UMSS- FACULTAD DE CIENCIAS Y TECNOLOGIA DEPARTAMENTO DE MATEMATICAS GESTIÓN 2-2021 (30-12-2021)

SEGUNDO PARCIAL – TRANSFORMADAS INTEGRALES

APELLIDOS:	NOMBRES:
CARRERA:	CARNET DE IDENTIDAD:

1.- Si:
$$f_{1(t)} = e^{3t}u(-t)$$
 y $f_{2(t)} = 3tu(t) + (-8t + 40)u(t - 5) + (5t - 40)u(t - 8)$ hallar: $f_{1(t)} * f_{2(t)}$

2.- Evaluar la integral:
$$\int_0^\infty \int_0^t tx^2 e^{-\frac{1}{4}t} sen(5x) dx dt$$

3.- Calcular:

$$\mathbb{L}^{-1} \left\{ \frac{e^{-3s}}{\left(s^2 + 6s + 9\right)\left(s^2 + 6s + 14\right)^2} \right\}$$

4.- Dado el sistema de ecuaciones diferenciales, hallar solamente: $\mathcal{Y}_{(t)}$ aplicando la transformada de Laplace

$$\begin{cases} \frac{dx}{dt} = 3x - 2y + 4e^{-4t}sen(3t) & x_{(0)} = 2\\ \frac{dy}{dt} = 2x - y + +3e^{-4t}\cos(3t); & y_{(0)} = -4 \end{cases}$$

5.- En un circuito R-C si R=20 Ω , C=40 mF se aplica la fuente de tensión: $v_{(t)} = \begin{cases} 80-5t & V & 0 < t < 0.6s \\ 0 & t > 0.6s \end{cases}$

- a) Determinar la corriente en función del tiempo sabiendo que $\,v_{c(0)}=40V\,$
- b) Determine la corriente cuando t=0.8 s