Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on a separate sheet of paper.

Product and sum rule

Consider the following definitions for sets of characters:

- Digits = $\{ 0 ... 9 \}$
- Letters = $\{a ... z\}$
- • Special characters = { *, &, \$, # }
- 1. Compute the number of passwords that satisfy the given constraints.
 - (a) Strings of length 6. Characters can be special characters, digits, or letters.
 - (b) Strings of length 7, 8, or 9. Characters can be special characters, digits, or letters.
 - (c) Strings of length 7, 8, or 9. Characters can be special characters, digits, or letters. The first character cannot be a letter.

- 2. Consider the numbers in the range 1 to 10^4 (inclusive).
 - (a) How many of the numbers in the range 10^3 to 10^4 (inclusive) are composed of all distinct digits?
 - (b) How many of the numbers in the range 1 to 10^4 (inclusive) are composed of all distinct digits?

Permuations

Consider the following permutations of a single adjacency matrix:

Permuting the rows / columns of a matrix can be beneficial for a couple reasons:

- 1. Improve computational efficiency by improving structure of adjacency matrix
- 2. Expose hidden structure in the graph

Unfortunately, knowing *apriori* which permutation is best is a difficult problem. The problem is compounded by the huge number of permutations possible.

As a result, *heuristic* methods are usually employed. These methods, like (b) and (c) above, are efficient to find and lead to good, but not necessarily optimal, permutations of the matrix.

- 3. How many ways are there to permute the rows / columns of a
 - (a) 10×10 matrix?
 - (b) $n \times n$ matrix?

Combinations

- 4. Suppose a network has 40 computers of which 5 fail.
 - (a) How many possibilities are there for the five that fail?
 - (b) Suppose that 3 of the computers in the network have a copy of a particular file. How many sets of failures wipe out all the copies of the file? That is, how many 5-subsets contain the three computers that have the file?