

Europäisches Patentamt European Patent Office Office européen des brevets

EP 1 201 239 A1= 7eijin

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

- (43) Date of publication: 02.05,2002 Bulletin 2002/18
- (21) Application number: 00950006.7
- (22) Date of filing: 04.08.2000

- (51) Int Cl.7: A61K 31/40, A61K 31/4025, A61K 31/445, A61K 31/4468, A61K 31/4525, A61K 31/4535, A61K 31/454, A61K 31/422, A61K 31/404, A61K 31/4155, A61K 31/4245, A61K 31/5377, A61K 31/4545, A61K 31/4709, A61K 31/4184, A61K 31/427, A61K 31/506, A61K 31/433, A61K 31/423, A61K 31/4192, A61K 31/429
- (86) International application number: PCT/JP00/05260

(11)

- (87) International publication number: WO 01/10439 (15.02.2001 Gazette 2001/07)
- (84) Designated Contracting States: AT BE CHICY DE DK ES FI FR GB GR IE IT LI LU MC NL Designated Extension States:
- (30) Priority: 04.08.1999 JP 22086499
- (71) Applicant: TEIJIN LIMITED Osaka-shi Osaka 541-0054 (JP)

AL LT LV MK RO SI

- (72) Inventors:
 - SHIOTA, Tatsuki, Teijin Limited, Hino-shi, Tokyo 191-0065 (JP)

- SUDOH, Masaki, 2d, Utopia-town II Handa-shi, Aichi 475-0837 (JP)
- YOKOYAMA, Tomonori, Teijin Limited, Hino-shi, Tokyo 191-0065 (JP)
- MUROGA, Yumiko, Teijin Limited, Hino-shi, Tokyo 191-05 (JP)
- · KAMIMURA, Takashi, Teijin Limited, Hino-shi, Tokyo 191-0065 (JP)
- NAKANISHI, Akinobu, Teijin Limited, Hino-shi, Tokyo 191-0065 (JP)
- (74) Representative: Hallybone, Huw George et al Carpmaels and Ransford, 43 Bloomsbury Square London WC1A 2RA (GB)

(54)CYCLIC AMINE CCR3 ANTAGONISTS

(57)A medicine containing, as an active ingredient, a cyclic amine derivative represented by the following formula **(I)**,

WO, 00/31032, A1 (F.HOFFMANN-LA ROCHE AG), 1,2,7-11 PΧ 02 June, 2000 (02.06.00) & DE, 19955794, A & FR, 2766185, A & GB, 2343893, A

a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C₁ to C₆ alkyl addition salt thereof. The medicine has an action for treating or preventing diseases in which CCR3 participates, such as asthma and allergic rhinitis.

Description

Technical Field

[0001] The present invention relates to a CCR3 antagonist which can be expected to have effects as a remedies and/or a prophylactics against diseases, for whose progress and maintenance the increase and tissue infiltration of eosinophils, basophils, activated T-cells and the like play main rolls, for example, allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, urticaria. contact dermatitis and allergic conjunctivitis, inflammatory bowel diseases such as ulcerative colitis and Crohn disease, eosinophilia, eosinophilic gastroenteritis, eosinophilic enteropathy, eosinophilic fasciitis, eosinophilic granuloma, eosinophilic pustular folliculitis, eosinophilic pneumonia, eosinophilic leukemia and the like, or AIDS (acquired immunodeficiency syndrome) caused by the infection of HIV (human immunodeficiency virus).

Background Art

10

15

20

35

40

[0002] In recent years, a concept that the essential pathosis of allergic diseases such as asthma is chronic inflammation has been established, and the accumulation of eosinophils at an inflammatory region is especially thought to be one of the principal characteristics of the diseases (refer to, for example, Busse, W. W. J. Allergy Clin. Immunol., 1998, 102, S17-S22; Takao Fujisawa. Gendai Iryo, 1999, 31, 1297, and so on). For example, when an antibody against intercellular adhesion molecule-1 (ICAM-1) was administered into a simian asthmatic model, the accumulation of eosinophils was inhibited, and the manifestation of a late asthmatic response was controlled. Thereby, the importance of the eosinophils in allergic diseases was strongly suggested (Wegner, C.D. et al., Science, 1990, 247, 456).

[0003] Eotaxin was identified as a specific chemotactic factor causing the accumulation / chemotaxis of eosinophil (refer to, for example, Jose, P. J., et. al., J. Exp. Med., 1994, 179, 881; Garcia-Zepda, E. A. et al., Nature Med., 1996, 2, 449; Ponath, P. D. et al., J. Clin. Invest., 1996, 97, 604; Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725, and so on). Further, it was elucidated that eotaxin bound to a CCR3 receptor expressed on eosinophil to display the action, and it is also known that chemotactic factors such as RANTES (abbreviation of regulated upon activation normal T-cell expressed and secreted). MCP-2 (abbreviation of monocyte chemoattractant protein-2), MCP-3 (abbreviation of monocyte chemoattractant protein-4) can exhibit the same actions as that of the eotaxin through CCR3, although the action potencies of the chemotactic factors are weaker than that of the eotaxin (refer to, for example. Kitaura, M. et al., J. Biol. Chem., 1996, 271, 7725; Daugherty, B. L. et al., J. Exp. Med., 1996, 183, 2349; Panath, P. D. et al., J. Exp. Med., 1996, 183, 2437; Hiath, H. et at., J. Clin. Invest., 1997, 99, 178; Patel, V. P. et al., J. Exp. Med., 1997, 185, 1163; Forssmann, U. et al., J. Exp. Med. 185, 2171, 1997, and so on).

[0004] Not only an action for causing chemotaxis but also actions related to the activation of eosinophils, such as the enhancement in the expression of adhesion molecule receptor (CD11b) (refer to, for example, Tenscher, K. et al., Blood, 1996, 88, 3195, and so on), the stimulation in the production of active oxygen (refer to, for example, Elsner, J. et al., Eur. J. Immunol., 1996, 26, 1919, and so on), the stimulation in the release of EDN (abbreviation of eosinophilderived neurotoxin) [refer to El-Shazly, et al., Int. Arch. Allergy Immunol., 1998, 117 (suppl. 1), 55], have been reported as the actions of the eotaxin on the eosinophils. It has also been reported that eotaxin has an action for stimulating the release of eosinophils and their precursor cells from bone marrow into blood (refer to, for example, Palframan, R. T. et al., Blood, 1998, 91, 2240, and so on).

[0005] Many reports show that eotaxin and CCR3 play important roles on allergic diseases such as asthma. For example, the inhibition of eosinophil infiltration with an anti-eotaxin antibody in a mouse asthma model (refer to Gonzalo, J. -A. et al., J. Clin. Invest.. 1996, 98, 2332), the inhibition of eosinophil infiltration with an anti-eotaxin antiserum in a mouse dermal allergy model (refer to Teixeira, M. M. et al., J. Clin. Invest., 1997, 100, 1657), the inhibition in the formation of pulmonary granuloma with an anti-eotaxin antibody in a mouse model (refer to Ruth., J. H. et al., J. Immunol., 1998, 161, 4276), the inhibition of eosinophil infiltration in an asthma model and an interstitial keratitis model using eotaxin gene-deficient mice, respectively, (refer to Rothenberg, M. E. et al., J. Exp. Med., 1997, 185, 785), the increase in the expression of eotaxin and CCR3 in the bronchus of an asthmatic patient at a genetic level and a protein level in comparison with a healthy subject (refer to Ying, S. et at., Eur. J. Immunol., 1997, 27, 3507), and the increase in the expression of cotaxin in the nasal subepithelium tissue of a chronic sinusitis patient (refer to Am. J. Respir. Cell Mol Biol., 1997, 17, 683), have been reported.

[0006] Additionally, since it has been reported that eotaxin is expressed in large amounts in the inflammatory regions of Crohn disease and ulcerative colitis which is an inflammatory large bowel disease (refer to Garcia-Zepda E.A. et al. Nature Med., 1996, 2, 449), it can be understood that the eotaxin also plays important roles on the diseases.

[0007] From these data, it is strongly suggested that the eotaxin accumulates and activates the eosinophils in the lesion regions through CCR3 and thereby deeply participates in the initiation progression and maintenance of diseases

in which the deep participation of the eosinophils in the progresses of the lesions can be supposed, for example, allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, urticaria, contact dermatitis, and allergic conjunctivitis, inflammatory bowel diseases such as ulcerative colitis and Crohn disease, eosinophilia, eosinophilic gastroenteritis, eosinophilic enteropathy, eosinophilic fasciitis, eosinophilic granuloma, eosinophilic pustular folliculitis, eosinophilic pneumonia and eosinophilic leukemia.

[0008] Further, since they have been reported that CCR3 receptors reveal not only on eosinophils but also on basophils and Th2 lymphocytes and that the increase in the intracellular calcium ion concentrations of the cells and the chemotaxis of the cells are caused by the eotaxin, the eotaxin and the CCR3 are supposed to have relations with the initiation progression and maintenance of the diseases in which the cells participate, such as allergic diseases, also by the accumulation and activation of the cells (refer to, for example, Sallusto, F. et al., Science, 1997, 277, 2005; Gerber, B. O. et al., Current Biol., 1997, 7, 836; Sallusto, F. et at., J. Exp. Med., 1998, 187, 875; Uguccioni, M. et al., J. Clin. Invest., 1997, 100, 1137; Yamada, H. et al., Biochem Biophys. Res. Commun., 1997, 231, 365; and so on).

[0009] Thereby, a compound for inhibiting the binding of eotaxin to the CCR3, namely, a CCR3 antagonist, is supposed to be useful as a medicine for treating and/or preventing diseases such as allergic diseases and inflammatory intestinal diseases by inhibiting the action of a CCR3 ligand represented by the eotaxin on a target cell, but a medicine having such the action is now not known.

[0010] In addition, since it has been reported that HIV-1 (human immunodeficiency virus-1) utilizes CCR3 on the infection of a host cell, a CCR3 antagonist is supposed to be useful for a medicine for treating or preventing AIDS (acquired immunodeficiency syndrome) caused by the infection of the HIV (refer to, for example, Choe, H. et at., Cell, 1996, 85, 1135; Doranz, B.J. et al., Cell, 1996, 85, 1149).

[0011] Recently, it has been reported that xanthene-9-carboxamide derivatives (refer to WO 9804554), piperazine or piperidine derivatives (refer to EP 903349; WO 0029377; WO 0031033; WO 0035449; WO 0035451; WO 0035452; WO 0035453; WO 0035454; WO 0035876; WO 0035877), pyrrolidine derivatives (refer to WO 0031032), phenylalanine derivatives (refer to WO 9955324; WO 9955330; WO 0004003; WO 0027800; WO 0027835; WO 0027843), and other low molecular compounds (refer to WO 9802151) have antagonistic activities to CCR3 receptors. However, these compounds are different from the compounds used in the present invention. And, the compounds used in the present invention are the same as the compounds mentioned in WO 9925686, but it is not known that these compounds have antagonistic activities to CCR3 receptors.

Disclosure of the Invention

5

10

15

20

25

30

35

40

45

50

55

[0012] Thereby, the object of the present invention is to provide low molecular compounds, which have activities to inhibit that the ligand of CCR3, such as eotaxin, binds to the CCR3 on a target cell.

[0013] Another object of the present invention is to provide a method for treating and/or preventing, with a CCR3 antagonist, such a disease that the binding of the ligand of CCR3, such eotaxin, to the CCR3 on a target cell is an etiology.

[0014] The inventors of the present invention have zealously made studies, and have consequently discovered that a cyclic amine derivative having an arylalkyl group, a pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof, or a pharmaceutically acceptable acid addition salt thereof has an activity to inhibit the binding of the ligand of CCR3, such as the eotaxin, to a target cell, and further have found that the compounds can be used as medicines for treating or preventing diseases in which the participation of CCR3 is supposed. The studies have further been continued to accomplish the present invention.

[0015] Namely, in accordance with the present invention, there is provided a medicine, which contains, as an active ingredient, a compound represented by the following formula (I), a pharmaceutically acceptable acid addition salt thereof or a pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof, and which has a CCR3 antagonistic action,

$$\begin{array}{c}
R^{1} \\
 \nearrow \\
 (CH_{2})_{j} - N \\
 (CH_{2})_{m}
\end{array}$$

$$\begin{array}{c}
C \\
 (CH_{2})_{n} - N - C - (CH_{2})_{p} \\
 (CH_{2})_{m}
\end{array}$$

$$\begin{array}{c}
C \\
 (CH_{2})_{q} - G - R^{6}
\end{array}$$
(I)

[wherein, R^1 represents a phenyl group, a C_3 to C_8 cycloalkyl group, or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, provided that the phenyl group or the aromatic heterocyclic group in the above-mentioned R^1 may be condensed with a benzene ring, or an aromatic heterocyclic group

having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms to form a condensed ring, further provided that the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring may be substituted by the arbitrary number of halogen atoms. hydroxy groups, cyano groups, nitro groups, carboxyl groups, carbamoyl groups, C_1 to C_6 alkyl groups, C_3 to C_8 cycloalkyl groups, C_2 to C_6 alkenyl groups, C_1 to C_6 alkoxy groups, C_1 to C_6 alkylene groups, C_2 to C_4 alkylenoxy groups, C_1 to C_3 alkylenedioxy groups, phenyl groups, phenoxy groups, phenylthio groups, benzyl groups, benzyloxy groups, benzylamino groups, C_2 to C_7 alkanoylamino groups, C_2 to C_7 alkoxycarbonyl groups, C_2 to C_7 alkanoylamino groups, C_2 to C_7 alkoxycarbonyl groups, C_2 to C_7 alkanoylamino groups, C_3 to C_8 (alkoxycarbonyl) methyl groups, C_8 to C_8 N-cycloalkylcarbamoyl groups, piperidinocarbonyl groups, morpholinocarbonyl groups, 1-pyrrolidinylcarbonyl groups, divalent groups represented by the formula: -NH(C=O)O-, divalent groups represented by the formula: -NH(C=S)O-, amino groups, mono(C_1 to C_6 alkyl)amino groups or di(C_1 to C_6 alkyl)amino groups, and further provided that the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring may further be substituted by the arbitrary number of halogen atoms, hydroxy groups, amino groups, trifluoromethyl groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups.

[0016] R² represents a hydrogen atom, a C_1 to C_6 alkyl group, a C_2 to C_7 alkoxycarbonyl group, a hydroxy group or a phenyl group, provided that the C_1 to C_6 alkyl group or the phenyl group in R² may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups, and provided that when j is 0, R² is not a hydroxy group.

j represents an integer of 0 to 2. k represents an integer of 0 to 2. m represents an integer of 2 to 4. n represents 0 or 1.

20

25

[0017] R³ represents a hydrogen atom or a C_1 to C_6 alkyl group which may be substituted (by one or two phenyl groups which may be substituted by the same or different arbitrary numbers of halogen atoms, hydroxy groups, C_1 to C_6 alkoxy groups, respectively).

[0018] R⁴ and R⁵, same or differently, represent a hydrogen atom, a hydroxy group, a phenyl group or a C₁ to C₆ alkyl group, respectively, and the C₁ to C₆ alkyl group in R⁴ and R⁵ may be substituted by the arbitrary number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxyl groups, carbamoyl groups, mercapto groups, guanidino groups, C₃ to C₈ cycloalkyl groups, C₁ to C₆ alkoxy groups, C₁ to C₆ alkylthio groups, phenyl groups (which may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C₁ to C₆ alkyl groups, C₁ to C₆ alkoxy groups or benzyloxy groups), phenoxy groups, benzyloxy groups, benzyloxycarbonyl groups, C₂ to C₇ alkanoyl groups, C₃ to C₆ alkyl groups, carboxyl groups, C₄ to C₆ alkyl groups, C₅ to C₇ alkanoyl groups, carboxyl groups, C₇ to C₈ alkyl groups, C₈ to C₉ alkyl groups, carboxyl groups, C₉ to C₉ alkanoyl groups, C₉ to C₉ alkanoyl groups, C₉ to C₉ alkanoyl groups, C₉ to C₉ alkyl groups, carboxyl groups, C₉ to C₉ alkanoyl groups, C₉ to C₉ alkanoyl groups, C₉ to C₉ alkyl groups, C₉ to C₉ alkyl groups, C₉ to C₉ alkyl groups, carboxyl groups, C₉ to C₉ alkanoyl groups

p represents 0 or 1. q represents 0 or 1.

[0019] G represents a group represented by -CO-, -SO₂-, -CO-O-, -NR⁷-CO-, -CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR⁷-SO₂-, -SO₂-NR⁷-, -NH-CO-O-, or -O-CO-NH-, provided that R⁷ is a hydrogen atom or a C₁ to C₆ alkyl group, or R⁷ may form a C₂ to C₅ alkylene group together with R⁵.

[0020] R⁶ represents a phenyl group, a C_3 to C_8 cycloalkyl group, a C_3 to C_6 cycloalkenyl group, a benzyl group or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, provided that the phenyl group, the benzyl group or the aromatic heterocyclic group in the above-mentioned R⁶ may be condensed, to make a condensed ring, with a benzene ring or an aromatic heterocyclic group having one or three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, further provided that the phenyl group, the C_3 to C_6 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in the above-mentioned R⁶ may be substituted by the arbitrary number of halogen atoms, hydroxy groups, mercapto groups, cyano groups, nitro groups, thiocyanato groups, carboxyl groups, carbamoyl groups, trifluoromethyl groups, C_1 to C_6 alkyl groups, C_3 to C_8 cycloalkyl groups, C_2 to C_6 alkenyl groups, C_1 to C_6 alkoxy groups, phenylamino groups, benzyl groups, benzoyl groups, phenylsulfinyl groups, phenylsulfonyl groups, 3-phenylureido groups, C_2 to C_7 alkanoyl groups, C_2 to C_7 alkanoyloxy groups, C_9 to C_9 alkoxy groups, phenylureido group, C_9 to C_9 alkanoyl groups, C_9 to C_9 alkanoyloxy groups, C_9 to C_9

mono(C_1 to C_6 alkyl)amino groups, di(C_1 to C_6 alkyl)amino groups, benzylamino groups, C_2 to C_7 (alkoxycarbonyl) amino groups, C_1 to C_6 (alkylsulfonyl)amino groups or bis(C_1 to C_6 alkylsulfonyl)amino groups, and further provided that the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the C_3 to C_8 cycloalkenyl group, the benzyl group. the aromatic heterocyclic group, or the condensed ring may further be substituted by the arbitrary number of halogen atoms, cyano groups, hydroxy groups, amino groups, trifluoromethyl groups, C_1 to C_6 alkyl groups, C_1 to C_6 alkyl groups, mono(C_1 to C_6 alkyl)amino groups, or di(C_1 to C_6 alkyl)amino groups.].

[0021] In accordance with the present invention, there is also provided a medicine which contains, as an active ingredient, the compound represented by the above-mentioned formula (I), the pharmaceutically acceptable acid addition salt thereof, or the pharmaceutically acceptable C₁ to C₆ alkyl addition salt thereof, and which is used for treating or preventing a disease concerned with CCR3.

[0022] The compound represented by the above-mentioned formula (I) has an activity for inhibiting that the ligand of CCR3 receptor, such as eotaxin, binds to a target cell, and an activity for inhibiting the physiological actions of the ligand of CCR3, such as the eotaxin, on the target cell. Namely, the compound represented by the above-mentioned formula (I) is a CCR3 antagonist.

Best Mode for Carrying Out the Invention

10

20

25

30

35

50

[0023] In the above-mentioned formula (I), R^1 represents a phenyl group, a C_3 to C_8 cycloalkyl group, or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, provided that the phenyl group or the aromatic heterocyclic group in the above-mentioned R^1 may be condensed with a benzene ring, or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms to form a condensed ring, further provided that the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring may be substituted by the arbitrary number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxyl groups. Carboxyl groups, C_1 to C_6 alkyl groups, C_3 to C_8 cycloalkyl groups, C_2 to C_6 alkenyl groups, C_1 to C_6 alkoxy groups, C_1 to C_6 alkylthio groups, C_3 to C_5 alkylene groups, C_2 to C_4 alkylenoxy groups, benzyl groups, benzyl groups, benzyl groups, benzyloxy groups, benzyloxy groups, benzyloxy groups, benzyloxy groups, benzyloxy groups, C_2 to C_7 alkanoylamino groups, C_2 to C_7 alkanoyl groups, C_2 to C_7 alkanoyl groups, C_7 to C_8 alkylcarbamoyl groups, C_8 alkylcarbamoyl groups, C_8 alkylcarbamoyl groups, C_8 alk

[0024] "The C_3 to C_8 cycloalkyl group" in R^1 means a cyclic alkyl group such as a cyclopropyl group, a cyclohexyl group, a cyclohexyl group or a cyclooctyl group, and includes a cyclopropyl group, a cyclohexyl group and the like as preferable concrete examples.

[0025] "The aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms" in R1 means an aromatic heterocyclic group such as a thienyl group, a furyl group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group, an oxazolyl group, an isoxazolyl group, a thiazolyl group, an isothiazolyl group, a pyridyl group, a pyrimidinyl group, a triazinyl group, a triazolyl group, an oxadiazolyl (furazanyl) group or a thiadiazolyl group, and includes a thienyl group, a furyl group; a pyrrolyl, an isoxazolyl group, a pyridyl group and the like as preferable concrete examples.

[0026] "The condensed ring" in R1 means a bicyclic aromatic heterocyclic group which is formed by condensing the above-mentioned benzene ring or aromatic heterocyclic group with a benzene ring or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms at an arbitrary possible position, and includes a naphthyl group, an indolyl group, a benzofuranyl group, a benzothienyl group, a quinolyl group, a benzothia-diazolyl group, a benzoxazolyl group, a benzothia-diazolyl group and the like as preferable concrete examples.

[0027] A phenyl group, a thienyl group, a pyrazolyl group, an isoxazolyl group, a benzofuranyl group or an indolyl group is especially preferable as R1.

[0028] "The halogen atom" as the substituent on the phenyl group, the C₃ to C₈ cycloalkyl group, the aromatic heterocyclic group or the condensed ring, in R¹, means a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or the like.

[0029] "The C_1 to C_6 alkyl group" as the substituent of R^1 means a C_1 to C_6 straight-chain or branched alkyl group such as a methyl group, an ethyl group, a n-propyl group, a n-butyl group, a n-pentyl group, a n-hexyl group, a n-hexyl group, a n-hexyl group, an isopropyl group, an isopontyl group, a sec-butyl group, a tert-butyl group, an isopentyl group, a neopentyl group, a tert-pentyl group, an isohexyl group, a 2-methyl group or a 1-ethylbutyl group, and includes a methyl group, an ethyl group, a propyl group, an isopropyl group and the like as preferable concrete examples.

[0030] "The C_3 to C_8 cycloalkyl group" as the substituent of R^1 is the same as the definition of "the C_3 to C_8 cycloalkyl

group" in the above-mentioned R1, and includes the same groups as preferable concrete examples.

[0031] "The C_2 to C_6 alkenyl group" as the substituent of R^1 means a C_2 to C_6 straight-chain or branched alkenyl group such as a vinyl group, an allyl group, a 1-propenyl group, a 2-butenyl group, a 3-butenyl group, a 2-methyl-1-propenyl group, a 4-pentenyl group, a 5-hexenyl group or a 4-methyl-3-pentenyl group, and includes a vinyl group, a 2-methyl-1-propenyl group and the like as preferable concrete examples.

[0032] "The C_1 to C_6 alkoxy group" as the substituent of R^1 means a group comprising the above-mentioned C_1 to C_6 alkyl group and an oxy group, and includes a methoxy group, an ethoxy group and the like as preferable concrete examples.

[0033] "The C_1 to C_6 alkylthio group" as the substituent of R^1 means a group comprising the above-mentioned C_1 to C_6 alkyl group and a thio group, and includes a methylthio group, an ethylthio group and the like as preferable concrete examples

[0034] "The C_3 to C_5 alkylene group" as the substituent of R^1 means a C_3 to C_5 divalent alkylene group such as a trimethylene group, a tetramethylene group, a pentamethylene group or a 1-methyltrimetylene group, and includes a trimethylene group, a tetramethylene group and the like as preferable concrete examples.

[0035] "The C₂ to C₄ alkylenoxy group" as the substituent of R¹ means a group comprising a C₂ to C₄ divalent alkylene group and an oxy group, such as an ethylenoxy group (-CH₂CH₂O-), a trimethylenoxy group (-CH₂CH₂CH₂O-), a tetramethylenoxy group (-CH₂CH₂CH₂O-) or a 1,1-dimethylenoxy group [-CH₂C(CH₃)₂O-], and includes an ethylenoxy group, a trimethylenoxy group and the like as preferable concrete examples.

[0036] "The C_1 to C_3 alkylenedioxy group" as the substituent of R^1 means a group comprising a C_1 to C_3 divalent alkylene group and two oxy groups, such as a methylenedioxy group (-OCH₂O-), an ethylenedioxy group (-OCH₂CH₂O-), a propylenedioxy group [-OCH₂CH(CH₃)O-], and includes a methylenedioxy group, an ethylenedioxy group and the like as preferable concrete examples.

[0037] "The C_2 to C_7 alkanoyl group" as the substituent of R^1 means a C_2 to C_7 straight-chain or branched alkanoyl group such as an acetyl group, a propanoyl group, a butanoyl group, a pentanoyl group, a hexanoyl group, a heptanoyl group, an isobutyryl group, a 3-methylbutanoyl group, a 2-methylbutanoyl group, a pivaloyl group, a 4-methylpentanoyl group, a 3,3-dimethylbutanoyl group or a 5-methylhexanoyl group, and includes an acetyl group and the like as preferable concrete examples.

25

30

[0038] "The C_2 to C_7 alkoxycarbonyl group" as the substituent of R^1 means a group comprising a C_1 to C_6 alkoxy group and a carbonyl group, and includes a methoxycarbonyl group, an ethoxycarbonyl group and the like as preferable concrete examples

[0039] "The C_2 to C_7 alkanoyloxy group" as the substituent of R^1 means a group comprising a C_2 to C_7 alkanoyl group and an oxy group, and includes an acetyloxy group and the like as preferable concrete examples.

[0040] "The C_2 to C_7 alkanoylamino group" as the substituent of R^1 means a group comprising a C_2 to C_7 alkanoyl group and an amino group, and includes an acetylamino group and the like as preferable concrete examples.

[0041] "The C_2 to C_7 alkylcarbamoyl group" as the substituent of R1 means a group comprising a C_1 to C_6 alkyl group and a carbamoyl group, and includes a N-methylcarbamoyl group, a N-ethylcarbamoyl group and the like as preferable concrete examples.

[0042] "The C_4 to C_9 N-cycloalkylcarbamoyl group" as the substituent of R^1 means a group comprising a C_3 to C_8 cycloalkyl group and a carbamoyl group, and includes a N-cyclopentylcarbamoyl group, a N-cyclohexylcarbamoyl group and the like as preferable concrete examples.

[0043] "The C_1 to C_6 alkylsulfonyl group" as the substituent of R^1 means a group comprising a C_1 to C_6 alkyl group and a sulfonyl group, and includes a methylsulfonyl group and the like as preferable concrete examples.

[0044] "The C_3 to C_8 (alkoxycarbonyl)methyl group" as the substituent of R^1 means a group comprising a C_2 to C_7 alkoxycarbonyl group and a methyl group, and includes a methoxycarbonylmethyl group, an ethoxycarbonylmethyl group and the like as preferable concrete examples.

[0045] "The mono(C_1 to C_6 alkyl)amino group" as the substituent of R^1 means an amino group substituted by the C_1 to C_6 alkyl group, and includes a methylamino group, an ethylamino group and the like as preferable concrete examples.

[0046] "The di(C_1 to C_6 alkyl)amino group" as the substituent of R^1 means an amino group substituted by the same or different two C_1 to C_6 alkyl groups, and includes a dimethylamino group, a diethylamino group, N-ethyl-N-methylamino group and the like as preferable concrete examples.

[0047] Among the above-mentioned groups, the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 include halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups, C_2 to C_6 alkenyl groups, C_1 to C_6 alkoxy groups, C_1 to C_6 alkylthio groups, C_3 to C_5 alkylene groups, C_2 to C_4 alkylenoxy groups, methylenedioxy groups, phenyl groups, N-phenylcarbamoyl groups, amino groups and di(C_1 to C_6 alkyl)amino groups as especially preferable concrete examples. The substituents especially preferably include halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups. C_1 to C_6 alkoxy groups, C_1 to C_6 alkyl groups.

[0048] Further, the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, amino groups, trifluoromethyl groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups. The halogen atoms, the C_1 to C_6 alkyl groups and the C_1 to C_6 alkoxy groups are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 , and include the same groups as preferable concrete examples.

[0049] In the formula (i), R^2 represents a hydrogen atom, a C_1 to C_6 alkyl group, a C_2 to C_7 alkoxycarbonyl group, a hydroxy group or a phenyl group, and the C_1 to C_6 alkyl group or the phenyl group in R^2 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups, provided that R^2 is not the hydroxy group, when j is 0.

[0050] The C_1 to C_6 alkyl group and the C_2 to C_7 alkoxycarbonyl group in R^2 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 , and include the same groups as preferable concrete examples.

[0051] The halogen atoms, C_1 to C_6 alkyl groups and C_1 to C_6 alkoxy groups as the substituents of the C_1 to C_6 alkyl group or the phenyl group in R^2 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in R^1 , and includes the same examples, respectively, as preferable concrete examples.

[0052] Among groups, a case that R2 represents a hydrogen atom is most preferable.

[0053] In the formula (I), j represents an integer of 0 to 2. A case that j is 0 is most preferable.

[0054] In the formula (I), k represents an integer of 0 to 2, and m represents an integer of 2 to 4. Among them, the 2-substituted pyrrolidine compound in a case that k and m are 0 and 3, respectively, the 3-substituted pyrrolidine compound in a case that k and m are 1 and 2, respectively, the 3-substituted piperidine compound in a case that k and m are 2 and 2, respectively, and the 3-substituted hexahydroazepine in a case that k and m are 1 and 4, respectively, are preferable. Especially preferably, the 3-substituted pyrrolidine compound in the case that k and m are 1 and 2, respectively, and the 4-substituted piperidine compound in the case that k and m are 1 and 2, respectively, and the 4-substituted piperidine compound in the case that k and m are 2 and 2, respectively, are included.

[0055] In the formula (I), n represents 0 or 1.

10

15

20

45

[0056] Especially, the 3-amidopyrrolidine compound in a case that k, m and n are 1, 2 and 0, respectively, and the 4-(amidomethyl)piperidine in a case that k, m and n are 2, 2 and 1, respectively, are preferable.

[0057] In the formula (i), R^3 represents a hydrogen atom or a C_1 to C_6 alkyl group which may be substituted (by one or two phenyl groups which may be substituted by the arbitrary number of the same or different halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups or C_1 to C_6 alkoxy groups).

[0058] The C_1 to C_6 alkyl group in R^3 is the same as defined as the substituent of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group, or the condensed ring in the above-mentioned R^1 , and includes methyl group, ethyl group and propyl group as preferable concrete examples.

[0059] The halogen atoms, the C_1 to C_6 alkyl groups and the C_1 to C_6 alkoxy groups as the substituents of the phenyl group as the substituent of the C_1 to C_6 alkyl group in R^3 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above-mentioned R^1 , and includes the same examples as preferable concrete examples.

40 [0060] Among them, the case in which R³ is a hydrogen atom or a non-substituted C₁ to C₆ alkyl groups, is the most favorable.

[0061] In the formula (I), R^4 and R^5 , same or differently, represent a hydrogen atom, a hydroxy group, a phenyl group or a C_1 to C_6 alkyl group, respectively, and the C_1 to C_6 alkyl group in R^4 and R^5 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, cyano groups, nitro groups, carboxyl groups, carbamoyl groups, mercapto groups, guanidino groups, C_3 to C_8 cycloalkyl groups, C_1 to C_6 alkoxy groups, C_1 to C_6 alkylthio groups, phenyl groups (which may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C_1 to C_6 alkyl groups, C_1 to C_6 alkoxy groups or benzyloxy groups), phenoxy groups, benzyloxy groups, benzyloxycarbonyl groups, C_2 to C_7 alkanoyl groups, C_2 to C_7 alkanoylamino groups, C_2 to C_7 alkanoylamino groups, C_2 to C_7 alkanoylamino groups, C_1 to C_6 alkyl groups, C_2 to C_7 alkanoylamino groups, C_1 to C_6 alkyl groups,

[0062] The C_1 to C_6 alkyl group in R^4 and R^5 is the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above-mentioned R^1 , and includes the same examples as preferable concrete examples.

[0063] The halogen atom, C_1 to C_6 alkoxy group, C_1 to C_6 alkylthio group, C_2 to C_7 alkanoyl group, C_2 to C_7 alkanoyl group, C_2 to C_7 alkanoyloxy group, C_2 to C_7 alkanoylamino group, C_2 to C_7 alkanoyloxy group, C_2 to C_7 alkanoylamino group, C_2 to C_7 N-alkyl-carbamoyl group, C_1 to C_6 alkylsulfonyl group, mono(C_1 to C_6 alkyl)amino group and di(C_1 to C_6 alkyl)amino group as

the substituents of the C_1 to C_6 alkyl group in R^4 and R^5 , are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above-mentioned R^1 , and includes the same examples, respectively, as preferable concrete examples.

[0064] The C_3 to C_8 cycloalkyl group, and the aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen heteroatoms as the substituents of the C_1 to C_6 alkyl group in R^4 and R^5 are the same as defined in the above-mentioned R^1 , and includes the same examples, respectively, as preferable concrete examples.

[0065] The halogen atom, the C_1 to C_6 alkyl group and the C_1 to C_6 alkoxy group as the substituents of the phenyl group as the substituent of the C_1 to C_6 alkyl group in R^4 and R^5 , are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above-mentioned R^1 , and includes the same examples, respectively, as preferable concrete examples.

[0066] The preferable concrete examples of "the three to six-membered cyclic hydrocarbon" comprising R^4 , R^5 and the adjacent carbon atom includes cyclopropane, cyclobutane, cyclopentane and cyclohexane. Among the groups, the hydrogen atom and the C_1 to C_6 alkyl group are the especially preferable examples of R^4 and R^5 .

[0067] In the above-mentioned formula (I), p represents 0 or 1, and q represents 0 or 1. A case that both p and q are 0 is especially preferable.

[0068] In the above-mentioned formula (I), G represents a group represented by -CO-, -SO₂-, -CO-O-, -NR⁷-CO-, -CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR⁷-SO₂-, -SO₂-NR⁷-, -NH-CO-O- or -O-CO-NH-. R⁷ represents a hydrogen atom or a C₁ to C₆ alkyl group, or R⁷ may form a C2 to C5 alkylene group together with R⁵.

[0069] The -CO-, -SO₂- and -CS- means a carbonyl group, a sulfonyl group and a thiocarbonyl group, respectively. The especially preferable example of G includes a group represented by -NR⁷-CO- and a group represented by -NH-CO-NH-.

[0070] The C_1 to C_6 alkyl group in R^7 is the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above-mentioned R^1 , and includes the same examples as preferable concrete examples.

[0071] "The C_2 to C_5 alkylene group" comprising R^5 and R^7 means a C_2 to C_5 straight-chain or branched alkylene group such as a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a 1-methyltrimethylene group or a pentamethylene group, and includes an ethylene group, a trimethylene group and a tetramethylene group as the preferable concrete examples. Among the groups, R^7 includes the hydrogen atom as an especially preferable example.

[0072] In the above-mentioned formula (I), R6 represents a phenyl group, a C₃ to C₈ cycloalkyl group, a C₃ to C₆ cycloalkenyl group or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, and the phenyl group, the benzyl group or the aromatic heterocyclic group in R6 may be condensed, to make a condensed ring, with a benzene ring or an aromatic heterocyclic group having one to three atoms of oxygen sulfur, and/or nitrogen as heteroatoms. Further, the phenyl group, the C₃ to C₈ cycloalkyl group, the C₃ to C₆ cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in R6 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, mercapto groups, cyano groups, nitro groups, thiocyanato groups, carboxyl groups, carbamoyl groups, trifluoromethyl groups, C₁ to C₆ alkyl groups, C₃ to C₈ cycloalkyl groups, C₂ to C₆ alkenyl groups, carbamoyl groups, phenoxy groups, C₃ to C₈ cycloalkylthio groups, C₁ to C₆ alkylenedioxy groups, phenyl groups, phenoxy groups, phenylamino groups, benzyl groups, C₂ to C₇ alkanoyl groups, C₂ to C₇ alkanoyl groups, C₂ to C₇ alkanoyloxy groups, C₃ to C₆ alkylsulfonyl groups, phenylcarbamoyl groups, N,N-di(C₁ to C₆ alkyl)sulfamoyl groups, amino groups, mono (C₁ to C₆ alkylsulfonyl)amino groups or bis(C₁ to C₆ alkylsulfonyl)amino groups.

[0073] The C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen, and the condensed ring are the same as defined as the above-mentioned R^1 , and includes the same examples, respectively, as preferable concrete examples.

[0074] "The C_3 to C_8 cycloalkenyl group" in R^6 means a cyclic alkenyl group such as a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, a cyclohexenyl group and a 1-cyclohexenyl group as preferable concrete examples. Among the groups, R^6 include a phenyl group, a furyl group, a thienyl group, an indolyl group and a benzofurazanyl group as especially preferable examples. [0075] The halogen atom, the C_1 to C_6 alkyl group, the C_2 to C_6 alkenyl group, the C_1 to C_6 alkoxy group, the C_1 to C_6 alkylthio group, the C_1 to C_6 alkylenedioxy group, the C_2 to C_7 alkanoyloxy group, C_6 to C_7 alkanoyloxy group, the C_8 to C_8 alkylenedioxy group, the C_8 to C_8 alkylearbamoyl group, the C_8 to C_8 alkyloulfonyl group, the mono(C_1 to C_6 alkyl) amino group and the di(C_8 to C_8 alkyl) amino group as the substituents of the phenyl group, the C_8 to C_8 cycloalkyl group, the C_8 to C_8 cycloalkyl group, the condensed ring in C_8 are the same as defined as the substituents of the phenyl group, the aromatic heterocyclic group or the condensed C_8 , and includes the

same examples as preferable concrete examples.

10

20

35

40

50

55

[0076] The C_3 to C_8 cycloalkyl group as the substituent of R^6 is the same as defined as the C_3 to C_8 cycloalkyl group in the above-mentioned R^1 , and cludes the same examples as preferable concrete examples.

[0077] "The C_3 to C_8 cycloalkyloxy group" as the substituent of R^6 means a group comprising the above-mentioned C_3 to C_8 cycloalkyl group and an oxy group, and includes a cyclopropyloxy group, a cyclopentyloxy group, a cyclohexyloxy group and the like as preferable concrete examples.

[0078] "The N,N-di(C_1 to C_6 alkyl)sulfamoyl group" as the substituent of R^6 means a sulfamoyl group substituted by two same or different above-mentioned C_1 to C_6 alkyl groups, and includes N,N-dimethylsulfamoyl group, N,N-diethylsulfamoyl group, N-ethyl-N-methylsulfamoyl group and the like as preferable concrete examples.

[0079] "The C_2 to C_7 (alkoxycarbonyl)amino group" as the substituent of R^6 means a group comprising the above-mentioned C_2 to C_7 alkoxycarbonyl group and an amino group, and includes a methoxycarbonylamino group, an ethoxycarbonylamino group and the like as preferable concrete examples.

[0080] "The C_1 to C_6 (alkylsulfonyl)amino group" as the substituent of R^6 means a group comprising the above-mentioned C_1 to C_6 alkylsulfonyl group, an amino group and the like, and includes a (methylsulfonyl)amino group as a preferable concrete example.

[0081] "The bis(C_1 to C_6 alkylsulfonyl)amino group" as the substituent of R^6 means an amino group substituted by two same or different C_1 to C_6 alkylsulfonyl groups, and includes a bis(methylsulfonyl)amino group and the like as a preferable concrete example.

[0082] Especially, the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the C_3 to C_8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in R^6 include a halogen atom, a mercapto group, a nitro group, a trifluoromethyl group, a C_1 to C_6 alkyl group, a C_1 to C_6 alkoxy group, a phenyl group, a benzyloxy group, a phenylsulfinyl group, a C_2 to C_7 alkanoyl group, a C_2 to C_7 alkanoylamino group, an amino group and the like as preferable examples. The halogen atom, the nitro group, the trifluoromethyl group, the C_1 to C_6 alkyl group, the phenylsulfinyl group and the amino group are included as especially preferable examples.

[0083] Additionally, the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the C_3 to C_8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in R^6 may further be substituted by the arbitrary number of halogen atoms, cyano groups, hydroxy groups, amino groups, trifluoromethyl groups, C_1 to C_6 alkyl groups. C_1 to C_6 alkoxy groups, C_1 to C_6 alkylthio groups, mono(C_1 to C_6 alkyl) amino groups or di(C_1 to C_6 alkyl) amino groups.

[0084] The halogen atom, the C_1 to C_6 alkyl group, the C_1 to C_6 alkylylamino group, the C_1 to C_6 alkylylamino group and the di(C_1 to C_6 alkyl)amino group as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the C_3 to C_8 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in C_8 are the same as defined as the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the aromatic heterocyclic group or the condensed ring in the above-mentioned C_8 , and includes the same examples as preferable concrete examples.

[0085] By making a therapeutically effective amount of the compound represented by the above-mentioned formula (I), the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable C₁ to C₆ alkyl addition salt thereof into a pharmaceutical composition together with a pharmaceutically acceptable carrier and/or a pharmaceutically acceptable diluent, the medicine for inhibiting that the ligand of CCR3, such as eotaxin, binds to the CCR3 on a target cell, the medicine for inhibiting the physiological actions of the ligand of the CCR3, such as the eotaxin, on the target cell, and further the medicine for treating or preventing diseases in which the CCR3 is supposed to participate, as the medicine of the present invention, can be prepared. Namely, the cyclic amine derivative represented by the general formula (I), the pharmaceutically acceptable acid addition thereof, or the pharmaceutically acceptable C₁ to C₆ alkyl addition salt thereof can be administered orally or parenterally such as intravenously, subcutaneously, intramuscularly, percutaneously or intrarectally.

[0086] The dosage form of the oral administration includes tablets, pills, granules, powders, liquids, suspensions and capsules.

[0087] The tablets can be prepared using a vehicle such as lactose, starch or crystalline cellulose, a binder such as carboxymethylcellulose, methylcellulose or polyvinylpyrrolidone, a disintegrator such as sodium alginate, sodium bicarbonate or sodium lauryl sulfate, and so on, by a conventional method.

[0088] The pills, the powders or the granules can also be prepared using the above-mentioned vehicle and so on by a conventional method. The liquids or the suspensions are prepared using a glycerol ester such as tricaprylin or triacetin, an alcohol such as ethanol and so on by a conventional method. The capsules are prepared by filling capsules made from gelatin or the like with the granules, the powder, the liquids or the like.

[0089] The dosage form for subcutaneous, intramuscular or intravenous administration includes injections in the forms of aqueous or non-aqueous solutions. The aqueous solutions include, for example, isotonic sodium chloride solution or the like. The non-aqueous solutions include, for example, propylene glycol, poly(ethylene glycol), olive oil, ethyl oleate or the like. The solutions, if necessary, further contain a antiseptic, a stabilizer and so on. The injections

are sterilized by suitably carrying out the filtration with a bacterial filter and the treatment by the addition of a disinfectant. [0090] The dosage form for the percutaneous administration includes an ointment and a cream. The ointment is prepared using a fatty oil or a fat such as castor oil or olive oil, petrolatum or the like by a conventional method, and the cream is prepared using a fatty oil or an emulsifier such as di(ethylene glycol) or a sorbitan monofatty acid ester by a conventional method.

[0091] Ordinary suppositories such as gelatin soft capsules are used for intrarectal administration.

[0092] The dose of the cyclic amine derivative of the present invention, the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof depends on the kind of a disease, an administration route, the age and sex of the patient and the severity of a disease, but is usually 1 to 500 mg / day / adult.

[0093] The suitable concrete examples of the cyclic amine derivative of the above-mentioned formula (I) includes compounds containing substituents, respectively, shown in the following Tables 1.1 to 1.221.

[0094] In the Tables 1.1 to 1.221, "chirality" means "an absolute configuration", namely the absolute configuration of an asymmetric carbon on the ring of the cyclic amine. "R" means that an asymmetric carbon on the ring of the cyclic amine has the absolute configuration of R, and "S" means that the asymmetric carbon has the absolute configuration of S. " - " means that the compound is a racemate or does not have an asymmetric carbon on the cyclic amine.

-				-	-
- 1	а	n	le	1.	. 1

Compd.	R (CH ₂)-	k	m	n	chirality	⁻ A³	-(CH ₂) p CH₂)q G-R⁶
1	С⊢—СН₂-	1	2	0	-	н	- CH2- N-C-
2	с⊢СУ-сн₂-	1	2	0		н	- CH2- N- C- CH2
3	C├─ \ CH ₂ -	1	2	0	-	н	- CH2- N- C-
4	с⊢Сн₂-	1	2	0	<u>.</u>	н	- CH ₂ -N-C-
5	CH-CH2-	1	2	o	S	н	- CH ₂ -N-C-CF ₃
6	CH-CH2-	1	2	0	· S	н	- CH ₂ -N-C-
7	CH2-	1	2	0	S	. н	- CH2- N- C-
8	CH2-	1	2	0	S	. н	- CH ₂ -N-C-
9	C	1	2	0	S	ਜ	-СH2-МС- С С С
10	CH-CH2-	1	2	0	S	H	- CH2- N C OCH3
11	C├ - CH ₂ -	1	2	0	S	н	-CH5- M C - OCH2

Table 1.2

Compd.	R1 (CH2);-	k	m	n	chirality	· R³	-(СН ₂) _{Р 1} (СН ₂) _q G-R ⁶
12	CI-CH2-	1	2	C	S	н	- CH ₂ - N C — ОСН ₃
13	CH2-	1	2	0	S	н	-CH ₂ -N-C-√.
14	CH2-	- .	2	0	S	н	- CH ₂ - N C-CH ₃
15	С⊢ СН₂-	1	2	0	S	. н	-CH2-N-C-
16	C ⊢ C H₂-	1	2	0	S	н	-сн ₂ -м с
17	с⊢С≻сн₂-	1	2	О	S	н	- CH ₂ - N- C- CI
18	C├ - CH₂-	1	2	С	S	н	- CH2- N C - CN
19	C├ - CH₂-	1	2	0	S	H ,	-CH2-14 C-00
20	С├-СН2-	1	2	С	S	н	- CH ₂ -N-CF ₃
21	С├-СН₂-	1	2	0	S	H	- CH2-N C- CF3
22	CH2-	1	2	0	S	н	- CH ₂ -N-C

Compd No.	$R^{1} \rightarrow (CH_{2})_{ -}$	k	. m	n	chirality	R ³	-(CH ₂) p (CH₂)q G-R⁶
23	C├ - CH₂-	1	2	0	S	н	- CH ₂ -N-C
24	С├-{_}-Сн₂-	1	2	0	S	н	- CH2- N C-
25 .	С├-{СН₂-	1	2	0	S	н	-CH2-NC-F
26	С⊢(СН₂-	1	2	0	S	н	- CH2-N-C-
27 .	C+-{\rightarrow}- CH2-	1	2	0	S	н	-CH ⁵ -M, C-\\ 0 \\ NO ⁵
28	CH-2-	1	2	0	S	н	- CH2- N C- NO2
29	CH2-	7	2	0	R	Ĥ	- CH ₂ -NC-CF ₃
30	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -NCC
31	CH2-	1	2	0	R	н	- CH ₂ - N C - Br
	CI-CH2-					н	- CH ₂ - N C — F
33	C├──── CH2-	1	2 (0	R	н	- CH ₂ -N-C-C1
							•

Table 1.4

5	Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
. 10	34	CH2-	1	2	0	R	н	-CH2-N-C-OCH3
	35	C ⊢ CH2-	1	2	0	R	н	- CH ₂ -N-C
15	36	C(-) CH₂-	1	2	О	R :	H	-CH₂-N C
20	37	CH2-	1	2	0	R	н	- CH2- N- C- CF3
25	38	C+-(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
30	39	C ← C H ₂ -	1	2	0	R	Н	- CH2-N C-CI
35	40	СН ₂ -	1	2	0	R .	н	- CH2- 14 C - OCH3
40	41	CH2-	1	2	0	R	н	- CH ₂ - N C - CI
	42	CI-CH ₂ -	1	2	0	R	н	- CH2- 12- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH
45	43	CH-€ CH ₂ -	1	2	0	R	Н	- CH2- H C
50	44	C	1	2	0	R	н	- CH ₂ -NC-CF ₃

Ta!	h 1		4	_
1 4	u	E	1.	

Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	. 43	-(CH ₂) _p + (CH ₂) _q G-R ⁶
45	C:	1	2	0	R	н	- CH ₂ -N C - CF ₃
46	CH-€	1	2	0	R	អ	- CH ₂ -N-C
47	CH2-	1	2	0	R	н	-CH2-N-C
48	CH2-	1	2	0	R	н	- CH ₂ -N-C
49	C → CH ₂ -	1	2	0	R	н	- CH2-N C-
50	С⊢СН₂-	. 1	2	0	R	н	- CH2- N C-CF3
51	С⊢СН2-	1	2	0	R	н	- CH ₂ -N C-
52	CI————————————————————————————————————	1.	2	0	R ,	н	- CH2- N C - F
53	с⊢ Сн₂-	1	2	0	R	н	- CH2- N C CI
54	С├───-СН2-	1	2	0	R	н	- CH₂-N-C-
5 5	C	1	2	٥	Я	н	- CH ₂ -N-C-CI

Table 1.6

5	Compd.	R ¹ (CH ₂)	k	m	n	chirality	R3	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - R^6$
10		CI—(CH ₂ -					н	-CH2-NC-
	57	C ⊢ C H₂-	1	2	0	R	н	- CH ³ - ¼ C →
15	- 58	CH-(CH ₂ -	1	2	0	R	н	-CH2-N-C-
20	59	CH-CH ₂ -	1	2	0	R	Н	- CH2- N- C
25	60	CH_CH ₂ -	1	2	0	R	н	-CH2-NC-
30	61	CH-CH2-	1	2	0	R	н	-CH2-N-C
35	62	CH_CH2-	. 1	2	0	R .	Н	- CH2-N C-CH3
40	63	CH2-	1	2	0	R	Н	-CH2-N-C
	64	CH-CH2-	1	2	0	R	н	-CH2-NC-CN
45	65	CHCH ₂ -	1	2	0	R	н	-CH2-NC-
, 50	66	CH_CH ₂ -	1	2	С	R	н	- CH ₂ -N C

Table 1.7

5	Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	-(СН ₂) , 1 ((СН ₂) , G-R ⁶
10	67	C1— CH₂-	1:	2	0	R	н	- CH2-NC-
15	68	С⊢ СН2-	1	2	. 0	R	н	- CH ₂ -N-C
	69	C ├─ C H ₂ -	1	2	0	R	н	-CH2-NC-F
	70	C ├── C H₂-	1	2	0	R	н	- CH ₂ - N C-
25	71	CH2−	1	2	0	R	· н	- CH ₂ - N-C- OCH ₃
30	72	CH-CH2-	1	- 2	0	R	н	- CH ₂ -N-C
35	73	CHCH_2-	1	2	0	R	н	- CH ₂ -N-C
40	74	CI-CH ₂ -	1	2	0	R	н	-CH2-N C- CO2CH3
45	75	CI—CH₂-	1	2	0	R	н	- CH ₂ -N-C
	76	С⊢СН2-	1	2	0	R		- CH ₂ -N-C
50	77	C	1	2	0	R	н	- CH2-NC-
55		· · · · · · · · · · · · · · · · · · ·						

Table 1.8	T	a	ы	е	1		8
-----------	---	---	---	---	---	--	---

5	Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) p CH₂)q G-R⁶ R ⁵
10	78	CI—CH ₂ -	1	2,	0	R	н	-CH2-N-C
15	79	Ci—CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
	80	C	1	2	0	R	н	- сн ₂ - N с С С Г 3
20	81	C	1	2	o	R	н	-CH2-N-C
25	82	CI-CH ₂ -	1	2	С	-	-сн ₃	-сн ₂ -N-С-С-С-3
30	83	C ├── C H₂-	1	2	0	R	н	-CH ₂ -N-C
35	84	СН-СН2-	1	2	0	R	н	-CH2-N-C
40	85	СН-СН2-	1	2	0		н	-(CH ₂) ₂ - N- C-
45	86	СН-СН2-	1	2	0			-(CH ₂) ₂ -N-C-NO ₂
50	87	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CF ₃ -(CH ₂) ₂ -N-C-CF ₃ F ₃ C
	88	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-

Т	2	h	le	1	.9
	•	ມ	1 =	- 1	

5	Compd. No.	R ¹ /(CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) , (CH ₂) , G-R ⁶
10	89	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C
15	90	C:(1	2	0	S	H.	-(CH ₂) ₂ -N-C
. 20	91	C	1	2	0	S	н	-(CH ₂) ₂ -N-C-C1
	92	CH-CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C
25	93	CH-(CH₂-	1	2	0	S	н	-(CH₂)₂-N-C- Q OCH₃
30	94	CH2⁻	1	2 .	0	S	н	-(CH ₂) ₂ -N-C-OCH ₃
35	95	С⊢ СН₂-	1	2	0	S	.н	-(CH ₂) ₂ -N-C-CF ₃
40	96	CH-(CH ₂ -	1	2	0	S	Н	-(CH ₂) ₂ -N-C-CH ₃
45	97	С⊢√_СН2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-C1
	98	CI—CH₂-	1	2	0	S	н	-(CH ₂) ₂ - N C- OCH ₃
50	99	C⊢-{_}- CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C
55 -								

т	a	5	le	1.	1	O

	18516							
5	Compd.	R 1 (CH ₂),-	k	U	n	chirality	R³	-(CH ₂)
10	100	С	1	2	0	S	н	-(CH ₂) ₂ -N-C
	101	С;—Сн₂-	1	2	0	S	н	-(CH ₂);- N-C
15	102	с⊢ Сн₂-	1	2	0	S	н	-(CH ₂) ₂ - N- C-
20	103	с⊢—Сн₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
25	104	C → CH ₂ -	1	2	0	S	н ,	-(CH ₂) ₂ - ~ C - CF ₃
30	105	CH2-	1	2	0	S	н	-(CH ₂) ₂ - ~ C C − C − 5
35	105	CH-CH2-	1	2	0	S	ਜ .	-(CH ₂) ₂ -N-C-
	107	C-√CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C
40	108	с⊢С сн₂-	1	2	0	S	н	-(CH ₂) ₂ - N- C- H O ₂ N
45	109	ССн2-	1	2	0	S	Н	-(CH2)2-1-C
50		С⊢— Сн₂-						

Table 1.11

5	Compd. No.	R (CH ₂)	k	m	U	chirality	₽3	$-(CH_2)^{\frac{1}{p}}_{\stackrel{1}{R}^5}(CH_2)^{-}_{\stackrel{1}{Q}}G^{-R^6}$
10	111	C├-{	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
	112	с⊢Ѿ−сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
15	113	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N:C-
20	114	C	1	2	С	R	н	-(CH ₂) ₂ -N-C-
25	115	C:CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
30	116	CH-2-	. 1	2	0	R	Н	-(CH ₂) ₂ -N-C-
35	117	C — C H₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
40	118	СН-СН2-	1	2	0	R .	н	-(CH ₂) ₂ -N-C-OCH ₃
	119	C;—(CH ₂ -	1	2	0	R	, н	-(CH212-N-C-CF3
45	120	CH2-	1	2	0	R	н	-(CH ₂) ₂ - N- C-
50	121	CHCH2-	1	.2	0	R	н	-(CH ₂) ₂ -N-C-C

_	•		-	-	~
Τa	D	ie	١.	. 1	_

5	Compd.	R ² (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) p CH₂)q G-R⁶
10	122	C ⊢ CH2-	1	2	0	R .	H	-(CH ₂) ₂ - N- C- OCH ₃
15	123	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-C1
	124	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
20	125	C⊢√CH₂-	1	2	Э	R	н	-(CH ₂) ₂ -N-C
25	126	Ci—(1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
30	127	с⊢С}-сні₂-	1	2	0	R	н	-(CH ₂) ₂ -N-Ö-CF ₃
35	128	C ├{_}- CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C-F ₃
40	129	C ├── CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
45	130	CI-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
	131	CHCH ₂ -	1	2	O _	R	н	-(CH ₂) ₂ -N-C-C-=
· 50	132	CH-2-					н	$-(CH_2)_2 - N - C - CF_3$ $-(CH_2)_2 - N - C - CF_3$ $-(CH_2)_2 - N - C - CF_3$ $O - CF_3$ $O - CF_3$ $O - CF_3$

Table 1.	i	J
----------	---	---

5	Compd.	R (CH ₂) ₁ -	k	m	n	chirality	R³	-(CH ₂)p
10	133	CI-CH2-	1	2 .	0	R	អ	-(CH ₂) ₂ -N-C-
15	134	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
20	135	CI—CH2-	1	2	0 -	R	н	-(CH ₂) ₂ -NC-Br
	136	C	1	2	0	R	н .	-(CH ₂) ₂ -NC-
25	137	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
30	138	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
35	139	CH2-	1	2	0	R ·	н	-(CH ₂) ₂ -N-CI
40	140	CI—CH₂-	-	2	0	R	н	-(CH ₂) ₂ -N-C-
45	141	CI—CH2-	1	2	0	R	н	H ₃ CQ Q -(CH ₂) ₂ - N C — H ₃ ∞
5 <i>0</i>	142	CI—CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
<i>50</i>	143	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N·C

Table 1.14

5	Compd.	R 1 (CH ₂);-	k	m	n	chirality	ظ	-(СН ₂) _{Р 6} (СН ₂) _q -G-R ⁶
10	144	C1-CH2-	1	2	. 0	R	н	-(CH2)2-N C-
15	145	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N C-CF ₃
	146	C ├── CH2-	1	2	0	R	н	-(CH3)2-N-C
20	147	CH2-	1	2	0	, A	Н	-(CH ₂) ₂ -N C-CH ₂ CH ₃
25	148	Ci ←CH₂-	1	2	0	, R	н	-(CH ₂) ₂ -N-C-CN
30	149	С⊢—СН₂-	1	2 .	0	R	н	-(CH ₂) ₂ -N-C-
35	- 150	C	1	2	0	R	н ,	-(CH ₂) ₂ -N-C-
40	151	C ⊢ C H ₂ -	1	2	0	R .	н	-(CH ₂) ₂ -N-C
45	152	C ⊢ C H₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
10	153	C├─ CH ₂ -	1.	2	0	R	н	-(CH ₂) ₂ -N-C-F
50	154	C	1	2	0	R	н	-(CH ₂) ₂ -N-C

Table 1.15

5	Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂)p 1 (CH ₂)q G-R ⁶
10	155	C├─ \ -CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
15	156	C	1	2	0	R	н	-(CH ₂) ₂ -N C
	157	CI-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
20	158	CH2-	1	2	0	Я	н	-(CH ₂) ₂ -N-С
25	159	CH2-	1	2	0	. R	н `	-(CH ₂) ₂ -N-C
30	160	CI—CH ₂ -	1	2	0	, R	H .	-(CH ₂) ₂ -N-C-F ₃ C
<i>3</i> 5	161	C ← CH ₂ -	1	2	0	a	н	-(CH ₂) ₂ -N-C-F
4 0	162	C	7	2	0	A	н	-(CH ₂) ₂ -N-C
45	163	C ├─ CH ₂ -					н	-(CH ₂) ₂ -N-C- F ₃ C
	164	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
		с⊢(Сн₂-						-(CH ₂) ₂ -N С — СН ₃
55			<u> </u>					

Ta	ble	1.	1	6
----	-----	----	---	---

5	Compd. No.	H 1 (CH ₂),-	k	m	C	chirality	₽3	-(CH ₂)p i (CH ₂)q G-R ⁶ R ⁵
10	166	CI-CH2-	1	2	0	R	н	(5) P CF2 -CH N C- CF2 CH3
15	167	C → C H ₂ -	1	2	0	R	н	CH3 CH3 Br
	168	С⊢СН2-	1	2	0	R	H .	CH3 CH3 CH2 CCI
20	169	C├ - CH ₂ -	1	2	0	R	н	(2) P CI
25	170	С;—Сн₂-	1	2	0	R	н	(S) P CF3 CH3 F
30	171	C├ - CH ₂ -	1	2	0	R	H	CH3 CH3
35	172	С⊢ СН₂-	1	2	0	R .	н	CH3 -CH-V-C-
40	173	С⊢ СН₂-	1	2	0	R	н	(S) P NO₂ -CHN-C- NO₂ CH3
45	174	C	1	2	0	R	н	(R) Q CF ₃ -CH-N-C-CF ₃ CH ₃
	175	с⊢ Сн₂-	1	2	0	R	н	(A) -C++V-C- C+3
50	176	CH2-	1	2	0	R	н	(F) CH
55								

Tab	e i	١.	1	7
-----	-----	----	---	---

5	Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R ³	-(CH ₂) p CH₂)q G-R⁶
10	177	CI—CH ₂ -				R	អ	(A) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
15	178	Ci—CH2-	1	2	0	R	н	(A) O CF3 -CH-N-C- F
	179	C	1	2	0	R	н	(点) P -C+N-C-() CI CH3
20	180	C├ - CH₂-	1	2	0	R	Н	(A) 0 -C+N-C- CH3
25	181	CH2-	1	2	0	R	Н	(A) P NO2 -CHN-C-CH3
30	182	C⟨CH ₂ -	1	2	.0	R	н	CH3 CCF3
35	183	C:—← CH ₂ -	7	2	0	R	н	- cн³ h c - cн³ h c - cн³
40	184	C├-CH ₂ -	1	2	0	R ,	н	CH3 O CI
45	185	CI—CH2-	1	2	0	R	н ·	CH3 0 CI
	186	С⊢(СН₂-	1	2	0	R	Ħ	CH ₃ O CF ₃ -CH ₁ CH ₃ CH ₃ F
50	187	C ⊢ C H ₂ -	1	2	0	R	Н	CH ² CH ² CI

Table 1.18

5	Compd. No.	R^{1} $(CH_{2})_{i}$	k	m	n	chirality	۲ ₃	-(СН ₂) р (СН ₂) q -G-R ⁶
10	188	CH-2-	1	2	0	R	н	CH3 C
15	189	C├ - CH ₂ -	1	2	0	R	н	CH3 0 NO2 -CH4-C- NO2
	190	CH-CH ₂ -	1	2	0	R	н	CHANG CF3
20	191	CH-2-	1	2	0	R	н	-CH N-C-
25	192	CH-CH2-	1	2	О	R	Н	(A) P C C C C C C C C C C C C C C C C C C
30	193	CHCH ₂ -	1	2	0	R	н	-CHN-C
35	194	CH2-	1	2	0	R	Н	CH2 S
40	195	C├ - CH ₂ -	1	2	0	R	н	CH CH
45	196	CH-CH ₂ -	1	2	0	R	н	(7) - CHN-C- CH2-S
	197	CH-CH2-	1	2	0	R	н	(A) P C CH N-C CH 2 CH
50	198	CI-CH ₂ -	1	2	0	R	н	CH, S CH
								• 4.

Ta	h	ما	1.	1	9
		16			_

Compd.	R ² (CH ₂) _j	k	m	n	chirality	Ŕ³	$-(CH_2)^{\frac{R^4}{\rho^{\frac{1}{1}}}}(CH_2)^{\frac{1}{q}}G^{-R^6}$
199	С├-СН2-			0	R	н	(S) P C- (S) C-
200	C → CH ₂ -	1	2	0	R	н	CH 2
201	C	1	. 2	0	·R	н	-(5)+N-C-(-)-a
202	С⊢СН2-	1	2	С	R	н	CH ₂ -S
203	C├(□) CH ₂ -	1	2	0	R	H	(S) P -C+N-C-C1 CH2-S
204	С⊢ СН₂-	1	2	0	R	н	CH2 S
205	CI-CH2-	1	2	0	R .	н	(S) (N) (CH ₂ (S)
206	CH-2-	1	2	0	R	н	(O12)2-9-CH3
207	C:	1	2	0	R	н	(O1 ₂) ₂ - \(\frac{1}{2} \) CH ₃
208	C├	1	2	0	R	н	(2) - 1 - 0, 2 C1
209	C├──── CH ₂ -	1	2	0	F.	· н	(CH2)2-2-CH2 (CH2)2-2-CH2
	·						

Tabi	le	Ť.	2	Ö

Compd.	R1 (CH ₂),-	k	m	n	chirality	Ŕ³	ー(CH ₂) _p i (CH ₂)q G-R ⁶
210	C ⊢ C H ₂ -	1	2	0	R	н	(C+2)2-5-CH3 F
211	C ⊢ C H ₂ -	1	2	0	R	н	(S) P CH ₂ (CH ₂) ₂ -\$-CH ₂
212	C├ - CH₂-	1	2	0	R	н	(S) P -C+N-C- H O (CH ₂) ₂ -5-CH ₃
213	C	1	2	0	R	н	(O1,)2-\$-CH3
214	CH-CH₂-	· 1	2	0	-	н	-(CH ₂) ₃ -C-
215	CHC→CH ₂ -	1	2	0		, H	-(CH ₂) ₃ -C
216	CI—CH₂-	1	2	0	-	н	-(CH ₂) ₃ -C-S
217	CI—CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C
218	CH2−	1	2	0	-	н	-(CH ₂) ₂ -CH ₂
							-(CH ₂) ₂ -C-C-C-C-CH ₃
220	CI-CH ₂ -	1	2	0		н	-(CH ₂) ₂ -С-СH ₃

т	۰,	Ь	le	1	2	-
•	┛	L	1 ==		. –	

5	Compd.	R ¹ -(CH ₂) ₁ -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
10 .	221	C⊢√CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C
	222	с⊢Сту-сн₂-	1	2	0	-	н	-(CH ₂) ₂ -C-CI
15	223	C⊢CH₂-	1	2	0	-	н	-(CH ₂) ₂ -C-(CH ₂) ₃ CH ₃
20	224	C├─ ─ CH ₂ -	. 1	2	0	-	н	- CH₂- S
25	225	Cr-(Cri₂-	1	2	0	-	н	-(CH ₂) ₃ -C-NH
30	226	C├────────────	1	2	0	-	н	-(CH ₂) ₃ -C·N-OCH ₃
35	227	C├-CH ₂ -	1	2	0	- -	н	-(CH ₂) ₃ -C·N-CI
40	228	CH2-	1	2	0	-	н	-(CH ₂) ₃ -C N OCH ₃
	229	С-СН2-	1	2	0	-	н	- 0-3-6-CH3-C-N-CH2
45	230	С├-СН₂-	1	2	0	-	н	- CH ₂ -CH ₂ -C N-F
50	231	ССН₂-	1	2	0	-	н	-CH ₂ -CH ₂ -C·N-F

- -	L. I	-	4	2	^
Ta		е		.2	4

5	Compd. No.	R (CH ₂)	k	m	n	chirality	R³	—(CH ₂) p G (CH ₂) q G−R ⁶
10	232	СI—(СН₂-	1	2	0	-	н	-(CH ₂) ₃ -C-N-
15	233	С⊢(СН₂-	1	2	0	-	н	O -(CH ₂) ₃ -C-N-CH ₂ -
20	234	CH-2-	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
-	235	C	1	2	0	-	н	- CH2 - CH2 - C- N- CH2 - CI
25	236	CH-CH ₂ -	1	2	0	-	н	- CH ₂ -N-S-CH ₃
30	237	С⊢ СН₂-	1	2	0	-	н	- CH2-N-C-O-CH2-
35	238	C├ - CH ₂ -	1.	2	0	- .	н	- CH O C N CI
40	239	CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
45	240	CH2-	1	2	0	S .	н	-CH ₂ -N-C-CF ₃
50	241	C1 -CH₂-	1	2	0	S	H	- CH ₂ -N-C-CF ₃
	242	CH_CH ₂ -	1	2	0	S	н	- CH2-N-C-CF3
55								

~	al	ole	. 1		2	3
- 1	a (<i>,</i> , , ,		٠	÷	\sim

Compd. No.	R ² (CH ₂),-	k	m	n	chirality	R³	-(СН ₂) _{p i} (СН ₂) _q G-R ⁶
243	C1 C1	1	2	0	S	н	-CH ₂ -N-C-CF ₃
244	CH ₃	1	2	. 0	S	н	-CH2-N-C-CF3
245	FCH ₂ -	1	2	0	S	н	-CH2-N-C- CF3
246	CI CH₂-	1	2	٥	S.	н	-CH2-N-C-CF3
247	CH2−	1	2	0	S	н	-сн ₂ -N-с-С _{F3}
248	H ₃ CQ ————————————————————————————————————	1	2	0	S	н	-CH2-N-C-CF3
249	F ₃ C — CH ₂ -	1	2	O	S	н	-CH2-N-C
250	H ₃ C —CH ₂ -	4	2	0	S ,	н	-CH ₂ -N-C-CF ₃
251	F-CH ₂ -	1	2	0	S	н	-сн ₂ -ү-с-С-С-
252	H ₂ CO-CH ₂ -	1	2	0	S	н	-CH2-N-C-CF3
253	H ₃ C-CH ₂ -	1	2	0	S	н	-сн ₂ -N-с-С _{F3}

T	a	h	į,	6	1		2	4
•	u	·		_	•	•	-	

Con	npd. o.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - R^6$
25		NO ₂	1	2	0	S	. н	-CH2-N-C-CF3
25	i 5	C ₂ N CH ₂ -	1 .	2	0	S .	н	-сн ₂ -N-С-С-С-
25	6	0 ₂ N-CH ₂ -	1	2	0	S	н	-сн ₂ -м-с-С-С-
25	7	CF ₃	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
25	8	CO2CH2CH3	1	2	0	S	н	-CH ₂ -N-C-CF ₃
25	9	— ¢H- CH₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
26	0	CI CH ₂ -	1	2	0	S	н.	-CH2-N-C-
26	1	F ₃ CCH ₂ -	1	2	0	S	Н	СH ₂ -N-С-СF ₃
26	2	3r CH ₂ -	1	2 -	0	S	H	-CH ₂ -N-C-CF ₃
26	3	Br CH2-						CH2-N-C-
26	i4	O-12-	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table '	١.	2	5
---------	----	---	---

						_		· _ 4
5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	· R³	-(CH ₂) p (CH ₂) q G-R ⁶
10	265	ВСН₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
15	266	CH2-	1	2	0	S	н	-СH2-N-С-СБССБ3
	267	OCH ₂ -	1	2	0	S	н	-CH2-N-C-CF3
20	268	Hc-5-H	1	2	0	S	н	-CH2-N-C-CF3
25	269	H ₃ C-\$	1	2	0	s	H	-CH ₂ -N-C-CF ₃
30	270	H ₃ CO ₂ C	1 '	2	0	S	н	-CH ₂ -N-C-CF ₃
35	•	E CH2-					н	-CH ₂ -N-C-CF ₃
40		HO-CH ₂ -					Н	-CH ₂ -N-C-CF ₃
45	273	CN CH ₂ -	. 1	2	0	S .	н	-CH2-N-C-CF3
		NC ————————————————————————————————————						-CH ₂ -N-C-CF ₃
50	275	NC-⟨CH₂-	1	2	0	S	н	-CH2-N-C-CF3
55								

T	al	Ь	le	1	2	6
	~ :	_		,	-	_

Compd.	R 1 R 2 (CH ₂);-	k	m	ח	chirality	R³	-(СН ₂) _{p 1} (СН ₂) G-Я ⁶
276	F — CH₂-	1	2	0	S	н	-сн ₂ -л-с-С-
277	O-15-	1	2	0	S .	н	-CH2-N-C-CF3
278	н₃∞₂с-Сн₂-	1	2	0	S	н	-CH2-N-C-CF3
279	F3CO-CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
280	F ₃ CQ —CH₂-	1	2	0	S	н	-CH2-N-C-CF3
281	HO ₂ C-CH ₂ -	1	2	0	S .	н	-сн ₂ - N-с-
282	(H ₃ C) ₃ C	1	2	0	S	H _.	-CH2-N-C-CF3
283	CH ₃ CH ₂ -	1	2	0	S .	н	-CH2-N-C-CF3
234	CH CH	1	2	0	S	н	-CH2-N-C-CF3
285	CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
286		1	2	0	R	н	-CH2-N-C-CF3
							

Т	a	Ь	le	1	.2	7

								- 4
5	Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	. H3	-(CH ₂) p (CH₂)q G-R⁶
10	287	C1	1 .	2	0	Я	н	-сн ₂ -м-с-СF3
15	288	CH2-CH2-	1	2	0	R	н	-сн ₂ - n-с-СF ₃
	289	CI CH₂−	1	2	0	R	н	-CH2-N-C- CF3
20	290	CH ₃	1	2	0	R	H	-CH2-N-C-CF3
25	291	FCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
30	292	C(— CH₂-	1.	2 .	0	R	H	-сн _е -и-с-СЕ3
35	293	Ct CH₂−	1	2	0	R	Н	-CH2-N-C-CF3
40	294	H ₃ CO CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
45	295	F ₃ C — CH ₂ -	1	2	0	R	н	- CH ₂ -N-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-
50	296	H ₃ C —CH ₂ -	1	2	0	R	, Н	-сн ₂ - N-с-С-С-гэ
	297	F-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
55								·

				_	_
Ta	b	le	- 7.	2	ಶ

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
10	298	н₃со-{_}-сн₂-	1	2	0	R	н	-CH2-N-C-
15	299	н₃С—СН₂-	1	2	0	R	н	-CH2-N-C-CF3
	300	CH2-	, 1	2	0	R	H	-сн ₂ -к-с-С-
20	301	O ₂ N —CH ₂ —	1	2	0	R.	н	-CH2-N-C-CF3
25	302	O ₂ N-CH ₂ -	1	2	0	R	н	-сн ₂ -N-с-
30	303	CF ₃	1	2	0	R	н.	-CH2-N-C-CF3
35	304	CO ₂ CH ₂ CH ₃	1	2	0	R .	н ,	-CH2-N-C-CF3
40	305	СН3	1	2	0	R	н	-CH ₂ -N-C-CF ₃
45	305	CI CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
50	307	F3C-CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
	308	Br	1	2	0	A	н	-сн ₂ -N-с-С _F 3
55	<u></u>		·					

Ta	ь	10	1	.2	9
10	\mathbf{u}	1 =		- 4	_

								D4
5	Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³ 	-(CH ₂) -1 (CH ₂) - G-R ⁶
10	309	81 —CH2-	1	2	0	R	н	-CH2-N-C-CF3
15	3:0	CH ² -	1	2	0	R	н	-CH2-N-C-CF3
	311	аг—СН₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
20	312	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
25	313	OCH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
30 '	314	₩C-Ç-H \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	2	0	R	н	-CH2-N-C-CF3
35	315	H ₂ C-\$\bigc\tau_2	i	2	0	R	н	-CH ₂ -N-C-CF ₃
40	316	H ₃ CO ₂ C	1	2	0	R ,	H	-CH ₂ -N-C-CF ₃
45	317	CH2-	1	2	0	R	н	-CH2-N-C-CF3
	318	но-{Сн₂-	٦	2	0	R	Н	-CH ₂ -N-C-CF ₃
50	319	CH	1	2	0	R	н	-CH2-N-C-CF3
55								

Table 1.30

5	Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
10	320	NC CH ₂ -	1	2	0	R	н	-СH ₂ -N-С-С-С-5
15	321	NC	1	2	0	R [.]	н	-сн ₂ -х-с-С-С-
	322	F-CH ₂ -	1	2	0	R	н	-CH2-N-C CF3
20	323	C-12-	1	2	0	R	н	-CH₂-N-C
25	324	н₃∞₂с-{_}-сн₂-	1	2	0	R	н	-сн ₂ -N-С-С _Б
30	325	F ₃ CO-CH ₂ -	1	2	0	R	н	-CH₂-N-C-CF₃
35	326	F ₃ CQ CH ₂ -	1	2	0	R	Н	-CH2-N-C-CF3
40	327	HO ₂ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C- CF3
45	328	(H3C)3C	7	2	0	R	н	-CH2-N-C-CF3
50	329	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	330	CI-CH2-	0	3	1	•	н	- CH ₂ - N- С-
55		•						

T	a	ь	1	ρ	1	3	•
	•	$\mathbf{-}$		~		~	

Compd.	R ² -(CH ₂);-	k	m	n	chirality	. B3	-(CH ₂) p (CH ₂) p G
331	CI—(CH₂-	0 .	3	1		н	- CH2-N-C-
332	C├ - CH₂-	0	3	1	-	н	- CH3- M- C- OC H3 O OC H3
333	С├-СН₂-	0	3	1	-	` н	-CH2- N C-N
334	с-Сн-	0	3	1	-	н	-CH2-N C-CH
335	C+-(C+;-	0	3	1	-	H	-CH2-N-C-
336	СН-СН ₂ -	0	3	1	-	н	- CH ₂ - N- C- CF ₃
337	CHCH ₂ -	0	3	1		н	- CH ₂ - N-C
338	CH2-	0	3	1	-	н	-СH ₂ - V-С-
339	CH2-	0	3	1	R	H	- CH ₂ - N C- CF:
340	CH-2-	0	3	1	S	н	- CH ₂ - N C - CF
341	С⊢С Сн₂-	0	3	1	-	н	-(CH ₂) ₂ -N-C

T	2	Ь	ş	۵	1	3	2
	0	J	ŧ	≂	- 4	J	4

5	Compd. No.	R1 (CH2)j-	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
10	342	C ← CH₂-	0	3	1	-	н	- CH H C-
15	343	CH2-	0	3	1		н	- CH % C-
	344	CHCH2-	0	3	1	-	Н	- CH N C - CH2CH(CH3)2
20	345	CCH2-	0	3	1	-	н	-(CH ₂) ₃ -C-
25	346	CH-€-	0	3	1	-	н	-(CH ₂) ₂ -C
30	347	CH-CH2-	0 ·	3	1	-	н	$-(CH_2)_2 - CH_3$ H_3C
35	348	CH2-	0	3	1	-	н	-(CH ₂) ₂ -C-CH ₃
40	349	CH2-	0	3	1	-	н	- CH2- 2 CH3
45	350	CH2-	0	3	1	-	н	-CH ₂ -N-S-CH ₃
	351	СН-СН2-	0	3	1	-	н	- CH2- N- C- O- CH2-
50	352	C → CH ₂ -	0	3	1	-	н	- CH O. C. N
55								

Та	h	ما	1.	7	
ાત	U	16	٠,		•

Compd. No.	R ¹ (CH ₂),-	k	m	ი	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
353	с⊢СН₂-	1	2	1	-	н	- CH ₂ - N- C-
354	CH2-	1	3	0	-	н	-CH2-N-C-
355	C	1	3	0	-	н	- CH2- N- C
356	C	1	3	0.	-	н	-CH2-N-C-
357	C	1	3	0	-	н	-CH2-N-C-
358	CH2-	1	3	0	-	н	- CH ₂ -N-C-CF ₃
359	CH-2-	1	3	0	-	н	-(CH ₂) ₂ -N-C-
360	CHCri ₂ -	1	3	0	-	н	-(CH ₂) ₂ -N-C-NO ₂
361	CH2-	1	3	0		н	-(CH ₂) ₃ -C
362	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ -С-С-ОСН ₃
363	C ├ CH ₂ -	1	3	0	-	Н	-(CH ₂) ₃ - C-

Т	a	Ь	le	1	.З	4

5	Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	['] R³	-(CH ₂) ₂ R ⁴ (CH ₂) _q G-R ⁶
10	364	C:CH2-	1	3	0	-	н	-(CH ₂) ₂ -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
15	365	C	1	3	0	-	н	-(СH ₂) ₂ -СH ₃
	366	CH2-	1	3	0	-	н	-(CH ₂) ₂ -C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C
20	367	C├	1	3	0	-	н	-(CH ₂) ₂ -CH ₃
25	368	CH-2-	1	· 3	0	-	н	-(CH ₂) ₂ -C-
30	369	C├ - CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-C1
35	370	C	1	3	0	- .	н	-(CH2)2-C-⟨ α¢H2)3CH3
40	371	CH2-	1	3	0	-	н	-(CH ₂) ₂ -C-
45	372	C ← CH₂-	1	3	0	-	н	- CH ₂ - S-CH ₃
	373	CH2-	1	3	0	-		
50	374	CH2-	1	3	0	•	н	-(CH ₂) ₃ - C·N
55								

Ta	b	le	1.	3	5

Compd No.	. R ¹ (CH ₂) _j -	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
375	C⊢√ CH₂-	1	3	0		н	-(CH ₂) ₃ -C-NH
376	CHCH2-	1	3	0	-	Н	-(CH ⁵) ² -C-M-OCH ²
377	CH-€-	1	3	0	-	н	- CH ₂ -C-CH ₂ -C-N-CI
378	CH2-	1	3	0	-	н	-CH ₂ -CH ₂ -C-N-F
379	CH_CH2-	1	3	0	-	н	-(CH ₂) ₃ -С-N-С-С-СH ₃
380	CH2-	1	3	0	-	н	-(CH ₂) ₃ - C-N-CH ₂ -
381	CHCH ₂ -	1	3	0		н	- CH ₂ - N- S- CH ₃
382	. CH_CH2-	1	3	0	-	. н	- СH ₂ - N- С-О-СН ₂ -
383	С⊢ СН₂-	1	3	0	-	Ĥ	- cн о с н с г
384	CH2-	2	2	0	-		
385		2	2	0	-	н	-CH ₂ -N-C

Table 1.35	Ta	ble	1,35
------------	----	-----	------

5	Compd. No.	R1 (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	386	CH₂-	2	2	0	-	н	-CH ₂ -N-C-
15	387	CH₂-	2	2	0	-	н	-CH2-N-C-
20	388	CH ₂ -	2	2	0		н	-CH2-N-C-
	389	CH ₂ -	2	2	0	-	. н	-сн ₂ -к-с-(-со ₂ сн ₃
25	390	CH₂-	2	2	0	-	ਮ	-сн ₂ -№-с
30	391	CH ₂ -	2	2 .	0	-	н	-CH ₂ -N-C- ← F
35	392	CH₂-	2	2	0	-	н	-CH ₂ -N-C-
40	393	CH₂-	2	2	0	-	н	-CH ₂ -N-C-
45	394	CH₂-	2	2	С	-	н	-сн²-И-с- Э С;
50	395	CH₂-	2	2	0	-	н	-CH ₂ -N-CBr
55	396	CH2-	2	2	0	•	н.	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$ $-CH_{2}-N-C$

Table	1.3	7
-------	-----	---

5	Compd.	R2 (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-P^6$
10	397	Сн₂-	2	2	0	-	н	-CH2-N-C-CI
15	398	CH₂-	2	2	0	-	н	-(C)(2)2-1-C-
	399	◯ -CH ₂ -	2	2	0	•	н	-(CH ₂) ₂ -N-C
20	400	CH₂-	2	2	0	- .	н	-(CH ₂) ₂ -N-C-NO ₂
25	40i	CH₂-	2	2	0		н	-(CH ₂) _Z -N-C- H
30	402	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-CF ₃
35	403	◯ -CH₂-	2	2	0	-	H	-(CH ₂) ₂ -N-C-CF ₃
40	404	CH₂-	2	2	0	- -	H	-(CH ₂) ₂ -N-C
	405	CH₂-	2	2	0	-	н .	-(CH ₂) ₂ -N-C-
45	406	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C
50	407	CH₂-	2	2	0	. •	н	-(CH ₂) ₂ -N-C

Τa	ah	۱۵	1	.3	8
16	טנ	10			_

5	Compd. No.	R 1 (CH ₂),-	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	408	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-F
	409	CH₂-	_ 2	2	0	-	Н	-(CH ₂) ₂ -N-C-CI
15	410	CH₂-	2	2	0		н	(S) 0 -CH-N-C- H CH ₂ CH(CH ₃) ₂ :
20	411	-CH ₂ -	2	2	0	-	н .	(S) (P) (CH ₂ CH(CH ₂) ₂
25	412	CH₂-	2	2	0	-	н	(S) -CH-N-C- CH ₂ CH(CH ₃) ₂
30	413	СН₂-	2	2	0	-	н	(S) P -CH-N-C
35	414	—CH₂-	2	2	0	- .	н	(S) -CH-N-C- CH ₂ CH(CH ₃) ₂
40	415	CH₂⁻	2	2	0	-	н	(S) CF ₃ -CH-N-C- CF ₃ -CH ₂ CH(CH ₃) ₂ F
	416	CH ₂ -	2	2	0	-	н	(S) OCF ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂
45	417	CH₂-	2	2	0	-	н	(S) P Br -CH-N-C- Br -CH ₂ CH(CH ₃) ₂
50	418	€ CH2-i	2	2	0	-	н	(S) P C1 -CH-N-C- C CH ₂ CH(CH ₂) ₂
55								C. 12C ((Cn3/2

Table	1.	3 9
-------	----	-----

5	Compd. No.	R1 (CH2)j-	k	m	n	chirality	['] R³	—(CH ₂) p 6 (CH ₂) q G−R ⁶
10	419	CH₂-	2	2	0	-	н	(5) P -CH-N-C-Br CH2CH(CH3)2
15	420		2	2	0	-	н	CH2CH(CHJ)2
73	421	CH₂-	2	2	0	<u>:</u>	н	(S) II CI
20	422	CH ₂ -	2	2	0	-	·н	(R) Q -CH-N-C- CH ₂ CH(CH ₃) ₂
25	423		2	2	0	-	н	CHCHOLDS
30	424	CH₂-	2	2	0	÷	н	(F) -CH-N-C- H CH ₂ CH(CH ₃) ₂
35	425	CH₂-	2	2	0	-	н	(A) 0 -CH-N-C
40	426	CH2-	2	2	0	-	н	(A) -CH-N-C
	427	CH₂-	2	2	0	-	н	(A) -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
<i>45</i>	428	CH₂-	2	2	0	-	н	(F) 0CF ₃ -CH-N-C- CH ₂ CH(CH ₃) ₂
50	429	○ -CH ₂ -	2	2	0	- ·	H	(A) - CH-N-C- - H CH2CH(CH3)2
55								

Ta	Ь	۵	1	. 4	0
1 a	D.	ıe	- 1	. 4	u

5	Compd.	R \((CH ₂);-	k	m	ก	chirality	ΈR³	$-(CH_2)_p \frac{R^4}{R^5} (CH_2)_q G - R^6$
10	430	_CH2-	2	2	0	-	н	(A) CH -CH-V-C- H CH2CH(CH3)2.
15	431	(CH ₂ -	2	2	0	-	H	(A) P -CH-N-C
	432	~ CH ₂ -	2	2	0	-	н .	(F) -ÇH-N-C
20	433	. ←CH ₂ -	2	2	0	-	н	(A) −CH−N−C− H CH ₂ CH(CH ₃) ₂
25	434	CH2-	1	3	1	-	н	-CH2-N-C-
30	435	CH2-	1	3	1	-	. Н	-CH ₂ -N-C-
35	436	C	1	3	1	-	H	-CH ₂ -N-C
40	437	CHCH2-	1	3	1	•	н	-CH ₂ -N-C- CO ₂ CH ₃
45	438	C	1	3	1	-	н	-сн ₂ -х-с-С-С-
	439	с⊢—Сн₂-	1	3	1	-	`H	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
50 ·	440	с⊢СН₂-	1	3	1	-	H	-CH ₂ -N-C
55								

-	- 1		-4	4	4
Τa	\mathbf{D}	ıe	١.	4	

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	H3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
441	CH2-	1	3	1		н	-CH2-N-C-
442	C	1	3	1	-	н	-CH2-N-C-
443	CH-CH2-	1	3	1	•	н	-CH ₂ -N-C-Br
444	C├ - CH₂-	1	3	1		н	-CH2-N-C
445	с⊢—Сн₂-	1	3	1	-	H	-CH2-N-C
446	C├ - CH₂-	1	3	1	-	н	-(CH ₂) ₂ -N-C-
447	CHCH2-	1	3	1	· •	н	-(CH ₂) ₂ -N-C-
448	CH-CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-
449	CH2−	1	3	1	-	Н	-(CH ₂) ₂ -N-C-\
450	С⊢√_Сн₂-					н	-(CH ₂) ₂ -N-C-CF ₃
451	CH2-	1	3	1	-	н _.	-(CH ₂) ₂ -N-C

~	_	—	le	4	4	2
	~		1 =			_

5	Compd.	R ¹ (CH ₂),-	k	Ē	n	chirality	Ŕ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G^{-} F^6$
10	452	C⊢CH₂-	1	3	. 1	-	н	-(CH ₂) ₂ -N-C-OCF ₃
15	453	CH2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-
	454	CH2−	1	3	1	-	н	-(CH ₂) ₂ -N-C-
20	455	CH2-	1	3	1	-	н	-(CH ₂) ₂ -N-C-Br
25	456	CHCH_2-	1	3	1	•	н	-(CH ₂) ₂ -N-C-F
30	457	C	1	3	1		н	-(CH ₂) ₂ -N-C-CI
35	458	CH2-	2	2	1	-	н	- CH2- N C-
40	459	CH2-	2	2	1	-	, н	- CH ₂ -N-C-CH ₃
45	460	C	2	2	1	- · .	н	- CH2- V- CH3
50	461	CH2-	2	2	1	-	н ¹	- CH ₂ -N-C-CF ₃
	462	CH2-	2	2	1	-	н	- CH2- N- C-
55								

T	а	b	le	1	.4	3

5	Compd.	R2-(CH2);-	k	m	n	chirality	[°] R³	-(CH ₂) _{p 1} (CH ₂) _q G-R ⁶
10	463	C ├-{	2	2	1		н	- CH₂- N- Ö- (CH₃
15	464	CH-CH2-	2	2	1	-	н	- CH2- N- C - OCH3 OCH3
	465	C⊢————————————————————————————————————	2	2	1	•	н	-CH2-N-C-(N)
20	466	C├ - CH₂-	2	2	1	-	н	-CH2-N-C-NO2
25	467	CH2-	2	2	1	-	н	- CH ₂ -N-C-
30	468	CH-(T)-CH2-	2	2	1	-	н	- CH ₂ -N-C-\(\sigma\)
35	469	CHCH ₂ -	2	2	1	-	н	- CH2- N- C-
40	470	CH2-	2	2	٦	-	н .	- CH2- N-C- CN
45	471	CH-(-)-CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CO ₂ CH ₃
50	472	СН-СН₂-	2	2	1	-	н	- CH2-HC-C-C-C-
50	473	СҢ Сн₂-	2	2	1	-	н	- CH2- N° C- C CH3
55								

Т	a	h	le	1	Δ	4
1	-	u				-

	1 abie 1							
5	Compd.	R ² (CH ₂) _j -	k	m	n	chirality	. R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^5$
10	474	CHCH2-	2	2	1	-	н	-сн ₂ -к-с-ф-сг,
15	475	с⊢(Сн₂-	2	2	1	-	н	- CH2- N-C- CH(CH3)2
	476	С⊢-{СН₂-	2	2	1	-	н	-CH2-N-C-NO2
20	477 .	C ← C H₂-	2	2	7	-	н	- CH2-N-C
25	478	CH2-	2	2	1	-	н	- CH ₂ -N-C-N-H ₃ C
30	479	C├────────────────	2	2	1	-	н	- CH ₂ -N-C-0
35	480	с⊢—Сн₂-	2	2	1	-	н	- CH ₂ -N-C-O-Br
40	481	CH-CH2-	2	2	1	-	н	-CH2-N-C-S
45	482	СН-СН2-	2	2	1	-	н	- CH ₂ -N-C-S
	483	CH2-	2	2	1	-	н	- CH2- N- C- S CH3
50	484	CH-CH2-	2	2	1	-	н	- CH ₂ - N-C-N-H
55								

10016 1.7 9	T	аЬ	le	1.	.4	5
-------------	---	----	----	----	----	---

								
5	Compd.	R 1 (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q}G^{-R^6}$
10	485	Cr-CH ₂ -	2	2	. 1	-	н	- CH ₂ -N C-CF ₃
15	486	CH-2-	2	2	1	-	н	-CH2-V-C-
20	487	с⊢ СН₂-	2	2	1	- ,	н	-CH2-N-C-
20	488	CH2-	2	2	1	-	н	- CH ₂ - N-C-
25	489	CH2-	2	2	1	-	н	- CH ₂ -N-C
30	490	C├ - CH ₂ -	2	2	1	-	н	-CH2-N-C
35	491	CH ₂ -	2	2	1	-	н	- CH ₂ - N- C- CF ₃
40	492	CH_CH ₂ -	2	2	1	-	H	O OCF3
45	493	CH-2-	. 2	2	1	-	н	- CH ₂ - H C CF ₃
	494	С⊢ СН₂-	2	2	1		Н	- CH ₂ -N-C
50	495	CH2-	2	2	1	-	Н	- CH2- H C- CF3
55								

Та	h	اما	1	.4	6
	•		, ,	. ~	•

Compd. No.	R1 (CH2)	k	m	n	chirality	Ŕ³	-(CH ₂) p (CH ₂) q G-R ⁶
496	CH-CH2-	2	2	1	-	н	- CH ₂ - N C
497	C├	2	2	1	•	н	- CH2- № C- CH(CH3)2
498	CH-CH2-	2	2	1	-	н 	-CH2-N C-
499	C	2	2	1	-	н	- CH2- N C- N(CH3)2
500	C ⊢ C H₂-	2	2	1	-	н	-CH2-N C
501	CH2-	2	2	1	-	н	- CH2- N- C- BI
502	CI-CH ₂ -	2	2	1	-	н	-CH2-N-C-F
503	CH-2-	2	2	1		н	- CH ₂ -N-C-NO ₂
504	CH2-	2	2	1	-	н	- CH2- N- C- OCH3
505	CH-CH2-	2	2	1	-		-CH ₂ -N-C
506	CICH ₂ -	2	2	1	-	н	-CH2-N-C-
	<u>.</u>						

T	а	b	I	е	1	.4	7
---	---	---	---	---	---	----	---

							•
Compd.	R ² (CH ₂) _j -	k	· m	n	chirality	Ŕ٬	-(CH ₂) р 1 (CH ₂) - G-R ⁶
507	C1-CH2-	2	2	1	-	н	- CH2- NC-01
508	CI-CH2-	2	2	1	-	н	-CH2-N-C-S
509	CH-2-	2	2	1	-	н	- CH2-N-C-S
510	C├	2	2	1	-	н	- CH2- N-C- () CH3
511	C	2,	2	1	-	H	-CH2-N-C-OC(CH3)3
512	C → CH ₂ -	2 .	2 .	1	-	н	- CH ₂ - N- C- CHCH ₃
513	CH2-	2	2	1	-	н	- CH2- N- C- CH3
514	C → CH ₂ -	2	2	1	~	н	- CH ₂ - N- C- C(CH ₃) ₃
515	CI—CH ₂ -	2	2	1	-	н	- СH ₂ - N- С - СH ₂ ОН
516	H ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
	H ₂ N CH ₂ -						-CH2-N+C-CF3

7	-	h	le	1	4	Я
	d	U		•	. 4	O

5	Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p=1}^{R^4}(CH_2)_{q}G-R^6$
10	518	NH ₂ CH ₂ -	2	2	1	-	н	-CH2-N-C
	519	Сн 2-	2	2	1	-	н .	CH ₂ -N-C-CF ₃
15	520	CH-CH2-	2	2	1	-	—сн _з	-CH2-N-C-CF3
20	521	CHCH2-	2	2	1		-(CH ₂) ₂ CH-	-CH2-N-C CF3
25	522	CHCH_2-	2	2	1	-	-CH ₂ CH-	-CH2-N-C-C-CF3
30	523	CHCH2-	2	2	1	- -	-(CH ₂) ₂ CH-	-CH ₂ -N-C-
35	524	C⊢√Cri₂-	2	2	1	- -	-CH ₂ CH-	-CH2-HC
40	525	CI-CH ₂ -	2	2	1	-	. н	-CH2-N-C-
45	526	C⊢√Cñ₂-	2	2	1	-	н	-CH2-N-C-C0
4 3	527	CH-€-CH2-	2	2	1	-	н .	-CH2-N-C-CS
50	528	CI—(CH₂-	2	2	1		н	-CH ₂ -N-C-S -CH ₂ -N-C-S -CH ₂ -N-C-S -CH ₃ -N-C-S
55							·	

Table	٦		4	ç
-------	---	--	---	---

	Compd.	R1 (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
	529	CI-CH2-	2	2	1	-	н	-CH2-N-C
	530	С⊢-{Сн₂-	2	2	1	-	н	-CH2-N-C-
	531	CI—CH ₂ -	2	2	1	-	н .	-CH2-N-C-\S
	532	C├ - CH₂-	2	2	· 1	•	Н	-CH2-N-C-CH3
į	533	C├-{CH₂-	2	2	1	-	н	-CH ₂ -N-C-CO H ₃ C
,	534	CH2-	2	2	1	-	н	-CH ₂ -N-C-V ₀
;	535	СН-СН2-	2	2	1	-	H	-CH ₂ -N-C-S
)	536	CHCH ₂ -	2	2	1	-	н	-CH2-N-C-N-CH3
5	537	C├───────────────────────────					н	-CH2-N-C-O H3C
	538	CI—CH ₂ -	2	2 .	1	-	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃
)	539	CI-CH ₂ -	2	2	1	-	н	-CH2-N-C
;								

					_	_
т	-	h	le	- 1	.5	n
	а	u	16			$\mathbf{\mathcal{C}}$

Compd.	R1 (CH2)j-	k	m	n	chirality	R³	-(CH ₂) , f (CH ₂) , G-
540	С⊢С СН₂-	2	2	٦		н	-CH ₂ -N-C-
541	СI—СН₂-	2	2	1	-	н	-CH2-N-C
542	с⊢ Сн₂-	2	2	1	-	н	-сH ₂ -N-С-СH ₂ СH ₂ СH
543	CH-2-	2	2	1	-	н	-CH2-N-C
544	CH_CH2-	2	2	1	-	н	-CH2-N-C-
545	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-
546	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-C1
547	C⊢() CH₂-	2 .	2	1	-	н	-CH3-V-C-(CI
548	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
549	C ← CH2-	2	2	1	-	н	-CH2-H-C-
550	C ├─ CH2-	2	2	1	-	н	-CH2-N-C

Ta	h	le	1	. 5	1

5	Compd. No.	R ¹ /(CH ₂) _i	k	m	n	chirality	Нэ	-(CH ₂) p G (CH ₂) q G-R ⁶
10	551	CH-2-	2	2	. 1		н	-CH5-N-C-CH5-CH2
15	552	C ← C H ₂ -	2	2	1	-	н	-2H2-N-C-CH2-CF3
	553	CH-CH2-	2	2	1	-	н	-сн ₂ -N-С-Сн ₂ -СF ₃
	554	CH2	2	2	1	-	н	-CH2-HC-NH
25	555	СН-СН ₂ -	2	2	1	-	н .	-CH2-N-C-N-C-I
30	556	СН2−	2	2	1	-	н	-CH2-N-C-N-CH3
35	557	CH⊋-	2	2	1		н	-(CH ₂) ₂ -N-C
40	558	C	2	2	1	•	. н	-CH V-C-
45	559	C ├ C H₂-	2	2	1	-	н	-CHNC-CF3
50	560	CI—CH₂-	2	2	1	-	н	- CH V. C - CN
50	561	CI—CH₂-	2	2	1	-	н	- C :+ N C - B'
55								

~		١.	-	_	
Ta	ח	9	- 1	. 5	~

5	Compd.	R ¹ /(CH ₂) _i -	k	m	n	chirality	Ŕ³	-(CH ₂) p (CH ₂) q G-R ⁶
10	562	C├ - CH₂-	2	2	1	-	н	-C++ V-C
15	563	CH2-	2	2	1	-	н	-CHNC-CF3
	564	CH-2-	2	2	1		Ħ	- CH N C - OCH2CH3
20	565	C├ - CH ₂ -	2	2	1	-	н	-CH N C CF3
25	566	CI-CH ₂ -	2	2	1	-	н	- CH H C OCF3
30	. 567	CH2-	2	2	1	-	H	-CHNC-CF3
35	568	C⊢CH₂-	2	2	1	-	н	-CHNC-CF3
40	569	CH2-	2	2	1	-	н `	-CHNC-CF3
45	570	C → CH ₂ -	2	2	1		н	- CH N C- F
	571	CI—CH ₂ -	2	2	1	-	Н	- CH ¼ C- CH ¼ C- CH ¼ C- CH (CH 3)2
50	572	CH2-					н	- C + N C - C + O C - C + N C - C + O C - C - C + O C - C - C + O C - C - C + O C - C - C - C - C - C - C - C - C - C
55								_

_			_	_	
1 2	n	10	- 7	. 5	- 4
Ta	עו	15			·

							·
Compd. No.	R1 (CH2),-	k	m	n	chirality	₽³	-(CH ₂) _p
573	CI—CH₂-	2	2	1	-	н	- CH N- C-S
574	СН ₂ -	2	2	1	-	н	-C+ 4 C- 5 Br
575	CH2−	2	2	1	-	н	-CH N C - C(CH3)3
576	CI-CH ₂ -	2	2	1	-	Н	-CH N C- SCH3
577	CH-2-	2	2	7	-	н	- CH N C- O
578	C	2	2	1	-	н	-CHNC-SI
579	, C⊢ CH ₂ -	2	2	1	- .	н	-CH N C N H
580	CH ₂ -	2	2	1	-	н	-сн м с - s сн ₃
581	С⊢СН2-	2	2	1	-	н	- CH N C-S
582	·; C⊢⟨CH₂-	2	2	1	-	н	- c + z - s
583	_		2			Н	-CH N CH2
							

T	а	b	1	e	1		5	4
---	---	---	---	---	---	--	---	---

5	Compd. No.	R2 (CH2)-	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
10	584	СI—СН₂-	2	2	. 1	-	н	- CH N C - C - C - C - C - C - C - C - C - C
15	585	CH-2-	2	2	1	-	н	- CH N C - CN
20	586	CHCH ₂ -	2	2	1	-	н	- CH N C CI
	587	CI—(CH ₂ -	2	2	1	-	н	-CHNC-CF3
25	588	С⊢—СН₂-	2	2	7	-	Н	- C :: N C - NH ₂ CH ₃
30	589	С⊢—СН₂-	2	2	1	-	н	-CH W C - C(CH3)3
35	590	CHCH ₂ -	2	2	1	-	н	- CH N C-CH(CH ₃) ₂
40	591	C ← CH ₂ -	2	2	٦	-	. н	- CH N C - N(CH ₃) ₂ CH ₃
45	592	CI—CH ₂ -	2	2	1	. -	н	-сн N с - Осн, Сн,
	593	C ⊢ CH ₂ -	2	2	1	-	н .	- CH V C - CH ³ OH
50	594	CH2-	2	2	1	-	н	- СH V С — СH2OH СH3 - СH3
55								

Table	1.5	5
-------	-----	---

								4
5	Compd. No.	R2 (CH2);-	k	m	n	chirality	.K ₃	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
10	595	CI—CH2-	2	2	1	-	н	- CH N C - CC2CH3
15	596	C├ - CH ₂ -	2	2	1	-	F	- СН V С-СН3
	597	C├── CH ₂ -	2	2	1	-	н	- CH N C - C - CH3
20	598	CH-2-	2	2	1	-	н	-CH-W-C-O
25	599	CH-CH2-	2	2	1	- ·	н	-CH N C-N
30	600	CH-CH2-	2	2	1	-	Н	- CH N C - Br
35	601	CHCH2-	2	2	1	-	н	-CHNC-OCH3
40	602	С-СН2-	. 2	2	1	-	Н	-CH H C N(CH3)2
45	603	CH2-	2	2	1	-	н	- CHN C- NH2
43	604	CH-2-	2	2	1	-	н	-CHN-C-\)
50	605	C├ - CH₂-	2	2	1	-	H	-c+, c-
55								

Та	ble	1.	5	6

Compd.	R ² (CH ₂);-	k	m	n	chirality	. H3	-(CH ₂) , Т (CH ₂) , G-R ⁶
606	С├-{Сн₂-	2	2	1	-	Н	-CHNC-S
607	CI-CH ₂ -	2	2	1	٠	, н	-CHVC-S
608	CI—CH2-	2	2	1	-	н	-CH-N-C
609	CCH₂-	2	2	1	-	Н	-CH-N-C
610	CI	2	2	1	-	н	-CHNC-S CH3 O=CCH3
611	CH2-	2	2	1	.	н	-CH-N-C
612	CH	2	2	1	-	н	-CH-N-CO
613	CHCH ₂ -	2	2	1	-	н	-CHNC-CH3 CH3 F3C
614	CHCH ₂ -					н	-CH-N-C-N-CH3
615	C ├── C H ₂ -	2	2	1		н	-chhich
616	С⊢—СН₂-	2	2 .	1	-	н	-CH-H-C

Table 1	. 5	7
---------	-----	---

Compd.	R1 (CH ₂);	k	m	n	chirality	['] R³	-(CH ₂), (CH ₂), G-R ⁵
617	CH-CH2-	2	2	1	-	н	-CHNC-CF3
618	CH2-	2	2	1	-	н	-CH-N-C-
619	CHCH ₂ -	2	2	1	-	н	-CH N C CN -CH CH(CH ₃) ₂
620	CH2-	2	2	1	-	н	-C+ v C → Br C+(CH ₂) ₂
621	CHCH ₂ -	2	2	1	-	н	-C++ N-C
622	C⊢(CH ₂ -	2	2	1	-	н	- CH N C - N(CH ₃) ₂ - CH(CH ₃) ₂ - CH(CH ₃) ₂
623	C├ - CH ₂ -	2	2	1	-	н	-CH N C OCH3
624	CH2-	2	2	1:	-	Н	- CH W C - NO 5
625	СН2-	2	2	1	-	н	- CH N C - NH ₂ - CH (CH ₃) ₂
626	CH2-	2	2	1	· .	н	- CH-N-C- - CH-N-C- - CH-N-C- - CH-N-C- - CF ₃
627	С⊢ Сн₂-	2	2	1	-	Н	- CH N C - OCH2CH3
	·						

Table 1.58

Compd.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	Ŕ³	$-(CH_2)_{\frac{1}{p}} + (CH_2)_{\frac{1}{q}} - G - R^6$
628	CI—CH₂-	2	2	1	-	н	- CH N C - CO2CH3 - CH(CH3)2
629	СН ₂ -	2	2	1	-	н	-CH N C-CF3
630	с⊢(сн₂-	2	2	1	-	н	OCF3 -CHNC- HH CH(CH3)2
631	CH2-	2	2	1	-	н	OC -CH N C -
632	ĆH-CH ₂ -,	2	2	1	-	н	CH(CH ₃) ₂ CF ₃
633	C — CH₂-	2	2	1	-	н	-C+ N C- H CH(CH ₃) ₂ F
634	CH2-	2	2	1	-	н	O CF3 -CH N C F - H -CH(CH3)2
635	· C ├── C H₂-	2	2	1	-	H	- CH CH ²) ⁵ - CH CH ²) ⁵ - CH CH ²) ⁵
636	CH ₂ -	2	2	1		н	- CH V C - CH ³
637	с⊷С сн₂-	2	2	1	-	н	- CH N C- CF3 - CH(CH3)2
638	СІ—СН2-	2	2	1	-	H	- CH N C - CN CH(CH ₃) ₂
							<u> </u>

Table 1.59

55

5	Compd.	R2 (CH2) -	k	m	п	chirality	[°] R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	639	C├ - CH₂-	2	2	1	•	H	-CH N C - N(CH3)2
	640	CH2-	2	2	1	-	н	-С+ N С- ОСН3 СН(СН3)2
15	641	CH_CH ₂ -	2	2	1	-	н	-CH N C- CO2CH3 CH(CH3)2
20	642	CH-CH ₂ -	2	2	1	-	н	CH(CH ²) ⁵
25	643	CH-CH ₂ -	2	2	1		н .	-CH N-C
30	644	с⊢СН₂-	2	2	1	- ,	н	- CH N C - C(CH ₃) ₃ - CH(CH ₃) ₂
35	645	C├ - CH ₂ -	2	2	1	-	н	O - CH N C NH ₂ H CH(CH ₃) ₂
40	646	С⊢—СН₂-	2	2	1	-	н	O - CH- N- C - CH₂OH CH(CH₃)₂
	647	CI-CH ₂ -	2	2	1	-	н	- CH W C- C- CH ³
45	648	CH2-	2	2	1		н	-CH(CH ₃) ₂
50	649	CH-2-	. 2	2	1	-	н	CH(CH3)2

Table	1.	6	0
-------	----	---	---

5	Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	Ŕ³	-(CH ₂); (CH ₂); G-R ⁶
10	650	CI—CH _z -	2	2	1	•	н	-C:+N-C
15	651	CHCH ₂ -	2	2	1	-	н	-CH-N-C
	652	CI-CH ₂ -	2	2	1	-	н	-CH-N-C
20	653	CHCH2-	2	2	1	-	н	-CHNC
25	654	CH2-	2	2	1	-	н	-CH-N-C
30	655	CH-CH2-	2	2	1	-	н	-CH-N-C- -CH-N-C- -CH-(CH ₃) ₂
35	656	СН-СН2-	2	2	1	-	Н .	-снус-С9 сн(сн₃)2
40	657	СН-СН2-	2	2	1		, н	-CH(CH3)2
45	658	CHCH ₂ -	2	2	1	-	н.	-C+(CH2)5 -C+H2 -C+H2 -C+H2 -C+H2 -CH2)5
50	659	CH2−	2	2	1	-	н	-CHNCH2)2 NO2
50	660	CI-CH2-	2	2	1	•	н	-CH-N-C N-C CH(CH ₃) ₂
55		,						

Τa	ь	۱e	1	.6	1
----	---	----	---	----	---

Compd.	R1 (CH2)-	k	m	n	chirality	H3	$-(CH_2)_{\overline{H}^5}^{\overline{A}^4}(CH_2)_{\overline{q}}G^{-A^6}$
661	CH2-	2	2	1	-	Н	-CH-N-CS- CH(CH3)2 OCH3
662	C → CH ₂ -	2	2	1	-	н	-CH-N-C
663	CH2-	2	2	1	-	н	- CHN C- C) CH(CH ₃) ₂
664	CI—CH ₂ -	2	2	1	-	н	- CH(CH3)2
665	CH2-	2	5	1	-	н	- CH NC - S - CH(CH ₃) ₂
666	С⊢ СН₂-	2	2	1	-	н	-CH-N-C-N CH(CH ₃) ₂
667	CI-CH2-	2	2	1	-	н	OH (CH3)2
668	CH2-	2	2	1	-	Н	-CHNCH3)2 CH3
669	C;—CH₂-	2	2	1	-	н	CH(CH ³) ⁵ CH ³
670	CH2-	2	2	1	-	н	-CH N-C- H CH(CH ₃) ₂
671	C1—CH2-	2	2	1	-	н	-CH-NC- H CH(CH ₃) ₂ NO ₂

Ta	b	le	1.	6	2
----	---	----	----	---	---

			_					
5	Compd. No.	R (CH ₂),-	k	m	n	chirality	Ŕ³	-(CH ₂) _p G-R ⁶
10	672	С СН₂-	2	2	1	-	н	-CH-V-C- -CH-V-C- -CH-V-C- V-C-V-C-V-C-V-C-V-C-V-C-V-C-V-C-V-
15	673	CH-2-	2	2	1	-	н	-CHN-C-(S) C(CH ₃) ₂
	674	C	2	2	1	-	н ·	-CH-N-C- CH(CH ₃) ₂
20	675	CHCH_2-	2	2	1	-	н	-CHNC-SCH3
25	676	C	2	2	1	-	н	-CH(CH ²) ⁵ H
30	677	C ├── CH₂-	2	2	1	-	H	-CH-N-C-N-CH(CH ₃) ₂ CH ₃
35	678	с⊢—Сн₂-	2	2	1	-	н	-CH-V-C
40	679	С⊢ СН₂-	2	2	1	-	н	-CH-M-C-S-CH(CH3)2
45	680	ССН2-	2	2	1	-	н	-CHN-C-S Br
	681	CH-2-	2	2	1	-	H .	-CH-V-CCH2 CH(CH3)2
50	682	CHCH2-	2	2	1		н	-CH-N-C
55								•

				_		
- 1	а	n	le	1	. 6	

5	Compd. No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	Ŕ³	-(CH ₂) p (CH ₂) q G-R ⁶
10	683	CHCH2-	2	2	1	•	н	-CHNC-(S) SCH3
	684	C:CH2-	2	2	1	-	н	-CHNC-S & CH(CH3)2
15	685	СН-СН2-	2	2	1	-	Ħ	-сн. С- S В СН3
20	686	С├──СН₂-	2	2	1	-	н	-CHN-C- -HN-CH(CH3)2
25	687	CI-CH2-	2	2	1	-	н	-CHN-C-
30	688 ,	CH-2-	2	2	1	-	н	-CHNC
35	689	CH2-	2	2	1	-	Н	-c+ n c - 0
40	690	CI-CH ₂ -	2	2	1	-	н	-CHNC-Br
45	691	C	2	2	1	-	н	-CHNCH3)2
45	692	C+	2	2	1	-	н	- CH N C - C
50	693	CI—CH2-						-CHNC
55								

Table	1		6	4
-------	---	--	---	---

5	Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	Ë۶	-(CH ₂) -
10	694	CI—CH ₂ -	2	2	1		н .	-CH N C-
15	695	CI—CH2-	2	2	1	-	н	-CHN-C
15	696	CHCH ₂ -	2	2	1	-	н	-CHNC-CCF,
20	697	CI-CH2-	2	2	1	-	н Н	-CH- N-C- CN
25	698	С├-СН₂-	2	2	1	-	н	-CH N-C- N(CH ₃) ₂
30	699	СН2-	2	2	1	-	н	-сн м-с
35	700	CH-CH2-	2	2	1	-	н	-CHN-C- CO2CH3
40	701	C ← CH ₂ -	2	2	1	-	н	-CH M.C. C-CH3
45	702	CH-2-	2	2	1	•	н	-CH N-C- CF3
45	703	CI— CH ₂ -	2	2	1	-	н	-CH N-C- CH(CH3)2
50	704	CI CH₂-	2	2	1	-	н	-CHWC- CH(CH3)2
55 .						-		

Table	1	. 6	5
-------	---	-----	---

Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	R ³	—(CH ₂) , ∏ (CH₂), G−R
705	C├ - CH₂-	2	2	1	-	н -	-CH-YC-S
706	C ├─ C H ₂ -	2	2	1	-	н	-chyc-stch,
707	с⊢(сн₂-	2	2	1	-	н	-c++~c
Ż08	CI-CH ₂ -	2.	2	1	-	н	-CHNC-SB'
709	с⊢(сн₂-	2	2	٦	-	н	-CHNC-STSCH3
710	CH_CH ₂ -	2	2	1	-	н	-CHNC-S
711	CH ₂ -	2	2	1	- .	н	-chyc-CH3
712	CHCH ₂ -	2	2	1	-	н	-c+++cS
713	CH2-		2	1	-	н	-c+-v-c
714	C ← C H ₂ -	2	2	1	•	н	-CH-N-C-N-C-N-
715	C ⊢ CH2-	2	2	1	-	. н	-c+n-c-n-c+n-c-s
							·

Table	1		6	6
-------	---	--	---	---

5	Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	ー(CH ₂) p
10	716	с⊢С-сн₂-	2	2	1		н .	-CHYC-Y
15	717	CI—CH₂-	2	2	1	<u>-</u>	н	-CHNC- NO2
15	718	C	2	2	1	-	н	-c+~c-\range H
20	719	C├──CH₂-	2	2	1	-	н	-CHN-C-
25	720	CH2-	2	2	1	<u>:</u>	Н	-CHN-C- () Br
30	721	CH2-	2	2	1	-	н	-2H-7-C-13
35	722	C⊢-(CH ₂ -	2	2	1	-	н	-сн-ү-сн ₂ он
40	723	С⊢СН2-	2	2	1	-	н	-CHNC-NH2
40	724 ·	C├ - CH ₂ -	2	2	1	-	н	-CH-V-C-(CH3)2
45	725	CH-2-	2	2	1	-	н	-c+-4c
50	726	C → C H ₂ -	2	2	1		н	-c+nc
							_	

Ta	ıh	۱۵	1.	6	7

	Compd	R1 (CH2);-	ا ا			chirality	R³	$-(CH_2)_{p=0.5}^{R^4}(CH_2)_{q}G-R^6$
5	No.	A2 (Ch2)i				Cimanty		H ²
10	727	CI-CH2-	2	2	1		н	-CH-4-C
	728	CH-CH2-	2	2	1	-	н	-CH-N-C-NH ₂
15	729	C├ - CH₂-	2	2	1	-	Н	-CHN-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
20	730	CH-2-	2	2	1	-	н .	-c+n-c-
25	731	CH2-	2	2	1	-	н	-CH-NC Q
30	732	CH-CH2-	2	2	1	-	н	-chnc-Ct,
35	733	CH-2-	2	2	1		H	-CHNC-CH(CH ₃) ₂
40	734	CH-2-	2	2	1	-	н	-CHNC
45	735	CH2-				-	н	-c+n-c-
	736	CH-2-	2	2	1	-	н	-CHN-C- H ₂ N CF ₃
50	737	CI-CH2-	. 2	2	1	•	н	-C+N-C-
55								

Table 1.68	$\overline{}$	а	Ь	le	1		6	8
------------	---------------	---	---	----	---	--	---	---

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p+5}^{-1}(CH_2)_{q-G}^{-1}$
738	CH-CH2-	2	2	1	-	н	-CHNC-CH3
739	CH2-	2	2	1		н	-CH-N-C-NH
740	CH-CH2-	2	2	1	-	н	-CHN-C
741	с⊢ Сн₂-	2	2	1	-	н	-CHN-C-\S
742	CH-(-)-CH2-	2	2	1	-	н	-chn-c-s
743	CH2-	2	2	1	-	н	-chnc-Co
744	CH₂-	2	2	. 1	•	н	-c++ c C++3
745	CH2-	2	. 2	1	-	н	-снус-Стс(СH ₃)
746	C├ - CH ₂ -	2	2	1	-	н	-CH-YC-YCH3
747	C+	2	2	1	-	н	-CH-N-C
748	CH2-	2	2	1	-	н	-c+yc-Cs

Т	a	b	ie	1	.6	9

Compd. No.	R / (CH ₂);-	k	m	n	chirality	H3	R³
749	C → CH ₂ -	2	2	. 1	-	н	-c+-n-c
750	С:—СН₂-	2	2	1	-	н .	-CI+V-C0
751	CH-{	2	2	1		Н	-5H-V-C-CH3
752	CH-2-	2	2	1	• .	н	-CH-V-C
753	CH-2-	2	2	1	-	н	-CH-N-C-CN
754	CH-€-CH₂-	2	2	1	-	н	-CH-N-C-
755	CH2-	2	2	1	-	н	CH ⁵ OH
756	CH2-	2	2	1	-	,	-CH-N-C
757	CI-CH ₂ -	2	2	1	-	H	CH2OH OCH3CH3
758	CH-2-	2	2	1	-	н	-CHNC
759	CH-2-	2	2	1	-	H	-CHN-C-OCF3

_	1 4	١	_	~	
Та	г.	e	7	-/-	0

5	Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	R²	
10	760	CI—CH₂-	2	2	1	-	н	-CH-N-C
15	761 ,	C ├ C H₂-	2	2	1	-	н	CF3 −CH+NC− H CH2OH
	762	с⊢С Сн₂-	2	2	1	-	н	-CH-N-C-CF3 CH₂OH
20	763	С-СН2-	2	.2	1	-	н	-CHN-C- H CH2OH
25	764	C	2	2	1	-	н	CH3 P
30	765	C├-{CH₂-	2	2	1	-	н	CH ₃ O CH ₃
35	765	CH	. 2	2	1	-	н	CH3 Q -C-N-C- CH3
40	767	CI	2	2	1	-	н	-C-H3 0 0 0 -CH3
. 45	768	CI—CH ₂ -					· Н	CH3 0 Br
73	769	C├ - CH₂-	2	2	1	-	Н	CH ₃ O OCF ₃ -C-N-C-OCF ₃
50	770	CH2-CH2-	2	2	1	-	н	CH ₃ OCF ₃ CH ₃ CCF ₄
55								'

Ta	ь	le	1	.7	1

	_							
5	Compd.	R2 (CH ₂)j-	k	m	n	chirality	∃³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	771	CI-CH2-	2	2	1	•	н	CH ₃ P CF ₃
15	772	C⊢√CH₂-	2	2	1	-	н	CH3 CH2 CF3
	773	C	2	2	1	-	н	CH ₃ P CH ₃ P C(CH ₃) ₃
20	774	C├─ \ CH ₂ -	2	2	1	-	н	CH3 P S SCH3
25	775	CI—CH₂-	2	2	1	-	н	CH ₃ Q CH ₃ -C-N-C-C C(CH ₃) ₃
30	776	C	2	2	1	-	H	CH, 9 CH, -C-N-C-10
35	777	C├─ ○ -CH ₂ -	2	2	1	- .	н	CH ₃ 0 CF ₃ -C-1 CH ₃ -CH ₃
40	778	CI-CH ₂ -	2	2	1	. -	н	CH ₃ 0 NO₂ -C-N-C-CI
45	779	C	2	2	1	-	н	-CH ² CH ² CI
	780	CH-CH2-	2	2	1	-	н	-C-V-C- CH ³ 0 NO ⁵
50	781	с⊢—Сн₂-	2	2	1	-	н	-C-V-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Table 1.72

5	Compd. No.	R ¹ /(CH ₂) -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	782	с-(2	2	1	-	н	-6-V-6- -6-V-6
15	783	CH-CH2-	2	2	1	•	Н	-C-N-C-
20	784	C├ - CH₂-	2	2	†	-	ឣ	СН3 Р -С-N-С-СН2-С-С СН3
	785	CH-(CH2-	2	2	1	-	н	-CH3 POCH3
. · · · · · · · · · · · · · · · · · · ·	786	C ← CH ₂ -	2	2	1		н.	H ₂ C — CH ₂ CH ₃ H ₂ C — CH ₂
30	787	С⊢СН2-	2	2	1		н	-C-N-C- H ₂ C-CH ₂
35	788	C⊢√CH₂-	2	2	1	-	н .	-C-N-C-CH ₂
40	789	C⊢√ CH₂-	2	2	1	- .	. н	HC OF CH3
45	790	CH-€-CH2-	2	2	1	-	Н	H ₂ C—CH ₂
50	791	C → C H ₂ -	2	2	1	-	н	H ₂ C CH ₂
50	792	C → C H ₂ -	2	2	1		ਜ	-C-N-C-OCF3

Table	1		7	3
-------	---	--	---	---

Compd. No.	R2 (CH2)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
793	CH-2-	2	2	1	-	н	-C-N-C-F
794	CH2-	2	2	1	-	н .	-C-N-C
795	CH2-	2	2	1	-	н	-C-N-C
796	С⊢СН2-	2	2	1		н	H ₂ C-CH ₂
797	CH2-	2	2	1	-	H	-C-N-C-CH ₂ -C-CH ₂ -C(CH ₃) ₃
798	CH2-	2	2	1	-	н	H2C CH2
799	C├ - CH ₂ -	2	2	1	. -	.н	-C-H2 CH3
800	CH2-	2	2	1		н	-C-N-C
801	CH-CH ₂ -	2	2	1	-	н	H ₂ C-CH ₂
802	CH-CH2-	2	2	1		н	H2C-CH2
803	CH2-	2	2	1	-	н	-C-N-C- H H ₂ C-CH ₂

	T	а	Ь	le	1.	.7	4
--	---	---	---	----	----	----	---

Comp No.	d. R^{1} $(CH_{2})_{i}$	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶ (CH ₂) _q G-R ⁶
804	с⊢С сн₂-	2	2	1	-	н	-C-N-C-CH ₂ -CF ₃
805	с⊢С Сн₂-	2	2	1	-	н	H ₂ C-CH ₂ OCH ₃
806	CHCH_2-	2	2	1	-	н	H ₂ C CH ₂
807	CHCH2-	2	2	1	-	н	(CH3)2-C-N-7
808	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-CH3
809	С⊢—СН₂-	2	2	1	-	н	-CH-N-C-NH2
810	C	2	2	1	-	н	-CH-N-C-C-NH2
811	C├ - CH₂-	2	2	1	-	н	-CH-N-C-NO ₂
812	C	2	2	1	-	н	-CH-N-C
813	C	2	2	1	-	н	-CH-N-C
814	C-CH ₂ -	2	2	1		н	- CH-N-C
					•		

T	а	ь	le	1	 7 5

	, abic	., •						
5	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p}^{\frac{R^4}{15}}(CH_2)_{q}^{-}G-R^6$
10	815	CI(CH ₂ -					н	- CH-NC-CF3
15	816	C	2	2	1	-	н	- CH-N-C-N-2
20	817-	CH2-	2	2	1	-	н	(CH ²) ² -C-NH ² -CH-N-C-NH ² -CE-2
20	818	CH2-	2	2	1	•	н	(CH-7) 2.C-NH2
25	819	CH2-	2	2	.1	-	н	-CH-N-CV-12 CF3
30	820	с⊢СН₂-	2	2	1	-	н	- CH-N-C-NO ₂ (CH ₂) ₂ -C-NH ₂
35	821	CH ₂ -	2	2	1	-	н	-CH-N-C
40	822	CH2-	2	2	1	-	. н	P S SCH3 -CH2OCH3
45	823	СН ₂ -	2	2	1	-	н	-CH-N-C-
	824					-		CH2OCH3 C(CH3)3
50	825	CH2-	2	2	1		н	-CH-50CH2
55								

T	ล	h	le	1	7	6
1	а	u		- 1	- 1	_

		_					
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	—(CH ₂) р Т (CH ₂) р G−Я ⁶ Я ⁵
826	C├ - CH₂-	2	2	1	•	н	-CH-N-CCH3
827	C+	2	2	1	-	н	-CH-N-C-NH
828	с⊢СН2-	2	2	1	-	н	OCF ₃ -CH-N-C- H CH₂OCH ₃
829	C → CH ₂ -	2	2	1	-	н	-CH-N-C
830	CH2-	2	2	1	-	H	-CH-N-CF H CH2OCH3
831	С├-СН2-	2	2	1	-	н	-CH-N-C
832	C+ CH₂-	2	2	1	-	н	-CH-N-C
833	CH2-	2	2	1	-	н	-CH-N-C
834	CH-(CH ₂ -	2	2	1	-	н	- CH-N-C
835	C	2	2	1	-	н	-CH-N-C
836	CH-CH2-	2	2	1		н	CH-N-C-CH3

			_	7	7
Τa	h	le	7	.7	•

5	Compd.	R1 (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} \stackrel{\mathbb{R}^4}{\underset{\overline{\mathbb{R}}^5}{\downarrow}} (CH_2)_{\overline{q}} G^-\mathbb{R}^6$
10	837	CH-CH2-		2	1	-	н	-CH-N-C-CF3
15	838	Ci—CH ₂ -	2	2	1	-	н	- CH- V-C- OCH2CH2
15	839	CH2-	2	2	1	-	н	- СH- N- С- ОСН3 - СH2 ОСН3
20	840	C├ - CH₂-	2	2	1	-	н	-(CH ₂) ₃ -C-
25	841	CH2-	2	2	1	-	н	-(CH ₂) ₂ -C-
30	842	CH2-	2	2	1	-	н	-(CH ₂) ₂ -C-CI
35	843	C	2	2	1	-	н	-(CH ₂) ₂ -CH ₃
40	844	CH-CH2-	2	2	1	-	н	-(CH ₂) ₂ -CH ₃
45								-(CH ₂) ₂ -C
50	846	CH-2-	2	2	1	-	н	-(CH ₂) ₂ -C-O-O-
50	847	C ├── CH₂-	2	2	1	-	н	-(CH ₂) ₂ -C
55								

Ta	ble	e 1	١.	7	8

5	Compd.	R' (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
10	848	CH-CH ₂ -	2	2	. 1	-	н	-(CH ₂) ₂ -C-CH ₃
15	849	CHCH ₂ -	2	2	1		н	-(CH ₂) ₂ -C-OCH ₃
20	850	с⊢ Сн₂-	2	2	1	-	н	- CH ₂ - S-CH ₃
20	851	C:⟨	2	2	1		н	- CH2- N- C- N- CF3
25	852	C-√CH₂-	2	2	1	•	н	-CH ₂ -N-C-N-CF ₃
30	853	CH2-	2	2	1	-	н	-CH2-N-C-N-
35	854	C├	2	2	1	-	н	- CH2- N- C- N- CH3
40	855	CHCH ₂ -	2	2	1	-	. н	-CH₂-N-C-N-CH₃
45	856	C:CH2-	2	2	1		н	- CH2- N-C-N-C-C-CH3
50	857	CH-CH2-	2	2	1	•	н	- CH2- N C- N C- N
50	858							- CH ₂ - N- С- N- ОСН ₃
55							 	

Ta	h	۱۵	1	.7	Q
18	\mathbf{c}	12		. /	Ÿ

	Table							
5	Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	P ₃	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
10	859	C				-	н	-CH2-NC-NH
15	860	с⊢С сн₂-	2	2	1	-	н	- CH ⁵ - K C- K C CN
15	861	с⊢О-сн₂-	2	2	1	-	н	- CH2- N-C N-C
20	862	CH-CH2-	2	2	1	-	н	- CH2- N-C- N-С- CH3
25	863	C → CH ₂ -	2	2	1	-	н	-CH2-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
30	864	CH2-	2	2	· 1	-	н	-CH2-M-C-H-OCH3
35	865	CH2−	2	2	1	-	Н	-CH2-H S CH3
40	866	C				-	н	- CH ₂ -N S-CF ₃
45	867	CH-CH2-	2	2	1	-	н	- CH2-N-S
	868	Cr√_CH2-	2	2	7	-	н	- CH ₂ - N- S- CH ₂ CH ₃
50 ·	869	CHCH2-	2	2	7		н	- CH ₂ -N- S- CH(CH ₃) ₂
55								

Table 1.80

5	Compd. No.	R1 (CH2)-	k	m	n	chirality	, R³	ー(CH ₂) _{p 1} (CH ₂) _q G-R ⁶ 内 ⁵
10	870	С├-{СН2-	2	2	1	-	н	-CH2-N-S-
15	871	CH2-	2	2	1	-	н	- CH2-N-8-(CH2)3CH3
20	872	CHCH2-	2	2	1		н	- CH2- N- S-
25	873	CH-CH2-	2	2	1	-	н	- CH ₂ - N- C- O CH ₂ -
25	874	CH-2-	2	2	1	-	н	- CH O C- N- C1
30	875	CH ₂ -	2	2	1		н	-CH ₂ -NC-CF ₃
35	876	Br-CH ₂ -	2	2	7	<u>.</u> .	н	-CH2-N-C
40	877	NC CH2-	2	2	7	<u>-</u>	н	- CH ₂ -N-C-CF ₂
45	878	O2 N-CH2-	2	2	7	•	н	- CH2- N C- CF3
50	879	O-CH ₂ -	2	2	1	-	н	- CH₂- № С
55	880	0 0 CH₂-	2	2	1	-	H	- CH ₂ -N-C-CF ₃

~	_	h	le	1	. 8	1
	◿	u	16		. •	•

	100.0							
5	Compd.	R 1 (CH ₂);-	k	m	ก	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
10	881	Sr CH₂~	2	2	1	-	н	-CH2-NC-CF3
15	882	OH2-	2	2	1	-	н	- CH ₂ - N C CF ₃
	883	CI — CH ₂ -	2	2	1	-	н	- CH ₂ - N C-
20	884	4c·c-42-c-13-	2	2	1	-	н	- CH2- H C CF3
25	885	H ₃ C - \$ - CH ₂ -	2	2	1	-	н .	- CH ₂ - N C- CF ₃
30	886	F-CH2-	2	2	1	-	н	- CH ₂ - N C-
35	887	F3C-CH2-	2	2	1	-	н	- CH2- H C- CF3
40	888	но-√СН₂-	2	2	1	-	. н	- CH ₂ - N C-
45	889	OH 2-	2	2	1	-	н	- CH2- N C - CF3
	890	CH2-	2	2	1	-	н	- CH ₂ - N-C-CF ₃
50	891	CH ₂ -	2	2	1	-	н	- CH2- N.CCF3
55								

T	abl	le	1.	8	2

5	Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p CH ₂) _q G-R ⁶
10	892	H₃CO CH₂-	2	2	1	-	н	- CH2- N C-CF3
15	893	O ₂ N CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
20	894	HQ CH ₃ CH ₂ - CH ₃	2	2	1	-	н	- CH2- N C - CF3
20	895	(CH ₂) ₂ -	2	2	1	-	н	- CH ₂ - N C - CF ₃
25	896	CN CH ₂ -	2 -	2	1	-	н .	- CH ₂ -N-C-CF ₃
30	897	HO₂C CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
35	898	HO ₂ C-CH ₂ -	2	2	1	-	H	- CH ₂ - N C - СF ₃
40	899	OCH ₃	2	2	1	-	н	- CH ₂ -N C-CF ₃
45	90ó	н₃∞₂с-{сн₂-	2	2	1	-	н	- CH2- N C-CF3
50	901	○- CH-	2	2	1	-	н	- CH ₂ - N C — СF ₃
	.902	O ₂ N CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
55								

Ta	b	le	1.	8	3
10				. •	•

5	Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) q (CH ₂) q G-R ⁶
10	903	H ₃ CO . CH₂- OCH₃	2	2	1	•	н	- CH2- N C-CF3
	904	HOCH2-	2	2	1	-	н	- CH2-N-C-
15	905	O2 N CH2-	2	2	1	-	н	- CH2-N-CF3
20	906	(CH ₂);-	2	2	1	•	н .	- CH ₂ -N-C-CF ₃
25	907	CH(CH ₂) ₂ -	2	2	1		н	-CH2-N-C-CF3
30	908	H C C C C	2	2	1	-	н	-CH2-N-C-CF3
35	909		2	2	1	-	н	- CH ₂ - N- C-
40	910	CI C⊢ CH₂-	2	2	1	-	н	- CH ₂ - N- C- CF ₃
	911	CI CH ₂ -	2	2	1	-	н	- CH ₂ -N-CF ₃
45	912	Br CH₂-	2	2	1	-	н	- CH ₂ -N-C-
50	913	H ₃ CO-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃

Table 1.84

5	Compd.	R2 (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) p (CH ₂)q G-R [€]
10	914	CH3-	2	2	. 1	-	н	-CH2-N-C-CF3
15	915	Он Снсн₂-	2	2	1	-	н	- СH2- N- C- СF3
20	916	. N CH2-	2	2	1	-	н	- CH2- N-C-CE2
20	917	CH ₂ -	2	2	1	-	н	- CH2- N- C-
25	918	к,со, с. оч,—О-оч,-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
30	919	H3C-€ CH2-	2	2	1	-	н	- CH ₂ -N-C- CF ₃
35	920	OCF ₃	2	2	1	-	н	- CH ₂ - N- C-
40	921	CH2-	2	.2	1	-	. н	- CH ₂ - N- C- CF ₃
45	922	> сн₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
50	923	CI-CH-	2	2	1	-	н´	
	924	CI-CH- H ₂ N-C	2	2	1	-	н	- CH2-N-C-CF3

Table 1.85

lable	1.03					·	
Compd.	R1 (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) ,
	H ₂ N-C				-	н	-CH-N-C-CF3
926	O-CH2-O-CH3-	2	2	1	-	н	-CH2-N-C-CF3
927	F3CQ CH2-	2	2	1	;	Н	-CH2-N-C-CF3
928	F ₃ CO-CH ₂ -	2	2	1	-	н	-CH2-N-C-CF3
929	H3CS-CH2-	2	2	1	-	н	-CH2-N-C
930	CH ₃	2	2	1	-	н	-CH2-N-C-
931	NC CH ₂ -	2	2	1	-	H ·	-CH2-N-C-CF3
932	NO₂ CH2 ⁻	2	2	1	-	Н	-CH2-N-C-
933	CH-CH-	2	. 2	1	-	н	-CH-N-C-CF2
			2	1	-	н	-CH-NC-CF:
935	O ₂ N	. 2	2 2	! '	i -	н	-CH-N-C-CF;

T	2	b	le	1	.8	6

5	Compd. No.	R ¹ /(CH ₂) ₁ -	k	m	n	chirality	FJ	-(CH ₂) р С Н ₂) р -G-R ⁶
10	936	NO ₂ CH₂-	2	2	1	<u>-</u>	н	-CH2-V-C-CF3
15	937	(H ₃ C) ₂ N-CH ₂ -	2	2	1	-	н	-CH2-N-C-
	938	CH2-	2	2	1	-	н	-сн ₂ -N-С-С _F 3
20	939	0 ₂ N CH ₂ -	2	2	1	-	н	-сн ₂ -м-с-С _г ,
25	940	OH CH2-	2	2	1	-	н	-сн ₂ -N-с-С _г
30	941	F ₃ C CH ₂ -	2	2	1	-	Н.	CH ₂ -N-C-CF ₃
· 35	942	CH-2-	2	. 2	1	•	Н	-CH N C CF3 -CH(CH3)2 CF3
40	943	СН-СН2-	1	4	0	-	н	-CH ₂ -N-C-CF ₃
	944	С⊢СН2-	1	4	0		н	-CH2-N-C-CH3
45								-CH2-N-C-
50	946	CI-CH2-	1	4	0	•	н	-(CH ₂) ₂ -N-C-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\

Та	'n	ما	1.	8	7
			, ,	_	•

Compd. No.	R ² (CH ₂),	k	m	n	chirality		-(CH ₂) _p CH ₂) _q (CH ₂) _q (
947	CH2-	1	4	0	-	н	-(CH ²) ² -N-C-
948	CH2-	1	4	0	-	н	-(CH ²) ² -C-N-
949	CH2-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₂
950	С⊢С СН2-	0	4	1	-	i	-сн ₂ -ү-с-
951	С——СН ₂ -	1	2	0	R	. н	-CH2-N-C
952	CH2-	1	2	0	R	н	-CH2-N-C
953	CH2-	1	2	0	R		-(CH ₂) ₂ -N-C-N
954	CH2-	1	2	0	R [.]	,	-CH2-N-C-NH
955	CH_CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
956	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C- HO
957	CH2-	1	2	0	R	H .	-CH2-M-C-

Table 1.88

5	Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) р 1 (CH ₂) р G-R ⁶
10	958	C ├── CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OH
15	959	CI-CH ₂ -	1	. 2	0	R	н	-сн~ И-с-сн³
	960	C ├── CH₂-	1	2	0	R	н	-(CH2)₹ N C-CH3
20	961	C:—CH₂-	1	2	0	R	н	-сн <u>-</u> N-с-
25	962	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C- H-CH ₃
30	963	CH2−	1	2	0	. R	н	-(CH ₂) ₂ -N-С-ОН
35	964	C ├── CH ₂ -	1	2	0	R	н	-CH2-N-C-(2CH3
40	965	CH-CH2-	1	2	0	R	н	-(CH ₂) _Z -N-C
	966	C├ - CH₂-	1	2	0	R	Н	-сн- N-с-С-сн,
45	967	CI—CH₂-	1	2	О	R	н	-(CH ₂) ₂ -N-C-С-СН ₃
50	968	CH2-	1	2	0	F	н	-(CH ₂) ₂ -N-C-C-CH ₃
55					· -			¥

Table 1.89

5	Compd.	R ² (CH ₂) _j	k	m	٦	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
10	969	C ← C H₂-	1	2	. 0	R	н	-(CH ₂) ₂ -N-C-NH
15	970	С├-{	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₂
15	971	C ├── C H ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
20	972	CH2-	1	2	0	R	7	-CH2-N-C-NH2
25	973	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
30	974	C├───────── CH ₂ -	1	2	0	R	н	-CH2-N-CNH2
35	975	C ├── CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-CNH ₂
40	976	С⊢—СН2-	1	2	0	R	H	-CH2-N-C-\\
	977	CHCH ₂ -	1	2	0	Fi	н	-(CH ₂) ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
45	978	C ← C H ₂ -	1	2	0	R	н	-CH-N-C
50	979	C ← C H ₂ -	1	2	0	R	Ŧ.	-(CH ₂) ₂ -N-C-N-H
55			· · · · · · · · · · · · · · · · · · ·					

Table 1.90

5	Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	一(CH ₂) _p (CH ₂) _q G-R ⁶
10	980	с⊢ Сн₂-	1	2	0	Ħ	H	-CH2-N-C-CH3
15	961	CI-CH ₂ -	1	2 .	0	R	н	-(015)2-N-C-013
	982	сСн2-	1	2	0	R	Н	-CH ₂ -N-C
20	983	с⊢С сн₂-	1	2	O	R	н	-(CH ₂) ₂ -N-C
25	984	C ⊢ CH₂-	1	2	0	R	н	-сн ₂ -№-ссн ₂ он
30	985	C⊢CH₂-	1 .	2	Ο.	R	н	-(CH ₂) ₂ -N-C-СН ₂ ОН
35	986	CH-CH-	1	2	0	R	н .	-CH2-N-C-
40	987	O-CH-CH ₂ -	2	2	1	-	н	-CH2-N-C-CF3
45	988	CH-2-	1	4	0	-	н	-CH2-N-C- CE3
50	989	CH-CH2-	1	4	0	•	н	-CH2-N-C-O-CH2-
50	990	C ├── CH ₂ ~	1	4	0		н	-CH2-N-C-
55								

Ta	ble	1	.9	1
ıa	UIE	•		•

	lable i	.91						
5	Compd. No.	R (CH ₂) ₁ -	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
10	991	CH√ CH₂-	1	4	0	-	н	-(CH ₂) ₂ -C-
15	992	С⊢С СН₂-	1	4	0	-	н	OCH ₃ -(CH ₂) ₂ -C
	993	C├	1	4	0		н	-(CH ₂) ₂ -C
20	994	C├─────────────────────	1	4	0	-	н	-(CH ₂) ₃ -C-
25	995	C ← CH ₂ -	1	4	Ö	-	н	-(CH ₂) ₃ -C
30	996	CH2-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
35	997	CH2-	2	2	1	-	н ,	CH2CH(CH3)2
40	998	CH2-	2	2	1	-	н	-CHN-C
45	999	CH ₂ -	2	2	1	-	Ĥ	-CHN-C- H CH2CH(CH3)2
	1000	С⊢СН2-	2	2	1	-	н	- CH N- C- OCH 3
50	1001	CHCH ₂ -	2	2	1	-	н	-CH H-C
55								

Та	h	اما	1	9	2

5	Compd.	R2 (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) , R⁵ (CH₂), G-R⁶
10	1002	CH-CH2-	2	2	1	-	. н	CH2CHCH32
15	1003	C├ - CH₂-	2	2	1	-	н	-CH2CH(CH3)2
	1004	С⊢С СН₂-	2	2	1	-	н	CH2CH(CH3) OCH3
20	1005	CI— CH2-	2	2	1	-	Ħ	-CH ² CH(CH ²) ² ∞H ²
25	1006	CICH ₂ -	2	2	1	-	Н	O45CKCH3)? -CH-M-C
30	1007	CI—(CH₂-	2	2	1	-	н	ОС 42 СН3 — СН- N- С — ССН2 СН3 — СН2 СН(СН3)2 ОС 42 СН3
35	1008	CH2-	2	2	1	- .	F.	(CH2)2-C-NH2
40	1009	CH2-	2	2 -	1	-	н	(CH2)2-Q-NH2
45	1010	C├──CH2-	2	2	1	-	۲	- c+ 2-c-
	1011	CH-CH2-	2	2	1	-	н	(CH ₂) ₂ -C-NH ₂ -CHN-C-NH ₂ (CH ₂) ₂ -C-NH ₂ CH ₂ CH ₃ CH ₂ CH ₃
50	1012	C:CH2-	2	2	1	•	H	- CHN-C- CH3
55								. ~

T:	aЬ	ما	1	.9	3
	a U				•

5	Compd. No.	R1 (CH2),-	k	m	n	chirality	R³	-(CH ₂) p CH₂ G-R⁶
10	1013	CH√CH2-	2	2	1	- -	н	(CH2)2-C-NH2 OCH3
	1014	C!— CH₂-	2	2	1	-	н	(CH3)2-C-NH3 -CH-V-C
15	1015	с⊢(сн₂-	2	2	1	-	н.	(CH) = 6-NH OCH CH -CHV-C
20	1016	CH2-	2	2	0	-	Н	- CH2-N-C-CF3
25	1017	CH2-	2	2	0	-	н	-cH2-N-C-
30	1018	CH-2-	2	2	1	-	н	-CH2-N-C
35	1019	C	2	2	1	-	H	-CH ₂ -N-C
40	1020	C├ - CH ₂ -	2	2	1	-	H .	-СH ³ -У-С- ОСН ³
70	1021	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C
45	1022	с⊢(сн₂-	2	. 2	1	-	н	CH ₃ CCH ₃
50	1023	CI—CH₂-	2	2	1	-	Н	(S) Q CH ₂ CH ₃ -CH-N-C-

٦	a	h	ie	1.	9	4

								.1
5	Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	⁻ R³	$-(CH_2)_{p+1}^{4}(CH_2)_{q}G-R^6$
10	1024	C├ - CH₂-				-	н	(5) OCH3
15	1025	с⊢ СН₂-	2	2	1	-	н	(S) OCH2CH3 -CH-N-C
15	1026	C → CH ₂ -	2	2	1	-	н	(5) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ OCH ₂ CH ₃
20	1027	CH2-	2	2	1	-	н	(5) OCH ₂ CH ₃ -CH ₃ OCH ₃ -CH ₃
25	1028	CH2-	2	2	1	-	н	(S) OCH ₂ CF ₃ -CH ₁ CC-CH ₂ CF ₃ OCH ₂ CF ₃
30	1029	С⊢С СН₂-	2	2	1		н	(S) Q -CH-N-C- CH ₃ ·
35	1030	C├ - CH₂-	2	2	1		н	(5) P OCF ₃ -CH-N-C-
40	1031	CH_CH ₂ -	2	2	1	-	н	(5) P OCH3
	1032	C ├	2	2	1	-	H	(A) OCH3 -CH-N-C-OCH3 CH3 OCH3
45	1033	CHCH ₂ -	2	2	1	-	Н.	(A) P CH ₂ CH ₃ -CH N C CH ₂ CH ₃ CH ₃
50	1034	CH2-	2	2	1	-	н	(A) OCH3 -CH-N-C
55								

Ta	h	ما	1	. 9	5
1 (1	.,				•

5	Compd. No.	R (CH ₂);	k	m	n	chirality	Ra	-(CH ₂) p (CH₂) G-R⁶
10	1035	CH-{	2	2	1	-	н	(A) OCH2CH3 -CH-V-C
15	1036	CH2-	2	2	1	-	н	(A) 0 −CH-N-C → OCH2CH3 H OCH2CH3
15	1037	CH2-	2	2	1	-	н	(A) 0 OCH2CH3 -CH N C OCH3 EH3
20	1038	CH-CH2-	2	2	1	-	н	(F) OCH ₂ CF ₃ -CH-N-C- OCH ₂ CF ₃ OCH ₂ CF ₃
25	1039	С-СН2-	2	2	1	-	ਸ	(R) QCH ₂ CH ₃
30	1040	C├	2	2	1	-	н	(F) OCF3
35	1041	C├ -	2	2	1	•	н	(R) OCH ₃ -CH-N-C-CH-S CH ₃
40	1042	CH-2-	2	2	1	-	н	-CH ₂ -N-C
45	1043	C ← CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
	1044	с⊢Сн₂-	2	2	1	-	Н	-CH ₂ -N-C
50	1045	CH-2-	2	2	1	·	н	-CH ₂ -N-C
55						·		· .

$\boldsymbol{\tau}$	-	Ь	ie	1	9	6
	4	L)	1 =			_

1046	•							
1047 $C \mapsto CH_{2}^{-}$ 2 2 1	Compd. No.	R.1 (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) , 1 (CH ₂) , G-R ⁶
1048 $CH \longrightarrow CH_2^{-1}$ 2 2 1 - H $-CH_2 \longrightarrow CH_2 \longrightarrow CH_2$ 1049 $CH_2 \longrightarrow CH_2^{-1}$ 2 2 1 - H $-CH_2 \longrightarrow CH_2 \longrightarrow CH_2 \longrightarrow CH_2$ 1050 $CH_2 \longrightarrow CH_2^{-1}$ 2 2 1 - H $-CH_2 \longrightarrow CH_2 \longrightarrow CH$	1046	CHCH ₂ -	2	2	1	-	н	-CH2-N-C
1049 $C \mapsto CH_{2}^{-}$ 2 2 1 - H $CH_{2} \mapsto CH_{2}^{-}$ 2 2 1 - H $CH_{2} \mapsto CH_{2}^{-}$ 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1047	CH2-	. 2	2	1	-	н	-CH ₂ -N-C
1050 CH CH2 2 2 1 - H CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 C	. 1048	CH2-	2	2	1	· -	н,	
1051 $CH_{2}CH_{1}CH_{3}CH_{2}$ 2 2 1 - H $CH_{2}CH_{1}CH_{3}CH_{2}$ 2 2 1 - $CH_{2}CH_{1}CH_{3}CH_{2}$ 1052 $CH_{2}C$	1049	с⊢Сн₂-	2	2	1	-	н	-CH2-NCH3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1050	C - C H₂-	2	2	1	-	н	(5) OCH3 -CH2CH(CH3)2 OCH3
1053 CH_{2}^{-} 2 2 1 - H_{2}^{-} 2 2 1 - H_{2}^{-} 0 CH_{2}^{-} 0 CH_{2}^{-} 1054 CH_{2}^{-} 2 2 1 - H_{2}^{-} 0 CH_{2}^{-} 1055 CH_{2}^{-} 2 2 1 - H_{2}^{-} 0 CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - H_{2}^{-} 0 CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - H_{2}^{-} 1056 CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - H_{2}^{-} 1056 CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - H_{2}^{-} 1056 CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - H_{2}^{-} 1056 CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - H_{2}^{-} 1056 CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - H_{2}^{-} 1056 CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - H_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - H_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - H_{2}^{-} 1056 CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - H_{2}^{-} 1056 CH_{2}^{-} 1056 CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - H_{2}^{-} 1056 CH_{2}^{-} 1057 $CH_{2}^{$	1051	CH₂-	2	2	1	-	н	
1053 CH_{2}^{-} 2 2 1 - H CH_{2}^{-} 0 CH_{2}^{-} 1054 CH_{2}^{-} 2 2 1 - CH_{2}^{-} 0 CH_{2}^{-} 1055 CH_{2}^{-} 2 2 1 - CH_{2}^{-} 2 2 1 - CH_{2}^{-} 0 CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - CH_{2}^{-} 2 2 1 - CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - CH_{2}^{-} 1056 CH_{2}^{-} 2 2 1 - CH_{2}^{-} 1 - CH_{2}^{-} 1 - CH_{2}^{-} 1 - CH_{2}^{-} 2 2 1 - CH_{2}^{-} 1 - CH_{2}^{-} 1 - CH_{2}^{-} 2 2 1 - CH_{2}^{-} 1 - CH_{2}^{-} 2 2 1 - CH_{2}^{-} 3 - CH_{2}^{-} 4 - CH_{2}^{-} 3 - CH_{2}^{-} 4 - CH_{2}^{-} 3 - CH_{2}^{-} 4 - $CH_{$	1052	CH₂-	2	2	1	-	н	(S) OCH ₃ -CH-N-C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1053	CH2−	2	2	1	-	· H	
1056 CH ₂ -CH ₂ - 2 2 1 - H - CH ₂ -CH(CH ₃) ₂	1054	CH2-	2	2	1		н	(5) OCH ₂ CH ₃ -CH-N-C
1056 CH2- 2 2 1 - H - CH2-C-	1055	С├СН₂-	2	2	1	-	н	(S) OCH2CH3 -CH-N-C
CH ₂ CH(CH ₃) ₂ OCH	1056	С├СН₂-	2	2	1		н	(S) QCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃

Ta	h	le	1.	9	7
	\mathbf{u}		• •		•

Compd.	R' (CH ₂)	k	m	n	chirality	R³	-(CH2)p + (CH2)q G-R
1057	CHCH2-	2	2	1	-	H	(A) OCH2CH3 -CH4-CH2CH3
1058	CH-CH2-	2	2	1	-	н	CH2CH(CH3)5 -CH-M-C
1059	С⊢—СН2-	2	2	1	-	н	(5) OCF ₃ -CH+NC-CH CH ₂ CH(CH ₃) ₂
1060	Cr-CH ₂ -	2	2	1	-	н	(A) OCH ³ CH ³ -CH-V-C OCH ³ CH ³ CH(CH ³) ⁵
1061	C{}-CH₂-	2	2	1	-	н	(A) OCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
1062	CH-2- CH₂-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1063	C	2	2	7	-	н	(A) -CH-N-C
1064	CH2-	2	2	1	-	н	(R) P OCF ₃ - CH ₂ CH(CH ₃) ₂
1065	CH2-	2	2	1	-	н	(F) P OCH ₃ -CH-N-C
1066	CH2-	2	2	1	-	н	CH ₂ CH ₂ CH ₃ CH ₂ CH ₃
1067	CH-CH2-	2	2	1	-	н	(A) OCH3 -CH4-C

Т	а	h	le	. 1	[9	8

5	Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1068	CH2-	2	2	1	-	н	(A) OCH ₂ CH ₃ -CH ₁ CH ₂ CH ₃ -CH ₂ CH(CH ₃) ₂
1 5 .	1069	C├ - CH₂-	2	2	1	-	н	(R) OCH ₂ CH ₃ -CH-N-C OCH ₂ CH ₃ CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
	1070	с⊢(сн₂-	2	2	1	-	н	-C++ 2-C+2-C+2-C+2-C+2-C+2-C+2-C+2-C+2-C+2-C+
20	1071	CH2-	2	2	1	-	н	-CH-N-C-
25	1072	C⊢-(CH ₂ -	2	2	1	-	н	-CH-W-C
30	1073	C	2	2	1	-	н	-CHN C-CH ₂
35	1074	C	2	2	1	<u>-</u>	н	-CH-N-C
40	1075	C	2	2	1	-	н	-CH-NC
45	1076	C	2	2	٦	-	н	OHOCH, NO:
43	1077	C:— CH₂-	2	2	1	-	Н	-CH-N-C
50	1078	C:-CH ₂ -	2	2	1	-	н	-CH-N-C-CF3 -CH-N-C-C-CH-N-C-C-CH-N-C-C-CH-N-C-C-C-C
55								

-				-	9	\sim
- 1	2	n	le	7	ч	-
	•	_			~	_

Co	mpd. Vo.	R ² (CH ₂) _j -	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	79	C├ - CH₂-	2	2	1	-	Н	-CH- K-C-CH2
10	80	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-C
10	B1	C├ \ CH ₂ -	2	2	1	-	н	OCH3
10	82	CH-Ch ₂ -	2	2	1		н	(5) -CH+NC- -H
10	83	CHCH2-	2	2	1	- ·	н	(A) P C-(-)
10	84	C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1 G	85	C├ - CH₂-	1	2	0	R	н	-CH ₂ -N-C-NO ₂
10	86	C ├── CH ₂ -	1	2	C	R	н	$-CH_2-N$ C H_2N
10	87	CH-CH2-	1	2	C	R	н	-CH2-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
10	88	C	1	2	0	R	н	-CH2-N-C-
10	989	CI-CH ₂ -	1	2	0	R	н	-CH2-N-C-

	Ta	ы	e	1.	. 1	0	0
--	----	---	---	----	-----	---	---

5	Compd. No.	R ² (CH ₂)	k	m	n	chirality	E3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1090	С⊢-СН₂-	1	2	0	R	н	-CH2-N-C-
15	1091	C├ - CH ₂ -	1	2	0	R	н .	-CH2CH2-N-C
	1092	C├ \ CH ₂ -	1	2	0	R	н	-CH2CH2-N-C-
20	1093	С⊢СН2-	1	2	0	R	н	-CH2CH2-N-C-
25	1094	CHCH_2-	1	2	0	R	Н	-CH2CH2-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
30	1095	CH2-	1	2	0	R	H	-CH2CH2-N-C-
35	1096	C├ - CH₂-	1	2	0	R	н	-CH2CH2-N-C-NH
40	1097	C ⊢ C H₂-	1	2	0	R	н	-CH2OH2N-C-
45	1098	CI-CH2-	1	2	0	R	н	-CH ₂ -N-C
	1099	CH-CH2-	1	2	0	R.	н	-CH2-N-CSBr
	1100	CI-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
. <i>55</i>		·						

Table 1.	1	υ	7
----------	---	---	---

Compd.	R ¹ (CH ₂),	k	m	n	chirality	. A3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1101	C	1	2	0	R	н	-CH2-N-C-CH3
1102	C:CH2-	1	2	0	R	н .	-CH2-NCNO2
1103	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
1104	H ₃ C-CH ₂ - /	1	2	0	R	н	-CH2-N-C-Br
1105	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C
1106	H ₃ C-CH ₂ -	1	2	0	R	н	-сн ₂ -м-с
1107	н³С-∕Сн⁵-	1	2	0	R	н	-CH ₂ -N-C
1108	CH ₃ CH ₃	1	2	0	R	н	-CH2-N-C- CH3
	. CH3 CH3					н	-CH2-N-C
1110	CH ₃	1	2	0.	R	н	- CH2-N-C
1111	CH ₂ -	1	2	. 0	R	н .	-CH ₂ -N-C-CH ₃

Table 1		1	0	2
---------	--	---	---	---

5		R ¹ (CH ₂) _i -					.K3	$-(CH_2)_{\overline{p}} + \frac{\overline{H}^4}{H^5} (CH_2)_{\overline{q}} - G - H^6$
10	1112	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH2-NC
15	1113	C-√_CH₂-	2	2	1		H	-CH ₂ -N-C
20	1114	CH2-	2	2	1	-	н	-CH2-N-C
	1115	CH-Z-	2	2	1	-	н ·	-CH2-N-C
25	1116	CICH ₂ -	2	2	1	-	н	-CH ₂ -N-C
30	1117	CH2-	2	2	1	-	н	-CH ₂ -N-C
35	1118	— " c − c + z −	1	2	0	R	н	-CH ₂ -N-C-CF ₃
40	1119	H₃CS-CH₂-	1	2	0	R .	н	-Ch ₂ -N-C
45	1120	H ₃ CQ CH ₂ - OCH ₃	1	2	0	R	н	-CH2-N-C-CF3
							н	-CH2-N-C-CF3
50	1122	H3C CH2 CH2 CH(CH3);	1	2	0	R	Н	- CH ₂ -N-C-CF ₃
55								

1 4 U

Ta	5	٥	1.	1	0	3
, a	_		٠.		~	_

								4
5	Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	Ŕ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - R^6$
10	1123	CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
15	1124	O ⁵ M CH ⁵ -	1	2	0	R	н	-CH3-M-C-CL2
	1125	CH2-	2	2	1	-	н	- C1+ NC C1
20	1125	CH2-	2	2	1	-	н	OHO CH2
25	1127	CH2-	2	2	1	-	н	-c+hc-n+
30	1128	CH2-	2	2	1	-	н 	-CHNC-CF3
35	1129	CH-CH2-	.2	2	1	-	н	-CH-NC
40	1130	CH2−	2	2	1	-	н	-ch-hc-C
45	1131	CH2-	2	2	1	-	н .	OH-00CH-
	1132	CH2-	2	2	1	-	н	- CH NC - CF3
50	1133	CH2- H3CO CH2-	1	2	0	R	н	O4,0 CH, CF,
55								

Table 1.104

5	Compd. No.	R1 (CH ₂)	k	m	n	chirality	R³	ー(CH ₂) p (CH ₂) q G-R ⁶
10	1134	H ³ CO CH ⁵ -	1	2	0	R	Н	-сн ₂ -N-С-С _Б
15	1135	CH ₂ -	1	2	0	R	н	-CH2-N-C
	1136	H ₃ CO CH ₂ -	1	2	0	R	н	-CH2-N-C
20	1137	CH ₂ -	1	2	0	R	н	-CH2-N-C
25	1138	-CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
30	1139	(CH ₂) ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
35	1140	O ₂ N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
40	•	CH₂-					н	-CH ₂ -N-C
45	1142	СН₂-	1	2	0	R	н.	-CH2-N-C-CF3
50	1143	O-170	1	2	0	R	н	-CH2-N-C-CF3
	1144	H ₃ CO CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
55						·		

T - 1- 1	۱.	1.	4	Ω	5
Tab	ıe	٠,	. 1	U	J

Compd.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	['] R³	-(CH ₂) _{р 1} (CH ₂) _q G-F
1145	H ₃ CQ H ₃ CO CH ₂ - NO ₂	1	2	0	R	Н	-CH2-N-C-CF3
	CH10-(CH1-					н	-СH ₂ -N-С-СF ₃
1147	4c-c-4 045	1	2	0	R	н	-CH2-HC-CF3
1148	CH₂-	1	2	0	R	н	-CH2-NC-CF3
1149	CH ₃ CH ₂ -	1	2	0	Я	អ	-cH₂-N°C-
•	CH ₃ CH ₂ - CH ₃						-сн ₂ -ү-с
1151	N→CH₂- CH₃	1	2	0	R.		H
	CH ₃ CH ₂ - CH ₃				•	н	-CH2-N-C-N-H
	CH ₃ CH ₂ − CH ₃					H	-CH2-N-C-NH
1154	CH ₂ -CH ₂ -	1	2	0	R	Н	-CH2-N-C-N-C-H
1155	CH,	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-

Table 1.106

Compd. No.	R ¹ (CH ₂)-	k	m	n	chirality	. K3	-(CH ₂) _p (CH ₂) _q G-R ⁶
1156	СН; СН;-	1	2	0	R	н	-CH2-MC-(CH3)3
1157	CH ₃ CH ₂ -	1	2	0	R	H	-CH2-N-C-SSCH3
1158	CH ₃ CH₂- CH₃	1	2	0	R	н	-CH2-N-C-
1159	CH ₃ CH ₂ -	1	2	0	R	н	-CH2-N-C
1160	CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C
1161	OH H₃CO————————————————————————————————————	1	2	0	R	н	-CH2-N-C- CF3
1162	CH ₃ CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C-CF ₃
1163	H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1164	H ₃ CO—CH ₂ -	1	2	С	R	н	-CH2-N-C-CF3
1165	CH₂-	1	2	0	R	н ,	-CH ₂ -N-C-CF ₃
1166	Bt CH ₂ -	1.	2	0	R	н	-CH2-N-C-CF3

Table 1.	٦	σ	7
----------	---	---	---

5	Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
10	1167	с⊢(Сн₂-	2	2	1		H	-CH ₂ -N-C
15	1168	CL N CH2-	1	2	0	R	н	-CH2-N-C-CF3
	1169	13 C S N CH2-	1	2	0	R	н	-CH2-NC-CF3
20	1170	H CH ₂ -	1	2	0	R ·	н	-CH2-N-C-(CF3
25	1171	СНСн	1	2	0	R	н	-CH ₂ -N-C-Br
30	1172	CHCH2	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
35	1173	CHCH ₂ -	1	2	0	R	н	-CH2-M-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C
40	1174	CH-2-	1	2	0	R.	н	-CH2-N-C
45	1175	H₃C- CH₂-	1	·2	0	R .	н	-CH2-N-C
	1176	н₃с-{	1	2	0	R	н	-CH3-M-C-M-OH
50	1177	н₃с-{СН₂-	1	2	0	R	н	-CH2-N-C-N-C-N-OCH3
55								

Table 1.10) 8	0	.1	1	le	ь	Та	
------------	-----	---	----	---	----	---	----	--

Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) p CH₂)q G-R⁶
1178	H ₃ C-CH ₂ -	1	2	0	R	H	-CH2-N-C
1179	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
1180	H ₃ CCH ₂ -	1	2	0	R	н	-cH2-N-C-NH
1181	CH ₂ -CH ₂ -	1	2	0	R	н	-CH2-N-C
1182	CH ₃ CH ₃	1	2	0	R	H	-CH ⁵ -V-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1183	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH2-N-C-NH OCH3
1184	CH ₃ CH ₂ - CH ₃	1 '	2	0	R	н	-CH2-N-C
	CH3 CH3-					н	-CH2-N-C
1186	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-H
1187	CH-{-}-CH2-	2	2	1	-	н	-CH ₂ -N-C-Br
1188	С⊢СН₂-	2	2	1	•	н	-CH ₂ -N-C-Br
						•	

Т	а	h	le	1	. 1	0	9

	•							
	Compd.	R1 (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
9	. 1189	CH-CH2-	2	2	. 1	-	н	-сн ₂ -м-с-т
	1190	C	2	2	1	ż	н	-CH2-N-C-
5	1191	CH ₃ N CH ₂ − CH ₂ −	1	2	0	R.	н	-CH2-N-C-CF3
o	1192	CH ₂ - CH ₂ -	1	2	0	R	н	-сн ₂ -N-С
25		CH ₃					H	-CH2-N-C
80	1194	CH ₃	1	2	0	R .	н	-CH ₂ -N-C
95	1195	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C-Br
10	1196	CH ₃ CH ₂ − CH ₁	1	2	0	R	Н	-CH2-N-C
	1197	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
15	1198	CH ₃	1	2		R	н	-сн ₂ -№ С
50	1199	CH3 CH3- CH3-	. 1	2	0	R	н	-CH ₂ -N-C-CH ₃
55								

_						_
Ta	h	۱۵	1.	1	7	O

5	Compd. No.	R2 (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1200	CH ₃ N CH₂- CH₃	1	2	0	R	н	-CH2-N-C
15	1201	CH ₂ -	1	2	0	R	н	-CH2-N-C
	1202	CH ₂ -	1	2	0	R	, H	-CH ₂ -N-C-CF ₃
20	1203	н₃С-{_}-Сн₂-	1	2	0	R	н	-CH ₂ -N-C-C-C-C-C-S
25	1204	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -NC
30	1205	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C
· 35	1206	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
40	1207	H3C-CH2-	1	2	0	R	н	-CH₂-N-C-CF3
45	1208	н₃с—Сн₂-	1	2	0	R	н	-CH-N-C-CI
	1209	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CH ₃
50	1210	н₃С-{Сн₂-	1	2	0	R	н	-CH ₂ -N-C-CI
55								

Table 1.111

55

Compd. No.	R2 (CH2);-	k	m	n	chirality	H3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1211	H₃C-{CH₂-	1	2	0	R	н .	-CH2-N-C
1212	н₃с-{Сн₂-	1	2	0	R	н	-CH2-N-C-CF3
1213	CH2-	2	2	1	-	н	-CH ₂ -N-C
1214	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C
1215	CHCH2-	2	2	1	-	н	-CH ₂ -N-C
1216	CHCH2-	2	2	1	-	. н	-CH2-N-C
1217	CCH ₂ -	٦	2	0	R	н	-CH ₂ -N-C-CF ₃
1218	CH2-	1	2	0	R .	н	-CH ₂ -N-C- CH ₃
1219	CH2-	1	2	0	R.	н	-CH3-M-CH3
1220	CH2-	1	2	0	R ·	н .	-CH2-N-C
1221	C-√CH₂-	1	2	0	R	н	-CH2-N-C

121

Table '	1.	1	1	2
---------	----	---	---	---

5	Compd. No.	R 1 (CH ₂) _j -	k	m	n	chirality	. ^K 1	-(CH ₂) _{p 1} (CH ₂) _q G-R ⁶
10	1222	с⊢—Сн₂-	1	2	0	R	н	-c+2-N-c-1, c+2
15	1223	C;—CH₂-	1	2	0	R	н	-CH2-N-C-
20	1224	C:CH2-	1	2	0	R	н	-CH2-N-C
	1225	H ₃ C-CH ₂ -	1	2	0	₽ .	н	-CH ₂ -N-C-CF ₃
25	1226	H3C-CH2-	1	2	0	R	н	-CH2-N-C
30	1227	H ₃ C-CH ₂ -	1	2	0	R	н	-СH ₂ -N-С-СІ
35	1228	н₃С-{Сн₂-	1	2	0	R	н	-CH2-N-C
40	, 1229	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-F
45	1230	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-N-CH3
50	1231	H ₃ C-CH ₂ -	1	2.	0	Я	н	-CH2-N-C-
	1232	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-H-C
55								

Table	1.113
-------	-------

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p (CH ₂) q G-R ⁶
1233	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C-
1234	CH₃ CH₃-	1	2	0	R	, H	-CH2-N-C
1235	CH₃ CH₃-	1	2	0	R	н	-CH2-N-C-CI
1236	CH ₂ -	1	2	0	R	н	-CH2-N-C
1237	CH ₃ N CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C
1238	CH ₃ CH ₂ -					н	-CH ₂ -N-C-H ₃
1239	CH ₃ CH ₂ -	1	2	0	R .	н	-CH2-N-C-
1240	CH ₃ CH ₂ - CH ₃	1	2	0	R.	н	-CH ₂ -N-C-NO ₂
1241	C	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1242	С├-{}Сн²-	2	2	1		н	-CH2-N-C-CH3
1243	CH2−	2	2	1	-	н	-CH2-N-C-CH3

Table 1.114

55

		_						
5	Compd. No.	R ² /(CH ₂)j-	k	m	ר	chirality	Ά²	-(CH ₂) _p (CH ₂) _q G-R ⁶ R ⁵
10	1244	с⊢(сн₂-	2	2	1	-	н	-CH2-N-C-
15	1245	с⊢Сн₂-	2	2	1	•	н	-CH2-N-C
	1246	C⊢(2	2	1	-	н	-сн ₂ -ү-с-ү-сн ₃
20	1247	С⊢СН2-	2	2	1	-	н	-сн ₂ -м-с-
25	1248	CH-2-	2	2	1	٠	Н	-CH ₂ -N-C-NO ₂
30	1249	C├ - CH ₂ -	1	2	0	R	н	-CH2-N-C
35	1250	H ₃ C-CH ₂ -	1	2	О	R	н	-CH2-N-C
40	1251	CH ₃	1	2	0	R	н	-CH-H-C
	1252	С⊢СН2-	1	2	0	R	н	-CH2-N-C-CH(CH2)2
45	1253	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
50	1 254	CH ₃ CH ₂ -	1	2	0	R	н	-CH2-N-C-CH(CH3)2

Ta	Ы	e	1	.1	1	5

5	Compd. No.	R ¹ R ² (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1255	с{	1	2	0	R	н	-CH ₂ -N-C
15	1256	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	1257	CH ³	1	2	0	R	н	-CH ₂ -N-C-B-
20	1258	н,с-СН2-	1	2	0	R	н	-CH ₂ -N-C-
25	1259	CH ₂ CH ₂ -	1	2	·. •	R .	Н	-CH2-N-C
30	1260	н₃с-{	1	2	0	R	н	-CH2-N-C-
35	1261	C├ - CH ₂ -	1	2	0	R	н	-CH2-N-C-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O
40	1262	H ₃ C-CH ₂ -	1	2	0	я	н .	-CH2-N-C-(CH3)3
45	1263	CH ₃	1	2	0	Я	н	-CH ₂ -N-C-(CH ₃) ₃ H ₃ C
	.1264	С⊢СН₂-	1	2	0	R	н	-CH ₂ -N-CCO
	1265	H ₂ C————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
55								

Т	2	h	ie	1	1	1	6
	_	_	16		. 1	•	•

5	Compd. No.	R2-(CH2);-	k	æ	n	chirality	R³	—(CH ₂) , T (ĊH ₂), G−R ⁶
10	1266	CH ₃ CH ₂ CH ₃	1	2	э	R	н	-CH ₂ -N-C
15	1267	с-С-сн2-	1	2	0	a	н	-CH2-NC-NTOCF3
	1268	с⊢СН₂-	1	2	0	R	н	-CH ₂ -N-C-
20	1269	CH_CH2-	1	2	0	R	н	-CH ₂ -N-C-→Br
25	1270	сн-Сн-	1	2	0	R	н	-CH2-HC CI
30	1271	с⊢Сн₂-	1	2	0	R	. н	-CH2-NC-F
35	1272	H ₃ C-CH ₂ -	1	2	0	R .	н	-CH2-NC-NHOCF3
40	1273	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	1274	H ₃ C-CH ₂ -	1	2	0	Я	н	-CH2-N-C
45	1275	н₃С-{Сн₂-	1	2	0	R	н	-CH2-N-C- HO
50								-CH ₂ -N-C
							•	

Ta	h	۱۵	1	1	Ť	7
	_				•	•

5	Compd.	R ¹ (CH ₂);	k	m	n	chirality	[°] R³	$-(CH_2)_{p}$ $+ \frac{F_1^4}{P_5}$ $(CH_2)_q$ $G-P_1^6$
10	1277	CH³ CH³-	1	2	0	R	н	-CH2-N-C-N-C-N-H
15	1278	CH ₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-
	1279	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
20	1280	CH₃ CH₂-	1	2	0	R	н	-сн²-И-с- о о
25	1281	CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-CF
30	1282	с⊷Сн₂-	2	2	1	· .	н	-CH2-N-C-N-C-N-OCF3
35	1283	С├—СН₂-	2	2	1	-	н	-CH2-N-C
40	1284	CH2-	2	2	1	-	н	-CH2-N-C-
45	1285	С₩_СН₂-	2	2	1	-	н	-сн ₂ -№ с-
50	1286	H3C, N3C,	1	2	0	R	н	-CH2-N-C-CF3
50	1287	0 ₂ N-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
55		·						·

Ta	Ь	ما	1	.1	1	Я
1 4	u	ıe			•	v

5	Compd. No.	R ² (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
10	1288	HQ H₃CO—CH₂-	1	2	0	A	н	-CH2-N-C-CF3
15	1289	CH ₃ CH ₃ -	1	2	o	Я	н	-CH2-N-C
	1290	CH ₂ CH ₂ -	1	2.	0	R	н	-CH ₂ -N-C
20	1291	н₃С-{Сн₂-	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
25	1292	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
30	1293	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
35	1294	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
40	1295	н₃с-СН₂-	1	2	0	, R ,	н	-сн ₂ -N-с-(СН ₃) ₃
45	1296	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-SCH3
	1297	н₃с-{_}-сн₂-	1	2	0	R	н	-CH2-N-C-CH3
50	1298	H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CH ₃
55		D.t.						

Table 1.119

5	Compd.	R (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p 1 (CH ₂) _q G-R ⁶
10	1299	H ₃ CO CH ₂ -	1	2	0	R	н	-CH2-NC-CF3
15	1300	OCH ₂ -					н	-CH ₂ -N-C-CF ₃
	1301	OCH ₃ H ₃ CO CH ₂ -	1	2	0	· R	н	- СH2-N-С-СF3
20	1302	H ₃ CO CH ₃	1	2	0	R	н	-CH2-N-C-CF3
25	1303	H ₃ CO CH ₂ -	1	2	0	R	н	-CH2-N-C
30	1304	CH2-CH2-CH2-	1 .	2	0	R	Н	-сн ₂ -м-с-СF3
35	1305	H3CO-CH2-	1	2	0	R	н	-CH2-N-C-CF3
40	1306	H ₃ CCH ₂ O H ₅ CO————————————————————————————————————	1	2	0	R .	н	-CH2-N-C-CF3
45	1307	H ₃ CO CH ₂ -	1	2	0	R	н	-сн ₂ -N-С-СF ₃
	1308	CH2-	1	2	0	R	н	-сн,-м-С-С-, CF3
50	1309	H ₃ CQ H ₃ CO————————————————————————————————————	1	2	0	А	н	- CH ₂ -N-C-(СF ₃)
55								

Table 1.120

5	Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	Ь	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1310	H0-CH2-	1	2	0	P.	н	-CH₂-N-C-
15	1311	CH₂-	1	2	0	R	н	-CH ₂ -N-C
20	1312	CH2-	1	2	0	R	н	-CH2-N-C-CF3
	1313	Br CH ₂ -	1	2	0	R	Н	-сн ₂ -N-С-СF ₃
25	1314	O ₂ N CH ₂ -	1	2	o ·	R	н	-CH ₂ -N-C-CF ₃
30	1315	H ₃ C CH ₂ -	1	Ź	0	R	н	-CH2-N-C
35	1316	F ₃ C C———————————————————————————————————	1	2	0 .	R ·	H .	-CH₂-N-C-CF3
40	1317	O ₂ N CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
45	1318	CH_CH2-	1	2	0	R	Н	-CH2-N-C-CF3
50	1319	CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	1320	BCH₂-	1	2	0	R	н	-CH2-N-C-CF3
55								

5	Compd.	R ¹ (CH ₂),-	k	m	n	chirality	H3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1321	С⊢СН2-	1	2	0	R	н	-CH2-N-C-
15	1322	C├ - CH₂-	1	2	0	R	н	-CH2-N-C-CH3
73	1323	C├ - CH₂-	1	2	0	R	н	-CH2-NC-CI
20	1324	CHCH2-	1	2	0	R	н	-CH ₂ -N-C
25	1325	CHCH2-	1	2	0	R	н	-CH2-N-C
30	1326	CH-CH2-	1	2	0	R	н	-CH2-N-C
35	1327	CHCH2-	1	2	0	R .	н	-CH ₂ -N-C
40	1328	H ₃ C-√CH ₂ -	1	2	С	R .	н	-CH2-N-C- Br
45	1329	H ₂ C-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
	1330	H ₃ C-CH ₂ -	1	2	0	R	н .	-CH2-N-C
50	1331	H ₃ C-CH ₂ -	1	2	O	R	н	-CH2-N-C-CH3
55								

Table 1.122

5	Compd. No.	R ² (CH ₂);	k	m	n	chirality	Ŕ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
10	1332	H ₃ C—CH ₂ -	1	2	0	R	н	-CH2-N-C
15	1333	H ₃ C-\(\)-CH ₂ -	1	2	0	Я	н	-cH²-N-C-
	1334	H ₃ C-CH ₂ -	ì	2	0	R	н	-CH ₂ -N-C-CH ₃
20		CH3 CH3− CH3					н	-CH2-N-C
25	1336	CH³ CH³-	1	2	0	R	Н	-CH ² -V+C-CH ³
30		CH ₃ CH ₂					н	-сн ₂ -N-С-С
35	1338	CH ₃ CH ₃	1	2	0	R .	н	-сн ₂ -м-с
40	1339	CH ₃	1	2 ·	0	R	н	-CH2-N-C
45		CH ₃ CH ₃					Н	-CH ₂ -N-C-
50	1341	CH ₂ CH ₂ -	1 .	2	0	R	н	-CH ₂ -N-C- H ₂ N CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃
	1342	C	2	2	7	-	н	-CH ₂ -N-C
55								

Table 1.123

Compd.	R ¹ /(CH ₂) ₁ -	k	m	n	chirality	R³	-(CH ₂) p S (CH ₂) q G-R ⁶
1343	CH-CH2-	2	2	1	-	н	-CH2-N-C-CH3
1344	C├──────────────	2	2	1	-	н	-CH2-N-C
1345	С-СН₂-	2	2	1	-	н	-CH2-HC CH3
1346	С⊢СН2-	2	2	1	-	н	-CH2-N-G
1347	C ⊢ CH₂-	1	2	0	R _.	н	-CH2-N-C-(STCH3
	H ₃ C-CH ₂ -		•		R.	н	-CH2-N-C-S-CH3
1349	CH³- CH³-	٦	2	0	R	Н	-CH ₂ -N-C-S-CH ₃
1350	C├ - CH ₂ -	2	2	1	-	н	-сн ₂ -м-с
1351	CH-CH2-	1	2	0	R	н	-012-12-C-013
1352	H ₃ C-CH ₂ -	1	2	0	R ·	н	-012-H.C.
1353	CH ₂ -	1	2	0	R	н	-012-11 C-013

~	_	L	۱.	1.	4	2	1
- 1	а	D	le	١.	. 1	~	4

5	Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	[ั] ล³	$-(CH_2)_{\overline{D}} + (CH_2)_{\overline{q}} G - R^6$
10	1354	СН-СН2-	2	2	1	-	н	-C13-11-C-C13
15	1355	С-Сн2-	1	2	0	R	н	-CH2-N-C
	1356	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CN
20	1357	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C-
25	1358	ССН2-	2	2	1	<u>-</u> ·.	Н	-CH2-N-C-
30	1359	CH3 CH3-	1	2	0	R	н	-CH2-N-C-
35	1360	CH3	1	2	0	R	.	-CH ₂ N-C -CH ₃ -CH ₃ -CH ₃ -CH ₃
40							н '	-сн ₂ -N-с
45	1362	CH³-	1	2	0	R	н	-CH2-N-C-CH3
	1363	CH³ CH³-	1	2	0	R	н	-CH ₂ -H-C-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃
50	1364	H ₃ C-CH ₂ -	. 1	2	0	R	н	-CH ⁵ -N-C-CH ³
55								

Table 1.125

Compd. No.	R ¹ / _{R²} (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p 5 (CH ₂) q G-R ⁶
1365	CH3 CH3-	1	2	0	R	н	-CH2-N-C-
1366	CH ₃ CH ₃ -	1	2	0	R	н	-CH2-N-C
1367	H3C-CH2-	1	2	.0	R	н	-CH2-14-C
1368	CH-CH ₂ -	1	2	0	Я	н	-CH ₂ -N-C
1369	CH2−CH2−	1	2	0	R	н	-CH ₂ -N-C
1370	С⊢СН₂-	1	2	0 -	R	н	-CH2-N-C-SBr
1371	C├ - CH₂-	1	2	0	R	н	-CH ₂ -N-C-
1372	CHCH2-	1	2	0	R	н	-C12-NC-
1373	H ₂ C- C H ₂ -	1	2	0	R	н	-CH2-N-C
1374	H₃C-€	1	2	0	R	н	-CH ₂ -N-C
1375	H ₃ CCH ₂ -	1	2	0	R	н	F3CCH2O -CH2-N-C-S Br
				- 			

Table 1.	7	2	ь
----------	---	---	---

5	Compd. No.	R2 (CH2);-	k	m	n	chirality	R³	-(CH ₂) , G (CH ₂) - G - R ⁶
10	1376	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
15	1377	H ₃ C-CH ₂ -	1	2	0	R	н	- CH 2- 11 C-
		CH³ CH³-					н	-CH2-N-C- CI
20	1379	CH ₃ CH ₃	1	2	0	R	н	OCH2CF3 -CH2-N-C- F3CCH2O
25		CH₃ CH₂- CH₃					н.	-CH2-NC-S Br
30		CH ² -					н	-CH ₂ -N-C-
35	1382	CH3 CH3	1	2	0	R .	н	-012-M2-
40	1383	CH-2-	2	2	1	-	н	-сн ₂ -N-С-СГ
45	1384	CH-2-					H	-CH2-N-C-S Br
50	1385	C├ \ CH₂-	2	2	1	-	Н	-CH2-N-C-
	1386	C├ - CH₂-	2	2	1	-	н	-012-HC-
55								

Ta	h	ما	1	1	2	7
	•			. ,	-	•

Compd No.	. R ¹ (CH ₂)-	k	m	n	chirality	H ³	—(CH ₂) _p
1387	CH ₃	1	2	0	R	н	-CH2-N-C
1388	CH ₃ CH ₂ - CH ₃	1	2	0	R	н.	-CH ₂ -N-C-(CH ₃) ₃
1389	CH ₃ N CH ₂ − CH ₃	1	2	0	R	н	-CH2-HC-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1390	H ₃ C CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1391	H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1392	C1 H ₃ C—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1393	н₃ссн ₂ —⟨	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1394	O ₂ N H ₃ C-CH ₂ -	1	2	0	R	н 	-CH2-N-C-CF3
1395	н ₂ С=СН-{	1	2	0	Ŗ	н	-CH₂-N-CCF3
1396	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
1397	8r, B—CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3

Table 1.12	. ၓ
------------	-----

							_	
5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	·R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10		CH-CH-CH-					. н	-CH2-N-C-CF3
15	1399	CH-CH-CH-	1	2	0	R	'н	-CH ₂ -N-C-CF ₃
20	1400	CH-CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	1401	н₃с-{Сн₂-	1	2	0	R	н	-CH2-N-C-N-C-N-CI
25	1402	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
30	1403	H ₃ C-CH ₂ -	. 1	2	0	R	Н	-CH2-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
35	1404	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
40	1405	н ₃ с-Сн ₂ -	1	2	0	R	н	-CH ₂ -N-C-N H ₃ CS
45	1406	н ₃ с-Сн ₂ -	1	2	0	R	н	-CH2-N-C
50	1407	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-
	1408	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-M-C-
55								

Ta	b	le	1.	.1	2	9
ום	u	16		, ,	۲.	_

Compd. No.	R ² (CH ₂) _j -	k	m	n.	chirality	Ŕ³	-(CH ₂) , 1 (CH ₂) , G-R ⁶
1409	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-CH3
1410	CH₃ CH₂- CH₃	1	2	0	R	н	-CH2-N-C-
	C				R	н	- 012- Nr C- Nr
1412	H ₃ C-CH ₂ -	1	2	0	R	н	-ar-hç-yr
1413	CH ₃	1	2	0	R	н	-CH ⁵ - H-C-C-NH
1414	C⊢CH₂-	2	2	1	-	H	-CH2-N-C-VH
1415	C├──CH ₂ -	1	2	0	R	Н	-CH2-N-C-SCN
1416	H ₃ C-CH ₂ -	í	2	0	R	н	-CH2-N-C-SCN
1417	CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCN
1418	С⊢—СН₂-	2	2	1	-	н	-CH2-NC-SCN
1419	C ← CH ₂ -	1	2	0	R	н	$-CH_{2}-N$ $-CH_$

~~	- 1	_ 4		•	\circ (٦
Ta	יוס	е :	١.	ι.	3 (J

5	Compd. No.	R ¹ /(CH ₂) _j -	k	m	'n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	1420	H₃C- \ CH₂-	1	2	0	R	н	-CH2-N-C-SH
15	1421	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-N-C-SH
20	1422	C⊢√CH2-	2	2	1	-	н	-CH2-N-C
20	1423	CH2−	1	2	0	R	н	-CH2-N-C-
25	1424	H ₃ C-CH ₂ -	1	2	0	R	н	-cH2-H-c
30 .	1425	CH ₃ CH ₂ CH ₃	1	2	0	R .	н	-CH2-N-C-
35	1426	СН2-	2	2	1		н	-CH ₂ -N-C-
40	1427	ССН2-	2	2	1		н	-CH2-N-C-NH H3C-NH
45	1428	CHCH ₂ -	2	2	1	-	н	H >==>
50	1429	њссн ₂О(СН2-	2	2	1	-	Н	-CH2-N-C-
	1430	O—CH₂-	2	2	٦	-	н	H ₂ N CI -CH ₂ -N-C- H H ₂ N
55		<u> </u>						

Ta	ь	le	1	. 1	3	٠
1 a	D	ıe		. 1	J	

		• • • •							
5	Compd.	R'>	(CH ₂) _i —	k	m	n	chirality	Ŕ³	-(CH ₂), (CH ₂), G-R ⁶
10	1431	H°C5H³O-	-Сн;-	2	2	1	•	н	-CH2-N-C
15	1432			2	2	1	-	н	-CH ₂ -N-C
,,	1433	#CCH ⁵ O-	Сч3-	2	2	1	-	н	-снт-м-снт-Снт-Сть
20	1434	н₃ссн₂о-	-СH2-	2	2	1	-	н	-сиг-мс
25	1435	н _а ссн _а —	C H₂−	2	2	1	-	H	-CH ₂ -N-C-
30	1435	(H ₀ C)₂CH−	O-017	2	2	1	-	н .	-CH ₂ -N-C
35	1437	ӊс(сн,) ,о	{-}- C+2-	2	2	1	-	н.	-CH ₂ -N-C
40	1433	њссн₂	()-CH2-	2	2	1	-	Ħ	-CH ₂ -N-C-
45	1439	(H ₂ C)₂CH	O-cur	2	2	1	-	н	-CH2-N-C
	1440	h²C(CH²I²O	~~~~~~	2	2	1	-		-CH2-NC-
50	1441	н₃сѕ-√	CH3-	2	2	1	•	н	-CH2-N-C
55									

Table	1.	1	3	2
-------	----	---	---	---

5	Compd No.	R2 (CH2)j-	k	m	n	chirality	Ь,	-(CH ₂) p 1 (CH ₂) q G-R ⁶
10	1442	њссн₂—Сн₃	- 2	2	1	-	н	-CH- NC-
15	1443	(HC)2CH-C	- 2	2	1	-	н	-cH-Mc-
	1444	ӊс;сн ₂ ј ₂ о-()- он ₂ -	. 2	2	1	-	ч	-CH2-NC-
20	1445	њссн₂-{_}сн₂-	2	2	1	-	н	-cH- NC- CH-CH-
25	1446	(Hc)2CH-{}-CH7	2	ż	1	-	н	-CH2-NC
30	1447	н²С(Си³)²С—Оч³-	2	2	1	-	н	-012-10-010-375
35	1448	H3CS-CH2-	2	2	1	-	н .	-CH- N-C
40	1449	н₃ссн ₂ —Сн ₂ -	2	2	1	-	н	-CH2-N-C-CE3
45	1450	(HC),CH	2	2	1	-	н	-CH2-N-C-CF3
	1451	(H3CCH2) 3N-(-)-CH2-	2	2	1	-	н	-CH2-N-C-CF3
50	1452	HQ H ₂ CO————————————————————————————————————	2	2	1		н	-CH2-N-C-CF3
55						· · · · · · · · · · · · · · · · · · ·		

T	а	h	le	1	. 1	3	3
	a	\mathbf{r}	<i>i</i> =	• • •		•	_

5	Compd.	R1 (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p I ₅ (CH ₂) _q G-R ⁶
10	1453	ңс(сн ₂),о——— он ₂ -	2	2	1	•	н	-сн ₂ -N-С-С _г
15	1454	њссн 20 − СН2−	2	2	1	-	н	-CH2-N-C
,,,	1455	H₃CQ HO————————————————————————————————————	2	2	1	٠	н	-CH2-N-C-CF3
20	1456	О—Сн₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
25	1457	(CH ₃) ₂ N-C-i ₂ -	2	2	1	-	H	-CH2-N-C-
30	1458	H ₃ CQ HO—CH ₂ -	2	2	1	~	н	-CH ₂ -N-C-
35	1459	(H3C)2N-CH2-	2	2	1	·	н	-CH2-N-C-Br
40	1460	H ₃ CO HO—CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
45		H ₃ CQ HO—CH ₂ -					н	-CHT NCHT CCH
50	1462	H0-CH2-	2	2	1 .	•	н	-CH2-N-C
50	1463	ССН2-	2	1	1	-	н	-CH2-N-C-CF3
55								

Table 1.134

5	Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁵
10	1464	CHCH2-	2	1	1	-	н	-CH2-N-C-CCF3
15	1465	С├─िСН₂-	2	1	1	-	н	-CH ₂ -N-C
	1466	С├-{Сн₂-	2	1	1	-	н	-CH2-N-C-
20	1467	C	2	1	1	-	н	-CH2-N-C-
25	1468	С├-(СН₂-	2	1	.1	-	н	-CH2-N-C
30	1469	C├ ~ CH ₂ -	2	1	1	- .	н	-CH ₂ -N-C
35	1.470	С⊢СТ∕−СН₂−	2	1	1	-	н	-сн ₂ -м-с- Сі
40	1471	ССн ₂ -	2	1	1	-	н	-CH2-N-C-
45		CH ₃ CH ₂ -				R	н	-CH ₂ -N-C-CF ₃
	1473	Br S CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
50	1474	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
55						·	·	

Та	ы	le	1.	1	3	5

Compd.	R ² (CH ₂),-	k	m	n	chirality	R ³	-(CH ₂) р (CH ₂) q G-R ⁶
1475	Ch CHT	1	2	0	R	н	-CH2-N-C
1476	B CH ₂ -	1	2	0	Я	н	-CH2-N-C-CF3
1477	B-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1478	B	1	2	0	R	н	-СH ₂ -N-С-СF ₃
1479	н,с- Сн, Сн,	1	2	0	R _.	н	-СH ₂ -N-С-СF ₃
1480	н₃с-СН ₂ -					Н	-CH ₂ -N-C CF ₃
1481	H ₃ C ← CH ₂ -	1	2	0	R .	н	-CH₂-N-C
1482	B/CH₂-	1	2	0	R	н	-CH ₂ -N-C
1483	H ₃ C CH ₂ -	1	2	0	R	н	-CH3-HC-C-3
1484	C- 1 5 CH1-	1	2	0	R	н	-CH2-NC-CF3
1485	H ₂ C-CH ₂ -	1	2	С	R	н	-CH ₂ -N-C

Table	1.	1	3	6
-------	----	---	---	---

5	Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{15}}(CH_2)^{-}G-R^6$
10	1486	н₃с-()-сн₂-	1	2	0	R	н	-CH ₂ -N-C
15	1487	H ₃ C-CH ₂ -	1	2	o	R	н	-CH2-N-C-
	1488	н,С-СН,-	1	2	0	R	н	-сн²-и-с-Д b сн²
20	1489	H ₂ C-(CH ₂ -	1	2	0	R	н	-cH2-N-C
25	1490	H ₃ CCH ₂ -	1	2	0	R .	H _.	-сн ₂ -м-с-
30	1491	H ₃ C-CH ₂ -	1.	2	0	R	н	O CH2-NH2 O C-O
35	1492	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C-N-NO2
40	1493	CH ₃	1	2	0	R	н	-on- Ng- 5%
45		CH ₃				R	н	-CH₂-N-C
	1495	CH ₃ CH ₂ -	1	2	0	Я	н	-CH-N-C
50	1496	CH ³	1	2	0	R	н	-CH2-H-C-CH3
55								

Τa	ы	e	1	. 1	3	7

5	Compd. No.	R1 (CH2);-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
10	1497	CH ₃	1	2	0	R	н	-CH3-V-C
15	1 498	CH3- CH3-	1	2	0	R	н	-сн ₂ -и с-
15	1499	CH ₂ -	1	2	0	· 8	н	-CH ⁵ -W-C-\
20 .	1500	CH ₂ -	1,	2	0	R ·	н	-сн ₂ -м-с
25	1501	CH ₃	٠ 1	2	0	R	н	-сн ₂ -х-с-
30	1502	CH₃ CH₂-	1	ż	0	R	н.	-CH ₂ -N-C
35	1503	CH ₃ N CH ₂ - CH ₃	1	2	0	R	Ħ ·	-CH2-NC
40	1504	H ₂ N-CH ₂ -	1	2	0	R	н	-CH2-N-C-
	1505	CH2O CH2-	1	2	0	R	н .	-CH3-M-C-CF3
45	1506	с{	2	1	1	-	н	-CH ₂ -N-C
50	1507	C	2	1	1		н	-CH2-NC
55								

Tat	ole	1.	1	3	8
-----	-----	----	---	---	---

Compd.	R2 (CH2);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1508	с;—Сн;-	2	1	1	•	н	-CH2-N-C-F
1509	С⊢СН₂-	2	1	1	-	н	-c-12-12 c-
1510	с⊷(сн₂-	2	1	1	-	н	-CH2-N-C-
1511	CH-€CH2-	2	1	1	-	н .	-CH2-NC-S
1512	снСн₂-	2	1	1	-	н	-CH ₂ -N-C-
1513	CH2-	2	1	1	-	н	-CH2-K-C
1514	(H ₃ CCH ₂) ₂ N-C-H ₃ -	2	2	1	- .	н	-CH2-N-C-
1515	H3 H3CO—CH2-	2	2	1	-	Н	-CH ₂ -N-C-
	(H3COH3)2N	2	2	1	-	н	-CH2-HC-B1
1517	HQ. H₃CO————————————————————————————————————	2	2	1	-	H	-CH2-NC-
1518	H ₃ CO-CH ₂ -	2	2	1	-	H	-CH2-NC-OH

13	9
ì	3

5	Compd.	R (CH ₂)	k	m	n	chirality	. B3	-(CH ₂) p (CH ₂) q G-R ⁶
10	1519	носн₂-	2	2	. 1	-	Ħ.	-CH2-MC
	1520	Вг—СН₂-	1	2	0	R	н .	-CH2-N-C-
15	1521	H₃CO	1	2	0	R	н	-CH2-N-C-
20	1522	CH ₂ -	1	2	0	R	н	-cH2-N-C-
25	1523	н ₃ со Сн ₂ -	1	2	0	R	н	-CH2-N-C-
30	1524	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-
35	1525	Br—CH₂-	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
40		н₃со-{_}сн₂-				•	н	-CH ₂ -N-C
45	1527	-CH ₂ -	1	2	0	R	н	-CH2-N-C-()
	1528	н₃СО н₃СО————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
50	1529	H ₃ CQ - HO————————————————————————————————————	1	2	0	R	н	-CH2-N-C-C-CF3
55								

Comp	ාර.	R\	/CU.\							·
		R ²	(СП2)		k	n	n n	chirality	R³	—(CH ₂) , (CH ₂) G−R ⁶
1530		в	сн	2-	1	2	C	R	н	-СH2-N-С- СF3
1531	н	₃co-{		-1 ₂ -	1	2	0	R	н	-CH2-N-C
1532		2) —Сн₂-	-	1	2	0	R	н	-CH2-N-C-(CF3
1533	Hj	н₃со ,со-{	сн	2-	1	2	0	R	н	-сн ₂ -м с С С ,
1534	}	13.00	∕ −Сн ₂ -	-	1	2	0	R	н	-CH₂-N-C-CF3
1535	8) —Сн₂~		1 .	2	0	R	н	-CH ₂ -N-C
1536	Нз	:o-{	_у̀—сн₂	-	1	2	0	R	H	-CH ₂ -N-C
537	8	0	СH ₂					R	н .	-CH2-N-C-(CF3
538	H ₃ C	;o-{ ₃co	> -Сн₂-		1	2	0	R	н	-CH2-N-C
								R	н	-CH ₂ -N-C
540	8~	~ <u></u>	−CH ₂ −	1		2	0	R	н	-CH2-N-C-(CF3
									· · · · · · · · · · · · · · · · · · ·	,

Table 1.14	47	ı
------------	----	---

C	Compd. No.	R2 (CH2),-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
-	1541	н₃СО-{Сн₂-	1	2	0	R	н	-CH2-N-C- CF3
-	1542	CH₂-	1	2	0	R	н	-CH2-N-C-(F3
•	1543	H ₃ CQ H ₃ CO-C-H ₂	1	2	0	R	н	-CH ₂ -N-C
-	1544	H ₃ CQ	1	2	0	R	н	-CH ₂ -N-C
	1 545	CL_S_CH2-	1	2	0	R	н	-CH2-HC-CF3
-	1545	H₃CO F CH₂-	1	2	0	R	н	-сн ₂ -м-с-
	1547	H₃CO	1	2	0	R	н	-сн ₂ -м-с-СF ₃
	1548	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ⁵ -H ² CH ² CH ²
		H ₃ C-CH ₂ -					Н	-CH ₂ -N-C
	1550	H ₃ C-CH ₂ -	1	2	0	R	Н	-042-12 C-12 C-12 CH3 -042-12 C-12 CH3 -043-12 C-12 CH3 -043-12 CH3
	1551	H₃C-CH₂-	1	2	0	R	н	-cH2-HC-

Ta	ь	le	1	. 1	4	2

5	Compd.	R ² (CH ₂);-	k	m	n	chirality	, B ₃	-(CH ₂) _p + (CH ₂) _q G-R ⁶
	No.	R ² / (5.12)						R5 (5.12)q
10	1552	H3C-CH2-	1	2	0	R	н	-CH5-N-C-
15	1553	H ₃ C-CH ₂ -	1	2	0	R	н	-01'-Ng-2;
	1554	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
20	1555	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C
25	1556	н₃С-{	1	2	0	R	н	-CH _Z -N-CO H ₃ C
30	1557	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH2-N-C-NN H3C
35	1,558	H ₃ C-CH ₂ -	1	2	0	R .	н	-CH2-N-C-N-CH3
40	1559	H ₃ C-CH ₂ -	1	2	0	R .	н	H ³ C, WN C(CH ³) ³
45	1 560	H ₃ C-CH ₂ -	1	2	0	R	н	-CH3-H-C
	1561	H₃C-()-CH₂-	1	2	0	R	н ·	-CH3- V-C- CH3 CH3 CH3
50	1562	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-
55							· ·	

Ta	ħ	le	1.	1	4	3

	(abic							
5	Compd.	R ¹ (CH ₂);	k	m	n	chirality	. ' A3	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^{-R^6}$
10	1563	H3C-(1	2	0	R	н	-cm- "c-
15	1564	н₃С-{СН₂-		2	0	8	н	-cH2-12c-
	1565	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-NC-CI
20	1566	CH ₂ CH ₂	1	2	0	R	н	-CH2-N-C
25	1567	CH³ CH³-	1	2	0	R	н	-cut-Hc-
30	1568	CH3 CH3	1	2	C	R	н	-01-Hc -01
35	1569	CH ₃ CH ₂ -	1	2	0	R	н	-cH1-#2
40	1570	H3CS-CH2-	2	2	1	•	н	-CH ₂ -N-C-
45	1571	H3CS-CH2-	2	2	1	•	н	-CH-NC-SCH
	1572	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	2	1	-	н	-CH ₂ -NC-CF ₃
50	1573	#,co- \ -;°	2	2	1	-	н	-CH2-N-C-
55								

Table 1.	1	4	4
----------	---	---	---

5	Compd. No.	R ¹ /(CH ₂)j-	k	m	n	chirality	[°] R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
10	1574	" c ← C + C + C + C + C + C + C + C + C + C	2	. 2	1	-	н	-сн ₂ -м-с-С _F 3
15	1575	c-(-)-:::-	2	2	1.	-	н	-CH2-NC-CF3
20	1576	~ ~ CH₂-	2	2	1	-	н	-сн ₂ -м-с-С _Б
	1577	HO(CH3 4- H C	2	2	1	•	н	-CH2-N-C-CF3
25	1578	м,с с—си <u>г</u> -	2	2	1	•	н	-CH2-N-C-CF3
30	1579	CH2 OH2-	2	2	1	-	н	-CH2-NC-CF3
35	1580	N+c- 0 0 0 0 0 0 0 0	2	2	1	- .	н	-CH₂-H-C-CF3
40	1581	с⊢СН₂-	2	2	1	-	Н	-CH2-NC-
45	1582	CH-CH2-	2	2	1	-	н	-01- N.C. S. H.
	1583	CH2-	1	2	0	R	н	
50	1584	CHCH2-	1	2	0	R	н	-CH ₂ -N-C
55								

Table 1.145

		.145						
	Compd.	H (CH ₂)-	k	m	n. (chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
	1585	CH-CH2-	1	2	0	R	н	-CH2-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	1586	CHCH2-	1	2	0	R ·	н	-CH2-NC-
	1587	CHCH2-	1	2	0	R	н	-CH ₂ -N-C-
	1588	сн Сн2-	1	. 2	0	R	н	-СH ₂ -N-С-СН ₃
•	1589	H3C-(-)-CH2-	1	2	٥	R	н	-CH ₂ -N-C
	1590	H ₃ C-CH ₂ -	1	2	0	R	н.	-CH2-NC
	1591	H ₂ C-CH ₂ -	1	2	0	R	н	-CH2-NC-
	1592	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-N-C-
	1593	H ₃ C-CH ₂ -	1	2	0		н	-CH ₂ -N-C-
	1594	CH ₃	1	2	0	R	н	-CH2-N-C
	1595	CH ₃	1	2	0	A	Ħ	-CH ₂ -N-C
		СНэ						•

Table 1.146

Compd. No.	R2 (CH ₂);	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
1596	CH ₃ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\(\sigma\)
1597	CH ₃	1	2	0	R	н	-CH2-N-C-
1598	CH ₂	1	2	c	R	н	-CH3-H-C-
1599	CH ₂	1	2	0	R	н	-CH2-N-C-N-CH3
1600	CI.—CII ₂	2	2	1	-	н	CF ₃ CH ₂ -N-C- H ₂ N
1601	СН-СН2-	2	2	.1	-	н	-CH ₂ -N-C
1602	С├-{Сн₂-	2	2	1	-	H.	-CH ₂ -N-CBr
1603	CH ₂ -	2	2	1	<u>.</u>	н	-CH2-N-C-
1604	C├ \ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1605	CH-2-	2	2	1	-	н	-CH ₂ -N-CH ₃
1606	C├ - CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
							•

Тa	hle	1	. 1	4	7
----	-----	---	-----	---	---

5	Compd. No.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
10	1607	H₃C	1	2	0	R	н	-CH2-NC-SCF3
15	1608	CH ₃	Ť.	2	0	R	н	-CH2-N-C
	1609	С-СН2-	2	2	1	-	н .	-CH2-N-C-
20	1610	Ct. 2 C. C.	2	2	1	-	н .	-CH2-N-C-CF3
25	1617	c-\	2	2	1	-	н .	-CH2-NC-CF3
30	1612	H3CO(CH39-HC	2	2	1	-	н	-CH ₂ -N-C
35	1613	₩~ <u></u> ~, °, °, °, ~	2	2	٠٦	-	н	-сн ₂ -м-с-
40	1614	F3CS-CH2-	1	2	0	R	H .	-CH ₂ -N-C-CF ₃
45	1615	F3CS-CH2-	2	2	1		н	-CH2-N-C
50	1616	F3CS-CH2-	2	2	1	-	н	-CH2-N-C-
30	1617	F3CS—CH;-	2	2	1	-	н	-CH2-N-C-B1
55								

Ta	ь	le i	1.	1	4	8

5	Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂), G-R ⁶
10	1618	HO CH ⁵ -	1	2	0	R	H	-CH2-N-C
15	1619	HO CH2-	1	2	0	R	н	-сн ₂ -м-С-С
,5	1620	H ₃ CO————————————————————————————————————	1	2	0	R	.н	-CH2-N-C CF3
20	1621	H ₃ CO————————————————————————————————————	1	2	0	Ŗ	н	-сн ₂ -м-с
25	1622	H ₃ CO CH ₂	1	2	0	R	н	-CH ₂ -N-C
30	1623	но-СН2-	1	2	0	R	н	-сн ₂ -ү-с-
· <i>35</i>	1624	HOCH ₂ -	1	2	0	R	н	-CH2-N-C-COCF3
40 _	1625	HO-CH ₂ -	1	2	0	R .	н	-CH2-N-C-CF3
	1626	HO-CH2-	1	2	0	R	н	-CH2-N-C
45	1627	HO-CH2-	1	2	0	R	н	-CH ₂ -N-C
50	1628	н₃сѕ—Сн₂-	1	2	0	R	н	-CH ₂ -N-C
55								

Table 1.149

Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _ρ + (CH ₂) _q G-R ⁶
1629	н₃С5-{Сн₂-	1	2	0	R	н	-CH2-N-C
163C	н₃С СН₂-	1	2	0	R	н ^	-CH2-N-C-CF3
1531	H2NCH2-CH2-	1	2	С	R	н	-CH2-N-C-CF3
1632	CF ₃ —CH ₂ -	1	2	0	R	н	-CH2-N-C-CF3
1633	H ₃ CS NC-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1634	(Hc),cH-()-C1;-	1	.2	0	R	н	-CH ₂ -N-C-CF ₃
1635	н₃с-{Сн₂-	. 1	2	0	R	н	-сн ³ - ^р , с-{Сн ³) ³
1636	H₃C-€ CH₂-	1	2	С	а .	н	-CH2-HC-12-CH3
1637	CH ₃	1	2	0	R	н	-O+5-HC-(CH5)4CH2
1638	CH ₃	1	2	0	R	н	-сн ₂ -р-с-Сосн ₂₎₃ сн
1639	CH ₃ CH ₂ -	1	2	0	R	Н	-сн2-H с Ссн2сн2
					·		

Table 1	. 1	5	u
---------	-----	---	---

5	Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	Ŕ	-(CH ₂) p (CH ₂) q G-R ⁶
10	1640	CH ₃ CH ₂ - CH ₃	7	2	0	Æ	н	-CH2-HC
	1641	СH ₃ СH ₂ -	1	2	0	Ħ	н	-CH2-N-C
15	1642	CH ₃ CH ₂ -	1	2	0	Я	н	-CH ₂ -N-C-N O ₂ N-
20	1643	CH ₂ -	1	2	0	R	н	-CH2-N-C-
25	1644	CH ₃	1	2	0	R	Н	-CH2-N-C
30	1645	CI CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
35	1646	Br CH2-	1	2	Э	R	н	-сн ₂ - N-с
	1647	н ₃ С(СН ₂) ₃ —СН ₂ -	2	2	1	· -	н	-CH ₂ -N-C-CF ₃
40	1648	H ₃ C(CH ₂) ₃ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
45	1649	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	-	н	-CH2-N-C-CF3
50	1650	H ₃ C(CH ₂) ₂ —————————————————————————————————	1	2	0	P	н	-СH ₂ -N-С-СF ₃

Table	1.151	ĺ
-------	-------	---

	1.151						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	, K ₃	-(CH ₂) p 1 (CH ₂) q G-R ⁶
1651	н,с(Сн₁);Сн₂-	2	2	1	-	н	-CHT HO CHT (CH2)3C H3
1652	н ₃ с(С:4;) ₃ С:4 ₂ -	2	2	1	-	н	-CH ₂ -N-C
1653	H ₃ C(CH ₂) ₂ -CH ₂ -	2	2	1	-	н	-CH2-NC
1654	н ₃ с(СН ₂) ₂ —СН ₂ -	2	2	1	-	н	-CH2-N-C
1655	н,с(Сн2),—Сн2-	2	2	1	-	н	-CH2-NC-H
1656	H ₃ C(CH ₂) ₃ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1657、	н ₅ С(СН ₂) ₂ СН ₂ -	2	2	7	-	н	-CH2-MC
1658	н,с(сн,),-Сн₂-	2	2	1	<u>.</u>	н	-CH ₂ -N-C
1659	CH2-	2	2	1	- ,	н	-CH2-N-C
1660	ВСН2-	1	2	0	R	н	-CH2-N-C
1661	g.—(CH ₂ -					н	-CH ₂ -N-C
						······································	

Compd.	R ¹ (CH ₂)-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
	н₃ссн ₂ —Сн ₂ -					н	-сн ₂ -мс-
1674	F————————————————————————————————————	2	2	1		н	-CH₂-N-C- Br
1675	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1676	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1677	F—CH ₂ -	2	2	1	-	н	-CH2-N-C
1678	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1679	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1680	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1681	F-CH ₂ -	2	2	1	•	н	-сн ₂ -ү-с
1682	F—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- Br
1683	О- ^н с-О-сн ₂ -	2	2	1	-	н	-CH ₂ -N-C

Compd. No.	R (CH ₂),-	k	ſΠ	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1695	CH ₃	1	2	0	R	н	-CH2-N-C
1696	CH ₃	1	2	0	R	н	-CH2-N-C-
1697	CH ₃	1	2	0	R	н	-CH2-N-C-
1698	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1699	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1700	CH ₃ −CH ₂ −	1	2	.0	R .	н	-CH ₂ -N-C
1701	H ₂ C=CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1702	н₃со-Сн₂-	1 ·	2	0	R	н	-CH3-N-C
1703	CH ₂ -	1	2	0	R	н	-CH2-N-C
1704	HO-€ CH ₂ -	1	2	0	R	н	$-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{2}-N$ $-CH_{3}-N$ $-CH_{2}-N$ $-CH_{3}-N$ $-CH_{2}-N$ $-CH_{3}-N$ $-CH_$
1705	CI CH2−	1	2	0	R	н	-CH ₂ -N-S-S-S-3
						·	

Compd No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) , 1 (CH ₂) , G-R
1717	H ₂ CO→ OCH ₂ -	1	2	0	R	н	-CH2-N-C- CF3
1718	CH3	1	2	0	R	н	-CH2-N-C-C-53
1719	Ç N-CH2-	1	2	0	R	н	-сн ₂ -N-с-СF ₃
1720	нь со- с ^О н _э с - N - сн ₂ -	1	2	0	R	H	-сн ₂ -м-с-С _F 3
1721	ңссн₂———————————————————————————————————	1	2	O	Ř	H,	-CH ₂ -N-C-CF ₃
1722	-CH ₂ -	1	2	0 -	R	н	-CH ₂ -N-C-CF ₃
1723	-CH ₂ -	1	2	0	R	Н	-сн ₂ -N-ССF ₂
1724	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1725	H ₃ C — CH ₂ -	1	2	0	R	н	-CH2-N-C
						н	-CH2-N-C-F
1727	н₃ ССН₂- СН₂-	1	2	0	R	н	-CH ₂ -N-C

T	a	h	le	1	1	5	9

	_						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - CR^6$
1739	(H ₀ C)₂CH-(-)-CH₂-	1	2	0	R	н	-CH2-N-C
1740	-CH ₂ -	1	2	0	R	н	-CH2-N-C-BL
1741	H₃CSCH₂-	1 .	2	0	R	н	-CH2-N-C-
1742	н _э ссн ₂ —Сн ₂ -	1	2	0	R	н	-CH2-MC-
1743	CH ₂ -	1	2	0	R	н	-CH2-N-C-
	H ₃ C-CH ₃					н	-CH ₂ -N-C-
1745	H ₃ C-CH ₃ CH ₂ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1746	(HgC)2CH	1	2	0	R	н	-CH²-M-C-
1747	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1748	њссн₂—Ст₂-	1	2	0	Ŕ	н	-CH ₂ -N-C
1749	H ₃ C	1	2	0	R	Н	-CH ₂ -N-C-Br

				_			
Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	. Ł,	^{Д⁴} . −(СН ₂) , Т (СН ₂) , G−R ⁶
1761	н₃с-{_}сн₂-	1	2	0	R	н	-CH-H-C-H-C-H-C-CI
1762	CH ₃ CH ₂ - CH ₃	1	2	0	Ŗ	Н	-CH-MC-MC C1
1763	€ CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-OCH ₂ CH ₃
1764	СН₂-	2	2	0	-	н	-CH2CH2-N-C-
1765	СН₂-	2	2	0	- .	н	(S) OCH2CH3 -CH-N-C-CH2CH3
1766	CH₂-	- 2	2	0	•	H	(A) OCH ₂ CH ₃ - CH-N-C
1767	C├ - CH ₂ -	1	3	1	-	н	-CH2-N-C
1768	CH2-	1	3	1	-	н	-CH2CH2-N-C
1769	CH ₃ CH ₂ -	1	2	0	R	н	-CHZ-NC-CH3 C-CHCF20
1770	CH ₃ CH ₃	1	2	0	R	н	-CHZ-NC-OCH3 CHZ-NC-OCH3 CHZ-NC-OCH3 CHZ-NC-OCH3 CHZ-NC-OCH3 CHZ-NC-OCH3
1771	CH ₃ CH ₃	1	2	0	R	н	- CH2- NC-
	·				·	-	

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	B	-(CH ₂) p G -R ⁶
10	1783	NC-CH2-	2	2	1	•	н	-CH ₂ -N-C
	1784.	CH₂-	2	2	1	-	н	-CH ₂ -N-C
15	1785	CH ₃ (CH ₂) ₂ —CH ₂ -	2	2	1		н	-CH ₂ -N-C
20	1786	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
25	1787	CH ₃ (CH ₂):—CH ₂ -	1	2	0	R	н	-CH2-N-C
30	1788	CH ₃	2	2	1	-	H	-CH ₂ -N-C
35	1789	н₃со-{}-сн₁-	2	2	1	-	н	-CH ₂ -N-C
40	1790	CHCH2-	1	2	0	· s	н	-CH ₂ -N-C
45	1791	C	1	2	0	S	Н	-CH ₂ -N-C
	1792	CH ₃	2	2	. 1	-	਼ ਸ	-CH ₂ -N-C
50	1793	CH⊋-CH₂-	2	2	1	-	н	-CH ₂ -N-C
55								

Table 1.165

5	Compd. No.	R ¹ /(CH ₂) ₁ -	k	m	n	chirality	R³	-(CH ₂) p G -R ⁶
10	1805	8r-{	1	2	0	R	н	-CH2-N-C-SCF3
15	1806	н₃со-{}-сн₂-	1	2	0	R	н	-CH2-N-C-
	1807	H ₂ -CH ₂ -	1	2	0	R	н	-CH2-N-C-SCF3
20	1808	HQ H3CO-CH2-	1	2	0	R	н	-CH2-N-C-SCF3
25	1809	HO-€7-CH ₂ -	1	2	0	R	н	-CH2-N-C-SCF3
30	1810	CH2−	1	2	0	R	н	-CH2-N-C-SC F3
35	1811	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SC F ₃
40	1812	H₃CS-()—CH₂-	7	2	0	R	н	-CH ₂ -N-C-SC F ₃
45	1813	н₃ссн₂-Сн₂-	1	2	0	R	н	-CH ₂ -N-C-SC F ₃
50	1814	CH₂-	1	2	0	R	н	-CH2-N-C-SCF3
30	1815	H ₃ C—СH ₂ -	1	2	0	R	н	- CH ₂ - N C- SC F ₃
55								

	T	а	b	le	1	. 1	6	7
--	---	---	---	----	---	-----	---	---

5	Compd.	R ¹ (CH ₂)-	k	m	n	chirality	H۶	$-(CH_2)_{p+1}^{R^4}(CH_2)_{q}^{-}G^-R^6$
10	1827	CH₂-	1	2	0	В	H	-CH2-N-C-
15	1828	CH ₃ H ₃ C- CH ₂ -	1	2	0	R	н	-CH2-N-C
	1829	H ₂ C — CH ₂ -	1	2	0	R	н	-CH2-N-C-C
20	1830	(CH ₃) ₂ C + CH ₂ -	1	2	0	R	н	-CH2-N-C-C
25	1831	B:CH ₂ -	1	2	0	R	н	-CH2-N-C-(CH3)3
30	1832	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
35	1833	H3-CQ H0-CH2-	1	2	0	R.	Н	-CH ₂ -N-C-(CH ₃) ₃
40	1834	HQ H ₃ CO-CH ₂ -	1	2	0	R ·	H	-CH ₂ -N-C-(CH ₃) ₃
45	1835	HO-CH2-	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
<i>50</i>	1836	CH2-	1	2	0	R	′н	-CH ₂ -N-C-(CH ₃) ₃
50	1837	CH2-	1	2	0	R	н	-CH ₂ -N-C-C(CH ₃) ₃
55								

Table 1.169

	12510							
5	Compd. No.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	R ³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
10	1849	CH ₂ -					н	- CH2-N-C
	1850	н _э ссн ₂ —Сн ₂ -	1	2	0	R	н	-CH2-N-C-
15	1851	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-NC-
20	1852	CH ₂ -	1	2	0	R	н	-CH2-NC-
25	1853	H3-CQ H0	1	2	G	R	н	-CH ₂ -N-C-
30	1854	CH ₂ -	1	2	0	R .	н	-CH2-HC-
<i>35</i>	1855	н ₃ ссн ₂ —Сн ₂ -	- 1	2	G	R	н	-CH ₂ -N-C-
	1856	СH ₃ Н₃С—СН₂—	1	2	0	8	н	-CH ₂ -N-C-
40	1857	CH ₂	1	2	O	R	н	-CH2-N-C-
45	1858	Br(CH ₂ -	1	2	O) 3	н	-CH2-N-C
50		н₃со-{Сн₂					н	-CH2-N-C-

٦	Га	h	le	1.	1	7	1
- 1		\mathbf{L}	1 =	1.		•	- 4

5	Compd.	R ¹ /(CH ₂);	k	m	n	chirality	₽³	$-(CH_2)_{p} + G_5$ $+(CH_2)_{q} - G - R^6$
10	1871	H ₂ CQ HO—(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
15	1872	H ₂ CO—CH ₂ -	1	2	0	R	н	-CH2-N-C
,3	1873	HO-CH ₂ -	1	2	0	R	н .	-CH2-N-C-
20	1874	CH2−	1	2	0.	R	н	-CH ₂ -N-C
25	1875	CH2-	1	2	0	R	н	-CH ₂ -N-C
30	1876	н₃сѕ-{}-сн₂-	1	2	0	R	н	-CH ₂ -N-C
35	1877	н₃ссн₂—Сн₂-	1	2	0	R	н	-CH ₂ -N-C-
40	1878	O ← CH ₂ -				R	н	-CH ₂ -N-C-
45	1879	CH ₃ H ₃ C CH ₂ -	1	2	0	A	н	-CH2-N C H2N
50	1880	(CH ₃)₂CH-⟨CH ₂ -						$-CH_2-N$ C H_2N
	1881	(Сн ₃), С—Сн ₂ -	1	2	0	R	н	-CH ₂ -N-C
55								

Table 1.173

5	Compd.	R ² (CH ₂) ₁ -	k	m	n	chirality	H٦	-(CH ₂) p G G-R ⁶
10	1893	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-NO ₂
15	1894	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	1895	(CH ₃) ₃ C-CH ₂ -	1	2	. 0	R	н	-CH2-N-C
20	1896	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
25	1897	H₃CS-()-CH₂-	1	2	0	R	Ή	-CH ₂ -N-C
30	1898	н₃ссн₂—Сн₂-	1	2	0	R	н	-CH ₂ -N-C
35	1899	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
40	1900	H ₃ CQ HO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
45	1901	н ₅ С(СН ₅) ₂ ————СН ₂ -	1	2	0	R	н	$-CH_{2}-NC$ $-CH$
50	1902	О СН ₂ -	1	2	0	R	н	-CH ₂ -N-C
	1903	(CH ₃) ₂ CH-CH-	2	2	1	-	н	-CH ₂ -N-C
55								

Table 1.175

55

5	Сотра. No.	R ¹ (CH ₂),-	k	m	n	chirality	Ŗ³	-(CH ₂) _P 15 (CH ₂) _q G-日 ⁶
10	1915	H3CCH2Q H0————————————————————————————————————		2	С	R	н	-CH ₂ -N-C
15	1916	H ₃ C HO—CH ₂ -	1	2	0	R	н	-CH2-N-C
,5	1917	HC-CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C
20	1918	H ₃ C HO-CH ₂ -	2	2	1		н	-CH ₂ -N-C
25	1919	CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
30	1920	CH2-	2	2	1	•	н	-CH2-N-C
35	1921	NH ₂	1	2	0	R	н	-CH ₂ -N-C
40	1922	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SOCF ₃
. 45	1923	3-CH ₂ -	2	2	1 .	-	н	-CH ₂ -N-C-SCF ₃
***	1924	н₃со-{Сн₂-	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
50	1925	F—————————————————————————————————————	2	2	1	•	н	-CH ₂ -N-C-() -CH ₂ -N-C-() SCF ₃

Table 1.177

Compd.	R' (CH ₂) _i -	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{\frac{-}{q}}G^{-R^6}$
1937	(Сн,),сн-С	2	2	1	-	н	-СH ₂ -N-C-SCF ₃
1938	8 <i>-</i> -€7CH ₂ -	2	2	1	-	н	-сн ₂ -м-с Вг сн ₃
1939	н₃со-Сн₂-	2	2	1	•	н	-CH3-N-C
194C	F—CH ₂ -	2	2	1	÷ ,	н	-CH2-N-C
1941	F————————————————————————————————————	2	2	1	-	н	-CH₂-N-C-Shr CH₃-CH₃
1942	но-{сн₂-	2	2	1	* <u>-</u>	н	-CH₂-N-C-CH₃
1943	2 CH2−	2	2	1	*	н	-CH2-M-C- CH3
1944	CH ₂ -	2	2	1	٠.	Н	-CH ₂ -N-C
	H₂CS-⟨				-	н	-CH5-K-C-CH3
1946	н₃ссн₂-√Сн₂-	2	2	1		н .	-CH2-N-C-CH3
1947	O-CH-	2	2	1	-	н	-CH2-N-C

Table 1.179

5	Compd. No.	R (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) , G-R ⁶ R ⁵ (CH ₂) , G-R ⁶
	1959	н₃CS-(СН ₂ -	2	2	1	•	н	-CH ₂ -N-C-
10	1960	н₃ссн₂-√Сн₂-	2	2	1	<u>.</u> .	н	-CH2-N-CF
15	1961	CH2-	2	2	1	-	н	-CH2-N-C-Br
20		H ₃ C ← CH ₂ -					н	-CH2-N-C
25	1963	H ₃ C CH ₂ -	2	2	1	-	. н	-CH2-N-C
<i>30</i>	1964	0 ₂ N-CH ₂ -				-	н	-CH2-N-C-Br
	1965	H ₃ C-√CH ₂ -	· 2	2.	1	-	н	-CH₂-N-C-Sr F
35	1966	(CH ₃) ₂ CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
40	1967	8	2	2	1	-	н	-CH ₂ -N-C
45	1968	н ₃ со-Сн ₂ -	2	2	1	-	н	-CH2-N-C-
50	1969	но-(сн ₂ -	2	2	1	-	Н	-CH2-N-C-
							·	

	•						
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	À³	ー(CH ₂) _p + (CH ₂) _q G-R ⁶ R ⁵
1981	O ₂ N—CH ₂ -	2	2	1		н	-CH2-N-C
1982	NCCH:-	2	2	1	. .	н	-CH2-N-C
1983	(CH3)2C++-€	2	2	1	-	н	-CH ₂ -N-C
1984	· в-Сн ₂ -	2	2	1	-	н	-CH2-N-C
1985	н₃со-{	2	2	1	-	н	-CH2-N-C
1986	HO-CH ₂ -	2	2	1	-	н	-CH2-N-C-
1987	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1988	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1989	H ₃ CS	2	2	1	-	н	-CH2-N-C-
1990	H3CCH2-CH2-	. 2	2	1	-	н	-CH2-N-C-
1991	CH2-	2	2	1	-	н	$-CH_{2}-N+C$ $+I_{2}N$ $-CH_{2}-N+C$ $+I_{2}N$

Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	۲۹	-(CH ₂) p (CH ₂) q G-R ⁶
2003	-CH ₂ -	2	2	1	-	н	-CH2-N-C-C
2004	H₃CS-{CH₂-	2	2	1	-	ਮ	- CH2-N-C-C
2005	н ₂ ССН ₂ —СН ₂ -	2	2	1	-	н	- CH2-N-C-
2006	CH ₂ .	2	2	1	-	н	-CH2-N-C-
2007	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2008	H ₃ C-CH ₂ -	2	2	1	-	н	-CH2-HC-C
2009	NC-CH ₂ -	2	2	1	-	н	-CH2-N-C-
	(CH ₃) ₂ CH-CH ₂ -				٠	н	-CH2-N-C-
2011	H ₃ C — CH ₂ -	2	2	1		Н	-CH ₂ -N-C-
2012	8CH ₂ -	2	2	1	•	н	-CH2-N-C- Br
2013	H3CO-CH2-	2	2	1		н	-CH2-NC

Table 1.185

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R٦	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	2025	H ₃ C CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
15	2026	F-CH2-	2	2	1	•	н	-CH2-N-C
20	2027	3-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
	2028	'H ₃ CO—СН ₂ -	2	2	1		н	-CH2-N-C-Br
25	2029	HO	2	2	1	-	н	-CH ₂ -N-C
30	2030	CH₂-	2	2	1	-	н .	-CH₂-N-C Br
35	2031	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
40	2032	CH ₂ -	2	2	1		н	-CH ₂ -N-C
45	2033	CH ₃	2	2	1	· -	н	-CH ₂ -N-C-Sr H ₂ N
50	2034	0, N-CH2-	2	2	1	<u>.</u> .	н	-CH2-N-C
	2035	H3C-(CH2-	2	2	1	-	н	-CH2-N-C
55								

Table 1.187

Compd.	R ¹ (CH ₂),-	k	m	C	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2047	CH ₂ -	1	2	0	R	н	
2048	CH ₃	1	2	0	R	H	-CH2-N-C-OCH2CH3
	CH ₃					н	-CH-NC-CHS
	CH ₃					Н,	-CH2-N-C
2051	H ₃ C - CH ₂ -	1	2	0	R	н	CF ₃
2052	Bc CH₂− OCH₂CH₃	2	2	1	-	н	-CH _z -N-C
2053	H ₁ CO					н	-CH2-N-C-F
2054	H ₃ CO-CH ₂ -	2	2	1	. -	н	-CH2-N-C
2055	H ₃ CQ — CH ₂ - OH	2	2	1		н	-CH2-N-C
2056	Br CH ₂ -	2	2	1	-	н	-CH2-N-C-F
	H ₃ CO ← CH ₂ -						-CH ₂ -N-C

T	٠,	h	ما	1	1	Ω	a
	ત	IJ	ı e			O	

5	Compd.	R ¹ R ² (CH ₂) ₁ -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	2069	H ₃ C H ₃ CO————————————————————————————————————	2	2	1	•	н	-CH ₂ -N-C
15	2070	BCH ₂ -OCH ₃	2	2	1	-	н	-CH2-N-C
	2071	H ₃ CO-CH ₂ -OCH ₃	2	2	. 1		н	-CH ₂ -N-C
20	2072	(ңс)₂сно-СТ-сн₂-	2	2	1		H	-CH ₂ -N-C
25	2073	CH2Q	2	2	1	•	н	-CH ₂ -N-C
30	2074	H3CO-CH1-	2	2	1	-	н	-CH ₂ -N-C
35	2075	H ₃ CQ CH ₂ -	2	2	1		н	-CH2-N-C
40	2076	F-CH ₂ -	2	2	1	-	н	-CH2-N-C
45	2077	CL CH ₂ - OH	2	2	1	-	н .	-CH2-N-C
50	2078	H3CCH2Q OH	2	2	1	-	н	-CH ₂ -N-C
	2079	H ₃ CO	2	2	1	-	н	H ₂ N -CH ₂ -N-C H ₂ N
55								

Table 1.191

Compd. No.	R ¹ (CH ₂) ₁ -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2091	С├-{}СН²-	2	2	1	-	н	-CH-N-C
2092	CHCH2-	2	2	1	-	н	-OLAC-WANT
2093	CI—CH ₂ -	2	2	1	-	н	(A) 11 -CH-N-C- H CH₂CH₂SCH₃
2094	CI—(2	2	1	-	н	CH2 S
2095	CH-CH2-	2	2	1	-	н	(A) 0 -CH-N-C- H C(CH ₃) ₃
2096	C1—CH2-	2	2	1	-	н	CH ₂ CH ₃
2097	CH-CH ₂ -	2	2	1	-	H .	(A) II -CH-N-C- H CH ₂ CH ₃ CH ₃
2098	CH-2-	2	2	1	-	н	(A 0 OCH2CH3 -CH-NC-CI
2099	C					н	-chh-c-
2100	С-СН2-	2	2	1	-	н	CH2 OCH2CH3
2101							(R

Table 1.193

Compd. No.	R ¹ /(CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2113	H ₂ N H ₃ CO————————————————————————————————————	2	2	1		н	-CH ₂ -N-C
2114	H ₂ N H ₃ C—CH ₂ -	2	2	1		н	-CH ₂ -N-C
2115	CH-CH2-	2	2	1		н	(A) 0 -CH-N-C H CH(CH ₃) ₂
2116	O————————————————————————————————————	2	2	1	-	н	(A) 0 - CH N-C- H CH(CH ₃)CH ₂ CH ₃
2117	CH ₂ -	2	2	1	-	н .	-CHNC-OCH2CH3
2118	HQ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H ₂ N-C- H ₂ N
2119	OH HO-{CH₂-	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
	B ← CH ₂ -				R	н	-CH ₂ -N-C- H ₂ N
2121	OC H ₃	1	2	0	R	н	-CH ₂ -N-C
2122	С⊢ СН₂-	1	2	0	R	н	-CH ₂ -N-C
2123	O CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$
							

Table 1.195

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2135	(H ₃ C) ₂ N H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
2136	(H ₃ C) ₂ N H ₃ C————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
2137	CH ₃	1	2	0	R	н	-CH ₂ -N-C
2138	CH3 CH3-	. 1	2	0	R	н	-CH ₂ -N-C- H ₂ N
2139	H ₂ C CH ₂ - CH ₃	1.	2	0	Ŕ	н	-CH ₂ -N-C
2140	CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
2141	H ₂ N HO—CH ₂ -	2	2	1	-	н	-CH2-N-C
	H ₂ N CH ₂ -					н	-CH-N-C-F H H2N
2143	нис-сн,	2	2	1	-	н	-CH2-N-C
2144	H ₂ N H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2145	H ₂ N HO—CH ₂ -	2	2	1		н	CF ₃

Ta	h	l٥	1.	1	9	7

5	Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
10	2157	СН ₂ -	1	2	0	R	н	-CH ₂ -N-C
15	2158	H ₃ C-NH HO-CH ₂ -	1	2	0	A.	н	-CH ₂ -N-C
	2159	H ₃ CC-NH H ₃ CC-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
20	2160	H ₃ C-NH HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
25	2161	H ₃ C-NH CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F.
30	2162	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	4	-	н	-CH ₂ -N-C
35	2163	H3C-NH HO-CH2-	2	2	1	-	. н	-CH ₂ -N-C-S
40	2164	CH3 CH3-	1	2	0	R	· н	-CH ₂ -N-C
45	2165	E N CH2-	1	2	Ö	R	н	$-CH_{2}-NC$ $+CH_{2}-NC$ $+CH_{2}-NC$ $+CH_{2}-NC$ $+CH_{2}-NC$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$
<i>50</i>	2166	[\$,-cH₂-						-CH ₂ -N-C
55	2167	H CH:	1	2	0	R	н	-CH ₂ -N-C
55								

Table 1.199

5	Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
10	2179	н3С-6-и	1	2	0	R	н	-CH2-N-C
15	2180	CH(CH ₂) ₂ -	1	2	0	R	н	-CH ₂ -N-C
15	2181	H, CO , CH2-	1	2	0	R	н	-CH ₂ -N-C
20	2182	H ₃ C N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
25	2183	\$- N N= CH2-	1	2	0	R	н	-CH ₂ -N-C
· 30	2184	\$-N-CH2-	2	2	1	. -	н	-CH ₂ -N-C
35	2185	\$-N_CH2-	2	2	1	-	Н	-CH ₂ -N-C
40	2186	HZ CH2-	2	2	1	-	н	-CH ₂ -N-C
45	2187	H ₂ N HO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
50	2188	CH ₂ -	2	2	1	-	н	CH ₂ N-C
	2189	CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C
55		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						

Table 1.201

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	ก	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
10	2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н	-CH2-N-C-F
15	2202	S H CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	2203	CH2-	2	2	1	-	н	-CH ₂ -N-C
20	2204	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
25	2205	CH ₃	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
30	2206	CH ₃	2	2	1	-	н	-CH ₂ -N-C-CF ₃
35	2207	HO— CH3 CH3	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
40	2208	HN-CH ₃	2	2	1	-	н	-CH ₂ -N-C
45	2209	HN-CH ₃ CH ₂ −	2	2	1	-	н	-CH ₂ -N-C-F
50	2210	CH ₂ -					н	-CH ₂ -N-C
55	2211	CH ₂ -	2	2	1	-	н	$-CH_{2}-N-CF_{3}$ $-CH_{2}-N-C-F_{3}$ $-CH_{2}-N-C-F_{3}$ $-CH_{2}-N-C-F_{3}$

Table 1.203

5	Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
10	2223	С⊢СН₂−	1	2	0	R	Н	-CH2-N-C-N-N-N
15	2224	C├ - CH ₂ -	1	2	0	R	н .	-CH2-N-C-N
	2225	CI CII2-	1	2	0	R	· н	CH3 CF3
20	2226	H ₃ C, CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-CF ₃
25	2227	C	1	2	0	. R	н	-CH2-HC-VCF3
30	2228	C	1	2	0	R	H	- Chy N C- CF3
35	2229	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
40		H ₃ CCH ₂ —CH ₂ -					Н	-CH ₂ -N-C-OCF ₃
45	2231	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
50	2232	н ₃ С н ₃ со	1	2	0	R	н	-CH ₂ -N-C
	2233	CH ₂ -	1	2	0	R	н	$-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $-CH_{2}-NC$ $H_{2}N$ $-CF_{3}$
55								

Table 1.205

_. 5	Compd. No.	R ¹ /(CH ₂) ₁ -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
10	2245	H ₃ C N CH ₂	1	2	0	R	н	-CH ₂ -N-C- H ₂ N
15	2246	H³CCH²-N CH²-	1	2	0	R	H	-CH ₂ -N-C
20	2247	(H;C);CH N OH	1	2	0	R	н	-CH ₂ -N-C-CF ₃
20	2248	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
25	2249	H ₂ N H ₃ CO—CH ₂ —	1	2	0	R	н	-CH ₂ -N-C
30	2250	H ₂ N HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
35	2251	H ₂ N H ₃ C-CH ₂ -			0	R	н	-CH ₂ -N-C
40	2252	CH ₂ -				-	Н	-CH2-N-C
45	2253	H CH ₂ -	2	2	1		Н	-CH ₂ -N-C- H ₂ N
50	2254	H ₃ CO CH ₂ -	2	2	1	-	·H	-CH ₂ -N-C-CF ₃
55	2255	H ₃ C N H	2	2	1		н	$-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{3}-N+C-$ $-CH_{2}-N+C-$ $-CH_{2}-N+C-$ $-CH_{3}-N+C-$ $-CH_{3}-N+C-$ $-CH_{3}-N+C-$ $-CH_{3}-N+C-$ $-CH_{4}-N+C-$ $-CH_{4}-N+C-$ $-CH_{5}-N+C-$ $-CH_$
33								

Table 1.207

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2267	Cl CH₂-	2	2	1	-	н	(S) P CI -CH3 CI
2268	C	2	2	1	-	н	(S) P CI
2269	H3CS-CH2-	2	2	1	-	н	(S) P C-CI
2270	CL CH2-	2	2	1	-	н	(S) P -C++N-C-N- CH ₃
2271	С-Сн2-	2	2	1	-	· н	(S) P -CH-N-C-N-C
2272	H3CS	2	2	1	-	н	(S) P -CH3 H H
2273	CH CH2-	2	2	1	٠	н	(S) Q − CH+N+C− CI
2274	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) Q -CH-N-C
2275	CL CH2-	2	2	1	-	н	(S) 0 -CH+N-C-N- CH(CH ₃) ₂
2276	C	2	2	1	-	Н	(S) P -CH-N-C-N- H H CH(CH ₃) ₂
2277	H₃CS-CH₂-	- 2	2	1	-	н	(S) P - CH-N-C-N- CH(CH ₃) ₂

Table 1.209

Compa. No.	R ¹ (CH ₂) _j -	k	m	ก	chirality	R³	-(CH ₂) _p
2289	CI_CH2-	2	2	1	-	н	(S) P -CH-N-C-N- (CH ₂) ₂ CONH ₂
2290	CI CH _Z −CH _Z −	2	2	1		н	(S) P -ÇH-N-C- CH ₂ OH
2291	с	2	2	1	-	н	(S) P -CH-N-C C CH ₂ OH
2292	H ₃ CS-CH ₂ -	2	2	1	-	н	(5) P - CH+ N+ C - CH CH2OH
2293	CI CH2-	2	2	1	-	н	CH2OH
2294	CI—CH₂-	2	2	1	-	н	(S) P - CH-N-C-N-C-N-CH ₂ OH
2295	H3CS-CH2-	2	2	1	-	н	(5) -CH-N-C-N- H H CH2OH
2296	CH_CH2	1	2	. 0	R	н	(S) P -CH-N-C
2297	H₃C S————————————————————————————————————	1	2	0	R	н	(S) Q -GH-N-C
2298	CICH ₂ -	1	2	0	R	н	(S) 0 -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
2299	н₃с ѕ⟨СҺ₂-	- 1	2	0	R	н	(S) Q -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃

55

Table 1.211

5	Compd.	R ¹ >-(CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p G CH ₂)q G-R ⁶
10	2311	H ₃ CS-CH ₂ -	1	2	0	S	н	(S) S -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
	2312	H ₃ CS-CH ₂ -	1	2	0	R	н	(S) P CF ₃ -CH-N-C- CF ₃ CH ₃ H ₂ N
15	2313	CICH_	1	2	0	R	Н	(S) P CI
20	2314	H3CS-CH2-	1	2	0	s	н	(S), 0 -CH-N-C-N- H H H
25	2315	с	2	2	1	-	H	(S) P CI -C+++C
30	2316	CHCH_F	1	2	0	S	н	(S) NH ₂ -CH-N-C H (CH ₂) ₂ SO ₂ CH ₃ CF ₃
35	2317	CICH ₂ -	2	· 2	1	-	н	(S) P NH2 -CH-N-CH-OH CF3
33	2318	CICH_	1	2	0	R	н	(S) S CH ₂) ₂ SO ₂ CH ₃
40	2319	C(CH ₂ -	2	2	1		н	(S) (S) (S) (S) (CH ₃) ₂ (S)
45	2320	C	2	2	1	-	н	(S) S CH (CH ₃) ₂
50	2321	н₃сѕ-{_}-сн₂-	2	2	1	-	ਮ	(S) S - CH- N- C- N- - CH (CH ₃) ₂

55

Table 1.213

5	Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^{-R^6}$
10	2333	с⊢Сн₂-	1	2	0	R	н	(S) P -CH-N-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
15	2334	H₃CS—CH ₂ -	1	2	0	S	· н	(S) P CI -CH-N-C- CI (CH ₂) ₂ SO ₂ CH ₃
	2335	CL————————————————————————————————————	1	2	0	S .	н	(S) P -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
20	2336	C	1	2	0	S	н	(S) P -CH-N-C-N- H H H (CH ₂) ₂ SO ₂ CH ₃
25	2337	H ₃ CS—CH ₂ —	1	2	0	S	н	(S) P -CH-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
30	2338	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) P -CH-N-C-N- (CH ₂) ₂ CONH ₂
35	2339	сн ₂ -	2	2	1	-	н	(5) P MH2 - C H N- C - C - C - C - C - C - C - C - C -
40	2340	H₃CS-€	2	2	1	-	н	$(S) \qquad \begin{array}{c} NH_2 \\ -CHN-C \\ - H \\ (CH_2)_2CONH_2 \end{array} CF_3$
45	2341	C CH ₂ -	2	2	1	-	н	(S) P NH2 - C H N- C H C CF ₃
50	2342	H ₃ CS-CH ₂ -	2	2	1	-	н	(S) P NH2 -CHN-C-CHN-CF3
55	2343	CH ₂ -CH ₂ -	2	2	1	-	н	(S) P CI -C+N-C-C CI (CH ₂) ₂ CONH ₂
55								

Table 1.215

5	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - R^6$
10	2355	CICH ₂ -	1	2	0	R	H	(S) QCI CI -CH-N-C- (CH ₂) ₂ SO ₂ CH ₃
15	2356	CICH ₂ -	1	2	0	R	н	(S) OCI -CH-N-C- (CH ₂) ₂ SO ₂ CH ₃ CI
20	2357	CH_CH2	1	2	0	R	н	(S) -CH-N-C- S CI (CH ₂) ₂ SO ₂ CH ₃
20	2358	CICH ₂ -	. 1	2	0	R	н	(S) P -CH-N-C-C-CH ₃ (CH ₂) ₂ SO ₂ CH ₃
25	2359	CL CH ₂ -	1	2	0	R	Н	(S) P -CH-N-C-S (CH ₂) ₂ SO ₂ CH ₃
30	2360	CH_CH2-	1	2	0	R	н	(S) 0 -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
35	2361	CI CH₂-	1	2	0	R	Н	(S) P - CH-N-C-N-C-CI H H C-H-C-CI (CH ₂) ₂ SO ₂ CH ₃
40	2362	CI CH2-	1	2	0	R	н	(S) O -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
45	2363	CI CH3-	2	2	1	-	н	CH ₃
50	2364	CICH ₂ -	2	2	1		н	
	2365	CI CH ₂	2	2	1		н	
55								

Table 1.217

55

Compd. Nc.	R ¹ (CH ₂) _j -	k	m	n	chirality	₽3	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G^{-1}$
2377	F—CH ₂ -	2	2	1	-	H	(S) P C-C
2378	CH ₂ -	2	2	1	•	н	(S) Q CI
2379	C: CH ₂ -	2	2	1		н	(S) O Br -CH H C S
2380	CICH ₂ -	2	2	1	-	н	(S) (P) (CH ₃ H ₂ N
2381	CL CH ₂ -	2	2	1	-	Н	(S) P -CH-N-C-
2382	Ct CH2-	2	2	1	-	н	(\$) P -CH-N-C
2383	CL CH2-	2	2	1		н	(5) S -CHNC-N-CH2- CH3
2384	CI CI CH ₂ -	1	2	0	R	н	(S) P - CH-N-C-CH-CH (CH ₂) ₂ SO ₂ CH ₃
2385	CH₂-	1	2	0	R	н	(S) Q -CH-N-C-CI (CH ₂) ₂ SO ₂ CH ₃
2386	CI — CH ₂ -	1	2	0	R	н	(S) O CI -CH-N-C- CO (CH ₂) ₂ SO ₂ CH ₃
2387	CI CH2-	1	2	0	R	н	(S) P - C++ N-C

227

Table 1.219

Compd.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R
2399	CL CH ₂ -	2	2	i	-	н	(S) P -CH-N-C-C-CI H-C-C-COCH-Ph
2400	Cl CH₂-	2	2	1	•	н	(S) OF C
2401	CI CH₂-	2	2	1	-	н	(5) CI -CH-MC-C-CI
2402	CH2−	2	2	1	-	н	(S) P CI -CH-N-C CI CH2OH
2403	F CH ₂ -	2	2	1	. · -	н	(S) P -CH-N-C-CI CH2OH
2404	F . CH ₂ -	2	2	1	-	• н	(S) P -CH-N-C-CI CH ₂ OH
2405	F————————————————————————————————————	2	2	1	-	н	(S) Q -CH-N-C-CI CH ₂ OH
2406	F_CH ₂ −	2	2	1	-	H	(S) Q -CH-N-C-C-CI CH2OH
2407	CH ₂ -	2	2	1	-	н	(5) P -CH-N-C- CI CH2OH
2408	H3CSO2-CH2-	2	2	1	-	н	(5) P CI -CH-N-C
2409	н₃со₂с-∕СУ-сн₂-	2	2	1	-	н	(S) P -CH-N-C-CI CH ₂ OH

Table 1.221

.	Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _P + (CH ₂) _q G-R ⁶
10	2421	CICH ₂ -	2	2	1	-	н	(S) S F CH3
15	2422	CL CH ₂ -	1	2	0	R	Ħ	(S) S -CH-N-C-N- (CH ₂) ₂ SO ₂ CH ₃
20	2423	Cl CH₂-	1	2	0	R	н	(S) S -CH-N-C-N-C-OCH ₃ (CH ₂) ₂ SO ₂ CH ₃
	2424	CL CH₂-	1	2	0	R	н	(S) S CH ₃ -CH-N-C-N-CH ₃ (CH ₂) ₂ SO ₂ CH ₃
25	2425	CICH ₂ -	1	2	0	R	н	(S) S -CH-N-C-N-CH ₃ -CH ₂) ₂ SO ₂ CH ₃
30	2426	CL CH₂-	1	2	0	R	н	(S) S CI -CHN-C-N- H H (CH ₂) ₂ SO ₂ CH ₃
35	2427	CI CH2-	1	2	0	R	н	(S) S
40	2428	CI—CH ₂ -	1	2	0	R	н	(5)

[0095] In the present invention, the acid addition salt of the cyclic amine compound is also used. The acid includes mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, and carbonic acid and organic acids such as maleic acid, citric acid, malic acid, tartaric acid, fumaric acid, methanesulfonic acid, trifluoroacetic acid and formic acid.

[0096] Further, the C₁ to C₆ alkyl addition salt of the cyclic amine compound such as 1-(4-chlorobenzyl)-1-methyl-4-[{N-(3-trifluoromethylbenzoyl)glycyl} aminomethyl]piperidinium iodide is also used in the present invention. The alkyl group includes a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group, an n-heptyl group, an n-octyl group, an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an isopentyl group, a neopentyl group, a tert-pentyl group. a 2-methylpentyl group and a 1-ethylbutyl group as suitable examples, but includes the methyl group and the ethyl group as especially preferable concrete examples. The counter anion of the ammonium cation includes halide anions such as a fluoride ion, a chloride ion, a bromide ion and an iodide ion as suitable concrete examples.

[0097] In the present invention, the racemate and all the possible optical isomers of the compound represented by the formula (I) can be used.

[wherein, R¹, R², and j are the same as the definitions, respectively, in the above-described formula (I); X represents a halogen atom, an alkylsulfonyloxy group, or an arylsulfonyloxy group], with 0.1 to 10 equivalents of a compound represented by the following formula (V)

 $\begin{array}{c} (CH_{2})_{k} \\ HN \\ (CH_{2})_{m} \end{array} \longrightarrow \begin{array}{c} (CH_{2})_{n} - N - C - (CH_{2})_{p} - \frac{R^{4}}{R^{5}} (CH_{2})_{q} - G - R^{6} \end{array}$ (V)

[wherein, R3, R4, R5, R6, G, k, m, n, p, and q are the same as the definitions, respectively, in the above-mentioned formula (I)], in the absence or presence of a solvent.

[0103] The reaction can be allowed to smoothly proceed by the suitable use of the same base as that in the above-mentioned preparation method 1. Further, in the present preparation method, the reaction can be accelerated by the coexistence of an iodide compound such as potassium iodide, sodium iodide or the like in some cases.

[0104] In the above-mentioned formula (IV), X represents a halogen atom, an alkylsulfonyloxy group or an arylsulfonyloxy group. The suitable examples of the halogen atoms include a chlorine atom, a bromine atom, and an iodine atom. The suitable concrete example of the alkylsulfonyloxy group includes a methylsulfonyloxy group, a trifluoromethylsulfonyloxy group and the like. The suitable concrete example of the arylsulfonyloxy group includes a tosyloxy group.

(Preparation method 3)

5

10

15

20

25

30

35

45

50

[0105] A preparation method by reacting 1 equivalent of an aldehyde represented by the following formula (VI)

$$R^1$$
 \rightarrow (CH₂)_{j-1}-CHO (VI)

[wherein, R^1 , and R^2 are the same as the definitions, respectively, in the above-mentioned formula (I); j represents 1 or 2], or the following formula (VII)

$$R^{1}$$
-CHO (VII)

[wherein, R¹ is the same as the definition in the above-mentioned formula (I); this compound corresponds to a case that j expresses 0 in the formula (I)] with 0.1 to 10 equivalents of a compound represented by the above-mentioned formula (V), in the absence or presence of a solvent.

[0106] The reaction is generally called a reductive amination reaction, and includes, as a reducing condition, a catalytic hydrogenation reaction using a catalyst containing a metal such as palladium, platinum, nickel or rhodium, a hydrogenation reaction using a borane or a complex hydride such as lithium aluminum hydride, sodium borohydride, sodium cyanoborohydride, or sodium triacetoxyborohydride and an electrolytic reduction reaction.

(Preparation method 4)

[0107] A preparation method by reacting 1 equivalent of a compound represented by the following formula (VIII)

55

reagent or base as those in the above-mentioned preparation method 1.

[0113] When the substrate supplied for the reaction in each of the above-mentioned preparation methods 1 to 6 has substituents which can be thought to generally react under the reaction conditions of each preparation method in organic synthetic chemistry or affect the reaction, the objective compound can be obtained by protecting the functional groups of the substrate with known proper protecting groups, supplying the protected substrate for the reaction and then removing the protecting groups by a known method.

[0114] In addition, the compound used in the present invention can also be obtained by further converting the (single or plural) substituent(s) of the compound prepared by the above-mentioned preparation method 1 to 6 by a known reaction generally used in organic synthetic chemistry, such as an alkylation reaction, an acylation reaction or a reduction reaction.

[0115] In each of the above-mentioned preparation methods, a halogenated hydrocarbon such as dichloromethane or chloroform, an aromatic hydrocarbon such as benzene or toluene, an ether such as diethyl ether or tetrahydrofuran, an ester such as ethyl acetate, an aprotic polar solvent such as dimethyl formamide, dimethyl sulfoxide or acetonitrile, or an alcohol such as methanol, ethanol or isopropyl alcohol, is suitably used as a reaction solvent in response to the reaction.

[0116] In any preparation method, the reaction temperature is in the range of -78°C to +150°C, preferably 0°C to 100°C. After the reaction is completed, the objective cyclic amine compound represented by the above-mentioned formula (I) can be isolated in usual isolating and purifying operations, namely the operations of concentration, filtration, extraction, solid-phase extraction, recrystallization, chromatography, and so on. Further, the isolated compound can be converted into a pharmaceutically acceptable acid addition salt or C₁ to C₆ alkyl addition salt by usual methods.

Examples

10

20 .

25

30

35

45

[0117] The present invention will be explained specifically hereafter on the basis of examples. However, the present invention is not limited to the examples. Compound numbers assigned to compounds in the following examples correspond to compound numbers (Compd. No.), respectively, assigned to compounds shown as suitable concrete examples in Tables 1.1 to 1.221.

[Reference Example 1]

Synthesis of (R)-1-(4-chlorobenzyl)-3-[{N-(3.4-difluorobenzoyl) glycyl}amino]pyrrolidine (Compd. No. 69)

[0118] The compounds of the present invention were synthesized by the preparation method mentioned in WO 99/25686, and, for example, (R)-1-(4-chlorobenzyl)-3-[{N-(3,4-difluorobenzoyl)glycyl}amino] pyrrolidine of Compd. No. 69 was synthesized as follows.

1) 3-Amino-1-(4-chlorobenzyl)pyrrolidine-dihydrochloride

[0119] 4-Chlorobenzyl chloride (4.15g,25.8 mmol) and i-Pr₂NEt (6.67g, 51.6 mmol) were added to the DMF solution (50 mL of 3-{(tert-butoxycarbonyl)amino}pyrrolidine (4.81g, 25.8 mmol) in DMF(50ml). The reaction mixture was stirred at 70°C for 15 hours, and the solvent was then removed under reduced pressure. The residue was recrystallized (CH₃CN, 50 mL) to obtain the objective 3-{(tert-butoxycarbonyl)amino}-1-(4-chlorobenzyl) pyrrolidine (6.43g, 80%) as the yellowish white solid.

[0120] ¹H-NMR(CDCl₃, 300 MHz) δ

1.37 (s, 9H), 1.5-1.7 (br. 1H), 2.1-2.4 (m, 2H), 2.5-2.7 (m, 2H), 2.83 (br, 1H), 3.57 (s, 2H), 4.1-4.3 (br, 1H), 4.9-5.1 (br, 1H), 7.15-7.35 (br, 4H); the purity was determined with RPLC/MS (98%): ESI/MS m/e 311.0 (M $^+$ +H, C₁₆H₂₄ClN₂O₂). [0121] 1M HCl-El₂O (100 mL) was added to the CH3OH (80 mL) solution of the 3-{(tert-butoxycarbonyl)amino}-1-(4-chlorobenzyl)pyrrolidine (6.38g, 20.5 mmol) and then stirred at 25°C for 15 hours. The solvent was removed under reduced pressure to obtain the solid. The solid was recrystallized (CH₃OH/CH₃CN=1:2, 130 mL) to obtain the purified 3-amino-1-(4-chlorobenzyl)pyrrolidine-dihydrochloride (4.939g, 85%) as white powder.

[0122] 1H-NMR(d₆-DMSO, 300 MHz) δ 3.15 (br, 1H), 3.3-3.75 (br-m, 4H), 3.9 (br, 1H), 4.05 (br, 1H), 4.44 (br, 1H), 4.54 (br, 1H), 7.5-7.7 (m, 4H), 8.45 (br, 1H), 8.60 (br, 1H); the purity was determined with RPLC/MS (>99%); ESI/MS m/e 211.0 (M++H, C₁₁H₁₆CIN₂).

[0123] Optically active (R)-3-amino-1-(4-chlorobenzyl)pyrrolidine - dihydrochloride and (S)-3-amino-1-(4-chlorobenzyl)pyrrolidine-dihydrochloride were synthesized from the corresponding starting materials, respectively, by the above-mentioned method. The products showed the same ¹H-NMR as that of the above-mentioned racemate.

[0131] When the inhibitory activities of the cyclic amine derivatives used in the present invention were assayed, for example, the following compounds showed inhibitory activities of 20% to 50%, 50% to 80%, and >80%, respectively, at a concentration of 10 µM.

[0132] The compounds which showed the inhibitory activities of 20% to 50% at the concentration of $10\,\mu\text{M}$: Compd. Nos. 11, 156, 234, 330, 392, 424, 481, 523, 525, 533, 558, 567, 582, 602, 613, 630, 646, 649, 701, 738, 741, 754, 767, 814, 816, 833, 839, 873, 902, 909, 945, 1002, 1159, 1170, 1258, 1315, 1352, 1357, 1407, 1417, 1448, 1472, 1504, 1508, 1531, 1558, 1562, 1569, 1661, 1670, 1686, 1719, 1751, 1756, 1769, 1775, 1783, 1797, 1802, 1803, 1815, 1834, 1841, 1846, 1883, 1887, 1889, 1892, 1913, 1924, 1928, 1960, 2006, 2013, 2035, 2052, 2083, 2113, 2127, 2136, 2189, 2320, 2321, 2323, 2327, 2330, 2334, 2336, 2338, 2345, 2394, 2394, 2398, 2398, 2400, 2400, 2406, 2406, 2407, 2409, 2409, 2420, 2421, 2421

[0133] The compounds which showed the inhibitory activities of 50% to 80% at the concentration of $10\,\mu\text{M}$: Compd. Nos. 83, 115, 146, 150, 216, 294, 297, 322, 405, 440, 459, 461, 466, 482, 484, 487, 490, 492, 503, 526, 528, 550, 562, 570, 578, 620, 623, 659, 685, 687, 703, 716, 730, 733, 755, 770, 850, 856, 867, 876, 998, 1015, 1024, 1223, 1259, 1267, 1295, 1377, 1402, 1412, 1420, 1485, 1519, 1550, 1560, 1595, 1601, 1650, 1701, 1725, 1754, 1836, 1856, 1870, 1912, 1923, 1929, 2095, 2120, 2138, 2179, 2258, 2260, 2261, 2267, 2268, 2270, 2275, 2276, 2278, 2287, 2290, 2291, 2294, 2297, 2300, 2301, 2302, 2307, 2309, 2313, 2317, 2322, 2324, 2326, 2328, 2329, 2333, 2335, 2343, 2344, 2346, 2347, 2348, 2350, 2351, 2353, 2358, 2360, 2361, 2364, 2365, 2368, 2369, 2377, 2379, 2381, 2402, 2403, 2404, 2405, 2408, 2410, 2411, 2416, 2417, 2418

[0134] The compounds which showed the inhibitory activities of >80% at the concentration of 10 µM: Compd. Nos. 7, 32, 68, 169, 173, 203, 209, 215, 520, 544, 547, 851, 852, 855, 874, 910, 1003, 1012, 1032, 1038, 1042, 1043, 1046, 1114, 1190, 1244, 1247, 1384, 1441, 1513, 1527, 1545, 1582, 1673, 1687, 1689, 1705, 1850, 1869, 1871, 1876, 1877, 1899, 2027, 2289, 2293, 2296, 2298, 2315, 2318, 2319, 2325, 2332, 2349, 2352, 2354, 2355, 2356, 2357, 2359, 2362, 2363, 2366, 2367, 2370, 2371, 2372, 2373, 2374, 2375, 2376, 2378, 2382, 2383, 2390, 2393, 2396, 2412, 2413, 2414, 2415, 2422, 2423, 2424, 2425, 2426, 2427, 2428

[Example 2] Assay of inhibitory potency against the binding of eotaxin to a CCR3 expressing cells membrane fraction

[0135] A cell membrane fraction prepared from human CCR3 expressing K562 cells was suspended in an assay buffer solution (25 mM HEPES, pH 7.6, 1 mM CaCl₂, 5 mM MgCl₂, 0.5% BSA) at a concentration of 0.5 mg/mL to prepare the cell membrane fraction suspension. A test compound was diluted with the assay buffer solution to prepare the test compound solution. [125 I]-labeled human eotaxin (Amasham Co.) was diluted with the assay buffer solution at a concentration of 1 μ Ci/mL to prepare the labeled ligand solution. 25 μ L of the test compound solution, 25 μ L of the labeled ligand solution and 50 μ L of the cell membrane fraction suspension were sequentially injected into each well of a 96 well microplate coated with 0.5% BSA, stirred (100 μ L of the reaction solution), and then incubated at 25°C for 90 minutes.

[0136] After the reaction was finished, the reaction solution was filtered with the 96 well filter plate (Millipore Inc.) in which the filter was previously immersed in a 0.5% polyethylenimine solution, and the filter was washed with 150 μ L of a cold washing buffer solution (assay buffer +0.5M NaCl) four times (150 μ L of the cold washing buffer solution was added and then filtered). After the filter was dried with air, 25 μ L of a liquid scintillator was added to each well, and the radioactivity retained in the membrane fraction on the filter was measured with a TopCounter (Packard Co.).

[0137] The inhibitory potency of the test compound against the binding of the human eotaxin to the CCR3 membrane fraction was calculated, wherein a count on the addition of 100 ng of non-labeled human eotaxin in stead of the test compound was subtracted, and a count on the non-addition of the test compound was 100%.

Inhibition (%) = $\{1-(A-B) / (C-B)\} \times 100$

(A: a count, when the test compound was added; B: a count, when 100 ng of the non-labeled human eotaxin was added; C: a count, when only [125]-labeled human eotaxin was added).

[0138] When the inhibitory activities of the cyclic amine derivatives used in the present invention were assayed, the inhibitory activities of typical compounds in the present example were approximately equivalent to the inhibitory activities measured in Example 1.

Utilizability in industry

10

15

20

25

30

35

40

45

50

55

[0139] The medicine containing as an active ingredient the cyclic amine compound, the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof, of the present invention, or the medicine for treating or preventing diseases in which CCR3 participates, has an activity for inhibiting the action

groups (which may be substituted by the arbitrary number of halogen atoms, hydroxy groups, C₁ to C₆ alkyl groups, C₁ to C₆ alkoxy groups or benzyloxy groups), phenoxy groups, benzyloxy groups, benzyloxycarbonyl groups, C2 to C7 alkanoyl groups, C2 to C7 alkoxycarbonyl groups, C2 to C7 alkanoyloxy groups, C2 to C7 alkanoylamino groups, C₂ to C₇ N-alkylcarbamoyl groups, C₁ to C₆ alkylsulfonyl groups, amino groups, mono (C₁ to C₆ alkyl)amino groups, di(C₁ to C₆ alkyl)amino groups or aromatic heterocyclic groups (having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms) or condensed rings formed by the condensation of the aromatic heterocyclic group with a benzene ring, or R4 and R5 may together form a three to six-membered cyclic hydrocarbon.

p represents 0 or 1.

5

10

15

20

25

30

35

50

G represents a group represented by -CO-, -SO₂-, -CO-O-, -NR⁷-CO-, -CO-NR⁷-, -NH-CO-NH-, -NH-CS-NH-, -NR7-SO₂-, -SO₂-NR7-, -NH-CO-O-, or -O-CO-NH-, provided that R7 is a hydrogen atom or a C₁ to C₆ alkyl group, or R7 may form a C2 to C5 alkylene group together with R5.

R6 represents a phenyl group, a C₃ to C₈ cycloalkyl group, a C₃ to C₆ cycloalkenyl group, a benzyl group or an aromatic heterocyclic group having one to three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, provided that the phenyl group, the benzyl group or the aromatic heterocyclic group in the above-mentioned R6 may be condensed, to make a condensed ring, with a benzene ring or an aromatic heterocyclic group having one or three atoms of oxygen, sulfur and/or nitrogen as heteroatoms, further provided that the phenyl group, the C_3 to C_8 cycloalkyl group, the C_3 to C_6 cycloalkenyl group, the benzyl group, the aromatic heterocyclic group or the condensed ring in the above-mentioned R6 may be substituted by the arbitrary number of halogen atoms, hydroxy groups, mercapto groups, cyano groups, nitro groups, thiocyanato groups, carboxyl groups, carbamoyl groups, trifluoromethyl groups, C_1 to C_6 alkyl groups, C_3 to C_8 cycloalkyl groups, C_2 to C_6 alkenyl groups, C₁ to C₆ alkoxy groups, C₃ to C₈ cycloalkyloxy groups, C₁ to C₆ alkylthio groups, C₁ to C₃ alkylenedioxy groups, phenyl groups, phenoxy groups, phenylamino groups, benzyl groups, benzoyl groups, phenylsulfinyl groups, phenylsulfonyl groups, 3-phenylureido groups, C_2 to C_7 alkanoyl groups, C_2 to C_7 alkoxycarbonyl groups, C2 to C7 alkanoyloxy groups, C2 to C7 alkanoylamino group, C2 to C7 N-alkylcarbamoyl $groups, C_1 to C_6 alkylsulfonyl groups, phenylcarbamoyl groups, N,N-di(C_1 to C_6 alkyl) sulfamoyl groups, amino groups, C_1 to C_6 alkylsulfonyl groups, phenylcarbamoyl groups, N,N-di(C_1 to C_6 alkylsulfonyl groups, amino groups, C_1 to C_6 alkylsulfonyl groups, phenylcarbamoyl groups, N,N-di(C_1 to C_6 alkylsulfonyl groups, amino groups, D,N-di(C_1 to C_6 alkylsulfonyl groups, D,N-di(C_1 to C_6 al$ groups, mono(C_1 to C_6 alkyl)amino groups, di(C_1 to C_6 alkyl)amino groups, benzylamino groups, C_2 to C_7 (alkoxycarbonyl)amino groups, C₁ to C₆ (alkylsulfonyl)amino groups or bis(C₁ to C₆ alkylsulfonyl)amino groups, and further provided that the substituents of the phenyl group, the C_3 to C_8 cycloalkyl group, the C_3 to C₈ cycloalkenyl group, the benzyl group, the aromatic heterocyclic group, or the condensed ring may further be substituted by the arbitrary number of halogen atoms, cyano groups, hydroxy groups, amino groups, trifluoromethyl groups, C_1 to C_6 alkyl groups, C_1 to C_6 alkoxy groups, C_1 to C_6 alkylthio groups, mono(C_1 to C_6 to C_6 to alkyl)amino groups, or di(C1 to C6 alkyl)amino groups.].

- 2. The pharmaceutical composition having the CCR3-antogonistic action according to Claim 1, wherein k is 1 and m is 2 in the above-mentioned formula (I).
- The pharmaceutical composition having the CCR3-antogonistic action according to Claim 1, wherein k is 0 and m is 3 in the above-mentioned formula (I). 40
 - 4. The pharmaceutical composition having the CCR3-antogonistic action according to Claim 1, wherein k is 1 and m is 3 in the above-mentioned formula (i).
- The pharmaceutical composition having the CCR3-antogonistic action according to Claim 1, wherein k is 2 and m 45 is 2 in the above-mentioned formula (I).
 - 6. The pharmaceutical composition having the CCR3-antogonistic action according to Claim 1, wherein k is 1 and m is 4 in the above-mentioned formula (I).
 - A pharmaceutical composition which contains, as an active ingredient, the compound represented by the abovementioned formula (I), the pharmaceutically acceptable acid addition salt thereof or the pharmaceutically acceptable C_1 to C_6 alkyl addition salt thereof, and which is used for treating or preventing a disease concerned with CCR3.
- The pharmaceutical composition for treating or preventing the disease according to Claim 7, wherein the disease 55 is an allergic disease.
 - 9. The pharmaceutical composition for treating or preventing the disease according to Claim 8, wherein the disease

INTERNATIONAL SEARCH REPORT

17-94

Not of the

والمعارضية المدار

International application No.
PCT/JP00/05260

A. CLASSIFICATION OF SUBJECT MATTER

10T.C1 A61K31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 404, 4155, 4245, 5377, 4545, 4709, 4184, 627, 506, 433, 423, 4192, 429, 53, R61P37/08, 29/00, 31/18, 11/08, 43/00 // C07D207/14, 211/56, 58, 26, 401/04, 06, 12, 14, 403/06, 12, 406/06, 12, 14, 409/12, 14, 413/06, 14, 417/06, 487/04, 495/06, p4, 513/04

According to International Fatent Classification (IPC) or to both national classification and IPC A CLASSIFICATION OF SUBJECT MATTER E. FIELLO SEAKCHELI
 Minimum documentation searched (classification system followed by classification symbols)
 MINIMUM documentation searched (classification system followed by classification symbols)
 Int.Cl' AGIK31/40, 4025, 445, 4468, 4525, 4535, 454, 422, 404, 4155, 4245, 5377, 4545, 4709, 410 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) REGISTRY (STN), CA (STN), CAOLD (STN), CAPLUS (STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1-10 MO, 99/25686, Al (TEIJIN LIMITED), 27 May, 1999 (27.05.99) Category* & EP, 1030840, Al & AU, 9913741, A & NO, 2000002486, A 1,5,7-10 EP, 217286, A1 (OKAMOTO SHOSUKE), 08 April, 1987 (08.04.87), 2-4,6,11 X £ JP, 63-022061, A £ US, 4895842, A £ AU, 8663051, A & CA, 1297633, A 1,2,5 WO, 98/50534, A1 (SMITHKLINE BEECHAM CORPORATION), 3,4,6-11 12 November, 1998 (12.11.98) X £ EP, 991753, A1 £ AU, 9872885, A £ BR, 9808502, A £ ZA, 9803843, A 1,5 GB, 2106108, A (JOHN WYETH AND BROTHER LIMITED), 2-4,6-11 07 April, 1983 (07.04.83) & US, 4443461, A X WO, 97/40051, Al (TAKEDA CHEMICAL INDUSTRIES, LTD.), 30 October, 1997 (30.10.97) 1.5 2-4,6-11 See patent family ansex. Further documents are listed in the continuation of Box C. later document published after the interactional filing date or priority data and not in conflict with the application has clied to priority data and not in consist with the apparatum out take so understand the principle of theory underlying the invention of document of particular relevance, the charmed invention cannot be considered as over or extend be considered to involve an inventive Special categories of cited documents A document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing step when the document is taken alone document of particular relevance; the channel invention cannot be "L" document which may throw doubts on priority chims(s) or which is cited to establish the publication date of another citation or other considered to involve an inventive sup-when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the at document member of the same patent family special reason (as specified)
special reason (as specified)
special reason (as specified) document published prior to the international filing date but later Date of mailing of the international search report than the priority date claimed 07 November, 2000 (07.11.00) Date of the actual completion of the international search 31 October, 2000 (31.10.00) Authorized officer Name and mailing address of the ISA/ Japanese Patent Office Telephone No. Faccimile No.

Form PCT/ISA/210 (second sheet) (July 1992)