Package 'TidyML'

May 21, 2025

```
Title Machine Learning Modelling For Everyone
Version 0.0.0.9000
Description
      TidyML is a minimal library focused on providing all the essential tools for the workflow of a
      machine learning modelling process. The whole process is divided into 5 steps:
      preprocessing() -> build_model() -> fine_tuning() -> show_results() -> sensitivity_analysis()
License `use_mit_license()`, `use_gpl3_license()` or friends to pick a
      license
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
Depends R (>= 2.10)
Imports R6,
      tidyr,
      tidyselect,
      magrittr,
      dials,
      parsnip,
      recipes,
      rsample,
      tune,
      workflows,
      yardstick,
      vip,
      glue,
      ggpubr,
      innsight,
      torch,
      shapr,
      DiagrammeR,
      ggbeeswarm
Suggests testthat (>= 3.0.0),
      brulee,
      ranger,
      kernlab,
      xgboost,
      dplyr,
```

2 build_model

```
ggplot2,
rlang,
tibble,
tidyverse
```

Config/testthat/edition 3

URL https://github.com/JMartinezGarcia/TidyML

BugReports https://github.com/JMartinezGarcia/TidyML/issues

LazyData true

Contents

uild_model	4
ine_tuning	4
reprocessing	4
ensitivity_analysis	(
how_results	(
im_data	8

build_model

Create ML Model

Description

Create ML Model

Usage

Index

```
build_model(analysis_object, model_name, hyperparameters = NULL)
```

Arguments

analysis_object

analysis_object created from preprocessing function.

model_name

Name of the ML Model. A string of the model name: "Neural Network", "Random Forest", "SVM" or "XGBOOST".

hyperparameters

Hyperparameters of the ML model. List containing the name of the hyperparameter and its value or range of values.

Value

Updated analysis_object

build_model 3

Hyperparameters

Neural Network:

Parsnip model using **brulee** engine. Hyperparameters:

• hidden_units: Number of Hidden Neurons. A single value, a vector with range values c(min_val, max_val) or NULL for default range c(5, 20).

- activation: Activation Function. A vector with any of ("relu", "sigmoid", "tanh") or NULL for default values c("relu", "sigmoid", "tanh").
- learn_rate: Learning Rate. A single value, a vector with range values c(min_val, max_val) or NULL for default range c(-3, -1) in log10 scale.

Random Forest:

Parsnip model using **ranger** engine. Hyperparameters:

- **trees**: Number of Trees. A single value, a vector with range values c(min_val, max_val). Default range c(100, 300).
- mtry: Number of variables randomly selected as candidates at each split. A single value, a vector with range values c(min_val, max_val) or NULL for default range c(3, 8).
- min_n: Minimum Number of samples to split at each node. A single value, a vector with range values c(min_val, max_val) or NULL for default range c(2, 25).

XGBOOST:

Parsnip model using **xgboost** engine. Hyperparameters:

- **trees**: Number of Trees. A single value, a vector with range values c(min_val, max_val) or NULL for default range c(100, 300).
- mtry: Number of variables randomly selected as candidates at each split. A single value, a vector with range values c(min_val, max_val) or NULL for default range c(3, 8).
- min_n: Minimum Number of samples to split at each node. A single value, a vector with range values c(min_val, max_val) or NULL for default range c(5, 25).
- **tree_depth**: Maximum tree depth. A single value, a vector with range values c(min_val, max_val) or NULL for default range c(3, 10).
- learn_rate: Learning Rate. A single value, a vector with range values c(min_val, max_val) or NULL for default range c(-4, -1) in log10 scale.
- loss_reduction: Minimum loss reduction required to make a further partition on a leaf node. A single value, a vector with range values c(min_val, max_val) or NULL for default range c(-5, 1.5) in log10 scale.

SVM:

Parsnip model using kernlab engine. Hyperparameters:

- **cost**: Penalty parameter that regulates model complexity and misclassification tolerance. A single value, a vector with range values c(min_val, max_val) or NULL for default range c(-3, 3) in log10 scale.
- margin: Distance between the separating hyperplane and the nearest data points. A single value, a vector with range values c(min_val, max_val) or NULL for default range c(0, 0.2).
- type: Kernel to be used. A single value from ("linear", "rbf", "polynomial")
- **rbf_sigma**: A single value, a vector with range values c(min_val, max_val) or NULL for default range c(-5, 0) in log10 scale.
- **degree**: Polynomial Degree (polynomial kernel only). A single value, a vector with range values c(min_val, max_val) or NULL for default range c(1, 3).
- scale_factor: Scaling coefficient applied to inputs. (polynomial kernel only) A single value, a vector with range values c(min_val, max_val) or NULL for default range c(-5, -1) in log10 scale.

4 fine_tuning

fine_tuning

Fine Tune ML Model

Description

Fine Tune ML Model

Usage

fine_tuning(analysis_object, tuner, metrics, plot_results = F, verbose = FALSE)

Arguments

analysis_object

analysis_object created from build_model function.

tuner Name of the Hyperparameter Tuner. A string of the tuner name: "Bayesian

Optimization" or "Grid Search CV".

metrics Metric used for Model Selection. A string of the name of metric (see Metrics).

plot_results Whether to plot the tuning results. Boolean TRUE or FALSE (default). verbose Whether to show tuning process. Boolean TRUE or FALSE (default).

Value

Updated analysis_object

Tuners

Bayesian Optimization:

• Initial data points: 20

• Maximum number of iterations: 25

• Convergence after 5 iterations without improvement

• Train / Validation / Test: 0.6 / 0.2 / 0.2

Grid Search CV:

• Number of Folds: 5

• Maximum levels per hyperparameter: 10

• Train / Test: 0.75 / 0.25

Metrics

Regression Metrics:

- rmse
- mae
- mpe
- mape
- ccc
- smape
- rpiq

preprocessing 5

• rsq

Classification Metrics:

- accuracy
- bal_accuracy
- recall
- sensitivity
- specificity
- kap
- f_meas
- mcc
- j_index
- detection_prevelance
- roc_auc
- pr_auc
- gain_capture
- brier_class
- roc_aunp

preprocessing

Preprocessing Data Matrix

Description

Preprocessing Data Matrix

Usage

```
preprocessing(
   df,
   formula,
   task = "regression",
   num_vars = NULL,
   cat_vars = NULL,
   norm_num_vars = "all",
   encode_cat_vars = "all",
   y_levels = NULL
)
```

Arguments

df Input DataFrame. Either a data.frame or tibble.

formula Modelling Formula. A string of characters or formula.

task Modelling Task. Either "regression" or "classification".

num_vars Optional vector of names of the numerical features.

cat_vars Optional vector of names of the categorical features.

norm_num_vars Normalize numeric features as z-scores. Either vector of names of numerical

features to be normalized or "all" (default).

6 show_results

encode_cat_vars

One Hot Encode Categorical Features. Either vector of names of categorical

features to be encoded or "all" (default).

y_levels Optional ordered vector with names of the target variable levels (Classification

task only).

Value

An analysis_object

sensitivity_analysis Perform Sensitivity Analysis and Interpretable ML methods

Description

Perform Sensitivity Analysis and Interpretable ML methods

Usage

```
sensitivity_analysis(analysis_object, methods = c("PFI"), metric = NULL)
```

Arguments

analysis_object

analysis_object created from fine_tuning function.

methods Method to be used. A string of the method name: "PFI" (Permutation Feature

Importance), "SHAP" (SHapley Additive exPlanations), "Integrated Gradients"

(Neural Network only) or "Olden" (Neural Network only).

metric Metric used for "PFI" method (Permutation Feature Importance). A string of the

name of metric (see Metrics).

Value

Updated analysis_object

show_results

Showcase Summary Results and Plots

Description

Showcase Summary Results and Plots

show_results 7

Usage

```
show_results(
    analysis_object,
    summary = FALSE,
    roc_curve = FALSE,
    pr_curve = FALSE,
    gain_curve = FALSE,
    lift_curve = FALSE,
    dist_by_class = FALSE,
    reliability_plot = FALSE,
    confusion_matrix = FALSE,
    scatter_residuals = FALSE,
    scatter_predictions = FALSE,
    residuals_dist = FALSE,
    new_data = "test"
)
```

Arguments

analysis_object

analysis_object created from fine_tuning function.

summary Whether to plot summary results table. Boolean (FALSE by default).

roc_curve Whether to plot ROC Curve (Classification task only). Boolean (FALSE by

default).

pr_curve Whether to plot ROC Curve (Classification task only). Boolean (FALSE by

default).

gain_curve Whether to plot ROC Curve (Classification task only). Boolean (FALSE by

default).

lift_curve Whether to plot ROC Curve (Classification task only). Boolean (FALSE by

default).

dist_by_class Whether to plot distribution of output probability by class (Classification task

only). Boolean (FALSE by default).

reliability_plot

Whether to plot Reliability Plot (Binary Classification task only). Boolean (FALSE by default).

confusion_matrix

Whether to Confusion Matrix (Classification task only). Boolean (FALSE by default)

scatter_residuals

Whether to plot Residuals vs Predictions (Regression task only). Boolean (FALSE by default).

scatter_predictions

Whether to plot Predictions vs Observed (Regression task only). Boolean (FALSE by default).

residuals_dist Whether to plot Residuals Distribution (Regression task only). Boolean (FALSE by default).

new_data Data to be used for Confusion Matrix, Reliability Plot, Distribution by Class Plot, Residuals vs Predictions Plot, Predictions vs Observed Plot and Residuals

Distribution Plot. A string with the name of the data_set: "train", "validation",

"test" (default) or "all".

8 sim_data

Value

Updated analysis_object

sim_data

Example Data Set

Description

This dataset contains simulated data of a psychometric trial.

Usage

sim_data

Format

A data frame with 1000 rows and 10 columns:

Index

```
* datasets
    sim_data, 8

build_model, 2

fine_tuning, 4

preprocessing, 5

sensitivity_analysis, 6
show_results, 6
sim_data, 8
```