

Statistik

CH.11 - Hypothesentests

SS 2022 || Prof. Dr. Buchwitz, Sommer, Henke

Wirgeben Impulse

Lernziele

- Ziel 1
- Ziel 2
- Ziel 3

- 1 Evaluation
- 2 Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Bitte evaluieren Sie den Kurs!

http://evasys.fhswf.de/evasys/online.php?pswd=64D4W

- 1 Evaluation
- 2 Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Ausgangslage

Vorgehen Hypothesentests

- Formulieren Sie Nullhypothese H_0 und Alternativhypothese H_1 .
- Legen Sie ein Signifikanzniveau α fest.
- Wählen Sie die passende Teststatistik.
 - 4 Bestimmen Sie den Wert der Teststatistik, ab dem die Nullhypothese verworfen werden muss.
- Bestimmen Sie den Vergleichswert aus den Stichprobendaten.
- Entscheiden Sie durch Vergleich der Werte aus (4) und (5), ob Sie die Nullhypothese verwerfen können.

- 1 Evaluation
- 2 Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Tests für den Mittelwert bei bekannter Varianz

Test	H_0	H_1	Teststatistik	Verwerfe H_0 , wenn gilt:
Beidseitig Rechtsseitig Linksseitig	$\mu = \mu_0$ $\mu \le \mu_0$ $\mu \ge \mu_0$, , , ,	$Z = rac{ar{x} - \mu_0}{\sigma / \sqrt{n}}$	$ z > z_{1-\alpha/2}$ $z > z_{1-\alpha}$ $z < z_{\alpha}$

Tests für den Mittelwert bei unbekannter Varianz

Test	H ₀	H ₁	Teststatistik	Verwerfe H_0 , wenn gilt:
Beidseitig Rechtsseitig Linksseitig	$\mu \leq \mu_0$	$\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$	$t=rac{ar{x}-\mu_0}{s/\sqrt{n}}$	$ t > t_{n-1, 1-\alpha/2}$ $t > t_{n-1, 1-\alpha}$ $t < t_{n-1, \alpha}$

R-Funktion: t.test()

- 1 Evaluation
- 2 Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Tests für den Anteilswert

Test	H ₀	H ₁	Teststatistik	Verwerfe H_0 , wenn gilt:
Beidseitig Rechtsseitig	$\pi=\pi_0$	$\pi \neq \pi_0$	$p-\pi_0$	$ z >z_{1-\alpha/2}$
			$z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$	$z>z_{1-\alpha}$
Linksseitig	$\pi \geq \pi_0$	$\pi < \pi_0$	V n	$z < z_{\alpha}$

R-Funktion: prop.test()

Beispiel

Aufgabe: Ein Schraubenproduzent behauptet, dass seine Lieferung eines speziellen Schraubentyps einen Ausschussanteil von höchstens 1% enthält. Der Empfänger der Lieferung ist jedoch der Meinung,dass der Anteil höher ist. Er nimmt eine Stichprobe von 1000 Schrauben und findet in dieser 15 nicht den Anforderungen entsprechende Schrauben.

- Kann die Behauptung des Lieferanten mit dieser Stichprobe bei einem Signifikanzniveau von $\alpha = 0.05$ widerlegt werden?
- **Hinweis:** Verteilungstabelle siehe nächste Seite.

Verteilungsfunktion F(z) für $z \sim N(\mu = 0, \sigma^2 = 1)$

	Verteilungsfunktion $F(z)$ der Standardnormalverteilung $N(0,1)$ Beispiel: $F(z) = P(z \le 1.96) = 0.9750$									
z	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

- 1 Evaluation
- 2 Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Verteilungstest

- Ausgangssituation: Es liegen Daten von zwei oder mehr unabhägngig gewonnenen Stichproben vor.
- **Ziel:** Zwei (oder mehrere) Grundgesamtheiten sollen hinsichtlich ihrer *Verteilung* verglichen werden.
- Analytische Fragestellung: Weichen die beiden *empirischen Verteilungen* so sehr voneinander ab, dass die Nullhypothese verworfen werden muss?

$$H_0: F_1 = F_2 = \ldots = F_k$$

■ **Folge:** Wenn H_0 verworfen werden muss, dann kann man davon ausgehen, dass die Stichproben nicht die selbe Verteilungsfunktion aufweisen und infolgedessen nicht aus der gleichen Grundgesamtheit stammen.

Beispiel

An einer Hochschule wurde in einer Befragung von 1529 Studierenden ermittelt, ob die Studierenden in den Semesterferien einem Ferienjob nachgehen.

	male	female	Sum
Job	718	593	1311
No Job	79	139	218
Sum	797	732	1529

Unterscheidet sich das Verhalten von männlichen und weiblichen Studierenden signifikant ($\alpha=5$)?

Chi-Quadrat Test

- Voraussetzung: Jede Zelle muss mindestens 5 Beobachten enthalten.
- Vorgehensweise: 6-Schritte Schema für das Testen von Hypothesen
- **Teststatistik:** Die \mathcal{X}^2 Teststatistik setzt die Abweichungen von beobachteten (f_o) und erwarteten f_e Häufigkeiten in Relation zu den erwarteten Häufigkeiten:

$$\mathcal{X}^2 = \sum_{ ext{alle Zellen}} rac{(f_o - f_e)^2}{f_e}$$

lacksquare Die \mathcal{X}^2 Teststatistik folg einer \mathcal{X}^2 Verteilung mit $(r-1)\cdot(s-1)$

Chi-Quadrat Test

■ Die **erwarteten** Häufigkeiten ergeben sich als:

$$\frac{\sum \mathsf{Saplte} \cdot \sum \mathsf{Zeile}}{\mathsf{Gesamtanzahl}}$$

Die Nullhypothese lautet stets:

$$H_0: F_1 = F_2 = \ldots = F_k$$

■ Es handelt sich hier immer um einen **rechtsseitigen Test**.

X² Verteilung

Quantile der $\mathcal{X}_{n;\gamma}^2$ Verteilung

30

53.672

50.892

46.979

43.773

40.256

34.800

29.3360

24.4776

20.5992

18.4

	Quantile $\mathcal{X}_{n;\;\gamma}^2$ der \mathcal{X}_n^2 Verteilung Beispiel: $P(\mathcal{X}_{10}^2 \leq 20.4832) = 0.975$									
	0.1	0.25	0.5	0.75	0.9	0.95	0.975	0.99	0.995	$n \setminus \gamma$
0.0	0.0158	0.1015	0.4549	1.323	2.705	3.841	5.024	6.635	7.879	1
0.1	0.2107	0.5754	1.3863	2.773	4.605	5.992	7.378	9.210	10.597	2
0.3	0.5844	1.2125	2.3660	4.108	6.251	7.815	9.348	11.345	12.838	3
0.7	1.0636	1.9226	3.3567	5.385	7.779	9.488	11.143	13.277	14.860	4
1.1	1.6103	2.6746	4.3515	6.626	9.236	11.070	12.832	15.086	16.750	5
1.6	2.2041	3.4546	5.3481	7.841	10.645	12.592	14.449	16.812	18.548	6
2.1	2.8331	4.2549	6.3458	9.037	12.017	14.067	16.013	18.475	20.278	7
2.7	3.4895	5.0706	7.3441	10.219	13.362	15.507	17.535	20.090	21.955	8
3.3	4.1682	5.8988	8.3428	11.389	14.684	16.919	19.023	21.666	23.589	9
3.9	4.8652	6.7372	9.3418	12.549	15.987	18.307	20.483	23.209	25.188	10
4.5	5.5778	7.5841	10.3410	13.701	17.275	19.675	21.920	24.725	26.757	11
5.2	6.3038	8.4384	11.3403	14.845	18.549	21.026	23.337	26.217	28.299	12
5.8	7.0415	9.2991	12.3398	15.984	19.812	22.362	24.736	27.688	29.820	13
6.5	7.7895	10.1653	13.3393	17.117	21.064	23.685	26.119	29.141	31.319	14
7.2	8.5468	11.0365	14.3389	18.245	22.307	24.996	27.488	30.578	32.801	15
7.9	9.3122	11.9122	15.3385	19.369	23.542	26.296	28.845	32.000	34.267	16
8.6	10.0852	12.7919	16.3382	20.489	24.769	27.587	30.191	33.409	35.718	17
9.3	10.8649	13.6753	17.3379	21.605	25.989	28.869	31.526	34.805	37.157	18
10.1	11.6509	14.5620	18.3377	22.718	27.204	30.143	32.852	36.191	38.582	19
10.8	12.4426	15.4518	19.3374	23.828	28.412	31.410	34.170	37.566	39.997	20
11.5	13.2396	16.3444	20.3372	24.935	29.615	32.671	35.479	38.932	41.401	21
12.3	14.0415	17.2396	21.3370	26.039	30.813	33.924	36.781	40.289	42.796	22
13.0	14.8480	18.1373	22.3369	27.141	32.007	35.172	38.076	41.638	44.181	23
13.8	15.6587	19.0373	23.3367	28.241	33.196	36.415	39.364	42.980	45.559	24
14.6	16.4734	19.9393	24.3366	29.339	34.382	37.653	40.647	44.314	46.928	25
15.3	17.2919	20.8434	25.3365	30.435	35.563	38.885	41.923	45.642	48.290	26
16.1	18.1139	21.7494	26.3363	31.528	36.741	40.113	43.194	46.963	49.645	27
	18.9392	22.6572	27.3362	32.620	37.916	41.337	44.461	48.278	50.993	28
$2_{17.7}^{16.9}$	19.7677	23.5666	28.3361	33.711	39.087	42.557	45.722	49.588	52.336	29

- 1 Evaluation
- 2 Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Unabhängigkeitstest

- X² Tests können auch verwendet werden um die Fragen zu beantworten, ob zwei Merkmale unabhängig voneinander sind.
- Im Beispiel: Ist die Annahme von Ferienjobs abhängig vom Geschlecht der Studierenden?
- Hypothesen:
 - H₀: Annahme von Ferienjobs und Geschlecht sind voneinander unabhängig.
 - H₁: Annahme von Ferienjobs und Geschlecht sind voneinandern abhängig.

Verständnisfragen

- 1 Wozu können \mathcal{X}^2 Tests verwendet werden?
- wie müssen Null- und Alternativhypothese beim \mathcal{X}^2 Test ausgestaltet werden?
- Welches Sklaenniveau müssen die Merkmale aufweisen um im \mathcal{X}^2 Test verwendet werden zu können?