第二节 估计量的评价标准

对于未知参数 θ ,由于其估计量 $\hat{\theta}$ 在一般情况下并不惟一,因此在实际问题中,选用合适的统计量以取得较好的效果,具有非常重要的意义.

一、无偏性

定义 1 设 $\hat{\theta}$ 为 θ 的估计量,如果对任意的 $\theta \in \Theta$,均有 $E\hat{\theta} = \theta$,就称 $\hat{\theta}$ 为 θ 的无偏估计. 否则称为有偏估计.

无偏估计的直观意义:由于样本 (X_1, X_2, \dots, X_n) 是随机的,利用 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 估计 θ 时,有时会偏高,有时会偏低,但整体平均来说等于 θ .

讨论无偏性的关键在于计算 $E\hat{\theta}$.

例 1 设总体 $X \sim N(\mu, \sigma^2)$, (X_1, X_2, \dots, X_n) (n > 1) 为来自总体 X 的一个简单随机样本,(1)问 $S_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$ 是否是 σ^2 的无偏估计? (2)如果 $Y = c \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$ 为 σ^2 的无偏估计,求常数 c .

解 (1)由于 $E(S_0^2) = \sigma^2$,所以 S_0^2 是 σ^2 的无偏估计.

(2)由于
$$E(X_{i+1}-X_i)=0$$
, $D(X_{i+1}-X_i)=2\sigma^2$,所以
$$E(X_{i+1}-X_i)^2=2\sigma^2+0^2=2\sigma^2$$
, $i=1,2,\cdots,n-1$,

故
$$EY = c \sum_{i=1}^{n-1} E(X_{i+1} - X_i)^2 = c \sum_{i=1}^{n-1} 2\sigma^2 = c 2(n-1)\sigma^2$$
.

由
$$EY = \sigma^2$$
,解得 $c = \frac{1}{2(n-1)}$.

定理 1 设总体 X 的数学期望 $EX = \mu$,方差 $DX = \sigma^2$,

 (X_1, X_2, \dots, X_n) (n > 1) 为来自总体 X 的样本,则

- (1) \overline{X} 是 μ 的无偏估计,即 $E\overline{X} = \mu$;
- (2) S^2 是 σ^2 的无偏估计,即 $E(S^2) = \sigma^2$.

定理 2 设估计量 $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m$ 均为 θ 的无偏估计, c_1, c_2, \dots, c_m 为常数,且 $\sum_{i=1}^m c_i = 1$,则 $\sum_{i=1}^m c_i \hat{\theta}_i$ 仍为 θ 的无偏估计.

证 由于 $E(\sum_{i=1}^m c_i \hat{\theta}_i) = \sum_{i=1}^m c_i E(\hat{\theta}_i) = \sum_{i=1}^m c_i \theta = \theta \sum_{i=1}^m c_i = \theta$,所以 $\sum_{i=1}^m c_i \hat{\theta}_i$ 为 θ 的无偏估计.

例 2 设总体 $X \sim P(\lambda)$,对任意的常数 $c \in (0,1)$,问 $c\bar{X} + (1-c)S^2$ 是否为 λ 的无偏估计?

解 由于 $E\overline{X} = EX = \lambda$, $E(S^2) = DX = \lambda$, 故

 $E[c\bar{X} + (1-c)S^2] = cE\bar{X} + (1-c)E(S^2) = c\lambda + (1-c)\lambda = \lambda$, 所以 $c\bar{X} + (1-c)S^2$ 为 λ 的无偏估计.

又解 由定理 1, \bar{X} 和 S^2 均为 λ 的无偏估计. 且 c+(1-c)=1,再由定理 2 知, $c\bar{X}+(1-c)S^2$ 为 λ 的无偏估计.

例 3 设总体 $X \sim N(\mu, \sigma^2)$,由定理 1 知 \overline{X} 是 μ 的无偏估计,问 \overline{X}^2 是否为 μ^2 的无偏估计?

解由于

$$E(\overline{X}^{2}) = D\overline{X} + (E\overline{X})^{2} = \frac{\sigma^{2}}{n} + \mu^{2} \neq \mu^{2},$$

所以 \overline{X}^2 不是 μ^2 的无偏估计.

注:本例表明:虽然 $E\overline{X} = \mu$,但 $E(\overline{X}^2) \neq \mu^2$.

一般地,虽然 $E\hat{\theta} = \theta$,但未必有 $Eg(\hat{\theta}) = g(\theta)$,即如果 $\hat{\theta}$ 为 θ 的无偏估计,但 $g(\hat{\theta})$ 未必为 $g(\theta)$ 的无偏估计.

例 4 设总体 X 的密度函数为

$$f(x;\theta) = \begin{cases} e^{-(x-\theta)}, & x \ge \theta, \\ 0, & x < \theta, \end{cases}$$

 (X_1, X_2, \dots, X_n) 为来自总体 X 的样本. 试分别讨论未知参数 θ 的估计量 $\hat{\theta}_M = \overline{X} - 1$ 和 $\hat{\theta}_L = \min_{1 \le i \le n} X_i$ 的无偏性.

解 (1)由于
$$EX = \int_{\theta}^{+\infty} xe^{-(x-\theta)} dx = 1 + \theta$$
,得 $EX = 1 + \theta$,故 $E\hat{\theta}_M = E(X - 1) = EX - 1 = (1 + \theta) - 1 = \theta$,

所以 $\hat{\theta}_M = \overline{X} - 1$ 是 θ 的无偏估计.

续解 (2)
$$X$$
 的分布函数为 $F(x) = \begin{cases} 1 - e^{-(x-\theta)}, x \ge \theta, \\ 0, & x < \theta. \end{cases}$

 $\hat{\theta}_L = \min_{1 \le i \le n} X_i$ 的密度函数为

$$f_{\hat{\theta}_{L}}(x) = n[1 - F(x)]^{n-1} f(x) = \begin{cases} ne^{-n(x-\theta)}, & x \ge \theta, \\ 0, & x < \theta. \end{cases}$$

由于
$$E\hat{\theta}_L = \int_{\theta}^{+\infty} x \cdot n e^{-n(x-\theta)} dx = \theta + \frac{1}{n} \neq \theta ,$$

所以 $\hat{\theta}_L = \min_{1 \le i \le n} X_i$ 不是 θ 的无偏估计,即为有偏估计.

二、有效性

定义 2 设 $\hat{\theta}_1$, $\hat{\theta}_2$ 均为 θ 的无偏估计,如果 $D\hat{\theta}_1 < D\hat{\theta}_2$,就称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效.

讨论有效性的关键在于计算 $D\hat{\theta}$.

例 5 设 (X_1, X_2, \dots, X_n) (n > 1) 为来自总体 X 的样本,且 $EX = \mu$, $DX = \sigma^2$ $(\sigma > 0)$,问 μ 的估计量 $\mu_1 = X_1$ 和 $\mu_2 = \overline{X}$ 中,哪个更有效?

解由于

$$E\mu_1=EX_1=\mu, E\mu_2=E\overline{X}=\mu$$
 ,

故 $\mu_1 = X_1$ 和 $\mu_2 = \overline{X}$ 均为 μ 的无偏估计,又由于

$$D\mu_1 = DX_1 = \sigma^2$$
 , $D\mu_2 = D\overline{X} = \frac{\sigma^2}{n}$,

有 $D\mu_2 < D\mu_1$, 所以 $\mu_2 = \overline{X}$ 比 $\mu_1 = X_1$ 更有效.

例 6 设总体 $X \sim N(\mu, \sigma^2)$,其中 μ 已知, σ^2 未知. (X_1, X_2, \dots, X_n)

(n>1) 为来自总体 X 的样本,问 σ^2 的估计量

$$\sigma_1^2 = S_0^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 \, \text{Th} \, \sigma_2^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

中,哪个更有效?

【简解】 由第六章例题知,

$$E(S_0^2) = \sigma^2$$
, $E(S^2) = \sigma^2$, $D(S_0^2) = \frac{2\sigma^4}{n}$, $D(S^2) = \frac{2\sigma^4}{n-1}$, 所以 $\sigma_1^2 = S_0^2$ 和 $\sigma_2^2 = S^2$ 均为 σ^2 的无偏估计. 且 $D(S_0^2) < D(S^2)$, 所以 $\sigma_1^2 = S_0^2$ 比 $\sigma_2^2 = S^2$ 更有效.

三、一致性(相合性)

定义 5 设 $\hat{\theta}$ 为 θ 的估计量,如果对任意的 $\varepsilon > 0$,均有

$$\lim_{n\to\infty} P\{\left|\hat{\theta}-\theta\right|<\varepsilon\}=1,$$

就称 $\hat{\theta}$ 为 θ 的一致估计量或相合估计量.

定理 4 设 (X_1, X_2, \dots, X_n) 是来自总体 X 的样本,且 $E[X]^r$ 存在,其中 r 为正整数.则 $\frac{1}{n} \sum_{i=1}^n X_i^k$ 为 $E(X^k)$ 的相合估计, $k = 1, 2, \dots, r$.