

Sudden Stratospheric Warming Events

Bedartha Goswami

Journal Club 13 Apr 2021 Weather Clim. Dynam., 1, 373–388, 2020 https://doi.org/10.5194/wcd-1-373-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

The role of North Atlantic-European weather regimes in the surface impact of sudden stratospheric warming events

Daniela I. V. Domeisen^{1,★}, Christian M. Grams^{2,★}, and Lukas Papritz^{1,★}

Correspondence: Daniela I. V. Domeisen (daniela.domeisen@env.ethz.ch)

Received: 13 December 2019 - Discussion started: 9 January 2020

Revised: 10 July 2020 – Accepted: 18 July 2020 – Published: 11 August 2020

Paper

¹Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

²Institute of Meteorology and Climate Research – Department Troposphere Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

[★]These authors contributed equally to this work.

Sudden Stratospheric Warming (SSW)

- Reversal of winds (from westerly to easterly)
- 10hPa & 60N
- Between 1 Dec & 31 Mar
- Must return to a westerly wind for more than 10 consecutive days

Sudden Stratospheric Warming (SSW)

- Reversal of winds (from westerly to easterly)
- 10hPa & 60N
- Between 1 Dec & 31 Mar
- Must return to a westerly wind for more than 10 consecutive days

https://youtu.be/VnIFFaF_I7I

Weather Regimes

- > From Grams et al. (2017)
- k-means clustering of data in EOF space
- > 10 day low-pass filtered 500 hPa gph
- Consider only seven leading EOFs (76% explained variance)

Identified weather regimes

- "Cyclonic"
 - Atlantic trough (AT)
 - Zonal regime (ZO)
 - Scandinavian trough (ScTr)
- "blocked"
 - Atlantic ridge
 - European blocking
 - Scandinavian blocking
 - Greenland blocking

Identified weather regimes

- "Cyclonic"
 - Atlantic trough (AT)
 - Zonal regime (ZO)
 - Scandinavian trough (ScTr)
- "blocked"
 - Atlantic ridge
 - European blocking
 - Scandinavian blocking
 - Greenland blocking

Identified weather regimes

- "Cyclonic"
 - Atlantic trough (AT)
 - Zonal regime (ZO)
 - Scandinavian trough (ScTr)
- "blocked"
 - Atlantic ridge
 - European blocking
 - Scandinavian blocking
 - Greenland blocking

Table 1. Weather regime attribution around the onset of SSW events: SSW date, attributed regime, and mean weather regime index (\overline{I}_W , with $w \in AT$, ZO, ScTr, AR, EuBL, ScBL, GL) for the attributed regime for the period ± 5 d around SSW onset. Asterisks (*) indicate that the event has been excluded from the subsequent analysis; for details see Sect. 2.1.

SSW central date	attributed regime	$\overline{I}_{\mathrm{W}}$
22 Feb 1979	EuBL	1.41
29 Feb 1980	EuBL	0.91
04 Mar 1981	GL	1.82
04 Dec 1981	AR	2.18
24 Feb 1984	EuBL	1.01
01 Jan 1985	EuBL	0.74
23 Jan 1987	AR	1.52
08 Dec 1987	GL	1.56
14 Mar 1988	AT (cyclonic)	0.48
21 Feb 1989	ZO (cyclonic)	1.74
15 Dec 1998	ZO (cyclonic)	1.01
26 Feb 1999	ScTr (cyclonic)	1.37
20 Mar 2000	ScTr (cyclonic)	0.91
11 Feb 2001	EuBL	0.47
30 Dec 2001	GL	1.31
18 Jan 2003	no regime	_
05 Jan 2004	no regime	_
21 Jan 2006	EuBL	1.14
24 Feb 2007	GL	1.36
22 Feb 2008	ZO (cyclonic)	1.32
24 Jan 2009	AT (cyclonic)	1.86
09 Feb 2010	GL	2.46
24 Mar 2010*	AT (cyclonic)	1.20
07 Jan 2013	EuBL	1.09
12 Feb 2018	ZO (cyclonic)	1.48
02 Jan 2019	AR	1.52

Summary

- GL and EuBL result in surface impacts
- SSW results in the preferred occurrence of certain weather regimes over others
- Cyclonic weather regimes have less impact
- Low sample size

