MPM2 Projet Mathématique 2017-2018

Etienne TAILLEFER DE LAPORTALIERE Romain PEREIRA Cyril PIQUET

13/02/2018

Sommaire

1	Modèle de Cox-Ross-Rubinstein
	1.1 Premier pricer
	1.2 Deuxième pricer 1.3 Comparaison
	1.3 Comparaison
	1.4 La couverture
2	Modèle de Black-Scholes
	2.1 Le modèle
	2.2 Le pricer par la méthode de Monte-Carlo
	2.3 Le pricer par formule fermée
3	Convergence des prix
4	EDP de Black-Scholes
5	Références

Préambule

Ce projet est réalisé dans le cadre de nos études à l'ENSIIE. L'objectif est de modéliser un marché financier et de déterminer les prix et la couverture d'option européenne.

Modèle de Cox-Ross-Rubinstein 1

On a $l=2^N$ trajectoire possible pour l'évolution du prix de l'actif risqué, entre l'instant initial 1et l'instant final N.

On a N+1 valeurs possibles pour $S_{t_N}^N$

1. \mathbb{Q} est la probabilité risque-neutre, vérifiant: $\mathbb{E}_{\mathbb{Q}}[T_1^{(N)}] = 1 + r_N$ On note: $q_n = \mathbb{Q}(T_1^{(N)} = 1 + h_N)$ Donc:

$$\mathbb{E}_{\mathbb{Q}}[T_1^{(N)}] = \sum_{t \in T_1^{(N)}(\Omega)} x \mathbb{P}(T_1^{(N)} = t)$$

$$= (1 + h_n) * q_N + (1 + b_n) * (1 - q_n)$$

$$= 1 + r_N$$

$$\Rightarrow \boxed{q_N = \frac{r_N - b_N}{h_N - b_N}}$$
(1)

- 1.1 Premier pricer
- 1.2 Deuxième pricer
- 1.3 Comparaison
- 1.4 La couverture
- 2 Modèle de Black-Scholes
- 2.1Le modèle
- 2.2Le pricer par la méthode de Monte-Carlo
- 2.3Le pricer par formule fermée
- Convergence des prix 3
- EDP de Black-Scholes 4

5 Références