# ত্রিকোণমিতি

# ত্রিকোণমিতিক অনুপাত



$$PQ = y =$$
 লম্ব

$$cos\theta = \frac{OQ}{OP} = \frac{x}{r}$$

$$\Rightarrow tan\theta = \frac{PQ}{OQ} = \frac{y}{x}$$

$$\Rightarrow cot\theta = \frac{OQ}{PO} = \frac{x}{y}$$

$$\Rightarrow sec\theta = \frac{OP}{OQ} = \frac{r}{x}$$

$$\Rightarrow cosec\theta = \frac{OP}{PQ} = \frac{r}{y}$$

$$\Rightarrow \quad \sin\theta = \frac{1}{\cos ec\theta} \qquad \Rightarrow \quad \cos ec\theta = \frac{1}{\sin\theta}$$

$$\Rightarrow cos\theta = \frac{1}{sec\theta} \qquad \Rightarrow sec\theta = \frac{1}{cos\theta}$$

$$\Rightarrow tan\theta = \frac{1}{\cot \theta} \qquad \Rightarrow \cot \theta = \frac{1}{\tan \theta}$$

- $\Rightarrow \sin^2\theta + \cos^2\theta = 1$
- $\Rightarrow$   $sec^2 \theta tan^2 \theta = 1$
- $\Rightarrow$   $cosec^2\theta cot^2\theta = 1$
- $\Rightarrow$   $tan\theta.cot\theta = 1$

### চৌকোণ (Quadrant):

#### ⇒ ধনাত্মক কোণ ও ঋণাত্মক কোণ

কোন রশিম যদি তার অবস্থান থেকে ঘড়ির কাঁটার বিপরীত দিকে ঘূর্ণনের ফলে যে কোণ উৎপন্ন করে সে কোণকে ধনাত্মক কোণ বলে।

কোন রশিম যদি তার অবস্থান থেকে ঘড়ির কাঁটার দিকে ঘূর্ণনের ফলে কোণ উৎপন্ন করে সে কোণকে ঋণাত্মক কোণ বলে।



#### টোকোণ অনুযায়ী ত্রিকোণমিতিক অনুপাতের চিহ্ন

- ➡ প্রথম চৌকোণ (1<sup>st</sup> Quadrant)-এ সকল ত্রিকোণমিতিক অনুপাত ধনাত্মক।
- 🖈 দ্বিতীয় চৌকোণ (2nd Quadrant)-এ sin,cosec-ধনাত্মক এবং অবশিষ্ট সকল ত্রিকোণমিতিক অনুপাত ঋণাত্মক।
- তৃতীয় চৌকোণ (3rd Quadrant)-এ  $_{tan,cot}$ -ধনাত্মক এবং অবশিষ্ট সকল ত্রিকোণমিতিক অনুপাত ঋণাত্মক।
- 🖈 চতুর্থ চৌকোণ (4rd Quadrant)-এ  $\cos$ ,  $\sec$ -ধনাত্মক এবং অবশিষ্ট সকল ত্রিকোণমিতিক অনুপাত ঋণাত্মক।

#### মনে রাখার কৌশল all-sin-tan-cos

(-θ) কোণের ত্রিকোণমিতিক অনুপাত:

$$\Rightarrow sin(-\theta) = -sin\theta \Rightarrow cos(-\theta) = cos\theta$$

$$\Rightarrow tan(-\theta) = -tan\theta \Rightarrow \cot(-\theta) = -\cot\theta$$

$$\Rightarrow$$
  $sec(-\theta) = sec\theta$   $\Rightarrow$   $cosec(-\theta) = -cosec\theta$ 

### $\left(n, \frac{\pi}{2} \pm \theta\right)$ কোণের ত্রিকোণমিতিক অনুপাত.....

- > n- জোড় সংখ্যা হলে--- সকল ত্রিকোণমিতিক অনুপাত অপরিবর্তিত থাকবে। শুধু চৌকোণ অনুযায়ী চিহ্ন রূপান্তরিত হবে।
- > n- বিজোড় সংখ্যা হলে---- ত্রিকোণমিতিক অনুপাতগুলো নিম্নোক্তভাবে পরিবর্তিত হবে-
- $\triangleright$  sin  $\Leftrightarrow$  cos
- > tan \in cot
- $\triangleright$  sec  $\Leftrightarrow$  cot
- $\triangleright$  sec  $\Leftrightarrow$  cosec

#### (ηπ+θ) কোণের ত্রিকোণমিতিক অনুপাত---

- 🗲 সকল ত্রিকোণমিতিক অনুপাত অপরিবর্তিত থাকবে।
- ightarrow n একটি বিজোড় সংখ্যা হলে heta কোণটি ৩য় চর্তুভাগে থাকবে।
- ho n একটি জোড় সংখ্যা হলে  $\theta$  কোণটি ১ম চর্তুভাগে থাকবে।

#### (ηπ-θ) কোণের ত্রিকোণমিতিক অনুপাত-

- 🗲 সকল ত্রিকোণমিতিক অনুপাত অপরিবর্তিত থাকবে।
- ightarrow n একটি বিজোড় সংখ্যা হলে heta কোণটি ২য় চর্তুভাগে থাকবে।
- ightarrow n একটি জোড় সংখ্যা হলে heta কোণটি 8র্থ চর্তুভাগে থাকবে।

#### $(2n\pi + \theta)$ কোণের ত্রিকোণমিতিক অনুপাত-

n যেকোন স্বাভাবিক পূর্ণ সংখ্যা হলে সকল ত্রিকোণমিতিক অপরিবর্তিত থাকবে।

#### (2nπ-θ) কোণের ত্রিকোণমিতিক অনুপাত-

> n যেকোন স্বাভাবিক পূর্ণ সংখ্যা হলে সকল ত্রিকোণমিতিক অপরিবর্তিত থাকবে এবং  $\theta$  কোণটি ৪র্থ চর্তুভাগে থাকবে।

# প্রয়োজনীয় সূত্রাবলী:

$$\Rightarrow \sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\Rightarrow \sin(A-B) = \sin A \cos B - \cos A \sin B$$

$$\Rightarrow \cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\Rightarrow \cos(A-B) = \cos A \cos B + \sin A \sin B$$

$$\Rightarrow \sin(A+B)\sin(A-B) = \sin^2 A - \sin^2 B \qquad = \cos^2 B - \cos^2 A$$

$$\Rightarrow \cos(A+B)\cos(A-B) = \cos^2 A - \sin^2 B \qquad = \cos^2 B - \sin^2 A$$

$$\Rightarrow tan(A+B) = \frac{tanA + tanB}{1 - tanA tanB}$$

$$\Rightarrow \tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

$$\Rightarrow \cot(A+B) = \frac{\cot A \cot B - 1}{\cot B + \cot A}$$

$$\Rightarrow cot(A-B) = \frac{cotAcotB+1}{cotB-cotA}$$

$$\Rightarrow \sin(A+B) + \sin(A-B) = 2\sin A\cos B, (S.C)$$

$$\Rightarrow \sin(A+B) - \sin(A-B) = 2\cos A \sin B, (C.S.)$$

$$\Rightarrow \cos(A+B) + \cos(A-B) = 2\cos A\cos B, (C.C)$$

$$\Rightarrow \cos(A-B)-\cos(A+B)=2\sin A\sin B,(S.\underline{S})$$

$$\Rightarrow \sin C + \sin D = 2\sin \frac{C+D}{2}\cos \frac{C-D}{2}, (S.C)$$

$$\Rightarrow \sin C - \sin D = 2\cos\frac{C+D}{2}\sin\frac{C-D}{2}m(C.S)$$

$$\Rightarrow cosC + cosD = 2cos\frac{C+D}{2}cos\frac{C-D}{2}, (C.C)$$

$$\Rightarrow \cos C - \cos D = 2\sin \frac{C+D}{2}\sin \frac{D-C}{2}, (S.\underline{S})$$

$$\Rightarrow \sin 2A = 2\sin A\cos A$$

$$= \frac{2\tan A}{1 + \tan^2 A}$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$
$$= \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

$$tan2A = \frac{2tanA}{1-tan^2A}$$

$$2\cos^2 A = 1 + \cos 2A$$

$$\Rightarrow 2\sin^2 A = 1 - \cos 2A$$

$$\tan^2 A = \frac{1 - \cos 2A}{1 + \cos 2A}$$

$$cos3A = 4cos^3 A - 3cosA$$

$$4\cos^3 A = 3\cos A + \cos 3A$$

$$cos^3 A = \frac{1}{4} (3 cos A + cos 3A)$$

$$sin 3A = 3 sin A - 4 sin^3 A$$

$$4\sin^3 A = 3\sin A - \sin 3A$$

$$\sin^3 A = \frac{1}{4} (3 \sin A - \sin 3A)$$

$$tan3A = \frac{3tanA - tan^3 A}{1 - tan^2 A}$$

$$\Rightarrow \sin A = 2\sin\frac{A}{2}\cos\frac{A}{2}$$

$$=\frac{2\tan\frac{A}{2}}{1+\tan^2\frac{A}{2}}$$

$$\Rightarrow cos A = cos^2 \frac{A}{2} - sin^2 \frac{A}{2}$$

$$=2\cos^2\frac{A}{2}-1$$

$$=1-2\sin^2\frac{A}{2}$$

$$=\frac{1-tan^2\frac{A}{2}}{1+tan^2\frac{A}{2}}$$

$$\Rightarrow tan A = \frac{2tan\frac{A}{2}}{1-tan^2\frac{A}{2}}$$

- $\Rightarrow 2\sin^2\frac{A}{2} = 1 \cos A$
- $\Rightarrow \tan^2 \frac{A}{2} = \frac{1 \cos A}{1 + \cos A}$
- $\Rightarrow \cos A = 4\cos^3 \frac{A}{3} 3\cos \frac{A}{3}$
- $\Rightarrow 4\cos^3\frac{A}{3} = 3\cos\frac{A}{3} + \cos A$
- $\Rightarrow \cos^3 \frac{A}{3} = \frac{1}{4} \left( 3\cos \frac{A}{3} + \cos A \right)$
- $\Rightarrow \sin 3A = 3\sin A 4\sin^3 A$
- $\Rightarrow 4\sin^3\frac{A}{3} = 3\sin\frac{A}{3} \sin A$
- $\Rightarrow \sin^3 \frac{A}{3} = \frac{1}{4} \left( 3 \sin \frac{A}{3} \sin A \right)$
- $\Rightarrow tanA = \frac{3tan\frac{A}{3} tan^3 \frac{A}{3}}{1 3tan^2 \frac{A}{3}}$