. Using statement 2 from Theorem 4.3, we set $\nu_*^2 = \sum_{k=1}^n \sigma_k^2 = \frac{1}{4} \sum_{k=1}^n (b_k - a_k)^2$ and $\alpha_* = 0$. Then for $t \geq 0$,

$$\mathbb{P}\left(\left|\sum_{k=1}^{n} D_{k}\right| \ge t\right) \le 2 \exp\left\{-\frac{t^{2}}{2 \cdot \frac{1}{4} \sum_{k=1}^{n} (b_{k} - a_{k})^{2}}\right\} = 2 \exp\left\{-\frac{2t^{2}}{\sum_{k=1}^{n} (b_{k} - a_{k})^{2}}\right\}.$$

4.4 Bounded Differences: The Return of Section 4.2

We return to our problem from Section 4.2, where X_1, \ldots, X_n are independent random variables, $Z = f(X_1, \ldots, X_n)$ for some function $f, Z_k = \mathbb{E}[Z|X_1, \ldots, X_k]$, and D_k is the martingale difference given by $D_k = Z_k - Z_{k-1}$. We want to find a bound on $\mathbb{P}(|Z - \mathbb{E}(Z)| \ge t)$. To make this problem more tractable, we might impose on f the Bounded Difference Property.

Definition 4.5 (Bounded Difference Property.) A function $f : \mathbb{R}^n \to \mathbb{R}$ satisfies the Bounded Difference Property if for all $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ in the domain of f and for all $k = 1, \dots, n$,

$$\sup_{y} \left| f(x_1, \dots, x_{k-1}, x_k, x_{k+1}, \dots, x_n) - f(x_1, \dots, x_{k-1}, y, x_{k+1}, \dots, x_n) \right| \le L_k$$

for some positive constants L_1, \ldots, L_n . This can be seen as a Lipschitz condition with respect to Hamming distance.

The following theorem uses the Bounded Difference Property to conclude that $Z = f(X_1, ..., X_n)$ exhibits sub-Gaussian behavior when f satisfies the Bounded Difference Property.

Theorem 4.6 (Bounded Difference Inequality, or McDiarmid's Inequality.) Let (X_1, \ldots, X_n) be an n-dimensional random vector with independent components. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ satisfies the Bounded Difference Property with constants L_1, \ldots, L_n . Let $Z = f(X_1, \ldots, X_n)$. Then for all $t \geq 0$,

$$\mathbb{P}\left(|Z - \mathbb{E}(Z)| \ge t\right) \le 2\exp\left\{-\frac{2t^2}{\sum_{k=1}^{n} L_k^2}\right\}.$$

Proof: Recall that we can construct a martingale difference with terms $D_k = \mathbb{E}[Z|X_1,\ldots,X_k] - \mathbb{E}[Z|X_1,\ldots,X_{k-1}]$ for $1 \leq k \leq n$, and set $D_0 = \mathbb{E}[Z]$. Recall from Section 4.2 that $\sum_{k=1}^n D_k = Z - \mathbb{E}[Z]$. For $k = 1,\ldots,n$,

define

$$A_k = \inf_x \mathbb{E}[Z|X_1, \dots, X_{k-1}, X_k = x] - \mathbb{E}[Z|X_1, \dots, X_{k-1}]$$

$$B_k = \sup_x \mathbb{E}[Z|X_1, \dots, X_{k-1}, X_k = x] - \mathbb{E}[Z|X_1, \dots, X_{k-1}].$$

Then $A_k \leq D_k \leq B_k$ a.s. for k = 1, ..., n. We apply the Azuma inequality to show that for $t \geq 0$,

$$\mathbb{P}(|Z - \mathbb{E}[Z]| \ge t) = \mathbb{P}\left(\left|\sum_{k=1}^{n} D_k\right| \ge t\right) \le 2\exp\left\{-\frac{2t^2}{\sum_{k=1}^{n} (B_k - A_k)^2}\right\} \le 2\exp\left\{-\frac{2t^2}{\sum_{k=1}^{n} L_k^2}\right\}$$

since $|B_k - A_k| \le L_k$ for all k.

Example: Density estimation in L_1 .

Assumptions:

- $X_1, \ldots, X_n \stackrel{iid}{\sim} P$, where P has Lebesgue density p.
- Let K be a kernel. So $K : \mathbb{R} \to \mathbb{R}_{\geq 0}$ and $\int K(x)dx = 1$.

Our goal is to estimate the density p, which is a function on \mathbb{R} .

Define a random function \hat{p}_h by

$$\hat{p}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{X_i - x}{h}\right),\,$$

where h > 0 is the bandwidth. We use \hat{p}_h as an estimator of p. To see why this is a reasonable choice, let $p_h(x) = \mathbb{E}[\hat{p}_h(x)]$ for all $x \in \mathbb{R}$. Then $p_h(x) \geq 0$ and $\int p_h(x) dx = 1$. That means that $p_h(x) = \mathbb{E}[\hat{p}_h(x)]$ is a valid density on \mathbb{R} .

The total variation distance between \hat{p}_h and p is defined as $L_1(\hat{p}_h, p) = \int_{\mathbb{R}} |\hat{p}_h(x) - p(x)| dx$. We would like to show that $L_1(\hat{p}_h, p) \to 0$, but this is a challenging problem. However, we can at least show that $L_1(\hat{p}_h, p)$ satisfies the Bounded Difference Property.

The total variation distance $L_1(\hat{p}_h, p)$ is a function of the random variables X_1, \ldots, X_n . Thus, define $L_1(\hat{p}_h, p) = f(x_1, \ldots, x_n)$. Define $X^{(1)} = (x_1, \ldots, x_{k-1}, x, x_{k+1}, \ldots, x_n)$ and $X^{(2)} = (x_1, \ldots, x_{k-1}, y, x_{k+1}, \ldots, x_n)$. We see that

$$\left| f(x_1, \dots, x_{k-1}, x, x_{k+1}, \dots, x_n) - f(x_1, \dots, x_{k-1}, y, x_{k+1}, \dots, x_n) \right| \\
= \left| \int_{\mathbb{R}} \left| \frac{1}{nh} \sum_{i=1}^n K\left(\frac{X_i^{(1)} - x}{h}\right) - p(x) \right| dx - \int_{\mathbb{R}} \left| \frac{1}{nh} \sum_{i=1}^n K\left(\frac{X_i^{(2)} - x}{h}\right) - p(x) \right| dx \right| \\
\leq \frac{1}{nh} \int_{\mathbb{R}} \left| K\left(\frac{x - z}{h}\right) - K\left(\frac{y - z}{h}\right) \right| dz \\
\leq \frac{1}{nh} \left[\int_{\mathbb{R}} K\left(\frac{x - z}{h}\right) dz + \int_{\mathbb{R}} K\left(\frac{y - z}{h}\right) dz \right]$$

Setting $w = \frac{x-z}{h}$ and $w' = \frac{y-z}{h}$,

$$= \frac{1}{nh} \Big[h \int_{\mathbb{R}} K(w) dw + h \int_{\mathbb{R}} K(w') dw' \Big]$$

Since K is a density, both integrals equal 1, so this final expression equals $\frac{2}{n}$.

This shows that $L_1(\hat{p}_h, p)$ satisfies the bounded difference property with constant $\frac{2}{n}$ for each of the *n* components. Applying the Bounded Difference Inequality (McDiarmid's Inequality), we determine that for $t \geq 0$,

$$\mathbb{P}\left(\left|L_1(\hat{p}_h, p) - \mathbb{E}[L_1(\hat{p}_h, p)]\right| \ge t\right) \le 2\exp\left\{-\frac{2t^2}{n\left(\frac{2}{n}\right)^2}\right\} = 2\exp\left\{-\frac{nt^2}{2}\right\}.$$

This bound does not depend on the bandwidth h.

Example: Uniform deviation.

Let $X_1, \ldots, X_n \overset{iid}{\sim} P$ in \mathbb{R}^d . Let \mathcal{A} be a collection of subsets in \mathbb{R}^d . Construct an empirical measure $P_n(B) = \frac{1}{n} \sum_{i=1}^n I\{X_i \in B\}$, where the sets B are Borel. Often we are interested in $\sup_{A \in \mathcal{A}} |P(A) - P_n(A)|$. As an example, let d = 1 and $\mathcal{A} = \{(-\infty, x] : x \in \mathbb{R}\}$. Then $\sup_{A \in \mathcal{A}} |P(A) - P_n(A)| = \sup_{x} |F(x) - F_n(x)|$, where F(x) is the CDF of P and $F_n(x)$ is the empirical CDF.

 $P_n(A)$ satisfies the Bounded Difference Property with constants $\frac{1}{n}$ because changing one of the X_i s will change $P_n(A)$ by at most $\frac{1}{n}$. So changing one of the X_i s will change $\sup_{A \in \mathcal{A}} |P(A) - P_n(A)|$ by at most $\frac{1}{n}$. Applying the Bounded Difference Inequality,

$$\mathbb{P}\left(\left|\sup_{A\in\mathcal{A}}|P(A)-P_n(A)|-\mathbb{E}\left[\sup_{A\in\mathcal{A}}|P(A)-P_n(A)|\right]\right|\geq t\right)\leq 2\exp\left\{-\frac{2t^2}{\sum_{i=1}^n\left(\frac{1}{n}\right)^2}\right\}=2e^{-2t^2n}.$$

The choice of set A is nowhere in this bound.

References

- [BLM13] S. BOUCHERON and G. LUGOSI and P. MASSART, "Concentration inequalities: a nonasymptotic theory of independence," Oxford University Press, 2013.
 - [M07] D. MASSART, "Concentration inequalities and model selection," Springer Lecture Notes in Mathematics, vol 1605, 2007.