

KIT-Fakultät für Informatik

Prof. Dr.-Ing. Tamim Asfour

Lösungsblätter zur Klausur

Robotik I: Einführung in die Robotik

am 29. Juli 2019, 14:00 – 15:00 Uhr

Name:	Vorname:	Vorname:		Matrikelnummer:	
Aufgabe 1			von 4 Punkten		
Aufgabe 2			von	7 Punkten	
Aufgabe 3			von	5 Punkten	
Aufgabe 4			von	6 Punkten	
Aufgabe 5			von	6 Punkten	
Aufgabe 6			von	6 Punkten	
Aufgabe 7			von	11 Punkten	
Gesamtpunktzahl	:				
		Note:			

Aufgabe 1 Rotationen

1. Handelt es sich bei R um eine Rotationsmatrix? (Beweis)

2. Translationsvektor und Rotationsmatrix:

t =

Name: Vorname: Matr.-Nr.: 3

Aufgabe 2 Kinematik

1. Dimension: x

2. Jacobi-Matrix:

 $3. \ \ Endeffektor-Geschwindigkeit:$

Aufgabe 3 Dynamik

1. Größen aus der Bewegungsgleichung:

 τ :

M(q):

 $c(q,\dot{q})$:

g(q):

2. (a) Markieren Sie alle Fehler und korrigieren Sie diese. (Anmerkung: Die Korrektur muss eindeutig einem Fehler zugewiesen werden können.)

(Bewegung der Basis)

Name: Vorname: Matr.-Nr.: 5

(b) Zwei Vorteile der Newton-Euler Methode gegenüber der Lagrange-Methode:

i.

ii.

Aufgabe 4 Bewegungsplanung

1. Sichtgraph:

2. Optimalität:

3. Optimalität in \mathbb{R}^n :

4. Unterschied zwischen Probabilistic Roadmaps und Dynamic Roadmaps:

Aufgabe 5 Greifplanung

1. (a) Projektion auf die (f_x, f_y) –Ebene:

(b) Projektion auf die (f_y,τ) –Ebene:

2. Kraftgeschlossenheit:

Name: Vorname: Matr.-Nr.: 8

Aufgabe 6 Bildverarbeitung

1. RGB \rightarrow HSI:

2. Vorteil HSI gegenüber RGB:

3. • Öffnen Teiloperationen:

Effekt:

• Schließen Teiloperationen:

Effekt:

- 4. Anwendung von Öffnen auf ein Bild
 - Teilschritt 1:

• Teilschritt 2:

Aufgabe 7 Symbolisches Planen

1. **Agent:** robot,

Location: at-fridge, next-to-human,

Object: apple-juice,

2. Prädikate:

robotAt(L)
grasped(O)
handEmpty
filled(O)
empty(O)

3. moveToPosition(from, to) Pre:

Add:

Del:

Goal predicates: