

Chapitre 6 Les diodes

Justine Philippe

JUNIA ISEN

- La diode à jonction
- La diode Zener
- Les diodes optiques

- La diode à jonction
- La diode Zener
- Les diodes optiques

Caractéristique électrique

• Tracé de la caractéristique électrique :

• Modélisation:

Relation I_D - V_D

Relation générale :

$$I_D = I_S \cdot \left(\exp\left(\frac{V_D}{V_t}\right) - 1 \right)$$

avec Vt = kT/q ≈ 25 mV @ 300 K

Polarisation directe :

$$I_D \approx I_S \cdot \exp\left(\frac{V_D}{V_t}\right)$$

$$V_D \approx V_t \cdot \ln\left(\frac{I_D}{I_S}\right) \approx cste$$

Polarisation indirecte :

5

$$I_D \approx 0$$

Modélisations

■ Modèle « interrupteur » :

DIRECT → DIRECT

INVERSE ———

Modèle « interrupteur avec offset » :

DIRECT

INVERSE

Applications

Redressement de tension alternative dans un convertisseur AC/DC :

Redressement simple alternance :

Redressement double alternance:

Applications

• Commutation d'alimentations :

Fonctionnement sur alimentation principale

Fonctionnement sur alimentation de secours

- La diode à jonction
- La diode Zener
- Les diodes optiques

Modèle

• Polarisation directe : diode classique

Polarisation inverse :

Caractéristique

 Caractéristique électrique comparée à celle de la diode à jonction :

Cas d'utilisation de la diode Zener

Fonction de régulation de la tension d'une charge :

- Diode Zener montée en inverse
- V_{in} tension d'entrée variable à réguler, $V_{in} > V_{Z0}$
- Tension de sortie maintenue à V_{z0}
- Valeur de R_{lim} à choisir avec précautions :
 - ✓ Si R_{lim} trop grande, I_Z pas assez fort => la diode ne fonctionne pas
 - ✓ Si R_{lim} trop petite, I_Z trop important => destruction de la diode

- La diode à jonction
- La diode Zener
- Les diodes optiques

LEDs

• LED : Light-Emitting Diode

=> Diode électroluminescente

Polarisation directe => émission de lumière

• L'intensité lumineuse est proportionnelle au courant direct

LEDs

- La longueur d'onde varie en fonction du substrat utilisé :
 - GaAs : infrarouge
 - GaAsP: rouge ou jaune
 - GaP: rouge ou vert
 - InGaN: bleu ou vert

Photodiodes

- Éclairement de la jonction => courant inverse
- Polarisation inverse : courant inverse proportionnel à l'illumination du dispositif (mW/cm²) => Courant d'obscurité (dark current) : I_R ~ qq 10 nA

Fin du Chapitre 6

JUNIA ISEN