

Trabalho de Graduação

APLICAÇÃO DE REDE NEURAL PARA COMPRESSÃO DOS DADOS DO SATÉLITE GOES16

Ana Cristina de Paula Lima

ORIENTADOR: Prof. Me. Emanuel Mineda Carneiro

COORIENTADOR: Dr.º Alex Sandro Aguiar Pessoa

Sumário

- Introdução
- Objetivo
- Fundamentação Teórica
- Desenvolvimento do trabalho
- Resultados e discussões
- Considerações Finais
- Referências

Introdução

- Objetivo
- Fundamentação Teórica
- Desenvolvimento do trabalho
- Resultados e discussões
- Considerações Finais
- Referências

Introdução

Climatempo

 Empresa de consultoria meteorológica com sede em São Paulo e extensão em São José dos Campos.

GOES16

 Satélite que captura informações da América do Sul, através dos seus canais infravermelho, visível e vapor d'água.

GEONETCast

 Rede mundial que provém informações meteorológicas. As informações são obtidas a cada 15 minutos ou meia hora.

Dados observados

 São dados brutos obtidos dos satélites, salvos em formato NetCDF.

Dados de previsão

 Dados alterados pelos meteorologistas, que podem ser salvos em formato PNG.

Redes Neurais, Python, Keras

 Aplicação de rede neural do tipo Autoencoder através da linguagem Python e sua API denominada Keras para compressão das imagens em formato PNG.

- Introdução
- Objetivo
- Fundamentação Teórica
- Desenvolvimento do trabalho
- Resultados e discussões
- Considerações Finais
- Referências

Objetivo

Realizar a compressão das imagens geradas pela Climatempo, após a obtenção e tratamento dos dados via satélite GOES16, utilizando redes neurais.

Objetivos específicos

- Obter informações sobre os dados obtidos do satélite GOES16;
- Obter informações sobre as imagens geradas a partir dos dados de previsão;
- Realizar um estudo sobre redes neurais e a sua aplicação na resolução do problema;

- Realizar um estudo sobre as tecnologias que melhor se adequam à resolução do problema;
- Através dos resultados obtidos, comprovar a viabilidade em se utilizar redes neurais para este fim.

- Introdução
- Objetivo
- Fundamentação Teórica
- Desenvolvimento do trabalho
- Resultados e discussões
- Considerações Finais
- Referências

Fundamentação Teórica

Climatempo

Empresa brasileira que oferece serviços e consultoria na área de meteorologia. Possui diversos produtos que utilizam informações advindas de satélites.

SMAC

O Sistema Meteorológico de Alertas Climatempo é utilizado para disparar alertas de raios e fenômenos meteorológicos, e disponibiliza as imagens de satélite em suas previsões.

Camada de satélite no SMAC

Fonte: (Autor, 2019)

GOES16

Primeiro satélite com detector de raios, possui cinco canais: um visível, três infravermelhos e um de vapor d'água. A sua posição na órbita favorece a América do Sul. (EMBRAPA, 2019)

GEONETCast

Rede mundial de sistemas que dissemina informações de satélite em tempo quase real a um baixo custo. (CPTEC - INPE, 2018)

Canal visível

Possui maior resolução espacial e a radiação solar é refletida pela superfície da atmosfera, medições noturnas são mais escuras. (YAMASOE, 2012)

Canal infravermelho

A radiação é emitida pela superfície e pela atmosfera e há medições no período noturno. Utilizado para medir propriedades térmicas da Terra. (FERNANDES, 2010)

Canal de vapor d'água

Utilizado para medir a quantidade de umidade presente na atmosfera, há disponibilidade de imagem em qualquer horário do dia. (YAMASOE, 2012)

NetCDF

Este formato possibilita o armazenamento e manipulação de dados científicos multidimensionais, tais como: temperatura, umidade, pressão, etc. (ARCGIS, 2019)

PNG

Este formato fornece arquivos de imagens de fácil portabilidade, com boa compressão e descompressão, flexibilidade e robustez. (W3C, 2019)

Processamento de imagem

Uma imagem digital é formada por um número finito de elementos, com localização e valor específicos, conhecidos como *Pixels*. (GONZALEZ; WOODS, 2010)

Representações de uma imagem digital

Fonte: (GONZALEZ; WOODS, 2010. p. 36)

Processamento de imagem colorida

A imagem colorida é considerada uma imagem multibanda, onde cada *pixel* representa uma combinação das cores primárias vermelha, verde e azul (RGB). (MARTINS, 2016)

Representação de uma imagem Multibanda

Fonte: (MARTINS, 2016)

Compressão de imagem

A compressão de imagens se refere ao processo de reduzir o volume de dados necessários para representar informações. Em imagens coloridas a compressão é aplicada separadamente em cada uma das bandas. (GONZALEZ; WOODS, 2010)

Diagrama de um sistema geral de compressão de imagens

Fonte: (GONZALEZ; WOODS, 2010. p. 357)

Redes Neurais Artificiais

Modelos computacionais baseados no sistema nervoso dos seres vivos. Possui camada de entrada, camadas ocultas de aprendizagem e camada de saída com os resultados. Utiliza dados supervisionados ou não supervisionados. (SILVA; SPATTI; FLAUZINO, 2010)

Autoencoders

Rede neural não supervisionada que é treinada para definir valores de saída iguais aos de entrada. (GOODFELLOW; BENGIO; COURVILLE, 2016)

Quando treinadas com um tipo específico de dados se tornam restritas à eles ou aos dados considerados semelhantes. (PURKAIT, 2019)

Deep Autoencoder

Uma rede neural do tipo *Deep Autoencoder* possui camadas ocultas interligadas. Modelos de redes profundas apresentam melhor aprendizagem. (GOODFELLOW; BENGIO; COURVILLE, 2016)

Função de ativação ReLU

A função de ativação ReLU é do tipo não linear e não ativa todos os neurônios ao mesmo tempo. A saída é o valor máximo entre 0 e o valor de entrada. (GOODFELLOW; BENGIO; COURVILLE, 2016)

Função de ativação Sigmóide

A função de ativação Sigmóide é do tipo não linear e é utilizada para prever probabilidades. Sua saída possui valores que variam entre 0 e 1. (GOODFELLOW; BENGIO; COURVILLE, 2016)

Função de otimização Adam

A função de otimização Adam calcula individualmente a taxa de aprendizado dos parâmetros estimados durante o treinamento.

(KHANDELWAL, 2019)

Função de perda RMSE

É possível calcular a perda da predição da camada de saída para com a camada de entrada. Lida com dados não supervisionados. (SRINIVASAN, 2016)

Python, Tensorflow, Keras

Keras é uma API baseada em Python que pode ser utilizada em diferentes backends, no trabalho atual é utilizado o backend Tensorflow.

- Introdução
- Objetivo
- Fundamentação Teórica
- Desenvolvimento do trabalho
- Resultados e discussões
- Considerações Finais
- Referências

Desenvolvimento do trabalho

Para a realização deste trabalho foi criada uma classe denominada *Deep Autoencoder*, que reduzirá as imagens para as seguintes dimensões: 512, 384, 256, 128 e 64 *pixels*.

Através dessa classe será possível receber os dados de entrada, treinar os modelos e gerar as imagens compressadas e descompressadas.

Ao instanciar a classe *DeepAutoencoder* é preciso passar como parâmetros o valor de entrada e de encodificação.

```
class DeepAutoencoder(object):
    def __init__(self, input_dim, encoded_dim):
        # Dimensions of output and input layers
        input_layer = Input(shape=(input_dim,))
        hidden_input = Input(shape=(encoded_dim,))
```

Nesse trecho ocorre a criação das camadas responsáveis pela encodificação:

```
# Hidden layers to encoder (512, 384, 256, 128)
encoded = Dense(8 * encoded_dim, activation='relu')(input_layer)
encoded = Dense(6 * encoded_dim, activation='relu')(encoded)
encoded = Dense(4 * encoded_dim, activation='relu')(encoded)
encoded = Dense(2 * encoded_dim, activation='relu')(encoded)
```

Essa é a menor camada criada a partir do valor dimensional de encodificação passado inicialmente:

```
# Hidden layer (64)
hidden_layer = Dense(encoded_dim, activation='relu')(encoded)
```

Nesse trecho ocorre a criação das camadas responsáveis pela decodificação:

```
# Hidden layers to decoder (128, 256, 384, 512)
decoded = Dense(2 * encoded_dim, activation='relu')(hidden_layer)
decoded = Dense(4 * encoded_dim, activation='relu')(decoded)
decoded = Dense(6 * encoded_dim, activation='relu')(decoded)
decoded = Dense(8 * encoded_dim, activation='relu')(decoded)
```

Essa é a camada de saída criada a partir do valor dimensional de entrada passado inicialmente:

```
# Output layer
output_layer = Dense(input_dim, activation='sigmoid')(decoded)
```

Estes são os modelos criados do *autoencoder* e do *encoder*:

```
# Autoencoder and encoder models
self.autoencoder = Model(input_layer, output_layer)
self.encoder = Model(input_layer, hidden_layer)
```

Sequência das camadas escondidas encodificadas:

```
# Sequential hidden layers of encoder
layer1 = self.autoencoder.layers[-5]
layer2 = self.autoencoder.layers[-4]
layer3 = self.autoencoder.layers[-3]
layer4 = self.autoencoder.layers[-2]
layer5 = self.autoencoder.layers[-1]
```

Reconstrução da camada de entrada a partir das camadas escondidas e criação do modelo *decoder*:

```
encoded_layers = layer5(layer4(layer3(layer2(layer1(hidden_input))))

# Decoder model
self.decoder = Model(hidden_input, encoded_layers)
```

Compilação do modelo *autoencoder:*

```
# Compiler autoencoder using optimizer function adam
self.autoencoder.compile(optimizer='adam', loss=rmse)
```

Função responsável pelo treinamento do modelo:

Funções responsáveis pela recuperação das imagens encodificadas e decodificadas:

```
# Method to return an encoded image
def get_encoded_image(self, image):
    encoded_img = self.encoder.predict(image)
    return encoded_img

# Method to return a decoded image
def get_decoded_image(self, encoded_img):
    decoded_img = self.decoder.predict(encoded_img)
    return decoded_img
```

Normalização das imagens:

```
# Normalization of training image and test image
img_train = mpimg.imread((os.path.join(data_png, img)))
train = img_train.reshape((len(img_train), np.prod(img_train.shape[1:])))
img_test = mpimg.imread((os.path.join(data_png, img)))
test = img_train.reshape((len(img_train), np.prod(img_train.shape[1:])))
```

Utilização da classe *DeepAutoencoder* e a recuperação da camada encodificada:

```
# Instantiation of class DeepAutoencoder
deep_autoencoder = DeepAutoencoder(train.shape[1], 64)
deep_autoencoder.train(train, test, 64, 100)

# Get encoded and decoded image
encoded_img = deep_autoencoder.get_encoded_image(test)
decoded_img = deep_autoencoder.get_decoded_image(encoded_img)
```

Modelo Autoencoder da Imagem Infravermelho

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 26716)]	0
dense (Dense)	(None, 512)	13679104
dense_1 (Dense)	(None, 384)	196992
dense_2 (Dense)	(None, 256)	98560
dense_3 (Dense)	(None, 128)	32896
dense_4 (Dense)	(None, 64)	8256
dense_5 (Dense)	(None, 128)	8320
dense_6 (Dense)	(None, 256)	33024
dense_7 (Dense)	(None, 384)	98688
dense_8 (Dense)	(None, 512)	197120
dense_9 (Dense)	(None, 26716)	13705308

Total params: 28,058,268 Trainable params: 28,058,268 Non-trainable params: 0

Modelo Encoder da Imagem Infravermelho

Model: "model_1"			
Layer (type)	Output Shape	Param #	
input_1 (InputLayer)	[(None, 26716)]	0	
dense (Dense)	(None, 512)	13679104	
dense_1 (Dense)	(None, 384)	196992	
dense_2 (Dense)	(None, 256)	98560	
dense_3 (Dense)	(None, 128)	32896	
dense_4 (Dense)	(None, 64)	8256	

Total params: 14,015,808

Trainable params: 14,015,808

Non-trainable params: 0

Modelo Decoder da Imagem Infravermelho

Model: "model_2"			
Layer (type)	Output Shape	Param #	
input_2 (InputLayer)	[(None, 64)]	0	
dense_5 (Dense)	(None, 128)	8320	
dense_6 (Dense)	(None, 256)	33024	
dense_7 (Dense)	(None, 384)	98688	
dense_8 (Dense)	(None, 512)	197120	
dense_9 (Dense)	(None, 26716)	13705308	

Total params: 14,042,460

Trainable params: 14,042,460

Non-trainable params: 0

Dez primeiras épocas do treino da Imagem Infravermelho

```
Train on 6122 samples, validate on 6122 samples
Epoch 1/100
Epoch 2/100
Epoch 3/100
Epoch 4/100
Epoch 5/100
Epoch 6/100
Epoch 7/100
Epoch 8/100
Epoch 9/100
Epoch 10/100
```

Dez últimas épocas do treino da Imagem Infravermelho

```
Epoch 90/100
Epoch 91/100
Epoch 92/100
Epoch 93/100
Epoch 94/100
Epoch 95/100
Epoch 96/100
Epoch 97/100
Epoch 98/100
Epoch 99/100
Epoch 100/100
```

- Introdução
- Objetivo
- Fundamentação Teórica
- Desenvolvimento do trabalho
- Resultados e discussões
- Considerações Finais
- Referências

Resultados e discussões

Os resultados demonstrados a seguir são referentes à imagem infravermelho.

Informações da Imagem Infravermelho

```
Image: GOESR_RET_CH13_IRCOLO_20191009_1400.png
Dimensāo inicial: 3
Shape inicial: (6122, 6679, 4)
Tamanho inicial: 163555352
Dimensāo normalizada: 2
Shape normalizado: (6122, 26716)
Tamanho normalizado: 163555352
```

Imagem Infravermelho de entrada

Histograma cinza e colorido da imagem Infravermelho de entrada

Imagem Infravermelho de saída

Histograma cinza e colorido da imagem Infravermelho de saída

Gráfico de perda da imagem Infravermelho

Imagens Infravermelho

Primeira área selecionada da imagem Infravermelho

Primeiro recorte da imagem Infravermelho

Segunda área selecionada da imagem Infravermelho

Segundo recorte da imagem Infravermelho

- Introdução
- Objetivo
- Fundamentação Teórica
- Desenvolvimento do trabalho
- Resultados e discussões
- Considerações Finais
- Referências

Considerações Finais

A imagem de satélite após a compressão apresentou um bom resultado, porém, com a aplicação de *zoom* nas imagens, é possível notar que a qualidade não é a mesma da imagem original.

Contribuições

As contribuições oferecidas por este trabalho foram:

- Criação de rede neural do tipo Deep Autoencoder para compressão e descompressão de imagens de satélite;
- Aplicação da API do Keras para criação de redes neurais;
- Aplicação da função de otimização Adam, funções de ativação ReLU e Sigmóide e o uso da função de perda RMSE;
- Normalização dos dados de entrada de uma imagem de 3 dimensões para 2 dimensões.

Trabalhos futuros

Apesar das contribuições apresentadas, existem algumas modificações e melhorias a serem realizadas. Abaixo algumas melhorias e sugestões que podem ser implementadas:

- Padronização das imagens em um tamanho único para a criação de um dataset que possa ser utilizado no treino dos modelos;
- Otimizar a criação dos modelos para que seja possível decodificar imagens similares àquelas utilizadas no treino;

- Criação de uma API que receba os dados encodificados e retorne a imagem decodificada, dessa forma seria necessário apenas armazenar os dados encodificados que ocupam menos espaço em disco;
- Combinar diferentes redes neurais do tipo Autoencoder para melhorar a qualidade das imagens decodificadas.

- Introdução
- Objetivo
- Fundamentação Teórica
- Desenvolvimento do trabalho
- Resultados e discussões
- Considerações Finais
- Referências

Referências

EMBRAPA. **GOES** - **Geostationary Operational Environmental Satellite.** Disponível em: https://www.cnpm.embrapa.br/projetos/sat/conteudo/missao_goes.html>. Acesso em: 08 jun. 2019.

CPTEC - INPE. **GEONETCast Americas.** Disponível em: http://satelite.cptec.inpe.br/geonetcast/br/. Acesso em: 13 jun. 2018.

FERNANDES, Diego Simões. UNIVERSIDADE DE SÃO PAULO INSTITUTO DE ASTRONOMIA, GEOFÍSICA E CIÊNCIAS ATMOSFÉRICAS DEPARTAMENTO DE CIÊNCIAS ATMOSFÉRICAS Caracterização das Tempestades a partir dos canais Infravermelho e Vapor d'água do Satélite GOES 10 e 12. 2010. 165 f. TCC (Graduação) - Curso de Instituto de Astronomia, Geofísica e Ciências Atmosféricas departamento de Ciências Atmosféricas, Universidade de São Paulo, São Paulo, 2010. Disponível em: http://www.iag.usp.br/pos/sites/default/files/m_diego_s_f.pdf. Acesso em: 09 jun. 2019.

ARCGIS. What is NetCDF? 2019. Disponível em: https://pro.arcgis.com/en/pro-app/help/data/multidimensional/what-is-netcdf-data.htm. Acesso em: 04 jan. 2020.

W3C. PNG. 2019. Disponível em: https://www.w3.org/TR/REC-png.pdf>. Acesso em: 04 jan. 2020.

GONZALEZ, Rafael C.; WOODS, Richard E.. **Processamento Digital de Imagens.** 3. ed. São Paulo: Pearson Education, 2010. 644 p.

MARTINS, Samuel Botter. **Introdução ao Processamento Digital de Imagens:** Parte 1 - Definições Básicas, Espaço de Cores e Histogramas. Campinas: Unicamp, 2016. 15 p.

SILVA, Ivan Nunes da; SPATTI, Danilo Hernane; FLAUZINO, Rogério Andrade. **Redes Neurais Artificiais:** Para engenharia e Ciências Aplicadas. São Paulo: Artliber, 2010. 395 p.

PURKAIT, Niloy. Hands-On Neural Networks with Keras. United Kingdom: Packt Publishing, 2019.

KHANDELWAL, Renu. **Deep Autoencoder using Keras.** 2019. Disponível em: https://medium.com/datadriveninvestor/deep-autoencoder-using-keras-b77cd3e8be95. Acesso em: 02 jan. 2020.

SRINIVASAN, Krishnan. **Autoencoders.** 2016. Disponível em: https://yaledatascience.github.io/2016/10/29/autoencoders.html>. Acesso em: 29 out. 2016.

YAMASOE, Marcia. **Interpretação de Imagens:** São Paulo, 2012. 83 slides, color. Disponível em: http://dca.iag.usp.br/material/akemi/satelite/Interpreta%E7%E3o%20de%20Imagens_2012.pdf. Acesso em: 02 abr. 2019.

Muito Obrigada!

analimazn@gmail.com