Public-Key Encryption Theory

Yu Zhang

HIT/CST/NIS

Cryptography, Autumn, 2014

Outline

- 1 Definitions and Securities of Public-Key Encryption
- **2** Trapdoor Permutations

- 3 Security Against Chosen-Ciphertext Attacks
- 4 Public-Key Encryption from TDP in ROM

Content

- 1 Definitions and Securities of Public-Key Encryption
- **2** Trapdoor Permutations
- 3 Security Against Chosen-Ciphertext Attacks

4 Public-Key Encryption from TDP in ROM

Limitations of Private-Key Cryptography

- The key-distribution need physically meeting.
- The number of keys for U users is $\Theta(U^2)$.
- Secure communication in open system:

Solutions that are based on private-key cryptography are not sufficient to deal with the problem of secure communication in open systems where parties cannot physically meet, or where parties have transient interactions.

Needham-Schroeder Protocol

- Key Distribution Center (KDC) as Trusted Third Party (TTP).
- $E_{Bob}(k)$ is a **ticket** to access Bob, k is **session key**.
- Used in MIT's Kerberos protocol (in Windows).

Strength:

- each one stores one key
- no updates

Weakness:

single-point-of-failure

Merkle Puzzles (Key Exchange W/O TTP)

Alice prepares 2^{32} puzzles Puzzle_i, and sends to Bob.

$$\mathsf{Puzzle}_i \leftarrow \mathsf{Enc}_{(0^{96} \parallel p_i)}(\mathsf{"Puzzle} \ \#"x_i \parallel k_i),$$

where Enc is 128-bit, $p_i \leftarrow \{0,1\}^{32}$ and $x_i, k_i \leftarrow \{0,1\}^{128}$.

Bob chooses Puzzle $_j$ randomly, guesses p_j in 2^{32} time, obtains x_j, k_j and sends x_j to Alice.

Alice lookups puzzle with x_j , and uses k_j as secret key.

■ Adversary needs 2^{32+32} time.

Better Gap?

Quadratic gap is best possible if we treat cipher as a black box oracle.

Public-Key Revolution

- In 1976, Whitfield Diffie and Martin Hellman published "New Directions in Cryptography".
- Asymmetric or public-key encryption schemes:
 - Public key as the encryption key.
 - Private key as the decryption key.
- Public-key primitives:
 - Public-key encryption.
 - Digital signatures. (non-repudiation)
 - Interactive key exchange.
- Strength:
 - Key distribution over public channels.
 - Reduce the need to store many keys.
 - Enable security in open system.
- Weakness: slow, active attack on public key distribution.

Definitions

- **Key-generation** algorithm: $(pk, sk) \leftarrow \text{Gen}$, key length $\geq n$.
- Plaintext space \mathcal{M} is associated with pk.
- **Encryption** algorithm: $c \leftarrow \operatorname{Enc}_{pk}(m)$.
- **Decryption** algorithm: $m := \mathsf{Dec}_{sk}(c)$, or outputs \bot .
- **Requirement**: $\Pr[\mathsf{Dec}_{sk}(\mathsf{Enc}_{pk}(m)) = m] \ge 1 \mathsf{negl}(n)$.

Security against Eavesdroppers = CPA

The eavesdropping indistinguishability experiment PubK $_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$:

- 2 \mathcal{A} is given input \mathbf{pk} and so oracle access to $\mathsf{Enc}_{\mathbf{pk}}(\cdot)$, outputs m_0, m_1 of the same length.
- **3** $b \leftarrow \{0,1\}$. $c \leftarrow \mathsf{Enc}_{pk}(m_b)$ (challenge) is given to \mathcal{A} .
- **4** \mathcal{A} continues to have access to $Enc_{\mathbf{pk}}(\cdot)$ and outputs b'.
- **5** If b'=b, $\mathcal A$ succeeded $\operatorname{PrivK}_{\mathcal A,\Pi}^{\operatorname{eav}}=1$, otherwise 0.

Definition 1

 Π is **CPA-secure** if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr\left[\mathsf{PubK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

Security Properties of Public-Key Encryption

Symmetric ciphers are possible to encrypt a 32-bit message and obtain a 32-bit ciphertext (e.g. with the one time pad). Can the same be done with a public-key system?

Theorem 2

Q: Would a deterministic public-key encryption scheme be secure in the presence of an eavesdropper?

Proposition 3

Q: If Π is secure in the presence of an eavesdropper, is Π also CPA-secure? and is it secure for multiple encryptions?

Proposition 4

Q: is perfectly-secret public-key encryption possible?

Construction of Hybrid Encryption

To speed up the encryption of long message, use private-key encryption Π' in tandem with public-key encryption Π .

Construction 5

 $\Pi^{hy} = (\mathsf{Gen}^{hy}, \mathsf{Enc}^{hy}, \mathsf{Dec}^{hy})$:

- Gen^{hy}: $(pk, sk) \leftarrow \text{Gen}(1^n)$.
- Enc^{hy}: pk and m.
 - 1 $k \leftarrow \{0,1\}^n$.
 - $c_1 \leftarrow \mathsf{Enc}_{pk}(k), \\ c_2 \leftarrow \mathsf{Enc}_k'(m).$
- Dec^{hy}: sk and $\langle c_1, c_2 \rangle$.

 - $m := \mathsf{Dec}'_k(c_2).$

Q: is hybrid encryption a public-key enc. or private-key enc. ?

Security of Hybrid Encryption

Theorem 6

If Π is a CPA-secure public-key encryption scheme and Π' is a private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper, then Π^{hy} is a CPA-secure public-key encryption scheme.

$$\langle pk, \operatorname{Enc}_{pk}(k), \operatorname{Enc}_k'(m_0) \rangle \xrightarrow{\text{(by transitivity)}} \langle pk, \operatorname{Enc}_{pk}(k), \operatorname{Enc}_k'(m_1) \rangle$$

$$\downarrow \text{(by security of } \Pi \text{)} \qquad \text{(by security of } \Pi \text{)}$$

$$\langle pk, \operatorname{Enc}_{pk}(0^n), \operatorname{Enc}_k'(m_0) \rangle \xrightarrow{\text{(by security of } \Pi')} \langle pk, \operatorname{Enc}_{pk}(0^n), \operatorname{Enc}_k'(m_1) \rangle$$

Content

- 1 Definitions and Securities of Public-Key Encryption
- **2** Trapdoor Permutations
- 3 Security Against Chosen-Ciphertext Attacks
- 4 Public-Key Encryption from TDP in ROM

Overview

Trapdoor function: is easy to compute, yet difficult to find its inverse without special info., the "trapdoor". (One Way Function with the "trapdoor")

A public-key encryption scheme can be constructed from any trapdoor permutation. ("Theory and Applications of Trapdoor Functions", [Yao, 1982])

Definition of Families of Trapdoor Permutations

A tuple of polynomial-time algorithms $\Pi = (\mathsf{Gen}, \mathsf{Samp}, f, \mathsf{Inv})$ is a **family of trapdoor permutations (TDP)** if:

- **parameter generation** algorithm Gen, on input 1^n , outputs (I, td) with $|I| \geq n$. (I, td) defines a set $\mathcal{D}_I = \mathcal{D}_{\mathsf{td}}$.
- Gen_I outputs only I. (Gen_I, Samp, f) is OWP.
- deterministic **inverting algorithm** Inv. $\forall (I, \mathsf{td})$ and $\forall x \in \mathcal{D}_I$,

$$Inv_{td}(f_I(x)) = x.$$

Deterministic polynomial-time algorithm hc is a **hard-core predicate** of Π if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr[\mathcal{A}(I, f_I(x)) = \mathsf{hc}_I(x)] \le \frac{1}{2} + \mathsf{negl}(n).$$

Public-key Encryption Schemes from TDPs

Construction 7

- Gen: $(I, td) \leftarrow \widehat{Gen}$ output **public key** I and **private key** td.
- Enc: on input I and $m \in \{0,1\}$, choose a random $x \leftarrow \mathcal{D}_I$ and output $\langle f_I(x), \mathsf{hc}_I(x) \oplus m \rangle$.
- Dec: on input td and $\langle y, m' \rangle$, compute $x := f_I^{-1}(y)$ and output $hc_I(x) \oplus m'$.

Theorem 8

If $\widehat{\Pi} = (\widehat{Gen}, f)$ is TDP, and hc is HCP for $\widehat{\Pi}$, then Construction Π is CPA-secure.

Proof

Idea: $hc_I(x)$ is pseudorandom. Reduce \mathcal{A}_{hc} for hc to \mathcal{A} for Π .

$$\begin{split} \Pr[\mathcal{A}_{\mathsf{hc}}(I,f_I(x)) = \mathsf{hc}_I(x)] = \\ \frac{1}{2} \cdot (\Pr[b' = b|z = \mathsf{hc}_I(x)] + \Pr[b' \neq b|z \neq \mathsf{hc}_I(x)]). \end{split}$$

Proof (Cont.)

$$\begin{split} \Pr[b' = b | z = \mathsf{hc}_I(x)] &= \Pr[\mathsf{PubK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] = \varepsilon(n). \\ \mathsf{If} \ z \neq \mathsf{hc}_I(x), \ m' = m_b \oplus \overline{\mathsf{hc}}_I(x) = m_{\overline{b}} \oplus \mathsf{hc}_I(x), \\ \Pr[b' = b | z \neq \mathsf{hc}_I(x)] &= \Pr[\mathsf{PubK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 0] = 1 - \varepsilon(n). \\ \Pr[b' \neq b | z \neq \mathsf{hc}_I(x)] &= \varepsilon(n). \\ \Pr[\mathcal{A}_{\mathsf{hc}}(I, f_I(x)) = \mathsf{hc}_I(x)] &= \frac{1}{2} \cdot (\varepsilon(n) + \varepsilon(n)) = \varepsilon(n). \end{split}$$

Encrypting Longer Messages

Theorem 9

If $\exists TDP \Pi$, then $\exists TDP \widehat{\Pi}$ with a HCP hc for $\widehat{\Pi}$.

Example: If RSA assumption holds then the least-significant bit is hard-core for the RSA family of TDP.

an ℓ -it message $m=m_1\cdots m_\ell$, the public key I, the ciphertext is

$$\langle f_I(x_1), \mathsf{hc}_I(x_I) \oplus m_1 \rangle, \ldots, \langle f_I(x_\ell), \mathsf{hc}_I(x_\ell) \oplus m_\ell \rangle,$$

with x_1, \ldots, x_ℓ chosen independently and u.r.a from \mathcal{D}_I .

An alternative way: $x_1 \leftarrow \mathcal{D}_I$ and compute $x_{i+1} := f_I(x_i)$ for i = 1 to ℓ . the ciphertext is

$$\langle x_{\ell+1}, \mathsf{hc}_I(x_1) \oplus m_1, \ldots, \mathsf{hc}_I(x_\ell) \oplus m_\ell \rangle$$
.

Content

- 1 Definitions and Securities of Public-Key Encryption
- **2** Trapdoor Permutations

- **3** Security Against Chosen-Ciphertext Attacks
- 4 Public-Key Encryption from TDP in ROM

Scenarios of CCA in Public-Key Setting

- **1** An adversary \mathcal{A} observes the ciphertext c sent by \mathcal{S} to \mathcal{R} .
- 2 \mathcal{A} send c' to \mathcal{R} in the name of \mathcal{S} or its own.
- **3** \mathcal{A} infer m from the decryption of c' to m'.

Scenarios

- login to on-line bank with the password: trial-and-error, learn info from the feedback of bank.
- reply an e-mail with the quotation of decrypted text.
- malleability of ciphertexts: e.g. doubling others' bids at an auction.

Definition of Security Against CCA/CCA2

The CCA/CCA2 indistinguishability experiment PubK^{cca}_{A,Π}(n):

- 2 \mathcal{A} is given input pk and oracle access to $\mathrm{Dec}_{sk}(\cdot)$, outputs m_0, m_1 of the same length.
- 3 $b \leftarrow \{0,1\}.$ $c \leftarrow \mathsf{Enc}_{pk}(m_b)$ is given to \mathcal{A} .
- 4 A have access to $Dec_{sk}(\cdot)$ except for c in CCA2¹ and outputs b'.
- **5** If b' = b, \mathcal{A} succeeded PrivK $_{\mathcal{A},\Pi}^{\mathsf{cca}} = 1$, otherwise 0.

Definition 10

 Π has **CCA/CCA2-secure** if \forall PPT \mathcal{A} , \exists negl such that

$$\Pr\left[\mathsf{PubK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$$

¹CCA is also called Lunchtime attacks; CCA2 is also called Adaptive CCA.

Examples

Let (Gen, E, D) be CCA-secure on message space $\{0, 1\}^{128}$. Which of the following is also CCA-secure?

■
$$E'(pk, m) = (E(pk, m), 0^{128})$$

$$D'(sk, (c_1, c_2)) = \begin{cases} D(sk, c_1) & \text{if } c_2 = 0^{128} \\ \bot & \text{otherwise} \end{cases}$$

■
$$E'(pk, m) = (E(pk, m), E(pk, 0^{128}))$$

 $D'(sk, (c_1, c_2)) = D(sk, c_1)$

State of the Art on CCA2-secure Encryption

- Zero-Knowledge Proof: complex, and impractical. (e.g., Dolev-Dwork-Naor)
- Random Oracle model: efficient, but not realistic (to consider CRHF as RO). (e.g., RSA-OAEP and Fujisaki-Okamoto)
- DDH(Decisional Diffie-Hellman assumption) and UOWHF(Universal One-Way Hashs Function): x2 expansion in size, but security proved w/o RO or ZKP (e.g., Cramer-Shoup system).

CCA2-secure implies Plaintext-aware: an adversary cannot produce a valid ciphertext without "knowing" the plaintext.

Open problem

Constructing a CCA2-secure scheme based on RSA problem as efficient as "Textbook RSA".

Content

- 1 Definitions and Securities of Public-Key Encryption
- **2** Trapdoor Permutations
- 3 Security Against Chosen-Ciphertext Attacks
- 4 Public-Key Encryption from TDP in ROM

Random Oracle Model (ROM) – Overview

- Random oracle (RO): a truly random function *H* answers every possible query with a random response.
 - **Consistent**: If *H* ever outputs *y* for an input *x* "on-the-fly", then it always outputs the same answer given the same input.
 - \blacksquare No one "knows" the entire function H.
- Random oracle model (ROM): the existence of a public RO.
- **Methodology**: for constructing proven security in ROM.
 - 1 a scheme is designed and proven secure in ROM.
 - **2** Instantiate H with a hash function \hat{H} , such as SHA-1.
- No one seriously claims that a random oracle exists.²

With ROM, it is easy to achieve proven security, while keeping the efficiency by appropriate instantiation.

²There exists schemes that are proven secure in ROM but are insecure no matter how the random oracle is instantiated.

Simple Illustrations of ROM

A RO maps n_1 -bit inputs to n_2 -bit outputs.

- A RO as a OWF, experiment:
 - \blacksquare A random function H is chosen.
 - 2 A random $x \in \{0,1\}^{n_1}$ is chosen, and y := H(x) is evaluated.
 - **3** \mathcal{A} is given y, and succeeds if it outputs x': H(x') = y.
- A RO as a CRHF, experiment:
 - \blacksquare A random function H is chosen.
 - **2** A succeeds if it outputs x, x' with H(x) = H(x') but $x \neq x'$.
- Constructing a PRF from a RO: $n_1 = 2n$, $n_2 = n$. $F_k(x) \stackrel{\text{def}}{=} H(k||x), \quad |k| = |x| = n$.

Security Against CPA

Construction 11

- \blacksquare Gen: pk = I, sk = td.
- Enc: $r \leftarrow \{0,1\}^*$, output $\langle f_I(r), H(r) \oplus m \rangle$.
- Dec: input (c_1, c_2) ; compute $r := f_{\mathsf{td}}^{-1}(c_1)$, output $H(r) \oplus c_2$.

Theorem 12

If f is TPD and H is RO, Construction is CPA-secure.

H can not be replaced by PRG, since the partial info on r may be leaked by c_1 .

CCA-secure based on Private Key Encryption

Idea: PubK CCA = PrivK CCA + (Secret Key = TPD + RO).

Construction 13

 $\Pi' = (\mathsf{Gen}', \mathsf{Enc}', \mathsf{Dec}')$ is a private-key encryption scheme.

- Gen: pk = I, sk = td.
- Enc: $r \leftarrow D_I$ and compute k := H(r), output $\langle f_I(r), \operatorname{Enc}'_k(m) \rangle$.
- Dec: input $\langle c_1, c_2 \rangle$, compute $r := f_{\mathsf{td}}^{-1}(c_1)$, k := H(r), output $\mathsf{Dec}_k'(c_2)$.

Theorem 14

If f is TDP, Π' is CCA-secure, and H is RO, Construction is CCA-secure.

CCA-secure based on TPD in ROM

Idea: PubK CCA = TDP + 2 RO (one for enc, one for mac).

Construction 15

- \blacksquare Gen: pk = I, sk = td.
- Enc: $r \leftarrow D_I$, output $\langle c_1 = f_I(r), c_2 = H(r) \oplus m, c_3 = G(c_2 || m) \rangle$.
- Dec: $r := f_{\mathsf{td}}^{-1}(c_1)$, $m := H(r) \oplus c_2$. If $G(c_2 || m) = c_3$ output m, otherwise \bot .

Theorem 16

If f is TDP, G, H are ROs, Construction is CCA-secure.

Private Key Encryption vs. Public Key Encryption

	Private Key	Public Key
Secret Key	both parties	receiver
Weakest Attack	Eav	CPA
Probabilistic	CPA/CCA	always
Assumption against CPA	OWF	TDP
Assumption against CCA	OWF	TDP+RO
Efficiency	fast	slow