Problem1

WHOLESALE COSTOMER DATA ANALYSIS

```
In [1]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import scipy.stats as stats
import math
sns.set(color_codes=True)
from scipy.stats import ttest_1samp, ttest_ind
```

In [2]:

```
whsale=pd.read_csv("Wholesale+Customers+Data.csv")
```

In [3]:

```
whsale.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 440 entries, 0 to 439
Data columns (total 9 columns):
```

#	Column	Non-Null Count	Dtype
0	Buyer/Spender	440 non-null	int64
1	Channel	440 non-null	object
2	Region	440 non-null	object
3	Fresh	440 non-null	int64
4	Milk	440 non-null	int64
5	Grocery	440 non-null	int64
6	Frozen	440 non-null	int64
7	Detergents_Paper	440 non-null	int64
8	Delicatessen	440 non-null	int64

dtypes: int64(7), object(2)
memory usage: 31.1+ KB

In [4]:

whsale.size

Out[4]:

3960

In [5]:

whsale.head(10)

Out[5]:

	Buyer/Spender	Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicate
0	1	Retail	Other	12669	9656	7561	214	2674	
1	2	Retail	Other	7057	9810	9568	1762	3293	
2	3	Retail	Other	6353	8808	7684	2405	3516	
3	4	Hotel	Other	13265	1196	4221	6404	507	
4	5	Retail	Other	22615	5410	7198	3915	1777	
5	6	Retail	Other	9413	8259	5126	666	1795	
6	7	Retail	Other	12126	3199	6975	480	3140	
7	8	Retail	Other	7579	4956	9426	1669	3321	
8	9	Hotel	Other	5963	3648	6192	425	1716	
9	10	Retail	Other	6006	11093	18881	1159	7425	
4									•

Dataset has 9 variables Buyer/ Spender, Channel, Region, Fresh, Milk, Grocery, Frozen, Detergents_Paper & Delicatessen. Channel and Region both are categorical columns while Buyer/ Spender, Fresh, Milk, Grocery, Frozen, Detergents_Paper & Delicatessen are integer.

In [6]:

whsale.Region.value_counts()

Out[6]:

Other 316 Lisbon 77 Oporto 47

Name: Region, dtype: int64

In [7]:

whsale.Channel.value_counts()

Out[7]:

Hotel 298 Retail 142

Name: Channel, dtype: int64

In [8]:

whsale.	isnull()	.sum()
---------	----------	--------

Out[8]:

Buyer/Spender 0 Channel Region 0 Fresh Milk 0 Grocery 0 0 Frozen Detergents_Paper 0 Delicatessen dtype: int64

In [9]:

corr=whsale.corr()
corr

Out[9]:

	Buyer/Spender	Fresh	Milk	Grocery	Frozen	Detergents_Paper
Buyer/Spender	1.000000	-0.061151	-0.162290	-0.140509	0.053802	-0.134365
Fresh	-0.061151	1.000000	0.100510	-0.011854	0.345881	-0.101953
Milk	-0.162290	0.100510	1.000000	0.728335	0.123994	0.661816
Grocery	-0.140509	-0.011854	0.728335	1.000000	-0.040193	0.924641
Frozen	0.053802	0.345881	0.123994	-0.040193	1.000000	-0.131525
Detergents_Paper	-0.134365	-0.101953	0.661816	0.924641	-0.131525	1.000000
Delicatessen	-0.101845	0.244690	0.406368	0.205497	0.390947	0.069291
4						•

In [10]:

plt.figure(figsize=(10,7))
sns.heatmap(corr,annot=True)

Out[10]:

<AxesSubplot:>

In [11]:

sns.pairplot(whsale)

Out[11]:

<seaborn.axisgrid.PairGrid at 0x1ff3f925730>

As per plot shown below, There is a linear relationship between Grocery and Detergents Paper.

Q1.1.1 Use methods of descriptive statistics to summarize data.

In [12]:

whsale.describe(include="all")

Out[12]:

	Buyer/Spender	Channel	Region	Fresh	Milk	Grocery	Frozen
count	440.000000	440	440	440.000000	440.000000	440.000000	440.000
unique	NaN	2	3	NaN	NaN	NaN	1
top	NaN	Hotel	Other	NaN	NaN	NaN	1
freq	NaN	298	316	NaN	NaN	NaN	1
mean	220.500000	NaN	NaN	12000.297727	5796.265909	7951.277273	3071.931
std	127.161315	NaN	NaN	12647.328865	7380.377175	9503.162829	4854.673
min	1.000000	NaN	NaN	3.000000	55.000000	3.000000	25.000
25%	110.750000	NaN	NaN	3127.750000	1533.000000	2153.000000	742.250
50%	220.500000	NaN	NaN	8504.000000	3627.000000	4755.500000	1526.000
75%	330.250000	NaN	NaN	16933.750000	7190.250000	10655.750000	3554.250
max	440.000000	NaN	NaN	112151.000000	73498.000000	92780.000000	60869.000
4							>

There are two unique Channel and 3 region, where Hotel channel is the top most in the channel values column and other region has the top most values in the channel column

```
In [13]:
```

```
whsale["varieties_sum"]= whsale["Fresh"]+whsale["Milk"]+whsale["Grocery"]+whsale["Frozen"]+
whsale
```

Out[13]:

	Buyer/Spender	Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delic
0	1	Retail	Other	12669	9656	7561	214	2674	
1	2	Retail	Other	7057	9810	9568	1762	3293	
2	3	Retail	Other	6353	8808	7684	2405	3516	
3	4	Hotel	Other	13265	1196	4221	6404	507	
4	5	Retail	Other	22615	5410	7198	3915	1777	
435	436	Hotel	Other	29703	12051	16027	13135	182	
436	437	Hotel	Other	39228	1431	764	4510	93	
437	438	Retail	Other	14531	15488	30243	437	14841	
438	439	Hotel	Other	10290	1981	2232	1038	168	
439	440	Hotel	Other	2787	1698	2510	65	477	
440 rows × 10 columns									
4									•

Q1.1.2 Which Region and which Channel spent the most?

Q1.1.3 Which Region and which Channel spent the least?

In [14]:

```
pd.DataFrame(whsale.groupby("Channel").varieties_sum.sum())
```

Out[14]:

varieties_sum

Channel	
Hotel	7999569
Retail	6619931

```
In [15]:
```

```
pd.DataFrame(whsale.groupby("Region").varieties_sum.sum())
```

Out[15]:

	4.	
vari	PAITA	sum
v a i i	CLICS	_suiii

Region	
Lisbon	2386813
Oporto	1555088
Other	10677599

Q1.2. There are 6 different varieties of items that are considered. Describe and comment/explain all the varieties across Region and Channel? Provide a detailed justification for your answer.

In [16]:

```
pd.DataFrame(whsale.groupby("Channel").sum())
```

Out[16]:

		Buyer/Spender	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicatessen
С	hannel							
	Hotel	71034	4015717	1028614	1180717	1116979	235587	421955
	Retail	25986	1264414	1521743	2317845	234671	1032270	248988
4								•

In [17]:

```
pd.DataFrame(whsale.groupby("Region").sum())
```

Out[17]:

	Buyer/Spender	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicatessen	٧ŧ
Region								
Lisbon	18095	854833	422454	570037	231026	204136	104327	
Oporto	14899	464721	239144	433274	190132	173311	54506	
Other	64026	3960577	1888759	2495251	930492	890410	512110	
4								•

Q1.3 On the basis of the descriptive measure of variability, which item shows the most inconsistent behaviour? Which items shows the least inconsistent behaviour?

Formula of CV = Std/Mean

In [18]:

whsale.describe().T

Out[18]:

	count	mean	std	min	25%	50%	75%	max
Buyer/Spender	440.0	220.500000	127.161315	1.0	110.75	220.5	330.25	4
Fresh	440.0	12000.297727	12647.328865	3.0	3127.75	8504.0	16933.75	1121
Milk	440.0	5796.265909	7380.377175	55.0	1533.00	3627.0	7190.25	734
Grocery	440.0	7951.277273	9503.162829	3.0	2153.00	4755.5	10655.75	927
Frozen	440.0	3071.931818	4854.673333	25.0	742.25	1526.0	3554.25	608
Detergents_Paper	440.0	2881.493182	4767.854448	3.0	256.75	816.5	3922.00	408
Delicatessen	440.0	1524.870455	2820.105937	3.0	408.25	965.5	1820.25	479
varieties_sum	440.0	33226.136364	26356.301730	904.0	17448.75	27492.0	41307.50	1998
4								•

In [19]:

```
CV_for_Fresh= (12647.328865/12000.297727)
CV_for_Fresh
```

Out[19]:

1.0539179237648593

In [20]:

```
CV_for_Milk= (7380.377175/5796.265909)
CV_for_Milk
```

Out[20]:

1.2732985841005522

In [21]:

```
CV_for_Grocery =(9503.162829/7951.277273)
CV_for_Grocery
```

Out[21]:

1.1951743729613995

```
In [22]:
```

```
CV_for_Frozen = (4854.673333/3071.931818)
CV_for_Frozen
```

Out[22]:

1.5803323838615222

In [23]:

```
cv_for_Detergents_Paper =(4767.854448/2881.493182)
cv_for_Detergents_Paper
```

Out[23]:

1.6546471384293562

In [24]:

```
CV_for_Delicatessen = (2820.105937/1524.870455)
CV_for_Delicatessen
```

Out[24]:

1.849406897322304

After calculate the data we show that CV (coefficient of variation) value as per formula CV = Std/Mean, As per descriptive Fresh item behaviour are least inconsistent behaviour compare to rest of item.

Q1.4 Are there any outliers in the data? Back up your answer with a suitable plot/technique with the help of detailed comments.

In [25]:

```
plt.figure(figsize=(10,6))
plt.subplot(6,1,1)
sns.boxplot(x="Fresh",data=whsale,color="red")
plt.subplot(6,1,2)
sns.boxplot(x="Milk",data=whsale,color="blue")
plt.subplot(6,1,3)
sns.boxplot(x="Grocery",data=whsale,color="green")
plt.subplot(6,1,4)
sns.boxplot(x="Frozen",data=whsale,color="yellow")
plt.subplot(6,1,5)
sns.boxplot(x="Detergents_Paper",data=whsale,color="pink")
plt.subplot(6,1,6)
sns.boxplot(x="Delicatessen",data=whsale,color="orange")
```

Out[25]:

<AxesSubplot:xlabel='Delicatessen'>

As per boxplot we see that all 6 item have outliers...

Problem - 2

Clear Mountain State University Data Analysis

```
In [26]:
cmsu=pd.read_csv("Survey-1.csv")
In [27]:
cmsu.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62 entries, 0 to 61
Data columns (total 14 columns):
 #
     Column
                         Non-Null Count
                                         Dtype
     -----
                         -----
 0
     ID
                         62 non-null
                                         int64
 1
     Gender
                         62 non-null
                                         object
 2
     Age
                         62 non-null
                                         int64
 3
     Class
                         62 non-null
                                         object
 4
     Major
                         62 non-null
                                         object
 5
     Grad Intention
                         62 non-null
                                         object
 6
     GPA
                         62 non-null
                                         float64
 7
     Employment
                         62 non-null
                                         object
 8
     Salary
                         62 non-null
                                         float64
                                         int64
 9
     Social Networking 62 non-null
    Satisfaction
                         62 non-null
                                         int64
 10
     Spending
                         62 non-null
 11
                                         int64
 12 Computer
                         62 non-null
                                         object
 13 Text Messages
                         62 non-null
                                         int64
dtypes: float64(2), int64(6), object(6)
memory usage: 6.9+ KB
In [28]:
cmsu.size
Out[28]:
868
In [29]:
cmsu.isnull().sum()
Out[29]:
ID
                      0
Gender
                      0
                      0
Age
Class
                      0
Major
                      0
Grad Intention
                      0
GPA
                      0
                      0
Employment
                      0
Salary
Social Networking
                      0
Satisfaction
                      0
Spending
                      0
                      0
Computer
```

0

Text Messages dtype: int64

In [30]:

cmsu.head()

Out[30]:

	ID	Gender	Age	Class	Major	Grad Intention	GPA	Employment	Salary	Social Networking	s
0	1	Female	20	Junior	Other	Yes	2.9	Full-Time	50.0	1	
1	2	Male	23	Senior	Management	Yes	3.6	Part-Time	25.0	1	
2	3	Male	21	Junior	Other	Yes	2.5	Part-Time	45.0	2	
3	4	Male	21	Junior	CIS	Yes	2.5	Full-Time	40.0	4	
4	5	Male	23	Senior	Other	Undecided	2.8	Unemployed	40.0	2	
4											•

In [31]:

cmsu.describe(include="all")

Out[31]:

	ID	Gender	Age	Class	Major	Grad Intention	GPA	Employm
count	62.000000	62	62.000000	62	62	62	62.000000	_
unique	NaN	2	NaN	3	8	3	NaN	
top	NaN	Female	NaN	Senior	Retailing/Marketing	Yes	NaN	Part-T
freq	NaN	33	NaN	31	14	28	NaN	
mean	31.500000	NaN	21.129032	NaN	NaN	NaN	3.129032	1
std	18.041619	NaN	1.431311	NaN	NaN	NaN	0.377388	1
min	1.000000	NaN	18.000000	NaN	NaN	NaN	2.300000	1
25%	16.250000	NaN	20.000000	NaN	NaN	NaN	2.900000	1
50%	31.500000	NaN	21.000000	NaN	NaN	NaN	3.150000	1
75%	46.750000	NaN	22.000000	NaN	NaN	NaN	3.400000	1
max	62.000000	NaN	26.000000	NaN	NaN	NaN	3.900000	1
4								•

In [32]:

corr=cmsu.corr()
corr

Out[32]:

	ID	Age	GPA	Salary	Social Networking	Satisfaction	Spending	Te> Me
ID	1.000000	-0.075545	0.102328	-0.051484	-0.118383	-0.039676	-0.046230	0.
Age	-0.075545	1.000000	0.029370	-0.015536	0.011815	-0.046572	0.032968	-0.
GPA	0.102328	0.029370	1.000000	-0.308643	-0.197002	0.038097	-0.343403	0.
Salary	-0.051484	-0.015536	-0.308643	1.000000	0.017601	-0.197013	0.003402	-0.
Social Networking	-0.118383	0.011815	-0.197002	0.017601	1.000000	0.020125	0.073088	0.
Satisfaction	-0.039676	-0.046572	0.038097	-0.197013	0.020125	1.000000	0.090500	0.
Spending	-0.046230	0.032968	-0.343403	0.003402	0.073088	0.090500	1.000000	0.
Text Messages	0.138066	-0.227753	0.042195	-0.073640	0.020940	0.177548	0.028489	1.
4								•

In [33]:

plt.figure(figsize=(10,7))
sns.heatmap(corr,annot=True)

Out[33]:

<AxesSubplot:>

In [34]:

sns.pairplot(cmsu)

Out[34]:

<seaborn.axisgrid.PairGrid at 0x1ff4219bac0>

Q 2.1. For this data, construct the following contingency tables (Keep Gender as row variable)

Q 2.1.1. Gender and Major

```
In [35]:
```

```
df_Major=pd.crosstab(cmsu["Gender"],cmsu["Major"],margins=True)
df_Major
```

Out[35]:

Major	Accounting	CIS	Economics/Finance	International Business	Management	Other	Retailing/Marke
Gender							
Female	3	3	7	4	4	3	
Male	4	1	4	2	6	4	
All	7	4	11	6	10	7	
4							>

Q 2.1.2. Gender and Grad Intention

```
In [36]:
```

```
pd.DataFrame(cmsu.groupby("Grad Intention").Gender.value_counts())
```

Out[36]:

		Gender
Grad Intention	Gender	
No	Female	9
	Male	3
Undecided	Female	13
	Male	9
Yes	Male	17
	Female	11

Q 2.1.3. Gender and Employment

```
In [37]:
```

```
pd.DataFrame(cmsu.groupby("Gender").Employment.value_counts())
```

Out[37]:

Employment

Gender	Employment	
Female	Part-Time	24
	Unemployed	6
	Full-Time	3
Male	Part-Time	19
	Full-Time	7
	Unemployed	3

Q 2.1.4. Gender and Computer

```
In [38]:
```

```
pd.DataFrame(cmsu.groupby("Gender").Computer.value_counts())
```

Out[38]:

Computer

Gender	Computer	
Female	Laptop	29
	Desktop	2
	Tablet	2
Male	Laptop	26
	Desktop	3

Q 2.2. Assume that the sample is a representative of the population of CMSU. Based on the data, answer the following question

```
In [39]:
```

```
pd.DataFrame(cmsu.Gender.value_counts())
```

Out[39]:

	Gender
Female	33
Male	29

Q 2.2.1 What is the probability that a randomly selected CMSU student will be male?

Solution - Probability of Male student randomly selected ,using formula= P(A)=m/n. I have two popution taking M is "Male" and B is Major. m=no of ways of accurrence of Male . n= no of total outcome .

```
In [40]:
```

```
m=29
n=62
print("probability that a randomly selected CMSU male student",m/n)
```

probability that a randomly selected CMSU male student 0.46774193548387094

Q 2.2.2. What is the probability that a randomly selected CMSU student will be female?

Solution -Probability of Male student randomly selected ,using formula=P(A) = m/n. I have two popution taking B is "Female" and C is Major. m=no of ways of accurrence of Female . n= no of total outcome .

In [41]:

```
m=33
n=62
print("probability that a randomly selected CMSU female student",m/n)
```

probability that a randomly selected CMSU female student 0.532258064516129

Q 2.3. Assume that the sample is representative of the population of CMSU. Based on the data, answer the following question

```
In [42]:
```

```
df_Major=pd.crosstab(cmsu["Gender"],cmsu["Major"],margins=True)
df_Major
```

Out[42]:

Major	Accounting	CIS	Economics/Finance	International Business	Management	Other	Retailing/Marke
Gender							
Female	3	3	7	4	4	3	
Male	4	1	4	2	6	4	
All	7	4	11	6	10	7	
4							•

Q 2.3.1. Find the conditional probability of different majors among the male students in CMSU.

Solution - conditional Probability of Male different major ,using formula = P(A|B) = P(A Int B)/P(B). I have two popution taking A is "Major" and B is Male. P(A Int B)=intersection A and B . P(B)= m/n .

```
In [43]:
```

```
Int=6/29 #(gender -male, major of Management intersection(P(A Int B)=Int) )
P=29/62 # (m/n,male-26 & n-total outcome(P(B)=P))
print("conditional probability of male for Management ",Int/P)
```

conditional probability of male for Management 0.4423305588585018

In [44]:

```
Int=5/29 #(gender -male ,major of Retailing/Marketing intersection(P(A \ Int \ B)=Int)) P=29/62 # (m/n,male-26 & <math>n-total outcome(P(B)=P)) print("conditional probability of male forRetailing/Marketing ",Int/P)
```

conditional probability of male forRetailing/Marketing 0.36860879904875155

In [45]:

```
Int=4/29 #(gender -male ,major of Accounting intersection(P(A Int B)=Int) )
P=29/62 # (m/n,male-26 & n-total outcome(P(B)=P))
print("conditional probability of male for Accounting ",Int/P)
```

conditional probability of male for Accounting 0.2948870392390012

In [46]:

```
Int=4/29 #(gender -male, major of Economics/Finance intersection(P(A \ Int \ B)=Int)) P=29/62 # (m/n, male-26 & n-total outcome(P(B)=P)) print("conditional probability of male for Economics/Finance ",Int/P)
```

conditional probability of male for Economics/Finance 0.2948870392390012

In [47]:

```
Int=4/29 #(gender -male, major of Other intersection(P(A Int B)=Int) )
P=29/62 # (m/n,male-26 & n-total outcome(P(B)=P))
print("conditional probability of male for Other ",Int/P)
```

conditional probability of male for Other 0.2948870392390012

In [48]:

```
Int=3/29 #(gender -male, major of Undecided intersection(P(A \ Int \ B)=Int))
P=29/62 # (m/n, male-26 & n-total outcome(P(B)=P))
print("conditional probability of male for Undecided ",Int/P)
```

conditional probability of male for Undecided 0.2211652794292509

In [49]:

```
Int=2/29 #(gender -male, major of International Business intersection(P(A \ Int \ B)=Int)) P=29/62 # (m/n, male-26 & n-total outcome(P(B)=P)) print("conditional probability of male for International Business ",Int/P)
```

conditional probability of male for International Business 0.14744351961950 06

In [50]:

```
Int=1/29 #(gender -male, major of CPI Business intersection(P(A \ Int \ B)=Int)) P=29/62 # (m/n, male-26 & n-total outcome(P(B)=P)) print("conditional probability of male for CPI ",Int/P)
```

conditional probability of male for CPI 0.0737217598097503

Q 2.3.2 Find the conditional probability of different majors among the female students of CMSU.

Solution - conditional Probability of Female different major ,using formula = P(A|B) = P(A Int B)/P(B). I have two popution taking A is "Major" and B is Female. P(A Int B)=intersection A and B . P(B)= m/n .

In [51]:

```
Int=9/33 #(gender -female, major of Retailing/Marketing intersection(P(A \ Int \ B)=Int)) P=29/62 # (m/n, male-26 & n-total outcome(P(B)=P)) print("conditional probability of female for Retailing/Marketing ",Int/P)
```

conditional probability of female for Retailing/Marketing 0.583072100313479

In [52]:

```
Int=7/33 #(gender -female, major of Economics/Finance intersection(P(A \ Int \ B)=Int)) P=29/62 # (m/n, male-26 & n-total outcome(P(B)=P)) print("conditional probability of female for Economics/Finance ",Int/P)
```

conditional probability of female for Economics/Finance 0.4535005224660397

In [53]:

```
Int=4/33 #(gender -female, major of International Business intersection(P(A \ Int \ B)=Int)) P=29/62 # (m/n, male-26 & n-total outcome(P(B)=P)) print("conditional probability of female for International Business ",Int/P)
```

conditional probability of female for International Business 0.259143155694 87983

```
In [54]:
```

```
Int=4/33 #(gender -female, major of Management intersection(P(A \ Int \ B)=Int)) P=29/62 # (m/n, male-26 & n-total outcome(P(B)=P)) print("conditional probability of female for Management ",Int/P)
```

conditional probability of female for Management 0.25914315569487983

In [55]:

```
Int=3/33 #(gender -female, major of International Business intersection(P(A \ Int \ B)=Int)) P=29/62 # (m/n, male-26 & n-total outcome(P(B)=P)) print("conditional probability of female for Accounting ",Int/P)
```

conditional probability of female for Accounting 0.1943573667711599

In [56]:

```
Int=3/33 #(gender -female, major of CIS intersection(P(A \ Int \ B)=Int)) P=29/62 # (m/n, male-26 & n-total outcome(P(B)=P)) print("conditional probability of female for CIS ",Int/P)
```

conditional probability of female for CIS 0.1943573667711599

In [57]:

```
Int=3/33 #(gender -female, major of Other intersection(P(A \ Int \ B)=Int))
P=29/62 # (m/n, male-26 & n-total outcome(P(B)=P))
print("conditional probability of female for Other ",Int/P)
```

conditional probability of female for Other 0.1943573667711599

Q2.4.1. Find the probability That a randomly chosen student is a male and intends to graduate.

In [58]:

```
pd.DataFrame(cmsu.groupby("Grad Intention").Gender.value_counts()).T
```

Out[58]:

Grad Intention	No		Undecid	ed	Yes	
Gender	Female	Male	Female	Male	Male	Female
Gender	9	3	13	9	17	11

Solution -Probability of Male student intends to graduate ,using formula= P(A)=m/n. I have two popution taking "M" is "Male" and "B" is Yes(Graduate Intention). m=no of ways of accurrence of Male . n= no of total outcome .

In [59]:

```
m=17#(male student intends graduate is Based on the data )
n=62#(total student)
print(" Probability intends to graduate student is a male", m/n)
```

Probability intends to graduate student is a male 0.27419354838709675

Q 2.4.2 Find the probability that a randomly selected student is a female and does NOT have a laptop.

In [60]:

```
pd.DataFrame(cmsu.groupby("Gender").Computer.value_counts()).T
```

Out[60]:

Gender	Female			Male	
Computer	Laptop	Desktop	Tablet	Laptop	Desktop
Computer	29	2	2	26	3

Solution -Probability of Female student does NOT have a laptop, using formula= P(A)=m/n. I have two popution taking "F" is "Female" and "B" is NOT have a laptop (have=Desktop+Tablet). m=no of ways of accurrence of Female(have=Desktop+Tablet) . n= no of total outcome .

In [61]:

```
m=4#((female the do't have loptop , have =Desktop+Tablet))
n=62#(total Computer type )
print(" probability female student does NOT have a laptop ", m/n)
```

probability female student does NOT have a laptop 0.06451612903225806

Q 2.5.1. Find the probability that a randomly chosen student is either a male or has full-time employment?

In [62]:

```
pd.DataFrame(cmsu.groupby("Gender").Employment.value_counts())
```

Out[62]:

Employment

Gender	Employment	
Female	Part-Time	24
	Unemployed	6
	Full-Time	3
Male	Part-Time	19
	Full-Time	7
	Unemployed	3

Solution -finding probability of all condition fast either a male , secound codition is male & female and thard codition is only male & full time. using formula P(A UNIB) = P(A) + P(B) - P(A INT B)

In [63]:

```
#P(A UNI B)=?
A=29/62 #P(A)=(All empl are Male)
B=10/62 #P(B)(full time male & female)
C=7/62 #P(A Int B)(only Male full time)
print("probability either a male or has full-time employment ",A+B-C)
```

probability either a male or has full-time employment 0.5161290322580645

Q 2.5.2. Find the conditional probability that given a female student is randomly chosen, she is majoring in international business or management.

In [64]:

```
df_Major=pd.crosstab(cmsu["Gender"],cmsu["Major"],margins=True)
df_Major
```

Out[64]:

ľ	Major	Accounting	CIS	Economics/Finance	International Business	Management	Other	Retailing/Marke
(Gender							
Ī	Female	3	3	7	4	4	3	
	Male	4	1	4	2	6	4	
	All	7	4	11	6	10	7	
4								+

solution - Two Event multually exclusive or assuming marginal probability.

In [65]:

```
probability_ib_m=4/33+4/33
print("Probability of female for international business or management",probability_ib_m)
```

Probability of female for international business or management 0.2424242424242424243

Q2.6. Construct a contingency table of Gender and Intent to Graduate at 2 levels (Yes/No). The Undecided students are not considered now and the table is a 2x2 table. Do you think the graduate intention and being female are independent events?

Solution - contingency table

	" yes	no	Total"		
"Male"	"17"	"3"	" 20"		
"Female"	"11"	"9"	"20"		
"Total	"28"	"12"	"40"		

solution-Probability of Female studend ratio of unconditinal and conditional probability are having larger difference, and uncoditional probility is 28% larger than conditional probility.so we can say that are not independent and these 2 event are dependent.

In [66]:

```
P_female=20/40#(unconditional probability )
print("female total graduate intention ",P_female)
P_female_2=11/28#(conditional prabability)
print("female only yes graduate intention ",P_female_2)
```

female total graduate intention 0.5 female only yes graduate intention 0.39285714285714285

In [67]:

```
ratio=0.5/0.39
print("ratio of both event", ratio)
```

ratio of both event 1.282051282051282

Q 2.7.1. If a student is chosen randomly, what is the probability that his/her GPA is less than 3?

```
In [68]:
```

```
pd.DataFrame(cmsu.groupby("GPA").Gender.value_counts()).head(11)
```

Out[68]:

		Gender
GPA	Gender	
2.3	Female	1
2.4	Female	1
2.5	Male	4
	Female	2
2.6	Male	2
2.8	Male	2
	Female	1
2.9	Female	3
	Male	1
3.0	Female	5
	Male	2

Solution -Probability of GPA<3.0 student in graduae ,using formula=P(A) = m/n. I have two popution taking A is GPA<3.0 and B is total student. m=no of ways of accurrence of GPA<3.0 student . n= no of total outcome student.

In [69]:

```
m=17 #( GPA<3.0 student)
n=62 #(total no outcome)
print("probability of GPA<3.0 student less GPA",m/n)</pre>
```

probability of GPA<3.0 student less GPA 0.27419354838709675

Q 2.7.2. Find the conditional probability that a randomly selected male earns 50 or more. Find the conditional probability that a randomly selected female earns 50 or more.

In [70]:

```
pd.DataFrame(cmsu.groupby("Salary").Gender.value_counts()).tail(13)
```

Out[70]:

Gender

Salary	Gender	
50.0	Female	5
	Male	4
52.0	Male	1
54.0	Male	1
55.0	Female	5
	Male	3
60.0	Female	5
	Male	3
65.0	Male	1
70.0	Female	1
78.0	Female	1
80.0	Female	1
	Male	1

In [71]:

```
df_salary=pd.crosstab(cmsu["Gender"],cmsu["Salary"],margins=True)
df_salary
```

Out[71]:

Salary	25.0	30.0	35.0	37.0	37.5	40.0	42.0	45.0	47.0	47.5	50.0	52.0	54.0	55.0	60.0
Gender															
Female	0	5	1	0	1	5	1	1	0	1	5	0	0	5	5
Male	1	0	1	1	0	7	0	4	1	0	4	1	1	3	3
All	1	5	2	1	1	12	1	5	1	1	9	1	1	8	8
4															•

Solution -Probability of salary>=50 ,using formula=P(A)=m/n. I have two populion taking A is salary>=50 and B is only Female & Male.

```
In [72]:
```

```
p_50_more_female=18/33
p_50_more_female
```

Out[72]:

0.5454545454545454

In [73]:

```
P_50_more_male=14/29
P_50_more_male
```

Out[73]:

0.4827586206896552

There are 18 female are earn solary = >50 & more out of 33 female ,and prabability of 54.54% famale papution are take salary=>50

There are 14 males who earns 50 or more out of 29 males. So required probability that a randomly selected male earns 50 or more is 48.2%

Q 2.8.1 Note that there are four numerical (continuous) variables in the data set, GPA, Salary, Spending and Text Messages. For each of them comment whether they follow a normal distribution.

In [74]:

```
plt.figure(figsize=(10,16))
plt.subplot(4,1,1)
sns.distplot(cmsu.GPA)
plt.subplot(4,1,2)
sns.distplot(cmsu.Salary)
plt.subplot(4,1,3)
sns.distplot(cmsu.Spending)
plt.subplot(4,1,4)
sns.distplot(cmsu["Text Messages"])
```

C:\Users\rahul\anaconda3\lib\site-packages\seaborn\distributions.py:2551: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\rahul\anaconda3\lib\site-packages\seaborn\distributions.py:2551: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\rahul\anaconda3\lib\site-packages\seaborn\distributions.py:2551: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\rahul\anaconda3\lib\site-packages\seaborn\distributions.py:2551: Fu tureWarning: `distplot` is a deprecated function and will be removed in a fu ture version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[74]:

<AxesSubplot:xlabel='Text Messages', ylabel='Density'>

solution 1.report GPA as per report of graph 3.0 to 3.5 GPA are more student gating result . 2.report salary

as per report of graph 40 to 60 salary more employer take . 3. report Spending as per report of graph 250 to 600 hay value . 2. report Text Messages\$ as per report of graph 0 to 300 massage recived .

Problem - 3

manufacturers of ABC asphalt shingles Data Analysis

```
In [75]:
abc=pd.read_csv("A+&+B+shingles (1).csv")
In [76]:
abc.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 36 entries, 0 to 35
Data columns (total 2 columns):
     Column Non-Null Count Dtype
             36 non-null
                              float64
                              float64
1
     В
             31 non-null
dtypes: float64(2)
memory usage: 704.0 bytes
In [77]:
abc.head()
Out[77]:
        В
  0.44 0.14
1 0.61 0.15
2 0.47 0.31
3 0.30 0.16
4 0.15 0.37
In [78]:
abc.isnull().sum()
Out[78]:
     0
     5
dtype: int64
```

Q 3.1 Do you think there is evidence that means moisture contents in both types of shingles are within the permissible limits? State your conclusions clearly showing all steps.

```
In [79]:
```

```
abc.describe().T
```

Out[79]:

	count	mean	std	min	25%	50%	75%	max
Α	36.0	0.316667	0.135731	0.13	0.2075	0.29	0.3925	0.72
В	31.0	0.273548	0.137296	0.10	0.1600	0.23	0.4000	0.58

As per calculated for other A shingle and B singles are 0.3166 and 0.27354 respectively. which are within permissible limit with is 0.35pound per 100 square feet.

Q 3.2 Do you think that the population mean for shingles A and B are equal? Form the hypothesis and conduct the test of the hypothesis. What assumption do you need to check before the test for equality of means is performed?

"Forming hypothesis to perform the hypothesis test

```
HO: Poputation mean for shingles A and shingles B are not equal. (null hypothesis).

Hi: Population mean for shingle A and shingles B are equal .(alternate hypothesis)
```

Ttest

In [80]:

s).

```
t_statistic ,p_value=ttest_ind(abc["A"],abc["B"],nan_policy="omit")
print("ttest value",t_statistic)
print("p_value",p_value)
```

```
ttest value 1.2896282719661123 p value 0.2017496571835306
```

As per result fail to reject null hypothesis p_value>Alpha(0.5) .we show that A and B are not equail.

```
In [ ]:
```

[&]quot;Alpha=0.05(leveal of significance)