

Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Estado de México

Bitácora de Proyecto: Sistema de Monitoreo Ambiental

TC3006C. Inteligencia artificial avanzada para la ciencia de datos

Grupo: 101

A01749667. Alan Contreras Prieto

Prof. David Higuera Rosales

Fecha de entrega: 21 de septiembre de 2025 Semestre agosto - diciembre 2025

Objetivos

El propósito principal de esta práctica para mí fue diseñar e implementar un sistema de monitoreo ambiental completo, donde pudiera aplicar mis conocimientos en datos y algoritmos. Me enfoqué en la parte de procesamiento y análisis: desde la forma en que los sensores capturaban información, hasta cómo se almacenaba, se transformaba en series de tiempo y se aprovechaba para entrenar modelos de Machine Learning.

Materiales

Para la implementación del sistema se emplearon:

- ESP32-C3 DevKit (conectividad Wi-Fi nativa)
- Sensor DHT22 (temperatura y humedad)
- Sensor LDR con resistencia de 10 kn
- LEDs indicadores con resistencias de 220 kO2
- Protoboard y cables jumper
- Resistencia pull-up para el DHT22

Software:

- ESP32-C3 con ESP-IDF para firmware embebido
- FastAPI para el backend con integración de ML
- PostgreSQL para almacenamiento robusto de datos en series de tiempo
- Flutter para la aplicación móvil con gráficos interactivos y WebSocket en tiempo real
- · FastAPI: Implementado para el backend con la capacidad de integrar modelos de machine learning.

Domingo 8 de Septiembre, 2025

Analizamos los requerimientos y planeamos la arquitectura general del sistema. Decidimos trabajar con ESP32-C3, FastAPI, Flutter y PostgreSQL. Me interesé en cómo estas tecnologías podían facilitar la integración de datos y el posterior análisis con algoritmos de predicción.

Lunes 9 de Septiembre, 2025

Se armó el hardware y se calibraron los sensores. Aunque participé en las pruebas básicas, lo que más me llamó la atención fue pensar cómo transformar esas lecturas en información útil para nuestros modelos.

Martes 10 de Septiembre, 2025

Se avanzó en el firmware del ESP32-C3. Aunque no fue mi foco, apoyé en la definición del formato de los datos enviados (JSON) para asegurar que fueran compatibles con el backend y los algoritmos de predicción que usaríamos.

Miércoles 11 de Septiembre, 2025

Se construyó el backend en FastAPI con base de datos PostgreSQL. Me involucré en revisar el modelo de almacenamiento y la estructura de consultas, ya que serían la base para entrenar y alimentar los algoritmos.

Jueves 12 de Septiembre, 2025

Hoy me enfoqué de lleno en la parte de machine learning. Implementé y ajusté un modelo con LightGBM para predicciones multi-horizonte. Diseñé las features temporales (tendencias, medias móviles, hora, día) y validé el rendimiento: obtuvimos buen MAE y tiempos de inferencia rápidos.

Viernes 13 de Septiembre, 2025

El equipo trabajó en la app Flutter. Yo me concentré en cómo integrar las predicciones y en que los datos procesados se mostraran de manera clara en la interfaz.

Sábado 14 de Septiembre, 2025

Se optimizó la comunicación en tiempo real con WebSocket. Participé probando que las predicciones y cálculos se actualizaran correctamente en la aplicación sin retrasos.

Domingo 15 de Septiembre, 2025

Se configuraron las alertas y notificaciones. Revisé cómo parametrizar los umbrales de los sensores para que la lógica de alertas se pudiera alimentar también de las predicciones del modelo.

Lunes 16 de Septiembre, 2025

Día de pruebas completas. Me encargué de evaluar la precisión de los algoritmos en validación cruzada y de revisar métricas de rendimiento. Confirmamos estabilidad del sistema y precisión confiable en las predicciones.

Martes 17 de Septiembre, 2025

Documentamos y validamos que los objetivos estuvieran cumplidos. Me aseguré de dejar clara la parte de datos y algoritmos: desde la captura, almacenamiento, hasta las predicciones.