Examen ianuarie 2021

Indicații:

• În cazul exercițiilor cu forma normală prenex și forma normală Skolem, ipoteza este următoarea:

Fie \mathcal{L} un limbaj de ordinul întâi care conține:

- două simboluri de relații unare S, T și un simbol de relație binară R;
- un simbol de operație unară f;
- un simbol de constantă c.

Partea I. Probleme cu rezolvare clasică

- (P1) [1,5 puncte] Fie Δ , Θ mulțimi satisfiabile de formule ale logicii propoziționale LP astfel încât
 - (i) $\Delta \subseteq \Theta$;
 - (ii) pentru orice formulă φ , avem că $\varphi \in \Delta$ sau $\neg \varphi \in \Delta$.

Să se arate că $\Delta = \Theta$.

(P2) [1,5 puncte] Fie ψ , σ formule în logica propozițională LP. Să se arate că

$$\vdash \psi \rightarrow (\psi \lor \sigma).$$

(P3) [1,5 puncte] Fie LP logica propozițională. Pentru orice $k \in \mathbb{N}$, definim evaluarea $e_k : V \to \{0,1\}$ astfel: pentru orice $n \in \mathbb{N}$,

$$e_k(v_n) := \begin{cases} 0, & \operatorname{dacă} n = k; \\ 1, & \operatorname{dacă} n \neq k. \end{cases}$$

Notăm $\mathcal{E} := \{e_k \mid k \in \mathbb{N}\}$. Să se arate că nu există $\Delta \subseteq Form$ astfel încât $Mod(\Delta) = \mathcal{E}$.

- (P4) [1,5 puncte] Fie Γ , Δ mulţimi de enunţuri dintr-un limbaj de ordinul întâi astfel încât Δ este finită şi $Mod(\Gamma) = Mod(\Delta)$. Să se arate că există o submulţime finită Γ' a lui Γ astfel încât $Mod(\Gamma) = Mod(\Gamma')$.
- (P5) [1,5 puncte] Considerăm limbajul egalității $\mathcal{L}_{=}$.
 - (i) Să se dea exemplu de mulţime de $\mathcal{L}_{=}$ -enunţuri Γ ce are proprietatea că pentru orice $\mathcal{L}_{=}$ -structură $\mathcal{A} = (A)$ (unde A este o mulţime nevidă), avem:

 $\mathcal{A} \models \Gamma$ dacă și numai dacă A are un număr impar de elemente.

- (ii) Să se axiomatizeze clasa mulțimilor care au între 10 și 40 elemente sau între 101 și 130 elemente.
- **(P6)** [1,5 puncte]
 - (i) Fie B o multime numărabilă și C o multime nevidă cel mult numărabilă. Demonstrați că $B \cup C$ și $B \times C$ sunt numărabile.
 - (ii) Fie $n \in \mathbb{N}$ $(n \ge 2)$ şi D_1, \ldots, D_n mulţimi numărabile. Demonstraţi că $D_1 \times D_2 \ldots \times D_n$ este multime numărabilă.

Partea II. Probleme de tip grilă

(P7) [2 răspunsuri corecte] Fie următoarea mulțime de clauze:

$$S = \{C_1 = \{v_1, v_2, v_3\}, C_2 = \{\neg v_2, v_4\}, C_3 = \{\neg v_1, v_3\}, C_4 = \{v_1, v_4\}\}$$

Care dintre următoarele sunt derivări corecte prin rezoluție?

- \square A: $C_5 = {\neg v_2, \neg v_1, v_3}$ (rezolvent al C_2, C_3).
- \square B: $C_5 = \{v_2, v_3, v_4\}$ (rezolvent al C_1, C_4) și $C_6 = \{\neg v_1, v_2, v_4\}$ (rezolvent al C_3, C_5).
- \square C: $C_5 = \{v_2, v_3\}$ (rezolvent al C_1, C_3) și $C_6 = \{v_3, v_4\}$ (rezolvent al C_2, C_5).
- \square D: $C_5 = \{v_1, \neg v_2\}$ (rezolvent al C_2, C_4) și $C_6 = \{v_1, v_3\}$ (rezolvent al C_1, C_5). \square E: $C_5 = \{v_1, v_3, v_4\}$ (rezolvent al C_1, C_2) și $C_6 = \{v_3, v_4\}$ (rezolvent al C_3, C_5).
- (P8) [2 răspunsuri corecte] Fie $\mathcal{L}_{ar}=(\dot{<},\dot{+},\dot{\times},\dot{S},\dot{0}), \mathcal{L}_{ar}$ -structura $\mathcal{N}=(\mathbb{N},<,+,\cdot,S,0)$ și $e:V\to\mathbb{N}$ o evaluare arbitrară. Considerăm formulele:

$$\varphi := x \dot{\preceq} \dot{3}$$
 și $\psi := \neg(x \dot{\preceq} \dot{5})$, unde $\dot{3} := \dot{S} \dot{S} \dot{S} \dot{0}$, $\dot{5} := \dot{S} \dot{S} \dot{3}$.

Care dintre următoarele afirmații sunt adevărate?

- \square A: $\mathcal{N} \vDash (\exists x \psi)[e]$.
- \square B: $\mathcal{N} \vDash (\exists x \varphi \rightarrow \forall x \psi)[e]$.
- \square C: $\mathcal{N} \vDash (\varphi \lor \psi)[e_{x \leftarrow 7}]$.
- \square D: $\mathcal{N} \models (\exists x (\varphi \land \psi))[e]$.
- $\square \to \mathbb{E}: \mathcal{N} \models (\varphi \land \psi)[e_{x \leftarrow 4}].$
- (P9) [1 răspuns corect] Fie următoarea formulă în \mathcal{L} :

$$\varphi := \forall x S(x) \land \neg \exists y S(y)$$

Care dintre următoarele afirmații este adevărată?

- \square A: $\exists x \forall y (\neg S(x) \land \neg S(y))$ este o formă normală prenex pentru φ .
- \square B: $\exists x \exists y (S(x) \lor S(y))$ este o formă normală prenex pentru φ .
- \square C: $\forall x \forall y (\neg S(x) \land \neg S(y))$ este o formă normală prenex pentru φ .
- \square D: $\forall x \forall y (S(x) \land \neg S(y))$ este o formă normală prenex pentru φ .
- \square E: $\exists x \exists y \neg (\neg S(x) \lor S(y))$ este o formă normală prenex pentru φ .

(P10) [2 răspunsuri corecte] Fie următoarea formulă în limbajul logicii propoziționale:

$$\varphi := (v_1 \wedge v_3) \rightarrow (v_2 \rightarrow (v_1 \wedge v_2 \wedge v_3))$$

Care dintre următoarele afirmații sunt adevărate?

- \square A: φ este tautologie.
- \square B: φ nu este tautologie.
- \square C: Dacă e este o evaluare astfel încât $e^+(\varphi) = 1$, atunci $e(v_1) = e(v_2) = 1$ și $e(v_3) = 0$.
- \Box D: φ nu este satisfiabilă.
- \square E: Dacă e este o evaluare astfel încât $e(v_1) = e(v_3)$ și $e(v_2) = 1$, atunci $e^+(\varphi) = 1$.

(P11) [2 răspunsuri corecte] Fie următoarea formulă în limbajul logicii propoziționale:

$$\theta := \neg(\neg v_1 \lor \neg v_2) \to (v_1 \to v_2)$$

Care dintre următoarele afirmații sunt adevărate?

- \square A: $e^+(\theta) = e^+((v_1 \wedge v_2) \to (\neg v_2 \vee \neg v_1))$ pentru orice evaluare e.
- \square B: $e^+(\theta) = e^+(v_1 \vee (\neg v_1 \rightarrow v_2))$ pentru orice evaluare e.
- \square C: $e^+(\theta) = e^+(\neg(v_1 \lor v_2) \to v_1)$ pentru orice evaluare e.
- \square D: $e^+(\theta) = e^+(v_1 \to (\neg v_1 \to v_2))$ pentru orice evaluare e.
- \square E: $e^+(\theta) = e^+(\neg(v_1 \lor v_2) \to \neg v_1)$ pentru orice evaluare e.

(P12) [1 răspuns corect] Fie următoarea formulă în \mathcal{L} :

$$\varphi := \neg \forall y ((f(y) = c) \to \exists x S(x)) \to (\exists x T(x) \lor \forall y T(y))$$

Care dintre următoarele afirmații este adevărată?

- $\square \ A : \forall y \forall x \forall u \forall v \left(\left(\left(f(y) = c \right) \to S(x) \right) \lor \left(T(u) \lor T(v) \right) \right) \text{ este o formă normală prenex pentru } \varphi.$
- \square B: $\exists y \forall x \exists u \forall v (\neg ((f(y) = c) \rightarrow S(x)) \rightarrow (T(u) \lor T(v)))$ este o formă normală prenex pentru φ .
- $\square \text{ C: } \forall y \exists x \exists u \forall v \left(\neg \left((f(y) = c) \to S(x) \right) \to (T(u) \lor T(v)) \right) \text{ este o formă normală prenex pentru } \varphi.$
- $\square \text{ D: } \forall y \exists x \exists u \forall v \left(\left((f(y) = c) \to S(x) \right) \vee \neg \left(T(u) \vee T(v) \right) \right) \text{ este o formă normală prenex pentru } \varphi.$
- \square E: $\exists y \forall x \forall u \exists v (\neg ((f(y) = c) \rightarrow S(x)) \rightarrow (T(u) \lor T(v)))$ este o formă normală prenex pentru φ .

(P13) [1 răspuns corect] Fie următoarea formulă:

$$\varphi := (v_1 \to (v_2 \lor v_3)) \to (v_2 \land \neg v_3)$$

Care dintre următoarele afirmații este adevărată?

- \square A: $(v_1 \land \neg v_2 \land \neg v_3) \lor \neg v_2 \lor v_3$ este FND a lui φ .
- \square B: $(v_1 \land \neg v_2 \land \neg v_3) \lor (v_2 \land \neg v_3)$ este FND a lui φ .
- \square C: $(v_1 \land \neg v_2 \land \neg v_3) \lor v_2 \lor \neg v_3$ este FND a lui φ .
- \square D: $(v_1 \wedge v_2) \vee (v_1 \wedge v_3) \vee (v_2 \wedge v_3)$ este FND a lui φ .
- \square E: $(v_1 \vee \neg v_2 \vee \neg v_3) \wedge (v_2 \vee \neg v_3)$ este FND a lui φ .

(P14) [2 răspunsuri corecte] Fie următorul enunț în \mathcal{L} :

$$\varphi := \exists y \forall x \forall z \exists v ((T(x) \to R(x, y)) \lor (S(v) \to R(z, v)))$$

Care dintre următoarele formule sunt forme normale Skolem pentru φ ?

- \square A: $\forall x \forall z ((T(x) \to R(x, l)) \lor (S(h(z)) \to R(z, h(z))))$, unde l este simbol nou de constantă, iar h este simbol nou de operație unară.
- \square B: $\forall x \forall z ((T(x) \rightarrow R(x,e)) \lor (S(h(x,z)) \rightarrow R(z,h(x,z))))$, unde e este simbol nou de constantă, iar h este simbol nou de operație binară.

 \square C: $\forall x \forall z ((T(x) \rightarrow R(x,l)) \lor (S(n(x,z)) \rightarrow R(z,n(x,z))))$, unde l este simbol nou de constantă, iar n este simbol nou de operație binară. \square D: $\forall x \forall z ((T(e(x)) \rightarrow R(e(x), y)) \lor (S(h(v)) \rightarrow R(z, h(v))))$, unde e este simbol nou de constantă, iar h este simbol nou de operație unară. \square E: $\forall x \forall z ((T(x) \rightarrow R(x, l(x))) \lor (S(h(x, z)) \rightarrow R(z, h(z))))$, unde h şi l sunt simboluri noi de operații binare. (P15) [1 răspuns corect] Fie următoarea mulțime de clauze: $S = \{\{v_4\}, \{v_1, \neg v_2\}, \{v_1, \neg v_4\}, \{\neg v_2, \neg v_4\}, \{\neg v_3, \neg v_4\}, \{\neg v_1, v_2, v_3\}\}$ Aplicând algoritmul Davis-Putnam pentru intrarea S și alegând succesiv $x_1 := v_1, x_2 := v_4$ $x_3 := v_2, x_4 := v_3$ obtinem: \square A: $S_5 = \{\{v_4\}\}.$ \square B: $S_4 = \{\{v_3\}, \{\neg v_3\}\}.$ \Box C: $U_3 = \{\{v_3, \neg v_3\}\}.$ \square D: \mathcal{S} este satisfiabilă. \square E: $U_4 = \{v_3\}$. (P16) [1 răspuns corect] Fie următoarea formulă: $\psi := (v_1 \vee v_2) \rightarrow (\neg v_3 \rightarrow v_1)$ Care dintre următoarele afirmații este adevărată? \square A: $v_1 \vee \neg v_2 \vee v_3$ este FNC a lui ψ . \square B: $(\neg v_1 \lor \neg v_2 \lor \neg v_3) \land (\neg v_1 \lor v_2 \lor v_3)$ este FNC a lui ψ . \square C: $\neg v_1 \lor \neg v_2 \lor \neg v_3$ este FNC a lui ψ . \square D: $v_1 \vee \neg v_2 \vee \neg v_3$ este FNC a lui ψ .

 \square E: $\neg v_1 \lor v_2 \lor v_3$ este FNC a lui ψ .