Optimización I. Parcial II Y. Sarahi García Gozález Librerías In []: **import** numpy **as** np import functions as fn #libreria con las funciones Himmelblau, Beale, Rosenbrock, Hartman from math import exp In []: #imprimimos el epsilon de la máquina epsilon = np.finfo(float).eps print("Epsilon de la máquina:", epsilon) Epsilon de la máquina: 2.220446049250313e-16 In []: def imprime(f,n,x0,metodo,metodo_args): $\mathbf{I}_{-}\mathbf{I}_{-}\mathbf{I}_{-}$ Esta función imprime: - la dimensión \$n\$, - f(x 0)- el número \$k\$ de iteraciones realizadas $- f(x_k)$ - las primeras y últimas 4 entradas del punto \$\mathbf{x}_k\$ que devuelve el algoritmo, la norma del gradiente g_k, - promedio de iteraciones del algoritmo 1 - la variable \$bres\$ para saber si el algoritmo puedo converger. T_{i},T_{i},T_{i} xk,fk,gk,k,indicador= metodo(*metodo_args) print('Dimensión n = ', n) $print('f(x_0) = ', f(x0))$ print('Número de iteraciones = ', k) $print('f(x_k) = ', fk)$ print('Primeras cuatro entradas de x_k= ', xk[:4]) print('Últimas cuatro entradas de x_k= ', xk[-4:]) print('Norma del gradiente ||gk|| = ', np.linalg.norm(gk)) if(indicador): print("Sí se cumplio el criterio de convergencia") In []: #definimos la funcion que genera la matriz A de acuerdo a la instrucción anterior def genera_A1(n): return np.ones((n,n))+n*np.eye(n) #definimos la funcion que genera la matriz A de acuerdo a la instrucción anterior def genera_A2(n): A = np.empty([n,n], dtype=float) for i in range(n): for j in range(n): u=0.25*((i-j)**2)A[i][j]=exp(-1*u)return A Ejercicio 11. Programar la función $Q(x;\mu)$ y su gradiente $\nabla Q(\mathbf{x}; \mu) = \nabla f(\mathbf{x}) + \mu c_1(\mathbf{x}) \nabla c_1(\mathbf{x}).$ In []: def c1(x): return x[0]**2+x[1]**2-4def Dc1(x): dc1=2*x[0]dc2=2*x[1]return np.array(dc1,dc2) 2. Programar el método de penalización cuadrática usando el método BFGS modificado: a) Dar la función $f(\mathbf{x})$, $c_1(\mathbf{x})$, la función $Q(\mathbf{x}; \mu)$, su gradiente $\nabla Q(\mathbf{x}; \mu)$, un punto inicial \mathbf{x}_0 , μ_0 , una tolerancia $\tau > 0$, el número máximo de iteraciones N, y los parámetros que se necesiten para usar el método BFGS modificado. b) Para $k=0,1,\ldots,N$ repetir los siguientes pasos: b1) Definir $au_k = \left(1 + rac{10N}{10k+1}
ight) au$ b2) Calcular el punto ${f x}_{k+1}$ como el minimizador de $Q({f x};\mu_k)$ con el método BFGS modificado usando como punto inicial a ${f x}_k$ y la tolerancia τ_k . b3) Imprimir el punto \mathbf{x}_{k+1} , $f(\mathbf{x}_{k+1})$, $Q(\mathbf{x}; \mu_k)$, el número de iteraciones realizó el algoritmo BFGS y el valor $c_1(\mathbf{x}_{k+1})$. b4) Si $\|\mathbf{x}_{k+1} - \mathbf{x}_k\| < au$, terminar devolviendo \mathbf{x}_{k+1} b5) En caso contrario, hacer $\mu_{k+1}=2\mu_k$ y volver al paso (b1) In []: def backtracking(alpha_ini,x_k,f,f_k,df,p_k,mu,rho=0.5,c=0.001,iter_max=500): Esta funcion parte de un tamaño de paso inicial alpha_ini y lo va recortando hasta que cumple la cond de descenso suficiente parametros: valores (float): alpha_ini, rho entre (0,1), $f(x_k)$, $Df(x_k)$ (gradiente en el punto x_k), c_1 , direccion de descenso (np.rray): p_k returns: el tamaño de paso a_k numero de iteraciones realizadas i_k $\mathbf{I}_{-}\mathbf{I}_{-}\mathbf{I}_{-}$ alpha=alpha_ini #fijamos alpha como el alpha inicial for i in range(iter_max): $x_{p=x_k+alpha*p_k}$ gp=c*np.dot(df(x_k,mu),p_k) #hacemos el producto gradiente por direccion de descenso p #si la condicion de descenso se cumple, terminamos if $f(x_{p,mu}) \leftarrow (f_k + alpha*gp)$: return alpha alpha=alpha*rho #si no se cumple la cond, hacemos alpha*rho return alpha H = np.identity(2)def BFGS_modificado(f, Df, x0, tol,mu, H0=H, max_iter=5000): xk = x0gk = Df(xk,mu)Hk = H0n = len(xk)I = np.identity(n)for k in range(max_iter): if np.linalg.norm(gk) <= tol:</pre> return xk, f(xk,mu),k, True pk = np.dot(-Hk, gk)if np.dot(pk,gk) > 0: l1 = 10e-5 + (np.dot(pk,gk)/np.dot(gk,gk))Hk = Hk + l1*Ipk = pk - l1*gkalpha = backtracking(1, xk, f,f(xk,mu), Df, pk,mu) $xk_new = xk + alpha*pk$ $gk_new = Df(xk_new,mu)$ $y = gk_new - gk$ $s = xk_new - xk$ if np.dot(y,y) < tol:</pre> return xk, f(xk,mu), k, True **if** np.dot(y,s) <= 0: 12 = 10e-5 - (np.dot(y,s)/np.dot(y,y))Hk = Hk + 12*Ielse: $rho_k = 1/np.dot(y,s)$ $Hk = (np.identity(n) - rho_k * (s@y.T)) @ Hk @ (np.identity(n) - rho_k * (y@s.T)) + rho_k * (s@s.T)$ $xk = xk_new$ $gk = gk_new$ return xk, f(xk,mu), k, False In []: | def penalizacion(c,mu,x0,tol,Q,D_Q,max_iter=1000): $x_k=x0$ for k in range(max_iter): $tol=(1+((10*max_iter)/((10*k)+1)))*tol$ $x_old=x_k$ $x_k, f_k, it, =BFGS_modificado(Q, D_Q, x_old, tol, mu)$ print(x_k,'\n') print(f_k,'\n') print(it,'\n') print(Q(x_k,mu),'\n') print(c(x_k),'\n') print("----") ################################### if np.linalg.norm(x_k-x_old)<tol:</pre> return x_k mu=2*mu3. Probar el algoritmo tomando como f a la función de Beale, $c_1(\mathbf{x})=x_1^2+x_2^2-4$, $\mu_0=0.5$, N=1000 y $au=\epsilon_m^{1/3}$. Use los puntos iniciales $\mathbf{x}_0 = (0, 2)$ y $\mathbf{x}_0 = (0, -2)$. In []: mu=0.5x0=np.array([0,2])tol=(epsilon)**(1.0/3.0)Q=lambda x, mu=0.5: fn.Beale(x) + (mu/2) * (c1(x))**2 $DQ=lambda x, mu: fn.D_Beale(x) + mu * c1(x) * Dc1(x)$ penalizacion(c1,mu,x0,tol, Q, DQ,max_iter=1000) [-1.49494416 1.44499334] 1.2641428363038072 53 1.2641428363038072 0.32286377519318155 [-1.49494416 1.44499334] 1.2902030906368054 0 1.2902030906368054 0.32286377519318155 Out[]: array([-1.49494416, 1.44499334]) In []: mu=0.5x0=np.array([0,-2])tol=(epsilon)**(1.0/3.0)Q=lambda x, mu: fn.Beale(x) + (mu/2) * (c1(x))**2 $DQ=lambda x, mu: fn.D_Beale(x) + mu * c1(x) * Dc1(x)$ penalizacion(c1,mu,x0,tol, Q, DQ,max_iter=1000) [2.30427309 -0.18490285] 2.0595627997687145 12 2.0595627997687145 1.3438635182249037 [2.30427309 -0.18490285] 2.511055088672668 0 2.511055088672668 1.3438635182249037 Out[]: array([2.30427309, -0.18490285]) 4. Para verificar el resultado obtenido haga lo siguiente: ullet Genere una partición $heta_0 < heta_1 < \ldots heta_m$ del intervalo $[0,2\pi]$ con m=1000• Evalue la función de Beale en los puntos $(2\cos\theta_i, 2\sin\theta_i)$ para $i=0,1,\ldots,m$. e imprima el punto en donde la función tuvo el menor valor y el valor de la función en ese punto. In []: lista = np.linspace(0, np.pi, 1000) beale_list=[fn.Beale([2*np.cos(x), 2*np.sin(x)]) for x in lista] #minimo Beale min_beale = min(beale_list) #minimo puntos min_index = np.argmin(beale_list) min_point = lista[min_index] min_sincos= [2*np.cos(min_point),2*np.sin(min_point)] print("El mínimo de la lista de valores de Beale es:", min_beale) print("El punto que corresponde al mínimo de beale_list es:", min_sincos) El mínimo de la lista de valores de Beale es: 0.5340819590427182 El punto que corresponde al mínimo de beale_list es: [1.993822324641864, 0.1570749431313392] $Ejercicio\ 2$ Programar el método de Newton para resolver el sistema de ecuaciones no lineales (Algoritmo 1 de la Clase 24): $2x_0 + x_1 = 5 - 2x_2^2$ $x_1^3 + 4x_2 = 4$ $x_0x_1 + x_2 = \exp(x_2)$ 1. Programar la función ${f F}({f x})$ correspondiente a este sistema de ecuaciones y su Jacobiana ${f J}({f x})$ In []: **def** F(x): f1=2*x[0]+x[1]+2*x[2]**2f2=x[1]**3+4*x[2]-4f3=x[0]*x[1]+x[2]-np.exp(x[2])return np.array([f1,f2,f3]) def D_F(x): $df1_dx = [2, 1, 4*x[2]]$ $df2_dx = [0, 3*(x[1]**2), 4]$ $df3_dx = [x[1], x[0], 1 - np.exp(x[2])]$ return np.array([df1_dx, df2_dx, df3_dx]) 2. Programe el algoritmo del método de Newton. Use como condición de paro que el ciclo termine cuando $\|{f F}({f x}_k)\|< au$, para una tolerancia au dada. Haga que el algoritmo devuelva el punto \mathbf{x}_k , el número de iteraciones k, el valor $\|\mathbf{F}(\mathbf{x}_k)\|$ y una variable indicadora bres que es 1 si se cumplió el criterio de paro o 0 si terminó por iteraciones. In []: def Newton_nolineal(F,DF,x0,tol,N=100): $x_k=x0$ for k in range(N): $f_k=F(x_k)$ if np.linalg.norm(f_k)<tol:</pre> return x_k,k,np.linalg.norm(f_k),True $df_k=DF(x_k)$ s=np.linalg.solve(df_k,-f_k) $x_k=x_k+s$ return x_k,k,np.linalg.norm(f_k), False 3. Para probar el algoritmo y tratar de encontrar varias raíces, haga un ciclo para hacer 20 iteraciones y en cada iteración haga lo siguiente: • Dé el punto inicial x_0 como un punto aleatorio generado con numpy random randn(3) ullet Ejecute el método de Newton usando ${f x}_0$, la tolerancia $au=\sqrt{\epsilon_m}$ y un máximo de iteraciones N=100. ullet Imprima el punto $old x_k$ que devuelve el algoritmo, la cantidad de iteraciones realizadas, el valor de $\| {f F}({f x}_k) \|$ y la variable indicadora bres. In []: tol=np.sqrt(epsilon) for k in range(20): $x_0=np.random.randn(3)$ xk,k,normfk,bres=Newton_nolineal(F,D_F,x_0,tol,N=100) print(xk,"\n") print(k,"\n") print(normfk,"\n") print(bres,"\n") print("----") [-4.50564931 - 1.74071109 2.31862133]21 1.0048591735576161e-14 True [-4.50564931 -1.74071109 2.31862133] 12 1.3721740766844603e-11 [-5.59315732 -1.83783156 2.55187639] 20 6.209631313307019e-14 True [-4.50564931 -1.74071109 2.31862133]22 1.4537899548029866e-10 True [-5.59315732 -1.83783156 2.55187639] 19 3.94914928765923e-14 True [152.73615204 -7.06137103 89.02144944] 99 1.246863021817399e+39 False [-4.50564931 -1.74071109 2.31862133]10 2.5121479338940403e-15 True [-4.50564931 -1.74071109 2.31862133]28 6.990190716529265e-11 True [-4.5056493 -1.74071109 2.31862132]29 3.767299991431769e-10 True [-4.50564927 -1.74071108 2.31862132] 9 8.084823804387054e-09 True [-5.59315732 -1.83783156 2.55187639]20 1.008254649593363e-12 True [-5.59315732 -1.83783156 2.55187639] 34 5.8224452132708424e-12 True [-4.50564931 -1.74071109 2.31862133] 12 4.4762782523669927e-14 True [-4.50564931 -1.74071109 2.31862133] 10 3.66205343881779e-14 True [-4.50564927 -1.74071108 2.31862132]7.355543913893329e-09 True [-4.50564931 -1.74071109 2.31862133]26 1.30836851243432e-14 True [-5.59315733 -1.83783156 2.55187639] 32 1.719332327806561e-09 True [-5.59315732 -1.83783156 2.55187639] 33 3.3523685875004812e-12 True [-4.50564931 -1.74071109 2.31862133] 10 6.718388284492729e-12

True

99

False

In []:

658609474216390.9

[-1093.48440786 -5.04653372 33.12115187]