Corso di Laurea in Architettura (Ciclo Unico)

ISTITUZIONI MATEMATICHE 2 – A.A. 2013-2014

Foglio 3

3.1 Esercizio

Per ognuna delle equazioni differenziali che seguono, determinare prima la soluzione generale, quindi la soluzione che assume i dati iniziali indicati:

(a)
$$y'' - 2y' - 3y = 0$$
 $[y(0) = 1, y'(0) = -1];$

(b)
$$y'' - 2y' = 0$$
 $[y(1) = 3, y'(1) = 0];$

(c)
$$y'' + 6y' + 9 = 0$$
 $[y(0) = -1, y'(0) = 1];$

(d)
$$y'' - 4y' + 5y = 0$$
 $[y(\pi) = -2e^{\pi}, y'(\pi) = -e^{3\pi}];$

(e)
$$y'' + 2y' + 2y = 0$$
 [$y(0) = 2, y'(0) = -3$];

(f)
$$y'' + 9y = 0$$
 $[y(\pi/2) = 1, y'(\pi/2) = -3];$

(g)
$$y'' + y' + y = 0$$
 [$y(0) = 2, y'(0) = -2$];

(h)
$$y'' - 6y' + 10y = 0$$
 $[y(\pi) = -1, y'(\pi) = 0];$

(i)
$$2y'' - 7y' + 3y = 0$$
 $[y(0) = 3, y'(\pi) = 1].$

3.2 Esercizio

Per ognuna delle equazioni differenziali che seguono, determinare prima la soluzione generale, quindi la soluzione che assume i dati iniziali indicati:

(a)
$$y'' + 4y = \sin(t) + 2\cos(t)$$
 $[y(\pi/2) = -2/3, y'(\pi/2) = 4/3];$

(b)
$$y'' + y = e^t \sin(t)$$
 $[y(0) = 3/5, y'(0) = -1/5];$

(c)
$$2y'' + y' - y = 3e^{-t}$$
 [$y(0) = 0, y'(0) = 1/2$];

(d)
$$2y'' + y' - y = 3e^{-t} + t$$
 $[y(0) = 0, y'(0) = 0];$

(e)
$$y'' - 4y' + 5y = \cos(t)$$
 [$y(0) = 1/8, y'(0) = 0$];

(f)
$$y'' + y = \sin(t)\cos(t)$$
 [$y(\pi/2) = 1, y'(\pi/2) = 1/3$];

$$(q)$$
 $2y'' - 7y' + 3y = 5e^{3t}$ $[y(0) = 0, y'(0) = 5].$