# 第三章 矩阵分解

3.8 Jordan 分解

# 第三章 矩阵分解

思考:一般的复方阵相似的最简阵是什么?

等价问题:线性变换T在基下的矩阵的最简形式

是什么?

定义3.8.1( $\lambda$ 矩阵)以 $\lambda$ 多项式为元素的矩阵称为 $\lambda$ 矩

阵, 记为
$$A(\lambda)$$
, 即 $A(\lambda) = [a_{ij}(\lambda)]_{m \times n}$ ,  $a_{ij}(\lambda) \in P_n(\lambda)$ .

# M3.8.1 判断 $A(\lambda)$ 和 $B(\lambda)$ 是否为 $\lambda$ 矩阵,其中

$$A(\lambda) = \begin{bmatrix} 1 - \lambda & \lambda^2 & \lambda \\ \lambda & \lambda & -\lambda \\ 1 + \lambda^2 & \lambda^2 & -\lambda^2 \end{bmatrix}$$

$$B(\lambda) = \begin{bmatrix} \lambda & \lambda^2 & \lambda \\ \lambda & \lambda & -\lambda \\ \lambda^{-2} & \lambda^2 & -\lambda^2 \end{bmatrix}$$

 $\mathbf{M}: A(\lambda)$ 各元素均为 $\lambda$ 多项式, 故 $A(\lambda)$ 是 $\lambda$ 矩阵;  $B(\lambda)$ 元素 $\lambda^{-2}$ 不是 $\lambda$ 多项式, 故 $B(\lambda)$ 不是 $\lambda$ 矩阵.

注1: 数字矩阵是特殊的 $\lambda$ 矩阵; 复方阵A的特征矩阵  $\lambda I - A = \lambda$ 矩阵.

注2: λ矩阵和数字矩阵一样有加、减、乘等运算且 具有相同的运算规律. 同样可定义正方λ矩阵的行 列式、子式及λ矩阵的秩等.



定义3.8.2( $\lambda$ 矩阵的秩)  $\lambda$ 矩阵 $A(\lambda)$ 中非零子式的最高阶数r定义为 $A(\lambda)$ 的秩, 记为 $rank(A(\lambda)) = r$ .

例3.8.2 求
$$A(\lambda) = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda + 1 \end{bmatrix}$$
的行列式和秩.

解:由于 $|A(\lambda)| = \lambda(\lambda + 1)$ ,故rank $(A(\lambda)) = 2$ .

注3: 在λ矩阵理论中,"当 $\lambda$  = 0或 $\lambda$  = -1时,  $\lambda$ 矩阵的秩为1, 其余情况矩阵的秩为2", 这种说法是错误的.

**例3.8.3** 设 $A \in \mathbb{C}^{n \times n}$ ,则 $f_A(\lambda) = |\lambda I - A|$ 是关于 $\lambda$ 的一元n次多项式.因此,A的特征矩阵 $\lambda I - A$ 的秩为n,即 $\lambda I - A$ 总是满秩的.

定义3.8.3( $\lambda$ 矩阵的逆矩阵) 设 $A(\lambda)$ 是n阶 $\lambda$ 方阵,若存在n阶 $\lambda$ 方阵 $B(\lambda)$ 满足 $A(\lambda)B(\lambda) = B(\lambda)A(\lambda) = I$ ,则称 $\lambda$ 矩阵 $A(\lambda)$ 是**可逆**的,并称 $B(\lambda)$ 为 $A(\lambda)$ 的<mark>逆矩阵,</mark>记作 $A(\lambda)^{-1}$ .

思考: 在数字方阵中, 满秩和可逆是等价的. 这一结论适用于λ矩阵吗?



再次考察例3.8.2 
$$A(\lambda) = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda + 1 \end{bmatrix}$$
.

由例3.8.2可知,  $A(\lambda)$ 满秩, 若 $A(\lambda)$ 可逆, 则其逆矩阵 应为

$$B(\lambda) = \begin{bmatrix} \frac{1}{\lambda} & 0 \\ 0 & \frac{1}{\lambda + 1} \end{bmatrix}$$

定理3.8.1  $\lambda$ 方阵 $A(\lambda)$ 可逆的充分必要条件是其行列式  $|A(\lambda)|$ 为非零常数.

证明: 必要性. 若存在 $B(\lambda)$ 使得 $A(\lambda)B(\lambda) = I_n$ ,则 $|A(\lambda)||B(\lambda)| = 1$ 

又因 $|A(\lambda)|$ ,  $|B(\lambda)|$ 均为 $\lambda$ 的多项式, 故 $|A(\lambda)|$ 只能是零次多项式, 即 $|A(\lambda)|$ 为非零常数.

充分性. 设 $|A(\lambda)| = r \neq 0, A^*(\lambda)$ 为 $A(\lambda)$ 的伴随矩阵,则 $A(\lambda)A^*(\lambda) = A^*(\lambda)A(\lambda) = rI_n$ 



定义3.8.4(初等变换)下列三种变换称为 $\lambda$ 矩阵的初等变换:

- (1)  $\lambda$ 矩阵的两行/列互换位置;
- (2)  $\lambda$ 矩阵的某一行/列乘以非零常数k;
- (3)  $\lambda$ 矩阵的某一行/列的 $\varphi(\lambda)$ 倍加到另一行/列, 其中 $\varphi(\lambda) \in P_n(\lambda)$ .

# 对单位阵施行三种初等变换得到三种初等矩阵:

1) 任两行/列互换(*P(i,j)*);

|          | 1 |    |   |   |   |    |   |   |   |   |   |     |
|----------|---|----|---|---|---|----|---|---|---|---|---|-----|
|          |   | ٠. |   |   |   |    |   |   |   |   |   |     |
|          |   |    | 1 |   |   |    |   |   |   |   |   |     |
|          |   |    |   | 0 |   |    |   | 1 |   |   |   | 第i行 |
|          |   |    |   |   | 1 |    |   |   |   |   |   |     |
| P(i,j) = |   |    |   | ÷ |   | Α. |   | ÷ |   |   |   |     |
|          |   |    |   |   |   |    | 1 |   |   |   |   |     |
|          |   |    |   | 1 |   |    |   | 0 |   |   |   | 第j行 |
|          |   |    |   |   |   |    |   |   | 1 |   |   |     |
|          |   |    |   |   |   |    |   |   |   | N |   |     |
|          |   |    |   |   |   |    |   |   |   |   | 1 |     |
| _        |   |    |   |   |   |    |   |   |   |   |   |     |

# 对单位阵施行三种初等变换得到三种初等矩阵:

2) 用不为零的数k乘某行/列(P(i(k)));

|           | 1 |    |   |   |   |    |   |    |   |     |
|-----------|---|----|---|---|---|----|---|----|---|-----|
|           |   | ٠. |   |   |   |    |   |    |   |     |
|           |   |    | 1 |   |   |    |   |    |   |     |
|           |   |    |   | k |   |    |   |    |   | 第i行 |
|           |   |    |   |   | 1 |    |   |    |   |     |
| P(i(k)) = |   |    |   |   |   | ٠. |   |    |   |     |
|           |   |    |   |   |   |    | 1 |    |   |     |
|           |   |    |   |   |   |    |   | ٠. |   |     |
|           |   |    |   |   |   |    |   |    | 1 |     |
|           |   |    |   |   |   |    |   |    |   |     |

# 对单位阵施行三种初等变换得到三种初等矩阵:

3) 用 $\varphi(\lambda)$ 乘j行/列并加到第i行/列上去( $P(i,j(\varphi))$ ).

|                     | 1 |    |   |   |   |    |   |                    |     |    |   |     |
|---------------------|---|----|---|---|---|----|---|--------------------|-----|----|---|-----|
|                     |   | Α. |   |   |   |    |   |                    |     |    |   |     |
|                     |   |    | 1 |   |   |    |   |                    |     |    |   |     |
|                     |   |    |   | 1 |   |    |   | $\varphi(\lambda)$ |     |    |   | 第i行 |
|                     |   |    |   |   | 1 |    |   |                    |     |    |   |     |
| $P(i,j(\varphi)) =$ |   |    |   |   |   | ٠. |   | :                  |     |    |   |     |
|                     |   |    |   |   |   |    | 1 |                    |     |    |   |     |
|                     |   |    |   |   |   |    |   | 1                  | ••• |    |   | 第j行 |
|                     |   |    |   |   |   |    |   |                    | 1   |    |   |     |
|                     |   |    |   |   |   |    |   |                    |     | Α. |   |     |
|                     |   |    |   |   |   |    |   |                    |     |    | 1 |     |
|                     |   |    |   |   |   |    |   |                    |     |    |   |     |

注3: 与数字矩阵一样, 对λ矩阵作一次初等行变换意味着左乘相应的初等矩阵, 对λ矩阵作一次初等列变换意味着右乘相应的初等矩阵.

注4:由于三种初等矩阵的行列式均为非零常数,故初等矩阵都是可逆的,且对λ矩阵作初等变换不改变它的秩.



定义3.8.5(行列式因子) 设 $\lambda$ 矩阵 $A(\lambda)$ 的秩为r,对于正整数 $1 \le k \le r$ , $A(\lambda)$ 的全部k阶子式的首1最大公因式称为k阶行列式因子,记为 $D_k(\lambda)$ .

例3.8.4 求
$$A(\lambda) = \begin{bmatrix} 1 - \lambda & \lambda^2 & \lambda \\ \lambda & \lambda & -\lambda \\ 1 + \lambda^2 & \lambda^2 & -\lambda^2 \end{bmatrix}$$
的各阶行列式

因子.

 $\mathbf{m}$ : 一阶子式共有9个, 经计算得 $D_1(\lambda) = 1$ ;

二阶子式共有9个,经计算得 $D_2(\lambda) = \lambda$ ;

$$D_3(\lambda) = |A(\lambda)| = \lambda^3 + \lambda^2$$
.



# 思考: λ矩阵能否通过初等变换化成标准形呢?

定理3.8.2(Smith标准形) 设 $\lambda$ 矩阵 $A(\lambda)$ 的秩为r,则

$$A(\lambda) \cong \begin{bmatrix} d_1(\lambda) & & & & 0 \\ & \ddots & & & 0 \\ & & d_r(\lambda) & & 0 \end{bmatrix}$$

式中,  $d_i(\lambda)$ 是首1多项式, 且 $d_i(\lambda)|d_{i+1}(\lambda)$ , 称此标准形为 $A(\lambda)$ 的Smith标准形.

 $注 5: A(\lambda)$ 不一定是方阵,故Smith标准形不一定是对角阵.



例3.8.4(续) 求
$$A(\lambda) = \begin{bmatrix} 1 - \lambda & \lambda^2 & \lambda \\ \lambda & \lambda & -\lambda \\ 1 + \lambda^2 & \lambda^2 & -\lambda^2 \end{bmatrix}$$
 Smith 标

准形.

解: 采用初等变换法

$$A(\lambda) \xrightarrow{\overline{\beta} ||_{1} + \overline{\beta} ||_{3}} \begin{bmatrix} 1 & \lambda^{2} & \lambda \\ 0 & \lambda & -\lambda \\ 1 & \lambda^{2} & -\lambda^{2} \end{bmatrix} \xrightarrow{\overline{\beta} ||_{2} + \overline{\beta} ||_{1}(-\lambda^{2})} \begin{bmatrix} 1 & 0 & \lambda \\ 0 & \lambda & -\lambda \\ 1 & 0 & -\lambda^{2} \end{bmatrix}$$

$$\frac{5 \int_{3+5}^{3+5} \int_{1(-\lambda)}^{1(-\lambda)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & -\lambda \\ 1 & 0 & -\lambda^2 - \lambda \end{bmatrix} \xrightarrow{1+2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & -\lambda \\ 0 & 0 & -\lambda^2 - \lambda \end{bmatrix}$$

# 例3.8.4(续)

解:采用初等变换法

$$A(\lambda) \xrightarrow{\overline{9}|_{3+}\overline{9}|_{2}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & -\lambda^{2} - \lambda \end{bmatrix} \xrightarrow{\overline{9}|_{3(-1)}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda^{2} + \lambda \end{bmatrix}$$

# 行列式因子:

$$D_1(\lambda) = 1$$

$$D_2(\lambda) = \lambda$$

$$D_3(\lambda) = \lambda^3 + \lambda^2$$

# Smith标准形与行列式因子之间的关系:

$$D_{1}(\lambda) = d_{1}(\lambda)$$

$$D_{2}(\lambda) = d_{1}(\lambda)d_{2}(\lambda)$$

$$\vdots$$

$$D_{r}(\lambda) = d_{1}(\lambda)d_{2}(\lambda) \cdot \cdots \cdot d_{r}(\lambda)$$

或

$$d_1(\lambda) = D_1(\lambda)$$

$$d_2(\lambda) = D_2(\lambda)/D_1(\lambda)$$

$$\vdots$$

$$d_r(\lambda) = D_r(\lambda)/D_{r-1}(\lambda)$$

推论3.8.1  $\lambda$ 矩阵的Smith标准形是唯一的.

定义3.8.6(不变因子)在 $\lambda$ 矩阵 $A(\lambda)$ 的Smith标准形中, $d_1(\lambda)$ ,…, $d_r(\lambda)$ 由 $A(\lambda)$ 唯一确定的,称为 $A(\lambda)$ 的不变因子.

例3.8.4(续) 求
$$A(\lambda) = \begin{bmatrix} 1-\lambda & \lambda^2 & \lambda \\ \lambda & \lambda & -\lambda \\ 1+\lambda^2 & \lambda^2 & -\lambda^2 \end{bmatrix}$$
不变因子.

$$A(\lambda) \cong \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda(\lambda+1) \end{bmatrix} \Rightarrow \begin{aligned} d_1(\lambda) &= 1 \\ d_2(\lambda) &= \lambda \\ d_3(\lambda) &= \lambda(\lambda+1) \end{aligned}$$

北京航空航天大學 BEIHANGUNIVERSITY

# 例3.8.4(续)

$$A(\lambda) = \begin{bmatrix} 1 - \lambda & \lambda^2 & \lambda \\ \lambda & \lambda & -\lambda \\ 1 + \lambda^2 & \lambda^2 & -\lambda^2 \end{bmatrix} \cong \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda(\lambda + 1) \end{bmatrix}$$

$$d_1(\lambda) = 1 = \lambda^0 (\lambda + 1)^0$$

$$d_2(\lambda) = \lambda = \lambda^1 (\lambda + 1)^0$$

$$d_3(\lambda) = \lambda(\lambda + 1) = \lambda^1 (\lambda + 1)^1$$

定义3.8.7(初等因子) 设 $\lambda$ 矩阵 $A(\lambda)$ 的不变因子为  $d_1(\lambda), \dots, d_r(\lambda)$ ,且有分解式

$$\begin{cases} d_1(\lambda) = (\lambda - \lambda_1)^{e_{11}} (\lambda - \lambda_2)^{e_{12}} \cdots (\lambda - \lambda_s)^{e_{1s}} \\ d_2(\lambda) = (\lambda - \lambda_1)^{e_{21}} (\lambda - \lambda_2)^{e_{22}} \cdots (\lambda - \lambda_s)^{e_{2s}} \\ \vdots \\ d_r(\lambda) = (\lambda - \lambda_1)^{e_{r1}} (\lambda - \lambda_2)^{e_{r2}} \cdots (\lambda - \lambda_s)^{e_{rs}} \end{cases}$$

则所有幂指数大于零的因子 $(\lambda - \lambda_j)^{e_{ij}}$ ,  $i = 1, \dots, r$ ,  $j = 1, \dots, s$ , 统称为 $\lambda$ 矩阵 $A(\lambda)$ 的初等因子(组).

$$\mathbf{M3.8.4}$$
(续) 求 $A(\lambda) = \begin{bmatrix} 1 - \lambda & \lambda^2 & \lambda \\ \lambda & \lambda & -\lambda \\ 1 + \lambda^2 & \lambda^2 & -\lambda^2 \end{bmatrix}$ 初等因子.

解:

$$A(\lambda) \cong \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda(\lambda+1) \end{bmatrix} \Longrightarrow \begin{aligned} d_1(\lambda) &= 1 \\ d_2(\lambda) &= \lambda \\ d_3(\lambda) &= \lambda(\lambda+1) \end{aligned}$$

根据初等因子定义知, $A(\lambda)$ 的初等因子为

$$\lambda, \lambda, \lambda + 1$$

注6: 初等因子组可能存在相同的因子.



# **例3.8.5** 求 $A(\lambda)$ 的Smith标准形、不变因子和初等因子,其中

$$A(\lambda) = \begin{bmatrix} \lambda - a & -1 & 0 & \cdots & 0 \\ 0 & \lambda - a & -1 & \cdots & 0 \\ 0 & 0 & \lambda - a & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & -1 \\ 0 & 0 & 0 & \cdots & \lambda - a \end{bmatrix}_{n \times n}$$

$$|-1|, \begin{vmatrix} -1 & 0 \\ \lambda - a & -1 \end{vmatrix}, \cdots, \begin{vmatrix} -1 & 0 & \cdots & 0 \\ \lambda - a & -1 & \cdots & 0 \\ 0 & \lambda - a & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \lambda - a & -1 \end{vmatrix}$$

 $D_1(\lambda) = D_2(\lambda) = \cdots = D_{n-1}(\lambda) = 1, D_n(\lambda) = (\lambda - a)^n$ 

# 例3.8.5(续)

分析:  $A(\lambda)$ 的不变因子为

$$d_1 = d_2 = \dots = d_{n-1} = 1$$
  
 $d_n = |A(\lambda)| = (\lambda - a)^n$ 

其Smith标准形为

$$\begin{bmatrix} 1 & & & 0 \\ & 1 & & \\ & \ddots & & \\ 0 & & (\lambda - a)^n \end{bmatrix}$$

相应的初等因子为 $(\lambda - a)^n$ .



**例3.8.6** 求 $A(\lambda) = \text{diag}(\lambda^2(\lambda + 1), \lambda(\lambda + 1)^2, 0)$ 的初等因子.

 $\mathbf{m}$ : 先求 $A(\lambda)$ 的行列式因子

$$D_1(\lambda) = \lambda(\lambda + 1), D_2(\lambda) = \lambda^3(\lambda + 1)^3, D_3(\lambda) = 0.$$

所以 $A(\lambda)$ 的不变因子为

$$d_1(\lambda) = D_1(\lambda) = \lambda(\lambda + 1),$$

$$d_2(\lambda) = D_2(\lambda)/D_1(\lambda) = \lambda^2(\lambda+1)^2,$$

且 $A(\lambda)$ 的初等因子为 $\lambda, \lambda + 1, \lambda^2, (\lambda + 1)^2$ .



定义3.8.8( $\lambda$ 矩阵相抵) 若 $\lambda$ 矩阵 $A(\lambda)$ 经过有限次初等变换化为 $B(\lambda)$ ,则称 $A(\lambda)$ 与 $B(\lambda)$ 相抵,记为 $A(\lambda) \cong B(\lambda)$ 

**例3.8.7** 判断 $A(\lambda) = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$ 和 $B(\lambda) = \begin{bmatrix} 1 & 0 \\ 0 & \lambda^2 \end{bmatrix}$ 是否相抵.

 $\mathbf{M}: A(\lambda)$ 和 $B(\lambda)$ 均为Smith标准形,故 $A(\lambda)$ 和 $B(\lambda)$ 不相抵.

**注7**: λ矩阵相抵则其秩相同,反之则不然,这与数字 矩阵是有区别的.



定理3.8.3 相抵的 $\lambda$ 矩阵具有相同的Smith标准形、

秩、各阶行列式因子、不变因子和初等因子.

注8:  $\lambda$ 矩阵作初等变换时,不改变它的Smith标准形、

秩、各阶行列式因子、不变因子以及初等因子.

# 思考:

- 1. 具有相同秩的λ矩阵相抵吗?
- 2. 具有相同各阶行列式因子的λ矩阵相抵吗?

可以?

3. 具有相同不变因子的λ矩阵相抵吗?

推论3.8.2 ,可以

4. 具有相同初等因子的λ矩阵相抵吗?

例3.8.9, 需要补充 阶数相等



推论3.8.2  $\lambda$ 矩阵 $A(\lambda)$ 与 $B(\lambda)$ 相抵当且仅当它们具有相同的各阶行列式因子,当且仅当它们具有完全一致的不变因子.

思考: 4. 具有相同的初等因子的λ矩阵相抵吗?

例3.8.8判断
$$A(\lambda) = \begin{bmatrix} 0 & 0 \\ 0 & \lambda \end{bmatrix}$$
和 $B(\lambda) = \begin{bmatrix} 1 & 0 \\ 0 & \lambda \end{bmatrix}$ 是否相抵.

 $\mathbf{m}: A(\lambda)$ 和 $B(\lambda)$ 均是Smith标准形.

尽管其初等因子相同,都是 $\lambda$ ,但两者Smith标准形不同,故 $A(\lambda)$ 和 $B(\lambda)$ 不相抵.



定理3.8.4  $\lambda$ 矩阵 $A(\lambda) \cong B(\lambda)$ 当且仅当它们有完全相同的初等因子,且rank $(A(\lambda))$  = rank $(B(\lambda))$ .

**例3.8.6**(续) 求 $A(\lambda) = \text{diag}(\lambda^2(\lambda + 1), \lambda(\lambda + 1)^2, 0)$ 的初等因子和Smith标准形.

分析:  $A(\lambda)$ 的初等因子为 $\lambda$ ,  $\lambda + 1$ ,  $\lambda^2$ ,  $(\lambda + 1)^2$ , 恰是  $A(\lambda)$ 对角线元素分解出的一次因子的幂.

小结: λ对角阵的对角线元素分解出的一次因子幂的 集合就是该矩阵的初等因子.

思考:能否利用初等因子直接求Smith标准形呢?



例 3.8.6 (续) 求  $A(\lambda) = \text{diag}(\lambda^2(\lambda + 1), \lambda(\lambda + 1)^2, 0)$ 的Smith标准形.

分析:  $A(\lambda)$ 的Smith标准形形如

$$A(\lambda) \cong \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

利用初等因子 $\lambda$ ,  $\lambda + 1$ ,  $\lambda^2$ ,  $(\lambda + 1)^2$  直接构建 $\lambda$ 矩阵的不变因子

$$d_2 = \lambda^2 (\lambda + 1)^2$$
$$d_1 = \lambda(\lambda + 1)$$



定理3.8.5 复方阵A和B相似当且仅当它们的特征矩阵相抵.

小结:对于数字方阵A和B,有

 $A \sim B \iff (\lambda I - A) \cong (\lambda I - B)$ 

 $\Leftrightarrow \lambda I - A = \lambda I - B$ 有相同的不变因子.

思考:  $A \sim B \Leftrightarrow \lambda I - A = \lambda I - B$ 有相同的初等因子成立吗?

小结:对于数字方阵A和B,有

 $A \sim B \iff \lambda I - A = \lambda I - B$ 有相同的初等因子.



思考: 方阵A可对角化的充要条件?

# 定理3.6.1

- (1) *A*是单纯矩阵;
- (2) A 有n 个线性无关的特征向量;
- (3) 特征值 $\lambda_i(i=1,\cdots,m)$  的代数重数等于其几何重数;
  - (4)  $\sum_{i=1}^{m} \dim E(\lambda_i) = n;$
  - (5) 最小多项式 $m_A(\lambda)$ 无重根.



思考: 方阵A可对角化的充要条件?

$$A \sim B = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} \longleftrightarrow \begin{bmatrix} \lambda - \lambda_1 & & 0 \\ & & \ddots & \\ 0 & & \lambda - \lambda_n \end{bmatrix}$$

推论3.8.3 复方阵A是单纯矩阵的充分必要条件是它的特征矩阵 $\lambda I - A$ 的初等因子是一次的.

推论3.8.4 复方阵A是单纯矩阵的充分必要条件是它的特征矩阵 $\lambda I - A$ 的不变因子无重根.

例3.8.8 判断矩阵
$$A = \begin{bmatrix} a & 1 & & & \\ & a & 1 & & \\ & & a & \ddots & \\ & & \ddots & 1 \\ & & & a \end{bmatrix}_{n \times n}$$
是否为单

纯矩阵(n > 1).

解: 
$$\lambda I - A = \begin{bmatrix} \lambda - a & -1 & 0 & \cdots & 0 \\ 0 & \lambda - a & -1 & \cdots & 0 \\ 0 & 0 & \lambda - a & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & -1 \\ 0 & 0 & 0 & \cdots & \lambda - a \end{bmatrix}$$

 $\lambda I - A$ 的初等因子为 $(\lambda - a)^n$ ,即A不是单纯阵.

思考:一般的复方阵相似的最简矩阵是什么?

等价问题: 线性变换T在基下的矩阵的最简形式是什么?

定理3.8.5 复方阵A和B相似当且仅当它们的特征矩阵相抵.

思路: 寻找与复方阵A相似的最简矩阵B, 可先找到与 $\lambda I - A$ 相抵的最简 $\lambda$ 矩阵 $\lambda I - B$ ;

寻找最简 $\lambda$ 矩阵 $\lambda I - B$ 可根据 $\lambda I - A$ 的初等因子进行构造.



定义3.8.9(Jordan块) 设复方阵A的特征阵 $\lambda I - A$ 的初等因子为( $\lambda - \lambda_1$ ) $^{n_1}$ , ( $\lambda - \lambda_2$ ) $^{n_2}$ , …, ( $\lambda - \lambda_s$ ) $^{n_s}$ . 对( $\lambda - \lambda_i$ ) $^{n_i}$ 作 $n_i$ 阶方阵

$$J_i = \begin{bmatrix} \lambda_i & 1 & & & \\ & \lambda_i & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda_i & 1 \\ & & & & \lambda_i \end{bmatrix}_{n_i \times n_i}$$

则称矩阵 $J_i(i=1,\cdots,s)$ 为A的Jordan块.

# 例3.8.9 判断下列矩阵是否为Jordan块,其中

$$A_{1} = \begin{bmatrix} i+1 & 1 & & \\ & i+1 & 1 & \\ & & i+1 \end{bmatrix}, A_{2} = \begin{bmatrix} 1 & 1 & \\ & 1 & 0 \\ & & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 3 & 1 & & \\ & 3 & \\ & & 3 & 1 \\ & & & 3 \end{bmatrix}, A_4 = \begin{bmatrix} 2 & 1 & & \\ & 2 & 1 & \\ & & 3 & 1 \\ & & & 3 \end{bmatrix}$$

解: 由Jordan块的定义知,只有 $A_1$ 是Jordan块;

 $A_2$ 、  $A_3$ 和 $A_4$ 均包含2个Jordan块.

例3.8.10 求
$$J$$
ordan块 $J_i = \begin{bmatrix} \lambda_i & 1 & & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_i \end{bmatrix}_{n_i \times n_i}$ 的最小多

项式.

 $\mathbf{m}: J_i$ 的特征多项式 $(\lambda - \lambda_i)^{n_i}$ ,其最小多项式可能为  $\lambda - \lambda_i$ ,  $(\lambda - \lambda_i)^2$ , ...,  $(\lambda - \lambda_i)^{n_i}$ 

经计算知,对 $j = 1, 2, \dots, n_i - 1, (\lambda_i I - J_i)^j \neq 0$ . 因此, $J_i$ 的最小多项式为

$$m_{J_i}(\lambda) = (\lambda - \lambda_i)^{n_i}$$

#### 第三章 矩阵分解——Jordan分解

注9: 任一Jordan块的最小多项式等于它的特征多项式, 也是Jordan块所对应特征矩阵的初等因子. 从 Jordan块形式看, 给定初等因子所作的最简λ矩阵就是Jordan块的特征矩阵.

那么对复方阵A所有的初等因子作最简 $\lambda$ 矩阵,并构造对角块矩阵即可得到与A相似的最简阵B.



定义3.8.10(Jordan标准形)设n阶复方阵A的特征矩阵为 $\lambda I - A$ ,其初等因子为

$$(\lambda - \lambda_1)^{n_1}$$
,  $(\lambda - \lambda_2)^{n_2}$ , ...,  $(\lambda - \lambda_s)^{n_s}$ 

对应的Jordan块分别记为 $J_1, \dots, J_s$ ,则由s个Jordan块作n阶对角块矩阵

$$J = \operatorname{diag}(J_1, \cdots, J_s)$$

称为A的Jordan标准形(或Jordan法式).



### 例3.8.11 设A的特征矩阵

$$(\lambda I - A) \cong \operatorname{diag}(\lambda^2, \lambda(\lambda + 1)^2, 1, 1, 1)$$

求A的Jordan标准形.

 $\mathbf{m}: (\lambda I - A)$ 初等因子为 $\lambda^2, \lambda, (\lambda + 1)^2$ . 作Jordan块

定理3.8.6(Jordan标准形定理) 设矩阵J是复方阵A的Jordan标准形,则矩阵A与矩阵J相似.

例3.8.12 求
$$A = \begin{bmatrix} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{bmatrix}$$
的Jordan标准形 $J$ ,并求 $P$ 使得 $P^{-1}AP = J$ .

解:对A特征矩阵作初等变换得

$$\lambda I - A \cong \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & (\lambda - 1)^2 \end{bmatrix}$$

则特征矩阵 $\lambda I - A$ 的初等因子为 $\lambda - 1$ ,  $(\lambda - 1)^2$ , 故A的Jordan标准形为

$$J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

定义
$$P = [\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{p}_3]$$
,根据 $AP = PJ$ ,得

$$A[p_1, p_2, p_3] = [p_1, p_2, p_3]J$$

$$\begin{cases} A\boldsymbol{p}_1 = \boldsymbol{p}_1 \\ A\boldsymbol{p}_2 = \boldsymbol{p}_2 \\ A\boldsymbol{p}_3 = \boldsymbol{p}_2 + \boldsymbol{p}_3 \end{cases}$$

由 $A\mathbf{p}_i = \mathbf{p}_i$ 解得两个线性无关的向量为  $\mathbf{p}_1 = [3,0,1]^T, \mathbf{p}_2 = [0,3,1]^T$ 

将 $p_2 = [0,3,1]^T$ 代入 $Ap_3 = p_2 + p_3$ ,此时方程无解.

若将 $p_1$ 和 $p_2$ 调整顺序,定义 $p_2 = [3,0,1]^T$ ;再将 $p_2$ 代入 $Ap_3 = p_2 + p_3$ ,方程仍无解.

思考:为什么找不到可逆阵P使得 $P^{-1}AP = J$ ?

回答:  $p_2$ 是 $Ap_i = p_i$ 的任一非零解, 之前选取的 $p_2$ 不合适.



## 定义

$$\boldsymbol{p}_2 = k_1 \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$$

并将 $p_2$ 代入 $Ap_3 = p_2 + p_3$ 得

$$\begin{bmatrix} -2 & -2 & 6 \\ -1 & -1 & 3 \\ -1 & -1 & 3 \end{bmatrix} \boldsymbol{p}_3 = k_1 \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$$

观察知 $p_2$ 应表示为

$$p_2 = k[2,1,1]^T$$

 $\mathbf{R}_{k} = 1$ , 求解方程组

$$k_1 \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

解得 $k_1 = \frac{2}{3}$ ,  $k_2 = \frac{1}{3}$ . 这表明向量 $\mathbf{p}_2 = [2,1,1]^T$ 是方程  $A\mathbf{p}_i = \mathbf{p}_i$ 的解. 此时,  $\mathbf{p}_1 = [3,0,1]^T$ ,  $\mathbf{p}_2 = [2,1,1]^T$ , 解得 $\mathbf{p}_3 = [-1,0,0]^T$ . 因此

$$P = \begin{bmatrix} 3 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

#### 第三章 矩阵分解——Jordan分解

例3.8.13 求矩阵
$$A = \begin{bmatrix} 3 & & & \\ & 3 & 1 \\ & & 3 & 1 \\ & & & 3 \end{bmatrix}$$
的最小多项式.

 $\mathbf{m}$ : 矩阵 $\lambda I - A$ 的初等因子为

$$\lambda - 3$$
,  $(\lambda - 3)^3$ 

这也是对应两个Jordan块的最小多项式. 故A的最小多项式为

$$m_A(\lambda) = (\lambda - 3)^3$$



定理3.8.7(Frobenious定理) 设 $A \in \mathbb{C}^{n \times n}$ , 其特征矩阵  $\lambda I - A$ 的Smith标准形为diag( $d_1(\lambda), ..., d_n(\lambda)$ ), 则 A的最小多项式

$$m_A(\lambda) = d_n(\lambda)$$

注10:  $\lambda I - A$ 的初等因子的最小公倍式即为矩阵A的最小多项式 $m_A(\lambda)$ .



# 小结:

基本概念: λ矩阵及其秩、逆、初等变换、相抵、行列式因子、不变因子、初等因子、 Simith标准形、Jordon块、Jordon标准形

重要结论: Jordon标准形定理、Frobenious 定理

重要计算: Jordon分解