

BEST AVAILABLE COPY

PCT/HU2004 / 000026

REC'D 10 MAY 2004
WFO FCT

MAGYAR KÖZTÁRSASÁG

ELSŐBBSÉGI TANÚSÍTVÁNY

Ügyszám: P0300761

A Magyar Szabadalmi Hivatal tanúsítja, hogy

Richter Gedeon Vegyészeti Gyár Rt., Budapest,

Magyarországon

2003. 03. 24. napján 11185/03 iktatószám alatt,

Eljárás amorf atorvasztatin-kalcium előállítására
című találmányt jelentett be szabadalmazásra.

Az idefűzött másolat a bejelentéssel egyidejűleg benyújtott melléklettel mindenben megegyezik.

Budapest, 2004. év 04. hó 20. napján

Szabó Emilia
A kiadmány hiteléül: Szabó Emilia osztályvezető-helyettes

The Hungarian Patent Office certifies in this priority certificate that the said applicant(s) filed a patent application at the specified date under the indicated title, application number and registration number. The attached photocopy is a true copy of specification filed with the application.

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

P0300761

2003-03-24

KÖZZÉTÉTELI PÉLDÁNY

ELSÖBBSÉGI PÉLDÁNY

Szolgálati találmány

Eljárás amorf atorvasztatin-kalcium előállítására
Richter Gedeon Vegyészeti Gyár Rt., Budapest

Feltalálók: dr.Czibula László 34 %
Dobay László 30 %
Werkné Papp Éva 12 %
dr.Deutschné Juhász Ida 12 %
dr. Bálint Sándorné 12 %
Budapest

A bejelentés napja: 2003. 03. 24.

A találmány tárgya új eljárás amorf atorvasztatin-kalcium előállítására.

Ismert, hogy az atorvasztatin-kalcium (kémiai nevén: [R-(R^{*, R^{*})]-2-(4-fluor-fenil)- β,δ -dihidroxi-5-(1-metil-etil)-3-fenil[-(amino)-karbonil]-1H-pirrol-1-heptánsav hemikalcium sója) igen hatékony lipidszint csökkentő szer, mely a 3-hidroxi-3-metil-glutamin-koenzim „A” reduktáz enzim inhibitora.}

Az atorvasztatin-kalcium – mint új kémiai entitás - először az 5 273 995 számú USA-beli szabadalmi leírásban szerepel. Ebben a leírásban, azonban, a termék kristályformájáról nem találunk érdemi információt. Később, az irodalomban az atorvasztatin-kalcium négy kristályos polimorf módosulatát írták le, amelyek morfológiai jellemzése, illetve előállításának ismertetése a WO 97/03958 és WO 97/03959 számú PCT-szabadalmi bejelentésekben találhatók.

A kristályos formákkal szemben az időközben ismertté vált amorf atorvasztatin-kalcium előnyösebb bioértékesülési tulajdonságokat mutat. Egyértelmű adatok vannak arról, hogy az amorf változat kedvezőbb tulajdonságokkal, például jobb kioldódási jellemzőkkel rendelkezik. [lásd: Konno I. : Chem. Pharm. Bull., 38, 2003-2007 (1990)].

A fentiek következtében igény jelentkezett amorf atorvasztatin-kalciumot előállító eljárások kidolgozására. Az eddig ismert előállítási módszerek közös jellemzője, hogy az atorvasztatin-kalcium valamely kristályos formájából vagy kristályos formáinak keverékéből, vagy részben kristályos és részben amorf keverékéből valósítják meg a tisztán amorf formává történő átalakítást.

A konkrét publikációkat vizsgálva, megállapítható, hogy a WO 97/07960 számú PCT-szabadalmi bejelentés szerzői az ún. I-es kristályformából hidroxil-csoportot nem tartalmazó szerves oldószert – például tetrahidrofuránt vagy THF-toluol elegyét – alkalmaznak, bonyolult, munkaigényes, több napos technológiai idővel, az amorf módosulattá történő átalakításhoz.

A WO 00/71116 számú PCT-szabadalmi bejelentés szerzői úgy járnak el, hogy valamely kristályos atorvasztatin-kalciumot hidroxil-csoportot nem tartalmazó oldószerben oldanak fel (például THF-ban), majd apoláris oldószer (például hexán, c-hexán, vagy heptán) hozzáadásával nyerik az amorf terméket, amelyet szűréssel izolálnak.

Egy más megoldás szerint (lásd: a WO 01/28999 számú PCT-szabadalmi bejelentést) nyers atorvasztatin-kalciumból - a fenti megoldásokkal ellentében - 2-4 szénatomos alkoholból vagy ezek élegyéből forrásponton történő beoldással, majd azt követő hűtés utáni szűréssel állítják elő az amorf terméket.

A WO 01/42239 számú PCT-szabadalmi bejelentés szerzői úgy járnak el, hogy a legnehezebben nyerhető I-es kristályformát alakítják át amorf atorvasztatin-kalciummá, igen híg (ún. 1-es típusú) oldószerben, így metanolban, etanolban vagy acetanban előállított oldatból, valamelyen (ún. 2-es típusú) oldószerrel, például éterrel történő kicsapással.

A fentiekben részletezett ismert eljárások közös hátránya, hogy mindegyik már egy hosszú, bonyolult technológiai úton elkészített, körülmenyesen izolált atorvasztatin-kalciumot használ kiindulási anyagként, amelyből jelentős mértékű oldószer-felhasználással, igen híg oldatokban, munkaigényes feldolgozással nyernek amorf terméket.

Célunk az volt, hogy ipari méretben is egyszerűen és gazdaságos módon kivitelezhető eljárást dolgozzunk ki, nagytisztaságú, egységesen amorf atorvasztatin-kalcium előállítására.

Előkísérleteink során, meglepő módon, azt találtuk, hogy - közvetlenül a szabad sav izolálása, ill. elkülönítése nélkül – az atorvasztatinsav bizonyos bázikus sóiból – amelyeket az (I) általános képletben mutatunk be:

és az (I) általános képletben R jelentése lizinből, argininból vagy ornitinból származó csoport - tömény, vizes oldatban, egyszerű kivitelezéssel egy lépésben állítható elő nagytisztaságú, egységesen amorf atorvasztatin-kalcium. Ez a felismerés azért nem volt előre várható, mert az eddig ismert adatok szerint (lásd; például a WO 97/03959 számú PCT-szabadalmi bejelentés leírását) víz jelenlétében minden esetben valamely kristályos polimorf termék képződött. A találmány szerinti felismerés azt az előnyt is biztosítja, hogy az eddig ismert eljárásokkal szemben lényegesen tömegesebb (10-15 tömeg %-os) oldatban lehet végrehajtani a közvetlenül az atorvasztatinsav valamely bázikus sójából induló „átszásí” technikát a kívánt termék előállítására.

A fentiek alapján a találmány eljárás amorf atorvasztatin-kalcium előállítására, olyan módon, hogy az atorvasztatinsav bázikus aminosavval képzett sóját – melyet az (I) általános képlet mutat be és ahol a képletben R jelentése lizinből, argininból vagy ornitinból származó csoport - víz és valamilyen vízzel korlátlanul elegyedő szerves oldószer elegyében oldjuk, az oldathoz valamilyen vízben oldódó kalcium-só vizes oldatát adjuk, majd a kapott nagytisztaságú, egységesen amorf atorvasztatin-kalciumot szűréssel izoláljuk.

A találmány szerinti eljárás egy előnyös változata szerint az atorvasztatinsav bázikus aminosavval képzett sójaként atorvasztatin-L-lizin-sót vagy atorvasztatin-L-arginin-sót használunk.

A találmány szerinti eljárásban valamilyen vízben oldódó kalcium-só vizes oldataként kalcium-acetátot vagy kalcium-kloridot használunk.

A találmány szerinti eljárásban valamilyen vízzel korlátlanul elegyedő szerves oldószerként metanol, etanol, i-propanol vagy acetont alkalmazunk.

Találmányunk szerinti eljárással a kívánt, amorf morfológiájú végtermék egyszerű feltételek mellett, jó hatásfokkal, kémiaiag tisztán izolálható. A kapott termék kémiai tisztaságának igazolására példa formájában bemutatjuk a termék vizsgálatára alkalmazott HPLC-módszert (lásd: 4.A. példa), illetve egy és - HPLC-módszerrel készített - kromatogramot. A kromatogram adataiból látható, hogy a termék 99,90 tömeg% tisztaságú, a gyógyszerkészítésre alkalmas termék mellett 3 - 0,1 tömeg%-nál kevesebb - szennyező melléktermék van.

A találmány szerinti eljárással kapott termék morfológiai tisztaságát Röntgen-diffrakciós vizsgálattal ellenőriztük. Az így kapott pordiagram (lásd: 1. ábra) azt

igazolja, hogy találmányunk szerinti eljárásunkkal gyakorlatilag 100 tömeg%-os amorf terméket lehet készíteni.

A találmány szerinti eljárásunkban alkalmazott oldószer a víz és valamilyen vízzel elegyedő szerves oldószer – előnyösen metanol, etanol, i-propanol vagy aceton – elegye.

Találmányunk szerinti eljárást az alábbi példákon mutatjuk be, anélkül, hogy megoldásunkat erre korlátoznánk:

Példák:

1. példa

Amorf Ca-atorvasztatin előállítása

16 g atorvasztatin-L-lizin-sót 35-40 °C-on feloldunk 437 ml desztillált víz és 91,5 ml etanol elegyében, az oldatot megszűrjük és gyors ütemben hozzáadagoljuk 1,92 g kalcium-acetát-hidrát 20 ml desztillált vízzel elkészített és megszűrt oldatát. Az elegyet 0-5 °C közé hűtjük, azonnal szűrjük, a terméket 2x15 ml víz-etanol 5:1 elegyével fedve mossuk, és max. 50 °C-on tömegállandóságig megszárítjuk.

Kapott termék: 12,9 g (kitermelés: 98 tömeg %)

A termék kémiai tisztasága: 99,92 %

Összes szennyezés: 0,08 % alatt

A termék morfológiai tisztasága: (röntgendiffrakciós vizsgálat alapján) 100% amorf.
(Lásd: 1.ábra.)

2. példa

Amorf Ca-atorvasztatin előállítása

14 kg atorvasztatin-L-lizin sót 15-20 °C-on feloldunk 60 liter aceton és 60 liter ioncserélt víz elegyében. Ezen a hőmérsékleten az elegyhez 1,8 kg kalcium-acetát-hidrát 18 liter ioncserélt vízben készült oldatát adagoljuk. A kivált szuszpenziót 1 órán keresztül kevertetjük 15-20 °C-on. A terméket centrifugáljuk, majd 10 liter aceton-ioncserélt víz 1:1 arányú elegyével fedve, mossuk és legfeljebb 50 °C-on tömegállandóságig szárítjuk.

Termelés: 10,1 kg (88 %) amorf Ca-atorvasztatin

A termék kémiai tisztasága: 99,87 % (lásd: 5.példa)

Összes szennyezés: 0,13 % alatt

Egyedi szennyezés: 3 db (0,03; 0,04 és 0,06 %-ban)

A termék morfológiai tisztasága: (röntgendiffrakciós vizsgálat alapján) 100% amorf.

3. példa

Amorf Ca-atorvasztatin előállítása

7,3 g (0,01 mól) atorvasztatinsav-L-arginin sót 50 ml desztillált víz és 20 ml 2-propanol elegyében 40°C-on feloldunk. Ezen a hőmérsékleten az oldathoz hozzáadjuk 0,9 g kalcium-acetát-hidrát 10 ml desztillált vízben készült oldatát. A hűtére kivált szuszpenziót 0-5°C-on kevertetjük 1 órán át. Ezután a terméket szűrjük, 2 x 10 ml desztillált víz – 2-propanol 5 : 2 arányú elegyével mossuk, majd legfeljebb 50°C-on tömegállandóságig szárítjuk.

A kapott termék: 5,1 g (88%) amorf Ca-atorvasztatin

A termék kémiai tisztasága: 99,9 %

összes szennyezés: 0,10 % alatt

A termék morfológiai tisztasága: (röntgendiffrakciós vizsgálat alapján) 100% amorf.

4. példa

Az 1. – 3. példákban előállított termékek vizsgálati módszerei:

A./ HPLC-vizsgálati módszer:

Kolonna: YMC-Pack Pro C18, 150x4.6mm ID, 5 µm

Eluens: A: 100ml acetonitril + 895ml deszt.víz + 5ml 1 M/dm³ TEAP

B: 900ml acetonitril + 95ml deszt.víz + 5ml 1 M/dm³ TEAP

(TEAP: trietilammóniumfoszfát-puffer, Fluka Chemie,

cat.no.: 90362)

Gradiens:

idő(min)	A%	B%
0	100	0
5	40	60
10	40	60
15	15	85
18	5	95
26	5	95
26,1	100	0
31	100	0

Detektálás: 26 percig

Hullámhossz: 215 nm

Hőmérséklet: szobahőmérséklet

Injektált térfogat: 10 µl

Áramlási sebesség: 1.0 ml/min

Mintaoldás: acetonitril:desztillált.víz =1:1 elegyben, 0.8 mg/ml-es koncentrációban

B./ Röntgendiffrakciós-vizsgálat

A vizsgálatot Philips PW 1840 pordiffraktométeren végeztük, az alábbi paraméterek mellett:

CuK_α sugárzás: 30 kV, 30 mA

Goniométer sebesség: 0,05 °2θ/s

Érzékenység: 2 × 10³ cps

T.C.: 5 seconds

Résszélesség: 0,05 mm

A mellékelt (1. ábra) pordiagram alapján a minta amorf, értékelhető diffrakciós csúcsok a pordiagramon nincsenek.

5. példa

A 2. példában kapott termék HPLC-kromatogramja:

11.423 perc, RRT: 0.96: 0.03 terület %
11.683 perc, RRT: 0.98: 0.04 terület %
14.342 perc, RRT: 1.20: 0.06 terület %

Szabadalmi igénypontok

- Eljárás amorf atorvasztatin-kalcium előállítására, azzal jellemzve, hogy az atorvasztatinsav bázikus aminosavval képzett sóját – melyet az (I) általános képlet mutat be;

és ahol a képleben R jelentése lizinből, argininból vagy ornitinból származó csoport - víz és valamilyen vízzel korlátlanul elegyedő szerves oldószer elegyében oldjuk, az oldathoz valamilyen vízben oldódó kalcium-só vizes oldatát adjuk, majd a kapott nagytisztaságú, egységesen amorf atorvasztatin-kalciumot szűréssel izoláljuk.

- Az 1. igénypont szerinti eljárás, azzal jellemzve, hogy az atorvasztatinsav bázikus aminosavval képzett sójaként atorvasztatin-L-lizin-sót vagy atorvasztatin-L-arginin-sót használunk.
- Az 1. és 2. igénypont szerinti eljárás, azzal jellemzve, hogy valamilyen vízben oldódó kalcium-só vizes oldataként kalcium-acetátot vagy kalcium-kloridot használunk.

3. Az 1. és 2. igénypont szerinti eljárás, azzal jellemezve, hogy valamilyen vízben oldódó kalcium-só vizes oldataként kalcium-acetátot vagy kalcium-kloridot használunk.
4. Az 1. - 3. igénypont szerinti eljárás, azzal jellemezve, hogy valamilyen vízzel korlátlanul elegyedő szerves oldószerként metanolt, etanolt, i-propanolt vagy acetont alkalmazunk.

Richter Gedeon Vegyészeti Gyár R.T.

Richter Gedeon Vegyészeti Gyár Rt.

Dr. Polgár István
osztályvezető

NL.

P0500761

KIVONAT

Eljárás amorf atorvasztatin-kalcium előállítására

Richter Gedeon Vegyészeti Gyár Rt., Budapest

A bejelentés napja: 2003. 03. 24.

KÖZZÉTÉTELI PÉLDÁNY

A találmány tárgya új eljárás amorf atorvasztatin-kalcium előállítására, olyan módon, hogy az atorvasztatinsav bázikus aminosavval képzett sóját – melyet az (I) általános képlet mutat be;

és ahol a képletben R jelentése lizinből, argininból vagy ornitiniből származó csoport - víz és valamilyen vízzel korlátozottan elegyedő szerves oldószer elegyében oldják, az oldathoz valamilyen vízben oldódó kalcium-só vizes oldatát adják, majd a kapott nagytisztaságú, egységesen amorf atorvasztatin-kalciumot szűréssel izolálják.

UVUVU

Richter Gedeon Végészeti Gyár Rt.

1/1 lap

KÖZZÉTÉLELI PÉLDÁNY

[CA-ATORVASTATIN

3-Feb-2003 10:34

1. ábra

12/26
RICHTER GEDEON VÉGÉSZETI GYÁR-H.

PL, dr. Polgár István
osztályvezető

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.