Measure-Preserving Bijective Time Changes of Stationary Gaussian Processes Generate Oscillatory Processes With Evolving Spectra

BY STEPHEN CROWLEY

Email: stephencrowley2140gmail.com

August 1, 2025

Abstract

This article establishes that Gaussian processes obtained through measure-preserving bijective unitary time transformations of stationary processes constitute a subclass of oscillatory processes in the sense of Priestley. The transformation $Z(t) = \sqrt{\dot{\theta}(t)} \; X(\theta(t))$, where X(t) is a realization of stationary Gaussian process and θ is a strictly increasing C^1 differentiable monotonic function, yields an oscillatory process with evolutionary power spectrum $d \; F_t(\omega) = \dot{\theta}(t) \; d \; \mu(\omega)$. An explicit unitary transformation between the input stationary process and the transformed oscillatory process is established, preserving the L^2 -norm and providing a complete spectral characterization.

Table of contents

1	Scaling Functions	2
2	Oscillatory Processes	2
3	Stationary Reference Process	3
4	Time-Changed Process	3
		5 6
5	Operator Conjugation	8
6	Expected Zero Count	9
7	Conclusion	10
R	ibliography	10

1 Scaling Functions

Definition 1. [Scaling Functions] Let \mathcal{F} denote the set of functions $\theta: \mathbb{R} \to \mathbb{R}$ satisfying

- 1. θ is absolutely continuous with $\dot{\theta}(t) = \frac{d}{dt}\theta(t) \geq 0$ almost everywhere and $\dot{\theta}(t) = 0$ only on sets of Lebesgue measure zero
- 2. θ is strictly increasing and bijective.

Remark 2. The conditions in Definition 1 ensure that θ^{-1} exists and is absolutely continuous. By the inverse function theorem for absolutely continuous functions,

$$\frac{\mathrm{d}}{\mathrm{d}s}(\theta^{-1})(s) = \frac{1}{\dot{\theta}(\theta^{-1}(s))} \tag{1}$$

for almost all s in the range of θ . The condition that $\dot{\theta}(t) = 0$ only on sets of measure zero ensures that $\frac{1}{\dot{\theta}(\theta^{-1}(s))}$ is well-defined almost everywhere.

2 Oscillatory Processes

Definition 3. [Oscillatory Process] A complex-valued, second-order process $\{X(t)\}_{t\in\mathbb{R}}$ is called oscillatory if there exist

1. a family of oscillatory basis functions $\{\phi_t(\omega)\}_{t\in\mathbb{R}}$ with

$$\phi_t(\omega) = A_t(\omega) e^{i\omega t} \tag{2}$$

and a given gain function

$$A_t(\cdot) \in L^2(\mu) \tag{3}$$

2. and a complex orthogonal random measure $\Phi(\omega)$ with

$$E |d \Phi(\omega)|^2 = d \mu(\omega) = S(\omega)$$
(4)

such that

$$Z(t) = \int_{-\infty}^{\infty} \phi_t(\omega) \ d\Phi(\omega)$$

$$= \int_{-\infty}^{\infty} A_t(\omega) e^{i\omega t} d\Phi(\omega)$$
(5)

All stationary processes are oscillatory with $A_t(\omega) = 1$

TODO: insert proof of this as well as representation of Z(t) as a time-dependent convolution of a stationary process with the time-dependent filter given by the Fourier transform of the oscillatory function

3 Stationary Reference Process

Let $\{X(t)\}_{t\in\mathbb{R}}$ be a stationary Gaussian process with continuous spectral representation

$$X(t) = \int_{-\infty}^{\infty} e^{i\omega t} d\Phi(\omega)$$
 (6)

where $\Phi(\omega)$ is an orthogonal-increment process with spectral density

$$E |d \Phi(\omega)|^2 = d \mu(\omega) = S(\omega) =$$
 (7)

and μ is a finite measure on \mathbb{R} .

4 Time-Changed Process

4.1 Definition and Unitary Operator

Definition 4. [Unitary Time-Change Operator] For $\theta \in \mathcal{F}$, define the operator $M_{\theta}: L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})$ by

$$(M_{\theta} f)(t) = \sqrt{\dot{\theta}(t)} f(\theta(t))$$
(8)

Definition 5. [Unitarily Time-Changed Stationary Process] For $\theta \in \mathcal{F}$, apply the unitary time change operator M_{θ} from Definition-4 to a realization of a stationary process X(t) from the ensemble $\{X(t)\}$ to define a realization of the unitarily time-changed process

$$Z(t) = \sqrt{\dot{\theta}(t)} \ X(\theta(t)) \forall t \in \mathbb{R}$$
 (9)

Definition 6. [Inverse Unitary Time-Change Operator] The inverse operator M_{θ}^{-1} : $L^2(\mathbb{R}) \to L^2(\mathbb{R})$ corresponding to the unitary time-change operator $(M_{\theta} f)(t)$ defined in Equation-8 is given by

$$(M_{\theta}^{-1}g)(s) = \frac{g(\theta^{-1}(s))}{\sqrt{\dot{\theta}(\theta^{-1}(s))}}$$
(10)

Lemma 7. [Well-Definedness of Inverse Operator] The operator M_{θ}^{-1} in Definition 6 is well-defined $\forall \theta \in \mathcal{F}$.

Proof. Since $\dot{\theta}(t) = 0$ only on sets of measure zero by Definition 1, and θ^{-1} maps sets of measure zero to sets of measure zero (as it preserves absolute continuity), the denominator $\sqrt{\dot{\theta}(\theta^{-1}(s))}$ is positive almost everywhere. The expression in equation (10) is therefore well-defined almost everywhere, which is sufficient for defining an element of $L^2(\mathbb{R})$. \square

Theorem 8. [Unitarity of Transformation Operator] The operator M_{θ} defined in equation (8) is unitary, i.e.,

$$\int_{\mathbb{R}} |(M_{\theta} f)(t)|^2 dt = \int_{\mathbb{R}} |f(s)|^2 ds \, \forall f \in L^2(\mathbb{R})$$
(11)

Proof. Let $f \in L^2(\mathbb{R})$. The L^2 -norm of $M_{\theta} f$ is computed as follows:

$$\int_{\mathbb{R}} |(M_{\theta} f)(t)|^2 dt = \int_{\mathbb{R}} \left| \sqrt{\dot{\theta}(t)} f(\theta(t)) \right|^2 dt \tag{12}$$

$$= \int_{\mathbb{R}} \dot{\theta}(t) |f(\theta(t))|^2 dt \tag{13}$$

Apply the change of variables $s = \theta(t)$. Since θ is absolutely continuous and strictly increasing, its Jacobian is given by

$$ds = \dot{\theta}(t) dt \tag{14}$$

almost everywhere. As t ranges over \mathbb{R} , $s = \theta(t)$ ranges over \mathbb{R} due to the bijectivity of θ . Therefore:

$$\int_{\mathbb{R}} \dot{\theta}(t) |f(\theta(t))|^2 dt = \int_{\mathbb{R}} |f(s)|^2 ds$$
 (15)

This establishes equation (11). To complete the proof of unitarity, it remains to show that M_{θ}^{-1} is indeed the inverse of M_{θ} . For any $f \in L^2(\mathbb{R})$:

$$(M_{\theta}^{-1} M_{\theta} f)(s) = (M_{\theta}^{-1}) \left[\sqrt{\dot{\theta}(\cdot)} f(\theta(\cdot)) \right](s)$$

$$(16)$$

$$=\frac{\sqrt{\dot{\theta}(\theta^{-1}(s))} f(\theta(\theta^{-1}(s)))}}{\sqrt{\dot{\theta}(\theta^{-1}(s))}}$$
(17)

$$=f(s) \tag{18}$$

where the last equality uses $\theta(\theta^{-1}(s)) = s$. Similarly, for any $g \in L^2(\mathbb{R})$:

$$(M_{\theta} M_{\theta}^{-1} g)(t) = \sqrt{\dot{\theta}(t)} (M_{\theta}^{-1} g)(\theta(t))$$
(19)

$$=\sqrt{\dot{\theta}(t)} \frac{g(\theta^{-1}(\theta(t)))}{\sqrt{\dot{\theta}(\theta^{-1}(\theta(t)))}}$$
(20)

$$=\sqrt{\dot{\theta}(t)} \frac{g(t)}{\sqrt{\dot{\theta}(t)}} \tag{21}$$

$$=g(t) \tag{22}$$

Therefore

$$M_{\theta} M_{\theta}^{-1} = M_{\theta}^{-1} M_{\theta} = I \tag{23}$$

proving that M_{θ} is unitary.

Corollary 9. [Measure Preservation] The transformation M_{θ} preserves the L^2 -measure in the sense that for any measurable set $A \subseteq \mathbb{R}$

$$\int_{A} |(M_{\theta} f)(t)|^{2} dt = \int_{\theta(A)} |f(s)|^{2} ds$$
(24)

Proof. The proof follows the same change of variables argument as in Theorem 8, applied to the characteristic function of the set A.

4.2 L^2 -Norm Preservation

Theorem 10. [Measure Preservation] The transformation defined in equation (9) preserves the L^2 -norm in the sense that

$$\int_{I} \operatorname{var}(Z(t)) \ dt = \int_{\theta(I)} \operatorname{var}(X(s)) \ ds \tag{25}$$

for any measurable set $I \subseteq \mathbb{R}$.

Proof. Using the change of variables $s = \theta(t)$ with $ds = \dot{\theta}(t) dt$:

$$\int_{I} \operatorname{var}(X(t)) dt = \int_{I} \operatorname{var}\left(\sqrt{\dot{\theta}(t)} X(\theta(t))\right) dt \tag{26}$$

$$= \int_{I} \dot{\theta}(t) \operatorname{var}(X(\theta(t))) dt$$
(27)

$$= \int_{\theta(I)} \operatorname{var}(X(s)) \ ds \tag{28}$$

4.3 Oscillatory Representation

Theorem 11. [Oscillatory Form] The process $\{Z(t)\}$ defined in equation (9) is oscillatory with oscillatory functions

$$\phi_t(\omega) = A_t(\omega) e^{i\omega t} = \sqrt{\dot{\theta}(t)} e^{i\omega\theta(t)}$$
(29)

and gain functions

$$A_t(\omega) = \sqrt{\dot{\theta}(t)} e^{i\omega(\theta(t) - t)}$$
(30)

Proof. From the spectral representation (6) of the stationary process X(t):

$$X(t) = \sqrt{\dot{\theta}(t)} X(\theta(t)) \tag{31}$$

$$= \sqrt{\dot{\theta}(t)} \int_{-\infty}^{\infty} e^{i\omega\theta(t)} d\Phi(\omega)$$
 (32)

$$= \int_{-\infty}^{\infty} \sqrt{\dot{\theta}(t)} \ e^{i\omega\theta(t)} \ d\phi(\omega) \tag{33}$$

$$= \int_{-\infty}^{\infty} \phi_t(\omega) \ d\Phi(\omega) \tag{34}$$

where

$$\phi_t(\omega) = \sqrt{\dot{\theta}(t)} \ e^{i\omega\theta(t)} \tag{35}$$

To verify this is an oscillatory representation according to Definition 3, express $\phi_t(\omega)$ in the form of a function of the time-dependent gain $A_t(\lambda)$ as required

$$\phi_{t}(\omega) = A_{t}(\omega) e^{i\omega t}$$

$$= \sqrt{\dot{\theta}(t)} e^{i\omega(\theta(t)-t)} e^{i\omega t}$$

$$= \sqrt{\dot{\theta}(t)} e^{i\omega(\theta(t)-t+t)}$$

$$= \sqrt{\dot{\theta}(t)} e^{i\omega\theta(t)}$$
(36)

where

$$A_t(\omega) = \sqrt{\dot{\theta}(t)} e^{i\omega(\theta(t) - t)}$$
(37)

Since $\dot{\theta}(t) \geq 0$ almost everywhere and $\dot{\theta}(t) = 0$ only on sets of measure zero, the function $A_t(\omega)$ is well-defined almost everywhere. Moreover, $A_t(\cdot) \in L^2(\mu)$ for each t since:

$$\int_{-\infty}^{\infty} |A_t(\omega)|^2 d\mu(\omega) = \int_{-\infty}^{\infty} \dot{\theta}(t) d\mu(\omega)$$

$$= \dot{\theta}(t) \int_{-\infty}^{\infty} d\mu(\omega)$$

$$= \dot{\theta}(t) \mu(\mathbb{R}) < \infty$$
(38)

where the finiteness follows from μ being a finite measure and $\dot{\theta}(t)$ being finite almost everywhere.

4.4 Envelope and Evolutionary Spectrum

Corollary 12. [Evolutionary Spectrum] The evolutionary power spectrum is

$$dF_t(\omega) = |A_t(\omega)|^2 d\mu(\omega)$$

= $\dot{\theta}(t) d\mu(\omega)$ (40)

Proof. By Definition 3 and the envelope from Equation 3, the evolutionary power spectrum is:

$$dF_t(\omega) = |A_t(\omega)|^2 d\mu(\omega) \tag{41}$$

$$dF_t(\omega) = |A_t(\omega)|^2 d\mu(\omega)$$

$$= \left| \sqrt{\dot{\theta}(t)} e^{i\omega(\theta(t) - t)} \right|^2 d\mu(\omega)$$
(41)
(42)

$$= \dot{\theta}(t) |e^{i\omega(\theta(t)-t)}|^2 d\mu(\omega)$$
(43)

$$= \dot{\theta}(t) \ d \, \mu(\omega) \tag{44}$$

since

$$|e^{i\alpha}| = 1 \forall \alpha \in \mathbb{R} \tag{45} \quad \Box$$

5 Operator Conjugation

Theorem 13. [Operator Conjugation] Let T_K be the integral covariance operator defined by

$$(T_K f)(t) = \int_{-\infty}^{\infty} K(|t - s|) f(s) ds$$
 (46)

where K(h) is the stationary kernel

$$K(h) = \int_{-\infty}^{\infty} S(\lambda)e^{i\lambda h} d\lambda$$
 (47)

, and let $T_{K_{\theta}}$ be the integral covariance operator defined by

$$(T_{K_{\theta}}f)(t) = \int_{-\infty}^{\infty} K_{\theta}(s,t)f(s) ds$$

$$= \int_{-\infty}^{\infty} K(|\theta(t) - \theta(s)|) \sqrt{\dot{\theta}(t)\dot{\theta}(s)} f(s) ds$$
(48)

for the unitarily time-changed kernel

$$K_{\theta}(s,t) = K(|\theta(t) - \theta(s)|) \sqrt{\dot{\theta}(t)\dot{\theta}(s)}$$
(49)

. Then

$$T_{K_{\theta}} = M_{\theta} T_K M_{\theta}^{-1} \tag{50}$$

Proof. For any $g \in L^2(\mathbb{R})$, compute $(M_\theta T_K M_\theta^{-1} g)(t)$:

$$(M_{\theta}^{-1} g)(s) = \frac{g(\theta^{-1}(s))}{\sqrt{\theta'(\theta^{-1}(s))}},\tag{51}$$

$$(T_K M_{\theta}^{-1} g)(t) = \int_{-\infty}^{\infty} K(|t - s|) \frac{g(\theta^{-1}(s))}{\sqrt{\dot{\theta}(\theta^{-1}(s))}} ds.$$
 (52)

Apply the change of variables $u = \theta^{-1}(s)$, so $s = \theta(u)$ and $ds = \dot{\theta}(u) du$:

$$(T_K M_\theta^{-1} g)(t) = \int_{-\infty}^{\infty} K(|t - \theta(u)|) \frac{g(u)}{\sqrt{\dot{\theta}(u)}} \dot{\theta}(u) du$$

$$(53)$$

$$= \int_{-\infty}^{\infty} K(|t - \theta(u)|) g(u) \sqrt{\dot{\theta}(u)} du.$$
 (54)

Now apply M_{θ} :

$$(M_{\theta} T_{K} M_{\theta}^{-1} g)(t) = \sqrt{\dot{\theta}(t)} (T_{K} M_{\theta}^{-1} g)(\theta(t))$$
(55)

$$= \sqrt{\dot{\theta}(t)} \int_{-\infty}^{\infty} K(|\theta(t) - \theta(u)|) g(u) \sqrt{\dot{\theta}(u)} du.$$
 (56)

Apply the change of variables $s = \theta(u)$ in the reverse direction:

$$(M_{\theta} T_{K} M_{\theta}^{-1} g)(t) = \int_{-\infty}^{\infty} K(|\theta(t) - \theta(s)|) g(s) ds$$
 (57)

$$=(T_{K_{\theta}}g)(t) \tag{58}$$

This establishes the conjugation relation (50).

6 Expected Zero Count

Theorem 14. [Expected Zero-Counting Function] Let $\theta \in \mathcal{F}$ and let

$$K(\tau) = \operatorname{cov}(X(t), X(\tau)) \tag{59}$$

be twice differentiable at $\tau = 0$. The expected number of zeros of the process X_t in [a,b] is

$$\mathbb{E}[N_{[a,b]}] = \sqrt{-\ddot{K}(0)} \left(\theta(b) - \theta(a)\right) \tag{60}$$

Proof. The covariance function of the time-changed process is

$$K_{\theta}(s,t) = \operatorname{cov}(X_s, X_t) = \sqrt{\dot{\theta}(s) \,\dot{\theta}(t)} \, K(|\theta(t) - \theta(s)|)$$
(61)

For the zero-crossing analysis, consider the normalized process. By the Kac-Rice formula:

$$\mathbb{E}[N_{[a,b]}] = \int_{a}^{b} \sqrt{-\lim_{s \to t} \frac{\partial^{2}}{\partial s \, \partial t} K_{\theta}(s,t)} \, dt \tag{62}$$

Computing the mixed partial derivative:

$$\frac{\partial}{\partial t} K_{\theta}(s, t) = \frac{1}{2} \frac{\ddot{\theta}(t)}{\sqrt{\dot{\theta}(t)}} \sqrt{\theta'(s)} K(|\theta(t) - \theta(s)|) \tag{63}$$

$$+\sqrt{\dot{\theta}(s)\,\dot{\theta}(t)}\,\dot{K}(|\theta(t)-\theta(s)|)\mathrm{sgn}(\theta(t)-\theta(s))\,\dot{\theta}(t). \tag{64}$$

Taking the limit as $s \to t$ and using the fact that $\dot{K}(0) = 0$ for stationary processes:

$$\lim_{s \to t} \frac{\partial^2}{\partial s \, \partial t} K_{\theta}(s, t) = \dot{\theta}(s) \, \dot{\theta}(t) \, \ddot{K}(0) \tag{65}$$

$$= \dot{\theta}(t)^2 \ddot{K}(0) \tag{66}$$

Substituting into the Kac-Rice formula:

$$\mathbb{E}[N_{[a,b]}] = \int_{a}^{b} \sqrt{-\dot{\theta}(t)^{2} \, \ddot{K}(0)} \, dt \tag{67}$$

$$=\sqrt{-\ddot{K}(0)}\int_{a}^{b}\dot{\theta}(t)\ dt\tag{68}$$

$$=\sqrt{-\ddot{K}(0)} (\theta(b) - \theta(a)) \tag{69}$$

Here the second equality uses $\dot{\theta}(t) \ge 0$ almost everywhere.

7 Conclusion

This analysis establishes that Gaussian processes generated by measure-preserving bijective time changes of stationary processes form a well-defined subclass of oscillatory processes. The key contributions include:

- 1. The rigorous construction of the unitary operator M_{θ} and its inverse, with proper treatment of the case where $\dot{\theta}(t) = 0$ on sets of measure zero.
- 2. The explicit oscillatory representation with envelope function $A_t(\omega) = \sqrt{\dot{\theta}(t)} \, e^{i\omega(\theta(t)-t)}$.
- 3. The evolutionary power spectrum formula $dF_t(\omega) = \dot{\theta}(t) d\mu(\omega)$.
- 4. The operator conjugation relationship $T_{K_{\theta}} = M_{\theta} T_K M_{\theta}^{-1}$.
- 5. A closed-form expression for the expected zero count in terms of the range of the time transformation.

Bibliography

[priestley1965] M.B. Priestley. Evolutionary spectra and non-stationary processes. *Journal of the Royal Statistical Society, Series B*, 27(2):204–237, 1965.

[cramer1967] H. Cramér and M.R. Leadbetter. Stationary and Related Stochastic Processes. Wiley, 1967.

[kac1943] M. Kac. On the average number of real roots of a random algebraic equation. Bulletin of the American Mathematical Society, 49(4):314–320, 1943.

[rice1945] S.O. Rice. Mathematical analysis of random noise. *Bell System Technical Journal*, 24(1):46–156, 1945.