SCHT - Lab3

Stanisław Kwiatkowski, Bartosz Ziemba

30 marca 2024

Spis treści

1. 4	4.3.R1	1
2. 5	5.1.R1	2
3. 5	5.1.R2	2
4. 5	5.1.R3	4
5. 5	5.1.R4	4
5	5.1. get-request	4
	5.1.1. Poziom UDP	4
	5.1.2. Poziom SNMP	5
5	5.2. get-response	5
	5.2.1. Poziom UDP	5
	5.2.2. Poziom SNMP	5
6. 5	5.2.R1	6
7. 5	5.2.R2	6
8. 5	5.2.R3	6
9. 6	3.2 R1	7
10.6	3.3 R1	7
11.6	3.4 R1	9
12.6	6.4 R2	9
13.6	5.4 R3	10
		-
14.6	3.4 R4	11
15.6	3.5 R1	11
16.6	6.5 R2	12
17.6	3.5 R3	12
18.6	3.5 R4	12
10 T	Do doum amonto	19

1. 4.3.R1

SNMDP - (Simple Network Management Protocol Daemon) - jest to proces uruchamiany w tle na urządzeniu zarządzanym (agent). Nasłuchuje na żądania wysyłane przez menagera protokołem UDP na porcie 161, odpowiada na nie na porcie 162. W pliku snmpd.conf możemy przypisać pewne wartości, o które manager będzie mógł się "zapytać". Możemy też zdefiniować zdarzenia, w których agent wyśle pewne informacje, po spełnieniu określonych warunków.

Ustawiliśmy wartości obiektów sysContact na nasze nazwiska, a sysLocation na adres naszego wydziału.

Rys. 1: Dodane elementy konfiguracji snmpd

2. 5.1.R1

Po wypisaniu 6 kolejnych wartości węzłów, będących obiektami skalarnymi, widzimy wpisane przez nas do konfiguracji dane.

```
student@schtlab:-$ for x in {1..6..1}; do snmpget -v 2c -c public localhost .1.3.6.1.2.1.1.$x.0; done tso.3.6.1.2.1.1.0 = STRING: "tinux schtlab 5.4.0-150-generic #107-18.04.1-Ubuntu SMP Wed May 24 00:51:42 UTC 2023 x86_64" tso.3.6.1.2.1.1.2.0 = 01D: tso.3.6.1.4.1.8072.3.2.10 tso.3.6.1.2.1.1.3.0 = Timeticks: (32166) 0:05:21.66 tso.3.6.1.2.1.1.4.0 = STRING: "schuba Kwlatkowski" tso.3.6.1.2.1.1.5.0 = STRING: "snmpsandbox" tso.3.6.1.2.1.1.5.0 = STRING: "Poland Warsaw Nowowiejska 15/19" student@schtlab:-$
```

Rys. 2: Wynik 6 operacji SNMP typu GET

3. 5.1.R2

sysDescr OBJECT-TYPE

Definicje obiektów będących bezpośrednimi dziećmi węzła system:

```
SYNTAX DisplayString (SIZE (0..255))
    ACCESS read-only
   STATUS mandatory
   DESCRIPTION
            "A textual description of the entity. This value
            should include the full name and version
            identification of the system's hardware type,
            software operating-system, and networking
            software. It is mandatory that this only contain
            printable ASCII characters."
    ::= { system 1 }
sysObjectID OBJECT-TYPE
   SYNTAX OBJECT IDENTIFIER
    ACCESS read-only
   STATUS mandatory
   DESCRIPTION
            "The vendor's authoritative identification of the
            network management subsystem contained in the
            entity. This value is allocated within the SMI
            enterprises subtree (1.3.6.1.4.1) and provides an
            easy and unambiguous means for determining 'what
            kind of box' is being managed. For example, if
            vendor 'Flintstones, Inc.' was assigned the
            subtree 1.3.6.1.4.1.4242, it could assign the
            identifier 1.3.6.1.4.1.4242.1.1 to its 'Fred
            Router'."
    ::= { system 2 }
```

```
sysUpTime OBJECT-TYPE
    SYNTAX TimeTicks
    ACCESS read-only
   STATUS mandatory
    DESCRIPTION
            "The time (in hundredths of a second) since the
            network management portion of the system was last
            re-initialized."
    ::= { system 3 }
sysContact OBJECT-TYPE
    SYNTAX DisplayString (SIZE (0..255))
    ACCESS read-write
   STATUS mandatory
   DESCRIPTION
            "The textual identification of the contact person
            for this managed node, together with information
            on how to contact this person."
    ::= { system 4 }
sysName OBJECT-TYPE
   SYNTAX DisplayString (SIZE (0..255))
    ACCESS read-write
   STATUS mandatory
   DESCRIPTION
            "An administratively-assigned name for this
            managed node. By convention, this is the node's
            fully-qualified domain name."
    ::= { system 5 }
sysLocation OBJECT-TYPE
   SYNTAX DisplayString (SIZE (0..255))
   ACCESS read-write
   STATUS mandatory
   DESCRIPTION
            "The physical location of this node (e.g.,
            'telephone closet, 3rd floor')."
    ::= { system 6 }
sysServices OBJECT-TYPE
   SYNTAX INTEGER (0..127)
    ACCESS read-only
   STATUS mandatory
    DESCRIPTION
            "A value which indicates the set of services that
            this entity primarily offers.
            The value is a sum. This sum initially takes the
```

value is a sum. This sum initially takes the value zero, Then, for each layer, L, in the range 1 through 7, that this node performs transactions for, 2 raised to (L - 1) is added to the sum. For example, a node which performs primarily routing functions would have a value of 4 (2^(3-1)). In contrast, a node which is a host offering application services would have a value of 72

 $(2^{(4-1)} + 2^{(7-1)})$. Note that in the context of the Internet suite of protocols, values should be calculated accordingly:

4. 5.1.R3

Wartości różnią się od siebie, ponieważ, jak mówi opis obiektu SysUpTime, jest to czas w milisekundach od momentu uruchomienia usługi. Jako, że wywołujemy kolejne zapytnaia GET w pewnych odstępach czasowych, zwracana wartość będzie się różniła właśnie o te wartości czasowe.

```
student@schtlab:~$ snmpget -v 2c -c public localhost .1.3.6.1.2.1.1.3.0
iso.3.6.1.2.1.1.3.0 = Timeticks: (213394) 0:35:33.94
student@schtlab:~$ snmpget -v 2c -c public localhost .1.3.6.1.2.1.1.3.0
iso.3.6.1.2.1.1.3.0 = Timeticks: (213713) 0:35:37.13
student@schtlab:~$ snmpget -v 2c -c public localhost .1.3.6.1.2.1.1.3.0
iso.3.6.1.2.1.1.3.0 = Timeticks: (213912) 0:35:39.12
student@schtlab:~$ snmpget -v 2c -c public localhost .1.3.6.1.2.1.1.3.0
iso.3.6.1.2.1.1.3.0 = Timeticks: (214085) 0:35:40.85
student@schtlab:~$ snmpget -v 2c -c public localhost .1.3.6.1.2.1.1.3.0
iso.3.6.1.2.1.1.3.0 = Timeticks: (214192) 0:35:41.92
```

Rys. 3: Kolejne zapytania o SysTimeUp

5. 5.1.R4

5.1. get-request

5.1.1. Poziom UDP

```
User Datagram Protocol, Src Port: 45960, Dst Port: 161
Source Port: 45960
Destination Port: 161
Length: 51
Checksum: Oxfe46 [unverified]
[Checksum Status: Unverified]
[Stream index: 30]
```

Struktura poziomu UDP jest płaska i składa się z pól określających po kolei:

- portu, z którego wysłano zapytanie (45960),
- portu, z którego wysłano zapytanie, portu, na który zapytanie ma trafić (161),
- długości pakietu (51)
- sum kontrolnych (0xfe46, niezweryfikowana)

5.1.2. Poziom SNMP

```
Simple Network Management Protocol
version: v2c (1)
community: public
data: get-request (0)
get-request
request-id: 786601973
error-status: noError (0)
error-index: 0
variable-bindings: 1 item
1.3.6.1.2.1.1.3.0: Value (Null)
```

Struktura pakietu na poziomie protokołu SNMP nie jest płaska, zawiera zagnieżdzone elementy.

- wersja protokołu (v2c)
- community string ten parametr jest swoistym hasłem, które pozwala na odczyt i ewentualnie zapis danych w urządzeniu,
- parametr określający, że jrst to zapytanie (get-request),
- id zapytania (786601973), dzięki któremu można chociażby rejestrować i logować zapytania,
- pole error-status określające fakt wystąpienia ewentualnego błędu (noError),
- pole error-index określające miejsce wystąpienia ewentualnego błędu (0),
- variable-bindings w tym polu podany jest obiekt o OID elementu o który odpytujemy, posiada wartość Null, która zmieni się w get-response.

5.2. get-response

5.2.1. Poziom UDP

```
User Datagram Protocol, Src Port: 161, Dst Port: 45960
Source Port: 161
Destination Port: 45960
Length: 54
Checksum: Oxfe49 [unverified]
[Checksum Status: Unverified]
[Stream index: 30]
```

Struktura poziomu UDP get-response jest niemal identyczna jak w przypadku get-reques:

- portu, z którego wysłano zapytanie (161),
- portu, z którego wysłano zapytanie, portu, na który zapytanie ma trafić (45960),
- długości pakietu (54),
- sum kontrolnych (0xfe46, niezweryfikowana).

Numery portów zamieniły się wględem wcześniejszego zapytania.

5.2.2. Poziom SNMP

```
Simple Network Management Protocol
version: v2c (1)
community: public
data: get-response (2)
get-response
request-id: 786601973
error-status: noError (0)
error-index: 0
variable-bindings: 1 item
1.3.6.1.2.1.1.3.0: 214192
Object Name: 1.3.6.1.2.1.1.3.0 (iso.3.6.1.2.1.1.3.0)
Value (Timeticks): 214192
```

Dzięki temu, że zarówno get-request i get-response są "owiniętę" w ten sam protokół, ich struktura pozostanie taka sama.

- wersja protokołu (v2c),
- community string taki sam jak w zapytaniu
- id zapytania (786601973), takie samo jak w zapytnaiu
- pole data, które w tym przypadku określa fakt, że jest to odpowiedź (get-response),
- pole error-status, tak samo jak w zapytaniu,
- pole error-index, tak samo jak w zapytaniu,
- variable-bindings w przeciwieństwie do zapytania, tutaj pojawiła nam się konkretna wartość obiektu i w tym przypadku jest to czas działania usługi SysUpTime.

6. 5.2.R1

```
student@schtlab:~$ snmpgetnext -v 2c -c public localhost .1.3.6 iso.3.6.1.2.1.1.1.0 = STRING: "Linux schtlab 5.4.0-150-generic #167-18.04.1-Ubun tu SHP Wed May 24 00:51:42 UTC 2023 x86_64" student@schtlab:~$ snmpgetnext -v 2c -c public localhost .1.3.6.1.2.1 iso.3.6.1.2.1.1.1.0 = STRING: "Linux schtlab 5.4.0-150-generic #167-18.04.1-Ubun tu SHP Wed May 24 00:51:42 UTC 2023 x86 64"
```

Rys. 4: Wywołanie polecenia SMTP GET-NEXT dla podanych wartości węzłów OID

7. 5.2.R2

Wyniki obydwu zapytań są takie same, ponieważ polecenie GET-NEXT zwraca wartość **następnego**, **niepustego** węzła występującego po podanym w argumencie. Następnym niepustym węzłem po zarówno .1.3.6 oraz .1.3.6.1.2.1 jest węzeł o OID = 1.3.6.1.2.1.1.1.0. Wszystkie potencjalne węzły znajdujące się pomiędzy .1.3.6 a .1.3.6.1.2.1 są puste. Dodatkowo, jest to pierwszy węzeł, więc na pewno nie istnieje żaden inny, który mógłby się okazać "kolejnym" dla .1.3.6.

8. 5.2.R3

Wykonując wiele operacji GET-NEXT i podając jako argumenty OID wartości uzyskanej w poprzedniej iteracji możemy zbudować narzędzie pozwalające nam enumerować wszystkie zdefiniowane i niepuste obiekty. Taka rekursywna funkcja jest zaimplementowana w SNMP i nosi nazwę SNMP-WALK. Nasza customowa implementacja takiej funkcji znajduje się poniej.

```
host="localhost"
community="public"
oid=".1"

while true; do
    result=$(snmpgetnext -v 2c -c "$community" "$host" "$oid")
    if [ -z "$result" ]; then
        break
    fi
    next_oid=$(echo "$result" | awk '{print $1}')
    echo "$result"
    oid="$next_oid"
done
```

```
100.36.12.1.1.0 = STRING: 'Linux schilab 5.4.0-150 generic #107-18.04.1-Ubuntu 500 Med May 24 00:51:42 UTC 2023 x88_64' 100.36.1.2.1.1.20 = 0.001 to 3.0.1.41.807.20.003 to 3.0.1.41.80 = STRING: 'ReplaceMook' 100.36.1.2.1.1.60 = STRING: 'ReplaceMook' 100.36.1.2.1.1.70 = HTMERST, 'ReplaceMook' 100.36.1.2.1.1.70 = HTMERST, 'ReplaceMook' 100.36.1.2.1.1.70 = HTMERST, 'ReplaceMook' 100.36.1.2.1.1.70 = HTMERST, 'ReplaceMook' 100.36.1.6.1.3.1.3.1.1 to 3.0.1.2.1.1.70 = HTMERST, 'ReplaceMook' 100.36.1.6.3.1.3.1.1 to 3.0.1.2.1.1.70.1.70 = 100 to 3.0.1.6.1.3.1.3.1.1 to 3.0.1.2.1.1.70.1.70 = 100 to 3.0.1.6.1.3.1.3.1.1 to 3.0.1.70.1.70 = 100 to 3.0.1.6.1.3.3.1.3 to 3.0.1.70.1.70 = 100 to 3.0.1.6.1.3.3.1.3 to 3.0.1.70 = 100 to 3.0.1.70.3.1.70 to 3.0.1.70 = 100 to 3.0.1.70.3.1.70 to 3.0.1.70 = 100 to 3.0.1.
```

Rys. 5: Efekt uruchomienia customowego SNMP-WALK

9. 6.2 R1

Po uruchomieniu przeglądarki w trybie interfejsu graficznego mamy dostęp do modułów MIB. Z którego każdy opisuje jakąś część/funkcje sieci.

Rys. 6: Modułów MIB

10. 6.3 R1

W sekcji Trap Receiver widzimy jak zarówno zamykanie oraz uruchamiania serwisu SNMPD generuje wiadomości typu trap o odpowiednich nazwach i parametrami, które możemy zobaczyć po przechwyceniu pakietu w Wiresharku. W ogólności wiadomość ta przenosi informacje o błędach, awariach oraz nie prawidłowościach w działaniu sieci.

ı	Description	Source	Time
ı	coldStart	192.168.1.105	2023-11-30 14:35:32
	Specific: 2; .1.3.6.1.4.1.8072.4	192.168.1.105	2023-11-30 14:35:13

Rys. 7: Zawartość pola Trap Receiver

A V					
Source:	192.168.1.105	Timestamp:	37 minutes 31.64 seconds	SNMP Version:	1
Enterprise:	.1.3.6.1.4.1.8072.4			Community:	public
Specific:	2	Generic:	enterpriseSpecific		
Description:					

Rys. 8: Podgląd wiadomości trap

```
User Datagram Protocol, Src Port: 38583, Dst Port: 162
  Simple Network Manageme
     version: version-1 (0)
     community: public
     data: trap (4)
       trap
           enterprise: 1.3.6.1.4.1.8072.4 (iso.3.6.1.4.1.8072.4)
           agent-addr: 192.168.1.105
           generic-trap: enterpriseSpecific (6)
           specific-trap: 2
           time-stamp: 27227
           variable-bindings: 0 items
      00 00 03 04 00 06 00 00
                                00 00 00 00 64 00 08 00
                                                                     · · · · d · · ·
0010
      45 00 00 47 94 a3 40 00
                                40 11 a8 00 7f 00 00 01
                                                           E · · G · · @ · · @ · · ·
                                                                     ~3·F0)··
      7f 00 00 01 96 b7 00 a2
                                00 33 fe 46 30 29 02 01
0030
      00 04 06 70 75 62 6c 69
                                63 a4 1c 06
                                                              publi c
0040
0050
         43 02 6a 5b 30 00
```

Rys. 9: Podgląd pakietu w Wiresharku

Jak widzimy zamknięcie usługi powoduje wygenerowanie wiadomości trap typu "enterpriseSpecific (6)". Jest to specyficzny typ wiadomości, stworzony na potrzeby naszej sieci przez jej projektanta. Dokładna struktura wiadomości wygląda następująco:

- enterprise: 1.3.6.1.4.1.8072.4 -> Identyfikator obiektu, które utworzyło tą wiadomość
- \bullet agent-addr: 192.168.1.105 -> adres IP agenta, który wysłał ten trap
- generic-trap: enterpriseSpecific (6) -> rodzaj wiadomości
- specific-trap: identyfikator konkretnej kategorii, sugerującej rodzaj zdarzenia, które wystąpiło
- time-stamp: 27227 -> znacznik w czasie, liczony od początku działania usługi, można go interpretować jako czas działania.
- variable-bindings: 0 items-> zmienne powiązane z trapem, w naszym przypadku brak takich zmiennych.

A V					
Source:	192.168.1.105	Timestamp:	0 millisecond	SNMP Version:	1
Enterprise:	.1.3.6.1.4.1.8072.3.2.1	0		Community:	public
Specific:	0	Generic:	coldStart		
Description:	coldStart				

Rys. 10: Podgląd wiadomości trap

```
user bacagram Prococot, Sic Porc. Sollo, DSC Porc. 102
  Simple Network Management Protocol
     version: version-1 (0)
     community: public
     data: trap (4)

▼ trap
           enterprise: 1.3.6.1.4.1.8072.3.2.10 (iso.3.6.1.4.1.8072.3.2.10)
           agent-addr: 192.168.1.105
           generic-trap: coldStart (0)
           specific-trap: 0
           time-stamp: 0
           variable-bindings: 0 items
      00 00 03 04 00 06 00 00
                                  00 00 00 00 64 00 08 00
                                                                          · · · · d · · ·
      45 00 00 48 99 45 40 00
                                  40 11 a3 5d 7f 00 00 01
                                                               E · · H · E@ · @ · · ]
                                                                         . 4 · G<sub>0</sub>*
      7f 00 00 01 e3 06 00 a2
                                  00 34 fe 47 30
         04 06 70 75 62 6c 69
01 bf 08 03 02 0a <u>40</u>
0030
                                     a4 1d 06
0040
0050
```

Rys. 11: Podgląd pakietu w Wiresharku

Natomiast uruchomienie usługi powoduje rozesłanie wiadomości trap typu "coldStart (0)", który jest używany do poinformowania o rozpoczęciu działania usługi SNMP. Struktura wiadomości jest tożsama z pierwszym trapem, a jedne różnice zachodzą w

- generic-trap: coldStart (0)
- specific-trap: 0
- time-stamp: 0 -> 0 ponieważ dopiero uruchamiamy usługę

11. 6.4 R1

Result Table	Trap Re	eceiver	localhost - tcp	pConnTable	×	
Rotate	Refresh	🔓 Export	Poll Si	NMP SET	Create Row	Delete Row
tcpConnSt	tcpConnL	tcpConnL	tcpConnR	tcpConnR	Index Value	
listen	0.0.0.0	22	0.0.0.0	0	[1] 0.0.0.0.22.0	.0.0.0.0
listen	127.0.0.1	631	0.0.0.0	0	[2] 127.0.0.1.63	31.0.0.0.0
listen	127.0.0.53	53	0.0.0.0	0	[3] 127.0.0.53.5	53.0.0.0.0.0
established	192.168.1.1	33012	142.250.18	443	[4] 192.168.1.1	.05.33012.142.250.186.197.443
established	192.168.1.1	37694	172.217.16	443	[5] 192.168.1.1	.05.37694.172.217.16.35.443
established	192.168.1.1	38554	34.107.243	443	[6] 192.168.1.1	05.38554.34.107.243.93.443

Rys. 12: Tabela połączeń TCP

12. 6.4 R2

Tablica ta ukazuje utworzone połączenia TCP w tej sieci wraz z ich parametrami. Jej atrybuty można opisać opisać jako:

- tcpConnState -> status połączenia
- tcpConnLocalAddress -> adress IP hosta
- tcpConnLocalPort -> port na, którym działa połączenia u hosta
- \bullet tcpConnRemoteAddress -> adress IP serwera
- tcpConRemPort -> port na serwerze obsługujący połączenie

13. 6.4 R3

By dowiedzieć się w jaki sposób przeglądarka odczytała dana wyświetlone w tabli skorzystaliśmy z wiresharka, by przechwycić ruch sieciowy.

No	o. Time	Source	Destination	Protocol	Length Info
г	38 18.732850442	127.0.0.1	127.0.0.1	SNMP	148 get-next-request 1.3.6.1.2.1.6.13.1.1 1.3.6.:
	39 18.733359082	127.0.0.1	127.0.0.1	SNMP	212 get-response 1.3.6.1.2.1.6.13.1.1.0.0.0.0.22
	40 18.735027079	127.0.0.1	127.0.0.1	SNMP	200 get-next-request 1.3.6.1.2.1.6.13.1.1.0.0.0.0
	41 18.735301173	127.0.0.1	127.0.0.1	SNMP	218 get-response 1.3.6.1.2.1.6.13.1.1.127.0.0.1.6
	42 18.735931440	127.0.0.1	127.0.0.1	SNMP	206 get-next-request 1.3.6.1.2.1.6.13.1.1.127.0.0
	43 18.736236975	127.0.0.1	127.0.0.1	SNMP	212 get-response 1.3.6.1.2.1.6.13.1.1.127.0.0.53
	44 18.736855564	127.0.0.1	127.0.0.1	SNMP	200 get-next-request 1.3.6.1.2.1.6.13.1.1.127.0.0
	45 18.737063205	127.0.0.1	127.0.0.1	SNMP	250 get-response 1.3.6.1.2.1.6.13.1.1.192.168.1.:
	46 18.737218953	127.0.0.1	127.0.0.1	SNMP	236 get-next-request 1.3.6.1.2.1.6.13.1.1.192.16
	47 18.737353456	127.0.0.1	127.0.0.1	SNMP	250 get-response 1.3.6.1.2.1.6.13.1.1.192.168.1.:
	48 18.737503064	127.0.0.1	127.0.0.1	SNMP	236 get-next-request 1.3.6.1.2.1.6.13.1.1.192.16
	49 18.737613262	127.0.0.1	127.0.0.1	SNMP	245 get-response 1.3.6.1.2.1.6.13.1.1.192.168.1.:
	50 18.737765520	127.0.0.1	127.0.0.1	SNMP	231 get-next-request 1.3.6.1.2.1.6.13.1.1.192.16
	51 18.737872084	127.0.0.1	127.0.0.1	SNMP	260 get-response 1.3.6.1.2.1.6.13.1.1.192.168.1.:
	52 18.738065211	127.0.0.1	127.0.0.1	SNMP	246 get-next-request 1.3.6.1.2.1.6.13.1.1.192.16
	53 18.738183876	127.0.0.1	127.0.0.1	SNMP	250 get-response 1.3.6.1.2.1.6.13.1.1.192.168.1.:
	54 18.738346364	127.0.0.1	127.0.0.1	SNMP	236 get-next-request 1.3.6.1.2.1.6.13.1.1.192.16
	55 18.738456955	127.0.0.1	127.0.0.1	SNMP	260 get-response 1.3.6.1.2.1.6.13.1.1.192.168.1.:
	56 18.738717677	127.0.0.1	127.0.0.1	SNMP	246 get-next-request 1.3.6.1.2.1.6.13.1.1.192.16
L	57 18.738930782	127.0.0.1	127.0.0.1	SNMP	200 get-response 1.3.6.1.2.1.6.13.1.2.0.0.0.0.22

Rys. 13: Pozyskiwanie informacji o obiekcie tcpConnTable

Jak widać przeglądarka wysyłała serie zapytań typu GET-NEXT do kolejnych obiektów, które zwracają wartości zapisywane do rekordów tablicy. Co możemy zobaczyć w treści odpowiedzi na wysłane żądanie.

No.	Time	Source	▼ Destination	Protocol	Length	Info
_	1 0.000000000	127.0.0.1	127.0.0.1	SNMP	148	get-next-request
	2 0.000406024	127.0.0.1	127.0.0.1	SNMP	212	get-response 1.3
	3 0.001502345	127.0.0.1	127.0.0.1	SNMP	200	get-next-request
	4 0.001764079	127.0.0.1	127.0.0.1	SNMP	218	get-response 1.3
	5 0.002014752	127.0.0.1	127.0.0.1	SNMP	206	get-next-request
	6 0.002131740	127.0.0.1	127.0.0.1	SNMP	212	get-response 1.3
	7 0.002251631	127.0.0.1	127.0.0.1	SNMP	200	get-next-request
	8 0.002326477	127.0.0.1	127.0.0.1	SNMP	250	get-response 1.3
	9 0.002430481	127.0.0.1	127.0.0.1	SNMP	236	get-next-request
1	0 0.002562116	127.0.0.1	127.0.0.1	SNMP	245	get-response 1.3
1	1 0.002922777	127.0.0.1	127.0.0.1	SNMP	231	get-next-request
L 1	2 0.003074220	127.0.0.1	127.0.0.1	SNMP	200	get-response 1.3

Rys. 14: Proces pobierania danych do tabeli

tcpConnState	tcpConnLocal	tcpConnLocalPort	tcpConnRem	tcpConnR	Index Value			
listen	0.0.0.0	22	0.0.0.0	0	[1] 0.0.0.0.22.0.0.0.0			
listen	127.0.0.1	631	0.0.0.0	0	[2] 127.0.0.1.631.0.0.0.0.0			
listen	127.0.0.53	53	0.0.0.0	0	[3] 127.0.0.53.53.0.0.0.0.0			
established	192.168.1.105	34496	172.217.16.35	443	[4] 192.168.1.105.34496.172.21			
established	192.168.1.105	43216	34.107.243.93	443	[5] 192.168.1.105.43216.34.107			
version: v2c (1) community: public ✓ data: get-response (2) ✓ get-response request-id: 2029169804 error-status: noError (0) error-index: 0 ✓ variable-bindings: 5 items ✓ 1.3.6.1.2.1.6.13.1.1.192.168.1.105.34496.172.217.16.35.443: 5 Object Name: 1.3.6.1.2.1.6.13.1.1.192.168.1.105.34496.172.217.16.35.443 (iso.3.6.1.2 Value (Integer32) 5 ✓ 1.3.6.1.2.1.6.13.1.2.192.168.1.105.34496.172.217.16.35.443: 192.168.1.105 Object Name: 1.3.6.1.2.1.6.13.1.2.192.168.1.105.34496.172.217.16.35.443 (iso.3.6.1.2 Value (IpAddress): 192.168.1.105.34496.172.217.16.35.443: 192.168.1.105 ✓ 1.3.6.1.2.1.6.13.1.3.192.168.1.105.34496.172.217.16.35.443 (iso.3.6.1.2 Value (Integer32): 34496 Object Name: 1.3.6.1.2.1.6.13.1.3.192.168.1.105.34496.172.217.16.35 Object Name: 1.3.6.1.2.1.6.13.1.4.192.168.1.105.34496.172.217.16.35 ✓ 1.3.6.1.2.1.6.13.1.4.192.168.1.105.34496.172.217.16.35.443 (iso.3.6.1.2 Value (Integer32): 172.217.16.35 Object Name: 1.3.6.1.2.1.6.13.1.4.192.168.1.105.34496.172.217.16.35.443 (iso.3.6.1.2 Value (IpAddress): 172.217.16.35 ✓ 1.3.6.1.2.1.6.13.1.4.192.168.1.105.34496.172.217.16.35.443 (iso.3.6.1.2 Value (IpAddress): 172.217.16.35.4496.172.217.16.35.443 (iso.3.6.1.2 Value (Integer32): 143.105.34496.172.217.16.35.443 (iso.3.6.1.2 Value (IpAddress): 172.217.16.35.4496.172.217.16.35.443 (iso.3.6.1.2 Value (IpAddress): 172.217.16.35.4496.1								

Rys. 15: Porównanie pakietu przechwycone przez Wireshark z tablicą w przeglądarce

14. 6.4 R4

Najprostszym sposobem na otwarcie wielu połączeń TCP, jest otwarcie dowolnej strony WWW. Aby została ona wyświetlona, host musi utworzyć wiele sesji połączeń TCP, aby pobrać różne pliki, wykonać zapytania, uwierzytelnić się itd. Im więcej danych będziemy chcieli wyświetlić tym więcej zapytań będzie potrzebnych, więc dla lepszego efektu otworzyliśmy kilka stron internetowych tuż po sobie. Co więcej, gdy strony się załadują a różne niewidzialne dla użytkownika przekierowania i połączenia dodatkowe zakończą, ilość wierszy w tabeli obniża się, eliminując zakończone połączenia.

Rys. 16: Zwiększona liczba sesji TCP po rozpoczęciu przeglądania Internetu

15. 6.5 R1

Tłumacząc opis na Polski można wywnioskować, że ifNumber określa liczbę dostępnych interfejsów w systemie niezależnie od ich obecnego stanu.

Name	ifNumber
OID	.1.3.6.1.2.1.2.1
MIB	RFC1213-MIB
Syntax	INTEGER
Access	read-only
Status	mandatory
DefVal	
Indexes	
Descr	The number of network interfaces (regardless of their current state) present on this system.

Rys. 17: Definicja obiektu ifNumber

16. 6.5 R2

_								
ifIndex	ifDescr	ifType	ifMtu	ifSpeed	ifPhysAddress			
1	lo	softwareLoo	65536	10000000				
2	Intel Corpor	ethernetCs	1500	1000000000	08-00-27-55-64-B5			

Rys. 18: Tablica interfejsów

Jej kolumny można opisać w następujący sposób

- ifDescr krótki tekstowy opis interfejsu, powinien zawierać nazwę producenta, nazwę produktu oraz jego wersje. Jak widać u nas jeden z interfejsów jest interfejsem wirtualnym (lo), a drugi wyprodukowany przez firmę Intel.
- ifType określa typ protokółu pod warstwa sieciowa. U nas jest to odpowiednio Loopback oraz CSMA/CD.
- ifMtu rozmiar największego pakietu, który może zostać wysłany/odebrany przez ten interface.
- ifSpeed szacowana dostępna przepływność interfejsu, wartość podawana w bitach na sekunde.
- ifPhysAddress fizyczny adress interfejsu, dla localhosta nie istnieje ponieważ nie jest to interfejs fizyczny

17. 6.5 R3

- ifAdminStatus flaga wskazująca jaki "powinien być" (czego oczekuje zarządca sieci) stan interfejsu. Przyjmuje trzy stany
 - 1 up, oznacza, że interfejs jest aktywny
 - 2 down, oznacza, że interfejs jest wyłączony
 - 3 testing, oznacza, że interfejs jest testowany i żadne "operacyjne" pakiety nie mogą przejść
- ifOperStatus flaga wskazująca jaki jest rzeczywisty stan interfejsu. Przyjmuje siedem stanów, z czego pierwsze 3 są tożsame z omawianymi wcześniej:
 - 1 up
 - 2 down
 - 3 testing
 - 4 unknown, stan niezany
 - 5 dormant, uruchomiony ale posiadający ograniczeni na to jaki ruch może przetważać
 - 6 notPresent, interfejs nie jest obecny fizycznie
 - 7 lowerLayerDown, brak niższej warstwy, może to oznaczać awarie medium transportowego.
- iflnOctects liczba oktetów (bajtów) otrzymanych przez ten interface.

18. 6.5 R4

Aby spowodować znaczne zmiany na wykresie, włączyliśmy test prędkości internetu, który naturalnie pobiera dane z jak największą prędkością. Tym samym sprawiliśmy, że wartość funkcji na wykresie w pewnym punkcie czasu gwałtownie rośnie.

Rys. 19: Ładny przebieg wzrostu sumy pobranych oktetów

19. Podsumowanie

Laboratorium pozwoliło nam zrozumieć istotę protokołu SNMP i jego roli w zarządzaniu sieciami. Ustaliliśmy wartości dla różnych obiektów, jak sysContact czy sysLocation, umożliwiając menadżerowi ich odczyt. Pobierając informacje za pomocą operacji GET, zdobyliśmy wiedzę o opisie systemu i czasie jego działania. Badając obiekty SNMP, w tym tablice połączeń TCP czy informacje o interfejsach, zgłębiliśmy praktyczne zastosowania monitorowania i zarządzania siecią. Analiza zmian w ruchu sieciowym pozwoliła nam lepiej zrozumieć wpływ aktywności na przesyłane dane, co przybliżyło nas do praktycznego wykorzystania SNMP w kontrolowaniu infrastruktury sieciowej.