3.1 Zero Infimum Spacing

The next theorem gives a condition under which the infimum spacing is zero. Here our main result is Theorem 2, where we show that the existence of a nonzero repulsive fixed point of the spectral decimation function with multiplier, larger than the zero fixed point indicates zero infimum spacing in the spectrum.

Theorem 2. Assume Δ admits spectral decimation with spectral decimation function R and suppose $0, \zeta > 0$ are fixed point of R with $|R'(\zeta)| > |R'(0)| > 1$. Then $\inf\{|\lambda - \lambda'| : \lambda \neq \lambda', \lambda, \lambda' \in \sigma(\Delta)\} = 0$.

Proof. Let ϕ_{ζ} be the inverse branch of R with ζ in it's range. Note that ζ is in the Julia set of R and is an attracting fixed point of ϕ_{ζ} and hence we may choose n, and $x_1, x_2 \in \sigma(\Delta_n)$ so that $\phi_{\zeta}^m(x_j) \to \zeta, j = 1, 2$ [HSTZ11]. Therefore, we have,

$$\left| \phi_{\zeta}^{m}(x_{1}) - \phi_{\zeta}^{m}(x_{2}) \right| = \left| (\phi_{\zeta}^{m}(\gamma_{m}))' \right| |x_{1} - x_{2}|$$
$$= \left| \phi_{\zeta}'(\phi_{\zeta}^{m-1}(\gamma_{m})) \right| \dots \left| \phi_{\zeta}'(\gamma_{m}) \right| |x_{1} - x_{2}|$$

Note that ϕ_{ζ} is a continuous injective map and hence monotone. Therefore, it is no loss to assume, $\phi_{\zeta}^k(x_1) \leq \phi_{\zeta}^k(\gamma_m) \leq \phi_{\zeta}^k(x_2), \forall k$.

Thus, $\left|\phi_{\zeta}^{k}(\gamma_{m}) - \zeta\right| \leq \max_{j \in \{1,2\}} \left|\phi_{\zeta}^{k}(x_{j}) - \zeta\right|$ Hence, by continuity of R', given $\delta > 0$ there is N so that $m \geq k \geq N \implies \left|R'(\zeta)\right| - \delta \leq \left|R'(\phi_{\zeta}^{k}(\gamma_{m}))\right|$. Thus, $\frac{1}{\left|R'(\phi_{\zeta}^{k}(\gamma_{m}))\right|} \leq \frac{1}{\left(R'(\zeta) - \delta\right)}, \forall k \geq N$. So for m > N, we have,

$$\begin{split} \left| \phi_{\zeta}^{m}(x_{1}) - \phi_{\zeta}^{m}(x_{2}) \right| &\leq \frac{1}{\left| R'(\phi_{\zeta}^{m}(\gamma_{m})) \right|} \cdots \frac{1}{\left| R'(\phi_{\zeta}(\gamma_{m})) \right|} |x_{1} - x_{2}| \\ &\leq \frac{1}{\left(R'(\zeta) - \delta)^{m-N}} \frac{1}{R'(\phi_{\zeta}^{N}(\gamma_{m}))} \cdots \frac{1}{R'(\phi_{\zeta}(\gamma_{m}))} |x_{1} - x_{2}| \, . \end{split}$$

Now note that

$$\left|c_{\Delta}^{n+j+m}\phi_0^j\phi_{\zeta}^m(x_1)-c_{\Delta}^{n+j+m}\phi_0^j\phi_{\zeta}^m(x_2)\right|=c_{\Delta}^n\cdot c_{\Delta}^j\left|(\phi_0^j)'(\gamma_j)\right|\cdot c_{\Delta}^m\left|\phi_{\zeta}^m(x_1)-\phi_{\zeta}^m(x_2)\right|.$$

for some γ_j lying between $\phi_{\zeta}^m(x_1)$ and $\phi_{\zeta}^m(x_2)$. Choose δ so that $R'(0) < |R'(\zeta)| - \delta$ and observe that $c_{\Delta}^m \left| \phi_{\zeta}^m(x_1) - \phi_{\zeta}^m(x_2) \right| \to 0$ as $m \to \infty$.

Hence by [Shi96, Proposition 3.1], it remains to show that $c_{\Delta}^{j} |(\phi_{0}^{j})'(\gamma_{j})|$ converges to a finite number as $j \to \infty$.