中国海洋大学全日制本科课程期末考试试卷

命题人: 高等数学课题组 审核人:

考试说明:本课程为闭卷考试,共2页,除考场规定的必需用品外还可携带的文具有

题号	_	=	三	四	五	总分
得分						

一、选择题(共5题,每题3分,共15分)

- 1. 下列说法(写法)正确的是(();
- (A) $\lim_{x \to \infty} f(x)g(x) = 0$ 的充要条件是 $\lim_{x \to \infty} f(x) = 0$ 或 $\lim_{x \to \infty} g(x) = 0$;
- (B) $\lim_{x \to 0} x \sin \frac{1}{x} = \lim_{x \to 0} x \cdot \lim_{x \to 0} \sin \frac{1}{x} = 0$;

(C) 若 $\lim_{x \to \infty} \frac{f(x)}{g(x)} = A$ 且 $\lim_{x \to \infty} g(x) = 0$,则 $\lim_{x \to \infty} f(x) = 0$; $f(x) = \begin{cases} 1, & \text{X > 1} \\ -\frac{1}{2} + \frac{3}{2} \text{X}, & \text{X > 1} \end{cases}$ (D) 若 $\lim_{x \to \infty} f(x) = 0$, $\lim_{x \to \infty} g(x) = 0$,则 $\lim_{x \to \infty} \frac{f(x)}{g(x)}$ 一定不存在。

- 2. 设 f(x) 在 x = 1 的某邻域有定义, $\lim_{x \to 0} \frac{f(1+x) f(1-2x)}{x} = 3$,则 f(x) 在 x = 1 处必(2);
 - (A) 不可导; (B) 不一定可导; (C) 可导 f'(1) = 3; (D) 可导 f'(1) = 1。
- 3. 反常积分 $\int_{1}^{+\infty} \frac{\arctan x}{x^2} dx$ 的收敛性是 (\bigwedge);
 - (A) 收敛到 $\frac{\pi}{4} + \frac{1}{2} \ln 2$; (B) 收敛到 $\frac{\pi}{4} + \ln 2$; (C) 收敛到 $\frac{\pi}{4}$; (D) 发散。
- 4. 若设 $f(x) = \frac{d}{dx} \int_0^x \sin(t-x) dt$,则必有 (入);
 - (A) $f(x) = -\sin x$; (B) $f(x) = -1 + \cos x$; (C) $f(x) = \sin x$; (D) $f(x) = 1 \sin x$
- 5. 平面x-y+2z-6=0 与平面2x+y+z-5=0的夹角为(\bigcap);
 - (A) $\frac{\pi}{2}$; (B) $\frac{\pi}{6}$; (C) $\frac{\pi}{3}$; (D) $\frac{\pi}{4}$.
- 二、多项选择题(共1题, 每题4分, 共4分, 多选、少选均不得分)
 1. 下列说法错误的是(入人) 上 (人人)
- (A) 若 f(x), g(x) 在点 x_0 处均不连续,则 f(x)+g(x) 在 x_0 处也不连续;

(B) 若 $f(x)$ 在点 x_0 处连续, $g(x)$ 在点 x_0 处不连续,则 $f(x)g(x)$ 在 x_0 处必不连续;
(C) 若 $f(x)$ 在 x_0 处连续且 $f(x_0) \neq 0$,则 $f(x)$ 在 x_0 的某邻域内 $f(x) \neq 0$;
(D) 若 $f(x)$ 在 x_0 处连续,则 $ f(x) $ 在 x_0 处也连续;
(E) 若 $f(x)$, $g(x)$ 在点 x_0 处均不连续,则 $f(x)g(x)$ 在 x_0 处也不连续;
(F) $f(x)$ 在 x_0 处连续的充要条件是 $f(x)$ 在该点左、右都连续;
三、填空题(共7题,每题 3 分,共 21 分) $ (-X+\alpha)^{(n)} = (-1)^n \frac{n!}{(\alpha+X)^{n+1}} $
1. 函数 $y = \ln(1 - 2r)$ 在 $x - 0$ 协的和阶层数 $y(n)$
1. 函数 $y = \ln(1 - 2x)$ 在 $x = 0$ 处的 n 阶导数 $y^{(n)}(0) =$
3. 曲线 $y = x^2 + x(x < 0)$ 上曲率为 $\frac{\sqrt{2}}{2}$ 的点的坐标为 $\frac{\sqrt{2}}{(1+y'^2)^{\frac{1}{2}}}$
4. 当 $x \to 0$ 时, $e^x - (ax^2 + x + 1)$ 是比 x^2 高阶的无穷小,则 $a = \frac{1}{2}$;
5. 设 $f(x) = \frac{1}{1+x^2} + \sqrt{1-x^2} \cdot \int_0^1 f(x)dx$, 则 $\int_0^1 f(x)dx = \frac{7}{4-7}$;
6. 由曲线 $y = x + \frac{1}{x}$, $x = 2$ 及 $y = 2$ 所围成的图形的面积为 $\frac{1}{x}$;
7. 设 $f'(\cos^2 x) = \sin^2 x$, 且 $f(0) = 0$, 则 $f(x) = \sqrt{-\frac{\chi^2}{2}}$;
四、计算题(共6题, 每题10分, 共60分)
1 求 a b 的 信 (
2. 求函数 $y = (x-1)e^{\frac{\pi}{2} + \arctan x}$ 的极值,并求此函数表示的曲线的渐近线; $\chi \to -\infty$, $\chi \to 0$
3. 设函数 $f(x) = x^2 \sin x$, 求 $f^{(2015)}(0)$; 4. 设 $f(x) = \begin{cases} x^2 & x \le 0 \end{cases}$, 求 $f(x)$ 的不定积分; $(1-\cos x)$, $(1-\cos x)$
$(UV)^{(n)} = \frac{Z'}{k = 0} C_n U^{(n-k)} V^{(k)} $ $(\sin x x > 0)$
5.
6. 设 $0 \le t \le \frac{\pi}{2}$, 曲线 $y = \sin x$ 与三条直线 $x = t$, $x = 2t$ 及 $y = 0$ 所围部分绕 x 轴旋转而成的旋
转体的体积为 $V(t)$,问 t 为何值时 $V(t)$ 最大。 $V(t)=\int_{t}^{2t} ZS(n^{2}X)dX = \frac{\lambda}{2} \begin{pmatrix} 2t \\ t \end{pmatrix} \begin{pmatrix} -Cos 2X \end{pmatrix} dX$
$-\frac{2}{2}\left[\chi-\frac{1}{2}\right]+$
$=\frac{2}{2}\left(t-\frac{5\ln 2t-5\ln 4t}{2}\right)$
$V'(t) = \frac{2}{2} \left(1 - \cos t + 2 \cos 4 \right) + \frac{2}{3}$
= 217Costt-CostT) 1-3

6.