Lecture Notes for

Neural Networks and Machine Learning

Transformers

Logistics and Agenda

- Logistics
 - Paper presentations
- Agenda
 - Finish Transfer Demo
 - Transformers
- Next Time:
 - Position Encoding Transformers
 - Vision Transformers
 - Paper Presentation
 - Consistency losses

Freezing and Fine-tuning Efficiently

- Step 1: Freeze entire base model:
 - No update during back-propagation
 - Optional: Augment a set of training data
 - Send training dataset through base model
 - Save out bottleneck features
- Step 2: Train bottleneck features in new task
 - Typically 5-10 epochs is sufficient, easy to overfit (very fast)
 - Larger training step size is okay
- Step 3: Fine-tune, unfreeze a few layers in base model:
 - Attach newly trained model to pre-trained model, Optional: use augmentation
 - Train to your hearts content, use smaller training step size

Bottlenecking on a GPU

Dogs versus Cats

justinledford Justin Ledford

Member of 8000net

Updated for tf==2.12 in the Main Repository:
02 Transfer Learning.ipynb

Original Example: https://github.com/8000net/
Transfer-Learning-Dolphins-and-Sharks

Another Great Example:

https://keras.io/examples/vision/

image_classification_efficientnet_fine_tuning/

Transformers

CNN, RNN, LSTM, GAN, Test time data, Early stopping, Data augmentation, Dropout, Batch norm, Gradient clipping

Attention

Transformers Intuition

- Recurrent networks track use an "updatable" state vector, but this takes lots of iterative processing across sequence
- Attention mechanism (in RNNs) already takes a weighted sum of state vectors to generate new token in a decoder
- ... so why not just use attention on a transformation of the embedding vectors? Do away with the recurrent state vector all together?

Attention is All You Need

Transformer Solution:

- Build attention into model from the **beginning**
- Compare all words to each other through self-attention
- Define a notion of "position" in the sequence
- Should capture long term relationships and be highly parallelized for GPU computing!! (**ignore memory...**)

Transformer Overview

https://bbycroft.net/llm

Components

Embedding

Layer Norm

Self

Attention

Projection

MLP

Transformer

Softmax

Output

Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{dx}})V$

 $\operatorname{MultiHead}(Q,K,V) = \operatorname{Concat}(\operatorname{head}_1,...,\operatorname{head}_{\operatorname{h}})W^O$

where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)

Lecture Notes for CS8321 Neural Networks and Machine Learning

MOIESSOFERCO, Larson

Layer Norm

Learn γ, β for each embedding column

$$LN(E^{(col)}) = \gamma_i \frac{E_i^{(col)} - \mu_E}{\sqrt{\sigma_E^2 + \epsilon}} + \beta_i$$

Components

Embedding

Layer Norm

Self

Attention

Projection

MLP

Transformer

Softmax

Output

Weighted Sum

Multiply

Trans

LN(Emb)

LN(Emb)

Sequence Input + position

Overview

scale

 $\mathbf{W}^{\mathbf{q}}$

LN(Emb)

LN(Emb)

Attention Output

- What parameters are trained in diagram?
 - $\mathbf{W}^{v}, \mathbf{W}^{q}, \mathbf{W}^{k}$

Other Parameters:

- L: length of sequence
- ullet Query/Key dimension, d_k
- Value dimension, d_{v}
- Type of positional encoding (more later)
- Cross attention versus self attention

Attention Input

Cross Attention

Transformer: in more detail

Transformer: in more detail

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ($\sqrt{d_k}$) in visual, $d_k = 3$ Softmax

Softmax X Value

Sum

Excellent Blog on Transformers: http://jalammar.github.io/illustrated-transformer/

Professor Eric | Seg L

Size of Q,K,V: $|\text{Seq Len}| \times d_v \text{ or } d_k$

Self Attention: From https://

Can perform more than once! Multiple heads!

output of each head is Z_i

Transformer: Multi-headed Attention

Putting It Together

