MATH 70 WORKSHEET 1 SOLUTIONS

Instructions: This worksheet is due on Gradescope at 11:59 p.m. Eastern Time on Sunday, September 20. You are encouraged to work with others, but the final results must be your own.¹

Please give complete reasoning for all worksheet answers.

1. (6 points) Let A be an 4×6 matrix and assume that for some $\mathbf{b} \in \mathbb{R}^4$, $A\mathbf{x} = \mathbf{b}$ has no solution. Explain why A does not have a pivot in every row.

Solution: Ideal answer would mention the fact that having a pivot in each row means the augmented matrix $[A|\mathbf{b}]$ can be reduced to a form where we can always pick \mathbf{x} such that $A\mathbf{x} = \mathbf{b}$ via the row-reduction process. Arguments like "if $A\mathbf{x} = \mathbf{b}$ has no solutions, then the echelon form of $[A|\mathbf{b}]$ has a row like [0...b] which is inconsistent" should cite a theorem in the textbook or explain why such a row must exist.

2. (14 points) Let
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$ be vectors in \mathbb{R}^4 .

(a) Use the definitions of vector addition and scalar multiplication on \mathbb{R}^4 (defined entryby-entry, see p. 29 of the book) to show that

$$2(\mathbf{x} + \mathbf{y}) = 2\mathbf{y} + 2\mathbf{x}$$

(note the change in order of \mathbf{x} and \mathbf{y} on the right-hand side). At each step explain the properties of vector addition and the rules of arithmetic that you are using.

¹© Copyright Abiy Tasissa, Zachary Faubion, Xiaozhe Hu, Todd Quinto, and Tufts University.

Solution:

(definition of vector addition)
$$(\text{definition of scalar mult.})$$

(b) Use the definitions of vector addition and scalar multiplication on \mathbb{R}^4 (defined entryby-entry, see p. 29 of the book) to show that

$$\mathbf{x} + (-1)\mathbf{x} = \mathbf{0}.$$

At each step explain the properties of vector addition and the rules of arithmetic that you are using.

Solution:

$$\mathbf{x} + (-1)\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + (-1) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -x_1 \\ -x_2 \\ -x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 - x_1 \\ x_2 - x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \mathbf{0}$$
(definition of vector addition)
$$(\mathbf{x} + (-1)\mathbf{x} + (-1)\mathbf{$$

- 3. This problem is only required for section/s 1. Use the three points (-1, 12), (2, 18), (3, 0) to answer the following.
 - (a) The the equation of a line looks like $x_1x + x_2 = b$ where x_1, x_2 and b are constants. Use the three given points to fill in x and b in the equation of a line to get a system of three linear equations (in 2 variables x_1 and x_2).

Solution: To find the equation of the line through the three points we need to find an x_1 and x_2 so that

$$x_1(-1) + x_2 = 12$$

 $x_1(2) + x_2 = 18$
 $x_1(2) + x_2 = 0$

(b) Set up the matrix used to solve this system, and solve it using the matrix. Give an equation of a line through the three points or explain how you can tell by looking at the matrix that it doesn't have a solution. If there are many solutions explain how you can tell this from the matrix.

Solution: This is a system of equations which we can solve by row reducing the augmented matrix

$$\begin{bmatrix} -1 & 1 & 12 \\ 2 & 1 & 18 \\ 3 & 1 & 0 \end{bmatrix} \quad \text{to} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The last row of the matrix requires that $0x_2 = 1$ which can be, so there is no solution.

(c) The the equation of a quadratic looks like $x_1x^2 + x_2x + x_3 = b$ where x_1, x_2, x_3 and b are constants. Use the three given points to fill in x and b in the quadratic equation to get a system of three linear equations (in 3 variables x_1, x_2 and x_3).

Solution: To find the equation of the quadratic through the three points we need to find an x_1, x_2 and x_2 so that

$$x_1(-1)^2 + x_2(-1) + x_3 = 12$$

 $x_12^2 + x_22 + x_3 = 18$
 $x_13^2 + x_23 + x_3 = 0$

(d) Set up the matrix used to solve this system and solve it using the matrix. Give the equation of a quadratic through the three points or explain how you can tell by looking at the matrix that it doesn't have a solution. If there are many solutions explain how you can tell this from the matrix.

Solution: This is a system of equations which we can solve by row reducing the augmented matrix

$$\begin{bmatrix} 1 & -1 & 1 & 12 \\ 4 & 2 & 1 & 18 \\ 9 & 3 & 1 & 0 \end{bmatrix}$$
 to
$$\begin{bmatrix} 1 & 0 & 0 & -5 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 24 \end{bmatrix}$$

This means that $x_1 = -5$, $x_2 = 7$ and $x_3 = 24$ so the quadratic solution is $-5x^2 + 7x + 24 = p(x)$.

(e) The the equation of a cubic looks like $x_1x^3 + x_2x^2 + x_3x + x_4 = b$ where x_1, x_2, x_3, x_4 and b are constants. Use the three given points to fill in x and b in the cubic equation to get a system of three linear equations (in 4 variables x_1, x_2, x_3 and x_4).

Solution: To find the equation of the quadratic through the three points we need to find an x_1, x_2 and x_2 so that

$$x_1(-1)^3 + x_2(-1)^2 + x_3(-1) + x_4 = 12$$

$$x_1(2)^3 + x_2 + x_3 + x_4 = 18$$

$$x_1(3)^3 + x_2 + x_3 + x_3 = 0$$

(f) Set up the matrix used to solve this system and solve it using the matrix. Give the equation of a cubic through the three points or explain how you can tell by looking at the matrix that it doesn't have a solution. If there are many solutions explain how you can tell this from the matrix.

Solution: This is a system of equations which we can solve by row reducing the augmented matrix

$$\begin{bmatrix} -1 & 1 & -1 & 1 & 12 \\ 8 & 4 & 2 & 1 & 18 \\ 27 & 9 & 3 & 1 & 0 \end{bmatrix}$$
 to
$$\begin{bmatrix} 1 & 0 & 0 & -\frac{1}{6} & -5 \\ 0 & 1 & 0 & \frac{2}{3} & 7 \\ 0 & 0 & 1 & -\frac{1}{6} & 24 \end{bmatrix}$$

Since there is a free variable (or a column with no pivot) there are many (infinte) solutions. The matrix gives us, x_4 is free, $x_3 = \frac{1}{6}x_4 + 24$, $x_2 = -\frac{2}{3}x_4 + 7$ and $x_1 = \frac{1}{6}x_4 - 5$. Choosing $x_4 = 6$ we get one solution $6x^3 + 25x^2 + 3x - 4 = p(x)$.