CAPÍTULO 1 - CAMPOS ELÉCTRICOS I

1.1. Considerem-se três cargas pontuais colocadas nos vértices de um triângulo (figura 1), com $q_1 = q_3 = 5 \mu C$, $q_2 = -2 \mu C$ (1 $\mu C = 10^{-6} C$) e a = 0.1 m. Achar a força resultante sobre q_3 .

Figura 2

1.2. Uma carga $q_1 = 7 \mu C$ está localizada na origem e uma segunda carga $q_2 = -5 \mu C$ situa-se no eixo dos x, a 0.3 m da origem. Achar o campo eléctrico no ponto P com as coordenadas (0, 0.4) m.

1.3. Um dipolo eléctrico é constituído por uma carga positiva q e por uma carga negativa -q separadas da distancia 2a, como mostra a figura 2. Achar o campo eléctrico, E, dessas cargas, sobre o eixo dos yy, no ponto P, que está à distância y da origem. Admitir que y >> a.

- **1.5.** Um electrão entra numa região onde há um campo eléctrico uniforme, E = 200 N/C, com uma velocidade $v_0 = 3 \times 10^6$ m/s (figura 4). A largura das placas é l = 0.1 m.
 - a) Achar a aceleração do electrão enquanto estiver no campo eléctrico.
 - b) Achar o tempo que o electrão gasta para atravessar a região do campo eléctrico.
 - c) Qual é o deslocamento vertical y, do electrão, no campo eléctrico?

CAPÍTULO 2 - CAMPOS ELÉCTRICOS II

2.1. Um bastão, com o comprimento l, tem uma carga positiva uniforme λ por unidade de comprimento e uma carga total Q. Calcular o campo eléctrico num ponto P sobre o eixo do bastão, a uma distância d de uma das extremidades.

- **2.2.** Um anel de raio a tem uma carga positiva uniforme, por unidade de comprimento, e carga total Q. Calcular o campo eléctrico sobre o eixo do anel, num ponto P que está à distancia x do centro do anel.
- **2.3.** Considere um prisma triangular num campo eléctrico horizontal $E = 7.8 \times 10^4 \text{ N/m}$, como mostra a fig. 5. Calcular o fluxo eléctrico através:
 - a) da face vertical à esquerda (A');
 - b) da face superior inclinada (A);
 - c) de toda a superfície prismática.

Figura 5

2.4. Uma casca esférica, delgada, de raio *a*, tem uma carga total *Q* distribuída uniformemente sobre a sua superfície (figura 6). Achar o campo eléctrico nos pontos do interior e do exterior da casca.

Figura 6

2.5. Uma esfera condutora maciça, de raio a, tem uma carga positiva líquida 2Q (figura 7). Uma casca condutora esférica, de raio interno b e raio externo c, é concêntrica a essa esfera maciça e tem a carga líquida -Q. Usando a lei de Gauss, achar o campo eléctrico nas regiões identificadas por 1, 2, 3 e 4, e também a distribuição de cargas na casca esférica.

- **2.6.** Considere uma distribuição de cargas, comprida e cilíndrica com raio R, com uma densidade de carga uniforme ρ . Achar o campo eléctrico à distância r do eixo, com r < R.
- 2.7. Uma barra metálica, rectilínea, comprida, tem de raio 5 cm e 30 nC/m de carga por unidade de comprimento.
 Achar o campo eléctrico às seguintes distâncias em relação ao eixo da vara: a) 3 cm
 - b) 10 cm
 - c) 100 cm.

CAPÍTULO 3 - POTENCIAL ELÉCTRICO

- **3.1.** Um protão é libertado do repouso num campo eléctrico uniforme de 8×10^4 V/m paralelo ao eixo dos xx positivos (figura 8). O protão desloca-se 0.5 m na direcção do campo $E(m_p = 1.67\times10^{-27} \text{ kg})$.
 - a) Achar a variação do potencial eléctrico entre os pontos A e B.
 - b) Achar a variação da energia potencial do protão nesse deslocamento.
 - c) Achar a velocidade do protão depois de ter percorrido, a partir do repouso, a distância de 0.5 m.

- 3.2. Uma carga pontual de 5 μC está localizada na origem e uma segunda carga pontual de –2 μC está sobre o eixo dos xx, na posição (3, 0) m (figura 9).
 - a) Se o potencial for nulo no infinito, achar o potencial eléctrico no ponto P, de coordenadas (0, 4) m, devido às duas cargas.
 - b) Qual é o trabalho necessário para trazer uma terceira carga pontual de 4 μC, do infinito até o ponto P?
 - c) Achar a energia potencial do sistema das três cargas com a configuração da figura 10.

- **3.3.** Achar o potencial eléctrico no ponto P (figura 11) sobre o eixo de um anel uniformemente carregado, de raio a e carga total Q. O plano do anel é perpendicular ao eixo dos xx. Achar também o campo eléctrico em P. Qual é o potencial eléctrico no centro do anel uniformemente carregado? Como é que o valor do campo eléctrico no centro do anel está relacionado com este resultado?
- **3.4.** Achar o potencial eléctrico sobre o eixo de um disco uniformemente carregado, com raio e carga por unidade de área igual a σ .
- **3.5.** Um bastão de comprimento *l*, localizado sobre o eixo dos *xx*, está carregado uniformemente e tem carga total *Q*. Achar o potencial eléctrico num ponto P sobre o eixo dos *yy*, a uma distância *d* da origem (figura 12).

Figura 12

- **3.6.** Uma esfera isoladora, maciça, de raio R, tem uma densidade de carga positiva e uniforme, e carga total Q.
 - a) Achar o potencial eléctrico num ponto fora da esfera (r > R). Tomar como nulo o potencial em $r = \infty$.
 - b) Achar o potencial num ponto no interior da esfera carregada (r < R).
 - c) Qual é o campo eléctrico no centro de uma esfera uniformemente carregada? Qual é o potencial eléctrico nesse ponto?
- 3.7. Usar a função potencial de uma carga pontual q para deduzir o campo eléctrico a uma distância r da carga.
- 3.8. Um dipolo eléctrico é constituído por duas cargas iguais e opostas, separadas pela distância 2a (figura 13). Calcular o potencial eléctrico e o campo eléctrico no ponto P sobre o eixo dos xx, a uma distância x do centro do dipolo.

CAPÍTULO 4 - CAPACIDADE E DIELÉCTRICOS

- **4.1.** Uma esfera condutora, carregada, isolada, com raio de 12 cm, origina um campo eléctrico de 4.9×10⁴ N/C a 21 cm de distância do seu centro.
 - a) Qual é a densidade de carga superficial?
 - b) Qual é a sua capacidade?
- 3 μF 4.2. a) Determinar a capacidade equivalente do circuito de condensadores da figura 14. Figura 14
 - b) Se esse circuito for ligado a uma bateria de 12 V, calcular a diferença de potencial em cada condensador e a carga em cada condensador.
- **4.3.** Um condutor cilíndrico, de raio a e carga +Q, é coaxial a uma casca cilíndrica maior, com raio b e carga -Q. Achar a capacidade desse condensador cilíndrico, sendo o seu comprimento l.
- **4.4.** Um condensador esférico é constituído por uma casca esférica, de raio b e carga -Q, concêntrica com uma esfera condutora menor, de raio a e carga +Q. Achar a capacidade desse condensador.
- **4.5.** Achar a capacidade equivalente entre $a \in b$, no circuito de condensadores que aparece na figura 15. Os números são as capacidades dos condensadores, em µF.

- **4.6.** Dois condensadores C_1 e C_2 (com $C_1 > C_2$) são carregados até à mesma diferença de potencial, V_0 , porém com polaridades opostas. Os condensadores carregados são desligados da bateria, e as placas são ligadas, como mostra a figura 16. Fecham-se, então, os interruptores S₁ e S₂, como na figura 17.
 - a) Achar a diferença de potencial entre a e b, depois dos interruptores terem sido fechados.
 - b) Achar a energia total armazenada nos condensadores antes e depois dos interruptores terem sido fechados.

- **4.7.** Um condensador de placas paralelas tem como dimensões 2 cm \times 3 cm. As placas estão separadas por uma folha de papel de 1 mm de espessura ($\kappa = 3.7$ para o papel).
 - a) Achar a capacidade desse dispositivo.
 - b) Qual é a carga máxima que pode ser colocada no condensador.
 - c) Qual é a energia máxima que pode ser armazenada no condensador.
- 4.8. Um condensador de placas planas e paralelas é carregado por uma bateria até à carga Q₀ (figura 18). Remove-se a bateria e uma chapa de dieléctrico, com constante dieléctrica κ, é inserida entre as placas (figura 19). Calcular a energia armazenada no condensador antes e depois da inserção do dieléctrico.

4.9. Um condensador de placas paralelas tem separação entre as placas igual a *d* e área das placas igual a *A*. Uma chapa metálica descarregada, de espessura *a*, é inserida no meio das placas, como mostra a figura 20. Achar a capacidade dessa montagem.

CAPÍTULO 5 - CORRENTES E RESISTÊNCIA

5.1. Um fio de cobre, com área de secção recta 3×10^{-6} m², é percorrido por uma corrente de 10 A. Achar a velocidade de deriva dos electrões no fio. A densidade do cobre é 8.95 g/cm³. O peso atómico do cobre é 53.5 g/mol. Um átomo-grama de um elemento contém 6.02×10^{23} átomos.

- **5.2.** Calcular a resistência de um condutor de alumínio, com 10 cm de comprimento e área da secção recta de 10^{-4} m². Repetir o cálculo para um bastão de vidro, com as mesmas dimensões e com resistividade de 10^{10} Ω .
- **5.3.** a) Calcular a resistência, por unidade de comprimento, de um fio de nicrome, calibre 22, com raio de 0.321 mm. Resistividade do nicrome: $1.5 \times 10^{-6} \Omega m$.
 - b) Mantendo-se uma diferença de potencial de 10 V entre as extremidades num metro desse fio de nicrome, que corrente passará pelo fio?
 - c) Qual a resistência de 6 m de um fio de nicrome, calibre 22? Que corrente conduzirá quando ligado a uma fonte de 120 V?
 - d) Calcular a densidade de corrente e o campo elétrico no fio, admitindo que a corrente conduzida seja de 2.2 A.
- **5.4.** Um termómetro de resistência de platina, tem a resistência de 50 Ω a 20 °C. Quando imerso num vaso com índio fundido, a sua resistência aumenta para 76.8 Ω . Usando essa informação, achar o ponto de fusão do índio. Para a platina, $\alpha = 3.92 \times 10^{-3} \text{ C}^{-1}$.
- **5.5.** a) Com os dados e os resultados do problema 5.1, e com o modelo clássico da condução pelos electrões, estimar o tempo médio entre colisões sucessivas dos electrões no cobre, a 20 °C.
 - b) Admitindo-se que a velocidade térmica média dos electrões no cobre seja 1.6×10⁶ m/s, e com o resultado de a), calcular o livre percurso médio dos electrões no cobre.
- **5.6.** Um aquecedor eléctrico opera mediante a aplicação de uma diferença de potencial de 110 V a um fio de nicrome cuja resistência é 8 Ω. Achar a corrente que percorre o fio e a potência nominal do aquecedor.
- **5.7.** Uma lâmpada tem 120 V/75 W. Isso quer dizer que a voltagem de operação é de 120 V, e a potência nominal de 75 W. A lâmpada é alimentada por uma fonte de potência de 120 V, em corrente contínua.
 - a) Achar a corrente na lâmpada e a sua resistência.
 - b) Qual seria a resistência de uma lâmpada de 120 V e 100 W.

CAPÍTULO 6 - CIRCUITOS DE CORRENTE CONTÍNUA

- **6.1.** Uma bateria tem uma fem de 12 V e uma resistência interna de $0.05~\Omega$. Os seus terminais estão ligados a uma resistência de carga de 3 Ω .
 - a) Achar a corrente no circuito e a voltagem entre os terminais da bateria.
 - b) Calcular a potência dissipada na resistência de carga, a potência dissipada na resistência interna da bateria e a
 potência debitada pela bateria.
- **6.2.** Quatro resistências estão ligadas como mostra a figura 21.
 - a) Achar a resistência equivalente entre a e c.
 - b) Qual é a corrente, em cada resistência, se a diferença de potencial entre a e c for constante e igual a 42 V?

- 6.3. Três resistências estão ligadas em paralelo, como na figura 22. Uma diferença de potencial de 18 V é mantida entre os pontos a e b.
 - a) Achar a corrente em cada resistência.
 - b) Calcular a potência dissipada em cada resistência e a potência total dissipada nas três resistências.
 - c) Calcular a resistência equivalente das três resistências e, a partir do resultado, achar a potência total dissipada.

Figura 22

- 6.4. Um circuito, de uma malha, tem duas resistências e duas fontes de fem, conforme mostra a figura 23. As resistências internas das baterias foram desprezadas.
 - a) Achar a corrente no circuito.
 - b) Qual é a potência dissipada em cada resistência

Figura 23

6.5. Achar as correntes I₁, I₂, e I₃, no circuito da figura 24. Achar a diferença de potencial entre os pontos b e c.

18 V

- 6.6. O circuito de várias malhas (figura 25) tem três resistências, três baterias e um condensador.
 - a) Achar as correntes desconhecidas quando o circuito está em estado estacionário.
 - b) Qual é a carga no condensador?
- 6.7. Um condensador descarregado e uma resistência são ligados em série a uma bateria. Se ε = 12V, C = 5 μ F e R = 8×10⁵ Ω, achar a constante de tempo do circuito, a carga máxima no condensador, a corrente máxima no circuito e a carga do condensador e a corrente no circuito em função do tempo.

- **6.8.** Imagine um condensador C sendo descarregado através de um resistência R.
 - a) Depois de quantas constantes de tempo a carga do condensador terá caído para um quarto do seu valor inicial?
 - b) A energia do condensador diminui com o tempo, à medida que o condensador se descarrega. Depois de quantas constantes de tempo a energia no condensador se terá reduzido a um quarto do seu valor inicial?

CAPÍTULO 7 - CAMPOS MAGNÉTICOS

- **7.1.** Um protão move-se perpendicularmente a um campo magnético uniforme **B**, com a velocidade de 10⁷ m/s, e sofre uma aceleração de 2×10¹³ m/s², na direcção +x, quando a sua velocidade é na direcção +z. Determinar o módulo e a direcção do campo.
- **7.2.** Um protão move-se com uma velocidade de 8×10⁶ m/s, sobre o eixo dos x. Entra então numa região onde há um campo magnético de 2.5 T, cuja direcção faz um ângulo de 60° com o eixo dos x e no plano xy. Calcular a força magnética inicial sobre o protão e a aceleração inicial do protão.
- **7.3.** Um fio condutor, curvado na forma de um semicírculo de raio *R*, forma um circuito fechado e é percorrido por uma corrente *I*. O circuito está no plano *xy* e um campo magnético uniforme está presente orientado na direcção dos *yy* positivos (figura 26). Achar as forças magnéticas sobre a parte rectilínea do condutor e sobre a parte curva.

Figura 26

7.4. Um condutor rectilíneo está pendurado por dois fios condutores flexíveis, como mostra a Figura 27, e tem uma massa por unidade de comprimento de 0.04 kg/m. Qual deve ser a corrente no condutor para que a tensão nos fios do pendural seja nula, quando o campo magnético for de 3.6 T e estiver dirigido para trás do plano do papel? Qual é a direcção da corrente?

- **7.5.** Um fio condutor, com a massa de 0.5 g/cm, conduz uma corrente de 2 A, horizontalmente, para o sul. Qual é a direcção e qual é o módulo do campo magnético mínimo capaz de erguer, verticalmente, esse condutor.
- **7.6.** Uma corrente de 17 mA circula numa espira circular com 2 m de circunferência. Um campo magnético externo de 0.8 T está dirigido paralelamente ao plano da espira.
 - a) Calcular o momento magnético da espira de corrente.
 - b) Qual é o módulo do momento das forças que o campo magnético exerce sobre a espira?

- 7.7. Um fio condutor forma um círculo de 10 cm de diâmetro, e está num campo magnético uniforme de 3×10^{-3} T. Uma corrente de 5 A passa pelo fio. Achar:
 - a) o momento de forças máximo que pode actuar sobre a espira de corrente.
 - b) a faixa de energia potencial que a espira pode ter, com diferentes orientações.
- **7.8.** O campo magnético terrestre, num certo ponto, tem uma componente vertical, para baixo, de 0.5×10^{-4} T. Um protão entra, com movimento horizontal para oeste, nesse campo com a velocidade de 6.2×10^6 m/s.
 - a) Qual é a direcção e qual é o módulo da força magnética que o campo exerce sobre essa carga?
 - b) Qual é o raio do arco de circunferência descrito pelo protão?
- **7.9.** Um ião positivo monovalente tem a massa de 3.2×10⁻²⁶ kg. Depois de ser acelerado por uma diferença de potencial de 833 V, o ião entra num campo magnético de 0.92 T, ao longo de uma direcção perpendicular à direcção do campo eléctrico. Calcular o raio da trajectória do ião no campo magnético.
- **7.10.** Um protão de um raio cósmico, no espaço sideral, tem a energia de 10 MeV, e efectua uma órbita circular, com o raio igual ao da órbita de Mercúrio em torno ao Sol (5.8×10¹⁰ m). Qual é o campo magnético galáctico nessa região do espaço?

CAPÍTULO 8 - FONTES DO CAMPO MAGNÉTICO

8.1. Imaginemos um fio rectilíneo, delgado, com uma corrente constante *I*, esticado ao longo do eixo dos *xx*, como mostra a Figura 28. Calcular o campo magnético total num ponto P, à distância *a* do fio.

8.2. Calcular o campo magnético no ponto *O* da espira de corrente que aparece na figura 29. A espira é constituída por dois segmentos rectilíneos e por um arco de circunferência de raio *R*, que subentende um ângulo θ, no centro do arco. Podem ignorar-se as contribuições da corrente nos pequeninos arcos vizinhos a *O*.

8.3. Considere uma espira circular com o raio *R*, localizada no plano *yz*, com uma corrente constante *I*, como mostra a figura 30. Calcular o campo magnético num ponto axial *P*, à distância *x* do centro da espira.

8.4. Um fio rectilíneo, comprido, de raio R, tem uma corrente constante I_0 uniformemente distribuída pela secção recta do fio (Figura 31). Calcular o campo magnético a uma distância r do eixo do fio nas regiões $r \ge R$ e r < R.

8.5. Uma bobina toroidal é constituída por *N* espiras de fio enroladas em torno de um toro (figura 32). Admitindo que as espiras sejam muito cerradas, calcular o campo magnético no interior da bobina, a uma distância *r* do seu centro.

- **8.6.** Uma folha condutora plana, infinita, no plano yz, tem uma densidade de corrente \mathbf{J}_s . A corrente está na direcção y e J_s representa a corrente por unidade de comprimento, medida ao longo do eixo dos z. Achar o campo magnético nas vizinhanças desta corrente plana.
- 8.7. Um fio condutor rectilíneo, comprido, está orientado sobre o eixo dos yy, e tem uma corrente constante I1, como mostra a figura 33. Um circuito rectangular, localizado à direita do fio, tem uma corrente I2. Achar a força magnética sobre o segmento horizontal superior do circuito, que se situa entre x = a e x = a + b.

8.8. Uma espira rectangular, de largura *a* e comprimento *b*, está localizada a uma distância *c* de um fio condutor comprido, que transporta uma corrente *I* (figura 34). O fio é paralelo ao lado maior da espira. Achar o fluxo magnético total através da área limitada pela espira.

Figura 34

8.9. Uma bobina toroidal, com uma corrente de 5 A, tem 60 espiras/m de fio. O núcleo da bobina é de ferro com uma permeabilidade magnética de 5000μ₀. Achar *H* e *B* no interior do núcleo de ferro.

CAPÍTULO 9 - A LEI DE FARADAY

- 9.1. Uma bobina com 200 espiras de fio condutor está enrolada à volta da periferia de um quadro com 18 cm de lado. Cada espira tem a mesma área, igual à área do quadro, e a resistência total da bobina é 2 Ω . Um campo magnético é aplicado perpendicularmente ao plano da bobina. Se o campo varia linearmente, de 0 até 0.5 Wb/m² num intervalo de tempo de 0.8 s, achar o módulo da fem induzida na bobina enquanto o campo estiver a variar.
- 9.2. Uma espira plana, de area A, está numa região onde há um campo magnético perpendicular ao plano da espira. O módulo de **B** varia com o tempo de acordo com a expressão $B = B_0.e^{-at}$. Isto é, em t = 0 o campo é B_0 e, em t > 00, o campo decai exponencialmente com o tempo. Achar a fem induzida na espira, em função do tempo.
- **9.3.** Uma barra condutora, de comprimento l, gira com a velocidade angular constante ω em torno de um eixo que passa por uma das suas extremidades. Um campo magnético uniforme B está dirigido perpendicularmente ao plano de rotação da barra (figura 35). Achar a fem induzida entre as extremidades da barra.

Figura 35

9.4. Uma barra, de massa m e comprimento l, desliza sobre dois trilhos paralelos, sem atrito, na presença de um campo magnético uniforme, dirigido perpendicularmente da frente para o verso da página (figura 36). A barra recebe uma velocidade inicial para a direita, \mathbf{v}_0 , e depois fica livre. Achar a velocidade da barra em função do tempo.

Figura 36

9.5. Na montagem que aparece na figura 37, a barra condutora move-se para a direita, sobre trilhos condutores, paralelos, sem atrito, ligados, numa ponta, a uma resistência de 6 Ω. Um campo magnético de 2.5 T dirige-se da frente para o verso da página. Seja l = 1.2 m e despreze-se a massa da barra.

- a) Calcular a força aplicada necessária para deslocar a barra para a direita, com a velocidade constante de 2 m/s.
- b) Qual é a taxa de dissipação de energia na resistência?
- 9.6. Uma espira rectangular, de dimensões l e w e de resistência R, desloca-se com velocidade constante v para a direita, como está na figura 38. A espira continua a mover-se com esta velocidade através de uma região onde há um campo magnético uniforme B dirigido perpendicularmente à página, da frente para o verso, e cobrindo uma distância 3w. Traçar o gráfico do fluxo, da fem induzida e da força externa que actua sobre a espira, em função da posição da espira no campo.

Figura 38

- **9.7.** Uma espira rectangular, de massa M, resistência R e dimensões w por l, cai num campo magnético \mathbf{B} , como mostra a figura 39. A espira acelera até atingir uma velocidade terminal, \mathbf{v}_t .
 - a) Mostrar que $v_t = (MgR)/(B^2w^2)$.
 - b) Por que é que v_t é proporcional a R?
 - c) Por que é que é inversamente proporcional a B^2 ?

Figura 39

- 9.8. Um fio metálico, de 0.15 kg, está dobrado em forma de rectângulo fechado de 1 m de largura e 1.5 m de comprimento, com a resistência total de 0.75 Ω. O rectângulo cai através de um campo magnético dirigido perpendicularmente à direcção do movimento do rectângulo metálico (figura 39). O rectângulo é acelerado para baixo até adquirir uma velocidade constante de 2 m/s, quando o topo do rectângulo ainda não entrou no campo. Calcular o módulo de B.
- 9.9. Um solenóide comprido, de raio R, tem n espiras por unidade de comprimento e conduz uma corrente variável sinusoidalmente no tempo, de acordo com $I = I_0 \cos \omega t$, onde I_0 é a corrente máxima e ω é a frequência angular da fonte de corrente (figura 40).
 - a) Determinar o campo eléctrico no exterior do solenóide, a uma distância *R* do seu eixo.
 - b) Qual é o campo eléctrico no interior do solenóide, a uma distância r do seu eixo?

CAPÍTULO 10 - CIRCUITOS DE CORRENTE ALTERNADA

Admitir que todas as voltagens alternadas e todas as correntes alternadas são sinusoidais.

- 10.1. Uma fonte de potência alternada tem uma voltagem de pico $V_m = 100 \text{ V}$. Esta fonte está ligada a uma resistência de 24 Ω , e a corrente no circuito e a voltagem na resistência são medidas por um amperímetro e por um voltímetro ideais, ambos de corrente alternada. Qual é a leitura de cada instrumento?
- 10.2. Uma bobina está ligada a uma fonte de tensão de 20 Hz que tem uma voltagem média quadrática de 50 V. Qual é a indutância necessária para manter a corrente instantânea no circuito abaixo de 80 mA?
- 10.3. a) Em que frequências lineares um condensador de 22 μ F tem reactância abaixo de 175 Ω ?
 - b) Nesta faixa de frequências, qual seria a reactância de um condensador de 44 μF?
- 10.4. Uma voltagem sinusoidal $v(t) = V_m \cdot \cos\omega t$ é aplicada a um condensador.
 - a) Dar a expressão da carga instantânea no condensador em termos de V_m , C, t e ω .
 - b) Qual é a corrente instantânea no circuito?
- 10.5. Um circuito alternado montado em série tem os seguintes componentes: $R = 150~\Omega, L = 250~mH, C = 2~\mu F$ e um gerador que opera a 50 Hz com $V_m = 210~V$. Calcular:

- a) a impedância (reactância) indutiva;
- b) a impedância (reactância) capacitiva;
- c) a impedância total do circuito;
- d) a corrente de pico;
- e) o ângulo de fase.
- 10.6. Um resistência ($R = 900~\Omega$), um condensador ($C = 0.25~\mu F$) e um indutor (L = 2.5~H) estão ligados em série a uma fonte de AC de 240 Hz, com $V_m = 140~V$. Calcular:
 - a) a impedância do circuito
 - b) a corrente máxima proporcionada pela fonte
 - c) o ângulo de fase entre a corrente e a voltagem
 - d) A corrente precede ou segue a voltagem?
- 10.7. Uma fonte de AC, com $V_m = 150$ V e f = 50 Hz, está ligada entre os pontos a e d da fig. 26. Calcular as voltagens máximas entre os pontos: $a \qquad b \qquad c$
 - a) a e b
- b) bec
- c) c e d
- d) b e d.

- 10.8. Uma voltagem alternada, com amplitude de 100 V, é aplicada a uma combinação de um condensador de 200μF, uma bobina de 100 mH e um resistência de 20 Ω, em série. Calcular a dissipação de potência e o factor de potência quando a frequência for:
 - a) 60 Hz
- b) 50 Hz.
- 10.9. Um circuito RLC em série tem os seguintes parâmetros: L = 20 mH, C = 100 nF, R = 20 Ω e V = 100 V, com v
 - = V.senωt. Achar:
 - a) a frequência de ressonância
 - b) a amplitude da corrente na frequência de ressonância
 - c) o Q do circuito
 - d) a amplitude da voltagem na bobina, na ressonância.

SOLUÇÕES

1.1.
$$\vec{F}_3 = -1.1\hat{i} + 7.9\hat{j}$$
; 8.0 N, 98°

1.2.
$$\vec{E} = 1.1 \times 10^5 \,\hat{i} + 2.5 \times 10^5 \,\hat{j}$$
; $2.7 \times 10^5 \,\text{N/C}$, 66°

1.3.
$$\vec{E} = k \frac{2qa}{(y^2 + a^2)^{3/2}} \hat{i}$$

1.4.
$$x = 0.775$$
 m

1.5. a)
$$\vec{a} = -3.51 \times 10^{13} \hat{j} \text{ (m/s}^2)$$
; b) $3.33 \times 10^{-8} \text{ s}$; c) -1.95 cm

2.1.
$$E = \frac{kQ}{d(l+d)}$$

2.2.
$$E_x = \frac{kx}{(x^2 + a^2)^{3/2}}Q$$

2.3. a) $-2340 \text{ N.m}^2/\text{C}$; b) $+2340 \text{ N.m}^2/\text{C}$; c) 0

2.4.
$$E = \begin{cases} 0, & r < a \\ kQ/r^2, & r > a \end{cases}$$

2.5.
$$E_1 = E_3 = 0$$
, $E_2 = 2kQ/r^2$, $E_4 = kQ/r^2$

2.6.
$$E = \rho . r / (2 \varepsilon_0)$$

2.7. a) 0; b) 5400 N/C; c) 540 N/C

3.1. a)
$$-4 \times 10^4$$
 V; b) -6.4×10^{-15} J; c) 2.77×10^6 m/s

3.2. a)
$$7.65 \times 10^3$$
 V; b) 3.06×10^{-2} J; c) 6.0×10^{-4} J

3.3.
$$V = \frac{kQ}{\sqrt{x^2 + a^2}}$$
; $E_x = -\frac{dV}{dx} = \frac{kQx}{\left(x^2 + a^2\right)^{3/2}}$

3.4.
$$V = 2 \cdot \pi \cdot k \cdot \sigma \cdot \int (x^2 + a^2)^{1/2} - x dx$$

3.5.
$$V = \frac{kQ}{l} \ln \left(\frac{l + \sqrt{l^2 + d^2}}{d} \right)$$

3.6. a)
$$V = kQ/r$$
; b) $V = \frac{kQ}{2R} \left(3 - \frac{r^2}{R^2} \right)$;
c) E = 0, $V_0 = 3kQ/(2R)$

3.7.

3.8.
$$V = \frac{2kqa}{x^2 - a^2} \approx \frac{2kqa}{x^2} (x >> a), E = \frac{4kqa}{x^3} (x >> a)$$

4.1. a) 1.33 μ C/m²; b) 13.3 pF

4.2. a) 4
$$\mu$$
F; b) $Q_2 = 24 \mu$ C, $Q_3 = Q_6 = 24 \mu$ C, $V_2 = 12$
V, $V_3 = 4$ V, $V_6 = 4$ V

4.3.
$$C = \frac{l}{2k \cdot \ln(b/a)}$$

4.4.
$$C = \frac{Qb}{k(b-a)}$$

4.5. 6 μF

4.6. a)
$$V = \frac{(C_1 - C_2)}{(C_1 + C_2)} V_0$$
; b) $\frac{1}{2} (C_1 + C_2) V_0^2$ (antes)

$$\frac{1}{2} \left(C_1 + C_2 \right) \left(\frac{C_1 - C_2}{C_1 + C_2} \right)^2 V_0^2 \text{ (depois)}$$

4.7. a) 19.6 μ F; b) 0.31 μ C; c) 2.5×10⁻³ J

4.8.
$$U_0 = \frac{Q_0^2}{2C_0}$$
, $U = U_0/2$

4.9.
$$\varepsilon_0 . A/(d - a)$$

5.2.
$$R_{Al} = 2.82 \times 10^{-5} \Omega$$
, $R_{vidro} = 10^{13} \Omega$

5.3. a) 4.6 Ω /m; b) 2.2 A; c)= 28 Ω , 4.3 A; d) 6.7×10⁻⁶ A/m², 10N/C

5.4. 157 °C

5.5. a) 2.5×10^{-14} s; b) 40 nm

5.6. 13.8 A

5.7. a) 0.625 A, 192 Ω ; b) 144 Ω

6.1. a) 3.93 A, 11.8 V; b) 46.3 W, 0.772 W, $P_T = 47.1$ W

6.2. a) 14
$$\Omega$$
; b) $I_1 = 1$ A, $I_2 = 2$ A, $I_3 = 3$ A

6.3. a)
$$I_1 = 6$$
 A, $I_2 = 3$ A, $I_3 = 2$ A; b) $P_1 = 108$ W, $P_2 = 54$ W, $P_3 = 36$ W; c) $18/11$ Ω , $P = 198$ W

6.4. a)
$$1/3$$
 A; b) $P_1 = 8/9$ W, $P_2 = 10/9$ W, $P_T = 2$ W

6.5.
$$I_1 = 2 A$$
, $I_2 = -3 A$, $I_3 = -1 A$, $V_{bc} = 2 V$

6.6. a)
$$I_1 = 1.38 \text{ A}$$
, $I_2 = -4/11 \text{ A}$, $I_3 = 1.02 \text{ A}$; b) 66 μ C

6.7.
$$\tau = 4$$
 s, $Q_{m\acute{a}x} = 60$ µC, $I_0 = 15$ µA, $Q(t) = 60(1-e^{-t/4})$, $I(t) = 15.e^{-t/4}$.

6.8. a)
$$t = 1.39\tau$$
; b) $t = 0.693\tau$.

7.1.
$$\vec{B} = -2.09 \times 10^{-2} \hat{j}(T)$$

7.2.
$$\vec{F} = 2.77 \times 10^{-12} \hat{k}(N)$$
; $\vec{a} = 1.66 \times 10^{15} \hat{k}(m/s^2)$

7.3. Recta: $\vec{F} = 2IRB\hat{k}$; Curva: $\vec{F} = -2IRB\hat{k}$

7.4. I = 0.109 A para a direita.

7.5. B = 0.245 T para a direita

7.6. a) 5.41×10^{-3} A..m²; b) M = 4.33×10^{-3} N.m

7.7. a) 118 μN.m; b) 236 μJ

7.8. a) $F = 4.97 \times 10^{-17} \text{ N para sul; b) } r = 1.29 \times 10^3 \text{ m.}$

7.9. R = 1.98 cm

7.10. 7.88×10⁻¹² T.

8.1.
$$B = \frac{\mu_0 I}{2\pi a}$$

8.2.
$$B = \frac{\mu_0 I}{8R}$$

8.3.
$$B_x = \frac{\mu_0 I R^2}{2(x^2 + R^2)^{3/2}}$$

8.4.
$$B = \frac{\mu_0 I_0}{2\pi R^2} r$$
, $r < R$; $B = \frac{\mu_0 I}{2\pi r}$, $r \ge R$.

8.5.
$$B_{\perp} = \frac{\mu_0 NI}{2\pi r}$$

8.6.
$$B = \frac{\mu_0 I_s}{2}$$

8.7.
$$\vec{F} = \frac{\mu_0 I_1 I_2}{2\pi} \ln \left(1 + \frac{b}{a} \right) \hat{j}$$

8.8.
$$\phi_m = \frac{\mu_0 Ib}{2\pi} \ln \left(\frac{a+c}{c} \right) \hat{j}$$

8.9. B = 1.88 T; H = 300 A.espiras/m

9.1.
$$\varepsilon = 4.05 \text{ V}$$

9.2.
$$\varepsilon = a.A.B_0.e^{-at}$$
.

9.3.
$$\varepsilon = B.\omega . l^2/2$$

9.4.
$$V = V_0 \cdot e^{-t/\tau}$$
.

9.5. a) 3.01 N; b)
$$P = 6.0 \text{ W}$$

9.6.

9.7.

9.8. 0.742 T

9.9.

10.1. $V_{rms} = 70.7 \text{ V}, I_{rms} = 2.95 \text{ A}$

10.2. L ≥ 7.03 H

10.3. a) f > 41.3 Hz; b) $X_C < 87.5 \Omega$.

10.4. a) $q(t) = CV_m \cdot cos(\omega t)$; b) $i(t) = -\omega CV_m \cdot sen(\omega t)$

10.5. a)
$$X_L = 78.5 \ \Omega$$
; b) $X_C = 1.59 \times 10^3 \ \Omega$; c) $Z = 1.59 \times 10^3 \ \Omega$; d) $I_m = 0.138 \ A$; e) $\phi = -84.3^\circ$

10.6. a) $Z = 1.435 \text{ k}\Omega$; b) $I_m = 97.6 \text{ mA}$; c) 51.2° ; d) A corrente segue a voltagem

10.7. a)
$$V_R = 146 \text{ V}$$
; b) $V_L = 213 \text{ V}$; c) $V_C = 179 \text{ V}$; d) $V_L - V_C = 33.3 \text{ V}$

10.8. a)
$$P_{med} = 100.3 \text{ W}$$
, $cos\phi = 0.633$; b) $P_{med} = 156.0$ W, $cos\phi = 0.790$

10.9. a) 3.56 kHz; b)
$$I_m = 5.00$$
 A; c) 22.4; d) $V_L = 2240$