$$R = \frac{1}{2}wlog(1 + \frac{P_s g_{sd}}{\sigma^2} + \frac{P_s g_{sr} P_r g_{rd}}{\sigma^2 (\sigma^2 + P_s g_{sr} + P_r g_{rd})})$$
(1)

Assume there are two relays and let $a_1=\frac{g_{sr_1}}{\sigma^2}$ and $b_1=\frac{P_rg_{r_1d}}{\sigma^2}$ similarily a_2,b_2 for relay 2. At a particular source power P_s , relay 1 is chosen over relay 2 if $\frac{a_1b_1}{1+P_sa_1+b_1}>\frac{a_2b_2}{1+P_sa_2+b_2}$

Consider the function $f(p) = \frac{pab}{1+pa+b}$

$$f'(p) = \frac{(1+b)ab}{(1+pa+b)^2} \tag{2}$$

f'(p) is positive and decreasing with p.

The power at which both the relays give same rate can be obtained by equating $f_1(p)$ and $f_2(p)$.

$$P_0 = (1+b_1)(1+b_2)\frac{\frac{a_1b_1}{1+b_1} - \frac{a_2b_2}{1+b_2}}{a_1a_2(b_2 - b_1)}$$
(3)

For P_0 to be positive, both numerator and denominator should have same sign i.e., if $\frac{a_1b_1}{1+b_1}>\frac{a_2b_2}{1+b_2}$ then $b_2>b_1$. To explain this intuitively, let us assume b_1,b_2 to be much larger than 1 which reduces the first inequialitely ti $a_1>a_2$. What this means is, if at a source power less than P_0