

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 «ДЛИННАЯ АРИФМЕТИКА»

Студент Кладницкий А. Б.

Преподаватель Силантьева А. В.

Группа ИУ7 – 32Б

1. Описание условия задачи

Смоделировать операцию деления действительного числа в форме +-m.n E + K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка K - до 5 цифр, на целое число длиной до 30 десятичных цифр. Результат выдать в форме +-0.m1 E +- K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

Знак указывается только для отрицательных значений. Для действительного числа обязательно наличие экспоненты. Символ экспоненты должен быть отделен пробелами с двух сторон.

2. T3

- 1. Исходные данные:
 - Две строки.
 - В первой содержится вещественное число в формате +-m.n E +-K. Из знаков допустим только знак "-". Знак экспоненты должен быть введен только один раз в любом регистре. Точка может быть введена не более одного раза. m+n <= 30 цифр, -99999 <= K <= 99999
 - Во второй строке содержится целое число в формате +-K1, K1 <= 30 цифр. Из знаков допустим только знак "-". Символы, кроме цифр и "-", запрещены.
- 2. Результирующие данные:
 - Вещественное число в формате +-0.m1 E +-K1, m1 <= 30 цифр, -99999 <= K1 <= 99999
- 3. Задача программы:
 - Деление вещественного длинного числа на целое длинное
- 4. Способ обращения к программе:
 - Запуск через терминал (./app.exe)
- 5. Возможные ошибки:
 - Ошибки ввода: неверный формат. Несоответствие вводимого числа спецификации.
 - Ошибка вывода. Переполнение экспоненты в ходе выполнения программы.

3. Описание внутренних структур данных

В программе используются две структуры:

```
struct big_float
{
  char sign_m;
  char mantissa[MANTISSA_LEN + 1];
  char point_pos;
  int exponent;
};

Где MANTISSA_LEN (= 30) - макроподстановка
  struct big_int
  {
  char sign;
  char number[NUMBER_LEN + 1];
};

Где NUMBER_LEN (= 30) - макроподстановка
```

Такие структуры были выбраны для наиболее компактного хранения в памяти. Тип char был использован для хранения также и числовой информации из-за малого размера в сравнении с другими (1 байт), поэтому с его помощью были сохранены поля для знаков и положение точки (для действительных чисел).

4. Алгоритм

- 1. Считывание строк, содержащих длинные числа
- 2. Обработка строк, формирование структур
- 3. Процедура деления "в столбик"
- 4. Заранее проводится расчет знака частного, делимое и делитель приводятся к положительным значениям.
- 5. Делимое приводится в такой формат, что вся его мантисса располагается перед запятой (при этом экспонента меняется)
- 6. Заводится два буфера, один для результата, другой для работы. Поочередно считывается символ из мантиссы в рабочий буфер до тех пор, пока длинное целое от этого значения меньше делителя. Как только мантисса "кончилась", если не достигнута нужная точность, дальше добавляются нули.
- 7. Выполняются две операции: целочисленное деление и взятие остатка. Остаток перезаписывает рабочий буфер, а результат

- деления дописывается в буфер результата. Операции основаны на операциях сложения и вычитания.
- 8. При достижении точки в делимом, сохраняется позиция точки для частного.
- 9. По достижении заданной точности, переопределяются поля делимого.
- 10. Производится нормализация и вывод полученного результата, если это возможно.

5. Набор тестов

Негативные тесты:

	Описание	Вещ. число	Цел. число	Результат
1.	Пустой ввод	-	-	Input error
2.	Некорректный ввод (действ.): неизвестные символы	wgvbvjkr		Wrong format:
			12567	Unknown symbol
				or wrong position
3.	Некорректный ввод (действ.):			Wrong format:
	знак "+"	+1456 e 5	6578	Unknown symbol
				or wrong position
4.	Некорректный ввод (действ.):			Wrong format:
	два минуса	546 e 567	5678	Unknown symbol
				or wrong position
5.	Некорректный ввод (действ.):	234.235.325	5467	Wrong format:
	две точки	e 5	0407	find two points
6.	Некорректный ввод (действ.):	456789.678		Wrong format:
	две экспоненты	e 567 e	789	find two
		6789		exponents
7.	Некорректный ввод (действ.):			Wrong format:
	нет экспоненты	345.5467	546	can't find
				exponent
8.	Некорректный ввод (действ.):	415.256 e		Wrong format:
	точка в экспоненциальной	5267.3567	9802	Unknown symbol
	части			or wrong position
9.	Некорректный ввод (действ.): слишком длинная мантисса	11 e 34567	5167	Wrong format: too
				long value of
		(40 цифр)		mantissa
10.	Некорректный ввод (действ.): слишком длинная экспонента	3456.2567 e 5678945678	364789	Too long
				exponent; can't
		00.00.00.0		print number
11.	Некорректный ввод (целое): неизвестные символы	4156.256 e 5	tfgyh	Wrong format:
				Unknown symbol
10		_		or wrong position
12.	Некорректный ввод (целое): знак "+"	4156.256 e 5	+256478	Wrong format:
				Unknown symbol
				or wrong position
13.	Некорректный ввод (целое): два минуса	4156.256 e 5	-635- 89887678	Wrong format:
				Unknown symbol
				or wrong position

14.	Некорректный ввод (целое):	4156.256 e	11	Wrong format: too
	слишком длинное число	5	(40 цифр)	long number
15.	Ошибка вычисления: деление	4156.256 e	0	Can't divide these
	на 0	5	O	numbers
16.	Ошибка вывода:			Too long
	переполнение экспоненты	1 e -99999	100	exponent; can't
				print number

Позитивные тесты:

	Описание	Вещ. число	Цел. число	Результат
1.	Положительные числа, деление на 1	0.1 e 100	1	0.1 E 100
2.	Положительные числа, деление на 100	1.123 e 100	100	0.1123 E 99
3.	Отрицательные числа	-0.15678 e 54	-2	0.7839 E 53
4.	Числа разных знаков	567.6738 e 34	-3	-0.1892246 E 37
5.	Максимально возможная экспонента (99999)	0.12345 e 99999	12345	0.1 E 99995
6.	Максимально возможная мантисса (30 знаков)	1234567890 е 0 (3 раза)	1234567890	0.1000000001000000 0001 E 21
7.	Максимально возможная мантисса, максимально возможное целое число	1234567890 е 0 (3 раза)	1234567890 (3 раза)	0.1 E 124

6. Вывод

Мною были реализованы структуры для хранения длинных целых и длинных действительных чисел и функции для работы с ними, в том числе деление.

Научился обрабатывать целые и действительные числа, превышающие стандартные диапазоны значений: реализация основывается на массиве символов и поэлементным операциях над ним. В основе алгоритма деления лежит алгоритм деления "в столбик".

7. Контрольные вопросы

- 1. Каков возможный диапазон чисел, представляемых в ПК? Для 64-разрядных процессоров максимальный диапазон это [0; 2^64 1] для беззнаковых целых типов и [-2^63; 2^63 1] для знаковых целых.
- 2. Какова возможная точность представления чисел, чем она определяется? Точность зависит от выделенного под мантиссу объема памяти. Максимально под представление мантиссы отводится 52 разряда, а под представление порядка 11 разрядов, еще один разряд отводится под знак. Таким образом, размер вещественного числа не превосходит 64 бит.
- 3. Какие стандартные операции возможны над числами? Сложение, вычитание, умножение, деление.
- 4. Какой ТИП данных может выбрать программист, если обрабатываемые превышают числа возможный диапазон представления чисел в ПК? Такой тип программист должен реализовать сам. Например, можно сохранить длинные числа в виде массива символов или разбить на несколько "обычных" чисел.
- 5. Как можно осуществить операции над числами, выходящими за рамки машинного представления? Такие операции реализуются программистом самостоятельно. Так, для массива символов реализуются операции по его обработке поэлементно и т.д.