CIRCUITOS DIGITAIS

MAPA DE KARNAUGH MÉTODO DE QUINE-MCCLUSKEY

Prof. Marcelo Grandi Mandelli mgmandelli@unb.br

Funções incompletamente especificadas

■ Em certas situações, uma função pode assumir indistintamente o valor "0" ou "1" para certas combinações das variáveis de entrada

 Dizemos que a função é não especificada para essa combinações particulares das variáveis de entrada

Utiliza-se o símbolo "X" na tabela verdade ou mapa de Karnaugh, que é chamado de don't care

Funções incompletamente especificadas

 Exemplo: Detector de números pares na representação BCD

Linha	\boldsymbol{A}	В	\boldsymbol{C}	D	F(A,B,C,D)
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	X
11	1	0	1	1	X
12	1	1	0	0	X
13	1	1	0	1	X
14	1	1	1	0	X
15	1	1	1	1	X

$$f(A,B,C,D) = \sum m(0,2,4,6,8) + \sum d(10,11,12,13,14,15)$$

$$f(A,B,C,D) = \sum m(0,2,4,6,8) + d(10,11,12,13,14,15)$$

Funções incompletamente especificadas

■ Na simplificação no mapa de Karnaugh, os don't cares podem assumir os valores "0" ou "1".

Mapa de Karnaugh com "don't cares"

$$\mathbf{F} = \sum m(7, 8, 9) + \sum d(10, 11, 12, 13, 14, 15)$$

Entradas	Saída
ABCD	Y
0 0 0 0	0
0 0 0 1	0
0 0 1 0	0
0 0 1 1	0
0 1 0 0	0
0 1 0 1	0
0 1 1 0	0
0 1 1 1	1
1 0 0 0	1
1 0 0 1	1
1 0 1 0	X
1 0 1 1	X
1 1 0 0	X
1 1 0 1	X
1 1 1 0	X
1 1 1 1	X

Don't cares

(a) Tabela-verdade

(b) Sem "don't cares" $Y = ABC + \overline{ABCD}$ Com "don't cares" Y = A + BCD

Implicantes

Definições

- Implicante Primo (primário) é um implicante que não pode ser combinado com outro para eliminar um literal → são os círculos!
- Implicante Primo (primário) Essencial círculos que cobrem um "1" que não está em nenhum outro círculo

Implicantes

- Todos círculos são implicantes primos
- Em verde → implicantes primos essenciais
- Deve-se escolher apenas um dos círculos em vermelho

Implicantes

- Em verde → implicantes primos essenciais
- □ Círculo em vermelho não é essencial porque seus 1s já estão em outros círculos

$F = \Sigma m (0.5,10,11,12,13,15)$

6 implicantes primos

Tabela de Cobertura

falta cobrir só m15 - pode-se escolher p4 ou p5

$$\mathbf{F} = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}\mathbf{D} + \mathbf{B}\overline{\mathbf{C}}\mathbf{D} + \mathbf{A}\mathbf{B}\overline{\mathbf{C}} + \mathbf{A}\overline{\mathbf{B}}\mathbf{C} + \mathbf{O}\mathbf{U}$$

$$\mathbf{ACD}$$

- Provê um procedimento padrão para
 - A geração de todos os implicantes primários de uma função lógica
 - A extração do conjunto mínimo de implicantes primários capaz de representar uma função lógica
- É um método tabular que pode ser utilizado para a obtenção da expressão mínima de segunda ordem na forma soma-de-produtos a partir de qualquer função lógica, incluindo funções lógicas incompletamente especificadas

- □ Tabela de implicação de Quine-McCluskey (para determinar os implicantes primos)
 - Nesse primeiro passo, deve-se listar todos os elementos "1" ou "X" (don't cares) em função dos índices do minitermos e dos don't cares, expressos como um número binário
 - Os elementos da tabela devem ser agrupados de acordo com o número de "1"s da representação binária

```
Número de 1's
                               Coluna 1

\begin{array}{c}
0101 \\
0110 \\
1001 \\
1010
\end{array}
```

Método

- Comparar cada elemento de um grupo com cada elemento do grupo seguinte
- Se houver diferença em um único bit, isso significa que os elementos podem ser combinados em um termo produto que excluirá a variável correspondente ao bit.
- O termo produto correspondente à associação é colocado numa coluna à direita, com um hífen (-) denotando a variável excluída
- Os termos combinados devem ser marcados (√) para indicar que eles já foram utilizados
- Repetir o processo para todos os elementos de todos os grupos

Coluna 1	Coluna 2
0000 √	0-00 -000
0100 √	000
1000 √	010- 01-0
0101 √	100-
$0110 \ \checkmark$	10-0
1001 √ 1010 √	→ 01-1
0111 √ —————————————————————————————————	
1111	

Coluna 1	Coluna 2
0000 √	0-00
0100 √	-000
1000 √	010-
0101 √	01-0 100-
0110 √ 1001 √	10-0
1010 ✓	01-1
0111 √	→ -101
1101 √	
1111	

Coluna 1	Coluna 2
0000 √	0-00
0100 √	-000
1000 √	010-
0101 √	01-0 100-
0101 \(\sqrt{0110} \(\)	100-
1001 \(\sqrt{1010} \)	01 1
1010 √	01-1 -101
$0111 \checkmark \longrightarrow$	→ 011-
1101 √	
1111	

Coluna 1	Coluna 2
0000 √	0-00
0100 ✓	-000
0100 √ 1000 √	010-
0101 √	01-0 100-
0101 v 0110 √	100-
$1001 \ \phantom{00000000000000000000000000000000000$	01-1
1010 v	-101
$0111 \checkmark$	011-
1101 √	→ 1-01
1111	

Coluna 1	Coluna 2
0000 √	0-00
0100 √	-000
1000 √	010-
0101 √	01-0 100-
$\begin{array}{ccc} 0110 & \checkmark \\ 1001 & \checkmark \end{array}$	10-0
1001 √ 1010 √	01-1
0111 √ —	-101 011-
1101 1	1-01
1111 √	──→ -111

	2
0000 0-00	
-000 0100 √	
1000 √ 010-	
01-0 0101 √ 100-	
0110 √ 10-0	
1001 √ 1010 √ 01-1	
-101	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
1111 √ — -111 11-1	

O método prossegue para a terceira coluna:

Coluna 1	Coluna 2	Coluna 3
0000 √	0-00 -000	
0100 √	-000	
1000 √	010-	
0101 √	01-0 100-	
0110 \checkmark	10-0	
$1001 \ \sqrt{1010} \ \sqrt{1010} $	01-1	
,	-101	
0111 √ 1101 √	011- 1-01	
1101 V	1-01	
1111 √	-111	
	11-1	

□ Elementos não utilizados recebem "*"

Coluna 1	Coluna 2	Coluna 3
0000 √	0-00 * -000 *	01
0100 √ 1000 √	010- √ — 01-0	
0101 √ 0110 √	100- 10-0	
1001 √ 1010 √	01-1	
0111 √ 1101 √	-101 011- √ 1-01	
1111 √	-111 11-1	

■ Elemento gerado por diferentes combinações:

Coluna 1	Coluna 2	Coluna 3
0000 √	0-00 * -000 *	01
0100 √ 1000 √	010- √ 01-0 √ —	
0101 √ 0110 √	100- 10-0	
1001 √ 1010 √	01-1 √— -101	
0111 √ 1101 √	011- √ 1-01	
1111 √	-111 11-1	

Coluna 1	Coluna 2	Coluna 3
0000 √	0-00 *	01
0100 /	-000 *	1 1
0100 √	,	-1-1
1000 √	010- √	
	01-0 √	
0101 √	100- *	
0110 √	10-0 *	
1001 √		
1010 √	01-1 √ —	
	-101	
0111 √	011- √	
1101 √	1-01	
1111 √	-111	
	11-1 √ —	

■ Elemento gerado por diferentes combinações:

Coluna 1	Coluna 2	Coluna 3
0000 √	0-00 *	01
0100 √	-000 *	─── -1-1
1000 √	010- $$	
0101 √	01-0 √ 100- *	
0110 √	10-0 *	
$1001 \ \sqrt{1010} \ \sqrt{1010} $	01-1 √	
	- 101 √ -	
0111 √ 1101 √	011- √ 1-01	
	,	
1111 √	-111 √ 11-1 √	

■ Versão final:

Coluna 1	Coluna 2	Colur	na 3
0000 √	0-00 * -000 *	01	. *
0100 √		-1-1	*
1000 √	010- √ 01-0 √		Os elementos que restaram
0101 √	100- *		(com "*") formam o conjunto
0110 √	10-0 *		de implicantes primários:
1001 √			0.00
1010 √	01-1 √		0-00
	-101 √		-000
0111 √	011 - √		100-
1101 √	1-01 *		10-0
			1-01
1111 √	-111 √		01
1111	11-1 √		-1-1

- As linhas são rotuladas com os minitermos cobertos pelos implicantes primários
 - Cada "-" de um implicante primário deve ser substituído por "0" e por "1"
 - Cada índice resultante da substituição acima deve ser colocado, no formato decimal, à esquerda do implicante primário que o originou

$$0.8 \quad (-000)$$

As colunas do gráfico dos implicantes primários são rotuladas com os índices dos minitermos (os don't cares não são incluídos)

Um "X" deve ser colocado numa posição (linha, coluna) caso o minitermo representado pela coluna seja coberto pelo implicante primário associado à linha

As colunas que apresentam um único "X" representam minitermos cobertos por um, e apenas um, implicante primário (que passa a ser essencial)

As colunas que apresentam um único "X" representam minitermos cobertos por um, e apenas um, implicante primário (que passa a ser essencial)

Note que os implicantes primários essenciais cobrem também minitermos adicionais da função:

No passo final deve-se identificar o menor número de implicantes primários que cobrem os minitermos que restaram:

Os implicantes primários essenciais resultantes foram: $f(A,B,C,D) = A\overline{BD} + A\overline{CD} + \overline{AB}$

■ No mapa de Karnaugh:

Quine McCluskey - Site

http://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/