Advanced Time Series Modeling and Forecasting

Neba Nfonsang University of Denver

M

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pydataset
import pandas datareader as pdr
from statsmodels.graphics.tsaplots import plot acf
from statsmodels.tsa.stattools import acf
from pandas.plotting import autocorrelation plot
from statsmodels.formula.api import ols
from statsmodels.tsa.ar model import AR
from statsmodels.tsa.seasonal import seasonal decompose
from sklearn.metrics import r2 score
from sklearn.metrics import mean squared error
from statsmodels.tsa.arima model import ARMA
from statsmodels.tsa.arima model import ARIMA
import statsmodels.tsa
```

In [2]:

```
file = r"C:\Users\nnfon\Desktop\DS_Tools_1_Winter_2020\Data\time_ser
gasoline = pd.read_excel(file)
gasoline = gasoline.rename(columns={'Sales (1000s of gallons)':"Sale
gasoline.head()
```

Out[2]:

	Week	Sales
0	1	17
1	2	21
2	3	19
3	4	23
4	5	18

In [3]:

```
plt.plot(gasoline.Week, gasoline.Sales, marker="o", markersize=15, c
plt.title("Time Series Plot with a Horizontal Pattern", y=1.1)
plt.xlabel("Week")
plt.ylabel("Sales in 1000s of Gallons")
plt.show()
```

Time Series Plot with a Horizontal Pattern

In [4]:

```
sns.lmplot(x="Week", y="Sales", data=gasoline)
plt.title("Gasoline Sales vs Week", y=1.1);
```


In [5]:

```
file = r"C:\Users\nnfon\Desktop\DS_Tools_1_Winter_2020\Data\time_ser
gasoline_shift = pd.read_excel(file)
gasoline_shift = gasoline_shift.rename(columns={'Sales (1000s of gal
gasoline_shift.head()
```

Out[5]:

	Week	Sales
0	1	17
1	2	21
2	3	19
3	4	23
4	5	18

In [6]:

```
plt.plot(gasoline_shift.Week, gasoline_shift.Sales, marker="o", mark
plt.title("Time Series Plot of gasoline sales: Horizontal Pattern wi
plt.xlabel("Week")
plt.ylabel("Sales in 1000s of Gallons")
plt.show()
```

Time Series Plot of gasoline sales: Horizontal Pattern with a Shift

M

In [7]:

```
bike = r"C:\Users\nnfon\Desktop\DS_Tools_1_Winter_2020\Data\time_ser
bicycle = pd.read_excel(bike)
bicycle
```

Out[7]:

	Year	Sales
0	1	21.6
1	2	22.9
2	3	25.5
3	4	21.9
4	5	23.9
5	6	27.5
6	7	31.5
7	8	29.7
8	9	28.6
9	10	31.4

In [8]:

```
plt.style.use("ggplot")
plt.plot(bicycle.Year, bicycle.Sales, marker="o", markersize=15, col
plt.title("Time Series Plot of Bicycle Sales: Trend Pattern", y=1.1)
plt.xlabel("Year")
plt.ylabel("Sales")
plt.show()
```

Time Series Plot of Bicycle Sales: Trend Pattern

In [9]:

18 -

ź

4

Year

```
sns.lmplot(x="Year", y="Sales", data=bicycle)
plt.title("Bicycle Sales vs Year", y=1.1);
```

8

10

In [10]:

```
chol = r"C:\Users\nnfon\Desktop\DS_Tools_1_Winter_2020\Data\time_ser
cholesterol = pd.read_excel(chol)
cholesterol
```

Out[10]:

	Year	Revenue
0	1	23.1
1	2	21.3
2	3	27.4
3	4	34.6
4	5	33.8
5	6	43.2
6	7	59.5
7	8	64.4
8	9	74.2
9	10	99.3

In [11]:

```
plt.style.use("ggplot")
plt.plot(cholesterol.Year, cholesterol.Revenue, marker="o", markersi
plt.title("Time Series Plot of Cholesterol Drug Revenue: Seasonal Pa
plt.xlabel("Year")
plt.ylabel("Revenue")
plt.show()
```

Time Series Plot of Cholesterol Drug Revenue: Seasonal Pattern

In [12]:

```
umbr = r"C:\\Users\nnfon\\Desktop\\DS_Tools_1_Winter_2020\\Data\time
umbrella = pd.read_excel(umbr)
umbrella["Year"] = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,
print(umbrella.shape)
umbrella.head(10)
```

(20, 4)

Out[12]:

	Year	Quarter	Period	Sales
0	1	1	1	125
1	1	2	2	153
2	1	3	3	106
3	1	4	4	88
4	2	1	5	118
5	2	2	6	161
6	2	3	7	133
7	2	4	8	102
8	3	1	9	138
9	3	2	10	144

In [13]:

```
plt.style.use("ggplot")
plt.plot(umbrella.Period, umbrella.Sales, marker="o", markersize=15,
plt.title("Time Series Plot of Umbrella Sales: Seasonal Pattern", y=
plt.xlabel("Period")
plt.ylabel("Sales")
plt.xticks(range(21))
plt.show()
```

Time Series Plot of Umbrella Sales: Seasonal Pattern

In [14]:

```
phone = r"C:\\Users\nnfon\\Desktop\\DS_Tools_1_Winter_2020\\Data\tim
phone = pd.read_excel(phone)

print(phone.shape)
phone.head(10)
```

(16, 3)

Out[14]:

	Year	Quarter	Sales (1000s)
0	1	1	4.8
1	1	2	4.1
2	1	3	6.0
3	1	4	6.5
4	2	1	5.8
5	2	2	5.2
6	2	3	6.8
7	2	4	7.4
8	3	1	6.0
9	3	2	5.6

In [15]:

```
plt.style.use("ggplot")
plt.plot(phone.index, phone["Sales (1000s)"], marker="o", markersize
plt.title("Time Series Plot of Phone Sales: Seasonal Pattern with a
plt.xlabel("Period")
plt.ylabel("Sales")
plt.xticks(range(21))
plt.show()
```

Time Series Plot of Phone Sales: Seasonal Pattern with a Trend

M

In [16]:

import pydataset

M

In [17]:

```
air_passenger = pydataset.data("AirPassengers")
air_passenger.head()
```

Out[17]:

	time	AirPassengers
1	1949.000000	112
2	1949.083333	118
3	1949.166667	132
4	1949.250000	129
5	1949.333333	121

M

In [18]:

Time Series Plot of Air Passengers: Seasonality with a Trend

In [19]:

Time Series Plot of Air Passengers: Seasonality with a Trend

In [20]:

```
# to apply rolling window,
# first set the time as index
air_pass = air_passenger.set_index("time")
air_pass.head()
```

Out[20]:

AirPassengers

time	
1949.000000	112
1949.083333	118
1949.166667	132
1949.250000	129
1949.333333	121

In [21]:

```
rolling = air_pass.rolling(10).mean()
rolling.head(12)
```

Out[21]:

AirPassengers

time	
1949.000000	NaN
1949.083333	NaN
1949.166667	NaN
1949.250000	NaN
1949.333333	NaN
1949.416667	NaN
1949.500000	NaN
1949.583333	NaN
1949.666667	NaN
1949.750000	129.8
1949.833333	129.0
1949.916667	129.0

In [22]:

Time Series Plot of Air Passengers: Moving Average Smoothing

In [23]:

```
# centered moving average
rolling_centered = air_pass.rolling(10, center=True).mean()
rolling_centered.head(12)
```

Out[23]:

AirPassengers

time	
1949.000000	NaN
1949.083333	NaN
1949.166667	NaN
1949.250000	NaN
1949.333333	NaN
1949.416667	129.8
1949.500000	129.0
1949.583333	129.0
1949.666667	127.3
1949.750000	127.0
1949.833333	129.0
1949.916667	129.0

In [24]:

Time Series Plot of Air Passengers: Moving Average Smoothing

In [25]:

```
expanding = air_pass.expanding(10).mean()
expanding.head(15)
```

Out[25]:

AirPassengers

	time
NaN	1949.000000
NaN	1949.083333
NaN	1949.166667
NaN	1949.250000
NaN	1949.333333
NaN	1949.416667
NaN	1949.500000
NaN	1949.583333
NaN	1949.666667
129.800000	1949.750000
127.454545	1949.833333
126.666667	1949.916667
125.769231	1950.000000
125.785714	1950.083333
126.800000	1950.166667

In [26]:

Time Series Plot of Air Passengers: Moving Average Smoothing


```
H
```

In [27]:

```
# let say you wanted to shift a time series backward by a
# lag of 12
expanding.shift(-12).head()
```

Out[27]:

AirPassengers

time	
1949.000000	125.769231
1949.083333	125.785714
1949.166667	126.800000
1949.250000	127.312500
1949.333333	127.176471

H

In [28]:

```
# view
air_pass.head()
```

Out[28]:

AirPassengers

time	
1949.000000	112
1949.083333	118
1949.166667	132
1949.250000	129
1949.333333	121

In [29]:

```
air = air_pass.copy()
air["lag1"] = air_pass["AirPassengers"].shift(1)
air.head()
```

Out[29]:

AirPassengers lag1

time		
1949.000000	112	NaN
1949.083333	118	112.0
1949.166667	132	118.0
1949.250000	129	132.0
1949.333333	121	129.0

```
In [30]:
```

```
for i in range(1, 21):
    air[f"lag{i}"] = air_pass["AirPassengers"].shift(i)
air.head(10)
```

Out[30]:

	AirPassengers	lag1	lag2	lag3	lag4	lag5	lag6	lag7	la
time									
1949.000000	112	NaN	1						
1949.083333	118	112.0	NaN	NaN	NaN	NaN	NaN	NaN	1
1949.166667	132	118.0	112.0	NaN	NaN	NaN	NaN	NaN	1
1949.250000	129	132.0	118.0	112.0	NaN	NaN	NaN	NaN	1
1949.333333	121	129.0	132.0	118.0	112.0	NaN	NaN	NaN	1
1949.416667	135	121.0	129.0	132.0	118.0	112.0	NaN	NaN	1
1949.500000	148	135.0	121.0	129.0	132.0	118.0	112.0	NaN	1
1949.583333	148	148.0	135.0	121.0	129.0	132.0	118.0	112.0	1
1949.666667	136	148.0	148.0	135.0	121.0	129.0	132.0	118.0	1′
1949.750000	119	136.0	148.0	148.0	135.0	121.0	129.0	132.0	1′

10 rows × 21 columns

```
→
```

H

In [31]:

```
# compute autocovariance for a single lag
air.AirPassengers.cov(air.lag1)
```

Out[31]:

13741.562198365013

In [32]:

```
# compute autocovariance for multiple lags
cov_list = []
lags = range(1,21)
for i in lags:
    covariance = air.AirPassengers.cov(air[f"lag{i}"])
    cov_list.append(covariance)
print(cov_list)
```

[13741.562198365013, 12784.257167116171, 11869.19295845 9978, 11165.11798561151, 10685.684130956106, 10307.2694 38273564, 10122.690103048517, 10111.148583877997, 1045 0.690768380318, 11051.489339019188, 11800.03964456596, 12196.593627110802, 11574.180152671757, 10641.442218246 868, 9794.949794089149, 9149.189468503937, 8674.3088988 8764, 8309.87199999996, 8128.054451612902, 8114.742460 005246]

H

In [33]:

```
corr_list = []
lags = range(1,21)
for i in lags:
    correlation = air.AirPassengers.corr(air[f"lag{i}"])
    corr_list.append(correlation)
print(corr_list)
```

[0.9601946480498522, 0.8956753113926392, 0.837394765081 794, 0.7977346989350624, 0.7859431491184304, 0.78391879 59206183, 0.7845921291388301, 0.7922150472595746, 0.827 8519011167602, 0.8827127951607842, 0.9497020331006317, 0.9905273692085446, 0.9481066160592017, 0.8754477915539 791, 0.8114659384543108, 0.7694487920842656, 0.75581912 30371455, 0.7487523142605247, 0.7455000168641182, 0.751 7886585378154]

In [34]:

```
# autocovariance function (correlogram)
plt.bar(lags, cov_list, color="b");
```


In [35]:

```
# create the autocorrelation function from
autocorr = acf(air.AirPassengers, nlags=40, fft=False)
autocorr
```

Out[35]:

```
, 0.94804734, 0.87557484, 0.80668116,
arrav([1.
0.75262542,
       0.71376997, 0.6817336, 0.66290439, 0.65561048,
0.67094833,
       0.70271992, 0.74324019, 0.76039504, 0.71266087,
0.64634228,
       0.58592342, 0.53795519, 0.49974753, 0.46873401,
0.44987066,
       0.4416288 , 0.45722376, 0.48248203, 0.51712699,
0.53218983,
       0.49397569, 0.43772134, 0.3876029, 0.34802503,
0.31498388,
       0.28849682, 0.27080187, 0.26429011, 0.27679934,
0.2985215 ,
       0.32558712, 0.3370236, 0.30333486, 0.25397708,
0.21065534,
       0.17217092])
```

In [36]:

```
plt.bar(range(len(autocorr)), autocorr, color="b")
plt.title("Autocorrelation Plot for Air Passengers", y=1.1)
plt.xlabel("Lag")
plt.ylabel("ACF");
```

Autocorrelation Plot for Air Passengers

In [37]:

In [38]:

```
url = r"https://raw.githubusercontent.com/jbrownlee/Datasets/master/
temperature = pd.read_csv(url)
temperature.set_index("Date")
plt.title("Time Series Plot of Daily Minimum Temperatures", y=1.1)
plt.xlabel("Day")
plt.ylabel("Minimum Temperature")
plt.plot(temperature.index, temperature.Temp, color="b");
```

Time Series Plot of Daily Minimum Temperatures

In [39]:

```
acf_temp = acf(temperature.Temp, nlags=40, fft=False)
plt.bar(range(len(acf_temp)), acf_temp, color="b")
plt.title("Autocorrelation Plot for Temperature", y=1.1)
plt.xlabel("Lag")
plt.ylabel("ACF");
```

Autocorrelation Plot for Temperature

In [40]:

```
# AR(3): AR model of order 3
temp_AR = temperature.copy()
for i in range(1, 4):
    temp_AR[f"temp_{i}"] = temp_AR["Temp"].shift(i)
temp_AR.head(10)
```

Out[40]:

	Date	Temp	temp_1	temp_2	temp_3
0	1981-01-01	20.7	NaN	NaN	NaN
1	1981-01-02	17.9	20.7	NaN	NaN
2	1981-01-03	18.8	17.9	20.7	NaN
3	1981-01-04	14.6	18.8	17.9	20.7
4	1981-01-05	15.8	14.6	18.8	17.9
5	1981-01-06	15.8	15.8	14.6	18.8
6	1981-01-07	15.8	15.8	15.8	14.6
7	1981-01-08	17.4	15.8	15.8	15.8
8	1981-01-09	21.8	17.4	15.8	15.8
9	1981-01-10	20.0	21.8	17.4	15.8

In [41]:

```
from statsmodels.formula.api import ols

formula = "Temp ~ temp_1 + temp_2 + temp_3"
model = ols(formula, data=temp_AR).fit()
model.summary2()

Date: 2020-02-10 09:32 BIC: 17117.9514

No. Observations: 3647 Log-Likelihood: -8542.6

Df Model: 3 F-statistic: 1953.
```

 Df Residuals:
 3643
 Prob (F-statistic):
 0.00

 R-squared:
 0.617
 Scale:
 6.3467

 Coef.
 Std.Err.
 t
 P>|t|
 [0.025
 0.975]

Intercept 1.8882 0.1340 14.0938 0.0000 1.6255 2.1508 temp_1 0.7000 0.0163 43.0404 0.0000 0.6681 0.7319 temp_2 -0.0594 0.0200 -2.9766 0.0029 -0.0985 -0.0203 temp_3 0.1902 0.0163 11.6995 0.0000 0.1583 0.2221

Omnibus: 8.194 Durbin-Watson: 2.056
Prob(Omnibus): 0.017 Jarque-Bera (JB): 9.630

```
M
```

```
In [42]:
```

```
# check autocorrelation
plt.scatter(temp_AR.Temp, temp_AR.temp_1, c="b");
```


M

In [43]:

M

In [44]:

```
plt.scatter(temp_AR.Temp, temp_AR.temp_3, c="b");
```


In [45]:

```
# visualize correlation between data and lag variables
# using pandas plotting features
pd.plotting.lag_plot(temp_AR.Temp, lag=1);
```


M

In [46]:

M

In [47]:

```
# check correlation among time series and lags
temp_AR.corr()
```

Out[47]:

	Temp	temp_1	temp_2	temp_3
Temp	1.000000	0.774870	0.631119	0.586375
temp_1	0.774870	1.000000	0.774886	0.631095
temp_2	0.631119	0.774886	1.000000	0.774878
temp 3	0.586375	0.631095	0.774878	1.000000

In [48]:

```
# plot an autocorrelation function using statsmodels
plot_acf(temp_AR.Temp, lags=40, c="b");
```


H

In [49]:

```
# plot an autocorrelation function using pandas
from pandas.plotting import autocorrelation_plot
autocorrelation_plot(temp_AR.Temp, c="b");
```


H

In [50]:

```
plt.style.use("seaborn")
```

In [51]:


```
H
```

In [52]:

Out[52]:

	U
teststat	-4.444805
p-value	0.000247
#lags used	20.000000
#observations used	3629.000000

H

In []:

```
H
```

In [53]:

```
df = pd.DataFrame({"A":[1, 3, 10, 15, 5, 20]})
df["diff"] = df.diff(periods=1)
df
```

Out[53]:

	Α	diff
0	1	NaN
1	3	2.0
2	10	7.0
3	15	5.0
4	5	-10.0
5	20	15.0

M

In [54]:

```
# use pandas diff() method to find the
# difference between observations
temp_AR["stationary"] = temp_AR["Temp"].diff()
temp_AR[["Temp", "stationary"]].head()
```

Out[54]:

	Temp	stationary
0	20.7	NaN
1	17.9	-2.8
2	18.8	0.9
3	14.6	-4.2
4	15.8	1.2

```
H
```

```
In [55]:
```


H

In []:

H

In []:

Fit the AR Model

```
M
In [56]:
# split data into train and test set
X = temp_AR['Temp'].dropna()
X = X.values # extract only values without indexes
n = len(X)
n
Out[56]:
3650
M
In [57]:
# prediction will be made for the last 7 days
train data = X[1:n-7]
test \overline{d}ata = X[\overline{n}-7:]
M
In [58]:
#train the autoregression model
model = AR(train data).fit()
M
In [59]:
# lag value selected
model.k ar
```

Out[59]:

29

In [60]:

```
# model parameters
model.params
```

Out[60]:

```
5.88595221e-01, -9.08257090e-0
array([ 5.57543506e-01,
   4.82615092e-02,
2,
        4.00650265e-02,
                        3.93020055e-02, 2.59463738e-0
2,
   4.46675960e-02,
                        3.74362239e-02, -8.11700276e-0
        1.27681498e-02,
4,
   4.79081949e-03,
        1.84731397e-02, 2.68908418e-02, 5.75906178e-0
4,
   2.48096415e-02,
        7.40316579e-03, 9.91622149e-03, 3.41599123e-0
2, -9.11961877e-03,
       2.42127561e-02, 1.87870751e-02, 1.21841870e-0
2, -1.85534575e-02,
       -1.77162867e-03, 1.67319894e-02, 1.97615668e-0
2,
   9.83245087e-03,
       6.22710723e-03, -1.37732255e-03])
```

In [61]:

M

In [62]:

```
# overall prediction error
from sklearn.metrics import mean_squared_error
mean_squared_error(test_data, predictions)
```

Out[62]:

1,5015252310069296

```
H
```

```
In [63]:
```

```
# check if residuals are normally distributed
residuals = model.resid
residuals
```

Out[63]:

```
array([-0.68105821, -0.69572786, 2.74223153, ..., -0.0 726287, 0.15670338, -4.17767517])
```

H

In [64]:

```
plot_acf(residuals);
```


In [65]:

plt.hist(residuals);

H

In [66]:

np.mean(residuals)

Out[66]:

8.661030191772713e-15

Fitting Moving Average (MA) Model

```
M
```

In [67]:

```
# split data into train and test set
X = temp_AR['Temp'].dropna()
X = X.values # extract only values without indexes
n = len(X)

# prediction will be made for the last 7 days
train_data = X[1:n-7]
test_data = X[n-7:]
```

M

In [68]:

In [69]:

H

In [70]:

```
# MSE
mean_squared_error(test_data, predict_MA)
```

Out[70]:

9.096985026186768

```
In [71]:
# AIC
model_MA.aic

Out[71]:
18511.488006977022

M
In [72]:
# use all data for training
# make prediction for the next period
mod = ARMA(X, order=(0,1)).fit(disp=False)
mod.predict(start=len(X), end=len(X), dynamic=False)

Out[72]:
array([10.91151172])
```

Fitting ARMA Model

In [73]:

H

In [74]:

```
# MSE
mean_squared_error(test_data, predict_ARMA)
```

Out[74]:

1.7470674403217132

```
In [75]:
```

```
# AIC
model_ARMA.aic
```

Out[75]:

16748.03006032794

Fit an ARIMA Model

M

In [76]:


```
H
```

```
In [77]:
```

```
# MSE
mean_squared_error(test_data, predict_ARMA)
```

Out[77]:

1.7470674403217132

H

In [78]:

```
# AIC
model_ARIMA.aic
```

Out[78]:

16748.03006032794

Fit an ARIMA Model on Non-stationary Data

M

In [79]:

```
air_pass.head()
```

Out[79]:

AirPassengers

time	
.000000	112
.083333	118
166667	132
250000	129
333333	121

```
H
```

In [80]:

```
# Autocorrelation Function
plot_acf(air_pass.AirPassengers, lags=40);
```


H

In [81]:

In [82]:

```
# split data into train and test set
X_air = air_pass['AirPassengers'].dropna()
X_air = X_air.values # extract only values without indexes
n = len(X_air)

# prediction will be made for the last 11 days
# since a new season seems to begins every 12th day
train = X_air[1:n-11]
test = X_air[n-11:]
```

M

In [83]:


```
M
```

```
In [84]:
```

```
# MSE
mean_squared_error(test, predict_ARIMA2)
```

Out[84]:

6830.152050985579

M

In [85]:

```
# AIC
model_ARIMA2.aic
```

Out[85]:

1240.732331226167

H

In [86]:

```
# residual ACF
plot_acf(model_ARIMA2.resid);
```


In [87]:

```
plt.hist(model_ARIMA2.resid);
```


H

In [88]:

```
# split data into train and test set
X_air= air_pass['AirPassengers'].dropna()
X_air = X_air.values # extract only values without indexes
n = len(X_air)

# prediction will be made for the last 11 days
# since a new season seems to begins every 12th day
train_log = np.log(X_air[1:n-11])
test_log = np.log(X_air[n-11:])
```

In [89]:

H

In [90]:

```
# MSE
mean_squared_error(test_log, predict_ARIMA3)
```

Out[90]:

190872.11608371304

```
M
```

In [91]:

```
model_ARIMA3.aic
```

Out[91]:

1240.732331226167

H

In [92]:

```
# line plot of residuals
plt.figure(figsize=(10, 4))
plt.plot(model_ARIMA3.resid);
```


In [93]:

```
# line plot of residuals
plt.figure(figsize=(10, 4))
plt.plot(model_ARIMA2.resid);
```


Results of Model Fit and Estimate

In [94]:

model_ARIMA2.summary()

Out[94]:

ARIMA Model Results

131	No. Observations:	D.y	Dep. Variable:
-615.366	Log Likelihood	ARIMA(1, 1, 2)	Model:
26.160	S.D. of innovations	css-mle	Method:
1240.732	AIC	Mon, 10 Feb 2020	Date:
1255.108	BIC	09:33:00	Time:
1246.574	HQIC	1	Sample:

	coef	std err	Z	P> z	[0.025	0.975]
const	2.5425	0.188	13.519	0.000	2.174	2.911
ar.L1.D.y	0.5205	0.103	5.039	0.000	0.318	0.723
ma.L1.D.y	-0.4416	0.127	-3.479	0.001	-0.690	-0.193
ma.L2.D.y	-0.5583	0.126	-4.442	0.000	-0.805	-0.312

Roots

	Real	Imaginary	Modulus	Frequency
AR.1	1.9211	+0.0000j	1.9211	0.0000
MA.1	1.0000	+0.0000j	1.0000	0.0000
MA.2	-1.7911	+0.0000j	1.7911	0.5000

In [95]:

model_ARIMA3.summary()

Out[95]:

ARIMA Model Results

Dep. Variable:	D.y	No. Observations:	131
Model:	ARIMA(1, 1, 2)	Log Likelihood	-615.366
Method:	css-mle	S.D. of innovations	26.160
Date:	Mon, 10 Feb 2020	AIC	1240.732
Time:	09:33:01	BIC	1255.108
Sample:	1	HQIC	1246.574

	coef	std err	Z	P> z	[0.025	0.975]
const	2.5425	0.188	13.519	0.000	2.174	2.911
ar.L1.D.y	0.5205	0.103	5.039	0.000	0.318	0.723
ma.L1.D.y	-0.4416	0.127	-3.479	0.001	-0.690	-0.193
ma.L2.D.y	-0.5583	0.126	-4.442	0.000	-0.805	-0.312

Roots

	Real	Imaginary	Modulus	Frequency
AR.1	1.9211	+0.0000j	1.9211	0.0000
MA.1	1.0000	+0.0000j	1.0000	0.0000
MA.2	-1.7911	+0.0000j	1.7911	0.5000

```
H
```

```
In [96]:
```

```
test_pred_ARIMA3.tail()
```

Out[96]:

	actual	predicted
6	606	448.795751
7	508	451.529410
8	461	454.171393
9	390	456.765654
10	432	459.335075

H

In [97]:

```
len(model_ARIMA3.predict())
```

Out[97]:

131

M

In []:

In [98]:

```
import pandas_datareader as pdr

plt.figure(figsize=(10, 4))
google = pdr.get_data_yahoo("AAPL", "2019-01-30")
plt.plot(google.index, google.Close);
```


H

In [99]:

another way to get data from the web using the data.Datareader in pdr.data.DataReader("AMZN", data_source="yahoo", start="2019-01-01",

Out[99]:

	High	Low	Open	Close	Volume	Adj Close
Date						
2019- 01-02	1553.359985	1460.930054	1465.199951	1539.130005	7983100	1539.1300
2019- 01-03	1538.000000	1497.109985	1520.010010	1500.280029	6975600	1500.2800
2019- 01-04	1594.000000	1518.310059	1530.000000	1575.390015	9182600	1575.3900
2019- 01-07	1634.560059	1589.189941	1602.310059	1629.510010	7993200	1629.5100
2019- 01-08	1676.609985	1616.609985	1664.689941	1656.579956	8881400	1656.5799
4						•

In [100]:

```
# pull data for more than one company
pdr.get_data_yahoo(["AMZN", "GOOG"], "2008-02-01", "2009-02-01").hea
```

Out[100]:

Attri	ibutes	Adj Close		Close		High	
Sym	bols	AMZN	GOOG	AMZN	GOOG	AMZN	GOOG
	Date						
20	08-02- 01	74.629997	256.986755	74.629997	256.986755	79.400002	267.332977
20	08-02- 04	73.949997	246.789978	73.949997	246.789978	76.660004	255.432571
20	08-02- 05	72.089996	252.453735	72.089996	252.453735	74.209999	253.549637
20	08-02- 06	68.489998	249.918243	68.489998	249.918243	72.430000	254.630585
20	08-02- 07	70.910004	251.532196	70.910004	251.532196	72.709999	256.134949
4							•

In [101]:

Out[101]:

	High	Low	Open	Close	Volume	Adj Close
Date						
2019- 01-02	1553.359985	1460.930054	1465.199951	1539.130005	7983100	1539.1300
2019- 01-03	1538.000000	1497.109985	1520.010010	1500.280029	6975600	1500.2800
2019- 01-04	1594.000000	1518.310059	1530.000000	1575.390015	9182600	1575.3900
2019- 01-07	1634.560059	1589.189941	1602.310059	1629.510010	7993200	1629.5100
2019- 01-08	1676.609985	1616.609985	1664.689941	1656.579956	8881400	1656.5799
4						•

H

In []: