El teorema de los ceros de Hilbert (primera lección)

Alexey Beshenov (cadadr@gmail.com)

Universidad de El Salvador, 6 de marzo de 2018

En estos apuntes voy a revisar un par de resultados básicos de la geometría algebraica y álgebra conmutativa: el teorema de los ceros (*Nullstellensatz*) y el teorema de la base (*Basissatz*) de Hilbert.

1 Conjuntos algebraicos afines e ideales

En un primer intento, se puede decir que la geometría algebraica estudia los sistemas de ecuaciones polinomiales. A partir de ahora vamos a trabajar sobre un cuerpo fijo k. Denotemos el **espacio afín de dimensión** n **sobre** k por

$$\mathbb{A}^{n}(k) := \{ \underline{x} = (a_1, \dots, a_n) \mid a_1, \dots, a_n \in k \}.$$

1.1. Definición. Para una colección de polinomios en *n* variables con coeficientes en *k*

$$f_1,\ldots,f_m\in k[X_1,\ldots,X_n]$$

el conjunto algebraico afín correspondiente es dado por sus ceros comunes:

$$V(f_1,\ldots,f_m):=\{\underline{x}\in\mathbb{A}^n(k)\mid f_1(\underline{x})=\cdots=f_m(\underline{x})=0\}\subseteq\mathbb{A}^n(k).$$

Es muy incomodo trabajar con polinomios particulares: diferentes colecciones de polinomios pueden tener los mismos ceros. A saber,

- 1) si $f(\underline{x}) = 0$ y $g(\underline{x}) = 0$, entonces $(f + g)(\underline{x}) = 0$;
- 2) si $f(\underline{x}) = 0$ y h es cualquier polinomio, entonces $(h \cdot f)(\underline{x}) = 0$.

Para resolver este problema, se puede pasar a los ideales en el anillo de polinomios.

- **1.2. Definición.** Sea A un anillo conmutativo. Un **ideal** en A es un subconjunto no vacío $\mathfrak{a} \subset A$ tal que
 - 1) si f, $g \in \mathfrak{a}$, entonces $f + g \in \mathfrak{a}$;
 - 2) si $f \in \mathfrak{a}$ y $h \in A$ es cualquier elemento del anillo, entonces $hf \in \mathfrak{a}$.

Se dice que \mathfrak{a} es un **ideal propio** si $\mathfrak{a} \neq A$.

Esto es equivalente a decir que $\mathfrak a$ es un A-submódulo de A (es decir, $\mathfrak a$ es un subgrupo abeliano de A que es también cerrado respecto a la multiplicación por los elementos de A).

1.3. Definición. Para una colección de elementos $f_1, \ldots, f_m \in A$ el **ideal generado por** f_1, \ldots, f_m es el conjunto

$$(f_1,\ldots,f_m):=\{h_1f_1+\cdots+h_mf_m\mid h_1,\ldots,h_m\in A\}.$$

De esta definición debe de ser claro lo siguiente.

1.4. Ejercicio. Demuestre que (f_1, \ldots, f_m) es un ideal, y es precisamente el ideal mínimo en A que contiene f_1, \ldots, f_m .

El mismo ideal puede tener diferentes generadores, y por esto será útil definir los conjuntos algebraicos para ideales.

1.5. Definición. Para un ideal $\mathfrak{a} \subset k[X_1, \dots, X_n]$ el **conjunto algebraico afín** correspondiente es dado por los ceros comunes de los polinomios en \mathfrak{a} :

$$V(\mathfrak{a}) := \{ \underline{x} \in \mathbb{A}^n(k) \mid f(\underline{x}) = 0 \text{ para todo } f \in \mathfrak{a} \} \subseteq \mathbb{A}^n(k).$$

De la nuestra discusión está clara la siguiente propiedad.

1.6. Observación. Para una colección de polinomios $f_1, \ldots, f_m \in k[X_1, \ldots, X_n]$ se tiene $V(f_1, \ldots, f_m) = V(\mathfrak{a})$, donde $\mathfrak{a} = (f_1, \ldots, f_m)$ es el ideal generado por f_1, \ldots, f_m .

De esta manera, pasando a los ideales, nos hemos deshecho de la dependencia de polinomios concretos. Ahora tenemos otro problema: a priori no está claro si todo ideal en $k[X_1,\ldots,X_n]$ es de la forma (f_1,\ldots,f_m) para una colección finita de polinomios; es decir, que nuestros conjuntos algebraicos $V(\mathfrak{a})\subset \mathbb{A}^n(k)$ no forman una clase más grande que los conjuntos $V(f_1,\ldots,f_m)$. El teorema de la base de Hilbert nos ayudará a resolver esta duda.

2 El teorema de la base de Hilbert

2.1. Definición. Se dice que un módulo M sobre un anillo conmutativo A es **noetheriano** si toda cadena ascendente de submódulos

$$M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M$$

se estabiliza eventualmente; es decir, $M_i = M_{i+1}$ para todo i suficientemente grande ($i \ge i_0$ para algún índice i_0).

Se dice que un anillo conmutativo *A* es **noetheriano** si *A* es noetheriano como un módulo sobre sí mismo; es decir, si toda cadena ascendente de ideales

$$\mathfrak{a}_0 \subseteq \mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \cdots \subseteq A$$

se estabiliza eventualmente.

- **2.2. Ejemplo.** Si A = k es un cuerpo, entonces es noetheriano, puesto que 0 y k son los únicos ideales en k.
- **2.3. Teorema (Teorema de la base de Hilbert).** Si A es un anillo noetheriano, entonces el anillo de polinomios A[X] es también noetheriano.

Demostración. Consideremos una cadena ascendente de ideales

$$\mathfrak{a}_0 \subset \mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \cdots \subset A[X].$$

Necesitamos ver que esta se estabiliza.

Sea $\mathfrak{a}_{i,d}$ el ideal de los elementos de A que aparecen como los coeficientes mayores de los polinomios de grado d en \mathfrak{a}_i . Tenemos

$$\mathfrak{a}_{i,d} \subseteq \mathfrak{a}_{i',d'}$$
 si $i \leq i'$ y $d \leq d'$.

Entre los $\mathfrak{a}_{i,d}$ hay un número finito de ideales distintos. Supongamos lo contrario. En este caso una familia infinita de ideales distintos corresponde a un subconjunto infinito de los índices dobles $(i,d) \in \mathbb{N} \times \mathbb{N}$ y entre ellos se puede escoger una cadena infinita (i_k,d_k) con

$$i_0 \leq i_1 \leq i_2 \leq \cdots$$
, $d_0 \leq d_1 \leq d_2 \leq \cdots$

De aquí se obtiene una cadena ascendente

$$\mathfrak{a}_{i_0,d_0} \subsetneq \mathfrak{a}_{i_1,d_1} \subsetneq \mathfrak{a}_{i_2,d_2} \subsetneq \cdots \subsetneq A$$

pero esto contradice nuestra hipótesis que A es noetheriano.

Entonces, existe un índice *i* tal que

$$\mathfrak{a}_{i,d} = \mathfrak{a}_{i+1,d} = \mathfrak{a}_{i+2,d} = \cdots$$

para todo d.

Supongamos que $f \in \mathfrak{a}_{i'}$ para $i' \geq i$. Veamos por inducción sobre $d = \deg f$ que $f \in \mathfrak{a}_i$. Como la base de inducción se puede considerar el caso de $d = -\infty$; es decir, f = 0. Para el paso inductivo, por lo que hemos demostrado, existe un polinomio $g \in \mathfrak{a}_i$ que tiene el mismo coeficiente mayor que f y el mismo grado d. Luego, $\deg(f - g) < d$ y por la hipótesis de inducción $f - g \in \mathfrak{a}_i$, así que $f \in \mathfrak{a}_i$.

2.4. Corolario. Si A es un anillo noetheriano, entonces el anillo de polinomios $A[X_1, ..., X_n]$ es noetheriano. En particular, si A = k es un cuerpo, el anillo $k[X_1, ..., X_n]$ es noetheriano.

Demostración. Se sigue por inducción sobre n y el teorema precedente, puesto que

$$k[X_1,...,X_n] \cong k[X_1,...,X_{n-1}][X_n].$$

2.5. Proposición. Un anillo conmutativo A es noetheriano si y solamente si todo ideal $a \subseteq A$ es finitamente generado; es decir,

$$\mathfrak{a} = (f_1, \ldots, f_m)$$

para algunos $f_1, \ldots, f_m \in A$.

Demostración. Supongamos que existe un ideal $\mathfrak{a}\subset A$ que no es finitamente generado. Entonces, en \mathfrak{a} se puede encontrar una cadena de ideales

$$(f_1) \subsetneq (f_1, f_2) \subsetneq (f_1, f_2, f_3) \subsetneq \cdots \subsetneq \mathfrak{a}$$

A saber, se puede empezar por cualquier f_1 (por ejemplo $f_1=0$) y luego por inducción, ya que $(f_1,\ldots,f_n)\neq \mathfrak{a}$ por nuestra hipótesis, podemos escoger $a_{n+1}\in \mathfrak{a}\setminus (f_1,\ldots,f_n)$. La existencia de una cadena ascendente que no se estabiliza significa que el anillo no es noetheriano.

Para la otra dirección, supongamos que todo ideal en A es finitamente generado. Sea

$$\mathfrak{a}_0\subseteq\mathfrak{a}_1\subseteq\mathfrak{a}_2\subseteq\cdots\subseteq\mathit{A}$$

una cadena ascendente de ideales. Entonces, la unión

$$\mathfrak{a} := \bigcup_{i \geq 0} \mathfrak{a}_i$$

es también un ideal y $\mathfrak{a}=(f_1,\ldots,f_m)$ para algunos $f_1,\ldots,f_m\in A$. Pero cada uno de estos elementos pertenece a algún ideal de la cadena, así que $\{f_1,\ldots,f_m\}\subset\mathfrak{a}_i$ para algún índice i. Luego, $\mathfrak{a}_i=(f_1,\ldots,f_m)$ y

$$\mathfrak{a}_i = \mathfrak{a}_{i+1} = \mathfrak{a}_{i+2} = \cdots$$

3

Entonces, todo ideal en el anillo $k[X_1, ..., X_n]$ es finitamente generado. Un ejemplo típico de anillo *no noetheriano* es el anillo $k[X_1, X_2, X_3, ...]$ de polinomios en una cantidad numerable de variables. Un ideal no finitamente generado en este caso es $(X_1, X_2, X_3, ...)$.

3 Algunas versiones del teorema de los ceros

Para todo ideal \mathfrak{a} hemos definido el conjunto $V(\mathfrak{a}) \subseteq \mathbb{A}^n(k)$. En la otra dirección, a todo subconjunto $X \subseteq \mathbb{A}^n(k)$ se puede asociar el ideal de los polinomios que se anulan sobre X.

3.1. Definición. Para un subconjunto $X \subset \mathbb{A}^n(k)$, sea

$$I(X) := \{ f \in k[X_1, \dots, X_n] \mid f(\underline{x}) = 0 \text{ para todo } \underline{x} \in X \}.$$

Se ve que I(X) es un ideal en $k[X_1, ..., X_n]$. En particular, es finitamente generado. Entonces, tenemos dos aplicaciones:

{ideales
$$\mathfrak{a} \subseteq k[X_1, \dots, X_n]$$
} \xrightarrow{V} {subconjuntos $X \subseteq \mathbb{A}^n(k)$ }

Notemos las siguientes propiedades.

- 1) Si $\mathfrak{a} \subseteq \mathfrak{b}$, entonces $V(\mathfrak{b}) \subseteq V(\mathfrak{a})$. De hecho, cuando añadimos más polinomios, el conjunto de los nulos comunes se vuelve más pequeño.
- 2) Si $V \subseteq W$, entonces $I(W) \subseteq I(V)$; si añadimos más puntos, tenemos menos polinomios que se anulan sobre nuestro conjunto.
- 3) $\mathfrak{a} \subseteq I(V(\mathfrak{a}))$. En general, la inclusión es estricta. Más adelante vamos a aclarar la relación entre \mathfrak{a} y $I(V(\mathfrak{a}))$ cuando k es algebraicamente cerrado.

Un ejemplo particular para cuerpos no algebraicamente cerrados: en $\mathbb{R}[X]$ tenemos

$$I(V(X^2+1)) = I(\emptyset) = \mathbb{R}[X] \supset (X^2+1).$$

- 4) $X \subseteq V(I(X))$. Si X no es un conjunto algebraico, tenemos $X \subseteq V(I(X))$.
- 3.2. Ejercicio. Obviamente,

$$I(\emptyset) = k[X_1, ..., X_n], \quad V(0) = \mathbb{A}^n(k), \quad V(1) = V(k[X_1, ..., X_n]) = \emptyset.$$

Demuestre que

$$I(\mathbb{A}^n(k)) = (0)$$
, si k es un cuerpo infinito.

Encuentre un contraejemplo para cuerpos finitos.

3.3. Ejercicio. *Demuestre que*

$$VIV(\mathfrak{a}) = V(\mathfrak{a})$$
 y $IVI(X) = I(X)$.

Un caso especial es cuando el ideal I(V) se construye para un conjunto $V = \{\underline{x}\}$ que consiste en un punto. En este caso el ideal $I(\{x\})$ es maximal.

3.4. Definición. Sea A un anillo conmutativo. Se dice que un ideal $\mathfrak{m} \subset A$ es **maximal** si $\mathfrak{m} \neq A$ y si hay otro ideal \mathfrak{a} tal que $\mathfrak{m} \subseteq \mathfrak{a} \subseteq A$ se cumple $\mathfrak{a} = \mathfrak{m}$ o $\mathfrak{a} = A$.

El conjunto de todos los ideales maximales en A se llama el **espectro maximal** de A y se denota por Max(A).

3.5. Ejercicio. Recuerde el siguiente resultado. Si A es un anillo conmutativo, entonces todo ideal propio $\mathfrak{a} \subsetneq A$ está contenido en algún ideal maximal \mathfrak{m} . En particular, todo anillo posee un ideal maximal.

Esto se deduce del lema de Zorn que es equivalente al axioma de elección.

3.6. Lema. Un ideal $\mathfrak{m} \subset A$ es maximal si y solamente si el anillo cociente A/\mathfrak{m} es un cuerpo. En este caso

$$\kappa(\mathfrak{m}) := A/\mathfrak{m}$$

se llama el cuerpo residual de m.

- **3.7. Ejercicio.** Recuerde o demuestre las siguientes propiedades.
 - 1) Un anillo conmutativo no nulo A es un cuerpo si y solamente si los únicos ideales de A son 0 y A.
 - 2) Si A es un anillo conmutativo y $\mathfrak{a} \subset A$ es un ideal, entonces todos los ideales en A/\mathfrak{a} son de la forma $\mathfrak{b}/\mathfrak{a}$ para $\mathfrak{a} \subseteq \mathfrak{b} \subseteq A$.

Demostración del lema. Usando el ejercicio, tenemos

 $\mathfrak{m} \subset A$ es maximal \iff no existe $\mathfrak{m} \subsetneq \mathfrak{b} \subsetneq A \iff$ no existe $0 \subsetneq \mathfrak{b}/\mathfrak{m} \subsetneq A/\mathfrak{m}$

 \iff A/\mathfrak{m} es un cuerpo.

3.8. Proposición. Para un punto $\underline{x} = (a_1, \dots, a_n) \in \mathbb{A}^n(k)$ tenemos

$$I(\lbrace \underline{x} \rbrace) = \mathfrak{m}_x := (X_1 - a_1, \dots, X_n - a_n).$$

Este es un ideal maximal.

Demostración. Consideremos el homomorfismo de evaluación en x

$$ev_{\underline{x}} \colon k[X_1, \dots, X_n] \to k,$$

 $f \mapsto f(a_1, \dots, a_n).$

Por la definición, su núcleo es $I(\{\underline{x}\})$. Luego, todo polinomio $f \in k[X_1, \dots, X_n]$ puede ser escrito como

$$f(X_1,...,X_n) = g(X_1 - a_1,...,X_n - a_n)$$

para algún $g \in k[X_1, ..., X_n]$, y $f(a_1, ..., a_n)$ es el término constante de g. Entonces,

$$f \in I(\{\underline{x}\}) \iff f(a_1,\ldots,a_n) = 0 \iff f \in \mathfrak{m}_{\underline{x}},$$

así que

$$\ker ev_x = I(\{\underline{x}\}) = \mathfrak{m}_x.$$

Luego, el homomorfismo $ev_{\underline{x}}$ es sobreyectivo y el teorema de isomorfía nos dice que

$$k[X_1,\ldots,X_n]/\mathfrak{m}_x\cong k.$$

Este es un cuerpo, y por lo tanto $\mathfrak{m}_{\underline{x}}$ es un ideal maximal.

En la última demostración hemos visto que el ideal \mathfrak{m}_x siempre tiene k como su cuerpo residual:

$$\kappa(\mathfrak{m}_x) := k[X_1, \ldots, X_n]/\mathfrak{m}_x \cong k.$$

3.9. Ejercicio. Demuestre que si $\mathfrak{m} \subset k[X_1, \ldots, X_n]$ es un ideal maximal, entonces el conjunto $V(\mathfrak{m})$ consiste en un punto o es vacío.

3.10. Ejemplo. Para el ideal maximal
$$(X^2 + 1) \subset \mathbb{R}[X]$$
 tenemos $V(X^2 + 1) = \emptyset$.

De hecho, todos los ideales maximales con $\kappa(\mathfrak{m})=k$ corresponden a los puntos del espacio afín.

3.11. Proposición. Existe una biyección natural

$$\mathbb{A}^{n}(k) \xrightarrow{\cong} \operatorname{Max}_{k}(k[X_{1},\ldots,X_{n}]) := \{\mathfrak{m} \in \operatorname{Max}(k[X_{1},\ldots,X_{n}]) \mid \kappa(\mathfrak{m}) = k\},\$$

$$x \mapsto \mathfrak{m}_{x}.$$

En general, para un ideal $\mathfrak{a} \subseteq k[X_1, \ldots, X_n]$ existe una biyección natural

$$V(\mathfrak{a}) \cong \operatorname{Max}_k(k[X_1,\ldots,X_n]/\mathfrak{a}).$$

Demostración. Todo ideal maximal m es el núcleo del homomorfismo

$$\phi: k[X_1,\ldots,X_n] \twoheadrightarrow k[X_1,\ldots,X_n]/\mathfrak{m} =: \kappa(\mathfrak{m}).$$

Si $\kappa(\mathfrak{m}) = k$, consideremos el punto

$$\underline{x} = (\phi(X_1), \ldots, \phi(X_n)) \in \mathbb{A}^n(k).$$

Ahora se ve que

$$\mathfrak{m}_{\underline{x}} = \ker \phi = \mathfrak{m}$$

y esto nos da la correspondencia inversa a $\underline{x} \mapsto \mathfrak{m}_{\underline{x}}$.

En general, para un ideal $\mathfrak{a} \subseteq k[X_1,\ldots,X_n]$, nótese que tenemos $\underline{x} \in V(\mathfrak{a})$ si y solamente si $\mathfrak{a} \subseteq \mathfrak{m}_{\underline{x}}$. Los ideales maximales que contienen al ideal \mathfrak{a} corresponden a los ideales maximales en el anillo cociente $k[X_1,\ldots,X_n]/\mathfrak{a}$. Esto demuestra que la biyección

$$\mathbb{A}^n(k) \cong \operatorname{Max}_k(k[X_1,\ldots,X_n])$$

induce una biyección

$$V(\mathfrak{a}) \cong \operatorname{Max}_k(k[X_1,\ldots,X_n]/\mathfrak{a}).$$

En general, el anillo $k[X_1,...,X_n]$ puede tener ideales maximales con cuerpos residuales distintos de k. Por ejemplo, en el anillo $\mathbb{R}[X]$ hay un ideal maximal $(X^2 + 1)$ con el cuerpo residual

$$\mathbb{R}[X]/(X^2+1) \cong \mathbb{C}.$$

La buena noticia es que $\kappa(\mathfrak{m})$ es siempre una extensión algebraica de k.

3.12. Teorema (Teorema de los ceros, versión básica). Para todo ideal maximal $\mathfrak{m} \subset k[X_1, \ldots, X_n]$ el cuerpo residual $\kappa(\mathfrak{m})$ es una extensión algebraica de k.

Vamos a posponer la demostración de este resultado y primero investigar sus numerosas consecuencias. Primero, si el cuerpo k es algebraicamente cerrado, entonces $\kappa(\mathfrak{m})=k$ para todo ideal maximal $\mathfrak{m}\subset k[X_1,\ldots,X_n]$; es decir,

$$Max(k[X_1,\ldots,X_n]) = Max_k(k[X_1,\ldots,X_n]),$$

y 3.11 implica el siguiente resultado.

3.13. Corolario (Teorema de los ceros, segunda versión). Supongamos que k es un cuerpo algebraicamente cerrado. Entonces hay una biyección natural

$$\mathbb{A}^n(k) \xrightarrow{\cong} \operatorname{Max}(k[X_1,\ldots,X_n]),$$
$$x \mapsto \mathfrak{m}_x.$$

En general, para un ideal $\mathfrak{a} \subseteq k[X_1, \ldots, X_n]$ hay una biyección natural

$$V(\mathfrak{a}) \cong \operatorname{Max}(k[X_1, \ldots, X_n]/\mathfrak{a}).$$

He aquí otra versión común del teorema que puede ser familiar.

3.14. Corolario (Teorema de los ceros débil). *Sea k un cuerpo algebraicamente cerrado. Entonces para un ideal* $\mathfrak{a} \subset k[X_1, \ldots, X_n]$ *se tiene* $V(\mathfrak{a}) = \emptyset$ *si y solamente si* $\mathfrak{a} = k[X_1, \ldots, X_n]$.

Demostración. Supongamos que $\mathfrak{a} \subsetneq k[X_1,\ldots,X_n]$. En este caso existe algún ideal maximal $\mathfrak{m} \supseteq \mathfrak{a}$, y por lo tanto $V(\mathfrak{m}) \subseteq V(\mathfrak{a})$. Puesto que k es algebraicamente cerrado, $V(\mathfrak{m}) = \{\underline{x}\}$, así que $\mathfrak{a} \neq \emptyset$.

En cierto sentido, es una generalización del teorema fundamental del álgebra. El último nos dice que todo polinomio no constante en $\mathbb{C}[X]$ tiene una raíz. El teorema de los ceros débil nos dice que para todo ideal propio $\mathfrak{a} \subsetneq k[X_1,\ldots,X_n]$ (es decir, \mathfrak{a} que no contiene los polinomios constantes) los polinomios en \mathfrak{a} tienen un cero común.