SECTION-I

THE BINDING OF H+, Mg²⁺, K+, Na+, Ca²⁺ AND POLYAMINES TO ATP;

ACID/BASE TITRATION AND DEFINITIONS OF BUFFERING

CONTENTS

ATP AND RELATED TOPICS

pH (activity) and pH (concentration)					
ATP, H ⁺ and Mg ²⁺ binding (general)					
Equilibrium between ATP and H+					
Stoichiometric and mixed constants					
Equilibrium between Mg ²⁺ and ATP					
Equilibrium between ATP and other cations					
Definition of pH_c and pK_{eq} (K as equilibrium constant)					
Forms of ATP as a function of pH	8				
1) [ATP4-]	8				
2) [H-ATP3-]	8				
3) [H ₂ -ATP ²]	8				
4) [H ₃ -ATP ¹]	8				
5) [H ₄ -ATP]	8				
Forms of Mg-ATP as a function of pH	10				
1)Total ATP concentration	10				
2) Total magnesium concentration	10				
3) Ratio of [Mg-H-ATP ¹⁻] to [Mg-ATP ²⁻]	10				
4) [Mg-ATP ²⁻]	11				
5) [Mg-H-ATP ¹]	12				
6)[Mg ²⁺]	13				
7) [ATP ⁴⁻] and protonated forms	15				
8) ([Mg-ATP ²⁻] + [Mg-H-ATP ¹⁻]) or [Mg-ATP] _B	16				
Apparent constant (K _{app})					
Calculation of K _{app} from the various equilibrium constants	19				
Comments on the K _{app} calculations	20				
Prediction of K _{app} at different pH _c values	20				
$[Mg]_T$ and $[ATP]_T$ at a given $[Mg^{2+}]$ in terms of K_{app}	22				
1) [Mg] _T	22				
2) [Mg-ATP] _B	23				
3) [ATP] _T	23				
4) K _{app}	23				
Total H+ bound to ATP	23				
SIMULTANEOUS BINDING OF Mg ²⁺ AND A CATION TO ATP					
Introduction	24				
Definitions	2 4				
Faustions	0.4				

1) [Mg ²⁺]	24				
2) [X ⁿ⁺]	25				
3) [ATP] _F	25				
4) [Mg-ATP] _B	25				
5) [X-ATP] _B	25				
BINDING OF POLYAMINES TO ATP IN THE PRESENCE OF Mg ²⁺	26				
Binding of spermine to ATP	26				
Relationship between K _{app} and [S ²⁺]	26				
ACID BASE CHEMISTRY					
Introduction	27				
1) [H] _T in a buffer solution	27				
a) one H+ binding site	27				
b) two H+ binding sites	27				
c) three H+ binding sites					
d) four H+ binding sites	30				
2) Bound H+ in a H+ buffer solution	30				
3) [H+] at a given [H] _T	30				
a) one H+ binding site	30				
b) two H+ binding sites	31				
Titration of a buffer solution from pH 12 to pH 2 with HCl	32				
Introduction	32				
1) Buffer equilibrium	32				
2) Ionic product of water					
3) Electrical neutrality					
4) Basic equation	32				
Amount of NaOH that has to be added to reach a given pH	32				
Titration of the buffer solution with HCl	33				
Results of the titration	34				
DEFINITIONS OF BUFFERING.	36				
1) Buffer capacity (Michaelis)	37				
2) Buffer capacity (Koppel & Spiro)					
3) Buffering power					
4) Binding capacity/ratio					
5) Buffer coefficient/ratio	40				
REFERENCES	41				

ATP AND RELATED TOPICS

pH (ACTIVITY) AND pH (CONCENTRATION)

pH as measured, is defined as minus the logarithm of the hydrogen ion activity (a $_{\rm H}$ $^{\scriptscriptstyle +}$), not concentration

$$pH_a = -loga_{H^+} . [1]$$

It is also possible to define pH in terms of concentration:

$$pH_c = -log[H^+]$$
 [2]

The relationship between the two is as follows:

$$pH_a = -log[H^+]\gamma_{H^+}$$
 [3]

and

$$pH_a = -\log[H^+] - \log\gamma_{H^+}$$
 [4]

where $\gamma_{\scriptscriptstyle H^+}$ is the single ion activity coefficient of the hydrogen ions.

$$pH_a + log\gamma_{H^+} = pH_c$$
, or $pH_c - log\gamma_{H^+} = pH_a$ [5][5a]

In other words, the measured value of pH_a has to be decreased by the factor $\left|\log\gamma_{H^+}\right|$ to convert it to pH_c , since $\log\gamma_{H^+}$ is negative. It also follows that:

$$[H^{+}] = 10^{-pH_c}$$
 and $a_{H^{+}} = 10^{-pH_a}$ [6]/[7]

Measured pH values are in terms of H⁺ activity, but equilibrium constants are usually tabulated in terms of H⁺ concentration, necessitating the conversion of activity to concentration (McGuigan, Lüthi & Buri, 1991). One way of doing this is to use the equation in Harrison & Bers (1989) to calculate the H⁺ activity coefficient at 20°C. This is:

$$\gamma_{H^{+}} = 0.144 \exp^{-5.147 * I} + .06352 \exp^{-44.168 * I} + 0.6971$$
 [8]

where I is the ionic strength. This activity coefficient can be converted to the desired temperature by the following equation from Baumgarten (1981):

$$\log \gamma_{t} = \frac{A_{t} I^{1/2} B_{20} \log \gamma_{20}}{A_{20} I^{1/2} B_{t} + \log \gamma_{20} B_{t} - B_{20} \log \gamma_{20}}$$
[9]

where
$$A = \frac{1.8246*1 \cdot 0^6}{(DT)^{3/2}}$$
 and $B = \frac{50.29*10^8}{(DT)^{1/2}}$ [10]/[11]

and

$$D = 78.54\{1 - 4.579*10^{-3}(t - 25) + 1.19*10^{-5}(t - 25)^{2} - 2.8*10^{-8}(t - 25)^{3}\}$$
 [12]

where t is temperature in °C. It should be noted that this calculates the mean activity coefficient. However, the Debye-Hückel convention sets the mean activity coefficient of a univalent ion equal to the single ion activity coefficient (McGuigan, Buri, Chen et al., 1993). Other methods to calculate the H⁺ activity coefficient are described in Section II, page 49.

ATP H+ AND Mg²⁺ BINDING (GENERAL)

EQUILIBRIUM BETWEEN ATP AND H+

ATP binds H+ and at equilibrium:

$$\frac{[H^{+}][ATP^{4-}]}{[H-ATP^{3-}]} = K_{H-1} \qquad \frac{[H^{+}][H-ATP^{3-}]}{[H_{2}-ATP^{2-}]} = K_{H-2} \qquad [14]/[15]$$

$$\frac{[H^{+}][H_{2}-ATP^{2-}]}{[H_{3}-ATP^{1-}]} = K_{H-3} \qquad \frac{[H^{+}][H_{3}-ATP^{1-}]}{[H_{4}-ATP]} = K_{H-4} \qquad [16]/[17]$$

Since H+-ions are expressed in concentration, these are stoichiometric constants.

STOICHIOMETRIC AND MIXED CONSTANTS

If a_{H+} is used instead of [H+] this gives from equation [14]

$$\frac{a_{H} + [ATP^{4-}]}{[H - ATP^{3-}]} = K_{H-1(M)} \text{ or } \frac{10^{-pH_a}[ATP^{4-}]}{[H - ATP^{3-}]} = K_{H-1(M)}$$
[18]/[19]

and similarly with equations [15] to [17]. Since the proton concentration is in activity this is a mixed constant (denoted M); "mixed" because it contains both activity and concentrations.

 K_{H-1} and $K_{H-1(M)}$ are related as follows:

$$\frac{([H^{+}]\gamma_{H^{+}})[ATP^{4-}]}{[H-ATP^{3-}]} = K_{H-1(M)}$$
 [20]

$$\frac{[H^{+}][ATP^{4-}]}{[H-ATP^{3-}]} = \frac{K_{H-1(M)}}{\gamma_{H}}$$
 [21]

SO

$$K_{H-1} = \frac{K_{H-1(M)}}{\gamma_{H^+}}$$
 [22]

pH as explained above is defined as H+-ion activity. In order to use tabulated stoichiometric constants, either pH has to be converted to concentration or stoichiometric constants have to be converted to mixed constants.

EQUILIBRIUM BETWEEN Mg2+ AND ATP

Two forms of ATP bind Mg²⁺ namely, ATP⁴⁻ and H-ATP³⁻. At equilibrium this gives:

$$\frac{[Mg^{2+}][ATP^{4-}]}{[Mg-ATP^{2-}]} = K_{Mg-1}$$
 [23]

$$\frac{[Mg^{2^{+}}][H-ATP^{3-}]}{[Mg-H-ATP^{1-}]} = K_{Mg-2}$$
 [24]

EQUILIBRIUM BETWEEN ATP AND OTHER CATIONS

In intracellular solutions, ATP can also bind univalent cations such as K⁺ and Na⁺. Assume binding of ATP and H-ATP to K⁺ to give the following equilibrium states:

$$\frac{[K^{+}][ATP^{4}]}{[K-ATP^{3}]} = K_{K-1}$$
 [25]

$$\frac{[K^{+}][H-ATP^{3-}]}{[K-H-ATP^{2-}]} = K_{K-2}$$
 [26]

and similarly for Na+.

ATP also binds Ca²⁺, to give the following equilibrium states:

$$\frac{[Ca^{2+}][ATP^4]}{[Ca-ATP^{2-}]} = K_{Ca-1}$$
 [27]

$$\frac{[Ca^{2+}][H-ATP^{3-}]}{[Ca-H-ATP^{1-}]} = K_{Ca-2}$$
 [28]

However, in an intracellular-like physiological solution where the [Ca²⁺] is around 100 nmol/l this binding can be neglected.

$\underline{DEFINITION\ OF\ pH_{c}\ AND\ pK_{eq}\ (K\ AS\ EQUILIBRIUM\ CONSTANT)}$

Since $pH_c = -log[H^+]$ a similar definition can be introduced for the equilibrium constant K_{Eq} namely,

$$pK_{eq} = -logK_{eq}$$
 and $10^{-pK_{eq}} = K_{eq}$ [29]/[30]

Note: A binding constant (K_{bind}) is defined as the reciprocal of the equilibrium constant $(\frac{1}{K_{bind}})$.

$$\begin{split} pK_{bind} = +log \ K_{bind} \ \ or \ \ log(\frac{1}{K_{eq}}) \ \ or \ \{log(1) - logK_{eq}\}. \ Since \ log(1) \ is zero \ both \ pK_{eq} \ and \\ pK_{bind} \ have \ the \ same \ \textit{numerical} \ value. \end{split}$$

FORMS OF ATP AS A FUNCTION OF pH

<u>Introduction:</u> From equations [14] to [17] and in the absence of Mg²⁺ and Ca²⁺, the binding of H⁺ to ATP can be expressed as follows:

$$[H-ATP^{3-}] = [ATP^{4-}] \frac{[H^{+}]}{K_{H-1}}$$
 [31]

$$[H_2-ATP^{2-}] = [H-ATP^{3-}] \frac{[H^+]}{K_{H-2}} \text{ or } [H_2-ATP^{2-}] = [ATP^{4-}] \frac{[H^+]^2}{K_{H-1}K_{H-2}}$$
 [32]/[33]

$$[H_3 - ATP^{1-}] = [H_2 - ATP^{2-}] \frac{[H^+]}{K_{H-3}} \text{ or } [H_3 - ATP^{1-}] = [ATP^{4-}] \frac{[H^+]^3}{K_{H-1}K_{H-2}K_{H-3}}$$
 [34]/[35]

$$[H_4-ATP] = [H_3-ATP^{1-}] \frac{[H^+]}{K_{H-4}} \text{ or } [H_4-ATP] = [ATP^{4-}] \frac{[H^+]^4}{K_{H-1}K_{H-2}K_{H-3}K_{H-4}}$$
[36]/[37]

Since,
$$[ATP]_T = ([ATP^{4-}] + [H - ATP^{3-}] + [H_2 - ATP^{2-}] + [H_3 ATP^{1-}] + [H_4 - ATP])$$

it follows from equations [31], [33], [35] and [37]:

$$[ATP]_{\Gamma} = ([ATP^{4-}] + [ATP^{4-}] \frac{[H^+]}{K_{H-1}} + [ATP^{4-}] \frac{[H^+]^2}{K_{H-1}K_{H-2}} + [ATP^{4-}] \frac{[H^+]^3}{K_{H-1}K_{H-2}K_{H-3}} + [ATP^{4-}] \frac{[H^+]^4}{K_{H-1}K_{H-2}K_{H-3}})$$
 and
$$[38]$$

$$[ATP]_{T} = [ATP^{4-}](1 + \frac{[H^+]}{K_{H-1}} + \frac{[H^+]^2}{K_{H-1}K_{H-2}} + \frac{[H^+]^3}{K_{H-1}K_{H-2}K_{H-3}} + \frac{[H^+]^4}{K_{H-1}K_{H-2}K_{H-3}K_{H-4}}) [39]$$
 or
$$[ATP]_{T} = [ATP^{4-}](1 + 10^{(pK_{H-1}-pH_{o})} + 10^{(pK_{H-1}+pK_{H-2}-2pH_{o})} + 10^{(pK_{H-1}+pK_{H-2}+pK_{H-3}-3pH_{o})} + 10^{(pK_{H-1}+pK_{H-2}+pK_{H-3}+pK_{H-4}-4pH_{o})})$$

[40]

It follows that:

1)

$$[ATP]_{T} = \frac{[ATP]_{T}}{(1 + 10^{(pK_{H-1} - pH_{c})} + 10^{(pK_{H-1} + pK_{H-2} - 2pH_{c})} + 10^{(pK_{H-1} + pK_{H-2} + pK_{H-3} - 3pH_{c})} + 10^{(pK_{H-1} + pK_{H-2} + pK_{H-3} + p$$

2)
$$[H-ATP^{3-}] = [ATP^{4-}]10^{(pK_{H-1}-pH_0)}$$
 [42]

3)
$$[H_2 - ATP^{2-}] = [H - ATP^{3-}] 10^{(pK_{H-2} - pH_0)}$$
 [43]

4)
$$[H_3 - ATP^{1-}] = [H_2 - ATP^{2-}]10^{(pK_{H-3} - pH_c)}$$
 [44]

5)
$$[H_4-ATP] = [H_3-ATP^{1-}]10^{(pK_{H-4}-pH_c)}$$
 [45]

<u>Figure 1:</u> Calculated forms of ATP as the pH_c is varied from 5 to 9.

Equations [41] to [45] can be used to calculate the fraction of the various forms of ATP that are present at various pH_C values. Using the constants tabulated in Fabiato & Fabiato (1979); ionic strength 0.16 mol/l, temperature 22 °C, pK_{H-1} 6.95 and pK_{H-2} 4.05 the fraction of the various forms has been calculated. This is illustrated in Figure 1 and it is clear that at pH_c values from 5 to 9 the ATP is present in the forms ATP⁴⁻ and H-ATP³⁻. This being so, equation [13] can be simplified to:

$$Mg-H-ATP^{1-} \leftrightarrow Mg^{2+} + H-ATP^{3-}$$

$$K_{Mg-2}$$

$$\downarrow \uparrow \qquad K_{H-1}$$

$$Mg-ATP^{2-} \leftrightarrow Mg^{2+} + ATP^{4-} + H^{+}$$

$$K_{Mg-1}$$

$$[46]$$

FORMS OF Mg²⁺-ATP AS A FUNCTION OF pH

Equations [41] to [45] calculate the percentage of the forms of ATP present as the pH is varied. However, since the affinity of ATP⁴⁻ for Mg²⁺ is greater than that of H-ATP³⁻ it is of interest to calculate the amount of Mg²⁺ bound to each as the pH changes.

1) Total ATP Concentration

$$[ATP]_{T} = [ATP^{4-}] + [H-ATP^{3-}] + [H_{2}-ATP^{2-}] + [H_{3}-ATP^{1-}] + [H_{4}-ATP] + [Mg-ATP^{2-}] + [Mg-H-ATP^{1-}]$$

$$[47]$$

and

$$[ATP]_{T} = [ATP^{4}](1 + \frac{[H-ATP^{3-}]}{[ATP^{4-}]} + \frac{[H_{2}-ATP^{2-}]}{[ATP^{4-}]} + \frac{[H_{3}-ATP^{1-}]}{[ATP^{4-}]} + \frac{[H_{4}-ATP]}{[ATP^{4-}]}) + [Mg-ATP^{2-}] + [Mg-H-ATP^{1-}]$$

$$[48]$$

from equations [31] to [37]:

$$[ATP]_T = [ATP^{4-}]\alpha + [Mg-ATP^{2-}] + [Mg-H-ATP^{1-}]$$
 [49]

where:

$$\alpha = \left(1 + \frac{[H^+]}{K_{H-1}} + \frac{[H^+]^2}{K_{H-1}K_{H-2}} + \frac{[H^+]^3}{K_{H-1}K_{H-2}K_{H-3}} + \frac{[H^+]^4}{K_{H-1}K_{H-2}K_{H-3}K_{H-4}}\right)$$
 [50]

2) Total Magnesium Concentration

$$[Mg]_T = ([Mg^{2+}] + [Mg-ATP^{2-}] + [Mg-H-ATP^{1-}])$$
 [51]

3) Ratio of [Mg-H-ATP] to [Mg-ATP²⁻]

Eliminating [H-ATP3-] from equation [24] by use of equation [14] gives:

$$\frac{[Mg^{2^{+}}][H^{+}][ATP^{4^{-}}]}{K_{H-1}[Mg-H-ATP^{1^{-}}]} = K_{Mg-2}$$
 [52]

Taking the ratio of equation [23] and [52] gives:

$$\frac{[Mg^{2+}][ATP^{4-}]}{[Mg-ATP^{2-}]} \frac{[Mg-H-ATP^{1-}]K_{H-1}}{[Mg^{2+}][H^{+}][ATP^{4-}]} = \frac{K_{Mg-1}}{K_{Mg-2}}$$
[53]

which gives:

$$\frac{[Mg-H-ATP^{1-}]}{[Mg-ATP^{2-}]} = \frac{K_{Mg-1}}{K_{Mg-2}} \frac{[H^{+}]}{K_{H-1}}$$
[54]

or in terms of pH and pK

$$\frac{[Mg-H-ATP^{1}]}{[Mg-ATP^{2}]} = 10^{(pK_{Mg-2}-pK_{Mg-1})}10^{(pK_{H-1}-pH_c)}$$
[55]

4) [Mg-ATP²⁻]

From equations [51] and [54] we get:

$$[Mg]_{T} = ([Mg^{2+}] + [Mg - ATP^{2-}] + \frac{K_{Mg-1}}{K_{Mg-2}} \frac{[H^{+}]}{K_{H-1}} [Mg - ATP^{2-}])$$
 [56]

Using equation [23] to eliminate [Mg²⁺] and rearranging gives:

$$[Mg-ATP^{2-}](1 + \frac{K_{Mg-1}}{K_{Mg-2}} \frac{[H^{+}]}{K_{H-1}}) + \frac{K_{Mg-1}[Mg-ATP^{2-}]}{[ATP^{4-}]} - [Mg]_{T} = 0$$
 [57]

but from equation [49]

$$[ATP^{4-}]\alpha = [ATP]_T - ([Mg-ATP^{2-}] + [Mg-H-ATP^{1-}])$$
 [58]

Using equation [54] gives:

$$[ATP^{4-}]\alpha = [ATP]_T - [Mg - ATP^{2-}](1 + \frac{K_{Mg-1}}{K_{Mg,2}} \frac{[H^+]}{K_{H,1}})$$
[59]

Let:

$$\beta = (1 + \frac{K_{Mg-1}}{K_{Mg-2}} \frac{[H^+]}{K_{H-1}})$$
 [60]

and

$$[ATP^{4-}] = \frac{([ATP]_T - [Mg - ATP^{2-}\beta))}{\alpha}$$
 [61]

and substituting for [ATP4-] in [57] gives:

$$[Mg-ATP^{2}]^{2} - (\frac{[ATP]_{T}}{\beta} + \frac{[Mg]_{T}}{\beta} + \frac{K_{Mg-1}\alpha}{\beta^{2}})[Mg-ATP^{2}] + \frac{[ATP]_{T}[Mg]_{T}}{\beta^{2}} = 0 \quad [62]$$

which on solution gives

$$[Mg-ATP^{2}] = \frac{A - \sqrt{A^{2} - 4\frac{[ATP]_{T}[Mg]_{T}}{\beta^{2}}}}{2}$$
 [63]

where

$$A = \left(\frac{[ATP]_T}{\beta} + \frac{[Mg]_T}{\beta} + \frac{K_{Mg-1}\alpha}{\beta^2}\right)$$
 [64]

5) [Mg-H-ATP¹⁻]

From equations [51] and [54] we get:

$$[Mg]_{T} = [Mg^{2+}] + [Mg-H-ATP^{1-}](1 + \frac{K_{Mg-2}}{K_{Mg-1}} \frac{K_{H-1}}{[H^{+}]})$$
 [65]

Let:

$$\gamma = (1 + \frac{K_{Mg-2}}{K_{Mg-1}} \frac{K_{H-1}}{[H^+]})$$
 [66]

and

$$[Mg]_T = [Mg^{2+}] + [Mg-H-ATP^{1-}]\gamma$$
 [67]

or

$$[Mg^{2+}] + [Mg-H-ATP^{1-}]\gamma - [Mg]_T = 0$$
 [68]

From equations [23] and [24]:

$$[Mg^{2+}] = \frac{K_{H-1}}{[H^{+}]} \frac{K_{Mg-2}}{[ATP^{4-}]} [Mg-H-ATP^{1-}]$$
 [69]

From equation [58]:

$$[ATP^{4-}]\alpha = [ATP]_T - [Mg-H-ATP^{1-}]\gamma$$
 [70]

and

$$[ATP^{4-}] = \frac{[ATP]_{T} - [Mg - H - ATP^{1-}]\gamma}{\alpha}$$
[71]

substituting equations [69] in [68] gives:

$$\frac{K_{H-1}}{[H^{+}]} \frac{K_{Mg-2}}{[ATP^{4-}]} [Mg-H-ATP^{1-}] + [Mg-H-ATP^{1-}]\gamma - [Mg]_{T} = 0$$
 [72]

substituting [71] in [72] gives:

$$\frac{K_{H-1}}{[H^{+}]} \frac{K_{Mg-2}}{\frac{([ATP]_{T} - [Mg-H-ATP^{1-}]\gamma)}{\alpha}} [Mg-H-ATP^{1-}] + [Mg-H-ATP^{1-}]\gamma - [Mg]_{T} = 0$$
[73]

this simplifies to:

$$[Mg-H-ATP^{1}]^{2}-(\frac{[ATP]_{T}}{\gamma}+\frac{[Mg]_{T}}{\gamma}+\frac{K_{H-1}K_{Mg-2}\alpha}{[H^{+}]\gamma^{2}})[Mg-H-ATP^{1}]+\frac{[ATP]_{T}[Mg]_{T}}{\gamma^{2}}=0 \ \ [74]$$

and the solution to the quadratic is similar to equation [62], namely

$$[Mg-H-ATP^{2}] = \frac{B - \sqrt{B^{2} - 4\frac{[ATP]_{T}[Mg]_{T}}{\gamma^{2}}}}{2}$$
 [75]

where

$$B = \left(\frac{[ATP]_{T}}{\gamma} + \frac{[Mg]_{T}}{\gamma} + \frac{K_{H-1}K_{Mg-2}\alpha}{[H^{+}]\gamma^{2}}\right)$$
 [76]

 $6) [Mg^{2+}]$

$$[Mg^{2+}] = ([Mg]_T - [Mg-ATP^{2-}] - [Mg-H-ATP^{1-}])$$
 [77]

using equation [54] gives:

$$[Mg^{2+}] = ([Mg]_T - [Mg - ATP^{2-}](1 + \frac{K_{Mg-1}}{K_{Mg-2}} \frac{[H^+]}{K_{H-1}}))$$
[78]

or

$$[Mg^{2+}] = ([Mg]_T - [Mg - ATP^{2-}]\beta)$$
 [79]

From equations [23] and [61]:

$$[Mg-ATP^{2-}] = \frac{[Mg^{2+}][ATP]_{T}}{(K_{Mg-1}\alpha + [Mg^{2+}]\beta)}$$
[80]

substituting in equation [79] and rearranging gives the following:

$$[Mg^{2+}]^2 + (\frac{K_{Mg-1}\alpha}{\beta} + [ATP]_T - [Mg]_T)[Mg^{2+}] - \frac{[Mg]_T K_{Mg-1}\alpha}{\beta} = 0$$
 [81]

The solution of the quadratic is:

$$[Mg^{2+}] = \frac{-C + \sqrt{C^2 + 4\frac{[Mg]_T K_{Mg-1}\alpha}{\beta}}}{2}$$
[82]

where

$$C = \left(\frac{K_{Mg-1}\alpha}{\beta} + [ATP]_{T} - [Mg]_{T}\right)$$
[83]

where:

$$\alpha = \left(1 + \frac{[H^+]}{K_{H-1}} + \frac{[H^+]^2}{K_{H-1}K_{H-2}} + \frac{[H^+]^3}{K_{H-1}K_{H-2}K_{H-3}} + \frac{[H^+]^4}{K_{H-1}K_{H-2}K_{H-3}K_{H-4}}\right)$$

and

$$\beta = (1 + \frac{K_{Mg-1}}{K_{Mg-2}} \frac{[H^+]}{K_{H-1}})$$

equations [50] and [60] respectively.

Since $\frac{K_{Mg-1}\alpha}{\beta} = K_{app}$ (equation [119]) equation [81] becomes on substitution

$$[Mg^{2+}] = \frac{-(K_{app} + [ATP]_T - [Mg]_T) + \sqrt{(K_{app} + [ATP]_T - [Mg]_T)^2 + 4[Mg]_T K_{app}}}{2} [84]$$

 K_{app} is the apparent equilibrium constant. Since $K_{app} = \frac{1}{K_{app-bind}}$ substitution in equation [84] gives the following:

$$[Mg^{2+}] = \frac{-(\frac{1}{K_{app-bind}} + [ATP]_T - [Mg]_T) + \sqrt{(\frac{1}{K_{app-bind}} + [ATP]_T - [Mg]_T)^2 + 4[Mg]_T \frac{1}{K_{app-bind}}}}{2}$$
[85]

which on simplification gives:

$$[Mg^{2+}] = \frac{-D + \sqrt{D^2 + 4[Mg]_T K_{app-bind}}}{2K_{app-bind}}$$
[86]

where

$$D = (1 + [ATP]_T K_{app-bind} - [Mg]_T K_{app-bind})$$
 [87]

This solution is similar to that in McGuigan, Buri, Chen et al. (1993).

7, [ATP
$$^{4-}$$
], [H–ATP $^{3-}$], [H $_2$ –ATP $^{2-}$], [H $_3$ –ATP $^{1-}$], [H $_4$ –ATP]

From equations [59] and [60]

$$[ATP^{4-}]\alpha = [ATP]_T - [Mg-ATP^{2-}]\beta$$
 [88]

and from equation [56] and [60]

$$[Mg]_T = [Mg^{2+}] + [Mg-ATP^{2-}]\beta$$
 [89]

or

$$[Mg^{2+}] = [Mg]_T - [Mg-ATP^{2-}]\beta$$
 [90]

Substituting [90] in equation [23] gives:

$$\frac{([Mg]_{T} - [Mg-ATP^{2-}]\beta)[ATP^{4-}]}{[Mg-ATP^{2-}]} = K_{Mg-1}$$
 [91]

which on simplification gives:

$$[Mg-ATP^{2-}] = \frac{[Mg]_{T}[ATP^{4-}]}{(K_{Mg-1} + \beta[ATP^{4-}])}$$
[92]

Substitution in equation [88] gives:

$$[ATP^{4-}]\alpha = [ATP]_{T} - \frac{[Mg]_{T}[ATP^{4-}]}{(K_{Mg-1} + \beta[ATP^{4-}])}\beta$$
[93]

Solving for [ATP⁴⁻] gives:

$$[ATP^{4-}]^2 + (\frac{K_{Mg-1}}{\beta} + \frac{([Mg]_T}{\alpha} - \frac{[ATP]_T}{\alpha})[ATP^4] - \frac{K_{Mg-1}[ATP]_T}{\alpha\beta} = 0$$
 [94]

Since $\frac{K_{Mg-1}\alpha}{\beta} = K_{app}$ (see equation [119]) it follows that:

$$[ATP^{4-}]^{2} + (\frac{K_{app}}{\alpha} + \frac{[Mg]_{T}}{\alpha} - \frac{[ATP]_{T}}{\alpha})[ATP^{4-}] - \frac{K_{app}[ATP]_{T}}{\alpha^{2}} = 0$$
 [95]

The solution to the quadratic is:

$$ATP^{4-}] = \frac{-E + \sqrt{E^2 + 4\frac{K_{app}[ATP]_T}{\alpha^2}}}{2}$$
 [96]

where

$$E = \frac{(K_{app} + [Mg]_T - [ATP]_T)}{\alpha}$$
[97]

The protonated forms follow from [42] to [45],

$$[H-ATP^{3-}] = [ATP^{4-}]*10^{(pK_{H-1}-pH)}$$
[98]

$$[H_2 - ATP^{2-}] = [ATP^{4-}] * 10^{(pK_{H-1} + pK_{H-2} - 2pH)}$$
[99]

$$[H_3 - ATP^{1-}] = [ATP^{4-}] * 10^{(pK_{H-1} + pK_{H-2} + pK_{H-3} - 3pH)}$$
[100]

$$[H_4 - ATP] = [ATP^{4}] * 10^{(pK_{H-1} + pK_{H-2} + pK_{H-3} + pK_{H-4} - 4pH)}$$
[101]

8) $[Mg-ATP^{2-}] + [Mg-H-ATP^{1-}]$ or $[Mg-ATP]_B$ in terms of K_{app}

From equation [51]:

$$[Mg-ATP]_B = [Mg]_T - [Mg^{2+}]$$
 [102]

From equation [115]:

$$[Mg^{2+}] = \frac{K_{app}[Mg - ATP]_{B}}{[ATP]_{F}}$$
 [103]

Substituting equation [103] in equation [102] gives:

$$[Mg-ATP]_B = [Mg]_T - \frac{K_{app}[Mg-ATP]_B}{[ATP]_F}$$
 [104]

but

$$[ATP]_F = [ATP]_T - [Mg - ATP]_B$$
[105]

Substituting in equation [105] in [104] gives:

$$[Mg-ATP]_{B} = [Mg]_{T} - \frac{K_{app}[Mg-ATP]_{B}}{([ATP]_{T} - [Mg-ATP]_{B})}$$
[106]

solving for [Mg-ATP]_B gives:

$$[Mg-ATP]_{B}^{2} - ([ATP]_{T} + [Mg]_{T} + K_{app})[Mg-ATP]_{B} + [Mg]_{T}[ATP]_{T} = 0$$
 [107]

The solution is

[Mg-ATP]_B =
$$\frac{F - \sqrt{F^2 - 4[Mg]_T[ATP]_T}}{2}$$
 [108]

where

$$F = ([ATP]_{T} + [Mg]_{T} + K_{app})$$
[109]

APPARENT CONSTANT (Kapp)

<u>Introduction:</u> Because of the binding of H⁺ and possibly also other cations such as K⁺ to ATP⁴⁻ and H-ATP³⁻, and because Mg²⁺ binds to both ATP⁴⁻ and H-ATP³⁻ the concept of an apparent constant has been introduced. In this constant all forms of ATP that bind Mg²⁺ are lumped together as "bound" Mg²⁺, [Mg-ATP]_B. All forms of ATP not bound to Mg²⁺ are regarded as the "free form" of ATP or [ATP]_F. This gives the following equilibrium

$$\frac{[Mg^{2^{+}}]([ATP^{4^{-}}] + [H-ATP^{3^{-}}] + [H_{2}-ATP^{2^{-}}] + [H_{3}-ATP^{1^{-}}] + [H_{4}-ATP] + [K-ATP^{3^{-}}] + [K-H-ATP^{2^{-}}])}{([Mg-ATP^{2^{-}}] + [Mg-H-ATP^{1^{-}}])} = K_{app}$$

but from equations [48] and [50]:

$$[ATP^{4-}] + [H-ATP^{3-}] + [H_2-ATP^{2-}] + [H_3-ATP^{1-}] + [H_4-ATP] = [ATP^{1-}]\alpha$$
 [111]

it follows that equation [110] simplifies to:

$$\frac{[Mg^{2+}]([ATP^{4-}]\alpha + [K-ATP^{3-}] + [K-H-ATP^{2-}])}{([Mg-ATP^{2-}] + [Mg-H-ATP^{1-}])} = K_{app}$$
[112]

but, by definition

$$[ATP]_{F} = ([ATP^{4-}]\alpha + [K-ATP^{3-}] + [K-H-ATP^{2-}])$$
[113]

and

$$[Mg-ATP]_B = ([Mg-ATP^{2-}] + [Mg-H-ATP^{1-}])$$
 [114]

Substituting equations [113] and [114] in equation [112] gives:

$$\frac{[Mg^{2+}][ATP]_{F}}{[Mg-ATP]_{B}} = K_{app}$$
 [115]

and this is the constant that is measured in the appropriate solutions.

From equation [112] it follows that:

$$\frac{[Mg^{2+}]}{[Mg-ATP^{2-}]} \frac{([ATP^{4-}]\alpha + [K-ATP^{3-}] + [K-H-ATP^{2-}])}{(1 + \frac{[Mg-H-ATP^{1-}]}{[Mg-ATP^{2-}]})} = K_{app}$$
[116]

or

$$\frac{[Mg^{2+}][ATP^{4-}]}{[Mg-ATP^{2-}]} * \frac{(\alpha + \frac{[K-ATP^{3-}]}{[ATP^{4-}]} + \frac{[K-H-ATP^{2-}]}{[ATP^{4-}]})}{(1 + \frac{[Mg-H-ATP^{1-}]}{[Mg-ATP^{2-}]})} = K_{app}$$
[117]

From equation [23] and [54], it follows that

$$\frac{K_{Mg-1}(\alpha + \frac{[K-ATP^{3-}]}{[ATP^{4-}]} + \frac{[K-H-ATP^{2-}]}{[ATP^{4-}]})}{(1 + \frac{K_{Mg-1}}{K_{Mg-2}} \frac{[H^{+}]}{K_{H-1}})} = K_{app}$$
[118]

or

$$\frac{K_{Mg-l}(\alpha + \frac{[K^{+}]}{K_{K-1}} + \frac{[K^{+}]}{K_{K-2}})}{(1 + \frac{K_{Mg-l}}{K_{Mg-2}} \frac{[H^{+}]}{K_{H-l}})} = K_{app}$$
[119]

Equation [119] follows from the definition of the equilibrium constants (equations [14], [25], [26] and [54]). Equation [119] can also be written as:

$$\frac{10^{-pK_{Mg-1}} \{ \alpha + [K^{+}] (10^{pK_{K-1}} + 10^{pK_{K-2}}) \}}{(1 + 10^{(pK_{Mg-2} - pK_{Mg-1})} 10^{(pK_{H-1} - pH_{c})})} = K_{app}$$
[120]

COMMENTS ON THE Kapp CALCULATIONS

1) Including binding to cations such as K^+ (equation [120]): This is the basic equation and it predicts the change of the apparent constant at each pH_c . The full equation contains the binding to cations such as K^+ . In the equation the term, ($[K^+]10^{pK_{K-1}} + [K^+]10^{pK_{K-2}}$) can as a first approximation be regarded as a constant. This arises because the binding to K^+ , normal concentration around 140 mmol/l is low and the free concentration of K^+ can be regarded as a constant over the range of $[Mg]_T$ used in buffer solution. This means that equation [120] can be written as:

$$\frac{10^{-pK_{Mg-1}}(\alpha + A)}{(1 + 10^{(pK_{Mg-2} - pK_{Mg-1})}10^{(pK_{H-1} - pH_c)})} = K_{app}$$
[121]

where A is a constant. The constant A also includes the binding to other cations other than K⁺ such as Na⁺.

2) No binding to cations such as K^+ : If there is no binding to K^+ and/or Na^+ , or it is so small that it can be ignored the equation simplifies to:

$$\frac{K_{\text{Mg-l}}\alpha}{\beta} = K_{\text{app}}$$
 [122]

This arises because if there is no binding then K_{K-1} and K_{K-2} tend to infinity and the K^+ terms tends to zero (see equation [119]).

3) No binding of Mg^{2+} to H-ATP³⁻: The third simplification is if K_{Mg-2} also tends to infinity *i.e.* there is no binding of Mg^{2+} to H-ATP³⁻. Under these conditions the equation becomes:

$$K_{Mg-1}\alpha = K_{app}$$
 [123]

PREDICTION OF Kadd AT DIFFERENT pHc VALUES

If K_{app} has been measured at pH_c of 7.2, then from equation [123] and ignoring H_2 -ATP²⁻, H_3 -ATP¹⁻ and H_4 -ATP:

$$K_{Mg-1}(1+10^{(pK_{H-1}-7.2)}) = K_{app}(7.2)$$
 [124]

and

$$K_{Mg-1}(1 + 10^{(pK_{H-1} - pH_c)}) = K_{app}(pH_c)$$
 [125]

it follows:

$$\frac{K_{\text{Mg-I}}(1+10^{(pK_{\text{H-I}}-7.2)})}{K_{\text{Mg-I}}(1+10^{(pK_{\text{H-I}}-pH_c)})} = \frac{K_{\text{app}}(7.2)}{K_{\text{app}}(pH_c)}$$
[126]

and

$$K_{app}(7.2)\frac{(1+10^{(pK_{H-1}-pH_c)})}{(1+10^{(pK_{H-1}-7.2)})} = K_{app}(pH_c)$$
 [127]

This is the Bock equation (Bock, Wenz & Gupta, 1985). However, it is only valid if H-ATP³⁻ does not bind Mg^{2+} and H_2 -ATP²⁻, H_3 -ATP¹⁻ and H_4 -ATP can be ignored. Moreover, this assumes no binding of K⁺ to ATP. To account for the binding of Mg^{2+} to H-ATP³⁻, K⁺ to ATP⁴⁻ and H_2 -ATP²⁻, H_3 -ATP¹⁻ and H_4 -ATP the following equation has to be used:

$$K_{app}(7.2) \frac{(\alpha_{pH_c} + [K^+]10^{pK_{K-1}})}{(\alpha_{7.2} + [K^+]10^{pK_{K-1}})} * \frac{(1 + \frac{K_{Mg-1}}{K_{Mg-2}}10^{(pK_{H-1} - 7.2)})}{(1 + \frac{K_{Mg-1}}{K_{Mg-2}}10^{(pK_{H-1} - pH_c)})} = K_{app}(pH_c)$$
[128]

Since these equations are in terms of pH_c it necessitates the conversion of pH_a to pH_c.

$$\frac{[Mg^{2+}][ATP]_F}{[Mg-ATP]_B} = K_{app}$$

where [ATP]_F represents all forms of ATP not bound to Mg and [Mg-ATP]_B represents all forms of Mg bound to ATP. From this definition it follows that:

$$[ATP]_F + [Mg-ATP]_B = [ATP]_T$$
 and $[Mg-ATP]_B + [Mg^{2+}] = [Mg]_T$ [129]/[130]

$$[Mg-ATP]_{B} = [Mg]_{T} - [Mg^{2+}]$$
 [131]

$$[ATP]_F = [ATP]_T - [Mg - ATP]_B$$
 [132]

$$[ATP]_F = [ATP]_T - ([Mg]_T - [Mg^{2+}])$$
 [133]

Substituting equation [133] in equation [115] gives:

$$\frac{[Mg^{2+}]([ATP]_T - [Mg]_T + [Mg^{2+}])}{([Mg]_T - [Mg^{2+}])} = K_{app}$$
[134]

From equation [134] the following can be derived.

1) [Mg]_T

$$[Mg]_{T} = \frac{[Mg^{2+}]([ATP]_{T} + K_{app} + [Mg^{2+}])}{(K_{app} + [Mg^{2+}])}$$
[135]

This can also be written:

$$[Mg]_{T} = \frac{[Mg^{2+}][ATP]_{T}}{(K_{app} + [Mg^{2+}])} + \frac{[Mg^{2+}](K_{app} + [Mg^{2+}])}{(K_{app} + [Mg^{2+}])}$$
[136]

which gives:

$$[Mg]_{T} = \frac{[Mg^{2^{+}}][ATP]_{T}}{(K_{app} + [Mg^{2^{+}}])} + [Mg^{2^{+}}]$$
[137]

since $K_{\rm app} = 10^{-{
m pK}}$ and $[{
m Mg^{2+}}] = 10^{-{
m pMg}}$ and in mmolar concentrations,

$$[Mg]_{T} = \frac{1000 * 10^{-pMg} [ATP]_{T}}{(1000 * 10^{-pK} + 1000 * 10^{-pMg})} + 1000 * 10^{-pMg}$$
[138]

$$[Mg]_{T} = \frac{10^{-pMg} [ATP]_{T}}{(10^{-pK} + 10^{-pMg})} + 1000 *10^{-pMg}$$
[139]

which is similar to equation [1.71] in McGuigan, Lüthi & Buri (1991).

2) [Mg-ATP]_B

The amount of Mg²⁺ bound to ATP, ([Mg-ATP]_B) is:

$$[Mg]_T - 1000 * 10^{-pMg} = [Mg - ATP]_B$$
 [140]

it follows that:

$$[Mg-ATP]_{B} = \frac{10^{-pMg}[ATP]_{T}}{(10^{-pK} + 10^{-pMg})}$$
[141]

3) [ATP]_T

$$[ATP]_{T} = \frac{([Mg]_{T} - [Mg^{2+}])(K_{app} + [Mg^{2+}])}{[Mg^{2+}]}$$
[142]

4) K_{app} at a given [Mg]_T and [ATP]_T

This is simply equation [134], namely:

$$K_{app} = \frac{[Mg^{2+}]([ATP]_T - [Mg]_T + [Mg^{2+}])}{([Mg]_T - [Mg^{2+}])}$$

TOTAL H+ BOUND TO ATP

From equation [197], page 30, for the binding of four H+ ions to ATP

$$[H]_{T} = \frac{[ATP]_{T}(\frac{[H^{+}]}{K_{H-1}} + \frac{2[H^{+}]^{2}}{K_{H-1}K_{H-2}} + \frac{3[H^{+}]^{3}}{K_{H-1}K_{H-2}K_{H-3}} + \frac{4[H^{+}]^{4}}{K_{H-1}K_{H-2}K_{H-3}K_{H-4}} + [H^{+}] (1 + \frac{[H^{+}]}{K_{H-1}K_{H-2}} + \frac{[H^{+}]^{3}}{K_{H-1}K_{H-2}K_{H-3}} + \frac{[H^{+}]^{4}}{K_{H-1}K_{H-2}K_{H-3}K_{H-4}}) + [H^{+}] (143)$$

or in terms of pH_c and pK

$$[H]_{T} = \frac{[ATP]_{T}(10^{(pK_{H-1}-pH_{c})} + 2*10^{(pK_{H-1}+pK_{H-2}-2pH_{c})} + \dots + 4*10^{(pK_{H-1}+pK_{H-2}+pK_{H-3}+pK_{H-4}-4pH_{c})})}{(1+10^{(pK_{H-1}-pH_{c})} + 10^{(pK_{H-1}+pK_{H-2}-2pH_{c})} + \dots + 10^{(pK_{H-1}+pK_{H-2}+pK_{H-3}+pK_{H-4}-4pH_{c})})} + 10^{-pH_{c}}$$

SIMULTANEOUS BINDING OF Mg²⁺ AND A CATION TO ATP

<u>Introduction</u>: ATP binds not only Mg^{2+} , but can bind K^+ , Na^+ and polyamines. The solution for the simultaneous binding of Mg^{2+} and one other cation ion, X^{n+} , to ATP gives

a cubic equation. The derivation is similar to the binding of Ca²⁺, Mg²⁺ and H⁺ to EGTA and the equations are derived in Section II, page 35 and only the results are presented here.

Definitions:

$$\frac{[Mg^{2+}][ATP]_F}{[Mg-ATP]_P} = K_{Mg-app}$$
 [145]

and

$$\frac{[X^{n^{+}}][ATP]_{F}}{[X-ATP]_{B}} = K_{X-app}$$
 [146]

In equations [145] and [146], [ATP]_F represents ATP that is neither bound to Mg^{2+} or to X^{n+} . It is defined as follows:

$$[ATP]_F = ([ATP^{4-}] + [H-ATP^{3-}] + + [H_4-ATP] + [Y-ATP^{n-4}])$$
 [147]

[Y-ATPⁿ⁻⁴] represents ATP binding to cations that are neither Mg^{2+} nor X^{n+} . [Mg-ATP]_B, represents the sum of ([Mg-ATP²⁻] + [Mg-H-ATP¹⁻]) and [X-ATP]_B the X^{n+} bound to ATP.

Equations

1) $[Mg^{2+}]$

$$A[Mg^{2+}]^3 + B[Mg^{2^+}]^2 + C[Mg^{2^+}] + D = 0$$
 [148]

where

A = 1

$$B = \frac{[ATP]_{T}(K_{Mg-app} - K_{X-app}) + [Mg]_{T}(K_{X-app} - 2K_{Mg-app}) - [X]_{T}K_{Mg-app} - K_{Mg-app}K_{X-app} + K_{Mg-app}^{2}}{(K_{Mg-app} - K_{X-app})}$$

$$C = \frac{{{{{[Mg]}_T}{K_{Mg-app}}}({{[Mg]}_T} + {{[X]}_T}) + {{[Mg]}_T}{K_{Mg-app}}({K_{X-app}} - 2{K_{Mg-app}}) - {{[Mg]}_T}{{[ATP]}_T}{K_{Mg-app}}}{({K_{Mg-app}} - {K_{X-app}})}$$

$$D = \frac{[Mg]_T^2 K_{Mg-app}^2}{(K_{Mg-app} - K_{X-app})}$$

 $2)[X^{n+}]$

$$A[X^{n+}]^3 + B[X^{n+}]^2 + C[X^{n+}] + D = 0$$
 [149]

where:

$$A = 1$$

$$B = \frac{[ATP\,]_T(K_{X-app}\,-\,K_{Mg-app}\,) + [X]_T(K_{Mg-app}\,-\,2\,K_{X-app}\,) - [Mg]_TK_{X-app}\,-\,K_{Mg-app}\,K_{X-app}\,+\,K_{X-app}^{\,2}}{(K_{X-app}\,-\,K_{Mg-app}\,)}$$

$$C = \frac{{{{[X]}_{T}}{{K}_{X - app}}}({{[X]}_{T}} + {{[Mg]}_{T}}) + {{[X]}_{T}}{{K}_{X - app}}({{K}_{Mg - app}} - 2\,{{K}_{X - app}}) - {{[X]}_{T}}[ATP\,]_{T}{{K}_{X - app}}}{({{K}_{X - app}} - {{K}_{Mg - app}})}$$

$$D = \frac{K_{X-app}^{2} [X]_{T}^{2}}{(K_{X-app} - K_{Mg-app})}$$

3) [ATP]_F

$$A[ATP]_{F}^{3} + B[ATP]_{F}^{2} + C[ATP]_{F} + D = 0$$
 [150]

where:

$$A = 1$$

$$B = [Mg]_T + [X]_T - [ATP]_T + K_{Mg-app} + K_{X-app}$$

$$C = [Mg]_T K_{X-app} + [X]_T K_{Mg-app} - [ATP]_T (K_{Mg-app} + K_{X-app}) + K_{Mg-app} K_{X-app}$$

$$D = - [ATP]_T K_{Mg-app} K_{X-app}$$

From these estimations the following can be calculated.

4) [Mg-ATP]_B

$$[Mg-ATP]_{B} = \frac{[Mg^{2+}][ATP]_{F}}{K_{Mg-app}}$$
 [151]

5) [X-ATP]_B

$$[X-ATP]_B = \frac{[X^{n+}][ATP]_F}{K_{X-app}}$$
 [152]

BINDING OF POLYAMINES TO ATP IN THE PRESENCE OF Mg

Binding of Spermine to ATP

If the assumption is made that spermine ([S²⁺]) binds like Mg²⁺, then:

$$[S^{2+}] + [ATP^{4-}] \leftrightarrow [S-ATP^{2-}]$$
 [153]

and

$$\frac{[S^{2+}][ATP^{4-}]}{[S-ATP^{2-}]} = K_{S-1}$$
 [154]

From equation [121] and assuming K+ binding only to ATP4- gives:

$$\frac{K_{Mg-l}(1 + \frac{[H^+]}{K_{H-l}} + \frac{[K^+]}{K_{K-l}} + \frac{[S^{2+}]}{K_{S-l}})}{(1 + \frac{K_{Mg-l}}{K_{Mg-2}} \frac{[H^+]}{K_{H-l}})} = K_{app}$$
[155]

or

$$\frac{10^{-pK_{Mg-l}}(1+10^{(pK_{H-l}-pH_c)}+[K^+]10^{pK_{K-l}}+[S^{2+}]10^{pK_{S-l}})}{(1+10^{(pK_{Mg-2}-pK_{Mg-l})}10^{(pK_{H-l}-pH_c)})}=K_{app}$$
[156]

Relationship between K_{app} and [S²⁺]

From equation [155]

$$K_{app}(S) = \frac{K_{Mg-l}(1 + \frac{[H^{+}]}{K_{H-l}} + \frac{[K^{+}]}{K_{K-l}})}{(1 + \frac{K_{Mg-l}}{K_{Mg-2}} \frac{[H^{+}]}{K_{H-l}})} + \frac{K_{Mg-l} \frac{[S^{2+}]}{K_{S-l}}}{(1 + \frac{K_{Mg-l}}{K_{Mg-2}} \frac{[H^{+}]}{K_{H-l}})}$$
[157]

which simplifies to:

$$K_{app}(S) = K_{app}([S] = 0) + \frac{K_{Mg-1}}{(1 + \frac{K_{Mg-1}}{K_{Mo-2}} \frac{[H^+]}{K_{H-1}}) K_{S-1}} [S^{2+}]$$
[158]

Thus a plot of K_{app} against [S] will give a straight line, with intercept of $K_{app}([S] = 0)$ on the y-axis and the slope:

$$s(\text{slope}) = \frac{K_{\text{Mg-1}}}{(1 + \frac{K_{\text{Mg-1}}}{K_{\text{Mg-2}}} \frac{[H^+]}{K_{\text{H-1}}}) K_{S-1}}$$
[159]

If the other parameters are known, then K_{S-1} can be calculated from the slope "s".

ACID-BASE CHEMISTRY

<u>Introduction:</u> General references to this section are Koppel & Spiro (1914) or the translation from the original German by Ross & Boron (1980).

1) Total [H] ([H]_T) in a H+ buffer solution a) One H+ binding site:

$$[H^{+}] + [B^{-}] \leftrightarrow [H - B]$$
 [160]

$$\frac{[H^{+}][B]}{[H-B]} = K_{H-1}$$
 [161]

$$[B]_T = [B] + [H-B]$$
 [162]

 $[H]_T = Bound + Free, or [H]_T = [H-B] + [H^+]$ [163][164] from equation [161]

$$[H-B] = \frac{[H^+][B]}{K_{H-1}}$$
 and $[H-B] = \frac{[H^+]([B]_T - [H-B])}{K_{H-1}}$ [165][166]

and

$$[H-B] = \frac{[B]_{T}[H^{+}]}{(K_{H-1} + [H^{+}])} \text{ or } [H-B] = \frac{[B]_{T} \frac{[H^{+}]}{K_{H-1}}}{(1 + \frac{[H^{+}]}{K_{H-1}})}$$
[167][168]

and in terms of pKH-1 and pH

$$[H-B] = \frac{[B]_T 10^{(pK_{H-1}-pH)}}{(1+10^{(pK_{H-1}-pH)})}$$
[169]

substitution equation [168] in [169],

$$[H]_{T} = \frac{[B]_{T} \frac{[H^{+}]}{K_{H-1}}}{(1 + \frac{[H^{+}]}{K_{H-1}})} + [H^{+}]$$
[170]

b) Two H+ binding sites

$$[H^{+}] + [B^{-}] \leftrightarrow [H - B]$$

$$[H - B] + [H^{+}] \leftrightarrow [H_{2} - B]$$

$$[H^{+}][B] = K_{H-1} \text{ and } \frac{[H^{+}][H - B]}{[H_{3} - B]} = K_{H-2}$$

$$[173][174]$$

$$[B]_T = [B] + [H-B] + [H_2-B]$$
 [175]

$$[H]_T = [H-B] + 2[H_2-B] + [H^+]$$
 [176]

from equation [165]:

$$[H-B] = \frac{[H^+][B]}{K_{H-1}}$$
 [177]

[B] in terms of [B]_T and K_{H-1} , K_{H-2} and [H⁺].

Substitution for $[H_2-B]$ (equation [174]) in equation [175] gives:

$$[B]_{T} = [B] + [H - B] + \frac{[H^{+}][H - B]}{K_{H-2}}$$
[178]

and

$$[B]_{T} = [B] + \frac{[H^{+}][B]}{K_{H-1}} + \frac{[H^{+}]^{2}[B]}{K_{H-1}K_{H-2}}$$
[179]

whence

$$[B] = \frac{[B]_{T}}{(1 + \frac{[H^{+}]}{K_{H-1}} + \frac{[H^{+}]^{2}}{K_{H-1}K_{H-2}})}$$
[180]

substituting equation [180] in equation [177] gives:

$$[H-B] = \frac{[B]_{T} \frac{[H^{+}]}{K_{H-1}}}{(1 + \frac{[H^{+}]}{K_{H-1}} + \frac{[H^{+}]^{2}}{K_{H-1}})}$$
[181]

From equation [179]:

$$[H_2 - B] = \frac{[H^+]^2 [B]}{K_{H_-} K_{H_-}^2}$$
 [182]

substituting equation [180] in equation [182] gives:

$$[H_2 - B] = \frac{[B]_T \frac{[H^+]^2}{K_{H-1} K_{H-2}}}{(1 + \frac{[H^+]}{K_{H-1}} + \frac{[H^+]^2}{K_{H-1} K_{H-2}})}$$
[183]

Substituting for [H-B] and [H₂-B] in equation [179] gives:

$$[H]_{T} = \frac{[B]_{T} (\frac{[H^{+}]}{K_{H-1}} + \frac{2[H^{+}]^{2}}{K_{H-1}K_{H-2}})}{(1 + \frac{[H^{+}]}{K_{H-1}} + \frac{[H^{+}]^{2}}{K_{H-1}K_{H-2}})} + [H^{+}]$$
[184]

c) Three H+ binding sites.

$$[H^{+}] + [B^{-}] \leftrightarrow [H - B]$$
 [185]

$$[H-B] + [H^{+}] \leftrightarrow [H_2-B]$$
 [186]

$$[H_2-B]+[H^+] \leftrightarrow [H_3-B]$$
 [187]

and

$$\frac{[H^{+}][B]}{[H-B]} = K_{H-1} \text{ and } \frac{[H^{+}][H-B]}{[H_{2}-B]} = K_{H-2} \text{ and } \frac{[H^{+}][H_{2}-B]}{[H_{3}-B]} = K_{H-3}$$
 [188][189][190]

$$[B]_T = [B] + [H-B] + [H_2-B] + [H_3-B]$$
 [191]

and

$$[H]_T = [H^+] + [H^-B] + 2[H_2^-B] + 3[H_3^-B]$$
 [192]

The same procedure as for the two H+ binding sites gives:

$$[H-B] = \frac{[B]_{T} \frac{[H^{+}]}{K_{H-1}}}{(1 + \frac{[H^{+}]}{K_{H-1}} + \frac{[H^{+}]^{2}}{K_{H-1}} + \frac{[H^{+}]^{3}}{K_{H-1}K_{H-2}})}$$
[193]

$$[H_{2}-B] = \frac{[B]_{T} \frac{[H^{+}]^{2}}{K_{H-1}K_{H-2}}}{(1 + \frac{[H^{+}]}{K_{H-1}} + \frac{[H^{+}]^{2}}{K_{H-1}K_{H-2}} + \frac{[H^{+}]^{3}}{K_{H-1}K_{H-2}K_{H-3}})}$$
[194]

$$[H_{2}-B] = \frac{[H^{+}]^{3}}{K_{H-1}K_{H-2}K_{H-3}}$$

$$(1 + \frac{[H^{+}]}{K_{H-1}} + \frac{[H^{+}]^{2}}{K_{H-1}K_{H-2}} + \frac{[H^{+}]^{3}}{K_{H-1}K_{H-2}K_{H-3}})$$
[195]

and from equation [192] it follows that:

$$[H]_{T} = \frac{[B]_{T} (\frac{[H^{+}]}{K_{H-1}} + \frac{2[H^{+}]^{2}}{K_{H-1}K_{H-2}} + \frac{3[H^{+}]^{3}}{K_{H-1}K_{H-2}K_{H-3}})}{(1 + \frac{[H^{+}]}{K_{H-1}} + \frac{[H^{+}]^{2}}{K_{H-1}K_{H-2}} + \frac{[H^{+}]^{3}}{K_{H-1}K_{H-2}K_{H-3}})} + [H^{+}]$$
[196]

d) Four H+ binding sites.

$$[H]_{T} = \frac{[B]_{T}(\frac{[H^{+}]}{K_{H-1}} + \frac{2[H^{+}]^{2}}{K_{H-1}K_{H-2}} + \frac{3[H^{+}]^{3}}{K_{H-1}K_{H-2}K_{H-3}} + \frac{4[H^{+}]^{4}}{K_{H-1}K_{H-2}K_{H-3}K_{H-4}})}{(1 + \frac{[H^{+}]}{K_{H-1}} + \frac{[H^{+}]^{2}}{K_{H-1}K_{H-2}} + \frac{[H^{+}]^{3}}{K_{H-1}K_{H-2}K_{H-3}} + \frac{[H^{+}]^{4}}{K_{H-1}K_{H-2}K_{H-3}K_{H-4}})} + [H^{+}]$$
[197]

and so on.

2) Bound H+ in a H+ buffer solution

Since, $[H]_T = [Bound] + [H^+]$ it follows that:

[Bound] =
$$[H]_T - [H^+]$$
 [198]

This can be derived directly from equations, [170], [184], [196] and [197] respectively.

3) $[H^+]$ at a given $[H]_T$.

In general this can be derived from equations [170], [184], [196] and [197] by solving for [H⁺]. Only the solutions for one and two binding sites is given.

a) Solution for one H+ binding site is:

$$[H^{+}]^{2} + (K_{H-1} + [B]_{T} - [H]_{T})[H^{+}] - K_{H-1}[H]_{T} = 0$$
[199]

The solution is similar to equation [84], namely

$$[H^{+}] = \frac{-(K_{H-1} + [B]_{T} - [H]_{T}) + \sqrt{(K_{H-1} + [B]_{T} - [H]_{T}) + 4K_{H-1}[H]_{T}}}{2}$$
[200]

b) Solution for two binding is a cubic equation:

$$A[H^{+}]^{3} + B[H^{+}]^{2} + C[H^{+}] + D = 0$$
[201]

where:

$$\begin{split} A &= 1 \\ B &= K_{H\text{-}2} + 2[B]_T - [H]_T \\ C &= (K_{H\text{-}1} + [B]_T - [H]_T) \ K_{H\text{-}2} \\ D &= - [H]_T \ K_{H\text{-}1} \ K_{H\text{-}2} \end{split}$$

TITRATION OF A BUFFER SOLUTION FROM pH 12 TO pH 2 WITH HCl

Introduction: Take as an example a 5 mmol/l potassium buffer (K-B), with a pK_{H-1} of 6.5. It is titrated to pH 12 with NaOH, the initial pH for the titration. In such a solution the following three conditions have to be fulfilled:

1) Buffer equilibrium:

$$[H+] + [B-] = [H-B] \text{ and } \frac{[H^{+}][B]}{[H-B]} = K_{H-1}$$
 [202][203]

2) Ionic product of water (also known as autoprotolysis constant), K_w

$$[H^+][OH^-] = K_w \text{ or } [OH^-] = \frac{K_w}{[H^+]}$$
 [204][205]

3) Electrical neutrality of the solution

Cations:

$$[H^+] + [K^+]$$
 (from K-B) + $[Na^+]$ (from NaOH, to set initial pH) [206]

Anions

[B-](from buffer) + [Cl-] (from HCl) + [OH-] (from NaOH and from water, see 2 above)

Because of electrical neutrality they are equal:

$$[H^+] + [K^+] + [Na^+] = [B^-] + [Cl^-] + [OH^-]$$
 [208]

4) Basic equation

In equation [204] the [K+] is equal to [K-B] or to the total buffer concentration [B]_T, the [Cl-] is equivalent to the concentration of added acid [HCl]_{added} and [Na+] is the concentration of the added alkali [Alkali]. Using these concentrations gives the basic equation:

$$[H^+] + [B]_T + [Alkali] = [B^-] + [HCl]_{added} + [OH^-]$$
 [209]

Amount of NaOH that has to be added to reach a given pH

In the absence of HCl and rearranging equation [209] gives;

$$[Alkali] = [OH^{-}] - \{([B]_{T} - [B^{-}]) - H^{+}]\}$$
[210]

but ([B]_T - [B-]) = [H-B] and [OH -] = $\frac{K_w}{[H^+]}$, so equation [210] becomes:

[Alkali] =
$$\frac{K_{w}}{[H^{+}]} - ([H-B] + [H^{+}])$$
 [211]

Substituting for [H-B] from equation [168] gives:

[Alkali] =
$$\frac{K_{w}}{[H^{+}]} - (\frac{[B]_{T} \frac{[H^{+}]}{K_{H-1}}}{(1 + \frac{[H^{+}]}{K_{H-1}})} + [H^{+}])$$
 [212]

Equation [212] can also be solved for the [H+] to give:

$$A[H^{+}]^{3} + B[H^{+}]^{2} + C[H^{+}] + D = 0$$
 [213]

where:

$$A = 1$$

$$B = [Alkali] + [B]_T + K_{H-1}$$

$$C = [Alkali]K_{H-1} - K_W$$

$$D = -K_{H-1}K_{W}$$

Equation [212] predicts the amount of alkali added to reach a given pH, and equation [213] can be used to predict the pH after the addition of a given quantity of alkali.

Titration of the buffer solution with HCl

The basic equation [209] can be solved for [HCl]_{added}:

$$[HCl]_{added} = ([B]_T - [B^-]) + [H^+] + [Alkali] - [OH^-]$$

The same substitution as for equation [210] gives:

$$[HCl]_{added} = \frac{[B]_T \frac{[H^+]}{K_{H-1}}}{(1 + \frac{[H^+]}{K_{H-1}})} + [H^+] + [Alkali] - \frac{K_w}{[H^+]}$$
[214]

The equation can also be solved for [H+] to give:

$$A[H^{+}]^{3} + B[H^{+}]^{2} + C[H^{+}] + D = 0$$
 [215]

where

$$A = 1$$

$$B = [Alkali] + [B]_{T} + K_{H-1} - [HC1]_{added}$$

$$C = [Alkali]K_{H-1} - K_{W} - [HC1]_{added}K_{H-1}$$

$$D = -K_{H-1}K_{W}$$

Results of the titration

The concentration of NaOH, necessary to bring the buffer solution to pH 12 can be calculated using equation [212]. With the initial conditions, stated in the Introduction this was, 10.116 mmol/l NaOH. For the calculation, a pK $_{\rm w}$ at 25°C of 13.995 was used. This value is in mol/l; in mmol/l this value is 7.995 as:

$$\frac{[H^{+}]}{1000} * \frac{[OH^{-}]}{1000} = 10^{-13.995} \text{ or } [H^{+}] (\text{mmol /l}) * [OH^{-}] = 10^{-7.995}$$
 [216][217]

Either equation [214] or [215] can be used to calculate the titration curve. Equation [214] calculates the [HCl] necessary to acquire a given pH and equation [215] the pH change as the [HCl] is increased. Both give the same result. In the calculations the dilution effect of the titration has been neglected. Such a theoretical titration is illustrated in Figure 2. Figure 3 illustrates that the curve consists of three components, 1) titration of NaOH, 2) titration of the buffer and 3) increase of the [H+].

<u>Figure 2:</u> Calculated from equation [215], a [B]_T of 5 mmol/l, and a pK_{H-1} of 6.5. The initial pH was 12 due to an addition of 10.116 mmol/l of NaOH.

<u>Figure 3.</u> The titration curve consists of three components, namely, 1) initial titration with NaOH, 2) H⁺ binding to the buffer and 3) an increase in the [H⁺].

DEFINITIONS AND DERIVATIONS OF BUFFERING

The following are the definitions used to define intracellular buffering

Quantity	Symbol	Definition	Reference
Buffer Capacity	β	$\frac{d[Mg]_{T}}{dpM g}$	Michaelis, 1922
Buffer Capacity	β	$\frac{d\left[Mg\right]_{T}}{dpM\;g}(\text{\tiny Buffer}\;) - \frac{d\left[Mg\right]_{T}}{dpM\;g}(\text{\tiny No\;Buffer}\;)$	Koppel & Spiro, 1914
Buffer Power	π	$\frac{d[Mg]_{B}}{dpM g}$	Klabusay & Blinks, 1996
Binding capacity or	κ	$\frac{\mathrm{d[Mg]_{B}}}{\mathrm{d[Mg}^{2^{+}}]}$	Neher, 1995
Binding ratio		$d[Mg^{2^+}]$	
Buffer coefficient or	$\mathbf{B}_{\mathbf{x}}$	$d[Mg]_T$	Koss et al., 1993
Buffer ratio		$\overline{d[Mg^{2+}]}$	Schwiening & Thomas, 1996

Where, [Mg]_T, [Mg]_B and pMg are the total, bound and -log[Mg²⁺] respectively.

Let the binding of Mg^{2+} be to ATP. It follows that

$$\frac{[Mg^{2+}][ATP^{4-}]}{[Mg-ATP^{2-}]} = K_{app}$$
 [218]

$$[Mg-ATP^{2-}] + [Mg^{2+}] = [Mg]_T$$
 [219]

$$[Mg-ATP^{2-}] + [ATP^{4-}] = [ATP]_T$$
 [220]

and

$$[ATP^{4-}] = [ATP]_T - ([Mg]_T - [Mg^{2+}])$$
 [221]

For differentiation of a quotient, the following rule applies:

$$\frac{\mathrm{d}}{\mathrm{dx}}(\frac{\mathrm{u}}{\mathrm{v}}) = \frac{\mathrm{vdu} - \mathrm{udv}}{\mathrm{v}^2}$$

1) Buffer capacity (Michaelis)

This is defined as $\frac{d[Mg]_T}{dpMg}$

 $[Mg]_T$ can be calculated from equations [218] to [220]

$$[Mg]_{T} = [Mg^{2+}] + \frac{([ATP]_{T} - [Mg]_{T} + [Mg^{2+}])[Mg^{2+}]}{K_{app}}$$
[222]

this gives:

$$[Mg]_T(K_{app} + [Mg^{2+}]) = [ATP]_T[Mg^{2+}] + (K_{app} + [Mg^{2+}])[Mg^{2+}]$$
 [223]

$$[Mg]_{T} = \frac{[ATP]_{T}[Mg^{2+}]}{(K_{app} + [Mg^{2+}])} + [Mg^{2+}]$$
[224]

$$[Mg]_{T} = \frac{[ATP]_{T} 10^{-pMg}}{(K_{app} + 10^{-pMg})} + 10^{-pMg}$$
[225]

differentiating

$$\frac{d[Mg]_T}{dpMg} = -\{\frac{(K_{app} + 10^{-pMg})[ATP]_T ln(10) 10^{-pMg} - [ATP]_T 10^{-pMg} ln(10) 10^{-pMg}}{(K_{app} + 10^{-pMg})^2} + ln(10) 10^{-pMg}\}$$
[226]

simplification gives:

$$\frac{d[Mg]_{T}}{dpMg} = -\left\{ \frac{[ATP]_{T}K_{app} 10^{-pMg}ln(10)}{(K_{app} + 10^{-pMg})^{2}} + ln(10)10^{-pMg} \right\}$$
[227]

or

$$\frac{d[Mg]_{T}}{dpMg} = -\left\{ \frac{[ATP]_{T}K_{app}[Mg^{2+}]ln(10)}{(K_{app} + [Mg^{2+}])^{2}} + ln(10)[Mg^{2+}] \right\}$$
[228]

since
$$\frac{d}{dpMg}(10^{-pMg}) = -\ln(10)10^{-pMg}$$

Differentiating each term in equation [226] separately for the second differential gives:

$$\frac{(K_{app} + 10^{-pMg})^{2}[ATP]_{T}K_{app} \{n(10)\}^{2}10^{-pMg} - [ATP]_{T}K_{app} \{n(10)\}^{2}10^{-pMg}2(K_{app} + 10^{-pMg})10^{-pMg}}{(K_{app} + 10^{-pMg})^{4}}$$

and

$$(\ln(10))^2 10^{-pMg}$$
 [230]

[229]

which gives on simplification:

$$\frac{d^{2}[Mg]_{T}}{dpMg^{2}} = \frac{[ATP]_{T}K_{app}(ln(10))^{2}[Mg^{2+}](K_{app} - [Mg^{2+}])}{(K_{app} + [Mg^{2+}])^{3}} + (ln(10))^{2}[Mg^{2+}]$$
 [231]

As seen from equation [228] the buffering capacity consists of two terms, namely a term due to the binding of Mg²⁺ to the buffer:

$$\frac{(K_{app} + 10^{-pMg})[ATP]_{T}ln(10)10^{-pMg} - [ATP]_{T}10^{-pMg}ln(10)10^{-pMg}}{(K_{app} + 10^{-pMg})^{2}}$$
[232]

and a term due to ionized Mg²⁺ in the solution, namely,

$$\ln(10)10^{-pMg}$$
 [233]

It is this second term that causes the spurious rise in the buffer capacity at lower pMg values (see McGuigan et al. 1991, Figure 2A). This was realised by Koppel & Spiro (1914) who subtracted it in their definition of the buffer capacity (see below).

2) Buffer capacity (Koppel & Spiro)

This is defined as
$$\frac{d[Mg]_T}{dpM g}(Buffer) - \frac{d[Mg]_T}{dpM g}(No Buffer)$$

The second term is the total Mg^{2+} in a solution without the buffer and is thus equivalent to the ionized concentration of Mg^{2+} . The buffer capacity β becomes:

$$\beta = \frac{d}{dpMg} \left(\frac{[ATP]_T 10^{-pMg}}{(K_{app} + 10^{-pMg})} + 10^{-pMg} \right) - \frac{d}{dpMg} (10^{-pMg})$$
[234]

or

$$\beta = \frac{d}{dpMg} \left(\frac{[ATP]_T 10^{-pMg}}{(K_{app} + 10^{-pMg})} \right)$$
 [235]

The solution to this is similar to equation [228]

$$\beta = \frac{[ATP]_T K_{app} [Mg^{2+}] ln(10)}{(K_{app} + [Mg^{2+}])^2}$$
 [236]

and

$$\frac{d}{dpMg}(\beta) = \frac{[ATP]_T K_{app} (ln(10))^2 [Mg^{2+}] (K_{app} - [Mg^{2+}])}{(K_{app} + [Mg^{2+}])^3}$$
[237]

which is similar to equation [231].

3) Buffering power

This is defined as $\frac{d[Mg]_B}{dpMg}$

The total Mg²⁺ consists of two parts namely: 1) bound to ATP and 2) ionized Mg²⁺. The definition of Koppel & Spiro (1914) removes this second term, leaving only the bound. Thus the definition of the Buffering power is equivalent to definition of Koppel & Spiro (1914).

4) Binding capacity/ratio

By definition $[Mg]_B = [Mg-ATP^2]$ It follows from equations [218] to [221] that

$$[Mg-ATP^{2-}] = \frac{([ATP]_T - [Mg-ATP^{2-}])[Mg^{2+}]}{K_{app}}$$
 [238]

simplification gives:

$$[Mg-ATP^{2-}] = \frac{[ATP]_T[Mg^{2+}]}{(K_{ann} + [Mg^{2+}])} \text{ or } [Mg]_B = \frac{[ATP]_T[Mg^{2+}]}{(K_{ann} + [Mg^{2+}])}$$
 [239]/[240]

differentiation gives:

$$\frac{d[Mg]_{B}}{d[Mg^{2+}]} = \frac{(K_{app} + [Mg^{2+}])[ATP]_{T} - [ATP]_{T}[Mg^{2+}]}{(K_{app} + [Mg^{2+}])^{2}}$$
[241]

or

$$\frac{d[Mg^{2^{+}}]_{B}}{d[Mg^{2^{+}}]} = \frac{K_{app}[ATP]_{T}}{(K_{app} + [Mg^{2^{+}}])^{2}}$$
[242]

the second derivative is:

$$\frac{d^{2}[Mg]_{B}}{d[Mg^{2+}]^{2}} = \frac{(K_{app} + [Mg^{2+}])^{2} *0 - 2K_{app}[ATP]_{T}(K_{app} + [Mg^{2+}])}{(K_{app} + [Mg^{2+}])^{4}}$$
[243]

which simplifies to

$$\frac{d^{2}[Mg]_{B}}{d[Mg^{2+}]^{2}} = \frac{-2K_{app}[ATP]_{T}}{(K_{app} + [Mg^{2+}])^{3}}$$
 [244]

5) Buffer coefficient/ratio

This is defined as
$$\frac{d[Mg]_T}{d[Mg^{2+}]}$$

from equation [224]

$$[Mg]_T = \frac{[ATP]_T[Mg^{2+}]}{(K_{ann} + [Mg^{2+}])} + [Mg^{2+}]$$

differentiation gives:

$$\frac{d[Mg]_{T}}{d[Mg^{2+}]} = \frac{(K_{app} + [Mg^{2+}])[ATP]_{T} - [ATP]_{T}[Mg^{2+}]}{(K_{app} + [Mg^{2+}])^{2}} + 1$$
[245]

which simplifies to

$$\frac{d[Mg]_{T}}{d[Mg^{2+}]} = \frac{K_{app}[ATP]_{T}}{(K_{app} + [Mg^{2+}])^{2}} + 1$$
[246]

The second derivative is similar to that of equation [244]

$$\frac{d^{2}[Mg]_{T}}{d[Mg^{2+}]^{2}} = \frac{-2*K_{app}[ATP]_{T}}{(K_{app} + [Mg^{2+}])^{3}}$$

since the derivative of 1 is zero.

REFERENCES

- Baumgarten, C. M. (1981). A program for calculation of activity coefficients at selective concentrations and temperatures. Computing in Biology and Medicine. 11, 189-196.
- Bock, J. L., Wenz, B. & Gupta, R. K. (1985). Changes in intracellular Mg adenosine triphosphate and ionized Mg²⁺ during blood storage: detection by ³¹P nuclear magnetic resonance spectroscopy. Blood, 65, 1562-1530.
- Fabiato, A. & Fabiato, F. (1979). Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. Journal de Physiologie, 75, 463-505.
- Harrison, S. M. & Bers. D. M. (1989). Correction of protons and Ca associations constants of EGTA for temperature and ionic strength. American Journal of Physiology, 256, C1250-C1256.
- Klabusay, M. & Blinks, J. R. (1996). Some commonly overlooked properties of calcium buffer systems: a simple method for detecting and correcting stoichiometric imbalance in CaEGTA stock solutions. Cell Calcium, 20, 227-234.
- Koppel, M. & Spiro, K. (1914). Ueber die Wirkung von Moderatoren (Puffern) bei der Verschiebung des SäureBasengleichgewichtes in biologischen Flüssigkeiten. Biochemische Zeitschrift, 65, 409-439. (See Ross & Boron for a translation)
- Koss, K. L., Putman R. W. & Grubbs, R. D. (1993). Mg²⁺ buffering in cultured chick ventricular myocytes: quantitative and modulation. American Journal of Physiology, 264, C1259-C1269.
- McGuigan, J. A. S., Lüthi, D. & Buri, A. (1991). Calcium buffer solutions and how to make them: a do-it-yourself guide. Canadian Journal of Physiology and Pharmacology, 69, 1733-1749.
- McGuigan, J. A. S., Buri A., Chen, S., Illner, H. & Lüthi, D. (1993). Some theoretical and practical aspects of the measurement of intracellular free magnesium concentrations in heart muscle: considerations of its regulation and modulation. In "Magnesium and the Cell" ed. Birch, N. pp 91- 120. Academic Press
- Michaelis, L. (1922). Die Wasserstoffkonzentration. Springer: Berlin.
- Neher, E. (1995). The use of Fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology, 34, 1423-1442.
- Ross, A. & Boron, W. F. (1980). The buffer value of weak acids and bases: origin of the concept, and first mathematical derivation and application to physico-chemical systems. The work of M. Koppel and K. Spiro (1914). Respiration Physiology, 40, 1-32.
- Schwiening, C. J. & Thomas, R. C. (1996). Relationship between intracellular calcium and its muffling measured by calcium iontophoresis in snail neurons. Journal of Physiology, 491, 621-633.