	Aula 7 - Árvores de decisão 7.1 O pacote scikit-learn Usaremos o pacote scikit-learn (https://scikit-learn.org/stable/) para mineração de dados. Para instalar o pacote use: pip install -U scikit-learn As pastas dos scikit-learn são organizadas de forma diferente do pandas e numpy, por exemplo, de forma que faremos a importação especifica do que precisarmos usando a sintaxe from . Considere que vamos usar o método tree , usaremos a importação: from sklearn import tree
	7.2 Importando a base de vinhos Usaremos a base wine.data para esse estudo. A base contém informações a respeito de 3 vinhos diferentes (colunas de 1 a 13), sendo que a coluna é a classificação do vinho (1,2 ou 3). Os atributos são os seguintes (todos numéricos): 1. Alcohol 2. Malic acid 3. Ash 4. Alcalinity of ash 5. Magnesium 6. Total phenols 7. Flavanoids 8. Nonflavanoid phenols 9. Proanthocyanins 10. Color intensity 11. Hue 12. OD280/OD315 of diluted wines 13. Proline Mais informações sobre os dados estão disponíveis em (https://archive.ics.uci.edu/ml/datasets/wine):
In [6]:	<pre>import numpy as np import pandas as pd #Lendo a base de dados : o primeiro valor é a classe do vinho (1,2 ou 3), os outros são as caracteristicas dt = pd.read_csv(r"G:\Meu Drive\Arquivos\UFPR\Disciplinas\2 - Intro Mineração de Dados\5-Python\Datasets\wind</pre>
In [7]:	<pre>#import sklearn as sk #https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html</pre>
n [8]:	<pre>from sklearn import tree X = dt.iloc[:,1:] Y = dt.iloc[:,0] clf = tree.DecisionTreeClassifier() clf = clf.fit(X, Y) 7.4 Visualizando Podemos exportar a árvore em formato de texto e imagem. # Exportando a arvore como texto texto = tree.export_text(clf)</pre>
	feature_12 <= 755.00
n [9]:	Para exportarmos a árvore de forma visual, é necessário ter o pacote em formato pdf. # Exportando visualmente (precisa do matplotlib) import matplotlib.pyplot as plt fig = plt.figure() fig.set_size_inches(25,12) im = tree.plot_tree(clf, filled = True) fig.savefig("arvore2.pdf") X[12] <= 755.0 gini = 0.658 samples = 178 value = [59,71,48]
	X[11] <= 2.115 gini = 0.492 samples = 111 value = [2, 67, 42] X[0] <= 0.935 gini = 0.227 samples = 46 value = [0, 0, 4] Samples = 40 value = [0, 1, 0] Samples = 40 value = [0, 0, 39] value = [0, 0, 39] value = [0, 0, 39] value = [0, 1, 0] value = [0, 1,
	7.5 Como interpretar a árvore Considere a seguinte imagem: $ \begin{array}{c} \text{III} & \text{True} & \text{False} \end{array} $ $ \begin{array}{c} \text{gini} = 0.0 \\ \text{samples} = 2 \\ \text{value} = [2, 0.0] \end{array} $
	X[11] <= 2.115 gini = 0.492 samples = 111 value = [2, 67 42] I - X[12] <= 755.0: Essa é a condição do nó, ou seja, se o atributo X[12] (como não passamos uma lista de nomes ele indica como elemento do vetor), for menor ou igual a 755.0 II - gini=0.658: A medição gini se refere a pureza de um nó. Quanto mais baixo o valor gini, menos heterogeneidade existe nas separações das classes (mostrada em value). Um nó com valor de gini = 0 implica que toda a amostra está somente em uma classe. III - True: Indica o caminho da condição, ou seja, se X[12] <= 755.0, siga para a esquerda, senão para a direita. IV - Samples = 111: Indica o número de elementos da amostra que estão separados no nó. Considerando o primeiro nó, temos que
[10]:	<pre>IV - Samples = 111: Indica o número de elementos da amostra que estão separados no nó. Considerando o primeiro nó, temos que samples = 178, o que é a conjunto total. Seguindo o caminho True, ou seja, se X[12] <= 755.0 a amostra cai para 111.</pre> V - Value = [2,67,42]: Esse número indica o número de elementos (da amostra do nó), em cada classe. Ou seja, considerando uma separação dos dados somente pela condição X[12] <= 755.0, a amostra fica com 111 elementos, e destas 2 são da classe 1, 67 da classe 2 e 42 da classe 3. Se quisessemos usar somente essa regra para realizar a classificação, usariamos a classe com a maior das frequências de values, ou seja, usando somente a regra X[12] <= 755.0, o classificador considera que estamos falando do vinho do tipo 2 (devido ao 67). <pre># Podemos passar uma lista com o nome dos atributos e das classes ao se plotar a árvore (https://scikit-lear v_nomes = ["Vinho 1", "Vinho 2", "Vinho 3"] v_atrib = ["Alcohol", "Malic acid", "Ash", "Alcalinity of ash", "Magnesium", "Total phenols", "Flavanoids", "Nonfla "Color intensity", "Hue", "OD280/OD315 of diluted wines", "Proline"]</pre> <pre>fig = plt.figure() fig.set_size_inches(30,25) im = tree.plot_tree(clf, filled = True, class_names = v_nomes, feature_names = v_atrib) fig.savefig("arvore.pdf")</pre>
	Pedina <a 1<="" 2033="" 753.0="" <="" gra="" td="" ="">
	Section Sect
[11]:	# Também é possível determinar o criterio de separação a ser usado (o default é o gini) clf = tree.DecisionTreeClassifier(criterion = "entropy") clf = clf.fit(X, Y) 7.6 Usando o modelo para classificação Uma vez ajustado, podemos usar o modelo para classificar novos registros usando a função predict, bastando passar um array-like (matriz). O retorno é um array com uma classificação para cada linhas dos dados de entrada.
[12]:	# Considere o conjunto de atributos (como uma matriz: linhas = numero de instancias a classificar, colunas = novo_vinho = [[14,2,2,14.56,120,2.08,3,0.25,3,5.5,1,4,1048]] classe_novo_vinho = clf.predict(novo_vinho) # O resultado é um array com o tamanho das linhas da matriz de previsão, com os elementos classificados: print("Classe novo vinho : ",classe_novo_vinho) # Se passarmos 2 valores a serem classificados: novos_vinhos = [[14,2,2,14.56,120,2.08,3,0.25,3,5.5,1,4,1048],
	 7.8 Separação dos dados Quando fazemos a estimação de um modelo, usamos uma parte dos dados para a estimação, e outra parte para os testes. Existem diversas formas de se realizar essa separaçai, como o método holdout e o cross-validation 7.8.1 Método Holdout Separar os dados em duas partes: uma de treinamento e testes, com uma definição da porcentagem de quantos registros devem estar em cada uma. O método holdout é exemplificado pela figura abaixo: Teste
	Treino Gerar o modelo a partir dos dados de treinamento para em seguida usar o conjunto de testes para aferir a sua acurácia. Para isso usamo o método train_test_split de sklearn.cross_validation (https://scikit-
[13]:	<pre>learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split). Nesse caso passamos os arrays X e Y, o tamanho do teste. random_state serve para reproducibilidade dos resultados, enquanto stratify = Y faz uma amostragem estratificada, tentando balancear as classes presentes no conjunto de treino e de testes. # EXEMPLO USANDO HOLDOUT # Holdout -> dividindo a base em treinamento (70%) e teste (30%), estratificada from sklearn.model_selection import train_test_split X_treino, X_teste, Y_treino, Y_teste = train_test_split(X, Y, test_size = 0.3, random_state = 0, stratify = print("Elementos no treino : ", X_treino.shape[0]) print("Elementos no teste : ", X_teste.shape[0]) # Declara o classificador clf = tree.DecisionTreeClassifier(random_state = 1) #usando o random state para replicabilidade dos resultado clf.fit(X_treino, Y_treino)</pre>
	predicted = clf.predict(X_teste) print(predicted) Elementos no treino : 124 Elementos no teste : 54 [1 1 1 1 2 3 2 3 1 3 1 2 3 1 3 3 1 2 3 2 2 1 1 2 1 3 1 2 1 3 1 2 2 1 3 1 1 3 3 2 2 2 1 2 2 3 2 3 2 2 2 1] 7.8.2 Método cross-validation (k-fold) O método cross-validation separa os dados em k subconjuntos e treina k modelos, cada vez usando uma k-1 partes para o treino e 1 par os testes, de forma que ao fim, todos os dados são usados para estimar e para testar o modelo. Uma divisão em k = 5 partes pode ser vista na figura abaixo:
[14]:	A eficácia do modelo é medida pelo erro médio de todos os modelos (veja os erros na próxima Seção). Dessa forma, o k-fold não é vários modelos). Diferentemente de quando calculamos o holdout, que primeiro separamos os dados para somente em seguida treinar, testar e coletar a eficacia (erros) do modelo, quando usamos o k-fold todas essas etapas são feitas de uma só vez. Existem dois métodos que podemos usar em Python para calcular o k-fold, o cross_val_score (https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html) ou o cross_validate (https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html), ambos importados de sklearn.model_selection. A diferença entre os dois é que o cross_val_score calcula a eficácia (erros) para cada fold em relação ao conjunto de testes, já com o cross_val_score podemos optar por coletar também o erro dos treino (usamos os dois erros para avaliar os modelos). Abaixo é mostrado um exemplo para cada método. 7.8.2.1 Usando cross_val_score (retorna eficácia de testes) Por esse motivo a saida dó método é um conjunto de erros (um para cada k).Para isso usamos a função cross_val_score importada de sklearn.model_selection. Podemos escolher qual tipo de medida queremos que ele calcule com o argumento scoring , sendo elas: 1. 'accuracy' 2. 'balanced_accuracy' 3. 'roc_auc' 4. 'f1' 5. 'neg_mean_absolute_error' 6. 'neg_root_mean_squared_error' 7. 'r2' Usaremos a accuracy , que diz respeito a porcentagem de instancias classificadas de forma correta com o modelo. from sklearn.model_selection import cross_val_score cl_cross = tree. DecisionTreeClassifier (criterion = 'entropy') folds = 10
[15]:	<pre>scores = cross_val_score(cl_cross, X, Y, cv = 5, scoring='accuracy') print("Acuracia : ", scores) print("Acuracia média : ", scores.mean()) Acuracia : [0.91666667 0.833333333 0.944444444 0.97142857 0.88571429] Acuracia média : 0.9103174603174604 7.8.2.1 Usando cross_validate (retorna eficácia de testes + treino) O retorno do método é um dicionário, se passamos o argumento return_train_score = True um array com a eficácia em cada conjunto de treino também é retornada. from sklearn.model_selection import cross_validate cl_cross_validate = tree.DecisionTreeClassifier(criterion = 'entropy') folds = 10 cv results = cross validate(cl cross validate, X, Y, cv = 3, return train score = True)</pre>
[15]:	<pre>cv_results {'fit_time': array([0.00457358, 0. , 0.00499463]), 'score_time': array([0. , 0. , 0.00199866]), 'test_score': array([0.7666667, 0.88135593, 0.98305085]), 'train_score': array([1.1.1.1])} Podemos então usar a média tanto do dos valores de test_score quanto de train_score para verificarmos se o modelo está com overfitting. eficacia_media_teste = cv_results["test_score"].mean() eficacia_media_treino = cv_results["train_score"].mean() print("Efic. de treino : (:.2f)\nEfic. de teste: {:.2f}".format(eficacia_media_teste, eficacia_media_treino) Efic. de treino : 0.88 Efic. de treino : 0.88 Efic. de teste: 1.00 7.9 Avaliando o desempenho do modelo Os erros cometidos por um modelo de classificação são geralmente divididos em dois grupos: erro de treinamento e erro de generalização (ou testes). Erros de treinamento se referem aos erros de classificação equivocada do modelo cometido no registro de treinamento, enquanto os erros de generalização são os erros do modelo em registros não vistos anteriormente. Um bom modelo deve ter baixa quantidade de erros de treinamento assim como de erros de generalização. Isso é importante, pois um modelo com baixo erro de treinamento pode muito bem possuir um alto erro de testes. Isso é conhecido como overfitting (o modelo está muito ajustado aos dados de treino, e não generaliza bem para instâncias não vistas).</pre>
[17]:	<pre>7.9.1 Erro de treinamento Podemos aferir o erro de treinamento pelo próprio modelo, usando o método score . Ele mede a acurácia do modelo, ou seja, a porcentagem de classificações corretas. from sklearn.model_selection import train_test_split X_treino, X_teste, Y_treino, Y_teste = train_test_split(X, Y, test_size = 0.3, random_state = 0) print("Elementos no treino : ", X_treino.shape[0]) print("Elementos no teste : ", X_teste.shape[0]) # Declara o classificador clf = tree.DecisionTreeClassifier(random_state = 0) clf.fit(X_treino, Y_treino) print(clf.score(X_treino, Y_treino)) fig = plt.figure() fig.set_size_inches(25,12) im = tree.plot_tree(clf, filled = True) Elementos no treino : 124 Elementos no treste : 54</pre>
	$ X[9] <= 3.82 \\ gini = 0.66 \\ samples = 124 \\ value = [40, 49, 35] $ $ X[12] <= 1002.5 \\ gini = 0.12 \\ samples = 47 \\ value = [3, 44, 0] $ $ X[2] <= 3.0 \\ gini = 0.043 \\ samples = 45 \\ value = [1, 44, 0] $ $ gini = 0.0 \\ samples = 2 \\ value = [2, 0, 0] $ $ x[12] <= 737.0 \\ gini = 0.0 \\ samples = 35 \\ value = [0, 0, 35] $ $ x[12] <= 737.0 \\ gini = 0.21 \\ samples = 42 \\ value = [37, 5, 0] $
	samples = 44 value = [0, 44, 0] gini = 0.0 samples = 6 value = [1, 5, 0] gini = 0.278 samples = 6 value = [1, 5, 0] gini = 0.0 samples = 5 value = [0, 5, 0] gini = 0.0 samples = 1 value = [1, 0, 0] 7.9.2 Erro de generalização (de testes) Usando o mesmo método score , porém com o conjunto de testes, temos a porcentagem de classes corretamente classificadas. Um bom modelo deve ter um score "equiparável", considerando o erro de testes e de treino.
	print(clf.score(X_teste, Y_teste)) 0.944444444444444444444444444444444444
[20]:	<pre># Calculando por k-fold, k = 10 cl_cross = tree.DecisionTreeClassifier(criterion='entropy', random_state = 42) scores_k_fold = cross_val_score(cl_cross, X, Y, cv = 10, scoring = 'accuracy') print("Acuracia holdout: ", score_holdout) print("Acuracia média k-fold: ", scores_k_fold.mean()) Acuracia holdout: 0.8472222222222222 Acurácia média k-fold: 0.9153594771241831 Exemplo "toy" para o cálculo do score (treino e testes) X_treino = [[17,1,2], [15,1,2], [5,1,2], [5,1,2]] Y_treino = [0,0,1,1,0] X testes = [[17,1,2], [15,1,2], [5,1,2], [5,1,2]]</pre>
	<pre>Y_testes = [0,0,1,1] mod_pred = tree.DecisionTreeClassifier(criterion = "entropy", max_depth = 3) mod_pred.fit(X_treino, Y_treino) fig = plt.figure() fig.set_size_inches(10,5) fig = tree.plot_tree(mod_pred, filled = True) # Portanto existe erro: print("Acurácia do treino:", mod_pred.score(X_treino, Y_treino)) print("Acurácia do testes:", mod_pred.score(X_testes, Y_testes)) mod_pred.predict(X_treino) Acurácia do treino: 0.8 Acurácia do testes: 1.0 array([0, 0, 1, 1, 1])</pre>
t[20]:	X[0] <= 10.0 entropy = 0.971 samples = 5 value = [3, 2] entropy = 0.918 samples = 3 value = [1, 2] entropy = 0.0 samples = 2 value = [2, 0]
[21]:	7.9.3 Matriz de confusão A matriz de confusão permite analisar em quais locais o modelo está errando mais (ou acertando mais). Isso é usado para dados desbalanceados, ou em que uma classe tem uma importância maior do que a outra. Passando um vetor com as classes ocorridas e outro com as estimadas pelo modelo, podemos calcular a matriz de confusão. from sklearn.metrics import confusion_matrix # Sejam os vetores v_ocorrido e v_previsto os tipos de vinhos e as classificações que o modelo fez: v_ocorrido = [1,2,3,3,2,2,1,3] v_previsto = [1,2,1,1,3,2,3,3] confusion_matrix(v_ocorrido, v_previsto)
t[21]: [43]: t[43]:	array([[1, 0, 1],
[22]: t[22]:	3. Aplicar a matriz no conjunto de previsões e no ocorrido. O código abaixo faz isso, usando holdout com 30% de testes. X_treino, X_teste, Y_treino, Y_teste = train_test_split(X, Y, test_size = 0.3, random_state = 1) cl = tree.DecisionTreeClassifier(random_state = 1) cl.fit(X_treino, Y_treino) predicao = cl.predict(X_teste) from sklearn.metrics import confusion_matrix confusion_matrix(Y_teste, predicao) array([[22, 1, 0],
	Vimos como calcular o desempenho de uma árvore de decisão, e como o desempenho é afetado pelos parâmetros escolhidos. Dessa forma surge a pergunta: existe um conjunto de parâmetros capaz de gerar uma árvore melhor do que outra? A resposta é sim. Considere alguns parâmetros possível para o DecisionTreeClassifier: 1. criterion{"gini", "entropy", "log_loss"}, default="gini": Método que define a qualidade da separação dos nós. 2. splitter{"best", "random"}, default="best": Método usado para realizar a separação dos nós. 3. max_depth:int, default=None: profundidade máxima da árvore. 4. min_samples_split:int or float, default=2: Número mínimo de amostras necessária para se expandir um nó. 5. min_samples_leaf:int or float, default=1: Numero mínimo de amostras em um nó. Um ponto de separação será considerado, somente se deixar min_samples_leaf em cada lado da separação. Uma forma para tentarmos otimizar o modelo seria a seguinte:
[23]:	1. Atualizar parâmetros 2. Ajustar modelo 3. Calcular desempenho 4. Guardar melhores parâmetros até o momento 5. Voltar a 1 se critério de parada não for atingido Vamos criar um código que faça isso. Primeiro criaremos uma função que recebe os dados X e Y e os parâmetros, e retorna a acurácia do conjunto de treino e a média das acurácias do conjunto de testes pelo método k-fold com k=5: from sklearn.model_selection import train_test_split from sklearn import tree def calcula_z(X, Y, criterio): X_treino, X_teste, Y_treino, Y_teste = train_test_split(X, Y, test_size = 0.3, random_state = 1) cl = tree.DecisionTreeClassifier(random_state = 1, criterion = criterio) cl.fit(X_treino, Y_treino) score_treino = cl.score(X_treino, Y_treino) scores_k_fold = cross_val_score(cl, X, Y, cv = 5, scoring = 'accuracy') return (score_treino, scores_k_fold.mean())
[24]:	<pre>scores = calcula_z(X,Y, "gini") print(scores) (1.0, 0.8876190476190476) Note que deixamos um argumento na função referente ao critério de cálculo da qualidade dos nós. Podemos então criar uma lista com os 3 valores possíveis ["gini", "entropy", "log_loss"] e verificar qual gera melhores resultados: crit = ["gini", "entropy", "log_loss"] for c in crit:</pre>
[27]:	for c in crit:
[27]:	<pre>dt_im = pu.read_csv(r d. New birve(Arquivos (off)) file</pre>
[28]: t[28]:	dt_grouped dt_grouped
[29]:	5
n [30]:	

Out[30]: In [31]:	<pre>Score : 0.5422740524781341 array([[0, 0, 0, 2, 0, 0],</pre>
	<pre>plt.show() # Verificando o score e a matriz de confusão para os dados de teste: score = clf.score(x_teste, y_teste) print("Score: ", score) v_pred = clf.predict(x_teste) v_pred confusion_matrix(y_teste, v_pred)</pre> X[10] <= 10.525 entropy = 1.699
	x[9] <= 0.625 entropy = 1.398 samples = 481 value = [3, 14, 282, 160, 20, 2] X[2] <= 0.295 entropy = 1.751 samples = 319 value = [1, 9, 56, 164, 80, 9]
Out[31]:	entropy = 1.162 samples = 291 value = [2, 11, 202, 73, 3, 0] Score : 0.5626822157434402 array([[0, 0, 1, 1, 0, 0],
In [32]:	<pre># Podemos alterar os parâmetros da árvore para tentar deixar ela mais genéria (podar) # Criando um conjunto de treino/testes - holdout 0.3 clf = tree.DecisionTreeClassifier(max_depth = 2, criterion = "entropy", random_state = 1, class_weight = "balan clf.fit(x_treino, y_treino) fig = plt.figure() fig.set_size_inches(15,10) fig = tree.plot_tree(clf) plt.show() # Verificando o score e a matriz de confusão para os dados de teste: score = clf.score(x_teste, y_teste) print("Score : ", score) v_pred = clf.predict(x_teste) v_pred confusion_matrix(y_teste, v_pred)</pre>
	### ### ### ### #### #### #### ########
Out[32]:	Score : 0.14868804664723032 array([[1,
	 Realizar uma análise exploratória dados, verificar se existe classes não balanceadas e se são importantes. Separar os dados em treino e testes. Ajustar uma árvore com os dados de treino. (se factível) Imprimir visualmente a árvore. Verificar a acurácia da classificação, tanto no treino quanto nos teste (evitar overfitting). Escolher uma medida de desempenho adequada ao que se deseja (lembre do desbalancemanto das classes). Tentar otimizar os parâmetros do modelo. Com os parâmetros encontrados, estimar uma nova árvore com todo o conjunto de dados, e usar o modelo no negócio. EXERCÍCIOS Considere o conjunto de dados WineQT.csv utilizado neste Notebook. Finalize a análise dos dados otimizando os parâmetros do modelo. Pense em qual medida será usada para avaliar o desempenho (considere o cenário em que os vinhos com notas 3 e 8 são venenosos). Considerando o conjunto de dados IrisDataset.csv. Este conjunto contém dados sobre três tipos de flores Iris. Cada registro contém dados de largura e cumprimento, tanto da sépala quanto da pétala da Flor, além de uma classificação da flor (dentre uma das três - setosa, virginica e versicolor). A. Realize uma análise exploratória sobre os dados, mostrando as descobertas (use as estatísticas e gráficos).
In [34]: Out[34]:	B. Crie um modelo de classificação por árvores de decisão, otimizando os parâmetros. 7.13 Árvores para regressão Podemos usar árvores de decisão também para a tarefa de regressão. Para isso usamos a importação DecisionTreeRegressor (https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html) de sklearn.tree . Considerando o conjunto de dados diabetes.csv . Este conjunto conjunto possui 10 características de 442 pacientes com diabetes, como pressão média do sangue, idade, sexo, etc. Além disso, uma variável alvo com uma avaliação quantitativa da doença, 1 anos após a coleta dos dados. O conjunto foi usado originalemnte em "Least Angle Regression" por Efron et al., 2004, em Annals of Statistics pd_diabetes = pd.read_csv(r"G:\Meu Drive\Arquivos\UFPR\Disciplinas\2 - Intro Mineração de Dados\5-Python\Datas pd_diabetes
	4 50 1 23.0 101.00 192 125.4 52.0 4.00 42905 80 135
<pre>In [37]: Out[37]:</pre>	<pre>x_treino, x_teste, y_treino, y_teste = train_test_split(X, Y, test_size = 0.3, random_state = 1) print(x_treino.shape, x_teste.shape) (309, 10) (133, 10) Declarando e estimando o regressor: from sklearn.tree import DecisionTreeRegressor regressor = DecisionTreeRegressor() regressor.fit(x_treino, y_treino) **DecisionTreeRegressor* DecisionTreeRegressor() Plotando a árvore: fig = plt.figure() fig.set_size_inches(20,15) fig = tree.plot_tree(regressor, filled = True, feature_names = X.columns) plt.show()</pre>
	Como não existem classes, a verificação do erro de predições pelo método score é dada pelo coeficiente de determinação R^2
	(https://pt.wikipedia.org/wiki/Coeficiente_de_determina%C3%A7%C3%A3o, no Python https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor.fit). Um coeficiente de 1 para os testes indica um overfitting do modelo. print ("R2 testes : ", regressor.score(x_treino, y_treino)) R2 testes : 1.0 O coeficiente está muito alto (=1), o que pode indicar um overfitting aos dados de treino. Verificando o valor nos dados de teste: print (regressor.score(x_teste, y_teste)) -0.4383205656782452 Realmente os dados se ajustaram muito bem ao treino porém não conseguem explicar os dados de teste. Criando um pequeno algoritmo para otimizar os parâmetros: usando a validação k-fold com k = 4, vamos alterar os parâmetros max_depth , criterion , splitter , min_samples_split .
In [41]:	<pre># Parametros variados: criterio = ["squared_error", "friedman_mse", "absolute_error", "poisson"] split = ["best", "random"] min_samples = range(2,5) param_otimos = () best_s = 0 for i in range(1,20): for s in split: for m in min_samples: regressor = DecisionTreeRegressor(random_state = 42, max_depth = i, criterion = c, splitter =</pre>
In [42]:	Melhor current param : (2, 'poisson', 'best', 2) Melhor current score : 0.35375360294288943 Melhor current param : (3, 'poisson', 'best', 2) Melhor score : 0.35375360294288943 Melhor score : 0.35375360294288943 Melhor score : (3, 'poisson', 'best', 2) Portanto os melhores parametros são : max_depth = 3, criterion = 'poisson', splitter = 'best', min_samples_split = 2, com um R² médio de 0.3537 (o que é ainda muito baixo). Ajustando um novo modelo com esses parâmetros e plotando a arvore: regressor = DecisionTreeRegressor(random_state = 42, max_depth = 3, criterion = 'poisson', splitter = 'best', regressor.fit(x_treino, y_treino) mean_score = cross_val_score(regressor, X, Y, cv = 4).mean() print("Erro no teste (k-fold)", mean_score) print("Erro no treino", regressor.score(x_teste, y_teste)) fig = plt.figure() fig.set_size_inches(20,15) fig = tree.plot_tree(regressor, filled = True, feature_names = X.columns) plt.show()
	Erro no teste (k-fold) 0.35375360294288943 Erro no treino 0.14051298340566853 BMI <= 26.95 poisson = 20.806 samples = 309 value = 154.065 BP <= 110.5 poisson = 13.991 samples = 181 value = 114.387 value = 210.172
	AGE <= 56.5 poisson = 8.852 samples = 107 value = 89.486 poisson = 8.401 samples = 83 poisson = 7.4 samples = 84 poisson = 11.6 samples = 84 poisson = 12.522 samples = 107 value = 12.522 poisson = 12.522 samples = 34 samples = 34 poisson = 12.522 samples = 34