Day 4 & 5

Term Weighting & Filtering

The initial m doc set has turned into k terms

- Each term memorizes the frequency with which it appeared in each document
- k*m matrix where row = doc, col = term

Document-Term Matrix (DTM)

	T1	T2	Т3
D1	5 (term T1 appeared in D1 5 times)	0	2
D2	0	3	1
D3	2	0	0
D4	0	2	1

Inverted (index) File

Transposing the DTM results in a Term-Document Matrix (TDM) which functions as an index

- TDM is usually called the "inverted file" in principle

In practice simple TDM decreases utility

- The matrix is very sparse (most elements = 0)
- It takes a long time to find the query term in the index

(Transpose of DTM above)	D1	D2	D3	D4
T1	5 (frequency of the term in the doc)	0	2	0
T2	0	3	0	2
Т3	2	1	0	1

T1 -> D1 -> D3

T2 -> D2 -> D4

T3 -> D1 -> D2 -> D4

Xxx???? list solves the sparsity problem

- Google index based on everything ngram, word, phrase
- Ngram variation skip-gram
- We have billions of terms & docs, in practice to use a matrix

Searching Algorithm & Data Structures: Preliminary

L[n] = L[0], L[1], ..., L[n-1]: a list of integers

- In our case, L is a list of index terms
- Any data can be asked if the order of any possible pairs of instances is defined

Task: Given w as a query, return such x that satisfies L[x] (index)= w (term) (finding position of w in list L)

- We want to minimize of comparison for 2 values
- Time complexity f(n) = O(g(n)); $n → \infty$

Linear Search:

- w is compared to L[x] 1 by 1 while scanning L -> r
- 9 11 19 6 13 15 17 12 9

Binary Search:

- W is compared to the middle of remaining list and moves to the left (w < L[x]) or right (w > L[x]), otherwise found w = L[x]
- Requires a sorted list, so we preprocess the list by sorting it.
- 1(left) 3 4 6 **9(w = 4, start)** 11 12 15 17 19(right)
- w(=4) < 9, move to the left
- w(=4) < 6, move to the left
- w(=4) = 4, found
- L[2] = W

Linear search only excludes 1 element in each iteration

Binary search can halve halves the search space in each iteration

- Disadvantage of binary search: you have to re-sort the list every time the data is updated
- How to overcome this weakness?
 - Use a BST

Logical Operation

- Logical operator (n=#operands)
 - Unary (n=1) NOT
 - Binary (n=2) OR, AND
- Order of precedence: NOT > AND > OR
- Truth table

Α		NOT A	
0		1	
1		0	
A	В		A∪B
0	0		0
0	1		1
1	0		1
1	1		1
A	В		A∩B
0	0		0
0	1		0

1	0	0
1	1	1

Fundamental Retrieval Models

- Exact match: Boolean
- Best match (or Ranking)
 - Vector space
 - Probabilistic
 - Language
 - Learning to rank (L2R)
 - (Neural network)

Boolean retrieval model

- In principle: term = bit string (seq of 0/1)
 - Term Tk = line of TDM (term dead mining) for Tk
- Query Q = a logical formula of Q1 ... Qi ...
 - Retrieved docs R = solution for Q
 - Di is retrieved if Di >0

Q = (dog OR mouse) AND NOT cat

 $R = \{D2, D4\}$

- But, in practice it is prohibitive to compute I-o-n-g bit strings

	D1	D2	D3	D4
Cat	1	0	1	0
Dog	0	1	1	1
Mouse	1	1	0	0

Improving Boolean IR

List of docID containing the head term in ascending order

Dictionary Postings

Bison -> $1 \rightarrow 22 \rightarrow 53 \rightarrow 145 \rightarrow \#$ Cat -> $1 \rightarrow 53 \rightarrow 80 \rightarrow 172 \rightarrow 256 \rightarrow 404 \rightarrow \#$ Dog -> $9 \rightarrow 44 \rightarrow 53 \rightarrow \#$ sentinel (the end of list)

Efficiently identify and obtain documents whose bit element is 1

Example: Q = bison OR cat (resembles MERGE)

Any D(A) or D(B) can be added to the end of R: D(x) is docID where cursor x is pointing to

docID cannot be duplicated in R

If A or B meets sentinel (#), residue is added to R

if D(A) = # then D(C) <- L(B) (the rest of list B after A #)

if D(A) < D(B) then D(C) <- D(A), A++, C++ (if docID from two cursors different, pick the smaller one because the larger ID might appear in D(A) later but docID cannot be duplicated in R)

if D(A) = D(B) then D(C) <- D(A), A++, B++, C++

Bison -> 1 -> 22 (cursor A) -> 53 -> 145 -> #

Cat -> 1 -> 53 (cursor B) -> 80 -> **172** -> **256** -> **404** -> #

R -> 1 -> 22 (cursor C) -> ... #

***目的:比较A&B两个list的每一个docID,按照上面的规则copy到R