Seminario Picard

Andoni Latorre Galarraga, Aitor Moreno Rebollo, Yeray Alvarez Gimenez

Dada la función

$$f(x,y) = \begin{cases} 0 & \text{para } x \le 0\\ 2x & \text{para } 0 < x, \ 0 \le y \le x^2\\ 2x - 4\frac{y}{x} & 0 < x, 0 \le y \le x^2\\ -2x & \text{para } 0 < x, \ x^2 < y \end{cases}$$

Se pide:

i) Demuestre que f(x,y) es una función continua pero no Lipschitziana.

Es evidente que f es continua en todo \mathbb{R}^2 excepto los ejes y $\{(x,y) \in \mathbb{R}^2 \mid 0 < x, x^2 = y\}$, donde no es tan trivial. En los ejes se tiene,

$$0 = -2 \cdot 0 = -2x$$
$$2x - \frac{4y}{x} = 2x - \frac{4 \cdot 0}{x} = 2x$$
$$2x - 2 \cdot 0 = 0$$

En la sección parabólica se tiene,

$$2x - \frac{4y}{x} = 2x - \frac{4x^2}{x} = -2x$$

En el origen es evidendente que $f\to 0$ cuando $(x,y)\to (0,0)$ en todas las regiones excepto debajo de la parabola. Vemaos que también se cumple debajo de la parabola. Obsevamos que $0\le y\le x^2$

$$2x - \frac{4 \cdot 0}{x} \ge 2x - \frac{4 \cdot y}{x} \ge 2x - \frac{4 \cdot x^2}{x}$$
$$2x \ge 2x - \frac{4 \cdot y}{x} \ge -2x$$

Por el teorema del sándwich se tiene que $f \to 0$ en el origen y por lo tanto es continua en \mathbb{R}^2 . Veamos que no es Lipschitziana:

Tomamos los puntos $(1, y_1)$, $(1, y_2)$, con $y_2 < 1 \le y_1$. Entonces, $|f(1, y_1) - f(1, y_2)| = 4y_2$. Supongamos que se da que $4y_2 \le L|y_1 - y_2|$. Entonces, podemos tomar y_1 y y_2 arbitrariamente cerca a la vez que y_2 está arbitrariamente cerca de 1. Entonces, basta tomar $y_2 = 1 - \epsilon$ y $y_1 = 1 + \epsilon$, y entonces debería cumplirse que

ii) Estudie la convergencia de la iteración de Picard para el problema:

$$\begin{cases} y'(x) = f(x, y(x)) \\ y(0) = 0 \end{cases}$$

Veámoslo:

La iteración de Picard está dada por la fórmula $y_{n+1} = y_0 + \int_0^t f(u, y_n) du$. Tomamos $y_0 = 0$ y tenemos:

$$y_1 = 0 + \int_0^t 2u du = t^2$$
$$y_2 = \int_0^t -2u du = -t^2$$
$$y_3 = \int_0^t 2u du = t^2 = y_1$$

Por tanto, la sucesión toma los valores t^2 y $-t^2$ cíclicamente.

iii) Estudie la convergencia de la poligonal de Euler.

 $4(1-\epsilon) \le L|1+\epsilon-1-\epsilon| = 0$, lo cual es falso para $\epsilon < 1$.

La fórmula de la poligonal de Euler es

$$y_{n+1} = y_n + h f(t_n, y_n)$$
 con $y_0 \xrightarrow[h \to 0]{} y(0) = 0$, $t_n = t_0 + nh = nh$.

1

Veamos que $0 \le y_n \le \frac{1}{3} n^2 h^2 \ \forall \ n \ge 4$ por inducción, para $n \ge 4$. La base:

$$y_4 = 2h^2 + hf(3h, 2h^2) = \frac{1}{3} \cdot 4^2h^2$$

Veamos la inducción:

$$y_{n+1} = y_n + hf(nh, y_n)$$
$$= y_n + h\left(2nh - 4\frac{y_n}{nh}\right)$$
$$= y_n \frac{n-4}{n} + 2nh^2$$

Por hipotesis inductiva, y_n es positivo. Como $n \ge 4$, (n-4)/n es positivo. Por tanto, $y_n(n-4)/n + 2nh^2 \ge 0$. Veamos que $y_{n+1} \le \frac{1}{3}(n+1)^2h^2$.

$$y_{n+1} \stackrel{\text{h.i.}}{\leq} \frac{1}{3}n^2h^2\frac{n-4}{n} + 2nh^2$$

$$= \frac{1}{3}nh^2(n-4) + 2nh^2$$

$$= nh^2\left(\frac{1}{3}n - \frac{4}{3} + 2\right)$$

$$= \frac{1}{3}nh^2(n+2) \leq \frac{1}{3}h^2(n+1)^2$$

Análogamente $y_n \ge \frac{1}{3}(n-1)^2h^2 \quad \forall \ n \ge 4.$

Por tanto, tenemos que $\frac{1}{3}(n-1)^2h^2 \leq y_n \leq \frac{1}{3}n^2h^2$.

Ahora, siendo t = nh, tenemos:

$$\lim_{h \to 0} \frac{1}{3} n^2 h^2 = \lim_{h \to 0} \frac{1}{3} t^2 = \frac{1}{3} t^2$$

$$\lim_{h \to 0} \frac{1}{3} (n-1)^2 h^2 = \lim_{h \to 0} \frac{1}{3} (t-h)^2 = \frac{1}{3} t^2$$

Y entonces, tomando n suficientemente grande, $\lim_{h\to 0} y_n = \frac{1}{3}t^2$, que es solución pues

$$f(t, t^2/3) = 2t - 4\frac{1}{3}\frac{t^2}{t} = \frac{2}{3}t = \left(\frac{1}{3}t^2\right)'.$$

Por tanto, la poligonal de Euler converge.