



# **Decision Trees**

Emily Fox & Carlos Guestrin
Machine Learning Specialization
University of Washington

©2015-2016 Emily Fox & Carlos Guestrin

# Predicting potential loan defaults

# What makes a loan risky?



# Credit history explained

Did I pay previous loans on time?

Example: excellent, good, or fair

Credit History

\*\*\*\*

Income

\*\*\*\*

Term

\*\*\*\*

Personal Info

\*\*\*\*

#### Income



#### Loan terms

How soon do I need to pay the loan?

Example: 3 years,

5 years,...









#### Personal information

Age, reason for the loan, marital status,...

**Example:** Home loan for a married couple



# Intelligent application



#### Classifier review



#### This module ... decision trees



# Decision trees: Intuition

#### What does a decision tree represent?



### What does a decision tree represent?



15

# Scoring a loan application

 $\mathbf{x}_{i}$  = (Credit = poor, Income = high, Term = 5 years)



#### Decision tree model



©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

# Decision tree learning task

@2015\_2016 Emily Fox & Carlos Guestrin



Carlos Guestrin Machine Learning Specialization

#### Learn decision tree from data?



# Decision tree learning problem

Training data: N observations  $(\mathbf{x}_i, y_i)$ 

| Credit    | Term  | Income | у     |
|-----------|-------|--------|-------|
| excellent | 3 yrs | high   | safe  |
| fair      | 5 yrs | low    | risky |
| fair      | 3 yrs | high   | safe  |
| poor      | 5 yrs | high   | risky |
| excellent | 3 yrs | low    | risky |
| fair      | 5 yrs | low    | safe  |
| poor      | 3 yrs | high   | risky |
| poor      | 5 yrs | low    | safe  |
| fair      | 3 yrs | high   | safe  |



#### Quality metric: Classification error

Error measures fraction of mistakes

```
Error = # incorrect predictions # examples
```

- Best possible value : 0.0

- Worst possible value: 1.0

#### Find the tree with lowest classification error

| Credit    | Term  | Income | у     |
|-----------|-------|--------|-------|
| excellent | 3 yrs | high   | safe  |
| fair      | 5 yrs | low    | risky |
| fair      | 3 yrs | high   | safe  |
| poor      | 5 yrs | high   | risky |
| excellent | 3 yrs | low    | risky |
| fair      | 5 yrs | low    | safe  |
| poor      | 3 yrs | high   | risky |
| poor      | 5 yrs | low    | safe  |
| fair      | 3 yrs | high   | safe  |



#### How do we find the best tree?

Exponentially large number of possible trees makes decision tree learning hard! (NP-hard problem)



# Simple (greedy) algorithm finds "good" tree

| Credit    | Term  | Income | у     |
|-----------|-------|--------|-------|
| excellent | 3 yrs | high   | safe  |
| fair      | 5 yrs | low    | risky |
| fair      | 3 yrs | high   | safe  |
| poor      | 5 yrs | high   | risky |
| excellent | 3 yrs | low    | risky |
| fair      | 5 yrs | low    | safe  |
| poor      | 3 yrs | high   | risky |
| poor      | 5 yrs | low    | safe  |
| fair      | 3 yrs | high   | safe  |



# Greedy decision tree learning: *Algorithm outline*

@2015\_2016 Emily Fox & Carlos Guestrin

# Step 1: Start with an empty tree



# Step 2: Split on a feature



# Feature split explained



# Step 3: Making predictions



# Step 4: Recursion



## Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
  - Step 3: If nothing more to, make predictions
    - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Problem 1: Feature split selection

Problem 2: Stopping condition

Recursion

#### Feature split learning

#### Decision stump learning

And it turns out that this feature selection problem, this feature splitting learning problem, can be viewed as the problem of learning what's called a decision stump, which is that one level on the decision tree.

@2015\_2016 Emily Fox & Carlos Guastrin

Machine Learning Specialization

#### Start with the data

#### Assume N = 40, 3 features

| Credit    | Term  | Income | У     |
|-----------|-------|--------|-------|
| excellent | 3 yrs | high   | safe  |
| fair      | 5 yrs | low    | risky |
| fair      | 3 yrs | high   | safe  |
| poor      | 5 yrs | high   | risky |
| excellent | 3 yrs | low    | risky |
| fair      | 5 yrs | low    | safe  |
| poor      | 3 yrs | high   | risky |
| poor      | 5 yrs | low    | safe  |
| fair      | 3 yrs | high   | safe  |
|           |       |        |       |

#### Start with all the data



# Compact visual notation: Root node



#### Decision stump: Single level tree



#### Visual Notation: Intermediate nodes



# Making predictions with a decision stump



But before we split further, we're going to discuss why we picked credit to do the first split as opposed to say, for example, the term of the loan or income.

For each intermediate node, set  $\hat{y} = majority value$ 

#### Selecting best feature to split on

# How do we learn a decision stump?



#### How do we select the best feature?



# How do we measure effectiveness of a split?



Error = # mistakes # data points

## Calculating classification error

- Step 1:  $\hat{y}$  = class of majority of data in node
- Step 2: Calculate classification error of predicting ŷ for this data



| Error = | 18 |
|---------|----|
| =       |    |

| Tree   | Classification error |  |
|--------|----------------------|--|
| (root) | 0.45                 |  |

# Choice 1: Split on credit history?

Choice 1: Split on Credit



©2015-2016 Emily Fox & Carlos Guestrin

# How good is the split on Credit?

Choice 1: Split on Credit



# Split on Credit: Classification error

Choice 1: Split on Credit



$$Error = \underbrace{4+4}_{40}$$

$$= 0.20$$

| Tree                   | Classification error |  |
|------------------------|----------------------|--|
| (root)                 | 0.45                 |  |
| Split on <b>credit</b> | 0.2                  |  |

# Choice 2: Split on Term?

#### Choice 2: Split on Term



# Evaluating the split on Term

#### Choice 2: Split on Term



$$Error = \frac{4+6}{40}$$
$$= 0.25$$

| Tree                   | Classification error |  |
|------------------------|----------------------|--|
| (root)                 | 0.45                 |  |
| Split on <b>credit</b> | 0.2                  |  |
| Split on term          | 0.25                 |  |

#### Choice 1 vs Choice 2

| Tree                      | Classification error |        |
|---------------------------|----------------------|--------|
| (root)                    | 0.45                 |        |
| split on <b>credit</b>    | 0.2                  | -First |
| split on <b>loan term</b> | 0.25                 | 35     |

Choice 1: Split on Credit

Choice 2: Split on Term



57

## Feature split selection algorithm

- Given a subset of data M (a node in a tree)
- For each feature  $h_i(x)$ : < credit, ten, income
  - 1. Split data of M according to feature  $h_i(x)$
  - 2. Compute classification error split
- Chose feature  $h^*(x)$  with lowest classification error f

# Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
  - Step 3: If nothing more to, make predictions
  - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

# Decision Tree Learning: Recursion & Stopping conditions

### Learn decision tree from data?

| Credit    | Term  | Income | у     |
|-----------|-------|--------|-------|
| excellent | 3 yrs | high   | safe  |
| fair      | 5 yrs | low    | risky |
| fair      | 3 yrs | high   | safe  |
| poor      | 5 yrs | high   | risky |
| excellent | 3 yrs | low    | risky |
| fair      | 5 yrs | low    | safe  |
| poor      | 3 yrs | high   | risky |
| poor      | 5 yrs | low    | safe  |
| fair      | 3 yrs | high   | safe  |



#### We've learned a decision stump, what next?



# Tree learning = Recursive stump learning



#### Second level



65

#### Final decision tree



66

# Simple greedy decision tree learning

Pick best feature to split on Learn decision stump with this split For each leaf of decision stump, recurse When do we stop??? 67

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

### Stopping condition 1: All data agrees on y



### Stopping condition 2: Already split on all features



## Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
  - Step 3: If nothing more to, make predictions
  - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

Stopping conditions 1 & 2

Recursion





#### Decision tree model



# Traversing a decision tree

 $\mathbf{x}_{i}$  = (Credit = poor, Income = high, Term = 5 years)



## Decision tree prediction algorithm

#### predict(tree\_node, input)

- If current tree\_node is a leaf:
  - return majority class of data points in leaf
- else:
  - next\_note = child node of tree\_node whose feature value agrees with input
  - return predict(next\_note, input)

# Multiclass classification & predicting probabilities

# Multiclass prediction



# Multiclass decision stump

N = 40, 1 feature, 3 classes

| Credit    | у       |  |
|-----------|---------|--|
| excellent | safe    |  |
| fair      | risky   |  |
| fair      | safe    |  |
| poor      | danger  |  |
| excellent | risky   |  |
| fair      | safe    |  |
| poor      | danger  |  |
| poor      | safe    |  |
| fair      | ir safe |  |
|           |         |  |



81

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

# Predicting probabilities with decision trees



# Decision tree learning: *Real valued features*

# How do we use real values inputs?

| Income  | Credit    | Term  | у     |
|---------|-----------|-------|-------|
| \$105 K | excellent | 3 yrs | Safe  |
| \$112 K | good      | 5 yrs | Risky |
| \$73 K  | fair      | 3 yrs | Safe  |
| \$69 K  | excellent | 5 yrs | Safe  |
| \$217 K | excellent | 3 yrs | Risky |
| \$120 K | good      | 5 yrs | Safe  |
| \$64 K  | fair      | 3 yrs | Risky |
| \$340 K | excellent | 5 yrs | Safe  |
| \$60 K  | good      | 3 yrs | Risky |

## Split on each numeric value?



#### Alternative: Threshold split



88

#### Threshold splits in 1-D



# Visualizing the threshold split



# Split on Age >= 38



#### Depth 2: Split on Income >= \$60K



# Each split partitions the 2-D space



#### Finding the best threshold split



# Finding the best threshold split



#### Consider a threshold between points

Same classification error for any threshold split between  $v_A$  and  $v_B$ 



### Only need to consider mid-points



#### Threshold split selection algorithm

/ Income

- Step 1: Sort the values of a feature  $h_j(\mathbf{x})$ : Let  $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, ... \mathbf{v_N}\}$  denote sorted values
- Step 2:
  - -Fori = 1 ... N-1
    - Consider split  $t_i = (v_i + v_{i+1}) / 2$
    - Compute classification error for treshold split  $h_j(\mathbf{x}) >= \mathbf{t}_i$
  - Chose the t with the lowest classification error



# Logistic regression

| Feature                     | Value        | Weight<br>Learned |
|-----------------------------|--------------|-------------------|
| h <sub>0</sub> ( <b>x</b> ) | 1            | 0.22              |
| h <sub>1</sub> ( <b>x</b> ) | <b>x</b> [1] | 1.12              |
| h <sub>2</sub> ( <b>x</b> ) | <b>x</b> [2] | -1.07             |
|                             |              |                   |





106

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

# Depth 1: Split on x[1]



Machine Learning Specialization

# Depth 2



# Threshold split caveat



#### Decision boundaries



# Comparing decision boundaries

#### **Decision Tree**



#### **Logistic Regression**



Machine Learning Specialization

# Summary of decision trees

#### What you can do now

- Define a decision tree classifier
- Interpret the output of a decision trees
- Learn a decision tree classifier using greedy algorithm
- Traverse a decision tree to make predictions
  - Majority class predictions
  - Probability predictions
  - Multiclass classification

# Thank you to Dr. Krishna Sridhar



Dr. Krishna Sridhar Staff Data Scientist, Dato, Inc.