

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Математического обеспечения и стандартизации информационных технологий

Отчет по практическим работам № 9-12

по дисциплине «Технологические основы Интернета вещей»

Выполнил: Студент группы ИНБО-08-22	Самойлов М.М.	
Проверил:	Синицин И. В.	

ОГЛАВЛЕНИЕ

ПРАКТИЧЕСКАЯ РАБОТА 9	3
ПРАКТИЧЕСКАЯ РАБОТА 10	<i>6</i>
ПРАКТИЧЕСКАЯ РАБОТА 11	10
ПРАКТИЧЕСКАЯ РАБОТА 12	13
ВЫВОД	17

Часть 1. Регистрация на платформе ThingsBoard

ThingsBoard имеет тестовый сервер в сборке Community Edition для проверки доступных функций платформы и тестирования своих приложений. Для регистрации на платформе необходимо перейти по данной ссылке https://demo.thingsboard.io/signup.

Часть 2. Создание виртуальных устройств в облаке

Согласно варианту создайте в облаке виртуальные устройства для получения данных. Каждое устройство должно иметь свой профиль, соответствующий передаваемым на устройство данным. В качестве протокола для профилей устройств используйте MQTT. Остальные параметрами оставьте незаполненными.

№ варианта	Датчики
1	 Датчик температуры Датчик движения Датчик напряжения
2	Датчик шума Датчик освещенности Датчик напряжения
3	Датчик шума Датчик качества воздуха Датчик напряжения
4	Датчик движения Датчик температуры Датчик напряжения
5	Датчик качества воздуха Датчик освещенности Датчик напряжения
6	 Датчик влажности Датчик шума Датчик напряжения
7	 Датчик влажности Датчик температуры Датчик напряжения

Часть 3. Отправка данных в облако

Выполните передачу тестовых данных в каждое из созданных устройств. Данные должны соответствовать типу устройства, то есть, к примеру, в термометр должна поступить температура. Данные можно передавать при помощи утилиты mosquito_pub. Ссылка на документацию по передаче данных на устройства по MQTT — https://thingsboard.io/docs/reference/mqtt-api/.

В отчете необходимо отразить созданные устройства, процесс отправки данных с облако, а также отображение этих данных на виртуальных устройствах в облачной платформе.

Рисунок 9.1 - Условие и вариант работы

Часть 1. Регистрация на платформе ThingsBoard

Данные для авторизации:

Логин: ixbo-x-21-номер_подгруппы@tb.org (<u>ikbo-14-21-1@tb.org</u>)

Пароль: 123123

Часть 2. Создание виртуальных устройств в облаке

Согласно выбранному варианту (Вариант 1), необходимо описать следующие исполнительные устройства и датчики:

- 1. Датчик температуры;
- 2. Датчик движения;
- 3. Датчик напряжения.

Для выполнения этой части практической работы нами были созданы в облаке 3 устройства (Рисунок 9.2 - 9.3):

- Датчик температуры;
- Датчик движения;
- Датчик напряжения.

Рисунок 9.2 - Создание одного девайса

Рисунок 9.3 - Созданные девайсы

Часть 3 Отправка данных в облако

Далее мы отправили данные на созданные устройства при помощи утилиты mosquito_pub с помощью команды (Рисунок 9.4 - 9.6).

```
user@wirenboard-AB4BCCUU:-$ mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "vl/devices/me/telemetry" -u "lAFPzTxtaMNovtmUHLl0" -m "{"temperature":19}"

Lient mosqpub|10388-wirenboar received CONNACK

Lient mosqpub|10388-wirenboar received CONNACK

Lient mosqpub|10388-wirenboar sending PUBLISH (d0, q1, r0, m1, 'vl/devices/me/telemetry', ... (16 bytes))

Lient mosqpub|10388-wirenboar received PUBACK (Mid: 1)

Lient mosqpub|10388-wirenboar sending DISCONNECT
```

Рисунок 9.4 - Отправка информации на датчик температуры

```
user@wirenboard-AB4BCCUU:-$mosquitto_pub -d -q l -h "thingsboard.mosit" -t "vl/devices/me/telemetry" -u "QuYVRWaHyfXmewHxagFx" -m "{"move":400}"

Client mosqpub|10585-wirenboar sending CONNECT

Client mosqpub|10585-wirenboar received CONNACK

Client mosqpub|10585-wirenboar sending PUBLISH (d0, q1, r0, m1, 'vl/devices/me/telemetry', ... (10 bytes))

Client mosqpub|10585-wirenboar sending PUBLOK (Mid: 1)

Client mosqpub|10585-wirenboar sending DISCONNECT
```

Рисунок 9.5 - Отправка информации на датчик движения

```
user@wirenboard-AB4BCCUU:-$ mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "vl/devices/me/telemetry" -u "752Ihki7xVywViKmZUE5" -m "{"voltage":10}"
Client mosqpub|9562-wirenboard sending CONNECT
Client mosqpub|9562-wirenboard received CONNACK
Client mosqpub|9562-wirenboard sending PUBLISH (d0, q1, r0, m1, 'vl/devices/me/telemetry', ... (12 bytes))
Client mosqpub|9562-wirenboard received PUBACK (Mid: 1)
Client mosqpub|9562-wirenboard sending DISCONNECT
```

Рисунок 9.6 - Отправка информации на датчик напряжения

Рисунок 9.7 - Отправка значений температуры

Рисунок 9.8 - Отправка значений движения

Рисунок 9.9 - Отправка значений напряжения

Задание практической работы №10

Реализуйте скрипты из практической работы №3 при помощи цепочек правил ThingsBoard, используя приведенную в методичке инструкцию.

Примечание. При ответе на RPC запрос необходимо посылать в облако состояние физического устройства, например, состояние шарового крана, в виде JSON строки: "{"valve_state": 1}". Или же установившийся цвет RGB ленты: "{"rgb_color": "255;0;0"}".

№ варианта	Сценарии
1	1. Включение и выключение воды по датчику движения
	2. Включение и выключение диодной ленты по кнопке
	 Включение и выключения вентилятора по концентрации CO₂
2	2. Включение, выключение и изменение звукового сигнала по
	кнопкам. Например, на одну кнопку значение повышается, на
	другую понижается, на третью происходит
	включение/выключение.
3	1. Изменение цвета диодной ленты по концентрации СО2
	(зеленый цвет – концентрация в норме, красный – повышена)

	2. Включение и выключения световых индикаторов по кнопкам	
	1. Включение и выключение вентилятора по температуре	
4	2. Открытие и закрытие шарового крана при одновременном	
	нажатии двух кнопок	
	1. Включение и выключение вентилятора по датчику движения	
5	2. Включение и выключения индикации зеленым и красным	
	светом комбинированного датчика по кнопкам	
	1. Включение и выключение звукового сигнала по датчику сил	
6	тока	
	2. Включение и изменение цвета диодной ленты по кнопкам	
	1. Включение и выключение диодной ленты по датчику силы	
_	тока	
7	2. Включение и выключение вентилятора при одновременном	
	нажатии двух. кнопок	

В отчете необходимо отразить созданные устройства, цепочки правил, а также процесс проверки правил при помощи утилит mosquitto.

Рисунок 10.1 - Условие и вариант работы

Сценарии для индивидуального варианта:

- 1. Включение и выключение воды по датчику движения;
- 2. Включение и выключения диодной ленты по кнопке.

Реализация первого сценария:

Построим цепочку (Рисунок 10.2) и начнем настраивать (Рисунок 10.3).

Рисунок 10.2 - Цепочка правил

Настроим профиль устройств (Рисунок 10.3):

Рисунок 10.3 - Настройка профиля устройств

Напишем и протестируем скрипт (Рисунок 10.4).

unction Transform(msg, metadata, msgType) {

```
1 function getNewMotionStatus(motion) {
 2
    return motion > 1000;
 3 }
 4 let newMsg = {};
 5 let newMsgType = {};
 6 * newMsg = {
 7
    "method": "setValveState",
8 * "params": {
    "state": getNewMotionStatus(msg.motion)
 9
10
11
   };
12 newMsgType = "POST_ATTRIBUTES_REQUEST";
13 return {msg: newMsg, metadata: metadata, msgType: newMsgType};
```

Рисунок 10.4 - Скрипт

Проведем подписку на устройство и отправим данные, затем отправим ответ на запрос и проверим его в клиентских атрибутах (Рисунок 10.5-7).

```
C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/telemetry" -u "F39JIvSM30TqZcQVKNc2" -m "{"motion": 1100}"

Client null sending CONNECT

Client null received CONNACK (0)

Client null sending PUBLISH (d0, q1, r0, m1, 'v1/devices/me/telemetry', ... (14 bytes))

Client null sending PUBLISH (d0, q1, r0, m1, 'v1/devices/me/telemetry', ... (14 bytes))

C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/rpc/response/13" -u "F39JIvSM30TqZcQVKNc2" -m "{"status": 1}"

Client null sending CONNECT

Client null sending CONNECT

Client null sending PUBLISH (d0, q1, r0, m1, 'v1/devices/me/rpc/response/13', ... (11 bytes))

Client null received PUBACK (Mid: 1, RC:0)

Client null sending DISCONNECT
```

Рисунок 10.5 – Отправленные данные

```
C:\Program Files\mosquitto>mosquitto_sub -v -h "thingsboard.mosit" -t "v1/devices/me/rpc/request/+" -u "F39JIvSM3OTqZcQVKNc2"
v1/devices/me/rpc/request/7 {"method":"setValveState","params":{"state":true}}
v1/devices/me/rpc/request/8 {"method":"setValveState","params":{"state":true}}
v1/devices/me/rpc/request/8 {"method":"setValveState","params":{"state":true}}
v1/devices/me/rpc/request/9 {"method":"setValveState","params":{"state":false}}
v1/devices/me/rpc/request/9 {"method":"setValveState","params":{"state":false}}
v1/devices/me/rpc/request/0 {"method":"setValveState","params":{"state":true}}
v1/devices/me/rpc/request/8 {"method":"setValveState","params":{"state":true}}
v1/devices/me/rpc/request/9 {"method":"setValveState","params":{"state":true}}
v1/devices/me/rpc/request/11 {"method":"setValveState","params":{"state":true}}
v1/devices/me/rpc/request/12 {"method":"setValveState","params":{"state":true}}
v1/devices/me/rpc/request/12 {"method":"setValveState","params":{"state":true}}
v1/devices/me/rpc/request/12 {"method":"setValveState","params":{"state":true}}
v1/devices/me/rpc/request/13 {"method":"setValveState","params":{"state":true}}
v1/devices/me/rpc/request/13 {"method":"setValveState","params":{"state":true}}
v1/devices/me/rpc/request/13 {"method":"setValveState","params":{"state":true}}
```

Рисунок 10.6 – Подписка на устройство

Рисунок 10.7 – Клиентские атрибуты

Реализация второго сценария:

Строим цепочку (Рисунок 10.8).

Рисунок 10.8 - Цепочка правил

Реализуем скрипт (Рисунок 10.9).

function Transform(msg, metadata, msgType) {

Рисунок 10.9 - Скрипт

Проводим отправку и проверим получение атрибутов (Рисунок 10.10-12).

```
C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/telemetry" -u "43PIVP8iefqEzLkTA1w3" -m "{"button": 1}"

Client null sending CONNECT

Client null received CONNACK (0)

Client null sending PUBLTSH (d0, q1, r0, m1, 'v1/devices/me/telemetry', ... (11 bytes))

Client null sending DISCONNECT

C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/rc/response/0" -u "43PIVP8iefqEzLkTA1w3" -m "{"status": 1}"

Client null sending CONNECT

Client null sending PUBLTSH (d0, q1, r0, m1, 'v1/devices/me/rpc/response/0', ... (11 bytes))

Client null sending PUBLTSH (d0, q1, r0, m1, 'v1/devices/me/rpc/response/0', ... (11 bytes))

Client null sending DISCONNECT

C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/telemetry" -u "43PIVP8iefqEzLkTA1w3" -m "{"button": 0}"

Client null sending DISCONNECT

C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/telemetry" -u "43PIVP8iefqEzLkTA1w3" -m "{"button": 0}"

Client null sending CONNECT

Client null sending DISCONNECT

C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/rpc/response/0" -u "43PIVP8iefqEzLkTA1w3" -m "{"status": 0}"

Client null sending DISCONNECT

C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/rpc/response/0" -u "43PIVP8iefqEzLkTA1w3" -m "{"status": 0}"

Client null sending DISCONNECT

C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/rpc/response/0" -u "43PIVP8iefqEzLkTA1w3" -m "{"status": 0}"

Client null sending DISCONNECT

C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/rpc/response/0" -u "43PIVP8iefqEzLkTA1w3" -m "{"status": 0}"

Client null sending DISCONNECT

C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/rpc/response/0" -u "43PIVP8iefqEzLkTA1w3" -m "{"status": 0}"

Client null sending DISCONNECT
```

Рисунок 10.10 – Отправка данных

```
C:\Program Files\mosquitto>mosquitto_sub -v -h "thingsboard.mosit" -t "v1/devices/me/rpc/request/+" -u "43PIVP8iefqEzLkTA1w3"
v1/devices/me/rpc/request/0 {"method":"setValveState","params":{"state":true}}
v1/devices/me/rpc/request/1 {"method":"setValveState","params":{"state":false}}
```

Рисунок 10.11 – Подписка на устройство

Рисунок 10.12 – Клиентские атрибуты

Добавьте в цепочки правил из 10 практической работы формирование нескольких типов тревог:

- Для первой цепочки из варианта тревогу при выходе приходящего параметра за допустимые границы (границы задайте самостоятельно);
- Для второй цепочки из варианта тревогу при отсутствии ожидаемого параметра в приходящем сообщении (к примеру, в приходящем сообщении отсутствует параметр с состоянием кнопки)
- Для обеих цепочек тревога при поступлении неверного ответа от физического устройства (это может быть неверный формат или неверное значение, отличающееся от ожидаемого).

В отчет включите обновленные цепочки правил, скрипты проверок и формирования тревог, а также результаты тестирования цепочек при помощи утилит mosquitto.

Рисунок 11.1 - Условие задания

Кран

Измененная цепочка правил (Рисунок 11.2)

Рисунок 11.2 - Цепочка правил

Напишем скрипты с заданными условиями (Рисунок 11.3 — 11.4) Проведем подписку и отправим значение вне рамок - получим выход за границу (Рисунок 11.5-6):

```
1 return msg.motion < 1500 && msg.motion > 500;

Рисунок 11.3 — Первый скрипт

1 var details = {};

2 details.param_status = false;

3 return details;
```

Рисунок 11.4 - Второй скрипт

```
C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/telemetry" -u "F39JIvSM3OTqZcQ VKNc2" -m "{"motion": 1200}"
Client null sending CONNECT
Client null sending PUBLISH (d0, q1, r0, m1, 'v1/devices/me/telemetry', ... (14 bytes))
Client null received PUBACK (Mid: 1, RC:0)
Client null received PUBACK (Mid: 1, RC:0)
Client null sending DISCONNECT

C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/rpc/response/9" -u "F39JIvSM3O
TqZcQVKNc2" -m "{\"state\": false}"
Client null sending CONNECT
Client null sending CONNECT
Client null sending PUBLISH (d0, q1, r0, m1, 'v1/devices/me/rpc/response/9', ... (16 bytes))
Client null sending DISCONNECT
Client null sending DISCONNECT
```

Рисунок 11.5 - Запрос

Рисунок 11.6 - Оповещение о выходе за предельно допустимые границы Далее необходимо добавить проверку на состояние и оповещение (Рисунки 11.7 – 11.10).

```
1 var request_params = JSON.parse(metadata.ss_params);
2 return msg.state === request_params.state;
```

Рисунок 11.7 – Первый скрипт

```
1 var details = {};
2 var request_params = JSON.parse(metadata.ss_params);
3 · if (metadata.prevAlarmDetails) {
4 details = JSON.parse(metadata.prevAlarmDetails);
5 // Удаление поля prevAlarmDetails из метаданных
6 delete metadata.prevAlarmDetails;
7 // Теперь метаданные содержат только данные, которые были на входе
8 }
9 details.send_status = request_params.state;
10 details.answer_status = msg.state;
```

Рисунок 11.8 – Второй скрипт

```
C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/telemetry" -u "F39JIvSM3OTqZcQ VKNc2" -m "{"motion": 1200}"
Client null sending CONNECT
Client null received CONNACK (0)
Client null sending PUBLISH (d0, q1, r0, m1, 'v1/devices/me/telemetry', ... (14 bytes))
Client null received PUBACK (Mid: 1, RC:0)
Client null received PUBACK (Mid: 1, RC:0)
Client null sending DISCONNECT

C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/rpc/response/9" -u "F39JIvSM3O TqZcQVKNc2" -m "{\"state\": false}"
Client null sending CONNECT
Client null received CONNACK (0)
Client null received PUBACK (Mid: 1, RC:0)
Client null received PUBACK (Mid: 1, RC:0)
Client null sending DISCONNECT
```

Рисунок 11.9 – Отправленные данные

Рисунок 11.10 – Полученная ошибка

Включение и выключение диодной ленты

Измененная цепочка правил (Рисунок 11.11)

Рисунок 11.11 - Цепочка правил

Проведем подписку и отправим невалидный запрос (Рисунок 11.12-13):

```
C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/telemetry" -u "43PIVP8iefqEzLk
TA1w3" -m "{}"
Client null sending CONNECT
Client null received CONNACK (0)
Client null sending PUBLISH (d0, q1, r0, m1, 'v1/devices/me/telemetry', ... (2 bytes))
Client null received PUBACK (Mid: 1, RC:0)
Client null sending DISCONNECT
```

Рисунок 11.12 – Отправленные данные

Рисунок 11.13 - Оповещение о запросе без параметра

В случае, если все данные введены корректно, ошибку не получим (Рисунок 11.14).

Рисунок 11.14 - Отсутствие тревоги

Реализуйте отправку Email сообщений из облачной платформы при возникновении тревог на узлах, созданных в практической работе №11. В качестве SMTP сервера для пересылки сообщений предлагается использовать Yandex и Google, поскольку они были протестированы. Однако, можно использовать любой другой понравившийся сервис.

В отчет включите обновленные цепочки правил, параметры узлов пересылки сообщений, а также результаты тестирования цепочек при помощи утилит mosquito и скриншоты приходящих электронных писем.

Рисунок 12.1 - Условие и вариант работы

Для почтового сервиса выбрана Yandex почта

Изменим цепочку правил для диодной ленты (Рисунок 12.2)

Рисунок 12.2 - Цепочка правил

Произведем настройки блока to email (Рисунок 12.3)

A
toemail
Преобразование - to email
Подробности События Помошь
Troppedieth seekin remade
Hassaure *
toemail
From Template * kosgor2001@yandex.ru
Hint: use \${metadataKey} for value from metadata, \$[messageKey] for value from message body
To Template *
kosgor2001@yandex.ru
Comma separated address list, use \${metadataKey} for value from metadata, \$[messageKey] for value from message body
Cc Template
Comma separated address list, use \${netadataKey} for value from metadata.\${messageKey} for value from message body
Bcc Template
Comma separated address list, use \${metadataKey} for value from metadata, \$[messageKey] for value from message body
Subject Template *
Device alarm
Hint use \${metadataKey} for value from metadata, \$[messageKey] for value from message body
Mail body type
Plain Text
Body Template *
Device alarm
Hint: use \${metadataKey} for value from metadata.\$[messageKey] for value from message body
Описание

Рисунок 12.3 – Данные почты

Отправим данные и получим письмо на указанную в цепочке правил

почту (Рисунок 12.4-6).

```
C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/telemetry" -u "43PIVP8iefqEzLkTA1w3" -m "{"button": 0}"

Client null sending CONNECT

Client null received CONNACK (0)

Client null sending PUBLISH (d0, q1, r0, m1, 'v1/devices/me/telemetry', ... (11 bytes))

Client null sending PUBLISH (d0, q1, r0, m1, 'v1/devices/me/telemetry', ... (11 bytes))

Client null sending DISCONNECT

C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/rpc/response/7" -u "43PIVP8iefqEzLkTA1w3" -m "{\"state\": true}

"Client null sending CONNECT

Client null sending CONNACK (0)

Client null sending PUBLISH (d0, q1, r0, m1, 'v1/devices/me/rpc/response/7', ... (15 bytes))

Client null sending DISCONNECT

Client null sending DISCONNECT
```

Рисунок 12.4 - Отправка запроса

Рисунок 12.5 - Отправка письма

Изменим цепочку правил для крана (Рисунок 12.6)

Рисунок 12.6 - Цепочка правил

Произведем настройки блока to email (Рисунок 12.7)

Рисунок 12.7 – Данные почты

Отправим данные и получим письмо на указанную в цепочке правил почту (Рисунок 12.8-10).

```
C:\Program Files\mosquitto>mosquitto_pub -d -q 1 -h "thingsboard.mosit" -t "v1/devices/me/telemetry" -u "F39JIvSM3OTqZcQVKNc2" -m "{\"motion\": 400}"
Client null sending CONNECT
Client null received CONNACK (0)
Client null sending PUBLISH (d0, q1, r0, m1, 'v1/devices/me/telemetry', ... (15 bytes))
Client null received PUBACK (Mid: 1, RC:0)
Client null sending DISCONNECT
```

Рисунок 12.8 - Отправка запроса

Рисунок 12.9 - Отправка письма

вывод

В ходе выполнения практических работ 9 - 12 была изучена работа с облачными платформами ІоТ, проведено управление устройствами с помощью платформами, налажено уведомление об изменении состоянии системы. Так же написаны цепочки правил с добавлением узлом разных типов. Углублены навыки работы со стендом Wirenboard.