# Problemas de caminho mais curto

## Introdução

Um motorista deseja encontrar a rota mais curta possível do Rio de Janeiro a São Paulo. Dado um mapa rodoviário do Brasil no qual a distância entre cada par de interseções adjacentes esteja marcada, como ele pode determinar essa rota mais curta?



## Introdução

#### SOLUÇÃO

- Enumerar todos os caminhos possíveis;
- Somas as distâncias de cada rota
- Selecionar a mais curta



se deixarmos de lado as rotas que contêm ciclos número enorme de possibilidades

# Introdução

# Exemplo de solução ineficiente

mostraremos como resolver tais problemas eficientemente



# Problema de caminhos mínimos

**Temos** 

Um grafo G:(V,E) com função peso  $w:E \rightarrow R$ 

• O peso do caminho  $p:\langle v_0, v_1, ..., v_k \rangle$  é dado por

$$w(p) = \sum_{i=0}^{k} w(v_{i-1}, v_i)$$

# Problema de caminhos mínimos

#### Definimos o peso do caminho mínimo de u a v

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\sim} v\} & \text{Se há um caminho de } u \text{ para } v, \\ \infty & \text{caso contrário} \end{cases}$$

Então, um caminho mínimo do vértice u ao vértice v é definido como qualquer caminho p com peso w(p) = d(u,v).

## **Variantes**

Focalizaremos o problema de caminhos mínimos de fonte única: dado um grafo G = (V, E), queremos encontrar um caminho mínimo de determinado vértice de origem  $s \in V$  a todo vértice  $v \in V$ .

#### Problemas resolvidos

- Problema de caminhos mínimos com um só destino
- Problema do caminho mínimo para um par
- Problema de caminhos mínimos para todos os pares

Algumas instâncias do problema de caminhos mínimos de fonte única podem incluir arestas cujos pesos são negativos.

Se o grafo G = (V, E) **não contém** nenhum ciclo de peso negativo que possa ser alcançado da fonte s, então para todo  $v \in V$ , o peso do caminho mínimo d(s, v) permanece **bem definido** 

Se o grafo G = (V, E) **contém** um ciclo de <u>peso negativo</u> que possa ser alcançado a partir de s, os pesos de caminhos mínimos não são bem definidos.

Se o grafo G = (V, E) **não contém** nenhum ciclo de peso negativo que possa ser alcançado da fonte s, então para todo  $v \in V$ , o peso do caminho mínimo d(s, v) permanece **bem definido** 



Se o grafo G = (V, E) **não contém** nenhum ciclo de peso negativo que possa ser alcançado da fonte s, então para todo  $v \in V$ , o peso do caminho mínimo d(s, v) permanece **bem definido** 



há somente um caminho de s a a (o caminho  $\langle s, a \rangle$ ), temos d(s, a) = w(s, a) = 3

Se o grafo G = (V, E) **não contém** nenhum ciclo de peso negativo que possa ser alcançado da fonte s, então para todo  $v \in V$ , o peso do caminho mínimo d(s, v) permanece **bem definido** 



há somente um caminho de s a b (o caminho  $\langle s, b \rangle$ ), temos d(s, b) = w(s, a) + w(a, b) = 3 + (-4) = -1

Se o grafo G = (V, E) não contém nenhum ciclo de peso negativo que possa ser alcançado da fonte s, então para todo  $v \in V$ , o peso do caminho mínimo d(s, v) permanece <u>bem definido</u>



Há um número infinito de caminhos de s a c:  $\langle s, c \rangle$ ,  $\langle s, c, d, c \rangle$ ,  $\langle s, c, d, c, d, c \rangle$ , e assim por diante Como o ciclo  $\langle c, d, c \rangle$ , tem peso 6 + (-3) = 3 > 0, o caminho mínimo de s a c é  $\langle s, c \rangle$ , com peso d(s, c) = w (s, c) = 5

Se o grafo G = (V, E) **contém** um ciclo de <u>peso negativo</u> que possa ser alcançado a partir de s, os pesos de caminhos mínimos não são bem definidos.



Há um número infinito de caminhos de s a e:  $\langle s, e \rangle$ ,  $\langle s, e, f, e \rangle$ ,  $\langle s, e, f, e, f, e, f, e \rangle$ , e assim por diante. Porém, visto que o ciclo  $\langle e, f, e \rangle$ , tem peso 3 + (-6) = -3 < 0, não há nenhum caminho mínimo de s a e

 $d(s, e) = -\infty.$   $d(s, f) = -\infty$ 

#### Algoritmos de caminhos mínimos:

- Dijkstra → consideram que todos os pesos de arestas no grafo de entrada são não negativos.
- Bellman–Ford → permitem arestas de peso negativo no grafo de entrada e produzem uma resposta correta desde que nenhum ciclo de peso negativo possa ser alcançado da fonte.

## Ciclos

#### Um caminho mínimo pode conter um ciclo?

Não pode conter um ciclo de peso negativo

Também, **não pode** conter um ciclo de peso positivo. (Pq?)

## Ciclos

#### Um caminho mínimo pode conter um ciclo?

Não pode conter um ciclo de peso negativo

Também, **não pode** conter um ciclo de peso positivo. (Pq?)

Remover o ciclo do caminho produz um caminho com os mesmos vértices de fonte e destino, e um **peso de caminho mais baixo**.

Isso deixa apenas ciclos de peso 0. Podemos remover um ciclo de peso 0 de qualquer caminho para produzir um outro caminho cujo peso é o mesmo.

# Representação de caminhos mínimos

Dado um grafo G = (V, E), mantemos para cada vértice  $v \in V$  um **predecessor**  $\pi[v]$  que é um outro vértice ou NIL.

Subgrafo dos predecessores  $G_{\pi}=(V_{\pi},E_{\pi})$  induzido pelos valores  $\pi$ .

$$V_{\pi} = \{ v \in V : \pi[v] \neq \text{NIL} \} \cup \{ s \} .$$

$$E_{\pi} = \{ (\pi[v], v) \in E : v \in V_{\pi} - \{s\} \} .$$

# Representação de caminhos mínimos

Uma árvore de caminhos mínimos com raiz em s é um subgrafo dirigido G' = (V', E'), onde  $V' \subseteq V$  e  $E' \subseteq E$ , tal que

- 1. V' é o conjunto de vértices que podem ser alcançados de s em G,
- 2. G' forma uma árvore enraizada com raiz s e
- 3. para todo  $v \in V'$ , o único caminho simples de s a v em G' é um caminho mínimo de s a v em G.

Caminhos mínimos não são necessariamente únicos nem são necessariamente únicas as árvores de caminhos mínimos.

### Relaxamento

Para cada vértice  $v \in V$ , mantemos um atributo d[v], que é um limite superior para o peso de um caminho mínimo da fonte s a v. Denominamos d[v] uma estimativa de caminho mínimo.

#### Denominamos d[v] uma estimativa de caminho mínimo

```
INITIALIZE-SINGLE-SOURCE(G, s)

1 for cada vértice v \in V[G]

2 do d[v] \leftarrow \infty

3 \pi[v] \leftarrow \text{NIL}

4 d[s] \leftarrow 0
```

Após a inicialização, temos:

- $\pi[v] = NIL$  para todo  $v \in V$ ,
- d[s] = 0 e d[v] = ∞ para v ∈ V {s}.

### Relaxamento

O processo de relaxar uma aresta (u, v) consiste em testar se podemos **melhorar o caminho mínimo** até v que encontramos até agora passando por u e, em caso positivo.



### Relaxamento

O processo de relaxar uma aresta (u, v) consiste em testar se podemos **melhorar o caminho mínimo** até v que encontramos até agora passando por u e, em caso positivo.

```
RELAX(u, v, w)

1 if d[v] > d[u] + w(u, v)

2 then d[v] \leftarrow d[u] + w(u, v)

3 \pi[v] \leftarrow u
```

# Propriedades de caminhos mínimos e relaxamento

Desigualdade triangular (Lema 24.10)

Para qualquer aresta  $(u, v) \in E$ , temos  $d(s, v) \le d(s, u) + w(u, v)$ .

Propriedade do limite superior (Lema 24.11)

Sempre temos  $d[v] \ge d(s, v)$  para todos os vértices  $v \in V$  e, tão logo d[v] alcança o valor d(s, v), nunca mais muda.

Propriedade de inexistência de caminho (Corolário 24.12)

Se não existe nenhum caminho de s a v, então sempre temos  $d[v] = d(s, v) = \infty$ .

# Propriedades de caminhos mínimos e relaxamento

Propriedade de convergência (Lema 24.14)

Se s  $u \to v$  é um caminho mínimo em G para algum  $u, v \in V$  e se d[u] = d(s, u) em qualquer instante antes de relaxar a aresta (u, v), então d[v] = d(s, v) em todos os instantes posteriores.

Propriedade de relaxamento de caminho (Lema 24.15)

Se p =  $\langle v 0, v 1, ..., v k \rangle$  é um caminho mínimo de s = v 0 a v k e relaxamos as arestas de p na ordem (v 0, v 1), (v 1, v 2), ..., (v k - 1, v k), então v k .d = d(s, v k). Essa propriedade é válida independentemente de quaisquer outras etapas de relaxamento que ocorram, ainda que elas estejam misturadas com relaxamentos das arestas de p.

Propriedade do subgrafo dos predecessores (Lema 24.17)

Assim que d[v] = d(s, v) para todo  $v \in V$ , o subgrafo dos predecessores é uma árvore de caminhos mínimos com raiz em s

Resolve o problema de caminhos mínimos de fonte única no caso geral no qual os pesos das arestas podem ser negativos.

- Retorna se existe um ciclo de peso negativo (True).
  - Se tal ciclo existe, o algoritmo indica que não há nenhuma solução.
  - Se tal ciclo n\u00e3o existe, o algoritmo produz os caminhos m\u00eanimos e seus pesos

```
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 for i \leftarrow 1 to |V[G]| - 1

3 do for cada aresta (u, v) \in E[G]

4 do RELAX(u, v, w)

5 for cada aresta (u, v) \in E[G]

6 do if d[v] > d[u] + w(u, v)

7 then return FALSE

8 return TRUE
```



```
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 for i \leftarrow 1 to |V[G]| - 1

3 do for cada aresta (u, v) \in E[G]

4 do RELAX(u, v, w)

5 for cada aresta (u, v) \in E[G]

6 do if d[v] > d[u] + w(u, v)

7 then return FALSE

8 return TRUE
```























O algoritmo de BellmanFord é executado no tempo O(V E)

O algoritmo de Dijkstra resolve o problema de caminhos mínimos de fonte única em um grafo dirigido ponderado G = (V, E) para o caso no qual todos os **pesos de arestas são não negativos**.

Então, supomos que:

 $w(u,v) \ge 0$  para cada aresta  $(u, v) \in E$ 

o tempo de execução do algoritmo de Dijkstra é inferior ao do algoritmo de BellmanFord

```
DIJKSTRA(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S \leftarrow \emptyset
3 Q \leftarrow V[G]
4 while Q \neq \emptyset
     do u \leftarrow \text{EXTRACT-MIN}(Q)
         S \leftarrow S \cup \{u\}
         for cada vértice v \in Adj[u]
              do RELAX(u, v, w)
```

- mantém um conjunto S de vértices cujos pesos finais de caminhos mínimos que partem da fonte s já foram determinados
- Usa-se uma fila de prioridades mínimas Q de vértices cujas chaves são os valores de d











 $\pi$ |nill|



 $\pi$ |nill|



 $\pi$ |nill|