VALIDATION OF SPECIES OBSERVATIONS

JESPER BLADT
13 MAY 2019 SENIOR ADVISOR

Mainly found on in bogs and wet heathland on poor, acidic soil in western parts of Denmark.

AARHUS

MAINTERSTY

13 HAY 2017

SENGRAPPIOR

PROBLEM STATEMENT

Given some properties of one specific location, estimate the probability of one specific species existing in this location.

Input:

- known species occurrences, presence and sometimes absence.
- properties of locations

(4)

Species observations for database of Dansih authorities

13 MAY 2019 SENIOR ADVISOR

Surface Geology Map of Denmark 1:25.000, version 4. This digital geological map shows the surface geology in 1 meters depth, just beneath the ploughing- and culture layers. The map is a result of the systematic geological mapping of Denmark. This version 4 from 2015 classifies 88 % of Denmark's area. Soiltypes of Denmark Postglacial lavers ES - Aeolian sand MG - Gravelly till X - Bed unkown, no information FG - Freshwater gravel MS - Sandy till IA - No access - Sample and Lateglacial layers MI - Silty till TG - Meltwater grave modelbased. FI - Freshwater silt TS - Meltwater sand ML - Clayey till BK - Danian bryozoan og corallian limestone FL - Freshwater clay TI - Meltwater silt MV - Alternating thin till beds ED - Eocene diatomite FP - Freshwater gyttja KMG - Limey till, gravelly EE - Eocene vulcanic ash TL - Meltwater clay TV - Alternating thin m FT - Freshwater peat KMS - Limey till, sandy G - Gravel / sand and gravel FV - Alternating thin fresh YG - Saltwater gravel KML - Limey till, clayey GC - Oligocene/miocene/pliocene brown coal FK - Tufa, bog- and lake marl YS - Saltwater sand Interglacial layers GL - Oligocene/miocene/pliocene mica clay FJ - Ocher and bog iron YL - Saltwater clay GS - Oligocene/miocene/pliocene mica sand Interglacial layers FHG - Delta gravel FHS - Delta sand Marginal glaciale lag QS - Saltwater sand K - Chalk and limestone FHL - Delta clay ZG - Glaciolacustrine gravel QL - Saltwater clay KS - Miocene quartz sand HG - Saltwater gravel ZS - Glaciolacustrine sand LL - Eocene clay, plastic clay Other layers HS - Saltwater sand BY - Town HI - Saltwater silt ZV - Alternating thin glacic SØ - Freshwate PKV - Pre-Quarternary layers HL - Saltwater clay Glacial layers HAV - Sea PL - Selandian clay, paleocene clay HP - Saltwater gyttja DG - Meltwater gravel TA - Technical and artificial of PS - Selandian sand, paleocene greensand HT - Saltwater peat DS - Meltwater sand RÅ - Pit RL - Eocene Røsnæs clay HV - Alternating thin salts DI - Meltwater silt LRÁ - Abandoned pit S - Sand HSG - Saltvands skalgrus DL - Meltwater clay XX LSL - Landslide SK - Campanien-mai DV - Alternating thin meltwater be SL - Eocene Søvind marl EK - Aeolian dune sand O - Rubbish dump ZK - Danien chalk / chalk and flint AARHUS UNIVERSITY

Ġ

Atlantic and continental biogeographic regions of Denmark. 5 regions often used in policy reporting.

All localities, Used to select 'pseudoabsences'.

133.000 localities

13 MAY 2019 I SENIOR ADVISOR

PROPERTIES OF THE GIVEN LOCATION

- polyTypeld: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', "
 - meadow, heathland, bog, dryGrass, forest, lake, saltmarsh, stream, extensiveField, field
- regionld: '1', '2', '3', '4', '5'
 - · NordJyl, VestJyl, OestJylFyn, SjLolFal, Bornholm
- · Bioreg: 'CON', 'ALT'
- soilType:

'DL','DSG','ED','EQ','ES','F','FYLD','GC','GL','GNG','GS','HAG','HG','HSL','HV','JV','KQ','KS','LL','ML','MSG','PAM','PL','ROG','SK','SO','SVG','T','VAG','Y','ZK',"

- distCoast: min = 0, max = 48991
- x_int: min = 441994, max = 892641
- y_{int} : min = 6050562, max = 6402150

JESPER BLADT 13 MAY 2019 SENIOR ADVISOR

PROPERTIES OF THE GIVEN LOCATION

OBJECTID;polyType;polyTypeld;regionName;regionId;bioreg;soilType;distCoast;x_int;y_int

1;saltmarsh;6;OestJylFyn;3;CON;HSL;200.0000000;583100;6278030

2;saltmarsh;6;NordJyl;1;CON;HSL;0.0000000;578370;6314280

3;saltmarsh;6;OestJylFyn;3;CON;HSL;0.0000000;601320;6090460

4;saltmarsh;6;OestJylFyn;3;CON;HSL;100.0000000;600240;6090210

5;saltmarsh;6;VestJyl;2;ATL;HSL;282.8427124;470900;6126590

6;saltmarsh;6;VestJyl;2;ATL;HSL;707.1068115;453440;6151850

7;saltmarsh;6;VestJyl;2;ATL;HSL;282.8427124;453750;6152190

8;saltmarsh;6;SjLoIFal;4;CON;HSL;100.0000000;643090;6121720

9;saltmarsh;6;NordJyl;1;CON;HSL;100.0000000;577970;6313560

10;saltmarsh;6;OestJylFyn;3;CON;HSL;316.2277527;600660;6090960

(3)

PROBLEM STATEMENT

Given some properties of one specific location, estimate the probability of one specific species existing in this location.

Input:

- known species occurrences, presence and 'absence'.
- properties of locations
 - First example:
 - Limonium Vulgare
 - 559 positive data points (first 459 for training and the rest 100 for testing)
 - Limonium_vulgare.txt
 - 559 negative data points (first 459 for training and the rest 100 for testing)
 - Limonium_vulgare_neg.txt

JESPER BLADT 13 MAY 2019 SENIOR ADVISOR

HINTS FOR THE EXERCISE

- 1. Treat he problem as a binary classification task
- 2. Procedures:
 - Read the two txt files, convert the 7 different properties in each line into a feature vector with 7 elements. The value of each element should range from 0 to 1.
 - Define the neural network.
 - Train the network using 459 positive feature vectors and 459 negative feature vectors.
 - Test the network using 100 positive and 100 negative feature vectors.

Ğ

