

AED - 2020-21 - 2° Semestre Algoritmos e Estruturas de Dados

1º Exame, 30 de Junho de 2021, 18h00m Duração: 3 horas

	,	Prova es	scrita, inc	dividual e	sem con	sulta		
NOME:						NÚME	ERO:	
	PARTE	l - Ques	tões de	Escolha	Múltipl	a (A/B/	/C/D)	
Se pretender a seguintes valer	espostas na tabel Ilterar a sua respo m 0.75 valores. E errada são desco	osta, risque stas questõe	e escreva ao es de escolha	lado a sua i	nova opção.	Todas as qu	uestões de esco	lha múltipla
	Questão	1	2	3	4	5	6	
	Resposta							
(4; 9) 6 Qual d 2. Dada u	as seguintes ta A. B. C. D. uma estrutura de po de estrutura de po de estrutura	senta abaix 1	2 2 6 6 tém depois 16 6 2 6 16 6 6 6 16 6 6 6	6 6 7 16 s de conclu 6 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1	16 6 13 ídos os cic 6 16 6 1 6 16 6 1 6 16 6 1	7 1 16 1 los de com 3 7 1 16 3 6 1 16 3 6 1 16	3 9 pressão? 13 6 13 9 13 9	
A. Li	ista simples. B	. Lista dup	lamente li	gada. C. L	ista circula	ar duplame	nte ligada. D	. Árvore.
colisões de índi	ma tabela de di s se resolvem p ce 15 e final na gada: (419; 131	or procura posição de	linear e ce indice 21,	onsiderand qual das t	o o segmen abelas é co	nto da tabe	ela com inícic	na posião
		A 2	2314 1316	3817 218	8 419 7	19 4215		
		B 4	215 1316	3817 218	8 419 7	19 2314		
		C 2	2314 1316	3817 218	8 419 42	15 719		
		D 2	2314 1316	3817 421	5 419 7	19 218		

4. Dada a árvore binária ordenada e balanceada AVL qual é o conjunto que tem os elementos que podem ser inseridos **sucessivamente** e sem necessidade de operações de balanceamento

5. Aplicou-se o algoritmo de Dijkstra num grafo não direccionado e ponderado, com todas as arestas não negativas. O vector st[.] que se obteve no final foi

$$st = [10; 7; 11; 7; 1; 1; 0; 7; 0; 11; 7; 3]$$

Indique qual dos vectores wt[.] abaixo é válido.

A.	wt = [4; 4; 11; 6; 7; 9; 11; 0; 6; 11; 3; 5]	В.	wt = [4; 4; 13; 6; 7; 9; 11; 0; 6; 7; 3; 8]
С.	wt = [4; 4; 12; 6; 7; 3; 11; 0; 6; 11; 3; 8]	D.	wt = [4; 4; 14; 6; 7; 9; 11; 0; 6; 11; 3; 8]

6. Considere a seguinte tabela (1ª linha) sobre a qual são listados alguns passos executados por um algoritmo de ordenação. Cada linha a seguir à primeira corresponde ao resultado após a conclusão de um passo do algoritmo, qual é o algoritmo utilizado?

1	9	19	4	20	6	34	30	37	73
1	9	19	4	20	6	34	30	37	73
1	9	19	4	20	6	34	30	37	73
1	9	19	4	20	6	30	34	37	73
1	9	19	4	20	6	30	34	37	73
1	4	6	19	20	9	30	34	37	73

Α.	Bubble	Sort

B. Insertion Sort

C. Quick Sort

D. Selection Sort

7. Para uma função recursiva determinou-se que a recorrência que descreve a sua complexidade temporal em pior caso é

$$C_N = C_{N-1} + \lg N^2$$

Qual dos conjuntos abaixo constitui o menor majorante que corresponde àquela recorrência?

A.
$$C_N \in \mathcal{O}(\lg^2 N)$$
 B. $C_N \in \mathcal{O}(3N \lg N)$ C. $C_N \in \mathcal{O}(N^2)$ D. $C_N \in \mathcal{O}(N^2 \lg N)$

8. Tendo-se um acervo inicialmente vazio, é inserida a sequência de números: 17, 6, 7, 11, 13, 3, 2. Assumindo que a maior prioridade é dada aos menores números e que a inserção é feita no fim do acervo, quantos "fixUp" ou "fixDown" produzem alterações?

A. 3 B. 4 C. 5 D. 6

PARTE II - Questões de Escolha Binária (V/F)

Preencha as respostas na tabela (usando <u>apenas</u> letras maiúsculas – V(erdadeira) ou F(alsa)). Todas as questões de escolha múltipla seguintes valem 0.50 valores. Estas questões de escolha múltipla não respondidas ou erradas são cotadas com 0 valores.

Questão	7	8	9	10	11	12	13	14
Resposta								

- 9. Numa fila FIFO o primeiro elemento a sair é o primeiro elemento a entrar enquanto que numa pilha LIFO o primeiro elemento a sair é o último a entrar.
- 10. A complexidade do algoritmo quick sort é sempre $\mathcal{O}(N \log N)$.
- 11. Numa árvore binária ordenada o elemento que possua a menor chave pode ter filhos à sua direita.
- 12. A extração do elemento de maior prioridade de um acervo pode ser feita em tempo constante, mas a reposição da ordem própria do acervo implementada na sua forma mais eficiente é feita em tempo linear.
- 13. Para construir uma implementação completa de tabelas de dispersão basta escolher a dimensão da tabela e o seu formato (índices livres ou dispersão em lista) e o procedimento de resolução de colisões.
- 14. Qualquer grafo de V vértices que possua V-1 arestas é uma árvore.

[4.0]

- 15. Qualquer grafo não ponderado em que o grau de saída de cada vértice (somatório das aresta que o têm como fonte) é igual ao seu grau de entrada (somatório das arestas que o têm como destino) é um grafo não direccionado.
- 16. Embora possua complexidade assimptótica equivalente à da inserção em listas ordenadas, a insersão em tabelas ordenadas é, em geral, sempre mais lenta.

PARTE III - Questões de Desenvolvimento

Responda a cada uma das questões de desenvolvimento em **folhas de exame separadas** e devidamente identificadas com nome e número.

17. Considere o grafo ponderado não direccionado com 11 vértices, identificados de 0 a 10, representado pela matriz de adjacências indicada abaixo. A ausência de valor para um par linha e coluna significa a ausência de aresta entre esses dois vértices, i.e., custo ∞.

	0	1	2	3	4	5	6	7	8	9	10
0	0	3		4	6					10	19
1	3	0	3		7		9	10	6		
2		3	0	2	4	8			12		
3	4		2	0		9	11	8	7		
4	6	7	4		0	16		5		13	
5			8	9	16	0					5
6		9		11			0	18	7	2	6
7		10		8	5		18	0		4	3
8		6	12	7			7		0	1	8
9	10				13		2	4	1	0	
10	19					5	6	3	8		0

- [2.0] a) Tomando o vértice 4 como ponto de partida determine a árvore mínima de suporte para este grafo. Justifique os cálculos de forma clara, assim como todas as decisões tomadas ao longo da determinação da árvore.
- [1.0] b) Trace a árvore obtida na alínea anterior e apresente os vectores wt e st que a ela estão associados.
- [1.0] c) Explique se pode ou não e porquê usar essa árvore para determinar o caminho mais curto entre os vértices 0 e 4. Podendo indique qual é o caminho mais curto.
- [4.5] 18. A função it_keeps_growing_and_growing, que para efeitos de poupança de caracteres vamos chamá-la de everest, está definida para todos os inteiros positivos da seguinte forma:

$$\begin{array}{rcl} \operatorname{everest}(1) & = & 1 \\ \operatorname{everest}(2n) & = & 2 \operatorname{everest}(n) \\ \operatorname{everest}(2n+1) & = & 2n+1+2 \operatorname{everest}(n) + \frac{1}{n} \operatorname{everest}(n) \end{array}$$

É possível mostrar que everest(n) é inteiro para todo o valor de n.

[1.5] a) Escreva uma função em linguagem C que receba dois argumentos inteiros, \mathbb{N} e \mathbb{p} , e que devolva o valor de everest(N) mod p. O objectivo do segundo argumento é evitar que os valores devolvidos percam significado por excederem o maior inteiro representável. A função deverá ter a seguinte assinatura:

Comente devidamente o seu código para que o algoritmo usado seja claro.

- [0.5] b) Indique de forma justificada qual a complexidade temporal da função que implementou na alínea anterior. Caso se justifique, discuta qual a complexidade espacial da mesma.
- [2.0] c) Suponha agora que se pretende calcular o valor S(n) definido abaixo

$$S(n) = \sum_{i=1}^{n} [\operatorname{everest}(n)]^{2}$$
(1)

Escreva uma implementação da função

[0.5]

que calcula aquele valor para N, apresentando o resultado em modulo p. Comente devidamente o seu código para que o algoritmo usado seja claro.

d) Indique de forma devidamente fundamentada qual a complexidade temporal da função que implementou em c).

Nota1: Dados dois inteiros, $a \in p$, se a < p, então $a \mod p = a$ e se a > p, então $a \mod p = (a - p) \mod p$. Adicionalmente, $(a + b) \mod p = [(a \mod p) + (b \mod p)] \mod p$. Também convém recordar que $ab \mod p = [(a \mod p)(b \mod p)] \mod p$.

Nota2: Qualquer das funções pedidas admite implementações mais e menos eficientes e o que é bom para uma poderá não sê-lo para a outra. A arte está em acertar com a receita adequada em cada um dos casos.

[1.5] 19. Aplicando o Master Theorem às recorrências $C_N = C_{N/2} + N$ e $C_N = C_{N/3} + N$ obtém-se o mesmo resultado. No entanto, medindo experimentalmente, via estudo extensivo, o tempo gasto, observou-se que o segundo algoritmo termina sempre mais cedo que o primeiro.

Houve erro na recolha ou os dados experimentais estão certos? Se estão certos, como conciliar esta observação com o resultado do Master Theorem?