```
In [25]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from sklearn.linear_model import LinearRegression
   from sklearn.model_selection import train_test_split
```

In [26]: d=pd.read\_csv("Salary\_Data.csv")
print(d)

|    | YearsExperience | Salary   |
|----|-----------------|----------|
| 0  | 1.1             | 39343.0  |
| 1  | 1.3             | 46205.0  |
| 2  | 1.5             | 37731.0  |
| 3  | 2.0             | 43525.0  |
| 4  | 2.2             | 39891.0  |
| 5  | 2.9             | 56642.0  |
| 6  | 3.0             | 60150.0  |
| 7  | 3.2             | 54445.0  |
| 8  | 3.2             | 64445.0  |
| 9  | 3.7             | 57189.0  |
| 10 | 3.9             | 63218.0  |
| 11 | 4.0             | 55794.0  |
| 12 | 4.0             | 56957.0  |
| 13 | 4.1             | 57081.0  |
| 14 | 4.5             | 61111.0  |
| 15 | 4.9             | 67938.0  |
| 16 | 5.1             | 66029.0  |
| 17 | 5.3             | 83088.0  |
| 18 | 5.9             | 81363.0  |
| 19 | 6.0             | 93940.0  |
| 20 | 6.8             | 91738.0  |
| 21 | 7.1             | 98273.0  |
| 22 | 7.9             | 101302.0 |
| 23 | 8.2             | 113812.0 |
| 24 | 8.7             | 109431.0 |
| 25 | 9.0             | 105582.0 |
| 26 | 9.5             | 116969.0 |
| 27 | 9.6             | 112635.0 |
| 28 | 10.3            | 122391.0 |
| 29 | 10.5            | 121872.0 |

```
In [27]: x=d.iloc[:,:-1]
print("Independent variable\n",x)
```

| •                                       |      |  |
|-----------------------------------------|------|--|
| Independent variable<br>YearsExperience |      |  |
| •                                       |      |  |
| 0                                       | 1.1  |  |
| 1                                       | 1.3  |  |
| 2                                       | 1.5  |  |
| 1<br>2<br>3<br>4                        | 2.0  |  |
| 4                                       | 2.2  |  |
| 5<br>6                                  | 2.9  |  |
| 6                                       | 3.0  |  |
| 7                                       | 3.2  |  |
| 8                                       | 3.2  |  |
| 9                                       | 3.7  |  |
| 10                                      | 3.9  |  |
| 11                                      | 4.0  |  |
| 12                                      | 4.0  |  |
| 13                                      | 4.1  |  |
| 14                                      | 4.5  |  |
| 15                                      | 4.9  |  |
| 16                                      | 5.1  |  |
| 17                                      | 5.3  |  |
| 18                                      | 5.9  |  |
| 19                                      | 6.0  |  |
| 20                                      | 6.8  |  |
| 21                                      | 7.1  |  |
| 22                                      | 7.9  |  |
| 23                                      | 8.2  |  |
| 24                                      | 8.7  |  |
| 25                                      | 9.0  |  |
| 26                                      | 9.5  |  |
| 27                                      | 9.6  |  |
| 28                                      | 10.3 |  |
| 29                                      | 10.5 |  |
|                                         |      |  |

```
In [28]: y=d.iloc[:,-1:]
print("Dependent variable\n",y)
```

```
Dependent variable
       Salary
0
     39343.0
     46205.0
1
2
     37731.0
3
     43525.0
4
     39891.0
5
     56642.0
6
     60150.0
7
     54445.0
8
     64445.0
9
     57189.0
10
     63218.0
11
     55794.0
12
     56957.0
13
     57081.0
14
     61111.0
15
     67938.0
16
     66029.0
17
     83088.0
18
     81363.0
19
     93940.0
20
     91738.0
21
     98273.0
```

22 101302.0 23 113812.0 24 109431.0 25 105582.0 26 116969.0 27 112635.0 28 122391.0 29 121872.0

```
In [29]: x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0)
         print("x_train\n",x_train)
         x_train
               YearsExperience
         17
                          5.3
                          7.9
         22
         5
                          2.9
         16
                          5.1
         8
                          3.2
         14
                          4.5
         23
                          8.2
         20
                          6.8
         1
                          1.3
         29
                         10.5
         6
                          3.0
         4
                          2.2
         18
                          5.9
         19
                          6.0
         9
                          3.7
         7
                          3.2
         25
                          9.0
                          2.0
         3
         0
                          1.1
         21
                          7.1
         15
                          4.9
         12
                          4.0
In [30]: regressor=LinearRegression()
         regressor.fit(x_train,y_train)
Out[30]: LinearRegression()
In [31]: y_pred=regressor.predict(x_test)
         print("Predicted values of x_test\n",y_pred)
         Predicted values of x_test
          [[ 41056.25705466]
          [123597.70938378]
          [ 65443.50433372]
           [ 63567.56223533]
          [116093.94099022]
          [108590.17259667]
          [117031.91203942]
          [ 64505.53328452]]
```

```
In [32]: print("-----Graph for x_train-----")
    plt.scatter(x_train,y_train,color='red')
    plt.plot(x_train,regressor.predict(x_train),color='blue')
    plt.xlabel('Experience')
    plt.show()
```

-----Graph for x\_train-----



```
In [33]: print("-----Graph for x_test-----")
    plt.scatter(x_test,y_test,color='green')
    plt.plot(x_test,regressor.predict(x_test),color='blue')
    plt.xlabel('Experience')
    plt.show()
------Graph for x_test------
```



```
In [ ]:
```

6 of 6