Open Questions about Concatenated Primes and Metasequences

Florentin Smarandache University of New Mexico Gallup Campus, USA

Abstract.

We define a <u>metasequence</u> as a sequence constructed with the terms of other given sequence(s). In this short note we present some open questions on concatenated primes involved in metasequences.

First Class of Concatenated Sequences.

- 1) Let $a_1, a_2, ..., a_{k-1}, a_k$ be given $k \ge 1$ digits in the numeration base b.
- a) There exists a prime number *P* of the concatenated form:

$$P = *...*a_1*...*a_2*...*...*a_{k-1}*...*a_k*...*$$

where the stars "*...*" represent various (from none to any finite positive integer) numbers of digits in base b.

Of course, if a_k is the last digit then a_k should belong to the set $\{1, 3, 7, 9\}$ in base 10. Similar restriction for the last number's digit a_k in other base b.

- b) Are there infinitely many such primes?
- c) What about considering fixed positions for the given digits: i.e. each given a_i on a given position n_i ?
- d) As a consequence, for any group of given digits a_1 , a_2 , ..., a_{k-1} , a_k do we have finitely or infinitely many primes starting with this group of digits (i.e. in the following concatenated form):

$$a_1 a_2 ... a_{k-1} a_{k^* ... *}$$

?

e) As a consequence, for any group of given digits a_1 , a_2 , ..., a_{k-1} , a_k do we have finitely or infinitely many primes ending with this group of digits (i.e. in the following concatenated form):

$$*...*a_1a_2...a_{k-1}a_k$$

(of course considering the primality restriction on the last digit a_k)?

f) As a consequence, for any group of given digits a_1 , a_2 , ..., a_{k-1} , a_k and any given digits b_1 , b_2 , ..., b_{j-1} , b_j do we have finitely or infinitely many primes beginning with the group of digits a_1 , a_2 , ..., a_{k-1} , a_k and ending with the group of digits b_1 , b_2 , ..., b_{j-1} , b_j (i.e. in the following concatenated form):

$$a_1a_2...a_{k-1}a_{k*...*}b_1b_2...b_{j-1}b_j$$

(of course considering the primality restriction on the last digit bj)?

g) As a consequence, for any group of given digits a_1 , a_2 , ..., a_{k-1} , a_k do we have finitely or infinitely many primes having inside of their concatenated form this group of digits (i.e. in the following concatenated form):

?

h) As a consequence, for any groups of given digits a_1 , a_2 , ..., a_{k-1} , a_k and b_1 , b_2 , ..., b_{j-1} , b_j and c_1 , c_2 , ..., c_{i-1} , c_i do we have finitely or infinitely many primes beginning with the group of digits a_1 , a_2 , ..., a_{k-1} , a_k , ending with the group of digits b_1 , b_2 , ..., b_{j-1} , b_j , and having inside the group of digits c_1 , c_2 , ..., c_{i-1} , c_i (i.e. in the following concatenated form):

$$a_1a_2...a_{k-1}a_{k*...*} c_1c_2...c_{i-1}c_{i*...*}b_1b_2...b_{j-1}b_j$$

(of course considering the primality restriction on the last digit bj)?

i) What general condition has a sequence $s_1, s_2, ..., s_n, ...$ to satisfy in order for the concatenated metasequence

for n = 1, 2, ... to contain infinitely many primes?

Second Class of Metasequences.

- 2) Let's note the sequence of prime numbers by $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, ..., p_n the n^{st} prime number, for any natural number n.
- a) Does the metasequence

$$p_1 \cdot p_2 \cdot ... \cdot p_n + 1$$

for n = 1, 2, ... contains finitely or infinitely many primes?

b) What about the metasequence:

$$p_1 \cdot p_2 \cdot ... \cdot p_n - 1$$

?

c) What general condition has a sequence s_1 , s_2 , ..., $s_{n, \dots}$ to satisfy in order for the metasequence

$$s_1 \cdot s_2 \cdot ... \cdot s_n \pm 1$$

for n = 1, 2, ... to contain infinitely many primes?

Reference:

F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, 139 p., HeXis, 2006.