Amendments to the Claims:

1. (Currently amended) A compressor comprising a motor element and a compression element driven by the motor element, both elements being disposed in a housing which stores oil, the compression element comprising

a crankshaft having a main shaft and an eccentric shaft coupled with the main shaft,

a cylinder block which supports the main shaft so that the shaft can revolve freely, and the cylinder block being provided with a cylinder bore for forming a compression chamber,

a piston which reciprocates in the cylinder bore, and

a connection structure which connects the piston with the eccentric shaft; wherein an area of a sliding-contact surface formed on the piston in the cylinder bore at a compression load side is greater than that at an anti-compression load side.

- 2. (Currently amended) The compressor of claim 1; wherein, 1, wherein a length of a circumferential surface of the piston in a reciprocation direction is longer at the compression load side as compared to that at the anti-compression load side.
- 3. (Currently amended) The compressor of claim-1; wherein, 1, wherein

the piston has a piston top surface at the cylinder bore side and a piston skirt surface at the connection structure side, and the piston is provided with a hollow area of no sliding-contact in the circumferential surface.

4. (Currently amended) The compressor of claim-3; wherein, 3, wherein

the piston is provided with the sliding-contact surfaces surface on the circumferential surface of the piston comprises sliding-contact surface portions at an end of the piston top surface and at an end of the piston skirt surface, respectively, each of the sliding-contact surfaces surface portions having its own length from the end, whereas the hollow area of no sliding-contact is disposed in between the sliding-contact surface portions at the end of the piston top surface and that of the piston skirt surface.

5. (Currently amended) The compressor of claim-3; wherein, 3, wherein

the sliding contact surface of the piston is provided with the comprises sliding-contact surfaces which are surface portions extending from the piston top surface to reach the piston skirt surface at the compression load side and at the anti-compression load side, respectively, a width in a circumferential direction of the sliding-contact surface portion at compression load side being wider than that at the anti-compression load side.

6. (Previously presented) The compressor recited claim 1, which is driven on at least an operating frequency that is lower than the commercially available power supply frequency.

7. (Currently amended) A compressor comprising

a crankshaft formed of a main shaft and an eccentric shaft coupled with the main shaft at the upper part,

a cylinder block which supports the main shaft so that the shaft can revolve freely, and the cylinder block being provided with a cylinder bore for forming a compression chamber,

a piston which reciprocates in the cylinder bore, and

a connection structure which connects the piston with the eccentric shaft and makesundergoes a pendulum action with respect to the piston; wherein

a side of a circumferential surface of the piston <u>locating located</u> in the same side as the connection structure at its compression stroke, with respect to a reference plane, has a smaller sliding surface than a sliding surface <u>locating located</u> in the opposite side, where the reference plane being a plane perpendicular to the pendulum action plane and includes a center axis of the piston.

8. (Currently amended) The compressor of claim-7; wherein, 7, wherein

the piston has a piston top surface at the cylinder bore side and a piston skirt surface at the connection structure side, and the piston top surface and the piston skirt surface are not inparallel to each other.

9. (Currently amended) The compressor of claim-7; wherein, 7, wherein

the circumferential surface of the piston is provided with a surface for making sliding-contact with the cylinder bore and a hollow area which stays out of the sliding-contact.

- 10. **(Previously presented)** The compressor recited in claim 2, which is driven on at least an operating frequency that is lower than the commercially available power supply frequency.
- 11. **(Previously presented)** The compressor recited in claim 3, which is driven on at least an operating frequency that is lower than the commercially available power supply frequency.
- 12. **(Previously presented)** The compressor recited in claim 4, which is driven on at least an operating frequency that is lower than the commercially available power supply frequency.
- 13. **(Previously presented)** The compressor recited in claim 5, which is driven on at least an operating frequency that is lower than the commercially available power supply frequency.