Assignment_3_KF

May 6, 2025

0.0.1 Unscented Kalman filter (Non-Linear Kalman) Algorithm

#Process model

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{\mathbf{p}} \\ G(\mathbf{q})^{-1}(\mathbf{u}_{\omega} - \mathbf{b}_g) \\ \mathbf{g} + R(\mathbf{q})(\mathbf{u}_a - \mathbf{b}_a) \\ \mathbf{n}_{bg} \\ \mathbf{n}_{ba} \end{bmatrix}$$

Predict Step

1. Sigma Point Generation

Generate a set of sigma points around the current state mean using the state covariance matrix. These points are deterministically chosen to capture the mean and covariance of the state distribution.

2. Process Model Propagation

Each sigma point is propagated through the nonlinear process model to predict the future state. This step captures the nonlinearity in the system dynamics.

3. Predicted Mean and Covariance

The predicted state mean and covariance are computed as a weighted average of the propagated sigma points. This forms the prior estimate for the current time step.

Update Step

1. Sigma Points in Measurement Space

The predicted sigma points are passed through the nonlinear observation model to map them into the measurement space.

2. Predicted Measurement and Covariance

Compute the predicted measurement mean and covariance using a weighted average of the transformed sigma points.

3. Cross-Covariance Calculation

Compute the cross-covariance matrix between the state space and the measurement space sigma points.

4. Kalman Gain Computation

Calculate the Kalman gain using the cross-covariance and the predicted measurement co-

variance. This gain determines how much the prediction should be corrected based on the measurement.

5. State and Covariance Update

Update the state estimate and state covariance using the actual measurement, the predicted measurement, and the Kalman gain.

0.0.2 Plots

```
[]: #Simulate the results and plot

from simulation_KF import simulate

filename = "data\data\studentdata0.mat"
    simulate(filename)
```



```
[]: #Simulate the results and plot
from simulation_KF import simulate
filename = "data\data\studentdata1.mat"
simulate(filename)
```



```
[]: #Simulate the results and plot
from simulation_KF import simulate
filename = "data\data\studentdata2.mat"
simulate(filename)
```



```
[]: #Simulate the results and plot
from simulation_KF import simulate
filename = "data\data\studentdata3.mat"
simulate(filename)
```



```
[]: #Simulate the results and plot

from simulation_KF import simulate

filename = "data\data\studentdata4.mat"
    simulate(filename)
```



```
[]: #Simulate the results and plot
from simulation_KF import simulate
filename = "data\data\studentdata5.mat"
simulate(filename)
```



```
[]: #Simulate the results and plot

from simulation_KF import simulate

filename = "data\data\studentdata6.mat"
    simulate(filename)
```



```
[]: #Simulate the results and plot
from simulation_KF import simulate
filename = "data\data\studentdata7.mat"
simulate(filename)
```


