Entity Relationship Modelling

TRAN VAN HOANG

tvhoang@ctu.edu.vn

Department of Software Engineering, CIT

Contents

- The Entity-Relationship Model
 - Entities
 - Relationships
 - Attributes
- Constraining the instances
 - Cardinalities
 - Identifiers
 - Generalization

The Entity Relationship Model

Entity-Relationship Schema

- Describes data requirements for a new information system.
- Direct, easy-to-understand graphical notation.
- Translates readily to relational schema for database design.
 - But more abstract than relational schema
 - E.g. can represent an entity without knowing its properties

The Entity Relationship Model (cont.)

Entities

- Classes of objects with properties in common.
 - E.g. City, Department, Employee, Purchase and Sale
- An instance of an entity is an object in the class represented by the entity.
 - E.g. Cantho, Travinh, are examples of instances of the entity City

Relationships

- Logical links between two or more entities.
 - E.g. Residence is a relationship that can exist between the City and Employee
- An instance of a relationship is an n-tuple of instances of entities.
 - E.g. the pair (NguyenVanNam, Cantho), is an instance in the relationship Residence

Examples

Example Instances for Exam

What Does An ER Diagram Really Mean?

- Course and Room are entities
 - Their instances are particular courses (e.g. CT241) and rooms (e.g. 301/C1)
- Meets is a relationship
 - Its instances describe particular meetings.
 - Each meeting has exactly one associated course and room

Recursive Relationships

- An entity can have relationships with itself...
- If the relationship is not symmetric...
 - ...need to indicate the two roles that the entity plays in the relationship

Ternary Relationships

AND/XOR Relationships

- "Each Order either contains a part or requests a service, but not both"
- "For any given order, whenever there is at least one invoice there is also at least one shipment and vice versa"

Attributes

- Associates with each instance of an entity (or relationship) a
 value belonging to a set (the domain of the attribute).
 - The domain determines the allowed values for the attribute.

Composite Attributes

 A group attributes of the same entity or relationship that have closely connected meanings or uses

Schema with Attributes

Cardinalities

- Cardinalities constrain participation in relationships.
 - Maximum and minimum number of relationship instances in which an entity instance can participate.
 - E.g.

Cardinalities (cont.)

- Cardinality is any pair of non-negative integers (a, b)
 - Such that a≤b
 - If a=0 then entity participation in a relationship is optional.
 - If a=1 then entity participation in a relationship is mandatory.
 - If b=1 each instance of the entity is associated at most with a single instance of the relationship.
 - If b="N" each instance of the entity is associated with an arbitrary number of instances of the relationship.

Cardinality Example

Cardinalities of Attributes

- Attributes can also have cardinalities
 - To describe the minimum and maximum number of values of the attribute associated with each instance of an entity or a relationship.
 - The default is (1, 1)
 - Optional attributes have cardinality (0,1)
- Multi-valued attribute cardinalities are problematic
 - Usually better modelled with additional entities linked by one-to-many (or many-to-many) relationships.

Cardinalities of Attributes (cont.)

Identifiers

- How to uniquely identify instances of an entity?
 - An identifier may formed by one or more attributes of the entity itself.
 - If attributes of an entity are not sufficient to identify instances unambiguously, other entities can be involved in the identification.
 - A relationship is identified using identifiers for all the entities it relates.
 - E.g. the identifier for the relationship (Person-) Owns(-Car) is a combination of the Person and Car identifiers

Identifiers (cont.)

Notes on Identifiers

Identifiers and cardinality

- An identifier can involve one or more attributes, provided that each has (1,1) cardinality.
- An external identifier can involve one or more entities, provided that each is a member of a relationship to which the entity to identify participates with cardinality (1,1).

Multiple identifiers

- Each entity must have at least one (internal or external) identifier.
- An entity can have more than one identifier.

Schema with Identifiers

Generalizations

Show "is-a" relationships between entities

• Inheritance:

- Every instance of a child entity is also an instance of the parent entity.
- Every property of the parent entity (attribute, identifier, relationship or other generalization) is also a property of a child entity.

Types of Generalizations

Total generalizations

- ...every instance of the parent entity is an instance of one of its children.
- Shown as a solid arrow.
- Exclusive generalizations
 - ...every instance of the parent entity is at most an instance of one of its children

The E-R Meta-Model

Main references

 Prof Steve Easterbrook, lecture notes, University of Toronto, Canada.

Q&A