

Universidad Tecnológica del Perú

Investigación Operativa

S05 - Evaluación

Torres Vara, Mateo Nicolas - U24308542 Sección 36373

13 de septiembre de 2025

Docente: Alberto Andre Reyna Alcantara

Ejercicio 1

	A	В	Mínimo
Calorías	180	240	1600
Proteínas	5	8	40
Precio	90	120	

Cuadro 1: Variables y restricciones

Método Gráfico

$$180x + 240y \ge 1600 \quad \to \quad 180(0) + 240y = 1600 \qquad \land \quad 180x + 240(0) = 1600$$

$$y = \frac{1600}{240} = 6,67; \ (0, 6,67) \qquad x = \frac{1600}{180} = 8,89; \ (8,89, 0)$$

$$5x + 8y \ge 40 \qquad \to \quad 0 + y = 5 \qquad \qquad \land \quad x + 0 = 8$$

$$y = 5; \ (0, 5) \qquad \qquad x = 8; \ (8, 0)$$
 Minimizar $Z = 90x + 120y$

(0; 6,67) = $90(0) + 120(6,67) \approx 800$ (8,89; 0) = $90(8,89) + 120(0) \approx 800$

Método Simplex

Entre los materiales de clase, no se encuentra información acerca del método simplex para restricciones "mayores o iguales que". Por lo tanto, no he sido capaz de resolver este ejercicio con dicho método a pesar de que he encontrado información de un método bajo el nombre de "Big M"que podría asistir mi problema.

LINGO

Conclusión

El método gráfico da dos posibles resultados óptimos, (0, 6.67) y (8.89, 0), ambos con un costo aproximado de 800 y LINGO toma uno de estos valores como solución óptima (0, 6.67) con un costo de 800. Por lo tanto, el resultado del método gráfico y LINGO coinciden.

Ejercicio 2

	A	В	С	Disponibilidad
Horas Maquinas	4.5	6.5	7	480
Horas Mano de Obra	2	3	5.5	90
Cantidad	1	1	1	
Beneficio	120	80	60	

Cuadro 2: Variables y restricciones

Método Simplex

De igual forma que en el ejercicio 1, no he sido capaz de resolver este ejercicio con el método simplex debido a la falta de información acerca de restricciones "mayores o iguales que". Sin embargo, pude plantear el inicio del problema de la siguiente manera:

```
4.5x + 6.5y + 7z + S1 = 480

2x + 3y + 5.5z + S2 = 90

x + y + z - S3 + A1 = 100

Maximizar Z = 120x + 80y + 60z + 0S1 + 0S2 + 0S3 - MA1
```

LINGO

Conclusión

Según LINGO no hay una solución factible para este problema.