Is it time for an NBA expansion?*

My subtitle if needed

Yan Mezhiborsky

April 19, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

Table of contents

1	Introduction	2			
2	Data				
3	Model 3.1 Model set-up 3.1.1 Model justification				
4	Results	8			
5	Discussion15.1 First discussion point5.2 Second discussion point5.2 Third discussion point5.3 Third discussion point5.4 Weaknesses and next steps	12 12			
Αļ	Appendix				
Α	Additional data details	13			
В	Model details B.1 Posterior predictive check				
R	aforences 1	1/			

^{*}Code and data are available at: https://github.com/Mezhi18/NBAExpansion .

1 Introduction

You can and should cross-reference sections and sub-sections. We use R Core Team (2023) and Wickham et al. (2019).

The remainder of this paper is structured as follows. Section 2....

2 Data

Some of our data is of penguins (?@fig-bills), from Horst, Hill, and Gorman (2020).

Talk more about it.

And also planes (?@fig-planes). (You can change the height and width, but don't worry about doing that until you have finished every other aspect of the paper - Quarto will try to make it look nice and the defaults usually work well once you have enough text.)

Talk way more about it.

3 Model

The goal of our modelling strategy is twofold. Firstly,...

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

3.1 Model set-up

Define y_i as the average number of points per game scored by a team through out the NBA season. Then α is the average assists per game, ρ the average rebounds per game, β is blocks per game, ψ is steals per game and lastly, τ is turnovers per game.

```
y_i|\mu_i, \sigma \sim \text{Normal}(\mu_i, \sigma)
                                                                                                     (1)
        \mu_i = \alpha + \rho_i + \beta_i + \xi_i + \tau_i
                                                                                                     (2)
         \alpha \sim \text{Normal}(0, 2.5)
                                                                                                     (3)
         \rho \sim \text{Normal}(0, 2.5)
                                                                                                     (4)
         \beta \sim \text{Normal}(0, 2.5)
                                                                                                     (5)
         \psi \sim \text{Normal}(0, 2.5)
                                                                                                     (6)
         \tau \sim \text{Normal}(0, 2.5)
                                                                                                     (7)
         \sigma \sim \text{Exponential}(1)
                                                                                                     (8)
                                                                                                     (9)
```

```
# Fit a multiple linear regression model
nba_model <- lm(PTS ~ Year * Num_Teams + AST + TRB + STL + BLK + TOV, data = nba_data)
nba_model_2 <- lm(PTS ~ Year + Num_Teams + AST + TRB + STL + BLK + TOV, data = nba_data)
model_ny <- lm(PTS ~ Num_Teams + AST + TRB + STL + BLK + TOV, data = nba_data)
plot(model_ny)</pre>
```

Residuals vs Fitted

Fitted values Im(PTS ~ Num_Teams + AST + TRB + STL + BLK + TOV)

Theoretical Quantiles
Im(PTS ~ Num_Teams + AST + TRB + STL + BLK + TOV)

Fitted values Im(PTS ~ Num_Teams + AST + TRB + STL + BLK + TOV)

Residuals vs Leverage

Leverage Im(PTS ~ Num_Teams + AST + TRB + STL + BLK + TOV)

```
# Summary of the linear model
msummary(
  list(
    "times Year" = nba_model,
    "Without Year" = model_ny,
    "plus year" = nba_model_2
),
fmt = 2
)
```

```
summary(model_ny)
```

```
Call:
```

lm(formula = PTS ~ Num_Teams + AST + TRB + STL + BLK + TOV, data = nba_data)

Residuals:

Min 1Q Median 3Q Max -2.01666 -1.04222 -0.04709 0.85908 2.86532

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 38.99412 20.62114 1.891 0.066477 .

Num_Teams -0.11553 0.30279 -0.382 0.704972
AST 3.51264 0.27285 12.874 3.09e-15 ***

	times Year	Without Year	plus year
(Intercept)	3648.76	38.99	-68.40
	(1438.71)	(20.62)	(141.22)
Year	-1.81		0.06
	(0.72)		(0.07)
Num_Teams	-121.55	-0.12	-0.23
	(46.76)	(0.30)	(0.34)
AST	3.82	3.51	3.50
	(0.28)	(0.27)	(0.28)
TRB	0.27	0.98	0.76
	(0.43)	(0.31)	(0.42)
STL	-2.01	-3.42	-3.08
	(0.95)	(0.80)	(0.92)
BLK	-3.75	-6.02	-5.51
	(1.64)	(1.45)	(1.61)
TOV	-0.80	0.09	0.21
	(0.64)	(0.52)	(0.54)
$Year \times Num_Teams$	0.06		
	(0.02)		
Num.Obs.	44	44	44
R2	0.967	0.960	0.961
R2 Adj.	0.960	0.954	0.953
AIC	153.6	158.0	159.3
BIC	171.4	172.3	175.4
Log.Lik.	-66.783	-71.011	-70.653
RMSE	1.10	1.22	1.21

```
TRB
           0.97978
                   0.30797 3.181 0.002965 **
STL
          -3.41709 0.79800 -4.282 0.000126 ***
BLK
          -6.02443 1.45399 -4.143 0.000191 ***
TOV
           0.08844
                     0.51968 0.170 0.865802
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 1.325 on 37 degrees of freedom Multiple R-squared: 0.9602, Adjusted R-squared: 0.9537

F-statistic: 148.8 on 6 and 37 DF, p-value: < 2.2e-16

summary(nba_model_2)

Call:

lm(formula = PTS ~ Year + Num_Teams + AST + TRB + STL + BLK + TOV, data = nba_data)

Residuals:

Min 1Q Median 3Q Max -2.10159 -1.05765 -0.04215 0.78005 2.89171

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -68.40156 141.22015 -0.484 0.63106 0.05646 0.07344 0.769 0.44702 Year Num_Teams -0.23141 0.33974 -0.681 0.50014 3.49823 AST 0.27501 12.720 6.96e-15 *** TRB STL -3.07788 0.91575 -3.361 0.00185 ** BLK -5.50569 1.61027 -3.419 0.00158 ** TOV 0.20509 0.54416 0.377 0.70847

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.333 on 36 degrees of freedom Multiple R-squared: 0.9608, Adjusted R-squared: 0.9532 F-statistic: 126.2 on 7 and 36 DF, p-value: < 2.2e-16

We run the model in R (R Core Team 2023) using the rstanarm package of Goodrich et al. (2022). We use the default priors from rstanarm.

3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, for instance θ .

4 Results

Our results are summarized in ?@tbl-modelresults.

NBA Stats Over Years

NBA Stats Over Years (Post-2004)

Frequency of Records by Year

Count of Records per Year from 1980 Onwards

Count of Records per Year for Scores of 60+ PTS from 1980 O


```
nba_avg_pts <- nba_data %>%
  group_by(Year) %>%
  summarize(Avg_PTS = mean(PTS, na.rm = TRUE))

comparison_data <- lebron_data %>%
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 2 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 2 rows containing missing values (`geom_point()`).


```
ggplot(comparison_data, aes(x = Year, y = Ratio, fill = Year)) +
  geom_bar(stat = "identity", color = "black") +
  labs(title = "LeBron's PTS as a Ratio to NBA Average PTS Across Seasons (Bar Graph)",
      x = "Season",
```

```
y = "Ratio of LeBron's PTS to NBA Average PTS") +
theme_minimal() +
theme(legend.position = "none")
```

Warning: Removed 2 rows containing missing values (`position_stack()`).

5 Discussion

5.1 First discussion point

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

5.2 Second discussion point

5.3 Third discussion point

5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

Appendix

A Additional data details

B Model details

B.1 Posterior predictive check

In $\mathbf{?@fig\text{-}ppcheckandposteriorvsprior}\mathbf{-1}$ we implement a posterior predictive check. This shows...

In **?@fig-ppcheckandposteriorvsprior-2** we compare the posterior with the prior. This shows...

B.2 Diagnostics

?@fig-stanareyouokay-1 is a trace plot. It shows... This suggests...

?@fig-stanareyouokay-2 is a Rhat plot. It shows... This suggests...

References

- Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2022. "Rstanarm: Bayesian Applied Regression Modeling via Stan." https://mc-stan.org/rstanarm/.
- Horst, Allison Marie, Alison Presmanes Hill, and Kristen B Gorman. 2020. *Palmerpenguins: Palmer Archipelago (Antarctica) Penguin Data*. https://doi.org/10.5281/zenodo.3960218.
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.