```
In [4]: # Importing required libraries
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
In [5]: import warnings
warnings.filterwarnings("ignore")
```

Task 1:- Understanding Order Amount Distribution

```
In [7]: # Converting excel file to into python using pandas
  order_amt_df = pd.read_csv('order_items_dataset.csv')
  order_amt_df
```

Out[7]:		order_id	order_item_id	proc
	0	00010242fe8c5a6d1ba2dd792cb16214	1	4244733e06e7ecb4970a6e2683
	1	00018f77f2f0320c557190d7a144bdd3	1	e5f2d52b802189ee658865ca93
	2	000229ec398224ef6ca0657da4fc703e	1	c777355d18b72b67abbeef9df4
	3	00024acbcdf0a6daa1e931b038114c75	1	7634da152a4610f1595efa32f1
	4	00042b26cf59d7ce69dfabb4e55b4fd9	1	ac6c3623068f30de03045865e4
	•••			
	112645	fffc94f6ce00a00581880bf54a75a037	1	4aa6014eceb682077f9dc4bffel
	112646	fffcd46ef2263f404302a634eb57f7eb	1	32e07fd915822b0765e448c4dd
	112647	fffce4705a9662cd70adb13d4a31832d	1	72a30483855e2eafc67aee5dc2
	112648	fffe18544ffabc95dfada21779c9644f	1	9c422a519119dcad7575db5af1
	112649	fffe41c64501cc87c801fd61db3f6244	1	350688d9dc1e75ff97be326363
	112650 rd	ows × 7 columns		
	4			•

Histogram for order amount

```
In [9]: plt.hist(order_amt_df['price'],bins = 1000 ,color='skyblue',edgecolor='white')
    plt.grid(True)
    plt.xlim(0,1500)
    plt.ylim(0,5000)
    plt.show()
```


Boxplot for identify outliers

Removing outliers

```
In [13]: Q1 = order_amt_df['price'].quantile(0.25)
          Q3 = order_amt_df['price'].quantile(0.75)
          IQR = Q3-Q1
          lower_bound = Q1-1.5*IQR
          upper_bound = Q3+1.5*IQR
          order_amt_df2 = order_amt_df[(order_amt_df['price'] >=lower_bound) & (order_amt_
          order_amt_df2
Out[13]:
                                            order_id order_item_id
                                                                                           proc
               0 00010242fe8c5a6d1ba2dd792cb16214
                                                                1 4244733e06e7ecb4970a6e2683
                   00018f77f2f0320c557190d7a144bdd3
                                                                    e5f2d52b802189ee658865ca93
                   000229ec398224ef6ca0657da4fc703e
                                                                    c777355d18b72b67abbeef9df4
                   00024acbcdf0a6daa1e931b038114c75
                                                                     7634da152a4610f1595efa32f1
                   00042b26cf59d7ce69dfabb4e55b4fd9
                                                                    ac6c3623068f30de03045865e4
                    fffb9224b6fc7c43ebb0904318b10b5f
                                                                    43423cdffde7fda63d0414ed38
          112643
                                                                      6f0169f259bb0ff432bfff7d829
          112644
                    fffbee3b5462987e66fb49b1c5411df2
                   fffce4705a9662cd70adb13d4a31832d
                                                                    72a30483855e2eafc67aee5dc2!
          112647
```

104223 rows × 7 columns

112648

112649

→

1 9c422a519119dcad7575db5af1

1 350688d9dc1e75ff97be326363

Boxplot after removing outliers

fffe18544ffabc95dfada21779c9644f

fffe41c64501cc87c801fd61db3f6244

```
In [15]: sns.boxplot(order_amt_df2['price'])
    plt.grid(True)
    plt.show()
```


Histogram after removing outliers

Task 2 :- Analyzing Product Categories

```
In [19]: # Converting excel file to into python using pandas
product_df = pd.read_csv('products_dataset.csv')
product_df
```

Out[19]:		product_id	product_category_name	product_na
	0	1e9e8ef04dbcff4541ed26657ea517e5	perfumaria	
	1	3aa071139cb16b67ca9e5dea641aaa2f	artes	
	2	96bd76ec8810374ed1b65e291975717f	esporte_lazer	
	3	cef67bcfe19066a932b7673e239eb23d	bebes	
	4	9dc1a7de274444849c219cff195d0b71	utilidades_domesticas	
	•••			
	32946	a0b7d5a992ccda646f2d34e418fff5a0	moveis_decoracao	
	32947	bf4538d88321d0fd4412a93c974510e6	construcao_ferramentas_iluminacao	
	32948	9a7c6041fa9592d9d9ef6cfe62a71f8c	cama_mesa_banho	
	32949	83808703fc0706a22e264b9d75f04a2e	informatica_acessorios	
	32950	106392145fca363410d287a815be6de4	cama_mesa_banho	
	32951 rc	ows × 9 columns		
	4			•

Barchart for product categories

```
In [21]: plt.figure(figsize=(15,5))
    y = product_df['product_category_name'].value_counts()
    plt.bar(y.index,y.values)
    plt.xticks(rotation = 90)
    plt.show()
```


Enhancing Barplot in seaborn for product categories

```
In [23]: plt.figure(figsize=(15,5))
    sns.barplot(x = y.index , y = y.values ,legend = 'auto',palette='Spectral',satur
    plt.title('Bar Plot for product categories', fontsize=16)
    plt.xlabel('Product categories', fontsize=14)
    plt.ylabel('Values', fontsize=14)
    plt.xticks(rotation=90, fontsize=12)
    plt.yticks(fontsize=12)
    plt.show()
```


Task 3 :- Customer Ratings Analysis

```
In [25]: # Converting excel file to into python using pandas
    reviews_df = pd.read_csv('order_reviews_dataset.csv')
    reviews_df
```

	1001003_01					
[25]:		review_id	order_id	review_		
	0	7bc2406110b926393aa56f80a40eba40	73fc7af87114b39712e6da79b0a377eb			
	1	80e641a11e56f04c1ad469d5645fdfde	a548910a1c6147796b98fdf73dbeba33			
	2	228ce5500dc1d8e020d8d1322874b6f0	f9e4b658b201a9f2ecdecbb34bed034b			
	3	e64fb393e7b32834bb789ff8bb30750e	658677c97b385a9be170737859d3511b			
	4	f7c4243c7fe1938f181bec41a392bdeb	8e6bfb81e283fa7e4f11123a3fb894f1			
	•••					
	99995	f3897127253a9592a73be9bdfdf4ed7a	22ec9f0669f784db00fa86d035cf8602			
	99996	b3de70c89b1510c4cd3d0649fd302472	55d4004744368f5571d1f590031933e4			
	99997	1adeb9d84d72fe4e337617733eb85149	7725825d039fc1f0ceb7635e3f7d9206			
	99998	be360f18f5df1e0541061c87021e6d93	f8bd3f2000c28c5342fedeb5e50f2e75			
	99999	efe49f1d6f951dd88b51e6ccd4cc548f	90531360ecb1eec2a1fbb265a0db0508			
	100000 rows × 7 columns					
	4			•		

Barchart for customer ratings

```
In [27]: y = reviews_df['review_score'].value_counts()
    plt.barh(y.index,y.values)
    plt.show()
```


Enhanced Barplot for customer ratings

```
In [29]: sns.barplot(y = y.index , x = y.values ,legend='auto',palette='flare',saturation
    plt.title('Customer Rratings Score Distribution', fontsize=16)
    plt.ylabel('Number of Reviews', fontsize=14)
    plt.xlabel('Review Score', fontsize=14)
    plt.xticks(fontsize=12)
    plt.yticks(fontsize=12)
    plt.show()
```


Task 4:- Statistical Summary of Delivery Times

```
In [36]: # Calculating median
    mode_1 = orders_df['date_diff'].median()

In [37]: # Calculating meadian_1
    median_1 = orders_df['date_diff'].mode()

In [38]: # Calculating standard deviation
    std_dev = orders_df['date_diff'].std()
```

Creating Histogram For Estimate Delivery Days

```
In [40]: plt.hist(orders_df['date_diff'],bins='auto',color='skyblue',width=0.75)
    plt.xlim(0,100)
    plt.ylim(0,7000)
    plt.vlines(x=mean_1, ymin=0, ymax=5000, color='k', linestyle='-', linewidth=2)
    plt.vlines(x=mode_1, ymin=0, ymax=5000, color='r', linestyle='-', linewidth=2)
    plt.vlines(x=median_1, ymin=0, ymax=5000, color='orange', linestyle='-', linewidth=2)
    plt.vlines(x=std_dev, ymin=0, ymax=5000, color='g', linestyle='-', linewidth=2)
    plt.show()
```


Creating Boxplot For Estimate Delivery Days

```
In [42]: sns.boxplot(orders_df['date_diff'])
   plt.show()
```


Task 5 :- Relationship Between Order Value and Delivery Time

```
In [45]: # Converting excel file to into python using pandas

merged_df = pd.merge(order_amt_df, orders_df, on='order_id')
merged_df
```

	merged_df			
Out[45]:		order_id	order_item_id	proc
	0	00010242fe8c5a6d1ba2dd792cb16214	1	4244733e06e7ecb4970a6e2683
	1	00018f77f2f0320c557190d7a144bdd3	1	e5f2d52b802189ee658865ca93
	2	000229ec398224ef6ca0657da4fc703e	1	c777355d18b72b67abbeef9df4
	3	00024acbcdf0a6daa1e931b038114c75	1	7634da152a4610f1595efa32f1
	4	00042b26cf59d7ce69dfabb4e55b4fd9	1	ac6c3623068f30de03045865e4
	•••			
	112645	fffc94f6ce00a00581880bf54a75a037	1	4aa6014eceb682077f9dc4bffel
	112646	fffcd46ef2263f404302a634eb57f7eb	1	32e07fd915822b0765e448c4dd
	112647	fffce4705a9662cd70adb13d4a31832d	1	72a30483855e2eafc67aee5dc2
	112648	fffe18544ffabc95dfada21779c9644f	1	9c422a519119dcad7575db5af1
	112649	fffe41c64501cc87c801fd61db3f6244	1	350688d9dc1e75ff97be326363
112650 rows × 17 columns				
	4			>
In [46]: # Extracting the order value and delivery time column				
	merged_c	df[['price','date_diff']]		

	price	date_diff
0	58.90	7.0
1	239.90	16.0
2	199.00	8.0
3	12.99	6.0
4	199.90	25.0
•••		
112645	299.99	17.0
112646	350.00	9.0
112647	99.90	5.0
112648	55.99	2.0
112649	43.00	5.0

Out[46]:

112650 rows × 2 columns

Creating scatterplot for relationship between order value vs. delivery time

```
In [110... plt.scatter(merged_df['price'],merged_df['date_diff'], s=25)
    plt.show()
```


In [49]: # Correlation coefficient between price and delivery days

```
corr_1 = merged_df['price'].corr(merged_df['date_diff'])
corr_1
```

Out[49]: 0.06269448164982502

Enhancing scatterplot for relationship between order value vs. delivery time

```
In [104... sns.scatterplot(data = merged_df , x = 'price' , y = 'date_diff' , s=25, color="
    plt.legend()
    plt.show()
```



```
In [ ]:
```