Amendment to Claims

1	1.	(Original). A method of combining data to arrive at a composite graphical
2	representation	of a construction site comprising, the steps of:
3		providing subsurface mapping data;
4		creating a subsurface model of subsurface features from the subsurface mapping
5	data;	
6		creating a wire frame model of an above surface feature;
7		overlaying the wire frame model with a pictorial representation of the above
8	surface feature; and	
9		combining the wire frame model with the subsurface model to produce the
10	composite gra	aphical representation.
1	2.	(Original). The method of claim 1 wherein the subsurface mapping data is
2	resistivity dat	a.
1	3.	(Original). The method of claim 2 wherein the resistivity data is taken from an
2	AGI SuperSti	ing program.
1	4.	(Original). The method of claim 2 further comprising the step of removing a
2	statistical out	lier from the resistivity data.

1	5.	(Original).	The method of claim 4 wherein a word processing program is used to
2	remove the ou	tlier.	
1	6.	(Original).	The method of claim 5 wherein the word processing program is
2	WORDPAD.		
1	7.	(Original).	The method of claim 2 further comprising the step of performing a
2	least squares of	lata inversio	n analysis on the resistivity data.
1	8.	(Original).	The method of claim 7 wherein the least squares data inversion
2	analysis is pre	formed by a	RES3DINV program.
1	9.	(Original).	The method of claim 7 wherein the least squares data inversion
2	analysis is per	formed by a	RES2DINV program.
1	10.	, ,	The method of claim 2 further comprising the step of performing a
2	kriging analys	sis on the res	sistivity data.
1	11.	(Original).	The method of claim 10 wherein the analysis is preformed by
2	SURFER soft	ware.	
1	12.	(Original).	The method of claim 2 further comprising the step of performing a
2	cokriging ana	lysis on the	resistivity data.

AUTOCAD software.

1	13.	(Original).	The method of claim 1 wherein the subsurface mapping data is ground
2	penetrating rad	dar data.	
1	14.	(Original).	The method of claim 13 wherein the ground penetrating radar data is
2	acquired throu	igh a SIR-30	000 ground penetrating radar system.
1	15.	(Original).	The method of claim 13 wherein the data is enhanced.
1	16.	(Original).	The method of claim 15 wherein the program Radan is used to
2	enhance the d	ata.	
1	17.	(Original).	The method of claim 1 wherein the subsurface mapping data is
2	seismic data.		
1	18.	(Original).	The method of claim 17 wherein the seismic data is acquired from a
2	SmartSeis seis	smic imagin	g system.
1	19.	(Original).	The method of claim 17 wherein the data is enhanced.
1	20.	(Original).	The method of claim 19 wherein the program SizeImager is used to
2	enhance the d	ata.	
1	21.	(Original).	The method of claim 1 wherein the wire frame model is created using

1	22.	(Original). The method of claim 1 wherein the wire frame model includes
2	a model of veg	getation.
	22	(Outsing) The method of claim 1 wherein the wire frame model includes
1	23.	(Original). The method of claim 1 wherein the wire frame model includes
2	a model of a b	ouilding.
1	24.	(Original). The method of claim 1 wherein the pictorial representation is
2	an aerial photo	ograph.
1	25.	(Original). The method of claim 24 wherein the aerial photograph is
2	imported into	EVS software.
1	26.	(Original). The method of claim 1 wherein the subsurface model
2	comprises at 1	east one 2-dimensional graph.
1	27.	(Original). The method of claim 1 wherein the subsurface model
2	comprises at l	east one 3-dimensional graph.
1	28.	(Original). The method of claim 1 wherein the composite graphical
2	representation	is produced in Visual Reduction Modeling Language.
1	29.	(Original). The method of claim 28 wherein the graphical representation
2	is viewed as a	web page.

(Original). The method of claim 1 comprising the further step of 1 30. displaying the composite graphical representation. 2 (Original). The method of claim 1 wherein the composite graphical 1 31. 2 representation can be rotated. (Original). The method of claim 1 wherein the pictorial representation is a 1 32. 2 representation of texture. (Original). The method of claim 1 including the additional step of 1 33. viewing a 2-dimensional slice of the composite graphical representation. 2 (Original). The method of claim 1 wherein the graphical representation is 1 34. 2 used in a .AVI file. (Original). The method of claim 1 wherein the wire frame model includes 1 35. 2 below surface ground structures. (Original). A 3-dimensional model of a construction site comprising: 36. 1 a graphical model of subsurface mapping data; 2 a spatial model of an above ground object; and 3 a 2-dimensional image of the above ground object superimposed on the 4

spatial model and spatially synchronized with the graphical model of resistivity data.

1	37.	(Original).	The 3-dimensional model of claim 36 wherein the graphical
2	model is prep	ared using kr	iging.
1	38.	(Original).	The 3-dimensional model of claim 36 wherein the spatial
2	model is prep		
		_	
1	39.	(Original).	The 3-dimensional model of claim 36 wherein the 3-
2	dimensional r	nodel is rend	ered in Visual Reduction Modeling Language.
1	40.	(Original).	The 3-dimensional model of claim 36 wherein the subsurface
2	mapping data	is resistivity	data.
	41	(0.1.11)	The 2 dimensional weedship follows 40 whomein the mediativity
1	41.		The 3-dimensional model of claim 40 wherein the resistivity
2	data includes	data related t	to moisture content.
1	42.	(Original).	The 3-dimensional model of claim 40 wherein the resistivity
2	data includes	data related t	to a void.
1	43.	(Original).	The 3-dimenstional model of claim 40 wherein the resistivity
2	data includes	data related	to a subsurface anomaly.
1	44.	(Original).	The 3-dimenstional model of claim 40 wherein the resistivity

2 data is derived through use of the equation:

3		R=(V/I)K;
4		where K is an electrode geometric constant;
5		R is resistance;
6		V is voltage; and
7		I is current.
1	45.	(Original). The 3-dimensional model of claim 36 wherein the subsurface
2	mapping data	is ground penetrating radar data.
1	46.	(Original). The 3-dimensional model of claim 36 wherein the subsurface
2	mapping data	is seismic data.
	47	(O : : 1) A weath of a foresting a growthical model comprising the stone
1	47.	(Original). A method of creating a graphical model comprising the steps
2	of:	
3		testing to determine subsurface mapping data;
4		enhancing the data;
5		constructing a wire frame model of an above ground structure;
6		providing a pictorial representation of a plan view of the above ground
7	structure;	
8		combining the pictorial representation with the wire frame model;
9		aligning the subsurface mapping data with the combined pictorial
۱۸	ronresentation	n and wire frame model: and

dipole arrangement.

merging the subsurface mapping data with the combined pictorial 11 representation and wire frame model. 12 (Original). The method of claim 47 wherein the subsurface mapping data 48. 1 2 is resistivity data. (Original). The method of claim 48 wherein the data is enhanced by 1 49. performing a least squares data inversion analysis on the subsurface mapping data. 2 50. (Original). The method of claim 48 wherein the data is enhanced by 1 performing a kriging analysis on the subsurface mapping data. 2 (Presently Amended). The method of claim 50 47 wherein the step of 1 51. testing includes choosing a placement for electrodes. 2 (Presently Amended). The method of claim 50 51 wherein the placement 1 52. 2 is the Wenner arrangement. (Original). The method of claim 51 wherein the placement is the 1 53. 2 Schlumberger arrangement. (Original). The method of claim 51 wherein the placement is the dipole 1 54.

is ground penetrating radar data.

(Original). The method of claim 47 wherein the step of combining is 55. 1 2 carried out with AUTOCAD software. (Original). The method of claim 47 wherein the step of merging is carried 56. 1 2 out with EVS software. (Original). The method of claim 47 wherein the step of merging results in 1 57. 2 a VRML file. (Original). The method of claim 47 further comprising the step of visually 58. 1 displaying the merged subsurface mapping data, combined pictorial representation and 2 3 wire frame model. (Original). The method of claim 58 wherein the pictorial representation 1 59. 2 can be rotated. (Original). The method of claim 47 wherein the step of merging results in 1 60. 2 an HTML file. (Original). The method of claim 47 wherein the subsurface mapping data 1 61.

- 1 62. (Original). The method of claim 61 wherein the program Radan is used to enhance the data.
- 1 63. (Original). The method of claim 47 wherein the subsurface mapping data 2 is seismic data.
- 1 64. (Presently Amended). The method of claim 61 63 wherein the program
 2 SizeImager is used to enhance the data.
- 1 65. (Original). The method of claim 48 wherein the wire frame model includes below ground structures.