1 Post-processing in VaMPy

This part of the Vascular Modeling Pypeline is dedicated to post-processing. The main purpose of the script compute_hemodynamic_indices.py is to compute hemodynamic indices such as the wall shear stress and oscillatory shear index, and can be executed by entering the following command:

```
$ python automatedPostProcessing/compute_hemodynamic_indices.py --case [PATH TO RESULTS]/Solutions
```

The main purpose of the script compute_flow_and_simulation_metrics.py is to compute simulation specific parameters, and common metrics within fluid dynamics, and can be executed by entering the following command:

2 Mathematical definitions of computed quantities

Table 1: Quantities of compute_hemodynamic_indices.py

Quantity	Abbreviation/Symbol	Definition	Unit
Wall shear stress	WSS, τ	$\mu \frac{\partial u}{\partial n}$	[Pa]
Time averaged wall shear stress	TAWSS	$\frac{1}{T} \int_0^T \tau \ dt$	[Pa]
Temporal wall shear stress gradient	TWSSG	$\frac{1}{T} \int_0^T \left \frac{\partial \tau}{\partial t} \right dt$	[Pa/s]
Oscillatory shear index	OSI	$\frac{1}{2} \left(1 - \frac{\left \int_0^T \tau dt \right }{\int_0^T \tau dt} \right)$	[-]
Relative residence time	RRT	$\frac{1}{(1-2\cdot \mathrm{OSI})\cdot \mathrm{TAWSS}}$	[1/Pa]
Endothelial cell activation potential	ECAP	$\frac{\mathrm{OSI}}{\mathrm{TAWSS}}$	[1/Pa]

 $Table\ 2:\ Quantities\ of\ {\tt compute_flow_and_simulation_metrics.py}$

Quantity	Abbreviation/Symbol	Definition	Unit
Velocity	u	$u(x, y, z, t) = (u_x, u_y, u_z)$	[m/s]
Mean velocity	$ar{u}, u_{ ext{mean}}$	$\frac{1}{T} \int_0^T u dt$	[m/s]
Turbulent velocity	u'	$u - \bar{u}$	[m/s]
Kinematic viscosity	ν	$rac{\mu}{ ho}$	$[m^2/s]$
Time interval	T	User defined	[s]
Time step	Δt	$rac{T}{N}$	[s]
Characteristic edge length	$\Delta x, h$	CellDiameter(mesh)	[m]
Courant–Friedrichs–Lewy condition	CFL	$ u rac{\Delta t}{\Delta x}$	[-]
Rate of strain	S_{ij}	$\frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$	[1/s]
Turbulent rate of strain	s_{ij}	$\frac{1}{2} \left(\frac{\partial u_i'}{\partial x_j} + \frac{\partial u_j'}{\partial x_i} \right)$	[1/s]
Absolute rate of strain	Strain	$\sqrt{\langle S_{ij}, S_{ij} angle}$	[1/s]
Dissipation	${\cal E}$	$2\nu\langle S_{ij}, S_{ij}\rangle$	$[\mathrm{m}^2/\mathrm{s}^3]$
Turbulent dissipation	arepsilon	$2\nu\langle s_{ij},s_{ij}\rangle$	$[\mathrm{m}^2/\mathrm{s}^3]$
Kinetic energy	KE, E_k	$\frac{1}{2}\left(u_x^2 + u_y^2 + u_z^2\right)$	$[\mathrm{m}^2/\mathrm{s}^2]$
Turbulent kinetic energy	TKE, k	$\frac{1}{2} \left({u_x'}^2 + {u_y'}^2 + {u_z'}^2 \right)$	$[\mathrm{m}^2/\mathrm{s}^2]$
Friction velocity	u^{\star}, u_{τ}	$\sqrt{ u S_{ij}}$	[m/s]
Generalized length scale	ℓ^+	$\frac{u^{\star}\Delta x}{\nu}$	[-]
Generalized time scale	t^+	$\frac{\nu}{u^{\star 2}}$	[s]
Kolmogorov length scale	η	$\left(rac{ u^3}{arepsilon} ight)^{rac{1}{4}}$	[m]
Kolmogorov time scale	$ au_\eta$	$\left(rac{ u}{arepsilon} ight)^{rac{1}{2}}$	[s]
Kolmogorov velocity scale	u_{η}	$(arepsilon u)^{rac{1}{4}}$	[m/s]