COMP323 - Introduction to Computational Game Theory

Tutorial 1 - Questions

Problem 1. You are given the following bimatrix games. For each one, find all pure Nash equilibria.

(a) (Prisoner's Dilemma)

	Player 2		
		Quiet	Fink
Player 1	Quiet	2, 2	0,3
1 tayer 1	Fink	3, 0	1,1

(b) (Matching Pennies)

	Player~2		
		Head	Tails
Player 1	Head	1,-1	-1,1
1 tuyer 1	Tails	-1,1	1,-1

(c) (Battle of the Sexes)

		Girl	
		Theatre!	OK, football
Boy	OK, theatre	1,5	0,0
	Football!	0, 0	5, 1

(d) (Battle of the Sexes... modified)

		Girl		
		Theatre! OK, football Foot		Football great,
		l neatre.	011, 100000011	I will invite my dad
Boy	OK, theatre	1, 5	0, 0	0,0
	Football!	0,0	5,1	-1,2

Problem 2. You are given the following bimatrix game.

A strategy profile (p,q) is given for two cases (a) and (b):

- (a) $p = (p(T), p(M), p(B)) = (\frac{1}{4}, \frac{1}{4}, \frac{1}{2})$ and $q = (q(L), q(R)) = (\frac{2}{3}, \frac{1}{3})$. (b) $p = (p(T), p(M), p(B)) = (\frac{1}{5}, \frac{4}{5}, 0)$ and $q = (q(L), q(R)) = (\frac{1}{3}, \frac{2}{3})$. For each of these cases answer the following:

- (1) What is each player's expected payoff?
- (2) Is (p,q) a Nash equilibrium?