

National Institute of Technology Delhi

End Semester Examinations November 2016

Course Name: Network Analysis

Maximum Marks – 50 Total Time: 3:00 Hours

Course Code: EE-211

Note:

· All Questions are compulsory.

· Assume data where ever required.

Section A (01 mark each and all parts are compulsory)

- Q1) What is the time constant of RC circuit with $R = 100\Omega$ and $C = 2000\mu F$? (1)
- Q2) What is free and forced response?
- Q3) When 'supermesh' analysis is used? (1)
- Q4) Write the condition for critical damping in RLC series circuit?
- Q5) Define graph of a network. (1)
- Q6) What are planar and non-planar graphs? (1)
- Q7) Maximum power transfer occurs at a
- (a) 100% efficiency (b) 50% efficiency (c) 25% efficiency (d) 75% efficiency (1)
- Q8) State compensation theorem. (1)
- Q9) Write the expression for Millman's equivalent source of n number of parallel connected sources. (1)
- Q10) What are links and twigs?

Section B (Any four (04) are to be attempted)

Q11) In the circuit shown, find the current in 4Ω resistance by superposition principle. (5)

Q12) The switch in the circuit has been closed for a long time. At t = 0, the switch is opened. Calculate i(t) for t > 0.

Q13) Draw the graph of the network shown. Select a suitable tree and obtain the tie-set matrix. Write down the KVL equations from the tie-set matrix. (5)

(5)

Q14) Determine the node voltages of the circuit shown by using cut-set schedule.

Q15) In the circuit shown, determine the branch currents and voltages and hence verify Tellegen's theorem.

Section C (Any two (02) are to be attempted)

Q16) In a series RLC circuit, the maximum inductor voltage is twice the capacitor voltage maximum. However, the circuit current lags the applied voltage by 30° & the instantaneous drop across the inductance is given by $V_L = 100$ sin 377t Volt. Assuming the resistance being 20Ω , find the values of inductance & capacitance. (10)

Q17) The applied voltage in a parallel RLC circuit is given by, $V = 50 \sin (5000t + \pi/4)V$. If the values of R.L & C be given as 20Ω , 1.6×10^{-3} H & 20 μ F, find the total current supplied by the source. (10)

Q18) The circuit was in steady state with the switch is in position 1. Find the current i(t) for t>0, If the switch is moved from position 1 to 2 at t=0. (10)

