# 2022 C++基础班 编程能力测评

时间: 2022 年1 月 25 日 14:00~18:00

| 题目名称    | 金币问题     | 密码破译       | 螺旋方阵       | 近似排序      | 铺地毯        | 求阶乘     | 计数问题      | 亲密数对       |
|---------|----------|------------|------------|-----------|------------|---------|-----------|------------|
| 题目类型    | 传统型      | 传统型        | 传统型        | 传统型       | 传统型        | 传统型     | 传统型       | 传统型        |
| 输入文件名   | coin.in  | decode.in  | square.in  | bsort.in  | carpet.in  | jc.in   | count.in  | number.in  |
| 输出文件名   | coin.out | decode.out | square.out | bsort.out | carpet.out | jc.out  | count.out | number.out |
| 每个测试点时限 | 1.0 秒    | 1.0 秒      | 1.0 秒      | 1.0 秒     | 1.0 秒      | 1.0 秒   | 1.0 秒     | 1.0 秒      |
| 内存限制    | 512 MiB  | 512 MiB    | 512 MiB    | 512 MiB   | 512 MiB    | 512 MiB | 512MiB    | 512 MiB    |
| 子任务数目   | 6        | 10         | 10         | 10        | 10         | 10      | 10        | 10         |
| 测试点是否等分 | 是        | 是          | 是          | 是         | 是          | 是       | 是         | 是          |

提交源程序文件名

| 对于 C++语言 | coin.cpp | decode.cpp | square.cpp | bsort.cpp | carpet.cpp | jc.cpp | count.cpp | number.cpp |
|----------|----------|------------|------------|-----------|------------|--------|-----------|------------|
|          |          |            |            |           |            |        |           | 1          |

#### 编译选项

对于 C++ 语言 -O2 -lm

### 注意事项 (请 仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int, 程序正常结束时的返回值必须 是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申述时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 7. 线下统一评测时采用的机器配置为Inter(R) Core(TM) i5-8700K CPU @2.70GHz, 内存 16GB。上述时限以此配置为准。
- 8. 只提供 Windows 格式附加样例文件。
- 9. 评测在当前最新公布的战码青少年编程进行, 各语言的编译器版本以此为准。

# 1. 金币问题 (coin)

#### 【题目描述】

国王将金币作为工资,发放给忠诚的骑士。第一天,骑士收到一枚金币;之后两天(第二天和第三天),每天收到两枚金币;之后三天(第四、五、六天),每天收到三枚金币;之后 四天(第七、八、九、十天),每天收到四枚金币,……这种工资发放模式会一直这样延续 下去。当连续 N 天每天收到 N 枚金币后,骑士会在之后的连续 N+1 天里,每天收到 N+1 枚 金币。

请编程计算在前 K 天里, 1≤K≤10000, 骑士一共获得了多少枚金币。

### 【输入格式】

输入文件 save.in

一行一个正整数 K,表示发放金币的天数。

### 【输出格式】

输出到文件 save.out

一行一个正整数,表示骑士收到的金币数。

### 【样例 1 输入】

6

【样例 1 输出】

14

【样例 2 输入】

100

【样例 2 输出】

# 2. 密文破译 (decode)

#### 【题目描述】

M国即将入侵C国,C国为了获取敌方的进攻计划,派金牌特工潜入M国负责截取M国的重要情报,C国特工在此期间截取了一段非常重要的信息,但是这条信息通过了加密,现在需要帮忙通过ASCII码完成解密。

读入一个整数  $n(1=\langle n\langle =100\rangle)$ 表示密文个数,可能包括空格,每个数字  $Ki(0\langle =Ki\langle =127\rangle)$  均为 密文,我们需要解密得到原文,原文解密方式为对应数字 Ki 的 ASCII 值。

给定一个已加密的数字(密文),你的任务是转成 ASCII 对应的 n 个字符(原文)

### 【输入格式】

输入文件 decode.in

第1行为1个正整数,表示n的长度:

第2行为N个正整数,表示Ki。

### 【输出格式】

输出到文件 decode.out

一行数据,表示每个数字对应的 ASCII 码。

### 【样例 1 输入】

15

65 116 32 116 104 105 115 32 109 111 109 101 110 116 46

【样例 1 输出】

At this moment.

# 3、螺旋方阵(square)

### 【题目描述】

一个 n 行 n 列的螺旋方阵按如下方法生成: 从方阵的左上角(第 1 行第 1 列)出发, 初始时向 右移动; 如果前方是未曾经过的格子,则继续前进; 否则,右转。重复上述操作直至经过方阵 中所有格子。根据经过顺序,在格子中依次填入 1, 2, 3, ..., n,便构了一个螺旋方阵。下面 是一个 n=4 的螺旋方阵。

| 1  | 2  | 3  | 4 |
|----|----|----|---|
| 12 | 13 | 14 | 5 |
| 11 | 16 | 15 | 6 |
| 10 | 9  | 8  | 7 |

编程输入一个正整数 n, 生成一个 n\*n 的螺旋方阵。

### 【输入格式】

输入文件 square.in

一行一个正整数 n, 1≤n≤20。

### 【输出格式】

输出到文件 square.out

共 n 行,每行 n 个正整数,每个正整数占 5 个字符宽度。

# 样例

#### 输入 输出

# 4、近似排序(bsort)

### 【题目描述】

写一个程序,从输入文件读入一对正整数 x 和 y,将这两个数之间(包括这两个数本身)的所有数按下述特别规则排序后输出。该特别规则是:按两数倒过来的值进行比较决定其大小,如 30 倒过来为 3,29 倒过来为 92,则 29 大于 30。

## 【输入格式】

### 输入文件 bsort.in

一行两个正整数 x 和 y,用一个空格隔开,1≤X≤y≤10000, y-x≤100。

### 【输出格式】

输出到文件 bsort.out

包括 y-x+1 行,每行一个正整数,按两数倒过来的值进行比较决定其大小,然后由小到大输出。

# 样例

## 输入

22 39

### 输出

30

31

22

32

# 5、铺地毯(carpet)

#### 【题目描述】

为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看作是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 n 张地毯,编号从 1~n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。

地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和 4 个顶点上的点也算被地毯覆盖。

### 【输入格式】

输入文件 carpet.in

第1行一个正整数 n,表示总共有 n 张地毯。

接下来的 n 行中,第 i+1 行表示编号 i 的地毯信息,包含 4 个正整数 a、b、g、k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角坐标(a, b)以及地毯在 x 轴和 y 轴方向的长度。

第 n+2 行包含两个正整数 x 和 y,表示所求的地面的点的坐标(x,y)。

#### 【输出格式】

输出到文件 carpet.out

输出一行一个整数,表示所求的地毯的编号,若此处没有被地毯覆盖,则输出-1。

## 样例

### 输入

3

1023

2133

2 2

输出

3

# 提示

### 【样例解释】

如图 5.8-1, 1 号地毯用实线表示, 2 号地毯用虚线表示, 3 号用双实线表示, 覆盖点(2, 2)的最上面一张地毯是 3 号地毯。



## 【数据规模】

对于 30%的数据满足: n≤2。

对于 50%的数据满足: 0≤a, b, g, k≤100。

对于 100%的数据满足: 0≤n≤10000, 0≤a, b, g, k≤100000。

# 6、求阶乘(jc)

### 【题目描述】

编程求 n 阶乘的值,n!=1\*2\*3\*...\*(n-1)\*n。

【输入格式】

输入文件 jc.in

一行一个正整数 n, 1≤n≤20。

【输出格式】

输出到文件 jc.out

一行一个正整数,表示 n! 的值。

# 样例

输入

5

输出

# 7、计数问题(count)

### 【题目描述】

试计算在区间 1~n 的所有整数中,数字 x 共出现了多少次。

例如,在 1~11 中,即在 1、2、3、4、5、6、7、8、9、10、11 中,数字 1 出现了 4 次。

## 【输入格式】

输入文件 count.in

一行两个整数 n、x, 之间用一个空格隔开。1≤n≤1000000, 0≤x≤9。

### 【输出格式】

输出到文件 count.out

一行一个整数,表示 x 出现的次数。

# 样例

输入

111

输出

# 8、亲密数对(number)

### 【题目描述】

给定两个不同的正整数 a 和 b,如果 a 的因子和等于 b,b 的因子和等于 a,且  $a\neq b$ ,则 a 和 b 为一对亲密数。给定正整数 N,求  $2\sim N$  中的亲密数 对。

### 【输入格式】

输入文件 number.in

第 1 行一个正整数 N, 1≤N≤2000。

### 【输出格式】

输出到文件 number.out

输出若干行,每行有两个用一个空格隔开的正整数,表示一对亲密数。

# 样例

## 输入

200

## 输出

48 75

75 48

140 195