Постановка задач нелинейного программирования. Выпуклые и вогнутые множества и функции.

Пели:

- 1. Формирование знаний об основных понятиях и определениях задач нелинейного программирования.
- 2. Формирование знаний об основных способах решения задач нелинейного программирования.

Задачи:

- 1. Сформировать теоретические знания необходимые при составлении и решении задач нелинейного программирования.
- 2. Содействовать расширению профессиональной компетенции в области основных понятий и способов решений задач нелинейного программирования.

В течение последних двух десятилетий из нелинейного программирования выделились самостоятельные разделы:

- выпуклое программирование,
- квадратичное программирование,
- целочисленное программирование,
- стохастическое программирование,
- динамическое программирование и др.

Задачи выпуклого программирования — это задачи, в которых определяется минимум выпуклой функции (или максимум вогнутой), заданной на выпуклом замкнутом множестве. Эти задачи среди задач *нелинейного программирования* наиболее изучены.

Среди *задач выпуклого программирования* более подробно изучены задачи квадратичного программирования. В этих задачах целевая функция – квадратична, а ограничения – линейны.

В задачах *целочисленного программирования* неизвестные параметры могут принимать только целочисленные значения.

В задачах стохастического программирования в целевой функции или в функциях ограничений содержатся случайные величины, которые подчиняются законам теории вероятностей.

В задачах динамического программирования ограничения содержат как параметр время и при этом описываются дифференциальными уравнениями. Процесс нахождения решений в задачах динамического программирования является многоэтапным.

Классификация методов нелинейного программирования

Для решения задачи *нелинейного программирования* было предложено много методов, которые можно классифицировать по различным признакам.

По количеству локальных критериев в целевой функции методы *нелинейного программирования* делятся на:

- однокритериальные,
- многокритериальные.

По длине вектора \overline{X} методы делятся на:

- однопараметрические или одномерные (n=1),
- многопараметрические или многомерные (n>1).

По наличию ограничений методы нелинейного программирования делятся на:

- без ограничений (безусловная оптимизация),
- с ограничениями (условная оптимизация).

По типу информации, используемой в алгоритме поиска экстремума методы делятся на:

- методы прямого поиска, т.е. методы, в которых при поиске экстремума целевой функции используются только ее значения;
- градиентные методы первого порядка, в которых при поиске экстремума функции используются значения ее первых производных;
- градиентные методы второго порядка, в которых при поиске экстремума функции наряду с первыми производными используются ивторые производные.

Ни один метод *нелинейного программирования* не является универсальным. В каждом конкретном случае необходимо приспосабливать применяемый метод к особенностям решаемой задачи.

3. Классический метод определения условного экстремума

Задача нелинейного программирования (задача НП) в общем виде формулируется так: максимизировать $f(x_1, x_2, \dots, x_n)$

при ограничениях

где функции $f(x_1, x_2, \dots, x_n), \ g_i(x_1, x_2, \dots, x_n) \geq 0, \ i = \overline{1, m}$ нелинейны.

В отличие от задачи ЛП для задач НП нет универсального метода решения.

В задаче ЛП допустимое множество R всегда является выпуклым с конечным числом крайних точек. Поэтому воспользовавшись *симплекс-методом* и перебрав только крайние точки, можно за конечное число шагов найти *оптимальное решение. В задачах* НП, наоборот, выпуклость допустимого множества и конечность числа его крайних точек совсем необязательны. Это и служит причиной основной трудности решения задач НП.

Для определения условного экстремума (то есть экстремума при ограничениях) можно воспользоваться методами дифференциального исчисления, когда функция $f(x_1, x_2, \ldots, x_n)$ имеет не ниже *второй производной*. Рассмотрим некоторые важные понятия и теоремы классического анализа, которые лежат в основе классических методов поиска условного экстремума.

Теорема 1 (теорема существования экстремума). Если $f(x_1, x_2, \dots, x_n)$ - непрерывная функция, определенная на замкнутом и ограниченном множестве, то она достигает на этом множестве, по крайней мере один раз, своих максимального и минимального значений>.

Следующая теорема определяет возможные местоположения максимума (или минимума).

Теорема 2. Если $f(x_1, x_2, \dots, x_n)$ является непрерывной функцией нескольких переменных, определенной на допустимом множестве R, то максимальное значение $f(x_1, x_2, \dots, x_n)$, если оно существует, достигается в одной или нескольких точках, которые принадлежат одному из следующих множеств: 1) S_1 - множество стационарных точек; 2) S_2 - множество точек границы; 3) S_3 - множество точек, где функция $f(x_1, x_2, \dots, x_n)$ не дифференцируема.

Определение 1. Множество точек $S_1(x_1, x_2, ..., x_n)$ функции f(x) называется **множеством стационарных точек**, если они удовлетворяют условию

$$\frac{\partial f(x)}{\partial x_j} = 0, \ \ 1)$$

Определение 3.2. Функция f(x) достигает локального максимума в точке $x^0 = \left(x_1^0, x_2^0, \dots, x_n^0\right)$, если для всех точек x, лежащих в малой окрестности точки $\left[x_1^0, x_2^0, \dots, x_n^0\right]$ имеет место неравенство

$$f(x_1^0, x_2^0, \dots, x_n^0) \ge f(x_1, x_2, 2)$$

Определение 3.3. Функция f(x) достигает *глобального* (абсолютного) максимума в точке x^0 , если для всех точек $x \in R$ справедливо неравенство

$$f(x^0) \ge f(x)$$

Для нахождения стационарных точек функции f(x) можно использовать следующую теорему.

Теорема 3.3. Пусть $f(x_1, x_2, \dots, x_n)$ дифференцируема в некоторой допустимой области R. Если в некоторой внутренней точке $(x_1^0, x_2^0, \dots, x_n^0)$ области R функция f(x) достигает относительного максимума, то

$$\frac{\partial f(x_0)}{\partial x_j} = 0$$
 3)

Для того чтобы определить, являются ли найденные стационарные точки точками максимума или минимума, необходимо исследовать функцию $f(x_1, x_2, \dots, x_n)$ в окрестности стационарных точек и определить, является она выпуклой или вогнутой.

Определение 4. Пусть R - выпуклое множество точек n - мерного пространства. Функция f, определенная на R, называется выпуклой вверх, если для любой пары точек $x_1, x_2 \in R$ и произвольного $0 \le k \le 1$ выполняется неравенство

$$f[kx_1 + (1-k)x_2] \ge kf(x_1) + (1-3.4)$$

Если

$$f[kx_1 + (1-k)x_2] \le kf(x_1) + (1-k_2)$$

то функция называется вогнутой.

Если (4) или (5) выполняются как строгие неравенства, то функция называется строго вогнутой или строго выпуклой соответственно.

Критерий выпуклости и вогнутости функции n - переменных можно сформулировать в виде следующей теоремы.

Теорема 4. Дифференцируемая функция f(x) строго вогнутая в некоторой окрестности точки $x^0\left(x_1^0,x_2^0,\ldots,x_n^0\right)$, если выполняются следующие условия:

$$f_{11}(x_0) < 0;$$
 $\begin{vmatrix} f_{11}(x_0) & f_{12}(x_0) \\ f_{21}(x_0) & f_{22}(x_0) \end{vmatrix} > 0;$ $\begin{vmatrix} f_{11}(x_0) & f_{12}(x_0) & f_{12} \\ f_{21}(x_0) & f_{22}(x_0) & f_{22} \\ f_{31}(x_0) & f_{32}(x_0) & f_{33} \end{vmatrix} > 0;$

И так далее, то есть если знаки определителей чередуются начиная c < 0, где

$$f_{ij}(x_0) = \frac{\partial^2 f(x)}{\partial x_i \partial x_j} \left| x = x_0 \right|$$

Функция f(x) строго выпукла в окрестности точки x_0 , если все определители (выписанные выше) положительные.

Имеет место следующая теорема.

Теорема 5. Для того чтобы в точке x_0 достигался внутренний относительный минимум, достаточно, чтобы эта точка была стационарной, а самая функция в окрестности точки x_0 была строго выпуклой.

Справедливо следующее **утверждение**: если f(x) строго выпуклая (вогнутая) функция на всем множестве решений R, то f имеет только один относительный минимум (максимум), который является и абсолютным.

Теорема 6 (о выпуклости допустимого множества решений).

Пусть $g_1(x),g_2(x),\dots,g_m(x),\geq 0$ и $x\geq 0$ -ограничения задачи нелинейного программирования. Если функции $g_1(x),g_2(x),\dots,g_m(x)$ - вогнуты, то допустимое $R(x)=\{x:\ g_1(x)\geq 0,g_2(x)\geq 0,\dots,g_m(x)\geq 0,\ x\geq 0\}$

множество является выпуклым.

Доказательство. Для доказательства теоремы достаточно показать, что множество $R(x) = \{x: g_1(x) \geq 0, \ x \geq 0\}$ при каждом $i = \overline{1,m}$ будет выпуклым. Тогда множество $R = R_1 \cap R_2 \cap \ldots \cap R_m$ также выпукло, так как пересечение конечного числа выпуклых множеств R_i .

Рассмотрим некоторую вогнутую функцию $g_i(x) \geq 0$. Выберем две произвольных точки $x_1 \geq 0$ и $x_2 \geq 0$ (рис.7.1). Тогда $x_2 = \lambda x_1 + (1-\lambda)x_3 \geq 0,\ 0 < \lambda < 1$. Поскольку $x_1 \in R_i, x_3 \in R_i$, то и точка x_2 принадлежит R_i . Из условия вогнутости g_i следует, q_{TO} $g_i[\lambda x + 1 + (1-\lambda)] \geq g_i(x_1)\lambda + (1-\lambda)g_i(x_1) \geq 0$.

Следовательно, множество $\mathbf{R_i}$ содержит отрезок $\lambda g_i(x_1) + (1-\lambda)g_i(x_1)$, и поэтому оно выпукло (рис.7.1).

Рис. 1.

Справедливое такое **утверждение**: если функции $f_1(x), f_2(x), \dots, f_p(x)$ - выпуклы (вогнуты) на множестве \mathbf{R}_i , то функция $g(x) = \sum_{i=1}^p k_i f_i(x)$ - также выпукла (вогнута) при условии, что все $k_i \geq 0, \ i=1,2,\dots,p$.

Рассмотрим метод поиска условного экстремума. Он состоит из следующих процедур.

1.Отыскивают множество всех стационарных точек $S_1(x)$ функции f(x) на выпуклом допустимом множестве R. Найденные точки далее исследуют на максимум (минимум) и определяют точку наибольшего максимума $x_0(x_0 \in S_1(x))$.

2. Переходят к исследованию точек границы $S_2(x)$ и отысканию тех из них, где f(x) достигает максимума. Этот процесс состоит в следующем. Выбирают произвольную границу, определяемую, например, условием $g_1(x)$ =0. Если функция

$$g_i(x) = g_i(x_1, x_2, \dots, x_{3.7})$$

является сепарабельной, то можно, определив из (7) переменную

$$x_i = \varphi(\lbrace x_j \rbrace), \ j = \overline{1, n}, \ j \neq i$$

подставить ее в выражение для f(x). Тем самым задача сведется к поиску безусловного экстремума, для чего можно использовать процедуру, описанную в π .1.

Обозначим через x_i^+ точку границы $g_i(x)=0, x_i^+\in R$, в которой f(x) достигает максимума. Повторив вышеописанную процедуру по всем остальным границам, найдем соответственно точки максимума (минимума) для всех границ $x_k^+, k=\overline{1,m}$.

3. Непосредственным сравнением значений функции f(x) для всех точек $x_0^+, x_1^+, \dots, x_m^+$ определяют точку *абсолютного максимума* (минимума) x_{opt} на множестве решений R.

Такой подход требует значительных вычислительных затрат и может применяться лишь в простейших случаях при небольшом числе ограничений m и для случая сепарабельных функций $g_1(x)$, поэтому область его применения очень ограничена, и ниже рассматриваются более эффективные методы решения задач *условной оптимизации*.

Обобщение понятия выпуклой функции. Рассмотрим некоторые классы функций, которые не являются полностью выпуклыми, но обладают лишь отдельными их свойствами.

Определение 5. Пусть функция f(x) определена на непустом и выпуклом множестве R. Функция f(x) квазивыпукла, если для любых $x_1, x_2 \in R$ и $\lambda \in [0,1]$ выполняется неравенство

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \max\{f(x_1), 8\}$$

Функция f(x) называется *квазивогнутой*, если -f(x) - *квазивыпуклая функция*.

Из этого определения следует, что функция f(x) - квазивыпукла, если из неравенства $f(x_2) \ge f(x_1)$ следует, что $f(x_2)$ не меньше значения функции f(x) в любой точке, являющейся выпуклой комбинацией точек x_1 и x_2 . И наоборот, функция f(x) квазивогнута, если из неравенства $f(x_2) \ge f(x_1)$ следует, что $f(x_1)$ не больше значения f(x) в любой точке, которая есть выпуклой комбинацией точек x_1 и x_2 .

На рис. 7.2 приведены примеры квазивыпуклых и *квазивогнутых функций*, где а - квазивыпуклая, б - *квазивогнутая функции*.

Введем понятия строгой квазивыпуклости и квазивогнутости.

Определение 6. Пусть функция f(x) определена на непустом и выпуклом множестве R. Функция f(x) строго квазивыпукла, если для любых $x_1, x_2 \in R$ таких, что $f(x_1) \neq f(x_2)$ и $\lambda \in (0;1)$ выполняется неравенство

$$f(\lambda x_1 + (1 - \lambda)x_2) < \max\{f(x_1), f_{(0)}\}$$

Функция f(x) называется строго квазивогнутой, если -f(x) - строго квазивыпуклая функция. На рис. 7.3 изображены: а, б - строгоквазивыпуклые функции, в - квазивогнутая функция. Из приведенного определения следует, что любая выпуклая функция является в тоже время и строго квазивыпуклой.

Строго квазивыпуклые и *квазивогнутые функции* играют важную роль в *нелинейном программировании*, поскольку для них *локальный минимум* и *локальный максимум* являются глобальным минимумом и максимумом соответственно.

Рис. 3.

Утверждение. Пусть f(x) - строго *квазивыпуклая функция*. Рассмотрим задачу минимизаци f(x) при условии, что $x \in R$, где R - непустое *выпуклое множество* в $E^{(n)}$. Пусть \overline{x} - точка *покального минимума* рассматриваемой задачи. Тогда она является и точкой глобального минимума.

Доказательство. Предположим противное, то есть пусть существует точка $x^+ \in R$, для которой $f(x^+) < f(\overline{x})$. ПосколькуR - выпуклое, то точка $\lambda x^+ + (1-\lambda)\overline{x} \in R$ при любой $\lambda \in (0;1)$. Так как \overline{x} - точка локального минимума, то

$$f(\overline{x}) \leq f[\lambda x^+ + (1)]$$
 10) для всех $\lambda \in (0,\delta)$ для некоторого $\delta \in (0,1)$.

Поскольку f(x) - *квазивыпуклая функция* и выполняется неравенство $f(x^+) < f(\overline{x})$, то мы получим, что $f[\lambda x^+ + (1-\lambda)\overline{x}] < f(\overline{x})$ при всех $\in (0;1)$. Однако это соотношение противоречит (10).

Заметим, что строго квазивыпуклые и *квазивогнутые функции* называются **унимодальными**.