深度学习之能与不能

山世光 中科院计算所

■任务

■ 任务

- 过去:人工设计+部分学习F
 - □早期神经网络(一棵老树)
 - □Kernel方法: 隐式非线性映射, 可学性不佳
 - □流形学习: 试图学习显式映射, 可扩展性差
 - □分治思想指导下的"分段线性逼近"

■ 任务

$$x \longrightarrow F(x) \longrightarrow y$$
 $\begin{cases} \xi \in \mathbb{S} \\ (分类问题) \\ - \rho \equiv \\ (回归/估计) \end{cases}$

- 过去: 人工设计+部分学习F
 - □分段处理(分段线性逼近)
 - □领域知识指导, 部分进行学习

■ 任务

$$x \longrightarrow F(x) \longrightarrow y$$
 $(分类问题)$ 向量 (回归/估计)

- 深度学习: 学习显式的非线性映射
 - □分层非线性→逐层语义抽象
 - □ End-to-End(E2E) Learning

E2E Learning System

神经网络的发展

- 1980s
 - □多层网络结构
 - □Error梯度反向传播
 - □非线性激活函数

Rumelhart D E, **Hinton** G E, Williams R J. Learning representations by back-propagating errors. Cognitive modeling, **1988**.

神经网络的发展

- 1980s
 - □多层网络结构
 - □Error梯度反向传播
 - □非线性激活函数
- $\begin{array}{c} x_1 \\ x_2 \\ \hline x_3 \\ \hline \end{array}$

- ■不成功
 - □优化困难:梯度消失
 - □训练数据少
 - □计算资源不足

- Decision tree
- SVM
- Boosting
- Sparse coding
- Graph models

Rumelhart D E, **Hinton** G E, Williams R J. Learning representations by back-propagating errors. Cognitive modeling, **1988**.

神经网络的发展

- 1990s: 卷积神经网络CNN
 - □局部卷积操作
 - □Pooling操作
 - □非线性激活函数

LeCun Y, Bottou L, **Bengio** Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998.

深度学习的崛起

- **2000s**
 - □无监督学习
 - □分层预训练
 - □各种网络结构
 - RBM, DBN, DAE
 - □得名"深度"学习

Encoding:
$$\mathbf{h}_1 = \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)$$
 Decoding: $\widetilde{\mathbf{h}}_1 = \sigma(\mathbf{W}_2 \mathbf{h}_2 + \mathbf{b}_3)$
 $\mathbf{h}_2 = \sigma(\mathbf{W}_2 \mathbf{h}_1 + \mathbf{b}_2)$ $\widetilde{\mathbf{x}} = \sigma(\mathbf{W}_1 \mathbf{h}_1 + \mathbf{b}_4)$

Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, **2006**.

深度学习的崛起

- **2012**
 - □ Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet classification with deep convolutional neural. NIPS12
 - □ CNN: 老树发新芽
 - ■大数据训练: ImageNet
 - 非线性部分: ReLU
 - 防止过拟合:数据增广, DropOut
 - ■其他:双GPU实现,LRN

深度学习的崛起

- 2012—至今
 - □非线性函数:ReLU
 - □防止过拟合的策略: Dropout
 - □更深的网络结构[2]
 - □优化策略的持续改进

[2] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. CVPR 2015.

人工神经网络发展概况

- ImageNet竞赛 (2014)
 - □ 物体分类定位任务: 1000类, 1,431,167幅图像

Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge. arXiv preprint, 2014.

人工神经网络发展概况

■ 分类任务: 1000类, 1,431,167幅图像

2012&2013年,8层深度卷积网络

2014年,24层深度卷积网络

深度学习促进人脸识别

- Labeled Face in the Wild (LFW)
 - □非限定条件下的人脸识别
 - □数据来源于因特网,国 外名人Yahoo新闻图片
 - ■~5749明星,
 - 1680人多于2张图
 - □广为人知的测试模式
 - 训练集: 无限制
 - ■验证任务测试集
 - □ 共6000图像对

Huang G B, Ramesh M, Berg T, et al. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report, University of Massachusetts, Amherst, 2007.

深度学习促进人脸识别

- 过去两年正确率的提升
 - □ 正确率95.17% [D.Chen, X. Cao, F. Wen, J. Sun, CVPR13]
 - □ 正确率97.35% [Y.Taigman, M. Yang, M.Ranzato, L. Wolf, CVPR14]
 - □ 正确率99.47% [Y. Sun, X. Wang, and X. Tang, CVPR14]

过去2年错误率从5%下降到1% (错300对→错60对)

斜龍计算的

FG 2015 Video FR Challenge

- Task: video-to-video face verification
 - □ Exp. 1: Controlled case
 - □ Video-to-video verification
 - □ 1920*1080 video captured by mounted camera
 - □ Exp. 2: Handheld case
 - □ Video-to-video verification
 - □ Varying resolution from 640*480~1280*720
 - □ Videos from a mix of different handheld point-andshoot video cameras _____

斜龍计算的

Our Method

- DCNN (single frame feature)
- HERML(set model and classification)

斜

能

计算的

Evaluation Results

The deeper the better

DCNN for single frame

control: 41.40%, handheld: 41.62%

control: 47.41% handheld: 48.02%

Softmax Output Layer 6-2: Full Layer 6-1: Full Layer 5-2: Conv Layer 5-1: Conv 1 Layer 4-3: Conv + Pool Layer 4-2: Conv Layer 4-1: Conv Layer 3-3: Conv + Pool Layer 3-2: Conv Layer 3-1: Conv Layer 2-3: Conv + Pool Laver 2-2: Conv Layer 2-1: Conv Laver 1-3: Conv + Pool Laver 1-2: Conv Layer 1-1: Conv Input Image

control: 54.76% handheld: 56.20%

DCNN + HERML (set models)

control: 46.61%, handheld: 46.23%

control: 56.20%, handheld: 54.41%

control: 58.63%, handheld: 59.14%

- Image features
 - ☐ HOG < Dense SIFT << DCNN

Method	HOG		Dense SIFT		DCNN	
	Control	Handheld	Control	Handheld	Control	Handheld
HERML	25.26	19.28	33.82	28.93	58.63	59.14

深度学习成功的条件

- "大"数据支撑
 - □ 容易Under-fitting, 需要提升模型复杂度
- "大"容量模型
 - □ "深度"层级连接网络
 - □ 更高的模型复杂度
- "大"机器支持
 - □ 多核CPU, Cluster
 - □ GPU!
- 算法进步
 - □ ReLU,数据增广,DropOut,SGD,
- "大"社区协同
 - □ 开放源码,开放数据,开放模型,开放文章

DL是类脑信息处理方法吗?

- DL受到脑信息处理方式启发
 - □神经元连接方式
 - □分层逐级抽象
 - ■初级视觉神经元的"类小波编码"
 - □分布式的记忆
- ■并不"类脑"
 - □脑的"计算机理"尚不清晰
 - □脑皮层连接更多样、更复杂
 - □学习过程未必需要大量数据

DL有理论吗?

- DL理论匮乏
 - □收敛性,错误率的bound
 - □模型复杂度理论缺失
 - □不怕局部极值?
- 但不完全是black box
 - □显式的、分层非线性
 - □层级可视化提供了很多线索
 - ■逐层抽象
 - □优于传统"分段"方法
 - □比Kernel更"显式"

DL不能做什么?

- 用做Feature Learning最成功
 - □学到的特征具有良好的通用性
 - □传统分类器或回归似乎还可用
- ■非常倚重大数据
 - □小数据深度学习不可靠
- 在简单问题上未必需要深度学习
 - □人脸识别的例子
- ■目前的DL不学习"自身结构"
 - □调试经验很重要

DL带来观念的变革

- 小数据→控制模型复杂度, 避免过拟合
- 大数据→提高模型复杂度,担心欠拟合
- ■人工领域知识驱动→数据驱动的学习思想
 - □"大数据+简单模型"是错误的!
 - □人工特征→特征学习
 - □维数灾难(降维)→高维有益(升维)
- 分步、分治→ E2E的全过程学习
 - □分步无法"全过程"最优
 - □协同学习(joint learning)思想
- 软硬件更优的协同(优化和加速)

数据驱动的学习不需要领域知识?

- 大数据驱动确实减少了对领域知识的依赖
- 但是,CNN在CV领域的成功,本身就说明了领域知识的重要性
 - □卷积操作
 - □MaxPooling操作
 - □权值共享减少参数
 - □非线性的来源
 - □各种超参数的调试
- 小数据条件下, 领域知识尤其重要

DL可能的未来工作

- 建立DL学习理论
- 网络结构设计、学习和优化方法
 - □ "非线性"的更多来源
 - □新的优化和训练算法
 - □ 网络结构本身的学习,借鉴人的学习机理
- 领域问题适应
 - □领域知识的嵌入
 - □深度模型的迁移与适应
 - □面向时序信号分析的DL模型
- ■数据
 - □ "小数据"条件下的DL

小数据如何训练?

- 目前DL的胜利更多是大数据的胜利!
- 小数据没有机会了吗?
 - □迁移(预训练)
 - □利用Domain Knowledge

- ■面部特征定位
 - □ Predict facial landmarks from detected face

Detected face region I(u,v)

Facial landmarks $S=(\mathbf{x}_1,\mathbf{y}_1,\,\mathbf{x}_2,\,\mathbf{y}_2,\,...,\,\mathbf{x}_L,\,\mathbf{y}_L)$

$$S = H(I), I \in \mathbb{R}^{w * h}, S \in \mathbb{R}^{2L},$$

- 直接用DL?
 - □OK, 但不理想
 - 小数据--少于3000幅训练图像
 - ■非常容易过拟合
- 我们的思路 exploiting priors
 - □分段非线性
 - □配合由粗到细的策略
 - □避免卷积部分的学习
 - ■采用人工设计的特征SIFT

CFAN: Coarse-to-Fine AE Networks

SAN: Stacked Auto-encoder Network

中斜龍計算的

另一个例子

- ■直接用DL
 - □失败! 小数据障碍
- 我们的思路
 - □领域先验知识:姿态变化平滑变化
 - □渐进的达到目标

另一个例子

- Stacking multiple Progressive singlelayer Auto-Encoders (SPAE)
 - □每一层实现较小的姿态变化

另一个例子

- Stacking multiple Progressive singlelayer Auto-Encoders (SPAE)
 - □每一层实现较小的姿态变化
 - □靠中间目标约束每层的非线性变换

深度学习还能走多远?

- 类比SVM, Boosting...
 - □DL将成为一个标准模块(尤其是特征学习)
- 人类知识全部来自数据吗?
 - □个人认为:NO!
 - □统计学习(深度学习) 是归纳法
 - □我们同样需要演绎推理
 - ■举一反三
 - ■触类旁通: 迁移
 - 无师自通: 悟道

现在是数据为王,但要不要搞终身制?

Thank you!

Q&A