Cálculo Numérico Segunda lista de exercícios Prof. Dr. Rogério Galante Negri

- 1. Localize graficamente as raízes das seguintes equações (plote os gráficos e identifique os intervalos que contém as raízes)
 - a) $4\cos(x) e^{2x} = 0$;
 - b) 1 x ln(x) = 0;
 - c) $x^3 + x 1000 = 0$.
- 2. Ao aplicar o MPF na resolução de uma equção, foram obtidos os seguintes resultados nas iterações:

$$x_{10} = 1.5$$
 $x_{11} = 2.24702$ $x_{12} = 2.14120$ $x_{13} = 2.14159$ $x_{14} = 2.14128$ $x_{15} = 2.14151$ $x_{16} = 2.14133$ $x_{17} = 2.14147$.

O que se pode afirmar sobre a raiz procurada?

- 3. Implemente e use NR para obter a menor raiz positiva das equações abaixo, com precisão $\epsilon=10^{-4}$:
 - a) $\frac{x}{2} tg(x) = 0;$
 - b) $x^5 6 = 0$.
- 4. Aplique NR em $x^3 2x^2 3x + 10 = 0$, com $x_0 = 1.9$. Justifique o que acontece.
- 5. Seja $f(x) = \frac{x^2}{2} + x(\ln(x) 1)$. Obtenha os pontos críticos de f(x) com auxílio de um método numérico.
- 6. Implemente e use o MS para aproximar, com precisão $\epsilon = 10^{-4}$, o ponto sobre a curva $y = \frac{1}{x}$ que está mais próximo de (2,1).
- 7. * Duas vigas de madeira de 20 e 30 metros se apóiam nas paredes de um galpão (vide figura). Se o ponto que se cruzam está a 8 metros do solo, qual a largura deste galpão?

