

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 729 999 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

04.09.1996 Bulletin 1996/36

(51) Int. Cl.⁵: C08K 3/04, C08K 3/22

(21) Application number: 96103156.4

(22) Date of filing: 01.03.1996

(84) Designated Contracting States:
DE FR GB

(30) Priority: 03.03.1995 JP 44375/95

(71) Applicant: Tosoh Corporation
Shinannyo-shi, Yamaguchi-ken, 746 (JP)(72) Inventors:
• Okisaki, Fumio
Yokkaichi-shi, Mie (JP)

- Hamada, Aktnori
Boutu-shi, Yamaguchi (JP)
- Endo, Shunichi
Tsukuba-gun, Ibaraki (JP)
- Ochiai, Genichiro
Torda-shi, Ibaraki (JP)

(74) Representative: VOSSIUS & PARTNER
Siebertstrasse 4
81675 München (DE)

(54) Fire-retardant polymer composition

(57) A novel fire-retardant polymer composition is provided which comprises 100 parts by weight of a polymer such as polyolefins and polystyrenes, 1-30 parts by weight of an oxide or a complex oxide of metals such as antimony, boron, and molybdenum, and 1-30 parts by weight of heat-expandable graphite. The fire-retardant polymer composition emits less amounts of smoke and corrosive gas on burning with the characteristics of the polymer material kept unimpaired.

Description

The present invention relates to a polymer material which has excellent fire-retardancy, and emits less corrosive gas and less smoke on burning.

5 Polymer materials are desired to be fire-retardant to prevent fire accident or fire spreading in use for e.g. insulating materials such as electric wires and cables; sheath materials; enclosures and internal parts of electric, electronic, and office automation apparatuses; interior materials of vehicles; and building materials. Many polymer materials for such uses are enforced to be fire retardant by legislation. For fire retardancy of polymer materials, known fire-retardant additives include halogen type fire-retardant additives, magnesium hydroxide, aluminum hydroxide, red phosphorus, and phosphorus compounds. These fire-retardant materials, however, are not perfect, and have disadvantages as explained below.

10 The halogen type fire-retardant additives, which give a high level of fire retardancy (for example, UL-94V-0, V-1, or V-2) by addition in a small amount, generate soot or smoke in a large amount on burning. Further, the halogen type fire-retardant additives emit more or less acidic substances such as a hydrogen halide by heat of processing or at the time 15 of fire accident, which would cause corrosion of the machines for resin processing, or produce adverse effects on human health or apparatuses in the vicinity of a fire site.

20 Metal hydroxides as the fire retardant, such as magnesium hydroxide and aluminum hydroxide, are required to be added to the resin in a larger amount, although they emit neither smoke nor corrosive gas. The addition thereof in a larger amount will impair the mechanical strength, lightweight, and other favorable characteristics of the polymer.

The phosphorus type fire-retardant additives such as red phosphorus and phosphoric acid esters are effective in a 25 small amount for polyamides, polyesters, polyphenylene oxides and other engineering plastics. However, they are less effective for fire retardation of general purpose polymers such as polyolefins and polystyrenes.

Therefore, a fire-retardant additive is demanded which contains no halogen, emits less smoke and less corrosive 30 gas, and is effective in a smaller amount of addition. Promising techniques therefor have been disclosed in which heat-expandable graphite and a synergist are used in combination. For example, Japanese Patent Laid-Open Publication 6-73251 discloses fire-retardation of polystyrene by addition of a small amount of a combination of red phosphorus and heat-expandable graphite. Japanese Patent Laid-Open Publication 6-25476 discloses fire-retardation of polyolefin by addition of a small amount of a combination of red phosphorus or a phosphorus compound with heat-expandable 35 graphite.

30 However, the red phosphorus itself is a substance under control as a dangerous object by Japanese Fire Protection Law, and is not necessarily easily handleable in storage, transportation, and blending with a polymer. Most of phosphorus compounds are low-melting and not necessarily easily blendable with a polymer.

It is an object of the present invention to provide a fire-retardant polymer composition which has excellent fire-retardancy, and emits less corrosive gas and less smoke on burning without using red phosphorus or a phosphorus compound.

35 This object has been accomplished based on the finding that a specific metal oxide is synergistic with heat-expandable graphite in fire retardation.

The fire-retardant polymer composition of the present invention essentially comprises the three components A, B, and C mentioned below:

- 40 (A) 100 parts by weight of a polymer,
 (B) 1 to 30 parts by weight of heat-expandable graphite, and
 (C) 1 to 30 parts by weight of a metal oxide,

45 wherein the polymer (A) is one or more polymers selected from polyolefins, polystyrenes, elastomers, polyurethanes, and polysiloxanes; the heat-expandable graphite (B) changes its specific volume on rapid heating from room temperature to 800-1000°C by 100 ml/g or more; and the metal oxide (C) is an oxide or a complex oxide containing one or more metals selected from antimony, bismuth, zirconium, molybdenum, tungsten, boron (excluding borax), aluminum, magnesium (excluding magnesium oxide for polyolefins and/or polystyrenes as the polymer), and zinc.

50 The polyolefin employed in the present invention is mainly constituted of one or more of ethylene, propylene, and other olefinic monomers. The polyolefin includes high-density polyethylenes, low-density polyethylenes, linear low-density polyethylenes, polypropylenes, polybutenes, polymethylpentenes, ethylene-propylene copolymers, ethylene-vinyl ester copolymers, copolymers of ethylene with (meth)acrylic acid or derivatives thereof.

The polystyrene in the present invention is a polymer produced from a styrene type monomer including styrene, α -methylstyrene, vinyltoluene and vinylnaphthalene.

55 The polystyrene includes homopolymer of styrene, rubber-modified high-impact polystyrenes (hereinafter referred to as "HIPS"), acrylonitrile-butadiene-styrene copolymers (hereinafter referred to as "ABS"), and acrylic rubbers and ethylene-propylene copolymers grafted with an acrylic monomer and a styrenic monomer.

The elastomer in the present invention includes hydrocarbon type elastomers such as natural rubbers (hereinafter referred to as "NR rubber"), polybutadiene styrene-butadiene rubbers (hereinafter referred to as "SBR rubber"), polyisoprene, ethylene-propylene rubbers, nitrile rubbers, acrylate rubbers, butyl rubbers, epichlorohydrin rubbers, styrene-butadiene-styrene block copolymers, styrene-isoprene-styrene block copolymers, styrene-ethylene-butene-styrene block copolymers, and hydrogenated SBR.

5 The polyurethane in the present invention includes flexible polyurethane foams, rigid polyurethane foams, polyurethane fibers, and polyurethane paints, which are produced from an isocyanate such as a diisocyanate and a polyhydric alcohol such as polypropylene glycol.

10 The polysiloxane in the present invention includes polyorganosiloxanes having in a side chain e.g. an alkyl, alkenyl or phenyl group, specifically exemplified by silicone elastomers, room temperature-curing silicone rubbers, cold-setting silicone elastomers, silicone sealants, and silicone resins.

15 The polymer employed in the present invention is not limited to a single polymer, but may be a mixture of two or more thereof or with other polymer or polymers according to desired properties of the polymer.

Component B of the composition of the present invention is heat-expandable graphite. The heat-expandable graphite is derived from natural graphite or artificial graphite, and expands on rapid heating from room temperature to 800-1000°C in the c-axis direction of the crystal with the specific volume change of not less than 100 ml/g by the temperature change. This expandability is desirable because the one exhibiting the specific volume change of not less than 100 ml/g by the rapid heating given much more fire retardancy than the one of less than 100 ml/g. The expandability in the present invention means the difference between the specific volume (ml/g) after the heating and that at room temperature.

20 The expandability is measured specifically as follows. A quartz beaker is heated preliminarily to 1000°C in an electric furnace. Two grams of heat-expandable graphite is introduced into this quartz beaker quickly, and the quartz beaker is placed immediately in the electric furnace for 10 seconds to cause expansion of the graphite. The weight of 100 ml of the expanded graphite is measured to obtain the loosened apparent specific gravity (g/ml)

$$25 \quad [\text{Specific volume}] = 1 / [\text{Loosened apparent specific gravity}]$$

Separately, the specific volume of the unheated heat-expandable graphite is obtained at room temperature similarly.

$$30 \quad [\text{Expandability}] = [\text{Specific volume after heating}] - [\text{Specific volume at room temperature}]$$

The heat-expandable graphite of the present invention expands by heating only in the c-axis direction, but expands little in the a-axis direction and the b-axis direction according to electron microscopical observation.

35 The process for producing the heat-expandable graphite of the present invention is not specially limited. It can be obtained, for example, by oxidation treatment of natural graphite or artificial graphite. The oxidation is conducted, for example, by treatment with an oxidizing agent such as hydrogen peroxide and nitric acid in sulfuric acid. Otherwise, the heat-expandable graphite can also be produced by reduction treatment of graphite. The reduction is conducted, for example, by treatment with sodium naphthalenide in an aprotic organic solvent.

40 The particle size of the heat-expandable graphite of the present invention affects the fire retardancy of the resulting polymer composition. The graphite of a preferred particle size distribution contains the particles passing through a 80-mesh sieve at a content of 20% or lower by weight, more preferably from 1% to 20% by weight. The graphite which contains the particles passing through a 80-mesh sieve at a content of higher than 20% by weight will not give sufficient fire retardancy, while the graphite containing the above particles at a content of lower than 1% by weight would slightly impair the shape-retaining properties of the resin composition when the resin composition is exposed to fire.

45 The heat-expandable graphite has preferably a particle size larger than a certain level as mentioned above. In a preferred embodiment, the surface of the heat-expandable graphite particles is treated with a silane-coupling agent, or a titanate-coupling agent in order to prevent the adverse effects of larger particles on the properties of the polymer composition.

50 The heat-expandable graphite, which is produced e.g. by oxidation in sulfuric acid as described above, can be slightly acidic depending on the process conditions. When the graphite is acidic, corrosion of the apparatus for production or processing of the polymer composition can be inhibited by addition of an alkaline substance such as magnesium and aluminum hydroxide to the composition. The alkaline substance is preferably to be close to the heat-expandable graphite particles for efficient corrosion prevention. For this purpose, the alkaline substance is preferably mixed with the heat-expandable graphite preliminarily to adhere to the surface of the graphite. The alkaline substance is added in an amount of less than 10% by weight of the heat-expandable graphite.

55 Component C in the present composition is a metal oxide. The metal oxide is not particularly limited, provided that it is synergistic with the heat-expandable graphite used as Component B. The metal oxide specifically includes oxides and complex oxides of antimony, bismuth, zirconium, molybdenum, tungsten, boron (excluding borax), aluminum, magne-

sium (excluding magnesium oxide for polyolefins and/or polystyrenes as the polymer), and zinc (hereinafter referred to simple as a "metal oxide").

More preferably, in the case where the polymer is selected from polyolefins, polystyrenes, and mixtures of one or more thereof, the metal oxide includes antimony trioxide, antimony pentoxide, sodium antimonate, zirconium-antimony complex oxide, bismuth trioxide, molybdenum trioxide, molybdate salts, tungsten trioxide, boron oxide, borate salts (excluding borax), aluminum oxide, and mixtures of two or more thereof. In the case where the polymer is selected from elastomers, polyurethanes, polysiloxanes, and mixtures of two or more thereof, the metal oxide includes antimony trioxide, antimony pentoxide, sodium antimonate, zirconium-antimony complex oxide, bismuth trioxide, molybdenum trioxide, molybdate salts, tungsten trioxide, boron oxide, borate salts (excluding borax), aluminum oxide, magnesium oxide, and mixtures of two or more thereof.

Of the molybdate salts, ammonium octamolybdate is particularly preferred. Of the borate salts, zinc borate and barium metaborate are particularly preferred. However, borax is not suitable since it impairs the water resistance of the polymer composition owing to its high water-solubility (14 g/100 g at 55°C). In the case where the polymer is one or a mixture of two or more of polyolefins and polystyrenes, magnesium oxide is not preferred since it is not sufficiently synergistic with heat-expandable graphite.

The aforementioned metal oxides have been regarded as being little effective for polymers containing no halogen, although they are known to be synergistic with halogen type fire retardants.

Japanese Patent Laid-Open Publication 62-275138, for example, discloses application, to polyolefins, of a combination of graphite and a non-halogen type fire-retardant such as metal oxide hydrate. The non-halogen type fire-retardant is exemplified by antimony trioxide, antimony pentoxide, aluminum oxide, and zinc borate. In the disclosure, although expandable graphite (supplied by Kobayashi Shoji K.K.) is used as the graphite in Examples 2 and 5, only a combination of magnesium hydroxide with red phosphorus is used as the non-halogen type fire-retardant, but the use of antimony trioxide, antimony pentoxide, aluminum oxide, and zinc borate is not mentioned at all. Therefore, these compounds have not been known to be synergistic effectively with heat-expandable graphite.

Japanese Patent Laid-Open Publication 55-62988 discloses a fire retardation technique by use of a combination of heat-expandable graphite and zinc borate or barium borate for fire retardation of polyethylenes, polystyrenes and natural rubbers. This technique, however, requires essentially an inorganic water-containing compound like aluminum hydroxide, magnesium hydroxide, and borax.

Therefore, the fact is not predictable at all that the metal oxides including antimony trioxide, antimony pentoxide, aluminum oxide, and zinc borate constituting the present invention are synergistic with heat-expandable graphite without the aid of a fire-retardant additive of other category such as magnesium hydroxide.

In the composition of the present invention, Component B and Component C are used respectively in an amount of from 1 to 30 parts by weight to 100 parts by weight of Component A. With the respective amounts of Component B and Component C of one part by weight or less, the fire retardancy of the polymer in not sufficient, while with the respective amounts thereof of 30 parts by weight or more, the rate of increase of the fire retardancy becomes lower and the polymer properties are impaired.

The polymer composition of the present invention may further contain another fire retarding additive such as a metal hydroxide like magnesium hydroxide or aluminum hydroxide, or a phosphorus compound such as ammonium polyphosphate in such an amount that the effect of the present invention is not impaired. Further, the polymer composition may contain other kinds of additive such as inorganic fillers, colorants, antioxidants, light stabilizers, light absorbing agents, plasticizers, process oils, crosslinking agents, and blowing agents, if necessary. The polymer may be crosslinked by water-crosslinking or ionizing radiation.

The present invention provides a fire-retardant polymer composition without red phosphorus by use of heat-expandable graphite and a novel synergist.

The present invention is described below more specifically by reference to examples without limiting the invention in any way.

In the Examples and Comparative Examples, the materials used are as below ("parts" is based on weight unless otherwise mentioned):

50 Component A

- (A1) Ethylene-vinyl acetate copolymer (Ultrathene 630, Tosoh Corp.)
- (A2) Low-density polyethylene (Petrofthem 202, Tosoh Corp.)
- (A3) Polypropylene (Tosoh Polypropylene J7250B, Tosoh Corp.)
- (A4) HIPS (HT-65, Mitsubishi Kagaku K.K.)
- (A5) ABS (Toylack 100, Toray Industries, Inc.)
- (A6) Compound produced by roll-blending:

100 parts of natural rubber (RSS-3 from Malaysia) as the base material, 2.5 parts of sulfur, 5 parts of zinc white (Sakai Chemical Industry Co.), 2 parts of stearic acid, 75 parts of hard top clay (Shiraishi Calcium K.K.), 1.25 parts

of Accelerator CZ (Nocceler CZ, Ouchi Shinko K.K.), 0.3 part of Accelerator TT (Nocceler TT, Ouchi Shinko K.K.), 1 part of age resister (Nocrack-810A, Ouchi Shinko K.K.)

(A7) Compound produced by roll-blending:

100 parts of SBR (Sorprene, Asahi Chemical Industry Co.) as the base material, 6 part, of sulfur, 2 parts of zinc white (No.1, Sakai Chemical Industry Co.), 2.5 parts of stearic acid, 55 parts of white carbon (Nip Sil VN3, Nippon Silica K.K.), 20 parts of naphthene oil (Diana Process Oil, Idemitsu Kosan K.K.), 5.5 parts of diethylene glycol, 1.7 parts of Accelerator DM (Nocceler DM, Ouchi Shinko K.K.), 0.6 part of Accelerator D (Nocceler D, Ouchi Shinko K.K.), 1 part of age resister (Nocrack-SP, Ouchi Shinko K.K.)

(A8) Compound produced by b'ending:

100 parts of polyetherpolyol (MN-3050, Mitsui Toatsu Chemicals, Inc.), 55 parts of tolylene diisocyanate (T-80, Nippon Polyurethane Industry Co.), 4 parts of water, 0.3 part of triethylendiamine (Tosoh Corp.), 0.2 part of N-ethylmorpholine (NEM, Nippon Nyukazai K.K.), 0.35 part of Neostan diolate (U-28, Nitto Kasei K.K.), 1.2 parts of silicone foam stabilizer (L-580, Nippon Unicar Co.), and 10 parts of dichloromethane

(A9) Compound produced by blending:

100 parts of polymethylvinylsilicone rubber compound (KE-650, Shin-Etsu Chemical Co.), 2 parts of curing agent (C-8, Shin-Etsu Chemical Co.) containing 2,5-dimethyl-2,5-bis(t-butylperoxy)-hexane (about 25%)

Component B

20 (B1) Heat-expandable graphite without surface treatment (CA-60, Chuo Kasei K.K.)

(B2) Heat-expandable graphite having the surface treated with a silane coupling agent (CA-60S, Chuo Kasei K.K.)

(B3) Heat-expandable graphite mixed preliminarily with magnesium hydroxide (CA-60N, Chuo Kasei K.K.) in a mixing amount of several percent of the hydroxide to the graphite.

25 The expandability and the particle size distribution of Components B1 to B3 are shown in Table 1.

Table 1

	Expandability ¹⁾ (ml/g)	Particle size distribution ²⁾ (% by weight)
B1	213	4
B2	208	4
B3	202	5

1) Change of specific volume on rapid heating from room temperature to 800-1000°C

2) Particles passing through 80-mesh sieve

Component C

(C1) Antimony trioxide (Flame Cut 610R, Tosoh Corp.)

(C2) Antimony pentoxide (Sun Epoch NA-1070, Nissan Chemical Industries, Ltd.)

(C3) Zinc borate (ZB223, Climax Co.)

(C4) Ammonium octamolybdate (ZTO3 AOM, Climax Co.)

(C5) Zirconium-antimony complex oxide (Fire DTA, Daiichi Kigenso K.K.)

(C6) Magnesium oxide (Kyowa Mag 150, Kyowa Kagaku K.K.)

Examples 1-9 and Comparative Examples 1-8

An ethylene-vinyl acetate copolymer was used as Component A. The starting materials were blended in a formulation ration as shown in Table 2 by roll blending. The test specimens were prepared by press molding. The fire retardancy was evaluated by measurement of the oxygen index (hereinafter referred to as "OI") according to JIS K7201, and vertical burning test according to UL-94. The results are shown in Table 2.

Table 2

Example	Component			UL-94 ¹⁾	OI (%)			
	A	B	C					
		phr	phr					
10	1	A1	B1	10	C1	20	V0	27.5
	2	A1	B1	10	C2	20	V0	27.5
	3	A1	B1	10	C3	20	V0	27.5
	4	A1	B1	10	C4	20	V0	27.5
	5	A1	B1	10	C5	20	V1	28.0
	6	A1	B2	10	C1	20	V0	27.5
	7	A1	B3	10	C1	20	V0	27.5
	8	A1	B1	5	C1	5	V0	26.0
20	9	A1	B1	1	C1	1	V2	24.5
	Comparative example							
	1	A1	-	0	-	0	NR	21.0
	2	A1	B1	30	-	0	NR	24.0
	3	A1	-	0	C1	30	NR	21.0
	4	A1	-	0	C2	30	NR	21.5
	5	A1	-	0	C3	30	NR	21.0
	6	A1	-	0	C4	30	NR	22.0
	7	A1	-	0	C5	30	NR	21.0
	8	A1	B1	30	C6	30	NR	24.0

35 1) NR denotes the level below V0, V1, and V2.

In Comparative Examples 2-6, single use of Component B (heat-expandable graphite) or Component C (metal oxide) neither improved OI (oxygen index) nor results in flame retardancy in the UL burning test. On the other hand, in Examples 1-5, the same amount (30 phr) of the fire-retardant additive as in Comparative Examples 2-6 achieves remarkably high fire retardancy. Therefore, Component C is synergistic with Component B obviously. From Examples 1, 6, and 7, the surface treatment or magnesium hydroxide treatment of the heat-expandable graphite, Component B, does not affect adversely the fire retardancy. Further, for polyolefin as Component A, magnesium oxide as Component C is not sufficiently synergistic with Component B as shown in Comparative Example 8.

Examples 10-16 and Comparative Example 9-17

Low density polyethylene, polypropylene, HIPS, or ABS was used as Component A. The starting materials were blended in a formulation ratios as shown in Table 3. The test specimens of the low-density polyethylene were prepared by roll blending and press molding. The test specimens of other polymers were prepared by blending by extruder and injection molding. The fire retardancy was evaluated by measurement of the oxygen index according to JIS K7201, and vertical burning test according to UL-94. The results are shown in Table 3.

Table 3

Example	Component			UL-94 ¹⁾	OI (%)		
	A	B					
		phr	phr				
10	A2	B1	10	C1	20	V0	30.0
11	A2	B1	10	C3	20	V0	29.5
12	A2	B1	10	C3	20	V0	29.5
	Comparative Example						
9	A2	-	0	-	0	NR	18.5
10	A2	B1	30	-	0	NR	24.0
	Example						
13	A3	B1	10	C1	20	V0	27.0
14	A3	B1	10	C3	20	V0	28.0
	Comparative Example						
11	A3	-	0	-	0	NR	19.0
12	A3	B1	30	-	0	NR	23.5
	Example						
15	A4	B1	10	C4	20	V0	31.0
	Comparative Example						
13	A4	-	0	-	0	NR	18.5
14	A4	B1	30	-	0	NR	24.0
15	A4	B1	33	C6	30	NR	24.0
	Example						
16	A5	B1	10	C3	20	V0	30.5
	Comparative Example						
16	A5	-	0	-	0	NR	18.5
17	A5	B1	30	-	0	NR	24.0

1) NR denote the level below V0, V1, and V2.

For these polymers, Components C have the synergistic effect obviously. For polystyrene as Component A, magnesium oxide as Component C is not synergistic with Component B as understood from Comparative Example 15.

Examples 17-20 and Comparative Example 18-21

Natural rubber or SBR was used as the elastomer. The starting materials were blended in a formulation ratios as shown in Table 3. The test specimens were prepared by blending by a roll and curing by compression molding. The resulting elastomer compositions were evaluated for fire retardancy by the oxygen index according to JIS K7201, and smoke emitting properties by the NBS method in the flame mode. The results are shown in Table 4. In the table, smoke emitting properties are represented by maximum value of the smoke density (D_{max}).

Table 4

	Example	Component			OI (%)	D_{max}		
		A	B	C				
	17	A6	B1	15	C1	15	24.6	132
	18	A6	B1	15	C6	15	25.0	123
	Comparative Example							
	18	A6	-	0	-	0	20.2	213
	19	A6	B1	30	-	0	22.4	174
	Example							
	19	A7	B1	15	C1	15	24.6	186
	20	A7	B1	15	C6	15	24.2	144
	Comparative Example							
	20	A7	-	0	-	0	19.7	304
	21	A7	B1	30	-	0	22.0	212

Table 4 shows that the fire retardant elastomer compositions of the Examples have excellent fire retardancy and extremely low smoking properties in comparison with those of the Comparative Examples.

Examples 21-22 and Comparative Examples 22-23

Polyurethane comparative were prepared by blending and reacting the starting materials in a formulation ratios shown in Table 5 at room temperature to form the test specimens. The resulting polyurethane compositions were evaluated for fire retardancy according to FMVSS-302, and smoke emitting properties by the NBS method in the flame mode. The results are shown in Table 5.

Table 5

	Example	Component			Burning length (cm)	D_{max}
		A	B	C		
			phr	phr		
	21	A8	B1	10	C1	24
	22	A8	B1	10	C6	26
	Comparative Example					
	22	A8	-	0	-	Burned
	23	A8	B1	15	-	Burned

Table 5 shows that the fire retardant polyurethane sitions of the Examples have excellent fire retardancy and compo-extremely low smoking properties in comparison with those of the Comparative Examples.

Examples 23-24 and Comparative Examples 24-25

5 Polymethylvinylsiloxane rubber compounds as the polysiloxane were prepared by blending the starting materials in a formulation ratios shown in Table 6 by a roll, and then curing the blended matter by compression molding to form the test specimens. The resulting polysiloxane compositions were evaluated for fire retardancy according to JIS K7201, and smoke emitting properties by the NBS method in the flame mode. The results are shown in Table 6.

Table 6

10	Example	Component			OI (%)	D_{max}		
		A	B	C				
			phr	phr				
15	23	A9	B1	20	C1	10	35.5	93
	24	A9	B1	15	C3	5	39.5	141
20	Comparative Example							
	24	A9	-	0	-	0	27.2	233
	25	A9	B1	15	-	0	29.5	197

25 Table 6 shows that the fire retardant polysiloxane compositions of the Examples have excellent fire retardancy and extremely low smoking properties in comparison with those of the Comparative Examples.

Claims

- 30 1. A fire-retardant polymer composition comprising three components A, B, and C mentioned below:
 - (A) 100 parts by weight of a polymer,
 - (B) 1 to 30 parts by weight of heat-expandable graphite, and
 - (C) 1 to 30 parts by weight of a metal oxide,

35 wherein the polymer (A) is one or more polymers selected from polyolefins, polystyrenes, elastomers, polyurethanes, and polysiloxanes; the heat-expandable graphite (B) changes its specific volume on rapid heating from room temperature to 800-1000°C by 100 ml/g or more; and the metal oxide (C) is an oxide or a complex oxide containing one or more metals selected from antimony, bismuth, zirconium, molybdenum, tungsten, boron (excluding borax), aluminum, magnesium (excluding magnesium oxide for polyolefins and/or polystyrenes as the polymer), and zinc.

- 40 2. The fire-retardant polymer composition according to claim 1, wherein the polymer is one or a mixture of two or more polymers selected from polyolefins and polystyrenes.
- 45 3. The fire-retardant polymer composition according to claim 1, wherein the polymer is one or a mixture of two or more polymers selected from elastomers, polyurethanes, and polysiloxanes.
- 50 4. The fire-retardant polymer composition according to claim 2, wherein the metal oxide is one or more selected from antimony trioxide, antimony pentoxide, sodium antimonate, zirconium-antimony complex oxide, bismuth trioxide, molybdenum trioxide, molybdate salts, tungsten trioxide, boron oxide, borate salt (excluding borax), and aluminum oxide.
- 55 5. The fire-retardant polymer composition according to claim 3, wherein the metal oxide is one or more selected from antimony trioxide, antimony pentoxide, sodium antimonate, zirconium-antimony complex oxide, bismuth trioxide, molybdenum trioxide, molybdate salts, tungsten trioxide, boron oxide, borate salts (excluding borax), aluminum oxide, and magnesium oxide.

6. The fire-retardant polymer composition according to claim 4 or 5, wherein the molybdate salt is ammonium octamolybdate.
- 5 7. The fire-retardant polymer composition according to claim 4 or 5, wherein the borate salt is zinc borate, barium metaborate, or a mixture thereof.
8. The fire-retardant polymer composition according to any of claims 1 to 7, wherein the heat-expandable graphite has a particle size distribution in which not more than 20% by weight of the particles pass through a 80 mesh sieve.
- 10 9. The fire retardant polymer composition according to any of claims 1-8, wherein the heat-expandable graphite is surface-treated with one or more coupling agent selected from silane-coupling agents and titanate-coupling agents.
- 15 10. The fire-retardant polymer composition according to any of claims 1-9, wherein the heat-expandable graphite is mixed preliminarily with magnesium hydroxide and/or aluminum hydroxide.

20

25

30

35

40

45

50

55

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 96 10 3156

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.)
X	GB-A-2 226 633 (T & H TECHNOLOGY LTD) 20 June 1990 * claims 1-4 *	1,3	C08K3/04 C08K3/22
X	EP-A-0 192 888 (DUNLOP LTD) 3 September 1986 * page 3, line 1 - line 5 * * claims 1,3 *	1,3,5	
X	WO-A-91 11498 (HIGH POINT RENDEL PROJECTS LIM) 8 August 1991 * claims 1,3,5,8 *	1,3,5	
X	DATABASE WPI Derwent Publications Ltd., London, GB; AN 91-097793 XP002005678 & JP-A-03 041 163 (NIPPON KASEI KK) , 21 February 1991 * abstract *	1,2	
X	DATABASE WPI Derwent Publications Ltd., London, GB; AN 91-097794 XP002005679 & JP-A-03 041 164 (NIPPON KASEI KK) , 21 February 1991 * abstract *	1	TECHNICAL FIELDS SEARCHED (Int.Cl.) C08K
X	DATABASE WPI Derwent Publications Ltd., London, GB; AN 89-089997 XP002005680 & JP-A-01 040 588 (HITACHI CABLE KK) , 19 February 1989 * abstract *	1,3,5	
		-/-	
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	14 June 1996	Siemens, T	
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone	T : theory or principle underlying the invention		
Y : particularly relevant if combined with another document of the same category	E : earlier patent document, but published on, or after the filing date		
A : technological background	D : document forming part of the application		
O : non-written disclosure	L : document cited for other reasons		
P : intermediate document	& : member of the same patent family, corresponding document		

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 96 10 3156

DOCUMENTS CONSIDERED TO BE RELEVANT													
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.)										
X	<p>DATABASE WPI Derwent Publications Ltd., London, GB; AN 87-119220 XP002005581 & JP-A-62 062 871 (HITACHI CABLE KK) , 19 March 1987 * abstract *</p> <p>-----</p>	1											
			TECHNICAL FIELDS SEARCHED (Int.Cl.)										
<p>The present search report has been drawn up for all claims</p> <table border="1"> <tr> <td>Place of search</td> <td>Date of compilation of the search</td> <td>Examiner</td> </tr> <tr> <td>THE HAGUE</td> <td>14 June 1996</td> <td>Siemens, T</td> </tr> </table>				Place of search	Date of compilation of the search	Examiner	THE HAGUE	14 June 1996	Siemens, T				
Place of search	Date of compilation of the search	Examiner											
THE HAGUE	14 June 1996	Siemens, T											
<p>CATEGORY OF CITED DOCUMENTS</p> <table border="1"> <tr> <td>X : particularly relevant if taken alone</td> <td>T : theory or principle underlying the invention</td> </tr> <tr> <td>Y : particularly relevant if combined with another document of the same category</td> <td>E : earlier patent document, but published on, or after, the filing date of the application</td> </tr> <tr> <td>A : technological background</td> <td>D : document cited in the application</td> </tr> <tr> <td>O : non-written disclosure</td> <td>L : document cited for other reasons</td> </tr> <tr> <td>P : intermediate document</td> <td>A : member of the same patent family, corresponding document</td> </tr> </table>				X : particularly relevant if taken alone	T : theory or principle underlying the invention	Y : particularly relevant if combined with another document of the same category	E : earlier patent document, but published on, or after, the filing date of the application	A : technological background	D : document cited in the application	O : non-written disclosure	L : document cited for other reasons	P : intermediate document	A : member of the same patent family, corresponding document
X : particularly relevant if taken alone	T : theory or principle underlying the invention												
Y : particularly relevant if combined with another document of the same category	E : earlier patent document, but published on, or after, the filing date of the application												
A : technological background	D : document cited in the application												
O : non-written disclosure	L : document cited for other reasons												
P : intermediate document	A : member of the same patent family, corresponding document												