Numerische Mathematik II: 4. Aufgabenblatt

Sommersemester 2019 Prof. Dr. Frank Haußer

Eigenwerte und Eigenvektoren, Vektoriteration

letzte Änderung: Ausgabe: 24. Mai 2019

1. Aufgabe: Aufwärmen

Berechnen Sie die Eigenwerte und Eigenvektoren der folgenden Matrizen (falls notwendig, könnten Eigenwerte und Eigenvektoren auch komplexwertig sein):

$$A = \frac{1}{4} \begin{pmatrix} 7 & \sqrt{3} \\ \sqrt{3} & 7 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

2. Aufgabe: Kondition des Eigenwertproblems

Bestimmen Sie analytisch die Eigenwerte der folgenden Matrizen mit $\epsilon=10^{-4}$

$$A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}; \qquad \tilde{A} = \begin{pmatrix} 1 & a + \epsilon \\ \epsilon & 1 \end{pmatrix}$$

Wählen Sie a=0 und $a=\epsilon^{-1}$. Interpretieren Sie das Ergebnis

3. Aufgabe: Einfache Vektoriteration

Bestimmen Sie den betragsmäßig größten Eigenwert λ_1 und einen dazugehörenden Eigenvektor v_1 der Matrix

$$A = \begin{pmatrix} -7 & 13 & -16 \\ 13 & -10 & 13 \\ -16 & 13 & -7 \end{pmatrix}$$

mit der Vektoriteration (MATLAB-Programm). Überprüfen Sie, dass asymptotisch (also für große k, groß heißt hier 6,7,8), der Konvergenzfaktor (d.h. der Quotient des Fehlers in zwei aufeinanderfolgenden Iterationsschritten) in etwa $|\lambda_2/\lambda_1|^2$ ist, wobei λ_2 der betragsmäßig zweitgrößte Eigenwert ist (den Sie sich z.B. mit eig (A) beschaffen). Überlegen Sie, warum der angegebene Konvergenzfaktor allgemein für symmetrische Matrizen gilt. (Tipp: Setzen Sie in

$$\lambda^{(k)} = \frac{(x^{(k)})^T x^{(k+1)}}{\|x^{(k)}\|_2^2}$$

für $x^{(k)}$ und $x^{(k+1)}$ den Ausdruck $A^kx^{(0)}$ bzw. $A^{k+1}x^{(0)}$ ein, wobei $x^{(0)}$ als Linearkombination der Eigenvektoren der Matrix A ausgedrückt wird. Verwenden Sie dann die Orthogonalität der Eigenvektoren von A.)

4. Aufgabe: Inverse Vektoriteration

Bestimmen Sie die drei Eigenwerte der Matrix

$$A = \begin{pmatrix} 15 & -2 & 2\\ 1 & 10 & -3\\ -2 & 1 & 0 \end{pmatrix}$$

mit der inversen Vektoriteration mit Spektralverschiebung. Implementieren Sie dafür eine MATLAB/Octave-Funktion mit der Signatur [y,1] = invVectorIteration (A, x0, mu, tol, maxIt) ...).

Nehmen Sie die Diagonaleinträge von A als erste Annäherungen der Eigenwerte. (Das funktioniert in diesem Fall, da die Matrix so große Diagonalelemente hat. Falls Sie die Gershgorin-Abschätzung für Eigenwerte aus der linearen Algebra kennen: Zeichnen Sie die Gershgorin-Kreise!)

5. Aufgabe: QR-Verfahren

Es sei QR = A eine QR-Zerlegung der Matrix $A \in \mathbb{R}^{n \times n}$ und es sei B = RQ.

- (a) Zeigen Sie, dass A und B dasselbe Spektrum besitzen: $\sigma(A) = \sigma(B)$.
- (b) Zeigen Sie: Wenn A symmetrisch ist, dann ist auch B symmetrisch, d.h. $A=A^T\Longrightarrow B=B^T$
