Module-3

Divide and Conquer - Classification Using Decision Trees and Rules

decision trees and rule learners

- two machine learning methods that make complex decisions from sets of simple choices
 - present their knowledge in the form of logical structures
 - particularly useful for business strategy and process improvement
- Objectives
 - ► How trees and rules "greedily" partition data into interesting segments
 - ► The most common decision tree and classification rule learners, including the C5.0, 1R, and RIPPER algorithms
 - ► How to use these algorithms to perform real-world classification tasks, such as identifying risky bank loans and poisonous mushrooms

Understanding decision trees

- tree structure to model the relationships among the features and the potential outcomes
 - branching decisions, which channel examples into a final predicted class value

E.g.,

- Root node
- Decision nodes split the data across branches
- Leaf nodes

 (terminal nodes the action to be
 taken or expected
 results

benefit of decision tree algorithms

- flowchart-like tree structure
 - ▶ Not necessarily exclusively for the learner's internal use
 - in a human-readable format
 - provides insight into how and why the model works or doesn't work
 - classification mechanism can be transparent
- some potential uses
 - Credit scoring models in which the criteria that causes an applicant to be rejected need to be clearly documented and free from bias
 - Marketing studies of customer behavior such as satisfaction or churn, which will be shared with management or advertising agencies
 - ▶ Diagnosis of medical conditions based on laboratory measurements, symptoms, or the rate of disease progression

Pros and cons

- Pros
 - decision trees are perhaps the single most widely used machine learning technique
 - can be applied to model almost any type of data
- Cons
 - trees may not be an ideal fit for a task where the data has a large number of nominal features with many levels or it has a large number of numeric features.
 - result in a very large number of decisions and an overly complex tree.
 - tendency of decision trees to overfit data

Divide and conquer

recursive partitioning

- > splits the data into subsets, which are then split repeatedly into even smaller subsets, ...
- stops when the algorithm determines the data within the subsets are sufficiently homogenous, or another stopping criterion has been met

Steps

- ▶ the root node represents the entire dataset
- choose a feature to split upon; ideally, it chooses the feature most predictive of the target class.
- ► The examples are then partitioned into groups according to the distinct values of this feature
- stop at a node in a case that:
 - ▶ All (or nearly all) of the examples at the node have the same class
 - ▶ There are no remaining features to distinguish among the examples
 - ▶ The tree has grown to a predefined size limit

Example - Hollywood studio

- predict whether a potential movie would fall into one of three categories: Critical Success, Mainstream Hit, or Box Office Bust
- the factors leading to the success and failure of the company's 30 most recent releases

build a decision tree

> split the feature indicating the number of celebrities

build a decision tree cont'd

another split between movies with and without a high budget

build a decision tree cont'd

- partitioned the data into three groups.
 - top-left corner: entirely of critically acclaimed films.
 - high number of celebrities and a relatively low budget.
 - top-right corner: box office hits with high budgets and a large number of celebrities.
 - ▶ final group: little star power but budgets ranging from small to large
- could continue to divide and conquer the data by splitting it based on the increasingly specific ranges of budget and celebrity count
- not advisable to overfit a decision tree

axis-parallel splits

- The fact that each split considers one feature at a time prevents the decision tree from forming more complex decision boundaries
 - ▶ a diagonal line could be created by a decision that asks, "is the number of celebrities is greater than the estimated budget?" If so, then "it will be a critical success."

The C5.0 decision tree algorithm

- C5.0 algorithm
 - Developed by computer scientist J. Ross Quinlan Iterative Dichotomiser 3 (ID3) -> C4.5 -> C5.0
 - http://www.rulequest.com/
 - single-threaded version publically available
 - industry standard to produce decision trees
- ▶ **J48 -** Java-based open source alternative to C4.5

Pros and cons

Strengths	Weaknesses
An all-purpose classifier that does well on most problems	 Decision tree models are often biased toward splits on features having a large number of levels
 Highly automatic learning process, which can handle numeric or nominal features, as well as missing data 	It is easy to overfit or underfit the model
 Excludes unimportant features 	 Can have trouble modeling some relationships due to reliance on axis-parallel splits
 Can be used on both small and large datasets 	
 Results in a model that can be interpreted without a mathematical background (for relatively small trees) 	 Small changes in the training data can result in large changes to decision logic
More efficient than other complex models	 Large trees can be difficult to interpret and the decisions they make may seem counterintuitive

Choosing the best split

- first challenge identify which feature to split upon
 - split the data such that the resulting partitions contained examples primarily of a single class
- purity degree to which a subset of examples contains only a single class
 - ▶ Any subset composed of only a single class is called **pure**
- ▶ **Entropy** concept borrowed from information theory that quantifies the randomness, or disorder
 - measurements of purity
 - Sets with high entropy are very diverse

entropy

- ▶ If there are only two possible classes, entropy values can range from 0 to 1.
- For n classes, entropy ranges from 0 to log2(n).
- the minimum value indicates that the sample is completely homogenous
- the maximum value indicates that the data are as diverse as possible

mathematical notion

$$Entropy(S) = \sum_{i=1}^{c} -p_i \log_2(p_i)$$

- S given segment of data
- c the number of class levels
- \triangleright p_i the proportion of values falling into class level i.
- ► E.g., partition of data with two classes: red (60 percent) and white (40 percent)

> -0.60 * log2(0.60) - 0.40 * log2(0.40) [1] 0.9709506

entropy for all the possible two-class arrangements

- \triangleright Using the curve() function, plot the entropy for all the possible values of x:
- > curve(-x * log2(x) (1 x) * log2(1 x), col = "red", xlab = "x", ylab = "Entropy", lwd = 4)

- 50-50 split results in maximum entropy.
- As one class increasingly dominates the other, the entropy reduces to zero

determine the optimal feature to split upon

- information gain the change in homogeneity that would result from a split on each possible feature
- information gain for a feature F the difference between the entropy in the segment before the split (S_1) and the partitions resulting from the split (S_2) :
- function to $\operatorname{cain}(F) = \operatorname{Entropy}(S_1) \operatorname{Entropy}(S_2)$ py across all of the partitions
 - weighing each partition's entropy by the proportion of records falling into the partition
 - b the total entropy resulting from a split is the sum of the entropy of each of the n partitions weighted by the proportion of examples falling in the partition (w_i) .

$$\text{Entropy}(S) = \sum_{i=1}^{n} w_i \text{ Entropy}(P_i)$$

information gain

- The higher the information gain, the better a feature is at creating homogeneous groups after a split on this feature.
- ▶ If the information gain is zero, there is no reduction in entropy for splitting on this feature.
- the maximum information gain is equal to the entropy prior to the split, which means that the split results in completely homogeneous groups

splitting on numeric features

- ► Test various splits that divide the values into groups greater than or less than a numeric threshold
- reduces the numeric feature into a two-level categorical feature
- The numeric cut point yielding the largest information gain is chosen for the split

Pruning the decision tree

- A decision tree can continue to grow indefinitely
- if the tree grows overly large, many of the decisions it makes will be overly specific and the model will be overfitted to the training data
- pruning a decision tree reducing its size such that it generalizes better to unseen data
- One solution early stopping or pre-pruning the decision tree: stop the tree from growing once it reaches a certain number of decisions or when the decision nodes contain only a small number of examples
 - there is no way to know whether the tree will miss subtle, but important patterns that it would have learned had it grown to a larger size

post-pruning

- growing a tree that is intentionally too large and pruning leaf nodes to reduce the size of the tree to a more appropriate level
- often a more effective approach than pre-pruning
 - ▶ it is quite difficult to determine the optimal depth of a decision tree without growing it first.
 - Pruning the tree later on allows the algorithm to be certain that all the important data structures were discovered
- subtree raising and subtree replacement
 - first grows a large tree that overfits the training data.
 - Later, the nodes and branches that have little effect on the classification are removed.
 - In some cases, entire branches are moved further up the tree or replaced by simpler decisions