01-24 [Network]

네트워크의 규칙

네트워크 간에 서로 문제없이 통신하기 위한 규칙: HTTP(Hyper Text Transfer Protocol)

OSI모델

네트워크 기술의 기본이 되는 모델

데이터의 송/수신은 컴퓨터에서 컴퓨터로 데이터를 전송하는 것. 이 때, 컴퓨터 송/수신을 위한 여러가지 작업을 일곱개 계층으로 나눠서하는데, 이가 바로 'OSI 7Layer(=OSI 7계층)'

계층	이름	설명
7계층	응용 계층 Application Layer	이메일, 파일 전송, 웹사이트 조회 등 애플리케이션에 대한 서비스 제공
6계층	표현 계층 Presentation Layer	문자 코드, 압축, 암호화등의 데이터를 변환
5계층	세션 계층 Session Layer	세션 체결, 통신 방식 등을 결정
4계층	전송 계층 Transport Layer	신뢰할 수 있는 통신 구현
3계층	네트워크 계층 Network Layer	다른 네트워크와 통신하기 위한 경로 설정 및 논리 주소 결 정
2계층	데이터링크 계층 Data Link Layer	네트워크 기기 간의 데이터 전송 및 물리주소를 결정
1계층	물리 계층 Physical Layer	시스템 간의 물리적인 연결과 전기신호를 변환 및 제어

• 데이터 송신 측 : 응용(7계층) ~ 물리(1계층)

• 데이터 수신 측 : 물리(1계층) ~ 응용(7계층)

• 각 계층은 독립적으로 데이터가 전달되는 동안에 다른 계층에 영향을 받지 않음

TCP/IP 모델

OSI 7Layer는 사실상 이론적인 모델에 가까움.

실제로 완전한 형태로 7Layer를 구성한 곳은 많지 않음.

실제 컴퓨터(네트워크)에서 데이터 송수신을 할 때 사용되는 실제 모델은 'TCP/IP 모델' 4계층으로 이루어져 있음.

01-24 [Network]

응용 계층(4계층) → 전송 계층(3계층) → 인터넷 계층(2계층) → 네트워크 접속 계층(1계층)

• 각 계층마다 프로토콜이 존재.

OSI	TCP/IP
7계층(응용 계층)	4계층(응용 계층)
6계층(표현 계층	4계층(응용 계층)
5계층(세션 계층)	4계층(응용 계층)
4계층(전송 계층)	3계층(전송 계층)
3계층(네트워크 계층)	2계층(인터넷 계층)
2계층(데이터 링크 계층)	1계층(네트워크 접속 계층)
1계층(물리 계층)	1계층(네트워크 접속 계층)

정리

- 1. ISO(국제 표준화 기구)에서 OSI 모델을 제정했음.
- 2. OSI 모델은 7계층으로 응용 → 표현 → 세션 → 전송 → 네트워크
- → 데이터링크 → 물리 순서.
- 3. 대부분의 컴퓨터 네트워크는 TCP/IP 모델을 사용.
- 즉, OSI 7Layer는 이론적인 개념이며 실제로 사용되는 네트워크 아키텍쳐는 TCP/IP
- 4. TCP/IP는 4계층으로 이루어져 있음. 응용 → 전송 → 인터넷 → 네 트워크 접속

캡슐화와 역캡슐화

A 컴퓨터 → B 컴퓨터로 데이터를 보낼 때

필요한 정보 + 송신 데이터를 보내야 함. 이 때, 필요한 정보(헤더)라고 부르며 이는 데이터를 전달 받을 상대방에 대한 정보를 포함.

이처럼 헤더를 붙여 나가는 걸 '캡슐화' 라고 부르며, 데이터를 받는 쪽에서 헤더를 하나씩 제거하는 것이 '역캡슐화'

캡슐화와 역캡슐화의 전체 흐름.

[캡슐화]

[데이터 송신측]
 [응용 계층]
 웹 사이트를 접속하기 위한 요청 데이터 생성

- 응용 계층에서 전송 계층으로 데이터 전달
- 2. [데이터 송신측]

[전송 계층]

전송 계층에서는 신뢰할 수 있는 데이터 통신이 이루어지도록 응용 계층에서 만들어진 데이터에 헤더를 붙임.

- 전송 계층의 헤더 추가 / 네트워크 계층으로 헤더가 붙은 데이터를 전달.
- 3. [데이터 송신측] [네트워크 계층] 다른 네트워크와 통신하기 위한 헤더를 추가
- 네트워크 계층의 헤더 추가 / 데이터 링크 계층으로 헤더가 붙은 데이터를 전달
- 4. [데이터 송신측] [데이터 링크 계층] 물리적인 통신 채널을 연결하기 위해 헤더와 트레일러 추가
- 데이터링크 계층의 헤더, 트레일러 추가 / 물리 계층으로 데이터 전달
- 헤더: 데이터의 앞 단에 붙는 정보, 트레일터: 데이터 뒷 단에 붙는 정보

[역캡슐화]

- 6. [데이터 수신측][데이터 링크 계층]4번의 데이터 링크 계층의 헤더, 트레일러 제거 작업
- 제거한 데이터 네트워크 계층으로 전달
- 7. [데이터 수신측] [네트워크 계층] 3번의 네트워크 계층 헤더 제거
- 제거한 데이터 전송 계층으로 전달
- 8. [데이터 수신측][전송 계층]2번의 전송 계층 헤더 제거
- 제거한 데이터 응용 계층으로 전달.
- 9. [데이터 수신측] [응용 계층] 모든 헤더 및 트레일러가 제거된 1번에서 생성한 웹 사이트 요청 데이터를 무사히 수신.
- ** 응용 계층(7계층)은 표현 계층(6계층), 세션 계층(5계층)에 포함하여 적시

01-24 [Network] 3

정리

- 1. 데이터를 보낼 때는 필요한 정보를 데이터에 추가해야 하는데 이 정보를 '헤더'라고 부름.
- 2. 데이터를 상대방에게 보낼 때 각 계층에서 헤더(데이터 링크 계층의 트레일러 포함)를 붙여 나가는 것을 '캡슐화' 라고 부름.
- 3. 데이터를 수신할 때 각 계층에서 헤더(데이터 링크 계층의 트레일러 포함)를 제거하는 것을 '역캡슐화'라고 부름.
- 4. 송신 : 응용 → 전송 → 네트워크 → 데이터링크 순으로 캡슐화.
- 수신: 데이터링크 → 네트워크 → 전송 → 응용 순으로 역캡슐화.
- 5. 송신 측의 데이터 링크 계층에서 만들어진 데이터가 전기 신호로 변환되어 수신 측에 전송.

용어 정리

- 1. 프로토콜(protocol) : 컴퓨터 간에 정보를 주고받을 때의 통신 방법에 대한 규칙이나 표준.
- 2. OSI 모델(Open Standards Interconnection model) : 국제표준화기구(ISO)가 1977
 년 정의한 국제 통신 표준 규약.
 네트워크의 기본 구조를 일곱 개 계층으로 나눠서 표준화한 통신 규약으로 현재 다른 모든 통신 규약의 기반
- 3. TCP/IP 모델(Transmission Control Protocol/Internet Protocol model) : OSI 모델 7 계층의 네트워크에서 데이터를 전송하는 과정을 네 개 계층으로 단순화시켜 사용하는 모델. =인터넷 모델
- 4. 캡슐화/역캡슐화 (encapsulation/decapsulation) : 캡슐화는 컴퓨터 통신에서 상위 계층의 통신 프로토콜 정보를 데이터에 추가하여 하위 계층으로 전송하는 기술 역캡슐화는 상위 계층의 통신 프로토콜에서 하위 계층에서 추가한 정보와 데이터를 분리하는 기술
- 5. 헤더(header): 저장되거나 전송되는 데이터의 맨 앞에 위치하는 추가적인 정보 데이터. 데이터의 내용이나 성격을 식별 또는 제어하는 데 사용.

01-24 [Network]