

Dostępna pamięć: 256MB

Matrix

Wyrocznia zaczęła aktualizować dane i cały Matrix zaczął lagować. Traf chciał, że akurat teraz Neo wykuje niezwykle poważną misję. Misja wymaga, aby mógł on się szybko przemieszczać pomiędzy wybranymi k budkami telefonicznymi. Na szczęście lagi nie pojawiają się od razu w całym Matrixie, lecz stopniowo.

Miasto, w którym Neo wykonuje misję składa się z n skrzyżowań połączonymi m drogami. Na niektórych ze skrzyżowań stoją budki telefoniczne. Lagi pojawiają się z czasem na kolejnych ulicach. Neo nie chce przemiaszczać się po już zlagowanych ulicach, bo po co mu latanie, skoro laguje? Nie chce on także latać nad, przez i pod budynkami, aby nie zwracać zbyt dużej uwagi agentów. Zastanawia się teraz jak długo może jeszcze wykonywać swoją misję, aby szybko (bez lagów) móc przemieścić między dowolną parą budek telefonicznych.

Wejście

W pierwszej linii wejścia znajdują się liczby n, m i $k (1 \le k \le n \le 500000, 0 \le m \le 1000000)$. W następnym wierszu znajdują się numery skrzyżowań, na których są budki telefonizne. W kolejnych m wierszach są opisy kolejnych ulic w postaci trzech liczb: a_i, b_i i t_i $(1 \le a_i, b_i \le n, 1 \le t_i \le 10^9)$, co oznacza, że i-ta droga łączy skrzyżowania a_i i b_i oraz zaczyna lagować w t_i -tej minucie.

Wyjście

Na wyjście wypisz ostatnią minutę, w jakiej Neo może nadal wykonywać swoją misję. Jeśli nie może jej wykonywać nawet w chwili 0 wypisz -1, natomiast jeśli nigdy nie przestanie móc jej wykonywać wypisz "KEEP CALM AND FOLLOW THE WHITE RABBIT".

1/2 Matrix

Przykład

Wejście	Wyjście
6 8 4	4
1 4 5 6	
1 2 3	
1 3 5	
2 4 5	
4 5 10	
6 1 12	
3 4 2	
1 4 1	
2 3 6	