

Professora: Aline de Oliveira

Contagem, 2021

Geometria Molecular

É o arranjo tridimensional dos átomos em uma molécula.

☐ Influencia muitas das propriedades físicas e químicas das substâncias, tais como: temperaturas de fusão e ebulição, densidade, viscosidade e reatividade.

Comprimentos de ligações e ângulos:

Determinados

☐ Microscopia eletrônica.

As estruturas de Lewis não indicam a forma da molécula, mostram apenas o número e o tipo de ligações.

Existe um método que permite **prever** com considerável sucesso a geometria global de uma molécula ou íon.

Teoria da Repulsão dos Pares Eletrônicos da Camada de Valência (RPECV)

(VSEPR - Valence Shell Electron Pair Repulsion)

Procura explicar o arranjo geométrico dos pares eletrônicos em torno de um átomo central em termos da repulsão eletrostática entre pares de elétrons.

Método VSEPR

Bases do método:

- Os pares de elétrons se orientam ao redor do átomo de modo a minimizarem a repulsão eletrostática;
- Os pares de elétrons não compartilhados são mais volumosos que os pares ligantes.

Os pares de elétrons da camada de valência de um átomo em uma molécula tendem a se distanciar o máximo possível uns dos outros, devido à existência de forças de repulsão eletrostática entre eles.

Método VSEPR

Outras considerações:

- Apenas os elétrons da camada de valência são envolvidos (nessa camada encontram-se os elétrons que estão normalmente envolvidos na formação de ligações químicas);
- Comportam-se como se fossem um único par de elétrons: um par de elétrons não compartilhado e uma ligação covalente (seja ela simples, dupla ou tripla).

Método VSEPR

Como prever a geometria de uma molécula:

- 1. Propor uma estrutura de Lewis válida;
- 2. Verificar o número de pares eletrônicos ao redor do átomo central;
- 3. Verificar a orientação espacial desses pares, admitindo a máxima repulsão entre eles;
- 4. Colocar os demais átomos da molécula;
- 5. Finalmente: a geometria da molécula será dada pela posição dos átomos.

Intensidade das repulsões:

PL = Par Ligante; PNL = Par Não Ligante

PL x PL PNL x PL PNL x PNL Repulsão crescente com o tipo

de par de elétron

180°

120°

90°

Repulsão crescente com o ângulo entre os pares de elétrons

Método VSEPR

Metodo VBEI IX						
Composto	Estruturas					
Composto	Lewis	Espacial				
H_2	Н∘Н	180° H—H Linear				
BeH ₂	H∞Be∞H	H—Be—H Linear				
$\mathrm{CH_4}$	H © H ©C•H H	H Tetraédrica				
H ₂ O	H H	O Angular H 104°				
NH ₃	H⊙N⊙H 0 H	H ^{101.7 pm} N Piramidal H H				
BF_3	:F. :E: :E:	F. B. F. 120° Trigonal F. plana				

Método VSEPR

Geometrias de moléculas com até cinco átomos do tipo AB_n:

Pares de elétrons do átomo central	n	Fórmula molecular	Geometria	Exemplo	Modelo
2	2	AB_2	Linear	CO_2	
3	3	AB_3	Trigonal plana	BF_3	
3	2	AB_2	Angular	SO_2	~
4	4	AB_4	Tetraédrica	CH ₄	
4	3	AB_3	Piramidal	NH ₃	
4	2	AB_2	Angular	H ₂ O	♣