# Esame di Logica

### Giugno 2023

Questo è un esame a libro aperto: gli studenti possono portare e usare liberamente libri, appunti, fogli stampati e così via, ma non possono usare dispositivi elettronici come tablet o cellulari (o comunicare).

### 1 Logica Sillogistica

- Scrivete una teoria in logica sillogistica che rappresenti le seguenti affermazioni:
  - Tutti gli uccelli sono dinosauri;
  - Tutti gli uccelli hanno le piume;
  - Qualche uccello vola;
  - Qualche uccello non vola;
  - Nessuna tartaruga ha le piume;
  - Nessuna tartaruga è un dinosauro;
  - Qualche uccello non è estinto;
  - Qualche dinosauro è estinto.
- Per ognuna di queste affermazioni, verificate se è una conseguenza della vostra teoria. Se lo è, scrivetene una dimostrazione nel sistema di deduzione visto a lezione (usando dimostrazioni dirette o indirette); se non lo è, descrivete un modello che soddisfa tutte le formule della vostra teoria ma non l'affermazione data.
  - 1. Qualche dinosauro non è estinto;
  - 2. Nessuna tartaruga vola;
  - 3. Qualche dinosauro non vola;
  - 4. Nessuna tartaruga è un uccello.

#### **SOLUZIONE:**

- Sia
  - -u = uccello;
  - -d = dinosauro;
  - -p = ha le piume;
  - -v = vola;
  - -t = tartaruga;
  - -e = estinto.

Allora possiamo rappresentare le affermazioni di cui sopra come

- -A(u,d);
- -A(u,p);
- -I(u,v);
- -O(u,v);
- -E(t,p);
- -E(t,d);
- (-,-,,
- -O(u,e);
- -I(d,e).
- Consideriamo le affermazioni date:
  - 1. "Qualche dinosauro non è estinto" corrisponde a O(d, e). Può essere dimostrato in base alla teoria data per dimostrazione indiretta:

|     | Formula | Spiegazione                      |
|-----|---------|----------------------------------|
| (1) | A(u,d)  | Premessa                         |
| (2) | O(u,e)  | Premessa                         |
| (3) | A(d,e)  | Contraddittorio di $O(d, e)$     |
| (4) | A(u,e)  | PS1, da (3) e (1)                |
| (5) | X       | (2) e (4) sono in contraddizione |

- 2. "Nessuna tartaruga vola" è rappresentabile come E(t,v). Non è una conseguenza della teoria. Infatti, consideriamo il modello  $\mathfrak M$  con dominio  $\Delta=\{1,2,3,4\}$  tale che
  - $-\iota(u) = \{1, 2\};$
  - $-\iota(d) = \{1, 2, 3\};$
  - $-\iota(p) = \{1, 2\};$
  - $-\iota(v) = \{1,4\};$
  - $-\iota(t) = \{4\};$
  - $-\iota(e) = \{3\}.$
  - Allora

```
 \begin{split} &-\mathfrak{M} \models A(u,d), \, \mathrm{perchè} \, \iota(u) = \{1,2\} \subseteq \iota(d) = \{1,2,3\}; \\ &-\mathfrak{M} \models A(u,p), \, \mathrm{perchè} \, \iota(u) = \{1,2\} \subseteq \iota(p) = \{1,2\}; \\ &-\mathfrak{M} \models I(u,v), \, \mathrm{perchè} \, 1 \in \iota(u) \cap \iota(v); \\ &-\mathfrak{M} \models O(u,v), \, \mathrm{perchè} \, 2 \in \iota(u) \, \mathrm{e} \, 2 \not\in \iota(v); \\ &-\mathfrak{M} \models E(t,p), \, \mathrm{perchè} \, \iota(t) \cap \iota(p) = \emptyset; \\ &-\mathfrak{M} \models E(t,d), \, \mathrm{perchè} \, \iota(t) \cap \iota(d) = \emptyset; \\ &-\mathfrak{M} \models O(u,e), \, \mathrm{perchè} \, 1 \in \iota(u), \, 1 \not\in \iota(e); \\ &-\mathfrak{M} \models I(d,e), \, \mathrm{perchè} \, 3 \in \iota(d) \cap \iota(e). \end{split}  Però \mathfrak{M} \not\models E(t,v): \, \mathrm{infatti}, \, \iota(t) \cap \iota(v) = \{4\} \neq \emptyset.
```

3. "Qualche dinosauro non vola" è rappresentabile con O(d, v). Può essere dimostrato in base alla teoria data per dimostrazione indiretta:

|     | Formula | Spiegazione                      |
|-----|---------|----------------------------------|
| (1) | A(u,d)  | Premessa                         |
| (2) | O(u,v)  | Premessa                         |
| (3) | A(d,v)  | Contraddittorio di $O(d, v)$     |
| (4) | A(u,v)  | PS1, da (3) e (1)                |
| (5) | X       | (2) e (4) sono in contraddizione |

4. "Nessuna tartaruga è un uccello" è rappresentabile come E(t,u). Può essere dimostrato in base alla teoria per dimostrazione diretta:

|                  | Formula | Spiegazione       |
|------------------|---------|-------------------|
| $\overline{(1)}$ | A(u,d)  | Premessa          |
| (2)              | E(t,d)  | Premessa          |
| (3)              | E(d,t)  | C1, da (2)        |
| (4)              | E(u,t)  | PS2, da (3) e (1) |
| (5)              | E(t,u)  | C1, da (4)        |

# 2 Logica Proposizionale

- Scrivete una teoria di logica proposizionale che descriva il seguente scenario:
  - $-\,$  Se piove e ho l'ombrello, apro l'ombrello;
  - Se non piove, non apro l'ombrello;
  - Se piove, è nuvolo;
  - Se è nuvolo, ho l'ombrello.
- Usando una tabella di verità, trovate tutti gli assegnamenti di valori di verità che soddisfano la teoria;
- Per ognuna delle seguenti affermazioni, verificate se è una conseguenza della vostra teoria oppure no, usando le tavole di verità:
  - Se non ho l'ombrello allora non piove;

- Se ho l'ombrello allora è nuvolo.
- Verificate se la teoria ha "se piove apro l'ombrello" come conseguenza logica oppure no usando il metodo dei tableau.

#### **SOLUZIONE:**

- Sia P= "piove", H= "ho l'ombrello", A= "apro l'ombrello", e N= "è nuvolo". Allora lo scenario può essere rappresentato come
  - $-P \wedge H \rightarrow A;$
  - $-\neg P \rightarrow \neg A;$
  - $-P \rightarrow N;$
  - $-N \rightarrow H.$
- Costruiamo una tabella di verità per la teoria:

| P | H | A | N | $P \wedge H$ | $P \wedge H \to A$ | $\neg P \rightarrow \neg A$ | $P \to N$ | $N \to H$ |
|---|---|---|---|--------------|--------------------|-----------------------------|-----------|-----------|
| 0 | 0 | 0 | 0 | 0            | 1                  | 1                           | 1         | 1         |
| 0 | 0 | 0 | 1 | 0            | 1                  | 1                           | 1         | 0         |
| 0 | 0 | 1 | 0 | 0            | 1                  | 0                           | 1         | 1         |
| 0 | 0 | 1 | 1 | 0            | 1                  | 0                           | 1         | 0         |
| 0 | 1 | 0 | 0 | 0            | 1                  | 1                           | 1         | 1         |
| 0 | 1 | 0 | 1 | 0            | 1                  | 1                           | 1         | 1         |
| 0 | 1 | 1 | 0 | 0            | 1                  | 0                           | 1         | 1         |
| 0 | 1 | 1 | 1 | 0            | 1                  | 0                           | 1         | 1         |
| 1 | 0 | 0 | 0 | 0            | 1                  | 1                           | 0         | 1         |
| 1 | 0 | 0 | 1 | 0            | 1                  | 1                           | 1         | 0         |
| 1 | 0 | 1 | 0 | 0            | 1                  | 1                           | 0         | 1         |
| 1 | 0 | 1 | 1 | 0            | 1                  | 1                           | 1         | 0         |
| 1 | 1 | 0 | 0 | 1            | 0                  | 1                           | 0         | 1         |
| 1 | 1 | 0 | 1 | 1            | 0                  | 1                           | 1         | 1         |
| 1 | 1 | 1 | 0 | 1            | 1                  | 1                           | 0         | 1         |
| 1 | 1 | 1 | 1 | 1            | 1                  | 1                           | 1         | 1         |

Quindi, gli assegnamenti di valori che soddisfano la teoria sono quelli in cui le variabili  $P,\,H,\,A$  e N prendono i valori  $(0,0,0,0),\,(0,1,0,0),\,(0,1,0,1),$  oppure (1,1,1,1).

• "Se non ho l'ombrello allora non piove" è rappresentabile come  $\neg H \rightarrow \neg P$ , e "Se ho l'ombrello allora è nuvolo" è  $H \rightarrow N$ .

Per i quattro assegnamenti che soddisfano la teoria, abbiamo che queste formule prendono i seguenti valori:

| P | H | A | N | $\mid \neg H \rightarrow \neg P$ | $H \to N$ |
|---|---|---|---|----------------------------------|-----------|
| 0 | 0 | 0 | 0 | 1                                | 1         |
| 0 | 1 | 0 | 0 | 1                                | 0         |
| 0 | 1 | 0 | 1 | 1                                | 1         |
| 1 | 1 | 1 | 1 | 1                                | 1         |

Quindi, la prima è una conseguenza della teoria, ma la seconda non lo è.

• "Se piove apro l'ombrello" è  $P \to A$ . Costruiamo il tableau per verificare se la teoria più  $\neg(P \to A)$  è insoddisfacibile (per essere più brevi, chiudiamo un ramo appena troviamo due letterali in contraddizione):



Quindi $P \to A$  segue dalla teoria data.

### 3 Logica dei Predicati

- Scrivete una teoria in logica dei predicati che rappresenti le seguenti affermazioni:
  - Tutti i numeri sono pari o dispari;
  - Nessun numero è sia pari che dispari;
  - Se  $n_1$  e  $n_2$  sono entrambi numeri pari o sono entrambi numeri dispari allora  $n_1 + n_2$  è pari;

- Se uno tra  $n_1$  e  $n_2$  è pari e l'altro è dispari allora  $n_1 + n_2$  è dispari;
- 1 è un numero dispari.
- Esiste una struttura che soddisfa la teoria descritta sopra e contiene esattamente due individui? Se no, date un argomento perchè è impossibile; se sì, presentatela.
- Esiste una struttura che soddisfa la teoria descritta sopra e contiene esattamente un individuo? Se no, date un argomento perchè è impossibile; se sì, presentatela.

#### **SOLUZIONE:**

• Siano P e D predicati unari che rappresentano l'essere pari e l'essere dispari, sia s una funzione binaria che rappresenta l'operazione di somma, e sia e una costante che rappresenta il numero 1. Allora possiamo rappresentare le affermazioni date in logica dei predicati come

```
- \forall x (P(x) \lor D(x));
- \neg \exists x (P(x) \land D(x));
- \forall x \forall y (((P(x) \land P(y)) \lor (D(x) \land D(y))) \rightarrow P(s(x,y)));
- \forall x \forall y (((P(x) \land D(y)) \lor (D(x) \land P(y))) \rightarrow D(s(x,y)));
- D(e).
```

• Una struttura con due individui che soddisfa la teoria descritta è data da A = (D, I), dove  $D = \{0, 1\}$ ,  $I(P) = \{0\}$ ,  $I(D) = \{1\}$ , I(s) è la funzione tale che I(s)(a, b) = a + b modulo 2, ovvero la funzione data da

$$\begin{array}{c|cccc} a & b & I(s)(a,b) \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

$$e I(e) = 1.$$

Infatti, in questa struttura abbiamo che ogni elemento è in I(P) o in I(D) ma non in entrambi, se due elementi sono entrambi in I(P) o entrambi in I(D) allora sono entrambi 0 o entrambi 1 (e quindi la loro "somma" è 0, che è in I(P)), e se uno è in I(P) e l'altro è in I(D) allora uno è 0 e l'altro è 1, e quindi la loro "somma" è 1 che è in I(D), e infine  $I(e) = 1 \in I(D)$ .

• Non esiste nessuna struttura che soddisfi la teoria e che contenga esattamente un individuo. Infatti, in questo caso la costante e dovrebbe essere interpretata come questo individuo (chiamiamolo "1"), che quindi dovrebbe essere dispari; ma allora necessariamente I(s)(1,1)=1, perchè non ci sono altri numeri nel dominio, e quindi abbiamo due numeri dispari la cui somma è un numero dispari (il che contraddice la nostra teoria).