- 1. 充分性: 若 $s \in S$ 使得 sM = 0, 固定 $m \in M$, 利用 $s(tm sm_2) = 0$ 可知 $\forall (m_2, t), (m_2, t) \simeq (m, s)$, 所以 $S^{-1}M = 0$; 然后我们证明必性, 当 $S^{-1}M = 0$ 时, 那么 $S^{-1}A = Ann(S^{-1}M) = S^{-1}(Ann(M))$, 考虑 $S^{-1}A$ 中单位元, 则存在 $m \in Ann(M), s_1, s_2 \in S$ 使得 $s_1(m s_2) = 0$ 从而 $s_1m = s_1s_2 \in S$, 取 $s = s_1m$ 就完成了证明.
- 2. 记 $x = a/(1+c) \in S^{-1}\mathfrak{a}$, 对于任意的 $y = b/(1+d) \in S^{-1}A$. 注意到 a, c, d 均为理想 \mathfrak{a} 中元素,我们有 1 + xy = 1 + ab/(1 + c + d + cd) 在 $S^{-1}A$ 上有逆 (1+c+d+cd)/(1+ab+c+d+cd). 所以 $S^{-1}\mathfrak{a}$ 包含在 $S^{-1}A$ 的大根中. 14. 记 $f: A \to A/\mathfrak{a}$ 为自然投射. 由于 f 是满射,那么对于 A/\mathfrak{a} 的任意一个极大理想 $m, f^{-1}(m)$ 都是 A 中的极大理想. 对于任意的 $m+\mathfrak{a}M$ 存在 $a \in A/f^{-1}(m)$ 使得 am=0 那么 $(a+\mathfrak{a})(m+\mathfrak{a}M)=\mathfrak{a}M$. 所以 $(M/\mathfrak{a}M)_m=0$, 由 3.8 我们有 $M/\mathfrak{a}M=0$ 那么 $M=\mathfrak{a}M$.
- 15. (此证明为习题后提示) 令 $x_1, x_2, \cdots x_n$ 是一个生成元集, e_1, e_2, \cdots, e_n 是 F 的典范基. 由 $\phi(e_i) = x_i$ 定义 $\phi: F \to F$ 同态. 那么 ϕ 是满射,我们只需证明它是单射即可. 由 (3.9) 我们可以设 A 为局部环,设 N 为 ϕ 的核,令 k: A/m 为 A 的同余类域. 由于 F 是平坦 A- 模. 正合序 $0 \to N \to F \to F \to 0$ 产生正合序列 $0 \to k \otimes N \to k \times F \to k \otimes F \to 0$. $k \otimes F = k^n$ 为 $k \to k \otimes F \to 0$. 又由第二章习题 12, $k \to 0$ 是满的,因而是单的,所以 $k \otimes N = 0$. 又由第二章习题 12, $k \to 0$ 是有限生成的,因此由 $k \to 0$ 是有限生成的,但是 $k \to 0$ 是有限生成的,但是 $k \to 0$ 是有限生成的,但是 $k \to 0$ 是有限生成的,但是 $k \to 0$ 是有限生成的,是 $k \to 0$ 是有限生成的,是 $k \to 0$ 是 $k \to 0$
- 4. 由于 $\mathbb{Z}[t]/(2,t) = \mathbb{Z}_2$ 是一个域,那么 m 为极大理想. 而由 $\mathbb{Z}[t]/(4,t)$ 只有一个零因子 (自然是幂零的) 我们得到 p 为素理想. 很显然 $r(\mathfrak{q}) = m$ 并且对于每一个 $n,\mathfrak{m}^n \neq q$.
- 5. 我们计算得到 $\mathfrak{p}_1 \cap \mathfrak{p}_2 = (x, yz)$,所以 $\mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2 = (x, yz) \cap (x^2, xy, yz, y^2, yz, z^2)$

- $(x^2, xy, xz, yz) = \mathfrak{p}_1\mathfrak{p}_2$,故 $\mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ 为准素分解. 容易验证分解是约简的. 而 $\mathfrak{p}_1, \mathfrak{p}_2$ 是孤立的, \mathfrak{m} 是嵌入的.
- 7.(1) 由于 a[x] 包含在 a 在 A[x] 中生成的理想 $\sum aA[x]$ 中, 再加之 a[x] 为理想, 我们得到 $a^e = a[x]$.
- (2) 由第二次作业可知. $A[x]/p[x] \cong (A/p)[x]$; 再由 (A/p) 为整环, 我们得到 (A/p)[x] 也为整环, 从而 p[x] 为素理想.
- (3) 同样我们有 $A[x]/\mathfrak{q}[x] \cong (A/\mathfrak{q})[x]$. 设 $f \in (A/\mathfrak{q})[x]$ 为零因子, 由提示我们利用第一章练习 2(iii) 我们知道存在非零的 $a \in A/\mathfrak{q}$ 使得 af = 0, 所以 f 的每个系数都是 A/\mathfrak{q} 中的零因子。由于 \mathfrak{q} 是准素的, 从而 f 的每个系数都是幂零的. 由第一章练习 2(ii) f 是 $(A/\mathfrak{q})[x]$ 中的幂零元, 从而 $\mathfrak{q}[x]$ 是准素的.
- (4) 利用 (1) 有 $\mathfrak{q}_i^e = \mathfrak{q}_i[x]$, 我们得到 $\mathfrak{a}^e = \mathfrak{a}[x] = (\bigcap_{i=1}^n \mathfrak{q}_i)[x] = \bigcap_{i=1}^n \mathfrak{q}_i[x] = \bigcap_{i=1}^n \mathfrak{q}_i^e$. 然后利用 (2)(3) 我们知道 $\bigcap_{i=1}^n \mathfrak{q}_i[x]$ 确实是一个准素分解, 而极小性容易验证.
- (5) 我们有 $r(\mathfrak{q}^e) \subset r(\mathfrak{q})^e$, 即 $r(\mathfrak{q}[x]) \subset \mathfrak{p}[x]$, 另一部分包含是显然的. 所以我们证明了 $r(\mathfrak{q}[x]) = \mathfrak{p}[x]$, 再利用 r 运算的单调性以及 (4) 的分解形式, 我们得到 \mathfrak{p} 确实为极小素理想.
- 8. 由于 $k[x_1, \dots, x_n][x_{n+1}] = k[x_1, \dots, x_{n+1}], (x_1, \dots, x_i)[x_{i+1}] = (x_1, \dots, x_{i+1}),$ 再利用习题 7 我们只需要证明 $k \in k[x_1, \dots, x_n]$ 素理想就可以了, 这是显然的.
- 再利用 $(x_1, \dots, x_n)^m [x_{n+1}^m] = (x_1, \dots, x_{n+1})^m$, 同样利用习题 7, 我们类似的给出了准素的证明.