Cifras de Blocos DES – Data Encryption Standard

Prof. Dr. Avelino Francisco Zorzo Faculdade de Informática - PUCRS

Importância histórica do DES

- Antes 1970s, cripto era uma ciência proibida
 - Quase não existiam artigos científicos.
 - National Security Agency tinha conhecimento considerável sobre cripto, mas eles não adminitiam a existência.
 - Todavia, transações financeiras devem ser protegidas.
 - Um padrão de criptografia era necessário.

2

Importância histórica do DES

- Em 1972, National Bureau of Standards (NBS) iniciou o desenvolvimento de uma cifra padrão
 - Deve prover um alto grau de segurança.
 - Deve ser completamente especificada e fácil de entender.
 - A segurança deve estar na chave e não no algoritmo.
 - Deve estar disponível para todos usuários.
 - Deve ser adaptável para todas aplicações.
 - Deve ser economincamente implementável em equipamentos.
 - Deve ser eficiente para uso.
 - Deve ser capaz de ser validável.
 - Deve ser exportável.

Importância histórica do DES

- Em 1974, NBS fez uma segunda chamada
 - IBM submeteu Lucifer
- NBS solicitou à NSA ajuda na avaliação
 - NSA reduziu a chave de 128 para 56 bits
 - Isto ocasionou diversas críticas
- 1976, o Lucifer foi adotada como padrão.
- Depois 1976
 - Pequisa pública em cripto não parou mais.

Data Encryption Standard

- 1970s: Horst Feistel projetou Lucifer IBM
- 1973: NBS solicitou cifras de blocos
 - IBM submeteu um variação da (chave de 128 bits e tamanho de bloco de 128 bits)
- 1977: NBS adotou DES como padrão
 - Reduziu a chave para 56 bits e tamanho de bloco para 64 bits
- 1997: DES quebrada por pesquisa exaustiva
 - Chave de 56 bits é muito pequena
- 2000: NIST adotou AES para trocar DES

Escalonamento da chave 64 bits Permutação 1 PC1 28 bits (C_{i-1}) Rotação dir. Rotação esq Permutação 2 PC2 48 bits (K_i) 28 bits (D_i) 19

Chave: permutação 1 (PC1)

- Todo oitavo bit é descartado
 - ■8°, 16°, ...

57	49	41	33	25	17	9
3/				23	1/	_
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

20

Chave: permutação 2 (PC2)

■ 28 bits da esquerda e 28 bits da direita

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

21

Rotação

■ Número de bits para rotacionar é diferente em cada rodada

Round	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
N. Bits	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1	_

22

Escolha das caixas S e permutações

- Caixas S permutações P deve ser uma escolha cuidadosa
- Escolha aleatório pode resultar em uma cifra insegura
- Diversas regras para escolha de S e P
 - Nenhum bit de saída pode ser uma função linear dos bits de entrada
 - Caixas S são um mapeamento 4 para 1.

... ...

Ataque de força bruta no DES

- Deasafio DES proposto pela RSA
 - Dado um texto plano e o texto criptografaeo encontre a chave
- 1997:
 - Usando a Internet levou 96 dias 1998
 - 1 1998 - Mánina
 - Máuina para DES (EFF), 56 horas
- Custo: US\$250KPrêmio: US\$10K
- **1999**
- Combinação entre busca na Internet e máquina DES 22 horas
- Conclusão: chavede 56 bits é muito muito fraca

7 I sec

2.0

DES Duplo

- Usa duas chaves e criptografa duas vezes
 - 112 bits
 - $-E(k_1,E(k_2,m))$
- Isto é seguro?

25

Quebrando criptografia do 2DES

Encontro no meio do caminho: conhecendo alguns pares

K ₁ (56 bit)	$E(K_1, m_1)$
00000	
00001	
11 111	

$D(K_2, c_1)$	K ₂ (56 bit)
	00000
	00001
	11 111

26

27