# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Московский государственный университет им. М.В. Ломоносова Факультет вычислительной математики и кибернетики

### Отчет по заданию №1

# На тему «Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов»

## Вариант 3/1/1

Работу выполнил: Студент 1 курса 106 группы Факультета вычислительной математики и кибернетики Наклескин Никита Владимирович

Преподаватель:

Корухова Людмила Сергеевна

# Содержание

| Содержание                                 | 2  |
|--------------------------------------------|----|
| Постановка задачи                          | 3  |
| Математическое обоснование                 | 4  |
| Результаты экспериментов                   | 5  |
| Структура программы и спецификация функций | 6  |
| Сборка программы (Маке-файл)               | 8  |
| Отладка программы, тестирование функций    | 9  |
| Программа на Си и на Ассемблере            | 11 |
| Анализ допущенных ошибок                   | 12 |
| Список цитируемой литературы               | 13 |

#### Постановка задачи

Требуется реализовать программу, позволяющую вычислять площадь плоской фигуры, ограниченной кривыми, которые заданы функциями:  $f_1 = e^{-x} + 3$ ,  $f_2 = 2x - 2$ ,  $f_3 = \frac{1}{x}$ . Для вычисления площади необходимо найти пределы интегрирования, которыми являются точки пересечения графиков соответствующих функций. Для поиска используется методом деления отрезка пополам (метод бисекции) по формуле  $f_i(x) - f_i(x) = 0; i, j = \overline{1,3}$ . Для вычисления определенного интеграла используется формула треугольников. Вычисление корня и определенного интеграла производится с точностью є. Также программа должна поддерживать ключи командной строки для вывода помощи, тестов корня и интеграла, решения задачи, вывод абсцисс точек пересечения кривых, количество итераций при нахождении корня. Для сборки программы необходимо использовать утилиту Make, которая должна поддерживать цели all для сборки программы и clean для удаления промежуточных файлов. Программа также должна содержать все необходимые тесты для проверки корректности работы функций.

#### Математическое обоснование

При вычислении корней используется метод деления отрезка пополам. Алгоритм состоит в том, что мы берем функцию f(x) и отрезок [a, b]. Далее мы делаем отрезок пополам и получаем два отрезка: [a, x], [x, b]. После чего нам необходимо выбрать отрезок на котором функция меняет знак, так как именно на этом отрезке и будет лежать решение. Деление отрезков выполняется пока  $|b-a| > 2\varepsilon$ .

При вычислении определенного интеграла необходимо воспользоваться формулой прямоугольников. Для нахождения количества прямоугольников, на которые необходимо разбить площадь под графиком необходимо, чтобы разница между интегралом, полученным при разбиении площади на п прямоугольников и интегралом, полученным при разбиении на 2n прямоугольников была меньше  $\varepsilon$ . Далее необходимо найти сумму площадей 2n прямоугольников, где ширина находится по формуле  $\Delta x = \frac{b-a}{2n}$ , а за высоту берется значение функции в середине прямоугольника, это и будет искомое значение.

Искомая площадь находится по формуле:

$$S = \int_{a}^{b} f_{1}(x)dx - \int_{c}^{b} f_{2}(x)dx - \int_{a}^{c} f_{3}(x)dx$$



Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

# Результаты экспериментов

| Кривые | X        | y        |
|--------|----------|----------|
| 1 и 2  | 2.539490 | 3.078910 |
| 2 и 3  | 1.366043 | 0.732086 |
| 1 и 3  | 0.265427 | 3.767519 |

Таблица 1: Координаты точек пересечения. Погрешность 0.0001.



Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений.

Искомая площадь S = 3.635805 при погрешности 0.001.

## Структура программы и спецификация функций

#### Список модулей:

- 1. main.c основная часть программы, включающая в себя вызовы функций по необходимым ключам
- 2. functions.asm модуль, включающий в себя функции  $f_1 f_3$  на языке ассемблера NASM
- 3. handler.c модуль, включающий в себя функции, которые обрабатывают ключи(вывод тестов, решений и.т.д)
- 4. rifunctions.c модуль, включающий в себя функции для вычисления корня и интеграла
- 5. test\_functions.c модуль, включающий в себя функции для тестирования работы функций поиска интеграла и корня
- 6. functions.h модуль, включающий в себя объявление функций из functions.asm

#### Список функций:

- 1. functions.asm
  - 1. double f1(double x) функция  $f_1$
  - 2. double f2(double x) функция  $f_2$
  - 3. double f3(double x) функция  $f_3$

#### 2. handler.c

- 1. void help() выводит информацию о доступных ключах на стандартный поток вывода
- 2. void test\_integral() выводит тесты для интеграла на стандартный поток вывода
- 3. void test\_root() выводит тесты для корня на стандартный поток вывода
- 4. void solve() выводит решение задачи (площадь криволинейной плоской фигуры) на стандартный поток вывода)
  - 5. void show\_absciss() выводит точки пересечения функций
- 6. void show\_count() выводит количество итераций, необходимых для вычисления прибереженного значения корня

#### 3. rifunctions.c

- 1. double rieman\_integral(double(\*f)(double), double x, double delt) функция для вычисления члена интегральной суммы
- 2. double root(double(\*f)(double), double(\*g)(double), double a, double b, double eps) функция для вычисления корня уравнения  $f_i(x) f_i(x) = 0$
- 3. double integral(double(\*f)(double), double a, double b, double eps) функция для вычисления определенного интеграла от функции f на отрезке [a, b] с точностью  $\varepsilon$

### 4. test\_functions.c

- 1. double f4(double x) функция, вычисляющая значение функции  $f=2x^2$  в точке x
- 2. double f5(double x) функция, вычисляющая значение функции  $f = 8 + 2x x^2$  в точке x
- 3. double f6(double x) функция, вычисляющая значение функции f=2x+1 в точке x
- 4. double f7(double x) функция, вычисляющая значение функции f = 6x в точке x
- 5. double f8(double x) функция, вычисляющая значение функции f = x в точке x



Рис. 3: Схематическое представление модулей программы.

# Сборка программы (Make-файл)



Рис. 4: Схема сборки приложения.

## Отладка программы, тестирование функций

Для отладки функции интеграла возьмем следующие функции:

1. 
$$f = 2x^2$$
 на отрезке [1, 2]

2. 
$$f = 8 + 2x - x^2$$
 на отрезке [-2, 4]

3. 
$$f = 2x - 2$$
 на отрезке [1, 3]

Решим первый интеграл аналитически:

$$\int_{1}^{2} 2x^{2} dx = 2 \int_{1}^{2} x^{2} dx = \frac{2x^{3}}{3} \Big|_{1}^{2} = \frac{2 \cdot 2^{3}}{3} - \frac{2 \cdot 1^{3}}{3} = \frac{14}{3} \approx 4.6$$

Решим второй интеграл аналитически:

$$\int_{-2}^{4} 8 + 2x - x^{2} dx = \int_{-2}^{4} 8 dx + \int_{-2}^{4} 2x dx - \int_{-2}^{4} x^{2} dx = 8x + x^{2} - \frac{x^{3}}{3} \Big|_{-2}^{4} = 8x + 4x^{2} - \frac{4^{3}}{3} - (8 \cdot (-2) + (-2)^{2} - \frac{(-2)^{3}}{3}) = 36$$

Решим третий интеграл аналитически:

$$\int_{1}^{3} (2x - 2)dx = \int_{1}^{3} 2x dx - \int_{1}^{3} 2dx = x^{2} - 2x \Big|_{1}^{3} = 3^{2} - 2 \cdot 3 - (1^{2} - 2 \cdot 1) = 4$$

Результаты отладки представлены в таблице:

|   | Аналитический метод        | Результат работы<br>функции |
|---|----------------------------|-----------------------------|
| 1 | $\frac{14}{3} \approx 4.6$ | 4.666377                    |
| 2 | 36                         | 36.000329                   |
| 3 | 4                          | 4.00000                     |

Таблица 2: результаты отладки функции интеграла

Для отладки функции поиска корня уравнения возьмем следующие функции:

1. 
$$f_1 = 6x$$
,  $f_2 = 2x + 1$  на отрезке [0, 5]

2. 
$$f_3 = x$$
,  $f_4 = \frac{1}{x}$  на отрезке [0, 5]

3. 
$$f_5 = 2x - 2$$
,  $f_6 = \frac{1}{x}$  на отрезке [2, 3]

Аналитически найдем корень уравнения  $f_1 - f_2 = 0$ :

$$6x - 2x - 1 = 0$$

$$4x = 1$$

$$x = \frac{1}{4} = 0.25$$

Корень принадлежит промежутку [0, 5], следовательно, он подходит

Аналитически найдем корень уравнения  $f_3 - f_4 = 0$ :

$$x - \frac{1}{x} = 0$$

$$x^2 - 1 = 0$$

$$x_1 = 1$$
 and  $x_2 = -1$ 

Корень  $x_1$  принадлежит промежутку [0, 5], следовательно он подходит корень  $x_2$  не принадлежит промежутку, следовательно он не подходит

Аналитически найдем корень уравнения  $f_5 - f_6 = 0$ :

$$2x - 2 - \frac{1}{x} = 0$$

$$2x^2 - 2x - 1 = 0$$

$$D = \sqrt{(-2)^2 - 4 \cdot 2 \cdot (-1)} = \sqrt{3}$$

$$x_1 = \frac{2 + \sqrt{D}}{4} = -0.366; \quad x_2 = \frac{2 - \sqrt{D}}{4} = 1.366$$

 $x_1$  не подходит, так как не принадлежит промежутку [1, 3].  $x_2$  принадлежит промежутку, следовательно подходит

Результаты отладки приведены в таблице:

|   | Аналитический метод | Результат работы функции |
|---|---------------------|--------------------------|
| 1 | 0.25                | 0.250006                 |
| 2 | 1                   | 1.000366                 |
| 3 | 1.366               | 1.366043                 |

Таблица 3: Результаты отладки функции корня

По результатам тестов можно сделать вывод, что функции корня интеграла работают корректно. При необходимости можно провести все тесты, используя ключи командной строки:

- 1. -test-root для проведения тестов функции корня
- 2. -test-integral для проведения тестов функции интеграла

# Программа на Си и на Ассемблере

Исходные файлы программы находятся в архиве, который приложен к отчету. Пароль от архива: 123.

## Анализ допущенных ошибок

- 1. При написании функции  $f_1 = e^{-x} + 3$  изначально не было учтено, что команда F2XM1 принимает на вход число из отрезка [-1;1]. В результате функция работала некорректно
- 2. Не сразу понял, как подать функцию в функцию. В изначальном варианте вместо подачи функции подавался номер функции
- 3. Изначально при вычислении интеграла є брался некорректно
- 4. Ошибка в сборке. Маке перестирал целиком программу, не были выставлены зависимости
- 5. При обработке ключей программа падала в segmentation fault. При обработке ключей программа выходила за границы массива \*\*argv.
- 6. Множество ошибок, связанных с работой с командами и со стеком сопроцессора x87 из-за недостаточности опыта.
- 7. Отсутствие ключа математической библиотеки при сборке программы
- 8. Использование заголовочных файлов вместо файлов <filename>.c там, где они использоваться не должны
- 9. Использование == вместо strcmp() для сравнения строк
- 10. Отсутствие ключей для вывода абсцисс и количества итераций в изначальной версии программы
  - 11. Неправильная функция вычисления интеграла

# Список цитируемой литературы

Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 — Москва: Наука, 1985.

Статья «Просто o make» URL: <a href="https://habr.com/ru/post/211751/">https://habr.com/ru/post/211751/</a>

Е.В. Хорошилова. Курс семинаров по математическому анализу. Книга 3. Москва 2022.