Intrusion Detection System Using Deep Learning

- -Keerthi Kumar S (1811EE06)
- -Mandeep Rathee (1811MC07)
- -Sandip Kishore (1711CS12)

Outline

- What is IDS?
- Motivation
- Dataset
- Preprocessing
- Our Model
- Results
- Future Work

What's Intrusion ??

- Precursor of more complicated attacks Technical and non-technical – Severe
- Network attacks hog the network resources
 - Bandwidth, memory, CPU resource of the server etc.
- Results in degraded service or denied of the available service – DoS & DDoS
- DDoS Difficult to characterize and eliminate
- Evolving techniques
 - Challenging to detect DDoS attack Needs adaptability

What's IDS

System to forewarn Network Admins about malicious behaviors

intrusions, attacks, and malware

Mandatory line of defense to protect critical networks against these ever-increasing issues of intrusive activities

IDS – High Level Taxonomy

McAfee Report 2016

- Brute Force Attack
- Heartbleed Attack
- Botnet
- DoS Attack
- DDoS Attack
- Web Attack
- Infiltration Attack

Motivation – Why IDS for this project??

- IIT Patna Large Campus Network around 8000 nodes more than 1000 concurrent users – Data usage in TB per day
- Liberal approach ICT policy
- Firewall and enterprise security device— handle outbound and inbound traffic
- Need to analyze the campus traffic validate the filtering and security provided by firewalls and security equipments
- Currently signature based not anomaly based
 - Will be obsolete Evolving attack paradigms

Challenges

- Difficulty in getting reliable training data
- Behavioral dynamics & patterns
- Volume of data
- Diversity, heterogeneous environment and equipment – adaptability
- Low frequency attacks
- Test data preprocessing

The Data Set

- CICIDS2017 https://www.unb.ca/cic/datasets/ids-2017.html
- Latest available data set addresses short coming of currently available other IDS data sets like KDD Cup 1999 and NSL KDD 2009

 The generated attack diversity includes the most common attacks based on the 2016 McAfee report

- Around 80 network flow features
- In this project we are using 78 flow features

- Benign Profile agent B- Profile System
 - responsible for profiling the abstract behavior of human interactions
 - Generate a naturalistic benign background traffic
 - tries to encapsulate network events produced by users with machine learning and statistical analysis techniques.
 - encapsulated features are distributions of packet sizes of a protocol, the number of packets per flow, certain patterns in the payload, the size of the payload etc

Time slot based Attack Profile and scenarios

Days	Labels				
Monday	Benign				
Tuesday	BForce,SFTP and SSH				
	DoS and Hearbleed Attacks				
Wednes.	slowloris, Slowhttptest,				
	Hulk and GoldenEye				
	Web and Infiltration Attacks				
Thurs.	Web BForce, XSS and Sql Inject.				
Thurs.	Infiltration Dropbox Download				
	and Cool disk				
	DDoS LOIT, Botnet ARES,				
Friday	PortScans (sS,sT,sF,sX,sN,sP,sV,sU,				
	sO,sA,sW,sR,sL and B)				

RandomForestRegressor

to select the best short feature set for each attack

Performance and accuracy

 of the selected features verified with seven common machine learning algorithms

Evaluate the quality of the generated dataset

 based on the 11 criteria from the last proposed dataset evaluation framework by Canadian Institute for Cybersecurity (CIC)(Sharafaldin et al., 2017).

Category	Number of Samples		
BENIGN	2273097		
FTP-Patator	7938		
SSH-Patator	5897		
DoS-Slowloris	5796		
DoS-Hulk	231073		
DoS-Slowhttptest	5499		
DoS-GoldenEye	10293		
Heartbleed	11		
Web Attack-XSS	652		
Web Attack-Sql Injection	21		
Brute Force	1507		
Infiltration	36		
Bot	1966		
DDoS	128027		
PortScan	158930		

What's been done in IDS??

- N. Shone, T. N. Ngoc, V. D. Phai and Q. Shi, "A Deep Learning Approach to Network Intrusion Detection," in IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 2, no. 1, pp. 41-50, Feb. 2018
- Used Non-Symmetric deep auto encoder
- Used old KDD Cup 99 and NSL KDD 2009 data set

What's been done in IDS??

- C. Yin, Y. Zhu, J. Fei and X. He, "A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks", in IEEE Access, vol. 5, pp. 21954-21961, 2017
- NSL KDD 2009 data set (41 features, 3, 5 or 13 class)

The recipe - Preprocessing

Handling NaN – replace with 0

- Handling Infinity replace by large value
 - 3.4028235e+38

Dynamic range compression – using log

- Normalize (x-min)/(max-min)
 - Values between 0 and 1

Our Model

Model Summary: DNN

- Input Layer: 78 inputs
- 3 Hidden Layers : 78, 50 and25 neurons
- Output Layer : 15 neurons
- 11,777 trainable parameters

Our Model

- Activation Functions
 - Hidden Layers- ReLU
 - Output Layer softmax
- Loss Function : Categorical crossentropy

$$-\frac{1}{N}\sum_{i=1}^{N}\log(p_i)$$

- Optimizer : SGD
 - Learning rate: 0.1

Loss v/s Epoch curve

Our Model – Train and Test data

- Oversampling the classes with less samples
 - Affects the accuracy of BENIGN class

Train-Test Split

- From each of the negative classes with N samples, the number of test samples (N_test) were chosen using: N_test = min(1000,(0.5*N))
- Rest of the samples were used for the training data along with 528911 BENIGN samples
- Combined the negative test samples with the live
 BENIGN traffic to obtain the test samples

Train Test samples

Category	Training samples	Test		
		Samples		
BENIGN	528911	22501		
FTP-Patator	6938	1000		
SSH-Patator	4897	1000		
DoS slowloris	4796	1000		
DoS Slowhttptest	230073	1000		
DoS GoldenEye	4499	1000		
DoS Hulk	9293	1000		
Heartbleed	6	5		
Web Attack XSS	352	300		
Web Attack Sql	11	10		
Injection				
Web Attack Brute	1007	500		
Force				
Infiltration	21	15		
Bot	966	1000		
PortScan	127027	1000		
DDoS	157930	1000		
Total	1076727	32331		

Live Topology

Results

• Confusion matrix

22501	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	993	6	0	0	0	0	0	0	0	1	0	0	0	0
1	2	997	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	988	1	2	0	0	0	0	5	0	0	0	0
1	0	0	71	928	0	0	0	0	0	0	0	0	0	0
23	0	32	0	2	943	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	998	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	4	0	0	0	0	0	0	0
1	0	0	0	0	3	0	0	16	0	280	0	0	0	0
1	0	1	0	0	4	0	0	0	0	4	0	0	0	0
5	0	0	0	0	3	1	0	1	0	490	0	0	0	0
11	0	0	0	0	0	0	0	0	0	3	1	0	0	0
335	0	0	0	0	0	0	0	0	0	0	0	665	0	0
3	0	0	0	0	3	1	0	6	0	73	0	0	906	8
3	0	0	0	1	7	0	0	0	0	0	0	0	6	983

Average accuracy: 97.16%

Classification Report

Category	Precision	Recall	F1 Score	Support
BENIGN	0.98	1.00	0.99	22501
FTP-Patator	1.00	0.99	1.00	1000
SSH-Patator	0.96	1.00	0.98	1000
DoS slowloris	0.93	0.99	0.96	1000
DoS	1.00	0.93	0.96	1000
Slowhttptest				
DoS GoldenEye	0.98	0.94	0.96	1000
DoS Hulk	1.00	1.00	1.00	1000
Heartbleed	1.00	0.80	0.89	5
Web Attack XSS	0.70	0.05	0.10	300
Web Attack Sql	0.00	0.00	0.00	10
Injection				
Web Attack	0.57	0.98	0.72	500
Brute Force				
Infiltration	1.00	0.07	0.12	15
Bot	1.00	0.67	0.80	1000
PortScan	0.99	0.91	0.95	1000
DDoS	0.99	0.98	0.99	1000

Binary Classification-Results

Confusion matrix

	BENIGN	Attack
BENIGN	22501	0
Attack	391	9439

Average accuracy: 98.79%

Classification Report

	Precision	Recall	F1-Score
BENIGN	0.98	1.00	0.99
Attack	1.00	0.96	0.98

Future Extension

- CNN
- RNN
- SMOTE
- LIVE data generation with attacks

USP

- Real world DL based problem modelling
- Use of latest dataset;
 - no standard reference of its use for DL.
- Identification of novel, advanced and near real-world simulator based architecture
 - generate realistic and comprehensive dataset.
- Potential to evaluate existing signature based methods for efficiency and performance.
- Potential to become foundation for more advanced game theoretic approach based IDS.

References

- Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization", 4th International Conference on Information Systems Security and Privacy (ICISSP), Portugal, January 2018
- N. Shone, T. N. Ngoc, V. D. Phai and Q. Shi, "A Deep Learning Approach to Network Intrusion Detection," in IEEE Transactionson Emerging Topics in Computational Intelligence, vol.2, no.1, pp.41-50, Feb.2018.
- C. Yin, Y. Zhu, J. Fei and X. He, "A Deep Learning Approach for Intrusion Detection Using RecurrentNeural Networks", in IEEE Access, vol. 5, pp. 21954-21961, 2017
- https://www.unb.ca/cic/datasets/ids-2017.html

Thank You...