Vortragender: Clemens Weber

Vorlesung 3

Vom 06.12.2023

Vorbereitung zur Aufnahme auf das Studienkolleg

Themen-Gebiete Gesamt

- Vereinfachung von Bruchtermen
- o Polynomdivision
- O Wurzelgleichungen Ungleichungen
- o Exponentialgleichungen & Logarithmusgleichungen
- o Trigonometrischen Funktionen
- Erkennen von Funktionsgraphen
- Geometrie; vor allem Satzgruppe des Pythagoras, Strahlensätze, Kreisberechnungen, Flächen- und Volumenberechnungen

Organisation

- Untericht am Montag &
 Mittwoch von 16.00 bis
 17.30 Uhr
- Alle Materialien werden
 Online zur Verfügung
 gestellt
- o GitHub
- O Übungsaufgaben jede Woche Mittwoch
- Lösung Vorstellen und Besprechen am Montag

https://github.com/ClemWeber/ASL-MatheKurs

Vorlesung 3

Umfang:

- Nachschub zu Quadratische Ergänzung
- O Natürlicher Logarithmus & Exponential Fkt.
- o Geometrie:
 - o Flächen-Berechnung
 - o Winkel-Summen
 - o Strahlen-Sätze
 - o Volumen-Berechnung

Nachschub

- O Quadratische Ergänzung:
 - OQuadratische Ergänzung -
- o Nützlich um:
 - Nullstellen von
 Quadratischen Gleichungen
 ohne Mitternachtsformel zu
 finden/berechnen

E-Funktion Exponential Funktion

o Natürliche e-Funktion

$$oe = 2.7182...$$

Besondere Eigenschaft:

Steigung = Wert der Fkt

An jedem Punkt!

e-Funktion Erklärung und Beis

Natürliche Logarithmus: ln(x)

$$\ln(e^x) = x = e^{\ln(x)}$$

$$b^{x} = (e^{\ln(b)})^{x} = e^{\ln(b) \cdot x}$$

Logarithmus Funktionen

 Umkehrfunktion der Exponentialfunktion

o Nur für Positive x definiert:

$$((-3)^{3.2} = (-3)^3 * (-3)^{0.2})$$
$$(= (-3)^3 * (-3)^{\frac{1}{5}} = (-3)^3 * \sqrt[5]{-3})$$

Logarithmus Funktionen

- o Verschiedene Namen:
 - O Natürliche Logarithmus

$$oldsymbol{log} \log_e x = \ln(x)$$

OBasis 10 Logarithmus

$$\log_{10} x = \lg(x)$$

O Andere Basen

$$\log_a x$$

 $\log_2 x = \log_2 x$
 $\log_3 x = \log_3 x$
Usw.

Nachbarkreis anliegt, aber ihn nicht schneidet .

Rechtwinklige Dreiecke

Satz des Pythagoras für Dreiecke mit Rechtem Winkel (90 Grad)

$$a^2 + b^2 = c^2$$

$$Sin^2(a) + Cos^2(a) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

- o Einfache Formen
- o Symmetrie
- O Winkelsummen
 - olm Kreis 360 Grad
 - olm Viereck 360 Grad
 - olm Dreieck 180 Grad
- o Volumenberechnungen

2D Flächen A

- Kreiszahl $\pi = 3.14159...$
 - Als Verhältnis von Quadrat- zu Kreis-Fläche
 - Oder Durchmesser zu Umfang
- o Kreis Fläche

$$OA = \pi r^2$$

- o Rechteck Fläche
 - o A = länge * breite
- o Dreieck Fläche

$$OA = \frac{1}{2}d^2$$

Bogenmaß und Winkelsummen

o Bogenmaß

- o Umfang U
- $OU = 2\pi r$

(Definition von Pie)

Bogenmaß und Winkelsummen

o Bogenmaß

- o Umfang U
- $OU = 2\pi r$

(Definition von Pie)

FlächenInhalte A und Winkelsummen

FlächenInhalte A und Winkelsummen

Lern-Zettel

Strahlensatz 1

o Seiten Verhältnisse:

$$O\frac{SA}{SA'} = \frac{SB}{SB'}$$

$$O\frac{AA'}{SA'} = \frac{BB'}{SB'}$$

Strahlensatz 2

o Seiten Verhältnisse:

$$O\frac{AB}{A'B'} = \frac{SA}{SA'} = \frac{SB}{SB'}$$

2. B spiegelsymmetrie B

Strahlensatz Folgerung

$$\frac{|BC|}{|AC|} = \frac{|B'C'|}{|A'C'|}.$$

Volumenberechnung Pyramide

Du startest mit einem Würfel (alle Seiten sind gleich lang).

In einen Würfel passen 6 Pyramiden mit einer quadratischen Grundfläche hinein.

Also gilt: $6 \cdot V_{Py} = V_{W\ddot{\mathsf{u}}}$

In einen halben Würfel (einem Quader) passen genau 3 Pyramiden hinein (eine Ganze und vier

Es gilt:
$$3 \cdot V_{Py} = \left \lceil \frac{1}{2} \cdot V_{W\ddot{\mathsf{u}}} \right \rceil = V_{Qu}$$

Daraus folgt durch Umstellung der oberen Gleichung: $V_{Py}=rac{1}{3}\cdot V_{Qu}$

Die Formel zur Berechnung des Volumens eines Quaders kennst du schon. Es ergibt sich:

$$V_{Py} = rac{1}{3} \cdot G \cdot h$$
 .

In diesem speziellen Fall kannst du sogar eine genaue Formel angeben.

Der Würfel hat die Kantenlänge a. Die Grundfläche G ist demnach a^2 . Die Höhe der Pyramide ist

$$\frac{1}{2} \cdot a$$
.

Insgesamt gilt also: $V_{Py}=rac{1}{3}\cdot a^2\cdot rac{1}{2}\cdot a=rac{1}{6}\cdot a^3$.

Du startest mit einem Würfel (alle Seiten sind gleich lang).

In einen Würfel passen 6 Pyramiden mit einer quadratischen Grund

Also gilt: $6 \cdot V_{Py} = V_{W\ddot{\mathsf{u}}}$

Aufgaben Dieser Woche

- o Bsp:
- o https://de.serlo.org/mathe/26399/aufgaben-zur-bestimmung-von-nullstellen-bei-quadratischen-tunktionen

Vorlesung 3

Umfang:

- Nachschub zu Quadratische Ergänzung
- O Natürlicher Logarithmus & Exponential Fkt.
- o Geometrie:
 - o Flächen-Berechnung
 - o Winkel-Summen
 - o Strahlen-Sätze
 - o Volumen-Berechnung

Feedback

Zu viel/wenig?

Zu leicht/schwer?

Welche Aufgabe konnte ich nicht lösen?

Feedback

Tempo zu schnell/langsam?

Mathe Vokabeln?

Was wünscht ihr euch? (Basics?)

Ziel der Veranstaltung:

Ihr besteht ALLE den Aufnahmetest für das Studienkolleg :)

Vorherige Vorlesung

Logarithmus Gesetze

8.1 Formeln für Logarithmen:

$$b^x = y \iff x = \log_b y$$

$$(y \in IR^+ \text{ und } b \in IR^+ \text{ohne } \{1\})$$

z. B.
$$0.5^x = 3 \iff x = \log_{0.5} 3 = \frac{\lg 3}{\lg 0.5}$$

Der dekadische Logarithmus: $\log_{10} a =: \lg a; \lg 1 = 0; \lg 10 = 1; \lg 100 = 2;$

Der natürliche Logarithmus: $\log_e x =: \ln x$; $\ln 1 = 0$; $\ln e = 1$; (e = 2,71828... heißt Eulersche Zahl)

Logarithmus Rechengesetze

Rechengesetze für Logarithmen (u, v > 0)

$$\log_b(u \cdot v) = \log_b u + \log_b v$$

$$\log_b \left(\frac{u}{v}\right) = \log_b u - \log_b v$$

$$\log_b u^n = n \cdot \log_b u ,$$

$$\log_b 1 = 0$$

$$\log_b b^n = n$$

$$b^{\log_b n} = n$$

$$\log_c a = \frac{\log_b a}{\log_b c}$$
 die Basisumrechnungsformel

$$(a > 0 \text{ und } b, c \in IR \text{ ohne } \{1\})$$

Logarithmus & Exponentialfunktion

https://www.grund-wissen.de/mathematik/analysis/elementaretunktionen/exponentialtunktionen-und-logarithmustunktionen.html

Bakterien verdoppeln sich jeder stunde (Zeit = x), anfangs waren es 300.

Anzahl Bakterien = $300 * 2^x$

Der Logarithmus ist die Umkehrfunktion der Exponentialfunktion.

Er fragt: Wie viel Zeit ist vergangen um eine Popolation von 3200 bakterien zu haben?

$$\log_2(\frac{3200}{300}) = x \ stunden$$

Warum ist der Logarithmus nur für positive Basis definiert? Intuition:

Population, Länge, Radioaktivität : etwas was wachsen kann (größer oder kleiner werden kann), lässt sich nur mit einem positiven Wert beschreiben.

Logarithmus als Umkerhfunktion der Exponentialfunktion

Trigonometrische Funktionen

Trigonometrische Funktionen

- o Längste Seite = Hypotenuse
- liegt gegenüber des größten Winkels

Hier: c & γ

$$Sinus(alpha) = sin(\alpha) = \frac{Gegenkathete\ von\ alpha}{Hypotenuse}$$

Cosinus
$$(alpha) = \cos(\alpha) = \frac{Ankathete \, von \, alpha}{Hypotenuse}$$

Tangens
$$(alpha) = \tan(\alpha) = \frac{Cos(\alpha)}{Sin(\alpha)} = \frac{Ankathete}{Gegenkathete}$$

Hypotenuse

Summe aller Winkel: $a+\beta + \gamma = 180$ °

Satz des Pythagoras für Dreiecke mit Rechtem Winkel (90 Grad)

$$a^2 + b^2 = c^2$$

$$Sin^2(a) + Cos^2(a) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

$$Sin^2(a) + Cos^2(a) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

Annimation:

https://www.youtube.com/watch?v=w-hXOYZ2gpo

$$Sin^2(a) = 1 - Cos^2(a)$$

Wertetabelle:

Winkel in Grad	0 °	30°	45°	60°	90°	180°	270°	360°
Winkel in Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π
sin a = y	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos a = x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1

$$Sin^2(a) = 1 - Cos^2(a)$$

Winkel in Grad	0 °	30 °	45°	60°	90°	180°	270°	360°
Winkel in Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π
sin(a = y	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos a = x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
a°	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Ziel der Veranstaltung:

Ihr besteht ALLE den Aufnahmetest für das Studienkolleg :)

Kommutativ Gesetz

$$a + b = b + a$$
$$a * b = b * a = ba$$

Distributiv Gesetz

$$oldsymbol{o} a(b+c) = ab + ac$$

$$o(b+c)/a = b/a + c/a$$

$$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$$

$$a + a = a + c = a +$$

Binomische Formeln

Binomische Formeln:

$$(a+b)(c+d) = ac+ad+bc+bd$$

$$(a+b)^2 = (a+b) \cdot (a+b) = a \cdot a + a \cdot b + b \cdot a + b \cdot b = a^2 + 2 \cdot a \cdot b + b^2$$

 $(a-b)^2 = (a-b) \cdot (a-b) = a \cdot a - a \cdot b - b \cdot a + b \cdot b = a^2 - 2 \cdot a \cdot b + b^2$
 $(a+b) \cdot (a-b) = a \cdot a - a \cdot b + b \cdot a - b \cdot b = a^2 - b^2$

Dritter Ordnung:

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

Erste Binomische Formel

$$(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$

Zweite Binomische Formel

$$(a-b)^2 = a^2 - 2 \cdot a \cdot b + b^2$$

Dritte Binomische Formel

$$a^2 - b^2 = (a+b) \cdot (a-b)$$

Kopfrechen Tricks

Trick mit den Binomischen Formel:

$$37^2 = (30+7)^2 = 30^2 + 2 \cdot 30 \cdot 7 + 7^2 = 900 + 420 + 49 = 1369$$

ler

$$37^2 = (40 - 3)^2 = 40^2 - 2 \cdot 40 \cdot 3 + 3^2 = 1600 - 240 + 9 = 1369$$

Kopfrechen Tricks

Addition und Subtraktion der Wurzel:

$$\sqrt{a} + \sqrt{b} = \sqrt{\left(\sqrt{a} + \sqrt{b}\right)^2} = \sqrt{a + b + 2\sqrt{ab}}$$

Mitternachtsformel

$$ax^2 + bx + c = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Auswendig lernen!

