Bildverarbeitung: Übung

10. Übung: 2D Fast Fourier Transformation

Michael Grunwald

Aufgabe 1: 2D FFT

Wir betrachten die zweidimensionale diskrete Fouriertransformation.

- 1. Öffen Sie die Matlab-Funktion 'ibv_fft2.m' und führen Sie die Funktion aus:
 - (a) ibv_fft2(imread('shutter.jpg'), 'none')
 - (b) Der Parameter 'none' gibt an, keine Windowing Operation zu verwenden.
- 2. Machen Sie sich mit den dargestellten Diagrammen vertraut:
 - (a) Signal i(x, y)
 Hier wird das generierte Signal nach einer optionalen Windowing Operation dargestellt.
 - (b) Amplitude Spectrum of I(x, y)Das Betragsspektrum des Signals (2|I(x, y)|)
 - (c) Real Spectrum of I(x, y)Der reelle Teil (Kosinusterme) des Ergebnisses der Fouriertransformation $(\Re(I(x, y)))$
 - (d) Imaginary Spectrum of I(x, y)Der imaginäre Teil (Sinusterme) des Ergebnisses der Fouriertransformation $(\Im(I(x, y)))$
- Laden Sie das Buch Digitale Bildverarbeitung herunter und lesen Sie Kapitel 14 (Diskrete Fouriertransformation in 2D). Bitte beachten Sie, dass der Link nur intern im HTWG Netz funktioniert.

Aufgabe 2: Optimierte Darstellung

- 1. Öffen Sie die Matlab-Funktion 'optview.m' und implementieren Sie eine Funktion, die die übergebene Matrix so aufbereitet, so dass sie vom Betrachter einfache zu bewerten ist.
- 2. Achtung: Durch die Art, wie die Darstellungsoptimierung verwendet wird, sind die Amplituden des Signals nicht mehr für die direkte Messungen der Signalstärke benutzbar.

Aufgabe 3: Zentrierte Ansicht

- 1. Ändern Sie in 'ibv_fft2.m' den Wert der Variablen *ViewMode* von 1 auf 2. Die Achsenbeschriftung ist nun für die zentrierte Ansicht benutztbar.
- 2. Öffnen Sie die Datei 'fft2_center.m' und implementieren Sie eine Funktion, welche aus der übergebenen Matrix die vertrauten zentrierte Ansicht erstellt.

Bildverarbeitung: Übung

10. Übung: 2D Fast Fourier Transformation

Michael Grunwald

Aufgabe 4: Windowing Operatoren

Öffnen Sie die Datei 'fft2_window.m' und implementieren Sie folgende Windowing Operatoren:

- 1. 'elliptic' Elliptisches Fenster
- 2. 'gauss' Gauss Fenster mit $\sigma = 0.4$
- 3. 'sgauss' Super-Gauss mit Fenstergröße n= 6 und $\kappa = 0.4$
- 4. 'hanning' Hanning Fenster

Aufgabe 5: Frequenzmessung im Bild

- 1. Welchen Einfluss hat die 'Windowing'-Operation auf die Ergebnisse der FFT? Begründen Sie.
- 2. Welche Peaks sind für eine einfache Frequenzmessung relevant? Begründen Sie.
- 3. Was stellen die anderen Peaks dar?
- 4. Welche Vermutung über den Bildinhalt können Sie aufstellen, wenn Peaks eine Gerade formen und auf dieser Geraden starke Peaks weit ab von der Bildmitte auftreten (zentrierte Ansicht)?
- 5. Messen Sie die Hauptfrequenz des Lamellenmusters im Bild 'shutter.jpg'.
- 6. Bestimmen Sie aus dem Ergebnis der FFT, den Winkel der relativ zur Senkrechten in dem die hellen Diagonalstreifen durchs Bild verlaufen.

Bemerkung

• Die Aufgaben werden elektronisch (m.grunwald@htwg-konstanz.de) und per Ausdruck abgegeben. (Ausdruck: Beantwortung der Aufgaben – Elektronisch: Alle Aufgaben als eine pdf-Datei)