Poisson Processes

Michael Throolin

11/17/2021

Concept

Definition (Counting Processes). A random process $\{N(t), t \in [0, \infty)\}$ is a counting process if,

- 1. N(0) = 0.
- 2. $N(t) \in \{0, 1, 2, 3, 4, ...\}$ and is non-decreasing.

Definition (Poisson Processes). A random process N(t) is a poisson process with rate λ if,

- 1. N(t) has independent increments. That is the set $N(t_j+s_j)-N(t_j),\ j\in\{0,1,2,...,n\}$ is independent for each non-overlapping increment $(t_j,t_j+s_j]$.
- 2. For all $t \geq 0$ and h > 0 , $N(t+h) N(t) \sim POIS(\Lambda)$ where $\Lambda = \int_t^{t+h} \lambda(z) dz$.

Examples and Exploration