

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Batch: A1 Roll No.: 16010120015

Experiment No. 1

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

Title: Implementation of selection sort/ Insertion sort

Objective: To analyse performance of sorting methods

CO to be achieved:

CO 1 Analyze the asymptotic running time and space complexity of algorithms.

Books/ Journals/ Websites referred:

- 1. Ellis horowitz, Sarataj Sahni, S.Rajsekaran," Fundamentals of computer algorithm", University Press
- 2. T.H.Cormen ,C.E.Leiserson,R.L.Rivest and C.Stein," Introduction to algorithms",2nd Edition ,MIT press/McGraw Hill,2001
- 3. http://en.wikipedia.org/wiki/Insertion_sort
- 4. http://www.sorting-algorithms.com/insertion-sort
- 5. http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Insertion_sort.html
- 6. http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Sorting/insertionSort.htm
- 7. http://en.wikipedia.org/wiki/Selection_sort
- 8. http://www.sorting-algorithms.com/selection-sort
- 9. http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Sorting/s electionSort.htm
- 10. http://courses.cs.vt.edu/~csonline/Algorithms/Lessons/SelectionCardSort/selectioncardsort.html

(A Constituent College of Somaiya Vidyavihar University)

Pre Lab/Prior Concepts:

Data structures, sorting techniques

Historical Profile:

There are various methods to sort the given list. As the size of input changes, the performance of these strategies tends to differ from each other. In such a case, the priori analysis can help the engineer to choose the best algorithm.

New Concepts to be learned:

Space complexity, time complexity, size of input, order of growth.

Algorithm Insertion Sort

```
INSERTION_SORT (A,n)
```

//The algorithm takes as parameters an array A[1...n] and the length n of the array.

//The array A is sorted in place: the numbers are rearranged within the array

// A[1..n] of eletype, n: integer

```
FOR j \leftarrow 2 TO length[A]

DO key \leftarrow A[j]

{Put A[j] into the sorted sequence A[1..j-1]}

i \leftarrow j-1

WHILE i > 0 and A[i] > \text{key}

DO A[i+1] \leftarrow A[i]

i \leftarrow i-1

A[i+1] \leftarrow \text{key}
```

Algorithm Selection Sort

```
SELECTION_SORT (A,n)
```

//The algorithm takes as parameters an array A[1...n] and the length n of the array.

//The array A is sorted in place: the numbers are rearranged within the array

// A[1..n] of eletype, n: integer

```
FOR i \leftarrow 1 TO n-1 DO

\min j \leftarrow i;

\min x \leftarrow A[i]

FOR j \leftarrow i + 1 to n do

IF A[j] < \min x then

\min j \leftarrow j

\min x \leftarrow A[j]
```


K. J. Somaiya College of Engineering (A Constituent College of Somaiya Vidyavihar University)

 $A[\min j] \leftarrow A[i]$ $A[i] \leftarrow \min x$

Time and space complexity for selection sort

Selection Sext (1998, 1)	
\$ (i=0: i2n-i; i++) Time yele	= 0
min ho8=i los (j=i-1; j <n; j++)<="" td=""><td>n(r-1)</td></n;>	n(r-1)
if (a)n[;] < a04 [min-pos])	
min-f18=j;	
temp = 099 [;]; 092 [;] = 099 [min-pos]; 0928 [min-pos] = temp;	
Ars run-fills = Torp;	
Time complexity = $n + n(n-1) = n + n$ $\approx O(n^2)$	
Stace complanity = 0+5 ~ O(0)	

Time and space complexity for insertion sort

K. J. Somaiya College of Engineering (A Constituent College of Somaiya Vidyavihar University)

Jos (i-1; i <n; cycle="n</th" i++2="" time=""></n;>
key = 099/[1]
white (j)=0 && kay < 000, [j]) Gels: n (n-1) 000, [j]: 2
q J= j
2 2 2 3+1] = key;
Time complexity = $n + O(n-1) = n^2 + n$
≈00°
Ance complexity = n+4 words

(A Constituent College of Somaiya Vidyavihar University)

IMPLEMENTATION DETAILS

1. Selection Sort

```
import java.util.*;
import java.util.Random;
public class Main
  static void SelectionSort(int arr[]){
     int min_index;
     for(int i=0;i<arr.length - 1;i++){
        min_index = i;
       for(int j=i+1;j<arr.length;j++){</pre>
          if(arr[i]>arr[j]){
            int temp = arr[i];
            arr[i]=arr[j];
            arr[j]=temp;
  public static void main(String[] args) {
    System.out.println("********************************);
```

System.out.println(" -- 1.SELECTION SORT --");

(A Constituent College of Somaiya Vidyavihar University)

(A Constituent College of Somaiya Vidyavihar University)

TEST CASE 1

TEST CASE 2

TEST CASE 3

2. Insertion Sort

```
import java.util.*;
import java.util.Random;
public class Main
{
   static void insertionSort(int arr[]) {
```


(A Constituent College of Somaiya Vidyavihar University)

```
int key;
  int j;
  for (int i = 1; i < arr.length; i++) {
    key = arr[i];
    j = i - 1;
    while (j \ge 0 \&\& key < arr[j]) \{
       arr[j + 1] = arr[j];
       j--;
    arr[j + 1] = key;
}
public static void main(String[] args) {
  System.out.println("*********************************);
  System.out.println(" -- 2.INSERTION SORT --");
  Random random = new Random();
  Scanner s = new Scanner(System.in);
  System.out.print("Enter the size of the array : ");
  int n = s.nextInt();
  int arr[] = new int[n];
  for(int i=0;i<arr.length;i++){</pre>
    arr[i]= random.nextInt(1000);
  long t1 = System.nanoTime();
```


(A Constituent College of Somaiya Vidyavihar University)

OUTPUT

TEST CASE 1

TEST CASE 2

TEST CASE 3

(A Constituent College of Somaiya Vidyavihar University)

-- 2.INSERTION SORT --

Enter the size of the array : 100000

time taken : 1250669700 nano seconds

GRAPHS FOR VARYING INPUT SIZES: (INSERTION SORT & SELECTION SORT) DATA

		insertion	
n	sort		selection sort
	5	5000	9700
	10	6700	10200
	50	38200	95300
	100	158400	926200
	500	2807000	4053900
	1000	9224800	8636700
	5000	16769700	52250800
	10000	29674100	141711900
	50000	448082500	2294461100
	100000	1250669700	10000737300

GRAPH

Page **10** of **11** AOA Sem IV Jan-May 2022

(A Constituent College of Somaiya Vidyavihar University)

Conclusion:

By this experiment we were able to learn, understand and implement the following concepts:

- ✓ Implementation of Selection and Insertion Sort in Java programming language
- ✓ Time and Space complexity of both the sorting algorithms
- ✓ Graphs for varying input sizes (insertion sort & selection sort)