计算机组织结构

3 数据的机器级表示

刘博涵 2022年9月15日

教材对应章节

第2章 数据的机器级表示

第10章 计算机算术

信息的二进制编码

- 在冯·诺依曼结构中,所有信息(代码和数据)都采用二进制编码
 - 编码:用少量简单的基本符号对复杂 多样的信息进行一定规律的组合
 - 采用二进制的原因
 - 制造两个稳定态的物理器件容易
 - 二进制编码、计数运算规则简单
 - 对应逻辑命题中的"真"和"假"
 - 便于使用逻辑电路实现算术运算
 - 真值和机器数
 - K位的二进制编码至多表示2^k个不同的值

图 2.1 计算机外部信息与内部数据的转换

例: 真值127 = 2⁷ - 1, 机器数为0000 0000 0111 1111

回顾:整数的二进制数表示

整数的二进制数表示

- 无符号整数
- 有符号整数:原码,反码,移码,补码
 - 编码是为了解决正负号问题
 - 计算机中几乎**不用反码**,运算**普遍使用补码**
 - 二进制补码的运算
 - 二进制-十进制转换

原码表示

真值	二进制	真值	二进制
0	0000	-0	1000
1	0001	-1	1 001
2	0 010	-2	1 010
3	0 011	-3	1 011
4	0 100	-4	1 100
5	0 101	-5	1 101
6	0 110	-6	1 110
7	0 111	-7	1 111

浮点数的尾数用原码定点小数表示

优点:

最直接,便于理解

缺点:

- 0的表示不唯一,不利于程序员编程
- 加、减运算方式不统一,尤其当a < b时,实现a b比较困难
- 需要额外对符号位进行处理,不利于硬件设计

移码表示

将每一个数值加上一个偏置常数 (excess/bias)

通常当编码位数为n时,bias取 2^{n-1} 或 $2^{n-1}-1$ (如IEEE 754)

例如n=4时, bias=8

真值	二进制	真值	二进制
0	1000	-0	1000
1	1001	-1	0111
2	1010	-2	0110
3	1011	-3	0101
4	1100	-4	0100
5	1101	-5	0011
6	1110	-6	0010
7	1111	-7	0001
		-8	0000

浮点数的阶用移码表示

例如计算 $1.01 \times 2^{-1} + 1.11 \times 2^{3}$ 时,需要将<mark>低阶</mark> (2^{-1}) **转为高阶** (2^{3}) 那么首先需要**比较-1和3的大小**

补码: 111<011? 移码: 011<111

此外,全为负数时,移码比原码更容易比较

补码表示

在一个模运算系统中,一个数于它除以"模"后的余数等价。

时钟是一种模12系统

- 例:图中时针指向的是10点,要将它拨向6点,有两种拨法
 - 1、逆时针拨4格, 10-4=6
 - 2、顺时针拨8格, 10+8=18=6[mod 12]
- ・ 加和减的统一:
 - 一个负数的补码等于模减该负数的绝对值。
 - 对于某一确定的模,某数减去小于模的另一数, 总可以加上另一数负数的补码来代替。
 - 一个负数的补码等于将对应正数补码 各位取反、末位加一

8位二进制示例:

 $0111\ 1111 - 0100\ 0000 = 0111\ 1111 + (1\ 0000\ 0000 - 0100\ 0000)$ = $0111\ 1111 + 1100\ 0000$

只留余数 = 110011

= 1 0011 1111 (mod 1 0000 0000)

= 0011 1111

补码表示

一个n位运算器,只能保留低n位的运算结果,即模为 2^n 的补码运算

模为24的时钟系统

补码的定义:

$$[X]_c = 2^n + X (-2^n \le X \le 2^n, mod \ 2^n)$$

补码表示:

000...000 ~ 011...111: 表示的值不变

100...000 ~ 111...111: 表示的值由 $2^{k-1} \sim 2^k - 1$

变为

$$-2^{k-1} \sim -1$$

补码表示法的优势

• 补码表示法 vs. 原码表示法

	長示法	原码表		补码表示法							
	1001	0000			1001	0000		9			
<u>.</u>	1000	0000	+		1000	0000	+	8	+		
17	0001	0001		17	0001	0001		17			
	1001	0000			1001	0000		9			
	1000	1000	+		1000	1111	+	-8	+		
-17	0001	1001		1	0001	1 0000		1			

求真值的补码

特殊的真值:

$$[-2^{n-1}]_c = 2^n - 2^{n-1} = 10 \dots 0 (n - 1 \uparrow 0)$$
$$[-1]_c = 2^n - 1 = 11 \dots 1 (n \uparrow 1)$$
$$[+0]_c = [-0]_c = 00 \dots 0 (n \uparrow 0)$$

在32位机器中n为32 int型 32位 short型 16位 char型 8位

一般的例子:

$$123 = 127 - 4 = 0111 \ 11111B - 0000 \ 0100B = 0111 \ 1011B$$
$$-123 = -0111 \ 1011B$$
$$[0111 \ 1011]_c = 2^8 + 0111 \ 1011 = 1 \ 0111 \ 1011 \ (mod \ 2^8) = 0111 \ 1011$$
$$[-0111 \ 1011]_c = 2^8 - 0111 \ 1011 = 1111 \ 1111 - 0111 \ 1011 + 1 = 1000 \ 0101$$

0的补码唯一,为 $00 \dots 0 (n \uparrow 0)$ 正数的补码等于它本身 负数的补码为各位取反,末位加1

求补码的真值

$$\Leftrightarrow$$
: $[X]_C = x_{n-1}x_{n-2} \dots x_2x_1$

则:
$$X = -x_{n-1} \times 2^{n-1} + \dots + x_2 \times 2^1 + x_1 \times 2^0$$

真值的范围

$$-2^{n-1} \le X \le 2^{n-1}-1$$

例: 补码1101 0110的真值为

$$-2^7 \times 1 + 2^6 \times 1 + 2^5 \times 0 + 2^4 \times 1 + 2^3 \times 0 + 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 0 = -42$$

简便求法:

符号为0,则为正数,数值部分相同

符号位1,则位负数,数值各位取反,末位加1

例: 补码0101 0110的真值为

$$+101\ 0110 = 64 + 16 + 4 + 2 = 86$$

例: 补码1101 0110的真值为

$$-010\ 1001 = -(32 + 8 + 2) = -42$$

扩展:不同的整数编码

以8位为例,真值的表示范围

• 无符号: 0~255

• 原码: -127~127

• 移码: -127~128

• 补码: -128~127

$$0 \sim 2^{k} - 1$$

$$-2^{k-1} + 1 \sim 2^{k-1} - 1$$

$$-2^{k-1} + 1 \sim 2^{k-1}$$

 $-2^{k-1} \sim 2^{k-1} - 1$

移码在IEEE754中

尾数需要右移一位,所以 从-128~127变成了-127~128 实际可用范围是-**126~127**

回顾: 浮点数的二进制数表示

浮点数的二进制数表示

十进制数的科学计数法

二进制数的科学计数法

基底不变,1位即可以表示<mark>符号</mark>位 对尾数和阶分别编码即可以表示一个**浮点数**

规格化数

• 任何浮点数都能以多种样式来表示

$$0.110 \times 2^5$$
, 110×2^2 , 0.0110×2^6

• 规格化表示

最小正数: *E=0,M=0.00…00* → **2**⁻¹²⁷

规格化数的值的范围

- 值的范围
 - 介于 $-(2-2^{-23})\times 2^{128}$ 和 -2^{-127} 之间的负数
 - 介于 2^{-127} 和 $(2-2^{-23})\times 2^{128}$ 之间的正数

原码的表示范围是对称的,所以浮点数值的范围也关于原点对称

规格化数的变化

其他规格化数的表示形式: $\pm 0.1bb \dots b \times 2^E$

- 对于一定长度的规格化数,表示范围和精度之间存在权衡(总位数不变)
 - 增加阶码(E)位数:扩大表示范围,降低表示精度
 - 增加尾数 (M) 位数: 减少表示范围,提高表示精度,
 - **更大**的底 (*B*): 如4, 8, 16, **扩大**表示**范围**, **降低**表示精度

需要一个统一的标准

Larger Photo

William M. Kahan
Professor Emeritus

Research Areas

Computer Architecture & Engineering (ARC)

Scientific Computing (SCI)

Computer architecture; Scientific computing; Numerical analysis 20世纪70年代,IEEE成立委员会着手制 定浮点数标准。

20世纪80年代,Intel邀请Kahan教授设计8087处理器的浮点运算单元。

IEEE邀请Kahan基于8087中的浮点标准 起草一份通用标准。

1985年提出浮点数标准IEEE 754。

1989年Kahan教授因此获得ACM A.M Turing Award

· 定义32位的单精度和64位的双精度两种格式

・定义两种拓展格式

- 扩展单精度浮点格式 (≥43 位,不常用)。
- 扩展双精度浮点格式 (≥79 位, 一般情况下, Intel x86 结构的计算机采用的是 80 位, 而 SPARC 结构的计算机采用的是 128 位)。

单精度浮点数

- S: 1表示负, 0表示正
- E: 全0和全1表示特殊值, 范围是 0000 0001 (-126) ~ 1111 1110 (127)
- M: 最高位总是1, 所以隐含表示

阶码的范围为什么是-126~127? 为什么不是-128~127?

为什么采用 $\pm 1.bbb...b \times 2^{E}$?

IEEE754 格式化浮点数表示范围

格式	最小正数	最大正数	最小负数	最大负数
单精度	$E = 1$ $M = 0$ 1.0×2^{-126}	$E = 254$ $M = 1 - 2^{23}$ $(2 - 2^{23}) \times 2^{127}$	$E=254$ $M=1-2^{23}$ $-(2-2^{23}) \times 2^{127}$	$E = 1$ $M = 0$ -1.0×2^{-126}
双精度	$E=1$ $M=0$ 1.0×2^{-1022}	$E = 2046$ $M = 1 - 2^{52}$ $(2 - 2^{52}) \times 2^{1023}$	$E=2046$ $M=1-2^{52}$ $-(2-2^{52})\times 2^{1023}$	$E=1$ $M=0$ -1.0×2^{-1022}

注:均为真值

原码的表示范围是对称的,所以浮点数值的范围也关于原点对称

溢出区域怎么表示?

单精度每格表示223个数

精度不够怎么办? 舍入原则

增大取值范围

- 采用 $\pm 1.bbb...b \times 2^E$
- bias $\mathbb{Z}^{n-1}-1$

精度随着绝对值的增大而降低

阶码全0,尾数非0

 $(-1)^s \times 0. bb \dots b \times 2^{-126}$

全0和全1

- 用于表示格式化 数以外的情况
- 负上溢和正上溢中只能表示无穷

			_
阶码的值	尾数的值	表示	_
0 (全0)	0	+/- 0	_
0 (全0)	≢0	非规格化数	
1~254	任意	规格化数	
255 (全1)	0	+/- ∞	
255 (全1)	≢ 0	NaN	23

IEEE 754 标准 (cont.)

• 格式参数

↔ ₩h	格式						
参数	单精度 单精度拓展		双精度	双精度拓展			
字宽(位数)	32	≥43	64	≥79			
阶值位宽(位数)	8	≥11	11	≥15			
阶值偏移量	127	未指定	1023	未指定			
最大阶值	127	≥1023	1023	≥16383			
最小阶值	-126	≤-1022	-1022	≤-16382			
数的范围(底为10)	$10^{-38}, 10^{+38}$	未指定	$10^{-308}, 10^{+308}$	未指定			
有效值位宽(位数)	23	≥31	52	≥63			
阶值的数目	254	未指定	2046	未指定			
小数的数目	2^{23}	未指定	2 ⁵²	未指定			
值的数目	1.98×2^{31}	未指定	1.99×2^{63}	未指定			

IEEE 754 标准 (cont.)

小数第一位: 0 用法:表示未初始化的值,用于捕获异常 小数第一位: 1

用法:表示未定义的算术结果,如除数等于0

		单精度	(32位)			双精度(<i>6</i>	4位)	
	符号	移码阶值	小数	值	符号	移码阶值	小数	值
正零	0	0	0	0	0	0	0	0
负零	1	0	0	-0	1	0	0	-0
正无穷大	0	255 (all 1s)	0	×	0	2047 (all 1s)	0	∞
负无穷大	1	255 (all 1s)	0	$-\infty$	1	2047 (all 1s)	0	$-\infty$
静默式非数	0 or 1	255 (all 1s)	≠0	NaN	0 or 1	2047 (all 1s)	≠0	NaN
通知式非数	0 or 1	255 (all 1s)	≠0	NaN	0 or 1	2047 (all 1s)	≠0	NaN
正的规格 化非零数	0	0 < e < 255	f	2 ^{e-127} (1.f)	0	0 < e < 2047	f	2 ^{e-1023} (1.f)
负的规格 化非零数	1	0 < e < 255	f	$-2^{e-127}(1.f)$	1	0 < e < 2047	f	$-2^{e-1023}(1.f)$
正的非规 格化数	0	0	f ≠ 0	$2^{e-126}(0.f)$	0	0	f ≠ 0	2 ^{e-1022} (0.f)
负的非规 格化数	1	0	f ≠ 0	$-2^{e-126}(0.f)$	1	0	f ≠ 0	$-2^{e-1022}(0.f)$

IEEE 754 标准 (cont.)

• 例子

```
0.5 = 0.100...0B = (1.00..0)2\times2^{-1}
0.1111110 000...00 (23)
-0.4375 = -0.01110...0B = - (1.110...0)2\times2^{-2}
1.01111101 110...00 (21)
```


二进制编码的十进制数表示

- 浮点运算的问题
 - 精度限制
 - 转换成本高
- 应用需要
 - 长数字串的计算: 会计,
- 解决方法
 - 用4位二进制编码十进制 (BCD) 表示0, 1, ..., 9, 直接计算

二进制编码的十进制数表示 (cont.)

- 自然BCD码 (NBCD, 8421 码)
 - 0 ~ 9: 0000 ~ 1001
 - 符号: 使用四个最高有效位
 - 正: 1100 / 0
 - 负: 1101 / 1
 - 例子
 - +2039: **1100** 0010 0000 0011 1001 / **0** 0010 0000 0011 1001
 - -1265: 1101 0001 0010 0110 0101 / 1 0001 0010 0110 0101
- 其他BCD码
 - 2421, 5211, 4311, ...

非数值数据的编码表示

・逻辑值

- 逻辑数据和数值数据在形式上**没有差异**
- 通过指令的操作码类型来识别运算类型,如逻辑运算指令,算术运算指令。

・西文字符

- 有**多种**不同的**字符**集
- 最广泛使用的是ASCII码
 - ・7位或8位二进制表示

・汉字字符

- · 一个字就是一个方块图形
- 如GB2312-80**字符集**
- 超过6万个字(至少16位)

多媒体信息(图像、	音频等)
-----------	------

			AX 2.0	ASCII 145	4 X			
$b_3b_2b_1b_0$ $b_6b_5b_4$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	,	р
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	-	2	В	R	ь	r
0011	ETX	DC3	#	3	С	s	c	s
0100	EOT	DC4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	Е	U	e	u
0110	ACK	SYN	8-	6	F	v	f	v
0111	BEL	ETB	,	7	G	W	g	w
1000	BS	CAN	(8	Н	X	h	x
1001	НТ	EM)	9	I	Y	i	у
1010	LF	SUB	*		J	Z	j	z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	I
1101	CR	GS	_	-	M]	m	}
1110	SO	RS		>	N	•	n	~
1111	SI	US	/	?	0	_	0	DEL

表 2.6 ASCII 码表

• 同样用0和1表示, 数据结构各异

总结

- 信息的二进制编码
- 整数的二进制表示
 - 补码表示的优势,表示方法,真值计算
 - 不同的整数二进制表示
- 浮点数的二进制表示
 - 浮点数表示方法,规格化数,非规格化数,IEEE 754标准
- 二进制编码的十进制数表示
 - NBCD码表示方法
- 非数值数据的编码表示
 - 逻辑值, 西文字符, 汉字字符, 多媒体信息

谢谢

bohanliu@nju.edu.cn

