Inferência Estatística

Estimação de parâmetros estatísticos

A estimação é o processo que consiste em utilizar dados amostrais para estimar os valores de parâmetros populacionais desconhecidos. Essencialmente, qualquer característica de uma população pode ser estimada a partir de uma amostra aleatória. Entre os estimadores mais comuns estão a média amostral (\bar{x}), o desvio padrão amostral (s) e a proporção amostral (\hat{p}) como estimadores da média populacional (μ), do desvio padrão populacional (σ) e da proporção populacional (σ), respectivamente.

Estimativa pontual

As estatísticas amostrais são utilizadas como estimadores de parâmetros populacionais. A **estimativa** é **pontual** quando a estatística amostral origina uma única estimativa do parâmetro, ou seja, um único valor para o parâmetro populacional que se quer estimar, como, por exemplo:

Parâmetro populacional	Estimador
μ	$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$
σ	$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$
р	$\hat{p} = \frac{x}{n} = \frac{n^o de itens na amostra que apresentama caracteríxica de interesse}{tamanhoda amostra}$

Estimativa intervalar ou Intervalo de confiança

A *estimativa é intervalar* quando, a partir da estatística amostral, construímos um intervalo de valores possíveis no qual se admite, sob certa probabilidade, esteja contido o parâmetro populacional.

Um intervalo de confiança está associado a um grau de confiança que é uma medida da nossa certeza de que o intervalo contém o parâmetro populacional.

O *grau de confiança* é a probabilidade 1 - α de o intervalo de confiança conter o verdadeiro valor do parâmetro populacional (o grau de confiança é também chamado de nível de confiança ou de coeficiente de confiança). A definição de grau de confiança utiliza α para descrever uma probabilidade que corresponde a uma área. Observe a figura abaixo:

São escolhas comuns para o nível de confiança: 90% (com α =0,10), 95% (com α =0,05) e 99% (com α =0,01). A mais comum é a opção 95%, porque proporciona um bom equilíbrio entre a precisão (refletida na amplitude do intervalo de confiança) e a confiabilidade (expressa pelo grau de confiança).

Quanto maior o nível de confiança, maior será a amplitude do intervalo. Dado um nível de confiança, quanto maior for o intervalo, menos informação teremos sobre o verdadeiro valor do parâmetro populacional.

A interpretação de um intervalo de confiança é que se um número infinito de amostras aleatórias for coletado e um intervalo com $100(1-\alpha)\%$ de confiança para o parâmetro for calculado a partir de cada amostra, então $100(1-\alpha)\%$ desses intervalos conterão o valor verdadeiro do parâmetro.

Na prática, obtemos somente uma amostra aleatória e calculamos o intervalo de confiança. Uma vez que este intervalo conterá ou não o valor verdadeiro do parâmetro, não é razoável fixar um nível de probabilidade a esse evento específico. A afirmação apropriada é: o intervalo observado contém o valor verdadeiro do parâmetro, com $100(1-\alpha)$ % de confiança.

Intervalo de confiança para a médiaquando σ é conhecido

Observe o exemplo a seguir:

Exemplo 1

(Barbetta, 2004) Em uma indústria de cerveja, a quantidade de cerveja inserida em latas tem-se comportado como uma variável aleatória distribuída normalmente com média 350 ml e desvio padrão 3 ml. Após alguns problemas na linha de produção, suspeita-se que houve alteração na média. Uma amostra de 120 latas acusou média 346 ml. Encontre a estimativa pontual e construa um intervalo de confiança para o novo valor da quantidade média de cerveja inserida em latas, com nível de confiança de 95%, supondo que não tenha ocorrido alteração no desvio padrão do processo.

A média amostral (\bar{x}) é a melhor estimativa pontual da média populacional (μ), com base nos dados amostrais vemos que a melhor estimativa para a quantidade média de cerveja inserida nas latas, após os problemas na linha de produção, é 346ml.

Para construirmos o intervalo de confiança desejado é necessário analisar o seguinte: Pelo Teorema Central do Limite, sabemos que as médias amostrais tendem a distribuir-se normalmente, além disso, foi-nos fornecido no enunciado do problema o valor

do desvio padrão da população (σ = 3 ml). Dessa maneira, para encontrarmos o intervalo de confiança para a média vamos utilizar a distribuição normal:

Parâmetro populacional	Suposição	Intervalo de confiança			
μ	Desvio padrão populacional (σ) é conhecido.	$\left[\begin{array}{c} \overline{x} \mp z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} \end{array}\right]$			

O valor $z_{\frac{\alpha}{2}}$ é chamado *valor crítico* porque está na fronteira que separa as

médias amostrais passíveis de ocorrerem, das médias amostrais que provavelmente não ocorrerão. Ele é obtido pela tabela da distribuição normal padrão de acordo com a área desejada.

Para os níveis de confiança mais utilizados, os valores críticos $(z_{\frac{\alpha}{2}})$ obtidos na tabela da distribuição normal padrão são:

Grau de		Valor crítico		
confiança	α	$z_{rac{lpha}{2}}$		
90%	0,10	1,64		
95%	0,05	1,96		
99%	0.01	2,58		

Para encontrar os valores críticos na tabela da distribuição normal padrão é necessário dividir o nível de confiança por 2 , o resultado deve ser localizado no meio da tabela, cruzando-se os valores da linha e da coluna da tabela teremos os valores críticos. Veja um exemplo: Para um nível de confiança igual a 90%, devemos dividi-lo por 2, ou seja, teríamos 45% ou 0,45. Vamos buscar no meio da tabela da distribuição normal padrão o valor mais próximo de 0,45:

					\prod					
Z	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
									•	
									•	
≥1,6	0,4452	0,4463	0,4474	0,4484	<mark>0,4495</mark>	<mark>0,4505</mark>	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633

Ambos os valores 0,4495 e 0,4505 estão igualmente próximos a 0,45, dessa forma, optamos por utilizar o valor crítico 1,64 correspondente a probabilidade 0,4495.

Quando utilizamos dados amostrais para estimar uma média populacional μ , a **margem de erro**, denotada por **E**, é a diferença máxima provável (com probabilidade 1 - α) entre a média amostral observada \bar{x} e a verdadeira média populacional μ . A margem de erro é chamada também de erro máximo da estimativa e pode ser obtida multiplicando-

se o valor crítico $(z_{\frac{\alpha}{2}})$ pelo desvio-padrão das médias amostrais $(\frac{\sigma}{\sqrt{n}})$, conforme a fórmula a seguir:

$$E = z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

Voltando ao exemplo, temos:

$$\bar{x}$$
 =346 n = 120

 $\sigma = 3$

Nível de confiança = 95%

 $\alpha = 0.05$

O intervalo de confiança desejado é:

Para encontrar o valor crítico $z_{\frac{\alpha}{2}}$ é necessário dividir o nível de confiança por 2,

ou seja, 0,95/2=0,475. A partir daí, é necessário buscar na tabela da distribuição normal padrão, o valor mais próximo de 0,475 e então verificar o valor de z correspondente, que, nesse caso, é 1,96.

A margem de erro E =
$$\left(z_{\frac{\alpha}{2}}, \frac{\sigma}{\sqrt{n}}\right) = 1,96, \frac{3}{\sqrt{120}} = 0,5368 \text{ ml}$$

O intervalo de confiança será I.C. =[$\bar{x} - E$; $\bar{x} + E$] = [346-0,5368 ; 346+0,5368] = [345,46 ml ; 346,54 ml].

Dessa maneira, pode-se afirmar com 95% de confiança que a quantidade média de cerveja inserida nas latas varia de 345,46 ml a 346,54 ml.

Exercício 1

(Adaptado de Larson & Farber, 2004) O diretor do comitê de admissão de uma universidade deseja estimar a média de idade de todos os estudantes aprovados no momento. Sabe-se que, de levantamentos anteriores, o desvio padrão da população é de 1,5 ano. Em uma amostra aleatória de 20 estudantes, a idade média encontrada foi de 22,9 anos.

- a) Com base nessa amostra, qual é a estimativa pontual da idade média dos estudantes aprovados?
- b) Construa um intervalo de 90% de confiança para a idade média da população.

Respostas: a) 22,9 anos b)
$$z_{\frac{\alpha}{2}}$$
 =1,64, E=0,5501, IC=[22,3499 ; 23,4501]

Exercício 2

Um investidor planeja abrir uma agência de viagens e deseja estimar o faturamento médio mensal em dólares. Suponha que os faturamentos mensais de agências de viagens, do porte que o investidor pretende abrir, se distribuam normalmente com um desvio padrão de US\$130,00. Durante nove meses, o investidor anotou o faturamento líquido mensal de uma agência de viagem do mesmo porte. Os dados encontram-se abaixo:

3810	3690	3350	3400	3320
3250	3430	3600	3670	

Construa e interprete um intervalo de 92% de confiança para o faturamento médio mensal de uma agência de viagem desse porte.

Respostas:
$$\overline{X}$$
 = 3502,22 ; $z_{\frac{\alpha}{2}}$ =1,75 ; I.C.=[3426,38 ; 3578,05]

Determinação do tamanho da amostra

Como sabemos quantos elementos da população devem ser escolhidos?

Suponha, por exemplo, que queiramos estimar a renda média de pessoas que concluíram um curso superior, no primeiro ano após a formatura. Quantas rendas devemos incluir em nossa amostra?

A determinação do tamanho de uma amostra é um problema de grande importância, porque amostras desnecessariamente grandes acarretam desperdício de tempo e de dinheiro; e amostras demasiadamente pequenas podem levar a resultados não confiáveis. Em muitos casos é possível determinar o tamanho mínimo de uma amostra para estimar determinado parâmetro, como a média populacional μ.

Partindo da expressão da margem de erro (*E*) e resolvendo em relação ao tamanho da amostra *n*, obtemos:

$$E = z \cdot \frac{\sigma}{\sqrt{n}}$$

$$\sqrt{n} = z \cdot \frac{\sigma}{E}$$

$$n = \left(\frac{z_{\alpha} \cdot \sigma}{\frac{z}{E}}\right)^{2}$$

O tamanho da amostra deve ser um número inteiro, mas os cálculos para o tamanho amostral *n* quase nunca resultam em um número inteiro. Quando isto ocorrer, devemos

sempre aumentar o valor de *n* **para o próximo inteiro maior**. Essa regra de arredondamento baseia-se no princípio de que, quando o arredondamento se faz necessário, o tamanho da amostra deve ser arredondado para cima, a fim de ser ao menos adequadamente grande, em oposição à ligeiramente menor.

A fórmula para o cálculo do tamanho amostral utiliza o valor de σ (desvio padrão populacional), e se σ não for conhecido? Podemos então utilizar um valor preliminar obtido por processos como os que se seguem:

- 1. Utilizar a regra prática para estimar o desvio padrão da seguinte maneira: $\sigma = \frac{Amplitude}{4}.$
- 2. Realizar um estudo piloto, iniciando o processo de amostragem. Com base na coleção de pelo menos 31 valores amostrais selecionados aleatoriamente, calcular o desvio padrão amostral *s* e utiliza-lo no lugar de σ.

Exemplo 2

(Triola, 1998) Um economista deseja estimar a renda média de bacharéis em Economia que tiveram a feliz idéia de fazer um curso de Estatística. Quantos valores de renda devem ser tomados, se o economista deseja ter 95% de confiança em que a média amostral esteja a menos de R\$500,00 da verdadeira média populacional? Suponha que saibamos, por um estudo prévio, que, para tais rendas, σ = R\$6250,00.

Queremos determinar o tamanho n da amostra, dado que $\alpha = 0.05$ (95% de confiança). Desejamos que a média amostral esteja a menos de R\$500,00 da média populacional, ouse já, queremos que a margem de erro seja E=500. Supondo σ =6250, aplicamos a fórmula do tamanho amostral, obtendo:

$$n = \left(\frac{z_{\alpha}.\sigma}{\frac{1}{2}}\right)^2 = \left(\frac{1,96.6250}{500}\right)^2 = 600,25 \approx 601 \text{ (arredondando para cima)}$$

Devemos, portanto, obter uma amostra de pelo menos 601 rendas, selecionadas aleatoriamente, de bacharéis em Economia que tenham feito um curso de estatística.

Agora é a sua vez!

Refaça esse exercício considerando agora:

- a) Margem de erro igual a R\$1000,00.
- b) Margem de erro igual a R\$250,00 e nível de confiança de 85%.

Respostas:

- a) n=150,0625, ou seja, 151
- b) $z_{\frac{\alpha}{2}} = 1,44, n=1296$

A expressão:

$$n = \left(\frac{z_{\alpha} \cdot \sigma}{\frac{z}{E}}\right)^2$$

admite que a população é infinita porém, se a população é finita é necessário modificar a margem de erro (E), com a inclusão de um fator de correção para população finita, como segue:

$$E = z \cdot \frac{\sigma}{\sqrt{n}} \cdot \sqrt{\frac{N-n}{N-1}}$$

onde N é o tamanho da população.

A expressão acima pode ser resolvida em relação à *n*, dando:

$$n = \frac{N \cdot \sigma^2 \cdot (z)^2}{(N-1) \cdot E^2 + \sigma^2 \cdot (z)^2}$$

Exemplo 3

Um pesquisador deseja estimar a renda média para o primeiro ano de trabalho de bacharéis em Direito formados por uma determinada instituição. Sabe-se que no último ano 420 bacharéis formaram-se nessa faculdade. Quantos valores de renda devem ser tomados, se o pesquisador deseja ter 90% de confiança em que a média amostral esteja a menos de R\$600 da verdadeira média populacional? Suponha que saibamos, por um estudo prévio, que, para tais rendas, σ = R\$7000,00.

Queremos determinar o tamanho n da amostra, dado que α = 0,10 (90% de confiança). Desejamos que a média amostral esteja a menos de R\$600,00 da média populacional, de forma que E=600. Sabe-se que o tamanho da população é de 420 pessoas (N = 420). Supondo σ =7000, aplicamos a fórmula do tamanho amostral com correção para o tamanho populacional, temos:

$$n = \frac{N \cdot \sigma^2 \cdot (z)^2}{(N-1) \cdot E^2 + \sigma^2 \cdot (z)^2} = \frac{420 \cdot (7000)^2 \cdot (1,64)^2}{(420-1) \cdot (600)^2 + (7000)^2 \cdot (1,64)^2} = 195,8457 \approx 196$$

Dessa maneira devemos obter uma amostra de pelo menos 196 rendas de primeiro ano de bacharéis, selecionadas aleatoriamente.

Agora é a sua vez!

Refaça esse exercício considerando:

- a) Tamanho populacional desconhecido (Mantendo-se as outras características do enunciado).
- b) Margem de erro igual a R\$1200,00 (Mantendo-se as outras características do enunciado).
- b) Nível de confiança de 80% (Mantendo-se as outras características do enunciado).

Respostas:

- a) n=367 rendas
- b) n=76 rendas
- c) $z_{\frac{\alpha}{2}}$ =1,28 , n=145,8897, ou seja, 146 rendas

Exercício 3

Uma pesquisa é planejada para determinar as despesas médicas anuais das famílias dos empregados de uma empresa. A gerência da empresa deseja ter 95% de confiança de que a média da amostra está no máximo com uma margem de erro de \$50 da média real das despesas médicas familiares. Um estudo-piloto indica que o desvio padrão pode ser considerado como sendo igual a \$400.

a) Qual o tamanho de amostra necessário?

- b) Se a gerência deseja estar certa em uma margem de erro de \$25, que tamanho de amostra será necessário?
- c) Sabe-se que a empresa tem, atualmente, 386 empregados. Qual deve ser o tamanho amostral necessário para termos um nível de 92% de confiança? (Mantendo-se inalteradas as outras informações do enunciado)

Respostas:

- a) n=245,8624, ou seja, 246 empregados.
- b) n=983,4496, ou seja, 984 empregados.
- c) $z_{\frac{\alpha}{2}} = 1.75$, n=130,2169, ou seja, 131 empregados.

Intervalo de confiança para a média quando σ é desconhecido

Estudamos como construir intervalos de confiança para a média utilizando a distribuição normal padrão (Z) como uma aproximação adequada da distribuição das médias amostrais. Vimos que a distribuição Z é adequada quando o desvio padrão populacional (σ) é conhecido. Porém, se **não conhecemos** σ , podemos utilizar a distribuição t-Student, desenvolvida por William Gosset (1876-1937).

Para que a distribuição t-Student seja aplicável, a **distribuição da população básica deve ser essencialmente normal**. Se a distribuição populacional deve ser normalmente distribuída por que não se pode utilizar a tabela Z? Isto se deve ao fato de que, quando σ não é conhecido, a utilização de s de uma amostra pequena incorpora outra fonte de erro. Dessa maneira, para manter o grau de confiança desejado, compensamos a variabilidade adicional ampliando o intervalo de confiança substituindo o valor crítico $z_{\underline{\alpha}}$ (da tabela Z) por um valor crítico maior $t_{\underline{\alpha}}$ (da tabela t-Student).

Propriedades importantes da distribuição t-Student:

1. A distribuição t-Student é diferente para cada tamanho de amostra:

Figura 1 – Distruibuições t-Sudent com diferentes tamanhos amostrais.

O parâmetro da distribuição t-Student é o grau de liberdade (g.l.), definido por *n-1*, ou seja, na Figura 1, temos as distribuições t para n=4, n=6 e n=11.

 A distribuição t-Student tem a mesma forma geral de sino da distribuição normal padronizada; sua forma mais aberta reflete a maior variabilidade esperada em pequenas amostras.

Figura 2 – Distruibuição t-Sudent (g.l. = 3) e distribuição normal padrão. Note-se que a distribuição t tem mais área nas caudas.

- 3. A distribuição t-Student tem média t = 0 (tal como a distribuição normal padronizada, que tem média z = 0).
- 4. O desvio padrão da distribuição t-Student varia com o tamanho da amostra, e é maior do que 1 (ao contrário da distribuição normal padronizada, em que $\sigma = 1$).
- 5. À medida que o tamanho da amostra aumenta, a distribuição t-Student se aproxima da distribuição normal.

Vimos anteriormente que, para construirmos um intervalo de confiança para a média é necessário encontrarmos a margem de erro para a estimativa de μ . No caso com σ desconhecido teremos que utilizar a distribuição t-Student, então o cálculo da margem de erro será:

$$E=t_{\frac{\alpha}{2}}.\frac{s}{\sqrt{n}}$$
, onde $t_{\frac{\alpha}{2}}$ tem $n-1$ graus de liberdade.

Exemplo 4

(Triola, 1998) Com um teste destrutivo, as amostras são destruídas no processo de teste. O teste de colisão de carros é um exemplo muito dispendioso de teste destrutivo. Suponha que tenhamos feito teste de colisão em 12 carros esporte sob uma diversidade de condições que simulam colisões típicas. A análise dos 12 carros danificados resulta em custos de conserto com média igual a US\$26.227,00 e um desvio padrão de US\$15.873,00. Sabe-se que os dados têm distribuição aproximadamente normal. Determine:

- a) A melhor estimativa pontual de μ , o custo médio de conserto de todos os carros esporte envolvidos em colisões.
- b) A estimativa intervalar de 95% de confiança para μ.

Já sabemos que a melhor estimativa pontual da média populacional (μ) é o valor da média amostral \bar{x} . Neste caso, a melhor estimativa pontual de μ é US\$26.227,00.

Devemos construir um intervalo de 95% de confiança utilizando a distribuição *t- Student*, porque são verificadas as condições seguintes:

- ✓ O desvio padrão da população (σ) é desconhecido
- ✓ A população parece ter distribuição normal, porque os dados da amostra têm distribuição aproximadamente normal.

Construindo o intervalo de confiança:

Valor crítico: $t_{\frac{\alpha}{2}}$ = 2,201 foi obtido pelo cruzamento da linha 11 (grau de

liberdade = n - 1 = 12 - 1 = 11) com a coluna 0,025 ($\frac{\alpha}{2}$).

Margem de erro:
$$E = t_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}} = 2,201 \cdot \frac{15873}{\sqrt{12}} = 10085,29$$

Intervalo de confiança: I.C.= $\bar{x} \mp E = 26227 \mp 10085,29 = 16141,71$; 36312,29

Interpretação: Temos 95% de confiança de que o custo médio de conserto de carros esporte sujeitos a teste de colisão varie de R\$16.141,71 a R\$36.312,29.

Exercício 4

Em uma pesquisa de orçamento familiar desenvolvida pelo instituto ZX, solicitou-se a 16 domicílios de certa região que anotassem suas despesas com alimentação durante uma semana. O resultado foi uma despesa média de R\$330,00 com um desvio padrão de R\$40,00. Construa e interprete um intervalo de 98% de confiança para a verdadeira despesa média semanal com alimentação por domicílio de toda a região. Suponha que a população tenha uma distribuição aproximadamente normal.

Repostas: $t_{\frac{\alpha}{2}}$ =2,602 ; I.C.=[303,98 ; 356,02]

Intervalo de confiança para a proporção

Em muitas situações, o principal parâmetro de interesse é alguma proporção p. Por exemplo:

- A proporção de contas pagas em dia;
- A proporção de atrasos na entrega do produto, etc.

A notação que vamos utilizar é:

$$p = \text{proporção populacional}$$
 $\hat{p} = \frac{x}{n}$ proporção amostral de x sucessos em uma amostra de tamanho n .

Assim como a média amostral é a melhor estimativa pontual para a média populacional, a proporção amostral (\hat{p}) é a melhor estimativa pontual da proporção populacional (p).

Para encontrarmos o intervalo de confiança para a proporção é necessário conhecermos que a proporção amostral equivale a uma média aritmética para dados de variáveis do tipo binárias (0 e 1). Assim, as propriedades da distribuição amostral da média também são aplicadas à distribuição amostral da proporção.

Vamos trabalhar com a construção de intervalos de confiança para uma proporção utilizando a distribuição normal como aproximação da distribuição de proporções amostrais e, para isso, as suposições $n.\hat{p} \ge 5$ e $n.(1-\hat{p}) \ge 5$ precisam, ambas, serem satisfeitas.

A margem de erro é obtida pela multiplicação do valor crítico ($z_{\frac{\alpha}{2}}$) pelo desvio

padrão das proporções amostrais ($\sqrt{rac{\hat{p}.(1-\hat{p})}{n}}$), conforme a fórmula a seguir: $E=z_{\frac{\alpha}{2}}.\sqrt{rac{\hat{p}.(1-\hat{p})}{n}}$

$$E = z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}}$$

A partir da expressão da margem de erro da proporção e da proporção amostral encontramos o intervalo de confiança: $\hat{p} \mp E$

Exemplo 5

(Adaptado de Morettin, 2004) Em uma linha de produção de certa peça cerâmica, colheu-se uma amostra de 125 itens, constatando-se 7 peças eram defeituosas. Com esses resultados amostrais, determine a estimativa intervalar de 87% de confiança da proporção de peças defeituosas produzidas pela empresa.

O cálculo do intervalo de confiança para uma proporção exige a verificação das suposições:

✓
$$n.\hat{p} \ge 5 \to 125.0,056=7$$

✓ $n.(1-\hat{p}) \ge 5 \to 125.(1-0,056)=118$

Como ambas são satisfeitas procedemos ao cálculo do intervalo de confiança:

Intervalo de 87% de confiança:

Valor crítico: $z_{\frac{\alpha}{2}} = 1,51$.

Margem de erro:
$$E = z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p}.(1-\hat{p})}{n}} = 1,51.\sqrt{\frac{0,056.(1-0,056)}{125}} = 0,0311.$$

Intervalo de confiança: $\hat{p} \mp E = 0.056 \mp 0.0311 = 0.0249$; 0.0871

Dessa forma, temos 87% de confiança que a proporção de peças defeituosas produzidas pela empresa varia de 2,49% a 8,71%.

Agora é com você!

- a) Encontre os intervalos com 80% e 99% de confiança.
- b) Compare os intervalos obtidos.

Resposta:

a) 80% de confiança: $z_{\frac{\alpha}{2}}$ =1,28 ; E=0,0263 ; I.C.=[0,0297 ; 0,0823]

99% de confiança: $z_{\frac{\alpha}{2}}$ =2,57 ; E=0,0529 ; I.C.=[0,0031 ; 0,1089]

b) Ao aumentarmos o nível de confiança, houve um aumento da margem de erro e, consequentemente, um aumento da amplitude do intervalo.

Exercício 5

A figura abaixo mostra os resultados de uma pesquisa com 400 homens, 500 mulheres, 650 pessoas que usam frequentemente o forno microondas e 50 pessoas que raramente o usam. Foi perguntado se eles eram favoráveis à irradiação da carne vermelha para matar micróbios transmissores de doenças. (Fonte: Peter D. Hart Research Associetes for Grocery Manufactures of America)

Tratar a Carne?								
Pessoas favoráveis à irradiação de alimentos para eliminar micróbios infecciosos:								
	A favor							
Homens	61%							
Mulheres	44%							
Pessoas que usam frequentemente o microondas	55%							
Pessoas que raramente usam o microondas	40%							

Construa um intervalo de 98% de confiança para:

- a.) A proporção dos usuários freqüentes do microondas favoráveis à irradiação da carne vermelha.
- b.) A proporção dos usuários esporádicos do microondas favoráveis à irradiação da carne vermelha.
- c.) A proporção de mulheres que são contra a irradiação da carne vermelha.

Respostas: $z_{\frac{\alpha}{2}}$ =2,33, a) [50,45%; 59,55%], b) [23,86%; 56,14%], c) [50,83%; 61,17%]

Determinação do tamanho da amostra:

A expressão para o cálculo do tamanho amostral pode ser obtida a partir da expressão da margem de erro, portanto:

$$E = (z) \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$z_{\frac{\alpha}{2}}^{2} \cdot \hat{p} \cdot (1-\hat{p})$$

$$n = \frac{z_{\frac{\alpha}{2}}^{2}}{E^{2}}$$

É interessante notar que a expressão acima depende de \hat{p} que pode ser obtido por meio de um estudo piloto ou de conhecimentos prévios, porém, quando não dispomos de tais informações, podemos atribuir o valor 0,5 para \hat{p} , de forma que o tamanho da amostra resultante seja no mínimo tão grande quanto deveria ser. A razão para atribuir o valor 0,5 é a seguinte: O valor máximo possível do produto $\hat{p}.(1-\hat{p})$ é 0,25, que ocorre quando \hat{p} =0,5. Observe a tabela abaixo:

\hat{p}	1 - <i>p̂</i>	$\hat{p}.(1-\hat{p})$
0,1	0,9	0,09
0,2	0,8	0,16
0,3	0,7	0,21
0,4	0,6	0,24
0,5	0,5	0,25
0,6	0,4	0,24
0,7	0,3	0,21
0,8	0,2	0,16
0,9	0,1	0,09

Não se esqueça que, se o tamanho da amostra calculado não é um número inteiro, devemos arredondá-lo para o próximo inteiro mais elevado.

Exemplo 6

(Triola, 1998) As companhias de seguro estão ficando preocupadas com o fato de que o número crescente de telefones celulares resulte em maior número de colisões de carros; estão, por isso, pensando em cobrar prêmios mais elevados para os motoristas que utilizam celulares. Desejamos estimar, com uma margem de erro de três pontos percentuais, a percentagem de motoristas que falam ao celular enquanto estão dirigindo. Supondo que se pretende um nível de 95% de confiança nos resultados, quantos motoristas devem ser pesquisados?

- a) Suponha que tenhamos uma estimativa, com base em estudos anteriores, de 18% de motoristas que falam ao celular.
- b) Suponha que não tenhamos qualquer informação que possa sugerir um valor de \hat{p} .

Desejamos estimar o tamanho amostral para um estudo em que o principal parâmetro de interesse é a percentagem de motoristas que falam ao celular enquanto estão

dirigindo. No enunciado temos que a margem de erro desejável é de 3% (0,03) e o nível de confiança é de 95%, ou seja, α =0,05 e $z_{\underline{\alpha}}$ = 1,96.

a) O estudo anterior sugere que \hat{p} =18%=0,18. Dessa forma:

$$n = \frac{z_{\frac{\alpha}{2}}^{2}.\hat{p}.(1-\hat{p})}{E^{2}} = \frac{1.96^{2}.0.18.(1-0.18)}{0.03^{2}} = 630,022 \approx 631$$

Devemos pesquisar ao menos 631 motoristas selecionados aleatoriamente.

b) Como não há conhecimento prévio de \hat{p} , adotaremos o valor de 0,5:

$$n = \frac{z_{\frac{\alpha}{2}}^{2}.\hat{p}.(1-\hat{p})}{E^{2}} = \frac{1,96^{2}.0,5.(1-0,5)}{0,03^{2}} = 1067,11 \approx 1068$$

Para termos 95% de confiança de que nossa percentagem amostral está a menos de 3% da verdadeira percentagem de todos os motoristas, devemos selecionar aleatoriamente e pesquisar 1068 motoristas. Comparando este resultado com o tamanho amostral de 631 obtido na letra a), podemos ver que, na ausência de conhecimento prévio, é necessário uma amostra maior para obtermos os mesmos resultados que obteríamos se pudéssemos estimar o valor de \hat{p} .

A expressão:

$$n = \frac{z_{\frac{\alpha}{2}}^2 \cdot \hat{p} \cdot (1 - \hat{p})}{E^2}$$

admite que a população é infinita porém, se a população é finita é necessário modificar a margem de erro (E), com a inclusão de um fator de correção para população finita, como seque:

$$E = (z) \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \cdot \sqrt{\frac{N-n}{N-1}}$$

onde N é o tamanho da população.

A expressão acima pode ser resolvida em relação à *n*, dando:

$$n = \frac{N \cdot \hat{p}(1 - \hat{p}) \cdot (z)^{2}}{\hat{p}(1 - \hat{p}) \cdot (z)^{2} + (N - 1) \cdot E^{2}}$$

Exemplo 7

O reitor de uma universidade deseja estimar com uma margem de erro de 5% e um nível de confiança de 97%, a proporção de estudantes matriculados nos programas de MBA que fizeram graduação em Sistemas de Informação. Sabe-se que, atualmente, há 550 alunos fazendo MBA. Qual tamanho mínimo de amostra deve ser coletado?

- a) Estima-se que a proporção populacional seja de 23%.
- b) Não há base para estimar o valor aproximado da proporção populacional.

Desejamos estimar o tamanho amostral para um estudo em que o principal parâmetro de interesse é a proporção de estudantes matriculados nos programas de MBA que fizeram graduação em Sistemas de Informação. No enunciado temos que a margem de erro desejável é de 5% (0,05), o nível de confiança é de 97%, ou seja, α =0,03 e $z_{\underline{\alpha}}$ = 2,17.

Além disso, sabe-se que a população de estudo é composta por 550 alunos (N=550).

a) Estima-se que \hat{p} =23%=0,23. Dessa forma:

$$n = \frac{N \cdot \hat{p}(1-\hat{p}) \cdot (z)^2}{\hat{p}(1-\hat{p}) \cdot (z)^2 + (N-1) \cdot E^2} = \frac{550 \cdot 0.23(1-0.23) \cdot (2.17)^2}{0.23(1-0.23) \cdot (2.17)^2 + (550-1) \cdot 0.05^2} = n = 207.8774 \approx 208$$

Deve-se amostrar, no mínimo, 208 alunos de MBA para a pesquisa.

b) Como não há conhecimento prévio de \hat{p} , adotaremos o valor de 0,5:

$$n = \frac{N \cdot \hat{p}(1-\hat{p}) \cdot (z)^2}{\hat{p}(1-\hat{p}) \cdot (z)^2 + (N-1) \cdot E^2} = \frac{550 \cdot 0.5(1-0.5) \cdot (2.17)^2}{0.5(1-0.5) \cdot (2.17)^2 + (550-1) \cdot 0.05^2} = n = 253.9387 \approx 254$$

Nesse caso teriam que ser amostrados 254 alunos de MBA.

Exercício 6

Suponha que você vai realizar um levantamento para estimar a proporção de crianças matriculadas em um programa de saúde infantil na cidade de Nova Lima-MG. Sabe-se, segundo o IBGE, que o município apresentou no ano de 2014 o número de 1286 nascidos vivos e registrados na cidade. Considerando 90% de confiança e um erro amostral de 4%, determine:

- a) O tamanho da amostra.
- b) Considerando agora uma proporção de 70% de crianças matriculadas no programa de saúde, qual seria o tamanho da amostra?

Respostas: a) n=316,9280, ou seja, 317 crianças. b) n=277,1478, ou seja, 278 crianças.

DISTRIBUIÇÃO NORMAL PADRÃO

Z	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998

DISTRIBUIÇÃO t-STUDENT

g.l	0,25	0,125	0,1	0,05	0,025	0,0125	0,01	0,005	0,0025	0,001	0,0005
1	1	2,414	3,078	6,314	12,71	25,45	31,82	63,66	127,3	318,3	636,6
2	0,817	1,604	1,8856	2,92	4,303	6,205	6,965	9,925	14,09	22,33	31,6
3	0,765	1,423	1,6377	2,3534	3,182	4,177	4,541	5,841	7,453	10,21	12,92
4	0,741	1,344	1,5332	2,1319	2,776	3,495	3,747	4,604	5,598	7,173	8,61
5	0,727	1,301	1,4759	2,0151	2,571	3,163	3,365	4,032	4,773	5,893	6,869
6	0,718	1,273	1,4398	1,9432	2,447	2,969	3,143	3,707	4,317	5,208	5,959
7	0,711	1,254	1,4149	1,8946	2,365	2,841	2,998	3,499	4,029	4,785	5,408
8	0,706	1,24	1,3968	1,8596	2,306	2,752	2,896	3,355	3,833	4,501	5,041
9	0,703	1,23	1,383	1,8331	2,262	2,685	2,821	3,25	3,69	4,297	4,781
10	0,7	1,221	1,3722	1,8125	2,228	2,634	2,764	3,169	3,581	4,144	4,587
11	0,697	1,214	1,3634	1,7959	2,201	2,593	2,718	3,106	3,497	4,025	4,437
12	0,695	1,209	1,3562	1,7823	2,179	2,56	2,681	3,055	3,428	3,93	4,318
13	0,694	1,204	1,3502	1,7709	2,16	2,533	2,65	3,012	3,372	3,852	4,221
14	0,692	1,2	1,345	1,7613	2,145	2,51	2,625	2,977	3,326	3,787	4,14
15	0,691	1,197	1,3406	1,7531	2,131	2,49	2,602	2,947	3,286	3,733	4,073
16	0,69	1,194	1,3368	1,7459	2,12	2,473	2,583	2,921	3,252	3,686	4,015
17	0,689	1,191	1,3334	1,7396	2,11	2,458	2,567	2,898	3,222	3,646	3,965
18	0,688	1,189	1,3304	1,7341	2,101	2,445	2,552	2,878	3,197	3,611	3,922
19	0,688	1,187	1,3277	1,7291	2,093	2,433	2,539	2,861	3,174	3,579	3,883
20	0,687	1,185	1,3253	1,7247	2,086	2,423	2,528	2,845	3,153	3,552	3,85
21	0,686	1,183	1,3232	1,7208	2,08	2,414	2,518	2,831	3,135	3,527	3,819
22	0,686	1,182	1,3212	1,7172	2,074	2,405	2,508	2,819	3,119	3,505	3,792
23	0,685	1,18	1,3195	1,7139	2,069	2,398	2,5	2,807	3,104	3,485	3,768
24	0,685	1,179	1,3178	1,7109	2,064	2,391	2,492	2,797	3,091	3,467	3,745
25	0,684	1,178	1,3164	1,7081	2,06	2,385	2,485	2,787	3,078	3,45	3,725
26	0,684	1,177	1,315	1,7056	2,056	2,379	2,479	2,779	3,067	3,435	3,707
27	0,684	1,176	1,3137	1,7033	2,052	2,373	2,473	2,771	3,057	3,421	3,69
28	0,683	1,175	1,3125	1,7011	2,048	2,368	2,467	2,763	3,047	3,408	3,674
29	0,683	1,174	1,3114	1,6991	2,045	2,364	2,462	2,756	3,038	3,396	3,659
30	0,683	1,173	1,3104	1,6973	2,042	2,36	2,457	2,75	3,03	3,385	3,646
31	0,682	1,172	1,3095	1,6955	2,04	2,356	2,453	2,744	3,022	3,375	3,633
32	0,682	1,172	1,3086	1,6939	2,037	2,352	2,449	2,738	3,015	3,365	3,622
33	0,682	1,171	1,3077	1,6924	2,035	2,348	2,445	2,733	3,008	3,356	3,611
34	0,682	1,17	1,307	1,6909	2,032	2,345	2,441	2,728	3,002	3,348	3,601
35	0,682	1,17	1,3062	1,6896	2,03	2,342	2,438	2,724	2,996	3,34	3,591