Computer Systems

- Computer System Components
- Key Concepts
- Performance

Types of Computing Device

Microprocessor: General purpose processor, mainly used in desktop computers and servers.

Microcontroller: Lots of peripheral support, includes functional parts to reduce the external parts count, real-time applications.

Digital Signal Processor (DSP): Processor optimized for Multiply Accumulate (MAC) operations. Processes data in real time.

EEE225/NJP

ARM 11 – 32 bit RISC microprocessor

Raspberry Pi - an ARM GNU/Linux box for £29

EEE225/NJP

PIC Microcontrollers

DSP – Texas Instruments TMS320

Simple Model

- A computer takes input and acts on it according to stored instructions (program)
- To store instructions, we need some memory
- To process instructions, we need a processor (Central Processing Unit or CPU)
- To transact with the computer we need input and output

Representation of information

- Binary signal (two states)
- Achieved using transistors switches
- Low voltage = 0, High voltage = 1

 \bullet Voltage level, \boldsymbol{V}_{DD} , depends upon the chosen technology

EEE225/NJP

Combinations of bits

A binary digit is called a 'bit' and can take the values 0 or 1

- 1 bit 2 alternatives **0,1**
- 2 bits 4 alternatives **00**, **01**, **10**, **11**
- 3 bits 8 alternatives
- 4 bits 16 alternatives
- 8 bits $2^8 = 256$ alternatives
- n bits 2ⁿ alternatives

Information words are built up from binary digits to form a word of any desired length. The length depends on the application. A group of 8 bits is called a byte.

e.g. 4 bit word ABCD = 0000, 0001, 0010, 0011, ..., 1111

Binary Numbers

The position of the bit in a binary number indicates its weight which is a power of two. A binary number can be converted to decimal by adding the weights of all bits that are 1.

$$1101_2 = (1 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)$$

$$= (1 \times 8) + (1 \times 4) + (0 \times 2) + (1 \times 1) = 8 + 4 + 1 = 13_{10}$$

The left-most bit is known as the most significant bit or MSB. The right-most bit is known as the least significant bit or LSB.

Binary to Hexadecimal Conversion

Hex: there are 16 digits

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

each digit corresponds to four binary digits as $2^4 = 16$

```
0000 0001 0010 0011
0100 0101 0110 0111
1000 1001 1010 1011
1100 1101 1110 1111
```

Binary to Hexadecimal Conversion

To convert from binary to hex, group the binary number in fours and assign the corresponding hex digit to each group.

$$(110 \ 1010 \ 0101 \ 1111)_2 = (6A5F)_{16}$$
6 A 5 F

convert from binary to hex:

- a. 10010111001101
- b. 1010011111101001

convert from hex to binary:

- a. B42C
- b. EFC

convert from binary to hex:

decimal	binary	hex
0	$0\ 0\ 0\ 0\ 0$	0
1	00001	1
2	00010	2
3	00011	3
4	00100	4
5	00101	5
6	0 0 1 1 0	6
7	0 0 1 1 1	7
8	01000	8
9	0 1 0 0 1	9
10	01010	A
11	0 1 0 1 1	В
12	0 1 1 0 0	C
13	0 1 1 0 1	D
14	0 1 1 1 0	E
15	0 1 1 1 1	F
16	10000	10
17	10001	11
18	10010	12

EEE225/NJP

Lecture9

Non-Numeric Information

Instructions and non-numeric data are a problem. So we represent both of these by numbers.

An instruction is a number which the processor interprets as a particular, unique instruction.

Non-numeric data such as text is handled similarly. For example ASCII (American Standard for Character Information Interchange) codes represent each character by a number:

$$'0' = 48$$
 $'A' = 65$
 $' = 32$

EEE225/NJP

Lecture9

Some approximate figures for aircraft performance:

Aircraft	Passengers	Range (miles)	Speed (mph)	Passenger throughput (passengers x mph)
Boeing 777	375	4630	610	228,750
Boeing 747	470	4150	610	286,700
Concorde	132	4000	1350	178,200
DC-8-50	146	8720	544	79,424

Response Time: the response time or execution time is the total time for the computer to complete a task.

Throughput: the throughput or bandwidth is the number of tasks completed per unit time.

EEE225/NJP Lecture9

Performance in relation to Execution Time

For a computer X, simplifying execution time to CPU execution time:

Performance_X =
$$\frac{1}{\text{Execution time}_{X}}$$

For two computers X and Y, if the performance of X is greater than the performance of Y

So if we say that X is *n* times faster than Y

$$\frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = \frac{\text{Execution time}_{Y}}{\text{Execution time}_{X}} = n$$

Relative Performance Example

If computer X runs a program in 10 seconds and computer Y runs the same program in 15 seconds, how much faster is X than Y?

Relative Performance Example

If computer X runs a program in 10 seconds and computer Y runs the same program in 15 seconds, how much faster is X than Y?

$$\frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = \frac{\text{Execution time}_{Y}}{\text{Execution time}_{X}} =$$

Relative Performance Example

If computer X runs a program in 10 seconds and computer Y runs the same program in 15 seconds, how much faster is X than Y?

$$\frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = \frac{\text{Execution time}_{Y}}{\text{Execution time}_{X}} = \frac{15}{10} = 1.5$$

Computer X is 1.5 times faster than computer Y.

To improve performance we need to decrease execution time.

How can we improve performance?

Find the bottleneck.

CPU limited task

Input ---> Processing ---> Output

I/O limited task

CPU Performance

If we limit ourselves to CPU performance, we obtain the expression for CPU execution time.

Clock rate: $1 \text{ GHz} = 10^9 \text{ cycles / s (cycle time } 10^{-9} \text{ s} = 1 \text{ ns})$ $200 \text{ MHz} = 200 \times 10^6 \text{ cycles / s (cycle time } = 5 \text{ ns})$ Clock period

Instruction Performance

The previous analysis did not take into consideration the number of instructions in the program..

Average clock cycles per instruction is often abbreviated to CPI

CPU time = Instructions count x CPI x Clock cycle time

Example

Suppose we have two computers which have the same instruction set architecture.

Computer A has a clock cycle time of 250ps and a CPI of 2.0 for a certain program. Computer B has a clock cycle time of 500ps and a CPI of 1.2 for the same program. Which computer is faster for this program and by how much?

Now we can compute the CPU time for each computer.

CPU time_A =
$$I \times 2.0 \times 250 \text{ps} = 500 \times I \text{ ps}$$

We see that computer A is faster. How much faster?

Now we can compute the CPU time for each computer.

We see that computer A is faster. How much faster?

$$\frac{\text{Performance}_{A}}{\text{Performance}_{B}}^{A} = \frac{\text{Execution time}_{B}}{\text{Execution time}_{A}} = \frac{600 \text{ x I ps}}{500 \text{ x I ps}} = 1.2$$

Computer A is 1.2 times faster than computer B for this program.