

SECOND SEMESTER 2021-2022

Course Handout Part II

Date: 15.01.2022

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : **PHY F241**

Course Title : Electromagnetic Theory II
Instructor-in-Charge : SARMISTHA BANIK

Scope and Objective of the Course:

Working knowledge of EMT is a must to be a good physicist. It is the foundation for the technologies of EE, ECE and computer engineering, spanning the entire electromagnetic spectrum, from dc to light. In EMT-I we assembled electrodynamics piece by piece and stopped at Maxwell's equations. Now it's time to appreciate the extraordinary power and richness of electrodynamics. We will see that Maxwell's equations represent a fundamental unification and interdependence of electric and magnetic fields and predict electromagnetic wave phenomena. These waves move with speed of light and here we make a connection between EMT and optics. Also we study the physical phenomenon of electromagnetic radiation through Maxwell's equations. Finally, we introduce the other major conceptual advance in electromagnetic theory i.e. Einstein's special theory of relativity.

Textbooks:

1. David Griffiths, J., *Introduction to Electrodynamics*, PHI, 4th ed.

Reference books

1. Feynman Lectures on Physics Vol II

Course Plan:

Lecture Number	Learning Objectives	Topics to be Covered	Chapter in the Text Book
	Introduction and	Magnetic Field in Matter(mostly self	6.1.4,
1-2	recapitulation of	study),	6.2,6.3,7.3
	EMT1	Maxwell's equations	
		Conservation of Charge, Poynting	8.1, 8.2
3-5	Conservation laws	theorem, Linear and Angular	
		momentum	
6-15	Electromagnetic	Wave Equation, Electromagnetic	9.1,9.2,9.3,9.4,
	Waves	waves in free space, Electromagnetic	9.5
		waves in dielectric matter, reflection,	
		refraction and transmission at	

16-23	Electrodynamics and	The Special Theory of Relativity,	11.1,11.2,11.3			
	Relativity	Relativistic Mechanics, Relativistic				
		Electrodynamics				
	Mid Sem					
24-27	Seminar/Poster Presentations					
28-32	Potentials and Fields	ials and Fields The Potential formulation, Retarded				
		potentials, Jefimenko's Eqns, Lienard-				
		Wiechert potential and fields of a				
		moving point charge				
33-40	Electromagnetic	Electric Dipole Radiation, Radiation	10.1,10.2			
	Radiation	from Point Charge, Radiation reaction				
14	Tutorials					
classes						

Evaluation Scheme:

E C N o.	Evaluation Component	Duration	Weight age (%)	Date, Time	Nature of Componen t
1.	Midsem	90 mins.	30%	10/03 9.00am to10.30am	Open
2.	Poster/seminar	-	10%	TBA	Open
3	Tutorial tests (3)	45 min	25%	tutorial hour	Open
4.	Comprehensive Examination	120 mins.	35%	06/05 FN	Open

Consultation Hour: Through email and google classroom

Notices: Notices for the course will be displayed on CMS and google classroom.

Make-up Policy: Make up will be given only in cases of genuine sickness or unavoidable technical issues. Make up requests must be given at least one day before the test.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE

