

Dr. Shaikh Asif Mahmood Associate professor, BUET

Adjunct Faculty, ECE, NSU

# BASIC LAWS

Nodes, Branches, and Loops.

Kirchhoff's Laws.

Series Resistors and Voltage Division.

Parallel Resistors and Current Division.

# NODES, BRANCHES AND LOOPS

A branch represents a single element such as a voltage source or a resistor.

A node is the point of connection between two or more branches.

A loop is any closed path in a circuit.

A network with b branches, n nodes, and I independent loops will satisfy the fundamental theorem of network topology:

$$b = l + n - 1$$

# NODES, BRANCHES AND LOOPS



How many branches, nodes and loops are there?

### Series and Parallel Connections

- Two or more elements are connected "in series" when they belong to the same branch.(even if they are separated by other elements).
- In general, circuit elements are in series when they are sequentially connected end-to-end and only share binary nodes among them.
- Elements that are in series carry the same current.



### Series and Parallel Circuits

- Two or more circuit elements are "in parallel" if they are connected between the same two "true nodes".
- Consequently, parallel elements have the same voltage



# KIRCHHOFF'S LAWS

Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero.



Mathematically,



$$\sum_{n=1}^{N} i_n = 0$$

# KIRCHHOFF'S LAWS

Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero.



For the circuit in Fig. 2.21(a), find voltages  $v_1$  and  $v_2$ .



Determine  $v_o$  and i in the circuit shown in Fig. 2.23(a).



Figure 2.23

For Example 2.6.

### Solution:

We apply KVL around the loop as shown in Fig. 2.23(b). The result is

$$-12 + 4i + 2v_o - 4 + 6i = 0 ag{2.6.1}$$

Applying Ohm's law to the 6- $\Omega$  resistor gives

$$v_o = -6i \tag{2.6.2}$$

### Example 2.7

 $0.5i_o \downarrow \downarrow i_o \downarrow i_o \downarrow 3 A$ 

Figure 2.25 For Example 2.7.

Find current  $i_o$  and voltage  $v_o$  in the circuit shown in Fig. 2.25.

### Solution:

Applying KCL to node a, we obtain

$$3 + 0.5i_o = i_o$$
  $\Rightarrow$   $i_o = 6 \text{ A}$ 

For the 4- $\Omega$  resistor, Ohm's law gives

$$v_o = 4i_o = 24 \text{ V}$$

Example 2.8

Find currents and voltages in the circuit shown in Fig. 2.27(a).



Figure 2.27 For Example 2.8.

### Solution:

We apply Ohm's law and Kirchhoff's laws. By Ohm's law,

$$v_1 = 8i_1, \quad v_2 = 3i_2, \quad v_3 = 6i_3$$
 (2.8.1)

# SERIES RESISTORS AND VOLTAGE DIVISION (1)

Series: Two or more elements are in series if they are cascaded or connected sequentially and consequently carry the same current.

The equivalent resistance of any number of resistors connected in a series is the sum of the individual resistances.

$$R_{eq} = R_1 + R_2 + \dots + R_N = \sum_{n=1}^{N} R_n$$

The voltage divider can be expressed as

$$v_n = \frac{R_n}{R_1 + R_2 + \dots + R_N} v$$



FIG. 5.7 Example 5.1.

#### **EXAMPLE 5.1**

- Find the total resistance for the series circuit of Fig. 5.7.
- b. Calculate the source current I<sub>s</sub>.
- Determine the voltages V<sub>1</sub>, V<sub>2</sub>, and V<sub>3</sub>.
- d. Calculate the power dissipated by R<sub>1</sub>, R<sub>2</sub>, and R<sub>3</sub>.
- Determine the power delivered by the source, and compare it to the sum of the power levels of part (d).

### Solutions:

a. 
$$R_T = R_1 + R_2 + R_3 = 2 \Omega + 1 \Omega + 5 \Omega = 8 \Omega$$

b. 
$$I_s = \frac{E}{R_T} = \frac{20 \text{ V}}{8 \Omega} = 2.5 \text{ A}$$



**EXAMPLE 5.11** Using the voltage divider rule, determine the voltages  $V_1$  and  $V_3$  for the series circuit of Fig. 5.28.

### Solution:

$$V_{1} = \frac{R_{1}E}{R_{T}} = \frac{(2 \text{ k}\Omega)(45 \text{ V})}{2 \text{ k}\Omega + 5 \text{ k}\Omega + 8 \text{ k}\Omega} = \frac{(2 \text{ k}\Omega)(45 \text{ V})}{15 \text{ k}\Omega}$$

$$= \frac{(2 \times 10^{3} \Omega)(45 \text{ V})}{15 \times 10^{3} \Omega} = \frac{90 \text{ V}}{15} = 6 \text{ V}$$

$$V_{3} = \frac{R_{3}E}{R_{T}} = \frac{(8 \text{ k}\Omega)(45 \text{ V})}{15 \text{ k}\Omega} = \frac{(8 \times 10^{3} \Omega)(45 \text{ V})}{15 \times 10^{3} \Omega}$$

$$= \frac{360 \text{ V}}{15} = 24 \text{ V}$$

FIG. 5.27 Example 5.10.





FIG. 5.30 Example 5.13.

**EXAMPLE 5.13** Design the voltage divider of Fig. 5.30 such that  $V_{R_1} = 4V_{R_2}$ .

**Solution:** The total resistance is defined by

$$R_T = \frac{E}{I} = \frac{20 \text{ V}}{4 \text{ mA}} = 5 \text{ k}\Omega$$

Since  $V_{R_1} = 4V_{R_2}$ 

Thus 
$$R_1 = 4R_2$$
 Thus  $R_T = R_1 + R_2 = 4R_2 + R_2 = 5R_2$  and  $5R_2 = 5 \text{ k}\Omega$   $R_2 = 1 \text{ k}\Omega$  and  $R_1 = 4R_2 = 4 \text{ k}\Omega$ 

## INTERCHANGING SERIES ELEMENTS



FIG. 5.19
Series dc circuit with elements to be interchanged.



FIG. 5.20
Circuit of Fig. 5.19 with R<sub>2</sub> and R<sub>3</sub>
interchanged.





FIG. 5.45 Example 5.18.



FIG. 5.46

**EXAMPLE 5.18** Determine  $V_{ab}$ ,  $V_{cb}$ , and  $V_c$  for the network of Fig. 5.45.

**Solution:** There are two ways to approach this problem. The first is to sketch the diagram of Fig. 5.46 and note that there is a 54-V drop across the series resistors  $R_1$  and  $R_2$ . The current can then be determined using Ohm's law and the voltage levels as follows:

$$I = \frac{54 \text{ V}}{45 \Omega} = 1.2 \text{ A}$$
  
 $V_{ab} = IR_2 = (1.2 \text{ A})(25 \Omega) = 30 \text{ V}$   
 $V_{cb} = -IR_1 = -(1.2 \text{ A})(20 \Omega) = -24 \text{ V}$   
 $V_c = E_1 = -19 \text{ V}$ 

#### EXAMPLE 5.20 For the network of Fig. 5.50:



FIG. 5.50 Example 5.20.

- Calculate V<sub>ab</sub>.
- b. Determine  $V_b$
- c. Calculate V.

#### Solutions:

a. Voltage divider rule:

$$V_{ab} = \frac{R_1 E}{R_T} = \frac{(2 \Omega)(10 \text{ V})}{2 \Omega + 3 \Omega + 5 \Omega} = +2 \text{ V}$$

b. Voltage divider rule:

$$V_b = V_{R_2} + V_{R_3} = \frac{(R_2 + R_3)E}{R_T} = \frac{(3 \Omega + 5 \Omega)(10 \text{ V})}{10 \Omega} = 8 \text{ V}$$

or 
$$V_b = V_a - V_{ab} = E - V_{ab} = 10 \text{ V} - 2 \text{ V} = 8 \text{ V}$$

c.  $V_c = \text{ground potential} = 0 \text{ V}$