LGDP4522

176RBGx220-dot, 262,144-color 1-chip TFT LCD driver IC

Rev 0.3.1 2006-04-06

Description	5
Features	6
Power Supply Specifications	7
Block Diagram	8
Pin Function	9
PAD Arrangement	12
PAD Coordinate	13
Bump Arrangement	17
Block Function	18
System Interface	18
External Display Interface	18
Bit Operations	19
Address Counter (AC)	19
Graphics RAM (GRAM)	
Grayscale Voltage Generating Circuit	
Timing Generator	19
Oscillator (OSC)	19
LCD Driver Circuit	19
LCD Drive Power Supply Circuit	19
GRAM Address MAP	20
Instructions	28
Outline	28
Index (IR)	30
Status Read (SR)	30
Start Oscillation (R00h)	30
Driver Output Control (R01h)	30
LCD Driving Waveform Control (R02h)	32

Entry Mode (R03h)	32
Resize Control (R04h)	35
Display Control 1 (R07h)	35
Display Control 2 (R08h)	37
Display Control 3 (R09h)	38
Frame Cycle Control (R0Bh)	39
External Display Interface Control 1 (R0Ch)	40
Power Control 1 (R10h)	42
Power Control 2 (R11h)	42
Power Control 3 (R12h)	44
Power Control 4 (R13h)	44
RAM Address Set (R21h)	46
Write Data to GRAM (R22h)	47
RAM Access via RGB I/F and System I/F	51
Read Data Read from GRAM (R22h)	52
γ Control (R30h to R39h)	54
Gate Scan Position (R40h)	55
Vertical Scroll Control (R41h)	56
1st-Screen Drive Position (R42h)	57
2nd-Screen Drive Position (R43h)	57
Horizontal RAM Address Position (R44h)	57
Vertical RAM Address Position (R45h)	57
EPROM Control 1 (R60h)	58
EPROM Control 2 (R61h)	58
Test Register 1 (R71h)	59
Instruction List	60
Interface Specifications	61
System Interface	63
80-System 18-Bit Interface	64
80-System 16-Bit Interface	65
Data Transfer Synchronizing in 16-Bit Bus Interface Mode	66
80-System 9-Bit Interface	67
Data Transfer Synchronizing in 9-Bit Bus Interface Mode	68
80-System 8-Bit Interface	69
Data Transfer Synchronization in 8-Bit Bus Interface Mode	71
Serial Peripheral Interface (SPI)	72

VSYNC Interface	74
Notes in Using the VSYNC Interface	75
External Display Interface	77
RGB Interface	77
ENABLE Signal	77
RGB Interface Timing	78
Moving Picture Display	80
RAM Access via a System Interface in RGB-I/F Mode	80
6-Bit RGB Interface	80
Data Transfer Synchronization in 6-Bit RGB Interface Mode	82
16-Bit RGB Interface	83
18-Bit RGB Interface	84
Notes in Using the External Display Interface	85
Interfacing Timing with LCD Panel	87
RGB I/F Mode	87
Internal Clock Operation Mode	88
Scan Mode Setting	89
γ-Correction Function	90
Grayscale Amplifier Unit Configuration	91
γ-Correction Register	93
Ladder Resistors and 8-to-1 Selector	95
Relationship between RAM Data and Voltage Output Levels	98
8-Color Display Mode	99
Configuration of Power Supply Circuit	101
Specification of External Elements Connected to LGDP4522 Power Supply	102
Instruction Setting	103
Display On/Off	103
Standby and Sleep Modes	104
Power Supply Setting	105
Pattern Diagram for Voltage Setting	106
Oscillator	107
n-Line Inversion AC Drive	108
Interlaced Scan	109

Alternating Timing	110
Frame Frequency Adjustment Function	111
Partial Display Function	112
Constraints in Setting the 1st/2nd Screen Drive Position Registers	113
EPROM Control	115
Panel Wiring Example	116
Absolute Maximum Ratings	117
Electrical Characteristics	118
DC Characteristics	118
80-System Bus Interface Timing Characteristics (18/16-Bit Bus)	118
80-System Bus Interface Timing Characteristics (8/9-Bit Bus)	118
Serial Peripheral Interface Timing Characteristics	119
Reset Timing Characteristics	119
RGB Interface Timing Characteristics	119
LCD Driver Output Characteristics	120
Notes to Electrical Characteristics	120
Timing Characteristics Diagram	122

Description

The LGDP4522 is a 262,144-color one-chip controller driver LSI for a TFT liquid crystal display with resolution of 176 RGB x 220 dots, comprising a 528-channel source driver, RAM for graphics data of 176 RGB x 220 dots at maximum, a gate driver and a power supply circuit.

The LGDP4522 supports high-speed parallel interfaces to 8-, 9-, 16-, 18-bit ports and a function to write RAM data in high speed for transferring data efficiently and rewriting RAM graphics data in high speed. In addition, the LGDP4522 incorporates 6-, 16-, 18-bit RGB interfaces (VSYNC, HSYNC, DOTCLK, ENABLE, and DB[17:0]) and a VSYNC interface (system interface + VSYNC) for displaying a moving picture, which, with use of window address function, enable the LGDP4522 to display a moving picture easily at a position specified by a user and still pictures in other areas on the screen simultaneously. Since this combination allows transferring only moving picture data while retaining still picture data in the internal RAM intact, data transfer can be minimized and power consumption by the entire system is reduced.

The LGDP4522 can operate with low I/O interface power supply up to 1.65V, with an incorporated voltage follower circuit to generate voltage levels for driving an LCD. The LGDP4522 also supports a function to display in 8 colors and a standby mode, allowing for precise power control by software. These features make the LGDP4522 an ideal LCD driver for medium or small sized portable products supporting WWW browsers such as digital cellular phones or small PDAs, where long battery life is a measure concern.

Features

• A controller driver for a liquid crystal TFT display with resolution of 176RGB x 220-dot, capable of graphics display in 262,144 colors

- Single chip solution for a liquid crystal TFT display
- System interfaces
 - High-speed interfaces to 8-, 9-, 16-, 18-bit parallel ports
 - Serial Peripheral Interface (SPI)
- Interfaces for moving picture display
 - 6-, 16-, 18-bit RGB interfaces (VSYNC, HSYNC, DOTCLK, ENABLE, DB[17:0])
 - VSYNC interface (System interface + VSYNC)
- Window address function to specify a rectangular area on the internal RAM for moving picture display
 - Facilitate moving picture display at any area on the screen via a moving picture display interface
 - Limit the data rewriting area and reduce data transfer
 - Enable moving and still picture display at the same time
- Bit operation function for facilitating graphics data processing
 - Bit-unit write data mask function
 - Pixel-unit logical/conditional write function
- Abundant functions for color display control
 - γ-correction function enabling display in 262,144 colors
 - Line-unit vertical scrolling function
- Low -power consumption architecture
 - Low operating power supplies: VDD28 = 2.4 to 3.3 V (To generate logic voltage)

Vcc = 1.7 to 1.9 V (internal logic) IOVcc = 1.65 to 3.3 V (interface I/O)

Vci = 2.5 to 3.3 V (analog)

Low voltage drive: DDVDH = 4.5 to 5.5 V

- Power saving functions (standby mode etc.)
- Liquid crystal partial drive function, enabling partially driving an LCD panel at positions specified by a user
- A voltage follower circuit for generating LCD driving voltage levels with a small direct current through bleeder resistors
- Incorporate step-up circuits for stepping up a liquid crystal drive voltage level up to 6 times (x6)
- 95,040 byte internal RAM
- Incorporate a 528-channel source driver and a 220-channel gate driver
- n-line liquid crystal AC drive: invert polarity at an interval of arbitrarily set n lines (n: $0 \sim 64$)
- Internal oscillator and hardware reset
- Reversible source driver shift direction
- For Cst structure only
- Internal 32-bit EPROM for VCOMH level setting (4-times programmable)

Power Supply Specifications

Table 1

No.	Item		LGDP4522	
1	TFT source lines		528 pins (176 x RGB)	
2	TFT gate lines		220 pins	
3	Capacitor structure	e of TFT display	Cst structure only (common Vcom formula)	
4	Liquid crystal	S1 to S528	V0 to V63 grayscales	
	drive output	G1 to G220	VGH to VGL	
		Vcom1/11/2/21	VcomH – VcomL: amplitude = electronic volumes	
			VcomH = VcomR: adjusted with an external resistor	
5	Input voltage	IOVcc	1.65 - 3.30 V	
		VDD28	2.40 - 3.30 V	
		Vcc	1.7 – 1.9 V	
		Vci	2.50 – 3.30 V	
6	Internal step-up	VLOUT1 (DDVDH)	Vci ×2	
	circuits	VLOUT2 (VGH)	Vci ×2, ×5, ×6	
		VLOUT3 (VGL)	Vci ×-3, ×-4, ×-5	
		VLOUT4 (VCL)	Vci ×-1	

Block Diagram

Figure 1

Pin Function

Table 2

Name	# pins	I/O	Connected to	Function		
IM[0] ID,	4	I	GND/IOVcc			
IM[3:1]				In SPI mode, the IM[0] pin is used to set the ID of device code.		
				IM[3:0]	Interface mode	Data pins
				000*	Setting disabled	-
				0010	80-system 16-bit interface	DB[17:10], DB[8:1]
				0011	80-system 8-bit interface	DB[17:10]
				010*	Serial peripheral interface (SPI)	SDI, SDO
				011*	Setting disabled	-
				100*	Setting disabled	-
				1010	80-system 18-bit interface	DB[17:0]
				1011	80-system 9-bit interface	DB[17:9]
				11**	Setting disabled	-
CS*	1	I	MPU	Chip select	signal (active low).	
					P4522 is selected and accessible.	
				High: LGD	P4522 is not selected and not access	sible.
					ND level when not in use.	
RS	1	I	MPU	Register sel		
					s the index/status register.	
	_				ts a control register.	
WR*_SCL	1	I	MPU		e (active low) in 80-system bus inter	face mode.
DD#	-) (DI		input in SPI mode.	C 1
RD*	1	I	MPU		(active low) in 80-system bus inter	face mode.
CDI	1	т .	MDII		r IOVcc or GND level in SPI mode.	
SDI	1	I	MPU		input in SPI mode. but on the rising edge of the SCL sig	mal Fix to aithar
					ND level when not in use.	mai. Fix to ettilei
SDO	1	0	MPU		output in SPI mode.	
SDO	1		IVII O		tput on the falling edge of the SCL s	sional Leave the nin
				open when		nghai. Leave the pin
DB[17:0]	18	I/O	MPU		irectional data bus.	
22[17.0]		1, 0	1.22 0		s must be fixed either IOVcc or GN	D level.
ENABLE	1	I	MPU		e signal in RGB interface mode.	
					(accessible).	
				High: not se	elect (inaccessible).	
					t inverts the polarity of the ENABLI	E signal. Fix to
					ec or GND level when not in use.	
VSYNC	1	I	MPU		hronization signal.	
					L = "0", it is active low.	
					L = "1", it is active high.	
HONDIO	1	т .	MDII		OVcc level when not in use.	
HSYNC	1	I	MPU		onization signal. L = "0", it is active low.	
					L = 0, it is active low. L = 1, it is active high.	
					OVcc level when not in use.	
DOTCLK	1	I	MPU	Dot clock s		
DOTOLIK	1	1	1,111		= "0", input data on the rising edge	of DOTCLK
					= "1", input data on the falling edge	
					OVcc level when not in use.	
RESET*	1	I	MPU or		eset (active low).	
			external RC		execute a power-on reset after supply	ying power.
		<u>L</u>	circuit			
S1 to S528	528	О	LCD	Source line	outputs to LCD.	
G1 to G220	220	О	LCD	Gate line or	itputs to LCD.	<u> </u>

Vcom 1 O TFT panel common Supply voltage to the common electrode of TV vcom is AC voltages alternating between the levels. The alternating cycle is set by M sign common electrode of TFT panel. All outputs node. VcomH 1 O Stabilizing capacitor The high level of Vcom1/11/2/21 AC voltage capacitor.	nal. Connect to the
electrode levels. The alternating cycle is set by M sign common electrode of TFT panel. All outputs node. VcomH	nal. Connect to the
common electrode of TFT panel. All outputs node. VcomH	
VcomH 1 O Stabilizing The high level of Vcom1/11/2/21 AC voltag capacitor Connect to a stabilizing capacitor.	a aoma from the come
VcomH 1 O Stabilizing The high level of Vcom1/11/2/21 AC voltag capacitor Connect to a stabilizing capacitor.	s come from the same
capacitor Connect to a stabilizing capacitor.	
	ge.
VcomL 1 O Stabilizing The low level of Vcom1/11/2/21 AC voltage	
capacitor or Adjust the VcomL level with the VDV bits.	
open stabilizing capacitor. To fix the VcomL leve	
to "0". In this case, capacitor connection is n	
VcomR 1 I Variable Reference level to generate the VcomH level	
resistor or externally connected variable resistor or by s	setting the register of
open the LGDP4522.	
When using a variable resistor, halt the inter-	
circuit by setting the register and place the re	
VREG10UT and GND. When generating th	ie V comH level by
setting the register, leave this pin open.	
C11+, C11- 2 - Step-up Pins to connect a capacitor for the internal st	
capacitor Leave the pins open when not using the circum C12+, C12-, 2 - Step-up Pins to connect capacitors for the internal step	
C21+, C21-, capacitor Connect capacitors according to step-up rate when not using the circuit.	e. Leave the plus open
OSC1, OSC2 2 I/O Oscillation Pins to connect a resistor for RC oscillation.	
resistor	
FLM 1 O MPU or open Frame head pulse signal.	
This is used when writing RAM data in sync	chronization with
display frame. Leave the pin open when not	in use.
Vci 1 I Power supply Supply voltage to the analog circuit.	
Connect to an external power supply of 2.5 t	
VciLVL 1 I Power supply Reference level to generate the VciOUT/RE	GP level according to
Othe step-up rate set with the VC bits.	
Be sure to connect VciLVL with Vci on the	
VciOUT 1 O Stabilizing Internal reference voltage level of amplitude	e VciLVL-GND.
capacitor, Place a stabilizing capacitor between GND.	
Vci1 Vci1 Vci1 Vci1 I/O VciOUT Reference voltage input to the step-up circui	i+ 1
When not using the internal reference voltage	
external power supply up to 2.75V.	ge, connect to an
VLOUT1 1 O Stabilizing Output voltage from the step-up circuit 1.	
capacitor, Place a stabilizing capacitor between GND.	Place a schottky diode
DDVDH between Vci.	r idee d senotiky diede
VLOUT1 = 4.5 to 5.5V (twice the Vci1 leve	eD.
VLOUT2 1 O Stabilizing An output voltage from the step-up circuit 2.	
capacitor, The step-up rate is set with the BT bits. Plac	
VGH between GND. Place a schottky diode between	
VLOUT2 = max 16.5V (4 to 6 times the Vci	
VLOUT3 1 O Stabilizing An output voltage from the step-up circuit 2.	
capacitor, The step-up rate is set with the BT bits. Plac	
VGL between GND. Place a schottky diode between	een Vci.
VLOUT3 = $\min -16.5 \text{V}$ (-3 to -5 times the	
VLOUT4 1 O Stabilizing An output voltage from the step-up circuit 2.	
capacitor, The step-up rate is set with the BT bits. Plac	
VCL between GND. Place a schottky diode between	
VLOUT4 = 0 to -3.3 V (-1 times the Vci1 le	
DDVDH 1 I VLOUT1 Power supply to the source driver's LCD ou	tput unit and an input
voltage to the step-up circuit 2.	
VGH I VLOUT2 A supply voltage to drive gate lines of the T	FT panel.
Connect to VLOUT2.	
VGL 1 I VLOUT3 A supply voltage to drive gate lines of the T	FT panel.
Connect to VLOUT3.	

Name	# pins	I/O	Connected to	Function	
VCL	1	Ι	VLOUT4	A supply voltage to generate the VcomL level. Connect to VLOUT4.	
VREG10UT	1	I/O	Stabilizing capacitor or power supply	A voltage level of DDVDH–GND, generated from the reference level of Vci–GND according to the rate set with the VRH bits. VREG1OUT is (1) a source driver grayscale reference voltage VDH, (2) a VcomH level reference voltage, and (3) a Vcom amplitude reference voltage. Connect to a stabilizing capacitor. VREG1OUT = 3.0 to (DDVDH – 0.5) V	
VDD28	1	-	Power supply	Power supply to generate the internal logic power supply. $Vcc = 2.4$ to $3.3V$	
Vcc	1	-	Power supply	Generated power supply to the internal logic. Vcc = 1.7 to 1.9V	
Vccout	1	I/O	Stabilizing capacitor, Vcc	Internal logic regulator output. Connect Vcc to a stabilizing capacitor.	
RVcc	1	-	Power supply	Power supply to the internal RAM. RVcc and Vcc must be at the same electrical potential.	
IOVcc	1	-	Power supply		
GND	1	-	Power supply	Digital ground: $GND = 0V$.	
AGND	1	-	Power supply	Analog ground: AGND = 0V. In case of COG, connect to GND on the FPC to prevent noise.	
RGND	1	-	Power supply	Ground to the internal RAM. RGND = 0V. In case of COG, connect to GND on the FPC to prevent noise.	
TEST1	1	Ι	GND	Test pin. Be sure to connect to GND.	
VGS	1		GND or external resistor	Reference level for the grayscale voltage generation circuit. The VGS level can be changed by connecting to an external resistor.	
VPP	1	I/O	Power Supply	7.2V Power supply for internal EPROM writing	
VCMSEL	1	I	GND or VCC or open	If VCMSEL is set to high, VCOM level control comes from EPROM block. If VCMSEL is set to low, VCOM level control comes from internal registers set by MPU. If the setting by this pin is not to be preferable, it can be open.	

PAD Arrangement

- Chip size: 17.2 um x 1.43 um (With seal ring but without scribe line)
- Chip thickness: 400 um
- PAD coordinate: PAD center
- Au bump size
 - 1) Nos. 1-241, 1006-1010: 50 um x 80 um
 - 2) Nos. 242-1005: 19 um x 120 um
- · Alignment marks

1-a, 1-b) Coordinate (X, Y) = (±8422.0, 536.9)

2-a) Coordinate (X, Y) = (-8421.5, -581.5)

2-b) Coordinate (X, Y) = (8421.5, -581.5)

3-a), 3-b) Coordinate (X, Y) = (±8421.5, -505.0)

۲

PAD Coordinate

Pad #	Pad name	X	Y
1	VPP	-8225	-581.5
2	VPP	-8155	-581.5
4	VPP VPP	-8085 -8015	-581.5 -581.5
5	VPP	-7945	-581.5
6	VCMSEL	-7875	-581.5
7	VCMSEL	-7805	-581.5
8	VCMSEL	-7735	-581.5
9	VCMSEL DUMMYR1	-7665 -7595	-581.5 -581.5
11	DUMMYR2	-7525	-581.5
12	TESTO1	-7455	-581.5
13	IOGNDDUM1	-7385	-581.5
14	TESTO2	-7315	-581.5
15 16	TEST1 TEST2	-7245 -7175	-581.5 -581.5
17	EXTERM	-7175	-581.5
18	IM0 ID	-7035	-581.5
19	IM1	-6965	-581.5
20	IM2	-6895	-581.5
21	IM3	-6825	-581.5
22	TESTO3 IOVCCDUM1	-6755 -6685	-581.5 -581.5
24	TESTO4	-6615	-581.5
25	RESET*	-6545	-581.5
26	VSYNC	-6475	-581.5
27	HSYNC	-6405	-581.5
28	DOTCLK	-6335	-581.5
29 30	ENABLE DB17	-6265 -6195	-581.5 -581.5
31	DB16	-6125	-581.5
32	DB15	-6055	-581.5
33	DB14	-5985	-581.5
34	DB13	-5915	-581.5
35	DB12	-5845	-581.5
36	DB11 DB10	-5775 -5705	-581.5 -581.5
38	DB9	-5635	-581.5
39	DB8	-5565	-581.5
40	TESTO5	-5495	-581.5
41	IOGNDDUM2	-5425	-581.5
42	TESTO6	-5355	-581.5
44	DB7 DB6	-5285 -5215	-581.5 -581.5
45	DB5	-5145	-581.5
46	DB4	-5075	-581.5
47	DB3	-5005	-581.5
48	DB2	-4935	-581.5
50	DB1 DB0	-4865 -4795	-581.5 -581.5
51	SDO	-4725	-581.5
52	SDI	-4655	-581.5
53	RD*	-4585	-581.5
54	WR*_SCL	-4515	-581.5
55	RS CS*	-4445 4375	-581.5
56 57	FLM	-4375 -4305	-581.5 -581.5
58	TESTO7	-4235	-581.5
59	IOVCCDUM2	-4165	-581.5
60	TESTO8	-4095	-581.5
61	TESTO9	-4025	-581.5
62	OSC1DUM1 OSC1DUM2	-3955 -3885	-581.5 -581.5
64	OSC1	-3885	-581.5
65	OSC1DUM3	-3745	-581.5
66	OSC1DUM4	-3675	-581.5
67	OSC2	-3605	-581.5
68	OSC2DUM1	-3535	-581.5
69 70	OSC2DUM2 DUMMYR3	-3465 -3395	-581.5 -581.5
71	DUMMYR4	-3325	-581.5
72	IOGND	-3255	-581.5
73	IOGND	-3185	-581.5
74	IOGND	-3115	-581.5
75	IOGND	-3045	-581.5
76 77	IOGND IOGND	-2975 -2905	-581.5 -581.5
78	IOGND	-2903	-581.5
79	IOVCC	-2765	-581.5
80	IOVCC	-2695	-581.5
81	IOVCC	-2625	-581.5
82	IOVCC	-2555	-581.5
83	VDD28	-2485	-581.5

Pad #	Pad name VDD28	-2415	-581.
85	VDD28	-2415	
86	VDD28	-2345	-581.
87	VDD28	-22/5	
88	VDD28	-2135	-581.
89	VCCOUT	-2155	-581.
90	VCCOUT	-1995	-581.
91	VCCOUT	-1993	-581.
92	VCCOUT	-1855	-581.
93	VCC	-1785	-581.
94	VCC	-1715	-581.
95	VCC	-1645	-581.
96	VCC	-1575	-581.
97	VCC	-1505	-581.
98	VCC	-1435	-581.
99	VCC	-1365	-581.
100	VCC	-1295	-581.
101	VCC	-1225	-581.
102	VCC	-1155	-581.
103	VCC	-1085	-581.
104	VCC	-1015	-581.
105	VREFD	-945	-581.
106	TESTO10	-875	-581.
107	VREF	-805	-581.
108	TESTO11	-735	-581.
109	VREFC	-665	-581.
110	TESTO12	-595	-581.
111	VDDTEST	-525	-581.
111	AGND	-323 -455	-581.
113	AGND	-385	-581.
114	AGND	-315	-581.
115	AGND	-245	-581.
116	AGND	-175	-581.
117	AGND	-105	-581.
118	AGND	-35	-581.
119	AGND	35	-581.
120	AGND	105	-581.
121	AGND	175	-581.
122	GND	245	-581.
123	GND	315	-581.
124	GND	385	-581.
125	GND	455	-581.
126	GND	525	-581.
127	RGND	595	-581.
128	RGND	665	-581.
129	RGND	735	-581.
130	RGND	805	-581.
131	RGND	875	-581.
132	RGND	945	-581.
133	RGND	1015	-581.
134	RGND	1085	-581.
135	RGND	1155	-581.
136	RGND	1225	-581.
137	RGND	1295	-581.
138	RGND	1365	-581.
139	TESTO13	1435	-581.
140	VTEST	1505	-581.
141	TESTO14	1575	-581.
142	VGS	1645	-581.
143	TESTO15	1715	-581.
144	VMON	1785	-581.
145	VCOM	1855	-581.
146	VCOM	1925	-581.
147	VCOM	1995	-581.
148	VCOM	2065	-581.
149	VCOM	2135	-581.
150	VCOML	2205	-581.
151	VCOML	2275	-581.
152	VCOML	2345	-581.
153	VCOML	2415	-581.
154	VCOML	2485	-581.
155	VCOMH	2555	-581.
156	VCOMH	2625	-581.
157	VCOMH	2695	-581.
158	VCOMH	2765	-581.
159	VCOMH	2835	-581.
160	TESTO16	2905	-581.
161	TESTO17	2975	-581.
162	VREG1OUT	3045	-581.
163	TESTO18	3115	-581.
164	TESTA5	3185	-581.
165	TESTO19	3255	-581.

Pad #	Pad name TESTO20	X 3395	-581.5
168	VLOUT4	3465	-581.5
169	VCL	3535	-581.5
170	VCL	3605	-581.5
171	DDVDH	3675	-581.5
172	DDVDH	3745	-581.5
173 174	DDVDH DDVDH	3815 3885	-581.5 -581.5
175	DDVDH	3955	-581.5
176	VLOUT1	4025	-581.5
177	VLOUT1	4095	-581.5
178	VLOUT1	4165	-581.5
179 180	VCIOUT VCIOUT	4235 4305	-581.5 -581.5
181	VCIOUT	4375	-581.5
182	VCI1	4445	-581.5
183	VCI1	4515	-581.5
184	VCI1	4585	-581.5
185	VCI1	4655	-581.5
186 187	VCILVL VCI	4725 4795	-581.5 -581.5
188	VCI	4865	-581.5
189	VCI	4935	-581.5
190	VCI	5005	-581.5
191	VCI	5075	-581.5
192	VCI	5145	-581.5
193 194	VCI	5215	-581.5
194	VCI C11N	5285 5355	-581.5 -581.5
196	C11N	5425	-581.5
197	C11N	5495	-581.5
198	C11N	5565	-581.5
199	C11N	5635	-581.5
200	C11P	5705	-581.5
201	C11P C11P	5775 5845	-581.5 -581.5
203	C11P	5915	-581.5
204	C11P	5985	-581.5
205	AGNDDUM1	6055	-581.5
206	VGL	6125	-581.5
207	VGL	6195	-581.5
208	VGL VGL	6265 6335	-581.5 -581.5
210	VGL	6405	-581.5
211	VLOUT3	6475	-581.5
212	VLOUT3	6545	-581.5
213	VLOUT3	6615	-581.5
214	TESTO21	6685	-581.5
215	C12N C12N	6755 6825	-581.5 -581.5
217	TESTO22	6895	-581.5
218	C12P	6965	-581.5
219	C12P	7035	-581.5
220	TESTO23	7105	-581.5
221	C21N	7175 7245	-581.5
222	C21N C21P	7315	-581.5 -581.5
224	C21P	7315	-581.5
225	C22N	7455	-581.5
226	C22N	7525	-581.5
227	C22P	7595	-581.5
228	C22P VLOUT2	7665	-581.5
230	VLOUT2	7735 7805	-581.5 -581.5
231	VGH	7875	-581.5
232	VGH	7945	-581.5
233	VGH	8015	-581.5
234	TESTO24	8085	-581.5
235	DUMMYR5 DUMMYR6	8155 8225	-581.5 -581.5
237	VCOM	8466.5	-410.7
238	VCOM	8466.5	-340.7
239	VCOM	8466.5	-270.7
240	VCOM	8466.5	-200.7
241	VCOM	8466.5	-130.7
242 243	TESTO25	8210.5 8189.5	566.5 411.5
244	TESTO26 DUMMYR7	8189.5 8168.5	566.5
245	DUMMYR8	8147.5	411.5
246	VGLDMY1	8126.5	566.5
247	G2	8105.5	411.5
248 249	G4 G6	8084.5 8063.5	566.5 411.5

Pad #	Pad name	X	Y
250	G8	8042.5	566.5
251	G10	8021.5	411.5
252 253	G12 G14	8000.5 7979.5	566.5 411.5
254	G14	7958.5	566.5
255	G18	7937.5	411.5
256	G20	7916.5	566.5
257	G22	7895.5	411.5
258 259	G24 G26	7874.5 7853.5	566.5 411.5
260	G28	7832.5	566.5
261	G30	7811.5	411.5
262	G32	7790.5	566.5
263	G34	7769.5	411.5
264	G36	7748.5 7727.5	566.5
265 266	G38 G40	7706.5	411.5 566.5
267	G42	7685.5	411.5
268	G44	7664.5	566.5
269	G46	7643.5	411.5
270 271	G48 G50	7622.5 7601.5	566.5 411.5
272	G52	7580.5	566.5
273	G54	7559.5	411.5
274	G56	7538.5	566.5
275	G58	7517.5	411.5
276	G60	7496.5	566.5
277 278	G62 G64	7475.5 7454.5	411.5 566.5
279	G66	7434.5	411.5
280	G68	7412.5	566.5
281	G70	7391.5	411.5
282	G72 G74	7370.5 7349.5	566.5 411.5
284	G74 G76	7328.5	566.5
285	G78	7307.5	411.5
286	G80	7286.5	566.5
287	G82	7265.5	411.5
288 289	G84	7244.5 7223.5	566.5
289	G86 G88	7202.5	411.5 566.5
291	G90	7181.5	411.5
292	G92	7160.5	566.5
293	G94	7139.5	411.5
294 295	G96 G98	7118.5 7097.5	566.5 411.5
296	G100	7076.5	566.5
297	G102	7055.5	411.5
298	G104	7034.5	566.5
299 300	G106 G108	7013.5 6992.5	411.5 566.5
301	G110	6971.5	411.5
302	G112	6950.5	566.5
303	G114	6929.5	411.5
304	G116	6908.5	566.5
305 306	G118 G120	6887.5 6866.5	411.5 566.5
306	G120	6845.5	411.5
308	G124	6824.5	566.5
309	G126	6803.5	411.5
310	G128	6782.5	566.5
311	G130 G132	6761.5 6740.5	411.5 566.5
313	G134	6719.5	411.5
314	G136	6698.5	566.5
315	G138	6677.5	411.5
316	G140	6656.5	566.5
317 318	G142 G144	6635.5 6614.5	411.5 566.5
319	G144	6593.5	411.5
320	G148	6572.5	566.5
321	G150	6551.5	411.5
322	G152	6530.5	566.5
323 324	G154 G156	6509.5 6488.5	411.5 566.5
325	G158	6467.5	411.5
326	G160	6446.5	566.5
327	G162	6425.5	411.5
328 329	G164 G166	6404.5 6383.5	566.5 411.5
330	G168	6362.5	566.5
331	G170	6341.5	411.5
332	G172	6320.5	566.5
333	G174	6299.5	411.5
334 335	G176 G178	6278.5 6257.5	566.5 411.5
336	G1/8 G180	6236.5	566.5
220	3.00	J2J0.J	200.2

Pad #	Pad name	X	Y
337	G182	6215.5	411.5
338	G184	6194.5	566.5
339	G186	6173.5	411.5
340	G188	6152.5	566.5
341	G190	6131.5	411.5
342	G192 G194	6110.5 6089.5	566.5 411.5
344	G196	6068.5	566.5
345	G198	6047.5	411.5
346	G200	6026.5	566.5
347	G202	6005.5	411.5
348	G204	5984.5	566.5
349	G206	5963.5	411.5
350	G208	5942.5	566.5
351 352	G210	5921.5 5900.5	411.5 566.5
353	G212 G214	5879.5	411.5
354	G214 G216	5858.5	566.5
355	G218	5837.5	411.5
356	G220	5816.5	566.5
357	VGLDMY2	5795.5	411.5
358	TESTO27	5774.5	566.5
359	TESTO28	5554.5	566.5
360	S528	5533.5	411.5
361 362	S527 S526	5512.5 5491.5	566.5 411.5
362	S526 S525	5470.5	566.5
364	S524	5449.5	411.5
365	S523	5428.5	566.5
366	S522	5407.5	411.5
367	S521	5386.5	566.5
368	S520	5365.5	411.5
369	S519	5344.5	566.5
370 371	S518 S517	5323.5 5302.5	411.5 566.5
372	S517 S516	5281.5	411.5
373	S515	5260.5	566.5
374	S514	5239.5	411.5
375	S513	5218.5	566.5
376	S512	5197.5	411.5
377	S511	5176.5	566.5
378	S510	5155.5	411.5
379	S509	5134.5	566.5
380	S508 S507	5113.5 5092.5	411.5 566.5
382	S506	5071.5	411.5
383	S505	5050.5	566.5
384	S504	5029.5	411.5
385	S503	5008.5	566.5
386	S502	4987.5	411.5
387	S501	4966.5	566.5
388	S500 S499	4945.5 4924.5	411.5 566.5
390	S499	4924.3	411.5
391	S497	4882.5	566.5
392	S496	4861.5	411.5
393	S495	4840.5	566.5
394	S494	4819.5	411.5
395	S493	4798.5	566.5
396	S492	4777.5	411.5
397 398	S491 S490	4756.5	566.5 411.5
398	S490 S489	4735.5 4714.5	566.5
400	S488	4693.5	411.5
401	S487	4672.5	566.5
402	S486	4651.5	411.5
403	S485	4630.5	566.5
404	S484	4609.5	411.5
405	S483	4588.5	566.5
406	S482 S481	4567.5 4546.5	411.5 566.5
407	S480	4546.5	411.5
409	S479	4504.5	566.5
410	S478	4483.5	411.5
411	S477	4462.5	566.5
412	S476	4441.5	411.5
413	S475	4420.5	566.5
414	S474	4399.5	411.5
415	S473 S472	4378.5 4357.5	566.5 411.5
417	S472 S471	4336.5	566.5
418	S470	4315.5	411.5
419	S469	4294.5	566.5
420	S468	4273.5	411.5
421	S467	4252.5	566.5
422	S466	4231.5	411.5
423	S465	4210.5	566.5

425 S463 4168.5 566.5 426 S4147.5 411.5 566.5 428 S460 4105.5 566.5 428 S460 4105.5 411.5 429 S459 4084.5 566.5 430 S458 4063.5 411.5 431 S457 4042.5 566.5 432 S456 4021.5 566.5 433 S455 4000.5 566.5 434 S454 3979.5 411.5 435 S453 3958.5 566.5 434 S454 3979.5 411.5 435 S452 3937.5 411.5 437 S451 3916.5 566.5 438 S450 3895.5 411.5 440 S448 3853.5 411.5 441 S446 3811.5 411.5 442 S446 3811.5 411.5 443 S444 3772.5	Pad #	Pad name	X	Y
426 S462 4147.5 411.5 427 S461 4126.5 566.5 428 S460 4105.5 411.5 429 S459 4084.5 566.5 430 S458 4063.5 411.5 431 S457 4042.5 566.5 432 S456 4021.5 411.5 433 S455 4000.5 566.5 434 S454 3979.5 411.5 435 S453 3958.5 566.5 438 S450 3895.5 411.5 437 S451 3916.5 566.5 438 S450 3895.5 411.5 440 S448 3853.5 411.5 441 S447 3832.5 566.5 442 S446 3811.5 411.5 441 S446 3811.5 411.5 441 S447 3442 3727.5 411.5 444 S444	424	S464	4189.5	411.5
427 S461 4126.5 566.5 428 S460 4105.5 411.5 429 S459 4084.5 566.5 430 S458 4063.5 411.5 431 S457 4042.5 566.5 432 S456 4021.5 411.5 433 S455 4000.5 566.5 434 S454 3979.5 411.5 437 S451 3916.5 566.5 436 S452 3937.5 411.5 437 S451 3916.5 566.5 438 S450 3895.5 411.5 439 S449 3874.5 566.5 441 S447 3832.5 566.5 442 S446 3811.5 411.5 443 S445 3790.5 566.5 442 S446 3811.5 411.5 443 S444 3769.5 566.5 444 S444 3727.5				
429 \$459 4084.5 \$66.5 430 \$458 4003.5 \$411.5 431 \$457 4042.5 \$66.5 432 \$456 4021.5 \$411.5 433 \$455 4000.5 \$66.5 434 \$454 3979.5 \$411.5 435 \$453 3937.5 \$411.5 436 \$452 3937.5 \$411.5 437 \$451 3916.5 \$66.5 438 \$450 3895.5 \$411.5 439 \$444 3848.3 \$411.5 440 \$448 3853.5 \$411.5 441 \$447 3832.5 \$66.5 442 \$446 3811.5 \$411.5 443 \$444 3709.5 \$66.5 444 \$444 3709.5 \$46.5 444 \$444 3709.5 \$411.5 447 \$441 3706.5 \$66.5 448 \$440 3685.5 </td <td></td> <td></td> <td></td> <td></td>				
430 S458 4063.5 411.5 431 S457 4042.5 566.5 432 S456 4021.5 411.5 433 S455 4000.5 566.5 434 S454 3979.5 411.5 435 S453 3988.5 566.5 436 S452 3937.5 411.5 437 S451 3916.5 566.5 438 S450 3895.5 411.5 439 S449 3874.5 566.5 440 S448 3833.5 411.5 441 S447 3832.5 566.5 442 S446 3811.5 411.5 443 S445 3790.5 566.5 444 S444 3769.5 566.5 445 S443 3748.5 566.5 446 S442 3727.5 411.5 447 S441 3706.5 566.5 448 S440 3685.5				
431 8457 4042.5 566.5 432 8456 4021.5 411.5 433 8455 4000.5 566.5 434 8454 3979.5 411.5 435 S453 3938.5 566.5 438 S451 3916.5 566.5 438 S450 3895.5 411.5 439 S449 3874.5 566.5 440 S448 3833.5 561.5 441 S447 3832.5 566.5 442 S446 3811.5 411.5 443 S443 3790.5 566.5 444 S444 3727.5 411.5 445 S443 3734.5 566.5 444 S444 3727.5 411.5 447 S441 3706.5 566.5 448 S440 3685.5 411.5 447 S441 3706.5 566.5 448 S440 3685.5				
432 S456 4021.5 566.5 433 S455 4000.5 566.5 434 S454 3979.5 411.5 435 S453 3958.5 566.5 436 S452 3937.5 411.5 437 S451 3916.5 566.5 438 S450 3895.5 411.5 439 S449 3874.5 566.5 440 S448 3853.5 411.5 441 S447 3832.5 566.5 442 S446 3811.5 411.5 443 S445 3790.5 566.5 444 S444 3769.5 411.5 445 S443 3748.5 566.5 444 S444 3765.5 566.5 447 S441 3706.5 566.5 448 S440 3685.5 411.5 449 S439 3664.5 566.5 448 S440 3685.5				
434 8454 3979.5 411.5 435 S453 3958.5 566.5 436 S452 3937.5 411.5 437 S451 3916.5 566.5 438 S450 3895.5 411.5 439 S449 3874.5 566.5 440 S448 3853.5 411.5 441 S447 3832.5 566.5 442 S446 3811.5 411.5 443 S443 3790.5 566.5 444 S444 3769.5 411.5 445 S443 3734.5 566.5 444 S444 3705.5 566.5 444 S444 3706.5 566.5 448 S440 3685.5 411.5 447 S431 3662.5 566.5 448 S440 3685.5 566.5 448 S440 3685.5 566.5 452 S436 3601.5				
435 S453 3958.5 566.5 436 S452 3937.5 411.5 437 S451 3916.5 566.5 438 S450 3895.5 411.5 439 S449 3874.5 566.5 440 S448 3853.5 411.5 441 S447 3832.5 566.5 442 S446 3811.5 411.5 443 S445 3790.5 566.5 444 S444 3769.5 411.5 445 S443 3748.5 566.5 446 S442 3727.5 411.5 445 S443 3768.5 566.5 447 S441 3706.5 566.5 448 S440 3685.5 411.5 449 S439 3664.5 566.5 452 S436 3601.5 411.5 453 S435 3580.5 566.5 452 S436 3601.5				
436 S452 3937.5 411.5 437 S451 3916.5 566.5 438 S450 3895.5 411.5 439 S449 3874.5 566.5 440 S448 3835.5 411.5 441 S447 3832.5 566.5 442 S446 3811.5 411.5 443 S445 3790.5 566.5 444 S444 3769.5 411.5 443 S445 3790.5 566.5 444 S444 3769.5 411.5 445 S443 3748.5 566.5 444 S444 3706.5 566.5 448 S440 3685.5 411.5 447 S441 3706.5 566.5 450 S438 3643.5 411.5 451 S437 3622.5 566.5 452 S436 3601.5 411.5 453 S435 3580.5				
437 S451 3916.5 566.5 438 S450 3895.5 411.5 440 S448 3853.5 411.5 441 S447 3832.5 566.5 442 S446 3811.5 411.5 443 S445 3790.5 566.5 444 S444 3769.5 411.5 445 S443 3738.5 566.5 444 S444 3727.5 411.5 447 S441 3706.5 566.5 448 S440 3685.5 411.5 447 S441 3706.5 566.5 448 S440 3685.5 411.5 447 S441 3706.5 566.5 448 S440 3685.5 461.5 450 S438 3643.5 411.5 451 S439 3664.5 566.5 452 S436 3601.5 411.5 453 S435 3580.5				
439 \$449 3874.5 \$66.5 440 \$448 3853.5 \$411.5 441 \$447 3832.5 \$66.5 442 \$446 3811.5 \$411.5 443 \$444 3790.5 \$56.5 444 \$444 3748.5 \$66.5 446 \$442 3727.5 \$411.5 447 \$441 3706.5 \$66.5 448 \$440 3685.5 \$411.5 447 \$441 3706.5 \$66.5 450 \$438 3643.5 \$411.5 449 \$439 3664.5 \$566.5 450 \$438 3643.5 \$411.5 451 \$437 3622.5 \$66.5 452 \$436 3601.5 \$411.5 453 \$435 3580.5 \$66.5 454 \$434 3559.5 \$411.5 453 \$433 3538.5 \$66.5 454 \$434 359.5 <td>437</td> <td></td> <td></td> <td></td>	437			
440 S448 3853.5 411.5 441 S447 3832.5 566.5 442 S446 3811.5 411.5 443 S445 3790.5 566.5 444 S444 3769.5 411.5 445 S443 3748.5 566.5 446 S442 3727.5 411.5 447 S441 3706.5 566.5 448 S440 3685.5 411.5 449 S439 3664.5 566.5 450 S438 3643.5 411.5 451 S437 3622.5 566.5 452 S436 3601.5 411.5 453 S435 3580.5 566.5 454 S434 3559.5 411.5 455 S433 3538.5 566.5 454 S434 3559.5 411.5 455 S433 3538.5 566.5 454 S434 3559.5				
441 S447 3832.5 566.5 442 S446 3811.5 411.5 443 S444 3769.5 566.5 444 S444 3769.5 411.5 445 S443 3734.5 566.5 446 S442 3727.5 411.5 447 S441 3706.5 566.5 448 S440 3685.5 411.5 449 S439 3664.5 566.5 450 S438 3643.5 411.5 451 S437 3622.5 566.5 452 S436 3601.5 411.5 453 S435 3580.5 566.5 454 S434 3559.5 411.5 455 S433 3538.5 566.5 454 S434 3559.5 411.5 455 S433 3538.5 566.5 458 S430 3475.5 411.5 457 S431 3496.5				
443 S445 3790.5 566.5 444 S444 3769.5 411.5 445 S443 3748.5 566.5 446 S442 3727.5 411.5 447 S441 3706.5 566.5 448 S440 3685.5 411.5 449 S439 3664.5 566.5 450 S438 3643.5 411.5 451 S437 3622.5 566.5 452 S436 3601.5 411.5 453 S435 3580.5 566.5 454 S434 3559.5 411.5 455 S433 3538.5 566.5 454 S434 3559.5 411.5 457 S431 3496.5 566.5 458 S430 3475.5 411.5 457 S431 3496.5 566.5 458 S429 3454.5 566.5 460 S428 3433.5				
444 S444 3769.5 411.5 445 S443 3748.5 566.5 446 S442 3727.5 411.5 447 S441 3706.5 566.5 448 S440 3685.5 411.5 449 S439 3664.5 566.5 450 S438 3643.5 411.5 451 S437 3622.5 566.5 452 S436 3601.5 411.5 451 S437 3622.5 566.5 452 S436 3601.5 411.5 453 S435 3580.5 566.5 453 S433 3538.5 566.5 454 S434 3559.5 411.5 455 S433 3538.5 566.5 453 S431 3496.5 566.5 458 S430 3475.5 411.5 457 S431 3496.5 566.5 458 S430 3475.5				
445 S443 3748.5 566.5 446 S442 3727.5 411.5 447 S441 3706.5 566.5 448 S440 3685.5 411.5 449 S439 3664.5 566.5 450 S438 3643.5 411.5 451 S437 3622.5 566.5 452 S436 3601.5 411.5 453 S435 3580.5 566.5 452 S434 3559.5 411.5 453 S435 3580.5 566.5 454 S434 3559.5 566.5 456 S432 3517.5 411.5 457 S431 3496.5 566.5 458 S430 3475.5 411.5 459 S429 3454.5 366.5 460 S428 3331.5 416.5 461 S427 3412.5 566.5 462 S426 3391.5				
446 S442 3727.5 411.5 447 S441 3706.5 566.5 448 S440 3685.5 411.5 449 S439 3664.5 566.5 450 S438 3643.5 411.5 451 S437 3622.5 566.5 452 S436 3601.5 411.5 453 S435 3580.5 566.5 454 S434 3559.5 411.5 455 S433 3538.5 566.5 456 S432 3517.5 411.5 457 S431 3496.5 566.5 458 S430 3475.5 411.5 457 S431 3496.5 566.5 460 S428 3433.5 411.5 461 S427 3412.5 566.5 460 S428 3330.5 566.5 461 S421 3328.5 566.5 462 S426 3391.5				
448 S440 3685.5 411.5 449 S439 3664.5 566.5 450 S438 3643.5 411.5 451 S437 3622.5 566.5 452 S436 3601.5 411.5 453 S435 3580.5 566.5 454 S434 3559.5 411.5 455 S433 3538.5 566.5 458 S431 3496.5 566.5 458 S430 3475.5 411.5 459 S429 3454.5 566.5 460 S428 3433.5 411.5 461 S427 3412.5 566.5 462 S426 3391.5 411.5 463 S425 3370.5 566.5 464 S424 3349.5 411.5 465 S423 3328.5 566.5 466 S422 3307.5 411.5 465 S423 3328.5				
449 \$439 3664.5 \$566.5 450 \$438 3643.5 \$411.5 451 \$437 3622.5 \$566.5 452 \$436 3601.5 \$411.5 453 \$435 3580.5 \$566.5 454 \$434 3559.5 \$411.5 455 \$433 3538.5 \$566.5 456 \$432 3517.5 \$411.5 457 \$431 3496.5 \$566.5 458 \$430 3475.5 \$411.5 459 \$429 3454.5 \$566.5 460 \$428 3433.5 \$411.5 461 \$427 3412.5 \$566.5 462 \$426 3391.5 \$411.5 463 \$425 3370.5 \$566.5 464 \$424 3349.5 \$411.5 463 \$425 3370.5 \$566.5 466 \$422 3307.5 \$416.5 467 \$421				
450 8438 3643.5 411.5 451 8437 3622.5 566.5 452 8436 3601.5 411.5 453 8435 3580.5 566.5 454 8434 3559.5 411.5 455 8433 3538.5 566.5 456 8432 3517.5 411.5 457 8431 3496.5 566.5 458 8430 3475.5 411.5 459 8429 3454.5 566.5 460 8428 3433.5 411.5 461 8427 3412.5 566.5 462 8426 3391.5 411.5 463 8423 3328.5 566.5 464 8424 3349.5 411.5 465 8423 3328.5 566.5 464 8424 3349.5 411.5 467 8421 3286.5 566.5 468 8420 3265.5				
451 \$437 \$3622.5 \$566.5 452 \$436 \$3601.5 \$411.5 453 \$435 \$3580.5 \$566.5 454 \$434 \$3559.5 \$411.5 455 \$433 \$3538.5 \$566.5 456 \$432 \$3517.5 \$411.5 457 \$431 \$3496.5 \$566.5 458 \$430 \$3475.5 \$411.5 459 \$429 \$3454.5 \$566.5 460 \$428 \$3433.5 \$411.5 460 \$424 \$349.5 \$411.5 460 \$422 \$3370.5 \$566.5 462 \$426 \$3391.5 \$411.5 463 \$425 \$3370.5 \$566.5 464 \$424 \$3349.5 \$411.5 465 \$423 \$3223.5 \$466.5 467 \$421 \$3286.5 \$66.5 468 \$420 \$3265.5 \$411.5 470 \$418 </td <td></td> <td></td> <td></td> <td></td>				
453 \$435 \$3580.5 \$566.5 454 \$434 \$3559.5 \$411.5 455 \$433 \$3538.5 \$566.5 456 \$432 \$3517.5 \$411.5 457 \$431 \$3496.5 \$566.5 458 \$430 \$3475.5 \$411.5 459 \$429 \$454.5 \$566.5 460 \$428 \$3433.5 \$411.5 461 \$427 \$3412.5 \$566.5 462 \$426 \$3391.5 \$411.5 463 \$425 \$3370.5 \$566.5 464 \$424 \$3349.5 \$411.5 465 \$423 \$328.5 \$566.5 466 \$422 \$307.5 \$411.5 467 \$421 \$3286.5 \$566.5 468 \$420 \$3265.5 \$411.5 467 \$421 \$3286.5 \$566.5 470 \$418 \$3223.5 \$411.5 471 \$411 <td>451</td> <td>S437</td> <td>3622.5</td> <td>566.5</td>	451	S437	3622.5	566.5
454 8434 3559.5 411.5 455 8433 3538.5 566.5 456 8432 3517.5 411.5 457 8431 3496.5 566.5 458 8430 3475.5 411.5 459 8429 3454.5 566.5 460 8428 3433.5 411.5 461 8427 3412.5 566.5 462 8426 3391.5 411.5 463 8425 3370.5 566.5 464 8424 3349.5 411.5 465 8423 3328.5 566.5 466 8422 3307.5 411.5 467 8421 3286.5 566.5 468 8420 3265.5 411.5 467 8411 3223.5 411.5 470 8418 3223.5 411.5 471 8417 3202.5 566.5 472 8416 3181.5				
455 S433 3538.5 566.5 456 S432 3517.5 411.5 457 S431 3496.5 566.5 458 S430 3475.5 411.5 459 S429 3454.5 566.5 460 S428 3433.5 411.5 461 S427 3412.5 566.5 462 S426 3391.5 411.5 463 S425 3370.5 566.5 464 S424 3349.5 411.5 465 S423 3328.5 566.5 466 S422 3307.5 411.5 467 S421 3286.5 566.5 468 S420 3265.5 411.5 469 S419 3244.5 566.5 470 S418 3223.5 411.5 473 S416 3181.5 411.5 473 S416 3181.5 411.5 473 S414 3139.5				
456 S432 3517.5 411.5 457 S431 3496.5 566.5 458 S430 3475.5 411.5 459 S429 3454.5 566.5 460 S428 3433.5 411.5 461 S427 3412.5 566.5 462 S426 3391.5 411.5 463 S425 3370.5 566.5 464 S424 3349.5 411.5 465 S423 3328.5 566.5 466 S422 3307.5 411.5 467 S421 3286.5 566.5 468 S420 3265.5 411.5 469 S419 3244.5 566.5 470 S418 3223.5 411.5 471 S417 3202.5 566.5 472 S416 3181.5 411.5 473 S415 3160.5 566.5 474 S414 3139.5				
458 S430 3475.5 411.5 459 S429 3454.5 566.5 460 S428 3433.5 411.5 461 S427 3412.5 566.5 462 S426 3391.5 411.5 463 S425 3370.5 566.5 464 S424 3349.5 411.5 465 S423 3328.5 566.5 466 S422 3307.5 411.5 467 S421 3286.5 566.5 468 S420 3265.5 411.5 469 S419 3244.5 566.5 470 S418 3223.5 411.5 470 S418 3223.5 411.5 471 S417 3202.5 566.5 472 S416 3181.5 411.5 473 S415 3100.5 566.5 474 S414 3139.5 411.5 475 S413 3118.5	456		3517.5	411.5
459 \$429 \$3454.5 \$566.5 460 \$428 \$3433.5 \$411.5 461 \$427 \$3412.5 \$566.5 462 \$426 \$3391.5 \$411.5 463 \$425 \$3370.5 \$566.5 464 \$424 \$3349.5 \$411.5 465 \$423 \$328.5 \$566.5 466 \$422 \$307.5 \$411.5 467 \$421 \$3285.5 \$566.5 468 \$420 \$3265.5 \$411.5 469 \$419 \$3244.5 \$566.5 470 \$418 \$3223.5 \$411.5 471 \$417 \$320.5 \$566.5 470 \$418 \$3223.5 \$411.5 471 \$411 \$3100.5 \$566.5 470 \$418 \$3223.5 \$411.5 471 \$414 \$3130.5 \$566.5 472 \$416 \$3181.5 \$415.5 472 \$416 <td></td> <td></td> <td></td> <td></td>				
460 \$428 3433.5 \$411.5 461 \$427 3412.5 566.5 462 \$426 3391.5 \$411.5 463 \$425 3370.5 566.5 464 \$424 3349.5 \$411.5 465 \$423 3328.5 566.5 466 \$422 3307.5 \$411.5 467 \$421 3286.5 566.5 468 \$420 3265.5 \$411.5 469 \$419 3244.5 566.5 470 \$418 3223.5 \$411.5 471 \$417 3202.5 566.5 472 \$416 3181.5 \$415.5 473 \$411 3160.5 566.5 474 \$414 3139.5 \$411.5 475 \$413 3118.5 566.5 474 \$414 3097.5 \$411.5 477 \$411 3076.5 566.5 478 \$410 3055.5 <td></td> <td></td> <td></td> <td></td>				
462 \$426 3391.5 411.5 463 \$425 3370.5 566.5 464 \$424 3349.5 411.5 465 \$423 3328.5 566.5 466 \$422 3307.5 411.5 467 \$421 3286.5 566.5 468 \$420 3265.5 411.5 469 \$419 3244.5 566.5 470 \$418 3223.5 411.5 471 \$417 3202.5 566.5 472 \$416 3181.5 411.5 473 \$415 3160.5 566.5 474 \$414 3139.5 411.5 473 \$413 3118.5 566.5 474 \$414 3139.5 411.5 475 \$413 3118.5 566.5 476 \$412 3097.5 411.5 477 \$411 3076.5 566.5 478 \$410 3055.5				
463 S425 3370.5 566.5 464 S424 3349.5 411.5 465 S423 3328.5 566.5 466 S422 3307.5 411.5 467 S421 3286.5 566.5 468 S420 3265.5 411.5 469 S419 3244.5 566.5 470 S418 3223.5 411.5 471 S417 3202.5 566.5 472 S416 3181.5 411.5 473 S415 3160.5 566.5 474 S414 3139.5 411.5 475 S413 3118.5 566.5 476 S412 3097.5 411.5 477 S411 3076.5 566.5 478 S410 3035.5 411.5 479 S409 3034.5 566.5 479 S409 3034.5 566.5 480 S408 3013.5				
464 S424 3349.5 411.5 465 S423 3328.5 566.5 466 S422 3307.5 411.5 467 S421 3286.5 566.5 468 S420 3265.5 411.5 469 S419 3244.5 566.5 470 S418 3223.5 411.5 471 S417 3202.5 566.5 472 S416 3181.5 411.5 473 S415 3160.5 566.5 474 S414 3139.5 411.5 475 S413 3118.5 566.5 476 S412 3097.5 411.5 477 S411 3076.5 566.5 478 S410 3055.5 411.5 479 S409 3034.5 566.5 478 S410 3035.5 411.5 480 S408 3013.5 411.5 481 S407 2992.5				
465 S423 3328.5 566.5 466 S422 3307.5 411.5 467 S421 3286.5 566.5 468 S420 3265.5 411.5 469 S419 3244.5 566.5 470 S418 3223.5 411.5 470 S418 3223.5 411.5 471 S417 3202.5 566.5 472 S416 3181.5 411.5 473 S415 3100.5 566.5 474 S414 3139.5 411.5 475 S413 3118.5 566.5 477 S411 3097.5 411.5 478 S410 3055.5 411.5 479 S409 3034.5 566.5 480 S408 3013.5 411.5 481 S407 2992.5 566.5 482 S406 2971.5 411.5 483 S405 2950.5				
467 S421 3286.5 566.5 468 S420 3265.5 411.5 469 S419 3244.5 566.5 470 S418 3223.5 411.5 471 S417 3202.5 566.5 472 S416 3181.5 411.5 473 S415 3160.5 566.5 474 S414 3139.5 411.5 475 S413 3118.5 566.5 476 S412 3097.5 411.5 477 S411 3076.5 566.5 478 S410 3055.5 411.5 479 S409 3034.5 566.5 478 S410 3055.5 411.5 480 S408 3013.5 411.5 481 S407 2992.5 566.5 482 S406 2971.5 411.5 483 S403 2998.5 566.5 484 S404 2929.5	465	S423		
468 \$420 \$3265.5 \$411.5 469 \$419 \$3244.5 \$66.5 470 \$418 \$3223.5 \$411.5 471 \$417 \$3202.5 \$66.5 472 \$416 \$3181.5 \$411.5 473 \$415 \$3160.5 \$66.5 474 \$414 \$3139.5 \$411.5 475 \$413 \$3118.5 \$66.5 476 \$412 \$3097.5 \$411.5 477 \$411 \$3076.5 \$566.5 478 \$410 \$3055.5 \$411.5 479 \$409 \$3034.5 \$566.5 480 \$408 \$3013.5 \$411.5 481 \$407 \$2992.5 \$66.5 482 \$406 \$2971.5 \$411.5 483 \$406 \$2971.5 \$411.5 483 \$404 \$2929.5 \$466.5 484 \$404 \$2929.5 \$411.5 485 \$403				
469 \$419 3244.5 566.5 470 \$418 3223.5 411.5 471 \$417 3202.5 566.5 472 \$416 3181.5 411.5 473 \$415 3160.5 566.5 474 \$414 3139.5 411.5 475 \$413 3118.5 566.5 476 \$412 3097.5 411.5 477 \$411 3076.5 566.5 478 \$410 3055.5 411.5 479 \$409 3034.5 566.5 480 \$408 3013.5 411.5 481 \$407 2992.5 566.5 482 \$406 2971.5 411.5 483 \$405 2950.5 566.5 484 \$404 2929.5 \$461.5 485 \$403 2908.5 566.5 486 \$402 2887.5 411.5 487 \$401 2866.5				
471 \$417 3202.5 \$66.5 472 \$416 3181.5 411.5 473 \$415 3160.5 \$66.5 474 \$414 3139.5 411.5 475 \$413 3118.5 \$66.5 476 \$412 3097.5 411.5 476 \$412 3097.5 411.5 477 \$411 3076.5 \$66.5 478 \$410 3055.5 411.5 479 \$409 3034.5 \$66.5 480 \$408 3013.5 411.5 481 \$407 2992.5 \$66.5 482 \$406 2971.5 411.5 483 \$405 2950.5 \$66.5 484 \$404 2929.5 \$46.5 485 \$403 2988.5 \$66.5 485 \$404 2929.5 411.5 487 \$401 286.5 \$66.5 488 \$400 2887.5				
472 S416 3181.5 411.5 473 S415 3160.5 566.5 474 S414 3139.5 411.5 475 S413 3118.5 566.5 476 S412 3097.5 411.5 477 S411 3076.5 566.5 478 S410 3055.5 411.5 479 S409 3034.5 566.5 480 S408 3013.5 411.5 481 S407 2992.5 566.5 482 S406 2971.5 411.5 483 S405 2950.5 566.5 484 S404 2929.5 566.5 484 S404 2929.5 411.5 485 S403 2908.5 566.5 486 S402 2887.5 411.5 487 S401 2866.5 566.5 488 S400 2845.5 411.5 489 S399 2824.5				
473 S415 3160.5 566.5 474 S414 3139.5 411.5 475 S413 3118.5 566.5 476 S412 3097.5 411.5 477 S411 3076.5 566.5 478 S410 3055.5 411.5 479 S409 3034.5 566.5 480 S408 3013.5 411.5 481 S407 2992.5 566.5 482 S406 2971.5 411.5 483 S405 2950.5 566.5 484 S404 2929.5 411.5 485 S403 2908.5 566.5 484 S404 2929.5 411.5 485 S403 2908.5 566.5 484 S404 2929.5 411.5 485 S403 2908.5 566.5 488 S400 2887.5 411.5 487 S401 2866.5				
474 S414 3139.5 411.5 475 S413 3118.5 566.5 476 S412 3097.5 411.5 477 S411 3076.5 566.5 478 S410 3055.5 411.5 479 S409 3034.5 566.5 480 S408 3013.5 411.5 481 S407 2992.5 566.5 482 S406 2971.5 411.5 483 S405 2950.5 566.5 484 S404 2929.5 411.5 485 S403 2908.5 566.5 486 S402 2887.5 411.5 487 S401 2866.5 566.5 488 S400 2845.5 411.5 489 S399 2824.5 541.5 490 S398 2803.5 411.5 492 S396 2761.5 411.5 493 S397 2782.5				
476 S412 3097.5 411.5 477 S411 3076.5 566.5 478 S410 3055.5 411.5 479 S409 3034.5 566.5 480 S408 3013.5 411.5 481 S407 2992.5 566.5 482 S406 2971.5 411.5 483 S405 2950.5 566.5 484 S404 2929.5 411.5 485 S403 2908.5 566.5 486 S402 2887.5 411.5 487 S401 2866.5 566.5 488 S400 2845.5 411.5 489 S399 2824.5 566.5 490 S398 2803.5 411.5 491 S397 2782.5 566.5 492 S396 2761.5 411.5 493 S394 2719.5 411.5 494 S394 27719.5		S414	3139.5	411.5
477 S411 3076.5 566.5 478 S410 3055.5 411.5 479 S409 3034.5 566.5 480 S408 3013.5 411.5 481 S407 2992.5 566.5 482 S406 2971.5 411.5 483 S405 2950.5 566.5 484 S404 2929.5 411.5 485 S403 2908.5 566.5 486 S402 2887.5 411.5 487 S401 2866.5 566.5 488 S400 2845.5 411.5 489 S399 2824.5 566.5 480 S398 2803.5 411.5 491 S397 2782.5 566.5 492 S396 2761.5 411.5 493 S395 2740.5 566.5 494 S394 2719.5 411.5 495 S393 2698.5				
478 \$410 3055.5 411.5 479 \$409 3034.5 566.5 480 \$4013.5 411.5 481 \$407 2992.5 566.5 482 \$406 2971.5 411.5 483 \$405 2950.5 566.5 484 \$404 2929.5 411.5 485 \$403 2908.5 566.5 486 \$402 2887.5 411.5 487 \$401 2866.5 566.5 488 \$400 2845.5 411.5 489 \$399 2824.5 566.5 490 \$398 2803.5 411.5 493 \$397 2782.5 566.5 492 \$396 2761.5 411.5 493 \$395 2740.5 566.5 494 \$394 2719.5 416.5 495 \$393 2698.5 566.5 496 \$392 2677.5 411.5				
480 \$408 \$3013.5 \$411.5 481 \$407 \$2992.5 \$66.5 482 \$406 \$2971.5 \$411.5 483 \$405 \$2950.5 \$66.5 484 \$404 \$2929.5 \$411.5 485 \$403 \$2908.5 \$66.5 486 \$402 \$2887.5 \$411.5 487 \$401 \$2866.5 \$66.5 488 \$400 \$2845.5 \$411.5 489 \$399 \$2824.5 \$66.5 490 \$398 \$2803.5 \$411.5 491 \$397 \$2782.5 \$66.5 492 \$396 \$2761.5 \$411.5 493 \$393 \$2698.5 \$566.5 494 \$394 \$2719.5 \$411.5 495 \$393 \$2698.5 \$66.5 496 \$392 \$2677.5 \$411.5 497 \$391 \$2656.5 \$66.5 498 \$390				
481 S407 2992.5 566.5 482 S406 2971.5 411.5 483 S405 2950.5 566.5 484 S404 2929.5 411.5 485 S403 2908.5 566.5 486 S402 2887.5 411.5 487 S401 2866.5 566.5 488 S400 2845.5 411.5 489 S399 2824.5 566.5 490 S398 2803.5 411.5 491 S397 2782.5 566.5 492 S396 2761.5 411.5 493 S395 2740.5 566.5 494 S394 2719.5 411.5 495 S393 2698.5 566.5 496 S392 2677.5 411.5 497 S391 2656.5 566.5 498 S390 2635.5 411.5 499 S389 2614.5				
482 S406 2971.5 411.5 483 S405 2950.5 566.5 484 S404 2929.5 411.5 485 S403 2908.5 566.5 486 S402 2887.5 411.5 487 S401 2866.5 565.5 488 S400 2845.5 411.5 489 S399 2824.5 566.5 490 S398 2803.5 411.5 491 S397 2782.5 566.5 492 S396 2761.5 411.5 493 S395 2740.5 566.5 494 S394 2719.5 411.5 495 S393 2698.5 566.5 496 S392 2677.5 411.5 497 S391 2656.5 566.5 498 S390 2635.5 411.5 499 S389 2614.5 566.5 500 S388 2593.5				
483 S405 2950.5 566.5 484 S404 2929.5 411.5 485 S403 2908.5 566.5 486 S402 2887.5 411.5 487 S401 2866.5 566.5 488 S400 2845.5 411.5 489 S399 2824.5 566.5 490 S398 2803.5 411.5 491 S397 2782.5 566.5 492 S396 2761.5 411.5 493 S395 2740.5 566.5 494 S394 2719.5 411.5 495 S393 2698.5 566.5 496 S392 2677.5 411.5 497 S391 2656.5 566.5 498 S390 2635.5 411.5 499 S389 2614.5 566.5 500 S388 2593.5 411.5 501 S387 2572.5				
485 S403 2908.5 566.5 486 S402 2887.5 411.5 487 S401 2866.5 566.5 488 S400 2845.5 411.5 489 S399 2824.5 566.5 490 S398 2803.5 411.5 491 S397 2782.5 566.5 492 S396 2761.5 411.5 493 S395 2740.5 566.5 494 S394 2719.5 411.5 495 S393 2698.5 566.5 496 S392 2677.5 411.5 497 S391 2656.5 566.5 498 S390 2635.5 411.5 499 S389 2614.5 566.5 500 S388 2593.5 411.5 501 S387 2572.5 566.5 502 S386 2551.5 411.5 503 S384 2590.5	400	S405	2950.5	566.5
486 S402 2887.5 411.5 487 S401 2866.5 566.5 488 S400 2845.5 411.5 489 S399 2824.5 566.5 490 S398 2803.5 411.5 491 S397 2782.5 566.5 492 S396 2761.5 411.5 493 S395 2740.5 566.5 494 S394 2719.5 411.5 495 S393 2698.5 566.5 496 S392 2677.5 411.5 497 S391 2656.5 566.5 498 S390 2635.5 411.5 499 S389 2614.5 566.5 500 S388 2593.5 411.5 501 S387 2572.5 566.5 502 S386 2551.5 411.5 503 S385 2590.5 411.5 505 S383 2488.5				
487 S401 2866.5 566.5 488 S400 2845.5 411.5 489 S399 2824.5 566.5 490 S398 2803.5 411.5 491 S397 2782.5 566.5 492 S396 2761.5 411.5 493 S395 2740.5 566.5 494 S394 2719.5 411.5 495 S393 2698.5 566.5 496 S392 2677.5 411.5 497 S391 2656.5 566.5 498 S390 2635.5 411.5 499 S389 2614.5 566.5 500 S388 2593.5 411.5 501 S387 2572.5 566.5 502 S386 2551.5 411.5 503 S384 2599.5 411.5 504 S384 2599.5 411.5 505 S383 2488.5				
489 S399 2824.5 566.5 490 S398 2803.5 411.5 491 S397 2782.5 566.5 492 S396 2761.5 411.5 493 S395 2740.5 566.5 494 S394 2719.5 411.5 495 S393 2698.5 566.5 496 S392 2677.5 411.5 497 S391 2656.5 566.5 498 S390 2635.5 411.5 500 S388 2593.5 411.5 501 S387 2572.5 566.5 502 S386 2551.5 411.5 503 S385 2530.5 566.5 504 S384 2509.5 411.5 505 S383 2488.5 566.5 506 S382 2467.5 411.5 507 S381 2446.5 566.5 508 S380 2425.5				
490 \$398 2803.5 411.5 491 \$397 2782.5 566.5 492 \$396 2761.5 411.5 493 \$395 2740.5 566.5 494 \$394 2719.5 411.5 495 \$393 2698.5 566.5 496 \$392 2677.5 411.5 497 \$391 2656.5 566.5 498 \$390 2635.5 411.5 500 \$388 2593.5 411.5 501 \$387 2572.5 566.5 502 \$386 2551.5 411.5 503 \$385 2530.5 566.5 504 \$384 2509.5 411.5 505 \$383 2488.5 566.5 506 \$382 2467.5 411.5 507 \$381 2446.5 566.5 508 \$380 2425.5 411.5 509 \$379 2404.5				
491 S397 2782.5 566.5 492 S396 2761.5 411.5 493 S395 2740.5 566.5 494 S394 2719.5 411.5 495 S393 2698.5 566.5 496 S392 2677.5 411.5 497 S391 2656.5 566.5 498 S390 2635.5 411.5 499 S389 2614.5 566.5 500 S388 2593.5 411.5 501 S387 2572.5 566.5 502 S386 2551.5 411.5 503 S385 2530.5 566.5 504 S384 2509.5 411.5 505 S383 2488.5 566.5 506 S382 2467.5 411.5 507 S381 2446.5 566.5 508 S380 2425.5 411.5 509 S379 2404.5				
492 S396 2761.5 411.5 493 S395 2740.5 566.5 494 S394 2719.5 411.5 495 S393 2698.5 566.5 496 S392 2677.5 411.5 497 S391 2656.5 566.5 498 S390 2635.5 411.5 499 S389 2614.5 566.5 500 S388 2593.5 411.5 501 S387 2572.5 566.5 502 S386 2551.5 411.5 503 S385 2530.5 566.5 504 S384 2509.5 411.5 505 S383 2488.5 566.5 506 S382 2467.5 411.5 507 S381 2446.5 566.5 508 S380 2425.5 411.5 509 S379 2404.5 566.5				
494 \$394 2719.5 411.5 495 \$393 2698.5 566.5 496 \$392 2677.5 411.5 497 \$391 2656.5 566.5 498 \$390 2635.5 411.5 499 \$389 2614.5 566.5 500 \$388 2593.5 411.5 501 \$387 2572.5 566.5 502 \$386 2551.5 411.5 503 \$385 2530.5 566.5 504 \$384 2509.5 411.5 505 \$383 2488.5 566.5 506 \$382 2467.5 411.5 507 \$381 2446.5 566.5 508 \$380 2425.5 411.5 509 \$379 2404.5 566.5	492	S396	2761.5	411.5
495 S393 2698.5 566.5 496 S392 2677.5 411.5 497 S391 2656.5 566.5 498 S390 2635.5 411.5 499 S389 2614.5 566.5 500 S388 2593.5 411.5 501 S387 2572.5 566.5 502 S386 2551.5 411.5 503 S385 2530.5 566.5 504 S384 2509.5 411.5 505 S383 2488.5 566.5 506 S382 2467.5 411.5 507 S381 2446.5 566.5 508 S380 2425.5 411.5 509 S379 2404.5 566.5				
496 S392 2677.5 411.5 497 S391 2656.5 566.5 498 S390 2635.5 411.5 499 S389 2614.5 566.5 500 S388 2593.5 411.5 501 S387 2572.5 566.5 502 S386 2551.5 411.5 503 S385 2530.5 566.5 504 S384 2509.5 411.5 505 S383 2488.5 566.5 506 S382 2467.5 411.5 507 S381 2446.5 566.5 508 S380 2425.5 411.5 509 S379 2404.5 566.5				
498 S390 2635.5 411.5 499 S389 2614.5 566.5 500 S388 2593.5 411.5 501 S387 2572.5 566.5 502 S386 2551.5 411.5 503 S385 2530.5 566.5 504 S384 2509.5 411.5 505 S383 2488.5 566.5 506 S382 2467.5 411.5 507 S381 2446.5 566.5 508 S380 2425.5 411.5 509 S379 2404.5 566.5	496	S392	2677.5	411.5
499 S389 2614.5 566.5 500 S388 2593.5 411.5 501 S387 2572.5 566.5 502 S386 2551.5 411.5 503 S385 2530.5 566.5 504 S384 2509.5 411.5 505 S383 2488.5 566.5 506 S382 2467.5 411.5 507 S381 2446.5 566.5 508 S380 2425.5 411.5 509 S379 2404.5 566.5				
500 S388 2593.5 411.5 501 S387 2572.5 566.5 502 S386 2551.5 411.5 503 S385 2530.5 566.5 504 S384 2509.5 411.5 505 S383 2488.5 566.5 506 S382 2467.5 411.5 507 S381 2446.5 566.5 508 S380 2425.5 411.5 509 S379 2404.5 566.5				
501 S387 2572.5 566.5 502 S386 2551.5 411.5 503 S385 2530.5 566.5 504 S384 2509.5 411.5 505 S383 2488.5 566.5 506 S382 2467.5 411.5 507 S381 2446.5 566.5 508 S380 2425.5 411.5 509 S379 2404.5 566.5				
503 S385 2530.5 566.5 504 S384 2509.5 411.5 505 S383 2488.5 566.5 506 S382 2467.5 411.5 507 S381 2446.5 566.5 508 S380 2425.5 411.5 509 S379 2404.5 566.5			2572.5	566.5
504 S384 2509.5 411.5 505 S383 2488.5 566.5 506 S382 2467.5 411.5 507 S381 2446.5 566.5 508 S380 2425.5 411.5 509 S379 2404.5 566.5				
505 S383 2488.5 566.5 506 S382 2467.5 411.5 507 S381 2446.5 566.5 508 S380 2425.5 411.5 509 S379 2404.5 566.5				
507 S381 2446.5 566.5 508 S380 2425.5 411.5 509 S379 2404.5 566.5	505		2488.5	566.5
508 S380 2425.5 411.5 509 S379 2404.5 566.5				
509 S379 2404.5 566.5				
	510	S378	2383.5	411.5

Pad #	Pad name	X	Y
511	S377	2362.5	566.5
512 513	S376 S375	2341.5 2320.5	411.5 566.5
514	S374	2299.5	411.5
515	S373	2278.5	566.5
516	S372	2257.5	411.5
517	S371	2236.5	566.5
518 519	S370 S369	2215.5 2194.5	411.5 566.5
520	S368	2173.5	411.5
521	S367	2152.5	566.5
522	S366	2131.5	411.5
523 524	S365 S364	2110.5 2089.5	566.5 411.5
525	S363	2068.5	566.5
526	S362	2047.5	411.5
527	S361	2026.5	566.5
528 529	S360 S359	2005.5 1984.5	411.5 566.5
530	S358	1963.5	411.5
531	S357	1942.5	566.5
532	S356	1921.5	411.5
533	S355	1900.5	566.5
534 535	S354 S353	1879.5 1858.5	411.5 566.5
536	S352	1837.5	411.5
537	S351	1816.5	566.5
538	S350	1795.5	411.5
539 540	S349	1774.5	566.5
540	S348 S347	1753.5 1732.5	411.5 566.5
542	S346	1711.5	411.5
543	S345	1690.5	566.5
544	S344	1669.5	411.5
545 546	S343 S342	1648.5 1627.5	566.5 411.5
547	S341	1606.5	566.5
548	S340	1585.5	411.5
549	S339	1564.5	566.5
550 551	S338 S337	1543.5 1522.5	411.5 566.5
552	S336	1501.5	411.5
553	S335	1480.5	566.5
554	S334	1459.5	411.5
555	S333	1438.5 1417.5	566.5
556 557	S332 S331	1396.5	411.5 566.5
558	S330	1375.5	411.5
559	S329	1354.5	566.5
560	S328	1333.5	411.5
561 562	S327 S326	1312.5 1291.5	566.5 411.5
563	S325	1270.5	566.5
564	S324	1249.5	411.5
565	S323	1228.5	566.5
566	S322 S321	1207.5 1186.5	411.5 566.5
567 568	S321 S320	1165.5	566.5 411.5
569	S319	1144.5	566.5
570	S318	1123.5	411.5
571	S317	1102.5	566.5
572 573	S316 S315	1081.5 1060.5	411.5 566.5
574	S314	1039.5	411.5
575	S313	1018.5	566.5
576	S312	997.5	411.5
577 578	S311 S310	976.5 955.5	566.5 411.5
579	S310 S309	934.5	566.5
580	S308	913.5	411.5
581	S307	892.5	566.5
582	S306 S305	871.5 850.5	411.5
583 584	S305 S304	850.5 829.5	566.5 411.5
585	S303	808.5	566.5
586	S302	787.5	411.5
587	S301	766.5	566.5
588 589	S300 S299	745.5 724.5	411.5 566.5
590	S299 S298	703.5	411.5
591	S297	682.5	566.5
592	S296	661.5	411.5
593	S295	640.5	566.5
594 595	S294 S293	619.5 598.5	411.5 566.5
596	S292	577.5	411.5
597	S291	556.5	566.5

Pad #	Pad name	X 525.5	Y
598	S290	535.5	411
599	S289	514.5	566
600	S288	493.5	411
601	S287 S286	472.5	566
602	S285	451.5 430.5	411 566
604	S284	409.5	411
605	S283	388.5	566
606	S282	367.5	411
607	S281	346.5	566
608	S280	325.5	411
609	S279	304.5	566
610	S278	283.5	411
611	S277	262.5	566
612	S276	241.5	411
613	S275	220.5	566
614	S274	199.5	411
615	S273	178.5	566
616	S272	157.5	411
617	S271	136.5	566
618	S270	115.5	411
619	S269	94.5	566
620	S268	73.5	411
621	S267	52.5	566
622	S266	31.5	411
623	S265	10.5	566
624	S264	-10.5	411
625	S263	-31.5	566
626	S262	-52.5	411
627	S261	-73.5	566
628	S260	-94.5	411
629	S259	-115.5	566
630	S258	-136.5	411
631	S257	-157.5	566
632	S256	-178.5	411
633	S255	-199.5	566
634	S254	-220.5	411
635	S253	-241.5	566
636	S252	-262.5	411
637	S251	-283.5	566
638	S250	-304.5	411
639	S249	-325.5	566
640	S248	-346.5	411
641	S247	-367.5	566
642	S246	-388.5	411
643	S245	-409.5	566
644	S244	-430.5	411
645	S243	-451.5	566
646	S242	-472.5	411.
647	S241	-493.5	566
648	S240 S239	-514.5	411
649	S239 S238	-535.5 -556.5	566 411
650 651	S238 S237	-556.5	566
652	S237 S236	-577.5	411
653	S235	-598.5	566
654	S234	-640.5	411
655	S234 S233	-640.5	566
656	S232	-682.5	411
657	S232 S231	-703.5	566
658	S230	-724.5	411
659	S229	-745.5	566
660	S228	-766.5	411
661	S227	-787.5	566
662	S226	-808.5	411
663	S225	-829.5	566
664	S224	-850.5	411
665	S223	-871.5	566
666	S222	-892.5	411
667	S221	-913.5	566
668	S220	-934.5	411
669	S219	-955.5	566
670	S218	-976.5	411
671	S217	-997.5	566
672	S216	-1018.5	411
673	S215	-1039.5	566
674	S214	-1060.5	411
675	S213	-1081.5	566
676	S212	-1102.5	411
677	S211	-1123.5	566
678	S210	-1144.5	411
679	S209	-1165.5	566
680	S208	-1186.5	411
681	S207	-1207.5	566
682	S206	-1228.5	411
			566
683	S205	-1249.5	500.

Pad #	Pad name	X	Y
685	S203	-1291.5	566.5
686 687	S202 S201	-1312.5 -1333.5	411.5 566.5
688	S200	-1354.5	411.5
689	S199	-1375.5	566.5
690	S198	-1396.5	411.5
691 692	S197 S196	-1417.5 -1438.5	566.5 411.5
693	S195	-1459.5	566.5
694	S194	-1480.5	411.5
695	S193	-1501.5	566.5
696	S192 S191	-1522.5 -1543.5	411.5 566.5
698	S190	-1564.5	411.5
699	S189	-1585.5	566.5
700	S188	-1606.5	411.5
701 702	S187 S186	-1627.5 -1648.5	566.5 411.5
703	S185	-1669.5	566.5
704	S184	-1690.5	411.5
705 706	S183 S182	-1711.5 -1732.5	566.5 411.5
707	S182	-1753.5	566.5
708	S180	-1774.5	411.5
709	S179	-1795.5	566.5
710 711	S178 S177	-1816.5 -1837.5	411.5 566.5
712	S176	-1858.5	411.5
713	S175	-1879.5	566.5
714	S174	-1900.5	411.5
715 716	S173 S172	-1921.5 -1942.5	566.5 411.5
717	S172 S171	-1963.5	566.5
718	S170	-1984.5	411.5
719 720	S169	-2005.5	566.5
721	S168 S167	-2026.5 -2047.5	411.5 566.5
722	S166	-2068.5	411.5
723	S165	-2089.5	566.5
724 725	S164 S163	-2110.5 -2131.5	411.5 566.5
726	S162	-2151.5	411.5
727	S161	-2173.5	566.5
728	S160	-2194.5	411.5
729 730	S159 S158	-2215.5 -2236.5	566.5 411.5
731	S157	-2257.5	566.5
732	S156	-2278.5	411.5
733 734	S155 S154	-2299.5 -2320.5	566.5 411.5
735	S154 S153	-2341.5	566.5
736	S152	-2362.5	411.5
737 738	S151	-2383.5	566.5
739	S150 S149	-2404.5 -2425.5	411.5 566.5
740	S148	-2446.5	411.5
741	S147	-2467.5	566.5
742 743	S146 S145	-2488.5 -2509.5	411.5 566.5
744	S145 S144	-2530.5	411.5
745	S143	-2551.5	566.5
746	S142	-2572.5	411.5
747 748	S141 S140	-2593.5 -2614.5	566.5 411.5
749	S139	-2635.5	566.5
750	S138	-2656.5	411.5
751 752	S137	-2677.5 -2698.5	566.5 411.5
753	S136 S135	-2698.5 -2719.5	566.5
754	S134	-2740.5	411.5
755	S133	-2761.5	566.5
756 757	S132 S131	-2782.5 -2803.5	411.5 566.5
758	S130	-2824.5	411.5
759	S129	-2845.5	566.5
760 761	S128 S127	-2866.5 -2887.5	411.5 566.5
762	S127 S126	-2887.5	411.5
763	S125	-2929.5	566.5
764	S124	-2950.5	411.5
765 766	S123 S122	-2971.5 -2992.5	566.5 411.5
767	S122	-3013.5	566.5
768	S120	-3034.5	411.5
769	S119	-3055.5	566.5
770 771	S118 S117	-3076.5 -3097.5	411.5 566.5
	1 ~ - * /	5071.5	500.5

Pad #	D. J	v	Y
772	Pad name S116	-3118.5	411.5
773	S115	-3118.5	566.5
774	S114	-3160.5	411.5
775	S113	-3181.5	566.5
776	S112	-3202.5	411.5
777	S111	-3223.5	566.5
778	S110	-3244.5	411.5
779	S109	-3265.5	566.5
780	S108	-3286.5	411.5
781	S107	-3307.5	566.5
782	S106	-3328.5	411.5
783	S105	-3349.5	566.5
784	S104	-3370.5	411.5
785 786	S103 S102	-3391.5 -3412.5	566.5 411.5
787	S102 S101	-3412.5	566.5
788	S100	-3454.5	411.5
789	S99	-3475.5	566.5
790	S98	-3496.5	411.5
791	S97	-3517.5	566.5
792	S96	-3538.5	411.5
793	S95	-3559.5	566.5
794	S94	-3580.5	411.5
795	S93	-3601.5	566.5
796	S92	-3622.5	411.5
797	S91	-3643.5	566.5
798	S90	-3664.5	411.5
799	S89	-3685.5	566.5
800	S88	-3706.5	411.5
801	S87 S86	-3727.5 -3748.5	566.5
802 803	S85	-3748.5 -3769.5	411.5 566.5
803	S84	-3769.5	411.5
805	S83	-3790.3	566.5
806	S82	-3832.5	411.5
807	S81	-3853.5	566.5
808	S80	-3874.5	411.5
809	S79	-3895.5	566.5
810	S78	-3916.5	411.5
811	S77	-3937.5	566.5
812	S76	-3958.5	411.5
813	S75	-3979.5	566.5
814	S74	-4000.5	411.5
815	S73	-4021.5	566.5
816	S72	-4042.5	411.5
817	S71	-4063.5	566.5
818 819	S70 S69	-4084.5 -4105.5	411.5
819		-4105.5 -4126.5	566.5 411.5
820	S68 S67	-4126.5 -4147.5	566.5
822	S66	-4168.5	411.5
823	S65	-4189.5	566.5
824	S64	-4210.5	411.5
825	S63	-4231.5	566.5
826	S62	-4252.5	411.5
827	S61	-4273.5	566.5
828	S60	-4294.5	411.5
829	S59	-4315.5	566.5
830	S58	-4336.5	411.5
831	S57	-4357.5	566.5
832	S56	-4378.5	411.5
833	S55	-4399.5	566.5
834	S54	-4420.5 -4441.5	411.5
835 836	S53 S52	-4441.5 -4462.5	566.5 411.5
837	S52 S51	-4462.5 -4483.5	566.5
838	S50	-4483.3	411.5
839	S49	-4525.5	566.5
840	S48	-4546.5	411.5
841	S47	-4567.5	566.5
842	S46	-4588.5	411.5
843	S45	-4609.5	566.5
844	S44	-4630.5	411.5
845	S43	-4651.5	566.5
846	S42	-4672.5	411.5
847	S41	-4693.5	566.5
848	S40	-4714.5	411.5
849	S39	-4735.5	566.5
850	S38	-4756.5	411.5
851 852	S37 S36	-4777.5 -4798.5	566.5 411.5
852	S35	-4/98.5 -4819.5	566.5
854	S34	-4819.5 -4840.5	411.5
855	S33	-4861.5	566.5
856	S32	-4882.5	411.5
857	S31	-4903.5	566.5
858	S30	-4924.5	411.5
	*		, ,,,,,

Pad #	Pad name	X	Y
859	S29	-4945.5	566.5
860	S28	-4966.5	411.5
861	S27	-4987.5	566.5
862 863	S26 S25	-5008.5 -5029.5	411.5 566.5
864	S24	-5050.5	411.5
865	S23	-5071.5	566.5
866	S22	-5092.5	411.5
867	S21	-5113.5	566.5
868 869	S20 S19	-5134.5 -5155.5	411.5 566.5
870	S18	-5176.5	411.5
871	S17	-5197.5	566.5
872	S16	-5218.5	411.5
873	S15	-5239.5	566.5
874	S14	-5260.5	411.5
875 876	S13 S12	-5281.5 -5302.5	566.5 411.5
877	S11	-5323.5	566.5
878	S10	-5344.5	411.5
879	S9	-5365.5	566.5
880	S8	-5386.5	411.5
881 882	S7 S6	-5407.5 -5428.5	566.5 411.5
883	S5	-5449.5	566.5
884	S4	-5470.5	411.5
885	S3	-5491.5	566.5
886	S2	-5512.5	411.5
887 888	S1 TESTO29	-5533.5 -5554.5	566.5 411.5
889	TESTO30	-5554.5	566.5
890	VGLDMY3	-5795.5	411.5
891	G219	-5816.5	566.5
892	G217	-5837.5	411.5
893 894	G215 G213	-5858.5 -5879.5	566.5 411.5
895	G211	-5900.5	566.5
896	G209	-5921.5	411.5
897	G207	-5942.5	566.5
898	G205	-5963.5	411.5
899 900	G203 G201	-5984.5 -6005.5	566.5 411.5
901	G199	-6026.5	566.5
902	G197	-6047.5	411.5
903	G195	-6068.5	566.5
904	G193	-6089.5	411.5
905 906	G191 G189	-6110.5 -6131.5	566.5 411.5
907	G187	-6152.5	566.5
908	G185	-6173.5	411.5
909	G183	-6194.5	566.5
910	G181	-6215.5	411.5
911 912	G179 G177	-6236.5 -6257.5	566.5 411.5
913	G175	-6278.5	566.5
914	G173	-6299.5	411.5
915	G171	-6320.5	566.5
916	G169	-6341.5	411.5
917	G167	-6362.5	566.5 411.5
918 919	G165 G163	-6383.5 -6404.5	566.5
920	G161	-6425.5	411.5
921	G159	-6446.5	566.5
922	G157	-6467.5	411.5
923 924	G155	-6488.5 -6509.5	566.5 411.5
924	G153 G151	-6509.5 -6530.5	566.5
926	G149	-6551.5	411.5
927	G147	-6572.5	566.5
928	G145	-6593.5	411.5
929 930	G143 G141	-6614.5 -6635.5	566.5 411.5
931	G139	-6656.5	566.5
932	G137	-6677.5	411.5
933	G135	-6698.5	566.5
934	G133	-6719.5	411.5
935	G131	-6740.5	566.5
936 937	G129 G127	-6761.5 -6782.5	411.5 566.5
938	G125	-6803.5	411.5
939	G123	-6824.5	566.5
940	G121	-6845.5	411.5
941	G119	-6866.5	566.5
942 943	G117 G115	-6887.5 -6908.5	411.5 566.5
943	G113	-6929.5	411.5
945	G111	-6950.5	566.5

Pad #	Pad name	X	Y
946	G109	-6971.5	411.5
947	G107	-6992.5	566.5
948	G105	-7013.5	411.5
949	G103	-7034.5	566.5
950	G101	-7055.5	411.5
951	G99	-7076.5	566.5
952	G97	-7097.5	411.5
953	G95	-7118.5	566.5
954	G93	-7139.5	411.5
955	G91	-7160.5	566.5
956	G89	-7181.5	411.5
957 958	G87	-7202.5	566.5
958	G85	-7223.5 -7244.5	411.5 566.5
960	G83 G81	-7265.5	411.5
961	G79	-7286.5	566.5
962	G77	-7307.5	411.5
963	G75	-7328.5	566.5
964	G73	-7349.5	411.5
965	G71	-7370.5	566.5
966	G69	-7391.5	411.5
967	G67	-7412.5	566.5
968	G65	-7433.5	411.5
969	G63	-7454.5	566.5
970	G61	-7475.5	411.5
971	G59	-7496.5	566.5
972	G57	-7517.5	411.5
973	G55	-7538.5	566.5
974	G53	-7559.5	411.5
975	G51	-7580.5	566.5
976	G49	-7601.5	411.5
977	G47	-7622.5	566.5
978	G45	-7643.5	411.5
979	G43	-7664.5	566.5
980	G41	-7685.5	411.5
981	G39	-7706.5	566.5
982	G37	-7727.5 -7748.5	411.5 566.5
983	G35	1140.5	500.5
984	G33	-7769.5	
985 986	G31 G29	-7790.5 -7811.5	566.5 411.5
986	G29 G27	-7811.5 -7832.5	411.5 566.5
988	G25	-7853.5	411.5
989	G23	-7874.5	566.5
990	G23	-7895.5	411.5
991	G19	-7916.5	566.5
992	G17	-7937.5	411.5
993	G15	-7958.5	566.5
994	G13	-7979.5	411.5
995	G11	-8000.5	566.5
996	G9	-8021.5	411.5
997	G7	-8042.5	566.5
998	G5	-8063.5	411.5
999	G3	-8084.5	566.5
1000	G1	-8105.5	411.5
1001	VGLDMY4	-8126.5	566.5
1002	DUMMYR9	-8147.5	411.5
1003	DUMMYR10	-8168.5	566.5
1004	TESTO31	-8189.5	411.5
1005	TESTO32	-8210.5	566.5
1006	VPP1 VPP1	-8466.5	-130.7
1007 1008	VPP1 VPP1	-8466.5 -8466.5	-200.7 -270.7
1008	VPP1 VPP1	-8466.5 -8466.5	-270.7 -340.7
1010	VPP1 VPP1	-8466.5	-340.7
1010	7111	-0400.3	-410./

Alignment mark	X	Y
+ (1-a)	-8422.0	536.9
+ (1-b)	8422.0	536.9
● (2-a)	-8421.5	-581.5
● (2-b)	8421.5	-581.5
(3-a)	-8421.5	-505.0
(3-b)	8421.5	-505.0

Bump Arrangement

Figure 2

Block Function

System Interface

The LGDP4522 supports 2-system high-speed interfaces: 80-system high-speed interfaces to 8-, 9-, 16-, 18-bit parallel ports and a Serial Peripheral Interface (SPI). The interface mode is selected by setting the IM[3:0] pins.

The LGDP4522 has a 16-bit index register (IR); an 18-bit write-data register (WDR); and an 18-bit read-data register (RDR). The IR is the register to store index information from control registers and the internal GRAM. The WDR is the register to temporarily store data to be written to control registers and the internal GRAM. The RDR is the register to temporarily store data read from the GRAM. Data from the MPU to be written to the internal GRAM are first written to the WDR and then automatically written to the internal GRAM in internal operation. Data are read via the RDR from the internal GRAM. Therefore, invalid data are read out to the data bus when the LGDP4522 read the first data from the internal GRAM. Valid data are read out after the LGDP4522 performs the second read operation.

Instructions are written consecutively as the instruction execution time except starting oscillator takes 0 clock cycle.

Table 3: Register Selection (80-system 8-/9-/16-/18-bit Parallel Interface)

80-system I/F			Function
WR*	RD*	RS	
0	1	0	Write an index to IR
1	0	0	Read an internal status
0	1	1	Write to control registers or the internal GRAM via WDR
1	0	1	Read from the internal GRAM via RDR

Table 4: Register Selection (Serial Peripheral Interface)

Start Byte (SPI)		Function
R/W	RS	
0	0	Write an index to IR
1	0	Read an internal status
0	1	Write into control registers and the internal GRAM via WDR
1	1	Read from the internal GRAM via RDR

External Display Interface

The LGDP4522 supports the RGB interface and the VSYNC interface as the external interface for displaying a moving picture. When the RGB interface is selected, display operations are synchronized with externally supplied signals, VSYNC, HSYNC, and DOTCLK. In RGB interface mode, data (DB[17:0]) are written in synchronization with these signals according to the polarity of enable signal (ENABLE) to prevent flicker on display while updating display data.

In VSYNC interface mode, the display operation is synchronized with the internal clock except frame synchronization, where the operation is synchronized with the VSYNC signal. Display data are written to the internal GRAM via the system interface. In this case, there are constraints in speed and method in writing data to the internal RAM. For details, see the "External Display Interface" section.

The LGDP4522 allows for switching between the external display interface and the system interface by instruction so that the optimum interface is selected for the kind of picture to be displayed on the screen (still and/or moving picture(s)). The RGB interface, by writing all display data to the internal RAM, allows for transferring data only when updating the frames of a moving picture, contributing to low power requirement for moving picture display.

Bit Operations

The LGDP4522 supports a write data mask function for selectively writing data to the internal RAM in units of bits and a logical/compare operation to write data to the GRAM only when a condition is met as a result of comparing the data and the compare register bits. For details, see "오류! 참조 원본을 찾을 수 없습니다." section.

Address Counter (AC)

The address counter (AC) gives an address to the internal GRAM. When the index of the register for setting a RAM address in the AC is written to the IR, the address information is sent from the IR to the AC. As writing data to the internal GRAM, the address in the AC is automatically updated plus or minus 1. The window address function enables writing data only in the rectangular area arbitrarily set by users on the GRAM.

Graphics RAM (GRAM)

GRAM is graphics RAM storing bit-pattern data of 95,040 (176 x 220 x 18/8) bytes, using 18 bits per pixel.

Grayscale Voltage Generating Circuit

The grayscale voltage generating circuit generates a liquid crystal drive voltage according to grayscale data set in the γ -correction register to display in 262,144 colors. For details, see the " γ -Correction Function" section.

Timing Generator

The timing generator generates a timing signal for operation of internal circuits such as the internal GRAM. The timing for the display operation such as RAM read operation and the timing for the internal operation such as access from the MPU are generated in the way not to interfere each other.

Oscillator (OSC)

The LGDP4522 generates RC oscillation with an external oscillation resistor placed between the OSC1 and OSC2 pins. The oscillation frequency is changed according to the value of an external resistor. Adjust the oscillation frequency in accordance to the operating voltage or the frame frequency. An operating clock can be input externally. During standby mode, RC oscillation is halted to reduce power consumption. For details, see "Oscillator" section.

LCD Driver Circuit

The LCD driver circuit of the LGDP4522 consists of a 528-output source driver (S1 to S528) and a 220-output gate driver (G1 to G220). Display pattern data are latched when the 528th bit data are input. The latched data control the source driver and generate a drive waveform. The gate driver for scanning gate lines outputs either VGH or VGL level. The shift direction of 528-bit source outputs from the source driver is set with the SS bit and the shift direction of gate outputs from the gate driver is set with the GS bit. The scan mode by the gate driver is set with the SM bit. These bits allow setting an appropriate scan method for an LCD module.

LCD Drive Power Supply Circuit

The LCD drive power supply circuit generates the voltage levels VREG1OUT, VGH, VGL and Vcom for driving an LCD.

GRAM Address MAP

Table 5: GRAM address and display panel position (SS = "0", BGR = "0")

S/G	pin	S1	S2	S3	S4	S5	9S	S7	88	6S	S10	S11	S12			S517	S518	S219	S520	S521	S522	S523	S524	S525	S526	S527	S528																																																																			
GS=0	GS=1	DE	3[17	[0:	DB	3[17	7:0]	DE	<u>[17</u>	:0]	DE	DB[17:0]		DB[17:0]				DE	3[17	[0:	DE	3[17	[0:	D	B[1'	7:0]	DE	[17:	[0]																																																																	
G1	G240	(0000)		000	1	(0002	2	•	0003	3			0	0A0	()	0	0AI	(_	00A	Е	00AF		7																																																																			
G2	G239	(0100)		010	1	(102	2	•	0103	3			0	1A(()		1AI		_	01A	Е	0	1AF	7																																																																			
G3	G238	(0200)	(020	1	()202	2	(0203	}			0	2A(()	0	2AI)	•	02A	Е	0	2AF	7																																																																			
G4	G237	(0300)	(030	1	(302	2	(0303	}			0	3A(\mathbb{C}	0	3AI)	(03A	Е	0	3AF	7																																																																			
G5	G236	(0400)	()40	1	()402	2	(0403	}			0	4A(\mathbb{C}		4AI		(04A	Е	0	4AF	7																																																																			
G6	G235	(0500)	()50	1	()502	2	(0503	}			0	5A(\mathbb{C}	0	5AI)	(05A	Е	0	5AF	7																																																																			
G7	G234		0600		_	060)602		(0603	}			_	6A(_	0	6AI)	_	06A		0	6AF	7																																																																			
G8	G233		0700			070)702			0703					7A(7AI		_	07A		0	7AF	7																																																																			
G9	G232	(0800)		080		(0802	2	(0803	}			0	8A(7	0	8AI)	(08A	E	0	8AF	7																																																																			
G10	G231	(0900)	(90	1	(902	2	(0903	}			0	9A(7	0	9AI)	(09A	E	0	9AF	7																																																																			
G11	G230	()A0	0	0)A0	1	0	A02	2	()A03	3			0	AA	С	0.	AAl	D	0AAE		0AAF																																																																						
G12	G229	()B0()	0	B0	1	0B02		0B03				_	BA	_		BAI		(0BA	E	0	BAF	7																																																																					
G13	G228	()C0())C0		_	C02		0C03						CA		0CAD			0CAE			0CAF		7																																																																			
G14	G227	()D0(0	0	D0	1	0	D02	2	(D03	3			0	DA	С	0	DAl	D	()DA	E	0	DAF	7																																																																			
G15	G226	_)E00)E0			0E02										0E03		0E03										EA			EAI			0EA		_	EAF																																																						
G16	G225)F0()F0																			0F02		0F02																								0F02		0F02		0F02		0F03		0F03		0F03		0F03								0F03		0F03						FA			FAI			0FA		0	FAF	7					
G17	G224		1000)		100			1002																																						1002				1002		1002		1003		1003		1003		1003														1003		1003		1003					0A0		1	0AI)		10A	E	1	0AF	7
G18	G223		1100			110			1102						1103					1A(1AI			11A			1AF																																																																	
G19	G222		1200		1	120	1	1	202	2		1203				1	2A(7		2AI			12A	E	1	2AF	7																																																																			
G20	G221	į.	1300)	1	130	1	1	302	2		1303	}		• • •	1	3A(7	1	3AI)		13A	E	1	3AF	ì																																																																			
:	÷		÷			:			:		÷		÷		÷		:		÷			:			:			÷																																																																		
G233	G8	I	E800)	F	E80	1	I	E802	2]	E803	3			E	8A	C	Е	8AI)]	E8A	Е	F	8AF	7																																																																			
G234	G7	I	E90()	I	E90	1	F	E902	2]	E 90 3	3			E	9A(\Box	Е	9AI)]	E9A	Е	E	9AF	7																																																																			
G235	G6	I	EA0	0	E	EA0	1	E	A02	2	I	EA0.	3			Е	AA	С	Е	AA	D	I	EAA	E	Е	AAF	F																																																																			
G237	G5	F	E B 0	0		EB0		F	EB02	2	I	EB0.	3			Е	BA	C	Е	BA	D	I	EBA	E	E	BAF	7																																																																			
G237	G4	F	EC0	0	F	EC0	1	F	EC02	2	I	EC0.	3			Е	CA	C	Е	CA	D	I	ECA	E	E	CAF	7																																																																			
G238	G3	F	ED0	0	E	ED0	1	F	ED0:	2	ED03					EDAC		EDAD			EDAE			EDAF		F																																																																				
G239	G2	I	EE00	0	F	EE0	1	F	EE02	2	I	EE03	3			E	EA	С	Е	EAl	D	I	EEA	E.	F	EAF	7																																																																			
G240	G1	I	EF00	0	E	EF0	1	F	EF02	2]	EF03	3			E	FA	C	E	FAI)]	EFA	E	F	FAF	7																																																																			

Figure 3: GRAM data and display data: system interface (SS = "0", BGR = "0")

Figure 4: GRAM data and display data: system interface (SS = "0", BGR = "0")

Figure 5: GRAM data and display data: system interface (SS = "0", BGR = "0")

Table 6: GRAM address and display panel position (SS = "1", BGR = "1")

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S
G1 G240 00AF 00AE 00AD 00AC 0003 0002 0001 G2 G239 01AF 01AE 01AD 01AC 0103 0102 0101 G3 G238 02AF 02AE 02AD 02AC 0203 0202 0201 G4 G237 03AF 03AE 03AD 03AC 0303 0302 0301 G5 G236 04AF 04AE 04AD 04AC 0403 0402 0401 G6 G235 05AF 05AE 05AD 05AC 0503 0502 0501 G7 G234 06AF 06AE 06AD 06AC 0603 0602 0601 G8 G233 07AF 07AE 07AD 07AC 0703 0702 0701 G9 G232 08AF 08AE 08AD 08AC </td <td>0000 0100 0200 0300 0400 0500 0600 0700 0800</td>	0000 0100 0200 0300 0400 0500 0600 0700 0800
G2 G239 01AF 01AE 01AD 01AC 0103 0102 0101 G3 G238 02AF 02AE 02AD 02AC 0203 0202 0201 G4 G237 03AF 03AE 03AD 03AC 0303 0302 0301 G5 G236 04AF 04AE 04AD 04AC 0403 0402 0401 G6 G235 05AF 05AE 05AD 05AC 0503 0502 0501 G7 G234 06AF 06AE 06AD 06AC 0603 0602 0601 G8 G233 07AF 07AE 07AD 07AC 0703 0702 0701 G9 G232 08AF 08AE 08AD 08AC 0803 0802 0801 G10 G231 09AF 09AE 09AD 09AC <	0100 0200 0300 0400 0500 0600 0700 0800
G3 G238 02AF 02AE 02AD 02AC 0203 0202 0201 G4 G237 03AF 03AE 03AD 03AC 0303 0302 0301 G5 G236 04AF 04AE 04AD 04AC 0403 0402 0401 G6 G235 05AF 05AE 05AD 05AC 0503 0502 0501 G7 G234 06AF 06AE 06AD 06AC 0603 0602 0601 G8 G233 07AF 07AE 07AD 07AC 0703 0702 0701 G9 G232 08AF 08AE 08AD 08AC 0803 0802 0801 G10 G231 09AF 09AE 09AD 09AC 0903 0902 0901	0200 0300 0400 0500 0600 0700 0800
G4 G237 03AF 03AE 03AD 03AC 0303 0302 0301 G5 G236 04AF 04AE 04AD 04AC 0403 0402 0401 G6 G235 05AF 05AE 05AD 05AC 0503 0502 0501 G7 G234 06AF 06AE 06AD 06AC 0603 0602 0601 G8 G233 07AF 07AE 07AD 07AC 0703 0702 0701 G9 G232 08AF 08AE 08AD 08AC 0803 0802 0801 G10 G231 09AF 09AE 09AD 09AC 0903 0902 0901	0300 0400 0500 0600 0700 0800
G5 G236 04AF 04AE 04AD 04AC 0403 0402 0401 G6 G235 05AF 05AE 05AD 05AC 0503 0502 0501 G7 G234 06AF 06AE 06AD 06AC 0603 0602 0601 G8 G233 07AF 07AE 07AD 07AC 0703 0702 0701 G9 G232 08AF 08AE 08AD 08AC 0803 0802 0801 G10 G231 09AF 09AE 09AD 09AC 0903 0902 0901	0400 0500 0600 0700 0800
G6 G235 05AF 05AE 05AD 05AC 0503 0502 0501 G7 G234 06AF 06AE 06AD 06AC 0603 0602 0601 G8 G233 07AF 07AE 07AD 07AC 0703 0702 0701 G9 G232 08AF 08AE 08AD 08AC 0803 0802 0801 G10 G231 09AF 09AE 09AD 09AC 0903 0902 0901	0500 0600 0700 0800
G7 G234 06AF 06AE 06AD 06AC 0603 0602 0601 G8 G233 07AF 07AE 07AD 07AC 0703 0702 0701 G9 G232 08AF 08AE 08AD 08AC 0803 0802 0801 G10 G231 09AF 09AE 09AD 09AC 0903 0902 0901	0600 0700 0800
G8 G233 07AF 07AE 07AD 07AC 0703 0702 0701 G9 G232 08AF 08AE 08AD 08AC 0803 0802 0801 G10 G231 09AF 09AE 09AD 09AC 0903 0902 0901	0700 0800
G9 G232 08AF 08AE 08AD 08AC 0803 0802 0801 G10 G231 09AF 09AE 09AD 09AC 0903 0902 0901	0800
G10 G231 09AF 09AE 09AD 09AC 0903 0902 0901	
	0900
	0,00
G11 G230 OAAF OAAE OAAD OAAC OA03 OA02 OA01	0A00
G12 G229 OBAF OBAE OBAD OBAC OB03 OB02 OB01	0B00
G13 G228 OCAF OCAE OCAD OCAC OC03 OC02 OC01	0C00
G14 G227 ODAF ODAE ODAD ODAC OD03 OD02 OD01	0D00
G15 G226 0EAF 0EAE 0EAD 0EAC 0E03 0E02 0E01	0E00
G16 G225 OFAF OFAE OFAD OFAC OF03 OF02 OF01	0F00
G17 G224 10AF 10AE 10AD 10AC 1003 1002 1001	1000
G18 G223 11AF 11AE 11AD 11AC 1103 1102 1101	1100
G19 G222 12AF 12AE 12AD 12AC 1203 1202 1201	1200
G20 G221 13AF 13AE 13AD 13AC 1303 1302 1301	1300
	÷
G233 G8 E8AF E8AE E8AD E8AC E803 E802 E801	E800
G234 G7 E9AF E9AE E9AD E9AC E903 E902 E901	E900
G235 G6 EAAF EAAE EAAD EAAC EA03 EA02 EA01	EA00
G237 G5 EBAF EBAE EBAD EBAC EB03 EB02 EB01	EB00
G237 G4 ECAF ECAE ECAD ECAC EC03 EC02 EC01	EC00
G238 G3 EDAF EDAE EDAD EDAC ED03 ED02 ED01	ED00
G239 G2 EEAF EEAE EEAD EEAC EE03 EE02 EE01	EE00
G240 G1 EFAF EFAE EFAD EFAC EF03 EF02 EF01	EF00

Figure 6: GRAM data and display data: system interface (SS = "1", BGR = "1")

Figure 7: GRAM data and display data: system interface (SS = "1", BGR = "1")

Figure 8: GRAM data and display data: system interface (SS = "1", BGR = "1")

Instructions

Outline

The LGDP4522 adopts 18-bit bus architecture to interface to a high-performance microcomputer. The LGDP4522 starts internal processing after storing control information of externally sent 18-, 16-, 9-, 8-bit data in the instruction register IR and the data register DR. Since internal operations of the LGDP4522 are controlled by the signals sent from the microcomputer, the register selection signal RS, the read/write signal R/W, and the internal 16-bit data bus signals IB[15:0] are called instructions. The LGDP4522 use the 18-bit format internally for operations involving internal GRAM access. The instructions of the LGDP4522 are categorized into the following groups.

- 1. Specify the index of register
- 2. Read a status
- 3. Display control
- 4. Power management Control
- 5. Graphics data processing6. Set internal GRAM address
- 7. Transfer data to and from the internal GRAM
- 8. γ-correction

Normally, the instruction for writing data to the internal GRAM is used the most often. Since the LGDP4522 can update internal GRAM address automatically as it writes data to the internal GRAM and minimize data transfer by using the window address function, there is less load on the program in the microcomputer. Since instructions are executed in 0 cycles, it is possible to write instructions consecutively.

As the following figure shows, the way of assigning data to the 16 instruction bits IB[15:0] varies for each interface. Send instructions in accordance with the following data transfer format.

Figure 9: Instruction bits

Explanation of each instruction

The following are detailed explanations of instructions with illustrations of instruction bits IB[15:0] assigned to each interface.

Index (IR)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	0	*	*	*	*	*	*	*	*	*	ID6	ID5	ID4	ID3	ID2	ID1	ID0

The index register specifies the index (R00h to RFFh) of a control register or RAM control to be accessed using binary numbers "000_0000" to "111_1111". An access to the register as well as instruction bits contained in it is prohibited unless its index is represented in this register.

Status Read (SR)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R	0				L[7	':0]				0	0	0	0	0	0	0	0

The SR bits represent an internal status of the LGDP4522.

L[7:0] – Indicates the position of the line that is currently driving liquid crystal.

Start Oscillation (R00h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1
R	1	0	1	0	0	0	1	0	1	0	0	1	0	0	0	1	0

The start oscillation instruction restarts an oscillator in halt state in standby mode. After executing this instruction, wait at least 10 ms for stabilizing oscillator before issuing a next instruction.

The device code 4522h is read out when reading out this register forcibly.

Driver Output Control (R01h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	VSPL	HSPL	DPL	EPL	SM	GS	SS	0	0	0]	NL[4:0]]	

SS – Selects the shift direction of outputs from the source pins.

If SS = "0", the source pins output from S1 to S528.

If SS = "1", the source pins output from S528 to S1.

The combination of SS and BGR bits controls the order of assigning RGB dots to the source driver pins S1 to S528.

If SS = "0" and BGR = "0", RGB dots are assigned interchangeably from S1 to S528.

If SS = "1" and BGR = "1", RGB dots are assigned interchangeably from S528 to S1.

When changing SS or BGR bits, RAM data must be rewritten.

GS – Sets the shift direction of outputs from the gate driver. GS enables setting the scan order in accordance to the scan mode adopted in the module.

SM – Sets the scan order by the gate driver. SM enables setting the scan order in accordance to the scan mode adopted in the module. See "Scan Mode Setting" section for details.

EPL – Sets the polarity of the signal from the ENABLE pin in RGB interface mode.

If EPL = "0", ENABLE is low active.

If EPL = "1", ENABLE is high active.

The following table shows the relationship between the EPL, ENABLE bits, and RAM access.

Table 7

EPL	ENABLE	RAM write	RAM address
0	0	Enabled	Updated
0	1	Inhibited	Retained
1	0	Inhibited	Retained
1	1	Enabled	Updated

VSPL – Inverts the polarity of signals from the VSYNC pin.

If VSPL = "0", VSYNC is low active.

If VSPL = "1", VSYNC is high active.

HSPL – Inverts the polarity of signals from the HSYNC pin.

If HSPL = "0", HSYNC is low active.

If HSPL = "1", HSYNC is high active.

DPL – Inverts the polarity of signals from the DOTCLK pin.

If DPL = "0", data are read on the rising edge of the DOTCLK.

If DPL = "1", data are read on the falling edge of the DOTCLK.

NL[4:0] – Sets the number of gate lines for driving a liquid crystal display panel at an interval of 8 lines as the following table. The GRAM address mapping is independent from the number of gate lines set with the NL bits. Select the number of gate lines that is equal to or more than that of the panel in use.

Table 8

NL[4:0]	Display size	Lines	Driven gate lines
00h	Setting disabled		
01h	528 x 16 dots	16	G1 to G16
02h	528 x 24 dots	24	G1 to G24
03h	528 x 32 dots	32	G1 to G32
04h	528 x 40 dots	40	G1 to G40
05h	528 x 48 dots	48	G1 to G48
06h	528 x 56 dots	56	G1 to G56
07h	528 x 64 dots	64	G1 to G64
08h	528 x 72 dots	72	G1 to G72
09h	528 x 80 dots	80	G1 to G80
0Ah	528 x 88 dots	88	G1 to G88
0Bh	528 x 96 dots	96	G1 to G96
0Ch	528 x 104 dots	104	G1 to G104
0Dh	528 x 112 dots	112	G1 to G112
0Eh	528 x 120 dots	120	G1 to G120
0Fh	528 x 128 dots	128	G1 to G128
10h	528 x 136 dots	136	G1 to G136
11h	528 x 144 dots	144	G1 to G144
12h	528 x 152 dots	152	G1 to G152
13h	528 x 160 dots	160	G1 to G160
14h	528 x 168 dots	168	G1 to G168
15h	528 x 176 dots	176	G1 to G176
16h	528 x 184 dots	184	G1 to G184
17h	528 x 192 dots	192	G1 to G192
18h	528 x 200 dots	200	G1 to G200
19h	528 x 208 dots	208	G1 to G208
1Ah	528 x 216 dots	216	G1 to G216
1Bh	528 x 220 dots	220	G1 to G220

LCD Driving Waveform Control (R02h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	FLD	[1:0]	B/C	EOR	0	0			NW	[5:0]		

NW[5:0] – Specifies "n", the number of gate lines from 1 to 64, to set the interval of inverting polarity when the R61500 is set to generate a C-pattern waveform (B/C = "1"). The polarity is inverted at an interval of n+1 gate lines.

EOR – When EOR = "1", the polarity is inverted according to the result of EOR (exclusive OR) operation, which is performed on a signal for selecting either odd or even frames and a signal for inverting polarity in units of n lines when the LGDP4522 is set to generate a C-pattern waveform (B/C = "1"). This instruction is used when the number of gate lines for driving an LCD panel is at odds with the interval of n lines set for inverting polarity. For details, see "n-Line Inversion AC Drive" section.

B/C – When the LGDP4522 is set to generate a field-inversion waveform (B/C = "0"), polarity is inverted at an interval of fields. The LGDP4522 inverts polarity at an interval of n lines, when a C-pattern waveform is generated (B/C = "1") according to NW and EOR bits. For details, see "n-Line Inversion AC Drive".

FLD[1:0] – Sets the number of fields for n-field interlaced scan. See "Interlaced Scan" for details. The FLD bits are disabled in external display interface mode. When using the external display interface, set FLD[1:0] = "01".

Table 9

FLD	Number of fields
00	Setting disabled
01	1 field (= 1 frame)
10	Setting disabled
11	3 fields

Entry Mode (R03h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	TRI	DFM	0	BGR	0	0	0	0	0	0	I/D[1:0]	AM	0	0	0

The LGDP4522 modifies data sent from a microcomputer before writing them to the internal GRAM in order to write the GRAM data in high speed and reduce software processing load on the microcomputer. See "오류! 참조 원본을 찾을 수 없습니다." section for details.

TRI – When TRI = "1", data are transferred to the internal RAM in 8-bit x 3 transfers mode via the 8-bit interface. It is also possible to send data via the 16-bit interface or SPI in the transfer mode that realizes display in 262k colors in combination with DFM bits. When not using these interface modes, be sure to set TRI to "0".

DFM – Sets the mode of transferring data to the internal RAM when TRI = "1". See the following figures for details.

Table 10

Table 11

Table 12

BGR – Reverses the order of RGB dots to BGR when writing 18-bit pixel data to the internal GRAM. Note that the orders of RGB dots in both WM[17:0] and CP[17:0] bits are automatically changed upon setting BGR to "1".

I/D[1:0] – The address counter is automatically incremented by 1 as writing data to the internal GRAM when I/D = "1". The address counter is automatically decremented by 1 as writing data to the internal GRAM when I/D = "0". The increment/decrement can be set separately to each upper (AD[15:8]) / lower (AD[7:0]) byte of address. The transition direction of address (vertical/horizontal) when writing data to the internal GRAM is set with the AM bit.

AM – Sets the direction of automatically updating address for writing data to the internal RAM in the address counter (AC). When AM = "0", the address is updated in horizontal writing direction. When AM = "1", the address is updated in vertical writing direction. When a window address area is set, data are written only to the GRAM area specified with window address in the writing direction set with I/D[1:0] and AM bits.

Table 13: Address transition directions

Resize Control (R04h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	RCV	[1:0]	0	0	RCH	[1:0]	0	0	RSZ	[1:0]

RSZ[1:0] – Sets the resizing factor. When the RSZ bits are set for resizing, the LGDP4522 writes the data of the resized image in both horizontal and vertical directions according to the resizing factor on the internal GRAM.

RCH[1:0] – Sets the number of pixels made as the remainder in horizontal direction as a result of resizing a picture. By specifying the number of remainder pixels with RCH bits, the data can be transferred without taking the reminder pixels into consideration. Make sure that RCH = 2'h0 when not using the resizing function (RSZ = 2'h0) or there are no remainder pixels.

RCV[1:0] – Sets the number of pixels made as the remainder in vertical direction as a result of resizing a picture. By specifying the number of remainder pixels with the RCV bits, the data can be transferred without taking the reminder pixels into consideration. Make sure that RCV = 2'h0 when not using the resizing function (RSZ = 2'h0) or there are no remainder pixels.

Table 14: Resizing scale

RSZ[1:0]	Resizing scale
00	No resizing (x 1)
01	x 1/2
10	Setting disabled
11	x 1/4

Table 15: Surplus pixels in horizontal/vertical directions

RCH[1:0]/RCV[1:0]	Surplus pixels
00	0 pixel
01	1 pixel
10	2 pixels
11	3 pixels

Display Control 1 (R07h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	F	PTS[2:0]	VLE	[1:0]	SPT	0	0	GON	DTE	CL	REV	D[1	1:0]

PTS[2:0] – Sets the kind of source output in non-display area in partial display mode. For details, see the "Partial Display Function" section.

Table 16

PTS	Source output in non-	-display area	Operating grayscale amplifier			
	Positive polarity	Negative polarity	in non-display area			
000	V63	V0	V0 to V63			
001	Setting disabled	Setting disabled	-			
010	GND	GND	V0 to V63			
011	High impedance	High impedance	V0 to V63			
100	V63	V0	V0, V63			
101	Setting disabled	Setting disabled	-			
110	GND	GND	V0, V63			
111	High impedance	High impedance	V0, V63			

VLE[1:0] – When VLE[0] = "1", the first display is scrolled up in vertical direction. When VLE[1] = "1", the second display is scrolled up in vertical direction. The first and second displays cannot be scrolled simultaneously. This function is not available with the external display interface. In this case, set VLE to "00".

Table 17

VLE	2nd display image	1st display image
00	Fixed	Fixed
01	Fixed	Scroll up
10	Scroll up	Fixed
11	Setting disabled	

SPT – When SPT = "1", the LCD is driven in 2 split screens. For details, see the "Partial Display Function" section. This function is not available with the external display interface. In this case, set SPT to "0"

GON, DTE – Sets the output level of gate lines G1 to G220 as follows.

Table 18

GON	DTE	Gate output G1 to G220
0	0	VGH
0	1	VGH
1	0	VGL
1	1	VGH/VGL

CL – When CL = "1", the 8-color display mode is selected. For details, see the "8-Color Display Mode" section. The 8-color display mode is not available in external interface mode.

REV – By setting REV = "1", the grayscale levels can be inverted. This means, the REV bit allows both normally black and normally white panels to display a same image from the same data. The source output level during front and back porch periods and a blank period in partial display mode is set with the PTS bits.

Table 19

REV	GRAM data	Source output in display area					
	(RGB each)	Positive polarity	Negative polarity				
0	00h	V63	V0				
	:	÷	:				
	3Fh	V0	V63				
1	00h	V0	V63				
	÷	:	:				
	3Fh	V63	V0				

D[1:0] – A graphics display appears on the screen when D[1] = "1", and is turned off upon setting D[1] = "0". When setting D[1] = "0", the graphics display data are retained in the internal GRAM and the display appears instantly on the screen upon setting D[1] to "1". When the D[1] bit is "0", i.e. while no display is shown on the screen, all source outputs are at the GND level to reduce charging/discharging current on liquid crystal cells, which is generated during liquid crystal AC drive.

Upon setting D = "00", the display is turned off and internal display operations are halted completely.

In combination with the GON, DTE bit, the D[1:0] bits controls ON/OFF of graphics display. For details, see the flowcharts in the "Instruction Setting" section.

Table 20

D[1:0]	Source and Vcom outputs	IC internal operation
00	GND	Halt
01	GND	Operate
10	Non-lit display	Operate
11	Display	Operate

Notes:

- 1. Data write operations from the microcomputer are performed irrespective of the D[1:0] bits.
- 2. When D[1:0] = "00", the LGDP4522 is in the same state as the standby mode. However, this does not mean the D[1:0] bits are written over to "00" upon setting the standby mode.

Display Control 2 (R08h)

R/V	V RS	3	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1		0	0	0	0		FP[3:0]		0	0	0	0		BP[3:0]	

FP[3:0]/BP[3:0] – Sets the blank period made at the beginning and the end of a display (front porch and back porch, respectively). The FP[3:0] and BP[3:0] bits specify the number of lines for the front and back porch periods, respectively. In setting, be sure:

 $BP + FP \le 16 \text{ lines}$

 $FP \ge 2$ lines

 $BP \ge 2$ lines

In external display interface mode, a back porch (BP) period starts on the falling edge of the VSYNC signal, followed by a display operation period. After driving the number of lines set with NL bits, a front porch period starts. After the front porch period, a blank period continues until the next input of VSYNC signal.

Table 21

FP/BP	Number of lines for the front/back porches
0	Setting disabled
1	Setting disabled
2	2 lines
3	3 lines
4	4 lines
5	5 lines
6	6 lines
7	7 lines
8	8 lines
9	9 lines
10	10 lines
11	11 lines
12	12 lines
13	13 lines
14	14 lines
15	Setting disabled

Figure 10: Back/front porches

Set the BP[3:0], FP[3:0] bits as follows in each operation mode.

Table 22

Internal clock	FLD[1:0] = "01"	BP \geq 2 lines	$FP \ge 2$ lines	$FP + BP \le 16 \text{ lines}$
operation	FLD[1:0] = "11"	BP = 3 lines	FP = 5 lines	_
RGB interface		BP \geq 2 lines	$FP \ge 2$ lines	$FP + BP \le 16 \text{ lines}$
VSYNC interface		BP \geq 2 lines	$FP \ge 2$ lines	FP + BP = 16 lines

Display Control 3 (R09h)

R/W	RS		IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	•	0	0	0	0	0	0	0	0	0	0	PTG	[1:0]		ISC	[3:0]	

PTG[1:0] – Sets the scan mode by the gate driver in non-display area.

Table 23

PTG	Gate outputs in non-display area
00	Normal scan
01	VGL (fixed)
10	Interval scan
11	Setting disabled

ISC[3:0] – Sets the scan cycle by the gate driver when the PTG bits are set to the interval scan mode in non-display area. The scan cycle can be set as (2 * ISC + 1) frames, where ISC is from 1 to 15. In this case, polarity is inverted as gate lines are scanned.

Frame Cycle Control (R0Bh)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	NO[1:0]	SDT	[1:0]	0	0	DIV	[1:0]	0			RTN	[6:1]			0

RTN[6:0] - Sets the 1H (1 line) period in internal oscillator cycles. RTN[6:0] should be greater than or equal to 44 (= 2Ch).

DIV[1:0] – The internal operation is synchronized with the clock, which is divided with the division ratio set with the DIV bits. Set the RTN and DIV bits to adjust frame frequency. If the number of lines for driving liquid crystal is changed, the frame frequency must also be adjusted. See "Frame-Frequency Adjustment Function". In RGB interface mode, the DIV bits are disabled.

Table 24

DIV	Division ratio	Internal operation clock frequency
0	1	fosc/1
1	2	fosc/2
2	4	fosc/4
3	8	fosc/8

Note: fosc = Frequency of RC oscillation

Formula to calculate frame frequency

 $Frame\ frequency = \frac{fosc}{(Clock\ cycles\ per\ line\ *\ Division\ ratio\ *\ (Active\ line\ +\ BP\ +\ FP))}$ where

fosc = frequency of RC oscillation,

Active line = number of active lines for driving liquid crystal (NL bits),

Division ratio = DIV bits,

Clock cycles per line = RTN bits,

FP = the number of lines for the front porch period and

BP = the number of lines for the back porch period.

SDT[1:0] – Sets the source output delay from the falling edge of gate output.

Table 25

SDT[1:0]	Source output delay	
	Internal operation (internal oscillator)	RGB I/F operation (DOTCLK)
0	2 clocks	8 clocks
1	4 clocks	16 clocks
2	6 clocks	24 clocks
3	8 clocks	32 clocks

NO[1:0] – Sets the non-overlap period of outputs from adjacent gate lines.

Table 26

NO[1:0]	Gate output non-overlap period	
	Internal operation (internal oscillator)	RGB I/F operation (DOTCLK)
0	0 clocks	0 clocks
1	8 clocks	32 clocks
2	12 clocks	48 clocks
3	16 clocks	64 clocks

Note that the clock mentioned in the above description refers to different clocks according to the interface mode in use as follows.

Table 27

Interface mode in use	Reference clock
Internal operation mode	Internal oscillator
RGB interface mode	DOTCLK
VSYNC interface mode	Internal oscillator

External Display Interface Control 1 (R0Ch)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	RM	0	0	DM	[1:0]	0	0	RIM	[1:0]

RM – Selects the interface to access the LGDP4522's internal GRAM. The RAM access is possible only via the interface selected with the RM bit. Set RM to "1" when writing display data via the RGB interface. The LGDP4522 allows for setting the RM bit not constrained by the mode used for the display operation. This means it is possible to rewrite display data via a system interface by setting RM = "0" even while display operations are performed via the RGB interface.

Table 28: RM bit

RM	Interface for RAM access
0	System interface/VSYNC interface
1	RGB interface

RIM[1:0] – Selects one of the following RGB interface modes when the RGB interface mode is selected with the RM and DM bits. Make this setting before display operation via external display interface. Do not make changes to the setting during display operation.

Table 29: RIM[1:0] bits

RIM	RGB interface mode
0	18-bit RGB interface (1 transfer/pixel)
1	16-bit RGB interface (1 transfer/pixel)
2	6-bit RGB interface (3 transfers/pixel)
3	Setting disabled

DM[1:0] – Sets the display operation mode. By setting DM[1:0] as follows, it is possible to switch between the internal clock operation mode and the external display interface mode. Do not switch between different external interface modes (RGB interface and VSYNC interface).

Table 30: DM[1:0] bits

DM	Display operation mode
0	Internal clock operation
1	RGB interface
2	VSYNC interface
3	Setting disabled

Notes:

- 1. Instructions are set only via the system interface.
- 2. Be sure that data transfer and dot clock input are performed in units of RGB dots in 6-bit RGB interface mode.

As the following table, the optimum interface for the state of display can be selected by setting the external display interface mode.

Table 31

Display State	Operation mode	RAM access (RM)	Display mode (DM)
Still pictures	Internal clock	System interface	Internal clock operation
	operation	(RM = 0)	(DM = 00)
Moving pictures	RGB interface (1)	RGB interface	RGB interface
		(RM = 0)	(DM = 01)
Rewrite still picture area while	RGB interface (2)	RGB interface	RGB interface
display moving pictures		(RM = 0)	(DM = 01)
Moving pictures	VSYNC interface	System interface	VSYNC interface
		(RM = 0)	(DM = 10)

Notes:

- 1. Instructions are set only via the system interface.
- 2. The RGB-I/F and the VSYNC-I/F are not used simultaneously.
- 3. Do not make changes to the RGB-I/F mode setting (RIM) while the RGB I/F is in operation.
- 4. See the "External Display Interface" section for the flowcharts to follow when switching from one mode to another.

Internal clock operation mode

All display operations are synchronized with the signals generated from the internal operating clock in this mode. None of inputs via the external display interface are valid. The internal RAM is accessible only via the system interface.

RGB interface mode (1)

In RGB interface mode, display operations are synchronized with the frame synchronizing signal (VSYNC), the line synchronizing signal (HSYNC), and the dot clock (DOTCLK). These signals must be supplied through a display period using the RGB interface.

Display data are transferred in units of pixels via the DB[17:0] pins. All display data are stored in the internal RAM. The combined use of the high-speed RAM write mode and the widow address function enables not only displaying data in moving picture area and data in the internal RAM in other than the moving picture area at a time but also minimizing data transfer by transferring data only when rewriting screen.

The front porch (FP) and back porch (BP) periods, and the display duration period (NL) are automatically calculated inside the LGDP4522 by internally counting the number of line synchronizing signal clocks (HSYNC) from the falling edge of the frame synchronizing signal (VSYNC). Take this into consideration when transferring RGB data via the DB[17:0] pins.

RGB interface mode (2)

The LGDP4522 enables rewriting RAM data via the system interface while the RGB interface is selected for display operation. In this case, Be sure to write RAM data while display data are not being transferred via the RGB interface (ENABLE = High). To return to the display data transfer mode via the RGB interface, change the ENABLE bit first and then set a new address (AD[15:0]) in the AC and the index register to R22h.

VSYNC interface mode

In VSYNC interface mode, internal display operations are synchronized with the frame synchronizing signal (VSYNC). In this mode, a moving picture can be displayed via the system interface by writing data to the internal RAM at more than the minimum speed from the falling edge of frame synchronizing signal (VSYNC). In this case, there are constraints in the RAM writing speed and method. For details, see "External Display Interface".

No external signal input except VSYNC input is accepted in VSYNC interface mode.

The timings and durations of front porch (FP), back porch (BP) periods and display duration period (NL) are automatically calculated from the falling edge of the frame synchronization signal (VSYNC) according to the instructions set in the relevant registers.

Power Control 1 (R10h)

Power Control 2 (R11h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	S	SAP[2:0)]	0	I	3T[2:0]		0		AP[2:0]		0	DK	SLP	STB
W	1	0	0	0	0	0	D	C1[2:0]	0	Ι	OC0[2:0]	0	,	VC[2:0]]

SAP[2:0] – Adjusts the constant current in the operational amplifier circuit for the source driver. Setting a larger constant current stabilizes the operational amplifier circuit, but current consumption also increases. Adjust the constant current taking the trade-off between display quality and current consumption into account. During no display period, set SAP[2:0] = "000" to halt the operational amplifier circuit to reduce current consumption.

Table 32

SAP[2:0]	DC current of op-amp
0	Halt
1	Setting disable
2	0.5
3	0.75
4	1
5	1.25
6	1.5
7	1.75

Note: The DC current in the table is shown as the ratio to the DC current when SAP[2:0] = "100".

BT[2:0] – Changes the rate applied to the step-up circuit. Adjust the step-up rate according to the voltage in use. To reduce current consumption, set a smaller step-up rate.

AP[2:0] – Adjusts the constant current in the operational amplifier circuit in the LCD power supply circuit. Setting a larger constant current stabilizes the operational amplifier circuit, but current consumption increases. Adjust the constant current taking the trade-off between display quality and current consumption into account. During no display period, set AP[2:0] = "000" to halt the operational amplifier circuit and step-up circuits to reduce current consumption.

Table 33

AP[2:0]	DC current of op-amp
0	Halt
1	0.25
2	0.5
3	1
4	2
5	3
6	4
7	5

Note: The DC current in the table is shown as the ratio to the DC current when AP[2:0] = "100".

DK – Controls the operation of step-up circuit 1. In supplying power to the LGDP4522, stop generating VLOUT1 for a moment, and wait until the VLOUT2 level is stabilized. Then start generating the VLOUT1 level. For details, see the "Power Supply Setting" section.

SLP – When SLP = "1", the LGDP4522 enters the sleep mode. In sleep mode, internal display operation except RC oscillation is halted to reduce current consumption. In sleep mode, only the following instructions, BT, DC0, DC1, AP, SLP, STB, VRH, VINIT, and VCM, are accepted. No changes to the

GRAM data or other instruction sets are accepted. In sleep mode, the GRAM data and the instruction sets before entering the sleep mode are retained.

STB – When STB = "1", the LGDP4522 enters the standby mode. In standby mode, display operations are completely halted, and all internal operations including internal RC oscillation and reception of external clocks are halted. See the "Instruction Setting" section for the sequence. Only the instruction to exit the standby mode (STB = "0") or that to start oscillators is accepted during standby mode. GRAM data and instruction sets are susceptible to destruction and must be set again after exiting the standby mode.

DC0[2:0] – Selects the operating frequency of the step-up circuit 1. A higher step-up operating frequency enhances the driving capacity of the step-up circuit and the quality of display. Adjust the frequency taking the trade-off between display quality and current consumption into account.

DC1[2:0] – Selects the operating frequency of the step-up circuit 2. A higher step-up operating frequency enhances the driving capacity of the step-up circuit and the quality of display. Adjust the frequency taking the trade-off between display quality and current consumption into account.

Note: Setting step-up cycles of step-up circuits $\frac{1}{2}$, be sure the step-up cycle of the step-up circuit 1 is more than that of the step-up circuit 2 (step-up frequency $1 \ge$ step-up frequency 2).

Table 34

DC0[2:0]	fDCDC1
0	Oscillation clock / 16
1	Oscillation clock / 32
2	Oscillation clock / 64
3	Oscillation clock / 128
4	Oscillation clock / 256
5	Oscillation clock / 512
6	Oscillation clock / 1024
7	Oscillation clock / 2048

Table 35

DC1[2:0]	fDCDC2
0	Oscillation clock / 32
1	Oscillation clock / 64
2	Oscillation clock / 128
3	Oscillation clock / 256
4	Oscillation clock / 512
5	Oscillation clock / 1024
6	Oscillation clock / 2048
7	Oscillation clock / 4096

Note: Be sure $fDCDC1 \ge fDCDC2$ when setting DC0, DC1.

VC[2:0] – Sets the rate applied to VciLVL to generate the reference voltage for the VREG1OUT and VciOUT levels.

BT[2:0]	VLOUT1	VLOUT4	VLOUT2 (VGH)	VLOUT3 (VGL)	Capacitor connection
	(DDVDH)	(VCL)			pins
0	Vci1 x 2	Vci1 x -1	DDVDH x 3	-(Vci1 + DDVDH x2)	DDVDH, VGH, VGL, VCL,
	[x2]	[x-1]	[x6]	[x-5]	C11±, C12±, C21±, C22±
1	Vci1 x 2	Vci1 x -1	DDVDH x 3	-(DDVDH x2)	DDVDH, VGH, VGL, VCL,
	[x2]	[x-1]	[x6]	[x-4]	C11±, C12±, C21±, C22±
2	Vci1 x 2	Vci1 x -1	DDVDH x 3	-(Vci1 + DDVDH)	DDVDH, VGH, VGL, VCL,
	[x2]	[x-1]	[x6]	[x-3]	C11±, C12±, C21±, C22±
3	Vci1 x 2	Vci1 x -1	Vci1 + DDVDH x 2	-(Vci1 + DDVDH x2)	DDVDH, VGH, VGL, VCL,
	[x2]	[x-1]	[x5]	[x-5]	C11±, C12±, C21±, C22±
4	Vci1 x 2	Vci1 x -1	Vci1 + DDVDH x 2	-(DDVDH x2)	DDVDH, VGH, VGL, VCL,
	[x2]	[x-1]	[x5]	[x-4]	C11±, C12±, C21±, C22±
5	Vci1 x 2	Vci1 x -1	Vci1 + DDVDH x 2	-(Vci1 + DDVDH)	DDVDH, VGH, VGL, VCL,
	[x2]	[x-1]	[x5]	[x-3]	C11±, C12±, C21±, C22±
6	Vci1 x 2	Vci1 x -1	DDVDH x 2	-(DDVDH x2)	DDVDH, VGH, VGL, VCL,
	[x2]	[x-1]	[x4]	[x-4]	C11±, C12±, C21±, C22±
7	Vci1 x 2	Vci1 x -1	DDVDH x 2	Vci1 + DDVDH)	DDVDH, VGH, VGL, VCL,
	[x2]	[x-1]	[x4]	[x-3]	C11±, C12±, C21±

Notes:

- 1. The step-up rate from the Vci1 level is shown in the bracket [] in the above table.
- 2. When using the DDVDH, VCL, VGH and VGL voltage levels, connect a capacitor to each capacitor connection pin.
- 3. Set the following voltages within the limits: DDVDH = $\max 5.5V$, VCL = $\min -3.3V$, VGH = $\max 16.5V$, VGL = $\min -16.5V$.

Table 36

VC[2:0]	VciOUT output voltage
0	VeiLVL
1	0.93 x VciLVL
2	0.88 x VciLVL
3	0.82 x VciLVL
4	0.78 x VciLVL
5	0.74 x VciLVL
6	Setting disabled
7	Setting disabled

Table 37

DK	Operation of step-up circuit 1
0	Operate
1	Halt

Power Control 3 (R12h)

Power Control 4 (R13h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	PON		VRH	[3:0]	
W	1	0	0	VCOMG		V	/DV[4:0)]		0			V	CM[6:	0]		

PON – Controls ON/OFF of VLOUT3 output. To stop VLOUT3 output, set PON to "0". To start VLOUT3 output, set PON to "1".

VRH3-0 – Sets the amplifying rate (1.38 to 1.83) applied to REGP to output the VREG1OUT level, which is a reference level for the VCOM level and the grayscale voltage level.

VCOMG – When VCOMG = "1", the LGDP4522 can output a negative voltage level for VcomL (1.0V to –Vci+0.5V Max.). When VCOMG = "0", the LGDP4522 halts the amplifier for negative voltage to

save power. When VCOMG = "0", the VDV bits are disabled. In this case, adjust the amplitude of Vcom AC voltage with the VCM bits (VcomH setting). Set PON to "1" before setting VCOMG to "1".

VDV[4:0] – Sets the amplitude of Vcom AC voltage. The VDV bits can set the Vcom amplitude 0.6 to 1.23 times the VREG1OUT level. If VCOMG = "0", the VDV bits are disabled.

VCM[6:0] – Set the VcomH level (the high level of Vcom AC voltage). The VCM bits can set the VcomH level 0.4 to 0.98 times the VREG1OUT level. To stop adjusting VcomH with the internal volume and adjust it with an external resistor from VcomR, set VCM = "11111".

Table 38: VRH

VRH[4:0]	VREG1OUT voltage
0 to 7	Halt
8	VciOUT x 1.38
9	VciOUT x 1.45
A	VciOUT x 1.53
В	VciOUT x 1.60
C	VciOUT x 1.68
D	VciOUT x 1.75
Е	VciOUT x 1.83
F	Setting disable

Table 39

VCM	VcomH	VCM	VcomH	VCM	VcomH	VCM	VcomH
[6:0]	I TO DE CALON TO A A A A A A A A A A A A A A A A A A	[6:0]	IMPEGIOLEE A 555	[6:0]	AMEGICAN ASIS	[6:0]	ANDEGLOUE A ASS
00h	VREG1OUT x 0.400	20h	VREG1OUT x 0.555	40h	VREG1OUT x 0.715	60h	VREGIOUT x 0.875
01h	VREG1OUT x 0.400	21h	VREG1OUT x 0.560	41h	VREG1OUT x 0.720	61h	VREG1OUT x 0.880
02h	VREG1OUT x 0.405	22h	VREG1OUT x 0.565	42h	VREG1OUT x 0.725	62h	VREG1OUT x 0.885
03h	VREG1OUT x 0.410	23h	VREG1OUT x 0.570	43h	VREG1OUT x 0.730	63h	VREG1OUT x 0.890
04h	VREG1OUT x 0.415	24h	VREG1OUT x 0.575	44h	VREG1OUT x 0.735	64h	VREG1OUT x 0.895
05h	VREG1OUT x 0.420	25h	VREG1OUT x 0.580	45h	VREG1OUT x 0.740	65h	VREG1OUT x 0.900
06h	VREG1OUT x 0.425	26h	VREG1OUT x 0.585	46h	VREG1OUT x 0.745	66h	VREG1OUT x 0.905
07h	VREG1OUT x 0.430	27h	VREG1OUT x 0.590	47h	VREG1OUT x 0.750	67h	VREG1OUT x 0.910
08h	VREG1OUT x 0.435	28h	VREG1OUT x 0.595	48h	VREG1OUT x 0.755	68h	VREG1OUT x 0.915
09h	VREG1OUT x 0.440	29h	VREG1OUT x 0.600	49h	VREG1OUT x 0.760	69h	VREG1OUT x 0.920
0Ah	VREG1OUT x 0.445	2Ah	VREG1OUT x 0.605	4Ah	VREG1OUT x 0.765	6Ah	VREG1OUT x 0.925
0Bh	VREG1OUT x 0.450	2Bh	VREG1OUT x 0.610	4Bh	VREG1OUT x 0.770	6Bh	VREG1OUT x 0.930
0Ch	VREG1OUT x 0.455	2Ch	VREG1OUT x 0.615	4Ch	VREG1OUT x 0.775	6Ch	VREG1OUT x 0.935
0Dh	VREG1OUT x 0.460	2Dh	VREG1OUT x 0.620	4Dh	VREG1OUT x 0.780	6Dh	VREG1OUT x 0.940
0Eh	VREG1OUT x 0.465	2Eh	VREG1OUT x 0.625	4Eh	VREG1OUT x 0.785	6Eh	VREG1OUT x 0.945
0Fh	VREG1OUT x 0.470	2Fh	VREG1OUT x 0.630	4Fh	VREG1OUT x 0.790	6Fh	VREG1OUT x 0.950
10h	VREG1OUT x 0.475	30h	VREG1OUT x 0.635	50h	VREG1OUT x 0.795	70h	VREG1OUT x 0.955
11h	VREG1OUT x 0.480	31h	VREG1OUT x 0.640	51h	VREG1OUT x 0.800	71h	VREG1OUT x 0.960
12h	VREG1OUT x 0.485	32h	VREG1OUT x 0.645	52h	VREG1OUT x 0.805	72h	VREG1OUT x 0.965
13h	VREG1OUT x 0.490	33h	VREG1OUT x 0.650	53h	VREG1OUT x 0.810	73h	VREG1OUT x 0.970
14h	VREG1OUT x 0.495	34h	VREG1OUT x 0.655	54h	VREG1OUT x 0.815	74h	VREG1OUT x 0.975
15h	VREG1OUT x 0.500	35h	VREG1OUT x 0.660	55h	VREG1OUT x 0.820	75h	VREG1OUT x 0.980
16h	VREG1OUT x 0.505	36h	VREG1OUT x 0.665	56h	VREG1OUT x 0.825	76h	Setting disabled
17h	VREG1OUT x 0.510	37h	VREG1OUT x 0.670	57h	VREG1OUT x 0.830	77h	Setting disabled
18h	VREG1OUT x 0.515	38h	VREG1OUT x 0.675	58h	VREG1OUT x 0.835	78h	Setting disabled
19h	VREG1OUT x 0.520	39h	VREG1OUT x 0.680	59h	VREG1OUT x 0.840	79h	Setting disabled
1Ah	VREG1OUT x 0.525	3Ah	VREG1OUT x 0.685	5Ah	VREG1OUT x 0.845	7Ah	Setting disabled
1Bh	VREG1OUT x 0.530	3Bh	VREG1OUT x 0.690	5Bh	VREG1OUT x 0.850	7Bh	Setting disabled
1Ch	VREG1OUT x 0.535	3Ch	VREG1OUT x 0.695	5Ch	VREG1OUT x 0.855	7Ch	Setting disabled
1Dh	VREG1OUT x 0.540	3Dh	VREG1OUT x 0.700	5Dh	VREG1OUT x 0.860	7Dh	Setting disabled
1Eh	VREG1OUT x 0.545	3Eh	VREG1OUT x 0.705	5Eh	VREG1OUT x 0.865	7Eh	Setting disabled
1Fh	VREG1OUT x 0.550	3Fh	VREG1OUT x 0.710	5Fh	VREG1OUT x 0.870	7Fh	Setting disabled
111	V KEGIOUI X 0.550	эгп	VKEGIOUI X U./10	эгп	V KEG1001 X 0.8/0	/ r n	setting disabled

Table 40

VDV[4:0]	Vcom amplitude	VDV[4:0]	Vcom amplitude
00h	VREG1OUT x 0.60	10h	VREG1OUT x 1.05
01h	VREG1OUT x 0.63	11h	VREG1OUT x 1.08
02h	VREG1OUT x 0.66	12h	VREG1OUT x 1.11
03h	VREG1OUT x 0.69	13h	VREG1OUT x 1.14
04h	VREG1OUT x 0.72	14h	VREG1OUT x 1.17
05h	VREG1OUT x 0.75	15h	VREG1OUT x 1.20
06h	VREG1OUT x 0.78	16h	VREG1OUT x 1.23
07h	VREG1OUT x 0.81	17h	Setting disabled
08h	VREG1OUT x 0.84	18h	Setting disabled
09h	VREG1OUT x 0.87	19h	Setting disabled
0Ah	VREG1OUT x 0.90	1Ah	Setting disabled
0Bh	VREG1OUT x 0.93	1Bh	Setting disabled
0Ch	VREG1OUT x 0.96	1Ch	Setting disabled
0Dh	VREG1OUT x 0.99	1Dh	Setting disabled
0Eh	VREG1OUT x 1.02	1Eh	Setting disabled
0Fh	Setting disabled	1Fh	Setting disabled

Notes:

- 1. Adjust VREG1OUT and VCM so that VcomH are set within the range 3.0 to (DDVDH 0.5)V
- 2. Adjust VREG1OUT and VDV so that the amplitude of Vcom are set to 6.0V or less.

RAM Address Set (R21h)

AD[15:0] – Represents the GRAM address set in the AC (Address Counter) initially. The address in the AC is automatically updated in accordance with the AM, I/D bits as data are written to the internal GRAM so that data are written consecutively without resetting an address in the AC. The address is not automatically updated when reading data from the internal GRAM.

It is not possible to set an address in the AC when the LGDP4522 is in standby mode. Also be sure to set an address within the window address area.

Notes:

- 1. When the RGB interface is selected (RM = "1"), the address AD is set in the address counter every frame on the falling edge of VSYNC.
- 2. When the internal clock operation or the VSYNC interface mode is selected (RM = "0"), the address AD is set when executing an instruction.

Table 41: GRAM address range

AD[15:0]	GRAM setting
0000 - 00AF	Bitmap data for G1
0100 – 01AF	Bitmap data for G2
0200 – 02AF	Bitmap data for G3
0300 - 03AF	Bitmap data for G4
÷	i
EC00 – ECAF	Bitmap data for G237
ED00 – EDAF	Bitmap data for G238
EE00 – EEAF	Bitmap data for G239
EF00 – EFAF	Bitmap data for G240

Write Data to GRAM (R22h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1								WD[17:0]							

WD[17:0] – If data are less than 18 bits in unit, the LGDP4522 expands the data into 18 bits internally before written to the internal GRAM. How the data are expanded into 18 bits differs for each interface and data transfer mode.

The grayscale level is selected according to GRAM data. The GRAM address is automatically updated according to the AM and I/D bits as data are written to the internal GRAM. In standby mode, no access to the internal GRAM is allowed. When the 8 or 16 bit interface mode is selected, data are expanded into 18 bits internally by writing the MSBs of R and B dots to the LSBs of R and B dots respectively.

When writing data to the GRAM via a system interface while using the RGB interface, be sure there is no conflict between writing operations via respective interfaces (RGB and system interfaces). When the 18-bit RGB interface is selected, 18-bit data are written via the DB[17:0] pins and 262,144 colors are available. When the 16-bit RGB interface is selected, the MSBs of R and B dots are also written to the LSBs of R and B dots respectively, and 65,536 colors are available.

Figure 11: Write data to GRAM in 18-/16-bit interface mode

Figure 12: Write data to GRAM in 9-/8-bit interface mode

Figure 13: Write data to GRAM in 18-/16-/6-bit RGB interface mode

Table 42: GRAM data and LCD output level

GRAM data setting:	Grayscale	
RGB each	Negative	Positive
0	V0	V63
1	V1	V62
2	V2	V61
3	V3	V60
:	:	:
60	V60	V3
61	V61	V2
62	V62	V1
63	V63	V0

RAM Access via RGB I/F and System I/F

In RGB interface mode, the LGDP4522 stores all display data in the internal RAM, enabling transferring only moving picture data only when updating the frames of a moving picture. While the moving picture frames are not updated, it is possible to write data displayed in the area outside the moving picture area via the system interface.

In RGB interface mode, the LGDP4522 writes data to the internal RAM in synchronization with DOTCLK during ENABLE = "Low". To access the internal RAM via the system interface while using the RGB interface for display operation, set ENABLE "High" to stop writing via the RGB interface. To start accessing the internal RAM via the RGB interface after accessing the RAM via the system interface, wait at least for a write/read bus cycle time. Data will not be written properly to the internal RAM when writing operations via both RGB and system interfaces are conflicting.

Figure 14

Read Data Read from GRAM (R22h)

RD[17:0] – Reads 18-bit data from the GRAM. The bit assignment between the data read out from the GRAM and the DB[17:0] pins differs for each interface.

When data are read out from the GRAM to the microcomputer, the first word read immediately after executing RAM address set is taken in the internal read data latch and invalid data are sent to the data bus DB[17:0]. Valid data are sent to the data bus as the LGDP4522 reads out the second word data from the internal GRAM.

The 1st word data read into the internal read data latch are used for a bit operation (logical/compare operation) is performed inside the LGDP4522. Accordingly, the bit operation is processed with one read out operation. Note that the bit operation is performed on the data in units of 18 bits.

When the 8 or 16-bit interface is selected, the LSBs of R and B dots are not read out.

Note: This register is not available with the RGB interface.

Figure 15: Read data from GRAM

Figure 16: GRAM read sequence

y Control (R30h to R39h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB10 IB9 IB8		IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	
W	1	0	0	0	0	0	PI	PKP1[2:0]			0	0	0	0	PKP0[2		0]	
W	1	0	0	0	0	0	PKP3[2:0]			0	0	0	0	0	P	PKP2[2:0]		
W	1	0	0	0	0	0	PI	PKP5[2:0]			0	0	0	0	P	KP4[2:	0]	
W	1	0	0	0	0	0	PI	RP1[2:0	0]	0	0	0	0	0	P	RP0[2:	0]	
W	1	0	0	0	0	0	Pk	KN1[2:	0]	0	0	0	0	0	Pl	KN0[2:	0]	
W	1	0	0	0	0	0	Pk	KN3[2:	0]	0	0	0	0	0	Pl	KN2[2:	0]	
W	1	0	0	0	0	0	Pk	KN5[2:	0]	0	0	0	0	0	P	KN4[2:	0]	
W	1	0	0	0	0	0	PF	RN1[2:	0]	0	0	0	0	0	P	RN0[2:	0]	
W	1	0	0	0		V	/RP1[4:0]			0	0	0	0		VRP0[3:0]			
W	1	0	0	0		V	'RN1[4:0]			0	0	0	0		VRN			

PKP5-0[2:0] $-\gamma$ fine adjustment register bits for positive polarityPRP1-0[2:0] $-\gamma$ gradient adjustment register bits for positive polarityPKN5-0[2:0] $-\gamma$ fine adjustment register bits for negative polarityPRN1-0[2:0] $-\gamma$ gradient adjustment register bits for negative polarityVRP0[3:0]/VRP1[4:0] $-\alpha$ amplitude adjustment register bits for positive polarity

VRN0[3:0]/VRN1[4:0] – amplitude average adjustment register bits for negative polarity For details see " γ -Correction Function" section

Gate Scan Position (R40h)

R	/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
,	W	1	0	0	0	0	0	0	0	0	0	0	0		S	CN[4:0)]	

SCN[4:0] – The LGDP4522 allows specifying the gate line from which the gate driver starts scan by setting the SCN4-0 bits.

Figure 17

Table 43

SCN[4:0]	Scan start position (gate line)							
	GS = "0"	GS = "1"						
00h	G1	G220						
01h	G9	G212						
02h	G17	G204						
03h	G25	G196						
04h	G33	G188						
05h	G41	G180						
06h	G49	G172						
07h	G57	G164						
08h	G65	G156						
09h	G73	G148						
0Ah	G81	G140						
0Bh	G89	G132						
0Ch	G97	G124						
0Dh	G105	G116						
0Eh	G113	G108						
0Fh	G121	G100						
10h	G129	G92						
11h	G137	G84						
12h	G145	G76						
13h	G153	G68						
14h	G161	G60						
15h	G169	G52						
16h	G177	G44						
17h	G185	G36						
18h	G193	G28						
19h	G201	G20						
1Ah	G209	G12						
1Bh	G217	G4						

Vertical Scroll Control (R41h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0				VL[7:0]			

VL[7:0] – Sets the scrolling amount of an image on the screen in vertical direction. The scrolling amount can be set from 0 line to 220 lines. The start position for displaying the image is shifted vertically by the number of lines set with the VL bits. The part of the image, which is scrolled out from the end line (the 220th line) as a result of scrolling, is displayed from the 1st line of the physical display. The VL bits are enabled when either first display vertical scroll enable bit VLE[0] or the second display vertical scroll enable bit VLE[1] is set to "1". When VLE[1:0] = "00", the image on the screen is displayed at the position set with the SS and SE bits. The vertical scrolling function is not available with the external display interface.

Table 44

VL[7:0]	Scrolling lines
0	0 line
1	1 line
2	2 lines
:	:
218	218 line
219	219 lines

1st-Screen Drive Position (R42h)

2nd-Screen Drive Position (R43h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1				SE1	[7:0]							SS1[[7:0]			
W	1		SE2[7:0]										SS2[[7:0]			

SS1[7:0] – Sets the position of the start line from which the first display starts. The gate driver starts scan from the line of the number set with the SS1 bits + 1.

SE1[7:0] – Sets the position of the end line at which the first display ends. The gate driver ends scan at the line of the number set with the SE1 bits + 1. For instance, when SS1 = 07h and SE1 = 10h, the first display is shown on the gate lines from G8 to G17, and gate lines G1 to G7 and G18 thereafter are driven to show a blank screen. Be sure that $SS1 \le SE1 \le EFh$. For details, see the "Partial Display Function" section.

SS2[7:0] – Sets the position of the start line from which the second display starts. The gate driver starts scan from the line of the number set with the SS2 bits + 1. The second display is shown when SPT = "1".

SE2[7:0] – Sets the position of the end line at which the second display ends. The gate driver ends scan at the line of the number set with the SE2 bits + 1. For instance, when SPT = "1", and SS2 = 20h, SE2 = 4Fh, the second display is shown on the gate lines from G33 to G80.

Be sure that $SS1 \le SE1 < SS2 \le SE2 \le EFh$. For details, see the "Partial Display Function" section.

Horizontal RAM Address Position (R44h)

Vertical RAM Address Position (R45h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1				HEA	[7:0]							HSA	[7:0]			
W	1		VEA[7:0]										VSA	[7:0]			

HSA[7:0]/**HEA[7:0]** – HSA and HEA represent the respective addresses at the start and end of the window address area in horizontal direction. By setting HSA and HEA bits, it is possible to limit the area on the GRAM horizontally for writing data. The HSA and HEA bits must be set before starting RAM write operation. In setting these bits, be sure $00h \le HSA < HEA \le AFh$.

VSA[7:0]/VEA[7:0] – VSA and VEA represent the respective addresses at the start and end of the window address area in vertical direction. By setting VAS and VEA bits, it is possible to limit the area on the GRAM vertically for writing data. The VSA and VEA bits must be set before starting RAM write operation. In setting, be sure $00h \le VSA < VEA \le EFh$.

Figure 18: GRAM address and window address area

EPROM Control 1 (R60h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	POR	VPP	PPROG	PWE	PA[1:0]	0			P	DIN[6:	0]		

EPROM programming control. See "EPROM Control" section.

POR – Power-on reset.

VPP – Power switch control for the VPP pin of the embedded EPROM. When VPP = "1", the internal VPP is set to 7.2V; otherwise it is set to 1.8V.

PPROG – Program mode enable.

PWE – Write enable.

PA[1:0] – Program address input. This selects one of four banks of the EPROM.

PDIN[6:0] – Data input. This corresponds to VCM[6:0] bits of R13h.

EPROM Control 2 (R61h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	0	RA[[1:0]	VCMS	EL[1:0]

EPROM read control. See "EPROM Control" section.

RA[1:0] – Read address input. This selects one of four banks of the EPROM.

VCMSEL[1:0] – With VCMSEL pin, sets VcomH level from either the register R13h or the EPROM.

Table 45

VCMSEL[1:0]	VCMSEL pin	VcomH level adjustment
00	X	VCM[6:0] of the register R13h
01	X	EPROM data selected by RA[1:0]
1X	0	VCM[6:0] of the register R13h
1X	1	EPROM data selected by RA[1:0]

Test Register 1 (R71h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	T8CL	TPOL[[1:0]	0	0	TOSC	TFN

TFN – Sets the chip to function test mode.

TOSC – Sets the pin FLM to output the internal oscillator signal instead of the frame head pulse signal.

TPOL[1:0] – When TPOL[1] = "1", liquid crystal polarity is fixed to positive polarity if TPOL[0] = "0" or negative polarity if TPOL[0] = "1". Affected are Vcom and source outputs. When TPOL[0] = "0", field/line polarity inversion takes place.

T8CL – Fix to "0".

Instruction List

Table 46

Index	Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Default
00	Start oscillation																1	-
01	Driver output control		VSPL	HSPL	DPL	EPL	SM	GS	SS						NL[4:0]			001B
02	LCD drive AC control					FLD	[1:0]	B/C	EOR					NW	[5:0]			0400
03	Entry mode	TRI	DFM		BGR							ID[1:0]	AM				0030
04	Resize control							RC\	/[1:0]			RCH	·[1:0]			RSZ	[1:0]	0000
05	-																	
06	-																	
07	Display control 1				PTS[2:0]		VLE	[1:0]	SPT			GON	DTE	CL	REV	D[1:0]	0000
08	Display control 2						FP	[3:0]							BP	[3:0]		0808
09	Display control 3											PTG	G[1:0]		ISC	[3:0]		0000
0A	-																	
0B	Frame cycle adjustment	NO	[1:0]	SDT	[1:0]	EQ	[1:0]	DIV	[1:0]				RTN	l[6:1]				002C
0C	External display I/F ctrl								RM			DM	[1:0]			RIM	[1:0]	0000
10	Power control 1			SAP[2:0]				BT[2:0]				AP[2:0]			DK	SLP	STB	0004
11	Power control 2							DC1[2:0]]			DC0[2:0]				VC[2:0]		0000
12	Power control 3												PON		VRH	1[3:0]		0000
13	Power control 4			VCOMG			VDV[4:0							VCM[6:0]				0341
14	VDD regulator control							RI[2:0]				RV[2:0]				MUL.	ΓI[1:0]	0000
21	RAM address set								AD[15:0]								0000
22	RAM data R/W							F	RAM 18-b	it R/W da	ta							-
30	Gamma control 1							PKP1[2:0)]							PKP0[2:0]	0000
31	Gamma control 2							PKP3[2:0)]							PKP2[2:0]	0000
32	Gamma control 3							PKP5[2:0)]							PKP4[2:0]	0000
33	Gamma control 4							PRP1[2:0)]							PRP0[2:0]	0000
34	Gamma control 5							PKP1[2:0)]							PKP0[2:0]	0000
35	Gamma control 6							PKP3[2:0)]							PKP2[2:0]	0000
36	Gamma control 7							PKP5[2:0)]							PKP4[2:0]	0000
37	Gamma control 8							PRP1[2:0)]							PRP0[2:0]	0000
38	Gamma control 9						VRP1[4:0]							VRP	0[3:0]		0000
39	Gamma control 10						VRN1[4:0)]							VRN	0[3:0]		0000
3A	Gamma selection																SREF	0000
40	Gate scan start position														SCN[4:0]			0000
41	Vertical scroll control												VL	[7:0]				0000
42	First screen position				SE1	[7:0]							SS1	[7:0]				FF00
43	Second screen position				SE2	[7:0]							SS2	[7:0]				FF00
44	Horizontal RAM address				HEA	\[7:0]							HSA	N[7:0]				AF00
45	Vertical RAM address				VEA	N[7:0]							VSA	(7:0]				DB00
60	EPROM control 1			POR	VPP	PPROG	PWE	PA	[1:0]					PDIN[6:0]				0000
61	EPROM control 2													RA[1:0]	VCMS	EL[1:0]	0000
71	Test register 1										T8CL	TPO	L[1:0]		TMEM	TOSC	TFN	0000
72	Test register 2											FVCOML	MVCOML					0000

Interface Specifications

The LGDP4522 has the system interface for making instruction setting and other settings, and the external display interface for displaying a moving picture. The LGDP4522 allows selecting an optimum interface for the display (moving or still picture) in order to transfer data efficiently.

As the external display interface, the LGDP4522 has the RGB interface and the VSYNC interface, enabling data rewrite operation without flicker the moving picture on the screen.

In RGB interface mode, display operations are performed in synchronization with synchronizing signals VSYNC, HSYNC, and DOTCLK. Display data are written to the internal RAM according to the polarity of the data enable signal ENABLE via the moving picture display data bus DB[17:0] in synchronization with VSYNC, HSYNC, and DOTCLK. All display data are stored in the LGDP4522's GRAM to limit data transfer to only when switching the frames of a moving picture. By using the window address function, it is possible to limit the RAM area to be rewritten for displaying a moving picture and display both the moving picture and the data written on the RAM at a time.

In VSYNC interface mode, the internal display operations are synchronized with the frame synchronization signal VSYNC. The VSYNC interface enables a moving picture display via the system interface by writing data to the internal GRAM at more than the minimum speed in synchronization with the falling edge of VSYNC. In this case, there are constraints in speed and method for writing data to the internal RAM.

The LGDP4522 operates in one of the following 4 modes in line with the state of display. The mode for display operation is set in the external interface control register. When switching from one mode to another, refer to the sequences mentioned in the sections of RGB and VSYNC interfaces.

Table 47

Operation mode	RAM access setting (RM)	Display operation mode (DM)
Internal operating clock only:	System interface	Internal operating clock
Displaying still pictures	(RM = 0)	(DM = 0)
RGB interface (1):	RGB interface	RGB interface
Displaying moving pictures	(RM = 1)	(DM = 1)
RGB interface (2):	RGB interface	RGB interface
Rewriting still pictures while	(RM = 1)	(DM = 1)
displaying moving pictures		
VSYNC interface:	System interface	VSYNC interface
Displaying moving pictures	(RM = 0)	(DM = 2)

Notes:

- 1. Instructions are set only via the system interface.
- 2. The RGB I/F and the VSYNC I/F are not available simultaneously.
- 3. Do not make changes to the RGB I/F mode (RIM[1:0] bits) while an RGB I/F is in operation.
- 4. See the sections of RGB and VSYNC interfaces for the sequences to follow when switching from one mode to another.

Figure 19: Interfaces between system and LGDP4522

System Interface

The following are the system interfaces available with the LGDP4522. The interface is selected by setting the IM[3:0] pins. The system interface is used for setting instructions and RAM access.

Table 48

IM[3:0]	MPU interface mode	DB pin in use
0000	Setting disabled	-
0001	Setting disabled	-
0010	80-system 16-bit interface	DB[17:10], DB[8:1]
0011	80-system 8-bit interface	DB[17:10]
010*	Serial peripheral interface (SPI)	SDI, SDO
011*	Setting disabled	-
1000	Setting disabled	-
1001	Setting disabled	-
1010	80-system 18-bit interface	DB[17:0]
1011	80-system 9-bit interface	DB[17:9]
11**	Setting disabled	-

80-System 18-Bit Interface

The 80-system 18-bit parallel system interface is selected by setting the IM[3:0] pins to "1010".

Figure 20: 18-bit microcomputer and LGDP4522

Figure 21: Data format for 18-bit interface

80-System 16-Bit Interface

The 80-system 16-bit parallel system interface is selected by setting the IM[3:0] pins to "0010".

Figure 22: 16-bit microcomputer and LGDP4522

Figure 23: Data format for 16-bit interface

Data Transfer Synchronizing in 16-Bit Bus Interface Mode

The LGDP4522 supports a data transfer synchronization function, which resets the counter to count the numbers of upper 16/2-bit and lower 2/16-bit transfers in 16 bits x 2 transfer mode. When a mismatch occurs in data transfers due to noise and so on, the 000h instruction is written 4 times consecutively to reset the upper and lower counters to restart data transfers from the upper 2/16 bits. The synchronization function, when executed periodically, will prevent the runaway of the display system.

Figure 24: 16-bit data transfer synchronization

80-System 9-Bit Interface

The 80-system 9-bit parallel system interface using the DB17 to DB9 pins is selected by setting the IM[3:0] pins to "1011". When transferring a 16-bit instruction, it is divided into upper and lower 8 bits (the LSB is not used), and the upper 8 bits are transferred first. The RAM write data are also divided into the upper and lower 9 bits, and the upper bits are transferred first. The unused DB[8:0] pins must be fixed at either Vcc or GND level. When writing the index register, the upper byte (8 bits) must be written.

Figure 25: 9-bit microcomputer and LGDP4522

Figure 26: Data format for 9-bit interface

Data Transfer Synchronizing in 9-Bit Bus Interface Mode

The LGDP4522 supports a data transfer synchronization function to reset upper and lower counters counting the number of transfers of upper and lower 9 bits in 9-bit bus interface mode. If a mismatch arises in the numbers of transfers between the upper and lower 9 bit counters due to noise and so on, the 000h instruction is written 4 times consecutively to reset the upper and lower counters so that data transfer will restart with a transfer of upper 9 bits. This synchronization function, when executed periodically, can effectively prevent runaway of display system.

Figure 27: 9-bit data transfer synchronization

80-System 8-Bit Interface

The 80-system 8-bit parallel system interface using the DB17 to DB10 pins is selected by setting the IM[3:0] pins to "0011". When transferring a 16-bit instruction, it is divided into upper and lower 8 bits and the upper 8 bits are transferred first. The RAM data is also divided into the upper and lower 8 bits, and the upper bits are transferred first. The RAM write data are expanded into 18 bits internally (see the figure below). The unused pins DB[9:0] must be fixed at either Vcc or GND level. When writing the index register, the upper byte (8 bits) must be written.

Figure 28: 8-bit microcomputer and LGDP4522

Figure 29: Data format for 8-bit interface

Data Transfer Synchronization in 8-Bit Bus Interface Mode

The LGDP4522 supports a data transfer synchronization function to reset upper and lower counters counting the number of transfers of upper and lower 8 bits in 8-bit bus interface mode. If a mismatch arises in the numbers of transfers between the upper and lower 8 bit counters due to noise and so on, the 00h instruction is written 4 times consecutively to reset the upper and lower counters so that data transfer will restart with a transfer of upper 8 bits. This synchronization function, when executed periodically, can effectively prevent runaway of display system.

Figure 30: 8-bit data transfer synchronization

Serial Peripheral Interface (SPI)

The Serial Peripheral Interface (SPI) is selected by setting the IM[3:1] pins to "010". The SPI is available via the chip select line (CS*), the serial transfer clock line (SCL), the serial data input (SDI), and the serial data output (SDO). In SPI mode, the IM0/ID pin functions as the ID pin and the DB[17:0] pins, which are not used, must be fixed at either IOVcc or GND level.

The LGDP4522 recognizes the start of data transfer on the falling edge of CS* input and transfers the start byte. It recognizes the end of data transfer on the rising edge of CS* input. The LGDP4522 is selected when the 6-bit chip address in the start byte transferred from the transmission unit and the 6-bit device identification code assigned to the LGDP4522 correspond as a result of comparison. When selected, the LGDP4522 starts taking subsequent data. The ID pin sets the least significant bit of the identification code. Send "01110" to the identification code, which is the five upper bits of the start byte. Two different chip addresses must be assigned to the LGDP4522 because the seventh bit of the start byte is assigned to the register select bit (RS). When RS = "0", either index register write operation or status read operation is executed. When RS = "1", either instruction write operation or RAM read/write operation is executed. The eighth bit of the start byte is to select either read or write operation (R/W bit). Data are received when the R/W bit is "0", and are transferred when the R/W bit is "1".

After receiving the start byte, the LGDP4522 starts transferring or receiving data in units of bytes. Data transfer is executed from the MSB. All instructions of the LGDP4522 take a 16-bit format and are executed internally after transferring two bytes (DB[15:0]) from the MSB. GRAM write data are internally expanded into 18 bits. After receiving the start byte, the LGDP4522 takes the first and the second byte as the upper and the lower eight bits of a 16-bit instruction, respectively.

In SPI mode, invalid data are sent to the data bus until 4-byte data are read out from the internal GRAM after the start byte. Valid data are read out as the LGDP4522 reads out the 5th byte data from the internal GRAM.

Table 49: Start byte format

Transferred bits	1	2	3	4	5	6	7	8
Start byte format	Devi	ce ID code	e				RS	R/W
	0	1	1	1	0	ID		

Note: ID bit is selected by setting the IM0/ID pin.

Table 50

RS	R/W	Function
0	0	Set an index register
0	1	Read a status
1	0	Write an instruction or RAM data
1	1	Read an instruction or RAM data

Figure 31: Data format for SPI

VSYNC Interface

The LGDP4522 has the VSYNC interface, which enables moving picture display with the system interface in synchronization with the frame-synchronizing signal (VSYNC). The VSYNC interface enables the system interface to display a moving picture with minimum modification.

Figure 32: VSYNC interface

The VSYNC interface is selected by setting DM1-0 = "10" and RM = "0". In VSYNC interface mode, the internal display operation is synchronized with the VSYNC signal. By writing data to the internal RAM via the system interface at a speed faster to a certain degree than that of internal display operation, the VSYNC interface enables moving picture display with the system interface and screen rewriting operation without flicker.

The display operation in VSYNC mode is executed in synchronization with the internal clock generated from internal oscillators and VSYNC input. All display data are stored in the internal RAM to limit the data to be transferred to those overwritten on the moving picture RAM area and minimize total data transfer required for moving picture display.

Figure 33: Moving picture data transfer via VSYNC interface

The VSYNC interface has the minimum speed of writing data to the internal RAM via the system interface and the minimum internal clock frequency, which are calculated from the following formulae.

Internal clock frequency (fosc)

= FrameFrequency × (DisplayLines (NL) + FrontPorch (FP) + BackPorch (BP)) × 16 clocks × variance

$$RAMWriteSpeed > \frac{176 \times DisplayLines \ (NL)}{(BackPorch \ (BP) + DisplayLines \ (NL) - margins) \times 16 \ clocks \times \frac{1}{fosc}}$$

Note: When the RAM write operation does not start on the falling edge of VSYNC, the time from the falling edge of VSYNC until the start of RAM write operation must also be taken into account.

An example of minimum RAM writing speed and internal clock frequency in VSYNC interface mode is as follows.

[Example]		
Display size	176 RGB × 220 lines	
Lines	220 lines ($NL = 11001$)	


```
Back/front porch 14/2 lines (BP = 1110/\text{FP} = 0010)
Frame frequency 60 \text{ Hz}

Internal clock frequency (fosc) = 60 \text{ Hz} \times (220 + 2 + 14) \text{ lines} \times 44 \text{ Clocks} \times 1.1 / 0.9 = 760 \text{ kHz}
```

When setting the internal clock frequency, possible causes of variances must also be taken into consideration. In this example, the calculated internal clock frequency with the above register setting allows for a margin of $\pm 10\%$ for variances and ensures to complete the display operation within one VSYNC cycle.

In this example, variances attributed to the fabrication process of LSI and room temperature are counted in. Other possible causes of variances, such as differences in external resistors or voltage changes are not in consideration. It is necessary to allow for an enough margin if these factors must be incorporated.

```
Minimum speed for RAM writing > 176 \times 220 / \{((14 + 220 - 2) \text{ lines} \times 44 \text{ clock}) / 760 \text{ kHz}\} = 2.88 \text{ MHz}
```

The above theoretical value is calculated on the premise that the LGDP4522 starts writing data to the internal RAM on the falling edge of VSYNC. There must at least be a margin of 2 lines between the physical display line where display operation is performed and the RAM line address where data write operation is performed.

The RAM write speed of 2.88MHz or more on the falling edge of VSYNC will guarantee the completion of RAM write operation before the LGDP4522 starts displaying the RAM data on the screen, enabling rewriting the entire screen without flicker.

Figure 34: Write/display operation timing via VSYNC interface

Notes in Using the VSYNC Interface

The above example of calculation gives a theoretical value. In the actual setting, other possible
causes of variances not counted in the above example such as differences in internal oscillators
should also be taken into consideration. It is strongly recommended to allow for an enough
margin in setting a RAM writing speed.

2. The above example of calculation gives a minimum value in case of rewriting the entire screen. If the moving picture display area is smaller than that, the range for setting a minimum RAM writing speed can have extra margins.

- 3. After drawing 1 frame, a front porch period continues until the next input of VSYNC is detected.
- 4. When switching from the internal clock operation mode (DM[1:0] = "00") to the VSYNC interface mode, or the other way around, it is enabled from the next VSYNC cycle, i.e. after completing the display of the frame, which the LGDP4522 was internally processing when switching the modes.
- 5. The partial display, vertical scroll, and interlaced scan functions are not available in VSYNC interface mode.
- 6. In VSYNC interface mode, set the AM bit to "0" to transfer display data in the method mentioned above.

External Display Interface

The following are the external display interface (RGB interface) available with the LGDP4522. The interface is selected by setting the RIM1-0 bits as follows. The RGB interface is used to access RAM.

Table 51

RIM[1:0]	RGB interface	DB pins
00	18-bit RGB interface	DB[17:0]
01	16-bit RGB interface	DB[17:10], DB[8:1]
10	6-bit RGB interface	DB[17:12]
11	Setting disabled	

Note: Multiple RGB interfaces cannot be used simultaneously.

RGB Interface

The display operation via the RGB interface is synchronized with VSYNC, HSYNC, and DOTCLK. The RGB interface enables transferring minimum necessary data and rewriting the RAM area need to be overwritten with use of window address function. In RGB interface mode, it is necessary to set back and front porch periods before and after a display period, respectively.

Figure 35: RGB interface

ENABLE Signal

The combinations of EPL and ENABLE bits and the functions are as follows. Note that it is necessary to set both EPL and ENABLE bits to automatically update RAM address in the AC when writing data to the internal RAM. The EPL bit inverts the polarity of ENABLE signal.

Table 52

EPL	ENABLE	RAM write	RAM address
0	0	Enabled	Updated
0	1	Disabled	Retained
1	0	Disabled	Reta/16dYNC
1	1	Enabled	Updated

Back porch

RAM data display area

RGB Interface Timing

The timing chart of signals in 16/18-bit RGB interface mode is as follows.

Figure 36: 16-/18-bit RGB Interface Timing

The timing chart of signals in 6-bit RGB interface mode is as follows.

Figure 37: 6-bit RGB Interface Timing

Moving Picture Display

The LGDP4522 has the RGB interface for moving picture display and incorporates RAM for storing moving picture data, which has following merits in displaying a moving picture.

- The window address function enables transferring minimum necessary data to be written on the moving picture RAM area.
- Data are transferred only to the moving picture RAM area.
- The reduction in data transfer contributes to the reduction in power consumption by the entire system.
- Allowing the use of system interface to rewrite data, such as icons, in still picture RAM area while displaying a moving picture.

RAM Access via a System Interface in RGB-I/F Mode

The LGDP4522 allows RAM access via the system interface in RGB interface mode. In RGB interface mode, data are written to the internal RAM in synchronization with DOTCLK while ENABLE is "Low". When writing data to the internal RAM via the system interface, set ENABLE high" to stop writing data via the RGB interface. Then set RM = "0" to make RAM accessible via the system interface. When restarting RAM access in RGB interface mode, wait a time for one read/write bus cycle. Then, set RM = "1" and the index register to R22h to start accessing RAM via the RGB interface. If RAM accesses via two interfaces conflicts, there is no guarantee that data are written to the internal RAM.

The following figure illustrates the operation of the LGDP4522 when displaying a moving picture via the RGB interface and rewriting data in the still picture RAM area via the system interface.

Figure 38

6-Bit RGB Interface

The 6-bit RGB interface is selected by setting the RIM[1:0] bits to "10". The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal

RAM in synchronization with the display operation via 6-bit RGB data bus (DB[17:12]) according to the data enable signal (ENABLE). Unused pins (DB[11:0]) must be fixed at either IOVcc or GND level.

Instructions are set only via the system interface.

Figure 39: 6-bit RGB interface

Figure 40: Data format for 6-bit interface

Data Transfer Synchronization in 6-Bit RGB Interface Mode

The LGDP4522 has data transfer counters for counting the first, second, third data transfers in 6-bit RBG interface mode. The transfer counters are always reset to the state of first data transfer on the falling edge of VSYNC. If a mismatch arises in the number of each data transfer, the counters are reset to the state of first data transfer at the start of the frame (i.e. on the falling edge of VSYNC) to restart data transfer in the correct order from the next frame. This function is expedient for moving picture display, which requires consecutive data transfer in light of minimizing effects from failed data transfer and enabling the system to return to a normal state.

Note that internal display operation is performed in units of pixels (RGB: taking 3 inputs of DOTCLK). Accordingly, the number of DOTCLK inputs in one frame period must be a multiple of 3 to complete data transfer correctly. Otherwise it will affect the display of that frame as well as the next frame.

Figure 41: 6-bit data transmission synchronization

16-Bit RGB Interface

The 16-bit RGB interface is selected by setting the RIM1-0 bits to "01". The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal RAM in synchronization with the display operation via 16-bit RGB data bus (DB17-10, DB8-1) according to the data enable signal (ENABLE).

Instructions are set only via the system interface.

Figure 42: 16-bit RGB interface

Figure 43: Data format for 16-bit interface

18-Bit RGB Interface

The 18-bit RGB interface is selected by setting the RIM1-0 bits to "00". The display operation is synchronized with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal RAM in synchronization with the display operation via 18-bit RGB data bus (DB[17:0]) according to the data enable signal (ENABLE).

Instructions are set only via the system interface.

Figure 44: 18-bit RGB interface

Figure 45: Data format for 18-bit interface

Notes in Using the External Display Interface

1. The following are the functions not available in external display interface mode.

Table 53

Function	External display interface	Internal display operation
Partial display	Not available	Available
Scroll function	Not available	Available
Interlaced scan	Not available	Available
Graphics operation function	Not available	Available

- 2. VSYNC, HSYNC, and DOTCLK signals must be supplied throughout a display operation period.
- 3. The periods set with the NO1-0 bits (gate output non-overlap period), STD1-0 bits (source output delay period) and EQ1-0 bits (equalization period) are not based on the internal clock but based on DOTCLK in RGB interface mode.
- 4. In 6-bit RGB interface mode, each of RGB dots is transferred in synchronization with a DOTCLK input. In other words, it takes 3 DOTCLK inputs to transfer one pixel. Be sure to complete data transfer in units of 3 DOTCLK inputs in 6-bit RGB interface mode.
- 5. In 6-bit RGB interface mode, data of one pixel, which consists of RGB dots, are transferred in units of 3 DOTCLK. Accordingly, set the cycle of each signal in 6-bit interface mode (VSYNC, HSYNC ENABLE, DB[17:0]) to contain DOTCLK inputs of a multiple of 3 to complete data transfer in units of pixels.
- 6. When switching from the internal operation mode to the external display interface mode, or the other way around, follow the sequence below.
- 7. In RGB interface mode, the front porch period continues until the next VSYNC input is detected after drawing one frame.
- 8. In RGB interface mode, a RAM address (AD15-0) is set in the address counter every frame on the falling edge of VSYNC.

Figure 46: Internal clock operation/RGB interface mode switching sequence

Figure 47: Switching RAM access modes (between system interface and RGB interface modes)

AM = "0"

Set AD15-0

Set IR to R22h (RAM Data Write)

Write data to RAM through system interface

Interfacing Timing with LCD Panel

The following are diagrams of interfacing timing with LCD panel control signals in internal operation and RGB interface modes.

RGB I/F Mode

Figure 48

Internal Clock Operation Mode

Figure 49

Scan Mode Setting

Figure 50

γ-Correction Function

The LGDP4522 has the γ -correction function to display in 262,144 colors simultaneously. The γ correction is performed with 3 groups of registers determining eight reference grayscale levels, which are gradient adjustment, amplitude adjustment and fine-adjustment registers. Each register groups further consists of register groups of positive and negative polarities. Each register group is set independently to other register groups, making the LGDP4522 available with liquid crystal panels of various characteristics.

Figure 51

G3

Grayscale Amplifier Unit Configuration

The following figure illustrates the grayscale amplifier unit of the LGDP4522.

To generate 64 grayscale voltages (V0 to V63), the LGDP4522 first generates eight reference grayscale voltages (VINP0-7/VINN0-7). The grayscale amplifier unit then divides eight reference grayscale voltages with the ladder resistors incorporated therein.

Figure 52: Grayscale amplifier unit

8 to 1 Selector

> 8 to 1 Selector

8 tc 1 Selector

y-Correction Register

The γ -correction registers of the LGDP4522 consist of gradient adjustment, amplitude adjustment, and fine adjustment registers, each of which has registers of positive and negative polarities. Each different register group can be set independently to others, enabling adjustment of grayscale voltage levels in relation to grayscales set optimally for γ -characteristics of a liquid crystal panel. These γ -correction register settings and the reference levels of the 32 grayscales to which the three kinds of adjustments are made (bold lines in the following figure) are common to all RGB dots.

Figure 54

1. Gradient adjustment registers

The gradient adjustment registers are used to adjust the gradient of the curve representing the relationship between the grayscale and the grayscale voltage level around middle grayscales without changing the dynamic range. To adjust the gradient, the resistance values of grayscale reference voltage generating variable resistors (VRHP(N)/VRLP(N)) in the middle of the ladder resistor unit are adjusted. The registers consist of positive and negative polarity registers, allowing asymmetric drive.

2. Amplitude adjustment registers

The amplitude adjustment registers are used to adjust the amplitude of grayscale voltages. To adjust the amplitude, the resistance values of the grayscale voltage generating variable resistors (VRP(N)1/0) at the top and bottom of the ladder resistor unit are adjusted. Same with the gradient registers, the amplitude adjustment registers consist of positive and negative polarity registers.

3. Fine adjustment registers

The fine adjustment registers are used to fine-adjust grayscale voltage levels. To fine-adjust grayscale voltage levels, fine adjustment registers adjust the reference voltage levels, 8 levels for each register generated from the ladder resistor unit, in respective 8-to-1 selectors. Same with other registers, the fine adjustment registers consist of positive and negative polarity registers.

Grayscale number

Graysca

Gradient adjustment

Amplitude

Table 54

Register	Positive	Negative	Description
Groups	Polarity	Polarity	
Gradient	PRP0[2:0]	PRN0[2:0]	Variable resistor VRHP(N)
adjustment	PRP1[2:0]	PRN1[2:0]	Variable resistor VRHP(N)
Amplitude	VRP0[3:0]	VRN0[3:0]	Variable resistor VRP(N)0
adjustment	VRP1[4:0]	VRN1[4:0]	Variable resistor VRP(N)1
Fine	PKP0[2:0]	PKN0[2:0]	8-to-1 selector (voltage level of grayscale 1)
adjustment	PKP1[2:0]	PKN1[2:0]	8-to-1 selector (voltage level of grayscale 8)
	PKP2[2:0]	PKN2[2:0]	8-to-1 selector (voltage level of grayscale 20)
	PKP3[2:0]	PKN3[2:0]	8-to-1 selector (voltage level of grayscale 43)
	PKP4[2:0]	PKN4[2:0]	8-to-1 selector (voltage level of grayscale 53)
	PKP5[2:0]	PKN5[2:0]	8-to-1 selector (voltage level of grayscale 62)

Ladder Resistors and 8-to-1 Selector

Block Configuration

The reference voltage generating unit as illustrated in page 100 consists of two ladder resistor units including variable resistors and 8-to-1 selectors. Each 8-to-1 selector selects one of the 8 voltage levels generated from the ladder resistor unit to output as a grayscale reference voltage. Both variable resistors and 8-to-1 selectors are controlled according to the x correction registers. This unit has pins to connect a volume resistor externally to compensate differences in various characteristics of panels.

Variable Resistors

The LGDP4522 uses variable resistors of the following three purposes: gradient adjustment (VRHP(N)/VRLP(N)); amplitude adjustment (1) (VRP(N)0); and the amplitude adjustment (2) (VRP(N)1). The resistance values of these variable resistors are set by gradient adjustment registers and amplitude adjustment registers as follows.

Amplitude adjustment (1)

Table 55: **Gradient adjustment**

.	
Contents of	Resistance
register	VRHP(N)
PRP(N)0/1[2:0]	VRLP(N)
000	0R
001	4R
010	8R
011	12R
100	16R
101	20R
110	24R
111	28R

· · · · · · · · · · · · · · · · · · ·	Justine (1)
Contents of	Resistance
register	VRHP(N)
VRP(N)0[3:0]	VRLP(N)
0000	0R
0001	2R
0010	4R
•	:
•	:
1101	26R
1110	28R
1111	30R

Table 57:

Contents of	Resistance
register	VRHP(N)
VRP(N)1[4:0]	VRLP(N)
00000	0R
00001	1R
00010	2R
:	:
:	:
11101	29R
11110	30R
11111	31R

Amplitude adjustment (2)

8-to-1 Selectors

The 8-to-1 selector selects one of eight voltage levels generated from the ladder resistor unit according to the fine adjustment register, and output the selected voltage level as a reference grayscale voltage (VINP(N)1∼ VINP(N 6). The table below shows the setting in the fine adjustment register and the selected voltage levels for respective reference grayscale voltages

Table 58: Fine adjustment registers and selected voltage

PKP(N)[2:0]	Selected Vol	tage				
	VINP(N)1	VINP(N)2	VINP(N3	VINP(N)4	VINP(N)5	VINP(N)6
0	KVP(N)1	KVP(N)9	KVP(N)17	KVP(N)25	KVP(N)33	KVP(N)41
1	KVP(N)2	KVP(N)10	KVP(N)18	KVP(N)26	KVP(N)34	KVP(N)42
2	KVP(N)3	KVP(N)11	KVP(N)19	KVP(N)27	KVP(N)35	KVP(N)43
3	KVP(N)4	KVP(N)12	KVP(N)20	KVP(N)28	KVP(N)36	KVP(N)44
4	KVP(N)5	KVP(N)13	KVP(N)21	KVP(N)29	KVP(N)37	KVP(N)45
5	KVP(N)6	KVP(N)14	KVP(N)22	KVP(N)30	KVP(N)38	KVP(N)46
6	KVP(N)7	KVP(N)15	KVP(N)23	KVP(N)31	KVP(N)39	KVP(N)47
7	KVP(N)8	KVP(N)16	KVP(N)24	KVP(N)32	KVP(N)40	KVP(N)48

The grayscale voltage levels for V0~V63 grayscales are calculated from the following formulae.

Table 59: Formulae for calculating voltage (1)

Pin	Formula	Fine adjustment register value	Reference voltage
KVP0	VREG1OUT - ΔV*VRE0/SUMRP	-	VINP0
KVP1	VREG1OUT - ΔV*(VRE0+6R)/SUMRP	PKP0= 0	
KVP2	VREG1OUT - ΔV*(VRE0+10R)/SUMRP	PKP0= 1	
KVP3	VREG1OUT - ΔV*(VRE0+14R)/SUMRP	PKP0= 2	=
KVP4	VREG1OUT - ΔV*(VRE0+18R)/SUMRP	PKP0= 3	VINP1
KVP5	VREG1OUT - ΔV*(VRE0+22R)/SUMRP	PKP0= 4	
KVP6	VREG1OUT - ΔV*(VRE0+26R)/SUMRP	PKP0= 5	
KVP7	VREG1OUT - ΔV*(VRE0+30R)/SUMRP	PKP0= 6	
KVP8	VREG1OUT - ΔV*(VRE0+34R)/SUMRP	PKP0= 7	
KVP9	VREG1OUT - ΔV*(VRE0+34R+VRHP)/SUMRP	PKP1= 0	
KVP10	VREG1OUT - ΔV*(VRE0+35R+VRHP)/SUMRP	PKP1= 1	
KVP11	VREG1OUT - ΔV*(VRE0+36R+VRHP)/SUMRP	PKP1= 2	
KVP12	VREG1OUT - Δ V*(VRE0+37R+VRHP)/SUMRP	PKP1= 3	VINP2
KVP13	VREG1OUT - Δ V*(VRE0+38R+VRHP)/SUMRP	PKP1= 4	
KVP14	VREG1OUT - ΔV*(VRE0+39R+VRHP)/SUMRP	PKP1= 5	
KVP15	VREG1OUT - ΔV*(VRE0+40R+VRHP)/SUMRP	PKP1= 6	
KVP16	VREG1OUT - Δ V*(VRE0+41R+VRHP)/SUMRP	PKP1= 7	
KVP17	VREG1OUT - Δ V*(VRE0+51R+VRHP)/SUMRP	PKP2= 0	
KVP18	VREG1OUT - Δ V*(VRE0+52R+VRHP)/SUMRP	PKP2= 1	-
KVP19	VREG1OUT - Δ V*(VRE0+53R+VRHP)/SUMRP	PKP2= 2	-
KVP20	VREGIOUT - ΔV^* (VRE0+54R+VRHP)/SUMRP	PKP2= 3	VINP3
KVP21	VREGIOUT - ΔV^* (VRE0+55R+VRHP)/SUMRP	PKP2= 4	-
KVP22	VREGIOUT - ΔV^* (VRE0+56R+VRHP)/SUMRP	PKP2= 5	-
KVP23	VREGIOUT - ΔV^* (VRE0+57R+VRHP)/SUMRP	PKP2= 6	=
KVP24	VREGIOUT - Δ V*(VRE0+58R+VRHP)/SUMRP	PKP2= 7	+
KVP25	VREGIOUT - ΔV^* (VRE0+80R+VRHP)/SUMRP	PKP3= 0	
KVP26	VREGIOUT - ΔV^* (VRE0+81R+VRHP)/SUMRP	PKP3= 1	=
KVP27	VREG1OUT - ΔV*(VRE0+82R+VRHP)/SUMRP	PKP3= 2	=
KVP28	VREGIOUT - ΔV^* (VRE0+83R+VRHP)/SUMRP	PKP3= 3	VINP4
KVP29	VREGIOUT - ΔV^* (VRE0+84R+VRHP)/SUMRP	PKP3= 4	+
KVP30	VREGIOUT - ΔV^* (VRE0+85R+VRHP)/SUMRP	PKP3= 5	=
KVP31	VREGIOUT - ΔV^* (VRE0+86R+VRHP)/SUMRP	PKP3= 6	=
KVP32	VREG1OUT - ΔV*(VRE0+87R+VRHP)/SUMRP	PKP3= 7	=
KVP33	VREGIOUT - ΔV^* (VRE0+97R+VRHP)/SUMRP	PKP4= 0	
KVP34	VREGIOUT - ΔV^* (VRE0+98R+VRHP)/SUMRP	PKP4= 1	=
KVP35	VREGIOUT - ΔV^* (VRE0+99R+VRHP)/SUMRP	PKP4= 2	=
KVP36	VREG1OUT - ΔV*(VRE0+99R+VRHP)/SUMRP	PKP4= 3	VINP5
KVP30 KVP37	VREG10U1 - ΔV*(VRE0+100R+VRHP)/SUMRP	PKP4= 3 PKP4= 4	
KVP37 KVP38	VREG10UT - ΔV*(VRE0+101R+VRHP)/SUMRP	PKP4= 4 PKP4= 5	-
KVP39	VREG1OUT - ΔV*(VRE0+102+VRHP)/SUMRP	PKP4= 5 PKP4= 6	-
KVP40	VREG1OUT - ΔV*(VRE0+104R+VRHP)/SUMRP	PKP4= 7	-
KVP41	VREGIOUT - ΔV*(VREO+104R+VRHP+VRLP)/SUMRP	PKP5= 0	
KVP42	VREG1OUT - ΔV*(VRE0+104R+VRHP+VRLP)/SUMRP	PKP5= 1	-
KVP42 KVP43	VREG10UT - Δ V*(VRE0+108R+VRHP+VRLP)/SUMRP	PKP5= 1 PKP5= 2	-
KVP43 KVP44	VREG10UT - $\Delta V^*(VRE0+112+VRHP+VRLP)/SUMRP$	PKP5= 2 PKP5= 3	VINP6
KVP44 KVP45	VREG10UT - ΔV*(VRE0+110R+VRHP+VRLP)/SUMRP	PKP5= 4	
	VREG10U1 - ΔV*(VRE0+12UR+VRHP+VRLP)/SUMRP VREG10UT - ΔV*(VRE0+124R+VRHP+VRLP)/SUMRP		4
KVP46		PKP5= 5	4
KVP47	VREG1OUT - ΔV*(VRE0+128R+VRHP+VRLP)/SUMRP	PKP5= 6 PKP5= 7	-
KVP48	VREG1OUT - ΔV*(VRE0+132R+VRHP+VRLP)/SUMRP		

SUMRP: Sum of positive ladder resistors = 144R+VRHP+VRLP+VRP0+VRP1

Table 60: Formulae for calculating voltage (2)

Grayscale	Formula
voltage	
V0	VINP0
V1	VINP1
V2	VINP2+(VINP1-VINP2)*(30/48)
V3	VINP2+(VINP1-VINP2)*(23/48)
V4	VINP2+(VINP1-VINP2)*(16/48)
V5	VINP2+(VINP1-VINP2)*(12/48)
V6	VINP2+(VINP1-VINP2)*(8/48)
V7	VINP2+(VINP1-VINP2)*(4/48)
V8	VINP2
V9	VINP3+(VINP2-VINP3)*(22/24)
V10	VINP3+(VINP2-VINP3)*(20/24)
V11	VINP3+(VINP2-VINP3)*(18/24)
V12	VINP3+(VINP2-VINP3)*(16/24)
V13	VINP3+(VINP2-VINP3)*(14/24)
V14	VINP3+(VINP2-VINP3)*(12/24)
V15	VINP3+(VINP2-VINP3)*(10/24)
V16	VINP3+(VINP2-VINP3)*(8/24)
V17	VINP3+(VINP2-VINP3)*(6/24)
V18	VINP3+(VINP2-VINP3)*(4/24)
V19	VINP3+(VINP2-VINP3)*(2/24)
V20	VINP3
V21	VINP4+(VINP3-VINP4)*(22/23)
V22	VINP4+(VINP3-VINP4)*(21/23)
V23	VINP4+(VINP3-VINP4)*(20/23)
V24	VINP4+(VINP3-VINP4)*(19/23)
V25	VINP4+(VINP3-VINP4)*(18/23)
V26	VINP4+(VINP3-VINP4)*(17/23)
V27	VINP4+(VINP3-VINP4)*(16/23)
V28	VINP4+(VINP3-VINP4)*(15/23)
V29	VINP4+(VINP3-VINP4)*(14/23)
V30	VINP4+(VINP3-VINP4)*(13/23)
V31	VINP4+(VINP3-VINP4)*(12/23)

Grayscale	Formula
voltage	
V32	VINP4+(VINP3-VINP4)*(11/23)
V33	VINP4+(VINP3-VINP4)*(10/23)
V34	VINP4+(VINP3-VINP4)*(9/23)
V35	VINP4+(VINP3-VINP4)*(8/23)
V36	VINP4+(VINP3-VINP4)*(7/23)
V37	VINP4+(VINP3-VINP4)*(6/23)
V38	VINP4+(VINP3-VINP4)*(5/23)
V39	VINP4+(VINP3-VINP4)*(4/23)
V40	VINP4+(VINP3-VINP4)*(3/23)
V41	VINP4+(VINP3-VINP4)*(2/23)
V42	VINP4+(VINP3-VINP4)*(1/23)
V43	VINP4
V44	VINP5+(VINP4-VINP5)*(22/24)
V45	VINP5+(VINP4-VINP5)*(20/24)
V46	VINP5+(VINP4-VINP5)*(18/24)
V47	VINP5+(VINP4-VINP5)*(16/24)
V48	VINP5+(VINP4-VINP5)*(14/24)
V49	VINP5+(VINP4-VINP5)*(12/24)
V50	VINP5+(VINP4-VINP5)*(10/24)
V51	VINP5+(VINP4-VINP5)*(8/24)
V52	VINP5+(VINP4-VINP5)*(6/24)
V53	VINP5+(VINP4-VINP5)*(4/24)
V54	VINP5+(VINP4-VINP5)*(2/24)
V55	VINP5
V56	VINP6+(VINP5-VINP6)*(44/48)
V57	VINP6+(VINP5-VINP6)*(40/48)
V58	VINP6+(VINP5-VINP6)*(36/48)
V59	VINP6+(VINP5-VINP6)*(32/48)
V60	VINP6+(VINP5-VINP6)*(25/48)
V61	VINP6+(VINP5-VINP6)*(18/48)
V62	VINP6
V63	VINP7

Note: Make sure DDVDH-V0 > 0.5V

Relationship between RAM Data and Voltage Output Levels

The relationship between RAM data and source output voltage levels is as follows. See also Table 42: GRAM data and LCD output level.

Figure 55: RAM data and the output voltage (REV = "0")

Figure 56: Source output and Vcom

8-Color Display Mode

The LGDP4522 has a function to display in 8colors. In 8-color mode, available grayscale levels are V0 and V63, and the power supplies of other grayscales (V1 to V62) are halted to reduce power consumption.

In 8-color display mode, the MSBs of the respective dot data (R5, G5, B5) are written to the rest of the dot data in order to display in 8 colors without rewriting the RAM data.

The γ- correction registers, PKP0-PKP5 and PKN0-PKN5, are disabled in 8-color display mode.

Figure 57

G3

To switch between the 262,144-color mode and 8-color mode, follow the sequence below.

Figure 58

Configuration of Power Supply Circuit

The follow are the configuration of power supply circuit to generate liquid crystal panel drive levels.

Figure 59

Specification of External Elements Connected to LGDP4522 Power Supply

The follow table shows specifications of external element connected to the LGDP4522's power supply circuit.

Table 61: Capacitor

Capacity	Recommended voltage	Pin connection
1uF	6V	VREG1OUT, VciOUT, VOUT4 (see note), VcomH, VcomL
(B characteristics)		(see note), C11+/-, C12+/-, VCCOUT
	10V	VLOUT1, C21+/- , C22+/-
	25V	VLOUT2, VLOUT3

Note: Capacitor connection is not necessary in some operation modes.

Table 62: Schottky diode

Feature	Pin connection
VF < 0.4V/20mA at 25°C, $VR > 30V$	GND - VGL
	(Vci – VGH)
	(Vci – DDVDH)

Table 63: Variable resistor

Feature	Pin connection
$> 200 \text{k}\Omega$	VcomR

Instruction Setting

When setting the following instructions, follow respective sequences below.

Display On/Off

Figure 60

Standby and Sleep Modes

Figure 61

Power Supply Setting

When supplying and cutting off power, follow the sequence below. The setting time for oscillators, step-up circuits and operational amplifiers depends on external resistance and capacitance.

Figure 62

Pattern Diagram for Voltage Setting

The pattern diagram for the voltages and the waveforms of the voltages of the LGDP4522 are as follows.

Figure 63

Note: The DDVDH, VGH, VGL, and VCL output voltage levels are lower than their theoretical levels (ideal voltage levels) due to current consumption at respective output. The voltage levels in the following relationships (DDVDH – VREG1OUT) > 0.5V, (VcomL1 – VCL) > 0.5V, (VcomL2 – VCL) > 0.5V are the actual voltage levels. When the alternating cycles of Vcom1 and Vcom2 are set high (e.g. the polarity inverts every line cycle), current consumption is large. In this case, check the voltage before use.

Figure 64: Applied voltage to the TFT display

Oscillator

The LGDP4522 generates oscillation with the LGDP4522's internal RC oscillators by placing an external oscillation resistor between the OSC1 and OSC2 pins. The oscillation frequency varies due to resistance value of external resistor, wiring distance, and operating supply voltage. For example, placing an Rf resistor of a larger resistance value, or lowering the supply voltage level brings down the oscillation frequency. See the "Notes to Electrical Characteristics" section for the relationship between resistance value of Rf resistor and oscillation frequency.

Figure 65

n-Line Inversion AC Drive

The LGDP4522, in addition to the frame-inversion liquid crystal AC drive, supports the n-line inversion AC drive, in which the polarity of liquid crystal is inverted in units of n lines, where n takes a number from 1 to 64. The quality of display will be improved by using n-line inversion AC drive.

In determining n (the value set with the NW bits +1), which represents the number of lines that determines the timing of liquid crystal polarity inversion, check the quality of display on the liquid crystal panel in use. Note that setting a smaller number of lines will raise the frequency of liquid crystal polarity inversion and increase charging/discharging current on liquid crystal cells.

Figure 66

Interlaced Scan

The LGDP4522 supports interlaced scan for driving a frame by splitting it into n fields in order to prevent flicker.

To determine the number of fields (n: value set with the FLD bits), check the quality of display on the liquid crystal panel in use. The following table shows the scanned (gate) lines in each field. When FLD[1:0] = "01", the number of fields in one frame is one. When FLD[1:0] = "11", the number of fields in one frame is three. The figure illustrates the output waveforms of 3-field interlaced scan.

Table 64: Interlaced scan (GS = "0")

FLD[1:0]		01		11	
	Field	-	1	2	3
Gate					
G1		*	*		
G2		*		*	
G3		*			*
G4		*	*		
G5		*		*	
G6		*			*
G7		*	*		
G8		*		*	
:					
G217		*	*		
G218		*		*	
G219		*			*
G220		*	*		

^{*:} scanned gate lines

Table 65: Interlaced scan (GS = "1")

FLD[1:0]		01		11	
	Field	-	1	2	3
Gate					
G220		*	*		
G219		*		*	
G218		*			*
G217		*	*		
G216		*		*	
G215		*			*
G214		*	*		
G213		*		*	
:					
G4		*	*		
G3		*		*	
G2		*			*
G1		*	*		

Figure 67: Gate output timing of 3-field interlaced scan

Alternating Timing

The following figure illustrates the timing of liquid crystal polarity inversion in different driving formulae. In case of frame-inversion AC drive, the polarity is inverted after drawing one frame, followed by a blank period lasting for a 16H period, where all outputs from the gate lines become the VGL level. In case of 3-field interlaced scan, polarity is inverted after drawing one field, followed by blank periods that add up to a 16H period in one frame. In case of n-line inversion AC drive, polarity is inverted as drawing n lines, and a blank period lasting for a 16H period is inserted after drawing one frame.

In the interlaced scan, be sure to set the numbers of back and front porches as follows: BP = 3, FP = 5.

Figure 68

Frame inversion AC drive

Back porch

Alternating timing

Frame 1 Alternating timing

Alternating timing

Front porch

Alternating 110 timing

3-fie

Frame Frequency Adjustment Function

The LGDP4522 has a frame frequency adjustment function. The frame frequency for driving LCDs can be adjusted by instructions (using the DIV, RTN bits) without changing the oscillation frequency.

To switch frame frequencies between when displaying a moving picture and when displaying a still picture, set a high oscillation frequency in advance. By doing so, it becomes possible to set a low frame frequency when displaying a still picture for saving power consumption and to set a high frame frequency when displaying a moving picture.

Relationship between Liquid Crystal Drive Duty and Frame Frequency

The relationship between the liquid crystal drive duty and the frame frequency is calculated from the following formula. The frame frequency is adjusted by instruction using the 1H period adjustment bits (RTN bits) and the operation clock division bits (DIV bits).

$$frame frequency = \frac{fosc}{clock \ cycles \ per \ line \ * \ division \ ratio \ * \ (Line + BP + FP)}$$

where

fosc = RC oscillation frequency, Line = number of lines to drive the LCD (NL bits), clock cycle per line = RTN bits, division ratio: DIV bits, FP = number of lines for front porch and BP = number of lines for back porch.

Example of Calculation: when maximum frame frequency = 60 Hz

Number of lines to drive the LCD: 220 lines 1H period: 44 clock cycle (RTN[6:0] = 2Ch) Operational clock division ratio: 1/1

 $fosc = 60 \ Hz \times (0 + 44) \ clocks \times 1/1 \times (220 + 16) \ lines = 623 \ kHz$

In this case, the RC oscillation frequency is 676 kHz. Adjust the external resistor of the RC oscillator to 623 kHz.

Partial Display Function

The LGDP4522 allows selectively driving two images on the screen at arbitrary positions set in the screen drive position registers (R42h and R43h). Only the lines for displaying two images are selectively driven in order to reduce current consumption.

The first display drive position register (R42h) includes the start line setting bits (SS1) and the end line setting bits (SE1) for displaying the first image. The second display drive position register (R43h) includes the start line setting bits (SS2) and the end line setting bits (SE2) for displaying the second image. The second display control is effective when the SPT bit is set to "1". The total number of lines driven for displaying the first and second display must be less than the number of lines set with the NL bits.

Figure 69

Constraints in Setting the 1st/2nd Screen Drive Position Registers

When setting the start line setting bits (SS1[7:0]) and the end line setting bits (SE1[7:0]) of the first display drive position register (R42h), and the start line setting bits (SS2[7:0]) and the end line setting bits (SE2[7:0]) of the second display drive position register (R43h), it is necessary to satisfy the following conditions to display screens correctly.

Table 66: One screen drive (SPT = "0")

Register Settings	Display Operation
(SE1 - SS1) = NL	Full screen display
	The area of $(SE1 - SS1)$ is normally displayed.
(SE1 – SS1) < NL	Partial screen display
	The area of $(SE1 - SS1)$ is normally displayed.
	The rest of the area is a white display irrespective of data in RAM.
(SE1 - SS1) > NL	Setting disabled

Table 67: Two screen drive (SPT = "1")

Register Settings	Display Operation
((SE1 - SS1) + (SE2 - SS2)) = NL	Full screen display
	The area of (SE2 – SS1) is normally displayed.
((SE1 - SS1) + (SE2 - SS2)) < NL	Partial screen display
	The area of (SE2 – SS1) is normally displayed.
	The rest of the area is a white display irrespective of data in RAM.
((SE1 - SS1) + (SE2 - SS2)) > NL	Setting disabled

Note 1) Be sure that $SS1 \le SE1 \le SS2 \le SE2 \le EFh$.

Note 2) Be sure that $(SE2 - SS1) \le NL$.

The outputs from the source driver in non-display areas of the partial display can be changed as follows. Select the appropriate kind of source outputs according to the characteristics of the display panel.

Table 68

PTS	Source output in non-	-display area	Operating grayscale amplifier
	Positive polarity	Negative polarity	in non-display area
000	V63	V0	V0 to V63
001	Setting disabled	Setting disabled	-
010	GND	GND	V0 to V63
011	High impedance	High impedance	V0 to V63
100	V63	V0	V0, V63
101	Setting disabled	Setting disabled	-
110	GND	GND	V0, V63
111	High impedance	High impedance	V0, V63

Table 69

PTG	Gate outputs in non-display area
00	Normal scan
01	VGL (fixed)
10	Interval scan
11	Setting disabled

Follow the sequences below when using the partial display function.

Figure 70

EPROM Control

LGDP4522 has an embedded EPROM which is a 32-bit one-time programmable (OTP) IP from eMemory Technology Inc. (EO01X32GCV1).

EO01X32GCV1 is a CMOS, 1bit (1-bit) program OTP logic device. The main memory block is organized as 8-bits by 4 banks. See the data sheet of EO01X32GCV1.

The pins of the embedded EPROM can be controlled using the EPROM control 1 (R60h) register as shown below.

Table 70: Pin mapping

EO01X32GCV1	Bit fields of register R60h
POR = 0V/1.8V	POR = 0/1
VPP = 1.8V/7.2V	VPP = 0/1
PPROG = 0V/1.8V	PPROG = 0/1
PWE = 0V/1.8V	PWE = 0/1
PA[1:0] = 0V/1.8V	PA[1:0] = 0/1
PDIN[6:0] = 0V/1.8V	PDIN[6:0] = 0/1

The RA[1:0] of register R61h selects one of four EPROM bytes.

Accessing EPROM control registers, follow the timing requirements of read and program cycles.

Figure 71: EPROM timings

Panel Wiring Example

TBD

Absolute Maximum Ratings

TBD

Electrical Characteristics

DC Characteristics

TBD

80-System Bus Interface Timing Characteristics (18/16-Bit Bus)

Table 71: See Figure 74 (Condition: IOVcc = 1.65 to 3.30V, Vcc = RVcc = 2.40 to 3.30V)

Item			Symbol	Unit	Min	Тур	Max
Bus cycle time		Write	t_{CYCW}	ns	70	-	-
		Read	t_{CYCR}		250	-	-
Write "Low" level p	ulse width	Write	PW_{LW}	ns	40	-	-
Read "Low" level p	ulse width	Read	PW_{LR}		150	-	-
Write "High" level 1	oulse width	Write	PW_{HW}	ns	30	-	-
Read "High" level p	ulse width	Read	PW_{HR}		100	-	-
Write/Read rise/fall	time		$t_{\mathrm{WRr}}, t_{\mathrm{WRf}}$	ns	-	-	25
Setup time	Write (RS to	o CS*/WR*)	t_{AS}	ns	0	-	-
	Read (RS to	CS*/RD*)	_		10	-	-
Address hold time			t_{AH}	ns	2	-	-
Write data setup tim	e		$t_{ m DSW}$	ns	25	-	-
Write data hold time	;		t_{H}	ns	5	-	-
Read data delay time	e	•	$t_{ m DDR}$	ns	-	-	200
Read data hold time		•	$t_{\rm DHR}$	ns	5	-	-

80-System Bus Interface Timing Characteristics (8/9-Bit Bus)

Table 72: See Figure 74 (Condition: IOVcc = 1.65 to 3.30V, Vcc = RVcc = 2.40 to 3.30V)

Item			Symbol	Unit	Min	Тур	Max
Bus cycle time		Write	t_{CYCW}	ns	70	-	-
		Read	t_{CYCR}		250	-	-
Write "Low" level p	ulse width	Write	PW_{LW}	ns	40	-	-
Read "Low" level pr	ulse width	Read	PW_{LR}		150	-	-
Write "High" level p	oulse width	Write	PW_{HW}	ns	30	-	-
Read "High" level p	ulse width	Read	PW_{HR}		100	-	-
Write/Read rise/fall	time		$t_{\mathrm{WRr}}, t_{\mathrm{WRf}}$	ns	-	-	25
Setup time	Write (RS to	CS*/WR*)	t _{AS}	ns	0	-	-
	Read (RS to	CS*/RD*)	-		10	-	-
Address hold time			t_{AH}	ns	2	-	-
Write data setup tim	e		$t_{ m DSW}$	ns	25	-	-
Write data hold time	;		t _H	ns	5	-	-
Read data delay time	e		$t_{ m DDR}$	ns	-	-	200
Read data hold time			$t_{ m DHR}$	ns	5	-	-

Serial Peripheral Interface Timing Characteristics

Table 73: See Figure 75 (Condition: IOVcc = 1.65 to 3.30V, Vcc = RVcc = 2.40 to 3.30V)

Item		Symbol	Unit	Min	Тур	Max
Serial clock cycle time	Write (received)	t_{SCYC}	ns	100	-	20000
	Read (transmitted)	-		350	-	20000
Serial clock "High" level	Write (received)	t_{SCH}	ns	40	-	-
pulse width	Read (transmitted)	-		150	-	-
Serial clock "Low" level	Write (received)	t_{SCL}	ns	40	-	-
pulse width	Read (transmitted)	-		150	-	-
Serial clock rise/fall time		t_{scr} , t_{scf}	ns	-	-	20
Chip select setup time		t_{CSU}	ns	20	-	-
Chip select hold time		t_{CH}	ns	60	-	-
Serial input data setup time		t_{SISU}	ns	30	-	-
Serial input data hold time		$t_{ m SIH}$	ns	30	-	-
Serial output data setup time		t_{SOD}	ns	-	-	130
Serial output data hold time		t_{SOH}	ns	5	-	-

Reset Timing Characteristics

Table 74: See Figure 76 (Condition: IOVcc = 1.65 to 3.30V, Vcc = RVcc = 1.80 to 3.30V)

Item	Symbol	Unit	Min	Тур	Max
Reset "Low" level width	t_{RES}	ms	1	-	-
Reset rise time	$t_{ m rRES}$	us	-	-	10

RGB Interface Timing Characteristics

Table 75: See Figure 77 (18/16-bit I/F, IOVcc = 1.65 to 3.30V, Vcc = RVcc = 2.40 to 3.30V)

Item	Symbol	Unit	Min	Тур	Max
VSYNC/HSYNC setup time	tSYNCS	ns	0		
ENABLE setup time	tENS	ns	10		
ENABLE hold time	tENH	ns	20		
DOTCLK "Low" level pulse width	$PW_{ m DL}$	ns	40		
DOTCLK "High" level pulse width	PW_{DH}	ns	40		
DOTCLK cycle time	tCYCD	ns	100		
Data setup time	tPDS	ns	10		
Date hold time	tPDH	ns	40		
DOTCLK, VSYNC, HSYNC rise/fall time	trgbr, trgbf	ns	•		25

Table 76: See Figure 77 (6-bit I/F, IOVcc = 1.65 to 3.30V, Vcc = RVcc = 2.40 to 3.30V)

Item	Symbol	Unit	Min	Тур	Max
VSYNC/HSYNC setup time	tSYNCS	ns	0		
ENABLE setup time	tENS	ns	10		
ENABLE hold time	tENH	ns	20		
DOTCLK "Low" level pulse width	PW_{DL}	ns	30		
DOTCLK "High" level pulse width	PW_{DH}	ns	30		
DOTCLK cycle time	tCYCD	ns	100		
Data setup time	tPDS	ns	10		
Date hold time	tPDH	ns	40		
DOTCLK, VSYNC, HSYNC rise/fall time	trgbr, trgbf	ns			25

LCD Driver Output Characteristics

Table 77: See Figure 78.

Item	Symbol	Unit	Test Condition	Min	Тур	Max
Driver output delay time	$t_{ m DD}$	us	Vcc=3.0V, DDVDH=5.5V,	-	35	-
			VREG1OUT=5.0V,			
			RC oscillation: fosc =315kHz			
			(driving 220 lines), Ta=25°C			
			REV=0, SAP=010, AP=010,			
			VRN14-00=0, VRP14-00=0,			
			PKP52-00=0, PKN52-00=0,			
			PRP12-00=0, PRN12-00=0,			
			Load resistance $R=10k\Omega$,			
			Load capacitance C=20pF			
			Time to reach the target voltage			
			level ±35mV from a same			
			grayscale level at all source pins			

Notes to Electrical Characteristics

- 1. The DC/AC electrical characteristics of bare die and wafer products are guaranteed at 85°C.
- 2. The following are the configurations of I pin, I/O pin, and O pin.

Figure 72

3. The TEST1 pin must be grounded (GND). The IM[3:0] pins must be fixed at either GND or the IOVcc level.

- 4. This excludes currents though the output drive MOS.
- 5. This excludes currents flowing through input/output units. Be sure that input levels are fixed to prevent increase in the transient current in input units when a CMOS input level takes medium range. While not accessing via interface pins, current consumption will not change whether the CS* pin is set to "High" or "Low".
- 6. This is the case when an external oscillation resistor Rf is used.

Figure 73

Table 78: Reference Data, Ta=25°C

Oscillation Resistance (kΩ)	RC Oscillation Frequency: fosc (MHz)
	@ VCC = 2.8V
33	1.77
39	1.51
47	1.26
51	1.17
56	1.07
62	0.979
68	0.899
75	0.819
82	0.746
91	0.682
100	0.618
120	0.520
130	0.482

Timing Characteristics Diagram

Figure 74: 80-system bus interface operation

Figure 75: Serial peripheral interface operation

Figure 76: Reset operation

Figure 77: RGB interface

Figure 78: LCD driver outputs

