

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test Report No.: 1-1935/16-01-02

Testing Laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 – 10
66117 Saarbrücken/Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
e-mail: ict@cetecom.com

Accredited Test Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

Coppernic SAS

185 Avenue Archimède

13857 Aix-en-Provence, Cedex 3/FRANCE

Contact: Philippe Porte

e-mail: Philippe.Porte@coppernic.fr

Phone: +33 4 42 65 25 77

Manufacturer

Coppernic SAS

185 Avenue Archimède

Radio Communications & EMC

13857 Aix-en-Provence, Cedex 3/FRANCE

Test Item

Kind of test item: RFID Reader
Device type: portable device
Model name: ELYCTIS

S/N serial number: WPQACE240073C1

FCC-ID: XGKHFELYWAP3, XGK211486030B and XGK7528PA

IC: 8402A- ELY28780008, 8402A-211486030B and 8402A-7528PA

IMEI-Number: 3577720500075850-9

Hardware status: -/Software status: -/-

Radio Communications & EMC

Frequency: GSM835/1900/UMTS FDD II/V / WLAN2.4/5GHz

Antenna: integrated antenna

Battery option: Li-lon battery 3.7V / 4400mAh
Test sample status: identical prototype / production unit

Exposure category: general population / uncontrolled environment

Radio module: RFID module HF ELYCTIS (FCC ID: XGKHFELYWAP3, IC ID: 8402A- ELY28780008)

WLAN module FCC ID: XGK211486030B, IC ID: 8402A-211486030B

WWAN module FCC ID: XGK7528PA IC ID: 8402A-7528PA

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test Report authorised:	Test performed:
Oleksandr Hnatovskiy Lab Manager	Marco Scigliano Testing Manager

Table of contents

1	Table o	of contents	2
2	Genera	al information	3
	2.1	Notes and disclaimer	3
	2.2	Application details	
3	Test E	nvironment	3
4	Test S	et-up	
	4.1	Measurement system	
	4.1.1	System Description	
	4.1.2	Test environment	
	4.1.3	Probe description	
	4.1.4	Phantom description	
	4.1.5	Device holder description	
	4.1.6	Scanning procedure	
	4.1.7	Spatial Peak SAR Evaluation	
	4.1.8	Data Storage and Evaluation	
	4.1.9	Tissue simulating liquids: dielectric properties	
	4.1.10	Tissue simulating liquids: parameters	
	4.1.11	Measurement uncertainty evaluation for SAR test	
	4.1.12	Measurement uncertainty evaluation for System Check	
	4.1.13 4.1.14	System check procedure System check procedure	
	4.1.14	System validation	
_	_	est results	
5			
	5.1	General description of test procedures	
	5.2	Results overview	
6	Test e	quipment and ancillaries used for tests	25
7	Observ	vationsvations	25
Anı	nex A:	System performance check	26
Anı	nex B:	DASY5 measurement results	31
	Annex	B.1: WWAN Antenna	31
	Annex	B.2: WLAN 2450MHz	39
		B.3: WLAN 5GHz	
	Annex	B.4: Liquid depth	55
Anı	nex C:	Photo documentation	57
Anı	nex D:	Calibration parameters	66
Anı	nex E:	Document History	67
_	_		

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

2.2 Application details

Date of receipt of order: 2016-06-07
Date of receipt of test item: 2016-06-10
Start of test: 2016-06-10
End of test: 2016-06-21

Person(s) present during the test:

3 Test Environment

Ambient temperature: $20 - 24 \, ^{\circ}\text{C}$ Tissue Simulating liquid: $20 - 24 \, ^{\circ}\text{C}$

Relative humidity content: 40 - 50 %

Air pressure: not relevant for this kind of testing

Power supply: 230 V / 50 Hz

Exact temperature values for each test are shown in the table(s) under 7.1 and/or on the measurement plots.

4 Test Set-up

4.1 Measurement system

4.1.1 System Description

- The DASY system for performing compliance tests consists of the following items:
- A standard high precision 6-axis robot (Stäubli RX/TX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The <u>E</u>lectro-<u>O</u>ptical <u>C</u>oupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY measurement server.
- The DASY measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 7.
- DASY software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The triple flat and eli phantom for the testing of handheld and body-mounted wireless devices.
- The device holder for handheld mobile phones and mounting device adaptor for laptops
- Tissue simulating liquid mixed according to the given recipes.
- System check dipoles allowing to validate the proper functioning of the system.

4.1.2 Test environment

The DASY measurement system is placed in a laboratory room within an environment which avoids influence on SAR measurements by ambient electromagnetic fields and any reflection from the environment. The pictures at the beginning of the photo documentation show a complete view of the test environment. The system allows the measurement of SAR values larger than 0.005 mW/g.

4.1.3 Probe description

Isotropic E-Field Probe	EX3DV4 for Dosimetric Measurements
Technical data a	ccording to manufacturer information
Construction	Symmetrical design with triangular core
	Interleaved sensors
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic solvents, e.g.,
	DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to >6 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to
	6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis)
	± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic range	10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB (noise: typically<1
	μW/g)
Dimensions	Overall length: 337 mm (Tip: 20mm)
	Tip length: 2.5 mm (Body: 12mm)
	Typical distance from probe tip to dipole centers: 1mm
Application	High precision dosimetric measurements in any exposure
	scenario (e.g., very strong gradient fields). Only probe which
	enables compliance testing for frequencies up to 6 GHz with
	precision of better 30%.

4.1.4 Phantom description

The used SAM Phantom meets the requirements specified in FCC KDB865664 D01 for Specific Absorption Rate (SAR) measurements.

The phantom consists of a fibreglass shell integrated in a wooden table. It allows left-hand and right-hand head as well as body-worn measurements with a maximum liquid depth of 18 cm in head position and 22 cm in planar position (body measurements). The thickness of the Phantom shell is 2 mm +/- 0.1 mm.

Triple Modular Phantom consists of three identical modules which can be installed and removed separately without emptying the liquid. It includes three reference points for phantom installation. Covers prevent evaporation of the liquid. Phantom material is resistant to DGBE based tissue simulating liquids.

4.1.5 Device holder description

The DASY device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values

Therefore those devices are normally only tested at the flat part of the SAM.

4.1.6 Scanning procedure

- The DASY installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks.
 All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.
- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The highest integrated SAR value is the main concern in compliance test applications. These values can mostly be found at the inner surface of the phantom and cannot be measured directly due to the sensor offset in the probe. To extrapolate the surface values, the measurement distances to the surface must be known accurately. A distance error of 0.5mm could produce SAR errors of 6% at 1800 MHz. Using predefined locations for measurements is not accurate enough. Any shift of the phantom (e.g., slight deformations after filling it with liquid) would produce high uncertainties. For an automatic and accurate detection of the phantom surface, the DASY5 system uses the mechanical surface detection. The detection is always at touch, but the probe will move backward from the surface the indicated distance before starting the measurement.
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The scan uses different grid spacings for different frequency measurements. Standard grid spacing for head measurements in frequency ranges ≤ 2GHz is 15 mm in x- and y- dimension. For higher frequencies a finer resolution is needed, thus for the grid spacing is reduced according the following table:

Area scan grid spacing	for different frequency ranges
Frequency range	Grid spacing
≤ 2 GHz	≤ 15 mm
2 – 4 GHz	≤ 12 mm
4 – 6 GHz	≤ 10 mm

Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex B.

 A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. It uses a fine meshed grid where the robot moves the probe in steps along all the 3 axis (x, y and z-axis) starting at the bottom of the Phantom. The grid spacing for the cube measurement is varied according to the measured frequency range, the dimensions are given in the following table:

Zoom scan grid s	spacing and volum	ne for different fr	equency ranges
Frequency range	Grid spacing for	Grid spacing	Minimum zoom
≤ 2 GHz	≤ 8 mm	≤ 5 mm	≥ 30 mm
2 – 3 GHz	≤ 5 mm*	≤ 5 mm	≥ 28 mm
3 – 4 GHz	≤ 5 mm*	≤ 4 mm	≥ 28 mm
4 – 5 GHz	≤ 4 mm*	≤ 3 mm	≥ 25 mm
5 – 6 GHz	≤ 4 mm*	≤ 2 mm	≥ 22 mm

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex B. Test results relevant for the specified standard (see section 3) are shown in table form in section 7.

4.1.7 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of all points in the three directions x, y and z. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 1 to 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR - values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes.

4.1.8 Data Storage and Evaluation

Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4", ".DA5x". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

Device parameters:

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

Conversion factor
 Diode compression point
 Frequency
 ConvFi
 Dcpi
 f

- Crest factor cf

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

with V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

with V_i = compensated signal of channel i (i = x, y, z)Norm_i = sensor sensitivity of channel i (i = x, y, z)

 $[mV/(V/m)^2]$ for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot \sigma) / (\rho \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

4.1.9 Tissue simulating liquids: dielectric properties

The following materials are used for producing the tissue-equivalent materials.

(Liquids used for tests described in section 7. are marked with \boxtimes):

Ingredients (% of weight)				Fre	quency (M	IHz)			
frequency band	<u> </u>	750	⊠ 835	900	<u> </u>	<u> </u>	⊠ 1900	⊠ 2450	⊠ 5000
Water	51.16	51.7	52.4	56.0	71.40	71.45	71.56	71.65	64 - 78
Salt (NaCl)	1.49	0.9	1.40	0.76	0.55	0.5	0.39	0.3	2 - 3
Sugar	46.78	47.2	45.0	41.76	0.0	0.0	0.0	0.0	0.0
HEC	0.52	0.0	1.0	1.21	0.0	0.0	0.0	0.0	0.0
Bactericide	0.05	0.1	0.1	0.27	0.1	0.1	0.1	0.1	0.0
Tween 20	0.0	0.0	0.0	0.0	27.95	27.95	27.95	27.95	0.0
Emulsifiers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9 - 15
Mineral Oil	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11 - 18

Table 1: Body tissue dielectric properties

Salt: 99+% Pure Sodium Chloride Water: De-ionized, 16MΩ+ resistivity

Sugar: 98+% Pure Sucrose HEC: Hydroxyethyl Cellulose

Tween 20: Polyoxyethylene (20) sorbitan monolaurate

4.1.10 Tissue simulating liquids: parameters

Linuid	F	Target b	ody tissue	Me	easuren	nent body	tissue		N4
Liquid MSL	Freq. (MHz)	Permittivity	Conductivity	Permittivity	Dev.	Condu	uctivity	Dev.	Measurement date
IVIOL	(1711 12)	remittivity	(S/m)	remittivity	%	٤"	(S/m)	%	date
850/900	835	55.20	0.97	53.9	-2.4%	21.03	0.98	0.7%	2016-06-17
	847	55.16	0.98	53.8	-2.5%	20.98	0.99	0.4%	
	849	55.16	0.99	53.8	-2.6%	20.96	0.99	0.3%	
1900	1850	53.30	1.52	53.6	0.5%	14.17	1.46	-4.1%	2016-06-17
	1880	53.30	1.52	53.5	0.3%	14.20	1.48	-2.3%	
	1900	53.30	1.52	53.4	0.2%	14.22	1.50	-1.1%	
2450	2437	52.72	1.94	51.2	-3.0%	14.93	2.02	4.5%	2016-06-20
	2450	52.70	1.95	51.1	-3.0%	14.97	2.04	4.6%	
5GHz	5200	49.01	5.30	49.2	0.4%	18.49	5.35	0.9%	2016-06-15
	5260	48.93	5.37	49.1	0.3%	18.49	5.41	0.8%	
	5280	48.91	5.39	49.0	0.2%	18.59	5.46	1.2%	

Table 2: Parameter of the body tissue simulating liquid

Note: The dielectric properties have been measured using the contact probe method at 22°C.

4.1.11 Measurement uncertainty evaluation for SAR test

		DAS	Y5 l	Jncertainty	Budo	et						
According to IEEE				_	_		MHz - 3	G G	dz range	Э		
Source of	cer	tainty	Valu	Probability	Divisor	Ci	Ci	,	Standard	l Un	certainty	v _i ² or
uncertainty		± %		Distribution		(1g)	(10g)	± °	%, (1g)	± %	%, (10g)	V _{eff}
Measurement System												
Probe calibration	±	6.0	%	Normal	1	1	1	±	6.0 %	±	6.0 %	8
Axial isotropy	±	4.7	%	Rectangular	√3	0.7	0.7	±	1.9 %	±	1.9 %	8
Hemispherical isotropy	±	9.6	%	Rectangular	√ 3	0.7	0.7	±	3.9 %	±	3.9 %	8
Boundary effects	±	1.0	%	Rectangular	√ 3	1	1	±	0.6 %	±	0.6 %	8
Probe linearity	±	4.7	%	Rectangular	√ 3	1	1	±	2.7 %	±	2.7 %	8
System detection limits	±	1.0	%	Rectangular	√3	1	1	±	0.6 %	±	0.6 %	8
Readout electronics	±	0.3	%	Normal	1	1	1	±	0.3 %	±	0.3 %	8
Response time	±	0.8	%	Rectangular	√ 3	1	1	±	0.5 %	±	0.5 %	8
Integration time	±	2.6	%	Rectangular	√3	1	1	±	1.5 %	±	1.5 %	8
RF ambient noise	±	3.0	%	Rectangular	√3	1	1	±	1.7 %	±	1.7 %	8
RF ambient reflections	±	3.0	%	Rectangular	√3	1	1	±	1.7 %	±	1.7 %	8
Probe positioner	±	0.4	%	Rectangular	√3	1	1	±	0.2 %	±	0.2 %	8
Probe positioning	±	2.9	%	Rectangular	√ 3	1	1	±	1.7 %	±	1.7 %	8
Max.SAR evaluation	±	1.0	%	Rectangular	√ 3	1	1	±	0.6 %	±	0.6 %	8
Test Sample Related												
Device positioning	±	2.9	%	Normal	1	1	1	+	2.9 %	±	2.9 %	145
Device holder uncertainty	±	3.6	%	Normal	1	1	1	±	3.6 %	±	3.6 %	5
Power drift	±	5.0	%	Rectangular	√3	1	1	±	2.9 %	±	2.9 %	8
Phantom and Set-up												
Phantom uncertainty	±	4.0	%	Rectangular	√ 3	1	1	H	2.3 %	±	2.3 %	8
Liquid conductivity (target)	±	5.0	%	Rectangular	√ 3	0.64	0.43	±	1.8 %	±	1.2 %	8
Liquid conductivity (meas.)	±	5.0	%	Rectangular	√ 3	0.64	0.43	±	1.8 %	±	1.2 %	8
Liquid permittivity (target)	±	5.0	%	Rectangular	√ 3	0.6	0.49	±	1.7 %	±	1.4 %	8
Liquid permittivity (meas.)	±	5.0	%	Rectangular	√ 3	0.6	0.49	±	1.7 %	±	1.4 %	8
Combined Std.								±	11.1 %	±	10.8 %	387
Expanded Std.								±	22.1 %	±	21.6 %	

Table 3: Measurement uncertainties

Worst-Case uncertainty budget for DASY5 assessed according to IEEE 1528/2003.

The budget is valid for 2G and 3G communication signals and frequency range 300MHz - 3 GHz. For these conditions it represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.

Relative DASY5 Uncertainty Budget for SAR Tests According to IEEE 1528/2013 and IEC62209/2011 for the 0.3 - 3GHz range Standard Uncertainty certainty Valu Divisor Ci v² or Probability Error Description ± % Distribution (1g)(10g)± %, (1g) ± %, (10g) V_{eff} **Measurement System** Probe calibration ± 6.0 % Normal 6.0 % 6.0 % ∞ 1 1 1 ± ± √3 Rectangular Axial isotropy ± 4.7 % 0.7 0.7 1.9 % 1.9 % ∞ ± ± Hemispherical isotropy √ 3 0.7 3.9 % ± 9.6 % Rectangular 0.7 ± 3.9 % ± Boundary effects ± 1.0 % Rectangular √ 3 1 0.6 % 0.6 % 1 ± ± √ 3 2.7 % Probe linearity ± 4.7 % Rectangular 1 1 2.7 % ± ∞ ± System detection limits 0.6 % ± 1.0 % Rectangular √ 3 1 1 ± 0.6 % ± √3 1 1 1.4 % 1.4 % Modulation Response ± 2.4 % Rectangular ± ± Readout electronics ± 0.3 % Normal 1 1 1 0.3 % 0.3 % ± ± √ 3 0.5 % Response time ± 0.8 % Rectangular 1 1 ± 0.5 % ± ∞ Integration time Rectangular √ 3 1.5 % ± 2.6 % 1 1 1.5 % ± ± RF ambient noise ± 3.0 % √3 1 1 1.7 % 1.7 % ∞ Rectangular √ 3 RF ambient reflections ± 3.0 % Rectangular 1 1 1.7 % ± 1.7 % ± 0.2 % Probe positioner ± 0.4 % Rectangular √ 3 1 1 0.2 % ∞ ± ± ± 2.9 % Rectangular Probe positioning √ 3 1 1 1.7 % 1.7 % ∞ ± ± Max. SAR evaluation ± 2.0 % Rectangular √ 3 1 1 1.2 % 1.2 % ∞ ± ± Test Sample Related Device positioning ± 2.9 % Normal 1 2.9 % 2.9 % 145 1 1 ± Device holder uncertainty ± 3.6 % Normal 1 1 3.6 % 3.6 % 5 1 ± ± Power drift ± 5.0 % Rectangular √ 3 1 1 2.9 % 2.9 % ± ∞ Phantom and Set-up Phantom uncertainty ± 6.1 % Rectangular √ 3 1 3.5 % 3.5 % 1 ± ± 0.9 % SAR correction √|3 0.84 1.1 % ± 1.9 % Rectangular 1 ± ± ∞ √|3 Liquid conductivity (meas.) ± 5.0 % Rectangular 0.78 0.71 2.3 % 2.0 % ± ± √ 3 Liquid permittivity (meas.) ± 5.0 % Rectangular 0.26 0.26 0.8 % 0.8 % ± ± Temp. Unc. - Conductivity √ 3 1.5 % 1.4 % ± 3.4 % Rectangular 0.78 0.71 ± ± Temp. Unc. - Permittivity √ 3 0.23 0.1 % ± 0.4 % Rectangular 0.26 0.1 % ± ∞ **Combined Uncertainty** 330 ± 11.3 % ± 11.3 % **Expanded Std.** ± 22.7 % ± 22.5 %

Table 4: Measurement uncertainties

Uncertainty

Worst-Case uncertainty budget for DASY5 assessed according to IEEE 1528/2013

and IEC 62209-1/2011 standards. The budget is valid for the frequency range 300MHz -3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.

	DASY5	Uncertainty	Budg	et				
According t	to IEC 62209-	2/2010 for the	e 300 M	Hz - 6	GHz ra	ange		
Source of	Uncertainty	Probability	Divisor	Ci	Ci	Standard	Uncertainty	v _i ² or
uncertainty	Value	Distribution		(1g)	(10g)	± %, (1g)	± %, (10g)	V _{eff}
Measurement System								
Probe calibration	± 6.6 %	Normal	1	1	1	± 6.6 %	± 6.6 %	8
Axial isotropy	± 4.7 %	Rectangular	√3	0.7	0.7	± 1.9 %	± 1.9 %	8
Hemispherical isotropy	± 9.6 %	Rectangular	√ 3	0.7	0.7	± 3.9 %	± 3.9 %	8
Boundary effects	± 2.0 %	Rectangular	√ 3	1	1	± 1.2 %	± 1.2 %	8
Probe linearity	± 4.7 %	Rectangular	√3	1	1	± 2.7 %	± 2.7 %	8
System detection limits	± 1.0 %	Rectangular	√ 3	1	1	± 0.6 %	± 0.6 %	8
Modulation Response	± 2.4 %	Rectangular	√ 3	1	1	± 1.4 %	± 1.4 %	8
Readout electronics	± 0.3 %	Normal	1	1	1	± 0.3 %	± 0.3 %	8
Response time	± 0.8 %	Rectangular	√ 3	1	1	± 0.5 %	± 0.5 %	8
Integration time	± 2.6 %	Rectangular	√ 3	1	1	± 1.5 %	± 1.5 %	8
RF ambient noise	± 3.0 %	Rectangular	√ 3	1	1	± 1.7 %	± 1.7 %	8
RF ambient reflections	± 3.0 %	Rectangular	√ 3	1	1	± 1.7 %	± 1.7 %	8
Probe positioner	± 0.8 %	Rectangular	√ 3	1	1	± 0.5 %	± 0.5 %	8
Probe positioning	± 6.7 %	Rectangular	√ 3	1	1	± 3.9 %	± 3.9 %	8
Post-processing	± 4.0 %	Rectangular	√ 3	1	1	± 2.3 %	± 2.3 %	8
Test Sample Related								
Device positioning	± 2.9 %	Normal	1	1	1	± 2.9 %	± 2.9 %	145
Device holder uncertainty	± 3.6 %	Normal	1	1	1	± 3.6 %	± 3.6 %	5
Power drift	± 5.0 %	Rectangular	√ 3	1	1	± 2.9 %	± 2.9 %	8
Phantom and Set-up								
Phantom uncertainty	± 7.9 %	Rectangular	√3	1	1	± 4.6 %	± 4.6 %	8
SAR correction	± 1.9 %	Rectangular	√ 3	1	0.84	± 1.1 %	± 0.9 %	8
Liquid conductivity (meas.)	± 5.0 %	Rectangular	√ 3	0.78	0.71	± 2.3 %	± 2.0 %	8
Liquid permittivity (meas.)	± 5.0 %	Rectangular	√3	0.26	0.26	± 0.8 %	± 0.8 %	8
Temp. Unc Conductivity	± 3.4 %	Rectangular	√3	0.78	0.71	± 1.5 %	± 1.4 %	8
Temp. Unc Permittivity	± 0.4 %	Rectangular	√ 3	0.23	0.26	± 0.1 %	± 0.1 %	8
Combined Uncertainty						± 12.7 %	± 12.6 %	330
Expanded Std.						± 25.4 %	± 25.3 %	
Uncertainty						± 23.7 /0	± 23.3 /0	

Table 5: Measurement uncertainties.

Worst-Case uncertainty budget for DASY5 assessed according to according to IEC 62209-2/2010 standard. The budget is valid for the frequency range 300MHz - 6 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.

Relat	ive DASY5	Uncertainty	y Budg	get fo	r SAR	RTests		
According	to IEEE 1528	/2003 and IEC	62209-	1 for t	he 3 -	6 GHz rang	ge	
5 D 10	Uncertainty	Probability	Divisor	Ci	Ci	Standard	Uncertainty	v _i ² or
Error Description	Value	Distribution		(1g)	(10g)	± %, (1g)	± %, (10g)	V _{eff}
Measurement System								
Probe calibration	± 6.6 %	Normal	1	1	1	± 6.6 %	± 6.6 %	∞
Axial isotropy	± 4.7 %	Rectangular	√ 3	0.7	0.7	± 1.9 %		∞
Hemispherical isotropy	± 9.6 %	Rectangular	√ 3	0.7	0.7	± 3.9 %	± 3.9 %	∞
Boundary effects	± 2.0 %	Rectangular	√3	1	1	± 1.2 %		∞
Probe linearity	± 4.7 %	Rectangular	√3	1	1	± 2.7 %	± 2.7 %	8
System detection limits	± 1.0 %	Rectangular	√ 3	1	1	± 0.6 %		∞
Readout electronics	± 0.3 %	Normal	1	1	1	± 0.3 %	± 0.3 %	∞
Response time	± 0.8 %	Rectangular	√ 3	1	1	± 0.5 %	± 0.5 %	∞
Integration time	± 2.6 %	Rectangular	√ 3	1	1	± 1.5 %	± 1.5 %	∞
RF ambient noise	± 3.0 %	Rectangular	√3	1	1	± 1.7 %		8
RF ambient reflections	± 3.0 %	Rectangular	√ 3	1	1	± 1.7 %		∞
Probe positioner	± 0.8 %	Rectangular	√ 3	1	1	± 0.5 %		∞
Probe positioning	± 6.7 %	Rectangular	√ 3	1	1	± 3.9 %	± 3.9 %	∞
Max. SAR evaluation	± 4.0 %	Rectangular	√ 3	1	1	± 2.3 %	± 2.3 %	∞
Test Sample Related								
Device positioning	± 2.9 %	Normal	1	1	1	± 2.9 %		145
Device holder uncertainty	± 3.6 %	Normal	1	1	1	± 3.6 %		5
Power drift	± 5.0 %	Rectangular	√ 3	1	1	± 2.9 %	± 2.9 %	∞
Phantom and Set-up								
Phantom uncertainty	± 4.0 %	Rectangular	√ 3	1	1	± 2.3 %		∞
Liquid conductivity (target)	± 5.0 %	Rectangular	√ 3	0.64	0.43	± 1.8 %	± 1.2 %	∞
Liquid conductivity (meas.)	± 5.0 %	Rectangular	√3	0.64	0.43	± 1.8 %		∞
Liquid permittivity (target)	± 5.0 %	Rectangular	√ 3	0.6	0.49	± 1.7 %		∞
Liquid permittivity (meas.)	± 5.0 %	Rectangular	√ 3	0.6	0.49	± 1.7 %		∞
Combined Uncertainty						± 12.1 %	± 11.9 %	330
Expanded Std.						± 24.3 %	± 23.8 %	
Uncertainty						± 24. 3 /0	23.0 /6	

Table 6: Measurement uncertainties

Worst-Case uncertainty budget for DASY5 valid for 3G communication signals and frequency range 3 - 6 GHz. Probe calibration error reflects uncertainty of the EX3D probe. For specific tests and configurations, the uncertainty could be considerable smaller.

Relat	ive DASY5	Uncertaint	y Bud	get fo	or SAF	R Tests		
Accordin	g to IEEE 15	28/2013 and II	EC6220	9-1/20	11 (3-6	GHz range)		
Faren Description	Uncertainty	Probability	Divisor	Ci	Ci	Standard	Uncertainty	v _i ² or
Error Description	Value	Distribution		(1g)	(10g)	± %, (1g)	± %, (10g)	V _{eff}
Measurement System								
Probe calibration	± 6.6 %	Normal	1	1	1	± 6.6 %	± 6.6 %	∞
Axial isotropy	± 4.7 %	Rectangular	√ 3	0.7	0.7	± 1.9 %	± 1.9 %	8
Hemispherical isotropy	± 9.6 %	Rectangular	√ 3	0.7	0.7	± 3.9 %	± 3.9 %	8
Boundary effects	± 2.0 %	Rectangular	√ 3	1	1	± 1.2 %	± 1.2 %	8
Probe linearity	± 4.7 %	Rectangular	√ 3	1	1	± 2.7 %	± 2.7 %	8
System detection limits	± 1.0 %	Rectangular	√3	1	1	± 0.6 %	± 0.6 %	∞
Modulation Response	± 2.4 %	Rectangular	√ 3	1	1	± 1.4 %	± 1.4 %	∞
Readout electronics	± 0.3 %	Normal	1	1	1	± 0.3 %	± 0.3 %	∞
Response time	± 0.8 %	Rectangular	√3	1	1	± 0.5 %	± 0.5 %	∞
Integration time	± 2.6 %	Rectangular	√ 3	1	1	± 1.5 %	± 1.5 %	∞
RF ambient noise	± 3.0 %	Rectangular	√ 3	1	1	± 1.7 %	± 1.7 %	8
RF ambient reflections	± 3.0 %	Rectangular	√ 3	1	1	± 1.7 %	± 1.7 %	8
Probe positioner	± 0.8 %	Rectangular	√ 3	1	1	± 0.5 %	± 0.5 %	∞
Probe positioning	± 6.7 %	Rectangular	√ 3	1	1	± 3.9 %	± 3.9 %	8
Max. SAR evaluation	± 4.0 %	Rectangular	√ 3	1	1	± 2.3 %	± 2.3 %	∞
Test Sample Related								
Device positioning	± 2.9 %	Normal	1	1	1	± 2.9 %	± 2.9 %	145
Device holder uncertainty	± 3.6 %	Normal	1	1	1	± 3.6 %	± 3.6 %	5
Power drift	± 5.0 %	Rectangular	√ 3	1	1	± 2.9 %	± 2.9 %	∞
Phantom and Set-up								
Phantom uncertainty	± 6.6 %	Rectangular	√ 3	1	1	± 3.8 %	± 3.8 %	∞
SAR correction	± 1.9 %	Rectangular	√ 3	1	0.84	± 1.1 %	± 0.9 %	8
Liquid conductivity (meas.)	± 5.0 %	Rectangular	√ 3	0.78	0.71	± 2.3 %	± 2.0 %	8
Liquid permittivity (meas.)	± 5.0 %	Rectangular	√ 3	0.26	0.26	± 0.8 %	± 0.8 %	8
Temp. Unc Conductivity	± 3.4 %	Rectangular	√ 3	0.78	0.71	± 1.5 %	± 1.4 %	∞
Temp. Unc Permittivity	± 0.4 %	Rectangular	√ 3	0.23	0.26	± 0.1 %	± 0.1 %	∞
Combined Uncertainty						± 12.4 %	± 12.4 %	330
Expanded Std.						± 24.9 %	± 24.8 %	
Uncertainty							1.0 /0	

Table 7: Measurement uncertainties

Worst-Case uncertainty budget for DASY5 assessed according to IEEE 1528/2013

and IEC 62209-1/2011 standards. The budget is valid for the frequency range 3GHz -6GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.

4.1.12 Measurement uncertainty evaluation for System Check

Source of uncertainty Value Distribution
Measurement System \pm 6.0 % Normal 1 1 \pm 6.0 % \pm 6.0 % Axial isotropy \pm 4.7 % Rectangular $\sqrt{3}$ 0.7 0.7 \pm 1.9 % \pm 1.9 % \pm 1.9 % Hemispherical isotropy \pm 0.0 % Rectangular $\sqrt{3}$ 0.7 0.7 \pm 0.0 % \pm 0.0 % \pm 0.0 % Boundary effects \pm 1.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.6 % \pm 0.6 % \pm 0.6 % Probe linearity \pm 4.7 % Rectangular $\sqrt{3}$ 1 1 \pm 0.6 % \pm 0.6 % \pm 0.6 % System detection limits \pm 1.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.6 % \pm 0.6 % \pm 0.6 % Readout electronics \pm 0.3 % Normal 1 1 1 \pm 0.3 % \pm 0.3 % \pm 0.3 % Response time \pm 0.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.0 % \pm 0.0 % \pm 0.0 % Integration time \pm 0.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.0 % \pm 0.0 % \pm 0.0 %
Measurement System \pm 6.0 % Normal 1 1 1 1 \pm 6.0 % \pm 6.0 % Axial isotropy \pm 4.7 % Rectangular $\sqrt{3}$ 0.7 0.7 \pm 1.9 % \pm 1.9 % ∞ Hemispherical isotropy \pm 0.0 % Rectangular $\sqrt{3}$ 0.7 0.7 \pm 0.0 % \pm 0.0 % ∞ Boundary effects \pm 1.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.6 % \pm 0.6 % ∞ Probe linearity \pm 4.7 % Rectangular $\sqrt{3}$ 1 1 \pm 2.7 % \pm 2.7 % ∞ System detection limits \pm 1.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.6 % \pm 0.6 % ∞ Readout electronics \pm 0.3 % Normal 1 1 \pm 0.3 % \pm 0.3 % ∞ Response time \pm 0.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.0 % \pm 0.0 % ∞ Integration time \pm 0.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.0 % \pm 0.0 % ∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Axial isotropy \pm 4.7 % Rectangular $\sqrt{3}$ 0.7 0.7 \pm 1.9 % \pm 1.9 % \pm 1.9 % Hemispherical isotropy \pm 0.0 % Rectangular $\sqrt{3}$ 0.7 0.7 \pm 0.0 % \pm 0.0 % \pm 0.0 % Boundary effects \pm 1.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.6 % \pm 0.6 % \pm 0.6 % Probe linearity \pm 4.7 % Rectangular $\sqrt{3}$ 1 1 \pm 2.7 % \pm 2.7 % \pm 2.7 % System detection limits \pm 1.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.6 % \pm 0.6 % \pm 0.6 % Readout electronics \pm 0.3 % Normal 1 1 \pm 0.3 % \pm 0.3 % \pm 0.3 % Response time \pm 0.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.0 % \pm 0.0 % \pm 0.0 % Integration time \pm 0.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.0 % \pm 0.0 %
Hemispherical isotropy \pm 0.0 % Rectangular $\sqrt{3}$ 0.7 0.7 \pm 0.0 % \pm 0.0 % \times 0.0 % </td
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
System detection limits \pm 1.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.6 % \pm 0.6 % \times Readout electronics \pm 0.3 % Normal 1 1 1 \pm 0.3 % \pm 0.3 % \times Response time \pm 0.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.0 % \pm 0.0 % \times Integration time
Readout electronics \pm 0.3 % Normal 1 1 1 \pm 0.3 % \pm 0.3 % \times Response time \pm 0.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.0 % \pm 0.0 % \times Integration time \pm 0.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.0 % \pm 0.0 % \times
Response time \pm 0.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.0 % \pm 0.0 % \propto Integration time \pm 0.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.0 % \pm 0.0 % \propto
Integration time \pm 0.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.0 % \pm 0.0 % \propto
RF ambient conditions + 3.0 % Rectangular $\sqrt{3}$ 1 1 + 1.7 % + 1.7 % \propto
Probe positioner \pm 0.4 % Rectangular $\sqrt{3}$ 1 1 \pm 0.2 % \pm 0.2 % ∞
Probe positioning \pm 2.9 % Rectangular $\sqrt{3}$ 1 1 \pm 1.7 % \pm 1.7 % ∞
Max. SAR evaluation \pm 1.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.6 % \pm 0.6 % ∞
Test Sample Related
Dev. of experimental dipole \pm 0.0 % Rectangular $\sqrt{3}$ 1 1 \pm 0.0 % \pm 0.0 % ∞
Source to liquid distance ± 2.0 % Rectangular √3 1 1 ± 1.2 % ± 1.2 % ∞
Power drift \pm 3.4 % Rectangular $\sqrt{3}$ 1 1 \pm 2.0 % \pm 2.0 % ∞
Phantom and Set-up
Phantom uncertainty \pm 4.0 % Rectangular $\sqrt{3}$ 1 1 \pm 2.3 % \pm 2.3 % ∞
SAR correction \pm 1.9 % Rectangular $\sqrt{3}$ 1 0.84 \pm 1.1 % \pm 0.9 % \propto
Liquid conductivity (meas.) ± 5.0 % Normal 1 0.78 0.71 ± 3.9 % ± 3.6 % ∞
Liquid permittivity (meas.) ± 5.0 % Normal 1 0.26 0.26 ± 1.3 % ± 1.3 % ∞
Temp. unc Conductivity \pm 1.7 % Rectangular $\sqrt{3}$ 0.78 0.71 \pm 0.8 % \pm 0.7 % \propto
Temp. unc Permittivity \pm 0.3 % Rectangular $\sqrt{3}$ 0.23 0.26 \pm 0.0 % \pm 0.0 % ∞
Combined Uncertainty ± 9.1 % ± 8.9 % 33
Expanded Std.
Uncertainty ± 18.2 % ± 17.9 %

Table 8: Measurement uncertainties of the System Check with DASY5 (0.3-3GHz)

Uncertainty of	Uncertainty of a System Performance Check with DASY5 System											
	•		r the 3 - 6 (,				
Source of	Uncertai	nty	Probability	Divisor	C _i	C _i	Sta	andard I	Uncertainty	v _i ² or		
uncertainty	Value	•	Distribution		(1g)	(10g)	±	%, (1g)	± %, (10g)	V _{eff}		
Measurement System												
Probe calibration	± 6.6	%	Normal	1	1	1	±	6.6 %	± 6.6 %	8		
Axial isotropy	± 4.7	%	Rectangular	√ 3	0.7	0.7	±	1.9 %	± 1.9 %	8		
Hemispherical isotropy	± 0.0	%	Rectangular	√3	0.7	0.7	±	0.0 %	± 0.0 %	8		
Boundary effects	± 1.0	%	Rectangular	√ 3	1	1	±	0.6 %	± 0.6 %	8		
Probe linearity	± 4.7	%	Rectangular	√ 3	1	1	±	2.7 %	± 2.7 %	8		
System detection limits	± 1.0	%	Rectangular	√3	1	1	±	0.6 %	± 0.6 %	8		
Readout electronics	± 0.3	%	Normal	1	1	1	±	0.3 %		8		
Response time	± 0.0	%	Rectangular	√ 3	1	1	±	0.0 %	± 0.0 %	8		
Integration time	± 0.0	%	Rectangular	√3	1	1	±	0.0 %	± 0.0 %	8		
RF ambient conditions	± 3.0	%	Rectangular	√ 3	1	1	±	1.7 %	± 1.7 %	8		
Probe positioner	± 0.8	%	Rectangular	√ 3	1	1	±	0.5 %	± 0.5 %	8		
Probe positioning	± 6.7	%	Rectangular	√ 3	1	1	±	3.9 %	± 3.9 %	8		
Max. SAR evaluation	± 1.0	%	Rectangular	√3	1	1	±	0.6 %		8		
Test Sample Related			· ·									
Dev. of experimental dipole	± 0.0	%	Rectangular	√3	1	1	±	0.0 %	± 0.0 %	8		
Source to liquid distance	± 2.0	%	Rectangular	√3	1	1	±	1.2 %	± 1.2 %	8		
Power drift	± 3.4	%	Rectangular	√ 3	1	1	±	2.0 %		8		
Phantom and Set-up			ŭ.									
Phantom uncertainty	± 4.0	%	Rectangular	√ 3	1	1	±	2.3 %	± 2.3 %	8		
SAR correction	± 1.9	%	Rectangular	√ 3	1	0.84	±	1.1 %	± 0.9 %	8		
Liquid conductivity (meas.)	± 5.0	%	Normal	1	0.78	0.71	±	3.9 %	± 3.6 %	8		
Liquid permittivity (meas.)	± 5.0	%	Normal	1	0.26	0.26	±	1.3 %		8		
Temp. unc Conductivity	± 1.7	%	Rectangular	√ 3	0.78	0.71	±	0.8 %	± 0.7 %	8		
Temp. unc Permittivity	± 0.3	%	Rectangular	√ 3	0.23	0.26	±	0.0 %	± 0.0 %	8		
Combined Uncertainty			, and the second				±	10.1 %	± 10.0 %	330		
Expanded Std.								20.2.0/	. 40.0 0/			
Uncertainty							±.	20.2 %	± 19.9 %			
Table Or Massurament uncor	,	- 41	0 1 0 1		0)/5 //	2 2011	`					

Table 9: Measurement uncertainties of the System Check with DASY5 (3-6GHz)

Note: Worst case probe calibration uncertainty has been applied for all probes used during the measurements.

4.1.13 System check

The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system check is performed with tissue equivalent material according to IEEE 1528. The following table shows system check results for all frequency bands and tissue liquids used during the tests (plot(s) see annex A).

	System performence check (1000 mW)												
System validation Kit	Probe	Frequency	Target SAR1g /mW/g (+/- 10%)	Target SAR10g /mW/g (+/- 10%)	Measured SAR1g / mW/g	SAR1g dev.	Measured SAR10g / mW/g	SAR10g dev.	Measured date				
D835V2 S/N: 4d153	EX3DV4 S/N: 3944	835 MHz body	9.30	6.16	9.82	5.6%	6.51	5.7%	2016-06-17				
D1900V2 S/N: 5d009	EX3DV4 S/N: 3944	1900 MHz body	40.50	21.50	40.50	0.0%	21.50	0.0%	2016-06-17				
D2450V2 S/N: 710	EX3DV4 S/N: 3944	2450 MHz body	51.00	23.80	51.90	1.8%	24.00	0.8%	2016-06-20				
D5GHzV2 S/N: 1055	EX3DV4 S/N: 3944	5200 MHz body	76.60	21.50	75.00	-2.1%	21.40	-0.5%	2016-06-15				

Table 10: Results system check

4.1.14 System check procedure

The system check is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 1000 mW for frequencies below 2 GHz or 100 mW for frequencies above 2 GHz. To adjust this power a power meter is used. The power sensor is connected to the cable before the system check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

4.1.15 System validation

The system validation is performed in a similar way as a system check. It needs to be performed once a SAR measurement system has been established and allows an evaluation of the system accuracy with all components used together with the specified system. It has to be repeated at least once a year or when new system components are used (DAE, probe, phantom, dipole, liquid type).

In addition to the procedure used during system check a system validation also includes checks of probe isotropy, probe modulation factor and RF signal.

The following table lists the system validations relevant for this test report:

Frequency (MHz)	Test System	DASY SW	Dipole Type /SN	Probe Type / SN	Calibrated signal type(s)	DAE unit Type / SN	body validation
835	Saarbrücken / SAR-2	V52.8.7	D835V2 / 4d153	EX3DV4 / 3944	CW	DAE3/ 413	18.01.2016
1900	Saarbrücken / SAR-2	V52.8.7	D1900V2 / 5d009	EX3DV4 / 3944	CW	DAE3/ 413	21.01.2016
2450	Saarbrücken / SAR-2	V52.8.7	D2450V2 / 710	EX3DV4 / 3944	CW	DAE3/ 413	09.02.2016
5200	Saarbrücken / SAR-2	V52.8.7	D5GHzV2 / 1055	EX3DV4 / 3944	CW	DAE3/ 413	17.02.2016

5 SAR test results

5.1 General description of test procedures

The tests were performed according to customer request.

5.2 Results overview

	measured / extrapolated SAR numbers - Body worn - Limit for 1g: 1.6W/Kg													
Ch.	Freq.	' I test cond i Posi		cond. Pn	cond. P _{max} (dBm)		g (W/kg)	SAR ₁₀	g (W/kg)	power drift	liquid	dist.		
OH.	(MHz)	test cond.	1 OSITION	declared*	measured	meas.	extrap.	meas.	extrap.	(dB)	(°C)	(mm)		
251	848.8	GPRS 2TS	front	33.5	33.2	0.769	0.830	0.542	0.585	0.07	22.1	3		
512	1850.2	GPRS 2TS	back	30.5	30.5	0.136	0.136	0.088	0.088	-0.07	22.1	15		
9400	1880.0	RMC12.2Kbps	back	24.5	24.5	0.160	0.160	0.095	0.096	0.07	22.1	15		
4233	846.6	RMC12.2Kbps	front	24.5	24.5	0.470	0.470	0.335	0.335	-0.17	22.1	3		

Table 11: Test results body worn SAR WWAN Antenna (see SAR plots in Annex B.1: WWAN Antenna page 31)

	measured / extrapolated SAR numbers - Extremities - Limit for 10g: 4W/Kg													
Ch.	Ch. Freq. test cond.		Position	cond. Pn	nax (dBm)	SAR1g (W/kg)		SAR ₁₀	(W/kg)	power drift	liquid	dist.		
OII.	(MHz)	tost cona.	1 Collion	declared*	measured	meas.	extrap.	meas.	extrap.	(dB)	(°C)	(mm)		
251	848.8	GPRS 2TS	front	33.5	33.2	1.080	1.165	0.738	0.796	0.00	22.1	0		
512	1850.2	GPRS 2TS	back	30.5	30.5	0.485	0.486	0.295	0.296	-0.03	22.1	0		
9400	1880.0	RMC12.2Kbps	back	24.5	24.5	0.534	0.535	0.331	0.332	-0.09	22.1	0		
4233	846.6	RMC12.2Kbps	front	24.5	24.5	0.579	0.579	0.403	0.403	-0.02	22.1	0		

Table 12: Test results extremities SAR WWAN Antenna (see SAR plots in Annex B.1: WWAN Antenna)

	measured / extrapolated SAR numbers - Body worn - WLAN 2450 MHz - Limit for 1g: 1.6W/Kg													
Ch.	Freq.	test	Position	Antenna	cond. Pm	nax (dBm)	SAR1g	(W/kg)	Full SAR	power	liquid	dist.		
OII.	(MHz)	cond.	1 03111011	Antonna	declared*	measured	meas.	extrap.	100% DF	drift (dB)	(°C)	(mm)		
6	2437	1Mbit/s	rear	main	18.5	18.1	0.084	0.092	0.092	-0.06	21.0	15		
6	2437	1Mbit/s	left side	main	18.5	18.1	0.157	0.172	0.172	-0.02	21.0	20		
6	2437	1Mbit/s	rear	aux	18.5	17.9	0.031	0.036	0.036	-0.02	21.0	15		
6	2437	1Mbit/s	right side	aux	18.5	17.9	0.035	0.040	0.040	-0.13	21.0	20		

Table 13: Test results extremities SAR WLAN 2450MHz (see SAR plots in Annex B.2: WLAN 2450MHz page 39)

	measured / extrapolated SAR numbers - Extremities - WLAN 2450 MHz - Limit for 10g: 4W/Kg													
Ch.	Freq.	test	Position	Antenna	cond. Pm	nax (dBm)	SAR _{10g}	(W/kg)	Full SAR	power	liquid	dist.		
OH.	(MHz)	cond.	1 03111011	Killollia	declared*	measured	meas.	extrap.	100% DF	drift (dB)	(°C)	(mm)		
6	2437	1Mbit/s	rear	main	18.5	18.1	0.136	0.149	0.149	-0.07	21.0	0		
6	2437	1Mbit/s	left side	main	18.5	18.1	1.330	1.455	1.455	-0.10	21.0	0		
6	2437	1Mbit/s	rear	aux	18.5	17.9	0.054	0.062	0.062	-0.13	21.0	0		
6	2437	1Mbit/s	right side	aux	18.5	17.9	0.090	0.103	0.103	-0.08	21.0	0		

Table 14: Test results extremities SAR WLAN 2450MHz (see SAR plots in Annex B.2: WLAN 2450MHz)

^{* -} maximum possible output power declared by manufacturer

	measured / extrapolated SAR numbers - Body worn - WLAN 5 GHz - Limit for 1g: 1.6W/Kg													
Ch	Freq.	test	Position	Antenna	cond. Pm	nax (dBm)	SAR1g	(W/kg)	Full SAR	power	liquid	dist.		
OII.	(MHz)	cond.	1 03111011	Killollia	declared*	measured	meas.	extrap.	100% DF	drift (dB)	(°C)	(mm)		
56	5280	6Mbit/s	rear	main	15.5	15.4	0.059	0.061	56	-0.09	21.2	15		
56	5280	6Mbit/s	left side	main	15.5	15.4	0.137	0.141	56	-0.03	21.2	20		
52	5260	6Mbit/s	rear	aux	15.5	15.3	0.100	0.105	52	0.03	21.2	15		
52	5260	6Mbit/s	right side	aux	15.5	15.3	0.024	0.025	52	-0.04	21.2	20		

Table 15: Test results extremities SAR WLAN 5GHz (see SAR plots in Annex B.3: WLAN 5GHz page 47)

	mea	asured /	extrapola	ted SAR	numbers -	Extremitie	es - WL	AN 5 GH	lz - Limit 1	for 10g: 4	W/Kg	
Ch.	Freq.	test	Position	Antenna	cond. Pm	nax (dBm)	SAR _{10g}		Full SAR		liquid	dist.
011.	(MHz)	cond.	1 03111011	7 ti itorina	declared*	measured	meas.	extrap.	100% DF	drift (dB)	(°C)	(mm)
56	5280	6Mbit/s	rear	main	15.5	15.4	0.077	0.080	0.081	-0.04	21.2	0
56	5280	6Mbit/s	left side	main	15.5	15.4	0.273	0.282	0.286	0.01	21.2	0
52	5260	6Mbit/s	rear	aux	15.5	15.3	0.185	0.195	0.199	-0.15	21.2	0
52	5260	6Mbit/s	right side	aux	15.5	15.3	0.017	0.017	0.017	-0.08	21.2	0

Table 16: Test results extremities SAR WLAN 5GHz (see SAR plots in Annex B.3: WLAN 5GHz)

^{* -} maximum possible output power declared by manufacturer

Estimated stand alone SAR.											
Communication system	freq. (GHz)	distance (mm)	P _{avg} (dBm)	P _{avg} (mW)	estimated _{1-g} (W/kg)						
Bluetooth 2450	2.48	5	3	2.0	0.084						
Bluetooth 2450	2.48	15	3	2.0	0.028						
Bluetooth 2450	2.48	20	3	2.0	0.021						

Table 17: Estimated stand alone SAR_{max} for Bluetooth 2450MHz

6 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

Equipment	Туре	Manufacturer	Serial No.	Last Calibration	Frequency (months)
Dosimetric E-Field Probe	EX3DV4	Schmid & Partner Engineering AG	3944	August 14, 2015	12
835 MHz System Validation Dipole	D835V2	Schmid & Partner Engineering AG	4d153	May 12, 2015	24
1900 MHz System Validation Dipole		Engineering AG	5d009	May 13, 2015	24
2450 MHz System Validation Dipole	D2450V2	Schmid & Partner Engineering AG	710	August 11, 2014	24
5 GHz System Validation Dipole	D5GHzV 2	Schmid & Partner Engineering AG	1055	August 14, 2015	24
Data acquisition electronics	DAE3V1	Schmid & Partner Engineering AG	413	January 11, 2016	12
Software	DASY52 52.8.7	Schmid & Partner Engineering AG		N/A	
Triple Modular Flat Phantom V5.1	QD 000 P51 C	Schmid & Partner Engineering AG	1154	N/A	
Universal Radio Communication Tester	CMU 200	Rohde & Schwarz	106826	February 11, 2015	24
Network Analyser 300 kHz to 6 GHz	8753ES	Hewlett Packard)*	US39174436	January 29, 2015	24
Dielectric Probe Kit	85070C	Hewlett Packard	US99360146	N/A	12
Signal Generator	8671B	Hewlett Packard	2823A00656	January 29, 2015	24
Amplifier	25S1G4 (25 Watt)	Amplifier Reasearch	20452	N/A	
Power Meter	NRP	Rohde & Schwarz	101367	February 1, 2016	24
Power Meter Sensor	NRP Z22	Rohde & Schwarz	100227	February 1, 2016	12
Power Meter Sensor	NRP Z22	Rohde & Schwarz	100234	February 1, 2016	
Directional Coupler	778D	Hewlett Packard	19171	February 1, 2016	12

^{)*:} Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

7 Observations

No observations exceeding those reported with the single test cases have been made.

Annex A: System performance check

Date/Time: 17.06.2016 10:17:59

SystemPerformanceCheck-D835 MSL 2016-06-17

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d153

Communication System: UID 0, CW (0); Communication System Band: D835 (835.0 MHz); Frequency: 835

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 835 MHz; $\sigma = 0.977$ S/m; $\varepsilon_r = 53.897$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 - SN3944; ConvF(9.91, 9.91, 9.91); Calibrated: 14.08.2015;

- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

- Electronics: DAE3 Sn413; Calibrated: 11.01.2016

- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154

- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL835/d=15mm, Pin=1000 mW, dist=2.0mm/Area Scan (51x51x1): Interpolated

grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 12.2 W/kg

MSL835/d=15mm, Pin=1000 mW, dist=2.0mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.3 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 14.4 W/kg

SAR(1 g) = 9.82 W/kg; SAR(10 g) = 6.51 W/kg Maximum value of SAR (measured) = 12.4 W/kg

0 dB = 12.4 W/kg = 10.93 dBW/kg

Additional information:

ambient temperature: 23.0°C; liquid temperature: 22.1°C

Date/Time: 17.06.2016 12:53:29

SystemPerformanceCheck-D1900 MSL 2016-06-17

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009

Communication System: UID 0, CW (0); Communication System Band: D1900 (1900.0 MHz); Frequency: 1900

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 1900 MHz; σ = 1.503 S/m; ϵ_r = 53.4; ρ = 1000 kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.91, 7.91, 7.91); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL1900/d=10mm, Pin=1000 mW, dist=2.0mm/Area Scan (51x51x1): Interpolated

grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 68.2 W/kg

MSL1900/d=10mm, Pin=1000 mW, dist=2.0mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 197.6 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 71.5 W/kg

SAR(1 g) = 40.5 W/kg; SAR(10 g) = 21.5 W/kg Maximum value of SAR (measured) = 57.2 W/kg

0 dB = 57.2 W/kg = 17.57 dBW/kg

Additional information:

ambient temperature: 23.0°C; liquid temperature: 22.1°C

Date/Time: 20.06.2016 09:41:09

SystemPerformanceCheck-D2450 MSL 2016-06-20

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 710

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2450 MHz; $\sigma = 2.041$ S/m; $\epsilon_r = 51.144$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.53, 7.53, 7.53); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL2450/d=10mm, Pin=1000 mW, dist=2.0mm/Area Scan (51x51x1): Interpolated

grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 96.9 W/kg

MSL2450/d=10mm, Pin=1000 mW, dist=2.0mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 200.3 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 106 W/kg

SAR(1 g) = 51.9 W/kg; SAR(10 g) = 24 W/kg Maximum value of SAR (measured) = 79.1 W/kg

0 dB = 79.1 W/kg = 18.98 dBW/kg

Additional information:

ambient temperature: 21.5°C; liquid temperature: 20.8°C

Date/Time: 21.06.2016 11:09:28

SystemPerformanceCheck-D2450 MSL 2016-06-21

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 710

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2450 MHz; $\sigma = 2.041$ S/m; $\epsilon_r = 51.144$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.53, 7.53, 7.53); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL2450/d=10mm, Pin=1000 mW, dist=2.0mm/Area Scan (51x51x1): Interpolated

grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 91.0 W/kg

MSL2450/d=10mm, Pin=1000 mW, dist=2.0mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 198.4 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 105 W/kg

SAR(1 g) = 51.8 W/kg; SAR(10 g) = 24.1 W/kg Maximum value of SAR (measured) = 78.5 W/kg

0 dB = 78.5 W/kg = 18.95 dBW/kg

Additional information:

ambient temperature: 21.8°C; liquid temperature: 21.0°C

Date/Time: 15.06.2016 19:14:28

SystemPerformanceCheck-D5GHz MSL 2016-06-15

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1055

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5200 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5200 MHz; σ = 5.35 S/m; ϵ_r = 49.2; ρ = 1000 kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.68, 4.68, 4.68); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL/d=10mm, Pin=1000mW 5.2GHz/Area Scan (61x61x1): Interpolated grid: dx=1.000

mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 162 W/kg

MSL/d=10mm, Pin=1000mW 5.2GHz/Zoom Scan (7x7x12)/Cube 0: Measurement

grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 183.9 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 290 W/kg

SAR(1 g) = 75 W/kg; SAR(10 g) = 21.4 W/kg Maximum value of SAR (measured) = 154 W/kg

0 dB = 154 W/kg = 21.88 dBW/kg

Additional information:

ambient temperature: 22.3°C; liquid temperature: 21.2°C

Annex B: DASY5 measurement results

Annex 1.1.1 SAR plots for **the highest measured SAR** in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02

Annex B.1: WWAN Antenna

Date/Time: 17.06.2016 11:29:47

835MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, GSM/GPRS 2TS (0); Communication System Band: GSM 850; Frequency:

848.8 MHz; Communication System PAR: 6.021 dB; PMF: 2.00009

Medium parameters used: f = 849 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 53.752$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(9.91, 9.91, 9.91); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL835MHz/Front high - body worn - 3mm/Area Scan (161x101x1): Interpolated

grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.852 W/kg

MSL835MHz/Front high - body worn - 3mm/Zoom Scan (6x6x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 29.712 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.769 W/kg; SAR(10 g) = 0.542 W/kg Maximum value of SAR (measured) = 0.849 W/kg

0 dB = 0.849 W/kg = -0.71 dBW/kg

Additional information:

position or distance of DUT to the phantom: 3 mm ambient temperature: 23.0°C; liquid temperature: 22.1°C

Date/Time: 17.06.2016 13:50:35

1900MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, GSM/GPRS 2TS (0); Communication System Band: GSM 1900; Frequency:

1850.2 MHz; Communication System PAR: 6.021 dB; PMF: 2.00009

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.459$ S/m; $\epsilon_r = 53.554$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.91, 7.91, 7.91); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL1900/Rear Low - body worn - 15mm/Area Scan (161x101x1): Interpolated grid:

dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.169 W/kg

MSL1900/Rear Low - body worn - 15mm/Zoom Scan (6x6x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 10.826 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.214 W/kg

SAR(1 g) = 0.136 W/kg; SAR(10 g) = 0.088 W/kg

Maximum value of SAR (measured) = 0.149 W/kg

0 dB = 0.149 W/kg = -8.27 dBW/kg

Additional information:

position or distance of DUT to the phantom: 15 mm ambient temperature: 23.0°C; liquid temperature: 22.1°C

Date/Time: 17.06.2016 14:07:39

1900MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, UMTS FDD (0); Communication System Band: UMTS FDD II; Frequency: 1880

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 1880 MHz; $\sigma = 1.485$ S/m; $\varepsilon_r = 53.469$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.91, 7.91, 7.91); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL1900/Rear middle - body worn - 15mm (UMTS FDDV)/Area Scan

(161x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.188 W/kg

MSL1900/Rear middle - body worn - 15mm (UMTS FDD II)/Zoom Scan

(6x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 10.122 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.262 W/kg

SAR(1 g) = 0.160 W/kg; SAR(10 g) = 0.095 W/kg Maximum value of SAR (measured) = 0.178 W/kg

0 dB = 0.178 W/kg = -7.50 dBW/kg

Additional information:

position or distance of DUT to the phantom: 15 mm ambient temperature: 23.0°C; liquid temperature: 22.1°C

Date/Time: 17.06.2016 11:55:05

835MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, UMTS FDD (0); Communication System Band: UMTS FDD V; Frequency:

846.6 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 847 MHz; $\sigma = 0.989$ S/m; $\epsilon_r = 53.783$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(9.91, 9.91, 9.91); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL835MHz/Front high - body worn - 3mm (UMTS FDDV)/Area Scan

(161x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.565 W/kg

MSL835MHz/Front high - body worn - 3mm (UMTS FDDV)/Zoom Scan

(6x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 24.122 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.653 W/kg

SAR(1 g) = 0.470 W/kg; SAR(10 g) = 0.335 W/kg Maximum value of SAR (measured) = 0.509 W/kg

0 dB = 0.509 W/kg = -2.93 dBW/kg

Additional information:

position or distance of DUT to the phantom: 3 mm ambient temperature: 23.0°C; liquid temperature: 22.1°C

Date/Time: 17.06.2016 11:03:02

835MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, GSM/GPRS 2TS (0); Communication System Band: GSM 850; Frequency:

848.8 MHz; Communication System PAR: 6.021 dB; PMF: 2.00009

Medium parameters used: f = 849 MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 53.752$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(9.91, 9.91, 9.91); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL835MHz/Front high - extremity - 0mm/Area Scan (161x101x1): Interpolated

grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.33 W/kg

MSL835MHz/Front high - extremity - 0mm/Zoom Scan (6x6x7)/Cube 0:

Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Reference Value = 35.539 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.738 W/kg Maximum value of SAR (measured) = 1.14 W/kg

0 dB = 1.14 W/kg = 0.57 dBW/kg

Additional information:

position or distance of DUT to the phantom: 0 mm ambient temperature: 23.0°C; liquid temperature: 22.1°C

Date/Time: 17.06.2016 13:17:25

1900MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, GSM/GPRS 2TS (0); Communication System Band: GSM 1900; Frequency:

1850.2 MHz; Communication System PAR: 6.021 dB; PMF: 2.00009

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.459$ S/m; $\epsilon_r = 53.554$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.91, 7.91, 7.91); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL1900/Rear Low - extremity - 0mm/Area Scan (161x101x1): Interpolated grid:

dx=1.500 mm. dv=1.500 mm

Maximum value of SAR (interpolated) = 0.645 W/kg

MSL1900/Rear Low - extremity - 0mm/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 20.177 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.774 W/kg

SAR(1 g) = 0.485 W/kg; SAR(10 g) = 0.295 W/kg

Maximum value of SAR (measured) = 0.539 W/kg

0 dB = 0.539 W/kg = -2.68 dBW/kg

Additional information:

position or distance of DUT to the phantom: 0 mm ambient temperature: 23.0°C; liquid temperature: 22.1°C

Date/Time: 17.06.2016 14:23:36

1900MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, UMTS FDD (0); Communication System Band: UMTS FDD II; Frequency: 1880

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 1880 MHz; $\sigma = 1.485$ S/m; $\epsilon_r = 53.469$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.91, 7.91, 7.91); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL1900/Rear middle - extremity - 0mm (UMTS FDD II/Area Scan

(161x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.759 W/kg

MSL1900/Rear middle - extremity - 0mm (UMTS FDD II)/Zoom Scan

(5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 22.288 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.793 W/kg

SAR(1 g) = 0.534 W/kg; SAR(10 g) = 0.331 W/kg Maximum value of SAR (measured) = 0.570 W/kg

0 dB = 0.570 W/kg = -2.44 dBW/kg

Additional information:

Date/Time: 17.06.2016 12:13:44

835MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, UMTS FDD (0); Communication System Band: UMTS FDD V; Frequency:

846.6 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 847 MHz; $\sigma = 0.989$ S/m; $\epsilon_r = 53.783$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(9.91, 9.91, 9.91); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL835MHz/Front high - extremity - 0mm (UMTS FDD V)/Area Scan

(161x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.703 W/kg

MSL835MHz/Front high - extremity - 0mm (UMTS FDD V)/Zoom Scan

(5x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 26.035 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.863 W/kg

SAR(1 g) = 0.579 W/kg; SAR(10 g) = 0.403 W/kg Maximum value of SAR (measured) = 0.611 W/kg

0 dB = 0.611 W/kg = -2.14 dBW/kg

Additional information:

Annex B.2: WLAN 2450MHz

Date/Time: 21.06.2016 16:50:33

WLAN2450MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz; $\sigma = 2.024$ S/m; $\varepsilon_r = 51.164$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 - SN3944; ConvF(7.53, 7.53, 7.53); Calibrated: 14.08.2015;

- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 26.0

- Electronics: DAE3 Sn413; Calibrated: 11.01.2016

- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154

- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL2450/Rear Middle - body - 15mm - main antenna/Area Scan (161x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.109 W/kg

MSL2450/Rear Middle - body - 15mm - main antenna/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.341 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.144 W/kg

SAR(1 g) = 0.084 W/kg; SAR(10 g) = 0.050 W/kg Maximum value of SAR (measured) = 0.0913 W/kg

0 dB = 0.0913 W/kg = -10.40 dBW/kg

Additional information:

Date/Time: 20.06.2016 17:36:13

WLAN2450MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz; $\sigma = 2.024$ S/m; $\epsilon_r = 51.164$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.53, 7.53, 7.53); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 26.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL2450/Left side Middle - body - 20mm - main antenna/Area Scan

(161x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.203 W/kg

MSL2450/Left side Middle - body - 20mm - main antenna/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.526 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.270 W/kg

SAR(1 g) = 0.157 W/kg; SAR(10 g) = 0.088 W/kg Maximum value of SAR (measured) = 0.172 W/kg

0 dB = 0.172 W/kg = -7.64 dBW/kg

Additional information:

Date/Time: 21.06.2016 12:32:48

WLAN2450MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz; $\sigma = 2.024$ S/m; $\varepsilon_r = 51.164$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.53, 7.53, 7.53); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL2450/Rear Middle - body - 15mm - aux antenna/Area Scan (161x101x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0388 W/kg

MSL2450/Rear Middle - body - 15mm - aux antenna/Zoom Scan (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.637 V/m; Power Drift = -0.02dB Peak SAR (extrapolated) = 0.0560 W/kg

SAR(1 g) = 0.031 W/kg; SAR(10 g) = 0.018 W/kg Maximum value of SAR (measured) = 0.0338 W/kg

0 dB = 0.0338 W/kg = -14.71 dBW/kg

Additional information:

Date/Time: 21.06.2016 11:32:45

WLAN2450MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz; $\sigma = 2.024$ S/m; $\epsilon_r = 51.164$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.53, 7.53, 7.53); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 26.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL2450/Right side Middle - body - 20mm - aux antenna/Area Scan

(161x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0457 W/kg

MSL2450/Right side Middle - body - 20mm - aux antenna/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.752 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.0610 W/kg

SAR(1 g) = 0.035 W/kg; SAR(10 g) = 0.021 W/kg Maximum value of SAR (measured) = 0.0372 W/kg

0 dB = 0.0372 W/kg = -14.29 dBW/kg

Additional information:

Date/Time: 21.06.2016 16:30:11

WLAN2450MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz; $\sigma = 2.024$ S/m; $\epsilon_r = 51.164$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.53, 7.53, 7.53); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 26.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL2450/Rear Middle - extremity - 0mm - main antenna/Area Scan

(161x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.360 W/kg

MSL2450/Rear Middle - extremity - 0mm - main antenna/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.112 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.445 W/kg

SAR(1 g) = 0.253 W/kg; SAR(10 g) = 0.136 W/kg Maximum value of SAR (measured) = 0.280 W/kg

0 dB = 0.280 W/kg = -5.53 dBW/kg

Additional information:

Date/Time: 21.06.2016 08:21:36

WLAN2450MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz; $\sigma = 2.024$ S/m; $\varepsilon_r = 51.164$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.53, 7.53, 7.53); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL2450/Left side Middle - extremity - 0mm - main antenna/Area Scan

(161x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 5.74 W/kg

MSL2450/Left side Middle - extremity - 0mm - main antenna/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.943 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 7.96 W/kg

SAR(1 g) = 3.44 W/kg; SAR(10 g) = 1.33 W/kg Maximum value of SAR (measured) = 4.21 W/kg

0 dB = 4.21 W/kg = 6.24 dBW/kg

Additional information:

Date/Time: 21.06.2016 12:10:41

WLAN2450MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz; $\sigma = 2.024$ S/m; $\epsilon_r = 51.164$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.53, 7.53, 7.53); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL2450/Rear Middle - extremity - 0mm - aux antenna/Area Scan

(161x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.155 W/kg

MSL2450/Rear Middle - extremity - 0mm - aux antenna/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.459 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.183 W/kg

SAR(1 g) = 0.103 W/kg; SAR(10 g) = 0.054 W/kg Maximum value of SAR (measured) = 0.114 W/kg

0 dB = 0.114 W/kg = -9.43 dBW/kg

Additional information:

Date/Time: 21.06.2016 08:53:38

WLAN2450MHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2437

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2437 MHz; $\sigma = 2.024$ S/m; $\varepsilon_r = 51.164$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(7.53, 7.53, 7.53); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL2450/Right side Middle - extremity - 0mm - aux antenna/Area Scan

(161x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.227 W/kg

MSL2450/Right side Middle - extremity - 0mm - aux antenna/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.382 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.276 W/kg

SAR(1 g) = 0.163 W/kg; SAR(10 g) = 0.090 W/kg Maximum value of SAR (measured) = 0.179 W/kg

0 dB = 0.179 W/kg = -7.47 dBW/kg

Additional information:

Annex B.3: WLAN 5GHz

Date/Time: 15.06.2016 12:22:14

WLAN 5GHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency: 5280

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5280 MHz; $\sigma = 5.46 \text{ S/m}$; $\varepsilon_r = 49$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 - SN3944; ConvF(4.48, 4.48, 4.48); Calibrated: 14.08.2015;

- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection). z = 1.0, 23.0

- Electronics: DAE3 Sn413; Calibrated: 11.01.2016

- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154

- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL5GHz - Body worn 15 -20 mm/Rear Ch56 Main Antenna/Area Scan

(241x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.104 W/kg

MSL5GHz - Body worn 15 -20 mm/Rear Ch56 Main Antenna/Zoom Scan

(9x9x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.556 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.354 W/kg

SAR(1 g) = 0.059 W/kg; SAR(10 g) = 0.023 W/kg Maximum value of SAR (measured) = 0.110 W/kg

0 dB = 0.110 W/kg = -9.59 dBW/kg

Additional information:

Date/Time: 15.06.2016 16:33:01

WLAN 5GHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency: 5280

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5280 MHz; σ = 5.46 S/m; ϵ_r = 49; ρ = 1000 kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 - SN3944; ConvF(4.48, 4.48, 4.48); Calibrated: 14.08.2015;

- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface:

2mm (Mechanical Surface Detection), z = 1.0, 23.0 - Electronics: DAE3 Sn413; Calibrated: 11.01.2016

- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154

- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL5GHz - Body worn 20 mm/Left Ch56 Main Antenna 20 mm/Area Scan

(241x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.291 W/kg

MSL5GHz - Body worn 20 mm/Left Ch56 Main Antenna 20 mm/Zoom Scan

(11x10x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 7.174 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.426 W/kg

SAR(1 g) = 0.137 W/kg; SAR(10 g) = 0.055 W/kg Maximum value of SAR (measured) = 0.244 W/kg

0 dB = 0.244 W/kg = -6.13 dBW/kg

Additional information:

Date/Time: 15.06.2016 15:11:13

WLAN 5GHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency: 5260

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5260 MHz; $\sigma = 5.41$ S/m; $\epsilon_r = 49.1$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.48, 4.48, 4.48); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL5GHz - Body worn 15 mm/Rear Ch52 Aux Antenna/Area Scan

(241x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.197 W/kg

MSL5GHz - Body worn 15 mm/Rear Ch52 Aux Antenna/Zoom Scan

(10x9x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 6.175 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.320 W/kg

SAR(1 g) = 0.100 W/kg; SAR(10 g) = 0.042 W/kg Maximum value of SAR (measured) = 0.179 W/kg

0 dB = 0.179 W/kg = -7.47 dBW/kg

Additional information:

Date/Time: 15.06.2016 18:13:53

WLAN 5GHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency: 5260

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5260 MHz; $\sigma = 5.41$ S/m; $\epsilon_r = 49.1$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.48, 4.48, 4.48); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL5GHz - Body worn 15 -20 mm/Right Ch52 Aux Antenna 20 mm/Area Scan

(241x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0486 W/kg

MSL5GHz - Body worn 15 -20 mm/Right Ch52 Aux Antenna 20 mm/Zoom

Scan (9x14x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 2.985 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.191 W/kg

SAR(1 g) = 0.024 W/kg; SAR(10 g) = 0.010 W/kg Maximum value of SAR (measured) = 0.0510 W/kg

0 dB = 0.0510 W/kg = -12.92 dBW/kg

Additional information:

Date/Time: 15.06.2016 11:32:09

WLAN 5GHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency: 5280

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5280 MHz; σ = 5.46 S/m; ϵ_r = 49; ρ = 1000 kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.48, 4.48, 4.48); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL5GHz - extremity - 0mm/Rear Ch56 Main Antenna/Area Scan (241x141x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.376 W/kg

MSL5GHz - extremity - 0mm/Rear Ch56 Main Antenna/Zoom Scan

(7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 8.482 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.683 W/kg

SAR(1 g) = 0.199 W/kg; SAR(10 g) = 0.077 W/kg Maximum value of SAR (measured) = 0.360 W/kg

0 dB = 0.360 W/kg = -4.44 dBW/kg

Additional information:

Date/Time: 15.06.2016 13:44:30

WLAN 5GHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency: 5280

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5280 MHz; σ = 5.46 S/m; ϵ_r = 49; ρ = 1000 kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.48, 4.48, 4.48); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL5GHz - extremity - 0mm/Left Ch56 Main Antenna/Area Scan (241x141x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.28 W/kg

MSL5GHz - extremity - 0mm/Left Ch56 Main Antenna/Zoom Scan

(9x9x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 19.089 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 4.98 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.273 W/kg Maximum value of SAR (measured) = 2.43 W/kg

0 dB = 2.43 W/kg = 3.86 dBW/kg

Additional information:

Date/Time: 15.06.2016 14:35:40

WLAN 5GHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency: 5260

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5260 MHz; $\sigma = 5.41$ S/m; $\epsilon_r = 49.1$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.48, 4.48, 4.48); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL5GHz - extremity - 0mm/Rear Ch52 Aux Antenna/Area Scan (241x141x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.09 W/kg

MSL5GHz - extremity - 0mm/Rear Ch52 Aux Antenna/Zoom Scan

(8x8x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 13.568 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.70 W/kg

SAR(1 g) = 0.511 W/kg; SAR(10 g) = 0.185 W/kg Maximum value of SAR (measured) = 0.911 W/kg

0 dB = 0.911 W/kg = -0.40 dBW/kg

Additional information:

Date/Time: 15.06.2016 17:26:07

WLAN 5GHz

DUT: Motorola; Type: Workabout Pro4; Serial: WPQACE240073C1

Communication System: UID 0, WLAN 5GHz (0); Communication System Band: 5 GHz Band; Frequency: 5260

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5260 MHz; $\sigma = 5.41$ S/m; $\epsilon_r = 49.1$; $\rho = 1000$ kg/m³

Phantom section: Center Section Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 SN3944; ConvF(4.48, 4.48, 4.48); Calibrated: 14.08.2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 23.0
- Electronics: DAE3 Sn413; Calibrated: 11.01.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL5GHz - extremity - 0mm/Right Ch52 Aux Antenna/Area Scan (241x141x1):

Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0964 W/kg

MSL5GHz - extremity - 0mm/Right Ch52 Aux Antenna/Zoom Scan

(9x10x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.485 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.176 W/kg

SAR(1 g) = 0.049 W/kg; SAR(10 g) = 0.017 W/kg Maximum value of SAR (measured) = 0.0987 W/kg

0 dB = 0.0987 W/kg = -10.06 dBW/kg

Additional information:

Annex B.4: Liquid depth

Photo 1: Liquid depth 850 MHz body simulating liquid

Photo 2: Liquid depth 1900 MHz body simulating liquid

Photo 3: Liquid depth 2450 MHz body simulating liquid

Photo 4: Liquid depth 5 GHz body simulating liquid

Annex C: Photo documentation

Photo 2: DUT - front view

Photo 4: DUT – left side view

Photo 5: DUT – top side view

Photo 6: DUT – bottom side view

Photo 7: DUT - rear side view

Photo 9: DUT - rear side view opened (battery detached)

Photo 10: DUT - rear side view opened (label)

Photo 11: DUT - rearside view opened (label)

Photo 12: test position - front with 0mm distance

Photo 13: test position - front with 3mm distance

Photo 14: test position - rear with 0mm distance

Photo 15: test position - rear with 15mm distance

Photo 16: test position - right side with 0mm distance

Photo 17: test position - right side with 20mm distance

Photo 18: test position - left side with 0mm distance

Photo 19: Test position - left side with 20mm distance

Annex D: Calibration parameters

Calibration parameters are described in the additional document:

Appendix to test report no. 1-1935/16-01-02 Calibration data, Phantom certificate and detail information of the DASY5 System

Annex E: Document History

Version	Applied Changes	Date of Release
	Initial Release	2016-06-22

Annex F: Further Information

Glossary

BW - Bandwidth

DTS - Distributed Transmission System

DUT - Device under Test EUT - Equipment under Test

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware
IC - Industry Canada
Inv. No. - Inventory number
N/A - not applicable

PCE - Personal Consumption Expenditure
OET - Office of Engineering and Technology

RB - resource block(s)

SAR - Specific Absorption Rate

S/N - Serial Number SW - Software

UNII - Unlicensed National Information Infrastructure