Лекция №7

Автономные системы.

Определение. Система нормального вида

у которой правая часть не содержит независимую переменную t, называется автономной системой.

Будем считать, что f_i –непрерывный функции.

Определение. Точка (x_1^0,\ldots,x_n^0) называется особой точкой для системы (1), если в ней все $f_i(x_1^0,x_2^0,\ldots,x_n^0)=0$. Точка называется неособой, если в ней хотя бы одна из функций $f_i(x_1^0,\ldots,x_n^0)\neq 0$

Теорема. В окрестности любой неособой точки система (1) эквивалентна системе с меньшим числом уравнений.

Доказательство. Пусть точка $(x_1^0, \ldots, x_n^0) = \boldsymbol{x}^0$ неособая точка для системы (1), тогда хотя бы одна из функций f_i отлична от 0 в этой точке. Пусть это функция $f_1(x_1^0, \ldots, x_n^0) \neq 0$. В силу непрерывности функций f_i , $f_1 \neq 0$ в некоторой окрестности точки \boldsymbol{x}^0 . Поделим все уравнения системы (1), начиная со второго на первое уравнение. Получим, что в окрестности точки \boldsymbol{x}^0 , где f_1

отличная от нуля, система (1) эквивалентно системе

$$\begin{cases} \frac{dx_2}{dx_1} = \frac{f_2}{f_1} \\ \frac{dx_3}{dx_1} = \frac{f_3}{f_1} \\ \dots \\ \frac{dx_n}{dx_1} = \frac{f_n}{f_1} \end{cases}$$

с меньшим числом уравнений. Здесь x_1 - уже не функция, а независимая переменная.

Геометрический смысл автономной системы.

Определение. Для системы (1) пространство (x_1, \ldots, x_n) (точнее та область, в которой определены все функции f_i) называется фазовым пространством.

В каждой точке фазового пространства определен вектор

$$f(x) = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{pmatrix}.$$

Таким образом в фазовом пространстве задано поле направлений.

Любое решение myvecx(t) системы (1) задаёт линию в фазовом пространстве. Эта линия называется траекторией или фазовой траекторией.

В каждой точке фазового пространства траектория, проходящая через эту точку, касается вектора поля направлений, построенного в этой точке.

Это следует из того что касательный вектор к линии,

$$\boldsymbol{x}(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix},$$

заданной параметрически, имеет координаты

$$\begin{pmatrix} x'_1(t) \\ \vdots \\ x'_n(t) \end{pmatrix} = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{pmatrix}.$$

Свойства фазовых траекторий

1) Сдвиг по времени.

Если $\boldsymbol{x}(t) = \boldsymbol{\varphi}(t)$ – решение системы (1), то $\forall c = \text{const}$ $\boldsymbol{y}(t) = \boldsymbol{\varphi}(t+c)$ – тоже решение системы (1) и оба эти решения имеют одну и ту же траекторию.

Действительно:

$$\frac{d\boldsymbol{y}}{dt} = \frac{d\boldsymbol{\varphi}(t+c)}{dt} = \frac{d\boldsymbol{\varphi}(t+c)}{d(t+c)} \frac{d(t+c)}{dt} = \boldsymbol{f}(\boldsymbol{\varphi}(t+c)) = \boldsymbol{f}(\boldsymbol{y})$$

Если траектория $\varphi(t)$ проходит через точку x^1 в момент времени t_1 , т.е $x^1 = \varphi(t_1)$, то траектория $\varphi(t+c)$ будет проходить через эту точку в момент времени $t_1 - c$.

Далее будем предполагать, что f(x) удовлетворяет условию Липшица, то есть

$$\exists k \quad \forall \boldsymbol{x}, \, \boldsymbol{y} \quad |\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{y})| \leqslant k|\boldsymbol{x} - \boldsymbol{y}|.$$

2) Через каждую точку фазового пространства проходит одна и только одна траектория. Всякие два решения, проходящие через одну и ту же точку отличаются только сдвигом по времени.

Действительно:

Пусть $\boldsymbol{\varphi}(t), \boldsymbol{\psi}(t),$ проходящие через одну и ту же точку \boldsymbol{a} , решения системы (1)

$$\boldsymbol{arphi}(t_1) = \boldsymbol{a}, \quad \boldsymbol{\psi}(t_2) = \boldsymbol{a}$$

Обозначим

$$\boldsymbol{x}(t) = \boldsymbol{\psi}(t + t_2 - t_1).$$

Это тоже решение системы (1). Оно удовлетворяет навальному условию

$$\boldsymbol{x}(t_1) = \boldsymbol{\psi}(t_2) = \boldsymbol{a}.$$

Таким образом решения $\boldsymbol{x}(t)$ и $\boldsymbol{y}(t)$ удовлетворяют одному и тому же навальному условию и следовательно по теореме единственности решения задачи Коши

$$\boldsymbol{x}(t) = \boldsymbol{\varphi}(t), \quad \boldsymbol{\varphi}(t) = \boldsymbol{\psi}(t + t_2 - t_1).$$

То есть $\varphi(t)$ и $\psi(t)$ отличаются лишь сдвигом во времени и имеют одну и ту же траекторию.

Следствие 1. Траектория не может войти в особую точку за конечное время.

Действительно:

Пусть a — особая точка, то есть $\varphi(t) \equiv a$ — решение. Если траектории решений $\varphi(t)$ и $\psi(t)$ не совпадают, то они не имеют общих точек. Значит $\psi(t) \neq a$ при всех t.

Решение $\psi(t)$ может приближаться к особой точке только при $t \to +\infty$ или при $t \to -\infty$.

2) Если $\boldsymbol{x}(t)$ – решение системы (1), $\boldsymbol{x}(t_1) = \boldsymbol{x}(t_2), t_2 > t_1$ и $\boldsymbol{x}(t) \not\equiv \mathbf{const}$, то решение периодическое, у него есть наименьший положительный период, траектория – замкнутая кривая без самопересечений.

Действительно:

Функция $\boldsymbol{\varphi}(t)=\boldsymbol{x}(t+t_2-t_1)$ тоже решение, $\boldsymbol{\varphi}(t_1)=\boldsymbol{x}(t_2)=\boldsymbol{x}(t_1).$ По теореме единственности

$$\boldsymbol{\varphi}(t) = \boldsymbol{x}(t), \text{ то есть } \boldsymbol{x}(t) \equiv \boldsymbol{x}(t + \underbrace{t_2 - t_1}_T).$$

Таким образом $\boldsymbol{x}(t)$ периодическая функция. У всякой непрерывной периодической функции существует наименьший период T_0 . Траектория $\boldsymbol{x}(t)$ ($0 \leqslant t \leqslant T_0$) — замкнутая кривая, так как $\boldsymbol{x}(0) = \boldsymbol{x}(T_0)$. Если она имеет самопересечения, то $\boldsymbol{x}(t_1) = \boldsymbol{x}(t_2)$ при некоторых $t_1, t_2 \in (0, T_0)$. В силу доказанного выше, тогда решение $\boldsymbol{x}(t)$ имело бы период $T = |t_2 - t_1| < T_0$. Это невозможно, так как T_0 — наименьший положительный период.

4) Классификация фазовых траекторий автономной системы.

Каждая траектория автономной системы принадлежит одному из трех типов:

- 1) особая точка,
- 2) замкнутая кривая без самопересечений,
- 3) незамкнутая кривая без самопересечений.

Действительно:

Если $\boldsymbol{x}(t) \equiv \mathbf{const} \Rightarrow 1$).

Если $\boldsymbol{x}(t) \not\equiv \mathbf{const}$ и $\boldsymbol{x}(t_1) = \boldsymbol{x}(t_2)$ при некоторых $t_1 \neq t_2 \Rightarrow 2$).

Если $\boldsymbol{x}(t_1) \neq \boldsymbol{x}(t_2)$ при любых $t_1 \neq t_2 \Rightarrow 3$).

4)Групповое свойство.

Обозначим через $\varphi(t, a)$ решение системы (1) с начальными условиями $\varphi(0, a) = a$. Тогда

$$\varphi(t_2, \varphi(t_1, \boldsymbol{a})) = \varphi(t_2 + t_1, \boldsymbol{a}). \tag{2}$$

Действительно:

Пусть $\varphi(t_1, \boldsymbol{a}) = \boldsymbol{b}$. Тогда $\boldsymbol{x}(t) = \varphi(t, \varphi(t_1, \boldsymbol{a}))$ – решение системы (1) с начальным условием $\boldsymbol{x}(0) = \boldsymbol{b}$, $\boldsymbol{y}(t) = \varphi(t+t_1, \boldsymbol{a})$ – тоже решение с начальным условием $\boldsymbol{y}(0) = \varphi(t_1, \boldsymbol{a}) = \boldsymbol{b}$. По теореме единственности $\boldsymbol{x}(t) \equiv \boldsymbol{y}(t)$, значит

$$\varphi(t_2, \varphi(t_1, \boldsymbol{a})) = \varphi(t_2 + t_1, \boldsymbol{a}).$$