3. In MKS units, choose $k = Mo/4\pi$ valuer than $k = \frac{1}{c}(CGS)$, so the MKS formulas for B are gotten by replacing $\frac{1}{c}(L_{MKS}) = \frac{1}{c}(2I/r)[CGS] \rightarrow \frac{\mu_0}{4\pi}(2I/r) = \mu_0 I/2\pi r [MKS]$.

3) Eq. (11) [~ Amperés Taw] shows how a source Idl generates a magnetic field dB, but we still need to know how Idl complex to an already existing field B. Answer is ... | dF f I

$$dF = \frac{1}{c} I(d1 \times B) [Corentz' Caw].$$
 (13)

I is due to the motion of a single charge Δq , then Idl=(Δq) V, and : $\Delta F = (\Delta q/c) V \times IB$, which is Torentz' Law.

 $d^2 F_{2m1} = \frac{1}{c} I_1 (d I_1 \times d B_2)$

i.e./
$$d^2 \mathbf{F}_{21} = \frac{\mathbf{I}_1 \mathbf{I}_2}{c^2} \left[\frac{d \mathbf{I}_1 \times (d \mathbf{I}_2 \times \mathbf{F}_{21})}{\tau_{21}^3} \right]$$

$$\xrightarrow{\alpha_{4/}} d^2 F_{21} = \frac{I_1 I_1}{c^2 \gamma_{21}^2} \left[(d \mathbf{l}_1 \cdot \hat{\mathbf{r}}_{21}) d \mathbf{l}_2 - (d \mathbf{l}_1 \cdot d \mathbf{l}_2) \hat{\mathbf{r}}_{21} \right]. \tag{14}$$

This is the force by Irda on Irda. Reversing the voles ...

$$d^{2}\mathbf{F}_{12} = \frac{\mathbf{I}_{2}\mathbf{I}_{1}}{c^{2}\gamma_{12}^{2}} \left[(d\mathbf{I}_{2} \cdot \hat{\mathbf{r}}_{12}) d\mathbf{I}_{1} - (d\mathbf{I}_{2} \cdot d\mathbf{I}_{1}) \hat{\mathbf{r}}_{12} \right] \int_{\gamma_{12} = \gamma_{21}}^{\hat{\gamma}_{12}} \left[(d\mathbf{I}_{2} \cdot \hat{\mathbf{r}}_{12}) d\mathbf{I}_{1} - (d\mathbf{I}_{2} \cdot d\mathbf{I}_{1}) \hat{\mathbf{r}}_{12} \right]$$

$$\int_{0}^{\infty} \left[d^{2} \mathbf{F}_{11} + d^{2} \mathbf{F}_{21} = \frac{\mathbf{I}_{1} \mathbf{I}_{2}}{c^{2} \gamma_{21}^{2}} \left[(d \mathbf{1}_{1} \cdot \hat{\gamma}_{21}) d \mathbf{1}_{2} - (d \mathbf{1}_{2} \cdot \hat{\gamma}_{21}) d \mathbf{1}_{1} \right] + 0 \right] (15)$$

A seeming Disaster in by Newton III, should have: d2 Frz + d2 Frz = 0. What has been left out is that both Ik d1k are parts of current loops.

Magneto statics (cont'd)

1) What must be done to recover from this disaster is to include the loops...

$$dF_{21} = \frac{1}{c} I_1 (dI_1 \times B_2),$$

We Bz = $\frac{I_z}{c} \oint \frac{d\mathbf{l}_2 \times \hat{\mathbf{r}}_{21}}{r_{21}^2} \int \frac{\text{loop # z at site of } I_1 d\mathbf{l}_1.$

Entire force by loop # 1 } F_{2m1} = \(\phi \) dF_{21} = \(\frac{\text{I_1 I_2}}{c^2} \phi \) \(\phi \) \(\frac{1}{\gamma_{21}^2} \) d\(\text{I_1} \times \frac{\text{I_2}}{\gamma_{21}^2} \)

$$\mathbb{F}_{2\text{oni}} = \frac{\mathbb{I}_{1}\mathbb{I}_{2}}{c^{2}} \oint \oint \frac{1}{\gamma_{21}^{2}} \left[\left(\frac{d\mathbb{I}_{1} \cdot \hat{\gamma}_{21}}{r_{21}} \right) d\mathbb{I}_{2} - \left(d\mathbb{I}_{1} \cdot d\mathbb{I}_{2} \right) \hat{\gamma}_{21} \right]. \tag{17}$$
Contributes zero on integration

The indicated term contributes zero because it is $\alpha \oint dR_2 \oint dR_1 \cdot \frac{r_{21}}{r_{21}^2}$, and the $\alpha \oint dr \cdot \frac{r}{r^3} = \frac{1}{2} \oint \frac{dr}{r^2} = -\frac{1}{2} \oint d(1/r) = 0$. The total force law is then...

$$F_{2m1} = (-) \frac{I_1 I_2}{c^2} \oint \oint \frac{1}{r_{21}^2} (dl_1 \cdot dl_2) \mathring{r}_{21} \left[Jk^2 E_g. (5.10) \right]. \tag{18}$$

Now, clearly, From = (-) From, and Newton III is obeyed, as must be.

Contrast Fzm (magnetic) with Fzm (electric)...

Sy [F2 mm (electric) = 9192
$$\frac{\hat{\tau}_{21}}{\tau_{21}^2}$$
]

The sources of B, refusing to be monopoles, really complicate the fire law. About the only simple application of Eq. (18) is to two II long wires...

$$I_1$$
 F
 I_2

$$\frac{dF}{d\ell} = 2I_1I_2/c^2d$$

(20)

F is attractive if In & Iz flow 11, repulsive if In & Iz anti-11.