ALGEBRA LINIOWA Z GEOMETRIĄ ANALITYCZNĄ

dr Joanna Jureczko

Politechnika Wrocławska Wydział Informatyki i Telekomunikacji Katedra Telekomunikacji i Teleinformatyki Niniejsza prezentacja stanowi jedynie skrypt do wykładu.

Wykład będzie wzbogacony o dodatkowe informacje, tj. dowody

wybranych twierdzeń, przykłady, wskazówki do zadań itp. Dodatkowe informacje dotyczące programu znajdują się w

Karcie Przedmiotu

WYKŁAD 13

Współrzędne cylindryczne Współrzędne sferyczne

NIEZBĘDNIK INŻYNIERA

Przykładowe zastosowania zmiany układu współrzędnych

- obliczanie szczególnego rodzaju całek oznaczonych,
- współrzędne biegunowe służą do opisu ruchu ciał wokół zadanego punktu w przestrzeni dwuwymiarowej i w przypadkach, kiedy siły działające w płaszczyźnie mają symetrię obrotową,
- współrzędne cylindryczne (walcowe) służą do opisu ruchu ciał wokół zadanej osi w przestrzeni trójwymiarowej i w przypadkach, kiedy siły działające w przestrzeni mają symetrie walcowa,
- współrzędne sferyczne służą do opisu ruchu ciał wokół zadanego punktu w przestrzeni trójwymiarowej i w przypadkach, kiedy siły działające w przestrzeni mają symetrie sferyczna.

Położenie punktu P=(x,y) w układzie współrzędnych biegunowych wyrażone jest przez $P=(r,\varphi)$, gdzie r jest długością promienia wodzącego, a φ jest kątem obrotu liczonym względem osi OX. Wersor promienia wodzącego skierowany jest wzdłuż jego kierunku, a wersor kąta φ jest do

$$(x,y)=(r\cos\varphi,r\sin\varphi),$$

niego prostopadły. Wtedy zachodzą zależności

gdzie
$$r = \sqrt{x^2 + y^2}, \varphi \in [0, 2\pi).$$

Położenie punktu P = (x, y, z) nie leżącego na osi OZ może być jednoznacznie określone przez trójkę $P = (r, \varphi, z)$, która nazywamy **współrzędnymi cylindrycznymi** lub

współrzędnymi walcowymi punktu P, gdzie

 $r = |\overline{OP_1}|$, $(P_1 \text{ oznacza rzut protokatny punktu } P \text{ na})$

 $z \in \mathbb{R}$ jest współrzędną kartezjańską punktu P.

płaszczyznę OX), $\varphi = \angle(OX, \overline{OP_1}),$

Pomiędzy współrzędnymi kartezjańskimi a cylindrycznymi tego samego punktu zachodzą zależności

$$(x, y, z) = (r \cos \varphi, r \sin \varphi, z),$$

gdzie
$$r = \sqrt{x^2 + y^2}, \varphi \in [0, 2\pi), z \in \mathbb{R}.$$

Zbiór punktów o współrzędnych (r, φ, z) jest równaniem powierzchni walca obrotowego w \mathbb{R}^3 , (co uzasadnia nazwę współrzędnych).

Promieniem wodzącym punktu P = (x, y, z) będącego punktem układu kartezjańskiego nazywamy wektor \overline{OP} .

Modułem punktu *P* nazywamy długość \overline{OP} , tj. $R = \sqrt{x^2 + y^2 + z^2}$.

Długością geograficzną punktu P nazywamy miarę łukową kąta $\varphi \in [0,2\pi)$ jaki tworzy rzut $\overline{OP_1}$ wektora \overline{OP} na płaszczyzne OXY, a osią OX, tj. $\varphi = \angle(OX, \overline{OP_1})$.

Szerokością geograficzną punktu P nazywamy miarę łukową kąta $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ jaki tworzy wektor \overline{OP} z płaszczyzną OXY, tj $\theta = \angle(\overline{OP_1}, \overline{OP})$.

Trójkę (R, θ, φ) nazywamy **współrzędnymi sferycznymi punktu** P.

Pomiędzy współrzędnymi kartezjańskimi i sferycznymi tego samego punktu zachodzą zależności:

$$(x, y, z) = (R\cos\theta\cos\varphi, R\cos\theta\sin\varphi, R\sin\theta),$$

gdzie $\varphi \in [0,2\pi), \theta \in [-\frac{\pi}{2},\frac{\pi}{2}]$. Ponadto

$$\sin \varphi = \frac{y}{r}, \cos \varphi = \frac{x}{r}, \sin \theta = \frac{z}{R},$$

gdzie
$$r = \sqrt{x^2 + y^2}$$
.
Punkty o współrzędnych (R, θ, φ) leżą na sferze

Punkty o współrzędnych (R, θ, φ) lezą na sterze $x^2 + y^2 + z^2 = R^2$, (co uzasadnia nazwę tych współrzędnych).