Газовые законы. Уравнение состояния

1. Уравнением изохорного процесса для данной массы идеального газа является:

A)
$$\frac{p}{T} = \text{const};$$
 B) $p \cdot V = \text{const};$ **B)** $\frac{V}{T} = \text{const};$ Γ) $p = \text{const}.$

- 2. Изобарный процесс это процесс протекающий при постоянной массе газа и неизменным значением
 - **А)** температуры;
- Б) давления;
- В) объема;
- Г) формы сосуда.
- 3. Уравнением изотермического процесса для данной массы идеального газа является:

A)
$$\frac{p}{T} = \text{const};$$
 B) $p \cdot V = \text{const};$ **B)** $\frac{V}{T} = \text{const};$ Γ) $p = \text{const}.$

- 4. Изохорный процесс это процесс протекающий при постоянной массе газа и неизменным значением
- А) температуры; Б) давления; В) объема;

- Г) формы сосуда.
- 5. Уравнением изобарного процесса для данной массы идеального газа является:

A)
$$\frac{p}{T} = \text{const};$$

A) $\frac{p}{T} = \text{const};$ B) $\frac{V}{T} = \text{const};$ Γ) T = const.

- 6. Изотермический процесс это процесс протекающий при постоянной массе газа и неизменным значением
 - **А)** температуры;
- **Б)** давления;
- В) объема:
- Г) формы сосуда.
- **7.** Какое давление p создает азот (молярная масса азота $M = 44 \Gamma/MOJL_b$) массой m = 200 г, занимающий объем V = 50 л, при температуре $t = 27 \, ^{\circ}C?$
- **8.** При температуре $t_1 = 27$ °C давление газа в закрытом сосуде было $p_1 = 75$ кПа. Каким будет давление p_2 при температуре $t_2 = -33$ °C.
- 9. Емкость камеры для шины легкового автомобиля равна V = 12 л. Какая масса т воздуха потребуется для наполнения этой камеры до давления p = 0.2 MПа при $t = 17 \,^{\circ}\text{C}$? Молярная масса воздуха $M = 29 \,^{\circ}\text{г/моль}$.
- **10.** Давление газа при $t_1 = 20$ °C равно $p_1 = 100$ кПа. Каково будет давление p_2 этого газа, если его нагреть при постоянном объеме до $T_2 = 423 \text{ K}$?
- 11. Какое количество вещества у содержится в газе, если при давлении p = 400 кПа и температуре t = -13 °C его объем $V = 20 \text{ дм}^3$?
- **12.** Идеальный газ занимает объем $V_1 = 3.2$ л при температуре $t_1 = -33$ °C. Какой станет температура газа t2, если его изобарно перевести в состояние с объемом $V_2 = 4$ л?
- 13. Какой из участков графика соответствует изохорному нагреванию? Изобарному сжатию? Изотермическому сжатию?

15. Количество вещества идеального газа v = 50 моль. Учитывая информацию, представленную на графике, определите абсолютную температуру Т газа.

- **16.** В сосуд объемом V = 1 л помещают $m_1 = 2$ г кислорода ($M_1 = 32$ г/моль) и $m_2 = 4$ г азота ($M_2 = 28$ г/моль). Найдите давление р смеси газов при температуре t = 2 °C.
- 17. При изотермическом процессе давление газа уменьшилось на $|\Delta p| = 50$ кПа. Найдите его конечное давление p_2 , если при этом объем газа увеличился в 6 раз $(V_2 = 6V_1)$.
- **18.** В баллоне вместимостью V = 500 л при температуре $t_1 = 7$ °C находится кислород (M = 32 г/моль) массой m_1 = 1,6 кг. В баллон добавили Δm = 400 г кислорода. Найдите изменение давления в баллоне Δp , если температура газа в баллоне в конечном состоянии $T_2 = 304 \text{ K}$.
- 19. На рисунке точки 1 и 2 соответствуют различным состояниям идеального газа определенной массы. Определите объем газа в состоянии 1, если в состоянии 2 объем газа равен $V_2 = 1.8$ л.

- **20.** Газ занимает объём $V_1 = 8$ л при температуре $T_1 = 300$ К. После изобарного нагревания до температуры $t_2 = 727$ °C плотность газа составила $\rho_2 = 0.6 \text{ кг/м}^3$. Определите массу m газа.
- 21. Определите массу газа в баллоне после того, как в него при постоянной температуре добавили некоторое количество такого же газа. Первоначальная масса газа $m_1 = 1,2$ кг, а его конечное давление на $\alpha = 80$ % больше начального.
- **22.** Температура в комнате объемом $V = 50 \text{ м}^3$ увеличилась от $t_1 = 7 \text{ °C}$ до Т₂ = 300 К. Найдите массу m воздуха вышедшего из комнаты, если давление воздуха ($M = 29 \Gamma / \text{моль}$) в комнате осталось неизменным $p = 100 \text{ к} \Pi \text{a}$.

- **23.** Пузырек воздуха поднимается с глубины h=20 м, где температура воды $t_1=4$ °C, на поверхность водоема при постоянном атмосферном давлении $p_0=100$ кПа. Найдите температуру воды t_2 на поверхности, если начальный объем пузырька $V_1=5$ см³, а конечный $V_2=16$ см³. Плотность воды $\rho=1000$ кг/м³.
- **24.** Сосуд, содержащий газ под давлением $p_1 = 140$ кПа, соединили с пустым сосудом объемом $V_2 = 6$ л. После этого в обоих сосудах установилось давление $p_2 = 100$ кПа. Определите объем V_1 первого сосуда. Процесс считайте изотермическим.
- **25.** Какая масса воздуха находится в пузырьке объемом $V=0.8~\text{cm}^3$ на глубине h=70~m? Температура воздуха в пузырьке $t=17~^{\circ}\text{C}$, молярная масса воздуха M=29~г/моль. Атмосферное давление $p_0=1\cdot10^5~\Pi a$, плотность воды $\rho=1000~\text{кг/m}^3$.
- **26.** По газопроводу течет газ при давлении p=0.83 МПа и температуре T=300 К. Какова скорость газа в трубе, если за время $\tau=2.5$ мин через поперечное сечение трубы площадью S=5 см 2 протекает m=20 кг газа? Молярная масса газа M=40 г/моль.
- **27.** Резиновая камера содержит воздух при температуре $t_1 = 27$ °C и атмосферном давлении $p_1 = 1 \cdot 10^5$ Па. На какую глубину h нужно опустить камеру в воду, чтобы ее объем уменьшился втрое ($V_1 = 3V_2$)? Температура воды $t_2 = 4.5$ °C. Плотность воды $\rho = 1000$ кг/м³.
- **28.** Найдите плотность ρ воздуха в верхней части запаянной с одного конца трубки, помещенной открытым концом в ртуть, если ртуть поднялась на h=50 мм. Температура воздуха T=290 К. Молярная масса воздуха M=29 г/моль. Атмосферное давление $p_0=99,35$ кПа. Плотность ртути $\rho_p=13600$ кг/м 3 .
- **29.** В вертикальном цилиндрическом сосуде с площадью поперечного сечения $S=5,0\,\,\mathrm{cm}^2$, ограниченном сверху подвижным поршнем массой $M=1\,\,\mathrm{kr}$, находится идеальный газ при комнатной температуре. Первоначально поршень находился на высоте $h_1=13\,\,\mathrm{cm}$ от дна сосуда. Трение между поршнем и стенками сосуда отсутствует. Атмосферное давление равно $p_0=100\,\,\mathrm{k\Pi a}$. На какой высоте h_2 от дна сосуда окажется поршень, если на него положить груз массой $m=0,5\,\,\mathrm{kr}$, то при неизменной температуре газа.
- **30.** При давлении $p_1=2$ МПа идеальный газ занимает объем $V_1=5$ л. В результате изотермического расширения объем газа увеличился на $\Delta V=1$ л, и концентрация молекул стала равной $n=3,5\cdot 10^{26}$ м $^{-3}$. При какой температуре t протекал этот процесс?
- **31.** Стеклянная трубка погружена в сосуд с ртутью ($\rho = 13600~{\rm кг/m^3}$). Ртуть стоит в ней на $h = 24~{\rm mm}$ выше уровня в сосуде. Длина части трубки, заполненной воздухом, $l = 25~{\rm cm}$. Начальная температура воздуха $T_1 = 300~{\rm K}$, атмосферное давление $p_0 = 100~{\rm k\Pi a}$. На какое количество градусов ΔT необходимо увеличить температуру воздуха в трубке, чтобы ртуть в ней опустилась до уровня ее в сосуде?

32. Герметичный сосуд объемом V=20 л заполнен сухим воздухом при атмосферном давлении $p_0=100$ кПа при $t_0=0$ °C. В него поместили m=9 г воды (M=0.018 кг/моль) и нагрели до температуры t=100 °C. Какое давление р установится в сосуде, если вся вода превратилась в пар?

Ответы

7. p = 226.6 κΠα; **8.** $p_2 = 60 \text{ kHa}$; **9.** m = 28,9 Γ ; **10.** p₂ = 144,4 $\kappa\Pi a$; 11. v = 3.7 моль; $12. t_2 = 27 \, ^{\circ}C;$ **14.** $V_1 = 2 \text{ m}^3$; **15.** T = 241 K; **18.** $\Delta p = 83,1 \text{ к}\Pi a;$ **16.** p = $468.5 \text{ } \text{к}\Pi \text{a}$; **17.** $p_2 = 10 \text{ } \text{к}\Pi a$; **19.** $V_1 = 0.3 \text{ л}$; **20.** m = 16 Γ ; **21.** m₂ = 2,16 $\kappa\Gamma$; **22.** m = 4,1 $\kappa\Gamma$; **23.** t₂ = 22,5 °C; **24.** $V_1 = 15 \text{ m}$; **25.** $m = 7.7 \cdot 10^{-6} \text{ kg}$; **26.** v = 20 m/c; **27.** h = 17.75 m; **28.** $\rho = 1.1 \text{ } \text{k}\text{F/M}^3$; **29.** $h_2 = 12$ cm; **30.** $t = 72 \, ^{\circ}C$: **31.** $\Delta T = 40 \text{ K}$: **32.** p = 214 κΠa.