

Федеральное агентство по образованию Иркутский авиационный техникум

Специальность 230101 «ЭВМ, комплексы, системы и сети» 230103 «Техническое обслуживание средств вычислительной техники и компьютерных сетей» 090108 «Информационная безопасность»

Практическая работа

Тема: «Пассивная защита информации в трехфазных цепях электропитания с использованием сетевого фильтр $\Phi C\Pi$ -3 Φ -10A».

ОДОБРЕНА

Предметной (цикловой) комиссией

Составлена в соответствии с государственными требованиями к минимуму содержания и уровню подготовки выпускника для специальности 230101, 230103, 090108

Составитель: Буньков Е.С.

Рецензенты:

Содержание

Актуальность работы:	3
Цель работы:	3
Задачи:	3
Критерии оценки работы (5 баллов):	
Оборудование для выполнения работы:	4
Порядок выполнения работы	
Контрольные вопросы	6
Информационные ресурсы	
Приложение А	8
Приложение Б	10
Приложение В	11

Актуальность работы:

Фильтр сетевой помехоподавляющий ФСП-3Ф-10А предназначен для защиты трехфазных цепей электропитания от утечки информации в сети электропитаня.

Сетевой фильтр был специально разработан для предотвращения появления в электросети наведенных сигналов (наводок) от работающей техники.

Цель работы:

Научиться устанавливать помехоподавляющий сетевой фильтр ФСП-3Ф-10А. Определить степень защиты информации от утечки по сетям электропитания с помощью спектроанализатора.

Задачи:

- Провести эксперимент с сетевым фильтром ФСП-3Ф-10А;
- Исследовать уровень сигнала от средств вычислительной техники (CBT) с помощью спектроанализатора СК4-58.

Критерии оценки (5 баллов):

- Установить сетевой фильтр ФСП-3Ф-10А (2 балла);
- Провести эксперимент с сетевым фильтром (2 балла);
- Определить сигнал сети электропитания до и после сетевого фильтра (1 балла).

Оборудование для выполнения работы:

- фильтр ФСП-3Ф-10А (рисунок 1);
- спектроанализатор СК4-58 (рисунок 2);
- аттенюатор.

Рисунок 1 Рисунок 2

Порядок выполнения работы

1. Монтаж печатной платы аттенюатора (схему электрическую принципиальную смотрите в приложении В).

Аттенюатор — пассивное устройство, предназначенное для ослабления напряжения, проходящего через него сигнала в заданное число раз.

- 2. Коммутация пятижильного экранированного кабеля РПШЭ в ШР28 разъем на шайбе.
- 3. Подключить сетевой фильтр к сети электропитания.
- 4. Подготовить спектроанализатор в соответствии с инструкцией по эксплуатации.
- 5. Настроить спектроанализатор по внутреннему НЧ генератору.
- 6. Подключить аттенюатор к спектроанализатору.
- 7. Включить компьютер, фильтр.
- 8. Подключить спектроанализатор.
- 9. Рассчитать на спектроанализаторе частоту сигнала, вырабатываемую компьютером после фильтра. Данные занести в таблицу (таблица 9.1).

Таблица 9.1 – Частота ПК после фильтра.

	1		
№	Частота (кГц)	Амплитуда	Тип сигнала
1			
2			
3			
4			
5			

10. Рассчитываем частоту сигнала компьютера со щитка с помощью спектроанализатора. Данные занести в таблицу (таблица 6.1).

Таблица 10.1 – Частота сигнала со щитка.

No	Частота (кГц)	Амплитуда	Тип сигнала
1			
2			
3			
4			
5			

- 9. Сравнить полученные результаты.
- 10. Сделать вывод.

Контрольные вопросы:

- 1. Где образуются ПЭМИН?
- 2. Каким оборудованием можно обнаружить ПЭМИН?
- 3. Для чего необходим аттенюатор?
- 4. По каким каналам идет утечка информации?

Информационные ресурсы

- 1. http://www.it4business.ru/itsec/Stat'iPoPJeMIN 12 вопросов по ПЭМИН;
- 2. http://kiev-security.org.ua/box/7/3.shtml -Почему именно ПЭМИН?;
- 3. http://www.itsec.ru/keywords.php?keyword=26400 ПЭМИН;
- 4. http://www.contrterror.tsure.ru/site/magazine11/05-15.htm- Маскировка ПЭМИН средств ВТ.

Приложение А

Принцип работы фильтра ФСП-3Ф-10А

1. Назначение

1.1 Фильтры ФСП-3Ф-10А представляет собой набор высокочастотных LC фильтров, включенных в каждую фазу и нулевой провод. Для уменьшения связи между входом и выходом LC фильтры размещены в 3-х экранированных отсеках, образованных стенками и шасси фильтра. Соединение цепей между отсеками осуществляется проходными индуктивностями. Подавление помехи осуществляется реактивными элементами фильтра.

2. Техническое обслуживание

- 2.1 Техническое обслуживание фильтра производится с целью обеспечения его работоспособности в течение всего срока службы.
- 2.2 Все работы по техническому обслуживанию фильтра производится в обесточенном состоянии.
- 2.3 Техническое обслуживание фильтра заключается в выполнении следующих работ:
- Проверка целостности кожуха фильтра, креплении кожуха и дна фильтра, исправности цепи заземления и питания, затяжки кабельных соединителей ШР28, креплении экранов кабелей в соединителях не реже 1 раза в 6 месяцев.
- Проверка технических характеристик, осуществляемая контролирующими организациями, имеющими соответствующие права, с периодичностью, установленной в руководящих документах на защищаемый объект.
- Проверку технических характеристик проводят в соответствии с таблицей 1.

Таблица 1 - Проверка

No	Содержание работ и	Технические требования	Приборы,
Π/	методика их выполнения		приспособления для
			выполнения работ
1.	Проверка величины	Проверку выполнять по	Селективный вольтметр
	затухания по фазам.	схеме приложения;	SMV-11, SMV-8,5
	Контроль в дискретных	_	Розетки СР50-272С
	точках диапазона: 0,15;		Соединители ШР28
	0,6; 1,8; 30; 300, 600,1000		
	МГц		
2.	Сопротивление изоляции	Не менее 20 МОм	Мегаомметр М 4102/1
	фаза-корпус		_

Примечание: Допускается применения другого оборудования, параметры которого не хуже оборудования, указанного в таблице.

3. Возможные неисправности и способы их устранения (таблица 2) Таблица 2 – Неисправности и способы их устранения.

Неисправность	Вероятная причина	Метод устранения	
Заниженное	Обрыв конденсаторов в фазных	Устранить обрыв.	
затухание по	цепях.	Проверить контакты в	
напряжению.		разъемах.	
Отсутствие	Отсутствие контакта в разъемах,	Устранить неисправность	
напряжения на	обрыв в цепях фаз.	в цепях фаз.	
фазах.			

Технические характеристики (таблица 3)

Таблица 3 – Технические характеристики

номинальный ток	10A;
количество защищаемых фаз	3 фаза (4 провода);
вносимое затухание	60 дБ;
диапазон подавляемых частот	0,1 - 1000 МГц;
масса	2,5 кг.

Приложение Б

Спектроанализатор СК4-58

Предназначен для преобразования частоты входных сигналов в оконечную промежуточную частоту, на которой производится усиление, фильтрация и детектирование.

Высокая селективность прибора, а также возможность применения в режиме панорамного обзора схемы измерения уровня по яркостной метке, позволяющей с высокой точностью регистрировать частоту и одновременно уровень огибающей, обеспечивают прецизионное измерение деталей передаточных характеристик узкополосных и кварцевых фильтров и других узлов в динамическом диапазоне до 120 дБ. Анализатор может работать самостоятельно как электронно-счетный частотомер.

Технические характеристики (таблица 1)

Таблица 1- Технические характеристики спектроанализатора СК4-58

Диапазон частот	0,4-600 кГц
Полоса обзора	0-200 кГц (дискретно с шагом 1, 2, 5)
Полоса пропускания на уровне 3 дБ	10, 300, 1000, 3000 Гц
Динамический диапазон	70 дБ
Потребляемая мощность	250 B*A
Macca	30 кг, 18 кг

Приложение В

Аттенюатор

Аттенюатор — пассивное устройство, предназначенное для ослабления, проходящего через него сигнала в заданное число раз.

Если рассматривать аттенюатор как четырёхполюсник, то его коэффициент передачи имеет нулевую мнимую часть, не зависит от частоты и меньше единицы. Применение:

Аттенюаторы используются в тех случаях, когда необходимо ослабить сильный сигнал до приемлемого уровня, например, во избежание перегрузки входа какого-либо прибора чрезмерно мощным сигналом.

Схема электрическая принципиальная (рисунок 3):

Рисунок 3