III. Modèles dérivés : Le GRAFCET

Description

GRAFCET = GRAphe Fonctionnel de Commande Etapes – Transitions (Normes internationales IEC 60 848 et IEC 6 1131 → Respect de la syntaxe!)

Sert à modéliser le comportement attendu de systèmes en vue de réaliser leur programme de commande (Dérivé des automates à états finis de Moore).

Eléments de base :

- éléments graphiques :
 - Les étapes
 - Les transitions
 - Les liaisons orientées
 - Les actions associées aux étapes
 - Les réceptivités associées aux transitions
- > règles d'évolution.

Eléments graphiques de base

> ETAPE

- Une étape correspond à un état dans lequel le comportement de tout ou partie du système est <u>invariant</u> vis à vis de ses entrées / sorties.
- Une étape est soit <u>active</u>, soit <u>inactive</u>.
- L'ensemble des étapes actives d'un Grafcet à un instant donné définit la <u>situation</u> de ce Grafcet à cet instant.

> ACTION

- Une ou plusieurs actions peuvent être associées à chaque étape.
- Une action traduit ce qui doit être fait chaque fois que l'étape à laquelle elle est associée est active.

Eléments graphiques de base

> TRANSITION

- Une transition indique la <u>possibilité d'évolution</u> entre deux étapes.
 Cette évolution se fait par <u>franchissement</u> de la transition.
- Une transition est soit validée soit non validée.

> RECEPTIVITE

- Une réceptivité est associée à chaque transition. C'est une fonction logique des variables externes et/ou de variables internes.
- Une réceptivité est soit <u>vraie</u> soit <u>fausse</u>.

> LIAISON ORIENTEE

 Les liaisons orientées relient les étapes aux transitions et les transitions aux étapes et indiquent le sens des évolutions.

REPRESENTATION GRAPHIQUE DES ELEMENTS D'UN GRAFCET

- > Représentation d'une étape : carré identifié par un repère alphanumérique.
- <u>L'entrée</u> est figurée à la partie supérieure et la <u>sortie</u> à la partie inférieure de chaque symbole d'étape.

• Un point est placé dans la partie inférieure des symboles des <u>étapes actives</u>.

• Les <u>étapes initiales</u> se représentent par un double carré.

- On note Xi la variable d'activité de l'étape i :
 - Si Xi = 1, I' étape est active,
 - Si Xi = 0, I' étape est inactive.

X3

Représentation d'une action : expression littérale ou symbolique à l'intérieur d'un rectangle relié au symbole de l'étape.

• <u>Représentations équivalentes</u> de plusieurs actions associées à une même étape :

> Représentation d'une liaison orientée : lignes horizontales ou verticales fléchées.

➤ <u>Représentation d'une transition</u>: trait perpendiculaire à la liaison orientée joignant 2 étapes.

➤ <u>Représentation d'une réceptivité</u>: expression booléenne de variables externes et/ou internes, notée de façon symbolique ou littérale, à droite de la transition.

Variable Temps :

Variable booléenne notée Δ/Xi qui vaut 1 s'il s'est écoulé un temps au moins égal à Δ depuis la <u>dernière fois</u> que l'étape i est passée de l'état inactif à l'état actif.

Variable Temps:

Variable booléenne notée Δ /Xi (ou T/Xi/ Δ) qui vaut 1 s'il s'est écoulé un temps au moins égal à Δ depuis la <u>dernière fois</u> que l'étape i est passée de l'état inactif à l'état actif.

REPRESENTATION GRAPHIQUE DES ELEMENTS D'UN GRAFCET :

Les règles du Grafcet

1 Règle de syntaxe :

• L'alternance étape - transition et transition - étape doit toujours être respectée quelle que soit la séquence parcourue.

5 Règles d'évolution :

- Règle 1 : Situation initiale
- Règle 2 : Franchissement d'une transition
- Règle 3 : Evolution des étapes actives
- Règle 4 : Evolutions simultanées
- Règle 5 : Activation et désactivation simultanées d'une même étape.

Règle 1 : Situation initiale du grafcet

- caractérise le COMPORTEMENT INITIAL de la partie commande vis à vis de son environnement.
- correspond aux étapes actives au début du fonctionnement.
- traduit généralement un comportement de repos.

Règle 1 : Situation initiale du grafcet

- caractérise le COMPORTEMENT INITIAL de la partie commande vis à vis de son environnement.
- correspond aux étapes actives au début du fonctionnement.
- traduit généralement un comportement de repos.

À t=0:

- Etape 0 active (X0 =1)
- Etapes 1 et 2 non actives (X1= X2 = 0)

Notation : $S_0(0)$ situation où seule l'étape 0 est active

Règle 2 : Franchissement d'une transition

- Une transition est dite VALIDEE lorsque toutes les étapes immédiatement précédentes reliées à cette transition sont actives.
- La transition devient FRANCHISSABLE :
 - Lorsque la transition est VALIDEE;
 - ET QUE la réceptivité associée à cette transition est VRAIE.
- Lorsque la transition est FRANCHISSABLE, elle est alors OBLIGATOIREMENT FRANCHIE.

Règle 2 : Franchissement d'une transition

- Une transition est dite VALIDEE lorsque toutes les étapes immédiatement précédentes reliées à cette transition sont actives.
- La transition devient FRANCHISSABLE :
 - Lorsque la transition est VALIDEE;
 - ET QUE la réceptivité associée à cette transition est VRAIE.
- Lorsque la transition est FRANCHISSABLE, elle est alors OBLIGATOIREMENT FRANCHIE.

Transition Validée Franchissable si a=1

3

Règle 3 : Evolution des étapes actives

- Le franchissement de la transition entraîne SIMULTANEMENT :
 - l'<u>activation</u> de TOUTES les étapes immédiatement suivantes,

ET

 la <u>désactivation</u> de TOUTES les étapes immédiatement précédentes.

Règle 3 : Evolution des étapes actives

- Le franchissement de la transition entraı̂ne SIMULTANEMENT :
 - l' <u>activation</u> de TOUTES les étapes immédiatement suivantes,

ET

la désactivation de TOUTES les étapes immédiatement précédentes.

Exemple 1:

Exemple 2:

Règle 4 : Evolutions simultanées

 Plusieurs transitions simultanément franchissables sont simultanément franchies.

Règle 5 : Activation – désactivation simultanée d'une étape

 Si au cours du fonctionnement, une même étape doit être activée et désactivée simultanément, elle reste active.

Règle 4 : Evolutions simultanées

Plusieurs transitions simultanément franchissables sont simultanément franchies.

Règle 5 : Activation – désactivation simultanée d'une étape

Si au cours du fonctionnement, une même étape doit être activée et désactivée simultanément, elle reste

active.

Structures en OU

- Séquences ALTERNATIVES : une branche OU une autre branche
- Une transition par branche
- La branche en OU est représentée par un simple trait horizontal

Structures en ET

- Séquences SIMULTANEES : une branche ET une autre branche
- Une **SEULE** transition
- La branche en ET est représentée par un double trait horizontal

Les actions associées

Différents types d'actions associées aux étapes :

- Actions continues ou normal (N Normal)
- Actions conditionnelles (C Conditional)
- Actions retardées (D Delay)
- Actions limitées dans le temps (L Time Limited)
- Actions mémorisées (S Set ; R Reset)

Action continue (N)

L'action est exécutée tant que l'étape à laquelle elle est associée est active.

$$A = X_{10}$$

Action conditionnelle (C)

L'action est exécutée quand l'étape associée est active et que la condition logique est vraie.

$$A = X_{10}.p$$

Action retardée (D)

L'action est exécutée après un délai obtenu par une temporisation lancée dès l'activation de l'étape associée.

$$A = X_{10}.(5s/X_{10})$$

L'action est exécutée dès l'activation de l'étape associée mais sa durée limitée dans le temps peut être plus courte que celle de l'étape associée.

$$A = X_{10}.(\overline{5s/X_{10}})$$

Action mémorisée (S/R)

L'effet de l'action est maintenue pendant plusieurs étapes. Le début et la fin de l'action sont définis à 2 étapes différentes.

Set(A)= X_{10} Reset(A)= X_{13}

