Preguntas de final Lógica y computabilidad

Juan Vanecek Febrero 2016

1

1. Computabilidad

1. Probar que la clase de funciones computables es una clase PRC.

Solution:

Idea: una clase de función es PRC si están las iniciales y el resto se forma por composición o recursión. Lo que hay que demostrar es que las computables cumplen esto.

Demostración: Las funciones iniciales son computables, porque

- n(x) = 0 se computa con el programa vacío.
- s(x) = x + 1 se computa con el programa $\{Y \leftarrow X + 1\}$.
- $u_i(x_1,\ldots,x_n)=x_i$ se computa con el programa $\{Y\leftarrow X_i\}$.

Falta ver que la clase de funciones computables está cerrada por (a) composición; y (b) recursión primitiva.

(a) Si h se obtiene a partir de las funciones (parciales) computables f, g_1, \ldots, g_k por composición, entonces h es computable. Y esto es cierto porque el siguiente programa computa h:

$$Z_1 \leftarrow g_1(X_1, \dots, X_n)$$

$$\vdots$$

$$Z_k \leftarrow g_k(X_1, \dots, X_n)$$

$$Y \leftarrow f(Z_1, \dots, Z_k)$$

Y si f, g_1, \ldots, g_k son computables, entonces h es computable.

(b) Si h se obtiene a partir de g por recursión primitiva y g es computable entonces h es computable.

En efecto, el siguiente programa computa h:

$$\begin{array}{ccc} Y \leftarrow k \\ \text{IF } X = 0 \text{ GOTO } E \\ Y \leftarrow g(Z,Y) \\ Z \leftarrow Z + 1 \\ X \leftarrow X - 1 \\ \text{GOTO } A \end{array}$$

Y por lo tanto, si g es computable, h también.

2. Probar que una función es primitiva recursiva si pertenece a toda clase PRC.

Solution:

Demostración: Supongamos que existe f p.r. y una clase C PRC.

Por definición de p.r., f se pue e obtener a partir de funciones inciales y por un número finito de aplicaciones de composición y recursión primitiva. Es decir, que existe una lista de funciones f_1, f_2, \ldots, f_n tal que:

• f_i o bien es una función inicial (y por lo tanto está en C) o bien se obtiene por composición o recursión primitiva a partir de funciones f_j , con j < i (y por lo tanto está en C).

$$f_n = f$$

Por consiguiente (o más bien por inducción), todas las funciones de la lista están en C. En particular $f_n = f \in C$.

3. Sean A y B dos conjuntos c.e. Demostrar que $A \cup B y A \cap B$ son c.e. ¿Es $A \setminus B$ c.e.?

Solution:

Definición: Un conjunto A es c.e. cuando existe una función parcial computable $g: \mathbb{N} \to \mathbb{N}$ tal que:

$$A = \{x : g(x) \downarrow\} = dom(g)$$

(En otras palabras, podemos decidir algorítmicamente si un elemento sí pertenece a A, aunque para elementos que no pertenecen a A el algoritmo se indefine)

 $Demostración: A \cap B$

Sean p y q los números de los programas tales que

$$A = \{x : \Phi_p(x)\}$$
 $B = \{x : \Phi_q(x)\}$

Si podemos encontrar un programa que se defina con las mismas entradas que definen a A y B, entonces estamos.

Sea R el siguiente programa:

$$Y \leftarrow \Phi_p(x)$$

 $Y \leftarrow \Phi_q(x)$

Notemos que $\Psi_R(x) \downarrow$ si y solo si $\Phi_p(x) \downarrow$ y $\Phi_q(x) \downarrow$.

En efecto, $A \cap B$ es c.e. porque

$$A \cap B = \{x : \Psi_R(x) \downarrow \}$$

 $Demostraci\'on: A \cup B$

Tengo que encontrar un programa que me permita decidir si un elemento pertenece a A o a B.

Para ello vamos a usar la función $STP^{(n)}(x_1, \ldots, x_n, e, t)$ que es TRUE si y solo si el programa con número e termina en t o menos pasos con las entradas x_1, \ldots, x_n .

Definimos R como:

[C] IF
$$STP^{(1)}(X, p, T)$$
 GOTO E
IF $STP^{(1)}(X, q, T)$ GOTO E
 $T \leftarrow T + 1$
GOTO C

Notemos que este programa chequea al mismo tiempo si un elemento pertenece al dominio de Φ_p o de Φ_q , ejecutando paso a paso los programas p y q.

En efecto $\Psi_R(x) \downarrow \text{si y solo si } \Phi_p(x) \downarrow \text{o } \Phi_q(x) \downarrow$:

$$A \cup B = \{x : \Psi_B(x) \downarrow \}$$

Demostración: $A \ B$

 $A \setminus B$ NO es c.e.. Sea A el conjunto de todos los programas, y B sólo de aquellos que paran cuando se les da como entrada su número de programa. $A \setminus B$ es entonces el conjunto de programas que no se detienen cuando se les da su número de programa como entrada.

Supongamos que $A \setminus B$ fuera c.e. Pero por definición, un conjunto es c.e. si podemos decidir algorítmicamente si un elemento pertenece o no. Es decir que HALT(X, X) sería computable. Absurdo!

- 4. Seas A y B conjuntos de una clase PRC C. Entonces $A \cup B$, $A \cap B$, $y \bar{A}$ están en C.
- 5. Definir conjunto de índices. Enunciar y demostrar el Teorema de Rice.

Solution:

Definición: un conjunto de naturales A es un conjunto de índices si existe una clase de funciones $\mathbb{N} \to \mathbb{N}$ parciales computables C tal que $A = \{x : \Phi_x \in C\}$.

Teorema de Rice: Si A es un conjunto de índices tal que $\emptyset \neq A \neq \mathbb{N}$, A no es computable.

Demostración: Supongamos la clase de funciones C tal que $A=\{x:\Phi_x\in C\}$ computable. Sea $f\in C$ y $g\neq C$ funciones parciales computables. Sea $h:\mathbb{N}^2\to\mathbb{N}$ la siguiente función parcial computable:

$$h(t,x) = \begin{cases} g(x) & \text{si } t \in A \\ f(x) & \text{si no} \end{cases}$$

Por el teorema de la Recursión, existe e tal que $\Phi_e(x) = h(e, x)$. Luego,

- Si $e \notin A \Rightarrow h(e,x) = f(x) \Rightarrow \Phi_e = h = f \Rightarrow \text{como } f \in C, \Phi_e \in C \Rightarrow e \in A.$ Absurdo!
- Si $e \in A \Rightarrow h(e,x) = g(x) \Rightarrow \Phi_e = h = g \Rightarrow \text{como } g \notin C, \Phi_e \notin C \Rightarrow e \notin A$. Absurdo!
- 6. Enunciar y demostrar el Teorema de la Recursión.

Solution:

Teorema de la Recursión: Si $g: \mathbb{N}^{n+1} \to \mathbb{N}$ es parcial computable, existe un e tal que

$$\Phi_e(x_1,\ldots,x_n) = g(e,x_1,\ldots,x_n)$$

Demostración: Sea S_n^1 la función del teorema del Parámetro, tal que:

$$\Phi_y^{(n+1)}(x_1,\ldots,x_n,u) = \Phi_{S^1(y_1,y_1)}^{(n)}(x_1,\ldots,x_n)$$

La función $(x_1, \ldots, x_n, v) \mapsto g(S_n^1(v, v), x_1, \ldots, x_n)$ es parcial computable, de modo que existe d tal que:

$$g(S_n^1(v,v), x_1, \dots, x_n) = \Phi_d^{(n+1)}(x_1, \dots, x_n, v)$$
$$= \Phi_{S_n^1(v,d)}^{(n)}(x_1, \dots, x_n)$$

Como d está fijo, y v es variable, elegimos v = d y $e = S_n^1(d, d)$. Luego

$$g(S_n^1(v,v), x_1, \dots, x_n) = \Phi_{S_n^1(v,v)}^{(n)}(x_1, \dots, x_n)$$

$$g(e, x_1, \dots, x_n) = \Phi_e(x_1, \dots, x_n)$$

7. Enunciar y demostrar el Teorema de Punto Fijo.

Solution:

Teorema del Punto Fijo: Si $f: \mathbb{N} \to \mathbb{N}$ es computable, existe e tal que $\Phi_{f(e)} = \Phi_e$.

Demostración: Considerar la función $g: \mathbb{N}^2 \to \mathbb{N}, \ g(z,x) = \Phi_{f(z)}(x).$

Aplicando el Teorema de la Recursión, existe un e tal que para todo x,

$$\Phi_e(x) = g(e, x) = \Phi_{f(e)}(x)$$

8. Enunciar Halt y demostrar que no es computable. (Con cualquiera de las demostraciones vistas.)

Solution:

El problema Halt consiste en tratar de determinar si un programa P con número de programa y, y con entrada x termina.

Y ello se define con la función:

$$HALT(x,y) = \begin{cases} 1 & \text{si } \Phi_y^{(1)}(x) \downarrow \\ 0 & \text{si } \Phi_y^{(1)}(x) \uparrow \end{cases}$$

Supongamos que HALT es computable. Construimos el siguiente programa Q:

[A] IF
$$HALT(X, X) = 1 GOTO A$$

Supongamos que #Q = e. Entonces

$$\Phi_e(x) = \begin{cases} \uparrow & \text{si } HALT(x, x) = 1\\ 0 & \text{si no} \end{cases}$$

Entonces

$$HALT(x, e) = 1 \Leftrightarrow \Phi_e(x) \downarrow \Leftrightarrow HALT(x, x) \neq 1$$

Si bien e está fijo, x es variable. Llegamos a un absurdo con x = e.

9. Exhibir una función computable que no sea p.r. y demostrarlo.

Solution:

Sea la función $\tilde{\Phi}_e^{(n)}(x_1,\ldots,x_n)$ computable que simula a la e-ésima función p.r. con entrada x_1,\ldots,x_n .

Sea $g: \mathbb{N} \to \mathbb{N}$, definida como $g(x) = \tilde{\Phi}_x^{(1)}(x)$. Demostremos que g es computable pero no p.r. Demostración: Claramente g es computable porque $\tilde{\Phi}$ lo es.

Supongamos que es p.r. $\Rightarrow f(x) = g(x) + 1$ es p.r. por composición $\Rightarrow \exists e$ tal que $\tilde{\Phi}_e = f$ por ser f p.r. $\Rightarrow \tilde{\Phi}_e(x) = \tilde{\Phi}_x(x) + 1$.

e está fijo pero x es variable. Así que instanciando x=e, llegamos a que $\tilde{\Phi}_e(e)=\tilde{\Phi}_e(e)+1$. Absurdo!

10. (Mat.) Probar que la función $\tau: N \to N$ que asigna a cada número natural positivo n el número de divisores positivos n y $\tau(0) = 0$, es una función recursiva primitiva.

Una función es primitiva recursiva si se obtiene a través de las funciones iniciales por composición y/o recursión en finitos pasos.

Sea $f: \mathbb{N}^2 \to \mathbb{N}$ tal que f(a,b) devuelve la cantidad de divisores positivos desde 0 hasta b. Con a y b naturales.

Queremos que $\tau(n) = f(n,n) \forall n \in \mathbb{N}$ definiendo a f de la siguiente forma:

$$f(n,0) = n(n)$$

 $f(n,m+1) = g(n,m,f(n,m))$

Con

$$g(a,b,c) = \begin{cases} suc(u_3^3(a,b,c)) & \text{si } P \\ u_3^3(a,b,c) & \text{si } \neg P \end{cases}$$

Donde

$$P = u_1^3(a, b, c) \mid suc(u_2^3(a, b, c))$$

Veamos que:

- A) f cumple con el esquema de recursión primitivo.
- B) n(n) es la función inicial nula aplicada a n.
- C) El predicado P usa la función proyección y la función "divide a" (|) que es primitiva recursiva.
- D) La función g es una división de casos disjuntos y usa las funciones iniciales de proyección y sucesor.

Por todo lo anterior, la función f(n,m) es primitiva recursiva (con n y m naturales). Falta ver que $\tau(n) = f(n,n)$. Probamos por inducción en el segundo parámetro.

■ Caso base:

$$\tau(0) = 0$$

$$f(0,0) = n(0) = 0$$

■ Paso inductivo:

Se cumple la hipótesis inductiva f(n,m) devuelve los divisiores de n desde 0 hasta m. Ahora queremos ver para m+1: f(n,m+1)=g(n,m,f(n,m)). Abrimos los dos casos según el dominio de g:

- 1. Caso $n \mid (m+1)$: g(n, m, f(n, m)) = f(n, m) + 1. Entonces por H.I. al dividir m+1 incremento en 1 a lo ya calculado en el paso recursivo anterior y éste calculo correctamente hasta m. Queda f(n, m+1) = f(n, m) + 1.
- 2. Caso $\neg(n \mid (m+1))$: g(n, m, f(n, m)) = f(n, m). Entonces por H.I. al no dividir m+1 no sumo nada a lo ya calculado en el paso recursivo anterior y éste calcula correctamente hasta m. Queda f(n, m+1) = f(n, m).

Por lo tanto, $\tau(n) = f(n, n) \forall n \in \mathbb{N}$.

11. (Mat.) Dar un ejemplo de una función no computable de una variable tal que la imagen tenga tres elementos.

Solution: Sea f:

$$f(x) = \begin{cases} Halt(x, x) & \text{si } x \neq 0 \\ 2 & \text{si } x = 0 \end{cases}$$

La $Img(f) = \{0, 1, 2\}$. Tiene exactamente 3 elementos.

Supongamos que f es computable, entonces $\exists P$ programa que computa f.

Si f(x) = 2, entonces x = 0.

Si f(x) = 0(Halt(x, x)) o $f(x) = 1(\neg Halt(x, x))$, si y sólo si $\varphi_P(x) \downarrow$.

Sea e=#P. Tomemos el caso particular: x=e. H(e,e) determina si el programa e con entrada e termina o no.

Como vimos en las teóricas, f está resolviendo halting problem. Absurdo! pues Halt no es computable. Vino de suponer que f(x) es computable.

Entonces f(x) no es computable.

12. Probar que TOT no es c.e. ni co-c.e.

Solution:

Def. TOT= $\{e : \Phi_e(x) \text{ es total}\}\$, y Φ_e es total sii $(\forall x)\Phi_e(x) \downarrow$.

Def. Un conjunto A es computablemente enumerable si y sólo si existe una función g parcialmente computable, $g: \mathbb{N} \to \mathbb{N}$ tal que $A = \{x: g(x) \downarrow\} = \text{Dom}(g)$.

Def. Un conjunto A es co-c.e. sii \overline{A} es c.e.

Demostración: TOT no c.e.

Supongamos que es c.e. $\Rightarrow \exists g$ parcial computable tal que TOT=Dom(g).

Existe además e, tal que $\Phi_e(x) = \Phi_{g(x)}(x) + 1$. Notar que esto se define para todo x. Luego Φ_e es total $\Rightarrow e \in TOT \Rightarrow \exists u : g(u) = e \Rightarrow \Phi_{g(u)}(x) = \Phi_{g(u)}(x) + 1$.

Absurdo si x = u, y esto vino de suponer que TOT es c.e.

Demostración: TOT no co-c.e.

Supongamos que $\overline{\text{TOT}}$ c.e., existe entonces d tal que $\overline{\text{TOT}} = \text{Dom}(\Phi_d)$.

Definimos el siguiente programa P:

$$[C] \quad \text{IF STP}^{(1)}(X,d,T) = 1 \text{ GOTO } E \\ T \leftarrow T + 1 \\ \text{GOTO } C$$

Tenemos

$$\Psi_P(x,d) = g(x,d) = \begin{cases} \uparrow & \text{si } \Phi_d \text{ es total} \\ 0 & \text{si no} \end{cases}$$

Por el Teorema de la Recursión: sea e tal que $\Phi_e(x) = g(x, e)$.

- Φ_e es total $\Rightarrow g(e,d) \uparrow$ para todo $y \Rightarrow \Phi_e(x) \uparrow$ para todo $x \Rightarrow \Phi_e$ no es total.
- Φ_e no es total $\Rightarrow g(e,d) = 0$ para todo $y \Rightarrow \Phi_e(x) = 0$ para todo $x \Rightarrow \Phi_e$ es total.
- 13. Probar que todo conjunto r.e. infinito contiene un conjunto recursivo infinito.

Def. Un conjunto A es recursivamente enumerable si y sólo si existe una función f computable, $f: \mathbb{N} \to \mathbb{N}$ tal que $A = \{x: f(x) \downarrow\} = \text{Dom}(f)$.

Demostración: Primero probamos que si $B = \{f(n) : n \in \mathbb{N}\}$, con f una función estrictamente creciente, parcialmente computable y total, entonces B es recursivo. Para verlo, basta ver el siguiente programa:

- $\begin{aligned} [A] & \text{ IF } f(Z) = X \text{ GOTO } B \\ & \text{ IF } f(Z) > X \text{ GOTO } E \\ & Z \leftarrow Z + 1 \\ & \text{ GOTO } A \end{aligned}$
- $[B] \quad \begin{array}{cc} Y \leftarrow 1 \\ & \text{GOTO } E \end{array}$

computa Ψ_B . Este programa termina siempre, así que B es recursivo.

Ahora, sea A r.e. e infinito. Tenemos una función p.r. g que nos va dando los elementos de A. Definimos f(0) = g(0) y suponiendo definida f(k) para todo k < n, definimos $f(n) = g(\min_z(g(z) > f(n-1)))$.

Esta minimización es propia, pues A es infinito. Entonces, siempre podemos encontrar un elemento A mayor que todos los que tengamos. Esto nos da una f parcialmente computable, total, y estrictamente creciente. Si tomamos $B = \{f(n) : n \in \mathbb{N}\}$, tenemos que B es recursivo y que $B \subseteq A$.

14. Probar que si A es computable entonces es c.e. ¿Vale la vuelta? Justificar.

Solution: Sea P_A un programa para [la función característica de] A.

Consideremos el siguiente programa P:

[C] IF
$$P_A(X) = 0$$
 GOTO C

Tenemos que:

$$\Psi_A(x) = \begin{cases} 0 & \text{si } x \in A \\ \uparrow & \text{si no} \end{cases}$$

Y por lo tanto $A = \{x : \Psi_P(X) \downarrow \}.$

La vuelta no es cierta. Lo demostramos con un contraejemplo.

Definimos $W_n = \{x : \Phi_n(x)\} = \text{el dominio del } n\text{-\'esimo programa, y a } K = \{n : n \in W_n\}.$ Observemos que $n \in W_n$ sii $\Phi_n(n) \downarrow$ sii HALT(n,n). K es (a) c.e. pero (b) no computable.

- (a) K es c.e. porque $K = \{x : g(n) \downarrow \}$
- (b) Supongamos que K fuera computable. Entonces \overline{K} también lo sería. Luego existe un e tal que $\overline{K} = W_e$. Por lo tanto

$$e \in K \Leftrightarrow e \in W_e \Leftrightarrow e \in \overline{K}$$

15. Probar que un conjunto $A \subseteq \mathbb{N}$ es computable sii $A y \overline{A}$ son c.e.

- $\Rightarrow)$ Si A es computable entonces \overline{A} es computable.
- $\Leftarrow)$ Supongamos que A y \overline{A} son c.e.

$$A = \{x : \Phi_p(x) \downarrow\} \quad \overline{A} = \{x : \Phi_q(x) \downarrow\}$$

Consideremos el programa P:

$$\begin{aligned} [C] & \text{IF STP}^{(1)}(X,p,T) = 1 \text{ GOTO } F \\ & \text{IF STP}^{(1)}(X,q,T) = 1 \text{ GOTO } E \\ & T \leftarrow T + 1 \\ & \text{GOTO } C \\ [F] & Y \leftarrow 1 \end{aligned}$$

Para cada x, vale que $x \in A$ o bien $a \in \overline{A}$. Entonces Ψ_P computa A.

2. Logica proposicional

1. Definir consistente, maximal consistente, y demostrar que φ es teorema de Γ si y sólo si φ pertenece a Γ .

Solution:

Def. Un conjunto $\Gamma \subseteq FORM$ es consistente si no existe $\varphi \in FORM$ tal que $\Gamma \vdash \varphi$ y $\Gamma \nvdash \varphi$.

Def. Un conjunto $\Gamma \subseteq FORM$ es maximal consistente en SP si es consistente y para toda fórmula $\varphi, \varphi \in \Gamma$ o existe ψ tal que $\Gamma \cup \{\varphi\} \vdash \psi$ y $\Gamma \cup \{\varphi\} \nvdash \psi$.

- 2. Definir conjunto maximal consistente y probar que si Γ es m.c. entonces:
 - a) $\varphi \in \Gamma$ o (exclusivo) $\neg \varphi \in \Gamma$
 - b) $\varphi \in \Gamma \sin \Gamma \vdash \varphi$

Solution:

a) No puede ser que φ y $\neg \varphi$ estén en Γ porque sería inconsistente.

Supongamos que ninguna está. Como Γ es maximal y por proposición $(\Gamma \cup \{\neg \varphi\})$ es inconsistente sii $\Gamma \vdash \varphi$:

- $\Gamma \cup \{\varphi\}$ es inconsistente $\Rightarrow \Gamma \vdash \neg \varphi$
- $\Gamma \cup \{\neg \varphi\}$ es inconsistente $\Rightarrow \Gamma \vdash \varphi$

Luego Γ es inconsistente.

3. Enunciar y demostrar el Lema de Lindenbaum para la lógica proposicional.

Solution:

Lema de Lindenbaum: Si $\Gamma \subseteq FORM$ es consistente, existe Γ' maximal consistente tal que $\Gamma \subseteq \Gamma'$

Demostración:

Hay que encontrar el Γ' tal que es m.c. y contiene a Γ .

Enumeremos todas las fórmulas $\varphi_1, \varphi_2, \dots$ y definimos:

$$\Gamma_i = \left\{ \begin{array}{ll} \Gamma & \text{si } i = 0 \\ \Gamma_{i-1} \cup \{\varphi_i\} & \text{si } \Gamma_{i-1} \cup \{\varphi_i\} \text{ es consistente} \\ \Gamma_{i-1} & \text{si no} \end{array} \right.$$

Luego definimos $\Gamma' = \bigcup_{i \geq 0} \Gamma_i$. Y terminamos. Γ' es (a) consistente, (b) maximal y (c) contiene a Γ como queríamos.

- (a) Si no fuera consistente, existiría ψ tal que: $\Gamma' \vdash \psi$ y $\Gamma' \nvdash \psi$. En ambas derivaciones aparece únicamente $\{\gamma_1, \ldots, \gamma_k\} \subseteq \Gamma'$. Sea j el mínimo índice tal que $\{\gamma_1, \ldots, \gamma_k\} \subseteq \Gamma_j$. Entonces Γ_j es inconsistente, y esto es absurdo por que Γ' se construye de Γ_i consistentes.
- (b) Es maximal, porque supongamos un $\varphi \notin \Gamma'$. Debe existir un n tal que $\varphi_n = \varphi$. Y como $\varphi_n \notin \Gamma_n$ (porque sino estaría en Γ'), entonces $\Gamma_{n-1} \cup \{\varphi_n\}$ es inconsistente. Luego $\Gamma' \cup \{\varphi_n\}$ es inconsistente.
- 4. Enunciar y demostrar el teorema de la Deducción.

Teorema de la Deducción: Si $\Gamma \cup \{\varphi\} \vdash \psi$ entonces $\Gamma \vdash \varphi \rightarrow \psi$.

Demostración: Por inducción en la demostración de $\Gamma \cup \{\varphi\} \vdash \psi$.

Supongamos que $\varphi_1, \ldots, \varphi_n (= \psi)$ es una derivación de ψ a partir de $\Gamma \cup \{\varphi\}$.

Caso base (n=1): la derivación es una sóla fórmula $(\varphi_1 = \psi)$. Queremos ver que $\Gamma \vdash \varphi \to \psi$. Hay 3 posibilidades:

- a) ψ es un axioma de SP. Usando el mecanismo deductivo:
 - 1. ψ (por ser axioma)
 - 2. $\psi \to (\varphi \to \psi)$ (por SP1)
 - 3. $\psi \to \varphi$ (por MP 1,2)
- b) $\psi \in \Gamma$
 - 1. ψ (por $\psi \in \Gamma$)
 - 2. $\psi \to (\varphi \to \psi)$ (por SP1)
 - 3. $\psi \to \varphi$ (por MP 1,2)
- c) $\psi = \varphi$. Vale porque $\varphi \to \varphi$ (visto en clase)

Paso inductivo: HI: "para toda derivación ψ' a partir de $\Gamma \cup \{\varphi\}$ de longitud menor a n vale $\Gamma \vdash \varphi \rightarrow \psi$ ". Queremos ver que $\Gamma \vdash \varphi \rightarrow \psi$. Hay 4 posibilidades:

- a) ψ es un axioma de SP: igual que caso base.
- b) $\psi \in \Gamma$: igual que en caso base.
- c) $\psi = \varphi$: igual que en caso base.
- d) ψ se infiere por MP de φ_i y φ_j (i, j < n):
 - 1. Sin pérdida de generalidad: $\varphi_j = \varphi_i \to \psi$.
 - 2. $\Gamma \cup \{\varphi\} \vdash \varphi_i$ y la derivación tiene longitud menor a n. Por HI: $\Gamma \vdash \varphi \rightarrow \varphi_i$
 - 3. $\Gamma \cup \{\varphi\} \vdash \varphi_j$ y la derivación tiene longitud menor a n. Por HI: $\Gamma \vdash \varphi \rightarrow \varphi_j$ (i.e. $\Gamma \vdash \varphi \rightarrow (\varphi_j \rightarrow \psi)$.
 - 4. (Por SP2) $\vdash (\varphi \to (\varphi_i \to \psi)) \to ((\varphi \to \varphi_i) \to (\varphi \to \psi))$.
 - 5. (Por MP 2 veces) $\Gamma \vdash \varphi \rightarrow \psi$.
- 5. Usando (el teorema de) correctitud de la lógica proposicional probar que si (un conjunto de fórmulas) Γ es satisfactible entonces Γ es consistente.

Solution:

Supongamos que Γ es satisfacible, y sin embargo es inconsistente.

Por lo tanto, por satisfacibilidad existe v tal que $v \models \Gamma$.

Por inconsistencia, existe φ tal que $\Gamma \vdash \varphi$ y $\Gamma \nvdash \varphi$.

Por correctitud de SP, $\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$ y $\Gamma \nvdash \varphi \Rightarrow \Gamma \nvDash \varphi$.

Luego $\Gamma \vDash \varphi$ y $\Gamma \nvDash \varphi$, y por último $v \vDash \varphi$ y $v \nvDash \varphi$. Absurdo!

6. Demostrar que $\Gamma \cup \{\neg \varphi\}$ es inconsistente si y sólo si φ es consecuencia sintáctica de Γ .

Solution:

 (\Leftarrow) Por propiedad: si $\Gamma \vdash \varphi \Rightarrow \Gamma \cup \{\neg \varphi\} \vdash \varphi$.

Por Teorema de la Deducción: $\Gamma \cup \{\neg \varphi\} \vdash \neg \varphi$.

Por lo tanto, $\Gamma \cup \{\neg \varphi\}$ es inconsistente.

 (\Rightarrow) Por hipótesis: existe ψ tal que $\Gamma \cup \{\neg \varphi\} \vdash \psi$ y $\Gamma \cup \{\neg \varphi\} \vdash \neg \psi$.

Por Teorema de la Deducción: $\Gamma \vdash \neg \varphi \rightarrow \psi$ y $\Gamma \vdash \neg \varphi \rightarrow \neg \psi$.

Se puede ver que: $\vdash (\neg \varphi \to \psi) \to ((\neg \varphi \to \neg \psi) \to \varphi)$.

Por MP 2 veces: $\Gamma \vdash \varphi$.

7. Demostrar la correctitud de SP: Si φ es teorema de la teoría Γ , es válido en toda interpretación de Γ ($\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$).

Solution:

Queremos ver que $\Gamma \vdash \varphi \Rightarrow \Gamma \vDash \varphi$. Supongamos que vale el antecedente. Es decir, existe una derivación $\varphi_1, \ldots, \varphi_n$ tal que $\varphi_n = \varphi$ y (a) φ_i es un axioma o (b) $\varphi_i \in \Gamma$ o (c) φ_i es una consecuencia inmediata de $\varphi_k, \varphi_l, k, l < i$.

Demostramos que $\Gamma \vDash \varphi$ por inducción en n (la longitud de la derivación):

$$P(n) = \text{``si } \varphi_1, \dots, \varphi_n = \varphi \text{ es una derivación de } \varphi \text{ a partir de } \Gamma \text{ entonces } v \models \Gamma \Rightarrow v \models \varphi$$
"

Caso base (n=1): Supongamos v tal que $v \models \Gamma$. Queremos ver que $v \models \Gamma \Rightarrow v \models \varphi$. Hay 2 posibilidades: o bien φ es axioma de SP, o pertenece a Γ . En ambos casos $v \models \varphi$.

Paso inductivo: Supongamos v tal que $v \models \Gamma$. Supongamos que vale P(m) para todo $m \le n$. Qvq vale P(n+1). Supongamos $\varphi_1, \ldots, \varphi_n, \varphi_{n+1} = \varphi$ es una derivación de φ a partir de Γ . Hay 3 posibilidades:

- φ es axioma de SP: igual que en caso base.
- $\varphi \in \Gamma$: igual que en caso base.
- φ es consecuencia inmediata de φ_i y $\varphi_j = \varphi_i \to \varphi$ $(i, j, \leq n)$. Por HI $(P(i) \neq P(j))$, sabemos que $v \models \varphi_i \neq \varphi$. Entonces necesariamente $v \models \varphi$.
- 8. (Mat.) Sea Var el conjunto de variables proposicionales de la lógica proposicional. Probar que si $f: Var \to \{0,1\}$ es una función entonces existe una valuación $v: F \to \{0,1\}$ que extiende a f, donde F es el conjunto de las fórmulas de la lógica proposicional.

Solution:

Hay que probar a) la existencia y b) la unicidad de que existe una única valuación v que extiende a la función f.

a) La existencia se prueba por inducción en la complejidad de la fórmula definiendo en cada caso cómo se evalúa.

Caso base: sea a tal que comp(a) = 0, entonces a es una variable proposicional, y por lo tanto f(a) esá definida. Vale entonces v(a) = f(a).

Paso inductivo: supongamos válido comp(a) = n, siendo n la complejidad de a. Veamos si comp(a) = n + 1.

- Si $a = \neg b$, entonces comp(b) = n. Por H.I., v(b) está definido. Queda que v(a) = 1 v(b).
- Si a = b * c, con $* \in \{\land, \lor, \rightarrow\}$. Entonces comp(b) y comp(b) son menores a n + 1. Por H.I. v(b) y v(c) están definidos. Por lo tanto:

$$v(a) = \min(v(b), v(c)) \quad \text{si } a = b \land c$$

$$v(a) = \max(v(b), v(c)) \quad \text{si } a = b \lor c$$

$$v(a) = \max(1 - v(b), v(c)) \quad \text{si } a = b \to c$$

La función v queda definido para toda fórmula de cualquier complejidad.

b) La unicidad se prueba suponiendo que existiese otra función de valuación w que extiende a f.

Consideremos el conjunto $I = \{a \in FORM | v(a) = w(a)\}.$

Como w también extiende a f, I contiene a todas las variables proposicionales. Como v y w son ambas valuaciones, I es cerrado por los conectivos por los que $FORM \subseteq I$. Es decir, v(P) = w(P) para toda fórmula P.

Usando el teorema de que si un subconjunto S de A es cerrado por los conectivos y S contiene a todas las variables proposicionales entonces S contiene a todas las fórmulas.

(Unicidad basado en el apunte de lógica de Roberto Cignoli y Guillermo Martínez.)

3. Lógica de primer orden

1. Demostrar que si Γ (teoría de primer orden) tiene modelos arbitrariamente grandes, tiene un modelo infinito.

Solution: Definimos (en el lenguaje con sólo la igualdad):

$$\varphi_i$$
 = "hay al menos i elementos" $\forall i \geq 2$

Por hipótesis, todo subconjunto finito $\Gamma \cup \{\varphi_i | i \geq 2\}$ tiene modelo.

Por Compacidad, $\Gamma \cup \{\varphi_i | i \geq 2\}$ tiene algún modelo \mathcal{M} .

Por lo tanto, \mathcal{M} tiene que ser infinito.

- 2. Dado L un lenguaje de primer orden con igualdad. Decidir si las siguientes afirmaciones son verdaderas o falsas.
 - a) Existe un conjunto Γ tal que $\Gamma \models A$ sii A tiene universo infinito. [Otra version: Existe Γ tal que A es modelo de Γ sii A es un modelo infinito.]
 - b) Existe un conjunto Γ tal que $\Gamma \models A$ sii A tiene universo finito. [Otra version: Existe Γ tal que A es modelo de Γ sii A es un modelo finito.]
 - c) El conjunto Γ del ítem 1 necesariamente es infinito.
- 3. Dar un conjunto de fórmulas Γ tal que Γ es válida si y sólo si el modelo que la satisface es infinito. ¿Existe una fórmula φ tal que φ es válida si y sólo si el modelo que la satisface es finitio?¿Por qué?
- 4. Sea $\mathcal{L} = \{0, S, <, +, \cdot\}$ con igualdad y sea $\mathcal{N} = \langle \mathcal{N}; 0, S, <, +, \cdot \rangle$ una \mathcal{L} -estructura de primer orden con la interpretación usual. Mostrar que existe un modelo de \mathcal{N} en donde valen todas las verdades de \mathcal{N} pero en donde existe un elemento inalcanzable (desde el 0, usando la función sucesor S).

Solution:

Sea:

el lenguaje
$$\mathcal{L} = \{0, S, <, +, \cdot\}$$
 con igualdad la estructura $\mathcal{N} = \langle \mathbb{N}; 0, S, <, +, \cdot \rangle$ con la interpretación usual
$$\text{Teo}(\mathcal{L}) = \{\varphi \in \text{FORM}(\mathcal{L}) : \varphi \text{ es sentencia y } \mathcal{L} \vDash \varphi\}$$

Expandimos el lenguaje con una nueva constante c y definimos:

$$\Gamma = \{0 < c, S(0) < c, S(S(0)) < c, S(S(S(0))) < c, \dots\}$$

Para $\Gamma \cup \text{Teo}(\mathcal{N})$, cada subconjunto finitio tiene modelo; por compacidad tiene modelo; y por Lowenheim-Skolem tiene un modelo numerable:

$$\mathcal{M} = \langle M; 0^{\mathcal{M}}, S^{\mathcal{M}}, <^{\mathcal{M}}, +^{\mathcal{M}}, \cdot^{\mathcal{M}}, c^{\mathcal{M}} \rangle$$

Sea \mathcal{M}' la restricción de \mathcal{M} al lenguaje original \mathcal{L} . Veamos que $\mathcal{N} \vDash \varphi$ sii $\mathcal{M}' \vDash \varphi$ para toda sentencia $\varphi \in FORM(\mathcal{L})$:

 \mathcal{N} y \mathcal{M} no son isomorfos: $c^{\mathcal{M}}$ es inalcanzable en \mathcal{M}' .

5. Probar que existen modelos no estándar de la aritmética en los que hay un elemento inalcanzable.

Solution: Vale la respuesta de la pregunta 4.

6. Mostrar un modelo no estándar de los naturales.

Solution: Vale la respuesta de la pregunta 4.

7. Verdadero o Falso (Justificar):

 $\exists M \vDash \varphi \Leftrightarrow M \text{ es infinito.}$

8. Enumerar (y explicar muy brevemente) los pasos de la demostración de completitud en Primer Orden y mostrar el modelo canónico utilizado en la demostración.

Solution:

Teorema de Completitud: Si $\Gamma \vDash \varphi$ entonces $\Gamma \vdash \varphi$.

Demostración: Sea \mathcal{L} un lenguaje fijo. Sea $\Gamma \subseteq FORM(\mathcal{L})$ consistente. Queremos construir un modelo canónico \mathcal{B} y una valuación v de \mathcal{B} tal que:

$$\mathcal{B}\vDash\varphi[v]\quad\forall\varphi\in\Gamma$$

Para ello:

- 1. Se expande \mathcal{L} a \mathcal{L}' con nuevas constantes \mathcal{C} que no aparecen en \mathcal{L} . Γ sigue siendo consistente bajo \mathcal{L}' .
- 2. Se agrega un conjunto $\Theta \subseteq FORM(\mathcal{L}')$ de testigos a Γ . $\Gamma \cup \Theta$ sigue siendo consistente.
- 3. Se aplica Lindenbaum para $\Gamma \cup \Theta$ y se obtiene $\Delta \supseteq \Gamma \cup \Theta$ maximal consistente.
- 4. Se construye el modelo canónico \mathcal{A} y valuación v (para el lenguaje \mathcal{L}') tal que $\mathcal{A} \vDash \varphi[v]$ sii $\varphi \in \Delta$, para toda $\varphi \in FORM(\mathcal{L}')$.
- 5. Se define \mathcal{B} como la restricción de \mathcal{A} a \mathcal{L} , concluyendo que Γ es satisfacible.
- 9. Sea $\mathcal{L} = \{c, f\}$ un lenguaje de primer orden con igualdad donde c es un símbolo de constante y f un símbolo de función unaria.
 - 1. Definir $\varphi, \psi \in FORM(\mathcal{L})$ tal que:
 - φ sea verdadera sii c no pertenece al rango de f.
 - \bullet ψ sea verdadera sii f es inyectiva.
 - 2. Para $\theta = (\varphi \wedge \psi)$, probar que si $A \models \theta$ entonces A es infinito.
 - 3. Definir $\theta' \in \text{FORM}(\mathcal{L})$ tal que si A es infinito entonces $A \models \theta'$.
 - 4. ¿Existe $\theta'' \in FORM(\mathcal{L})$ tal que A es infinito sii $A \models \theta''$? Justificar.

10. (Mat.)

- a) Definir el concepto de interpretación de un lenguaje de primer orden.
- b) Sea \mathcal{L} un lenguaje de igualdad y un símbolo de función binario f^2 . Encontrar un enunciado en este lenguaje que exprese que una operación binaria es conmutativa y asociativa.

a) La interpretación de un lenguaje de primer orden es una extensión del lenguaje que mapea cada símbolo constante, función k-aria y predicado k-ario a algún elemento del universo de interpretación.

Sea un lenguaje L=< C, F, P> para una interpretación se define:

- ullet Un universo de interpretación, conjunto no nulo U_I . Ejemplo: Naturales.
- Para cada símbolo constante $c \in C$, mapea con un elemento $c_I \in C_I$.
- Para cada símbolo de función k-aria $\in F$, mapea con una función f_I de k variables sobre el universo U_I , $f_I:U_I^k\to U_I$.
- Para cada símbolo de predicado k-ario $\in P$, mapea a una relación k-aria P_I sobre el universo U_I .
- b) Conmutativo: $a = \forall x \forall y (f^2(x, y) = f^2(y, x))$

Asociativo: $b = \forall x \forall y \forall z (f^2(x, f^2(y, z)) = f^2(f^2(x, y), z)).$

La solución es $a \wedge b$.