CS 3468 – Homework 3

Stuart Olsen

October 14, 2014

Chapter 6

What is the purpose of I/O on a board?

To move information from an input device to the master processor and/or to move information from the master processor to an output device.

List five categories of board I/O with two real-world examples under each category.

- Networking and communications I/O
 - Ethernet controllers
 - WLAN controllers
- Input
 - keyboard
 - mouse
- Graphics and output I/O
 - CRT display
 - printer
- Storage I/O
 - optical disk controllers
 - magnetic disk controllers
- Debugging I/O
 - JTAG
 - serial I/O

What is the difference between serial and parallel I/O?

I/O performed by transmitting one bit at a time is *serial* I/O. I/O performed by transmitting multiple bits simultaneously is *parallel* I/O.

Give a real-world I/O example of each.

A USB mouse communicates serially, while legacy ATA devices communicate over a parallel bus.

What is the difference between simplex, half-duplex, and full duplex transmission?

Simplex transmission limits communication to one direction. Half-duplex allows bidirectional communication, but in only one direction at any given time. Full duplex transmission allows simultaneous bidirectional communication.

Indicate which transmission scheme is shown in Figures 6-27a, b, and c.

- Figure 6-27a Half-duplex transmission
- Figure 6-27b Simplex transmission
- Figure 6-27c Full duplex transmission

What is asynchronous transfer of serial data?

Asynchronous transfer of serial data refers to when I/O transfers occur intermittently at irregular intervals.

Draw a diagram that describes how asynchronous transfer of serial data works.

See attached.

What is synchronous transfer of serial data?

Synchronous transfer of serial data refers to when I/O transfers occur steadily at regular intervals.

Draw and describe how synchronous transfer of serial data works.

See attached.

How can board I/O negatively impact a system's performance?

Board I/O can negatively impact a system's performance by *bottlenecking* the system. For example, a disk controller with high response times could degrade the performance of a system which makes many small disk accesses.

Additional Questions

0.1 Assume a CPU has pins connected to a AD7304 chip. The CPU will send 0x7D to channel C of the chip.

What is in the data frame?

$\mathbf{S}\mathbf{A}$	\mathbf{SI}	A 1	A 0	D7	D6	D5	$\mathbf{D4}$	D3	D2	D1	$\mathbf{D0}$
1	1	1	0	0	1	1	1	1	1	0	1

What is the timing diagram for this transmission?

See attached.

0.2 Assume two devices are using UART for communication. The sending device has a clock of $9600\,\mathrm{Hz}$ and sends data at $9600\,\mathrm{bit\,s^{-1}}$. The receiving device has a clock of $200\,\mathrm{kHz}$ and uses a counter to generate a slower clock for receiving data. For example, the device lets the counter count from 0 to 9 periodically. Then, the device generates a clock of $20\,\mathrm{kHz}$. Assume the counter must be a multiple of 16 due to the design inside the hardware. Hence, the receiving device can only generate a receiving clock close to $9600\,\mathrm{Hz}$.

Assume the receiving clock is faster than 9600 Hz. What is the maximum frame size (including all start and stop bits)?

Frame size is bounded by the inequality

frame size
$$< \frac{f_s}{|\Delta f|}$$
.

From this, it can be seen that the frame size is maximized when $|\Delta f|$ is minimized—that is, when f_s and f_r are closest. f_s is fixed at 9600 Hz. The closest possible value of f_r above this is $\frac{1}{16} \cdot 200 \,\text{kHz} = 12\,500 \,\text{Hz}$. This gives $|\Delta f| = 2900 \,\text{Hz}$. Then,

frame size
$$<\frac{f_s}{|\Delta f|}$$

frame size $<\frac{9600\,\mathrm{Hz}}{2900\,\mathrm{Hz}}$
frame size $<\sim3.310$.

Because the frame size must be an integer, the maximum frame size is 3

Assume the receiving clock is slower than 9600 Hz. What is the maximum frame size (including all start and stop bits)?

The closest possible value of f_r below f_s is $\frac{1}{32} \cdot 200 \,\text{kHz} = 6250 \,\text{Hz}$. This gives $|\Delta f| = 3350 \,\text{Hz}$. Then,

3

frame size
$$<\frac{f_s}{|\Delta f|}$$

frame size $<\frac{9600\,\mathrm{Hz}}{3350\,\mathrm{Hz}}$
frame size $<\sim\!2.866$.

Then, the maximum frame size is $\boxed{2}$.