

I. Exercices

Compléter les tableaux de valeurs pour les expressions suivantes :

$$A(x) = -2x^2 + 3x - 1$$
 ; $B(x) = (1 - 2x)(3 - 4x)$

Valeurs de A(x)

×	-2	-1	0	$\frac{2}{3}$	1	2
A(x)						

Valeurs de B(x)

ж	-2	-1	0	$\frac{3}{4}$	1	2
B(x)						

Exercice 2 – Développements :

Développer et simplifier les expressions suivantes :

$$C(x) = (x-2)(1-3x)$$
 $D(x) = (2x+1)^2 - 4x$
 $E(x) = (2x-3)(1-4x) - (2-x)$
 $F(x) = (1+x)(2-3x) + 3x^2$

Exercice 3 – Multiple de 4 (*) :

Montrer que pour tout nombre premier impair p, (p+1)(p-1) est un multiple de 4.

Exercice 4 – Factorisations :

Factoriser les expressions suivantes :

$$G(x) = 4x + 12$$
 $H(x) = 3x^2 + 6x$
 $I(x) = x^2 + x$
 $J(x) = -5x + 5$
 $K(x) = (x + 1)(2 - x) - (x + 1)$
 $L(x) = (x + 1)(2 - x) - (x + 1)^2$
 $M(x) = x(2 - x) - (2 - x)(2 - 3x)$
 $N(x) = (x + 1)(1 - 2x) - 2(x + 1)(2 - 3x)$

Exercice 5 – Arithmétique :

Démontrer les propriétés suivantes :

- Un pair + un impair = impair
- Un pair × un impair = pair
- La somme de 3 entiers consécutifs est un multiple de 3
- La somme de deux multiples de 3 est un multiple de 3

Exercice 6 – Programme et affirmations :

Programme de calcul:

Choisir un nombre $x \to \text{calculer } (x+1)^2 - x^2$

Montrer que le résultat est 2x + 1. Vérifier les affirmations pour certains cas et généraliser.

Exercice 7 – Expression à factoriser :

$$A(x) = (x+1)(2-x) - 2(x+1)(2x+3)$$

Montrer la forme développée et la forme factorisée, puis calculer A(2).

Exercice 8 – Factorisation intermédiaire :

$$B(x) = 5x + 10 - (x+2)^2$$

Factoriser, développer et calculer B(-1).

Exercice 9 – Pythagore :

Soit un triangle ABC rectangle en A avec AB = 5 et BC = x + 7.

1. Montrer que $AC^2 = x^2 + 14x + 24$

2. Si x=6, calculer les longueurs, le périmètre et l'aire.

II. Corrigé

☑ Corrigé de l'exercice 1 :

Tableaux complétés :

A(x)

×	-2	-1	0	$\frac{2}{3}$	1	2
A(x)	-15	-6	-1	$\frac{1}{9}$	0	-3

B(x)

×	-2	-1	0	$\frac{3}{4}$	1	2
B(x)	55	21	3	0	1	15

☑ Corrigé de l'exercice 2 :

$$C(x) = -3x^2 + 7x - 2$$
 $D(x) = 4x^2 + 1$
 $E(x) = -8x^2 + 15x - 5$
 $F(x) = 2 - x$

Corrigé de l'exercice 3 :

$$(p+1)(p-1) = p^2 - 1$$

Comme p est impair, p-1 et p+1 sont pairs consécutifs \rightarrow leur produit est divisible par 4.

☑ Corrigé de l'exercice 4 :

$$G(x) = 4(x+3) \ H(x) = 3x(x+2) \ I(x) = x(x+1) \ J(x) = 5(-x+1) \ K(x) = (x+1)(1-x) \ L(x) = (x+1)(1-2x) \ M(x) = (2-x)(4x-2) \ N(x) = (x+1)(4x-3)$$

☑ Corrigé de l'exercice 5 :

- Pair + impair = impair car la somme d'un pair (2n) et d'un impair (2m+1) est 2(n+m) + 1 →
 impair
- Pair × impair = pair car 2n × (2m + 1) = 2n(2m + 1) → multiple de 2
- $n + (n+1) + (n+2) = 3n + 3 = 3(n+1) \rightarrow multiple de 3$
- 3a + 3b = 3(a + b) → multiple de 3

Corrigé de l'exercice 6 :

$$(x+1)^2 - x^2 = x^2 + 2x + 1 - x^2 = 2x + 1$$

Valeurs testées : pour x=3 on a 7 ; pour x=-2, on a -3. Cela vérifie l'expression.

Corrigé de l'exercice 7 :

$$A(x) = (x+1)(2-x) - 2(x+1)(2x+3) = (x+1)[(2-x) - 2(2x+3)] = (x+1)(-5x-4)$$

 $A(2) = (2+1)(-10-4) = 3 \times (-14) = -42$

☑ Corrigé de l'exercice 8 :

$$B(x) = 5x + 10 - (x + 2)^2 = 5x + 10 - (x^2 + 4x + 4) = -x^2 + x + 6$$

 $B(-1) = -1 + (-1) + 6 = 4$

☑ Corrigé de l'exercice 9 :

$$AC^2 = (x+7)^2 - 25 = x^2 + 14x + 49 - 25 = x^2 + 14x + 24$$
 Si $x=6$: $AC=12$, $BC=13$, $AB=5$ Périmètre $=30$; Aire $=\frac{1}{2} \times AB \times AC = \frac{1}{2} \times 5 \times 12 = 30$