二重积分测试题

1、设 D 是由 $x^2 + \frac{y^2}{4} = 1$ 所围成的闭区域,f(x, y) 满足 df(x, y) = xdx - ydy,f(0,0) = 1则

 $\iint_{\mathbb{R}} f(x,y) dx dy$ 的范围为 ()

- (A) $[2\pi, 3\pi]$; (B) $[-2\pi, 3\pi]$; (C) $[0, 3\pi]$; (D) $[-2\pi, 0]$.

2、 $\iint_{\Omega} x^2 e^{-y^2} d\sigma = ($), 其中 D 是由 y = x, y = 1, x = 0 所围成的闭区域。

- (A) $\frac{e-1}{4e}$, (B) $\frac{e-2}{6e}$: (C) $\frac{e-1}{3e}$; (D) $\frac{e+1}{3e}$.

3、设f(x)为连续函数,f(1) = e, $F(t) = \int_0^t dx \int_x^t e^{-y^2} f(y) dy$,则F'(1) = ()

- (A) 1,
- (B/2:
- (C) 0;

4、设 D 是由 y = x, $y^2 = x$ 所围成的闭区域,则 $\iint \frac{\sin y}{y} dx dy = ()$,

- (A) $1+\sin 1$; (B) $1+\cos 1$; (C) $1-\cos 1$; (D) $1-\sin 1$;

5、 $\iint_{\Omega} xy(x+y)dxdy$, 其中 D 是由 $y=0, y=1, x^2-y^2=1$ 围成。

- (A) $\frac{2(4\sqrt{2}-1)}{15}$; (B) $\frac{3\sqrt{2}-1}{9}$; (C) $\frac{\sqrt{2}-1}{3}$; (D) $\frac{2\sqrt{2}-1}{4}$.

6、设 $f(x) = \begin{cases} \sin x, & 0 \le x \le 2 \\ 0, & \text{其他} \end{cases}$, D为全平面,则 $\iint_{\mathbb{R}} f(x) f(y-x) d\sigma = ($)

- (A) $(1-\sin 2)^2$; (B) $(1+\sin 2)^2$; (C) $(1-\cos 2)^2$; (D) $(1+\cos 2)^2$;

7、设 $D:1 \le x^2 + y^2 \le 4$.则 $\iint_{\mathbb{R}} (x-2y)^2 dx dy = ()$

- (A) $\frac{75\pi}{4}$; (B) $\frac{32\pi}{3}$; (C) $\frac{15\pi}{4}$;
- (D) 0.

8、设 f(x, y) 为连续函数, $f(x, y) = xy + \iint_{D} f(u, v) dx dy$, 其中 D 是由 $y = 0, x = 1, y = x^{2}$

围成,则 f(x,y)=(

(A) xy; (B) xy2; (C) $xy-\frac{1}{6}$; (D) $xy+\frac{1}{6}$.

9、设 $D: 0 \le x \le 2, 0 \le y \le 2,$ 则 $\iint \max(1, xy) dx dy = ()$

(A)
$$\frac{19}{4} + \ln 2$$
; (B) $\frac{17}{8} + \ln 2$; (C) $\frac{13}{4} + 2\ln 2$; (D) $\frac{5}{2} + \ln 2$
10、设 D 是由 $y = 1, x = -1, y = x^3$ 围成,则 $\int_D x(1 + ye^{x^2 + y^2}) dx dy = ()$,
(A) $\frac{2}{5}$; (B) $-\frac{2}{5}$; (C) $\frac{2}{3}$; (D) $-\frac{2}{7}$
11、 $D: |x| + |y| \le 1$,则 $\int_D (x|x| + |y| + 1) dx dy = ()$,
(A) $\frac{8}{3}$; (B) 1; (C) $\frac{8}{5}$; (D) 3.
12、交换积分次序 $\int_1^2 dx \int_x^2 f(x,y) dy + \int_1^2 dy \int_y^{4-y} f(x,y) dx = ()$
(A) $\int_1^2 dx \int_1^{4-x} f(x,y) dy$; (B) $\int_1^2 dx \int_x^{4-x} f(x,y) dy$;
(B) $\int_1^2 dy \int_1^{4-y} f(x,y) dx$; (D) $\int_1^2 dy \int_y^2 f(x,y) dx$;
13、D 为第一象限内由 $y = x, y = 2x, 2xy - 1 = 0, 4xy - 1 = 0$ 围成的闭区域,则 $\int_D f(\sqrt{x^2 + y^2}) dx dy = ()$,

(C)
$$\int_{\frac{\pi}{4}}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\cos 2\theta}}}^{\frac{1}{\sqrt{\cos 2\theta}}} f(\rho) \rho d\rho; \quad (D) \int_{0}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\arctan 2} d\theta \int_{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\frac{1}{\sqrt{\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\frac{1}{\sqrt{\cos 2\theta}}}^{\frac{1}{\sqrt{\cos 2\theta}}}^{\frac{1}{\sqrt{\cos 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\frac{1}{\sqrt{\cos 2\theta}}}^{\frac{1}{\sqrt{\cos 2\theta}}} \rho f(\rho) d\rho; \quad (D) \int_{0}^{\frac{1}{\sqrt{\cos 2\theta}}}^{\frac{1}{\sqrt{\cos 2\theta}}}^{\frac{1}{\sqrt{\cos 2\theta}}}^{\frac{1}{\sqrt{\cos 2\theta}}}^{\frac{1}{\sqrt{\cos 2\theta}}}^{\frac{1}{\sqrt{\cos 2\theta}}}^{\frac{1}{\sqrt{\cos 2\theta}}}^{\frac{1}{\sqrt{\cos 2\theta}}^{\frac{1}{\sqrt{\cos 2\theta}}}^{\frac{1}{\sqrt{\cos$$

14、
$$\% f(x) = \int_0^x \frac{\cos t}{2t - 3\pi} dt$$
, $\% I = \int_0^{\frac{3\pi}{2}} f(x) dx = ($

(A)
$$\frac{\pi}{2}$$
; (B) π ; (C) $\frac{2}{3}$; (D) $\frac{1}{2}$.

15、设 $D: x^2 + y^2 \le t^2, x \ge 0, y \ge 0, f(x)$ 为连续函数,且f'(0) = 1

則
$$\lim_{t\to 0^+} \frac{1}{t-\sin t} \iint_D f(\sqrt{x^2+y^2}) \arctan \frac{y}{x} dx dy = ($$
)

(A)
$$\frac{\pi^2}{2}$$
; (B); $\frac{\pi^2}{4}$; (C) $\frac{\pi}{2}$; (D) $\frac{\pi}{4}$.

16、
$$\[\Box D : x^2 + y^2 \le 1, x \ge 0 \]$$
 $\[\iint_D \frac{1 + xy}{1 + x^2 + y^2} dxdy = (), \]$

(A)
$$\frac{\ln 2}{2}\pi$$
; (B) $\frac{\ln 2}{4}\pi$;; (C) $\frac{\pi}{2}$; (D) $\pi \ln 2$.

17、设 D 是由摆线 $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$, $0 \le t \le 2\pi$ 与 x 轴围成的闭区域,

则 $\iint_{\mathbb{R}} (x+2y)dxdy = (\quad),$

- (A) $3\pi^2 + 5\pi$; (B); $3\pi^2 2\pi$; (C) $2\pi^2 + 3\pi$; (D) $\pi^2 + 1$.

18. $D: x^2 + y^2 \le 2x$, $\iiint_D (\frac{y}{x})^2 dx dy = ()$,

- (A)1; (B)2;; (C) $\frac{\pi}{2}$; (D) π .

19、设 D 是由心形线 $\rho = 1 + \cos\theta$ ($0 \le \theta \le \pi$) 与极轴围成的闭区域,则 $\iint dx dx = ($),

- (A) $\frac{\pi}{2}$; (B) $\frac{3\pi}{4}$; (C) $\frac{2\pi}{3}$; (D) π .

20、 $\iint_D (x^2 + y^2 + y^3 + 1) dx dy = ()$ (其中 D 是由 x = -2, $y = \pm 1$, $x = -\sqrt{1 - y^2}$ 所围 成的区域)。

- (A) $\frac{32}{3} \frac{3}{4}\pi$; (B) $\frac{3}{4} \frac{1}{6}\pi$; (C) $\frac{49}{20} \frac{3}{4}\pi$; (D) $\frac{33}{4} \frac{5}{6}\pi$.