LABORATÓRIO DE BASES DE DADOS

Prof. José Fernando Rodrigues Júnior

Aula 1 – Revisão

Material original editado: Profa. Elaine Parros Machado de Sousa

Conteúdo

- SGBDs
- Modelo Relacional
- Mapeamento MER-Rel

Vantagens:

- armazenamento persistente de dados;
- INDEPENDÊNCIA DE DADOS;
 - abstração da estrutura física
- **INTEGRIDADE DE DADOS**;
 - consistência: de inserção, remoção, e atualização
 - validade: dados corretos
- acesso compartilhado à informação
 - multi-usuário e concorrente
- distribuição de informações: vários servidores acessados remotamente de maneira transparente

Vantagens:

O esquema (a estrutura) carrega a semântica do problema. Para haver integridade, esta estrutura deve ser observada e mantida na instanciação dos dados.

- multi-usuario e concorrente
- distribuição de informações: vários servidores acessados remotamente de maneira transparente

- Vantagens (cont...)
 - reduz complexidade das aplicações
 - segurança
 - controle de acesso ao SGBD
 - controle de acesso aos dados
 - recursos de backup
 - utilização de padrões (ex.: ODBC; SQL;...)

Componentes de um SGBD

- Os componentes funcionais do SGBD podem ser divididos em:
 - componentes de processamento de consultas:
 - definir o esquema de dados (DDL), planejar (query-plan), executar consultas, e alterar as instâncias de dados (DML)
 - componentes de gerenciamento de armazenamento

Conteúdo

□SGBDs

- Modelo Relacional
- Mapeamento MER-Rel

Modelo Relacional

- "O modelo relacional representa uma base de dados como uma coleção de relações" [Elmasri2000]
- Além das relações:
 - domínios de dados
 - restrições de integridade
 - ling. de definição/manipulação
 - estruturas de acesso/armazenamento
- Modelo Relacional base teórica em Teoria de Conjuntos

Modelo Relacional

Nome	NUSP	Curso			
				E	squema
Paulo	9999	Info			
Izabella	8888	Info			
João	1111	Comp			
				Instância	

Modelo Relacional

Relações

- Na relação como em conjuntos
 - não existe a idéia de ordem para as tuplas
 - não existe repetição (idealmente)
- Na tupla
 - ordem determinada de acordo com a disposição dos atributos no esquema da relação
 - valores atômicos e monovalorados
 - valor nulo (*null*)

Restrições das Relações

Restrição de domínio

 o valor de cada atributo A deve ser um valor atômico pertencente a Dom(A)

Restrição de unicidade (CHAVE)

- deve ser possível <u>identificar univocamente</u> cada tupla da relação
 - chave primária

Restrição em *null* para atributo

determina quando o valor especial *null* é ou não permitido para um atributo: depende da semântica

Restrições de Integridade

- Restrição de Integridade de Entidade
 - chave primária não pode ser nula
- Restrição de Integridade Referencial
 - chave estrangeira
 - compatibilidade de domínio

Exemplo

```
Aluno = \{Nome, Nusp, Idade, DataNasc\}
```

```
Professor = {<u>Nome</u>, <u>NFunc</u>, Idade, Titulação}
```

Disciplina = {Sigla, Nome, NCred, Professor, Livro}

Turma = {Sigla, Numero, NAlunos}

Matrícula = {Sigla, Numero, Aluno, Ano, Nota}

Conteúdo

- □ SGBDs
- □ Modelo Relacional
- Mapeamento MER-Rel

Mapeamento entre Esquemas – Mapeamento MER → MRel

- MER modelo conceitual
 - usado para especificar conceitualmente a estrutura dos dados de uma aplicação
 - Projeto Conceitual descrição carregada de semântica
- Modelo Relacional modelo de implementação
 - usado para suportar a implementação de aplicações
 - Projeto Lógico
 - SGBDR ⇒ SGBD que se apóia no modelo relacional

Cardinalidade 1:1

Comissão = {Cod, NroMembros, Conferência, DtaInst}

Cardinalidade 1:1

Conferência = {Nome, CodComissão, DtaInst}

Comissão = {Cod, NroMembros}

Cardinalidade 1:1

- Mapeamento usual: Not Null
 - Conferência = {Nome, CodComissão, DataInstalação}
- Alternativa uma só relação:

ConfCom = {Nome, CodComissão, NroMembros, DataInstalação}

Mapeamento alternativo

```
Mulher = {Nome, Idade}

Homem = {Nome, Idade}

Namoro = {NomeH, NomeM, tempo}
```

NomeM not null, pois não se deseja armazenar a informação de que um dado Homem não possui namorada. Mulher é chave secundária, pois não se quer uma mesma mulher com mais de um namorado.

Desvantagem????

Mapeamento alternativo

Mulher = $\{Nome, Idade\}$

Homem = $\{Nome, Idade\}$

Namoro = $\{NomeH, NomeM, tempo\}$

NomeM not null, pois não se deseja armazenar a informação de que um dado Homem não possui namorada. Mulher é chave secundária, pois não se quer uma mesma mulher com mais de um namorado.

Desvantagem???? Mais relações e mais junções

Cardinalidade 1:N

Disciplina = {Sigla, Nome, Créditos, Professor, Horário}

Mapeamento alternativo:

```
Disciplina = {Sigla, NCréditos}

Aluno = {NUSP, Nome}

Monitora = {NUSP, Sigla, Horário}
```

Obs: definir restrição de *null* para o atributo *Sigla* (em *Monitora*), para que ele <u>não possa ter valor nulo</u>

1:N-Entidade Fraca

Aula_Prática = {Código, Horário, Laboratório, Número, Sigla}

Cardinalidade M:N

Relacionamentos Ternários

Relacionamentos Ternários

Papéis dos Relacionamentos

Atributo Composto

1ª Opção de Mapeamento

2ª Opção de Mapeamento

3ª Opção de Mapeamento

Aluno = {NUSP, Nome, Pai, Mae}

3ª Opção de Mapeamento – outro exemplo

Aluno = {<u>NUSP</u>, Nome, Residencial, Comercial, Celular}

Mapeamento de Abstrações de Dados

- O MER-X suporta duas abstrações adicionais:
 - Agregação
 - Generalização

- <u>Caso 1</u>: CE Agregação é identificado por atributo próprio + chaves dos CEs que participam do CR gerador
 - uma mesma instância do CR gerador resulta em mais de uma entidade agregada

Caso 1: CE Agregação é identificado por No mapeamento tradicional, M-N, um mesmo paciente não poderá consultar o mesmo médico novamente — nem mesmo para o retorno.

- <u>Caso 2</u>: CE Agregação é identificado por um de seus atributos
 - as chaves dos CE que participam do CR gerador não são necessárias para identificar a agregação

<u>Caso 2</u>: cada instância do CR gera mais de uma entidade agregada...

Caso 2: cada instância do CR gera mais de uma

Esse mapeamento apresenta um ganho semântico, com o título do projeto como chave – embora seja uma péssima chave.

```
Aluno = {NUSP, Nome}

Professor = {Nfunc, Nome}

Projeto = {Título, Orientador, Aluno}
```

- Caso 3: mistura dos casos 1 e 2. Duas formas de identificar CE Agregação:
 - 1. chaves dos CE que participam do CR gerador + atributo da agregação
 - 2. atributo próprio da agregação

Médico = {CRM, Nome}

Paciente = {RG, Nome}

Consulta = {Paciente, Medico, Data,

NroRegistroConsulta, Sala}

Mapeamento de Generalização

 Mapear o Conjunto de entidades generalizador (CEG) e os Conjuntos de Entidades Específicos em relações diferentes

Mapeamento da Generalização

- Três alternativas principais:
 - Mapear o CEG e os CEE em relações diferentes
 - Mapear o CEG e todos os CEE em uma única relação
 - 3. Mapear cada CEE (e apenas) em sua própria relação, junto com seus respectivos atributos genéricos

Mapeamento da Generalização - Alternativa 1 (relações diferentes) **Procedimento Padrão 1**

$$CEG = \{ \underline{Ch}, AtC, AG \}$$

$$CEE_1 = \{ \underline{Ch}, Ae_1 \}$$
...
$$CEE_k = \{ \underline{Ch}, Ae_k \}$$

Uma relação geral com um atributo de tipo → disjunção.

Mapeamento da Generalização - Alternativa 1 **Procedimento Padrão 2**

A relação geral não possui atributo de tipo - sobreposição.

Mapeamento da Generalização - Alternativa 1 Procedimento Padrão 3

$$CEG = \{ \underline{Ch}, AG \}$$

$$CEE_1 = \{ \underline{Ch}, Ae_1 \}$$
...
$$CEE_k = \{ \underline{Ch}, Ae_k \}$$

$$CEC = \{ \underline{Ch}, \underline{AtC} \}$$

Uma terceira relação – CEC – que indica a qual tipo de entidade uma dada entidade geral se refere (neste caso, sobreposição).

Mapeamento da Generalização - Alternativa 2 (única relação) **Procedimento Padrão 4**

CEG = { \underline{Ch} , \underline{AtC} , \underline{AG} , $\underline{Ae_{1,...}}$ $\underline{Ae_{k}}$ }

Uma única tabela com todos os possíveis atributos de todas as possíveis entidades, com atributo de tipo → disjunção.

Mapeamento da Generalização - Alternativa 2 **Procedimento Padrão 5**

CEG = {
$$\underline{Ch}$$
, \underline{AtC} , \underline{AG} , $\underline{Ae_{1,...}}$ $\underline{Ae_{k}}$ }

Uma única tabela com todos os possíveis atributos de todas as possíveis entidades, sem atributo de tipo → sobreposição.

Mapeamento da Generalização - Alternativa 2 **Procedimento Padrão 6**

$$CEG = \{ Ch, AG, Ae_1, ... Ae_k, BCEE_1, ... BCEE_k \}$$

Uma única tabela com todos os possíveis atributos de todas as possíveis entidades, sem atributo de tipo, e com atributos booleanos para determinar quais atributos correspondem a quais entidades.

Mapeamento da Generalização - Alternativa 2 **Procedimento Padrão 6**

CE

Ao invés de atributos booleanos, este problema é mais bem solucionável com checagem lógica (constraint de check, ou trigger)

Uma única tabela com todos os possíveis atributos de todas as possíveis entidades, sem atributo de tipo, e com atributos booleanos para determinar quais atributos correspondem a quais entidades.

Mapeamento da Generalização - Alternativa 3 (não há relação genérica) **Procedimento Padrão 7**

$$CEE1 = { Ch, AG, AE1 } ...$$

$$CEEk = { Ch, AG, AEk }$$

Cada relação com seus atributos gerais e específicos.

- → Sobreposição
- → Disjunção via trigger.

Mapeamento da Generalização - Alternativa 3 **Procedimento Padrão 8**

$$CEE_k = \{ \underline{Ch}, AG, AE_k \}$$

 $CEC = \{ \underline{Ch}, AtC \}$

Mapeamento da Generalização - Alternativa 3 **Procedimento Padrão 9**

$$CEE_k = \{ \underline{Ch}, AG, AE_k \}$$

 $CEC = \{ \underline{Ch}, \underline{AtC} \}$

Cada relação com seus atributos gerais e específicos.

E outra que indica de qual tipo é cada instância → sobreposição.

PRÁTICA 1