

ECO-CHIP: Estimation of Carbon Footprint of Chiplet-based Architectures for Sustainable VLSI

Chetan Choppali Sudarshan, Nikhil Matkar, Sarma Vrudhula, Sachin S. Sapatnekar, Vidya A. Chhabria
HPCA 2024

Agenda

- Introduction
- Prior work
 - Architectural carbon footprint modeling (ACT)
- ECO-CHIP
 - HI Pathway to sustainability
 - Framework
 - ECO-CHIP carbon footprint models
 - Key takeaways
- Conclusion

Agenda

Introduction

- Prior work
 - Architectural carbon footprint modeling (ACT)
- ECO-CHIP
 - HI Pathway to sustainability
 - Framework
 - ECO-CHIP carbon footprint models
 - Key takeaways
- Conclusion

Information and Computing Technology (ICT)

Data Center and Networks

User devices

Information and Computing Technology (ICT)

Data Center and Networks

User devices

- ICT contributes to 3-4% of the total world carbon footprint (CFP) Source: C. Freitag et al., Patterns 2021
- Need for sector-wide regulations

Information and Computing Technology (ICT)

Data Center and Networks

User devices

- ICT contributes to 3-4% of the total world carbon footprint (CFP) Source: C. Freitag et al., Patterns 2021
- Need for sector-wide regulations

Industry and government interest

July 21, 2020

Apple commits to be 100 percent carbon neutral for its supply chain and products by 2030

Intel Vows to Reach Net-Zero Greenhouse Gas Emissions by 2040, Shaping a Greener Tech Industry

by ESG News • November 23, 2023

Share: f

Industry and government interest

July 21, 2020

Apple commits to be 100 percent carbon neutral for its supply chain and products by 2030

Intel Vows to Reach Net-Zero Greenhouse Gas Emissions by 2040, Shaping a Greener Tech Industry

by ESG News . November 23, 2023

Share: •

NSF 22-060

Dear Colleague Letter: Design for Sustainability in Computing

March 15, 2022

Dear Colleagues

Environmental impacts of computing technologies extend well beyond their energy consumption and require a holistic focus on broader sustainability. Negative impacts of greenhouse gas emissions, depletion of rare earth elements, and e-waste are exacerbated by the proliferation of computing throughout society and treatment of computing systems as disposable commodities with planned obsolescence. Furthermore, environmental concerns range from the better-known carbon footprint from energy consumption (e.g., cloud) to equally important concerns of embodied carbon^[1], generation of methane, carcinogens, volatile organic compounds, and eutrophication, among others.

Widespread use of compute intensive techniques (e.g., blockchain and additicial intelligence), handling and moving massive amounts of data the rollout of next generation.

- Embodied carbon footprint (CFP)
 - Raw material CFP
 - Design CFP
 - Manufacturing and packaging CFP
- Operational CFP
 - CFP from end-user

- Embodied carbon footprint (CFP)
 - Raw material CFP
 - Design CFP
 - Manufacturing and packaging CFP
- Operational CFP
 - CFP from end-user

- Embodied carbon footprint (CFP)
 - Raw material CFP
 - Design CFP
 - Manufacturing and packaging CFP
- Operational CFP
 - CFP from end-user

- Embodied carbon footprint (CFP)
 - Raw material CFP
 - Design CFP
 - Manufacturing and packaging CFP
- Operational CFP
 - CFP from end-user

- Embodied carbon footprint (CFP)
 - Raw material CFP
 - Design CFP
 - Manufacturing and packaging CFP
- Operational CFP
 - CFP from end-user

- Embodied carbon footprint (CFP)
 - Raw material CFP
 - Design CFP
 - Manufacturing and packaging CFP
- Operational CFP
 - CFP from end-user

- Embodied carbon footprint (CFP)
 - Raw material CFP
 - Design CFP
 - Manufacturing and packaging CFP
- Operational CFP
 - CFP from end-user

Challenges and demands

Source : Apple sustainability reports

Challenges and demands

- Efficiency optimization
 - Operational CFP drops 46%
- Rising embodied carbon
 - Embodied CFP increases 110%

Source : Apple sustainability reports

Challenges and demands

- Efficiency optimization
 - Operational CFP drops 46%
- Rising embodied carbon
 - Embodied CFP increases 110%

Source : Apple sustainability reports

Agenda

- Introduction
- Prior work
 - Architectural carbon footprint modeling (ACT)
- ECO-CHIP
 - HI Pathway to sustainability
 - Framework
 - ECO-CHIP CFP models
 - Key takeaways
- Conclusion

Prior work

Architectural Carbon Model Tool (ACT)

- ISCA 2022
- Carbon-aware exploration framework
- Architectural model estimating embodied carbon
- Based on industry reports

Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and Carole-Jean Wu. 2022. ACT: designing sustainable computer systems with an architectural carbon modeling tool. In Proceedings of the 49th Annual International Symposium on Computer Architecture (ISCA '22)

Prior work

Architectural Carbon Model Tool (ACT)

- ISCA 2022
- Carbon-aware exploration framework
- Architectural model estimating embodied carbon
- Based on industry reports

Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and Carole-Jean Wu. 2022. ACT: designing sustainable computer systems with an architectural carbon modeling tool. In Proceedings of the 49th Annual International Symposium on Computer Architecture (ISCA '22)

Prior work

Architectural Carbon Model Tool (ACT)

- ISCA 2022
- Carbon-aware exploration framework
- Architectural model estimating embodied carbon
- Based on industry reports

Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and Carole-Jean Wu. 2022. ACT: designing sustainable computer systems with an architectural carbon modeling tool. In Proceedings of the 49th Annual International Symposium on Computer Architecture (ISCA '22)

3R's for sustainability

- Reduce
- Reuse
- Recycle

3R's for sustainability

- Reduce
- Reuse
- Recycle

3R's for sustainability

- Reduce
- Reuse
- Recycle

Our approach

3R's for sustainability

- Reduce
- Reuse
- Recycle

Our approach

Heterogeneous system sustainability (ECO-CHIP)

3R's for sustainability

- Reduce
- Reuse
- Recycle

3R's for sustainability

- Reduce
- Reuse
- Recycle

Our approach

Heterogeneous system sustainability (ECO-CHIP)

Reuse chiplet designs across multiple products

Reduced design carbon and manufacturing carbon

Agenda

- Introduction
- Prior work
 - Architectural carbon footprint modeling (ACT)
- ECO-CHIP
 - HI Pathway to sustainability
 - Framework
 - ECO-CHIP CFP models
 - Key takeaways
- Conclusion

Heterogeneous Integration (HI)

Large SoCs are at reticle limit

MONOLITHIC CHIP ARCHITECTURE

PCle	SerDes	HARDWARE Accelerator
COMMS	SW CPU	MEMORY Engines
1/0		SENSORS

Heterogeneous Integration (HI)

- Large SoCs are at reticle limit
- To reduce costs and sustain Moore's law HI enables two or more dies manufactured individually and integrated into a single package

Source: Lawrence Lundy-Bryan FRSA, LinkedIn post

Heterogeneous Integration (HI)

- Large SoCs are at reticle limit
- To reduce costs and sustain Moore's law HI enables two or more dies manufactured individually and integrated into a single package
- The key enabler for heterogeneous integration are advanced packaging techniques

HI as a path towards sustainable computing

Sustainable Computing

HI as a path towards sustainable computing

Sustainable Computing

Better yield with smaller chiplets

HI as a path towards sustainable computing

Sustainable Computing

Better yield with smaller chiplets

Sustainable Computing

Better yield with smaller chiplets

Sustainable Computing

Better yield with smaller chiplets

"Mix and match" of technology nodes

Sustainable Computing

Better yield with smaller chiplets

"Mix and match" of technology nodes

7,7,10 => 7nm Logic
7nm IOs
10nm Memory
7,7,7 => Monolithic on 7nm

Sustainable Computing

Better yield with smaller chiplets

"Mix and match" of technology nodes

Sustainable Computing Better yield with smaller chiplets "Mix and match" of technology nodes **Chiplet reuse** across systems

Sustainable Computing

Better yield with smaller chiplets

"Mix and match" of technology nodes

Chiplet reuse across systems

Source : Intel, Screenhacker

Accelerators

Sustainable Computing

Better yield with smaller chiplets

"Mix and match" of technology nodes

Chiplet reuse across systems

Source : Intel, Screenhacker

Agenda

- Introduction
- Prior work
 - Architectural carbon footprint modeling (ACT)
- ECO-CHIP
 - HI Pathway to sustainability
 - Framework
 - ECO-CHIP CFP models
 - Key takeaways
- Conclusion

- Architecture parameter inputs
- Estimates embodied CFP
 - Manufacturing
 - Packaging
 - Design
- Operational CFP
- Integrate with third-party tools

- Architecture parameter inputs
- Estimates embodied CFP
 - Manufacturing
 - Packaging
 - Design
- Operational CFP
- Integrate with third-party tools

- Architecture parameter inputs
- Estimates embodied CFP
 - Manufacturing
 - Packaging
 - Design
- Operational CFP
- Integrate with third-party tools

- Architecture parameter inputs
- Estimates embodied CFP
 - Manufacturing
 - Packaging
 - Design
- Operational CFP
- Integrate with third-party tools

- Architecture parameter inputs
- Estimates embodied CFP
 - Manufacturing
 - Packaging
 - Design
- Operational CFP
- Integrate with third-party tools

Total carbon is given by the sum of operational carbon across the lifetime of the chip and the embodied carbon

$$C_{tot} = C_{emb} + lifetime \times C_{op}$$
 $C_{emb} = C_{mfg} + C_{HI} + C_{des}$

C_{emb} - Embodied carbon
 C_{mfg} - Manufacturing carbon
 C_{des} - Design carbon
 C_{HI} - Carbon from HI
 (advanced packaging and area overheads)

Total carbon is given by the sum of operational carbon across the lifetime of the chip and the embodied carbon

$$C_{tot} = C_{emb} + lifetime \times C_{op}$$

$$C_{op} = C_{src,use} \times E_{use}$$

C_{op} - Operational carbon

 $C_{src,use}$ -Carbon intensity of energy source E_{use} - Energy spend during usage

Agenda

- Introduction
- Prior work
 - Architectural carbon footprint modeling (ACT)
- ECO-CHIP
 - HI Pathway to sustainability
 - Framework
 - ECO-CHIP CFP models
 - Key takeaways
- Conclusion

Embodied carbon: Manufacturing

The manufacturing carbon for a die depends on its area, and amortized wasted area on the wafer

Embodied carbon: Manufacturing

The manufacturing carbon for a die depends on its area, and amortized wasted area on the wafer

Enhanced the manufacturing carbon model from ACT to include area-dependent yield and efficiency of fabrication tools

Passive/active interposer package

3D chiplet stacking

EPLA → Energy per unit area per layer

Passive/active interposer package

Modeled as an additional die

EPLA → Energy per unit area per layer

3D chiplet stacking

Passive/active interposer package

Modeled as an additional die

EPLA → Energy per unit area per layer

3D chiplet stacking

Embodied carbon: Design carbon

Design carbon of the system is the sum of:

- Design carbon of all chiplets amortized across the number of chiplets manufactured (design reuse)
- Design carbon of the overhead of integrating amortized across the number of systems packaged

The design carbon of a single chiplet is:

$$C_{des} = t_{des} \times P_{des} \times C_{src}$$

$$t_{des} = \frac{t_{verif} + (t_{SP\&R} + t_{analyze}) \times N_{des}}{\eta_{EDA}}$$

 $t_{verif,i}$ - Compute time for verification

 $t_{SP\&R,i}$ - Computing time for single synthesis, place, and route

 $t_{analyze,i}$ - Compute time for all simulation analysis

 N_{des} - Number of design iterations

 η_{EDA} - EDA tool productivity

Source: elnfochips

Agenda

- Introduction
- Prior work
 - Architectural carbon footprint modeling (ACT)
- ECO-CHIP
 - HI Pathway to sustainability
 - Framework
 - ECO-CHIP CFP models
 - Key takeaways
- Conclusion

 Disaggregation to chiplets helps in lowering the overall CFP by 40%

Sustainable Computing

Better yields with smaller chiplets

10nm Memory => Monolithic on 7nm

- Disaggregation to chiplets helps in lowering the overall CFP by 40%
- Technology mix and match can help reduce overall CFP by 36%

- Disaggregation to chiplets helps in lowering the overall CFP by 40%
- Technology mix and match can help reduce overall CFP by 36%
- Amortizing the design CFP across multiple systems can reduce design CFP by 80%

- Disaggregation to chiplets helps in lowering the overall CFP by 40%
- Technology mix and match can help reduce overall CFP by 36%
- Amortizing the design CFP across multiple systems can reduce design CFP by 80%
- Edge devices
 - C_{emb} dominates, C_{op} already low
 - Disaggregation helps lower C_{emb}
- Cloud computing devices
 - Higher Cop / Cemb ratio
 - Disaggregation helps lower C_{emb}

Agenda

- Introduction
- Prior work
 - Architectural carbon footprint modeling (ACT)
- ECO-CHIP
 - HI Pathway to sustainability
 - Framework
 - ECO-CHIP CFP models
 - Key takeaways
- Conclusion

Conclusion

- Key contributions
 - Develop ECO-CHIP for heterogeneous systems
 - Model yield variations across multiple technology nodes for CFP analysis
 - CFP modeling for design
 - CFP of advanced packing architecture was modeled

- HI systems are pathways to sustainable computing
 - Moving to chiplet-based design reduced CFP by 40%
 - Can reduce up to 80% of design CFP by amortizing and increasing the reuse factor
 - Chiplet and technology space exploration can reduce the overall CFP by 36%

ECO-CHIP GitHub repository

 We have open-sourced ECO-CHIP for broader access and awareness within the research community

Scan QR code for ECO-CHIP

https://github.com/ASU-VDA-Lab/ECO-CHIP

Thank you!!

