33

University of Calgary Schulich School of Engineering Department of Electrical and Computer Engineering

ENEL 476 – Electromagnetic Waves and Applications

Midterm Examination 1

Winter Session 2014 Thursday February 6, 2014 7:00-8:30 pm

ICT 102

Student Name or ID number:

DR. FEAR

Question 1.

(15 marks)

An electric field is described by:

$$\vec{E}_s(z) = 10e^{j10\pi z}\vec{a}_v \text{ V/m}$$

The frequency (f) is 500 MHz. The field is located in a material with $\mu = \mu_0$ and $\sigma = 0$. Assume a source-free region (J=0, $\rho_v=0$).

- a) Express the electric field in the time-domain (E(z,t)).

= ITx109 radis

E(2,+)=10cosc#x1092+101721ag V/m

- b) Find the magnetic field in phasor form $(\mathbf{H}_{s}(z))$. You may keep the expression in terms of [5]
- (1) UXEG = -jumpHs

D √xĒs=-10(jioπ) e jioπz

 $\nabla x \vec{E}_{S} = |\vec{\alpha}_{x}| \vec{\alpha}_{y} |\vec{\alpha}_{z}|$ $|\vec{\partial}_{x}| \vec{\partial}_{y} |\vec{\partial}_{z}|$ $|\vec{\partial}_{x}| \vec{\partial}_{z} |\vec{\partial}_{z}|$ $|\vec{\partial}_{x}| \vec{\partial}_{z}|$ $|\vec{\partial}_{z}|$ $|\vec{\partial}_{x}| \vec{\partial}_{z}|$ $|\vec{\partial}_{z}|$ $|\vec{\partial}_{z}$ (1) -3100 TTe 310Tt dx = - Jupotis

(1) = \(\frac{1}{3\chi}(-\frac{1}{3\chi}\chi\gamma\gamma) - \(\frac{1}{3\chi}(\omega) + \frac{1}{9\chi}(\omega) + \frac{1}{9\chi}(\omega) \chi\gamma\g $= -\frac{2}{2} \underbrace{\epsilon_{y}}_{\epsilon_{z}} \underbrace{\epsilon_{z}}_{\epsilon_{z}}$ c) Calculate the relative permittivity, ϵ_{r} .

- (1) TxHs=jwento Es

 $\begin{array}{ll}
\overline{D} = \epsilon_{12}\epsilon_{0}\overline{E} \\
\overline{D} = q\left(\frac{1}{26\pi}\times10^{-9}\right)\left(\frac{1}{12}\cos\left(\frac{1}{12}\times10^{9}+10\pi_{2}\right)\frac{2}{9}\right)
\end{array}$

a) A contour is placed at a distance of 10 cm from an infinitely long wire in which a current of I=10 cos(ωt) A is flowing. The current flows in the z direction, and the contour is in the x-z plane. Assume that the current is slowly time-varying (i.e. displacement current can be neglected). The contour and wire are in free space (ϵ_* , μ_* , σ =0). The contour has side lengths of 10 cm and 5 cm, as shown in the figure. Find the EMF induced in the contour.

The contour moves with a velocity of $v = 0.2 a_x$ m/s away from the wire. Find an expression for the EMF induced in the contour.

0= SB. ds B= HATI A I= 52. H3 (= I

SHASA $\phi = 10$ cosut H4 8779 = 10 cos wt Ho = 10 cosut

For this configuration, $\vec{H} = \frac{10\cos ut}{2\pi} \vec{a}y$

DAJB=10 no cos(wt) 2

Blimits

Bishis = To no cos(wt) (I dxd7)

DOIL

= 5 mocos (wit) (0.05) (ln 0.2) HIT end

10 Luz - , 346

EMF = -d (Mo cosut en 2) - - mo und (-wsin wt) Ent - Mow ena (sin wt) V Storando = Storando + Storando de 07 - | ax ay aq | :. 8 (3-x13)-22= (5 μο cos(w) x0.2 Tx dz + (5μο cos(w) π (x+a)) = hocos(mx)x0.2 hocos(mx) (1) dtB = -5 MOWS in wt ay 1) - Sound and = +5 mow sinut SS - dxdz (3) = 5 w no sin wt (0.05) on (x+0.1)

Question 3.

(10 marks)

a) A lossless transmission line has impedance of 70 Ω and β =6 rad/m. The line operates at 200 MHz. Calculate R, L, G and C.

B = 0 $C_1 = 0$ $C_2 = 0$ $C_3 = 0$ $C_4 = 0$ $C_5 =$

- b) A coax line is characterized by R=6.5 Ω/m, L=3.4 μH/m, G=8.4 mS/m and
 - b) A coax line is characterized by R=6.5 Ω/m , L=3.4 μ H/m, G=8.4 mS/m and C=21.5 pF/m. At a frequency of 1 MHz, calculate the impedance, Z_0 .

$$70 = \sqrt{6.5 + \frac{1}{3}(3\pi \times 10^{6})(3\pi \times 10^{6})}$$

$$= 41.67 + \frac{3}{3}0.36 - 2$$

$$= 51.56 + \frac{3}{3}6.10$$

(Answer Only)
No part marks)

$$V = 150 \cos(10^{3}t)$$

$$= 150 \cos(10^{3}t)$$

$$= 150 \cos(10^{3}t)$$

$$= -10^{3} \cos(10^{3}t) (10^{3})$$

$$= -10^{3} \cos(10^{3}t) (10^{3}t)$$

$$= -10^{3} \cos(10^{3}t)$$

$$= -10^{3} \cos(10$$

d) A material with ε_r =6 and μ_r =1.2 forms an interface with a perfect electric conductor. The surface normal of the interface is oriented in the +x, +y direction. If the electric field in the material is given by $E=(12 a_x + 6 a_y)\cos(10^9 t)$ mV/m, find the surface charge density, ρ_s .

 $\frac{\partial}{\partial n} = \frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}{\partial x}$ $= \frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}{\partial x} + \frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}{\partial x} =$