לוגיקה למדעי המחשב – שיעור 4: שפת היחסים, תחביר וסמנטיקה

117 קסלר 2511925 דוד קסלר

חזרה קצרה על השיעור הקודם

מנגנון הוכחה פורמלי

- <mark>מנגנון הוכחה פורמלי</mark>: קב' אקסיומות וכללי היסק / צעדי גזירה
- <mark>סדרת הוכחה פורמלית</mark>: סדרה המתקבלת רק מהאקסיומות ומצעדי הגזירה נקראת סדרת הוכחה פורמלית של הפסוק האחרון
 - "מנגנון הוכחה פורמלי נקרא "תחשיב"

תחשיב הילברט

• האקסיומות הלוגיות:

$$(\varphi \to (\psi \to \varphi)) .1$$

$$((\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta))) .2$$

$$((\neg \varphi \to \neg \psi) \to (\psi \to \varphi)) .3$$

• כלל הגזירה היחיד MP:

$$\frac{\varphi,(\varphi\to\psi)}{\psi}$$

הוכחה בתחשיב – דוגמה חדשה

$$\begin{array}{c} \left(\varphi \rightarrow (\psi \rightarrow \varphi)\right).1 \\ \left((\varphi \rightarrow (\psi \rightarrow \theta)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \theta))\right).2 \\ \left((\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)\right).3 \end{array} \qquad \left(\neg A \rightarrow (A \rightarrow B)\right) \text{ usual } \bullet$$

$$(Ax. 3) \qquad 1.((\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B))$$

$$(\mathsf{Ax.}\ 1) \qquad 2.(\big((\neg B \to \neg A) \to (A \to B)\big) \to (\neg A \to ((\neg B \to \neg A) \to (A \to B))))$$

(MP 1,2)
$$3.(\neg A \to ((\neg B \to \neg A) \to (A \to B)))$$

(Ax. 2) 4.
$$((\neg A \rightarrow ((\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B))) \rightarrow ((\neg A \rightarrow (\neg B \rightarrow \neg A)) \rightarrow (\neg A \rightarrow (A \rightarrow B))))$$

(MP3,4)
$$5.((\neg A \rightarrow (\neg B \rightarrow \neg A)) \rightarrow (\neg A \rightarrow (A \rightarrow B)))$$

(Ax. 1) 6.
$$(\neg A \rightarrow (\neg B \rightarrow \neg A))$$

(MP5,6)
$$7.(\neg A \rightarrow (A \rightarrow B))$$

משפט הדדוקציה

$$K \vdash (\psi \rightarrow \varphi)$$
 אזי $K \cup \{\psi\} \vdash \varphi$ אם •

$$?(\neg A \rightarrow (A \rightarrow B))$$
איך באמצעות משפט הדדוקציה נוכיח •

$$\{\neg A\} \vdash (A \rightarrow B)$$
 עפ"י משפט הדדוקציה צריך להוכיח •

$$(Ax. 1) 1.(\neg A \rightarrow (\neg B \rightarrow \neg A))$$

(הנחה)
$$2.\neg A$$

(MP1,2)
$$3.(\neg B \rightarrow \neg A)$$

(Ax. 3)
$$4.((\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B))$$

(MP3,4) 5.
$$(A \to B)$$

נושאים נוספים שלמדנו

- י קבוצת פסוקים $K \vdash \varphi$ נקראת לא עקבית אם"ם קיים פסוק ϕ כך ש $K \vdash \varphi$ וגם אם קבוצת פסוקים אם לא קיים פסוק כזה, הקבוצה עקבית (קונסיסטנטית). אם לא קיים פסוק כזה, הקבוצה
- $K \vdash \varphi$ הוכחה בדרך השלילה אם $K \cup \{\neg \varphi\}$ אם אוי אזי אזי $K \cup \{\neg \varphi\}$ הוכחה בדרך השלילה אם איימוש: נניח בשלילה $\neg \varphi$, נגיע לסתירה ב $K \cup \{\neg \varphi\}$ ונסיק $\neg \varphi$
 - אזי $K \vdash \varphi$ אם φ ופסוק K ופסוק: לכל קבוצת פסוקים: לכל קבוצת אזי $K \Longrightarrow \varphi$

יחידה 5 – שפת היחסים, תחביר ופירוש

שפת היחסים

- שפה חזקה יותר משפת הפסוקים
 - :ניתן לבטא טענות כגון
 - "כל אדם הוא בן תמותה" ס
- "יש אנשים שאוהבים לשתות יין" ס
- "יש לפחות אדם אחד שמגדל כלב ולא מגדל חתול"
- נלמד סימנים נוספים כגון כמתים, ומודלים יותר מורכבים

הא"ב של שפת היחסים

• סימנים משותפים לכל השפות:

```
v_0, v_1, v_2... או x, y, z... סמשתנים v_0, v_1, v_2... או v_0, v_1, v_2... שאנו מכירים: v_0, v_1, v_2... שאנו מכירים: v_0, v_1, v_2... שאנו מכירים: v_0, v_1, v_2... ססוגרים: v_0, v_1, v_2... שיוויון v_0, v_1, v_2...
```

• סימני חתימה ספציפיים לכל שפה:

$$c_0, c_1, c_2...$$
 כקבועים: $f(,), g(), h(,,),...$ פונקציות: $R_1(,), R_2(),...$

שפה ומבנה/מודל בשפה היחסים

- השפה מגדירה
- סכמה קבועים יש
- סכמה פונקציות יש ובאיזה ערכיות
 - סכמה יחסים יש ובאיזה ערכיות
 - מבנה בשפה מגדיר
 - סתחום המבנה
 - ספירוש לקבועים
 - ספירוש לפונקציות
 - ספירוש ליחסים

דוגמאות

- . כאשר L = < S,T,R >יחסים חד מקומיים וL = < S,T,R >•
 - פאו"פ, סטודנט באו"פ, X S(x) הנשים X S(x) כאשר X D כאשר X D כאשר X R(x,y) מנחה באו"פ, X R(x,y) סטודנטים:

 $\forall x (T(x) \rightarrow \exists y \exists z (S(y) \land S(z) \land R(y,x) \land R(z,x) \land \neg (y = z))$

, אוכלת בשר x-S(x) חיות האוכלת בשר M2=< D, אוכלת בשר x-R(x) חיה אוכלת פירות, אוכלת פירות, x-R(x,y) חיה אוכלת פירות,

יש חיה שאוכלת בשר, שגם טורפת חיה שאוכלת פירות $\exists x(S(x) \land \exists y \ (T(y) \land R(x,y))$

סיש חיה שטורפת את בני מינה

 $\exists x R(x,x)$

דוגמאות

- s קבועים, c_0,c_1 כאשר $c_0,c_1,s,f,g,R>$ קבועים, t פונקציה חד מקומית, וt פונקציה חד מקומית, t פונקציה חד מקומית.
- בעוקב העוקב אינת העוקב איבר איבר איבר איבר איבר העוקב איבר מינימלי: $M=< N, 0, 1, s, +, *, <> \bullet$

$$\exists x \forall y (x < y \ \lor x = y)$$

:סלמספרים הטבעיים אין איבר מקסימלי

$$\forall x \exists y (x < y)$$

דוגמאות

- פונקציה s קבועים, c_0,c_1 כאשר בא כאשר $L=< c_0,c_1,s,f,g,R>$ חד מקומית, f,g פונקציות דו מקומיות, וf פונקציות דו מקומי.

$$\varphi(x): \exists z f(z,z) = x$$

סיש אינסוף מספרים ראשוניים:

$$\forall x \exists y (x < y \land \forall a \forall b (a * b = y \rightarrow (y = a \lor y = b))$$

הגדרת שמות עצם

שם עצם בשפת היחסים הינו:

מחרוזת t בת סימן אחד שהוא משתנה או קבוע היא שם עצם אלמנטרי בעומק מבני d(t)=0

אם
$$t_1 \dots t_k$$
 שמות עצם, אזי $t_1 \dots t_k$ מקומית, אזי $t = f(t_1, \dots, t_k)$ היא שם עצם בעומק מבני $d(t) = 1 + \max(d(t_1), \dots, d(t_k))$

ידוגמאות:

$$0, 1, x, x + 1, (x * y) + 1$$

 $f(x), g(f(y), x), f(f(f(y)))$

שמות עצם - תרגיל

- הוכיחו שאם t ו-s הם שמות עצם, ו-x שם של משתנה, אזי t[s/x] הוא שם עצם
 - t נוכיח באינדוקציה על הבנייה של שם העצם \cdot
- בסיס: אם t=x ש"ע אלמנטרי הוא או קבוע או משתנה. אם t ש"ע אלמנטרי הוא או קבוע או קבוע או משתנה אחר המשתנה t[s/x]=s אזי אזי t[s/x]=s אזי t[s/x]=t
 - עד: אם (t_1, \ldots, t_k) משתנה והוא לא בסוגריים או $x:t=f(t_1,\ldots,t_k)$ לא בסוגריים או $t[s/x]=f(t_1[s/x],\ldots,t_k[s/x])$ לפי הנחת בפסיקים. לכן t[s/x] ש"ע ולכן t[s/x] ש"ע.

השמת משתנים במבנה

- <mark>השמה S במבנה</mark> היא התאמת עצמים במבנה למשתנים
- x או S(x) זהו סימון לעצם שההשמה מתאימה למשתנה x^{S} או הפירוש של x בהשמה.
 - השמה לש"ע אם היא מתאימה S רלוונטית לש"ע אם היא מתאימה tש"ע לכל משתנה בt.
 - סדוגמה: השמה רלוונטית לg(f(y),x) היא השמה המתאימה y וגם לx גם לx וגם לy.
 - $?c_0$ מהי השמה רלוונטית ל \circ

פירוש שמות עצם בהשמה

לכל ל t^S מודל פירוש באינדוקציה נגדיר השמה. נגדיר אינדוקציה פירוש ש"ע ל t^S השמה השמה (t^S השמה רלוונטית אינדיר ש"ע ל

סבסיס:

- $S(c) = c^M, c$ אם t קבוע
- מוגדר ישירות בהשמה S(x), מוגדר משתנה t

:סמעבר

 $S(t_i)$ אם $S(t_i)$ ו- $S(t_i)$ השמה, עפ"י הנחת האינדוקציה ווגד $t=f(t_1\dots t_n)$ מוגדר ל $S(t_i)=f^M(S(t_1)\dots S(t_n))$ ונגדיר ל $S(t_i)=f^M(S(t_1)\dots S(t_n))$

השמת משתנים - דוגמה

:תהי L שפה עם שני קבועים ושתי פונקציות דו מקומיותullet $L = \langle c_1, c_2, f_1, f_2 \rangle$ $M=< N,0,1,+,\cdot>$ יהי M המודל • $S(f_2(x,y))$ מהו S(x) = 7, S(y) = 11 מהו S(x) = 7 $S(f_2(x,y)) = f_2(S(x),S(y)) = f_2(7,11) = 7 \cdot 11 = 77$ $S(f_2(x,f_1(y,y)))$ מהו S(x)=2, S(y)=4 ההשמה S(x)=3 $S\left(f_2(x,f_1(y,y))\right) = f_2\left(S(x),f_1(S(y),S(y))\right)$ $= 2 \cdot (4 + 4) = 16$

סביבה

$$x_i$$
 הינה כל ההשמות המתאימות $\begin{bmatrix} x_1 & ... & x_n \\ a_1 & ... & a_n \end{bmatrix}$ הינה כל ההשמות המתאימות הסביבה $\begin{bmatrix} x & y \\ 7 & 11 \end{bmatrix}$ הסביבה למשל, הסביבה $t[x,y]$ אפשר לסמן בש"ע את סדר המשתנים כך $t[x,y]$ מה יהיה $t[x,y] = f_2(x,f_1(y,y))$ אם נגדיר t^M t^M

נוסחאות בשפת היחסים

•נגדיר באינדוקציה מבנית נוסחאות בשפת היחסים

 $R(t_1 \dots t_n)$ ש"ע אזי 'דחס ח מקומי ו-מר מקומי ווע אזי 'דחס ח מקומי ווע אזי 'דחס ח מקומי ווסחה אטומית

 $\neg \varphi, \varphi \land \psi, \varphi \lor \psi, \varphi \rightarrow \psi, \varphi \leftrightarrow \psi$ פאם φ, ψ נוסחאות נוסחאות

אות אות אות אים ארב, אם אמענה, משתנה, משתנה, משתנה ו ϕ נוסחאות ϕ

?דוגמה, מי מהמחרוזות הבאות נוסחה? $R(x,y), \forall x \exists y f(x,y), \forall x \exists y R(x,y) \rightarrow R(y,x)$

משתנים חופשיים וקשורים

- R(x) בהנתן יחס חד מקומי R במודל מסוים, מהו כתלוי בהשמה ובערך שהיא נותנת לx
 - ?האם גם $\forall x R(x)$ תלוי בהשמה
- בנוסחה הראשונה, x נקרא משתנה חופשי, ובשניה x קשור -
 - $?R_1(x) \land \exists x R_2(x)$ האם x חופשי או קשור בנוסחה x

משתנים חופשיים וקשורים - הגדרה

- בנוסחה אטומית, כל מופעי המשתנים נקראים מופעים חופשיים
- אם φ,ψ נוסחאות, בנוסחאות φ ו- $(\varphi@\psi)$ כל כמת קושר את אותם משתנים שקשר ב- ψ וב- ψ וכל שאר המשתנים שלא היו קשורים חופשיים
 - ישר Qx (\exists או \forall או Q (כאשר Q הוא \forall או \exists או \forall או φ את כל המופעים החופשיים של \exists ב φ המשתנים שהיו קשורים נשארים קשורים לאותו כמת, וכל השאר חופשיים
 - משתנה חופשי ב- ϕ אם יש לו מופע חופשי אחד לפחות x
 - נוסחה נקראת <mark>פסוק</mark> אם אין בה משתנים חופשיים

משתנים חופשיים וקשורים - תרגול

- ?איזה כמת x ו-y קשורים בנוסחאות הבאות?
 - $(\forall x R(x,y) \land \exists y R(y,x)) \circ$
- שני שני x קשור לx קשור לy ופשי. בצד ימין אופשיה דימין א קשור לx חופשי. שני המשתנים חופשיים בנוסחה.
 - $\forall x (R(x,y) \land \exists y R(y,x)) \circ$
 - שני מופעי x קשורים לx וע חופשי מצד שמאל וקשור מצד ימין. סה"כ בנוסחה y חופשי וx קשור.
 - $\forall x (R(x,y) \land \exists x \exists y R(y,x)) \circ$
- $\exists x$ בצד שמאל x קשור לx וע חופשי. בצד ימין y קשור לע וו-x קשור לסה"כ בנוסחה y חופשי וx קשור.

הצבה

- ע"ע tיהיו ϕ נוסחה וו ϕ יהיו

• דוגמה:

$$?\phi[t/y]\ ?\phi[t/x]$$
 מהי $\varphi=\forall x(R(x,y)\land\exists yR(y,x))$ סתהי $\varphi[t/x]=\varphi$ הופעים חופשים. $\varphi[t/x]=\varphi$ חופשי. $\varphi[t/y]=\forall x(R(x,t)\land\exists yR(y,x))$

הצבה - תרגילים

- $(\forall x \big(R_1(f_1(x),y)\big) \to \exists y (R_2(x,y)))$ הנוסחה φ הנוסחה φ הנוסחה פאילו מבין ההצבות הבאות כשרות φ
 - $\varphi[y/x]$
 - $\varphi[x/y]$
 - $\varphi[t/y]$

:ספתרון

- ימין אין מחליף מצד מצד מאל אין הצבה. מצד מחליף $-\phi[y/x]$ את א ונקשר את אונקשר
 - מצד שמאל ונקשר. מצד y מצד מחליף את כשרה. בכה כשרה. $-\phi[x/y]$ מצד ימין אין הצבה כשרה
 - כשרה

הצרנה בתחשיב היחסים

- Q: Q: Q: C הוא לא בעל תכונה P: C הוא לא בעל תכונה $\forall x (P(x) \rightarrow \neg Q(x))$
- :Q שהוא בעל תכונה P שהוא בעל תכונה $\exists x(P(x) \land Q(x))$
- Q שהוא לא בעל תכונה P שהוא לא בעל תכונה $\exists x (P(x) \land \neg Q(x))$

הצרנה - דוגמאות

• דוגמה להצרנה שגויה: "כל נמר הוא טורף":

נמר
$$x - L(x)$$

טורף
$$x - P(x)$$

$$\forall x (L(x) \land P(x))$$

- ?איזה דוגמה סותרת את המשפט המוצרן אבל לא את הטענה המקורית
 - האם יש דוגמה שסותרת את הטענה המקורית אבל לא את המשפט המוצרן?
 - ?איך היה צריך להצרין את המשפט

1 הצרנה – תרגיל

- iנתונים אינסוף היחסים x $P_i(x)$ מספר המתחלק ב \bullet
- 6הצרינו: כל מספר זוגי המתחלק ב1 מתחלק ב1 הצרינו: כל מספר זוגי המתחלק ב1 הצרינו: 1 אר1 1 הצרינו: כל מספר זוגי המתחלק ב1
- yבר בע x L(x,y) מספרים. x-U(x) איבר בע
 - הצרינו: קיים מספר זוגי השייך לכל הקבוצות בתחום הצרינו: $\exists x(P_2(x) \land \forall y(U(y) \rightarrow L(x,y)))$
 - הצרינו: כל קבוצה מכילה לפחות מספר אחד $\forall x(U(x)
 ightarrow \exists y(P_1(y) \land L(y,x)))$

1 הצרנה – תרגיל

- iנתונים אינסוף היחסים x $P_i(x)$ מספר המתחלק ב \cdot
- yבר בע x L(x,y) . קבוצת מספרים x-U(x) איבר בי
- הצרינו: כל 2 מספרים המתחלקים ב4 שייכים לאותן קבוצות

$$\forall x \forall y ((P_4(x) \land P_4(y)) \rightarrow (\forall z U(z) \\ \rightarrow ((U(x,z) \rightarrow U(y,z)) \land (U(y,z) \rightarrow U(x,z))))$$

אייך לפחות לשתי קבוצות - $\forall x(P_3(x) \to \exists y \exists z (\neg (y=z) \land U(y) \land L(x,y) \land U(z) \land L(x,z)))$

2 הצרנה – תרגיל

$$\neg \exists x (K(x) \land \neg A(x))$$
$$\neg \exists x (P(x) \land A(x))$$
$$\neg \exists x (K(x) \land P(x))$$

- הצרינו את הטענות הבאות:
 אין כנר שהוא לא עשיר
 אין פסנתרן שהוא עשיר
 (לכן) כנר לעולם איננו פסנתרן
 - השתמשו בשפה הבאה:

כנר
$$x - K(x)$$
 כנר $x - P(x)$

עשיר
$$x - A(x)$$

הגדרה פורמלית של מבנה / מודל

- •תזכורת: השפה מגדירה: כמה קבועים, פונקציות ויחסים (כולל ערכיות) יש.
- מבנה M זהו רביעייה סדורה הכוללת קב' A שנקראת תחום F^M 'פונ' c לכל קבוע c, פונ' c פונ', המודל, התאמת עצם מהתחום c לכל קבוע c פונ' מהערכיות הנדרשת לכל פונקציה c בשפה, ויחס c מהערכיות הנדרשת לכל יחס c בשפה

$$M = \langle A; c_1^M, c_2^M, ...; F_1^M, F_2^M, ...; R_1^M, R_2^M, ... \rangle$$

ערך האמת של נוסחה

- השמה S רלוונטית לנוסחה φ אם היא אם היא מתאימה בן זוג לכל המשתנים החופשיים ב- φ .
 - יערך האמת של נוסחה במודל בהשמה רלוונטית: •

 $(t_1,...,t_n)\in R^M$ אם "ב $S(\varphi)=T$ אם עוסחה אטומית $\varphi=R(t_1,...,t_n)$ אם $\varphi=S(\psi)=F$ אם אם $S(\phi)=T$ אזי $\varphi=\neg\psi$ אם $\varphi=\sigma$

אם ψ, θ אזי אזי אזי אזי אזי פי הנכונות של פי הנכונות אזי אזי אזי אזי אזי אזי פי הנכונות של פי הנכונות של $S(\phi)$ אזי אזי $\phi = \psi \oplus \theta$ אם $\phi = \{ \lor, \land, \to, \leftrightarrow \}$

כרונה ψ -ש ערכונה α במודל α אם"ם קיים איבר $\beta(\varphi)=T$ אזי $\beta(\varphi)=T$ אזי $\beta(\varphi)=T$ אברום ששיגור α אליו יעשה את $\beta(\varphi)=T$ נכונה את ערכונה $\beta(\varphi)=T$ אזי $\beta(\varphi)=T$ אם"ם לכל איבר $\beta(\varphi)=T$ במודל $\beta(\varphi)=T$ במודל $\beta(\varphi)=T$ אזי $\beta(\varphi)=T$ אזי $\beta(\varphi)=T$ אם"ם לכל איבר $\beta(\varphi)=T$

ערך האמת של נוסחה - דוגמאות

L=< R> תהי

 $? \varphi = \forall x \forall y (R(x,y) o \neg R(y,x))$ מה ערך האמת של $M_1 = < N, <>$ עבור R עבור פירוש לחלוי במודל – צריך פירוש לחלוי עבור $M_2 = < N, \leq >$ ועבור $M_2 \neq \varphi$ ו $M_1 = \varphi$ סנסמן $M_2 \neq \varphi$ ו $M_2 \neq \varphi$ בתר $M_1 \neq \varphi$

 $?M_2$ במודל $\psi = orall y R(x,y)$ במודל $\psi = \forall y R(x,y)$

בניגוד ל- ϕ הוא לא פסוק. יש משתנה חופשי x. במקרה הזה מודל לא מספיק וצריך השמה כדי לדעת את ערך האמת.

 $?S_2(x)=0$ מה ערך האמת של ψ בהשמה $S_1(x)=1$ בהשמה ערך האמת של $M_2\models_{S_2}\psi$ ו- $M_2\not\models_{S_1}\psi$ סנסמן פוסמן אור $M_2\not\models_{S_2}\psi$

פרוש פסוק במודל, נוסחה נכונה במודל

- אזי φ אזי אופשיים אזי אופשיים פא אזי אבור פא השמות ו- S_1 אזי אופשיים בי S_1 אזי אבור השמות אבור כל המשתנים החופשיים בי $S_1(\varphi) = S_1(\varphi)$
 - סמקרה פרטי: עבור פסוק ערך האמת מתלכד עבור כל ההשמות. פסוק יכול להיות נכון או לא נכון במודל
 - והשמה $M = <\{1,2,3\},1, \geq >$ מודל גור שפה L = < c,R > והשמה העונה שפה S(x) = 2
 - ?S ממה ערך האמת של פמה אם $?\phi=R(x,c)$ האם זה תלוי בהשמה סמה ערך האמת של הנוסחה לא תלוי בהשמה. אופשי ערך האמת של הנוסחה לא תלוי בהשמה. ϕ
 - S בור כל השמה M עבור במודל: נוסחה הנכונה במודל M

נוסחאות נכונות במודל / השמה – תרגיל 1

- :- הוכיחו או הפריכו כל אחת מהטענות הבאות, כאשר M מודל, S השמה ו- ϕ נוסחה:
 - $M \vDash_S \varphi$ אז $M \vDash_S \forall x \varphi$ אז $M \vDash_S \forall x \varphi$
 - $M \vDash_S \varphi$ מתקיים מתקיימת לכל השמה כן. אבל אם בהשמה, אבל אם אבל לא לא לא לא איים כן.
 - $M \vDash_S \exists x \varphi$ אז $M \vDash_S \varphi$ אס $M \vDash_S \varphi$
 - $M \vDash_S \exists x \varphi$ כן. קיימת השמה S שבה המשתנה שמשוגר לx מקיים את G שבה המשתנה שמשוגר כן.
 - $M \vDash \varphi$ מ"ם $M \vDash \forall x \varphi \circ$
 - $M \vDash \varphi$ אם"ם אם נכון לכל השמה של א כלומר $M \vDash \forall x \varphi$. פן. מהגדרת $M \vDash \forall x \varphi$
 - $M \vDash \neg \varphi$ אז $M \not \vDash \varphi$ אז
 - .א. יכול להיות שבהשמה אחת ϕ נכון ובאחרת לא.
 - $\models \neg \varphi$ אז $\not\models \varphi$ או φ
 - לא. יכול להיות שבמודל והשמה מסוימת ϕ נכון ובאחרת לא

נוסחאות נכונות במודל / השמה – תרגיל 2

פונקציית $D=\{0,1,2,\dots\}$ מבנה שתחומו המספרים הטבעיים M=[D,I] יהי M=[D,I] יהי הפירוש: I[c]=1 , $I[F(x,y)]=(x\cdot y)$

לפניכם הנוסחה ϕ הבאה:

$$\varphi(x,y,z)= \forall z \left(\left(\left(\exists x_1(F(x_1,z)=x)\right) \land \left(\exists y_1(F(y_1,z)=y)\right)\right) \rightarrow (z=c)\right)$$
 מיצאו השמה S כך ש- S כך ש- S מיצאו השמה S כך ש- S כך ש- S כר ש- S מיצאו השמה S כר ש- S כר ש- S

- (z^2) בריך משתנה קשור. צריך למצוא (x,y) כך שקיימים לא קיימים לא פתרון: $(x_1\cdot z=x \land y_1\cdot z=y) \rightarrow z=1$
 - $(5\cdot z=5 \land 5\cdot z=5) \rightarrow z=1$ עבור $x_1=y_1=5$ קיימים $x_2=y=5$ עבור פ
 - z עבור z=0 איימים x_1,y_1 המקיימים לכל x=y=0 עבור z=0 לא קיימים $(x_1\cdot z=0 \land y_1\cdot z=0) \rightarrow z=1$

ϕ הסגור הכולל של

- φ אם $x_1, ..., x_n$ כל המשתנים החופשיים ב- $x_1, ..., x_n$ הסגור הכולל של אם אם אם אבים אות לא הפסוק א $x_1, ..., x_n$ הוא הפסוק
- ϕ יהיו ϕ נוסחה, x משתנה וM מודל. אזי ϕ נכונה במודל X אם"ם $\forall x \phi$
 - הנוסחה ϕ נכונה במודל M אם"ם הסגור הכולל שלה $\forall x_1 \dots \forall x_k \varphi$

טאוטולוגיה

- $?\varphi = (R(x,y) \lor \neg R(x,y))$ מה ערך האמת של •
- ϕ ערך האמת של הפסוק לא תלוי בהשמה וגם לא תלוי במודל. אם נוסחה נכונה בכל מודל ובכל השמה היא נקראת שאוטולוגיה או אמת לוגית, ונסמן φ
 - ניתן לבנות טאוטולוגיות מקבילות בתחשיב היחסים לכל טאוטולוגיה בתחשיב הפסוקים ע"י החלפת האטומים בנוסחאות אטומטיות.
 - הנוסחה הנ"ל מקבילה לנוסחה ($P \lor \neg P$) בתחשיב הפסוקים
 - בוסחה ϕ שאינה נכונה בשום מודל והשמה נקראת סתירה.
 - בוסחה ϕ שקיים מודל והשמה בו היא נכונה נקראת ספיקה.

טאוטולוגיה – תרגיל 1

- ?אילו מהנוסחאות הבאות טאוטולוגיות
 - $(R(x,y) \to R(x,y)) \circ$
- כן נובע ישירות מטאוטולוגיה של תחשיב הפסוקים
 - $(\forall x \exists y R(x,y) \to \exists y \forall x R(x,y)) \circ$
- xלכל השלמים. (קטן מ-) < הוא היחס השלמים. לכל לא רא היחס אבל היחס אבל היחס אבל א היחס אבל א היחס אבל א אבל א x < y מתקיים א קיים א קיים א
 - $(\exists x \forall y R(x,y) \rightarrow \forall y \exists x R(x,y)) \circ$
 - x כן אם קיים x כך שלכל y מתקיים x אזי לכל y קיים x כן x המקיים x (אותו x שהופיע בצד שמאל) x

2 טאוטולוגיה – תרגיל

- $(\forall x(p(x) \lor q(x)) \leftrightarrow (\forall xp(x) \lor \forall xq(x)))$ האם הפסוק טאוטולוגיה?
- לא. למשל, p(x) זוגי, q(x) אי זוגי. צד ימין מתקיים צד שמאל לא
 - ?האם הפסוק ספיק
- או מודל שמקיים, q ואת p, או בצורה בצורה מחדל שמקיים $\forall xp(x)$

3 טאוטולוגיה – תרגיל

- עבור כל אחד מהפסוקים הבאים הוכיחו האם הוא טאוטולוגיה, ספיק או סתירה
 - $(\exists x P(x) \to \forall x G(x)) \to \exists x (P(x) \to G(x)) \bullet$
- אזי $\forall x G(x)$ גורר אוטולוגיה. אם קיים x שעבורו P(x) גורר $\exists x (P(x) \to G(x))$ ולכן ולכן G(x) גם P(x) גם עבור אותו P(x)
 - $(\forall x P(x) \rightarrow \exists x G(x)) \rightarrow \exists x (P(x) \rightarrow G(x))$ סלא טאוטולוגיה אבל ספיק
 - עבור x-G(x) אי זוגי וגי x-P(x) אי זוגי לא מתקיים
 - עבור -G(x) טאוטולוגיה ו-P(x) סתירה מתקיים

גרירה לוגית

- נוסחה ψ נוסחה ψ אם בכל מודל M ובכל השמה S בה מתקיים ϕ מנוסחה ϕ או $\phi \models \psi$ נסמן $M \models_S \phi$ מתקיים $M \models_S \phi$ שימו לב לשימוש הכפול בסימן ϕ
- ים בכל מודל M אם בכל מודל $K=\{\varphi_1,\varphi_2,\dots\}$ אם בכל מודל אוררת לוגית נוסחה אות $K\models\psi$ נסמן אות כל הנוסחאות בקבוצה מתקיים $M\models_S\psi$ ממספקת את כל הנוסחאות בקבוצה מתקיים $K\mapsto\psi$
 - משפט:

$$\vDash (\varphi \to \psi) ~~ \forall \varphi \vDash \psi \circ$$

$$\vDash \varphi_1 \land \varphi_2 \land \cdots \land \varphi_n \to \psi ~~ \forall K \vDash \psi \ K = \{\varphi_1, \varphi_2, \ldots, \varphi_n\}$$
טעבור $\{\varphi_1 \land \varphi_2 \land \cdots \land \varphi_n \to \psi ~~ \forall K \vDash \psi \ K = \{\varphi_1, \varphi_2, \ldots, \varphi_n\}$ טעבור

נוסחאות שקולות לוגית

- $arphi (arphi \leftrightarrow \psi)$ אם"ם $arphi \equiv \psi$, אם"ם $\psi = \psi$ ו- ψ הנוסחאות ψ
- נכונה עם ψ נכונה שקולה: בכל מודל M והשמה S שבה ϕ נכונה גם ולהיפך
- $\phi(\phi)=\phi$ אם $\phi\equiv\psi$ אזי מתקיים $\phi\equiv\psi$ וגם $\phi\equiv\psi$ אזי $\phi\equiv\psi$ אם $\phi\equiv\psi$ אזי $\phi\equiv\psi$ אדי מתקיים $\phi\equiv\psi$ אזי מתקיים $\phi\equiv\psi$
- ילקבל $\psi'=\psi$ ו- ψ תת נוסחה של φ , אז ניתן להחליף את $\psi=\psi'$ ולקבל יוסחה ϕ שקולה ל- φ

נוסחאות שקולות לוגית - תרגיל

י קיבעו עבור כל זוג נוסחאות האם הן שקולות זו לזו:

$$\forall x (\varphi(x) \rightarrow \psi) \equiv (\forall x \varphi(x) \rightarrow \psi) \circ$$

 $x-\varphi(x)$ סתירה כלשהי. ψ N סתירה נגדית: התחום הוא + לא שקולות. דוגמה נגדית: התחום הוא + לא שקבל ערך + (כי + + לא מקבל ערך + לא מתקיים שלכל + המשוואה + המשוואה + לא מקבלת ערך + לא מקבלת ערך + לא מקבלת ערך + המשוואה + לא מקבלת ערך + לא מתקיים שלכל + לא מתקיים

$$\exists x (\varphi(x) \leftrightarrow \psi) \equiv (\exists x \varphi(x) \leftrightarrow \psi) \circ$$

לא שקולות. דוגמה נגדית: אותה דוגמה כמו בסעיף הקודם. הפעם צד ימין לא שקולות. דוגמה נגדית: אותה דוגמה למה מקבל ערך T (כי קיים מקבל ערך T (כי קיים χ אי זוגי עבורו זה מתקיים).

₪ תודה רבה