

HW #06: Spark RDD

Deadline: 29.07.2019, 08:00

1. Описание задания.	1
2. Критерии оценивания.	1
3. Описание данных	2
4.1 Задача #1: народные биграммы.	2
4.2 Задача #2: коллокации.	3
5. Сроки сдачи и правила оформления задания.	4
6. Дорешка.	5

1. Описание задания.

В данном ДЗ нужно решить **2 задачи**. Задачи общие для всех. Решение надо выполнить с помощью Apache Spark, можно использовать только RDD API.

2. Критерии оценивания.

Балл за задачу складывается из:

- 60% правильное решение задачи
- 20% поддерживаемость и читаемость кода (Clean Code, см. например <u>Google Python Style Guide</u>)
- 20% эффективность решения

Штрафы:

- 10% за несоответствие правилам оформления задания;
- 30% за просрочку дедлайн;

tel: + 7 920 149 40 50 mail-to: info@bigdatateam.org https://bigdatateam.org

Веса задач:

- 1. 40%
- 2. 60%

3. Описание данных

3.1 Дамп Википедии

en_articles_part:

- Путь на кластере: полный датасет /data/wiki/en_articles_part
- Формат: текст
- В каждой строке находятся следующие поля, разделенные знаком табуляции:
 - 1. INT id статьи,
 - 2. STRING текст статьи,

Пример:

Anarchism is often defined as a political Anarchism philosophy which holds the state to be undesirable, unnecessary, or harmful.

3.2 Стоп-слова

stop_words_en:

- Путь на кластере: /data/wiki/stop_words_en-xpo6.txt
- Формат: одно стоп-слово на строчку

Пример:

wherein whereupon wherever

4.1 Задача #1²: народные биграммы.

Найдите все пары двух последовательных слов (биграмм), где первое слово: narodnaya

¹ Да, здесь нет ошибки, работаем на части данных, чтобы побыстрее познакомиться со Spark RDD

² Внутренний ID задачи (для проверяющих) - 517

Для каждой пары подсчитайте количество вхождений в тексте статей Википедии. Выведите все пары с их частотой вхождений в лексикографическом порядке. Формат вывода:

```
word_pair <tab> count
```

Условия:

- очистить тексты от знаков пунктуации (см. re.sub)
- привести все слова к нижнему регистру;
- слова в паре объединить символом нижнего подчеркивания " ";
- отсортировать слова в выводе по алфавиту;

Пример вывода:

```
crazy_zoo 42
red_apple 100500
```

4.2 Задача #2³: коллокации.

Коллокация - это комбинации слов, которые часто встречаются вместе. Например, «high school» или «Roman Empire». Чтобы определить является ли пара слов коллокацией, можно воспользоваться метрикой NPMI - нормализованная точечная взаимная информация.

Чтобы рассчитать NPMI введем несколько определений:

- P(a) вероятность увидеть слово "a" в датасете.
 P(a) = num_of_occurrences_of_word_"a" / total_number_of_words total number of words общее количество слов в тексте
- 2. P(ab) вероятность увидеть пару слов "a" и "b", идущих подряд.
 P(ab) = num_of_occurrences_of_pair_"ab" / total_number_of_word_pairs total_number_of_word_pairs общее количество пар
- 3. $PMI(a,b) = ln(P(ab) / [P(a) \times P(b)])$
- 4. NPMI(a,b) = PMI(a,b) / -ln(P(ab)) величина PMI нормализованная в диапазон [-1, 1];

Примеры и комментарии:

tel: + 7 920 149 40 50

mail-to: info@bigdatateam.org

³ Внутренний ID задачи (для проверяющих) - 518

- значение NPMI равное "-1" будет означать, что пара слов никогда не встречается в датасете. Например такие пары как "green idea" или "sleeps furiously" никогда не встречаются вместе, поэтому P(ab) = 0, следовательно PMI(a,b) = -inf, NPMI = -1;
- значение NPMI равное "0" будет означать, что слова в паре встречается абсолютно независимо друг от друга. Рассмотрим пример **"the doors"**: "the" может встретится рядом с любым словом. Таким образом, $P(ab) = P(a) \times P(b)$ и PMI(a,b) = In(1) = 0, NPMI = 0.
- значение NPMI равное "1" будет означать, что это идеальная коллокация. Рассмотрим пример "the doors": "the" может встретится рядом с любым словом. Таким образом, $P(ab) = P(a) \times P(b)$ и $PMI(a,b) = ln \ 1 = 0$, NPMI = 0. Предположим, что "Roman Empire" это уникальная комбинация, и за каждым появлением "Roman" следует "Empire", и, наоборот, каждому появлению "Empire" предшествует "Roman". В этом случае P(ab) = P(a) = P(b), поэтому PMI(a,b) = -ln(P(a)) = -ln(P(b)), следовательно NPMI = 1.

Условия:

- найти самые популярные коллокации в Википедии;
- очистить тексты от знаков пунктуации (см. re.sub)
- привести все слова к нижнему регистру;
- удалить стоп-слова;
- слова в паре объединить символом нижнего подчеркивания ";
- отфильтровать биграммы, которые встретились **не реже** 500 раз (т.е. проводим все необходимые join'ы и считаем NPMI только для них, HO оценку вероятности встретить биграмму считаем на полном датасете);
- отсортировать слова в выводе по значению NPMI;
- вывести **TOP-39** самых популярных коллокаций и их значения NPMI (округляем до 3го знака после запятой, см. round).

Пример вывода.

south_africa 0.619 roman_empire 0.603

5. Сроки сдачи и правила оформления задания.

Deadline: 29.07.2019, 08:00

tel: + 7 920 149 40 50 mail-to: info@bigdatateam.org https://bigdatateam.org

Оформление задания:

- Код задания (Short name): HW6:Spark-RDD.
- Решения задач должны содержаться в одной папке.
- Выполненное ДЗ запакуйте в архив **MF**2019Q2_<фамилия>_HW#.zip , например -- MF2019Q2_Ivanov_HW5.zip. Например, ваше решение лежит в папке my_solution_folder, тогда чтобы на Linux и Mac OS создать архив под названием hw.zip и пожать его с помощью zip выполните команду⁴:
 - o zip -r hw.zip my solution folder/
 - На Windows 7/8/10: необходимо нажать правую кнопку мыши на директорию my_solution_folder/, выбрать в открывшемся меню "Отправить >", затем "Сжатая ZIP-папка". Теперь можно переименовать архив.
- Присылайте выполненное задание на почту <u>bigdata_mf2019q2@bigdatateam.org</u> с темой письма "Short name. ФИО.". Например: "**HW6:Spark-RDD**. Иванов Иван Иванович."
- Перед отправкой письма, оставьте, пожалуйста, отзыв о домашнем задании по сссылке: http://rebrand.ly/mf2019q2_feedback_hw05. Это позволит нам скорректировать учебную нагрузку по следующим заданиям (в зависимости от того, сколько часов уходит на решение ДЗ), а также ответить на интересующие вопросы.

Любые вопросы / комментарии / предложения можно писать:

- в телеграм-канале: http://rebrand.ly/mf2019g2_telegram_join
- На почту: <u>bigdata_mf2019q2@bigdatateam.org</u>

Всем удачи!

7. Дорешка.

Решения после получения фидбека на решение ДЗ можно улучшить. Разрешается одна досылка в течение 1й недели после окончания дедлайна за ДЗ. Соответственно, фидбек за дорешенные ДЗ вы получите в течение 24 часов после окончания deadline следующего ДЗ.

Дорешивать неработающие задания - нельзя. Это позволит исправить дисбаланс между присланными **работающими** заданиями **после** deadline

VS

присланными **НЕработающими** заданиями **до** deadline

tel: + 7 920 149 40 50 mail-to: info@bigdatateam.org https://bigdatateam.org

⁴ Флаг -г значит, что будет совершен рекурсивный обход по структуре директории