Clase 2

IIC 1253

Prof. Sebastián Bugedo

Outline

Obertura

Inducción fuerte

Definiciones inductivas

Inducción estructural

Epílogo

Playlist Primer Acto

Playlist del curso: DiscretiWawos

Además sigan en instagram:

@orquesta_tamen

Principio de inducción simple

PIS (Tercera formulación)

Sea P una propiedad sobre elementos de \mathbb{N} . Si se cumple que:

- 1. $P(n_0)$ es verdadero
- 2. Para todo $n \in \mathbb{N}$, si P(n) es verdadero, entonces P(n+1) es verdadero, entonces para todo $n \in \mathbb{N}$ tal que $n \ge n_0$ se tiene que P(n) es verdadero.

 n_0 es el **CB** que se demuestra a mano

Objetivos de la clase

- Comprender el principio de inducción fuerte
- □ Comprender definiciones inductivas
- Definir operadores inductivamente
- Demostrar propiedades mediante inducción estructural

Outline

Obertura

Inducción fuerte

Definiciones inductivas

Inducción estructural

Epílogo

El poder de la inducción

La sucesión de Fibonacci es una serie de naturales $F(0), F(1), F(2), \ldots$ que cumple la siguiente recurrencia

$$F(0) = 0$$

 $F(1) = 1$
 $F(n) = F(n-1) + F(n-2)$ para $n \ge 2$

¿cómo calculamos el valor de F(n) para un n cualquiera?

$$F(0) = 0$$

$$F(1) = 1$$

$$F(2) = F(1) + F(0) = 1 + 0 = 1$$

$$F(3) = F(2) + F(1) = 1 + 1 = 2$$

$$F(4) = \dots$$

¿Basta inducción simple para probar que $F(n) \le 2^n$, para todo $n \in \mathbb{N}$?

Principio de inducción por curso de valores (PICV)

Sea A un subconjunto de $\mathbb{N}.$ Si se cumple que para todo $n \in \mathbb{N}$

$$\{0,1,\ldots,n-1\}\subseteq A \Rightarrow n\in A$$

entonces $A = \mathbb{N}$.

Observaciones

- También es conocido como Principio de Inducción Fuerte
- La **HI** es la expresión $\{0,1,\ldots,n-1\}\subseteq A$
- La **TI** es la expresión $n \in A$

¿Dónde está el caso base en el principio anterior?

PICV (segunda formulación)

Sea P una propiedad sobre \mathbb{N} . Si P cumple que para todo $n \in \mathbb{N}$:

P(k) es verdadero **para todo k** < **n**, entonces P(n) es verdadero entonces para todo $n \in \mathbb{N}$ se tiene que P(n) es verdadero.

Ejemplo

Demuestre que $F(n) \le 2^n$, para todo $n \in \mathbb{N}$.

¡Ojo! El CB se debe demostrar manualmente igual que en inducción simple

Demostración

$$P(n) := F(n) \le 2^n$$
 para todo n

1. **CB.**
$$P(0)$$
: $F(0) = 0 \le 2^0$
 $P(1)$: $F(1) = 1 \le 2^1$

2. **HI.** Sup. P(k): $F(k) \le 2^k$ es verdadero para todo k < n, entonces:

TI.
$$P(n)$$
: $F(n) = F(n-1) + F(n-2)$
 $\leq 2^{n-1} + 2^{n-2}$ (por HI)
 $\leq 2^{n-1} + 2^{n-1}$
 $\leq 2^{n}$

Por lo tanto, P(n) es verdadero para todo $n \in \mathbb{N}$.

En este caso se debía demostrar 2 casos base

Ejemplo (Propuesto ★)

Demostremos que la siguiente propiedad se cumple para todo natural $n \ge 2$

$$P(n) := n$$
 tiene un factor primo

- 1. **CB.** P(2) es cierto pues 2 es primo, por lo que tiene un factor primo.
- 2. **HI.** Supongamos que todo k < n tiene un factor primo.
- 3. **TI.** Consideramos P(n). Tenemos dos casos:
 - Si *n* es primo, entonces tiene un factor primo.
 - Si no, existen dos naturales k_1 , k_2 tales que $n = k_1 \cdot k_2$ y donde $1 < k_1, k_2 < n$. Como $k_1 < n$, por **HI** tiene un factor primo k_3 . Como $n = k_1 \cdot k_2$, entonces k_3 también es factor de n.

Por lo tanto, P(n) es verdadero para todo $n \in \mathbb{N}$ tal que $n \ge 2$.

Notemos que en **TI**, cuando *n* es primo en realidad es un **caso base**!

Equivalencia de principios de inducción

Teorema

Las siguientes condiciones son equivalentes:

- 1. Principio del buen orden.
- 2. Principio de inducción simple.
- 3. Principio de inducción fuerte.

Demostraremos solo que $1. \Rightarrow 2.$ Las implicancias $2. \Rightarrow 3.$ y $3. \Rightarrow 1.$ quedan propuestas.

ADVERTENCIA: usaremos el método de demostración por contrapositivo. Supondremos falso 2. y probaremos que 1. es falso.

Equivalencia de principios de inducción

Demostración (Propuesta ★)

Supongamos que el PIS es falso; es decir, existe un conjunto $A \subseteq \mathbb{N}$ que cumple las reglas del PIS, pero $A \neq \mathbb{N}$.

Sea entonces el conjunto $B = \mathbb{N} - A$, el cual cumple que $B \subseteq \mathbb{N}$ y $B \neq \emptyset$. Mostraremos que este conjunto no tiene menor elemento, y por lo tanto el PBO es falso.

Por contradicción, supongamos que B sí tiene un menor elemento al que llamamos b.

$$0 \in A \implies b \neq 0$$
 (def. de B)
 $\Rightarrow b-1 \in \mathbb{N}$ (axioma de \mathbb{N})
 $\Rightarrow b-1 \notin B$ (b es el menor de B)
 $\Rightarrow b-1 \in A$ (def. de B)
 $\Rightarrow b \in A$ (A cumple reglas del PIS)

Esto contradice el hecho de que b sea el menor elemento de B.

Outline

Obertura

Inducción fuerte

Definiciones inductivas

Inducción estructural

Epílogo

Estrategia

Para definir inductivamente un conjunto necesitamos:

- 1. Establecer que el conjunto es el menor que cumple las reglas.
- 2. Un conjunto (no necesariamente finito) de elementos base, que se supondrá que inicialmente pertenecen al conjunto que se quiere definir.
- 3. Un conjunto finito de reglas de construcción de nuevos elementos del conjunto a partir de elementos que ya están en él.

Pueden haber infinitos casos base y más de una regla recursiva

Ejemplo

El conjunto de los números pares es el menor conjunto tal que

- 1. El 0 es un número par.
- 2. Si n es número par, n+2 es un número par.

¿Podemos definir inductivamente algo que no sea un número?

Definición $(\mathcal{L}_{\mathbb{N}})$

El conjunto $\mathcal{L}_{\mathbb{N}}$ es el menor conjunto que cumple las siguientes reglas:

- 1. $\emptyset \in \mathcal{L}_{\mathbb{N}}$.
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$, entonces $L \to k \in \mathcal{L}_{\mathbb{N}}$.

¿Qué representan los elementos de $\mathcal{L}_{\mathbb{N}}$?

Ejemplo

Los siguientes son elementos de $\mathcal{L}_{\mathbb{N}}$

- Ø
- $\emptyset \rightarrow 6$ o análogamente, $\rightarrow 6$ (omitiremos \emptyset cuando hay más elementos)
- $\rightarrow 6 \rightarrow 5 \rightarrow 6 \rightarrow 0$

Definición (listas enlazadas)

El conjunto de las listas enlazadas sobre los naturales $\mathcal{L}_{\mathbb{N}}$ es el menor conjunto que cumple las siguientes reglas:

- 1. $\emptyset \in \mathcal{L}_{\mathbb{N}}$.
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$, entonces $L \to k \in \mathcal{L}_{\mathbb{N}}$.

El operador 2. para $\mathcal{L}_{\mathbb{N}}$ es "agregar flechita y natural al final de una lista"

Además de conjuntos, podemos definir **operaciones o funciones** sobre elementos de conjuntos recursivos

Ejemplo

El operador factorial se define sobre $\mathbb N$ según

- 1. 0! = 1
- 2. $(n+1)! = (n+1) \cdot n!$

Además de operadores, ¿se pueden definir propiedades?

¿Cuándo dos listas enlazadas son iguales?

- 1. Si alguna es vacía, son iguales si y solo si la otra también es vacía
- 2. Si ninguna es vacía, entonces estamos en un escenario

$$L_1 \rightarrow k_1$$
 versus $L_2 \rightarrow k_2$

En este caso, resulta natural considerar

$$L_1 \rightarrow k_1 = L_2 \rightarrow k_2$$
 si y solo si $L_1 = L_2$ y $k_1 = k_2$

Es decir, la **igualdad de listas** se puede definir a partir de la def. de $\mathcal{L}_{\mathbb{N}}$

Solo nos falta ser capaces de demostrar propiedades inductivas

Outline

Obertura

Inducción fuerte

Definiciones inductivas

Inducción estructural

Epílogo

Demostración de propiedades inductivas

Consideremos una lista $L \in \mathcal{L}_{\mathbb{N}}$ y la propiedad

P(L): L tiene el mismo número de flechas que de elementos

¿Cómo abordamos esta demostración?

Principio de Inducción estructural

Sea A un conjunto definido inductivamente y P una propiedad sobre los elementos de A. Si se cumple que:

- 1. Todos los elementos base de A cumplen la propiedad P,
- 2. Para cada regla de construcción, si la regla se aplica sobre elementos en A que cumplen la propiedad P, entonces los elementos producidos por la regla también cumplen la propiedad P

entonces todos los elementos en A cumplen la propiedad P.

¡El PIS es un caso particular de este principio!

Ejemplo

P(L): L tiene el mismo número de flechas que de elementos

BI: El único caso base es la lista vacía \emptyset , la cual no tiene flechas ni elementos, y por lo tanto $P(\emptyset)$ es verdadera.

HI: Supongamos que una lista cualquiera L cumple P(L), es decir, tiene exactamente la misma cantidad de flechas que de elementos.

¿Qué elemento tomamos para la TI?

Ejemplo

HI: Supongamos que una lista cualquiera L cumple P(L), es decir, tiene exactamente la misma cantidad de flechas que de elementos.

TI: Debemos demostrar que $P(L \to k)$ es verdadero, es decir, que $L \to k$ tiene tantas flechas como elementos, con $k \in \mathbb{N}$. Es claro que $L \to k$ tiene exactamente una flecha y un elemento más que L. Por HI, sabemos que L tiene la misma cantidad de flechas y de elementos, y por lo tanto $P(L \to k)$ es verdadera.

Por inducción estructural se sigue que todas las listas en $\mathcal{L}_{\mathbb{N}}$ tienen la misma cantidad de flechas que de elementos.

La def. de $\mathcal{L}_{\mathbb{N}}$ nos guía en las demostraciones de propiedades dentro de $\mathcal{L}_{\mathbb{N}}$

Para demostrar propiedades más complejas en $\mathcal{L}_{\mathbb{N}}$, definamos más operadores.

Ejemplo

Definiremos los siguientes operadores para listas

Largo, recibe lista y entrega número de elementos (números)

$$|\cdot| \colon \mathcal{L}_{\mathbb{N}} \to \mathbb{N}$$

Suma, recibe lista y entrega la suma de sus elementos

sum :
$$\mathcal{L}_{\mathbb{N}} \to \mathbb{N}$$

■ Máximo, recibe lista y entrega el máximo (o -1 si es vacía)

$$\mathsf{max}:\ \mathcal{L}_{\mathbb{N}}\to\mathbb{N}\cup\{-1\}$$

Cabeza, recibe lista no vacía y entrega su primer elemento

head:
$$\mathcal{L}_{\mathbb{N}} \setminus \{\emptyset\} \rightarrow \mathbb{N}$$

Ejemplo

Largo, recibe lista y entrega número de elementos (números)

$$|\cdot|: \mathcal{L}_{\mathbb{N}} \to \mathbb{N}$$

- 1. $|\emptyset| = 0$
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$, entonces $|L \to k| = |L| + 1$
- Suma, recibe lista y entrega la suma de sus elementos

$$\mathsf{sum}:\ \mathcal{L}_{\mathbb{N}}\to\mathbb{N}$$

- 1. $sum(\emptyset) = 0$
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$, entonces sum $(L \to k) = \text{sum}(L) + k$

Ejemplo

■ Máximo, recibe lista y entrega el máximo (o -1 si es vacía)

$$\mathsf{max}:\ \mathcal{L}_{\mathbb{N}}\to\mathbb{N}\cup\{-1\}$$

- 1. $\max(\varnothing) = -1$
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ y $k \in \mathbb{N}$, entonces

$$\max(L \to k) = \begin{cases} \max(L) & \text{si } \max(L) \ge k \\ k & \text{en otro caso} \end{cases}$$

Cabeza, recibe lista no vacía y entrega su primer elemento

head:
$$\mathcal{L}_{\mathbb{N}} \setminus \{\emptyset\} \to \mathbb{N}$$

- 1. Si $k \in \mathbb{N}$, entonces head $(\rightarrow k) = k$
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ no vacía y $k \in \mathbb{N}$, entonces head $(L \to k) = \text{head}(L)$

Además, podemos definir operadores que retornan listas!

Ejemplo

El operador sufijo recibe una lista no vacía y entrega la lista resultante de sacarle el primer elemento

$$\mathsf{suf}\colon\thinspace\thinspace \mathcal{L}_{\mathbb{N}}\setminus\{\varnothing\}\to\mathcal{L}_{\mathbb{N}}$$

- 1. Si $k \in \mathbb{N}$, entonces suf $(\rightarrow k) = \emptyset$
- 2. Si $L \in \mathcal{L}_{\mathbb{N}}$ no vacía y $k \in \mathbb{N}$, entonces $suf(L \to k) = suf(L) \to k$

Con estos operadores podemos demostrar propiedades más complejas en $\mathcal{L}_{\mathbb{N}}$

```
Teorema (props. listas)
```

Si $L, L_1, L_2 \in \mathcal{L}_{\mathbb{N}}$, entonces

- 1. $sum(L) \ge 0$
- 2. $\max(L) \leq \operatorname{sum}(L)$
- 3. sum(L) = head(L) + sum(suf(L))
- 4. Si $L_1, L_2 \neq \emptyset$, entonces

$$L_1 = L_2$$
 si y solo si $suf(L_1) = suf(L_2)$ y $sum(L_1) = sum(L_2)$

Demostraremos 4.

El resto queda propuesto (\bigstar)

Teorema (prop. 4. de listas)

Sean $L_1, L_2 \in \mathcal{L}_{\mathbb{N}}$. Si $L_1, L_2 \neq \emptyset$, entonces

$$L_1 = L_2$$
 si y solo si $suf(L_1) = suf(L_2)$ y $sum(L_1) = sum(L_2)$

Demostración

La dirección (\Rightarrow) es trivial.

Para la dirección (\Leftarrow), supondremos que L_1, L_2 son listas tales que

$$\operatorname{suf}(L_1) = \operatorname{suf}(L_2) \operatorname{y} \operatorname{sum}(L_1) = \operatorname{sum}(L_2)$$

¿Cuál(es) es(son) CB?

Demostración

Para la dirección (\Leftarrow), supondremos que L_1, L_2 son listas tales que

$$\operatorname{suf}(L_1) = \operatorname{suf}(L_2) \operatorname{y} \operatorname{sum}(L_1) = \operatorname{sum}(L_2)$$

■ BI: Sean $L_1 = \rightarrow k$ y $L_2 = \rightarrow j$ dos listas tales que $suf(L_1) = suf(L_2)$ y $sum(L_1) = sum(L_2)$. Por definición de sum, tenemos que

$$k = \operatorname{sum}(\rightarrow k) = \operatorname{sum}(\rightarrow j) = j$$

y luego k = j. Concluimos que $L_1 = L_2$.

HI: Dadas dos listas L_1 y L_2 cualquiera, supongamos que si $suf(L_1) = suf(L_2)$ y $sum(L_1) = sum(L_2)$, entonces $L_1 = L_2$.

Ojo: el antecedente de la **HI** no necesariamente se cumple. Cuando se cumple, entonces podemos concluir que $L_1 = L_2$

- **HI:** Dadas dos listas L_1 y L_2 cualquiera, supongamos que si $suf(L_1) = suf(L_2)$ y $sum(L_1) = sum(L_2)$, entonces $L_1 = L_2$.
- **TI:** Sean ahora dos listas $L_1 o k$ y $L_2 o j$. Queremos demostrar que si $suf(L_1 o k) = suf(L_2 o j)$ y $sum(L_1 o k) = sum(L_2 o j)$, entonces $L_1 o k = L_2 o j$.

Supongamos entonces que $suf(L_1 \rightarrow k) = suf(L_2 \rightarrow j)$ y $sum(L_1 \rightarrow k) = sum(L_2 \rightarrow j)$. Por definición de ambas funciones, obtenemos que $suf(L_1) \rightarrow k = suf(L_2) \rightarrow j$

$$\operatorname{sut}(L_1) \to k = \operatorname{sut}(L_2) \to j$$

 $\operatorname{sum}(L_1) + k = \operatorname{sum}(L_2) + j$

Por igualdad de listas, sabemos que necesariamente $\operatorname{suf}(L_1) = \operatorname{suf}(L_2)$ y k=j. Usando este último resultado, obtenemos también que $\operatorname{sum}(L_1) = \operatorname{sum}(L_2)$. Luego, por **HI** tenemos que $L_1 = L_2$, y como k=j concluimos que $L_1 \to k = L_2 \to j$.

Outline

Obertura

Inducción fuerte

Definiciones inductivas

Inducción estructural

Epílogo

Objetivos de la clase

- Comprender el principio de inducción fuerte
- □ Comprender definiciones inductivas
- Definir operadores inductivamente
- □ Demostrar propiedades mediante inducción estructural