Electron Spin Resonance with Ultra-sensitive Calorimetry

Jie Zhang

08/16/13

Outline

- Tomonaga-Luttinger Liquid
- Electron Spin Resonance (ESR) can be detected many ways
- ESR detection in Bulk CNTs (Bill's work)
- Setup details and properties

Tomonaga-Luttinger Liquid

- Fermi liquid----non-interacting free electron model (2D,3D);
- Tomonaga-Luttinger Liquid (TLL)----breaks down for 1D systems;

Some unique properties of TLL:

- Scaling law: Zero-temperature conductance $G = k \frac{e^2}{h}$, with universal constant k (observed but with controversy, hard to verify the universality and agreement with theoretical prediction);
- Transport measurement: the tunneling rate into a Luttinger liquid is suppressed to zero at low voltages and temperatures;
- Spin charge separation is one of the most interesting properties for TLL;

Tomonaga-Luttinger Liquid (continued)

- When T->0 K, electrons in solids can be considered as in one of three bound states: spinon (spin), orbiton (location), holon(charge);
- Physical systems believed to be described by the TLL model:
 artificial quantum wires
 electrons in carbon nanotubes
 electrons moving along edge states in the fractional Quantum Hall Effect
 electrons hopping along one-dimensional chains of molecules
 fermionic atoms in quasi-one-dimensional atomic traps
 a 1D chain' of half-odd-integer spins described by the Heisenberg model

Tomonaga-Luttinger Liquid Features observed in Ballistic SWNTs

- Measured nonequilibrium differential conductance and shot noise in ballistic SWNTs at low temperatures;
- Agreement with theory: reduced conductance oscillation amplitudes with increasing bias voltage and power-law characteristics in the weak backscattered current component;

FIG. 1 (color online). Illustration of a three-terminal SWNT device with a interaction parameter g (g=1 in the metal electrodes and g<1 in the SWNT). Inset: atomic force microscope image of a device.

FIG. 2 (color online). Graphs of $dI/dV_{\rm ds}$ in units of $2G_{\rm Q}$. (a) Density plot in $V_{\rm ds}$ and $V_{\rm g}$. (b) Theoretical $dI/dV_{\rm ds}$ in $V_{\rm ds}$ at a given $V_{\rm g}$ for g=1 (blue) and g=0.25 (red) with $U_1=0.14$ and $U_2=0.1$ at T=4 K. (c) Three experimental traces at $V_{\rm g}=-9$ V (top), $V_{\rm g}=-8.3$ V (middle), and $V_{\rm g}=-7.7$ V (bottom). (d) Theoretical traces at T=4 K for $U_2=-0.1$ (top), $U_2=0$ (middle), and $U_2=0.1$ (bottom) with $U_1=0.14$.

ESR detection techniques

- Conventional method (commercialized): transmission spectroscopy---measuring the absorption or transmission coefficient;
- Magnetic torque detection: measuring the change that a magnetic resonance transition induces in the magnetization of the system;

FIG. 1. Energy level scheme showing the singlet ground state $^{1}S_{0}$, the first excited state $^{1}S_{1}$, and the lowest excited triplet state $^{1}T_{1}$. The energy separation of $^{1}S_{1}$ and $^{1}S_{0}$ is ~ 16.883 cm $^{-1}$; that of $^{3}T_{1}$ and $^{1}S_{0}$ is estimated to be ~ 10000 cm $^{-1}$ 1171. Populating and depopulating rates of the triplet sublevels red enoted by $R_{X,Y,Z}$ with R_{X} =66 kHz, R_{Y} =29 kHz, R_{Z} ~ 0.28 kHz, R_{Z} and $r_{X,Y,Z}$ with lifetimes $r_{X,Y}^{-1}$ ~ 47 μs and r_{Z}^{-1} ~ 330 μs , respectively 101.

- Optically detected ESR;
- STM-ESR;
- Resistively detection: measuring the longitudinal resistance of 2DEG(Landau Level, Zeeman Splitting, filling factor);
- Thermal detection: measuring the temperature change induced by the non-radiactive relaxation of the photon absorption;

How many spins at least can be detected?

- Ultimate goal in Spin Quantum Computation: addressing, manipulating and reading out individual spin;
- most sensitive induction-detection of ESR can detect 1000 spins:

ESR in bulk SWCNTs

- Things to investigate: spin-orbit coupling, phase relaxation time, spin susceptibility and spin diffusion;
- ESR signal intensity increases after annealing and increases with decreasing temperature;

Figure 1: (a) Full range ESR scan at 5.0 K of SWCNT sample before annealing (cyan), where the ESR signal is buried in the large FMR background. (b) Full scan of SWCNT sample at 5.0 K after annealing (red), where the SWCNT ESR is the dominant feature. Black curves indicate fits composed of two large linewidth Lorentzian lines, which describe the FMR background, and a Dysonian line describing the SWCNT ESR. The FMR intensities stay the same before and after annealing.

 Relatively narrow linewidth corresponds to long decoherence time (~100ns);

ESR in bulk SWCNTs (continued)

- Motional narrowing: ESR linewidth decreases as the temperature increase; $\Delta H = \Delta H_0 \exp(\frac{\Delta E}{k_B T})$
- Weak spin-orbit coupling make g factor $g = \frac{h\nu}{\mu_B H_0}$ approximately 2.

Figure 7: Experimentally obtained g-factor values as a function of T for the sample before (cyan) and after (red) annealing.

Figure 6: ESR linewidth versus T for the (a) pre-annealed and (b) post-annealed sample conditions. In (c) and (d), the natural logarithm of the data in (a) and (b) are plotted versus 1/T down to 15 K and 12.5 K, respectively. Black lines indicate linear fits to $\ln(\Delta H)$ versus 1/T data from which we can extract intertube hopping frequencies.

• Extracted χ_g from fitted spectra, the spin susceptibility follows a Curie-Law behavior: $\chi_a = C/T$;

Spin-lattice relaxation time and spin-spin relaxation time

- Spin-lattice relaxation time ${T_1}^{-1}$ is proportional to temperature => the probed spins relax through interaction with conduction electrons present in the metallic SWCNTs;
- G-factor difference from free electron value $(\Delta g = g 2.0023)$ suggests small spin-orbital coupling => direct spin-phonon coupling is small;
- Spin-spin relaxation time (dephasing rate) T_2^{-1} becomes smaller as T is increased due to motional narrowing;

Thermal detection of ESR (CR as demonstration)

Background:

- electrons coupled to phonons
- heat absorbed by lattice
- •lattice temperature increased
- temperature detected by thermometer

Advantages over other methods

- Contacts not required;
- High sensitivity;

Where does the high sensitivity come from?

- Sensitivity of the thermometer
 Increases when temperature decreases;
 Use temperature as low as possible (300mK)
 but with reasonable phonon coupling;
- Measuring techniques are employed
 Differential method
 Amplitude modulation

Sensitivity----tens of micro-Kelvin temperature difference with nano-watts heating power

System and Construction

- He_3 Cryostat and coaxial cable probe
- 1266 epoxy vacuum can
- Sapphire crystal conduction bridge
- CX-1030 thermometer

Probe Schematics

Figure D.1: Pictures of the probe stages: 4K, 1K, and the sample holder.

Measurement circuit

Differential circuit
 (to filter the background noise)

$$\frac{|\tilde{E}|}{|\tilde{V}|} = \frac{\delta R \cdot j\omega_0(M+L)}{R^2 + 2R \cdot j\omega_0 L + \omega_0^2(M^2 - L^2)} \approx \frac{\delta R}{2R}$$

$$V_{out} \propto \delta R$$

Amplitude modulation technique
 (quench the asymmetry left in the differential geometry)

Experimental result

- Differential method is able to increase the sensitivity by roughly ten times while combined with amplitude modulation, another thirty times of sensitivity can be achieved.
- Even with microwave power as low as 0.01mW (-20dbm), signal can still be resolved.

Further work

- ESR of SWNTs;
- Reducing the sample size;

Reference

- [1] Direct observation of Tomonaga—Luttinger-liquid state in carbon nanotubes at low temperatures NATURE | VOL 426,2003
- [2] Tomonaga-Luttinger Liquid Features in Ballistic Single-Walled Carbon Nanotubes: Conductance and Shot Noise Kim, Recher, Oliver, Yamamoto
- [3] Torque detected broad band electron spin resonance REVIEW OF SCIENTIFIC INSTRUMENTS 81, 095105 2010
- [4] P. N. Murgatroyd and M. Belloufi, A sensitive differential thermometer. Meas. Sci. Technol. 1 (1990)
- [5] ESR-STM of a single precessing spin: Detection of exchange-based spin noise PRB 66, 195416 2002
- [6] Optically Detected Spin Coherence of Single Molecules PhysRevLett.71.3565
- [7] Enhancement of the Electron Spin Resonance of Single-Walled Carbon Nanotubes by Oxygen Removal William D. Rice
- [8] Spin relaxation times of single-wall carbon nanotubes PRB 88, 041401(R) (2013)
- [9] ESR-STM of a single precessing spin: Detection of exchange-based spin noise PRB 66, 195416 2002