Feedback — Homework 12

Help

You submitted this quiz on **Mon 30 Jun 2014 2:11 PM UTC**. You got a score of **9.00** out of **10.00**. However, you will not get credit for it, since it was submitted past the deadline.

Question 1

Check all the problem(s) that admit sparse solution(s):

Your Answer		Score	Explanation
$lacksquare min \ \mathbf{x}\ _0 subject to A\mathbf{x} = \mathbf{b}$	~	0.25	
$ extbf{w} \ \mathop {min}\limits_{\mathbf{x}} {\left\ {\mathbf{x}} ight\ _p} \ subjecttoA{\mathbf{x}} = {\mathbf{b}}$ (p is between 0 and 1)	~	0.25	
$oxed{\mathbf{w}} \ \mathop {min}\limits_{\mathbf{x}} \left\ {\mathbf{x}} ight\ _1 \ subjecttoA{\mathbf{x}} = {\mathbf{b}}$	~	0.25	
$lacksquare min \left\ \mathbf{x} ight\ _2 \ subject to A\mathbf{x} = \mathbf{b}$	~	0.25	
Total		1.00 / 1.00	

Question 2

Natural image patches (unlike random noise) cannot be sparsely represented over a DCT dictionary.

Your Answer		Score	Explanation
True			
False	~	1.00	
Total		1.00 / 1.00	

Question 3

1 of 5

our Answer		Score	Explanation
low-rank, sparse			
low-rank, low-rank	×	0.00	
sparse, sparse			
sparse, low-rank			

Question 4

Which one of the greedy algorithms discussed in class is designed to solve the following problem? $\min_{A,X}\|AX-B\|_F$

 $subject\:to\:\|X(:,i)\|_0 \leq k\:\forall i$

Your Answer		Score	Explanation
Method of Optimal Directions	~	1.00	
This problem has a closed form solution and hence doesn't need to be solved in a greedy fashion.			
Matching Pursuit			
Orthogonal Matching Pursuit			
Total		1.00 /	
		1.00	

Question 5

Check all the norms that are convex functions.

Your Answer		Score	Explanation
$lacksquare$ The L0 norm ($f(\mathbf{x}) = \ \mathbf{x}\ _0$)	~	0.25	

$lacksquare$ The Lp norm ($f(\mathbf{x}) = \left\ \mathbf{x} ight\ _p$ where p is between 0 and 1.	~	0.25
$ lap{def}$ The L1 norm ($f(\mathbf{x}) = \left\ \mathbf{x} ight\ _1$)	~	0.25
$ lap{def}$ The L2 norm ($f(\mathbf{x}) = \left\ \mathbf{x} ight\ _2$)	~	0.25
Total		1.00 / 1.00

Question 6

Which one of the following statements is true regarding the basis pursuit problem given by

$$\mathbf{x}^* = \mathop{argmin}_{\mathbf{x}} \|\mathbf{x}\|_1 \ \ \mathit{subject to A}\mathbf{x} = \mathbf{b}$$
?

Your Answer	Score	Explanation
${\color{blue} \bullet}$ If one of the columns in A is identical to $\mathbf{b} \neq 0,$ then $\ \mathbf{x}^*\ _1 = 1.$		
${\color{blue} \bullet}$ If ${\bf b}={\bf 0}$ and A is full rank, then the problem has no solution since the constraint set becomes empty.		
• ${f x}^*$ also minimizes the corresponding LASSO problem given by $\min_{{f x}}\ A{f x}-{f b}\ _2^2+\lambda\ {f x}\ _1.$		
none of the above.	✓ 1.00	
Total	1.00 /	
	1.00	

Question 7

The singular value decomposition of the $n \times n$ square matrix A is given by $A = U \Sigma V^T$. Check all correct statements.

Your Answer		Score	Explanation
$\hfill\Box$ The nuclear norm of A (given by the sum of absolute values of entries on the diagonal of Σ) is an upper bound on the rank of A.	~	0.25	
$\hfill \square$ Only square matrices (such as $A)$ have singular value decomposition.	~	0.25	

$\ensuremath{\overline{\!\!arphi}}$ Matrices U and V are orthonormal bases for the n -dimensional space.	~	0.25
$\overline{\!$	~	0.25
Total		1.00 /
		1.00

Question 8

In this MATLAB assignment you will code-up the orthogonal matching pursuit (OMP) algorithm, as discussed in the lecture, to solve the following optimization problem:

$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_2 \ \ subject \ to \ \|\mathbf{x}\|_0 \leq S.$$
 In this exercise $A = D + I$, where

 $D_{ij}=sin(i+j)$ for $1\leq i,j\leq 10$ and I is the 10×10 identity matrix. Use A along with $\mathbf{b}=[-2,-6,-9,1,8,10,1,-9,-4,-3]^T$, and S=3 to find the solution to the problem given above. Your solution \mathbf{x}^* uses three columns of A in order to approximate \mathbf{b} . Type in the indices of these columns in ascending order separated by spaces. (Hint: normc(A) normalizes the columns of A to a length of 1 in MATLAB.)

You entered:

2 5

Your Answer		Score	Explanation
2	~	1.00	
5	~	1.00	
9	~	1.00	
Total		3.00 / 3.00	