A comprehensive genomic pan-cancer analysis using The Cancer Genome Atlas gene expression data

Yuanyuan Li¹, Juno M. Krahn², Nicole Croutwater¹, Kevin Lee¹, David M. Umbach¹, and Leping Li¹

¹Biostatistics and Computational Biology Branch, ²Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, RTP, NC, USA

Introduction

- The Cancer Genome Atlas (TCGA) makes available gene-expression profiles using RNA-seq for many human tumor types.
- These profiles provide a great opportunity to identify unique genes that can classify tumor types.
- Those genes may serve as biomarkers for tumor diagnosis & potential targets for drug development
- Gender differences in cancer susceptibility are consistent findings in cancer epidemiology
- Knowing whether the distinguishing features differ between males and females for the same tumor types might enhance their utility as biomarkers
- Our goals are
 - 1. To identify a set of genes whose expression levels classify pan-cancer tumor types when
 - 2. To identify analogous sets of genes for pan-cancer classification in sex non-specific tumors from men and from women separately

Main findings

- Pan-cancer classification (ignoring gender) of 9,096 samples into 31 tumor types using RNA-seq gene expression alone was remarkably accurate.
 - o Our algorithm found gene sets that correctly classified >90% of the tumor samples on average.
 - Classification accuracies were high for except 3 tumors
 - Among genes whose expression best discriminated all tumors
 - ~1/3 were pseudogenes
 - ~1/3 were transcription factors
 - and ~1/3 were encoded proteins involved in cell adhesion, ion and small molecular transport, protein synthesis and folding, & lung function
- Repeating the analysis for 23 sex non-specific tumor types in males and females separately gave similarly accurate classification in each gender and overlapping but distinct gene lists.
- > 80% of the 100 most discriminative genes were common between males & females
- o Genes that were differentially expressed between male & female in at least one of the 23 tumor types included: BNC1, FAT2, FOXA1, & HOXA11
- The few top-ranked discriminative genes that differed between males and females might play a role in differential cancer susceptibility between genders

Data

Available cancer types	Number of Samples				
Available balloci types		Pan-cancer	Males	Females	
Adrenocortical carcinoma	ACC	79	31	48	
Bladder urothelial carcinoma	BLCA	408	272	99	
Breast invasive carcinoma	BRCA	1,102	Not used	Not used	
Cervical squamous cell carcinoma and endocervical adenocarcinoma	CESC	306	Not used	Not used	
Cholangiocarcinoma	CHOL	36	Not used	Not used	
Colon adenocarcinoma	COAD	287	156	129	
Lymphoid neoplasm diffuse large B-cell lymphoma	DLBC	48	Not used	Not used	
Esophageal carcinoma	ESCA	Not used	159	26	
Glioblastoma multiforme	GBM	169	109	59	
Head and Neck squamous cell carcinoma	HNSC	522	385	137	
Kidney chromophobe	KICH	66	Not used	Not used	
Kidney renal clear cell carcinoma	KIRC	534	346	188	
Kidney renal papillary cell carcinoma	KIRP	291	214	77	
Acute Myeloid Leukemia	LAML	173	93	80	
Brain lower grade glioma	LGG	534	292	241	
Liver hepatocellular carcinoma	LIHC	374	253	121	
Lung adenocarcinoma	LUAD	517	240	277	
Lung squamous cell carcinoma	LUSC	502	371	131	
Mesothelioma	MESO	87	71	16	
Ovarian serous cystadenocarcinoma	OV	266	Not used	Not used	
Pancreatic agenocarcinoma	PAAD	179	99	80	
Pheochromocytoma and Paraganglioma	PCPG	184	82	102	
Prostate adenocarcinoma	PRAD	498	Not used	Not used	
Rectum adenocarcinoma	READ	95	52	42	
Sarcoma	SARC	263	119	144	
Skin cutaneous melanoma	SKCM	473	259	156	
Stomach adenocarcinoma	STAD	Not used	268	147	
Testicular germ cell tumors	TGCT	156	Not used	Not used	
Thyroid carcinoma	THCA	513	102	246	
Thymoma	THYM	120	63	57	
Uterine corpus endometrial carcinoma	UCEC	177	Not used	Not used	
Uterine carcinosarcoma	UCS	57	Not used	Not used	
Uveal melanoma	UVM	80	45	35	
Total		9,096	4,081	2,638	

Methods

- Used our in-house GA/KNN (Genetic algorithm/K-nearest neighbors) algorithm for multi-class classification of 31 tumor types
- Randomly split samples into 50/50 training & testing sets (proportional allocation of each tumor type)
- Used the training set to obtain 2,000 near-optimal classifiers (each consisting of 20 genes) from repeated runs
- Applied each resultant near-optimal classifier to the test set
- Compared the predicted class with the true class to calculate training & testing performance
- To see if sex non-specific tumors (not related to reproductive organs) differ between males & females, we repeated the analysis for 23 tumor types separately for males & for females.

Results

Testing performances of GA/KNN

Top genes selected for pan-cancer (ignoring gender)

Heatmaps of top genes selected for sex non-specific tumors

~80% of the 100 most discriminative genes were common between males & females

Genes that differ in rank between (males & females)

• Among the top 100 genes from each sex, 21 differed by more than 100 in rank

	Gene	Rank from full female dataset	Rank from full male dataset	Difference (F-M)	Mean (SD) rank from 8 matched male datasets	Difference (F-meanM)
	BNC1	931	44	887	54(16)	877
	FAT2	391	89	302	143(23)	248
Genes ranked	KRT5	327	46	281	165(57)	162
	RNF43	298	93	205	81(14)	217
higher using	S1PR5	280	99	181	98(38)	182
male samples than female	ANKS4B	244	96	148	115(20)	129
	CSTA	217	92	125	129(33)	88
samples	ANXA8	160	47	113	121(36)	39
	KRT8	174	64	110	94(22)	80
	CLRN3	203	97	106	86(15)	117
	FOXA1	81	416	-335	237(92)	-156
	AMY1A	99	369	-270	386(162)	-287
	HPN	73	335	-262	256(94)	-183
Genes ranked	LAD1	44	268	-224	129(40)	-85
higher using	PDZK1	82	292	-210	228(79)	-146
male samples	TMC5	54	240	-186	139(50)	-85
than female	KIF12	88	248	-160	324(135)	-236
samples	STK32A	78	225	-147	123(28)	-45
	CFAP221	80	186	-106	94(21)	-14
	TRIM29	85	187	-102	143(25)	-58
	HOXA11	83	183	-100	291(77)	-208

Boxplots of gene expression for males (blue) vs females (pink () in 23 sex non-specific tumors

Acknowledgments

We thank the Computational Biology Facility and the office of the Scientific Information Officer at NIEHS for computing time.

This research was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (ES101765).