Digital Image Acquisition Process

A Simple Image Formation Model

Mathematical representation

- Two dimensional function f(x,y), where f is the gray level of a pixel at location x and y.

$$0 < f(x,y) < \infty$$

 The values of the function f at different locations are proportional to the energy radiated from the imaged object.

$$f(\mathbf{x},\mathbf{y}) = i(\mathbf{x},\mathbf{y}) * r(\mathbf{x},\mathbf{y})$$
$$0 < i(\mathbf{x},\mathbf{y}) < \infty$$
$$0 < r(\mathbf{x},\mathbf{y}) < 1$$

A Simple Image Formation Model

 $i(\mathbf{X},\mathbf{Y})$: Sun on clear day 90,000 lm/m2

: Sun on cloudy day 10,000 lm/m2

: Full moon 0.1 lm/m2

: Commercial office 1,000 lm/m2

r(x,y) :Black Velvet 0.01

:Stainless Steel 0.65

:Flat-white Wall Paint 0.80

:Silver-plated Metal 0.90

:Snow 0.93

Image Representation

Representing Digital Images

The pixel intensity levels (gray scale levels) are in the interval of [0, L-1].

$$0 \le a_{i,i} \le L-1$$
 where $L = 2^k$

The dynamic range of an image is the range of values spanned by the gray scale.

The number, b, of bits required to store a digitized image of size M by N is

$$b = M \times N \times k$$

- A digital sensor can only measure a limited number of samples at a discrete set of energy levels
- Quantisation is the process of converting a continuous analogue signal into a digital representation of this signal

Sampling

 Remember that a digital image is always only an approximation of a real world scene

Sampling and the Nyquist rate

- Aliasing can arise when you sample a continuous signal or image
 - occurs when your sampling rate is not high enough to capture the amount of detail in your image
 - Can give you the wrong signal/image—an alias
 - formally, the image contains structure at different scales
 - called "frequencies" in the Fourier domain
 - the sampling rate must be high enough to capture the highest frequency in the image
- To avoid aliasing:
 - sampling rate > 2 * max frequency in the image
 - This minimum sampling rate is called the Nyquist rate

64 3

128

256

512

1024

Intensity Level Resolution

- Intensity level resolution refers to the number of intensity levels used to represent the image
 - The more intensity levels used, the finer the level of detail discernible in an image
 - Intensity level resolution is usually given in terms of the number of bits used to store each intensity level

Number of Bits	Number of Intensity Levels	Examples
1	2	0, 1
2	4	00, 01, 10, 11
4	16	0000, 0101, 1111
8	256	00110011, 01010101
16	65,536	1010101010101010

Intensity Level Resolution

