BISON Instantiating the Whitened Swap-Or-Not Construction

September 6th, 2018

Horst Görtz Institut für IT Sicherheit Ruhr-Universität Bochum

Virginie Lallemand, Gregor Leander, Patrick Neumann, and *Friedrich Wiemer*

RUB

Block Ciphers

Encrypt plaintext in blocks p_i of n bits, under a key of n bits:

Block Ciphers

Published by Tessaro at AsiaCrypt 2015 [ia.cr/2015/868].

Overview round, iterated r times

Whitened Swap-Or-Not round function

$$x, k \in \{0, 1\}^n$$
 and $f_k : \{0, 1\}^n \to \{0, 1\}$
$$y = \begin{cases} x + k & \text{if } f_k(x) = 1 \\ x & \text{if } f_k(x) = 0 \end{cases}$$

The WSN construction

Published by Tessaro at AsiaCrypt 2015 [ia.cr/2015/868].

Overview round, iterated r times

Properties of f_{k} (needed for decryption)

$$f_k(x) = f_k(x+k)$$

Whitened Swap-Or-Not round function

$$x, k \in \{0, 1\}^n$$
 and $f_k : \{0, 1\}^n \to \{0, 1\}$
 $y = \begin{cases} x + k & \text{if } f_k(x) = 1 \\ x & \text{if } f_k(x) = 0 \end{cases}$

Security Proposition (informal)

The WSN construction with $r = \mathcal{O}(n)$ rounds is Full Domain secure.

Encryption

The WSN construction

Input

 \boldsymbol{x}

RUB

The WSN construction

Encryption

The WSN construction

Encryption

The WSN construction

Encryption

Encryption:
$$E_k(x) := x + \sum_{i=1}^{r} \lambda_i k_i = y$$

An Implementation

An Implementation

Construction

- $\blacksquare f_k(x) \coloneqq ?$
- Key schedule?
- $\bigcirc \mathscr{O}(n)$ rounds?

Theoretical vs. practical constructions

Generic Analysis On the number of rounds

Observation

■ The ciphertext is the plaintext plus a subset of the round keys:

$$y = x + \sum_{i=1}^{r} \lambda_i k_i$$

■ For pairs x_i, y_i : span $\{x_i + y_i\} \subseteq \text{span } \{k_j\}$.

Observation

■ The ciphertext is the plaintext plus a subset of the round keys:

$$y = x + \sum_{i=1}^{r} \lambda_i k_i$$

■ For pairs x_i, y_i : span $\{x_i + y_i\} \subseteq \text{span } \{k_j\}$.

Distinguishing Attack for r < n rounds

There is an $u \in \mathbb{F}_2^n \setminus \{0\}$, s.t. $\langle u, x \rangle = \langle u, y \rangle$ holds always:

$$\langle u, y \rangle = \langle u, x + \sum \lambda_i k_i \rangle$$

= $\langle u, x \rangle + \langle u, \sum \lambda_i k_i \rangle = \langle u, x \rangle + 0$

for all $u \in \operatorname{span} \{k_1, \dots, k_r\}^{\perp} \neq \{0\}$

Generic Analysis On the number of rounds

Observation

The ciphertext is the plaintext plus a subset of the round keys:

$$y = x + \sum_{i=1}^{r} \lambda_i k_i$$

■ For pairs x_i, y_i : span $\{x_i + y_i\} \subseteq \text{span } \{k_j\}$.

Distinguishing Attack for r < n rounds

There is an $u \in \mathbb{F}_2^n \setminus \{0\}$, s.t. $\langle u, x \rangle = \langle u, y \rangle$ holds always:

$$\langle u, y \rangle = \langle u, x + \sum_{i} \lambda_{i} k_{i} \rangle$$

= $\langle u, x \rangle + \langle u, \sum_{i} \lambda_{i} k_{i} \rangle = \langle u, x \rangle + 0$

for all $u \in \operatorname{span} \{k_1, \dots, k_r\}^{\perp} \neq \{0\}$

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Generic AnalysisOn the Boolean functions *f*

A bit out of the blue sky, but:

Rationale 2

For any instance, f has to depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_k(x) = f_k(x + \delta)] \approx \frac{1}{2}$.

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Rationale 2

For any instance, f has to depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_k(x) = f_k(x + \delta)] \approx \frac{1}{2}$.

Generic properties of Bent whitened Swap Or Not

- At least n iterations of the round function
- Consecutive round keys linearly independent
- The round function depends on all bits
- $\forall \delta : \Pr[f_k(x) = f_k(x + \delta)] = \frac{1}{2} (bent)$

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Rationale 2

For any instance, f has to depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_k(x) = f_k(x + \delta)] \approx \frac{1}{2}$.

Generic properties of Bent whitened Swap Or Not

- At least n iterations of the round function
- Consecutive round keys linearly independent
- The round function depends on all bits
- $\forall \delta: \Pr[f_k(x) = f_k(x+\delta)] = \frac{1}{2} (bent)$

Rational 1 & 2: WSN is slow in practice!

But what about Differential Cryptanalysis?

RUB

Primer

Primer

Primer

Differential CryptanalysisOne round

Proposition

For one round of BISON the probabilities are:

$$\Pr[\alpha \to \beta] = \begin{cases} 1 & \text{if } \alpha = \beta = k \text{ or } \alpha = \beta = 0 \\ \frac{1}{2} & \text{else if } \beta \in \{\alpha, \alpha + k\} \\ 0 & \text{else} \end{cases}$$

Differential CryptanalysisOne round

Proposition

For one round of BISON the probabilities are:

$$\Pr[\alpha \to \beta] = \begin{cases} 1 & \text{if } \alpha = \beta = k \text{ or } \alpha = \beta = 0 \\ \frac{1}{2} & \text{else if } \beta \in \{\alpha, \alpha + k\} \\ 0 & \text{else} \end{cases}$$

Possible differences

$$x + f_k(x) \cdot k$$

$$\oplus x + \alpha + f_k(x + \alpha) \cdot k$$

$$= \alpha + (f_k(x) + f_k(x + \alpha)) \cdot k$$

Differential CryptanalysisOne round

Proposition

For one round of BISON the probabilities are:

$$\Pr[\alpha \to \beta] = \begin{cases} 1 & \text{if } \alpha = \beta = k \text{ or } \alpha = \beta = 0\\ \frac{1}{2} & \text{else if } \beta \in \{\alpha, \alpha + k\}\\ 0 & \text{else} \end{cases}$$

Possible differences

$$x + f_k(x) \cdot k$$

$$\oplus x + \alpha + f_k(x + \alpha) \cdot k$$

$$= \alpha + (f_k(x) + f_k(x + \alpha)) \cdot k$$

Remember

$$\Pr[f_k(x) = f_k(x + \alpha)] = \frac{1}{2}$$

More rounds

Example differences over r = 3 rounds:

Differential CryptanalysisMore rounds

Example differences over r = 3 rounds:

For fixed α and β there is only *one* path!

A concrete species

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linearly indp.

Design Decisions

- Choose number of rounds as $2 \cdot n$
- Round keys derived from the state of LESRs
- \blacksquare Add round constants c_i to w_i round keys

Implications

- Clocking an LFSR is cheap
- For an LFSR with irreducible feedback polynomial of degree n, every n consecutive states are linearly independent
- Round constants avoid structural weaknesses

Rationale 2

For any instance, the f should depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_k(x) = f_k(x + \delta)] \approx \frac{1}{2}$.

Design Decisions

■ Choose $f_k : \mathbb{F}_2^n \to \mathbb{F}_2$ s.t.

$$\delta \in \mathbb{F}_2^n$$
: $\Pr[f_k(x) = f_k(x+\delta)] = \frac{1}{2}$,

that is, f_k is a bent function.

■ Choose the simplest bent function known:

$$f_k(x,y) := \langle x,y \rangle$$

Implications

- Bent functions well studied
- lacksquare Bent functions only exists for even n
- Instance not possible for every block length n

Conclusion/Questions

Thank you for your attention!

BISON

- A first instance of the WSN construction
- Good results for differential cryptanalysis

Open Problems

- Construction for linear cryptanalysis
- Further analysis: division properties

Thank you!

Questions?

BISON's round function

For round keys $k_i \in \mathbb{F}_2^n$ and $w_i \in \mathbb{F}_2^{n-1}$ the round function computes

$$R_{k_i,w_i}(x) := x + f_{b(i)}(w_i + \Phi_{k_i}(x)) \cdot k_i.$$

where

lacksquare Φ_{k_i} and $f_{b(i)}$ are defined as

$$\Phi_k(x): \mathbb{F}_2^n \to \mathbb{F}_2^{n-1}$$

$$\Phi_k(x) := (x + x[i(k)] \cdot k)[j]_{\substack{1 \le j \le n \\ j \neq i(k)}}$$

$$f_{b(i)}: \mathbb{F}_2^{\frac{n-1}{2}} \times \mathbb{F}_2^{\frac{n-1}{2}} \to \mathbb{F}_2$$

 $f_{b(i)}(x,y) \coloneqq \langle x,y \rangle + b(i),$

■ and b(i) is 0 if $i \le \frac{r}{2}$ and 1 else.

BISON's key schedule

Given

- lacksquare primitive p_k , $p_w \in \mathbb{F}_2[x]$ with degrees n, n-1 and companion matrices C_k , C_w .
- \blacksquare master key $K = (k, w) \in (\mathbb{F}_2^n \times \mathbb{F}_2^{n-1}) \setminus \{0, 0\}$

The *i*th round keys are computed by

$$KS_i: \mathbb{F}_2^n \times \mathbb{F}_2^{n-1} \to \mathbb{F}_2^n \times \mathbb{F}_2^{n-1}$$

$$KS_i(k, w) := (k_i, c_i + w_i)$$

where

$$k_i = (C_k)^i k, \qquad c_i = (C_w)^{-i} e_1, \qquad w_i = (C_w)^i w.$$

Further Cryptanalysis

Linear Cryptanalysis

For $r \ge n$ rounds, the correlation of any non-trivial linear trail for BISON is upper bounded by $2^{-\frac{n+1}{2}}$.

Zero Correlation

For r > 2n-2 rounds, BISON does not exhibit any zero correlation linear hulls.

Invariant Attacks

For $r \ge n$ rounds, neither invariant subspaces nor nonlinear invariant attacks do exist for BISON.

Impossible Differentials

For r > n rounds, there are no impossible differentials for BISON.