Prof. Dr. J.W. Kolar Übung Nr. 4

Aufgabe 4: Teilkapazitäten dreier koaxialer Rohre

(Nicht testatpflichtig!)

Zwischen drei koaxialen, dünnwandigen Metallrohren (Durchmesser D_1 =20mm, D_2 =40mm, D_3 =60mm) befinden sich Dielektrika unterschiedlicher Permittivität wie in **Fig. 4** dargestellt. Berechnen Sie die Teilkapazitätsbeläge C_{12} , C_{23} und C_{13} dieses Dreileitersystems. Beachten Sie, dass es sich um Kapazitätsbeläge (Kapazität pro Längeneinheit mit Einheit [Fm⁻¹]) handelt. Geben Sie ein Ersatzschaltbild der Anordnung an, in welches die Werte der Ersatzkapazitäten eingetragen sind.

Fig. 4: Querschnitt der koaxialen Rohre

Teilkapazitäten

Um die Ersatzschaltung einer Dreileiteranordnung zu erhalten, wird zu jedem der Leiter eine Ersatzkapazität definiert. Für die auf den Leitern gespeicherten Ladungen gilt dann

$$Q_1' = C_{12}'U_{12} + C_{13}'U_{13}$$

$$Q_2' = C_{21}'U_{21} + C_{23}'U_{23}$$

$$Q_3' = C_{31}'U_{31} + C_{32}'U_{32}$$

 $(C_{ij}=C_{ji})$. Für die Berechnung der Teilkapazitäten ist nun wie folgt vorzugehen: Jeweils zwei Leiter werden kurzgeschlossen und zwischen diesem Kurzschluss und dem dritten Leiter eine Spannung U liegend gedacht (z.B. Leiter 2,3 kurzgeschlossen: $U_{23}=0$, $U_{12}=U_{13}=U$). Im nächsten Schritt werden die Leiterladungen Q_i in Abhängigkeit von U bestimmt. Mit dem oben beschriebenen Gleichungssystem ergeben sich dann die wirksamen Teilkapazitäten welche aus den geometrischen Abmessungen unmittelbar zu berechnen sind.