南京理工大学课程考试试卷 (学生考试用)

课程名称:	数据结构	学分:3 大纲编号					
试卷编号:_	考试方式: 闭	<u> </u>					
组卷日期:_		f (签字) <u>朱保平</u> 审定人 (签字) <u>俞研</u>					
学生班级:_							
) 4. 十文 日百	(有販2八 サ40八)						
	(每题 2 分,共 40 分) 法的时间复杂度为 ()。						
int fun(int n							
int s=0,i=							
while(s <r s+=i;</r 	1){						
s+−1, i++;							
}							
return i;							
} A.O(n)	B.O(1)	$\mathrm{C.O}(\sqrt{n})$ $\mathrm{D.O}(n^2)$					
),且不带头结点。着在指针 p 所指结点之后插入					
	拉执行下列 () 操作。						
A. p->next=	=s; s->pre=p; p->next->pre=s; s->ne	ext=p->next;					
	es; p->next->pre=s; s->pre=p; s->ne						
	o; s->next=p->next; p->next=s; p->n o; s->next =p->next; if(p->next)p->n						
		在各种可能的出栈次序中,以元素c第一个出					
	5二个出栈的次序共有())个。						
A. 3	B. 4	Q.5 D. 6					
		别为4和7,度为3的结点数等于度为5的结点					
	点数为62,则度为5的结点数为						
A. 7 5 一埋涇度	B. 6 为 8 的二叉树,最少和最多有(C. 5 D. 4) 个结点。					
A. 8,255	B. 8,256	C. 128,255 D. 128,256					
	有10个叶子结点的完全二叉树不						
A. 108	B.107	C. 106 D.41					
7. 引入线索	二叉树的目的是 ()。						
A. 加快查	找结点的前驱或后继的速度						
	方便找到双亲结点						
,		权值,构造一棵霍夫曼树,则该霍夫曼树的带					
权路径长度》 A. 45		C. 56 D.57					
		这哈夫曼树中度为 2 的结点数为 ()。					
A. 39	B. 40	C. 79 D. 80					
10. 己知一个	卜无向图的邻接表存储结构如下图	图所示,根据深度优先遍历算法,从顶点 v_3 出发所					
得到的顶点		_					
A. $v_3 v_1 v_2 v_3 v_3 v_4 v_5 v_5 v_6 v_6 v_6 v_6 v_6 v_6 v_6 v_6 v_6 v_6$		B. $v_3v_1v_2v_5v_8v_4v_6v_7$					
C. $v_3v_1v_2v_4v_8v_5v_6v_7$ D. $v_3v_1v_2v_4v_8v_5v_7v_6$							

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
5 V_6 \longrightarrow 2 \longrightarrow 7 \land								
6 $V7$ \longrightarrow 2 \longrightarrow 7 \land								
$7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$								
11. 假定有 60 个关键字值互为同义词,若采用线性探测再散列把这 60 个关键字值存入散列表中,至少要进行()次探查。								
A. 60 B. 61 C. 1830 D. 1831								
12. 一个非连通的无向图, 共有 105 条边, 则该图至少有()个顶点。								
A. 15 B. 16 C. 17 D. 18								
13. 下列有关图遍历的说法不正确的是()。								
A.连通图的深度优先搜索是一个递归的过程;								
B.图的广度优先搜索中邻接点的寻找具有"先进先出"特征;								
C.非连通图不能用深度优先搜索方法;								
D.图的遍历要求每个顶点仅被访问一次; 14. 由关键字的集合{70,86,50,81,77,}构造平衡二叉树, 当插入 77 时引起不平衡, 则其旋								
转类型为()。								
A. LL B. LR C. RL D. RR								
15.一棵深度为 6 的平衡二叉树最少有 () 个结点。								
A. 7 B. 12 C. 20 D. 33 16. 己知关键字的集合{80,50,41,88,61,99,55,33,26,116,53,67,30}, 由它们构造二叉排序树,								
该二叉排序树的树高为()。								
A. 8 B. 7 C.6 D. 5								
17. 已知 70 个元素的有序表采用顺序存储结构存储,并采用二分查找,则查找长度为 5 和 7								
的元素个数分别为()。								
A. 16,64 B. 16,7 C. 32,64 D. 32,7								
18. 以下序列为堆的是()。								
A. {50,60,70,80,100,82,74,93,96,98} B. {100,98,80,60,70,50,40,72,32}								
C. {70,80,90,82,88,100,160,92,200} D. {200,108,90,100,180,70,60,20,30}								
19.采用()算法适合于从在大量元素中选择部分排序元素的情形。 A. 冒泡排序 B.希尔排序 C. 选择排序 D. 快速排序								
20.100个数据元素,采用直接插入排序最坏情况下要经过()次比较。								
A. 100 B. 99 C. 4950 D.5049								
二、填空题(每空 2 分,共 20 分) 1. 算法效率的度量方法有事先估算法和。								
2. 一个有 6 棵树的森林, 其第 1 棵至第 6 棵树的结点数分别为10,7,8,5,9,4, 由它们构造二叉								
2. 一个有 0 保树的森林, 兵第 1 保至第 0 保树的结点数分别为10,7,8,5,9,4, 田仑们构造二义 树,则对应的二叉树的右子树上的结点数是。								
3. 一个无向图有 40 条边,度为 4 的顶点有 6 个,度为 3 顶点有 4 个,其余顶点的度数均小于等于 2,则该图中至少有个顶点。								
4. 己知 53 个元素的有序表采用顺序存储结构存储,并采用二分查找,在等概率的情况下,								
查找成功时的平均查找长度为。查找不成功时的平均查找长度为为。								
5. 若一棵 6 阶 B-树的高度是 6 (第 6 层为叶子结点),则这棵 B-树最少有个关键字,								
最多有								
6.对80个数据元素序列采用改进的冒泡排序从小到大排序,最少要经过次比较;最								
多要经过次比较。								

- 8. 已知关键字的集合 $\{78,81,28,32,100,56,30,77,22,53\}$,采用 2-路归并排序递归算法从小到大排序,则经过第 2 趟归并排序后的结果为
- 三、问答题(共26分)
- 1. 已知二叉树的先序序列为 ABDEFGCHJIKOLMN,中序序列为 DBFEGAHJCOKIMNL。
- (1)(4分)写出其对应的二叉树;
- (2) (2分)写出后序序列;
- (3)(4分)写出该二叉树对应的森林。
- 2. 根据图所示的 AOE 网,顶点 V_1,V_2,V_3,V_4,V_5,V_6 , V_7,V_8,V_9 表示事件,弧 $a_1,a_2,a_3,a_4,a_5,a_6,a_7,a_8,a_9,a_{10},a_{11},a_{12}$, a_{13},a_{14} , a_{15} 表示活动,请回答以下问题:

- (1)(2分)去掉边的方向后,画出最小生成树并求出边上的权值之和。
- (2)(4分)求出所有事件的最早发生时间与最迟发生时间、活动的最早开始时间与最迟开始时间。
- (3)(2分)列出所有关键活动。
- 3.设关键字输入序列为{66,81,98,53,93,91,58,78,85,126,108}
 - (1)(3分)试构造平衡二叉树;
 - (2)(3分)构造 3阶 B-树,并分别写出依次删除 126 和 81 后的 B-树。
- (3) (2分) HASH 表表长为 16,HASH 函数为 H(key)=key%13,试用二次探测再散列解决冲突的方法构造哈希表。
- 四、算法设计(每题7分,共14分)
- 1. 已知不带头结点的双向链表 head,请在不借助辅助空间的情况下,设计一个倒置该双向链表的算法。其中,双向链表的结点类型定义如下:

typedef struct DLNode {

int data;

DLNode *prev;

DLNode *next;

}DLNode:

且函数原型为 void reverseList(DLNode *&head)。

2.二叉树的存储结构如下:

typedef struct BitNode{

int data;

BitNode *lchild;

BitNode *rchild;

	_					
	ı	-14	NI	\sim	40.	
- 1	l D	ш	ΙN	w	de:	

试用类栈 Stack 中方法 EmptyStack()(栈的判空函数,若空返回 1,否则返回 0),Push(e)(压栈),Pop(e)(退栈)构造计算二叉树中度为 2 结点数的非递归算法。函数原型为int CountNode(BitNode *t)。

