

32-bit Arm Cortex-M33 @ 150 MHz (N94x and N54x)

Rev. 6 — 06/2024 Data Sheet: Technical Data

Dual Arm[®]Cortex[®]-M33 core 32-bit MCU with TrustZone[®], up to 2 MB Flash, 512 KB SRAM, eIQ[®] Neutron NPU, PowerQuad DSP, EdgeLock[®] Secure Enclave, Core Profile

Features

- Dual Arm® Cortex®-M33 150 MHz with 618 CoreMark® (4.12 CoreMark/ MHz) for each core
- · 4.8 GOPs edge AI/ML acceleration with NPU
- Platform Security with EdgeLock® Secure Enclave, Core Profile.
- -40 °C to +125 °C temperature range.
- Down to 57 μ A/MHz active current, 6 μ A Power down mode with RTC enabled and 512 KB SRAM retention, 2 μ A Deep Power-down mode with RTC active and 32 KB SRAM.

MCXN54x MCXN94x

Cores

- Primary: Arm[®] 32-bit Cortex[®]-M33 CPU with TrustZone[®], MPU, FPU, SIMD, ETM and CTI
- Secondary: Arm[®] 32-bit Cortex[®]-M33 CPU

Processing Accelerators

- · DSP Accelerator (PowerQUAD, with Co-Processor interface)
- SmartDMA (co-processor for applications such as parallel camera interface and keypad scanning)
- elQ[®] Neutron N1-16 Neural Processing Unit
- · Power Line Communications (PLC) Controller

Memories

- Up to 2 MB (2 x 1MB Bank) on chip Flash memory supporting Flash Swap and Read While Write, with ECC (support one bit correction and two bits detection)
- · Cache Engine with 16 KB RAM
- Up to 512 KB RAM, configurable as up to 416 KB with ECC (support one bit correction and two bits detection)
- Up to 4x 8 KB ECC RAM can be retained down to VBAT mode
- · 256 KB ROM with secure bootloader
- FlexSPI with 16 KB cache supporting XIP, Octal/Quad SPI flash, HyperFlash, HyperRAM, Xccela memory types as external memory expansion with high-performance on-the-fly memory encryption

Security

EdgeLock[®] Secure Enclave, Core Profile

- Cryptographic services (incl. AES-256, SHA-2, ECC NIST P-256, TRNG and key generation/derivation)
- Secure key store with key usage policies (protection of platform integrity, manufacturing and applications keys)
- Device Unique Identity based on Physically Unclonable Function (PUF)
- Device Attestation with support of Device Identifier Composition Engine (DICE)
- Secure connection and TLS support
- Key management over-the-air with pre-integration of NXP EdgeLock 2GO
- EdgeLock® Accelerator (Public Key Cryptography)
- · Immutable secure boot code in ROM
- Dual Secure Boot Mode (asymmetric mode and fast, post-quantum secure symmetric mode)
- · Secure firmware update support
- · Device lifecycle management including secure authenticated debug
- · High-performance on-the-fly memory encryption with additional authentication for internal Flash
- Information Flash Region (IFR)
- · Security Monitoring
 - 2x Code Watchdog
 - Intrusion and Tamper Response Controller (ITRC)
 - 8 Active and Passive Tamper Pin Detect
 - Voltage, Temperature, Light and Clock Tamper Detect
 - Voltage glitch detect
- · Secure manufacturing and IP theft protection in untrusted factory
- Arm[®] TrustZone[®] for Cortex[®]-M

Low-Power Performance

- Active: Down to 57 µA/MHz
- Deep Sleep: 170 μA, (full 512 KB SRAM retention, 3.3 V @25 C)
- Power Down: 5.2 μA, (full 512 KB SRAM retention, 3.3 V, @25 C)
- Deep Power Down: Down to 2.0 µA, 5.3 ms wake-up (RTC enabled 8 KB RAM and Reset pin enabled, @25 C)

System and Clocks

- 144 MHz free-running oscillator (FRO-144M)
- 12 MHz free-running oscillator (FRO-12M)
- 16 kHz free-running oscillator (FRO-16k)
- · 32 kHz low-power crystal oscillator
- Up to 50 MHz low-power crystal oscillator
- 2 x phase-locked loop
- · Hardware and Software Watchdogs
- Two asynchronous DMA modules (16-channels each)

Communication interfaces for connectivity

- · 10x Low-Power Flexcomms each supports SPI, I2C, UART
- · USB High-speed (Host/Device) with on-chip HS PHY

Data Sheet: Technical Data 2/143

- USB Full-speed (Host/Device) with on-chip FS PHY
- 1x uSDHC
- · 2x EVM Smart Card Interfaces
- · 2x FlexCAN with FD
- 2x I3C
- 1x Ethernet with QoS (10/100 Mbps)
- Programmable Logic Unit (PLU)

Human-Machine Interfaces

- 1x FlexIO programmable as a variety of serial and parallel interfaces, including but not limited to display driver and camera interface
- 2x Serial Audio Interface (SAI)
- · Digital PDM Microphone
 - Allows connection of up to 4 MEMS microphones with PDM output
- TSI (Capacitive Touch Sensor Interface)
 - up to 25 self-cap channels, and up to 8 TX x 17 RX mutual-cap channels
 - Water proof under self-cap mode
 - Functions down to Power-Down Mode

Advanced Motor Control

- 2x FlexPWM each with 4 sub-modules, providing 12 PWM outputs (no Nanoedge module)
- 2x Quadrature Decoder (QDC)
- 1x Event Generator (AND/OR/INVERT) module support up to 8 output trigger
- · SINC Filter Module (3rd order, 5ch, Break signals connections to PWM)

Analog modules

- · 2x 16-bit ADC, supporting 4 parallel conversions
 - Each ADC can be used as two single end input ADC, or one differential input ADC
 - Up to 2 Msps in 16-bit mode, and 3.15 Msps in 12-bit mode
 - Up to 75 ADC Input channels (depending on the package)
 - One integrated temperature sensor per ADC.
- Three High-speed Comparators with 17 input pins and 8-bit DAC as internal reference
- · 2x CMP is functional down to Deep Power Down mode
- Two 12-bit DAC with sample rates of up to 1.0 MSample/sec.
- · One 14-bit DAC with sample rates of up to 5 MSample/sec.
- Three OpAmps can be configured to:
 - Programmable Gain Amplifier
 - Differential Amplifier
 - Instrument Amplifier
 - Transconductance Amplifier
- Highly accurate 1.0 V VREF ±0.2 % and 15 ppm/deg C drift

Data Sheet: Technical Data 3/143

Timers

- Five 32-bit standard general-purpose asynchronous timers/counters, which support up to four capture inputs and four compare outputs, PWM mode, and external count input. Specific timer events can be selected to generate DMA requests.
- SCTimer/PWM
- · Low-Power Timer
- Encoder
- · Frequency measurement timer
- · Multi-Rate Timer
- · Windowed Watchdog Timer
- · RTC with calendar
- · Wake Timer
- · Micro-Tick Timer (UTICK)
- · OS Event Timer

Power Management

- · Integrated voltage regulator
 - Buck DC-DC, Core LDO, other LDOs
- · Separate Always-On (AON) domain on VDD_BAT pin
- · Operating voltage: 1.71 V to 3.6 V
- IOs: 1.71 V-3.6 V full-performance

General-purpose input/outputs

- · Up to 124 GPIOs
- 1.2 V support at reduced performance (available only on Fast pads).
- Five independent IO power rings
- 100 MHz IO on P2 and P3
- Up to 28-pin wake-up sources function down to deep power-down mode
- Support 1.71 V~3.6 V IO supply range

Target Applications

- Industrial
- · Energy Storage and Management System
- · Smart Metering
- · Power Line Communication
- · Factory Automation
- Industrial HMI
- · Mobile Robotics Ecosystem
- · Motion Control and Robotics
- · Motor Drives
- · Brushless DC Motor (BLDC) Control
- · Permanent Magnet Synchronous Motor (PMSM)

Data Sheet: Technical Data 4 / 143

• Edge AI/ML Anomaly Detection and Predictive Maintainance

Smart Home

- · Home Control Panel
- · Home Security and Surveillance
- · Major Home Appliances
- · Robotic Appliance
- · Smart Speaker
- Soundbar
- · Gaming Accessories
- · Smart Lighting
- · Smart Power Socket and Light Switch
- Edge AI/ML Vision and Voice Detection / Recognition

Table 1. Ordering Information

NOTE All information on the HLQFP package is preliminary and pending qualification.

Orderable Part Number ¹	Part Number ²		edded mory	Features		Package		
		Flash (MB)	SRAM (K)	Tamper Pins (max)	GPIOs (max)	SRAM PUF	Pin Count	Туре
(P)MCXN547VNLT	(P)MCXN547VNLT	2	512	2	74	Y	100	HLQFP
(P)MCXN546VNLT	(P)MCXN546VNLT	1	352	2	74	Y	100	HLQFP
(P)MCXN547VDFT	(P)MCXN547VDFT	2	512	8	124	Y	184	VFBGA
(P)MCXN546VDFT	(P)MCXN546VDFT	1	352	8	124	Y	184	VFBGA
(P)MCXN947VDFT	(P)MCXN947VDFT	2	512	8	124	Y	184	VFBGA
(P)MCXN947VNLT	(P)MCXN947VNLT	2	512	2	78	Y	100	HLQFP
(P)MCXN946VNLT	(P)MCXN946VNLT	1	352	2	78	Y	100	HLQFP
(P)MCXN946VDFT	(P)MCXN946VDFT	1	352	8	124	Y	184	VFBGA

^{1.} To confirm current availability of orderable part numbers, go to http://www.nxp.com and perform a part number search.

Table 2. Device Revision Number

Device Mask Set Number	SYSCON[DIEID] 1	JTAG ID Register[PRN]
P02G	0x0052_09Ax	0x0726_402B

1. 'x' in the DIED field is dependent on the minor revision of the silicon

^{2.} As marked on package

Table 3. Related Resources

Туре	Description	Resource
Fact Sheet	The Fact Sheet gives overview of the product key features and its uses.	Fact Sheet
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	MCXNx4xRM
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	This document
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	MCXNx4x_1P02G MCXNx4x_0P02G
Package drawing	Package dimensions are provided in package drawings.	HLQFP 100-pin: 98ASA01897D BGA 184-pin: 98ASA01888D
Software development kit	MCUXpresso SDK. An open source software development kit (SDK) built specifically for your processor and evaluation board selections.	http://www.nxp.com/mcuxpresso

NOTE

The EdgeLock Secure Subsystem (ELS) is also known as EdgeLock Secure Enclave, Core Profile (ELE). This document uses the ELS name, but other materials might refer to this module as EdgeLock Secure Enclave, Core Profile or ELE.

Data Sheet: Technical Data 6 / 143

32-bit Arm Cortex-M33 @ 150 MHz (N94x and N54x), Rev. 6, 06/2024

7 / 143

NOTE

Flash, FlexSPI and bus masters, including, PQ, NPU, BSP32, DMA, USBs, ENET, PKC, S50 have registers. The registers can be accessed from APB or AIPS bridge.

32-bit Arm Cortex-M33 @ 150 MHz (N94x and N54x), Rev. 6, 06/2024

Contents

1	Feature Comparison11	4.3.1	Flash electrical specifications	. 52
2	Ratings 12	4.3.1.1	Timing specifications	53
2.1	Thermal handling ratings 12	4.3.1.2	Flash high voltage current behavior	. 54
2.2	Moisture handling ratings13	4.3.1.3	Flash reliability specifications	54
2.3	ESD handling ratings13	4.3.2	FlexSPI specifications	. 55
2.4	Voltage and current maximum ratings 13	4.3.2.1	FlexSPI input/read timing	. 55
2.5	Required Power-On-Reset (POR) Sequencing	4.3.2.2	FlexSPI output/write timing	. 59
	14	4.3.2.3	eFuse specifications	. 61
3	General14	4.4	Analog	61
3.1	AC electrical characteristics14	4.4.1	ADC electrical specifications	61
3.2	Nonswitching electrical specifications15	4.4.1.1	ADC operating conditions	. 61
3.2.1	Voltage and current operating requirements.15	4.4.1.2	ADC electrical characteristics	. 63
3.2.2	HVD, LVD, and POR operating requirements	4.4.2	12-bit DAC electrical characteristics	. 66
	17	4.4.2.1	12-bit DAC operating requirements	. 66
3.2.3	Voltage and current operating behaviors 19	4.4.2.2	12-bit DAC operating behaviors	
3.2.4	On-chip regulator electrical specifications 20	4.4.3	14-bit DAC electrical characteristics	
3.2.4.1	DCDC converter specifications	4.4.3.1	14-bit DAC operating requirements	. 69
3.2.4.2	DCDC efficiency plots21	4.4.3.2	14-bit DAC operating behaviors	
3.2.4.3	LDO_SYS electrical specifications22	4.4.4	CMP and 8-bit DAC electrical specifications	
3.2.4.4	LDO_CORE electrical specifications23	4.4.5	Voltage reference electrical specifications	
3.2.5	Power mode transition operating behaviors24	4.4.6	Op-amp electrical specifications	
3.2.6	Power consumption operating behaviors25	4.4.7	PGA electrical specifications	
3.2.6.1	Power Consumption Operating Behaviors 25	4.5	Timers	
3.2.7	EMC radiated emissions operating behaviors	4.5.1	SCTimer/PWM output timing	
	40	4.6	Communication interfaces	
3.2.8	Designing with radiated emissions in mind 40	4.6.1	LPUART	
3.2.9	Capacitance attributes40	4.6.2	LPSPI switching specifications	
3.3	Switching specifications41	4.6.3	Inter-Integrated Circuit Interface (I ² C)	
3.3.1	Device clock specifications41		specifications	. 82
3.3.2	General switching specifications41	4.6.4	Improved Inter-Integrated Circuit Interface	
3.4	Thermal specifications43		(MIPI-I3C) specifications	84
3.4.1	Thermal operating requirements43	4.6.5	USB Full-speed device electrical specification	
3.4.2	Thermal attributes43			
4	Peripheral operating requirements and behaviors	4.6.6	USB High-Speed PHY specifications	87
	43	4.6.7	Ultra High Speed SD/SDIO/MMC Host Interfa	
4.1	Core modules43		(uSDHC) AC timing	
4.1.1	Debug trace timing specifications44	4.6.7.1	SD/eMMC4.3 (single data rate) AC timing	
4.1.2	JTAG electricals45	4.6.7.2	eMMC4.4/4.41 (dual data rate) AC timing	
4.1.3	SWD electricals46	4.6.7.3	SDR50 AC timing	
4.2	Clock modules47	4.6.8	CAN switching specifications	. 90
4.2.1	Reference Oscillator Specification47	4.6.9	SINC timing	
4.2.2	32 kHz oscillator electrical specifications49	4.6.10	I2S/SAI switching specifications	
4.2.3	Free-running oscillator FRO-144M	4.6.11	Flexible IO controller (FlexIO)	
	specifications51	4.6.12	EMVSIM specifications	
4.2.4	Free-running oscillator FRO-12M	4.6.12.1	EMVSIM Reset Sequences	
	specifications51	4.6.12.2	EMVSIM Power-Down Sequence	
4.2.5	Free-running oscillator FRO-16K specifications	4.6.13	Ethernet Controller (ENET) AC Electrical	
	52		specifications	. 97
4.2.6	550 MHz PLL specifications52	4.6.13.1	MII electrical specifications	
4.3	Memories and memory interfaces52	4.6.13.2	RMII	

achine Interface (HMI) modules 100 nsing input (TSI) electrical ions	8 8.1 8.2 8.3 8.4 8.4.1 9	Part identification Description Part number format Example Package marking Package marking information Terminology and guidelines	135 135 136 136 136
ions	8.2 8.3 8.4 8.4.1 9	Part number format Example Package marking Package marking information Terminology and guidelines	135 136 136 136
ne (MIC)	8.3 8.4 8.4.1 9	Example Package marking Package marking information Terminology and guidelines	136 136 136
Purpose Input/Output (GPIO)101 nodules101	8.4 8.4.1 9	Package marking Package marking information Terminology and guidelines	136 136
nodules101	8.4.1 9	Package marking information Terminology and guidelines	136
101	9	Terminology and guidelines	
	•		136
mensions 102	9 1		
	0	Definitions	136
package dimensions102	9.2	Examples	137
102	9.3	Typical-value conditions	138
Signal Multiplexing and Pin	9.4	Relationship between ratings and operati	ng
nts 102		requirements	138
Pinout Diagrams133	9.5	Guidelines for ratings and operating	
ended connection for unused analog		requirements	138
l pins133	10	Revision history	138
rts 135	Chapter	Legal information	140
	ents	x Pinout Diagrams	x Pinout Diagrams

1 Feature Comparison

Table 4. Feature Comparison

Features		MCXN947	MCXN946	MCXN546	MCXN547
	Package	VFBGA184, HLQFP100	VFBGA184, HLQFP100	VFBGA184, HLQFP100	VFBGA184, HLQFP100
CPU Core Platform	M33 @150 MHz	2	2	2	2
	NPU	Y	Υ	Υ	Υ
Flash ¹	Flash ECC	Upto 2 MB	Upto 1 MB	Upto 1 MB	Upto 2 MB
Memory	SRAM ¹	Upto 480 K no ECC	Upto 320 K no ECC	Upto 320 K no ECC	Upto 480 K no ECC
	SRAM ECC	32 K	32 K	32 K	32 K
External Memory	FlexSPI with 16 K cache	1x, 2 ch	1x, 2 ch	1x, 2 ch	1x, 2 ch
	uSDHC	Υ	N	Υ	Y
Smart Card	EMVSIM	Υ	N	Υ	Y
Security	Secure Key Management	PUF/UDF	PUF/UDF	PUF/UDF	PUF/UDF
	Secure Subsystem	Υ	Y	Y	Y
	Anti Tamper Pin ²	8	8	8	8
Analog	ADC	2	2	2	2
peripherals	DAC 12b, 1 MSPS	2	2	1	1
	DAC 14b, 5 MSPS	1	1	_	_
	Comparator	3	3	2	2
	Opamp	3	3	_	_
	Accurate Vref	Υ	Y	Υ	Y
Serial Interfaces	I3C (I2C back compatible)	2	2	2	2
	USB HS	Y ³	Y ³	Υ	Υ
	USB FS	Υ	Υ	Υ	Υ
	Ethernet	1	1	1	1
	Power Line Communication	Υ	Y	_	_
	CAN w/wo FD	2	2	1	1

Table continues on the next page...

32-bit Arm Cortex-M33 @ 150 MHz (N94x and N54x), Rev. 6, 06/2024

Data Sheet: Technical Data

11 / 143

Table 4. Feature Comparison (continued)

Features		MCXN947	MCXN946	MCXN546	MCXN547
	SAI	Up to 4ch	Up to 4ch	Up to 4ch	4 ch
	Flexcom	10	10	10	10
	Smart Card Interface	14	14	1	1
Human Machine Interface	Touch Sensor Interface ⁵	25 ch	_	25 ch	25 ch
	FlexIO	1	1	1	1
	DMIC	4 ch ^{6,5}	_	4ch	4 ch
Motor Control	FlexPWM	2	2	1	1
Subsystem	Quad Encoder	2	2	1	1
	SINC Filter (3rd order, 5ch)	1	1	_	_
Timers	RTC	1	1	1	1
	32b	5	5	5	5
	SCT/PWM	1	1	1	1
	MRT 24b	1	1	1	1
	uTICK timer	1	1	1	1
	WWDT	1	1	1	1
	OS Timer	1	1	1	1

- 1. For more details, please refer to Ordering Information Table.
- 2. Only 2 Anti Tamper Pins available on 100 HLQFP packages.
- 3. HS USB not available on N94x devices in 100 pin HLQFP package
- 4. Smart Card Interface not available on N94x devices in 100 pin HLQFP package
- 5. Only available on BGA package.
- 6. Please refer to Ordering Information Table for the exact part number that has 4 ch

2 Ratings

2.1 Thermal handling ratings

Table 5. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	– 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

2.2 Moisture handling ratings

Table 6. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

^{1.} Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.*

2.3 ESD handling ratings

Table 7. ESD and Latch-up ratings

Description	Rating	Notes
Electrostatic discharge voltage, human body model	+/-2000 V	1
Electrostatic discharge voltage, charged-device model	+/-500 V	2
Electrostatic discharge voltage, charged device model (corner pins)	+/-750 V	
Latch-up immunity level (Class II at 125 °C junction temperature)	Immunity Level A	3

^{1.} Determined according to ANSI/ESDA/JEDEC Standard JS-001-2023, For Electrostatic Discharge Sensitivity Testing, Human Body Model (HBM) - Component Level.

2.4 Voltage and current maximum ratings

The table below shows the absolute minimum and maximum ratings for the device. If the values are violated, the device could be damaged. See Voltage and current operating requirements for operating requirements, and Terminology and guidelines for definitions of terms.

Table 8. Voltage and current maximum ratings

Symbol	Description	Min.	Max.	Unit
VDD_CORE	Supply voltage for most digital domains	-0.3	1.26	V
VDD_SYS	Supply voltage for on-board regulators, LVD / HVDs, and clock sources	-0.3	1.98 ¹	V
VDD_DCDC	Supply voltage for DCDC regulator	-0.3	3.63	V
VDD_LDO_SYS	Supply voltage for LDO_SYS regulator	-0.3	3.63	V
VDD_LDO_CORE	Supply voltage for LDO_CORE regulator	-0.3	3.63	V
VDD	Supply voltage for Port 0, Port 1, Flash arrays	-0.3	3.63	V
VDD_P2	Supply voltage for Port 2	-0.3	3.63	V
VDD_P3	Supply voltage for Port 3	-0.3	3.63	V
VDD_P4	Supply voltage for Port 4	-0.3	3.63	V
VDD_BAT	Supply voltage for VBAT domain and Port 5	-0.3	3.63	V

Table continues on the next page...

Data Sheet: Technical Data 13 / 143

Determined according to ANSI/ESDA/JEDEC Standard JS-002-2022, For Electrostatic Discharge Sensitivity Testing, Charged Device Model (CDM) - Device Level

^{3.} Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

Table 8. Voltage and current maximum ratings (continued)

Symbol	Description	Min.	Max.	Unit
VDD_ANA	Supply voltage for analog modules	-0.3	3.63	V
VDD_USB	Supply voltage for USB analog	-0.3	3.63	V
V _{USB1_VBUS}	USB1_VBUS input voltage	-0.3	5.5	V
V _{USB0_Dx}	USB0_DP and USB0_DM input voltage	-0.3	3.63	V
V _{USB1_Dx}	USB1_DP and USB1_DM input voltage	-0.3	3.63	V
V _{DIO}	Digital input voltage	-0.3	VDD_Px + 0.3	V
V _{AIO}	Analog input voltage ²	-0.3	VDD_ANA + 0.3	V
I _{DD}	Digital supply current	_	100 ³	mA
I _D	Maximum current single pin limit (digital output pins)	-25	25	mA
V _{REFH}	ADC reference voltage high	VSS_P4 -0.1	VDD_ANA + 0.1	V
V _{REFL}	ADC reference voltage low	VSS_P4 -0.1	VSS_P4 + 0.1	V

- 1. The part will support 2.75 V for up to 20 s over lifetime to allow for fuse programming
- 2. Analog pins are defined as pins that do not have an associated general-purpose I/O port function.
- 3. This limit is per supply pin. This includes all power pins, including, VDD_CORE, VDD_SYS, VDD_LDO_SYS, VDD_LDO_CORE, VDD, VDD_Px, VDD_ANA, VDD_USB, and VDD_BAT

2.5 Required Power-On-Reset (POR) Sequencing

- Secondary IO supplies (VDD_P2/VDD_P3/VDD_P4) must implement one of the following:
 - Must be shorted with VDD (eg: single supply system), or
 - Must ramp after VDD SYS
- VDD_CORE must ramp after VDD
- VDD_P4 and VDD_ANA must be same voltage
- VDD_BAT must ramp before or with VDD_SYS

3 General

3.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

3.2 Nonswitching electrical specifications

3.2.1 Voltage and current operating requirements

Table 9. Voltage and current operating requirements

Symbol	Description	Min.	Тур	Max.	Unit	Notes
VDD_CORE	Supply voltage for most digital domains				V	1
	Mid voltage	0.95	1.0	1.05		
	Normal voltage	1.045	1.1	1.155		
	Overdrive voltage	1.14	1.2	1.26		
VDD_SYS	Supply voltage for on-board regulators, LVD / HVDs, and clock sources				V	
	Normal mode	1.71		1.98		
	Fuse Programming	2.25		2.75		
VDD_DCDC	Supply voltage DCDC regulator	1.71		3.6	V	2
VDD_LDO_S YS	Supply voltage for LDO_SYS regulator	1.86		3.6	V	
VDD_LDO_C ORE	Supply voltage for LDO_CORE regulator	1.71		3.6	V	
VDD	Supply Voltage for Port 0, Port 1, Flash, and CMPx	1.71		3.6	V	
VDD_P2	Supply voltage for Port 2	1.14		1.32	V	3,4
		1.71		3.6		
VDD_P3	Supply voltage for Port 3	1.14		1.32	V	3,5,4
		1.71		3.6		
VDD_P4	Supply voltage for Port 4	1.71		3.6	V	6,4
VDD_BAT	Supply voltage for VBAT domain	1.71		3.6	V	

Table 9. Voltage and current operating requirements (continued)

Symbol	Description	Min.	Тур	Max.	Unit	Notes
VDD_ANA	Supply voltage for analog modules	VDD_P4		VDD_P4	V	7
VSS - VSS_ANA	VSS-to-VSS_ANA differential voltage	-0.1		0.1	V	
VDD_USB	Supply voltage for USB analog	3.0		3.6	V	8
V _{IH}	Input high voltage • 1.71 V ≤ VDD_Px ≤ 3.6 V • 1.14 V ≤ VDD_Px ≤ 1.32 V	0.7 × VDD_Px 0.7 × VDD_Px		_ _	V	3
V _{IL}	Input low voltage • 1.71 V ≤ VDD_Px ≤ 3.6 V • 1.14 V ≤ VDD_Px ≤ 1.32 V	_ _		0.3 × VDD_Px 0.3 x VDD_Px	V	3
V _{HYS}	Input hysteresis • Slow I/O • Medium I/O • Fast I/O	0.1 × VDD_Px 0.1 × VDD_Px 0.04 × VDD_Px		_	V	
I _{ICIO}	 IO pin DC injection current — per pin V_{IN} < VSS-0.3 V (negative current injection) V_{IN} > VDD+0.3 V (positive current injection) 	-3 —		+3	mA	9
I _{ICcont}	Contiguous pin DC injection current — regional limit, includes sum of negative injection currents of 16 contiguous pins • Negative current injection Positive current injection	-25 —		 +25	mA	
V _{ODPU}	Open drain pullup voltage level	VDD_Px		VDD_Px	V	10

- 1. To avoid triggering the glitch detect modules on this device, it is important that the VDD_CORE voltage matches the configuration of the GDET modules. See the GDET chapter in the Security Reference Manual for details.
- 2. If DCDC is unused, then input supply should be tied to GND through a 10 k Ω resistor.
- 3. Operation at 1.2 V is allowed on Port P2/P3 pins only with the following restrictions:
 - VDD_CORE must be less than or equal to the VDD_Px voltage
 - VDD_SYS must be powered on before VDD_Px is powered and VDD_SYS must not be powered off before powering
 off VDD_Px.
- 4. If this voltage rail is not tied to VDD, it must ramp after VDD_SYS
- 5. If none of the Port 3 pins are being used, then the VDD_P3 can be left floating.
- 6. VDD_P4 should be powered up with VDD_ANA and to the same voltage level as VDD_ANA
- 7. VDD_ANA may deviate from VDD_P4 by ± 0.1 V provided it is still within range of 1.71 V 3.6 V
- 8. USB HS is not supported when VDD_CORE < 1.1 V
- 9. All I/O pins are internally clamped to VSS and V_{DD_Px} through an ESD protection diode. If VIN is greater than V_{DD_Px MIN}(=VSS-0.3 V) or is less than V_{DD_Px MAX}(=V_{DD_Px} + 0.3 V), then there is no need to provide current limiting

resistors at the pads. If this limit cannot be observed, then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = $(-0.3 - VIN)/(-I_{ICIOmin})$. The positive injection current limiting resistor is calculated as R= $(V_{IN}-V_{DD_Px_MAX})/I_{ICIOmax}$. The actual resistor should be an order of magnitude higher to tolerate transient voltages.

10. Open drain outputs must be pulled to whichever supply voltage corresponds to that IO, VDD_Px as appropriate.

3.2.2 HVD, LVD, and POR operating requirements

The device includes low-voltage detection (LVD) and high-voltage detection (HVD) power supervisor circuits for following power supplies:

- VDD
- VDD_CORE
- VDD_SYS

For VDD_SYS, it has Power-on-reset (POR) power supervisor circuits.

Table 10. VDD supply HVD, LVD, and POR Operating Requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{HVDH_VDD}	VDD Rising high-voltage detect threshold (HVD assertion)	3.730	3.810	3.890	V	
V _{HVDH_HYS_VDD}	VDD High-voltage inhibit reset/recover hysteresis	_	38	_	mV	
V _{LVDH_VDD}	VDD Falling low-voltage detect threshold (LVD assertion) - high range (VD_IO_CFG[LVSEL] = 0b)	2.567	2.619	2.673	V	
V _{LVDH_HYS_VDD}	VDD Low-voltage inhibit reset/recover hysteresis - high range	_	27	_	mV	
V _{LVDL_VDD}	VDD Falling low-voltage detect threshold (LVD assertion) - low range (VD_IO_CFG[LVSEL] = 1b)	1.618	1.651	1.684	V	
V _{LVDV_HYS_VDD}	VDD Low-voltage inhibit reset/recover hysteresis - low range	_	16	_	mV	

Table 11. VDD_CORE supply HVD and LVD Operating Requirements

Description	Min.	Тур.	Max.	Unit	Notes
VDD_CORE Rising high-voltage detect threshold (HVD assertion)				V	1
Target VDD_CORE = 1.0 V					
Target VDD_CORE = 1.1 V	1.260	1.285	1.311		
Target VDD_CORE = 1.2 V					
VDD_CORE High-voltage inhibit reset/recover hysteresis					1
Target VDD_CORE = 1.0 V				mV	
Target VDD_CORE = 1.1 V	_	13	_		
	VDD_CORE Rising high-voltage detect threshold (HVD assertion) Target VDD_CORE = 1.0 V Target VDD_CORE = 1.1 V Target VDD_CORE = 1.2 V VDD_CORE High-voltage inhibit reset/recover hysteresis Target VDD_CORE = 1.0 V	VDD_CORE Rising high-voltage detect threshold (HVD assertion) Target VDD_CORE = 1.0 V Target VDD_CORE = 1.1 V Target VDD_CORE = 1.2 V VDD_CORE High-voltage inhibit reset/recover hysteresis Target VDD_CORE = 1.0 V	VDD_CORE Rising high-voltage detect threshold (HVD assertion) Target VDD_CORE = 1.0 V Target VDD_CORE = 1.1 V Target VDD_CORE = 1.2 V VDD_CORE High-voltage inhibit reset/recover hysteresis Target VDD_CORE = 1.0 V	VDD_CORE Rising high-voltage detect threshold (HVD assertion) Target VDD_CORE = 1.0 V Target VDD_CORE = 1.1 V Target VDD_CORE = 1.2 V VDD_CORE High-voltage inhibit reset/recover hysteresis Target VDD_CORE = 1.0 V	VDD_CORE Rising high-voltage detect threshold (HVD assertion) Target VDD_CORE = 1.0 V Target VDD_CORE = 1.1 V Target VDD_CORE = 1.2 V VDD_CORE High-voltage inhibit reset/recover hysteresis Target VDD_CORE = 1.0 V

Table 11. VDD_CORE supply HVD and LVD Operating Requirements (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Target VDD_CORE = 1.2 V					
V _{LVD_CORE}	VDD_CORE Falling low-voltage detect threshold (LVD assertion)				V	
	Target VDD_CORE = 1.0 V	0.899	0.917	0.936		
	Target VDD_CORE = 1.1 V	0.989	1.009	1.029		
	Target VDD_CORE = 1.2 V	1.078	1.1	1.123		
V _{LVD_HYS_} CORE	VDD_CORE Low-voltage inhibit reset/ recover hysteresis				mV	
	Target VDD_CORE = 1.0 V	_	9	_		
	Target VDD_CORE = 1.1 V	_	10	<u> </u>		
	Target VDD_CORE = 1.2 V	_	11	_		

^{1.} Same value applies to all conditions.

Table 12. VDD_SYS supply HVD and LVD Operating Requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{HVD_SYS}	VDD_SYS Rising high-voltage detect threshold (HVD assertion)				V	1
	Target VDD_SYS = 1.8 V	2.035	2.077	2.120		
V _{HVD_HYS_SYS}	VDD_SYS High-voltage inhibit reset/recover hysteresis	_	20	_	mV	
V _{POR_SYS}	Falling VDD_SYS POR detect voltage (POR assertion)	0.8	1.0	1.5	V	
V _{LVD_SYS}	VDD_SYS Falling low-voltage detect threshold (LVD assertion)				V	
	Target VDD_SYS = 1.8 V	1.616	1.649	1.683		
V _{LVD_HYS_SYS}	VDD_SYS Low-voltage inhibit reset/recover hysteresis	_	17	_	mV	

^{1.} When fuses are being programmed VDD_SYS is raised to 2.5V nominal. This is outside the HVD bounds, so HVD detection for VDD_SYS must be disabled when programming fuses

Table 13. VBAT supply POR Operating Requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
VBAT_POR_SYS	Falling VBAT POR detect voltage (POR assertion)				V	1
		0.689	-	1.36		

^{1.} Guaranteed by design. Not tested in production.

3.2.3 Voltage and current operating behaviors

Table 14. Voltage and current operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive strength • 2.7 V ≤ VDD_Px ≤ 3.6 V, I _{OH} = 4 mA	VDD_Px - 0.5	_	_	V	1
	• 1.71 V ≤ VDD_Px < 2.7 V, I _{OH} = 2.5 mA	VDD_Px – 0.5	_	_	V	
	• 1.14 V ≤ VDD_Px < 1.32 V, I _{OH} = 0.5 mA	VDD_Px – 0.5	_	_	V	
V _{OH}	Output high voltage — High drive strength • 2.7 V ≤ VDD_Px ≤ 3.6 V, I _{OH} = 6 mA	VDD_Px - 0.5	_	_	V	2,1
	• 1.71 V ≤ VDD_Px < 2.7 V, I _{OH} = 3.75 mA	VDD_Px – 0.5	_	_	V	
	• 1.14 V ≤ VDD_Px < 1.32 V, I _{OH} = 0.75 mA	VDD_Px – 0.5	_	_	V	
I _{OHT}	Output high current total for all ports	_	_	100	mA	
V _{OL}	Output low voltage — Normal drive strength • 2.7 V ≤ VDD_Px ≤ 3.6 V, I _{OL} = 4 mA	_	_	0.5	V	3,1
	• 1.71 V ≤ VDD_Px < 2.7 V, I _{OL} = 2.5 mA	_	_	0.5	V	
	• 1.14 V ≤ VDD_Px < 1.32 V, I _{OH} = 0.5 mA	_	_	0.5	V	
V _{OL}	Output low voltage — High drive strength • 2.7 V ≤ VDD_Px ≤ 3.6 V, I _{OL} = 6 mA	_	_	0.5	V	1,3
	 1.71 V ≤ VDD_Px < 2.7 V, I_{OL} = 3.75 mA 1.14 V ≤ VDD_Px < 1.32 V, I_{OH} = 0.75 mA 	_ _	_	0.5 0.5	V	
I _{OLT}	Output low current total for all ports	_	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	_	1	μA	4
I _{IN}	Input leakage current (per pin) at 25 °C	_	_	0.025	μA	4
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	_	1	μA	
R _{PU}	Internal pullup resistors	33	50	75	kΩ	
R _{PU} (I3C)	Internal pullup resistors	1.11	1.2	2.83	kΩ	5
R_{PD}	Internal pulldown resistors	33	50	75	kΩ	
R_{HPU}	High-resistance pullup option (PCRx[PV] = 1)	0.67	1.0	1.5	ΜΩ	6
R _{HPD}	High-resistance pulldown option (PCRx[PV] = 1)	0.67	1.0	1.5	ΜΩ	6
V_{BG}	Bandgap voltage reference voltage	0.98	1.0	1.02	V	

- The 1.14 V 1.32 V range only applies to port P2 / P3 pins.
 AON and RESET_B pins are always configured in high drive mode
- 3. Open drain outputs must be pulled to VDD_Px.

- 4. Measured at VDD_Px = 3.6 V.
- 5. Only pins with +I3C add-on support this option
- 6. Only AON pins and RESET_B pin support this option.

3.2.4 On-chip regulator electrical specifications

3.2.4.1 DCDC converter specifications

Table 15. DCDC Converter Specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD_DCDC}	DCDC input voltage	1.71	_	3.6	V	1
V _{DCDC_LX}	DCDC output voltage					1, 2
	1.2 V range	0.85	_	1.21	V	
I _{LOAD}	DCDC load current					3
	Normal drive strength	_	_	105	mA	
	FREQ_CNTRL_ON=1	_	_	45	mA	
	Low drive strength	_	_	15	mA	
LX	DCDC inductor value	0.47	1	2.2	μH	4
ESR	External inductor equivalent series resistance	_	110	_	mΩ	5
C _{OUT}	DCDC capacitance value	6	22	30	μF	6
V _{RIPPLE}	DCDC voltage ripple In normal drive strength	_	1	_	%	
	In low drive strength	_	25	_	mV	
T_startup	DCDC startup time	_	100	_	μs	
f _{burst}	DCDC switching frequency	3	5	8	MHz	7
f _{burst_acc}	DCDC burst frequency accuracy	_	10	_	%	8

- 1. The VDD_DCDC input supply to the system DCDC must be at least 500 mV higher than the desired output at DCDC_LX to achieve the stated efficiency. VDD_DCDC can be as low as 300 mV above the desired output voltage but the efficiency will be reduced.
- 2. The system DCDC converter generates 1.2 V at DCDC_LX by default. The DCDC is used to power VDD_CORE.
- 3. The maximum load current during boot up shall not exceed 60 mA.
- 4. Recommended inductor value is 1 μH to 1.5 μH. If the inductor is < 1 μH, the DCDC efficiency is not guaranteed.
- 5. The maximum recommended ESR is 250 m Ω (not a hard limit).
- 6. The variation in capacitance of the capacitor at DCDC_LX due to aging, temperature, and voltage degradation must not exceed the Min./Max. values.
- 7. FREQ_CNTRL_ON = 1. This range is for 1 μ H inductor.
- 8. FREQ CNTRL ON = 1.

3.2.4.2 DCDC efficiency plots

3.2.4.3 LDO_SYS electrical specifications

Table 16. LDO_SYS electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
VDD_LDO_SYS	LDO_SYS input supply voltage • Normal Drive mode	1.95	_	3.6	V	1,2
	Passthrough mode	1.86		1.98		
	Fuse Programming	2.75		3.6		
VOUT_SYS	LDO_SYS regulator output voltage				V	3,4,2
	Normal drive strength mode	1.71	1.8	1.98		
	Fuse programming mode	2.25	2.5	2.75		

Table 16. LDO_SYS electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
LDO_SYS_DROPO	LDO_SYS dropout voltage				mV	1, 2
UT	Normal drive strength mode	_	_	150		
	• Fuse programming mode ⁵	_	_	500		
	Pass through mode ⁶	_	_	60		
I _{LOAD}	LDO_SYS maximum load current					
	Normal drive strength mode	_	_	50		
	Low drive strength mode	_	_	2		
	Fuse programming mode	_	_	40	mA	
I _{DD}	LDO_SYS power consumption					7
	Normal drive strength mode	_	100	_	μA	
	Low drive strength mode	_	70	_	nA	
C _{OUT}	External output capacitor	1.4	2.2	4.0	μF	
ESR	External output capacitor equivalent series resistance	_	30	_	mΩ	
I _{INRUSH}	LDO_SYS inrush current	_	_	100 ⁸	mA	

- 1. Regulator will automatically switch to passthrough mode with the supply is below 1.95 V.
- 2. VDD LDO SYS must be at least 150 mV higher than the desired VOUT_SYS.
- 3. The LDO_SYS converter generates 1.8 V by default at VOUT_SYS. VOUT_SYS can be used to power VDD_SYS, VDD_Px, VDD_ANA, and external components as long as the max I_{LOAD} is not exceeded.
- 4. VOUT_SYS and VDD_SYS are connected together within the package
- 5. Maximum current load in fuse programming mode is 40 mA
- 6. Maximum current load during pass through mode = 50 mA
- 7. In normal mode, LDO_SYS draws ~100 µA for every 20 mA of load current.
- 8. This value is for a 1.5 µF external output capacitor. This value would increase with higher load capacitor.

3.2.4.4 LDO_CORE electrical specifications

Table 17. LDO_CORE electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
VDD_LDO_C ORE	LDO_CORE input supply voltage	1.71	_	3.6	V	1
VOUT_CORE	LDO_CORE regulator output voltage				V	2
	Normal drive strength					
	— Mid drive	0.95	1	1.05		
	Normal drive	1.045	1.1	1.155		
	Over drive	1.14	1.2	1.26		
	Low drive strength					
	• Low drive strength					

Table 17. LDO_CORE electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	— Mid drive	0.95	1	1.05		
	 Normal drive 	1.045	1.1	1.155		
I _{LOAD}	LDO_CORE max load current					
	Normal drive strength					
	— Tj = -40 °C	_	_	90		
	— Tj = 27 °C	_	_	100		
	— Tj = 113 °C		_	115		
	Low drive strength			110		
	— -40 °C <tj 113°c<="" <="" td=""><td>_</td><td>_</td><td>28</td><td>mA</td><td></td></tj>	_	_	28	mA	
I _{INRUSH}	LDO_CORE inrush current	_	_	500	mA	3

- 1. To bypass LDO_CORE, tie VDD_LDO_CORE to VDD_CORE
- 2. VOUT_CORE and VDD_CORE are connected together in package
- 3. This value is for 4.7 µF external output capacitor. This value would increase with higher load capacitor

Table 18. LDO_CORE external device electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
C _{OUT}	External output capacitor	3.7	4.7	10	μF	
C _{DEC}	External output decoupling capacitor	_	0.1	_	μF	
ESR	External output capacitor equivalent series resistance	_	10	_	mΩ	

3.2.5 Power mode transition operating behaviors

All specifications in the following table assume this clock configuration:

- CPU clock = 48 MHz
- AHB clock = 48 MHz
- Clock source = Fast internal reference clock(FIRC)

All specifications in the following table were measured fron the initiation of an external pin event to the execution code (unless otherwise stated)

All specifications in the following table assume this SPC configuration:

• SPC->LPWKUP_DELAY[LPWKUP_DELAY] = 0x00 and the Core voltage level is configured for the same level in active and low power mode (SPC->ACTIVE_CFG[DCDC_VDD_LVL] = SPC->ACTIVE_CFG[CORELDO_VDD_LVL] = SPC->LP_CFG[DCDC_VDD_LVL] = SPC->LP_CFG[CORELDO_VDD_LVL]).

Table 19. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time to execution of the first instruction (measured from the point	_	6.5	_	ms	1, 2, 3

Table 19. Power mode transition operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	where VDD and VDD_SYS reach 1.8V) across the operating temperature range of the chip.					
t _{SLEEP}	SLEEP → ACTIVE	_	0.22	_	μs	3, 4
t _{DSLEEP}	DEEP SLEEP → ACTIVE	_	8.7	_	μs	3, 4
t _{PWDN}	POWER DOWN → ACTIVE	_	9.8	_	μs	3, 4
t _{DPWDN}	Deep Power DOWN → ACTIVE	_	5.3	_	ms	1, 4, 2, 3

- 1. Boot configuration 144 MHz
- 2. Measured using ROM version v4.0
- 3. Based on characterization of typical units. Not tested in production
- 4. WFE used for low-power mode entry

3.2.6 Power consumption operating behaviors

The MCXNx4x device has multiple power supplies that can be connected in different configurations, where the total current consumption of the device is the accumulative result of each individual power supply's current consumption. The Core domain is provided by the noted source (either DCDC or LDO), the voltage for the System domain is provided by the LDO-SYS (except for LDO @ 1.8V), voltage for the I/O rails is provided by the same external source powering the Core domain regulator and System domain regulator, and the VBAT domain is also provided by the same external source.

When calculating the total MCU current consumption the following considerations should be made:

- Specifications below only include power for the MCU itself
- · VDD_USB current draw are not included
- · On top of the device's IDD current consumption, external loads applied to pins of the device need to be considered
- · Efficiency of regulators (on-chip or off-chip) used to generate supply voltages should be considered

3.2.6.1 Power Consumption Operating Behaviors

Appendix A: Active IDD

Table 20. DCDC @ 3.3 V

	Single Core, Flash, LPCAC cases					
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
IDD_ACT_OD_1	While(1) executing on CPU0 from Flash;	25	9.19	15	mA	
	Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks disabled	113	16.20	27	mA mA	
IDD_ACT_SD_1	While(1) executing on CPU0 from Flash;	25	6.04	10	mA	
	Cache Enabled, Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All	113	11.33	19		
	peripheral clocks disabled	125	14.05	23		
IDD_ACT_MD_1	While(1) executing on CPU0 from Flash;	25	2.71	5	mA	
	Cache Enabled, Core voltage at 1.0V;	113	6.75	12		

26 / 143

Table 20. DCDC @ 3.3 V (continued)

	Single Core, Flash, LPCAC cases								
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes			
	Clocked from the FIRC at 48 MHz; All peripheral clocks disabled	125	8.86	15					
IDD_ACT_LP_1	While(1) executing on CPU0 from Flash;	25	0.71	2	mA				
	Cache Enabled, Core voltage at 1.0V; Clocked from the SIRC at 12 MHz; All	113	4.89	8					
	peripheral clocks disabled	125	7.10	12					
IDD_CM_OD_1	CoreMark executing on CPU0 from	25	10.86	18	mA				
	Flash; Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks disabled	113	17.99	30	mA mA mA mA mA mA				
IDD_CM_SD_1	CoreMark executing on CPU0 from	25	6.90	12	mA				
	Flash; Cache Enabled, Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All	113	12.29	21					
	peripheral clocks disabled	125	15.04	25					
IDD_CM_MD_1	CoreMark executing on CPU0 from	25	3.03	5	mA				
	Flash; Cache Enabled, Core voltage at 1.0V; Clocked from the FIRC at 48 MHz;	113	7.10	12	mA				
	All peripheral clocks disabled	125	9.21	16					
IDD_CM_LP_1	CoreMark executing on CPU0 from	25	0.78	2	mA mA mA mA mA mA	mA	mA	mA	
	Flash; Cache Enabled, Core voltage at 1.0V; Clocked from the SIRC at 12 MHz;	113	4.92	9					
	All peripheral clocks disabled	125	7.06	12					
IDD_ACT_OD_2	While(1) executing on CPU0 from Flash;	25	27.89	46	mA				
	Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks enabled	113	35.27	58	mA mA mA mA				
IDD_ACT_SD_2	While(1) executing on CPU0 from Flash;	25	16.37	27	mA				
	Cache Enabled, Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All	113	21.93	36					
	peripheral clocks enabled	125	24.69	41					
IDD_ACT_MD_2	While(1) executing on CPU0 from Flash;	25	6.84	12	mA				
	Cache Enabled, Core voltage at 1.0V; Clocked from the FIRC at 48 MHz; All	113	10.94	18					
	peripheral clocks enabled	125	13.03	22					
IDD_ACT_LP_2	While(1) executing on CPU0 from Flash;	25	1.77	3	mA				
_ 1	Cache Enabled, Core voltage at 1.0V; Clocked from the SIRC at 12 MHz; All	113	5.89	10					
	peripheral clocks enabled	125	8.02	14					
IDD_CM_OD_2	CoreMark executing on CPU0 from	25	28.74	47	mA				
	Flash; Cache Enabled, Core voltage at	113	36.23	60	7				

Table continues on the next page...

Data Sheet: Technical Data

Table 20. DCDC @ 3.3 V (continued)

	Single Core, Flash, LPCAC cases					
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
	1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks enabled					
IDD_CM_SD_2	CoreMark executing on CPU0 from	25	16.74	28	37	
	Flash; Cache Enabled, Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All	113	22.40	37		
	peripheral clocks enabled	125	25.18	42		
IDD_CM_MD_2	CoreMark executing on CPU0 from	25	6.97	12	mA	
	Flash; Cache Enabled, Core voltage at 1.0V; Clocked from the FIRC at 48 MHz;	113	11.09	19		
	All peripheral clocks enabled	125	13.20	22		
IDD_CM_LP_2	CoreMark executing on CPU0 from	25	1.80	3	mA	
	Flash; Cache Enabled, Core voltage at 1.0V; Clocked from the SIRC at 12 MHz; All peripheral clocks enabled	113	5.94	10		
		125	8.06	14		

- 1. Based on characterization of typical units. Not tested in production
- 2. Based on characterization of typical numbers + 3 sigma. Not tested in production

Table 21. LDO @ 1.8 V

	Single Core, Flash, LPCAC cases					
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
IDD_ACT_OD_1	While(1) executing on CPU0 from Flash;	25	20.00	33	mA	
	Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks disabled	113	36.39	60		
IDD_ACT_SD_1	While(1) executing on CPU0 from Flash;	25	12.69	21	mA	
	Cache Enabled, Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All	113	25.61	42		
	peripheral clocks disabled	125	32.26	53		
IDD_ACT_MD_1	While(1) executing on CPU0 from Flash;	25	5.84	10	mA	
	Cache Enabled, Core voltage at 1.0V; Clocked from the FIRC at 48 MHz; All	113	16.46	27		
	peripheral clocks disabled	125	21.98	36		
IDD_ACT_LP_1	While(1) executing on CPU0 from Flash;	25	1.69	3	mA	
	Cache Enabled, Core voltage at 1.0V; Clocked from the SIRC at 12 MHz; All	113	12.13	20		
	peripheral clocks disabled	125	17.59	29		
IDD_CM_OD_1	CoreMark executing on CPU0 from	25	23.60	39	mA	
	Flash; Cache Enabled, Core voltage at	113	40.30	66		

Table 21. LDO @ 1.8 V (continued)

	Single Core, Flash, LPCAC cases						
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes	
	1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks disabled						
IDD_CM_SD_1	CoreMark executing on CPU0 from	25	14.81	25	mA		
	Flash; Cache Enabled, Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All	113	27.95	46			
	peripheral clocks disabled	125	34.49	57			
IDD_CM_MD_1	CoreMark executing on CPU0 from	25	6.72	11	mA		
	Flash; Cache Enabled, Core voltage at 1.0V; Clocked from the FIRC at 48 MHz;	113	17.38	29			
	All peripheral clocks disabled	125	22.84	38			
IDD_CM_LP_1	CoreMark executing on CPU0 from	25	1.91	4	mA		
	Flash; Cache Enabled, Core voltage at 1.0V; Clocked from the SIRC at 12 MHz;	113	12.36	21			
	All peripheral clocks disabled	125	17.73	29			
IDD_ACT_OD_2	While(1) executing on CPU0 from Flash;	25	62.19	102	mA		
	Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks enabled	113	79.63	130			
IDD_ACT_SD_2	While(1) executing on CPU0 from Flash;	25	38.35	63	mA mA	mA	
	Cache Enabled, Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All	113	51.66	85			
	peripheral clocks enabled	125	58.30	96			
IDD_ACT_MD_2	While(1) executing on CPU0 from Flash;	25	17.00	28	mA		
	Cache Enabled, Core voltage at 1.0V; Clocked from the FIRC at 48 MHz; All	113	27.65	46	mA		
	peripheral clocks enabled	125	33.16	55			
IDD_ACT_LP_2	While(1) executing on CPU0 from Flash;	25	4.45	8	mA		
	Cache Enabled, Core voltage at 1.0V; Clocked from the SIRC at 12 MHz; All	113	14.89	25			
	peripheral clocks enabled	125	20.28	34			
IDD_CM_OD_2	CoreMark executing on CPU0 from	25	64.28	105	mA		
	Flash; Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks enabled	113	81.81	134			
IDD_CM_SD_2	CoreMark executing on CPU0 from	25	39.33	65	mA		
	Flash; Cache Enabled, Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All	113	52.82	87			
	peripheral clocks enabled	125	59.47	97			
IDD_CM_MD_2	CoreMark executing on CPU0 from	25	17.37	29	mA		
	Flash; Cache Enabled, Core voltage at	113	28.08	46	\dashv		

Data Sheet: Technical Data 28 / 143

Table 21. LDO @ 1.8 V (continued)

	Single Core, Flash, LPCAC cases					
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
	1.0V; Clocked from the FIRC at 48 MHz; All peripheral clocks enabled	125	33.59	55		
IDD_CM_LP_2	CoreMark executing on CPU0 from	25	4.54	8	mA	
	Flash; Cache Enabled, Core voltage at 1.0V; Clocked from the SIRC at 12 MHz;	113	14.99	25		
	All peripheral clocks enabled	125	20.38	34		
	Dual Core, Flash, LPCAC cases					
IDD_ACT_OD_3	While(1) executing on CPU0 from Flash;	25	27.08	45	mA	
	While(1) executing on CPU1 from RAM; Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks disabled	113	43.25	71	mA mA mA mA	
IDD_ACT_SD_3	While(1) executing on CPU0 from Flash;	25	17.27	29	mA	
	While(1) executing on CPU1 from RAM; Cache Enabled, Core voltage at 1.1V;	113	30.33	50	l	
	Clocked from PLL0 at 100 MHz; All peripheral clocks disabled	125	36.90	61		
IDD_ACT_MD_3	While(1) executing on CPU0 from Flash;	25	7.79	13	mA	
	While(1) executing on CPU1 from RAM; Cache Enabled, Core voltage at 1.0V;	113	18.45	31		
	Clocked from the FIRC at 48 MHz; All peripheral clocks disabled	125	23.95	40		
IDD_ACT_LP_3	While(1) executing on CPU0 from Flash;	25	2.18	4	mA	
	While(1) executing on CPU1 from RAM; Cache Enabled, Core voltage at 1.0V;	113	12.63	21		
	Clocked from the SIRC at 12 MHz; All peripheral clocks disabled	125	18.04	30		
IDD_CM_OD_3	CoreMark executing on CPU0 from	25	33.89	56	mA	
	Flash; CoreMark executing on CPU1 from RAM; Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks disabled	113	50.27	82	mA mA mA mA	
IDD_CM_SD_3	CoreMark executing on CPU0 from	25	21.19	35	mA	
	Flash; CoreMark executing on CPU1 from RAM; Cache Enabled, Core voltage	113	34.51	57		
	at 1.1V; Clocked from PLL0 at 100 MHz; All peripheral clocks disabled	125	41.11	68	mA	
IDD_CM_MD_3	CoreMark executing on CPU0 from	25	9.47	16	mA	
	Flash; CoreMark executing on CPU1 from RAM; Cache Enabled, Core voltage	113	20.20	33		
	at 1.0V; Clocked from the FIRC at 48 MHz; All peripheral clocks disabled	125	25.70	42		

Data Sheet: Technical Data 29 / 143

Table 21. LDO @ 1.8 V (continued)

	Single Core, Flash, LPCAC cases					
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
IDD_CM_LP_3	CoreMark executing on CPU0 from	25	2.59	5	mA	
	Flash; CoreMark executing on CPU1 from RAM; Cache Enabled, Core voltage	113	13.06	22		
	at 1.0V; Clocked from the SIRC at 12 MHz; All peripheral clocks disabled	125	18.44	31		
	Single Core, RAM w Cache cases					
IDD_ACT_OD_5	While(1) executing on CPU0 from RAM; Cache Enabled; Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks disabled	25	25.31	52	mA	
		113	39.17	79		
IDD_ACT_SD_5	While(1) executing on CPU0 from RAM; Cache Enabled; Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All	25	16.24	34	mA	
		113	29.51	60		
	peripheral clocks disabled	125	35.74	73		
IDD_ACT_MD_5	While(1) executing on CPU0 from RAM;	25	6.91	15	mA	
	Cache Enabled; Core voltage at 1.0V; Clocked from the FIRC at 48 MHz; All	113	18.15	37		
	peripheral clocks disabled	125	23.47	48		
IDD_ACT_LP_5	While(1) executing on CPU0 from RAM;	25	2.09	5	mA	
	Cache Enabled RAM Core voltage at 1.0V; Clocked from the SIRC at 12 MHz;	113	12.55	26		
	All peripheral clocks disabled	125	17.88	37		

- 1. Based on characterization of typical units. Not tested in production
- 2. Based on characterization of typical numbers + 3 sigma. Not tested in production

Table 22. LDO @ 3.3V

	Single Core, Flash, LPCAC cases					
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
IDD_ACT_OD_1	While(1) executing on CPU0 from Flash;	25	19.73	33	mA	
	Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks disabled	113	35.53 58 12.78 21			
IDD_ACT_SD_1	While(1) executing on CPU0 from Flash;	25	12.78	21	mA	
DD_ACT_SD_1 While(1) executing on CPU0 from Flash; Cache Enabled, Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All	113	25.74	42			
	peripheral clocks disabled	125	32.48	53		
IDD_ACT_MD_1	While(1) executing on CPU0 from Flash;	25	5.94	10	mA	
	Cache Enabled, Core voltage at 1.0V; Clocked from the FIRC at 48 MHz; All peripheral clocks disabled	113	16.54	27		
		125	22.17	37		

Data Sheet: Technical Data 30 / 143

Table 22. LDO @ 3.3V (continued)

	Single Core, Flash, LPCAC cases							
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes		
IDD_ACT_LP_1	While(1) executing on CPU0 from Flash; Cache Enabled, Core voltage at 1.0V; Clocked from the SIRC at 12 MHz; All	25	1.74	3	mA			
		113	12.66	21				
	peripheral clocks disabled	125	18.94	31				
IDD_CM_OD_1		25	23.42	39	mA			
	Flash; Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks disabled	113	39.67	65				
IDD_CM_SD_1	CoreMark executing on CPU0 from	25	14.92	25	mA			
	Flash; Cache Enabled, Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All	113	28.14	46				
	peripheral clocks disabled	125	34.86	57				
IDD_CM_MD_1	CoreMark executing on CPU0 from	25	6.82	12	mA			
	Flash; Cache Enabled, Core voltage at 1.0V; Clocked from the FIRC at 48 MHz; All peripheral clocks disabled	113	17.50	29				
		125	23.10	38				
IDD_CM_LP_1	CoreMark executing on CPU0 from Flash; Cache Enabled, Core voltage at 1.0V; Clocked from the SIRC at 12 MHz; All peripheral clocks disabled	25	1.94	4	mA			
		113	12.90	22				
		125	19.13	32				
IDD_ACT_OD_2	While(1) executing on CPU0 from Flash;	25	61.74	101	1 mA			
	Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks enabled	113	78.93	129				
IDD_ACT_SD_2	While(1) executing on CPU0 from Flash;	25	38.48	63	mA			
	Cache Enabled, Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All	113	51.99	85				
	peripheral clocks enabled	125 58.84	96					
IDD_ACT_MD_2	While(1) executing on CPU0 from Flash;	25	17.12	7.12 28 m.	mA			
	Cache Enabled, Core voltage at 1.0V; Clocked from the FIRC at 48 MHz; All	113	27.83	46				
	peripheral clocks enabled	125	33.47	55				
IDD_ACT_LP_2	While(1) executing on CPU0 from Flash;	25	4.52	8	mA			
	Cache Enabled, Core voltage at 1.0V; Clocked from the SIRC at 12 MHz; All	113	15.45	26				
	peripheral clocks enabled	125	21.69	36				
IDD_CM_OD_2	CoreMark executing on CPU0 from	25	63.75	104	mA			
	Flash; Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks enabled	113	81.08	133				

Data Sheet: Technical Data 31 / 143

Table 22. LDO @ 3.3V (continued)

	Single Core, Flash, LPCAC cases							
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes		
IDD_CM_SD_2	CoreMark executing on CPU0 from Flash; Cache Enabled, Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All	25	39.44	65	mA			
		113	53.18	87				
	peripheral clocks enabled	125	60.03	98				
IDD_CM_MD_2	CoreMark executing on CPU0 from	25	17.50	29	mA			
	Flash; Cache Enabled, Core voltage at 1.0V; Clocked from the FIRC at 48 MHz;	113	28.27	47				
	All peripheral clocks enabled	125	33.89	56				
IDD_CM_LP_2	CoreMark executing on CPU0 from	25	4.61	8	mA			
	Flash; Cache Enabled, Core voltage at 1.0V; Clocked from the SIRC at 12 MHz;	113	15.58	26				
	All peripheral clocks enabled	125	21.82	36				
	Dual Core, Flash, LPCAC cases							
IDD_ACT_OD_3	While(1) executing on CPU0 from Flash;	25	27.17	45	mA			
	While(1) executing on CPU1 from RAM; Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks disabled	113	43.59	72				
IDD_ACT_SD_3	While(1) executing on CPU0 from Flash; While(1) executing on CPU1 from RAM; Cache Enabled, Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All peripheral clocks disabled	25	17.37	29	mA			
		113	30.56	50				
		125	37.27	61				
IDD_ACT_MD_3	While(1) executing on CPU0 from Flash; While(1) executing on CPU1 from RAM; Cache Enabled, Core voltage at 1.0V;	25	7.90	13	mA			
		113	18.59	31				
	Clocked from FIRC at 48 MHz; All peripheral clocks disabled	125	24.18	40				
IDD_ACT_LP_3	While(1) executing on CPU0 from Flash;	25	2.20	4	mA			
	While(1) executing on CPU1 from RAM; Cache Enabled, Core voltage at 1.0V;	113	13.18	22				
	Clocked from the SIRC at 12 MHz; All peripheral clocks disabled	125	19.43	32				
IDD_CM_OD_3	CoreMark executing on CPU0 from	25	33.99	56	mA			
	Flash; CoreMark executing on CPU1 from RAM; Cache Enabled, Core voltage at 1.2V; Clocked from PLL0 at 100 MHz; All peripheral clocks disabled	113	50.70	83				
IDD_CM_SD_3	CoreMark executing on CPU0 from	25	21.32	35	mA			
	Flash; CoreMark executing on CPU1 from RAM; Cache Enabled, Core voltage	113	34.78	57				
		125	41.52	68				

Table 22. LDO @ 3.3V (continued)

	Single Core, Flash, LPCAC cases					
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
	at 1.1V; Clocked from PLL0 at 100 MHz; All peripheral clocks disabled					
IDD_CM_MD_3	g .	25	9.58	16	mA	
	Flash; CoreMark executing on CPU1 from RAM; Cache Enabled, Core voltage	113	20.36	34		
	at 1.0V; Clocked from FIRC at 48 MHz; All peripheral clocks disabled	125	25.94	43		
IDD_CM_LP_3	CoreMark executing on CPU0 from	25	2.63	5	mA	
	Flash; CoreMark executing on CPU1 from RAM; Cache Enabled, Core voltage	113	13.63	23		
	at 1.0V; Clocked from the SIRC at 12 MHz; All peripheral clocks disabled	125	19.88	33		
	Single Core, RAM w Cache cases					
IDD_ACT_OD_5	While(1) executing on CPU0 from RAM;	25	25.48	41	mA	
	Cache Enabled; Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks disabled	113	42.34	68		
IDD_ACT_SD_5	While(1) executing on CPU0 from RAM; Cache Enabled; Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All peripheral clocks disabled	25	16.41	27	mA	
		113	30.04	48		
		125	36.22	58		
IDD_ACT_MD_5	While(1) executing on CPU0 from RAM; Cache Enabled; Core voltage at 1.0V; Clocked from the FIRC at 48 MHz; All peripheral clocks disabled	25	7.60	13	mA	
		113	18.67	31		
		125	24.94	41		
IDD_ACT_LP_5	While(1) executing on CPU0 from RAM;	25	2.17	4	mA	
	Cache Enabled RAM Core voltage at 1.0V; Clocked from the SIRC at 12 MHz;	113	13.05	22		
	All peripheral clocks disabled	125	19.33	32		
	Single Core, Flash w/o LPCAC cases					
IDD_CM_OD_6	CoreMark executing on CPU0 from	25	24.52	40	mA	
	Flash; Cache Disabled; Core voltage at 1.2V; Clocked from PLL0 at 150 MHz; All peripheral clocks disabled	113	40.92	67		
IDD_CM_SD_6	CoreMark executing on CPU0 from	25	15.57	26	mA	
	Flash; Cache Disabled; Core voltage at 1.1V; Clocked from PLL0 at 100 MHz; All peripheral clocks disabled	113	28.85	48		
		125	35.56	58		
IDD_CM_MD_6	CoreMark executing on CPU0 from	25	7.08	12	mA	
	Flash; Cache Disabled; Core voltage at	113	17.81	30		

Data Sheet: Technical Data 33 / 143

Table 22. LDO @ 3.3V (continued)

	Single Core, Flash, LPCAC cases						
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes	
	1.0V; Clocked from the FIRC at 48 MHz; All peripheral clocks disabled	125	23.39	39			

- 1. Based on characterization of typical units. Not tested in production
- 2. Based on characterization of typical numbers + 3 sigma. Not tested in production

Appendix B: Static IDD

NOTE

Refer to Thermal specifications for formula to calculate Ta from Tj

Table 23. DCDC @ 3.3 V

	Single Core, Flash, LPCAC cases					
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
IDD_SLEEP	Sleen: IVS disabled: All RAM retained:	25	1.89	4	mA	
		113	6.28	13		
	at 48MHz by FIRC; All regulators in Normal mode	125	9.25	18		
IDD_SLEEP_LP	Core_Main in Sleep; Core_Wake in	25	1.53	3	mA	
	Sleep; IVS disabled; All RAM retained; Core voltage at 1.0V; Core clocked	113	6.07	13		
at 48MHz by FIRC; Core regul	at 48MHz by FIRC; Core regulator in low power mode, System regulator in	125	8.41	18		
IDD_DSLEEP_OD	Core_Main in Deep Sleep; Core_Wake in	25	0.93	2	mA	
	Deep Sleep; IVS disabled; All HVD/LVD enabled; Core voltage at 1.2V; All RAM retained; All regulators in Normal mode	113	7.56	19		
IDD_DSLEEP_MD	Core_Main in Deep Sleep; Core_Wake in	25	0.74	2	mA	
	Deep Sleep; IVS disabled; All HVD/LVD enabled; Core voltage at 1.0V; All RAM	113	4.61	11		
	retained; All regulators in Normal mode	125	6.64	15		
IDD_DSLEEP_IV	Core_Main in Deep Sleep; Core_Wake in	25	0.74	2	mA	
S	Deep Sleep; IVS enabled; All HVD/LVD disabled; Core voltage at 1.0V; All RAM	113	4.58	11		
	retained; All regulators in Normal mode	125	6.59	15		
IDD_DSLEEP_LP	Core_Main in Deep Sleep; Core_Wake in	25	0.17	1	mA	
	Deep Sleep; IVS enabled; All HVD/LVD disabled; All RAM retained; Core voltage at 1.0V; All Regulators in low power mode	113	4.12	11		
		125	6.17	15		

Table 23. DCDC @ 3.3 V (continued)

	Single Core, Flash, LPCAC cases					
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
IDD_PDOWN_64 K	in Power Down; IVS enabled; All HVD/LVD disabled; 64KB RAM retained;	25	1.97	-	μΑ	
		113	48.37	-		
		125	94.25	-		
IDD_PDOWN_128	1	25	2.31	-	μA	
K	in Power Down; IVS enabled; All HVD/LVD disabled; 128KB RAM	113	56.18	-		
	retained; Core voltage at 1.0V; All regulators in low power mode	125	109.42	-		
IDD_PDOWN_OD	Core_Main in Power Down; Core_Wake	25	588.25	-	μΑ	
	in Power Down; IVS disabled; All HVD/LVD enabled; Core voltage at 1.2V; No RAM retained; All regulators in Normal mode	113	669.54	-		
IDD_PDOWN_MD	Core_Main in Power Down; Core_Wake	25	582.72	-	μΑ	
	in Power Down; IVS disabled; All HVD/LVD enabled; Core voltage at 1.0V; No RAM retained; All regulators in Normal mode	113	650.05	-		
		125	683.72	-		
IDD_PDOWN_IVS	Core_Main in Power Down; Core_Wake in Power Down; IVS enabled; All HVD/LVD enabled; Core voltage at 1.0V; No RAM retained; All regulators in Normal mode	25	581.34	-	μΑ	
		113	641.27	-		
		125	668.90	-		
IDD_PDOWN_WK	in Deen Sleen: IVS enabled: All	25	33.69	-	μΑ	
_DS		113	272.77	-		
	Core voltage at 1.0V; All regulators in low power mode	125	394.07	-		
IDD_PDOWN_RE	Core_Main in Power Down; Core_Wake	25	5.18	-	μΑ	
T_0V7	in Power Down; IVS disabled; All HVD/LVD disabled; Core voltage at 0.7V; All RAM retained; All regulators in low power mode	113	98.80	-		
		125	176.14	-		
IDD_DPDOWN_0	Core_Main in Deep Power Down;	25	133.32	-	μΑ	
	Core_Wake in Deep Power Down; IVS powered down; All HVD/LVD disabled; No RAM retained; DCDC output disabled; Core regulator in low power mode, System regulator in Normal mode	113	153.96	-		
		125	170.90	-		
IDD_DPDOWN_L P	Core_Main in Deep Power Down; Core_Wake in Deep Power Down;	25	0.96	-	μА	

Table 23. DCDC @ 3.3 V (continued)

	Single Core, Flash, LPCAC cases					
Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
	IVS powered down; All HVD/LVD	113	18.39	-		
	disabled; No RAM retained; DCDC output disabled; All regulators in low power mode	125	31.37	-		
IDD_DPDOWN_O	Core_Main in Deep Power Down;	25	1.22	-	μΑ	
SC32K	Core_Wake in Deep Power Down; IVS powered down; All HVD/LVD	113	19.61	-		
	disabled; No RAM retained; DCDC output disabled; All regulators in low power mode; OSC32K enabled	125	32.13	-		
IDD_DPDOWN_F	Core_Main in Deep Power Down;	25	0.92	-	μΑ	
RO16K	Core_Wake in Deep Power Down; IVS powered down; All HVD/LVD disabled; No RAM retained; All regulators in low power mode; FRO16K enabled	113	18.40	-		
		125	31.63	-		
IDD_DPDOWN_3 2K	Core_Main in Deep Power Down; Core_Wake in Deep Power Down; IVS powered down; All HVD/LVD disabled; No RAM retained; All regulators in low power mode; 32KB VBAT SRAM retained	25	1.35	-	μΑ	
		113	30.88	-		
		125	52.36	-		
IDD_VBAT_0	VBAT mode; DCDC output disabled	25	0.19	-	μΑ	3
		113	4.76	-		
		125	7.56	-		
IDD_VBAT_32K	VBAT mode; DCDC output disabled;	25	0.66	-	μA	3
	32KB VBAT SRAM retained	113	17.35	-		
		125	28.23	-		
IDD_VBAT_8K	VBAT mode; DCDC output disabled; 8KB	25	0.43	-	μA	3
	VBAT SRAM retained	113	8.12	-		
		125	13.08	-		
IDD_VBAT_OSC3	VBAT mode; DCDC output disabled;	25	0.64	-	μΑ	3
2K	RTC enabled and clocked from OSC32K	113	4.93	-		
		125	7.96	-		
IDD_VBAT_FRO1	VBAT mode; DCDC output disabled;	25	0.56	-	μΑ	3
6K	RTC enabled and clocked from FRO16K	113	4.86	-		
		125	7.94	-		

^{1.} Based on characterization of typical units. Not tested in production

Data Sheet: Technical Data

^{2.} Based on characterization of typical numbers + 3 sigma. Not tested in production

3. Power measurements for IDD_VBATx symbols are attained after turning off external power supplies to all domains, except VDD_BAT

NOTE

Refer to Thermal specifications for formula to calculate Ta from Tj

Table 24. LDO @ 1.8 V

Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
IDD_SLEEP	Core_Main in Sleep; Core_Wake in	25	3.64	7	mA	
	Sleep; IVS disabled; All RAM retained; Core voltage at 1.0V; Core clocked	113	15.25	33		
	at 48MHz by FIRC; All regulators in Normal mode	125	22.64	46		
IDD_SLEEP_LP	Core_Main in Sleep; Core_Wake in	25	3.47	7	mA	
	Sleep; IVS disabled; All RAM retained; Core voltage at 1.0V; Core clocked	113	14.94	32		
	at 48MHz by FIRC; Core regulator in low power mode, System regulator in Normal mode	125	20.87	44		
IDD_DSLEEP_OD	Core_Main in Deep Sleep; Core_Wake in	25	1.06	3	3 mA	
	Deep Sleep; IVS disabled; All HVD/LVD enabled; Core voltage at 1.2V; All RAM retained; All regulators in Normal mode	113	16.67	41		
IDD_DSLEEP_MD	Core_Main in Deep Sleep; Core_Wake in	25	0.65	2	mA	
	Deep Sleep; IVS disabled; All HVD/LVD enabled; Core voltage at 1.0V; All RAM	113	10.83	27		
	retained; All regulators in Normal mode	125	16.08	38		
IDD_DSLEEP_IV	Core_Main in Deep Sleep; Core_Wake in Deep Sleep; IVS enabled; All HVD/LVD disabled; Core voltage at 1.0V; All RAM	25	0.63	2	mA	
S		113	10.74	27		
	retained; All regulators in Normal mode	125	15.93	38		
IDD_DSLEEP_LP	Core_Main in Deep Sleep; Core_Wake in	25	0.43	2	mA	
	Deep Sleep; IVS enabled; All HVD/LVD disabled; All RAM retained; Core voltage	113	10.71	26		
	at 1.0V; All Regulators in low power mode	125	15.45	37		
IDD_PDOWN_LP	Core_Main in Power Down; Core_Wake	25	3.24	-	μA	
	in Power Down; IVS enabled; All HVD/LVD disabled; No RAM retained;	113	74.37	-		
	Core voltage at 1.0V; All regulators in low power mode	125	132.00	-		
IDD_PDOWN_WK	Core_Main in Power Down; Core_Wake	25	56.59	-	μA	
_DS	in Deep Sleep; IVS enabled; All HVD/LVD disabled; No RAM retained;	113	612.39	-		
	Core voltage at 1.0V; All regulators in low power mode	125	881.93	-		
IDD_PDOWN_32 K	Core_Main in Power Down; Core_Wake in Power Down; IVS enabled; All	25	3.30	-	μА	

Table continues on the next page...

Data Sheet: Technical Data 37 / 143

Table 24. LDO @ 1.8 V (continued)

Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
	HVD/LVD disabled; 32KB RAM retained;	113	83.21	-		
	Core voltage at 1.0V; All regulators in low power mode	125	154.15	-		
IDD_PDOWN_64	Core_Main in Power Down; Core_Wake in Power Down; IVS enabled; All HVD/LVD disabled; 64KB RAM retained; Core voltage at 1.0V; All regulators in low power mode	25	3.58	-	μΑ	
K		113	93.45	-		
		125	172.60	-		
IDD_PDOWN_128	in Power Down: IVS enabled: All	25	4.13	-	μΑ	
K		113	114.58	-		
	retained; Core voltage at 1.0V; All regulators in low power mode	125	208.49	-		
IDD_PDOWN_OD	Core_Main in Power Down; Core_Wake	25	222.76	-	μA	
	in Power Down; IVS disabled; All HVD/LVD enabled; Core voltage at 1.2V; No RAM retained; All regulators in Normal mode	113	357.79	-		
IDD_PDOWN_MD	Core_Main in Power Down; Core_Wake	25	209.30	-	μΑ	
	in Power Down; IVS disabled; All HVD/LVD enabled; Core voltage at 1.0V;	113	316.31	-		
	No RAM retained; All regulators in Normal mode	125	393.64	-		
IDD_PDOWN_IVS	Core_Main in Power Down; Core_Wake	25	204.60	-	μΑ	
	in Power Down; IVS enabled; All HVD/LVD enabled; Core voltage at 1.0V;	113	291.74	-		
	No RAM retained; All regulators in Normal mode	125	358.82	-		

^{1.} Based on characterization of typical units. Not tested in production

Table 25. LDO @ 3.3 V

Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
IDD_SLEEP	Core_Main in Sleep; Core_Wake in	25	3.75	8	mA	
Core voltage at 1.0V; Core clock	Sleep; IVS disabled; All RAM retained; Core voltage at 1.0V: Core clocked	113	15.40	34		
	at 48MHz by FIRC; All regulators in	125	23.15	47		
IDD_SLEEP_LP	Core_Main in Sleep; Core_Wake in Sleep; IVS disabled; All RAM retained; Core voltage at 1.0V; Core clocked at 48MHz by FIRC; Core regulator in	25	3.62	7	mA	
		113	15.70	33		
		125	22.56	45		

^{2.} Based on characterization of typical numbers + 3 sigma. Not tested in production

Table 25. LDO @ 3.3 V (continued)

Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
	low power mode, System regulator in Normal mode					
IDD_DSLEEP_OD	Core_Main in Deep Sleep; Core_Wake in	25	1.14	3	mA	
	Deep Sleep; IVS disabled; All HVD/LVD enabled; Core voltage at 1.2V; All RAM retained; All regulators in Normal mode	113	16.20	42		
IDD_DSLEEP_MD	Core_Main in Deep Sleep; Core_Wake in	25	0.76	2	mA	
	Deep Sleep; IVS disabled; All HVD/LVD enabled; Core voltage at 1.0V; All RAM	113	10.95	27		
	retained; All regulators in Normal mode	125	16.22	39		
IDD_DSLEEP_IV	Core_Main in Deep Sleep; Core_Wake in	25	0.74	2	mA	
S	disabled; No RAM retained;	113	10.86	27		
		125	16.08	39		
IDD_DSLEEP_LP	Core_Main in Deep Sleep; Core_Wake in	25	0.44	2	mA	
	Deep Sleep; IVS enabled; All HVD/LVD disabled; All RAM retained; Core voltage	113	10.89	26		
	at 1.0V; All Regulators in low power mode	125	16.79	37		
IDD_PDOWN_OD	Core_Main in Power Down; Core_Wake	25	329.98	-	μΑ	
	in Power Down; IVS disabled; All HVD/LVD enabled; Core voltage at 1.2V; No RAM retained; All regulators in Normal mode	113	461.51	-		
IDD_PDOWN_MD	Core_Main in Power Down; Core_Wake	25	317.87	-	μΑ	
	in Power Down; IVS disabled; All HVD/LVD enabled; Core voltage at 1.0V;	113	428.49	-		
	No RAM retained; All regulators in Normal mode	125	507.62	-		
IDD_PDOWN_IVS	Core_Main in Power Down; Core_Wake	25	313.52	-	μA	
	in Power Down; IVS enabled; All HVD/LVD enabled; Core voltage at 1.0V;	113	404.59	-		
	No RAM retained; All regulators in Normal mode	125	471.72	-		
IDD_PDOWN_LP	Core_Main in Power Down; Core_Wake	25	4.25	-	μA	
	in Power Down; IVS enabled; All HVD/LVD disabled; No RAM retained;	113	78.70	-		
	Core voltage at 1.0V; All regulators in low power mode	125	153.72	-		
IDD_PDOWN_WK	Core_Main in Power Down; Core_Wake	25	58.72	-	μA	
_DS	in Deep Sleep; IVS enabled; All HVD/LVD disabled; No RAM retained;	113	639.62	-		
	Core voltage at 1.0V; All regulators in low power mode	125	954.22	-		

Table 25. LDO @ 3.3 V (continued)

Symbol	Description	Temperature, Tj (°C)	Typ ¹	Max ²	Units	Notes
IDD_PDOWN_32	Core_Main in Power Down; Core_Wake in Power Down; IVS enabled; All HVD/LVD disabled; 32KB RAM retained; Core voltage at 1.0V; All regulators in low power mode	25	4.46	-	μΑ	
K		113	91.74	-		
		125	176.97	-		
IDD_PDOWN_64	/ _	25	4.67	-	μΑ	
K		113	102.24	-	7	
		125	195.37	-		
IDD_PDOWN_128		25	5.14	-	μΑ	
K in Power Down; IVS enabled; All HVD/LVD disabled; 128KB RAM	113	123.85	-			
	retained; Core voltage at 1.0V; All regulators in low power mode	125	233.62	-		

- 1. Based on characterization of typical units. Not tested in production
- 2. Based on characterization of typical numbers + 3 sigma. Not tested in production

NOTE
Refer to Thermal specifications for formula to calculate Ta from Tj

3.2.7 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

3.2.8 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to http://www.nxp.com.
- 2. Perform a keyword search for "EMC design".

3.2.9 Capacitance attributes

Table 26. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins	_	7	pF

3.3 Switching specifications

3.3.1 Device clock specifications

Table 27. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
f _{LPTMR}	LPTMR clock	_	25	MHz	
	Overdrive mode				
f _{CPU}	CPU clock (CPU_CLK)	_	150	MHz	1
f _{AHB}	AHB clock (AHB_CLK)	_	150	MHz	
f _{SLOW}	Slow clock (SLOW_CLK)	_	37.5	MHz	
	Standard Drive mo	de			
f _{CPU}	CPU clock (CPU_CLK)	_	100	MHz	
f _{AHB}	AHB clock (AHB_CLK)	_	100	MHz	
f _{SLOW}	Slow clock (SLOW_CLK)	_	25	MHz	
	Mid-Drive mode				
f _{CPU}	CPU clock (CPU_CLK)	_	50	MHz	
f _{AHB}	AHB clock (AHB_CLK)	_	50	MHz	
f _{SLOW}	Slow clock (SLOW_CLK)	_	12.5	MHz	

^{1.} The maximum value of system clock, core clock, AHB clock, and flash clock under normal run mode can be 3 % higher than the specified maximum frequency when FRO-144M is used as the clock source.

3.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO, LPUART, LPTMR, TPM, CAN, LPI2C, LPI3C, LPSPI, or FlexIO functions.

NOTE
Pad types are specified in the pinout spreadsheet attached to this document.

Table 28. General switching specifications

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (passive filter enabled) — Synchronous path	Largest of 1.5 and	_	AHB clock cycles	1, 2
	150		ns	
GPIO pin interrupt pulse width (passive filter disabled)— Synchronous path	1.5	_	AHB clock cycles	1, 2
GPIO pin interrupt pulse width (passive filter enabled) — Asynchronous path	150	_	ns	1, 3
GPIO pin interrupt pulse width (passive filter disabled) — Asynchronous path	50	_	ns	1, 3

Table 28. General switching specifications (continued)

Description	Min.	Max.	Unit	Notes
AON pins and RESET_B pin interrupt pulse width (passive filter enabled)— Asynchronous path	330	_	ns	1, 4
AON pins and RESET_B pin interrupt pulse width (passive filter disabled)—Asynchronous path	10	_	ns	1
Port rise	e/fall time			
Slow I/O pins			ns	5
• 2.7 ≤ VDD_Px ≤ 3.6 V				
— Fast slew rate (SRE = 0; DSE = 0)	2.5	7		
— Slow slew rate (SRE = 1; DSE = 0)	4.6	15		
• 1.71 ≤ VDD_Px < 2.7 V				
— Fast slew rate (SRE = 0; DSE = 1)	1.6	7		
— Slow slew rate (SRE = 1; DSE = 1)	4.3	20		
Fast I/O pins				8,9
• 2.7 ≤ VDD_Px ≤ 3.6 V				
— Fast slew rate (SRE = 0; DSE = 0) ⁶	0.8	2	ns	
— Slow slew rate (SRE = 1; DSE = 0) ⁶	0.9	2.5		
• 1.71 ≤ VDD_Px < 2.7 V				
— Fast slew rate (SRE = 0; DSE = 1) ⁶	0.5	2		
 Slow slew rate (SRE = 1; DSE = 1)⁶ 	0.6	2.5		
• 1.14 ≤ VDD_Px < 1.32 V		7		
— Fast slew rate (SRE = 0; DSE = 1) ⁷	2	7		
— Slow slew rate (SRE = 1; DSE = 1) ⁷	2	8		
Medium I/O pins				5
• 2.7 ≤ VDD_Px ≤ 3.6 V			ns	
— Fast slew rate (SRE = 0; DSE = 0)	1.500	3.322		
— Slow slew rate (SRE = 1; DSE = 0)	2.071	4.864		
• 1.71 ≤ VDD_Px < 2.7 V				
— Fast slew rate (SRE = 0; DSE = 1)				
— Slow slew rate (SRE = 1; DSE = 1)	1.105	3.536		
	1.815	6.173		
AON pins and RESET_B pin			ns	10
• 2.7 ≤ VDD_Px ≤ 3.6 V	3	8	-	
• 1.71 ≤ VDD_Px < 2.7 V	3.6	20		

^{1.} This is the shortest pulse that is guaranteed to be recognized.

- 2. Synchronous path is used in active and sleep mode for pin functions other than WUU. Pins configured as WUU use asynchronous path in all power modes.
- 3. Asynchronous path is used deep sleep, power down, and deep power down modes.
- 4. The passive filter is always enabled for the RESET_B pin.
- 5. Load is 25 pF. Drive strength and slew rate are configured using PORTx_PCRn[DSE] and PORTx_PCRn[SRE].
- 6. 15 pF lumped load.
- 7. 25 pF lumped load
- 8. These are Port 3 and Port 2 pins.
- 9. Uses default configuration for NCAL and PCAL in PORTS.
- 10. Load is 25 pF.

3.4 Thermal specifications

3.4.1 Thermal operating requirements

Table 29. Thermal operating requirements

Symbol	Description	Min.	Typical	Max.	Unit	Notes
T _A	Ambient temperature	-40	25	125	°C	1
TJ	Die junction temperature maximum	_	_	125	°C	2,3, 4,5

- 1. The device may operate at maximum T_A rating as long as T_J maximum of 125 °C is not exceeded. The simplest method to determine T_J is: T_J = T_A + R_{θJA} × chip power dissipation.
- 2. The device operating specification is not guaranteed beyond 125 °C T_J.
- 3. The maximum operating requirement applies to all chapters unless otherwise specifically stated.
- Operating at maximum conditions for extended periods may affect device reliability. Refer to Product Lifetime Usage application note (AN14180)
- 5. Over-drive mode, at 1.2 V, is not supported above T_J 113 °C.

3.4.2 Thermal attributes

Table 30. Thermal attributes

Board type ¹	Symbol	Description	100 HLQFP	184 BGA	Unit	Notes
2s2p	$R_{\theta JA}$	Junction to Ambient Thermal resistance,	22.8	35	°C/W	2
1s	R _{0JC}	Thermal resistance, junction to case	1.1	_	°C/W	3
2s2p	$\Psi_{ m JT}$	Junction to top of package Thermal characterization parameter	0.4	0.2	°C/W	2

- 1. Thermal test board meets JEDEC specification for respective package (JESD51-7 for the 100 HLQFP; JESD51-9 for the 184 BGA)
- 2. Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment.
- 3. Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature refers to the 100 HLQFP package bottom surface temperature.

4 Peripheral operating requirements and behaviors

4.1 Core modules

4.1.1 Debug trace timing specifications

Table 31. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
	Frequency of operation			MHz
	OD mode	_	48	
	SD mode	_	36	
	MD mode	_	25	
T1	Clock period			ns
	OD mode	20.82	_	
	SD mode	27.78	_	
	MD mode	40	_	
T2	Low pulse width	2	_	ns
Т3	High pulse width	2	_	ns
T4	Clock and data rise time	_	3	ns
T5	Clock and data fall time	_	3	ns
Т6	Data setup	1.5	_	ns
T7	Data hold	1.0	_	ns

4.1.2 JTAG electricals

Table 32. JTAG timing (full voltage range)

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			
	Boundary Scan	_	10	MHz
	JTAG-DP/TAP (OD and SD mode)	_	25	MHz
	JTAG-DP/TAP (MD mode)	_	20	MHz
J2	TCLK cycle period	1/J1	_	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	• JTAG-DP/TAP	25	_	ns
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	_	ns
J6	Boundary scan input data hold time after TCLK rise	2	_	ns
J7	TCLK low to boundary scan output data valid	_	30	ns
J8	TCLK low to boundary scan output high-Z	_	25	ns
J9	JTAG-DP/TAP TMS, TDI input data setup time to TCLK rise	8	_	ns
J10	JTAG-DP/TAP TMS, TDI input data hold time after TCLK rise	1	_	ns
J11	TCLK low to JTAG-DP/TAP TDO data valid	_	19	ns
J12	TCLK low to JTAG-DP/TAP TDO high-Z	_	17	ns

Figure 9. Boundary scan (JTAG) timing

4.1.3 SWD electricals

Table 33. SWD timing

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	SWD_CLK frequency of operation	_	25	MHz
S2	SWD_CLK cycle period	1/S1	_	ns

Table 33. SWD timing (continued)

Symbol	Description	Min.	Max.	Unit
S3	SWD_CLK clock pulse width	20	_	ns
S4	SWD_CLK rise and fall times	_	3	ns
S5	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
S6	SWD_DIO input data hold time after SWD_CLK rise	0	_	ns
S7	SWD_CLK high to SWD_DIO data valid	_	25	ns
S8	SWD_CLK high to SWD_DIO high-Z	5	_	ns

Figure 11. Serial wire clock input timing

4.2 Clock modules

4.2.1 Reference Oscillator Specification

This chip is designed to meet targeted specifications with a ±40 ppm frequency error over the life of the part, which includes the temperature, mechanical, and aging excursions.

The table below shows typical specifications for the Crystal Oscillator.

Table 34. System Crystal Oscillator Specification

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
f _{osc}	Crystal Frequency	16	_	50	MHz	
Tol	Frequency tolerance	_	±10	±40	ppm	
Jit _{osc}	Jitter Period jitter (RMS)	_	70	_	ps	
V _{pp}	Peak-to-peak amplitude of oscillation	_	0.6	_	V	1
f _{ec}	Externally provided input clock frequency	0	_	50	MHz	2
t _{DC_EXTAL}	External clock duty cycle	40	50	60	%	
V _{ec}	Externally provided input clock amplitude	Refer	Refer to Table 9 for V _{IH} and V _{IL} levels			

^{1.} When a crystal is being used with the oscillator, the EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

Table 35. System Oscillator Crystal Specifications. Refer to Figure 13 for additional details of the crystal parameters

Freq	R _m (ohms)	C _p (pF)	C _{load} (pF)	C _m (pF)	L _m (mH)	Typical	Typical	Drive lev	/el (μW)
Crystal (MHz)						startup (µs) ¹	Current consumpti on (µA) ¹	min	max
16	80	2.00	8.00	0.008	12.37	215	168.3	16	22
16	200	1.00	8.00	0.008	12.37	186	200.4	31	46
24	80	0.80	8.00	0.008	5.50	61.4	219.2	43	59
25	60	3.00	11.0	0.008	5.07	224	245.6	70	93
25	60	2.00	10.0	0.008	5.07	128	232.5	61	80
25	100	1.00	8.00	0.008	5.07	73.6	232.7	62	82
32	60	3.00	9.00	0.008	3.09	233	269.6	71	95
32	60	2.00	8.00	0.008	3.09	116	253.2	59	80
32	100	1.00	8.00	0.008	3.09	52.4	289.3	91	123
40	50	2.00	8.00	0.008	1.98	80.4	296.9	73	99
40	60	3.00	9.00	0.008	1.98	162	333.2	99	135
48	50	2.00	8.00	0.008	1.37	73.1	359.6	104	140
48	60	3.00	9.00	0.008	1.37	155	407.9	138	188

^{1.} This is based on simulation

^{2.} This specification is for an externally supplied clock driven to EXTAL and does not apply to any other clock input.

4.2.2 32 kHz oscillator electrical specifications

Table 36. 32 kHz oscillator electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_32k}	Crystal frequency	_	32.768	_	kHz	
Tol	Frequency tolerance				ppm	1
	Normal/Start up mode	_	±100	_		
	Low power mode	_	±150	_		
Jitosc	Jitter				ps	
	Period jitter (RMS)	_	12000	_		
	Accumulated jitter over 1 ms (RMS)	_	8000	_		
ESR	Crystal equivalent series resistance				kΩ	
	Normal mode	_	_	100 K		
	Low power mode	_	_	50 K		
R _F	Internal feedback resistor	_	100	_	МΩ	
C _{para}	Parasitic capacitance of EXTAL32 and XTAL32	_	2.5	_	pF	
t _{start}	Crystal start-up time	_	1000		ms	2

Table 36. 32 kHz oscillator electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Normal/Start up mode	_	8000			
	Low power mode					
I _{OSC_32k}	Current consumption					
	ON mode					
	— Normal mode	_	220	_		
	— Low power mode	_	110	_		
	OFF mode	_	0.5	_	nA	
V_{pp}	Peak-to-peak amplitude of oscillation				V	3
	Normal mode	_	0.2	_		
	Low power mode	_	0.1	_		
f _{ec_extal32}	Externally provided input clock frequency	_	32.768	_	kHz	4
t _{DC_EXTAL3}	External clock duty cycle	40	50	60	kHz	
V _{ec_extal32}	Externally provided input clock amplitude		Voltage and equirements V _{IL} levels		mV	4, 5
C _{extal/xtal}	On-chip EXTAL, XTAL Load Capacitance	0	_	30	pF	6,7

- 1. For Low power mode, use crystals with load cap (CL) 7 pF or less
- 2. Proper PC board layout procedures must be followed to achieve specifications.
- 3. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.
- 4. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.
- The parameter specified is a peak-to-peak value and V_{IL} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to VDD_BAT.
- 6. These are the internally available oscillator load capacitors on each of the EXTAL32 and XTAL32 pins, selectable in 2 pF steps. The effective load capacitance is the series equivalent of the selected capacitors.
- 7. The internally available load capacitors can be set to minimum of 0 on XTAL and 2 pF on EXTAL and external load capacitors used instead.

Table 37. 32 kHz oscillation gain setting

Coarse_Amp_G ain	Max ESR (kΩ)	Max Cx (pF) ¹	Notes
00 (default)	50	14	
01	70	22	
10	80	22	
11	100	20	

 Cx is the sum of all capacitance connected to both EXTAL32 and XTAL, including internal load capacitors, pad capacitance and PCB

NOTE

It is recommended that the oscillator margin be measured on the actual application PCB with the target crystal.

4.2.3 Free-running oscillator FRO-144M specifications

Table 38. FRO-144M specifications

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
f _{fro144m}	FRO-144M frequency (nominal)		144		MHz	
Δf _{fro144m}	Frequency deviation					
	 Open loop -20 °C to 85 °C Tj -40 °C to 125 °C Tj Closed loop (using accurate clock source as 	_ _ _	_ _ _	±2 ±3 ±0.25	% % %	
t _{startup}	reference) Start-up time Oscillation time with initial accuracy of -20 % to +2 % of enable signal assertion Oscillation time within +/- 2 % from enable signal assertion	_ _ _	2 20		µs µs	
f _{os}	Frequency overshoot during startup	_	_	2	%	
jit _{per}	Period jitter RMS ¹ Accumulated jitter over 1 ms	_	200	_	ps	
jit _{cyc}	Cycle to cycle jitter	_	200	_	ps	
I _{fro144m_vdd}	Current consumption for VDD_SYS	_	70	_	μA	
I _{fro144m_vdd} _core	Current consumption for VDD_CORE	_	35	_	μA	

^{1.} Reference clock = 144 MHz.

4.2.4 Free-running oscillator FRO-12M specifications

Table 39. FRO-12M specifications

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
f _{fro12m}	FRO-12M frequency (nominal)	_	12	_	MHz	
Δf _{fro12m}	requency deviation open loop closed loop (using accurate clock source as reference)		_	±3 ±0.6	%	
t _{startup}	Start-up time	_	5	_	μs	

Table 39. FRO-12M specifications (continued)

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
f _{os}	Frequency overshoot during startup	_	10	20	%	
I _{fro12m}	Current consumption	_	7	_	μΑ	

4.2.5 Free-running oscillator FRO-16K specifications

Table 40. FRO-16K specifications

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
f _{fro16k}	FRO-16K frequency (nominal)	_	16.384	_	kHz	
Δf _{fro16k}	Frequency deviation over –40 °C to 125 °C • open loop	_	_	±6	%	
TRIM _{step}	Trimming step	_	1.5	_	%	
t _{startup}	Start-up time	_	310	_	μs	
I _{fro16k}	Current consumption	_	50	_	nA	

4.2.6 550 MHz PLL specifications

Table 41. PLL specifications

Symbol	Description	Min	Тур	Max	Units	Notes
fcco	CCO operating frequency	275	_	550	MHz	
Ipll	PLL operating current @ fcco = 550 MHz and fout = 55 MHz	_	484	_	μΑ	
F _{ref}	PLL reference frequency range	5	_	150	MHz	
Jpp_period	Peak-Peak period jitter @ fref =12 MHz; fcco = 550 MHz • fvco = 550 MHz	_	110	_	ps	
Jrms_int	RMS interval jitter @fout = fcco = 550 MHz, fref = 12 MHz	_	14	_	ps	
tpon	Start-up time	_	_	500+300/ F _{ref}	μs	

NOTE

The information in this table applies to both PLL0 (APLL) and PLL1 (SPLL).

4.3 Memories and memory interfaces

4.3.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

Data Sheet: Technical Data 52 / 143

4.3.1.1 Timing specifications

The following command times assume a flash bus clock frequency of 24 MHz. Command times will be increased by up to 10 μ s at 24 MHz if the module is exiting sleep mode when the command is launched. The time to abort a command is not included in the following table.

Table 42. Flash command time specifications

Symbol	Description		Тур.	Max.	Unit	Note
t _{rd1all}	Read 1s All execution time	256 KB	_	1700	μs	
		512 KB	_	3200		
		1024 KB	_	6200		
		1536 KB	_	9300		
		512 KB	_	3200		
		1024 KB	_	6200		
t _{rd1blk}	Read 1s Block execution time	256 KB	_	1500	μs	
		512 KB	_	3050		
		1024 KB	_	6000		
t _{rd1scr}	Read 1s Sector execution time	8 KB	_	50	μs	1
t _{rd1pg}	Read 1s Page execution time	128 B	_	4.4	μs	1
t _{rd1pglv}	Read 1s Page at low voltage execution time	128 B	_	5.8	μs	1
t _{rd1phr}	Read 1s Phrase execution time	16 B	_	3.8	μs	1
t _{rd1phrlv}	Read 1s Phrase at low voltage execution time	16 B	_	4.8	μs	1
t _{rdmisr}	Read into MISR	8 KB	_	50	μs	1
		256 KB	_	1500		
		512 KB	_	3050		
		1024 KB	_	6000		
t _{rd1iscr}	Read 1s IFR Sector execution time	8 KB	_	50	μs	1
t _{rd1ipg}	Read 1s IFR Page execution time	128 B	_	4.4	μs	1
t _{rd1ipglv}	Read 1s IFR Page at low voltage execution time	128 B	_	5.8	μs	1
t _{rd1iphr}	Read 1s IFR Phrase execution time	16 B	_	3.8	μs	1
t _{rd1iphrlv}	Read 1s IFR Phrase at low voltage execution time	16 B	_	4.8	μs	1
t _{rdimisr}	Read IFR into MISR execution time	8 KB	_	50	μs	1
		32 KB	_	190		
pgmpg_initial	Program Page execution time at <1k cycles	128 B	450	600 ²	μs	3

Table 42. Flash command time specifications (continued)

Symbol	Description		Тур.	Max.	Unit	Notes
t _{pgmpg_lifetime}	Program Page execution time at >1k cycles	128 B	450	750 ²	μs	3
t _{pgmphr_initial}	Program Phrase execution time at <1k cycles	16 B	135	180 ²	μs	3
t _{pgmphr_lifetim}	Program Phrase execution time at >1k cycles	16 B	135	225 ²	μs	3
t _{ersall}	Erase All execution time	256 KB	_	800	ms	
		512 KB	_	1500		
		1024 KB	_	2800		
		1536 KB	_	4300		
t _{ersall}	Erase All execution time	256 KB	_	800	ms	
		512 KB	_	1500		
		1024 KB	_	2800		
t _{ersscr}	Erase Sector execution time	8 KB	2	22	ms	3
t _{masers}	Mass Erase execution time (via sideband)	256 KB	_	800	ms	
		512 KB	_	1500		
		1024 KB	_	2800		
		1536 KB	_	4300		

- 1. Time to abort the command may significantly impact the time to execute the command.
- 2. Characterized but not tested in production
- 3. Measured from the time FSTAT[PERDY] is cleared.

4.3.1.2 Flash high voltage current behavior

Table 43. Flash high voltage current behavior

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_IO_PGM}	Average current adder to VDD_Px during flash programming operation	_	_	6	mA	1
I _{DD_IO_ERS}	Average current adder to VDD_Px during flash erase operation	_	_	4	mA	1

^{1.} See the Power Management chapter in the reference manual for the specific VDD_Px voltage supply powering the flash array.

4.3.1.3 Flash reliability specifications

Table 44. Flash reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Program	m Flash				

Table 44. Flash reliability specifications (continued)

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
t _{nvmretp10k}	Data retention after up to 10 K cycles	10	50	_	years	
n _{nvmcycscr}	Sector cycling endurance	10 K	500 K	_	cycles	2
T _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	
T _{nvmretp100}	Data retention after up to 100 K cycles	5	50	_	years	
N _{nvmcyc256}	Sector cycling endurance for 256 KB	100 K	500 K	_	cycles	3

^{1.} Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile.

4.3.2 FlexSPI specifications

Measurements are with a load of 15pf and an input slew rate of 1 V/ns.

4.3.2.1 FlexSPI input/read timing

There are three sources for the internal sample clock for FlexSPI read data:

- Dummy read strobe generated by FlexSPI controller and looped back internally (FlexSPIn_MCR0[RXCLKSRC] = 0x0)
- Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1)
- SCK output generated by FlexSPI controller and loopbacked through the SCK pad (FlexSPIn_MCR0[RXCLKSRC] = 0x2)
- Read strobe provided by memory device and input from DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x3)

The following sections describe input signal timing for each of these internal sample clock sources.

4.3.2.1.1 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0 or 0x1 or 0x2

Table 45. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0

Symbol	Parameter	Min.	Max.	Unit
	Frequency of operation	_	40	MHz
T _{IS}	Setup time for incoming data	17	_	ns
T _{IH}	Hold time for incoming data	0	_	ns

Table 46. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1 and FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x2

Symbol	Parameter	Min.	Max.	Unit
	Frequency of operation OD mode	_	100 75	MHz

Sector cycling endurance represents the number of Program/Erase cycles on a single sector at -40°C ≤ T_i ≤ 125°C.

^{3.} For devices with a single flash block, sectors must be located within the last 256 KB of the flash main memory. For devices with two flash blocks, sectors must be located within the last 256 KB of each flash main memory but must not total more than 256 KB per device.

Table 46. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1 and FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x2 (continued)

Symbol	Parameter	Min.	Max.	Unit
	SD mode		50	
	MD mode			
T _{IS}	Setup time for incoming data	2.4	_	ns
T _{IH}	Hold time for incoming data	1	_	ns

NOTE Timing shown is based on the memory generating read data on the SCK falling edge, and FlexSPI controller sampling read data on the falling edge.

4.3.2.1.2 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3

There are two cases when the memory provides both read data and the read strobe in SDR mode:

- · A1 Memory generates both read data and read strobe on SCK rising edge (or falling edge)
- · A2 Memory generates read data on SCK falling edge and generates read strobe on SCK rising edge

Table 47. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A1)

Symbol	Parameter	Min.	Max.	Unit
	Frequency of operation OD mode SD mode MD mode	_	100 75 50	MHz
T _{SCKD} - T _{SCKDQS}	Time delta between T _{SCKD} and T _{SCKDQS}	-2	2	ns

NOTE

Timing shown is based on the memory generating read data and read strobe on the SCK rising edge. The FlexSPI controller samples read data on the DQS falling edge.

Table 48. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A2)

Symbol	Parameter	Min.	Max.	Unit
	Frequency of operation	_	100	MHz
	OD mode		75	
	SD mode		50	
	MD mode			
T _{SCKD} -	Time delta between T _{SCKD} and T _{SCKDQS}	-2	2	ns

NOTE

Timing shown is based on the memory generating read data on the SCK falling edge and read strobe on the SCK rising edge. The FlexSPI controller samples read data on a half-cycle delayed DQS falling edge.

4.3.2.1.3 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0 or 0x1 or 0x2

Table 49. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0

Symbol	Parameter	Min.	Max.	Unit
	Frequency of operation	_	20	MHz

Table 49. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0 (continued)

Symbol	Parameter	Min.	Max.	Unit
T _{IS}	Setup time for incoming data	17	_	ns
T _{IH}	Hold time for incoming data	0	_	ns

Table 50. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1 and FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x2

Symbol	Parameter	Min	Max	Unit
	Frequency of operation OD mode SD mode MD mode	_	75 50 25	MHz
T _{IS}	Setup time for incoming data	2.27	_	ns
T _{IH}	Hold time for incoming data	1	_	ns

4.3.2.1.4 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3

There are two cases when the memory provides both read data and the read strobe in DDR mode:

- B1—Memory generates both read data and read strobe on SCK edges
- B2—Memory generates read data on SCK edges and generates read strobe on SCK2 edges

Table 51. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B1)

Symbol	Parameter	Min.	Max.	Unit
	Frequency of operation OD mode SD mode MD mode	_	75 50 25	MHz
T _{SCKD} -	Time delta between T _{SCKD} and T _{SCKDQS}	-1	1	ns

Table 52. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (case B2)

Symbol	Parameter	Min.	Max.	Unit
	Frequency of operationOD modeSD modeMD mode	_	75 50 25	MHz
T _{SCKD} - T _{SCKDQS}	Time delta between T _{SCKD} and T _{SCKDQS}	-1	1	ns

4.3.2.2 FlexSPI output/write timing

The following sections describe output signal timing for the FlexSPI controller including control signals and data outputs.

4.3.2.2.1 SDR mode

Table 53. FlexSPI output timing in SDR mode

Symbol	Parameter	Min.	Max.	Unit
	Frequency of operation	_	100	MHz
	OD mode		75	
	SD mode		50	
	MD mode		1	
T _{CK}	SCK clock period	6.0	_	ns

Table 53. FlexSPI output timing in SDR mode (continued)

Symbol	Parameter	Min.	Max.	Unit
T _{DVO}	Output data valid time	_	3	ns
T _{DHO}	Output data hold time	2	_	ns
T _{CSS}	Chip select output setup time	3 x T _{CK} - 1	_	ns
T _{CSH}	Chip select output hold time	3 x T _{CK} + 2	_	ns

^{1.} The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing specifications.

NOTE

T_{CSS} and T_{CSH} are configured by the FlexSPI*n_*FLSHA*x*CR1 register, the default values are shown above. Refer to the Reference Manual for more details.

4.3.2.2.2 DDR mode

Table 54. FlexSPI output timing in DDR mode

Symbol	Parameter	Min.	Max.	Unit
	Frequency of operation ¹	_	75	MHz
	OD mode		50	
	SD mode		25	
	MD mode		20	
T _{CK}	SCK clock period (FlexSPIn_MCR0[RXCLKSRC] = 0x0)	6.0	_	ns
T _{DVO}	Output data valid time	_	1.7	ns
T _{DHO}	Output data hold time	0.8	_	ns
T _{CSS}	Chip select output setup time	3 x T _{CK} /2 - 0.7	_	ns
T _{CSH}	Chip select output hold time	3 x T _{CK} /2 + 0.8	_	ns

1. The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI DDR input timing specifications.

NOTE

T_{CSS} and T_{CSH} are configured by the FlexSPI*n_*FLSHA*x*CR1 register, the default values are shown above. Refer to the Reference Manual for more details.

4.3.2.3 eFuse specifications

Table 55. Fusebox electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{SYS_PROG}	VDD_SYS Voltage for fuse programming	2.25	2.5	2.75	V	1
I _{SYS_PROG}	Fuse programming current	_	_	40	mA	2
T _{PROG}	Fuse programming time	_	10	11	μs	3

- 1. VDD SYS ramp-up slew rate MUST be slower than 2.5V/100 µs to avoid unintentional program
- 2. This is the current required to program just the fuse and is in addition to any other current being drawn by the device.
- 3. The maximum total accumulated time for elevated VDD_SYS (VDD_SYS > 1.98V) is 20 seconds over the lifetime of the device.

4.4 Analog

4.4.1 ADC electrical specifications

4.4.1.1 ADC operating conditions

Table 56. ADC operating conditions

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
V_ANA	Supply voltage	1.71		3.6	V	
ΔVDD		-0.1	0	0.1	mV	2
ΔVSS		-0.1	0	0.1	mV	2
V_{REFH}	ADC reference voltage high	0.99		VDD_ANA	V	
V _{REFL}	ADC reference voltage low	VSSA		VSSA	V	3
V _{ADIN}	Input Voltage	VREFL		VREFH	V	3,4,5
f _{ADCK}	ADC Input clock frequency					
	Low-power mode (PWRSEL=00)	6		24	MHz	
	High-speed 16b mode (PWRSEL==10)	6		48	MHz	
	High-speed 12b mode (PWRSEL==10)	6		60	MHz	

Table 56. ADC operating conditions (continued)

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
C _{ADIN}	Input Capacitance		3.7	4.63	pF	
C _P	Parasitic Capacitance of pad/package		2	3	pF	
R _{AS}	Analog source resistance (external)			5	kΩ	6
R _{ADIN}	High-Speed Dedicated Input				kΩ	7,8
	VDDAD ≥ 1.71 V		0.95	1.7	kΩ	
	VDDAD ≥ 2.1 V			1.575	kΩ	
	VDDAD ≥ 2.5 V			1.4	kΩ	
	Standard Dedicated Input				kΩ	
	VDDAD ≥ 1.71 V		1.35	3.25	kΩ	
	VDDAD ≥ 2.1 V			2.14	kΩ	
	VDDAD ≥ 2.5 V			1.75	kΩ	
	Standard Muxed Input				kΩ	
	VDDAD ≥ 1.71 V		1.65	7.25	kΩ	
	VDDAD ≥ 2.1 V			3.05	kΩ	
	VDDAD ≥ 2.5 V			2.35	kΩ	

- 1. Typical values assume V_{DD_ANA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 24 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference
- 3. For devices that do not have a dedicated VREFL and VSS_ANA pins, VREFL and VSS_ANA are tied to VSS internally.
- 4. If V_{REFH} is less than V_{DD_ANA}, then voltage inputs greater than V_{REFH} but less than V_{DD_ANA} are allowed but result in a full-scale conversion result
- 5. ADC selected inputs and unselected dedicated inputs must not exceed V_{DD_ANA} during an ADC conversion. Unselected muxed inputs may exceed V_{DD_ANA} but must not exceed the IO supply associated with the inputs (VDD_Px) when a conversion is in progress. If an ADC input may exceed these levels, then a minimum of 1 K series resistance must be used between the source and the ADC input pin.
- 6. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible.
- 7. There are several types of ADC inputs. To see which channels correspond to which type of ADC inputs, see ADC input connections in reference manual
- 8. If the input come through a mux in the IO pad, add the IO Mux Resistance Adder value to the resistance for the channel type

4.4.1.2 ADC electrical characteristics

Table 57. ADC electrical specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
I _{DDA}	Supply current					2
	PWREN=0, Conversions triggered at 1 kS/s		2.2		μΑ	
	PWREN=1, No Conversions		160		μΑ	
	Low-power, single-ended mode, 6 MHz		295	390	μΑ	
	Low-power, differential, or dual-SE mode, 6 MHz		410	550	μА	
	Low-power, single-ended mode, 24 MHz		380	520	μΑ	
	Low-power, differential, or dual-SE mode, 24 MHz		500	690	μА	
	High-speed, single-ended mode, 48 MHz		730	960	μΑ	
	High-speed, differential, or dual-SE mode, 48 MHz		1150	1490	μА	
I _{TS}	Temp Sensor Current Adder		40	50	μΑ	
C _{SMP}	ADC Sample cycles	3.5		131.5	cycles	3

Table 57. ADC electrical specifications (continued)

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
C_CONV	ADC conversion cycles					
	16-bit	24		152	cycles	
	12-bit	19		147	cycles	
C_RATE	ADC conversion rate					4
	Low-power mode			0.857	MS/s	
	High-speed 12b mode			3.15	MS/s	
	High-speed 16b mode			2.0	MS/s	
T_SMP_REQ	Required Sample Time	See equation			ns	5
T_AZ_REQ	Required Auto-Zero time					5
	Low-power mode	291.7			ns	
	High-speed 12b mode	59.3			ns	
	High-speed 16b mode	72.9			ns	
T_SMP	External inputs	See equation			ns	5
T_SMP_INT	Internal inputs	1.5			μs	6
DNL	Differential non-linearity			±1	LSB ⁷	8
INL	Integral non-linearity			±3	LSB ⁷	8
Z_SE	Zero-scale error (V_ADIN = V_REFL)			±2	LSB ⁷	8
F_SE	Full-scale error (V_ADIN = V_REFH)			±5	LSB ⁷	8
TUE	Total Unadjusted Error			±7	LSB ⁷	8
ENOB	Differential Effective number of bits					8, 9
	1 MS/s (AVGS=001)		13.5		bits	
	2 MS/s		13.0		bits	
	3.15 MS/s (for 12-bit mode)		11.3		bits	
	Single-ended Effective number of bits					
	1 MS/s (AVGS=001)		13.0		bits	
	2 MS/s		12.5		bits	
	3.15 MS/s (for 12-bit mode)		11.0		bits	
SINAD	Differential Signal-to-noise plus distortion					8,9
	1 MS/s (AVGS=001)		83		dB	
	2 MS/s		80		dB	
	3.15 MS/s (for 12-bit mode)		70		dB	

Table 57. ADC electrical specifications (continued)

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Single-ended Signal-to-noise plus distortion					
	1 MS/s (AVGS=001)		80		dB	
	2 MS/s		77		dB	
	3.15 MS/s (for 12-bit mode)		68		dB	
THD	Total Harmonic distortion		95		dB	8,9
SFDR	Spurious free dynamic range		96		dB	8,9
t _{ADCSTUP}	ADC/VREF start-up time	5			μs	10
E_IL	Input leakage error		llkg		mV	11.
E_TS	Temperature sensor error					12
	T=-40 to 105 °C		1	3	°C	
	T=-40 to 125 °C		1.5	4	°C	
А	Slope Factor Constant	-	771	_		
В	Offset Constant	_	302	_		
α	Bandgap constant	-	10.06	-		

- 1. Typical values assume V_{DD ANA} = 3.3 V, Temp = 25 °C, f_{ADCK} = 24 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. The ADC supply current depends on the ADC conversion clock speed, conversion rate, and power mode. Typical value show is at 6 MHz, 24 MHz, and 48 MHz. For lowest power operation, PWRSEL should be set to 00.
- 3. Must meet minimum TSMP requirement
- 4. Maximum conversion rate for high-speed mode is with F_{ADCK} = 48 MHz. Maximum conversion rate for low-power mode is F_{ADCK} = 24 MHz and 7.5 sample cycles (to meet the minimum auto-zero time requirement)
- 5. Required sample time is dictated by external components RAS, CAS, internal components RADIN, CADIN, CP, and desired sample accuracy in bits(B). Calculate it with formula: T SMP REQ = B*0.693*[RAS*(CAS+CP+CADIN)+ (RAS + R ADIN)* CADIN. Required auto-zero time is for ADC comparator offset cancellation. The chosen sample time should be no less than maximum of the two: $T_{SMP} = max(T_{SMP REQ}, T_{AZ REQ})$
- 6. Internal channel inputs are those that do not come from external source (temperature sensor, bandgap).
- 7. 1 LSB = (V_{REFH} V_{REFL})/2^N (N=14 bits), for 16- bit specifications, multiply by 4.
- 8. All accuracy numbers assume that the ADC is calibrated with V_{REFH}=V_{DD ANA} and using a high- speed- dedicated input channel.
- 9. Dynamic results assume F_{in} =1 kHz sinewave, no averaging.
- 10. Set the power-up delay (PUDLY) according to the ADC start-up time if PWREN=0.
- 11. I_{lka} = leakage current (Refer to pin leakage specification in the voltage and current operating ratings of packaged device)
- 12. The temperature sensor can be calibrated to a +/- 0.5 % precision after board assembly by using a 3-temperature calibration flow with accurate ± 0.15 % temperature chamber.

4.4.2 12-bit DAC electrical characteristics

4.4.2.1 12-bit DAC operating requirements

Table 58. 12-bit DAC operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
VDD_ANA	Supply voltage	1.71	_	3.6	V	
V _{DACR}	Reference voltage	0.97	_	VDD_ANA	V	1
C _L	Output load capacitance	_	50	100	pF	2
IL	Output load current	-1	_	1	mA	3
DAC_c_rat	DAC conversion rate	_	_	1	MSPS	
е						

- 1. The DAC reference can be selected to be VDD_ANA or VREFH or VREFO PAD, keep VDD_ANA be the highest voltage.
- 2. A small load capacitance (50 pF) can improve the bandwidth performance of the DAC.
- 3. Sink or source current availability

4.4.2.2 12-bit DAC operating behaviors

Table 59. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_DAC}	Supply current					
	Normal mode	_	300	500	μΑ	

Table 59. 12-bit DAC operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Low-power mode	_	100	150	μA	
	Disabled	_	10	_	nA	
t _{DAC}	Full-scale settling time (0x100 to 0xF00)				μs	1
	Normal mode	_	2.5	3		
	Low-power mode	_	5	6		
t _{CCDAC}	Code-to-code settling time (0xBF8 to 0xC08)	_	0.7	1.0	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	_	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	_	V _{DACR}	mV	
INL	Integral non-linearity error	_	_	±3	LSB	2
DNL	Differential non-linearity error	_	_	±1	LSB	3
E _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	4
E _G	Gain error	_	±0.3	±0.6	%FSR	4
	• V _{DACR} < 2.1 V	_	±0.1	±0.3		
	• V _{DACR} > 2.1 V					
PSRR	Power supply rejection ratio, VDD_ANA ≥ 2.4 V	_	70	_	dB	
T _{CO}	Temperature coefficient offset voltage at middle scale	_	±30	_	μV/C	5
T _{EO}	Temperature coefficient offset error	_	30	_	μV/C	
T _{GE}	Temperature coefficient gain error	_	10	_	PPM/C	
Rop	Output resistance (load = 10 kΩ)	_	200	_	Ω	
SR	Slew rate 100 h ->F00 h or F00 h ->100 h				V/µs	
	Normal mode	_	3.6	_		
	Low-power mode	_	0.5	_		
СТ	DAC to DAC crosstalk	_	_	-80	dB	6
TPU	Power-up time	_	2.5	_	μs	

- 1. Settling within ±1 LSB measured with a 47 pF load.

- The INL is measured for 0 + 100 mV to V_{DACR} -100 mV
 The DNL is measured for 0 + 100 mV to V_{DACR} -100 mV
 Calculated by a best fit curve from VSS_ANA + 100 mV to V_{DACR} 100 mV
- 5. VDD_ANA = 3.0 V, reference select set for VDD_ANA (DACx_CO:DACRFS = 1), high- power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device.
- 6. If two DACs are used and share same VREFH

4.4.3 14-bit DAC electrical characteristics

4.4.3.1 14-bit DAC operating requirements

Table 60. 14-bit DAC operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
VDD_ANA	Supply voltage	1.71	_	3.6	V	
V _{DACR}	Hook to VDD_ANA pad	1.71	_	VDD_ANA	V	
T _A	Temperature	-40	_	135	°C	
CL	Output load capacitance	_	50	100	pF	1
IL	Output load current	-3.6	_	3.6	mA	2

- 1. A small load capacitance (50 pF) can improve the bandwidth performance of the DAC.
- 2. Sink or source current availability

4.4.3.2 14-bit DAC operating behaviors

Table 61. 14-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DIS}	Supply current • Disable mode	_	30		nA	
I _{DDA}	Supply current Run mode	_	2	2.8	mA	1
V _{DACOUTL}	DAC low level output voltage	VSSA	_	0.15	V	
V _{DACOUT}	DAC high level output voltage	V _{DD_ANA} - 0.15	_	VDD_A NA	V	
DNL	Differential non-linearity error	_	±0.5	±4	LSB	
INL	Integral non-linearity error	_	±4	±8	LSB	
E _O	Offset error	_	±0.1		% of FSR	
T _{EO}	Offset error temperature coefficient	_	30	_	μV/C	
E _G	Gain error • VDACR < 2.1 V • VDACR > 2.1V	_	±0.3 ±0.1		%FSR	
T _{EG}	Gain error temperature coefficient	_	10	_	PPM/C	
T _{FS}	Full scale rising/falling setting time	_	0.3		μs	
F _{clk}	Maximum output update rate/conversion rate	_	5	_	Msps	
SR	Slew rate • Normal mode	_	15	_	V/µs	
PSRR	Power supply rejection ratio	_	70	_	dB	
Glitch	Glitch energy	_	30		nV/s	
СТ	DAC to DAC crosstalk	_	_	-80	dB	2
R _{OP}	Output resistance	_	25	250	ohm	
TPU	Power-up time	_	2.5	_	μs	3

- 1. VDD_ANA and VREFH total current
- 2. If two DAC are used and share same VREFH
- 3. Buffered voltage mode, buffer be enabled and normal working time

32-bit Arm Cortex-M33 @ 150 MHz (N94x and N54x), Rev. 6, 06/2024

4.4.4 CMP and 8-bit DAC electrical specifications

Table 62. Comparator and 8-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
VDD	Supply voltage	1.71	_	3.6	V	
VREFH	8-bit DAC reference voltage high	0.97	_	VDD	V	
I _{DD_CMP}	Supply current					
	High speed mode (EN=1, HPMD=1)	_	200	_	μA	
	Normal mode (EN=1, HPMD=0, NPMD=0)	_	10	_	μΑ	
	Low-power mode (EN=1, HPMD=0, NPMD=1)	_	400	_	nA	
V _{AIN}	Analog input voltage	VSS	_	VDD	V	
V _{AIO}	Analog input offset voltage					
	High speed mode	_	_	20	mV	
	Normal mode	_	_	20	mV	
	Low-power mode	_	_	40	mV	
V_{H}	Analog comparator hysteresis					1
	• CR0[HYSTCTR] = 00	_	0	_	mV	
	• CR0[HYSTCTR] = 01	_	10	_	mV	
	• CR0[HYSTCTR] = 10	_	20	_	mV	
	• CR0[HYSTCTR] = 11	_	30	_	mV	
V _{CMPOh}	Output high	VDD - 0.2	_	_	V	
V _{CMPOI}	Output low	_	_	0.2	V	
t_D	Propagation delay					2
	High speed mode, 100 mV overdrive, power 1.71V	_	_	25	ns	
	High speed mode, 30 mV overdrive, power 1.71V	_	_	50	ns	
	Normal mode, 30 mV overdrive, power > 1.71V	_	_	600	ns	
	Low-power mode, 30 mV overdrive, power > 1.71V	_	_	5	μs	
t _{init}	Analog comparator initialization delay	_	_	40	μs	3
I _{DAC8b}	8-bit DAC current adder (enabled)					
	High power mode (EN=1, PMODE=1)	_	10	_	μA	
	Low power mode (EN=1, PMODE=0)	_	1	_	μA	
INL	8-bit DAC integral non-linearity				LSB	4

Table 62. Comparator and 8-bit DAC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Low/High power mode, supply power > 1.71V	-1	_	+1.0		
	Low power mode, supply power < 1.71V	-2	_	+2		
DNL	8-bit DAC differential non-linearity				LSB	4
	Low/High power mode, power > 1.71V	-1	_	+1.0		
	Low power mode, power < 1.71V	-1	_	+1		

- 1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD_ANA-0.6 V.
- 2. Overdrive does not include input offset voltage or hysteresis
- 3. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
- 4. $1 LSB = V_{reference}/256$

Typical hysteresis

4.4.5 Voltage reference electrical specifications

Table 63. VREF operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
VDD_ANA	Supply voltage	1.71	3.0	3.6	V	1
C _L	Output load capacitance	_	220	_	nF	2,3

- 1. VDD ANA must be at least 600 mV greater than the selected VREFO output voltage.
- 2. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.
- 3. The minimum C_L capacitance must take into account the variation in capacitance of the chosen capacitor due to voltage, temperature, and aging.

Table 64. VREF operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes			
	1.0 V low-power reference voltage								
V _{vrefo_lpbg}	Voltage reference output 1.0 V - LP bandgap	_	1.0	_	V	1			
I _{q_lpbg}	Quiescent current - LP bandgap	_	19	_	μA				
I _{ptat}	Output current reference (PTAT) - LP bandgap (room temp)	_	1	_	μΑ				
I _{ztc}	Output current reference (ZTC) - LP bandgap	_	1	_	μA				
t _{st_lpbg}	Start-up time - LP bandgap	_	_	20	μs				
ΔV/ V _{refo_lpbg}	Voltage variation - LP bandgap	_	±5	_	%				
	High precision re	eference volt	age						
V _{vrefo}	Voltage reference output 2.0 V	1.0	_	2.1	V	2,1			
V _{step}	Fine trim step	_	0.5 x (1/F) ³	_	mV				
Iq	Quiescent current	_	750	_	μA				
l _{out}	Drive strength	±1	_	_	mA				
t _{st_hcbg}	Start-up time	_	_	400	μs				
ΔV_{LOAD}	Load regulation	_	100	200	μV/mA	4			
V _{acc}	Absolute voltage accuracy (room temp)	_	_	±2	mV	5			
V _{dev}	Voltage deviation over temperature	_	15	_	ppm/°C				

- 1. See the Reference Manual of the chip for the appropriate settings of the VREF Status and Control register.
- 2. V_{vrefo} max is also \leq VDD_ANA 600 mV.
- 3. F is feedback factor, $F = 1/V_{vrefo}$.
- 4. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load.
- 5. Absolute accuracy tested at 1.0 V setting only.

4.4.6 Op-amp electrical specifications

Table 65. Op-amp electrical specifications

Symbol	Characteristic	Min	Тур	Max	Unit
VDD_ANA	Operating Voltage	1.71	3	3.6	V
I _{SUPPLY1}	Supply Current (IOUT=0 mA high-performance mode)		450		μΑ
I _{SUPPLY2}	Supply Current (IOUT=0 mA low-power mode)		120		μΑ
VOS	Input Offset Voltage • High performance mode (CTRL[MODE] = 0) • Low power mode (CTRL[MODE] = 1)	-5 -8	-	5	mV
αVOS	Input Offset Voltage Temperature Coefficient		5		μV/C
VCML	Input Common Mode Voltage Low	0			V
VCMH	Input Common Mode Voltage High			VDD_ANA	V
PSRR	Power Supply Rejection Ration @ DC		80		dB
SRh	Slew Rate positive (ΔVIN=1 V, high-performance mode)		6		V/µs
SRI	Slew Rate positive (ΔVIN=1 V, low-power mode)		1		V/µs
GBWh	Unity Gain Bandwidth (high-performance mode)		6		MHz
GBWI	Unity Gain Bandwidth (low-power mode)		1		MHz
AV	DC Open Loop Voltage Gain		110		dB
CL	Load Capacitance Driving Capability			20	pF
RL	Load resistance (low-power mode)	3 K			Ω
PM	Phase Margin		60		deg
Vn	Voltage noise density @1 kHz (high-performance mode)		100		nv/sqrtHz
Vo	Output swing	0.2		VDD_ANA - 0.2	V
Tsettle	Settling time (high-speed mode invert gain=4 input=10 mV with +/-730 µV settling accuracy)		1		μs
Cin	Input Capacitance		5		pF
T_start	Required sample time is dictated by external components		5		μs

4.4.7 PGA electrical specifications

NOTE
Gain is PGA mode gain and gain is 2.4.8

Table 66. PGA electrical specifications

Characteristic	Symbol	Min	Тур	Max	Unit
PGA gain accuracy	Error gain		±1		%
PGA bandwidth (inverting mode, gain=1, 2, 4)			6/(gain+1)		MHz
PGA bandwidth (inverting mode, gain=8, 16, 33, 64)			32/(gain+1)		MHz
PGA bandwidth (non-inverting mode, gain=1, 2, 4)			6/(gain+1)		MHz
PGA bandwidth (non-inverting mode, gain=8, 16, 33, 64)			32/(gain+1)-		MHz

4.5 Timers

See General switching specifications.

4.5.1 SCTimer/PWM output timing

Simulated skew (over process, voltage, and temperature) of any two SCT fixed-pin output signals; sampled at the 50% level of the rising or falling edge; values guaranteed by design.

Table 67. SCTimer/PWM output dynamic characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{sk(o)}	Output skew time	OD mode: 3.3	0	_	3.3	ns
		SD mode:5			5	
		MD mode:10			10	

4.6 Communication interfaces

4.6.1 LPUART

See General switching specifications.

4.6.2 LPSPI switching specifications

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes.

Table 68. LPSPI master mode timing

Symbol	Description	Min.	Max.	Unit	Notes
LP1	Frequency of operation				1

Table 68. LPSPI master mode timing (continued)

Symbol	Description	Min.	Max.	Unit	Notes
	Master TX in OD mode			MHz	
	— LPSPI0-LPSPI2	_	25	1411 12	
	— LPSPI3-LPSPI5	_	50		
	— LPSPI6-LPSPI9	_	75		
	Master RX in OD mode				
	— LPSPI0-LPSPI2	_	25		
	— LPSPI3-LPSPI5	_	50		
	— LPSPI6-LPSPI9	_	75		
	Master TX in SD mode				
	— LPSPI0-LPSPI2	_	21		
	— LPSPI3-LPSPI5	_	32		
	— LPSPI6-LPSPI9	_	50		
	Master RX in SD mode				
	— LPSPI0-LPSPI2	_	21		
	— LPSPI3-LPSPI5	_	32		
	— LPSPI6-LPSPI9	_	50		
	Master TX in MD mode				
	— LPSPI0-LPSPI2	_	12.5		
	— LPSPI3-LPSPI5	_	25		
	— LPSPI6-LPSPI9	_	25		
	Master RX in MD mode				
	— LPSPI0-LPSPI2	_	12.5		
	— LPSPI3-LPSPI5	_	25		
	— LPSPI6-LPSPI9	_	25		
LP2	SCK period	2 v t	2048 x t _{periph}	ns	
LP3	Enable lead time	2 x t _{periph}	2040 X tperiph		2
			_	t _{periph}	2
LP4	Enable lag time	1/2	_	t _{periph}	
LP5	Clock (SCK) high or low time	t _{SCK} /2 - 3	t _{SCK} /2	ns	_
LP6	Data setup time (inputs)	14.4	_	ns	_
	• LPSPI0-LPSPI2	7.2			
	• LPSPI3-LPSPI5	4.8			
	• LPSPI6-LPSPI9				
LP7	Data hold time (inputs)	0	_	ns	

Table 68. LPSPI master mode timing (continued)

Symbol	Description	Min.	Max.	Unit	Notes
LP8	Data valid (after SCK edge)		14.4	ns	_
	LPSPI0-LPSPI2 LPSPI3-LPSPI5		7.2		
	• LPSPI6-LPSPI9		4.8		
LP9	Data hold time (outputs)	1	_	ns	_

- 1. The frequency of operation is also limited to a minimum of f_{periph}/2048 and a max of f_{periph}/2, where f_{periph} is the LPSPI peripheral functional clock.
- 2. $t_{periph} = 1/f_{periph}$

Table 69. LPSPI slave mode timing

Symbol	Description	Min.	Max.	Unit	Notes
LP1	Frequency of operation				1
	Slave TX in OD mode				
	— LPSPI0-LPSPI2			MHz	
	— LPSPI3-LPSPI5	_	12.5		
	— LPSPI6-LPSPI9	_	20		
	Slave RX in OD mode	_	30		
	— LPSPI0-LPSPI2				
	— LPSPI3-LPSPI5	_	12.5		
	— LPSPI6-LPSPI9	_	30		
	Slave TX in SD mode	_	75		
	— LPSPI0-LPSPI2				
	— LPSPI3-LPSPI5	_	12.5		
	— LPSPI6-LPSPI9	_	16		
	Slave RX in SD mode	_	25		
	— LPSPI0-LPSPI2				
	— LPSPI3-LPSPI5				
	— LPSPI6-LPSPI9	_	12.5		
		_	30		
	Slave TX in MD mode	_	50		

Table 69. LPSPI slave mode timing (continued)

Symbol	Description	Min.	Max.	Unit	Notes
	— LPSPI0-LPSPI2	_	12.5		
	— LPSPI3-LPSPI5	_	12.5		
	— LPSPI6-LPSPI9	_	25		
	Slave RX in MD mode				
	— LPSPI0-LPSPI2	_	12.5		
	— LPSPI3-LPSPI5	_	30		
	— LPSPI6-LPSPI9	_	30		
LP2	SPSCK period	4 x t _{periph}	2048 x t _{periph}	ns	
LP3	Enable lead time	1	_	t _{periph}	2
LP4	Enable lag time	1	_	t _{periph}	2
LP5	Clock (SPSCK) high or low time	t _{SPSCK} /2 - 5	t _{SPSCK} /2	ns	_
LP6	Data setup time (inputs)		_	ns	_
	• LPSPI0~LPSPI2	14.4			
	• LPSPI3~LPSPI5	6			
	• LPSPI6~LPSPI9	2.4			
LP7	Data hold time (inputs)	0	_	ns	_
LP8	Slave access time	_	t _{periph}	ns	2,3
LP9	Slave SDO disable time	_	t _{periph}	ns	2,4
LP10	Data valid (after SPSCK edge)	_		ns	_
	• LPSPI0~LPSPI2		31.2		
	• LPSPI3~LPSPI5		17		
	• LPSPI6~LPSPI9		13		
LP11	Data hold time (outputs)	2	_	ns	_

^{1.} The frequency of operation is also limited to a minimum of $f_{periph}/2048$ and a max of $f_{periph}/4$, where f_{periph} is the LPSPI peripheral functional clock.

t_{periph} = 1/f_{periph}

Time to data active from high-impedance state

^{4.} Hold time to high-impedance state

4.6.3 Inter-Integrated Circuit Interface (I²C) specifications

MSB IN

MSB OUT

Table 70. I ²C timing

(OUTPUT)

SIN

(INPUT)

NOTE: Not defined

note (LP8)

Figure 34. LPSPI slave mode timing (CPHA = 1)

Characteristic	Symbol	Standard Mode		ode Fast Mode		Unit
		Min. Max.		Min.	Max.	
SCL Clock Frequency	f _{SCL}	0	100	0	400	kHz

BIT 6

LSB IN

Table 70. I ²C timing (continued)

Characteristic	Symbol	Standa	rd Mode	Fast	Mode	Unit
		Min.	Max.	Min.	Max.	
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	_	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.25	_	μs
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	_	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	01	3.45 ²	03	0.9 ¹	μs
Data set-up time	t _{SU} ; DAT	250 ⁴	_	100 ^{2,5}	_	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁶	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁵	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 3. Input signal Slew = 10 ns and Output Load = 50 pF
- 4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 5. A Fast mode I^2C bus device can be used in a Standard mode I^2C bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I^2C bus specification) before the SCL line is released.
- 6. C_b = total capacitance of the one bus line in pF.

Table 71. I ²C 1 Mbps timing

Characteristic	Symbol	Min.	Max.	Unit
SCL Clock Frequency	f _{SCL}	0	1	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26	_	μs
LOW period of the SCL clock	t _{LOW}	0.5	_	μs
HIGH period of the SCL clock	t _{HIGH}	0.26	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	0.26	_	μs
Data hold time for I ₂ C bus devices	t _{HD} ; DAT	0	_	μs
Data set-up time	t _{SU} ; DAT	50	_	ns

Table 71. I ²C 1 Mbps timing (continued)

Characteristic	Symbol	Min.	Max.	Unit
Rise time of SDA and SCL signals	t _r	20 +0.1C _b ¹	120	ns
Fall time of SDA and SCL signals	t _f	20 +0.1C _b ¹	120	ns
Set-up time for STOP condition	t _{SU} ; STO	0.26	_	μs
Bus free time between STOP and START condition	t _{BUF}	0.5	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	0	50	ns

1. C_b = total capacitance of the one bus line in pF.

4.6.4 Improved Inter-Integrated Circuit Interface (MIPI-I3C) specifications

Unless otherwise specified, MIPI-I3C specifications are timed to/from the V_{IH} and/or V_{IL} signal points.

Table 72. MIPI-I3C specifications when communicating with legacy I²C devices

Symbol	Characteristic	400 kHz/F	ast mode	1 MHz/ Fast+ mode		Unit
		Min.	Max.	Min.	Max.	
f _{SCL}	SCL Clock Frequency	0	0.4	0	1.0	MHz
t _{SU_STA}	Set-up time for a repeated START condition	600	_	260	_	ns
Hold time (repeated) START condition	t _{HD} ; STA	600	_	260	_	ns
t _{LOW}	LOW period of the SCL clock	1300	_	500	_	ns
t _{HIGH}	HIGH period of the SCL clock	600	_	260	_	ns
t _{SU_DAT}	Data set-up time	100	_	50	_	ns
t _{HD_DAT}	Data hold time for I ₂ C bus devices	0	_	0	_	ns
t _f	Fall time of SDA and SCL signals	20 + 0.1C _b ¹	300	20 + 0.1C _b ¹	120	ns

Table 72. MIPI-I3C specifications when communicating with legacy I²C devices (continued)

Symbol	Characteristic	400 kHz/Fast mode		st mode 1 MHz/ Fast+ mode		
		Min.	Max.	Min.	Max.	
t _r	Rise time of SDA and SCL signals	20 + 0.1C _b ¹	300	20 + 0.1C _b ¹	120	ns
t _{SU_STO}	Set-up time for STOP condition	600	_	260	_	ns
t _{BUF}	Bus free time between STOP and START condition	1.3	_	0.5	_	μs
t _{SP}	Pulse width of spikes that must be suppressed by the input filter	0	50	0	50	ns

^{1.} C_b = total capacitance of the one bus line in pF.

Table 73. MIPI-I3C open drain mode specifications

Symbol	Characteristic	Min.	Max.	Unit	Notes
t _{LOW_OD}	LOW period of the SCL clock	200	_	ns	
t _{DIG_OD_L}		t _{LOW_OD} + t _{fDA_OD} (min)	_	ns	
t _{HIGH}	HIGH period of the SCL clock	t _{CF}	12	ns	
t _{fDA_OD}	Fall time of SDA signal	20 +0.1C _b	120	ns	1
t _{SU_OD}	Data set-up time during open drain mode	3	_	ns	
t _{CAS}	Clock after START (S) Condition • ENTAS0 • ENTAS1 • ENTAS2 • ENTAS3	38.4 n 38.4 n 38.4 n 38.4 n	1 μ 100 μ 2 m 50 m	s s s	
t _{CBP}	Clock before STOP (P) condition	t _{CAS} (min)/2	_	ns	
t _{MMOverlap}	Current master to secondary master overlap time during handoff	t _{DIG_OD_L}	_	ns	
t _{AVAL}	Bus available condition	1	_	μs	
t _{IDLE}	Bus idle condition	1	_	ms	
t _{MMLock}	Time internal where new master not driving SDA low	t _{AVAL}	_	μs	

^{1.} C_b = total capacitance of the one bus line in pF.

Table 74. MIPI-I3C push-pull specifications for SDR and HDR-DDR modes

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
f _{SCL}	SCL Clock Frequency	0.01	12	12.5	MHz	
t _{LOW}	LOW period of the SCL clock	24	_	_	ns	

Table 74. MIPI-I3C push-pull specifications for SDR and HDR-DDR modes (continued)

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
t _{DIG_L}		32	_	_	ns	
t _{HIGH_MIXE}	HIGH period of the SCL clock for a mixed bus	24	_	_	ns	
t _{DIG_H_MIXE}		32	_	45	ns	1
t _{HIGH}	HIGH period of the SCL clock	24	_	_	ns	
t _{DIG_H}		32	_	_	ns	
t _{sco}	Clock in to data out for a slave	_	_	12 ²	ns	
t _{CR}	SCL clock rise time	_	_	150 x 1/ f _{SCL} (capped at 60)	ns	
t _{CF}	SCL clock fall time	_	_	150 x 1/ f _{SCL} (capped at 60)	ns	
t _{HD_PP}	SDA signal data hold • Master mode • Slave mode	t _{CR} + 3 and t _{CF} + 3			ns	
t _{SU_PP}	SDA signal setup	3	_	_	ns	
t _{CASr}	Clock after repeated START (Sr)	t _{CAS} (min)	_	_	ns	
t _{CBSr}	Clock before repeated START (Sr)	t _{CAS} (min)/2	_	_	ns	
C _b	Capacitive load per bus line	_	_	50	pF	

- 1. When communicating with an I3C Device on a mixed Bus, the t_{DIG_H_MIXED} period must be constrained in order to make sure that I²C devices do not interpret I3C signaling as valid I²C signaling.
- 2. It doesn't include output pad delay.

4.6.5 USB Full-speed device electrical specifications

This section describes the USB0 port Full Speed/Low Speed transceiver. The USB0 (FS/LS Transceiver) meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 Specification with the amendments below.

- USB ENGINEERING CHANGE NOTICE
 - Title: 5 V Short Circuit Withstand Requirement Change
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
 - Title: Pull-up/Pull-down resistors
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: Suspend Current Limit Changes
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
 - Revision 2.0 version 1.1a July 27, 2012
- · Battery Charging Specification (available from USB-IF)
 - Revision 1.2 (including errata and ECNs through March 15, 2012), March 15, 2012

This SoC does not have a dedicated pin to monitor the state of the USB VBUS signal. Please refer to the USBFS chapter in the Reference Manual for methods which can be used for VBUS Session_Valid detection with either a P4-12/ALT1 pin using an external resistive divider.

4.6.6 USB High-Speed PHY specifications

This section describes High-Speed PHY parameters. The high-speed PHY is capable of full and low-speed signaling as well. The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 Specification with the amendments below.

- · Universal Serial Bus Specification, Revision 2.0, 2000, with amendments including the ones listed below:
- Errata for "USB Revision 2.0 April 27, 2000" as of 12/7/2000
- Errata for "USB Revision 2.0 April 27, 2000" as of May 28, 2002
- Pull-up / Pull-down Resistors (USB Engineering Change Notice)
- Suspend Current Limit Changes (USB Engineering Change Notice)
- Device Capacitance (USB Engineering Change Notice)
- USB 2.0 Connect Timing Update (USB Engineering Change Notice as of April 4, 2013)
- USB 2.0 VBUS Max Limit (USB Engineering Change Notice)
- On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification, Revision 2.0 version 1.1a, July 27, 2012
- Maximum VBUS Voltage (USB OTGEH Engineering Change Notice)
- Universal Serial Bus Micro-USB Cables and Connectors Specification, Revision 1.01, 2007

USB1_VBUS pin is a detector function which is 5V tolerant and complies with the above specifications without needing any external voltage division components.

NOTE
The USB HS PHY does not support operation when VDD_CORE is configured to 1.0V level

Data Sheet: Technical Data 87 / 143

4.6.7 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC timing

This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single Data Rate) timing, eMMC4.4/4.41/4.5 (Dual Date Rate) timing and SDR104/50(SD3.0) timing.

4.6.7.1 SD/eMMC4.3 (single data rate) AC timing

Figure 37depicts the timing of SD/eMMC4.3, and Table 75 lists the SD/eMMC4.3 timing characteristics.

Table 75. SD/eMMC4.3 interface timing specification

ID	Parameter	Symbols	Min	Max	Unit					
	Card Input Clock									
SD1	Clock Frequency (Low Speed)	f _{PP} ¹	0	400	kHz					
	Clock Frequency (SD/SDIO Full Speed/High Speed)	f _{PP} ²	0	25/50	MHz					
	Clock Frequency (MMC Full Speed/High Speed)	f _{PP} ³	0	20/52	MHz					
	Clock Frequency (Identification Mode)	f _{OD}	100	400	kHz					
SD2	Clock Low Time	t _{WL}	7	_	ns					
SD3	Clock High Time	t _{WH}	7	_	ns					
SD4	Clock Rise Time	t _{TLH}	_	3	ns					
SD5	Clock Fall Time	t _{THL}	_	3	ns					
	uSDHC Output/Card Inputs SD_CMD, SDx_	_DATAx (Refer	ence to CLK)							
SD6	uSDHC Output Delay	t _{OD}	-6.6	3.6	ns					
	uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)									
SD7	uSDHC Input Setup Time	t _{ISU}	2.5	_	ns					
SD8	uSDHC Input Hold Time ⁴	t _{IH}	1.5	_	ns					

^{1.} In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

Data Sheet: Technical Data 88 / 143

^{2.} In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode, clock frequency can be any value between 0–50 MHz.

- 3. In normal (full) speed mode for MMC card, clock frequency can be any value between 0-20 MHz. In high-speed mode, clock frequency can be any value between 0-52 MHz.
- 4. To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

4.6.7.2 eMMC4.4/4.41 (dual data rate) AC timing

Figure 38depicts the timing of eMMC4.4/4.41. Table 76lists the eMMC4.4/4.41 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).

Table 76. eMMC4.4/4.41 interface timing specification

ID	Parameter	Symbols	Min	Max	Unit					
	Card Input Clock									
SD1	Clock Frequency (eMMC4.4/4.41 DDR) OD mode SD mode MD mode	f _{PP}	0	52 50 40	MHz					
SD1	Clock Frequency (SD3.0 DDR) OD mode SD mode MD mode	f _{PP}	0	50 50 40	MHz					
	uSDHC Output / Card Inputs SD_CM	D, SDx_DATA	(Reference to C	CLK)	·					
SD2	uSDHC Output Delay	t _{OD}	2.5	7.1	ns					
	uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)									
SD3	uSDHC Input Setup Time	t _{ISU}	1.7	_	ns					
SD4	uSDHC Input Hold Time	t _{IH}	1.5	_	ns					

4.6.7.3 SDR50 AC timing

Figure 39 depicts the timing of SDR50, and Table 77lists the SDR50 timing characteristics.

Table 77. SDR50 interface timing specification

ID	Parameter	Symbol	Min	Max	Unit					
Card Input Clock										
SD1	Clock Frequency Period OD mode SD mode MD mode	t _{CLK}	10.0 19.23 19.23	_	ns					
SD2	Clock Low Time	t _{CL}	0.46 x t _{CLK}	0.54 x t _{CLK}	ns					
SD3	Clock High Time	t _{CH}	0.46 x t _{CLK}	0.54 x t _{CLK}	ns					
	uSDHC Output/Card Inputs SD_CMI	D, SDx_DATAx in	SDR50 (Reference	to CLK)						
SD4	uSDHC Output Delay	t _{OD}	-3	1	ns					
	uSDHC Input/Card Outputs SD_CMI	D, SDx_DATAx in	SDR50 (Reference	to CLK)						
SD6	uSDHC Input Setup Time	t _{ISU}	2.5	_	ns					
SD7	uSDHC Input Hold Time	t _{IH}	1.5	_	ns					

4.6.8 CAN switching specifications

See General switching specifications.

4.6.9 SINC timing

Table 78. SINC timing

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
MCLK	External modulator clock frequency	0.02	_	40	MHz		_
MMCLK	Manchester modulator clock frequency	_	_	15	MHz	Clock recovered internally using External Modulator bit	_

Table 78. SINC timing (continued)

Symbol	Description	Min	Тур	Max	Unit	Condition	Spec Number
TS1	Setup time from data valid to clock high	2	_	_	ns	_	_
TH1	Hold time from clock high to data valid	2	_	_	ns	_	_
TS2	Setup time from data valid to clock low	2	_	_	ns	_	_
TH2	Hold time from clock low to data valid	2	_	_	ns	_	_
TS3	Setup time from data valid to clock high	2	_	_	ns	_	_
TH3	Hold time from clock high to data valid	2	_	_	ns	_	_
TS4	Setup time from data valid to clock low	2	_	_	ns	_	_
TH4	Hold time from clock low to data valid	2	_	_	ns	_	_

4.6.10 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for non-inverted serial clock polarity (TCR2[BCP] = 0 and RCR2[BCP] = 0) and a non-inverted frame sync (TCR4[FSP] = 0 and RCR4[FSP] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

All timing shown is also with respect to input signal transitions of 3 ns and a 50 pF maximum load.

Table 79. I2S/SAI master mode timing

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time		_	ns
	OD mode	20		
	SD mode	25		
	MD mode	28.6		
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	40	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	8.4	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	1	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	10	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	1	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK			
	• P2 and P3	14	_	ns
	• P1	15.6		
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Table 80. I2S/SAI slave mode timing

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	40	_	ns
	OD mode	40		
	SD mode	50		
	MD mode	50		
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	6	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	20	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	-1.5	_	ns
S17	I2S_RXD setup before I2S_RX_BCLK	6	_	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	_	ns
S19	I2S_TX_FS input assertion for I2S_TXD output valid ¹	<u>-</u>	25	ns

1. Applies to first in each frame and only if the TCR4[FSE] bit is clear

Figure 42. I2S/SAI timing — slave modes

4.6.11 Flexible IO controller (FlexIO)

Table 81. FlexIO Timing Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
t _{ODS}	Output delay skew between any two FlexIO_Dx pins configured as outputs that toggle on same internal clock cycle	0		8	ns	1
t _{IDS}	Input delay skew between any two FlexIO_Dx pins configured as inputs that are sampled on the same internal clock cycle	0		8	ns	1

^{1.} Assumes pins muxed on same VDD_Px domain with same load

4.6.12 EMVSIM specifications

Each EMV SIM module interface consists of a total of five pins.

The interface is designed to be used with synchronous Smart cards, meaning the EMV SIM module provides the clock used by the Smart card. The clock frequency is typically 372 times the Tx/Rx data rate; however, the EMV SIM module can also work with CLK frequencies of 16 times the Tx/Rx data rate.

There is no timing relationship between the clock and the data. The clock that the EMV SIM module provides to the Smart card is used by the Smart card to recover the clock from the data in the same manner as standard UART data exchanges. All five signals of the EMV SIM module are asynchronous with each other.

The smart card is initiated by the interface device; the Smart card responds with Answer to Reset. Although the EMV SIM interface has no defined requirements, the ISO/IEC 7816 defines reset and power-down sequences (for detailed information see ISO/IEC 7816).

The following table defines the general timing requirements for the EMV SIM interface.

Table 82. Timing Specifications, High Drive Strength

ID	Parameter	Symbol	Min	Max	Unit
SI1	EMV SIM clock frequency (EMVSIMn_CLK) ¹	S _{freq}	1	5	MHz
SI2	EMV SIM clock rise time (EMVSIMn_CLK) ²	S _{rise}	_	0.08 × (1/Sfreq)	ns
SI3	EMV SIM clock fall time (EMVSIMn_CLK) ²	S _{fall}	_	0.08 × (1/Sfreq)	ns
SI4	EMV SIM input transition time (EMVSIMn_IO, EMVSIMn_PD)	S _{tran}	20	25	ns
Si5	EMV SIM I/O rise time / fall time (EMVSIMn_IO) ³	Tr/Tf	_	0.8	μs
Si6	EMV SIM RST rise time / fall time (EMVSIMn_RST) ⁴	Tr/Tf	_	0.8	μs

- 1. 50 % duty cycle clock,
- 2. With C = 50 pF
- 3. With Cin = 30 pF, Cout = 30 pF,
- 4. With Cin = 30 pF,

4.6.12.1 EMVSIM Reset Sequences

Smart cards may have internal reset, or active low reset. The following subset describes the reset sequences in these two cases.

4.6.12.1.1 Smart Cards with Internal Reset

Following figure shows the reset sequence for Smart cards with internal reset. The reset sequence comprises the following steps:

- After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)
- After 200 clock cycles, EMVSIMn_IO must be asserted.
- The card must send a response on EMVSIMn_IO acknowledging the reset between 400-40000 clock cycles after T0.

The following table defines the general timing requirements for the SIM interface.

Table 83. Timing Specifications, Internal Reset Card Reset Sequence

Ref Min Max		Max	Units
1	_	200	EMVSIMx_CLK clock cycles
2	400	40,000	EMVSIMx_CLK clock cycles

4.6.12.1.2 Smart Cards with Active Low Reset

Following figure shows the reset sequence for Smart cards with active low reset. The reset sequence comprises the following steps:

- After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)
- After 200 clock cycles, EMVSIMn_IO must be asserted.
- EMVSIMn_RST must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those 40,000 clock cycles)
- EMVSIMn_RST is asserted (at time T1)
- EMVSIMn_RST must remain asserted for at least 40,000 clock cycles after T1, and a response must be received on EMVSIMn_IO between 400 and 40,000 clock cycles after T1.

The following table defines the general timing requirements for the EMVSIM interface.

Table 84. Timing Specifications, Internal Reset Card Reset Sequence

Ref No	Min	Max	Units
1	_	200	EMVSIMx_CLK clock cycles
2	400	40,000	EMVSIMx_CLK clock cycles
3	40,000	_	EMVSIMx_CLK clock cycles

4.6.12.2 EMVSIM Power-Down Sequence

Following figure shows the EMVSIM interface power-down AC timing diagram. Timing Requirements for Power-down Sequence table shows the timing requirements for parameters (SI7–SI10) shown in the figure. The power-down sequence for the EMV SIM interface is as follows:

- EMVSIMn_SIMPD port detects the removal of the Smart Card
- EMVSIMn_RST is negated
- · EMVSIMn_CLK is negated
- EMVSIM_IO is negated
- · EMVSIMx_VCCENy is negated

Data Sheet: Technical Data 96 / 143

Each of the above steps requires one OSC32KCLK period (usually 32 kHz, also known as rtcclk in below figure). Power-down may be initiated by a Smart card removal detection; or it may be launched by the processor.

Table 85. Timing Requirements for Power-down Sequence

Ref No	Parameter	Symbol	Min	Max	Units
SI7	EMVSIM reset to SIM clock stop	S _{rst2clk}	0.9 × 1/ Frtcclk ¹	1.1 × 1/Frtcclk	μs
SI8	EMVSIM reset to SIM Tx data low	S _{rst2dat}	1.8 × 1/Frtcclk	2.2 × 1/Frtcclk	μs
SI9	EMVSIM reset to SIM voltage enable low	S _{rst2ven}	2.7 × 1/Frtcclk	3.3 × 1/Frtcclk	μs
SI10	EMVSIM presence detect to SIM reset low	S _{pd2rst}	0.9 × 1/Frtcclk	1.1 × 1/Frtcclk	μs

1.	Frtcclk is OSC32KCLK	, and this	clock must	be enabled	during t	he power of	down sequence.
----	----------------------	------------	------------	------------	----------	-------------	----------------

NOTE
Same timing is also followed when auto power down is initiated. See Reference Manual for reference.

4.6.13 Ethernet Controller (ENET) AC Electrical specifications

4.6.13.1 MII electrical specifications

Table 86. MII electrical specifications

Symbol	Description	Min	Тур	Max	Unit	Condition
t _{CYC_RX}	RX_CLK period ¹		40 / 400		ns	10/100 Mbps
Δt _{CYC_RX}	RX_CLK duty cycle (t _{PWH} / t _{CYC})	45		55	%	
t _S	Input setup time to RX_CLK ²	5			ns	10/100 Mbps
t _H	Input hold time to RX_CLK ²	5			ns	10/100 Mbps
t _{CYC_TX}	TX_CLK period ^{3,1}		40/400		ns	10/100 Mbps, SRE[2:0] = 100
Δt _{CYC_TX}	TX_CLK duty cycle (t _{PWH} / t _{CYC}) ³	45		55	%	SRE[2:0] = 100
t _D	Output delay from TX_CLK ³	2		25	ns	10/100 Mbps, SRE[2:0] = 100

- 1. MII is only supported in OD and SD mode.
- 2. Input timing assumes an input signal slew rate of 3 ns (20 %/80 %).
- 3. Output timing valid for maximum external load CL = 25 pF, which is assumed to be a 10 pF load at the end of a 50 Ohms, unterminated, 5 inch microstrip trace on standard FR4 (1.5 pF/inch), (25 pF total with margin). For best signal integrity, the series resistance of the transmission line should be matched closely to the RDSON of the I/O pad output driver

Data Sheet: Technical Data 98 / 143

4.6.13.2 RMII

RMII interface is matching RMII v1.2 specification. In RMII mode, the reference clock can be generated internally and provided to the PHY through RCLK50M_OUT, or it comes from an external 50 MHz clock generator which is connected to the PHY and to SoC through RCLK50M_IN pin.

Timings in table below are covering both cases: reference clock generated internally or externally.

Table 87. RMII timing

ID	Parameter	Min	Тур	Max	Unit
t1	Reference clock ¹	_	50	_	MHz
	Reference clock accuracy	_	_	50	ppm
	Reference clock duty cycle	35	_	65	%
t2	RMII_TXEN, RMII_TXD output delay	2	_	16	ns
t3	RMII_CRS_DV, RMII_RXD setup time	4	_	_	ns
t4	RMII_CRS_DV, RMII_RXD hold time	2	_	_	ns

^{1.} RMII is supported in OD and SD mode.

4.6.13.3 MDIO

MDIO is the control link used to configure Ethernet PHY connected to SoC.

Table 88. MDIO timing

ID	Parameter	Min	Тур	Max	Unit
	MDC frequency	_	2.5	_	MHz
t1	MDC high / low pulse width	180	_	_	%
t2	MDIO output delay	0	_	20	ns
t3	MDIO setup time	10	_	_	ns
t4	MDIO hold time	10	_	_	ns

4.7 Human Machine Interface (HMI) modules

4.7.1 Touch sensing input (TSI) electrical specifications

Table 89. TSI electrical Specs

Symbol	Description	Min	Тур	Max	Unit	Notes
I _{DD_EN}	Power consumption in operation mode	_	500	600	μΑ	
I _{DD_DIS}	Power consumption in disable mode	_	20	355	nA	
V_{BG}	Internal bandgap reference voltage	_	1.21	-	V	
V _{PRE}	Internal bias voltage	_	1.51	_	V	
Cı	Internal integration capacitance	_	90	_	pF	
F _{CLK}	Internal main clock frequency	_	16	_	MHz	

4.7.2 Microphone (MIC)

The PDM microphones must meet the setup and hold timing requirements shown in Table 90 and Figure 51. The "k" factor value in Table 90 depends on the selected quality mode as shown in Table 91.

Table 90. Timing Parameters

Parameter Value						
trs, tfs <=[floor (KxCLKDIV) -1]/[functional clock rate] ¹						
trh, tfh	>=0					

1. Depending on K value, the user must make sure floor(K x CLKDIV) > 1 to avoid timing problems

Table 91. K factor value

Quality mode	K factor
High Quality	1/2
Medium Quality, Very Low Quality 0	1
Low Quality, Very Low Quality 1	2
Very Low Quality 2	4

4.7.3 General Purpose Input/Output (GPIO)

See General switching specifications.

4.8 Security modules

4.8.1 Tamper

Table 92. Tamper electrical specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
	Temperature Tamper Detect assertion					
	low temperature detect	-64	-50	-38	°C	
	high temperature detect	128	135	143	°C	

Table 92. Tamper electrical specifications (continued)

Symbol	Description	Min	Тур	Max	Unit	Notes
	Temperature Tamper No flag range	-37		125	°C	
	Voltage monitor tamper detect VBAT operating voltage	1.613		3.848	V	
	Low Voltage Detect Threshold	1.613	1.656	1.698	V	
	High Voltage Detect Threshold	3.65	3.75	3.848	V	
	Voltage Tamper Detect operational temperature					
	no false alarms	-38		125	°C	
	with possible false alarms	-64		143	°C	

5 Package dimensions

5.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number		
184-pin VFBGA	98ASA01888D		
100-pin HLQFP	98ASA01897D		

6 Pinout

6.1 MCXNx4x Signal Multiplexing and Pin Assignments

The signal multiplexing and pin assignments are provided in an Excel file attached to this document:

- 1. Click the paperclip symbol on the left side of the PDF window.
- 2. Double-click on the Excel file to open it.
- 3. Select the MCXNx4x_Pinmux tab.

The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

However, pinout table is also given below:

Table 93. Pinmux Assignments

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
P1_8	A1	1	1	ALT0 - P1_8	IO Supply - VDD	ISP - UART_RXD
				ALT1 - TRACE_DATA0	Pad type - MED+I2C+I3C	ANALOG -
				ALT2 - FC4_P0	Default - DIS	TSI0_CH17/ADC1_A8

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT3 - FC5_P4		VDD SYS -
				ALT4 - CT_INP8		WUU0_IN10/LPTMR1_ALT3
				ALT5 - SCT0_OUT2		
				ALT6 - FLEXIO0_D16		
				ALT7 - SmartDMA_PIO4		
				ALT8 - PLU_OUT0		
				ALT9 - ENET0_TXD2		
				ALT10 - I3C1_SDA		
P1_9	B1	2	2	ALT0 - P1_9	IO Supply - VDD	ISP - UART_TXD
				ALT1 - TRACE_DATA1	Pad type - MED+I2C	ANALOG -
				ALT2 - FC4_P1	Default - DIS	TSI0_CH18/ADC1_A9
				ALT3 - FC5_P5		
				ALT4 - CT_INP9		
				ALT5 - SCT0_OUT3		
				ALT6 - FLEXIO0_D17		
				ALT7 - SmartDMA_PIO5		
				ALT8 - PLU_OUT1		
				ALT9 - ENET0_TXD3		
				ALT10 - I3C1_SCL		
P1_10	C3	3	3	ALT0 - P1_10	IO Supply - VDD	ISP - CAN_TXD
				ALT1 - TRACE_DATA2	Pad type - MED	ANALOG -
				ALT2 - FC4_P2	Default - DIS	TSI0_CH19/ADC1_A10
				ALT3 - FC5_P6		
				ALT4 - CT2_MAT0		
				ALT5 - SCT0_IN2		
				ALT6 - FLEXIO0_D18		
				ALT7 - SmartDMA_PIO6		
				ALT8 - PLU_IN0		
				ALT9 - ENETO_TXER		
				ALT11 - CAN0_TXD		
P1_11	D3	4	4	ALT0 - P1_11	IO Supply - VDD	ISP - CAN_RXD
				ALT1 - TRACE_DATA3	Pad type - MED	ANALOG -
				ALT2 - FC4_P3	Default - DIS	TSI0_CH20/ADC1_A11
				ALT4 - CT2_MAT1		VDD SYS - WUU0_IN11
				ALT5 - SCT0_IN3		
				ALT6 - FLEXIO0_D19		
				ALT7 - SmartDMA_PIO7		

Data Sheet: Technical Data 103 / 143

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT8 - PLU_IN1		
				ALT9 - ENET0_RX_CLK		
				ALT10 - I3C1_PUR		
				ALT11 - CAN0_RXD		
P1_12	D2	5	5	ALT0 - P1_12	IO Supply - VDD	ANALOG -
				ALT1 - TRACE_CLK	Pad type - MED	TSI0_CH21/ADC1_A12
				ALT2 - FC4_P4	Default - DIS	VDD SYS - WUU0_IN12
				ALT3 - FC3_P0		
				ALT4 - CT2_MAT2		
				ALT5 - SCT0_OUT4		
				ALT6 - FLEXIO0_D20		
				ALT7 - SmartDMA_PIO8		
				ALT8 - PLU_OUT2		
				ALT9 - ENETO_RXER		
				ALT11 - CAN1_RXD		
P1_13	D1	6	6	ALT0 - P1_13	IO Supply - VDD	ANALOG -
				ALT1 - TRIG_IN3	Pad type - MED	TSI0_CH22/ADC1_A13
				ALT2 - FC4_P5	Default - DIS	
				ALT3 - FC3_P1		
				ALT4 - CT2_MAT3		
				ALT5 - SCT0_OUT5		
				ALT6 - FLEXIO0_D21		
				ALT7 - SmartDMA_PIO9		
				ALT8 - PLU_OUT3		
				ALT9 - ENET0_RXDV		
				ALT11 - CAN1_TXD		
P1_14	D4	7	7	ALT0 - P1_14	IO Supply - VDD	ANALOG -
				ALT2 - FC4_P6	Pad type - MED	TSI0_CH23/ADC1_A14
				ALT3 - FC3_P2	Default - DIS	
				ALT4 - CT_INP10		
				ALT5 - SCT0_IN4		
				ALT6 - FLEXIO0_D22		
				ALT7 - SmartDMA_PIO10		
				ALT8 - PLU_IN2		
				ALT9 - ENET0_RXD0		
P1_15	E4	8	8	ALT0 - P1_15	IO Supply - VDD	ANALOG -
				ALT3 - FC3_P3	Pad type - MED	TSI0_CH24/ADC1_A15

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT4 - CT_INP11	Default - DIS	VDD SYS - WUU0_IN13
				ALT5 - SCT0_IN5		
				ALT6 - FLEXIO0_D23		
				ALT7 - SmartDMA_PIO11		
				ALT8 - PLU_IN3		
				ALT9 - ENET0_RXD1		
				ALT10 - I3C1_PUR		
VSS	P14	0	0		IO Supply - VDD	
					Pad type - VSSIO	
P1_16	F6			ALT0 - P1_16	IO Supply - VDD	ANALOG - ADC1_A16
				ALT2 - FC5_P0	Pad type - MED+I2C+I3C	VDD SYS - WUU0_IN14
				ALT3 - FC3_P4	Default - DIS	
				ALT4 - CT_INP12		
				ALT5 - SCT0_OUT6		
				ALT6 - FLEXIO0_D24		
				ALT7 - SmartDMA_PIO12		
				ALT8 - PLU_OUT4		
				ALT9 - ENET0_RXD2		
				ALT10 - I3C1_SDA		
P1_17	F4			ALT0 - P1_17	IO Supply - VDD	ANALOG - ADC1_A17
				ALT2 - FC5_P1	Pad type - MED+I2C	
				ALT3 - FC3_P5	Default - DIS	
				ALT4 - CT_INP13		
				ALT5 - SCT0_OUT7		
				ALT6 - FLEXIO0_D25		
				ALT7 - SmartDMA_PIO13		
				ALT8 - PLU_OUT5		
				ALT9 - ENET0_RXD3		
				ALT10 - I3C1_SCL		
P1_18	G4			ALT0 - P1_18	IO Supply - VDD	ANALOG - ADC1_A18
				ALT1 - FREQME_CLK_IN0	Pad type - MED	
				ALT2 - FC5_P2	Default - DIS	
				ALT3 - FC3_P6		
				ALT4 - CT3_MAT0		
				ALT5 - SCT0_IN6		
				ALT6 - FLEXIO0_D26		
				ALT7 - SmartDMA_PIO14		

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT8 - PLU_IN4		
				ALT9 - ENETO_COL		
				ALT11 - CAN0_TXD		
P1_19	G5			ALT0 - P1_19	IO Supply - VDD	ANALOG - ADC1_A19
				ALT1 - FREQME_CLK_IN1	Pad type - MED	VDD SYS - WUU0_IN15
				ALT2 - FC5_P3	Default - DIS	
				ALT4 - CT3_MAT1		
				ALT5 - SCT0_IN7		
				ALT6 - FLEXIO0_D27		
				ALT7 - SmartDMA_PIO15		
				ALT8 - PLU_IN5		
				ALT9 - ENETO_CRS		
				ALT11 - CAN0_RXD		
P1_20	K5			ALT0 - P1_20	IO Supply - VDD	ANALOG -
				ALT1 - TRIG_IN2	Pad type - MED	ADC1_A20/CMP1_IN3
				ALT2 - FC5_P4	Default - DIS	
				ALT3 - FC4_P0		
				ALT4 - CT3_MAT2		
				ALT5 - SCT0_OUT8		
				ALT6 - FLEXIO0_D28		
				ALT7 - SmartDMA_PIO16		
				ALT8 - PLU_OUT6		
				ALT9 - ENETO_MDC		
				ALT11 - CAN1_TXD		
P1_21	L5			ALT0 - P1_21	IO Supply - VDD	ANALOG -
				ALT1 - TRIG_OUT2	Pad type - MED	ADC1_A21/CMP2_IN3
				ALT2 - FC5_P5	Default - DIS	
				ALT3 - FC4_P1		
				ALT4 - CT3_MAT3		
				ALT5 - SCT0_OUT9		
				ALT6 - FLEXIO0_D29		
				ALT7 - SmartDMA_PIO17		
				ALT8 - PLU_OUT7		
				ALT9 - ENET0_MDIO		
				ALT10 - SAI1_MCLK		
				ALT11 - CAN1_RXD		
P1_22	L4			ALT0 - P1_22	IO Supply - VDD	ANALOG - ADC1_A22

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT1 - TRIG_IN3	Pad type - MED	
				ALT2 - FC5_P6	Default - DIS	
				ALT3 - FC4_P2		
				ALT4 - CT_INP14		
				ALT5 - SCT0_OUT4		
				ALT6 - FLEXIO0_D30		
				ALT7 - SmartDMA_PIO18		
P1_23	M4			ALT0 - P1_23	IO Supply - VDD	ANALOG - ADC1_A23
				ALT3 - FC4_P3	Pad type - MED	
				ALT4 - CT_INP15	Default - DIS	
				ALT5 - SCT0_OUT5		
				ALT6 - FLEXIO0_D31		
				ALT7 - SmartDMA_PIO19		
RESET_B	F3	9	9		IO Supply - VDD	
					Pad type - RST	
					Default - RESET_B	
P1_30	F1	10	10	ALT0 - P1_30	IO Supply - VDD	ANALOG - XTAL48M
				ALT1 - TRIG_OUT3	Pad type - MED	
				ALT4 - CT_INP16	Default - DIS	
				ALT5 - SCT0_OUT8		
				ALT10 - SAI0_MCLK		
P1_31	F2	11	11	ALT0 - P1_31	IO Supply - VDD	ANALOG - EXTAL48M
				ALT1 - TRIG_IN4	Pad type - MED	
				ALT4 - CT_INP17	Default - DIS	
				ALT5 - SCT0_OUT9		
VSS	D6	0	0		IO Supply - VDD	
					Pad type - VSSIO	
VDD_CORE	K10	12	12		IO Supply - VDD	
					Pad type - VDDINT	
VDD_LDO_CORE	K6	13	13		IO Supply - VDD	ANALOG
					Pad type - VDDINT_3V	- VDD_LDO_CORE
VDD	Н8	13	13		IO Supply - VDD	
					Pad type - VDDIO	
VDD_P2	K8	13	13		IO Supply - VDD_P2	
					Pad type - VDDIO	

108 / 143

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
vss	E5	0	0		IO Supply - VDD_P2	
					Pad type - VSSIO	
P2_0	H2	14	14	ALT0 - P2_0	IO Supply - VDD_P2	
				ALT1 - TRIG_IN5	Pad type - FAST	
				ALT2 - FC9_P6	Default - DIS	
				ALT3 - uSDHC0_D5		
				ALT4 - SCT0_IN0		
				ALT5 - PWM1_A3		
				ALT6 - FLEXIO0_D8		
				ALT7 - SmartDMA_PIO20		
				ALT8 - FLEXSPI0_B_SS1_b		
				ALT10 - SAI0_RX_BCLK		
P2_1	H1	15	15	ALT0 - P2_1	IO Supply - VDD_P2	
				ALT1 - TRACE_CLK	Pad type - FAST	
				ALT3 - uSDHC0_D4	Default - DIS	
				ALT4 - SCT0_IN1		
				ALT5 - PWM1_B3		
				ALT6 - FLEXIO0_D9		
				ALT7 - SmartDMA_PIO21		
				ALT8 - FLEXSPI0_B_DQS		
				ALT9 - SINC0_MCLK_OUT0		
				ALT10 - SAI0_RX_FS		
P2_2	H3	16	16	ALT0 - P2_2	IO Supply - VDD_P2	VDD SYS - WUU0_IN16
				ALT1 - CLKOUT	Pad type - FAST	
				ALT2 - FC9_P3	Default - DIS	
				ALT3 - uSDHC0_D1		
				ALT4 - SCT0_OUT0		
				ALT5 - PWM1_A2		
				ALT6 - FLEXIO0_D10		
				ALT7 - SmartDMA_PIO22		
				ALT8 - FLEXSPI0_B_SS0_b		
				ALT9 - SINC0_MCLK0		
				ALT10 - SAI0_TXD0		
P2_3	J3	17	17	ALT0 - P2_3	IO Supply - VDD_P2	
				ALT2 - FC9_P1	Pad type - FAST	
				ALT3 - uSDHC0_D0	Default - DIS	
				ALT4 - SCT0_OUT1		

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT5 - PWM1_B2		
				ALT6 - FLEXIO0_D11		
				ALT7 - SmartDMA_PIO23		
				ALT8 - FLEXSPI0_B_SCLK		
				ALT9 - SINC0_MBIT0		
				ALT10 - SAI0_RXD0		
P2_4	К3	18	18	ALT0 - P2_4	IO Supply - VDD_P2	VDD SYS - WUU0_IN17
				ALT2 - FC9_P0	Pad type - FAST	
				ALT3 - uSDHC0_CLK	Default - DIS	
				ALT4 - SCT0_OUT2		
				ALT5 - PWM1_A1		
				ALT6 - FLEXIO0_D12		
				ALT7 - SmartDMA_PIO24		
				ALT8 - FLEXSPI0_B_DATA0		
				ALT9 - SINC0_MCLK1		
				ALT10 - SAI0_RXD1		
P2_5	K1	19	19	ALT0 - P2_5	IO Supply - VDD_P2	
				ALT1 - TRIG_OUT3	Pad type - FAST	
				ALT2 - FC9_P2	Default - DIS	
				ALT3 - uSDHC0_CMD		
				ALT4 - SCT0_OUT3		
				ALT5 - PWM1_B1		
				ALT6 - FLEXIO0_D13		
				ALT7 - SmartDMA_PIO25		
				ALT8 - FLEXSPI0_B_DATA1		
				ALT9 - SINC0_MBIT1		
				ALT10 - SAI0_TXD1		
VSS	G2	0	0		IO Supply - VDD_P2	
					Pad type - VSSIO	
VDD_P2	L7				IO Supply - VDD_P2	
					Pad type - VDDIO	
P2_6	K2	20	20	ALT0 - P2_6	IO Supply - VDD_P2	
				ALT1 - TRIG_IN4	Pad type - FAST	
				ALT2 - FC9_P4	Default - DIS	
				ALT3 - uSDHC0_D3		
				ALT4 - SCT0_OUT4		

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT5 - PWM1_A0		
				ALT6 - FLEXIO0_D14		
				ALT7 - SmartDMA_PIO26		
				ALT8 - FLEXSPI0_B_DATA2		
				ALT9 - SINC0_MCLK2		
				ALT10 - SAI0_TX_BCLK		
P2_7	L2	21	21	ALT0 - P2_7	IO Supply - VDD_P2	
				ALT1 - TRIG_IN5	Pad type - FAST	
				ALT2 - FC9_P5	Default - DIS	
				ALT3 - uSDHC0_D2		
				ALT4 - SCT0_OUT5		
				ALT5 - PWM1_B0		
				ALT6 - FLEXIO0_D15		
				ALT7 - SmartDMA_PIO27		
				ALT8 - FLEXSPI0_B_DATA3		
				ALT9 - SINC0_MBIT2		
				ALT10 - SAIO_TX_FS		
P2_8	M2			ALT0 - P2_8	IO Supply - VDD_P2	
				ALT1 - TRACE_DATA0	Pad type - FAST	
				ALT3 - uSDHC0_D7	Default - DIS	
				ALT4 - SCT0_IN2		
				ALT5 - PWM1_X0		
				ALT6 - FLEXIO0_D16		
				ALT7 - SmartDMA_PIO28		
				ALT8 - FLEXSPI0_B_DATA4		
				ALT9 - SINC0_MCLK3		
				ALT10 - SAI1_TXD0		
P2_9	M1			ALT0 - P2_9	IO Supply - VDD_P2	
				ALT1 - TRACE_DATA1	Pad type - FAST	
				ALT3 - uSDHC0_D6	Default - DIS	
				ALT4 - SCT0_IN3		
				ALT5 - PWM1_X1		
				ALT6 - FLEXIO0_D17		
				ALT7 - SmartDMA_PIO29		
				ALT8 - FLEXSPI0_B_DATA5		
				ALT9 - SINC0_MBIT3		
				ALT10 - SAI1_RXD0		

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
P2_10	M3			ALT0 - P2_10	IO Supply - VDD_P2	
			ALT1 - TRACE_DATA2	Pad type - FAST		
				ALT4 - SCT0_IN4	Default - DIS	
				ALT5 - PWM1_X2		
				ALT6 - FLEXIO0_D18		
				ALT7 - SmartDMA_PIO31		
				ALT8 - FLEXSPI0_B_DATA6		
				ALT9 - SINC0_MCLK4		
				ALT10 - SAI1_RXD1		
P2_11	N4			ALT0 - P2_11	IO Supply - VDD_P2	
				ALT1 - TRACE_DATA3	Pad type - FAST	
				ALT4 - SCT0_IN5	Default - DIS	
				ALT5 - PWM1_X3		
				ALT6 - FLEXIO0_D19		
				ALT7 - SmartDMA_PIO30		
				ALT8 - FLEXSPI0_B_DATA7		
				ALT9 - SINC0_MBIT4		
				ALT10 - SAI1_TXD1		
VSS	H5	0	0		IO Supply - VDD_P2	
					Pad type - VSSIO	
VDD_P4	P4				IO Supply - VDD_P4	
					Pad type - VDDIO	
VSS_P4	P7				IO Supply - VDD_P4	
					Pad type - VSSIO	
P4_0	P1			ALT0 - P4_0	IO Supply - VDD_P4	VDD SYS - WUU0_IN18
				ALT1 - TRIG_IN6	Pad type - SLOW	
				ALT2 - FC2_P0	Default - DIS	
				ALT4 - CT_INP16		
				ALT7 - SmartDMA_PIO24		
				ALT8 - PLU_IN0		
				ALT9 - SINC0_MCLK3		
ANA_0	P3				IO Supply - VDD_P4	ANALOG - ADC0_A0
					Pad type - ANA	
P4_0/ANA_0		22	22	ALT0 - P4_0	IO Supply - VDD_P4	ANALOG - ADC0_A0
				ALT1 - TRIG_IN6	Pad type - SLOW	VDD SYS - WUU0_IN18
				ALT2 - FC2_P0	Default - DIS	

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT4 - CT_INP16		
				ALT7 - SmartDMA_PIO24		
				ALT8 - PLU_IN0		
				ALT9 - SINC0_MCLK3		
ANA_1	R3				IO Supply - VDD_P4	ANALOG - ADC0_B0
					Pad type - ANA	
P4_1	P2			ALT0 - P4_1	IO Supply - VDD_P4	
				ALT1 - TRIG_IN7	Pad type - SLOW	
				ALT2 - FC2_P1	Default - DIS	
				ALT4 - CT_INP17		
				ALT7 - SmartDMA_PIO25		
				ALT8 - PLU_IN1		
P4_1/ANA_1		23	23	ALT0 - P4_1	IO Supply - VDD_P4	ANALOG - ADC0_B0
				ALT1 - TRIG_IN7	Pad type - SLOW	
				ALT2 - FC2_P1	Default - DIS	
				ALT4 - CT_INP17		
				ALT7 - SmartDMA_PIO25		
				ALT8 - PLU_IN1		
P4_2	T1	24	24	ALT0 - P4_2	IO Supply - VDD_P4	ANALOG
				ALT1 - TRIG_IN6	Pad type - SLOW	- DAC0_OUT/ADC0_A4/
				ALT2 - FC2_P2	Default - DIS	ADC1_A4/CMP0_IN4N/ CMP1_IN4N/CMP2_IN4N
				ALT4 - CT_INP12		SWI 1_IV4IVSWI 2_IV4IV
				ALT7 - SmartDMA_PIO26		
				ALT8 - PLU_IN2		
				ALT9 - SINC0_MBIT3		
P4_3	U1	25	25	ALT0 - P4_3	IO Supply - VDD_P4	ANALOG
				ALT1 - TRIG_IN7	Pad type - SLOW	- DAC1_OUT/ADC0_B4/
				ALT2 - FC2_P3	Default - DIS	ADC1_B4/CMP0_IN5N/ CMP1_IN5N/CMP2_IN5N
				ALT4 - CT_INP13		VDD SYS - WUU0_IN19
				ALT7 - SmartDMA_PIO27		4DD 010 - W000_IN19
				ALT8 - PLU_IN3		
P4_4	M6			ALT0 - P4_4	IO Supply - VDD_P4	
				ALT2 - FC2_P4	Pad type - SLOW	
				ALT4 - CT_INP14	Default - DIS	
				ALT7 - SmartDMA_PIO28		
				ALT8 - PLU_IN4		

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT9 - SINC0_MCLK4		
ANA_4	T2				IO Supply - VDD_P4 Pad type - ANA	ANALOG - ADC1_A0
P4_4/ANA_4		26	26	ALT0 - P4_4 ALT2 - FC2_P4 ALT4 - CT_INP14 ALT7 - SmartDMA_PIO28 ALT8 - PLU_IN4 ALT9 - SINC0_MCLK4	IO Supply - VDD_P4 Pad type - SLOW Default - DIS	ANALOG - ADC1_A0
ANA_5	Т3				IO Supply - VDD_P4 Pad type - ANA	ANALOG - ADC1_B0
P4_5	M8			ALT0 - P4_5 ALT2 - FC2_P5 ALT4 - CT_INP15 ALT7 - SmartDMA_PIO29 ALT8 - PLU_IN5 ALT9 - SINC0_MBIT4	IO Supply - VDD_P4 Pad type - SLOW Default - DIS	
P4_5/ANA_5		27	27	ALT0 - P4_5 ALT2 - FC2_P5 ALT4 - CT_INP15 ALT7 - SmartDMA_PIO29 ALT8 - PLU_IN5 ALT9 - SINC0_MBIT4	IO Supply - VDD_P4 Pad type - SLOW Default - DIS	ANALOG - ADC1_B0
ANA_6	U2				IO Supply - VDD_P4 Pad type - ANA	ANALOG - DAC2_OUT/ ADC0_A3/ADC1_A3
P4_6	N7			ALT0 - P4_6 ALT1 - TRIG_OUT4 ALT2 - FC2_P6 ALT4 - CT_INP18 ALT7 - SmartDMA_PIO30 ALT8 - PLU_CLK	IO Supply - VDD_P4 Pad type - SLOW Default - DIS	
P4_6/ANA_6		28	28	ALT0 - P4_6 ALT1 - TRIG_OUT4 ALT2 - FC2_P6 ALT4 - CT_INP18 ALT7 - SmartDMA_PIO30	IO Supply - VDD_P4 Pad type - SLOW Default - DIS	ANALOG - DAC2_OUT/ ADC0_A3/ADC1_A3

114 / 143

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT8 - PLU_CLK		
P4_7	T4	-	-	ALT0 - P4_7 ALT4 - CT_INP19 ALT7 - SmartDMA_PIO31	IO Supply - VDD_P4 Pad type - SLOW Default - DIS	
ANA_7	U4				IO Supply - VDD_P4 Pad type - ANA	ANALOG - VREFI/VREFO/ ADC0_A7/ADC1_A7
P4_7/ANA_7		29	29	ALT0 - P4_7 ALT4 - CT_INP19 ALT7 - SmartDMA_PIO31	IO Supply - VDD_P4 Pad type - SLOW Default - DIS	ANALOG - VREFI/VREFO/ ADC0_A7/ADC1_A7
VDD_ANA	R4	30	30		IO Supply - VDD_P4 Pad type - VDDINT_3V	
VREFH	R5	31	31		IO Supply - VDD_P4 Pad type - ANA	ANALOG - VREFH
VREFL	R6	32	32		IO Supply - VDD_P4 Pad type - VSSINT	ANALOG - VREFL
VSS_P4	P6	33	33		IO Supply - VDD_P4 Pad type - VSSIO	
VDD_P4	N5	34	34		IO Supply - VDD_P4 Pad type - VDDIO	
P4_12	Тб	35	35	ALTO - P4_12 ALT1 - USB0_VBUS_DET ALT2 - FC2_P0 ALT4 - CT4_MAT0 ALT6 - FLEXIOO_D20 ALT8 - PLU_OUT0 ALT9 - SINCO_MCLK0 ALT11 - CANO_RXD	IO Supply - VDD_P4 Pad type - SLOW Default - DIS	ISP - USB0_VBUS_DET ANALOG - OPAMP0_INP0/ ADC0_A5/ADC1_A5 VDD SYS - WUU0_IN20
P4_13	Т7			ALT0 - P4_13 ALT1 - TRIG_IN8 ALT2 - FC2_P1 ALT3 - USB1_OTGn_ID ALT4 - CT4_MAT1 ALT6 - FLEXIOO_D21 ALT8 - PLU_OUT1 ALT9 - SINCO_MBIT0	IO Supply - VDD_P4 Pad type - SLOW Default - DIS	ANALOG - OPAMP0_INP1/ ADC0_B5/ADC1_B5

Table continues on the next page...

Data Sheet: Technical Data

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT11 - CAN0_TXD		
ANA_14	U6				IO Supply - VDD_P4	ANALOG - OPAMP0_INN
					Pad type - LOLK	
P4_13/ANA_14		36	36	ALT0 - P4_13	IO Supply - VDD_P4	ANALOG
				ALT1 - TRIG_IN8	Pad type - SLOW	- OPAMPO_INP1/ADC0_B5/
				ALT2 - FC2_P1	Default - DIS	ADC1_B5/OPAMP0_INN
				ALT3 - USB1_OTGn_ID		
				ALT4 - CT4_MAT1		
				ALT6 - FLEXIO0_D21		
				ALT8 - PLU_OUT1		
				ALT9 - SINC0_MBIT0		
				ALT11 - CAN0_TXD		
P4_14	N8			ALT0 - P4_14	IO Supply - VDD_P4	
				ALT4 - CT4_MAT2	Pad type - SLOW	
				ALT6 - FLEXIO0_D22	Default - DIS	
				ALT8 - PLU_OUT2		
P4_15	T8	37	37	ALT0 - P4_15	IO Supply - VDD_P4	ANALOG - OPAMP0_OUT/
				ALT1 - TRIG_OUT4	Pad type - SLOW	ADC0_A1/CMP0_IN4P
				ALT3	Default - DIS	VDD SYS - WUU0_IN21
				- USB1_VBUSVALID_EXT		
				ALT4 - CT4_MAT3		
				ALT6 - FLEXIO0_D23		
				ALT8 - PLU_OUT3		
				ALT9 - SINC0_MCLK_OUT0		
				ALT11 - CAN1_RXD		
P4_16	R8	38	38	ALT0 - P4_16	IO Supply - VDD_P4	ANALOG -
				ALT2 - FC2_P2	Pad type - SLOW	OPAMP1_INP0/ADC0_A6
				ALT3 - USB1_OTGn_PWR	Default - DIS	
				ALT4 - CT3_MAT0		
				ALT6 - FLEXIO0_D24		
				ALT8 - PLU_OUT4		
				ALT9 - SINC0_MCLK1		
				ALT11 - CAN1_TXD		
P4_17	R9			ALT0 - P4_17	IO Supply - VDD_P4	ANALOG -
				ALT1 - TRIG_IN9	Pad type - SLOW	OPAMP1_INP1/ADC0_B6
				ALT2 - FC2_P3	Default - DIS	

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT3 - USB1_OTGn_OC		
				ALT4 - CT3_MAT1		
				ALT6 - FLEXIO0_D25		
				ALT8 - PLU_OUT5		
				ALT9 - SINC0_MBIT1		
ANA_18	U8				IO Supply - VDD_P4	ANALOG - OPAMP1_INN
					Pad type - LOLK	
P4_17/ANA_18		39	39	ALT0 - P4_17	IO Supply - VDD_P4	ANALOG - OPAMP1_INP
				ALT1 - TRIG_IN9	Pad type - SLOW	ADC0_B6/OPAMP1_INN
				ALT2 - FC2_P3	Default - DIS	
				ALT3 - USB1_OTGn_OC		
				ALT4 - CT3_MAT1		
				ALT6 - FLEXIO0_D25		
				ALT8 - PLU_OUT5		
			ALT9 - SINC0_MBIT1			
P4_18 N10	N10			ALT0 - P4_18	IO Supply - VDD_P4	
				ALT4 - CT3_MAT2	Pad type - SLOW	
				ALT6 - FLEXIO0_D26	Default - DIS	
				ALT8 - PLU_OUT6		
P4_19	R10	40		ALT0 - P4_19	IO Supply - VDD_P4	ANALOG - OPAMP1_OUT
				ALT1 - TRIG_OUT5	Pad type - SLOW	ADC0_B1/CMP1_IN4P
				ALT4 - CT3_MAT3	Default - DIS	
				ALT6 - FLEXIO0_D27		
				ALT8 - PLU_OUT7		
				ALT9 - SINC0_MCLK_OUT1		
P4_20	T10	41		ALT0 - P4_20	IO Supply - VDD_P4	ANALOG -
				ALT1 - TRIG_IN8	Pad type - SLOW	OPAMP2_INP0/ADC1_A6
				ALT2 - FC2_P4	Default - DIS	
				ALT4 - CT2_MAT0		
				ALT6 - FLEXIO0_D28		
				ALT9 - SINC0_MCLK2		
P4_21	T11			ALT0 - P4_21	IO Supply - VDD_P4	ANALOG -
				ALT1 - TRIG_IN9	Pad type - SLOW	OPAMP2_INP1/ADC1_B6
				ALT2 - FC2_P5	Default - DIS	
				ALT4 - CT2_MAT1		

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT9 - SINC0_MBIT2		
ANA_22	U10				IO Supply - VDD_P4 Pad type - LOLK	ANALOG - OPAMP2_INN
		42		ALT0 - P4_21 ALT1 - TRIG_IN9 ALT2 - FC2_P5 ALT4 - CT2_MAT1 ALT6 - FLEXIO0_D29 ALT9 - SINC0_MBIT2	IO Supply - VDD_P4 Pad type - SLOW Default - DIS	ANALOG - OPAMP2_INP1. ADC1_B6/OPAMP2_INN
P4_22	T12		-	ALT0 - P4_22 ALT4 - CT2_MAT2 ALT6 - FLEXIO0_D30	IO Supply - VDD_P4 Pad type - SLOW Default - DIS	
P4_23	U12	43	-	ALT0 - P4_23 ALT1 - TRIG_OUT5 ALT2 - FC2_P6 ALT4 - CT2_MAT3 ALT6 - FLEXIOO_D31 ALT9 - SINCO_MCLK_OUT2	IO Supply - VDD_P4 Pad type - SLOW Default - DIS	ANALOG - OPAMP2_OUT/ ADC0_A2/ADC0_B2/ ADC1_B3/CMP2_IN4P
VSS_P4	P9	-			IO Supply - VDD_P4 Pad type - VSSIO	
VDD_P4		-			IO Supply - VDD_P4 Pad type - VDDIO	
VSS	J4		0		IO Supply - VDD_USB Pad type - VSSIO	
USB1_DP	R13		40		IO Supply - VDD_USB Pad type - ANA	ANALOG - USB1_DP
USB1_DM	R14	-	41		IO Supply - VDD_USB Pad type - ANA	ANALOG - USB1_DM
USB1_ID	P11	-	-		IO Supply - VDD_USB Pad type - ANA	ANALOG - USB1_ID
USB1_VBUS	U14		42		IO Supply - VDD_USB Pad type - VDDINT_5V	ANALOG - USB1_VBUS
VSS	J8	0	43		IO Supply - VDD_USB Pad type - VSSIO	

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
VDD_USB	R12	44	44		IO Supply - VDD_USB	
					Pad type - VDDIO	
USB0_DM	T14	45	45		IO Supply - VDD_USB	ANALOG - USB0_DM
					Pad type - ANA	VDD SYS - WUU0_IN28
USB0_DP	T15	46	46		IO Supply - VDD_USB	ANALOG - USB0_DP
					Pad type - ANA	VDD SYS - WUU0_IN29
VSS	T16	0	0		IO Supply - VDD_BAT	
					Pad type - VSSIO	
VDD_BAT	T17	47	47		IO Supply - VDD_BAT	
					Pad type - VDDIO	
P5_0	U16	48	48	ALT0 - P5_0	IO Supply - VDD_BAT	ANALOG -
				ALT1 - TRIG_IN10	Pad type - AON	EXTAL32K/ADC1_B8
				ALT2 - LPTMR0_ALT2	Default - DIS	
P5_1	U17	49	49	ALT0 - P5_1	IO Supply - VDD_BAT	ANALOG -
				ALT1 - TRIG_OUT6	Pad type - AON	XTAL32K/ADC1_B9
				ALT2 - LPTMR1_ALT2	Default - DIS	
P5_2	M10	50	50	ALT0 - P5_2	IO Supply - VDD_BAT	ANALOG - ADC1_B10
				ALT1 - VBAT_WAKEUP_b	Pad type - RST	
				ALT2 - SPC_LPREQ	Default - ALT1	
				ALT3 - TAMPER0		
P5_3	N11	51	51	ALT0 - P5_3	IO Supply - VDD_BAT	ANALOG - ADC1_B11
				ALT1 - TRIG_IN11	Pad type - AON	
				ALT2 - RTC_CLKOUT	Default - DIS	
				ALT3 - TAMPER1		
P5_4	M12			ALT0 - P5_4	IO Supply - VDD_BAT	ANALOG - ADC1_B12
				ALT1 - TRIG_OUT7	Pad type - AON	
				ALT2 - SPC_LPREQ	Default - DIS	
				ALT3 - TAMPER2		
P5_5	K12			ALT0 - P5_5	IO Supply - VDD_BAT	ANALOG - ADC1_B13
				ALT1 - TRIG_IN10	Pad type - AON	
				ALT2 - LPTMR0_ALT2	Default - DIS	
				ALT3 - TAMPER3		
P5_6	K13			ALT0 - P5_6	IO Supply - VDD_BAT	ANALOG - ADC1_B14
				ALT1 - TRIG_OUT6	Pad type - AON	
				ALT2 - LPTMR1_ALT2	Default - DIS	

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT3 - TAMPER4		
P5_7	L13			ALT0 - P5_7 ALT1 - TRIG_IN11	IO Supply - VDD_BAT Pad type - AON	ANALOG - ADC1_B15
				ALT3 - TAMPER5	Default - DIS	
P5_8	L14			ALT0 - P5_8	IO Supply - VDD_BAT	ANALOG - ADC1_B16
				ALT1 - TRIG_OUT7 ALT3 - TAMPER6	Pad type - AON Default - DIS	
P5_9	M14			ALT0 - P5_9	IO Supply - VDD_BAT	ANALOG - ADC1_B17
				ALT3 - TAMPER7	Pad type - AON	
					Default - DIS	
VSS	E13	0	0		IO Supply - VDD_BAT	
					Pad type - VSSIO	
VSS_DCDC	P16	52	52		IO Supply - VDD_DCDC	
DODO LV	D47		50		Pad type - VSSIO	ANNI OG PODO IV
DCDC_LX	P17	53	53		IO Supply - VDD_DCDC Pad type - ANA	ANALOG - DCDC_LX
VDD_DCDC	R15	54	54		IO Supply - VDD_DCDC	
					Pad type - VDDIO	
VDD_LDO_SYS	P15	54	54		IO Supply - VDD_P3	
					Pad type - VDDIO	
VDD_SYS	N14	55	55		IO Supply - VDD_P3	
					Pad type - VDDINT	
VSS	J14	0	0		IO Supply - VDD_P3	
					Pad type - VSSIO	
P3_23	M15		-	ALT0 - P3_23 ALT3 - FC6_P3	IO Supply - VDD_P3 Pad type - FAST	
				ALT4 - CT_INP11	Default - DIS	
				ALT5 - PWM1_X3		
				ALT6 - FLEXIO0_D31		
				ALT7 - SmartDMA_PIO23		
				ALT10 - SAI1_TXD1		
P3_22	M16			ALT0 - P3_22	IO Supply - VDD_P3	
				ALT2 - FC8_P6	Pad type - FAST	
				ALT3 - FC6_P2	Default - DIS	
				ALT4 - CT_INP10		

Data Sheet: Technical Data 119 / 143

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT5 - PWM1_X2		
				ALT6 - FLEXIO0_D30		
				ALT7 - SmartDMA_PIO22		
				ALT9 - SIM0_VCCEN		
				ALT10 - SAI1_RXD1		
P3_21	L16	56	56	ALT0 - P3_21	IO Supply - VDD_P3	
				ALT1 - TRIG_OUT1	Pad type - FAST	
				ALT2 - FC8_P5	Default - DIS	
				ALT3 - FC6_P1		
				ALT4 - CT2_MAT3		
				ALT5 - PWM1_B3		
				ALT6 - FLEXIO0_D29		
				ALT7 - SmartDMA_PIO21		
				ALT9 - SIM0_RST		
				ALT10 - SAI1_RXD0		
P3_20	M17	57	57	ALT0 - P3_20	IO Supply - VDD_P3	VDD SYS - WUU0_IN27
				ALT1 - TRIG_OUT0	Pad type - FAST	
				ALT2 - FC8_P4	Default - DIS	
				ALT3 - FC6_P0		
				ALT4 - CT2_MAT2		
				ALT5 - PWM1_A3		
				ALT6 - FLEXIO0_D28		
				ALT7 - SmartDMA_PIO20		
				ALT9 - SIM0_PD		
				ALT10 - SAI1_TXD0		
P3_19	K17			ALT0 - P3_19	IO Supply - VDD_P3	
				ALT2 - FC7_P6	Pad type - FAST	
				ALT4 - CT2_MAT1	Default - DIS	
				ALT5 - PWM1_X1		
				ALT6 - FLEXIO0_D27		
				ALT7 - SmartDMA_PIO19		
				ALT10 - SAI1_RX_FS		
VSS	К9	0	0		IO Supply - VDD_P3	
					Pad type - VSSIO	
VDD_CORE	L11	58	58		IO Supply - VDD_P3	
					Pad type - VDDINT	

Data Sheet: Technical Data 120 / 143

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
VDD_P3	G11	59	59		IO Supply - VDD_P3	
					Pad type - VDDIO	
P3_18	K16			ALT0 - P3_18	IO Supply - VDD_P3	
				ALT3 - FC6_P6	Pad type - FAST	
				ALT4 - CT2_MAT0	Default - DIS	
				ALT5 - PWM1_X0		
				ALT6 - FLEXIO0_D26		
				ALT7 - SmartDMA_PIO18		
				ALT10 - SAI1_RX_BCLK		
P3_17	K15	60	60	ALT0 - P3_17	IO Supply - VDD_P3	VDD SYS - WUU0_IN26
				ALT2 - FC8_P3	Pad type - FAST	
				ALT4 - CT_INP9	Default - DIS	
				ALT5 - PWM1_B2		
				ALT6 - FLEXIO0_D25		
				ALT7 - SmartDMA_PIO17		
				ALT9 - SIM0_IO		
				ALT10 - SAI1_TX_FS		
P3_16	J15	61	61	ALT0 - P3_16	IO Supply - VDD_P3	
				ALT2 - FC8_P2	Pad type - FAST	
				ALT4 - CT_INP8	Default - DIS	
				ALT5 - PWM1_A2		
				ALT6 - FLEXIO0_D24		
				ALT7 - SmartDMA_PIO16		
				ALT9 - SIM0_CLK		
				ALT10 - SAI1_TX_BCLK		
P3_15	H15	62	62	ALT0 - P3_15	IO Supply - VDD_P3	
				ALT2 - FC8_P1	Pad type - FAST	
				ALT4 - CT_INP7	Default - DIS	
				ALT5 - PWM1_B1		
				ALT6 - FLEXIO0_D23		
				ALT7 - SmartDMA_PIO15		
				ALT8 - FLEXSPI0_A_DATA7		
				ALT10 - SAI0_RX_FS		
P3_14	H17	63	63	ALT0 - P3_14	IO Supply - VDD_P3	VDD SYS - WUU0_IN25
				ALT2 - FC8_P0	Pad type - FAST	
				ALT4 - CT_INP6	Default - DIS	

122 / 143

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT5 - PWM1_A1 ALT6 - FLEXIO0_D22 ALT7 - SmartDMA_PIO14 ALT8 - FLEXSPI0_A_DATA6 ALT10 - SAI0_RX_BCLK		
P3_13	H16	64	64	ALT0 - P3_13 ALT2 - FC7_P5 ALT3 - FC6_P5 ALT4 - CT1_MAT3 ALT5 - PWM1_B0 ALT6 - FLEXIO0_D21 ALT7 - SmartDMA_PIO13 ALT8 - FLEXSPI0_A_DATA5 ALT10 - SAI0_TXD1	IO Supply - VDD_P3 Pad type - FAST Default - DIS	
P3_12	G16	65	65	ALT0 - P3_12 ALT2 - FC7_P4 ALT3 - FC6_P4 ALT4 - CT1_MAT2 ALT5 - PWM1_A0 ALT6 - FLEXIOO_D20 ALT7 - SmartDMA_PIO12 ALT8 - FLEXSPIO_A_DATA4 ALT10 - SAIO_RXD1	IO Supply - VDD_P3 Pad type - FAST Default - DIS	
VSS	N13	0	0		IO Supply - VDD_P3 Pad type - VSSIO	
VDD_P3	H10	66	66		IO Supply - VDD_P3 Pad type - VDDIO	
P3_11	F16	67	67	ALT0 - P3_11 ALT2 - FC6_P3 ALT3 - FC7_P5 ALT4 - CT1_MAT1 ALT5 - PWM0_B3 ALT6 - FLEXIO0_D19 ALT7 - SmartDMA_PIO11 ALT8 - FLEXSPI0_A_DATA3 ALT9 - SIM0_IO	IO Supply - VDD_P3 Pad type - FAST Default - DIS	VDD SYS - WUU0_IN24

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT10 - SAI0_RXD0		
P3_10	F17	68	68	ALT0 - P3_10	IO Supply - VDD_P3	
				ALT2 - FC6_P2	Pad type - FAST	
				ALT3 - FC7_P4	Default - DIS	
				ALT4 - CT1_MAT0		
				ALT5 - PWM0_A3		
				ALT6 - FLEXIO0_D18		
				ALT7 - SmartDMA_PIO10		
				ALT8 - FLEXSPI0_A_DATA2		
				ALT9 - SIMO_CLK		
				ALT10 - SAI0_TXD0		
P3_9	F15	69	69	ALT0 - P3_9	IO Supply - VDD_P3	
				ALT2 - FC6_P5	Pad type - FAST	
				ALT3 - FC7_P2	Default - DIS	
				ALT4 - CT_INP5		
				ALT5 - PWM0_B2		
				ALT6 - FLEXIO0_D17		
				ALT7 - SmartDMA_PIO9		
				ALT8 - FLEXSPI0_A_DATA1		
				ALT9 - SIM0_RST		
				ALT10 - SAI0_TX_FS		
P3_8	E14	70	70	ALT0 - P3_8	IO Supply - VDD_P3	VDD SYS - WUU0_IN23
				ALT2 - FC6_P4	Pad type - FAST	
				ALT3 - FC7_P0	Default - DIS	
				ALT4 - CT_INP4		
				ALT5 - PWM0_A2		
				ALT6 - FLEXIO0_D16		
				ALT7 - SmartDMA_PIO8		
				ALT8 - FLEXSPIO_A_DATA0		
				ALT9 - SIM0_PD		
				ALT10 - SAI0_TX_BCLK		
P3_7	D14	71	71	ALT0 - P3_7	IO Supply - VDD_P3	
				ALT2 - FC6_P6	Pad type - FAST	
				ALT3 - FC7_P1	Default - DIS	
				ALT4 - CT4_MAT3		
				ALT5 - PWM0_B1		
				ALT6 - FLEXIO0_D15		

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT7 - SmartDMA_PIO7		
				ALT8 - FLEXSPI0_A_SCLK		
				ALT9 - SIM0_VCCEN		
				ALT10 - SAIO_MCLK		
P3_6	D17	72	72	ALT0 - P3_6	IO Supply - VDD_P3	
				ALT1 - CLKOUT	Pad type - FAST	
				ALT2 - FC6_P1	Default - DIS	
				ALT4 - CT4_MAT2		
				ALT5 - PWM0_A1		
				ALT6 - FLEXIO0_D14		
				ALT7 - SmartDMA_PIO6		
				ALT8 - FLEXSPI0_A_DQS		
				ALT9 - SIM1_VCCEN		
				ALT10 - SAI1_MCLK		
VSS	P12	0	0		IO Supply - VDD_P3	
					Pad type - VSSIO	
VDD_P3	H12	73	73		IO Supply - VDD_P3	
					Pad type - VDDIO	
P3_5	G14			ALT0 - P3_5	IO Supply - VDD_P3	
				ALT2 - FC7_P3	Pad type - FAST	
				ALT4 - CT_INP19	Default - DIS	
				ALT5 - PWM0_X3		
				ALT6 - FLEXIO0_D13		
				ALT7 - SmartDMA_PIO5		
				ALT9 - SIM1_IO		
P3_4	F14			ALT0 - P3_4	IO Supply - VDD_P3	
				ALT2 - FC7_P2	Pad type - FAST	
				ALT4 - CT_INP18	Default - DIS	
				ALT5 - PWM0_X2		
				ALT6 - FLEXIO0_D12		
				ALT7 - SmartDMA_PIO4		
				ALT9 - SIM1_CLK		
P3_3	D16			ALT0 - P3_3	IO Supply - VDD_P3	
				ALT2 - FC7_P1	Pad type - FAST	
				ALT4 - CT4_MAT1	Default - DIS	
				ALT5 - PWM0_X1		

Data Sheet: Technical Data 124 / 143

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT6 - FLEXIO0_D11		
				ALT7 - SmartDMA_PIO3		
				ALT9 - SIM1_RST		
P3_2	D15			ALT0 - P3_2	IO Supply - VDD_P3	
				ALT2 - FC7_P0	Pad type - FAST	
				ALT4 - CT4_MAT0	Default - DIS	
				ALT5 - PWM0_X0		
				ALT6 - FLEXIO0_D10		
				ALT7 - SmartDMA_PIO2		
				ALT9 - SIM1_PD		
P3_1	C15	74	74	ALT0 - P3_1	IO Supply - VDD_P3	
				ALT1 - TRIG_IN1	Pad type - FAST	
				ALT2 - FC6_P0	Default - DIS	
				ALT3 - FC7_P6		
				ALT4 - CT_INP17		
				ALT5 - PWM0_B0		
				ALT6 - FLEXIO0_D9		
				ALT7 - SmartDMA_PIO1		
				ALT8 - FLEXSPI0_A_SS1_b		
P3_0	B17	75	75	ALT0 - P3_0	IO Supply - VDD_P3	VDD SYS - WUU0_IN22
				ALT1 - TRIG_IN0	Pad type - FAST	
				ALT3 - FC7_P3	Default - DIS	
				ALT4 - CT_INP16		
				ALT5 - PWM0_A0		
				ALT6 - FLEXIO0_D8		
				ALT7 - SmartDMA_PIO0		
				ALT8 - FLEXSPI0_A_SS0_b		
VSS	Н9				IO Supply - VDD_P3	
					Pad type - VSSIO	
VDD_P3					IO Supply - VDD_P3	
					Pad type - VDDIO	
VDD	-				IO Supply - VDD	
					Pad type - VDDIO	
VSS	J10	0	0		IO Supply - VDD	
					Pad type - VSSIO	
		-				

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT1 - TMS/SWDIO	Pad type - MED	
				ALT2 - FC1_P0	Default - ALT1	
				ALT4 - CT_INP0		
P0_1	A16	77	77	ALT0 - P0_1	IO Supply - VDD	
				ALT1 - TCLK/SWCLK	Pad type - MED	
				ALT2 - FC1_P1	Default - ALT1	
				ALT4 - CT_INP1		
P0_2	B16	78	78	ALT0 - P0_2	IO Supply - VDD	
				ALT1 - TDO/SWO	Pad type - MED	
				ALT2 - FC1_P2	Default - ALT1	
				ALT4 - CT0_MAT0		
				ALT5 - UTICK_CAP0		
				ALT10 - I3C0_PUR		
P0_3	B15	79	79	ALT0 - P0_3	IO Supply - VDD	ANALOG - CMP1_IN1
				ALT1 - TDI	Pad type - MED	
				ALT2 - FC1_P3	Default - ALT1	
				ALT4 - CT0_MAT1		
				ALT5 - UTICK_CAP1		
				ALT8 - HSCMP0_OUT		
P0_4	B14	80	80	ALT0 - P0_4	IO Supply - VDD	ANALOG - TSI0_CH8
				ALT1 - EWM0_IN	Pad type - MED+I2C	VDD SYS - WUU0_IN0
				ALT2 - FC0_P0	Default - DIS	
				ALT3 - FC1_P4		
				ALT4 - CT0_MAT2		
				ALT5 - UTICK_CAP2		
				ALT8 - HSCMP1_OUT		
				ALT9 - PDM0_CLK		
P0_5	A14	81	81	ALT0 - P0_5	IO Supply - VDD	ANALOG - TSI0_CH9
				ALT1 - EWM0_OUT_b	Pad type - MED+I2C	
				ALT2 - FC0_P1	Default - DIS	
				ALT3 - FC1_P5		
				ALT4 - CT0_MAT3		
				ALT5 - UTICK_CAP3		
				ALT9 - PDM0_DATA0		
P0_6	C14	82	82	ALT0 - P0_6	IO Supply - VDD	ISP - ISPMODE_N
				ALT1 - ISPMODE_N	Pad type - MED	ANALOG - TSI0_CH10

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT2 - FC0_P2	Default - ALT1	
				ALT3 - FC1_P6		
				ALT4 - CT_INP2		
				ALT8 - HSCMP2_OUT		
				ALT9 - PDM0_DATA1		
P0_7	C13			ALT0 - P0_7	IO Supply - VDD	ANALOG - CMP2_IN1
				ALT2 - FC0_P3	Pad type - MED	VDD SYS - WUU0_IN1
				ALT4 - CT_INP3	Default - DIS	
P0_8	C12			ALT0 - P0_8	IO Supply - VDD	ANALOG - ADC0_B8
				ALT2 - FC0_P4	Pad type - MED	
				ALT4 - CT_INP0	Default - DIS	
				ALT6 - FLEXIO0_D0		
P0_9	A12			ALT0 - P0_9	IO Supply - VDD	ANALOG - ADC0_B9
				ALT2 - FC0_P5	Pad type - MED	
				ALT4 - CT_INP1	Default - DIS	
				ALT6 - FLEXIO0_D1		
P0_10	B12			ALT0 - P0_10	IO Supply - VDD	ANALOG - ADC0_B10
				ALT2 - FC0_P6	Pad type - MED	
				ALT4 - CT0_MAT0	Default - DIS	
				ALT6 - FLEXIO0_D2		
P0_11	B11			ALT0 - P0_11	IO Supply - VDD	ANALOG - ADC0_B11
				ALT4 - CT0_MAT1	Pad type - MED	
				ALT6 - FLEXIO0_D3	Default - DIS	
				ALT8 - HSCMP2_OUT		
VDD	G7	83	83		IO Supply - VDD	
					Pad type - VDDIO	
VSS	D9	0	0		IO Supply - VDD	
					Pad type - VSSIO	
P0_12	D11		-	ALT0 - P0_12	IO Supply - VDD	ANALOG -
				ALT2 - FC1_P4	Pad type - MED	ADC0_B12/NVM_TM0
				ALT3 - FC0_P0	Default - DIS	
				ALT4 - CT0_MAT2		
				ALT6 - FLEXIO0_D4		
P0_13	F12			ALT0 - P0_13	IO Supply - VDD	ANALOG -
				ALT2 - FC1_P5	Pad type - MED	ADC0_B13/NVM_TM1

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT3 - FC0_P1	Default - DIS	
				ALT4 - CT0_MAT3		
				ALT6 - FLEXIO0_D5		
P0_14	E11			ALT0 - P0_14	IO Supply - VDD	ANALOG -
				ALT2 - FC1_P6	Pad type - MED	ADC0_B14/NVM_TM2
				ALT3 - FC0_P2	Default - DIS	
				ALT4 - CT_INP2		
				ALT5 - UTICK_CAP0		
				ALT6 - FLEXIO0_D6		
P0_15	G13			ALT0 - P0_15	IO Supply - VDD	ANALOG -
				ALT3 - FC0_P3	Pad type - MED	ADC0_B15/NVM_TM3
				ALT4 - CT_INP3	Default - DIS	
				ALT5 - UTICK_CAP1		
			ALT6 - FLEXIO0_D7			
P0_16	B10	84	84	ALT0 - P0_16	IO Supply - VDD	ISP - I2C_SDA
				ALT2 - FC0_P0	Pad type - MED+I2C+I3C	ANALOG -
				ALT4 - CT0_MAT0	Default - DIS	TSI0_CH11/ADC0_A8
				ALT5 - UTICK_CAP2		VDD SYS - WUU0_IN2
				ALT6 - FLEXIO0_D0		
				ALT9 - PDM0_CLK		
				ALT10 - I3C0_SDA		
P0_17	A10	85	85	ALT0 - P0_17	IO Supply - VDD	ISP - I2C_SCL
				ALT2 - FC0_P1	Pad type - MED+I2C	ANALOG -
				ALT4 - CT0_MAT1	Default - DIS	TSI0_CH12/ADC0_A9
				ALT5 - UTICK_CAP3		
				ALT6 - FLEXIO0_D1		
				ALT9 - PDM0_DATA0		
				ALT10 - I3C0_SCL		
P0_18	C10	86	86	ALT0 - P0_18	IO Supply - VDD	ANALOG -
				ALT1 - EWM0_IN	Pad type - MED	TSI0_CH13/ADC0_A10
				ALT2 - FC0_P2	Default - DIS	
				ALT4 - CT0_MAT2		
				ALT6 - FLEXIO0_D2		
				ALT8 - HSCMP0_OUT		
				ALT9 - PDM0_DATA1		

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
P0_19	C9	87	87	ALT0 - P0_19 ALT1 - EWM0_OUT_b ALT2 - FC0_P3 ALT4 - CT0_MAT3 ALT6 - FLEXIO0_D3 ALT8 - HSCMP1_OUT	IO Supply - VDD Pad type - MED Default - DIS	ANALOG - TSI0_CH14/ADC0_A11 VDD SYS - WUU0_IN3
P0_20	C8	88	88	ALT0 - P0_20 ALT2 - FC0_P4 ALT3 - FC1_P0 ALT4 - CT_INP0 ALT6 - FLEXIO0_D4 ALT10 - I3C0_SDA	IO Supply - VDD Pad type - MED+I2C+I3C Default - DIS	ANALOG - TSI0_CH15/ADC0_A12 VDD SYS - WUU0_IN4
P0_21	A8	89	89	ALT0 - P0_21 ALT2 - FC0_P5 ALT3 - FC1_P1 ALT4 - CT_INP1 ALT6 - FLEXIOO_D5 ALT10 - I3C0_SCL	IO Supply - VDD Pad type - MED+I2C Default - DIS	ANALOG - TSI0_CH16/ADC0_A13
P0_22	B8	90	90	ALT0 - P0_22 ALT1 - EWM0_IN ALT2 - FC0_P6 ALT3 - FC1_P2 ALT4 - CT_INP2 ALT6 - FLEXIO0_D6 ALT10 - I3C0_PUR	IO Supply - VDD Pad type - MED Default - DIS	ANALOG - ADC0_A14/CMP1_IN2
P0_23	В7	91	91	ALT0 - P0_23 ALT1 - EWM0_OUT_b ALT3 - FC1_P3 ALT4 - CT_INP3 ALT6 - FLEXIOO_D7	IO Supply - VDD Pad type - MED Default - DIS	ANALOG - ADC0_A15/CMP2_IN2 VDD SYS - WUU0_IN5
VSS	H13	0	0		IO Supply - VDD Pad type - VSSIO	
P0_24	B6			ALT0 - P0_24 ALT2 - FC1_P0 ALT4 - CT0_MAT0	IO Supply - VDD Pad type - MED Default - DIS	ANALOG - ADC0_B16
P0_25	A6			ALT0 - P0_25	IO Supply - VDD	ANALOG - ADC0_B17

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT2 - FC1_P1	Pad type - MED	
				ALT4 - CT0_MAT1	Default - DIS	
P0_26	F10			ALT0 - P0_26	IO Supply - VDD	ANALOG - ADC0_B18
				ALT2 - FC1_P2	Pad type - MED	
				ALT4 - CT0_MAT2	Default - DIS	
P0_27	E10	-		ALT0 - P0_27	IO Supply - VDD	ANALOG - ADC0_B19
				ALT2 - FC1_P3	Pad type - MED	
				ALT4 - CT0_MAT3	Default - DIS	
P0_28	E8			ALT0 - P0_28	IO Supply - VDD	ANALOG - ADC0_B20
				ALT2 - FC1_P4	Pad type - MED	
				ALT3 - FC0_P4	Default - DIS	
				ALT4 - CT_INP0		
P0_29	F8			ALT0 - P0_29	IO Supply - VDD	ANALOG - ADC0_B21
				ALT2 - FC1_P5	Pad type - MED	
				ALT3 - FC0_P5	Default - DIS	
				ALT4 - CT_INP1		
P0_30	E7			ALT0 - P0_30	IO Supply - VDD	ANALOG - ADC0_B22
				ALT2 - FC1_P6	Pad type - MED	
				ALT3 - FC0_P6	Default - DIS	
				ALT4 - CT_INP2		
P0_31	D7			ALT0 - P0_31	IO Supply - VDD	ANALOG - ADC0_B23
				ALT4 - CT_INP3	Pad type - MED	
					Default - DIS	
P1_0	C6	92	92	ALT0 - P1_0	IO Supply - VDD	ISP - SPI_SDO
				ALT1 - TRIG_IN0	Pad type - MED+I2C	ANALOG - TSI0_CH0/
				ALT2 - FC3_P0	Default - DIS	ADC0_A16/CMP0_IN0
				ALT3 - FC4_P4		VDD SYS -
				ALT4 - CT_INP4		WUU0_IN6/LPTMR0_ALT:
				ALT5 - SCT0_OUT6		
				ALT6 - FLEXIO0_D8		
				ALT10 - SAI1_TX_BCLK		
P1_1	C5	93	93	ALT0 - P1_1	IO Supply - VDD	ISP - SPI_SCK
				ALT1 - TRIG_IN1	Pad type - MED+I2C	ANALOG - TSI0_CH1/
				ALT2 - FC3_P1	Default - DIS	ADC0_A17/CMP1_IN0
				ALT3 - FC4_P5		
				ALT4 - CT_INP5		

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
				ALT5 - SCT0_OUT7		
				ALT6 - FLEXIO0_D9		
				ALT10 - SAI1_TX_FS		
P1_2	C4	94	94	ALT0 - P1_2	IO Supply - VDD	ISP - SPI_SDI
				ALT1 - TRIG_OUT0	Pad type - MED	ANALOG - TSI0_CH2/
				ALT2 - FC3_P2	Default - DIS	ADC0_A18/CMP2_IN0
				ALT3 - FC4_P6		
				ALT4 - CT1_MAT0		
				ALT5 - SCT0_IN6		
				ALT6 - FLEXIO0_D10		
				ALT9 - ENETO_MDC		
				ALT10 - SAI1_TXD0		
				ALT11 - CAN0_TXD		
P1_3	B4	95	95	ALT0 - P1_3	IO Supply - VDD	ISP - SPI_PCS
				ALT1 - TRIG_OUT1	Pad type - MED	ANALOG - TSI0_CH3/
				ALT2 - FC3_P3	Default - DIS	ADC0_A19/CMP0_IN1
				ALT4 - CT1_MAT1		VDD SYS - WUU0_IN7
				ALT5 - SCT0_IN7		
				ALT6 - FLEXIO0_D11		
				ALT9 - ENETO_MDIO		
				ALT10 - SAI1_RXD0		
				ALT11 - CAN0_RXD		
VDD	H6	96	96		IO Supply - VDD	
					Pad type - VDDIO	
VSS	D12	0	0		IO Supply - VDD	
					Pad type - VSSIO	
P1_4	A4	97	97	ALT0 - P1_4	IO Supply - VDD	ANALOG - TSI0_CH4/
				ALT1 - FREQME_CLK_IN0	Pad type - MED	ADC0_A20/CMP0_IN2
				ALT2 - FC3_P4	Default - DIS	VDD SYS - WUU0_IN8
				ALT3 - FC5_P0		
				ALT4 - CT1_MAT2		
				ALT5 - SCT0_OUT0		
				ALT6 - FLEXIO0_D12		
				ALT7 - SmartDMA_PIO0		
				ALT9 - ENETO_TX_CLK		
				ALT10 - SAI0_TXD1		

Data Sheet: Technical Data

132 / 143

Table 93. Pinmux Assignments (continued)

Pin Name	184BGA ALL	100HLQFP N94X	100HLQFP N54X	Pinmux Assignment	Pad Settings	Alternate Functions
P1_5	B3	98	98	ALT0 - P1_5	IO Supply - VDD	ANALOG - TSI0_CH5/
				ALT1 - FREQME_CLK_IN1	Pad type - MED	ADC0_A21/CMP0_IN3
				ALT2 - FC3_P5	Default - DIS	
				ALT3 - FC5_P1		
				ALT4 - CT1_MAT3		
				ALT5 - SCT0_OUT1		
				ALT6 - FLEXIO0_D13		
				ALT7 - SmartDMA_PIO1		
				ALT9 - ENETO_TXEN		
				ALT10 - SAI0_RXD1		
P1_6	B2	99	99	ALT0 - P1_6	IO Supply - VDD	ANALOG -
				ALT1 - TRIG_IN2	Pad type - MED	TSI0_CH6/ADC0_A22
				ALT2 - FC3_P6	Default - DIS	
				ALT3 - FC5_P2		
				ALT4 - CT_INP6		
				ALT5 - SCT0_IN0		
				ALT6 - FLEXIO0_D14		
				ALT7 - SmartDMA_PIO2		
				ALT9 - ENET0_TXD0		
				ALT10 - SAI1_RX_BCLK		
				ALT11 - CAN1_TXD		
P1_7	A2	100	100	ALT0 - P1_7	IO Supply - VDD	ANALOG -
				ALT1 - TRIG_OUT2	Pad type - MED	TSI0_CH7/ADC0_A23
				ALT3 - FC5_P3	Default - DIS	VDD SYS - WUU0_IN9
				ALT4 - CT_INP7		
				ALT5 - SCT0_IN1		
				ALT6 - FLEXIO0_D15		
				ALT7 - SmartDMA_PIO3		
				ALT8 - PLU_CLK		
				ALT9 - ENET0_TXD1		
				ALT10 - SAI1_RX_FS		
				ALT11 - CAN1_RXD		

Note:HLQFP package pin 0 is the thermal pad on the bottom of the package.

Note:

- 1. For BGA package, all balls with same name are shorted together on BGA package.
- 2. VSS_ANA and VSS_P4 are shorted together on package.
- 3. +I3C in Pad Type represents strong pull up resistor is implemented on the pin. PV bit is implemented in the Pin Control register of the pin.

32-bit Arm Cortex-M33 @ 150 MHz (N94x and N54x), Rev. 6, 06/2024

- 4. +I2C in Pad Type represents I2C filter is implemented on the pin. PFE bit is implemented in the Pin Control register of the pin
- 5. DIS in default column means the pin's input buffer is disabled by default
- 6. AON and RST pads support passive filter. PFE bit is implemented in the Pin Control register of the pin
- 7. PE, PS, SRE, ODE and DSE are supported in the Pin Control register of all types of IO.

6.2 MCXNx4x Pinout Diagrams

The pinout diagrams are provided in an Excel file attached to this document:

- 1. Click the paperclip symbol on the left side of the PDF window.
- 2. Double-click on the Excel file to open it.
- 3. Select the respective package tab.

Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, refer to the MCXNx4x_Pinmux tab in the Excel file.

6.3 Recommended connection for unused analog and digital pins

Table 94 shows the recommended connections for pins if those pins are not used in the customer's application

Table 94. Recommended connection for unused interfaces

Pin Type	Pin Name	Recommendation	Comments
Power	VDD_LDO_CORE	Connect to VDD_CORE	When the LDO_CORE is bypassed, the input VDD_LDO_CORE and output VOUT_CORE/ VDD_CORE should be connected together, and tied to the output from DCDC_CORE. The regulator should also be disabled in software.
Power	VDD_CORE	Connect to VDD_LDO_CORE	When the LDO_CORE is bypassed, the input VDD_LDO_CORE and output VOUT_CORE/ VDD_CORE should be connected together, and tied to the output from DCDC_CORE. The regulator should also be disabled in software.
Power	VDD_LDO_SYS	Connect to VDD_SYS	When the LDO_SYS is bypassed, the input VDD_LDO_SYS and output VOUT_SYS should be connected together and tied to an external supply. The regulator should also be disabled in software.
Power	VDD_DCDC	Ground	When the DCDC is not used, the input should be tied to VSS through a 10 $k\Omega$ resistor.
Power	DCDC_LX	Float	The input VDD_DCDC should be tied to VSS with 10 Kohm
Power	VDD_SYS/VOUT_SYS	Must be powered	VDD_SYS is used to power parts of the system power controller (SPC) and must be powered to use the chip. If LDO_SYS is not being used, then tie VDD_LDO_SYS to VOUT_SYS/VDD_SYS and supply power from an external source. The regulator should also be disabled in software.

Table 94. Recommended connection for unused interfaces (continued)

Pin Type	Pin Name	Recommendation	Comments
Power	VDD	Must be powered	VDD powers the mux logic for PORT 0, PORT 1, and Flash. It must be powered during POR. The recommendation is to keep it powered, but it can be connected to the output of the Smart Power Switch and be left floating in shelf storage mode.
Power	VDD_ANA	Float	VDD_ANA is allowed to float ONLY if VDD_P4 is allowed to float. Otherwise, VDD_ANA MUST be powered and all requirements for VDD_ANA stated in this document apply.
Power	VDD_USB	Tie to ground through a 10 kΩ resistor if VDD_USB is an independent pin in the package version used	
Power	VREFH	Always connect to VDD_ANA potential	Always connect to VDD_ANA potential
Power	VREFL	Always connect to VSS potential	Always connect to VSS potential
Power	VSS_ANA	Always connect to VSS potential	Always connect to VSS potential
Power	VSS_DCDC	Always connect to VSS potential	Always connect to VSS potential
Power	VSS_USB	Always connect to VSS potential	Always connect to VSS potential
Analog/non-GPIO	ADC <i>n_x</i>	Float	
Analog/non-GPIO	ADC <i>n_x</i> /DAC <i>n_</i> OUT	Float	
Analog/non-GPIO	VREF_OUT	Float	Analog output - Float
Analog/non-GPIO	TAMPERx	Float	
Analog/non-GPIO	VBAT_WAKEUP_b	Float	
Analog/non-GPIO	RTC_CLKOUT	Float	
Analog/non-GPIO	EXTAL32K	Float	
Analog/non-GPIO	XTAL32K	Float	Analog output - Float
Analog/non-GPIO	EXTAL_32M	Float	
Analog/non-GPIO	XTAL_32M	Float	Analog output - Float
Analog/non-GPIO	USB0_DP	Float	Float
Analog/non-GPIO	USB1_DP	Float	Float
Analog/non-GPIO	USB0_DM	Float	Float
Analog/non-GPIO	USB1_DM	Float	Float

Table 94. Recommended connection for unused interfaces (continued)

Pin Type	Pin Name	Recommendation	Comments
Analog/non-GPIO	USB1_VBUS	Float	
Analog/non-GPIO	USB1_ID	Float	
GPIO/Analog	Px/ADC <i>n_x</i>	Float	Float (default is analog input)
GPIO/Analog	Px/CMPn_INx	Float	Float (default is analog input)
GPIO/Digital	P0_1/JTAG_TCLK	Float	Float (default is JTAG with pulldown)
GPIO/Digital	P0_3/JTAG_TDI	Float	Float (default is JTAG with pullup)
GPIO/Digital	P0_2/JTAG_TDO	Float	Float (default is JTAG with pullup)
GPIO/Digital	P0_0/JTAG_TMS	Float	Float (default is JTAG with pullup)
GPIO/Digital	Px	Float	Float (default is disabled)

7 Ordering parts

7.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to nxp.com and perform a part number search for the following device numbers:MCXN946VNLT

8 Part identification

Part numbers for the device have fields that identify the specific part. Use the values of these fields to determine the specific part.

8.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

8.2 Part number format

Part numbers for this device have the following format:

B PS F T PG PT

Table 95. Part number fields descriptions

Field	Description	Values
В	Brand	• MCX
PS	Product series name	• N
F	Family	• 5xx
		• 9xx

Table 95. Part number fields descriptions (continued)

Field	Description	Values
Т	Junction Temperature range (°C)	• V = -40 to 125
PG	Package	• NL = 100 HLQFP (14 x 14 x 1 mm, 0.5mm pitch)
		• DF = 184 VFBGA (9 x 9 x 0.85 mm, 0.5mm pitch)
PT	Package Type	R = Tape and Reel
		• T = Tray

8.3 Example

This is an example part number:

MCXN946VNLT

8.4 Package marking

8.4.1 Package marking information

VFBGA package has the following top-side marking:

· First line: NXP logo

• Second line: Part number, minus the package extension info (ex. part# = PMCXN947VDFT, marking = PMCXN947V)

• Third line: Lot Information: (assembly site + wafer/diffusion lot + assembly lot)

• Fourth line: Trace Code: (year + work week)

· Fifth line: Mask set

Table 96. Package marking

Identifier	
O)	
PMCXNxxxV	
AWLZ	
YWW	
иммм	

9 Terminology and guidelines

9.1 Definitions

Key terms are defined in the following table:

Term	Definition
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:
	Operating ratings apply during operation of the chip.
	Handling ratings apply when the chip is not powered.
	NOTE The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions
Typical value	A specified value for a technical characteristic that:
	Lies within the range of values specified by the operating behavior
	 Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions
	NOTE
	Typical values are provided as design guidelines and are neither tested nor guaranteed.

9.2 Examples

Operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

Operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

Operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
lwp	Digital I/O weak pullup/pulldown current	10 tank	70	130	μΑ

9.3 Typical-value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	°C
V_{DD}	Supply voltage	3.3	V

9.4 Relationship between ratings and operating requirements

9.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- · Never exceed any of the chip's ratings.
- · During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

10 Revision history

The following table provides a revision history for this document.

Table 97. Revision history

Rev. No.	Date	Substantial changes
6	June 2024	Added VREFH and VREL in Table 8.
		In the front page content, updated features section completely, added new block diagram and renamed the existing diagram as MCX N94x / N54x Architecture and so on.

Table 97. Revision history (continued)

Rev. No.	Date	Substantial changes		
		Updated Pinout table for Vss row of HLQFP pin entries.		
		Updated Table 92.		
		 Added new tables VDD_CORE supply HVD and LVD Operating Requirements, and VBAT supply POR operating requirements in HVD, LVD, and POR operating requirements. 		
		Removed VDD_P2 row from Table 93.		
		Removed all occureces of IDD_VBAT_TAMPER		
		Removed TRNG block from Figure 2.		
5	March 2024	Removed note for 100HLQFP package from the front page.		
		Updated title of the document.		
		Updated front-matter for Power-efficient, Low-Power Performance, Analog modules, and Communication Interfaces.		
		Updated temperature range in Part number format from "-40 to 105" to "-40 to 125".		
		Updated Power Consumption Operating Behaviors .		
		Updated General switching specifications.		
		Updated Table VDD_CORE supply HVD and LVD Operating Requirements in HVD, LVD, and POR operating requirements.		
		Updated ADC electrical characteristics.		
		 Removed PF_* entries from Table 93. Also, updated attached Pinout excel sheet accordingly. 		
		Updated SYSCON[DIEID] in Table 2.		
		Updated Resource for the Type Chip Errata in Table 3.		
		Updated footnote 7 in Table 15.		
		Updated the value of Max for the Symbol tpon in Table 41.		
		Updated footnote 7 in Table 56.		
		Added a footnote in Table 64 and updated the Max value for the Symbol Vacc.		
		Updated the values of Pin name VSS from H5 to G2 and E19 to E13 for 184BGA ALL in Table 93.		
		• Updated the values of A, B and α in Table 57.		
4	Jan 2024	Initial public release		

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- 2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V may appear when operating this product, depending on settings and application. Customers incorporating or otherwise using these products in applications where such high voltages may appear during operation, assembly, test etc. of such application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60 950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.

Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post-packing tests performed on individual die or wafers.

NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.

All die sales are conditioned upon and subject to the customer entering into a written die sale agreement with NXP Semiconductors through its legal department.

AEC unqualified products — This product has not been qualified to the appropriate Automotive Electronics Council (AEC) standard Q100 or Q101 and should not be used in automotive applications, including but not limited to applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is for the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

ESD protection devices — These products are only intended for protection against ElectroStatic Discharge (ESD) pulses and are not intended for any other usage including, without limitation, voltage regulation applications. NXP Semiconductors accepts no liability for use in such applications and therefore such use is at the customer's own risk.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

141 / 143

Data Sheet: Technical Data

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision,

Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

CoolFlux — is a trademark of NXP B.V.

CoolFlux DSP — is a trademark of NXP B.V.

eIQ — is a trademark of NXP B.V.

NXP SECURE CONNECTIONS FOR A SMARTER WORLD — is a trademark of NXP B.V.

SafeAssure — is a trademark of NXP B.V.

SafeAssure — logo is a trademark of NXP B.V.

Synopsys & Designware — are registered trademarks of Synopsys, Inc.

Synopsys — Portions Copyright © 2018-2022 Synopsys, Inc. Used with permission. All rights reserved.

TensorFlow, the TensorFlow logo and any related marks — are trademarks of Google Inc.

Data Sheet: Technical Data 142 / 143

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2024.

All rights reserved.

For more information, please visit: https://www.nxp.com

Date of release: 06/2024 Document identifier: MCXNx4x