DHANAMANJURI UNIVERSITY

Examination- 2024 (June)
Four-year course B.A/B.Sc. 2nd Semester

Name of Programme : B.A/B.Sc. Mathematics

Paper Type : SEC (Theory)

Paper Code : SMA-003

Paper Title : Transportation and Game Theory

Full Marks: 40

Pass Marks: 16 Duration: 2 Hours

The figures in the margin indicate full marks for the questions

Answer the following questions:

- 1. Choose and rewrite the correct answer for the following questions: $1 \times 4 = 4$
 - a) The number of constraints in a general transportation problem having m origins and n destinations is

i) m + 1.

ii) n+1.

iii) m+n.

iv) m-n.

- b) If v is the value of the game then it will always satisfy the inequality
 - i) $minimax \le v \le maximin$.
 - ii) $maximin \leq v \leq minimax$.
 - iii) minimax = v = maximin.
 - iv) $minimax \leq maximin \leq v$.
- c) In a game, when the sum of gains of one player is equal to sum of losses of the other player, the situation is known as

i) fair game.

ii) zero-sum game.

iii) conflicting game.

iv) biased game.

- d) In a pure strategy game
- 1) any strategy may be selected arbitrarily.
- ii) both players select their optimal strategy
- iii) a particular strategy is selected by each player
- iv) none of the above.

2. Answer the following questions:

 $1 \times 6 = 6$

- What do you mean by a saddle point of a game?
- 6) Define value of a game.
- 0 What is a balanced transportation problem?
- 9 Define basic feasible solution of a general transportation
- c Define a game.
- When is the basic feasible solution said to be degenerate?

3. Answer the following questions:

 $3 \times 4 = 12$

- a) Write the steps of North West Corner Method for finding the initial basic feasible solution of a transportation problem.
- Obtain an initial basic feasible solution to the following method. transportation problem using the Vogel's approximation

Demand	03	02	O _J	
5	4	12	10	D_1
15	14	7	2	D_2
15	16	9	20	D_3
15	18	20	11	D_4
	10	25	15	Supply

Page 2 of 4

c) The pay off matrix of a game is given below. Check if it has a saddle point and find the solution.

	Player A						
As	A4	A ₃	A ₂	Aı			
0	-6	3	0.	4 11	B ₁		
0	1	2	-3 -5	0	B ₂	Play	
6	-1	3	-5	1	B ₃	er B	
0	0	4	-7	. 7	B4		
0	5	3	5	-1	B5		

9 Solve the following game using dominance property

	T Carlos	Company X		1000年代の	COST COST
D	C	В	A		
2	-3	6	6	P	Com
-3	-2	1	-2	Q	any Y
7	-2	12	4	R	
7	6	3	1	S	

4 Answer any two of the following questions:

 $9 \times 2 = 18$

Derive the formula for solving any 2x2 two person zero sum player A is game without any saddle point where the pay off matrix of

	Player A				
A ₂	Aı				
a21	all	B ₁	Player B		
a22	812	B ₂			

b) Find the solution of the game whose payoff matrix is as follows:

125/9	Player B			
1	图上	B ₂		
0	A ₁	1-	-3	
17.70	A ₂	-/3	5	
Player	A ₃	A-1.	6	
A	A ₄	4	1	
3.0	A ₅	2	2	
Sent to	A ₆	-5	0	

c) Consider the information about the cost of performing different jobs by different persons. Using this information, state the optimal assignment of job and the total cost of assignment.

25 425	Job 1	Job 2	Job 3	Job 4	Job 5
Person A	27	18	-	20	21
Person B	31	24	21	12	17
Person C	20	17	20	-	16
Person D	22	28	20	16	27

d) Determine an initial basic feasible solution of the following transportation problem by Vogel's approximation method. Test the optimality of the solution by using UV method and find the optimal solution.

817 - 612		Destin	nation		
	P	Q	R	S	Availability
Source A	21	16	25	13	11
Source B	17	18	14	23	13
Source C	32	27	18	41	19
Requirements →	6	10	12	15	19