CMSC 35900 (Spring 2008) Learning Theory

Fat Shattering Dimension and Covering Numbers

Lecture: 16

Instructors: Sham Kakade and Ambuj Tewari

In this lecture, we will prove a result due to Alon, Ben-David, Cesa-Bianchi and Haussler that bound the covering number of a class in terms of its fat shattering dimension. This provides a result analogous to Sauer's lemma. As you remember, Sauer's lemma gave us a bound on the growth function in terms of its VC dimension.

1 Functions with Finite Range

Before we prove the result we need a few definitions. Suppose \mathcal{X} is some set and let $B = \{0, 1, \dots, b\}$. Let $\mathcal{F} \subseteq B^{\mathcal{X}}$ be a class of B-valued functions on \mathcal{X} . Two functions $f, g \in \mathcal{F}$ are said to be *separated* if

$$\exists x \in \mathcal{X} \text{ s.t. } |f(x) - q(x)| > 2.$$

That is, they are 2-separated in the ℓ^{∞} metric where

$$\ell^{\infty}(f,g) := \max_{x \in \mathcal{X}} |f(x) - g(x)|.$$

A class \mathcal{F} is said to be pairwise separated iff f, g are pairwise separated for all $f, g \in \mathcal{F}$.

Definition 1.1. Let $\mathcal{F} \subseteq B^{\mathcal{X}}$. We say that \mathcal{F} strongly shatters $X = \{x_1, \ldots, x_n\} \subseteq \mathcal{X}$ if there exists $\mathbf{s} = (s_1, \ldots, s_n) \in B^n$ such that for all $E \subseteq \{x_1, \ldots, x_n\}$, there exists $f_E \in \mathcal{F}$ such that

$$\forall x_i \in E,$$
 $f_E(x_i) \ge s_i + 1$
 $\forall x_i \in X - E,$ $f_E(x_i) \le s_i - 1$

In this case we also say that \mathcal{F} strongly shatters X according to S. The strong dimension of \mathcal{F} , denoted by $Sdim(\mathcal{F})$, is the size of a largest strongly shattered set.

We will shift our attention from real valued functions to ones taking values in a finite set by a simple discretization.

Definition 1.2. Let $f: \mathcal{X} \to [0,1]$ be a function. For $\alpha > 0$, define its discretization f^{α} as,

$$f^{\alpha}(x) := \left| \frac{f(x)}{\alpha} \right| .$$

If \mathcal{F} is a function class, define

$$\mathcal{F}^{\alpha} := \{ f^{\alpha} \mid f \in \mathcal{F} \} .$$

Note that f^{α} takes value in the set $\{0, \dots, \lfloor 1/\alpha \rfloor\}$. The following lemma relates the combinatorial dimensions and packing numbers of the classes \mathcal{F} and \mathcal{F}^{α} .

Recall that we defined the covering number $\mathcal{N}_{\infty}(\alpha, \mathcal{F}, x_{1:n})$ in an earlier lecture. We define the corresponding packing number as

$$\mathcal{M}_{\infty}(\alpha, \mathcal{F}, x_{1:n}) := \mathcal{M}_{\ell_{x_{1:n}}^{\infty}}(\alpha, \mathcal{F}),$$

where

$$l_{x_{1:n}}^{\infty}(f,g) = \max_{i \in [n]} |f(x_i) - g(x_i)|.$$

Lemma 1.3. Let $\mathcal{F} \subseteq [0,1]^{\mathcal{X}}$ and $\alpha > 0$. We have

- 1. $\operatorname{Sdim}(\mathcal{F}^{\alpha}) \leq \operatorname{fat}_{\alpha/2}(\mathcal{F})$
- 2. For any $x_{1:n}$, $\mathcal{M}_{\infty}(\alpha, \mathcal{F}, x_{1:n}) \leq \mathcal{M}_{\infty}(2, \mathcal{F}^{\alpha/2}, x_{1:n})$

To prove a result bounding the ∞ -covering number in terms of the fat shattering dimension, we need the following combinatorial lemma whose proof we will give shortly.

Lemma 1.4. Let \mathcal{X} be a finite set with $|\mathcal{X}| = n$ and $B = \{0, 1, ..., b\}$. Let $\mathcal{F} \subseteq B^{\mathcal{X}}$ be such that $\mathrm{Sdim}(\mathcal{F}) = d$. Then we have,

$$\mathcal{M}_{\ell^{\infty}}(2,\mathcal{F}) < 2(n(b+1)^2)^{\lceil \log y \rceil}$$
,

where $y = \sum_{i=1}^{d} \binom{n}{i} b^{i}$.

Using the above lemma, we can prove a result relating covering numbers to fat shattering dimension.

Theorem 1.5. Let $\mathcal{F} \subseteq [0,1]^{\mathcal{X}}$ and $\alpha \in [0,1]$. Suppose $d = \operatorname{fat}_{\alpha/4}(\mathcal{F})$. Then

$$\mathcal{N}_{\infty}(\alpha, \mathcal{F}, n) < 2\left(n\left(\frac{2}{\alpha} + 1\right)^2\right)^{\left\lceil d\log\left(\frac{2en}{d\alpha}\right)\right\rceil}.$$

Proof. Using the fact that covering numbers are bounded by packing numbers, Lemma 1.3, part 2 and Lemma 1.4, we get

$$\mathcal{N}_{\infty}(\alpha, \mathcal{F}, n) = \sup_{\substack{x_{1:n} \\ \leq \sup_{x_{1:n}} \mathcal{M}_{\infty}(\alpha, \mathcal{F}, x_{1:n})}$$

$$\leq \sup_{\substack{x_{1:n} \\ \leq x_{1:n}}} \mathcal{M}_{\infty}(2, \mathcal{F}^{\alpha/2}, x_{1:n})$$

$$< 2(n(b+1)^2)^{\lceil \log y \rceil},$$

where $b = \lfloor 2/\alpha \rfloor$ and $y = \sum_{i=1}^{d'} \binom{n}{i} b^i$ with $d' = \operatorname{Sdim}(\mathcal{F}^{\alpha/2})$. By Lemma 1.3, part 1, $d' \leq \operatorname{fat}_{\alpha/4}(\mathcal{F}) = d$. Therefore,

$$y \le \sum_{i=1}^{d} \binom{n}{i} b^{i}$$

$$\le b^{d} \sum_{i=1}^{d} \binom{n}{i} \le b^{d} \left(\frac{en}{d}\right)^{d}.$$

Thus, $\log y \le d \log(ben/d)$.

The rest of this lecture is devoted to proving Lemma 1.4.

Proof of Lemma 1.4. Fix $b \ge 2$ as the result trivially holds otherwise. For $h \ge 2$, $n \ge 1$, define the function

$$t(h, n) = \max\{k \mid \forall F \subseteq \mathcal{F}, |F| = h, F \text{ pairwise separated}$$

 $\Rightarrow F \text{ strongly shatters at least } k (X, \mathbf{s}) \text{ pairs} \}.$

When we say F strongly shatters a pair (X, \mathbf{s}) , we mean F strongly shatters X according to \mathbf{s} . Note that $t(h, n) = \infty$ when no pairwise separated F of cardinality h exists. Because of the following claim, it suffices to show

$$t\left(2(n(b+1)^2)^{\lceil \log y \rceil}, n\right) \ge y. \tag{1}$$

Claim 1.6. If $t(h, n) \ge y$ for some h and $Sdim(\mathcal{F}) \le d$ then

$$\mathcal{M}_{\ell^{\infty}}(2,\mathcal{F}) < h$$
.

Proof. For the sake of deriving a contradiction, suppose $\mathcal{M}_{\ell^{\infty}}(2,\mathcal{F}) \geq h$. This means there is a pairwise separated set F of cardinality at least h. Since $t(h,n) \geq y$, F strongly shatters at least $y(X,\mathbf{s})$ pairs. On the other hand, since $\mathrm{Sdim}(\mathcal{F}) \leq d$, if F strongly shatters (X,\mathbf{s}) then $|X| \leq d$. For any choice of X of size i (there are $\binom{n}{i}$ such choices), there are strictly less than b^i choices for \mathbf{s} . This is because if

$$(X, \mathbf{s} = (s_1, \dots, s_{|X|}))$$

is strongly shattered then s_i 's cannot be 0 or b. Thus, F can strongly shatter strictly less than

$$\sum_{i=1}^{d} \binom{n}{i} b^i = y$$

 (X, \mathbf{s}) pairs. This gives us a contradiction.

To prove (1) by induction, we will establish the following two claims,

$$t(2,n) \ge 1 \qquad \qquad n \ge 1 \,, \tag{2}$$

$$t(2mn(b+1)^2, n) \ge 2t(2m, n-1) \qquad m \ge 1, n \ge 2.$$
 (3)

Any separated functions f,g strongly shatters at least some singeton $X=\{x\}$ (choose any x such that $|f(x)-g(x)|\geq 2$), so $t(2,n)\geq 1$. To prove (3), consider a set F of $2mn(b+1)^2$ pairwise separated functions. If such a set does not exist then $t(2mn(b+1)^2,n)=\infty$ so (3) anyway holds. Pair up the functions in F arbitrarily to form $mn(b+1)^2$ pairs $\{f,g\}$. Call the set of these pairs P. For each pair f,g, fix an x on which they differ by at least 2 and denote it by $\chi(f,g)$. For $x\in\mathcal{X}$ and $i,j\in B, j>i+1$, define

$$bin(x, i, j) = \{ \{f, g\} \in P \mid \chi(f, g) = x, \{f(x), g(x)\} = \{i, j\} \} .$$

The number of bins is no more than $n{b+1 \choose 2} < n(b+1)^2/2$ and the numbers of pairs is $mn(b+1)^2$, so for some $x^* \in \mathcal{X}, i^*, j^* \in B$ such that $j^* > i^* + 1$, we have

$$| bin(x^*, i^*, j^*) | \ge 2m$$
.

Now define the following two set of functions,

$$F_1 := \left\{ f \in \bigcup bin(x^*, i^*, j^*) \mid f(x^*) = i^* \right\} ,$$

$$F_2 := \left\{ f \in \bigcup bin(x^*, i^*, j^*) \mid f(x^*) = j^* \right\} .$$

Clearly $|F_1| = |F_2| = 2m$. The first important observation is that F_1 is pairwise separate on the domain $\mathcal{X} - \{x^*\}$ (which has cardinality n-1). This is because all $f \in F_1$ take value i^* on x^* . Similarly F_2 is pairwise separate on $\mathcal{X} - \{x^*\}$. Therefore, there exists sets U, V consisting of pairs (X, \mathbf{s}) such that F_1, F_2 strongly shatter pairs in U, V respectively. Further, $|U| \geq t(2m, n-1)$ and $|V| \geq t(2m, n-1)$. Any pair in $U \cup V$ is obviously shattered by F. Now consider any pair $(X, \mathbf{s}) \in U \cap V$. Then, $(x^* \cup X, (\lfloor \frac{i^* + j^*}{2} \rfloor, \mathbf{s}))$ is also shattered by F (remember that $j^* > i^* + 1$). Thus, F strongly shatters

$$|U \cup V| + |U \cap V| = |U| + |V| > 2t(2m, n - 1)$$

pairs. This completes the proof of (3).

Once we have (2) and (3), it easily follows that for $n > r \ge 1$,

$$t(2(n(b+1)^2)^r, n) \ge 2^r t(2, n-r) \ge 2^r$$
.

Thus if $\lceil \log y \rceil < n$, we can set $r = \lceil \log y \rceil$ above and (1) follows. On the other hand, if $\lceil \log y \rceil \ge n$, then

$$2(n(b+1)^2)^{\lceil \log y \rceil} > (b+1)^n$$

which exceeds the total number of B-valued functions defined on a set of size n. Thus, a pairwise separated set F of size $2(n(b+1)^2)^{\lceil \log y \rceil}$ does not exist and hence

$$t(2(n(b+1)^2)^{\lceil \log y \rceil}, n) = \infty.$$

So (1) still holds.