Seminarul 12 de Algebră II

Grupele 103 și 104 - 2020-2021

1 Polinoame ireductibile

Exercițiul 1.1: Fie K un corp comutativ și $a, b \in K, a \neq 0$. Arătați că $f(X) \in K[X]$ este ireductibil dacă și numai dacă $f(aX + b) \in K[X]$ este ireductibil.

Exercițiul 1.2: Demonstrați că următoarele polinoame sunt ireductibile în $\mathbb{Q}[X]$:

- a) $X^4 4X^3 + 6$;
- b) $X^n 2$:
- c) $X^6 + 30X^5 15X^3 + 6X 120$;
- d) $\frac{X^{p-1}}{X-1} = X^{p-1} + X^{p-2} + ... + 1$ pentru p prim;
- e) $X^4 + 4X^3 + 6X^2 + 2X + 1$;
- f) $\frac{(X+2)^p-2^p}{X}$ pentru p prim, $p \neq 2$.

Exercițiul 1.3*: Demonstrați că $X^2 - YZ \in \mathbb{R}[X, Y, Z]$ și $X^2 + Y^2 - 1 \in \mathbb{R}[X, Y]$ sunt ireductibile.

Exercițiul 1.4: Spunem că un polinom cu coeficienți întregi f(X) este Eisenstein modulo p, unde p este un număr prim, dacă există $a \in \mathbb{Z}$ astfel încât f(X + a) este ireductibil conform criteriului lui Eisenstein aplicat numărului prim p.

Determinați toate numerele prime p pentru care $f(X) = X^3 + 65$ este Eisenstein modulo p. În plus, pentru fiecare astfel de p precizați și un $a \in \mathbb{Z}$ ca mai sus.

Exercițiul 1.5: Fie K un corp comutativ și $f(X) = a_0 + a_1 X + ... + a_n X^n \in K[X]$ cu $a_0 \neq 0$. Arătați că f este ireductibil dacă și numai dacă $a_n + a_{n-1} X + ... + a_1 X^{n-1} + a_0 X^n \in K[X]$ este ireductibil.

Exercițiul 1.6: Demonstrați că următoarele polinoame sunt ireductibile în $\mathbb{Q}[X]$:

- a) $6X^4 4X + 1$;
- b) $120X^6 + 6X^5 15X^3 + 30X + 1$;
- c) $X^4 + 2X^3 + 6X^2 + 4X + 1$.

Exercițiul 1.7: Demonstrați că $X^{n-1} + X^{n-2} + ... + X + 1$ este ireductibil peste \mathbb{Q} dacă și numai dacă n este prim.

Exercițiul 1.8: Scrieți factorizarea polinoamelor $X^n - 1, 1 \le n \le 8$, în:

- a) $\mathbb{Q}[X]$;
- b) $\mathbb{Z}_2[X];$
- c) $\mathbb{Z}_3[X]$.

Exercițiul 1.9: Fie $f = X^9 + X^8 + X^6 + X + \hat{1}$ și $g = X^9 + X^8 + X^3 + X + \hat{1} \in \mathbb{Z}_2[X]$. Determinați (f, g) și scrieți f și g ca produs de factori ireductibili.

Exercițiul 1.10: Decideți dacă polinoamele următoare sunt ireductibile în $\mathbb{Q}[X]$:

a)
$$X^3 + X + 2$$
;

f)
$$X^4 + 2X^3 + 5X^2 + 6X + 1$$
;

b)
$$X^3 + X + 1$$
;

g)
$$X^4 + 7X^3 - 2X^2 + 6X - 1$$
;

c)
$$X^3 + 2X + 2$$
;

h)
$$X^4 - 2X^3 + 6X^2 + 4X - 2$$
;

d)
$$2X^4 - 3X^3 + 4X^2 - 4X - 3$$
;

i)
$$X^4 + 6X^3 + 15X^2 + 9X + 3$$
;

e)
$$X^4 + 3X^3 + 6X^2 + 5X + 3$$
;

i)
$$X^4 + 3X^3 + 3X^2 - 5$$
.

Exercițiul 1.11: Fie p prim și $n \in \mathbb{N}$. Arătați că $f(X) = X^{p^n} + p - 1$ este ireductibil în $\mathbb{Q}[X]$.

Exercițiul 1.12: Demonstrați că polinomul $f(X) = (X-1)(X-2)...(X-n) + 1 \in \mathbb{Q}[X]$ este ireductibil pentru $n \neq 4$.

Exercițiul 1.13: Dacă $a_1, ..., a_n \in \mathbb{Z}$ sunt distincte două câte două, atunci polinomul $f(X) = (X - a_1)^2 (X - a_2)^2 ... (X - a_n)^2 + 1$ este ireductibil în $\mathbb{Q}[X]$.

2 Criterii de ireductibilitate pentru polinoame

Propoziția 2.1: Fie R un domeniu și $f \in R[X]$, $\deg f \geq 2$. Dacă f are o rădăcină în R, atunci este reductibil în R[X].

Propoziția 2.2: Fie R un domeniu și $f \in R[X]$ monic. Dacă $\deg f = 2$ sau 3, atunci f este ireductibil în R[X] dacă și numai dacă nu are rădăcini în R.

Propoziția 2.3: Fie $f = a_n X^n + ... + a_1 X + a_0 \in \mathbb{Z}[X]$. Dacă $\frac{r}{s} \in \mathbb{Q}$ este o rădăcină a lui f cu (r, s) = 1, atunci $r \mid a_0$ și $s \mid a_n$.

Propoziția 2.4: ("Schimbare de variabile") Fie K un corp comutativ și $a, b \in K, a \neq 0$. Atunci $f(X) \in K[X]$ este ireductibil dacă și numai dacă $f(aX + b) \in K[X]$ este ireductibil.

Propoziția 2.5: Fie K un corp comutativ. Atunci $a_0 + a_1X + ... + a_nX^n \in K[X]$ este ireductibil dacă și numai dacă $a_n + a_{n-1} + ... + a_1X + a_0 \in K[X]$ este ireductibil.

Teorema 2.6: (Lema lui Gauss pentru \mathbb{Z}) Fie $f \in \mathbb{Z}[X]$. Presupunem că cel mai mare divizor comun al coeficienților lui f este 1.

Atunci f este ireductibil în $\mathbb{Z}[X] \iff f$ este ireductibil în $\mathbb{Q}[X]$.

Teorema 2.7: (Lema lui Gauss) Fie R inel factorial și $f \in R[X]$. Presupunem că cel mai mare divizor comun al coeficienților lui f este 1.

Atunci f este ireductibil în $R[X] \iff f$ este ireductibil în Q(R)[X].

Propoziția 2.8: (Criteriul lui Eisenstein) Fie p prim şi $f = X^n + a_{n-1}X^{n-1} + ... + a_1X + a_0 \in \mathbb{Z}[X]$, $n \geq 1$. Presupunem că $p \mid a_k$ pentru orice $0 \leq k \leq n-1$ şi $p^2 \nmid a_0$. Atunci f este ireductibil în $\mathbb{Q}[X] \iff$ ireductibil în $\mathbb{Z}[X]$.

Propoziția 2.9: (Criteriul lui Eisenstein (variantă)) Fie p prim şi $f = a_n X^n + a_{n-1} X^{n-1} + ... + a_1 X + a_0 \in \mathbb{Z}[X], n \geq 1$. Presupunem că $p \not | a_n, p | a_k$ pentru orice $0 \leq k \leq n-1$ şi $p^2 \not | a_0$. Atunci f este ireductibil în $\mathbb{Q}[X]$.

Propoziția 2.10: (Criteriul lui Eisenstein, limbaj de ideale prime)

a) Fie R un domeniu și $f = X^n + a_{n-1}X^{n-1} + ... + a_1X + a_0 \in R[X]$ un polinom **monic**.

Presupunem că există $P \subseteq R$ un ideal prim astfel încât $a_k \in P$ pentru orice $0 \le k \le n-1$ dar $a_0 \notin P^2$. Atunci f este ireductibil în R[X].

b) Fie R un inel factorial și $f = a_n X^n + a_{n-1} X^{n-1} + ... + a_1 X + a_0 \in R[X]$.

Presupunem că există $P \subseteq R$ un ideal prim astfel încât $a_n \notin P$, $a_k \in P$ pentru orice $0 \le k \le n-1$ dar $a_0 \notin P^2$. Atunci f este ireductibil în Q(R)[X].

Propoziția 2.11: (Criteriul reducerii) Fie R un domeniu și $I \subseteq R, I \neq R$. Dacă $f \in R[X]$ monic este ireductibil în $\binom{R}{I}[X]$, atunci este ireductibil în R[X].

Teorema 2.12: (Criteriul lui Cohn) Fie $b \in \mathbb{N}, b \geq 2$ şi $p \in \mathbb{N}$ prim a cărui scriere în baza b este

$$p = a_0 + a_1b + a_2b^2 + \dots + a_nb^n, \ 0 \le a_i < b.$$

Atunci polinomul $a_0 + a_1X + a_2X^2 + ... + a_nX^n \in \mathbb{Z}[X]$ este ireductibil (în $\mathbb{Z}[X]$ şi $\mathbb{Q}[X]$).