RELATÓRIO 6 Data: / /
Disciplina: E209

Prof: Yvo Marcelo Chiaradia Masselli
Monitores: João Lucas/Luan Siqueira/Maria Luiza/
Lucas Lares/Rafaela Papale

Conteúdo: Microcontrolador ATMega328p

Tema: Interrupção Externa e modos de baixo consumo (sleep modes)

Nome: Matrícula: Curso:

OBJETIVOS:

- Utilizar ferramentas de simulação para desenvolver programas para
- o ATmega328p.
- Desenvolver um programa que faça uso da interrupção externa.
- Utilizar as entradas e saídas do ATmega328p com circuitos de aplicação.

Parte Teórica

Interrupção

É um recurso no qual **o ciclo de execução natural do programa é paralisado** para **executar um bloco específico**. Quando uma interrupção é chamada, caso a mesma esteja habilitada, o microcontrolador salta para um endereço padrão da memória de programa que contem tal bloco específico.

O objetivo desse relatório é estudar a interrupção externa. O ATMega328p permite que a interrupção externa seja disparada por um dos seguintes eventos: presença de um nível lógico baixo, transição de subida, transição de descida ou ainda transições de subida e descida do nível lógico presente nos pinos PD2(INTO) ou PD3(INT1). Para configurar o evento que vai disparar a interrupção externa, utiliza-as o registro EICRA. A figura abaixo mostra os bits desse registro:

7	6	5	4	3	2	1	0	_
-	-	-	-	ISC11	ISC10	ISC01	ISC00	EICRA
Figura 1 - Registro EICRA								ı

A tabela abaixo apresenta as configurações para selecionar o evento que irá disparar a interrupção.

ISCx1	ISCx0	Descrição
0	0	Presença de nível lógico baixo em INTx gera interrupção.
0	1	Transições de subida e descida do nível lógico presente em INTx geram interrupção.
1	0	Transição de descida do nível lógico presente em INTx gera interrupção.
1	1	Transição de subida do nível lógico presente em INTx gera interrupção.

Tabela 1 - Configuração do registro EICRA

Outro registro que é necessário para utilizar a interrupção externa, é o registro **EIMSK**. Esse registro é responsável por habilitar a interrupção externa desejada. A figura abaixo mostra os bits desse registro:

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	INT1	INT0	EIMSK

Figura 2 - Registro EIMSK

O bit ${\bf INT0}$ habilita a ${\bf interrupção}$ externa ${\bf 0}$ (PD2) e o bit ${\bf INT1}$ habilita a ${\bf interrupção}$ externa ${\bf 1}$ (PD3).

Para fazer uso de qualquer interrupção no ATMega328p é necessário habilitar o bit de interrupção global. A linha de código utilizada para isso é: "sei();". Essa linha acessa o registro que armazena o valor desse bit de configuração e liga o bit.

Assim, o microcontrolador irá atender a um pedido de interrupção que esteja habilitado. Se essa linha não for colocada no programa, as interrupções solicitadas não serão atendidas.

Para indicar qual função (ou rotina) deve ser executada quando a interrupção ocorrer, usa-se a função ISR com o vetor da interrupção desejada:

```
ISR(VETOR)
{
...
    // Rotina de interrupção
...
}
```

Onde o **VETOR** pode ser **INTO_vect** ou **INT1_vect**, para as interrupções externas tratadas nesse relatório.

Exercícios:

- 1) Escreva um programa que use a interrupção externa INTO como canal de interrupção acionado pela transição de subida do sinal. O programa deverá piscar um LED no pino 7 (PD7) a cada 2 segundos no super-loop e a cada vez que acontecer um pedido de interrupção, um LED no pino 6 (PD6) acende por 200ms e depois apaga.
- 2) Modifique o programa anterior, para que através da outra Interrupção Externa (INT1), acionada na transição de descida, cada vez que for acionada esta interrupção, ela deverá desabilitar/habilitar o outro portal a aceitar interrupções.

ANEXO) PROGRAMA EXEMPLO

```
ISR(INT0_vect)
    PORTD ^= 0b10000000;
int main(void)
    // Configura os pinos 7 (PD7) e 6 (PD6) como saída
    DDRD = 0b11000000;
    // Habilita o resistor interno de pull-up no pino 2 (PD2)
    PORTD = 0b00000100;
    // Configura a interrupção externa 0 para transição de descida
    EICRA = 0b00000010;
    // Habilita a interrupção externa 0
    EIMSK = 0b00000001;
    // Habilita a interrupção global
    sei();
    //Superloop
    while (1)
        // Inverte a saída 6 (PD6)
        PORTD ^= 0b01000000;
       _delay_ms(500);
```