CSC369 Week 10 Notes

Hyungmo Gu

May 31, 2020

• Deadlock Defined

- Google Definition: Is a situation one typically involving opposing parties, in which no progress can be made.
- Is permanent
- Happens to set of processes that
 - * Compete for same system resources
 - * Communicate with each other

• Example of Deadlock

- Law passed by Kansas Legislature in in early 20th century
 - * "When two trains approach each other at a crossing, both shall come to a full stop and neither shall start upon again until the other is gone"

• Conditions for Deadlock

- Neccesary and Sufficient Conditions
 - 1. Mutual Exclusion
 - * Only one process may use a resource at a time
 - 2. Hold and wait
 - * A process may hold allocated resources while awaiting assignment of others
 - 3. No preemption
 - * No Resource can be forcibly removed from a process holding it
 - 4. Circular wait
 - * Each process must be waiting for a resource which is being held by another process, which in turn is waiting for the first process to release the resource [3]

Aside

- 1. Wait. Necessary condition? [1]
 - We say N is a necessary condition for S if we don't have N, we won't have S.
- 2. Wait. Sufficient condition? [1]
 - We say S is a necessary condition for N if we have S, then we know that N must follow, i.e. $S \Rightarrow N$
- 3. Hold on. How about necessary and sufficient condition?
 - Is when necessary and sufficient conditions are put together similar to if and only if $^{[2]}$

References

1) Fayetteville State University: Necessary and Sufficient Conditions, link

- 2) Wikipedia: Necessity and Sufficiency, link
- 3) Wikipedia: Deadlock, link
- Solutions
 - Prevention
 - * Ensures that at least one of the necessary conditions to deadlock will never occur [1]
 - Avoidance
 - * Ensures that the system will not enter an unsafe mode [1]
 - Detection and Recovery
 - * Ensures that the system recovers from deadlock if a deadlock has occured in the system. [2]
 - Do Nothing and hope
 - * Is done by Windows, Linux, and JVM
 - * Works until eventually the deadlock snowballs, no longer functions, and requires manual intervention (Press power, and restart) [3]

References

- 1) pediaa: What is the Difference Between Deadlock Prevention and Deadlock Avoidance, link
- 2) Geeks for Geeks: Recovery from Deadlock in Operating System, link
- Safe States
- Unsafe States & Algorithm
- What is Atomicity?
- Why would atomicity fail?
- Definitions for Transactions
- How to ensure atomicity in the face of failures?
- Write-ahead logging
- Problems with logging
- Deadlock and Starvation
- Communication Deadlocks
- Livelock