Радиотехническая работа 25 Лестничные фильтры Выполнил Жданов Елисей Б01-205

1 Оборудование:

ПО Micro-Cap 10.0.7.0

2 Задание

2.1 Ознакомительные шаги

Задание выполняется в Місто-Сар

2.2 Трехполюсные лестничные фильтры

(a) Откроем модель adm3p.cir и реализуем лестничные фильтры третьего порядка с параметрами:

$$R_0 = 50, \quad f_0 = 1MHz, \quad Q = 10.$$

Для этого вычислим эталонные значения:

$$L_0 = \frac{R_0}{2\pi f_0} = 7,9577 \cdot 10^{-6} \,\text{ГH}, \quad C_0 = \frac{1}{2\pi f_0 R_0} = 3,1831 \cdot 10^{-9} \,\Phi$$

и установим на схеме номиналы компонентов f_0 , Q, R_0 , L_0 , C_0 .

- (b) Сопоставим характеристики на едином графике.
- (c) Сравним частотные характеристики по напряжению и по мощности. Измерим уровни затухания по мощности на границах полос пропускания, там где затухание по напряжению составляет 0.7.

У всех фильтров на этой частоте(1 МГц) затухание по мощности составляет 0.5

Исследуем степень деградации характеристик фильтра нижних частот при варьировании сопротивления источника *RSL* и нагрузки *RLL* от 25 до 75 с шагом 25(на нулевой частоте).

	RL	Ĺ	RSL		
	Напряжение	Мощность	Напряжение	Мощность	
25	0,33	0,44	0,66	1,77	
50	0,5	1	0,5	1	
75	0,6	1,43	0,4	0,625	

(d) Изучим фазовые характеристики фильтров, измерим значения фазовых сдвигов на нулевой и бесконечной частотах:

ω	ФНЧ	ФВЧ	Полосовой	Режекторный
0	0	$-\pi/2$	$3\pi/2$	0
∞	$-3\pi/2$	-2π	$-3\pi/2$	0

(e) Выведем логарифмическую частотную характеристику фильтра нижних частот в диапазоне 1Meg,100k (логарифмическая шкала) и измерим по ней уровни затухания в децибелах на частотах 0, f_0 , $2f_0$, $10f_0$:

f	0	f_0	$2f_0-$	10 <i>f</i> ₀
$K(f_0)$	-6	-9	-24,2	-66

(f) Выведем логарифмическую частотную характеристику полосового фильтра в диапазоне 1500k, 500k (линейная шкала) и измерим по ней уровень подавления на частоте f_0 :

$$K(f_0) = -6 \ dB.$$

Измерим одностороннюю ширину $\triangle f$ полосы пропускания по уровню -3dB и уровень затухания при расстройках на $2 \triangle f$, $10 \triangle f$ от частоты f_0 :

$$\triangle f = 48 k$$

$$K(f_0 - 2 \triangle f) = -25 dB$$
, $K(f_0 + 2 \triangle f) = -22 dB$

$$K(f_0 - 10 \triangle f) = -75 dB$$
, $K(f_0 + 10 \triangle f) = -60 dB$

(g) По логарифмической частотной характеристике режекторного фильтра в диапазоне частот 1500,500k измерим ширины полос по уровням -3dB, -43dB, -63dB:

$K(f_0 \pm \triangle f)$, dB	-3	-43	-63
$\triangle f$	50k	10k	4,5k

2.3 Фильтры нижних частот высших порядков

(a) Откроем модель batt.cir, в которой реализованы фильтры Баттерворта нижних частот с параметрами $R_0 = 100$, $f_0 = 1MHz(L_0 = 15.916, C_0 = 1.592n)$ порядков от 3 до 7. Изучим их частотные и переходные характеристики. По логарифмическим графикам в диапазоне 10Meg, 100k измерим затухания на частотах f_0 , $2f_0$ и $10f_0$:

Фильтр Баттерворта	n=3	n=4	n=5	n=6	n=7
$K(f_0)$, dB	-3	-3	-3	-3	-3
$K(2f_0)$, dB	-18	-24	-30	-36	-42
$K(10f_0)$, dB	-60	-80	-100	-120	-140

(b) Повторим те же исследования для фильтров Чебышева с неравномерностями 0.5 dB (файл cheb0-5.cir) и 3 dB (файл cheb3-0.cir)

$K(2f_0)$, dB	n=3	n=4	n=5	n=6	n=7
Баттерворта	-18	-24	-30	-36	-42
Чебышева 0.5 dB	-19	-31	-42	-54	-65
Чебышева 3.0 dB	-28	-40	-51	-63	-74

И 10 f₀

$K(10f_0)$, dB	n=3	n=4	n=5	n=6	n=7
Баттерворта	-60	-80	-100	-120	-140
Чебышева 0.5 dB	-63	-89	-115	-141	-167
Чебышева 3.0 dB	-72	-98	-124	-150	-176

2.4 Фильтры пятого порядка

(a) Задам требуемые параметры и приведу частотные и переходные характеристики того, что получилось. Картинки приведу для фильтра Баттерворта. Лучшие характеристики по затуханию фильтров этого порядка очевидны.

2.5 Семиполюсной фильтр

(а) Открыв файл pb7p.cir реализуем семиполюсной фильтр Чебышева с неравномерностью 3 dB. для тракта усилителя промежуточной частоты приемника с параметрами $R_0=600$, $f_0=465kHz$ и двухсторонней полосой $\Delta f=24kHz$, $Q=\frac{f_0}{\Delta f}=19.375$. По логарифмической частотной характеристике измерим избирательность по соседнему каналу - уровень затухания при расстройках на $\pm 24kHz$ от f_0 :

+24 <i>k</i> Hz	-72 dB	
-24kHz	-76 dB	

Аналогично посчитаем разрешающую способность для фильтра Чебышева 0.5 dB:

+24 <i>k</i> Hz	-63 dB
-24 <i>k</i> Hz	-67 dB

И для фильтра Баттерворта:

+24kHz	-41 dB	
-24kHz	-44 dB	

3 Вывод

Результаты моделирования, как и ожидается, тождественны теории. Все это позволяет сказать, что использованные методы расчета и анализа лестничных фильтров дают хорошие результаты в области применимости.