Answers to selected exercises

4a, page 2

(1) We want to prove that $E = \mathbb{Z}^+$, where $E = \{x + 1 : x \in \mathbb{Z}_{\geq 0}\}$.

Proof. (\Rightarrow) Let $z \in E$. Use the definition of E to find $x \in \mathbb{Z}_{\geqslant 0}$ such that x+1=z. Then $x \in \mathbb{Z}$ and $x \geqslant 0$ by the definition of $\mathbb{Z}_{\geqslant 0}$. As $x \in \mathbb{Z}$, we know $x+1 \in \mathbb{Z}$ because \mathbb{Z} is closed under +. As $x \geqslant 0$, we know $x+1 \geqslant 0+1=1>0$. So $z=x+1 \in \mathbb{Z}^+$ by the definition of \mathbb{Z}^+ .

(\Leftarrow) Let $z \in \mathbb{Z}^+$. Then $z \in \mathbb{Z}$ and z > 0. Define x = z - 1. As $z \in \mathbb{Z}$, we know $x \in \mathbb{Z}$ because \mathbb{Z} is closed under -. As z > 0, we know x = z - 1 > 0 - 1 = -1, and thus $x \geqslant 0$ as $x \in \mathbb{Z}$. So $x \in \mathbb{Z}_{\geqslant 0}$ by the definition of $\mathbb{Z}_{\geqslant 0}$. Hence the definition of E tells us $z = x + 1 \in E$.

(2) We want to prove that $F = \mathbb{Z}$, where $F = \{x - y : x, y \in \mathbb{Z}_{\geq 0}\}$.

Proof. (\Rightarrow) Let $z \in F$. Use the definition of F to find $x, y \in \mathbb{Z}_{\geqslant 0}$ such that x - y = z. Then $x, y \in \mathbb{Z}$ by the definition of $\mathbb{Z}_{\geqslant 0}$. So $z = x - y \in \mathbb{Z}$ as \mathbb{Z} is closed under -.

 (\Leftarrow) Let $z \in \mathbb{Z}$.

- Case 1: suppose $z \ge 0$. Let x = z and y = 0. Then $x, y \in \mathbb{Z}_{\ge 0}$. So $z = z 0 = x y \in F$ by the definition of F.
- Case 2: suppose z < 0. Let x = 0 and y = -z. Then $x, y \in \mathbb{Z}_{\geqslant 0}$ as z < 0. So $z = 0 (-z) = x y \in F$ by the definition of F.

So $z \in F$ in all the cases. \square

4b, page 3

- $\{1\} \in C$ but $\{1\} \not\subseteq C$;
- $\{2\} \notin C$ but $\{2\} \subseteq C$;
- $\{3\} \in C$ and $\{3\} \subseteq C$; and
- $\{4\} \not\in C$ and $\{4\} \not\subseteq C$.

∅ 4c, page 6

No. For a counterexample, let $A = C = \emptyset$ and $B = \{1\}$. Then

$$(A \setminus B) \cup (B \setminus C) = \emptyset \cup \{1\} = \{1\} \neq \emptyset = A \setminus C.$$

4d, page 6

Ideas. (1) The set of all sets?

$$(2) \left\{ \left\{ \left\{ \left\{ \left\{ \left\{ \dots \dots \right\} \right\} \right\} \right\} \right\} \right\}?$$

4e, page 7

Maybe, but is it better?

Proof. Take any set R. Split into two cases.

• Case 1: assume $R \in R$. Then $\sim (R \notin R)$. So $\sim (R \in R \Rightarrow R \notin R)$. Hence

$$\exists x \sim (x \in R \iff x \notin x).$$

• Case 2: assume $R \notin R$. Then $\sim (R \in R)$. So $\sim (R \notin R \Rightarrow R \in R)$. Hence

$$\exists x \sim (x \in R \iff x \notin x).$$

In either case, we showed $\sim \forall x \ (x \in R \Leftrightarrow x \notin x)$. So the proof is finished.