112-1 Discrete Mathematics Charpter 3-2

姓名:許嘉隆 學號:412770116

chapter 3-2 ex2,6,8,14,34(a)

- 2. Determine whether each of these functions is $O(x^2)$?
 - a) f(x) = 17x + 11

$$x > 1$$
, $17x + 11 \le 17x^2 + 11x^2 = 28x^2$

$$k = 1, C = 28$$

$$\therefore f(x) = O(x^2)$$

b) $f(x) = x^2 + 1000$

$$x^2 + 1000 \le x^2 + x^2 = 2x^2$$

$$x > \sqrt{1000}$$

$$k = \sqrt{1000}, C = 2$$

$$\therefore f(x) = O(x^2)$$

c) $f(x) = x \log x$

$$x > 1$$
, $\log x \le x \implies x \log x \le x^2$

$$k=1,\;C=1$$

$$\therefore f(x) = O(x^2)$$

 $f(x) = \frac{x^4}{2}$

$$x > k, \ \frac{x^4}{2} \leqslant Cx^2$$

can't find k, $C = \frac{x^2}{2}$ (not a constant)

- $\therefore f(x) \text{ is not } O(x^2)$
- e) $f(x) = 2^x$

$$2^x \le x^2, x = 1, C = 1, can't find x > k$$

- $\therefore f(x) \text{ is not } O(x^2)$
- f) $f(x) = \lfloor x \rfloor \cdot \lceil x \rceil$

$$\lfloor x \rfloor \cdot \lceil x \rceil \leqslant x(x+1) \leqslant x \cdot 2x = 2x^2$$

 $x > 1, C = 2, k = 1$

$$\therefore f(x) = O(x^2)$$

6. Show that
$$\frac{(x^3 + 2x)}{(2x+1)} \text{ is } O(x^2)$$

$$x > 1, \ \frac{x^3 + 2x}{2x+1} \le \frac{x^3 + 2x}{2x} \le \frac{x^3 + 2x^3}{2x} = \frac{3x^3}{2x} = \frac{3}{2}x^2$$

$$k = 1, \ C = \frac{3}{2}$$

$$\therefore \frac{x^3 + 2x}{2x+1} \text{ is } O(x^2)$$

8. Find the least integer n such that f(x) is $O(x^n)$ for each of these functions?

a)
$$f(x) = 2x^2 + x^3 \log x$$

 $x > 1$, $\log x \le x \implies x^3 \log x \le x^4$
 $\implies 2x^2 + x^3 \log x \le 2x^4 + x^4 = 3x^4$
 $k = 1$, $C = 3$
 $\therefore f(x) = O(x^4)$

b)
$$f(x) = 3x^5 + (\log x)^4$$

 $x > 1$, $3x^5 + (\log x)^4 \le 3x^5 + x^5 = 4x^5$
 $k = 1$, $C = 4$
 $\therefore f(x) = O(x^5)$

c)
$$f(x) = \frac{x^4 + x^2 + 1}{x^4 + 1}$$

 $x > 1$, $\frac{x^4 + x^2 + 1}{x^4 + 1} \le \frac{x^4 + x^4 + x^4}{x^4} \le 3 \cdot x^0$
 $k = 1$, $C = 3$
 $\therefore f(x) = O(x^0)$

d)
$$f(x) = \frac{x^3 + 5\log x}{x^4 + 1}$$

 $x > 1$, $\frac{x^3 + 5\log x}{x^4 + 1} \le \frac{x^3 + 5x^3}{x^4} \le \frac{6}{x}$
 $k = 1$, $C = 6$

$$\therefore f(x) = O(x^{-1})$$

14. Determine whether x^3 is O(g(x)) for each of these functions g(x).

a)
$$g(x) = x^2$$

 $x > k$, $x^3 \le Cx^2$
 $can't \ find \ k$, $C = x \ (not \ a \ constant)$
 $\therefore x^3 \ is \ not \ O(x^2)$

b)
$$g(x) = x^3$$

 $x > 1$, $x^3 \le x^3$
 $k = 1$, $C = 1$
 $\therefore x^3$ is $O(x^3)$

c)
$$g(x) = x^2 + x^3$$

 $x > 1, x^3 \le x^3 + x^2$
 $k = 1, C = 1$
 $\therefore x^3 \text{ is } O(x^2 + x^3)$

d)
$$g(x) = x^2 + x^4$$

 $x > 1$, $x^3 \le x^4 + x^2$
 $k = 1$, $C = 1$
 $\therefore x^3$ is $O(x^2 + x^4)$

e)
$$g(x) = 3^{x}$$

 $x^{3} \le 3^{x}, x > 1,$
 $k = 1, C = 1$
 x^{3} is $O(3^{x})$

f)
$$g(x) = \frac{x^3}{2}$$

 $x > 1$, $k = 1$, $C = 2$

$$x^3 \le 2\frac{x^3}{2} = x^3$$

$$\therefore x^3 \text{ is } O\left(\frac{x^3}{2}\right)$$

34. Show that $3x^2 + x + 1$ is $\Theta(3x^2)$ by directly finding the constants k, C_1 , and C_2 .

1.
$$x > 1$$
, $3x^2 + x + 1 \ge 3x^2$, $k = 1$, $C_1 = 1$

2.
$$x > 1$$
, $3x^2 + x + 1 \le 3x^2 + x^2 + x^2 = 5x^2 = \frac{5}{3}(3x^2)$

$$k = 1$$
, $C_2 = \frac{5}{3}$

$$\implies x > 1, \ 3x^2 \le 3x^2 + x + 1 \le \frac{5}{3} \cdot 3x^2$$

$$\therefore 3x^2 + x + 1 \text{ is } \Theta(3x^2)$$