CODATA RECOMMENDED VALUES OF THE FUNDAMENTAL PHYSICAL CONSTANTS: 2014

NIST SP 961 (Sept/2015) Values from: P. J. Mohr, D. B. Newell, and B. N. Taylor, arXiv:1507.07956

A more extensive listing of constants is available in the above reference and on the NIST Physics Laboratory Web site physics.nist.gov/constants. The number in parentheses is the one-standard-deviation uncertainty in the last two digits of the given value.

Quantity	Symbol	Numerical value	Unit	Quantity	Symbol	Numerical value	Unit
speed of light in vacuum	c, c_0	299 792 458 (exact)	$\mathrm{m}~\mathrm{s}^{-1}$	muon g-factor $-2(1+a_{\mu})$	g_{μ}	-2.0023318418(13)	
magnetic constant	μ_0	$4\pi \times 10^{-7} \text{ (exact)}$	$N A^{-2}$	muon-proton magnetic moment ratio	$\mu_{ m \mu}/\mu_{ m p}$	-3.183345142(71)	
		$= 12.566370614 \times 10^{-7}$	$N A^{-2}$	proton mass	$m_{ m p}$	$1.672621898(21) \times 10^{-27}$	kg
electric constant $1/\mu_0 c^2$	ϵ_0	$8.854187817 \times 10^{-12}$	$\mathrm{F}\ \mathrm{m}^{-1}$	in u	•	1.007 276 466 879(91)	u
Newtonian constant of gravitation	$\overset{\circ}{G}$	$6.67408(31) \times 10^{-11}$	${ m m^{3}~kg^{-1}~s^{-2}}$	energy equivalent in MeV	$m_{ m p}c^2$	938.272 0813(58)	MeV
Planck constant	h	$6.626070040(81)\times10^{-34}$	Js	proton-electron mass ratio	$m_{ m p}^{ m r}/m_{ m e}$	1836.152 673 89(17)	
in eV s		$4.135667662(25) \times 10^{-15}$	eV s	proton magnetic moment	$\mu_{ m p}$	$1.4106067873(97)\times 10^{-26}$	$J T^{-1}$
$h/2\pi$	\hbar	$1.054571800(13)\times10^{-34}$	Js	to nuclear magneton ratio	$\mu_{ m p}/\mu_{ m N}$	2.792 847 3508(85)	
in eV s		$6.582119514(40) \times 10^{-16}$	eV s	proton magnetic shielding correction $1 - \mu_{\rm p}'/\mu_{\rm p}$	σ_{n}^{\prime}	$25.691(11) \times 10^{-6}$	
elementary charge	e	$1.6021766208(98) \times 10^{-19}$	C	$(H_2O, \text{ sphere, } 25 ^{\circ}C)$	У	,	
magnetic flux quantum $h/2e$	Φ_0	$2.067833831(13)\times10^{-15}$	Wb	proton gyromagnetic ratio $2\mu_{\rm p}/\hbar$	$\gamma_{ m p}$	$2.675221900(18)\times10^{8}$	$s^{-1} T^{-1}$
Josephson constant $2e/h$	$K_{ m J}$	$483597.8525(30) \times 10^9$	$\mathrm{Hz}\;\mathrm{V}^{-1}$	F 8/8 =/p/	$\gamma_{\rm p}/2\pi$	42.577 478 92(29)	$ m MHz~T^{-1}$
von Klitzing constant $h/e^2 = \mu_0 c/2\alpha$	$R_{\rm K}$	25 812.807 4555(59)	Ω	shielded proton gyromagnetic ratio $2\mu'_{\rm p}/\hbar$	$\gamma_{ m p}/2\pi \ \gamma_{ m p}'$	$2.675\ 153\ 171(33) \times 10^8$	$s^{-1} T^{-1}$
Bohr magneton $e\hbar/2m_e$	$\mu_{\rm B}$	$927.4009994(57) \times 10^{-26}$	$ m J~T^{-1}$	(H ₂ O, sphere, 25 °C)	¹ P	2.070 100 171(00) 7/10	0 1
in eV T^{-1}	$\mu_{\rm B}$	$5.7883818012(26) \times 10^{-5}$	$^{6}V T^{-1}$	(1120, splicie, 20°C)	$\gamma_{ m p}'/2\pi$	42.576 385 07(53)	$ m MHz~T^{-1}$
nuclear magneton $e\hbar/2m_{\rm p}$		$5.050783699(31) \times 10^{-27}$	$J T^{-1}$	noutron mass in u		1.008 664 915 88(49)	u
in eV T^{-1}	$\mu_{ m N}$	$3.1524512550(15) \times 10^{-8}$	$^{5}_{eV} \mathrm{T}^{-1}$	neutron mass in u energy equivalent in MeV	$m_{\rm n} m_{\rm n} c^2$	939.565 4133(58)	u MeV
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	01	$7.2973525664(17) \times 10^{-3}$	C V I	neutron-proton mass ratio		1.001 378 418 98(51)	TATE A
inverse fine-structure constant $e/4\kappa\epsilon_0 nc$	$\alpha \atop \alpha^{-1}$	137.035 999 139(31)		neutron magnetic moment	$m_{ m n}/m_{ m p}$	$-0.96623650(23)\times10^{-26}$	$J T^{-1}$
Rydberg constant $\alpha^2 m_{\rm e} c/2h$		10 973 731.568 508(65)	m^{-1}	to nuclear magneton ratio	$\mu_{\rm n}$	$-0.96623650(23) \times 10$ -1.91304273(45)	O T
Tryuberg constant a mec/2n	R_{∞} $R_{\infty}c$	$3.289841960355(19) \times 10^{15}$	m Hz	deuteron mass in u	$\mu_{ m n}/\mu_{ m N}$	2.013 553 212 745(40)	11
energy equivalent in eV	$R_{\infty} hc$	13.605 693 009(84)	eV	energy equivalent in MeV	$m_{ m d} \ m_{ m d} c^2$	1875.612 928(12)	u MeV
Bohr radius $\alpha/4\pi R_{\infty} = 4\pi\epsilon_0 \hbar^2/m_e e^2$		$0.52917721067(12)\times10^{-10}$		deuteron-proton mass ratio	m _d c	1.999 007 500 87(19)	wie v
Hartree energy $e^2/4\pi\epsilon_0 a_0 = 2R_{\infty}hc = \alpha^2 m_e c^2$	a_0	$4.359744650(54) \times 10^{-18}$	m J	deuteron magnetic moment	$m_{ m d}/m_{ m p}$	$0.4330735040(36)\times10^{-26}$	$J T^{-1}$
in eV	$E_{ m h}$	27.211 386 02(17)	eV	to nuclear magneton ratio	$\mu_{ m d} \ \mu_{ m d}/\mu_{ m N}$	0.857 438 2311(48)	JI
electron mass	$m_{ m e}$	$9.10938356(11) \times 10^{-31}$	kg	helion (³ He nucleus) mass in u		3.014 932 246 73(12)	u
in u	™e	$5.48579909070(16) \times 10^{-4}$	u u	energy equivalent in MeV	$m_{ m h} \ m_{ m h} c^2$	2808.391 586(17)	$^{ m u}$ MeV
energy equivalent in MeV	$m_{ m e}c^2$	0.510 998 9461(31)	$^{ m u}$ MeV	shielded helion magnetic moment		$-1.074553080(14) \times 10^{-26}$	
electron-muon mass ratio	$m_{ m e} c$ $m_{ m e}/m_{ m u}$		wie v	(gas, sphere, 25 °C)	$\mu_{ m h}'$	-1.074 555 080(14) × 10	JI
electron-proton mass ratio		` '		to Bohr magneton ratio		$-1.158671471(14) \times 10^{-3}$	
electron charge to mass quotient	$m_{ m e}/m_{ m p} \ -e/m_{ m e}$	$-1.758820024(11) \times 10^{11}$	$\rm C~kg^{-1}$	to nuclear magneton ratio	$\mu_{ m h}'/\mu_{ m B}$	-2.127497720(25)	
Compton wavelength $h/m_{\rm e}c$,	$2.4263102367(11) \times 10^{-12}$	т	alpha particle mass in u	$\mu_{ m h}'/\mu_{ m N}$	4.001 506 179 127(63)	
Compton wavelength $n/m_e c$ $\lambda_C/2\pi = \alpha a_0 = \alpha^2/4\pi R_{\infty}$	λ_{C}	$386.15926764(18) \times 10^{-15}$	m	energy equivalent in MeV	$m_{\alpha} m_{\alpha} c^2$	3727.379 378(23)	u MeV
$\lambda_{\rm C}/2\hbar = \alpha a_0 = \alpha/4\hbar R_{\infty}$ classical electron radius $\alpha^2 a_0$	$\lambda_{\rm C}$	$2.8179403227(19) \times 10^{-15}$	m	30 1	m _α c N t	$6.022140857(74)\times10^{23}$	mol ⁻¹
Thomson cross section $(8\pi/3)r_e^2$	$r_{ m e}$		m ²	Avogadro constant atomic mass constant $\frac{1}{12}m(^{12}C) = 1$ u	$N_{ m A}, L$	$1.660539040(20)\times10^{-27}$	
	$\sigma_{ m e}$	$0.66524587158(91) \times 10^{-28}$ -928.4764620(57) × 10 ⁻²⁶	$^{ m m}$ J T $^{-1}$		$m_{ m u} \ m_{ m u} c^2$		kg
electron magnetic moment to Bohr magneton ratio	$\mu_{ m e}$	$-928.4764620(57) \times 10$ -1.00115965218091(26)	J 1	energy equivalent in MeV Faraday constant $N_{A}e$	$m_{ m u}c$ F	931.494 0954(57) 96 485.332 89(59)	${ m MeV} \\ { m C~mol}^{-1}$
to nuclear magneton ratio	$\mu_{ m e}/\mu_{ m B}$	· /		molar gas constant	R	8.314 4598(48)	$J \text{ mol}^{-1} \text{ K}^{-1}$
o o	$\mu_{ m e}/\mu_{ m N}$	-1838.28197234(17) $1.15965218091(26) \times 10^{-3}$			k	$1.38064852(79) \times 10^{-23}$	$J \text{ Mol} K$ $J \text{ K}^{-1}$
electron magnetic moment anomaly $ \mu_{\rm e} /\mu_{\rm B}-1$				Boltzmann constant R/N_A in eV K ⁻¹	κ	$8.6173303(50) \times 10^{-5}$	${ m eV~K^{-1}}$
electron g -factor $-2(1 + a_e)$ electron-proton magnetic moment ratio	$g_{ m e}$	-2.00231930436182(52) -658.2106866(20)		molar volume of ideal gas RT/p	$V_{ m m}$	$22.413962(13)\times10^{-3}$	$m^3 \text{ mol}^{-1}$
muon mass in u	$\mu_{ m e}/\mu_{ m p}$	-638.2106866(20) $0.1134289257(25)$	u	(T = 273.15 K, p = 101.325 kPa)	$v_{ m m}$	22.413 902(13) × 10	III IIIOI
energy equivalent in MeV	$m_{\mu} c^2$	105.658 3745(24)	u MeV	(T = 273.13 K, p = 101.323 kFa) Stefan-Boltzmann constant $\pi^2 k^4 / 60\hbar^3 c^2$	σ	$5.670367(13) \times 10^{-8}$	${ m W} { m m}^{-2} { m K}^{-4}$
muon-electron mass ratio	$m_{ m \mu} c \ m_{ m u}/m_{ m e}$	206.768 2826(46)	Me A	first radiation constant $\pi k / 60h^2c$		$3.741771790(46) \times 10^{-16}$	$W m K W m^2$
muon-electron mass ratio muon magnetic moment		$-4.49044826(10) \times 10^{-26}$	$J T^{-1}$	next radiation constant $2\pi nc$ second radiation constant hc/k	c_1	$1.43877736(83) \times 10^{-2}$	w m m K
to Bohr magneton ratio	μ_{μ}	$-4.84197048(11)\times 10^{-3}$	0 1	Wien displacement law constant	c_2	1.400 (11.00(00) X 10	111 11
<u> </u>	$\mu_{\mu}/\mu_{\rm B}$	$-4.84197048(11) \times 10$ -8.89059705(20)		With displacement law constant $b = \lambda_{\text{max}} T = c_2/4.965 114 231$	b	$2.8977729(17) \times 10^{-3}$	m K
to nuclear magneton ratio muon magnetic moment anomaly	$\mu_{ m \mu}/\mu_{ m N}$	-0.090 091 00(20)		$b = \lambda_{\text{max}} I = c_2/4.905114231$ Cu x unit: $\lambda(\text{Cu K}\alpha_1)/1537.400$		$1.00207697(28) \times 10^{-13}$	m K m
muon magnetic moment anomaly $ \mu_{\tt u} /(e\hbar/2m_{\tt u})-1$	a	$1.16592089(63) \times 10^{-3}$		Mo x unit: $\lambda(\text{Mo K}\alpha_1)/1537.400$ Mo x unit: $\lambda(\text{Mo K}\alpha_1)/707.831$		$1.00207697(28) \times 10^{-13}$ $1.00209952(53) \times 10^{-13}$	m m
$ \mu_{\mu} /(en/2m_{\mu})-1$	a_{μ}	1.100 920 09(03) X 10		-71	xu(mo κα ₁)	1.002 033 02(33) X 10	111
Energy equivalents							
$(1 \text{ m}^{-1})c = 299792458 \text{ Hz}$	(1)	$(\text{Hz})h/k = 4.7992447(28) \times 10^{-1}$	11 K	(1 J) = $6.241509126(38) \times 10^{18} \text{ eV}$	(1 eV)/c	$e^2 = 1.0735441105(66) \times 10^{-1}$	⁹ u
$(1 \text{ m}^{-1})hc/k = 1.43877736(83) \times 10^{-2} \text{ K}$	(1)	$(\text{Hz})h = 4.135667662(25) \times 1$	0^{-15} eV	$(1 \text{ eV}) = 1.6021766208(98) \times 10^{-19} \text{ J}$		$=6.022140857(74)\times10^{26}$	u
$(1 \text{ m}^{-1})hc' = 1.2398419739(76) \times 10^{-6} \text{ eV}$		$K)k/hc = 69.503457(40) \text{ m}^{-1}$	_	$(1 \text{ eV})/hc = 8.065544005(50) \times 10^5 \text{ m}^{-1}$	(1 u)	$= 1.660539040(20)\times10^{-2}$	⁷ kg
$(1 \text{ m}^{-1})h/c = 1.33102504900(61) \times 10^{-15} \text{ u}$		$K)k/h = 2.0836612(12) \times 10^{10}$		$(1 \text{ eV})/h = 2.417989262(15) \times 10^{14} \text{ Hz}$	(1 u)c/h	$=7.5130066166(34)\times10^{11}$	$^{4} m^{-1}$
$(1 \text{ Hz})/c = 3.335640951 \times 10^{-9} \text{ m}^{-1}$	(1)	$K)k = 8.6173303(50) \times 10^{-1}$	^b eV	$(1 \text{ eV})/k = 1.16045221(67) \times 10^4 \text{ K}$	$(1 \text{ u})c^2$	$=931.4940954(57) \times 10^6 \text{ e}$	V