Grupo 4

Estrutura de Dados I

Davi Brandão de Souza Mauricio Zanetti Neto Pedro Henrique Alves do Nascimento Silvio Eduardo Bellinazzi de Andrade

18 de Agosto de 2025

Objetivo

- Verificar se uma dada expressão possui delimitadores balanceados;
- Considerar tanto o fechamento correto (a), assim como a hierarquia (b).

Exemplo:

```
\{[(A+D)/B]*J\} \rightarrow \text{Correto por (a) e (b)}
([\{A+D\}/B]*J) \rightarrow \text{Correto por (a), incorreto por (b)}
((A+D))*J) \rightarrow \text{Incorreto}
```

Lógica do algoritmo

Expressão: {[(A+D)/B]*J}

- 1. $\{ \rightarrow \text{empilha} \}$
- 2. [\rightarrow empilha
- 3. (\rightarrow empilha
- 4. A, +, D \rightarrow ignora
- 5.) \rightarrow verifica se o topo é (\rightarrow desempilha

Pilha utilizada

Lógica do algoritmo

Expressão: {[(A+D)/B]*J}

- 6. /, B \rightarrow ignora
- 7.] \rightarrow topo é [\rightarrow desempilha
- 8. *, j \rightarrow ignora
- 9. \rightarrow topo é $\{\rightarrow$ desempilha
- 10. Se a pilha está vazia → expressão válida

Pilha utilizada

Objetivo

- Permitir a entrada de expressões infixas ou pós-fixas;
- Converter expressões infixas para a forma pós-fixa.
- Resolver a expressão pós-fixa

Exemplos:

Exemplo:

• Convertendo: A + B * (C-D)

Exemplo:

• Convertendo: A + B * (C-D)

Exemplo:

• Convertendo: A + B * (C-D)

Exemplos:

Realizando Operação: ABCD-*+

Problema

- Temos uma planta de uma casa representada por uma matriz contendo paredes e pisos.
- Um cômodo é formado por áreas de piso conectadas entre si.
- É necessário determinar quantos cômodos existem na planta.

Objetivo

Desenvolver um algoritmo que percorra a planta, identifique cada cômodo e conte sua quantidade.

Procedimento

Utilizar busca em profundidade (DFS) com pilha para explorar as áreas de piso conectadas, marcando as já percorridas e evitando contagens duplicadas.

Lógica do algoritmo

- Cria uma matriz de processados.
- Cria uma pilha vazia.
- Inicia a contagem de cômodos em 0.
- Inicia percorrendo as posições válidas do mapa.
- Se encontrar um piso não processado:

Soma 1 na contagem de cômodos.

Empilha a posição e marca como processado.

Enquanto a pilha não estiver vazia:

Desempilha o topo.

Para cada vizinho piso não processado:

Empilha-os e marca como processado.

- Quando a pilha esvazia, significa que todo o cômodo foi explorado.
- Continua o percurso do mapa até verificar todas as posições.

Fim