

Photo by © National Eye Institute

DEEP LEARNING PROJECT

DETECTING DIABETIC RETINOPATHY

Sandra Paredes

INTRODUCTION

- Motivation: Eye clinical trials generate thousands of images that need to be classified with the correct diagnosis. [1,]
- Research Question: How well can a neural network diagnose diabetic retinopathy from a retinal image?
- National Eye Institute's research evaluation of retinal clinical trial data, and streamline publishing results.

A simulated view by a person with advanced diabetic retinopathy. Photo by © <u>National Eye Institute</u>

METHODOLOGY

Dataset

- Diabetic Retinopathy 2015 Data
 Colored Resized [2]
- Images = 35,000

Preprocessing

- Resize
- Balance classes
- ImageDataGenerator
- Data Augmentation

Normal Healthy Retina

METHODOLOGY

- Model Approach
 - Do we need a deep learning model?

Can logistic regression accomplish this task?

Deep learning may solved this task best.

RESULTS

Deep Learning Models

- Neural Network
 - accuracy = 0.3418
 - val_accuracy = 0.3555
- Convolutional Neural Network
 - accuracy = 0.3496
 - val_accuracy = 0.5264
- Transfer Learning: VGG16
 - accuracy = 0.3311
 - val_accuracy = 0.5127

RESULTS

Predictions

- How well did the model predict?
- Bug in code predicts one class (the largest of the class).
- Explains the accuracy scores on train and test.

CONCLUSIONS

Insights

Recommendations

Photo by ©National Eye Institute

FUTURE WORK

Deep learning model

Neural circuits in the retina.
Photo by Wei Li, © National Eye Institute

APPENDIX

Summary, data, and slides are available at github.com/slp22/deep-learning-project

Dr. Emily Chew, Director of the Division of Epidemiology and Clinical Applications. Photo by © National Eye Institute

APPENDIX

VGG16 Model

APPENDIX: SOURCES

- 1. NIH adds first images to major research database: https://www.nei.nih.gov/about/news-and-events/news/nih-adds-first-images-major-research-database
- 2. Diabetic Retinopathy 2015 Data Colored Resized: https://www.kaggle.com/datasets/sovitrath/diabetic-retinopathy-2015-data-colored-resized
- 3. The Twitter pandemic: The critical role of Twitter in the dissemination of medical information and misinformation during the COVID-19 pandemic: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170811
- 4. Kaggle Early April 2020: https://www.kaggle.com/datasets/smid80/coronavirus-covid19-tweets-early-april
- 5. Kaggle Late April 2020: https://www.kaggle.com/datasets/smid80/coronavirus-covid19-tweets-late-april