CMP 381.3 Simulation and Modeling (3-1-3)

	Theory	Practical	Total
Sessional	30	20	50
Final	50	-	50
Total	80	20	100

Course Objective:

To Provide the knowledge of discrete and continuous system, generation of random variables, analysis of simulation output and simulation languages.

Course Contents:

1. Introduction to Modeling and Simulation

(5hrs)

System concept, System modeling, Mathematical models: nature and assumptions, Calibration and validation, Monte Carlo simulation method.

2. Continuous System

(8hrs)

Continuous system model, Differential equation, Analog method, Hybrid computers, Digital-analog simulators, Continuous System Simulation Languages (CSSLS), CSMP III, Hybrid simulation, Feedback systems, examples.

3. Discrete System Simulation

(10hrs)

Discrete events, Representation of time, Generation of arrival patterns, Simulation of a telephone system, Delay calls, Simulation of programming tasks, Gathering statistics, Counters and summary statistics, Measuring utilization and occupancy, Recording distribution and transit times, Discrete simulation languages.

4. Analysis of Simulation Output

(10hrs)

Estimation methods, Simulation run statistics, replication of runs, Elimination of internal bias.

5. Simulation Languages

(12hrs)

Types of simulation languages, Discrete systems modeling and simulation with GPSS, GPSS programs applications, Structural, data and control statements, hybrid simulation, Feedback systems: typical applications, SIMSCRIPT programs.

Laboratory:

Develop a simulation model, The topic could be either initiated by the student or selected from a list provided by the instructor. An oral presentation with a demonstration should be part of the laboratory project report.

Reference Books:

- 1. J.A. Spriest and G.C. Vansteenkiste, *Computer-Aided Modeling and Simulation*, Academic Press.
- 2. G. Gorden, System Simulation, Prentice Hall of India.
- 3. A.M Law and R.F. Parry, *Simulation*: A *Problem-solving approach*, Addison Wesley Publishing Company.
- 4. A.M. Law and W.D. Kelton, Simulation Modeling and Analysis, McGraw Hill, 1991