A TUTORIAL ON CONDITIONAL RANDOM FIELDS

Slim Essid

Telecom ParisTech

February 2015

Contents

- ► Introduction
- ► The logistic regression model
- ► Conditional Random Fields (for sequential data)
- ▶ Improvements and extensions to original CRFs
- ► Conclusion
- ► References
- ▶ Appendix

The supervised classification problem

Goal: predict *labels y* (aka *classes* or *outputs*) for some *observations* o (aka *data points*, *inputs*).

Examples:

- Predict *translation/part-of-speech tag* for a word.
- Predict instrument, chord, notes played... for a music segment.

Supervised classification

- Each observation o is supposed to pertain to a predefined class C_k: the k-th (discrete) class of a classification problem; k = 1, · · · , K.
- This is represented using a label y for each o; $y \in \mathcal{Y}$, e.g. $\mathcal{Y} = \{0,1\}, \ \mathcal{Y} = \{1,2,3,...,K\}.$

Examples of classes

- POS tags: noun, verb, adjective...
- Music chords: C7, Gmaj7, Fmin7, (a) (b) (c) (c)

The supervised classification problem

Goal: predict *labels y* (aka *classes* or *outputs*) for some *observations* o (aka *data points*, *inputs*).

Examples:

- Predict *translation/part-of-speech tag* for a word.
- Predict instrument, chord, notes played... for a music segment.

Supervised classification:

- Each observation o is supposed to pertain to a predefined class C_k: the k-th (discrete) class of a classification problem; k = 1, · · · , K.
- This is represented using a label y for each o; $y \in \mathcal{Y}$, e.g. $\mathcal{Y} = \{0, 1\}, \ \mathcal{Y} = \{1, 2, 3, ..., K\}.$

Examples of classes:

- POS tags: noun, verb, adjective...
- Music chords: C7, Gmaj7, Fmin7...

Features

 Classification relies on features x: descriptors of some qualities/ attributes of the inputs o. Two types of features:

Continuous features

real-valued: e.g. MFCC, chroma, tempo...

Discrete/categorical

symbolic: *e.g. note/chord played, key...*

• Usually assembled as **feature vectors x**.

Features

 Classification relies on features x: descriptors of some qualities/ attributes of the inputs o. Two types of features:

Continuous features

real-valued: e.g. MFCC, chroma, tempo...

Discrete/categorical

symbolic: *e.g. note/chord played, key...*

• Usually assembled as feature vectors x.

Notations

- o: an input (observation) to be classified; e.g.: a word, an image, an audio frame/segment...
- $\mathbf{x} = (x_1, \dots, x_D)^T$: a *D*-dimensional column vector (usually in \mathbb{R}^D); \mathbf{x}^T is a row vector.
- x_n is a **feature vector** among a collection of N examples x_1, \dots, x_N .
- x_{jn} is the j-th feature coefficient of x_n ; $1 \le j \le D$.
- $\mathcal{D} = \{x_1, ..., x_N\}$: the set of all training feature-vector examples.

Different from features!

Definition

A feature function is a real-valued function of both the input space \mathcal{O} (observations) and the output space \mathcal{Y} (target labels), $f_j: \mathcal{O} \times \mathcal{Y} \to \mathbb{R}$, that can be used to compute characteristics of the observations.

- An alternative way to express the characteristics of the observations, in a more flexible manner:
 - using output-specific features;
 - describing the context.

Example:
$$f_j(o_i, y_i) = \begin{cases} 1 & \text{if } o_i = "We", \text{ and } y_i = "noun" \\ 0 & \text{otherwise} \end{cases}$$

► Remarks:

- Different attributes may thus be considered for different classes.
- Feature functions are more general than features: one can define
 - $f_j(o,y) \stackrel{\triangle}{=} x_j;$
 - $f_j(o,y) \stackrel{\triangle}{=} \mathbf{x}.$
- In the following:
 - ▶ Feature-function notations will be used only when needed.
 - ▶ Otherwise, feature-vectors will be preferred.

► Remarks:

- Different attributes may thus be considered for different classes.
- Feature functions are more general than features: one can define

or

- $f_j(o,y) \stackrel{\triangle}{=} \mathbf{x}.$
- In the following:
 - Feature-function notations will be used only when needed.
 - ▶ Otherwise, feature-vectors will be preferred.

► Remarks:

- Different attributes may thus be considered for different classes.
- Feature functions are more general than features: one can define
 - $f_j(o,y) \stackrel{\triangle}{=} x_j;$

or

- $f_j(o,y) \stackrel{\triangle}{=} \mathbf{x}.$
- In the following:
 - ▶ Feature-function notations will be used only when needed.
 - Otherwise, feature-vectors will be preferred.

Probabilistic classification

Take decisions based on the MAP rule:

$$\hat{y} = \operatorname*{argmax}_{y \in \mathcal{Y}} p(y|\mathbf{x})$$

in order to minimize the error rate (here the expected 0-1 loss).

MAP: Maximum A Posteriori probability

 \rightarrow this is the Bayes decision rule (for the 0-1 loss.)

How to get there?

Probabilistic classification

Take decisions based on the MAP rule:

$$\hat{y} = \operatorname*{argmax} p(y|\mathbf{x})$$

$$y \in \mathcal{Y}$$

in order to minimize the error rate (here the expected 0-1 loss).

MAP: Maximum A Posteriori probability

 \rightarrow this is the Bayes decision rule (for the 0-1 loss.)

How to get there?

Generative model based classification

- Objective: $\hat{y} = \operatorname{argmax}_{y} p(y|\mathbf{x})$.
- By the Bayes rule $p(y|\mathbf{x}) = \frac{p(y,\mathbf{x})}{p(\mathbf{x})} = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})}$,

$$\hat{y} = \underset{y}{\operatorname{argmax}} \frac{p(y)p(\mathbf{x}|y)}{p(x)} = \underset{y}{\operatorname{argmax}} p(y)p(\mathbf{x}|y).$$

• Assuming a fixed prior p(y) (possibly uninformative: $p(y) = \frac{1}{K}$), one is left with:

$$\hat{y} = \underset{y}{\operatorname{argmax}} p(\mathbf{x}|y).$$

- → Our decision criterion becomes a maximum-likelihood criterion.
- → This is a generative approach to classification: a probabilistic model of "how to generate x given a class y" is targeted.

Generative model based classification

- Objective: $\hat{y} = \operatorname{argmax}_{y} p(y|\mathbf{x})$.
- By the Bayes rule $p(y|\mathbf{x}) = \frac{p(y,\mathbf{x})}{p(\mathbf{x})} = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})}$,

$$\hat{y} = \underset{y}{\operatorname{argmax}} \frac{p(y)p(\mathbf{x}|y)}{p(x)} = \underset{y}{\operatorname{argmax}} p(y)p(\mathbf{x}|y).$$

• Assuming a fixed prior p(y) (possibly uninformative: $p(y) = \frac{1}{K}$), one is left with:

$$\hat{y} = \underset{y}{\operatorname{argmax}} p(\mathbf{x}|y).$$

- → Our decision criterion becomes a maximum-likelihood criterion.
- → This is a generative approach to classification: a probabilistic model of "how to generate x given a class y" is targeted.

Directly models $p(y|\mathbf{x})$ without wasting efforts on modeling the observations, which is not needed for the goal $\hat{y} = \operatorname{argmax}_{y} p(y|\mathbf{x})$.

Directly models $p(y|\mathbf{x})$ without wasting efforts on modeling the observations, which is not needed for the goal $\hat{y} = \operatorname{argmax}_{y} p(y|\mathbf{x})$.

► Pros:

- The class posteriors $p(y = c|\mathbf{x})$ are potentially simpler than the class-conditional densities.

Generated using pmtk3 (?)

Directly models $p(y|\mathbf{x})$ without wasting efforts on modeling the observations, which is not needed for the goal $\hat{y} = \operatorname{argmax}_{y} p(y|\mathbf{x})$.

► Pros:

- The class posteriors $p(y = k|\mathbf{x})$ are potentially simpler than the class-conditional densities.
- Avoids making unwarranted assumptions about the features which may be highly dependent (especially with structured data).
- Improved robustness to model imperfections, as independence assumptions will be made only among the labels, not the observations.

► Cons:

- Classes need to be learned jointly and data should be available for all classes
- Models do not allow for generating observations.

Directly models $p(y|\mathbf{x})$ without wasting efforts on modeling the observations, which is not needed for the goal $\hat{y} = \operatorname{argmax}_{y} p(y|\mathbf{x})$.

► Pros:

- The class posteriors $p(y = k|\mathbf{x})$ are potentially simpler than the class-conditional densities.
- Avoids making unwarranted assumptions about the features which may be highly dependent (especially with structured data).
- Improved robustness to model imperfections, as independence assumptions will be made only among the labels, not the observations.

► Cons:

- Classes need to be learned jointly and data should be available for all classes.
- Models do not allow for generating observations.

In many classification tasks the outputs are structured, e.g.:

Part-of-speech (POS) tagging: tags follow predefined patterns

John saw the big table noun verb det adj noun

Linear-chain structure

• In many classification tasks the outputs are structured, e.g.:

Musical instrument recognition

Linear-chain structure

• In many classification tasks the outputs are structured, e.g.:

Autotagging tasks:

target tags are correlated (e.g. comedy, romance, humour)

Tree structure

→ Need for predictors able to take advantage of this structure.

In many classification tasks the outputs are structured, e.g.:

Autotagging tasks:

target tags are correlated (e.g. comedy, romance, humour)

Tree structure

 \rightarrow Need for predictors able to take advantage of this structure.

Predicting sequential data

In this tutorial, we focus on sequential data

John saw the big table noun verb det adj noun

- Specialized inference algorithms can then be used (forward-backward method), which are easier to apprehend.
- More general methods can be used for more general structure (belief propagation and extensions), see for e.g. (?).

More notations

- $\underline{\mathbf{x}}$ is a sequence of observations: $\underline{\mathbf{x}} = (\mathbf{x}_1, \cdots, \mathbf{x}_n)$.
- \underline{y} is the corresponding sequence of labels: $\underline{y} = (y_1, \dots, y_n)$.
- We assume we have a training dataset \mathcal{D} of N (i.i.d) such sequences: $\mathcal{D} = \{(\underline{\mathbf{x}}^{(1)}, \underline{y}^{(1)}), \cdots, (\underline{\mathbf{x}}^{(N)}, \underline{y}^{(N)})\}.$
- Remarks:
 - Observations are no longer assumed to be i.i.d within each sequence
 - Sequences $\underline{\mathbf{x}}^{(q)}$ do not necessarily have the same length, when needed n_q will denote the length of $\mathbf{x}^{(q)}$.

More notations

- $\underline{\mathbf{x}}$ is a sequence of observations: $\underline{\mathbf{x}} = (\mathbf{x}_1, \cdots, \mathbf{x}_n)$.
- \underline{y} is the corresponding sequence of labels: $\underline{y} = (y_1, \dots, y_n)$.
- We assume we have a training dataset \mathcal{D} of N (i.i.d) such sequences: $\mathcal{D} = \{(\underline{\mathbf{x}}^{(1)}, \underline{y}^{(1)}), \cdots, (\underline{\mathbf{x}}^{(N)}, \underline{y}^{(N)})\}.$

Remarks:

- Observations are no longer assumed to be i.i.d within each sequence.
- Sequences $\underline{\mathbf{x}}^{(q)}$ do not necessarily have the same length, when needed n_q will denote the length of $\mathbf{x}^{(q)}$.

The CRF model

A discriminative model for structured-output data

CRF model definition

$$\rho(\underline{y}|\underline{\mathbf{x}};\boldsymbol{\theta}) = \frac{1}{Z(\underline{\mathbf{x}},\boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}},\underline{y})
= \frac{1}{Z(\underline{\mathbf{x}},\boldsymbol{\theta})} \exp \Psi(\underline{\mathbf{x}},\underline{y};\boldsymbol{\theta}); \quad \boldsymbol{\theta} = \{\theta_{1},\cdots,\theta_{D}\}.$$

- $Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{\mathbf{y}} \exp \sum_{i} \theta_{i} F_{j}(\underline{\mathbf{x}}, \mathbf{y})$ is called a partition function.
- $\Psi(\underline{\mathbf{x}}, y; \theta) = \sum_{i=1}^{D} \theta_{i} F_{j}(\underline{\mathbf{x}}, y)$ is called a **potential function**.
- Remark: feature functions $F_j(\underline{\mathbf{x}},\underline{\mathbf{y}})$ depend on the whole sequence of observations $\underline{\mathbf{x}}$ and labels y.

4 □ ト 4 □ ト 4 亘 ト 4 亘 ・ 夕 Q ○

The CRF model

A discriminative model for structured-output data

CRF model definition

$$\rho(\underline{y}|\underline{\mathbf{x}};\boldsymbol{\theta}) = \frac{1}{Z(\underline{\mathbf{x}},\boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}},\underline{y})$$

$$= \frac{1}{Z(\underline{\mathbf{x}},\boldsymbol{\theta})} \exp \Psi(\underline{\mathbf{x}},\underline{y};\boldsymbol{\theta}); \quad \boldsymbol{\theta} = \{\theta_{1},\cdots,\theta_{D}\}.$$

- $Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{\mathbf{y}} \exp \sum_{i} \theta_{i} F_{j}(\underline{\mathbf{x}}, \underline{\mathbf{y}})$ is called a partition function.
- $\Psi(\underline{\mathbf{x}}, y; \theta) = \sum_{i=1}^{D} \theta_{i} F_{j}(\underline{\mathbf{x}}, y)$ is called a **potential function**.
- Remark: feature functions $F_j(\underline{\mathbf{x}}, \underline{\mathbf{y}})$ depend on the whole sequence of observations $\underline{\mathbf{x}}$ and labels \mathbf{y} .

4 D > 4 B > 4 E > 4 E > E 9940

Applications of CRFs

CRF models have proven to be superior to competitors in a variety of application fields.

- They are the state-of-the-art techniques in many natural language processing (NLP) tasks (???)
 part-of-speech tagging (POS), named-entity recognition (NER)...
- They have been successfully used for various **computer vision** tasks (?????) image labeling, object and gesture recognition, facial expressions...
- Also for speech analysis tasks (????)
 speech recognition, speech segmentation, speaker identification...
- And a few applications to music analysis (????).
 autotagging, musical mood recognition, audio-to-score alignment, beat detection...

- ► Introduction
- ► The logistic regression model
 - Model specification
 - Maximum Entropy Modeling
 - Parameter estimation
 - Improvements to the logistic regression model
- ► Conditional Random Fields (for sequential data)
- ▶ Improvements and extensions to original CRFs
- Conclusion
- ▶ References

The logistic regression model

Approach: model the **posterior** probabilities of the K classes using linear functions of the inputs x, according to:

$$\log \frac{P(C_1|\mathbf{x})}{P(C_K|\mathbf{x})} = w_{10} + \mathbf{w}_1^T \mathbf{x}$$

$$\log \frac{P(C_2|\mathbf{x})}{P(C_K|\mathbf{x})} = w_{20} + \mathbf{w}_2^T \mathbf{x}$$

$$\vdots$$

$$\log \frac{P(C_{K-1}|\mathbf{x})}{P(C_K|\mathbf{x})} = w_{(K-1)0} + \mathbf{w}_{K-1}^T \mathbf{x}$$

Defines a log-linear model specified in terms of K-1 log-odds $(\log \frac{P(C_k|\mathbf{x})}{P(C_K|\mathbf{x})})$ or logit transformations so that the K probabilities sum to 1.

The logistic regression model

• From $\log \frac{P(\mathcal{C}_k|\mathbf{x})}{P(\mathcal{C}_K|\mathbf{x})} = w_{k0} + \mathbf{w}_k^T \mathbf{x}$; $k = 1, \dots, K-1$; it is easy to deduce that:

Multiclass logistic regression model

$$P(C_k|\mathbf{x}) = \frac{\exp(w_{k0} + \mathbf{w}_k^T \mathbf{x})}{1 + \sum_{l=1}^{K-1} \exp(w_{l0} + \mathbf{w}_l^T \mathbf{x})}; k = 1, \dots, K-1,$$

$$P(C_K|\mathbf{x}) = \frac{1}{1 + \sum_{l=1}^{K-1} \exp(w_{l0} + \mathbf{w}_l^T \mathbf{x})}$$

- Remarks
 - The model is a classification model (not a regression model!)
 - It is a **discriminative** model as it targets $P(C_k|\mathbf{x})$ (as opposed to modeling $p(\mathbf{x}|C_k)$ in **generative** models.)

→ロト→□ト→ミト→ミークへ○

The logistic regression model

• From $\log \frac{P(\mathcal{C}_k|\mathbf{x})}{P(\mathcal{C}_K|\mathbf{x})} = w_{k0} + \mathbf{w}_k^T \mathbf{x}$; $k = 1, \dots, K-1$; it is easy to deduce that:

Multiclass logistic regression model

$$P(C_k|\mathbf{x}) = \frac{\exp(w_{k0} + \mathbf{w}_k^T \mathbf{x})}{1 + \sum_{l=1}^{K-1} \exp(w_{l0} + \mathbf{w}_l^T \mathbf{x})}; k = 1, \dots, K-1,$$

$$P(C_K|\mathbf{x}) = \frac{1}{1 + \sum_{l=1}^{K-1} \exp(w_{l0} + \mathbf{w}_l^T \mathbf{x})}$$

Remarks

- The model is a classification model (not a regression model!)
- It is a **discriminative** model as it targets $P(C_k|\mathbf{x})$ (as opposed to modeling $p(\mathbf{x}|C_k)$ in **generative** models.)

40 140 15 15 1 100

Binary classification case

• When *K* = 2

$$P(C_1|\mathbf{x}) = p = \frac{1}{1 + \exp{-(w_{10} + \mathbf{w}_1^T \mathbf{x})}}$$

 $P(C_2|\mathbf{x}) = 1 - p$

•
$$p = \frac{1}{1 + \exp{-a}}$$
; $a = w_{10} + \mathbf{w}_1^T \mathbf{x}$

Logistic sigmoid function

$$\sigma(a) \stackrel{\Delta}{=} \frac{1}{1 + \exp{-a}}$$

The logistic sigmoid function

$$\sigma(a) \stackrel{\Delta}{=} \frac{1}{1 + \exp{-a}}$$

Properties:

Symmetry:
$$\sigma(-a) = 1 - \sigma(a)$$

Inverse: $a = \log \frac{\sigma}{1-\sigma}$: logit function

- The odds $\frac{p}{1-p} \in [0,+\infty]$ hence the log-odds $\log \frac{p}{1-p} \in [-\infty,+\infty]$
- Logistic regression models the log-odds as linear functions of the inputs... why is this a good idea?

The logistic sigmoid function

$$\sigma(a) \stackrel{\Delta}{=} \frac{1}{1 + \exp{-a}}$$

Symmetry:
$$\sigma(-a) = 1 - \sigma(a)$$

Inverse: $a = \log \frac{\sigma}{1-\sigma}$: logit function

- The odds $\frac{p}{1-p} \in [0,+\infty]$ hence the log-odds $\log \frac{p}{1-p} \in [-\infty,+\infty]$
- Logistic regression models the log-odds as linear functions of the inputs... why is this a good idea?

The logistic sigmoid function

$$\sigma(a) \stackrel{\Delta}{=} \frac{1}{1 + \exp{-a}}$$

Symmetry:
$$\sigma(-a) = 1 - \sigma(a)$$

Inverse: $a = \log \frac{\sigma}{1-\sigma}$: logit function

- The odds $\frac{p}{1-p} \in [0,+\infty]$ hence the log-odds $\log \frac{p}{1-p} \in [-\infty,+\infty]$
- Logistic regression models the log-odds as linear functions of the inputs... why is this a good idea?

Maximum Entropy: an introductory example By (?)

Goal: perform English-to-French translation.

Approach: model an expert translator's approach to decide to translate a

particular word, e.g. "in".

Method: Use a training dataset to estimate p(y|o): the probability to

assign the word (or phrase) y to the observed word "in"; to be

used for MAP decision.

- The structure of both the ground-truth labels y and the observations o reflect a set of facts about the data: the translator's expertise.
- ightarrow Our model should capture these facts to perform accurate predictions.

Maximum Entropy: an introductory example By (?)

Goal: perform English-to-French translation.

Approach: model an expert translator's approach to decide to translate a particular word, e.g. "in".

Method: Use a training dataset to estimate p(y|o): the probability to assign the word (or phrase) y to the observed word "in"; to be used for MAP decision.

- The structure of both the ground-truth labels *y* and the observations *o* reflect a set of **facts** about the data: the translator's expertise.
- → Our model should capture these facts to perform accurate predictions.

Using facts about the data

 The translator always chooses among {dans, en, à, au cours de, pendant}:

In terms of statistics

$$P(dans) + P(en) + P(a) + P(au cours de) + P(pendant) = 1$$

- How to choose P(dans), ..., P(pendant)?
- Safe choice:

In terms of statistics

$$P(dans) = P(en) = P(a) = P(au cours de) = P(pendant) = 1/5$$

4D > 4P > 4B > 4B > B 990

Using facts about the data

 The translator always chooses among {dans, en, à, au cours de, pendant}:

In terms of statistics

$$P(dans) + P(en) + P(a) + P(au cours de) + P(pendant) = 1$$

- How to choose P(dans), ..., P(pendant)?
- Safe choice:

In terms of statistics

$$P(dans) = P(en) = P(a) = P(au cours de) = P(pendant) = 1/5$$

Using facts about the data

 The translator always chooses among {dans, en, à, au cours de, pendant}:

In terms of statistics

$$P(dans) + P(en) + P(a) + P(au cours de) + P(pendant) = 1$$

- How to choose P(dans), ..., P(pendant)?
- Safe choice:

In terms of statistics

$$P(dans) = P(en) = P(au cours de) = P(pendant) = 1/5$$

◆ロト ◆問 > ◆恵 > ◆恵 > ・恵 ・ 夕久○

Why "uniform"?

- Intuitively: the most uniform model according to our knowledge, the only unbiased assumption
- Ancient wisdom:
 - Occam's razor (William of Ockham, 1287-1347): principle of parsimony: "Nunquam ponenda est pluralitas sine necesitate." [Plurality must never be posited without necessity.]
 - Laplace: "when one has no information to distinguish between the probability of two events, the best strategy is to consider them equally likely."

More facts

• The translator chooses either "dans" or "en" 30% of the time:

$$P(dans) + P(en) = 3/10$$

 $P(dans) + P(en) + P(au cours de) + P(pendant) = 1$

Again many solutions... and a reasonable choice is:

$$P(dans) = P(en) = 3/20$$

$$P(\grave{a}) = P(au \ cours \ de) = P(pendant) = 7/30$$

Even more facts

• The translator chooses either "dans" or "a" 50% of the time:

In terms of statistics

$$P(dans) + P(en) = 3/10$$

 $P(dans) + P(en) + P(\grave{a}) + P(au\ cours\ de) + P(pendant) = 1$
 $P(dans) + P(\grave{a}) = 1/2$

- → Less intuitive...
- What does "uniform" mean?
- How to determine the "most uniform" model subject to the constraints at hand?

→□▶ →□▶ → □▶ → □ ● のへ○

Using feature functions

- Need to express the facts about the observations in a flexible way, to make sure the model will match them:
 - make use of **statistics** of the observations: e.g. "in" translates to either "dans" or "en" with frequency 3/10.
 - allow for using the context: e.g. if "in" is followed by "April" then the translation is "en" with frequency 9/10.

→ define feature functions to capture these statistics and use them to impose constraints to the model.

Example:
$$f_j(o_i, y_i) = \begin{cases} 1 & \text{if } y_i = \text{"en" and "April" follows "in"} \\ 0 & \text{otherwise} \end{cases}$$

Using feature functions

- Need to express the facts about the observations in a flexible way, to make sure the model will match them:
 - make use of **statistics** of the observations: e.g. "in" translates to either "dans" or "en" with frequency 3/10.
 - allow for using the context: e.g. if "in" is followed by "April" then the translation is "en" with frequency 9/10.

→ define feature functions to capture these statistics and use them to impose constraints to the model.

Example:
$$f_j(o_i, y_i) = \begin{cases} 1 & \text{if } y_i = \text{"en" and "April" follows "in"} \\ 0 & \text{otherwise} \end{cases}$$

→ロト → □ ト → 三 → りへ○

• The training sample can be described in terms of its **empirical** probability distribution $\tilde{p}(o, y)$:

$$\tilde{p}(o,y) \stackrel{\Delta}{=} \frac{1}{N} \times \text{number of times that } (o,y) \text{ occurs in the sample}$$

- $\tilde{\mathbb{E}}(f_j) \stackrel{\Delta}{=} \sum_{o,y} \tilde{p}(o,y) f_j(o,y)$: expected value of f_j w.r.t $\tilde{p}(o,y)$.
- $\mathbb{E}(f_j) \stackrel{\triangle}{=} \sum_{o,y} p(o)p(y|o)f_j(o,y)$: expected v. of f_j w.r.t the **model** p(o,y).

• The training sample can be described in terms of its **empirical** probability distribution $\tilde{p}(o, y)$:

$$\tilde{p}(o,y) \stackrel{\Delta}{=} \frac{1}{N} \times \text{number of times that } (o,y) \text{ occurs in the sample}$$

- $\tilde{\mathbb{E}}(f_j) \stackrel{\Delta}{=} \sum_{o,y} \tilde{p}(o,y) f_j(o,y)$: expected value of f_j w.r.t $\tilde{p}(o,y)$.
- $\mathbb{E}(f_j) \stackrel{\Delta}{=} \sum_{o,y} p(o)p(y|o)f_j(o,y)$: expected v. of f_j w.r.t the **model** p(o,y).

• The observed statistics (facts) are captured by enforcing:

Constraint equation

$$\mathbb{E}(f_j) = \tilde{\mathbb{E}}(f_j), i.e.$$

$$\sum_{o,y} p(o)p(y|o)f_j(o,y) = \sum_{o,y} \tilde{p}(o,y)f_j(o,y)$$

• Remark: the constraints cannot be inconsistent since they are extracted from the data.

The observed statistics (facts) are captured by enforcing:

Constraint equation

$$\mathbb{E}(f_j) = \tilde{\mathbb{E}}(f_j)$$
, i.e.

$$\sum_{o,y} p(o)p(y|o)f_j(o,y) = \sum_{o,y} \tilde{p}(o,y)f_j(o,y)$$

• Remark: the constraints cannot be inconsistent since they are extracted from the data.

Maximum entropy principle

- Now how to implement the idea of uniform modeling?
- Among the set \mathcal{M} of probability distributions that satisfy the constraints, $\mathbb{E}(f_j) = \widetilde{\mathbb{E}}(f_j)$, choose:

Maximum entropy criterion

$$p^*(y|o) = \underset{p(y|o) \in \mathcal{M}}{\operatorname{argmax}} H(y|o);$$

$$H(y|o) \stackrel{\Delta}{=} -\sum_{o,y} p(o)p(y|o) \log p(y|o)$$
: the conditional entropy

• Hint from information theory: the discrete distribution with maximum **entropy** is the **uniform** distribution.

Primal: $p^*(y|o) = \operatorname{argmax}_{p(y|o) \in \mathcal{M}} H(y|o)$

Constraints: $\mathbb{E}(f_j) = \tilde{\mathbb{E}}(f_j)$ and $\sum_y p(y|o) = 1$

Lagrangian:
$$L(p, \lambda) \stackrel{\triangle}{=} H(y|o) + \lambda_0 \left(\sum_y p(y|o) - 1 \right) + \sum_j \lambda_j \left(\mathbb{E}(f_j) - \tilde{\mathbb{E}}(f_j) \right)$$

Equating the derivative of the Lagrangian with 0:

$$p_{\lambda}(y|o) = \frac{1}{Z_{\lambda}(o)} \exp \sum_{i} \lambda_{j} f_{j}(o, y);$$

$$Z_{\lambda}(x) = \sum_{y} \exp\left(\sum_{j} \lambda_{j} f_{j}(o, y)\right)$$

The solution is given by the dual optimal: $\lambda^* = \operatorname{argmax}_{\lambda} L(p, \lambda)$

Primal:
$$p^*(y|o) = \operatorname{argmax}_{p(y|o) \in \mathcal{M}} H(y|o)$$

Constraints:
$$\mathbb{E}(f_j) = \tilde{\mathbb{E}}(f_j)$$
 and $\sum_{y} p(y|o) = 1$

Lagrangian:
$$L(p, \lambda) \stackrel{\triangle}{=} H(y|o) + \lambda_0 \left(\sum_y p(y|o) - 1 \right) + \sum_j \lambda_j \left(\mathbb{E}(f_j) - \tilde{\mathbb{E}}(f_j) \right)$$

Equating the derivative of the Lagrangian with 0:

$$p_{\lambda}(y|o) = \frac{1}{Z_{\lambda}(o)} \exp \sum_{i} \lambda_{j} f_{j}(o, y);$$

$$Z_{\lambda}(x) = \sum_{y} \exp\left(\sum_{j} \lambda_{j} f_{j}(o, y)\right)$$

The solution is given by the dual optimal: $\lambda^* = \operatorname{argmax}_{\lambda} L(p, \lambda)$

Primal: $p^*(y|o) = \operatorname{argmax}_{p(y|o) \in \mathcal{M}} H(y|o)$

Constraints: $\mathbb{E}(f_j) = \tilde{\mathbb{E}}(f_j)$ and $\sum_{y} p(y|o) = 1$

Lagrangian:
$$L(p, \lambda) \stackrel{\Delta}{=} H(y|o) + \lambda_0 \left(\sum_y p(y|o) - 1 \right) + \sum_j \lambda_j \left(\mathbb{E}(f_j) - \tilde{\mathbb{E}}(f_j) \right)$$

Equating the derivative of the Lagrangian with 0:

$$p_{\lambda}(y|o) = \frac{1}{Z_{\lambda}(o)} \exp \sum_{i} \lambda_{j} f_{j}(o, y);$$

$$Z_{\lambda}(x) = \sum_{y} \exp\left(\sum_{j} \lambda_{j} f_{j}(o, y)\right)$$

The solution is given by the dual optimal: $\lambda^* = \underset{\leftarrow}{\operatorname{argmax}} L(p, \lambda)$

Primal:
$$p^*(y|o) = \operatorname{argmax}_{p(y|o) \in \mathcal{M}} H(y|o)$$

Constraints:
$$\mathbb{E}(f_j) = \tilde{\mathbb{E}}(f_j)$$
 and $\sum_{v} p(y|o) = 1$

Lagrangian:
$$L(p, \lambda) \stackrel{\triangle}{=} H(y|o) + \lambda_0 \left(\sum_y p(y|o) - 1 \right) + \sum_j \lambda_j \left(\mathbb{E}(f_j) - \tilde{\mathbb{E}}(f_j) \right)$$

Equating the derivative of the Lagrangian with 0:

$$p_{\lambda}(y|o) = \frac{1}{Z_{\lambda}(o)} \exp \sum_{i} \lambda_{j} f_{j}(o, y);$$

$$Z_{\lambda}(x) = \sum_{y} \exp\left(\sum_{j} \lambda_{j} f_{j}(o, y)\right)$$

The solution is given by the dual optimal: $\lambda^* = \operatorname{argmax}_{\lambda} L(p, \lambda)$.

Compare to the LR model

Maxent model:

$$p(y = k|o) = \frac{1}{Z_{\lambda}(o)} \exp\left(\sum_{j} \lambda_{jk} f_{j}(o, y)\right);$$
$$Z_{\lambda}(o) = \sum_{y} \exp\left(\sum_{j} \lambda_{jk} f_{j}(o, y)\right).$$

Logistic regression model:

$$p(y = k|\mathbf{x}) = \frac{\exp(w_{k0} + \mathbf{w}_{k}^{T}\mathbf{x})}{1 + \sum_{l=1}^{K-1} \exp(w_{l0} + \mathbf{w}_{l}^{T}\mathbf{x})}$$

$$= \frac{\exp(w_{k0}' + \mathbf{w}_{k}'^{T}\mathbf{x})}{\sum_{l=1}^{K} \exp(w_{l0}' + \mathbf{w}_{l}'^{T}\mathbf{x})}$$

$$= \frac{1}{Z_{\mathbf{w}}(\mathbf{x})} \exp(w_{k0}' + \mathbf{w}_{k}'^{T}\mathbf{x}).$$

Compare to the LR model

► Maxent model:

$$p(y = k|o) = \frac{1}{Z_{\lambda}(o)} \exp \sum_{j} \lambda_{kj} f_{j}(o, y)$$

► Logistic regression model:

$$p(y = k|\mathbf{x}) = \frac{1}{Z_{\mathbf{w}}(\mathbf{x})} \exp(w'_{k0} + \mathbf{w}'_{k}^{T}\mathbf{x})$$

- Using:
 - feature-function: $f_j(o, y) = x_j$; $f_0(o, y) = 1$ and $\mathbf{x} = (x_1, \dots, x_j, \dots, x_D)^T$;

$$- w'_{k0} + \mathbf{w}'_{k}^{\mathsf{T}} \mathbf{x} = \sum_{j=0}^{D} w'_{kj} f_{j}(o, y);$$

Compare to the LR model

► Maxent model:

$$p(y = k|o) = \frac{1}{Z_{\lambda}(o)} \exp \sum_{j} \lambda_{kj} f_{j}(o, y)$$

► Logistic regression model:

$$p(y = k|\mathbf{x}) = \frac{1}{Z_{\mathbf{w}}(\mathbf{x})} \exp(w'_{k0} + \mathbf{w}'_{k}^{T}\mathbf{x})$$

- Using:
 - feature-function: $f_j(o, y) = x_j$; $f_0(o, y) = 1$ and $\mathbf{x} = (x_1, \dots, x_j, \dots, x_D)^T$;
 - $w'_{k0} + \mathbf{w}'_{k}^T \mathbf{x} = \sum_{i=0}^{D} w'_{ki} f_i(o, y);$

Compare to the CRF model

Maxent model:

$$p(y = k|o) = \frac{1}{Z_{\lambda}(o)} \exp \sum_{j} \lambda_{kj} f_{j}(o, y)$$

► Logistic regression model:

$$p(y = k|o) = \frac{1}{Z_{\mathbf{w}}(o)} \exp \sum_{j} w'_{kj} f_{j}(o, y)$$

CRF model

$$\rho(\underline{y}|\underline{\mathbf{x}};\boldsymbol{\theta}) = \frac{1}{Z_{\boldsymbol{\theta}}(\underline{\mathbf{x}})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}},\underline{y})$$

Compare to the CRF model

Maxent model:

$$p(y = k|o) = \frac{1}{Z_{\lambda}(o)} \exp \sum_{j} \lambda_{kj} f_{j}(o, y)$$

► Logistic regression model:

$$p(y = k|o) = \frac{1}{Z_{\mathbf{w}}(o)} \exp \sum_{j} w'_{kj} f_{j}(o, y)$$

CRF model:

$$p(\underline{y}|\underline{\mathbf{x}};\boldsymbol{\theta}) = \frac{1}{Z_{\boldsymbol{\theta}}(\underline{\mathbf{x}})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}},\underline{\mathbf{y}})$$

Conclusion

The solution to the maximum entropy models has the same parametric form as logistic regression and CRF models.

- It is easily shown that the optimal solution is the maximum-likelihood solution in the parametric family $p_{\lambda}(y|\mathbf{x}) = \frac{1}{Z_{\lambda}(\mathbf{x})} \exp(\sum_{j} \lambda_{j} x_{j})$.
- We've only considered discrete inputs, what about continuous inputs?
 - It is found that if the class-conditional densities $p(\mathbf{x}|y)$ are members of the **exponential family** of distributions, then the posterior probabilities are again given by **logistic sigmoids** of a linear function.
 - In particular, the model is optimal with Gaussian densities (with a shared covariance matrix).

The logistic regression model is quite well justified in a variety of situations

Conclusion

The solution to the maximum entropy models has the same parametric form as logistic regression and CRF models.

- It is easily shown that the optimal solution is the maximum-likelihood solution in the parametric family $p_{\lambda}(y|\mathbf{x}) = \frac{1}{Z_{\lambda}(\mathbf{x})} \exp(\sum_{j} \lambda_{j} x_{j})$.
- We've only considered discrete inputs, what about continuous inputs?
 - It is found that if the class-conditional densities $p(\mathbf{x}|y)$ are members of the **exponential family** of distributions, then the posterior probabilities are again given by **logistic sigmoids** of a linear function.
 - In particular, the model is optimal with **Gaussian densities** (with a shared covariance matrix).

The logistic regression model is quite well justified in a variety of situations

Conclusion

The solution to the maximum entropy models has the same parametric form as logistic regression and CRF models.

- It is easily shown that the optimal solution is the maximum-likelihood solution in the parametric family $p_{\lambda}(y|\mathbf{x}) = \frac{1}{Z_{\lambda}(\mathbf{x})} \exp(\sum_{j} \lambda_{j} x_{j})$.
- We've only considered discrete inputs, what about continuous inputs?
 - It is found that if the class-conditional densities $p(\mathbf{x}|y)$ are members of the **exponential family** of distributions, then the posterior probabilities are again given by **logistic sigmoids** of a linear function.
 - In particular, the model is optimal with **Gaussian densities** (with a shared covariance matrix).

The logistic regression model is quite well justified in a variety of situations.

- ► Introduction
- ► The logistic regression model
 - Model specification
 - Maximum Entropy Modeling
 - Parameter estimation
 - Improvements to the logistic regression model
- ► Conditional Random Fields (for sequential data)
- ► Improvements and extensions to original CRFs
- ▶ Conclusion
- ▶ References

Fitting the LR models

- Done by maximum likelihood estimation; in practice minimizing the Negative Log-Likelihood (NLL).
- Let θ denote the set of all parameters:
- The log-likelihood for the N (i.i.d) feature-vector observations is:

$$L(\mathcal{D}; \theta) \stackrel{\triangle}{=} - \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i; \theta)$$

• To simplify, we focus on the bi-class case...

Fitting the LR models

- Done by maximum likelihood estimation; in practice minimizing the Negative Log-Likelihood (NLL).
- Let θ denote the set of all parameters:

$$\theta = \{w_{10}, \mathbf{w}_1, \cdots, w_{(K-1)0}, \mathbf{w}_{K-1}\}.$$

• The log-likelihood for the N (i.i.d) feature-vector observations is:

$$L(\mathcal{D}; \boldsymbol{\theta}) \stackrel{\Delta}{=} - \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i; \boldsymbol{\theta})$$

• To simplify, we focus on the bi-class case...

NLL for bi-class LR

- Let $y_i = 1$ for C_1 observations and $y_i = 0$ for C_2 observations.
- Let $p(\mathbf{x}; \boldsymbol{\theta}) \stackrel{\Delta}{=} p(y_i = 1 | \mathbf{x}_i; \boldsymbol{\theta})$; hence $p(y_i = 0 | \mathbf{x}_i; \boldsymbol{\theta}) = 1 p(\mathbf{x}; \boldsymbol{\theta})$.
- We can write: $p(y|\mathbf{x}; \boldsymbol{\theta}) = p(\mathbf{x}; \boldsymbol{\theta})^y (1 p(\mathbf{x}; \boldsymbol{\theta}))^{1-y}$.

Negative Log-Likelihood

$$L(\mathcal{D}; \boldsymbol{\theta}) = L(\tilde{\mathbf{w}}) = -\sum_{i=1}^{N} \{ y_i \log p(\mathbf{x}_i; \tilde{\mathbf{w}}) + (1 - y_i) \log (1 - p(\mathbf{x}_i; \tilde{\mathbf{w}})) \}$$
$$= -\sum_{i=1}^{N} \{ y_i \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}_i - \log (1 + \exp(\tilde{\mathbf{w}}^T \tilde{\mathbf{x}}_i)) \}$$

where $\tilde{\mathbf{w}} = (w_0, \mathbf{w})$ and $\tilde{\mathbf{x}}_i = (1, \mathbf{x}_i)$ so that $\tilde{\mathbf{w}}^T \tilde{\mathbf{x}}_i = w_0 + \mathbf{w}^T \mathbf{x}_i$.

◆□▶ ◆□▶ ◆□▶ ◆□ ◆○○○

NLL for bi-class LR

- Let $y_i = 1$ for C_1 observations and $y_i = 0$ for C_2 observations.
- Let $p(\mathbf{x}; \boldsymbol{\theta}) \stackrel{\Delta}{=} p(y_i = 1 | \mathbf{x}_i; \boldsymbol{\theta})$; hence $p(y_i = 0 | \mathbf{x}_i; \boldsymbol{\theta}) = 1 p(\mathbf{x}; \boldsymbol{\theta})$.
- We can write: $p(y|\mathbf{x}; \boldsymbol{\theta}) = p(\mathbf{x}; \boldsymbol{\theta})^y (1 p(\mathbf{x}; \boldsymbol{\theta}))^{1-y}$.

Negative Log-Likelihood

$$L(\mathcal{D}; \boldsymbol{\theta}) = L(\tilde{\mathbf{w}}) = -\sum_{i=1}^{N} \{ y_i \log p(\mathbf{x}_i; \tilde{\mathbf{w}}) + (1 - y_i) \log (1 - p(\mathbf{x}_i; \tilde{\mathbf{w}})) \}$$
$$= -\sum_{i=1}^{N} \{ y_i \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}_i - \log (1 + \exp(\tilde{\mathbf{w}}^T \tilde{\mathbf{x}}_i)) \}$$

where $\tilde{\mathbf{w}} = (w_0, \mathbf{w})$ and $\tilde{\mathbf{x}}_i = (1, \mathbf{x}_i)$ so that $\tilde{\mathbf{w}}^T \tilde{\mathbf{x}}_i = w_0 + \mathbf{w}^T \mathbf{x}_i$.

4□ → 4周 → 4 = → 4 = → 9 9 0 0

Gradient and Hessian of the NLL

Gradient:
$$\nabla L(\mathcal{D}; \tilde{\mathbf{w}}) = -\sum_{i=1}^{N} \tilde{\mathbf{x}}_i (y_i - p(\mathbf{x}_i; \tilde{\mathbf{w}}))$$

Hessian:
$$\frac{\partial^2 L(\mathcal{D}; \tilde{\mathbf{w}})}{\partial \tilde{\mathbf{w}} \partial \tilde{\mathbf{w}}^T} = \sum_{i=1}^N \tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_i^T p(\mathbf{x}_i; \tilde{\mathbf{w}}) (1 - p(\mathbf{x}_i; \tilde{\mathbf{w}}))$$

- → so the Hessian is **positive semi-definite**,
- → the NLL is convex and it has a global minimum.

Gradient and Hessian of the NLL

Gradient:
$$\nabla L(\mathcal{D}; \tilde{\mathbf{w}}) = -\sum_{i=1}^{N} \tilde{\mathbf{x}}_i (y_i - p(\mathbf{x}_i; \tilde{\mathbf{w}}))$$

Hessian:
$$\frac{\partial^2 L(\mathcal{D}; \tilde{\mathbf{w}})}{\partial \tilde{\mathbf{w}} \partial \tilde{\mathbf{w}}^T} = \sum_{i=1}^N \tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_i^T p(\mathbf{x}_i; \tilde{\mathbf{w}}) (1 - p(\mathbf{x}_i; \tilde{\mathbf{w}}))$$

- → so the Hessian is **positive semi-definite**,
- → the NLL is convex and it has a global minimum.

Gradient and Hessian of the NLL

Gradient:
$$\nabla L(\mathcal{D}; \tilde{\mathbf{w}}) = -\sum_{i=1}^{N} \tilde{\mathbf{x}}_i (y_i - p(\mathbf{x}_i; \tilde{\mathbf{w}}))$$

Hessian:
$$\frac{\partial^2 L(\mathcal{D}; \tilde{\mathbf{w}})}{\partial \tilde{\mathbf{w}} \partial \tilde{\mathbf{w}}^T} = \sum_{i=1}^N \tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_i^T p(\mathbf{x}_i; \tilde{\mathbf{w}}) (1 - p(\mathbf{x}_i; \tilde{\mathbf{w}}))$$

- → so the Hessian is positive semi-definite,
- → the NLL is **convex** and it has a global minimum.

Minimizing the NLL

• By setting the derivatives to zero:

$$\frac{\partial L(\mathcal{D}; \tilde{\mathbf{w}})}{\partial w_j} = -\sum_{i=1}^N \tilde{x}_{ji}(y_i - p(\mathbf{x}_i; \tilde{\mathbf{w}})) = 0; \ 0 \leq j \leq D.$$

Optimization problem

Solve for $\tilde{\mathbf{w}}$ the D+1 non-linear equations:

$$\sum_{i=1}^{N} y_i \tilde{x}_{ji} = \sum_{i=1}^{N} \tilde{x}_{ji} p(\mathbf{x}_i; \tilde{\mathbf{w}})$$

Optimization methods

Objective: Solve $\sum_{i=1}^{N} y_i \tilde{x}_{ji} = \sum_{i=1}^{N} \tilde{x}_{ji} p(\mathbf{x}_i; \tilde{\mathbf{w}})$

Problem: No closed-form solution in general (system of D+1

non-linear equations).

Solution: use descent methods.

Among the many descent algorithms available, two are widely used:

- the Newton-Raphson method: fast... but complex (efficient variations exist);
- the **stochastic gradient** descent method (?): easy to implement, adapted to large scale problems (*see Appendix*).

Optimization methods

Objective: Solve $\sum_{i=1}^{N} y_i \tilde{x}_{ji} = \sum_{i=1}^{N} \tilde{x}_{ji} p(\mathbf{x}_i; \tilde{\mathbf{w}})$

Problem: No closed-form solution in general (system of D+1

non-linear equations).

Solution: use descent methods.

Among the many descent algorithms available, two are widely used:

- the Newton-Raphson method: fast... but complex (efficient variations exist);
- the **stochastic gradient** descent method (?): easy to implement, adapted to large scale problems (*see Appendix*).

Optimization methods

Objective: Solve $\sum_{i=1}^{N} y_i \tilde{x}_{ji} = \sum_{i=1}^{N} \tilde{x}_{ji} p(\mathbf{x}_i; \tilde{\mathbf{w}})$

Problem: No closed-form solution in general (system of D+1

non-linear equations).

Solution: use descent methods.

Among the many descent algorithms available, two are widely used:

- the Newton-Raphson method: fast... but complex (efficient variations exist);
- the **stochastic gradient** descent method (?): easy to implement, adapted to large scale problems (*see Appendix*).

• To minimize $g(\theta)$, consider its second-order Taylor series approximation around θ_n :

$$g(\theta) \approx g(\theta_n) + \nabla g(\theta_n)^T (\theta - \theta_n) + \frac{1}{2} (\theta - \theta_n)^T H(\theta_n) (\theta - \theta_n);$$

 $\nabla g(\theta_n)$ and $H(\theta_n)$ are resp. the **gradient** and **Hessian** of $g(\theta)$ at θ_n .

This approximation is a quadratic function which is minimized by solving:

$$\nabla g(\boldsymbol{\theta}_n) + H(\boldsymbol{\theta}_n)(\boldsymbol{\theta} - \boldsymbol{\theta}_n) = 0.$$

Hence the Newton-Raphson step

$$\theta_{n+1} = \theta_n - H(\theta_n)^{-1} \nabla(\theta)$$

• To minimize $g(\theta)$, consider its second-order Taylor series approximation around θ_n :

$$g(\theta) \approx g(\theta_n) + \nabla g(\theta_n)^T (\theta - \theta_n) + \frac{1}{2} (\theta - \theta_n)^T H(\theta_n) (\theta - \theta_n);$$

 $\nabla g(\theta_n)$ and $H(\theta_n)$ are resp. the **gradient** and **Hessian** of $g(\theta)$ at θ_n .

This approximation is a quadratic function which is minimized by solving:

$$\nabla g(\theta_n) + H(\theta_n)(\theta - \theta_n) = 0.$$

Hence the Newton-Raphson step

$$\theta_{n+1} = \theta_n - H(\theta_n)^{-1} \nabla(\theta)$$

• To minimize $g(\theta)$, consider its second-order Taylor series approximation around θ_n :

$$g(\theta) \approx g(\theta_n) + \nabla g(\theta_n)^T (\theta - \theta_n) + \frac{1}{2} (\theta - \theta_n)^T H(\theta_n) (\theta - \theta_n);$$

 $\nabla g(\theta_n)$ and $H(\theta_n)$ are resp. the gradient and Hessian of $g(\theta)$ at θ_n .

This approximation is a quadratic function which is minimized by solving:

$$\nabla g(\theta_n) + H(\theta_n)(\theta - \theta_n) = 0.$$

Hence the Newton-Raphson step

$$\theta_{n+1} = \theta_n - H(\theta_n)^{-1} \nabla(\theta).$$

Optimization with the Newton-Raphson method Illustration

Generated using pmtk3 (?)

Optimization with the Newton-Raphson method Illustration

Generated using pmtk3 (?)

- Typically the algorithm converges (though overshooting may occur), and convergence speed is quadratic.
- D has to be small enough so that it is not too costly to recompute and
- Otherwise use Quasi-Newton methods:
- Alternatively, use stochastic gradient learning:
 - Makes gradient updates based on **one** training example **at a time**.

- Typically the algorithm converges (though overshooting may occur), and convergence speed is quadratic.
- *D* has to be small enough so that it is not too costly to **recompute** and **store** the inverse Hessian matrix at each iteration.
- Otherwise use Quasi-Newton methods:
 - BFGS (Broyden, Fletcher, Goldfarb and Shanno) method: approximates the inverse Hessian using successive gradient values.
 - L-BFGS (limited memory BFGS) method: stores only a few vectors used to approximate the inverse Hessian.
- Alternatively, use stochastic gradient learning:
 - Makes gradient updates based on one training example at a time.
 - In practice: simple approach, slow convergence, less accurate than L-BFGS

- Typically the algorithm converges (though overshooting may occur), and convergence speed is quadratic.
- D has to be small enough so that it is not too costly to recompute and store the inverse Hessian matrix at each iteration.
- Otherwise use Quasi-Newton methods:
 - BFGS (Broyden, Fletcher, Goldfarb and Shanno) method: approximates the inverse Hessian using successive gradient values.
 - L-BFGS (limited memory BFGS) method: stores only a few vectors used to approximate the inverse Hessian.
- Alternatively, use stochastic gradient learning:
 - Makes gradient updates based on one training example at a time.
 - In practice: simple approach, slow convergence, less accurate than L-BFGS.

- ► Introduction
- ► The logistic regression model
 - Model specification
 - Maximum Entropy Modeling
 - Parameter estimation
 - Improvements to the logistic regression model
- ► Conditional Random Fields (for sequential data)
- ▶ Improvements and extensions to original CRFs
- ▶ Conclusion
- ▶ References

- To avoid overfitting the complexity of the model should be penalized.
- Similarly to **ridge regression** (?), a quadratic regularization term can be added to the NLL:

Regularized logistic regression problem

$$\begin{split} \hat{\mathbf{w}} &= \underset{\tilde{\mathbf{w}}}{\operatorname{argmin}} \, L(\mathcal{D}; \tilde{\mathbf{w}}) + \frac{\gamma}{2} ||\mathbf{w}||^2 \\ &= \underset{\tilde{\mathbf{w}}}{\operatorname{argmin}} \left\{ -\sum_{i=1}^{N} \left[y_i \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}_i - \log \left(1 + \exp \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}_i \right) \right] + \frac{\gamma}{2} \sum_{j=1}^{D} w_j^2 \right\} \end{split}$$

 $\gamma \geq 0$: complexity parameter controlling the amount of shrinkage; usually tuned by cross-validation.

Discussion

Recall that:

$$\hat{\mathbf{w}} = \operatorname*{argmin}_{\tilde{\mathbf{w}}} \mathit{L}(\mathcal{D}; \tilde{\mathbf{w}}) + \frac{\gamma}{2} ||\mathbf{w}||^2$$

is equivalent to:

$$\begin{cases} \hat{\mathbf{w}} = \operatorname{argmin}_{\tilde{\mathbf{w}}} L(\mathcal{D}; \tilde{\mathbf{w}}) \\ \operatorname{subject to } ||\mathbf{w}||^2 \le t \end{cases}$$

for some t which has a correspondence to γ .

Gradient:
$$\nabla L_2(\mathcal{D}; \tilde{\mathbf{w}}) = \nabla L_2(\mathcal{D}; \tilde{\mathbf{w}}) + \gamma \mathbf{w}$$

Hessian:
$$H_2(\tilde{\mathbf{w}}) = H(\tilde{\mathbf{w}}) + \gamma \mathbf{I}_{D+1}$$

- → So the Hessian becomes positive definite, the NLL is now strictly convex and it has a unique global minimum.
- → The previous optimization methods can be straightforwardly adapted by modifying the expressions of the gradient and Hessian.

Gradient:
$$\nabla L_2(\mathcal{D}; \tilde{\mathbf{w}}) = \nabla L_2(\mathcal{D}; \tilde{\mathbf{w}}) + \gamma \mathbf{w}$$

Hessian:
$$H_2(\tilde{\mathbf{w}}) = H(\tilde{\mathbf{w}}) + \gamma \mathbf{I}_{D+1}$$

- → So the Hessian becomes positive definite, the NLL is now strictly convex and it has a unique global minimum.
- → The previous optimization methods can be straightforwardly adapted by modifying the expressions of the gradient and Hessian.

Gradient:
$$\nabla L_2(\mathcal{D}; \tilde{\mathbf{w}}) = \nabla L_2(\mathcal{D}; \tilde{\mathbf{w}}) + \gamma \mathbf{w}$$

Hessian:
$$H_2(\tilde{\mathbf{w}}) = H(\tilde{\mathbf{w}}) + \gamma \mathbf{I}_{D+1}$$

- → So the Hessian becomes positive definite, the NLL is now strictly convex and it has a unique global minimum.
- → The previous optimization methods can be straightforwardly adapted by modifying the expressions of the gradient and Hessian

Gradient:
$$\nabla L_2(\mathcal{D}; \tilde{\mathbf{w}}) = \nabla L_2(\mathcal{D}; \tilde{\mathbf{w}}) + \gamma \mathbf{w}$$

Hessian:
$$H_2(\tilde{\mathbf{w}}) = H(\tilde{\mathbf{w}}) + \gamma \mathbf{I}_{D+1}$$

- → So the Hessian becomes **positive definite**, the NLL is now **strictly convex** and it has a unique global minimum.
- → The previous optimization methods can be straightforwardly adapted by modifying the expressions of the gradient and Hessian.

• Proceed as in the **LASSO** (?), using a ℓ_1 -regularization.

ℓ_1 -regularized logistic regression problem

$$\begin{split} \hat{\mathbf{w}} &= \underset{\tilde{\mathbf{w}}}{\operatorname{argmin}} \ L(\mathcal{D}; \tilde{\mathbf{w}}) + \gamma ||\mathbf{w}||_1 \\ &= \underset{\tilde{\mathbf{w}}}{\operatorname{argmin}} \ L(\mathcal{D}; \tilde{\mathbf{w}}) + \gamma \sum_{j=1}^{D} |w_j|; \ \gamma \geq 0. \end{split}$$

Discussion

• ℓ_1 -regularization achieves **feature selection**.

Illustration by Alexandre Gramfort, Telecom ParisTech

- ℓ_1 -regularization achieves **feature selection**.
- The problem is still concave, but...
- Difficulties:
 - The regularizer is **not differentiable** at zero yielding **non-smooth** optimization problem.
- → specific optimization techniques needed (?).
 - In configurations with groups of highly correlated features
 - \triangleright ℓ_1 -regularization tends to select randomly one feature in each group;
 - \blacktriangleright ℓ_2 -regularization tends to yield better prediction performance.
- → Consider the elastic net model (?):

$$L(\mathcal{D}; \tilde{\mathbf{w}}) + \gamma_2 ||\mathbf{w}||_2^2 + \gamma_1 ||\mathbf{w}||_1$$

- ℓ_1 -regularization achieves **feature selection**.
- The problem is still concave, but...
- Difficulties:
 - The regularizer is **not differentiable** at zero yielding **non-smooth** optimization problem.
- → specific optimization techniques needed (?).
 - In configurations with groups of highly correlated features:
 - ℓ_1 -regularization tends to select randomly one feature in each group;
 - $ightharpoonup \ell_2$ -regularization tends to yield better prediction performance.
- → Consider the elastic net model (?):

$$L(\mathcal{D}; \tilde{\mathbf{w}}) + \gamma_2 ||\mathbf{w}||_2^2 + \gamma_1 ||\mathbf{w}||_1$$

Kernel logistic regression (KLR)

- Let \mathcal{K} : positive definite kernel and $\mathcal{H}_{\mathcal{K}}$: the **RKHS** generated by \mathcal{K} .
- Let $\phi \in \mathcal{H}_{\mathcal{K}}$, a feature mapping to $\mathcal{H}_{\mathcal{K}}$.

KLR model

$$p(y_i|\mathbf{x}_i) = \frac{1}{1 + \exp{-g(\mathbf{x}_i)}}; \quad g(\mathbf{x}) = w_0 + \mathbf{w}^T \phi(\mathbf{x})$$

KLR model estimation problem:

$$\min_{\tilde{\mathbf{w}}} L(\tilde{\mathbf{w}}) = -\sum_{i=1}^{N} \left[y_i g(\mathbf{x}_i) - \log(1 + \exp g(\mathbf{x}_i)) \right]$$

Kernel logistic regression (KLR)

- Let \mathcal{K} : positive definite kernel and $\mathcal{H}_{\mathcal{K}}$: the **RKHS** generated by \mathcal{K} .
- Let $\phi \in \mathcal{H}_{\mathcal{K}}$, a feature mapping to $\mathcal{H}_{\mathcal{K}}$.

KLR model

$$p(y_i|\mathbf{x}_i) = \frac{1}{1 + \exp{-g(\mathbf{x}_i)}}; \quad g(\mathbf{x}) = w_0 + \mathbf{w}^T \phi(\mathbf{x})$$

KLR model estimation problem:

$$\min_{\tilde{\mathbf{w}}} L(\tilde{\mathbf{w}}) = -\sum_{i=1}^{N} \left[y_i g(\mathbf{x}_i) - \log(1 + \exp g(\mathbf{x}_i)) \right]$$

→□▶→□▶→□▶→□▼ 990

Regularized KLR

Regularized KLR model estimation problem:

$$\min_{ ilde{\mathbf{w}}} L(ilde{\mathbf{w}}) = -\sum_{i=1}^{N} \left[y_i g(\mathbf{x}_i) - \log(1 + \exp g(\mathbf{x}_i)) \right] + rac{\gamma}{2} ||g||^2_{\mathcal{H}_{\mathcal{K}}}$$

- By the representer theorem: $g(\mathbf{x}) = w_0 + \sum_{i=1}^N \alpha_i \mathcal{K}(\mathbf{x}_i, \mathbf{x})$
- The problem is strictly convex and can be solved using classic solvers.

Regularized KLR

Regularized KLR model estimation problem:

$$\min_{ ilde{\mathbf{w}}} L(ilde{\mathbf{w}}) = -\sum_{i=1}^N \left[y_i g(\mathbf{x}_i) - \log(1 + \exp g(\mathbf{x}_i)) \right] + rac{\gamma}{2} ||g||^2_{\mathcal{H}_{\mathcal{K}}}$$

- By the representer theorem: $g(\mathbf{x}) = w_0 + \sum_{i=1}^{N} \alpha_i \mathcal{K}(\mathbf{x}_i, \mathbf{x})$
- The problem is strictly convex and can be solved using classic solvers.

KLR vs SVM

- It can be shown that KLR and SVM are quite related (see Appendix).
- Very similar prediction performance and optimal margin properties.
- Same refinements are possible: SMO, MKL...
- Provides well-calibrated class probabilities.
- Naturally generalizes to multi-class problems.
 - No support vectors! → Import Vector Machines (?).

KLR vs SVM

- It can be shown that KLR and SVM are quite related (see Appendix).
- Very similar prediction performance and optimal margin properties.
- Same refinements are possible: SMO, MKL...
- + Provides well-calibrated **class probabilities**.
- + Naturally generalizes to multi-class problems.
 - No support vectors! ightarrow Import Vector Machines (?).

KLR vs SVM

- It can be shown that KLR and SVM are quite related (see Appendix).
- Very similar prediction performance and optimal margin properties.
- Same refinements are possible: SMO, MKL...
- + Provides well-calibrated class probabilities.
- + Naturally generalizes to multi-class problems.
 - No support vectors! → *Import Vector Machines* (?).

- ▶ Introduction
- ► The logistic regression model
- ► Conditional Random Fields (for sequential data)
 - Introduction
 - Inference
 - Parameter estimation
- ▶ Improvements and extensions to original CRFs
- ▶ Conclusion
- ▶ References
- ► Appendix

Structured-output data

John saw the big table noun verb det adj noun

POS tagging

Musical instrument classification

Chord transcription

Recalling the notations

- $\underline{\mathbf{x}}$ is a sequence of observations: $\underline{\mathbf{x}} = (\mathbf{x}_1, \cdots, \mathbf{x}_n)$.
- \underline{y} is the corresponding sequence of labels: $\underline{y} = (y_1, \dots, y_n)$.
- We assume we have a training dataset \mathcal{D} of N (i.i.d) such sequences: $\mathcal{D} = \{(\underline{\mathbf{x}}^{(1)}, \underline{\mathbf{y}}^{(1)}), \cdots, (\underline{\mathbf{x}}^{(N)}, \underline{\mathbf{y}}^{(N)})\}.$
- Remarks:
 - Observations are no longer assumed to be i.i.d within each sequence.
 - Sequences $\underline{\mathbf{x}}^{(q)}$ do not necessarily have the same length, when needed n_q will denote the length of $\mathbf{x}^{(q)}$.

Recalling the notations

- $\underline{\mathbf{x}}$ is a sequence of observations: $\underline{\mathbf{x}} = (\mathbf{x}_1, \cdots, \mathbf{x}_n)$.
- \underline{y} is the corresponding sequence of labels: $\underline{y} = (y_1, \dots, y_n)$.
- We assume we have a training dataset \mathcal{D} of N (i.i.d) such sequences: $\mathcal{D} = \{(\underline{\mathbf{x}}^{(1)}, \underline{y}^{(1)}), \cdots, (\underline{\mathbf{x}}^{(N)}, \underline{y}^{(N)})\}.$

Remarks:

- Observations are no longer assumed to be i.i.d within each sequence.
- Sequences $\underline{\mathbf{x}}^{(q)}$ do not necessarily have the same length, when needed n_q will denote the length of $\mathbf{x}^{(q)}$.

The CRF model

CRF model definition

$$p(\underline{y}|\underline{\mathbf{x}};\boldsymbol{\theta}) = \frac{1}{Z(\underline{\mathbf{x}},\boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}},\underline{y})$$

$$= \frac{1}{Z(\underline{\mathbf{x}},\boldsymbol{\theta})} \exp \Psi(\underline{\mathbf{x}},\underline{y};\boldsymbol{\theta}); \ \boldsymbol{\theta} = \{\theta_{1},\cdots,\theta_{D}\}.$$

- $Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{y} \exp \sum_{j} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y})$ is called a partition function.
- $\Psi(\underline{\mathbf{x}},\underline{\mathbf{y}};\boldsymbol{\theta}) = \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}},\underline{\mathbf{y}})$ is called a **potential function**.
- Remarks:
 - CRFs appear to be an extension of logistic regression to structured data.
 - Feature functions $F_j(\mathbf{x}, \mathbf{y})$ depend on the whole sequence of observations \mathbf{x} and labels y.

The CRF model

CRF model definition

$$\rho(\underline{y}|\underline{\mathbf{x}};\boldsymbol{\theta}) = \frac{1}{Z(\underline{\mathbf{x}},\boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}},\underline{y})$$

$$= \frac{1}{Z(\underline{\mathbf{x}},\boldsymbol{\theta})} \exp \Psi(\underline{\mathbf{x}},\underline{y};\boldsymbol{\theta}); \quad \boldsymbol{\theta} = \{\theta_{1},\cdots,\theta_{D}\}.$$

- $Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{y} \exp \sum_{j} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y})$ is called a partition function.
- $\Psi(\underline{\mathbf{x}},\underline{\mathbf{y}};\boldsymbol{\theta}) = \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}},\underline{\mathbf{y}})$ is called a **potential function**.
- Remarks:
 - CRFs appear to be an extension of logistic regression to structured data.
 - Feature functions $F_j(\mathbf{x}, \mathbf{y})$ depend on the whole sequence of observations \mathbf{x} and labels y.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のQ()

- Without any further assumptions on the structure of <u>y</u> the model is hardly usable: one needs to enumerate all possible sequences y for:
 - $Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{y} \exp \sum_{j} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y});$
 - $\ \underline{\hat{y}} = \operatorname{argmax}_{\underline{y}} p(\underline{y}|\underline{\mathbf{x}}; \boldsymbol{\theta}).$
- Consider feature functions $F_j(\underline{\mathbf{x}}, y)$ such that:

$$F_j(\underline{\mathbf{x}},\underline{\mathbf{y}}) = \sum_{i=1}^n f_j(y_{i-1},y_i,\underline{\mathbf{x}},i)$$
; where n is the length of $\underline{\mathbf{x}}$.

 \rightarrow defines **linear-chain** CRFs: at each position i, $1 \le i \le n$, each f_j depends on the **whole observation sequence**, but only on the current and previous labels.

- Without any further assumptions on the structure of <u>y</u> the model is hardly usable: one needs to enumerate all possible sequences <u>y</u> for:
 - $Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{y} \exp \sum_{j} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y});$
 - $\ \underline{\hat{y}} = \operatorname{argmax}_{\underline{y}} p(\underline{y}|\underline{\mathbf{x}}; \boldsymbol{\theta}).$
- Consider feature functions $F_j(\underline{\mathbf{x}}, y)$ such that:

$$F_j(\underline{\mathbf{x}},\underline{\mathbf{y}}) = \sum_{i=1}^n f_j(y_{i-1},y_i,\underline{\mathbf{x}},i)$$
; where n is the length of $\underline{\mathbf{x}}$.

 \rightarrow defines **linear-chain** CRFs: at each position i, $1 \le i \le n$, each f_j depends on the **whole observation sequence**, but only on the current and previous labels.

$$F_j(\underline{\mathbf{x}},\underline{\mathbf{y}}) = \sum_{i=1}^n f_j(y_{i-1},y_i,\underline{\mathbf{x}},i)$$

Examples of such feature functions (for discrete observations):

- The current observation is "saw", the current label is verb and the previous is noun;
- The past 4 observations..., the current label is...
- The next observation is...
- The current label is...

- For convenience, one can define two types of feature functions:
 - **Observation** (aka **state**) feature functions: $b_i(y_i, \mathbf{x}, i)$;
 - **Transition** feature functions: $t_i(y_{i-1}, y_i, \underline{\mathbf{x}}, i)$.
- Hence

$$p(\underline{y}|\underline{\mathbf{x}};\boldsymbol{\theta}) = \frac{1}{Z(\underline{\mathbf{x}},\boldsymbol{\theta})} \exp \left\{ \sum_{i=1}^{n} \sum_{j=1}^{D_o} \theta_j b_j(y_i,\underline{\mathbf{x}},i) + \sum_{i=1}^{n} \sum_{j=1}^{D_t} \theta_j' t_j(y_{i-1},y_i,\underline{\mathbf{x}},i) \right\}$$

The Hidden Markov Model

$$p_{hmm}(\underline{y},\underline{\mathbf{x}}) \stackrel{\Delta}{=} \prod_{i=1}^{n} p(y_i|y_{i-1})p(\mathbf{x}_i|y_i)$$
; where $p(y_1|y_0) \stackrel{\Delta}{=} p(y_1)$.

$$p_{hmm}(\underline{y},\underline{x}) = \exp\left\{\sum_{i=1}^{n} \log p(y_i|y_{i-1}) + \sum_{i=1}^{n} \log p(x_i|y_i)\right\}$$

$$= \exp\left\{\sum_{i=1}^{n} \sum_{l,q \in \mathcal{Y}} \lambda_{lq} \mathbb{I}(y_i = l) \mathbb{I}(y_{i-1} = q) + \sum_{i=1}^{n} \sum_{l \in \mathcal{Y}, \mathbf{o} \in \mathcal{X}} \mu_{\mathbf{o}l} \mathbb{I}(y = l) \mathbb{I}(x_i = \mathbf{o})\right\};$$

The Hidden Markov Model

$$p_{hmm}(\underline{y},\underline{\mathbf{x}}) \stackrel{\Delta}{=} \prod_{i=1}^{n} p(y_i|y_{i-1})p(\mathbf{x}_i|y_i)$$
; where $p(y_1|y_0) \stackrel{\Delta}{=} p(y_1)$.

One can write:

$$p_{hmm}(\underline{y},\underline{\mathbf{x}}) = \exp\left\{\sum_{i=1}^{n} \log p(y_i|y_{i-1}) + \sum_{i=1}^{n} \log p(\mathbf{x}_i|y_i)\right\}$$

$$= \exp\left\{\sum_{i=1}^{n} \sum_{I,q \in \mathcal{Y}} \lambda_{Iq} \mathbb{I}(y_i = I) \mathbb{I}(y_{i-1} = q) + \sum_{i=1}^{n} \sum_{I \in \mathcal{Y}, \mathbf{o} \in \mathcal{X}} \mu_{\mathbf{o}I} \mathbb{I}(y = I) \mathbb{I}(\mathbf{x}_i = \mathbf{o})\right\};$$

where $\lambda_{lq} = \log p(y_i = l | y_{i-1} = q)$ and $\mu_{ol} = \log p(\mathbf{x}_i = \mathbf{o} | y_i = l)$.

- Using the feature functions:
 - $b_j(y_i, \underline{\mathbf{x}}, i) = \mathbb{I}(y = I)\mathbb{I}(\mathbf{x}_i = \mathbf{o})$, where each j indexes a different "I, \mathbf{o} configuration";
 - $t_j(y_{i-1}, y_i, \mathbf{x}, i) = \mathbb{I}(y_i = l)\mathbb{I}(y_{i-1} = q)$, where j indexes a different "l, q configuration";
- also using $p(\underline{y}|\underline{x}) = \frac{p(\underline{y},\underline{x})}{\sum_{y'} p(\underline{y'},\underline{x})}$ and letting $Z(\underline{x}) = \sum_{\underline{y'}} p(\underline{y'},\underline{x})$, one gets:

$$p_{hmm}(\underline{y}|\underline{\mathbf{x}}) = \frac{1}{Z(\underline{\mathbf{x}})} \exp \left\{ \sum_{i=1}^{n} \sum_{j} \theta_{j} b_{j}(y_{i}, \underline{\mathbf{x}}, i) + \sum_{i=1}^{n} \sum_{j} \theta'_{j} t_{j}(y_{i-1}, y_{i}, \underline{\mathbf{x}}, i) \right\};$$

→ HMMs are a particular type of linear-chain CRFs.

- Using the feature functions:
 - $b_j(y_i, \underline{\mathbf{x}}, i) = \mathbb{I}(y = l)\mathbb{I}(\mathbf{x}_i = \mathbf{o})$, where each j indexes a different "l, \mathbf{o} configuration":
 - $t_j(y_{i-1}, y_i, \mathbf{x}, i) = \mathbb{I}(y_i = l)\mathbb{I}(y_{i-1} = q)$, where j indexes a different "l, q configuration";
- also using $p(\underline{y}|\underline{x}) = \frac{p(\underline{y},\underline{x})}{\sum_{y'} p(\underline{y'},\underline{x})}$ and letting $Z(\underline{x}) = \sum_{\underline{y'}} p(\underline{y'},\underline{x})$, one gets:

$$p_{hmm}(\underline{y}|\underline{\mathbf{x}}) = \frac{1}{Z(\underline{\mathbf{x}})} \exp \left\{ \sum_{i=1}^{n} \sum_{j} \theta_{j} b_{j}(y_{i}, \underline{\mathbf{x}}, i) + \sum_{i=1}^{n} \sum_{j} \theta'_{j} t_{j}(y_{i-1}, y_{i}, \underline{\mathbf{x}}, i) \right\};$$

→ HMMs are a particular type of linear-chain CRFs.

4 0 3 4 40 3 4 5 3 4 5 3 5 6

Discussion

CRFs have a number of advantages over HMMs, as a consequence of two major differences:

- CRFs are discriminative models.
- CRFs are undirected models.

Advantage of the discriminative nature of CRF

HMM: observation x_i is independent of all other variables given its parent state y_i .

CRF: no assumptions on the dependencies among the observations: only $p(y|\underline{x})$ is modeled.

- → CRFs can safely:
 - exploit overlapping features;
 - account for **long-term dependencies**, considering the whole sequence of observations $\underline{\mathbf{x}}$ at each location i ($i \mapsto b_j(y_i, \underline{\mathbf{x}}, i)$);
 - use transition feature-functions $t_i(y_{i-1}, y_i, \mathbf{x}, i)$.

Using linear-chain CRFs

- Inference: given a model θ , how to compute:
 - $\underline{\hat{y}} = \operatorname{argmax}_{\underline{y}} p(\underline{y} | \underline{\mathbf{x}}; \boldsymbol{\theta}) ?$
 - $Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{\underline{y}} \exp \sum_{j} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y})$ to deduce $p(\underline{y}|\underline{\mathbf{x}}; \boldsymbol{\theta}) = \frac{1}{Z(\underline{\mathbf{x}}, \boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y})$?
- Parameter estimation: given a training dataset $\mathcal{D} = \{(\underline{\mathbf{x}}^{(1)}, \underline{\mathbf{y}}^{(1)}), \cdots, (\underline{\mathbf{x}}^{(N)}, \underline{\mathbf{y}}^{(N)})\}$, how to estimate the optimal $\boldsymbol{\theta}$?

Using linear-chain CRFs

- Inference: given a model θ , how to compute:
 - $\underline{\hat{y}} = \operatorname{argmax}_{\underline{y}} p(\underline{y} | \underline{\mathbf{x}}; \boldsymbol{\theta}) ?$
 - $Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{\underline{y}} \exp \sum_{j} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y})$ to deduce $p(\underline{y}|\underline{\mathbf{x}}; \boldsymbol{\theta}) = \frac{1}{Z(\underline{\mathbf{x}}, \boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y})$?
- Parameter estimation: given a training dataset $\mathcal{D} = \{(\underline{\mathbf{x}}^{(1)}, \underline{\mathbf{y}}^{(1)}), \cdots, (\underline{\mathbf{x}}^{(N)}, \underline{\mathbf{y}}^{(N)})\}$, how to estimate the optimal $\boldsymbol{\theta}$?

- **Problem**: solve $\hat{\underline{y}} = \operatorname{argmax}_{\underline{y} \in \mathcal{Y}^n} p(\underline{y} | \underline{\mathbf{x}}; \boldsymbol{\theta})$, with $|\mathcal{Y}|^n$ possible assignments!
- Solution: use the Viterbi algorithm.
- Remark:

$$\hat{\underline{y}} = \underset{\underline{y}}{\operatorname{argmax}} p(\underline{y}|\underline{\mathbf{x}}; \boldsymbol{\theta}) = \underset{\underline{y}}{\operatorname{argmax}} \frac{1}{Z(\underline{\mathbf{x}}, \boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y})$$

$$= \underset{\underline{y}}{\operatorname{argmax}} \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y})$$

$$= \underset{\underline{y}}{\operatorname{argmax}} \sum_{i=1}^{n} \sum_{j=1}^{D} \theta_{j} f_{j}(y_{i-1}, y_{i}, \underline{\mathbf{x}}, i)$$

- **Problem**: solve $\underline{\hat{y}} = \operatorname{argmax}_{\underline{y} \in \mathcal{Y}^n} p(\underline{y} | \underline{\mathbf{x}}; \boldsymbol{\theta})$, with $|\mathcal{Y}|^n$ possible assignments!
- Solution: use the Viterbi algorithm.
- Remark:

$$\hat{\underline{y}} = \underset{\underline{y}}{\operatorname{argmax}} p(\underline{y}|\underline{\mathbf{x}}; \boldsymbol{\theta}) = \underset{\underline{y}}{\operatorname{argmax}} \frac{1}{Z(\underline{\mathbf{x}}, \boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y})$$

$$= \underset{\underline{y}}{\operatorname{argmax}} \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y})$$

$$= \underset{\underline{y}}{\operatorname{argmax}} \sum_{i=1}^{n} \sum_{j=1}^{D} \theta_{j} f_{j}(y_{i-1}, y_{i}, \underline{\mathbf{x}}, i)$$

- **Problem**: solve $\underline{\hat{y}} = \operatorname{argmax}_{\underline{y} \in \mathcal{Y}^n} p(\underline{y} | \underline{\mathbf{x}}; \boldsymbol{\theta})$, with $|\mathcal{Y}|^n$ possible assignments!
- Solution: use the Viterbi algorithm.
- Remark:

$$\hat{\underline{y}} = \underset{\underline{y}}{\operatorname{argmax}} p(\underline{y}|\underline{\mathbf{x}}; \boldsymbol{\theta}) = \underset{\underline{y}}{\operatorname{argmax}} \frac{1}{Z(\underline{\mathbf{x}}, \boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y})$$

$$= \underset{\underline{y}}{\operatorname{argmax}} \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{y})$$

$$= \underset{\underline{y}}{\operatorname{argmax}} \sum_{i=1}^{n} \sum_{j=1}^{D} \theta_{j} f_{j}(y_{i-1}, y_{i}, \underline{\mathbf{x}}, i)$$

Let: $g_i(y_{i-1}, y_i) \stackrel{\Delta}{=} \sum_{j=1}^D \theta_j f_j(y_{i-1}, y_i, \underline{\mathbf{x}}, i)$; then:

$$\hat{y} = \operatorname{argmax} \sum_{i=1}^{n} \sum_{j=1}^{D} \theta_{j} f_{j}(y_{i-1}, y_{i}, \underline{\mathbf{x}}, i) = \operatorname{argmax} \sum_{i=1}^{n} g_{i}(y_{i-1}, y_{i}).$$

Let $\delta_m(s)$ be the optimal "intermediate score" where at time step m the label value is s:

$$\delta_{m}(s) \stackrel{\triangle}{=} \max_{\{y_{1}, \cdots, y_{m-1}\}} \left[\sum_{i=1}^{m-1} g_{i}(y_{i-1}, y_{i}) + g_{m}(y_{m-1}, s) \right]$$

Let: $g_i(y_{i-1}, y_i) \stackrel{\Delta}{=} \sum_{j=1}^D \theta_j f_j(y_{i-1}, y_i, \underline{\mathbf{x}}, i)$; then:

$$\hat{y} = \operatorname{argmax} \sum_{i=1}^{n} \sum_{j=1}^{D} \theta_{j} f_{j}(y_{i-1}, y_{i}, \underline{\mathbf{x}}, i) = \operatorname{argmax} \sum_{i=1}^{n} g_{i}(y_{i-1}, y_{i}).$$

Let $\delta_m(s)$ be the optimal "intermediate score" where at time step m the label value is s:

$$\delta_{m}(s) \stackrel{\triangle}{=} \max_{\{y_{1}, \dots, y_{m-1}\}} \left[\sum_{i=1}^{m-1} g_{i}(y_{i-1}, y_{i}) + g_{m}(y_{m-1}, s) \right]$$

Trellis representation

$$\delta_{m}(s) \stackrel{\triangle}{=} \max_{\{y_{1}, \dots, y_{m-1}\}} \left[\sum_{i=1}^{m-1} g_{i}(y_{i-1}, y_{i}) + g_{m}(y_{m-1}, s) \right]$$

$$y = 1$$

$$y = 2$$

$$y = 3$$

$$y = K$$

$$y = K$$

Let
$$\delta_m(s) \triangleq \max_{\{y_1, \dots, y_{m-1}\}} \left[\sum_{i=1}^{m-1} g_i(y_{i-1}, y_i) + g_m(y_{m-1}, s) \right]$$

$$= \max_{\{y_1, \dots, y_{m-1}\}} \sum_{i=1}^{m-1} g_i(y_{i-1}, y_i) + \max_{y_{m-1}} g_m(y_{m-1}, s).$$

So:
$$\delta_{m-1}(y_{m-1}) \triangleq \max_{\{y_1, \dots, y_{m-2}\}} \left[\sum_{i=1}^{m-2} g_i(y_{i-1}, y_i) + g_{m-1}(y_{m-2}, y_{m-1}) \right]$$

$$= \max_{\{y_1, \dots, y_{m-2}\}} \sum_{i=1}^{m-1} g_i(y_{i-1}, y_i).$$

$$\delta_m(s) = \max_{y_{m-1} \in \mathcal{Y}} \left[\delta_{m-1}(y_{m-1}) + g_m(y_{m-1}, s) \right]$$

Let
$$\delta_{m}(s) \triangleq \max_{\{y_{1}, \dots, y_{m-1}\}} \left[\sum_{i=1}^{m-1} g_{i}(y_{i-1}, y_{i}) + g_{m}(y_{m-1}, s) \right]$$

$$= \max_{\{y_{1}, \dots, y_{m-1}\}} \sum_{i=1}^{m-1} g_{i}(y_{i-1}, y_{i}) + \max_{y_{m-1}} g_{m}(y_{m-1}, s).$$

So:
$$\delta_{m-1}(y_{m-1}) \triangleq \max_{\{y_1, \dots, y_{m-2}\}} \left[\sum_{i=1}^{m-2} g_i(y_{i-1}, y_i) + g_{m-1}(y_{m-2}, y_{m-1}) \right]$$

$$= \max_{\{y_1, \dots, y_{m-2}\}} \sum_{i=1}^{m-1} g_i(y_{i-1}, y_i).$$

$$\delta_m(s) = \max_{y_{m-1} \in \mathcal{Y}} [\delta_{m-1}(y_{m-1}) + g_m(y_{m-1}, s)].$$

• Thus, the intermediate scores $\delta_m(s)$ can be efficiently computed using:

Viterbi recursion

$$\delta_m(s) = \max_{y_{m-1} \in \mathcal{Y}} [\delta_{m-1}(y_{m-1}) + g_m(y_{m-1}, s)]; 1 \le m \le n$$

- As we proceed we need to keep track of the selected predecessor of *s*, at each time step *m*.
- We use $\psi_m(s)$ for this purpose.

Backtracking

$$y_{m}^{*} = \psi_{m+1}(y_{m+1}^{*}); \quad m = n-1, n-2, \dots, 1.$$
 $y = 1$
 $y = 2$
 $y = 3$
 $y = K$
 $m-1$
 $m \dots n$

The algorithm

Initialization:

$$\delta_1(s) = g_1(y_0, s); \forall s \in \mathcal{Y}; y_0 = \text{start}$$

 $\psi_1(s) = \text{start}$

Recursion:

$$\delta_{m}(s) = \max_{y \in \mathcal{Y}} [\delta_{m-1}(y) + g_{m}(y, s)]$$

$$\psi_{m}(s) = \operatorname{argmax}_{v \in \mathcal{V}} [\delta_{m-1}(y) + g_{m}(y, s)]$$

Termination:

$$\delta_n(y_n^*) = \max_{y \in \mathcal{Y}} \delta_n(y)$$
$$y_n^* = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \delta_n(y)$$

$$y_m^* = \psi_{m+1}(y_{m+1}^*); m = n-1, n-2, \cdots, 1.$$

The algorithm

Initialization:

$$\delta_1(s) = g_1(y_0, s); \forall s \in \mathcal{Y}; y_0 = \text{start}$$

 $\psi_1(s) = \text{start}$

Recursion:

$$\forall s \in \mathcal{Y}; 1 \leq m \leq n$$

$$\delta_{m}(s) = \max_{y \in \mathcal{Y}} [\delta_{m-1}(y) + g_{m}(y, s)]$$

$$\psi_{m}(s) = \operatorname{argmax}_{y \in \mathcal{Y}} [\delta_{m-1}(y) + g_{m}(y, s)]$$

Termination:

$$\delta_n(y_n^*) = \max_{y \in \mathcal{Y}} \delta_n(y)$$
$$y_n^* = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \delta_n(y)$$

$$y_m^* = \psi_{m+1}(y_{m+1}^*); m = n-1, n-2, \cdots, 1.$$

The algorithm

Initialization:

$$\delta_1(s) = g_1(y_0, s); \forall s \in \mathcal{Y}; y_0 = \text{start}$$

 $\psi_1(s) = \text{start}$

Recursion:

$$\forall s \in \mathcal{Y}$$
; $1 \leq m \leq n$

$$\delta_{m}(s) = \max_{y \in \mathcal{Y}} [\delta_{m-1}(y) + g_{m}(y, s)]$$

$$\psi_{m}(s) = \operatorname{argmax}_{y \in \mathcal{Y}} [\delta_{m-1}(y) + g_{m}(y, s)]$$

Termination:

$$\delta_n(y_n^*) = \max_{y \in \mathcal{Y}} \delta_n(y)$$
$$y_n^* = \operatorname*{argmax}_{y \in \mathcal{Y}} \delta_n(y)$$

$$y_m^* = \psi_{m+1}(y_{m+1}^*); m = n-1, n-2, \cdots, 1.$$

The algorithm

Initialization:

$$\delta_1(s) = g_1(y_0, s); \forall s \in \mathcal{Y}; y_0 = \text{start}$$

 $\psi_1(s) = \text{start}$

Recursion:

$$\forall s \in \mathcal{Y}$$
; $1 \leq m \leq n$

$$\delta_m(s) = \max_{y \in \mathcal{Y}} [\delta_{m-1}(y) + g_m(y, s)]$$

$$\psi_m(s) = \operatorname{argmax}_{y \in \mathcal{Y}} [\delta_{m-1}(y) + g_m(y, s)]$$

Termination:

$$\delta_n(y_n^*) = \max_{y \in \mathcal{Y}} \delta_n(y)$$

 $y_n^* = \operatorname*{argmax}_{y \in \mathcal{Y}} \delta_n(y)$

$$y_m^* = \psi_{m+1}(y_{m+1}^*); m = n-1, n-2, \cdots, 1.$$

Complexity of Viterbi decoding

Remarks on the computational cost:

- $O(K^2n)$ in the worst case; $K = |\mathcal{Y}|$.
- In practice: $O(\mathcal{T}Kn)$, where \mathcal{T} : average number of possible "transitions" between labels y.
- Can be reduced using **beam search**: exploring a subset of possible labels at each time position (?).

Complexity of Viterbi decoding

Remarks on the computational cost:

- $O(K^2n)$ in the worst case; $K = |\mathcal{Y}|$.
- In practice: $O(\mathcal{T}Kn)$, where \mathcal{T} : average number of possible "transitions" between labels y.
- Can be reduced using **beam search**: exploring a subset of possible labels at each time position (?).

Computing the partition function $Z(\underline{\mathbf{x}}, \boldsymbol{\theta})$

The sum-product problem

Recall the CRF model:

$$p(\underline{y}|\underline{\mathbf{x}};\theta) = \frac{1}{Z(\underline{\mathbf{x}},\theta)} \prod_{i=1}^{n} M_{i}(y_{i-1}, y_{i}, \underline{\mathbf{x}});$$

$$M_{i}(y_{i-1}, y_{i}, \underline{\mathbf{x}}) = \exp\left(\sum_{j=1}^{D} \theta_{j} f_{j}(y_{i-1}, y_{i}, \underline{\mathbf{x}}, i)\right);$$

$$Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{\mathbf{y} \in \mathcal{Y}^n} \prod_{i=1}^n M_i(y_{i-1}, y_i, \underline{\mathbf{x}})$$
: intractable as is...

 \rightarrow use the **forward-backward** method: reduces **complexity** from $O(K^n)$ to $O(nK^2)$.

The forward-backward method

• Defining $\alpha_m(y_m) = \sum_{y_{m-1}} M_m(y_{m-1}, y_m) \alpha_{m-1}(y_{m-1})$; $2 \le m \le n$, it is easily shown¹ that:

At the end of the sequence

$$Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{y_n \in \mathcal{Y}} \boldsymbol{\alpha}_n(y_n).$$

• Alternatively, defining $eta_m(y_m) = \sum_{y_{m+1}} M_{m+1}(y_m, y_{m+1}) eta_{m+1}(y_{m+1})$; $1 \le m \le n-1$ and $eta_n(y_n) = 1$, one gets:

At the beginning of the sequence

$$Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{y_1 \in \mathcal{Y}} M_1(y_0, y_1) \boldsymbol{\beta}_1(y_1).$$

February 2015

¹See Appendix for more details

The forward-backward method

• Defining $\alpha_m(y_m) = \sum_{y_{m-1}} M_m(y_{m-1}, y_m) \alpha_{m-1}(y_{m-1})$; $2 \le m \le n$, it is easily shown¹ that:

At the end of the sequence

$$Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{y_n \in \mathcal{Y}} \boldsymbol{\alpha}_n(y_n).$$

• Alternatively, defining $eta_m(y_m) = \sum_{y_{m+1}} M_{m+1}(y_m, y_{m+1}) eta_{m+1}(y_{m+1})$; $1 \le m \le n-1$ and $eta_n(y_n) = 1$, one gets:

At the beginning of the sequence

$$Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{y_1 \in \mathcal{Y}} M_1(y_0, y_1) \beta_1(y_1).$$

¹See Appendix for more details

Marginal probability

$$p(y_{m-1},y_m|\underline{\mathbf{x}}) = \sum_{\underline{y}\setminus\{y_{m-1},y_m\}} p(\underline{y}|\mathbf{x})$$

Marginal probability by forward-backward

$$p(y_{m-1}, y_m | \underline{\mathbf{x}}) = \frac{1}{Z(\underline{\mathbf{x}})} \alpha_{m-1}(y_{m-1}) M_m(y_{m-1}, y_m, \underline{\mathbf{x}}) \beta_m(y_m).$$

More details in the appendix.

Marginal probability

$$p(y_{m-1},y_m|\underline{\mathbf{x}}) = \sum_{\underline{y}\setminus\{y_{m-1},y_m\}} p(\underline{y}|\mathbf{x})$$

Marginal probability by forward-backward

$$p(y_{m-1},y_m|\underline{\mathbf{x}}) = \frac{1}{Z(\mathbf{x})}\alpha_{m-1}(y_{m-1})M_m(y_{m-1},y_m,\underline{\mathbf{x}})\beta_m(y_m).$$

More details in the appendix.

- ► Introduction
- ► The logistic regression model
- ► Conditional Random Fields (for sequential data)

 - Parameter estimation
- ▶ Improvements and extensions to original CRFs
- ▶ Conclusion
- References
- ► Appendix

Negative log-likelihood (NLL)

• Given training data $\mathcal{D} = \{(\underline{\mathbf{x}}^{(1)}, y^{(1)}), \cdots, (\underline{\mathbf{x}}^{(N)}, y^{(N)})\}$, the NLL is:

$$L(\mathcal{D}; \boldsymbol{\theta}) = -\sum_{q=1}^{N} \log p(\underline{y}^{(q)} | \underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta})$$

$$= \sum_{q=1}^{N} \left\{ \log Z(\underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta}) - \sum_{i=1}^{n_q} \sum_{j=1}^{D} \theta_j f_j(y_{i-1}^{(q)}, y_i^{(q)}, \underline{\mathbf{x}}^{(q)}, i) \right\}$$

$$= \sum_{q=1}^{N} \left\{ \log Z(\underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta}) - \sum_{j=1}^{D} \theta_j F_j(\underline{\mathbf{x}}^{(q)}, \underline{y}^{(q)}) \right\}.$$

• $L(\mathcal{D}; \theta)$ is **convex** \rightarrow gradient-descent will converge to global minimum.

NLL gradient

Gradient:
$$\frac{\partial L(\mathcal{D}; \boldsymbol{\theta})}{\partial \theta_{k}} = \sum_{q=1}^{N} \left\{ \frac{\partial}{\partial \theta_{k}} \log Z(\underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta}) - F_{k}(\underline{\mathbf{x}}^{(q)}, \underline{\mathbf{y}}^{(q)}) \right\}.$$

$$\frac{\partial}{\partial \theta_{k}} \log Z(\underline{\mathbf{x}}; \boldsymbol{\theta}) = \frac{1}{Z(\underline{\mathbf{x}}; \boldsymbol{\theta})} \sum_{\underline{\mathbf{y}} \in \mathcal{Y}^{n}} \frac{\partial}{\partial \theta_{k}} \left[\exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{\mathbf{y}}) \right]$$

$$= \frac{1}{Z(\underline{\mathbf{x}}; \boldsymbol{\theta})} \sum_{\underline{\mathbf{y}} \in \mathcal{Y}^{n}} F_{k}(\underline{\mathbf{x}}, \underline{\mathbf{y}}) \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{\mathbf{y}})$$

$$= \sum_{\underline{\mathbf{y}} \in \mathcal{Y}^{n}} F_{k}(\underline{\mathbf{x}}, \underline{\mathbf{y}}) \frac{\exp \sum_{j} \theta_{j} F_{j}(\underline{\mathbf{x}}, \underline{\mathbf{y}})}{Z(\underline{\mathbf{x}}; \boldsymbol{\theta})}$$

$$= \sum_{\underline{\mathbf{y}} \in \mathcal{Y}^{n}} F_{k}(\underline{\mathbf{x}}, \underline{\mathbf{y}}) p(\underline{\mathbf{y}}|\underline{\mathbf{x}}; \boldsymbol{\theta})$$

$$= \mathbb{E}_{p(\underline{\mathbf{y}}|\underline{\mathbf{x}}; \boldsymbol{\theta})} \left[F_{k}(\underline{\mathbf{x}}, \underline{\mathbf{y}}) \right].$$

NLL gradient

Gradient:
$$\frac{\partial L(\mathcal{D}; \boldsymbol{\theta})}{\partial \theta_k} = \sum_{q=1}^{N} \left\{ \frac{\partial}{\partial \theta_k} \log Z(\underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta}) - F_k(\underline{\mathbf{x}}^{(q)}, \underline{\mathbf{y}}^{(q)}) \right\}.$$

 $\frac{\partial}{\partial \theta_k} \log Z(\underline{\mathbf{x}}; \boldsymbol{\theta}) = \mathbb{E}_{p(\underline{y}|\underline{\mathbf{x}}; \boldsymbol{\theta})} [F_k(\underline{\mathbf{x}}, \underline{y})]$: conditional expectation given $\underline{\mathbf{x}}$.

$$\frac{\partial L(\mathcal{D}; \boldsymbol{\theta})}{\partial \theta_k} = \sum_{q=1}^{N} \left\{ \mathbb{E}_{\boldsymbol{p}(\underline{\boldsymbol{y}}|\underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta})} \left[\boldsymbol{F}_{k}(\underline{\mathbf{x}}^{(q)}, \underline{\boldsymbol{y}}) \right] - \boldsymbol{F}_{k}(\underline{\mathbf{x}}^{(q)}, \underline{\boldsymbol{y}}^{(q)}) \right\}.$$

• Setting the derivatives to 0, *i.e.* $\frac{\partial L(D;\theta)}{\partial \theta_k} = 0$, yields:

$$\sum_{q=1}^{N} \mathbb{E}_{p(\underline{y}|\underline{\mathbf{x}}^{(q)};\theta)} \left[F_k(\underline{\mathbf{x}}^{(q)},\underline{y}) \right] = \sum_{q=1}^{N} F_k(\underline{\mathbf{x}}^{(q)},\underline{y}^{(q)}); \ 1 \leq k \leq D$$

- No closed-form solution: numerical optimization is again needed.
- Need to compute $\mathbb{E}_{p(y|\mathbf{x}^{(q)};\theta)}\left[F_k(\underline{\mathbf{x}}^{(q)},\underline{y})\right]$ efficiently.

→□▶→□▶→□▶→□▶ □ ♥Q♥

• Setting the derivatives to 0, *i.e.* $\frac{\partial L(D; \theta)}{\partial \theta_k} = 0$, yields:

$$\frac{1}{N}\sum_{q=1}^{N}\mathbb{E}_{p(\underline{y}|\underline{\mathbf{x}}^{(q)};\boldsymbol{\theta})}\left[F_{k}(\underline{\mathbf{x}}^{(q)},\underline{y})\right] = \frac{1}{N}\sum_{q=1}^{N}F_{k}(\underline{\mathbf{x}}^{(q)},\underline{y}^{(q)}); \ 1 \leq k \leq D$$

- Average expectation under the model = empirical mean.
- No closed-form solution: numerical optimization is again needed.
- Need to compute $\mathbb{E}_{p(y|\mathbf{x}^{(q)};\theta)}\left[F_k(\underline{\mathbf{x}}^{(q)},\underline{y})\right]$ efficiently.

4□ > 4回 > 4 直 > 4 直 > 直 の Q @

• Setting the derivatives to 0, *i.e.* $\frac{\partial L(D;\theta)}{\partial \theta_k} = 0$, yields:

$$\frac{1}{N}\sum_{q=1}^{N}\mathbb{E}_{p(\underline{y}|\underline{\mathbf{x}}^{(q)};\boldsymbol{\theta})}\left[F_{k}(\underline{\mathbf{x}}^{(q)},\underline{y})\right] = \frac{1}{N}\sum_{q=1}^{N}F_{k}(\underline{\mathbf{x}}^{(q)},\underline{y}^{(q)}); \ 1 \leq k \leq D$$

- Average expectation under the model = empirical mean.
- · No closed-form solution: numerical optimization is again needed.
- Need to compute $\mathbb{E}_{p(y|\underline{\mathbf{x}}^{(q)};\theta)}\left[F_k(\underline{\mathbf{x}}^{(q)},\underline{y})\right]$ efficiently.

→ ←回 → ← 重 → ← 重 → りへ○

• Setting the derivatives to 0, *i.e.* $\frac{\partial L(D; \theta)}{\partial \theta_k} = 0$, yields:

$$\frac{1}{N}\sum_{q=1}^{N}\mathbb{E}_{\rho(\underline{y}|\underline{\mathbf{x}}^{(q)};\boldsymbol{\theta})}\left[F_{k}(\underline{\mathbf{x}}^{(q)},\underline{y})\right] = \frac{1}{N}\sum_{q=1}^{N}F_{k}(\underline{\mathbf{x}}^{(q)},\underline{y}^{(q)}); \ 1 \leq k \leq D$$

- Average expectation under the model = empirical mean.
- No closed-form solution: numerical optimization is again needed.
- Need to compute $\mathbb{E}_{p(y|\mathbf{x}^{(q)};\boldsymbol{\theta})}\left[F_k(\underline{\mathbf{x}}^{(q)},\underline{y})\right]$ efficiently.

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

Efficient gradient computation

$$\mathbb{E}_{p(\underline{y}|\underline{\mathbf{x}};\boldsymbol{\theta})} \left[F_{k}(\underline{\mathbf{x}},\underline{y}) \right] = \sum_{\underline{y} \in \mathcal{Y}^{n}} F_{k}(\underline{\mathbf{x}},\underline{y}) p(\underline{y}|\underline{\mathbf{x}};\boldsymbol{\theta})$$

$$= \sum_{i=1}^{n} \sum_{\underline{y} \in \mathcal{Y}^{n}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(\underline{y}|\underline{\mathbf{x}};\boldsymbol{\theta})$$

$$= \sum_{i=1}^{n} \sum_{\underline{y}_{i-1},\underline{y}_{i} \in \mathcal{Y}^{2}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i-1},y_{i}|\underline{\mathbf{x}};\boldsymbol{\theta})$$

 $p(y_{i-1}, y_i | \underline{\mathbf{x}}; \boldsymbol{\theta})$ is the marginal probability which thanks to the forward-backward algorithm is obtained by:

$$p(y_{i-1}, y_i | \underline{\mathbf{x}}) = \frac{1}{Z(\underline{\mathbf{x}})} \alpha_{i-1}(y_{i-1}) M_i(y_{i-1}, y_i, \underline{\mathbf{x}}) \beta_i(y_i).$$

Efficient gradient computation

$$\mathbb{E}_{p(\underline{y}|\underline{\mathbf{x}};\boldsymbol{\theta})} \left[F_{k}(\underline{\mathbf{x}},\underline{y}) \right] = \sum_{\underline{y} \in \mathcal{Y}^{n}} F_{k}(\underline{\mathbf{x}},\underline{y}) p(\underline{y}|\underline{\mathbf{x}};\boldsymbol{\theta})$$

$$= \sum_{i=1}^{n} \sum_{\underline{y} \in \mathcal{Y}^{n}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(\underline{y}|\underline{\mathbf{x}};\boldsymbol{\theta})$$

$$= \sum_{i=1}^{n} \sum_{\underline{y}_{i-1},\underline{y}_{i} \in \mathcal{Y}^{2}} f_{k}(y_{i-1},y_{i},\underline{\mathbf{x}}) p(y_{i-1},y_{i}|\underline{\mathbf{x}};\boldsymbol{\theta})$$

 $p(y_{i-1}, y_i | \mathbf{x}; \boldsymbol{\theta})$ is the marginal probability which thanks to the forward-backward algorithm is obtained by:

$$p(y_{i-1},y_i|\underline{\mathbf{x}}) = \frac{1}{Z(\mathbf{x})}\alpha_{i-1}(y_{i-1})M_i(y_{i-1},y_i,\underline{\mathbf{x}})\beta_i(y_i).$$

Optimization

Many algorithms are available (see ??):

- Generalized iterative scaling (?): original algorithm, slow convergence, suboptimal.
- Conjugate gradient (?): faster convergence, better quality.
- L-BFGS (?): fast convergence, scalable; a good option, most used.
- Stochastic gradient: suboptimal, simple, online, large-scale applications.

- ► Introduction
- ► The logistic regression model
- ► Conditional Random Fields (for sequential data)
- ▶ Improvements and extensions to original CRFs
 - Regularization
 - Hidden-state CRF model
 - Other extensions
- ► Conclusion
- ▶ References
- ▶ Appendix

Using ℓ_2 -norm

- Redefine the objective function as: $L(\mathcal{D}; \theta) = L(\mathcal{D}; \theta) + \frac{\|\theta\|_2^2}{2\sigma^2}$; σ^2 : a free parameter penalizing large weights (as in **ridge regression**).
- The gradient coefficients become:

$$\frac{\partial L(\mathcal{D}; \theta)}{\partial \theta_k} = \sum_{q=1}^{N} \left\{ \mathbb{E}_{\rho(\underline{y}|\underline{\mathbf{x}}^{(q)}; \theta)} \left[F_k(\underline{\mathbf{x}}^{(q)}, \underline{y}) \right] - F_k(\underline{\mathbf{x}}^{(q)}, \underline{y}^{(q)}) \right\} + \frac{\theta_k}{\sigma^2}.$$

- Advantages:
 - The objective becomes strictly convex
 - Shrinkage of θ coefficients is achieved avoiding overfitting and numerical problems.
- σ^2 needs to be tuned (usually by cross-validation).

Using ℓ₂-norm

- Redefine the objective function as: $L(\mathcal{D}; \theta) = L(\mathcal{D}; \theta) + \frac{\|\theta\|_2^2}{2\sigma^2}$; σ^2 : a free parameter penalizing large weights (as in **ridge regression**).
- The gradient coefficients become:

$$\frac{\partial L(\mathcal{D}; \boldsymbol{\theta})}{\partial \theta_k} = \sum_{q=1}^{N} \left\{ \mathbb{E}_{\boldsymbol{p}(\underline{\boldsymbol{y}}|\underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta})} \left[\boldsymbol{F}_k(\underline{\mathbf{x}}^{(q)}, \underline{\boldsymbol{y}}) \right] - \boldsymbol{F}_k(\underline{\mathbf{x}}^{(q)}, \underline{\boldsymbol{y}}^{(q)}) \right\} + \frac{\theta_k}{\sigma^2}.$$

- Advantages:
 - The objective becomes **strictly convex**.
 - Shrinkage of θ coefficients is achieved avoiding overfitting and numerical problems.
- σ^2 needs to be tuned (usually by cross-validation).

Using ℓ₂-norm

- Redefine the objective function as: $L(\mathcal{D}; \theta) = L(\mathcal{D}; \theta) + \frac{\|\theta\|_2^2}{2\sigma^2}$; σ^2 : a free parameter penalizing large weights (as in **ridge regression**).
- The gradient coefficients become:

$$\frac{\partial L(\mathcal{D}; \boldsymbol{\theta})}{\partial \theta_k} = \sum_{q=1}^{N} \left\{ \mathbb{E}_{\boldsymbol{p}(\underline{\boldsymbol{y}}|\underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta})} \left[\boldsymbol{F}_k(\underline{\mathbf{x}}^{(q)}, \underline{\boldsymbol{y}}) \right] - \boldsymbol{F}_k(\underline{\mathbf{x}}^{(q)}, \underline{\boldsymbol{y}}^{(q)}) \right\} + \frac{\theta_k}{\sigma^2}.$$

- Advantages:
 - The objective becomes **strictly convex**.
 - Shrinkage of θ coefficients is achieved avoiding overfitting and numerical problems.
- σ^2 needs to be tuned (usually by cross-validation).

Using ℓ_1 -norm to perform feature selection

• Redefine the objective function as:

$$L(\mathcal{D}; \theta) = L(\mathcal{D}; \theta) + \rho ||\theta||_1 = L(\mathcal{D}; \theta) + \rho \sum_{j=1}^{D} |\theta_j|$$
 (as in the LASSO).

- Advantage: performs feature selection
 - in some NLP apps: up to 95% of the features can be discarded without affecting performance! (see ?).
- Difficulties:
 - The regularizer is **not differentiable** at zero: specific optimization techniques needed (?).
 - In configurations with groups of highly correlated features, tend to select randomly one feature in each group.

Using ℓ_1 -norm to perform feature selection

Redefine the objective function as:

$$L(\mathcal{D}; \theta) = L(\mathcal{D}; \theta) + \rho ||\theta||_1 = L(\mathcal{D}; \theta) + \rho \sum_{j=1}^{D} |\theta_j|$$
 (as in the LASSO).

Advantage: performs feature selection

in some NLP apps: up to 95% of the features can be discarded without affecting performance! (see ?).

- Difficulties:
 - The regularizer is **not differentiable** at zero: specific optimization techniques needed (?).
 - In configurations with groups of highly correlated features, tend to select randomly one feature in each group.

- ► Introduction
- ► The logistic regression model
- ► Conditional Random Fields (for sequential data)
- ▶ Improvements and extensions to original CRFs
 - Regularization
 - Hidden-state CRF model
 - Other extensions
- ▶ Conclusion
- ▶ References
- Appendix

Motivation

Problem: the CRF model does not support **hidden states**.

CRF

$$\mathcal{D} = \{(\underline{\mathbf{x}}^{(i)}, \underline{\mathbf{y}}^{(i)})\}_i$$

Hidden-state CRF

$$\mathcal{D} = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i}$$

4□ > 4□ > 4 = > 4 = > = 90

Motivation

Problem: the CRF model does not support hidden states.

CRF

$$\mathcal{D} = \{(\underline{\mathbf{x}}^{(i)}, \underline{\mathbf{y}}^{(i)})\}_i$$

Hidden-state CRF

$$\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_i$$

The HCRF model

(?)

- Each sequence of observations $\underline{\mathbf{x}} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ is associated with:
 - a unique label y;
 - a sequence of **latent variables** $\underline{h} = (h_1, \dots, h_n)$, where $h_i \in \mathcal{H}$.

HCRF model definition

$$p(y, \underline{h}|\underline{\mathbf{x}}; \boldsymbol{\theta}) = \frac{1}{Z(\underline{\mathbf{x}}, \boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, y, \underline{h})$$

$$Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{\mathbf{y}, \mathbf{h}} \exp \sum_{i=1}^{D} \theta_{i} F_{i}(\underline{\mathbf{x}}, \mathbf{y}, \underline{\mathbf{h}}); \ \boldsymbol{\theta} = \{\theta_{1}, \dots, \theta_{D}\}.$$

- HCRF model: $p(y, \underline{h} | \underline{\mathbf{x}}; \boldsymbol{\theta}) = \frac{1}{Z(\underline{\mathbf{x}}, \boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, y, \underline{h}).$
- Let $Z'(y, \underline{x}, \theta) \stackrel{\Delta}{=} \sum_{h \in \mathcal{H}^n} \exp \sum_{j=1}^D \theta_j F_j(\underline{x}, y, \underline{h})$: marginalization wrt \underline{h} .
- We have:
 - $Z(\underline{\mathbf{x}}, \theta) = \sum_{y} Z'(y, \underline{\mathbf{x}}, \theta);$
 - $p(y|\underline{\mathbf{x}}; \boldsymbol{\theta}) = \sum_{\underline{h} \in \mathcal{H}^n} p(y, \underline{h}|\underline{\mathbf{x}}; \boldsymbol{\theta}) = \frac{Z'(y, \underline{\mathbf{x}}, \boldsymbol{\theta})}{\sum_{y} Z'(y, \underline{\mathbf{x}}, \boldsymbol{\theta})}.$
- $Z'(y, \underline{\mathbf{x}}, \boldsymbol{\theta})$ can be easily computed using forward/backward recursions (as done in CRF).
- To classify new test cases, use:

$$\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} p(y | \underline{\mathbf{x}}; \boldsymbol{\theta}^*) = \operatorname{argmax}_{y \in \mathcal{Y}} \frac{Z'(y, \underline{\mathbf{x}}, \boldsymbol{\theta})}{\sum_{v} Z'(y, \underline{\mathbf{x}}, \boldsymbol{\theta})}.$$

• To compute the partition function, use $Z(\underline{\mathbf{x}}, \theta) = \sum_{y} Z'(y, \underline{\mathbf{x}}, \theta)$.

- HCRF model: $p(y, \underline{h} | \underline{\mathbf{x}}; \boldsymbol{\theta}) = \frac{1}{Z(\underline{\mathbf{x}}, \boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, y, \underline{h}).$
- Let $Z'(y, \underline{x}, \theta) \stackrel{\Delta}{=} \sum_{h \in \mathcal{H}^n} \exp \sum_{j=1}^D \theta_j F_j(\underline{x}, y, \underline{h})$: marginalization wrt \underline{h} .
- We have:
 - $-Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{\mathbf{y}} Z'(\mathbf{y}, \underline{\mathbf{x}}, \boldsymbol{\theta});$
 - $p(y|\underline{\mathbf{x}};\boldsymbol{\theta}) = \sum_{\underline{h}\in\mathcal{H}^n} p(y,\underline{h}|\underline{\mathbf{x}};\boldsymbol{\theta}) = \frac{Z'(y,\underline{\mathbf{x}},\boldsymbol{\theta})}{\sum_{y} Z'(y,\underline{\mathbf{x}},\boldsymbol{\theta})}.$
- $Z'(y, \underline{x}, \theta)$ can be easily computed using forward/backward recursions (as done in CRF).
- To classify new test cases, use:

$$\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} p(y|\underline{\mathbf{x}}; \boldsymbol{\theta}^*) = \operatorname{argmax}_{y \in \mathcal{Y}} \frac{Z'(y,\underline{\mathbf{x}},\boldsymbol{\theta})}{\sum_{v} Z'(y,\underline{\mathbf{x}},\boldsymbol{\theta})}.$$

• To compute the partition function, use $Z(\underline{\mathbf{x}}, \theta) = \sum_{y} Z'(y, \underline{\mathbf{x}}, \theta)$.

- HCRF model: $p(y, \underline{h} | \underline{\mathbf{x}}; \boldsymbol{\theta}) = \frac{1}{Z(\underline{\mathbf{x}}, \boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, y, \underline{h}).$
- Let $Z'(y, \underline{\mathbf{x}}, \theta) \stackrel{\Delta}{=} \sum_{\underline{h} \in \mathcal{H}^n} \exp \sum_{j=1}^D \theta_j F_j(\underline{\mathbf{x}}, y, \underline{h})$: marginalization wrt \underline{h} .
- We have:
 - $-Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{\mathbf{y}} Z'(\mathbf{y}, \underline{\mathbf{x}}, \boldsymbol{\theta});$
 - $p(y|\underline{\mathbf{x}};\boldsymbol{\theta}) = \sum_{\underline{h}\in\mathcal{H}^n} p(y,\underline{h}|\underline{\mathbf{x}};\boldsymbol{\theta}) = \frac{Z'(y,\underline{\mathbf{x}},\boldsymbol{\theta})}{\sum_{y} Z'(y,\underline{\mathbf{x}},\boldsymbol{\theta})}.$
- $Z'(y, \underline{\mathbf{x}}, \boldsymbol{\theta})$ can be easily computed using forward/backward recursions (as done in CRF).
- To classify new test cases, use: $\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} p(y|\underline{\mathbf{x}}; \boldsymbol{\theta}^*) = \operatorname{argmax}_{y \in \mathcal{Y}} \frac{Z'(y,\underline{\mathbf{x}},\boldsymbol{\theta})}{\sum Z'(y,\underline{\mathbf{x}},\boldsymbol{\theta})}.$
- To compute the partition function, use $Z(\underline{\mathbf{x}}, \theta) = \sum_{y} Z'(y, \underline{\mathbf{x}}, \theta)$.

- HCRF model: $p(y, \underline{h} | \underline{\mathbf{x}}; \boldsymbol{\theta}) = \frac{1}{Z(\underline{\mathbf{x}}, \boldsymbol{\theta})} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}, y, \underline{h}).$
- Let $Z'(y, \underline{\mathbf{x}}, \theta) \stackrel{\Delta}{=} \sum_{\underline{h} \in \mathcal{H}^n} \exp \sum_{j=1}^D \theta_j F_j(\underline{\mathbf{x}}, y, \underline{h})$: marginalization wrt \underline{h} .
- We have:
 - $Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{\mathbf{y}} Z'(\mathbf{y}, \underline{\mathbf{x}}, \boldsymbol{\theta});$
 - $p(y|\underline{\mathbf{x}};\boldsymbol{\theta}) = \sum_{\underline{h}\in\mathcal{H}^n} p(y,\underline{h}|\underline{\mathbf{x}};\boldsymbol{\theta}) = \frac{Z'(y,\underline{\mathbf{x}},\boldsymbol{\theta})}{\sum_{y} Z'(y,\underline{\mathbf{x}},\boldsymbol{\theta})}.$
- $Z'(y, \underline{x}, \theta)$ can be easily computed using forward/backward recursions (as done in CRF).
- To classify new test cases, use: $\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} p(y|\underline{\mathbf{x}}; \boldsymbol{\theta}^*) = \operatorname{argmax}_{y \in \mathcal{Y}} \frac{Z'(y,\underline{\mathbf{x}},\boldsymbol{\theta})}{\sum_{x} Z'(y,\underline{\mathbf{x}},\boldsymbol{\theta})}.$
- To compute the partition function, use $Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{\mathbf{y}} Z'(\mathbf{y}, \underline{\mathbf{x}}, \boldsymbol{\theta})$.

Negative log-likelihood

$$L(\mathcal{D}; \boldsymbol{\theta}) = -\sum_{q=1}^{N} \log p(y^{(q)} | \underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta})$$

$$= \sum_{q=1}^{N} \left\{ \log \left(\sum_{y} Z'(y, \underline{\mathbf{x}}^{(q)}, \boldsymbol{\theta}) \right) - \log \left(\sum_{\underline{h} \in \mathcal{H}} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}^{(q)}, y^{(q)}, \underline{h}) \right) \right\}$$

 $L(D;\theta)$ is no longer convex \rightarrow convergence to a local minimum.

4日 → 4億 → 4 差 → 4 差 → 12 → 9 Q ○

Negative log-likelihood

$$L(\mathcal{D}; \boldsymbol{\theta}) = -\sum_{q=1}^{N} \log p(y^{(q)} | \underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta})$$

$$= \sum_{q=1}^{N} \left\{ \log \left(\sum_{y} Z'(y, \underline{\mathbf{x}}^{(q)}, \boldsymbol{\theta}) \right) - \log \left(\sum_{\underline{h} \in \mathcal{H}} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{\mathbf{x}}^{(q)}, y^{(q)}, \underline{h}) \right) \right\}$$

 $L(D; \theta)$ is no longer convex \rightarrow convergence to a local minimum.

NLL gradient

$$\frac{\partial L(\mathcal{D}; \boldsymbol{\theta})}{\partial \theta_{k}} = \sum_{q=1}^{N} \left\{ \sum_{y,\underline{h}} F_{k}(\underline{\mathbf{x}}^{(q)}, y, \underline{h}) p(y, \underline{h} | \underline{\mathbf{x}}; \boldsymbol{\theta}) - \sum_{\underline{h}} F_{k}(\underline{\mathbf{x}}^{(q)}, y^{(q)}, \underline{h}) p(\underline{h} | y^{(q)}, \underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta}) \right\}$$

which can be again computed using the forward-backward method.

A gradient descent method (L-BFGS) can be again used to solve for θ .

4□ > 4□ > 4□ > 4□ > 4□ > 900

NLL gradient

$$\frac{\partial L(\mathcal{D}; \boldsymbol{\theta})}{\partial \theta_{k}} = \sum_{q=1}^{N} \left\{ \sum_{y,\underline{h}} F_{k}(\underline{\mathbf{x}}^{(q)}, y, \underline{h}) p(y, \underline{h} | \underline{\mathbf{x}}; \boldsymbol{\theta}) - \sum_{\underline{h}} F_{k}(\underline{\mathbf{x}}^{(q)}, y^{(q)}, \underline{h}) p(\underline{h} | y^{(q)}, \underline{\mathbf{x}}^{(q)}; \boldsymbol{\theta}) \right\}$$

which can be again computed using the forward-backward method.

A gradient descent method (L-BFGS) can be again used to solve for θ .

4□ > 4□ > 4□ > 4□ > 4□ > 900

Application to musical instrument classification

Feature functions for HCRF

Following (?)

$$\Psi(\underline{\mathbf{x}},y,\underline{h},\boldsymbol{\theta}) = \sum_{i=1}^{N} \langle \boldsymbol{\theta}(h_i),\mathbf{x}_i \rangle + \sum_{i=1}^{N} \theta(y,h_i) + \sum_{i=1}^{N} \theta(y,h_{i-1},h_i)$$

- $<\theta(h_i), x_i>$: compatibility between observation x_i and hidden state $h_i \in \mathcal{H}$;
- $\theta(y, h_i)$: compatibility between hidden state h_i and label y;
- $\theta(y, h_{i-1}, h_i)$: compatibility between transition $h_{i-1} \leftrightarrow h_i$ and label y.

→ロト →団 → → 重 → → 重 → りへで

Evaluation

- Classifying 1-second long segments of solo excerpts of Cello, Guitar, Piano, Bassoon and Oboe.
- Data:
 - training set: 2505 segments (i.e. 42');
 - testing set: 2505 segments.
- Classifiers:
 - ℓ_2 -regularized **HCRF** with 3 hidden states;
 - Linear SVM.
- Features: 47 cepstral, perceptual and temporal features.
- Results

Classifier	SVM	
Average accuracy	75%	76%

Evaluation

- Classifying 1-second long segments of solo excerpts of Cello, Guitar, Piano, Bassoon and Oboe.
- Data:
 - training set: 2505 segments (i.e. 42');
 - testing set: 2505 segments.
- Classifiers:
 - ℓ_2 -regularized **HCRF** with 3 hidden states;
 - Linear SVM.
- Features: 47 cepstral, perceptual and temporal features.
- Results

Classifier	SVM	HCRF
Average accuracy	75%	76%

- ► Introduction
- ► The logistic regression model
- ► Conditional Random Fields (for sequential data)
- ▶ Improvements and extensions to original CRFs
 - Regularization
 - Hidden-state CRF model
 - Other extensions
- **▶** Conclusion
- ▶ References
- ► Appendix

Other extensions

• LDCRF: Latent-Dynamic Conditional Random Field (?) modeling both hidden-states and structured-outputs.

Other extensions

- LDCRF: Latent-Dynamic Conditional Random Field (?) modeling both hidden-states and structured-outputs.
- Kernel-CRF (??)
 introducing implicit features to account for (non-linear) interactions between original features.
- Semi-Markov CRF (?) modeling segment-level labels
- CCRF: Continuous CRF (?)
 modeling continuous labels in a regression setting.

Take-home messages

- CRFs are powerful structured-data prediction models (more flexible than HMMs and other more general Bayesian networks) as they are:
 - discriminative models: focus on modeling the target labels;
- ightarrow can handle a high number of feature functions, including transition features, and account for long-range dependencies.
 - undirected models: no need to normalize potentials locally.
- → allow for incorporating prior knowledge about constraints and label dependencies in an intuitive way.
- Easily **extendable** with key mechanisms: regularization, sparsity, latent variables, kernels...
- Great potential for various classification tasks (both symbolic and numerically-continuous data).

CRF software packages

Package	Language	Main features	Reference
CRF++	C++	Linear-chain CRF, NLP, L-BFGS optimization	(?)
crfChain	Matlab, C mex	Linear-chain CRF, categorical features, L-BFGS optimization	?
CRFsuite	C++, Python	Linear-chain CRF, NLP, various regularization and optimization methods (L-BFGS), designed for fast training	(?)
HCRF library	C++, Matlab, Python	CRF, HCRF, LDCRF, continuous inputs, L-BFGS optimization	(?)
Mallet	Java	CRF, maxent, HMM, NLP, text feature extraction routines, various optimization methods (L-BFGS)	(?)
Wapiti	C99	Linear-chain CRF, NLP, large label and feature sets, various regularization and optimization methods (L-BFGS, SGD), multi-threaded	(?) □ □ □ ✓ ○ ○

CRF tutorials

- Charles Sutton and Andrew McCallum. An Introduction to Conditional Random Fields for Relational Learning. In Introduction to Statistical Relational Learning. Edited by Lise Getoor and Ben Taskar. MIT Press, 2006.
- Charles Elkan. Log-linear Models and Conditional Random Fields. Notes for a tutorial at CIKM'08, October 2008.
- Roman Klinger and Katrin Tomanek. Classical Probabilistic Models and Conditional Random Fields. Algorithm Engineering Report TR07-2-2013, December 2007.
- Hanna M. Wallach. Conditional Random Fields: An Introduction. Technical Report MS-CIS-04-21, Department of Computer and Information Science, University of Pennsylvania, 2004.
- Roland Memisevic. An Introduction to Structured Discriminative Learning.
 Technical Report, University of Toronto, 2006.
- Rahul Gupta. Conditional Random Fields. Unpublished report, IIT Bombay, 2006.

Bibliography I

- ► Conditional Random Fields (Վեթանանան
- ► Improvements and extensions to original CRFs
- ► Conclusion
- ▶ References
- ▶ Appendix
 - Optimization with stochastic gradient learning
 - Comparing KLR and SVM
 - The forward-backward method

LR model learning with stochastic gradient descent (SGL)

- Idea: make gradient updates based on one training example at a time
- Use: $\frac{\partial L(\mathcal{D}; \tilde{\mathbf{w}})}{\partial w_i} = (y_i p(\mathbf{x}_i; \tilde{\mathbf{w}})) x_{ji}$

```
Algorithm

- Initialise \tilde{\mathbf{w}}

- Repeat (until convergence)

- Randomly permute training examples \mathbf{x}_i

- For i = 1 : N
```

- t : step size, to be tuned
- Complexity of SGL: O(NFD) per *epoch*; with F the average number of non-zero feature coefficients per example; an *epoch* is a "complete" update using all training examples.

LR model learning with stochastic gradient descent (SGL)

- Idea: make gradient updates based on one training example at a time
- Use: $\frac{\partial L(\mathcal{D}; \tilde{\mathbf{w}})}{\partial w_i} = (y_i p(\mathbf{x}_i; \tilde{\mathbf{w}})) x_{ji}$

Algorithm

- Initialise $\tilde{\mathbf{w}}$ Repeat (until convergence)
 - Randomly permute training examples x_i
 - For i = 1 : N

$$w_i \leftarrow w_i + t (y_{\sigma_i} - p_{\sigma_i}) x_{j\sigma_i}$$
; $j = 1, \dots, D$

- t : step size, to be tuned
- Complexity of SGL: O(NFD) per epoch; with F the average number of **◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 900**

LR model learning with stochastic gradient descent (SGL)

- Idea: make gradient updates based on one training example at a time
- Use: $\frac{\partial L(\mathcal{D}; \tilde{\mathbf{w}})}{\partial w_i} = (y_i p(\mathbf{x}_i; \tilde{\mathbf{w}})) x_{ji}$

Algorithm

- Initialise $\tilde{\mathbf{w}}$ Repeat (until convergence)
 Randomly permute training examples \mathbf{x}_i
 - For i = 1 : N

$$w_i \leftarrow w_i + t(y_{\sigma_i} - p_{\sigma_i}) x_{j\sigma_i}$$
; $j = 1, \dots, D$

- t : step size, to be tuned
- Complexity of SGL: O(NFD) per epoch; with F the average number of non-zero feature coefficients per example; an epoch is a "complete" update using all training examples.

Support Vector Machines

Recalling SVM as a regularized function fitting problem

• The SVM solution, $g(\mathbf{x}) = w_0 + \mathbf{w}^T \phi(\mathbf{x})$, can be found by solving:

$$\min_{\tilde{\mathbf{w}}} \sum_{i=1}^{N} \left[1 - y_i' g(\mathbf{x}_i) \right]_+ + \frac{\gamma}{2} ||g||_{\mathcal{H}_{\mathcal{K}}}^2 \; ; \; y_i' \in \{-1, 1\}$$

Hinge loss

$$[1 - y_i'g(\mathbf{x}_i)]_+ = \max(0, 1 - y_i'g(\mathbf{x}_i))$$

KLR vs SVM

• Let
$$y_i' = \begin{cases} 1 & \text{if } y_i = 1 \\ -1 & \text{if } y_i = 0 \end{cases}$$

- The negative log-likelihood of the KLR model can then be written as $L(\mathcal{D}; \tilde{\mathbf{w}}) = \sum_{i=1}^{N} \log (1 + \exp -y_i' g(\mathbf{x}_i))$.
- Both KLR and SVM solve:

$$\min_{\tilde{\mathbf{w}}} \sum_{i=1}^{N} I(y_i'g(\mathbf{x}_i)) + \frac{\lambda}{2} ||g||_{\mathcal{H}_{\mathcal{K}}}^2;$$

KLR

$$I(y_i'g(\mathbf{x}_i)) = \log(1 + \exp(-y_i'f(\mathbf{x}_i)))$$

SVM

$$I(y_i'g(\mathbf{x}_i)) = [1 - y_i'f(\mathbf{x}_i)]_+$$

KLR vs SVM

Hinge vs negative binomial log-likelihood

The forward recursion

Define α scores as:

$$\alpha_{1}(y_{1}) = M_{1}(y_{0}, y_{1})$$

$$\alpha_{2}(y_{2}) = \sum_{y_{1} \in \mathcal{Y}} M_{2}(y_{1}, y_{2})\alpha_{1}(y_{1})$$

$$\alpha_{3}(y_{3}) = \sum_{y_{2} \in \mathcal{Y}} M_{3}(y_{2}, y_{3})\alpha_{2}(y_{2})$$

$$\vdots$$

$$\alpha_{m}(y_{m}) = \sum_{y_{m} \in \mathcal{Y}} M_{m}(y_{m-1}, y_{m})\alpha_{m-1}(y_{m-1}); 2 \leq m \leq n$$

The forward recursion

Define α scores as:

$$\alpha_{1}(y_{1}) = M_{1}(y_{0}, y_{1})$$

$$\alpha_{2}(y_{2}) = \sum_{y_{1} \in \mathcal{Y}} M_{2}(y_{1}, y_{2})\alpha_{1}(y_{1})$$

$$\alpha_{3}(y_{3}) = \sum_{y_{2} \in \mathcal{Y}} M_{3}(y_{2}, y_{3})\alpha_{2}(y_{2}) = \sum_{y_{1}, y_{2}} M_{3}(y_{2}, y_{3})M_{2}(y_{1}, y_{2})M_{1}(y_{0}, y_{1})$$

$$\vdots$$

$$\alpha_{m}(y_{m}) = \sum_{y_{m-1}} M_{m}(y_{m-1}, y_{m})\alpha_{m-1}(y_{m-1}); 2 \leq m \leq n$$

At the end of the sequence

$$\sum_{y_n \in \mathcal{Y}} \alpha_n(y_n) = \sum_{y \in \mathcal{Y}^n} \prod_{i=1}^n M_i(y_{i-1}, y_i, \underline{\mathbf{x}}) = \mathbf{Z}(\underline{\mathbf{x}}, \boldsymbol{\theta}).$$

The forward recursion

Define α scores as:

$$\alpha_m(y_m) = \sum_{y_{m-1}} M_m(y_{m-1}, y_m) \alpha_{m-1}(y_{m-1}); 2 \le m \le n.$$

At the end of the sequence

$$\sum_{y_n \in \mathcal{Y}} \alpha_n(y_n) = \sum_{y \in \mathcal{Y}^n} \prod_{i=1}^n M_i(y_{i-1}, y_i, \underline{\mathbf{x}}) = \mathbf{Z}(\underline{\mathbf{x}}, \boldsymbol{\theta}).$$

Complexity: reduced from $O(K^n)$ to $O(nK^2)$.

The backward recursion

$$\beta_{m}(y_{m}) = \sum_{y_{m+1} \in \mathcal{Y}} M_{m+1}(y_{m}, y_{m+1}) \beta_{m+1}(y_{m+1}); 1 \leq m \leq n-1$$

 $\beta_{n}(y_{n}) = 1$

At the beginning of the sequence

$$Z(\underline{\mathbf{x}}, \boldsymbol{\theta}) = \sum_{\mathbf{y}_1 \in \mathcal{Y}} M_1(\mathbf{y}_0, \mathbf{y}_1) \boldsymbol{\beta}_1(\mathbf{y}_1).$$

Marginal probability

$$p(y_{m-1}, y_m | \underline{\mathbf{x}}) = \sum_{\underline{y} \setminus \{y_{m-1}, y_m\}} p(\underline{y} | \mathbf{x});$$

$$\underline{y} \setminus \{y_{m-1}, y_m\} \stackrel{\Delta}{=} \{y_1, \dots, y_{m-2}, y_{m+1}, \dots, y_n\}.$$

$$p(y_{m-1}, y_m | \underline{\mathbf{x}}) = \frac{1}{Z(\underline{\mathbf{x}})} \sum_{\underline{y} \setminus \{y_{m-1}, y_m\}} \prod_{i=1}^n M_i(y_{i-1}, y_i, \underline{\mathbf{x}})$$

$$= \frac{1}{Z(\underline{\mathbf{x}})} \sum_{\underline{y} \setminus \{y_{m-1}, y_m\}} \prod_{i=1}^{m-1} M_i(y_{i-1}, y_i, \underline{\mathbf{x}}) \times M_{\mathbf{m}}(y_{m-1}, y_m, \underline{\mathbf{x}})$$

$$\times \prod_{i=1}^n M_i(y_{i-1}, y_i, \underline{\mathbf{x}})$$

Marginal probability

$$p(y_{m-1}, y_m | \underline{\mathbf{x}}) = \sum_{\underline{y} \setminus \{y_{m-1}, y_m\}} p(\underline{y} | \mathbf{x});$$

$$\underline{y} \setminus \{y_{m-1}, y_m\} \stackrel{\Delta}{=} \{y_1, \dots, y_{m-2}, y_{m+1}, \dots, y_n\}.$$

$$p(y_{m-1}, y_m | \underline{\mathbf{x}}) = \frac{1}{Z(\underline{\mathbf{x}})} \sum_{\underline{y} \setminus \{y_{m-1}, y_m\}} \prod_{i=1}^n M_i(y_{i-1}, y_i, \underline{\mathbf{x}})$$

$$= \frac{1}{Z(\underline{\mathbf{x}})} \sum_{\underline{y} \setminus \{y_{m-1}, y_m\}} \prod_{i=1}^{m-1} M_i(y_{i-1}, y_i, \underline{\mathbf{x}}) \times M_m(y_{m-1}, y_m, \underline{\mathbf{x}})$$

$$\times \prod_{i=1}^n M_i(y_{i-1}, y_i, \underline{\mathbf{x}})$$

Marginal probability

$$p(y_{m-1}, y_m | \underline{\mathbf{x}}) = \frac{1}{Z(\underline{\mathbf{x}})} M_m(y_{m-1}, y_m, \underline{\mathbf{x}}) \times \sum_{\{y_1, \dots, y_{m-2}\}} \prod_{i=1}^{m-1} M_i(y_{i-1}, y_i, \underline{\mathbf{x}})$$

$$\times \sum_{\{y_{m+1}, \dots, y_n\}} \prod_{i=m+1}^{n} M_i(y_{i-1}, y_i, \underline{\mathbf{x}})$$

$$p(y_{m-1},y_m|\underline{\mathbf{x}}) = \frac{1}{Z(\mathbf{x})}\alpha_{m-1}(y_{m-1})M_m(y_{m-1},y_m,\underline{\mathbf{x}})\beta_m(y_m).$$