p(G') = |E(G'')| + p(G'') + 1 = i + 1,也即 |E(G)| = (i + 1) - p(G)。这就证明了,当 n = i + 1 时命题同样成立。

再证原题。

证明: 若 G 为空图,则命题显然成立。若 G 非空,则至少存在一个连通分支,由引理 7.5 可知, G 中若不含圈,则至多有 n-1 条边,即有 m < n,这与题设 $m \ge n$ 矛盾。故,G 中必含圈。 \square

7.22

证明: 由块的定义知, 顶点数为 2 的块只有 K_2 。

对任意顶点数大于或等于 3 的块 B,由教材定理 7.20 知, B 中有圈 C。下面证明 B 的所有顶点和所有边都在 C 上。

若 B 中存在边 $e' = (u',v') \notin E(C)$,则任取 C 中一边 $e = (u,v) \in E(C)$,由教材定理 7.20 知,存在一个过 e 和 e' 的圈 C'。由于 $(u,v) \in E(C) \cap E(C')$,故 $|V(C) \cap V(C')| \geq 2$ 。从 e' 出发,分别向 C' 两侧扩展,直到遇到第一个属于 $V(C) \cap V(C')$ 的顶点,分别记它们为 s 和 t (每侧一个,且必有 $s \neq t$,否则将与 $|V(C) \cap V(C')| \geq 2$ 矛盾)。如此,得到 C' 上的一条路径 $\Gamma = s \cdots t$ 。注意到, Γ 与 C 无公共边。而 s 和 t 将 C 分成两段,记为 Γ_1 和 Γ_2 。由题设, G 中无偶圈,故 $|E(\Gamma_1)| + |E(\Gamma_2)| = |E(C)|$ 为奇数。从而 $|E(\Gamma_1)| = |E(\Gamma_2)|$ 的奇偶性不同。令 $C_1 = \Gamma_1 \cup \Gamma, C_2 = \Gamma_2 \cup \Gamma$,则它们是奇偶性不同的两个圈。这与 G 中无偶圈矛盾。故,G 中所有的边都在 G 上。

又由块的连通性知,若存在不在 C 上的点 v,则必有与 v 相邻的边 e',且 $e' \notin C$,与上面的结论矛盾。

由此知,
$$V(B) = V(C)$$
, $E(B) = E(C)$, 即有 $B = C$, 是奇圈。

7.23 令 $n = 4r, \delta = s, \lambda = r, \kappa = 1$,则由教材定理 7.14(1) 立即得证。

7.24

- (1) 将习题 7.12 的 G 和 \overline{G} 换成红、蓝两色边即可得证。
- (2) 直接利用习题 7.12 的结论即可。
- (3)

证明: 将这个"与 6 条或更多条红色边关联"的顶点记作 v_1 ,这 6 条边的另一端所连接的 6 个顶点构成 K_n 的一个 6 阶子图 H。显然, $H \cong K_6$ 。

由 (1) 的结论知,H 中必有红色的 K_3 或蓝色的 K_3 。

若存在蓝色的 K_3 ,则命题成立。

若存在红色的 K_3 ,则这 3 个顶点与 v_1 就构成了红色的 K_4 ,命题同样成立。

7.25

证明: 由引理 7.4 知,若 D 是强连通的,则 D 是有向完全图。这与题设"D 为竞赛图"矛盾。故得,原命题成立。