Espaces vectoriels de dimension finie

Exercice 1 On note $E = \mathbb{R}_2[X]$ le \mathbb{R} -espace vectoriel des polynômes à coefficients réels et de degré inférieur ou égal à deux. Pour tout $P \in E$, on note

$$f(P) = (X^2 + X - 2)P' - (2X - 1)P + P(1).$$

- 1) a) Calculer f(1), f(X) et $f(X^2)$.
 - b) Montrer que f est un endomorphisme de E.
 - c) Comparer $f(1) + f(X^2)$ et f(X), puis préciser le rang de f. Que peut-on en déduire?
- 2) a) Déterminer une base du noyau Ker(f) et une base de l'image Im(f).
 - b) Montrer que Ker(f) et Im(f) sont des sous-espaces supplémentaires de E.
- 3) Soit la famille $\mathscr{B} = (P_0, P_1, P_2)$ où

$$P_0 = X^2 + X - 2$$
, $P_1 = X^2 - 2X + 1$ et $P_2 = X^2 + 3X + 1$.

- a) Montrer que \mathscr{B} est une base de E.
- b) Calculer les images par f des vecteurs de \mathscr{B} , et exprimer le résultat en fonction des P_i .
- c) Soit $(a_0, a_1, a_2) \in \mathbb{R}^3$, et $Q = a_0P_0 + a_1P_1 + a_2P_2$ un vecteur de E. Calculer f(Q) en fonction de a_0 , a_1 et a_2 .
- d) Soit $Q = 2X^2 + X + 2$: pour tout entier $n \in \mathbb{N}^*$, calculer $f^n(Q)$ et déterminer ses racines.
- e) L'endomorphisme f est-il nilpotent (c'est-à-dire existe-t-il un entier $n \in \mathbb{N}$ tel que $f^n = 0$) ?

Exercice 2

Soit E un \mathbb{K} -ev de dimension finie n non nulle.

L'ensemble $\mathcal{L}(E, \mathbb{K})$ des formes linéaires de E est un \mathbb{K} -ev appelé le dual de E et noté E^* . Le dual de E^* est appelé le bidual de E et noté E^{**} . On a ainsi $(E^*)^* = E^{**}$.

Partie I — Base duale —

Soit $\mathscr{B} = (e_k)_{1 \leq k \leq n}$ une base de E. Pour tout $i \in [1, n]$, on note e_i^* l'unique forme linéaire de E définie par la relation :

$$\forall j \in [1, n], e_i^*(e_j) = \delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}.$$

On rappelle que δ est appelé symbole de Kronecker.

La famille $(e_k^*)_{1 \leq k \leq n}$ est alors notée \mathscr{B}^* .

- 1) Pour tout $k \in [1, n]$, e_k^* est appelée l'application coordonnée d'indice k de \mathscr{B} . Justifier cette appellation en montrant que pour tout $x \in E$ on a $x = \sum_{k=1}^{n} e_k^*(x)e_k$.
- 2) a) Montrer que \mathscr{B}^* est une famille libre de E^* .
 - **b)** Montrer que pour toute $f \in E^*$, $f = \sum_{k=1}^n f(e_k)e_k^*$.
 - c) En déduire que \mathscr{B}^* est une base de E^* , appelée la base duale de \mathscr{B} .

Partie II — Bidual et base antéduale —

- 3) Pour tout $x \in E$ on note ev_x l'application $E^* \to \mathbb{K}$, appelée évaluation de f en x. $f \mapsto f(x)$
 - a) Soit $x \in E$. Montrer que ev_x appartient à E^{**} .
 - b) Montrer que l'application ev : $E \rightarrow E^{**}$ est un isomorphisme de E sur E^{**} . $x \mapsto \operatorname{ev}_x$
 - c) Quelle est l'application e_i^{**} ?
- 4) Soit $\mathscr{F} = (f_1, \ldots, f_n)$ une base de E^* . Montrer qu'il existe une et une seule base $\mathscr{G} = (g_1, \ldots, g_n)$ de E telle que $\mathscr{G}^* = \mathscr{F}$. Cette base est appelée base antéduale de \mathscr{F} .

2