Spatial Transformer Networks

Max Jaderberg Karen Simonyan Andrew Zisserman Koray Kavukcuoglu

Google DeepMind, London, UK

{jaderberg,simonyan,zisserman,korayk}@google.com

Содержание.

- 1. Мотивация.
- 2. Строение Spatial transformer.
 - a. Localisation net.
 - b. Grid generator.
 - c. Sampler.
- 3. Эксперименты.
 - a. Distorted MNIST.
 - b. Street View House Numbers.
 - c. Fine-Grained Classification.
 - d. MNIST Addition.
 - e. Co-localisation.
 - f. Higher Dimensional Transformers.
- 4. Заключение.

Мотивация.

CNN are not actually invariant to large transformations of the input data

The pooling operation used in convolutional neural networks is a big mistake and the fact that it works so well is a disaster. (Geoffrey Hinton, Reddit AMA)

Spatial Transformer Networks can be used for:

- image classification
- co-localisation
- spatial attention

Строение Spatial transformer.

Применение STN преобразования в 4 шага при известной матрице линейных преобразований θ .

Localisation net.

- input: feature map U of shape (H, W, C)
- output: transformation matrix θ
- architecture: fully-connected network or ConvNet as well.

Grid generator.

$$\begin{pmatrix} x_i^s \\ y_i^s \end{pmatrix} = \mathcal{T}_{\theta}(G_i) = \mathtt{A}_{\theta} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix} = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{bmatrix} \begin{pmatrix} x_i^t \\ y_i^t \\ 1 \end{pmatrix}$$

Sampler.

Sampler.

m

$$V_i^c = \sum_{i=1}^{H} \sum_{m=1}^{W} U_{nm}^c \max(0, 1 - |x_i^s - m|) \max(0, 1 - |y_i^s - n|)$$

$$\frac{\partial V_i^c}{\partial U_{nm}^c} = \sum_{i=1}^{H} \sum_{m=0}^{W} \max(0, 1 - |x_i^s - m|) \max(0, 1 - |y_i^s - n|)$$

$$\frac{\partial V_i^c}{\partial x_i^s} = \sum_n^H \sum_m^W U_{nm}^c \max(0, 1 - |y_i^s - n|) \begin{cases} 0 & \text{if } |m - x_i^s| \ge 1 \\ 1 & \text{if } m \ge x_i^s \\ -1 & \text{if } m < x_i^s \end{cases}$$

Строение Spatial transformer.

Projective transformation (Proj)

$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

16-point thin plate spline transformation (TPS)

$$I_f = \iint_{\mathbb{R}^2} (f_{xx}^2 + 2f_{xy}^2 + f_{yy}^2) dx dy$$

 $f(x,y) = a_1 + a_x x + a_y y + \sum_{i=1}^{n} w_i U(\|(x_i, y_i) - (x, y)\|)$

$$U(r) = r^2 \log r$$
. $\sum_{i=1}^p w_i x_i = \sum_{i=1}^p w_i y_i = 0$ $\sum_{i=1}^p w_i = 0$

where $K_{ij} = U(\|(x_i, y_i) - (x_j, y_j)\|)$, the *i*th row of P is $(1, x_i, y_i)$.

We will denote the
$$(p+3) \times (p+3)$$
 matrix of this system by L ;

We will denote the
$$(p+3) \times (p+3)$$
 matrix of this system by L ,
$$\begin{bmatrix} K & P \\ P^T & O \end{bmatrix} \begin{bmatrix} w \\ a \end{bmatrix} = \begin{bmatrix} v \\ o \end{bmatrix}$$

 $I_f \propto v^T L_n^{-1} v = w^T K w$

Distorted MNIST

	MNIST Distortion	(a)	(b) (c)	(a)	(b) (c))
Model	del R RTS P E	-	H	4	58°	
FCN	2.1 5.2 3.1 3.2	Е 📉 →	\sim 54	R -	-W7	Y
CNN	1.2 0.8 1.5 1.4	(0		•
Aff	Aff 1.2 0.8 1.5 2.7		- I	-	-65°	•
ST-FCN Proj	N Proj 1.3 0.9 1.4 2.6	$E \longrightarrow $	#f1 → 7	R -	\neg D \neg \triangleleft	L
TPS	TPS 1.1 0.8 1.4 2.4	1	IAS	· ·		
Aff	Aff 0.7 0.5 0.8 1.2		_		93°	
ST-CNN Proj	N Proj 0.8 0.6 0.8 1.3	RTS \sim		$R \longrightarrow -$	$\neg \frown \neg$	
TPS	TPS 0.7 0.5 0.8 1.1					
CNN Aff ST-FCN Proj TPS Aff ST-CNN Proj	Aff 1.2 0.8 1.5 1.4 Aff 1.2 0.8 1.5 2.7 N Proj 1.3 0.9 1.4 2.6 TPS 1.1 0.8 1.4 2.4 Aff 0.7 0.5 0.8 1.2 N Proj 0.8 0.6 0.8 1.3	Е 7 →		(7)	- 4	2

Street View House Numbers

	ize 128px	(a) 260	$\longrightarrow ST \rightarrow conv \rightarrow ST \rightarrow con$	$\begin{array}{c} \text{SV} \rightarrow \text{ST} \rightarrow \text{conv} \rightarrow \text{ST} \rightarrow \cdots \\ \text{0} \\ \text{0} \end{array}$
4.0 4.0	5.6	26	260 → 260	
3.9	4.5	(b)	The same of the same of	District
3.7 3.6	3.9	OF	4-104-104	24 - 24 - 24
(64px 4.0 4.0 3.9	4.0 - 4.0 5.6 3.9 4.5 3.7 3.9	51ze 54px 128px 4.0	Size 64px 128px 4.0

The CNN model is: conv[48,5,1,2]-max[2]-conv[64,5,1,2]-conv[128,5,1,2]-max[2]-conv[160,5,1,2]-conv[192,5,1,2]-max[2]-conv[192,5,1,2]-fc[3072]-fc[3072]-fc[3072].

ST's localisation network architecture is as follows: conv[32,5,1,2]-max[2]-conv[32,5,1,2]-fc[32]-fc[32].

Fine-Grained Classification

CUB-200-2011 birds dataset

CNN model – an Inception architecture with batch normalisation pre-trained on ImageNet] and fine-tuned on CUB – which by itself achieves the state-of-the- art accuracy of 82.3%

Model	
Cimpoi '15 [5]	66.7
Zhang '14 [40]	74.9
Branson '14 [3]	75.7
Lin '15 [23]	80.9
Simon '15 [30]	81.0
CNN (ours) 224px	82.3
2×ST-CNN 224px	83.1
$2\times$ ST-CNN 448px	83.9
$4\times ST$ -CNN $448px$	84.1

MNIST Addition

Model	RTS	
FCN		47.7
CNN		14.7
	Aff	22.6
ST-FCN	Proj	18.5
	TPS	19.1
	Aff	9.0
$2 \times \text{ST-FCN}$	Proj	5.9
	TPS	5.8

Эксперименты. Co-localisation.

[MNI	ST Distortion		
Class	T	TC	$I_m \longrightarrow ST \longrightarrow e() \longrightarrow e(I_m^T)$	
0	100	81	$I_m^{\mathcal{T}}$	
1	100	82	sma	all
2	100	88	\mathcal{W} dist	tance
3	100	75		
4	100	94	$I_n \longrightarrow ST \longrightarrow e() \longrightarrow e(I_n^T)$	
5	100	84	$I_n^{\mathcal{T}}$ large	re .
6	100	93		tance
7	100	85	(amond)	
8	100	89	$I_n \longrightarrow \operatorname{rand} \longrightarrow e(I_n^{\operatorname{rand}})$	
9	100	87	I_n	

$$\sum_{n=1}^{N} \sum_{m \neq n}^{M} \max(0, \|e(I_n^{\mathcal{T}}) - e(I_m^{\mathcal{T}})\|_2^2 - \|e(I_n^{\mathcal{T}}) - e(I_n^{\text{rand}})\|_2^2 + \alpha)$$

Эксперименты. Co-localisation.

Optimisation Step 0 Step 60 Step 90 Step 120 Step 150 Step 10 Step 180

Higher Dimensional Transformers.

Spatial Transformer Networks with IDSIA-like classifier for German Traffic Signs Dataset classification

batch = 0/200 theta = 1.02 0.02 -0.02 -0.02 1.02 -0.02

 $batch = 0/200 \quad theta = \begin{array}{c} 0.98 \ 0.02 \ -0.02 \\ 0.02 \ 1.02 \ -0.02 \end{array}$

 $batch = 0/200 \quad theta = \begin{array}{c} 0.98 \text{ -} 0.02 \text{ 0.02} \\ 0.02 \text{ 1.02 -} 0.02 \end{array}$

Источники.

- 1. https://arxiv.org/pdf/1506.02025.pdf
- 2. https://www.youtube.com/watch?v=Ywv0Xi2-14Y
- 3. https://www.youtube.com/watch?v=T5k0GnBmZVI
- 4. https://vision.cornell.edu/se3/wp-content/uploads/2014/09/fulltext4.pdf
- 5. https://cs.stackexchange.com/questions/81861/bilinear-interpolation

 $(x_{U'_1}, y_{U'_1})$ can be computed by interpolating the values $U_{n_1m_1}$ and $U_{n_2m_2}$: $U_1' = \Delta x_2 \ U_{n,m_1} + \Delta x_1 \ U_{n,m_2}.$

As the sum of
$$\Delta x_1$$
 and Δx_2 is equal to one, due to normalization of the axes, the above equation can be rewritten as:

equation can be rewritten as: $U_1' = (1 - \Delta x_1)U_{n_1m_1} + (1 - \Delta x_2)U_{n_2m_2}$

The terms
$$\Delta x_1$$
 and Δx_2 can be expressed as:

$$\Delta x_1 = |x_i^s - m_1|$$

$$\Delta x_2 = |x_i^s - m_2|,$$

which, substituted into the equation for U'_i yields:

$$U_1' = U_{n_1m_1}(1 - |x_i^s - m_1|) + U_{n_2m_2}(1 - |x_i^s - m_2|).$$

Similarly the value for U'_2 can be computed:

e for
$$U_2^\prime$$
 can be computed:

 $V = U_1'(1 - \Delta y_1) + U_2'(1 - \Delta y_2).$

 $U_2' = U_{n_2m_2}(1 - |x_i^s - m_3|) + U_{n_4m_4}(1 - |x_i^s - m_4|).$

Once
$$U_1^\prime$$
 and U_2^\prime have been computed, V can be determined by linearly interpolating U_1^\prime and

The values for Δy_1 and Δy_2 can be expressed as follows:

$$\Delta y_1 = |y_i^s - y_{U_1'}| = |y_i^s - n_1| = |y_i^s - n_2|$$

$$\Delta y_2 = |y^s - y_{U_1'}| = |y^s - n_2| = |y^s - n_1|$$

 $\Delta y_2 = |y_i^s - y_{U_2'}| = |y_i^s - n_3| = |y_i^s - n_4|.$ Substituting the above equations and those of Δx_1 and Δx_2 into the equation for V yields:

$$V = U_{n_1 m_1} \cdot (1 - |x_i^s - m_1|) \cdot (1 - |y_i^s - n_1|) + U_{n_2 m_2} \cdot (1 - |x_i^s - m_2|) \cdot (1 - |y_i^s - n_2|)$$

$$+ U_{n_3m_3} \cdot (1 - |x_i^s - m_3|) \cdot (1 - |y_i^s - n_3|) + U_{n_4m_4} \cdot (1 - |x_i^s - m_4|) \cdot (1 - |y_i^s - n_4|),$$

which can be written more compactly as:

 $V = \sum_{k=1}^{4} U_{n_k m_k} \cdot (1 - |x_i^s - m_k|) \cdot (1 - |y_i^s - n_k|)$

 $= \sum_{i=1}^{M} \sum_{j=1}^{W} U_{nm} \cdot (1-|x_{i}^{s}-m|) \cdot (1-|y_{i}^{s}-n|).$