Introduction to Online Learning Algorithms

Yoav Freund

January 7, 2025

Outline

About this Course

Halving Algorithm

Perceptron

Estimating the mean

Class web site

 All of the class material is available from the github repository https://github.com/yoavfreund/2025-online-learning

- Instructor: Yoav Freund: yfreund@ucsd.edu
- ► TA: Parsa Mirtaheri: smirtaheri@ucsd.edu
- Office Hours: TBD

HW / Evaluation

- ▶ 5 HW assignments for 5*15 = 75 opints
- ► A final for 25 points.

Example trace for Halving Algorithm

	t = 1	<i>t</i> = 2	t = 3	t = 4	<i>t</i> = 5	
expert1	1	1	1	1	-	
expert2	1	0	-	-	-	
expert3	0	-	-	-	-	
expert4	1	0	-	-	-	
expert5	1	0	-	-	-	
expert6	0	-	-	-	-	
expert7	1	1	1	1	-	
expert8	1	1	1	0	0	
alg.	1	0	1	1	0	
outcome	1	1	1	0	0	

Mistake bound for Halving algorithm

- Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- We assume that at least one expert is perfect.
- Number of mistakes is at most log₂ N.
- No stochastic assumptions whatsoever.
- Proof is based on combining a lower and upper bounds on the number of perfect experts.

The Perceptron Problem

- $||\vec{V}|| = 1$
- ► Example = (\vec{X}, y) , $y \in \{-1, +1\}$.
- $\blacktriangleright \ \forall \vec{X}, \ \|\vec{X}\| \leq R.$
- $\forall (\vec{X}, y), \\ y(\vec{X} \cdot \vec{V}) \geq g$

The Perceptron learning algorithm

- An online algorithm. Examples presented one by one.
- ightharpoonup start with $\vec{W}_0 = \vec{0}$.
- ▶ If mistake: $(\vec{W}_i \cdot \vec{X}_i)y_i \leq 0$
 - ▶ Update $\vec{W}_{i+1} = \vec{W}_i + y_i X_i$.

Example trace for the perceptron algorithm

Bound on number of mistakes

- The number of mistakes that the perceptron algorithm can make is at most $\left(\frac{R}{g}\right)^2$.
- ▶ Proof by combining upper and lower bounds on $\|\vec{W}\|$.

Pythagorian Lemma

If $(\vec{W}_i \cdot X_i)y < 0$ then

$$\|\vec{W}_{i+1}\|^2 = \|\vec{W}_i + y_i \vec{X}_i\|^2 \le \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2$$

Upper bound on $\|\vec{W}_i\|$

Proof by induction

- ightharpoonup Claim: $\|\vec{W}_i\|^2 \leq iR^2$
- ► Base: i = 0, $\|\vec{W}_0\|^2 = 0$
- Induction step (assume for i and prove for i+1): $\|\vec{W}_{i+1}\|^2 < \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2$

$$\|W_{i+1}\|^2 \le \|W_i\|^2 + \|X_i\|^2$$

 $< \|\vec{W}_i\|^2 + R^2 < (i+1)R^2$

Lower bound on $\|\vec{W}_i\|$

 $\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$. Let *i* denote the number of mistakes made so far.

We prove a lower bound on $\vec{W}_i \cdot \vec{V}$ by induction over i

- ► Claim: $\vec{W}_i \cdot \vec{V} \ge ig$
- ▶ Base: i = 0, $\vec{W}_0 \cdot \vec{V} = 0$
- Induction step (assume for i and prove for i+1): $\vec{W}_{i+1} \cdot \vec{V} = (\vec{W}_i + \vec{X}_i y_i) \vec{V} = \vec{W}_i \cdot \vec{V} + y_i \vec{X}_i \cdot \vec{V}$ > iq + q = (i+1)q

Combining the upper and lower bounds

$$(ig)^2 \leq \|\vec{W}_i\|^2 \leq iR^2$$

Thus:

$$i \leq \left(\frac{R}{g}\right)^2$$

The mean estimation game

- ▶ An adversary choses a real number $y_t \in [0, 1]$ and keeps it secret.
- You make a guess of the secret number x_t
- ▶ The adversary reveals the secret and you pay $(x_t y_t)^2$
- You want to minimize $\frac{1}{T} \sum_{t=1}^{T} (x_t y_t)^2$
- ► Impossible without additional constraints.

Adversary is a fixed distribution

- Suppose that the adversary draws $y_1, y_2, ..., y_T$ IID from a fixed distribution over [0, 1] with mean μ and std σ .
- ▶ Optimal prediction $x_t = \mu$
- ▶ Online prediction: predict x_{t+1} from $Y^t = \langle Y_1, Y_2, \dots, Y_t \rangle$.
- **Expected regret**: compare performance of algorithm to Regret = $E_{Y^T}[(x_t Y_t)^2] \sigma^2$

Individual sequence bounds

- Make no assumption about how the sequence is generated.
- ► The best constant value for x in hind-sight:

$$x_T^* \doteq \underset{x \in [0,1]}{\operatorname{argmin}} \sum_{t=1}^T (x - y_t)^2, \ \ x_T^* = \frac{1}{T} \sum_{t=1}^T y_t$$

Regret: the loss over and above the loss of x_T^* . for the worst-case sequence

Regret_T =
$$\sum_{t=1}^{T} (x_t - y_t)^2 - \sum_{t=1}^{T} (x_t^* - y_t)^2$$

▶ **Goal:** sublinear regret $\lim_{T\to\infty} \frac{\text{Regret}_T}{T} = 0$

Follow the Leader

- ldea: set x_{t+1} to be the best constant prediction on y_1, \dots, y_t
- $X_{t+1} = \operatorname{argmin}_{x \in [0,1]} \sum_{i=1}^{t} (x y_i)^2 = X_t^*$
- We will prove that the regret of this algorithm is upper bound by 2 + 2 In T

Regret Bound

Theorem

Let $y_t \in [0,1]$ for t=1,...T an arbitrary sequence of numbers. Let the algorithm output be $x_t = x_{t-1}^* = \frac{1}{t-1} \sum_{i=1}^{t-1} y_i$, then

$$Regret_T = \sum_{t=1}^{T} (x_t - y_t)^2 - \sum_{t=1}^{T} (x_T^* - y_t)^2 \le 2(1 + \ln T)$$

Lemma

Let $x_1, x_2,...$ be the squence of predictions produced by FTL. Then for all $u \in R$ (In particular, for $u = x_T^*$):

$$\sum_{t=1}^{T} \left((x_t - y_t)^2 - (u - y_t)^2 \right) \le \sum_{t=1}^{T} \left((x_t - y_t)^2 - (x_t^* - y_t)^2 \right)$$

Proof Sketch:

Subtract $\sum_{t=1}^{T} (x_t - y_t)^2$ from both sides to get an equivalent claim:

$$\sum_{t=1}^{T} (x_t^* - y_t)^2 \leq \sum_{t=1}^{T} (u - y_t)^2$$

The inequality is proven by induction on T.

Proof.

- ▶ Base case (T = 1): $(x_1^* y_1)^2 = (y_1 y_1)^2 = 0 \le (u y_1)^2$
- ▶ Induction hypothesis: $\sum_{t=1}^{T-1} (x_t^* y_t)^2 \le \sum_{t=1}^{T-1} (u y_t)^2$
- Induction step:

$$\sum_{t=1}^{T-1} (x_t^* - y_t)^2 \le \sum_{t=1}^{T-1} (x_{T-1}^* - y_t)^2 \le \sum_{t=1}^{T-1} (x_T^* - y_t)^2$$

Adding $(x_T^* - y_T)^2$ to both sides gives:

$$\sum_{t=1}^{T} (x_t^* - y_t)^2 \le \sum_{t=1}^{T} (x_T^* - y_t)^2 \le \sum_{t=1}^{T} (u - y_t)^2$$

Proof of the theorem

First, note that in FTL we have:

$$x_t = x_{t-1}^* = \frac{1}{t-1} \sum_{i=1}^{t-1} y_i = \frac{t}{t-1} \cdot \left(\frac{1}{t} \sum_{i=1}^t y_i - \frac{y_t}{t} \right) = \frac{t}{t-1} \cdot \left(x_t^* - \frac{y_t}{t} \right)$$

Subtracting x_t^* from both sides, we get $x_t - x_t^* = \frac{x_t^* - y_t}{t-1}$. Then:

Regret_T =
$$\sum_{t=1}^{T} (x_t - y_t)^2 - \sum_{t=1}^{T} (x_t^* - y_t)^2$$

 $\leq \sum_{t=1}^{T} (x_t - y_t)^2 - (x_t^* - y_t)^2$ (Lemma)
= $\sum_{t=1}^{T} (x_t + x_t^* - 2y_t)(x_t - x_t^*) \leq \sum_{t=1}^{T} \frac{2}{t-1} \leq 2(1 + \ln T)$

What the class will cover

- Introduction (with Mean)
- Exponential weights algorithms
 - ► Hedge
 - Mixability
 - BregmanDivergences

- Online learning and Coding
 - Universal CodingContinuous
 - Experts

 The Context
 - Algorithm
- Multiple arm Bandit
- Tracking
 - Tracking
 - Tracking within a small set of experts

- Online learning and game theory
 - Reepeated Matrix Games
 - Internal regret.Drifting games
 - Drifting gamesNormalHedge
- Online Convex Optimizatio
 - Follow the regularized leaderDual Descent

AdaGrad