УСТРОЙСТВА ЭЛЕКТРОШОКОВЫЕ

Общие технические условия

ПРЫЛАДЫ ЭЛЕКТРАШОКАВЫЯ

Агульныя тэхнічныя ўмовы

(**FOCT P 50940-96, IDT)**

Издание официальное

УДК 623.446.1:537.3:006.354

MKC 13.310

(KГС E76)

IDT

Ключевые слова: устройство электрошоковое, безопасное для жизни, мощность воздействия средняя, напряжение искрового разряда на электродах, совокупность параметров при эффективности воздействия, класс, устройство блокирующее

ОКП 34 3500 ОКП РБ 31.62.13.900

Предисловие

1 ПОДГОТОВЛЕН научно-производственным республиканским унитарным предприятием «Белорусский государственный институт стандартизации и сертификации (БелГИСС)»

ВНЕСЕН Управлением стандартизации Госстандарта Республики Беларусь

- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Госстандарта Республики Беларусь от 27 сентября 2002 г. № 48
- 3 Настоящий стандарт идентичен государственному стандарту Российской Федерации ГОСТ Р 50940-96 «Устройства электрошоковые. Общие технические условия» с Изменениями № 1 и № 2

Государственный стандарт Российской Федерации разработан акционерным обществом «Научноисследовательский институт стали»

Официальные экземпляры государственного стандарта Российской Федерации, на основе которого подготовлен настоящий государственный стандарт, имеются в БелГИСС

Степень соответствия – идентичная (IDT)

4 ВВЕДЕН ВПЕРВЫЕ

Настоящий стандарт не может быть тиражирован и распространен без разрешения Госстандарта Республики Беларусь

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ БЕЛАРУСЬ

УСТРОЙСТВА ЭЛЕКТРОШОКОВЫЕ Общие технические условия

ПРЫЛАДЫ ЭЛЕКТРАШОКАВЫЯ Агульныя тэхнічныя ўмовы

ELECTROSHOCK BATONS General specifications

Дата введения 2003-01-01

1 Область применения

Настоящий стандарт распространяется на электрошоковые устройства и защитные устройства (приспособления) отечественного производства (далее – ЭШУ), предназначенные для использования в целях самообороны и защиты объектов гражданского и ведомственного назначения от несанкционированного воздействия.

Термины и определения, применяемые в настоящем стандарте, приведены в приложении А. (Измененная редакция, Изм. № 2)

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

СТБ 972-2000 Разработка и постановка продукции на производство. Общие положения

ГОСТ 12.2.006-87 (МЭК 65-85) Безопасность аппаратуры электронной сетевой и сходных с ней устройств, предназначенных для бытового и аналогичного общего применения. Общие требования и методы испытаний

ГОСТ 4677-82 Фонари. Общие технические условия

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 15151-69 Машины, приборы и другие технические изделия для районов с тропическим климатом. Общие технические условия

ГОСТ 23216-78 Изделия электротехнические. Хранение, транспортирование, временная противокоррозионная защита, упаковка. Общие требования и методы испытаний

ГОСТ 24555-81 Система государственных испытаний продукции. Порядок аттестации испытательного оборудования. Основные положения

ГОСТ 24812-81 Испытания изделий на воздействие механических факторов. Общие положения

ГОСТ 27542-87 Ткани суконные чистошерстяные и полушерстяные ведомственного назначения. Технические условия

ГОСТ 28213-89 (МЭК 68-2-27-87) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Еа и руководство: Одиночный удар

ГОСТ 28215-89 (МЭК 68-2-29-87) Основные методы испытаний на воздействие внешних факторов. Часть 2. Испытания. Испытание Еb и руководство: Многократные удары

ГОСТ 30345.0-95 (МЭК 335-1-91) Безопасность бытовых и аналогичных электрических приборов. Общие требования

3 Технические требования

3.1 Общие требования

- **3.1.1** Электрошоковые устройства должны быть разработаны и изготовлены в соответствии с требованиями настоящего стандарта, технических условий на ЭШУ конкретного типа, СТБ 972, по конструкторской документации, утвержденной в установленном порядке.
- **3.1.2** ЭШУ должны быть разработаны и изготовлены в климатическом исполнении УХЛ категории размещения 2 по ГОСТ 15150.

При изготовлении ЭШУ для экспорта, кроме того, должны быть учтены требования заказа-наряда (контракта), а для экспорта в страны с тропическим климатом – требования ГОСТ 15151. Комплектующие изделия должны быть изготовлены в том же исполнении, что и ЭШУ.

(Измененная редакция, Изм. № 2)

3.1.3 ЭШУ должны быть безопасными для жизни и здоровья объекта воздействия. Применение ЭШУ должно обеспечивать при контакте с объектом воздействия мгновенный вывод последнего из строя.

3.2 Типы и основные параметры

3.2.1 ЭШУ подразделяют:

- по электрическим параметрам (параметрам безопасности):

средней мощности воздействия;

напряжению искрового разряда на электродах;

совокупности параметров при эффективности воздействия;

- по функциональному использованию:

контактного воздействия (К);

дистанционно-контактного воздействия (ДК).

Характеристика и нормы основных параметров ЭШУ должны соответствовать таблице 1.

Таблица 1

Параметры безопасности	Характеристика, нормы	Тип	Группа	Класс
Средняя мощность воздействия при нагрузке 1 кОм, Вт	От 0,3 до 1,0 включ. Св. 1,0 » 2,0 »	3 2		_
	» 2,0 » 3,0	1	_	_
Напряжение защитного устройства относительно земли, генерируемое стационарным ЭШУ, кВ	До 12 включ.	1	5	-
Напряжение искрового разряда на электродах ЭШУ, кВ	От 12 до 20 включ.	_	4	_
	Св. 20 » 45 »	-	3	_
	» 45 » 70 »	-	2	-
	» 70 » 90	-	1	_
Совокупность параметров при эффективности воздей-		1	1	1
СТВИЯ		1	2	2
		1	3	3
		1	4	4
		1	5	5
		2	1	2
		2	2	2
	_	2	3	3
		2	4	4
		2	5	5
		3	1	3
		3	2	3
		3	3	3
		3	4	4
		3	5	5

(Измененная редакция, Изм. № 2)

3.2.2 Условное обозначение ЭШУ должно содержать наименование изделия, функциональное использование, класс, тип и группу, обозначение настоящего стандарта.

Пример условного обозначения электрошокового устройства «Шмель», контактного использования (К), 2-го класса, 2-го типа, 1-й группы:

ЭШУ Шмель К.221 СТБ ГОСТ Р 50940-2002

(Измененная редакция, Изм. № 2)

3.3 Конструктивные требования

- **3.3.1** Конструктивное исполнение ЭШУ в зависимости от их назначения и области применения определяет заказчик совместно с разработчиком.
- **3.3.2** Габаритные размеры должны быть установлены в стандартах и (или) технических условиях на ЭШУ конкретного типа.
 - 3.3.3 Для приведения в действие ЭШУ должно быть снабжено устройством включения.

Воздействие ЭШУ на объект осуществляется через рабочие электроды, вмонтированные на (в) корпусе или через выбрасываемые контактные электроды, а также при непосредственном контакте с объектом.

(Измененная редакция, Изм. № 2)

3.3.4 Расстояние между рабочими электродами не должно превышать 40 мм.

Расстояние между контактами, выбрасываемыми с помощью пружины или пневматическим способом на максимальную длину токоведущих проводников, не должно превышать 300 мм.

При использовании стационарного ЭШУ контакт осуществляется по схеме «высоковольтный участок – нога – рука» или «высоковольтный участок – нога – нога».

(Измененная редакция, Изм. № 2)

- 3.3.5 ЭШУ должно быть удобным для ношения и использования, а также должны быть предусмотрены меры, предотвращающие его случайное включение.
- **3.3.6** Для исключения несанкционированного применения (при попадании в чужие руки) ЭШУ 1-го и 2-го классов по требованию заказчика изготовляют с блокирующим устройством.
 - 3.3.7 Время однократного воздействия не должно превышать 3 с.

3.4 Требования назначения

3.4.1 ЭШУ 1-го и 2-го классов должны обеспечивать воздействие на объект через одежду в период теплого и холодного времени года, 3-го класса – в период теплого времени года. При этом максимально допустимое снижение мощности воздействия на объект не должно быть более 25 %.

3.5 Требования надежности

- **3.5.1** Надежность ЭШУ должна характеризоваться безотказностью, долговечностью и сохраняемостью.
- **3.5.2** Выбор норм показателей надежности должен соответствовать требованиям нормативных документов на ЭШУ конкретного типа.
- **3.5.3** Средняя наработка до отказа не менее 3000 включений с вероятностью 0,98 без учета наработки до отказа элемента питания.

(Измененная редакция, Изм. № 1)

3.6 Требования стойкости к внешним воздействиям

- **3.6.1** ЭШУ должны быть устойчивыми к воздействию механических ударов. Степень стойкости ЭШУ к воздействию механических ударов в зависимости от предполагаемых условий эксплуатации указывают в технических условиях на ЭШУ конкретного типа.
 - 3.6.2 ЭШУ должны быть устойчивыми к вибрации при транспортировании.
- **3.6.3** ЭШУ должны сохранять работоспособность при температуре окружающего воздуха от минус 15 до плюс 50 °C.
- **3.6.4** ЭШУ должны сохранять работоспособность в воздушной атмосфере с относительной влажностью 98 % при температуре 25 °C.
- **3.6.5** ЭШУ должны сохранять работоспособность после воздействия дождя, верхнее значение интенсивности которого 3 мм/мин.

3.7 Требования к материалам

- **3.7.1** Марки материалов для изготовления электрошоковых устройств должны быть указаны в стандартах или технических условиях на ЭШУ конкретного типа.
- **3.7.2** Корпус ЭШУ должен быть изготовлен из материалов с высокими диэлектрическими и механическими свойствами.

3.8 Комплектность

3.8.1 В комплект поставки, исключая защитное устройство, должны входить: ЭШУ, перезаряжаемый или неперезаряжаемый источник питания, внешнее зарядное устройство, если оно предусмотрено конструкцией, чехол, паспорт и, при необходимости, руководство по эксплуатации.

Комплект поставки защитного устройства регламентируется нормативными документами на него.

(Измененная редакция, Изм. № 2)

3.8.2 Сопроводительная документация ЭШУ, предназначенных для экспорта, – по заказу-наряду (контракту).

3.9 Маркировка

3.9.1 Каждое ЭШУ должно иметь маркировку, содержащую наименование страны – изготовителя ЭШУ, наименование изготовителя (товарный знак), обозначение изделия, номера изделия и Знак соответствия системы сертификации.

(Измененная редакция, Изм. № 2)

3.9.2 Способ, место нанесения маркировки указывают в стандартах или технических условиях на ЭШУ конкретного типа.

3.10 Упаковка

3.10.1 Способ упаковывания, транспортную маркировку упаковки указывают в стандартах или технических условиях на ЭШУ конкретного типа.

(Измененная редакция, Изм. № 2)

4 Приемка

4.1 Для проверки соответствия ЭШУ требованиям настоящего стандарта должны проводиться приемо-сдаточные, периодические, сертификационные и типовые испытания.

(Измененная редакция, Изм. № 2)

4.2 Порядок предъявления к испытаниям, объем предъявляемых партий, состав испытаний, проверяемые параметры и технические свойства, а также последовательность их проверки должны быть указаны в стандартах или технических условиях на ЭШУ конкретного типа.

4.3 (Исключен. Изм. № 2)

5 Методы испытаний

5.1 Испытания ЭШУ на соответствие требованиям настоящего стандарта проводят в нормальных климатических условиях по ГОСТ 15150.

Испытание ЭШУ для определения электрических параметров, надежности и электробезопасности проводят в соответствии с приложением Б.

(Измененная редакция, Изм. № 2)

- **5.2** Проверку внешнего вида ЭШУ на соответствие требованиям настоящего стандарта проводят визуально сравнением с образцом-эталоном.
- **5.3** Габаритные и установочные размеры ЭШУ проверяют сличением с чертежами и измерением мерительным инструментом, обеспечивающим требуемую чертежами точность.
- **5.4** Качество материалов и изделий должно быть удостоверено сертификатами или другими документами изготовителя.
 - 5.5 Контроль маркировки проводят осмотром.
 - **5.6** Общие требования к испытаниям на воздействие климатических факторов по ГОСТ 24813.

Требования к испытаниям на воздействие механических ударов – по ГОСТ 28213, ГОСТ 28215 и ГОСТ 24812.

5.7 Медико-биологические испытания ЭШУ на соответствие нормам Минздрава Республики Беларусь проводят в аккредитованных Госстандартом Республики Беларусь испытательных центрах (лабораториях) по методикам, утвержденным Минздравом Республики Беларусь и согласованным с Госстандартом Республики Беларусь.

(Измененная редакция, Изм. № 1, 2)

6 Транспортирование и хранение

6.1 Транспортирование и хранение ЭШУ должно производиться в транспортной таре.

(Измененная редакция, Изм. № 2)

6.2 Допускается транспортирование ЭШУ транспортом любого вида в условиях, соответствующих группе С ГОСТ 23216 в части воздействия механических факторов, группе 2 ГОСТ 15150 — в части климатических воздействий.

(Измененная редакция, Изм. № 2)

- 6.3 Изделие следует хранить в соответствии с условиями хранения 2 по ГОСТ 15150.
- 6.4 При длительном хранении (свыше 6 мес) источники питания должны быть извлечены.
- 6.5 При хранении ЭШУ свыше 6 мес должна быть проведена предпродажная проверка.

7 Указания по эксплуатации

7.1 Сведения, необходимые для правильной эксплуатации (применения, хранения и технического обслуживания) ЭШУ и поддержания их в постоянной готовности к действию, должны быть указаны в паспорте или руководстве по эксплуатации.

(Измененная редакция, Изм. № 2)

7.2 (Исключен. Изм. № 2)

- **7.3** Следует избегать контакта рабочих электродов ЭШУ в области сердца, головы, шеи и солнечного сплетения объекта воздействия.
- **7.4** Запрещается применение ЭШУ против лиц с явными признаками инвалидности, детей, пожилых людей и беременных женщин.

8 Гарантии изготовителя

- **8.1** Изготовитель должен гарантировать соответствие ЭШУ требованиям настоящего стандарта, стандартам или техническим условиям на ЭШУ конкретного типа.
 - 8.2 Гарантийный срок эксплуатации не менее 12 мес.

Приложение А

(справочное)

Термины и определения, применяемые в настоящем стандарте

А.1 электрошоковое устройство: Гражданское оружие, защитные устройства (приспособления), используемые в целях самообороны и защиты от несанкционированного воздействия в качестве средств контактного электрического воздействия для защиты объектов гражданского и ведомственного назначения, действие которых основано на генерировании электрических импульсов, выходные параметры которых соответствуют требованиям государственных стандартов Республики Беларусь и нормам Министерства здравоохранения Республики Беларусь.

Примечание – В качестве ЭШУ могут применяться искровые разрядники с аналогичными функциями, а также стационарные ЭШУ, используемые для защиты объектов гражданского и ведомственного назначения.

- **А.2** встроенное зарядное устройство **ЭШУ**: Зарядное устройство, установленное в ЭШУ и подключаемое к внешнему источнику тока.
- **А.3 внешнее зарядное устройство:** Зарядное устройство, подключаемое к внешнему источнику тока, в которое устанавливается (подключается) аккумулятор ЭШУ.
- **А.4 неперезаряжаемый источник питания:** Источник питания одноразового использования или батарея.
- **А.5 перезаряжаемый источник питания:** Источник питания многократного использования или аккумулятор.
- **А.6 параметры безопасности ЭШУ:** Основные технические характеристики ЭШУ, установленные требованиями государственных стандартов Республики Беларусь и нормами Министерства здравоохранения Республики Беларусь.
- **А.7 напряжение искрового или дугового разряда на электродах ЭШУ:** Наряжение, выраженное в киловольтах, возникающее между электродами и приводящее к видимой дуге или разряду.
- **А.8 средняя мощность воздействия ЭШУ:** Средняя мощность, выраженная в ваттах, развиваемая ЭШУ на эквиваленте нагрузки сопротивлением $R_0 = 1$ кОм.
- **А.9 время однократного воздействия ЭШУ:** Время воздействия ЭШУ, регламентируемое нормами Министерства здравоохранения Республики Беларусь.
- **А.10 скважность ЭШУ** (K_c): Отношение периода следования импульсов (T_c) к длительности импульса (t_u) или отношение периода следования импульсов (T_c) к длительности импульса напряжения с наибольшей амплитудой.

Приложение Б

(обязательное)

Методика испытаний ЭШУ

Настоящая методика применяется при испытаниях ЭШУ для определения электрических параметров. Методика устанавливает порядок и условия проведения испытаний ЭШУ по электрическим параметрам (параметрам безопасности), надежности и электробезопасности.

Испытания ЭШУ включают:

- определение средней мощности воздействия на эквивалент нагрузки;
- определение мощности воздействия на объект через одежду;
- определение напряжения возникновения искрового разряда;
- испытания на электробезопасность, в том числе определение электрической прочности изоляции
 ЭШУ, определение сопротивления изоляции встроенного зарядного устройства;
 - испытания на надежность.

Испытание стационарных ЭШУ проводят по техническим условиям изготовителя.

Б.1 Общие положения

- **Б.1.1** ЭШУ следует испытывать при нормальных климатических условиях по ГОСТ 15150: температура окружающей среды должна быть (25 ± 10) °C, относительная влажность воздуха от 45 до 80 %, атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.).
- **Б.1.2** Испытательное оборудование, необходимое для проведения испытаний, должно быть аттестовано по ГОСТ 24555.
 - Б.1.3 Испытания проводятся аттестованными специалистами.
- **Б.1.4** На испытания предъявляют три образца ЭШУ, технические условия, паспорт или руководство по эксплуатации и, при необходимости, комплект конструкторской и технической документации.

Б.2 Испытательное оборудование

Б.2.1 Для испытаний ЭШУ применяют:

средства измерений:

- осциллограф двухлучевой запоминающий (типа C8-17 или аналогичного типа);
- вольтметр (типов C502 C511) с пределами измерений 0 3,0 кВ или 0 1,5 кВ, C196 с пределами измерений 0 30 кВ или аналогичного типа с входным сопротивлением $R > 10^{11}$ Ом и входной емкостью $C \le 25$ пФ:

испытательное оборудование:

- делитель высоковольтный импульсный (ДВИ);
- измерительная приставка к вольтметру (ИП);
- делитель (эквивалент нагрузки), собранный из безындукционных сопротивлений типа МЛТ или ТВО с сопротивлением $R_0 = 1$ кОм ± 1 %;
 - стенд для испытания ЭШУ при определении мощности воздействия на объект через одежду;
 - пакет ткани шинельное сукно по ГОСТ 27542;

источники питания:

– источник стабилизированного напряжения (U = 0 - 30 B, I_{max} – не менее 3 A).

Б.2.2 Требования к делителю ДВИ

- **Б.2.2.1** ДВИ выполняется из конденсаторов типа КВИ-3, U_{max} = 16 ÷ 20 кВ; сопротивлений типа КЭВ-1, U_{max} = 10 кВ (см. рисунок Б.2).
- **Б.2.2.2** Суммарная емкость высоковольтного плеча не должна превышать 25 + 45 пФ (измеренная) на разных ступенях деления.
 - Б.2.2.3 Постоянные времени высоковольтного и низковольтного плечей ДВИ должны быть равны:

$$C_{1\Sigma}R_{1\Sigma} = C_1R_1 = C_{23}R_2$$

где C_{23} – суммарная емкость низковольтного плеча при открытом ($R_q = 0$) диоде

$$C_{29} = C_2 + C_{\text{N}},$$

где $C_{\rm M}$ – накопительная емкость.

- **Б.2.2.4** Суммарное сопротивление высоковольтного плеча не менее 100 МОм.
- **Б.2.2.5** Делитель имеет два входа: т. 1 и т. 2, с разным коэффициентом деления K_{μ} . Погрешность определения K_{μ} не более 1,5 %.
- **Б.2.2.6** ИП к вольтметру выполняют из конденсатора типа КВИ-3 или К-5 15 с накопительной емкостью $C_{\rm M}$ = 1 пФ, U_{max} = 6,3 кВ; сопротивлений типа КЭВ-1, U_{max} = 10 кВ, и диодов типов КЦ105, КЦ106 (2Ц106) с $U_{\rm ofo} \ge 4$ кВ.

Б.3 Определение средней мощности воздействия ЭШУ на эквивалент нагрузки $R_3 = 1$ кОм

- **Б.3.1** Средняя мощность, выделяемая на эквиваленте нагрузки $R_9 = 1$ кОм, не должна превышать значений, указанных в таблице 1 настоящего стандарта в соответствии с заявленным классом. Среднюю мощность определяют расчетным путем по осциллограмме напряжения на $R_9 U(t)$.
 - **Б.3.2** Схема получения осциллограммы напряжения U(t) приведена на рисунке Б.1.

 $U_{\rm H}$ – источник стабилизированного напряжения; $R_{\rm B}$ – делитель

Рисунок Б.1 – Схема цепи для измерения средней мощности воздействия ЭШУ на эквивалент нагрузки сопротивлением $R_3 = 1$ кОм

Б.3.3 Проведение испытаний

Снятие осциллограммы напряжения U(t) проводят в два этапа.

На первом этапе определяют частоту повторения им пульсов $f(\Gamma \mathbf{q})$ и период $T(\mathbf{c})$.

На втором этапе снимают осциллограмму импульса напряжения U(t) при двух подключениях контактов ЭШУ к R_3 (1 – 1'; 2 – 2') и (1 – 2'; 2 – 1').

Б.3.4 Обработка результатов

Для обработки используют осциллограмму с большим значением амплитуды напряжения. Расчет мощности по осциллограмме напряжения U(t) для характерных кривых приведен в таблице Б.1.

Таблица Б.1

Вид осциллограммы	Измеряемые по осциллограмме параметры и форма аппроксимации	Формулы для расчета мощности
U(t) T T	U_{mn} — амплитуды полуволн, В; t' — длительность полуволны в импульсе, с; T — период повторения импульсов, с. Затухающая синусоида $U_{ml}^{-\alpha t} sin \omega \cdot t$, где ω — частота колебаний в импульсе	$P = rac{1}{2000} \sum\limits_{1}^{n} U_{mn}^{2} rac{T'}{T} [Bm],$ где $n-$ количество полуволн, учитываемое в расчете с амплитудой не менее $0,25 \ U_{ml \ max}$
1		

Окончание таблицы Б.1

Вид осциллограммы	Измеряемые по осциллограмме параметры и форма аппроксимации	Формулы для расчета мощности
	U_{m1} и U_{m2} — максимальные значения напряжения при аппроксимации положительной и отрицательной полуволн импульса, В; T — период повторения импульсов, с; $f = \frac{1}{T}$ — частота, Гц; K_u — отношение максимального значения напряжения к минимальному; K' — скважность; τ' — длительность импульса с большей амплитудой, с. Прямоугольная: U_{m1} (0, τ') U_{m2} (τ' , τ)	$P = rac{U_{m1}^2}{1000K'}(1 + rac{K' - 1}{K_U^2})ig[Bmig],$ где $K_U = rac{U_{m1}}{U_{m2}},$ $K' = rac{T}{ au'},$ или $P = igg\{rac{U_{m1}^2}{2000} au' + rac{U_{m2}^2}{1000}(T - au') - igg\}fig[Bmig]$
U_{m} $T'/2$ T	Максимальное значение напряжения, В; T — период повторения импульсов, с; $f = \frac{1}{T}$ — частота, Гц; t' — длительность импульса, с. Треугольник с основанием t' . Для стационарного ЭШУ Постоянное напряжение — однополярные импульсы произвольной формы	$P = \frac{U_m^2}{2000} \cdot \frac{\tau'}{T} = \frac{U_m^2}{2000} \tau' f [Bm]$
_	$U = \sqrt{\frac{1}{T}} \int_{0}^{T} U^{2}(t) dt$	$P = \frac{U^2}{1000} [Bm]$

Б.3.5 Энергию за время воздействия
$$t$$
 в секундах определяют по формуле

$$W_{\mathfrak{I}} = t \cdot P [\mathbf{Д} \mathbf{x}].$$
 (Б.1)

Б.3.6 В случае невозможности подключения ЭШУ к внешнему источнику питания допускается использование штатного источника питания, полностью заряженного (аккумулятор), или новой батареи питания.

Б.4 Определение мощности воздействия ЭШУ на объект через одежду

- **Б.4.1** Мощность воздействия определяют расчетным путем согласно разделу 3 по мощности, выделяемой на эквиваленте нагрузки $R_9 = 1$ кОм.
- **Б.4.2** Для получения соответствующих осциллограмм напряжения необходимо обеспечить контакт рабочих электродов ЭШУ к измерительным электродам нагрузки через пакет, состоящий из двух слоев шинельной ткани по ГОСТ 27542.

Б.4.3 Проведение испытаний

Снятие осциллограммы напряжения U(t) на R_3 проводят при подключении контактов ЭШУ к R_3 через пакет ткани. Положение контактов ЭШУ соответствует принятому в Б.3.4.

Б.4.4 Обработку результатов проводят по методике, изложенной в Б.3.4.

Б.5 Определение напряжения искрового (дугового) разряда на электродах ЭШУ

- **Б.5.1** Напряжение искрового разряда не должно превышать значений, указанных в таблице 1 настоящего стандарта в соответствии с заявленным классом.
- **Б.5.2** Напряжение искрового разряда на контактах ЭШУ определяют по показанию вольтметра (U_V) расчетным путем или по осциллограмме напряжения, полученной с помощью ДВИ.
- **Б.5.3** Схема подключения ЭШУ к испытательному оборудованию и измерительному вольтметру приведена на рисунке Б.2.

1 — ЭШУ; 2 — ДВИ; 3 — защитный кожух делителя — диэлектрический; 4 — ИП к вольтметру; 5 — вольтметр; C — емкость; R — сопротивление

Рисунок Б.2 - Схема определения напряжения искрового разряда на контактах ЭШУ

Б.5.4 Проведение испытания

Снятие осциллограммы напряжения искрового разряда проводят от штатного (полностью заряженного) источника питания.

Б.5.4.1 Для определения напряжения искрового разряда собирают схему (рисунок Б.2). Провода, соединяющие ЭШУ с делителем, должны иметь минимальную длину. Делитель располагают непосредственно у вольтметра, измерительную приставку устанавливают на выводы вольтметра в соответствии с маркировкой ИП.

- **Б.5.4.2** Отсчет напряжения, возникающего на низковольтном плече ДВИ, производят по вольтметру. Длительность непрерывной работы ЭШУ не более 3 с. Отсчет производят при успокоении светового «зайчика» на шкале вольтметра. Проводят два измерения при подключении к т. 1 т. 4 делителя разных электродов ЭШУ. При получении максимального значения (в одном из положений) проводят не менее трех включений ЭШУ с паузой 5 10 мин, необходимой для восстановления штатного источника питания.
- **Б.5.4.3** При испытаниях ЭШУ должны быть соблюдены требования по электробезопасности в соответствии с ГОСТ 12.2.006.

Примечание – Для исключения воздействия возникающего напряжения работающему с ЭШУ оператору следует надевать резиновую перчатку.

Б.5.5 Обработку полученных результатов проводят следующим образом:

для ЭШУ с трансформаторным выходом

$$U_{\text{ЭШУ}} = K_{\Pi} \cdot U_{V}, \tag{5.2}$$

где U_V – показание вольтметра;

*K*_Д – коэффициент деления делителя;

- для ЭШУ с емкостным выходом

$$U_{\text{ЭШУ}} = K_{\text{Д}}U_{\text{V}} \cdot \frac{C_{\text{вых}} + C_{\text{Д}}}{C_{\text{вых}}}, \tag{5.3}$$

где $C_{\text{вых}}$ – выходная емкость ЭШУ;

 C_{Π} – входная емкость делителя.

Результаты усредняют

$$U_{\ni \coprod y} = \frac{\sum_{1}^{n} U_{\ni \coprod y}}{n}, \tag{5.4}$$

где n – число экспериментов при выбранном положении рабочих электродов.

Если выходная емкость ЭШУ неизвестна, проводят расчет выходной емкости по осциллограмме напряжения U(t), полученной при определении мощности воздействия на эквивалент нагрузки.

Б.5.6 Определение напряжения, генерируемого стационарным ЭШУ, используемым для электризации защитных ограждений

- **Б.5.6.1** Напряжение, генерируемое стационарным ЭШУ, не должно превышать 12 кВ (таблица 1 настоящего стандарта).
- **Б.5.6.2** Напряжение, генерируемое стационарным ЭШУ, определяют непосредственным измерением с помощью вольтметра типа С 196 или аналогичного типа на напряжение 0 30 кВ по схеме, приведенной на рисунке Б.3.

1 – источник питания; 2 – стационарное ЭШУ; 3 – вольтметр

Рисунок Б.3

Б.6 Электробезопасность

Б.6.1 Испытание электрической прочности изоляции – по ГОСТ 12.2.006 (14.4.1, 14.10, 15.1.3, 9.17, 10.2).

Б.6.2 Средства испытаний

Б.6.2.1 Для всех типов ЭШУ испытание электрической прочности изоляции проводят по схеме рисунка Б.4.

1 – рукоятка; 2 – медная фольга; 3 – электроды; 4 – высоковольтный источник напряжения

Рисунок Б.4 - Схема испытания электрической прочности изоляции

Максимальное напряжение испытания должно превышать на 10 % реальное напряжение возникновения искрового разряда испытуемого типа ЭШУ.

Б.6.3 Испытанию подвергают три образца.

Б.6.4 Проведение испытаний

Б.6.4.1 Испытание электрической прочности изоляции встроенного зарядного устройства проводят по ГОСТ 30345.0 (13.3).

Б.6.4.2 Испытания сопротивления изоляции и электрической прочности проводят по ГОСТ 30345.0 (раздел 16, кроме 16.2) и ГОСТ 4677 (2.11).

Б.7 Испытание на надежность

Б.7.1 Испытание на надежность работы ЭШУ по требованиям 3.5.3 настоящего стандарта проводят на стенде, обеспечивающем циклическую работу с длительностью цикла, равной 6 с (включено 3 с, отключено 3 с) или 10 циклов в минуту.

Ответственный за выпуск *И.А.Воробей*Сдано в набор 14.01.2003 Подписано в печать 16.01.2003 Формат бумаги А4 Бумага офсетная. Гарнитура Ариал. Печать офсетная. Усл. печ. л. 1,39 Усл. кр.- отт. 1,39 Уч.- изд. л. 0,76 Тираж экз. Заказ Издатель и полиграфическое исполнение НП РУП «Белорусский государственный институт стандартизации и сертификации (БелГИСС)»