(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-248579

(43)公開日 平成10年(1998) 9月22日

(51) Int.Cl. ⁶ C 1 2 N 15/09 C 0 7 H 21/02 21/04 C 1 2 Q 1/68 G 0 1 N 33/566	識別配号 ZNA	F I C 1 2 N 15/00 ZNAA C 0 7 H 21/02 21/04 B C 1 2 Q 1/68 A G 0 1 N 33/566 金本海球 おお項の数8 FD (全 7 頁) 最終頁に続く
00111		審査請求 未請求 請求項の数8 FD (全 7 頁) 最終貝に続く
(21)出願番号	特顧平9-67321	(71) 出顧人 591063394 財団法人東京都臨床医学総合研究所
(22)出顧日	平成9年(1997)3月5日	東京都文京区本駒込3丁目18番22号 (71)出願人 390037006 株式会社エスアールエル 東京都立川市曜町二丁目41番19号
		(72)発明者 小原 道法 千葉県東葛飾郡沼南町塚崎1308—19
		(72)発明者 井上 和明 神奈川県横浜市青葉区藤が丘二丁目41番43 号ガーデンプラザ205号
		(74)代理人 弁理士 谷川 英次郎
		最終質に続く

(54) 【発明の名称】 リアルタイム検出PCR法によるHCV遺伝子の測定方法並びにそれに用いられるプライマー及びプローブ

(57)【要約】

(修正有)

【課題】 HCVの高感度、正確、かつ、簡便な測定手段の提供。

【解決手段】 特定された塩基配列のうち連続する15塩基ないし40塩基から成る塩基配列を有するオリゴヌクレオチドである、リアルタイム検出PCR法によるHCV遺伝子の測定のために用いられるフォワード側プライマー;上記とは異る、特定された塩基配列のうち連続する15塩基ないし40塩基から成る塩基配列を有するオリゴヌクレオチドである、リアルタイム検出PCR法によるHCV遺伝子の測定のために用いられるリバース側プライマー;及び上記2配列とは異る、特定された塩基配列のうち連続する15塩基ないし46塩基から成る塩基配列を有するオリゴヌクレオチドに、レボーター蛍光色素と、クエンチャー蛍光色素とが結合されているリアルタイム検出PCR法によるHCV遺伝子の測定のために用いられるプローブ。

1

【特許請求の範囲】

【請求項1】 配列表の配列番号1で示される塩基配列のうち連続する15塩基ないし40塩基から成る塩基配列を有するオリゴヌクレオチドである、リアルタイム検出PCR法によるHCV遺伝子の測定のために用いられるフォワード側プライマー。

【請求項2】 前記オリゴヌクレオチドは、配列表の配列番号2で示される塩基配列を有する20塩基から成る請求項1記載のプライマー。

【請求項3】 配列表の配列番号3で示される塩基配列 10 のうち連続する15塩基ないし40塩基から成る塩基配列を有するオリゴヌクレオチドである、リアルタイム検出PCR法によるHCV遺伝子の測定のために用いられるリバース側プライマー。

【請求項4】 前記オリゴヌクレオチドは、配列表の配列番号2で示される塩基配列を有する20塩基から成る請求項3記載のプライマー。

【請求項5】 配列表の配列番号5で示される塩基配列のうち連続する15塩基ないし46塩基から成る塩基配列を有するオリゴヌクレオチドに、レポーター蛍光色素と、クエンチャー蛍光色素とが結合されており、前記レポーター蛍光色素は、該レポーター蛍光色素が前記クエンチャー蛍光色素と同一のプローブに結合されている場合には蛍光共鳴エネルギー転移によりその蛍光強度が抑制され、前記クエンチャー蛍光色素と同一のプローブに結合されていない状態では蛍光強度が抑制されないものである、リアルタイム検出PCR法によるHCV遺伝子の測定のために用いられるプローブ。

【請求項6】 前記オリゴヌクレオチドは、配列表の配列番号6で示される塩基配列を有する26塩基から成る請求項5記載のプローブ。

【請求項7】 前記レポーター蛍光色素はフルオレッセイン系蛍光色素であり、前記クエンチャー蛍光色素はローダミン系蛍光色素である請求項5又は6記載のプローブ。

【請求項8】 請求項1又は2記載のフォワード側プライマーと、請求項3又は4記載のリバース側プライマーと、請求項5、6又は7記載のプローブとを用い、被検試料中の測定すべきHCV遺伝子を鋳型として逆転写PCRを行ない、反応液からの蛍光をリアルタイムに測定することから成る、被検試料中のHCV遺伝子の測定方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、リアルタイム検出 PCR法によるC型肝炎ウイルス(本願明細書において 「HCV」という)の測定方法並びにそれに用いられる プライマー及びプローブに関する。

[0002]

【従来の技術】従来より、血清等の試料中のHCVの検 50

2

出は、逆転写PCR(RT-PCR)法により行なわれている。この方法は、(1) 血清からのRNA(HCV遺伝子はRNAである)の抽出、(2) 抽出したRNAを鋳型とするcDNA合成、(3)1stPCRによる増幅、(4)2ndPCRによる増幅(感度を上げるために増幅は2回行なう(nested PCR))、(5) アガロースゲル電気泳動、(6) データ処理という、6工程により行なわれている。また、このRT-PCR法とSouthern分析を組み合わせたRT-PCRSouthern法で被検RNAを定量することも可能である。

[0003]

【発明が解決しようとする課題】HCVのウイルス量を定量的に高感度で測定することは、単にウイルス感染の程度を知る以外にも治療経過のモニタリングを行なう上で重要である。しかしながら、上記のRT-PCR法では、被検試料中のHCVを検出できるものの定量することはできない。また、RT-PCRSouthern法は、工程が複雑で手間及び時間がかかる。HCVの測定は、主として臨床検査センター等で行なわれており、一定の時間内に多数の検体を処理する必要があることから、検査を効率化して検査時間を短縮することができれば非常に有利である。

【0004】従って、本発明の目的は、HCVを高感度で正確に、かつ、簡便に測定する手段を提供することである。

[0005]

【課題を解決するための手段】本願発明者らは、いわゆるリアルタイム検出PCR法(Proc. Natl. Acad. Sci. USA, Vol. 88, pp.7276-7280, August 1991, Biochemistry; 特表平6-500021号公報)を用いてHCVの測定を行なうことにより上記目的を達成できるのではないかと考えた。しかしながら、用いるプライマー及びプローブの設定いかんによっては、測定の感度及び/又は再現性について必ずしも満足できない。そこで、鋭意研究の結果、特定のプライマー及びプローブを用いることによりリアルタイム検出PCR法を用いて非常に高感度に、高い再現性をもってHCVを正確に定量することができることを見出し、本発明を完成した。

【0006】すなわち、本発明は、配列表の配列番号1で示される塩基配列のうち連続する15塩基ないし40塩基から成る塩基配列を有するオリゴヌクレオチドである、リアルタイム検出PCR法によるHCV遺伝子の測定のために用いられるフォワード側プライマーを提供する。また、本発明は、配列表の配列番号3で示される塩基配列のうち連続する15塩基ないし40塩基から成る塩基配列を有するオリゴヌクレオチドである、リアルタイム検出PCR法によるHCV遺伝子の測定のために用いられるリバース側プライマーを提供する。さらに、本発明は、配列表の配列番号5で示される塩基配列のうち連続する15塩基ないし46塩基から成る塩基配列を有

10

するオリゴヌクレオチドに、レボーター蛍光色素と、クエンチャー蛍光色素とが結合されており、前記レボーター蛍光色素は、該レポーター蛍光色素が前記クエンチャー蛍光色素と同一のプローブに結合されている場合には蛍光共鳴エネルギー転移によりその蛍光強度が抑制され、前記クエンチャー蛍光色素と同一のプローブに結合されていない状態では蛍光強度が抑制されないものである、リアルタイム検出PCR法によるHCV遺伝子の測定のために用いられるプローブを提供する。さらに、本発明は、上記本発明のフォワード側プライマーと、上記本発明のリバース側プライマーと、上記本発明のプローブとを用い、被検試料中の測定すべきHCV遺伝子を鋳型としてPCRを行ない、反応液からの蛍光をリアルタイムに測定することから成る、被検試料中のHCV遺伝子の測定方法を提供する。

【0007】本発明のフォワード側プライマーは、配列表の配列番号1で示される塩基配列のうち連続する15塩基ないし40塩基、好ましくは18塩基ないし22塩基から成る塩基配列を有するオリゴヌクレオチドである。これらのうち、特に好ましいものとして、配列番号2に示される、20塩基から成る塩基配列を有するものを挙げることができる。なお、配列番号2で示される塩基配列は、HCVゲノムの第58番目のヌクレオチド(以下、「58nt」のように記載)~77ntに相当するものである。なお、HCVゲノムの全塩基配列は公知であり、Kato N.et al., Proc. Natl. Acad. Sci. USA 1990; 87:9524-9528 に記載されている。

【0008】本発明のリバース側プライマーは、配列表の配列番号3で示される塩基配列のうち連続する15塩基ないし40塩基、好ましくは18塩基ないし22塩基から成る塩基配列を有するオリゴヌクレオチドである。これらのうち、特に好ましいものとして、配列番号4に示される、20塩基から成る塩基配列を有するものを挙げることができる。なお、配列番号4で示される塩基配列は、HCVゲノムの294nt~313ntにハイブリダイズするものである。

【0009】本発明のプローブは、オリゴヌクレオチドに後述するレポーター蛍光色素とクエンチャー蛍光色素が結合したものである。該プローブのオリゴヌクレオチド部分は、配列表の配列番号5で示される塩基配列のうち連続する15塩基ないし46塩基、好ましくは24塩基ないし28塩基、から成る塩基配列を有する。該オリゴヌクレオチド部分の好ましい例として、配列番号6で示される26塩基から成るものを挙げることができる。なお、配列番号6で示される塩基配列はHCVゲノムの84nt~109ntに相当するものである。なお、プローブのオリゴヌクレオチド部分がハイブリダイズするHCV遺伝子の領域は、上記フォワード側プライマーがハイブリダイズする領域と近接して一部重複しているが、実際に反応を行なう場合には、フォワード側プライ

4 マーとプローブのハイブリダイズする領域が互いに重複

することがない組み合わせを選択する必要がある。 【0010】前記レポーター蛍光色素は、該レポーター 蛍光色素が前記クエンチャー蛍光色素と同一のプローブ に結合されている場合には蛍光共鳴エネルギー転移によ りその蛍光強度が抑制され、前記クエンチャー蛍光色素 と同一のプローブに結合されていない状態では蛍光強度 が抑制されないものである。レポーター蛍光色素として は、FAM(6-カルボキシーフルオレッセイン)のよ うなフルオレッセイン系蛍光色素が好ましく、クエンチ ャー蛍光色素としては、TAMRA(6 - カルボキシー テトラメチルーローダミン) のようなローダミン系蛍光 色素が好ましい。これらの蛍光色素は公知であり、市販 のリアルタイム検出PCR用キットに含まれているので それを用いることができる。レポーター蛍光色素及びク エンチャー蛍光色素の結合位置は特に限定されないが、 通常、プローブのオリゴヌクレオチド部の一端(好まし くは5'末端)にレポーター蛍光色素が、他端にクエン チャー蛍光色素が結合される。なお、オリゴヌクレオチ ドに蛍光色素を結合する方法は公知であり、例えばNobl e et al., (1984) Nuc. Acids Res. 12:3387-3403及びI yer et al., (1990) J. Am. Chem. Soc. 112:1253-1254 に記載されている。

【0011】本発明の方法では、上記本発明のフォワード側プライマーと、上記本発明のリバース側プライマーと、上記本発明のプローブとを用い、被検試料中の測定すべきHCV遺伝子を鋳型として逆転写PCR(RT-PCR)を行ない、反応液からの蛍光をリアルタイムに測定する。このリアルタイム検出PCR法自体は公知であり、そのための装置及びキットも市販されているので、このような市販の装置及びキットを用いて行なうことができる。

【0012】反応は、被検HCVのRNA、上記フォワード側プライマー、リバース側プライマー及び上記プローブ並びに耐熱性DNAポリメラーゼ(逆転写酵素活性をも有するもの)、dATP, dGTP, dCTP, dTTPを含む溶液を調製して行なう。dTTPに代えて、dUTPを用い、ウラシルーNーグリコシラーゼ(UNG)を加えることにより、前回のPCR産物からの混入DNAを分解することができるので好ましい。反応の具体的な条件は下記実施例に詳述されている。なお、被検試料としては、HCVを含有する疑いのあるいずれのものであってもよく、例えば血清等の体液である。HCVのRNAの調製は、従来のRTーPCRの場合と同様に行なうことができ、下記実施例にも具体的に記載されている。

【0013】反応では、まず、HCVのRNAを鋳型としてcDNAが合成され、次いで、このcDNAを鋳型としてPCRによりDNAの増幅が起きる。増幅DNAは、上記プローブと相補的な領域を含んでいるので、プローブは一本鎖状態の増幅DNAにハイブリダイズす

る。プローブが完全にハイブリダイズした状態で、プロ ーブがハイブリダイズしている一本鎖DNAを鋳型とす る伸長が起きると、DNAポリメラーゼのエキソヌクレ アーゼ活性によりプローブが5、末端側から加水分解さ れる。この分解の結果、プローブのオリゴヌクレオチド 部分に結合されているレポーター蛍光色素とクエンチャ ー蛍光色素とがバラバラになり、クエンチャー蛍光色素 に起因する蛍光共鳴エネルギー転移により抑制されてい たレポーター蛍光色素からの蛍光強度が増加する。一 方、被検試料中にHCVのRNAが存在しない場合に は、DNAの増幅が起きないので、プローブはDNAに ハイブリダイズせず、従って DNAポリメラーゼによっ て加水分解されることもない。このため、レポーター蛍 光色素からの蛍光は、クエンチャー蛍光色素により抑制 されたままであり、蛍光強度は増加しない。従って、蛍 光強度を測定することにより、被検試料中にHCVのR NAを検出することが可能である。

【0014】本発明の方法では、蛍光強度をリアルタイ ムに測定する。すなわち、蛍光強度を測定しながらPC R反応を行なう。測定される蛍光強度は、あるサイクル 20 数を過ぎると検出限界を超え、急激に増加する。そし て、被検試料中のHCVRNAの量が多いほど、少ない サイクル数で蛍光強度が急に増加する。従って、何サイ クルを過ぎた時に蛍光強度の急激な増加が始まるかを調 べることにより、被検試料中のHCVRNAの定量測定 を行なうことができる。より具体的には、例えば、HC VRNAを含まないネガティブコントロールにおける各 サイクル (例えば3~15サイクル) の蛍光強度の標準 偏差の10倍を閾値として設定し、蛍光強度がこの閾値 を超えるサイクル数を調べることにより、正確に被検試 30 料中のHCVRNAを定量測定することができる。すな わち、被検試料中のHCVのRNA数の常用対数を横軸 に、上記閾値を超えた時のサイクル数を縦軸にとると、 測定結果はほぼ完全に直線上にのるので、検量線を作成

しておけば、何サイクルで閾値を超えるかを調べること により被検試料中のHCVRNAの量を定量測定するこ とができる。従って、本発明の方法によれば、従来のR T-PCRのように、PCR後に電気泳動を行なって増 幅を調べる操作が不要であり、非常に簡便である。

[0015]

【実施例】以下、本発明を実施例に基づきより具体的に 説明する。もっとも、本発明は下記実施例に限定される ものではない。

【0016】<u>実施例1</u> 10

プライマーの合成

配列番号2に示される20塩基から成る塩基配列を有す る20merのオリゴDNAを化学合成し、フォワード 側プライマーとした。また、配列番号4に示される20 塩基から成る塩基配列を有する20merのオリゴDN Aを化学合成し、リバース側プライマーとした。

【0017】(2) プローブの調製

配列番号6に示される26塩基から成る塩基配列を有す る26merのオリゴDNAを化学合成した。このオリ ゴDNAの5、末端にFAMを、3、末端にTAMRA を上記文献記載の方法により結合し、プローブとした。

【0018】(3) 合成RNAの調製

HCV遺伝子の5′側領域を含むプラスミドであるpCH 5(J. Virol. Vol. 66,p.1476-1483, 1992) を鋳型とし てT7ポリメラーゼにより1762塩基のRNAを合成 し、5.04 x 107から5.04 x 10ºコピー/μ∣まで10倍 希釈系列を作製した。

【0019】(4) 反応液の調製

上記プライマー、プローブ及びPerkin Elmer TaqMan EZ RT-PCR Core Kit (商品名、Perkin Elmer社製)を用い て、反応チューブ1本あたり、下記表1に示す反応液を 調製した。

[0020]

【表1】

7		8
成分	容量 (µ1)	終濃度
DEPC水	17. 93	li li
5X TaqMan BZ Buffer A	10	1 X
10 mM dATP	1	200 μM
10 mM dGTP	1	200 μM
10 mM dCTP	1	200 μM
20 mM dutp	1.25	500 μM
20 mm 0011 15 μMフォワード側プライマー	0.66	200 nM
15 μMリパース側プライマー	0.66	200 nM
	5	300 nM
3 μMプローブ rTth DNA ポリメラーゼ(2.5 U/ μ1)	3	7.5 U
	0.5	0.5 ซ
AmpBrase(商品名) UNG (1U/ml)	6	3 mM
25 mM Mn (OAc) ₂		<u> </u>

リアルタイム検出PCR [0021](5)

Perkin Elmer MicroAmp Optical Tube (商品名、Perkin Elmer社製)1本あたり、上記反応液を48μl加え、 そこに上記被検血清由来RNA溶液2μ I を添加した。 キャップ (Perkin Elmer Optical Cap) をした後、ABI *

混入DNAのUNGによる分解反応 逆転写工程 UNGの失活 PCR.

このPCRサイクルは53回繰り返した。

[0022](6) 結果

サイクル数を横軸に、蛍光強度の変化を縦軸にとってプ ロットした結果を図1に示す。図1中、各線の近傍に は、試料中のHCVのRNAのコピー数(試料は上記の ように 2μ 1用いたので、上記濃度(コピー $/\mu$ 1)の 2倍) の指数部分を示す。図1より、それぞれの被検試 料について、ある一定のサイクル数を過ぎるまでは蛍光 強度に変化は見られないが、あるサイクル数を過ぎると 蛍光強度が急に増加することがわかる。そして、この蛍 光強度の急激な増加が始まるサイクル数は被検試料中の HCVのRNAコピー数が大きいほど小さいことがわか る。また、上記リアルタイムPCRにおいて、HCVの RNAを含まない試料について行なったネガティブコン トロールの3~15サイクルにおける蛍光強度の標準偏 差の10倍を閾値とし、この閾値を超えたサイクル数 (すなわち、蛍光強度が急激に増加し始めた時のサイク ル数)を求めた。RNAコピー数の常用対数を横軸に、 上記閾値を超えたサイクル数を縦軸にとってプロットし た図を図2に示す。図2に示すように、RNAコピー数 の常用対数と上記閾値を超えたサイクル数との間には直 線関係があり(相関係数0.990)、上記サイクル数を測定 することにより被検試料中のHCVのRNAを定量測定 できることが明らかになった。

*PRISM 7700 Sequence Detection System (商品名、Perk in Elmer社製)にセットし、以下の条件で反応を行なっ た。PCRの各サイクル毎に蛍光強度を測定しデータを 収集した。

8

50℃、2分間

60℃、30分間

95℃、5分間

95℃、20秒間

60℃、1分間

※【0023】<u>実施例2</u>

被検HCVRNAの調製

C型肝炎患者の血清各200μ1に、ISOGEN-LS(商品 30 名、ニッポンジーン社製グアニジンチオオシアネート系 核酸抽出用試薬) 600 μ l (2 ME 3 μ l 、tRN A 1 0 μ g 添加)を加え、氷中に 1 5 分間静置した。 1 60µ1のクロロホルムを加え、氷中で15分間静置 後、12000 x g で 1 5 分間遠心した。 水相に等量のイソ プロパノール及び1μ1のグリコーゲンを加え、-20 ℃で1時間静置後、12000 x g で10分間遠心した。次 いで、1mlの75%エタノールで2回洗浄し、20μ 1のDTT · RNase 阻害剤加DEPC水で溶解し、測定ま で-80℃で保存した。

【0024】実施例1と同じプローブ、プライマーを用 い、実施例1と同じ組成の反応液を調製した。Perkin E lmer MicroAmp Optical tube1本あたり、この反応液を 45.5μ1加え、そこに上記被検血清由来RNA溶液4.5 μ1を加え、実施例1と同様に反応を行ない、各サイク ル毎に蛍光を測定した。一方、従来のRT-PCRSout hern法を利用した市販品(Ampricor (商品名)、Wolfe L., et al., New diagnostic tools, pp.83-94, 1994) 及びbDNA法 (Lau JYN, et al., Lancet 1993;341:1501-1504)により、同じ被検試料についてHCVRNAの ※50 コピー数を測定した。結果を下記表2に示す。

26

【図2】各種被検試料についてHCVのRNAのコピー

※強度の変化の関係を示す図である。

のRNAを測定した場合の、PCRのサイクル数と蛍光※50 数の常用対数と、本発明の方法により被検試料中のHC

[0025]

9

検体番号	HCV RNA			
	Amplicor (商品名) (x10 ³ コピー/ml)	bDNA (x10 ⁶ コピー/ml)	本発明 (x10³ コピー/ml)	
1 2 3 4 5 6 7 8 9	5. 5 950 1400 5300 330 9300 5. 9 420 (1. 0 110	(0.5 15 5.6 7.4 0.58 7.8 (0.5 1.8 (0.5 (0.5 (0.5	867 66670 77780 77780 3778 55560 756 12220 (0. 22 3556	

【0026】表2に示されるように、本発明の方法によ 20*【0028】 【配列表】 る測定結果は従来法で得られた成績とよく相関し、か つ、高感度に測定できることが明かとなった。 配列番号:1 配列の長さ:40 [0027] 【発明の効果】本発明により、HCVを高感度で正確 配列の型:核酸 に、かつ、簡便に測定することが可能になった。 配列 TGAGGAACTA CTGTCTTCAC GCAGAAAGCG TCTAGCCATG 40 ※配列の型:核酸 【0029】配列番号:2 配列の長さ:20 配列 20 CTGTCTTCAC GCAGAAAGCG ★配列の型:核酸 【0030】配列番号:3 配列の長さ:40 配列 CCTCCCGGGG CACTCGCAAG CACCCTATCA GGCAGTACCA ☆配列の型:核酸 【0031】配列番号:4 ☆ 配列の長さ:20 配列 20 CACTOGCAAG CACCCTATCA 40◆配列の型:核酸 【0032】配列番号:5 配列の長さ:46 配列 AGCGTCTAGC CATGGCGTTA GTATGAGTGT CGTGCAACCT CCAGGA 46 *配列の型:核酸 【0033】配列番号:6 配列の長さ:26

CATGGCGTTA GTATGAGTGT CGTGCA

【図1】本発明の方法により、各種被検血清中のHCV

【図面の簡単な説明】

11 VのRNAを測定した場合における、蛍光強度の変化が

閾値を超えたサイクル数との関係を示す図である。

【図1】

【図2】

フロントページの続き

(51) Int. Cl.⁶

識別記号

GO1N 33/576

(72)発明者 勝目 朝夫 埼玉県浦和市東仲町6-6ベルム浦和1001 FI

GO1N 33/576

 \mathbf{Z}

(72)発明者 竹内 朋子

東京都杉並区和泉二丁目45番11号パークサ

イド波良303

(72)発明者 川口 竜二

東京都八王子市小宮町51 株式会社エスア

ールエル八王子ラボラトリー内