Abschlussprüfung 2014 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik II

Name:	: _	Vorname:																								
Klasse:			Platzziffer:										Punkte:													
A	ufg	abe	A	1																		1	Nac	hte	ermiı	1
A 1.0							sog t sin		annt	e	"So	chw	/im	me	r",	d	lie	ar	ı d	ler					G	
	Scl	hwi du	mm ırch	er. die	Sie Stı	zeig eck	kizz gt de en [] r beş	n A	Axia [, [also AE	chn 3],	itt [B0	eine C] u	es] and	Rot de	ati en	ons Kr	skö eisl	rpe:	rs, en			D		F)C
	Es	gilt	·• ·•																					A	E/	/ В
	CI	_) =	4,0	cm;	EF	$\overline{s} = 6$,0 cı	m;	AB	= 1	1,0	cm	; r:	= F	C =	= F	D ;	[A	B]	[C	D].				\!;/ \\ H	
A 1.1							olum eine									a. [Те	iler	geb	onis	: E I	- =	2,0) cn	: n]	
						 																				
			 -			 			·	ļ	 								 -				ļ			
										ļ													ļ			
											¦													 		
			 -						- 	ļ													ļ			
															!											4 P
A 1.2	Bei diesem Schwimmer hat 1 cm³ eine durchschnittliche Masse von 0,530 g. Bestimmen Sie rechnerisch die Masse dieses Schwimmers.																									
	DU	J.111								,,IU	; ;	uic			11 44	1111		13.	!	1 1 1	-		1			
											, ! ! !															1 P

A 2.0 Die Zeichnung zeigt den Plan eines Blumenbeets in der Form eines gleichschenkligen Dreiecks ABC mit der Basis [AC] und der Höhe [BM] im Maßstab 1:100.

Es gilt: $\overline{AC} = 12,00 \text{ m}$; $\overline{BM} = 8,00 \text{ m}$; $\overline{DE} = \overline{DF} = 2,50 \text{ m}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 2.1 Berechnen Sie das Maß γ des Winkels ACB.

[Ergebnis: $\gamma = 53,13^{\circ}$]

A 2.2 Berechnen Sie den Radius $r = \overline{MD}$ und die Bogenlänge b des Halbkreises \widehat{GH} .

[Ergebnis: $\overline{MD} = 3,83 \text{ m}$]

3 P

1 P

Aufgabe A 2

A 2.3 Die Fläche des Blumenbeetes, die in der Zeichnung von [FC], [CH], \widehat{GH} , [GA], [AE] und \widehat{EF} begrenzt wird (graue Fläche), soll mit Rosenstöcken bepflanzt werden. Eine beauftragte Gärtnerei plant für die Bepflanzung fünf Rosenstöcke je Quadratmeter.

Berechnen Sie die Anzahl der Rosenstöcke, die hierfür benötigt werden.

A 3.0 Herr Merad kaufte sich am 1. April 2014 ein gebrauchtes Wohnmobil zum Preis von 36 000 EUR. Ein Gutachter erklärt ihm, wie sich der Restwert des Fahrzeuges pro Jahr ermitteln lässt.

Den Restwert y Euro nach x Jahren berechnet er näherungsweise mit der Funktion f mit der Gleichung $y = 36000 \cdot 0.91^x$ mit $\mathbb{G} = \mathbb{IR}_0^+ \times \mathbb{IR}_0^+$.

A 3.1 Ergänzen Sie die Wertetabelle auf Tausender gerundet. Zeichnen Sie sodann den zugehörigen Graphen zu f in das Koordinatensystem ein.

X	0	1	2	3	5	7	9	11
y								

2 P

1 P

A 3.2 Geben Sie mit Hilfe des Graphen zu f an, nach wie vielen Jahren der Restwert erstmals 17 000 EUR unterschreitet.

Nach _____ Jahren

A 3.3 Berechnen Sie auf Tausender gerundet, wie hoch der gesamte Wertverlust des Wohnmobils vom 1. April 2014 bis zum 1. April 2027 sein wird.

2 P

Abschlussprüfung 2014 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik II

A	ufgabe B 1 Nachter	min
B 1.0	Die Punkte $P(-5 -3,4)$ und $Q(2 -0,6)$ liegen auf der Parabel p mit einer Gleichung der Form $y=-0,4x^2+bx+c$ mit $\mathbb{G}=\mathbb{IR}\times\mathbb{IR}$ und $b,c\in\mathbb{IR}$. Die Gerade g hat die Gleichung $y=0,2x+6$ mit $\mathbb{G}=\mathbb{IR}\times\mathbb{IR}$.	
B 1.1	Zeigen Sie durch Berechnung der Werte für b und c, dass die Parabel p die Gleichung $y = -0.4x^2 - 0.8x + 2.6$ hat. Zeichnen Sie sodann die Parabel p für $x \in [-5; 3]$ sowie die Gerade g in ein Koordinatensystem.	
	Für die Zeichnung: Längeneinheit 1 cm; $-6 \le x \le 6$; $-4 \le y \le 8$	4 F
B 1.2	Punkte $B_n(x \mid -0.4x^2 - 0.8x + 2.6)$ auf der Parabel p und Punkte $D_n(x \mid 0.2x - 4.6)$ auf der Geraden g haben dieselbe Abszisse x mit $x \in]-5; 3[$ und sind zusammit den Punkten $A(-5\mid 5) \in g$ und $C(3\mid 2)$ die Eckpunkte von Vierecken AB_nC Zeichnen Sie das Viereck AB_1CD_1 für $x = -2$ in das Koordinatensystem zu B ein.	men
B 1.3	Bestätigen Sie rechnerisch, dass für den Flächeninhalt A der Vierecke AB_nCD Abhängigkeit von der Abszisse x der Punkte B_n gilt: $A(x) = (1,6x^2 + 4x + 13,6) \text{ FE}.$	_n in
B 1.4	Unter den Vierecken AB_nCD_n besitzt das Viereck AB_0CD_0 den minimalen cheninhalt. Berechnen Sie den Flächeninhalt des Vierecks AB_0CD_0 und den zugehörigen V für x .	
B 1.5	Die Vierecke AB_2CD_2 und AB_3CD_3 sind Trapeze mit $AD_2 \parallel B_2C$ beziehut weise $AD_3 \parallel B_3C$. Zeichnen Sie die Trapeze AB_2CD_2 und AB_3CD_3 in das Koordinatensystem B 1.1 ein.	
B 1.6	Berechnen Sie die Koordinaten der Punkte B_2 und B_3 . Runden Sie auf zwei Slen nach dem Komma. [Teilergebnis: B_2C : $y=0,2x+1,4$]	Stel- 4 P

Abschlussprüfung 2014

an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik II

Aufgabe B 2

Nachtermin

B 2.0 Die nebenstehende Skizze zeigt ein Schrägbild der Pyramide ABCDS, deren Grundfläche das Drachenviereck ABCD mit der Symmetrieachse AC und dem Diagonalenschnittpunkt M ist.

Die Spitze S der Pyramide liegt senkrecht über M.

Es gilt: $\overline{AC} = 9 \text{ cm}$; $\overline{AM} = 3 \text{ cm}$;

 $\overline{BD} = 8 \text{ cm und } \overline{MS} = 7 \text{ cm}.$

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 2.1 Zeichnen Sie das Schrägbild der Pyramide ABCDS, wobei [AC] auf der Schrägbildachse und der Punkt A links vom Punkt C liegen soll.

Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$

Berechnen Sie sodann die Länge der Strecke [CS] und das Maß γ des Winkels SCA. [Ergebnisse: $\overline{CS} = 9,22 \, \text{cm}; \ \gamma = 49,40^{\circ}$]

4 P

B 2.2 Punkte $P_n \in [CS]$ sind zusammen mit den Punkten M und C Eckpunkte von Dreiecken MCP_n . Es gilt: $\overline{CP_n}(x) = x$ cm mit 0 < x < 9,22; $x \in IR^+$.

Zeichnen Sie für x = 6 das Dreieck MCP_1 in das Schrägbild zu B 2.1 ein und berechnen Sie sodann die Länge der Strecke $[MP_1]$.

2 P

B 2.3 Das Dreieck MCP₂ ist rechtwinklig mit der Hypotenuse [MC]. Ermitteln Sie durch Rechnung, für welchen Wert von x man das Dreieck MCP₂ erhält.

1 P

B 2.4 Im Dreieck MCP₃ hat der Winkel MP₃C das Maß 100°.

Zeichnen Sie das Dreieck MCP₃ in das Schrägbild zu B 2.1 ein.

Berechnen Sie sodann die Länge der Strecke [CP_3] und den Flächeninhalt des Dreiecks MCP_3 . [Ergebnis: $\overline{CP_3} = 3,10 \text{ cm}$]

3 P

B 2.5 Für Punkte Q_n gilt: $Q_n \in [MC]$ und $[P_nQ_n] \perp [MC]$. Die Dreiecke BQ_nD sind die Grundflächen von Pyramiden BQ_nDP_n mit den Spitzen P_n .

Zeichnen Sie die Pyramide BQ_1DP_1 in das Schrägbild zu B 2.1 ein.

Zeigen Sie sodann, dass für das Volumen V der Pyramiden BQ_nDP_n in Abhängigkeit von x gilt: $V(x) = (-0.66x^2 + 6.08x)$ cm³.

[Teilergebnis: $\overline{P_n Q_n}(x) = 0.76 \cdot x \text{ cm}$]

5 P

B 2.6 Begründen Sie durch Rechnung, dass es unter den Pyramiden BQ_nDP_n keine mit einem Volumen von 15 cm³ gibt.

2 P