Real analysis Assignment 2

Due: 9 November 2024 before 11:59 pm

- 1. (5 points) Find an example of a sequence of real numbers satisfying each set of properties:
 - 1. Cauchy but not monotone
 - 2. Monotone but not Cauchy
 - 3. Bounded but not Cauchy
- 2. (5 points) Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \frac{x^3}{1+x^2}$. Show that f is continuous on \mathbb{R} . Is f uniformly continuous on \mathbb{R} ?
- 3. (5 points) Let (a_n) and (b_n) be bounded sequences of real numbers. Define a sequence (c_n) by $c_n = a_n b_n$. Show that if $\limsup a_n$ and $\limsup b_n$ are negative, then $\limsup c_n = \liminf (a_n) \cdot \liminf (b_n)$.
- 4. (5 points) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and let $k \in \mathbb{R}$. Prove that the set $f^{-1}(k)$ is closed.
- 5. (10 points) Let X be a metric space. Then show the following
 - 1. Any subset of a nowhere dense set is nowhere dense.
 - 2. The union of finitely many nowhere dense sets is nowhere dense.
 - 3. The closure of a nowhere dense set is nowhere dense.
 - 4. If X has no isolated points, then every finite set is nowhere dense.
- 6. (10 points) Let (a_n) be a sequence. Let (b_n) be a nondecreasing convergent sequence of positive numbers such that $|a_{n+1} a_n| \le b_{n+1} b_n$. Show that (a_n) is a Cauchy sequence.
- 7. (10 points) If f is a continuous mapping of a metric space X into a metric space Y, prove that $f(\overline{E}) \subset f(E)$ for every set $E \subset X$. (Here \overline{A} denotes the closure of set A.)