7. Eq. diferenciais ordinárias

- 7.1 Solução numérica de EDO.
- 7.2 Métodos de Runge-Kutta.
- 7.3 Métodos de Adams.
- 7.4 Comparação de métodos para EDO.
- 7.5 Sistemas de equações diferenciais ordinárias.
- 7.6 Estudos de caso:
 - Controle de poluição.
 - Deflexão de viga.
- 7.7 Exercícios.

Equações diferenciais ordinárias

- Ferramentas fundamentais para modelagem matemática de vários fenômenos físicos, químicos, biológicos etc.
- Fenômenos são descritos em termos de taxa de variação.
- $lue{}$ Taxa de variação da corrente i em função do tempo t, em um circuito RL

$$\frac{di(t)}{dt} = \frac{V - i(t)R}{L},$$

onde V: tensão entre dois pontos do circuito, R: resistência e L: indutância.

- Equação diferencial ordinária de primeira ordem.
- \Box Ordinária visto que a corrente i é função apenas de uma variável independente, o tempo t;

Solução de EDO

Se função definida em termos de duas ou mais variáveis, ter-se-ia uma equação diferencial parcial

$$\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = 0$$
 (Equação de Laplace).

- EDO é de primeira ordem quando a derivada de maior ordem é de ordem 1.
- \square Quando a equação contiver uma derivada de ordem n, ela é dita EDO de ordem n

$$L\frac{d^2i(t)}{dt^2} + R\frac{di(t)}{dt} + \frac{1}{C}i(t) = \frac{dV(t)}{dt}$$

sendo C a capacitância do circuito.

- Solução de EDO é a função que satisfaz a equação diferencial e certas condições iniciais na função.
- Resolver EDO analiticamente é encontrar uma solução geral contendo constantes arbitrárias.
- Determinar essas constantes de modo que a expressão combine com as condições iniciais.

Solução numérica de EDO

- Métodos analíticos são restritos apenas a algumas formas especiais de função.
- Nem toda EDO tem solução analítica.
- Métodos numéricos não possuem tal limitação.
- Solução numérica é obtida como uma tabela de valores da função em vários valores da variável independente.
- Solução analítica é uma relação funcional.
- Praticamente qualquer EDO pode ser resolvida numericamente.
- Se as condições iniciais forem alteradas, toda a tabela deve ser recalculada.
- Métodos numéricos para a solução de equações diferenciais ordinárias, sujeitas às condições iniciais.

Problema de valor inicial

Problema de valor inicial (PVI) de primeira ordem

$$\begin{cases} y' = f(x, y), \ y(a) = \eta, \\ a \le x \le b \ e - \infty \le y \le \infty. \end{cases}$$

- Solução do PVI é uma função y = y(x) contínua e diferenciável que satisfaz o PVI.
- □ Teorema estabelece as condições suficientes para a existência de uma única solução do PVI.
- □ Teorema (Lipschitz)

Seja f(x,y) uma função definida e contínua para todo (x,y) na região D definida por $a \le x \le b$ e $-\infty \le y \le \infty$, sendo a e b números finitos, e seja uma constante L tal que

$$||f(x,y) - f(x,y^*)|| \le L||y - y^*||$$

seja válida para todo $(x,y), (x,y^*) \in D$. Então, para algum η , existe uma única solução y(x) do PVI, onde y(x) é contínua e diferenciável para todo $(x,y) \in D$.

□ A inequação é conhecida como uma condição de Lipschitz e L como uma constante de Lipschitz.

Métodos numéricos para EDO

 $lue{}$ Calcular aproximação y_i da solução exata $y(x_i)$ do PVI nos pontos

$$x_i = a + ih, \ h = \frac{b-a}{m}, \ i = 0, 1, 2, \dots, m,$$

onde m é o número de subintervalos de [a,b] e h é o incremento ou passo.

Solução numérica do PVI será uma tabela contendo os pares (x_i, y_i) sendo que

$$y_i \approx y(x_i)$$
.

Método de Euler

 $lue{}$ Seja uma expansão da solução exata y(x), em série de Taylor, em torno do valor inicial x_0

$$y(x_0 + h) = y(x_0) + hy'(x_0) + \frac{h^2}{2}y''(x_0) + \dots$$

Truncando a série após o termo de derivada primeira, sendo $x_1 = x_0 + h$ e y_1 uma aproximação de $y(x_1)$ e sabendo que y' = f(x,y)

$$y_1 = y_0 + hf(x_0, y_0).$$

lacktriangle Sucessivas aproximações y_i de $y(x_i)$ podem ser obtidas pela fórmula de recorrência

$$y_{i+1} = y_i + hf(x_i, y_i)$$
.

- Fórmula conhecida como método de Euler.
- Leonhard Euler propôs este método em 1768.

Algoritmo: Euler para solução de PVI

```
Algoritmo Euler
{ Objetivo: Resolver PVI pelo método de Euler }
parâmetros de entrada a, b, m, y0
 { limite inferior, limite superior }
 { número de subintervalos e valor inicial }
parâmetros de saída VetX, VetY
 { Abscissas e solução do PVI }
 h \leftarrow (b-a)/m; x \leftarrow a; y \leftarrow y0
 \mathsf{Fxy} \leftarrow f(x,y)
 { Avaliar f(x,y) em x=x_0 e y=y_0 }
 VetX(1) \leftarrow x; VetY(1) \leftarrow y
 para i \leftarrow 1 até m faça
   x \leftarrow a + i * h
   y \leftarrow y + h * Fxy
   \mathsf{Fxy} \leftarrow f(x,y)
   { Avaliar f(x,y) em x=x_i e y=y_i }
   escrevai, x, y, Fxy
   VetX(i+1) \leftarrow x; VetY(i+1) \leftarrow y
 fim para
fim algoritmo
```

Exemplo

Calcular a solução do PVI

$$y' = x - 2y + 1$$
, com $y(0) = 1$,

no intervalo [0, 1], com m = 10 subintervalos.

Metodo de Euler

i	x	у	f(x,y)
0	0.00000	1.00000	-1.00000
1	0.10000	0.90000	-0.70000
2	0.20000	0.83000	-0.46000
3	0.30000	0.78400	-0.26800
4	0.40000	0.75720	-0.11440
5	0.50000	0.74576	0.00848
6	0.60000	0.74661	0.10678
7	0.70000	0.75729	0.18543
8	0.80000	0.77583	0.24834
9	0.90000	0.80066	0.29867
10	1.00000	0.83053	0.33894

Comparação com h = 0,1

Solução exata do PVI

$$y(x) = \frac{1}{4}(3e^{-2x} + 2x + 1).$$

i	x_i	y_i	$ y_i - y(x_i) $
0	0,0	1,0000	0,0000
1	0,1	0,9000	0,0140
2	0,2	0,8300	0,0227
3	0,3	0,7840	0,0276
4	0,4	0,7572	0,0298
5	0,5	0,7458	0,0301
6	0,6	0,7466	0,0293
7	0,7	0,7573	0,0277
8	0,8	0,7758	0,0256
9	0,9	0,8007	0,0233
10	1,0	0,8305	0,0210

☐ Método de Euler com h = 0,1 só forneceu uma decimal exata para o PVI.

Comparação com h = 0.01

i	x_i	y_i	$ y_i - y(x_i) $
0	0,0	1,0000	0,0000
10	0,1	0,9128	0,0012
20	0,2	0,8507	0,0020
30	0,3	0,8091	0,0025
40	0,4	0,7843	0,0027
50	0,5	0,7731	0,0028
60	0,6	0,7732	0,0027
70	0,7	0,7823	0,0026
80	0,8	0,7990	0,0024
90	0,9	0,8217	0,0022
100	1,0	0,8495	0,0020

- \square Redução do passo h para 0,01 melhorou a solução numérica do PVI.
- Exatidão da solução é melhorada quando o valor do passo for reduzido.

Definições

Definição (Passo simples)

Um método é de passo simples quando a aproximação y_{i+1} for calculada a partir somente do valor y_i do passo anterior. Sendo ϕ a função incremento, um método de passo simples é definido na forma

$$y_{i+1} = y_i + h\phi(x_i, y_i; h).$$

Definição (Passo múltiplo)

Sejam os p valores $y_i, y_{i-1}, y_{i-2}, \ldots, y_{i-p+1}$ previamente calculados por algum método. Um método é de passo múltiplo se estes p valores $y_i, y_{i-1}, y_{i-2}, \ldots, y_{i-p+1}$ forem utilizados para calcular y_{i+1} , para $i = p-1, p, p+1, \ldots, m-1$.

Definição (Erro local)

Supondo que o valor calculado por um método de passo k seja exato, isto é, $y_{i+j} = y(x_{i+j})$ para j = 0, 1, ..., k-1, então o erro local em x_{i+k} é definido como

$$e_{i+k} = y(x_{i+k}) - y_{i+k}.$$

□ Definição (Ordem)

Um método de passo simples tem ordem q se a função incremento ϕ for tal que

$$y(x+h) = y(x) + h\phi(x, y; h) + O(h^{q+1}).$$

Definição (Consistência)

Um método numérico é dito consistente com o PVI se a sua ordem $q \ge 1$.

Definição (Convergência)

Um método de passo k é convergente se, para o PVI,

$$\lim_{h \to 0} y_i = y(x_i), \ ih = x - a$$

é válido para todo $x \in [a,b]$, e os valores iniciais são tais que

$$\lim_{h\to 0} y_j(h) = \eta, \ j = 0, 1, \dots, k-1.$$

- Consistência significa que a solução numérica corresponde à solução do PVI.
- Consistência limita a magnitude do erro local cometido em cada passo.
- Estabilidade controla a propagação do erro durante os cálculos.
- Um método é convergente se ele for consistente e estável.

Métodos de Runge-Kutta

- $lue{}$ Exatidão dos resultados pode ser melhorada se o passo h for reduzido.
- Se exatidão requerida for elevada, esta metodologia pode acarretar grande esforço computacional.
- Melhor exatidão pode ser obtida mais eficientemente pela formulação denominada métodos de Runge-Kutta.
- C. D. T. Runge desenvolveu o primeiro método em 1895.
- M. W. Kutta elaborou a formulação geral em 1901.
- Runge-Kutta são métodos de passo simples.

Métodos de Runge-Kutta explícitos

Forma geral de métodos explícitos de s estágios

$$y_{i+1} = y_i + h\phi(x_i, y_i; h),$$

$$\phi(x, y; h) = b_1k_1 + b_2k_2 + \dots + b_sk_s,$$

$$k_1 = f(x, y),$$

$$k_2 = f(x + c_2h, y + a_{21}hk_1),$$

$$k_3 = f(x + c_3h, y + h(a_{31}k_1 + a_{32}k_2)),$$

$$\dots$$

$$k_s = f(x + c_sh, y + h(a_{s1}k_1 + \dots + a_{s,s-1}k_{s-1})),$$

$$a, b, c: \text{ constantes de cada método particular.}$$

Constantes exibidas na notação de Butcher

Métodos de segunda ordem

Seja a expansão em série de Taylor, na qual as derivadas em y são escritas em termos de f, a partir de dy/dx = f(x,y)

$$y_{i+1} = y_i + hf(x_i, y_i) + \frac{h^2}{2}f'(x_i, y_i) + \dots$$

Seja

$$f'(x,y) \equiv \frac{df}{dx} = \frac{\partial f}{\partial x}\frac{dx}{dx} + \frac{\partial f}{\partial y}\frac{dy}{dx} \to f'(x,y) = \frac{\partial f}{\partial x} + f\frac{\partial f}{\partial y}.$$

- \square Simplificando a notação $f_i = f(x_i, y_i)$.
- Sendo

$$\frac{\partial f_i}{\partial x} = \frac{\partial f}{\partial x}(x_i, y_i) \ e \ \frac{\partial f_i}{\partial y} = \frac{\partial f}{\partial y}(x_i, y_i) \to$$

$$y_{i+1} = y_i + hf_i + h^2 \left(\frac{1}{2} \frac{\partial f_i}{\partial x} + \frac{1}{2} f_i \frac{\partial f_i}{\partial y} \right).$$

Métodos de segunda ordem

cont.

 \square Forma geral em termos de k_1 e k_2

$$y_{i+1} = y_i + b_1 h f(x_i, y_i) + b_2 h f(x_i + c_2 h, y_i + a_{21} h f(x_i, y_i)).$$

- \square Expandindo f(x,y), em série de Taylor, em termos de (x_i,y_i) .
- Retendo somente os termos de derivada primeira

$$f(x_i + c_2h, y_i + a_{21}hf(x_i, y_i)) \approx f_i + c_2h\frac{\partial f_i}{\partial x} + a_{21}hf_i\frac{\partial f_i}{\partial y}.$$

Substituindo na equação anterior

$$y_{i+1} = y_i + b_1 h f_i + b_2 h \left(f_i + c_2 h \frac{\partial f_i}{\partial x} + a_{21} h f_i \frac{\partial f_i}{\partial y} \right).$$

Rearranjando

$$y_{i+1} = y_i + h(b_1 + b_2)f_i + h^2 \left(b_2 c_2 \frac{\partial f_i}{\partial x} + b_2 a_{21} f_i \frac{\partial f_i}{\partial y}\right).$$

Comparando com

$$y_{i+1} = y_i + hf_i + h^2 \left(\frac{1}{2} \frac{\partial f_i}{\partial x} + \frac{1}{2} f_i \frac{\partial f_i}{\partial y} \right).$$

Métodos de segunda ordem cont.

Sistema não linear com 3 equações e 4 incógnitas

$$b_1 + b_2 = 1,$$

$$b_2c_2=1/2,$$

$$b_2 a_{21} = 1/2.$$

☐ Variedade de métodos de segunda ordem

$$y_{i+1} = y_i +$$

$$h(b_1f(x_i,y_i) + b_2f(x_i + c_2h, y_i + a_{21}hf(x_i, y_i))).$$

Método de Euler modificado

Método de Runge-Kutta de segunda ordem

$$y_{i+1} = y_i +$$

$$h(b_1 f(x_i, y_i) + b_2 f(x_i + c_2 h, y_i + a_{21} h f(x_i, y_i))).$$

Constantes do método na notação de Butcher

Forma do método de Euler modificado

$$y_{i+1} = y_i + hf\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}f(x_i, y_i)\right)$$

Método de Euler melhorado

Método de Runge-Kutta de segunda ordem

$$y_{i+1} = y_i + h(b_1 f(x_i, y_i) + b_2 f(x_i + c_2 h, y_i + a_{21} h f(x_i, y_i))).$$

Constantes do método na notação de Butcher

Forma do método de Euler melhorado

$$y_{i+1} = y_i + \frac{h}{2}(f(x_i, y_i) + f(x_i + h, y_i + hf(x_i, y_i)))$$

Comparação dos métodos de Euler

Comparar a solução do PVI

$$y' = -2xy^2$$
, com $y(0) = 0.5$;

no intervalo [0, 1], com m = 10 subintervalos.

Solução exata

$$y(x) = \frac{1}{x^2 + 2}.$$

i	$ x_i $	$ y_i^{E} - y(x_i) $	$ y_i^{Emod} - y(x_i) $	$ y_i^{Emel} - y(x_i) $
0	0,0	0	0	0
1	0,1	$2,49 \times 10^{-3}$	$1,24 \times 10^{-5}$	$1,24 \times 10^{-5}$
2	0,2	$4,80\times10^{-3}$	$4,76 \times 10^{-5}$	$2,32 \times 10^{-5}$
3	0,3	$6,73 \times 10^{-3}$	$9,83 \times 10^{-5}$	$2,97 \times 10^{-5}$
4	0,4	$8,11 \times 10^{-3}$	$1,55 \times 10^{-4}$	$2,89 \times 10^{-5}$
5	0,5	$8,88 \times 10^{-3}$	$2,06 \times 10^{-4}$	$1,91 \times 10^{-5}$
6	0,6	$9,04 \times 10^{-3}$	$2,45 \times 10^{-4}$	2,60×10 ⁻⁸
7	0,7	$8,69 \times 10^{-3}$	$2,67 \times 10^{-4}$	$2,70 \times 10^{-5}$
8	0,8	$7,94 \times 10^{-3}$	$2,71 \times 10^{-4}$	$5,96 \times 10^{-5}$
9	0,9	$6,93 \times 10^{-3}$	$2,59 \times 10^{-4}$	$9,48 \times 10^{-5}$
10	1,0	$5,77 \times 10^{-3}$	$2,35 \times 10^{-4}$	$1,30 \times 10^{-4}$

Métodos de quarta ordem

- Mesmo desenvolvimento para obter métodos de Runge-Kutta de ordem mais elevada.
- No caso de quarta ordem, obtém-se um sistema não linear com 11 equações e 13 incógnitas.
- Método clássico de Runge-Kutta.
- Constantes na notação de Butcher

Algoritmo: Runge-Kutta de ordem 4

```
Algoritmo RK4
{ Objetivo: Resolver PVI por Runge-Kutta de ordem 4 }
parâmetros de entrada a, b, m, y0
  { lim. inf., lim. sup., num. subintervalos e valor inicial }
parâmetros de saída VetX, VetY
  { Abscissas e solução do PVI }
  h \leftarrow (b-a)/m; xt \leftarrow a; yt \leftarrow y0
  VetX(1) \leftarrow xt; VetY(1) \leftarrow yt
  escreva 0, xt, yt
  para i \leftarrow 1 até m faça
    x \leftarrow xt; y \leftarrow yt
    k1 \leftarrow f(x,y); { Avaliar f(x,y) }
    x \leftarrow xt + h/2; y \leftarrow yt + h/2 * k1
    k2 \leftarrow f(x,y); { Avaliar f(x,y) }
    y \leftarrow yt + h/2 * k2
    k3 \leftarrow f(x,y); { Avaliar f(x,y) }
    x \leftarrow xt + h; y \leftarrow yt + h * k3
    k4 \leftarrow f(x,y); { Avaliar f(x,y) }
    xt \leftarrow a + i * h; yt \leftarrow yt + h/6 * (k1 + 2 * (k2 + k3) + k4)
    escreva i, xt, yt
    VetX(i+1) \leftarrow xt; VetY(i+1) \leftarrow yt
  fim para
fim algoritmo
```

Exemplo

Calcular a solução do PVI

```
y' = x - 2y + 1, com y(0) = 1,
```

no intervalo [0, 1], com m = 10 subintervalos.

Metodo de Runge-Kutta - ordem 4

```
i x y
0 0.00000 1.00000
1 0.10000 0.91405
2 0.20000 0.85274
3 0.30000 0.81161
4 0.40000 0.78700
5 0.50000 0.77591
6 0.60000 0.77590
7 0.70000 0.78495
8 0.80000 0.80143
9 0.90000 0.82398
10 1.00000 0.85150
```

Influência do passo h

 \square $m = 10 \rightarrow h = 0,1$

i	x_i	y_i	$ y_i - y(x_i) $
0	0,0	1,0000	0
1	0,1	0,9141	$1,94 \times 10^{-6}$
2	0,2	0,8527	$3,17 \times 10^{-6}$
3	0,3	0,8116	$3,89 \times 10^{-6}$
4	0,4	0,7870	$4,25 \times 10^{-6}$
5	0,5	0,7759	$4,35 \times 10^{-6}$
6	0,6	0,7759	$4,27 \times 10^{-6}$
7	0,7	0,7850	$4,08 \times 10^{-6}$
8	0,8	0,8014	$3,82 \times 10^{-6}$
9	0,9	0,8240	$3,52 \times 10^{-6}$
10	1,0	0,8515	$3,20\times10^{-6}$

 \square $m = 100 \rightarrow h = 0.01$

i	x_i	y_i	$ y_i-y(x_i) $
0	0,0	1,0000	0
10	0,1	0,9140	$1,66 \times 10^{-10}$
20	0,2	0,8527	$2,73 \times 10^{-10}$
30	0,3	0,8116	$3,35 \times 10^{-10}$
40	0,4	0,7870	$3,66 \times 10^{-10}$
50	0,5	0,7759	$3,74 \times 10^{-10}$
60	0,6	0,7759	$3,68 \times 10^{-10}$
70	0,7	0,7849	$3,51 \times 10^{-10}$
80	0,8	0,8014	$3,28 \times 10^{-10}$
90	0,9	0,8240	$3,03 \times 10^{-10}$
100	1,0	0,8515	$2,75 \times 10^{-10}$

Método de Runge-Kutta-Fehlberg

- □ Verificar se um método de Runge-Kutta produz valores dentro da exatidão desejada.
- \square Recalcular o valor de y_{i+1} no final de cada intervalo, utilizando o passo h dividido ao meio.
- □ Valor aceito se houver apenas uma pequena diferença entre os dois resultados.
- Caso contrário, h deve ser dividido ao meio até que a exatidão desejada seja alcançada.
- Esta estratégia pode requerer um grande esforço computacional.
- Processo proposto por E. Fehlberg utiliza dois métodos de ordens diferentes, um de ordem 4 e outro de ordem 5.
- $lue{}$ Compara valores de y_{i+1} obtidos nos dois casos.
- Método de Runge-Kutta-Fehlberg é considerado método de ordem 4.

Método de Dormand-Prince

- J. R. Dormand e P. J. Prince propuseram método similar ao de Runge-Kutta-Fehlberg, porém de ordem 5.
- $lue{}$ Acrescentada uma linha e_i contendo os coeficientes para calcular os erros globais.
- \square São as diferenças entre y_{i+1} obtido pelo processo de ordem 5 e o de ordem 4

Algoritmo: Dormand-Prince

```
Algoritmo DOPRI(5,4)
{ Objetivo: Resolver um PVI pelo método de Dormand-Prince }
parâmetros de entrada a, b, m, y0
  { limite inferior, limite superior, num. subintervalos e valor inicial }
parâmetros de saída VetX, VetY, EG
   { Abscissas, solução do PVI e erro global }
   { Parâmetros do método }
  a21 \leftarrow 1/5; a31 \leftarrow 3/40; a32 \leftarrow 9/40; a41 \leftarrow 44/45; a42 \leftarrow -56/15
  a43 \leftarrow 32/9; a51 \leftarrow 19372/6561; a52 \leftarrow -25360/2187
  a53 \leftarrow 64448/6561; a54 \leftarrow -212/729
  a61 \leftarrow 9017/3168; a62 \leftarrow -355/33; a63 \leftarrow 46732/5247; a64 \leftarrow 49/176
  a65 \leftarrow -5103/18656; a71 \leftarrow 35/384; a73 \leftarrow 500/1113; a74 \leftarrow 125/192
  a75 \leftarrow -2187/6784; a76 \leftarrow 11/84
  c2 \leftarrow 1/5; c3 \leftarrow 3/10; c4 \leftarrow 4/5; c5 \leftarrow 8/9; c6 \leftarrow 1; c7 \leftarrow 1
  e1 \leftarrow 71/57600; e3 \leftarrow -71/16695; e4 \leftarrow 71/1920
  e5 \leftarrow -17253/339200; e6 \leftarrow 22/525; e7 \leftarrow -1/40
  h \leftarrow (b-a)/m; xt \leftarrow a; yt \leftarrow y0
  VetX(1) \leftarrow xt; VetY(1) \leftarrow yt; EG(1) \leftarrow 0
  escreva 0, xt, yt
  para i \leftarrow 1 até m faça
     x \leftarrow xt; y \leftarrow yt
     k1 \leftarrow h * f(x,y); \{ Avaliar f(x,y) \}
     x \leftarrow xt + c2 * h; y \leftarrow yt + a21 * k1
     k2 \leftarrow h * f(x,y); \{ Avaliar f(x,y) \}
     x \leftarrow xt + c3 * h; y \leftarrow yt + a31 * k1 + a32 * k2
     k3 \leftarrow h * f(x,y); \{ Avaliar f(x,y) \}
     x \leftarrow xt + c4 * h; y \leftarrow yt + a41 * k1 + a42 * k2 + a43 * k3
     k4 \leftarrow h * f(x,y); \{ Avaliar f(x,y) \}
     x \leftarrow xt + c5 * h; y \leftarrow yt + a51 * k1 + a52 * k2 + a53 * k3 + a54 * k4
     k5 \leftarrow h * f(x,y); \{ Avaliar f(x,y) \}
     x \leftarrow xt + \tilde{c}\tilde{6} * \tilde{h}; y \leftarrow yt + a\tilde{6}1 * k\tilde{1} + a62 * k2 + a63 * k3 + a64 * k4 + a65 * k5
     k6 \leftarrow h * f(x,y); \{ Avaliar f(x,y) \}
     x \leftarrow xt + c7 * h; y \leftarrow yt + a71 * k1 + a73 * k3 + a74 * k4 + a75 * k5 + a76 * k6
     k7 \leftarrow h * f(x,y); \{ Avaliar f(x,y) \}
     xt \leftarrow a + i * h
     yt \leftarrow yt + a71 * k1 + a73 * k3 + a74 * k4 + a75 * k5 + a76 * k6
     ErroGlobal \leftarrow e1 * k1 + e3 * k3 + e4 * k4 + e5 * k5 + e6 * k6 + e7 * k7
     VetX(i+1) \leftarrow xt; VetY(i+1) \leftarrow yt; EG(i+1) \leftarrow ErroGlobal
     escreva i, xt, yt, ErroGlobal
  fim para
fim algoritmo
```

Exemplo

Calcular a solução do PVI

$$y' = x - 2y + 1$$
, com $y(0) = 1$,

no intervalo [0, 1], com m = 10 subintervalos.

Metodo de Dormand-Prince

i	X	У	Erro
0	0.00000	1.00000	
1	0.10000	0.91405	2.100e-07
2	0.20000	0.85274	1.719e-07
3	0.30000	0.81161	1.408e-07
4	0.40000	0.78700	1.153e-07
5	0.50000	0.77591	9.436e-08
6	0.60000	0.77590	7.725e-08
7	0.70000	0.78495	6.325e-08
8	0.80000	0.80142	5.179e-08
9	0.90000	0.82397	4.240e-08
10	1.00000	0.85150	3.471e-08

Solução por Dormand-Prince

\square m=10 subintervalos

i	x_i	y_i	$ y_i - y(x_i) $
0	0,0	1,0000	0
1	0,1	0,9140	$1,52 \times 10^{-8}$
2	0,2	0,8527	$2,49 \times 10^{-8}$
3	0,3	0,8116	$3,05 \times 10^{-8}$
4	0,4	0,7870	$3,33 \times 10^{-8}$
5	0,5	0,7759	$3,41 \times 10^{-8}$
6	0,6	0,7759	$3,35 \times 10^{-8}$
7	0,7	0,7849	$3,20\times10^{-8}$
8	0,8	0,8014	$3,00 \times 10^{-8}$
9	0,9	0,8240	$2,76 \times 10^{-8}$
10	1,0	0,8515	$2,51 \times 10^{-8}$

\square m = 100 subintervalos

i		24.	[] [] [] []
ι	x_i	y_i	$ y_i-y(x_i) $
0	0,0	1,0000	0
10	0,1	0,9140	$1,13 \times 10^{-13}$
20	0,2	0,8527	$1,86 \times 10^{-13}$
30	0,3	0,8116	$2,27 \times 10^{-13}$
40	0,4	0,7870	$2,48 \times 10^{-13}$
50	0,5	0,7759	$2,54 \times 10^{-13}$
60	0,6	0,7759	$2,49 \times 10^{-13}$
70	0,7	0,7849	$2,38 \times 10^{-13}$
80	0,8	0,8014	$2,23 \times 10^{-13}$
90	0,9	0,8240	$2,05 \times 10^{-13}$
100	1,0	0,8515	$1,87 \times 10^{-13}$

Métodos de Adams

- Classe de métodos para resolver PVI chamados métodos lineares de passo múltiplo.
- Método de passo k

$$\alpha_k y_{i+k} + \alpha_{k-1} y_{i+k-1} + \dots + \alpha_0 y_i = h(\beta_k f_{i+k} + \beta_{k-1} f_{i+k-1} + \dots + \beta_0 f_i),$$

 \square α e β : constantes específicas de um método particular, sujeitas às condições

$$\alpha_k = 1 \text{ e } |\alpha_0| + |\beta_0| \neq 0$$
, sendo $f_i = f(x_i, y_i)$.

- Quando $\beta_k = 0$, o método é dito explícito e para $\beta_k \neq 0$ ele é dito implícito.
- Explícitos: métodos de Adams-Bashforth.
- Implícitos: métodos de Adams-Moulton.

Obtenção dos métodos de Adams

Métodos de Adams obtidos pela integração do PVI

$$y_{i+1} - y_i = \int_{x_i}^{x_{i+1}} f(t, y(t)) dt.$$

- □ Função integrando f(x, y(x)) aproximada por polinômio interpolador P(x).
- \square P(x) passa pelos pontos $(x_j, f(x_j, y_j))$

$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} P(x) dx.$$

Métodos de passo dois

Seja o polinômio de Lagrange de grau 1, que passa pelos pontos de coordenadas (x_0, f_0) e (x_1, f_1)

$$P_1(x) = f_0 \frac{x - x_1}{x_0 - x_1} + f_1 \frac{x - x_0}{x_1 - x_0}.$$

- □ Valor de $f_0 = f(x_0, y_0)$ obtido a partir de y_0 (condição inicial).
- □ Valor de y_1 para $f_1 = f(x_1, y_1)$ tem que ser calculado utilizando um método de passo simples.
- Fazendo

$$u = \frac{x - x_0}{h} \to x - x_0 = hu,$$

$$x - x_1 = x - x_0 - h = h(u - 1).$$

Substituindo as expressões

$$P_1(x) = f_1 \frac{hu}{h} + f_0 \frac{h(u-1)}{-h} \rightarrow P_1(x) = f_1 u + f_0(1-u).$$

Adams-Bashforth de passo k=2

Integrando

$$y_2 = y_1 + \int_{x_1}^{x_2} P_1(x) dx.$$

 \Box Fazendo mudança de variável de $x \to u$ e sendo dx = hdu

$$y_{2} = y_{1} + \int_{1}^{2} [f_{1}u + f_{0}(1 - u)]hdu,$$

$$= y_{1} + h \left[f_{1} \left(\frac{u^{2}}{2} \right) + f_{0} \left(u - \frac{u^{2}}{2} \right) \right]_{1}^{2},$$

$$= y_{1} + h \left(\frac{3}{2} f_{1} - \frac{1}{2} f_{0} \right),$$

$$y_{2} = y_{1} + \frac{h}{2} (3f_{1} - f_{0}).$$

ightharpoonup Fórmula explícita de Adams-Bashforth de passo k=2

$$y_{i+1} = y_i + \frac{h}{2}(3f_i - f_{i-1})$$

Fórmula implícita de passo dois

- Método explícito obtido pela integração de polinômio no intervalo $[x_1, x_2]$.
- \square P(x) determinado a partir dos pontos em $[x_0, x_1]$.
- Esta extrapolação não produz bons resultados.
- Se polinômio for construído usando pontos no intervalo $[x_0, x_2]$ consegue-se método mais exato.
- Polinômio de Lagrange de grau 2 que passa pelos pontos (x_0, f_0) , (x_1, f_1) e (x_2, f_2)

$$P_{2}(x) = f_{0} \frac{(x-x_{1})(x-x_{2})}{(x_{0}-x_{1})(x_{0}-x_{2})} + f_{1} \frac{(x-x_{0})(x-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{2})} + f_{2} \frac{(x-x_{0})(x-x_{1})}{(x_{2}-x_{0})(x_{2}-x_{1})}.$$

lacksquare Definindo uma variável auxiliar $u=rac{x-x_0}{h}$ ightarrow

$$x - x_0 = hu$$
, $x - x_1 = h(u - 1)$, $x - x_2 = h(u - 2)$,

$$P_2(x) = f_2 \frac{u(u-1)}{2} - f_1 u(u-2) + f_0 \frac{(u-1)(u-2)}{2}.$$

Adams-Moulton de passo k=2

 $lue{}$ Substituindo na expressão de y_{i+1}

$$y_2 = y_1 + \int_{x_1}^{x_2} P_2(x) dx.$$

 $lue{}$ Fazendo mudança de variável de $x \to u$

$$y_{2} = y_{1} + \int_{1}^{2} \left[f_{2} \frac{u(u-1)}{2} - f_{1}u(u-2) + f_{0} \frac{(u-1)(u-2)}{2} \right] h du,$$

$$= y_{1} + h \left[f_{2} \left(\frac{u^{3}}{6} - \frac{u^{2}}{4} \right) - f_{1} \left(\frac{u^{3}}{3} - u^{2} \right) + f_{0} \left(\frac{u^{3}}{6} - \frac{3u^{2}}{4} + u \right) \right] \Big|_{1}^{2},$$

$$y_{2} = y_{1} + \frac{h}{12} (5f_{2} + 8f_{1} - f_{0}).$$

 \blacksquare Fórmula implícita de Adams-Moulton, passo k=2

$$y_{i+1} = y_i + \frac{h}{12} (5f_{i+1} + 8f_i - f_{i-1})$$

- □ Valor de $f_{i+1} = f(x_{i+1}, y_{i+1})$ é necessário para obter o próprio y_{i+1} .
- □ Valor de y_{i+1} obtido por Adams-Bashforth usado em Adams-Moulton para avaliar f_{i+1} e calcular um valor melhor de y_{i+1} .
- Método do tipo preditor-corretor.

Calcular a solução do PVI

$$y' = x - 2y + 1$$
, com $y(0) = 1$,

em [0, 1], com m = 10 e m = 100 subintervalos.

- Utilizar o método preditor-corretor de passo dois.
- \square Valores de f_1 calculados por Dormand-Prince.

i	x_i	y_i	$ y_i-y(x_i) $
0	0,00	1,0000	0
1	0,10	0,9140	$1,52 \times 10^{-8}$
2	0,20	0,8526	$1,35 \times 10^{-4}$
3	0,30	0,8114	$2,19 \times 10^{-4}$
4	0,40	0,7867	$2,68 \times 10^{-4}$
5	0,50	0,7756	$2,92 \times 10^{-4}$
6	0,60	0,7756	$2,99 \times 10^{-4}$
7	0,70	0,7847	$2,94 \times 10^{-4}$
8	0,80	0,8011	$2,80 \times 10^{-4}$
9	0,90	0,8237	$2,62 \times 10^{-4}$
10	1,00	0,8513	$2,41 \times 10^{-4}$

i	x_i	y_i	$ y_i-y(x_i) $
0	0,00	1,0000	0
10	0,10	0,9140	$1,19 \times 10^{-7}$
20	0,20	0,8527	$2,06 \times 10^{-7}$
30	0,30	0,8116	$2,58 \times 10^{-7}$
40	0,40	0,7870	$2,84 \times 10^{-7}$
50	0,50	0,7759	$2,92 \times 10^{-7}$
60	0,60	0,7759	$2,88 \times 10^{-7}$
70	0,70	0,7849	$2,75 \times 10^{-7}$
80	0,80	0,8014	$2,58 \times 10^{-7}$
90	0,90	0,8240	$2,38 \times 10^{-7}$
100	1,00	0,8515	$2,17 \times 10^{-7}$

Adams-Bashforth de passo k = 3

- ☐ Método explícito de Adams-Bashforth de passo 3 obtido pela integração do polinômio de Lagrange de grau 2, no intervalo $[x_2, x_3]$.
- \square Substituindo na expressão de y_{i+1}

$$y_{3} = y_{2} + \int_{x_{2}}^{x_{3}} P_{2}(x) dx,$$

$$= y_{2} + \int_{2}^{3} \left[f_{2} \frac{u(u-1)}{2} - f_{1}u(u-2) + f_{0} \frac{(u-1)(u-2)}{2} \right] h du,$$

$$= y_{2} + h \left[f_{2} \left(\frac{u^{3}}{6} - \frac{u^{2}}{4} \right) - f_{1} \left(\frac{u^{3}}{3} - u^{2} \right) + f_{0} \left(\frac{u^{3}}{6} - \frac{3u^{2}}{4} + u \right) \right] \Big|_{2}^{3},$$

$$y_{3} = y_{2} + \frac{h}{12} (23f_{2} - 16f_{1} + 5f_{0}).$$

- $rightharpoonup f_0 = (x_0, y_0)$ avaliada a partir da condição inicial y_0 ; f_1 e f_2 obtidos por método de passo simples.
- \square Fórmula explícita de Adams-Bashforth com k=3

$$y_{i+1} = y_i + \frac{h}{12}(23f_i - 16f_{i-1} + 5f_{i-2})$$

Adams-Moulton de passo k = 3

- Fórmula explícita obtida por extrapolação.
 - integração no intervalo $[x_i, x_{i+1}];$
 - polinômio construído a partir de pontos em $[x_{i-2},x_i]$.
- \square Método implícito de Adams-Moulton com k=3

$$y_{i+1} = y_i + \frac{h}{24}(9f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2})$$

Adams-Bashforth-Moulton de quarta ordem

- Um dos métodos mais populares de passo múltiplo.
- \square Preditor, explícito de passo k=4

$$y_{i+1} = y_i + \frac{h}{24} (55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3})$$

 \square Corretor, implícito de passo k=3

$$y_{i+1} = y_i + \frac{h}{24}(9f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2})$$

- Corretor deve ser aplicado mais de uma vez para melhorar ainda mais o resultado.
- No algoritmo a seguir
 - valores de f_1 , f_2 e f_3 calculados pelo método de Dormand-Prince de passo simples;
 - estimativa do erro cometido no cálculo do valor corrigido

Erro
$$\approx \frac{19}{270} |y_{\text{corretor}} - y_{\text{preditor}}|.$$

Algoritmo: Adams-Bashforth-Moulton

```
Algoritmo ABM4
{ Objetivo: Resolver PVI por Adams-Bashforth-Moulton }
          de ordem 4 }
parâmetros de entrada a, b, m, y0
  { lim. inf., lim. sup., num. subintervalos e valor inicial }
parâmetros de saída VetX, VetY, Erro
  { Abscissas, solução do PVI e erro }
  h \leftarrow (b-a)/m
  [VetX, VetY, Erro] \leftarrow DOPRI(a, a + 3 * h, 3, y0)
  { parâmetros de saída retornam em VetX, VetY, Erro }
  para i ← 1 até 4 faça
    escreva i - 1, VetX(i), VetY(i), Erro(i)
  fim para
  para i ← 4 até m faça
    x \leftarrow \text{VetX}(i-3); y \leftarrow \text{VetY}(i-3); f0 \leftarrow f(x,y) \{ \text{Avaliar } f(x,y) \}
    \times \leftarrow \text{VetX}(i-2); \ y \leftarrow \text{VetY}(i-2); \ f1 \leftarrow f(x,y) \ \{ \text{Avaliar } f(x,y) \}
    \times \leftarrow \text{VetX}(i-1); \ y \leftarrow \text{VetY}(i-1); \ f2 \leftarrow f(x,y) \ \{ \text{Avaliar } f(x,y) \}
    x \leftarrow VetX(i); y \leftarrow VetY(i); f3 \leftarrow f(x,y) \{ Avaliar f(x,y) \}
    Ypre \leftarrow h * (55 * f3 - 59 * f2 + 37 * f1 - 9 * f0)/24+VetY(i)
    VetY(i+1) \leftarrow Ypre; VetX(i+1) \leftarrow a+i*h; x \leftarrow VetX(i+1)
    para j \leftarrow 1 até 2 faça
      y \leftarrow VetY(i+1); f4 \leftarrow f(x,y) { Avaliar f(x,y) }
      Ycor \leftarrow h * (9 * f4 + 19 * f3 - 5 * f2 + f1)/24 + VetY(i)
      VetY(i+1) \leftarrow Ycor
    fim para
    Erro \leftarrow abs(Ycor – Ypre) * 19/270
    escreva i, VetX(i + 1), VetY(i + 1), Erro
  fim para
fim algoritmo
```

Calcular a solução do PVI

$$y' = x - 2y + 1$$
, com $y(0) = 1$,

no intervalo [0, 1], com m = 10 subintervalos.

Metodo de Adams-Bashforth-Moulton - ordem 4

i	x	У	Erro	
0	0.00000	1.00000	0.00000e+00	
1	0.10000	0.91405	2.10000e-07	
2	0.20000	0.85274	1.71933e-07	
3	0.30000	0.81161	1.40767e-07	
4	0.40000	0.78699	4.23161e-06	
5	0.50000	0.77590	3.51703e-06	
6	0.60000	0.77589	2.82201e-06	
7	0.70000	0.78494	2.33307e-06	
8	0.80000	0.80142	1.90865e-06	
9	0.90000	0.82397	1.56299e-06	
10	1.00000	0.85150	1.27961e-06	

Solução por preditor-corretor de ordem 4.

i	x_i	y_i	$ y_i - y(x_i) $	i	x_i	$ y_i - y(x_i) $	i	$ y_i - y(x_i) $
0	0,0	1,000	0	0	0,0	0	0	0
1	0,1	0,914	$1,52 \times 10^{-8}$	10	0,1	$3,69 \times 10^{-10}$	100	$ 5,02 \times 10^{-14} $
2	0,2	0,853	$2,49 \times 10^{-8}$	20	0,2	$7,33 \times 10^{-10}$	200	$8,39 \times 10^{-14}$
3	0,3	0,812	$3,05 \times 10^{-8}$	30	0,3	$9,53 \times 10^{-10}$	300	$1,03 \times 10^{-13}$
4	0,4	0,787	$3,07 \times 10^{-6}$	40	0,4	$1,07 \times 10^{-9}$	400	$1,14 \times 10^{-13}$
5	0,5	0,776	$4,94 \times 10^{-6}$	50	0,5	$1,11 \times 10^{-9}$	500	$1,16 \times 10^{-13}$
6	0,6	0,776	$6,07 \times 10^{-6}$	60	0,6	$1,10 \times 10^{-9}$	600	$1,15 \times 10^{-13}$
7	0,7	0,785	$6,62 \times 10^{-6}$	70	0,7	$1,06 \times 10^{-9}$	700	$1,10 \times 10^{-13}$
8	0,8	0,801	$6,77 \times 10^{-6}$	80	0,8	$9,99 \times 10^{-10}$	800	$1,03 \times 10^{-13}$
9	0,9	0,824	$6,65 \times 10^{-6}$	90	0,9	$9,25 \times 10^{-10}$	900	$9,43 \times 10^{-14}$
10	1,0	0,852	$6,35 \times 10^{-6}$	100	1,0	$8,44 \times 10^{-10}$	1000	$8,56 \times 10^{-14}$

Comparação de métodos para EDO

- Métodos de passo simples (Runge-Kutta).
- Métodos de passo múltiplo (Adams).
- Cinco PVI para serem resolvidos pelos métodos de
 - Euler,
 - Dormand-Prince e
 - Adams-Bashforth-Moulton.

Métodos de Runge-Kutta

Vantagens:

- 1. São auto-iniciáveis, ou seja, não dependem do auxílio de outros métodos.
- 2. É fácil fazer a alteração do incremento h, de modo que ele possa ser aumentado para reduzir o esforço computacional.

Desvantagens:

- 1. O número de vezes que a função f(x,y) necessita ser avaliada, por passo, é elevada.
- Para limitar o erro de discretização é necessário escolher um h pequeno, o que pode causar um aumento do erro de arredondamento.

Métodos de Adams

Vantagens:

- 1. O número de vezes que f(x,y) é avaliada, a cada iteração i, é pequeno, uma vez nas fórmulas explícitas e i+1 vezes nas implícitas.
- 2. As fórmulas são simples, podendo ser utilizadas até mesmo com uma calculadora.

Desvantagens:

- 1. Não são auto-iniciáveis, dependendo de um outro método.
- 2. A mudança do incremento h é mais difícil de ser feita.

Comparação de métodos para EDO

- Ilustrar, numericamente, o desempenho de alguns métodos.
- Resultados obtidos por Euler, Dormand-Prince e Adams-Bashforth-Moulton.
- Solução exata do j-ésimo PVI dada pela expressão de $y_j(x)$.

$$f_1(x,y) = -2x^2y^2$$
, $y(0) = 2$, $x \in [0,2]$, $y_1(x) = \frac{6}{4x^3 + 3}$.

$$f_2(x,y) = 3x^2y$$
, $y(1) = 1$, $x \in [1,2]$, $y_2(x) = e^{x^3 - 1}$.

$$f_3(x,y) = -2xy^3$$
, $y(0) = 1$, $x \in [0,5]$, $y_3(x) = \frac{1}{\sqrt{2x^2 + 1}}$.

$$f_4(x,y) = \cos(x)y, \ y(0) = 1, \ x \in [0,10], \ y_4(x) = e^{\operatorname{sen}(x)}.$$

$$f_5(x,y) = \operatorname{sen}(x) - y, \ y(0) = 0, \ x \in [0,\pi],$$

$$y_5(x) = \frac{e^{-x} + \operatorname{sen}(x) - \cos(x)}{2}.$$

$f_1(x,y) = -2x^2y^2$

m = 10			
método	erro	t_{rel}	
Euler	$1,43 \times 10^{-1}$	1,0	
DOPRI	$3,51 \times 10^{-5}$	4,7	
ABM4	$2,48 \times 10^{-3}$	4,3	

m = 100			
método	erro	t_{rel}	
Euler	$1,26 \times 10^{-2}$	1,0	
DOPRI	$7,26 \times 10^{-11}$	6,4	
ABM4	$3,62 \times 10^{-7}$	5,3	

m = 1000			
método	erro	t_{rel}	
Euler	$1,24 \times 10^{-3}$	1,0	
DOPRI	$3,33 \times 10^{-15}$	6,1	
ABM4	$3,75 \times 10^{-11}$	4,9	

$f_2(x,y) = 3x^2y$

m = 10			
método	erro	t_{rel}	
Euler	$9,59 \times 10^{2}$	1,0	
DOPRI	$1,54 \times 10^{-1}$	7,0	
ABM4	$4,96 \times 10^{1}$	6,5	

m = 100			
método	erro	t_{rel}	
Euler	$2,89 \times 10^{2}$	1,0	
DOPRI	$1,18 \times 10^{-5}$	6,4	
ABM4	$2,82 \times 10^{-2}$	5,2	

m = 1000			
método	erro	t_{rel}	
Euler	3,48×10 ¹	1,0	
DOPRI	$1,34 \times 10^{-10}$	6,0	
ABM4	$3,17 \times 10^{-6}$	4,8	

$f_3(x,y) = -2xy^3$

m = 10			
método	erro	t_{rel}	
Euler	$1,84 \times 10^{-1}$	1,0	
DOPRI	$1,51 \times 10^{-4}$	6,2	
ABM4	$3,99 \times 10^{-3}$	5,6	

m = 100			
método	erro	t_{rel}	
Euler	$1,05 \times 10^{-2}$	1,0	
DOPRI	$1,99 \times 10^{-10}$	6,4	
ABM4	$4,89 \times 10^{-6}$	5,3	

m = 1000				
método	t_{rel}			
Euler	$9,97 \times 10^{-4}$	1,0		
DOPRI	$3,00\times10^{-15}$	6,1		
ABM4	$6,23 \times 10^{-10}$	4,9		

$f_4(x,y) = \cos(x)y$

m = 10				
método	t_{rel}			
Euler	2,66×10 ⁰	1,0		
DOPRI	$7,25 \times 10^{-4}$	6,8		
ABM4	$5,65 \times 10^{-1}$	6,0		

m = 100						
método erro t $_{r\epsilon}$						
Euler	$3,90 \times 10^{-1}$	1,0				
DOPRI	$1,02 \times 10^{-8}$	6,6				
ABM4	$4,82 \times 10^{-5}$	5,3				

m = 1000				
método	t_{rel}			
Euler	$4,15 \times 10^{-2}$	1,0		
DOPRI	$1,06 \times 10^{-13}$	6,0		
ABM4	$3,65 \times 10^{-9}$	4,6		

$f_5(x,y) = \operatorname{sen}(x) - y$

m = 10				
método	t_{rel}			
Euler	$7,73 \times 10^{-2}$	1,0		
DOPRI	$4,90 \times 10^{-7}$	7,0		
ABM4	$5,63 \times 10^{-5}$	6,0		

m = 100				
método	t_{rel}			
Euler	$7,18 \times 10^{-3}$	1,0		
DOPRI	$4,05 \times 10^{-12}$	6,6		
ABM4	$8,72 \times 10^{-9}$	5,3		

m = 1000				
método	t_{rel}			
Euler	$7,13 \times 10^{-4}$	1,0		
DOPRI	$1,22 \times 10^{-15}$	6,1		
ABM4	$8,75 \times 10^{-13}$	4,6		

Sistemas de equações diferenciais ordinárias

- □ Na modelagem de um problema real, é muito comum o uso de sistemas de EDO.
- ☐ Uma equação diferencial de ordem n > 1 pode ser resolvida por meio de um sistema de ordem n.
- Sistema de p equações diferenciais ordinárias com p incógnitas

$$y'_1 = f_1(x, y_1, \dots, y_p),$$

 $y'_2 = f_2(x, y_1, \dots, y_p),$
:

$$y_p' = f_1(x, y_1, \dots, y_p),$$

sendo f_i e $y_i(a) = \eta_i$, i = 1, 2, ..., p, as funções dadas do problema e as condições iniciais.

Algoritmo: Runge-Kutta para sistema

```
Algoritmo RK4sis2
{ Objetivo: Resolver sistema de EDO por Runge-Kutta }
           de ordem 4 }
parâmetros de entrada a, b, m, y10, y20
  { limite inferior, limite superior, num. subintervalos e }
  { valores iniciais }
parâmetros de saída VetX, VetY1, VetY2
  { Abscissas e soluções do PVI }
  h \leftarrow (b-a)/m; xt \leftarrow a; y1t \leftarrow y10; y2t \leftarrow y20
  VetX(1) \leftarrow xt; VetY1(1) \leftarrow y1t; VetY2(1) \leftarrow y2t
  escreva 0, xt, y1t, y2t
  para i ← 1 até m faça
    x \leftarrow xt; y1 \leftarrow y1t; y2 \leftarrow y2t
    k11 \leftarrow f_1(x, y_1, y_2); \{ \text{ Avaliar } f_1(x, y_1, y_2) \}
    k12 \leftarrow f_2(x, y_1, y_2); \{ \text{ Avaliar } f_2(x, y_1, y_2) \}
    x \leftarrow xt+h/2; y1 \leftarrow y1t+h/2*k11; y2 \leftarrow y2t+h/2*k12
    k21 \leftarrow f_1(x, y_1, y_2); \{ \text{ Avaliar } f_1(x, y_1, y_2) \}
    k22 \leftarrow f_2(x, y_1, y_2); \{ \text{ Avaliar } f_2(x, y_1, y_2) \}
    y1 \leftarrow y1t + h/2 * k21; y2 \leftarrow y2t + h/2 * k22
    k31 \leftarrow f_1(x, y_1, y_2); \{ \text{ Avaliar } f_1(x, y_1, y_2) \}
    k32 \leftarrow f_2(x, y_1, y_2); \{ \text{ Avaliar } f_2(x, y_1, y_2) \}
    x \leftarrow xt + h; y1 \leftarrow y1t + h * k31; y2 \leftarrow y2t + h * k32
    k41 \leftarrow f_1(x, y_1, y_2); \{ \text{ Avaliar } f_1(x, y_1, y_2) \}
    k42 \leftarrow f_2(x, y_1, y_2); \{ \text{Avaliar } f_2(x, y_1, y_2) \}
    xt \leftarrow a + i * h
    v1t \leftarrow v1t + h/6 * (k11 + 2 * (k21 + k31) + k41)
    y2t \leftarrow y2t + h/6 * (k12 + 2 * (k22 + k32) + k42)
    escreva i, xt, y1t, y2t
    VetX(i+1) \leftarrow xt; VetY1(i+1) \leftarrow y1t; VetY2(i+1) \leftarrow y2t
  fim para
fim algoritmo
```

Resolver o sistema de EDO

$$y'_1 = y_1 + y_2 + 3x,$$

 $y'_2 = 2y_1 - y_2 - x,$

com $y_1(0) = 0$ e $y_2(0) = -1$ no intervalo [0,2] com 10 subintervalos.

Metodo RK4 para sistema de ordem 2

i	X	y1	y 2
0	0.00000	0.00000	-1.00000
1	0.20000	-0.14073	-0.86747
2	0.40000	-0.16119	-0.82388
3	0.60000	-0.04768	-0.80741
4	0.80000	0.22970	-0.75950
5	1.00000	0.72072	-0.61782
6	1.20000	1.50106	-0.30864
7	1.40000	2.68142	0.26206
8	1.60000	4.42101	1.22000
9	1.80000	6.94680	2.73780
10	2.00000	10.58102	5.05594

Equações diferenciais de segunda ordem

- Equação diferencial ordinária de ordem n > 1 pode ser reduzida a um sistema de EDO de primeira ordem com n equações.
- Transformação por mudança de variáveis.
- Por exemplo, PVI de segunda ordem

$$y'' = f(x, y, y')$$
 com

$$y(a) = \eta_1 e y'(a) = \eta_2.$$

 Equivalente ao sistema de equações de primeira ordem

$$y_1' = y_2,$$

$$y_2' = f(x, y_1, y_2),$$

com
$$y_1(a) = \eta_1 e y_2(a) = \eta_2$$
.

Feitas as mudanças de variáveis

$$y_1 = y e y_2 = y_1'$$
.

Resolver o PVI de segunda ordem

$$y'' = y' + 2y - x^2,$$

com y(0) = 1 e y'(0) = 0, intervalo [0,1] com 10 subintervalos.

- ☐ Mudanças de variáveis $y_1 = y$ e $y_2 = y'_1$.
- Sistema de ordem dois de EDO de primeira ordem

```
y'_1 = y_2,

y'_2 = y_2 + 2y_1 - x^2,

com y_1(0) = 1 e y_2(0) = 0.
```

```
Metodo RK4 para sistema de ordem 2
 i
                y1
                          y2
      X
              1.00000
    0.00000
 0
                        0.00000
 1 0.10000
              1.01035
                        0.21070
              1.04295
   0.20000
                        0.44591
 3
    0.30000
              1.10053
                        0.71105
 4
   0.40000
              1.18638
                        1.01276
              1.30456
 5
   0.50000
                        1.35912
 6
   0.60000
              1.46002
                        1.76003
              1.65878
 7
   0.70000
                        2.22756
 8
    0.80000
              1.90823
                        2.77646
              2.21738
                        3.42475
 9
   0.90000
              2.59721
10 1.00000
                        4.19443
```

Solução pelo algoritmo RK4sis2

Valor exato dado por

$$y(x) = \frac{1}{4}(e^{2x} + 2x^2 - 2x + 3).$$

m = 10		m = 100		m = 1000				
i	$ x_i $	y_i	$ y_i - y(x_i) $	i	x_i	$ y_i-y(x_i) $	i	$ y_i-y(x_i) $
0	0,0	1,0000	0	0	0,0	0	0	0
1	0,1	1,0103	$8,98 \times 10^{-7}$	10	0,1	$1,04 \times 10^{-10}$	100	$1,13 \times 10^{-14}$
2	0,2	1,0430	$2,17 \times 10^{-6}$	20	0,2	$2,51 \times 10^{-10}$	200	$2,69 \times 10^{-14}$
3	0,3	1,1005	$3,93 \times 10^{-6}$	30	0,3	$4,53 \times 10^{-10}$	300	4,82×10 ⁻¹⁴
4	0,4	1,1864	$6,32 \times 10^{-6}$	40	0,4	$7,29 \times 10^{-10}$	400	7,53 \times 10 ⁻¹⁴
5	0,5	1,3046	$9,54 \times 10^{-6}$	50	0,5	$1,10 \times 10^{-9}$	500	$1,13 \times 10^{-13}$
6	0,6	1,4600	$1,38 \times 10^{-5}$	60	0,6	$1,59 \times 10^{-9}$	600	$1,63 \times 10^{-13}$
7	0,7	1,6588	$1,95 \times 10^{-5}$	70	0,7	$2,25 \times 10^{-9}$	700	$2,29 \times 10^{-13}$
8	0,8	1,9082	$2,69 \times 10^{-5}$	80	0,8	$3,10 \times 10^{-9}$	800	$3,15 \times 10^{-13}$
9	0,9	2,2174	$3,66 \times 10^{-5}$	90	0,9	4,22×10 ⁻⁹	900	$4,29 \times 10^{-13}$
10	1,0	2,5972	$4,93 \times 10^{-5}$	100	1,0	5,68×10 ⁻⁹	1000	$5,76 \times 10^{-13}$

Resolver o PVI de segunda ordem

$$y'' = 4y' - 5y + x - 2,$$

com y(0) = 1 e y'(0) = -1, $x \in [0,2]$ usando 8 subintervalos.

- ☐ Mudanças de variáveis $y_1 = y$ e $y_2 = y'_1$.
- Sistema

$$y'_1 = y_2,$$

 $y'_2 = 4y_2 - 5y_1 + x - 2,$
 $com y_1(0) = 1 e y_2(0) = -1.$

Metodo RK4 para sistema de ordem 2 i X y1 **y**2 0.00000 1.00000 -1.00000 0 0.29150 -5.22233 1 0.25000 0.50000 -1.97300 -13.86486 3 0.75000 -7.25688 -30.00220 1.00000 -17.95859 -58.07121 5 1.25000 -37.76370 -103.89015 6 1.50000 -71.92819 -173.98777 7 1.75000 -127.22682 -273.40703 2.00000 -211.01753 -400.51082 8