Name Zunaira Hameed

Tasks Intermediate Level

Domain Data Analysis

Company Codveda

Overview:

This project involves performing three intermediate-level data analysis tasks using Python:

1. Linear Regression Analysis

- 2. Time Series Trend and Seasonality Detection
- 3. K-Means Clustering for Pattern Discovery

Tools used: pandas, numpy, scikit-learn, matplotlib, seaborn, statsmodels

Dataset: Stock prices (CSV file)

Task 1: Regression Analysis

Goal:

Predict the **closing price** of a stock based on other features such as date, volume, and symbol using **Linear Regression**.

Step 1: Import Dependencies

Basic data manipulation, visualization, and modeling libraries are imported. Warnings are also suppressed to avoid clutter.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_squared_error, r2_score

from sklearn.preprocessing import LabelEncoder

from warnings import filterwarnings

filterwarnings('ignore')

Step 2: Mounting Google drive

To access the dataset stored in Google Drive.

from google.colab import drive drive.mount('/content/drive')

Step 3: Load and Read Dataset

Reading the stock prices CSV file using pandas.

data = pd.read_csv('/content/drive/MyDrive/Stock Prices Data Set.csv') data.head()

Step 4: Handling missing and duplicate values

Checking for nulls.

Filling missing values using forward fill method.

Checking for duplicate records.

data.fillna(method='ffill', inplace=True)

Step 5: Encoding categorical variables

The symbol column is encoded to numeric values using LabelEncoder.

le = LabelEncoder()

data['symbol'] = le.fit_transform(data['symbol'])

Step 6: Data transformation

The date column is converted to ordinal format to use in numerical modeling.

data['date'] = pd.to_datetime(data['date'])

data['date_ordinal'] = data['date'].apply(lambda date: date.toordinal())

Step 7: Preparing features and labels

Independent variables are selected by dropping close and date. The target variable is close.

Step 8: Splitting Dataset

The data is split into training and testing sets (80% train, 20% test).

x_test, x_train, y_test, y_train = train_test_split(x, y, test_size=0.2, random_state=42)

Step 9: Training Linear Regression

Using scikit-learn's LinearRegression to fit the model on training data.

model = LinearRegression()

model.fit(x_train, y_train)
Step 10: Evaluating the model
Intercept and coefficients are printed.
R-squared and Mean Squared Error (MSE) are used for performance evaluation.
$r2 = r2_score(y_test, y_pred)$
mse = mean_squared_error(y_test, y_pred)

Task 2: Time Series Analysis

Goal:

Detect **trend**, **seasonality**, and **residuals** in the stock closing prices and apply **moving average smoothing**.

Step 1: Plotting Time Series

Visualizing the closing prices over time to identify patterns.

```
# Plotting the close price over time

plt.figure(figsize=(10, 6))

plt.plot(data['close'], label="Close Price")

plt.title("Stock Close Prices Over Time")

plt.xlabel("Date")

plt.ylabel("Close Price")

plt.legend()

plt.show()
```

Stock close prices over time

Step 2: Time series decomposition

Using seasonal_decompose from statsmodels to split the time series into:

Trend

Seasonality

Residual (Noise)

from statsmodels.tsa.seasonal import seasonal_decompose

decomposition = seasonal_decompose(data['close'], model='additive', period=30)

decomposition.plot()

Decompose Close price

Step 3: Moving Average smoothing

A 30-day simple moving average is calculated and plotted to observe trend smoothing.

data['moving_avg'] = data['close'].rolling(window=30).mean()

Close Price with 30 Day Moving AVG

Task 3: Clustering Analysis (K-means)

Goal:

Group similar stock records using **K-Means Clustering** based on numerical features.

Step 1: Standardize the data

Only numeric columns are selected.

Missing values are handled using SimpleImputer.

Features are scaled using StandardScaler.

```
from sklearn.cluster import KMeans
```

from sklearn.preprocessing import StandardScaler

from sklearn.impute import SimpleImputer # Import SimpleImputer

```
# Select only numeric features for scaling
numeric_features = data.select_dtypes(include=['number']).columns
numeric_data = data[numeric_features]
```

```
# Impute missing values using the mean strategy
imputer = SimpleImputer(strategy='mean') # Create an imputer instance
numeric_data = imputer.fit_transform(numeric_data) # Impute missing values
```

```
# Standardize the features
scaler = StandardScaler()
scaled_data = scaler.fit_transform(numeric_data)
```

Step 2: Elbow method for optimal clusters

The elbow method is applied by plotting **inertia** for k=1 to 10 to decide the best number of clusters.

for k in range(1, 11):

kmeans = KMeans(n_clusters=k, random_state=42)

kmeans.fit(scaled_data)

inertia.append(kmeans.inertia_)

Elbow Graph

Step 3: Applying K-means

Once optimal clusters are found (e.g., k=3), KMeans is applied and cluster labels are added to the original data.

kmeans = KMeans(n_clusters=3, random_state=42)

clusters = kmeans.fit_predict(scaled_data)

data['Cluster'] = clusters

Step 4: Visualizing clusters in 2D

Using **PCA** to reduce dimensions and plot clusters in 2D space for clear visualization.

from sklearn.decomposition import PCA

reduced_data = pca.fit_transform(scaled_data)

sns.scatterplot(x=reduced_data[:, 0], y=reduced_data[:, 1], hue=data['Cluster'])

K-means clusters

