CMPS 101:

BY KAMERON GILL
Date February 24, 2017

• Predecessor sub graph

BFS tree:

$$V_p = \{x \varepsilon V | P \lfloor x \rfloor \neq \text{nil} | \} v\{s\}$$

$$E_p = \{ (P[x], x) \varepsilon E | P \lfloor x \rfloor \neq \text{nil} | \}$$

Order pair if G directed

Unordered pair if G undirected

$$G_p = (V_p, E_p)$$
 is a tree

- PrintPath(G,s,x) Pre: BFS run with source s
 - 1. if x==s
 - 2. Print s
 - 3. else if P|x| = nil
 - 4. Print "no path from" +s+"to"+x+"exists"
 - 5. else
 - 6. PrintGapth(G,s,P[x])
 - 7. print x
- Runtime

BFS
$$n = |V|, m = |E|$$

- Initalization: $\Theta(n)$
- Queue operations: O(n)
- Running adjacent lists: $\Theta(m)$

Total length of lists=
$$\{m \text{ undirected \atop } m \text{ undirected \atop } d \} = \Theta(m)$$

- TOTAL runtime= $\Theta(n+m)$
 - I.E linear in size (in bytes) of adjacent list representation.
- Depth First Search (DFS)
 - Vertex attributes:

$$color[x] = \{white, grey, black\}$$

$$P|x|$$
 Parent (predecessor) of x

d[x] discover time

- f $\lfloor x \rfloor$ finish time
- $0{\le}{time}{\le}2n$
- DFS() calls Visit()
- DFS(G)
 - 1. For all $x \in V$
 - 2. $\operatorname{color}[x]=w$
 - P[x]=nil
 - 4. time = 0
 - 5. for all $x\epsilon V$
 - 6. if color[x] = = w
 - 7. Visit(x)
- Visit(x)
 - 1. $\operatorname{color}[x]=g$
 - $2. \ d[x] = time + +$
 - 3. for all $y \epsilon a dj[x]$
 - 4. if $\operatorname{color}[y] = w$
 - 5. P[y]=x
 - 6. Visit[y]
 - 7. $\operatorname{color}[x]=b$
 - 8. f[x]=time++
- ullet Predessecor subgraph (DFS Forest)

$$G_p = (V, E_p)$$

$$E_p \!=\! \{(P[x],x)\varepsilon E \,| x\varepsilon V \text{ and } P[x] \neq \! \text{nil}|\}$$

• Example:

2