Introduction to Analysis Lecture 4

Haoming Wang

25 April 2019

Abstract

This is the Lecture note for the *Introduction to Analysis* class in Spring 2019.

1 Rearrangement theorem

Given a seq. $a_n(n \in \mathbb{N})$, we can separate all terms into two subseq.s:

$$a_{n_1}, a_{n_2}, \cdots$$
 and $a_{n'_1}, a_{n'_2}, \cdots$

where $n_1 < n_2 < \cdots$ and $n'_1 < n'_2 < \cdots$ and $\{n_1, n_2, \cdots\} \cup \{n'_1, n'_2, \cdots\} = \mathbb{N}$, such that $a_{n_j} \ge 0 (j \in \mathbb{N})$, $a_{n'_k} \le 0 (k \in \mathbb{N})$. Let $p_j \coloneqq a_{n_j} (j \in \mathbb{N})$ and $q_k \coloneqq a_{n'_k} (k \in \mathbb{N})$.

Exercise 1. Show that $\sum_n |a_n| < \infty \Leftrightarrow \sum_j p_j < \infty$ and $\sum_k q_k < \infty$. Moreover, if any side holds, then

$$\sum_{n} |a_n| = \sum_{j} p_j + \sum_{k} q_k$$

and

$$\sum_{n} a_n = \sum_{j} p_j - \sum_{k} q_k.$$

Proof. 1. ⇒: since $\sum_n |a_n| < \infty$, any partial sum of a_n has upper bound such as M, then for any $j \in \mathbb{N}$:

$$p_1 + \dots + p_j = |a_{n_1}| + \dots + |a_{n_j}|$$

$$\leq \sum_{n=1}^{n_j} |a_n|$$

$$\leq M,$$

Thus any partial sum of p_j has upper bound M and hence $\sum_j p_j < \infty$. And $\sum_k q_k < \infty$ in the same way.

2. \Leftarrow : The partial sum of $\sum_n |a_n|$ can be decompose by the partial sums of $\sum_n p_n$ and $\sum_n q_n$ which have upper bounds, thus partial sum of $\sum_n |a_n|$ has upper bound, and $\sum_n |a_n| < \infty$.

3. Define the partial sum of $\sum_n |a_n|$, $\sum_n a_n$, $\sum_n p_n$, $\sum_n q_n$ as

$$A_m := \sum_{i=1}^m |a_i|, \quad S_m := \sum_{i=1}^m a_i$$

$$P_m := \sum_{i=1}^m p_i = \sum_{i=1}^m |a_{n_i}|, \quad Q_m := \sum_{i=1}^m q_i = \sum_{i=1}^m |a_{n_i'}|$$

Then for any $m \in \mathbb{N}$, we have that

$$A_m \leq P_m + Q_m \leq A_{\max\{n_m, n'_m\}},$$

thus $\lim_{n\to\infty} A_n = \lim_{n\to\infty} (P_n + Q_n) = \lim_{n\to\infty} P_n + \lim_{n\to\infty} Q_n$ since $\sum_n p_n$, $\sum_n q_n$ exists, and the squeeze theorem. And hence $\sum_n |a_n| = \sum_j p_j + \sum_k q_k$.

On the contrary, for any $m \in \mathbb{N}$, we can represent the partial sum of $\sum_n a_n$ as

$$s_m = P_1 - Q_v$$

where $l, v \to \infty$ as $m \to \infty$, thus $\sum_n a_n = \sum_n p_n - \sum_n q_n$.

Exercise 2. If $\sum_n a_n$ converges conditionally, show that

- 1. $\sum_i p_i = \infty$ and $\sum_k q_k = \infty$;
- 2. $\lim_{i\to\infty} p_i = \lim_{k\to\infty} q_k = 0$.

Proof. 1. Denote the partial sum of $\sum_n a_n$, $\sum_j p_j$, $\sum_k q_k$ as s_n , P_j , Q_k respectively, then we have that $\lim_{n\to\infty} s_n = \lim_{n\to\infty} (P_j - Q_k)$ exists, then either both $\lim_{n\to\infty} P_j$, $\lim_{n\to\infty} Q_k$ exist or neither exists, since $\sum_n a_n$ converges conditionally $\Rightarrow \lim_{n\to\infty} P_j = \infty$ and $\lim_{n\to\infty} Q_k = \infty$.

2. Since

$$\lim_{j\to\infty}p_j=\lim_{j\to\infty}a_{n_j}=\lim_{n\to\infty}a_n=0,$$

and $\lim k \to \infty q_k = 0$ as well in the same way.

Exercise 3. If $\sum_n a_n$, $\sum_n b_n$ converges, show that $\sum_n (a_n \pm b_n) = \sum_n a_n \pm \sum_n b_n$.

Proof. Denote the partial sum of $\sum_n (a_n + b_n)$, $\sum_n a_n$, $\sum_n b_n$ as S_n , A_n , B_n respectively, then for any $n \in \mathbb{N}$

$$S_n = A_n + B_n$$

and hence

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (A_n + B_n) = \lim_{n\to\infty} A_n + \lim_{n\to\infty} B_n$$

since $\lim_{n\to\infty} A_n$, $\lim_{n\to\infty} B_n$ exists, thus $\sum_n (a_n + b_n) = \sum_n a_n + \sum_n b_n$, and $\sum_n (a_n - b_n) = \sum_n a_n - \sum_n b_n$ in the same way.

Exercise 4. Inserting 0s to a series will not affect its convergence / divergence and its sum (if the sum exists).

Proof. Consider the tail of series. Trivial.

Recall that a sequence a_n is a map $\mathbb{N} \stackrel{a}{\longrightarrow} \mathbb{R}$ where $n \mapsto a(n)$ denoted by a_n . A subsequence a_{n_n} is a composite map

$$\mathbb{N} \xrightarrow{n.} \mathbb{N} \xrightarrow{a.} \mathbb{R}$$

where n. is a strictly monotone injection and $m \mapsto n(m)$ denoted by n_m . A **rearrangement** is also a composite map

$$\mathbb{N} \xrightarrow{n(\cdot)} \mathbb{N} \xrightarrow{a.} \mathbb{R}$$

where $n(\cdot)$ is a bijection. (To distinguish it from the notion of subseq., we don't use subscripts here)

Now we gonna explore two questions: if a series \sum_n converges, $a_{n(m)}(m \in \mathbb{N})$ is a rearrangement of $a_n(n \in \mathbb{N})$, then

- 1. whether $\sum_{m} a_{n(m)}$ converges ?
- 2. whether $\sum_{n} a_n = \sum_{m} a_{n(m)}$?

Exercise 5. Let $\sum_n a_n$ be a positive series, show that

$$\sum_{n} a_n = \sup \Lambda$$

including the case $\sum_n a_n = \infty$. Here $\Lambda = \{a_{n_1} + \cdots + a_{n_k} | n_1 < \cdots < n_k, k \in \mathbb{N}\}$ represents the set of every sum of finite terms of $a_n(n \in \mathbb{N})$.

Proof. 1. \leq : since $\sum_n a_n$ is the limit of the partial sum s_n (which is the sum of finite terms, i.e. $s_n \in \Lambda$ for any $n \in \mathbb{N}$), and since $a_n \geq 0$, s_n monotone, then

$$\sum_{n} a_n = \lim_{n \to \infty} s_n = \sup_{n \in \mathbb{N}} s_n \le \sup \Lambda$$

2. \geq : If $\sup \Lambda > \sup s_n$, let $\epsilon := \sup \Lambda - \sup s_n$, then $\exists \lambda = a_{n_1} + \cdots + a_{n_{k_{\lambda}}} \in \Lambda$ such that

$$s_m \leq \sup_{n \in \mathbb{N}} s_n < \sup \Lambda - \frac{\epsilon}{2} < \lambda \leq \sup \Lambda$$

for $\forall m \in \mathbb{N}$, but

$$\lambda = a_{n_1} + \dots + a_{n_{k_\lambda}} \le s_{n_{k_\lambda}}$$

which leads to a contradiction.

3. If $\sum_n a_n = \infty$, it is direct to see that sup $\Lambda = \infty$ as well by 1.

Exercise 6. If $\sum_n a_n$ is a convergent positive series, show that for every rearrangement $a_{n(m)} (m \in \mathbb{N})$ of $a_n (n \in \mathbb{N})$, we have that $\sum_n a_n = \sum_m a_{n(m)}$.

Proof. If $\sum_n a_n$ is positive series, then $\sum_m a_{n(m)}$ is positive series as well.

$$\sum_{n} a_{n} = \sup \Lambda_{a_{n}} = \sup \Lambda_{a_{n(m)}} = \sum_{m} a_{n(m)}$$

where Λ_{a_n} and $\Lambda_{a_{n(m)}}$ are the set of every sum of finite terms of a_n and $a_{n(m)}$ respectively. That is the proof follows by the $\Lambda_{a_n} = \Lambda_{a_{n(m)}}$.

Exercise 7 (Dirichlet's Rearrangement Theorem (1829)). If $\sum_n a_n$ converges absolutely, show that for every rearrangement $a_{n(m)}(m \in \mathbb{N})$ of $a_n(n \in \mathbb{N})$, we have that $\sum_n a_n = \sum_m a_{n(m)}$.

Proof. $\sum_n a_n$ converges absolutely $\Rightarrow \sum_m a_{n(m)}$ converges absolutely. Furthermore

$$\sum_{n} a_{n} = \sum_{j} p_{j} - \sum_{k} q_{k}$$

$$= \sum_{\mu} p_{j\mu} - \sum_{\nu} q_{k\nu}$$

$$= \sum_{m} a_{nm}.$$

Theorem 1 (Riemann's Rearrangement Theorem(1852)). If $\sum_n a_n$ converges conditionally, then for $\forall r \in \mathbb{R}$, there exists a rearrangement $a_{n(m)}(m \in \mathbb{N})$ of $a_n(n \in \mathbb{N})$ such that $\sum_m a_{n(m)} = r$.

Proof. We will only use two known fact:

- 1. $\sum_i p_i = \infty$ and $\sum_k q_k = \infty$;
- 2. $\lim_{j\to\infty} p_j = \lim_{k\to\infty} q_k = 0$.

Given a $L \in \mathbb{R}$, start with p_1 , plus by p_2 and so on till p_{m_1-1} where

$$\sum_{i=1}^{m_1-1} p_i \le L \quad \text{but} \quad \sum_{i=1}^{m_1} p_i > L.$$

Then minus by q_1, q_2 and so on till $q_{m'_1-1}$ where

$$\sum_{i=1}^{m_1} p_1 - \sum_{j=1}^{m'_1 - 1} q_j > L \quad \text{but} \quad \sum_{i=1}^{m_1} p_1 - \sum_{j=1}^{m'_1} q_j \le L.$$

This process can be repeat since $\sum_j p_j = \infty$ and $\sum_k q_k = \infty$ and hence any tail of $\sum_j p_j, \sum_k q_k$ has no upper bound, therefore the *cross* action can always happen, in the other word, $m_i, m_i' (i \in \mathbb{N})$ exists.

Thus we can form a rearrangement χ_n of $\sum_n a_n$ as

$$p_1, \cdots, p_{m_1}, -q_1, \cdots, -q_{m'_1}, \cdots$$

Now we will show that this rearrangement converges to L, i.e. $\lim_{n\to\infty} \chi_n = L$. Consider $\chi_{\cdots+m'_{l-1}+m_l-1}$ which implies the point lies in the left of L and will cross the l in next jump, and we denote it by $\chi_{m'_{l-1}+m_l-1}$ for simply. And hence we have that

$$|\chi_{m'_{l-1}+m_k+k'}-L| < p_{m_l}$$

if $0 \le k' < m'_l - m'_{l-1}$. And similarly

$$|\chi_{m_l+m_l'+k}-L| < q_{m_l'}$$

if $0 \le k < m_{m+1-m_1}$.

And since $\lim_{l\to\infty} p_{m_l} = \lim_{l\to\infty} q_{m'_l} = 0$, for $\forall \epsilon > 0, \exists N_0 \in \mathbb{N}$ s.t. $l \geq N_0 \Rightarrow p_{m_l}$ and $q_{m'_l} < \epsilon$. Let $N = m'_{N_0-1} + m_{N_0}$, then $n \geq N \Rightarrow |\chi_n - L| < \epsilon$.

Remark 1 (2S = S). Dirichelet made the following observation in 1827: Consider a alternating series

$$S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \cdots$$

which is convergent (conditionally) by Leibniz's Criterion, and hence

$$2S = 2 - 1 + \frac{2}{3} - \frac{2}{4} + \frac{2}{5} - \frac{2}{6} + \frac{2}{7} - \frac{2}{8} + \frac{2}{9} - \frac{2}{10} + \cdots$$

$$= '(2 - 1) - \frac{2}{4} + \left(\frac{2}{3} - \frac{2}{6}\right) - \frac{2}{8} + \left(\frac{2}{5} - \frac{2}{10}\right) + \cdots$$

$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \cdots$$

$$= S$$

Remark 2. In summary, given a series $\sum_n a_n$, and its any rearrangement $\sum_m a_{n(m)}$, then

1. If
$$a_n \ge 0$$
 for $\forall n \in \mathbb{N} \Rightarrow \sum_n a_n = \sum_m a_{n(m)}$;

2. If
$$\sum_{n} |a_n| < \infty \Rightarrow \sum_{n} a_n = \sum_{m} a_{n(m)}$$
;

3. If
$$\sum_n |a_n| = \infty$$
 but $\sum_n a_n < \infty \Rightarrow \sum_m a_{n(m)}$ could be anything.

2 Multiplying absolutely convergent series

Proposition 1. Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converge absolutely, let

$$c_n = a_n b_0 + \dots + a_0 b_n = \sum_{j+k=n; j,k \geq 0} a_j b_k,$$

then $\sum_{n} |c_n| < \infty$ and $\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n) \cdot (\sum_{n=0}^{\infty} b_n)$.

Proof. 1. $\sum_{n} |c_n| < \infty$

For all n,

$$\sum_{m=0}^{n} |c_m| = \sum_{m=0}^{n} \left| \sum_{\substack{j+k=m \ j,k \ge 0}} a_j b_k \right| \le \sum_{m=0}^{n} \sum_{\substack{j+k=m \ j,k \ge 0}} |a_j| |b_k|$$

$$\le \left(\sum_{j=0}^{n} |a_j| \right) \cdot \left(\sum_{k=0}^{n} |b_k| \right).$$

Since $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converges absolutely, the partial sums of $|a_n|$, $|b_n|$ have upper bounds, denoted by M, N respectively, then $\sum_{m=0}^{n} |c_m|$ has a upper bound $M \cdot N$ and hence $\sum_{n=0}^{\infty} c_n$ converges absolutely.

2.
$$\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n) \cdot (\sum_{n=0}^{\infty} b_n).$$

Let $A_n := a_0 + \cdots + a_n$; $B_n := b_0 + \cdots + b_n$ and $C_n := c_0 + \cdots + c_n$, we claim that $\lim_{n \to \infty} (A_n B_n - C_n) = 0$. Then

$$|A_n B_n - C_n| = \sum_{\substack{j+k > n \\ 0 \le j, k \le n}} |a_j b_k|$$

$$\leq \left(\sum_{j=\lfloor n/2 \rfloor}^n |a_j|\right) \cdot \left(\sum_{k=0}^n |b_k|\right) + \left(\sum_{j=0}^n |a_j|\right) \cdot \left(\sum_{k=\lfloor n/2 \rfloor}^n |b_k|\right)$$

where $\sum_{k=0}^{n} |b_k|$, $\sum_{j=0}^{n} |a_j|$ are bounded, and tails $\sum_{j=\lfloor n/2\rfloor}^{n} |a_j|$, $\sum_{k=\lfloor n/2\rfloor}^{n} |b_k| \to 0$ as $n \to \infty$ since $\sum_{n} a_n$, $\sum_{n} b_n$ are converges abs. Thus $\lim_{n\to\infty} |A_n B_n - C_n| = 0$ and since $\lim_{n\to\infty} A_n$, $\lim_{n\to\infty} B_n$, $\lim_{n\to\infty} C_n$ exists, we have that

$$\sum_{n=0}^{\infty} c_n = \lim_{n \to \infty} C_n$$

$$= \lim_{n \to \infty} A_n B_b = \lim_{n \to \infty} A_n \cdot \lim_{n \to \infty} B_n$$

$$= \left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right)$$

Theorem 2. If $\sum_n a_n$, $\sum_n b_n cvg$. abs., $\mathbb{N} \xrightarrow{(j(\cdot),k(\cdot))} \mathbb{N} \times \mathbb{N}$ is bijection where $n \mapsto (j(n),k(n))$, let $c_n := a_{j(n)}b_{k(n)}(n \in \mathbb{N})$, then $\sum_n |c_n| < \infty$ (cvg. abs.) and $\sum_n c_n = (\sum_n a_n)(\sum_n b_n)$.

Proof. 1. $\sum_{n} c_n$ cvg. abs.

For $\forall n \in \mathbb{N}$, let $l = \max\{j(1), \dots, j(n), k(1), \dots, k(n)\}$. Then

$$|c_1| + \dots + |c_n| = |a_{j(1)}b_{k(1)}| + \dots + |a_{j(n)}b_{k(n)}|$$

$$\leq \left(\sum_{j=1}^l |a_j|\right) \cdot \left(\sum_{k=1}^l |b_k|\right)$$

$$\leq M \cdot N$$

Thus $\sum_{n} c_n$ cvg. abs.

2.
$$\sum_n c_n = (\sum_n a_n)(\sum_n b_n)$$
.

Let $A_n = a_1 + \cdots + a_n$, $B_n = b_1 + \cdots + b_n$ and $C_n = c_1 + \cdots + c_n (n \in \mathbb{N})$. And define the bijection $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$ by the second one in Figure 1. Then

$$A_n B_n = (a_1 + \dots + a_n)(b_1 + \dots + b_n)$$

$$= \sum_{1 \le j,k \le n} a_j b_k$$

$$= C_{n,2}$$

Thus $\lim_{n\to\infty} A_n B_n = \lim_{n\to\infty} C_{n^2} = \lim_{n\to\infty} C_n \Rightarrow \sum_n c_n = (\sum_n a_n)(\sum_n b_n).$

Figure 1: 3 kinds of bijections $(j(\cdot), k(\cdot))$