

Sistemas Operacionais Aula 1 – Apresentação do curso e Introdução

Prof. Msc. Cleyton Slaviero cslaviero@gmail.com

Material cedido pelo prof. Maikon Bueno

A disciplina

- Objetivo
 - Explorar conceitos fundamentais para a construção e execução de sistemas operacionais

A disciplina

Ementa

- Histórico e evolução.
- Tipos e estruturas de sistemas operacionais.
- Conceitos de processos.
- Concorrência.
- Sincronização de processos.
- Gerenciamento de memória.
- Memória virtual.
- Escalonamento de processos.
- Monoprocessamento e multiprocessamento.
- Alocação de recursos e deadlocks.
- Gerenciamento de arquivos.
- Técnicas de E/S.
- Métodos de acesso.
- Arquitetura de sistemas cliente-servidor.
- Análise de desempenho

Conteúdo programático

- 1. Histórico e evolução.
- 2. Tipos e estruturas de sistemas operacionais.
- 3. Conceitos de processos.
- 4. Escalonamento de processos
- 5. Threads
- 6. Comunicação entre processos
- 7. Gerenciamento de memória
- 8. Entrada e saída (E/S)

Avaliação

Três avaliações (P1,P2,P3)

Média =
$$(P1+P2+P3)/3$$

Se Média >= 5 então "aprovado", senão "reprovado"

Bibliografia básica

- SILBERSCHATZ, A.; GALVIN, P.B. & GAGNE, G.; Sistemas Operacionais com Java. Campus, 2004.
- TANENBAUM, A.S. Sistemas Operacionais Modernos. 2a Ed. Prentice-Hall, 2003.
- TANENBAUM, A.S; WOODHULL, A.S. Sistemas Operacionais: Projeto e Implementação. 2a ed. Bookman. Porto Alegre, 2006.

Bibliografia complementar

• TANENBAUM, A.S. Sistemas Operacionais: Projeto e Implementação. Prentice-Hall, 2002.

Roteiro de hoje

• Por que é necessário um sistema operacional

O que é um Sistema Operacional

Histórico

Conceitos Básicos

Por que?

- Sistemas de computadores modernos são compostos por diversos dispositivos:
 - Processadores;
 - Memória;
 - Controladoras;
 - Monitor;
 - Teclado;
 - Mouse;
 - Impressoras;
 - Etc...

Alta Complexidade

Por que?

- Com tantos dispositivos, surge a necessidade de gerenciamento e manipulação desses diversos dispositivos
 - Tarefa difícil

O que é um SO?

Abstração

&

Arbitração

O que é um SO?

- Software responsável por gerenciar dispositivos que compõem um sistema computacional e realizar a interação entre o usuário e esses dispositivos;
- Hardware
 - Processador;
 - Memória Principal;
 - Dispositivos de Entrada/Saída;
- Software
 - Programas de Aplicação;
 - Programas do Sistema;

Sistemas de Banco	Navegadores Web	Reserva de Passagens	-
Compiladores	Editores	Interpretadores de Comando	
SISTEMA OPERACIONAL			
Linguagem de Máquina			L
Micro Arquitetura			
Dispositivos Físicos			V

- Hardware: Diversas camadas
 - Dispositivos físicos:
 - Circuitos (chips)
 - Cabos
 - Transistores
 - Capacitores
 - Memória
 - Disco rígido
 - etc...

- Micro Arquitetura: dispositivos físicos são agrupados para formar unidades funcionais
 - CPU processamento;
 - ULA (Unidade Lógica Aritmética) operações aritméticas. Essas operações podem ser controladas por software (micro programas) ou por circuitos de hardware;

- Linguagem de Máquina: conjunto de instruções interpretadas pelos dispositivos que compõem a micro arquitetura;
 - Possui entre 50 e 300 instruções;
 - Realiza operações por meio de registradores;
 - Baixo nível de abstração;
 - Ex.: Assembler/Assembly

Sistema Operacional

- Pode atuar de duas maneiras diferentes:
 - Como máquina estendida (top-down) tornar uma tarefa de baixo nível mais fácil de ser realizada pelo usuário;
 - Como gerenciador de recursos (bottom-up) gerenciar os dispositivos que compõem o computador;

Sistema Operacional como Máquina Estendida

- Ex.: como é feita a entrada/saída de um disco flexível
- Tarefa: Leitura e Escrita
 - SO: baixo nível de detalhes
 - Número de parâmetros;
 - Endereço de bloco a ser lido;
 - Número de setores por trilha;
 - Modo de gravação;
 - Usuário: alto nível abstração simples
 - Visualização do arquivo a ser lido e escrito;
 - Arquivo é lido e escrito;
 - Arquivo é fechado.

Sistema Operacional como Gerenciador de Recursos

- Gerenciar todos os dispositivos e recursos disponíveis no computador
 - Ex.: se dois processos querem acessar um mesmo recurso, por exemplo, uma impressora, o SO é responsável por estabelecer uma ordem para que ambos os processos possam realizar sua tarefa de utilizar a impressora.
 - Uso do HD;
 - Uso da memória;
- Coordena a alocação controlada e ordenada dos recursos;

Modos do sistema operacional

- Modo núcleo
 - Acesso completo a todo o hardware
- Modo usuário
 - Apenas um subconjunto de operações é permitida

 Várias situações surgem da necessidade de operar entre esses modos

Roteiro de hoje

 Por que é necessário um sistema operacional

O que é um Sistema Operacional

Histórico

Conceitos Básicos

Tendência da Computação

Anos 40....

- Nenhum Sistema Operacional
- Instruções por fios e válvulas
- Painel de controle
- Operador = Programador
- Para compartilhar a máquina planilha de horários
- Ex. ENIAC (Electronic Numerical Integrator And Computer) 1946

O primeiro bug

- O primeiro bug (mariposa)
 - Setembro 1947
 - Harvard Mark II

Anos 40....

- Mesmo grupo de pessoas projetava, construía, programava, operava e fazia a manutenção de cada máquina;
- O acesso às máquinas era feito por meio de reserva de tempo: cada usuário fazia sua programação diretamente nos painéis das máquinas → "hard-wired";
- Máquinas realizavam cálculos numéricos;

Anos 50....

- Surge a idéia de tarefas (jobs) e cartões perfurados
- Os programas eram codificados nos cartões e sua leitura era feita por máquina → operadores de máquina;

Operador é
responsável por
carregar
montadores,
compiladores, etc.
e ativar job com
programa
desenvolvido pelo
programador

Appropriate the Bolton Control

Anos 50....

- Operação: cada programa (job) ou conjunto de programas escrito e perfurado por um programador era entregue ao operador da máquina para que o mesmo fosse processado – alto custo
- Sistemas em Batch (lote)
 - Consistia em coletar um conjunto de jobs e fazer a gravação desse conjunto para uma fita magnética

Anos 50....

Sistemas em Batch (lote)

Programador leva cartões para leitora

Grava lote de jobs em fita

Execução dos Jobs e gravação dos resultados em fita de saída

Operador leva fita com resultados

deral

Anos 60....

- Surgem as linhas de computadores
- □ Aplicações que eram CPU-bound não tinham problema com relação ao tempo que se precisava esperar para realizar E/S
- □ Aplicações que eram IO-bound gastavam de 80 a 90% do tempo realizando E/S
 - Enquanto isso, a CPU ficava parada

Multiprogramação

Anos 60....

Multiprogramação

- Dividir a memória em diversas partes e alocar a cada uma dessas partes um job.
- Manter na memória simultaneamente uma quantidade de jobs suficientes para ocupar 100% do tempo do processador, diminuindo a ociosidade.
- Importante: o hardware é que protegia cada um dos jobs contra acesso indevidos de outros jobs.

Campus Rondonópolis

Anos 60....

Spooling

- Máquinas separadas para E/S e processamento
- Operadores precisavam ficar andando entre as máquinas

Anos 60....

Spooling

Simultaneous Peripheral Operation On Line:

- Possibilitar que a leitura de cartões de jobs fosse feita direta do disco;
- Assim que um job terminava, o sistema operacional já alocava o novo job à uma partição livre da memória direto do disco;

Anos 60....

 Mesmo com o surgimento de novas tecnologias, o tempo de processamento ainda era algo crítico.
 Para corrigir um erro de programação, por exemplo, o programador poderia levar horas pois cada job era tratado dentro de um lote

TimeSharing

Anos 60....

TimeSharing

Cada usuário tem um terminal *on-line* à disposição:

- Primeiro sistema *TimeSharing*: CTSS (*Compatible Time Sharing System*) 7094 modificado
- Cada usuário tem a sensação de possuir o computador apenas para ele
- Ex.: se 20 usuários estão ativos e 17 estão ausentes, o processador é alocado a cada um dos 3 jobs que estão sendo executados

Campus Rondonópolis

Anos 70....

Cada máquina possuía um Sistema Operacional diferente

- Por exemplo, OS/360 para o System/360; MULTICS (GE)
- Incompatibilidade

Sistemas Operacionais de Propósito Geral

Anos 70....

Sistemas Operacionais de Propósito Geral

37

- Unics
 - Time Sharing System
 - Proposto por Ken Thompson
 - □Setembro/1969
 - Baseado no MULTICS
 - Deu origem ao Unix

Anos 80....

Sistemas Operacionais de Propósito Geral

- DOS (Disk Operating System)
 - A IBM tentou utilizar o CP/M, mas Kildall não quis nenhum acordo;
 - □ IBM procurou Bill Gates solicitando SO para o IBM PC;
 - Bill Gates comprou a empresa que desenvolvia o DOS Seattle Computer Products; Desenvolvedor: Tim Paterson;

Anos 80....

Sistemas Operacionais de Propósito Geral

- DOS (Disk Operating System)
 - □ Lançado em 1981
 - Monousuário
 - □ Desenvolvido para computadores Pessoais
 - Linha de comando

Anos 80....

Sistemas Operacionais de Propósito Geral

- Macintosh Operating System (Mac OS)
 - □ Lançado em 1984
 - □ Sistemas baseados em janelas (*GUI* − *Graphical User Interface*)

Universidade Federal

de Mato Grosso Campus Rondonópolis

Anos 80....

Sistemas Operacionais de Propósito Geral

- Windows
 - **1985**
 - Iniciou como uma interface gráfica para o DOS
 - Multiprogramação

Anos 90....

Sistemas Operacionais de Propósito Geral

- Linux
 - **1991**
 - Desenvolvido voluntariamente por programadores de todo o mundo
 - Multiusuário

Anos 90....

- □ Era da computação distribuída
 - um processo é dividido em subprocessos que executam em sistemas multiprocessados e em redes de computadores ou até mesmo em sistemas virtualmente paralelos

Campus Rondonópolis

Anos 90....

- □ Sistemas Operacionais Distribuídos :
 - Apresenta-se como um sistema operacional centralizado, mas que, na realidade, tem suas funções executadas por um conjunto de máquinas independentes;
- Sistemas Operacionais em Rede;
 - Usuários conhecem a localização dos recursos que estão utilizando e não têm a visão de um sistema centralizado
- □ Vários outros...

Tipos de Sistemas Operacionais

- Sistemas Operacionais Orientados a Objetos
 - Reuso
 - Interface orientada a objetos
- JavaOS
 - Portabilidade;
- Sistemas Operacionais de Tempo Real
 - Importante:
 - Gerenciamento de Tempo;
 - Gerenciamento de processos críticos (aviões, caldeiras);
 - RTLinux (Real Time Linux);
 - http://www.fsmlabs.com/
 - FreeRTOS (http://www.freertos.org)
- Sistemas Operacionais Embarcados: telefones, aparelhos eletrodomésticos; PDAs;

Roteiro

 Por que é necessário um sistema operacional

O que é um Sistema Operacional

Histórico

Conceitos Básicos

Conceitos Básicos de Sistemas Operacionais

- Principais conceitos:
 - Processo;
 - Memória;
 - Chamadas de Sistema;

Elementos de sistemas operacionais

Abstrações

Processos, threads, arquivo, socket, página de memória

Mecanismos

criar, agendar, abrir, escrever, alocar

Políticas

• LRU (Menos Frequentemente Usado), EDF (Menor deadline primeiro)

- □Processo: chave do SO;
 - ■Caracterizado por programas em execução;
 - Cada processo possui:
 - □Um espaço de endereçamento;
 - ☐ Lista de alocação de memória (mínimo, máximo);
 - □Um conjunto de registradores (contador de programa program counter PC);
 - O Sistema Operacional controla todos os processos;
 - Processos podem ter sua execução interrompida ou ou reiniciada por vários motivos

• Estados básicos de um processo:

Universidade Federal

de Mato Grosso Campus Rondonópolis

Ex.: processo bloqueado (suspenso)

Quando o SO suspende um processo *P1* temporariamente para executar um processo *P2*, o processo *P1* deve ser reiniciado exatamente no mesmo estado no qual estava ao ser suspenso. Para tanto, todas as informações a respeito do processo *P1* são armazenadas em uma **tabela de processos** (process table). Essa tabela é um vetor ou uma lista encadeada de estruturas.

- Um processo pode resultar na execução de outros processos, chamados de processos-filhos:
 - Características para a hierarquia de processos:
 - Comunicação (Interação) e Sincronização;
 - Segurança e proteção;
 - Uma árvore de no máximo três níveis;
- Escalonadores de processos processo que escolhe qual será o próximo processo a ser executado;
 - Diversas técnicas para escalonamento de processos;

- Comunicação e sincronismo entre processos solução:
 - Semáforos;
 - Monitores;
 - Instruções especiais em hardware;
 - Troca de mensagens;

Gerenciamento de Memória

- Gerenciamento elementar (década de 60)
 - Sistema monoprogramado;
 - Sem paginação:
 - Apenas um processo na memória;
 - Acesso a toda a memória;
- Gerenciamento mais avançado (atualidade)
 - Sistema multiprogramado;
 - Mais de um processo na memória;
 - Chaveamento de processos: por entrada/saída ou por limite de tempo (sistema de tempo compartilhado);

Compartilhamento de Memória

- Partições Fixas
 - Cada processo é alocado em uma dada partição da memória (prédefinida);
 - Partições são liberadas quando o processo termina;
- Partições Variáveis
 - Memória é alocada de acordo com o tamanho e número de processos;
 - Otimiza o uso da memória;

System Calls - Chamadas de Sistema

- Interface entre o Sistema Operacional e os programas do usuário;
- As chamadas se diferem de SO para SO, no entanto, os conceitos relacionados às chamadas são similares independentemente do SO;
- Apenas uma chamada de sistema pode ser realizada em um instante de tempo (ciclo de relógio) pela CPU;
 - Caso seja necessário, executa-se uma instrução TRAP

Próxima Aula

Mais sobre System Calls....

Estrutura de Sistemas Operacionais

- Tarefa para casa
 - Ler capítulo 1 do Tanenbaum

