Recall that a basis is called *orthogonal* if its vectors are mutually orthogonal.

A basis $\{\bar{\mathbf{q}}_1,\ldots,\bar{\mathbf{q}}_n\}$ is called orthonormal if

- **1** it is orthogonal: $\bar{\mathbf{q}}_i^T \bar{\mathbf{q}}_j = 0, i \neq j$
- **2** each vector has unit length: $||\bar{\mathbf{q}}_i|| = 1$, i = 1, ..., n

Given orthogonal basis $\{\bar{\mathbf{w}}_1, \dots, \bar{\mathbf{w}}_n\}$ we always construct orthonormal basis $\{\bar{\mathbf{q}}_1, \dots, \bar{\mathbf{q}}_n\}$, where $\bar{\mathbf{q}}_i = \bar{\mathbf{w}}_i/||\bar{\mathbf{w}}_i||$

A matrix is called orthonormal id its columns form an arthonormal basis.

If matrix Q is orthonormal then $Q^TQ = I$

$$Q^{T}Q = \begin{bmatrix} -\bar{\mathbf{q}}_{1}^{T} - \\ -\bar{\mathbf{q}}_{2}^{T} - \\ \vdots \\ -\bar{\mathbf{q}}_{n}^{T} - \end{bmatrix} \begin{bmatrix} \begin{vmatrix} & & & & & \\ \bar{\mathbf{q}}_{1} & \bar{\mathbf{q}}_{2} & \dots & \bar{\mathbf{q}}_{n} \\ & & & & & \end{vmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} \bar{\mathbf{q}}_{1}^{T}\bar{\mathbf{q}}_{1} & \bar{\mathbf{q}}_{1}^{T}\bar{\mathbf{q}}_{2} & \dots & \bar{\mathbf{q}}_{1}^{T}\bar{\mathbf{q}}_{n} \\ \bar{\mathbf{q}}_{2}^{T}\bar{\mathbf{q}}_{1} & \bar{\mathbf{q}}_{2}^{T}\bar{\mathbf{q}}_{2} & \dots & \bar{\mathbf{q}}_{2}^{T}\bar{\mathbf{q}}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{\mathbf{q}}_{n}^{T}\bar{\mathbf{q}}_{1} & \bar{\mathbf{q}}_{n}^{T}\bar{\mathbf{q}}_{2} & \dots & \bar{\mathbf{q}}_{1}^{n}\bar{\mathbf{q}}_{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Let Q be orthonormal

- If Q square then $Q^{-1} = Q^T$
- Q preserves dot products: $(Q\bar{\mathbf{x}})^T)Q\bar{\mathbf{y}}) = \bar{\mathbf{x}}^T\bar{\mathbf{y}}$
- Q preserves length $||Q\bar{\mathbf{x}}|| = ||\bar{\mathbf{x}}||$
- Product of two orthonormal matrices is orthonormal

$$Q^TQ = I = S^TS \Rightarrow (QS)^T(QS) = S^TQ^TQS = I$$

ullet Projection of $ar{\mathbf{b}}$ onto space spanned by columns of Q is

$$\bar{\mathbf{p}} = Q(Q^T Q)^{-1} Q^T \bar{\mathbf{b}} = Q Q^T \bar{\mathbf{b}}$$

Let Q be orthonormal

Solution to least squares problem $Q \bar{\mathbf{x}} = \bar{\mathbf{b}}$ is

$$\bar{\mathbf{x}} = (Q^T Q)^{-1} Q^T \bar{\mathbf{b}} = Q^T \bar{\mathbf{b}}$$

Orthogonal bases (matrices) are easier to work with. Questions:

- How we obtain an orthonormal basis of a vector space
- How we can use it to improve the solution to the least squares problem

Gram-Schmidt Orthogonalization process.

Let $\{\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n\}$ be basis for a vector space V. Our goal is to find an orthogonal basis $\{\bar{\mathbf{w}}_1, \dots, \bar{\mathbf{w}}_n\}$ of V.

Gram-Schmidt Orthogonalization process.

We construct orthogonal basis as follows:

$$\begin{array}{rcl} \bar{\mathbf{w}}_1 & = & \bar{\mathbf{v}}_1 \\ \bar{\mathbf{w}}_2 & = & \bar{\mathbf{v}}_2 - \frac{\bar{\mathbf{v}}_2 \cdot \bar{\mathbf{w}}_1}{\bar{\mathbf{w}}_1 \cdot \bar{\mathbf{w}}_1} \bar{\mathbf{w}}_1 \\ \bar{\mathbf{w}}_3 & = & \bar{\mathbf{v}}_3 - \frac{\bar{\mathbf{v}}_3 \cdot \bar{\mathbf{w}}_1}{\bar{\mathbf{w}}_1 \cdot \bar{\mathbf{w}}_1} \bar{\mathbf{w}}_1 - \frac{\bar{\mathbf{v}}_3 \cdot \bar{\mathbf{w}}_2}{\bar{\mathbf{w}}_2 \cdot \bar{\mathbf{w}}_2} \bar{\mathbf{w}}_2 \\ & \cdots \\ \bar{\mathbf{w}}_n & = & \bar{\mathbf{v}}_n - \frac{\bar{\mathbf{v}}_n \cdot \bar{\mathbf{w}}_1}{\bar{\mathbf{w}}_1 \cdot \bar{\mathbf{w}}_1} \bar{\mathbf{w}}_1 - \frac{\bar{\mathbf{v}}_n \cdot \bar{\mathbf{w}}_2}{\bar{\mathbf{w}}_2 \cdot \bar{\mathbf{w}}_2} \bar{\mathbf{w}}_2 - \cdots - \frac{\bar{\mathbf{v}}_n \cdot \bar{\mathbf{w}}_{n-1}}{\bar{\mathbf{w}}_{n-1} \cdot \bar{\mathbf{w}}_{n-1}} \bar{\mathbf{w}}_{n-1} \end{array}$$

Orthonormal basis:

$$\{\bar{\mathbf{q}}_i \mid \bar{\mathbf{q}}_i = \bar{\mathbf{w}}_i/||\bar{\mathbf{w}}_i||, i = 1, \ldots, n\}$$

Gram-Schmidt Orthogonalization process.

- Each $\bar{\mathbf{w}}_k$ is a linear combination of $\bar{\mathbf{v}}_k$ and $\bar{\mathbf{w}}_1, \dots, \bar{\mathbf{w}}_{k-1}$. Therefore $\bar{\mathbf{w}}_k$ is a linear combination of $\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n$, i.e. $\bar{\mathbf{w}}_k \in V$
- Set $\{\bar{\mathbf{w}}_1, \dots, \bar{\mathbf{w}}_n\}$ is orthogonal and, hence, vectors are linearly independent
- Since dim(V) = n and $\{\bar{\mathbf{w}}_1, \dots, \bar{\mathbf{w}}_n\}$ are linearly independent vectors which span V then they form a basis for V.

Any finite-dimensional vectors space has an orthogonal basis.

- Let $\{\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_n\}$ and $\{\bar{\mathbf{q}}_1, \dots, \bar{\mathbf{q}}_n\}$ be orthonormal basis that spans the same space.
- Set $A = [\bar{\mathbf{v}}_1 \ \dots \ \bar{\mathbf{v}}_n]$ and $Q = [\bar{\mathbf{q}}_1 \ \dots \ \bar{\mathbf{q}}_n]$

A = QR, where R is upper triangular

Find R:

$$A = QR \Rightarrow Q^T A = Q^T QR = R$$

$$R = \begin{bmatrix} -\bar{\mathbf{q}}_1^T - \\ -\bar{\mathbf{q}}_2^T - \\ \vdots \\ -\bar{\mathbf{q}}_n^T - \end{bmatrix} \cdot \begin{bmatrix} \begin{vmatrix} & & & & & \\ & & & \\ & & \bar{\mathbf{v}}_1 & \bar{\mathbf{v}}_2 & \cdots & \bar{\mathbf{v}}_n \\ & & & & & \end{vmatrix} = \begin{bmatrix} \bar{\mathbf{q}}_1^T \bar{\mathbf{v}}_1 & \bar{\mathbf{q}}_1^T \bar{\mathbf{v}}_2 & \cdots & \bar{\mathbf{q}}_1^T \bar{\mathbf{v}}_n \\ 0 & \bar{\mathbf{q}}_2^T \bar{\mathbf{v}}_2 & \cdots & \bar{\mathbf{q}}_1^T \bar{\mathbf{v}}_1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \bar{\mathbf{q}}_n^T \bar{\mathbf{v}}_n \end{bmatrix}$$

The QR factorization is A = QR

$$\begin{bmatrix} & | & & | & & | \\ \mathbf{\bar{v}}_1 & \mathbf{\bar{v}}_2 & \cdots & \mathbf{\bar{v}}_n \\ | & | & & | & \end{bmatrix} = \begin{bmatrix} & | & | & & | \\ \mathbf{\bar{q}}_1 & \mathbf{\bar{q}}_2 & \cdots & \mathbf{\bar{q}}_n \\ | & | & & & | \end{bmatrix} \cdot \begin{bmatrix} \mathbf{\bar{q}}_1^T \mathbf{\bar{v}}_1 & \mathbf{\bar{q}}_1^T \mathbf{\bar{v}}_2 & \cdots & \mathbf{\bar{q}}_1^T \mathbf{\bar{v}}_n \\ 0 & \mathbf{\bar{q}}_2^T \mathbf{\bar{v}}_2 & \cdots & \mathbf{\bar{q}}_1^T \mathbf{\bar{v}}_1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{\bar{q}}_n^T \mathbf{\bar{v}}_n \end{bmatrix}$$

- Given leat squares problem $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ we would like reduce it to $Q\bar{\mathbf{x}} = \bar{\mathbf{b}}'$ for some orthonormal matrix Q
- QR factorization gives A = QR
- Solution to $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$:

$$A^{T}A\bar{\mathbf{x}} = A^{T}\bar{\mathbf{b}} \Rightarrow ((QR)^{T}(QR))\bar{\mathbf{x}} = (QR)^{T}\bar{\mathbf{b}}$$

$$\Rightarrow (R^{T}Q^{T}QR)\bar{\mathbf{x}} = R^{T}Q^{T}\bar{\mathbf{b}} \Rightarrow R^{T}R\bar{\mathbf{x}} = R^{T}Q^{T}\bar{\mathbf{b}}$$

$$\Rightarrow R\bar{\mathbf{x}} = Q^{T}\bar{\mathbf{b}}$$

• Recall that R is upper triangular. We can solve for $\bar{\mathbf{x}}$ using back substitution!

