Теория конечных графов

Гамильтоновы графы

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Литература

- 1. Зарипова Э.Р., Кокотчикова М.Г. Лекции по дискретной математике: Теория графов. Учебное пособие. М., изд-во: РУДН, 2013, 162 с.
- 2. Харари Ф. «Теория графов», М.: КомКнига, 2006. 296 с.
- 3. Судоплатов С.В., Овчинникова Е.В. «Элементы дискретной математики». Учебник. М.: Инфра-М; Новосибирск: НГТУ, 2003. 280 с.
- 4. Шапорев С.Д. «Дискретная математика. Курс лекций и практических занятий». СПб.: БХВ-Петербург, 2007. 400 с.: ил.
- 5. Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- 6. Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- 7. Учебный портал РУДН, раздел «Теория конечных графов» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26342

Гамильтоновы графы

Простой цикл называют гамильтоновым, если он включает в себя все вершины связного неорграфа.

Граф, в котором есть гамильтонов цикл называют гамильтоновым графом.

<u>История:</u> Слово «гамильтонов» в этих определениях является производным от имени ирландского математика Уильяма Роуэна Гамильтона (1805-1865), предложившего своим друзьям игру по названием «Кругосветное путешествие». Для игры Гамильтон изобразил граф, содержаций 20 вершин, названиями которых служили названия городов. Цель игры — совершить кругосветное путешествие, посетив каждый город один раз, и вернуться домой. Очевидно, что задача сводилась к поиску в графе простого цикла, проходимого через все вершины.

Упражнение 1

Пример 1. Граф «Кругосветное путешествие», «Головоломка Гамильтона». Найти гамильтонов цикл в графе.

Упражнение 2

Пример 2. Граф «Башня».

Определить, существует ли в графе гамильтонов цикл и гамильтонова цепь?

Упражнение 3

Пример 3. Граф «Рыбка».

Определить, существует ли в графе гамильтонов цикл и гамильтонова цепь?

Сходство и различия гамильтоновых и эйлеровых графов

	Эйлеровы циклы	Гамильтоновы
		циклы
Ребра	Эйлеров цикл про-	Гамильтонов цикл
	ходит по каждому	может не проходить
	ребру ровно один	по некоторым реб-
	раз.	рам.
Вершины	Эйлеров цикл может	Гамильтонов цикл
	проходить через од-	проходит ровно
	ну вершину не-	один раз по каждой
	сколько раз.	вершине.

Достаточные условия существования гамильтоновых циклов

Для гамильтоновых графов не существует одного необходимого и достаточного условия существования цикла, как у эйлерова графа (четность степеней вершин).

Известны лишь несколько достаточных условий существования гамильтоновых циклов в неорграфах.

Достаточные условия существования гамильтоновых циклов

- (1) **(теорема Оре)** Если для любой пары несмежных вершин $\{V_i, V_j\}$ графа $G = (\mathbf{V}, \mathbf{E})$ порядка $|\mathbf{V}| \ge 3$ выполняется неравенство $\delta(V_i) + \delta(V_i) \ge |\mathbf{V}|$, то граф G гамильтонов граф.
- (2) Если для любой вершины V_i графа $G = (\mathbf{V}, \mathbf{E})$ порядка $|\mathbf{V}| > 3$ выполняется неравенство $\delta(V_i) \ge \frac{|\mathbf{V}|}{2}$, то граф G гамильтонов граф.
 - (3) Любой 4-связный планарный граф является гамильтоновым.

Замечание к (3): Связность (реберная) определяется как наименьшее количество ребер, удаление которых приводит к несвязному графу.

Обозначения для алгоритма поиска гамильтонова цикла

Введем следующие обозначения.

1) $P^{(l)}$ — матрица всех маршрутов с l промежуточными вершинами для всех упорядоченных пар вершин графа.

$$P^{(l)} = P' \times P^{(l-1)}, \quad l = \overline{1, |V| - 1}.$$

2)
$$P' = \left[p'_{i,j} \right]_{i,j \in \overline{1,|V|}} \qquad p'_{i,j} = \begin{cases} 0, & \text{если } \langle V_i, V_j \rangle \notin \mathbf{E}, \\ V_j, & \text{если } \langle V_i, V_j \rangle \in \mathbf{E}. \end{cases}$$

3)
$$P^{\scriptscriptstyle(0)} = \left[p_{\scriptscriptstyle i,j}^{\scriptscriptstyle 0}\right]_{i,j\in\overline{1,|V|}}$$
 получаем из матрицы P' . $p_{\scriptscriptstyle i,j}^{\scriptscriptstyle (0)} = \begin{cases} 0, & \text{если } p_{\scriptscriptstyle i,j}' = 0, \\ 1, & \text{если } p_{\scriptscriptstyle i,j}' \neq 0. \end{cases}$

Обозначения для алгоритма поиска гамильтонова цикла

Упрощение.

Вместо матрицы $P^{|V|-1}$ достаточно сформировать только один из ее столбцов, соответствующий начальной вершине V_s . Искомый результат содержится в строке s найденного столбца.

- 1) $P_s^{(l)}$ столбец s матрицы $P^{(l)}$.
- 2) $P_s^{(l)} = P' \times P_s^{(l-1)}$, где l = 1, 2, ..., (|V| 1).
- 3) $P_s^{(0)}$ столбец номер s матрицы $P^{(0)}$.

Алгоритм поиска гамильтонова цикла

Начало алгоритма: $G = \langle \mathbf{V}, \mathbf{E} \rangle -$ связный орграф. Определена начальная вершина V_{s} для построения гамильтонова цикла.

<u>Шаг 1.</u> Составляется матрица P' и $P_s^{(0)}$ - столбец s матрицы $P^{(0)}$.

$$P' = \left[p'_{i,j}\right]_{i,j \in \overline{1,|V|}}, \ p'_{i,j} = \begin{cases} 0, & \text{если } < V_i, V_j > \notin \mathbf{E}, \\ V_j, & \text{если } < V_i, V_j > \in \mathbf{E}. \end{cases}$$

Элементы столбца $P_s^{(0)}$ определяются по следующему правилу:

$$p_{i,j}^{(0)} = egin{cases} 0, & ext{если } p_{i,j}' = 0, \ 1, & ext{если } p_{i,j}'
et 0. \end{cases}$$

Алгоритм поиска гамильтонова цикла

Шаг 2.
$$P_s^{(l)} = P' \times P_s^{(l-1)}, l = 1, |V| - 1,$$
 в столбце $P_s^{(l)}$ обнуляются элементы:

- 1) в столбце $P_s^{(l)}$, если «произведение вершин» в строке содержит вершину, равную метке строки, $l=\overline{1,|V|-1}$;
 - 2) все элементы в *s* -ой строке столбца $P_s^{(l)}$ l = 1, |V| 2;
- 3) в столбце $P_s^{(l)}$ «произведение вершин», содержащее одинаковые «множители» $l=\overline{1;|V|-1}$.
- <u>Шаг 3.</u> При l = |V| 1 в *s*-той строке получим количество гамильтоновых циклов и последовательности вершин в цикле.

Конец алгоритма. Перечисляем количество циклов в графе G и последовательности вершин в каждом цикле.

Пример 4. Найти в графе гамильтоновы циклы, начинающиеся с вершины \mathbf{V}_1

В графе шесть вершин, следовательно, будет пять итераций.

1)
$$P' \times P_{V_1}^{(0)} = V_3 \begin{vmatrix} V_1 & 0 \\ V_2 & V_3 \\ V_3 & 0 \\ V_4 & V_3 + V_6 \\ V_5 & V_3 \\ V_6 & V_3 \end{vmatrix} = P_{V_1}^{(1)}.$$

$$2) \quad P' \times P_{V_{1}}^{(1)} = \begin{matrix} V_{2} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{4} \\ V_{6} \\ V_{4} \\ V_{6} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{6} \\ V_{6} \\ V_{3} \\ V_{4} \\ V_{6} \\ V_{6} \\ V_{3} \\ V_{4} \\ V_{4} \\ V_{6} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{4} \\ V_{6} \\ V_{2} \\ V_{3} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{6} \\ V_{2} \\ V_{3} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{6} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{6} \\ V_{2} \\ V_{3} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{6} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{6} \\ V_{2} \\ V_{3} \\ V_{5} \\ V_{6} \\ V_{7} \\ V_{8} \\ V_{8}$$

$$P' = \begin{pmatrix} & V_1 & V_2 & V_3 & V_4 & V_5 & V_6 \\ \hline V_1 & 0 & V_2 & 0 & 0 & 0 & 0 \\ \hline V_2 & 0 & 0 & V_3 & 0 & V_5 & 0 \\ \hline V_3 & V_1 & 0 & 0 & V_4 & 0 & 0 \\ \hline V_4 & 0 & 0 & V_3 & 0 & 0 & V_6 \\ \hline V_5 & 0 & 0 & V_3 & V_4 & 0 & 0 \\ \hline V_6 & V_1 & V_2 & V_3 & 0 & 0 & 0 \end{pmatrix}$$

3)
$$P' \times P_{V_{1}}^{(2)} = V_{3}$$

$$V_{2} V_{3}V_{4}V_{6} + V_{5}V_{4}V_{3} + V_{5}V_{4}V_{6}$$

$$V_{3}V_{4}V_{6} + V_{5}V_{4}V_{3} + V_{5}V_{4}V_{6}$$

$$V_{4} V_{5} V_{5} V_{6} V_{2}V_{5}V_{3} + V_{4}V_{6}V_{3}$$

$$V_{5} V_{6} V_{2}V_{5}V_{3} + V_{3}V_{4}V_{6}$$

$$V_{5} V_{6} V_{2}V_{5}V_{3} + V_{3}V_{4}V_{6}$$

$$V_{5} V_{6} V_{2}V_{5}V_{3} + V_{3}V_{4}V_{6}$$

$$V_{5} V_{6} V_{2}V_{5}V_{3}$$

$$V_{6} V_{2}V_{5}V_{3}$$

$$V_{6} V_{2}V_{5}V_{3}$$

$$P' = \begin{pmatrix} & V_1 & V_2 & V_3 & V_4 & V_5 & V_6 \\ \hline V_1 & 0 & V_2 & 0 & 0 & 0 & 0 \\ \hline V_2 & 0 & 0 & V_3 & 0 & V_5 & 0 \\ \hline V_3 & V_1 & 0 & 0 & V_4 & 0 & 0 \\ \hline V_4 & 0 & 0 & V_3 & 0 & 0 & V_6 \\ \hline V_5 & 0 & 0 & V_3 & V_4 & 0 & 0 \\ \hline V_6 & V_1 & V_2 & V_3 & 0 & 0 & 0 \end{pmatrix}$$

$$V_{1} \begin{bmatrix} V_{2}V_{5}V_{3}V_{4}V_{6} + V_{2}V_{5}V_{4}V_{6}V_{3} \\ V_{2} \\ V_{2} \end{bmatrix} \times P' \times P_{v_{1}}^{(4)} = V_{3} \begin{bmatrix} V_{2}V_{5}V_{3}V_{4}V_{6} + V_{2}V_{5}V_{4}V_{6}V_{3} \\ \frac{V_{5}V_{4}V_{6}V_{2}V_{5}V_{3}}{2} \\ \frac{V_{4}V_{6}V_{2}V_{5}V_{4}V_{3}}{2} \\ V_{5} \\ V_{6} \end{bmatrix} \Rightarrow P_{v_{1}}^{(5)} = V_{3} \\ V_{1} \\ V_{2} \\ V_{2} \\ V_{3}V_{4}V_{6} + V_{2}V_{5}V_{4}V_{6}V_{3} \\ V_{1} \\ V_{2} \\ V_{3}V_{5}V_{3}V_{4}V_{6} + V_{2}V_{5}V_{4}V_{6}V_{3} \\ V_{2}V_{5}V_{3}V_{4}V_{6} + V_{2}V_{5}V_{4}V_{6}V_{3} \end{bmatrix} \Rightarrow P_{v_{1}}^{(5)} = V_{1} \\ V_{1} \\ V_{2} \\ V_{2} \\ V_{3}V_{4}V_{6} \\ V_{2}V_{5}V_{3}V_{4}V_{6} + V_{2}V_{5}V_{4}V_{6}V_{3} \\ V_{2}V_{5}V_{3}V_{4}V_{6} + V_{2}V_{5}V_{4}V_{6}V_{3} \end{bmatrix} \Rightarrow P_{v_{1}}^{(5)} = V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{5} \\ V_{6} \\ U_{2}V_{5}V_{3}V_{4}V_{6} + V_{2}V_{5}V_{4}V_{6}V_{3} \\ V_{6} \\ U_{2}V_{5}V_{3}V_{4}V_{6} + V_{2}V_{5}V_{4}V_{6}V_{3} \\ V_{6} \\ U_{2}V_{5}V_{3}V_{4}V_{6} + V_{2}V_{5}V_{4}V_{6}V_{3} \\ V_{5} \\ V_{6} \\ U_{6} \\ U_{7} \\ U_{8} \\$$

Получаем два гамильтоновых цикла:

1)
$$V_1V_2V_5V_3V_4V_6V_1$$
 и 2) $V_1V_2V_5V_4V_6V_3V_1$.

Получаем два гамильтоновых цикла:

1) $V_1V_2V_5V_3V_4V_6V_1$ и 2) $V_1V_2V_5V_4V_6V_3V_1$.

Тема следующей лекции:

«Алгоритм Уоршалла-Флойда»