Question 1: Identifying Functional Dependencies

There are two BCNF tables:

MySales_product

```
SQL

SELECT COUNT(*) FROM (SELECT DISTINCT pname FROM mysales) AS MS1;

SELECT DISTINCT pname, price FROM mysales;

SQL

CREATE TABLE mysales_product (
    pname TEXT,
    price INTEGER
);

INSERT INTO mysales_product (pname, price)

SELECT pname, price FROM mysales;

SELECT COUNT(*) FROM mysales_product;
```

MySales_monthly_discount

```
SELECT COUNT(*) FROM (SELECT DISTINCT month FROM mysales) AS MS2;
SELECT DISTINCT month, discount FROM mysales;
```

Question 2: BCNF Decomposition

Part 1.

$$R(A, B, C, D, E, F)$$

 $A \to BC$ (1)
 $D \to AF$ (2)

- decompose R
 - \circ (1) $\{A\}^+ = \{A, B, C\}$
 - A is not a key
 - not in BCNF
 - compute R1(A, B, C)
 - A is the key
 - \circ (2) $\{D\}^+ = \{D, A, B, C, F\}$
 - D is not a key
 - not in BCNF
 - compute R2(A,B,C,D,F)
 - o D is the key
- B, C, E are not on the LHS, safely ignored.

R	A	В	С	D	E	F	
Α		В	С				
D	Α					F	

Applying reflexivity:

Applying transivity:

$$\begin{array}{c} \bullet & \{A\}^+ = \{A,B,C\} \\ & \circ & \mathsf{Add} \; \mathsf{E} \end{array}$$

•
$$\{A, E\}^+ = \{A, B, C, E\}$$

 $\{A, E\}$ is the key.

$$\bullet \ \, \{D\}^+ = \{A,B,C,D,F\}$$

Add E

•
$$\{D, E\}^+ = \{A, B, C, D, E, F\}$$

 $\{D, E\}$ is the key.

Part 2.

$$S(A, B, C, D)$$

 $ABC \rightarrow D$ (1)
 $D \rightarrow A$ (2)

	A	В	С	D
Α				
ABC				D
В				
С				
D	Α			

Applying reflexivity:

Applying transivity:

•
$$\{A, B, C\}^+ = \{A, B, C, D\}$$
 key

•
$$\{D\}^+ = \{D, A\}$$
 not in BCNF