Panel Data Models with Fixed Effects

Yuxin Wang, Zelin Ren

Febrary 2021

Content

- ► Pooled Estimator
- ► Fixed Effects Models
- Monte Carlo Simulations

Panel Data

- Panel data consist of observations on many individual economic units over two or more periods of time.
- ▶ Common panel data include consumption y_{it} of a household i in a period t, or income x_{it} of household i in a period t.
- We are interested in the linear relationship between x_{it} and y_{it} :

$$y_{it} = \beta x_{it} + u_{it},$$

where u_{it} is an error term.

Pooled Estimator

$$y_{it} = \beta x_{it} + u_{it}$$

The pooled estimator $\hat{\beta}$ based on the observations $\{x_{it},y_{it}\}$ is the OLS estimator defined by

$$\hat{\beta} = \left[\sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \bar{x})^2 \right]^{-1} \left[\sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \bar{x})(y_{it} - \bar{y}) \right],$$

where

$$\bar{x} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} x_{it}$$

is the overall average of the observation, and \bar{y} is defined analogously.

Consistency Pooled Estimator

$$y_{it} = \beta x_{it} + u_{it}$$

$$\hat{\beta} = \left[\sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \bar{x})^2 \right]^{-1} \left[\sum_{i=1}^{N} \sum_{t=1}^{T} (x_{it} - \bar{x})(y_{it} - \bar{y}) \right]$$

- The pooled estimator is an OLS estimator.
- Py assuming the full rank condition and that the random variables $\{x_{it}\}$ and $\{u_{it}\}$ are i.i.d. across i and that $E[u_{it}\boldsymbol{x}_i] = 0$, we can deduce that $\hat{\beta}$ converges to β in probability as $N \to \infty$ for any fixed T.

Motivation of Fixed Effects

Suppose that we have the data set y_{it} and x_{it} , where

- $ightharpoonup y_{it}$: Consumption of household i in one country in period t;
- $ightharpoonup x_{it}$: Income of household i in period t.

The true relationship between x_{it} and y_{it} is

$$y_{it} = \beta x_{it} + u_{it},$$

where $u_{it} = \lambda_i f_t + \epsilon_{it}$ and

- λ_i: (Demeaned) Education of employed members of household i:
- ▶ f_t : Economic situation of the country in period t;
- $ightharpoonup \epsilon_{it}$: Unobserved error.

Should we use pooled estimator to estimate β ?

Motivation of Fixed Effects

$$y_{it} = \beta x_{it} + u_{it}, \qquad u_{it} = \lambda_i f_t + \epsilon_{it}$$

$$y_{it} \text{: consumption, } x_{it} \text{: income, } \lambda_i \text{: education, } f_t \text{: economic situation}$$

- ▶ The education λ_i and economic situation f_t are correlated with the income x_{it} of household.
- ▶ In particular, the regressor x_{it} is not exogenous.
- ▶ And the pooled estimator is not consistent in general.

Fixed Effects Models

The general interactive fixed effects models with \boldsymbol{r} factors take the following form

$$y_{it} = \beta x_{it} + \lambda_i' f_t + \epsilon_{it}$$
$$= \beta x_{it} + \sum_{s=1}^r \lambda_{is} f_{ts} + \epsilon_{it}.$$

- $\triangleright y_{it}, x_{it}$ are observable.
- ▶ The fixed effects λ_{is} and f_{ts} are unknown.
- \blacktriangleright We are interested in the true value of β .

An Accompanying Example

To make the notations as simple as possible, we look at the case where r=2:

$$y_{it} = \beta x_{it} + {\binom{\lambda_{i1}}{\lambda_{i2}}}' {\binom{f_{t1}}{f_{t2}}} + \epsilon_{it}$$

In the following, we are going to see different estimating strategy based on different forms of fixed effects.

Time Invariant Fixed Effects Model

$$y_{it} = \beta x_{it} + \left(\frac{\lambda_{i1}}{\lambda_{i2}}\right)' \begin{pmatrix} f_{t1} \\ f_{t2} \end{pmatrix} + \epsilon_{it}$$

By setting

$$\begin{pmatrix} \lambda_{i1} \\ \lambda_{i2} \end{pmatrix} = \begin{pmatrix} \alpha_i \\ 0 \end{pmatrix} \text{ and } \begin{pmatrix} f_{t1} \\ f_{t2} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

the model reads

$$y_{it} = x_{it}\beta + \alpha_i + \epsilon_{it},$$

which is the time invariant fixed effects model.

$$y_{it} = \beta x_{it} + \left(\frac{\lambda_{i1}}{\lambda_{i2}}\right)' \begin{pmatrix} f_{t1} \\ f_{t2} \end{pmatrix} + \epsilon_{it}$$

By setting

$$\begin{pmatrix} \lambda_{i1} \\ \lambda_{i2} \end{pmatrix} = \begin{pmatrix} \alpha_i \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} f_{t1} \\ f_{t2} \end{pmatrix} = \begin{pmatrix} 1 \\ d_t \end{pmatrix},$$

the model reads

$$y_{it} = x_{it}\beta + \alpha_i + d_t + \epsilon_{it},$$

which is the additive fixed effects model.

Least Square Estimator with Known Numbers of Factors

$$y_{it} = \beta x_{it} + \left(\frac{\lambda_{i1}}{\lambda_{i2}}\right)' \begin{pmatrix} f_{t1} \\ f_{t2} \end{pmatrix} + \epsilon_{it}$$

The least square estimator $(\hat{\beta}, \hat{f}_{t1}, \hat{f}_{t2}, \hat{\lambda}_{i1}, \hat{\lambda}_{i2})$ is a minimiser of the objective function

$$\sum_{i=1}^{N} \sum_{t=1}^{T} |y_{it} - \beta x_{it} - f_{t1} \lambda_{i1} - f_{t2} \lambda_{i2}|^{2},$$

with the condition $\hat{f}_t'\hat{f}_t/T = I$ and $\hat{\lambda}_i'\hat{\lambda}_i$ is diagonal.

Asymptotic Theory of the Least Squares Estimator

- 1. Full rank assumption
- 2. (i.i.d. errors) ϵ_{it} is i.i.d. with mean zero and the eighth moment;
- 3. (Exogeneity) ϵ_{it} is independent of x_{it}, f_t, λ_i ;
- 4. The fixed effects f_t and λ_i have uniformly bounded eighth moment. And they obey the law of large numbers.
- ▶ The least square estimator $\hat{\beta}$ converges to the true value in probability as $N \to \infty$ and $T \to \infty$.
- ightharpoonup There exists a symmetric matrix Ω such that

$$\sqrt{NT}(\hat{\beta} - \beta) \xrightarrow{d} N(0, \Omega).$$

Estimation Strategy

$$\operatorname{argmin}_{\beta, f_t, \lambda_i} \sum_{i=1}^{N} \sum_{t=1}^{T} |y_{it} - \beta x_{it} - f_{t1} \lambda_{i1} - f_{t2} \lambda_{i2}|^2,$$

lacktriangle We start with some $eta^{(0)}$. Then we can choose $\hat{\lambda}_i^{(1)}$ and $\hat{f}_t^{(1)}$ that minimise the residual

$$\sum_{i,t} \left(y_{it} - \beta^{(0)} x_{it} - \lambda_{i1} f_{t1} - \lambda_{i2} f_{t2} \right)^2.$$

 $lackbox{f Keep}$ both $\hat{m \lambda}_i^{(1)}$ and $\hat{f}_t^{(1)}$. Determine the minimiser $\hat{eta}^{(1)}$ of

$$\sum_{i,t} \left(y_{it} - \beta x_{it} - \hat{\lambda}_{i1}^{(1)} \hat{f}_{t1}^{(1)} - \hat{\lambda}_{i2}^{(1)} \hat{f}_{t2}^{(1)} \right)^2.$$

Do the above step inductively.

Remarks: Starting Values

- ▶ The algorithm generates a sequence of random variables.
- ► Whether it converges to the true value depends on the starting value.
- A popular choice of starting value is the pooled estimator. It is not always optimal.

Remarks: Number of Factors

- ▶ So far we have seen the interactive effects estimator $\hat{\beta}(r)$ with known number of factors r.
- ightharpoonup In practice, r is usually unknown.
- ▶ However, $\hat{\beta}(s)$ are still consistent if $s \geq r$, where r is the true number of factors. The estimator $\hat{\beta}(s)$ is less efficient than $\hat{\beta}(r)$.

Estimation of the Number of Factors

$$y_{it} = \beta x_{it} + \lambda_i' \boldsymbol{f}_t + \epsilon_{it}$$

- ▶ The number r can be estimated consistently, if β is known.
- For every natural number s, estimate $\lambda_i^{(s)}$ and $f_t^{(s)}$, as s dimensional vectors.
- lacksquare Calculate the residual $V(s)=y_{it}-eta x_{it}-\hat{m{\lambda}}_{i}^{\prime(s)}\hat{m{f}}_{t}^{(s)}$
- ▶ Choose a function g(N,T) that converges to 0 sufficiently fast as N and $T \to \infty$.
- ▶ Define the criterion function C(s) = V(s) + sg(N, T).
- ▶ The quantity \hat{r} that minimises C is a consistent estimator of r.

Estimation of Interactive Fixed Effects Models with Unknown Numbers of Factors

$$y_{it} = \beta x_{it} + \lambda_i' \boldsymbol{f}_t + \epsilon_{it}$$

We can start with a large s, compute $\hat{\beta}(s)$, estimate \hat{r} based on $\hat{\beta}(s)$, and compute $\hat{\beta}(\hat{r})$.

Monte Carlo Simulations

- Compare the performance of the estimators in different models.
- ► All the plots and tables are replicated under 100 times of simulations.

$$y_{it} = \beta x_{it} + u_{it}$$

First let us look at an additive fixed effects model

$$y_{it} = \beta_1 x_{it,1} + \beta_2 x_{it,2} + \alpha_i + \xi_t + \epsilon_{it}.$$

- $\beta_1 = 1, \quad \beta_2 = 3.$
- ▶ Fixed effects: $\alpha_i, \xi_t \stackrel{\text{i.i.d}}{\sim} N(0,1)$.
- Regressor:

$$\begin{split} x_{it,1} &= 3 + 2\alpha_i + 2\xi_t + \eta_{it,1}, \ \eta_{it,1} \overset{\text{i.i.d}}{\sim} N(0,1). \\ x_{it,2} &= 3 + 2\alpha_i + 2\xi_t + \eta_{it,2}, \ \eta_{it,2} \overset{\text{i.i.d}}{\sim} N(0,1). \end{split}$$

▶ Error term: $\epsilon_{it} \stackrel{\text{i.i.d}}{\sim} N(0,4)$.

Figure: Estimation of $\beta_1=1$ and $\beta_2=3$

- Both estimators are consistent, but within estimator is more efficient than interactive-effects estimator.
- ► Interactive-effects estimator does not work well in small N, but it shows consistency under large sample size.

Figure: Estimation of $\beta_1 = 1$ and $\beta_2 = 3$

- Both estimators are consistent, but within estimator is more efficient than interactive-effects estimator.
- ► Interactive-effects estimator does not work well in small N, but it shows consistency under large sample size.

Starting Values of Interactive-effects Estimator

A popular choice of starting value is the pooled estimator. It is not always optimal.

	pooled			two-way		
N	Т	$\beta_1 = 1$	$\beta_2 = 3$	$\beta_1 = 1$	$\beta_2 = 3$	
50	100	1.155	3.156	1.057	3.060	
100	50	1.150	3.149	1.046	3.043	
100	100	1.120	3.119	1.006	3.007	

We found that two-way estimator works better than pooled estimator in additive fixed effects model.

Interactive Fixed Effects Model

$$y_{it} = \beta_1 x_{it,1} + \beta_2 x_{it,2} + \alpha_i + \xi_t + \epsilon_{it}$$

Now let us move to a more complex model

$$y_{it} = \beta_0 + \beta_1 x_{it,1} + \beta_2 x_{it,2} + x_i \gamma + w_t \delta + \lambda_{i1} f_{t1} + \lambda_{i2} f_{t2} + \epsilon_{it}.$$

- $\beta_0 = 5, \beta_1 = 1, \beta_2 = 3, \gamma = 2, \delta = 4.$
- ▶ Fixed effects: $\lambda_{i,1}, \lambda_{i,2}, f_{t,1}, f_{t,2} \stackrel{\text{i.i.d}}{\sim} N(0,1)$.
- Regressor:

$$\begin{aligned} x_{it,1} &= 1 + \lambda_{i1} f_{t1} + \lambda_{i2} f_{t2} + \lambda_{i1} + \lambda_{i2} + f_{t1} + f_{t2} + \eta_{it,1}. \\ x_{it,2} &= 1 + \lambda_{i1} f_{t1} + \lambda_{i2} f_{t2} + \lambda_{i1} + \lambda_{i2} + f_{t1} + f_{t2} + \eta_{it,2}. \\ x_i &= \lambda_{i1} + \lambda_{i2} + e_i, \ e_i \stackrel{\text{i.i.d}}{\sim} N(0,1). \\ w_t &= f_{t1} + f_{t2} + \eta_t, \ \eta_t \stackrel{\text{i.i.d}}{\sim} N(0,1). \end{aligned}$$

▶ Error term: $\epsilon_{it} \stackrel{\text{i.i.d}}{\sim} N(0,4)$.

Interactive Fixed Effects Model

Figure: Estimation of $\beta_1 = 1$ and $\beta_2 = 3$

- ▶ Within estimator can only estimate β_1 and β_2 , and it is inconsistent.
- Interactive-effects estimator can estimate all the coefficients $(\beta_0, \beta_1, \beta_2, \gamma, \delta)$ and give consistent estimations.

Interactive Fixed Effects Model

Figure: MSE of β_1

► MSE decreases as *N* increases.

Least Square Estimator with Unknown Numbers of Factors

- Previously in the models, we know that real factor number is equal to 2. But what would happen if we do not know the real value of r?
- Let us look at the cases where number of factors is not correctly estimated.

Least Square Estimator with Unknown Numbers of Factors

Figure: Estimation of $\beta_1 = 1$, true r = 2

- ▶ With fewer factor number, it will be biased and inconsistent.
- With more factor number, we have similar bias as the real one but the mean square error is higher.

Determine the Number of Factors

We use the method introduced before to estimate the number r of factors in the interactive fixed effect model

$$y_{it} = \beta_0 + \beta_1 x_{it,1} + \beta_2 x_{it,2} + x_i \gamma + w_t \delta + \lambda_{i1} f_{t1} + \lambda_{i2} f_{t2} + \epsilon_{it}$$

- ▶ Choose a function g(N,T) that converges to 0 sufficiently fast as N and $T \to \infty$.
- Several choice of g are chosen to estimate the number of factors.

Example I:

$$g(N,T) = \frac{N+T}{NT} \log \frac{NT}{N+T}$$

Determine the Number of Factors

ightharpoonup True r=2.

\overline{N}	T	I	Ш	Ш	IV	V	VI
100	10	8	8	8	8	8	8
100	20	5.1	4.22	6.58	1.88	1.78	1.96
100	50	2	2	2.94	2	2	2
100	100	2	2	3.5	2	2	2
10	100	8	8	8	8	8	8
20	100	5.26	4.52	6.72	1.82	1.74	1.98
50	100	2	2	2.96	2	2	2

- ▶ The tables shows that the estimator \hat{r} is consistent.
- ► The biased ones are not that bad as well since they overestimate the result.

Determine the Number of Factors

ightharpoonup True r=2.

\overline{N}	T	I	Ш	Ш	IV	V	VI
100	40	2	2	3.08	1.98	1.94	2
100	60	2	2	2.88	2	2	2
200	60	2	2	2	2	2	2
500	60	2	2	2	2	2	2

▶ If we increase the sample size further, we see that all estimators yield the correct number of factors.