

Exact Solutions > Ordinary Differential Equations > First-Order Ordinary Differential Equations > Special Riccati Equation

6. 
$$y'_x = ay^2 + bx^n$$
.

*Special Riccati equation*, *n* is an arbitrary number.

1°. Solution for n ≠= -2:

$$y = -\frac{1}{a}\frac{w_x'}{w}, \quad w(x) = \sqrt{x}\left[C_1J_{\frac{1}{2k}}\left(\frac{1}{k}\sqrt{ab}\,x^k\right) + C_2Y_{\frac{1}{2k}}\left(\frac{1}{k}\sqrt{ab}\,x^k\right)\right],$$

where  $k = \frac{1}{2}(n+2)$ ;  $J_m(z)$  and  $Y_m(z)$  are the Bessel functions:  $C_1$  and  $C_2$  are arbitrary constants.

 $2^{\circ}$ . Solution for n = -2:

$$y = \frac{\lambda}{x} - x^{2a\lambda} \left( \frac{ax}{2a\lambda + 1} x^{2a\lambda} + C \right)^{-1},$$

where  $\lambda$  is a root of the quadratic equation  $a\lambda^2 + \lambda + b = 0$ .

## References

Kamke, E., Differentialgleichungen: Lösungsmethoden und Lösungen, I, Gewöhnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977.

**Polyanin, A. D. and Zaitsev, V. F.,** *Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition*, Chapman & Hall/CRC, Boca Raton, 2003.

Special Riccati Equation

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf