CS3231

Tutorial 1

1. Let $\Sigma = \{a, b, c\}$.

Let
$$L_1 = \{a^n b^m \mid n, m \ge 0\}, L_2 = \{b^m c^n \mid n, m \ge 0\}, L_3 = \{a^m b^n c^r \mid n, m, r \ge 0\}.$$

- (a) What is $L_1 \cap L_2$?
- (b) What is $L_1 \cup L_2$?
- (c) What is L_1^* ?
- (d) Is $L_1 \cdot L_2 = L_3$?
- (e) Is $L_1 \cup L_2 = L_3$?
- (f) Is $L_1 \cap L_2 = L_3$?
- 2. Show by induction that $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$.
- 3. (a) For a particular alphabet set Σ , how many strings of length n are there in Σ^* ? How many strings in Σ^* have length $\leq n$?
 - (b) Suppose w and u are strings. Find an expression for the length of $(w \cdot u \cdot u)^{i^3 + i^2 * j^3} \cdot u^j \cdot w^i$, in terms of i, j, |w|, |u|.
 - (c) Find all the substrings of the string "SINGAPORE".
- 4. Suppose A, B_i are languages over Σ .

Show that
$$A \cdot (\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} (A \cdot B_i)$$
.

- 5. Show that $(A^*)^+ = (A^+)^* = A^*$.
- 6. Suppose $\Sigma = \{0, 1\}.$
 - (a) Let $L = \{w \mid \text{number of 0's in } w \text{ is of form } 5i + 3, \text{ for some natural number } i\}$. Give a DFA for L.
 - (b) Let $L = \{w \mid w \text{ has } 01001 \text{ as a substring } \}$. Give a DFA for L.
- 7. What is the language accepted by the following DFA.