DAY 3

1. Find AP whose 3rd term is 5 and 7th term is 9?

[Example 5]

Sol:- Given:
$$3^{rd}$$
 term = 5 $\Rightarrow a + 2d = 5 \dots \dots i)$
 7^{th} term = 9 $\Rightarrow a + 6d = 9 \dots \dots ii)$
Subtracting i) from ii), we get
 $(a + 6d) - (a + 2d) = 9 - 5$
 $\Rightarrow a + 6d - a - 2d = 4$ $\Rightarrow 4d = 4$
 $\Rightarrow d = \frac{4}{4} = 1$ Put value of d in i), we get
i) $\Rightarrow a + 2d = 5$ $\Rightarrow a + 2(1) = 5$ $\Rightarrow a = 5 - 2 = 3$
 \therefore Required AP is 3,4,5,

2. Find AP whose 2nd term is 13 and 4th term is 3?

Sol:- Given:
$$2^{\text{nd}}$$
 term = $13 \Rightarrow a + d = 13 \dots \dots i$)
$$4^{\text{th}}$$
 term = $3 \Rightarrow a + 3d = 3 \dots \dots ii$)
Subtracting i) from ii), we get
$$(a + 3d) - (a + d) = 3 - 13$$

$$\Rightarrow a + 3d - a - d = -10 \Rightarrow 2d = -10$$

$$\Rightarrow d = \frac{-10}{2} = -5 \quad \text{Put value of } d \text{ in i} \text{), we get}$$

$$i) \Rightarrow a + d = 13 \Rightarrow a + (-5) = 13 \Rightarrow a = 13 + 5 = 18$$

$$\therefore \text{ Required AP is } 18,13,8, \dots \dots$$

3. Find 10th term of AP whose 1st term is 2 and 5th term is 26?

Sol:- Given:
$$1^{\text{st}}$$
 term = $2 \Rightarrow a = 2 \dots \dots \dots i$)
 5^{th} term = $26 \Rightarrow a + 4d = 26$
 $\Rightarrow 2 + 4d = 26 \quad \{\text{By i}\}\}$
 $\Rightarrow 4d = 26 - 2 = 24 \Rightarrow d = \frac{24}{4} = 6$
Now 10^{th} term = $a + 10d = 2 + 9 \times 6 = 2 + 54 = 56$

4. The 17^{th} term of an AP exceeds its 10^{th} term by 7. Find the common difference.

[Ex 5.2, Q10]

$$\Rightarrow 17^{th} \text{ term} = 10^{th} \text{ term} + 7$$

$$\Rightarrow a + 16d = a + 9d + 7 \qquad \Rightarrow a + 16d - a - 9d = 7$$

$$\Rightarrow 7d = 7 \qquad \Rightarrow d = \frac{7}{7} = 1$$

Hence difference is 1.

5. Find 20th term from the last of AP 3,8,13,......253?

[Ex 5.2, Q17]

Sol:-
$$\binom{20\text{th term from the last}}{\text{of AP 3, 8, 13,, 248, 253}} = \binom{20\text{th term from the starting}}{\text{of AP 253, 248,8, 3}}$$

So in A.P. 253,248,8,3
 $a = 253, d = 248 - 253 = -5$
Now 20^{th} term = $a + 19d = 253 + 19 \times (-5) = 253 - 95 = 158$

6. Which term of AP 3, 15, 27, 39,..... will be 132 more than its 54th term?

[Ex 5.2, Q11]

Sol:- Given AP 3, 15, 27, 39,.....

Here
$$a = 3$$
 and $d = 15 - 3 = 12$

Given condition: (Which term) = $132 + (54^{th} \text{ term})$

Suppose Which term is n^{th} term.

So
$$(n^{\text{th}} \text{ term}) = 132 + (54^{\text{th}} \text{ term})$$

 $\Rightarrow a + (n-1)d = 132 + a + 53d = 60$
 $\Rightarrow 3 + (n-1)12 = 132 + 3 + 53 \times 12$
 $\Rightarrow (n-1)12 = 132 + 3 + 636 - 3$
 $\Rightarrow (n-1)12 = 768$ $\Rightarrow n-1 = \frac{768}{12} = 64$
 $\Rightarrow n = 64 + 1 = 65$

Hence **65**th **term** of the given A.P. is 132 more than its 54th term.

EXERCISE

- 1. Find AP whose 5th term is 18 and 9th term is 34?
- 2. Find AP whose 4th term is 13 and 7th term is 22?
- 3. Find 15th term of the AP whose 3rd term is 6 and 9th term is 36?
- 4. Ex 5.2, Q 3,7,8,9,16,18
- 5. Find 11^{th} term from the last of AP $10,7,4,\ldots$ -62?