

EE141-Spring 2010 Digital Integrated Circuits

Lecture 14 Complex CMOS - Cntd

EECS141 Lecture #14

Administrativia

- □ Hw 5 due Today.
- □ Hw 6 posted early next week. You get TWO weeks for this one.
- □ Project phase 1 will be launched today
- □ Out of town next week
 - We lecture offered by Stanley
 - Fr lecture cancelled Make-up on Tu March 16 at 3:30pm

Class Material

- □ Last lecture
 - Inverter energy
 - Project launch
- □ Today's lecture
 - Optimizing complex CMOS
 - Pass Transistor Logic
- □ Reading (Ch 5, 6)

Analyzing and Optimizing Complex CMOS Gates

- □ Techniques very similar to the inverter case
- □ Logical Effort technique as the means for gate sizing and topology optimization
- □ However ... some other things to be aware of

EECS141 Lecture #13

Fan-In Considerations

RC model:

A = 2 B = 2 C = 2 D = 2

A: 1 = 4 = C₃

C: 1 = 4 = C₂

D: 0 \Rightarrow 1 = 4 = C₁

t_p as a Function of Fan-In and Fan-Out

- □ Fan-in: quadratic due to increasing resistance and capacitance
- □ Fan-out: each additional fan-out gate adds two gate capacitances to C_L

$$t_p = a_1FI + a_2FI^2 + a_3FO$$

Fast Complex Gates: Design Technique 1

- □ Transistor sizing
 - as long as fan-out capacitance dominates
- □ Progressive sizing

Distributed RC line

M1 > M2 > M3 > ... > MN (the FET closest to the output is the smallest)

Can reduce delay by more than 20%; Be careful: input loading, junction caps, decreasing gains as technology shrinks

Lecture #13

Fast Complex Gates:

EECS141

Design Technique 2

□ Transistor ordering

delay determined by time to discharge C_L , C_1 and C_2

critical path $\begin{array}{c|c}
\hline
 & & & & \\
\hline
 & &$

delay determined by time to discharge $C_{\text{\tiny L}}$

12

EECS141 Lecture #13

6

Fast Complex Gates: Design Technique 4

□ Isolating fan-in from fan-out using buffer insertion

Fast Complex Gates: Design Technique 5

□ Reducing the voltage swing

$$t_{pHL}$$
 = 0.5 ($C_L V_{DD}$) / I_{DSATn}

=
$$0.5 (C_L V_{swing}) / I_{DSATn}$$

- linear reduction in delay
- also reduces power consumption
- □ But the following gate is slower!
- □ Or requires use of "sense amplifiers" on the receiving end to restore the signal level (memory design)

EECS141 Lecture #13 15

Pass-Transistor Logic

Example: AND Gate EECS141 Lecture #13 18

Pass Transistor Logic LE

- □ What is LE of "gate" shown below for A and B inputs?
 - Hint: Can you answer this question with only the information shown below?

Pass Transistor Logic LE

- □ In CMOS, a "gate" is defined only when trace a connection all the way back to a supply
 - Otherwise don't know what drive resistance really is

EECS141 Lecture #13 21

Pass Transistor Logic LE

Solution 2: Transmission Gate

Cell Design

- □ Standard Cells
 - General purpose logic
 - Used to synthesize RTL/HDL
 - Same height, varying width
- □ Datapath Cells
 - For regular, structured designs (arithmetic)
 - Includes some wiring in the cell

