

Sructure Recognition with Graph Neural Networks

A project for the lab-course Advanced Projects in Computational Physics 2

Table of contents

1. Theoretical Background

- 1.1 A Few More Words on Message Passing
- 1.2 Percolation

2. Goals

- 3. Results
- 3.1 Classification of Bravais Lattices
- 3.2 On the Problem of Percolation

4. Conclusion and Outlook

Overview:

Message passing consists of three steps:

- 1. Computing messages (ϕ_{mes})
- 2. Aggregating messages (ϕ_{agg})
- 3. Updating node values (ϕ_{upd})

Step 1: Compute Messages

For $i \in \{x, y, z\}$ calculate:

$$m_i \coloneqq \phi_{mes}(v_c, v_i, e_{i,c})$$

Step 2: Aggregate Messages

Calculate total message:

$$m_{x+y+z} \coloneqq \phi_{agg}(m_x, m_y, m_z)$$

Step 3: Update node value

Calculate new node value:

$$\widehat{v_c} \coloneqq \phi_{upd}(v_c, m_{x+y+z})$$

Question: What exactly are ϕ_{mes} , ϕ_{agg} , ϕ_{upd} ?

Common examples for $\phi_{mes}, \phi_{agg}, \phi_{upd}$:

	ϕ_{mes}	ϕ_{agg}	ϕ_{upd}
GCNConv ([2])	?	?	
GINEConv ([1])	?	?	

In general, $\phi_{mes}, \phi_{agg}, \phi_{upd}$ can be anything

Theoretical Background - Percolation

Given are

- ightharpoonup graph G=(V,E)
- ▶ one position $(n_x, n_y) \in [0, 1] \times [0, 1]$ for each node $n \in V$
- ▶ $0 < r < \frac{1}{2}$

G is called percolating, if there are nodes $n,m\in V$ such that

- 1. there is a cycle containing n and m,
- 2. $(n, m) \in E$,
- 3. either $n_x < r$ and $m_x > 1 r$ or $n_y < r$ and $m_y > 1 r$.

(a) non-percolating

(b) percolating

Goals

Experiment 1

Input: Bravais lattice (in 2d, 3d), e.g.:

Expected output: Bravais class, e.g. square **Question:** What are

suitable choices for ϕ 's?

Experiment 2

Goals

Experiment 1

Input: Bravais lattice (in 2D, 3D), e.g.:

Expected output: Bravais class, e.g. square **Question:** What are

Question: vvnat are suitable choices for ϕ 's?

Experiment 2

Input: Graph inside unit-square, e.g.:

Expected output:

percolating or not

Question: Can this problem

be solved by a GNN?

which parameters have been varied, what data looks like

Averaged performance (over all 36 models):

Question: Do different models lead to different accuracies?

Best and worst performing models:

- (a) Best performing model $((d_m, w_m, d_u, w_u) = (2, 30, 1, 10)).$
- (b) Worst performing model $((d_m, w_m, d_u, w_u) = (3, 30, 2, 5))$

Correlation between w_m and w_u :

Training of best and worst performing models on 3D dataset:

- (a) Best performing model $((d_m, w_m, d_u, w_u) = (2, 30, 1, 10)).$
- (b) Worst performing model $((d_m, w_m, d_u, w_u) = (3, 30, 2, 5))$

why it is not possible to detect if two nodes are connected, what data looks like

Claim: GNN can solve percolation problem \implies GNN can solve connection problem

Procedure:

1. Start with arbitrary Graph G, select two nodes n, m

Claim: GNN can solve percolation problem \implies GNN can solve connection problem

Procedure:

- 1. Start with arbitrary Graph G, select two nodes $n,\ m$
- 2. Place G inside unit square, move n, m to edges, add edge (n, m) \Longrightarrow new graph \tilde{G}

Claim: GNN can solve percolation problem \implies GNN can solve connection problem

Procedure:

- 1. Start with arbitrary Graph G, select two nodes n, m
- 2. Place G inside unit square, move n,m to edges, add edge (n,m) \Longrightarrow new graph \tilde{G}
- 3. Run GNN on G \Longrightarrow either \tilde{G} is percolating (i.e. there is a cycle containing n,m and the new edge) or not

Claim: GNN can solve percolation problem \implies GNN can solve connection problem

Procedure:

- 1. Start with arbitrary Graph G, select two nodes n, m
- 2. Place G inside unit square, move n,m to edges, add edge (n,m) \Longrightarrow new graph \tilde{G}
- 3. Run GNN on \tilde{G}
- 4. \tilde{G} percolating $\iff n, m$ connected in G

ideas how to solve this problem top k poooling layer explained

why we can not expect the layyer to work results (both with and without top k)

Conclusion and Outlook

Time for Discussion and Questions

References

- [1] Weihua Hu et al. Strategies for Pre-training Graph Neural Networks. 2020. arXiv: 1905.12265 [cs.LG]. URL: https://arxiv.org/abs/1905.12265.
- [2] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. 2017. arXiv: 1609.02907 [cs.LG]. URL: https://arxiv.org/abs/1609.02907.