

Cassidy Tan, Joseph Dantes, Katrina Compendio, Zmavli Caimle

Outline

- Summary of Work Done
- Overview
- Methodology
- Replicating We found an neuron
- Extending the Work to Subject-Verb Agreement (Has/Have)
- Key Learnings
- Future Work

Summary of Work Done

1. Replicating We found an neuron

- We used GPT2-Large and visualized the logits difference between "an" and "a" to identify that
 L26 (attn) and L31 (MLP) were most relevant
- We visualized the attention patterns of L26 and found that it looked at the appropriate object (noun phrase) when predicting whether to use "an or "a"
- We swept through the logit differences of 5120 neurons to identify the "an" neuron, which was supported by performing inversion ablation to the neuron activation and weights

2. Extending to Subject-Verb Agreement (Has/Have)

- We applied the same methodology to identify any layers that may be useful for subject-verb agreement (specifically for "has" and "have"), found several MLP layers with high logits differences, with layer 0 showing significant logit difference for the patched head value
- We looked at the attention patterns and found that the model looked at the existence of a previous "has", as opposed to the noun phrase
- We identified and performed ablation experiments to a relevant neuron in layer 0, and found that ablation on either the activation or weights led to a change in the predictions

Overview

- How does a transformer know when to use "an" or "a"?
- Can we replicate previous work on this? (i.e., by Miller & Neo)
- Can we apply the methodology to other use cases such as subject-verb agreement?

Methodology

- Identify relevant layers from the logits differences of opposing tokens (e.g., "an" vs "a")
- 2. Visualize top attention heads (based on logits attribution) and explore patterns from prompts
- Sweep through all neurons in the relevant layer to find the one with highest logits difference
- 4. Perform ablation experiments on the activation and weights of the selected neuron (e.g., inversion and zero ablation)

Replicating We found an neuron - Logit Difference Per Layer

Replicating We found an neuron - Logit Difference Per Head

Replicating *We found an neuron* - Top 10 Positive Logit Attribution Heads

<|endoftext|>I climbed up the pear tree and picked a pear. I climbed up the apple tree and picked

Replicating *We found an neuron* - Logit Difference From Patched Neurons in MLP Layer 31

Replicating *We found an neuron* - Top Predictions After Applying Inversion Ablation to the Activation and Weights (MLP Layer 31 Neuron 892)

Prompts	Original Model	Model w/ Modified	Model w/ Modified
(Expected Prediction)		Activation	Weights
<pre>< endoftext > I climbed up the pear tree and picked a pear. I climbed up the apple tree and picked (Expected: " an")</pre>	" an" - 64.92% " a" - 24.22% " apples" - 2.78% " two" - 2.43% " another" - 2.07%	" a" - 83.45% " apples" - 3.81% " an" - 2.85% " two" - 2.61% " another" - 2.59%	" a" - 58.31% " an" - 26.17% " apples" - 4.63% " two" - 2.97% " another" - 2.96%
<pre>< endoftext > I climbed up the pear tree and picked a pear. I climbed up the lemon tree and picked (Expected: " a")</pre>	" a" - 85.10%	" a" - 86.36%	" a" - 85.99%
	" an" - 3.18%	" two" - 2.44%	" an" - 2.58%
	" two" - 2.52%	" an" - 2.28%	" two" - 2.46%
	" some" - 2.05%	" some" - 1.97%	" some" - 2.00%
	" another" - 1.68%	" another" - 1.61%	" another" - 1.63%

Replicating We found an neuron - Experiment Findings

- The relevant layers, attention or MLP heads may be inferred by observing the logits differences for each
- The top attention head points to the noun phrase used to determine "an" or "a"
- Ablation experiments support the significance of the identified "an" neuron for prediction

Extending to Subject-Verb Agreement

- Can the methodology be applied to other use cases?
- How does a model determine the verb to use based on plurality?
- What can we learn from a specific scope, then build up from there?
 - Consider only "has"/"have", not other verbs
 - Assume that appending "s" creates the plural form of the subject.
 - Prompts are loosely of the form: "Noun_1 has a something.
 [Singular/Plural]_Noun_2 ... [has/have]"

Extending to Subject-Verb Agreement - Logit Difference Per Layer

Extending to Subject-Verb Agreement - Logit Difference Per Head

Extending to Subject-Verb Agreement - Top 10 Positive Logit Attribution Heads

<|endoftext|>| see a student who has a book. I see a teacher who

Extending to Subject-Verb Agreement - Logit Difference From Patched Head Value

Extending to Subject-Verb Agreement - Logit Difference From Patched Neurons in MLP Layer 0

Extending to Subject-Verb Agreement - Top Predictions After Applying Inversion Ablation to the Activation and Weights of MLP Layer 0 Neuron 1302

Prompts	Original Model	Model w/ Modified	Model w/ Modified
(Expected Prediction)		Activation	Weights
<pre>< endoftext > I see a student who has a book. I see a teacher who (Expected: " has")</pre>	'has' - 37.82%	' has' - 52.52%	'has' - 51.17%
	'is' - 18.30%	' is' - 8.27%	'plays' - 9.19%
	'wants' - 3.75%	' plays' - 7.64%	'is' - 9.10%
	"s' - 2.07%	' wears' - 2.59%	'wears' - 2.12%
	'needs' - 1.55%	' sings' - 1.30%	"s' - 1.63%
<pre>< endoftext > I see a student who has a book. I see the teachers who (Expected: " have")</pre>	'are' - 16.21%	' have' - 33.45%	' has' - 39.29%
	'have' - 14.65%	' are' - 13.11%	' plays' - 11.91%
	'want' - 3.12%	' play' - 11.32%	' is' - 8.63%
	'read' - 2.48%	' wear' - 2.34%	"s' - 2.24%
	'teach' - 1.84%	' dance' - 1.99%	' sings' - 1.80%

Extending to Subject-Verb Agreement - Logit Difference From Patched Head Value Between "I" and "He"

Extending to Subject-Verb Agreement - Experiment Findings

- The same methodology from We Found An Neuron was applicable for a different use case
- The model focused more on the existence of a "has" (as opposed to the noun phrase), which may generalize better for irregular plural words
- Logits differences were higher for MLP than attention blocks
- Ablation on either the activation or weights may change the top prediction, which suggests some significance of the neuron, while possibly recovering performance from other layers

Key Learnings

- Attention visualizations are helpful in exploratory analysis and observing patterns
- Ablation experiments support the significance of an identified "an" or "have" neuron for prediction
- MLPs are more responsible in distinguishing plurality vs attention, at least for the explored scope of prompts
- Using the GPU leads to approximately a 10x speedup

Future Work

- Investigate the "an neuron" for corner cases such as "an hour" or "a usurper" (i.e., based on sound, not just spelling)
- Consider exploring relevant attention heads and neurons for other use cases
 - other verbs
 - o I/you, and irregular plural forms
 - if-then
 - gender/pronoun
 - spelling

