THE UNIVERSITY OF MELBOURNE SCHOOL OF COMPUTING AND INFORMATION SYSTEMS COMP30026 Models of Computation

Selected Tutorial Solutions, Week 8

54. Assume that R is transitive. Let (x, z) be in $R \circ R$. That means there is some y, such that R(x, y) and R(y, z) hold. By transitivity, R(x, z) holds, so $(R \circ R) \subseteq R$.

Conversely, assume that $R \circ R \subseteq R$. Consider x, y, z such that R(x, y) and R(y, z) hold. Clearly (x, z) is in $R \circ R$, and hence, by assumption, in R. But that means R is transitive.

As an example of a transitive relation for which $R \circ R = R$ does not hold, consider < on \mathbb{Z} . It is transitive, but $< \circ <$ does not contain, say (2,3). Since (2,3) is in <, < is different from $< \circ <$.

55. Here is the complete table:

Property	Reflexivity	Symmetry	Transitivity
preserved under \cap ?	yes	yes	yes
preserved under \cup ?	yes	yes	no
preserved under inverse?	yes	yes	yes
preserved under complement?	no	yes	no

To see how transitivity fails to be preserved under union, consider two relations on $\{a,b,c\}$, namely $R = \{(a,a),(a,b),(b,b)\}$ and $S = \{(c,a)\}$, both transitive. $R \cup S$ is not transitive, because in the union we have (c,a) and (a,b), but not (c,b). And R's complement, $\{(a,c),(b,a),(b,c),(c,a),(c,b),(c,c)\}$ is not transitive either, as it contains, for example, (a,c) and (c,a), but not (a,a).

56. From the first row of the last question's table, it follows that, if R and S are equivalence relations, then so is their intersection. But their union may not be. As an example, take the reflexive, symmetric, transitive closures of R and S from the previous answer, to get these two equivalence relations:

$$R' = \{(a, a), (a, b), (b, a), (b, b), (c, c)\}$$
 and $S' = \{(a, a), (a, c), (b, b), (c, a), (c, c)\}.$

Their union fails to be transitive, as it contains (c, a) and (a, b) but not (c, b).

- 57. If f is injective then B has at least 42 elements. If f is surjective then B has at most 42 elements. (So if f is bijective, B has exactly 42 elements.)
- 58. From f(g(y)) = y we conclude that g is injective. Namely, if B has cardinality 1 then g is trivially injective. Otherwise, consider $y, y' \in B$, with $y \neq y'$. Suppose g(y) = g(y'). Then, applying f to both, we have y = f(g(y)) = f(g(y')) = y', contradicting $y \neq y'$. So we must have $g(y) \neq g(y')$, that is, g is injective.

Similarly we can show that f is surjective. To do this, we must show that for each $y \in B$ there is some $x \in A$ such that f(x) = y. But that is easy—that x is $g(y) \in A$.

59. We have: h(h(h(x))) = x for all $x \in X$. First, let us show that h must be injective. If h(x) = h(y), then, applying h twice on each side, we have h(h(h(x))) = h(h(h(y))), whence x = y. So h is injective. Second, let us show that h must be surjective. Consider an arbitrary element $x \in X$. We have x = h(h(h(x))), that is, h maps h(h(x)) to x. Since x was arbitrary, h is surjective.

For the counter-example, take $X = \{a, b, c\}$ and let h map a to b, b to c, and c to a. Then h is not the identity function on X, but $h \circ h \circ h$ is.

60. (An optional question.) Here are some functions that satisfy the requirements. We show $f_i(x)$ in the table's row x, column i:

	f_1	f_2	f_3	f_4	f_5	f_6 a a c	f_7	f_8
a	a	a	b	b	b	a	c	b
b	b	a	b	d	b	a	b	a
c	c	a	c	d	c	a	d	d
d	d	a	d	d	c	c	d	c

Maybe you skipped this optional exercise; but you may still want to verify, for each of these eight functions, that it really does satisfy its specification.