

EAST WEST UNIVERSITY

Department of Computer Science and Engineering B.Sc. in Computer Science and Engineering Program Final Assessment (Online), Spring 2021 Semester

Course: CSE 302 Database Systems

Instructor: Mohammad Rezwanul Huq, Ph.D., Associate Professor, CSE Department

Full Marks: 100 (30 will be counted for final grading)

Submission Deadline: 27 May 2021, 11:50 AM

Note: There are **6** (**SIX**) questions. Answer ALL of them. The Mark of each question is mentioned at the right margin. Do not write unnecessary things and, as a consequence, waste your valuable time! Answer sequentially.

1. Consider a relation R (A, B, C, D, E, F, G, H) and the following functional [Mark: 12] dependencies as shown below. Match the rule shown in Column A with the logically implied functional dependencies shown in Column B (one FD for one rule).

 $A \rightarrow B$ $C \rightarrow DE$ $F \rightarrow G$ $B \rightarrow FG$

 $H \rightarrow A$

Column A	Column B
Transitivity Rule	$A \rightarrow G$
Psuedotransitivity Rule	H → AB
Reflexivity Rule	H → B
Union Rule	$B \rightarrow A$
Decomposition Rule	BC → DEF
Augmentation Rule	CF → DEG
	AC → BDF
	BC → CFG
	CDE → DE

2. Consider the instance of the following relation PATIENTS_INFO.

[Mark: 20]

patient_id	patient_name	doctor_id	registration_id	doctor_name	specialization	test_id	test_name	test_rep
								ort
P-001	Alice	D-001	R-001	John	Eye	T-001	Eye	good
P-002	Bob	D-001	R-001	John	Eye	T-001	Eye	bad
P-001	Alice	D-002	R-002	Smith	Medicine	T-002	Blood	good
P-002	Bob	D-002	R-002	Smith	Medicine	T-003	Urine	good
P-003	Charlie	D-003	R-003	Mike	Gynae	T-004	Ultras	good
							ono	

Answer the following questions.

- a) Find the primary key of the relation PATIENTS_INFO.
- b) Show an example of a Delete Anomaly in this relation.

- c) The relation is already in the First Normal Form (1NF). Decompose the relation to the third normal form (3NF). Explain each decomposition step you applied. Finally, show the decomposed relations.
- 3. Consider the relation R (A, B, C, D, E) and the functional dependency $C \rightarrow ABCDE$. How can you decompose the relation R into two smaller relations? Explain your answer.

[Mark: 8]

[Mark: 15]

4. Consider the following schedule S. Read operations are represented by R, and write operations are indicated by W.

T1	T2	T3	T4
	R (A)		
		W (A)	
R (A)			
	W (B)		
	R (C)		
			W (A)
			R (B)
R (B)			

Is S conflict-serializable? If yes, also determine the serial schedule with which it is conflict-equivalent. Otherwise, justify why it is not conflict-serializable.

- 5. Insert 'commit' statements in schedule S, as given in Question 4, so that the schedule [Mark: 10] can be both recoverable and cascadeless.
- **6.** Consider the following instance of the Product table. [Mark: 15]

Product

Product_no	Product_name	Product_type	Unit_price
P-1	Apple	Fruits	250.00
P-2	Biscuit (imported)	Luxury	1000.00
P-3	Chocolate (Ferrero Rocher)	Luxury	750.00
P-4	Daal	Grocery	150.00
P-5	Eggs	Grocery	120.00
P-6	Flour	Grocery	70.00

An index helps queries to execute faster. One of the users wants to perform the following query.

```
SELECT Product_name, Unit_price
FROM Product
WHERE Product type = 'Grocery';
```

Answer the following questions.

- a) On which attribute should you create an index to execute the above query faster? Write the SQL statement to create the index?
- b) What type of index do you need to create in this case? Draw the index structure accordingly.

- c) Assume that the Product relation has 10000 tuples and 10 tuples can fit into 1 block (1 block = 4 KB). Calculate the size of the data file.
- d) Also, calculate the index file size as per the index you have created in Question 6.(b). Please note that 20 index entries can fit into 1 block. Explain your answer.