Gráficos e tabelas para variáveis quantitativas

Prof. Me. Lineu Alberto Cavazani de Freitas

Departamento de Estatística Laboratório de Estatística e Geoinformação

- Parte primordial de qualquer análise estatística é chamada análise descritiva ou exploratória.
- Consiste basicamente de tabelas, resumos numéricos e análises gráficas das variáveis disponíveis em um conjunto de dados.
- ► Trata-se de uma etapa de extrema importância e deve preceder qualquer análise mais sofisticada.
- As técnicas de análise exploratória visam resumir e apresentar as informações de um conjunto de dados brutos.

- A análise exploratória de dados é uma área relativamente nova.
- Nasceu do clássico livro Exploratory
 Data Analysis de John Tukey em 1977.
- Algo curioso é que Tukey tinha uma relação próxima com a Ciência da Computação e definiu os termos bit e software.

Figura 1. Capa do livro Exploratory Data Analysis de John Tukey.

- Como quase tudo em análise de dados, o avanço computacional permitiu com que a análise exploratória evoluísse substancialmente.
- ► Por exemplo: historicamente o processo de criação de um gráfico era reservado a pessoas qualificadas pois a produção de uma visualização era difícil.
- ▶ Hoje qualquer pessoa pode inserir dados em um aplicativo e gerar um gráfico.
- ► Este tipo de facilidade é importante para disseminação e democratização dos métodos, porém abre margem para certas práticas inadequadas.

- Tentar compreender um conjunto de dados sem algum método que permita resumir as informações é inviável.
- A análise exploratória é a primeira forma de tentarmos entender o que acontece nos nossos dados.
- Uma das tarefas é a etapa de consistência dos dados, isto é, verificar se os dados coletados são condizentes com a realidade.

Figura 2. Extraído de pixabay.com.

- O conjunto de técnicas aplicáveis está diretamente associado ao tipo das variáveis de interesse (quantitativas x qualitativas) e suas ramificações.
- Podemos conduzir análises focadas nas variáveis uma a uma (análises univariadas).
- Também podemos conduzir análises focadas em avaliar a relação entre as variáveis (análises multivariadas).

Figura 3. Extraído de pixabay.com.

Podemos fazer uso diversas técnicas, tais como

- ► Tabelas de frequência absolutas.
- ► Tabelas de frequência relativas.
- ► Tabelas de frequência acumuladas.
- ► Tabelas para múltiplas variáveis.
- Gráficos.

- Medidas de posição central.
- Medidas de posição relativa.
- Medidas de forma.
- Medidas de dispersão.
- Medidas de associação.

- Para ilustrar as técnicas de análise exploratória de dados, usaremos o conjunto de dados "milsa".
- Este conjunto de dados aparece no livro "Estatística Básica" de W. O.
 Bussab e P. A. Morettin.
- Conjunto de dados hipotético de atributos de 36 funcionários da companhia "Milsa".

O conjunto possui as seguintes variáveis:

- Funcionário: identificadora de funcionário.
- Estado civil: casado ou solteiro.
- ► Instrução: 1º grau, 2º grau, superior.
- ► Filhos: número de filhos.
- Salário: salário do funcionário.
- ► **Anos**: idade em anos completos.
- Meses: meses além dos anos completos.
- ▶ **Região**: capital, interior, outro.

Tabela 1. Primeiras linhas do conjunto de dados Milsa.

Funcionário	Estado civil	Instrução	Filhos	Salário	Anos	Meses	Região
1	solteiro	10 Grau	NA	4.00	26	3	interior
2	casado	10 Grau	1	4.56	32	10	capital
3	casado	10 Grau	2	5.25	36	5	capital
4	solteiro	20 Grau	NA	5.73	20	10	outro
5	solteiro	10 Grau	NA	6.26	40	7	outro
6	casado	10 Grau	0	6.66	28	0	interior
7	solteiro	10 Grau	NA	6.86	41	0	interior
8	solteiro	10 Grau	NA	7.39	43	4	capital
9	casado	20 Grau	1	7.59	34	10	capital
10	solteiro	20 Grau	NA	7.44	23	6	outro

- ► Uma variável quantitativa é uma característica que pode ser mensurada e representada numericamente.
- Podem ser classificadas em discretas (finitos valores em um dado intervalo) ou contínuas (infinitos valores em um dado intervalo).
- Quando estamos lidando com variáveis quantitativas discretas com poucos possíveis valores, as técnicas apresentadas para variáveis qualitativas se aplicam.

Tabelas de frequência

Tabela 2. Tabela de frequências para o número de filhos (desconsiderando dados ausentes).

Filhos	Frequência	Percentual	Freq. Acumulada	Percentual Acumulado
0	4	20 %	4	20 %
1	5	25 %	9	45 %
2	7	35 %	16	80 %
3	3	15 %	19	95 %
4	0	0 %	19	95 %
5	1 5	5 %	20	100 %
Total	20	100 %	20	100 %

Gráfico de barras verticais

Figura 4. Gráfico de barras verticais para o número de filhos.

- ► Para variáveis quantitativas **contínuas** ou **discretas com muitos possíveis valores**, precisamos de técnicas específicas.
- Uma estratégia comum é o agrupamento em faixas de valores, e avaliação das frequências nestas faixas.
- Podem ser usadas tabelas de frequências absolutas, relativas e acumuladas para as faixas de valores.
- Utilizando a razão entre frequência relativa e a amplitude das faixas de valores, geramos a densidade.

Faixas de valores

- ► Cuidados devem ser tomados quanto às notações e tipos de faixas (aberto e fechado à esquerda ou direita).
- Diferentes pessoas e softwares podem usar intervalos distintos.
- ► Em geral usaremos intervalos **fechados** à esquerda e abertos à direita.
- ► Considerando dois valores a e b, em que a < b, os intervalos consideram que a **não** está incluído na faixa. b está.

- Notações usuais:
 - \triangleright $a \le y < b$.
 - \triangleright $a \vdash b$.
 - \triangleright [a,b).
 - \triangleright [a,b[.
- ► Exemplo:
 - ▶ $5 \le y < 10$.
 - **▶** 5 ⊢ 10.
 - **15.10).**
 - **|** [5,10].
 - ▶ Valores maiores ou iguais a 5 até valores menores que 10 (10 não está no intervalo).

Perguntas que surgem são:

- ► Como agrupar em classes?
- ► Qual o tamanho ideal das faixas de valores?
- Classes definidas com a mesma amplitude é o procedimento mais usual, apesar de ser possível definir classes com tamanhos diferentes.
- Existem procedimentos que podem ser usados para obter a amplitude, como **Sturges**.
- ► Em geral, **5** a **15** faixas são suficientes.

Tabelas de frequência para uma variável quantitativa

Tabela 3. Tabela de frequências usando faixas de salários.

Faixas	Frequência	Freq. Relativa	Freq. Acumulada	Freq. Rel. Acumulada
[4,6)	4///	0.11	4	0.11
[6,8)	6	0.17	10	0.28
[8,10)	8	0.22	18	0.5
[10,12)	4	0.11	22	0.61
[12,14)	5	0.14	27	0.75
[14,16)	3	0.08	30	0.83
[16,18)	3	0.08	33	0.91
[18,20)	F 2	0.06	35	0.97
[20,22)	0	0.00	35	0.97
[22,24]	1 2000	0.03	36	1
Total	36	1.00		

Tabelas de frequência para uma variável quantitativa

Tabela 4. Tabela de frequências usando faixas de salários.

Faixas	Frequência	Percentual	Freq. Acumulada	Percentual Acumulado
[4,6)	4//	11 %	4-6-	11 %
[6,8)	6	17 %	10	28 %
[8,10)	8	22 %	18	50 %
[10,12)	4	11 %	22	61 %
[12,14)	5	14 %	27	75 %
[14,16)	3	8 %	30	83 %
[16,18)	3	8 %	33	91 %
[18,20)	2	6 %	35	97 %
[20,22)	0	0 %	35	97 %
[22,24]	1 1 1	3 %	36	100 %
Total	36	100%		

Tabelas de frequência para uma variável quantitativa

Tabela 5. Tabela de frequências usando faixas de salários.

Faixas	Frequência	Percentual	Freq. Acum.	Perc. Acum.	Amplitude	Densidade
[4,6)	4	11 %	4	11 %	2	0.055
[6,8)	6	17 %	10	28 %	2	0.085
[8,10)	8	22 %	18	50 %	2	0.11
[10,12)	4	11 %	22	61 %	2	0.055
[12,14)	5	14 %	27	75 %	2	0.07
[14,16)	3	8 %	30	83 %	2	0.04
[16,18)	3	8 %	33	91 %	2	0.04
[18,20)	1 2	6 %	35	97 %	2	0.03
[20,22)		0 %	35	97 %	2	0
[22,24]	m / m 1 m	3 %	36	100 %	2	0.015
Total	36	100%				12222

Gráficos para representação de frequências de uma variável quantitativa

Assim como no caso de variáveis qualitativas ou quantitativas discretas com poucos possíveis valores, a representação por meio de gráficos pode ser bastante benéfica para análise de variáveis quantitativas.

Algumas possibilidades são

- Histograma.
- Gráfico de densidade empírica.
- ► Box-plot

Histograma

- Consiste em retângulos contíguos de base dada pelas faixas de valores definindas para uma variável.
- Algumas possibilidades são:
 - A área representar a frequência da respectiva faixa.
 - A altura representar a frequência absoluta na faixa.
 - A altura representar o quociente da área pela amplitude da faixa: a densidade.

Histograma

Figura 5. Histograma dos salários.

Efeito do número de classes

- ▶ O número de classes pode afetar diretamente as tabelas e gráficos.
- Com poucas classes, os dados ficam excessivamente resumidos e as classes ficam muito heterogêneas.
- Com muitas classes, os dados ficam segmentados em excesso e as representações são comprometidas.

Efeito do número de classes

Figura 6. Efeito do número de classes em histogramas.

Gráfico de densidade empírica

Intuição

- ► Imagine uma sequência de histogramas de densidade em que o número de observações aumenta, juntamente com o número de faixas.
- ▶ No limite, teremos uma **curva**.
- ► Esta curva é chamada de gráfico de **densidade empírica**.
- ▶ É um gráfico "computacionalmente intensivo", depende da definição de uma função kernel e do tamanho da banda.
- A área sob a curva é igual a 1.
- Outra forma de ver o gráfico de densidade empírica é como um histograma suavizado.

Gráfico de densidade empírica

Figura 7. Gráfico de densidade dos salários.

Box-plot

- Outra importante visualização é o box-plot.
- É possível analisar a distribuição dos dados, aspectos quanto a posição, variabilidade, assimetria e também a presença de valores atípicos.
- Retomaremos o box-plot após estudar quartis, em medidas descritivas.

Figura 8. Box-plot dos salários.

Histograma, densidade e box-plot

Figura 9. Combinação de representações.

Assimetria

- Um conjunto de valores pode ser aproximadamente simétrico, assimétrico à esquerda ou à direita.
- ► Tais características são facilmente diagnosticadas por meio de **análise gráfica** usando um histograma, gráfico de densidade ou box-plot.
- Futuramente veremos como diagnosticar assimetria por meio de medidas descritivas.

Figura 10. Ilustração assimetria.

Gráfico de frequências acumuladas

- Outra possibilidade para visualização de variáveis quantitativas é o gráfico de frequências acumuladas.
- A frequência acumulada indica quantos elementos estão abaixo de um certo valor.
- É um interessante recurso para obtenção de **separatrizes**.

Figura 11. Gráfico de frequências acumuladas para o salário.

O que foi visto:

- ► Introdução à análise exploratória.
- Análise exploratória univariada para variáveis qualitativas.
- Análise exploratória univariada para variáveis quantitativas.

Próximos assuntos:

- Resumos numéricos.
- Medidas de posição central.
- Medidas de posição relativa.
- ► Medidas de dispersão.