Полнота PAL

Мини-курс «Эпистемическая логика: исчисления и модели»

Виталий Долгоруков, Елена Попова

Международная лаборатория логики, лингвистики и формальной философии НИУ ВШЭ

Летняя школа «Логика и формальная философия» Факультет свободных искусств и наук сентябрь 2022

Язык

Язык
$$\mathcal{P}\mathcal{A}\mathcal{L}$$

$$\varphi, \psi ::= p \mid \neg \varphi \mid (\varphi \wedge \psi) \mid K_i \varphi \mid [!\varphi] \psi$$

Семантика языка \mathcal{PAL}

Некоторые законы \mathcal{PAL}

Исчисление PAL ($S5_m[]$)

Аксиомные схемы:

- *S*5
- $[!\varphi]p \leftrightarrow (\varphi \rightarrow p)$
- $[!\varphi] \neg \psi \leftrightarrow (\varphi \rightarrow \neg [!\varphi]\psi)$
- $[!\varphi](\psi \wedge \chi) \leftrightarrow ([!\varphi]\psi \wedge [!\varphi]\chi)$
- $[!\varphi]K_i\psi \leftrightarrow (\varphi \rightarrow K_i[!\varphi]\psi)$

Правила вывода: MP, NEC, RE!

Корректность PAL

$$\models [!\varphi]p \leftrightarrow (\varphi \rightarrow p)$$

- 1. $M, x \models [!\varphi]p$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models p$

Выразительность

$$\mathcal{EL} \ \varphi, \psi ::= p \mid \neg \varphi \mid (\varphi \land \psi) \mid K_i \varphi$$
$$\mathcal{PAL} \ \varphi, \psi ::= p \mid \neg \varphi \mid (\varphi \land \psi) \mid K_i \varphi \mid [!\varphi] \psi$$

Утверждение

$$\mathcal{EL} \equiv \mathcal{PAL}$$

Перевод tr

$$(\mathcal{EL}) \ \varphi, \psi ::= p \mid \neg \varphi \mid (\varphi \wedge \psi) \mid K_i \varphi$$
$$(\mathcal{PAL}) \ \varphi, \psi ::= p \mid \neg \varphi \mid (\varphi \wedge \psi) \mid K_i \varphi \mid [!\varphi] \psi$$

Определение (Функция перевода $tr:\mathcal{PAL}\mapsto\mathcal{EL}$)

- tr(p) := p
 - $tr(\neg \varphi) := \neg tr(\varphi)$
 - $tr(\varphi \wedge \psi) := tr(\varphi) \wedge tr(\psi)$
 - $tr(K_i\varphi) := K_i tr(\varphi)$
 - $tr([!\varphi]p) := tr(\varphi \rightarrow p)$

- $tr([!\varphi] \neg \psi) := tr(\varphi \rightarrow \neg [!\varphi] \psi)$
- $tr([!\varphi](\psi \wedge \chi)) := tr([!\varphi]\psi \wedge [!\varphi]\chi)$
- $tr([!\varphi]K_i\psi) := tr(\varphi \to K_i[!\varphi]\psi)$
- $tr([!\varphi][!\psi]\chi) := tr([!\varphi]tr([!\psi]\chi))$

Упражнение

- $tr(\varphi \rightarrow \psi) = \dots$
- $tr(\varphi \lor \psi) = \dots$

Перевод

Примеры

- $tr([!p](q \land r)) = tr([!p]q \land [!p]r) = tr([!p]q) \land tr([!p]r) = (p \rightarrow q) \land (p \rightarrow r)$
- $tr([!p][!q]r) = tr([!p]tr([!q]r)) = tr([!p](q \to r)) = p \to (q \to r)$
- $tr([!p]K_aq) = tr(p \rightarrow K_a[!p]q) = tr(p) \rightarrow tr(K_a[!p]q) = p \rightarrow K_atr([!p]q) = p \rightarrow K_a(p \rightarrow q)$

Сложность формулы с

$$\varphi \to K_i[!\varphi]\psi$$
 vs. $[!\varphi]K_i\psi$

Определение (Сложность формулы)

Определим функцию $c: L_{K\Pi} \mapsto \mathbb{N}$:

- 1. c(p) := 1
- 2. $c(\neg \varphi) := c(\varphi) + 1$
- 3. $c(\varphi \wedge \psi) = max\{c(\varphi), c(\psi)\} + 1$
- 4. $c(K_i\varphi) := c(\varphi) + 1$
- 5. $c([!\varphi]\psi) := (c(\varphi) + 4) \cdot c(\psi)$

Лемма об уменьшении сложности формулы

- $c(\varphi) \geq c(\psi)$ для $\psi \in \mathit{Sub}(\varphi)$
- $c([!\varphi]p) > c(\varphi \to p)$
- $c([!\varphi]\neg\psi) > c(\varphi \rightarrow \neg [!\varphi]\psi)$
- $c([!\varphi][!\psi]\chi) > c([!\varphi]tr([!\psi]\chi))$

$$\forall \varphi \in \mathcal{PAL} \vdash_{PAL} \varphi' \leftrightarrow tr(\varphi')$$

Рассмотрим следующие случаи:

$$\varphi' = \rho, \neg \varphi, \varphi \wedge \psi, K_i \varphi, [!\varphi]\rho, [!\varphi]\neg \psi, [!\varphi](\psi \wedge \chi), [!\varphi]K_i \psi, [!\varphi][!\psi]\chi$$

ullet Случай arphi'=p. По определению $p\leftrightarrow tr(p)$.

$$\forall \varphi \in \mathcal{PAL} \vdash_{PAL} \varphi' \leftrightarrow tr(\varphi')$$

Рассмотрим следующие случаи:

$$\varphi' = \rho, \neg \varphi, \varphi \wedge \psi, K_i \varphi, [!\varphi]\rho, [!\varphi]\neg \psi, [!\varphi](\psi \wedge \chi), [!\varphi]K_i \psi, [!\varphi][!\psi]\chi$$

- Случай $\varphi' = p$. По определению $p \leftrightarrow tr(p)$.
- ullet Случай arphi' =
 eg arphi . $arphi \leftrightarrow tr(arphi)$ по IH, поскольку c(arphi) < c(
 eg arphi)

$$\neg \varphi \leftrightarrow \neg tr(\varphi) \leftrightarrow tr(\neg \varphi)$$

$$\forall \varphi \in \mathcal{PAL} \vdash_{PAL} \varphi' \leftrightarrow tr(\varphi')$$

Рассмотрим следующие случаи:

$$\varphi' = \rho, \neg \varphi, \varphi \wedge \psi, K_i \varphi, [!\varphi]\rho, [!\varphi]\neg \psi, [!\varphi](\psi \wedge \chi), [!\varphi]K_i \psi, [!\varphi][!\psi]\chi$$

- Случай $\varphi' = p$. По определению $p \leftrightarrow tr(p)$.
- ullet Случай arphi' =
 eg arphi . $arphi \leftrightarrow tr(arphi)$ по IH, поскольку c(arphi) < c(
 eg arphi)

$$\neg \varphi \leftrightarrow \neg tr(\varphi) \leftrightarrow tr(\neg \varphi)$$

ullet Случай $arphi' = arphi \wedge \psi. \; arphi \leftrightarrow tr(arphi), \; \psi \leftrightarrow tr(\psi)$

$$(\varphi \wedge \psi) \leftrightarrow (tr(\varphi) \wedge tr(\psi)) \leftrightarrow tr(\varphi \wedge \psi)$$

$$\forall \varphi \in \mathcal{PAL} \vdash_{PAL} \varphi' \leftrightarrow tr(\varphi')$$

Рассмотрим следующие случаи:

$$\varphi' = \rho, \neg \varphi, \varphi \wedge \psi, K_i \varphi, [!\varphi]\rho, [!\varphi]\neg \psi, [!\varphi](\psi \wedge \chi), [!\varphi]K_i \psi, [!\varphi][!\psi]\chi$$

- Случай $\varphi' = p$. По определению $p \leftrightarrow tr(p)$.
- ullet Случай arphi' =
 eg arphi . $arphi \leftrightarrow tr(arphi)$ по IH, поскольку c(arphi) < c(
 eg arphi)

$$\neg \varphi \leftrightarrow \neg tr(\varphi) \leftrightarrow tr(\neg \varphi)$$

• Случай $\varphi' = \varphi \wedge \psi$. $\varphi \leftrightarrow tr(\varphi)$, $\psi \leftrightarrow tr(\psi)$

$$(\varphi \wedge \psi) \leftrightarrow (tr(\varphi) \wedge tr(\psi)) \leftrightarrow tr(\varphi \wedge \psi)$$

ullet Случай $arphi' = K_i arphi$. $arphi \leftrightarrow tr(arphi)$

$$K_i\varphi \leftrightarrow K_i tr(\varphi) \leftrightarrow tr(K_i\varphi)$$

- Случай $\varphi' = [!\varphi]p$.
- Случай $\varphi' = [!\varphi] \neg \psi$.
- Случай $\varphi' = [!\varphi](\psi \wedge \chi)$.

• Случай $\varphi' = [!\varphi]K_i\psi$. $c(\varphi \to K_i[!\varphi]\psi) < c([!\varphi]K_i\psi)$ $\vdash_{PAL} [!\varphi]K_i\psi \overset{\mathsf{akc.}}{\longleftrightarrow} (\varphi \to K_i[!\varphi]\psi) \overset{\mathit{IH}}{\longleftrightarrow} tr(\varphi \to K_i[!\varphi]\psi)) \overset{\mathit{def}}{\longleftrightarrow} tr([!\varphi]K_i\psi)$

- Случай $\varphi' = [!\varphi][!\psi]\chi$
 - 1. $c([!\psi]\chi) < c([!\varphi][!\psi]\chi)$
 - 2. $c([!\varphi]tr([!\psi]\chi)) < c([!\varphi][!\psi]\chi)$
 - 3. $\vdash_{PAL} [!\psi]\chi \leftrightarrow tr([!\psi]\chi)$ IH из 1

$$\vdash_{\mathit{PAL}} [!\varphi][!\psi]\chi \overset{!\mathit{RE}}{\underset{3}{\longleftrightarrow}} [!\varphi]tr([!\psi]\chi) \overset{\mathit{IH}}{\underset{2}{\longleftrightarrow}} tr([!\varphi]tr([!\psi]\chi)) \overset{\mathit{def}}{\longleftrightarrow} tr([!\varphi][!\psi]\chi)$$

Сборка доказательства

Теорема о полноте *PAL*

$$\forall \varphi \in \mathcal{PAL}$$
:

$$\models_{\mathit{C_{S5}}} \varphi \Rightarrow \models_{\mathit{C_{S5}}} \mathit{tr}(\varphi) \Rightarrow \vdash_{\mathit{S5}_m} \mathit{tr}(\varphi) \Rightarrow \vdash_{\mathit{PAL}} \mathit{tr}(\varphi) \Rightarrow \vdash_{\mathit{PAL}} \varphi$$

Лаконичность

 $K_i \top$

Другие варианты аксиоматизации *PAL*

 PAL_1 , PAL_2 , PAL_3 , Подробнее Wang

Дедуктивная эквивалентность

Утверждение. $\vdash_{PAL_1} \varphi \Leftrightarrow \vdash_{PAL_2} \varphi$ В силу теоремы о полноте.

Вопрос: Как доказать дедуктивную эквивалентность PAL_1 и PAL_2 непосредственно?

Задача сводится к том, чтобы вывести COM! в PAL_1 и RE! в PAL_2 . Как это сделать? Гипотеза: индукцией по $c(\varphi)$.