18.100A Midterm

Octavio Vega

March 20, 2023

Problem 1

(a)

Proof. Let $x \in f^{-1}(C \cap D)$. Then

$$\implies f(x) \in C \cap D \tag{1}$$

$$\implies f(x) \in C \text{ and } f(x) \in D$$
 (2)

$$\implies x \in f^{-1}(C) \text{ and } x \in f^{-1}(D)$$
 (3)

$$\implies x \in f^{-1}(C) \cap f^{-1}(D). \tag{4}$$

Thus,

$$f^{-1}(C \cap D) \subseteq f^{-1}(C) \cap f^{-1}(D).$$
 (5)

Now let $x \in f^{-1}(C) \cap f^{-1}(D)$. Then

$$\implies f(x) \in C \text{ and } f(x) \in D$$
 (6)

$$\implies f(x) \in C \cap D$$
 (7)

$$\implies x \in f^{-1}(C \cap D). \tag{8}$$

Thus,

$$f^{-1}(C) \cap f^{-1}(D) \subseteq f^{-1}(C \cap D).$$
 (9)

Therefore by equations (5) and (9), $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.

(b)

Claim: If $E \subset \mathbb{R}$ is countable, then the complement $\mathbb{R} \backslash E$ is always uncountable.

Proof. (By contradiction). Suppose E^c is countable. Then $E \cup E^c$ is countable as well, since it is the union of two countable sets. But $E \cup E^c = \mathbb{R}$, which is uncountable. ($\Rightarrow \Leftarrow$).

(c)

By contrast, if $E \subset \mathbb{R}$ is uncountable, then the complement $\mathbb{R} \setminus E$ is not always countable. Take for instance, E = [0, 1], which is uncountable. Then $E^c = (-\infty, 0) \cup (1, \infty)$, which is also uncountable.

Problem 2

(a)

A set $U \subset \mathbb{R}$ is not open if for every $\epsilon > 0$, $\exists x \in U$ such that $(x - \epsilon, x + \epsilon) \not\subset \mathbb{R}$.

(b)

Proof. Suppose U is not open. Let $\epsilon = \frac{1}{n}$. Then for every $n \in \mathbb{N}$, $\exists x \in U$ such that $(x - \frac{1}{n}, x + \frac{1}{n}) \not\subset U$. Equivalently, for each $n \in \mathbb{N}$ $\exists x_n \in U^c$ such that

$$x - \frac{1}{n} < x_n < x + \frac{1}{n}. (10)$$

Then we have

$$0 < |x_n - x| < \frac{1}{n},\tag{11}$$

and taking the limit on all sides gives

$$0 < \lim_{n \to \infty} |x_n - x| < \lim_{n \to \infty} \frac{1}{n}. \tag{12}$$

Thus, by the squeeze theorem, $\lim_{n\to\infty} x_n = x$, as desired.

(c)

Proof. (By contradiction). To show that F is closed, we must show that F^c is open. Suppose, toward a contradiction, that F^c is not open. Then by part (b), $\exists x \in F^c$ and a sequence $\{x_n\}_n$ of elements of F such that $\lim_{n\to\infty} x_n = x$. But by assumption, every convergent sequence of elements of F has a limit in F, i.e. we assumed originally that $x \in F$ ($\Rightarrow \Leftarrow$). Thus, F^c must be open, so F is closed.