Chiffrement Asymétrique

Dr. Noureddine Chikouche

noureddine.chikouche@univ-msila.dz

https://sites.google.com/view/chikouchenoureddine

Plan du cours

- Principes
- Concepts mathématiques
- Cryptosystème RSA

Cryptographie asymétrique: Principes

- également appelée, cryptographie à clé publique (PKC en anglais pour Public Key Cryptography).
- sa sécurité repose sur la difficulté des problèmes computationnels.

Cryptographie asymétrique: Principes

- · Chaque entité possède une paire des clés (clé publique, clé privée).
- · Les deux clés sont liées mathématiquement.
- · La clé publique est connu pour tout le monde.
- Pour chiffrer un message, on utilise la clé publique de destinataire.

Cryptographie asymétrique: Principes

- · La clé privée ne circule jamais sur le réseau,
- · La clé privée utilisée pour déchiffrer le message chiffré reçu.

Cryptographie asymétrique: principes

- Les algorithme cryptographiques asymétriques sont utilisés, par exemple:
- Fournir des services d'authentification de la source, de l'identité et de l'intégrité à l'aide des signatures numériques;
- Par les protocoles d'échange de clés.
- Par les infrastructures à clés publiques.
- Pour protéger la confidentialité des données.

Concepts mathématiques Les nombres premiers

Les nombres premiers:

- ► Un entier naturel *p* est dit premier si il n'admet comme diviseur que 1 et lui-même.
- Les autres nombres sont dits composés. (0 et 1 sont exclus).

Concepts mathématiques Les nombres premiers

Décomposition en facteur irréductibles.

► Théorème: Tout nombre entier supérieur à 1 peut se décomposer comme un produit unique de nombres premiers.

$$a = \prod_{i=1}^{k} p_i^{n_i} = p_1^{n_1} p_2^{n_2} ... p_k^{n_k}$$

- ► Cette écriture est appelée la décomposition de *a* en facteur irréductibles.
- \triangleright Exemple: 12348 = $2^2 * 3^2 * 7^3$

Test de primalité

- > 2019 est- il premier ? Il faut tester la possibilité de division 2019/n pour:
 - ▶ Algo 1: pour tout n entier entre 2 et 2019-1
 - ► Algo 2: pour tout n entier entre 2 et $\sqrt{2019}$
 - ► Algo 3: (Crible d'Eratostene) pour tout n premier entre 2 et $\sqrt{2019}$

Théorème de Fermat:

- Soit p un nombre premier.
- ▶ Pour tout entier naturel a premier avec p , on a:

$$a^{p-1} = 1 \mod p$$
.

Test de Fermat:

- C'est une méthode probabiliste pour tester la primalité d'un entier.
- On choisit au hasard un nombre a tel que 1<a≤p-1</p>
 - ► Si $a^{p-1} = 1 \mod p$, on dit que p est pseudo(-Fermat)-premier à base a.
 - ► Si $a^{p-1} \neq 1 \mod p$, alors p n'est pas un nombre premier.

Test de Fermat:

- **Exemple:** p = 341 = 11 * 31 (est un nombre composé)
- \rightarrow a=2: 2^{340} = 1 (mod 341)
- \rightarrow a=3: 3^{340} = 56 (mod 341)
- ▶ Donc, le test de Fermat, avec p=341 et a=3, prouver que p est composé.

Autres algorithmes de test de primalité:

- ► Test de Miller-Rabin
- Critére de Lucas
-

Concepts mathématiques L'indicatrice d'Euler

- Soit n est un entier plus grand que 2,
- l'indicatrice d'Euler de n, noté $\varphi(n)$, désigne le nombre d'entiers compris entre 1 et n, et premiers avec n.
- ▶ Si n est premier, $\varphi(n) = n 1$.
- Si n = pq, tels que p et q sont des nombres premiers, $\varphi(n) = \varphi(p) \; \varphi(q) = (p-1)(q-1).$

Concepts mathématiques L'indicatrice d'Euler

Exemples:

- $\phi(11) = 11 1 = 10$
- $\phi(15) = (5-1)(3-1) = 8$

Théorème d'Euler:

Pour tout entier n et tout $a \in \mathbb{Z}$, on a:

$$a^{\phi(n)} = 1 \mod n$$

Concepts mathématiques Fonction à sens unique

- Les problèmes computationnels utilisés dans la cryptographie à clé publique fondés sur l'existence de fonctions à sens unique.
- On suppose F(x) = y une fonction à sens unique.
 - F facile à calculer: Il est facile (temps polynomial) de calculer F(x) pour importe quel x.
 - ► F difficile à inverser: Il est difficile pour $y \in F$ de trouver un x tel que F(x) = y.

Concepts mathématiques Factorisation des nombres

- Factorisation des entiers:
 - Soient deux grands nombre premiers, p et q.
 - Calculer p × q est plus facile.
 - Problème: Factoriser n = pq.
 - ► Applications: cryptosystèmes: RSA, Rabin.

Concepts mathématiques Factorisation des nombres

Test (concours)

- Trouver les deux facteurs premiers des produits suivants:
- **35**
 - > 5 × 7
- **221**
 - ▶ 13 × 17
- **4453**
 - ▶ 61 × 73
- **503807**
 - > 521 × 967
- **>** 50123093
 - > 7297 × 6869

Concepts mathématiques Factorisation des nombres

Trouver les deux facteurs premiers du produit suivant:

310741824049004372135075003588856793003734602284272754572016194882320644051808 150455634682967172328678243791627283803341547107310850191954852900733772482278 3525742386454014691736602477652346609

- **=**1634733645809253848443133883865090859841783670033092312181110852389333100104 508151212118167511579
- **×**1900871281664822113126851573935413975471896789968515493666638539088027103802 104498957191261465571
- Les clés RSA sont habituellement d'une taille comprise entre 1024 (309 chiffres) et 2048 bits (617 chiffres).
- ► En décembre 2018, le plus grand nombre premier est M₈₂₅₈₉₉₃₃=2⁸²⁵⁸⁹⁹³³-1 (nombres de Mersenne) comportant 24 862 048 chiffres lorsqu'il est écrit en base 10.

- ► Il existe de nombreuses algorithmes de test de primalité d'un nombre ou des algorithmes cryptographiques utilisent le calcul de l'exponentiation modulaire de façon de puissances a^e (mod n) pour de grandes valeurs de l'exposant e.
- On présente une méthode considérée comme standard pour effectuer une exponentiation modulaire. Elle utilise le principe d'élever au carré et multiplier.

- ► Cette technique repose sur l'écriture de l'exposant *e* en numération binaire.
- \triangleright Soit e=29 = $(11101)_2$.
- On a e = 16 + 8 + 4 + 1 et $a^e = a^{16} * a^8 * a^4 * a^8$

```
Input : a ,n, e avec e = (e_{m-1}, ..., e_0)_2
Output : r = a^e \pmod{n}
Begin
 r \leftarrow a^{e_{m-1}}
for i \leftarrow m - 2 to 0 do
 r \leftarrow r*r \mod p
 if e_i = 1 then r \leftarrow r^* a mod p
 end for
end
```

- Exemple:
- $15^{29} \mod 101 = ?$
- \triangleright 29 = (11101)₂, la taille de la suite binaire, m=5

i	-	3	2	1	0
ei	1	1	1	0	1
r	15	23	47	4	16
r=r*y	-	42	99	-	38

 $ightharpoonup 15^{29} \mod 101 = 38$

Plan du cours

- Principes
- Concepts mathématiques
- Cryptosystème RSA

Cryptosystème RSA

inventé en 1977 par:

La sécurité fournie par RSA repose sur la difficulté à factoriser de grands entiers.

Cryptosystème RSA

- Serveurs Web, Cartes de crédit, Internet (SSL/TLS), paiement électronique, ...
- ▶ Microsoft, Apple Computer, Cisco Systems, Intel, ...

RSA: Génération des clés

Module RSA:

- p et q sont deux nombres premiers secrets de même taille.
- N = p.q est le module RSA.

L'indicateur d'Euler:

 $\Phi(N) = (p - 1)(q - 1).$

Les clés:

- ► Choisir e: un entier premier, $1 \le e \le \varphi(N)$, PGCD(e, $\varphi(N)$)=1
- ► Calculer d, tel que: $1 \le d \le \varphi(N)$, e.d ≡1 (mod $\varphi(N)$) \rightarrow d = e⁻¹ mod $\varphi(N)$
- Clé publique: e, n
- Clé privée: d

RSA: Chiffrement & Déchiffrement

B veut envoyer un message à A:

- A génère les clés (e,d) et publie la clé publique
 (e,N)
- Chiffrement: B calcule c ≡ me (mod N) et envoi cà A.
- 3) Déchiffrement: A calcule $c^d \equiv m \pmod{N}$ et retrouve le message m de B.

Cryptosystème RSA: Exemple

- ► A génère les clés:
- p = 11 et q= 5
- N = p*q = 55
- $\phi(55) = (11-1)*(5-1) = 40$
- A Choisit e:
 - **e** est premier
 - ▶ Soit e=3 (par exemple, et on a bien (e, $\varphi(55)$)=1)
- A calcule d:
 - **e.d** \equiv 1 (mod 40) → d = 3⁻¹ mod 40
 - ▶ On détermine que d=27 (inverse modulaire de e sur $Z_{\Phi(n)}$)

Cryptosystème RSA: Exemple

- ▶ B veut envoyer un message (m=51) à A:
 - ► B calcule c= 51³ mod 55 = 46
 - ▶ B envoie c= 46 à A.
- ► A reçu le message:
 - ► A calcule m= 46²⁷ mod 55 = 51

Recommandation pour l'utilisation du RSA

- Utilisation des clés fortes, p et q ont des grandes nombres premiers.
- La taille du texte à chiffrer est importante,
- N'utilise pas un module RSA n commun à plusieurs clés.

Factorisation du module RSA

- ► Le module RSA-250 a une taille de 829 bits , équivalant 250 chiffres décimaux.
- RSA-250 a été factorisé le 28 février 2020 par F. Boudot, P. Gaudry, A. Guillevic, N. Heninger, E. Thomé et P. Zimmermann.
- Cette factorisation a été trouvée en utilisant l'algorithme Number
 Field Sieve en utilisant l'application open-source CADO-NFS.

Recommandation

NIST (2019)

	Date	Niveau de Sécurité	Algorithme symétrique	Factorisation Module	Logarithi Clef	me discret Groupe	Courbe elliptique	Hash (A)	Hash (B)
	Legacy (1)	80	2TDEA	1024	160	1024	160	SHA-1 (2)	
	2019 - 2030	112	(3TDEA) ⁽³⁾ AES-128	2048	224	2048	224	SHA-224 SHA-512/224 SHA3-224	
	2019 - 2030 et au-delà	128	AES-128	3072	256	3072	256	SHA-256 SHA-512/256 SHA3-256	SHA-1 KMAC128
	2019 - 2030 et au-delà	192	AES-192	7680	384	7680	384	SHA-384 SHA3-384	SHA-224 SHA-512/224 SHA3-224
	2019 - 2030 et au-delà	256	AES-256	15360	512	15360	512	SHA-512 SHA3-512	SHA-256 SHA-512/256 SHA-384 SHA-512 SHA3-256 SHA3-384 SHA3-512 KMAC256

https://www.keylength.com/fr/4/

Autres Algorithmes

Cryptosystème El Gamal, inventé en 1984

La sécurité de ce cryptosystème basée sur le problème du logarithme discret.

Autres Algorithmes

▶ ECC (Elliptic Curve Cryptography), inventé en 1985 par Koblitz et Mille

La sécurité de ce crypto-système basée sur le problème du logarithme discret elliptique.

Exercice

Soient n = 85 et e= 7 (clé publique).

- Trouver p et q
- Calculer $\Phi(n)$ et d.
- Chiffrer le message m = 12