Proteomics Informatics Protein characterization I: post-translational modifications (Week 10)

Post-translational modification

- Biologically important post-translational modification (phosphorylation, acetylation, glycosylation, etc.)
- Introduced on purpose during sample preparation (alkylation, iTRAQ, TMT etc.)
- Side-products of sample preparation (oxidation, deamidation, carbamylation, formylation etc.)

Post-translational modification

Table 1. Some common and important post-translational modifications					
PTM type	∆Mass³ (Da)	Stability ^b	Function and notes		
Phosphorylation pTyr pSer, pThr	+80 +80	+++ +/++	Reversible, activation/inactivation of enzyme activity, modulation of molecular interactions, signaling		
Acetylation	+42	+++	Protein stability, protection of N terminus. Regulation of protein–DNA interactions (histones)		
Methylation	+14	+++	Regulation of gene expression		
Acylation, fatty acid modification Farnesyl Myristoyl Palmitoyl etc.	+204 +210 +238	+++ +++ +/++	Cellular localization and targeting signals, membrane tethering, mediator of protein–protein interactions		
Glycosylation N-linked O-linked	>800 203, >800	+/++	Excreted proteins, cell–cell recognition/signaling O-GlcNAc, reversible, regulatory functions		
GPI anchor	>1,000	++	Glycosylphosphatidylinositol (GPI) anchor. Membrane tethering of enzymes and receptors, mainly to outer leaflet of plasma membrane		
Hydroxyproline	+16	+++	Protein stability and protein-ligand interactions		
Sulfation (sTyr)	+80	+	Modulator of protein-protein and receptor-ligand interactions		
Disulfide bond formation	-2	++	Intra- and intermolecular crosslink, protein stability		
Deamidation	+1	+++	Possible regulator of protein–ligand and protein–protein interactions, also a common chemical artifact		
Pyroglutamic acid	-17	+++	Protein stability, blocked N terminus		
Ubiquitination	>1,000	+/++	Destruction signal. After tryptic digestion, ubiquitination site is modified with the Gly-Gly dipeptide		
Nitration of tyrosine	+45	+/++	Oxidative damage during inflammation		

Mann and Jensen, Nature Biotech. 21, 255 (2003)

⁸A more comprehensive list of PTM Δmass values can be found at: http://www.abrf.org/index.cfm/dm.home bStability: + labile in tandem mass spectrometry, ++ moderately stable; +++ stable.

Phosphorylation examples

Unmodifie	d		pS18			рТ5		
b		У	b		у	b		y"
	1 F			1 F			1 F	
261.1556	2 I	2163.024	261.1556	2 I	2243.024	261.1556	2	2243.024
421.1862	3 C	2049.94	421.1862	3 C	2129.94	421.1862	3 C	2129.94
520.2546	4 V	1889.909	520.2546	4 V	1969.909	520.2546	4 V	1969.909
621.3022	5 T	1790.841	621.3022	5 T	1870.841	701.3022	5 T	1870.841
718.3549	6 P	1689.793	718.3549	6 P	1769.793	798.3549	6 P	1689.793
819.4025	7 T	1592.741	819.4025	7 T	1672.741	899.4025	7 T	1592.741
920.4502	8 T	1491.693	920.4502	8 T	1571.693	1000.45	8 T	1491.693
1080.481	9 C	1390.645	1080.481	9 C	1470.645	1160.481	9 C	1390.645
1167.513	10 S	1230.615	1167.513	10 S	1310.615	1247.513	10 S	1230.615
1281.556	11 N	1143.583	1281.556	11 N	1223.583	1361.556	11 N	1143.583
1382.603	12 T	1029.54	1382.603	12 T	1109.54	1462.603	12 T	1029.54
1495.687	13	928.4923	1495.687	13 I	1008.492	1575.687	13	928.4923
1610.714	14 D	815.4083	1610.714	14 D	895.4083	1690.714	14 D	815.4083
1723.798	15 L	700.3814	1723.798	15 L	780.3814	1803.798	15 L	700.3814
1820.851	16 P	587.2974	1820.851	16 P	667.2974	1900.851	16 P	587.2974
1951.891	17 M	490.2447	1951.891	17 M	570.2446	2031.891	17 M	490.2447
2038.923	18 S	359.2042	2118.923	18 S	439.2042	2118.923	18 S	359.2042
2135.976	19 P	272.1722	2215.976	19 P	272.1722	2215.976	19 P	272.1722
	20 R	175.1195	 a	20 R	175.1195	, 	20 R	175.1195

Potential modifications

Enrichment Strategies for the Detection of Phosphorylated Peptides

Enrichment Strategies for the Detection of Phosphorylated Peptides

- Hydrophilic Interaction Chromatography (HILIC)
- Phosphopeptides elute later than their unphosphorylated counterparts
- Stationary phase is hydrophilic
- Mobile phase is hydrophobic

Enrichment Strategies for the Detection of Phosphorylated Peptides

- Strong Cation Exchange Chromatography
- Stationary phase is negatively charged
- Mobile phase is a buffer that is increasing the pH (if peptide becomes neutral it elutes)
- Neutral peptides elute earlier: XXpSxxxxxR/K
- Positive peptides elute late: XXXXHXXXXR/K

Several Strategies are often combined

Loss of the phosphate group

 $m_{precursor} = 2000 \text{ Da}$ $\Delta m_{precursor} = 1 \text{ Da}$ $\Delta m_{fragment} = 0.5 \text{ Da}$ Phosphorylation

d_{min}>=3 for 47% of human tryptic peptides

 $m_{precursor} = 2000 Da$ $\Delta m_{precursor} = 1 Da$ $\Delta m_{fragment} = 0.5 Da$ Phosphorylation

d_{min}=2 for 33% of human tryptic peptides

 $m_{precursor} = 2000 \text{ Da}$ $\Delta m_{precursor} = 1 \text{ Da}$ $\Delta m_{fragment} = 0.5 \text{ Da}$ Phosphorylation

d_{min}=1 for 20% of human tryptic peptides

 $m_{precursor} = 2000 \text{ Da}$ $\Delta m_{precursor} = 1 \text{ Da}$ $\Delta m_{fragment} = 0.5 \text{ Da}$ Phosphorylation

 $m_{precursor} = 2000 Da$ $\Delta m_{precursor} = 1 Da$ $\Delta m_{fragment} = 0.5 Da$ Phosphorylation

Peptide with two possible modification sites

Peptide with two possible modification sites

Peptide with two possible modification sites

Peptide with two possible modification sites

Which assignment does the data support?

1, 1 or 2, or 1 and 2?

Visualization of evidence for localization

Visualization of evidence for localization

Rank	AAYYQK	Total (matched)	Difference (matched)
1	A W YQK	8	-
2	aay y qk	6	2 0

Rank	AAYYQK	Total (intensity)	Difference (intensity)
1	a ay yqk		-
2	aa yy qk	0.735	■ 0.074 0

Visualization of evidence for localization

Rank	AAVPSGASTGIYEALELR	Total (matched)	Difference (matched)
1	AAVPSGASTG V EALELR	15	-
2	AAVPSGAS T GIYEALELR	14	■ 3 ■ 2
3	AAVPSG AST GIYEALELR	13	■ 4 ■ 2

Rank	AAVPSGASTGIYEALELR	Total (intensity)	Difference (intensity)
1	AAVPSGAS T GIYEALELR	0.315	-
2	AAVPSG AS TGIYEALELR	0.29	I 0.025 I 0
3	AAVPSGASTG Y EALELR	0.187	■ 0.167 • 0.039

Estimation of global false localization rate using decay sites

By counting how many times the phosphorylation is localized to amino acids that can not be phosphorylated we can estimate the false localization rate as a function of amino acid frequency.

How much can we trust a single localization assignment?

If we can generate the distribution of scores for assignment 1 when 2 is the correct assignment, it is possible to estimate the probability of obtaining a certain score by chance for a given peptide sequence and MS/MS spectrum assignment.

$$p_{1}^{2} = \frac{\int_{0}^{m} F^{2}(S_{1}^{2}) dS_{1}^{2}}{\int_{0}^{\infty} F^{2}(S_{1}^{2}) dS_{1}^{2}}$$

Is it a mixture or not?

If we can generate the distribution of scores for assignment 2 when 1 is the correct assignment, it is possible to estimate the probability of obtaining a certain score by chance for a given peptide sequence and MS/MS spectrum assignment.

$$p_{2}^{1} = \frac{\int_{0}^{S_{2}^{m}} F^{1}(S_{2}^{1}) dS_{2}^{1}}{\int_{0}^{\infty} F^{1}(S_{2}^{1}) dS_{2}^{1}}$$

Peptide with two possible modification sites

Which assignment does the data support?

1, 1 or 2, or 1 and 2?

$$\begin{aligned}
\boldsymbol{p}_{1}^{2} &\leq \boldsymbol{p}_{th} \text{ and } \boldsymbol{p}_{2}^{1} \leq \boldsymbol{p}_{th} \Rightarrow 1 \text{ and } \mathbf{2} \\
\boldsymbol{p}_{1}^{2} &\leq \boldsymbol{p}_{th} \text{ and } \boldsymbol{p}_{2}^{1} > \boldsymbol{p}_{th} \Rightarrow 1 \\
\boldsymbol{p}_{1}^{2} &\geq \boldsymbol{p}_{th} \text{ and } \boldsymbol{p}_{2}^{1} > \boldsymbol{p}_{th} \Rightarrow \mathbf{1} \\
\boldsymbol{p}_{1}^{2} &\geq \boldsymbol{p}_{th} \text{ and } \boldsymbol{p}_{2}^{1} \leq \boldsymbol{p}_{th} \Rightarrow \boldsymbol{\varnothing} \quad (\boldsymbol{S}_{1}^{m} \geq \boldsymbol{S}_{2}^{m} \Rightarrow \boldsymbol{p}_{1}^{2} \leq \boldsymbol{p}_{2}^{1}) \\
\boldsymbol{p}_{1}^{2} &\geq \boldsymbol{p}_{th} \text{ and } \boldsymbol{p}_{2}^{1} > \boldsymbol{p}_{th} \Rightarrow \mathbf{1} \text{ or } \mathbf{2}
\end{aligned}$$

Top down / bottom up

Charge distribution

Isotope distribution

Fragmentation

Alternative Splicing

Correlations between modifications

The Nucleosome Core Complex

Luger et al., Nature, 389, 251-260, 1997

The N-terminal Tails of Histone H3 and H4

- Phosphorylation
- Methylation: mono-, di-, or trimethylation
- Acetylation

The Histone Code Hypothesis

Specific post translational modifications (PTMs) of the N-terminal tails of histones function as a scaffold for binding of protein factors leading to transcriptional activation or inactivation.

Jenuwein, T., Allis, C.D., Science, 293, 2001

Interdependence of Modifications is lost in Standard Mass Spectrometry Analysis

41-50 YRPTVALRE

Histone Proteins are a Highly Complex Mixture of a Single Protein....

Protocol

LTQ-FTMS

Glu-C generated N-terminal H3 peptide (1-50)

∆ 1.4 Da

∆ 1.<mark>4 Da</mark>

- Isolate m/z \pm 0.5 Da
- 60 ms ETD
- •~ 3 min acquisition

LTQ-ETD/PTR

Group '4': 4 Acetyl Groups

Group '5': 5 Acetyl Groups

Proteomics Informatics – Protein characterization I: post-translational modifications (Week 10)