概率论与数理统计

Sunday 26^{th} October, 2025

目录

Ι	概率论	4
1	随机事件及其概率	4
	1.1 符号	. 4
	1.2 减法	. 4
	1.3 条件概率	. 4
	1.4 乘法公式	. 4
	1.5 古典概型	. 5
	1.6 几何概型	. 5
	1.7 完备事件组	. 5
	1.8 全概率公式	. 5
	1.8.1 全概率条件公式	. 5
	1.9 贝叶斯公式	. 5
	1.10 独立事件	. 5
	1.11 伯努利概型	. 6
2	连结刑赎机亦是五甘八 <u>左</u> 函数	6
2	连续型随机变量及其分布函数 2.1 密度函数(概率密度)	_
	2.2 分布函数	. 6
3	分布	7
	3.1 边缘分布	. 7
	3.1.1 边缘分布律	. 7
	3.1.2 边缘密度函数	. 7
	3.2 条件分布	. 8
	3.2.1 条件分布律	. 8
	3.2.2 条件密度函数	. 8
	3.3 独立性	. 8
	3.4 换元	. 8
	3.4.1 一维	. 9
	3.4.2 二维	. 9
	3.4.3 * 特殊	. 9
1	一维离散、连续型随机变量及其分布律、密度、分布函数	11
4	一年高畝、廷廷空随机受量及兵力が伴、名及、力が函数4.1 泊松定理	
	4.2 经验原则	. 12
5	二维连续型随机变量及其密度函数	12
	5.1 均匀分布	. 12
	5.2 正态分布	. 12

II	数:	埋统计	12
6	数字	特征	13
	6.1	期望	13
		6.1.1 性质	13
	6.2	方差	13
		6.2.1 标准差	13
		6.2.2 离散型	13
		6.2.3 连续型	14
		6.2.4 性质	14
	6.3	标准化随机变量	
	6.4	协方差	
		6.4.1 性质	
		6.4.2 协方差矩阵(对称矩阵)	
	6.5	(线性) 相关系数	
	0.0	6.5.1 * (线性) 均方误差	
		6.5.2 定义	
		6.5.3 性质	
		6.5.4 不(线性)相关	
		0.0.4	10
7	大数	定律与中心极限定理	16
	7.1	切比雪夫不等式	16
	7.2	大数定律	16
		7.2.1 依概率收敛	16
		7.2.2 伯努利大数定律	16
		7.2.3 切比雪夫大数定律	16
		7.2.4 辛钦大数定律	17
	7.3	中心极限定理	17
		7.3.1 定理	17
		7.3.2 列维-林德伯格定理(独立同分布)	17
		7.3.3 棣莫弗-拉普拉斯定理(二项分布)	17
8	统计	를	18
O	8.1	里 样本容量	18
	8.2	简单随机样本	
	8.3	样本联合分布函数(密度函数)	
		样本均值	
	8.4		18
	8.5	(修正) 样本方差	18
	8.6	样本标准差	18
	8.7	极差	19
	8.8	其他	
	8.9	矩	19

9	抽样分布						
	9.1 * 非中心的卡方分布	. 20					
	9.2 上侧分位点	. 21					
10	参数估计	21					
	10.1 点估计	. 21					
	10.1.1 矩估计	. 21					
	10.1.2 极大似然估计	. 21					
	10.2 点估计量评价标准	. 22					
	10.2.1 * 均方误差	. 22					
	10.2.2 无偏性	. 22					
	10.2.3 有效性	. 22					
	10.2.4 相合(一致)性	. 22					
	10.3 区间估计	. 22					
11	假设检验	23					
II	附录	25					
\mathbf{A}	正态总体相关表	25					

Part I

概率论

1 随机事件及其概率

1.1 符号

 名词	符号	注释
随机实验	E	
样本点	ω	
样本空间	Ω	
交 (积) 事件	$A \cap B$ 或 AB	$ \left \{ \omega \omega \in A \land \omega \in B \} \right $
并事件	$A \cup B$	$ \left \{ \omega \omega \in A \lor \omega \in B \} \right $
差事件	A - B	$ \left \{\omega \omega \in A \land \omega \notin B\} \right $
相容事件		$A \cap B \neq \emptyset$
互斥事件		$A \cap B = \emptyset$
对立事件	\overline{A}	$\Omega - A$
概率	$P\left(A\right)$	

1.2 减法

$$A \supseteq B \implies P(A - B) = P(A) - P(B)$$

推论:
$$P(A\overline{B}) = P(A - AB) = P(A) - P(AB)$$

1.3 条件概率

已知 A 事件发生,发生 B 事件的概率 (P(A) > 0)

$$P(B|A) = \frac{P(AB)}{P(A)}$$

1.4 乘法公式

$$P\left(A\right) > 0$$

$$P(AB) = P(A) P(B|A)$$

1.5 古典概型

$$P(A) = \frac{A \text{所含样本点个数}}{\Omega \text{样本点个数}}$$

1.6 几何概型

$$P(A) = \frac{A$$
的几何测度
 Ω 的几何测度

1.7 完备事件组

 $\{A_i\}$

$$\bigcup A_i = \Omega; A_i \cap A_j = \emptyset \ (i \neq j)$$

- 1.8 全概率公式
- ${A_i}$ 完备事件组

$$P(B) = \sum P(A_i B) = \sum P(A_i) P(B|A_i)$$

1.8.1 全概率条件公式

$$P(C|B) = \sum P(A_iC|B) = \sum P(A_i|B) P(C|A_iB)$$

1.9 贝叶斯公式

$$P(A_j|B) = \frac{P(A_jB)}{P(B)} = \frac{P(A_jB)}{\sum P(A_iB)} = \frac{P(A_j)P(B|A_j)}{\sum P(A_i)P(B|A_i)}$$

1.10 独立事件

$$A, B$$
相互独立 \iff $P(AB) = P(A)P(B)$ \iff $P(A|B) = P(A)$ \iff $P(A|B) = P(A|\overline{B})$ \iff \overline{A}, B 相互独立 \iff $\overline{A}, \overline{B}$ 相互独立 \iff $\overline{A}, \overline{B}$ 相互独立

$$A, B, C$$
相互独立 \iff $P(AB) = P(A)P(B)$;
$$P(AC) = P(A)P(C)$$
;
$$P(BC) = P(B)P(C)$$
;
$$P(ABC) = P(A)P(B)P(C)$$

1.11 伯努利概型

定义:

- 1. 每次试验对应样本空间相同
- 2. 各次试验结果相对独立
- 3. 只考虑两种结果
 - n 重伯努利试验中,A 事件恰好发生 k 次的概率为 $C_n^k p^k \left(1-p\right)^{n-k}$

2 连续型随机变量及其分布函数

2.1 密度函数 (概率密度)

$$f(x)$$
、 $f(x,y)$ 等

性质

$$f(x) \ge 0$$

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1$$

2.2 分布函数

$$F(x)$$
、 $F(x,y)$ 等

定义

$$P\left\{X = x_0\right\} = \lim_{x \to x_0^+} F\left(x\right) - \lim_{x \to x_0^-} F\left(x\right)$$

当 F(x) 连续时 (连续型随机变量)

$$P\left\{X = x_0\right\} = 0$$

$$F(x) = P\{X \le x\} = \int_{-\infty}^{x} f(t) dt$$
$$F(x,y) = P\{X \le x, Y \le y\} = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

性质

$$F(x) \geqslant 0; F(x) \nearrow$$

$$\lim_{x \to +\infty} F\left(x\right) = 1$$

- 3 分布
- 3.1 边缘分布

$$F_X(x) = P\left\{X \leqslant x\right\} = \lim_{y \to +\infty} F(x, y) = F(x, +\infty)$$

$$F_{Y}(y) = P\left\{Y \leqslant y\right\} = \lim_{x \to +\infty} F\left(x, y\right) = F\left(+\infty, y\right)$$

3.1.1 边缘分布律

$$P\{X = x_i\} = \sum_{i} P\{X = x_i, Y = y_j\}$$

$$P\{Y = y_j\} = \sum_{i} P\{X = x_i, Y = y_j\}$$

3.1.2 边缘密度函数

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

3.2 条件分布

$$F_{X|Y}\left(x|y\right) = P\left\{X \leqslant x|Y = y\right\} = \int_{-\infty}^{x} f_{X|Y}\left(t|y\right) dt$$

$$F_{Y|X}(y|x) = P\left\{Y \leqslant y|X = x\right\} = \int_{-\infty}^{y} f_{Y|X}(x|t) dt$$

3.2.1 条件分布律

$$p_{j|i} = P\left\{Y = y_j | X = x_i\right\} = \frac{P\left\{X = x_i, Y = y_j\right\}}{P\left\{X = x_i\right\}} = \frac{p_{ij}}{p_{i\cdot}}$$

$$p_{i|j} = P\left\{X = x_i | Y = y_j\right\} = \frac{P\left\{X = x_i, Y = y_j\right\}}{P\left\{Y = y_j\right\}} = \frac{p_{ij}}{p_{\cdot j}}$$

3.2.2 条件密度函数

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

3.3 独立性

$$(X,Y) \sim f(x,y)$$

若 X,Y 独立 充要条件 1:

$$f\left(x,y\right) = f_X\left(x\right) f_Y\left(y\right)$$

充要条件 2:

$$F(x,y) = F_X(x) F_Y(y)$$

3.4 换元

以下都有

$$(X,Y) \sim f(x,y)$$

其中 g 为单调可导函数

3.4.1 一维

$$Y = h(X)$$

令 $g=h^{-1}$,即 $X=g\left(Y\right)$,其中 g 为单调可导函数 (即 h^{-1} 单调可导)

$$F_{Y}(y) = P \{Y \leq y\}$$

$$= P \{h(X) \leq y\} = P \{X \leq g(y)\}$$

$$= F_{h(X)}(y) = F_{X}(g(y))$$

$$= \int_{h(X) \leq y} f(t) dt$$

$$f_Y(y) = F_Y'(y)$$

3.4.2 二维

$$Z = g(X, Y)$$

3.4.3 * 特殊

和 Z = X + Y

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \int_{-\infty}^{+\infty} f(z - y, y) dy$$

若 X,Y 独立

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z - x) dx = \int_{-\infty}^{+\infty} f_{X}(z - y) f_{Y}(y) dy = f_{X}(z) * f_{Y}(z)$$

商 $Z = \frac{X}{V}$

$$f_{Z}\left(z\right) = \int\limits_{-\infty}^{+\infty} \left|y\right| f\left(yz,y\right) \mathrm{d}y$$

若 X,Y 独立

$$f_{Z}(z) = \int_{-\infty}^{+\infty} |y| f_{X}(yz) f_{Y}(y) dy$$

积 Z = XY

$$f_{Z}(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) dx = \int_{-\infty}^{+\infty} \frac{1}{|y|} f\left(\frac{z}{y}, y\right) dy$$

若 X,Y 独立

$$f_{Z}(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f_{X}(x) f_{Y}\left(\frac{z}{x}\right) dx = \int_{-\infty}^{+\infty} \frac{1}{|y|} f_{X}\left(\frac{z}{y}\right) f_{Y}(y) dy$$

最值分布 若 X, Y 独立

$$M = \max \left\{ X, Y \right\}, N = \min \left\{ X, Y \right\}$$

则

$$F_{M} = F_{X}F_{Y}$$

$$1 - F_{N} = (1 - F_{X})(1 - F_{Y})$$

$$f_{M} = F'_{M} = f_{X}F_{Y} + f_{Y}F_{X}$$

$$f_{N} = F'_{N} = f_{X}(1 - F_{Y}) + f_{Y}(1 - F_{X})$$

4 一维离散、连续型随机变量及其分布律、密度、分布函数

分布	期望	方差	注释	密度函数	分布函数或分布律
两点分布 B(1,p)	p	p(1-p)	$p \in (0,1)$		$\begin{array}{c cccc} X & 0 & 1 \\ \hline P & 1-p & p \end{array}$
二项分布 $B(n,p)$	np	np(1-p)	$p \in (0,1)$ $n \in \mathbb{N}^+$ $k \geqslant 0$		$C_n^k p^k (1-p)^{n-k}$
泊松分布 P(λ)	λ	λ	$\lambda > 0$ $k \geqslant 0$		$\frac{\lambda^k}{k!} \mathrm{e}^{-\lambda}$
几何分布 $G\left(p\right)$	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$	$p \in (0,1)$ $k > 0 \qquad \text{if } k - 1$	-1次都失败,第 k 次成功	$(1-p)^{k-1}p$
超几何分布 H (M, N, n)	$\frac{nM}{N}$	$\frac{nM}{N}.$ $\left(1 - \frac{M}{N}\right)$ $\cdot \frac{N-n}{N-1}$	$N > 1$ $n \le N$ $M \le N$ k $\max \{0, n + M - 1\}$	总样本数 抽取样本数 指定样本数 抽到指定样本数 $-N$ $\leqslant k \leqslant \min \{M,n\}$	$\frac{\mathbf{C}_{M}^{k}\mathbf{C}_{N-M}^{n-k}}{\mathbf{C}_{N}^{n}}$
均匀分布 U[a,b]	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$		$\begin{cases} \frac{1}{b-a} & x \in (a,b) \\ 0 & x \notin (a,b) \end{cases}$	$\begin{cases} 0 & x \leqslant a \\ \frac{x-a}{b-a} & x \in (a,b) \\ 1 & x \geqslant b \end{cases}$
指数分布 $E(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\lambda > 0$	$\begin{cases} \lambda e^{-\lambda x} & x > 0\\ 0 & x \le 0 \end{cases}$	$\begin{cases} 1 - e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases}$
标准正态分 布 N(0,1)	0	1		$\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^2}{2}\right)$	$\frac{1}{2}\mathrm{erf}\left(\frac{x}{\sqrt{2}}\right) + \frac{1}{2}$
正态分布 $N(\mu, \sigma^2)$	μ	σ^2	μ∈ℝ 期望σ>0 标准差	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$\frac{1}{2}\mathrm{erf}\left(\frac{x-\mu}{\sqrt{2}\sigma}\right) + \frac{1}{2}$

二项分布又名伯努利分布

4.1 泊松定理

n 重伯努利试验中,事件发生概率 $p_n\in(0,1)$ 与试验次数有关,当 $p_n<0.1;n>100$ 时可近似为泊松分布。若 $\lim_{n\to\infty}np_n=\lambda$,则

$$\lim_{n \to \infty} C_n^k p_n^k (1 - p_n)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda}$$

正态分布又名高斯分布

n 重伯努利试验:只有两种结果,且每次实验概率相同、相互独立,做n次

4.2 经验原则

$$P\{|X - \mu| < k\sigma\} = 2\Phi_0(k) - 1 (k \ge 0)$$

$$\begin{cases} P\{|X - \mu| < \sigma\} = 0.6827 \\ P\{|X - \mu| < 2\sigma\} = 0.9545 \\ P\{|X - \mu| < 3\sigma\} = 0.9973 \end{cases}$$

5 二维连续型随机变量及其密度函数

5.1 均匀分布

$$(X,Y) \sim U(D)$$

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D\\ 0 & (x,y) \notin D \end{cases}$$

5.2 正态分布

$$(X,Y) \sim N(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$$

 $\mu \in \mathbb{R}$ 期望

 $\sigma > 0$ 标准差

 $\rho \in (-1,1)$,相关系数 $(\rho = 0 \text{ 时 } X,Y \text{ 独立})$

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)} \left(\frac{(x-\mu_X)^2}{\sigma_X^2} - 2\rho \frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2}\right)\right]$$

若 X,Y 独立

$$\left. \begin{array}{l} X \sim N\left(\mu_X, \sigma_X^2\right) \\ Y \sim N\left(\mu_Y, \sigma_Y^2\right) \end{array} \right\} \implies (X, Y) \sim N\left(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, 0\right)$$

$$Z = aX + bY \sim N\left(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2\right)$$

Part II

数理统计

- 6 数字特征
- 6.1 期望

期望	离散型	连续型
$E\left(X\right)$	$\sum x_i p_i$	$\int_{-\infty}^{+\infty} x f(x) \mathrm{d}x$
E(Y)(Y = g(X))	$\sum g\left(x_{i}\right)p_{i}$	$\int_{-\infty}^{+\infty} g(x) f(x) dx$
$E\left(Z\right)\left(Z=g\left(X,Y\right)\right)$	$\left \sum_{i} \sum_{j} g\left(x_{i}, y_{j}\right) p_{ij} \right $	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f(x, y) dxdy$

6.1.1 性质

线性

$$E(kX + c) = kE(X) + c$$

$$E\left(X\pm Y\right)=E\left(X\right)\pm E\left(Y\right)$$

线性相关性

$$X,Y$$
不相关 $\iff E(XY) = E(X)E(Y)$

6.2 方差

$$D(X) = E[(X - E(X))^{2}] = E(X^{2}) - (E(X))^{2}$$

6.2.1 标准差

$$\sqrt{D\left(X\right) }$$

6.2.2 离散型

$$D(X) = \sum (x_i - E(X))^2 p_i$$

6.2.3 连续型

$$D(X) = \int_{-\infty}^{+\infty} (x - E(X))^2 f(x) dx$$

6.2.4 性质

线性

$$D\left(kX+c\right) = k^2 D\left(X\right)$$

线性相关性

$$X,Y$$
不相关 $\iff D(X \pm Y) = D(X) + D(Y)$

6.3 标准化随机变量

$$X^* = \frac{X - E(X)}{\sqrt{D(X)}}$$
$$E(X^*) = 0$$
$$D(X^*) = 1$$

6.4 协方差

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y)$$

6.4.1 性质

$$D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X, Y)$$
$$Cov(X, X) = D(X)$$

交换律

$$Cov(X, Y) = Cov(Y, X)$$

线性

$$Cov(X, c) = 0$$

$$\operatorname{Cov}\left(\sum a_i X_i, \sum b_j Y_j\right) = \sum_i \sum_j a_i b_j \operatorname{Cov}\left(X_i, Y_j\right)$$

6.4.2 协方差矩阵(对称矩阵)

X,Y 的协方差矩阵为

$$\begin{bmatrix} \operatorname{Cov}\left(X,X\right) & \operatorname{Cov}\left(X,Y\right) \\ \operatorname{Cov}\left(Y,X\right) & \operatorname{Cov}\left(Y,Y\right) \end{bmatrix} = \begin{bmatrix} D\left(X\right) & \operatorname{Cov}\left(X,Y\right) \\ \operatorname{Cov}\left(X,Y\right) & D\left(Y\right) \end{bmatrix}$$

6.5 (线性)相关系数

6.5.1 *(线性)均方误差

用 aX + b 去拟合 Y

e(a,b) 越小表明线性关系越强,越大越弱

 $e(a_0,b_0)$ 最小均方误差

 (a_0,b_0) 驻点

$$a_0 \frac{\operatorname{Cov}(X,Y)}{D(X)}$$

$$b_0 E(Y) - a_0 E(X)$$

$$e(a,b) = E\left[(Y - (aX + b))^2 \right]$$

$$e(a_0, b_0) = (1 - \rho_{XY}^2) D(Y)$$

6.5.2 定义

$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

6.5.3 性质

$$\rho \in [-1, 1]$$

$$|\rho_{XY}|=1\iff P\{Y=aX+b\}=1 \ (a\neq 0) \begin{cases} a>0 \ (正相关) \ \rho_{XY}= \ 1 \\ a<0 \ (负相关) \ \rho_{XY}= \ -1 \end{cases}$$

$$\rho_{(aX)(bY)}=\frac{ab}{|ab|}\rho_{XY}$$

6.5.4 不(线性)相关

$$\rho = 0$$

$$\iff \operatorname{Cov}(X, Y) = 0$$

$$\iff E(XY) = E(X) E(Y)$$

$$\iff D(X \pm Y) = D(X) + D(Y)$$

独立 → 不相关

7 大数定律与中心极限定理

7.1 切比雪夫不等式

设 X 有有限方差(即有界)

7.2 大数定律

7.2.1 依概率收敛

随机变量序列 $\{X_n\}$ 依概率收敛于常数 a

$$X_n \stackrel{P}{\to} a (n \to \infty)$$

定义为

$$\forall \varepsilon > 0 \to \lim_{n \to \infty} P\{|X_n - a| < \varepsilon\} = 1$$

7.2.2 伯努利大数定律

设事件 A 每次实验发生概率为 p, 且 n 重伯努利试验中发生次数为 n_A , 则

$$\begin{split} &\forall \varepsilon > 0 \\ &\to \lim_{n \to \infty} P\left\{ \left| \frac{n_A}{n} - p \right| < \varepsilon \right\} = 1 \\ & \vec{\boxtimes} \lim_{n \to \infty} P\left\{ \left| \frac{n_A}{n} - p \right| \geqslant \varepsilon \right\} = 0 \end{split}$$

7.2.3 切比雪夫大数定律

设随机变量序列 $\{X_i\}$ 相互独立 (可不同分布),且有有限方差,则

$$\forall \varepsilon > 0$$

$$\to \lim_{n \to \infty} \left\{ \left| \bar{X} - E\left(\bar{X}\right) \right| < \varepsilon \right\} = 1$$

$$\vec{\boxtimes} \lim_{n \to \infty} \left\{ \left| \bar{X} - E\left(\bar{X}\right) \right| \geqslant \varepsilon \right\} = 0$$

7.2.4 辛钦大数定律

设随机变量序列 $\{X_i\}$ 独立同分布,则有相同的期望 μ ,则

$$\begin{split} &\forall \varepsilon > 0 \\ &\rightarrow \lim_{n \to \infty} \left\{ \left| \bar{X} - \mu \right| < \varepsilon \right\} = 1 \\ &\vec{\mathbb{R}} \lim_{n \to \infty} \left\{ \left| \bar{X} - \mu \right| \geqslant \varepsilon \right\} = 0 \end{split}$$

7.3 中心极限定理

7.3.1 定理

设随机变量序列 $\{X_i\}$ 相互独立 (可不同分布),期望、方差均存在,则

$$\lim_{n \to \infty} \bar{X} \sim N\left(E\left(\bar{X}\right), D\left(\bar{X}\right)\right)$$

$$\lim_{n \to \infty} \frac{\bar{X} - E\left(\bar{X}\right)}{\sqrt{D\left(\bar{X}\right)}} \sim N\left(0, 1\right)$$

$$\lim_{n \to \infty} P\left\{\frac{\bar{X} - E\left(\bar{X}\right)}{\sqrt{D\left(\bar{X}\right)}} \leqslant x\right\} = \Phi_0\left(x\right)$$

7.3.2 列维-林德伯格定理(独立同分布)

设随机变量序列 $\{X_i\}$ 独立同分布,存在相同的期望 μ 、方差 σ^2 ,则

$$\lim_{n \to \infty} \bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\lim_{n \to \infty} \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N\left(0, 1\right)$$

$$\lim_{n \to \infty} P\left\{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leqslant x\right\} = \Phi_0\left(x\right)$$

7.3.3 棣莫弗-拉普拉斯定理(二项分布)

设随机变量 $\eta_n \sim B(n,p)$, 则

$$\lim_{n \to \infty} \eta_n \sim N\left(np, np\left(1-p\right)\right)$$

$$\lim_{n \to \infty} \frac{\eta_n - np}{\sqrt{np(1-p)}} \sim N(0,1)$$

$$\lim_{n\to\infty} P\left\{\frac{\eta_n - np}{\sqrt{np(1-p)}} \leqslant x\right\} = \Phi_0(x)$$

显然 $\eta_n = \sum_{i=1}^n X_i$, 其中随机变量序列 $\{X_i\}$ 独立同服从 B(1,p) 分布

- 8 统计量
- 8.1 样本容量

n

8.2 简单随机样本

$$X_1, X_2, \cdots, X_n$$
相互独立且同分布

8.3 样本联合分布函数(密度函数)

$$F(x_1, x_2, \cdots, x_n) = \prod F(x_i)$$

$$f(x_1, x_2, \cdots, x_n) = \prod f(x_i)$$

$$P\{X_1 = x_1, X_2 = x_2, \cdots, X_n = x_n\} = \prod p_i$$

8.4 样本均值

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

8.5 (修正) 样本方差

注:下文所谓"样本方差"均指"修正样本方差"

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right)$$

8.6 样本标准差

$$S = \sqrt{S^2}$$

8.7 极差

$$\max_{1 \leqslant i \leqslant n} X_i - \min_{1 \leqslant i \leqslant n} X_i$$

8.8 其他

以下都有,若随机变量序列 $\{X_i\}$ 独立同分布,则

$$E(X_1) = E(X_2) = \dots = E(X_n) = \mu$$

 $D(X_1) = D(X_2) = \dots = D(X_n) = \sigma^2$

样本均值的期望等于总体期望,样本方差的期望等于总体方差

$$E(\bar{X}) = \mu$$

$$E(S^2) = \sigma^2$$

$$D(\bar{X}) = \frac{\sigma^2}{n}$$

样本均值与样本方差相互独立

 \bar{X}, S_X^2 相互独立

8.9 矩

名称	定义	离散	连续
k 阶原点矩	$E\left(X^{k} ight)$	$\sum x_i^k p_i$	$\int_{-\infty}^{+\infty} x^k f(x) \mathrm{d}x$
k 阶中心矩	$E\left[\left(X-E\left(X\right)\right)^{k}\right]$	$\sum \left(x_i - \bar{X}\right)^k p_i$	$\int_{-\infty}^{+\infty} \left(x - \bar{X}\right)^k f(x) \mathrm{d}x$
k+l 阶混合原点矩	$E\left(X^{k}Y^{l} ight)$		
k+l 阶混合中心矩	$E\left[\left(X - E\left(X\right)\right)^{k} \left(Y - E\left(Y\right)\right)^{l}\right]$		

 $k,l\in\mathbb{N}^+$

1 阶原点矩 = E(X)

1 阶中心矩 = 0

2 阶中心矩 = D(X)

1+1 阶混合中心矩 = Cov(X, Y)

9 抽样分布

/\ /- :	期望	方差	注释	性质		
分布 	* 密度函数					
* 伽马分布 $X \sim \Gamma(\alpha, \beta)$	$\frac{\alpha}{\beta}$	$\frac{lpha}{eta^2}$	伽马函数 $\Gamma(x) = \int_{0}^{+\infty} t^{x-1} e^{-t} dt (x$	非负 再生性 $X_1 \sim \Gamma(\alpha_1, \beta), X_2 \sim \Gamma(\alpha_2, \beta)$ 且 X_1, X_2 相互独立 则 $X_1 + X_2 \sim \Gamma(\alpha_1 + \alpha_2, \beta)$		
		$f\left(x,\alpha\right)$	$(\beta, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} (x > 1)$	> 0,其余概率密度为0)		
卡方分布 $\chi^2 \sim \chi^2(n)$ $= \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$	n	2n	$\chi^2 = \sum_{i=1}^n X_i^2$ n 自E $X_i \sim N(0,1)$ 独立同分	$ y \chi_1^2 + \chi_2^2 \sim \chi^2 (m+n)$		
	$f(x,n) = \frac{x^{\frac{n}{2}-1}e^{-\frac{x}{2}}}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} (x > 0, 其余概率密度为0)$					
t 分布 T ~ t(n)	0 $(n > 1)$	$\frac{n}{n-2}$ $(n>2)$	$T = \frac{X}{\sqrt{Y/n}}$ n 自由 $X \sim N(0,1)$ 相互独 $Y \sim \chi^2(n)$	n 充分大时,为标四万和 n 充分大时,为标准正态分布		
	$f(x,n) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$					
F 分布 $F \sim F(m,n)$		$\frac{2n^2}{n-4}$ $(n>4)$	$F = \frac{X/m}{Y/n}$ m 第一自由 n 第二自由 $X \sim \chi^2(m)$ 相互独 $Y \sim \chi^2(n)$	IDE $F \sim F(n,n) \implies F^{-1} \sim F(n,m)$ IDE $F \sim F(m,n) \implies F^{-1} \sim F(n,m)$		
	$f\left(x,m\right)$	$(n,n) = \frac{\Gamma\left(\frac{m}{2}\right)}{\Gamma\left(\frac{m}{2}\right)}$	$\frac{\left(\frac{n+n}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \left(\frac{m}{n}\right)^{\frac{m}{2}} x^{\frac{m}{2}-1} \left(1 + \frac{m}{r}\right)^{\frac{m}{2}}$	$\left(\frac{1}{x}\right)^{-\frac{m+n}{2}} (x > 0, 其余概率密度为0)$		

9.1 * 非中心的卡方分布

 $X_i \sim N(\mu_i, 1)$ 共 n 个且独立

δ 非中心参数

$$\delta = \sqrt{\sum_{i=1}^{n} \mu_i^2}$$

$$\chi_{n,\delta}^2 = \sum_{i=1}^n X_i^2$$

9.2 上侧分位点

 x_p 上侧分位点

 $p x_p$ 右侧区域的概率

$$P\left\{X\geqslant x_{p}\right\}=p\left(p\in\left(0,1\right)\right)$$

10 参数估计

10.1 点估计

10.1.1 矩估计

基本思想 样本矩代替总体矩,建立 k 个方程,从中解出 k 个未知参数的矩估计量(低阶矩优先)

$$k=1$$
 一般采用 $\bar{X}=E(X)$

$$k=2$$
 一般采用
$$\begin{cases} E\left(X\right)=ar{X} \\ E\left(X^2\right)=rac{1}{n}\sum_{i=1}^n X_i^2 \end{cases}$$
 也可以用
$$\begin{cases} E\left(X\right)=ar{X} \\ D\left(X\right)=rac{1}{n}\sum_{i=1}^n \left(X_i-ar{X}\right)^2 \end{cases}$$

10.1.2 极大似然估计

 θ_i 估计量(即分布的未知参数)

 $p(x;\theta_1,\theta_2,\cdots)X_1,X_2,\cdots$ 的分布律或密度函数

 $L(\theta_1, \theta_2, \cdots) = L(x_1, x_2, \cdots; \theta_1, \theta_2, \cdots)$ 似然函数 (样本联合分布函数)

设 X_1, X_2, \cdots 为分布 $F(\theta_1, \theta_2, \cdots)$ 的简单随机样本构造似然函数

$$L(x_1, x_2, \dots; \theta_1, \theta_2, \dots) = \prod p(x_i; \theta_1, \theta_2, \dots)$$

调整估计量 θ_i , 令似然函数 $L(\theta_1, \theta_2, \cdots)$ 取极大值

$$L\left(x_1, x_2, \dots; \hat{\theta}_1, \hat{\theta}_2, \dots\right) = \max\left\{L\left(x_1, x_2, \dots; \theta_1, \theta_2, \dots\right)\right\}$$

则此时估计值为 $\hat{\theta}_i = \hat{\theta}_i(x_1, x_2, \cdots)$

$$\ln L(\theta_1, \theta_2, \cdots) = \sum \ln p(x_i; \theta_1, \theta_2, \cdots)$$

令每个偏导为 0 即可求驻点 (若只有一个估计量则直接求导)

$$\frac{\partial}{\partial \theta_i} \ln L\left(\theta_1, \theta_2, \cdots\right) = 0$$

- 10.2 点估计量评价标准
- 10.2.1 * 均方误差

$$E\left[\left(\hat{\theta} - \theta\right)^{2}\right] = D\left(\hat{\theta}\right) + \left(\theta - E\left(\hat{\theta}\right)\right)^{2}$$

10.2.2 无偏性

无偏估计 $E(\hat{\theta}) = \theta$ 否则为有偏估计

渐进无偏估计 $\lim_{n\to\infty} E\left(\hat{\theta}\right) = \theta$

性质 \bar{X} 是 μ 的无偏估计,即 $E(\bar{X}) = \mu$ S^2 是 σ^2 的无偏估计,即 $E(S^2) = \sigma^2$ S 不是 σ 的无偏估计, $E(S) = \sqrt{\sigma^2 - D(S)} \leqslant \sigma$ 未修正样本方差 $S_0^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2$ 是 σ^2 的有偏估计,也是 σ^2 的渐进无偏估计

10.2.3 有效性

 $\hat{\theta}_1, \hat{\theta}_2$ 均为 θ 的无偏估计,均方误差准则就是方差准则,若 $D\left(\hat{\theta}_1\right) < D\left(\hat{\theta}_2\right)$,称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效

10.2.4 相合(一致)性

$$\forall \varepsilon > 0 \to \lim_{n \to \infty} P\left\{ \left| \hat{\theta} - \theta \right| < \varepsilon \right\} = 1$$

- 10.3 区间估计
 - θ 未知参数
 - T 已知参数

F 已知分布且与 θ 无关

$I(T,\theta)$ 枢轴变量, 服从分布 F

 $\alpha \in (0,1)$ 显著性水平 (通常取值为 0.05 或 0.01)

 $1-\alpha$ 置信水平(置信度)

 $v_{\frac{\alpha}{2}}$ F 的上 $\frac{\alpha}{2}$ 分位点

 $v_{1-\frac{\alpha}{2}}$ F 的上 $1-\frac{\alpha}{2}$ 分位点

 $\left(\hat{\theta}_{1},\hat{\theta}_{2}\right)$ 双侧置信区间,置信下限 $\hat{\theta}_{1}=\hat{\theta}_{1}\left(T\right)$,置信上限 $\hat{\theta}_{2}=\hat{\theta}_{2}\left(T\right)$

 $\left(\hat{\theta}_1,\hat{\theta}_2\right)$ 是 θ 的置信水平为 $1-\alpha$ 的(双侧)置信区间

$$P\left\{v_{1-\frac{\alpha}{2}} < I\left(T,\theta\right) < v_{\frac{\alpha}{2}}\right\} = 1 - \alpha \implies P\left\{\hat{\theta}_{1} < \theta < \hat{\theta}_{2}\right\} = 1 - \alpha$$

11 假设检验

 H_0 原假设 (零假设)

 H_1 备择假设(取原假设的逆命题)

弃真错误(第一类错误、 α 错误) H_0 为真,且被拒绝

纳伪错误(第二类错误、 β 错误) H_0 为假,且被接受

 $\alpha P\{(x_1,x_2,\cdots,x_n\in W)|H_0$ 为真} 或 $P_{\theta\in\Theta_W}\{H_0$ 为真}; 显著性水平、弃真错误的概率

 $\beta P\{(x_1,x_2,\cdots,x_n\in D)|H_0$ 为假} 或 $P_{\theta\in\Theta_D}\{H_0$ 为假}; 纳伪错误的概率

W 拒绝域; 若统计量的值属于拒绝域, 则拒绝 H_0

D 接受域; 若统计量的值属于接受域, 则接受 H_0

决策	总体情况		
伏泉	H ₀ 为真	H ₀ 为假	
接受 H ₀	正确 (1 – α)	纳伪 (β)	
	弃真 (α)	正确 $(1-\beta)$	

 $H_0: \theta = \theta_0$ 时,选择双侧检验(拒绝两侧偏离 θ_0 的值)

 $H_0: \theta > \theta_0$ 时,选择左侧检验(拒绝左侧远小于 θ_0 的值)

 $H_0: \theta < \theta_0$ 时,选择右侧检验(拒绝右侧远大于 θ_0 的值)

Part III

附录

A 正态总体相关表

以下都有,两个样本相互独立:

$$X_1, X_2, \cdots, X_m \sim N\left(\mu_X, \sigma_X^2\right)$$

 $Y_1, Y_2, \cdots, Y_n \sim N\left(\mu_Y, \sigma_Y^2\right)$

表 1: 正态总体的常用统计量分布

 符号	统计量	服从分布
	$ar{X}$	$N\left(\mu, \frac{\sigma^2}{n}\right)$
U	$\bar{X}^* = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	$N\left(0,1 ight)$
V	$\frac{(n-1) S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2$	$\chi^2 (n-1)$
\overline{W}	$\sum_{i=1}^{n} X_i^{*2} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2$	$\chi^{2}\left(n\right)$
$\frac{U}{\sqrt{V/\left(n-1\right)}}$	$\frac{\bar{X} - \mu}{S/\sqrt{n}}$	t(n-1)
	$ar{X}\pmar{Y}$	$N\left(\mu_X \pm \mu_Y, \frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}\right)$
U_1	$(\bar{X} \pm \bar{Y})^* = \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}$	$N\left(0,1 ight)$
$V_1 = V_X + V_Y$	$\frac{(m-1) S_X^2}{\sigma_X^2} + \frac{(n-1) S_Y^2}{\sigma_Y^2}$	$\chi^2 \left(m + n - 2 \right)$
$\frac{W_X/m}{W_Y/n}$	$\frac{\sum_{i=1}^{m} X_i^{*2}/m}{\sum_{i=1}^{n} Y_i^{*2}/n} = \frac{\sum_{i=1}^{m} (X_i - \mu_X)^2 / m\sigma_X^2}{\sum_{i=1}^{n} (Y_i - \mu_Y)^2 / n\sigma_Y^2}$	$F\left(m,n ight)$
$\frac{V_X/\left(m-1\right)}{V_Y/\left(n-1\right)}$	$rac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2}$	$F\left(m-1,n-1\right)$
$\sigma_X^2 = \sigma_Y^2 = \sigma^2$ 时 $\frac{U_1}{\sqrt{V_1/(m+n-2)}}$	$\frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}} \cdot \sqrt{\frac{1}{m} + \frac{1}{n}}}$	t(m+n-2)

 $^{^{\}dagger}$ $ar{X},S_X^2$ 相互独立

表 2: 正态总体的区间估计枢轴变量和置信水平为 $1-\alpha$ 的双侧置信区间

待估参数 θ	条件 T	枢轴变量 I	服从分布 F	双侧置信区间 $\left(\hat{ heta}_1,\hat{ heta}_2 ight)$
	σ^2 己知	$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$	$N\left(0,1\right)$	$\left(\bar{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$
μ	σ^2 未知	$\frac{\bar{X} - \mu}{S/\sqrt{n}}$	t(n-1)	$\left(\bar{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2} \left(n - 1\right)\right)$
σ^2	μ 已知	$\frac{1}{\sigma^2} \sum_{i=1}^n \left(X_i - \mu \right)^2$	$\chi^{2}\left(n\right)$	$\left(\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{\alpha/2}^2(n)}, \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{1-\alpha/2}^2(n)}\right)$
	μ 未知	$\frac{(n-1)S^2}{\sigma^2}$	$\chi^2 (n-1)$	$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right)$
	σ_X^2, σ_Y^2 已知	$\frac{\left(\bar{X} - \bar{Y}\right) - \left(\mu_X - \mu_Y\right)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}$	$N\left(0,1\right)$	$\left(\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}\right)$
$\mu_X - \mu_Y$	$\sigma_X^2 = \\ \sigma_Y^2 = \\ \sigma^2 未知$	$\frac{\left(\bar{X} - \bar{Y}\right) - (\mu_X - \mu_Y)}{S_{\omega} \cdot \sqrt{\frac{1}{m} + \frac{1}{n}}}$	t(m+n-2)	$\left[\frac{\left(\bar{X} - \bar{Y} \pm \right)}{t_{\alpha/2} \left(m + n - 2\right) S_{\omega} \cdot \sqrt{\frac{1}{m} + \frac{1}{n}}} \right]$
$rac{\sigma_X^2}{\sigma_Y^2}$	μ_X,μ_Y 已知	$\frac{\sum\limits_{i=1}^{m}\left(X_{i}-\mu_{X}\right)^{2}/m\sigma_{X}^{2}}{\sum\limits_{i=1}^{n}\left(Y_{i}-\mu_{Y}\right)^{2}/n\sigma_{Y}^{2}}$	$F\left(m,n ight)$	$ \frac{1}{n} \sum_{i=1}^{m} (X_i - \mu_X)^2 \\ \frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu_Y)^2 F_{\alpha/2}(m, n) \\ \frac{1}{m} \sum_{i=1}^{m} (X_i - \mu_X)^2 \\ \frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu_Y)^2 F_{1-\alpha/2}(m, n) $
	μ_X, μ_Y 未知	$\frac{S_X^2/S_Y^2}{\sigma_X^2/\sigma_Y^2}$	$F\left(m-1,n-1\right)$	$ \left(\frac{S_X^2}{S_Y^2} \cdot \frac{1}{F_{\alpha/2} (m-1, n-1)}, \frac{S_X^2}{S_Y^2} \cdot \frac{1}{F_{1-\alpha/2} (m-1, n-1)}\right) $

表 3: 正态总体的假设检验检验统计量和置信水平为 $1-\alpha$ 的拒绝域

原假设 H ₀	其他参数 T	检验统计量 I	服从分布 F	拒绝域 W
$= \mu_0$		$U = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$	$N\left(0,1 ight)$	$ u \geqslant u_{\alpha/2}$
$\mu \leqslant \mu_0$	σ^2 已知			$u \geqslant u_{\alpha}$
$\mu \geqslant \mu_0$		σ / ψ		$u \leqslant -u_{\alpha}$
$\mu = \mu_0$		_		$ t \geqslant t_{\alpha/2} \left(n - 1 \right)$
$\mu \leqslant \mu_0$	σ^2 未知	$T = \frac{X - \mu_0}{S/\sqrt{n}}$	t(n-1)	$t \geqslant t_{\alpha} \left(n - 1 \right)$
$\mu \geqslant \mu_0$, v		$t \leqslant -t_{\alpha} \left(n - 1 \right)$
$\sigma^2 = \sigma_0^2$				$\chi^2 \geqslant \chi^2_{\alpha/2}(n)$ 或
-	μ 已知	$\chi^{2} = \frac{1}{\sigma_{0}^{2}} \sum_{i=1}^{n} (X_{i} - \mu)^{2}$	$\chi^{2}\left(n ight)$	$\chi^2 \leqslant \chi^2_{1-\alpha/2} \left(n \right)$
$\sigma^2 \leqslant \sigma_0^2$		$\int_{0}^{\infty} \sigma_0^2 \sum_{i=1}^{\infty} (\Pi_i - \mu_i)$	χ (π)	$\chi^2 \geqslant \chi^2_\alpha\left(n\right)$
$\sigma^2 \geqslant \sigma_0^2$				$\chi^2 \leqslant \chi^2_{1-\alpha}\left(n\right)$
$\sigma^2 = \sigma_0^2$				$\chi^2 \geqslant \chi^2_{\alpha/2} \left(n - 1 \right) $ 或
	μ 未知	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi^2 (n-1)$	$\chi^2 \leqslant \chi^2_{1-\alpha/2} \left(n - 1 \right)$
$\sigma^2 \leqslant \sigma_0^2$	μ /(/)			$\chi^2 \geqslant \chi_\alpha^2 \left(n - 1 \right)$
$\sigma^2 \geqslant \sigma_0^2$				$\chi^2 \leqslant \chi^2_{1-\alpha} \left(n - 1 \right)$
$\mu_X - \mu_Y = \delta$	2 2	$(\bar{X} - \bar{Y}) - \delta$	$N\left(0,1 ight)$	$ u \geqslant u_{\alpha/2}$
$\mu_X - \mu_Y \leqslant \delta$	σ_X^2, σ_Y^2 己知	$U = \frac{(X - Y) - \delta}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{m}}}$		$u \geqslant u_{\alpha}$
$\mu_X - \mu_Y \geqslant \delta$		$\sqrt{\frac{n}{m} + \frac{1}{n}}$		$u \leqslant -u_{\alpha}$
$\mu_X - \mu_Y = \delta$	2 2	$(\bar{X} - \bar{Y}) - \delta$		$ t \geqslant t_{\alpha/2} \left(m + n - 2 \right)$
$\mu_X - \mu_Y \leqslant \delta$	σ_X^2, σ_Y^2 未知	$T = \frac{(X - Y) - \delta}{S_{\omega} \cdot \sqrt{\frac{1}{m} + \frac{1}{n}}}$	$t\left(m+n-2\right)$	$t \geqslant t_{\alpha} \left(m + n - 2 \right)$
$\mu_X - \mu_Y \geqslant \delta$	УСУН	$\bigvee w \bigvee m \mid n$		$t \leqslant -t_{\alpha} \left(m + n - 2 \right)$
$\sigma_X^2 = \sigma_Y^2$		m		$F\geqslant F_{lpha/2}\left(m,n ight)$ 或
$\sigma_X - \sigma_Y$	μ_X, μ_Y	$\int_{F} \sum_{i=1}^{\infty} \left(X_i - \mu_X\right)^2 / m$	F(m, n)	$F \leqslant F_{1-\alpha/2}\left(m,n\right)$
$\sigma_X^2 \leqslant \sigma_Y^2$	己知	$F = \frac{\sum_{i=1}^{m} (X_i - \mu_X)^2 / m}{\sum_{i=1}^{n} (Y_i - \mu_Y)^2 / n}$	$F\left(m,n ight)$	$F \geqslant F_{\alpha}(m,n)$
$\sigma_X^2 \geqslant \sigma_Y^2$		i=1		$F \leqslant F_{1-\alpha}\left(m,n\right)$
$\sigma_X^2 = \sigma_Y^2$	μ _X ,μ _Y 未知			$F \geqslant F_{\alpha/2} \left(m - 1, n - 1 \right) $
$\sigma_X - \sigma_Y$		$F = \frac{S_X^2}{S_Y^2}$	F(m-1,n-1)	$F \leqslant F_{1-\alpha/2} \left(m - 1, n - 1 \right)$
$\sigma_X^2 \leqslant \sigma_Y^2$				$F \geqslant F_{\alpha} \left(m - 1, n - 1 \right)$
$\sigma_X^2 \geqslant \sigma_Y^2$				$F \leqslant F_{1-\alpha} \left(m - 1, n - 1 \right)$