PHY2048 EXAM 2 (PRACTICE)

Fall 2019

Prof. Douglas H. Laurence

Abstract

This exam consists of xx multiple choice questions. You must record your answers on a Scantron sheet. Don't record your answers on this print-out; I will not accept it as a submission. Fill out the Scantron sheet in with a pencil, not a pen. Don't forget to include your name, the course, and exam number on the Scantron sheet.

- 1. Two boxes are stacked, with box B placed on top of box A. If box A is pushed such that both boxes move at a constant velocity, is there any friction on either box?
 - (a) Kinetic friction on box A and no friction on box B
 - (b) Kinetic friction on box A and static friction on box B
 - (c) Kinetic friction on box A and kinetic friction on box B
 - (d) Static friction on box A and kinetic friction on box B
- 2. Consider two boxes: box B, with a mass of 3kg, placed on top box A, with a mass of 10kg. If box A is pushed with a force of 70N, what is the force of friction on box B? The coefficients of friction between boxes A and B are $\mu_s = 0.7$ and $\mu_k = 0.4$, while friction is negligible between box A and the ground.
 - (a) 12N
 - (b) 16.2N
 - (c) 21N
 - (d) 70N
- 3. True or false: adaptive forces have simple formulas for their magnitudes.
 - (a) True
 - (b) False
- 4. A 1.5kg box is pushed up a 30° incline with a force F = 20N. If the incline surface has coefficients of friction $\mu_s = 0.4$ and $\mu_k = 0.2$, what is the acceleration on the box?
 - (a) 3.25 m/s^2
 - (b) 5.84 m/s^2
 - (c) 6.74 m/s^2
 - (d) 9.44 m/s^2

	(b) 30cm
	(c) 40cm
	(d) 50cm
6.	A 3.7kg mass is moving at 9 m/s when an unknown force acts on it. If, after some amount of time, the mass is moving at 14 m/s , how much work was done by the unknown force?
	(a) 149.9J
	(b) 212.8J
	(c) 362.6J
	(d) $512.5J$
7.	A 4.6kg boxes slides down a 35° incline, with $\mu_s = 0.5$ and $\mu_k = 0.3$. If the box slides a distance of 10cm down the incline's surface, how much work was done by friction?
	(a) $-1.13J$
	(b) 1.13J
	(c) $-1.88J$
	(d) 1.88J
8.	A box is placed inside an elevator. While the elevator is rising, the work done on the box by the normal force is:
	(a) Positive
	(b) Negative
	(c) Zero
	(d) Unable to determine with the given information
9.	A box is pushed along a path of some length, causing friction to do work on the box. If the box were pushed along a path with a greater length, then:
	(a) Friction would do less work, because it is conservative
	(b) Friction would do less work, because it is non-conservative
	(c) Friction would do more work, because it is conservative
	(d) Friction would do more work, because it is non-conservative
10.	A 5kg mass is dropped from a height of 1.2m. If it hits the ground with a speed of 4 m/s, how much work was done by air resistance?
	(a) 20J
	(b) -20J
	(c) 40J
	(d) $-40J$

5. A 3kg mass hangs vertically from a spring with a force constant of 150 N/m. If the spring's natural length is 30cm, what is the length of the spring when the 3kg mass is in equilibrium?

(a) 20cm

11. A 100g object, moving horizontally, feels a force:

$$\vec{F} = (3x^2 - 2x^4)\hat{i}$$

where the numeric coefficients are implied to have the correct SI units. How much work is done by \vec{F} if the object moves from $x_1 = 0$ to $x_2 = 1$ m?

- (a) 0J
- (b) 0.4J
- (c) 0.6J
- (d) 1J

FORMULA SHEET

• Vectors:

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

$$= A_x B_x + A_y B_y + A_z B_z$$

$$|\vec{A} \times \vec{B}| = AB \sin \theta$$

• Kinematics:

$$g = 10 \text{ m/s}^2$$

$$\vec{v}_{av} = \frac{\Delta \vec{x}}{\Delta t}; \quad \vec{v}(t) = \frac{d\vec{x}}{dt}$$

$$\vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t}; \quad \vec{a}(t) = \frac{d\vec{v}}{dt}$$

$$\Delta x = v_0 t + \frac{1}{2} a t^2$$

$$v = v_0 + a t$$

$$v^2 = v_0^2 + 2a \Delta x$$

• Circular motion:

$$a_c = \frac{v^2}{r} = \omega^2 r$$

$$v = \omega r$$

$$\omega = \frac{2\pi}{T}$$

• Forces:

$$\sum \vec{F} = m\vec{a}$$

$$W = mg$$

$$F_{\rm sp} = kx$$

$$f_{\rm s,max} = \mu_s N$$

$$f_{\rm k} = \mu_k N$$

• Work & Energy:

$$\begin{split} W &= \vec{F} \cdot \Delta \vec{x} \quad \text{or} \quad W = \int \vec{F} \cdot d\vec{s} \\ W_{\text{tot}} &= \Delta K \\ W_{\text{cons}} &= -\Delta U \\ K &= \frac{1}{2} m v^2 \\ U_{\text{g}} &= m g y \\ U_{\text{sp}} &= \frac{1}{2} k x^2 \\ K_i + U_i + W_{nc} &= K_f + U_f \quad \text{(general energy equation)} \end{split}$$

$\underline{\mathbf{ANSWERS}}$

- 1. (a)
- 2. (b)
- 3. (b)
- 4. (c)
- 5. (d)
- 6. (b)

- 7. (a)
- 8. (a)
- 9. (d)
- 10. (b)
- 11. (c)