

101532782

(12)特許協力条約に基づいて公開された国際

(19) 世界知的所有権機関
国際事務局(43) 国際公開日
2005年2月17日 (17.02.2005)

PCT

(10) 国際公開番号
WO 2005/015618 A1

(51) 国際特許分類: H01L 21/20, 21/205

(21) 国際出願番号: PCT/JP2004/011539

(22) 国際出願日: 2004年8月11日 (11.08.2004)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:
特願2003-292350 2003年8月12日 (12.08.2003) JP

(71) 出願人(米国を除く全ての指定国について): 日本電信電話株式会社 (NIPPON TELEGRAPH AND TELEPHONE CORPORATION) [JP/JP]; 〒1008116 東京都千代田区大手町2丁目3-1 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 熊倉一英 (KU-MAKURA, Kazuhide) [JP/JP]; 〒1808585 東京都武蔵野市緑町3丁目9-11 NTT知的財産センタ内 Tokyo (JP). 廣木正伸 (HIROKI, Masanobu) [JP/JP]; 〒1808585 東京都武蔵野市緑町3丁目9-11 NTT知的財産センタ内 Tokyo (JP). 牧本俊樹 (MAKIMOTO, Toshiki) [JP/JP]; 〒1808585 東京都武蔵野市緑町3丁目9-11 NTT知的財産センタ内 Tokyo (JP).

(74) 代理人: 谷義一 (TANI, Yoshikazu); 〒1070052 東京都港区赤坂2丁目6-20 Tokyo (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54) Title: SUBSTRATE FOR NITRIDE SEMICONDUCTOR GROWTH

(54) 発明の名称: 窒化物半導体成長用基板

(57) Abstract: A substrate for nitride semiconductor growth with which a nitride semiconductor crystal layer of high quality can be obtained. One form of substrate for nitride semiconductor growth employed to grow a nitride semiconductor layer on sapphire substrate (1) comprises sapphire substrate (1) and, superimposed thereon, separately disposed Al_2O_3 layer (2), first layer AlON layer (3) and second layer AlN layer (4). With respect to the first layer and second layer, the AlON layer (3) and AlN layer (4) are disposed in this order on the Al_2O_3 layer (2).

WO 2005/015618 A1

導体結晶層を得ることができる窒化物半導体成長用基板を提供する。本発明の一実施形態に係る、サファイア基板(1)上に窒化物半導体層を成長させるための窒化物半導体成長用基板は、サファイア基板(1)上に別途に設けた Al_2O_3 層(2)と、第1の層であるAlON層(3)と、第2の層であるAlN層(4)とを備える。第1の層および第2の層については、AlON層(3)とAlN層(4)との順序で Al_2O_3 層(2)上に積層させる。

(57) 要約: 高品質の窒化物半

明細書

窒化物半導体成長用基板

技術分野

[0001] 本発明は、サファイア基板上に窒化物半導体を成長するための窒化物半導体成長用基板に関する。

背景技術

[0002] 窒化物半導体は、遠赤外から紫外領域のバンドギャップを有するため、その領域での発光・受光デバイスの材料として有望である。また、大きなバンドギャップを有し、絶縁破壊電界が大きく、飽和電子速度も高い。そのために窒化物半導体は、耐高温・高出力・高周波電子デバイス等の材料としても非常に有望である。さらに、これまで利用してきたGaAs系やInP系と比べ、砒素(As)や磷(P)を含まないことから、環境に無害な特長も持ち合わせており、将来の半導体デバイス材料として期待されている。

[0003] このように優れた特性を有する窒化物半導体のエピタキシャル成長用基板としては、該窒化物半導体の格子定数や熱膨張係数と同じものが今までなかった。そのため、基板としてサファイアやSiC、Siが主に用いられている。

[0004] GaN、AlN、InNおよびそれらの混晶をエピタキシャル成長するには、従来、サファイア基板が主として用いられてきた。しかし、サファイア基板と窒化物半導体との間には、11～23%の格子不整合や熱膨張係数差がある。従って、サファイア基板上に窒化物半導体を直接成長させると、3次元的な成長が起き、表面の原子レベルでの平坦性が悪くなる。そのため、形成された窒化物半導体に多くの結晶欠陥が入るという問題があった。

[0005] サファイア基板上への窒化物半導体のエピタキシャル成長の場合、緩衝層(以下、バッファー層と称す)を用いた方法により、GaNの結晶性の改善を行ったという報告がなされている。以下にその技術の説明を行う。

[0006] 第1の方法は、低温AlNバッファー層を用いたGaNの成長方法である(下記非特許文献1参照)。有機金属気相成長装置などで、サファイア基板を表面清浄化のた

め、高温(1000～1100°C程度)で熱処理した後、一度降温し、500°C前後で低温AlNバッファー層を堆積し、再び昇温して1000°C前後でGaNを成長する方法である。この方法で堆積したAlNバッファー層は非晶質であり、堆積後の昇温過程で固相成長して、アイランド状(島状)の形状となる。当然のことながら、その昇温する際の装置内の雰囲気、昇温速度などによって、形成されるアイランド形状は異なる。高温でのAlNバッファー層の成長初期には、このアイランドが核となり、AlNバッファー層が結晶成長する。その結晶成長の際に、お互いが融合し合うことでAlNバッファー層の平坦化が進む。平坦化がなされたAlNバッファー層上にGaNは2次元的に結晶成長する。

[0007] 第2の方法は、低温GaNバッファー層を用いたGaNの成長方法である(下記非特許文献2参照)。サファイア基板を高温(1000～1100°C程度)で熱処理した後、一度降温し、500°C程度で低温GaN層を堆積し、再び昇温して1000°C程度でGaNを成長する方法である。GaNはAlNと比較し脱離が起こりやすいため、昇温過程での核形成は、AlNの場合と必ずしも同じではないが、その後の成長様式はほぼ同じである。

[0008] なお、GaN以外の窒化物半導体の結晶成長においても、上記と同様の方法が適用されている。例えば、 $Al_{1-x}Ga_xN$ ($0 \leq x < 1$)、 $In_{1-x}Ga_xN$ ($0 \leq x < 1$)結晶を作製する際には、サファイア基板上に低温GaNバッファー層を堆積し、GaNを成長させた後に、 $Al_{1-x}Ga_xN$ 、 $In_{1-x}Ga_xN$ を成長させる。特に、 $Al_{1-x}Ga_xN$ 結晶を作製する方法は、下記非特許文献3に記載されている。

[0009] 上述のように、これらの成長方法はいずれも、バッファー層はGaN層との格子整合を目的としており、基板との格子整合は考慮されていなかった。

また、バッファー層を低温で堆積しても、低温バッファー層は非晶質であり、昇温時に固相成長する。そのため、バッファー層と基板との格子不整合は依然として存在しており、転移の発生を有効に抑制することは困難で、貫通転位が通常 10^9 ～ $10^{10} cm^{-2}$ 存在する。この転位は、作製したデバイスの特性を劣化させることが良く知られている。例えば、レーザーの短寿命化や、デバイスのリーク電流の増大・低耐圧化などである。また、転位の存在によって、不純物の拡散あるいは偏析が促進されることもある。

したがって、窒化物半導体層中の転位密度を減少させることは、デバイス特性の向上や、転位の影響によりこれまで達成できなかったデバイスの実現、結晶構造作製の制御性を高める上で、非常に重要である。

[0010] 従って、本発明は、高品質の窒化物半導体結晶層を得ることができる窒化物半導体成長用基板を提供することを目的とする。

[0011] 非特許文献1:H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metal organic vapor phase epitaxialgrowth of a high quality GaN film using an AlN buffer layer," Appl. Phys. Lett., 48, 353 (1986)

非特許文献2:S. Nakamura, "GaN growth using GaN Buffer layer," Jpn. J. Appl. Phys., 30, L1705 (1991)

非特許文献3:C. Pernot, et al., "Low-intensity ultraviolet photodetectors based on AlGaN," Jpn. J. Appl. Phys., 38, L487 (1999)

発明の開示

[0012] 本発明の一実施形態は、サファイア基板上に窒化物半導体層を成長させるための窒化物半導体成長用基板において、サファイア基板に別途に設けられた、N、OおよびAlを含む層を備える。この層は、サファイア基板と第1の面で接する。また、上記層は、第1の面におけるN、OおよびAlの組成比に対するNの割合が、窒化物半導体層との接する第2の面における組成比に対するNの割合よりも小さく、かつ第1の面における組成比に対するOの割合が、第2の面における組成比に対するOの割合よりも大きくなるように形成されている。

[0013] 他の実施形態は、サファイア基板上に窒化物半導体層を成長させるための窒化物半導体成長用基板において、サファイア基板上に別途に設けた Al_2O_3 層と、 Al_2O_3 層上に設けた、AlON層とAIN層とのいずれか一方の層とを備える。

[0014] 他の実施形態では、サファイア基板上に窒化物半導体層を成長させるための窒化物半導体成長用基板において、サファイア基板上に別途に設けた Al_2O_3 層と、第1の層であるAlON層と、第2の層であるAIN層とを備え、第1の層と第2の層との順序で Al_2O_3 層上に積層された構造を有する。

[0015] ここで、窒化物半導体成長用基板の最上層として Al_2O_3 からなるキャップ層を設け

ることができる。

[0016] 以上説明した本発明の一実施形態によれば、高品質の窒化物半導体結晶層を得ることができる窒化物半導体成長用基板を提供することができる。

図面の簡単な説明

[0017] [図1]本発明の一実施形態に係る窒化物半導体成長用基板の断面模式図である。

[図2]本発明の一実施形態に係る窒化物半導体成長用基板上にGaN層を結晶成長させた構造の断面模式図である。

[図3]本発明の一実施形態に係る窒化物半導体成長用基板の断面模式図である。

[図4]本発明の一実施形態に係る窒化物半導体成長用基板の断面模式図である。

[図5]サファイア基板上に窒化物半導体を形成するプロセスに要する時間と成長炉の温度との関係を説明するための図である。

[図6]本発明の一実施形態に係る窒化物半導体成長用基板上に結晶成長させた $\text{Al}_{1-x}\text{Ga}_x\text{N}$ ($0 \leq x < 1$) / GaNヘテロ接合バイポーラトランジスタ構造の断面模式図である。

発明を実施するための最良の形態

[0018] 以下、図面を用いて本発明の実施の形態について詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。

実施の形態

[0019] 図1は、本発明の実施の形態の窒化物半導体成長用基板の断面模式図である。

[0020] 図1において、符号1はサファイア基板(サファイア単結晶基板)、符号2は Al_2O_3 層(酸化アルミニウム層、すなわち、アルミナ層)、符号3はAlON層(酸窒化アルミニウム層)、符号4はAlN層(窒化アルミニウム層)、符号5は Al_2O_3 からなるキャップ層(最上層)、符号6は窒化物半導体成長用基板である。

[0021] 本実施の形態は、サファイア基板1上に窒化物半導体層を成長させるための窒化物半導体成長用基板において、サファイア基板1上に別途設けた、 Al_2O_3 層2と、第1の層であるAlON層3と、第2の層であるAlN層4とを有し、AlON層3とAlN層4との順序で前記 Al_2O_3 層上に積層された構造を有する。なお、 Al_2O_3 層2上に設けた、

窒化物半導体層に近い組成を有する第1の層であるAlON層3と、第2の層であるAlN層4とのいずれか一方の層とを有する構造でも本発明による効果が得られ有効である。また、窒化物半導体成長用基板6の最上層としてAl₂O₃からなるキャップ層5が設けられている。

[0022] なお、上述したAl₂O₃層2は、必ずしも結晶ではないが、該層のうち、結晶状態の部分については、サファイア基板1と格子整合していると考えられる。ここで用いる「格子整合する」とは、格子定数がほぼ等しいということを意味している。

[0023] すなわち、直径2インチのサファイア基板1上に、ECR(Electron Cycrotron Resonance)プラズマ成膜装置によりAlと酸素を用い、室温、Arプラズマ中でAl₂O₃層2を厚さ5nm程度堆積した。その後、窒素を堆積ガス中に添加していき、AlON層3を厚さ10nm程度堆積した。次に、当該窒化物半導体成長用基板6上に成長させる窒化物半導体層(例えばGaN層)と同種のAlN層4を、Alと窒素を用い、Arプラズマ中で厚さ10nm程度堆積した。最後に、トイキオメトリーの乱れからくる表面の不安定性を生じさせる不規則な自然酸化を防ぐために、Alと酸素を用い、Arプラズマ中でAl₂O₃からなるキャップ層5を厚さ5nm程度堆積した。このようにして窒化物半導体成長用基板6を作製した。

[0024] なお、上述の本発明の実施の形態では、室温(例えば、20°C)で各層を形成しているが、この温度に限定されない。本発明の一実施形態では、本発明に係る窒化物半導体成長用基板を室温でも形成できることが重要であって、本発明の一実施形態に係る各層について、適切な窒素および酸素組成を形成できる温度であれば、室温(大気中の温度)よりも高温であっても、低温であっても良い。

[0025] また、Al₂O₃層2、AlON層3およびAlN層4の膜厚は、膜を形成できる厚さが必要であり、各化合物のc軸の格子定数を考慮して最低でも1原子層は必要である。一方、Al₂O₃層2、AlON層3、AlN層4の各層は必ずしも結晶ではない(多結晶やアモルファスである)ため、膜厚が厚すぎるとサファイア(単結晶)基板の結晶軸を窒化物半導体へ引き継ぐこと(エピタキシャル成長)が困難となる。本発明ではこれらを考慮して、Al₂O₃層2、AlON層3およびAlN層4の膜厚は、1nmから200nm程度とすることが好ましく、より好ましくは、Al₂O₃層2については2nmから20nm、AlON層3につい

ては2nmから70nm、AlN層4については2nmから50nmである。

[0026] さらに、本発明の実施の形態では、ECRプラズマ成膜装置により各層を成膜しているが、これに限定されず、例えば、酸素を導入したMOVPE装置等、適切に本発明の一実施形態に係る各層を成膜できる装置であればいずれのものも使用できる。

[0027] 次に、本発明の窒化物半導体成長用基板の有用性を実証した実験結果について説明する。

[0028] 図2は、本発明の窒化物半導体成長用基板上にGaN層を結晶成長させた構造の断面模式図である。

[0029] 図2において、7はGaN層、8は導電性測定用のSiドープn型GaN層である。上記実施の形態に示した窒化物半導体成長用基板6上に、有機金属気相成長法によりGaN層7を成長させた。この際の成長シーケンスは、窒化物半導体成長用基板6を成長炉に導入した後、アンモニア雰囲気下で成長温度(1000°C)まで昇温して、GaN層7、8を成長させる簡便な方法である。原料には、トリメチルガリウム、アンモニアを用いた。Siドープn型GaN層8のn型の不純物のドーピングには、シランを用い、Siドープn型GaN層8を形成した。

[0030] 作製したGaN層7、8について、X線回折測定およびホール効果測定を行い、結晶性と電気的な特性の評価を行った。作製したGaN層7の結晶性の評価は、(10–10)からのX線非対称反射スペクトルの半値幅から結晶中の転位密度を見積もることによって行った。転位密度を見積もった結果、従来技術での転位密度は、 $2 \times 10^9 \text{ cm}^{-2}$ 程度であった。これに対し、上記実施の形態の窒化物半導体成長用基板6を用いて作製したGaN層7の場合は、 $9 \times 10^7 \text{ cm}^{-2}$ となり、転移密度は大幅に減少していた。また、ホール効果測定の結果、従来技術でのキャリア濃度と移動度はそれぞれ、 $3 \times 10^{17} \text{ cm}^{-3}$ で $340 \text{ cm}^2/\text{Vs}$ であった。これに対し、上記実施の形態の窒化物半導体成長用基板6を用いて作製したGaN層7におけるそれらは $2 \times 10^{17} \text{ cm}^{-3}$ で $540 \text{ cm}^2/\text{Vs}$ となり、大幅に特性が改善されていることが明らかとなった。

[0031] このように本発明の各層を有する窒化物半導体成長用基板によれば、各層を、必ずしも結晶ではないがサファイア単結晶に格子整合させることを目的とした層から、成長させる窒化物半導体へ向かって窒素および酸素の組成(構成原子の比率)を変

化させているため、各層における格子間隔あるいは原子間隔が変化し、窒化物半導体結晶への貫通転位は従来技術と比較して、大幅に減少する。従って、転位密度が 10^7 cm^{-2} オーダーの結晶を容易に作製できる。つまり、本発明では、基板表面全体で均一に転位密度を減少することが可能であるため、窒化物半導体層の結晶性の向上を図ることができ、産業上非常に有効である。また、転位密度の減少にともない、結晶性の向上も見込まれるため、デバイス特性の向上や新デバイスの実現など多岐にわたり波及効果が期待される。

[0032] なお、本発明の窒化物半導体成長用基板は、GaN以外の窒化物半導体、 $\text{Al}_{1-x}\text{Ga}_x\text{N}$ ($0 \leq x < 1$)、 $\text{In}_{1-x}\text{Ga}_x\text{N}$ ($0 \leq x < 1$)、AlN、InN等の結晶成長用にも適用することが可能である。また、適用可能な窒化物半導体層は、不純物のドープの有無、不純物ドープされた半導体のキャリアの極性、混晶の組成比には依存しない。

[0033] 上記実施の形態における窒化物半導体成長用基板6の各構成要素等の物質の一般的な格子定数は以下のようないが知られている。

サファイア、 Al_2O_3 : $a = 4.758 \text{ \AA}$ 、 $c = 12.991 \text{ \AA}$

AlN: $a = 3.112 \text{ \AA}$ 、 $c = 4.982 \text{ \AA}$

GaN: $a = 3.189 \text{ \AA}$ 、 $c = 5.185 \text{ \AA}$

[0034] すなわち、上記実施の形態の窒化物半導体成長用基板6における各層について、サファイア基板1から、酸化物、酸窒化物、窒化物というように、酸素と窒素との組成(構成原子の比率)を変化させるため、各層における格子間隔あるいは原子間隔が変化する。

[0035] 上記のように本発明は、高品質な結晶性を有する窒化物半導体を容易に結晶成長させることを可能にする窒化物半導体成長用基板6である。このために本発明は、サファイア基板1上に形成されるバッファー層において、サファイア基板1と接する面から窒化物半導体層に接する面に向かって、バッファー層の組成を変化させることを特徴とする。このようにバッファー層の組成(構成原子の比率)を変化させることによって、バッファー層の格子間隔あるいは原子間隔が変化する。

[0036] 具体的には、サファイア基板1、 Al_2O_3 層2、AlON層3、AlN層4の積層構造である。本発明の一実施形態では、上記バッファー層において、サファイア基板1と接する

層を、本発明の一実施形態では必ずしも結晶ではないが、結晶状態では通常、サファイア基板と格子整合する Al_2O_3 層2とすることで、サファイア基板とバッファー層との格子不整合を、 Al_2O_3 層2は必ずしも結晶ではないが軽減することができる。また、上記バッファー層において、 Al_2O_3 層2に、必ずしも結晶ではない層である、AlON層3およびAlN層4を積層し、該AlN層4に窒化物半導体層を形成することで、バッファー層と窒化物半導体層との格子不整合を、AlN層4は必ずしも結晶ではないが軽減することができる。なお、AlON層3とAlN層4に関しては、その順番で積層するのが最良の形態であるが、図3や図4に示すように、AlON層3またはAlN層4のいずれか一方を用いた構造でも類似の効果を得ることができる。

[0037] このように、本発明の一実施形態において重要なことは、サファイア基板と窒化物半導体との間に形成されるバッファー層について、窒化物半導体と接する面の格子不整合を軽減することのみならず、サファイア基板と接する面の格子不整合を軽減するように構成されたバッファー層をサファイア基板に別途に設けることである。そのために、本発明の一実施形態では、バッファー層において、該バッファー層のサファイア基板と接する面から窒化物半導体と接する面に向かって、窒素と酸素との組成を変化させることが本質である。つまり、バッファー層に含まれる酸素および窒素の組成に対して、バッファー層のサファイア基板と接する面近傍では、バッファー層は酸素リッチな組成であり、バッファー層の窒化物半導体と接する面近傍では、バッファー層は窒素リッチな組成であり、サファイア基板近傍から窒化物半導体基板近傍に向かって窒素の組成が増加するようなバッファー層をサファイア基板に別途に設けることを本質としている。

[0038] 本発明の一実施形態では、バッファー層は、単結晶や多結晶であっても良いし、中間層であっても良い。本明細書において、「中間層」とは、単結晶、多結晶およびアモルファスが混在する層のことを指す。

[0039] このために、図1に示すように本発明の一実施形態では、バッファー層を Al_2O_3 層2、AlON層3、AlN層4を順次積層した構成とし、サファイア基板1からGaN層7(図1には不図示)に向かって窒素を傾斜的に増加させている。また、図3や図4に示すように、バッファー層を Al_2O_3 層と、AlON層3かAlN層4かのいずれか一方とを積層した

構成とし、サファイア基板1からGaN層7(図3および図4には不図示)に向かって窒素の組成をステップ状で増加させるようにしても良い。

[0040] 以下で、本発明の一実施形態に係る Al_2O_3 キャップ層について詳細に説明する。

[0041] 窒化物半導体成長用基板6の最上層として Al_2O_3 からなるキャップ層5を設ける場合、このキャップ層5は空気にさらされる等の外部環境に対する安定性を保つためのものである。上記従来技術のバッファー層を用いる構造とは、キャップ層5の有無の点でも異なる。キャップ層5が存在するということは、窒化物半導体成長用基板6をチャンバー外の空気雰囲気中に取り出すことを可能にし、該基板6の取り扱いを容易にする。なお、この最終層の Al_2O_3 キャップ層5は、窒化物半導体の結晶成長時には、アンモニア等の窒素を含む物質雰囲気が用いられるため、その下の層を構成するAIN層4を構成する物質AINに変化すると考えられる(しかしながら、図2、図3、図4および後述の図6では Al_2O_3 キャップ層5と図示)。つまり、キャップ層5は、安定性をもたらすキャップの役目と、窒化物半導体成長時の表面との2役を果たす。

[0042] ところで、従来の窒化物半導体の成長方法は、上述のようにバッファー層の成長が2段階であって、昇・降温プロセスがあるため、成長プロセスが複雑であり、サファイア基板上に窒化物半導体を形成するプロセスに要する時間(本明細書では、「成長時間」とも呼ぶ)が長くなるという問題を持つ。

[0043] 図5は、サファイア基板上に窒化物半導体を形成するプロセスに要する時間と成長炉の温度との関係を説明するための図である。図5において、符号51は、温度A(1000°C~1100°C)まで昇温してサファイア基板を洗浄し、温度B(400°C~600°C)まで降温してサファイア基板上にバッファー層を堆積する従来の第1プロセスにおける成長炉の温度の経時変化を示す。符号52は、温度B(400°C~600°C)まで昇温してサファイア基板上にバッファー層を堆積する従来の第2プロセスにおける成長炉の温度の経時変化を示す。符号53は、温度C(1000°C)まで昇温して窒化物半導体成長用基板に窒化物半導体を成長する第3プロセスにおける本発明の一実施形態に係る成長炉の温度の経時変化を示す。

[0044] 従来では、サファイア基板上に窒化物半導体を成長する際に、第1プロセスまたは第2プロセスを行い、サファイア基板上にバッファー層を形成し、第3プロセスを行うこ

とで該バッファー層上に窒化物半導体を成長させる。このとき、符号51または符号52に示される通り、窒化物半導体を成長させる以前に、成長炉内を高温とするため、装置の劣化は促進されてしまう。この装置の劣化の度合いは、使用温度や使用時間に対して指數関数的に効いてくると考えられる。

[0045] 一方、本発明の一実施形態では、室温で窒化物半導体成長用基板を作製することができる、符号51や符号52のような温度変化を成長炉は経験しない。よって、符号53に示される通り、従来必要だった、バッファー層を形成するための昇・降温プロセスを必要とせず、窒化物半導体の成長温度(1000°C)まで昇温することにより容易に窒化物半導体層の結晶成長が可能である。また、従来に比べて、成長炉内を高温で維持する時間を短縮することができるので、成長炉内の基板加熱機構の長寿命化等を実現することができる。

[0046] 特に、 Al_2O_3 キャップ層を最上層として有する窒化物半導体成長用基板を用いる場合にあっては、該基板を大気中に曝すことが可能となるので、該基板の作製と、該基板への窒化物半導体の成長とを別個に行うことが可能となる。従って、窒化物半導体を成長する際に、別個に用意された Al_2O_3 キャップ層を有する窒化物半導体成長用基板を用いることで、サファイア基板上にバッファー層を形成する時間を省略することができる。すなわち、第3プロセスから始めることができるので、成長時間を短縮することができ、生産性の向上にも繋がる。従って、従来問題であった、成長シーケンスの簡便化や成長時間の大幅な短縮を容易に可能にできる。

[0047] 次に、本発明の窒化物半導体成長用基板の応用例について説明する。

[0048] 図6は、本発明の窒化物半導体成長用基板上に結晶成長させた $\text{Al}_{1-x}\text{Ga}_x\text{N}$ ($0 \leq x < 1$)／GaNヘテロ接合バイポーラトランジスタ構造の断面模式図である。

[0049] 図6において、符号9はGaNバッファー層、符号10は n^+ 型GaNサブコレクタ層、符号11は n^- 型GaNコレクタ層、符号12はp型GaNベース層、符号13は n^- 型 $\text{Al}_{1-x}\text{Ga}_x\text{N}$ エミッタ層($0 \leq x < 1$)、符号14は n^+ 型GaNコンタクト層、符号15はコレクタ電極、符号16はベース電極、符号17はエミッタ電極である。

[0050] 上記実施の形態に示した窒化物半導体成長用基板6上に、有機金属気相成長法によりGaNバッファー層9(厚さ $1 \mu\text{m}$)、 n^+ 型GaNサブコレクタ層10(厚さ $1 \mu\text{m}$)、 n^-

型GaNコレクタ層11(厚さ0.5μm)、p型GaNベース層12(厚さ0.08μm)、n⁻型Al_{1-x}Ga_xNエミッタ層13(0≤x<1)(厚さ0.05μm)、n⁺型GaNコンタクト層14(厚さ0.1μm)を成長させた。この際の成長シーケンスは、窒化物半導体成長用基板6を成長炉に導入した後、アンモニア雰囲気下で成長温度(1000°C)まで昇温して、原料ガスを供給し成長させた。原料には、トリメチルガリウム、トリメチルアルミニウム、アンモニアを用いている。n型の不純物のドーピングにはシランを用いた。p型の不純物のドーピングにはMgを用いた。エッチングによりメサ構造を作製し、露出した各層にオーミック電極、すなわち、コレクタ電極15、ベース電極16、エミッタ電極17を電子ビーム蒸着により形成した。作製したトランジスタのエミッタ接地のコレクタ電流-コレクタ電圧特性では、電流利得が100程度得られ、また、耐圧も既述の転位密度の減少を反映して、200V程度まで増加した。

請求の範囲

[1] サファイア基板上に窒化物半導体層を成長させるための窒化物半導体成長用基板において、

前記サファイア基板に別途に設けられた、N、OおよびAlを含む層を備え、該層は、前記サファイア基板と第1の面で接し、該第1の面におけるN、OおよびAlの組成比に対するNの割合が、前記窒化物半導体層との接する第2の面における前記組成比に対するNの割合よりも小さく、かつ前記第1の面における前記組成比に対するOの割合が、前記第2の面における前記組成比に対するOの割合よりも大きくなるように形成されていることを特徴とする窒化物半導体成長用基板。

[2] サファイア基板上に窒化物半導体層を成長させるための窒化物半導体成長用基板において、

前記サファイア基板上に別途に設けた Al_2O_3 層と、該 Al_2O_3 層上に設けた、AlON層とAIN層とのいずれか一方の層とを備えることを特徴とする窒化物半導体成長用基板。

[3] サファイア基板上に窒化物半導体層を成長させるための窒化物半導体成長用基板において、

前記サファイア基板上に別途に設けた Al_2O_3 層と、第1の層であるAlON層と、第2の層であるAIN層とを備え、前記第1の層と前記第2の層との順序で前記 Al_2O_3 層上に積層された構造を有することを特徴とする窒化物半導体成長用基板。

[4] 前記窒化物半導体成長用基板の最上層として Al_2O_3 からなるキャップ層を設けたことを特徴とする請求項1乃至3のいずれかに記載の窒化物半導体成長用基板。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/011539

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ H01L21/20, H01L21/205

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ H01L21/20-21/205

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2004
Kokai Jitsuyo Shinan Koho 1971-2004 Toroku Jitsuyo Shinan Koho 1994-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Web of Science

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X Y	JP 2-141495 A (Asahi Chemical Industry Co., Ltd.), 30 May, 1990 (30.05.90), Full text (Family: none)	1 2-4
Y	JP 11-60395 A (Fujitsu Ltd.), 02 March, 1999 (02.03.99), Par. Nos. [0004] to [0005] (Family: none)	2-4

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search
28 September, 2004 (28.09.04)Date of mailing of the international search report
12 October, 2004 (12.10.04)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/011539

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 2002/012598 A1 (BRADDOCK Walter, David, IV), 14 February, 2002 (14.02.02), Page 8, lines 1 to 12 & JP 2004-519837 A Par. No. [0011] & AU 7813701 A & EP 1315852 A1 & KR 3036668 A	4
A	JP 11-340147 A (Matsushita Electronics Corp.), 10 December, 1999 (10.12.99), Full text; Figs. 1 to 5 (Family: none)	1-4
A	Hyun-Jeong Kim et al., "Effects of reactive ion beam treatment of a sapphire surface to optimite the deposition of GaN films", JOURNAL OF APPLIED PHYSICS, Vol.87, No.11, 01 June, 2000 (01.06.00), pages 7940 to 7945	1-4

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C17 H01L21/20, H01L21/205

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C17 H01L21/20-21/205

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2004年
日本国実用新案登録公報	1996-2004年
日本国登録実用新案公報	1994-2004年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

Web of Science.

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2-141495 A (旭化成工業株式会社) 1990.05.30, 全文 (ファミリーなし)	1
Y	JP 11-60395 A (富士通株式会社) 1999.03.02, 段落番号【0004】-【0005】 (ファミリーなし)	2-4

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

28.09.2004

国際調査報告の発送日

12.10.2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

渕 真悟

4L 2933

電話番号 03-3581-1101 内線 3496

C (続き) 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
Y	WO 2002/012598 A1 (BRADDOCK Waller, David, IV) 2002. 02. 14, 第8頁第1行目—第12行目 & JP 2004-519837 A, 段落番号【0011】 & AU 7813701 A & EP 1315852 A1 & KR 3036668 A	4
A	JP 11-340147 A (松下電子工業株式会社) 1999. 12. 10, 全文, 第1-5図 (ファミリーなし)	1-4
A	Hyun-Jeong Kim et.al., 'Effects of reactive ion beam treatment of a sapphire surface to optimite the deposition of GaN films', JOURNAL OF APPLIED PHYSICS, Vol. 87, No. 11, 1 JUNE 2000, pp. 7940-7945	1-4