K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS POWER AMPLIFIER CIRCUITS

16th July, 2020 Numerical

1. In a class B power amplifier, load $R_L = 15~\Omega$, supply voltage $V_{CC} = 22~\mathrm{V}$, $V_{EE} = -22~\mathrm{V}$, AC input voltage is 20 V peak and frequency is 1 kHz. Calculate the efficiency of the circuit. Select suitable power transistor having ratings: I_C close to 5A and V_{CEO} close to 30V

Figure 1: Circuit 1

Solution:

$$V_{in} = V_m sin\omega t$$

$$V_{in} = V_m sin(2\pi ft) = 20sin(2\pi \times 1000t)$$

$$V_m = 20 \text{ V}$$

$$P_{ac} = \frac{V_m^2}{2R_L} = \frac{20^2}{2 \times 15} = 13.333 \text{ W}$$

$$P_{ac} = 13.333 \text{ W}$$

$$\begin{split} I_m &= \frac{V_m}{R_L} = \frac{20}{15} = 1.333 \text{ A} \\ P_{dc} &= \frac{2 \times V_{CC} \times I_m}{\pi} = \frac{2 \times 22 \times 1.333}{\pi} \end{split}$$

$$P_{dc} = 18.674 \text{ W}$$

Efficiency
$$\eta = \frac{P_{ac}}{P_{dc}} = \frac{13.333}{18.674} = 71.39\%$$

SIMULATED RESULTS:

Above circuit is simulated using LTspice and the results are presented below:

Figure 2: Circuit schematic

The waveforms for output voltage V_{out} and current through R_L are shown in Figure 3

Figure 3: Output load voltage and load current waveforms

Comparison of theoretical and simulated values:

Parameters	Theoretical	Simulated
Input DC power	18.674 W	17.942 W
Output DC power	13.333 W	12.31 W
Efficiency	71.39 %	68.6 %

Table 1: Numerical 1

