洲江水学

本科实验报告

课程	名称:	计算机组成与设计(周一9,10节)
姓	名:	
学	院:	信息与电子工程学院
专	亚:	电子科学与技术
学	号:	
指导	教师:	屈民军、唐奕

2020年 9月 21 日

洲沙人学实验报告

专业:	电子科学与技术
姓名:	
学号:	

课程名称:	计算机组成与设计	指导老师:	屈民军、唐奕
	•		

实验名称: 快速加法器的设计

一、实验目的 二、实验任务与要求

三、实验原理

四、主要仪器设备 五、实验步骤与过程

六、实验调试、实验数据记录 七、实验结果和分析处理

八、讨论、心得

一、实验目的

- (1) 掌握快速加法器的设计方法。
- (2) 熟悉流水线技术。
- (3) 掌握时序仿真的工作流程。

二、实验任务与要求

- (1) 采用"进位选择加法"技术设计 32 位加法器,并对设计进行功能仿真和时序仿真
- (2) 采用四级流水线技术设计 32 位加法器,并对设计进行功能仿真和时序仿真。

三、实验原理

略

四、主要仪器设备

Modelsim, Vivado

五、实验步骤与过程

- (1) 4 位超前进位加法器设计
- 1、Verilog HDL 设计

略

2、功能仿真

→ /adder_4bits_tb/b 4'hf 4'h2 4'ha	I 4'hc	4hf
	TIL	, ani
√ /adder_4bits_tb/cin 1'h0 1'h		
→ /adder_4bits_tb/sum 4'he 4'h6 4'h5 4'h0 4'hf 4'h1 4'h0) 4h6 4h5	4hf 4he
♦ /adder_4bits_tb/cout 1h1		

由波形图可见,4位超前进位加法器功能实现。

(2) 32 位超前进位加法器设计

1、Verilog HDL 设计

将加法器分成 8 块分别进行加法计算,最低一块由 4 位超前进位加法器构成,后面 7 块分别假设前一块的进位为 0 或 1 将两种结果都计算出来,再根据前级进位选择正确的和与进位。每一块加法结构内部都采用超前进位加法器结构。

该模块由顶层模块 adder 32bits, 四位超前进位加法器 adder 4bits, 和二选一数据选择器 mux2 构成。

2、功能仿真

→ /adder_32bits_tb/a 3	32'hffffff0	32ha0022475	32h57b45	1:7	32 ha00005	75	32h4bbc3b	le .	32h0145b4	75	32'hf00041c	7	32h451bcd	75	32h00002b	1e	32h000000	000	32hfffffff0	
→ /adder_32bits_tb/b 3	32'h0000000f	32h85561c86	32h97120	193b	32h00004a	04	32h5aa643	95	32h67845c	6	32h967769	3b	32h30981a	94	32hd39500	00	32h000000	00	32h0000000	of
/adder_32bits_tb/ci 1	ľh1																			
→ /adder_32bits_tb/s 3	32°h00000000	32h255840fb	32'heec65	b02	32ha00050	29	32ha6627e	53	32h68ca10f		32h8677ab	03	32h75b3e8	2a	32hd3952b	1f	32h000000	000	32'h0000000	00
/adder_32bits_tb/co 1	ľh1																			

局部放大:

~~ *	1.1949									
→ /adder_32bits_tb/a	32'hffffff0	32'ha00224	75	32'h57b451	c7	32'ha00005	75	32'h4bbc3b	1e	32'h0145b475
→ /adder_32bits_tb/b	32'h0000000f	32'h85561c	86	32h971209	3b	32'h00004a	b 4	32'h5aa643	95	32'h67845c86
/adder_32bits_tb/ci	1'h1									
→ /adder_32bits_tb/s	32'h00000000	32'h255840	fb	32'heec65b	02	32'ha00050	29	32'ha6627e	o3	32'h68ca 10fc
/adder_32bits_tb/co	1h1									

由波形图可见,32位超前进位加法器功能实现。

3、时序仿真

/adder_32bits_tb/a	32'hf	32ha0022475	32h57b451c7	32ha0000575	32h4bbc3b1e	32h0145b475	32'hf00041c7	32'h451bcd75	32'h00002b1e	32'h00000000	32'hffffff0
/adder_32bits_tb/b		32h85561c86	32 h9712093b	32h00004ab4	32h5aa64395	32h67845c86	32h9677693b	32'h30981ab4	32'hd3950000	32'h00000000	32'h0000000f
/adder_32bits_tb/ci /adder_32bits_tb/s		32h255840fb	22'heed65b02	温(32ha0005029	XII. 32ha6627eb3	XXX 32h68ca10fc	32'h8677ab03	₩ 32h75b3e82a	/=0/32/hd3952b1f	XII 32h00000000	₩ X 32'h00000000
/adder_32bits_tb/co		32112330 1010	DETRECOSSO	(521,500,000,000	ALL SENGOSE/CSS	Jan Szirocca Iore	32100770000	32113535023	1	J. C. SETISSESSES	, 52.103555555
/glbl/GSR	1'h0										

局部放大:

/adder_32bits_tb/a 32'h	h 3	32'hf000	41c7			32'h451b	cd75			32'h0000	2b 1e	
/adder_32bits_tb/b 32'h	h 3	32'h9677	693b			32'h3098	1ab4			32'hd39	0000	
/adder_32bits_tb/ci 1'h(0											
/adder_32bits_tb/s 32'h	h 32'h6		2'h8677at	03			32'h75b3e	82a			32'hd395	2b1f
/adder_32bits_tb/co 1'h:	1											
/glbl/GSR 1'h:	1				 				 			

局部放大图可见输出信号时延及竞争冒险现象。当 a=32'h00002b1e, b=32'hd3950000 时, 进位为 0,

输出却出现了短暂的1,出现了竞争冒险现象。

六、问题记录

实验中我碰到了如下问题:

1、设计 adder_4bits.v 时,赋值语句比如 assign s[0] = p[0]&(~ci) | (~(p[0]&(~g[0])))&ci,我最初写成了 assign s[0] = p[0]&(~ci) + (~(p[0]&(~g[0])))&ci。即用"+"代替了按位或"|",导致输出呈高阻。后来通过查阅资料发现这样赋值如果"+"两边都是"1",右边结果为"10",而左边只有 1 位,位数不匹配,无法得到正确结果,改正后仿真结果便正确了。

2、设计 adder_32bits.v 时,我受 C 语言条件运算 a=s?a:b 影响,将数据选择中的 in1 和 out 都用了 s[3:0], in0 用了 stmp[3:0],结果进位正确,s 却一直不正确,后来我 in1 用了 stmp1[3:0],in0 用了 stmp0[3:0], out 仍为 s[3:0],得到了正确结果。后来想明白 verilog 的一个模块相当于一个电路模块,输入输出怎么可以一样呢,这个又不是双向端口,而且组合电路不能把输出接回输入的。

七、思考题

1、为什么要进行时序仿真?

因为功能仿真反映的是设计功能是否实现,时钟周期延迟是否基本正确,没有与具体开发板对应,只是一种理想情况下的仿真。而时序仿真反映的是芯片的实际工作状态,与开发板相对应,可以在时钟频率精确度和冒险延迟方面对电路进行仿真,与电路实际工作状态更接近。在 32 位超前进位加法器中我们可以看到功能仿真没有时延,但是时序仿真有时延,即输出改变比时钟上升沿到来的时间略迟,同时我们可以看到进位 co 在应该为 0 的时间出现了短暂的 1 状态,即出现了竞争冒险现象。

2、采用流水线技术有什么优缺点?

优点:流水线缩短了在一个时钟周期内给的那个信号必须通过的通路长度,增加了数据吞吐量,从而可以提高时钟频率。

缺点:功耗增加,面积增加,硬件复杂度增加,数据延迟。例如 32 位流水线加法器因为锁存器延迟了4个时钟周期。