# CHAPTER 1

| Physical Entities<br>(Base quantities) | Fundamental Units<br>SI unit-name (symbol) |
|----------------------------------------|--------------------------------------------|
| length                                 | meter (m)                                  |
| mass                                   | kilogram (Kg)                              |
| time                                   | second (s)                                 |
| electric current                       | ampere (A)                                 |
| temperature                            | Kelvin (K)                                 |
| Amount of substance                    | Mole (mol)                                 |
| luminous intensity                     | Candela (cd)                               |

| Factor           | Prefix <sup>a</sup> | Symbol |
|------------------|---------------------|--------|
| 10 <sup>24</sup> | yotta-              | Y      |
| $10^{21}$        | zetta-              | Z      |
| $10^{18}$        | exa-                | E      |
| $10^{15}$        | peta-               | P      |
| $10^{12}$        | tera-               | T      |
| $10^{9}$         | giga-               | G      |
| $10^{6}$         | mega-               | M      |
| $10^{3}$         | kilo-               | k      |
| $10^{2}$         | hecto-              | h      |
| $10^{1}$         | deka-               | da     |
| $10^{-1}$        | deci-               | d      |
| $10^{-2}$        | centi-              | c      |
| $10^{-3}$        | milli-              | m      |
| $10^{-6}$        | micro-              | μ      |
| $10^{-9}$        | nano-               | n      |
| $10^{-12}$       | pico-               | p      |
| $10^{-15}$       | femto-              | f      |
| $10^{-18}$       | atto-               | a      |
| $10^{-21}$       | zepto-              | Z      |
| $10^{-24}$       | yocto-              | y      |

# Significant Figures (有效數字)

Meaningful digits

# Decimal Place (小數數位)

 The position of a digit to the right of the decimal point in a decimal number

# Density (密度)

• 
$$\rho = \frac{m}{v}$$

### **Errors Calculations**

- Absolute Error = Measure Error True Value
- $Relative\ Error = \frac{Absolute\ Error}{True\ Value}$
- $Percentage\ Error = Relative\ error \times 100\%$

### Types of Error

- 1. Human Error
- 2. Random Error
- 3. Systematic Error

## Precision (精準度)

• Specifies the repeatability or consistency of successive measurements

# Accuracy (準確度)

• Specifies the deviation between the measured and true value

# CHAPTER 2

# Distance (距離)

Total length of path

# Displacement (位移)

- Change in position
- $\bullet \ \Delta \ x = x_2 x_1$

# Average Speed (平均速度)

• 
$$s_{avg} = \frac{Total\ Distance}{\Delta t}$$

# Average Velocity (平均速率)

• 
$$v_{avg} = \frac{\Delta x}{\Delta t}$$

# Instantaneous Speed (暫態速度)

Magnitude of instantaneous velocity

Instantaneous Velocity (暫態速率)

• 
$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

# Acceleration (加速度)

$$\bullet \ a_{avg} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

Instantaneous Acceleration (暫態加速度)

• 
$$a = \frac{dv}{dt}$$

#### Graphs for a body with positive velocity and negative acceleration





Time (s)

Velocity -Time Graph



Acceleration - Time Graph



• 
$$s = \int v dt$$

• 
$$v = \int adt$$

• 
$$v = \frac{ds}{dt}$$

• 
$$a = \frac{dv}{dt}$$

# Equation Number

### Equation

# Missing Quantity

2-11 
$$v = v_0 + at$$
  $x - x_0$   
2-15  $x - x_0 = v_0 t + \frac{1}{2} a t^2$   $v$   
2-16  $v^2 = v_0^2 + 2a(x - x_0)$   $t$   
2-17  $x - x_0 = \frac{1}{2}(v_0 + v)t$   $a$   
2-18  $x - x_0 = vt - \frac{1}{2} a t^2$   $v_0$ 

# CHAPTER 3

## Scalar (標量)

Have magnitude only

# Vector (向量)

Have both magnitude and direction

### Properties of Vector

• 
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

• 
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

• 
$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$

### **Unit-Vector Notations**

• 
$$a = a_x \vec{\imath} + a_y \vec{\jmath}$$

### Magnitude-Angle Notations

• 
$$a_x = a\cos\emptyset$$

• 
$$a_{\nu} = asin\emptyset$$

• 
$$a = \sqrt{a_x^2 + a_y^2}$$
  
•  $tan\emptyset = \frac{a_y}{a_x}$ 

• 
$$tan\emptyset = \frac{a_y}{a_x}$$

# Unit Vector (單位向量)

$$\bullet \ \hat{A} = \frac{\vec{A}}{|\vec{A}|}$$

# Scalar Product (標量積)/ Dot Product (點積)

- $\vec{a} \cdot \vec{b} = abcos\emptyset$
- $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$

# Vector Product(向量積)/ Cross Product (叉積)

- $\vec{a} \times \vec{b} = \vec{c}$
- $c = absin\emptyset$
- $\vec{a} \times \vec{b} = (a_y b_z b_y a_z)\hat{i} + (a_z b_x b_z a_x)\hat{j} + (a_x b_y b_x a_y)\hat{k}$

**SSM** Suppose a rocket ship in deep space moves with constant acceleration equal to  $9.8 \text{ m/s}^2$ , which gives the illusion of normal gravity during the flight. (a) If it starts from rest, how long will it take to acquire a speed one-tenth that of light, which travels at  $3.0 \times 10^8 \text{ m/s}$ ? (b) How far will it travel in so doing?

**ANALYZE** (a) Given that  $a = 9.8 \text{ m/s}^2$ ,  $v_0 = 0$  and  $v = 0.1c = 3.0 \times 10^7 \text{ m/s}$ , we can solve  $v = v_0 + at$  for the time:

$$t = \frac{v - v_0}{a} = \frac{3.0 \times 10^7 \text{ m/s} - 0}{9.8 \text{ m/s}^2} = 3.1 \times 10^6 \text{ s}$$

which is about 1.2 months. So it takes 1.2 months for the rocket to reach a speed of 0.1c starting from rest with a constant acceleration of 9.8 m/s<sup>2</sup>.

(b) To calculate the distance traveled during this time interval, we evaluate  $x = x_0 + v_0 t + \frac{1}{2} a t^2$ , with  $x_0 = 0$  and  $v_0 = 0$ . The result is

$$x = \frac{1}{2} (9.8 \text{ m/s}^2) (3.1 \times 10^6 \text{ s})^2 = 4.6 \times 10^{13} \text{ m}.$$

•33 SSM ILW A car traveling 56.0 km/h is 24.0 m from a barrier when the driver slams on the brakes. The car hits the barrier 2.00 s later. (a) What is the magnitude of the car's constant acceleration before impact? (b) How fast is the car traveling at impact?

ANALYZE (a) Using Eq. 2-15, we find the acceleration to be

$$a = \frac{2(x - v_0 t)}{t^2} = \frac{2[(24.0 \text{ m}) - (15.55 \text{ m/s})(2.00 \text{ s})]}{(2.00 \text{ s})^2} = -3.56 \text{ m/s}^2,$$

or |a|=3.56 m/s<sup>2</sup>. The negative sign indicates that the acceleration is opposite to the direction of motion of the car; the car is slowing down.

(b) The speed of the car at the instant of impact is

$$v = v_0 + at = 15.55 \text{ m/s} + (-3.56 \text{ m/s}^2)(2.00 \text{ s}) = 8.43 \text{ m/s}$$

which can also be converted to 30.3 km/h.

••41 SSM ILW WWW Use the definition of scalar product,  $\vec{a} \cdot \vec{b} = ab \cos \theta$ , and the fact that  $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$  to calculate the angle between the two vectors given by  $\vec{a} = 3.0\hat{i} + 3.0\hat{j} + 3.0\hat{k}$  and  $\vec{b} = 2.0\hat{i} + 1.0\hat{j} + 3.0\hat{k}$ .

**ANALYZE** Given that  $\vec{a} = (3.0)\hat{i} + (3.0)\hat{j} + (3.0)\hat{k}$  and  $\vec{b} = (2.0)\hat{i} + (1.0)\hat{j} + (3.0)\hat{k}$ , the magnitudes of the vectors are

$$a = |\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2} = \sqrt{(3.0)^2 + (3.0)^2 + (3.0)^2} = 5.20$$

$$b = |\vec{b}| = \sqrt{b_x^2 + b_y^2 + b_z^2} = \sqrt{(2.0)^2 + (1.0)^2 + (3.0)^2} = 3.74.$$

The angle between them is found to be

$$\cos \phi = \frac{(3.0)(2.0) + (3.0)(1.0) + (3.0)(3.0)}{(5.20)(3.74)} = 0.926,$$

or  $\phi = 22^{\circ}$ .

1

**53 SSM** A vector  $\vec{a}$  of magnitude 10 units and another vector  $\vec{b}$  of magnitude 6.0 units differ in directions by 60°. Find (a) the scalar product of the two vectors and (b) the magnitude of the vector product  $\vec{a} \times \vec{b}$ .

**ANALYZE** (a) Given that  $a = |\vec{a}| = 10$ ,  $b = |\vec{b}| = 6.0$  and  $\phi = 60^{\circ}$ , the scalar (dot) product of  $\vec{a}$  and  $\vec{b}$  is

$$\vec{a} \cdot \vec{b} = ab \cos \phi = (10) (6.0) \cos 60^{\circ} = 30.$$

(b) Similarly, the magnitude of the vector (cross) product of the two vectors is

$$|\vec{a} \times \vec{b}| = ab \sin \phi = (10) (6.0) \sin 60^{\circ} = 52.$$