

2017-2018 AVDC MSc Individual Research Project:

Domain Specific Language for Drone Swarm Evasive Manoeuvring

Viva voce

3rd September 2018

Supervisors: Prof Żbikowski and Dr Savvaris

Project definition and contributions

Project definition:

The project focuses on showcasing Domain Specific Languages (DSLs) as a tool for simulations in complex domains capable of emergent behaviours. A complete process is shown, from methodology through DSL design to validation by an example application, that results in a tool for optimisation of drone swarm behaviours in the presence of countermeasures.

Contributions:

The work has shown the possibility of transforming a Framework Specific methodology to suit different domains. Additionally, a novel DSL was developed for use with drone swarms and threats they might encounter.

Motivation and background

Problem definition

Aims:

- Show that a DSL can be an useful tool for modelling and simulation engineering,
- Introduce modularity to drone swarm simulations,
- Present a methodology for creation of DSLs in a domain capable of emergent behaviours.

Objectives:

- Accommodate an existing DSL creation methodology for the domain,
- Create a DSL for drone swarm simulations,
- Validate the DSL for drone swarm path optimisation.

Solution approach

Methodology DSL Example scenario

- Adopted Framework Specific methodology
- Added 'Methodology evaluation' phase

Iteration 2

- Removed inapplicable steps
- Added Framework for Qualitative Assessment of DSLs

Iteration 3

- Added 2 new steps
- Finalised methodology

Solution approach

Results - methodology

Results - DSL

Results – example scenario

Method used: simulated annealing

Parameters	Temperature	Attraction c	Momentum d	Repulsion r	Objective g
Initial	10	0.5	0.5	1	0.01
Final	2.79	0.179	0.009	1.367	0.01

Discussion of results – language comparison

Language	Drone Swarms DSL	Applet FSML	
Developer, year	Marcin Biczyski, 2018	Michał Antkiewicz, 2006	
Domain	3D aerospace with multiple aircraft and obstacles	Java 5.0 Applet	
Value proposition	(1) Provide drone swarm path generation utility; (2) Enable modelling of threats and obstacles in the domain; (3) Provide utility for performance measurement and optimisation of generated paths; (4) Ease the process of simulation and optimisation	 (1) Drive the extension of the generic FSML infrastructure to support defining FSMLs declaratively; (2) Compare FSML approach to design fragments approach using applets as benchmark; (3) Demonstrate feasibility of round-trip engineering; (4) Provide an introductory FSML example 	
Use cases	Manoeuvre Modelling; Decentralised Decision Making; Constraints Specification; Model Parametrisation; Path Optimisation; Modular Synthesis	Framework API understanding; Completion code analysis and understanding: understanding, API constraint checking; Completion code creation; Completion code evolution	
Horizontal scope	drones, threats, manoeuvres, optimisation, constraints	applets, status, mouse listeners, threads, parameters	
Artefact type	Racket (Lisp)	Java	
Sources of knowledge	articles, expert knowledge (pilots and operators), existing models	API, tutorials, articles, expert knowledge, example applications	

Discussion of results – language validation

	e give marks to every sentence below for the assessment of the DSL. how much you agree to each sentence by ticking the appropriate choice.	
tate	DSL Success Quality Measures	Support Level
	Functional Suitability	Support Level
	All concepts and scenarios of the domain can be expressed in the DSL (completeness)	Strong support
2.	DSL is appropriate for the specific applications of the domain (e.g. to express an algorithm)	
	(appropriateness)	Strong support
	Usability	
3.	The required amount of effort for understanding the language is small (comprehensibility)	Strong support
4.	The concepts and symbols of the language are easy to learn and remember (learnability)	Strong support
5.	Language has capability to help users achieve their tasks in a minimum number of steps	Strong support
6.	Users can recognize whether the DSL is appropriate for their needs (likeability,user	
	perception)	Full support
7.	DSL has attributes that make it easy to operate and control the language (operability)	Strong support
8.	DSL has symbols that are good-looking (attractiveness)	Strong support
9.	The language provides mechanisms for compactness of the representation of the program.	
	(compactness)	Strong support
	Reliability	
10.	DSL protects users against making errors. The DSL avoids the user to make mistakes. (model	
	checking)	Some support
11.	DSL includes right elements and correct relations between them (DSL prevents the	£
	unexpected interactions between its elements) (correctness)	Some support
	Maintainability	
12.	The amount of effort required for modifying the DSL to provide different or additional	Some support
	functionality is small (modifiability)	Some support
13.	DSL is composed of discrete components such that a change to one component has minimal	Some support
	impact on other components (Low coupling)	30me support
	Productivity	
14.	The development time of a program to meet the needs is improved	Strong support
15.	The amount of human resource used to develop the program is improved	Strong support
	Extensibility	
16.	DSL has general mechanisms for users to add new features (adding new features without	Chrone summant
	changing the original language)	Strong support
	Compatibility	
17.	DSL is compatible with the domain. DSL has capability to operate with other elements of the	Some support
	domain with no modification required to perform a specific application in the domain.	Some support
18.	Using DSL to develop models fits in the development process, since it is used as part of a	Some support
	development process with phases and roles.	Joine support
	Expressiveness	
19.	A problem solving strategy can be mapped into a program easily	Strong support
20.	The DSL that provides one and only one good way to express every concept of interest	Strong support
	(unique)	otrong support
21.	Each DSL construct is used to represent exactly one distinct concept in the domain	Strong support
	(orthogonal)	
22.	The language constructs correspond to important domain concepts. DSL does not include	Full support
20	domain concepts that are not important.	
23.	DSL does not contain conflicting elements.	Strong support
24.	DSL is at the right abstraction level such that it is not more complex or detailed than necessary	Strong support
	Davida Mila	
25	Reusability The symbols and other alemants of the DSI can be used in more than and DSI can building	
25.	The symbols and other elements of the DSL can be used in more than one DSL, or in building	
	other language elements. Using the definition of a language as a beginning to develop a new one (Reusability)	Strong support
	Integrability	
26		
26.	DSL can be integrated with other language used in development process. (language	Strong support

	DSL Success Assessment Results				
Functional Suitability					
Tanedonal Saleability	Completeness	SATISFACTORY			
	Appropriateness	SATISFACTORY			
Usability					
,	Comprehensibility	SATISFACTORY			
	Learnability	SATISFACTORY			
	Language helps users achieve their tasks				
	in a minimum number of steps	SATISFACTORY			
	Likeability,user perception	EFFECTIVE			
	Operability	SATISFACTORY			
	Attractiveness	SATISFACTORY			
	Compactness	SATISFACTORY			
Reliability					
	Model checking ability	SATISFACTORY			
	Correctness	SATISFACTORY			
Maintainability	<u>-</u>				
	Modifiability	EFFECTIVE			
	Low coupling	EFFECTIVE			
Productivity					
	The development time improvement	EFFECTIVE			
	The amount of human resource used				
	improvement	EFFECTIVE			
Extensibility					
	Mechanisms for users to add new				
	features	EFFECTIVE			
Compatibility	I				
	DSL is compatible to the domain	SATISFACTORY			
	Using DSL to develop models fits in the				
F	development process	SATISFACTORY			
Expressiveness	A south as and the strategy of				
	A problem solving strategy can be	CATICEACTORY			
	mapped into a program easily	SATISFACTORY			
	Uniqueness	SATISFACTORY SATISFACTORY			
	Orthogonality	SATISFACTORY			
	The language constructs correspond to	EFFECTIVE			
	important domain concepts.	EFFECTIVE			
	DSL does not contain conflicting elements.	SATISFACTORY			
	DSL is at the right abstraction level	SATISFACTORY			
Reusability	DSL is at the right abstraction level	SATISFACTORY			
neusability	Reusability	EFFECTIVE			
Integrability	neusability	ZITECTIVE			
integrability	Integrability	EFFECTIVE			
	integrability	ZITECTIVE			
	OVERALL SUCCESS OF THE DSL	EFFECTIVE			
	OVERALL SUCCESS OF THE DSL	EFFECTIVE			

Discussion of results – behaviour analysis

Conclusions and future work

Future work:

- Error-proofing contracts,
- Drone communication system,
- Graphical data representation,
- Fixed-wing UAV support.

Thank you!