# Perfect Bayesian Equilibrium

### Goals

#### In the final two weeks:

- Understand what a game of incomplete information (Bayesian game) is
- Understand how to model static Bayesian games
- Be able to apply Bayes Nash equilibrium to make predictions in static Bayesian games
- Understand how to model sequential Bayesian games
- Be able to apply perfect Bayesian equilibrium to make predictions in sequential Bayesian games
- Experience a sampling of the diverse applications to which these concepts can be applied

We only have 2 weeks, so let's make the most of it!

### Why did we need SPNE?

This game has two NE, (I, A) and (O, F), but (O, F) is not sequentially rational:



Figure: The entry game

SPNE is useful because it eliminates NE that involve subgame behavior that is not rational.

Now consider this variation of the entry game:



Now 1 can not only choose whether or not to enter, but also whether or not to prepare for a fight. Preparation is costly, but it reduces the cost of a fight.

How to make predictions in this game?

- Convert to normal form  $\rightarrow$  two NE: (U, A) and (O, F)
- In original game, (O, F) was implausible and not subgame perfect. What about here?
- Intuitively, should be the same: once 2's information set is reached, F is never optimal
- (O, F) "shouldn't" be subgame perfect...but it is!
- Why? 2's information set does not start a subgame, so according to the precise definition, both NE are subgame perfect

Our definition is failing us: (O, F) is just as implausible here, but SPNE definition does not exclude it here, where there is imperfect information.

### We need a new concept

- Should maintain intuition of SPNE:
  - Everyone should be acting optimally
  - Even off the equilibrium path
- But can be applied to all games of imperfect info
- Everyone is acting optimally at all information sets

This is not so straightforward

Now suppose 2 prefers to fight if challenger is unready, but not if she is ready:



- Normal form: only NE is (O, F)
- But is F optimal at Player 2's information set?
- Depends on what 2 believes 1 chose

Solution should consider players' beliefs about what others chose

## To develop new concept: go back to basics

### Original concept, NE, requires:

- Players choose an optimal strategy given their beliefs about what others are doing and
- These beliefs are correct

New concept keeps these requirements, *plus* they must hold true at every point at which you make a choice

- Kind of like SPNE
- $\bullet$  In simultaneous games  $\to$  your beliefs and others' strategies are exactly identical

Here, however, the other person's strategy does not completely pin down beliefs

### Incorporating beliefs into equilibrium

New concept, *perfect Bayesian equilibrium*, is defined for pairs of strategy profiles and beliefs. What is a belief?

#### Definition

A *belief system* in an extensive game is a function that assigns to each information set a probability distribution over the histories in that information set.

- In other words, a beliefs system reflects how people think they arrived at each of their information sets.
- Example: in entry game variant, one beliefs (system) for 2 at her information set is Pr(R) = 0.2
- One strategy profile may be an equilibrium for one set of beliefs, but not another

We call a strategy profile combined with a beliefs system in an extensive game an assessment

## Perfect Bayesian Equilibrium defined

### **Definition**

An assessment in an extensive game is a *perfect Bayesian* equlibrium if

- Sequential Rationality: Each player's strategy specifies optimal actions, given her beliefs and the strategies of the other players and
- **Consistency of Beliefs**: Each player's belief is consistent with the strategy profile (following Bayes rule, where appropriate).

Let's apply this to the games we've seen

### Practice with PBE

We found two NE in this game: (AA, YX) and (BA, YY)



What can we say about the PBE for this game?

# Signaling games

This type of game is called a *signaling game*: 1's action sends a signal about her type

- Note: two categories of potential perfect Bayesian equilibria
- Pooling: (AA, YX)
  - Both types of player 1 send the same signal
  - Observing A is uninformative, beliefs about who chose A (Pr(L|A)) constrained by prior probabilities
  - B is a zero-probability event, Pr(L|B) can be anything
- Separating: (BA, YY)
  - Two types of player 1 send different signals
  - Signals are perfectly informative
  - Pr(L|A) = 0 and Pr(L|B) = 1

The information conveyed by the signal is part of/determined in equilibrium, must be consistent with actions

# Signaling games

In our example, let's check for pooling, separating PBE?

- What beliefs can go with (AA, YX)?
  - Pr(L|A) = 0.5
  - Pr(L|B) can be anything, but...
  - For X to be a BR to B, we need  $Pr(L|B) \le 1/2$
  - A range of PBE:  $[(AA, YX), Pr(L|A) = 0.5, Pr(L|B) \le 1/2]$
  - Same behavior, but range of possible beliefs
- What beliefs can go with (BA, YY)?
  - Only Pr(L|A) = 0 and Pr(L|B) = 1

This game has equilibria in which both types pool on A and a separating equilibrium in which L type chooses B

# Signaling games

In general, follow these steps to find PBE in a signaling game:

- Start with a strategy for 1 (2 ways to pool, 2 ways to separate)
- Write down what beliefs have to be following each signal (can be anything for signal never supposed to be sent)
- Given beliefs, calculate 2's best response to each signal
- Check whether 1's strategy is optimal, given how 2 will respond.

Let's try this

# Application: Westley and Humperdinck

- Westley is weak or strong, equally likely, known only to him
- Westley chooses to get out of bed (O) or stay in bed (B)
- Humperdinck observes Westley's action, but not type
- Humperdinck must choose to fight (F) or surrender (S)
- H gets 0 for S, 1 from F if W is weak, -2 if strong
- Weak W (only) pays cost c to get out of bed
- W gets 1 from S, 0 from F if strong, -1 if weak

# Application: Westley and Humperdinck

- Draw extensive form
- For what values of c is there a separating equilibrium?
- Describe such an equilibrium
- For what values of c is there a pooling equilibrium in which W always gets out of bed?
- · Describe such an equilibrium
- What does the conclusion of the scene tell you about the value of c?

Can you describe a pooling equilibrium in which both types choose *B*? What is weird/unattractive about this equilibrium?

## Application: Westley and Humperdicnk

First examine OO as part of a potential pooling equilibrium:

- Beliefs: Pr(w|O) = 0.5 and Pr(w|B) = ????
- H's response to his beliefs:
  - Given O, EU(F) = -0.5 and EU(S) = 0 so choose S
  - Given B, choose S if  $Pr(w|B) \le 0.5$ , F if  $Pr(w|B) \ge 0.5$
- Is W's OO optimal?
  - Given SS: NO because weak W would rather stay in bed
  - Given SF: O is optimal for strong W, but, if weak, only if  $c \le 2$

```
Only for c \le 2 is there an OO pooling equilibrium: [(OO, SF), Pr(w|O) = 0.5, Pr(w|B) \ge 0.5]
```

## Application: Westley and Humperdicnk

Next examine BO as a potential separating equilibria:

- Beliefs: Pr(w|O) = 0 and Pr(w|B) = 1
- H's response to his beliefs
  - Given *O*, *S*
  - Given B, F
- is W's BO optimal given SF?
  - O is optimal for strong W, but, if weak, B only optimal if  $c \geq 2$

Only for 
$$c \ge 2$$
 is there an  $BO$  separating equilibrium:  $[(BO, SF), \Pr(w|O) = 0, \Pr(w|B) = 1]$