SpaceX EDX SQL Server

The dataset used to be queried can be found below.

In many cases the dataset to be analyzed is available as a .CSV (comma separated values) file, perhaps on the internet. Click on the link below to download and save the dataset (.CSV file):

<u>SpaceX DataSet (https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/labs/module_2/data/Spacex.csv?</u>

<u>utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NASkillsNetwork-Channel-SkillsNetworkCoursesIBMDS0321ENSkillsNetwork26802033-2021-01-01)</u>

Connect to the database

Let us first load the SQL extension and establish a connection with the database

```
!pip install sqlserver
In [1]:
        /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages/secretstorage/dhc
        rypto.py:16: CryptographyDeprecationWarning: int from bytes is deprecated, us
        e int.from bytes instead
          from cryptography.utils import int from bytes
        /opt/conda/envs/Python-3.7-main/lib/python3.7/site-packages/secretstorage/uti
        1.py:25: CryptographyDeprecationWarning: int from bytes is deprecated, use in
        t.from bytes instead
          from cryptography.utils import int_from_bytes
        Collecting sqlserver
          Downloading sqlserver-0.0.4.tar.gz (2.9 kB)
        Requirement already satisfied: pyodbc in /opt/conda/envs/Python-3.7-main/lib/
        python3.7/site-packages (from sqlserver) (4.0.0-unsupported)
        Building wheels for collected packages: sqlserver
          Building wheel for sqlserver (setup.py) ... done
          Created wheel for sqlserver: filename=sqlserver-0.0.4-py3-none-any.whl size
        =2983 sha256=d7a6445a8f8724565aca45a1aac76d097e1ac4238c4292e5a5c8c021d9a4861f
          Stored in directory: /tmp/wsuser/.cache/pip/wheels/81/17/65/2e9e92ba3f82544
        a877f975582a7a2778a9d53b43b7478ba49
        Successfully built sqlserver
        Installing collected packages: sqlserver
        Successfully installed sqlserver-0.0.4
```

Initialization

the .sqlserver() object parameters stands for (ip,portnumber,databasename,username,password)

```
In [7]: import sqlserver as ss
db = ss.sqlserver('localhost','1433','SpaceX','admin','admin')
```

Display the names of the unique launch sites in the space mission

```
In [8]: db.GetRecordsOfColumn('select DISTINCT Launch_Site from tblSpaceX','Launch_Sit
e')
Out[8]: ['CCAFS LC-40', 'CCAFS SLC-40', 'CCAFSSLC-40', 'KSC LC-39A', 'VAFB SLC-4E']
```

Display 5 records where launch sites begin with the string 'KSC'

```
In [41]:
         import pyodbc
         import pandas as pd
         import numpy as np
         conn = pyodbc.connect('Driver={SQL Server};'
                                             'Server=localhost;'
                                             'Database=SpaceX;'
                                             'User ID=admin;Password=admin;')
         cursor = conn.cursor()
         cursor.execute("select TOP 5 * from tblSpaceX WHERE Launch_Site LIKE 'KSC%'")
         columns = [column[0] for column in cursor.description]
         results = []
         for row in cursor.fetchall():
              results.append(dict(zip(columns, row)))
         df = pd.DataFrame.from dict(results)
         df
```

Out[41]:

	Date	Time_UTC	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit
0	19- 02- 2017	2021-07-02 14:39:00.0000000	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)
1	16- 03- 2017	2021-07-02 06:00:00.0000000	F9 FT B1030	KSC LC-39A	EchoStar 23	5600	GTO
2	30- 03- 2017	2021-07-02 22:27:00.0000000	F9 FT B1021.2	KSC LC-39A	SES-10	5300	GTO
3	01- 05- 2017	2021-07-02 11:15:00.0000000	F9 FT B1032.1	KSC LC-39A	NROL-76	5300	LEO
4	15- 05- 2017	2021-07-02 23:21:00.0000000	F9 FT B1034	KSC LC-39A	Inmarsat- 5 F4	6070	GTO
4							•

Display the total payload mass carried by boosters launched by NASA (CRS)

```
In [57]: TPM = db.GetRecordsOfColumn("select SUM(PAYLOAD_MASS_KG_) TotalPayloadMass fro
    m tblSpaceX where Customer = 'NASA (CRS)'",'TotalPayloadMass')
    ndf= pd.DataFrame(TPM)
    ndf.columns = ['Total Payload Mass']
    ndf
Out[57]:

Total Payload Mass

0 45596
```

Display average payload mass carried by booster version F9 v1.1

List the date where the succesful landing outcome in drone ship was acheived.

List the names of the boosters which have success in ground pad and have payload mass greater than 4000 but less than 6000

Out[69]:

Date which first Successful landing outcome in drone ship was acheived.

0	F9 FT B1032.1
1	F9 B4 B1040.1
2	F9 B4 B1043.1

List the total number of successful and failure mission outcomes

```
In [84]: conn = pyodbc.connect('Driver={SOL Server};'
                                             'Server=localhost;'
                                             'Database=SpaceX;'
                                             'User ID=admin;Password=admin;')
         cursor = conn.cursor()
         cursor.execute("SELECT(SELECT Count(Mission Outcome) from tblSpaceX where Miss
         ion Outcome LIKE '%Success%') as Successful Mission Outcomes,(SELECT Count(Mis
         sion Outcome) from tblSpaceX where Mission Outcome LIKE '%Failure%') as Failur
         e Mission Outcomes")
         columns = [column[0] for column in cursor.description]
         results = []
         for row in cursor.fetchall():
               results.append(dict(zip(columns, row)))
         df = pd.DataFrame.from dict(results)
         df
Out[84]:
             Successful_Mission_Outcomes Failure_Mission_Outcomes
          0
                                  100
                                                           1
```

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

Out[94]:

	Booster_Version	Maximum Payload Mass			
0	F9 B5 B1048.4	15600			
1	F9 B5 B1048.5	15600			
2	F9 B5 B1049.4	15600			
3	F9 B5 B1049.5	15600			
4	F9 B5 B1049.7	15600			
92	F9 v1.1 B1003	500			
93	F9 FT B1038.1	475			
94	F9 B4 B1045.1	362			
95	F9 v1.0 B0003	0			
96	F9 v1.0 B0004	0			
97 rows × 2 columns					

List the records which will display the month names, successful landing_outcomes in ground pad ,booster versions, launch_site for the months in year 2017

Out[96]:

	Month	Booster_Version	Launch_Site	Landing_Outcome
0	January	F9 FT B1029.1	VAFB SLC-4E	Success (drone ship)
1	February	F9 FT B1031.1	KSC LC-39A	Success (ground pad)
2	March	F9 FT B1021.2	KSC LC-39A	Success (drone ship)
3	May	F9 FT B1032.1	KSC LC-39A	Success (ground pad)
4	June	F9 FT B1035.1	KSC LC-39A	Success (ground pad)
5	June	F9 FT B1029.2	KSC LC-39A	Success (drone ship)
6	June	F9 FT B1036.1	VAFB SLC-4E	Success (drone ship)
7	August	F9 B4 B1039.1	KSC LC-39A	Success (ground pad)
8	August	F9 FT B1038.1	VAFB SLC-4E	Success (drone ship)
9	September	F9 B4 B1040.1	KSC LC-39A	Success (ground pad)
10	October	F9 B4 B1041.1	VAFB SLC-4E	Success (drone ship)
11	October	F9 FT B1031.2	KSC LC-39A	Success (drone ship)
12	October	F9 B4 B1042.1	KSC LC-39A	Success (drone ship)
13	December	F9 FT B1035.2	CCAFS SLC-40	Success (ground pad)

Rank the count of successful landing_outcomes between the date 2010-06-04 and 2017-03-20 in descending order.

```
In [90]: sl = db.GetRecordsOfColumn("SELECT COUNT(Landing_Outcome) AS sl FROM dbo.tblSp
aceX WHERE (Landing_Outcome LIKE '%Success%') AND (Date >'04-06-2010') AND (Da
te < '20-03-2017')", 'sl')

ndf= pd.DataFrame(sl)
ndf.columns = ['Successful Landing Outcomes Between 2010-06-04 and 2017-03-20']
ndf</pre>
```

Out[90]:

Successful Landing Outcomes Between 2010-06-04 and 2017-03-20

0 34