CSE 417: Artificial Intelligence

Spring 2015

Department of Computer Science and Engineering (CSE)
City University

Brief Intro

 Course that focuses on the study and design of Intelligent Agents

2001: a space odyssey

Artificial Intelligence in Real Life

NASA: Deep Space One spacecraft

It's one small step in the history of space flight. But it was one giant leap for computer-kind, with a state of the art artificial intelligence system being given primary command of a spacecraft. Known as Remote Agent, the software operated NASA's Deep Space 1 spacecraft and its futuristic ion engine during two experiments that started on Monday, May 17, 1999. For two days Remote Agent ran on the on-board computer of Deep Space 1, more than 60,000,000 miles (96,500,000 kilometers) from Earth. The tests were a step toward robotic explorers of the 21st century that are less costly, more capable and more independent from ground control.

Artificial Intelligence in Real Life A young science (≈ 50 years old)

- Exciting and dynamic field, impressive success stories
- Lots uncharted territory left
- "Intelligent" in specialized domains
- Many application areas

This Course

- "Breadth" introduction to artificial intelligence.
 - It will make a broad coverage of modern AI.
 - Focus on core concepts
 - Apply to wide variety of applications
 - Will mention example applications but without the gory details
- Suitable for those with
 - no Al background,
 - with only one undergraduate course in AI (or Machine Learning).
- Designed for computer science students, but is also suitable for students from other programs
 - (e.g., cognitive science, engineering)
 - Required: familiarity with algorithms, complexity, logic, probability

This Course (cont.)

- There are many specialized subfields in Al
- Each of them is a separate course (not all offered every year)
 - Machine learning
 - Computer vision
 - Natural language processing
 - Robotics
 - Intelligent User Interfaces
 -
- If you have already taken two or more AI-related courses, these specialized courses are likely more suitable for you than 502

Textbooks

Required course textbook:

 Artificial Intelligence: A Modern Approach, by Russell and Norvig, 3rd Edition (Prentice-Hall, 2010)

Recommended textbook:

- Artificial Intelligence: Foundations of Computational Agents. by D. Poole and A. Mackworth. Cambridge University Press, 2010
- A selection of research papers from recent conferences/journals in Artificial Intelligence

What is Artificial Intelligence?

- Some definitions that have been proposed
 - 1. Systems that think like humans
 - 2. Systems that act like humans
 - 3. Systems that think rationally
 - 4. Systems that act rationally

Thinking Like Humans

Model the cognitive functions and behaviors of humans

- Human beings are our best example of intelligence
- We should use that example!

Some Examples

- Newell and Simon's GPS (General Problem Solver, 1961) to test means-end approach as general problem solving strategy
- John Anderson's ACT-R cognitive architecture (http://act-r.psy.cmu.edu/)
 - Anderson, J. R. & Lebiere, C. (1998). The atomic components of thought. Erlbaum;
 - Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. *Psychological Review 111*, (4). 1036-1060.
- SOAR cognitive architecture (http://sitemaker.umich.edu/soar)
 - Newell, A. 1990. *Unified Theories of Cognition*. Cambridge, Massachusetts: Harvard University Press.

ACT-R Models for Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITS)

- ♦ Intelligent agents that support human learning and training
- ♦ By *autonomously* and *intelligently* adapting to learners' specific needs, like good teachers do

ACT-R Models for Intelligent Tutoring Systems

- One of ACT-R main assumptions:
 - Cognitive skills (procedural knowledge) are represented as production rules:

IF this situation is TRUE, THEN do X

- ACT-R model representing expertise in a given domain:
 - set of production rules mimicking how a human would reason to perform tasks in that domain
- An ACT-R model for an ITS encodes all the reasoning steps necessary to solve problems in the target domain
 - Example: rules describing how to solve

$$5x+3=30$$

ACT-R Models for Intelligent Tutoring Systems

Eq: 5x+3=30; Goals: [Solve for x]

• Rule: To solve for x when there is only one occurrence, unwrap (isolate) x.

Eq:5x+3=30; Goals: [Unwrap x]

• Rule: To unwrap ?V, find the outermost wrapper ?W of ?V and remove ?W

Eq: 5x+3=30; Goals: Find wrapper ?W of x; Remove ?W]

• Rule: To find wrapper ?W of ?V, find the top level expression ?E on side of equation containing ?V, and set ?W to part of ?E that does not contain ?V

Eq: 5x+3=30; Goals: [Remove "+3"]

• Rule: To remove "+?E", subtract "+?E" from both sides

Eq: 5x+3=30; Goals: [Subtract "+3" from both sides]

• Rule: To subtract "+?E" from both sides

Eq: 5x+3-3=30-3

Cognitive Tutors

- ITS that use Act-R models of target domains (e.g. algebra, geometry), in order to
 - trace student performance by firing rules and do a stepwise comparison of rule outcome with student action
 - Mismatches signal incorrect student knowledge that requires tutoring
- These models showed good fit with student performance, indicating value of the ACT-R theory
- Cognitive Tutors are great examples of AI success used in thousands of high schools in the USA (http://www.carnegielearning.com/success.cfm)

Thinking Like Humans

Model the cognitive functions and behaviors of humans

- Human beings are our best example of intelligence
- We should use that example!
- But ... really hard to measure thought
 - We would have to spend most of our effort on studying how people's minds operate (Cognitive Science)
 - Rather than thinking about what intelligence ought to mean in various domains

What is Artificial Intelligence?

- Some definitions that have been proposed
 - 1. Systems that think like humans
 - 2. Systems that act like humans
 - 3. Systems that think rationally
 - 4. Systems that act rationally

Acting Like Humans Turing test (1950)

- operational definition of intelligent behavior
 - Can a human interrogator tell whether (written) responses to her (written) questions come from a human or a machine?
- No system has yet passed the test
 - Yearly competition: http://www.loebner.net/Prizef/loebner-prize.html
 - Can play with best entry from 2008: Chatbot Elbot (www.elbot.com)
- Is acting like humans really what we want?
 - Humans often think/act in ways we don't consider intelligent
 - Why?

So, Why Replicate Human Behavior, Including its "Limitations"?

- AI and Entertainment
 - E.g. *Façade*, a one-act interactive drama http://www.quvu.net/interactivestory.net/#publications
- Sometime these limitations can be useful, e.g.
 - Supporting Human Learning via teachable agents

(Leelawong, K., & Biswas, G. <u>Designing Learning by Teaching Agents: The Betty's</u> <u>Brain System</u>, *International Journal of Artificial Intelligence in Education*, vol. 18, no. 3, pp. 181-208, 2008

What is Artificial Intelligence?

- Some definitions that have been proposed
 - 1. Systems that think like humans
 - 2. Systems that act like humans
 - 3. Systems that think rationally
 - 4. Systems that act rationally

Thinking Rationally

- Rationality: an abstract ideal of intelligence, rather than "whatever humans think/do"
 - Ancient Greeks invented syllogisms: argument structures that always yield correct conclusions given correct premises
 - This led to logic, and probabilistic reasoning which we'll discuss in this course
- Is rational thought enough?
 - A system that only thinks and doesn't do anything is quite useless
 - Any means of communication would already be an action
 - And it is hard to measure thought in the first place ...

Acting Rationally

We will emphasize this view of Al

- Rationality is more cleanly defined than human behaviour, so
 - it's a better design objective
 - in cases where human behaviour is not rational, often we'd prefer rationality
 - Example: you wouldn't want a shopping agent to make impulsive purchases!
 - And once we have a rational agent, we can always tweak it to make it irrational!
- It's easier to define rational action than rational thought

Al as Study and Design of Intelligent Agents

- Intelligent agents: artifacts that act rationally in their environment
 - Their actions are appropriate for their goals and circumstances
 - There are flexible to changing environments and goals
 - They **learn** from experience
 - They make appropriate choices given perceptual limitations and limited resources
- This definition drops the constraint of *cognitive plausibility*
 - Same as building flying machines by understanding general principles of flying (aerodynamic) vs. by reproducing how birds fly
- Normative vs. Descriptive theories of Intelligent Behavior

Intelligent Agents in the World

Knowledge Representation Machine Learning abilities prior knowledge Agent Reasoning + past experiences. **Decision Theory** Actions goals/valuesobservations **Natural Language** Generation **Natural Language** Robotics **Understanding** Environment **Computer Vision Human Computer Speech Recognition** /Robot Interaction **Physiological Sensing Mining of Interaction Logs** 24

Robots vs. Other Intelligent Agents

- In AI, artificial agents that have a physical presence in the world are usually known as robots
 - Robotics is the field primarily concerned with the implementation of the physical aspects of a robot
 - I.e., perception of and action in the physical environment
 - Sensors and actuators
- Agents without a physical presence: software agents
 - E.g. desktop assistants, decision support systems, web crawlers, textbased translation systems, intelligent tutoring systems, etc
 - They also interact with an environment, but not the physical world
- Software agents and robots
 - differ in their interaction with the environment
 - share all other fundamental components of intelligent behavior

Representation and Reasoning

To use these inputs an agent needs to *represent* them

 \Rightarrow knowledge

One of AI goals: specify how a system can

- Acquire and represent knowledge about a domain (representation)
- Use the knowledge to solve problems in that domain *(reasoning)*

What do we need to represent?

- The environment /world :
 - What different configurations (states / possible worlds) can the world be in, and how do we denote them?
 - E.g., Chessboard, Info about a patient, Robot Location
- How the world works: we will focus on
 - Constraints: sum of electric current into a node = 0
 - Causal: what are the causes and the effects of brain disorders?
 - Actions' preconditions and effects: when can I press this button? What happens if I press it?

Representation and Reasoning (R&R) System

 $problem \Rightarrow representation \Rightarrow computation \Rightarrow representation \Rightarrow solution$

- A representation language to describe
 - The environment
 - Problems (questions/tasks) to be solved
- Computational reasoning procedures to compute a solution to a problem
 - E.g., an answer, sequence of actions
- Choice of an appropriate R&R system depends on various dimensions, e.g. properties of
 - the environment, the type of problems, the agent, the computational resources, etc.

Representational Dimensions

Problem Types

- Static: finding a solution does not involve reasoning into the future (time is ignored)
 - One-step solution
- Sequential: finding a solution requires looking for a number of steps into the future, e.g.,
 - Fixed horizon (fixed number of steps)
 - Indefinite horizon (finate, but unknown number of steps)

Problem Types

- Constraint Satisfaction Find state that satisfies set of constraints (static).
 - e.g., what is a feasible schedule for final exams?
- Answering Query Is a given proposition true/likely given what is known? (static).
 - e.g., does the patient suffers from viral hepatitis?
- Planning Find sequence of actions to reach a goal state / maximize outcome (sequential).
 - e.g., Navigate through an environment to reach a particular location

Representational Dimensions

Deterministic vs. Stochastic (Uncertain) Environment

 Sensing Uncertainty: Can the agent fully observe the current state of the world?

	Sensing Uncertainty?
Doctor's diagnosis	4565
Poker	Y 8)
Chess	# NO

 Effect Uncertainty: Does the agent know for sure what the effects of its actions are?

	Effect Uncertainty?
Soccer Player Kick	483
Teacher's explanation	YES
Chess	.40

Deterministic vs. Stochastic Domains

- Historically, Al has been divided into two camps:
 - those who prefer representations based on logic
 - those who prefer probability.

However: Some of the most exciting current research in AI is actually building bridges between these camps.

Representational Dimensions

Representational Dimensions

Other Representational Dimensions

We've already discussed:

- Problem Types (Static vs. Sequential)
- Deterministic versus stochastic domains

Some other important dimensions

- Knowledge given versus knowledge learned from experience
- Representation scheme: Explicit state or features or relations
- Flat or hierarchical representation
- Goals versus complex preferences
- Single-agent vs. multi-agent

Knowledge given vs. knowledge learned from experience

- The agent is provided with a model of the world once and far all vs.
- The agent can learn how the world works based on experience
 - in this case, the agent often still does start out with some prior knowledge
- This course will provide an intro to
 - Supervised Machine Learning
 - Unsupervised Machine Learning
 - Reinforcement Learning

Explicit State vs Features

How do we model the environment?

- You can enumerate the states of the world.
- A state can be described in terms of features
 - Often a more natural description
 - 30 binary features (also called *propositions*) can represent

2³⁰=1,073,741,824 states

Explicit State vs Features

Mars Explorer Example

Weather Temperature Longitude Latitude

{S, C}	
[-40, 40]	
[0, 359]	
[0, 179]	

One possible state

{S, -30, 320, 210}

Number of possible states (mutually exclusive)

2 x 81 x 360 x 180

Explicit State vs. Features vs. Relations

- States can be described in terms of objects and relationships
- There is a proposition for each relationship on each tuple (n > 1)
 of objects
- University Example:
 - Students (S) = {s1, s2, s3, ..., s200}
 - Courses (C) = {c1, c2, c3, ..., c10}
 - Registered (S, C)
 - Number of Relations: 1
 - Number of Propositions:

200*10

2000

– Number of States:

41

Flat vs. hierarchical

- Should we model the whole world on the same level of abstraction?
 - Single level of abstraction: flat
 - Multiple levels of abstraction: hierarchical
- Example: Planning a trip from here to a resort in Cancun

```
Going to the airport

Take a cab

Call a cab

Lookup number

Dial number

Ride in the cab

Pay for the cab

Check in
```

- This course: mainly flat representations
 - Hierarchical representations required for scaling up.

Goals vs. (complex) preferences

- An agent may have a goal that it wants to achieve, e.g.,
 - there is some state or set of states that the agent wants to be in
 - there is some proposition or set of propositions that the agent wants to make true
- An agent may have preferences
 - a preference/utility function describes how happy the agent is in each state of the world
 - Agent's task is to reach a state which makes it as happy as possible
- Preferences can be complex

What beverage to order?

- The sooner I get one, the better
- Cappuccino yummier than Espresso, but...
- This course: goals and simple preferences

Single-agent vs. Multi-agent domains

- Does the environment include other agents?
- If there are other agents whose actions affect us, it can be useful to explicitly model
 - their goals and beliefs,
 - how they react to our actions
- Other agents can be: cooperative, competitive, or a bit of both
- This course: only single agent scenario

Summary

Would like most general agents possible, but in this course we need to restrict ourselves to:

- Flat representations (vs. hierarchical)
- Knowledge given and intro to knowledge learned
- Goals and simple preferences (vs. complex preferences)
- Single-agent scenarios (vs. multi-agent scenarios)

We will look at

- Deterministic and stochastic domains
- Static and Sequential problems
- As see examples of representations using
- Explicit state or features or relations