Q	UNIT 5	An swe
		r
1a	Which of the following limits are suitably representing a rectangular region in XY plane (a) $y \le x \le y^2, 0 \le y \le 1$ (b) $0 \le x \le 1, 0 \le y \le x$ (c) $0 \le y \le x, y \le x \le 1$ (d) $0 \le x \le 1, 0 \le y \le 2$	d
2a	If limits of a region in XY plane are $0 \le x \le 1, 0 \le y \le 1-x$, then which of the following options correctly represent the order of integration of a function $f(x,y)$ over region R (a) $\iint f(x,y) dx dy$ (b) $\iint f(x,y) dy dx$ (c) Integration can be done in any order (d) None of these	b
3a	If a region R is bounded by the curves $x = 0, y = 0, x + y = 1$ then which of the following limits correctly justify region R (a) $0 \le x \le 1, 0 \le y \le 1$ (b) $0 \le x \le 1, 0 \le y \le x$ (c) $0 \le x \le 1, 0 \le y \le x - 1$ (d) $0 \le x \le 1, 0 \le y \le 1 - x$	d
4a	What is the formula of area of region R in polar coordinates ? (a) $\iint dxdy$ (b) $\iint dydx$ (c) $\iint drd\theta$ (d) $\iint rdrd\theta$	d
5a	If region R is defined as $0 \le y \le \sqrt{1 - x^2}$, $0 \le x \le 1$, then limits of R in polar coordinates are (a) $0 \le r \le a$, $0 \le \theta \le \pi$ (b) $0 \le r \le 1$, $0 \le \theta \le \pi$ (c) $0 \le r \le 1$, $0 \le \theta \le \pi/2$ (d) $0 \le r \le 1$, $0 \le \theta \le 2\pi$	С
6a	$\int_{x=0}^{1} \int_{y=0}^{\sqrt{1-x^2}} f(x,y) dy dx, \text{ if we change the order of integration then which of the following limits will be correct}$ (a) $0 \le y \le \sqrt{1-x^2}, 0 \le x \le 1$ (b) $0 \le x \le 1, 0 \le y \le 1$ (c) $0 \le y \le 1, 0 \le x \le \sqrt{1-y^2}$ (d) $0 \le x \le \sqrt{1-y^2}, 0 \le y \le \sqrt{1-x^2}$	С
7a	Area of the region bounded by $0 \le x \le 1$, $0 \le y \le x$ (a) 1 (b) $1/2$ (c) $1/4$ (d) None of these	b
8a	Which of the following limits are suitable for defining a cube (a) $0 \le x \le 1, 0 \le y \le x, 0 \le z \le y$ (b) $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$ (c) $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le y$ (d) $0 \le x \le 1, 0 \le y \le x, 0 \le z \le 1$	b
9a	A solid is bounded $x = 0$, $y = 0$, $z = 0$, $x + y + z = 1$ then which of the following limits are correct for the given solid (a) $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ (b) $0 \le x \le 1$, $0 \le y \le 1 - x$, $0 \le z \le 1 - y - x$ (c) $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1 - x - y$ (d) $0 \le x \le 1$, $0 \le y \le 1 - x$, $0 \le z \le 1 - y$	b
10a	Which of the following relations correctly define relation between Cartesian coordinates (x, y, z) and spherical polar coordinates (r, θ, ϕ) (a) $x = rSin\phi Cos\theta$, $y = rCos\phi Cos\theta$, $z = rCos\phi$ (b) $x = rSin\phi Cos\theta$, $y = rSin\phi Sin\theta$, $z = rCos\phi$ (c) $x = rSin\phi Cos\theta$, $y = rCos\phi Cos\theta$, $z = rtan\phi$ (d) $x = rSin\phi Sin\theta$, $y = rCos\phi Cos\theta$, $z = rCos\phi$	b
11a	Volume of a sphere $x^2 + y^2 + z^2 = 9$ is (a) 27π cubic units (b) 18π cubic units (c) 108π cubic units (d) 36π cubic units	d
12a	A solid is bounded by $x^2 + y^2 = 1, 0 \le z \le 1$, which of the following limits are correct for the given solid (a) $0 \le z \le 1, 0 \le r \le 1, 0 \le \theta \le \pi$ (b) $0 \le z \le 1, 0 \le r \le 1, 0 \le \theta \le \pi/2$ (c) $0 \le z \le 1, 0 \le r \le 1, 0 \le \theta \le \pi/4$	С

13a	The formula of volume of a solid T is (a) $\iint dxdy$ (b) $\iiint dxdydz$ (c) $\iiint z dxdydz$ (d) $\iiint y dxdydz$	b
14a	The value of $\int_1^e \int_1^e \int_1^e \frac{1}{xyz} dx dy dz$ is	С
	a) 0 b) $\frac{1}{3}$ c) 1 d) None of these	
15a	If a solid is defined as $0 \le x \le 1$, $2 \le y \le 4$, $0 \le z \le 1$, then it represents (a) A cylinder (b) A sphere (c) A cuboid (d) A cube	С
16a	Which of the following limits correctly justify the triangular region with vertices $(0,0)$, $(0,1)$ and $(1,1)$	С
	(a) $0 \le y \le 1, y \le x \le 1$ (b) $0 \le y \le 1, 0 \le x \le 1$ (c) $0 \le y \le 1, 0 \le x \le y$ (d) $0 \le y \le 1, 0 \le x \le 1 - y$	
17a	If limits of a region in XY plane are $0 \le x \le 1$, $0 \le y \le \sqrt{1 - x^2}$, if we change the order of integration which of the following limits will be correct for this region	С
	(a) $0 \le x \le 1, 0 \le y \le 1$ (b) $0 \le x \le \sqrt{1 - x^2}, 0 \le y \le 1$ (c) $0 \le y \le 1, 0 \le x \le \sqrt{1 - y^2}$ (d) $0 \le y \le 1, -\sqrt{1 - y^2} \le x \le \sqrt{1 - y^2}$	
	(c) $0 \le y \le 1, 0 \le x \le \sqrt{1 - y^2}$ (d) $0 \le y \le 1, -\sqrt{1 - y^2} \le x \le \sqrt{1 - y^2}$	
18a	The value of integral $\int_{y=0}^{1} \int_{x=0}^{y} x^2 y^3 dx dy$	c
	(a) 1/30 (b) 1/18 (c) 1/21 (d) 1/12	
19a	The value of integral $\int_{y=0}^{1} \int_{x=0}^{1} \int_{z=0}^{1} x^2 y^3 z^4 dz dx dy$	d
	(a) 1/30 (b) 1/120 (c) 1/80 (d) 1/60	
20a	The value of integral $\int_{z=1}^{4} \int_{y=1}^{3} \int_{x=1}^{2} \frac{1}{xyz} dxdy dz$	С
	(a) $log 24$ (b) $log 14$ (c) $log 2 log 3 log 4$ (d) $log 9$	
21a	The value of $\iint (x^2 + y^2) dxdy$ over the circular region $x^2 + y^2 = a^2$ (a) πa^4 (b) $\pi a^4/2$ (c) $\pi a^4/4$ (d) $\pi a^2/2$	b
22a	On changing to polar coordinates $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dxdy$ becomes	b
	a) $\int_0^{\frac{\pi}{2}} \int_0^{\infty} e^{-r^2} dr d\theta$ b) $\int_0^{\frac{\pi}{2}} \int_0^{\infty} e^{-r^2} r dr d\theta$ c) $\int_0^{\infty} \int_0^{\infty} e^{-r^2} dr d\theta$ d) None of these	
23a	The value of $\int_1^e \int_0^{\log y} \frac{dxdy}{\log y}$ is	a
	a) $e - 1$ b) $e^2 - 1$ c) $e^3 - 1$ d) None of these	
24a	The limts of the solid bounded by the planes $x = 0$, $y = 0$, $x + y + z = 2$ & $z = 0$ are given by (a) $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$ (b) $0 \le x \le 2$, $0 \le y \le 2 - x$, $0 \le z \le 2 - y - x$ (c) $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2 - x - y$ (d) $0 \le x \le 2$, $0 \le y \le 2 - x$, $0 \le z \le 2 - y$	b

The value of $\int_{-1}^{1} \int_{-1}^{1} (x^3 + y^3) dx dy$ is
(a) 0 (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) None of these