Model Predictive Control of a Sewer System

June 14, 2018

Group 1030

Jacob Naundrup Pedersen Thomas Holm Pilgaard

Department of Electronic Systems Aalborg University Denmark

Group 1030

Diskussion/Konklusion

Introduktion

Kloakker og rensningsanlæg generelt

Problem formulering

System beskrivelse

Løsninger og begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark 51

Typisk opbygning af kloak ledning

Agenda

Group 1030

Introduktion

Kloakker og rensningsanlæg generelt

Problem formuler

System beskrive

Løsninger og

hearsensninger

Modellering

....

Simulering

Droinomon

IIIpieilieliteli

......

Lineariserin

Resulta

Tilstande i kloakken

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg generelt

Problem formularia

System beskrivelse

Cystom boskino

begrænsning

Degrænsning

Modellering

Modellerin

Cimularina

Struktur

Preissma

Implemente

Kontrol

Lineariserin

Resultat

riodditat

Diskussion/Konklusion

 $\blacktriangleright \ \text{Aerob} \to \textit{O}_2 \to \textit{H}_2\textit{O}$

Tilstande i kloakken

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg generelt

Problem formuler

System beskrivelse

Løsninger og

begrænsninger

Modellering

Modelie

Simulering

Droinomon

Implemente

Kontrol

Lineariseri

Resultat

Diskussion/Konklusion

$$\blacktriangleright \ \text{Aerob} \to \textit{O}_2 \to \textit{H}_2\textit{O}$$

► Anaerob $\rightarrow SO_4^{-2} \rightarrow H_2S$

Tilstande i kloakken

Agenda

Group 1030

Kloakker og rensningsanlæg generelt

Modellering

ightharpoonup Aerob ightarrow $O_2
ightarrow$ H_2O

► Anaerob $\rightarrow SO_4^{-2} \rightarrow H_2S$

► Anoxisk $\rightarrow NO_3^- \rightarrow N_2$

Udfordringer ved spildevands rensning

Agenda

Group 1030

Kloakker og rensningsanlæg generelt

- ▶ Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel

Udfordringer ved spildevands rensning

Agenda

Group 1030

Kloakker og rensningsanlæg generelt

- ▶ Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - Problemer for aerobe bakterier

Udfordringer ved spildevands rensning

Agenda

Group 1030

Kloakker og rensningsanlæg generelt

- ▶ Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - ► Problemer for aerobe bakterier
 - Andre forstyrelser

Problem formulering

Agenda

Group 1030

Problem formulering

Diskussion/Konklusion

How can a simulation environment be constructed, which mimic the behavior of a real sewer system, where MPC is utilized as the control scheme to obtain stable sewage output such that optimal performance can be obtained from a WWTP.

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

System beskrivelse

Modellering

Simulering

Kontrol

Resultat

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg gene

System beskrivelse

Løsninger og hegrænsninge

Modellerina

Modellelll

Ottoridation

Preissmann

Implementerin

Kontrol

Lineariserin

Resulta

- ▶ Data fra industri.
- ► Flow profiler af beboelse og mindre industri.

Group 1030

System beskrivelse

Løsninger og

begrænsninger

Modellering

Simulering

Kontrol

Resultat

▶ Indsættelse af tank.

Group 1030

System beskrivelse

Løsninger og

begrænsninger

Modellering

Resultat

- Indsættelse af tank.
- ► Afgrænse simulering til enkelt kemisk component.

Group 1030

System beskrivelse

Løsninger og

begrænsninger

Modellering

Resultat

Indsættelse af tank.

- ► Afgrænse simulering til enkelt kemisk component.
- Runde kloak rør.

4 modeller

Agenda

Group 1030

System beskrivelse

Modellering

Kloak ledning.

- Transport af concentrat i kloak ledning.
- ► Sammenkobling af kloakledninger.
- Tank.

Group 1030

troduktion

Kloakker og rensningsanlæg gene

Problem formulering

System beskrive

Løsninger og

.

Modellering

Simulerii

Drainamann

Preissmann

IIIIpieilieiliei

Lineariseri

Resultat

Diskussion/Konklusio

► Kontinuitets ligning:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

Group 1030

Modellerina

Diskussion/Konklusion

► Kontinuitets ligning:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

Impuls ligning:

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) +$$

$$\frac{\partial h}{\partial x} + S_f - S_b = 0$$

Group 1030

ntroduktion

Kloakker og rensningsanlæg gene

Problem formuler

System beskrive

Løsninger og

begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementer

Kontro

Lineariseri

Resultat

Diskussion/Konklusion

► Kontinuitets ligning:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

► Impuls ligning:

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) +$$

$$\frac{\partial h}{\partial x} + S_f - S_b = 0$$

 Approksimationer af momentum ligningen.

Agenda

Group 1030

ntroduktion

Kloakker og

rensningsanlæg gene

Problem formule

System beskrivelse

Løsninger og

Løsninger og

begrænsning

Modellering

Modellerin

01111010111

- .

r reissiliani

Implementerir

Kontrol

Linearisering

_

Diskussion/Konklusion

Agenda

Group 1030

Modellerina

$$C \cdot \frac{\partial(A)}{\partial t} + C \cdot \frac{\partial(Q)}{\partial x} = 0$$

Agenda

Group 1030

Modellerina

$$C \cdot \frac{\partial(A)}{\partial t} + C \cdot \frac{\partial(Q)}{\partial x} = 0$$

$$A \cdot \frac{\partial C}{\partial t} + Q \cdot \frac{\partial C}{\partial x} = 0$$

Agenda

Group 1030

Modellerina

Diskussion/Konklusion

$$C \cdot \frac{\partial(A)}{\partial t} + C \cdot \frac{\partial(Q)}{\partial x} = 0$$

$$A \cdot \frac{\partial C}{\partial t} + Q \cdot \frac{\partial C}{\partial x} = 0$$

► Afhænger af kendt A og Q.

Sammenkobling af kloak ledninger

Agenda

Group 1030

System beskrivelse

Modellering

Simulering

Resultat

► Flow:

$$Q_3 = Q_1 + Q_2$$

Sammenkobling af kloak ledninger

Agenda

Group 1030

Modellering

► Flow:

$$Q_3 = Q_1 + Q_2$$

Koncentrat:

$$C_3 = \frac{C_1 \cdot Q_1 + C_2 \cdot Q_2}{Q_1 + Q_2}$$

Group 1030

System beskrivelse

Modellering

Kontrol

Resultat

► Højde:

$$\frac{dh(t)}{dt} = \frac{1}{A} \left(Q_{in}(t) - u(t) \cdot \overline{Q} \right)$$

Group 1030

Modellerina

Diskussion/Konklusion

Højde:

$$\frac{dh(t)}{dt} = \frac{1}{A} \left(Q_{in}(t) - u(t) \cdot \overline{Q} \right)$$

Koncentrat:

$$\frac{\textit{dC}_{\textit{tank}}(t)}{\textit{dt}} = \frac{1}{\textit{A}} \left(\textit{C}_{\textit{in}}(t) \cdot \frac{\textit{Q}_{\textit{in}}(t)}{\textit{h}(t)} - \textit{C}_{\textit{tank}}(t) \cdot \frac{\textit{Q}_{\textit{out}}(t)}{\textit{h}(t)} \right)$$

Group 1030

ntroduktion

Kloakker og reneningsanlæg gene

Problem formulari

System beskrivelse

Løsninger og

Løsninger og

.

Modellering

Simulering

Struktur

ssmann

Implementering

Kontrol

Lineariserin

Resultat

Diskussion/Konklusion

Group 1030

ntroduktio

rensningsanlæg gene

D. I.I. / I.I.

System beskrivelse

Løsninger og

Løsninger og

Modellering

WIOGCIICIIII

Simulering Struktur

uuktui

rieissilidilli

impiementerin

Kontrol

Lineariserin

Resultat

Diskussion/Konklusion

► Intialisering

► Opsætning af komponenter.

Group 1030

ntroduktior

rensningsanlæg gene

Problem formulering

System beskrivelse

Løsninger og

. .

Modellering

Simulering

Struktur

iuktui

Implementaria

Implementerin

Kontrol

Lineariserin

Resultat

Diskussion/Konklusion

- ► Opsætning af komponenter.
- ► System i steady state.

Group 1030

ntroduktio

rensningsanlæg gene

Problem formulering

System beskrivelse

Løsninger og

Modellering

Simulering

Struktur

roloomonn

Implementering

impiementering

Kontrol

Lineariserin

Resulta

Diskussion/Konklusion

- Opsætning af komponenter.
- System i steady state.
- Simulering

Group 1030

ntroduktio

rensningsanlæg gene

Problem formulering

System beskrivelse

Løsninger og

Modellerir

Simulering

Struktur

Preissmann

Implementerin

Implementerin

Kontrol

Lineariserin

MPC

Resultat

Diskussion/Konklusion

- ► Opsætning af komponenter.
- ► System i steady state.
- Simulering
- ► Iterativ beregning af komponenterne

Group 1030

ntroduktio

rensningsanlæg gene

Problem formulering

System beskrivelse

Løsninger og

Modellorin

Modellelli

Simulerina

Struktur

Preissmann

Implementerir

IIIpieilieilieili

Kontrol

Linearisering MPC

Resulta

Diskussion/Konklusion

- Opsætning af komponenter.
- ► System i steady state.
- Simulering
- Iterativ beregning af komponenterne
- Gennemgang af resultat

Group 1030

ntroduktion

Kloakker og

Problem formularing

System beskrivelse

Løsninger og

Modellering

Struktur

truktur

Preissmann

Implementeri

Kontrol

Lineariserir

Resultat

Diskussion/Konklusion

Group 1030

System beskrivelse

Modellering

Preissmann

Resultat

► Kinematisk bølge aproksimering.

► Fyldningsgrad kurve for rør.

Group 1030

ntroduktion

Kloakker og

Problem formularing

System beskrivelse

Løsninger og

Modellering

Simulering

Preissmann

Implemente

Implementer

Kontrol Lineariserir

Resultat

Diskussion/Konklusion

Preissmann iteration

Agenda

Group 1030

troduktion

Kloakker og rensningsanlæg gene

System hoskrival

Løsninger og

Modellering

Cianulada

Otendeton

Preissmann

Implementeri

Vontral

Lineariserii MPC

Resultat

Diskussion/Konklusion

Preissmann stabilitet

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg gene

Problem formulering

System beskrivels

Løsninger og

Modellering

Simulen

Preissmann

Implementeri

Lineariserin

Resultat

Diskussion/Konklusion

Ubetinget stabilitet

Group 1030

ntroduktior

Kloakker og

Problem formule

System beskrivelse

System beskriver

Løsninger og

begrænsning

Modellering

....

Simulerin

Preissmann

1 1010011141111

Implementeri

Kontrol

Lineariseri

Resultat

Diskussion/Konklusion

► Indikation af præcision

Courant's tal

Agenda

Group 1030

System beskrivelse

Modellering

Simulering

Preissmann

Resultat

► Indikation af præcision

$$C_r = \frac{\sqrt{g \cdot \overline{\mathsf{H}} \cdot \Delta t}}{\Delta x}$$

Group 1030

Introduktio

Kloakker og

Droblam formularing

System beskrive

Løsninger og

......

Modellering

Simulerii

Preissmann

Implementer

Kontrol

Resultat

Diskussion/Konklusion

Group 1030

Introduktio

Kloakker og

Problem formularing

System beskrivel

Løsninger og

Modellering

.

Preissmann

Implementer

Kontrol

Lineariserir

Resultat

Diskussion/Konklusion

Group 1030

Introduktio

Kloakker og

Problem formularing

System beskrivelse

Løsninger og

begrænsninger

Modellering

....

Simulering

Struktur

Preissmann

Implementering

Kontrol

Lineariserin

MPC

Resultat

Diskussion/Konklusion

- Implementation
- ► Kontrol
- ► Resultater
- Diskussion
- ▶ Konklusion

Group 1030

ntroduktion

Kloakker og

Doubles from John

System beskrivelse

Løsninger og

--5.-----

Modellering

imuleri

Outun

Preissmann

Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Group 1030

Implementering

Diskussion/Konklusion

1. Pipe

- længde [m]
- sektioner
- S_b (Hældning) [‰]
- $\triangle x = \text{Længde/Sektioner [m]}$
- Diameter [m]
- Theta
- $ightharpoonup Q_f[m^3/s]$
- Side inflow
- Placering i data

2. Tank

- ▶ Størrelse [m³]
- ► Højde [m]
- Areal = Size / Height [m²]
- ► Maximum outflow [m³/s]
- Placering i data

Group 1030

ntroduktion

Kloakker og rensningsanlæg gene

System beskrivelse

Løsninger og

Modellering

W COO O O O O

Simulering Struktur

Preissmann

Implementering

Lineariseri

Resultat

Diskussion/Konklusio

Rør specifikationer

Fields	length	= sections	⊞ Dx	⊞ Sb	⊞ d	H Theta	⊞ Qf	☐ side_inflow	data_location
1	700	35	20	0.0030	0.9000	0.6500	0.9730	0	1
2	303	15	20.2000	0.0030	0.9000	0.6500	0.9730	0	3
3	27	2	13.5000	0.0030	1	0.6500	1.2843	1	4
4	155	8	19.3750	0.0041	1	0.6500	1.5014	0	5
5	295	14	21.0714	0.0122	0.8000	0.6500	1.4386	0	6
6	318	15	21.2000	0.0053	0.9000	0.6500	1.2932	1	8

Group 1030

System beskrivelse

Modellering

Implementering

Resultat

► Tank specifikationer

Fields	Ш	size	Height	area		Q_out_max	data_location
1		90	10		9	0.9730	2
2		90	10		9	1.2932	7

Group 1030

ntroduktion

Kloakker og rensningsanlæg gene

Problem formularing

System beskrivelse

Løsninger og

bogitorioringo

Modellering

Simularina

0.....

Preisemann

1 1010011101111

Implementering

IZ. . I . . I

Lineariserine

MPC

Resultat

Diskussion/Konklusion

► System specifikationer

Fields	type type	⊞ component	sections sections
1	'Pipe'	1	35
2	'Tank'	1	1
3	'Pipe'	4	39
4	'Tank'	1	1
5	'Pipe'	14	206
6	'Total'	21	282

Group 1030

ntroduktion

Kloakker og

Droblem formularing

System beskrivelse

Løsninger og

bogitorioringor

Modellering

Preisemann

Implementering

Kontrol

Lineariserin

Lineanoenn

MPC

Resultat

Diskussion/Konklusion

Group 1030

Modellering

Implementering

Group 1030

ntroduktior

Kloakker og rensningsanlæg gener

System beskrivels

Løsninger og

begrænsninger

Modellering

Simularing

Struktur

Preissmann

Implementering

,

Kontrol

Lineariseri

Resulta

Diskussion/Konklusio

Group 1030

ntroduktio

Kloakker og

Droblem formularing

System beskrivels

Løsninger og

begrænsninger

Modellering

. . .

Simulei

Preissmann

Implementering

implementering

Lineariserine

Linearisering

Resulta

Diskussion/Konklusion

► Itererer igennem rør og tank for hvert tidsskridt

Group 1030

ntroduktio

rensningsanlæg genere

System beskrivel

Løsninger og

begrænsninger

Modellering

Simulerin

Preissmann

Implementering

impiementei

Kontrol Lineariserii

MPC

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktion

Kloakker og

Problem formuler

System beskrivels

Løsninger og

begrænsninger

Modellerin

Modellerin

Otendeton

Droinomor

Preissmani

Implementer

Kontro

Linearisering

MPC

Resulta

Diskussion/Konklusion

► Linearisering af ulineær model

► Opstilles på state space form

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{\partial A(h)}{\partial h} \frac{\partial h(x,t)}{\partial t} + \frac{\partial Q(h)}{\partial h} \frac{\partial h(x,t)}{\partial x} = 0$$

Group 1030

ntroduktion

Kloakker og rensningsanlæg gen

rensningsanlæg gene

System beskrive

Løsninger og

begrænsninger

Modellering

Simulerir

Struktur

Preissman

Implementer

Implemente

Kontro

Linearisering

Resulta

riodaliai

Diskussion/Konklusion

► Priessmann scheme

► Opsat på matrix og vektor form

$$\left[\underbrace{\frac{1}{2\Delta t}\frac{\partial A}{\partial h} - \frac{\theta}{\Delta x}\frac{\partial Q}{\partial h}}_{a} \underbrace{\frac{1}{2\Delta t}\frac{\partial A}{\partial h} + \frac{\theta}{\Delta x}\frac{\partial Q}{\partial h}}_{b}\right] \begin{bmatrix} h_{j+1}^{i+1} \\ h_{j+1}^{i+1} \end{bmatrix} =$$

$$- \left[\underbrace{\frac{-1}{2\Delta t}\frac{\partial A}{\partial h} - \frac{(1-\theta)}{\Delta x}\frac{\partial Q}{\partial h}}_{c} \underbrace{\frac{-1}{2\Delta t}\frac{\partial A}{\partial h} + \frac{(1-\theta)}{\Delta x}\frac{\partial Q}{\partial h}}_{d} \right] \begin{bmatrix} h_{j+1}^{i} \\ h_{j+1}^{i} \end{bmatrix} =$$

Group 1030

atroduktion

Kloakker og rensningsanlæg gene

Problem formulering

System beskrivels

Løsninger og

begrænsninger

Modellering

. . . .

Struktur

Preissmann

Implementer

Implementeri

Kontrol

Linearisering

Resultat

nesultat

Diskussion/Konklusion

 $-a_0$

 \overline{dQ}

 B_d

Group 1030

Introduktion

Kloakker og rensningsanlæg gene

Problem formulering

System beskrivel

Løsninger og

Modellerina

0. . .

Preissmann

Implemente

...

Kontro

Linearisering

Resulta

Diskussion/Konklus

► e - Forøgelse af højde i tank(inflow)

► f - Reducering af højde i tank(Outflow)

► g - Inflow i efterfølgende rør

$$= \underbrace{ \begin{bmatrix} b_{1,2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & a_{2,1} & b_{2,2} \end{bmatrix} \underbrace{ \begin{bmatrix} h_{1,2}^{i} \\ h_{2,1}^{i+1} \\ h_{2,0}^{i+1} \\ h_{2,0}^{i+1} \end{bmatrix}}_{x(k+1)} }_{A} + \underbrace{ \begin{bmatrix} 0 & 0 \\ 0 & -f \\ 0 & g \\ 0 & 0 \end{bmatrix} }_{B} \underbrace{ \begin{bmatrix} h_{0}^{i+1} \\ h_{2,0}^{i} \\ h_{2,1}^{i} \end{bmatrix} }_{x(k)} + \underbrace{ \begin{bmatrix} 0 & 0 \\ 0 & -f \\ 0 & g \\ 0 & 0 \end{bmatrix} }_{B} \underbrace{ \begin{bmatrix} h_{0}^{i+1} \\ u_{tank} \end{bmatrix} }_{A}$$

Group 1030

System beskrivelse

Modellering

Linearisering

Resultat

► Samligning af ulineær og linear model

System setup

► Sinus input

Туре	Components	Sections
Pipe	1	35
Tank	1	1
Pipe	18	227
Total	20	263

Group 1030

Modellering

Kontrol

Linearisering

Resultat

Group 1030

System beskrivelse

Modellering

MPC

Cost function

- Afgrænset til at minimiere output variationer
- ▶ Constraints
 - ► Højde
 - Kontrol input
- ► Prediction model

Group 1030

Modellering

MPC

Diskussion/Konklusion

Bestemmelse af Prediction horizon

- Flow profiler
- ► Industri
- Begrænsning af Prediction horizon
- System setup
- ► Forstyrrelses input

Fields	type type	component	⊞ sections
1	'Pipe'	1	5
2	'Tank'	1	1
3	'Pipe'	1	5
4	'Total'	3	11

Group 1030

ntroduktion

Kloakker og

Droblem formularing

System beskrivelse

Løsninger og

begrænsninger

begrænsning

Modellering

Simulering

Struktur

Preissman

Implemente

mpiomonio

Kontrol

MPC

Resultat

Resultat

Diskussion/Konklusio

Group 1030

System beskrivelse

Modellering

Kontrol

MPC

Resultat

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktion

Kloakker og rensningsanlæg gener

System beskrivelse

Løsninger og

Løsninger og

Modellering

Simulerin

0.....

Preissmann

Implementeri

Kontrol

Lineariserir

MPC

Resultat

Diskussion/Konklusio

Group 1030

System beskrivelse

Modellering

Simulering

Resultat

► System setup, efterligning af Fredericia

Flow profiler

Type	Component	Sections
Pipe	1	35
Tank	1	1
Pipe	17	207
Tank	1	1
Pipe	1	38
Total	21	282

Group 1030

atroduktion

Kloakker og rensningsanlæg gene

Problem formulering

System beskrivelse

Løsninger og

Løsninger og hegræneninger

--5-----

Modellering

01-----

0.....

Preissmann

Implementeri

Kontrol

Lineariserir

Resultat

Diskussion/Konklusio

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

System beskrivelse

Modellering

Kontrol

Resultat

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

Kloakker og

Problem formulei

System beskrivelse

Løsninger og

begrænsninger

Modellering

Simulering

Droinomono

Preissmann

Implementeri

Kontrol

Linearisering

Resultat

Diskussion/Konklusion

► Over dimensioneret tank

► Konstant output af tank

Group 1030

System beskrivelse

Modellering

Kontrol

Resultat

Group 1030

ntroduktion

Kloakker og

rensningsanlæg gene

Problem formule

System beskrivelse

Løsninger og

Løsninger og

Modellering

Modellerin

Cimularina

Struktu

Preissmann

. . .

Implemente

Kontro

Linearisering

Resultat

Diskussion/Konklusion 50

► Courant's tal

- ► Model reduction
- Wastewater of Aerobic/Anaerobic Transformations in Sewers (WATS)

Group 1030

ntroduktion

Kloakker og

Darblan francisco

System beskrivelse

Løsninger og

begrænsninge

Modellering

Simulei

Droinomonn

Preissmann

Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion 51

► Simulering

► MPC