Praktikum Data Preprocessing

Praktikum Cluster Analysis

Ulima Inas Shabrina(2110181048)

Assignment

- dataset ← transaction.csv, dan tampilkan
- 2. country ← berapa kemunculan tiap negeri pada dataset, dan tampilkan
- transaksi ← hitunglah banyaknya rata-rata jumlah barang (Qty) per transaksi pada tiap negara (1 kode InvoiceNo = 1 transaksi)
- cluster_i[1-10], cluster_val[1-10] ← lakukan clustering pada transaksi dengan K-Means, dengan k=3, sebanyak 10 kali. Setiap kali selesai clustering, lakukan cluster analysis dengan SSE.
- cluster ← ambil cluster_i yang mempunyai cluster_val terkecil
- 6. centroid ← tentukan posisi centroid dari setiap cluster
- 7. sorted ← lakukan pengurutan posisi centroid secara ascending
- 8. Indeks terdepan dari centroid setelah pengurutan, mengindikasikan cluster transanksi rendah. Indeks terakhir dari centroid setelah pengurutan, mengindikasikan cluster transanksi tinggi. Indeks di antaranya, mengindikasikan cluster transanksi sedang. Tampilkan negara mana saja yang transaksinya rendah, sedang dan tinggi.
- 9. Visualisasi dengan warna yang berbeda untuk hasil cluster (no. 8), dimana sumbu x=urutan country dan sumbu y=transaksi


```
In [1]: import pandas as pd
import numpy as np
#1
from sklearn.cluster import KMeans
dataset = pd.read_csv('transaction.csv')
dataset
```

Out[1]:

	InvoiceNo	StockCode	Qty	InvoiceDate	CustomerID	Country
0	537626	22725	830	12/7/2010 14:57	12347	Iceland
1	537626	22729	948	12/7/2010 14:57	12347	Iceland
2	537626	22195	695	12/7/2010 14:57	12347	Iceland
3	542237	22725	636	1/26/2011 14:30	12347	Iceland
4	542237	22729	536	1/26/2011 14:30	12347	Iceland
10541	543911	21700	455	2/14/2011 12:46	17829	United Arab Emirates
10542	543911	22111	578	2/14/2011 12:46	17829	United Arab Emirates
10543	543911	22112	163	2/14/2011 12:46	17829	United Arab Emirates
10544	564428	23296	545	8/25/2011 11:27	17844	Canada
10545	564428	23294	643	8/25/2011 11:27	17844	Canada

10546 rows × 6 columns

Out[2]:

	Country
Australia	356
Austria	88
Bahrain	3
Belgium	486
Brazil	8
Canada	36
Channel Islands	184
Cyprus	113
Czech Republic	4
Denmark	98
EIRE	1620
European Community	5
Finland	152
France	2109
Germany	2269
Greece	33
lceland	35
Israel	61

```
In [3]: invoice_qty = pd.DataFrame(dataset.groupby(['InvoiceNo'])['Qty'].sum())
invoice_qty
```

Out[3]:

Qty

InvoiceNo		
536370	5133	
536389	2800	
536527	4176	
536532	10000	
536540	1976	
581494	3791	
581570	1063	
581574	1361	
581578	5470	
581587	1395	

1565 rows × 1 columns

```
In [4]: invoice_country = dataset.drop_duplicates(subset = 'InvoiceNo', keep = 'first')
   invoice_country = invoice_country.set_index('InvoiceNo')
   invoice_country = invoice_country[['Country']]
   invoice_country
```

Out[4]:

Country

InvoiceNo	
537626	Iceland
542237	Iceland
549222	Iceland
556201	Iceland
562032	Iceland
559557	Canada
545579	Greece
555931	Malta
543911	United Arab Emirates
564428	Canada

1565 rows × 1 columns

```
In [5]: invoice_qty_country = pd.concat([invoice_qty, invoice_country], axis = 1)
  invoice_qty_country
```

Out[5]:

	Qty	Country
InvoiceNo		
536370	5133	France
536389	2800	Australia
536527	4176	Germany
536532	10000	Norway
536540	1976	EIRE
581494	3791	Germany
581570	1063	Germany
581574	1361	Germany
581578	5470	Germany
581587	1395	France

1565 rows × 2 columns

Out[6]:

Qty

Country	
Australia	497.632022

Bahrain 490.000000

Austria 466.397727

Belgium 524.172840

Brazil 548.625000

Canada 537.472222

Channel Islands 521.543478

Cyprus 502.778761

Czech Republic 619.750000

Denmark 554.489796

EIRE 523.892593

European Community 553.000000

Finland 533.342105

France 521.553817

Germany 518.356985

Greece 526.212121

Iceland 560.171429

Israel 462.065574

Italy 519.836842

Japan 470.195652

Lebanon 567.200000

Lithuania 503.250000

Malta 501.133333

Netherlands 527.796530

Norway 548.179916

Poland 537.312500

Portugal 504.697548

RSA 469.714286

Saudi Arabia 592.000000

Singapore 559.000000

Spain 539.035250

Sweden 516.330275

Switzerland 535.119816

USA 531.340426

United Arab Emirates 538.869565

Unspecified 486.295455

```
In [7]: cluster_i = []
    cluster_val = []
    for i in range(10):
        kmeans = KMeans(n_clusters = 3, init = 'random', n_init=1, max_iter=5).fit(transaksi)
        cluster_i.append(kmeans)
        cluster_val.append(kmeans.inertia_)
        print(kmeans, kmeans.inertia_)

        KMeans(init='random', max_iter=5, n_clusters=3, n_init=1) 8257.151454676508
        KMeans(init='random', max_iter=5, n_clusters=3, n_init=1) 8650.598826148962
        KMeans(init='random', max_iter=5, n_clusters=3, n_init=1) 8257.151454676508
        KMeans(init='random', max_iter=5, n_clusters=3, n_init=1) 8759.282563946897
        KMeans(init='random', max_iter=5, n_clusters=3, n_init=1) 8257.151454676508
```

KMeans(init='random', max_iter=5, n_clusters=3, n_init=1) 8110.970246046107
KMeans(init='random', max_iter=5, n_clusters=3, n_init=1) 8257.151454676508
KMeans(init='random', max_iter=5, n_clusters=3, n_init=1) 8095.124159634649
KMeans(init='random', max_iter=5, n_clusters=3, n_init=1) 9099.07839747103
KMeans(init='random', max_iter=5, n_clusters=3, n_init=1) 8143.314803447484

```
In [8]: index cluster = cluster val.index(min(cluster val))
        cluster = cluster i[index cluster]
        print(cluster, cluster.inertia )
        KMeans(init='random', max_iter=5, n_clusters=3, n_init=1) 8095.124159634649
In [9]: centroid = cluster.cluster centers
        centroid
Out[9]: array([[486.74185073],
              [530.49957122],
              [572.23017493]])
In [10]: idx = np.argsort(centroid.sum(axis=1))
        lut = np.zeros like(idx)
        lut[idx] = np.arange(3)
        sorted centroid = centroid[lut]
        sorted label = lut[cluster.labels ]
        print('Centroid', sorted centroid)
        print('Label', sorted label)
        Centroid [[486.74185073]
         [530.49957122]
         [572.23017493]]
```

Transaksi Tinggi Index(['Czech Republic', 'Denmark', 'European Community', 'Iceland', 'Lebanon',

'United Arab Emirates'],

dtype='object', name='Country')

'Saudi Arabia', 'Singapore'], dtype='object', name='Country')

```
In [12]: import matplotlib.pyplot as plt

plt.plot(label_index_2, transaksi.iloc[label_index_2].to_numpy().reshape((1,-1)),'r.')
   plt.plot(label_index_1, transaksi.iloc[label_index_1].to_numpy().reshape((1,-1)),'y.')
   plt.plot(label_index_0, transaksi.iloc[label_index_0].to_numpy().reshape((1,-1)),'g.')
   plt.show()
```


Terimakasih