

- 9 -

wherein X is halo or dialkylamino; W is OH or COY,
wherein Y is halo, hydroxy, alkoxy, aryloxy, aryloxy
substituted by an electron-withdrawing group,

alkanoyloxy, or aroyloxy; m is an integer from 0 to 2,

- 5 n is an integer from 0 to 2, inclusive; and
Z is a divalent aryl, cycloalkyl, alkyl, alkenyl, or
alkynyl group. The derivatized carboxylic acid
substituent, -COY, reacts with a hydroxyl, CO₂H, amino,
mercapto, or enolizable carbonyl substituent on the
10 active ingredient, forming an ester, carboxylic acid
anhydride, amide, thioester, or enol ester
respectively. When W is OH, the hydroxyl substituent
reacts with a CO₂H substituent on the active ingredient
forming an ester.

15

Most preferably, the linker is a compound having the
following structure:

20

When X is a halo substituent, the linker forms a
covalent bond with a dialkylamino-substituted polymer,
e.g., poly[(4-dialkylaminomethyl)styrene] or poly[(3-
dialkylaminomethyl)styrene], by alkylating the

- 25 dialkylamino group to produce a quaternary ammonium
salt. In this case, an alkyl halide is then optionally
added to produce a quaternary ammonium salt at each
unreacted dialkylamino substituent. In another
embodiment, the polymer is treated first with an amount
30 of alkyl halide sufficient to produce a quaternary
ammonium salt on only a portion of the dialkylamino
substituents, and then the linker is attached to
substantially all of the remaining dialkylamino-
substituents. When X is a dialkylamino substituent,

- 35 ~~the linker forms a covalent bond with a halomethyl~~
the linker forms a covalent bond with a halomethyl

TN
J22