Linear Programming

Chongnan Li chongnanli1997@hotmail.com

Additional content 2: Cutting stock problem

Problem formulation

Suppose the fixed width of large rolls is W. There are m customers and customer i wants n_i items of width w_i $(i = 1, \dots, m)$ $(w_i \le W)$.

Notations:

K: index set of available rolls, in other words, $k = 1, \dots, K$

$$y_k = \begin{cases} 1, & \text{if roll } k \text{ is cut} \\ 0, & \text{otherwise} \end{cases}$$

$$x_i^k \text{: number of times item } i \text{ is cut on roll } k.$$

The integer programming formulation by *Kantorovich*:

$$\begin{cases} \text{minimize} & \sum_{k=1}^K y_k \quad \text{(minimize the total number of rolls that are utilized)} \\ \text{subject to} & \sum_{k=1}^K x_i^k \geq n_i \quad i=1,\cdots,m \quad \text{(demand should be satisfied)} \\ & \sum_{i=1}^m w_i x_i^k \leq W y_k \quad k=1,\cdots,K \quad \text{(width limitaion)} \\ & x_i^k \in \mathbb{Z}^+ \cup \{0\}, \ y_k \in \{0,1\}, \quad \forall i=1,\cdots,m, \ \forall k=1,\cdots,K \end{cases}$$

• Problem **RE**formulation : column generation

New version of Notation:

 x_i : number of times pattern j is uesd

 a_{ij} : number of times item *i* is cut in pattern *j*

Q: what is "pattern"?

A: for example, W = 100, $n_i = \{100,200,300\}$, $w_i = \{25,35,45\}$ (i = 1,2,3). The large roll can be out into:

The large roll can be cut into:

Pattern 1: 4 items with each width is $w_1 = 25 \rightarrow a_{11} = 4$, $a_{21} = 0$, $a_{31} = 0$

Pattern 2: 1 item with width is $w_1 = 25$ and 2 items with each width is $w_2 = 35$ $\rightarrow a_{12} = 1, a_{22} = 2, a_{32} = 0$

Pattern 3: 2 items with each width is $w_3 = 45 \rightarrow a_{13} = 0$, $a_{23} = 0$, $a_{33} = 2$

i: 物件(item) $i=1,\dots,m$

j: 切割模式(pattern) $j = 1, \dots, n$

PS: we assume that the total number of patterns is n. But actually, we do not need to know the exact number for n, this notation is just for modeling.

 a_{ij} : 切割模式j提供物件i的数量(在一条卷钢上)

 x_i : 切割模式 j 使用的次数

$$(P_2)$$
 minimize $\sum_{j=1}^{n} x_j$ (minimize the total number of rolls) subject to $\sum_{j=1}^{n} a_{ij}x_j \ge n_i$ $i=1,\cdots,m$ (the demands for items should be satisfied) $x_j \in \mathbb{Z}^+ \cup \{0\}$ $j=1,\cdots,n$
One potential (essential) constraint is missing: the width limitation!

One potential (essential) constraint is missing: the width limitaion! Namely: $\sum_{i=1}^{m} a_{ij}w_i \leq W$

• Linear relaxation of (P₂): master problem

$$(\text{Master Problem}) \begin{cases} \text{minimize} & \sum_{j=1}^n x_j & \text{(minimize the total number of rolls)} \\ \text{subject to} & \sum_{j=1}^n a_{ij} x_j \geq n_i & i=1,\cdots,m & \text{(the demands for items should be satisfied)} \\ & x_j \in \mathbb{R}^+ \cup \{0\} & j=1,\cdots,n & \text{(} \iff x_j \geq 0 & j=1,\cdots,n \text{)} \end{cases}$$
 Find \boldsymbol{a}_j , such that $c_j - \boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{a}_j < 0$

(我的问题: 为什么这里要谈到主问题的对偶问题,求解时只是用到了对偶乘子) Recalling the symmetric pair, consider the dual problem of the master problem:

minimize
$$c_j - \boldsymbol{\pi}^T \boldsymbol{y}$$

subject to $\sum_{i=1}^m a_{ij} \boldsymbol{y}_i \leq W$

where
$$\boldsymbol{\pi}^T = \boldsymbol{c}_B^T \boldsymbol{B}^{-1}$$

We can look for a column (cutting pattern) such that:

$$\kappa := \text{minimize } \{1 - \boldsymbol{\pi}^T \boldsymbol{y}\} = \text{minimize } \{1 - \sum_{i=1}^m \pi_i y_i\} = 1 - \text{maximize } \sum_{i=1}^m \pi_i y_i$$

while subject to:

$$\begin{cases} \sum_{i=1}^{m} a_{ij} \mathbf{y}_{i} \leq W \\ y_{i} \in \mathbb{Z}^{+} \cup \{0\} \quad i = 1, \dots, m \end{cases}$$

Knapsack Problem is an "easy" NP-hard problem and can be solved in O(mW) time by dynamic programming.

• The key steps of column generation

Start with initial columns of master problems. For instance, use the simple pattern to cut a roll into $[W/w_i]$ pieces with each width is w_i , thus A is a diagonal matrix.

Loop:

- Solve the restricted LP master problem. Let π be the optimal simplex multipliers $(\pi^T = c_B^T B^{-1})$.
- Identify a new feasible column by solving the knapsack subproblem. Calculate the reduced cost κ .
- Add the new column to master problem. until $\kappa \geq 0$

Finally, generate the optimal plan for cutting stock.