The Structure of a Perceptron

Structure of a perceptron

• Comprehend the structure of a perceptron by solving the OR function of the truth table.

First, you need to understand the OR operation of the truth table. The results of the OR operation are below.

X1	X2	OR operation
False	False	F
True	False	Т
False	True	Т
True	True	Т

What are the weight values to solve the OR operation problem?

- ▶ Suppose that we know the 'w' values to solve a problem. w0 is -0,5, w1 is 1, w2 is 1. (w: a weight vector)
- Execute Excel function after substituting x1 with 0, and x2 with 0.

- Put the value of the sum into a function.
- Here, that function is the step function.

Use threshold function as an activation function $\tau(s)$

A threshold function can be defined as follows, and we can create a graph by putting random values in the Excel table.

A threshold can be defined as follows,

$$y=\tau(s)$$
 here $s=w_0+\sum_{i=1}^d w_ix_i$,
$$\tau(s)=\begin{cases} 1 & s\geq 0\\ -1 & s<0 \end{cases}$$

-100	-1
-90	-1
-80	-1
-70	-1
-60	-1
-50	-1
-40	-1
-30	-1
-20	-1
-10	-1
0	1
10	1
20	1
30	1
40	1
50	1
60	1
70	1
80	1
90	1
100	1

- ▶ Put the result form the previous slide, -0.5 as s, and run it through the threshold function, the return is -1.
- Let's learn about the truth table.

A truth table displays truth or false for all results of the propositions or the combination of their Boolean functions. For example, in case of the conjunction of two statements P and Q, $P \land Q$, the truth table can be constructed as below. In addition, true false is also notated as T·F or 1·0.

Proposition P	Proposition Q	
True	True	True
True	False	False
False	True	False
False	False	False

▶ A truth table can be expressed with 1 and 0 as follows.

x1	x2
0	0
1	0
0	1
1	1

- The figure from Slide 9 put 0 for the first variable x1, and 0 for x2 as well.
- ▶ x0 is called a bias, and it initializes as 1.

▶ Substitute x1 with 1, and x2 with 0.

- The sum is 0.5. Run this through the threshold function, and the result is 1.
- Likewise, if we process all values in the truth table through the perceptron, the results are as follows.

4 results can be displayed in a table.

x1	x2		
0	0	-0.5	-1
1	0	0.5	1
0	1	0.5	1
1	1	1.5	1

- These results can be shown in the coordinate plane as follows.
- ightharpoonup The results can be grouped into that of point (0,0) or the rest.

x1	x2		
0	0	-0.5	-1
1	0	0.5	1
0	1	0.5	1
1	1	1.5	1

- Such classification can be presented as a geometrical figure as follows.
- If you recall the basic notion of machine learning through linear regression, machine learning is a process that builds regression equation with the predicted values of the slope and y-intercept. The figure below shows how linear regression forms a line that separate the two groups.

x1	x2		
0	0	-0.5	-1
1	0	0.5	1
0	1	0.5	1
1	1	1.5	1

 This table displays the OR operation of a truth table.

OR operation

x1	x1	x2	Value before running threshold function	Value after running threshold function
0	0	0	=\$A\$2* \$C\$7 +B2*\$C\$8+C2* \$ C\$9	=IF(D2>=0,1,-1)
	0	1	=\$A\$2*\$C\$7+B3*\$C\$8+C3*\$C\$9	=IF(D3>=0,1,-1)
	1	0	=\$A\$2*\$C\$7+B4*\$C\$8+C4*\$C\$9	=IF(D4>=0,1,-1)
	1	1	=\$A\$2*\$C\$7+B8*\$C\$8+C5*\$C\$9	=IF(D5>=0,1,-1)

w1	-0.5
w2	1
w3	1

$$x_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 , $y_1 = -1$, $x_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $y_2 = 1$, $x_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $y_3 = 1$, $x_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $y_4 = 1$

Example of a perceptron's operation using the OR logic gate

OR operation

Let's input four samples to the perceptron and check the results.

$$x_1$$
: $s = -0.5 + 0 * 1.0 + 0 * 1.0 = -0.5$, $\tau(-0.5) = -1$
 x_2 : $s = -0.5 + 1 * 1.0 + 0 * 1.0 = 0.5$, $\tau(0.5) = 1$
 x_3 : $s = -0.5 + 0 * 1.0 + 1 * 1.0 = 0.5$, $\tau(0.5) = 1$
 x_4 : $s = -0.5 + 1 * 1.0 + 1 * 1.0 = 1.5$, $\tau(1.5) = 1$

- As you've seen in the previous slide, the perceptron delivered correct results for all four samples.
- It can be said that this perceptron classifies the train set with 100 % performance.

AND operation

- To recap, you can solve the OR problem by perceptron with the appropriate w values.
- Now, the AND operation. The truth table is on the left, and the geometrical solution is the line that separates the units into two groups.

x 1	x2	AND operation
0	0	F
1	0	F
0	1	F
1	1	Т

AND operation

- Find the values of w0, w1, w2 that return the result from the previous slide.
- First, let's apply a random value, and then gradually change the values of w0, w1, and w2 to find the solution.

4 results can be displayed in a table.

x1	x2		
0	0	0.5	1
1	0	0	1
0	1	0.4	1
1	1	-0.1	-1

AND operation of a truth table.

AND operation

• 4 results can be displayed in a table.

x1	x2		
0	0	0.5	1
1	0	0	1
0	1	0.4	1
1	1	-0.1	-1

AND operation of a truth table.

- ▶ By substituting w0 with 0.5, w1 with -0.5, w2 with -0.1, the equation solves the AND operation.
- You found a structure that with appropriate values for the w vector, solves a certain problem.
- Although the perceptron solved the OR and AND problem, it could not solve the XOR. Let's find out why.

XOR Operation

- XOR operation in a truth table.
- In XOR, the result is true if two propositions are the opposite.

x 1	x2	XOR Operation
0	0	F
1	0	Т
0	1	Т
1	1	F

- Since the perceptron is a linear classifier, you cannot find a line that separate the blue dots and the red dots.
- A multilayer perceptron solved the problem.

Summary of Perceptron's Structure

- It has an input layer and an output layer.
- The input layer does not operate, so the perceptron is considered a single layer structure.
- The *i* th node of the input layer takes x_i from the feature vector $x = (x_1, x_2, \dots, x_d)^T$.
- The bias node always takes 1 as input.
- The output layer has a single node.
- The connection of the i th node of the input later and the output layer has weight w_i .

(b) Use threshold function as an activation function $\tau(s)$

Mechanism of a perceptron