武汉大学计算机学院2008-2009学年第二学期 2006级《编译原理》参考答案

-、(1)

$$\operatorname{start} \to 0 \stackrel{1}{\to} 2 \stackrel{0}{\to} 3 \stackrel{\varepsilon}{\to} 5 \stackrel{0}{\to} 3 \stackrel{1}{\to} 1 \stackrel{0}{\to} 5 \stackrel{1}{\to} 5$$

或

$$\operatorname{start} \to 0 \stackrel{1}{\to} 2 \stackrel{0}{\to} 3 \stackrel{\varepsilon}{\to} 5 \stackrel{0}{\to} 3 \stackrel{1}{\to} 1 \stackrel{\varepsilon}{\to} 2 \stackrel{0}{\to} 3 \stackrel{\varepsilon}{\to} 4 \stackrel{1}{\to} 5$$

(2)

$$A = \{0,1,2\}$$

$$B = \{3,4,5\}$$

$$C = \{1,2,5\}$$

状态转换图为:

- (4) 以一个或多个连续的1或以0开始并不再有两个或多个连续的1为子串的非空字符串集合。 或由0和1组成且至少含有一个0并不含"011"子串的非空字符串集合。

二、(1)最右推导如下:

$$S \implies aaSb$$

$$\implies aaaaSbb$$

$$\implies aaaabBbb$$

$$\implies aaaabbb$$

语法树:

- $(2) \{a^{2m}b^n \mid m, n \in \mathbb{N} \land 0 \leqslant 2m \leqslant 2n\}.$
- (3) First(S) = $\{a, b, \varepsilon\}$; First(B) = $\{b, \varepsilon\}$ Follow(S) = $\{b, \$\}$; Follow(B) = $\{b, \$\}$.

(4)

	a	b	\$
S	$S \rightarrow aaSb$	$S \to B$	$S \to B$
B		$B \to bB, B \to \varepsilon$	$B \to \varepsilon$

(5) 与G(S)等价的LL(1)文法:

$$S \rightarrow AB$$

$$A \rightarrow aaAb \mid \varepsilon$$

$$B \rightarrow bB \mid \varepsilon$$

- (6) 由上最右推导得知,LR分析器识别语句 $a^{2m}b^pb^m(p \ge 0)$ 的步骤应该是:在移进2m个a之后,先把前p个多余的b归约为B,再将B归约为S得到活前缀 $a^{2m}S$,最后将剩余的m个b用产生式 $S \to aaSb$ 逐个归约。由于多余的b可以任意多,且LR分析从左到右的扫描机制,及只能向前查看固定次数的符号,因此分析器无法知道有多少个b是多余的,从而无法解决何时停止将多余的b归约为B。故不是LR(k)文法。或者简答为:LR分析器由于无法知道有多少个b,因此不能判断多少
- 个b归约为B,多少个b用于平衡a。
- 三、(1) 面对输入"n+n+n"有两个不同的最左推导。

推导1:

$$E \implies E + E$$

$$\implies n + E$$

$$\implies n + E + E$$

$$\implies n + n + E$$

$$\implies n + n + E$$

$$\implies n + n + n$$

推导2:

$$E \implies E + E$$

$$\implies E + E + E$$

$$\implies n + E + E$$

$$\implies n + n + E$$

$$\implies n + n + n$$

(2)

$$E \rightarrow T + E \mid T$$

$$T \rightarrow \sqrt{T} \mid F$$

$$F \rightarrow F^2 \mid n$$

四、(1) 识别活前缀的自动机在吃进 $\sqrt{E} + E + 2$ 后到达状态 I_2 ,因此它是活前缀,其对应的有效项目集即是 I_2 所对应的项目集:

$$\overline{\{E \to E + \bullet E\}} = \{E \to E + \bullet E, E \to \bullet E + E, E \to \bullet A, E \to \bullet B, E \to \bullet A, E \to \bullet B, E \to B$$

识别活前缀的自动机在吃进 $\sqrt{\sqrt{E+E^2}}$ 之后到达状态 I_4 ,不能再接受任何非终结符,因此 $\sqrt{\sqrt{E+E^2}}$ 不是活前缀。

(2) 状态 I_3 和 I_7 面对+有移进/归约冲突。

(3) First(E) = { n, \sqrt }, Follow(E) = { +, 2 \$ }, SLR分析表如下所示:

		action			goto		
Ì	状态	+	\overline{n}		2	\$	E
1	0		s5	s6			1
ĺ	1	s2			s4	acc	
ĺ	2		s5	s6			3
	3	r1			s4	r1	
	4	r3			r3	r3	
ĺ	5	r4			r4	r4	
ĺ	6		s5	s6	7		7
	7	r2	4		s4	r2	

(4) " $\sqrt{n+n^2}$ "的分析过程如下所示:

剩余串	分析栈	分析动作
$\sqrt{n+n^2}$ \$	0	shift
$n + n^2$ \$	$0\sqrt{6}$	shift
$+n^2$ \$	$0\sqrt{6n5}$	reduce $E \to n$
$+n^2$ \$	$0\sqrt{6E7}$	reduce $E \to \sqrt{E}$
$+n^2$ \$	0E1	shift
n^2 \$	0E1 + 2	shift
² \$	0E1 + 2n5	reduce $E \to n$
² \$	0E1 + 2E3	shift
\$	$0E1 + 2E3^24$	reduce $E \to E^2$
\$	0E1 + 2E3	reduce $E \to E + E$
\$	0E1	分析成功

五、(1)

产生式	语义规则
$E \rightarrow E_1 + E_2$	$E.val = E_1.val + E_2.val$
$E \to \sqrt{E_1}$	$E.val = \mathtt{sqrt} \ (E_1.val)$
$E \rightarrow E_1^2$	$E.val = E_1.val * E_1.val$
$E \rightarrow n$	E.val = n.val

(2) $\sqrt{3^2} + \sqrt{4^2}$ 的附注语法树:

七、程序在调用outputc()后的内存格局如下(little endian):

这时指针cp指向实参的首地址,语句"while (*cp) printf("%c", *cp++);"将以字节为单位并按内存地址增长方向连续输出内存对应的ASCII字符,直到内存值为0为止。故反向以字符方式两次输出整数0x30313233。