YASH SHUKLA

Medford, MA - 02155 — (929) 318-4100

Webpage: www.yshukla.com LinkedIn: www.linkedin.com/in/yashshukla Email: yash.shukla@tufts.edu

RESEARCH INTERESTS

• Reinforcement Learning

• Robotics / Robot Learning

• Foundational Models (LLMs)

• CV; DL; ML

• Natural Language Processing

• Neurosymbolic AI

EDUCATION

Ph.D. in Computer Science

Sept '20 – Present

Tufts University, Medford, MA

(GPA - 3.8/4.0)

Relevant Courses: Reinforcement Learning, Probabilistic Robotics, Algorithms

Master of Science in Robotics Engineering

Aug '18 - May '20

Worcester Polytechnic Institute (WPI), Worcester, MA

(GPA - 4.0/4.0)

Relevant Courses: Deep Learning for Perception, Artificial Intelligence, Robot Control, Human Robot Interaction

Bachelor of Engineering (Hons.) in Mechanical Engineering (Acceptance rate $\sim 2\%$)

Aug '14 - May '18

Birla Institute of Technology and Science, Pilani, India

(GPA - 8.36/10)

Relevant Courses: Digital Image Processing, Robotics and Mechanisms, Mechatronics

EXPERIENCE

Research Intern at Mitsubishi Electric Research Lab, Cambridge, MA

Oct '23 - Apr '24

- · LLM and VLM assisted human robot collaboration for assembly tasks in robotic manipulation settings.
- · Recognizing human intent to improve and speed up human robot collaboration in a safe manner.

Lecturer at Tufts University, Medford, MA

Sept '23 - Dec '23

· Designing and instructing CS 138 Reinforcement Learning (First student at Tufts to teach RL).

Research Intern at Georgia Tech Research Institute, Atlanta, GA

May '23 – Sept '23

- · Utilizing foundational models (LLMs, VLMs) to suggest task plans that aid the learning ability of robotic RL agents.
- · Learning long-horizon behaviors for RL agents by integrating output from LLMs/VLMs and offline RL algorithms.

Research Assistant at Tufts University, Medford, MA

Aug '20 - Present

- · Designing efficient neurosymbolic AI techniques to improve sample efficiency of robotic agent learning.
- · Formulating new ideas in the field of Generative AI, Reinforcement Learning, and Robot Learning.
- · First authored publications at IROS '23, ICAPS '23, AAMAS '22, ICDL '22, SRL (ICRA) '22, Sim2Real (RSS) '22.

Computer Vision Team, MathWorks, Natick, MA

May '19 – Aug '19

- · Formulated an innovative CV algorithm to improve accuracy of camera calibration parameters for Fisheye Cameras.
- · Achieved better checkerboard detection precision (98 %) as compared to the existing technique (83 %).

Centre for Artificial Intelligence and Robotics, Bangalore, India

Jan '18 – June '18

- · Developed on-the-fly object recognition pipeline for efficient robotic navigation in indoor settings.
- · Integrated object recognition with semantic SLAM in ROS for natural language command based robotic navigation.

PUBLICATIONS

LgTS: Dynamic Task Sampling using LLM-generated sub-goals for Reinforcement Learning Agents Yash Shukla, Wenchang Gao, Vasanth Sarathy, Alvaro Velasquez, Robert Wright, Jivko Sinapov International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2024.

Logical Specification-Guided Dynamic Task Sampling for Reinforcement Learning Agents

Yash Shukla, Tanushree Burman, Abhishek Kulkarni, Alvaro Velasquez, Robert Wright, Jivko Sinapov Under review

A Framework for Few-Shot Policy Transfer through Observation Mapping and Behavior Cloning

Yash Shukla, Bharat Kesari, Shivam Goel, Robert Wright, and Jivko Sinapov.

International Conference on Intelligent Robots and Systems (IROS), 2023.

Automaton-Guided Curriculum Generation for Reinforcement Learning Agents

Yash Shukla, Abhishek Kulkarni, Robert Wright, Alvaro Velasquez, and Jivko Sinapov.

International Conference on Automated Planning and Scheduling (ICAPS), 2023.

ACuTE: Automatic Curriculum Transfer from Simple to Complex Environments

Yash Shukla, Christopher Thierauf, Ramtin Hosseini, Gyan Tatiya, Jivko Sinapov.

International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2022.

RAPid-Learn: A Framework for Learning to Recover for Handling Novelties in Open-World Environments

Shivam Goel*, Yash Shukla*, Vasanth Sarathy, Matthias Scheutz, and Jivko Sinapov.

International Conference on Development and Learning (ICDL), 2022. * - Denotes equal contribution

A Framework for Curriculum Schema Transfer from Low-Fidelity to High-Fidelity Environments

Yash Shukla, Jivko Sinapov.

Closing the Reality Gap in Sim2Real Transfer for Robotics at Robotics: Science and Systems (RSS), 2022.

An Object-Oriented Approach for Generating Low-Fidelity Environments for Curriculum Schema Transfer

Yash Shukla, Kaleb Loar, Robert Wright, Jivko Sinapov.

Scaling Robot Learning Workshop at International Conference on Robotics and Automation (ICRA), 2022.

Haptic Knowledge Transfer Between Heterogeneous Robots using Kernel Manifold Alignment

Gyan Tatiya, Yash Shukla, Michael Edegware and Jivko Sinapov.

International Conference on Intelligent Robots and Systems (IROS), 2020.

SKILLS

Programming: Python (Expert), C/C++ (Expert), MATLAB (Intermediate), Java (Intermediate)

Robotic Frameworks and Simulators: Robot Operating System, MuJoCo, Isaac Gym, PyBullet

Deep Learning Frameworks: PyTorch, Tensorflow, Keras

OTHER PROJECTS [Under preparation / Pre-PhD Works]

LLMs & VLMs for handling failure in sequential decision making Robotic tasks Sept '23 – Present

- · Using vision, tactile and motion planner to close the loop and further refine LLM suggested task plans.
- · Inventing methods that aid Robotic agents develop creative problem solving tools (collab w/ Chris Paxton, Meta)

Offline RL with human feedback for Robotic Manipulation

Jan '23 – Present

· Working on incorporating human feedback in a diverse offline RL dataset to improve efficiency of Robotic Learning.

Multi-Source Feature Alignment for Collaborative Robot Manipulation

Jan '20 – May '20

- · Designed representation for knowledge transfer using kernel manifold alignment (KEMA). (Accepted at IROS 2020)
- · The representation enabled two source robots to transfer knowledge about novel objects to a target robot.

Learning based Motion Planning for Manipulators, WPI

Aug '19 – Dec '19

- \cdot Designed and applied DDPG-MP to a 4 DOF manipulator to achieve motion planning faster than RRT.
- · Compared and evaluated Imitation Learning, Supervised Learning and DDPG-MP approaches for motion planning.

Viewpoint optimization for aiding grasp synthesis using Supervised learning, WPI Jan '19 – Dec '19

- · Implemented active vision methodology to optimize depth sensor viewpoint to increase synthesized grasp quality.
- · Employed supervised learning techniques to obtain viewpoint optimized policy by generating automated data.

Ship Detection and Segmentation from Aerial Images, WPI

Aug '18 - Dec '18

- · Implemented a two model Deep Learning architecture to segment ships from aerial images on Airbus Dataset.
- · Applied ResNet to classify images containing ships and later segmented them using a stacked Hourglass model.