

Fiches objectifs partie 5 Biologie cellulaire et outils des biotechnologies

A partir des vidéos la cellule et QCM

- Présentation des groupes majeurs
- Comparaison entre procaryotes et eucaryotes
- Connaître les organites, leurs principales fonctions et leurs composants majeurs.
- Virus, constitution et réplication

A partir des documents partie 5

- Expliquez ce qui différentie un colorant d'un pigment
- Expliquez la coloration verte des végétaux
- Quel est le lien entre la longueur d'onde absorbée et la structure moléculaire ?
- Quel est le lien entre énergie absorbée et longueur d'onde ?
- Justifiez la coloration de la forme basique de la phénolphtaléine

A partir d'exercices:

- Connaître les effets électroniques des groupements fréquents en chimie organique
- Reconnaître l'existence d'un effet mésomère et localiser les charges qui en résultent
- Définir effet inductif et mésomère
- Classez les molécules organiques selon leur pouvoir acide ou basique

A partir des vidéos protéines et QCM

- Expliquez les propriétés physicochimiques des acides aminés
- Décrire la formation, la structure et les propriétés de la liaison peptidique.
- Définir et décrire les quatre ordres de la structure des protéines

POUVOIR INDUCTIF ET MÉSOMÈRE. ACIDITE-BASICITE

Exercice 1.1

Pour chaque substituant, indiquer son effet inductif (donneur ou capteur) et mésomère (donneur ou capteur)

Substituant	inductif	mésomère
-CH ₃		
-OH		
-Ori		
-NO ₂		
-Cl		
-Ci		
-NH ₂		
,O		
C		
CI		
0		
OCH ₃		
-C≡N		
-Br		
,0		
C		
OCH ₃		
—-ć′ <u>,</u>		
NHCH ₃		

Exercice 2. La Mésomérie

- a) précisez la nomenclature des molécules ou ions suivants
- b) en vous référant aux différents cas de conjugaison, précisez si la résonance est possible en justifiant brièvement le choix. Dans l'affirmative, écrire le maximum de formules relative de celles-ci ; déterminez le sens global de déplacement éventuel des électrons.

1)
$$CH_3 - CH = CH - CO - CH_3$$

$$(2)$$
 $CH_3-CH_2-HC = C = CH-CH_2-CH_3$

$$H_2^{C} = CH - CH_2 - C \equiv N$$

$$7$$
) $CH_3 - (CH_2)_2 - COO^{\Theta}$

8)

Exercice 3: formules canoniques

Ecrire les formules canoniques montrant la conjugaison entre le substituant et le noyau benzénique dans les molécules ci-après.

- 1°) l'aniline
- 2°) l'acétophénone

Exercice 4 : Acidité

comparaison d'acidité de dérivés du cyclohexanol et du phénol :

Classez les dérivés suivants par ordre d'acidité croissante, en justifiant la réponse :

Exercice 5 : acidité

comparaison de l'acidité de phénols substitués :

Le tableau suivant fournit les valeurs des pKa^{25°c} de différents dérivés de substitution du phénol

Dérivé phénolique	25°C pK _a	Dérivé phénolique	25°C pK _a
сн ₃ —Он	10,17	NO ₂ — OH	8,28
—ОН	9,89 (0 = 20°C)	0 ₂ N-()-OH	7,15
C1 — OH	9,18	0 ₂ N-\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\	0,38
1		6 .	

- a) Ecrire l'équation chimique de dissociation dans l'eau d'un phénol substitué
- b) Justifier la séquence d'acidité observée en considérant les effets électroniques des substituants ; le cas échéant, représenter les principales structures de résonance illustrant la justification donnée.