

Modelación del efecto del precio de gas natural sobre el precio de la electricidad: Alemania en tiempo de crisis

Cesar Andrés Ojeda|Orlando Joaqui Barandica |Wilber Jr. Hernández |Gina Paola Ramirez Jornada: Avances en Métodos Estadísticos

16 y 17 de febrero de 2023

Introducción

en de

Europa en cuestión energética se ha caracterizado por ser uno de los continentes en busca de un Mix energético, en el cual no solo se genere electricidad por medio de energías no renovables, sino también por medio de energías renovables.

No obstante, su alta dependencia sobre el gas natural para la generación de electricidad sigue siendo notable aún más cuando el continente atraviesa por momento difíciles o de incertidumbre.

Teniendo en cuenta que Alemania es uno de los principales receptores de gas natural por parte de Rusia, se ha visto en problemas para la obtención del mismo. Puesto que Rusia ha cerrado las exportaciones de gas para todo el continente debido a la guerra con Ucrania durante este último periodo de tiempo. Cabe resaltar que, en la matriz energética, la producción de gas natural es del 15.79%.

Introducción

"Alemania es un claro ejemplo de dicha dependencia sobre el gas natural"

Figura 1. Matriz energética de Alemania 2021

....

Objetivos

Modelar el efecto del precio del gas natural sobre el precio de la electricidad para Alemania durante el periodo 2015 a 2022, mediante el cual se busca caracterizar su mercado e identificar el efecto generado por el gas natural y algunos factores climáticos en la construcción de sus precios.

Antecedentes

Assessing the relationship between electricity and natural gas prices in european markets in times of distress

Autor: Uribe, J. M., Mosquera-Lopez, S. & Arenas, O. J.

Publicación en: 2022

Año de publicación: Energy Policy

Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model

Autor: Chen, R. & Xu, J. Publicación en: 2019

Año de publicación: Energy Economics

Modelo autoregresivo generalizado de score

$$y_t \sim p(y_t | f_t, F_t; \theta) \tag{1}$$

Donde el vector F_t hace referencia a los rezagos de la serie, f_t son los parámetros tiempo variantes que se encuentran definidos de la siguiente forma:

$$f_{t+1} = \omega + \sum_{i=1}^{p} A_i s_{t-i+1} + \sum_{j=1}^{q} B_j f_{t-j+1}$$
 (2)

Donde A_i B_j son los coeficientes estimados. La función s_t que corresponde al score, el cual contiene los datos pasados $s_t = s_t(y_t, f_t, F_t; \theta)$. Contiene toda la información probabilística del modelo.

Modelo autoregresivo generalizado de score

$$y^{t-1}, F^{t-1}, X^t \tag{3}$$

Donde y^{t-1} es la información histórica de la serie de tiempo. F^{t-1} información pasada de los parámetros y X^t hace referencia a las variables exógenas (Covariables)

Los datos relacionados a los precios de la electricidad y el gas natural fueron extraídos del aplicativo Bloomberg y los datos correspondientes a las variables ambientales provienen de Nasapower

Variable	Unidad De Medida	Tipo De Variable
Precio	Precio de la electricidad (EUR/Kwh)	Cuantitativa
Temperatura	Grados Celsius (° \mathcal{C})	Cuantitativa
Velocidad del viento	Metro por segundo (m/s)	Cuantitativa
Precipitación	Litros por metro cuadrado (l/m^2)	Cuantitativa
Irradiancia	Potencia promedio por metro cuadrado cada minuto (W/m^2)	Cuantitativa
TTF	Precio del gas (EUR/Kwh)	Cuantitativa

Tabla 1. Variables explicativas

Estadísticas	Con rezago de un día						
	Precio Electricidad	TTF	Temperatura	Velocidad del viento	Precipitación	Irradiancia	
Media	49.28	22.62	10.37	6.99	214.35	2991.14	
Mediana	37.6	17.70	9.75	6.40	116.58	2476.25	
Desv. St	44.61	21.89	7.06	2.70	268.53	2291.54	
Min	3.98	3.00	-9.40	2.46	0.00	152.04	
Max	487.57	220.80	28.14	22.57	2719.73	8358.23	

Tabla 2. Estadísticas descriptivas

Figura 2. Serie de tiempo precios de la electricidad 2015-2022

Figura 3. Serie de tiempo precios del gas natural 2015-2022

Figura 4. Serie de tiempo variables climáticas 2015-2022

Resultados: Modelo GAS

Tipo variable	Valor	p-valor	-1.96 SE	+1.96 SE
RW ĸ	0,0036	0,0195	0,0006	0,0067
Temperatura	0,0022	0,5852	-0,0058	0,0103
Velocidad del viento	-0,0272	0,0001	-0,0404	-0,0139
Precipitación	0,0621	9387,50	-1,5217	1,6459
Irradiancia	-0,0328	0,0094	-0,0576	-0,0081
ΠF	0.0039	0,0002	0,0019	0,0060

Tabla 3. Estimaciones Modelo GAS

Figura 5. Contribuciones de las variables sobre la construcción del precio de la electricidad 2015-2022

Conclusiones

- El precio de gas natural presenta una correlación positiva directa con el precio de la electricidad, puesto que si se encuentra escasez de gas natural como se presentó gracias a los inconvenientes de Rusia con sus exportaciones, el gas natural tiende incrementar su precio y a su vez el precio de la electricidad respectivamente.
- Las variables climáticas son muy importantes observando el periodo de tiempo; ya que algunas ayudan a contrarrestar el efecto que produce el incremento del gas.

Conclusiones

- La temperatura es una variable que, aunque en los resultados del modelo no termina siendo significativa, se logra observar que en los periodos de verano la temperatura contribuye al incremento en el precio de la electricidad; esto ya que con las altas temperaturas el consumo de los aires acondicionados tiende a incrementar.
- La irradiancia ayuda a contrarrestar el incremento en el precio de la electricidad en determinados periodos de tiempo. Puesto que, en las temporadas de verano la producción de electricidad tiene desarrollo por medio de energía solar . De la misma forma la velocidad del viendo contrarresta el incremento del precio, ya que cuando se presentan fuertes vientos, se tiende a producir electricidad por medio de energía eólica.

¡Gracias!