Récapitulatif: suites et séries d'applications

K désigne **R** ou **C**, $(f_n)_{n \in \mathbb{N}}$ une suite d'applications d'une partie A d'un **K**-espace vectoriel **E** de dimension finie à valeurs dans **K** (ou éventuellement un **K**-espace vectoriel **F** de dimension finie).

SUITES

Convergence simple

On dit que $(f_n)_{n \in \mathbb{N}}$ converge simplement si, pour tout $\vec{x} \in A$, $f_n(\vec{x})$ converge.

Si c'est le cas $f:A\to \mathbf{K};\ \vec{x}\mapsto \lim_{n\to\infty}f_n(\vec{x})$ est dite limite simple de $(f_n)_{n\in \mathbf{N}}$. On a unicité de la limite simple.

Pour montrer la convergence simple on commence par se donner un élément de A:

Soit $\vec{x}_0 \in A$,

 $\dots donc \ f_n(\vec{x}_0) \underset{n \to +\infty}{\longrightarrow} f(\vec{x}_0).$

Conclusion: la suite d'applications $(f_n)_{n\in\mathbb{N}}$ tend simplement vers f.

Convergence uniforme

 $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers une application f de A dans \mathbf{K} (ou \mathbf{F}), si pour tout $\varepsilon\in\mathbf{R}_+^*$, il existe $n_0\in\mathbf{N}$ tel que pour tout $n\in\mathbf{N}$, si $n\geq n_0$, alors pour tout $\vec{x}\in A$:

$$|f_n(\vec{x}) - f(\vec{x})| \le \varepsilon.$$

La convergence uniforme vers f implique la convergence simple vers f (réciproque fausse).

Proposition: On a l'équivalence des deux propositions:

- i. $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers une application f.
- ii. f_n-f est bornée pour n suffisamment grand et $\|f-f_n\|_{\infty} \underset{n\to +\infty}{\longrightarrow} 0$.

Dans la pratique pour prouver la convergence uniforme on évite si possible de calculer $||f - f_n||_{\infty}$ et on procède comme suit 1 :

Preuve pratique de la convergence uniforme

Etape 1 : (On montre la convergence simple)

Soit $\vec{x}_0 \in A$.

Donc $(f_n)_{n \in \mathbb{N}}$ converge simplement vers une application f.

Etape 2: (On montre la convergence uniforme vers la limite simple)

Soit $\vec{x} \in A$, pour tout $n \in \mathbb{N}$,

$$|f_n(\vec{x}) - f(\vec{x})| \le \dots \le a_n$$

La suite $(a_n)_{n\in\mathbb{N}}$ est indépendante de \vec{x} et tend vers 0. Donc $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f.

^{1.} pour prouver que la convergence simple n'est pas uniforme, ce qui n'est plus un objectif du programme, le calcul de $||f - f_n||_{\infty}$ est souvent le plus pratique.

SÉRIES

Convergence simple d'une série

On dit que la série d'applications $\sum f_n$ converge simplement si la suite d'applications $(S_n)_{n \in \mathbb{N}}$ converge simplement.

Pratique Soit $\vec{x}_0 \in A$ donc $\sum f_n(x_0)$ converge. Donc la série $\sum f_n$ converge simplement.

Si la série d'applications $\sum f_n$ converge simplement alors on note S la limite simple de S_n et pour tout $n \in \mathbb{N}$, $R_n = S - S_n$ respectivement somme et reste d'ordre n de la série d'applications.

Convergence uniforme d'une série

On dit que la série d'applications $\sum f_n$ converge uniformément si $(S_n)_{n \in \mathbb{N}}$ converge uniformément.

Preuve pratique la convergence uniforme

Etape 1: (On montre la convergence simple)

Soit
$$\vec{x}_0 \in A$$
.

..... Donc $\sum f_n(\vec{x}_0)$ converge.

 $Donc \sum f_n \ converge \ simplement.$

Etape 2: (On montre la convergence uniforme)

Soit $\vec{x} \in A$, pour tout $n \in \mathbf{N}$,

$$|R_n(\vec{x})| \leq \dots \leq A_n$$
.

La suite $(A_n)_{n\in\mathbb{N}}$ est indépendante de \vec{x} et tend vers 0. Donc $\sum f_n$ converge uniformément vers f.

Convergence normale d'une série

On dit que la série d'applications $\sum f_n$ converge normalement si :

1. Pour tout $n \in \mathbb{N}$, f_n est bornée, 2. $\sum ||f_n||_{\infty}$ converge.

Dans la pratique on évite (si ce n'est pas immédiat) de calculer $||f_n||_{\infty}$. On utilise plutôt¹:

Critère de convergence normale

 $\sum f_n$ converge normalement si et seulement si :

- 1. Pour tout $n \in \mathbb{N}$, il existe un réel a_n tel que pour tout $\vec{x} \in A$, $|f_n(\vec{x})| \leq a_n$.
- 2. La série numérique $\sum a_n$ converge.

Prop.: La convergence normale de $\sum f_n$ implique la convergence uniforme de $\sum |f_n|$ et de $\sum f_n$.

Avantage de la convergence normale —

- Simple à étudier ;
- La preuve préalable de la convergence simple n'est pas obligatoire.

Donc : pour montrer la convergence uniformément on essaye d'abord de prouver la normale.

Quand les f_n sont alternativement positives et négatives, en l'absence de convergence normale on peut prouver la convergence uniforme (après preuve de la convergence simple) ainsi :

Soit $\vec{x} \in A$. Comme $(f_n(x))_{n \in \mathbb{N}}$ décroît vers 0, par le théorème spécial séries alternées, pour tout $n \in \mathbb{N}$,

$$|R_n(\vec{x})| \le |f_{n+1}(\vec{x})| \le \dots \le A_n.$$

La suite $(A_n)_{n \in \mathbb{N}}$ est indépendante de \vec{x} est tend vers 0.

^{1.} Pour montrer qu'il n'y a pas de convergence normale, ce qui n'est plus un objectif du programme, on calcule le plus souvent $||f_n||_{\infty}$.

Récapitulatif: régularité des limites de suites d'applications

K désigne **R** ou **C**, $(f_n)_{n \in \mathbb{N}}$ une suite d'applications d'une partie A d'un **K**-espace vectoriel **E** de dimension finie à valeurs dans **K** (ou éventuellement un **K**-espace vectoriel **F** de dimension finie).

CONTINUITÉ

Théorème de continuité

On suppose que la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers une application f. Alors si pour tout entier naturel n, f_n est continue en un point \vec{x}_0 de A, (resp. continue), alors f est continue en \vec{x}_0 (resp. continue).

Corrolaire — On suppose que la série $\sum f_n$ converge uniformément de somme S. Alors si pour tout entier naturel n, f_n est continue, alors S est continue.

Souvent dans la pratique, on ne dispose pour montrer la continuité seulement de la convergence uniforme « locale » . On procède ainsi :

Preuve pratique la continuité

- Pour tout entier naturel n, f_n est continue;
- $Soit B \subset A^1$

La suite $(f_n)_{n\in\mathbb{N}}$ (resp. La série $\sum f_n$) converge uniformément sur B.

— Tout point de A ayant un voisinage relativement à A de la forme de B, la limite f de la suite, (resp. la somme S de la série) est continue.

LIMITE

Cadre:

1. $\vec{a} \in \bar{A}$;

ou

2. $\mathbf{E} = \mathbf{R}$, tout voisinage de $+\infty$ (resp. $-\infty$) rencontre $A, a = +\infty$ (resp. $-\infty$).

Théorème de la double limite, suites

On supose:

- $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f;
- Pour tout $n \in \mathbb{N}$, f_n admet une limite ℓ_n en \vec{a} .

Alors:

- 1. $(\ell_n)_{n \in \mathbb{N}}$ converge vers un élément ℓ .
- 2. f admet ℓ comme limite en \vec{a} .

$$\lim_{\vec{a}} \left(\lim_{n} f_{n} \right) = \lim_{n} \left(\lim_{\vec{a}} f_{n} \right)$$

Théorème de la double limite, séries

On supose:

- $\sum f_n$ converge uniformément de somme S;
- Pour tout $n \in \mathbb{N}$, f_n admet une limite ℓ_n en \vec{a} .

Alors:

- 1. $\sum \ell_n$ converge.
- 2. S admet $\sum_{n=0}^{+\infty} \ell_n$ comme limite en \vec{a} .

$$\lim_{\vec{a}} \left(\sum_{n=0}^{+\infty} f_n \right) = \sum_{n=0}^{+\infty} \left(\lim_{\vec{a}} f_n \right)$$

Résultat hors programme à savoir prouver²:

La série $\sum f_n$ converge **simplement** de somme S et les f_n sont **positives**. On supose :

- pour tout $n \in \mathbf{N}$, $f_n(\vec{x}) \underset{\vec{x} \to \vec{a}}{\to} \ell_n$;
- la série $\sum \ell_n$ diverge.

On a alors : $S(\vec{x}) \underset{\vec{x} \to \vec{a}}{\to} +\infty$.

^{1.} Quand I est un intervalle, B peut par exemple être un segment, un intervalle de la forme $[a, +\infty[$ etc., quand A est une partie de \mathbf{R}^n , n > 2, B peur être un pavé, une boule, etc.

^{2.} Notamment en vue de l'étude des séries génératrices.

INTÉGRATION

Suite: interversion $\int_{[a,b]} / \lim_{n \to +\infty}$

On supose :

- Les f_n sont continues sur un **segment** [a, b].
- $(f_n)_{n \in \mathbb{N}}$ converge **uniformément** vers f.

Alors:

$$\int_{a}^{b} f_{n}(t) dt \underset{n \to \infty}{\to} \int_{a}^{b} f(t) dt.$$

« L'intégrale de la limite est la limite des inté. »

Série: interversion $\int_{[a,b]} / \sum_{n=0}^{+\infty}$

On supose:

- Les f_n sont continues sur un **segment** [a, b].
- $\sum f_n$ converge **uniformément**.

Alors: $\sum \int_a^b f_n dt$ converge et

$$\sum_{n=0}^{+\infty} \int_a^b f_n dt = \int_a^b \sum_{n=0}^{+\infty} f_n dt.$$

« La somme des intégrales est l'int. de la somme. »

GÉNÉRALISATION:

Les f_n sont continues sur un intervalle I. Soit $a \in I$. Pour tout $n \in \mathbb{N}$, on pose $F_n : I \ni x \mapsto \int_a^x f_n(t) dt$.

Proposition — $Si(f_n)_{n \in \mathbb{N}}$ converge vers f, uniformément sur tout segment de I. Alors $(F_n)_{n \in \mathbb{N}}$ converge vers F, uniformément sur tout segement de I, où $F: I \ni x \mapsto \int_a^x f(t) dt$.

DÉRIVATION

Soit un entier $k \geq 1$. $(f_n)_{n \in \mathbb{N}}$ est défini sur un intervalle I

Suites

On suppose :

- 1. Pour tout entier naturel n, f_n est de classe \mathscr{C}^k .
- 2. Pour $i = 0, 1, ..., k 1, (f_n^{(i)})_{n \in \mathbb{N}}$ converge simplement vers une application g_i .
- 3. $(f_n^k)_{n \in \mathbb{N}}$ converge vers une application g_k , uniformément sur tout segment de I.

Alors:

- i) Pour i = 0, 1, ..., k, $(f_n^{(i)})_{n \in \mathbb{N}}$ converge vers g_i , uniformément sur tout segment de I.
- ii) La limite g_0 de $(f_n)_{n \in \mathbb{N}}$, est de classe \mathscr{C}^k .
- iii) Pour $i = 0, 1, ..., k, g_0^{(i)} = g_i$.

Séries

On suppose:

- 1. Pour tout entier naturel n, f_n est de classe \mathscr{C}^k .
- 2. Pour $i = 0, 1, \dots, k 1, \dots \sum f_n^{(i)}$ converge simplement de somme a_i .
- 3. La $\sum f_n^k$ converge de somme g_k , uniformément sur tout segment de I.

- i) Pour $i=0,1,\ldots,k,\ \sum f_n^i$ converge uniformément sur tout segment de I.
- ii) L'application g_0 , somme $\sum f_n$, est de classe \mathscr{C}^k .
- iii) Pour $i = 0, 1, \dots, k, g_0^{(i)} = g_i$

« La dérivée $i^{\rm e}$ de la somme est la somme des dérivées $i^{\rm e}$ »

« La dérivée $i^{\rm e}$ de la limite est la limite de la suite des dérivées $i^{\rm e}$ »

Remarque : On peut dans les hypothèses de ces théorèmes remplacer la convergence uniforme sur tout segment par de la convergence uniforme au voisinage, relativement à I, de tout point de I.

👺 Fonction de plusieurs variables, dérivation partielle : pas de résultats au programme on procède en utilisant ce qui précède. **Rédaction d'un cas classique :** pour tout $n \in \mathbb{N}$, $f_n \in \mathscr{C}^1(I \times K)$, où I et K sont des intervalles.

- « $\sum f_n$ converge simplement de somme S. Montrons que S est \mathscr{C}^1 .
 - Soit $y \in K$.
 - $\sum f_n(\cdot,y)$ converge simplement (car $\sum f_n$ converge simplement), Pour tout $n \in \mathbb{N}$, $f_n(\cdot,y)$ est \mathscr{C}^1 de dérivée $\frac{\partial f_n}{\partial x}(\cdot,y) = \dots$,

 - $-\sum \frac{\partial f_n}{\partial x}(\cdot,y)$ converge uniformément sur tout segment de I,

donc $\frac{\partial S}{\partial x}(\cdot,y)$ existe et vaut $\sum_{n=0}^{+\infty} \frac{\partial f_n}{\partial x}(\cdot,y)$;

• $\frac{\partial f_n}{\partial x}$ est continue sur $I \times K$ et $\sum_{i=0}^{n-\upsilon} \frac{\partial f_n}{\partial x}$ converge uniformément i=1 sur i=1 s

^{1.} Ou uniformément dans un voisinage relatif à $I \times K$ de chaque point.