19-9-2014

Segundo Taller Algebra Abstracta. Mate-2101 II semestre 2014.

Solucionar los siguientes problemas. Cada uno vale 5 puntos excepto el n. 12 que vale 10 puntos. Justificar las respuestas. Las soluciones que no sean presentada de manera ordenada y clara no van a ser calificadas. De los ejercicios en la lista, se le van a calificar solamente 10, de los cuales 5 los eligen ustedes y 5 los elige el calificador de forma casual (entre los escogidos de forma casual no va a entrar el n. 12).

1.

Sea G un grupo y sean H, N subgrupos con N normal. Denotamos por $\gamma_x \colon G \to G$ la operación de conjugación por un elemento $x \in G$ (i.e. $\gamma_x(y) = xyx^{-1}$, para todos $y \in G$).

- I.) Demostrar que la asignación $x \mapsto \gamma_x$ define un homomorfismo $\psi \colon H \to \operatorname{Aut}(N)$.
- II.) Si $H \cap N = \{e\}$, demostrar que la aplicación $N \times H \to NH$, definida por $(x, y) \mapsto xy$, es una biyección y que es un isomorfismo de grupos si y solo si ψ es trivial, i.e. $\psi(x) = \mathrm{id}_N$ para todos $x \in H$.

Decimos que G es el **producto semidirecto** de $H \leq G$ y $N \leq G$, si G = NH y $H \cap N = \{e\}$.

2.

A la inversa, sean N, H grupos y sea $\psi \colon H \to \operatorname{Aut}(N)$ un homomorfismo dado. Construir un producto semidirecto $N \ltimes_{\psi} H$ de la manera siguente . Sea $N \ltimes_{\psi} H$ el conjunto de las parejas (x, h), con $x \in N$ y $h \in H$. Se defina sobre este conjunto la operación binaria:

$$(x_1, h_1) * (x_2, h_2) = (x_1 \psi(h_1)(x_2), h_1 h_2).$$

Demostrar que el conjunto $N \ltimes_{\psi} H$ con la operación * es un grupo y que este grupo es el producto semidirecto de N y H, donde se identifique N con el conjunto de los elementos de la forma (x,1) y H con el conjunto de los elementos de la forma (1,h). Además, con estas identificaciones, es cierto $\psi(h)(x) = h * x * h^{-1}$, por $h \in H$ y $x \in N$, o sea ψ se identificacion la acción de conjugación de H sobre el subgrupo normal N.

3.

I.) Sean m, n enteros primos relativos. Si un elemento x de grupo G satisface $x^m = x^n = 1$, entonces es cierto x = 1.

II.) Demostrar que, si m, n son enteros primos relativos, la aplicación

$$\phi \colon (\mathbb{Z}/m, +) \times (\mathbb{Z}/n, +) \to (\mathbb{Z}/mn, +),$$

definida por $\phi(\bar{a}, \bar{b}) := \overline{a \cdot b}$, es un isomorfismo de grupos.

4.

Demostrar que, si m es un entero sin cuadrados, o sea m no es divisible por ningún cuadrado distinto de 1, entonces cada grupo abeliano G de orden m es cíclico.

5.

Sea G un grupo finito de orden par. Demostrar que existe un elemento $x \in G$ tal que $x \neq 1$ y $x^2 = 1$. (Sugerencia: considerar la partición de G definida por las parejas $\{x, x^{-1}\}$.)

6.

Demostrar que un grupo G de orden 4 es isomorfo a $\mathbb{Z}/4$ o a $\mathbb{Z}/2 \times \mathbb{Z}/2$.

7.

Demostrar que el grupo de automorfismos del grupo $\mathbb{Z}/2 \times \mathbb{Z}/2$ es isomorfo al grupo simétrico S_3 .

8.

Un subgrupo H de un grupo G es característico si, por todos $f \in \operatorname{Aut}(G)$, es cierto f(H) = H. En particular, un grupo característico es normal (porqué?). Demostrar que un subgrupo característico K de un subgrupo normal N de G es normal en G. En cambio, dar un ejemplo de un subgrupo normal de un subgrupo normal de un grupo G que no es normal en G.

9.

Sea G un grupo y $H \leq G$. Demostrar que el nucleo del homomorfismo $\rho \colon G \to S_{G/H}$ correspondiente a la acción de G por translación sobre las clases laterales izquierdas de H en G (que denotamos por G/H) tiene por núcleo el subgrupo normal de G mas grande contenido en H.

10.

- I.) Si H y K son subgrupos de G de indice finito, entonces $H \cap K$ tiene también indice finito en G. Ademas, $[G: H \cap K] \leq [G: H][G: K]$.
- II.) Si H tiene indice finito en G, entonces la intersección de todos los conjugados de H es un subgrupo normal de G de indice finito.
- III.) Si ([G:H], [G:K]) = 1, entonces $[G:H \cap K] = [G:H][G:K]$.

11.

Demostrar que A_6 no contiene subgrupos de indice primo.

12. *

Sea G un grupo finito que contenga un subgrupo H de indice p, donde p es el divisor primo mas pequeño de |G|. Demostrar que H es un subgrupo normal de G.

13.

Sea G un grupo finito que actúe sobre un conjunto finito X.

- I.) Suponiendo que cada orbita contenga al menos 2 elementos, que |G| = 15 y que |X| = 17, determinar el numero de órbitas y la cardinalidad de cada una.
- II.) Suponiendo que |G| = 33 y que |X| = 19, demostrar que existe al menos una órbita que contenga un solo elemento.

14.

Sea G un grupo no abeliano de orden 12 y sea H un 3-Sylow de G. Consideremos el homomorfismo $\theta \colon G \to S_{G/H}$ correspondiente a la acción de G por translación sobre G/H. Demostrar que θ no es injectivo si y solo si H es normal en G. Concluir que, si H no es normal en G, entonces el grupo G es isomorfo a A_4 .

15.

Sean G y H el grupo y el subgrupo del problema anterior. Ahora supongamos que G no es isomorfo a A_4 . Demostrar que entonces G tiene un único 3-Sylow $H = \{1, a, a^2\}$. Demostrar después que si G contiene un elemento b de orden 4, entonces a y b satisfacen las relaciones $a^3 = b^4 = 1$ y $bab^{-1} = a^2 = a^{-1}$.

16.

Sea p un numero primo. Determinar el numero de p-subgrupos de Sylow del grupo simétrico S_p .

17.

Determinar los subgrupos de Sylow del grupo alterno A_5 .

18.

Sean p < q dos números primos distintos y G un grupo de orden pq. Demostrar que G tiene un unico q-Sylow Q que es normal en G y que G = QP, donde P es un p-Sylow de G. Demostrar que G es isomorfo a un producto semidirecto de un grupo cíclico de orden q por un grupo cíclico de orden p.

19.

En la situación del problema anterior, demostrar que si q-1 no es divisible por p, es cierto $G\cong \mathbb{Z}/p\times \mathbb{Z}/q$.

20.

Demostrar que un grupo de orden 35 es cíclico.