Lecture Notes on Theory of Automata and Formal Languages

Unit-3

Dharmendra Kumar (Associate Professor) United College of Engineering and Research, Prayagraj

May 10, 2023

Contents

1	Con	text Free Grammar (CFG)	
	1.1	Definition	ļ
	1.2	Derivation Tree	!
	1.3	Left Most Derivation	!
	1.4	Right Most Derivation	ŗ
	1.5	Some Examples	(
	1.6	Ambiguity in Grammar and Language	(
	1.7	Inherent Ambiguity	,
	1.8	Simplification of Context Free Grammar	,
		1.8.1 Active Variable	,
		1.8.2 Reachable symbols	,
		1.8.3 Useful Variable	-
		1.8.4 Construction a Grammar in which all the variables are active (Elim-	
		ination of Non-Active Variables from a Grammar)	,
		1.8.5 Construction a Grammar in which all the symbols are reachable	
		(Elimination of Non-Reachable Symbols from a Grammar)	
		1.8.6 Construction of Reduced Grammar	9
	1.9	Elimination of null productions	
	1.10	Elimination of Unit Productions	1
	1.11	Chomosky Normal Form (CNF)	1
		1.11.1 Definition	1
		1.11.2 Reduction into Chomosky Normal Form	1
	1.12	Greibach Normal Form (GNF)	1
		1.12.1 Definition	1
		1.12.2 Lemma-1	1
		1.12.3 Lemma-2	1
		1.12.4 Reduction to Greibach Normal Form	1
	1.13	Exercise	1
	1.14	Closure Properties of Context Free Languages	1
	1.15	Pumping Lemma for Context Free Languages	1
		Exercise	1
	1.17	Decision Properties of Regular and Context Free Languages	1.
		AKTU Examination Questions	1

4 CONTENTS

Chapter 1

Context Free Grammar (CFG)

1.1 Definition

A grammar is said to be context free grammar if all the production rules of the grammar are of the following form:-

 $A \to \alpha$ where $\alpha \in (V \cup \Sigma)^*$ and $A \in V$

1.2 Derivation Tree

A tree is said to be derivation tree if it satisfies the following properties:-

- 1. All the nodes of the tree are labeled by variable, terminal or ϵ symbol.
- 2. The root node of the tree has labeled S (Starting symbol of the grammar).
- 3. All the internal nodes have labeled variable symbol.
- 4. All the leaf nodes have labeled terminal symbol or ϵ symbol.
- 5. If $A \to X_1 X_2 \dots X_n$ be a production rule used in the derivation of the string, then in the tree, A will be at the parent node and X_1, X_2, \dots, X_n will be at the children of this node A.

1.3 Left Most Derivation

A derivation $A \stackrel{*}{\Rightarrow} w$ is said to be left most derivation if we apply the production rule in the derivation at the left most variable in every step.

1.4 Right Most Derivation

A derivation $A \stackrel{*}{\Rightarrow} w$ is said to be right most derivation if we apply the production rule in the derivation at the right most variable in every step.

1.5 Some Examples

Example: Consider the following grammar

 $\begin{array}{l} \mathrm{S}{\rightarrow}~0\mathrm{B}/1\mathrm{A} \\ \mathrm{A}{\rightarrow}~0/0\mathrm{S}/1\mathrm{A}\mathrm{A} \\ \mathrm{B}{\rightarrow}~1/1\mathrm{S}/0\mathrm{B}\mathrm{B} \end{array}$

For the string 00110101, find the left most derivation, right most derivation and derivation tree.

Example: Consider the following grammar

 $S \rightarrow AA$

 $A \rightarrow a/bA/Ab/AAA$

Find parse tree for the string bbaaaab.

Example: Consider the following grammar

 $S \rightarrow aAS/a$

 $A \rightarrow SbA/SS/ba$

Find derivation tree for the string aabbaa.

1.6 Ambiguity in Grammar and Language

Ambiguous String

A string $w \in L(G)$ is said to be ambiguous string if there exists more than one derivation for the string.

Ambiguous Grammar

A grammar G is said to be ambiguous if there exists some string $w \in L(G)$ for which more than one derivation tree are possible.

Example: Consider the following grammar:-

 $S \rightarrow S + S/S*S/a/b$

Is this grammar ambiguous?

Solution:

Example: Consider the grammar G,

 $S \rightarrow SbS/a$.

Show that grammar G is ambiguous.

Solution:

Example: Consider the following grammar:-

 $S \rightarrow a/abSb/aAb$

 $A \rightarrow bS/aAAb$

Is this grammar ambiguous?

Solution:

Example: Consider the following grammar:-

$$S \rightarrow aB/ab$$

 $A \rightarrow aAB/a$
 $B \rightarrow ABb/b$

Is this grammar ambiguous?

Solution:

1.7 Inherent Ambiguity

- If L is a context free language for which there exists an unambiguous grammar, then L is said to be unambiguous.
- If every grammar that generates L is ambiguous, then the language is said to be inherently ambiguous.

Example: Following language is inherent ambiguous $L = \{a^n b^n c^m d^m! n \ge 1, m \ge 1\} cup \{a^n b^m c^m d^n! n geq1, m \ge 1\}$

1.8 Simplification of Context Free Grammar

Simplification of grammar means to remove the useless symbols (variables and terminals) and production rules from the grammar.

1.8.1 Active Variable

A variable A is said to be active if it derives a terminal string i.e $A\!\to x$, where $x\!\in \Sigma^*$

1.8.2 Reachable symbols

A symbol is said to be reachable if it appears in a string derives from starting symbol of the grammar i.e.

If $S \Rightarrow X$, then every symbols in X are said to be reachable.

1.8.3 Useful Variable

A variable is said to be useful if it is active and reachable both.

1.8.4 Construction a Grammar in which all the variables are active (Elimination of Non-Active Variables from a Grammar)

Suppose the given context free grammar is $G = (V, \Sigma, S, P)$

Now we construct a context free grammar G' in which all the variables are active.

$$G' = (V', \Sigma, S, P')$$

Step-1: Determination of V'

Let A_i denote the set of active variables. A_i is determined recursively as following:-

$$A_1 = \{ A \in V \mid \text{if } A \rightarrow x \in P, \text{ where } x \in \Sigma^* \}$$

$$A_2 = A_1 \cup \{A \in V : \text{if } A \to \alpha \in P, \text{ where } \alpha \in (A_1 | cup \Sigma)^* \}$$

.....

 $A_{i+1} = A_i \cup \{A \in V \mid \text{if } A \to \alpha \in P, \text{ where } \alpha \in (A_i | cup \Sigma)^* \}$

Repeat this process until $A_{i+1} = A_i$

Now, we terminate this process.

Now, $V' = A_i$

Step-2: Determination of P'

P' is obtained from P by removing those production rules in which non-active variables belong.

Example: Consider the grammar

$$G = (\{S,A,B,C,E\}, \{a,b,c\}, P, S)$$

where
$$P = \{ S \rightarrow AB, A \rightarrow a, B \rightarrow b, B \rightarrow C, E \rightarrow c/\epsilon \}$$

Eliminate the non-active variables from this grammar.

1.8.5 Construction a Grammar in which all the symbols are reachable (Elimination of Non-Reachable Symbols from a Grammar)

Suppose the given context free grammar is

$$G = (V, \Sigma, S, P)$$

Now we construct a context free grammar G' in which all the symbols are reachable.

$$G' = (V', \Sigma', S, P')$$

Step-1: Determination of V' and Σ'

Let R_i denote the set of reachable symbols. R_i is determined recursively as following:- $R_1 = \{S \}$

$$R_2 = R_1 \cup \{x \mid A \to \alpha \in P, \text{ where } A \in R_1 \text{ and } \alpha \in (V \cup \Sigma)^* \text{ and } \alpha \text{ contains } x\}$$

.....

 $R_{i+1} = R_i \cup \{x \mid A \to \alpha \in P, \text{ where } A \in R_i \text{ and } \alpha \in (V \cup \Sigma)^* \text{ and } \alpha \text{ contains } x\}$

Repeat this process until $R_{i+1} = R_i$

Now, we terminate this process.

Now, $V' = R_i \cap V$

Now, $\Sigma' = R_i \cap \Sigma$

Step-2: Determination of P'

P' is obtained from P by removing those production rules in which non-reachable symbols belong.

Example: Consider the grammar

$$G = (\{S,A,B,C,E\}, \{a,b,c\}, P, S)$$

where
$$P = \{ S \rightarrow AB, A \rightarrow a, B \rightarrow b, B \rightarrow C, E \rightarrow c/\epsilon \}$$

Eliminate the non-reachable symbols from this grammar.

1.8.6 Construction of Reduced Grammar

Reduced Grammar: A grammar is said to be reduced grammar if all the symbols and production rules are useful.

Procedure:

Suppose the given grammar is G.

This methods consists of two steps. They are:-

Step-1: Find the grammar G' equivalent to G in which all the variables are active.

Step-2: Find the grammar G" equivalent to G' which includes only reachable symbols. This grammar G" is a reduced grammar equivalent to G.

Example: Find the reduced grammar equivalent to the following grammar

 $S \to AB/CA$

 $B \rightarrow BC/AB$

 $A \rightarrow a$

 $C \rightarrow aB/b$

Example: Reduce the following grammar

 $S \to aAa$

 $A \rightarrow Sb/bCC/DaA$

 $C \to abb/DD$

 $E \to aC$

 $D \to aDA$

1.9 Elimination of null productions

Null Production: A production rule is said to be null production if it is of the following form:-

 $A \to \epsilon$

Nullable Variable: A variable A is said to be nullable if it derives empty string i.e.

$$A \Rightarrow \epsilon, \ \forall A \in V$$

Procedure:

Consider a grammar $G = (V, \Sigma, S, P)$. Let G' is a grammar having no null productions such that $L(G') = L(G) - \{\epsilon\}$.

G' is constructed as following:-

$$G' = (V, \Sigma, S, P')$$

Step-1: Determination of the set of nullable variables

Let W_i is the set of nullable variables. W_i is calculated as following:-

$$W_1 = \{ A \mid A \rightarrow \epsilon \in P \}$$

 $W_2 = W_1 \cup \{A \mid \exists \text{ a production } A \to \alpha \in P \text{ and } \alpha \in W_1^* \}$

.....

 $W_{i+1} = W_i \cup \{A \mid \exists \text{ a production } A \to \alpha \in P \text{ and } \alpha \in W_i^* \}$

Repeat this process until $W_{i+1} = W_i$

Now, we terminate this process.

Step-2: Determination of P'

- (i) We add the production rules of P into P' whose RHS does not include any nullable variable.
- (ii) Consider the remaining production rules of P.

If $A \to X_1 X_2 \dots X_n \in P$ then we add $A \to \alpha_1 \alpha_2 \dots \alpha_n$ into P', where $\alpha_i = X_i$ or ϵ but not all α_i equal to ϵ if X_i is nullable variable otherwise put $\alpha_i = X_i$.

Example: Consider the following grammar

 $S \rightarrow aS/AB$

 $A \rightarrow \epsilon$

 $B \rightarrow \epsilon$

 $D \rightarrow b$

Eliminate the null productions.

1.10 Elimination of Unit Productions

Unit Production: A production rule is said to be unit production if it is of the following form:-

 $A \rightarrow B$, where A, B $\in V$.

Example: Consider the following grammar

 $S \rightarrow AB$

 $A \rightarrow a$

 $B \rightarrow C/b$

 $C \rightarrow D$

 $D \rightarrow E$

 $E \rightarrow a$

Eliminate the unit productions.

1.11 Chomosky Normal Form (CNF)

1.11.1 Definition

A grammar G is said to be in Chomosky nomal form if every prodution rules are of the following form:-

 $A \rightarrow BC \text{ or } A \rightarrow a$,

where A,B,C \in V and a \in Σ .

1.11.2 Reduction into Chomosky Normal Form

Step-1: Elimination of null productions and unit productions

In this step, we eliminate the null production and unit productions from the grammar. Let the resultant grammar is $G=(V,\Sigma,S,P)$.

Step-2: Elimination of terminals from RHS if rule is not in CNF

Let $G_1 = (V_1, \Sigma, S, P_1)$ be the grammar obtained in this step.

All the productions of P which are in CNF, must also belong into P_1 and all the variables of V must also belong into V_1 .

Consider the remaining production rules.

Add the new variables into V_1 equal to the number of terminals on the right hand side of these production rules. And if the terminals are a_1, a_2, \ldots, a_n , then add variables X_1, X_2, \ldots, X_n into V_1 and add $X_1 \to a_1, X_2 \to a_2, \ldots, X_n \to a_n$ rules into P_1 .

Step-3: Restricting the number of variables on the RHS

Let $G_2 = (V_2, \Sigma, S, P_2)$ be the grammar obtained in this step.

Add all the elements of V_1 into V_2 . Add the production rules of P_1 into P_2 which are in CNF.

Consider those production rules of P_1 which are not in CNF. These production rules contains at least three elements on the right hand side.

Consider production rules $A \to X_1 X_2 \dots X_n$, where $n \ge 3$. Then we add n-2 variable into V_2 . Let these are Y_1, Y_2, \dots, Y_{n-2} . Add production rules $A \to X_1 Y_1$, $Y_{\to} X_2 Y_2, \dots, Y_{n-2} \to X_{n-1} X_n$ to P_2 .

Now, the grammar G_2 is the resultant grammar which is in CNF.

Example: Reduce the following grammar into CNF:-

- (1) $S \rightarrow aAD$, $A \rightarrow aB/bAB$, $B \rightarrow b$, $D \rightarrow d$.
- (2) $S \rightarrow aAbB$, $A \rightarrow a/aA$, $B \rightarrow b/bB$.
- $(3) S \rightarrow \tilde{S}/[S \supset) S]/p/q.$

1.12 Greibach Normal Form (GNF)

1.12.1 Definition

A CFG is said to be in Greibach normal form if all the production rules are of the following form:

 $A \rightarrow a\gamma$, where $\gamma \in V^*$, $a \in \Sigma$ and $A \in V$.

1.12.2 Lemma-1

Let $A \to B\gamma$ be an A-production and let B-productions are $B \to \beta_1 |\beta_2| \dots |\beta_n$. Then $A \to B\gamma$ production is replaced by the following rules:- $A \to \beta_1 \gamma |\beta_2 \gamma| \dots |\beta_n \gamma$.

1.12.3 Lemma-2

Let the set of A-productions be $A \to A\alpha_1 |A\alpha_2| \dots |A\alpha_m|\beta_1 |\beta_2| \dots |\beta_n|\beta_n$ (β_i 's do not start with A). Then we replace the rules $A \to A\alpha_1 |A\alpha_2| \dots |A\alpha_m|\beta_1 |\beta_2| \dots |A\alpha_m|\beta_1 |\beta_2| \dots |\beta_n|\beta_n$ by the following procedure:-

Add new variable Z to the grammar. And the set of A-production are

$$A \rightarrow \beta_1 | \beta_2 | \dots | \beta_n$$

$$A \rightarrow \beta_1 Z | \beta_2 Z | \dots | \beta_n Z$$

The set of Z-productions are

$$Z \rightarrow \alpha_1 |\alpha_2| \dots |\alpha_m|$$

$$Z \rightarrow \alpha_1 Z |\alpha_2 Z| \dots |\alpha_m Z|$$

1.12.4 Reduction to Greibach Normal Form

Step-1: Construct the given grammar into CNF. Next, we rename the variables as A_1, A_2, \ldots, A_n with $S = A_1$.

Step-2: Consider the production rules which are of the following form

 $A_i \to A_i \gamma$, where jii and $\gamma \in V^*$

Apply the lemma-1 in these rules until $j \ge i$.

Step-3: Consider the production rules which are of the following form

 $A_i \to A_i \gamma$, where j = i and $\gamma \in V^*$

Apply the lemma-2 in these rules until $j \ge i$.

Step-4: Consider the production rules which are not in GNF. Apply lemma-1 in all these rules. After this, the resultant grammar will be in GNF.

Example: Convert the following grammar into GNF.

- 1. $S \rightarrow AB$, $A \rightarrow BS/b$, $B \rightarrow SA/a$.
- 2. $S \rightarrow AA/a$, $A \rightarrow SS/b$.
- 3. $E \rightarrow E + T/T$, $T \rightarrow T^*F/F$, $F \rightarrow (E)/a$,
- 4. $S \rightarrow ABb/a$, $A \rightarrow aaA$, $B \rightarrow bAb$.
- 5. $S \rightarrow SS$, $S \rightarrow 0S1/01$, $B \rightarrow SA/a$.

1.13 Exercise

- 1. Eliminate the useless production from the following grammar $S\rightarrow a/aA/B/C$, $A\rightarrow aB/\epsilon$, $B\rightarrow aA$, $C\rightarrow cCD$, $D\rightarrow ddd$,.
- 2. Eliminate all the ϵ -productions from the following grammar:-S \rightarrow AaB/aaB, A \rightarrow ϵ , B \rightarrow bbA/ ϵ
- 3. Remove all unit productions, all useless productions and all ϵ -productions from the grammar

$$S \rightarrow aA/aBB$$
, $A \rightarrow aaA/\epsilon$, $B \rightarrow bB/bbC$, $C \rightarrow B$.

- 4. Transform the following grammar into CNF $S\rightarrow abAB$, $A\rightarrow bAB/\epsilon$, $B\rightarrow BAa/A/\epsilon$.
- 5. Transform the following grammar into CNF $S\rightarrow AB/aB$, $A\rightarrow aab/\epsilon$, $B\rightarrow bbA$.

1.14 Closure Properties of Context Free Languages

Theorem: Show that the family of context free languages is closed under union operation.

Proof: Let L_1 and L_2 be two context free languages generated by context free grammar $G_1 = (V_1, \Sigma_1, S_1, P_1)$ and $G_1 = (V_2, \Sigma_2, S_2, P_2)$ respectively.

Now, we construct the grammar G as the following;-

$$G = (V, \Sigma, S, P)$$
Where, $V = V_1 \cup V_2 \cup \{S\}$

$$\Sigma = \Sigma_1 \cup \Sigma$$
and $P = P_1 \cup P_2 \cup \{S \to S_1 | S_2\}$
Now, we have to show that
$$L(G) = L(G_1) \cup L(G_2)$$
Let $x \in L(G) \Leftrightarrow S \stackrel{*}{\Rightarrow} x$

$$\Leftrightarrow S \Rightarrow S_1 \stackrel{*}{\Rightarrow} x \text{ or }$$

$$S \Rightarrow S_2 \stackrel{*}{\Rightarrow} x \text{ or }$$

$$\Leftrightarrow S_1 \stackrel{*}{\Rightarrow} x \text{ or } S_2 \stackrel{*}{\Rightarrow} x$$

$$\Leftrightarrow x \in L(G_1) \text{ or } x \in L(G_2)$$

$$\Leftrightarrow x \in L(G_1) \cup L(G_2)$$

Therefore, $L(G) = L(G_1) \cup L(G_2)$

Clearly, G is a CFG for $L_1 \cup L_2$, therefore $L_1 \cup L_2$ is also a context free language.

Theorem: Show that the family of context free languages is closed under concatenation operation.

Proof: Let L_1 and L_2 be two context free languages generated by context free grammar $G_1 = (V_1, \Sigma_1, S_1, P_1)$ and $G_1 = (V_2, \Sigma_2, S_2, P_2)$ respectively.

Now, we construct the grammar G as the following;-

$$G = (V, \Sigma, S, P)$$
Where, $V = V_1 \cup V_2 \cup \{S\}$

$$\Sigma = \Sigma_1 \cup \Sigma$$
and $P = P_1 \cup P_2 \cup \{S \rightarrow S_1.S_2\}$
Now, we have to show that
$$L(G) = L(G_1).L(G_2)$$
Let $x \in L(G) \Leftrightarrow S \stackrel{*}{\Rightarrow} x$

$$\Leftrightarrow S \Rightarrow S_1.S_2 \stackrel{*}{\Rightarrow} x$$

$$\Leftrightarrow S_1 \stackrel{*}{\Rightarrow} x_1 \text{ and } S_2 \stackrel{*}{\Rightarrow} x_2 \text{ (Let } x = x_1x_2)$$

$$\Leftrightarrow x_1.x_2 \in L(G_1).L(G_2)$$

$$\Leftrightarrow x \in L(G_1).L(G_2)$$
Therefore, $L(G) = L(G_1).L(G_2)$

Clearly, G is a CFG for $L_1.L_2$, therefore $L_1.L_2$ is also a context free language.

Theorem: Show that the family of context free languages is closed under kleene closure operation.

Proof: Let L is a context free languages and G is a context free grammar generating L. $G = (V, \Sigma, S, P)$

Now, we construct a grammar G' as the following:-

$$G' = (V', \Sigma, S', P')$$

Where, $V' = V \cup \{S'\}$

P' = P
$$\cup$$
{S' \rightarrow SS'| ϵ }
Now, we have to show that L(G') = (L(G))*.
Let $x \in L(G') \Leftrightarrow S' \stackrel{*}{\Rightarrow} x$
 $\Leftrightarrow S' \Rightarrow S.S.S......S(n-times) \stackrel{*}{\Rightarrow} x$
 $\Leftrightarrow S \stackrel{*}{\Rightarrow} x_1, S \stackrel{*}{\Rightarrow} x_2S \stackrel{*}{\Rightarrow} x_n$ (Let $x = x_1 x_2x_n$)
 $\Leftrightarrow x_1 \in L(G), x_2 \in L(G),, x_n \in L(G)$
 $\Leftrightarrow x_1.x_2......x_n \in (L(G))^n$
 $\Leftrightarrow x \in (L(G))^* (L(G))^n \subseteq (L(G))^*$

Therefore, $L(G') = (L(G))^*$.

Therefore, G' is a grammar generating the language L*. Hence L* is a context free language.

Theorem: Show that the family of context free languages is not closed under intersection operation.

Proof: Consider the two context free languages:-

$$L_1 = \{a^n b^n c^m ! n \ge 0, m \ge 0\}$$

$$L_2 = \{a^n b^m c^m ! n \ge 0, m \ge 0\}$$

The intersection of these languages is

$$L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$$

This language is not context free.

Therefore, the family of context free languages is not closed under intersection operation.

Theorem: Show that the family of context free languages is not closed under complement operation.

Proof: Consider the following formula

$$L_1 \cap L_2 = (\bar{L_1} \cup \bar{L_2})$$
(1)

Suppose the context free languages are closed under complement operation.

From (1), If L_1 and L_2 are context free languages, then L_1 and L_2 are also context free language.

Since L_1 and L_2 are context free, therefore $L_1 \cup L_2$ will also be context free language.

Therefore $(\bar{L_1} \cup L_2)$ ias also context free.

Since the R.H.S. of equation (1) is context free, therefore L.H.S. is also context free. But, by previous theorem $L_1 \cap L_2$ is not context free, therefore context free languages is not closed under complement operation.

1.15 Pumping Lemma for Context Free Languages

Let L be an infinite context free language. Then there exists some positive integer n such that any $x \in L$ with $x \ge n$, can be decomposed as

1.16. EXERCISE

```
such that uv^{i}wx^{i}y \in L, \forall i = 0,1,2,3,....
```

Application: This lemma is used to show a given language is not context free.

Example: Show that the language

 $L = \{ a^n b^n c^n \mid n \ge 0 \}$

is not context free.

Solution:

1.16 Exercise

- 1. $L = \{ww \mid w \in \{a,b\}^*\}$
- 2. $L = \{a^{n!} ! n \ge 0\}$
- 3. $L = \{a^n b^j ! n = j^2\}$
- 4. $L = \{a^{n^2} ! n \ge 0\}$
- 5. L = $\{a^p \mid p \text{ is a prime number}\}$
- 6. L = $\{a^n b^j c^k ! k > n, k > j\}$

1.17 Decision Properties of Regular and Context Free Languages

Theorem: Given a context free grammar $G=(V,\Sigma,S,P)$, there exists an algorithm for deciding whether or not L(G) is empty.

Proof: For the simplicity, we assume that $\epsilon \notin L(G)$. We use the algorithm for removing useless symbols and productions. If S is found to be useless, then L(G) is empty otherwise L(G) contains at least one element.

Theorem: Given a context free grammar $G=(V,\Sigma,S,P)$, there exists an algorithm for deciding whether or not L(G) is infinite.

Proof: We assume that G contains no ϵ – poductions, no unit-productions, and no useless symbols.

Convert the grammar into CNF.

We draw a directed graph whose vertices are variables in G. If $A\rightarrow BC$ is a production, then there are directed edges from A to B and A to C.

L is finite iff the directed graph has no cycles.

Theorem: Show that there exists an algorithm for deciding whether a regular language, L is empty.

Proof: Construct a deterministic finite automata M accepting L. Determine the set of all the states reachable from q_0 . If this set contains a final state, then L is non-empty otherwise L is empty.

Theorem: Show that there exists an algorithm for deciding whether a regular language, L is infinite.

Proof: Construct a deterministic finite automata M accepting L. L is infinite iff M has a cycle.

1.18 AKTU Examination Questions

- 1. Convert the following CFG to its equivalent GNF: $S \rightarrow AA$ a, $A \rightarrow SS$ b.
- 2. Prove that the following Language $L = \{a^n b^n c^n \mid n \geq 1\}$ is not Context Free.
- 3. Is context free language closed under union? If yes, give an example.
- 4. Remove useless productions from the following grammar $S\rightarrow AB/ab$, $A\rightarrow a/aA/B$, $B\rightarrow D/E$
- 5. Reduce the given Grammar $G = (\{S,A,B\},\{a,b\},S,P)$ to Chomosky Norma Form, where P is the following $S \rightarrow bA/aB$, $A \rightarrow a/aS/bAA$, $B \rightarrow b/bS/aBB$
- 6. Discuss the inherent ambiguity of context free languages with suitable example. Construct the context free grammar that accept the following language $L = \{a^i b^j c^k \mid i = jorj = k\}$
- 7. Define the parse tree. Construct the parse tree for the string abbcde considering the productions S→aAcBe, A→b/Ab, B→d Is this ambiguous? Justify.
- 8. Prove or disprove that union and concatenation of two context free languages is also context free.
- 9. Prove that the language $L = \{a^n b^n c^n \mid n \geq 1\}$ is neither regular nor context free.
- 10. Determine the language generated by grammar $S \to Sab|aSb|abS|baS|bSa|Sba|aS|a$
- 11. What is inherent ambiguity? Explain with the help of suitable example.
- 12. Remove the Unit productions from the following grammar: $S \to aSb|A, A \to cAd|cd$
- 13. Write the procedure to convert a given CFG into equivalent grammar in CNF. Apply the procedure and convert the grammar with following production into CNF: $S \to bA|aB$, $A \to bAA|aS|a$, $B \to aBB|bS|b$
- 14. Define Greibach normal form for a CFG. Reduce the following CFG into GNF: S \rightarrow AB, $A \rightarrow BS|a, B \rightarrow A|b$

- 15. Let G be the grammar $S \to 0B|1A$, $A \to 0|0S|1AA$, $B \to 1|1S|0BB$ For the string 00110101, find: (i) The leftmost derivation. (ii) The rightmost derivation. (iii) The derivation tree.
- 16. Check whether the grammar is ambiguous or not. R \rightarrow R+R/ RR/ R*/ a / b / c. Obtain the string w = a+b*c
- 17. Eliminate unit productions in the grammar. S→A/bb A→B/b B→S/a
- 18. Find out whether the language $L = \{x^n y^n z^n | n \ge 1\}$ is context free or not.
- 19. Convert the following CFG into CNF

$$S \to XY / Xn / p$$

$$X \rightarrow mX / m$$

$$Y \rightarrow Xn / o$$

- 20. Convert the following CFG into CNF S \rightarrow ASA / aB, A \rightarrow B / S, B \rightarrow b / ϵ
- 21. Write CFG for language $L = \{a^n b^n \mid n \ge 0\}$. Also convert it into CNF.
- 22. Define ambiguity. Show that the grammar G with following production is ambiguous.

$$S \rightarrow a$$
 / aAb / abSb, A \rightarrow aAAb / bS

- 23. Convert the following grammar in GNF: S \rightarrow AB , A \rightarrow BS / a , B \rightarrow SA / b
- 24. Define derivation Tree. Show the derivation tree for string 'aabbbb' with the following grammar $S\rightarrow AB/\epsilon$, $A\rightarrow aB$, $B\rightarrow Sb$.