UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika - 1. stopnja

Benjamin Benčina Topološke grupe

Delo diplomskega seminarja

Mentor: doc. dr. Marko Kandić

Kazalo

4
4
4
4
5
6
9
9
12
12
12
12
13
13
13
14
14
15
15

Topološke grupe

Povzetek

povzetek HERE

Topological groups

Abstract

ABSTRACT HERE

Math. Subj. Class. (2010): 43-00 Ključne besede: grupa topologija

Keywords: group topology

1. Uvod

2. Preliminarna poglavja

2.1. Operacije na množicah. Vse operacije na množicah, če ne bo drugače zaznamovano, delujejo na elementih. Tako je na primer produkt množicU in V enak

$$U \cdot V = \{u \cdot v; u \in U, v \in V\},\$$

inverz množice U pa je

$$U^{-1} = \{u^{-1}; u \in G\}.$$

Tukaj se v obeh primerih predpostavlja, da so množice vložene v neki grupi, kjer so operacije na elementih smiselno definirane. Grupno strukturo bomo bolj podrobno opisali v naslednjem podrazdelku.

Pomembnejša izjema temu pravilu so operacije na množicah v smislu relacij. Predpostavimo torej, da imamo množico X in nas zanimajo podmnožice kartezičnega produkta $X \times X$. Inverz take množice U je definiran kot

$$U^{-1} = \{(y, x); (x, y) \in U\},\$$

analogna operacija množenju pa je kompozitum množic

$$V \circ U = \{(x, z); \text{ obstaja tak element } y \in X, \text{ da je } (x, y) \in V \text{ in } (y, z) \in U\}.$$

Takšna notacija operacij bo vedno posebej označena.

2.2. Teorija grup.

Definicija 2.1. Neprazna množica G z binarno operacijo * je grupa, če:

- (1) je množica G zaprta za (ponavadi binarno) operacijo *,
- (2) je operacija * asociativna v množici G,
- (3) v G obstaja tak element e (imenujemo ga enota), da za vsak element x množice G velja

$$x * e = e * x = x,$$

(4) za vsak element x množice G obstaja element y tudi iz množice G, da velja

$$x * y = y * x = e$$
.

Oznaka za grupo je (G, *) ali samo G, če je operacija znana ali drugače očitna.

Opomba 2.2. Od tukaj naprej bo zapis operacije vedno multiplikativen, razen če bo drugače povdarjeno.

Iz zgornje definicije je razvidno, da nam grupna struktura na množici porodi dve strukturni preslikavi:

- $mno\check{z}enje \ \mu \colon G \times G \to G, \ (x,y) \mapsto xy,$
- invertiranje $\iota \colon G \to G, x \mapsto x^{-1}$.

Definiramo lahko nekaj tipov preslikav med grupami.

Definicija 2.3. Naj bo $f:G\to \widetilde{G}$ preslikava med dvema grupama (ne nujno z isto operacijo).

- (1) Preslikava f je homomorfizem, če za vsaka dva elementa $a,b \in G$ velja f(ab) = f(a)f(b).
- (2) Preslikava f je *izomorfizem*, če je bijektivni homomorfizem.

Definicija 2.4. Naj bo G grupa..

(1) Podmnožica H grupe G je podgrupa, če je tudi sama grupa za isto operacijo.

4

- (2) Množici $aH = \{ah; h \in H\}$ pravimo levi odsek grupe G elementa $a \in G$ po podgrupi H.
- (3) Množici $Ha = \{ha; h \in H\}$ pravimo desni odsek grupe G elementa $a \in G$ po podgrupi H.
- (4) Podgrupi H grupe G rečemo podgrupa edinka, če za vsak element $a \in G$ velja

$$aHa^{-1} = H.$$

- (5) Množici $G/H = \{aH; a \in G\}$ rečemo kvocient grupe G po podgrupi H.
- (6) Naravna preslikava na kvocient G/H je preslikava $\varphi: G \to G/H$, $a \mapsto aH$.

Trditev 2.5. Če je podgrupa N grupe G podgrupa edinka, je kvocient G/N grupa za operacijo *, kjer je aH * bH = (a * b)H, naravna preslikava φ pa je homomorfizem grup.

2.3. Topološki prostori.

Definicija 2.6. Topologija na neprazni množici X je družina podmnožic $\tau \subseteq 2^X$ z lastnostmi:

- (1) $X \in \tau, \emptyset \in \tau$,
- (2) za poljubni dve množici $U, V \in \tau$ je tudi presek $U \cap V \in \tau$,
- (3) za poljubno poddružino $\{U_{\lambda}\}_{{\lambda}\in\Lambda}\subseteq \tau$ je tudi unija $\bigcup_{{\lambda}\in\Lambda}U_{\lambda}\in\tau$.

Množici X, opremljeni s topologijo τ , rečemo topološki prostor, ki ga označimo z (X,τ) , množice v družini τ označimo za odprte množice v topološkem prostoru X. Zaprte množice definiramo kot komplemente odprtih množic glede na množico X.

Definicija 2.7. Naj bo (X, τ) topološki prostor.

- (1) Množica $U \subseteq X$ je okolica za točko $x \in X$, če obstaja taka odprta množica $V \in \tau$, da velja $V \subseteq U$ in $x \in V$.
- (2) Množica $U \subseteq X$ je *okolica* množice $A \subseteq X$, če obstaja taka odprta množica $V \in \tau$, da velja $V \subseteq U$ in $A \subseteq V$.
- (3) Če je okolica U iz zgornjih dveh primerov tudi sama odprta množica, jo imenujemo $odprta\ okolica.$
- (4) Družina okolic \mathcal{U}_x točke $x \in X$ se imenuje baza okolic za x, če za poljubno okolico V točke x velja, da obstaja tak $U \in \mathcal{U}_x$, da je $U \subseteq V$.

Definicija 2.8. Naj bo (X, τ) topološki prostor in $A \subseteq X$.

- (1) Točka $a \in A$ je notranja točka množice A, če je A okolica za točko a.
- (2) Notranjost množice A je množica vseh njenih notranjih točk. Notranjost množice označimo z int(A). Očitno velja $int(A) \subseteq A$ in tudi $int(A) = A \iff A \in \tau$.
- (3) Zaprtje množice A je najmanjša zaprta množica v X, ki vsebuje A. Zaprtje množice označimo z \overline{A} . Očitno velja $A \subseteq \overline{A}$ in tudi $\overline{A} = A \iff A$ je zaprta množica.

S pomočjo odprtih in zaprtih množic topološkega prostora X lahko sedaj definiramo zveznost in odprtost preslikave med dvema topološkima prostoroma ter pojem homeomorfizma.

Definicija 2.9. Naj bo $f:(X,\tau_1)\to (Y,\tau_2)$ preslikava med topološkima prostoroma.

- (1) Preslikava f je zvezna, kadar je praslika preslikave f vsake odprte množice v topološkem prostoru (Y, τ_2) odprta tudi v topološkem prostoru (X, τ_1) .
- (2) Preslikava f je odprta, kadar je slika preslikave f vsake odprte množice v topološkem prostoru (X, τ_1) odprta tudi v topološkem prostoru (Y, τ_2) .
- (3) Preslikava f je homeomorfizem, če je bijektivna, zvezna in ima zvezen inverz.

Definirajmo še dve posebni topologiji.

Definicija 2.10. Naj bo X topološki prostor s topologijo τ in $A \subseteq X$. Inducirana ali relativna topologija na množici A, inducirana s τ , je družina množici $\{A \cap U; U \in \tau\}$. Množici A rečemo topološki podprostor prostora X.

Definicija 2.11. Naj bosta X in Y topološka prostora s topologijama τ_1 in τ_2 . Produktna topologija na kartezičnemu produktu $X \times Y$ je družina množic $\{U \times V; U \in \tau_1, V \in \tau_2\}$.

Definicija 2.12. Naj bo X topološki prostor.

- (1) Družini \mathcal{A} množic rečemo pokritje topološkega prostora X, če je $X \subseteq \bigcup \mathcal{A}$.
- (2) Družini $\mathcal{B} \subseteq \mathcal{A}$ rečemo podpokritje topološkega prostora X, če je \mathcal{B} tudi sama pokritje za X.
- (3) Topološki prostor je *kompakten*, če vsako njegovo odprto pokritje, tj. pokritje z odprtimi množicami, vsebuje kakšno končno podpokritje.
- (4) Topološki prostor je lokalno kompakten, če ima vsaka točka $x \in X$ kakšno kompaktno okolico.

Definicija 2.13. Topološki prostor (X, τ) zadošča separacijskemu aksiomu

- (1) T_0 , če za poljubni različni točki $a, b \in X$ obstaja okolica V za eno od točk a, b, ki ne vsebuje druge od točk a, b;
- (2) T_1 , če za poljubno točko $a \in X$ in točko $b \in X \setminus \{a\}$ obstaja okolica V točke a, ki ne vsebuje točke b;
- (3) T_2 , če za poljubni različni točki $a, b \in X$ obstajata disjunktni okolici za točki a in b;
- (4) T_3 , če za poljubno zaprto množico $A \subseteq X$ in točko $b \in X \setminus A$ obstajata disjunktni okolici za množico A in točko b;
- (5) T_4 , če za poljubni disjunktni zaprti množici $A, B \subseteq X$ obstajata disjunktni okolici za množici A in B.

Opomba 2.14. (1) Iz definicije je razvidno, da $T_2 \implies T_1 \implies T_0$.

- (2) Topološkemu prostoru, ki zadošča separacijskemu aksiomu T_2 , pravimo Hau-sdorffov topološki prostor.
- (3) Topološku prostoru, ki zadošča T_1 in T_3 pravimo regularen topološki prostor.
- (4) Topološku prostoru, ki zadošča T_1 in T_4 , pravimo normalen topološki prostor.

3. Kaj je topološka grupa

Končno lahko strukturi združimo in povežemo ter definiramo pojem topološke grupe.

Definicija 3.1. Topološka grupa je grupa G opremljena s takšno topologijo τ , da sta za τ strukturni operaciji množenja in invertiranja zvezni.

Potrebujemo le še tip preslikave med topološkimi grupami, ki bo ohranjal tako algebraično kot topološko strukturo.

Definicija 3.2. Preslikava med dvema topološkima grupama je *topološki izomorfi-* zem, če je izomorfizem in homeomorfizem.

Trditev 3.3. Naj bo G topološka grupa in $a \in G$.

- (1) Leva translacija $l_a \colon x \mapsto ax$ in desna translacija $r_a \colon x \mapsto xa$ za a sta homeomorfizma iz G v G
- (2) Invertiranje $\iota \colon x \mapsto x^{-1}$ je homeomorfizem iz $G \ v \ G$.
- (3) Konjugiranje $\gamma \colon x \mapsto axa^{-1}$ je homeomorfizem iz $G \circ G$.

Dokaz. Vemo že, da so leva translacija, desna translacija, invertiranje in konjugiranje avtomorfizmi grupe G, torej bijektivne preslikave. Dokazujemo še zveznost preslikave in njenega inverza.

Naj bo $c_a \colon x \mapsto a$ konstantna preslikava. Vemo, da je konstantna preslikava zvezna.

Levo translacijo lahko zapišemo kot kompozitum zveznih preslikav

$$l_a(x) = \mu(c_a(x), x) = ax.$$

Kot kompozitum zveznih preslikav je leva translacija zvezna. Inverzna preslikava leve translacije za element a je leva translacija za element a^{-1} , ki je tudi zvezna. Leva translacija je zato homeomorfizem.

Desno translacijo lahko na analogen način zapišemo kot kompozitum zveznih preslikav

$$r_a(x) = \mu(x, c_a(x)) = xa.$$

Kot kompozitum zveznih preslikav je desna translacija zvezna in njena inverzna preslikava je desna translacija za element a^{-1} , torej tudi zvezna. Desna translacija je zato homeomorfizem.

Invertiranje je homeomorfizem, ker je zvezno po definiciji topološke grupe in samo sebi inverz.

Konjugiranje lahko zapišemo kot kompozitum zveznih preslikav

$$\gamma = r_{a^{-1}} \circ l_a$$
.

Kot kompozitum zveznih preslikav je konjugiranje zvezno in njegov inverz je konjugiranje za element a^{-1} , torej tudi zvezen. Konjugiranje je zato homeomorfizem.

Trditev 3.4. Naj bosta A in B podmnožici topološke grupe G. Če je ena od njiju odprta, sta odprti tudi množici AB in BA.

Dokaz. Brez škode za splošnost privzemimo, da je A odprta. Velja $AB = \{Ab; b \in B\}$. Ker je A odprta, so po trditvi 3.3 odprte tudi vse množice Ab, saj je desna translacija homeomorfizem. Množica AB je odprta kot unija odprtih množic.

Dokaz je popolnoma simetričen za množico BA.

Trditev 3.5. Za topološko grupo G in bazo \mathcal{U} odprtih okolic enote e veljajo naslednje trditve:

- (1) za vsako množico $U \in \mathcal{U}$ obstaja taka množica $V \in \mathcal{U}$, da velja $V^2 \subset U$;
- (2) za vsako množico $U \in \mathcal{U}$ obstaja taka množica $V \in \mathcal{U}$, da velja $V^{-1} \subset U$;
- (3) za vsako množico $U \in \mathcal{U}$ in vsak element $x \in U$ obstaja taka množica $V \in \mathcal{U}$, da velja $xV \subset U$:
- (4) za vsako množico $U \in \mathcal{U}$ in vsak element $x \in G$ obstaja taka množica $V \in \mathcal{U}$, da velja $xVx^{-1} \subset U$.

Dokaz. Naj bo $U \in \mathcal{U}$ odprta okolica enote e. Ker je množenje zvezno, obstaja v produktni topologiji na $G \times G$ odprta okolica $W = V_1 \times V_2$ enote (e, e), za katero velja $V_1V_2 \subset U$. Po definiciji produktne topologije sta V_1 in V_2 odprti okolici enote e v G. Definiramo $V' = V_1 \cap V_2$ okolico za e. Po definiciji baze okolic obstaja $V \in \mathcal{U}$, da velja $V \subseteq V'$. Ker je $V \subseteq V' \subseteq V_1$ in $V \subseteq V' \subseteq V_2$, velja

$$V^2 \subseteq V'^2 \subseteq V_1 V_2 \subset U.$$

To dokaže prvo trditev.

Vzemimo poljuben $V \in \mathcal{U}, \ V \subset U$ (obstaja po definiciji baze okolic). Ker je invertiranje zvezno, obstaja v G odprta okolica W enote e, za katero velja $W \subset V$. Po trditvi 3.3 je invertiranje homeomorfizem, zato je $W = V^{-1}$. Velja

$$V^{-1} \subset V \subset U$$
.

To dokaže drugo trditev.

Vzemimo poljubno točko $x \in U$. Ker je U odprta množica, obstaja okolica $W \subset U$ za točko x. Naj bo $V' = x^{-1}W$. Ker je po trditvi 3.3 leva translacija homeomorfizem, je V' odprta okolica enote e. Vzemimo $V \in \mathcal{U}, \ V \subset V'$ (obstaja po definiciji baze okolic). Velja

$$xV \subset xV' = xx^{-1}W = W \subset U.$$

To dokaže tretjo trditev.

Naj bo $x \in U$ poljubna točka. Ker je po trditvi 3.3 konjugiranje homeomorfizem, obstaja odprta okolica enote e oblike $xVx^{-1} \subseteq U$. To dokaže še četrto trditev. \square

Trditev 3.6. Naj bo G grupa (ne topološka) in \mathcal{U} družina podmnožic množice G, za katero veljajo vse štiri lastnosti iz trditve 3.5. Naj bodo poljubni končni preseki množic iz \mathcal{U} neprazni. Tedaj je družina $\{xU\}$, kjer $U \in \mathcal{U}$ in $x \in G$ odprta podbaza za neko topologijo na G. S to topologijo je G topološka grupa. Družina $\{Ux\}$ je podbaza za isto topologijo.

Če velja še, da za vsaki množici $U, V \in \mathcal{U}$ obstaja množica $W \in \mathcal{U}$, da velja $W \subset U \cap V$, potem sta družini $\{xU\}$ in $\{Ux\}$ tudi bazi za to topologijo.

Definicija 3.7. Množici, za katero velja $U = U^{-1}$, rečemo *simetrična* množica.

Trditev 3.8. Vsaka topološka grupa ima bazo \mathcal{U} odprtih in simetričnih okolic enote.

Dokaz. Naj bo \mathcal{V} neka baza odprtih okolic enote. Za vsako okolico $V \in \mathcal{V}$ konstruiramo množico $U = V \cup V^{-1}$. Kot presek dveh odprtih množic je U odprta. Ker je $e \in V$ in $e \in V^{-1}$, je U odprta okolica enote, ki je po konstrukciji simetrična. Ker po definiciji preseka velja še $U \subseteq V$, je družina $\mathcal{U} = \{V \cap V^{-1}; V \in \mathcal{V}\}$ res baza odprtih in simetričnih okolic enote e.

Posledica 3.9. Za vsako okolico U enote e topološke grupe G obstaja taka okolica V enote e, da velja $\overline{V} \subset U$.

Dokaz. Naj bo U neka okolica enote in naj bo $\mathcal V$ baza odprtih in simetričnih okolic enote (obstaja po trditvi 3.8). Naj bo $V \in \mathcal V$ takšna okolica, da velja $V^2 \subset U$. Takšna okolica obstaja po trditvi 3.5. Vzemimo $x \in \overline{V}$. Velja $(xV) \cap V \neq \emptyset$. Res: ker je V okolica enote, je xV okolica elementa x. Če je $x \in V$, zgornji presek ni prazen, ker je V odprta množica, če pa je x iz roba množice V, vsaka njegova okolica seka množico V.

Obstajata torej $v_1, v_2 \in V$, da velja $xv_1 = v_2$. Sledi

$$x = v_2 v_1^{-1} \in VV^{-1} = V^2 \subset U.$$

Torej res velja $\overline{V} \subset U$.

Trditev 3.10. Za topološko grupo G velja, da zadošča separacijskemu aksiomu T_0 natanko tedaj, kadar je Hausdorffova.

Dokaz. Dokazujemo implikacijo $T_0 \implies T_2$.

Dokažimo najprej, da je G Hausdorffova natanko tedaj, ko je $\{e\}$ zaprta množica. Če je G Hausdorffova, zadošča tudi separacijskemu aksiomu T_1 , kar pomeni, da so vse enoelementne množice zaprte, torej tudi $\{e\}$.

Privzemimo, da je $\{e\}$ zaprta množica. Oglejmo si preslikavo $f: G \times G \to G$, $(x,y) \mapsto xy^{-1}$. Preslikava f je zvezna kot kompozitum množenja in invertiranja, ki sta zvezni preslikavi po definiciji topološke grupe. Zato je $f^{-1}(\{e\}) = \{(x,x); x \in G\}$ zaprta množica v $G \times G$, to pa je ekvivalentno temu, da je G Hausdorffova.

Za dokaz implikacije je dovolj pokazati, da je v vsaki topološki grupi, ki zadošča separacijskemu aksiomu T_0 , množica $\{e\}$ zaprta. Pokažimo, da je $G \setminus \{e\}$ odprta.

Vzemimo točko $x \in G \setminus \{e\}$. Ker G zadošča separacijskemu aksiomu T_0 , obstaja bodisi okolica za točko x, ki ne vsebuje enote e, bodisi okolica V za enoto e, ki ne vsebuje točke x. V prvem primeru to pomeni, da je $G \setminus \{e\}$ odprta množica in je implikacija dokazana. Zato naj bo V okolica za enoto e, ki ne vsebuje točke x. Množica $x^{-1}V$ je potem okolica za točko x^{-1} , ki ne vsebuje enote e, zato je $\iota(x^{-1}V)$ okolica za točko x, ki ne vsebuje enote e.

Velja

$$G$$
 zadošča $T_0 \implies \{e\}$ je zaprta $\implies G$ zadošča T_2 .

Izrek 3.11. Vsaka topološka grupa G, ki zadošča separacijskemu aksiomu T_0 , je regularen topološki prostor.

Dokaz. Po trditvi 3.10 je G Hausdorffova in zato zadošča separacijskemu aksiomu T_1 .

Po posledici 3.9 za vsako okolico U enote e obstaja okolica V enote e, da je $\overline{V} \subset U$. Ker je po trditvi 3.3 leva translacija homeomorfizem, to velja v vsaki točki, saj $\overline{aV} \subset aU$, kar pa je ekvivalentno separacijskemu aksiomu T_3 . Topološka grupa G je res regularna.

3.1. Primeri topoloških grup.

4. Kvocienti topoloških grup

Trditev 4.1. Naj bo G topološka grupa in H njena podgrupa. Če H opremimo z relativno topologijo, potem je tudi H topološka grupa.

Dokaz. Preslikavi $\mu|_H$ in $\iota|_H$ sta zvezni v relativni topologiji na H kot zožitvi zveznih preslikav na topološki podprostor H. Ker je H za zoženo množenje grupa (po definiciji podgrupe), je H topološka grupa.

Trditev 4.2. Za A in B podmnožici topološke grupe G veljajo naslednje trditve:

- (1) $\overline{A} \ \overline{B} \subset \overline{AB}$,
- (2) $(\overline{A})^{-1} = \overline{A^{-1}}$
- (3) $x\overline{A}y = \overline{xAy}$ za vsaka dva elementa $x, y \in G$.
- (4) Če G ustreza separacijskemu aksiomu T_0 in za vsaka dva elementa $a \in A$ in $b \in B$ velja enakost ab = ba, potem velja enakost ab = ba tudi za vsaka dva elementa $a \in \overline{A}$ in $b \in \overline{B}$.

Dokaz. Naj bosta A in B podmnožici topološke grupe G.

Za dokaz prve trditve vzemimo točki $x \in \overline{A}$ in $y \in \overline{B}$ ter neko okolico U enote e. Ker je množenje zvezno, obstaja enote V_1 in V_2 , da je $(xV_1)(yV_2) \subset xyU$. Definiramo okolico enote $V = V_1 \cap V_2$. Velja $(xV)(yV) \subset xyU$. Ker je xV okolica za x in yV okolica za y ter vsaka okolica točke iz zaprtja množice seka množico samo, obstajata $a \in A$ in $B \in B$, da je $a \in xV$ in $b \in yV$. Velja torej $ab \in (AB) \cap (xyU)$ in, ker je xyU okolica za xy, tudi $xy \in \overline{AB}$. Inkluzija v prvi trditvi je s tem dokazana.

Enakost v drugi trditvi sledi iz tega, da je invertiranje homeomorfizem (trditev 3.3). Vzemimo množico $A \subset G$. Ker je invertiranje zvezno, je $\iota(\overline{A}) \subseteq \overline{\iota(A)}$. Ker je samo sebi inverz, velja tudi obratno $\overline{\iota(A)} \subseteq \iota(\overline{A})$. Torej $\overline{A}^{-1} = \overline{A}^{-1}$.

Enakost v tretji trditvi sledi iz tega, da sta leva in desna translacija homeomorfizma (trditev 3.3). Naj bosta $x,y \in G$. Tedaj je tudi $f = r_y \circ l_x$ homeomorfizem. Ker je \overline{A} zaprta, je $x\overline{A}y$ najmanjša zaprta množica, ki vsebuje množico xAy. Torej res velja $x\overline{A}y = \overline{xAy}$.

Za dokaz četrte trditve privzemimo še, da G zadošča separacijskemu aksiomu T_0 in velja ab = ba za vsaka dva elementa $a \in A$ in $b \in B$. Preslikava $(a,b) \mapsto aba^{-1}b^{-1}$ je zvezna, saj je kompozitum množenj in invertiranj. Ker je po izreku 3.11 množica $\{e\}$ zaprta, je zaprta tudi množica $H = \{(a,b) \in G \times G; aba^{-1}b^{-1} = e\}$, saj je njena f-praslika. Po predpostavki velja $A \times B \subseteq H$ in po definiciji produktne topologije velja $\overline{A \times B} = \overline{A} \times \overline{B}$. Sledi, da je $\overline{A} \times \overline{B} \subseteq H$, torej je ab = ba za vsaka dva elementa $a \in \overline{A}$ in $b \in \overline{B}$.

Trditev 4.3. Naj bo H podgrupa topološke grupe G. H je odprta natanko tedaj, ko ima neprazno notranjost. Vsaka odprta podgrupa H topološke grupa G je tudi zaprta.

Dokaz. Denimo, da obstaja element x v notranjosti H. Potem obstaja okolica U enote e, da je $xU \subset H$, saj je notranjost množice H odprta množica, ki je vsebovana v H. Vzemimo element $y \in H$. Velja

$$yU = yx^{-1}xU \subset yx^{-1}H = H,$$

saj H kot podgrupa vsebuje tudi x^{-1} . Vsak element vH ima torej odprto okolico, ki je vsebovana vH, kar pomeni, da je H odprta množica.

Obratno, če je H odprta, vsaka njena točka leži tudi v njeni notranjosti, torej ima neprazno notranjost.

Privzemimo, da je H odprta podgrupa grupe G. Ker je H zaprta za množenje, je $H^{\mathsf{c}} = \bigcup \{xH; x \notin H\}$. Vsaka množica xH je odprta, ker je H odprta in je po trditvi 3.3 leva translacija homeomorfizem. Potem je tudi H^{c} odprta množica, torej je H zaprta množica.

Trditev 4.4. Naj bo U simetrična okolica enote e v topološki grupi G. Potem je $L = \bigcup_{n=1}^{\infty} U^n$ odprta in zaprta podgrupa topološke grupe G.

Dokaz. Vzemimo $x \in U^k$ in $y \in U^l$. Velja $xy \in U^kU^l \subseteq U^{k+l}$, torej je L zaprta za množenje. Ker je U simetrična, velja tudi $x^{-1} \in (U^{-1})^k = U^k$, torej je L zaprta za invertiranje. Sledi, da je L podgrupa topološke grupe G. V njeni notranjosti je zagotovo enota e, saj je U okolica za e. Po trditvi 4.3 je L odprta in zaprta podgrupa topološke grupe G.

Izrek 4.5. Naj bo G topološka grupa, H njena podgrupa in $\varphi \colon G \to G/H$ naravna preslikava. Definiramo $\theta(G/H) = \{U; \varphi^{-1}(U) \text{ odprta } v G\}$. Veljajo naslednje trditve:

- (1) družina $\theta(G/H)$ je topologija na kvocientu G/H,
- (2) glede na topologijo $\theta(G/H)$ je φ zvezna preslikava,
- (3) družina $\theta(G/H)$ je najmočnejša topologija na kvocientu G/H, glede na katero je φ zvezna preslikava,
- (4) $\varphi: G \to G/H$ je odprta preslikava.

Dokaz. Naj bo $\theta(G/H) = \{uH; u \in U_{\lambda}\}_{{\lambda} \in \Lambda}$ družina odprtih množic vG/H, kjer so U_{λ} odprte množice vG. Potem je njihova unija $\bigcup_{{\lambda} \in \Lambda} \{uH; u \in U_{\lambda}\} = \{uH; u \in U_{\lambda}\}$ prav tako odprta vG/H, saj je $\bigcup_{{\lambda} \in \Lambda} U_{\lambda}$ odprta vG. Presek dveh takih množic $\{uH; u \in U_{\lambda}\} \cap \{uH; u \in U_{\mu}\} = \{uH; u \in U_{\lambda} \cap U_{\mu}\}$ je tudi odprt, saj je presek $U_{\lambda} \cap U_{\mu}$ odprt vG. Velja tudi $\emptyset \in \theta(G/H)$, če vzamemo $U_{\lambda} = \emptyset$, ki je odprta vG. Če vzamemo $U_{\lambda} = G$, dobimo tudi $G/H \in \theta(G/H)$. Preverili smo, da je $\theta(G/H)$ res topologija na kvocientu G/H.

Preslikava φ je zvezna po definiciji topologije $\theta(G/H)$ in topologija $\theta(G/H)$ je res najmočnejpa topologija na kvocientu G/H, glede na katero je φ zvezna, po konstrukciji $\theta(G/H)$.

Za dokaz četrte trditve vzemimo odprto množico $U \in G$. Po trditvi 3.4 je množica UH odprta v G, torej je $\varphi(U) = \{uH; u \in U\}$ odprta v G/H.

Topologiji $\theta(G/H)$ pravimo kvocientna topologija, kvocientu G/H pa kvocientni prostor.

Trditev 4.6. Naj bo G topološka grupa, H njena podgrupa in U, V tako okolici enote $e \ v \ G$, da velja $V^{-1}V \subset U$. Naj bo $\varphi : G \to G/H$ naravna preslikava. Potem velja $\varphi(V) \subset \varphi(U)$.

Dokaz. Vzemimo odsek $xH \in \overline{\varphi(V)}$. Ker je V okolica enote, je množica $\{vxH; v \in V\}$ okolica odseka xH in ima zato s $\varphi(V)$ neprazen presek. Po definiciji naravne preslikave obstajata točki $v_1, v_2 \in V$, da je $v_1xH = v_2H$. Velja

$$xH = v_1^{-1}v_2H \in \{wH; w \in V^{-1}V\} \subset \{uH; u \in U\} = \varphi(U).$$

Torej je res $\overline{\varphi(V)} \subset \varphi(U)$.

Izrek 4.7. Za topološko grupo G in njeno podgrupo H veljajo naslednje trditve:

- (1) kvocientni prostor G/H je diskreten natanko tedaj, ko je H odprta v G,
- (2) če je H zaprta v G, potem je kvocient G/H regularen topološki prostor,
- (3) če kvocientni prostor G/H zadošča separacijskemu aksiomu T₀, potem je H zaprta v G in velja, da je kvocient G/H regularen topološki prostor.

Dokaz. Za dokaz prve trditve privzemimo, da je H odprta v G. Ker je leva translacija homeomorfizem (trditev 3.3), je množica aH odprta množica za vsak element $a \in G$ in zato tudi $\varphi^{-1}(\{aH\}) = aH$ za vsak element $aH \in G/H$. Po izreku 4.5 je φ odprta preslikava, zato je vsaka točka v kvocientnem prostoru G/H odprta kot enoelementna množica in G/H je diskreten topološki prostor.

Obratno, če je G/H diskreten topološki prostor, potem je vsaka njegova točka odprta kot enoelementna množica, torej tudi $\{H\}$. Ker je naravna preslikava zvezna, je $\varphi^{-1}(\{H\}) = H$ odprta množica v G.

Za dokaz druge trditve privzemimo, da je H zaprta v G. Ker je leva translacija homeomorfizem (trditev 3.3), je zaprta tudi množica aH za vsak element $a \in G$. Po definiciji zaprtosti je $(aH)^{c} = \bigcup \{xH; xH \neq aH\}$ odprta v G. Ker je po izreku 4.5 naravna preslikava odprta, je zato komplement vsake točke $\{aH\}$ odprt v G/H.

Po definiciji zaprtosti je vsaka točka $\{aH\}$ zaprta v G/H, kar je ekvivalentno separacijskemu aksiomu T_1 . Naj bosta U in V okolici enote e iz trditve 4.6. Če za V vzamemo simetrično okolico (to lahko naredimo po trditvi 3.8), potem po trditvi 3.5 tak V obstaja za vsako okolico U, saj lahko vzamemo $V^{-1}V = V^2 \subset U$. Torej za vsako okolico $\varphi(U)$ enote H obstaja takšna okolica $\varphi(V)$ enote H, da $\overline{\varphi(V)} \subset \varphi(U)$. Ker je leva translacija homeomorfizem, to velja za vsako točko $aH \in G/H$, kar pa je ekvivalentno separacijskemu aksiomu T_3 . Kvocientni prostor G/H je res regularen.

Za dokaz tretje trditve privzemimo, da G/H zadošča separacijskemu aksiomu T_0 . Po izreku 3.11 je G/H regularna. Vse enoelementne množice v G/H so zaprte, zato tudi $\{H\}$. Ker je naravna preslikava zvezna, je množica $\varphi^{-1}(\{H\}) = H$ zaprta v G.

Izrek 4.8. Naj bo H podgrupa edinka topološke grupe G. Naj bo kvocient G/H opremljen s kvocientno topologijo θ . Veljajo naslednje trditve:

- (1) kvocient G/H je topološka grupa s topologijo θ ,
- (2) naravni homomorfizem je odprta in zvezena preslikava,
- (3) kvocient G/H je diskreten natanko tedaj, ko je podgrupa H odprta v G,
- (4) kvocient G/H zadošča separacijskemu aksiomu T_0 natanko tedaj, ko je podgrupa H zaprta v G.

5. Izreki o izomorfizmih

Trditev 5.1. Naj bo G topološka grupa in H njena podgrupa. Naj bo za vsak element $a \in G$ na kvocientu G/H definirana preslikava ψ_a s predpisom $\psi_a(xH) = (ax)H$. Za vsak element $a \in G$ je ψ_a homeomorfizem na prostoru G/H.

Trditev 5.2. Naj bo H podgrupa (lokalno) kompaktne topološke grupe G. Potem je tudi kvocientni prostor G/H (lokalno) kompakten.

5.1. Prvi izrek o izomorfizmih.

Izrek 5.3 (Prvi izrek o izomorfizmih za topološke grupe). Naj bosta G in \widetilde{G} topološki grupi. Naj bo $f: G \to \widetilde{G}$ odprt, zvezen in surjektiven homomorfizem. Potem je kerf podgrupa edinka v grupi G in množice $f^{-1}(\widetilde{x})$, kjer je $\widetilde{x} \in \widetilde{G}$, so disjunktni odseki kerf v grupi G. Preslikava $\Phi: \widetilde{G} \to G/\ker f$ s predpisom $\widetilde{x} \mapsto f^{-1}(\widetilde{x})$ je topološki izomorfizem.

5.2. Drugi izrek o izomorfizmih.

Izrek 5.4 (Drugi izrek o izomorfizmih za topološke grupe). Naj bo G topološka grupa, A njena podgrupa in H podgrupa edinka grupe G. Naj bo τ izomorfizem iz kvocienta (AH)/H v kvocient $A/(A \cap H)$ s predpisom $\tau(aH) = a(A \cap H)$, kjer je $a \in A$.

- (1) Preslikava τ slika odprte množice iz (AH)/H v odprte množice iz $A/(A \cap H)$.
- (2) Če je A še lokalno kompaktna in σ -kompaktna, H zaprta v G in AH lokalno kompaktna, potem je τ homeomorfizem ter topološki grupi (AH)/H in $A/(A \cap H)$ sta topološko izomorfni.

5.3. Tretji izrek o izomorfizmih.

Izrek 5.5. Naj bo $f: G \to \widetilde{G}$ odprt, zvezen homomorfizem topoloških grup in naj bo \widetilde{H} podgrupa edinka v \widetilde{G} . Potem so grupe $(G/\ker f)/(f^{-1}(\widetilde{H})/\ker f), G/f^{-1}(\widetilde{H})$ in $\widetilde{G}/\widetilde{H}$ topološko izomorfne.

Izrek lahko preoblikujemo v obliko, ki je bolj podobna algebraični različici in ne vsebuje pomožne topološke grupe \tilde{G} .

Izrek 5.6 (Tretji izrek o izomorfizmih za topološke grupe). Naj bo G topološka grupa in $N \subseteq H$ njeni podgrupi edinki. Potem sta kvocientni topološki grupi G/H in (G/N)/(H/N) topološko izomorfni.

6. Izreki tipa "2 od 3"

7. Separacijski aksiomi in metrizabilnost

7.1. Metrizabilnost.

Definicija 7.1. *Pseudometrika* na neprazni množici X je preslikava $\rho: X \times X \to [0, \infty)$, ki zadošča naslednjim pogojem:

- (1) za vsako točko $x \in X$ velja $\rho(x, x) = 0$;
- (2) za vsaki dve točki $x, y \in X$ velja $\rho(x, y) = \rho(y, x)$;
- (3) za vsake tri točke $x, y, z \in X$ velja $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$.

Če za preslikavo ρ velja še

(4) $\rho(x,y) = 0$ natanko tedaj, ko x = y, potem ji rečemo metrika.

Definicija 7.2. Naj bo X neprazna množica.

- (1) Neprazna poddružina $\mathcal{F} \subset \mathcal{P}(X)$ je filter množice X, če ima naslednje lastnosti:
 - (a) družina \mathcal{F} ne vsebuje prazne množice,
 - (b) za vsako množico $F \in \mathcal{F}$ je vsaka množica $E \in X$, za katero velja $F \subseteq E$, tudi v družini \mathcal{F} ,
 - (c) presek $E \cap F$ množic $E, F \in \mathcal{F}$ je tudi v družini \mathcal{F} .
- (2) Filter \mathcal{U} na množici $X \times X$ definira uniformno strukturo na množici X, če ima naslednje lastnosti:
 - (a) vsaka množica $U \in \mathcal{U}$ vsebuje diagonalo $\Delta = \{(x, x); x \in X\},\$
 - (b) za vsako množico $U \in \mathcal{U}$ je tudi množica $U^{-1} \in \mathcal{U}$.
 - (c) za vsako množico $U \in \mathcal{U}$ obstaja taka množica $V \in \mathcal{U}$, da velja $V \circ V \subseteq U$

Množici z uniformno stukturo rečemo uniformni prostor.

Opomba 7.3. V zgornji definiciji so operacije na množicah mišljene v smislu relacij (glej podrazdelek 2.1).

Definicija 7.4. Naj bo X uniformni prostor z uniformno strukturo \mathcal{U} . Topologija, inducirana z \mathcal{U} je taka družina množic $T \subseteq X$, za katere za vsako točko $x \in T$ obstaja $U \in \mathcal{U}$, da velja $\{y \in X; (x,y) \in U\} \subseteq T$.

Definicija 7.5. Naj bosta X in Y uniformna prostora z uniformnima strukturama \mathcal{U} in \mathcal{V} . Preslikava $f: X \to Y$ je enakomerno zvezna, če za vsako množico $V \in \mathcal{V}$ obstaja taka množica $U \in \mathcal{U}$, da za vsak par $(x, y) \in U$ velja $(f(x), f(y)) \in V$.

Trditev 7.6. Vsaka enakomerno zvezna preslikava uniformnih prostorov je zvezna v topologiji, inducirani z uniformnima strukturama.

Trditev 7.7. Vsaka topološka grupa je uniformni prostor.

- **Izrek 7.8.** Naj bo $\{U_k\}_{k=1}^{\infty}$ tako zaporedje simetričnih okolic enote e v topološki grupi G, da za vsak $k \in \mathbb{N}$ velja $U_{k+1}^2 \subset U_k$. Označimo $H = \bigcap_{k=1}^{\infty} U_k$. Potem obstaja taka levoinvariantna pseudometrika σ na G z naslednjimi lastnostmi:
 - (1) σ je enakomerno zvezna na levi uniformni strukturi od $G \times G$;
 - (2) $\sigma(x,y) = 0$ natanko tedaj, ko $y^{-1}x \in H$;
 - (3) $\sigma(x,y) \le 2^{-k+2}$, če $y^{-1}x \in U_k$;
 - (4) $2^{-k} \le \sigma(x, y)$, če $y^{-1}x \notin U_k$.

Če velja še $xU_kx^{-1} = U_k$ za vsak $x \in G$ in $k \in \mathbb{N}$, potem je σ tudi desnoinvariantna in velja

- (5) $\sigma(x^{-1}, y^{-1}) = \sigma(x, y)$ za vsaka dva elementa $x, y \in G$.
- **Definicija 7.9.** Topološki prostor X je metrizabilen, če njegova topologija τ izhaja iz kakšne metrike d na množici X.
- **Opomba 7.10.** Baza topologije metrizabilnega topološkega prostora X je družina odprtih krogel $\{K(x,\epsilon); x \in X, \epsilon \in \mathbb{R}\}.$
- **Izrek 7.11.** Topološka grupa G, ki zadošča separacijskemu aksiomu T_0 , je metrizabilen topološki prostor natanko tedaj, ko obstaja števna baza odprtih okolic enote.
- 7.2. Separacijski aksiomi do $T_{3\frac{1}{2}}$.
- **Definicija 7.12.** Topološki prostor X zadošča separacijskemu aksiomu $T_{3\frac{1}{2}}$, če za poljubno zaprto množico $A \subseteq X$ in točko $b \in X \setminus A$ obstaja taka zvezna realna funkcija ψ , definirana na G, da je $\psi(b) = 0$ in $\psi(x) = 1$ za vsak $x \in A$.
- **Opomba 7.13.** Topološku prostoru, ki zadošča T_1 in $T_{3\frac{1}{2}}$, pravimo povsem regularen topološki prostor.
- Trditev 7.14. (1) Vsak povsem regularen topološki prostor je regularen.
 - (2) Vsak normalen topološki prostor je povsem regularen.
- **Izrek 7.15.** Topološka grupa, ki zadošča separacijskemu aksiomu T_0 , je povsem regularen topoliški prostor.
- 7.3. Separacijski aksiom T_4 .
- **Izrek 7.16.** Če je m katerokoli neštevno kardinalno število, potem je \mathbb{Z}^m povsem regularna topološka grupa, ki ni normalna.
- **Definicija 7.17.** (1) Naj bosta \mathcal{U} in \mathcal{V} družini podmnožic topološkega prostora X. Družina \mathcal{V} je pofinitev družine \mathcal{U} , če za vsako množico $V \in \mathcal{V}$ obstaja takšna množica $U \in \mathcal{U}$, da je $V \subset U$.
 - (2) Družina podmnožic \mathcal{U} topološkega prostora X je lokalno končna, če ima vsaka točka $x \in X$ okolico, ki seka samo končno mnogo množic iz družine \mathcal{U} .
 - (3) Topološki prostor X je parakompakten, če ima vsako njegovo odprto pokritje kakšno pofinitev, ki je lokalno končno odprto pokritje prostora X.
- Trditev 7.18. Vsak parakompakten Hausdorffov topološki prostor je normalen.
- Izrek 7.19. Vsaka lokalno kompaktna topološka grupa, ki zadošča separacijskemu aksiomu T_0 , je normalen topološki prostor.

SLOVAR STROKOVNIH IZRAZOV

LITERATURA

- [1] S. Bhowmik, Introduction to Uniform Spaces, 10.13140/RG.2.1.3743.8967, junij 2014, [ogled 1. 4. 2019], dostopno na https://www.researchgate.net/publication/305196408_INTRODUCTION_TO_UNIFORM_SPACES.
- [2] E. Hewitt in K. A. Ross, Abstact Harmonic Analysis I, Springer-Verlag, New York, 1979.
- [3] J. Mrčun, *Topologija*, Izbrana poglavja iz matematike in računalništva **44** DMFA-založništvo, Ljubljana, 2008.