Stat 230: Probability

Lecture 27

Jeremy VanderDoes

University of Waterloo

Monday, July 11th

Review

Example

Suppose that X and Y have a joint probability function defined in the table below:

			Χ	
	f(x,y)	0	2	3
у	0	.1	.2	.05
	2	.3	.1	.25

Find:

(1)
$$f_Y(2|X=2)$$

(2) $f_U(4)$ where $U \sim 2X - Y$

Review

Last time we talked about:

- (1) Conditional probability
- (2) Multinomial distribution
- (3) Functions of joint variables

For today:

- (1) Functions of joint variables
- (2) Expectation Functions of joint variables
- (3) Covariance
- (3) Correlation

Review

Today: Quiz 5

Next Monday: Quiz 6

Functions

Example

Suppose X and Y are independent, and that $X \sim Pois(\mu)$ and $Y \sim Pois(\lambda)$. Show $X + Y \sim Pois(\mu + \lambda)$.

Functions

Theorem

If $X \sim Binomial(n, p)$ and $Y \sim Binomial(m, p)$, and X and Y are independent, then $X + Y \sim Binomial(n + m, p)$.

Expectation

Definition

Suppose X and Y are jointly distributed random variables with joint probability function f(x,y). Then for a function $g: \mathbb{R}^2 \to \mathbb{R}$,

$$E(g(X,Y)) = \sum_{(x,y)} g(x,y) f(x,y)$$

More generally, if $g : \mathbb{R}^n \to \mathbb{R}$, and $X_1, ..., X_n$ have joint probability function $f(x_1, ..., x_n)$, then

$$E(g(X_1,...,X_n)) = \sum_{(x_1,...,x_n)} g(x_1,...,x_n) f(x_1,...,x_n)$$

Expectation

Example

Suppose X and Y have joint probability function given by the following table:

Compute E(XY).

Expectation

Remark

Properties of Expected Values of Jointly Distributed Random Variables:

(1)
$$E[a \cdot g_1(X, Y) + b \cdot g_2(X, Y)] = a \cdot E(g_1(X, Y)) + b \cdot E(g_2(X, Y)).$$

(2)
$$E(X + Y) = \sum_{x} x f_X(x) + \sum_{y} y f_Y(y) = E(X) + E(Y)$$

Covariance

Definition

If X and Y are jointly distributed, then Cov(X, Y) denotes the **covariance** between X and Y. It is defined by

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))]$$

Remark (Shortcut formula)

As before it can be shown:

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

Covariance

Example

Suppose X and Y have joint probability function given by the following table:

Compute Cov(X, Y).

Covariance

<u>Theorem</u>

If X and Y are independent, then Cov(X, Y) = 0.

The converse statement is FALSE, namely if Cov(X, Y) = 0 then X and Y are not necessarily independent. Counter example: Let X satisfy P(X = -1) = P(X = 0) = P(X = 1) = 1/3, and let $Y = X^2$.

Correlation

Definition

The **correlation** of X and Y is denoted corr(X, Y), and is defined by

$$corr(X, Y) = \rho = \frac{Cov(X, Y)}{SD(X)SD(Y)}$$

It follows from the Cauchy-Schwarz inequality that $-1 \le corr(X, Y) \le 1$, and if |corr(X, Y)| = 1, X = aY + b.