

Computer Architecture The Fundamental

Course Number : TTH2D3

CLO : 1

Week : 1

CLO#1 Student have the knowledge to explain microprocessor system

[C2] Understand the history of microprocessor and microcontroller

[C2] Understand the architecture of computer system

[C2] Understand the design of minimum system for microcontroller

Why do we need to take this course?

IoT Growth Rate

Heat Map of IoT by Industry and Application

FIGURE 6 Heat Map Of Key IoT Opportunities Varies By Industry And Application

Why do we need to take this course?

Because everything will be connected through The Internet, and it starts with what you will learn in this course, i.e. microcontroller.

What is Organization and how it differ with Architecture?

Computer Organization
 describes each unit's functionality, like input,
 storage, process, and output.

Computer Architecture
 describes the interconnection between units
 and how they work together, including
 hardware and software.

Computer System Hardware

Microprocessor

The Fundamental

Microprocessor: Historical Review (1/3)

Microprocessor: Historical Review (2/3)

Intel Pentium-D (2005)

Intel Itanium (2006)

Intel Pentium-M (2003)

Microprocessor: Historical Review (3/3)

Microprocessor Complexity

 Intel 4004 with 2300 transistors (1969) Intel Itanium with 330 million transistors (2005)

Microprocessor Complexity (in Detail)

Microprocessor Type	Year	Speed	Word	Transistors	MIPS
4004	1969	108 kHz	4 bit	2300	0.06
8008	1972	200 kHz	8 bit	3500	0.06
8080	1974	2 MHz	8 bit	6000	0.64
8086	1978	4.47 MHz	16 bit	29000	0.66
8088	1981	4.47 MHz	16 bit	29000	0.75
80286	1982	12 MHz	16 bit	134000	2.66
80386	1985	16-33 MHz	32 bit	275000	4
80486 (i486)	1989	20-100 MHz	32 bit	1.2 million	70
80586 (Pentium)	1993	75-200 MHz	32 bit	3.3 million	126-203
Pentium Pro	1995	150-200 MHz	32 bit	5.5 million	300
Pentium MMX	1997	166-233 MHz	32 bit	4.5 million	
Pentium II	1997	233-450 MHz	32 bit	7.5 million	
Pentium III	1999	450-933 MHz	32 bit	9.5 million	
Itanium	2000	1 GHz	64 bit	15 million	1200

Yes

5999.00

Yes

5999.00

Enhanced Intel®

Price

Speedstep Technology

Intel i7

Definition

Microprocessor is a:

- LSI/VLSI (Very Large Scale Integration), designed to process information, any information.
- Multipurpose or General Purpose LSI/VLSI
- Sometimes (incorrectly) named CPU (Central Processing Unit)
- Fabricated on a die chip

Definition

Microprocessor System is a:

- System consists of at least 1 microprocessor and a support system
- Support system may include:
 - Memory unit
 - Input unit
 - Output unit

Computer System Architecture

Support System

Memory

Static RAM, Dynamic RAM, ROM, EPROM, Flash Disk, Hard Disk

Input

Keyboard, Mouse, Touch Pad, Scanner, ADC

Output

Monitor, Speaker, VR, Printer, DAC

Inside the Microprocessor

Figure 1. 8088 CPU Functional Block Diagram

Inside the Microprocessor

- 1. ALU, Arithmetic and Logic Unit responsible for calculation
- 2. Register, a special type (very fast) of memory responsible for storing instruction, data, address, and status
- 3. Control Unit responsible to control the works
- Bus
 responsible for transferring
 signal (control, data, address)

How it Works?

Microprocessor: Basic functionalities

- Able to locate where the instruction and data resides
- Able to fetch the instruction and data from memory
- Able to store instruction and data in register
- Able to decode and understand the instruction
- Able to execute the instruction
- Able to manage all process in a proper sequence

Memory

Why do we need memory?
 to store data and instruction

data address 1
data address 2
data address 3
data address 4

What is memory hierarchy?
 a hierarchy of memory types

• What are memory types? internal vs. external, accessibility, media

Hierarchy Memory

Memory Types

- Internal vs. External
 - Register, RAM, Hard Disk, CD/DVD
- Accessibility
 - ROM (Read Only Memory), PROM (Programmable ROM),
 EPROM (Erasable PROM), EEPROM (Electrically EPROM)
 - RAM (Random Access Memory), SRAM (Static RAM),
 DRAM (Dynamic RAM)
- Media
 - Electric charge, Optic, Magnetic

Interaction between Microprocessor and Memory

There are 2 types of interaction:

 READ operation (retrieve), where microprocessor retrieves data from memory

2. WRITE operation (store), where microprocessor stores data into memory

How Microprocessor READs from Memory?

- Microprocessor prepares and outputs the address of data that need to be retrieved for processing
- 2. Microprocessor sends a READ signal to memory
- 3. After receiving a READ signal, memory locate the data based on given address
- 4. Memory provides the data into data bus

How Microprocessor WRITEs into Memory?

- Microprocessor prepares and outputs the address of data that need to be stored in memory
- Microprocessor provides data into data bus
- Microprocessor sends a WRITE signal to memory
- After receiving a WRITE signal, memory read the data bus and stores the data using given address

How Microprocessor RUNS an instruction?

- 1. Instruction Fetch (IF) is where microprocessor fetch the instruction from memory
- 2. Instruction Decode (DE) is where the microprocessor decode the instruction to understand what needs to be done
- 3. Execution (EX) is where te microprocessor execute the instruction

Input and Output

- Is an interface unit to communicate with outside the system's world
- Input unit receives data and in many cases also transforms signal from outside world (example, ADC Analog to Digital Converter)
- Output unit delivers data and in many cases also transforms the data into specific signal (example, DAC Digital to Analog Converter)

Clock

- Clock: is a digital periodic and independent signal, delivered to all units for synchronization
- Clock is generated using crystal oscillator with specific frequency

Bus System

There are 3 types of bus:

- Data bus
- Address bus
- Control bus

Microcontroller

The Fundamental

What is the difference between Microprocessor and Microcontroller?

- Microcontroller is a single chip CPU that already consists of:
 - Processor (ALU + Unit Control)
 - Internal Memory RAM
 - Input / Output
 - Timer
 - Interrupt Control
- Microcontroller is designed for a specific purpose, which makes it only applicable for 1 domain

Microcontroller

Atmel Microcontroller

P0.6 32 8 P1.7 P0.6 (AD5) 33 33 33 P1.7 P0.6 (AD6) 33 33 P1.7 P0.6 (AD6) 33 33 P1.7 P0.6 (AD6) 32 P1.7 P0.6 (AD6) 32 P1.7 P0.6 (AD6) 32 P1.7 P1.6 P1.7 P1.6 P1.7 P1.6 P1.7 P1.6 P1.7 P1.6 (AD6) P1.7 P1.6 P1.7 P1.6 P1.7 P1.6 P1.7 P1.7 P1.7 P1.7 P1.8 P1.7 P1.8 P1.8	31 19	ICI P0.0 EA/VP P0.0 P0.1 X1 P0.2 P0.3 P0.4 X2 P0.5	39 38 37 36 35 34	P1.0 (T2) P1.1 (T2 EX) P1.2 P1.3 P1.4 P1.5	P0.1 (AD1) 37 P0.2 (AD2) 36 P0.3 (AD3) 35
8 F1.0 TAD 10	12 13 0 14 15 1 2 3 4 5 6	P2.0 P2.1 INTO P2.2 INT1 P2.3 TO P2.4 T1 P2.5 P2.6 P1.0 P2.7 P1.1 P1.2 RD P1.3 WR P1.4 PSEN	21 22 23 24 25 26 27 28 17 16 0-29 30	9 RST 10 P3.0 (RXD) 11 P3.1 (TXD) 12 P3.2 (INTO) 13 P3.3 (INT1) 14 P3.4 (T0) 15 P3.5 (T1) 16 P3.6 (WR) 17 P3.7 (RD) 18 XTAL1 XTAL2 GND	P0.6 (AD6) P0.7 (AD7) EA/VPP ALE/PROG PSEN P2.7 (A15) P2.6 (A14) P2.5 (A13) P2.4 (A12) P2.3 (A11) P2.2 (A10) P2.1 (A9) 21

To be fully functional, a microcontroller needs:

- Power suply
- Clock generator
- Power Reset

AT89CXX

- Data Bus (8 bit) for transferring data from or to AT89CXX
- Address Bus (16 bit) for:
 - indicating the address of data in memory
 - indicating which I/O that want to be connected
- Control Bus for delivering signal to other peripherals, such as memory and I/O

See you on next class