

ECE 20200: Linear Circuit Analysis II
Steve Naumov (Instructor)

Lecture Overview

- This set of slides presents the following
 - Basis Functions for Engineering
 - Singularity Functions
 - ☐ Heaviside Step Function
 - ☐ Gate/Window Function
 - □ Ramp Function
 - □ Dirac Delta/Impulse "Function"
 - □ Relating Singularity Functions
 - □ Synthesizing Functions Using Singularity Functions
 - ▶ The Generalized Sinusoid and Complex Frequency Plane

Basis Functions

- Basis Functions: A set of elementary mathematical functions that may be combined in some manner to model/approximate many real world signals/waveforms.
- Typical set of basis functions
 - Heaviside Step Function
 - Gate Function
 - Ramp Function
 - Dirac Delta/Impulse "Function"
 - Complex Exponential Function
- Singularity Functions: A function that is either discontinuous or has at least one discontinuous derivative. Examples include
 - Heaviside Step Dirac Delta/Impulse
 - ▶ Gate Ramp

Heaviside Step Function

Heaviside (Unit) Step Function

Heaviside Step Function

$$f(t) = Au(t) = \begin{cases} 0, & t < 0 \\ A, & t > 0 \end{cases}$$

Value is zero <u>before</u> t = 0and A <u>after</u> t = 0

- Discontinuous at $t = 0 \rightarrow f(0) = Au(0)$ is <u>undefined!</u>
- Heaviside Unit Step Function

$$f(t) = u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

- Value is zero <u>before</u> t = 0and 1 <u>after</u> t = 0
- Discontinuous at $t = 0 \rightarrow f(0) = u(0)$ is undefined!

Time-Shifted Heaviside (Unit) Step Functions

Delayed Heaviside Step Function

$$f(t) = Au(t - t_0) = \begin{cases} 0, & t < t_0 \\ A, & t > t_0 \end{cases}$$

- Value is zero <u>before</u> $t=t_0>0$ and and A <u>after</u> $t=t_0>0$
- $f(t_0) = Au(t_0)$ is undefined!
- Advanced Heaviside Step Function

$$f(t) = Au(t + t_0) = \begin{cases} 0, & t < -t_0 \\ A, & t > -t_0 \end{cases}$$

- Value is zero <u>before</u> $t = t_0 < 0$ and A <u>after</u> $t = t_0 < 0$
- $f(-t_0) = u(-t_0)$ is undefined!

Au(t), A > 0

 $-t_0$

Time-Reversed Heaviside Step Function

▶ Time-Reversed Delayed Heaviside Step Function

$$f(t) = Au(t_0 - t) = \begin{cases} A, & t < t_0 \\ 0, & t > t_0 \end{cases}$$

- Value is A before $t = t_0 > 0$ and and 0 after $t = t_0 > 0$
- $f(t_0) = Au(t_0)$ is undefined!

Time-Reversed Advanced Heaviside Step Function

$$f(t) = Au(-t_0 - t) = \begin{cases} A, & t < -t_0 \\ 0, & t > -t_0 \end{cases} \quad Au(t), A > 0$$

- Value is A before $t = t_0 < 0$ and and 0 after $t = t_0 < 0$
- $f(-t_0) = Au(-t_0) \text{ is } \underline{\text{undefined}!}$

Heaviside Step: Turning On/Off Functions

What is the result of multiplying the two functions in each graph shown below?

Heaviside Step: Turning On/Off Functions (cont'd)

The result of multiplying the two functions in each graph are shown below.

Heaviside Step: Modeling Switched Sources

Modeling Switched Voltage Sources

▶ The two 1-port networks below are equivalent for all time

Modeling Switched Current Sources

▶ The two 1-port networks below are equivalent for all time

Gate/Window Function

Gate/Window Function

Gate/Window Function

$$f(t) = \begin{cases} A, & t_1 < t < t_2 \\ 0, & elsewhere \end{cases}$$

- Assumption: $t_2 > t_1$
- Synthesizing the Gate Function $(t_2 > t_1)$

Ramp Function

Ramp Function

Ramp Function

$$f(t) = Ar(t) = Atu(t) = \begin{cases} 0, & t \le 0 & A \\ At, & t \ge 0 \end{cases}$$

- Value is zero <u>before</u> t = 0 and changes linearly with slope A after t = 0
- Slope A has units s^{-1} (Hz)

Unit Ramp Function

$$f(t) = r(t) = tu(t) = \begin{cases} 0, & t \le 0 \\ t, & t \ge 0 \end{cases}$$

- Value is zero <u>before</u> t = 0 and changes linearly with unity slope <u>after</u> t = 0
- ▶ Slope has units s^{-1} (Hz)

Time-Shifted Ramp Function

Delayed Ramp Function

$$f(t) = Ar(t - t_0) = \begin{cases} 0, & t \le t_0 \\ A(t - t_0), & t \ge t_0 \end{cases}$$

- Value is zero <u>before</u> $t=t_0>0$ and changes linearly with slope A <u>after</u> $t=t_0>0$
- Slope A has units s^{-1} (Hz)
- Advanced Ramp Function

$$f(t) = Ar(t + t_0) = \begin{cases} 0, & t \le -t_0 \\ A(t + t_0), & t \ge -t_0 \end{cases}$$

- Value is zero <u>before</u> $t=t_0<0$ and changes linearly with slope A <u>after</u> $t=t_0<0$
- Slope A has units s^{-1} (Hz)

Dirac Delta/Impulse Function

Intuition Behind the Dirac Delta/Impulse "Function"

- Consider the <u>unit-area</u> rectangular pulse centere $\frac{4\varepsilon^{-1}}{2}$ about t=0 with duration ε and amplitude $1/\varepsilon$.
- The pulse $p_{\varepsilon}(t)$ can be described as a gate function using the following equation

$$p_{\varepsilon}(t) = \varepsilon^{-1}[u(t + 0.5\varepsilon) - u(t - 0.5\varepsilon)]$$

- As $\varepsilon \to 0$, duration decreases while amplitude increases thereby preserving unity-area
- The "function" obtained as $\varepsilon \to 0$ is known as the **Unit Dirac Delta/Impulse**.

$$\delta(t) = \lim_{\varepsilon \to 0} p_{\varepsilon}(t)$$

The area is known as the <u>strength or</u> <u>intensity</u> and has units of <u>seconds s</u>

Dirac Delta/Impulse "Function"

Unit Dirac Delta/Impulse

$$f(t) = \delta(t) = \begin{cases} \infty, & t = 0 \\ 0, & t \neq 0 \end{cases}$$

$$\int_{t_1}^{t_2} \delta(t)dt = \begin{cases} 1, \\ 0, \end{cases}$$

Dirac Delta/Impulse

$$f(t) = A\delta(t) = \begin{cases} \infty, & t = 0 \\ 0, & t \neq 0 \end{cases}$$

$$\int_{t_1}^{t_2} \delta(t)dt = \begin{cases} 1, & t_1 < 0 < t_2 \\ 0, & elsewhere \end{cases} \qquad \int_{t_1}^{t_2} A\delta(t)dt = \begin{cases} A, & t_1 < 0 < t_2 \\ 0, & elsewhere \end{cases}$$

<u>Assumption</u>

$$t_2 > t_1$$

Time-Shifted Dirac Delta/Impulse "Function"

Delayed Dirac Delta/Impulse Function

$$f(t) = A\delta(t - t_0) = \begin{cases} \infty, & t = t_0 \\ 0, & t \neq t_0 \end{cases}$$

$$\int_{t_1}^{t_2} A\delta(t - t_0) dt = \begin{cases} A, & t_1 < t_0 < t_2 \\ 0, & elsewhere \end{cases}$$

- Assumption: $t_2 > t_1$
- Advanced Dirac Delta/Impulse Function

$$f(t) = A\delta(t + t_0) = \begin{cases} \infty, & t = -t_0 \\ 0, & t \neq -t_0 \end{cases}$$
$$\int_{t_1}^{t_2} A\delta(t - t_0) dt = \begin{cases} A, & t_1 < -t_0 < t_2 \\ 0, & elsewhere \end{cases}$$

Assumption: $t_2 > t_1$

Sampling Property of the Dirac Delta/Impulse

- If a function of time x(t) is continuous at time $t=t_0>0$, then $x(t)\delta(t-t_0)=x(t_0)\delta(t-t_0)$
- If a function of time x(t) is continuous at time $t=-t_0<0$, then $x(t)\delta(t+t_0)=x(-t_0)\delta(t+t_0)$
- **Explanation**: Product of x(t) with a unit-strength impulse occurring at $t=\pm t_0>0$ is an impulse with strength $x(\pm t_0)$ occurring at $t=\pm t_0>0$

Sifting Property of the Dirac Delta/Impulse

If a function of time x(t) is continuous at time $t=t_0>0$, then

$$\int_{t_1}^{t_2} x(t)\delta(t-t_0)dt = \int_{t_1}^{t_2} \frac{\text{Sampling Property}}{x(t_0)\delta(t-t_0)}dt = \begin{cases} x(t_0), & t_1 < t_0 < t_2 \\ 0, & elsewhere \end{cases}$$

If a function of time x(t) is continuous at time $t=-t_0<0$, then

$$\int_{t_1}^{t_2} x(t)\delta(t+t_0)dt = \int_{t_1}^{t_2} \frac{\text{Sampling Property}}{x(-t_0)\delta(t+t_0)}dt = \begin{cases} x(-t_0), & t_1 < -t_0 < t_2 \\ 0, & elsewhere \end{cases}$$

Relating Singularity Functions

Relating Singularity Functions (Differentiation)

Discontinuity at $t = t_0 > 0$

$$\frac{d}{dt}r(t-t_0) = \begin{cases} 0, & t < t_0 \\ 1, & t > t_0 \end{cases} = u(t-t_0)$$

$$\frac{d}{dt}u(t-t_0) = \begin{cases} 0, & t \neq t_0 \\ \infty, & t = t_0 \end{cases} = \delta(t-t_0)$$

• Discontinuity at $t = -t_0 < 0$

$$\frac{d}{dt}r(t+t_0) = \begin{cases} 0, & t < -t_0 \\ 1, & t > -t_0 \end{cases} = u(t+t_0)$$

$$\frac{d}{dt}u(t+t_0) = \begin{cases} 0, & t \neq -t_0 \\ \infty, & t = -t_0 \end{cases} = \delta(t+t_0)$$

Relating Singularity Functions (Integration)

 \blacktriangleright Discontinuity at $t=t_0>0$

$$\int_{\tau \to -\infty}^{\tau = t} \delta(\tau - t_0) d\tau = \begin{cases} 0, & t < t_0 \\ 1, & t > t_0 \end{cases} = u(t - t_0)$$

$$\int_{\tau \to -\infty}^{\tau = t} u(\tau - t_0) d\tau = \begin{cases} 0, & t \le t_0 \\ t, & t \ge t_0 \end{cases} = r(t - t_0)$$

$$\int_{\tau \to -\infty}^{\tau = t} \delta(\tau + t_0) d\tau = \begin{cases} 0, & t < -t_0 \\ 1, & t > -t_0 \end{cases} = u(t + t_0)$$

$$\int_{\tau \to -\infty}^{\tau = t} u(\tau + t_0) d\tau = \begin{cases} 0, & t \le -t_0 \\ t, & t \ge -t_0 \end{cases} = r(t + t_0)$$

Generalized Sinusoidal Function

Generalized Sinusoidal Function

The most general form of a sinusoidal function is given as

$$f(t) = \mathbf{Re}[\mathbf{K}e^{s_0t}] = |\mathbf{K}|e^{\sigma_0t}\cos(\omega_0t + \phi)$$

- Complex Frequency Variable: $s_0 = \sigma_0 \pm j\omega_0$
 - ▶ Radian Frequency $Im[s_0] = \pm \omega_0 = \pm 2\pi f_0 = \pm 2\pi / T_0$: Indicates how quickly the sinusoid oscillates (measured in rad/s).
 - Neper Frequency $Re[s_0] = \sigma_0 = 1/\tau$: Indicates how quickly the sinusoid converges or diverges w.r.t. time (measured in nepers/s).
- $K = |K|e^{j\phi}$: Amplitude of complex exponential e^{st}
- Going from $Re[Ke^{s_0t}]$ to $|K|e^{\sigma_0t}cos(\omega_0t+\phi)$

$$f(t) = \mathbf{Re}[\mathbf{K}e^{\mathbf{s_0}t}] = \mathbf{Re}[|\mathbf{K}|e^{j\phi}e^{(\sigma_0 + j\omega_0)t}] \rightarrow$$

$$f(t) = \mathbf{Re}[|\mathbf{K}|e^{j\phi + (\sigma_0 + j\omega_0)t}] = \mathbf{Re}[|\mathbf{K}|e^{\sigma_0 t}e^{j(\omega_0 t + \phi)}] \rightarrow$$

$$f(t) = |\mathbf{K}|e^{\sigma_0 t} \mathbf{R} \mathbf{e} [\cos(\omega_0 t + \phi) + j\sin(\omega_0 t + \phi)] \rightarrow$$

$$f(t) = |\mathbf{K}|e^{\sigma_0 t} \cos(\omega_0 t + \phi)$$

Generalized Sinusoidal Function (cont'd)

- Function $f(t) = Re[Ke^{s_0t}]$ is a general case of several specific functions of which you have some familiarity.
- Depending on the value of complex frequency variable s_0 , special cases of $f(t) = Re[Ke^{s_0t}]$ arise. Those cases include
 - ► Constant/DC Value: $(s_0 = 0 \rightarrow \sigma_0 = \pm \omega_0 = 0)$
 - Real Monotonic Exponential: $(\mathbf{s_0} = \sigma_0 \rightarrow \sigma_0 \neq 0, \pm \omega_0 = 0)$
 - Un-damped Sinusoid: $(\mathbf{s_0} = \pm j\omega_0 \rightarrow \sigma_0 = 0)$
 - Exponentially Varying Sinusoid: $(\mathbf{s_0} = \sigma_0 \pm j\omega_0)$
- Complex Frequecy Plane (s-Plane)
 - An Cartesian plane used to graphically visualize the form of f(t) as a function of complex frequency variable s

1ω

s-Plane

Generalized Sinusoid: Constant & Real Exponential

Constant (DC) ($\sigma_0 = 0, \pm \omega_0 = 0$)

$$f(t) = \mathbf{Re}[\mathbf{K}e^{\mathbf{s}_0t}] = |\mathbf{K}|e^{\sigma_0t}\cos(\omega_0t + \phi)$$

$$f(t) = |\mathbf{K}|e^{(0)t}\cos((0)t + \phi) = |\mathbf{K}|\cos(\phi)$$

$$f(t) = M$$

Time Domain

Generalized Sinusoid: Real Monotonic Exponential

• Real Exponential $(\sigma_0 \neq 0, \pm \omega_0 = 0)$

$$f(t) = \mathbf{Re}[\mathbf{K}e^{\mathbf{s}_0 t}] = |\mathbf{K}|e^{\sigma_0 t}\cos(\omega_0 t + \phi)$$

$$f(t) = |\mathbf{K}|e^{\sigma_0 t}\cos((0)t + \phi) = |\mathbf{K}|\cos(\phi)e^{\sigma_0 t}$$

$$f(t) = Me^{\sigma_0 t}$$

Time Domain

Generalized Sinusoid: Un-dapmed Sinusoid

• Un-damped Sinusoid ($\sigma_0 = 0, \pm \omega_0 \neq 0$)

$$f(t) = \mathbf{Re}[\mathbf{K}e^{\mathbf{s}_0t}] = |\mathbf{K}|e^{\sigma_0t}\cos(\omega_0t + \phi) = |\mathbf{K}|e^{(0)t}\cos(\omega_0t + \phi)$$

$$f(t) = |\mathbf{K}|\cos(\omega_0 t + \phi)|$$

$$f(t) = 0.5|\mathbf{K}| \left[e^{j(\omega_0 t + \phi)} + e^{-j(\omega_0 t + \phi)} \right] = 0.5 \left[|\mathbf{K}| e^{j\phi} e^{j\omega_0 t} + |\mathbf{K}| e^{-j\phi} e^{-j\omega_0 t} \right]$$

$$f(t) = 0.5\mathbf{K}e^{j\omega_0 t} + 0.5\mathbf{K}^*e^{-j\omega_0 t} \rightarrow \boxed{f(t) = 0.5\mathbf{K}e^{s_0 t} + 0.5\mathbf{K}^*e^{s_0^* t}}$$

Generalized Sinusoid: Exponentially Growing Sinusoid

• Exponentially Growing Sinusoid ($\sigma_0 > 0$, $\omega_0 \neq 0$)

$$f(t) = |\mathbf{K}|e^{\sigma_0 t} \cos(\omega_0 t + \phi) \to f(t) = 0.5 |\mathbf{K}|e^{\sigma_0 t} \left[e^{j(\omega_0 t + \phi)} + e^{-j(\omega_0 t + \phi)} \right]$$

$$f(t) = 0.5 \left[|\mathbf{K}|e^{j\phi}e^{(\sigma_0 + j\omega_0)t} + |\mathbf{K}|e^{-j\phi}e^{(\sigma_0 - j\omega_0)t} \right]$$

$$f(t) = 0.5 \mathbf{K}e^{s_0 t} + 0.5 \mathbf{K}^* e^{s_0^* t}$$

Time Domain

Generalized Sinusoid: Exponentially Decaying Sinusoid

Exponentially Decaying Sinusoid ($\sigma_0 < 0, \omega_0 \neq 0$)

$$f(t) = |\mathbf{K}|e^{\sigma_0 t} \cos(\omega_0 t + \phi) \to f(t) = 0.5 |\mathbf{K}|e^{\sigma_0 t} \left[e^{j(\omega_0 t + \phi)} + e^{-j(\omega_0 t + \phi)} \right]$$

$$f(t) = 0.5 \left[|\mathbf{K}|e^{j\phi}e^{(\sigma_0 + j\omega_0)t} + |\mathbf{K}|e^{-j\phi}e^{(\sigma_0 - j\omega_0)t} \right]$$

$$f(t) = 0.5 \mathbf{K}e^{s_0 t} + 0.5 \mathbf{K}^* e^{s_0^* t}$$

Lecture Summary

- This set of slides presented the following
 - Basis Functions for Engineering
 - Singularity Functions
 - ☐ Heaviside Step Function
 - ☐ Gate/Window Function
 - □ Ramp Function
 - □ Dirac Delta/Impulse "Function"
 - □ Relating Singularity Functions
 - □ Synthesizing Functions Using Singularity Functions
 - ▶ The Generalized Sinusoid and Complex Frequency Plane