计算机网络编程

第11章 TCP数据包的封装与发送

信息工程学院 方徽星

fanghuixing@hotmail.com

大纲

- •设计目的
- 相关知识
- 例题分析

1. 设计目的

- 熟悉TCP包结构对于理解网络层次结构,以及 TCP协议与IP协议的关系有着重要意义
- 通过封装与发送一个标准的TCP数据包,了解 TCP包结构中各字段的含义与用途
- 深入理解传输层与下面各层的关系

2. 相关知识: TCP协议的基本概念

• 传输层协议分为

• TCP: 可靠、面向连接

· UDP:不可靠、无连接

2. 相关知识: TCP协议的基本概念

- TCP协议允许通信双方的应用程序在任何时候传输数据
- 通信双方都设置有相应的发送与接收缓冲区,用于缓存数据流
- TCP协议使用以字节为单位的滑动窗口机制,用于控制字节流的发送、接收、确认与重传过程

↑	源站	源端口(16位) 目的端口(16位					
	序号(32位)						
	确认号(32位)						
	头部长度	保留位	标志位	窗口大小(16位)			
	TCP校验和(16位) 紧急指针(16位)						
	选项与填充部分						
	数据部分						

源端口:发送方应用程序使用的TCP端口号

目的端口:接收方应用程序使用的TCP端口号

源端	5口(16亿	<u>i</u>)	目的端口(16位)		
		序号(3	2位)		
		确认号(32位)		
头部长度	保留位	标志位	窗口大小(16位)		
TCP校验和(16位)			紧急指针(16位)		
选项与填充部分					

头

部

序号:TCP包第一字节序号。TCP 连接中传送的数据流中的每一个字节都编上一个序号

源端口(16位) 目的端口(16位) 序号(32位) 确认号(32位) 窗口大小(16位) 头部长度 保留位 标志位 TCP校验和(16位) 紧急指针(16位) 选项与填充部分

头

部

确认号:是期望收到对方的下一个报文段的数据 的第一个字节的序号

	源端口(16位)			目的端口(16位)		
	序号(32位)					
Ļ	确认号(32位)		
ß	头部长度	保留位	标志位	窗口大小(16位)		
	TCP核	验和(10	6位)	紧急指针(16位)		
	选项与填充部分					

头部长度:4位,表示TCP数据包的头部长度,取值范围是5~15(以4字节为计算单位)

	源端	(16位	<u>i</u>)	目的端口(16位)			
	序号(32位)						
头	确认号(32位)						
部	头部长度	保留位	标志位	窗口大小(16位)			
	TCP核	验和(16	6位)	紧急指针(16位)			
	选项与填充部分						

保留位:6位,保留为今后使用,默认置为0

	源端口(16位)			目的端口(16位)		
	序号(32位)					
头	确认号(32位)					
部	头部长度	保留位	标志位	窗口大小(16位)		
	TCP校验和(16位)			紧急指针(16位)		
	选项与填充部分					

	源端口(16位)			目的端口(16位)		
	序号(32位)					
头	确认号(32位)					
部	头部长度 保留位 标志位			窗口大小(16位)		
	TCP校验和(16位)			紧急指针(16位)		
<u> </u>	选项与填充部分					

URG ACK PSH RST SYN FIN

- ① 紧急 URG : 当 URG = 1 时, 紧急指针字段有效, 数据的优先级高
- ② 确认 ACK: 只有当 ACK = 1 时确认号字段才有效; 当 ACK = 0 时, 确认号无效
- ③ 推送 PSH (PuSH):接收 TCP 收到 PSH = 1 的报文段,就尽快地交付接收应用进程,而不再等到整个缓存都填满了后再向上交付

URG	ACK	PSH	RST	SYN	FIN
-----	-----	-----	-----	-----	-----

- ④ 复位 RST (ReSeT): 当 RST = 1 时,表明 TCP 连接中出现严重差错(如由于主机崩溃或其他原因),必须释放连接,然后再重新建立运输连接
- ⑤ 同步 SYN : 同步 SYN = 1 表示这是一个连接请求或连接接受报文。 用于同步序号
- ⑥ 终止 FIN (FINish) : 用来释放一个连接。FIN = 1 表明此报文段的发送端的数据已发送完毕,并要求释放连接

窗口大小:用来让对方设置发送窗口的依据,单位为字节,最大值是 $2^{16} - 1 = 65535$ 字节

源端口(16位) 目的端口(16位) 序号(32位) 确认号(32位) 头 部 窗口大小(16位) 头部长度 标志位 保留位 校验和(16位) 紧急指针(16位) 选项与填充部分

校验和:校验范围包括伪头部、头部和数据

	源端口(16位)			目的端口(16位)		
	序号(32位)					
头	确认号(32位)					
部	头部长度 保留位 标志位			窗口大小(16位)		
	校验和(16位)			紧急指针(16位)		
	选项与填充部分					

在计算检验和时,临时在 TCP 报文段的前面加上 12 字节的伪头部(pseudo header)

源IP地址(32位)					
	目的IP地址(32位)				
保留位(全0)					

值为6

紧急指针:指出在本报文段中紧急数据共有多少个 字节(紧急数据放在本报文段数据的最前面)

源站	16位	<u>i</u>)	目的端口(16位)			
		序号(3	2位)			
		确认号(32位)			
头部长度	保留位	标志位	窗口大小(16位)			
校验	和(16位	<u>Ż</u>)	紧急指针(16位)			
	选项与填充部分					

部

选项:0~40字节,如果TCP头部长度不是32位的整数倍,就需要使用填充位(0)凑齐

源端口(16位) 目的端口(16位) 序号(32位) 确认号(32位) 头部长度 窗口大小(16位) 标志位 保留位 校验和(16位) 紧急指针(16位) 选项与填充部分

头

部

2. 例题分析:设计要求

- 根据协议规定的TCP数据包的标准格式,编写程序构造TCP包结构,填写各个字段,并将封装后的TCP包内容写入输出文件
- · 为简便起见, 数据字段通过为字符串赋值来获得
- ・需要计算头部校验和

2. 例题分析:设计要求

- ・具体要求
 - ・要求为命令行程序

TcpEncap output_file

输出文件名

2. 例题分析:设计要求

- ・具体要求
 - ·要求将部分字段内容显示在控制台上,具体格式为

IP头部字段

总长度:xx

IP校验和:xx

源IP地址:xx.xx.xx.xx

目的IP地址:xx.xx.xx.xx

TCP头部与数据字段

TCP长度:xx

源端口:xx

目的端口:xx

TCP校验和:xx

数据字段:xx

• 定义TCP头部结构

```
typedef struct TCP HEAD
  unsigned short SourcePort;//源端口16位
  unsinged short DestinPort;//目的端口16位
  unsinged int Sequence;//序号
  unsigned int Acknowledge;//确认号
}tcp head;
```

```
typedef struct TCP_HEAD
  union
    unsigned short HeadLen;//头部长度4位
    unsigned short Reserved;//保留位6位
    unsigned short Flags;//标志位6位
  };
}tcp_head;
```

• 定义TCP头部结构

```
typedef struct TCP_HEAD {
    ... ...
    unsigned short WindowsLen;//窗口大小16位
    unsigned short TcpChecksum;//检验和16位
    unsigned short UrgePoint; //紧急指针16位
}tcp_head;
```

• 定义TCP伪头部结构

```
typedef struct PSD HEAD
  unsigned int SourceAddr;//源IP地址32位
  unsigned int DestinAddr;//目的IP地址32位
  unsigned char Reserved;//保留位8位
  unsigned char Protocal;//协议8位
  unsinged short TcpLen;//TCP长度16位
}psd_head;
```

• 填充数据包

```
//初始化相关对象 psd_head psd = {0};//伪头部初始化为全0填充 tcp_head tcp = {0}//tcp头部也全0填充 unsigned short check[65535];//校验缓冲区 const char tcp_data[] = { "This is a test of tcp packet encapsule!" };
```

• 填充数据包

```
//填充TCP伪头部字段
psd.SourceAddr = ip.SourceAddr;
psd.DestinAddr = ip.DestinAddr;
psd.Reserved = 0;
psd.Protocol = ip.Protocol;
psd.TcpLen = sizeof(tcp_head) + sizeof(tcp_data);
```

• 填充数据包

```
//填充TCP头部字段
tcp.SourcePort = 1000;
tcp.DestinPort = 1000;
tcp.Sequence = 0;
tcp.Acknowledge = 0;
tcp.HeadLen =
(sizeof(tcp_head)/sizeof(unsigned int) < < 4 | 0);
tcp.WindowsLen = htons((unsigned short)10000);
tcp.TcpChecksum = 0;
tcp.UrgePoint = 0;
```

· 计算TCP包(包括伪头部)的校验和

```
memset(check, 0, 65535);//全部重置为0
memcpy(check,
         &psd,
         sizeof(psd_head));//复制伪头部
memcpy( check+sizeof(psd head),
         &tcp,
         sizeof(tcp_head));//复制tcp头部
```

· 计算TCP包(包括伪头部)的校验和

```
memcpy( check+sizeof(psd_head) +
          sizeof(tcp_head),
          tcp_data,
          sizeof(tcp_data));//复制tcp数据
//计算校验和
tcp.TcpChecksum = checksum(check,
                    sizeof(psd_head) +
                    sizeof(tcp_head)+
                    sizeof(tcp_data));
```

•程序流程图

•程序流程图

2. 例题分析:程序演示

```
III Microsoft Visual Studio 调试控制台
         33511
  P地址: 192.168.1.15
目的IP地址: 192.168.1.22
TCP头部与数据字段
TCP长度: 60
TCP校验和: 1448
数据字段: This is a test of tcp packet encapsule!
TCP包封装完成
```

作业

•P131-练习题,说明文档发送到fanghuixing@hotmail.com

本章小结

- •设计目的
 - · 了解TCP包结构各字段含义用途
 - · 掌握封装和发送TCP包的编程方法
- •相关知识
 - · TCP协议基本概念
 - TCP数据包的结构
- 例题分析
 - 定义TCP头部、伪头部数据结构
 - 填充数据包、计算校验和