1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

1) = Filter Enter property name or value

Field	name	Туре	Mode	Key	Collation	Default Va
☐ cus	stomer_id	STRING	NULLABLE	-	-	-
☐ cus	stomer_unique_id	STRING	NULLABLE	-	-	-
☐ cus	stomer_zip_code_prefix	INTEGER	NULLABLE	-	-	-
☐ cus	stomer_city	STRING	NULLABLE	-	-	-
☐ cus	stomer_state	STRING	NULLABLE	-	-	-

Inference and recommendation: customer zip code prefix is Integer data type and rest all columns are of string data type.

2) Get the time range between which the orders were placed

select min(order_purchase_timestamp) as firstorder,max(order_purchase_timestamp) as
lastorder
from `BCS1.orders`

Inference and recommendation: If Purchase timestamp is the time when order was placed then first order was placed on 4th September 2016 at 21:15:19 UTC and last order was placed on 17th October 2018 at 17:30:18 UTC

3) Count the Cities & States of customers who ordered during the given period.

select count(distinct customer_city) as cities_count, count(distinct customer_state)
as states_count

from `BCS1.customers`

Query	y results					
JOB IN	FORMATION		RESULTS	CHART	JSON	EXE
Row	cities_count	~	states_count	~		
1		4119		27		

Inference and recommendation: In total we have 4119 cities and 27 states in Brazil where orders were placed by the customers during the given time.

1. In-depth Exploration:

1) Is there a growing trend in the no. of orders placed over the past years?

```
select extract(month from order_purchase_timestamp) as month,
sum( case when extract(year from order_purchase_timestamp)=2016 then 1 else 0 end) as
year_2016,
sum( case when extract(year from order_purchase_timestamp)=2017 then 1 else 0 end) as
year_2017,
sum( case when extract(year from order_purchase_timestamp)=2018 then 1 else 0 end) as
year_2018,
from `BCS1.orders`
group by extract(month from order_purchase_timestamp)
order by month
```

Row //	month ▼	year_2016 ▼	year_2017 ▼	year_2018 ▼
1	1	0	800	7269
2	2	0	1780	6728
3	3	0	2682	7211
4	4	0	2404	6939
5	5	0	3700	6873
6	6	0	3245	6167
7	7	0	4026	6292
8	8	0	4331	6512
9	9	4	4285	16
10	10	324	4631	4
11	11	0	7544	0
12	12	1	5673	0

Inference: We can see from above table month on month orders for each year.In 2016, we had less orders. Mostly orders were in October.In 2017, orders did increase every month and increased a lot in November.In 2018, There were similar number of orders each month but those declined from September dill December. January and March had highest number of orders in this year.

Recommendation: Company can look for the reasons it led to decline in the orders for those months and that particular year and look if there are any major national/international events that led to decline or just the customer behavior.

2) Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

```
with cte as(
select *, extract(Month from order_purchase_timestamp) as month from `BCS1.orders`
)
select month,count(month) as Total_orders
from cte
group by month
order by month
```

JOB IN	IFORMATION		RESULTS	CHA	ART	JSON	E.
Row //	month ▼	11	Total_orders	v			
1		1		8069			
2		2		8508			
3		3		9893			
4		4		9343			
5		5		10573			
6		6		9412			
7		7		10318			
8		8		10843			
9		9		4305			
10		10		4959			
11		11		7544			
12		12		5674			

Inference: We have monthly total orders as above. It is quite clear that the number of orders were very less from 9th or September month till December compared to orders in other months. Also, Orders were highest in May, July and August

Recommendation: Company can introduce some offers from September to December to increase the sales. Also, pricing model can be changed for May, July and August to increase revenue as during those times the number of orders placed would be high

3) During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

```
with cte as (
select order_purchase_timestamp,
case
when extract(hour from order_purchase_timestamp) between 0 and 6 then 'Dawn'
when extract(hour from order_purchase_timestamp) between 7 and 12 then 'Mornings'
when extract(hour from order_purchase_timestamp) between 13 and 18 then 'Afternoon'
when extract(hour from order_purchase_timestamp) between 19 and 23 then 'Night'
end as Time_ofthe_Day

from `BCS1.orders` join `BCS1.customers` using(customer_id)
)
select Time_ofthe_Day,count(Time_ofthe_Day) as total_orders
from cte
group by Time_ofthe_Day
order by total_orders desc
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	EXEC
Row	Time_ofthe_Day	~	total_orders	▼ /₁	
1	Afternoon		38	8135	
2	Night		28	8331	
3	Mornings		27	7733	
4	Dawn			5242	

Inference: It is clearly visible, Brazilian customers ordered most during the Afternoon. **Recommendations:** Company can introduce some limited time offers for Dawn period so that sales can increase during that time also

Evolution of E-commerce orders in the Brazil region:

1) Get the month on month no. of orders placed in each state.

```
select customer_state, extract(month from order_purchase_timestamp) as
month_number, count(order_id) as orders_count

from `BCS1.customers` left join `BCS1.orders` using(customer_id)

group by customer_state, extract(month from order_purchase_timestamp)
order by customer_state, month_number
```

JOB IN	IFORMATION	RESULTS	CHART	JSON EXECUT	TION DETAILS
Row	customer_state	· li	month_number ▼	orders_count ▼	;
1	AC		1	8	
2	AC		2	6	
3	AC		3	4	
4	AC		4	9	
5	AC		5	10	
6	AC		6	7	
7	AC		7	9	
8	AC		8	7	
9	AC		9	5	
10	AC		10	6	
11	AC		11	5	
12	AC		12	5	
13	AL		1	39	
14	AL		2	39	
15	AL		3	40	

Inference: Above table shows Month on month Orders for each state sorted in ascending order of state and then months (1 being January and 12 being December) **Recommendation**: We can find out for any state for example AC has least order in March and a smaller number of orders in this state as compared to other states. So, we can target our improvements in such states and months if needed.

2) How are the customers distributed across all the states?

```
select geolocation_state,count(distinct customer_Unique_id) as number_of_customers
from `BCS1.geolocation` left join `BCS1.customers` on geolocation_zip_code_prefix
= customer_zip_code_prefix
group by geolocation_state
order by number_of_customers desc
```

JOB IN	IFORMATION	RESULTS	CHART	JSON	EXECUTION DE
Row	geolocation_state	~	number_of_cu	istomers 🔻	//
1	SP				40287
2	RJ				12372
3	MG				11248
4	RS				5284
5	PR				4871
6	SC				3547
7	BA				3268
8	ES				1959
9	GO				1944
10	DF				1913

Inference: With above sorted table we can see the highest number of customers are from SP (Sao Paulo) state. Similarly, if we scroll to the bottom, we can find the state with least customers.

Recommendation: State RR has least number of customers (45) and other states like AP, AC, AM etc. has a huge scope of customer onboarding. These states can be targeted with better offerings to increase customer base.

2.Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

¹⁾ Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

```
with cte as(
select extract(year from order_purchase_timestamp) as year,Round(sum(payment_value))
as total_cost
from `BCS1.orders` join `BCS1.payments` using(order_id)
where extract(year from order_purchase_timestamp) between 2017 and 2018 and
extract(month from order_purchase_timestamp) between 01 and 08
group by extract(year from order_purchase_timestamp)
),
t2 as (
select total_cost as total_cost_2018 from cte where year=2018
),
t3 as
(select total_cost as total_cost_2017 from cte where year=2017)
select total_cost_2017 ,total_cost_2018,Round(((total_cost_2018-total_cost_2017))/total_cost_2017) * 100) as percent_increase from t2,t3
```

Quer	y results				
JOB IN	NFORMATION	RESULTS	CHART	JSON	EXECL
Row	total_cost_2017	▼ total_cost_2	2018 ▼ perce	ent_increase 🔻	
1	3669022	.0 869	4734.0	137.0	

Inference: with Above table we can see the total cost of orders from year 2017 as well as 2018 (only including months from Jan to Aug in both years) we can see there was 137 % increase in the cost of orders in 2018

Recommendation: This is great increase in total cost of orders placed as number of orders placed were higher in next year. Company can slightly increase the price and see the significant profit increase.

2) Calculate the Total & Average value of order price for each state

```
select customer_state,Round(sum(price)) as Total_Price,Round(Avg(price)) as avg_price
from `BCS1.customers` join `BCS1.orders` using(customer_id) join `BCS1.order_items`
using(order_id)
group by customer_state
order by Total_price , avg_price
```

JOB IN	FORMATION RESULTS	CHART J	SON EXECUTION	N DETAILS
Row	customer_state ▼	Total_Price ▼	avg_price ▼	
1	RR	7829.0	151.0	
2	AP	13474.0	164.0	
3	AC	15983.0	174.0	
4	AM	22357.0	135.0	
5	RO	46141.0	166.0	
6	ТО	49622.0	158.0	
7	SE	58921.0	153.0	
8	AL	80315.0	181.0	
9	RN	83035.0	157.0	
10	PI	86914.0	160.0	

Inference: With Above table, we can clearly see the state RR has the least total order value with almost similar average order price as compared to other states

Recommendation: Need to target this RR state along with AP, AC and AM to increase the count of the number of orders placed

3) Calculate the Total & Average value of order freight for each state.

```
select customer_state,Round(sum(freight_value)) as
Total_value,Round(Avg(freight_value)) as avg_value
from `BCS1.customers` join `BCS1.orders` using(customer_id) join `BCS1.order_items` using(order_id)
group by customer_state
order by Total_value , avg_value
```

Row	customer_state ▼	Total_value ▼	avg_value ▼
1	RR	2235.0	43.0
2	AP	2789.0	34.0
3	AC	3687.0	40.0
4	AM	5479.0	33.0
5	RO	11417.0	41.0
6	TO	11733.0	37.0
7	SE	14111.0	37.0
8	AL	15915.0	36.0
9	RN	18860.0	36.0
10	MS	19144.0	23.0

Inference: we can see with above table, RR has least total freight value and AP, AC, AM close to that.

Recommendation: States like RR, AP, AC and AM have considerable scope of improvement in terms of freight value

2. Analysis based on sales, freight, and delivery time.

1) Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

```
select order_id, timestamp_diff
(order_delivered_customer_date,order_purchase_timestamp,Day) as time_to_deliver,
timestamp_diff( order_estimated_delivery_date,order_delivered_customer_date,Day) as
diff_estimated_delivery
from `BCS1.orders`
where order_delivered_customer_date is not null
order by diff_estimated_delivery
```

JOB IN	IFORMATION	RESULTS	CHART J	SON EXECUTI	ON DETAILS E
Row	order_id ▼	//	time_to_deliver 🔻	diff_estimated_delive	
1	1b3190b2dfa9d7	789e1f14c05b	208	-188	
2	ca07593549f181	6d26a572e06	209	-181	
3	47b40429ed8cc	e3aee9199792	191	-175	
4	2fe324febf907e3	Bea3f2aa9650	189	-167	
5	285ab9426d698	2034523a855f	194	-166	
6	440d0d17af5528	315d15a9e41a	195	-165	
7	c27815f7e3dd0b	926b5855262	187	-162	
8	0f4519c5f1c541	ddec9f21b3bd	194	-161	
9	d24e8541128ce	a179a11a6517	175	-161	
10	2d7561026d542	c8dbd8f0daea	188	-159	
11	6e82dcfb5eada6	283dba34f16	182	-155	
12	2fb597c2f772ec	a01b1f5c561b	194	-155	

Inference: Against each order we have the number of days it took to deliver the order as well as the time difference in estimated and actual delivery. The first record tells us the order with -188 difference, meaning it took 188 days extra to actually deliver this order than the estimated delivery date.

Recommendation: Company can start intervening for such orders with their delivery partners and find out the root cause and improve on those aspects which led to the delay of such orders and also provide some offers or coupons to compensate the customer for such delays so that it does not lose the customers.

2) Find out the top 5 states with the highest & lowest average freight value.

```
with cte as (
select customer_state,Round(avg(freight_value)) as avg_freight_value
  from `BCS1.customers` join `BCS1.orders` using(customer_id) join `BCS1.order_items`
using(order_id)
  group by customer_state
)
(select customer_state,avg_freight_value from cte order by avg_freight_value desc
limit 5)
union all
(select customer_state,avg_freight_value from cte order by avg_freight_value limit 5)
order by avg_freight_value
```

JOB IN	IFORMATION	RESULTS	CHART .	JSON
Row /	customer_state	▼	avg_freight_value	
1	SP		15.0	
2	PR		21.0	
3	SC		21.0	
4	RJ		21.0	
5	MG		21.0	
6	PI		39.0	
7	AC		40.0	
8	RO		41.0	
9	PB		43.0	
10	RR		43.0	

Inference: Above table tells us the top 5 states with lowest average freight value followed by top 5 states with highest average freight value sorted in increasing order of average freight value. Clearly, there is a significant difference in lowest average freight value (15) and highest average freight value (43)

Recommendation: State PB and RR has the highest average freight value and similarly RO, AC and PI. Company can explore alternate cargo options to get better pricing and increase profits in these states.

3) Find out the top 5 states with the highest & lowest average delivery time.

```
with cte as (
select timestamp_diff (order_delivered_customer_date,order_purchase_timestamp,Day) as
delivery_time,customer_state
  from `BCS1.customers` join `BCS1.orders` using(customer_id)
),
t2 as (
select customer_state, Round(avg(delivery_time)) as avg_delivery_time from cte
where delivery_time is not null
group by customer_state
)
(
select customer_state,avg_delivery_time from t2 order by avg_delivery_time desc limit
5)
union all
(
select customer_state,avg_delivery_time from t2 order by avg_delivery_time limit 5
)
order by avg_delivery_time
```

JOB INFORMATION		RESULTS	CHART	JSON
Row	customer_state	▼	avg_delivery_time	Ž
1	SP		8.0	
2	PR		12.0	
3	MG		12.0	
4	DF		13.0	
5	SC		14.0	
6	PA		23.0	
7	AL		24.0	
8	AM		26.0	
9	AP		27.0	
10	RR		29.0	

Inference: Above table tells us the top 5 states with lowest average delivery time in Days followed by top 5 states with highest average delivery time in days sorted by average delivery time in increasing order

RR has highest average delivery time and SP has lowest average delivery time

Recommendation: Company needs to investigate states with highest average delivery time and find out at which junction these delays are happening and work on those areas. Could be with delivery partner or maybe the distance from which these orders are shipped.

4) Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

```
with cte as(
select customer_state,Round(avg(timestamp_diff
(order_delivered_customer_date,order_purchase_timestamp,Day))) as
avg_actual_delivery_days,
Round(avg(timestamp_diff(order_estimated_delivery_date,order_purchase_timestamp,Day))) as avg_estimated_delivery_days
from `BCS1.customers` join `BCS1.orders` using(customer_id)
where order_delivered_customer_date is not null
group by customer_state
)
select *,cte.avg_actual_delivery_days - cte.avg_estimated_delivery_days as
Difference_actual_and_estimated from cte
order by Difference_actual_and_estimated
```

Query results					
JOB IN	NFORMATION	RESULTS	CHART JSON	EXECUTION DETAILS EXE	CUTION GRAPH
Row /	customer_state •	· h	avg_actual_delivery_days 🔻	avg_estimated_delivery_days ▼	Difference_actual_and_estimated *
1	AC		21.0	41.0	-20.0
2	RO		19.0	38.0	-19.0
3	AM		26.0	45.0	-19.0
4	AP		27.0	46.0	-19.0
5	RR		29.0	46.0	-17.0
6	PA		23.0	37.0	-14.0
7	RN		19.0	32.0	-13.0
8	RS		15.0	28.0	-13.0
9	PE		18.0	31.0	-13.0
10	PB		20.0	33.0	-13.0

Inference: From the above table we can see the column Difference_actual_and_estimated. This column is the result of difference in average of actual delivery date and average of estimated delivery date for each state.

Negative sign is indicating that ordered was delivered before the estimated delivery day. Top 5 states with the fastest delivery as compared to estimated delivery are highlighted in yellow with AC state having the fastest actual delivery compared to estimated delivery followed by RO and so on till RR.

Recommendation: Company can value the reasons for so fast delivery in these states, improve its function in other states which has slower deliveries and compare the factors which led to faster and slower deliveries

2. Analysis based on the payments:

1. Find the month on month no. of orders placed using different payment types.

```
select extract(month from order_purchase_timestamp) as
month,payment_type,count(order_id) as no_of_orders from `BCS1.orders` join
`BCS1.payments` using(order_id)
group by extract(month from order_purchase_timestamp),payment_type
order by month
```

JOB INFORMATION			RESULTS CH	HART JS	SON EXECUTI	ON DETAILS EX
Row	month ▼	li	payment_type ▼	//	no_of_orders ▼	
1		1	credit_card		6103	
2		1	UPI		1715	
3		1	voucher		477	
4		1	debit_card		118	
5		2	UPI		1723	
6		2	credit_card		6609	
7		2	voucher		424	
8		2	debit_card		82	
9		3	credit_card		7707	
10		3	UPI		1942	
11		3	debit_card		109	
12		3	voucher		591	

Inference: With above table we can see the months 1(Jan), 2(Feb) and so on. Along with that the count of orders placed for each payment type in that month. Clearly, credit card is most widely used for payments every month.

Recommendation: Company can partnership with some banks for their special credit cards, provide some discounts on those cards and this would further increase the number of orders in those categories.

2)Find the no. of orders placed on the basis of the payment installments that have been paid.

```
select payment_installments,count(order_id)as no_of_orders from `BCS1.orders` join
`BCS1.payments` using(order_id)
where payment_installments>=1
group by payment_installments
order by no_of_orders desc
```

JOB IN	IFORMATION	RESULTS CHA	ART JSON
Row	payment_installment	no_of_orders ▼	
1	1	52546	
2	2	12413	
3	3	10461	
4	4	7098	
5	10	5328	
6	5	5239	
7	8	4268	
8	6	3920	
9	7	1626	
10	9	644	

Inference: with above two columns we can see the number of orders placed based on number of payments installments made and sorted with number of orders in descending order

There are 52546 orders which are highest in number for which 1 installment has been paid in their EMI.

Clearly, there are lots of orders within less payment installments.

Recommendation: Company can increase the order price slightly as customers are able to pay for most of the orders in very less installments, this would generate more profit.