```
1 CN1064479/PN
=> d l1 all
     ANSWER 1 OF 1 CAPLUS COPYRIGHT 2001 ACS
        Citing
References
      1993:494942 CAPLUS
AII
     119:9494
DII
ΤI
     Preparation of fluoroalkenyl group-containing compounds as pesticides.
IIT
     Ruminski, P. G.
     Monsanto Co., USA
SO
     Faming Zhuanli Shenqing Gongkai Shuomingshu, 99 pp.
     CODEN: CNEXEV
DT
     Patent
LA
     Chinese
     ICM C07C211-24
IC
      ICS C07C243-24; C07C057-08; C07C309-73; A01N037-06; A01N037-18;
          A01N041-04
CC
      23-4 (Aliphatic Compounds)
     Section cross-reference(s): 5, 25, 27, 28
FAN.CNT 2
                                             APPLICATION NO. DATE
     PATENT NO.
                      KIND DATE
                              _____
      _____
                                              _____

      CN 1064479
      A
      19920916

      CN 1057755
      B
      20001025

      HU 65415
      AC
      19940628

      EP 798285
      AC
      19971001

      EP 798285
      AS
      19971008

                              19920916
                                              CN 1992-101341
                                                                 19920228
PΙ
                                                                 19920237
                                              HU 1993-2462
                                              EP 1997-107054
                                                                 19920227
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC
                                                                 19920227
                                                                 199.:0...7
                                                                 19920227
                                                                 19920228
                                                                 19920228
                                                                 19931018
                                                                 19941012
                                                                 19950308
                                                                 19950518
                                                                 19960822
                                                                 19961211
                                                                 19981215
     MYC:CZ(CH2)n-Q [I; X, Y, Z = H, F; n = 1, 3, 5, 7, 9, 11; Q =
      (un) substituted aminomethyl, etc.; with provisos], useful as agrochem.
      insecticides, miticides, and anthelmintics, are prepd. Refluxing
      4-MeC6H4SO3-Ag with 4-bromo-1,1,2-trifluoro-1-butene in MeCN, the mixt.
     was stirred overnight and then filtered, the residue was taken up with
      EtOAc, and the soln. was refluxed with phthalimide K salt for 24 h to give
     N-(3,4,4-trifluoro-3-butenyl)phthalimide, which was hydrazinolyzed to give
      3,4,4-trifluoro-3-butenylamine. This at 1000 ppm showed 100s inhibition
      of Meloidogyne incognita.
      fluoroalkenyl aliph amine prepn pesticide; miticide fluoroalkenyl aliph
      amine prepn; anthelmintic fluoroalkenyl aliph amine prepn; insecticide
      fluoroalkenyl aliph amine prepn
ΙT
      Acaricides
      Anthelmintics
```

=> s cn1064479/pn

```
Insecticides
        (fluoroalkenyl group-contg. compds.)
ΤT
    147804-02-0
    RL: RCT (Reactant)
        (alkenylation by, of phthalimide)
    1074-82-4, Phthalimide potassium salt
ΙT
    FL: RCT (Reactant)
       (alkenylation cf)
    27443-08-9P
TΤ
    FL: RCT (Reactant); MPN (Synthetic preparation); PREP (Freparation)
        (prepn. and hydrazinclysis of)
    145342-83-2P, 3,4,4-Trifluoro-3-butencyl chloride
ΙT
    RL: RCT (Reactant); SPN (Synthetic preparation); PREF (Preparation)
        (prepn. and reaction of, in prepn. of pesticides)
     110003-21-3P
TT
     RL: SPN (Synthetic preparation); PREP (Preparation)
        (prepn. of, a7s pesticide)
    75-21-8P, Oxirane, preparation 145343-36-8P, N-(4,4-Difluoro-3-
ΙT
    butenyl)phthalimide 145343-37-9P 145343-40-4P
                                                       145361-66-6P
    148304-91-0P
    RL: SPN (Synthetic preparation); PREP (Preparation)
        (prepn. of, as intermediate for pesticides)
                                                145341-86-2P
                                                               145341-87-3P
     53965-56-3P
                  110003-20-8P
                                 136103-94-1P
ΙT
                                                               145341-96-4P
     1453<u>4</u>1-88<u>-</u>4P
                   145341-92-0P
                                  145341-93-1P
                                                 145341-95-3P
                                                 145342-00-3P
                                                                145342-01-4P
    145341-97-5P
                   145341-98-6P
                                  145341-99-7P
                                                                145342-06-9P
                                                 145342-05-8P
                   145342-03-6P
                                  145342-04-7P
    145342-02-5P
                                                                145342-11-6P
                                                 145342-10-5P
     145342-07-0P
                   145342-08-1P
                                  145342-09-2P
                                                 145342-15-0P
                                                                145342-16-1P
                                  145342-14-9P
     145342-12-7P
                   145342-13-8P
                                                 14<u>5</u>341-21-8P
                                                                145342-22-9P
                   145342-18-3P
                                  145342-19-4P
     145342-17-2P
                                                1453<u>4</u>2-26-3P
                                  145342-25-2P
                                                                145342-27-4P
     145342-23-0P
                   145342-24-1P
                                  145342-30-9P
                   145342-29-6P
                                                145342-31-0P
                                                                145342-32-1P
     145342-28-5P
                  145342-34-3P
                                  145342-35-4P
                                                                145342-37-6P
                                                145342-36-5P
     145342-33-2P
                                  145342-40-1P
                                                145342-42-3P
                                                                145342-44-5P
     145342-38-7P
                  145342-39-8P
                                  145342-49-0P 145342-51-4P
                  145342-47-8P
                                                                145342-52-5P
     145342-45-6P
                                                145342-56-9P
                                                                145342-58-1P
     145342-53-6P
                  145342-54-7P
                                  145342-55-8P
                  145342-60-5P 145<u>34</u>2-6<u>1-6</u>P
                                                145342-62<u>-</u>7P
                                                                145342-63-8P
     145342-59-2P
                  145342-65-0P 145342-66-1P
                                                145342-68<u>-</u>3P
                                                                145342-69-4P
     145342-64-9P
     145342-70-7P 145342-72-9P
                                  145342-73-0P
                                                145342-75-2P
                                                                145342-78-5P
                                                145342-84-3P
                                                                145342-85-4P
     145342-79-6P 145342-81-0P 145342-82-1P
                                                145342-90-1P
                                                                145342-91-2P
     145342-86-5P 145342-87-6P 145342-88-7P
     145342-92-3P 145342-93-4P 145342-94-5P
                                                145342-95-6P
                                                                145342-96-7P
     145342-97-8P 145342-98-9P 145342-99-0P
                                                 145343-00-6P
                                                                145343-01-7P
                                                 145343-05-1P
                                                                145343-06-2P
     145343-02-8P 145343-03-9P
                                 145343-04-0P
                                                145343-12-0P
                                                                145343-13-1P
                                  145343-10-8P
     145343-07-3P 145343-09-5P
                                                 145343-18-6P
                                                                145343-19-7P
                                  145343-17-5P
     145343-14-2P 145343-16-4P
                                  1453<u>4</u>3-25-5P
                                                 14<u>534</u>3-26-6P
                                                                145343-27-7P
     145343-23-3P 145343-24-4P
                  145343-32-4P
                                                                145361-65-5P
     145343-28-8P
                                  145343-41-5P
                                                 145361-64-4P
                                                 147800-34-8P
                                                                147803-93-8P
                   147800-32-6P
                                  147800-33-7P
     147800-31-5P
                                  147803-96-1P
                                                 147803-97-2P
                                                                147803-98-3P
     147803-94-9P
                   147803-95-0P
                                                                147852-89-9P
     147803-99-4P
                   147804-00-0P
                                  147804-01-1P
                                                 147852-88-8P
                                                                148304-90-9P
                   147852-91-3P
                                  148126-2<u>5</u>-4P
                                                 148126-26-5P
     147852-90-2P
     RL: BAC (Biological activity or effector, except adverse); SPN (Synthetic
     preparation); BIOL (Biological study); PREP (Preparation)
        (prepn. of, as pesticide)
                                      79-37-8, Oxalyl :hloride
                                                                 83-01-2,
IΤ
     75-61-6, Dibromodifluoromethane
     Diphenylcarbamoyl chloride 96-32-2, Methyl bromoacetate
                                                                 97-51-8,
     5-Nitrosalicylaldehyde 99-05-8, 3-Aminobenzoic acid 100-02-7,
     4-Nitrophenol, reactions 100-97-0, reactions 107-02-8, 2-Propenal,
     reactions 108-30-5, Succinic anhydride, reactions 109-73-9,
                                                         111-87-5, 1-Octanol,
                            110-52-1, 1,4-Dibromobutane
     Butylamine, reactions
     reactions 124-63-0, Methanesulfonyl chloride 156-57-0,
     2-Aminoethanethiol hydrochloride 302-01-2, Hydrazine, reactions
     407-25-0, Trifluoroacetic anhydride 420-04-2, Cyanamide 613-94-5,
     N-Benzoylhydrazine 619-45-4, 4-Aminobenzoic acid methyl ester
```

1118-02-1, Trimethylsilyl isocyanate 2436-29-5, N-(2-Formylethyl)phthalimide 2623-87-2, 4-Bromobutyric acid 2991-42-6, 4-(Trifluoromethyl)benzenesulfonyl chloride 4083-64-1, 4-Toluenesulfonyl isocyanate 5619-05-6, DL-Valine methyl ester hydrochloride 5781-53-3, Methyl chlorocarbonylformate 7803-57-8, Hydrazine hydrate 10493-44-4 15761-38-3 22737-36-6, O-Trimethylsilylhydroxylamine 27532-96-3, tert-Butyl glycinate hydrochloride 36556-72-6, N-tert-Butoxycarbonylaminoethanol 57260-73-8, tert-Butyl (2-aminoethyl)aminoformate 97168-13-3 RL: RCT (Reactant) (reaction of, in prepn. of pesticides)

四发明专利申请公开说明书

[21] 申请号 92101341.8

[51] **Int.Ci**⁵ C07C211 / 24

(43) 公开日 1992年9月16日

[22]申请日 92.2.28

[30]优先权

[22]91.3.1 [33]US [31]663,218

[32]92.2.3 [33]US [31]872,231

[71]申请人 孟山都公司

地址 美国密苏里州

[72]发明人 P・G・鲁明斯基

[74]专利代理机构 中国专利代理(香港)有限公司 代理人 齐曾度 谭明胜

C07C243/24 C07C 57/08 C07C309/73 A01N 37/06 A01N 37/18 A01N 41/04

THE BRITISH LIBRARY

13 NOV 1992 Science reference and Information service

说明书页数: 92 附图页数:

[54]发明名称 氟化链烯基化合物及其用作驱虫剂 [57]掩幕

用于控制对农作物有害的线虫、昆虫和蜡的氟代链烯基化合物及其控制方法。尤其是将极性化合物,例如 3.4.4-三氟-3-丁烯-1-胺或 3.4.4-三氟-3-丁烯酸用于内吸收控制害虫。还提供了制备 3.4.4-三氟-3-丁烯-1-胺的新方法和中间体。

i. 具有以下结构的化合物及其农业上可接受的盐:

$$\begin{array}{c}
X \\
C = C - (CH_2)_n - Q \\
Y Z
\end{array}$$

式中11=1, 3, 5, 1, 9或11;

()是 CH_2NHR_6 , CH_2NO_2 , $CH_2N=CHR_2$, $CH_2N=C=O$, $CH_2N^+R_3R_4R_5W^-$, or $(C=O)-R_{11}$;

X, Y和Z各自独立为H或F, 条件是X和Y中至少一个是F, 另一条件是当Q是(C=0) — R_{II} 时,X、Y和Z各自是F;

₩ 是农业上可接受的阴离子;

R₇是芳基;

R₃, R₄和R₅各自独立是氢; 低级烷基, 所述烷基可被至少一个 选自羟基, 烷氧基, 卤素, 硝基, 氨基, 巯基, 烷硫基, 羧 基, 烷氧基羰基和苯基的基团取代; R₃, R₄和R₅中的一个是 羟基, 而另两个是氢; 或者R₃, R₄和R₅与Q的氮原子一起形 成环状季铵基;

R₆是氢;脂族基,该基团可被至少一个选自羟基,烷氧基,囟素,硝基,氨基,巯基,烷硫基,羧基,烷氧基羰基和苯基的基团取代;Q的氨基酸酰胺;(C=0)-R₇;C₁-C₁₂烷基胺,它可被至少一个选自羟基,烷氧基、囟素、硝基、氨基、巯基,烷硫基,羧基、烷氧基羰基和苯基的基团取代;C₂-C₁₂脂族羧酸及其酯、巯脂和酰胺,它们均可被至少一个选自羟基,烷氧基、卤素、硝

基, 氨基、巯基, 烷硫基, 羧基, 烷氧基羰基和苯基的基团取代; 二氢-3-氧代吡唑啉基; 或苯基或噻吩, 它们可被至少一个选 自羟基, 烷氧基, 卤素、硝基、氨基, 巯基, 烷硫基, 羧基, 烷 氧基羰基和苯基的基团取代; 或者

- R6是与Q中氮原子一起形成的胍; 肼; 烷基或芳基肼, 它们可被至少一个选自羟基、烷氧基、卤素、硝基、氨基, 巯基, 烷硫基、羧基、烷氧基羰基和苯基中的基团取代; 或者R6是烷基或芳基磺酰基, 该基团可被至少一个选自羟基、烷氧基、卤素、硝基, 氨基、巯基, 烷硫基, 羧基, 烷氧基羰基和苯基的基团取代;
- R₇是(C=0)-R₁₄; C₁-C₁₂脂族基,它可被至少一个选自羟基, 烷氧基、卤素、硝基、氨基、巯基、烷硫基、羧基、烷氧基羰基 和苯基的基团取代; C₂-C₁₂脂族羧酸及其酯、巯脂或酰胺,它 们均可被至少一个选自羟基,烷氧基,卤素、硝基、氨基、巯基、 烷硫基、羧基,烷氧基羰基和苯基的基团取代;或者是N,0或S 基,当其与酰胺结合时则是脲、氨基脲、氨基甲酸酯或硫代氨基 甲酸酯基团,所述基团均可用烷基或芳基取代,而所述烷基或芳 基又可被至少一个选自羟基,烷氧基,卤素,硝基、氨基、巯基、 烷硫基、羧基、烷氧基羰基和苯基的基团取代;

R₁₁是-OR₁₂, -SR₁₂, 卤素, -NHOH或-NR₁₂R₁₃;

R₁₂和R₁₃各自独立为氢;脂族或芳族基团,它们可被至少一个选自羟基,烷氧基、卤素、硝基、氨基、巯基、烷硫基、羧基、烷氧基羰基和苯基的基团取代; C₁ - C₁₂脂族胺,它可被至少一个选自羟基,烷氧基,卤素,硝基,氨基,巯基,烷硫基,羧基,烷氧基羰基和苯基的基团取代; C₂ - C₁₂脂族羧酸及其酯、酰胺和盐,它们可被至少一个选自羟基,烷氧基、卤素、硝基,氨基,巯基,烷硫基,羧基,烷氧基羰基和苯基的基团取代;或者

R₁₂和R₁₃与R₁₁的N一起形成蛋白质氨基酸或下述的环状基团: 吗啉, 哌啶, 哌嗪或吡咯烷, 所述基团可被至少一个下列的基团取代: 羟基, 烷氧基, 卤素, 硝基, 氨基, 巯基, 烷硫基, 羧基, 烷氧基羰基和苯基;

R是OH, 烷氧基, NH₂,或NHNH₂, 条件是当

1是1 且X, Y和Z各自是F时, Q不是CHNH或CHNH的无机酸盐。

2. 权利要求1 的化合物, 其中R是

- 3. 权利要求! 的化合物, 其中11是! 并且X和Y各自为F。
- 4. 权利要求3的化合物, 其中Z是H并且Q是CH, NH, 或CH, NH, W.
- 5. 权利要求3的化合物, 其中Z是F。
- 6 权利要求5的化合物,其中Q是CH2NHR6, R6是Q的氨基酸酰胺。
- 7. 权利要求6的化合物, 其中R₄是Q的蛋白质氨基酸酰胺。
- 8. 权利要求7的化合物, 其中蛋白质氨基酸是甲硫氨酸。
- 9. 权利要求1的化合物,其中W⁻是氯离子、碘离子,溴离子,草酸根,硫酸根,磷酸根,乙酸根,柠檬酸根或3,4,4-三氟-3-丁烯酸根。
 - 10.4, 4-二氯-3-丁烯-1-胺及其农业上可接受的盐。
 - 11.3,4,4-三氟-3-丁烯酸及其农业上可接受的盐。
 - 12.3, 4, 4-三氣-3-丁烯-1-胺3, 4, 4-三氟-3-丁烯酸

盐。

13.3, 4, 4- 三氟-3- 丁烯酸2-(3, 4, 4- 三氟-1- 氧-3 - 丁烯基) 酰肼。

- 14. 控制植物受线虫、昆虫或螨感染的组合物,该组合物含有效量的权利要求1的化合物和农业上可接受的载体。
- 15. 控制植物受线虫、昆虫或螨感染的组合物,该组合物含有效量的3,4,4-三氟-3-丁烯-1-胺盐酸盐和农业上可接受的载体。
- 16 控制植物受线虫、昆虫或螨感染的方法,该方法包括向植物所在地施用有效量的权利要求1的化合物。
- 17 内吸收控制植物受线虫、昆虫或螨感染的方法,该方法包括向植物所在地施用有效量的具有以下结构的化合物:

$$X$$

$$C = C - (CH_2)_n - Q_1$$

式中1=1,3,5,7,9或11;

Q是 CH_2 NHR或(C=0) -R;

X, Y和Z各自独立为H或F, 并且X和Y至少一个是F, 条件是Q, 是(C=0) — R 时,

X、Y和Z各自是F;

R是一种具有或施用后转化成具有极性的基团,它提供韧皮部移动性但不会降低控制线虫的效力。

18. 权利要求17的方法, 其中n是1且X和Y是F。

- 19. 权利要求18的方法, 其中2是F。
- 20. 权利要求19的方法,其中0,是 $CH_2N^{\dagger}H_3W^{\dagger}$ 且 W^{\dagger} 是农业上可接受的阴离子。
- 21. 权利要求20的方法,其中W 是氯离子,碘离子,溴离子,草酸根,硫酸根,磷酸根,乙酸根,柠檬酸根或3,4,4-三氟-3-丁烯酸根。
 - 22. 权利要求19的方法, 其中Q,是COOH或其盐。
 - 23. 权利要求19的方法, 其中Q是CH2NHR。
- 24. 权利要求23的方法, 其中R是具有或施用后在植物上或植物中转化成3, 4, 4-三氟-3-丁烯-1-胺或其盐的基团。
 - 25. 权利要求23的方法, 其中R是0,的蛋白质氨基酸酰胺。
 - 26. 权利要求25的方法, 其中R是甲硫氨酸。
- 27. 内吸收控制植物的线虫、昆虫或螨感染的方法,该方法包括对植物所在地施用有效量的3,4,4-三氟-3-丁烯-1-胺盐酸盐。
- 28. 制备3,4,4-三氣-3-丁烯-1-胺的方法,该方法包括以下步骤:
- a. 将4- 溴-1, 1, 2- 三氟-1- 丁烯与甲苯磺酸盐或甲磺酸盐反应;
- b. 将生成的化合物与苯邻二甲酰亚胺反应生成N-(3,4,4-三氟-3-丁烯基) 苯邻二甲酰亚胺; 以及
- 6. 将生成的N-(3,4,4-三氟-3-丁烯基) 苯邻二甲酰亚胺与肼反应生成3,4,4-三氟-3-丁烯-1-胺。
- 29. 制备3, 4, 4-三氣-3-丁烯-i-胺盐酸盐的方法, 该方法包括以下步骤:
 - 4. 将4一 溴一1, 1, 2- 三氟-1- 丁烯与甲苯磺酸盐或甲磺酸

盐反应;

- b. 将生成的产品与苯邻二甲酰亚胺的盐反应生成N-(3,4,4-) 三氟-3-丁烯基) 苯邻二甲酰亚胺;
- c. 将生成的N-(3,4,4-三氟-3-丁烯基) 苯邻二甲酰亚胺与肼反应生成3,4,4-三氟-3-丁烯-1-胺;以及
- d. 将氯化氢与3, 4, 4-三氟-3-丁烯-1-胺反应生成3, 4, 4 -三氟-3-丁烯-1-胺盐酸盐。
 - 30.3, 4, 4- 三氣-3- 丁烯-1- 甲苯磺酸酯。
 - 31.3, 4, 4-三氟-3-丁烯-1-甲磺酸酯。

氟代链烯基化合物 及其用作驱虫剂

本申请是1991年3月1日提交的美国序号07/663,218的部分继续申请。

本发明涉及包括一、二和三氟代链烯胺类、三氟代链烯基羧酸类 及其衍生物和盐类的某些氟代链烯基化合物及其配制而成的组合物。 本发明还涉及控制损害农作物的害虫(如线虫,昆虫和螨)的方法。 本发明还提供了制备三氟代链烯胺和新的中间体的新方法。

早就知道当氣化烯烃类施用于土壤时可控制线虫和昆虫。美国专利号3,510,503;3,654,333和3,780,050都公开了这类化合物。最近美国专利号4,952,580公开了多卤代链烯类用作杀线虫剂,其中提到某些化合物具有向下的内吸收活性(downward systemic activity),也就是说在施用到植物叶茎上之后可某种程序上控制根部系统的线虫感染。这些专利文献公开的大多数化合物是非极性的,对土壤施用的驱虫剂来说这是希望的特征,提供了较长的有效期,但对于叶茎施用以达到内吸收效应来说效果很差。美国专利号4,950,666,公开了某些极性二氟代链烯基链烷烃化合物用作内吸收的杀虫剂和杀线虫剂。然而,在本领域中仍然需要线虫、昆虫和螨的控制剂,该控制剂应具有优良的内吸收流动性和理想的低的使用有效浓度。

本发明提供了用于控制植物的线虫、昆虫和螨的感染并具有下式 结构的化合物及其农业上可接受的任何盐:

$$X$$

$$C = C - (CH2)n - Q$$

$$Y$$

式中: 1=1, 3, 5, 7, 9, 或11;

Q是 CH_2NHR_6 , CH_2NO_2 , $CH_2N=CHR_2$, $CH_2N=C=O$, $CH_2N^+R_3R_4R_5W^-$, or $(C=O)-R_{11}$;

X, Y和Z独立为H或F, 条件是X和Y中至少一个是F, 另一条件是 当Q是(C=0) — R_{II} 时, X、Y和Z各自是F;

₩ 是农业上可接受的阴离子;

R2是芳基;

R₃, R₄和R₅各自独立是氢; 低级烷基, 所述烷基可被至少一个选自羟基, 烷氧基, 卤素, 硝基, 氨基, 巯基, 烷硫基, 羧基, 烷氧基羰基和苯基的基团取代; R₃, R₄和R₅中的一个是羟基, 而另两个是氢; 或者R₃, R₄和R₅与Q的氮原子一起形成环状季铵基;

R₆是氢;脂族基,该基团可被至少一个选自羟基,烷氧基,卤素,硝基,氨基,巯基,烷硫基,羧基,烷氧基羰基和苯基的基团取代;Q的氨基酸酰胺;(C=0)-R₇;C₁-C₁₂脂族胺类,它可被至少一个选自羟基,烷氧基、卤素、硝基、氨基、巯基,烷硫基,羧基、烷氧基羰基和苯基的基团取代;C₂-C₁₂脂族羧酸及其酯、巯脂和酰胺,它们均可被至少一个选自羟基,烷氧基、卤素、硝基,氨基、巯基,烷硫基,羧基,烷氧基羰基和苯基的基团取代;二氢-3-氧代吡唑啉基;或苯基或噻吩,它们可被至少一个选自羟基,烷氧基,卤素、硝基、氨基,巯基,烷硫基,羧基,烷氧基羰基和苯基的基团取代;或者

R,是与Q中氮原子一起形成的胍; 肼; 烷基或芳基肼, 它们可被至

少一个选自羟基、烷氧基、卤素、硝基、氨基, 巯基, 烷硫基、 羧基、烷氧基羰基和苯基中的基团取代; 或者R6是烷基或芳基磺 酰基, 该基团可被至少一个选自羟基、烷氧基、卤素、硝基, 氨 基、巯基, 烷硫基, 羧基, 烷氧基羰基和苯基的基团取代;

R7是(C=0)-R₁₄; C₁-C₁₂ 脂基,它可被至少一个选自羟基,烷氧基、卤素、硝基、氨基、巯基、烷硫基、羧基、烷氧基羰基和苯基的基团取代; C₂-C₁₂ 脂族羧酸及其酯、巯脂或酰胺,它们均可被至少一个选自羟基,烷氧基,卤素、硝基、氨基、巯基、烷硫基、羧基,烷氧基羰基和苯基的基团取代;或者是N,O或S基,当其与酰胺结合时则是脲、氨基脲、氨基甲酸酯或硫代氨基甲酸酯基团,所述基团均可用烷基或芳基取代,而所述烷基或芳基又可被至少一个选自羟基,烷氧基,卤素,硝基、氨基、巯基、烷硫基、羧基、烷氧基羰基和苯基的基团取代;

R₁₁是-OR₁₂, -SR₁₂, 卤素, -NHOH或-NR₁₂R₁₃;

- R₁₂和R₁₃各自独立为氢;脂族或芳族基,它们可被至少一个选自羟基,烷氧基、卤素、硝基、氨基、巯基、烷硫基、羧基、烷氧基羰基和苯基的基团取代;C₁ C₁₂脂族胺,它可被至少一个选自羟基,烷氧基, 卤素,硝基,氨基,巯基,烷硫基,羧基,烷氧基羰基和苯基的基团取代;C₂ C₁₂ 脂族羧酸及其酯、酰胺和盐,它们可被至少一个选自羟基,烷氧基、卤素、硝基,氨基,巯基,烷硫基,羧基,烷氧基羰基和苯基的基团取代;或者
- R₁₂和R₁₃与R₁₁的N一起形成蛋白质氨基酸或下述的环状基团: 吗啉, 哌啶, 哌嗪或吡咯烷, 所述基团可被至少一个下列的基团取代: 羟基, 烷氧基, 卤素, 硝基, 氨基, 巯基, 烷硫基, 羰基, 烷 氧羰基和苯基;
- R, 是OH, 烷氧基, NH2, 或NHNH2;

条件是当

ε是!且X, Y和Z各自是F时, Q不是CH2NH2或CH2NH2的无机酸盐。

专业人员知道: 替换的取代基可被认为将提供基本相等的结果。

本发明还提供通过施用上述化合物控制植物线虫、昆虫和螨感染的方法,或者当希望内吸收活性时可选择下式化合物或其农业上可接受的任何盐;

$$X$$

$$C = C - (CH2)n - Q1$$

式中n=1, 3, 5, 7, 9或11; Q_1 是 CH_2 NHR或(C=0) -R; X, Y和Z各 自独立为H或F且X和Y中至少一个是F, 条件是当 Q_1 是(C=0) -R $\to R$ $\to R$

制备3,4,4-三氟-3-丁烯-1-胺和新中间产物、3,4,4-三氟-3-丁烯-1-甲苯磺酸酯和3,4,4-三氟-3-丁烯-1-甲磺酰酯的方法也包括在本发明之内。

本发明之新化合物用于控制植物线虫、昆虫和螨的感染。这些化合物中多数是极性的,对内吸收控制来说是高效的,也就是说当施用于植物的叶或梗上时,它可以移动通过植物的韧皮部和木质部并在植物的其它部位,保证控制线虫,昆虫,或螨。认为这种控制机理是一种驱除或拒食剂作用,而不是伤害作用。另一方面,尤其是非极性化合物仅在直接施用于土壤时才是有效的。某些化合物能提供兼两种类

型的控制。

内吸收控制线虫、昆虫和螨的本发明方法使用本发明之韧皮部移动化合物或那些具有带CH₂NHR取代基的一、二、三氟代链烯烃基或带有(C=0)-R取代基的三氟代链烯烃基的化合物,它们具有足够的极性以致可以在韧皮部移动而不会消除氟代链烯烃部分的线虫控制活性。关于韧皮部移动性有几种不同的理论,例如必须有极性特征的化合物才能有足够的韧皮部移动以便在植物中向下转移。已提出建议,作为一个整体分子的极性必须足以使该分子保留在韧皮部,但该较性又不至于完全不能使它进入。

通过施用于植物地上部分的表面的内吸收来有效地控制线虫和其它昆虫时,化合物必须能够通过植物的叶和梗的表皮,进入韧皮部,并在那里滞留足够长的时间以便通过植物转移到包括根部在内的未处理部位。在那里它可能泄漏或以某种方式与害虫接触将害虫杀死或驱除,从而减少或消除它们对植物的危害。从处理过的叶或茎部位通过植物转移的这些步骤期间,化合物可能经受化学反应,例如水解,或生物反应,如酶作用。此外,当化合物浇到植物上时,在吸收进入植物之前,它可能经受化学反应使其可迅速被吸收、可移位,并可有效防止害虫危害。这些化合物的实例是那些具有UV——不稳定保护基团的化合物,当其曝露在自然光中它经受化学反应并产生活性和可移动的化合物。另一实例是甲硅烷基化的胺衍生物。

因此施用在植物叶和梗上的可能不是实际上被转移的化合物或者 实际上控制害虫的化合物。因此,本发明方法保证化合物可通过化学 或生物反应转化成具有内吸收活性所需的合适极性。

本发明方法包括对植物部位,最好是对叶子施用3,4,4-三氟-3-丁烯-1-胺或其盐。还包括含有3,4,4-三氟-3-丁烯-1-胺或其盐以及农业上可接受载体的组合物。

上述方法中,为了控制线虫,优选的是n是l且X、Y和Z都是F; 更好的是Q₁为CH₂NH₃W, 即: 3, 4, 4—三氟—3—丁烯—1—胺的盐。当Q₁是CH₂NHR₆时,R₆优选的是,由肽(酰胺) 键连接的 α —氨基酸; 更好的是蛋白质氨基酸。当Q₁是(C=0) — R₁₁ 时,R₁₁ 优选的是羟基,因而化合物是3, 4, 4—三氟—3—丁烯酸或其盐,包括与3, 4, 4—三氟—3—丁烯一1—胺形成的盐,即3, 4, 4—三氟—3—丁烯—1—胺3, 4, 4—三氟—3—丁烯酸盐。

W⁻可以是任何农业上可接受的阴离子。它包括(但并不限于) 氯离子, 碘离子, 溴离子, 草酸根, 硫酸根, 磷酸根, 柠檬酸根、乙酸根, 或氟代链烯烃羧酸根, 例如F₂C=CFCH₂C00。

除以上具体叙述的化合物外,本发明化合物的所有农业上可接受的盐均包括在本发明的范围之内。例如,具有游离胺基的本发明化合物还可以以具有与其结合的各种阴离子的质子化形式存在,例如(但不限于):盐酸盐,氢溴酸盐,磷酸盐,草酸盐,硫酸盐,柠檬酸盐和乙酸盐。此外,氟代链烯烃羧酸盐离子,如 F_2 C=CFCH $_2$ C00⁻,可能是抗衡离子。具有羧酸或羟基的本发明化合物可以以具有与其结合的各种阳离子的盐类存在,例如(但不限于):碱土金属盐(如钠、钙和钾盐);镁盐;或季铵离子,如铵,一、二或三烷基胺(例如异丙基铵,或吡啶嗡)。此外,氟代链烯基铵离子,如 F_2 C=CFCH $_2$ CH $_2$ NH $_3$ </sub>可以是阳离子。所有这些化合物以及具有类似特征的其它物质,都是农业上可接受的,都被本发明所包括。

本文中使用的术语"卤素"或"卤化物"是指氟、氯、碘或溴,或其同类物。

术语"烷基"是指1至约1个碳原子的直链或支链基团。术语"低级烷基"是指含有1至约4个碳原子的烷基。术语"脂族"是指饱和的或不饱和的、支链或直链的、具有1至10个碳原子的烷基。

术语"脂族胺"是指其中至少一个氢用-NH2置换的脂族基。术语"脂族羧酸及其酯、硫羟酸酯和酰胺"是指脂族基,其中至少一个碳是羧基(-COOH)、或是其低烷基酯、低烷基硫羟酸酯或酰胺。

术语"芳基"或"芳香基"是指苯基,它可被至少一个选自羟基、烷氧基、卤素、硝基、氨基、巯基、烷硫基、羧基、烷氧基羰基和苯基的基团取代。普通的专业人员很清楚:芳基也包括杂环,例如噻二唑、吡啶,噻唑,异噻唑,噁唑,吡唑,三唑,苯并噻唑、噻吩、呋喃等基团,所有这些基团也可被取代。

本文中所用的短语"Q(或Q1)的氨基酸酰胺"是指R6是通过肽(酰胺)键与 CH_2 NHR6的N原子偶联的氨基酸。该氨基酸可为天然的,即蛋白质氨基酸或非天然产生的氨基酸。基团中氨基酸的氨基可以是任何碳原子上的取代基,例如羰基的 α , β ,或 γ 位。

术语"烷基或芳基肼"是指用低烷基或苯基取代的肼,所述基团本身又可被取代。术语"烷基或芳基氨磺酰基"是指用烷基或苯基取代的氨磺酰基,而所述烷基和苯基本身又可被取代。

化合物合成

其中X、Y和Z是F且Q是-CH₂N-衍生物的上式化合物一般制备方法是:首先获得希望的三氟代链烯基胺,当n=1时它是3,4,4—三氟—3—丁烯—1—胺。美国专利4,952,580的实施例6公开了制备这种化合物的一种方法,作为参考文献全文并入本文。本发明提供制备这种化合物的改进的新方法。意想不到的是,市场上可买到的4—溴—1,1,2—三氟—1—丁烯通过首先将它与甲苯磺酸盐(例如甲苯磺酸银)、甲磺酰盐或其它磺酸离去基团反应可直接转化。所得中间体,例如3

长链烯基胺类可通过几种方法制备。例如,当生产本发明之化合物(其中n等于3),可用已知的方法将环氧乙烷与4-氟-1,1,2-三氟-1-丁烯反应得到6-羟基-1,1,2-三氟-1-已烯。然后如以上有关丁烯的叙述可使用甲苯磺酰氯和邻苯二甲酰亚胺使该化合物转化成胺。另一种方法是:1,1,2-三氯-1,2,2-三氟乙烷(F113)可在氧化还原条件下与末端链烯烃或炔溴代化合物反应,参见Tetrahedron Letters,31,pp1307-1308,1990中所述。反应产物随后用Zn脱氯得到三氟代链烯烃溴化物,如以上有关丁烯的叙述,它能转化成希望的胺。第三种方法于下述合成实施例40中说明。

二氟代链烯基胺,根据氟的位置可用两种不同的方法制备。为了生产末端二氟代化合物,如4,4-二氟-3-丁烯-1-胺盐酸盐,可采用以下路线:

其它的二氟代化合物,即其中X和Y中的一个是H而Z是F,可用以下路线制备:

其中m是2, 4, 6, 8, 10或12。LAH是氢化锂铝。E和Z形式可通过蒸馏 从该还原反应获得的产物混合物中分离。

同样,本发明的一氟代化合物,根据氟是处于末端或是中间可用两种不同的方法制备,如下述反应路线所示:

$$\frac{\text{CFC1}_{3}}{(n-\text{Bu})_{3}^{2}} \stackrel{\text{O}}{=} \text{CHCHO} \qquad \frac{\text{NdOM} \bullet}{\text{EiOH}} \stackrel{\text{Nch}_{2}\text{CH}_{2}\text{CHO}}{= \text{CHF}} \stackrel{\text{H}_{2}\text{NNH}_{2}}{= \text{EiOH/HCI}} = \text{CHCH}_{2}\text{CH}_{2}\text{NH}_{3}\text{CI}^{-}$$

为生产氣处于中间的一氣代化合物, 可使用以下反应路线:

此外,许多Q是CH₂NHR₆的本发明其它化合物,用专业人员已知的常用方法将选择的反应物与适宜的氟代链烯烃胺反应很易制得。例如,为制备酰胺衍生物,其中R₆是-(C=0)-衍生物,用常规技术将适宜的酸与选择的氟化链烯基胺反应。酸可以是酰卤或酸酐的形式以便与胺最有效地反应。例如,当R₆是(C=0)-CF₃时,例如三氟乙酸酐。当希望琥珀酰胺酸衍生物时,可使用琥珀酸酐;当希望草酸衍生物时,可使用草酰氯。

当R₆是通肽(酰胺)键与CH₂NHR 中的氮原子连接的α - 氨基酸,即当R₆与氮原子结合形成α - 氨基酸酰胺时,可使用典型的肽或酰胺偶合剂(如羰基二咪唑或DCC),以完成肽(酰胺)键合。对于取代的酸基,任何可以影响和受肽(酰胺)键合影响的官能团都必须被保护。例如,胺官能团应被ι-BOC基保护。酸类和醇类可分别作为苄基或叔丁基酯或 避被保护。随后用已知方法去保护,得到希望的化合

物。

当R₆是脂族羧酸时,有两种合成路线。希望的氟代链烯基胺可与适宜的亲电试剂(如卤代烷基羧酸酯)反应。生成的酯可被利用或者被水解成游离酸,然后用已知方法将该酸衍生成其盐、酰胺和硫羟酸酯。另一种方法是,可将溴氟代链烯烃与适宜的氨基酸反应。

当R₆是低级脂族基时,将选择的氟代链烯基胺与适宜的亲电试剂 (例如卤代烷如碘甲烷)反应。胺最好比烷过量存在以使胺的进一步取代减为最少。

当R₆是C₁-C₁₂ 烷基胺时,代替胺,一般是用该溴化物或甲苯磺酸盐作为原料,并与过量的希望的烷基二胺反应,所述二胺中有一个胺基被保护。然后用已知方法脱保护,生成希望的产物。

当与Q或Q,基团CH,NHR。的氮原子结合的R。是胍基时,将选择的上述的氟代链烯基胺盐与氨基氰反应。

当与Q和Q,基团CH₂NHR₆中氮原子结合的R₆是可被取代的烷基或芳基氨磺酰基时,将选择的氟代链烯基胺与适宜的磺酰氯(例如甲苯磺酰氯)反应。

当与Q或Q基CH₂NHR₆中氮原子结合的 R₆是脲基、氨基甲酸酯基、硫代氨基甲酸酯基,脲氨基或肼基时,选择的氟代链烯基胺首先被转化成异氰酸酯,即此时Q是 CH₂N=C=O。这种异氰酸酯制备是按以下反应式,将胺与二苯氨基甲酰氯反应,随后通过高温得到异氰酸酯:

$$F_2C = CFCH_2CH_2N = C = 0 + HN(Ph)_2$$

由异氰酸酯可通过下述反应制得其它化合物:与氨或胺反应生产 源;与醇反应生产氨基甲酸酯;与硫醇反应生产硫代氨基甲酸酯;或与肼反应生产氨基脲。最后一种情况下,肼必须被保护,例如用t-B0 C基保护,随后脱保护得到氨基脲。

其中Q是 $CH_2N=CH-R_2$ 的化合物也可由适宜的氯代链烯基胺('例如 3, 4, 4— 三氟—3— 丁烯—1— 胺) 制得。使用已知方法,将其与适宜的芳族醛反应,优选的是苯甲醛例如对—(N, N— 二甲基氨基)— 苯甲醛或2— 羟基—5— 硝基苯甲醛。

其中Q是 $CH_2N^{\dagger}R_3R_4R_5W$ "的化合物有时可由氟代链烯基胺(例如3,4,4—三氟—3—丁烯—1—胺)制备。用已知方法,例如用过量的卤代烷(如碘甲烷)使胺基季胺化。由此可生产化合物3,4,4—三氟—3—丁烯基三甲基铵碘化物。

至于其中Q是 $CH_2N^+R_3R_4R_5W$ "的其它化合物,可采用氟代链烯基溴化物。例如,当 R_3 、 R_4 和 R_5 与氮结合形成一环状季铵基时,将适宜的环状胺(例如六亚甲基四胺)与氟代链烯基溴化物作用生成希望的季铵化合物。当 R_3 、 R_4 和 R_5 中的一个是羟基时,化合物的制备是通过氟代链烯基溴化物与过量的0一三甲基甲硅烷一羟基胺反应得到0一三甲基甲硅烷保护的氟代链烯基羟基胺,然后用甲醇水解,随之用酸处理,得所希望的羟基胺盐。

其中Q是CH₂NO₂的化合物可以从氟代链烯基溴化物和亚硝酸银用 P知方法制备。

作为三氟代链烯烃羧酸和衍生物即Q是(C=0) $-R_{11}$ (且X、Y和 Z都是F)的本发明化合物,类似于美国专利号4,950,666公开的某些化合物,它们不能用相同的Wittig反应步骤制备。它们是用完全不

同的方法制备,是通过一个酯中间体将4- 溴-1,1,2- 三氟-1-丁烯转化成醇。例如,用苯乙酸制备三氟代丁烯的苯乙酸酯,然后水 解成三氟丁烯醇,再氧化成酸,用反应式表示如下:

$$BrCH_2CH_2CF=CF_2$$
 + $Ph-CH_2COOH$ DBU Ph-CH₂C-O-CH₂CH₂CF-CF₂ 水質条件 F₂C=CFCH₂CH₂OH

其中123,5等的长链酸可以用同样方法由上述制得的长链卤化物制备。这些酸的衍生物(例如盐、酯、酰胺等)很容易用专业人员已知的方法制得。

以下具体合成实施例详细介绍这些反应,这些实施例是用于说明而不是以任何方式限制本发明。

合成实施例 1

- 3, 4, 4- 三氟-3- 丁烯-1- 胺及其盐的制备
- (a) 室温搅拌下,向25g(0.0896mol) 甲苯磺酸银的乙腈(100ml)溶液中缓慢添加13.2g(0.07mol)4-溴-1,1,2-三氟-1-丁烯。反应混合物,避免光照,然后回流下加热并搅拌过夜。冷却后,滤除沉淀,滤液在真空下除去溶剂。将100ml乙酸乙酯添加到残余物中,用水洗涤三次并经硫酸镁干燥。向该甲苯磺酸3,4,4-三氟-3-丁烯酯的乙酸乙酯溶液中添加25ml DMF和16.7g(0.09mol)邻苯二

甲酰亚胺钾盐。回流下将该反应混合物搅拌24小时。冷却后,滤出沉淀并用乙酸乙酯洗,合并滤液,用水洗一次,用5% NaOH溶液洗一次,然后用水洗三次,最后经硫酸镁干燥,真空下除去溶剂,获得14.45gN-(3,4,4-三氟-3-丁烯基)邻苯二甲酰亚胺褐色固体。

- (b) 将13.91g(0.054mol)步骤2产物溶于100ml乙醇中,添加1.76g(0.054mol)无水肼。然后在回流下将反应混合物搅拌3小时。缓慢通过回流冷凝器添加浓盐酸40ml,回流下搅拌混合物2个多小时。冷却后,反应混合物用水稀释、滤去沉淀并用另外的水洗涤,合并滤液。合并的滤液用乙醚洗涤且醚层抛弃。水层在冰浴中冷却,然后添加50%Na0H液直至溶液呈碱性。水层用氯仿提取两次,合并氯仿提取液,它含有希望的胺,经硫酸镁干燥。
- (c) 为了析出希望的胺的盐酸盐,将过量的HCl 气体通入步骤b 的氯仿溶液中。搅拌15分钟之后,真空下除去氯仿,获得7.4g 3,4, 4—三氟—3—丁烯—1—胺盐酸盐,白色固体。m.p.191—193℃。这 是用于下述生物试验的化合物1。
- (d)上述胺的其它盐可用类似方法制备或用本技术领域中公知的方法用上述的盐酸盐来制备。例如,可中和盐酸盐生成游离胺。然后将该游离胺添加到各种酸的甲醇溶液中得到希望的盐。

合成实施例2

- N-(3,4,4-三氟-3-丁烯基) 甘氨酸盐酸盐(化合物9) 的制备
- (a) 将34.4g(0.34mol) 三乙胺添加到55g(0.34mol) 如上制得的化合物1的四氢呋喃(THF600ml) 浆料中。然后在室温下滴加16.1g(0.105mol) 溴代乙酸甲酯,反应混合物在室温下搅拌4小时。滤出沉淀,滤液在真空下除去溶剂。将乙醚添加到残余物中,并将它搅拌20分钟。滤出另外的沉淀,并将过量的无水 HCl 气体通入乙醚滤

液中。滤出生成的沉淀,用乙醚洗涤并在真空下干燥,获得23.4g N-(3,4,4-三氟-3-丁烯基)甘氨酸甲酯盐酸盐(即化合物8),白色固体,产率96%。

(b) 19 g(0.081 mo1) 化合物8 在90 ml 的6 N HCl 中回流过夜。真空除去溶剂后,残余物在乙醚中搅拌2小时。滤出沉淀,用乙醚洗涤并真空干燥,获得16.25 g标题化合物,白色固体,产率92%,m.p.: 186-8 ℃。

合成实施例3

N-(3,4,4-三氟-3-丁烯基) 缬氨酸盐酸盐(化合物10)的制备

- (a) 通氮下将7.39 ml(0.053 mol) 三乙胺加入8.88 g(0.053 mmol) DL- 缬氨酸甲酯盐酸盐的DMF(75 ml) 溶液中。将4 g(0.021 mol) 4- 溴-1,1,2- 三氟-1- 丁烯滴加到上述得到的浆液中并搅拌反应7天。真空除去溶剂。将乙醚添加到残余物中并滤出沉啶,滤液用真空除去乙醚。用HPLC(7%乙酸乙酯/已烷) 层析残余物,分离到0.33 g希望的胺,将其溶于乙醚中并用过量HCl气体处理。滤出生成的沉淀并干燥,获得0.29 g N-(3,4,4- 三氟-3- 丁烯基) 缬氨酸甲酯盐酸盐,化合物49。
- (b) 将0.47g(0.0017mol) 化合物49在10ml的6N HCl 中回流过夜。反应混合物冷却,真空下除去溶剂。残余物在乙醚中搅拌,滤出产品,获得0.43g标题化合物,白色固体、产率98%。

合成实施例4

N, N'-双(3,4,4-三氟-3-丁烯基) 乙二酰胺(化合物21)的合成

将0.79g(0.0062mol) 草酰氯缓慢添加到4g(0.0248mol) 化合物1和3.72g(0.037mol) 三乙胺的THF(30ml) 溶液中。室温下搅拌

过夜。滤出沉淀,滤液真空除去溶剂。残余物在水中成浆达1小时,滤出沉淀,水洗并干燥。粗品用乙酸乙酯重结晶,获得0.46g标题化合物,褐色固体,产率24%, m.p. 139-141℃。

合成实施例5

4-氧-4-[(3,4,4-三氟-3-丁烯基) 氨基] 丁烯酸(化 合物22) 的合成

将0.8g(0.005mol) 化合物1与(0.005mol) 玻珀酸酐的THF(30ml) 溶液混合。搅拌下向该混合物中添加0.015mol) 三乙胺。室温下搅拌混合物48小时。蒸发掉溶剂,残余物溶于水中并用浓 HCl 酸化。希望的产品被滤出并用乙酸乙酯和环己烷的混合物重结晶,获得0.7g标题化合物,针状结晶。m.p. 64-66℃。

合成实施例6

4- 硝基-2-[[(3,4,4-三氟-3-丁烯基) 亚氨基] 甲基] 苯酚(化合物23)的合成

向0.005mol 5-硝基水杨醛的乙醇(20ml)溶液中添加0.005mol Na OH的10%水溶液。向上述料液中添加0.005mol 化合物1的乙醇(20ml)溶液。室温下搅拌3小时,然后在50℃下搅拌5小时。反应混合物发热时添加少许水。一经冷却即成结晶,获得0.6g标题化合物,黄色针状结晶,m.p. 96-8℃。

合成实施例7

N-(3,4,4-三氟-3-丁烯基) 六亚甲基溴化物(化合物 26)的合成

将10g(0.053mol)4-溴-1,1,2-三氟-1-丁烯,3.7g (0.026mol) 六亚甲基四胺和27ml 氯仿在加热回流6.5小时。从热反应混合物中滤出沉淀并用50ml 热氯仿洗涤。真空干燥产品,获得1.1g 标题化合物,白色固体,产率13%。

合成实施例8

], 4, 4- 三氟-N- 羟基-]- 丁烯-!- 胺盐酸盐(化合物27) 的合成

在充氮气的火焰干燥过的压力管中,将1.5g(0.021mol)3,4,4—三氟—3—丁烯甲苯磺酸酯添加到15g 0-TMS羟基胺中。管子封盖,反应混合物在15℃下搅拌过夜。滗出沉淀上的清液后,将该液体蒸馏,收集在1mmHg,29℃下沸腾的产品,获得0.8g 0-TMS保护的标题化合物。该化合物在5ml 甲醇中搅拌过夜、然后将过量HCl 气体通入反应混合物中。真空下除去溶剂并干燥产品,获得0.6g标题化合物,为黄色粘性油状物。

合成实施例9

2-(3,4,4-三氟-3-丁烯基) 酰肼苯甲酸(化合物28)的合成

将7g(0.037mol) 4- 溴-1, 1, 2- 三氟-1- 丁烯添加到20g (0.147mol) 苯甲酰肼和3.7g(0.037mol) 三乙胺的DMF(60ml) 溶液中,室温下搅拌混合物2 天。滤出固体,滤液在真空下除去溶剂。向残余物中添加乙醚并搅拌1小时。滤除沉淀。真空下除去滤液中的乙醚。残余物经HPLC(40%乙酸乙酯/已烷)层析、获得1.35g标题化合物,浅黄色固体,产率15%, m.p. 74-6 \mathbb{C} 。

合成实施例10

N-(3,4,4-三氟-3-丁烯基) 肼盐酸盐(化合物29)的合成

将1g(0.0041mol) 实施例9制备的化合物28在10ml 6N HCl中回流过夜。冷却后,形成副产品沉淀。水层用乙醚洗四次。真空下除去水,获得0.6g标题化合物,为褐色粘胶状固体,产率83%。

合成实施例[]

N-(3,4,4-三氟-3-丁烯基) 胍盐酸盐(化合物30)的合成

将3g(0.0186mol) 化合物1和0.78g(0.0186mol) 氨基氰在25ml 无水乙醇中回流4天。真空下除去溶剂,真空干燥残余物,获得3.66g 标题化合物,为琥珀色粘性油状物,产率97%。

合成实施例12

3, 4, 4-三氟-3-丁烯硝酸酯(化合物31)的合成

将2.6g(0.14mol)4-溴-1,1,2-三氟-1-丁烯滴加到4g(0.026mol)硝酸银的CH₃CN(30ml)溶液中。该料液在室温下暗处搅拌过夜。滤出沉淀并真空下去除溶剂。残余物中添加水并将产品提取到乙醚中。乙醚用水洗三次,经硫酸镁干燥,并真空下除乙醚,获得250mg粗品,经蒸馏得到标题化合物。

0.85torr时b.p. 25-28℃。

合成实施例13

N-(3,4,4-三氟-3-丁烯基) 脲(化合物32)的合成

将 1.5g(0.0124mol) TMS 异氰酸酯添加到2g(0.0124mol) 化合物1和2.5g(0.024mol) 三乙胺和THF(14ml) 溶液中去。混合物在室温下搅拌过夜,然后在10℃搅拌 2小时。冷却后,滤去沉淀并真空下,除去溶剂。生成的固体在乙醚中成浆。从不溶的物料中滗出乙醚并真空除去乙醚。残余物中添加甲醇,室温下搅拌过夜,然后真空除去甲醇。残留物在乙醚/石油乙醚(1:1) 中成浆;滤出固体并真空干燥,获得0.6g标题化合物,白色固体,产率30%。m.p.86-88℃。

合成实施例14

N-(对-三氟甲基苯磺酰基)-3,4,4-三氟-3-丁烯-1-胺(化合物33)的合成

将化合物1(0.01mol)与100ml二氟甲烷混合并添加到对一三氟

甲基苯磺酰氯(0.01mol)的二氯甲烷(20ml)溶液中。混合物冷却并搅拌,并添加0.023mol三乙胺。室温下搅拌4小时后,添加100ml水并将两层分离。二氟甲烷层用NaHCO3水溶液洗涤并经硫酸镁干燥。溶剂被蒸发,白色残余物用乙酸乙酯和环已烷重结晶,获得2.6g标题化合物,白色结晶,m.p.68-70℃。

合成实施例15

- 2- 氨基- N-(3, 4, 4- 三氟-2- 丁烯基) 丙酰胺盐酸盐(化合物35)的合成
- (a) 向3.8g(0.02mol) N-t-BOC-L- 氨基丙酸的无水THF(40ml) 溶液中添加3.2g(0.02mol) 羰基二咪唑,同时有气体逸出。1小时后,添加3.6g实施例1制得的3,4,4—三氟—3—丁烯—1—胺,反应混合物在室温下搅拌过夜。真空下除去溶剂。向残余物中添加水并将反应产物提取到乙醚中。乙醚用水洗三次,经硫酸镁干燥,并在真空下除去,获得4.31g t-BOC保护的标题化合物(化合物34)的类似物,白色固体,产率73%,m.p. 78-9℃。
- (b) 将1.5g(0.0051mo1) 化合物34溶解在乙醚中,并将过量盐酸气体通过其中。室温下反应物搅拌5小时。生成的白色沉淀过滤,用乙醚洗涤,真空干燥,获得1.1g标题化合物,白色固体、产率为98%, m.p. 164-6℃。

合成实施例16

- 3, 4, 4- 三氟-3- 丁烯酸(化合物44) 及其盐的合成
- (a) 将98g(0.52mol) 4- 溴-1, 1, 2- 三氟-1- 丁烯缓慢添加到50g(0.37mol) 苯乙酸和55.9g(0.37mol) 1, 8- 二氮杂双环[5.4.0] 十一碳-7- 烯(DBU) 的CH₃CN(400ml) 溶液中。该试料在回流下搅拌2天。冷却后,真空下除去溶剂。残余物中加水并将产物提取到乙醚中。该乙醚用5%NaOH液洗两次,再用水洗两次,

经硫酸镁干燥并真空下去除,获得40.87g苯乙酸三氟代丁烯基酯。将7.2g(0.18mol) NaOH溶解在70ml水中,加入上述的酯。并在室温下急剧搅拌过夜。向反应混合物中添加乙醚以提取产品。分离出来的乙醚层经硫酸镁干燥并蒸馏。收集产品,获得15.78g 4-羟基-1,1,2-三氟-1-丁烯,透明液体,在760mmHg 时b.p. 120℃。

- (b)向84.27g(0.843mmHg)三氧化铬的乙酸(500ml)和水(75ml)溶液中,滴加26.43g(0.21mol)(a)步骤中制备的醇,温度保持低于10℃。完成添加后,将反应混合物在5℃搅拌2小时然后在室温下搅拌。然后混合物用1升水稀释并用乙醚提取两次。合并的乙醚层用水洗三次,经硫酸镁干燥并在真空下除去溶剂。残余物在1mmHg短路蒸馏并收集在约55℃沸腾的馏分。将该馏出物溶解在乙醚中,然后用饱和的NaHCO3提取两次。合并NaHCO3层用乙醚洗三次后用浓HC1酸化。然后产品被提取进入乙醚中。该乙醚用水洗三次,经硫酸镁干燥并真空下除去,获得8.22g标题化合物,为透明液体。
- (c) 用已知方法可以制得化合物44, 而且随后可中和成农业上可接受的任何盐。这种盐包括三氟代丁烯基胺的盐, 例如按实施例1制备的3, 4, 4— 三氟—3—丁烯—1—胺的盐。

合成实施例17

3, 4, 4-三氟-3-丁烯基-1-酰胺(化合物45)的合成将 1.15g(0.0071mol)羰基二咪唑添加到1g(0.0071mol)按实施例16制备的化合物44(溶于20ml无水THF中)中。搅拌20分钟后,将过量无水NH3气体通入反应混合物,混合物在室温下搅拌过夜,然后真空下除去溶剂。残余物中添加乙酸乙酯并用10%HCl溶液提取两次,经硫酸镁干燥,并在真空下去除溶剂。粗品被升华(在1mmHg,59-55℃),获得0.39g标题化合物,白色固体。

合成实施例18

2, 2, 2-三氟-N-(3, 4, 4-三氟-3-丁烯基) 乙酰胺(化合物50) 的合成

将 1.7g(0.008 mol) 三氟代乙酸酐缓慢添加到1.07g(0.0060 mol)化合物1和0.67g(0.0066 mol) 三乙胺的THF(10 ml)溶液中,混合物于室温下搅拌过夜。滤出固体并真空下去除溶剂。残余物中添加水,产品被提取入乙醚中。将0.5 ml三乙胺添加到该乙醚中,乙醚用水洗四次,经硫酸镁干燥,并真空下去除溶剂。从残余物中蒸馏出产品,获得0.5g标题化合物,清彻液体,产率35%。

合成实施例19

- 1, 1, 2- 三氟-4- 异氰酸根合-1- 丁烯(化合物72) 的合成
- (a) 将无水吡啶和0.033mol的化合物!混合并冷却到0℃。添加0.022mol 二苯氨基甲酰氯,反应混合物于室温氮气氛中搅拌过夜。将反应物添加到冰中,滤出沉淀并用水洗涤。将该沉淀溶解在乙醚/乙酸乙酯溶液中,经硫酸镁干燥,并浓缩。得到的沉淀用热乙酸乙酯/已烷重结晶,获得4.57g N, N- 二苯基-N'-(3,4,4-三氟-3-丁烯基) 脲,产率65%,m.p. 116-117℃。
- (b) 在氮气氛中将0.016 mol 由(a) 步骤制得的脲加热直到不再有热分解蒸汽生成。经蒸馏即收得标题化合物1.67g透明油。

合成实施例20

4- 甲基- N-[[(3,4,4- 三氟-3- 丁烯基) 氨基]- 羰基] 苯磺酰胺(化合物75)的合成

室温下搅拌0.01mo1化合物1的THF(40ml)溶液,同时添加0.01mo1的对甲苯磺酰异氰酸酯。冷却下添加0.01mo1的三乙胺。混合物于室温搅拌48小时,并真空去除溶剂。将残余物溶于二氯甲烷并用50ml水洗三次。溶剂用硫酸镁干燥并蒸发掉。残余物用乙醇重结晶,获得1.12标题化合物,白色结晶。m.p. 134-136℃。

合成实施例21

- 4- 氨基-1, 1, 二氟-1- 丁烯盐酸盐(化合物46)
- (a) 将100g(0.68mol) 苯邻二甲酰亚胺的乙醇(250ml) 溶液和0.08g的甲醇钠加热至48℃,并滴加50.8g(0.91mol) 丙烯醛的乙醇(40ml) 溶液。将混合物搅拌过夜并真空除去乙醇。产品用二氯甲烷重结晶并真空干燥,获得150g白色结晶。
- (b) 将51.63g 三苯膦熔融并溶解在100ml 无水二甲基乙酰胺中。 将该溶液冷却至-5℃并滴加41.34g(0.197mol) 二溴二氟代甲烷。 添加20.0g(0.0984) 步骤(a) 的产品(溶解在70ml 二氯甲烷中), 随后添加12.88g Zn 催化剂。将该混合物搅拌2小时再过滤。用200ml 二氯甲烷和200ml 水将滤液分离。有机层用水洗两次并用100ml 的5% 氢氧化钠溶液,100ml 的10% HCl 溶液和200ml 水提取。真空下除去溶 剂,获得N-(4,4-二氟-3-丁烯基) 苯邻二甲酰亚胺。
- (c) 将51.0g(0.215mol)步骤(b) 的产品和250ml 乙醇和24.11g 肼混合。搅拌和加热回流45分钟后,向混合物中添加71.38g HCl和70ml水。回流继续30分钟。真空除去溶剂并让混合物在300ml水和200ml二氯甲烷中分配。用50%氢氧化钠水溶液将水层的pH调至12,用200ml二氯甲烷提取两次。合并二氯甲烷溶液并添加到100ml的6NHCl中且真空去除溶剂。将粗制胺盐添加到30g 固体氢氧化钠中并蒸馏出游离胺。将胺添加到50ml 6NHCl中并真空除水,获得13.31g 标题化合物(化合物46),白色结晶。

可用化合物46制备上述实施例制得的三氟代丁烯胺的二氟代类似物,例如N-(4,4-二氟-3-丁烯基)甘氨酸盐酸盐(化合物16)。合成实施例22

- 5, 6, 6-三氟-5-已烯酸(化合物104)的合成
- (a) 向充氮的!升烧瓶中添加5.5g(0.226mol) Mg 屑和250

□ 无水乙醚。滴加40g(0.212mol)4-溴-1,1,2-三氟-丁烯直至发生剧烈回流。然后残余物在能保持缓慢进行回流的速滴加。完成添加后,反应物搅拌30多分钟。然后反应物用干冰/丙酮冷却至-30℃至-50℃之间。添加4.04g CuI,随后添加8.5ml(0.017mol)冷凝的环氧乙烷。将该物料保持在-30℃至-10℃达20分钟、然后升温至室温。开始回流,并将反应物置于冰浴中冷却,然后于室温下放置3天。缓慢添加200ml的10%HCl,随后添加35ml浓HCl。搅拌2小时后,滤出沉淀。分离的醚层用水洗一次,用饱和NaHCO3洗一次,再用水洗一次,经MgSO4干燥并真空去除溶剂。残余物蒸馏2次。收集约2mmHg下58-59℃沸腾的馏分4.8g。

(b) 将15 ml Jones 试剂(Fieser and Fieser Vol. 1, Pg, 142) 滴加到3 g(0.019 mol) 步骤(a) 制备的化合物的丙酮(48 ml) 溶液中,添加期间用冰浴保持在约20 C。添加完成后,反应物于室温搅拌半个多小时。将反应混合物通过硅胶柱使铬酸盐分离出。用丙酮洗涤后,真空下除去丙酮。残余物用水稀释并将产品提取进入乙醚。该乙醚用水洗3 次,经Mg S 0 4 干燥并真空去除溶剂。将粗品溶解在乙醚中,提取入饱和的Na HCO3 中。Na HCO3 层用乙醚洗涤,然后用浓HCl 酸化。希望的产品被提取入乙醚中。乙醚用水洗一次、经Ng S 0 4 干燥并真空除去乙醚,获得1 8 产品,为透明液体。

合成实施例23

3, 4, 4-三氟-N-羟基-3-丁烯酰胺(化合物105)的合成向1g(0.0071mol)化合物44的无水THF(10ml)溶液中添加1.16g(0.0071mol)羰基二咪唑。20分钟后向反应混合物中添加0.75g(0.0071mol)0-TMS羟胺(Aldrich)。将此混合物于室温下搅拌2天。然后真空下除去溶剂。将残余物溶于乙酸乙酯中并用最少量的10%HCl溶液洗2次。乙酸乙酯经MgSO4干燥并真空除去溶剂。然后将残余物

在甲醇中搅拌2小时。真空除去甲醇。使残余物升华(在1-2mmHg,约80℃时)。升华固体在乙醚/石油 醚中搅拌3次,(每次滗出溶剂);然后用30%乙酸乙酯/已烷重结晶,获得100mg产品,白色固体。m.p. 99-100℃。

合成实施例24

3, 4, 4-三氟-3-丁烯酸 (2, 2-二甲基-1, 3-二氧戊-4-基) 甲酯, (化合物106)的制备

将1.16g(0.0071mol) 羰基二咪唑添加到1g(0.0071mol) 化合物44的无水THF(10ml) 溶液中。20分钟后,添加0.94g(0.0071mol) Solketal 并在室温下搅拌反应物3天。真空除去溶剂;残余物溶解在石油 一醚中。石油 醚用水洗4次。经MgSO4干燥并真空去除,获得0.44g产品,透明液体。

合成实施例25

4-[(3,4,4-三氟-3-丁烯基) 氨基]-苯甲酸甲酯, (化合物107)的制备

将 4.1g(0.027mol) 氨基苯甲酸甲酯和2g(0.00714mol) 甲苯磺酸3,4,4-三氟-3-丁烯酯在130℃加热4小时。将生成的产物溶于(冷却之后) 乙酸乙酯。滤出沉淀,乙酸乙酯用水洗一次,经Mg S O4 干燥并真空去除溶剂。粗品用HPLC(15%乙酸乙酯/已烷) 层析,获得1.48g产品,透明液体转化成白色固体。m.p. 47-49℃。

合成实施例26

4-[(3,4,4-三氟-3-丁烯基) 氨基]-苯甲酸,(化合物109)的合成

将1g(0.00386mol) 化合物107和0.15g(0.00386mol) NaOH的水(10ml) 和乙醇(10ml) 溶液于室温下搅拌过夜。真空下除去溶剂。向残余物中添加水并用乙醚洗一次。然后水层用浓 HCl 酸化。滤出沉

淀,水洗并干燥,获得0.33g希望的产品,白色固体。m.p. 149-151℃。

合成实施例27

2-[(3, 4, 4-三氟-3-丁烯基) 氨基— 乙酰胺单盐酸盐 (化合物108) 的合成

将 3.9g(0.028 mol) 溴代乙酰胺缓慢添加到15g(0.093 mol) 化合物1,9.6g(0.093 mol) 三乙胺和180 ml THF中,并室温下搅拌过夜。滤除沉淀且滤液除去溶剂。残余物在乙醚/二氯甲烷中搅拌两次并每次滤出沉淀。然后将过量HCl 气体通入溶液;将生成的沉淀过滤,用乙醚洗涤并真空下干燥。将产品溶解在水中且水溶液用乙醚洗两次。真空下除水,生成的粗品用乙醇重结晶,获得2.39g产品,白色固体。m.p. 198-200℃。

合成实施例28

7, 8, 8-三氟-7-辛烯酸(化合物84) 的合成

于-25℃搅拌下15分钟内用氯化甲基镁(0.051mo1,17ml的3M THF溶液)处理 4- 溴丁酸(8.35g,0.05mo1)的无水THF(100ml)溶液。该溶液在0℃再搅拌15分钟并用四氯铜酸二锂(0.002mo1,20ml的0.1M THF溶液)处理,随后再用溴化3,4,4-三氟-3-丁烯基镁(0.0565mo1,由3,4,4-三氟-3-丁烯基溴和镁屑的THF溶液制备)处理。混合物于0℃搅拌2小时并于室温搅拌过夜。然后将溶液倒入400ml乙醚和150ml的10%硫酸水溶液中。醚层用10%NaOH(2×50ml)提取。水层用乙醚洗涤,用浓HCI酸化,并用乙醚(3×100ml)提取。将乙醚提取物干燥、浓缩,残余物经真空蒸馏,获得4.1g希望的产品,无色液体,产率42%。b.p. 125-127℃/10千。

合成实施例29

3, 4, 4- 三氟-3- 丁烯酸苯甲酯(化合物113) 的合成

将3,4,4-三氟-3-丁烯酰氯(28g,00176mol)和苯甲醇(0.9g,00083mol)的二氯甲烷(20ml)溶液在回流下加热40小时。 将该溶液冷却至室温,用二氯甲烷(15ml)稀释,依次用5%碳酸氢钠,水和盐水洗涤,并干燥。将溶液蒸发,获得1.75g分析纯的产品,浅黄色油状物,产率92%。

合成实施例30

3, 4, 4-三氟-3-丁烯酸4-硝基苯酯(化合物117)的合成于-78℃搅拌下用三乙胺(1.01g, 0.01mol)滴加处理4-硝基苯酚(1.10g, 0.0079mol)和3, 4, 4-三氟-3-丁烯酰氯(1.85g, 0.0116mol)的无水乙醚(15ml)溶液。将混合物于-78℃搅拌10分钟然后让其达到室温。反应混合物用乙醚(20ml)稀释,用15ml的2NHCl搅拌。有机层依次用水,5%碳酸氢钠、盐水洗涤,并干燥。溶剂蒸发掉后获得的暗褐色残余物通过硅胶短柱纯化,得到1.9g产品,褐色固体,产率91%。m.p. 58-62℃。

合成实施例31

3, 4, 4- 三氟-3- 丁烯酸2-(3, 4, 4- 三氟-1- 氧-3- 丁烯基) 酰肼(化合物120)的合成

于-18℃搅拌下用无水肼(0.48g,0.15mol)滴加处理3,4,4 -三氟-3-丁烯酰氯(2.4g,0.0151mol)的无水乙醚(20ml)溶液。 使混合物达到室温,将白色沉淀过滤并溶解在乙酸乙酯中。乙酸乙酯 溶液用5%碳酸氢钠洗涤并干燥。溶剂被蒸发掉,获得1.1g希望产品, 白色固体、产率47%。m.p. 191-193℃。

合成实施例32

- 3, 4, 4-三氟-3-丁烯酸硫代酸S-辛酯(化合物121)
- 3, 4, 4- 三氟-3- 丁烯酰氯(1.7g, 0.0107mol) 和1- 辛烷硫醇(0.72g, 0.0049mol) 在10℃加热12小时。粗品通过硅胶短柱纯化、

获得1.2g希望的产品,浅黄色油状物,产率91%。

合成实施例33

3, 4, 4-三氟一3-丁烯 硫代酸S-2-氨基乙酯盐酸盐(化合物127)的合成

将3,4,4-三氟-3-丁烯酰氯(2.5g,0.0158mol)和2-氨基乙基硫醇盐酸盐(1.14g,0.010mol)缓慢加热至回流15分钟。将混合物冷却至室温并用无水乙醚处理且过滤。产品用无水乙醇重结晶,获得0.8g标题化合物,灰白色固体,产率34%。m.p. 95-115℃。

合成实施例34

3, 4, 4- 三氟-3- 丁烯酸2- 氨基乙酯单盐酸盐(化合物130) 的合成

于一18 ℃搅拌下用三乙胺(1.25g, 0.0124mo1) 处理3, 4, 4 三氣-3 一 丁烯酰氯(1.97g, 0.,0124mo1) 和N一 叔丁氧羰基一 氨基乙醇(1.61g, 0.010mo1) 的无水乙醚(20m1) 溶液。该混合物搅拌30 分钟后让其达到室温,然后倒入20m1 的水中。醚层依次用水、5% 碳酸氢钠和盐水洗涤并干燥。乙醚溶液用干燥的HCI 气体饱和并于室温搅拌30 分钟。将沉淀过滤并干燥、获得1.6g 标题化合物,白色固体,产率17%。m.p. 94-100 ℃。

合成实施例35

2-[(3,4,4-三氟-3-丁烯基) 氨基]→氧乙酸甲酯(化合物142)的合成

在0℃搅拌下用甲基草酰氯(12.3g, 0.1mol 在30ml 乙醚中) 滴加处理3, 4, 4— 三氟—3— 丁烯—1— 胺(12.5g, 0.1mol) 和三乙胺(10.1g, 0.1mol) 的无水乙醚(200ml) 溶液。该混合物于室温下搅拌30分钟并用30ml 水处理。有机层依次用2N HCl, 水,5%碳酸氢钠和盐水洗涤并干燥。蒸除溶剂后获得的残余物通过蒸馏纯化,获得

16.42g希望的产品, 白色固体, 产率78%。 m.p. 33-34℃。 合成实施例36

N-(3,4,4-三氟-3-丁烯基) 乙 二酰胺(化合物143)的合成

室温下用干燥的氨气使化合物142(5.0g, 0.0237mol) 的甲醇(50ml) 溶液饱和。沉淀经过滤,用甲醇洗涤并干燥,获得3.16g标题化合物,白色固体,产率68%, m.p. 190-220℃。

合成实施例37

z-[(3,4,4-三氟-3-丁烯基) 氨基]-z-氧乙 酰肼(化合物 144)的合成。

搅拌下用肼的一水合物(1.6g, 0.032mo1) 处理化合物142 (4.22g, 0.02mo1) 的无水乙醇(50ml) 溶液。沉淀经过滤,用乙醇 洗涤并干燥,获得2.54g标题化合物,白色固体,产率60%, m.p. 145-200℃。

合成实施例38

2-[(3,4,4-三氟-3-丁烯基) 氨基]-2- 紅酸(化合物145)的合成。

合成实施例39

N- 丁基-3, 4, 4- 三氟-3- 丁烯酰胺(化合物103) 的合成于0℃搅拌下将2.5g(0.0158 mol) 3, 4, 4- 三氟-3- 丁烯酰氯添加到水(15 ml) 、二氯甲烷(15 ml) 和正丁胺(2.34g, 0.032 mol)

的混合物中。搅拌30分钟后,有机层依次用2N HC1,水,5%碳酸氢钠和盐水洗涤,并干燥。蒸除溶剂,获得2.85g标题化合物,白色固体,产率92%, m.p. 34-36℃。

合成实施例40

3-[(3,4,4-三氟-1-氧-3-丁烯基) 氨基] 苯甲酸(化合物128)的合成

于0 ℃搅拌下将2.2g(0.0139mol)3,4,4-三氟-3-丁烯酰氯添加到3-氨基苯甲酸(1.37g,0.01mol)、碳酸氢钠(0.84g,0.01mol),水(20ml)和二氯甲烷(20ml)的混合物中。室温下搅拌15分钟后,混合物用乙酸乙酯(100ml)和水(50ml)稀释。有机层用2N HCl和盐水洗涤,并干燥。溶剂蒸除后获得的残余物用无水乙醚研制并经过滤,获得1.8g标题化合物,浅红色固体,产率69%,m.p. 252-255 ℃。

合成实施例41

2, 4-二氢-4-[[3, 4, 4-三氟-3-丁烯基) 氨基] 亚甲基] -3H-吡唑-3-酮(化合物131) 的合成

将3, 4, 4-三氟-3-丁烯-1-胺(2.25g, 0.018mol) 和4, 5 -二氢-5-氧-1H-吡唑-4-甲醛(1.12g, 0.01mol) 的无水乙醇 (30ml) 在回流下加热15分钟。将溶液浓缩且残余物用乙醚/二氯甲 烷重结晶,获得1.49g标题化合物,黄色固体,产率68%, m.p. 126 -130℃。

合成实施例42

3, 4, 4- 三氟-3- 丁烯酰氯(化合物101) 的合成

于0℃向46.7g(334mmol)新蒸馏出的3,4,4-三氟-3-丁烯酸(化合物44)的含2 滴二甲基甲酰胺的二氯甲烷(100ml)溶液中5分钟内添加31ml(355mmol)草酰氯。将该混合物于0℃搅拌并使之升

温至环境温度过夜。混合物通过装有短程蒸馏头的20cm维格罗分馏柱于常压下迅速分馏。获得31.8g(产率60%)纯酰基氯的无色液体, b.p. 90-97℃(油浴温度130℃)。室温下贮存时发生缓慢分解。

其它酰基卤,例如3,4,4-三氟-3-丁烯酰溴可用化合物101 或用类似方法由化合物44制备。

如熟悉本技术领域的普通人员所知, 其它活化酸官能性, 如对称或非对称酸酐或咪唑羰基, 可用本发明的酸或酰基氯制备, 并可用于本文中所述的害虫控制方法。

合成实施例43

N-(3,4,4-三氟-1-氧-3-丁烯基)-甘氨酸1,1-二甲基乙酯(化合物90)的合成

于 0 ℃向5.6 g(66.7 mmo1) 悬浮在40 ml 水中的碳酸氢钠中添加20 ml 二氯甲烷,随后添加5.6 g(33.4 mmo1) 叔丁基甘氨酸酯盐酸盐。5 分钟内向混合物中以若干份添加5.25 g(33.2 mmo1)3,4,4—三氟—3—丁烯酰氯)(化合物101)。该混合物于0 ℃搅拌30分钟并分离成两相。水相用二氯甲烷提取,合并有机相,用乙醚稀释,并用饱和氯化钠水溶液洗涤。溶液用硫酸镁干燥并浓缩。残余物在90—95 ℃ Kugelrohr蒸馏,获得6.85 g(82%) 无色重结晶固体。m.p. 52—54 C。

合成实施例44

N-(3,4,4-三氟-1-氧-3-丁烯基)-甘氨酸(化合物91)的合成

向7.7g(30.4mmol) N-(3,4,4-三氟-1-氧-3-丁烯基) - 甘氨酸,1,1-二甲基乙酯(化合物90)中添加8则三氟乙酸。该 溶液在室温下搅拌24小时并浓缩。残余物用乙酸乙酯/乙醚重结晶, 获得1.7g无色针状物。m.p. 115-116℃。将母液浓缩并用乙酸乙酯/ 乙醚重结晶, 获得另外的物料, 总计4.4g(73%)。

合成实施例45

N-(2-氨基乙基)-3,4,4-三氟3-丁烯酰胺 盐酸盐-(化合物96)的合成

- (a) 于 0 ℃向3.5g(21.9 mmol)(2-氨基乙基)-氨基甲酸1,1-二甲基乙酯[按Krapcho, A. P. Kuell, C, S, Synthetic Communications, 1990, 20, 2559-2564介绍的方法制备]的二氯甲烷(40 ml)溶液中添加15 ml水和2.02g(24 mmol)碳酸氢钠。将该混合物搅拌5分钟并在2分钟内添加3.46g(21.9 mmol)的3,4,4-三氯-3-丁烯酰氯(化合物101)。添加期间白色沉淀形成。使混合物升温至环境温度,然后添加150 ml二氯甲烷以溶解产品。体系分离成两相,有机相用无水硫酸钠搅拌,过滤并浓缩。残余物用乙酸乙酯重结晶,获得4.25g(69%)白色固体。m.p. 123-124℃。
- (b) 环境温度下向2.45g(8.69mmol) 步骤(a) 制得的氨基甲酸酯的甲醇(15ml) 溶液中添加HCl的甲醇溶液[将0.68ml(6.5mmol) 乙酰氯添加到5ml涡流形式的甲醇中而制得]。混合物于环境温度下搅拌3小时并浓缩。残余物用2一丙醇/乙酸乙酯重结晶,获得约200mg盐,白色粉末,m.p. 138-146℃。获得第二茬纯盐酸盐,无色片状物。m.p. 145-147℃。两茬的产率共为470mg(33%)。

合成实施例46

1, 8, 8-三氟-7-辛烯-1-胺-盐酸盐(化合物59)的合成 (4) 充 N_2 气的1升4颈烧瓶中装填镁屑(15.4g, 0.635mol)和无水THF (100ml)。添加少许结晶碘并将混合物加热直至碘化物的颜色消失。以THF能缓慢再回流的速率滴加1-22-3, 4, 4-三氟-3-丁烯 (100g, 0.529mol)的无水THF(500ml)溶液。滴加完成后(约1小时),溶液在回流下加热30分钟。溶液被冷却至约30℃并用一根套管

在N, 压下送至滴液漏斗中, 将未反应的镁屑留在烧瓶中。

(b) 在3升4颈烧瓶中装填1,4-二溴丁烷(114.4g,0.530mol, 63.3ml), 四氯铜酸二锂(80ml的0.1M THF溶液,8.0mmol) 和无水 THF(250回)。将该混合物冷却至约5℃,并于5-10℃搅拌下用步骤 (a) 制得的格利雅试剂滴加处理。30分钟内完成添加过程。然后将 混合物在5-10℃下搅拌3小时并于室温过夜。反应混合物用乙醚(1 200回) 稀释, 在冰水浴中冷却并用5%硫酸(500回) 处理。醚层依次 用5%硫酸(300ml)、水(200ml),饱和NaHCO3溶液(200ml)、盐 水(200ml) 洗涤并经MgSO4干燥。溶剂被蒸发掉,残余物在真空下蒸 馏, 获得100.2g粗品, 无色油状物。35mmHg时, b.p. 85-100℃。将 该馏份溶于二甲基亚砜(DMS 0) (400 ml, 无水) 并于室温搅拌下用 Na N₃(88.4g, 1.36 mol) 处理。几分钟后形成稠白色结晶物料并另外 添加200ml DMSO, 急剧搅拌1小时。然后混合物用600ml水处理并被提 取进入乙醚(2×600ml)。乙醚提取物用水(3×300ml)、盐水 (300 ml) 洗涤并经Mg S O4 干燥。蒸除溶剂,获得77.0g 浅黄色油状物。 将该油溶入400ml DMSO并于搅拌下用三苯膦(225g, 0.858mol) 一批 性处理。反应混合物在冰水浴中冷却直到放热停止,并于室温搅拌5小 时。然后添加750回 浓氢氧化氨且混合物搅拌过夜。混合物用乙醚 (1500ml) 稀释并将沉淀物滤除。滤液经水洗且醚层用10%HCl提取。 然后水层用二氯甲烷反提取并真空下浓缩。残余物用60%甲苯/无水 乙醇处理, 并蒸发除去痕量水。残余物(10.1g) 为浅黄色固体, 产 率8.7%。

合成实施例47

5, 6, 6-三氟-5-已烯-1-胺单盐酸盐(化合物14)的合成(a)向镁屑(26.7g, 1.1mol)的无水乙醚(500ml)溶液中添

(a) 向镁屑(26.7g, 1.1mol) 的无承乙醚(30ml) 格放中型加少许碘化物结晶。将混合物加热直至乙醚缓和回流,并在搅拌下以

能使乙醚缓和回流的速率滴加4-21, 1, 2-21, 1, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 10 = 11, 11, 11, 12 = 12, 13, 13, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 18, 17, 18, 19,

(b)于-25℃搅拌下将甲磺酰氯(46.5,600mmol)的二氯甲烷(250ml)溶液滴加到步骤(a)制得的醇(17.0g,500mmol)和三乙胺(104.5ml,750mmol)的二氯甲烷(750ml)溶液中。于-20℃继续搅拌30分钟。然后用10%HCl(300ml)处理混合物,有机层用10%HCl(200ml)、随后用饱和NaHCO3(200ml)和盐水(200ml)洗涤,并经MgSO4干燥。蒸除溶剂,获得116g黄色油状物。将该油状物溶于DMSO(400ml)并在室温下与NaN3(65g,1000mmol)反应过夜。然后冷却下将三苯膦(157.4g,600mmol)添加到反应混合物中。该混合物在室温下搅拌5小时,然后加入浓氢氧化铵。该混合物于室温搅拌过夜。然后反应混合物用乙醚(1500ml)稀释并用水提取。将沉淀滤除,醚层用水洗涤并用10%HCl提取。水层用二氯甲烷反提取三次并于真空下旋转蒸发器中浓缩,获得希望的产品,浅黄色固体14.6g,产率18.1%。

使用上述的和以上实施例中说明的方法和原料制备下表化合物: 表中Exa. No表示实施例化合物号,

A11.表示元素分析;

C表示计算值;

F表示测定值.

Exa.No	名称	结构	Ana. (%)
	3, 4, 4—三氟—3—丁 第—1—胺—单盐酸盐 MP: 185.0-190.0	F 2 C=CF-(CH2)2-NH2 . HCI	C 29.74 29.78 H 4.37 4.36 CI 21.94 F 35.28 N 8.67 8.64
2	3, 4, 4-三氟-3-丁烯-1-胺-单氧溴酸盐 烯-1-胺-单氧溴酸盐 MP: 228.0-230.0	F ₂ C=CF-(CH ₂) ₂ NH ₂ • HBr	C 23.32 23.28 II 3.42 3.42 Br 38.79 F 27.67 N 6.80 6.74
•	3, 4, 4—三氟—3—丁 烯—1—胺—单氢碘酸盐 MP: 217.0-219.0	F ₂ C=CF-(CH ₂) ₂ —NH ₃ 1-	C 18.99 18.97 H 2.79 2.74 F 22.53 I 50.16 N 5.54 5.49
~	3, 4, 4—三氟—3—丁 烯—1—胺乙酸盐(1:1) MP:	F ₂ C=C+(CH ₂),	C 38.92 37.00 II 5.44 5.42 F 30.79 N 7.57 5.95

结 构 Ana. (%)	C 18.31 24.74 II 3.38 4.01 I' 21.72 I' 21.72 S 17.11 11.03	C 32.24 34.24 II 3.47 4.17 II 3.47 4.17 II 3.47 4.17 II 3.47 4.17	C 38.10 38.19 F-0-6-0 5 F.c=c-(04,),144, F 30.14 N 7.41 7.35	C 35.99 36.04 H 4.75 4.78 F ₂ C=CF·(CH ₂) ₂ —NH—CH ₂ —C-O—CH ₃ F 24.40 N . 6.00 5.97
名 務	3, 4, 4—三氟—3—丁烯—1—版, F, C=CF-((MP:	3, 4, 4—三氟—3—丁烯—1—胺, MP: 157.0-159.0	3, 4, 4—三氟—3—丁,烯 —1—胺与2—羟基—1, 2, 3—丙烷三羧酸的盐(1:3) 。-2	-N-(3, 4, 4-三氟-3-丁烯 基)-甘氨酸甲酯-单盐酸盐 F2c=cF-MP: 190.0-191.0
Exa. No	rv	80	4	∞

(%). <u>·</u>	O & & C O	37.93 36.60 4.11 4.19 4.66 22.50 5.53 5.29	38.80 38.42 5.29 5.29 14.32 23.02 5.66 5.81	35.99 35.37 4.75 4.80 15.18 24.40 6.00 5.95
Ana. (%) C. F.	C 35.99 H 4.75 Cl 15.18 F 24.40 N 6.00	C 37.93 ; II 4.11 CI 4.66 F 22.50 N 5.53	C 38.80 II 5.29 Cl 14.32 F 23.02 N 5.66	C 35.99 : H 4.75 Cl 15.18 F 24.40 N 6.00
结 构	-N+-CCOH CH3	β να+ - (Cν ₃) η - CF: CF η να - C - φ - Cγ - Cγ - Cγ - Cγ - Cγ - Cγ -	F ₂ C=CF·(CH ₂) ₂ NH(CH ₃) ₂ C-O-CH ₃	F ₂ C=CF (CH ₂) ₂ —NH—(CH ₂) ₂ —C-OH
各称	D-N-(3, 4, 4-三氟-3-丁 烯基)-丙氨酸-单盐散盐 MP: 98.0-162.0	L-N-(3, 4, 4-三氟-3-丁 烯基)-天冬氨酸与L-N-(3, 4, 4-三氟-3-丁烯基)-天冬 氨酸单盐酸盐的混合物 MP:	N- (3, 4, 4-三氟-3-丁烯基) - β-丙氨酸甲酯-单盐酸盐 MP: 172.0-175.0	N- (3, 4, 4-三氟-3-丁烯基) -β-丙氨酸-单盐酸盐 MP: 74.0- 75.0
Exa. No	81	14	15	16

	名称	4, 4-三載 C C C C C C C C C C C C C C C C C C C	4-氧-4- [(3, 4, 4-三氟 -3-丁烯基) - 気基] - 丁酸 F, C=CF·(CH ₂),NH+-C-(CH ₂),2C-OH N 6.22 6.18	4-硝基-2- [[(3, 4, 4-三氟- F2C=C-(CH2)2-N=CH 11 8.31 8.33 33-7 稀基) -亚氨基] - 年虧] - 苯酚 4.2	2, 4—二氟—6— [[(3, 4, 4—三氟
23 23 . 1 ₆	1	N, N'-双(3, 4, 4-三氟 -3-丁 烯基)-乙二酰胺 MP: 139.0-141.0	Σ	2	2,4—二類—6— [[-3—丁烯基) -亚氨

Exa. No	名 称	44 4	Ana. (%)
25	N, N-二甲基-4- [[(3, 4, 4, 4-三順 -3-丁烯基) - 亚氨基基] - 甲基] - 苯胺-单盐酸盐,MP: 162.0-164.0	CH=N-(CH ₂) ₂ -C=CF ₂ II CI CH ₃ -N-CH ₃	53.34 53.30 5.51 5.51 12.11 19.47 9.57 9.56
26	1- (3, 4, 4-三氟-3-丁烯基)-1, 3, 5, 7-四氧杂三环 [3, 3, 1, 1- (上角标3-上角标?)-]癸烷-溴化物MP: 140.0	Br	36.49 35.80 4.90 5.03 24.28 17.32 17.02 18.26
27	3, 4, 4—三氟—N—羟基—3— 丁烯—1—胺—单盐酸盐 MP:	F ₂ C=C-(CH ₂) ₂ NH-OH CI 19.97 * HC N 7.89 7.84	27.06 27.21 3.97 3.98 19.97 32.10 7.89 7.84
28	2- (3, 4, 4-三氟-3- 丁烯基) 苯甲酰肼 MP: 74.0- 76.0	C-NH-NH-(CH ₂) ₂ CF:CF ₂ II	C 54.10 54.15 H 4.54 4.56 F 23.34 N 11.47 11.48

Ana. (%) C. F.	C 27.21 26.53 11 4.57 4.52, 11 1.008 • HCI P 32.28 N 15.87 15.57	C 29.50 29.59 II 4.46 4.66 CI 17.41 • HCI F 28.00 N 20.64 20.66	C 30.98 31.86 H 2.00 2.62 F 36.75 O 2 N 9.03 8.36	C 35.72 35.82 H 4.20 4.23 F 33.90 NH ₂ N 16.66 16.65
结 构	F 2 C=CF-(CH ₂) 2 NH NH ₂ • F	NH II II F 2 C=CF-(CH 2) 2	F ₂ C=C-(CH ₂) ₂ NO ₂	F ₂ C=CF-(CH ₂) ₂ NHC-NH ₂
分	(3, 4, 4-三氟-3- 丁烯基) 肼-单盐酸盐 MP:	N- (3, 4, 4-三氟-3- 丁烯基)-胍-单盐酸盐 MP:	1, 2, 2—三氟-4-硝基-1-丁烯 MP:	(3, 4, 4-三氟-3-丁烯基)-脲 MP: 86.0- 88.0
Exa. No	29	30	31	. 32

	2.74	18.70 6.46 9.46	36.28 5.22 12.06	8.43 4.86 9.94
æ.:	39.64 39.71 2.72 2.74 34.21 4.20 4.24 9.02	· •	36.14 36.28 5.20 5.22 15.24 24.50 12.04 12.06	l 6
Ana. (8)		1		38.39 4.92 1.924 20.24 9.95
<u> </u>	OIFZS	OEEZ	OEDEZ	0 = 5 f z
结 构	F ₂ C=C-(CH ₂) ₂ -NH+S	f; c=c-(cH ₂) ₂ M+-c f M+-c-o-c-CH ₃ H CH ₃ L - 1504R	F ₂ C=C-(CH ₂) ₂ NH-C-C-C-NH ₂ • HCI L - 150kER	γ c=c-(αη,),—νετ-c-(αη,),—ς-μη, γ .75 HCI
名	N-(3,4,4-三氟-3-丁烯基) -4-(三氟甲基)-苯磺酰胺 MP: 68.0- 70.0	(1-甲基-2-氧-2- (3, 4, 4-三氟-3-丁烯基) - 氢基] - 氢基甲酸 1, 1-二甲基乙酯 MP: 78.0-79.0	2-氨基-N-(3, 4, 4-三氟- 2-丁烯基)-丙酰胺-单盐酸盐 MP: 164.0-166.0	N-(上角板2)-(3,4,4-三氟 -3-丁烯基)天氧酰胺 MP: 167.0-169.0
Exa. No	33	. 8	85	

结构 Ana. (%) C. F.	$\begin{array}{c} C & 32.97 & 32.83 \\ 11 & 4.01 & 4.05 \\ 2 & C = C - (CH_2)_2 - NH - C - CH_2 - NH_3^* & CI^{-1} & P^{-1} & 26.07 \\ N & 12.81 & 12.73 \\ \end{array}$	F, C=C-(CH ₂), -NH+C-C-VH3, CI F 19.08 L = 150AER	$F_{2} C = C - (CH_{2})_{2} - MH_{2} - C - CH_{3} - C - CH_{3} - C - CH_{3} - C - C - C - C - C - C - C - C - C - $	$F_{2} C = C - (CH_{2})_{2} - NH - C - \frac{0}{1} - NH_{3} - CI^{2} - CH_{3}$ $C = 36.92 37.01$ $C = 36.92 37.01$ $C = 15.11 = 5.54$ $C = 12.11$ $R = 19.47$ $R = 19.47$ $R = 19.47$ $R = 10.95 = 11.04$
名称	2-氨基-N-(3, 4, 4-三氟-3- 丁烯) -乙酰胺-单盐酸盐	(S) -2-氨基-N-(上角标1) - (3, 4, 4-三氟-3-丁烯基) -戊二酰胺-单盐酸盐	(S) -4-氨基-5-氧-5 [(3, 4, 4-三氟-3-丁烯基) -氨基] 戊酸	(S) -2-氨基-4-(甲基酶) - N-(3, 4, 4-三氟-3-丁烯基) - 丁酰胺-单盐酸盐
Exa. No	37	6 0	68	40

名 孫	(3, 4, 4—三氟— - 丙酰胺— 单盐酸盐 「, c=c-(CH,), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	4.4 (CH3-3-甲基-N-F CH3-CH-CH3 CH3-CH-CH3 CH3-CH-CH3 CH3-CH-CH3 CH3-CH-CH3 CH3-CH-CH3 CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	4-氨基—N-(3, 4, 4-三氟—3 —丁烯基)—丁酰胺—单盐酸盐 F, C=C-(CH,),—NH-C-(CH,),—NH-; CI- F 23.11 N 11.36 10.72	4-三氟-2-丁烯酸 F O C 34.30 34.28 II 2.16 2.33 F C—C—CH ₂ ——C—OH F 40.69
1 1	3 氨基-N- (3, 4, 3-) - 为酰胺 (3, 128.0-128.0	(S) -2-氨基-3-甲 (3, 4, 4-氟-3-丁烯 -丁酰胺-单盐酸盐 MP: 84.0- 86.0	期 期 15.0	3, 4, 4-三氟-2-丁烯酸 MP:
Exa. No	4	42	43	4.

			T	,
Ana. (%) C. F.	34.54 35.28 2.90 2.97, 40.98 10.07 9.73	33.46 30.43 5.62 5.61 24.69 26.47 9.76 10.23	29.65 29.62 1.24 1.29 35.17 14.19	C 36.24 36.34 11 3.42 3.40 F 42.99 N 5.28 5.21
Ana.	34.5 40.9 10.0	25. 25. 0	35.	36. 25. 77.
	OEEZ	0 = 5 = z	C E & Z	U = ≤ Z′
4 构	F 0	F ₂ C=CH—(CH ₂) ₂ —NH ₃ ⁺ CI-	CF 2 CF-CH2 C-0 No+	CF = CF CH 1 - C-0 WH 1 - CH 1 - CFICF 1
名 務	3, 4, 4-三氟-3-丁烯酰胺 ', MP: 93.0- 95.0	4,4-二氟-3-丁烯-1-胺-单盐酸盐 MP:	3, 4, 4-三氟-3-丁烯酸-钠盐 MP: 250.0	3, 4, 4-三氟-3-丁烯-1-胺与3, 4, 4-三氟-3-丁烯酸的盐(1:1)
Exa. No	45	46	47	. 48

Exa. No	名 務	4 柏	Ana. (%)
49	dl -N- (3, 4, 4-三氟-3- 丁烯基) (氯氨酸-甲酯-盐酸盐 MP: 162.0-164.0	F C=CF-(CH ₂)2—NH-CH-C-O-CH ₃ CH ₃ —CH-CH ₃	C 43.56 43.66 II 6.22 6.25 CI 12.86 F 20.07 N 5.08 5.04
50	2, 2, 2—三萬—N— (3, 4, 4—三氧—3—丁海基)—乙酰胺 MP:	F2 C=C+(CH2)2-NH-C-CF3	C 32.59 32.79 II 2.28 2.47 F 51.56 N 6.33 6.35
51	N- (3, 4, 4-三第-3- 丁烯基) -乙酰胺 MP:	F C=C-(CH ₂) ₂ NHC-CH ₃	C 43.12 42.02 11 4.82 4.99 F 34.10 N 8.38 8.17
52	N- (3, 4, 4-三氟-3- 丁烯基) -丙酰胺 MP:	F C=C-(CH ₂),NH-C-CH ₂ CH ₃	C 46.41 46.30 11 5.56 5.54 F 31.46 N 7.73 7.65

Ana. (%) C, F,	C 51.67 51.70 H 6.75 0.72 F 27.24 N 6.69 6.72	C 41.79 40.62 H 5.46 5.33 Cl 13.71 F 22.04 N 10.83 10.39	C 34.86 32.55 II 4.75 4.90 CI 12.86 F 20.68 N 15.24 14.54	C 50.57 49.68 H 5.22 5.32 Cl 11.48 IP 18.46 N 9.07 8.93
结 构	CH ₃ O F CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂	$F_{2} C = C - (CH_{2})_{2} - NIH - C - CH_{2} + C - C - C - C - C - C - C - C - C - C$	F ₂ C=C-(CH ₂) ₂ NH-C-C-NH ₃ L-150ÆR	F ₂ C=C-(CH ₂) ₂ NHC-G-NH ₃ -CI-
名務	2, 2-二甲基-N- (3, 4, 4-三集-3-丁烯基) - 丙酰胺	(S) -N- (3, 4, 4-三氟-3-丁烯基) -2-吡咯烷 截胶-单盐酸盐MP:	(S) -2-氨基-N-(上角标1) - (3, 4, 4-三氟-3-丁烯 基)-丁酰胺-单盐酸盐 丁二酰胺-单盐酸盐	- (S) - α - 氨基-N- (3, 4, 4- 三氟 -3-丁烯基) - 苯丙酰胺 单盐酸盐 MP:
Exa. No	ຄວ	4 0	22	S S

`. 	*			
Ana. (%)	·	C 43.72 42.80 H 6.60 6.64 Cl 12.91 F 20.75 N 10.20 10.00	C 44.14 II 6.95 Cl 16.29 F 26.19 N 6.44	C 38.95 38.75 H 5.72 5.78 Cl 14.37 F 23.11 N 11.30 11.30
-	£ -		. J	-5
结构	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$F_{2} C = C - (CH_{2})_{2} - NH_{2} - CH_{3}$ $F_{2} C = C - (CH_{2})_{2} - NH_{2} - CH_{3}$ $C = C - (CH_{2})_{2} - NH_{3} - CH_{3}$ $C = C - CH_{3}$	F ₂ C=C-(CH ₂) ₆ NH ₂ • F	F ₂ C=C-(CH ₂) ₂ NHG-C-NH ₃ CI- L - ISOAER O H
名称	(S) -2-氨基-4-甲基-N-(3, 4, 4-三氟-3-丁烯基) -戊酰胺-单盐酸盐 MP: 114.0-116.0	(S) -2-氨基-3-甲基-N-(3, 4, 4-三氟-3-丁烯基)-戊酰胺-单盐酸盐	7, 8, 8—三氟—7—辛烯 —1—胺—单盐酸盐 MP:	(S) -2-氨基-N- (3, 4, 4-三氟-3-丁烯基) -丁酰胺-单盐酸盐 MP: 144.0-148.0
Exa. No	57	ro ro	80	09

名 称 结 构 Ana. (%) C. F.	3.0 (C 41.47 41.55	- 氨基 – 3 – 羟基 – N – F	-2, 6-二氨基-N- 4, 4-三氟-3-丁烯基) 「F, c=c-(CH,),NH,* II 6.18 6.17 配放-二盐酸盐	3, 4, 4—三氟—3—丁烯 —天冬氨酸-单盐酸盐 F2 c=c-(CH2)2—NH-C-C-NH3 CI P 20.60
1 !	(S) -2-氨基-N-(3, 4, 4-三氟-3- -戊酰胺-单盐酸盐 MP: 181.0-183.0	(S) -2-氨基-3- (3, 4, 4-三氟-3 -丁酰胺-单盐酸盐 MP:	(S) -2, 6- (3, 4, 4-三 -己酰胺-二	L-N- (3, 4, 4-三) 基) - a - 天冬氨酸- MP:
Exa. No	61	62	63	64

Ana. (%)	C 31.88 30.43 H 4.20 4.08 Cl 13.44 F 21.62 N 10.62 9.98 S 12.16 11.58	C 51.17 51.45 H 3.51 3.52 F 22.08 N 10.85 10.63	C 43.06 43.20 H 3.61 3.61 F 25.54 N 6.28 6.17	C 45.19 45.26 H 5.06 5.15 F 23.83 N 5.86
站 柏	المحتاد - المحت	F ₂ C=C-(CH ₂) ₂ N=CH	F ₂ C=C-(CH ₂) ₂ NH-C-(C=C)	F C=C-(CH ₂),NH-C-(CH ₂),C-OH
名 發	(S) -3, 3'-二確双 [2-每基-N-(3, 4, 4-三氟一3-7/4基) -丙酰胺I-三盐酸盐MP:	3, 4, 4-三氟-N-[(2-硝基苯基)-亚甲基]-3-丁烯 -1-胺 MP:	(E) -4-氧-4- [(3, 4, 4-三 氟-3-丁烯基) -氨基子2-丁烯酸 MP: 183.0-185.0	5-氧-5-[(3, 4, 4-三氟 -3-丁烯基)-氨基]-戊酸 MP:
Exa. No	65	99	67	68

Ana. (%) C. F.	C 39.35 39.26 II 4.40 4.39 F 31.12 N 7.65 7.61	C 48.64 48.82 H 6.46 6.40 F 19.24 N 9.45 9.48	C 34.73 34.69 II 4.37 4.36 Cl 12.82 F 20.60 N 10.13 10.25	C 39.75 40.74 II 2.07 2.75 F 37.73 N 9.27
站 构	N	γ (H)	0 CH2-C-NH-(CH2)2-C=CF2 C HO-C-C-NH3 CI- H L - ISOAER	F ₂ C=C-(CH ₂) ₂ N=C=0
名 務	3, 4, 4-三氟-3-丁烯-1-胺 与 2-羟基-3-[2-氧-2-[3, 4, 4-三氟-3-丁烯基)-氨基] -乙基]-丁二酸的盐(1:2) MP: 139.0-142.0	[3-复-3-[(3,4,4-三氣-3 -7烯基)-氨基]-丙基-氨基甲酸 1、1-二甲基乙酯 MP: 78.0-80.0	L-N-(3, 4, 4-三氟-3-丁烯 基)-天冬酰胺-单盐酸盐 MP: 152.0-154.0	1, 1, 2-三第-4-异氰酸根-1-丁烯 MP:
Exa. No	69 ,	70	11	72

Ana. (%) C. F.	C 48.64 48.77 II 6.46 6.48 F 19.24 N 9.45	C 38.01 37.74 H 5.85 5.81 C! 18.70 HC! F 30.06 N 7.39	C 41.72 41.78 II 1.07 4.05 F 17.68 N 8.69 8.66 S 9.95	C 38.99 38.80 II 5.61 5.67 Cl 16.44 F 17.62 N 6.50 6.66
结 构	F ₂ C=C-(CH ₂) ₂ NH-C-N*+-C-[-O-Ç-CH ₃ L ISOACR H O CH ₃	F ₂ C=C-(CH ₂),NH ₂ • HCI	F ₂ C=C-(CH ₂) ₂ -NH-C-NH-S	• HC! 0 F 2 C=CH-(CH2) 3NH-CH3-C-O-CH3
名称	L-N-[(3,4,4-三氟-3-丁烯 基)-氨基]-羰基]丙氨酸 1,1-二甲基乙酯MP:	1 5, 6, 6—三氟—5—己烯— 1—胺—单盐酸盐 MP:	4-甲基-N- [[3, 4, 4- 三氟-3-丁烯 基) 氨基] 羰基-苯磺酰胺 MP: 134.0-136.0	N- (4, 4-二氟-3-丁烯基) -甘氨酸 甲酯-单盐酸盐 MP: 145.0-147.0
Exa. No	27	74	75	76

Ana. (%) C, F.	C 39.67 39.78 II 5.41 5,41 F 23.53 N 11.57 11.62	C 32.62 32.72 II 3.83 3.74 F 30.96 N 15.21 15.11	C 36.14 36.30 II 5.20 5.24 Cl 15.24 F 21.50 N 12.04 11.97	C 35.30 35.37 H 4.15 4.16 F 33.51 N 8.23 8.40
4 构	г, с=с-(сн,),—ин-с-ин-сн-сн, он	F C=C-(CH2)2-NH-C-NH-OH	CI NH ₃ ⁺ - $\frac{C}{4}$ F II 5.20 5.24 CI NH ₃ ⁺ - $\frac{C}{4}$ CH ₂ $\frac{C}{4}$ NH—(CH ₂) ₂ —C=CF ₂ CI 15.24 H O F 24.50 D - 1SOACR	C 35.30 35.37 H 4.15 4.16 0=C-C-0- F ₂ C=C-(CH ₂) ₂ NH ₃ F 33.51 N 8.23 8.40
名 称	N- [2-羟基-1- (羟甲基) -乙基] -N-(3, 4, 4-三氟-3-丁烯基) -厭 MP: 115.0-118.0	N-羟基-N'- (3, 4, 4-三氟-3-丁烯基)-脲 MP: 112.0-115.0	(R) -2-氨基-N-(3, 4, 4-三 氟-3-丁烯基)-丙酰胺-单盐酸盐 MP: 167.0	3, 4, 4-三氟-3-丁烯 -1-胺-乙二酸盐 MP: 179.0-181.0
Exa. No	77	78	79	80

:	C 48.08 46.02 H 4.97 4.98 Cl 10.92 , F 17.55 N 8.63 9.31	6.05 6.05 7.07	30.82 3.87 8.88	C 48.98 49.09 II 5.65 5.65 F 29.06
Ana. (%) C. F.	1.08 4 1.97 1.92 1.55 3.63	42.21 42.30 0.07 6.05 28.62 7.03 7.07	30.58 30.82 3.85 3.87 36.28 8.92 8.88	(8.98 5.65 29.06
ن ڇ	0 = 0 & Z		OHEZ	S = 4
结 枹	C1- Q MH3, Q MH3, (L)	F2C=CF.CH2-C-0 NH3+CH-CH3	P ₂ C=CF-CH ₂ —C-O NH ₄ *	Г Г С=C-СH ₂ CH ₂ CH ₂ CH ₂ С-ОН Г
各務	(S) - α-氨基-4-羟基-N-(3, 4, 4-三氟 -3-7海基) - 苯丙酰胺-单盐酸盐	2-丙胺与3, 4, 4-三氟-2-丁烯酸的盐 MP: 86.0- 88.0	3, 4, 4-三氟-2-丁烯酸铵盐 MP: 127.0-129.0	7,8,8-三氟-7-辛烯酸 MP:
Exa. No	**	82	6 0	84

				
Ana. (%)	C 57.64 57.72 H 7.79 7.75 F 21.37	C 47.43 47.47 II 5.57 5.57 F 22.51 N 5.53	C 51.24 51.28 II 6.45 6.47 F 20.26 N 4.98	C 53.88 54.00 II 4.11 4.15 F 23.25 N 5.71
4 构	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	р 		CH ₂ CH ₃ NH
各務	11, 12, 12-三氟-11-十二碳烯酸 MP:	4-氧-4- [(5,6,8-三氟 -5-己烯基)-氧基]丁酸 MP: 50.0- 60.0	4-氧-4- [(7, 8, 8-三氟 -7-辛烯基) -氨基] 丁酸 MP: 61.0- 63.0	2- [(3, 4, 4-三氟-3- 丁烯基)氨基-苯甲酸 MP: 89.0- 95.0
Exa. No	85	88	87.	

,	1 1-13		06 10	5.84 4.09
: 3 2,	6.1		98.	7 59. 7 5. 3 4.
Ana. (%) C. F.	C 49.23 49.27 II 6.20 6.15 F 29.20 N 7.18	47.43 5.57 22.51 5.53	C 36.56 36.65 H 3.07 3.06 F 28.92 N 7.11 7.10	C 59.47 59.47 II 5.87 5.84 F 16.60 N 4.08 4.09
∀∪	O = ₹ Z	SEEZ	OHEZ	0 = 4 Z
4 格	F CH CH3 C== C CH2 CH2 CH3	F-C=C-CH2-CH2-CH3-CH3	F-C=C-CH2-C-Й-СH2-C-O-H	C=c-cH, C+C+C-C-C-CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,
名 称	N, N─二乙基─3, 4, 4─三氟 ─3─丁烯酰胺 MP:	N- (3, 4, 4-三領-1-領-3-丁 帰基) 甘氨酸 1, 1-二甲基乙酯 MP: 52.0- 54.0	N- (3, 4, 4-三類-1- 氧-3-丁烯基) 甘氨酸 MP: 115.0-116.0	L-N- (3, 4, 4-三氟-1-氧-3-丁-
Exa. No	89	06	16	92

	4	22 73 28	86 7	1
æ ·	5.57 9.04	4.2	37.8 3.5	
Ana. (%) C. F.	1.45 1.52 1.37 3.03	1.36 1.21 9.84 1.88	7.80 3.57 2.43 1.02	32.97 4.61 16.22 26.07 F2.81
ِ جَيْن ا	1	C 54.36 54.28 II 4.21 4.22 F 19.84 N 4.88 4.85	C 37.80 37.86 II 3.57 3.59 F 22.43 N 11.02 11.04	0=54Z
结 构	C=Ç-CH ₂ Ç-N-CH-CH-C-O-C-CH ₃ F	F F C CH2-C-NH-CH-C-OH	F C CH ₂ C C C C C C C C C C C C C C C C C C C	г ф=ç-сн, —с-ц-сн, —м, мст
名 弥	L-N-(3, 4, 4-三氟-1-氧-3-丁 所基) - 天氣酰胺 1, 1-二甲基乙酯	L-N-(3, 4, 4-三氟-1- 氧-3-丁烯基)-苯丙氨酸 MP: 134.0-135.5	L-N- (3, 4, 4-三氟-1- 氧-3-丁烯基) -天氧酰胺 MP: 146.0-149.0	N- (2-氨基乙基) -3, 4, 4-三氟-3-丁烯酰胺-单盐酸盐 MP: 145.0-147.0
Exa. No	86	5 6	95	96

Ana. (%)	C 48.64 48.71 II 6.46 6.43 F 19.24 N 9.45 9.44	C 36.14 36.04 II 5.20 5.25 CI 15.24 F 24.50 N 12.04 11.97	C 43.04 43.75 II 3.06 3.67 F 31.52 N 8.48 8.51	C 38.95 39.05 H 5.72 5.73 CI 14.37 F 23.11 N 11.36 11.28
结 构	F-C-CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	F — CH2/NH2		NH, CH, CH, CH, CH, CH,
名 務	[3-[(3,4,4-三氟-1-氫-3-7烯基)氨基]-丙基]-氨基甲酸 1,1-二甲基乙酯MP: 82.5-83.6	N- (3-氨基丙基)-3,4,4-三 第-1-氧-3-丁烯酰胺	1,4-双[(3,4,4-三氟- 1-氧-3-丁烯基)] -哌嗪 MP: 132.5-134.0	N- (4-氨基丁基)-3, 4, 4- 三氟-3-丁烯酰胺-单盐酸盐 MP: 143.0-144.0
Exa. No	97	86	66	100

Ana. (%)	C 30.31 29.76 H 1.27 ,1.27 C1 22.37 F 35.96	C 45.94 H 4.82 D F 27.25 N 6.70	C 49.23 49.33 -CH ₂ —CH ₃ II 6.20 6.22 F 29.20 N 7.18	C: 42.87 42.83 0 11 4.20 4.17 ——C—OH F: 33.90
结构	# 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	F C=C-CH ₂ -C-N F F	F WH-CH ₂ -CH ₂ -CH ₃	CF 2=C-CH2-CH2-CH2-C-OH
名 務	3, 4, 4-三氟-3-丁烯酰氯 MP:	4- (3, 4, 4-三氟-1- 氧-3-丁烯基) - 吗啉 MP: 80.0- 81.0	N-丁基-3, 4, 4-三 氟-3-丁烯酰胺 MP: 34.0- 36.0	5, 6, 8-三氟-5-己烯酸 MP:
Exa. No	, 101	102	103	104

Ana. (%) C. F.	C 30.98 31.54 II 2.60 2.63 F 36.75 N 9.03 9.20	C 47.25 48.28 II 5.15 5.40 F 22.42	C 55.60 55.58 II 4.67 4.68 F 21.99 N 5.40 5.37	C 32.97 33.08 II 4.61 4.57 Cl 16.22 F 26.07 N 12.81 12.80
44 格	F C CH ₂ C CNH—OH	CH ₃ CH ₃ C-CH ₃ C=C-CH ₂ C=C-CH ₂ C=C-CH ₂ C=C-CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	i ch, ch, th, ch, ch, ch, ch, ch, ch, ch, ch, ch, c	F CH ₂ CH ₃
名称	3, 4, 4-三氟-N-羟基-3-丁烯酰胺 MP: 99.0-100.0	3, 4, 4-三氟-3-丁烯酸 (2, 2-二甲基-1, 3-二氧戊环-4-基) -甲酯 MP:	4- [(3,4,4-三領-3-丁烯基) -氨基]-苯甲酸甲酯 MP: 47.0-49.0	2- [(3, 4, 4-三氟-3-丁烯基) -氨基]-乙酰胺-单盐酸盐 MP: 198.0-200.0
Exa. No	105	106	107	108

Ana. (%) C. F.	C 53.88 53.82 II 4.11 4.13 F 23.25 N 5.71 5.69	C 61.97 61.92 11 4.73 4.68 F 26.73 N 6.57 6.56	C 55.00 55.58 II 4.07 4.55 F 21.99 N 5.40 5.45	C 46.91 46.92 H 3.94 3.94 Cl 12.59 F 20.24 N 4.97 4.98
结 构	CH ₂ CH ₃ WH	F CCH ₂ CH ₂ CCH ₂ C	CH, CH 3 WH	F C=C-CH ₂ CH ₂ NH
名 發	4- [(3,4,4-三氟-3-丁烯基) -氨基]-苯甲酸 MP: 149.0-151.0	3, 4, 4-三氟-N-(苯基亚甲基) -3-丁烯-1-胶 MP:	3- [(3, 4, 4-三氟-3-丁烯基) -氨基}-苯甲酸甲酯 MP:	3- [(3,4,4-三氟-3-丁烯基)-英甲酸-单盐酸盐MP: 222.0-224.0
Exa. No	109	110	Ħ	113

Ana. (%) C. F.	C 57.40 57.38 II 3.94 3.92 F 24.76	C 57.13 57.12 H 7.59 7.54 F 22.59	C 55.82 55.80 II 3.75 3.73 F 26.49 N 6.51	C 55.56 55.30 H 3.26 3.25 F CH ₂	
结 构	OH, OH, T	in the state of th	F CH2 CH2		
名 称	3, 4, 4-三氟-3-丁酸苯基甲酯 ', MP:	3, 4, 4-三氟-3-丁烯散辛酯 MP:	3, 4, 4-三氟-N-苯基-3-丁烯酰胺 MP: 118.0-122.0	3, 4, 4-三氣-3-丁烯酸苯酯 MP:	
Exa. No	113	114	115	118	

Ana. (%) C. F.	C 45.99 45.74 H 2.32 2.25 F 21.83 N 5.36	C 51.43 51.44 H 6.23 6.20 F 27.12	C 51.72 51.98 II 3.04 3.09 F 24.54 S 13.81	C 34.80 34.89 H 2.19 2.23 F 41.28 N 10.14	
站 构	F CH ₂ CO	CH2 CH3 CH3	F S CH2/CH2/C	THE COLUMN	
各格	3, 4, 4—三氟—3—丁烯酸4—硝基苯酯 , MP: 58.0- 62.0	3, 4, 4-三氟-3-丁烯酸3-甲基丁酯 MP:	(S) -3, 4, 4-三氟-3-丁烯硫代酸苯酯 MP:	N- (3, 4, 4-三氟-3-丁烯酰基)-N'-(3, 4, 4-三氟-1-氧-3-丁烯基)-肼MP: 191.0-193.0	
Exa. No	117	118	119	120	

Ana. (%)	C 53.71 53.82 H 7.14 7.13 F 21.24 S 11.95	C 53.65 53.67 II 3.08 3.08 F 23.15 S 13.02	C 39.82 39.83 H 3.82 3.80 F 27.00 N 6.63	C 45.19 45.26 H 5.06 5.09 F 23.83 N 5.86	
结构	10 10 10 10 10 10 10 10 10 10 10 10 10 1	CH3 CH3 CH3	CH C	C CH ₃ CH C CH ₃ CH C CH ₃ CH C CH C CH ₃ CH C CH	
名 称	、3,4,4-三氟-3-丁烯硫代酸辛酯 MP:	3, 4, 4-三氟-3-丁烯 硫代酸苯基甲基酯 MP:	L-N- (3, 4, 4-三領-1- 氧-3-丁烯基) 丙氨酸 MP: 98.0-103.0		
Exa. No	121	122	123	124	

Exa. No	公 弥	结 构	Ana. (%) C. F.
125	L−1− (3, 4, 4−三氟−1− 氧−3−丁烯基) 脯氨酸 '-	(-) 40.2 G 30001	C 45.58 43.34 II 4.25 4.18 F 24.03 N 5.91
126	N- (3, 4, 4-三氟-1- 氧-3-丁烯基) - 天冬氨酸 MP:	F — CH ₂ CH OH	C 37.66 38.99 H 3.16 3.74 F 22.34 N 5.49
127	3, 4, 4—三氟一3—丁烯 硫代酸(2—氨基乙基)酯 MP: 95.0-115.0	F-CCH ₃ CCH ₃ CH	C 26.48 30.87 11 3.70 3.87 Cl 26.06 F 20.95 N 5.15 S 11.78
126	3- [(3, 4, 4-三氟-1-氧-3-7) - 氢-7) - 氢基] - 苯甲酸MP: 252.0-255.0		C 50.97 50.96 H 3.11 3.13 F 21.99 N 5.40

Ana. (%)	C 17.83 48.35 11 2.55 2.82 F 20.63 S 11.61	C 28.14 32.53 11 3.94 4.19 (T 27.09 F 22.26 N 5.17	C 43.84 43.88 II 3.68 3.69 F 26.01 N 19.17	C 59.70 5.01 H 5.01 5.05 F 28.33 F 28.33 N 6.96	
结 构	The state of the s	F C CH 7 C	CH ₃		
名称	2- [(3, 4, 4-三氟-1-氧 -3-丁烯基) 成基] - 苯甲酸 MP: 48.0-58.0 3, 4, 4-三氟-3-丁烯酸 2-氨基乙酯-单盐酸盐 MP: 94.0-100.0		2, 4—二氢—4— [[(3, 4, 4, 4, 4, 4) —三氟—3—丁烯基) — 氨基] —亚甲基] —3H—吡唑—3—酮MP: 126.0-130.0	N- (3, 4, 4-三氟-3-7 新基) - 末版	
Exa. No	130		131	132	

Ana. (%) C. F.	C: 51.05 51.07 11 7.50 7.54 F 20.19 N 9.92	C 28.84 33.02 II 5.53 5.95 CI 36.48 F 19.55 N 9.61	C 45.28 45.28 II 3.80 3.77 F 21.49 N 5.28 S 12.09	C 25.96 29.89 H 5.08 5.45 Cl 38.32 F 20.54 N 10.09
结 构	ON THE CHIEF		F CH3, MH CCH3, CH3,	F-G CH P CH CH P CH P CH P CH P CH P CH P
名 殊	[3-[(3,4,4-三氟-3-丁烯基)氨基]丙基]-氨基甲酸1,1-二甲基乙酯MP:	N-(3, 4, 4-三氟-3-丁烯基)-1, 3-丙二胺二盐酸盐 MP: 225.0-270.0	3- [(3, 4, 4-三氟-3-丁烯基)-氨基]-2-噻吩甲酸甲酯 MP:	: N- (3, 4, 4-三氟-3-丁烯基) -1, 2-乙二胺-二盐酸盐
Exa. No	133	134	135	136

Aria. (x) C.	C 35.21 40.69 II 5.02 6.49 CI 20.78 F 10.71 N 8.21	C 39.28 38.34 II 4.94 4.98 CB 14.49 F 23.30 N 11.45	C 46.38 46.17 H 5.35 5.37 F 18.34 N 6.76	C 39.17 37.87 II 6.10 6.24 Cl 16.52 F 17.70 N 13.05
4 构	15-3 FTX + 0.6 100	15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	to to the total	CH CH CH COL 1 1200
名称	L-N-2-(3, 4, 4-三氟-1-氫 -3-丁烯基) -赖氨酸-单盐酸盐 MP: 54.0	1-氨基-N-(3, 4, 4-三氟—3-7万烷基甲酰胺3-7烯基)-环丙烷基甲酰胺, MP: 55.0-70.0	4- [(4, 4-三氟-3-丁烯基) 氨基]-4-氧-丁散 MP: 50.0- 53.0	2-氧基-N-(4,4-二氧-3-丁烯基)-丙酰胺-单盐酸盐
Exa. No	137 :	138	139	140

Exa. No	各	结 构	Ana. (%) C. F.
:	(S) -2-氨基-N-(4, 4-二氟-3-丁烯基) -4-(甲硫基)丁酰胺-单盐酸盐MP: 97.0-101.0	CH 2 CH 3	C 39.34 39.57 II 6.24 6.34 Cl 12.90 F 13.83 N 10.20 S 11.67
	2-氧代-2- [(3, 4, 4-三氟 -3-丁烯基) 氨基]-乙酸甲酯 MP; 33.0-34.0	5000	C 39.82 59.92 H 3.82 5.85 F 27.00 N 6.63
143	N-(3, 4, 4-三氟-3-丁 烯基)-乙二酰胺 MP: 190.0-220.0		C 36.74 36.09 H 3.00 3.68 F 29.06 N 14.28
1	2- [(3, 4, 4-三氟-3-丁烯基) 氨基]-2-氧-乙酰肼 MP: 145.0-200.0		C 34.13 32.29 II 3.82 3.99 F 27.00 N 19.90

Ana. (%)	C 36.56 36.77 II 3.07 3.11 F 28.92 N 7.11	C 56.71 56.75 II 6.26 6.26 F 14.16 N 6.96	C 47.76 47.02 H 4.51 4.49 F 18.89 N 20.89	C 38.88 38.51 C 38.88 38.51 C 38.88 38.51 C 5.85 C 5.85 C 5.85 C 5.85 C 5.85	
结 构			NH. CH2>CH		
各称	2- [(3, 4, 4-三氟-3-丁烯基) 氨基]-2-氧-乙酸	[1-[(1,1-二甲基乙氧基)-甲基] -2-氧-2-[(3,4,4-三氟-3-丁 烯基) 氨基]-乙基]-氨基甲酸苯甲酯 MP: 68.0-72.0	4- [[4, 4-二氟-3-丁烯基) 氨基子 亚甲基] 2, 4, -二氢-3H-吡唑-3-酮 MP: 120.0-124.0	3, 4, 4-三氟-N-(3, 4, 4-三 氟-3-丁烯基) -3-丁烯酰胺 MP:	
Exa. No	145	146	147	. 148	

Ana. (%) C. F.	C 35.64 35.72 H 3.74 3.73 Cl 13.15 JF 42.28 N 5.19	C 42.86 42.79 H 5.65 5.04 F 29.06 N 14.28	C 49.69 50.15 II 7.15 7.32 F 11.23 N 8.28 S 9.47	
结 构	CH2 NH CH2-CH2 F	F-CH2-NH C-CH3 CH3-NH CH3	CH3-CH3 CH43 CH3 CH3 CH3 CH3 CH3	(1)
名 称	3, 4, 4-三氣-N-(3, 4, 4-三氣-J-將基) -3-丁 第-1-胺-单盐酸盐 MP: 200.0-205.0	N-N-二甲基-N'- (3, 4, 4-三氟-3-丁烯基)-原 MP: 50.0- 55.0	[1-[[(4,4-二氟-3-丁烯基) 氨基]-羧基]-羧基]-3-(甲磺基)-丙基]-氨基甲酸二甲基乙酯 MP: 58.0- 60.0	
Exa. No	149	150	151	

组合物

常规使用中, 化合物通常不外乎是以混合物或稀释的形式使用, 但一般以适当配制的组合物形式使用, 这种组合物应与施用的方法相 匹配并含有效量的化合物。本发明化合物, 跟大多数农用制剂一样, 它可与农业上可接受的表面活性剂和通常用于促进活性成分分散的载 体掺混使用, 事实上其配方和施用方式可影响物料的活性。本发明化 合物, 例如可作为喷雾、粉剂和颗粒施用于希望控制害虫的区域, 施 用形式根据害虫和周围环境而不同。因此, 本发明化合物可配制成大 粒度的颗粒、粉剂、可湿润的粉剂、可乳化的浓缩物、溶液等。

粒剂可包括疏松的和非疏松的颗粒,例如可用作本发明化合物载体的硅镁粘土和砂。颗粒粒度较大、直径一般约400-2500微米。将颗粒用本发明化合物溶液浸渍或用化合物涂覆,有时以粘合形式使用。粒剂一般含0.05-10%,优选0.5-5%的活性成分。

粉剂是化合物与精细粉碎固体的混合物,如滑石粉、硅镁粘土、硅藻土、叶蜡石、白垩、漂白土、磷酸钙、碳酸钙和碳酸镁、硫、面粉和其它可作为化合物载体的有机和无机固体。这些精细粉碎过的固体其平均粒度约小于50微米。典型粉剂配方含有1份化合物和99份滑石粉。

本发明化合物可通过溶入或乳化在适宜液体中制成液体浓缩物, 也可通过与滑石粉、粘土或其它已知用于农业化学技术领域的固体载 体混合制成固体浓缩物。这些浓缩物是组合物,含有约5-50%活性 化合物和95-50%的惰性物料,它包括表面活性分散剂,乳化剂和润湿剂,然而即使高活性成分的浓缩物经实验后也可使用。浓缩物可用水或其它液体稀释,作喷雾使用,或者添加另外的固体载体,作粉剂使用。

典型的50%可润湿粉剂的组成应是: 50.0%(Wt/Wt) 活性成分,

22.0%硅镁土稀释剂, 22.0%高岭土稀释剂和6.0%磺化Kraft ligaia的钠盐乳化剂。

用于固体浓缩物(也称为可润湿粉剂)的典型载体包括漂白土、粘土、硅石,和其它高吸收材料,易润湿的无机稀释剂。适宜的固体浓缩物配方可含有各1.5份的木素磺酸钠和十二烷基硫酸钠作为润湿剂,25份活性化合物和72份硅镁土。

制成浓缩物对于本发明低熔点产品的运输是很有用的。这些浓缩物的制备是将低熔点固体产品与1%或以上的溶剂一起熔融制得浓缩物,该浓缩物冷却至纯产品的冰点以下时不会凝固。

实用的液体浓缩物包括可乳化的浓缩物,是些很容易分散在水中或其它液体载体中的均匀液态或膏糊状组合物。它们可以完全由活性化合物和液态或固态乳化剂组成,或者它们还可含有液态载体,如二甲苯,重芳烃石脑油类,异佛尔酮和其它较不易挥发的有机溶剂。为便于施用,将这些浓缩物分散在水中或其它液态载体中,并通常以喷雾方式施撒到待处理的区域。

典型的50g/升可乳化的浓缩物配方应由以下物质组成: 5.9% (Wi / Wi) 本发明化合物; 作为乳化剂, 1.80%的十二烷基苯磺酸盐的钙盐和壬基酚的非离子6摩尔环氧乙烷缩合产物混合物, 2.70%的十二烷基磺酸盐的钙盐和壬基酚的非离子30摩尔环氧乙烷缩合物产物的混合物, 1.50%的聚(亚烷基) 二醇醚的非离子膏糊和88.10%精制二甲苯。

用于农药的典型表面活性润湿剂,分散剂和乳化剂包括,例如烷基和烷芳基磺酸盐和硫酸盐及其钠盐;烷基酰胺磺酸盐,包括脂肪族牛磺酸甲基酯;烷芳基聚乙醚醇,硫酸化高级醇,聚乙烯醇;聚环氧乙烷;磺酸化的动物和植物油;磺酸化石油润滑油;多元醇的脂肪酸酯和这些酯的环氧乙烷加成物;以及长链硫醇和环氧乙烷的加成物。

表面話性剂通常含有1-15%(重量)的话性成分。

其它的实用配方包括将活性成分溶于溶剂中形成的简单溶液,活性成分可以希望的浓度完全溶于,例如水,两颗,或其它有机溶剂中。叶子施用的优选配方是水溶液,更优选的是含有甘油和表面活性剂,例如Tracen®20,最优选的是含有1%甘油和0.1%Tracen®20。

用合适的杀虫剂活性成分可以配制出许多可用的组合物,例如杀虫剂、杀螨剂、杀真菌剂、植物调节剂、除莠剂。肥料等。

使周涛法

本发明提供了控制各种损害农业作物害虫,如线虫,昆虫和螨的方法。受这些害虫侵害的植物感染都可以通过在植物所在地施用有效量的本发明任何化合物而得到控制。可以各种方式施用,包括将化合物或含该化合物的组合物施用于种植前或种植后或紧急状况下的土壤中,播种前或播种时的种子或种子片上,以及植物的叶,梗或主干。在生长期可处理一次以上,每次处理之间隔为一天或一天以上。适宜的处理方式取决于待控制的害虫寿命周期,环境温度,和湿度。此外,植物的年龄和太小也会影响处理方式。

本发明方法可用于各种作物,这些作物包括但不限于,水果和蔬菜作物,如马铃薯,甜马铃薯,翻萝卜,西红柿、葡萄、桃、柑桔、香蕉、五谷和太豆;烟草;和棉花。

本发明化合物可用于控制任何寄生在植物上的线虫。可用本发明 方法控制的昆虫包括,但并不限于,叶子等虫例如绿桃蚜,和土壤带 有物害虫如南方玉米根虫。可用本发现方法控制物精包括,但不限于, 两点叶蜡。有少数几种本发现化学物进行的试验表现对烟草,芽虫和 科罗拉多马分薯甲虫的控制效果不明显。

试验实施例

A. 西红朴和大豆线虫试验

对如上所述制得的本发明化合物控制根瘤线虫(Meloidogyne incognita)的有效性进行了试验。这些化合物通过叶子施用和土壤浸润施用进行了试验。四种不同试验方法的结果见表A。这些方法如下:

方法! 对西红柿苗的叶施用

将西红柿苗(Rutgers),每每一株置于2.5×18.8cm的每中培育。种植19天后,用试验化合物按表A所示的浓度喷撒叶子的两侧。试验化合物的制备是首先按适宜的量将各化合物溶于水或丙酮中,然后与含有0.05% Tween 20和1.0%甘油的水混合。至于各自的处理量,四株上喷撒29ml溶液。使苗干燥然后移至保持在25-28℃的生长室中。在此处通过地下多孔管道浇灌以防止药液离开叶子滴到土壤中。化学施撒2-3天后,将1 幼虫的悬浮液,每每4300分,吸移到根部和土壤。接种后三周,被冲洗的根部上损伤量水处理控制的比较。结果用虫事控制的百分率来表示。

方法2 对西红柿苗的叶施用

按方法1步骤进行,不同之处在于(1) 西红柿苗放在7.5×8.3cm² 钵中生长,(2) 栽植后20天时进行接种,将3三中大约8000个卵吸移 至每个钵的土壤上。第二天用4三处理液喷撒每株苗。接种后3周时测 定虫害的程度。使用了0至3的评价等级,0表示严重伤害,3表示无伤害。

方选3 对太<u>国</u>耕子<u></u>助土壤 施 用

将两颗大豆种子分别放入2.5cm 鲜中并接种约8000个期。 粉试验化合物按1mg/钵(在2ml如方法1制备的溶液中)添加。采用每次处理一个钵子。种子被蠕虫覆盖并轻轻浇水。豆苗用地下多孔管道每天灌浇一次达4周。然后按方法2评价豆苗的冲洗根部。

方法4 对西红柿苗的土壤施用

按方法2的步骤进行,不同之处在于:接种后当天即对土壤进行处理,将4则处理液吸移至每钵的土壤中,按方法2评价接种后3周的虫害。

方法5 对西红柿苗的土壤和叶子的施用

按方法2和4的步骤进行,不同之处在于: 西红柿苗在5.0×5.0cm²的钵中生长,种植后20天进行接种,将40ml大约7000个卵吸移至每个钵的土壤上。接种后的当天,对土壤进行处理,即将2ml处理液吸移至土壤,并对叶子进行处理,即用1.5ml处理液喷撒叶子。按方法2,评价接种后3周的虫害。

			表	A			
	月	量			方法		
化合物	mqq	mg/棼	1*	2**	3**	4**	5**
1	1000		100	3			
	500		93				
	250		85				
		1			3	3	3
2	-1000		90				
		1			3		
3	1000		65				
	500		51			•	
		1			3		
4	1000		80				
		1			0		
5.	1000		84				
		1			3		
6	1000		88				
		1			2		
7	1000		89	1			
		. 1				3	
8	1000		25				
		1			2 -		
9	1000		100	3			
	500		. 85				
	250		70				
		1			2	3	•
10	1000		.51				
		1			0		
11	1500		•	1			
	1000		100				
	500		62				
	250		80	٠	-		
		1	1		2	-	
		1.5				. 2	
12	1000	•	76	2		_	
		1				2	
13	-1000		85	2		_	
		1				2	

			表	A			
	F	月量			方法		
化合物	mag	mg/弊	_ <u>1*</u>	2**	3**	4**	5**
14	1000		32				•
		1			1		
15	1000		25				
		1			. 0		
16	1000	_	75				
• •	1000	1	50		0 -		
17	1000	1	50		0		
18	1000	*	38				
14	2000	1			0		
19	1000	_	o				
		1			1		
20	1000		51	0			•
		. 1				3	
21	1000		51		•	•	
		1			0		
22	1000		98	2			
		1			. 2	0	2
23	1000	_	98	2	•		
24	1000	. 1	73	2	0		
24	1000	1			0	3	
25	1000	•	80	2	Ū	-	
		1		_	3	3	
26	1000		79				
		1		. :	. 0		
27	1000		65	2			
	•	1			2	3	
28	1000		78				
		ı			0		
29	1000		78	0	•	•	
	1000	1	70	•	0	1	
30	1000	,	78	1	0		
		1			U		

			表	<u>.A</u> (
		量			法		
化合物	mqq	mg/好	<u>_1</u> *	2**	3**	4** 5	**
31	1000		51				i !
		1			(ס	
32	1000		73	1			•
		1			(0	i
33	1000		74				:
		1			· ; c) • •	. !
34	1000		72				<u>:</u> 1
	•	1			C)	
35	1000		98	3			:
		1			2	1	2
36	1000		94	2			:
		1			2	3	i.
3.7	1000		86	3			1
		1				2	;
38	1000		91	3		_	!
		1		_		2	1
39	1000	_	76	3			
		1		_		2	
40	1000	_	90	3	2	3	:
		1	12	2	2	3	
41	1000	1	13	4		3	
45	1000	1	81	3		J	
42	1000	1		J	2	3	
43	1000	-	0	0	_		ī
43	1000	1			2	2	
44	1000	_	100	1 ′			•
••		0.2			2	0	2
45	1000	•	94	2			
. –	500		35				
	250		14				
		1			0	3	

			表	Α			
	F	量			方法	 	
化合物	חסם ל	mg/鉢	_1*	2**	3**	4**	<u>5**</u>
46	1000		100	3			Ì
	500		100			•	.
	250		92				
		1			2		1
47	1000		100	2	•		i !
	500		94				
	250		44		•		:
		1				2	.
48	1000		100	3		•	·
		1				3	
49	1000			3			
		1			0	1	
50	1000		0	. •			
		1.			2		
51	1000			0			
		1			2	3	
52	1000			0			
		1			2	2	1
53	1000			0		٠	
		1			0.	1	İ
54	1000		. 0	0			
		1 .			2	2 .	
55	1000		91	0	•	_	
		1			•	1	
56	1000		. 92	3	•	_	-
	•	1				. 1	.
57	1000		94	2			i (
		1			2	3	
58	1000		94	2		_	!
		1		_		3	
59	1000			0		•	;
		1				1	

			表	<u>A</u>			
	Я	量			方法		
化合物	mag	mg/鉢		2**	3**	4**	5**
60	1000		78	2 .			•
		1				2	i
61	1000			2			
		1				3	:
62	1000		100	3		_	:
•		1		_		3	
63	1000	_	92	3		3	ı
		1	96	1	•	3	
64	1000	-	30	1		1	
	1000	1	92	1			:
65	1000	1	32	_		3	;
66	1000	•	100	0			:
00	1000	1			0	0	;
67	1000		92	1			
•		1			1	2	
69	1000		96	1			:
		1				3	• !
70	1000		51	3			1
		1				3	
71	1000		25	0.			
		1 .	•			1	
72	1000			0			•
		1		_	•	2	
73	1000	_		2	0	2	. ,
		1	•	0	U	- ,	. :
74	1000			U	2		
	1000	1	o	1	_		
75	1000	1	J		0	3	
76	1000	*	91	2			
76	1000	1	~ -		2	3	į
		-					i

			表_	<u>A</u>			
用 量				方法			
化合物	maa	mg/鉢	_1*	2**	3**	4**	5**
77	1000			0			
		1				1	
78	1000			0			!
		1				2	
79	1000		0	1			
		1			2	3	
80	1000		100	•			į
	500		94				1
	250		0				!
		1				1	:
81	1000		92			٠	
	500		84				
	250		62				
		1				1	
82 .	1000		92				
	250		32			_	
		1			•	1	
83	1000		100				
	250		78				
		1 .				1	1
84	1000		12			1	0
		1				T	U
85	1000		25			1	0
		1				7	U
86	1000	_	o .			1	0
		1				•	Ů
87	1000	_	0			1	0
		1	50			•	Ū
88 ·	1000		58				
	500		30	•			
	250		. 0			1	3
		1	25			-	-
89	1000		25		-		0
		1					-

			<u>表 A</u>		
•	F	日量	方法		
化合物	maa	mg/鉢	<u>1* 2** 3*</u>	4**	<u>5**</u>
90	1000		16	• •	
	-	1		2	3
91	1000		100		
•	500		78		
	250		13	•	
		1		2	3
92	1000		26		
		1		0	1
93	1000		94		
		1	•	1	0
94	1000		98		
		1		0	0
95	1000		100		
	500		76		
	250		25		
		1		3	0
96	1000		0		i
		1 .		2	2
97	1000		0		:
		1		1	1
98	1000		0		}
		1		2 .	3
99	1000		13		
		1		2	
100	1000		Ó		
		1	,	2	
101	1000		94		
	500	•	21 ·		
	250		21		
		1		2	
102	1000		0		
		1		1 .	0
103	1000		О		
		1		1	0

			表	<u>A</u>			
	<u>F</u>	量			5 法	·	
化合物	<u> </u>	mg/弊	<u>_1*</u>	2**	3**	4**	<u>5**</u>
104	1000		19				
		1				1	1
105	1000		90				
		1				3	
106	1000		90			•	
		1				3	
107	1000		88				•
		1				3	3
108	1000		92				
		1				3	3
109	1000		76				
•		1				1	
110	1000		92			_	
		1				3	
111	1000	_	78				•
		1				1	3
112	1000	_	62				2 .
		1				1	2
113	1000	_	51			-	2
		1				3	
114	1000		51			3	3
	-	1	97			3	
115	1000 500		85				
	250		70				
	250	1	, ,			3	3
116	1000	. *	52				i
110	500		30				:
	250		0				
	250	1	•			3	3
117	1000	-	94				
	500		76				
	250		67				
		1				2	3

			表	_A			
	F	量			方法		
化合物	торт	mg/钵	_ <u>1</u> *	2**	3**	4**	5**
118	1000		25				
		1				2	3
119	1000		36				
	500		36				
	250		0				
•		1 .	•			. 3	3
120	1000		92		. •		•
		1		•		3	3
121	1000		36				
	500		36				
	250		42				
	•	1				3	3
122	1000		92				
		1				2	3
123	1000		94				
	500		92				
	250		51				
		1				3 ·	3
124	1000		98				
	500		92		•		
	250		39				
		1	•			3	. 3
125	1000		61				
		1				3	2
126	1000		84		-		
	500		63		•		
	250		13				
		1		•		2 .	2
127	1000		13				!
	500		0				
		1				2	
128	1000		0				
		4				3	3

	24-
用量方	
化合物 ppm mg/体 1* 2**	3** 4** 5**
129 1000 84	
500 57	
250 25	
1	3 3
130 1000 92	
500 63	
250 0	•
1	3 2
131 1000 80	
500 78	
250 19	
1	3 3
132 1000 84	
500 41	
250 0	
1	. 2 1
133 1000 0 .	٠.
1	2 1
134 1000 57	
500 13	
250 13	
1	3 3
135 1000 0	
1	2 0
136 1000 80	
500 .13	
250 38	
1	3 2
137 1000 71	
1 .	2 2
147 1000 96	
500 76	
250 44	
1	2

	_	- -	表_	<u>A</u>	24 NE		
	F	1量			方法		
化合物	mqq.	mg/辞	1*	2**	3**	4 **	<u>5**</u>
148	1000		0				
•		1				3	
149	1000		0				
		1				1	
150	1000		0				
	500		15				
	250		15				
		1				0	

0=无虫害控制 1=50-74% 虫害控制 2=75-90% 虫害控制 3=91-100%虫害控制

B. 大豆囊线虫试验

当豆苗到单叶期时开始叶子施用。在单叶期一次性喷撒或在单叶期加上7天,或单叶期加7天再加14天时连续喷撒。将试验化合物溶解在含1%甘油和0.1%Tween[®]20的水中。每次喷撒时,都将土壤表面覆盖,防止土壤接触。按照下表列出的用量施用。

栽种后约 5周,通过对每个根系统上胞囊计数进行最终虫害评价。与接种过的,水/甘油/Tween® 20 配方控制相比较,通过被处理苗上每个根的胞囊平均数的减少率测定其控制。

表 B

用量	时间安排	控制百分率
1000	单叶期	7 0
2000	单叶期	6 2
1000	单叶期+1天	100
2000	单叶期+1天	9 4 :
1000	单叶期+1天+14天	100
2000	单叶期+1天+14天	100

C. 昆虫和螨的试验

通过叶子施用对本发明化合物控制二点叶螨(Tetranychus urticae或TSSM), 绿色桃蚜(Myzus persicae或GPA), 和南方玉米根虫(Diabrotica undecimpunctata或CRW)的有效性进行了试验。

在测定对蚜虫有效性的初期试验中,将生长3周的中国卷心菜(Brassicachinensis)用来自培养苗叶片上的绿桃蚜成虫感染。新感染的植株留在生长室中直到虫数增加至多于40个虫子(每片叶上)。选择感染最均匀的植株供试验用。将适宜量的试料直接溶解在含有1%甘油和0.1%Tween®20的水中。对植株的上部和下部叶表面进行喷撒。每种试液各喷撒5颗植株。经喷撒的植株移至通风柜直至喷撒物干燥。再将植株放回生长室达5天,然后进行最终控制百分率评价。

对于二点叶螨试验,使用的是生长至单叶期的大豆苗(Glycine max)或生长至全子叶期的棉花苗(Gossypium hirsutum)。将用6[#] 木塞穿孔器制成的叶盘从成虫螨和卵感染的培养株上除下并放在大豆苗单叶表面或棉花苗全叶的上部。当这些螨迁移并使整个植株感染(6-10天)后,则除去叶盘。选择最均匀感染的植株供试验用,每次处理用5棵植株如上所述用试液喷撒。施用后5天,检查全部叶子,计算叶子下侧上的成虫螨数目。与接种过的水/配方控制相比较,用处理植株上螨的平均数的减少率计算出控制。

对南方玉米根虫进行试验,将4粒玉米(Zea mays)种子分别种在3英寸原钵中,并置于温室生长直至6英寸高。将靠近每株苗根部的土壤表面划出许多小孔并将10个南方玉米根虫的初蜕幼虫放在小孔中。感染一天,用上述相同配方试液对玉米苗的叶子进行喷撒。喷撒后7天,从土壤(钵子浸泡在10M,MgSO4溶液中)中回收幼虫。求每次处理的活幼虫数的平均值,并计算出控制百分率。

	表	C		
八合物	用量		控制百分率	<u> </u>
, , , , , , , , , , , , , , , , , , , ,	(p p m)	GP A		CRW
			*	
1	2000	6 0	8 5	

	1000			3 5
	500	2 5	8 4	
11	2000	2 0	2 8	
	1000			8 7
	500	0		
2 2	1000	0	8 0	5 8
2 3	1000	3 0	6	75
2 6	1000	4 0	4 9	8 0
3 5	1000	60	•	87
3 7	1000	3 0		8 0
3 8	1000	70	8 4	8 0
4 6	1000	100	100	8 0
	500	90.		
	200-		8 0	
	100	7 0		
	4 0		. 60	

D. 马铃薯种的处理

通过马铃薯种块施用,对本发明化合物!控制根瘤线虫 (Mcloidogyne incognita)的有效性进行试验。还通过叶子施用对该化合物进行试验以作对比。

将马铃薯切成块,每块至少含两个芽。每次处理都将块茎称重并放在化合物和经充分研磨的粘土的混合物中,使种块以恒定的处理体积在规定的处理用量下经受试验。搅动马铃薯种块直至表面被覆盖然后栽种,每1加仑的钵中种一块。每钵接种50000个虫卵。

在叶子施用时,每株苗都喷撒化合物1的含1%甘油和0.05%Tween[®] 20的水溶液。喷撒化合物应使其均匀分布在所有叶子的表面。每株苗

被喷撒四次(2周间隔),并在马铃薯块栽种时或每次处理前三天进行接种。结果示于表D

表 D

用量	叶子喷撒	接种时间	虫害控制率
mg/kg种块。	ррш		
500		栽种时	99
2 5 0			97
125			77
	2000	栽种时	8 4
	1000		6 9
	5 0 0		4 6
	2000	喷撒前	100
	1000		97
	5 0 0	-	9 2
0	0	栽种时	- 0