Charitable Giving, Tax Reform, and Self-selection of Tax Report: Evidence from South Korea

Hiroki Kato 1 Tsuyoshi Goto 2 Yong-Rok Kim 3 1 Osaka University 2 Chiba University 3 Kobe University 2 2021/08/10

Our reseach evaluate the effect of tax relief on charitable giving in South Korea

- We utilize the South Korean (Korea hereafter) tax reform in 2014 which has changed from tax deduction system to tax creit system.
 - The extant reseach mainly focuses on the tax reform within the regime of tax deduction (Almunia et al., 2020; Auten et al., 2002; Bakija and Heim, 2011; Randolph, 1995) or tax credit (Fack and Landais, 2010).
- We use the Korean panel survey data (NaSTaB).
 - · We could consider the sample of low-income household.
 - Our data contains chariable giving irrespective of declarations.
- We take two approach to estimate the effect of tax relief
 - 1. ITT Approach: we assume that the donors can automatically enjoy tax relief.
 - 2. IV Approach: we use an "effective" giving price considering whether each tax payer declare tax relief or not (self-selection).

2014 Tax Reform in South Korea

Consider allocation problem b/w private consumption (x_{it}) and giving (g_{it}) .

• The budget constraint is $x_{it}+g_{it}=y_{it}-T(y_{it},g_{it})$ where y_{it} is pre-tax total income, and $T(y_{it},g_{it})$ is tax amount.

In 2014, the Korean government reformed tax system $T(y_{it},g_{it})$, where the tax credit was introduced instead of tax deduction.

- R_{it} is a dummy of declaration of tax relief, and $\tau(\cdot)$ is the income tax rate.
- \bullet Tax deduction system (until 2013): $T(y_{it},g_{it})=\tau(y_{it}-R_{it}g_{it})(y_{it}-R_{it}g_{it})$
 - In 2012 and 2013, the system of $\tau(\cdot)$ is same.
 - The logged relative giving price is $R_{it} \ln(1-\tau(y_{it}-g_{it})) = R_{it} \ln p_{it}^d.$
- \bullet Tax credit system (from 2014): $T(y_{it},g_{it})=\tau(y_{it})\cdot y_{it}-R_{it}mg_{it}$
 - m = 0.15
 - The logged relative giving price is $R_{it} \ln (1-m) = R_{it} \ln p_{it}^c.$

About NaSTaB

An annual financial panel survey implemented by The Korea Institute of Taxation and Finance

- The subjects of this survey are general household and household members living in 15 cities and provinces nationwide.
- We use data from 2013 to 2019 to focus on the 2014 tax reform.
 - the giving price before 2014 was changed frequently and incorporating the data before 2012 captures the effects of another tax reform than the reform in 2014.
 - NaSTaB asks the amount of donation and the annual labor income last year.

Income and Giving Price

Figure 1: Income Distribution and Giving Price in 2013

Fixed Effect Model

The intensive-margin elasticity

$$\ln g_{it} = \varepsilon_p^{int} R_{it} \ln p_{it} + \varepsilon_y^{int} \ln y_{it} + X_{it} \beta + \mu_i + \iota_t + u_{it}. \tag{1}$$

The extensive-margin elasticity

$$D_{it} = \delta R_{it} \ln p_{it} + \gamma \ln y_{it} + X_{it} \beta + \mu_i + \iota_t + v_{it}. \tag{2}$$

- Since we use the linear probability model, the estimated coefficient δ represents $\hat{\delta} = \frac{\partial D_{it}}{\partial p_{it}} p_{it}$.
- the implied extensive-margin price are calculated by $\hat{\delta}/\bar{D}$ where \bar{D} is sample average of outcome variable $D_{it}.$

ITT approach and IV approach

ITT approach = True price effect + Effect of self-selection of a tax relief

• We assume that $R_{it} = 1$ for all i and t.

IV approach = True price effect

• First, using the emplyed dummy as IV, we estimate the following model:

$$R_{it} = \alpha_{1i} + \lambda \mathsf{Employed}_{it} + X_{it}\beta_1 + \mu_{i1} + \iota_{t1} + \eta_{it} \tag{3}$$

- There is a difference of declaration cost of tax relief since self-employed workers have to retain the certificate until they submit tax return although wage earners can submit the certificate at any time.
- Second, we obtain the fitted value of R_{it} (\hat{R}_{it}) and replace R_{it} with \hat{R}_{it} .

Results: ITT Approach

	Overall	Intensive	Extensive
$\hat{arepsilon}_{p}^{int}$	-1.241***	-0.904***	
_	(0.227)	(0.249)	
$\hat{\delta}$			-0.267***
			(0.051)
$\hat{\delta}/ar{D}$			-1.221***
			(0.235)
Individual FE	Υ	Υ	Υ
Time FE	Υ	Υ	Υ
Age	Υ	Υ	Υ
Year \times Education	Υ	Υ	Y
Year × Gender	Υ	Υ	Υ
Year × Resident Area	Υ	Υ	Υ
N	53267	11637	53267
Adjusted R-squared	0.530	0.678	0.462

Results: IV Approach

	Overall	Intensive	Extensive
$\hat{arepsilon}_{p}^{int}$	-1.603***	-0.987***	
-	(0.466)	(0.342)	
$\hat{\delta}$			-0.319***
			(0.110)
$\hat{\delta}/ar{D}$			-0.926***
•			(0.320)
Individual and time FE	Υ	Υ	Υ
log(income)	Υ	Υ	Y
Age	Υ	Υ	Υ
Year \times Education	Υ	Υ	Υ
Year \times Gender	Υ	Υ	Υ
Year × Resident Area	Υ	Υ	Υ
Year \times Dummy of industry	Υ	Υ	Υ
N	16946	5840	16946
Adjusted R-squared	0.514	0.697	0.428

References

References I

- Almunia, M., Guceri, I., Lockwood, B., Scharf, K., 2020. More giving or more givers? The effects of tax incentives on charitable donations in the UK. Journal of Public Economics 183. doi:10.1016/j.jpubeco.2019.104114
- Auten, G.E., Sieg, H., Clotfelter, C.T., 2002. Charitable giving, income, and taxes: An analysis of panel data. American Economic Review 92, 371–382.
- Bakija, J., Heim, B.T., 2011. How does charitable giving respond to incentives and income? New estimates from panel data. National Tax Journal 64, 615–650. doi:10.17310/ntj.2011.2S.08
- Fack, G., Landais, C., 2010. Are tax incentives for charitable giving efficient? Evidence from france. American Economic Journal Economic Policy 2, 117–141. doi:10.1257/pol.2.2.117
- Randolph, W.C., 1995. Dynamic income, progressive taxes, and the timing of charitable contributions. Journal of Political Economy 103, 709–738. doi:10.1086/262000