コンピュータグラフィクス論

- アニメーション(1) -

2016年5月19日 高山 健志

スケルトンによるアニメーション

- ・単純な仕組み
- 直感的な挙動
- ・ 低い計算コスト

https://www.youtube.com/watch?v=DsoNab58QVA

スケルトンによる姿勢の表現

• ボーンと関節から成る木構造

• ボーンは親関節を基準とした相対的な回転角を保持

各関節の回転角によって全体の姿勢を決定 (Forward Kinematics)

• ロボティクス分野と深く関連

Inverse Kinematics

・末端関節の位置を与えると、それを満たす関節角を逆算

・IK で手早く姿勢を作り、 FK で微調整

https://www.youtube.com/watch?v=e1qnZ9rV_kw

IK の一解法:Cyclic Coordinate Descent

- ・ 関節角を一つずつ順番に変更
 - ・末端関節を目標に近づける
 - 順番が重要!末端が最初
- ・実装が簡単 → 基本課題 (デモ)
- ・より高度な手法
 - ・ ヤコビ法 (方向等の様々な制約)
 - 変形エネルギーの最小化 [Jacobson 12]

変形エネルギーに基づく IK

モーションデータの取得・生成方法

光学式モーションキャプチャ

• 役者にマーカーを取り付け、多数 (~48) のカメラで撮影

from Wikipedia

安価なデプスカメラによるモーキャプ

https://www.youtube.com/watch?v=qC-fdgPJhQ8

屋外で使えるモーキャプ

モーションデータベース

- http://mocap.cs.cmu.edu/
- 6 カテゴリ、合計 2605個
- 研究促進のために無償公開 (補間、連結、解析、検索、etc)

モーションの連結

二つのフレームで姿勢が似ていれば、 遷移を許す

フレーム間の姿勢の類似度

Motion Graphs [Kovar SIGGRAPH02]

Motion Patches: Building Blocks for Virtual Environments Annotated with Motion Data [Lee SIGGRAPH06]

シミュレーションによるモーション生成

- モーキャプできない 対象に使える
- ・体型に合った自然な 動作を生成できる
- 動的に変化する環境に適応できる

https://www.youtube.com/watch?v=KF_a1c7zytw

専用デバイスによるポーズ作成

Tangible and Modular Input Device for Character Articulation [Jacobson SIGGRAPH14] Rig Animation with a Tangible and Modular Input Device [Glauser SIGGRAPH16]

https://www.youtube.com/watch?v=vBX47JamMN0

キャラクタの動きに関する様々なトピック

複数キャラクタのインタラクション

物体をつかむ動作

群衆シミュレーション

Path planning

Character motion synthesis by topology coordinates [Ho EG09]
Aggregate Dynamics for Dense Crowd Simulation [Narain SIGGRAPHAsia09]
Synthesis of Detailed Hand Manipulations Using Contact Sampling [Ye SIGGRAPH12]
Space-Time Planning with Parameterized Locomotion Controllers.[Levine TOG11]

スキニング

$$\mathbf{v}'_i = \mathrm{blend}(\langle w_{i,1}, \mathbf{T}_1 \rangle, \langle w_{i,2}, \mathbf{T}_2 \rangle, \dots)(\mathbf{v}_i)$$

- 入力
 - メッシュ頂点座標 $\{\mathbf{v}_i\}$ i=1,...,n
 - ボーンの剛体変換 $\{\mathbf{T}_i\}$ j=1,...,m
 - 各ボーンから各メッシュ頂点への重み $\{w_{i,j}\}$ i=1,...,n j=1,...,m
- 出力
 - 変形後のメッシュ頂点座標 $\{\mathbf{v}_i'\}$ i=1,...,n
- 技術的なポイント
 - 重み {w_{i,i}} をどう与えるか
 - 変換をどうブレンドするか

重みの与え方:手作業でペイント

重みの与え方:自動計算

- j 番目のボーンの重み w_j を、
 - j 番目のボーン上で 1 を取り、それ以外のボーン上で 0 を取り、
 - それ以外では滑らかなスカラー場
 - として定式化
- 一階微分 $\int_{\Omega} \|\nabla w_j\|^2 dA$ を最小化 [Baran 07]
 - ・サーフェス上で近似的に解く→簡単、高速
- 二階微分 $\int_{\Omega} (\Delta w_j)^2 dA$ を最小化 [Jacobson 11]
 - 不等式制約 $0 \le w_i \le 1$ も導入
 - ・ボリューム上で二次計画問題を解く → 高品質

Pinocchio デモ

変換の混合手法:Linear Blend Skinning

• 剛体変換 \mathbf{T}_j は、回転行列 $\mathbf{R}_j \in \mathbb{R}^{3 \times 3}$ と移動ベクトル $\mathbf{t}_j \in \mathbb{R}^3$ を並べた 3×4 行列として表される

$$\mathbf{v}_i' = \left(\sum_j w_{i,j}(\mathbf{R}_j \ \mathbf{t}_j)\right) \begin{pmatrix} \mathbf{v}_i \\ 1 \end{pmatrix}$$

- ・ 単純で高速
 - 頂点シェーダで実装:フレーム毎に $\{\mathbf{v}_i'\}$ を GPU に送るのではなく、初期化時に $\{\mathbf{v}_i\}$ と $\{w_{i,i}\}$ を送り、フレーム毎に $\{\mathbf{T}_i\}$ を送る
- ・業界で最も一般的

LBS の欠陥:"candy wrapper" effect

- 剛体変換の線形和は剛体変換にならない!
 - 180度捻ると関節の周りが一点に凝縮

LBS に代わる手法: Dual Quaternion Skinning

- アイディア
 - ・ Quaternion (四つの実数) → 3D 回転変換
 - Dual quaternion (二つの quaternion) → 3D 剛体変換 (回転 + 移動)

Dual number \succeq dual quaternion

- Dual number
 - $\varepsilon^2 = 0$ という演算規則を持つ dual 単位 ε を導入 (cf. 虚数単位 i)
 - Primal 成分と dual 成分 の和として dual number を定義: $\hat{a} \coloneqq a_0 + \varepsilon a_{\varepsilon}$
 - $a_0, a_{\varepsilon} \in \mathbb{R}$

• Dual 共役:

$$\overline{\hat{a}} = \overline{a_0 + \varepsilon a_{\varepsilon}} = a_0 - \varepsilon a_{\varepsilon}$$

- Dual quaternion
 - Quaternionの 各成分が dual number であるようなもの
 - 二つの quaternion を使って書ける

$$\widehat{\mathbf{q}} \coloneqq \mathbf{q}_0 + \varepsilon \mathbf{q}_{\varepsilon}$$

• Dual 共役:

$$\overline{\widehat{\mathbf{q}}} = \overline{\mathbf{q}_0 + \varepsilon \mathbf{q}_{\varepsilon}} = \mathbf{q}_0 - \varepsilon \mathbf{q}_{\varepsilon}$$

• Quaternion 共役:
$$\hat{\mathbf{q}}^* = (\mathbf{q}_0 + \varepsilon \mathbf{q}_{\varepsilon})^* = \mathbf{q}_0^* + \varepsilon \mathbf{q}_{\varepsilon}^*$$

Dual number / quaternion の演算規則

- Dual number $\hat{a} = a_0 + \varepsilon a_{\varepsilon}$ について:
 - 逆数

$$\frac{1}{\hat{a}} = \frac{1}{a_0} - \varepsilon \frac{a_\varepsilon}{a_0^2}$$

• 平方根

$$\sqrt{\hat{a}} = \sqrt{a_0} + \varepsilon \frac{a_\varepsilon}{2\sqrt{a_0}}$$

• 三角関数

$$\sin \hat{a} = \sin a_0 + \varepsilon a_{\varepsilon} \cos a_0$$

$$\cos \hat{a} = \cos a_0 - \varepsilon a_{\varepsilon} \sin a_0$$

普通の四則演算と新しい規則 $\varepsilon^2 = 0$ を 適用すれば、簡単に導出できる

テイラー展開より導出

- Dual quaternion $\hat{\mathbf{q}} = \mathbf{q}_0 + \varepsilon \mathbf{q}_{\varepsilon}$ について:
 - ・ノルム

$$\|\widehat{\mathbf{q}}\| = \sqrt{\widehat{\mathbf{q}}^*\widehat{\mathbf{q}}} = \|\mathbf{q}_0\| + \varepsilon \frac{\langle \mathbf{q}_0, \mathbf{q}_\varepsilon \rangle}{\|\mathbf{q}_0\|}$$
 4Dベクトルとしての内積

• 逆元

$$\widehat{\mathbf{q}}^{-1} = \frac{\widehat{\mathbf{q}}^*}{\|\widehat{\mathbf{q}}\|^2}$$

• ||q|| = 1 となるものを単位 dual quaternion と呼ぶ

•
$$\Leftrightarrow$$
 $\|\mathbf{q}_0\| = 1 \text{ TO} \langle \mathbf{q}_0, \mathbf{q}_{\varepsilon} \rangle = 0$

Dual quaternion による剛体変換

• 平行移動成分が $\vec{\mathbf{t}} = (t_x, t_y, t_z)$ で、回転成分が \mathbf{q}_0 (単位quaternion)であるような剛体変換を表す単位 dual quaternion:

$$\widehat{\mathbf{q}} = \mathbf{q}_0 + \frac{\varepsilon}{2} \vec{\mathbf{t}} \mathbf{q}_0$$

注意:3Dベクトルは、実数成分 を持たないquaternionと見なす

・単位 dual quaternion $\hat{\mathbf{q}}$ による、3D座標 $\vec{\mathbf{v}} = (v_x, v_y, v_z)$ の剛体変換:

$$\widehat{\mathbf{q}}(1+\varepsilon\overrightarrow{\mathbf{v}})\overline{\widehat{\mathbf{q}}^*}=1+\varepsilon\overrightarrow{\mathbf{v}'}$$

v' が変換後の3D座標

Dual quaternion による剛体変換

•
$$\hat{\mathbf{q}} = \mathbf{q}_0 + \frac{\varepsilon}{2} \vec{\mathbf{t}} \mathbf{q}_0$$

•
$$\hat{\mathbf{q}}(1 + \varepsilon \vec{\mathbf{v}})\overline{\hat{\mathbf{q}}^*} = \left(\mathbf{q}_0 + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\right)(1 + \varepsilon \vec{\mathbf{v}})\left(\mathbf{q}_0^* + \frac{\varepsilon}{2}\mathbf{q}_0^*\vec{\mathbf{t}}\right)$$

$$= \left(\mathbf{q}_0 + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\right)\left(\mathbf{q}_0^* + \varepsilon \vec{\mathbf{v}}\mathbf{q}_0^* + \frac{\varepsilon}{2}\mathbf{q}_0^*\vec{\mathbf{t}}\right)$$

$$= \mathbf{q}_0\mathbf{q}_0^* + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\mathbf{q}_0^* + \varepsilon \mathbf{q}_0\vec{\mathbf{v}}\mathbf{q}_0^* + \frac{\varepsilon}{2}\mathbf{q}_0\mathbf{q}_0^*\vec{\mathbf{t}}$$

$$= 1 + \varepsilon(\vec{\mathbf{t}} + \mathbf{q}_0\vec{\mathbf{v}}\mathbf{q}_0^*)$$

3D座標 v をquaternion q₀ で回転した結果

$$((0+\vec{\mathbf{t}})\mathbf{q}_0)^* = \mathbf{q}_0^*(0+\vec{\mathbf{t}})^*$$
$$= -\mathbf{q}_0^*\vec{\mathbf{t}}$$

$$\|\mathbf{q}_0\|^2 = 1$$

"Screw motion" としての剛体運動

• 任意の剛体運動は、screw motion として一意に記述できる

Screw motion \succeq dual quaternion

• 単位 dual quaternion $\hat{\mathbf{q}}$ は、以下の形で表せる:

$$\widehat{\mathbf{q}} = \cos\frac{\widehat{\theta}}{2} + \widehat{\mathbf{s}}\sin\frac{\widehat{\theta}}{2}$$

•
$$\hat{\theta} = \theta_0 + \varepsilon \theta_{\varepsilon}$$

•
$$\hat{\mathbf{s}} = \overrightarrow{\mathbf{s}_0} + \varepsilon \overrightarrow{\mathbf{s}_\varepsilon}$$

$$\theta_0, \theta_{\varepsilon}$$
:実数

$$\overrightarrow{\mathbf{s}_0}$$
, $\overrightarrow{\mathbf{s}_{\varepsilon}}$: 単位3Dベクトル

- ・幾何的な意味
 - $\overrightarrow{\mathbf{s}_0}$: 回転軸方向
 - θ₀ : 回転量
 - θ_{ε} :回転軸方向の平行移動量
 - $\overrightarrow{\mathbf{s}_{\varepsilon}}$: 回転軸が $\overrightarrow{\mathbf{r}}$ を通るとき、 $\overrightarrow{\mathbf{s}_{\varepsilon}} = \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{s}_{0}}$ を満たす

screw axis

二つの剛体変換の補間

・線形補間十正規化 (nlerp)

$$\operatorname{nlerp}(\widehat{\mathbf{q}}_1, \widehat{\mathbf{q}}_2, t) \coloneqq \frac{(1-t)\widehat{\mathbf{q}}_1 + t\widehat{\mathbf{q}}_2}{\|(1-t)\widehat{\mathbf{q}}_1 + t\widehat{\mathbf{q}}_2\|}$$

・注意:qと-qは同じ剛体変換を表すが、過程が正反対

• $\hat{\mathbf{q}}_1$ と $\hat{\mathbf{q}}_2$ それぞれの non-dual な quaternion の 4D 内積が負であれば、 $\hat{\mathbf{q}}_1$ の補間相手を $-\hat{\mathbf{q}}_2$ とする

Dual quaternion による剛体変換のブレンド

blend(
$$\langle w_1, \widehat{\mathbf{q}}_1 \rangle, \langle w_2, \widehat{\mathbf{q}}_2 \rangle, ...$$
) $\coloneqq \frac{w_1 \widehat{\mathbf{q}}_1 + w_2 \widehat{\mathbf{q}}_2 + \cdots}{\|w_1 \widehat{\mathbf{q}}_1 + w_2 \widehat{\mathbf{q}}_2 + \cdots\|}$

- Quaternion による回転と同様
- ・入力データ形式が LBS と同一、計算コスト低い
- ・市販CGソフトの多くに 標準装備

122 FPS

DQS の欠点:"bulging" effect

• 曲げの際に、関節を中心とした球面上に沿ったような軌跡を描く

DQS の欠点の克服

変換を bend と twist に分解し、別々に補間 [Kavan12]

DQSで動かした後、法線方向にオフセット [Kim14]

DQS の欠点:捻りの回転量の制限

自己交差を回避するスキニング

・陰関数の性質を活用

https://www.youtube.com/watch?v=RHySGlqEgyk

スケルトン以外の変形インタフェース

点、ケージ、スケルトンの統合 [Jacobson 11]

https://www.youtube.com/watch?v=P9fqm8vqdB8

https://www.youtube.com/watch?v=BFPAIU8hwQ4

参考情報

- http://en.wikipedia.org/wiki/Motion_capture
- http://skinning.org/
- http://mukai-lab.org/category/library/legacy
- CG Gems JP 2012 Chapter 8 インバースキネマティクス