Lecture 16 Computational Lexical Semantics

CS 6320

Outline

- Word Sense Disambiguation
- Word Similarity
- Semantic Role Labeling

Word Sense Disambiguation

- WSD is the task of selecting the correct sense for a word
- Applications: machine translation, question answering, information retrieval, text classification
- Baseline: use the most frequently used sense

WordNet	Spanish	Roget	
Sense	Translation	Category	Target Word in Context
bass ⁴	lubina	FISH/INSECT	fish as Pacific salmon and striped bass and
bass ⁴	lubina	FISH/INSECT	produce filets of smoked bass or sturgeon
bass ⁷	bajo	MUSIC	exciting jazz bass player since Ray Brown
bass ⁷	bajo	MUSIC	play bass because he doesn't have to solo

Supervised WSD

- ML can be applied to WSD
- Features:
 - Collocational features
 - Bag-of-words features

An electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

Collocational

$$[w_{i-2}, POS_{i-2}, w_{i-1}, POS_{i-1}, w_{i+1}, POS_{i+1}, w_{i+2}, POS_{i+2}]$$

Bag-of-words

[fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band]

Naïve Bayes Classifier

Select the sense of the word that best matches features vector f

$$\hat{s} = \operatorname*{argmax}_{s \in S} P\left(s | \vec{f}\right)$$

$$\hat{s} = \underset{s \in S}{\operatorname{argmax}} \frac{P(f|s)P(s)}{P(f)}$$

Assumption: naively assume features are independent of each other

$$P(\vec{f}|s) \approx \prod_{j=1}^{n} P(f_j|s)$$

Naïve Bayes Classifier

$$\hat{s} = \operatorname*{argmax}_{s \in S} P(s) \prod_{j=1}^{n} P(f_{j}|s)$$

$$P(s_i) = \frac{count(s_i, w_j)}{count(w_j)}$$

$$P(f_j|s) = \frac{count(f_j,s)}{count(s)}$$

Decision List Classifier

Decision trees are also used and are easier to understand A sequence of tests are performed.

Rule		Sense
fish within window	\Rightarrow	bass ¹
striped bass	\Rightarrow	\mathbf{bass}^1
guitar within window	\Rightarrow	bass ²
bass player	\Rightarrow	bass ²
piano within window	\Rightarrow	bass ²
tenor within window	\Rightarrow	bass ²
sea bass	\Rightarrow	\mathbf{bass}^1
play/V bass	\Rightarrow	bass ²
river within window	\Rightarrow	\mathbf{bass}^1
violin within window	\Rightarrow	bass ²
salmon within window	\Rightarrow	\mathbf{bass}^1
on bass	\Rightarrow	bass ²
bass are	\Rightarrow	bass ¹

56.

Decision list Classifier

The ratio between the probabilities of the two senses is an indication how discriminative a feature is between senses

$$\log \left(\frac{P(Sense_1|f_i)}{P(Sense_2|f_i)} \right)$$

WSD Evaluation

Baseline most frequently used sense

Freq	Synset	Gloss
338		buildings for carrying on industrial labor
207	plant ² , flora, plant life	a living organism lacking the power of locomotion
2	plant ³	something planted secretly for discovery by another
0	plant ⁴	an actor situated in the audience whose acting is rehearsed
	*	but seems spontaneous to the audience

- Fine grain vs course grain WSD
- Evaluation method: check against humanly annotated data

Lesk Algorithm

- Supervised methods fail for words not in training data
- Use dictionary or thesaurus as indirect kind of supervision. Choose the sense whose gloss shares the most words with target word neighborhood

```
function SIMPLIFIED LESK(word, sentence) returns best sense of word

best-sense ← most frequent sense for word

max-overlap ← 0

context ← set of words in sentence

for each sense in senses of word do

signature ← set of words in the gloss and examples of sense

overlap ← COMPUTEOVERLAP(signature, context)

if overlap > max-overlap then

max-overlap ← overlap

best-sense ← sense

end

return(best-sense)
```

Lesk Algorithm

The bank can guarantee deposits will eventually cover future tuition costs because it invests in adjustable-rate mortgage securities.

bank ¹	Gloss:	a financial institution that accepts deposits and channels the money into lending activities
	Examples:	"he cashed a check at the bank", "that bank holds the mortgage on my home"
bank ²	Gloss:	sloping land (especially the slope beside a body of water)
	Examples:	"they pulled the canoe up on the bank", "he sat on the bank of
_		the river and watched the currents"

bank #1 - 2 content words overlap

bank #2 - 0 content words overlap

Pick bank # 1

Selectional Restrictions and Preferences

Improve Lesk Algorithm

- Main problem with Lesk algorithm is the small number of words in gloss definitions
- Possible improvements:
- 1. Include related words, ie hyponyms
- 2. Apply a weight to each overlapping word

$$idf_i = \log\left(\frac{Ndoc}{nd_i}\right)$$

where: *Ndoc* is the number of documents in a corpus *ndi* is the number of documents in corpus where word *i* occurs

- Two words are more similar if they share more features of meaning.
- The more similar two words are the less semantic distance between them, the less similar the greater the semantic distance between them.
- Word similarity useful in information retrieval, QA, MT, etc.
- Word similarity vs word relatedness.

Word Similarity on WN

$$sim_{path}(c_1, c_2) = -log pathlen(c_1, c_2)$$

pathlen (c_1, c_2) =number of edges the shortest path in thesaurus graph between synsets c_1, c_2

$$wordsim(w_1, w_2) = \max_{\substack{c_1 \in senses(w_1) \\ c_2 \in senses(w_2)}} sim(c_1, c_2)$$

Define P(c) – the probability that a randomly selected word in a corpus is an instance of concept c

$$P(c) = \frac{\sum_{w \in \text{words}(c)} count(w)}{N}$$

where words(c) set of words in corpus that are present in the thesaurus

From information theory, use the definition of Information Content IC of concept c

$$IC(c) = -\log P(c)$$

Then, define LCS – lowest common subsumer of two concepts

LCS (c1, c2) = lowest node in the hierarchy that subsumes both c1 and c2

Resnik similarity – think of similarity between words as related to their common information

$$sim_{resnik}(c_1, c_2) = -logP(LCS(c_1, c_2))$$

Lin similarity – measures the commonality and difference between two words A and B

commonality

difference

$$IC(description(A, B)) - IC(common(A, B))$$

where description(A,B) describes A and B

$$sim_{Lin}(A, B) = \frac{common(A, B)}{description(A, B)}$$

The information in common between two concepts is twice the information in their LCS(c1,c2)

$$sim_{Lin}(c_1, c_2) = \frac{2 \times \log P(LCS(c_1, c_2))}{\log P(c_1) + \log P(c_2)}$$

$$sim_{Lin}(c_1, c_2) = \frac{2 \times log P(geological - formation)}{log P(hill) + log P(coast)} = 0.59$$

Jiang-Conrath distance is similar

$$dist_{JC}(c_1, c_2) = 2 \times \log P(LCS(c_1, c_2)) - (\log P(c_1) + \log P(c_2))$$

Lesk method – dictionary based – overlapping words and phrases in glasses

drawing paper - paper that is specially prepared for us in drafting.

decal – the art of transferring designs from <u>specially prepared paper</u> to a wood or _ _ _ .

Score: $1^2 + 2^2 = 5$

Lesk similarity – gloss overlap plus related glosses overlap

$$sim_{eLesk}(c_1, c_2) = \sum_{r,q \in RELS} overlap(gloss(r(c_1)), gloss(q(c_2)))$$

Word Similarity - Summary

$$\begin{aligned} & \operatorname{sim}_{\operatorname{path}}(c_1, c_2) &= -\log \operatorname{pathlen}(c_1, c_2) \\ & \operatorname{sim}_{\operatorname{Resnik}}(c_1, c_2) &= -\log P(\operatorname{LCS}(c_1, c_2)) \\ & \operatorname{sim}_{\operatorname{Lin}}(c_1, c_2) &= \frac{2 \times \log P(\operatorname{LCS}(c_1, c_2))}{\log P(c_1) + \log P(c_2)} \\ & \operatorname{sim}_{\operatorname{jc}}(c_1, c_2) &= \frac{1}{2 \times \log P(\operatorname{LCS}(c_1, c_2)) - (\log P(c_1) + \log P(c_2))} \\ & \operatorname{sim}_{\operatorname{eLesk}}(c_1, c_2) &= \sum_{r,q \in \operatorname{RELS}} \operatorname{overlap}(\operatorname{gloss}(r(c_1)), \operatorname{gloss}(q(c_2))) \end{aligned}$$

Word Similarity: Distributional Methods

- Problem- Thesauruses with hierarchies do not exist for every language.
- Idea use corpora to compute concept relatedness.

A bottle of $tezgu \square ino$ is on the table. Everybody likes $tezgu \square ino$. $Tezgu \square ino$ makes you drunk. We make $tezgu \square ino$ out of corn.

Word co-occurrence vector

- Represent the meaning of word w as feature vector
- Then use vector distance measures
- Co-occurrence vectors for 4 words

$$\overline{w} = (f_1, f_2, \cdots, f_n)$$

	arts	boil	data	function	large	sugar	summarized	water
apricot	0	1	0	0	1	1	0	1
pineapple	0	1	0	0	1	1	0	1
digital	0	0	1	1	1	0	1	0
information	0	0	1	1	1	0	1	0

Word co-occurrence vector

Hindle's idea: choose words that occur in some grammatical relation to target words.

I discovered dried tangerines:

discover(subject I)
tangerine (obj-of discover)
dried (adj-mod-of tangerine)

I (subj-of discover) tangerine (adj-mod dried)

Word co-occurrence vector

• Co-occurrence vector for the word *cell*

	subj-of, absorb	subj-of, adapt	subj-of, behave	•••	pobj-of, inside	pobj-of, into	 nmod-of, abnormality	nmod-of, anemia	nmod-of, architecture	•••	obj-of, attack	obj-of, call	obj-of, come from	obj-of, decorate	•••	nmod, bacteria	nmod, body	nmod, bone marrow
cell	1	1	1		16	30	3	8	1		6	11	3	2		3	2	2

Measuring Association with Context

- Assign values or weights to features to better measure the association between a target word w and feature f.
- Use probabilities to measure association.

$$P(f|w) = \frac{\operatorname{count}(f,w)}{\operatorname{count}(w)}$$

$$\operatorname{assoc}_{\operatorname{prob}}(w,f) = P(f|w)$$

Association

Mutual information between two random variables X and Y.

$$I(X,Y) = \sum_{x} \sum_{y} P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)}$$

 Pointwise mutual information – a measure of how often two events x and y occur, compared to what we expect if they were independent.

$$I(x,y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$$

$$\operatorname{assoc}_{\mathrm{PMI}}(w, f) = \log_2 \frac{P(w, f)}{P(w)P(f)}$$

Association

Object Coun		PMI Assoc	Object	Count	PMI Assoc
bunch beer	2	12.34	wine	2	9.34
tea	2	11.75	water	7	7.65
Pepsi	2	11.75	anything	3	5.15
champagne	4	11.75	much	3	5.15
liquid	2	10.53	it	3	1.25
beer	5	10.20	<some amount=""></some>	2	1.22

Lin Association – breaks P(f) further down into relation r and word w' – at the other end of relation r.

$$\operatorname{assoc}_{\operatorname{Lin}}(w, f) = \log_2 \frac{P(w, f)}{P(w)P(r|w)P(w'|w)}$$

Association

- t-test association measures how much more frequent the association is then chance.
- t-test computes the difference between observed and expected mean normalized by variance.

$$t = \frac{\overline{x} - \mu}{\sqrt{\frac{S^2}{N}}}$$

Variance approximated by the expected probability product.

$$\operatorname{assoc}_{\mathsf{t-test}}(w,f) = \frac{P(w,f) - P(w)P(f)}{\sqrt{P(f)P(w)}}$$

Similarity Between two vectors

So far we have computed co-occurrence vector for a target word. This
gives a distributional definition of the meaning of a target word.

distance_{manhattan}
$$(\vec{x}, \vec{y}) = \sum_{i=1}^{N} |x_i - y_i|$$

distance_{euclidean}
$$(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}$$

Similarity Between two vectors

Information Retrieval Word Similarity

$$sim_{dot-product}(\vec{v}, \vec{w}) = \vec{v}, \vec{w} = \sum_{i=1}^{N} v_i \times w_i$$

• Define a vector for a target word with N features f_1, \dots, f_N .

$$\vec{w} = (\operatorname{assoc}(w, f_1), \operatorname{assoc}(w, f_2), \operatorname{assoc}(w, f_3), \dots, \operatorname{assoc}(w, f_N))$$

Problem: long vectors are favored. Need to normalize by vector length.

$$|\vec{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

Information Retrieval Word Similarity

$$\operatorname{sim}_{\operatorname{cosine}}(\vec{v}, \vec{w}) = \frac{\vec{v}, \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\sum_{i=1}^{N} v_i x w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

$$\operatorname{sim}_{\operatorname{Jaccard}}(\vec{v}, \vec{w}) = \frac{\sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} \max(v_i, w_i)}$$

$$\operatorname{sim_{Dice}}(\vec{v}, \vec{w}) = \frac{2 \times \sum_{i=1}^{N} \min(v_i, w_i)}{\sum_{i=1}^{N} (v_i, w_i)}$$

Semantic Role Labeling

- SRL is the task of finding semantic roles for each predicate.
- FrameNet

```
[You] can't [blame] [the program] [for being unable to identify it] COGNIZER TARGET EVALUEE REASON
```

PropBank

```
[The San Francisco Examiner] issued [a special edition] [yesterday] ARG0 TARGET ARG1 ARGM-TMP
```

Semantic Role Labeling Algorithm

- Need syntactic parser.
- Extract features.
- Classify node.

```
function SEMANTICROLELABEL(words) returns labeled tree
```

```
parse ← PARSE(words)

for each predicate in parse do

for each node in parse do

featurevector ← EXTRACTFEATURES(node, predicate, parse)

CLASSIFYNODE(node, featurevector, parse)
```

Semantic Role Labeling

Semantic Role Labeling-Features

- Governing Predicate.
- Phase type of constituent.
- Headword of constituent.
- Path in the parse tree from constituent to the predicate.
- Voice of the clause containing constituent.
- Binary respect to predicate (before or after).
- Sub categorization of predicate.