Automata and Formal Languages Assignment 2

Submitted To: Md. Arquam Assistant Prof. IIIT Sonepat Submitted By: Gaurav Yadav 11911038 CSE

Question 1

1) $L_1 = \{ w \mid w \text{ is a binary string with equal number of zeros and ones } \}$

Solution:

Suppose there is a DFA for L_1 with p states.

- Choose $x = 0^p 1^p$ to pump; clearly x is in L₁.
- The Pumping Lemma yields x = u v w, $|v| \ge 1$, $|uv| \le p$, and u v m w in L_1 for every m.
- Since $|uv| \le p$, uv consists of 0s only.
- Since $|v| \ge 1$, v contains at least one 0.
- Then u v v w is supposed to be in L₁, but it isn't. (Contradiction)

So, L_1 is not regular.

Ouestion 2

2) L₂ = { w | w is a binary string of the form 0ⁿ1ⁿ, where n≥1} Note: L₁ is not the same as L₂

Solution:

Suppose there is a DFA for L1 with p states.

- We pick a particular word x in L1 and pump it to get a contradiction.
- Choose x = 0 p 1 p, where p is the number of states.
- Then the Pumping Lemma says that x can be written as $u \vee w$, with $|v| \ge 1$, so that $u \vee v$ w is also in L1. We're using m = 2 here.
- We get a contradiction, by considering three cases:
- v consists of 0s only: Then u v v w contains at least one extra 0, the same 1s, can't match.
- v consists of 1s only: At least one extra 1, can't match.

- v consists of a mix of 0s and 1s: Then u v v w contains a 1 before a 0, so u v v w can't be in L1.

Question 3

3) $L_3 = \{ w \mid w \text{ is a binary string of the form } 0^n 10^n, \text{ where } n \ge 1 \}$

Solution:

Assume L₃ is regular.

From the pumping lemma there exists an n such that every $w \in L$ such that $|w| \ge n$ can be represented as xyz with $|y| \ge 0$ and $|xy| \le n$. Let us choose $0^n 10^n$. Its length is $2n+1 \ge n$. Since the length of xy cannot exceed n, y must be of the form 0^p for some p > 0.

From the pumping lemma $0^{n-p}10^n$ must also be in L_3 but it is not of the right form.

Hence the language is not regular.

Question 4

4) $L_4 = \{w \mid w \text{ is a binary string of the form } 0^m 1^n, \text{ where } m < n \text{ and } m, n \ge 0 \text{ integers} \}$

Solution:

Assume L₄ to be regular.

break w into xyz, in which $y \ge 0$ and $|xy| \le n$.

We know that $|xy| \le n$ and $y \in y \ge 0$. Since xy comes at the front of w, we know that x and y consist of only 0's, and that y must contain at least one 0.

The Pumping Lemma tells us that xz is in L if L is regular, however, xz has n 1's, since all of the 1's of w are in z. However, xz also has fewer than n 0's, because we have lost the 0's of y. Since $y y \ge 0$, we know that there can be no more than n-1 0's among x and z. We have assumed L_4 to be a regular language, but have proved that xz is not in L_4 . Therefore, we have contradicted our assumption that L is regular.

Question 5

5) $L_5 = \{ w \mid w \text{ is a binary string of the form } 0^n, \text{ where n is a perfect square (i.e., } n=i^2, \text{ for } i \ge 1) \}$

Solution:

Step 1: Assume the set L is regular. Let n be the number of states of the FA accepting the set L.

Step II: Let $w = a^{n^2}$. $|w| = n^2$ which is greater than n, the number of states of the FA accepting L. By using the pumping lemma, we can write w = xyz with $|xy| \le n$ and |y| > 0

Step III: Take i = 2. So, the string will become xy^2z .

$$|xy^2z| = |x| + 2|y| + |z| > |x| + |y| + |z|$$
as $|y| > 0$.

From step II, we know $|w| = |xyz| = |x| + |y| + |z| = n^2$.

So, $|xy^2z| > n^2$.

Again, $|xy^2z| = |x| + 2|y| + |z| = |x| + |y| + |z| + |y| = n^2 + |y|$.

As $|xy| \le n$, $|y| \le n$.

Therefore, $|xy^2z| \le n^2 + n$.

From the previous derivations, we can write

$$n^2 < |xy^2z| \le n^2 + n < n^2 + n + n + 1$$

 $n^2 < |xy^2z| < (n+1)^2$.

Hence, $|xy^2z|$ lies between n^2 and $(n + 1)^2$. They are the square of two consecutive positive integers. In between the square of two consecutive positive integers, no square of positive integer belongs. But ai^2 , where $i \ge 1$ is a perfect square of an integer. So, the string derived from it, i.e., $|xy^2z|$ is also a square of an integer, which lies between the square of two consecutive positive integers. This is not possible.

So, xy²z ∉ L. This is a contradiction.

So, $L = L = \{a^i \mid i \ge 1\}$ is not regular.