Notes on Connes fiberation

Junrong Yan

In [1], Connes constructs the so called Connes foliation, which plays an important role in studing flat vector bundles.

1 Connes's construction

Definition 1.1 (Connes fiberation). Let (M,g) be a smooth manifold. We define Connes fiberation $\pi: \mathcal{M} \to M$ to be a fiber bundle, such that each fiber $\pi^{-1}(p) = \operatorname{GL}^+(T_pM)/\operatorname{SO}(T_pM) \cong \operatorname{GL}_n^+(\mathbb{R})/\operatorname{SO}_n(\mathbb{R})$. It's easy to see that a global section of this fiber bundle gives a Riemannian metric on M.

To better comprehend Connes fiberation, let's examine the homogeneous space

$$\mathcal{H} = \mathrm{GL}_n^+(\mathbb{R})/\mathrm{SO}_n(\mathbb{R}) \cong \text{all positive definite matrix},$$

in depth.

If $f: \mathbb{R}^n \to \mathbb{R}^n$ is a linear isomorphism that preserves orientation, then it induces a map

$$L(f): \mathcal{H} \mapsto \mathcal{H},$$

 $A \mapsto f \circ A \circ f^{T},$

where A is positive definite. Moreover, we can observe that $\mathrm{GL}_n^+(\mathbb{R})$ acts transitively on \mathcal{H} .

Proposition 1.1. \mathcal{H} could carry a metric of non-positive sectional curvature, which is invariant under $GL_n^+(\mathbb{R})$ in the sense described above.

Proof. Let I be the identity matrix, then we can deduce that $T_I\mathcal{H} := \{\text{all symmetry matrix}\}$. Let g_I be a metric on $T_I\mathcal{H}$ given by

$$g_I(X,Y) = tr(XY), X, Y \in T_I \mathcal{H}.$$

For any $A \in \mathcal{H}$, we can find $C \in GL_n^+(\mathbb{R})$, s.t. $A = CC^T$, i.e. A = L(C)I, therefore, for any $X, Y \in T_A\mathcal{H}$, define

$$g_A(X,Y) = (L(C^{-1})_*g_I)(X,Y) = g_I(L(C^{-1})_*X, L(C^{-1})_*Y).$$

Definition 1.2. Let (M,g) be a Riemannian manifold, F be a sub-bundle of TM, F^{\perp} be the orthogonal complement of F w.r.t g. We say that a diffeomorphism $f: M \mapsto M$ is almost isometry w.r.t. F if both $f_*|_F$ and $\mathcal{P}^{\perp}f_*|_{F^{\perp}}$ are isometric, where $\mathcal{P}^{\perp}: TM \mapsto F^{\perp}$ is the orthogonal projection.

Assume M is orientable. Consider the principle bundle $P = P_{\operatorname{GL}_n^+(\mathbb{R})} \to M$ with respect to $TM \to M$, a connection ∇^{TM} on M gives a lift from TM to T^HP , which also naturally gives a lift from TM to T^HM . Each $v \in M$, by definition, gives a metric on $T_{\pi(v)}M$, and thus also gives a tautological metric g^H on T^HM . By Proposition 1.1, we have a canonical metric g^V on T^VM that gives a metric of non-positive sectional curvature fiberwisely. Now $g^M := g^H \oplus g^V$ gives a Riemann metric on M.

Any diffeomorphism $f: M \mapsto M$, as discussed above, induces a diffeomorphism $L(f): \mathcal{M} \mapsto \mathcal{M}$.

Proposition 1.2. L(f) is almost isometric w.r.t. $T^{V}\mathcal{M}$.

Proof. By Proposition 1.1, we can see $L(f)_*|_{T^V\mathcal{M}}$ is isometric. Take any $X \in T_v^H\mathcal{M}, v \in \mathcal{M}$, which is lifted by $\widetilde{X} \in T_pM, p = \pi(v)$. Then $\mathcal{P}^{\perp}L(f)_*(X)$ is lifted by $f_*(\widetilde{X})$, since $\pi_*L(f)_* = f_*$. Now we have

$$\begin{split} g^H_{L(f)(v)}(\mathcal{P}^\perp L(f)_*(X), \mathcal{P}^\perp L(f)_*(X)) &= L(f)(v)(f_*(\widetilde{X}), f_*(\widetilde{X})) \\ &= v(f_*^{-1}f_*(X), f_*^{-1}f_*(X)) = v(X, X) = g_v^H(X, X). \end{split}$$

2 Zhang's construction (version 1)

In [3] and [2], Zhang generalize the constructions of Connes fiberation. Here we introduce the first version.

Definition 2.1 (Connes fiberation for foliation). Let (M, F, g^M) be a foliated manifold, and F^{\perp} be the orthogonal complement of F w.r.t. g. Connes fiberation for foliation $\pi: \mathcal{M} \mapsto M$ is the fiber bundle, whose fiber $\pi^{-1}(p) := \operatorname{GL}^+(F_p^{\perp})/\operatorname{SO}(F_p^{\perp})$.

Definition 2.2 (Bott connection). Let ∇^M be the Levi-Civita Connection w.r.t. g^M , $\mathcal{P}^{\perp}:TM\mapsto F$ be the orthogonal projection. Then Bott connection ∇^B on F^{\perp} is defined by

$$\begin{split} \nabla^B_X Y &= \mathcal{P}^\perp \nabla^{TM}_X Y, X, Y \in \Gamma(F^\perp) \\ \nabla^B_X Y &= \mathcal{P}^\perp [X,Y], X \in \Gamma(F), Y \in \Gamma(F^\perp). \end{split}$$

It's straightforward to verify that when restricts to each foliation, ∇^B is flat, i.e. $(\nabla^B)_{X,Y}^2 = 0, \forall X, Y \in \Gamma(F)$.

Now, we could lift TM to a subbundle $T^H\mathcal{M}$ by Bott connection as what we did in the last section. Moreover, since ∇^B is flat on each leaf, F was lifted to an integral bundle \mathcal{F} . Let $g^{\mathcal{F}}$ be the metric on \mathcal{F} given by

$$g^{\mathcal{F}}(X,Y) = g^T M(\pi_* X, \pi_* Y), X, Y \in \Gamma(F).$$

Also, each $v \in \mathcal{M}$ gives a tautological metric $g^{\mathcal{F}^{\perp}}$ on $\mathcal{F}^{\perp} := T^H \mathcal{M}/\mathcal{F}$ by

$$g^{\mathcal{F}^{\perp}}(X,Y) = v(\pi_*(X), \pi_*(Y), X, Y \in \Gamma(\mathcal{F}^{\perp}).$$

We also have a nature metric g^V on $T^V\mathcal{M}$. Now we have a metric $g^{\mathcal{M}}$ on $T\mathcal{M}$ given by $g^{\mathcal{M}} = g^{\mathcal{F}} \oplus g^{\mathcal{F}^{\perp}} \oplus g^V$.

Let $\widetilde{\mathcal{F}} := T\mathcal{M}/\mathcal{F} \cong \mathcal{F}^{\perp} \oplus T^{V}\mathcal{M}, g^{\widetilde{\mathcal{F}}} = g^{\mathcal{F}^{\perp}} \oplus g^{V}.$

So far we have a foliated manifold $(\mathcal{M}, \mathcal{F})$, let \mathcal{G} be the holonomy groupoid w.r.t. \mathcal{F} and Bott connection on $\widetilde{\mathcal{F}}$. Each $\tau \in \mathcal{G}$ induces a linear map from $\widetilde{F}_{s(\tau)}$ to $\widetilde{F}_{r(\tau)}$, then we have

Proposition 2.1. $\tau : \widetilde{\mathcal{F}}_{s(\tau)} \mapsto \widetilde{\mathcal{F}}_{r(\tau)}$ is almost isometric w.r.t. $T^V \mathcal{M}$, i.e. $\tau|_{T^V \mathcal{M}}$ and $\mathcal{P}^{\mathcal{F}^{\perp}} \circ \tau|_{\mathcal{F}^{\perp}}$ are isometric w.r.t $g^{\widetilde{F}}$, where $\mathcal{P}^{F^{\perp}} : \widetilde{\mathcal{F}} \mapsto \mathcal{F}^{\perp}$ is the orthogonal projection.

Proof. Let $\tau \in \mathcal{G}$ be generated by a vector field $X \in \mathcal{F}$, extend X to whole \mathcal{M} , (still denote the extension as X) s.t. X has compact support on \mathcal{M} , and in a neighborhood U of τ , $X|_U \in \Gamma(U,\mathcal{F})$. Let $\widetilde{X} = \pi_* X$, $\widetilde{\phi}^t$ be the flow generated by \widetilde{X} , ϕ^t be the flow generated by X.

Let $U \in \widetilde{\mathcal{F}}_{s(\tau)}$, we claim:

1.
$$L(\widetilde{\phi}^t) = \phi^t$$
.

2.

$$\mathcal{P}^{\widetilde{\mathcal{F}}}\phi_*^t(U)$$
 is parallel along τ ,

where $\mathcal{P}^{\widetilde{\mathcal{F}}}: T\mathcal{M} \mapsto \widetilde{\mathcal{F}}$ is the orthogonal projection.

By a similar argument as in Proposition 1.1 and Claim 1, $\mathcal{P}^{\tilde{\mathcal{F}}}\phi_*^t$ is almost isometric. By Claim 2, we can see that τ is almost isometric. So it reduces to prove the claims above.

Let's prove Claim 2 first.

Let $\gamma:(-\epsilon,\epsilon)$ be a smooth curve with $\gamma(0)=s(\tau),$ $\gamma'(0)=U.$ Let $F(s,t)=\phi^t(\gamma(s)),$ then

$$0 = [F_*(\frac{\partial}{\partial s}), F_*(\frac{\partial}{\partial t})]_{t=0, s=0} = [\phi_*^t(U), X(s(\tau))].$$

Therefore

$$\nabla_{X} \mathcal{P}^{\widetilde{\mathcal{F}}} \phi^{t}(U)|_{t=0} = \mathcal{P}^{\widetilde{\mathcal{F}}} [X, \mathcal{P}^{\widetilde{\mathcal{F}}} \phi^{t}(U)]_{t=0}$$
$$= \mathcal{P}^{\widetilde{\mathcal{F}}} [X, \phi^{t}(U)] - \mathcal{P}^{\widetilde{\mathcal{F}}} [X, \mathcal{P}^{\mathcal{F}} \phi^{t}(U)]$$
$$= 0 \text{ (Since } \mathcal{F} \text{ is integrable)}.$$

Now we just need to prove Claim 1 locally. Hence we can assume $\mathcal{M} = M \times \mathrm{GL}_n^+(\mathbb{R})/SO_n(\mathbb{R})$. Let $\widetilde{X} \in F$, then \widetilde{X} is lifted to $(\widetilde{X}, -w(\widetilde{X}))$ when restricts on $M \times I \subset \mathcal{M}$, where $w = \nabla^B - d \in \{\text{Symmetry matrix valued 1-form}\}$. While

$$\frac{\partial L(\widetilde{\phi}^t)}{\partial t}|_{M\times I, t=0} = (\widetilde{X}, \frac{\partial}{\partial t} \widetilde{\phi_*^{-t}} I(\widetilde{\phi^{-t}}_*)^T) = (\widetilde{X}, -w(\widetilde{X})),$$

where the last equality follows from the definition of Bott connection.

3 Zhang's construction version 2

Definition 3.1 (Connes fiberation for flat bundle). Let $p : E \mapsto M$ be a flat vector bundle with flat connection ∇ and fiber F, Connes fiberation $\pi : \mathcal{M} \mapsto M$ is a fiber bundle, s.t. $\pi^{-1}(x) = \mathrm{GL}^+(F_x)/\mathrm{SO}(F_x)$.

We can lift TM to a integrable subbundle $T^H\mathcal{M}$ of $T\mathcal{M}$. Then we can consider Bott connection on $T^V\mathcal{M}$ for this foliation. Also, we have canonical metric $g^{T^V\mathcal{M}}$ on $T^V\mathcal{M}$.

Since a flat connection is not always preserve the metric, however, we have

Proposition 3.1. Let $\mathcal{F} := \pi^* p^* F$, we then have a tautological metric $g^{\mathcal{F}}$ on \mathcal{F} ,

- 1. The Bott connection on $(T^V \mathcal{M}, g^{T^V \mathcal{M}})$ is leafwise Euclidean.
- 2. There exists a canonical Euclidean connection $\nabla^{\mathcal{F}}$ on $(\mathcal{F}, g^{\mathcal{F}})$ such that for any $X, Y \in \Gamma(\mathcal{M}, T^H \mathcal{M})$, one has

$$(\nabla^{\mathcal{F}})_{X,Y}^2 = 0$$

Proof. The proof of first part is similar to what we did in the last section.

For the section part, TM was lifted to a integrable subbundle T^HE of TE, then $p_*E \cong T^VE$ then consider the Connes fiberation $\bar{\pi}: \mathcal{E} \mapsto E$ w.r.t. this foliation. We can see that $\mathcal{E}^0 := T\mathcal{E}/(T^VE \oplus \mathcal{E}^1) \cong \bar{\pi}_*p_*E$, where \mathcal{E}^1 was the integrable subbundle lifted by T^HE under Bott connection. By Proposition 2.1, there exists an Euclidean connection on \mathcal{E}^0 . Since $\mathcal{M} = \bar{\pi}^{-1}(M)$, we can see that there exists an Euclidean connection on \mathcal{F} .

References

- [1] A. Connes. Cyclic cohomology and the transverse fundamental class of a foliation. Geometric methods in operator algebras, 123:52–144, 1983.
- [2] Yu, J. and W. Zhang. Positive scalar curvature and the Euler class. *Journal of Geometry and Physics*, 126:193–203, 2018.
- [3] W. Zhang. Positive scalar curvature on foliations. *Annals of Mathematics*, pages 1035–1068, 2017.