EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 02.01.2003 Bulletin 2003/01

(21) Application number: 01914191.0

(22) Date of filing: 22.03.2001

(51) Int CI.7: CO7D 491/048, CO7D 453/02, CO7D 519/00, A61K 31/4741, A61P 43/00, A61P 29/00, A61P 11/00, A61P 11/06, A61P 19/02, A61P 37/06, A61P 3/10, C12N 1/20, C12N 15/00

(86) International application number: PCT/JP01/02277

(87) International publication number: WO 01/070746 (27.09.2001 Gazette 2001/39)

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 23.03.2000 JP 2000087121

(71) Applicant: Takeda Chemical Industries, Ltd. Osaka-shi, Osaka 541-0045 (JP)

(72) Inventors:

KAWANO, Yasuhiko
 Suita-shi, Osaka-565-0806 (JP)

 MATSUMOTO, Tatsumi Sakai-shi, Osaka 590-0113 (JP)

UCHIKAWA. Osamu

Kobe-shi, Hyogo 655-0002 (JP)
• FUJII. Nobuhiro

 FUJII, Nobuhiro Ibaraki-shi, Osaka 567-0021 (JP)

TARUI, Naoki

Nara-shi, Nara 631-0061 (JP)
(74) Representative: Lewin, John Harvey et al

(74) Hepresentative: Lewin, John Harvey et al Takeda Patent Office, 11-12 Charles II Street London SW1Y 4QU (GB)

(54) FUROISOQUINOLINE DERIVATIVES, PROCESS FOR PRODUCING THE SAME AND USE THEREOF

(57) A compound having a partial structure represented by Formula:

or a salt thereof has an excellent phosphodiesterase (PDE) Uhinhibiting effect, and is useful as a prophylacior or therapeutic agent against inflammatory diseases, for example, bronchial asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease, disebes and the like

Description

TECHNICAL FIELD

[0001] The present invention relates to a novel furoisoquinoline derivative which has a phosphodiesterase (PDE) IVinhibiting effect and which is useful as a prophylactic or therapeutic agent against the inflammatory diseases, for example, bronchial asthma, chronic obstructive pulmonary diseases (COPD), theumatoid arthritis, autoimmune disease, diabetes and the like and process for producing the same and use thereof.

10 BACKGROUND ART

15

25

30

25

40

45

[0002] It is known in these days that a large number of hormones and neurotransmitters function to increase or decrease the intracellular level of cyclic adenosine-3',5'-monophosphate (cAMP) which is an intracellular second measuring, whereby regulating the cellular functions. The intracellular cAMP level is regulated by synthesizing and degradating enzymes. Thus, cAMP is produced by adenyl cyclases and degradated by phosphodiesterase (PDE). These degradation enzymes also reculate the decreadation of cyclic quansien-3'5'-monophosphate.

[0003] Seven isozymes of the PDE have been found so far [Physiological Reviews, Vol.75, p725 (1995), Endocrine Reviews, Vol.16, p370, (1995)], and each functions, in various cells such as those in central nervous system, circulation organs, respiratory organs, displeative organs, explications organs and the state of the variety of variety of

[0004] Pharmaceuticals, which can broadly be classified into three groups, are employed as therapeutic agents against a bronchial asthma. Thus, the three types including bronchodilators (for example, headrealine receptor agonists), antiinflammatory agents (for example, heotophylline) and xanthine derivatives having both of the bronchodilating effect and antilinflammatory derect (for example, theophylline) are employed. Among these, theophylline has been employed as therapeutic agent against asthma for a long time. Theophylline is becoming more interesting in these days since its bronchodilating effect has been found to be derived from a PDE-inhibiting effect. However, theophylline is a non-selective PDE inhibitor and sometimes exhibits a cardiovascular side effect. Then, its blood level should still be controlled to reduce the side effect. Accordingly, a medicament for treating an inflammatory disease such as asthma which inhibits the PDE type-VI selectively and which has no effects on other isozymes of the PDE is desired.

[0005] A study indicating a possibility that a PDE type-IV-selective inhibitor is an effective therapeutic agent against an inflammatory disease such as asthma was reported [Pulmonary Pharmacology, Vol.7, p1 (1994)]. Thus, it was suggested that a PDE type-IV-selective inhibitor has the both of an antiinflammatory effect and a bronchodilating effect and may exhibit a therapeutic effect on an inflammatory disease such as asthma. In fact, compounds having inhibitory effects selectively on the PDE type-IV are subjected currently to an extensive development all over the world. For example, rolizonar IVIP-AS-0173801 having the structure represented by Formula:

and SB 207499 [The Journal of Pharmacology and Experimental Therapeutics, Vol.287, p988 (1998), Journal of Medicinal Chemistry, Vol.41, p821 (1998)] represented by Formula:

are under development. However, any of those listed above has not been employed clinically, and a further useful agent is desired to be developed.

[0006] On the other hand, a method for synthesizing a compound represented by Formula:

Is disclosed in Indian Journal of Chemistry, Section B, Vol.31B, p578 (1992).

[0007] Moreover, an antibacterial compound represented by Formula:

is also disclosed in Indian Journal of Chemistry, Section B, Vol.33B, p552 (1994).

[0008] A potent selective PDE type-IV inhibitor having a novel chemical structure is expected to have a sufficient prophylactic or therapeutic effect in a wide range of diseases accompanied with inflammations, and is desired to be developed. The objective of the invention is to provide novel heterocyclic compounds which have selective PDE type-IV-inhibiting effect and increase the intracellular cAMP level whereby exhibiting bronchodilating and antiinflammatory effects and which is also excellent in terms of the safety.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

25

45

55

[0009] We made an effort and were finally successful for the first time in synthesizing a novel furoisoquinoline derivative (hereinafter abbreviated sometimes as Compound (I)) having a partial structure represented by Formula:

(wherein each of Ring A, Ring B and Ring C may have substituents, especially a novel furoisoquinoline derivative (hereinafter abbreviated sometimes as Compound (I'))

whose significant chemical structural characteristics are the substituents introduced in the 1-, 2-, 3-, 4-, 5-, 6-, 8-, 9-positions etc. on the furoisoguinoline backbone, represented by Formula:

$$R^{5}$$
 R^{7}
 R^{8}
 R^{9}
 R^{1}
 R^{1}
 R^{5}
 R^{5}
 R^{5}

(wherein R¹ is a hydrogen atom, optionally substituted hydrocarbon group, optionally substituted heterocyclic group or acy group, and R² and R² may be taken together with the adjacent carbon atom to form an optionally substituted and 3- to 8-membered ring, R¹ is a hydrogen atom, oyano group, optionally substituted hydrocarbon group, optionally substituted hydrocarbon group, optionally substituted hydrocarbon group, (8) and R² is a hydrogen atom, (2) an optionally substituted hydrocarbon group, (8) and group, (14) an optionally substituted hydrocarbon group, (8) and group, (14) and optionally substituted hydrocarbon group, and R² and R² is a hydrogen atom or optionally substituted hydrocarbon group, and R² and R² is a hydrogen atom or optionally substituted hydrocarbon group, and R² and R² is a hydrogen atom or optionally substituted hydrocarbon group, and R² and R² is a hydrogen atom or optionally substituted hydrocarbon group, X is a bond, oxygen atom, optionally oxidized sulfur atom or optionally substituted hydrocarbon group, X is a bond, oxygen atom, optionally oxidized sulfur atom or optionally substituted hydrocarbon group, X is a bond, oxygen atom, optionally oxidized sulfur atom or optionally substituted hydrocarbon group, X is an optionally substituted hydrocarbon gr

[0010] Thus, the invention provides:

[1] a compound having a partial structure represented by Formula:

or its salt

5

10

15

25

30

25

40

45

50

55

[2] the compound according to the above-mentioned [1] represented by Formula:

$$\begin{array}{c|c}
R^{7} & R^{8} & R^{1} \\
\hline
0 & & & & \\
R^{5} & & & & \\
R^{4} & & & & \\
R^{3} & & & & \\
\end{array}$$

$$\begin{array}{c|c}
(0) & n \\
R^{5} & & & \\
R^{3} & & & \\
\end{array}$$

i (wherein R¹ is a hydrogen atom, optionally substituted hydrocarbon group, optionally substituted heterocyclic group or optionally substituted amino group,

Reach of R² and R³ is a hydrogen atom, optionally substituted hydrocarbon group or acyl group, and R² and R³ may be taken together with the adjacent carbon atom to form an optionally substituted 3- to 8-membered ring, R³ is a hydrogen atom, cyano group, optionally substituted hydrocarbon group, acyl group or optionally subs

R⁵ is (1) a hydrogen atom, (2) an optionally substituted hydrocarbon group, (3) an acyl group, (4) an optionally substituted heterocyclic group or (5) a halogen atom,

each of R⁹ and R⁷ is a hydrogen atom or optionally substituted hydrocarbon group, and R⁹ and R⁷ are taken together with the adjacent carbon atom to form an optionally substituted 3- to 8-membered ring.

each of R8 and R9 is a hydrogen atom or optionally substituted hydrocarbon group,

X is a bond, oxygen atom, optionally oxidized sulfur atom or optionally substituted nitrogen atom,

Y is an optionally substituted methylene group or carbonyl group,

and n is 0 to 1),

5

10

15

20

25

30

25

40

45

50

55

[3] the compound according to the above-mentioned [2] wherein each of R² and R³ is a hydrogen atom, optionally substituted hydrocarbon group or acyl group, R² and R³ are taken together with the adjacent carbon atom to form an optionally substituted 3- to 8-membered homocyclic or heterocyclic group, R⁴ is a hydrogen atom or optionally substituted hydrocarbon group, each of R² and R² is a hydrogen atom or optionally substituted hydrocarbon group, R³ and R² is a hydrogen atom or optionally substituted 3-to 8-membered homocyclic group, Y is methylene group which may have a hydroxy group or carbonyl group.

[4] the compound according to the above-mentioned [2] wherein

R1 is any of the following (i) to (iii):

(i) a C1-8 alkyl group, C2-8 alkenyl group, C2-6 alkynyl group, C3-6 cycloalkyl group, C3-8 cycloalkenyl group, C6-14 aryl group or C7-16 aralkyl group which may have 1 to 5 substituent(s) selected from the group (hereinafter referred to as Substituent Group A) consisting of (1) a halogen atom, (2) a C₁₋₃ alkylenedioxy group, (3) a nitro group, (4) a cyano group, (5) an optionally halogenated C1.6 alkyl group, (6) an optionally halogenated C2.6 alkenyl group, (7) an optionally halogenated C2.6 alkynyl group, (8) a C3.6 cycloalkyl group, (9) a C6-14 aryl group, (10) an optionally halogenated C1-6 alkoxy group, (11) an optionally halogenated C₁₋₆ alkylthio group, (12) a hydroxy group, (13) an amino group, (14) a mono-C₁₋₆ alkylamino group, (15) a mono-Ce.14 arylamino group, (16) a di-C1.6 alkylamino group, (17) a di-C6.14 arylamino group, (18) an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₃₋₆ cycloalkylcarbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₄ aryl-carbonyl, C₇₋₁₆ aralkyl-carbonyl, C₆₋₁₄ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom (s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mono-C1-6 alkyl-carbamoyl, di-C1-6 alkylcarbamoyl, C_{6.14} aryl-carbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbamoyl, C1-6 alkyl-thiocarbonyl, C₃₋₆ cycloalkyl-thiocarbonyl, C₁₋₆ alkoxy-thiocarbonyl, C₆₋₁₄ aryl-thiocarbonyl, C₇₋₁₆ aralkyl-thiocarbonyl, C₆₋₁₄ aryloxy-thiocarbonyl, C₇₋₁₆ aralkyloxy-thiocarbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbonyl, thiocarbamoyl, mono-C_{1.6} alkyl-thiocarbamoyl, di-C_{1.6} alkyl-thiocarbamoyl, C_{6.14} aryl-thiocarbamoyl, (5or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbamoyl, mono-C1-6 alkylsulfamoyl, di-C1-6 alkylsulfamoyl, C6-14 arylsulfamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₄ arylsulfonyl, C₁₋₆ alkylsulfinyl, C₆₋₁₄ arylsulfinyl, sulfino, sulfo, C₁₋₆

alkoxysulfinyl, $C_{E, t4}$ anyloxysulfinyl, $C_{1, t4}$ alkoysulfonyl and $C_{E, t4}$ anyloxysulfonyl, (19) an acylamino group elected from formylamino, $C_{1,t4}$ alkyl-carboxamido, $C_{1,t4}$ alkyl-carboxamido, $C_{1,t4}$ alkyl-carboxyloxy, $C_{E,t4}$ anyl-carboxyloxy, $C_{E,t4}$ anyl-carboxyloxy, $C_{E,t4}$ anyl-carboxyloxy, $C_{E,t4}$ anyl-carbonyloxy, $C_{E,t4}$ anyl-carbonyloxy, $C_{E,t4}$ anyl-carbonyloxy, $C_{E,t4}$ anyl-carboxyloxy, $C_{E,t4}$ anyl-carboxyloxy $C_{E,t4}$ anyloxy group, (24) a di- $C_{1,t4}$ alkoxy-phosphoryl group, (25) a $C_{E,t4}$ anylinio group, (26) a hydrazino group, (27) an imino group, (28) an oxo group, (29) an ureido group, (31) a $C_{E,t4}$ anyl-ureido group, (32) a $C_{E,t4}$ anyl-ureido group, (33) a group formed by binding 2 or 3 groups solected from (1) to (32) listed above,

- (ii) a 5- to 14-membered heterocyclic group having, in addition to carbon atoms, 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms which may have 1 to 5 substituent(s) selected from Substituent Group A described above,
- (iii) an amino group which may have 1 or 2 substituent(s) selected from the following (ia) to (iiia):

(ia) a hydrogen atom.

5

10

15

20

25

30

35

40

45

50

55

(iia) a C_{1-6} alkyl group, C_{2-6} alkenyl group, C_{2-6} alkynyl group, C_{3-6} cycloalkyl group, C_{3-6} cycloalkenyl group, C_{4-1} anyl group or C_{7-16} aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above.

(iiia) an acyl group selected from formyl, carboxy, carbamoyl, C1.6 alkyl-carbonyl, C3.6 cycloalkylcarbonyl, C1.6 alkoxy-carbonyl, C6.14 aryl-carbonyl, C7.16 aralkyl-carbonyl, C6.14 aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mono-C1-8 alkyl-carbamoyl, di-C1-6 alkyl carbamoyl, C6-14 aryl-carbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbamoyl, C₁₋₆ alkyl-thiocarbonyl, C₃₋₆ cycloalkyl-thiocarbonyl, C₁₋₆ alkoxy-thiocarbonyl, C₆₋₁₄ aryl-thiocarbonyl, C7-16 aralkyl-thiocarbonyl, C6-14 aryloxy-thiocarbonyl, C7-16 aralkyloxy-thiocarbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbonyl, thiocarbamoyl, mono-C1-6 alkyl-thiocarbamoyl, di-C1.8 alkyl-thiocarbamoyl, C6.14 aryl-thiocarbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbamoyl, mono-C₁₋₆ alkylsulfamoyl, di-C₁₋₆ alkylsulfamoyl, C₆₋₁₄ arylsulfamoyl, C₁₋₆ alkylsulfonyl, C6.14 arylsulfonyl, C1.6 alkylsulfinyl, C6.14 arylsulfinyl, sulfino, sulfo, C1.6 alkoxysulfinyl, C6.14 aryloxysulfinyl, C1.6 alkoxysulfonyl and C6.14 aryloxysulfonyl, which may have 1 to 5 substituent(s) selected from Substituent Group A described above:

each of R2 and R3 is any of the following (i) to (iii):

(i) a hydrogen atom.

- (ii) a C_{1-6} alkyl group, C_{2-6} alkenyl group, C_{2-6} alkynyl group, C_{3-6} cycloalkyl group, C_{3-6} cycloalkenyl group, C_{3-6} and C_{3-6} cycloalkenyl group, C_{3-6} and C_{3-6} and C_{3-6} are a sum of C_{3-6} are a sum of C_{3-6} are a sum of C_{3-6} and C_{3-6} are
- (iii) an acyl group selected from formyl, carboxy, carbamoyl, C_{-6} alkyl-carbonyl, C_{-6} , acyloalkyl-carbonyl, C_{-6} , at properties of the carbonyl carbonyl, C_{-6} , and C_{-76} are analysically carbonyl, C_{-6} , and C_{-76} are analysically carbonyl, C_{-6} and C_{-76} are analysically carbonyl, C_{-6} and C_{-76} are analysically carbonyl, and C_{-76} are analysically carbonyl, and C_{-76} are analysically carbonyl, and C_{-76} are analysically carbonyl, C_{-76} are analysically carbonyl, C_{-76} are are are a consistent of C_{-76} and C_{-76} are a consistent of C_{-76} and $C_{$

 ${\rm R}^2$ and ${\rm R}^3$ may be taken together with the adjacent carbon atom to form a ${\rm C}_{3:6}$ cycloalkane or 3- to 8-membered heterocyclic ring which may have 1 to 3 substituent(s) selected from ${\rm C}_{1:6}$ alkyl, ${\rm C}_{6:14}$ aryl, ${\rm C}_{7:16}$ aralkyl, amino, mono- ${\rm C}_{1:6}$ alkylamino, mono- ${\rm C}_{1:6}$ alkylamino, di- ${\rm C}_{6:14}$ arylamino and 4- to 10-membered aromatic heterocyclic group:

R4 is

5

10

15

20

25

30

35

40

45

50

55

- (i) a hydrogen atom,
- (ii) a cyano group.
- (iii) a C_{16} alklyl group, C_{26} alkenyl group, C_{26} alkynyl group, C_{36} cycloalkyl group, $C_{3.6}$ cycloalkenyl group, C_{6-14} anyl group or C_{7-16} aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above,

(iv) an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₂₋₆ cycloalkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₂₋₁₆ arklova-carbonyl, C₂₋₁₆ alkyl-carbamoyl, G₂₋₁₆ arklova-carbonyl, C₂₋₁₆ arklova-carbonyl, C₂₋₁₆ alkyl-thiocarbonyl, C₂₋₃₆ cy-cloalkyl-thiocarbonyl, C₂₋₁₆ arklova-thiocarbonyl, C₂₋₁₆ arklova-thiocarbonyl, G₂₋₁₆ arklova-thiocarbonyl, G₂₋₁₆

(v) a group represented by Formula: -OR4

(R⁴ is

<1> a hydrogen atom,

<2> a C₁₋₈ alkyl group, C₂₋₆ alkenyl group, C₂₋₆ alkynyl group, C₃₋₆ cycloalkyl group, C₃₋₆ cycloalkenyl group, C₃₋₁₄ aryl group or C₇₋₁₅ aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above, or

<3> an acyl group selected from formyl, carboxy, carbamoyl, C_{1,6} alkyl-carbonyl, C_{2,6} cycloalkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₄ aryl-carbonyl, C₇₋₁₆ aralkyl-carbonyl, C₆₋₁₄ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C1-8 alkyl-carbamoyl, C8-14 aryl-carbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbamoyl, C₁₋₆ alkyl-thiocarbonyl, C3-6 cycloalkyl-thiocarbonyl, C1-6 alkoxy-thiocarbonyl, C6-14 aryl-thiocarbonyl, C7.16 aralkyl-thiocarbonyl, C6.14 aryloxy-thiocarbonyl, C7.16 aralkyloxy-thiocarbonyl, (5. or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbonyl, thiocarbamoyl, mono-C1-6 alkyl-thiocarbamoyl, di-C1-6 alkylthiocarbamoyl, C₆₋₁₄ aryl-thiocarbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbamoyi, mono-C₁₋₆ alkylsulfamoyl, di-C₁₋₆ alkylsulfamoyl, C₆₋₁₄ arylsulfamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₄ arylsulfonyl, C_{1.6} alkylsulfinyl, C_{6.14} arylsulfinyl, sulfino, sulfo, C_{1.6} alkoxysulfinyl, C_{6.14} aryloxysulfinyl, C_{1.6} alkoxysulfonyl and C_{6,14} aryloxysulfonyl, which may have 1 to 5 substituent(s) selected from Substituent Group A described above);

R5 is any of the following (i) to (v):

- (i) a hydrogen atom,
- (ii) a C_{16} alkyl group, C_{26} alkenyl group, C_{26} alkynyl group, C_{36} cycloalkyl group, C_{6} cycloalkenyl group, C_{6-14} anyl group or C_{7-16} aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above,
- (iii) an acyl group selected from formyl, carboxy, carbamoyl, $C_{1.6}$ alkyl-carbonyl, $C_{3.6}$ cycloalkyl-carbonyl, $C_{1.6}$ alkoxy-carbonyl, $C_{6.14}$ aryl-carbonyl, $C_{7.16}$ aralkyl-carbonyl, $C_{6.14}$ aryloxy-carbonyl, $C_{7.16}$ aralkyl-carbonyl, $C_{6.14}$ aryloxy-carbonyl, $C_{7.16}$ aralkyloxy-carbonyl, $C_{7.16}$ aralkyl-carbonyl, $C_{7.16}$

carbony, (6- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(a) selected from nitrogen, sulfur and oxygen atoms)-carbony, inone-C₁₊₆ alight-carbany, (i-C₁₊₆ alight)-carbany, (i-C₁₊₆ alight)-carbany, (i-C₁₊₆ alight)-carbany, (i-C₁₊₆ alight)-carbany, (i-C₁₊₆ alight)-carbany), (i-C₁₊₆ alight)-carbany), (i-C₁₊₆ alight)-carbany), (i-C₁₊₆ alight)-thiocarbony), (i-C

(iv) a 5- to 14-membered heterocyclic ring containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group A described above.

(v) a halogen atom;

each of \mathbb{R}^6 and \mathbb{R}^7 is (i) a hydrogen atom, (ii) a \mathbb{C}_{1+6} alklyl group, \mathbb{C}_{2+6} alkenyl group, \mathbb{C}_{2+6} alklynyl group, \mathbb{C}_{2+6} alklynyl group, \mathbb{C}_{3+6} arallyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above,

 ${\sf R}^6$ and ${\sf R}^7$ may be taken together with the adjacent carbon atom to form a ${\sf C}_{3.8}$ cycloalkane or 3- to 8-membered heterocyclic ring which may have 1 to 3 substituent(s) selected from ${\sf C}_{1.6}$ alkyl, ${\sf C}_{6.14}$ aryl, armino, mono- ${\sf C}_{1.6}$ alkylamino, mono- ${\sf C}_{1.6}$ alkylamino, oi- ${\sf C}_{6.14}$ arylamino and 4- to 10-membered aromatic heterocyclic group:

each of ${\sf F}^0$ and ${\sf R}^0$ is () a hydrogen atom, (ii) a ${\sf C}_{1,6}$ alkyl group, ${\sf C}_{2,6}$ alkenyl group, ${\sf C}_{2,6}$ alkenyl group, ${\sf C}_{2,6}$ alkenyl group, ${\sf C}_{3,6}$ cycloalkyl group, ${\sf C}_{3,6}$ cycloalkyl group, ${\sf C}_{3,6}$ aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above.

X IS

5

10

15

20

25

30

25

40

45

50

55

(i) a bond.

(ii) an oxygen atom,

(iii) an optionally oxidized sulfur atom,

(iv) a C₁₋₆ alikyl group, C₂₋₆ alikenyl group, C₂₋₆ alikynyl group, C₃₋₆ cycloalikyl group, C₃₋₆ cycloalikenyl group or C₇₋₆ aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above,

(v) a nitrogen atom having an acyl group selected from formyl, carboxy, carbamoyl, C_{14} allyl-carbonyl, C_{34} exploalslyl-carbonyl, C_{14} allxoxy-carbonyl, C_{6+4} aryl-carbonyl, C_{7-16} arallxyloxy-carbonyl, C_{16} are former of the terrocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mon- C_{14} allxyl-carbonyl, C_{6+16} aryl-carbonyl, explored poly allxyl-carbonyl, C_{6+16} aryl-carbonyl, C_{6+16} aryl-carbonyl, C_{6+16} aryl-carbonyl, C_{6+16} aryl-carbonyl, C_{6+16} aryl-shicearbonyl, C_{7+16} arallyl-thicearbonyl, C_{7+16} are alkyl-thicearbonyl, C_{7+16} a

(vi) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group A described above;

Υi

<1> a methylene group which may have 1 to 5 substituent(s) selected from Substituent Group A described

above or

<2> a carbonyl group:

n is 0 or 1.

5

10

15

20

25

30

25

40

45

50

55

[5] the compound according to the above-mentioned [2] or [3] wherein R¹ is (1) an optionally substituted aromatic hydrocarbon group, (2) an optionally substituted heterocyclic group, (3) an optionally substituted hiphatic cyclic hydrocarbon group or (4) a group represented by Formula: 1.41° wherein L is methylene, carbonyl or an optionally substituted mitrogen atom, R¹¹a is a hydrogen atom, optionally substituted aromatic group, optionally substituted mitrogen atom, optionally substi

[6] the compound according to the above-mentioned [5] wherein i

R1 is any of the following (i) to (iv):

- (i) a C₆₋₁₄ aryl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above.
- (ii) a 5 to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group A described above,
- (iii) a C₃₋₆ cycloalkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above,
- (iv) a group represented by Formula: -L-R^{1a} wherein L is (a) a methylene, (b) a carbonyl or (c) a nitrogen atom which may be substituted by the following (ia) to (iiia):

(ia) a hydrogen aton

- (iia) a C₁₋₆ alkyl group, C₂₋₆ alkenyl group, C₂₋₆ alkynyl group, C₃₋₆ cycloalkenyl group, C₃₋₆ aryl group or C₇₋₆ aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above.
- (iiia) an acyl group selected from formyl, carboxy, carbamoyl, C1.6 alkyl-carbonyl, C2.6 cycloalkylcarbonyl, C1.6 alkoxy-carbonyl, C6.14 aryl-carbonyl, C7.16 aralkyl-carbonyl, C6.14 aryloxy-carbonyl, C7.16 aralkyloxy-carbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mono-C_{1.6} alkyl-carbamoyl, di-C1-6 alkyl-carbamoyl, C6-14 aryl-carbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbamoyl, C₁₋₆ alkyl-thiocarbonyl, C₃₋₆ cycloalkyl-thiocarbonyl, C₁₋₆ alkoxy-thiocarbonyl, C₆₋₁₄ aryl-thiocarbonyl, C_{7-16} aralkyl-thiocarbonyl, C_{6-14} aryloxy-thiocarbonyl, C_{7-16} aralkyloxy-thiocarbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbonyl, thiocarbamoyl, mono-C_{1,6} alkyl-thiocarbamoyl, di-C1-8 alkyl-thiocarbamoyl, C6-14 aryl-thiocarbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbamoyl, mono-C_{1.6} alkylsulfamoyl. di-C_{1.6} alkylsulfamoyl, C_{6.14} arylsulfamoyl, C_{1.6} alkylsulfonyl, C6.14 arylsulfonyl, C1.6 alkylsulfinyl, C6.14 arylsulfinyl, sulfino, sulfo, C1.6 alkoxysulfinyl, C6.14 aryloxysulfinyl, C1-6 alkoxysulfonyl and C6-14 aryloxysulfonyl, which may have 1 to 5 substituent(s) selected from Substituent Group A described above,

R1a is

(i) a hydrogen atom.

- (ii) <1> a $C_{5,14}$ anyl group or <2> a 5- to 14-membered aromatic heterocyclic group containing 1 to 4 heteroatom(s) selected from 1 or 2 kind(s) of nitrogen, sulfur and oxygen atoms in addition to carbon atoms, both of which may contain 1 to 5 substituent(s) selected from Substituent Group A described above, (iii) a hydroxy group which may have a $C_{1,6}$ alkyl group, $C_{2,6}$ alkenyl group, $C_{2,6}$ alkenyl group, $C_{2,6}$ alkenyl group, $C_{2,6}$ alkenyl group which may have 1 to 5 substituent (Soup Selected from Substituent Group A described above.
- (iv) an amino group which may be substituted by the following (ia) to (iiia):

(ia) a hydrogen atom,

(iia) a C1-6 alkyl group, C2-6 alkenyl group, C2-6 alkynyl group, C3-6 cycloalkyl group, C3-6 cycloalkenyl

group, C₆₋₁₄ anyl group or C₇₋₁₈ aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above.

(iiia) an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₃₋₆ cycloaikyl-carbonyl, C₆₋₁₄ aryl-carbonyl, C₇₋₁₆ aralkyl-carbonyl, C₆₋₁₄ aryl-carbonyl, C₇₋₁₆ aralkyl-carbonyl, C₇₋₁₆ alkyl-carbonyl, C₇₋₁₆ aralkyl-thiocarbonyl, C₇₋₁₆ alkyl-thiocarbonyl, C₇₋₁₆ alkyl-thi

[7] the compound according to the above-mentioned [2] wherein R1 is a group represented by Formula:

(wherein R¹⁹ is a hydrogen atom or an optionally substituted hydrocarbon group or optionally substituted heterocyclic group, Ring D is an optionally substituted aromatic hydrocarbon ring or optionally substituted heterocyclic group, E is a bond, methylene, oxygen atom, optionally oxidized sulfur atom, optionally substituted hitrogen atom or a group represented by Formula: $-CS-O-, -CO-O-, S-CO-, -(CH_2)_c-CO-, NRIC-CO-(CH_2)_m-, -NRIC-CO-(CH_2)_m-, NRIC-CO-(CH_2)_m-, NRIC-CO-(CH_2)_m-NRIC-NRIC-(CH_2)_m-NRIC-(CH_2)_m-NRIC-NRIC-(CH_2)_m-NRIC-NRIC-(CH_2)_m-NRIC-NRIC-(CH_2)_m-NRIC-NRIC-(CH_2)_m-NRIC-NRIC-(CH_2)_m-NRIC-NRIC-(CH_2)_m-NRIC-(CH_2)_m-NRIC-(CH_2)_m-NRIC-NRIC-(CH_2)_m-NRIC-($

R1b is

5

10

15

20

25

30

25

40

45

50

55

(i) a C_{1-6} alkyl group, C_{2-6} alkenyl group, C_{2-6} alkynyl group, C_{3-6} cycloalkyl group, C_{3-6} cycloalkyl group, C_{3-6} cycloalkenyl group, C_{6-14} anyl group or C_{7-16} aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above, or,

(ii) a 5 - to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group A described above;

Ring D is (i) a C₆₋₁₄ aryl ring which may have 1 to 5 substituent(s) selected from Substituent Group A described above or (ii) a 5- to 14-membered heterocyclic ring containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group A described above;

E is any of the following (i) to (viii):

- (i) a bond,
- (ii) methylene.
- (iii) an oxygen atom.
 - (iv) an optionally oxidized sulfur atom,
 - (v) a nitrogen atom having a C_{1.6} alkyl group, C_{2.6} alkenyl group, C_{2.6} alkynyl group, C_{3.6} cycloalkyl group, C_{3.6} cycloalkyl group, C_{6.14} aryl group or C_{7.6} aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above.

(vi) a nitrogen atom having an acyl group selected from formyl, carboxy, carbamoyl, C_{1.6} alkyl-carbonyl, C3.6 cycloalkyl-carbonyl, C1.6 alkoxy-carbonyl, C6.14 aryl-carbonyl, C7.16 aralkyl-carbonyl, C6.14 aryloxycarbonyl, C7-16 aralkyloxy-carbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di- $C_{1.6}$ alkyl carbamoyl, $C_{6.14}$ aryl-carbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbamoyl, C_{1.6} alkyl-thiocarbonyl, C3-6 cycloalkyl-thiocarbonyl, C1-6 alkoxy-thiocarbonyl, C6-14 aryl-thiocarbonyl, C7-16 aralkyl-thiocarbonyl, C₆₋₁₄ aryloxy-thiocarbonyl, C₇₋₁₆ aralkyloxy-thiocarbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbonyl, thiocarbamoyl, mono-C1-6 alkyl-thiocarbamoyl, di-C1-6 alkyl-thiocarbamoyl, C6-14 aryl-thiocarbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom (s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbamoyl, mono-C₁₋₆ alkylsulfamoyl, di-C₁₋₆ alkylsulfamoyl, C6-14 arylsulfamoyl, C1-6 alkylsulfonyl, C6-14 arylsulfonyl, C1-6 alkylsulfinyl, C6-14 arylsulfinyl, sulfino, sulfo, C_{1.6} alkoxysulfinyl, C₆₋₁₄ aryloxysulfinyl, C_{1.6} alkoxysulfonyl and C₆₋₁₄ aryloxysulfonyl, (vii) a nitrogen atom having a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group A described above;

(ia) a hydrogen atom, (iia) a C₁₋₆ alkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above, or.

(iiia) an acyl group selected from formyl, carboxy, carbamoyl, C1-6 alkyl-carbonyl, C3-6 cycloalkylcarbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₄ aryl-carbonyl, C₇₋₁₆ aralkyl-carbonyl, C₆₋₁₄ aryloxy-carbonyl, C7.16 aralkyloxy-carbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mono-C1-6 alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₄ aryl-carbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbarnoyl, C₁₋₆ alkyl-thiocarbonyl, C₃₋₆ cycloalkyl-thiocarbonyl, C₁₋₆ alkoxy-thiocarbonyl, C₆₋₁₄ aryl-thiocarbonyl, C_{7,18} aralkyl-thiocarbonyl, C_{6,14} aryloxy-thiocarbonyl, C_{7,18} aralkyloxy-thiocarbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbonyl, thiocarbamoyl, mono-C1-6 alkyl-thiocarbamoyl, di-C1-6 alkyl-thiocarbamoyl, C6-14 aryl-thiocarbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbamoyl, mono-C₁₋₆ alkylsulfamoyl, di-C₁₋₆ alkylsulfamoyl, C₆₋₁₄ arylsulfamoyl, C₁₋₆ alkylsulfonyl, C6.14 arylsulfonyl, C1.6 alkylsulfinyl, C6.14 arylsulfinyl, sulfino, sulfo, C1.6 alkoxysulfinyl, C6.14 aryloxysulfinyl, C_{1,6} alkoxysulfonyl and C_{6,14} aryloxysulfonyl, which may have 1 to 5 substituent(s) selected from Substituent Group A described above:

k is 0 or 1, m is an integer of 0 to 3).

[9] the compound according to the above-mentioned [7] wherein

P1b is

5

10

15

20

25

30

35

40

45

50

55

(1) a $C_{1.6}$ alkyl group [this $C_{1.6}$ alkyl group may have a substituent selected from a halogen atom, cyano, hydroxy, $C_{1.6}$ alkoy-carbonyl, $d-C_{1.6}$ alkyl-carbonyl-canio. Bailylaraino, polytonally halogenated $C_{1.6}$ alkyl-carbonyl-canio. (5- to 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)- $C_{1.6}$ alkyl-carbonyl- $C_{1.6}$ alkyl-carbonyl-canio, selected from nitrogen, sulfur and introgen in addition to carbon atoms)- $C_{1.6}$ alkyl-carbonyl- $C_{1.6}$ alkyl-carbonyl-canio, $C_{1.6}$ alkyl-carbonyl-canion, $C_{1.6}$ alkyl-carbonyl-canion, $C_{1.6}$ alkyl-sulfuring, $C_{1.6}$ alkyl-sulfuring, $C_{1.6}$ alkyl-sulfuring, $C_{1.6}$ alkyl-sulfuring, $C_{1.6}$ alkyl-sulfuring, $C_{1.6}$ alkyl-sulfuring, $C_{1.6}$ alkyl-carbonyl-($C_{1.6}$ alkyl-carbonyl- $C_{$

(2) a C3.6 cycloalkyl group,

(3) a \mathbb{C}_{0+14} any group (this \mathbb{C}_{0+14} any group may have a substituent selected from \mathbb{C}_{1+6} alkoy, amino, carboxy, optionally halogenated \mathbb{C}_{1+6} alkyl-carbonylamino, \mathbb{C}_{1+6} alkoy-carbonylamino, lomylamino, urido, \mathbb{C}_{1+6} alkylsulfonylamino, \mathbb{C}_{1+6} alkylsulfonylamino, \mathbb{C}_{1+6} alkylsulfonylamino, optionally \mathbb{C}_{1+6} alkyl-carbarnoyl and \mathbb{C}_{7+16} alkyl-carbarnoyl and \mathbb{C}_{7+16} alkyl-carbarnoyl and \mathbb{C}_{7+16} alkyl-carbarnoyl and \mathbb{C}_{7+16} alkyl-carbarnoyl and \mathbb{C}_{7+16}

(4) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms [this heterocyclic group may be substituted by 1 or 2 substituent(s) selected from a halogen atom, C₁₄, a laylk, catomyloxy-C₁₋₆ alkly, C₁₋₆ alkly, Catomyloxy-C₁₋₆ alkly, C₁₋₆ alkly-catomyloxy-C₁₋₆ alkly, C₁₋₆ alkly, catomyloxy-C₁₋₆ alkly, C₁₋₆ alkly, catomyloxy-C₁₋₆ alkly, C₁₋₆ alkly, catomyloxy-C₁₋₆ alkly, catomylo

Ring D is (i) a C₈₋₁₄ aryl ring or (ii) a 5- to 14-membered heterocyclic ring containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms;

E is

5

10

15

20

25

30

25

40

45

50

55

- (i) a bond,
- (ii) methylene,
- (iii) O,
 - (iv) S,
 - (v) SO,
 - (vi) SO₂,
 - (vii) -NH-,
 - (viii) -N(C₁₋₆ alkyl)-,
 - (ix) -N(C1.6 alkyl-carbonyl)-,
 - (x) -N(C₁₋₆ alkoxy-carbonyl)-,
 - (xi) -N(C₁₋₆ alkyl-sulfonyl)-,
 - (xii)-CO-O-,
 - (xiii)-S-CO-
 - (xiv) a group represented by Formula: -(CHo),-CO wherein k is 0 or 1.
 - (xv) -NR²-CC-(CH₂)_{m1}- wherein R¹ is a hydrogen atom or $C_{1,6}$ alkoxy-carbonyl or $C_{1,6}$ alkyl group which may be substituted by a heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen, suffur atoms and the like in addition to carbon atoms, and m1 is an integer of 0 to 3,
 - (xvi) a group represented by Formula -NR9-SO₂-(CH₂)_{m2}- wherein R9 is a hydrogen atom or C₁₋₆ alkylsulfonyl group and m2 is 0,
 - (xvii) a group represented by Formula -SO₂-NR^h-(CH₂)_{m3}- wherein R^h is a hydrogen atom or C₁₋₆ alkyl group and m3 is 0 or 1,
 - (xviii) a group represented by Formula -O-CS-NRI- $(CH_2)_{m4}$ wherein R1 is a hydrogen atom or C_{1-6} alkyl group and m4 is 0 or 1,
 - (xix) a group represented by Formula -NRi-CO-NR^{k-}(CH_2)_{m5}- wherein Ri is a hydrogen atom or $C_{1.6}$ alkyl group, Ri is a hydrogen atom or $C_{1.6}$ alkyl group and m5 is 0 or 1,
 - (xx) a group represented by Formula -NRL-CO-CH₂-(CH₂)_{m6}-NR^m- wherein R^L is a hydrogen atom or C₁₋₆ alkyl group, R^m is a hydrogen atom or C₁₋₆ alkyl group and m6 is 0 or 1.

[10] the compound according to the above-mentioned [2] wherein R1 is a group represented by Formula:

wherein Hal is a halogen atom, Ring D is defined as described in the above-mentioned [7], [11] the compound according to the above-mentioned [2] wherein \mathbb{R}^1 is a group represented by Formula:

wherein each symbol is defined as described in the above-mentioned [7] or a group represented by Formula;

wherein each symbol is defined as described in the above-mentioned [7], each of R² and R³ is a hydrogen atom or optionally substituted hydrocarbon group, and R² and R³ may be taken together with the adjacent carbon or to form an optionally substituted 3- to 8-membered ring, R⁴ is a hydrogen atom, oyeno group, optionally substituted hydrocarbon group or a group represented by Formula: $-OR^4$ (wherein R⁴ is a hydrogen atom, oyeno group, optionally substituted hydrocarbon group or acyl group), R³ is an optionally substituted hydrocarbon group, each of R⁶ and R⁷ is an optionally substituted hydrocarbon group, R⁶ and R⁷ may be taken together with the adjacent carbon atom to form an optionally substituted any to 8-membered ring, each of R⁸ and R⁸ is a hydrogen atom, X is an oxygen atom or an optionally oxidized sulfur atom, Y is methylene which may have 1 or 2 C_{1.6} alkyl group(s) and n is 0 or 1.

[12] the compound according to the above-mentioned [2] wherein

R1 is.

5

10

15

20

25

30

25

40

45

50

55

- (i) a C₆₋₁₄ aryl group which may have 1 to 3 substituent(s) selected from the following (1) to (23):
 - (1) a halogen atom,
 - (2) a nitro group.
 - (3) a C₁₋₆ alkyl group

[his C- $_{\rm c_1}$ allxyl group may have a substituent selected from a halogen atom, cyano, carbarnoyl, C1 $_{\rm c_2}$ alkyl-carbarnoyl, C1 $_{\rm c_3}$ alkyl-carbarnoyl, C1 $_{\rm c_3}$ alkyl-carbarnoyl, C5 $_{\rm c_3}$ alkyl-carbarnoyl, C5 $_{\rm c_3}$ alkyl-carbarnoyl, C5 $_{\rm c_3}$ alkyl-carbarnoyl, C5 $_{\rm c_3}$ alkyl-carbarnoyl, C1 $_{\rm c_3}$ alkyl-carbarnoyl, c3 $_{\rm c_3}$ alkyl-carbarnoyl, C1 $_{\rm c_3}$ alkyl-c

- (4) a C₃₋₆ cycloalkyl group,
- (5) a C₆₋₁₄ aryl group
- $\begin{array}{ll} (T_{1} \otimes C_{2+1} \otimes n_{3}) = (T_{1} \otimes n_{3}) = (T_{1} \otimes n_{3}) \\ (T_{1} \otimes C_{2+1} \otimes n_{3}) = (T_{1} \otimes n_{3}) = (T_{1} \otimes n_{3}) \\ (T_{1} \otimes C_{2+1} \otimes n_{3}) = (T_{1} \otimes n_{3}) = (T_{1} \otimes n_{3}) \\ (T_{1} \otimes n_{3}) = (T_{1} \otimes n_{3}) = (T_{1} \otimes n_{3}) \\ (T_{1} \otimes n_{3}) = (T_{1} \otimes n_{3}) = (T_{1} \otimes n_{3}) \\ (T_{2} \otimes n_{3}) = (T_{1} \otimes n_{3}) = (T_{1} \otimes n_{3}) \\ (T_{2} \otimes n_{3}) = (T_{1} \otimes n_{3}) \\ (T_{2} \otimes n_{3}) = (T_{1} \otimes n_{3}) \\ (T_{2} \otimes n_{3}) = (T_{2} \otimes$
- (6) a C1-6 alkoxy group which may have a halogen atom or C1-6 alkoxy-C6-14 aryl,
- (7) a C₆₋₁₄ aryloxy group,
- (8) a C₁₋₆ alkylthio group which may have a carbamoyl,
- (9) a C1.6 alkylsulfinyl group which may have a carbamoyl,
- (10) a C₆₋₁₄ arylthio group,
- (11) a hydroxy group,
- (12) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen,

sulfur and oxygen atoms [this heterocyclic group may have a substituent selected from oxo, carboxy-C₁₋₆ alkyl, C₁₋₆ alkyl, C

(13) a carboxy group,

5

10

15

20

25

30

35

40

45

50

55

- (14) a group represented by Formula: -CO-Hal (Hal is a halogen atom).
- (15) a C₁₋₆ alkyl-carbonyl group,
- (16) a C1-6 alkyl-sulfonyl group,
- (17) a C₁₋₆ alkoxy-carbonyl group,
- (18) a sulfamovi group

[this sulfamoyl group may have 1 or 2 substituent(s) selected from C_{1-6} alkyl, carbamoyl- C_{1-6} alkyl, C_{1-6} alkoxy-carbonyl- C_{1-6} alkyl, (5- to 8-membered heterocyclic ring which may have an oxo group) $-C_{6-16}$ alkyl and C_{1-6} alkyl-carbonylamino- C_{6-14} aryl],

(19) a group represented by Formula: -NRaRb

[each of Ra and Rb is (i) a hydrogen atom, (ii) a C1.6 alkyl, (iii) a (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-C1.6 alkyl, (iv) a C1.6 alkoxy-carbonyl-C1.6 alkyl, (v) a di-C1.6 alkylamino-methylene-sulfamoyl-C₁₋₈ alkyl, (vi) a carbamoyl-C₁₋₆ alkyl, (vii) a sulfamoyl-C₁₋₆ alkyl, (viii) a C₁₋₆ alkyl-sulfonyl, (ix) a C_{1,6} alkoxy-carbonyl, (x) a di-C_{1,6} alkoxy-carbonyl-C_{2,6} alkenyl. (xi) a C_{6,14} aryl, (xii) a 5- or 6-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms [this 5- or 6-membered heterocyclic group may have a substituent selected from amino, C₁₋₆ alkyl-carboxamido and C₁₋₆ alkyl-sulfonylamino], (xiii) an optionally halogenated C₁₋₆ alkyl-carbonyl, (xiv) a C₁₋₆ alkylthio-C₁₋₆ alkyl-carbonyl, (xv) a C₁₋₆ alkylsulfinyl-C₁₋₆ alkyl-carbonyl, (xvi) a C1.8 alkylsulfonyl-C1.8 alkyl-carbonyl, (xvii) an amino-C1.8 alkyl-carbonyl, (xviii) an optionally halogenated C₁₋₆ alkyl-carbonyl-amino-C₁₋₆ alkyl-carbonyl, (xix) a C₆₋₁₄ aryl-carbonyl, (xx) a carboxy-C₆₋₁₄ aryl-carbonyl, (xxi) an optionally C₁₋₆ alkyl-esterified phosphono-C₁₋₆ alkyl-C₆₋₁₄ aryl-carbonyl, (xxii) a (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have a halogen atom, oxo or a C1.6 alkoxy-carbonyl)-carbonyl, (xxiii) a (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-C_{1,8} alkyl-carbonyl, (xxiv) a C₈₋₁₄ aryl-oxy-carbonyl, (xxv) a carboxy-C₁₋₈ alkyl, (xxvi) a carbamoyl, (xxvii) an optionally halogenated C1.8 alkylcarbamoyl, (xxviii) a C8.14 arylcarbamoyl which may have a C1.8 alkyl-carbonylamino, (xxix) a (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-carbamoyl, (xxx) a C2-6 alkenyl-carbonyl, (xxxi) a (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxo group)amino-C_{1.6} alkyl-carbonyl, (xxxii) a (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom (s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxo group)(C1,6 alkyl) amino-C1,6 alkyl-carbonyl, (xxxiii) a (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxo group)(C1-6 alkylcarbonyl)amino-C1-6 alkyl-carbonyl, (xxxiv) a C1-6 alkylthio-C_{1,6} alkylcarbonyl (sulfur atom may be oxidized), (xxxv) an optionally halogenated C_{1,6} alkylsulfonyl, (xxxvi) a sulfamoyl or (xxxvii) a C1-6 alkylsulfamoyl],

(20) a group represented by Formula: -C(=O)NRcRd

(20) a group repressua by Formus: \(\cdot\)-(\cdo\)-(\cdot\)-(\cdot\)-(\cdo\)-(\cdot\)-(\cdot\)-(\cdot\)-(\cdot\)-(\cdot\)-(\cdot\)-(\cdot

(21) a cyano group,

5

10

15

20

25

30

25

40

45

50

- (22) a mono- or di-C₁₋₆ alkylcarbamoylthio group,
- (23) a mono- or di-C₁₋₆ alkylthiocarbamoyloxy group;
- (ii) a 5 · to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 3 substituent(s) selected from the following (1) to (6):
 - (1) a halogen atom.
 - (2) a C₁₋₆ alkyl group (this alkyl may have a substituent selected from carboxy, C₁₋₆ alkoy, C₁₋₆ alkoy, actbonyl, mone-C₁₋₆ alkyl-amino, ch-C₁₋₆ alkyl-carbamoyl, C₁₋₆ alkyl-carbamoyl which may have a hydroxy, 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have oxo, (4- to 10-membered heterocyclic inig containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms-)-carbamoyl, carbamoyl-C₁₋₆ alkyl-carbamoyl],
 - (3) a C₁₋₆ alkoxy group,
 - (4) a C₆₋₁₄ aryl group,
 - (5) a C_{7-16} arallyl group [this C_{7-16} arallyl group may have a substituent selected from carboxy, C_{1-6} alkoxy-carbonyl, carbamoyl, C_{1-6} alkoy-carbamyl, arbamoyl, C_{1-6} alkoy-carbamyl which may have hydroxy, (4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms-bcarbamovil.
 - (6) a 4 1o 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, suffur and oxygen atoms in addition to carbon atoms (this 4- to 10-membered heterocyclic group may have a substituent selected from a C₁₋₆ alkyl, C₁₋₆ alkoxy-carbonyl, carbamoyl, oxy, 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms!.
 - (7) an oxo group,
 - (8) an oxide group:
 - (iii) a C3.6 cycloalkyl group; or,
 - (iii) a C₃₋₆ cycloaikyi group; or,
 - (iv) a group represented by Formula: -L'-R1e' (L' is methylene, carbonyl or an optionally substituted nitrogen atom, R1e' is (1) a hydrogen atom, (2) a C₆₋₁₄ anyl group which may have 1 to 5 substituent (s) selected from a C₁₋₈ alkyl and C₁₋₈ alkoys, (3) a hydroxy group which may be substituted by a C₁₋₈ alkyl group, (4) a C₁₋₈ alkyl-amino group which may be substituted by a 4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms, (6) a C₆₋₁₄ anyl-amino group or (7) a (4-to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms)-amino group).
- each of R² and R³ is (1) a hydrogen atom, (2) a C₁₊₆ alkyl group which may be substituted by <1> a halogen atom, <2> a hydroxy group which may be substituted by a bustituted selected from a C₁₊₆ alkyl, C₄₊₆ alkyl, carbonyl, C₁₊₆ alkyl-sulfonyl and C₇₊₆ aralkyl, <3> an amino group which may be substituted by 1 or 2 C₁₊₆ alkyl, C₄₊₆ alkyl-sulfonyl and C₆₊₁₄ anyl-carbonyl, <4> a 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from introgen, oxygen and sulfur atoms in addition to carbon atoms, <5- a thio group which may be substituted by a C₁₊₆ alkyl, <6> a C₁₊₆ alkyl-sulfinyl group or <7> a C₁₊₆ alkyl-sulfonyl group, or (3) a C₁₊₆ alkyl-subnowl group a C₁₊₆
- R2 and R3 may be taken together with the adjacent carbon atom to form a C2-8 cycloalkane,
 - R^i is (i) a hydrogen atom, (ii) a cyano group, (iii) a $C_{1,6}$ alkyl group [this $C_{1,6}$ alkyl group may have a substituent selected from (1) a halogen atom, (2) a cyano group, (3) a $C_{1,6}$ alkoyy group, (4) a hydroxy group, (5) an amino group, (6) a thi- $C_{1,6}$ alkylamino group, (7) a di- $C_{1,6}$ alkylamino group, (8) a thi- $C_{1,6}$ alkylamino group, (8) a thi- $C_{1,6}$ alkylamino group, (8) a thi- $C_{1,6}$ alkylamino group, (8) as thi- $C_{1,6}$ alkylamino group, (8) as thi- $C_{1,6}$ alkylamino group, (8) as thi- $C_{1,6}$ alkylamino group, (10) an ureido, (11) a carboxy, (12) a Carboxy, (13) a Carboxy, (14) a Carboxy, (15) a Carbo
 - (iv) a C₂₋₆ alkenyl group or (v) a formyl group;
 - X is a bond, oxygen atom, optionally oxidized sulfur atom, -NH- or -N(methyl)-,
 - when X is a bond, then (i) a hydrogen atom, (ii) a C₁₋₆ alkyl group or (iii) a halogen atom, when X is an oxygen atom, then (i) a hydrogen atom, (ii) a C₁₋₆ alkyl group [this C₁₋₆ alkyl group may have a

substituent selected from (1) a halogen atom, (2) a hydroxy group, (3) an amino group, (4) a carboxy, (6) a carboxy), (6) a carboxy-carbonyd, (7) a mono- C_{+4} alkly-carboxhoyd, (8) a d- C_{+4} alkly-carboxhoyd, (8) a 4 to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms), (iii) a C_{24} alkenyl group (x) a Caboxy (3) a Caboxy (3) a Caboxy (3) a Caboxy (4) a Caboxy (5) a mono- or di- C_{+4} alkyl-carbonyl group, (x) a C_{+6} alkoxy-carbonyl group, (x) a C_{+6} alkoxy-carbonyl group, (x) a mono- or di- C_{+6} alkyl-tillocarboxy group, (x) a C_{+6} alkyl-carboxy (5) a mono- or di- C_{+6} alkyl-tillocarboxy group, (x) a C_{+6} alkyl-tillocarboxy (5) a mono- or di- C_{+6} alkyl-tillocarboxy coup containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms (bits heterocyclic group may have a C_{+6} at C_{+6} alkyl-carbony group, (2) and C_{+6} alkyl-carbony group, (3) and C_{+6} alkyl-carbony group, (4) and C_{+6} alkyl-carbony group, (5) and C_{+6} alkyl-carbony group, (6) and C_{+6} alkyl-carbony group, (7) and C_{+6} alkyl-carbony group, (8) and C_{+6} alkyl-carbony group

when X is an optionally oxidized sulfur, then (i) a C_{16} alkyl group or (ii) a mono- or di- C_{16} alkyl-carbamoyl group, when X is -NH- or -N(methyl)-, then (i) a hydrogen atom, (ii) a C_{16} alkyl group [this C_{16} alkyl group may have a C_{16} alkoxy-carbonyl], (iii) formyl, (iv) a C_{16} alkyl-carbonyl group, (vi) a C_{16} alkoxy-carbonyl group, (vi) a carbamoyl group, (vii) a nono- or di- C_{16} alkyl-carbamoyl group or (viii) a C_{16} alkyl-sulfonyl group, (vi) a carbamoyl group, (vii) a carbamoyl group, (vii) a C_{16} alkyl-sulfonyl group, (viii) a C_{16} alkyl-sulfonyl group, (viii) a C_{16} alkyl-sul

each of R6 and R7 is a hydrogen atom or C1.6 alkyl group,

R6 and R7 may be taken together with the adjacent carbon atom to form a C3-8 cycloalkane,

Each of R8 and R9 is a hydrogen atom or a C1-6 alkyl group,

Y is <1> a methylene group which may have 1 or 2 C_{1.6} alkyl or hydroxy group or <2> a carbonyl group, n is 0 or 1,

20 [13] the compound according to the above-mentioned [3] wherein

R1 is.

5

10

15

25

30

25

40

45

50

- (i) a C₆₋₁₄ aryl group which may have 1 to 3 substituent(s) selected from the following (1) to (20):
 - a halogen atom.
 - (2) a nitro group,
 - (3) a C_{1,8} alkyl group [this C_{1,6} alkyl group may have a substituent selected from a halogen atom, cyano, carbamoyl, C_{1,6} alkyl-carbamoyl, C_{1,6} alkyl-carbonyloxy, C_{1,6} alkyl-carbonyloxy,
 - (4) a C₃₋₆ cycloalkyl group,
 - (5) a C₆₋₁₄ aryl group
- [this C_{6-14} anyl group may have a substituent selected from amino, optionally halogenated C_{1-6} alkyl-carbonylamino, ureido, C_{1-6} alkylsulfonylamino, $(C_{1-6}$ alkyl)(C_{1-6} alkylsulfonyl) amino, C_{1-6} alkoxy-carbonyl- C_{1-6} alkylamino],
 - (6) a C₁₋₆ alkoxy group which may have a halogen atom or C₁₋₆ alkoxy-C₆₋₁₄ aryl,
- (7) a C₆₋₁₄ aryloxy group,
 - (8) a C1-6 alkylthio group,
 - (9) a C1-6 alkylsulfinyl group,
 - (10) a C₆₋₁₄ arylthio group,
 - (11) a hydroxy group,
 - (12) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms [this heterocyclic group may have a substituent selected from oxo, carboxy-C₁₋₆ alkyl, C₁₋₆ alkyl,
 - (13) a carboxy group,
 - (14) a group represented by Formula: -CO-Hal (Hal is a halogen atom).
 - (15) a C₁₋₆ alkyl-carbonyl group,
 - (16) a C₁₋₆ alkyl-sulfonyl group,
 - (17) a C_{1.6} alkoxy-carbonyl group,
 - (18) a sulfamoyl group [this sulfamoyl group may have a substituent selected from a C₁₋₈ alkyl, carbamoyl-C₁₋₈ alkyl, (5-or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-C₁₋₈ alkyl,
 - (19) a group represented by Formula: -NRPP [each of R^a and R^b is (i) a hydrogen atom, (ii) a C₁₋₆ alkyl, (iii) a (5-or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, suffur and oxygen atoms in addition to carbon atoms)-C₁₋₆ alkyl, (iv) a C₁₋₆ alkoxy-carbony-[-C₁₋₆ alkyl, (iv) a C₁₋₆ alkoxy-[-C₁₋₆ alkyl, (iv) a C₁₋₆ alkyl,

(v) a di-C₁₋₈ alkylamino-methylene-sulfamoyl-C₁₋₈ alkyl, (vi) a carbamoyl-C₁₋₈ alkyl, (vii) a sulfia-moyl-C₁₋₈ alkyl, (viii) a C₁₋₈ alkivyl, (viii) a C₁₋₈ alkivyl-cya-carbonyl, (vi) a di-C₁₋₈ alkivyc-carbonyl, (viii) a di-C₁₋₈ alkivyc-carbonyl, (viii) a di-C₁₋₈ alkivyl-carbonyl selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms [this 5- or 6-membered heterocycle] corpus may have a substituent selected from anino, C₁₋₈ alkyl-carbonyamido and C₁₋₈ alkyl-carbonyl, (xiii) an optionally halogenated C₁₋₈ alkyl-carbonyl, (xiv) a C₁₋₈ alkyl-tiber (xiv) a C₁₋₈ alkyl-tiber (xiv) a C₁₋₈ alkyl-tiber (xiv) a C₁₋₈ alkyl-carbonyl, (xiv) a C₁₋₈ alkyl-

(20) a group represented by Formula: -C(=O)NRPR4 [each of Re and R4 is (i) a hydrogen atom, (ii) a C₁₋₆ alkyl, (iii) a (5- or 6-memberde heterocyclic ring containing 1 to 3 heteroatom(s) selected from introgen, sulfur and oxygen atoms in addition to carbon atoms)-C₁₋₆ alkyl, (vi) a carboxy-C₁₋₆ alkyl, (v) a C₁₋₆ alky-Q₁₋₆ alkyl, (vi) a carboxy-C₁₋₆ alkyl, (vi) a charboxy-C₁₋₆ alkyl, (vi) a C₁₋₆ alky-Q₁₋₆ alkyl, (vii) a C₁₋₆ alky-Q₁₋₆ alky-Q

(ii) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 3 substituent(s) selected from the following (1) to (8):

a halogen atom,

5

10

15

20

25

30

25

40

45

50

55

(2) a C₁₋₆ alkyl group [this alkyl may have a substituent selected from carboxy, C₁₋₆ alkoxy, C₁₋₆ alkoxy, C₁₋₆ alkoyl-amino, di-C₁₋₆ alkyl-amino, di-C₁₋₆ alkyl-carbamoyl which may have a hydroxy, 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nltrogen, sulfur and oxygen atoms in addition to carbon atoms which may have oxo, (4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms/b, carbamoyl, carbamoyl-C₁₋₆ alkyl-carbamoyl].

- (3) a C_{1,6} alkoxy group,
- (4) a C₆₋₁₄ aryl group,

(5) a C₇₋₁₆ aralkyl group (this C₇₋₁₆ aralkyl group may have a substituent selected from carboxy, C₁₋₆ alkoxy-carbonyl, carbamoyl, C₁₋₆ alkyl-carbamoyl which may have a hydroxy, (4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-carbamovil.

(6) a 4 - to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, suffur and oxygen atoms in addition to carbon atoms (fins 4 - to 10-membered heterocyclic group may have a substituent selected from a C₁₋₆ alkyl, C₁₋₆ alkoxy-carbonyl, carbamoyl, oxo, 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms).

- (7) an oxo group,
- (8) an oxide group;
- (iii) a C3-6 cycloalkyl group; or,

(iv) a group represented by Formula: -L'-R^{fat} (L' is methylene, carbonyl or -NH-, R^{fat} is (1) a hydrogen atom, (2) a $C_{61,4}$ anyl group which may have 1 to 5 substituent(s) selected from a $C_{1,6}$ alkyl and $C_{1,6}$ alkoxy, (3) a hydroxy group which may be substituted by a $C_{1,6}$ alkyl group, (4) a $C_{1,6}$ alkyl-amino group which may be substituted by a A-to 10-membered heterocyclic ring containing 1 to 3 heteroatom

(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms, (6) a C₆₋₁₄ aryl-amino group or (7) a (4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms)-amino group),

each of R² and R³ is (1) a hydrogen atom, (2) an optionally halogenated C₁₋₆ alkyl group or (3) a C₁₋₈ alkoxycarbonyl group.

R2 and R3 may be taken together with the adjacent carbon atom to form a C3-8 cycloalkane,

R⁴ is (i) a hydrogen atom, (ii) a C₁₋₆ alkyl group (this C₁₋₆ alkyl group may have a substituent selected from (1) a halogen atom, (2) a expan group, (3) a C₁₋₆ alkyygroup (a), (4) hydrowy group, (5) an amino group, (6) a mono-C₁₋₆ alkylamino group, (7) a di-C₁₋₆ alkylamino group, (8) a tri-C₁₋₆ alkylaminonium group, (9) a 4-to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from hitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxo, (10) a C₁₋₆ alkylino, (11) an ureido, (12) a carboxy, (13) a carboxyn, (14) a C₁₋₆ alkoxy-carboxynl, (15) a mono-C₁₋₆ alkyl-carboxmoyl, (16) a formylamino, (17) a C₁₋₆ alkyl-carboxmoyl or (iii) a C₂₋₆ alkyl-group;

X is a bond, oxygen atom, sulfur atom, -NH- or -N(methyl)-.

D5 io

5

10

15

20

25

30

25

40

45

50

55

when X is a bond, then (i) a hydrogen atom, (ii) a C₁₋₆ alkyl group or (iii) a halogen atom,

when X is an oxygen atom, then (i) a hydrogen atom. (i) a C₁₋₆ alkyl group (this C₁₋₆ alkyl group may have a substituent selected from (i) b a halogen atom. (2) a hydroy group. (3) an anning oroup, (4) a carboxy, (5) a carboxy, (6) a C₁₋₆ alkoy-carbornyl, (7) a mono-C₁₋₆ alkyl-carbornoyl, (8) a di-C₁₋₆ alkyl-carbornoyl, (9) a 4-to 10-membered heterocyclic group containing 1 to 5 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxol, (ii) iii a C₂₋₆ alkernyl group this C₂₋₆ alkyl-group, (vi) a C₁₋₆ alkyl-atomyl group, (vii) a C₁₋₆ alkyl-atomyl group, (vii) a C₁₋₆ alkyl-atomyl group, (vi) a C₁₋₆ alkyl-atomyl group, (vii) a C₁₋₆ alkyl-atomyl group containing 1 to 4 heteroschem(s) selected from nitrogen, sulfur and oxygen

atoms in addition to carbon atoms [this heterocyclic group may have a C₆₋₁₄ aryl], when X is a sulfur, then (i) a C₁₋₆ alkyl group or (ii) a mono- or di-C₁₋₆ alkyl-carbamoyl group,

when X is a NH- or -N(methyl)-, then (i) a hydrogen atom, (ii) a C₁₋₆ alkyl group [this C₁₋₆ alkyl group may have a C₁₋₆ alkoxy-carbonyl], (iii) formyl, (iv) a C₁₋₆ alkyl-carbonyl group, (v) a C₁₋₆ alkoxy-carbonyl group, (vi) a

carbamoyl group, (vii) a mono- or di-C₁₋₆ alkyl-carbamoyl group or (viii) a C₁₋₆ alkyl-sulfonyl group,

each of R⁶ and R⁷ is a hydrogen atom or C₁₋₆ alkyl group,

R⁶ and R⁷ may be taken together with the adjacent carbon atom to form a C₃₋₈ cycloalkane.

each of R⁸ and R⁹ is a hydrogen atom or a C₁₋₆ alkyl group,

Y is a methylene group which may have a hydroxy group or carbonyl group, n is 0 or 1.

[14] the compound according to the above-mentioned [2] wherein each of R2 and R3 is a C1_6 alkyl group.

[15] the compound according to the above-mentioned [2] wherein R4 is a hydrogen atom.

[16] the compound according to the above-mentioned [2] wherein each of R⁶ and R⁷ is a C₁₋₆ alkyl group,

[17] the compound according to the above-mentioned [2] wherein each of R9 and R9 is a hydrogen atom,

[18] the compound according to the above-mentioned [2] wherein n is 0.

[19] (i) 2-(Methysulfinyl)-M-[3-(3,4,8,9-letrahydro-6-methoxy-3,3,8,8-letramethylluro(2,3-h)isoquinoin-1-y)pinenylpactamice, (ii) N-(methysulforylp-N-16,3,4,8-9-letrahydro-6-methoxy-3,3,8,8-letramethylluro(2,3-h)isoquinoin-1-y)pinenzamide, (ii) N-(2-amino-2-oxoethyl)-3-(3,4,8,9-letrahydro-6-methoxy-3,3,8,8-letramethylluro(2,3-h)isoquinoin-1-y)pinenzamide, (iv) N-ethyl-3-(3,4,8,9-letrahydro-6-methoxy-3,3,8,8-letramethylluro(2,3-h)isoquinoin-1-y)pinenzamide, (iv) N-ethyl-3-(3,4,8,9-letrahydro-6-methoxy-3,3,8,8-letramethylluro(2,3-h)isoquinoin-1-y)pinenzamide, (iv) N-ethyl-3-(3,4,8,9-letrahydro-6-methoxy-3,3,8,8-letramethylluro(2,3-h)isoquinoin-1-y)pinenzamide, (iv) N-(2-amino-1-dimethyl-2-oxoethyl)-3-(3,4,8-9-letrahydro-6-methoxy-3,4,8-9-letrahydro-3,3,8-letramethylluro(2,3-h)isoquinoin-1-y)pinenzamide, (ix) 3-(6-ethoxy-3,4,8-9-letrahydro-3,3,8-8-letramethylluro(2,3-h)isoquinoin-1-y)pinenzamide, (ix) 3-(6-ethoxy-3,4,8-9-letrahydro-3,3,8-8-letramethylluro(2,3-h)isoquinoin-1-y)pinenzamide, (ix) N-(2-amino-1,1-dimethyl-2-oxoethyl)-3-(6-ethoxy-3,4,8-9-letrahydro-3,3,8-8-letramethylluro(2,3-h)isoquinoin-1-y)pinenzamide, (ix) N-(3-amino-1,1-dimethyl-2-oxoethyl)-3-(6-ethoxy-3,4,8-9-letrahydro-3,3,8-8-letramethylluro(2,3-h)isoquinoin-1-y)pinenzamide, (ix) N-(3-amino-1,1-dimethyl-2-oxoethyl)-3-(3-4,8-9-letrahydro-3,3,8-8-letramethylluro(2,3-h)isoquinoin-1-y)pinenzamide, (ix) N-(3-amino-1,1-dimethyl-2-oxoethyl)-3-(3-4,8-9-letrahydro-3,3,8-8-letramethylluro(2,3-h)isoquinoin-1-y)pinenzamide, (ix) N-(3-amino-1,1-dimethyl-2-oxoethyl)-3-(3-4,8-9-letrahydro-3-3,8-8-letramethylluro(2,3-h)isoquinoin-1-y)pinenzamide, (ix) N-(3-amino-1,1-dimethyl-2-oxoethyl)-3-(3-4,8-9-letrahydro-3-amino-1,3-amino-1)pinenzamide, (ix) N-(3-amino-1,3-amino-1)pinenzamide, (ix) N-(3-amino-1,3-amino-1)pinenzam

[20] a prodrug of a compound according to the above-mentioned [2],

[21] a process for producing a compound having a partial structure represented by Formula:

wherein R1 is defined as described in the above mentioned [2], or a salt thereof, comprising:

(1) reacting a compound having a partial structure represented by Formula:

5

15

20

25

30

25

45

50

55

wherein R^{10} is an optionally substituted vinyl group or allyl group, or a salt thereof with a compound represented by Formula: R^1 -CN or Formula: R^1 -CONH₂ wherein R^1 is defined as described above or a salt thereof, or,

(2) reacting a compound having a partial structure represented by Formula:

wherein \mathbf{R}^{11} is an optionally substituted methyl group, \mathbf{Z} is an optionally substituted hydroxy group or halogen atom or a salt thereof with a compound represented by Formula: \mathbf{R}^1 -CN wherein \mathbf{R}^1 is defined as described above or a salt thereof.

[22] a process for producing a compound according to the above-mentioned [2] comprising:

reacting a compound represented by Formula:

wherein each symbol is defined as described in the above-mentioned [2] or a salt thereof with a compound represented by Formula: R¹-CN or Formula: R¹-CONH₂ wherein R¹ is defined as described in the above-mentioned [2] or a salt thereof, or,

reacting a compound represented by Formula:

wherein Z is an optionally substituted hydroxy group or halogen atom, and other symbols are defined as described in the above-mentioned [2] or a salt thereof with a compound represented by Formula: R^1 -CN wherein R^1 is defined as described in the above-mentioned [2] or a salt thereof,

[23] a phosphodiesterase IV inhibitor comprising a compound having a partial structure represented by Formula:

wherein - - - is a single bond or double bond or a salt thereof.

5

10

15

20

25

30

25

45

55

[24] a pharmaceutical composition comprising a compound according to the above-mentioned [1] or a salt thereof, [25] a pharmaceutical composition comprising a compound according to the above-mentioned [2] or a salt or prodrug thereof,

[26] the pharmaceutical composition according to the above-mentioned [24] or [25] which is a phosphodiesterase IV inhibitor,

[27] the pharmaceutical composition according to the above-mentioned [23] to [26] which is a prophylactic or therapeutic agent against inflammatory diseases.

[28] the pharmaceutical composition according to the above-mentioned [23] to [26] which is a prophylactic or therapeutic agent against asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or disbetes.

[29] a pharmaceutical comprising (1) a compound having a partial structure represented by Formula:

wherein —— is a single bond or double bond or a salt thereof in combination with (2) a drug selected from antiasthma agents, antiallergic aegnets, anticholinergic agents, antiinflammatory agents, antibacterial agents, antifungal agents and antidiabetic acents.

[30] a pharmaceutical comprising (1) a compound according to the above-mentioned [1] or a salt thereof in combination with (2) a drug selected from antiastrium agents, antialerips agents, anticholinergic agents, antirinflammatory agents, antibacterial agents, antifungal agents and antidiabetic agents.

[31] a pharmaceutical comprising (1) a compound according to the above-mentioned [2] or a salt or producy thereof in combination with (2) a drug selected from antiasthma agents, antiallergic agents, anticholinergic agents, antiinflammatory agents, antibacterial agents, antifungal agents and antidiabetic agents,

[32] the pharmaceutical according to the above-mentioned [29] to [31] which is a prophylactic or therapeutic agent against inflammatory diseases,

[33] the pharmaceutical according to the above-mentioned [29] to [31] which is a prophylactic or therapeutic agent

against asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes.

[34] Escherichia coli BL21/pPDE4D3 (FERM BP-7075).

5

10

15

20

25

30

25

45

50

55

[35] a method for inhibiting a phosphodiesterase IV comprising administering an effective amount of a compound having a partial structure represented by Formula:

wherein - - - is a single bond or double bond or a salt thereof to a mammal,

[36] a method for preventing or treating inflammatory diseases comprising administering an effective amount of a compound having a partial structure represented by Formula:

wherein - - - is a single bond or double bond or a salt thereof to a mammal,

[37] a method for preventing or treating asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoinnumue disease or diabetes comprising administering an effective amount of a compound having a partial structure represented by Formula:

40 wherein - - - is a single bond or double bond or a salt thereof to a mammal,

[38] a method for inhibiting a phosphodiesterase IV comprising administering an effective amount of the compound according to the above-mentioned [1] or a salt thereof to a mammal,

[39] a method for preventing or treating inflammatory diseases comprising administering an effective amount of the compound according to the above-mentioned [1] or a salt thereof to a mammal,

[40] a method for preventing or treating asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or disabetes comprising administering an effective amount of the compound according to the above-mentioned [1] or a salt thereof to a mammal.

[41] a method for inhibiting a phosphodiesterase IV comprising administering an effective amount of the compound according to the above-mentioned [2] or a sait or prodrug thereof to a mammal.

[42] a method for preventing or treating inflammatory diseases comprising administering an effective amount of the compound according to the above-mentioned [2] or a salt or prodrug thereof to a mammal.

[43] a method for preventing or treating asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes comprising administering an effective amount of the compound according

to the above-mentioned [2] or a salt or prodrug thereof to a mammal,

[44] a method for preventing or treating inflammatory diseases comprising administering (1) an effective amount
of a compound having a partial structure represented by Formula:

5

10

15

20

30

25

50

wherein --- is a single bond or double bond or a salt thereof in combination with (2) an effective amount of a drug selected from antiasthma agents, antialtergic agents, anticholinergic agents, antiinflammatory agents, antibacterial agents, antifungal agents and antidiabetic agents to a mammal,

[45] a method for preventing or treating asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes comprising administering (1) an effective amount of a compound having a partial structure represented by Formula:

wherein --- is a single bond or double bond or a salt thereof in combination with (2) an effective amount of a drug selected from antiasthma agents, antiallergic agents, antibnliergic agents, antilnilammatory agents, antibacterial agents, antifunda agents and antidabedic agents to a mammal.

[46] a method for preventing or treating inflammatory diseases comprising administering (1) an effective amount of the compound according to the above-mentioned [1] or a salt thereof in combination with (2) an effective amount of a drug selected from antiasthma agents, antiallergic agents, anticholinergic agents, antiinflammatory agents, antibactorial agents, antifungal agents and antidiabetic agents to a mammal,

[47] a method for preventing or treating asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes comprising administering (1) an effective amount of the compound according to the above-mentioned [1] or a satt thereof in combination with (2) an effective amount of a drug selected from antiasthma agents, antiallergic agents, anticholiergic agents, antiinflammatory agents, antibacterial agents, antifungal acents and antidabetic agents to a mammal.

[48] a method for preventing or treating inflammatory diseases comprising administering (1) an effective amount of the compound according to the above-mentioned [2] or a salt or prodrug thereof in combination with (2) an effective amount of a drug selected from antiasthma agents, antiallergic agents, anticholinergic agents, antiinflammatory agents, antibacterial agents, antifungal agents and antidiabetic agents to a mammal.

[49] a method for preventing or treating asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes comprising administering (1) an effective amount of the compound according to the above-mentioned [2] or a sait or prodrug thereof in combination with (2) an effective amount of a drug selected from antiasthma agents, antiallergic agents, anticholinergic agents, antiinflammatory agents, antibacterial agents, antifupalg agents and antidiabetic agents to a mammal,

45 [50] a use of a compound having a partial structure represented by Formula:

wherein - - - is a single bond or double bond or a salt thereof for producing a phosphodiesterase IV inhibitor, [51] a use of a compound having a partial structure represented by Formula:

wherein - - - is a single bond or double bond or a salt thereof for producing a prophylactic or therapeutic agent against inflammatory diseases,

[52] a use of a compound having a partial structure represented by Formula:

wherein — is a single bond or double bond or a salt thereof for producing a prophylactic or therapeutic agent against asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes.

25 [53] a use of the compound according to the above-mentioned [1] or a sait thereof for producing a phosphodiesterase IV inhibitor.

[54] a use of the compound according to the above-mentioned [1] or a salt thereof for producing a prophylactic or therapeutic agent against inflammatory diseases.

[55] a use of the compound according to the above-mentioned [1] or a salt thereof for producing a prophylactic or therapeutic agent against asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoim-

mune disease or diabetes, [56] a use of the compound according to the above-mentioned [2] or a salt or prodrug thereof for producing a phosphodiserase IV inhibitor.

[57] a use of the compound according to the above-mentioned [2] or a salt or prodrug thereof for producing a prophylactic or therapeutic agent against inflammatory diseases.

[58] a use of the compound according to the above-mentioned [2] or a salt or produig thereof for producing a prophylactic or therapeutic agent against asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthfilis, autionmune disease or diabetes.

[59] a compound represented by Formula:

5

15

20

30

25

40

45

50

55

wherein each of \mathbb{R}^{2a} and \mathbb{R}^{3a} is an optionally substituted aliphatic hydrocarbon group or acyl group, \mathbb{R}^{4a} is a hydrogen atom, optionally substituted hydrocarbon group, acyl group or optionally substituted hydroxy group.

 R^{Sa} is an optionally substituted hydrocarbon group, acyl group, optionally substituted heterocyclic group or halogen atom,

Each of R8a, R7a, R8a and R8a is a hydrogen atom or optionally substituted hydrocarbon group, Xa is a bond, oxygen atom, optionally oxidized sulfur atom or optionally substituted nitrogen atom, or by Formula:

wherein each of R^{2a} and R^{3a} is an optionally substituted aliphatic hydrocarbon group or acyl group,

R⁴a is a hydrogen atom, optionally substituted hydrocarbon group, acyl group or optionally substituted hydroxy group,

R^{5a} is an optionally substituted hydrocarbon group, acyl group, optionally substituted heterocyclic group or halogen atom.

Each of R^{6a}, R^{7a}, R^{8a} and R^{9a} is a hydrogen atom or optionally substituted hydrocarbon group,

Xa is a bond, oxygen atom, optionally oxidized sulfur atom or optionally substituted nitrogen atom, Z is an optionally substituted hydroxy group or halogen atom, or a salt thereof,

[60] the compound according to the above-mentioned [59] wherein:

5

10

15

20

25

30

25

40

45

50

55

each of R2a and R2b is any of the following (i) to (ii):

(i) a C_{1.6} alkyl group or C_{2.6} cycloalkyl group which may have 1 to 5 substituent(s) selected from the group (hereinafter referred to as Substituent Group B) consisting of (1) a halogen atom, (2) a C₁₋₃ alkylenedioxy group, (3) a nitro group, (4) an optionally halogenated C1.6 alkyl group, (5) a C3.6 cycloalkyl group, (6) a C6.14 aryl group, (7) an optionally halogenated C1.6 alkoxy group, (8) an optionally halogenated C1.6 alkylthio group, (9) a hydroxy group, (10) an amino group, (11) a mono-C1.6 alkylamino group, (12) a mono-C₆₋₁₄ arylamino group, (13) a di-C₁₋₆ alkylamino group, (14) a di-C₆₋₁₄ arylamino group, (15) an acyl group selected from formyl, carboxy, carbamoyl, C1-6 alkyl-carbonyl, C3-6 cycloalkyl-carbonyl, C1-6 alkoxy-carbonyl, C₆₋₁₄ aryl-carbonyl, C₇₋₁₆ aralkyl-carbonyl, C₆₋₁₄ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mono-C_{1.6} alkyl-carbamoyl, di-C_{1.6} alkyl carbamoyl, C6.14 aryl-carbamoyl, a (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbamoyl, C1-6 alkyl-thiocarbonyl, C3-6 cycloalkyl-thiocarbonyl, C1-8 alkoxy-thiocarbonyl, C6-14 aryl-thiocarbonyl, C7-16 aralkyl-thiocarbonyl, C6-14 aryloxy-thiocarbonyl, C7-16 aralkyloxy-thiocarbonyl, a (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbonyl, thiocarbamoyl, mono-C₁₋₆ alkyl-thiocarbamoyl, di-C₁₋₆ alkyl-thiocarbamoyl, C₆₋₁₄ aryl-thiocarbamoyl, (5or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbamoyl, mono-C_{1.6} alkylsulfamoyl, di-C_{1.6} alkylsulfamoyl, C_{6.14} arylsulfamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₄ arylsulfonyl, C₁₋₆ alkylsulfinyl, C₆₋₁₄ arylsulfinyl, sulfino, sulfo, C₁₋₆ alkoxysulfinyl, C₆₋₁₄ aryloxysulfinyl, C₁₋₆ alkoxysulfonyl and C₆₋₁₄ aryloxysulfonyl, (16) an acylamino group selected from formylamino, C₁₋₆ alkyl-carboxamido, C₆₋₁₄ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆ alkylsulfonylamino and C₆₋₁₄ arylsulfonylamino, (17) an acyloxy group selected from C₁₋₆ alkyl-carbonyloxy, C₆₋₁₄ aryl-carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-carbamoyloxy, di-C₁₋₆ alkylcarbamoyloxy, C6:14 aryl-carbamoyloxy and nicotinoyloxy, (18) a 4- to 14-membered heterocyclic group having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms, (19) a phosphono group, (20) a C₆₋₁₄ aryloxy group, (21) a di-C₁₋₆ alkoxy-phosphoryl group, (22) a C₆₋₁₄ arylthio group, (23) a hydrazino group, (24) an imino group, (25) an oxo group, (26) an ureido group, (27) a C1-6 alkyl-ureido group, (28) a di-C1-6-alkyl-ureido group, (29) an oxide group and (30) a group formed

by binding 2 or 3 groups selected from (1) to (29) listed above,

(ii) an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₂₋₆ cycloalkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₂₋₆ alkyl-carbonyl, C₇₋₁₆ aralkyl-carbonyl, C₇₋₁₆ alkyl-carbamoyl, G₇₋₁₆ alkyl-carbamoyl, G₇₋₁₆ alkyl-carbamoyl, G₇₋₁₆ alkyl-carbamoyl, G₇₋₁₆ alkyl-carbamoyl, G₇₋₁₆ alkyl-carbamoyl, G₇₋₁₆ alkyl-carbonyl, C₇₋₁₆ alkyl-iniccarbonyl, C₇₋₁₆ alkyl-iniccarbonyl, C₇₋₁₆ alkyl-iniccarbonyl, C₇₋₁₆ alkyl-iniccarbonyl, C₇₋₁₆ aralkyl-iniccarbonyl, C₇₋₁₆ aralyl-iniccarbonyl, G₇₋₁₆ aryl-iniccarbonyl, G₇₋₁₆ aralyl-iniccarbonyl, G₇₋₁₆ aralyl-iniccarbonyl, G₇₋₁₆ aralyl-iniccarbonyl, G₇₋₁₆ aryl-iniccarbonyl, G₇₋₁₆ aryl-iniccarb

R4a is (i) a hydrogen atom,

5

10

15

20

25

30

35

40

45

50

55

- (ii) a C₁₋₆ alkyl group, C₃₋₆ cycloalkyl group, C₆₋₁₄ aryl group or C₇₋₁₆ aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group B described above,

(iv) a group represented by Formula: -OR^{4a'}

- <1> a hydrogen atom.
- <2> a C_{1-6} alkyl group, C_{3-6} cycloalkyl group, C_{6-14} aryl group or C_{7-16} aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group B described above, or,
- <3> an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₃₋₆ cycloalkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₄ aryl-carbonyl, C₇₋₁₆ aralkyl-carbonyl, C₆₋₁₄ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mono-C_{1.6} alkyl-carbamoyl, di-C1.6 alkyl-carbamoyl, C6.14 aryl-carbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbamoyl, C_{1,6} alkyl-thiocarbonyl, C3-6 cycloalkyl-thiocarbonyl, C1-6 alkoxy-thiocarbonyl, C6-14 aryl-thiocarbonyl, C₇₋₁₆ aralkyl-thiocarbonyl, C₆₋₁₄ aryloxy-thiocarbonyl, C₇₋₁₆ aralkyloxy-thiocarbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbonyl, thiocarbamoyl, mono-C1.6 alkyl-thiocarbamoyl, di-C1.6 alkylthiocarbamoyl, C₆₋₁₄ aryl-thiocarbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbamoyl, mono-C₁₋₆ alkylsulfamoyl, di-C₁₋₆ alkylsulfamoyl. C₆₋₁₄ arylsulfamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₄ arylsulfonyl, C₁₋₆ alkylsulfinyl, C₆₋₁₄ arylsulfinyl, sulfino, sulfo, C₁₋₆ alkoxysulfinyl, C₆₋₁₄ aryloxysulfinyl, C₁₋₆ alkoxysulfonyl and C6-14 aryloxysulfonyl, which may have 1 to 5 substituent(s) selected from Substituent Group B described above):

R5 is any of the following (i) to (iv):

- (i) a C₁₋₆ alkyl group, C₃₋₆ cycloalkyl group, C₆₋₁₄ aryl group or C₇₋₁₆ aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group B described above,
- (ii) an acyl group selected from formyl, carboxy, carbamoyl, $C_{1,\hat{g}}$ alkyl-carbonyl, $C_{2,\hat{g}}$ cycloalkyl-carbonyl, $C_{1,\hat{g}}$ alkovy-carbonyl, $C_{2,\hat{g}}$ ayel-carbonyl, $C_{2,\hat{g}}$ arakiyl-carbonyl, $C_{2,\hat{g}}$ arakiyl-carbonyl, $C_{2,\hat{g}}$ arakiyl-carbonyl, $C_{2,\hat{g}}$ arakiyl-carbonyl, carbonyl, $C_{2,\hat{g}}$ arakiyl-carbonyl, carbonyl, core of membered heterocycle having, in addition to carbon atoms, 1 on 3 heteroatomist $S_{2,\hat{g}}$ arakiyl-carbonyl, core, alkyl-carbonyl, di- $C_{2,\hat{g}}$ alkyl-carbonyl, $C_{2,\hat{g}}$ arakiyl-thiocarbonyl, $C_{2,\hat{g}}$ arakiyl-thiocarbonyl, $C_{2,\hat{g}}$ arakiyl-thiocarbonyl, $C_{2,\hat{g}}$ aryl-thiocarbonyl, $C_{2,\hat{g}}$ arakiyl-thiocarbonyl, $C_{2,\hat{g}}$ arakiyl-thiocarbonyl-thiocarbonyl, $C_{2,\hat{g}}$ arakiyl-thiocarbonyl-
- (iii) a 5- to 14-membered heterocyclic ring containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group B described above,
- (iv) a halogen atom;

each of R^{Sa} , R^{Ya} , R^{Sa} and R^{Sa} is (i) a hydrogen atom or (ii) a $\mathsf{C}_{1-\mathsf{G}}$ alkyl group, $\mathsf{C}_{3-\mathsf{G}}$ cycloalkyl group, $\mathsf{C}_{6-\mathsf{Ig}}$ any group or $\mathsf{C}_{7-\mathsf{Ig}}$ aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group B described above.

Xª is

5

10

15

20

25

30

35

40

45

- (i) a bond.
- (ii) an oxygen atom.
- (iii) an optionally-oxidized sulfur atom,
- (iv) a nitrogen atom which may have a C_{1.6} alkyl group, C_{2.6} alkenyl group, C_{2.6} alkynyl group, C_{3.6} cycloalkyl group, C_{3.6} cycloalkenyl group which may have 1 to 5 substituent Group B described above.
- (v) a nitrogen atom having an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₂₋₆ cycloalkyl-carbonyl, C₁₋₆ alkyl-carbonyl, C₂₋₆ alkyl-carbonyl, C₂₋₁₆ aralkyl-carbonyl, C₂₋₁₆ alkyl-carbonyl, C₂₋₁₆ alkyl-thicoarbonyl, C₂₋₁₆ alkyl-thic
- (vi) a nitrogen atom having a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selocted from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group B described above:
- 55 Z is (i) a group represented by Formula: -OZ^a (Z^a is
 - <1> a hydrogen atom,

<2> a C₁₋₆ alkyl group, C₂₋₆ alkernyl group, C₂₋₆ alkynyl group, C₃₋₆ cycloalkyl group, C₃₋₆ cycloalkernyl group, C₆₋₁₄ anyl group or C₇₋₁₆ aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group B described above, or.

<3> an acyl group selected from formyl, carboxy, carbamoyl, C_{1,6} alkyl-carbonyl, C_{3,6} cycloalkyl-carbonyl, C_{1,6} alkyc-arbonyl, C_{3,6} cycloalkyl-carbonyl, C_{1,6} alkyl-carbonyl, C_{3,6} cycloalkyl-carbonyl, C_{1,6} alkyl-carbonyl, C_{3,6} cycloalkyl-carbonyl, C_{1,6} alkyl-carbonyl, C_{3,6} cycloalkyl-carbonyl, C_{3,6} cycloalkyl-carbonyl, C_{3,6} cycloalkyl-carbonyl, C_{3,6} cycloalkyl-carbonyl, C_{3,6} cycloalkyl-carbonyl, C_{3,6} cycloalkyl-thiocarbonyl, C_{3,6} cycloalkyl-thiocarbonyl-thiocarbonyl, C_{3,6} cycloalkyl-thiocarbonyl

[61] the compound according to the above-mentioned [59] wherein:

5

10

15

20

25

30

25

40

45

50

55

each of \mathbb{R}^{2a} and \mathbb{R}^{2a} is (1) a $C_{1,\Phi}$ alkyl group which may be substituted by <1> a halogen atom, <2> a hydroxy group which may be substituted by a substitutent selected from a $C_{1,\Phi}$ alkyl, $C_{1,\Phi}$ alkyl-carbonyl, $C_{2,\Phi}$ alkyl-carbonyl and $C_{2-1,\Phi}$ aralkyl, <3> an amino group which may be substituted by 1 or 2 $C_{1,\Phi}$ alkyl, $C_{1,\Phi}$ alkyl-carbonyl and $C_{2-1,\Phi}$ aryl-carbonyl, <4> a 4 to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms, <5> a thio group which may be substituted by $C_{1-\Phi}$ alkyl, <6> a $C_{1-\Phi}$ alkyl-sulfinyl group or <7> a $C_{1-\Phi}$ alkyl-sulfonyl group or (2) a $C_{1-\Phi}$ alkov-carbonyl group.

 \mathbb{R}^{4a} is (i) a hydrogen atom, (ii) a $\mathbb{C}_{1,6}$ alkyl group [this $\mathbb{C}_{1,6}$ alkyl group may have a substituent selected from (1) a halogen atom, (2) a $\mathbb{C}_{1,6}$ alkylamino group, (3) a from the tetrocyclic group containing 1 to 3 heterostrom (s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxo, (8) a $\mathbb{C}_{1,6}$ alkylamino group, (7) a 4 to 10 -membered heterocyclic group containing 1 to 3 heterostrom (s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxo, (8) a $\mathbb{C}_{1,6}$ alkyl-carbon atom, (10) a controw, (11) a carbon, (12) a $\mathbb{C}_{1,6}$ alkyl-carbon atom, (14) a formyl group;

 X^a is a bond, oxygen atom, optionally oxidized sulfur atom, -NH- or -N(methyl)-, R^{5a} is.

when Xe is a bond, then (i) a C1.8 alkyl group or (ii) a halogen atom,

when N is an oxygen atom, then (i) a C_{1-6} alkyl group (fibs C_{1-6} alkyl group may have a substituent selected from (1) a halogen atom, (2) a N hydroxy group, (3) a radino group, (4) a carboxy, (5) a cabamoy, (6) a C_{1-6} alkoy-carbonyl, (7) a mone- C_{1-6} alkyl-carbamoyl, (8) A is A in the terrocal control of the terr

when X^a is an optionally oxidized sulfur, then (I) a C_{1.6} alkyl group or (ii) a mono- or di-C_{1.6} alkyl-carbamoyl group

when X^a is -NH- or -N(methyl)-, then (i) a C_{1-8} alkyl group [this C_{1-8} alkyl group may have a C_{1-8} alkoxy-carbonyl, (iii) annyl, (iiii) a C_{1-8} alkyl-carbonyl group, (iv) a C_{1-8} alkyl-carbonyl group, (v) a a none- or di- C_{1-8} alkyl-carbamoyl group or (viii) a C_{1-8} alkyl-sulfonyl group, each of f^{8a} , f^{7a} , f^{8a} and f^{8a} is a hydrogen atom or C_{1-8} alkyl group,

Z is (i) a hydroxy group which may be substituted by a C₁₋₆ alkyl-carbonyl or (ii) a halogen atom,

[62] a use of the compound according to the above-mentioned [59] or a salt thereof for producing the compound according to the above-mentioned [2] or a salt thereof.

[0011] Furthermore, the invention also provides:

5

10

15

20

25

30

25

40

45

50

55

[63] a compound having a partial structure represented by Formula:

wherein each of Ring A, Ring B and Ring C may have substituents or a salt thereof,

[64] the compound according to the above-mentioned [63] wherein the substituents on Ring A, Ring B and Ring C are 1 to 5 substituents) selected from the group consisting of (1) an optionally substituted hydrocarbon group, (2) an optionally substituted heterocyclic group, (3) an optionally substituted amino group, (4) an avely group, (5) an optionally substituted sulfernyl group, (7) a halogen atom, (6) a lower alkylenedloxy group, (9) a nitro group, (10) a cyano group, (11) an optionally substituted imino group, (12) an oxo group, (13) an optionally substituted winding group, (14) an azide group, (15) an optionally substituted amining group, (16) an optionally substituted amining group, (16) an optionally substituted amining group, (16) an optionally substituted guandino group, (17) an optionally substituted hydrazino group and (18) an oxide group.

[65] the compound according to the above-mentioned [64], in which the substituent is a group selected from Substituent Group A,

[66] the pharmaceutical composition according to the above-mentioned [23] wherein Compound (A-1) is a compound represented by Formula:

wherein --- is a single bond or double bond and each of Ring A, Ring B and Ring C may have substituent(s) or a salt thereof.

[67] the pharmaceutical composition according to the above-mentioned [23] wherein Compound (A-1) is a compound represented by Formula:

wherein - - - is a single bond or double bond and other symbols are defined as described in Claim 2.

[0012] Furthermore, when any of Compounds (A), (I), (I'), (A-1), (I'-1) or their salts contains a symmetric carbon atom in its structure, any of the optically active forms and racemic forms is encompassed in the invention, and Compounds (A), (I), (I'), (A-1), (I'-1), (I'-1) or their salts may be hydrates or anhydrides.

BEST MODE FOR EMBODYING THE INVENTION

[0013] A compound according to the invention has a partial structure represented by Formula:

which is represented typically by Formula:

5

10

15

20

30

25

45

55

 $0 \\ \hline \\ B \\ \hline \\ C \\ N$ (1)

wherein each symbol is defined as described above.

[0014] In the formula shown above, each of Ring A, Ring B and Ring C may have a substitutable number of substituents in any substitutable positions.

- [0015] Each of such substituents on Ring A, Ring B and Ring C is:
 - (1) an optionally substituted hydrocarbon group,
- (2) an optionally substituted heterocyclic group,
 - (3) an optionally substituted amino group.
 - (4) an acyl group.
 - (5) an optionally substituted hydroxy group.
 - (6) an optionally substituted sulfinyl group.
 - (7) a halogen atom (for example, fluorine, chlorine, bromine, iodine),
 - (8) a lower alkylenedioxy group (for example, a C₁₋₃ alkylenedioxy group such as methylenedioxy, ethylenedioxy, etc.).
 - (9) a nitro group.
 - (10) a cyano group,
 - (11) an optionally substituted imino group,
 (12) an oxo group,
- (12) all oxo gloup,
 - (13) an optionally substituted ureido group,
 - (14) an azide group,
 - (15) an optionally substituted amidino group,
 - (16) an optionally substituted guanidino group,
 - (17) an optionally substituted hydrazino group,
 - (18) an oxide group and the like.

[0016] A hydrocarbon group in an "optionally substituted hydrocarbon group" employed as a substituent on Ring A, Ring B and Ring C may for example be a linear or cyclic hydrocarbon group such as an alkyl group, alkenyl group, alkynyl group, explosely if group, anyl group and aralkyl group, with a linear (straight or branched) or cyclic hydrocarbon group having 1 to 16 carbon atoms (e.g., aromatic hydrocarbon group, aliphatic cyclic hydrocarbon group) being preferred. Typicially, those listed below are employed.

Linear hydrocarbon groups:

[0017]

a) alkyl groups [preferably, lower alkyl groups (for example, C1.6 alkyl groups such as methyl, ethyl, propyl, iso-

propyl, butyl, isobutyl, sec-butyl, terk-butyl, pentyl, hexyl, etc.)], b) alkenyl groups [preferably, lower alkenyl groups (for example, C₂₋₆ alkenyl groups such as vinyl, allyl, isopropenyl, 2-butenyl, 2-methyl-2-propenyl, 4-butenyl, 5-hexenyl, etc.)].

 alkynyl groups [preferably, lower alkynyl groups (for example, C₂₋₆ alkynyl groups such as propargyl, ethynyl, 2-butynyl, 2-hexynyl)],

(2) Aliphatic cyclic hydrocarbon groups:

[0018]

5

10

15

20

25

30

25

45

a) cycloalkyl groups [preferably, lower cycloalkyl group (for example, C₃₋₆ cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.), each of which may be fused with a benzene ringl.

 b) cycloalkenyl groups [preferably, lower cycloalkenyl group (for example, C₃₋₆ cycloalkenyl groups such as 1-cyclopropenyl, 1-cyclobutenyl, 1-cyclopentenyl, 1-cyclohexenyl, etc.), each of which may be fused with a benzene ringl.

(3) Aromatic hydrocarbon groups:

[0019]

aryl groups (for example, C₆₋₁₄ aryl groups such as phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl or 9-phenanthryl, preferably phenyl group),

(4) Aralkyl groups:

[0020]

lower aralky! groups (for example, C₇₋₁₈ aralky! groups such as benzy!, phenethy!, diphenylmethyl, 1-naphthylmethyl, 2-phenylbrupy!, 2-phenylpropy!, 2-phenylpropy!, 4-phenylbruy!, 5-phenylpropy!, 4-phenylpropy!, 4-phenyl

[0021] A substituent on each of the hydrocarbon groups listed above which is employed preferably may for example be 1 to 5, preferably 1 to 3 group(s) selected from the group (Substituent Group A) consisting of (1) a halogen atom (for example, fluorine, chlorine, bromine, iodine), (2) a lower alkylenedioxy group (for example, a C_{1,3} alkylene dioxy group such as methylenedioxy, ethylenedioxy, etc.), (3) a nitro group, (4) a cyano group, (5) an optionally halogenated lower alkyl group, (6) an optionally halogenated lower alkenyl group, (7) an optionally halogenated lower alkynyl group, (8) a lower cycloalkyl group (for example, a C3-6 cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.), (9) a C_{6.14} aryl group (e.g., phenyl, 2-naphthyl, etc.), (10) an optionally halogenated lower alkoxy group, (11) an optionally halogenated lower alkylthio group, (12) a hydroxy group, (13) an amino group, (14) a mono-lower alkylamino group (e.g., mono-C₁₋₆ alkylamino group such as methylamino, ethylamino, propylamino, isopropylamino, butylamino, etc.), (15) a mono-C_{6,14,14} arylamino group (e.g., phenylamino, 2-naphthylamino, etc.), (16) di-lower alkylamino group (e.g., di-C1.6 alkylamino group such as dimethylamino, diethylamino, dipropylamino, dibutylamino, ethylmethylamino, etc.), (17) a di-C₆₋₁₄ arylamino group (e.g., diphenylamino, di(2-naphthyl)amino, etc.), (18) an acyl group, (19) an acylamino group, (20) an acyloxy group, (21) a 4- to 14-membered heterocyclic group (preferably 4- to 10-membered, more preferably 4- to 7-membered, especially 5- or 6-membered heterocyclic group) (e.g., 4- to 10-membered, more preferably 4- to 7-membered, especially 5- or 6-membered heterocyclic group containing 1 to 4 heteroatom (s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms, such as 4-pyridyl, 2-thienyl, 2-furyl, 2-thiazolyl, 3-indolyl, morpholino, piperazin-1-yl, piperidino, pyrrolidin-1-yl, 2-isoindolinyl, etc.), (22) a phosphono group, (23) a C₆₋₁₄ aryloxy group (e.g., phenoxy), (24) a di-C₁₋₆ alkoxyphosphoryl group (e.g., dimethoxyphosphoryl, diethoxyphosphoryl, etc.), (25) a C_{6.14} arylthio group (e.g., phenylthio), (26) a hydrazino group, (27) an imino group, (28) an oxo group, (29) an ureido group, (30) a C₁₋₆ alkyl-ureido group (e.g., methylureido, ethylureido), (31) a di-C₁₋₆ alkylureido group (e.g., dimethylureido, diethylureido, etc.), (32) an oxide group, (33) a group formed by binding 2 or 3 groups selected from (1) to (32) listed above.

[0022] An "optionally halogenated lower alkyl group" in Substituent Group A described above may for example be a lower alkyl group which may have 1 to 3 halogen atom(s) (for example, fluorine, chlorine, bromine, lodine) (for example, a C_{ic.6} alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, etc.), and those exemplified typically are methyl, chloromethyl, difluoromethyl, trichloromethyl, trichloromethyl, itchlyl, 2-bromethyl, 2-2 t-trifluorothyl, propyl, 33,3-trifluoropropyl, isopropyl, butyl, 4-4-trifluorobyl, isobutyl, secbutyl, secbut

tert-butyl, pentyl, isopentyl, neopentyl, 5,5,5-trifluoropentyl, hexyl, 6,6,6-trifluorohexyl and the like.

5

15

[0023] An "optionally halogenated lower alkenyl group" in Substituent Group A described above may for example be a lower alkenyl group which may have 1 to 3 halogen atomsky (for example, fuorine, chlorine, bromine, icidine) (for example, a C₂₋₆ alkenyl group such as vinyl, allyl, isopropenyl, 2-butenyl, 2-methyl-2-propenyl, 4-pentenyl, 5-hexenyl, allyl

[0024] An "optionally halogenated lower alkymyl group" in Substituent Group A described above may for example be a lower alkymyl group which may have 1 to 3 halogen atom(s) (for example, fluorine, chlorine, bromine, iodine) (for example, a C_{xx} alkymyl group such as propartyrl, ethymyl, 2-butymyl, 2-bexymyl).

[0025] An "optionally halogenated lower alkoxy group" in Substituent Group A described above may for example be a lower alkoxy group which may have 1 to 3 halogen atom(s) (e.g., fluorine, chlorine, bromine, iodine) (for example, a C._{1-g} alkoxy group such as methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, see-butoxy, tert-butoxy, pertyloxy, isopentyloxy, neopentyloxy, etc.), and those exemplified typically are methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, see-butoxy, tert-butoxy trichloromethoxy, 3,3,3-trifluoropropoxy, 4,4,4-trifluorobutoxy 5.5,5-trifluoropentyloxy, 6,6,6-frifluoropropoxy and the like.

[0026] An "optionally halogenated lower alkylthio group" in Substituent Group A described above may for example be a C_{1+a} alkylthio group which may have 1 to 3 halogen atoms (e.g., fluorine, chlorine, bromine, iodine) (for example, a C_{1+a} alkylthio group such as methylthio, thylthio, propylthio, isobutylthio, seb-butylthio, set-butylthio, etc.), and those exemplified typically are methylthio, difluoromethylthio, trifluoromethylthio, trifluoromethylthio, bropylthio, lsopropylthio, butylthio, act butylthio, propylthio, propylthio, butylthio and the like.

10027] An "axyl group" in Substituent Group 4 employed preferably may for example be formyl, carboxy, carbamoyl,

C1.8 alkyl-carbonyl (e.g., acetyl, propionyl, etc.), C3.8 cycloalkyl-carbonyl (e.g., cyclopentylcarbonyl, cyclohexylcarbonyl, etc.), C₁₋₈ alkoxy-carbonyl (e.g., methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, tert-butoxycarbonyl, etc.), C_{8.14} aryl-carbonyl (e.g., benzoyl, 2-naphthoyl, etc.), C₇₋₁₆ aralkyl-carbonyl (e.g., phenylacetyl, 3-phenylpropionyl, etc.), C₆₋₁₄ aryloxy-carbonyl (e.g., phenoxycarbonyl, 2-naphthyloxycarbonyl), C₇₋₁₆ aralkyloxy-carbonyl (e.g., benzyloxycarbonyl, 2-naphthylmethyloxycarbonyl, etc.), 5- or 6-membered heterocyclic carbonyl (e.g., (5- or 6-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms)-carbonyl such as 1-pyrrolidinylcarbonyl, 4-piperidylcarbonyl, 1-piperazinylcarbonyl, 2-morpholinylcarbonyl, 4-pyridylcarbonyl, 3-thienylcarbonyl, 2-furylcarbonyl, 2-thiazolylcarbonyl, etc.), mono-C₁₋₆ alkyl-carbamoyl (e. g., methylcarbamoyl, ethylcarbamoyl, etc.), di-C_{1,8} alkyl-carbamoyl (e.g., dimethylcarbamoyl, diethylcarbamoyl, etc.), C₆₋₁₄ aryl-carbamoyl (e.g., phenylcarbamoyl, 2-naphthylcarbamoyl), 5-or 6-membered heterocyclic carbamoyl (e.g., (5- or 6-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms)-carbamovl such as 1-pyrrolidinylcarbamovl, 4-piperidylcarbamovl, 1-piperazinylcarbamovi, 2-morpholinylcarbamovi, 4-pyridylcarbamovi, 3-thienylcarbamovi, 2-furylcarbamovi, 2-thiazolylcarbamoyl, etc.), C₁₋₆ alkyl-thiocarbonyl (e.g., methylthiocarbonyl, etc.), C₃₋₆ cycloalkyl-thiocarbonyl (e.g., cyclopentylthiocarbonyl, cyclohexylthiocarbonyl, etc.), $C_{1.6}$ alkoxy-thiocarbonyl (e.g., methoxythiocarbonyl, ethoxythiocarbonyl, pro-25 poxythiocarbonyl, butoxythiocarbonyl, etc.), C₈₋₁₄ aryl-thiocarbonyl (e.g., phenylthiocarbonyl, 2-naphthylthiocarbonyl, etc.), C7-16 aralkyl-thiocarbonyl (e.g., benzylthiocarbonyl, phenethylthiocarbonyl), C6-14 aryloxy-thiocarbonyl (e.g., phenoxythiocarbonyl, 2-naphthyloxythiocarbonyl), C7-16 aralkyloxy-thiocarbonyl, (e.g., benzyloxythiocarbonyl, 2-naphthylmethyloxythiocarbonyl), 5- or 6-membered heterocyclic thiocarbonyl, (e.g., (5- or 6-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms)thiocarbonyl such as 1-pyrrolidinylthiocarbonyl, 4-piperidylthiocarbonyl, 1-piperazinylthiocarbonyl, 2-morpholinylthiocarbonyl, 4-pyridyithiocarbonyl, 3-thienylthiocarbonyl, 2-furylthiocarbonyl, 2-thiazolylthiocarbonyl, etc.), thiocarbamoyl, mono-C₁₋₆ alkyl-thiocarbamoyl (e.g., methylthiocarbamoyl, ethylthiocarbamoyl), di-C₁₋₆ alkyl-thiocarbamoyl (for example, dimethylthiocarbamoyl, diethylthiocarbamoyl), C₆₋₁₄ aryl-thiocarbamoyl (e.g., phenylthiocarbamoyl, 2-naphthylth-45 iocarbamoyl), sulfamoyl, mono-C_{1.6} alkyl-sulfamoyl (e.g., methylsulfamoyl, ethylsulfamoyl), di-C_{1.6} alkyl-sulfamoyl (e. g., dimethylsulfamoyl, diethylsulfamoyl, etc.), C₆₋₁₄ aryl-sulfamoyl (e.g., phenylsulfamoyl), C₁₋₆ alkylsulfonyl (e.g.,

[0028] An "acylamino group" in Substituent Group A may for example be formylamino, optionally halogenated C_{1.6} alls/v-carboxamido (e.g., acetamido, propionamido, 2-chloroacetamido, 2.2-clichloroacetamido, 2.2-clichloroacetamido, 2.2-chichloroacetamido, 2.2-chichloroacetamido, 2.2-chichloroacetamido, etc.), C_{1.6} allkovy-carboxamido (e.g., methoxycarboxamido, etc.), Cupa (etc.), Cupa (etc.)

sulfamoyl and mono-C1.8 alkyl-sulfamoyl is preferred.

methysulfonyl, ethysulfonyl, etc.), $C_{e,t}$, arylsulfonyl (e.g., phenylsulfonyl, 2-naphthysulfonyl), $C_{1,e}$ alkysulfinyl (e.g., methysulfinyl, ethysulfinyl), $C_{e,t}$, anylsulfinyl (e.g., phenoxysulfinyl, eth.), sulfino, sulfo, $C_{1,e}$ alkoxysulfinyl (e.g., methoxysulfinyl, ethoxysulfinyl), $C_{e,t}$ aryloxysulfonyl (e.g., phenoxysulfinyl), $C_{e,t}$ alkoxysulfonyl (e.g., methoxysulfinyl), ethoxysulfonyl) and $C_{g,t}$ aryloxysulfonyl (e.g., phenoxysulfonyl), Among those listed above, a $C_{1,7}$ acyl group such as formyl, carboxy, $C_{1,e}$ alkyloxarboxyl, $C_{1,e}$ alkylox

Among those listed above, a C_{1-8} alkyl-carboxamido, C_{1-8} alkoxy-carboxamido, C_{1-8} alkoxy-carboxamido, C_{1-8} alkoxy-carboxamido, C_{1-8} alkoxy-carboxamido, C_{1-8} alkoxy-carboxamido, C_{1-8} alkyl-carboxamido, C_{1-8} a

[0029] An "acyloxy group" in Substituent Group A described above may for example be a $C_{1:6}$ allyf-carbonyloxy (e.g., acplyloxy, propionyloxy, etc.). $C_{1:6}$, ally-carbonyloxy (e.g., benzyloxy, 2-haphthyloxy, etc.), $C_{1:6}$ allkyd-carbonyloxy (e.g., methoxycarbonyloxy, etc.), whose propoxycarbonyloxy, tetr-butoxycarbonyloxy, etc.), mono- $C_{1:6}$ alkyf-carbonnyloxy (e.g., methylocarbonyloxy, etc.) and $C_{1:6+4}$ anyf-carbonyloxy, etc.), di- $C_{1:6}$ alkyf-carbonyloxy, $C_{1:6}$ alkyf-carbonyloxy, etc.) and $C_{1:6+4}$ anyf-carbonyloxy, $C_{1:6}$, phenyf-carbonyloxy, $C_{1:6}$ -phenyf-carbonyloxy, $C_{1:6}$ -phenyf-carbony

10 [0030] A group formed by binding 2 or 3 groups selected from (1) to (32) listed above in Substituent Group A described above may for example be:

(33a) a substituted C₁₋₆ alkyl group [this C₁₋₆ alkyl group has a substituent selected from cyano, carbamoyl, C₁₋₆ alkyl-carbamoyl, C₁₋₆ alkyl-carbamoyl, C₁₋₆ alkyl-carbamoyl, 5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl, etc.)-C₁₋₆ alkyl-carbamoyl, C₁₋₆ alkylsulfonylamino, C₁₋₆ alkyl-carbonyl and carboxy, etc.].

(33b) a substituted $C_{6,14}$ anyl group (this $C_{6,14}$ anyl group has a substituent selected from amino, optionally halogenated $C_{1,6}$ alklyl-carbonylamino, revieto, $C_{1,6}$ alkylsulfonylamino, $(C_{1,6}$ alkyl)($C_{1,6}$ alkylsulfonyl)amino and $C_{1,6}$ alkoxy-carboniv- $C_{1,6}$ alkylamino, etc.],

(33c) a C₁₋₆ alkoxy-C₆₋₁₄ aryl-C₁₋₆ alkoxy group,

15

20

25

30

25

40

45

50

55

(33o) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms which has a substituent [this heterocyclic group has a substituent selected from oxo, carboxy-C₁₋₆ alkyl, C₁₋₈ alkyl-carbonyloxy-C₁₋₆ alkyl, C₁₋₈ alkyl,

(33e) a group represented by Formula: -NR12R13 [each of R12 and R13 is (i) a 5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms)-C₁₋₈ alkyl, (ii) a C₁₋₈ alkoxy-carbonyl-C₁₋₈ alkyl, (iii) a di-C₁₋₈ alkylamino-methylene-sulfamoyl-C₁₋₈ alkyl, (iv) a carbamoyl-C1-6 alkyl, (v) a sulfamoyl-C1-6 alkyl, (vi) a C1-6 alkyl-sulfonyl, (vii) a C1-6 alkoxy-carbonyl, (viii) di-C1-6 alkoxy-carbonyl-C2.8 alkenyl, (ix) a 5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms) [this 5- or 6-membered heterocyclic group may have a substituent selected from amino, C1.6 alkyl-carboxamido, C1.8 alkyl-sulfonylamino and the like], (x) an optionally halogenated C1.8 alkyl-carbonyl, (xi) a C1.8 alkylthio-C1-8 alkyl-carbonyl, (xii) a C1-8 alkylsulfinyl-C1-8 alkyl-carbonyl, (xiii) a C1-8 alkylsulfonyl-C1-8 alkyl-carbonyl, (xiv) an amino-C1-8 alkyl-carbonyl, (xv) an optionally halogenated C1-6 alkyl-carbonyl-amino-C1-8 alkyl-carbonyl, (xvi) a C₆₋₁₄ aryl-carbonyl (xvii) a carboxy-C₆₋₁₄ aryl-carbonyl, (xviii) an optionally C₁₋₆ alkyl-esterified phosphono-C₁₋₆ alkyl-C_{8,14} aryl-carbonyl, (xix) (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms) which may have a C1.6 alkoxy-carbonyl)-carbonyl, (xx) a 5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms)-C1.6 alkyl-carbonyl, (xxi) a C6.14 aryl-oxy-carbonyl, (xxii) a carboxy-C1.6 alkyl, (xxiii) a carbamoyl and the like],

(33f) a group represented by Formula: -CO-Hal (Hal is a halogen atom),

(33g) a substituted sulfamoyl group [this sulfamoyl group has a substituent selected from carbamoyl-C_{1.6} alkyl, (5- or 6-membered heterocyclic ring)-C_{1.6} alkyl],

(33h) a group represented by Formula: -C(=O)NR14R15

[seath of 144 and R151s [9] at (6)-or-6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to cathoon atoms such as pyridyl, imidazolyl, etc.))-C_{1,4} alkyl, (ii) a carboxy-C_{1,4} alkyl, (iii) a C_{1,4} alkyl, (iii) a C_{1,4} alkyl, (iv) a C_{1,4} alkyl-carbomyl-C_{1,6} alkyl, (iv) a (6- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring (e.g., 6- or 6-membered heterocyclic ring containing 1 to 3 heteroatomyl alkyl, (ix) a 4- or 6-membered heterocyclic ring containing 1 or 6-membered heterocyclic ring containing 1 or 6-membered heterocyclic ring (e.g., 6- or 6-membered heterocyclic ring containing 1 or 6-membered heterocyclic ring containing 1 or 6-membered heterocyclic ring containing 1 to 8-membered heterocyclic ring to containing 1 to 8-membered heterocyclic ring containing 1 to 8-membered heterocyclic r

in addition to carbon atoms) [this 4- to 10-membered heterocyclic group may have 1 to 2 substituent(s) selected from a halogen atom, C₁₋₆ alkyl, oxo and the like], (xiii) a C₆₋₁₄ aryl-carbamoyl-C₁₋₆ alkyl and the like. As R¹⁴, a hydrogen atom is preferred.

[0031] An "optionally substituted heterocyclic group" employed as a substituent on Ring A, Ring B and Ring C may for example be a 4- to 14-membered heterocyclic group containing 1 to 4 (preferably 1 to 3) heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms, and those exemplified typically are (a) a 4- to 14-membered aromatic heterocyclic group, (b) a 4- to 14-membered alliphatic heterocyclic group, (c) a bicyclic or tricvic file vaded ovcilic group of 4- to 14-membered heterocyclic ina(s) with benzene ina(s) and the like.

[0032] Said 4- to 14-membered aromatic heterocyclic group may for example be a 4- to 14-membered aromatic heterocyclic group containing 1 to 4 (preferably 1 to 3) heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and helike in addition to carbon atoms, and those exemplified typically are thiophene, furan, indicitize, pyrince, imidizzole, tritizole, oxazole, pyrtazole, pyridine, pyridine-N-oxide, pyrazine, pytimidine, pyridizine, purine, 4H-quincilizine, naphthyridine, isothacycle, isoxazole, furazane, etc. Armong them, pyridine, tipiophene, furan, etc. are preferred. [0033] Said 4- to 14-membered aliphatic heterocyclic group may for example be a 4- to 14-membered aliphatic heterocyclic group containing in 1 to 4 (preferably 1 to 3) heterostom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms, and those exemplified typically are pyrrolidine, piperidine, piperazine, morpholine, thiomorpholine, 1.2-dilwidrovirdine, imidazolidina and the like

[0034] Sald bicyclic or tricyclic fused cyclic group of 4- to 14-membered heterocyclic inig(s) with benzene ring(s) may for example be a bicyclic or tricyclic fused cyclic group each containing 1 to 4 (preferably 1 to 3) heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms with benzene rings, and those exemplified typically are benzo[b]thiophene, benzofuran, 1H-benzimidazole, benzoxazole, benzoxtazole, 1,2-benzimidazole, naphtho[2,3-b]thiophene, thianthrene, xanthene, phenoxathini, nidode, isoindole, I-thi-indazole isoquinoline, quinoline, phithalazine, quinoxaline, quinazoline, cinnoline, carbazole, β-carboline, phenanthridine, acridine, phenanthridine, acridine,

[0035] Substituents on any of the heterocyclic groups listed above may be 1 to 5, preferably 1 to 3 group(s) selected from Substituent Group A described above.

[0036] An "optionally substituted amino group" employed as a substituent on Ring A, Ring B and Ring C may for example be an amino group which may have 1 or 2 substituent(s) selected from an "optionally substituted hydrocarbon group" described above, an "optionally substituted heterocyclic group" described above and an "acyl group" in Substituent Group A (this "acyl group" may further have 1 to 5, preferably 1 to 3 substituent(s) selected from Substituent Group A:

[0037] An "acyl group" as a substituent on Ring A, Ring B and Ring C is one similar to an "acyl group" in Substituent Group A described above. Such an "acyl group" may further have 1 to 5, preferably 1 to 3 substituent(s) selected from Substituent Group A.

[0038] A substituent on an "optionally substituted oxy group", "optionally substituted amidino group", "optionally substituted unino group", "optionally substituted unino group", "optionally substituted unino group" and "optionally substituted duration group" and "optionally substituted hydrazino group" employed as a substitutent on Ring A, Ring B and Ring C is an "optionally substituted hydrocarbon group" described above, an "optionally substituted heterocyclic group" described above and an "acyl group" in Substituent Group A (this "acyl group" may further have 1 to 5, preferably 1 to 3 substituent(s) selected from Substituent Group A).

[0039] A compound in which each of Ring A, Ring B and Ring C has a substituent is typically a compound represented by Formula:

wherein each symbol is defined as described above.

5

15

25

25

45

50

55

[0040] In the formula shown above, R1 is (1) a hydrogen atom, (2) an optionally substituted hydrocarbon group, (3)

an optionally substituted heterocyclic group or (4) an optionally substituted amino group.

[0041] An "optionally substituted hydrocarbon group" represented by R¹ may be one similar to an "optionally substituted hydrocarbon group" exemplified as a substituent on Ring A.

[0042] An "optionally substituted heterocyclic group" represented by R¹ may be one similar to an "optionally substituted heterocyclic group" exemplified as a substituent on Ring A.

[0043] An "optionally substituted amino group" represented by R1 may be one similar to an "optionally substituted amino group" exemplified as a substituent on Ring A.

[0044] Preferaby, R¹ is (1) an optionally substituted aromatic hydrocarbon group, (2) an optionally substituted heterocyclic group, (3) an optionally substituted alicyclic hydrocarbon group, (4) a group represented by Formula: -L-R¹a methylene, carbonyl or an optionally substituted nitrogen atom, R¹a is a hydrogen atom, optionally substituted aromatic group, optionally substituted aromatic group, optionally substituted hydroxy group or optionally substituted amino group.

[0045] Each of an "optionally substituted aromatic hydrocarbon group" and "optionally substituted heterocyclic group" is preferably a group represented by Formula:

wherein R¹b is a hydrogen atom, optionally substituted hydrocarbon group or optionally substituted heterocyclic group, Ring D is an optionally substituted aromatic hydrocarbon ring or optionally substituted heterocyclic ring. E is a bond, methylene, oxygen atom, optionally oxidized sulfur atom, optionally substituted nitrogen atom or group represented by Formula: CS-O-, CO-O-, S-CO-, CH₂\(\text{L}_2\)\(\text{L}_2\)\(\text{CO}-, \text{NR}^1\cdot CO+(\text{L}_2\)\(\text{L}_3\)\(\text{L}_3\)\(\text{NR}^1\cdot CO+(\text{L}_2\)\(\text{L}_3\)\(\text{L}_3\)\(\text{NR}^1\cdot CO+(\text{L}_2\)\(\text{L}_3\)\(\text{L}_3\)\(\text{NR}^1\cdot CO+(\text{L}_2\)\(\text{L}_3\)\(\text{L}_3\)\(\text{NR}^1\cdot CO+(\text{L}_3\)\(\text{L}_3\)\(\text{NR}^1\cdot CO+(\text{L}_3\)\(\text{L}_

wherein Hal is a halogen atom, Ring D is defined as described above.

[0046] An "aromatic hydrocarbon group" as a preferred group of R1" may for example be a monocyclic or fused polycyclic aromatic hydrocarbon group having 6 to 14 carbon atoms (6.14 anyl group). Preferable, a Ce.,4 anyl may for example be phenyl, 1-naphthyl, 2-naphthyl, 1-anthyl, 2-anthyl, 3-anthyl, 1-phenanthyl, 2-phenanthyl, 2-phenanthyl, 4-phenanthyl, 9-phenanthyl and the like, with phenyl, 1-naphthyl and 2-naphthyl, especially phenyl being preferred especially.

[0047] As substituents on this "aromatic hydrocarbon group", 1 to 5, preferably 1 to 3 groups selected from Substituent Group A are employed. Among such substituents, one employed preferably is:

(1) a halogen atom,

5

15

20

25

30

25

45

50

- (2) a nitro group.
- (3) a C_{1,2} alkyl group (methyl, isopropyl, tert-butyl and the like).
- [this $C_{1,6}$ alkyl group may have a substituent selected from a halogen atom, cyane, carbamoyl, $C_{1,6}$ alkyl-carbamoyl, $C_{1,6}$ alkyl-carbamoyl, $C_{1,6}$ alkyl-carbamoyl, $C_{1,6}$ alkyl-carbamoyl, (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms))- $C_{1,6}$ alkyl-carbamoyl, $C_{1,6}$ alkyl-sulfonylamino, $C_{1,6}$ alkoxy-carbonyl, carbox and the like).
- (4) a C_{3.6} cycloalkyl group (e.g., cyclohexyl),
 - (5) a C₆₋₁₄ aryl group (e.g., phenyl),
 - [this $\mathcal{O}_{e,14}$ aryl group may have a substituent selected from amino, carboxy, $\mathcal{C}_{1,e}$ alkoxy-carbonyl, carbamoyl, mono- or di- $\mathcal{C}_{1,e}$ alkylcarbamoyl, formylamino, $\mathcal{C}_{1,e}$ alkyl-carbonylamino which may have a halogen atom or carbonylamino which which which was a halogen atom or carbonylamino which whic

boxy (e.g., acetylamino, propionylamino, trifluoroacetylamino, pivaloylamino), C_{6.14} aryl-carbonylamino (e.g., benzoylamino), C₁₋₆ alkoxy-carbonylamino (e.g., methoxycarbonylamino), ureido, mono- or di-C₁₋₆ alkylureido, C₁₋₆ alkylsulfonylamino (e.g., methylsulfonylamino), (C1-6 alkyl)(C1-6 alkylsulfonyl)amino (e.g., methylsulfonyl) amino), (C_{1.6} alkyl)(C_{1.6} alkyl-carbonyl)amino (e.g., methyl(acetyl)amino), C_{1.6} alkoxy-carbonyl-C_{1.6} alkylamino (e.g., 2-ethoxycarbonyl-2-propylamino), C₇₋₁₅ aralkyloxy-carbonylamino (e.g., benzyloxycarbonylamino), C₁₋₆ alkyl-carbonylamino-C_{1.6} alkyl-carbonylamino (e.g., acetylaminoacetylamino), C_{1.6} alkylthio-C_{1.6} alkyl-carbonylamino (e.g., methylthioacetylamino), C₁₋₆, alkyl-sulfinyl-C₁₋₆ alkyl-carbonylamino (e.g., methylsulfinylacetylamino), C1.6 alkyl-sulfonyl-C1.6 alkyl-carbonylamino (e.g., methylsulfonylacetylamino), C6-14 aryloxy-carbonylamino (e.g., phenoxycarbonylamino), hydroxy-C₁₋₆ alkyl-carbamoyl (e.g., hydroxymethylcarbamoyl, hydroxyethylcarbamoyl) and the like, and may have a substituent selected especially from amino, carboxy, C₁₋₆ alkoxy-carbonyl, carbamoyl, mono- or di-C1,6 alkylcarbamoyl, formylamino, C1,6 alkyl-carbonylamino which may have a halogen atom or carboxy (e.g., acetylamino, propionylamino, trifluoroacetylamino, pivaloylamino), C₁₋₆ alkoxy-carbonylamino (e.g., methoxycarbonylamino), ureido, C_{1.6} alkylsulfonylamino (e.g., methylsulfonylamino), (C_{1.6} alkyl)(C_{1.6} alkylsulfonyl)amino (e.g., methyl(methylsulfonyl)amino), (C1.6 alkyl)(C1.6 alkyl-carbonyl)amino (e.g., methyl (acetyl)amino), C_{1,6} alkoxy-carbonyl-C_{1,6} alkylamino (e.g., 2-ethoxycarbonyl-2-propylamino), C_{7,15} aralkyloxy-carbonylamino (e.g., benzyloxycarbonylamino) and the like]

(6) a C₁₋₆ alkoxy group which may have a halogen atom or C₁₋₆ alkoxy-C₆₋₁₄ aryl (e.g., methoxy, trifluoromethoxy, isopropoxy, 2-(4-methoxyphenyl)ethoxy),

(7) a C₆₋₁₄ aryloxy group (e.g., phenoxy),

(8) a C_{1,6} alkylthio group which may have a carbamoyl (e.g., methylthio, carbamoylmethylthio).

(9) a C₁₋₆ alkylsulfinyl group which may have a carbamoyl (e.g., methylsulfinyl, carbamoylmethylsulfinyl),

(10) a C₆₋₁₄ arylthio group (e.g., phenylthio),

(11) a hydroxy group,

5

10

15

20

30

25

40

45

50

55

(12) a 4- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur, oxygen 25 atoms and the like in addition to carbon atoms (e.g., pyrrolidinyl, piperidyl, isoindolinyl, furyl, thienyl, pyridyl, quinolyl, benzofuranyl, pyrimidinyl, tetrazolyl, imidazolidinyl, isothiazolidinyl, thiadiazolidinyl, azethinyl, etc.),

[this heterocyclic group may have a substituent selected from oxo, carboxy-C1-6 alkyl, C1-6 alkyl-carbonyloxy-C1-6 alkyl, C1-6 alkyl, C1-6 alkoxy-carbonyl-C1-6 alkyl, C1-6 alkoxy-carbonyl, carbamoyl-C1-6 alkyl, C1-6 alkyl-carbamoyl-C₁₋₆ alkyl, etc.],

(13) a carboxy group,

(14) a group represented by Formula: -CO-Hal (Hal is a halogen atom) (e.g., chloroformyl),

(15) a C_{1.6} alkyl-carbonyl group (e.g., acetyl),

(16) a C1-6 alkyl-sulfonyl group (e.g., methylsulfonyl).

(17) a C_{1.6} alkoxy-carbonyl group (e.g., methoxycarbonyl),

(18) a sulfamovi group

[this sulfamoyl group may have 1 or 2 substituent(s) selected from C₁₋₆ alkyl, carbamoyl-C₁₋₆ alkyl, C₁₋₆ alkoxycarbonyl- C1.6 alkyl, (5- to 7-membered heterocyclic group which may have an oxo groups (e.g., 5- to 7-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl, pyrrolidinyl hexahydroazepinyl))-C1-6 alkyl, C1-6 alkyl-carbonylamino-C₆₋₁₄ aryl].

(19) a group represented by Formula: -NRaRb

[each of R8 and Rb is (i) a hydrogen atom, (ii) a C1-6 alkyl, (iii) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl))-C₁₋₆ alkyl, (iv) a C₁₋₆ alkoxy-carbonyl-C₁₋₆ alkyl, (v) a di-C₁₋₆ alkylamino-methylene-sulfamoyi-C1.6 alkyl, (vi) a carbamoyi-C1.6 alkyl, (vii) a sulfamoyi-C1.6 alkyl, (viii) a C1.6 alkylsulfonyl, (ix) a C1,6 alkoxy-carbonyl, (x) a di-C1,6 alkoxy-carbonyl-C2,6 alkenyl, (xi) a C6,14 aryl, (xii) a 5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl), [this 5- or 6-membered $heterocyclic\ group\ may\ have\ a\ substituent\ selected\ from\ amino,\ C_{1-6}\ alkyl-carboxamido\ and\ C_{1-6}\ alkyl-sulfonylamino,\ constraints and\ cons$ no and the like], (xiii) an optionally halogenated C₁₋₆ alkyl-carbonyl, (xiv) a C₁₋₆ alkylthio-C₁₋₆ alkyl-carbonyl, (xv) a C₁₋₆ alkylsulfinyl-C₁₋₆ alkyl-carbonyl, (xvi) a C₁₋₆ alkylsulfonyl-C₁₋₆ alkyl-carbonyl, (xvii) an amino-C₁₋₆ alkyl-carbonyl, (xviii) an optionally halogenated C₁₋₆ alkyl-carbonyl-amino-C₁₋₆ alkyl-carbonyl, (xix) a C₆₋₁₄ aryl-carbonyl, (xx) a carboxy-C₆₋₁₄ aryl-carbonyl, (xxi) an optionally C₁₋₆ alkyl-esterified phosphono-C₁₋₆ alkyl-C₆₋₁₄ aryl-carbonyl, (xxii) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom (s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyrrolidinyl, pyridyl) which may have a halogen atom, oxo or a C1-6 alkoxy-carbonyl)-carbonyl, (xxiii) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl))-C1-6 alkyl-carbonyl, (xxiv) a C6-14

aryl-oxy-carbonyl, (xxv) a carboxy-C_{1.6} alkyl, (xxvi) a carbamoyl, (xxvii) an optionally halogenated C_{1.6} alkylcarbamoyl, (xxviii) a C₆₋₁₄ arylcarbamoyl which may have a C_{1.8} alkyl-carbonylamino, (xxix) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl))-carbamoyl, (xxx) a C_{2,6} alkenylcarbonyl, (xxxi) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyrrolidinyl) which may have an oxo group)-amino-C₁₋₆ alkyl-carbonyl, (xxxii) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyrrolidinyl) which may have an oxo group)(C1-6 alkyl) amino-C1-6 alkyl-carbonyl, (xxxiii) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyrrolidinyl) which may have an oxo group) (C1.6 alkylcarbonyl) amino-C1.6 alkyl-carbonyl, (xxxiv) a C1.6 alkylthio-C1.6 alkylcarbonyl (sulfur atom may be oxidized), (xxxv) an optionally halogenated C1.6 alkylsulfonyl, (xxxvi) a sulfamoyl, (xxxvii) a C1-6 alkylsulfamoyl and the like],

(20) a group represented by Formula: -C(=O)NRcRd [each of Rc and Rd is (i) a hydrogen atom, (ii) a C1-6 alkyl, (iii) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl, imidazolyl))-C₁₋₆ alkyl, (iv) a carboxy-C₁₋₆ alkyl, (v) a C₁₋₆ alkoxy-carbonyl-C₁₋₆ alkyl, (vi) a di-C₁₋₆ alkylamino-C₁₋₆ alkyl, (vii) a carbamoyl-C₁₋₆ alkyl, (viii) a C₁₋₆ alkylcarbamoyl-C_{1,6} alkyl, (ix) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl))-C₁₋₆ alkylcarbamoyl-C₁₋₆ alkyl, (x) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl))-amino-C1-6 alkyl, (xi) a sulfamoyl-C6-14 aryl-C1-6 alkyl, (xii) a C6-14 aryl which may have a C1-6 alkoxy, (xiii) an optionally C1-6 alkyl-esterified phosphono-C1-6 alkyl-C6-14 aryl, (xiv) a 4- to 10-membered heterocyclic group (e.g., 4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as azethinyl, pyrrolidinyl, piperidinyl, hexahydroazepinyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, 1-azabicyclo[2.2.2]octo-3-yl) [this 4- to 10-membered heterocyclic group may have 1 to 2 substituent(s) selected from a halogen atom, C_{1.6} alkyl and oxo], (xv) a C₆₋₁₄ aryl-carbamoyl-C₁₋₆ alkyl, (xvi) a hydroxy-C₁₋₆ alkyl or (xvii) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyrrolidinyl, pyridyl) which may have a oxo group)-carbamovi-C₁₋₆ alkyl; and R^c is preferably a hydrogen atom).

(21) a cyano group,

5

10

15

20

25

30

25

45

50

55

- (22) a mono- or di-C₁₋₆ alkylcarbamoylthio group (e.g., dimethylcarbamoylthio),
- (23) a mono- or di-C_{1,6} alkylthiocarbamoyloxy group (e.g., dimethylthiocarbamoyloxy).

[0048] A "heterocyclic group" as a preferred group R1 is preferably pyridyl, thienyl, furyl, imidazolyl, thiazolyl, quinolyl, 1,2-dihydropyridyl, dihydrobenzofuranyl, benzodioxolyl, benzothiazolyl, piperidyl, piperazinyl and the like, with pyridyl and 1.2-dihydropyridyl being preferred especially.

[0049] Preferred substituents on this "heterocyclic group" may for example be 1 to 5, preferably 1 to 3 groups selected from:

- (1) a halogen atom,
- (2) a C₁₋₆ alkyl group (e.g., methyl, ethyl, etc.)

[this alkyl may have a substituent selected from carboxy, C₁₋₆ alkoxy, C₁₋₆ alkoxy-carbonyl, mono-C₁₋₆ alkyl-amino, di-C_{1,6} alkyl-amino, carbamoyl, C_{1,6} alkyl-carbamoyl which may have a hydroxy, 4- to 10-membered heterocyclic group (e.g., 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl, quinolyl, etc.) which may have oxo. (4- to 10-membered heterocyclic group (e.g., 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl, quinolyll)carbamoyi, carbamoyi-C1.e alkyi-carbamoyi, etc.],

- (3) a C₁₋₆ alkoxy group (e.g., methoxy).
- (4) a C₆₋₁₄ aryl group (e.g., phenyl),
 - (5) a C7,16 aralkyl group (e.g., benzyl)

[this C7-16 aralkyl group may have a substituent selected from carboxy, C1-6 alkoxy-carbonyl, carbarnoyl, C1-6 alkylcarbamoyl which may have a hydroxy, (4- to 10-membered heterocyclic group (e.g., 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl))-carbamoyl and the like],

- (6) a 4- to 10-membered heterocyclic group (e.g., 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl, quinolyl, isoculonyl, isoculonyl, etc.)
- [this 4- to 10-membered heterocyclic group may have a substituent selected from a C₁₋₆ alkyl, C₁₋₆ alkoxy-carbonyl, carbamoyl, oxo, 4- to 10-membered heterocyclic group (e.g., 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl, etc.]]
 - (7) an oxo group.
- (8) an oxide group.

5

10

15

20

25

25

40

45

50

55

[0050] A heterocyclic group whose R1 has an oxide group is preferably N-oxidized pyridyl and the like.

[0051] An "alicyclic hydrocarbon group" as a preferred group R¹ is a C₃₋₆ cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, etc., with cyclopentyl and cyclohexyl being preferred especially.

[0052] This "allicyclic hydrocarbon group" may have a substituent similar to a substituent which may be possessed by a hydrocarbon group represented by R1 described above.

[0053] Each of an "optionally substituted aromatic hydrocarbon group" and "optionally substituted heterocyclic group" as a preferred group R1 is preferably a group represented by Formula:

wherein each symbol is defined as described above.

30 [0054] An "optionally substituted hydrocarbon group" represented by R¹b is a group similar to an "optionally substituted hydrocarbon group" exemplified as a substituent on Ring A. Among such groups, those employed preferably are:

- (1) a C1-e alkyl group (e.g., methyl, isopropyl, tert-butyl, etc.)
- Ithis $C_{1,g}$ alky/i group may have a substituent selected from a halogen atom, cyano, hydroxy, $C_{1,g}$ alkoy-carbonyl, di- $C_{1,g}$ alky-jamino, optionally halogenated $C_{1,g}$ alky-carbonyl-amino, carboxy, carbamoyl, $C_{1,g}$ alky-carbomoyloxy, $C_{1,g}$ alky-carbomoyloxy-carbomy
- (2) a C_{3.6} cycloalkyl group (e.g., cyclohexyl),
- (3) a C₆₋₁₄ aryl group (e.g., phenyl)
- [this C_{6-14} arryl group may have a substituent selected from C_{1-6} alkoxy (e.g., methoxy), amino, carboxy, optionally haiogenated C_{1-6} alkoy-carbonylamino (e.g., acetylamino, trifluoroacetylamino), C_{1-6} alkoxy-carbonylamino (e.g., methoxycarbonylamino), C_{1-6} alkoy-longly alkoxy-carbonylamino), $(C_{1-6}$ alky-longly alkoxy-carbonylamino), $(C_{1-6}$ alky-longly amino), $(C_{1-6}$ alky-longly amino), atc.), and alky-longly amino), atc.), and alky-longly amino), atc.), and alky-longly amino), atc.), and alky-longly amino).

[0055] An "optionally substituted heterocyclic group" represented by R^{1b} is one similar to an "optionally substituted heterocyclic group" axemplified as a substituted on Ring A. Among such groups, those employed preferably are a 5 to 14-members heterocyclic ring containing 1 to 4 heteroatemics) selected from nitrogen, suffic, oxygen atoms and

the like in addition to carbon atoms (e.g., azethinyl, pyrrolidinyl, piperidinyl, isothiazolidinyl, thiadiazolidinyl, hexahydroazepinyl, furyl, thienyl, pyridyl, quinolyl, soqualonyl, bonzofuranyl, pyrimidinyl, tetrazolyl, imidazolinyl, pyrazinyl, pyridazinyl and the likely which may be substituted by 1 or 2 substituent(s) selected from a halogen atom, $C_{1:6}$ alkyl, carboxy- $C_{1:6}$ alkyl, $C_{1:6}$ alkoxy-carbonyl- $C_{1:6}$ alkyl, $C_{1:6}$ alkoxy-carbonyl, carbamoyl, oxo, 4- to 10-membered heterocyclic group (4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl, etc.), (4) $C_{2:6}$ alkenyl group and the like.

[0056] An aromatic hydrocarbon ring represented by Ring D may for example be a monocyclic or fused polycyclic aromatic hydrocarbon ring (G_{E-14} anyl ring) having 6 to 14 carbon atoms. Such a G_{E-14} anyl ring may for example be a benzene ring naphthalene ring, anthryl ring, phenanthryl ring, with a benzene ring and naphthalene ring being preferred and a benzene ring being especially preferred.

[0057] Any of these aromatic hydrocarbon groups may have 1 to 5, preferably 1 to 3 substituent(s) selected from Substituent Group A described above.

[0058] A heterocyclic ring represented by Ring D may for example be a 5- to 14-membered heterocyclic ring containing 1 to 4 (preferably 1 to 3) heteroetom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms, typically, (a) a 5- to 14-membered aromatic heterocyclic ring, (b) a 5- to 14-membered alphatic heterocyclic ring, (c) a bicyclic or tricyclic fused ring of 5- to 14-membered aromatic heterocyclic ring(s) with benzene ring(s) and the like.

[0059] Sald 5- to 14-membered aromatic heterocyclic ring may for example be a 5- to 14-membered aromatic heterocyclic ring containing 1 to 4 (preferably 1 to 3) heteroatomis) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms, and those exemplified typically are thiophene, furan, indolizine, pyrrole, imidazole, triazole, thiazole, oxazole, pyrazole, pyridine, pyridine N-oxide, pyrazine, pyrimidine, pyridazine, purine, 4H-quinolizine, naphthyridine, isothiazole, isoxazole, furazane and the like. Among those listed above, pyridine, thiophene and furan are employed oreferably.

[0060] Said 5- to 14-membered aliphatic heterocyclic ring may for example be a 5- to 14-membered aliphatic heterocyclic ring containing 1 to 4 (preferably 1 to 3) heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms, and those exemplified typically are pyrrolidine, piperadine, piperadine, morpholine, thiomorpholine, 1.2-dihydropyridine, imidazolidine and the like.

[0061] Said a bicyclic or tricyclic fused ring of 5- to 14-membered aromatic heterocyclic ring(s) with benzene rings may for example be a bicyclic or tricyclic fused ring of 5- to 14-membered heterocyclic ring containing 1 to 4 (preferably 1 to 3) heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms with benzene ring (s), and those exemplified typically are benzolpliniophene, benzofuran, 1H-benzimidazole, benzoxazole, benzoxazole, benzoxazole, caphtho(z)-3-bithophene, thianthirene, xanthene, phenoxathini, Indole, isolndois, I-H-indazole, isoquinoline, quinoline, phenatorine, phenatorin

35 [0062] Among those listed above, a preferred heterocyclic ring represented by Ring D is pyridine, thiophene, furan, imidazole, thiazole, quinoline, pyridine N-oxide, 1,2-dihydropyridine, dihydrobenzofuran, benzodioxole, benzodhiazole, oloerdrine, obiorarine and the like, with ovidine. 1.2-dihydropyridine lose especially preferred.

[0063] Any of these heterocyclic rings may have 1 to 5, preferably 1 to 3 substituent(s) selected from Substituent Group A described above.

[0064] An "optionally oxidized sulfur atom" represented by E is S. SO, SO, and the like.

[0055] An optionally substituted nitrogen atom represented by E may for example be a nitrogen atom which may have 1 to 2 group(s) selected from (i) a hydrogen atom, (ii) an optionally substituted hydrocarbon group, (iii) an acyl group and the like.

[0066] Said "optionally substituted hydrocarbon group" may be one similar to an "optionally substituted hydrocarbon group" exemplified as a substituent on Ring A.

[0067] Said "acyl group" may be one similar to an "acyl group" exemplified as a substituent on Ring A, and this agroup may further have 1 to 5, preferably 1 to 3 substituent(s) selected from Substituent Group A described aboxy [0068] In a group represented by Formula: CS-O₂, CO-O₂, S-CO₃, (CH₃),CO₃, -NR¹⁰-CO-(CH₃),₁₀, 100 (CH₃), 100 (CH

-NR1^{c_}SO₂·(CH₂)_m·, -SO₂·NR1^{c_}·(CH₂)_m·, -O-CS-NR1^{c_}·(CH₂)_m·, -NR1^{c_}CO-NR1^{c_}·(CH₂)_m·, -NR1^{c_}CO-CH₂·(CH₂)_m·, -NR1^{c_}CO-C

[0069] An alkyl group represented by R1c may have 1 to 5, preferably 1 to 3 substituent(s) selected from Substituent Group A described above.

[0070] An acyl group represented by R1^c may for example be one similar to an "acyl group" exemplified as a substituent on Ring A, and this acyl group may further have 1 to 5, preferably 1 to 3 substituent(s) selected from Substituent Group A described above.

[0071] k is 0 or 1, especially 0.

5

[0072] m is an integer of 0 to 3, especially 0 to 1.

5

10

15

20

25

30

25

45

[0073] Among those listed above, those preferred as E are:

(i) a bond. (ii) methylene, (iii) O_c (iv) S_c (v) S_c (vi) S_c (vii) S_c (vii) S_c (e.g. alkyl); (e.g., S_c (morphylene), e.g., S_c (wii)), e.g., S_c (wii), e.g., S_c (wiii), e.g., S_c (wiii), e.g., S_c (wiii), e.g., S_c (wiii), e.g.

(xvi) a group represented by Formula -NR9-SO $_2$ -(CH $_2$)_{m2}- wherein R9 is a hydrogen atom or C $_{1.6}$ alkyl-sulfonyl group (e.g., methylsulfonyl) and m2 is 0,

(xvii) a group represented by -SO₂-NR^h-(CH₂)_{m3}- wherein R^h is a hydrogen atom or C₁₋₆ alkyl group (e.g., methyl) and m3 is 0 or 1.

(xviii) a group represented by -O-CS-NRI-(CH₂)_{m4}- wherein RI is a hydrogen atom or C₁₋₆ alkyl group (e.g., methyl) and m4 is 0 or 1.

(xix) a group represented by -NRI-CO-NR^k-(CH₂)_{m5}- wherein RI is a hydrogen atom or C₁₋₆ alkyl group (e.g., methyl), R^k is a hydrogen atom or C₁₋₆ alkyl group (e.g., methyl) and m5 is 0 or 1,

(xx) a group represented by -NR^{L-}CO-CH₂-(CH₂)_{m6}-NR^m- wherein R^L is a hydrogen atom or C_{1.6} alkyl group (e. g., methyl), R^m is a hydrogen atom or C_{1.6} alkyl group (e. g., methyl) and m6 is 0 or 1.

[0074] Each of an "optionally substituted aromatic hydrocarbon group" and "optionally substituted heterocyclic group" exemplified as a preferred R1 may also be a group represented by Formula:

wherein each symbol is defined as described above.

[0075] A halogen atom represented by Hal may for example be a fluorine atom, chlorine atom, bromine atom and iodine atom, with a chlorine atom being preferred.

[0076] As Ring D, one similar to those described above can be employed.

[0077] In a group represented by Formula: -L-R^{1a} wherein each symbol is defined as described above exemplified as a preferred group R¹, an "optionally substituted nitrogen atom" represented by L may be one similar to an "optionally substituted nitrogen atom" represented by L. Tang be not similar to an "optionally substituted nitrogen atom" represented by E. L is preferably methylene, carbowil. Wit- and the like.

[0078] An aromatic group represented by R1a may for example be:

<1> a monocyclic or fused polycyclic aromatic hydrocarbon group, typically, a 6- to 14-membered monocyclic or fused polycyclic aromatic hydrocarbon group such as a C₆₋₁₄ anyl group such as phenyl, 1-naphthyl, 2-naphthyl, 2-anthryl, 2-anthryl, 2-anthryl, 2-anthryl, 4-phenanthryl, 4-phen

<2> a 4- to 14-membered aromatic heterocyclic group containing one or more (for example 1 to 4, preferably 1 to 3) heteroatom(s) of 1 or 2 kind(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms.

[0079] Such a 4- to 14-membered aromatic heterocyclic group may for example to a monocyclic heterocyclic group proferably 5- to 8-membered group) containing one or more (for example 1 to 4, preferably 1 to 3) heterocatorics of of or 2 kind(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms or a fused aromatic heterocyclic group thereof, typically, an aromatic heterocyclic ring such as thiophene, benzo(plithiophene, benzofluran, 1H-benzimidazole, benzothiazole, benzothiazole, benzothiazole, 12-benzisothazole, napthtole/2-belthiophene, thinathrene, prima-indicizine, xanthene, phenoxathiin, pyrrole, imidazole, triazole, thiazole, oxazole, pyrazole, pyridine, pyrrazine, pyrimidine, pyridaze, indice, isolatione, indice, isolatione, indice, isolatione, indice, isolatione, otherwise, isolatione, otherwise, otherwise, isolatione, otherwise, isolatione, otherwise, isolatione, isolatione, otherwise, isolatione, isolatione, otherwise, otherwise, isolatione, otherwise, isolatione, otherwise, otherwise, isolatione, otherwise, otherwise, isolatione, otherwise, otherwise, otherwise, otherwise, otherwise, isolatione, otherwise, otherwise,

monocyclic heterocyclic ring) with aromatic rings (for example, aromatic hydrocarbon groups described above, preferably benzene rings).

[0080] Substituents on said aromatic group are 1 to 5, preferably 1 to 3 substituent(s) selected from Substituent Group A described above.

[0081] An aromatic group which may have a substituent represented by R¹a is preferably a C₆₋₁₄ aryl group (e.g., phenyl) which may have 1 to 5 substituent(s) such as a C_{1.6} alkyl and C_{1.6} alkoxy, etc.

[0082] An "optionally substituted hydroxy group" represented by R^{1a} is one similar to an "optionally substituted hydroxy group" exemplified as a substitutent on Ring A, with a hydroxy group which may have a C₁₋₆ alkyl group (e.g., methyl) being preferred.

10 [0083] An "optionally substituted amino group" represented by R^{1a} is one similar to an "optionally substituted amino group" exemplified as a substituent on Ring A.

[0084] A preferred "optionally substituted amino group" represented by R1a may for example be an amino group which may have 1 or 2 group(s) such as an optionally substituted alkyl group, or optionally substituted anyl group, especially <1> a C_{1-a} alkyl-amino group which may be substituted by a 4-to 10-membered heterocyclic group containing 1 to 3 heteroatem(s) selected from nitrogen, oxygen, suffur atoms and the like in addition to carbon atoms, e.g., pyridyl), <2> a C_{6-t4} anyl-amino group, <3> a 4-to 10-membered heterocyclic group containing 1 to 3 heteroatem(s) selected from nitrogen, oxygen, suffur atoms and the like in addition to carbon atoms, e.g., pyridyl), =1 ninno group and the like.

[0085] An "optionally substituted hydrocarbon group" represented by R² and R³ is one similar to an "optionally substituted hydrocarbon group" exemplified as a substituent on Ring A.

[0086] Such an "optionally substituted hydrocarbon group" may for example be a hydrocarbon group (especially C₁₋₈ alkyl group) which may be substituted by:

<1> a halogen atom,

15

25

30

25

<2> an optionally substituted hydroxy group (for example, a hydroxy group which may be substituted by a substituent selected from a C_{1-6} alkyl, C_{1-6} alkyl-carbonyl, C_{1-6} alkylsulfonyl and C_{7-16} aralkyl, etc.),

<3> an optionally substituted amino group (for example, an amino group which may be substituted by 1 to 2 C₁₋₆ alkyl, C₁₋₆ alkyl-carbonyl and C₆₋₁₄ aryl-carbonyl),

<4> an optionally substituted 4- to 10-membered heterocyclic group (for example, a 4-to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from introgen, oxygen, sulfur atoms and the like in addition to carbon atoms which may have an oxo group (e.g., phthalimido, imidazolimy, piperidinyl, pyrrolldinyl)).

<5> an optionally substituted thio group (for example, a thio group which may be substituted by C₁₋₆ alkyl, etc.), <6> a C₁₋₆ alkyl-sulfinyl group,

<7> a C1-6 alkyl-sulfonyl group.

[0087] Among those listed above, one employed preferably is a C_{1,8} alklyl group which may be substituted by <1> a halogen atom (especially, bromine atom), <2> a hydroxy, <3> a C_{1,6} alklyl-carbonyloxy (e.g., acetoxy), <4> a namino, <5> a 4- to 10-membered heterocyclic group (4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen, sulfur atoms and the like in addition to carbon atoms (e.g., phthalmido, initracilliny), piperdidnyl, pyriodidnyl) which may have xoz group and the like, and one employed more preferably is a C_{1,6} alklyl group (e.g., methyl, ethyl) which may be halogenated by a halogen atom (especially, bromine atom), with a methyl group (e.g., methyl, ethyl) which may be halogenated by a halogen atom (especially, bromine atom), with a methyl group (e.g., methyl, ethyl) which may be halogenated by a halogen atom (especially, bromine atom), with a methyl group (e.g., methyl, ethyl) which may be halogenated by a halogen atom (especially, bromine atom), with a methyl group (e.g., methyl, ethyl) which may be halogenated by a halogen atom (especially, bromine atom), with a methyl group (e.g., methyl, ethyl) which may be halogenated by a halogen atom (especially, bromine atom).

[0088] An "acyl group" represented by R² and R³ is one similar to an "acyl group" exemplified as a substituent on Ring A, with a C₁₋₆ alkoxy-carbonyl group being preferred and a methoxycarbonyl group being more preferred.

45 [0089] A 3- to 8-membered ring formed by R² and R³ together with the adjacent carbon atom may for example be a 3- to 8-membered homocyclic or heterocyclic ring.

[0090] A 3- to 8-membered homocyclic ring formed by R² and R³ together with the adjacent carbon atom may for example be a 3- to 8-membered cyclic hydrocarbon consisting of carbon atoms, and typically a C₃₋₈ cycloalkane (if example, cyclobutane, cyclopentane, cycloberane, cycloberane,

[0091] A 3- to 8-membered heterocyclic ring formed by R² and R³ together with the adjacent carbon atom may for example be a 5- to 8-membered aliphatic heterocyclic ring containing one or more (for example 1 to 4, preferably 1 to 3) heteroatom(s) of 1 or 2 kind(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms.

[0092] More specifically, a 5- to 8-membered aliphatic heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms and a nitrogen atom such as piperidine, piperazine, morpholine, thin/morpholine, brigoridine, indiagoridine ring and the like.

- [0093] Such a 3- to 8-membered homocyclic or heterocyclic ring formed by R² and R³ together with the adjacent carbon atom may have 1 to 5, preferably 1 to 3 substituent(s) similar to the substituents which may be possessed by a heterocyclic ring represented by R¹ described above. Such substituents are preferably 1 to 3 group(s) selected from a C_{1.5} alkyl, C_{6.14} anyl, C_{7.16} aralkyl, amino, mono-C_{1.5} alkylamino, mono-C_{6.14} anylamino, di-C_{1.6} alkylamino, di-C_{6.14} anylamino, di-C_{1.6} alkylamino, di-C_{6.14} anylamino, di-C_{6.14}
- [0094] Among those listed above, each of R² and R³ is preferably a C₁₋₆ alkyl group, C₁₋₆ alkoxy-carbonyl group each of which may be a halogen atom, with a methyl group and methoxycarbonyl group being preferred.

5

15

- [0095] It is also preferred that R² and R³ are taken together with the adjacent carbon atom to form a 5- or 6-membered homocyclic ring such as a C_{3-a} cycloalkane, preferably cyclopentane and cyclohexane (especially, cyclohexane).
- [0096] An "optionally substituted hydrocarbon group" represented by R⁴ may be one similar to an "optionally substituted hydrocarbon group" exemplified as a substituted hydrocarbon group.
- [0097] A hydrocarbon group represented by R⁴ is preferably a C₁₋₆ alklyl group (e.g., methyl, ethyl, propyl, isopropyl, etc.), C₂₋₆ alklyl group such as methyl and isopropyl being preferred especially.
- [0098] A substituent on said hydrocarbon group is preferably (1) a halogen atom (for example, fluorine, chlorine, bromine, iodine), (2) a cyano group.
- (3) a lower alkoxy group (e.g., methoxy, ethoxy), (4) a hydroxy group, (5) an amino group, (6) a mono-lower alkylamino group (e.g., mono-C₁₋₆, alkylamino group such as methylamino, chylamino, group ad d-lower alkylamino group (e.g., mono-C₁₋₆, alkylamino group (e.g., mono-C₁₋₆, alkylamino group (e.g., mono-C₁), (2) a 4 to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms which may have an oxo group (e.g., piperditino, 2-isoindoliny, let).
- (9) a C₆₋₁₄ arylthio (e.g., phenylthio), (10) an ureido, (11) a carboxy, (12) a carbamoyl, (13) a C₁₋₆ alkoxy-carbonyl (e.g., methoxycarbonyl, ethoxycarbonyl, etc.), (14) a mono-C₁₋₄ alkiy-carbamoyl (e.g., methyb:arbamoyl, ethylcarbamoyl, etc.), (15) a formylamino and (16) a C₁₋₆ alkiy-carboxamold (e.g., acetamido, propionamido, propionamido).
- [0099] An "acyl group" represented by R⁴ may be one similar to an "acyl group" exemplified as a substituent on Ring A, and is typically (1) formyl (2) a C₁₋₈ alkyl-carbonyl group (e.g., acetyl, propionyl, etc.), (3) a C₈₋₄ anyl-carbonyl group (e.g., benzoyl, etc.), (4) a C₇₋₁₆ aralkyl-carbonyl group (e.g., phenylacetyl, etc.) (5) a C₁₋₆ alkoxy-carbonyl group (e.g., methoxycarbonyl, (b) a carbamoyl group, (7) a mono- or di-C₁₋₆ alkyl-carbamoyl group (e.g., methylicorbamoyl, etc.), (8) a mono- or di-C₁₋₆ alkyl-fulocarbomoyl group (e.g., methylicorbamoyl, etc.), (8)
- dimethylthiocarbamoyl, etc.), (9) a C_{1-e} alkyl-sulfionyl group (e.g., methylsulfonyl, etc.), (10) a C_{1-e} alkyl-sulfinyl group (e.g., methylsulfinyl, etc.) and the like, with formyl being preferred. (01001 An "optionally substituted hydroxy group" represented by R⁴ may for example be a group represented by
- Formula: -OR⁴ (R⁴ is a hydrogen atom, optionally substituted hydrocarbon group or acyl group).

 35

 101011 A hydrocarbon group which may have a substituent represented by R⁴ may for example be one similar to an
 - "optionally substituted hydrocarbon group" exemplified as a substituent on Ring A, with C₁₋₆ alkyl being preferred.

 [0102] An acyl group represented by R⁴ may for example be one similar to an "acyl group" exemplified as a substit-
 - uent on Ring A, with C_{1-8} alkyl-carbonyl being preferred.

 [9103] \mathbb{R}^4 is preferably a hydrogen atom, cyano group, C_{1-8} alkyl group which may be substituted by a cyano, formyl
- and the like, with a hydrogen atom being preferred especially.
 - [0104] An "optionally substituted hydrocarbon group" represented by R⁵ is one similar to an "optionally substituted hydrocarbon group" exemplified as a substituent on Ring A.
- [0105] A hydrocarbon group represented by R⁵ is preferably a C₁₋₈ alkyl group (e.g., methyl, ethyl, etc.), C₂₋₆ alkenyl group (e.g., alkyl, 2-methyl-2-propenyl, etc.), a C₂₋₆ alkynyl group (e.g., propargyl, etc.), a C₂₋₆ cycloalkyl group (e.g., etc.), a C₃₋₆ cycloalkyl group (e.g., etc.), a C₃₋₆ cycloalkyl group (e.g., etc.), a C₃₋₆ alkyl group (e.g., etc.), a C₃₋₆ alkyl group (especially, methyl) being particularly preferred.
 - [0108] A substituent on said hydrocarbon group is preferably (1) a halogen atom (for example, fluorine, chlorine, bromine, lodine), (2) a hydroxy group, (3) an amino group, (4) a carbox, (5) a carbamoyl, (6) a C₁₄ alkoy-carbonyl, etc.), (7) a mono-C₁₋₆ alkyl-carbamoyl (e.g., methoxycarbonyl, etc.), (7) a mono-C₁₋₆ alkyl-carbamoyl, etc.), (9) a d-Lo 10-membered heterocyclic group containing in 10 a heteroamoyl (e.g., dimethylcarbamoyl, detc.), (9) a 4- b 10-membered heterocyclic group containing in 10 a heteroamoly selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms (e.g., pyridyl, isoindolinyl) which may have an oxo, (11) a C₆₋₁₄ aryl group (e.g., phenyl, etc.) and the like
 - [0107] An "acyl group" represented by R⁹ is one similar to an "acyl group" exemplified as a substituent on Ring A, and this acyl group may further have 1 to 5, preferably 1 to 3 substituent(s) selected from Substituent Group A described above. Those preferred especially are (1) formyl (2) a C₁₋₆ alkyl-carbonyl group (e.g., acetyl, propionyl, etc.), (3) a C₃₋₄ aryl-carbonyl group (e.g., benzylacetyl, etc.) (5) a C₁₋₆ alkyl-carbonyl group (e.g., benzylacetyl, etc.) (5) a C₁₋₆ alkoxy-carbonyl group (e.g., benzylacetyl, etc.) (5) a C₁₋₆ alkoxy-carbonyl group (e.g., methoxycarbonyl, etc.) (6) a C₁₋₆ a carbanyl group (e.g., 7) a mon-or d'-C₁₋₆.

alkyl-carbamoyi group (e.g., methylcarbamoyi, dimethylcarbamoyi, etc.), (8) a mono- or di- C_{1-5} alkyl-thiocarbamoyi group (e.g., methylcarbamoyi, dimethylthiocarbamoyi, etc.), (9) a C_{1-6} alkyl-sulfonyl group (e.g., methylsulfonyl, etc.), (10) a C_{1-6} alkyl-sulforyl group (e.g., methylsulfonyl, etc.), (10) a C_{1-6} alkyl-sulforyl group (e.g., methylsulfiv), etc.) and the like.

[0108] An "optionally substituted heterocyclic group" represented by R⁵ is one similar to an "optionally substituted heterocyclic group" exemplified as a substituent on Ring A.

[0109] A heterocyclic group represented by R⁵ is preferably a 4- to 10-membere aromatic heterocyclic ring containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms (e.g., tetra-rolle let) else.

[0110] A substituent on said heterocyclic group is preferably a C₆₋₁₄ aryl group (e.g., phenyl, etc.) and the like.

[0111] A halogen atom represented by R⁵ is a fluorine atom, chlorine atom, bromine atom and iodine atom, with a chlorine atom being preferred.

[0112] Depending on X5, R5 is preferably any of those described below:

[X=oxvgen atom]

5

15

20

25

30

25

45

- (i) a hydrogen atom.
- (i) a hydrogen atom,
- (ii) a C₁₋₆ alkyl group (e.g., methyl, ethyl, isopropyl, butyl, etc.)
 [this C₁₋₆ alkyl group may have a substituent selected from (1) a halogen atom, (2) a hydroxy group, (3) an

amino group, (4) a carboxy, (5) a carbamoyl, (6) a C_{1,a} alkoyx-carboxyl, (7) a mono-C_{1,a} alk/y-carbamoyl, (8) a di-C_{1,a} alk/y-carbamoyl, (9) 4-to 10-membered aromatic heterocyclic group containing 1 to 5 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms (e.g., pyridyl, 2-isoin-dolinyl, etc.)].

(iii) a C₂₋₆ alkenyl group (e.g., allyl, 2-methyl-propenyl, etc.)[this C₂₋₆ alkenyl group may have a C₆₋₁₄ aryl (e. g., phenyl)].

(iv) a C₂₋₆ alkenyl group (e.g., propargyl, etc.),

(v) a C3-6 cycloalkyl group (e.g., cyclopentyl, etc.),

(vi) a C₇₋₁₆ aralkyl group (e.g., benzyl, 3-phenylpropyl, 5-phenylpentyl, etc.),

(vii) a C₁₋₆ alkyl-carbonyl group (e.g., acetyl, etc.),

(viii) a C₆₋₁₄ aryl-carbonyl group (e.g., benzoyl, etc.),

(ix) a C₇₋₁₆ aralkyl-carbonyl group (e.g., phenylacetyl, etc.),

(x) C₁₋₈ alkoxy-carbonyl group (e.g., methoxycarbonyl, ethoxycarbonyl, etc.),

(xi) a mono- or di-C₁₋₈ alkyl-thiocarbamoyl group (e.g., methylthiocarbamoyl, dimethylthiocarbamoyl, etc.),(xii) an optionally halogenated C₁₋₈ alkyl-sulfonyl group (e.g., methylsulfonyl, etc.),

(xiii) a 4- to 10-membered aromatic heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms (e.g., tetrazolyl, etc.)

[this heterocyclic ring may have a C₆₋₁₄ aryl (e.g., phenyl)],

[X=nitrogen atom]

- 40 <1> a hydrogen atom.
 - <2> a C_{1.6} alkyl group (e.g., methyl, ethyl, etc.)

[this C1-6 alkyl group may have a C1-6 alkoxy-carbonyl],

<3> a formyl.

<4> a C₁₋₆ alkyl-carbonyl group (e.g., acetyl, propionyl, etc.),

<5> a C₁₋₆ alkoxy-carbonyl group (e.g., methoxycarbonyl, ethoxycarbonyl, etc.),

<6> a carbamoyl group,

<7> a mono- or di-C₁₋₆ alkyl-carbamoyl group (e.g., methylcarbamoyl, dimethylcarbamoyl, etc.),

<8> a C₁₋₆ alkyl-sulfonyl group (e.g., methylsulfonyl),

50 [X=sulfur atom]

- <1> a C₁₋₆ alkyl group (e.g., methyl, ethyl, etc.),
- <2> a mono- or di-C₁₋₆ alkyl-carbamoyl group (e.g., methylcarbamoyl, dimethylcarbamoyl),

55 [X=bond]

- <1> a hydrogen atom,
- <2> a C₁₋₆ alkyl group (e.g. methyl),

<3> a halogen atom (e.g., chlorine atom).

[0113] An "optionally substituted hydrocarbon group" represented by R^0 and R^7 may be one similar to an "optionally substituted hydrocarbon group" exemplified as a substitutent on Ring A, and a $C_{1,6}$ alkyl group (e.g., methyl, etc.) is preferred, with a methyl group being preferred especially.

[0114] An 'optionally substituted 3- to 8-membered ring' formed by R⁸ and R⁷ together with the adjacent carbon atom may be one similar to an 'optionally substituted 3- to 8-membered ring' formed by R⁸ and R⁸ together with the adjacent carbon atom described above, and among such groups an optionally substituted 3- to 8-membered homocyclic ring is preferred, with a C₃₋₈ cycloalkane (for example, cyclobutane, cyclohexane, cyclohexane, cyclohexane, cyclohexane, cyclohexane, cyclohexane and cyclohexane (especially cyclopentane) being preferred, and a 5- or 6-membered homocyclic ring such as cyclopentane and cyclohexane (especially cyclopentane) being or ferred.

[0115] An "optionally substituted hydrocarbon group" represented by R⁸ and R⁹ may be one similar to an "optionally substituted hydrocarbon group" exemplified as a substituent on Ring A. Among such groups, those exemplified prents are barby are a C₁₋₈ alklyd group. C₁₋₈ alkleyd group or C₁₋₄ alklyny group each of which may have 1 to 5 substitutes selected from (1) a halogen atom, (2) an optionally halogenated C₁₋₈ alkloxy, (4) an optionally halogenated C₁₋₈ alkloxy, (4) an optionally halogenated C₁₋₈ alkloxy, (6) an amino, (7) a mono-C₁₋₈ alklydamino, (8) a di-C₁₋₈ alklydamino and the like, with C₂₋₈ alklydamino and the like, with C₂₋₈ alklydamino and the like, with C₂₋₈ alklydramic and c₂, alklydramino and the like, with C₂₋₈ alklydramic and the like with

[0116] Preferably, each of R⁸ and R⁹ may for example be a hydrogen atom, C_{1.6} alkyl group (e.g., methyl, ethyl), with a hydrogen atom being preferred especially.

[0117] An optionally oxidized sulfur atom represented by X is S, SO and SO₂ with S and SO being preferred.
[0118] An "optionally substituted nitrogen atom" represented by X is one similar to an "optionally substituted nitrogen.

atom' represented by E described above, and those exemplified typically are (1) NH+, (2) -N(C₁₋₆, alkyl)- (e.g., -N (methyl), -N(penyl), -N(sopropyl)-, etc.), (3) -N(C₆₋₁₄ anyl)- (e.g., -N(phenyl)-, -N(2-naphtyr)-, etc.), (4) -N(C₇₋₁₆ araikyl)- (e.g., -N(benzyl)-, -N(phenyl)-, -N(phe

25 [0119] X is preferably a bond, O, S, SO, -NH-, -N(methyl)- and the like.

[0120] Y is (1) an optionally substituted methylene group, or (2) a carbonyl group.

[0121] A substituent on a methylene group may for example be a group selected from Substituent Group A described above, and among such groups those preferred are one or two C₁₋₆ alkyl group(s) (e.g., methyl, ethyl, eth), etc)), hydroxy group(s) and the like.

30 [0122] Y is preferably (1) a methylene group which may have one or two C₁₋₈ alkyl group(s) (e.g., methyl, ethyl) or (2) a carbonyl group, with a methylene group which may have one or two methyl(s) being preferred, and a methylene group being especially to referred.

[0123] n is 0 or 1, with 0 being preferred.

[0124] As a compound according to the invention, any one of those listed below is preferred.

[Compound (I)-I]

5

15

25

40

45

50

55

[0125] Compound (I) wherein:

R1 is a group represented by Formula:

wherein each symbol is defined as described above, or a group represented by Formula:

wherein each symbol is defined as described above, each of R² and R³ is a hydrogen atom or optionally substituted hydrocarbon group, and R² and R³ may be taken together with the adjacent carbon atom to form an optionally substituted 3- to 8-membered ring, R⁴ is a hydrogen atom, cyano group, optionally substituted hydrocarbon group, acy group or optionally substituted hydrocarbon group, acy group or optionally substituted hydrocarbon group, and R⁶ and R⁷ are taken together with the adjacent carbon atom to form an optionally substituted hydrocarbon group, and R⁶ and R⁷ are taken together with the adjacent carbon atom to form an optionally substituted at 10- to 8-membered ring, each of R⁶ and R⁷ as hydrogen atom, X is an oxygen atom or optionally oxidized sulfur atom, Y is a methylene group which may have one or two C₁₋₆ alkyl groups, and n is 0 or 1.

[Compound (I)-II]

5

10

15

20

25

30

25

45

55

[0126] Compound (I) wherein:

R1 is a group represented by Formula:

wherein each symbol is defined as described above, or a group represented by Formula:

wherein each symbol is defined as described above, each of R^2 and R^3 is a hydrogen atom or optionally substituted hydrocarbon group, and R^2 and R^3 may be taken together with the adjacent carbon atom to form an optionally substituted hydrocarbon group, each of R^3 and R^3 is an optionally substituted hydrocarbon group, each of R^3 and R^3 is an optionally substituted hydrocarbon group, each of R^3 and R^3 is an optionally substituted hydrocarbon group, and R^3 and R^3 are taken together with the adjacent carbon atom to form an optionally substituted R^3 to R^3 membered homocyclic ring, each of R^3 and R^3 is a hydrogen atom, X is an oxygen atom or sulture stom, Y is a melhylene and R^3 in R^3 or R^3 .

[Compound (I)-III]

[0127] Compound (I) wherein R1 is,

- (i) a C₆₋₁₄ aryl group which may have 1 to 3 substituent(s) selected from the following (1) to (23):
 - (1) a halogen atom,
 - (2) a nitro group,
 - (3) a C₁₋₆ alkyl group (e.g., methyl, isopropyl, tert-butyl and the like)

[this $C_{1,6}$ alkyl group may have a substituent selected from a halogen atom, cyano, carbamoyl, $C_{1,6}$ alkyl-carbamoyl, $C_{1,6}$ alkyl-carbamoyl, C

- (4) a C_{3.6} cycloalkyl group (e.g., cyclohexyl)
 - (5) a C₆₋₁₄ aryl group (e.g., phenyl)

5

10

15

20

25

30

25

45

50

- [this C₆₋₁₄ aryl group may have a substituent selected from amino, carboxy, C₁₋₆ alkoxy-carbonyl, carbamoyl, mono- or di-C1-6 alkylcarbamoyl, formylamino, C1-6 alkyl-carbonylamino which may have a halogen atom or carboxy (e.g., acetylamino, propionylamino, trifluoroacetylamino, pivaloylamino), C6:14 aryl-carbonylamino (e. g., benzoylamino), C_{1,6} alkoxy-carbonylamino (e.g., methoxycarbonylamino), ureido, mono- or di-C_{1,6} alkylureido, C1.6 alkylsulfonylamino (e.g., methylsulfonylamino, etc.), (C1.6 alkyl)(C1.6 alkylsulfonyl) amino (e.g., methyl(methylsulfonyl)amino), (C_{1.6} alkyl)(C_{1.6} alkyl-carbonyl)amino (e.g., methyl(acetyl)amino, etc.), C_{1.6} alkoxy-carbonyl-C1.6 alkylamino (e.g., 2-ethoxycarbonyl-2-propylamino, etc.), C6.14 aralkyloxy-carbonylamino (e.g., benzyloxycarbonylamino), C₁₋₆ alkyl-carbonylamino-C₁₋₆ alkyl-carbonylamino (e.g., acetylaminoacetylamino), C1-6 alkyloxy-C1-6 alkyl-carbonylamino-C1-6 alkyl-carbonylamino (e.g., methoxyacetylaminoacetylamino), C1-6 alkylthio-C1-6 alkyl-carbonylamino (e.g., methylthioacetylamino), C1-6 alkyl-sulfinyl-C1-6 alkyl-carbonylamino (e.g., methylsulfinylacetylamino), C_{1.6} alkyl-sulfonyl-C_{1.6} alkyl-carbonylamino (e.g., methylsulfonylacetylamino), C6:14 aryloxy-carbonylamino (e.g., phenoxycarbonylamino), hydroxy-C1-6 alkylcarbamoyl (e.g., hydroxymethylcarbamoyl, hydroxyethylcarbamoyl), and may have a substituent selected especially from amino carboxy, C₁₋₆ alkoxy-carbonyl, carbamoyl, mono- or di-C₁₋₆ alkylcarbamoyl, formylamino, C1-8 alkyl-carbonylamino which may have a halogen atom or carboxy (e.g., acetylamino, propionylamino, trifluoroacetylamino, pivaloylamino). C₁₋₆ alkoxy-carbonylamino (e.g., methoxycarbonylamino), ureido, C₁₋₆ alkylsulfonylamino (e.g., methylsulfonylamino), (C1-6 alkyl)(C1-6 alkylsulfonyl)amino (e.g., methyl(methylsulfonyl)amino, etc.), (C1-6 alkyl)(C1-6 alkyl-carbonyl)amino (e.g., methyl(acetyl)amino, etc.), C1-6 alkoxy-carbonyl-C₁₋₆ alkylamino (e.g., 2-ethoxycarbonyl-2-propylamino, etc.), C₆₋₁₄ aralkyloxy-carbonylamino (e.g., ben-
- zyloxycarbonylamino) and the like], (6) a $C_{1.6}$ alkoxy group which may have a halogen atom or $C_{1.6}$ alkoxy- $C_{6.14}$ aryl (e.g., methoxy, trifluorometh-
- oxy, isopropoxy, 2-(4-methoxyphenyl)ethoxy, etc.),
- (7) a C₆₋₁₄ aryloxy group (e.g., phenoxy),
- (8) a C₁₋₆ alkylthio group which may have a carbamoyl (e.g., methylthio, carbamoylmethylthio),
- (9) a C₁₋₆ alkylsulfinyl group which may have a carbamoyl (e.g., methylsulfinyl, carbamoylmethylsulfinyl),
- (10) a C₆₋₁₄ arylthio group (e.g., phenylthio),
- (11) a hydroxy group,
- (12) a 4- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms (e.g., pyrrolidinyl, piperidyl, isoindolinyl, furyl, thienyl, pyridyl, quinolyl, benzofuranyl, pyrimidinyl, tetrazolyl, imidazolidinyl, isothiazolidinyl, thiadiazolidinyl, azethinyl, etc.).
- [this heterocyclic group may have a substituent selected from oxo, carboxy-C_{1,6} alkyl, C_{1,6} alkyl-carbony-loxy-C_{1,6} alkyl, C_{1,6} alky,-carbony-loxy-C_{1,6} alkyl, C_{1,6} alky,-carbony-loxy-C_{1,6} alkyl, C_{1,6} alky,-carbony-lox_{1,6} alkyl, C_{1,6} alky,-carbony-loxy-car
 - (13) a carboxy group.
 - (14) a group represented by Formula: -CO-Hal (Hal is a halogen atom) (e.g., chloroformyl),
 - (15) a C₁₋₆ alkyl-carbonyl group (e.g., acetyl, etc.),
 - (16) a C₁₋₆ alkyl-sulfonyl group (e.g., methylsulfonyl, etc.),
 - (17) a C_{1.6} alkoxy-carbonyl group (e.g., methoxycarbonyl, etc.),
 - (18) a sulfamovi group
 - [this sulfarnoyl group may have 1 or 2 substituent(s) selected from C_{1,6} alkyl, carbamoyl-C_{1,6} alkyl, (5-to 7-membered heterocyclic group which may have an oxo group (e.g., 5- to 7-membered heterocyclic group which may have an oxo group (e.g., 5- to 7-membered heterocyclic group containing 1 to 3 heterostom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl, pyrrolidinyl hexahydroazepinyll)-C_{1,6} alkyl; C_{1,6} alkyl; carbonylamino-C_{6-4,4} aryl.
 - (19) a group represented by Formula: -NRaRb
 - [each of R⁹ and R⁹ is (i) a hydrogen atom, (ii) a C₁₋₆ alkyl, (iii) a (5· or 6-membered heterocyclic ring (e.g. 5· or 6-membered heterocyclic ring containing 1 o3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl). C₁₋₆ alkyl, (iv) a C₁₋₆ alkyl, cyria alkoxy-carbonyl-C₁₋₆ alkyl, (vi) a di-C₁₋₆ alkyl-minor-methylene-sulfarmoyl-C₁₋₆ alkyl, (vi) a carbamoyl-C₁₋₆ alkyl, (vii) a usulfarmoyl-C₁₋₆ alkyl-minor-methylene-sulfarmoyl-C₁₋₆ alkyl, (vii) a carbamoyl-C₁₋₆ alkyl-minor-methylene-sulfarmoyl-C₁₋₆ alkyl-minor-m

aryl, (xii) a 5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl), [this 5- or 6-membered heterocyclic group may have a substituent selected from amino, C1.6 alkylcarboxamido and C_{1,6} alkyl-sulfonylamino and the like], (xiii) an optionally halogenated C_{1,6} alkyl-carbonyl, (xiv) a C₁₋₆ alkylthio-C₁₋₆ alkyl-carbonyl, (xv) a C₁₋₆ alkylsulfinyl-C₁₋₆ alkyl-carbonyl, (xvi) a C₁₋₆ alkylsulfonyl-C₁₋₆ alkyl-carbonyl, (xvii) an amino-C₁₋₆ alkyl-carbonyl, (xviii) an optionally halogenated C₁₋₆ alkyl-carbonyl-amino-C₁₋₆ alkyl-carbonyl, (xix) a C₆₋₁₄ aryl-carbonyl, (xx) a carboxy-C₆₋₁₄ aryl-carbonyl, (xxi) an optionally C₁₋₆ alkyl-esterified phosphono-C₁₋₆ alkyl-C₆₋₁₄ aryl-carbonyl, (xxii) a (5- or 6-membered heterocyclic ring (e. g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyrrolidinyl, pyridyl) which may have a halogen atom, oxo or a C_{1,6} alkoxy-carbonyl)-carbonyl, (xxiii) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyll)-C1.6 alkyl-carbonyl, (xxiv) a C6.14 aryl-oxy-carbonyl, (xxv) a carboxy-C1-6 alkyl, (xxvi) a carbamoyl, (xxvii) an optionally halogenated C1-6 alkylcarbamoyl, (xxviii) a C6-14 arylcarbamoyl which may have a C1.6 alkyl-carbonylamino. (xxix) a (5- or 6-membered heterocyclic ring (e.g., 5or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl))-carbamoyl, (xxx) a C2.6 alkenyl-carbonyl, (xxxi) a (5or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyrrolidinyl) which may have an oxo group)-amino-C_{1.8} alkyl-carbonyl, (xxxii) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyrrolidinyl) which may have an oxo group)(C1-6 alkyl) amino-C₁₋₆ alkyl-carbonyl, (xxxiii) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyrrolidinyl) which may have an oxo group) (C1,6 alkylcarbonyl) amino-C1,6 alkyl-carbonyl, (xxxiv) a C₁₋₆ alkylthio-C₁₋₆ alkylcarbonyl (sulfur atom may be oxidized), (xxxv) an optionally halogenated C1-6 alkylsulfonyl, (xxxvi) a sulfamoyl, (xxxvii) a C1-6 alkylsulfamoyl and the like],

(20) a group represented by Formula: -C(=O)NRcRd

[each of Rc and Rd is (i) a hydrogen atom, (ii) a C1-6 alkyl, (iii) a 5- or 6-membered heterocyclic ring (e.g., 5or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl, imidazolyl)-C1.8 alkyl, (iv) a carboxy-C1.8 alkyl, (v) a C₁₋₆ alkoxy-carbonyl-C₁₋₆ alkyl, (vi) a di-C₁₋₆ alkylamino-C₁₋₆ alkyl, (vii) a carbamoyl-C₁₋₆ alkyl, (viii) a C₁₋₆ alkylcarbamoyl-C1-8 alkyl, (ix) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyl))-C₁₋₆ alkylcarbamoyl-C₁₋₆ alkyl, (x) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyridyll)-amino-C₁₋₆ alkyl, (xi) a sulfamoyl-C₆₋₁₄ aryl-C₁₋₆ alkyl, (xii) a C₈₋₁₄ aryl which may have C₁₋₆ alkoxy, (xiii) an optionally C₁₋₆ alkyl-esterified phosphono-C₁₋₆ alkyl-C₆₋₁₄ aryl, (xiv) a 4- to 10-membered heterocyclic group (e.g., 4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as azethinyl, pyrrolidinyl, piperidinyl, hexahydroazepinyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, 1-azabicyclo[2,2,2]octo-3-vl, etc.) [this 4- to 10-membered heterocyclic group may have 1 to 2 substituent(s) selected from a halogen atom, C1-6 alkyl and oxo, etc.], (xv) a C6-14 aryl-carbamoyl-C1-6 alkyl, (xvi) a hydroxy-C₁₋₆ alkyl or (xvii) a (5- or 6-membered heterocyclic ring (e.g., 5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur, oxygen atoms and the like in addition to carbon atoms such as pyrrolidinyl, pyridyl) which may have a oxo group)-carbamoyl-C1.6 alkyl; and Rc is preferably a hydrogen atom).

(04) a summer many

5

10

15

20

25

30

25

40

45

50

- (21) a cyano group,(22) a mono- or di-C₁₋₆ alkylcarbamoylthio group (e.g., dimethylcarbamoylthio),
- (23) a mono- or di-C_{1,6} alkylthiocarbamoyloxy group (e.g., dimethylthiocarbamoyloxy);
 - (ii) a 4- to 14-membered heterocyclic group containing 1 to 4 hetereatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 3 substituent(s) selected from the following (1) to (8):
 - (1) a halogen atom,
 - (2) a $C_{1.6}$ alkyl group [this alkyl may have a substituent selected from carboxy, $C_{1.6}$ alkoxy, $C_{1.6}$ alkoxy-carbonyl, mono- $C_{1.6}$ alkyl-amino, di- $C_{1.6}$ alkyl-amino, carbamoyl, $C_{1.6}$ alkyl-carbamoyl which may have a hydroxy,

- 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have oxo, (4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-carbamoyl, carbamoyl-C_{1,a} alklyl-carbamoyl[].
- (3) a C₁₋₆ alkoxy group,

5

10

15

20

25

25

- (4) a C₆₋₁₄ aryl group,
- (6) a C₇₋₁₆ arallyl group [this C₇₋₁₆ arallyl group may have a substituent selected from carboxy, C₁₋₆ alkoxy-carbonyl, c₁₋₆ alkoyl-carbonyl which may have hydroxy, (4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-carbonavia.
- (6) a 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms [this 4- to 10-membered heterocyclic group may have a substituent selected from a C₁₋₆ alklyl, C₁₋₆ alkloxy-carbonyl, carbamoyl, oxo, 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms).
- (7) an oxo group,
- (8) an oxide group;
- (iii) a C3.6 cycloalkyl group; or,
- (V) a group represented by Formula: -L'-RI st (L' is methylene, carbonyl or an optionally substituted nitrogen atom. RI st is (1) a hydrogen atom, (2) a C_{b+1} any group which may have 1 to 5 substitutent(s) selected from a C_{t-a} alkyl and C_{t-a} alkyl, C_{b+1} and C_{t-a} alkyl and C_{t-a} alkyl and C_{t-a} alkyl and C_{t-a} alkyl annia group which may be substituted by a 4 to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms. (6) a C_{b+1} aryl-mining group or (7) a (4-to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms. (6)
- each of \mathbb{R}^2 and \mathbb{R}^3 is (1) a hydrogen atom, (2) a $C_{1,g}$ alkly group which may be substituted by <1> a halogen atom, <2> an optionally substituted hydroxy group (for example, a hydroxy group which may be substituted by a substituent selected from a C_{1-g} alkly, C_{1-g} alkly-carbonyl, C_{1-g} alkly-substituted armin group (or example, a nation group which may be substituted by 1 or $2 C_{1-g}$ alklyl, C_{1-g} alklyl-carbonyl, etc.), <4> an optionally substituted a mix-dependent of the carbonyl, etc.), <4> an optionally substituted 4 to 10-membered heterocycle group (for example, a 4- to 10-membered heterocycle group (for example, a 4- to 10-membered heterocycle group containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen, sulfur atoms and the like in a addition to carbon atoms which may have an oxy group (e.g., phthalimidin, limidazolinyl, piperdinyl, pyrrolidinyl)), <5> an optionally substituted this group (for example, a thio group which may have a C_{1-g} alkly-left/mix) group oxy-carbonyl group.
- R2 and R3 may be taken together with the adjacent carbon atom to form a C3.8 cycloalkane,
- R4 is (i) a hydrogen atom. (ii) a cyano group. (iii) a C₁₋₆ alkyl group (this C₁₋₆ alkyl group may have a substituent selected from (i') a halogen atom. (2) a cyano group. (3) a C₁₋₆ alkyl grovy group, (4) a hydroxy group, (5) an amino group, (6) a mono-C₁₋₆ alkylamino group, (7) a di-C₁₋₆ alkylamino group, (8) a tri-C₁₋₆ alkylammonium group, (8) a 4- to 10-membered heterocyclic group containing 1 to 3 heterocatomic) selected from nitrogen, sultur and oxygen atoms in diddition to carbon atoms which may have an oxo. (9) a C₆₋₁₄ arylthio. (10) an ureido, (11) a carboxy, (12) a carbamoyl, (13) a C₁₋₆ alkoy-carbonyl, (14) a mono-C₁₋₆ alkyl-carbamoyl, (15) a formylamino and (16) a C₁₋₆ alkyl-carboxamidoj, (v) a C₂₋₆ alkeyn group or (v) a formyl group.
- X is a bond, oxygen atom, optionally oxidized sulfur atom, -NH- or -N(methyl)-,
- 45 R5 is.
 - when X is a bond, then (i) a hydrogen atom, (ii) a C1-6 alkyl group or (iii) a halogen atom,
 - - when X is an optionally oxidized sulfur, then (i) a $C_{1,6}$ alkyl group or (ii) a mono- or di- $C_{1,6}$ alkyl-carbamoyl group, when X is -NH- or -N(methyl)-, then (i) a hydrogen atom, (ii) a $C_{1,6}$ alkyl group (lish $C_{1,6}$ alkyl group may have a $C_{1,6}$ alkovy-carbonyl, (iii) formyl, (iv) a $C_{1,6}$ alkoy-carbonyl group, (v) a $C_{1,6}$ alkoys-carbonyl group, (v) a $C_{1,6}$ alkoys-carbonyl group, (vi) a $C_{1,6}$ alkyl group $C_{$

- group. (vii) a mone- or di-C₁₋₆ alkyl-carbarnoyl group or (viii) a C₁₋₆ alkyl-sulfonyl group, each of R⁶ and R⁷ is a hydrogen atom or C₁₋₆ alkyl group, R⁶ and R⁷ may be taken together with the adjacent carbon atom to form a C₃₋₆ cycloalkane, Each of R⁰ and R⁰ is a hydrogen atom or a C₁₋₆ alkyl group, Y is <1-3 a methylene group which may have 1 or 2 C₁₋₆ alkyl or hydroxy group or <2> a carbonyl group.
- n is 0 or 1.
 - [Compound (I)-IV]

5

15

20

30

25

- 10 [0128] Compound (I) wherein R1 is,
 - (i) a C₆₋₁₄ aryl group which may have 1 to 3 substituent(s) selected from the following (1) to (20):
 - (1) a halogen atom,
 - (2) a nitro group,
 - (3) a C₁₋₆ alkyl group [this C₁₋₆ alkyl group may have a substituent selected from a halogen atom, cyano, carbamoyl, C₁₋₆ alkyl-carbamyl, C₁₋₆ alkyl-carbamyl, C₁₋₆ alkyl-carbamyl, (5- or 5-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms; C₁₋₆ alkyl-carbamyl, C₁₋₆ alkyl-sulfonylamino, C₁₋₆ alkoxy-carbonyl and carboxyl.
 - (4) a C₃₋₆ cycloalkyl group,
 - (5) a C₆₋₁₄ aryl group
 - [this C_{6-14} aryl group may have a substituent selected from amino, optionally halogenated C_{1-6} alkyl-carbon-ylamino, ureido, C_{1-6} alkylsulfonylamino, (C_{1-6} alkylsulfonyl) amino, C_{1-6} alkoxy-carbonyl- C_{1-6} alkylamino).
- 25 (6) a C₁₋₆ alkoxy group which may have a halogen atom or C₁₋₆ alkoxy-C₆₋₁₄ aryl,
 - (7) a C₆₋₁₄ aryloxy group,
 - (8) a C1-6 alkylthio group,
 - (9) a C₁₋₆ alkylsulfinyl group,
 - (10) a C₆₋₁₄ arylthio group,
 - (11) a hydroxy group,
 - (12) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms [this heterocyclic group may have a substituent selected from oxo, carboxy-C₁₋₆ alkyl, C₁₋₆ alkyl, C₁₋₆ alkyl, C₁₋₆ alkyl-carbamoyl-C₁₋₆ alkyl, C₁₋₆ alkyl, C
 - (13) a carboxy group,
 - (14) a group represented by Formula: -CO-Hal (Hal is a halogen atom).
 - (15) a C₁₋₆ alkyl-carbonyl group,
 - (16) a C₁₋₆ alkyl-sulfonyl group.
 - (17) a C_{1.6} alkoxy-carbonyl group,
- (18) a sulfamoyl group (this sulfamoyl group may have a substituent selected from a C_{1.6} alkyl, carbamoyl-C_{1.6} alkyl, (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-C_{1.6} alkyl].
- (19) a group represented by Formula: NNFP [each of IP and IP is (i) a hydrogen atom, (ii) a C_{1,6} alklyl, (iii) a (5-or 6-membered heterocyclic ring containing 1 to 8 heterostoring) selected from introgen, sultur and oxygen atoms in addition to carbon atoms)-C_{1,6} alklyl, (iv) a C_{1,6} alkoxy-carbonyl-C_{1,6} alklyl, (v) a di-C_{1,8} alkoxy-carbonyl-C_{1,6} alklyl, (vi) a sulfarmoyl-C_{1,6} alklyl, (vi) a carbonyl-C_{1,6} alklyl, (vii) a carbonyl-C_{1,6} alklyl, (vii) a carbonyl-C_{1,6} alklyl, (vii) a C_{1,6} alklyl-carbonyl-C_{1,6} alklyl-carbonyl-C_{1,6} alklyl-carbonyl-carbonyl-C_{2,6} alklyl-carbonyl-carbonyl-C_{2,6} alklyl-carbonyl-carbonyl-C_{2,6} alklyl-carbonyl
 - containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms, (xxiii) a (5- or 5-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have a C₁₋₆ alkoy-carbonyl)-C₁₋₆ alkyl-carbonyl, (xxiv) a C₅₋₁₄ ary(oxy-carbonyl, (xxv) a carboxy-C₁₋₆ alkyl or (xxvi) a carbamoyll,
 - (20) a group represented by Formula: -C(=O)NReRd [each of Re and Rd is (i) a hydrogen atom, (ii) a C_{1.6} alkyl,

- (iii) a (S. or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxogen atoms in addition to action atoms (-1, -1) allyl, (vi) a di-(-1, -1) allyl, and oxogen atoms in addition to action atoms (-1, -1) allyl, (vii) a carbamoyl-(-1, -1) allyl, (viii) a (-1, -1) allyl, (viiii) a (-1, -1) allyl, (-1,
- (ii) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 3 substituent(s) selected from the following (1) to (8):
- a halogen atom,

5

10

15

20

25

30

25

40

50

- (2) a $C_{1,6}$ alikyl group [this alkyl may have a substituent selected from carboxy, $C_{1,6}$ alikoxy, $C_{1,6}$ alikoxy, $C_{1,6}$ alikoy, arbonyl, mono- $C_{1,6}$ alikyl-amino, di- $C_{1,6}$ alikyl-amino, $C_{1,6}$ alikyl-amboyl which may have a hydroxy, 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) eslected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have oxo, (4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) eslected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-carbonyl- $C_{1,6}$ alikyl-carbonyl- $C_{1,6}$ al
- (3) a C₁₋₆ alkoxy group,
- (4) a C₆₋₁₄ aryl group,
 - (5) a C₇₋₁₆ aralkyl group [this C₇₋₁₆ aralkyl group may have a substituent selected from carboxy, C₁₋₈ alkoxy-carbonyl, carbamoyl. C₁₋₈ alkyl-carbamoyl which may have a hydroxy, (4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-carbamoyl.
 - (6) a 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms (this 4- to 10-membered heterocyclic group may have a substituent selected from a C₁₋₆ alklyt, C₁₋₆ alkloxy-carbonyl, carbamoyl, oxo, 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms.
 - (7) an oxo group,
- (8) an oxide group;
 - (iii) a C3-6 cycloalkyl group; or,
 - (p) a group represented by Formula: \(\frac{1}{2}\)-(1 \) is methylene, carbonyl or an optionally substituted nitrogen atom, \(\frac{1}{2}\) is (1) a hydrogen atom, \(2\) a \(\frac{1}{2}\), and \(\frac{1}{2}\), \(\frac{1}{2}\), and
- 45 each of R² and R³ is (1) a hydrogen atom, (2) an optionally halogenated C₁₋₆ alkyl group or (3) a C₁₋₆ alkoxy-carbonyl group.
 - R2 and R3 may be taken together with the adjacent carbon atom to form a C3.8 cycloalkane,
 - R⁴ is (i) a hydrogen atom, (ii) a C₁₋₆ alkyl group [this C₁₋₆ alkyl group may have a substituent selected from (1) a halogen atom, (2) a cyvang crup. (3) a C₁₋₆ alkoy group, (3) a hydroxy group, (6) an amino group, (6) a mono-C₁₋₆ alkylamino group, (7) a di-C₁₋₆ alkylamino group, (8) a tri-C₁₋₆ alkylammonium group, (8) a 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxo, (9) a C₆₋₁₄ arilythio, (10) an ureido, (11) a carboxy, (12) a carbamoyl, (13) a C₁₋₆ alkyl-carboxamido) or (iii) a C₃₋₆ alkoxy-carboxyl, (14) a mono-C₁₋₆ alkyl-carboxoxyl, (15) a formylamino, (16) a C₁₋₆ alkyl-carboxamido) or (iii) a C₃₋₆ alkovyl croup.
 - X is a bond, oxygen atom, sulfur atom, -NH- or -N(methyl)-,
 - R⁵ is,
 - when X is a bond, then (i) a hydrogen atom, (ii) a C_{1-6} alkyl group or (iii) a halogen atom. when X is an oxygen atom, then (i) a hydrogen atom, (ii) a C_{1-6} alkyl group [this C_{1-6} al

a substituent selected from (1) a halogen atom, (2) a hydroxy group, (3) an amino group, (4) a carboxy, (5) a carboxy, (6) a carboxy, (7) a mono- $C_{\rm ph}$ aliky-carbonamy, (8) a 4-10 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms, (iii) a $C_{\rm ph}$ alkenyl group (iii) the $C_{\rm ph}$ alkenyl group, (iii) a $C_{\rm ph}$ alkeyi-carbonyl group, (ii) a $C_{\rm ph}$ alkeyi-group, (iii) a $C_{\rm ph}$ alkeyi-carbonyl group, (iii) a $C_{\rm ph}$ and $C_{\rm ph}$ alkeyi-carbonyl group, (iii) a $C_{\rm ph}$ and $C_{\rm ph}$ and $C_{\rm ph}$ and $C_{\rm ph}$ and $C_{\rm ph}$ alkeyi-carbonyl group, (iii) a $C_{\rm ph}$ and $C_{\rm ph}$ and $C_{\rm ph}$ and $C_{\rm ph}$ alkeyi-carbonyl group, (iii) a $C_{\rm ph}$ and $C_{\rm ph}$

when X is a sulfur atom, then (i) a C₁₋₆ alkyl group or (ii) a mono- or di-C₁₋₆ alkyl-carbamoyl group, when X is -NH- or -N(methyl)-, then (i) a hydrogen atom, (ii) a C₁₋₆ alkyl group [this C₁₋₆ alkyl group may have a C₁₋₆ alkoxy-carbonyl], (iii) formyl, (iv) a C₁₋₆ alkyl-carbonyl group, (v) a C₁₋₆ alkoxy-carbonyl group, group, (vi) a carbamoyl group, (vii) a mono- or di-C₁₋₆ alkyl-carbamoyl group or (viii) a C₁₋₆ alkyl-surfonyl group, (vii) a

each of R⁶ and R⁷ is a hydrogen atom or C₁₋₆ alkyl group,

R6 and R7 may be taken together with the adjacent carbon atom to form a C₃₋₈ cycloalkane,

each of R^8 and R^9 is a hydrogen atom or a $\mathsf{C}_{\mathsf{1-6}}$ alkyl group,

Y is (1) a methylene group which may have a hydroxy group or (2) a carbonyl group, n is 0 or 1.

20 [Compound (I)-V]

5

10

15

25

25

40

45

55

[0129] Compounds produced in Examples 1 to 588 or salts thereof.

[Compound (I)-VI]

[0130] Compounds produced in Examples 1 to 438 or salts thereof.

[Compound (I)-VII]

30 [0131]

- (i) 2-(Methylsulfinyl)-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl] acetamide.
- (ii) N-(methylsulfonyl)-N-{3-(3,4,8,9-letrahydro-6-methoxy-3,3,8,8-letramethylfuro[2,3-h]isoquinolin-1-yl)phenyl] methanesulfonamide, (iii) N-{2-(4-pydridnyl)d-5-(3,8,8)-letrahydro-6-methoxy-3,3,8-letramethylfuro[2,3-h]isoquinolin-1-yl)phenzamide, (iv) N-{2-amino-2-coxethyl)-3-(3,4,8-y-letrahydro-6-methoxy-3,3,8-letramethylfuro[2,3-h]isoquinolin-1-yl)phenzamide, (iv) N-ethyl-3-(3,4,8-y-letrahydro-6-methoxy-3,3,8-letramethylfuro[2,3-h]isoquinolin-1-yl)phenzamide, (iv) N-ethyl-3-(3,4,8-y-letrahydro-6-methoxy-3,3,8-letramethylfuro[2,3-h]isoquinolin-1-yl)phenzamide, (ivi) N-{2-amino-1,1-dimethyl-2-oxoethyl)-3-(3,4,8-y-letrahydro-6-methoxy-3,3,8-letramethylfuro[2,3-h]isoquinolin-1-yl)phenzamide, (ivi) N-{2-amino-2-oxoethyl)-3-(3,4,8-y-letrahydro-3,3,8-letramethylfuro[2,3-h]isoquinolin-1-yl)phenzamide, (ivi) N-{2-amino-2-oxoethyl)-3-(6-ethoxy-3,4,8-y-letrahydro-3,3,8-letramethylfuro[2,3-h]isoquinolin-1-yl)phenzamide, (ivi) N-{2-amino-1,1-dimethyl-2-oxoethyl)-3-(6-ethoxy-3,4,8-y-letrahydro-3,3,8-letramethylfuro[2,3-h]isoquinolin-1-yl)phenzamide, (ivi) N-{3-(6-ethoxy-3,4,8-y-letrahydro-3,3,8-letramethylfuro[2,3-h]isoquinolin-1-yl)phenzamide, (ivi) N-{3-(6-ethoxy-3,4,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-y-letrahydro-3,3,8-

[Compound (I)-VIII]

50 [0132]

- 2-(Methylsulfinyl)-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl] acetamide,
- (ii) N-(methylsulfony), N-13-(3.4.8,9-tetrahydro-6-methoxy-3.3.8,8-tetramethyflur(z)2.5-hjisoquinolin-1-ylp)nenyl methanesulfonamide, (iii) N-12-(4-pyridiny)ethyll-3-(3.4,8-y-letrahydro-6-methoxy-3.3,8.8-tetramethyflur(2.3-hjisoquinolin-1-yl)benzamide, (vi) N-(2-mino-2-xoxethyl)-3-(3.4,8-y-letrahydro-6-methoxy-3.3,8-tetramethyfluro(2.3-hjisoquinolin-1-yl)benzamide, (vi) N-tethyl-3-(3.4,8-y-letrahydro-6-methoxy-3.3,8-tetramethyfluro(2.3-hjisoquinolin-1-yl)benzamide, (vi) N-tethyl-3-(3.4,8-y-tetrahydro-6-methoxy-3.3,8-tetramethyfluro(2.3-hjisoquinolin-1-yl)benzamide, (vi) N-tethyl-3-(3.4,8-y-tetrahydro-6-methoxy-3.3,8-tetramethyfluro(2.3-hjisoquinolin-1-ylbenzamide, (vi) N-tethyl-3-(3.4,8-y-tetrahydro-6-methoxy-3-ylbenzami

lin-1-yl)benzamide, (vii) N-[3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h)isoquinolin-1-yl)[1,1'-biphenyll-3-yllacetamide or its salts.

[0133] A compound having a partial structure represented by Formula:

5

10

15

20

25

30

25

40

45

wherein - - - is a single bond or double bond employed in a pharmaceutical composition according to the invention is typically a compound represented by Formula:

wherein each of Ring A, Ring B and Ring C may have a substituent similar to that described above, more typically a compound represented by Formula:

wherein - - - is a single bond or double bond and other symbols are defined as descried above.

[0134] When - - - is a single bond, then N may have a hydrogen atom or a substituent described above.

[0135] As Compound (A-1), (I-1) or (I'-1) according to the invention, a compound produced in any of Examples 1 to 588 and Reference Example 10 to 12, 112, 134, 135, 138 and 139 is specifically employed.

[0136] A process for producing Compound (I) or (I') according to the invention is described below. It should be understood that Compound (Ia), (Ib) and (Ic) are encompassed in Compound (I).

[0137] Compound (I) and (I') according to the invention can be obtained for example by the methods represented by Schemes 1 to 17 shown below or analogous methods.

[0138] Compounds (A), (A-1), (I-1) and (I'-1) can be produced also in accordance with the production methods described below.

[0139] Unless otherwise specified, each symbol in a compound shown in a formula in the following schemes is defined as described above. In the schemes, Compounds (III) to (LIII), (LIII) to (LXII) and (LXIII) to (LXIX) encompass their respective salt forms, and such a salt may for example be one similar to a salt of Compound (II) or (IV).

[0140] Compounds (II'), (III'), (Vf), (Vib'), (VII'), (VIIa'), (XI'), (XII), (XVIII), (XVIII), (XVIII), (XXY), (XXX), (XXX), (XXXIII), (XXIII), (XIII), (XIII), (LIXII), (LIXIII), (LIXIIII), (LIXIIII), (LIXIIII), (LIXIIII), (LIXIII), (LIXIII), (LIXIIII), (LIXIIII), (LIXIIII), (LIXIIII), (LIXIIII), (LIXIIII), (LIXIIII), (LIXIII), (LIXIIII), (LIXIIII

[0141] Solvent referred to as general names employed in the following reactions are, unless otherwise specified,

alcohol including methanol, ethanol, 1-propanol, 2-propanol and tert-bulyl alcohol, etc., ether including dietrlyl ether, disperpyl ether, diphenyl ether, tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane, etc., hydrocarbon including benzene, tolluene, cyclohexane and hexane, etc., amide including N,N-dimethylformamide, N,N-dimethylacetamide and hexamethylphosphoric triamide, etc., halogenated hydrocarbon including dichloromethane, chloroform, carbon tetrachloride and 1,2-dichloroethane, etc., nitrile including acetonitrile and propionitrile, etc., ketone including acetone and ethyl methyl ketone, etc., organic acid including formic acid, acetic acid, propionic acid, trifluoroacetic acid and methanesulfonic acid, etc., aromatic amine including pyridine, 2,6-lutidine and quinoline, etc., sulfoxide including dimethyl sulfoxide etc.

[0142] Bases referred to as general names employed in the following reactions are, unless otherwise specified, inorganic base including sodium hydroxide, ptotassium hydroxide, lithium hydroxide and barium hydroxide, etc., basic satt including sodium acrbonate, potassium rearbonate, sodium hydrogen carbonate, sodium acetate and ammonium acetate, etc., aromatic amine including pyridine and lutidine, etc., terliary amine including triethylamine, hydroline, tributylamine, Nethyldiscoppylamine, octobexyldimethylamine, 4-dimethylaminion, etc., alkaline metal hydride, n.N. dimethylamiline, N-methylpiprofidine and N-methylmorpholine, etc., alkaline metal hydride including sodium hydride and potassium hydride, etc., metal amide including sodium amide, lithium disopropylamine and lithium hexamethyldisliazide, etc., alkyl metal including buylithium and tert-buylithium, etc., aryl metal including phenylithium, etc., metal alkoxide including sodium ethoxide, sodium etri-butoxide and potassium tert-butoxide and potassium tert-butoxide and potassium tert-butoxide.

[0143] While a product can be used as a reaction solution or a crude material in the next reaction, it can be isolated from the reaction mixture according to a standard method, and can readily be purified by an ordinary separation procedure (e.g., recrystallization, distillation, chromatography etc.).

5

10

15

20

25

30

35

40

45

55

(X')

[0144] Compound (IV') can be produced by reacting Compound (III') and Compound (IIII') wherein R16 and R17 are optionally substituted hydrocarbon groups which form a part of R7, and may be those similar to R7, and when R16 forms a homocyclic ring with R6 then it may have a substituent similar to a substituent which may be possessed by a "3- to 8-membered homocyclic find" and W is a leaving group. If desired in the presence of a base.

(i') (Y = CH2, CH(OH), n = 0)

(I') $(Y = CH_2, n = 0)$

[0145] Said "leaving group" may for example be a hydroxy, halogen atom (for example, fluorine, chlorine, bromine, odnine, etc.), optionally halogenated C₁₋₅ alkylsulfonyloxy (for example, methanesulfonyloxy, etc.), optionally substituted C₆₋₁₀ arylsulfonyloxy and the like. An "optionally substituted C₆₋₁₀ arylsulfonyloxy and the like. An "optionally substituted C₆₋₁₀ arylsulfonyloxy (e.g., phenylsulfonyloxy, naphthysulfonyloxy, etc.) which may have 1 to 3 substituent(s) selected from a C₁₋₆ layly (e.g. methy), ethyl, etc.). C₁₋₆ alkoxy (e.g., methoxy, ethoxy, ethox), and nitro, and those exemplified typically are phenylsulfonyloxy, m-nitrophenylsulfonyloxy, p-toluenesulfonyloxy and

[0146] The amount of Compound (III') employed is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (II').

- [0147] Said "base" may for example be an inorganic base, basic salt, aromatic amine, tertiary amine, metal hydride, metal amide and metal alkoxide, etc. The amount of a base employed is about 1 to about 5 moles, preferably about 1 to about 5 moles per mele of Compound (II).
- [0148] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an alcohol, ether, hydrocarbon, amide, halogenated hydrocarbon, intitle, ketone and sulfoxide as well as a mixture thereof.
- [0149] The reaction time is usually about 30 minutes to about 48 hours, preferably about 1 hour to about 24 hours. The reaction temperature is usually about -20 to about 150 °C, preferably about 0 to about 100 °C.
- [0150] In addition to the reaction described above, Mitsunobu reaction (Synthesis, 1981, p1-27) can also be em-
 - [0151] Said reaction allows Compound (III) and Compound (IIII) wherein W is OH to react with each other in the presence of an azodicarboxylate (e.g., diethylazodicarboxylate, etc.) and a phosphine (e.g., triphenylphosphine, tributlyphosphine, etc.).
- [0152] The amount of Compound (III') wherein W is OH is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (II').
- [0153] The amount of each of said "azodicarboxylate" and "phosphine" employed is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (III').
- [0154] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an either, hydrocarbon, amide, halogenated hydrocarbon, nitrile, ketone and sulfoxide as well as a mixture thereof.
- [0155] The reaction time is usually about 5 minutes to about 48 hours, preferably about 10 minutes to about 24 hours. The reaction temperature is usually about -20 to about 200 °C, preferably about 0 to about 100 °C.
- [0156] Compound (V') is produced by subjecting Compound (IV') to a Claisen rearrangement.

15

25

- [0157] This reaction is conducted advantageously without using a solvent or with using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded. It may for example be a solvent such as an alcohol, hydrocarbon, organic acid, ether, aniline (e.g., N,N-dimethylaniline, etc.), phenol (e.g., 2.6-dimethylphenol, etc.) and halogenated hydrocarbon as well as a mixture thereof.
- [0158] This reaction may be conducted also using an acid catalyst if desired. Such an acid catalyst may be a Lewis acid such as aluminum chloride and boron tribromide, etc. The amount of an acid catalyst, for example, when using a Lewis acid, is about 0.1 to about 20 moles, preferably about 0.1 to about 5 moles per mole of Compound (IV). The reaction time is usually about 30 minutes to about 24 hours, preferably about 11 hour to about 6 hours. The reaction temperature is usually about 70 to about 200 °C. preferably about 150 to about 250 °C.
 - [0159] Compound (VI) can be produced by subjecting Compound (V) to a ring closure reaction in the presence of a protonic sold, Lewis eaid or iodine. Such a protonic sold may for example be mineral acid such as hydrochloric acid, hydrobromic acid, sulfuric acid, etc., sulfonic acid such as methanesulfonic acid, trifluoromethanesulfonic acid, fluorosulfonic acid. Such a Lewis acid may for example be aluminum chloride, aluminum bromide, titanlum (IV) chloride, in (IV) chloride, bornor tribrionide, bornor tribrionide, bornor tribrionide, act. While a protonic acid or Lewis acid is employed usually each alone, the both may be combined if necessary. When a protonic acid is employed, it is used in an amount of about 110 about 200 moles, preferably about 11 or about 200 moles per mole of Compound
 - it is used in an amount of about 1 to about 200 moies, preferably about 1 to about 1 to moies per moie of compound (V'). When a Lewis acid is employed, it is used in an amount of about 1 to about 5 moles, preferably about 1 to about 3 moles per moie of Compound (V'). When iodine is employed, it is used in an amount of about 0.05 to about 1 moles, preferably about 0.1 to about 0.5 moles per mole of Compound (V').
 - [0160] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an ether, hydrocarbon, amide, halogenated hydrocarbon, nitrile, kelone and sulfoxide as well as a mixture thereof.
 - [0161] The reaction temperature is usually about -20 to about 150 °C, preferably about 0 to about 120 °C. The reaction time is usually about 5 minutes to about 24 hours, preferably about 10 minutes to about 5 hours.
 - [0162] Compound (VIII') is produced by reacting Compound (VI') with Compound (VII') wherein R¹⁸ is a hydrocarbon group and hal is a halogen, if desired in the presence of a base.
 - [0163] Said "hydrocarbon group" may for example be a linear or cyclic hydrocarbon group (e.g., C₁₋₆ alkyl (for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, etc.), C₃₋₆ cycloalkyl (for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.), C₆₋₁₄ anyl (for example, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl, 2-anthyl, etc.), etc.) and the like.
- [0164] The amount of Compound (VII') is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (VII').
 - [0165] Said "base" may for example be an inorganic base, basic salt, aromatic amine, tertiary amine, alkaline metal hydridic, alkyl metal, anyl metal, metal amide, metal alkoxide and the like. The amount of such a base employed is about 1 to about 5 moles. oreferably about 1 to about 2 moles oreferably about 1 to about 2 moles oreferably about 1.

[0166] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an alcohol, ether, hydrocarbon, amide, halogenated hydrocarbon, hirtle, sulfoxide, water as well as a mixture thereof.

[0167] The reaction time is usually about 30 minutes to about 48 hours, preferably about 1 hour to about 24 hours. The reaction temperature is usually about -100 to about 200 °C, preferably about -80 to about 150 °C.

[0168] Compound (VIII') is produced by reacting Compound (VII) with Compound (VIIa') wherein R¹⁹ is an optionally substituted hydrocarbon group, if desired in the presence of a base.

[0169] Said "hydrocarbon group" may for example be a linear or cyclic hydrocarbon group (e.g., C₁₋₆ alkyl (for example, methyl, ethyl, propyl, isopropyl, butlyl, isobutlyl, sec-butlyl, tert-butlyl, pentyl, hexyl, etc.), C₃₋₆ cycloalkyl (for example, cyclopropyl, cyclobutlyl, cyclopentyl, cyclohexyl, etc.), C₆₋₄ aryl (for example, phenyl, 1-naphthyl, biphenylyl, 2-anthyl), C₃₋₁₆ aralkyl (for example, benzyl, 1-naphthylmethyl)) and the like.

[0170] A "substituent" on said "optionally substituted hydrocarbon group" may for example be a halogen atom (e.g., fluorine, chlorine, bromine, iodine, etc.) and an optionally halogenated C_{1.6} alkyl, etc.

[0171] The amount of Compound (VIIa') is about 1 to about 3 moles, preferably about 1 to about 1.5 moles per mole of Compound (VII).

[0172] Said "base" may for example be an inorganic base, basic salt, aromatic amine, tertiary amine, metal hydride, alkyl metal, aryl metal, metal amide, metal alkoxide and the like. The amount of such a base employed is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (VIV).

[0173] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent to its not limited particularly as long as the reaction is proceeded, it may for example be a solvent out as alcohol, either, hydrocarbon, amide, helpocented hydrocarbon, nitrile, sulfoxide, water as well as mixture thereof.

[0174] The reaction time is usually about 30 minutes to about 48 hours, preferably about 1 hour to about 24 hours. The reaction temperature is usually about -100 to about 200 °C, preferably about -80 to about 150 °C.

[0175] Compound (X') wherein Z is an optionally substituted hydroxy group or halogen can be produced by reacting
Compound (VI) and Compound (X') wherein M is a metal provided that a salt is included when M is polyvalent, followed
if necessary by an acvilation or halogenation.

[0178] Z representing said "optionally substituted hydroxy group" may for example be hydroxy, optionally halogenated C_{1-4} altifylcarbonyloxy (e.g., arethyloxy), fulloworeseltyloxy, prolinoryloxy, etc.), optionally halogenated C_{1-4} altifylationyloxy (e.g., methanesulfonyloxy, trifluoromethanesulfonyloxy, ethanesulfonyloxy, etc.), optionally substituted C_{6-10} arylsulfonyloxy and the litke. An "optionally substituted C_{6-10} arylsulfonyloxy are to a Substitutent(§) selected from a halogen, C_{1-6} altifyl. C_{1-6} altif

[0177] Said "metal" may for example be a magnesium halide (e.g., magnesium bromide, magnesium chloride, etc.), lithium and the like.

[0178] The amount of Compound (IX') is about 1 to about 3 moles, preferably about 1 to about 1.5 moles per mole of Compound (VI').

[0179] This reaction may employ additives if desired.

5

25

[0180] Said "additives" may for example be cerium (III) chloride, copper (I) iodide and the like. The amount of an additive employed is usually about 0.1 to about 5 moles, preferably about 0.1 to about 2 moles per mole of Compound (VI)

[0181] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an ether and hydrocarbon, as well as a mixture thereof.

45 [0182] The reaction time is usually about 10 minutes to about 48 hours, preferably about 30 minutes to about 24 hours. The reaction temperature is usually about -100 to about 150°C, preferably about -80 to about 100 °C.

[0183] A resultant alcohol form is subjected to an acylation if necessary.

[0184] Compound (X') wherein Z is a hydroxy group and an acylating agent are reacted if desired in the presence of a base or acid.

[0185] Said "acylating agent" may for example be a corresponding carboxylic acid or a reactive derivative thereof (for example, acid hailde, acid anhydride, ester, etc.), etc. Such an acylating agent is employed in an amount of about 1 to about 5 moles, preferably about 1 to about 5 moles per mole of Compound (X).

[0186] This reaction is conducted advantageously without using a solvent or with using a solvent which is inert to the reaction. While such a solvent is not limited particularly, as long as the reaction is proceeded, it may for example be a solvent such as an either, hydrocarbon, amide. halogenated hydrocarbon, nitrile, ketone, sulfoxide, aromatic amine and water as well as a mixture thereof.

[0187] A base employed if desired may for example be an inorganic base, basic sait, aromatic amine, tertiary amine and the like.

[0188] An acid employed if desired may for example be methanesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid and the like.

[0189] The reaction temperature is usually about -20 to about 200 °C, preferably about 0 to about 150 °C. The reaction time is usually about 5 minutes to about 48 hours, preferably about 10 minutes to about 24 hours.

[0190] A resultant alcohol form is subjected to a halogenation if necessary.

[0191] Compound (X') wherein Z is a hydroxy group is reacted with a halogenating agent if desired in the presence of a base

[0192] Said "halogenating agent" may for example be a thionyl halide such as thionyl chloride and thionyl bromide, etc., a phosphoryl halide such as phosphoryl chloride and phosphoryl bromide, etc., a phosphorus halide such as phosphorus pentachloride, phosphorus trichioride, phosphorus pentabromide and phosphorus tribromide, etc., an oxalyh halide such as oxalyl chloride, etc., phosgene and the like. Such a halogenating agent is employed in an amount of about 1 to about 30 moles, preferably about 1 to about 10 moles per mole of Compound (X').

[0193] Said "base" may for example be a tertiary amine.

[0194] This reaction is conducted advantageously without using a solvent or with using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded; it inay for example be a solvent such as a hydrocarbon, either, amide, halogenated hydrocarbon as well as a mixture thereof.

[0195] The reaction time is usually about 10 minutes to about 12 hours, preferably about 10 minutes to about 5 hours. The reaction temperature is usually about -10 to about 200 °C, preferably about -10 to about 120 °C.

[0196] Compound (I') wherein Y is CH₂ or CH(OH) and n is 0 is produced by reacting Compound (VIII') with Compound (XI') in the presence of an acid or halogenating agent.

[0197] The amount of Compound (XI') is about 0.5 to about 5 moles, preferably about 0.5 to about 2 moles per mole of Compound (XII'), Compound (XII') may be employed also as a solvent, and in such a case the amount used is about 0.5 to about 10 mL, preferably about 1 to about 5 mL per gram of Compound (XIII').

[0198] Said "acid" may for example be a mineral acid such as sulfuric acid, hydrogen chloride, hydrogen bromide, hydrogen lodide and perchloric acid or a Lewis acid such as boron trifluoride diethyl ether complex, zinc chloride and aluminum chloride. The amount of an acid employed is about 1 to about 5 moles, preferably about 1 to about 3 moles per mole of Compound (VIII').

[0199] Said "halogenating agent" may for example be a halogen such as bromine, chlorine and iodine, an imide such as N-bromosuccininide, a halogen adduct such as benzyltrimethylammonium dichloroiodate and benzyltrimethylammonium tribromide and the like. The amount of a halogenating agent is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (VIII).

[0200] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as a hydrocarbon, organic acid and halogenated hydrocarbon as well as a mixture thereof.

35 [0201] The reaction time is usually about 10 minutes to about 48 hours, preferably about 15 minutes to about 24 hours. The reaction temperature is usually about -20 to about 150 °C, preferably about 0 to about 100 °C.

[0202] Compound (i') wherein Y is CH₂ and n is 0 is produced also by reacting Compound (VIII') with Compound (XII') in the presence of phosphoryl chloride.

[0203] The amount of Compound (XII') employed is about 0.5 to about 5 moles, preferably about 0.5 to about 3 moles

40 per mole of Compound (VIII').

[0204] The amount of phosphoryl chloride employed is about 0.5 to about 5 moles, preferably about 0.5 to about 3 moles per mole of Compound (VIII'). Phosphoryl chloride may be employed also as a solvent, and in such a case the amount used is about 0.5 to about 20 mL, preferably about 1 to about 10 mL, per gram of Compound (VIII').

[0205] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as a hydrocarbon and halogenated hydrocarbon as well as a mixture thereof.

[0206] The reaction time is usually about 10 minutes to about 48 hours, preferably about 15 minutes to about 24 hours. The reaction temperature is usually about -20 to about 150 °C, preferably about 0 to about 100 °C.

[0207] Compound (I') wherein Y is CH₂ or CH(OH) and n is 0 is produced also from Compound (X') and Compound (XI') similarly to the production of Compound (I') from Compound (VIII') and Compound (XI').

[0208] Compound (I') is produced also by a process shown in Scheme 2.

15

5

10

15

20

25

30

25

40

45

[0209] Compound (XIV'), wherein hal is a halogen, is produced by reacting Compound (XIII') with a halogenating agent.

[0210] Said "halogenating agent" may for example be a halogen such as bromine, chlorine and iodine, etc., an imide such as N-bromosucchimide, etc., a halogen adduct such as benzyltrimethylammonium dichloroiodate and benzyltrimethylammonium tribromide and the like. The amount of a halogenating agent is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (XIII").

[0211] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as a hydrocarbon, organic acid and halogenated hydrocarbon as well as a mixture thereof.

[0212] The reaction time is usually about 10 minutes to about 48 hours, preferably about 15 minutes to about 24 hours. The reaction temperature is usually about -20 to about 150 °C, preferably about 0 to about 100 °C.

[0213] The process from Compound (XIV') to Compound (XVII') is conducted in accordance with the process for producing Compound (VI') from Compound (II') in Scheme 1.

[0214] Compound (XIX') is produced by reacting Compound (XVII') with Compound (XVIII'), wherein R^{3a} is a divalent group formed by removing one hydrogen atom from R³ and Wa is a leaving group, in the presence of a base.

[0215] The amount of Compound (XVIII') is about 1 to about 3 moles, preferably about 1 to about 1.5 moles per mole of Compound (XVIII').

[0219] Said "additives" may for example be cerium (III) chloride, copper (I) iodide and the like. The amount of an additive employed is usually about 0.1 to about 5 moles, preferably about 0.1 to about 2 moles per mole of Compound (XVIII)

[0220] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an ether and hydrocarbon, as well as a mixture thereof.

[0221] The reaction time is usually about 10 minutes to about 48 hours, preferably about 30 minutes to about 24 hours. The reaction temperature is usually about -100 to about 150 °C, preferably about -80 to about 100 °C.

[0222] Compound (I'), wherein Y is CH₂ and n is 0, is produced also from Compound (XIX') and Compound (XI') similarly to the production of Compound (I') from Compound (VIII') and Compound (XI').

[0223] Compound (I') is produced also by a process shown in Scheme 3.

5

25

30

25

45

50

5

15

20

25

25

40

45

55

[0224] Compound (XXII') is produced by reacting Compound (VI') and Compound (XX'), wherein R19 is an optionally substituted hydrocarbon group, in the presence of a base.

[0225] Said "hydrocarbon group" may for example be a linear or cyclic hydrocarbon group (e.g., C₁₋₆ alkyl (for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, etc.), Case cycloalkyl (for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.), C₆₋₁₄ aryl (for example, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl, 2-anthryl, etc.), C7-16 aralkyl (for example, benzyl, 1-naphthylmethyl, etc.), etc.) and the like.

[0226] A "substituent" on said "optionally substituted hydrocarbon group" may for example be a halogen atom (e.g., fluorine, chlorine, bromine, iodine, etc.) and an optionally halogenated C1.6 alkyl, etc.

[0227] The amount of Compound (XX') is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (VI').

[0228] Said "base" may for example be an alkaline metal hydride, alkyl metal, aryl metal, metal amide and the like. The amount of such a base employed is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (VI').

[0229] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as ether and hydrocarbon as well as a mixture thereof.

- [0230] The reaction time is usually about 30 minutes to about 48 hours, preferably about 1 hour to about 24 hours. The reaction temperature is usually about -100 to about 150 °C, preferably about -80 to about 100 °C.
- [0231] Compound (XXII') is produced by reacting Compound (VI') with Compound (XXI'), wherein R¹⁹ and hal are defined as described above, in the presence of zinc.
- [0232] The amount of each of Compound (XXI') and zinc employed is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (VI').
 - [0233] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as either, hydrocarbon and nitrile as well as a mixture thereof.
- 10 [0234] The reaction time is usually about 30 minutes to about 48 hours, preferably about 1 hour to about 24 hours. The reaction temperature is usually about 0 to about 20°C, preferably about 0 to about 150°C. [0235] Compound (XXIII) is produced by reducing Compound (XXIII).
 - [0236] A reducing agent employed in such a reduction may for example be a silane such as triethylsilane, etc., a metal hydride such as tribulyltin hydride, aluminum hydride and diisobulylaluminum hydride, etc., a metal hydrogen complex such as lithium aluminum hydride and sodium borohydride, etc., a borane complex such as borane tetrahydrofuran complex and borane dimethylsulfide complex, etc., an alkylborane such as. thexylborane and disiamylborane, etc., diborane, metal such as zinc, aluminum, tin and iron, etc., an alkaline metal such as sodium and lithium/liquid ammonia (Birch reduction) and the like.

- [0237] The amount of a reducing agent is about 1 to about 10 moles, preferably about 1 to about 3 moles per mole of Compound (XXII') when a silane, metal hydride or metal hydrogen complex is employed, about 1 to about 10 moles, preferably about 1 to about 5 moles per mole of Compound (XXII') when a borane complex, alkyl borane or diborane is employed, and about 1 to about 20 equivalents, preferably about 1 to about 5 equivalents when metal or alkaline metal is employed. This reaction may employ at Lewis acid from 4 fewis acid may for example be aluminum chloride, aluminum bromide, titanium (IV) chloride, in (II) chloride, zinc chloride, boron tribnioride, boron tribriomide, boron tribr
 - [0238] A hydrogenation reaction may also serve for the reduction, and in such a case a catalyst such as Pd/C, platinum (IV) oxide, Raney nickel and Raney cobalt, etc. may be employed. The amount of a catalyst employed is about 5 to 8bout 1000% by weight, preferably about 10 to about 300% by weight, based on Compound (XXIII).
- 30 [0239] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be solvent such as alcohol, ether, hydrocarbon. halogeneted hydrocarbon, amide and organic acid as well as a mixture thereof.
- [0240] The reaction time is usually about 1 hour to about 100 hours, preferably about 1 hour to about 50 hours, although it may vary depending on the type and the amount of the reducing agent employed and the activity and the amount of the catalyst. The reaction temperature is usually about -20 to about 120 °C, preferably about 0 to about 30 °C. When a hydrogenation catalyst is employed, the pressure of hydrogen is usually about 1 to about 100 atm.
 - [0241] Compound (XXIV') is produced by hydrolyzing the ester group of Compound (XXIII') using acid or base.

 [0242] The acid'c hydrolysis usually employs mineral acid such as hydrochloric acid and sulfuric acid, a Lewis acid
- [U242] The acidic hydrorysis usually employs mineral acid such as hydrochloric acid and sulture acid, a Lewis acid such as boron trichloride and boron tribromide, a combination of a Lewis acid and a thiol or sulfide, an organic acid such as trifluoroacetic acid and p-tollienesulfonic acid, etc.
 - [0243] The basic hydrolysis usually employs an inorganic base, basic salt, metal alkoxide and the like.
 - [0244] The amount of each of the acid and base employed is about 0.5 to about 10 moles, preferably about 0.5 to about 5 moles per mole of Compound (XXIII').
- [0245] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an alcohol, hydrocarbon, organic acid, ether, amide, halogenated hydrocarbon, nitrile, ketone, sulfoxide and water as well as a mixture thereof.
 - [0246] The reaction time is usually about 10 minutes to about 48 hours, preferably about 15 minutes to about 24 hours. The reaction temperature is usually about -20 to about 150 °C, preferably about 0 to about 100 °C.
- O [0247] Compound (XXV') is produced by subjecting Compound (XXIV') to a rearrangement directly or after converting into a reactive derivative thereof (for example, acid halide, acid amide, acid anhydride, ester, etc.).
 - [0248] Said "rearrangement" may for example be a Curtius rearrangement, Hofmann rearrangement, Schmidt rearrangement and the like.
- [0249] A case employing diphenylphosphoryl azide is described below.
- [0250] The amount of diphenylphosphoryl azide is about 1 to about 3 moles, preferably about 1 to about 1.5 moles per mole of Compound (XXIV').
 - [0251] This reaction is conducted if desired in the presence of a base.
 - [0252] Said "base" is preferably tertiary amine, aromatic amine and the like.

- [0253] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as a hydrocarbon, halogenated hydrocarbon and either as well as a mixture thereof.
- [0254] The reaction time is usually about 10 minutes to about 48 hours, preferably about 15 minutes to about 24 hours. The reaction temperature is usually about -20 to about 200 °C, preferably about 0 to about 150 °C.
- [0255] Other reaction conditions are those described in JIKKENKAGAKUKOZA 20, 4th edition (Ed. by Japanese Association of Chemistry), pages 304, 477 to 479.
 - [0256] Compound (XXVI') is produced by subjecting Compound (XXV') to the acidic hydrolysis.

5

- [0257] The acidic hydrolysis usually employs a mineral acid such as hydrochloric acid and sulfuric acid, etc., a Lewis of acid such as boron trichloride and boron tribromide, etc., a combination of a Lewis acid and a thiol or sulfide, an organic acid such as trifluoryacetic acid and or acid, etc.
 - [0258] The amount of such an acid employed is about 0.5 to about 10 moles, preferably about 0.5 to about 5 moles per mole of Compound (XXV').
- [0259] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, if may for example be a solvent such as a hydrocarbon, ether. halogenated hydrocarbon, ketone, sulfoxide and water as well as a mixture thereof.
 - [0260] The reaction time is usually about 10 minutes to about 48 hours, preferably about 15 minutes to about 24 hours. The reaction temperature is usually about -20 to about 200 °C, preferably about 0 to about 150 °C.
 - [0261] Compound (XXVIII') is produced by reacting Compound (XXVII') and Compound (XXVIII'), wherein V is an optionally substituted hydroxy group, halogen and the like, if desired in the presence of a base or acid.
 - [0262] 'V, which represents said "optionally substituted hydroxy group" may for example be a hydroxy, optionally halogenated C_{1-a} alkylcarbonyloxy (e.g., acetyloxy, trifluoroacetyloxy, propionyloxy, etc.), optionally halogenated C_{1-a} alkylsulfonyloxy (e.g., methanesulfonyloxy, trifluoromethanesulfonyloxy, etnanesulfonyloxy, etc.), optionally substituted C₈₋₁₀ aryl-writsulfonyloxy, or a group represented by Formula: R1-CO₂ and the like. An "optionally substituted C₈₋₁₀ aryl-
- sulfonyloxy" may for example, a C₆₊₁₀ anylsulfonyloxy (e.g., phenylsulfonyloxy, naphthylsulfonyloxy, etc.) which may have 1 to 3 substituent(s) selected from a halogen, C₁₊₆ alkyl, C₁₊₆ alkoxy and nitro, and those exemplified typically are phenylsulfonyloxy, p-chiocopenylsulfonyloxy, m-introphenylsulfonyloxy, p-tolucesulfonyloxy and the fix
 - [0263] Compound (XXVII') is employed in an amount of about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (XXVII').
- 0 [0264] This reaction is conducted advantageously without using a solvent or with using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as either, hydrocarbon, amide, halogenated hydrocarbon, nitrile, ketone, sulfoxide, aromatic amine and water as well as a mixture thereof.
 - [0265] A base employed if desired may for example be an inorganic base, basic salt, aromatic amine, tertiary amine and the like.
 - [0266] An acid employed if desired may for example be methanesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid and the like.
 - [0267] The reaction temperature is usually about -20 to about 200 °C, preferably about 0 to about 150 °C. The reaction time is usually about 5 minutes to about 48 hours, preferably about 10 minutes to about 24 hours.
- 40 [0268] Compound (XXVIII') is produced also by reacting Compound (XXV) and Compound (XXIX'), wherein R¹⁴ and R¹⁴ are substituents forming a part of R¹ and each is a hydrogen atom or optionally substituted hydrocarbon group, if desired in the presence of a base or acid.
- [0269] Said "hydrocarbon group" may for example be a linear or cyclic hydrocarbon group (e.g., C₁₋₆ alkyl (for example, methyl, ethyl, propyl, isopropyl, buyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, etc.), C₂₋₆ cycloalkyl (for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.), C₅₋₆ aralkyl, etc.), C₇₋₆ aralkyl (for example, benzyl, 1-naphthylmethyl, etc.), etc.) and the like.
 - [0270] The "substituent" on said "optionally substituted hydrocarbon group" may for example be a halogen atom (e. g., fluorine, chlorine, bromine, iodine, etc.) and an optionally halogenated C_{1,6} alkyl, etc.
 - [0271] The amount of Compound (XXIX') is about 1 to about 3 moles, preferably about 1 to about 2 moles per mole of Compound (XXV').
 - [0272] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, if may for example be a solvent such as an ether, hydrocarbon, amide, halocenated hydrocarbon, nitrile and sulfoxide as well as a mixture thereof.
 - [0273] The reaction time is usually about 30 minutes to about 48 hours, preferably about 1 hour to about 24 hours.

 The reaction temperature is usually about -20 to about 150 °C, preferably about 0 to about 100 °C.
 - [0274] Compound (I'), wherein Y is CH₂ and n is 0, is produced by subjecting Compound (XXVIII') to an intramolecular cyclization using a halogenating agent and the like.
 - [0275] Said "halogenating agent" may for example be phosphoryl chloride, phosphorus pentachloride, phosphorus

pentoxide, aluminum chloride and the like.

[0276] The amount of said "halogenating agent" is about 1 to about 20 moles, preferably about 1 mole to about 5 moles per mole of Compound (XXVIII'). Said "halogenating agent" may be used also as a solvent, and in such a case the amount used is about 0.5 to about 20 mt, preferably about 1 to about 10 mt, per gram of Compound (XXVIII').

[0277] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as a hydrocarbon, nitrile and halocenated hydrocarbon as well as a mixture thereof.

[0278] The reaction temperature is usually about -20 to about 200 °C, preferably about 0 to about 150 °C. The reaction time is usually about 5 minutes to about 48 hours, preferably about 10 minutes to about 24 hours.

[0279] Compound (I') is produced also by a process shown in Scheme 4.

Scheme 4

5

15

20

25

30

25

45

55

[0280] Compound (XXX') is produced by reducing Compound (I') wherein n is 0.

Compound (Wash a brobused by reducing one) for example be a metal hydride such as tributyltin hydride, aluminum hydride and diisobutylaluminum hydride, etc., a metal hydrogen complex such as lithium aluminum hydride and solium brorhydride, etc., a brorae complex such as borane tetrahydrofuran complex and borane dimethysiuffide complex, an alkylborane such as thexylborane and disiamylborane, etc., diborane, a metal such as zinc, aluminum. tin and iron, etc., an alkaline metal such as sodium and lithium/liquid ammonia (Birch reduction) and the like. [0282] The amount of a reducing agent is about 1 to about 10 moles, preferably about 1 to about 3 moles per mole of Compound (I) when a birane complex, align borane or disposer is employed, about 1 to about 10 moles; preferably about 1 to about 5 moles per mole of Compound (I) when a borane complex, silly borane or disposer is employed, and about 1 to about 20 equivalents, preferably about 1 to about 5 equivalents when a metal or alkaline metal is employed. This reaction may employ a Lewis acid if desired. Said *Lewis acid* may for example be aluminum coloride, aluminum bromide, titanium (IV) chionde, tin (II) chionde, zinc chionide, boron trichioride, boron trichior

[0283] A hydrogenation reaction may also serve for the reduction, and in such a case a catalyst such as Pd/C, platinum (IV) oxide, Raney nickel and Raney cobalt may be employed. The amount of a catalyst employed is about 5 to about 1000% by weight, preferably about 10 to about 300% by weight, based on Compound (I').

[0284] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an alcohol, ether, hydrocarbon, amide and organic acid as well as a mixture thereof.

[0285] The reaction time is usually about 1 hour to about 100 hours, preferably about 1 hour to about 50 hours, although it may vary depending on the type and the amount of the reducing agent employed and the activity and the amount of the catalyst. The reaction temperature is usually about -20 to about 120 °C, preferably about 0 to about 80 °C. When a hydrogenation catalyst is employed, the pressure of hydrogen is usually about 1 to about 100 atm.

[0286] Compound (I') wherein n is 1 is produced by oxidizing Compound (XXX').

[0287] An oxidizing agent employed in such an oxidation may for example be hydrogen peroxide, etc. The amount of an oxidizing agent employed is about 1 to about 20 moles, preferably about 1 to about 5 moles per mole of Compound (XXX).

[0288] In this reaction, it is preferable to use a catalyst such as sodium tungstate (VI). The amount of such a catalyst is about 0.05 to about 1 moles, preferably about 0.05 to about 0.5 moles per mole of Compound (XXX').

[0289] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent

is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an alcohol, hydrocarbon, amide, halogenated hydrocarbon and water as well as a mixture thereof.

[0290] The reaction time is usually about 30 minutes to about 48 hours, preferably about 1 hour to about 24 hours. The reaction temperature is usually about -20 to about 150 °C, preferably about 0 to about 100 °C.

Scheme 5

$$\begin{array}{c} R^{10} \stackrel{\text{R}^{\circ}}{\text{R}^{\circ}} \\ \text{(XIII')} \\ R^{17} \stackrel{\text{R}^{\circ}}{\text{R}^{\circ}} \\ \text{(XIII')} \\ R^{17} \stackrel{\text{R}^{\circ}}{\text{R}^{\circ}} \\ \text{(XIII')} \\ R^{17} \stackrel{\text{R}^{\circ}}{\text{R}^{\circ}} \\ \text{(XIII')} \\ R^{18} \stackrel{\text{R}^{\circ}}{\text{R}^{\circ}} \\ \text{(XIII')} \\ R^{18} \stackrel{\text{R}^{\circ}}{\text{R}^{\circ}} \\ \text{(XIII')} \\ R^{19} \stackrel{\text{R}^{\circ}}{\text{R}^{\circ}} \\ \text{(XIII')} \\ R^{19} \stackrel{\text{R}^{\circ}}{\text{R}^{\circ}} \\ \text{(XIIII')} \\ R^{19} \stackrel{\text{R}^{\circ}}{\text{R}^{\circ}} \\ \text{(XIIII')} \\ R^{19} \stackrel{\text{R}^{\circ}}{\text{R}^{\circ}} \\ \text{(XIIII')} \\ R^{17} \stackrel{\text{R}^{\circ}}{\text{R}^{\circ}} \\ \text{R}^{18} \stackrel{\text{R}^{\circ}}{\text{R}^{\circ}} \\ \text{R}^{17} \stackrel{\text{R}^{\circ}}{\text{R}^{\circ}} \\ \text{(XXXIV')} \\$$

[0291] Compound (XXXII) is produced from Compound (XIII) and Compound (XXXI), wherein R¹⁶, R¹⁷ and W are defined as described above, similarly to the production of Compound (IV) from Compound (III), and Compound (III), [0292] Compound (XXXIIV) is produced from Compound (XXXIII) and Compound (XXXIII), wherein R¹⁸ and hal are defined as described above, similarly to the production of Compound (VIIII) from Compound (VI) and Compound (VIII)

[0293] Compound (XXXIV') is also produced from Compound (XXXII') and Compound (XXXIIIa'), wherein R¹⁹ is defined as described above, similarly to the production of Compound (VIII) from Compound (VI) and Compound (VIIIa'). Compound (XXIV') is also produced from Compound (XIII') and Compound (III') similarly to the production of Compound (IV) from Compound (II') and Compound (IV) from Compound (II') and Compound (IV) from Compound (IV) and Compound (IV) and

[0295] The process from Compound (XXXIV') to Compound (XXXVI') is conducted in accordance with the process for producing Compound (VI') from Compound (IV') in Scheme 1.

[0296] Compound (VI') is produced by reacting Compound (XXXVI') with a formamide in the presence of an acid catalyst.

[0297] Said 'formamicie' may for example be dimethylformamide and N-methylformanilide, etc. The formamide is used in an amount of about 1 to about 10 moles, preferably about 1 to about 5 moles per mole of Compound (XXXVII).
[0298] Said 'acid catalyst' may for example be phosphoryl chloride and thionyl chloride. Such an acid catalyst is employed usually in an amount of about 1 to about 10 moles, preferably about 1 to about 5 moles per mole of Compound (XXXVII).

[0299] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an amide, ether, hydrocarbon, halocenated hydrocarbon, halocenated hydrocarbon, and hillitie as well as a mixture thereof.

[0300] The reaction time is usually about 10 minutes to about 48 hours, preferably about 30 minutes to about 24 hours. The reaction temperature is usually about -20 to about 150 °C, preferably about 0 to about 100 °C.

[0301] Compound (VI') is produced also by reacting Compound (XXXVI') with a dichloromethylalkyl ether in the presence of an acid catalyst.

[0302] Said "dichloromethylalkyl ether" may for example be dichloromethylmethyl ether and dichloromethylbutyl ether, etc. The dichloromethylalkyl ether is used in an amount of about 1 to 5 moles, preferably about 1 to 3 moles per mole of Compound (XXXVII).

[0303] Said "acid catalyst" may for example be titanium (IV) chloride, aluminum chloride or tin (IV) chloride. An acid catalyst is used in an amount of about 1 to 5 moles, preferably about 1 to 3 moles per mole of Compound (XXXVI).
[0304] This reaction is conducted advantageously using a solvent which is hert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an ether, hydrocarbon, halocenated hydrocarbon and fittile as well as a mixture thereof.

[0305] The reaction time is usually about 10 minutes to about 48 hours, preferably about 30 minutes to about 24 hours. The reaction temperature is usually about -20 to about 100 °C, preferably about 0 to about 80 °C.

Scheme 6

15

25

40

45

[0306] Compound (XXXIX') is produced by reacting Compound (XXXIII') wherein hall is a halogen with Compound (XXXIIII') wherein R^{8a} is a divalent group formed by removing one hydrogen atom from R⁸ and W is defined as described above similarly to the production of Compound (IV) from Compound (III) and Compound (IIII').

[0307] Compound (VI') is produced by subjecting Compound (XXXIX') to a ring closure in the presence of a catalyst or in the presence of a radical initiator.

[0308] In a case of a ring closure using a catalyst, said "catalyst" may for example be a palladium such as palladium (II) acetate and palladium (II) chloride, etc. The amount of a catalyst employed is about 0.01 to about 0.5 mole, preferably about 0.01 to about 0.2 moles per mole of Compound (XXXIX).

[0309] This reaction preferably employs additives. Said* additives* may for example be a quaternary ammonium salt such as tetrabutylammonium chloride, etc., tetramethylammonium chloride and tetraethylammonium chloride, a metal halide such as lithium chloride, etc., triphenylphosphine and the like. The amount of additives employed is usually

about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (XXXIX').

[0310] This reaction preferably employs a base if desired. Said "base" may for example be an inorganic base, basic salt, aromatic amine, tertiary amine, metal alkoxide and the like. The amount of such a base employed is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (XXXIXY).

[0311] In addition, it is preferable to add a formate such as sodium formate in this reaction. The amount of such a formate employed is about 1 on boots 5 moles, preferably about 17 to about 2 moles per mole of Compound (XXXIX). [0312] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an alcohol, ether. hydrocarbon, amide and kelone as well as a mixture thereof.

[0313] The reaction time is usually about 10 minutes to about 48 hours, preferably about 30 minutes to about 24 hours. The reaction temperature is usually about 0 to about 150 °C, preferably about 0 to about 120 °C.

[0314] In a case of a ring closure using a radical initiator, said "radical initiator" may for example be benzoyl peroxide, 2,2-'azobis((sobutyronitrile) and the like. The amount of a radical initiator employed is about 0.01 to about 1 moles, preferably about 0.01 to about 0.1 moles per mole of Compound (XXXIX).

[0315] This reaction employs a radical source and the like. Said "radical source" may for example be hypophosphorous acid, tris(trimethylsily)islane, tributlytiin hydride and the like. The amount of a radical source employed is about 1 to about 100 moles, preferably about 1 to about 100 moles. preferably about 1 to about 50 moles per mole of Compound (XXXIX).

[0316] This reaction preferably employs a base if desired. Said "base" may for example be inorganic base, basic sait, aromatic amine, tertiary amine, metal alkoxide and the like. The amount of such a base employed is about 1 to about 2 moles, preferably about 1 to about 2 moles, preferably about 1 to about 2 moles, preferably about 5 moles per mole of Compound (XXXIX).

[0317] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an alcohol, ether hydrocarbon, amide and ketone as well as a mixture thereof.

[0318] The reaction time is usually about 10 minutes to about 48 hours, preferably about 30 minutes to about 24 hours. The reaction temperature is usually about 0 to about 200 °C, preferably about 0 to about 150 °C.

Scheme 7

5

15

25

30

25

40

45

50

55

[0319] Compound (XLII)' is produced by reacting Compound (XLI) with Compound (XLI)', wherein R¹⁹ and W is defined as described above, similarly to the production of Compound (IV) from Compound (II)' and Compound (III)' (10320) Compound (XLIII') is produced by subjecting Compound (XLII') to a ring closure in the presence of a base. Said 'base' may for example be an inorganic salt. The amount of a base employed is about 1 to about 10 moles, preferably about 1 to about 1 noise per mole of Compound (XLIII').

(XXXVIa')

[0321] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent

is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an alcohol, ether, hydrocarbon and water as well as a mixture thereof.

[0322] The reaction time is usually about 10 minutes to about 48 hours, preferably about 30 minutes to about 24 hours. The reaction temperature is usually about 0 to about 150 °C, preferably about 0 to about 120 °C.

[0323] Compound (XLIV') is produced by subjecting Compound (XLIII') to a decarboxylation in the presence of cop-

[0324] The amount of copper employed is about 0.1 to about 5 moles, preferably about 0.5 to about 3 moles per mole of Compound (XLIII').

[0325] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as a hydrocarbon including tetrahydronaphthalene, etc., ether including diphenyl ether, etc., aromatic amine including quinoline, etc. as well as a mixture thereof.

[0326] The reaction time is usually about 10 minutes to about 24 hours, preferably about 15 minutes to about 12 hours. The reaction temperature is usually about 100 to about 300 °C, preferably about 100 to about 250 °C.

[0327] Compound (XXXVIa') is produced by subjecting Compound (XLIV') to a hydrogenation. In this reaction, a hydrogenation catalyst such as Pd/C, platinum (IV) oxide, Raney nickel and Raney cobalt, etc. may be employed. The amount of the catalyst employed is about 5 to about 1000% by weight, preferably about 10 to about 300% by weight, based on Compound (XLIV').

[0328] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent or is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as alcohol, ether, hydrocarbon, amide and organic acid as well as a mixture thereof.

[0329] The reaction time is usually about 1 hour to about 100 hours, preferably about 1 hour to about 50 hours, although it may vary depending on the activity and the amount of the catalyst employed. The reaction temperature is usually about -20 to about 120 °C, preferably about 0 to about 80 °C. The pressure of hydrogen is usually about 1 to about 100 atm

[0330] Compound (VIa') is produced from Compound (XXXVIa') similarly to the production of Compound (VI') from Compound (XXXVI').

Scheme 8

5

15

25

30

25

40

45

50

55

[0331] Compound (XLV') is produced from Compound (VI') similarly to the production of Compound (XXX') from Compound (I').

(VIII')

[0332] Compound (XLVI'), wherein R18 and hal are defined as described above, is produced by halogenating Com-

pound (XLV') followed by a reaction with a corresponding phosphine.

[0333] The halogenating agent employed in such a halogenation may for example be thionyl halide such as thionyl chloride and thionyl bromide, etc., a phosphoryl halide such as phosphoryl chloride and phosphoryl bromide, etc., a phosphorus pentachory in the phosphorus pentachoryl chloride, phosphorus trichloride, phosphorus trichloride, phosphorus trichloride, phosphorus trichloride, phosphorus trichloride, phosphorus trichloride, etc., and part in the properties of the phosphorus pentachoryl p

[0334] This reaction is conducted if desired in the presence of a base. Said "base" is preferably a tertiary amine, and the like.

[0335] This reaction is conducted advantageously without using a solvent or with using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as a hydrocarbon, either, amide and halogenated hydrocarbon as well as a mixture thereof.

[0336] The reaction time is usually about 10 minutes to about 12 hours, preferably about 10 minutes to about 5 hours. The reaction temperature is usually about -10 to about 200 °C, preferably about -10 to about 120 °C.

[0337] The phosphine employed in the subsequent reaction with the phosphine may for example be triphenylphosphine, tri-dtolylphosphine, tri-dtolylphosphine, tributlylphosphine and the like. The phosphine is employed in an amount of about 1 to about 3 moles, preferably about 1 to about 1.5 moles per mole of Compound (XLV).

[0338] This reaction is conducted advantageously without using a solvent or with using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an ether, hydrocarbon, had operated hydrocarbon and intrile as well as a mixture thereof.

[0339] The reaction temperature is usually about -20 to about 200 °C, preferably about 0 to about 150 °C. The reaction time is usually about 5 minutes to about 48 hours, preferably about 10 minutes to about 24 hours.

[0340] Compound (VIII) is also produced from Compound (XLVI) and Compound (XLVIII) similarly to the production of Compound (VIII) from Compound (VII) and Compound (VIII).

25 [0341] Compound (VIII') is also produced by a process shown in Scheme 9.

Scheme 9

15

30

25

40

45

50

55

[0342] The process from Compound (XXXV') to Compound (VIII'), wherein R3a and W are defined as described

above, is conducted in accordance with the process for producing Compound (VI') from Compound (III') in Scheme 1.

[0343] Compound (VIc'), wherein hal is a halogen, is produced from Compound (VIb') similarly to the production of Compound (XIV') from Compound (VIb').

[0344] Compound (VIIIa') is produced from Compound (VIC') and Compound (VII'), wherein R¹⁸ and hal are defined as described above, similarly to the production of Compound (VIII') from Compound (VII') and Compound (VIII').

[0345] Compound (VIIIa') is produced from Compound (VIc') and Compound (VIIa'), wherein R¹⁹ is defined as described above, similarly to the production of Compound (VIII') from Compound (VI') and Compound (VIIIa').

[0346] Compound (VIII'), wherein X is a sulfur atom, is produced by reacting Compound (VIIIa') with a disulfide compound (L') in the presence of a base. The amount of Compound (L') employed is about 1 to about 30 moles, preferably about 1 to about 15 moles per mole of Compound (VIIIa').

[0347] Said "base" may for example be an alkyl metal, anyl metal and the like.

[0348] The amount of a base employed is about 1 to about 15 moles, preferably about 1 to about 10 moles per mole of Compound (VIIIa').

[0349] This reaction employs additives if desired.

[0350] Such "additives" may for example be N,N,N',N'-tetramethylethylenediamine and the like. The amount of additives is about 1 to about 15 moles, preferably about 1 to about 10 moles per mole of Compound (Villa').

[0351] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an ether and hydrocarbon as well as a mixture thereof.

[0352] The reaction time is usually about 30 minutes to about 48 hours, preferably about 1 hour to about 24 hours. The reaction temperature is usually about -100 to about 100 °C, preferably about -80 to about 60 °C.

5

10

15

20

25

30

5

15

25

30

25

45

[0353] Compound (LII') is produced by reacting Compound (VI') and Compound (LI') if desired in the presence of a base.

[0354] The amount of Compound (LI') employed is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (VI'). Compound (LI') may be also employed as a solvent, and in such a case the amount used is about 0.5 to about 20 mL, preferably about 1 to about 10 mL per gram of Compound (VI').

[0355] Said "base" may for example be an inorganic base, basic salt, aromatic amine, primary amine (n-butylamine, etc.), fordiary amine, metal hydride, metal amide and metal alkoxide, etc. The amount of a base employed is about 0.1 to about 10 moles, preferably about 0.5 to babut 5 moles per mole of Compound (VIV).

[0356] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an alcohol, ether, hydrocarbon, amide, halogenated hydrocarbon and water as well as a mixture thereof.

[0357] The reaction time is usually about 30 minutes to about 12 hours, preferably about 1 hour to about 6 hours. The reaction temperature is usually about -20 to about 200 °C, preferably about 0 to about 150 °C.

[0358] Compound (XXVIa') is produced by reducing Compound (LII'). The reducing agent employed in such a reduction may for example be metal hydride such as aluminum hydride and diisobutylaluminum hydride, etc., metal hydrogen complex such as lithium aluminum hydride and sodium borohydride, etc., a metal such as zinc, aluminum, tin and iron, etc. The amount of the reducing agent employed is about 1 to about 10 moles, preferably about 1 to about 5 moles per mole of Compound (LII') when a metal hydride or metal hydrogen complex is employed, while it was about 1 to about 20 equivalents, preferably about 1 to about 5 equivalents when a metal is employed. In this reaction, a Lewis acid may be employed if desired. Said "Lewis acid" may for example be aluminum chloride, aluminum bromide, titanium (IV) chloride, tin (II) chloride, zinc chloride, boron trichloride, boron tribromide, boron trifluoride and the like. The amount of a Lewis acid employed is about 1 to about 10 moles, preferably about 1 to about 5 moles per mole of Compound (LII'). [0359] A hydrogenation reaction may also serve for the reduction, and in such a case the catalyst such as Pd/C. platinum (IV) oxide, Raney nickel and Raney cobalt, etc. may be employed. The amount of the catalyst employed is about 5 to about 1000% by weight, preferably about 10 to about 300% by weight, based on Compound (LII'), in such a case, various hydrogen sources may be employed instead of gaseous hydrogen. Said "hydrogen source" may for example be formic acid, ammonium formate, triethylammonium formate, sodium phosphinate, hydrazine and the like. The amount of such a hydrogen source is about 1 to about 10 moles, preferably about 1 to about 5 moles, per mole of Compound (LII').

[0360] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an alcohol, other, hydrocarbon, amide and organic acid as well as a mixture thereof.

[0361] The reaction time is usually about 1 hour to about 100 hours, preferably about 1 hour to about 50 hours, although it may vary depending on the type and the amount of the reducing agent employed and the activity and the amount of the catalyst. The reaction temperature is usually about -20 to about 120 °C, preferably about 0 to about 80 °C. When a hydrogenation catalyst is employed, the pressure of hydrogen is usually about 1 to about 100 atm.

[0362] Compound (Ia), wherein Ring C" may have a substituent other than R1, R2 and R3, is produced by a process shown in Scheme 12.

5

25

45

50

55

[0363] Compound (LIV) is produced from Compound (LIII) and Compound (VIII), wherein R18 and hal are defined as described above, similarly to the production of Compound (VIII) from Compound (VI) and Compound (VII). [0364] Compound (LIV) is also produced from Compound (LIII) and Compound (VIIa'), wherein R19 is defined as described above, similarly to the production of Compound(VIII') from Compound (VI') and Compound (VIIa'). [0365] Compound (LVI), wherein Z is defined as described above, is produced from Compound (LIII) and Compound (IX'), wherein M is defined as described above, similarly to the production of Compound(X') from Compound (VI') and Compound (IX').

[0366] Compound (Ia) is produced from Compound (LIV) and Compound (XI') similarly to the production of Compound (I') from Compound (VIII') and Compound (XI').

[0367] Compound (Ia) is also produced from Compound (LIV) and Compound (XII') similarly to the production of Compound (I') from Compound (VIII') and Compound (XII').

[0368] Compound (Ia) is also produced from Compound (LV) and Compound (XI') similarly to the production of Compound (I') from Compound (X') and Compound (XI').

[0369] Compound (la'), wherein Ring C" is defined as described above, is also produced by the process shown in Scheme 13

5

10

25

30

25

40

45

50

15 [0370] Compound (LVII) is produced from Compound (LVI), wherein hal is a halogen, and Compound (XVIII'), wherein R^{3a} and Wa are defined as described above, similarly to the production of Compound (XIXI') from Compound (XVIII') and Compound (XVIIII').

[0371] Compound ((a) is also produced from Compound (LVII) and Compound (XI') similarly to the production of Compound (I') from Compound (XIX') and Compound (XI').

20 [0372] Compound (Ia), wherein Ring C" is defined as described above, is also produced by a process shown in Scheme 14.

Scheme 14

(LX)

$$\begin{array}{c} A \\ B \\ CO_2H \\ \hline \\ (LVIII) \end{array}$$

$$\begin{array}{c} A \\ B \\ \hline \\ (LVIII) \end{array}$$

$$\begin{array}{c} A \\ B \\ \hline \\ (LVIII) \end{array}$$

$$\begin{array}{c} A \\ B \\ \hline \\ (LVIII) \end{array}$$

$$\begin{array}{c} A \\ B \\ \hline \\ (LVIII) \end{array}$$

$$\begin{array}{c} A \\ CO_2H \\ \hline \\ (LVIII) \end{array}$$

$$\begin{array}{c} A \\ CO_2H \\ \hline \\ (LVIII) \end{array}$$

$$\begin{array}{c} A \\ CO_2H \\ \hline \\ (CVIX) \\ \hline \\ (R^1 = NR^{10}R^{10}) \end{array}$$

$$\begin{array}{c} A \\ CO_2H \\ \hline \\ (CVIX) \\ \hline \\ (R^1 = NR^{10}R^{10}) \end{array}$$

[0373] Compound (LIX), wherein Y is a methylene group which may have 1 or 2 substituent(s) is produced from Compound (LVIII) similarly to the production of Compound (XXV') from Compound (XXIV').

(LXI)

(la)

[0374] The "substituent" on said "methylene group which may have substituent(s)" may for example be a C₁₋₆ alkyl group.

55 [0375] Compound (LX) is produced from Compound (LIX) similarly to the production of Compound (XXVI') from Compound (XXVI').

[0376] Compound (LXI) is produced from Compound (LX) and Compound (XXVII'), wherein V is defined as described above, similarly to the production of Compound (XXVIII') from Compound (XXVII').

[0377] Compound (LXI) is also produced from Compound (LIX) and Compound (XXIX'), wherein R^{1d} and R^{1e} are defined as described above, similarly to the production of Compound (XXVIII') from Compound (XXVI) and Compound (XXIX').

[0378] Compound (Ic) wherein Ring C^a may have a substituent in the position except for a nitrogen atom is produced also by a process shown in Scheme 15.

Scheme 15

10

15

25

30

35

40

45

50

55

[0379] Compound (LXII) is produced from Compound (lb), wherein Ring Ca is defined as described above, similarly to the production of Compound (XXX') from Compound (l').

[0380] Compound (Ic) is produced from Compound (LXII) similarly to the production of Compound (I') from Compound (XXX').

[0381] Compound (Ia) is also produced from Compound (LXI) similarly to the production of Compound (I') from Compound (XXVIII').

Scheme 16

5

10

15

20

25

30

25

45

[0382] Compound (LXIII') is produced by reacting Compound (VI') and Compound (LXIII') in the presence of an acid anhydride and a base.

[0383] The amount of Compound (LXIII') is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (VI').

[0384] Said "acid anhydride" may for example be acetic anhydride and the like. The amount of such an acid anhydride is about 1 to about 20 moles, preferably about 1 to about 10 moles per mole of Compound (VI').

[0385] Said "base" may for example be inorganic base, basic salt, aromatic amine, tertiary amine, potassium fluoride/ alumina and the like. The amount of the base employed is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (VII).

[0386] This reaction is conducted advantageously without using a solvent or using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such a hydrocarbon and halogenated hydrocarbon as well as a mixture thereof.

[0387] The reaction time is usually about 10 minutes to about 12 hours, preferably about 15 minutes to about 6 hours. The reaction temperature is usually about -20 to about 150 °C, preferably about 0 to about 120 °C.

[0388] Compound (LXVI') is produced by reacting Compound (LXIV') and Compound (LXV'), wherein R¹⁹ is defined as described above, in the presence of a base.

[0389] The amount of Compound (LXVP) is about 1 to about 10 moles, preferably about 1 to about 5 moles per mole of Compound (LXIV). Compound (LXVP) may be employed also as a solvent, and in such a case the amount used is about 0.5 mt. perferably about 1 to about 20 mt. per gram of Compound (LXIV).

[0390] Said "base" may for example be an inorganic base, basic salt, aromatic amine, tertiary amine and the like. The amount of such a base employed is about 0.01 to about 1 mole, preferably about 0.01 to about 0.1 moles per mole

of Compound (LXIV').

5

15

25

25

45

50

55

[0391] This reaction is conducted advantageously without using a solvent or with using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an alcohol, ether, hydrocarbon, amide, halogenated hydrocarbon, nitrile, ketone and sulfoxide as well as a mixture thereof.

[0392] The reaction time is usually about 10 minutes to about 12 hours, preferably about 15 minutes to about 6 hours. The reaction temperature is usually about -20 to about 150 °C, preferably about 0 to about 100 °C.

[0393] Compound (XXVIIIIa'), wherein R^{2a} is an optionally substituted hydrocarbon group or acyl group and may be same to those represented by R², is produced by reducing Compound (LXVI').

[0394] A reducing agent employed in such a reduction may for example be a metal hydride such as aluminum hydride and dilisobuty/aluminum hydride, acts. a metal hydrogen complex such as lithium aluminum hydride and sodium bornehydride, atcs., a metal such as zinc, aluminum, tin and iron, etc. The amount of a reducing agent employed is about 1 to about 10 moles, preferably about 10 about 5 moles per mole of Compound (LXVI) when a metal hydride or metal hydrogen complex is employed, while it was about 1 to about 20 equivalents, preferably about 1 to about 5 equivalents when a metal is employed. In this reaction, a Lewis acid may be employed if desired. Said "Lewis acid" may for example be aluminum chloride, aluminum bromide, italium (IV) oblindis, in (III) oblindis, c) noro trichioride, observation bromes, trainium (IV) oblindis, in (III) oblindis, c) noro trichioride, about 10 moles, preferably about 1 to about 10 moles, preferably about 1 to about 5 moles per mole of Compound (LXVII).

[0395] A hydrogenation reaction may also serve for the reduction, and in such a case a catalyst such as Pd/C, platinum (IV) oxide, Raney inckel and Raney cobalt may be employed. The amount of a catalyst employed is about 5 to about 1000% by weight, preferably about 10 to about 300% by weight, based on Compound (LXVI). In such a case, various hydrogen sources may be employed instead of gaseous hydrogen. Said "hydrogen source" may for example be formic acid, ammonium formate, trietly/ammonium formate, sodium phosphinate, hydrograzine and the like. The amount of such a hydrogen source is about 1 to about 10 moles, preferably about 1 to about 5 moles, per mole of Compound (LXVI).

[0396] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be solvent such as alcohol, either, hydrocarbon, amide and organic acid as well as a mixture thereon.

[0397] The reaction time is usually about 1 hour to about 100 hours, preferably about 1 hour to about 50 hours, and although it may vary depending on the type and the amount of the reducing agent employed and the activity and the amount of the catalyst. The reaction temperature is usually about -20 to about 120 °C, preferably about 0 to about 80 °C. When a hydrocenation catalyst is employed, the pressure of hydrocen is usually about 1 to about 100 atm.

Scheme 17

5

10

15

20

25

30

35

40

45

50

55

$$\begin{array}{c} R^{S} \stackrel{P^{7}}{R^{S}} \stackrel{R^{S}}{R^{S}} \\ R^{S} \stackrel{P^{S}}{A} \stackrel{P^{S}}{A} \\ \end{array} \begin{array}{c} C \\ (LXVII') \end{array} \qquad \begin{array}{c} R^{S} \stackrel{P^{7}}{A^{S}} \stackrel{R^{S}}{A^{S}} \\ R^{S} \stackrel{P^{S}}{A} \\ \end{array} \begin{array}{c} R^{S} \stackrel{P^{S}}{A^{S}} \\ R^{S} \stackrel{P^{S}}{A^{S}} \\ \end{array} \begin{array}{c} R^{S} \stackrel{P^{S}}{A^{S}} \\ R^{S} \stackrel{P^{S}}{A^{S}} \\ \end{array} \begin{array}{c} R^{S} \stackrel{P^{S}}{A^{S}} \\ \end{array}$$

[0398] Compound (LXVIII') is produced by reacting Compound (VI') and Compound (LXVII') in the presence of a base followed by a reaction with alcohol.

(ii) (n = 0)

(XXVIIIa')

[0399] The amount of Compound (LXVII') employed is about 1 to about 5 moles, preferably about 1 to about 2 moles per mole of Compound (VI').

[0400] Said "base" may for example be an inorganic base, basic salt, aromatic amine, tertiary amine, metal hydride, metal amide and metal alkoxide, etc. The amount of a base employed is about 1 to about 5 moles, preferably about 1 to about 3 moles per mole of Compound (VIY).

[0401] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent

is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as ether, hydrocarbon, amide, halogenated hydrocarbon, nitrile and sulfoxide as well as a mixture thereof.

[0402] The reaction time is usually about 10 minutes to about 6 hours, preferably about 15 minutes to about 3 hours. The reaction temperature is usually about -100 to about 50 °C, preferably about -80 to about 50 °C.

[0403] The amount of an alcohol employed subsequently is about 1 to about 30 mL, preferably about 2 to about 20 mL per gram of Compound (VI').

[0404] The reaction time is usually about 10 minutes to about 12 hours, preferably about 15 minutes to about 6 hours. The reaction temperature is usually about -100 to about 150 °C, preferably about -80 to about 100 °C.

[0405] Compound (LXIX'), wherein Y' is a methylene group having 1 or 2 substituent(s) is produced by alkylating Compound (LXVIII') in the presence of a base.

Compound (LXVIII) in the presence of a base.

[0406] The "substitutent" on said "methylene group which has substituents" may for example be a C₁₋₆ alkyl group, etc.

[0407] Said "base" may for example be an inorganic base, basic salt, aromatic amine, tertiary amine, metal hydride, metal amide and metal alkowide, etc. The amount of a base employed is about 1 to about 5 moles, preferably about 1

to about 3 moles per mole of Compound (LXVII').

15 [0408] An alkylating agent may for example be a hydrocarbon having a leaving group.

[0409] Said "leaving group" may for example be a halogen atom (for example, fluorine, chlorine, bromine, iodine, etc.), optionally halogenated C_{1-a} alkylsullornjox (for example, methanesullonylox), etc.) actionally substituted C₆₊₁₀ aryisulfonyloxy and the like. An "optionally substituted C₆₊₁₀ aryisulfonyloxy (e.g., phenylsulfonyloxy, naphthylsulfonyloxy, etc.) which may have 10 s abstitutent(s) selected from a C_{1-a} alkyle (leg. methyl, ethyl, etc.), C_{1-a} alkoxy (e.g., methoxy, ethoxy, etc.) which may have 10 s abstitutent(s) selected from a C_{1-a} alkyle (leg. methyl, ethyl, etc.), C_{1-a} alkoxy (e.g., methoxy, ethoxy, etc.) and nitro, and those exemplified typically are phenylsulfonyloxy, m-nitrophenylsulfonyloxy, p-toluenesulfonyloxy and the like

[0410] Said "hydrocarbon" may for example be a C1-6 alkyl group, etc.

[0411] The amount of an alkylating agent employed in this reaction is about 1 to about 10 moles, preferably about 1 to about 3 moles per mole of Compound (LXVIII').

[0412] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as alcohol, ether, hydrocarbon, amide, halogenated hydrocarbon, nitrile, sulfoxide and water as well as a mixture thereof.

[0413] The reaction time is usually about 30 minutes to about 12 hours, preferably about 1 hour to about 6 hours.

The reaction temperature is usually about -50 to about 150 °C, preferably about -20 to about 100 °C.

[0414] Compound (XXVIb'), wherein Y is a methylene which may have 1 or 2 substituent(s), is produced by hydrolyzing the nitrile of Compound (LXIX') to form an acid amide followed by a reduction.

[0415] The "substituent" on said "methylene group which may have substituents" may for example be a C₁₋₆ alkyl group.

35 [0416] Said "hydrolyzing" reaction is conducted using a base in the presence of hydrogen peroxide. The amount of hydrogen peroxide employed is about 1 to about 5 mole, preferably about 1 to about 3 moles per mole of Compound (LXIX).

[0417] Said "base" may for example be an inorganic base, basic salt and the like. The amount of the base employed is about 1 to about 5 moles, preferably about 1 to about 3 moles per mole of Compound (LXIX').

0 [0418] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as alcohol, ether, hydrocarbon, amide, halogenated hydrocarbon, sulfoxide and water as well as a mixture thereof.

[0419] The reaction time is usually about 30 minutes to about 36 hours, preferably about 1 hour to about 24 hours. The reaction temperature is usually about -20 to about 100 °C, preferably about 0 to about 80 °C.

45 [0420] Other hydrolysis reaction conditions are those described in JIKKENKAGAKUKOZA 22, 4th edition (Ed. by Japanese Association of Chemistry), pages 151 to 153.

[0421] A noducing agent employed in a subsequent reduction may for example be metal hydride such as a luminum hydride, etc., a metal hydrogen complex such as lithium aluminum hydride and sodium borohydride, etc., a metal such as zin, aluminum, hin and iron, etc. The amount of a reducing agent employed is about 10 about 10 moles, preferably about 1 to about 5 moles per mole of Compound (LXIX) when a metal hydride or metal hydrogen complex is employed, while it was about 1 to about 5 employed if desired. Said "Lewis acid" may for example be aluminum choinde, aluminum bromide, titanium (IV) chloride, in (III) chinologe, boron tirbitomide, boron tirbitomide, boron tirbitomide, boron tirbitomide, aluminum to predict aluminum (IV) chloride, in (III) chloride, boron tirbitomide, boron tir

[0422] This reaction is conducted advantageously using a solvent which is inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an alcohol, ether, hydrocarbon, amide and organic acid as well as a mixture thereof.

[0423] The reaction time is usually about 1 hour to about 100 hours, preferably about 1 hour to about 50 hours, although it may vary depending on the type and the amount of the reducing agent employed. The reaction temperature is usually about 20 to about 120 °C, preferably about 0 to about 80 °C.

[0424] Compound (XXVIb*) is produced also by reducing Compound (LXIX*) directly.

5

15

[0425] The reducing agent employed in such a reduction may for example be a metal hydride such as aluminum hydride, and disboulyaluminum hydride, and sedium borohydride, a metal such as zinc, aluminum, tin and iron. The amount of a reducing agent employed is about 1 to about 10 moles, preferably about 11 to about 5 moles per mole of Compound (LXIX) when a metal hydride or metal hydrogen complex is employed, while it was about 10 about 20 equivalents, preferably about 1 to about 5 equivalents when a metal is employed. In this reaction, a Lewis acid may be employed if desired. Said *Lewis acid* may for example be aluminum chorided, eliminum forvindic, till reliations, zinc childride, boron tribromide, boron tribromide, boron tribromide, boron tribromide, boron tribromide, preferably about 1 to about 5 moles per mole of Compound (LXIX).

[0428] A hydrogenation reaction may also serve for the reduction, and in such a case a catalyst such as Pd/C, platinum (IV) oxide, Raney nickel and Raney cobalt, etc. may be employed. The amount of a catalyst employed is about 5 to about 100% by weight, preferably about 10 to about 300% by weight, based on Compound (LXIX). This reaction may employ an amine such as ammonia, etc. if desired. The amount of the amine employed is about 1 to about 20 moles per mole of Compound (LXIX). It is also possible that various hydrogen sources may be employed instead of gaseous hydrogen. Sald 'hydrogen source' may for example be formic acid, ammonium formate, intrhylammonium phosphinate, hydrazine and the like. The amount of such a hydrogen source is about 1 to about 10 moles, preferably about 1 to about 5 moles, per mole of Compound (LXIX). It of the catalogue is a solvent which is in inert to the reaction. While such a solvent is not limited particularly as long as the reaction is proceeded, it may for example be a solvent such as an alcohol, ether, hydrocathon, amide and organic acid as well as a mixture thereof.

25 [0428] The reaction time is usually about 1 hour to about 100 hours, preferably about 1 hour to about 50 hours, although it may vary depending on the type and the amount of the reducing agent employed and the activity and the amount of the catalyst. The reaction temperature is usually about -20 to about 120 °C, preferably about 0 to about 80 °C. When a hydrogenation catalyst is employed, the pressure of hydrogen is usually about 1 to about 100 atm.

[0429] Compound (XXVIb') is produced also from Compound (LXVIII') similarly to the production of Compound (XXVIb') from Compound (LXIX').

[0430] Compound (XXVIIIIa') is produced from Compound (XXVIIb') and Compound (XXVIII') similarly to the production of Compound (XXVIII') from Compound (XXVII') and Compound (XXVIII').

[0431] Compound (I') is produced from Compound (XXVIIIa') similarly to the production of Compound (I') from Compound (XXVIII').

35 [0432] In. each of the reactions described above, a starting compound having an amino, carboxy or hydroxy as its substitutent may be present as a compound in which a protective group employed ordinarity in a peptide chemistry has been introduced into such a substituent, and an intended compound can be obtained by deprotection if necessary after the reaction.

[0433] A protective group for an amino may for example be a formyl or each optionally substituted C₁₋₆ alkyl-carbonyl (of example, acetyl, propionyl, etc.), benzoyl, C₁₋₆ alkoxy-carbonyl (for example, methoxycarbonyl, etc.), are falkyloxy-carbonyl, C₂₋₁₀ aralkyloxy-carbonyl, etc.) are falkyloxy-carbonyl, etc.), intro and the like. Its substituent may for example be a halogen atom (for example, fluorine, chlorine, bromine, iodine, etc.), C₁₋₆ alkyl-carbonyl (for example, acetyl, propionyl, valeryl, etc.), nitro and the like, and the number of the substituents may be 1 to 3.

49 [0434] A protective group for a carboxy may for example be each optionally substituted G_{1,6} ally/ (for example, methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, etc.), phenyl, trityl, sityl and the like. Its substituent may for example be a halogen atom (for example, fluorine, chlorine, bromine, lodine, etc.), formyl, C_{1,6} alkyl-carbonyl (for example, acetyl, propionyl, butylcarbonyl, etc.), nitro, C_{1,6} alkyl (for example, methyl, ethyl, tert-butyl, etc.) and C_{6,10} anyl (for example, phenyl, napithyl, etc.), and the number of the substituents may be 1 to 3.

[045] A protective group for a hydroxy may for example be a formyl or each optionally substituted C_{1,2} alkly (for example, methyl, ethyl, propyl, isopropyl, hubyl, tert-bulyl, etc.), phenyl, C₁₋₁, aralkly (for example, benzyl, etc.), C_{1,4} alkly, Icarbonyl (for example, benzyl, etc.), tetrahydrotynayl, tetrahydroturanyl, silyl and the like. Its substituent may for example be a half-ogen atom (for example, fluorine, chlorine, foremine, iodine, etc.), C₁₋₄ alkly (for example, methyl, etc.), etc.), etc., and the number of the substitutent may be 1 to 3.

[0436] A deprotection method may be a method known per se such as a treatment with an acid, base, UV, hydrazine, phenylhydrazine, sodium N-methyldithiocarbamate, tetrabutylammonium fluoride, Palladium (II) acetate and the like,

as well as a reduction.

5

15

25

30

25

40

45

50

55

[0437] In any case, a deprotection, acylation, alkylation, hydrogenation, oxidation, reduction, carbon chain elongation and substituent exchange reaction are further employed if necessary alone or in combination with each other to synthesize Compound (A), (I), (I'), (A-1), (I-1) or (I'-1). These reactions may employ the methods described for example in SIN,IKKENKAGAKUKOZA, Vols.14 and 15, 1977 (MARUZEN) and the like.

[0438] When an objective product is obtained in a free form by a reaction described above, then it may be converted in accordance with an ordinary method into a salt, and when it is obtained as a salt then it may be converted in accordance with an ordinary method into a free form or another salt. Compound (A), (f), (f), (A-1), (i-1) or (i-1) thus obtained can be isolated and purified from a reaction solution by a known method such as a partition, concentration, solvent extraction, fraction distillation, crystalfization, recrystalfization, chromatography and the first

[0439] When Compound (A), (I), (I'), (A-1), (I-1) or (I'-1) is present as a configuration isomer, diastereomer, conformer and the like, then it can be isolated if desired by a separation or purification procedure described above. When Compound (A), (I), (I'), (A-1), (I-1) or (I'-1) is present as a racemate, it can be resolved into S form and R form by an ordinary optical resolution method.

[0440] When Compound (A), (I), (I'), (A-1), (I-1) or (I'-1) has its stereoisomers, then individual isomers or a mixture thereof may also encompassed in the invention.

[0441] Compound (A), (I), (I'), (A-1), (I-1) or (I'-1) may be a hydrate or anhydrous substance.

[0442] Compound (A), (I), (I'), (A-1), (I-1) or (I'-1) may be labeled with an isotope (for example, ³H, ¹⁴C, ³⁵S) and the

20 [0443] A compound represented by Formula:

(wherein each of R^{2a} and R^{3a} is an optionally substituted aliphatic hydrocarbon group or acyl group,

R^{4a} is a hydrogen atom, optionally substituted hydrocarbon group, acyl group or optionally substituted hydroxy group,

R5a is an optionally substituted hydrocarbon group, acyl group, optionally substituted heterocyclic group or halogen atom,

Each of R^{6a}, R^{7a}, R^{8a} and R^{9a} is a hydrogen atom or optionally substituted hydrocarbon group, X^a is a bond, oxygen atom, optionally oxidized sulfur atom or optionally substituted nitrogen atom), or by Formula:

$$R^{5a}$$
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}
 R^{5a}

(wherein each of R2a and R3a is an optionally substituted aliphatic hydrocarbon group or acyl group,

R^{4a} is a hydrogen atom, optionally substituted hydrocarbon group, acyl group or optionally substituted hydroxy group,

 R^{5a} is an optionally substituted hydrocarbon group, acyl group, optionally substituted heterocyclic group or halogen atom,

Each of R^{6a}, R^{7a}, R^{8a} and R^{9a} is a hydrogen atom or optionally substituted hydrocarbon group,

Xa is a bond, oxygen atom, optionally oxidized sulfur atom or optionally substituted nitrogen atom,

Z is an optionally substituted hydroxy group or halogen atom, or a salt thereof, is a novel compound.

[0444] An "aliphatic hydrocarbon group" of an "optionally substituted aliphatic hydrocarbon group" represented by R^{2a} and R^{3a} may for example be a linear hydrocarbon or alicyclic hydrocarbon group such as an alkyl group, alkenyl group, alkynyl group, cycloalkyl group and the like, with a linear (straight or branched) or alicyclic hydrocarbon group having 1 to 16 carbon atoms being preferred. Specifically, those listed below are employed.

(1) Linear hydrocarbon groups:

5

10

15

20

25

30

25

40

45

50

55

alkyl groups [preferably, a lower alkyl group (for example, a C₁₋₆ alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl and the like)].

(2) Alicyclic hydrocarbon groups:

cycloalkyl groups [preferably, a lower cycloalkyl group (for example, a C_{3-6} cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like) and this lower cycloalkyl group may be fused with benzene rinc.l.

and a substituent on such a "aliphatic hydrocarbon group" may for example be a group selected from the group (hereinafter referred to as Substituent Group B) consisting of (1) a halogen atom, (2) a C_{1,3} alkylenedioxy group, (3) a nitro group, (4) an optionally halogenated C₁₋₆ alkyl group, (5) a C₃₋₆ cycloalkyl group, (6) a C₆₋₁₄ aryl group, (7) an optionally halogenated C₁₋₆ alkoxy group, (8) an optionally halogenated C₁₋₆ alkylthio group, (9) a hydroxy group, (10) an amino group, (11) a mono-C₁₋₆ alkylamino group, (12) a mono-C₆₋₁₄ arylamino group, (13) a di-C1-8 alkylamino group, (14) a di-C6-14 arylamino group, (15) an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₃₋₆ cycloalkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₄ aryl-carbonyl, C_{7-16} aralkyl-carbonyl, C_{6-14} aryloxy-carbonyl, C_{7-16} aralkyloxy-carbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mono-C1-8 alkyl-carbamoyl, di-C1-8 alkyl-carbamoyl, C8-14 aryl-carbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbamoyl, C1-6 alkyl-thiocarbonyl, C3-6 cycloalkyl-thiocarbonyl, C1-6 alkoxy-thiocarbonyl, C6-14 arylthiocarbonyl, C_{7.16} aralkyl-thiocarbonyl, C_{6.14} aryloxy-thiocarbonyl, C_{7.16} aralkyloxy-thiocarbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbonyl, thiocarbamoyl, mono-C1-6 alkyl-thiocarbamoyl, di-C1-6 alkyl-thiocarbamoyl, C_{8,14} aryl-thiocarbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbamoyl, mono-C₁₋₆ alkylsulfamoyl, di-C₁₋₆ alkylsulfamoyl, C₆₋₁₄ arylsulfamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₄ arylsulfonyl, C₁₋₆ alkylsulfinyl, C₆₋₁₄ arylsulfinyl, sulfino, sulfo, C1.6 alkoxysulfinyl, C8.14 aryloxysulfinyl, C1.6 alkoxysulfonyl and C6.14 aryloxysulfonyl, (16) an acylamino group selected from formylamino, C₁₋₆ alkyl-carboxamido, C₆₋₁₄ aryl-carboxamido, C₁₋₈ alkoxy-carboxamido, C₁₋₆ alkylsulfonylamino and C₆₋₁₄ arylsulfonylamino, (17) an acyloxy group selected from C1-6 alkyl-carbonyloxy, C6-14 aryl-carbonyloxy, C1-6 alkoxy-carbonyloxy, mono-C1-6 alkyl-carbamoyloxy, di-C_{1.6} alkyl-carbamoyloxy, C_{6.14} aryl-carbamoyloxy and nicotinoyloxy. (18) a 4- to 14-membered heterocyclic group having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms, (19) a phosphono group, (20) a C6-14 aryloxy group, (21) a di-C1-6 alkoxy-phosphoryl group, (22) a C₆₋₁₄ arylthio group, (23) a hydrazino group, (24) an imino group, (25) an oxo group, (26) an ureido group, (27) a C_{1.6} alkyl-ureido group, (28) a di-C_{1.6}-alkyl-ureido group, (29) an oxide group and (30) a group formed by binding 2 or 3 groups selected from (1) to (29) listed above. Those exemplified typically as these substituents are those exemplified with regard to Substituent Group A described above.

[0445] An "acyl group" represented by R2a and R3a is one similar to an "acyl group" represented by R2 and R3.

[0446] Any of "optionally substituted hydrocarbon group", "acyl group" and "optionally substituted hydroxy group" represented by R⁴s is one similar to any of "optionally substituted hydrocarbon group", "acyl group" and "optionally substituted hydroxy group" represented by R⁴.

[0447] Any of "optionally substituted hydrocarbon group", "asryl group", "optionally substituted heterocyclic group" and halogen atom" represented by R^{5a} is one similar to any of "optionally substituted hydrocarbon group", "acyl group", "ootionally substituted heterocyclic group" and "halogen atom" represented by R⁵.

[0448] An "optionally substituted hydrocarbon group" represented by R^{6a}, R^{7a}, R^{8a} and R^{9a} is one similar to an "optionally substituted hydrocarbon group" represented by R⁶, R⁷, R⁸ and R⁹.

[0449] Any of "optionally oxidized sulfur atom" and "optionally substituted nitrogen atom" represented by Xa is one

similar to an "optionally oxidized sulfur atom" or "optionally substituted nitrogen atom" represented by X.

[0450] An "optionally substituted hydroxy group" represented by Z may for example be a group represented by Formula: -OZa wherein Za is a hydrogen atom, optionally substituted hydrocarbon group or acyl group.

[0451] Any of "optionally substituted hydrocarbon group" and "acyl group" represented by Za is one similar to any of "optionally substituted hydrocarbon group" and "acyl group" represented by R2.

[0452] A halogen atom represented by Z is a fluorine atom, chlorine atom, bromine atom and iodine atom.

[0453] Compounds (B) and (C) are preferably those listed below.

5

10

15

20

25

30

35

40

45

55

(1) Compounds (B) and (C) wherein each of R2a and R3a is (1) a C1-8 alkyl group which may be substituted by <1> a halogen atom, <2> a hydroxy group which may be substituted by a substituent selected from a C₁₋₆ alkyl, C₁₋₆ alkyl-carbonyl, C_{1,6} alkylsulfonyl and C_{7,16} aralkyl, <3> an amino group which may be substituted by 1 or 2 C_{1,6} alkyl, C1-6 alkyl-carbonyl and C6-14 aryl-carbonyl, <4> a 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms, <5> a thio group which may be substituted by C1.6 alkyl, <6> a C1.6 alkyl-sulfinyl group or <7> a C1.6 alkyl-sulfonyl group or (2) a C1.6 alkoxy-carbonyl group,

R4a is (i) a hydrogen atom, (ii) a C1.6 alkyl group [this C1.6 alkyl group may have a substituent selected from (1) a halogen atom, (2) a C₁₋₆ alkoxy group, (3) a hydroxy group, (4) an amino group, (5) a mono-C₁₋₆ alkylamino group, (6) a di-C_{1.6} alkylamino group, (7) a 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom (s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxo. (8) a C₆₋₁₄ arylthio, (9) an ureido, (10) a carboxy, (11) a carbamoyl, (12) a C₁₋₆ alkoxy-carbonyl, (13) a mono-C₁₋₆ alkylcarbamoyl, (14) a formylamino and (15) a C1-6 alkyl-carboxamido] or (iii) a formyl group;

Xa is a bond, oxygen atom, optionally oxidized sulfur atom, -NH- or -N(methyl)-,

when Xa is a bond, then (i) a C1-6 alkyl group or (ii) a halogen atom,

when X^a is an oxygen atom, then (i) a C_{1-6} alkyl group [this C_{1-6} alkyl group may have a substituent selected from (1) a halogen atom, (2) a hydroxy group, (3) an amino group, (4) a carboxy, (5) a carbamoyl, (6) a C₁₋₈ alkoxycarbonyl, (7) a mono-C₁₋₆ alkyl-carbamoyl, (8) a di-C₁₋₆ alkyl-carbamoyl, (9) a 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms], (ii) a C3-6 cycloalkyl group, (iii) a C7-16 aralkyl group, (iv) a C1-6 alkyl-carbonyl group, (v) a C6-14 aryl-carbonyl group, (vi) a C1-6 alkoxy-carbonyl group, (vii) a mono- or di-C1-6 alkyl-thiocarbamoyl group, (viii) an optionally halogenated C_{1.8} alkyl-sulfonyl group or (ix) a 4- to 10-membered heterocyclic group containing 1 to 4 heteroatom (s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms [this heterocyclic group may have a C6-14 aryl],

when Xa is an optionally oxidized sulfur, then (i) a C1.6 alkyl group or (ii) a mono- or di-C1.6 alkyl-carbamoyl

when Xa is -NH- or -N(methyl)-, then (i) a C₁₋₆ alkyl group [this C₁₋₆ alkyl group may have a C₁₋₆ alkoxycarbonyl], (ii) formyl, (iii) a C₁₋₆ alkyl-carbonyl group, (iv) a C₁₋₆ alkoxy-carbonyl group, (v) a carbamoyl group, (vi) a mono- or di-C_{1.6} alkyl-carbamoyl group or (vii) a C_{1.6} alkyl-sulfonyl group,

each of R6a, R7a, R8a and R9a is a hydrogen atom or C1.6 alkyl group,

Z is (i) a hydroxy group which may be substituted by a C1.6 alkyl-carbonyl or (ii) a halogen atom.

(2) Compounds (B) produced in Reference Examples 5, 6, 26, 27, 30, 57, 60, 63, 95 and 137.

(3) Compounds (C) produced in Reference Examples 7, 8 and 115.

[0454] A prodrug for an inventive Compound (I), (I1), (I-1) or (I1-1) is a compound which is converted into Compound (I), (I'), (I-1) or (I'-1) under a physiological condition as a result of a reaction with an enzyme or gastric acid, thus a compound undergoing an enzymatic oxidation, reduction or hydrolysis to form Compound (I), (I'), (I-1) or (I'-1) and a compound hydrolyzed by gastric acid to form Compound (I), (I'), (I-1) or (I'-1). A prodrug for Compound (I), (I'), (I-1) or (I'-1) may for example be a compound obtained by subjecting an amino group in Compound (I), (I'), (I-1) or (I'-1) to an acylation, alkylation or phosphorylation (e.g., a compound obtained by subjecting an amino group in Compound (I). (I'), (I-1) or (I'-1) to an eicosanoylation, alanylation, pentylaminocarbonylation, (5-methyl-2-oxo-1,3-dioxolen-4-yl)methoxycarbonylation, tetrahydrofuranylation, pyrrolidylmethylation, pivaloyloxymethylation and tert-butylation, etc.); a compound obtained by subjecting a hydroxy group in Compound (I), (I'), (I-1) or (I'-1) to an acylation, alkylation, phosphorylation or boration (e.g., a compound obtained by subjecting an hydroxy in Compound (I), (I'), (I-1) or (I'-1) to an acetylation, palmitoylation, propanoylation, pivaloylation, succinylation, fumarylation, alanylation, dimethylaminomethylcarbonylation, etc.); a compound obtained by subjecting a carboxy group in Compound (I), (I'), (I-1) or (I'-1) to an esterification or amidation (e.g., a compound obtained by subjecting a carboxy group in Compound (I), (I'), (I-1) or (I'-1) to an ethylesterification, phenylesterification, carboxymethylesterification, dimethylaminomethylesterification, pivaloyloxymethylesterification, ethoxycarbonyloxyethylesterification, phthalidylesterification, (5-methyl-2-oxo-1,3-dioxo-

len-4-yl)methylesterification, cyclohexyloxycarbonylethylesterification and methylamidation, etc.) and the like. Any of these compounds can be produced from Compound (I). (I'). (I-1) or (I'-1) by a method known per se.

[0455] A prodrug for Compound (I), (I'), (I-1) or (I'-1) may also be one which is converted into Compound (I), (I'), (I-1) or (I'-1) under a physiological condition, such as those described in "IYAKUHIN no KAIHATSU (Development of Pharmaceuticals)", Vol. 7, Design of Molecules, p. 183-198, Published by HIROKAWA SHOTEN (1990).

[0456] As a sait of Compound (A), (I), (I), (A-1), (I-1), (I-1), (I) or (C) may for example be a physiologically acceptable salt. For example, a salt with an inorganic base, ammonium, organic base, inorganic acid, organic acid, organic acid, organic acid, as a solid main organic base may for example be an alkaline metal salt such as sodium and potassium salts, etc., an alkaline earth metal salt such as calcium and magnesium salts, etc., aluminum and the like. A salt with an organic base may for example be a salt with intrinentlyalmine, pridine, picoline, 2-6-lu-tidine, ethanolamine, dischanolamine, cities and program and p

15

30

25

45

[0457] Among those listed above, a pharmacologically acceptable salt is preferred, including, a salt with an inorganic acid such as hydrochioric acid, hydrobromic acid, nitric acid, suffure acid and phosphoric acid, etc., a salt with an organic acid such as acotic acid, phthalic acid, fumaric acid, oxalic acid, tartica acid, ratic acid, dirtic acid, metinanesulfonic acid and p-toluenesulfonic acid, etc., when Compound (I) or (I') has a basic functional group, as well as an alkaline metal salt such as sodium salt and potassium salt, etc., an alkaline metal salt such as calcium salt and magnasium salt, etc. and an ammonium salt when Compound (I) or (I') has a acidic functional group.

[0458] Since Compound (A), (f), (f), (A-1), (i-1), (i-1), according to the invention or a salt thereof (including a product or Compound (i), (i-1), (i), (i-1), (i), therelinate has betwelted as an inventive compound) has an excellent phosphodistic-rase (PDE) IV-inhibiting effect and a low toxicity and also is safe, it can be employed as a prophylactic or therapeutic agent in mammals (for example, human, mouse, dog, rat, cattle, etc.) against inflammatory diseases, for example, bronchial asthma, chronic obstructive pulmonary disease (COPD), rhoumatoid arthritis, autoimmune disease, diabotes, graft versus host diseases, multiple solerosis, sepresis positissis, esteoperosis, depression, contral dysfunction after correvovascular ordennial, Alzheimer dementia, bossity, cardiac insufficiency, atopic derivovascular ordennials, Alzheimer dementia, bossity, cardiac insufficiency, atopic derivovascular ordennials, Alzheimer dementia, bossity, cardiac insufficiency, atopic deviated and the like, as well as a phosphodiseterase (PDE) IV inhibitor. The administration route may be oral or parenteral. [0459] A specific dosage form may for example be a tablet (including super-coated and film-coated tablets), in capsule (including microcapsule), granule, fine powder, powder, syrup, emulsion, injection formulation, inhalation formulation, internet, by edrop, acreso, ophthalmic ointment, hard ointment, suppository, troche, poutific, liminard and the like. Any of these formulations can be prepared in accordance with an ordinary method (for example a method described in Janeanese Pharmaconeia).

[0460] The amount of an inventive compound in a formulation according to the invention may vary depending on the dosage form, and it is usually 0.01 to 100% by weight based on the entire formulation, preferably 0.1 to 50% by weight, more preferably 0.5 to 20% by weight,

[0441] Specifically, a table it is produced by mixing a medicament as it is with an excipient, binder, disintegrant or other suitable additives to form a homogenous mass, granulating by a suitable method, combining with a lubricant and the like, and then compressing into a tablet, or by mixing a medicament as it is with an excipient, binder, disintegrant or other suitable additives to form a homogenous mass and then compressing directly into a tablet, or by preparing a granule first and then compressing into a tablet directly or after mixing with suitable additives to form a homogenous mass. The formulation can further contain colorants, seasonings and the like, if necessary. The formulation can further be film-coated by a suitable coating.

[0462] In a method for producing an injection formulation, a certain amount of a medicament is dissolved, suspended or emulsified in a water for injection, physiological saline and Ringer's solution when the medicament is water-soluble, or usually in a vegetable oil when the medicament is water-insoluble, whereby obtaining a certain quantily, or a certain amount of the medicament is enclosed in a vial for an injection formulation.

[0463] An oral formulation carrier is a material employed customarily in the pharmaceutical field, such as starch, mannitol, crystalline cellulose, sedium carboxymethylcellulose and the like. A vehicle for injection may for example be distilled water, physiological saline, glucose solution, infusion solution and the like. Other additives generally employed in a formulation may also be added properly.

[0464] While the dose of such a formulation may vary depending on the age, body weight, condition, administration route, administration frequency and the like, a daily dose in an adult having asthma is usually 0.01 to 100 mg/kg as an active ingredient (inventive compound), preferably 0.01 to 50 mg/kg, more preferably 0.05 to 10 mg/kg, which is given orally once or in two portions a day.

[0465] While the compound of the invention can exhibit an excellent phosphodiesterase (PDE) IV-inhibiting activity even when being given alone, it can be used also in combination (multimedicament combination) with pharmaceutical components other than inventive compounds (hereinafter referred to as concentiant medicaments).

[0466] Such a concomitant medicament may for example be an antiasthma agent (for example, fluticasone propionate, bedomerthasone propionate, theophylline, procaterol, ketotifen, azelastine, seartordast, etc.), anti-flugica agent (for example, fexofenadine, epinastine, ebastine, etc.), anticholinergic agent (for example ipratropium bromide, flutropium bromide, oxitropium bromide, etc.), anti-inflammatory agent (for example, diclofenac sodium, buprofen, indomethacin, loxoprofen sodium, etc.), antibacterial agent (for example, oxifixine, cedidini, folloxacin, tostifoxacin tosilate, levofloxacin, etc.), antifungal agent (for example, fluconazole, etc.), diabetes-treating agent (for example, pionitazone, natedinide, vocilibese, cacribose, etc.), etc.

[0467] When using an Inventive compound in combination with a concomitant medicament, the timings of the administration of the inventive compound and the concomitant medicament are not particularly limited, and the inventive compound and the concomitant medicament can be given to a subject stimultaneously or at a certificant limine interval. The dose of the concomitant medicament may be in accordance with a dose employed clinically, and selected appropriately depending on the target, route, disease, combination and the like.

15

25

30

25

45

[048a] The administration mode of an inventive compound and a concomitant medicament are not particularly limited, provided that the inventive compound and the concomitant medicament are combined upon administration. Such an administration mode may for example be (1) an administration of a single formulation obtained by formulating an inventive compound and a concomitant medicament simultaneously, (2) a simultaneous administration via an identical route of two formulations obtained by formulating an inventive compound and a concomitant medicament esparately. (3) a sequential and intermittent administration via an identical route of two formulations obtained by formulating an inventive compound and a concomitant medicament esparately. (4) a simultaneous administration via different routes of two formulations obtained by formulating an inventive compound and a concomitant medicament esparately. (6) as a sequential and intermittent administration via different routes of two formulations obtained by formulations obtained by formulations obtained and intermittent administration via different routes of two formulations obtained by formulations obtained and intermittent administration via different routes of two formulations obtained by formulations obtained and intermittent administration via different routes of two formulations obtained by formulations obtained and intermittent administration via different routes of two formulations obtained by formula

[0469] An inventive concomitant preparation has a low toxicity, and thus an inventive compound and/or a concomitant medicament described above are mixed with a pharmacologically acceptable carrier in accordance with a method known per se to form a pharmaceutical composition, for example, a tablet (including sugar-coated and film-coated tablets), powder, granule, capsule (including softcapsule), solution, injection formulation, suppository, sustained release formulation and the like, which can safely be given orally or parenteraly (e.g., topically, rectally, intravenously). An injection formulation may be given intravenously, intramuscularily, subcutaneously, into an organ, intranasally, intrademally, via eye drop, intracerebrally, rectally, vaginally and intraperitoneally, or into a tumor, or proximal to the tumor, or directly into a lesion.

[0470] A pharmacologically acceptable carrier which may be employed for producing an inventive concomitant preparation may for example be one similar to those employed in an inventive pharmaceutical composition described above. [0471] The ratio between an inventive compound and a concomitant medicament in an inventive concomitant preparation may be selected appropriately on the basis of the tarroet, route and disease, etc.

Ø [0472] For example, the amount of an inventive compound contained in an inventive concomitant preparation is usually about 0.01 to 100% by weight based on the entire formulation, preferably about 0.1 to about 50% by weight, more preferably about 0.5 to about 20% by weight, although it may vary depending on the dosage form.

[0473] The amount of an concomitant medicament contained in an inventive concomitant preparation is usually about 0.01 to 100% by weight based on the entire formulation, preferably about 0.1 to about 50% by weight, more preferably about 0.5 to about 20% by weight, although it may vary depending on the dosage form.

[0474] The amount of an additive such as a carrier contained in an inventive concomitant preparation is usually about 1 to about 99.9% weight based on the entire formulation, preferably about 10 to about 90% by weight, although it may vary depending on the dosage form.

[0475] Similar amounts may be employed also when an inventive compound and a concomitant medicament are formulated separately.

[0476] Such a formulation can be produced by a method known per se which is employed usually in a pharmaceutical process.

[0477] For example, an inventive compound and a concomitant medicament can be formulated with a dispersant (e.g., Tween 80 (ATLAS POWDER, USA), HC060 (NIKKO CHEMICALS), polyeithylene glycol, carboxymethyl cellulose, sodium aliginate, hydroxyproylmethyl cellulose, dextrin, etc.), a stabilizer (e.g., ascorbic acid, sodium pyrosulfite, etc.), a surfactant (e.g., plycorin, ethanol, etc.), buffer agent (e.g., plycorin, ethanol, etc.), buffer agent (e.g., phosphoric acid and its alkail metal salt, etc.), an osmotic agent (e.g., sodium pyrosulfite, etc.), as official polyeity and etc.), buffer agent (e.g., prophrotic acid and its alkail metal salt, etc.), an osmotic agent (e.g., sodium hydroxide, etc.), and produditer (e.g., phydroxidic) acid, sodium hydroxide, etc.)

etc.), a prieservative (e.g., ethyl p-hydroxybenzoate, benzoic acid, methylparabene, propylparabene, benzyl alcohol, etc.), a soiubilizer (e.g., concentrated glycerin, meglumine, etc.), a soiubilizing aid (e.g., propylene glycoi, sugar, etc.), a painkiller (e.g., glucose, benzyl alcohol, etc.), etc. into an aqueous formulation for injection, or dissolved, suspended or emulsified in a vegetable oil such as olive oil, sesame oil, cottonseed oil and corn oil, etc. and in a solubilizing aid such as propylene glycol, etc. to form an oily formulation, whereby producing an injection formulation.

[0478] In order to obtain an oral dosage form, a method known per se is employed to compress an inventive compound or a concemitant medicament for example with an excipient (e.g., lastene, sugar, starch, etc.), a dishitegrant (e.g., starch, calcium carbonate, etc.), a binder (e.g., starch, gum anabic, carboxymethyl cellulose, polyvinyl pyrrolidone, hydroxypropyl cellulose, etc.) or a glidant (e.g., talc, magnesium stearate, polyethylene glycol 6000, etc.) into a desired shape, which is then subjected to a taste masking, covered with an enterior coating or imparted with a sustained release performance if nocessary by means of a coating method known per se, whereby obtaining an oral dosage form. Such a coating may for example be hydroxypropyledibliose, polyoxyethylene glycol, Tween 80, Pluronic F68, cellulose acetate phthalate, hydroxypropyledibliose acetate phthalate, hydroxymethyl cellulose acetate phthalate, hydroxymethyl cellulose, acetate phthalate, hydroxymethyl cellulose, acetate phthalate, hydroxymethyl cellulose, acetate phthalate, hydroxymethyl cellulose, hydroxymethyl cellulose, acetate phthalate, hydroxymethyl cellulose, acetate phthalate, hydroxymethyl cellulose, acetate phthalate, hydroxymethyl cellulose, acetate phthalate, hydroxymethyl cellulose, hydroxymethyl

[0479]. In order to obtain for example a suppository, a method known per se is employed to convert an inventive compound or concomitant medicament into an oily or aqueous solid, semi-solid or liquid suppository. The oily base employed in a composition described above may for example be a higher fatty acid glyceride [e.g., cocca butter, UTEP-SOL [DYNAMITE NOVEL, Germany), etc.], a medium letty acid [e.g., MisRRICL (DYNAMITE NOVEL, Germany), etc.], or a vegetable oil (e.g., semiser oil, soybean oil, cottonseed oil, etc.), etc. The aqueous base may for example be polyetylene glycol and propylene glycol, and the aqueous gel base may for example be natural gums, cellulose derivatives, vinyl bowlmes and a covilic acid polymers, etc.

[0480] A sustained release formulation described above may for example be a sustained-release microcapsule, etc. [0481] While a sustained-release microcapsule can be obtained by a method known per se, a sustained release formulation shown in Section 12] described below is formed and administered in a preferred case.

[0482] The inventive compound is preferably formulated as an oral dosage form such as a solid formulation (e.g., powder, granule, tablet, capsule, etc.), or as a rectal formulation such as a suppository, etc. The oral dosage form is particularly preferred.

30 [0483] A concomitant medicament can be formulated into a dosage form described above based on the type of the medicament.

[0484] The followings are the descriptions with regard to [1] the injection formulation of the inventive compound and the concomitant medicament and the method for producing the same, [2] the sustained-release or immediate release formulation of the medicament of the inventive compound and the concomitant medicament and the method for producing the same and [3] the sublingual, buccal or instant oral disintegration formulations employing of the inventive compound and the concomitant medicament and the method for producing the same.

[1] Injection formulation and method for producing the same

15

25

45

[0485] The solution obtained by dissolving the inventive compound and the concomitant medicament in water is employed preferably. Such injection formulation may contain a benzoate and/or a salicylate.

[0486] Said injection formulation is obtained by dissolving the inventive compound and the concomitant medicament in water together with a benzoate and/or a salicylate in water as desired.

[0487] The benzoate and/or a salicylate described above may be an alkali metal salt such as sodium and potassium salts, etc., an alkaline earth metal salt such as calcium and magnesium salts, etc., an ammonium salt, a meglumine salt as well as a salt of an organic acid such as trometamol, etc.

[0488] The concentration of an inventive compound or a concomitant medicament in an injection formulation is about 0.5 to about 50w/h%, preferably about 3 to about 20w/h%. The concentration of a benzoate and/or a salicy/ate is about 0.5 to about 50w/h%, preferably about 3 to about 20w/h%.

[0489] The formulation may contain additives employed customarily in a injection formulation, such as a stabilizer (ascorbic acid, sodium pyrosulfite and the like), a buffer agent (phosphoric acid and its alkali metal salt, citric acid and its alkali metal salt and the like), an osmotic agent (sodium chloride, potassium chloride and the like), an disparagent (phycroxypropymethy) cellulose, destini), a plan modifier (hydrochloric acid, sodium hydroxide and the like), and spessvrative (ethyl p-hydroxybropymethy) cellulose, dextrin), a plan modifier (hydrochloric acid, sodium hydroxide and the like), and solubilizer (concentrated glycerin, meglumine and the like), a solubilizing aid (propylene glycol, sugar and the like), a spainkiller (glucose, benzyl alcohol and the like) properly. Any of these additives are added in an amount employed customarily in a formulation for injection.

[0490] The pH of the injection formulation is adjusted at 2 to 12, preferably 2.5 to 8.0 with a pH modifier.

- [0491] An injection formulation is obtained by dissolving an inventive compound and a concomitant medicament if desired together with a benzoate and/or salicylate in water if desired together with the additives listed above. These components may be dissolved in any order as appropriate similarly to a customary preparation of a formulation for infection.
- [0492] An injection formulation is preferably warmed, and given as a formulation for injection after sterilizing by filtration or autoclave similarly to a customary formulation for injection.
 - [0493] An injection formulation is preferably autoclaved at 100 to 121 °C for 5 to 30 minutes.
 - [0494] A formulation may be present as a solution imparted with an antibacterial activity for the purpose of using several times in divided doses.
 - [2] Sustained-release or immediate release formulation and method for producing the same
- [0495] A sustained release formulation obtained by coating a core containing an inventive compound or a concomitant medicament with a water-insoluble material or a swelling polymer as desired is employed preferably. For example, a sustained-release oral formulation of a single daily dose is preferred.
 - [0496] A water-insoluble material employed as a coating may for example be cellulose other such as ethyl cellulose and butyl cellulose, etc., cellulose ester such as collulose acotate and cellulose propionate, etc., polyvinyl sate taxtual as polyvinyl acetate and polyvinyl acetate and polyvinyl acetate and polyvinyl butyrate, etc., acrylic acid-based polymer such as acrylic acid/methacrylic acid copolymer, methyl methacrylate copolymer, polyvacylic acid, polymethacrylate/cinnamoethyl methacrylate/acid-polymethacrylate, polymethacrylate, polymethacrylate copolymer, sepcially, a series of Eudragit such as Eudragit RS-100, RL-100, RS-300, RL-DO, RS-PO (atnyl acrylate/methyl methacrylate/chlorotrimethyl methacrylate/ethyl ammonium copolymer) and Eudragit NE-300 (methyl methacrylate/such acytate copolymer), hydrogenated oils such as a hydrogenated castor oil (e.g., Lubri wax (Freund Industrial Co.,Ltd.), waxes such as carnauba wax, a fatty acid glycerin ester and paraffin and a polydvoleyin flatty acid dester, etc.
- [0497] As a swelling polymer, a polymer having an acidic cleavable group and exhibiting a pH-dependent swelling is preferred, and an acidic cleavable group-bearing polymer which undergoes a less swelling at an acidic pH such as in stomach but is swellen extensively at a neutral pH such as in small and large intestines is preferred.
- 30 [0498] Such polymer having an acidic cleavable group and exhibiting a pH-dependent swelling may for example be a crosslinked polyacrylic acid polymer such as Carbomers 934P, 940, 941, 974P, 980, 1342 and the like, Polyacropohil and Calcium Polycarbophil (BF GOODRICH). HIGHVIS Wakos 103, 104, 105 and 304 (Wako Pure Chemical).
 - [0499] A coating employed in a sustained release formulation may further contain a hydrophilic material.
 - [0500] Such hydrophilic material may for example be a polysaccharide which may have a sulfate group such as pullulan, dextrin and alkali metal alginates, a polysaccharide having a hydroxyalkyl group or a carboxyalkyl group such sydroxypropyl cellulose, hydroxypropylmethyl cellulose and sodium carboxymethyl cellulose as well as methyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol and polyethylene qlycol, etc.
 - [0501] The water-insoluble material content in a coating of a sustained release formulation is about 30 to about 90% (w/w), preferably about 45 to about 75% (w/w), and the swelling polymer conien is about 310 about 370 (w/w), preferably about 40 to about 75% (w/w), and the swelling polymer conien is about 310 about 310 about 30% (w/w), preferably about 3 to about 15% (w/w). A coating may further contain a hydrophilic material, the content of which in the coating is about 50% (w/w) or less, preferably about 5 to about 40% (w/w), more preferably about 5 to about 45% (w/w). Experient (w/w) referred here means a % by weight based on the coating composition which is the rest of the coating solution after deleting any solvent (e.g., water and a lower alcohol such as methanol and chranol, etc.)
- 45 [0502] A sustained release formulation is produced, as exemplified below, by preparing a core containing a medicament followed by coating a resultant core with a coating solution obtained by melting a water-insoluble material or a swelling obyware of by dissolving or dispersing such material in a solvent.
 - Drug-containing core preparation

10

15

25

25

50

- [0503] While a coated medicament-containing core (hereinafter sometimes referred to simply as a core) may be in any nonlimiting shape, it is formed preferably as a particle such as a granule or a fine particle.
- [0504] When a core is a granule or a fine particle, it has a mean particle size preferable of about 150 to 2,000 μm, more preferably about 500 to 1,400 μm.
- [0505] The core can be prepared by a standard method. For example, a medicament is combined with suitable excipient, binder, disintegrant, glidant, stabilizer and the like, and then subjected to a wet extrusion granulation or a fluidized bed granulation.
 - [0506] The medicament content in a core is about 0.5 to about 95% (w/w), preferably about 5.0 to about 80% (w/w),

more preferably about 30 to about 70% (w/w).

[0507] The excipient contained in a core may for example be a saccharide such as sucrose, lactose, mannitol and glucose, etc., starch, crystalline cellulose, calcium phosphate and corn starch. Among these, crystalline cellulose and corn starch are preferred.

[0508] A binder may for example be polyvinyl alcohol, hydroxypropyl cellulose, polyethylene glycol, polyvinyl pyrrolidone, Pluronie F68, gum arabic, gelaltin and starch, etc. A dishingerant may for example be calciulum aerboxymethyl cellulose (ECG505), sodium crosearmellose (Ac-Di-Soh), crosslinked polyvinyl pyrrolidone (crospovidone) and a low-substituted hydroxypropyl cellulose are preferred. A glidant and an anticoagulant may for example be take, magnesium stearate, etc., and a lubricant may for example be polyethylene glycol, etc. A stabilizer may for example be an acid such a strafaric acid. Citric acid. succinic acid. fumario acid and mallel cadd etc.

[0509] In addition to the methods described above, other methods can be employed to form a core, such as an agitating granulation method wherein an inent carrier particle as a seed for the core is sprayed with a binder dissolvent in a suitable solvent such as water and a lower alcohol (e.g., methanol and ethanol) with being supplemented portion-wise with a medicament or a mixture thereof with an excipient and a glidant as well as a pan coating method, a fluid/coat bed coating method and a method and in embrod. An inert carrier particle may for example be one prepared from sugar, lacrose, starch, crystalline cellulose and waxes, and has a mean particle size preferably of about 100 µm to about 1,500 µm.

[0510] In order to separate a medicament contained in a core from a coating, the surface of the core may be covered with a protective material. Such protective material may for example be a hydrophilic material described above and a water-insoluble material. A preferred protective material is polyethylene glycol or a polysaccharide having a hydroxy-alkyl group or a carboxyalkyl group, more preferably, hydroxypropylmethyl cellulose and hydroxypropyl cellulose. The protective material may contain, as a stabilizer, an acid such as tartaria caid, citric acid, succinic acid, fumaria caid and maleic acid, as well as a glidant such as take, etc. A protective material, when employed, is coated at a rate of about 10 about 15% (w/w), preferably about 1 to about 10% (w/w), more preferably about 2 to about 8% (w/w) based on a

[0511] A protective material can be coated by a standard coating method, and typically a core is sprayed with the protective material by a fluidized bed coating method and a pan coating method.

30 II. Coating of core with coating agent

15

25

45

[0512] A core obtained as described above in Section I is coated with a coating solution containing a water-insoluble material, a pH-dependent swelling polymer and a hydrophilic material being melted therein by heating or being dissolved or dispersed in a solvent to obtain a sustained release formulation.

[0513] A method for coating a core with a coating solution may for example be a spray coating.

[0514] The ratio between a water-insoluble material, a swelling polymer and a hydrophilic material in a coating solution may be selected appropriately in such a manner that respective contents in the coating become those specified above.

[0515] The coating rate is about 1 to about 90% (w/w) based on the core (excluding the protective material coating), preferably about 5 to about 50% (w/w), more preferably about 5 to about 35% (w/w).

[0516] The solvent for a coating solution is water or an organic solvent, which may be employed alone or in combination with each other. The ratio between water and the organic solvent when being employed in combination (water organic solvent: weight ratio may vary from 1 to 100%, and is preferably 1 to about 30%. While said organic solvent is not limited particularly as long as it can dissolve a water-insoluble material, it may for example be a lower alcohol such as methyl alcohol, etc., as well alsonol, size of the solvent alcohol, sorporyl alcohol and the like. Among those listed above, a lower alcohol is preferred, with ethyl alcohol and isopropyl alcohol being especially preferred. Water and a mixture of water and an organic solvent are employed preferably as solvents for a coating, in such a case, an acid such as tartaric acid, citric acid, succinic acid, fumaric acid and maleic acid may be added to the coating solution for the purpose of stabilizing the coating solution.

[0517] An operation when the coating is effected by a spray coating, a standard coating method can be employed, and typically a core is sprayed with a coating by a fluidized bed coating method and a pan coating method. During this process, a lubricant such as tale, titanium oxide, magnesium stearate, calcium stearate and light silicio anhydride, etc. and a plasticizer such as glycerin fatty acid ester, hardened castor oil, triethyl citrate, cetyl alcohol and stearyl alcohol, etc. may also be added.

[0518] After coating with the coating agent, an antistatic agent such as a talc may also be incorporated if necessary.

[0519] An instantaneous release formulation may be a liquid (solution, suspension, emulsion, etc.) or a solid (particle,

[10] It ablet, etc.) While an oral formulation and a parenteral formulation such as an injection formulation may be em-

ployed, an oral formulation is preferred.

5

15

25

30

25

45

[0520] An instantaneous release formulation may usually contain, a carrier, additive and excipient (hereinalter sometimes abbreviated as excipient) which are employed customanity in the pharmacustical field in addition to a medicament which is an active ingredient. Such a formulation excipient is not limited particularly as long as it is an excipient employed usually as a formulation excipient. For example, an excipient for an oral solid formulation may be lactose, starch, corn starch, crystalline cellutose (Asahi Kasei, Avecle PH101 and the like), powder sugar, granulated sugar, mannitol, light silicic arrhydride, magnesium carbonate, calcium carbonate, L-cysteine and the like, with corn starch and mannitol being preferred. Any of these excipients may be employed allone or in combination with each other. The amount of an excipient may for example be about 4.5 to about 59.4 w/w%, preferably about 20 to about 93.6 w/w%, more preferably about 30 to about 97.0 w/%. Seased on the entire amount of an instantaneous release formulation.

about 30 to about 97w/w%, based on the entire amount of an instantaneous release formulation.

[521] The medicament content in an instantaneous release formulation may be selected within the range from about 0.5 to about 95%, preferably about 1 to about 60%, based on the entire amount of an instantaneous release formulation.

[522] An oral solid instantaneous release formulation contains a deintegrant in addition to the ingredients described above. Such a disintegrant may for example be calcium carboxymethyl cellulose (GOTOKUYAKUHIN, ECGS05), so-dium croscarmeliose (for example, Asahi Kasel, Ac-Di-Sol), crospovidone (for example, BASF, COLIDON CL), solium carboxymethyl starch (MATSUTAIN KAGAKU), solium carboxymethyl starch (KIMURASANGYO, EXORITAB), partial a starch (Asahi Kasel, PCS) and the like, any of which may for example be brought into contact with water to effect water absorption or swelling, or to make a channel behene a core-forming active ingredient and an excipient, whereby disintegrating a granule. Any of these disintegrants may be employed alone or in corribination with each other. While the amount of the medicament employed and the preparation design for releasing, it may for example be about 0.65 to about 30w/w%, preferably about 0.5 to about 15w/w% based on the entire amount of an instantaneous release formulation.

[0523] An oral solid instantaneous release formulation contains additives employed customarily in a solid formulation if desired in addition to the components described above. Such additives may for example be binders (for example, sucrose, gelatin, powdery gum arabic, methyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose, carboxymethyl cellulose, polyrinylpyrrolidone, pulluran, dextrin, etc.), lubricants (polyethylene glycol, magnesium stearate, taic, light slicic anhydride for example, areasi (INIPPON AEROSLI), surfactants for example, anionic surfactants such as sodium alkylsulfate, nonionic surfactants such as polyoxyethylene fatty acid ester and polyoxyethylene sorbitan fatty acid ester, polyoxyethylene castor oil derivatives, etc.), colorants (for example, sar-based colorants, caramel, rad cohert, titanium oxide, infortant, etc.), fineossay together with seasonings (for example, sweetner and flavor), adsorbents, preservatives, wetting agents, antistatic agents and the like. As a stabilizer, an organic acid such as tartaric acid citiz acid succide acid and filmaric acid may also be acided.

[0524] Binders described above are preferably hydroxypropyl cellulose, polyethylene glycol and polyvinylpyrrolidone, etc.

[0525] An instantaneous formulation can be prepared based on an ordinary formulation technology by mixing the components described above and kneading if necessary and then molding. Such a mixing may be accomplished by an ordinary method, such as mixing and kneading. Typically, when an instantaneous release formulation is formed as a particle, then a method similar to that for preparing a core of a sustained release formulation or scribed above is employed to mix the materials using a vertical granulator, multi-purpose kneader (HATAKE TEKKOSHO), fluidized bed granulator FD-SS (Powrex Corporation) and the like, after which a granulation is effected using a wet extrusion granulation or a fluidized bed carnulation.

[0526] Each of an instantaneous release formulation and a sustained release formulation thus obtained may be formulated separately by a standard method as it is or in combination with an excipient property and then provided as final formulation for simultaneous administration or intermittent sequential administration, or the both may be formulated in a single oral formulation (e.g., granule, fine powder, tablet, capsule, etc.) as they are or in combination with an excipient properly. The both formulation may be formulated also as granules or fine powders, which are then filled in a single casule for oral administration.

[3] Sublingual, buccal or instant oral disintegration formulations and method for producing the same

[0527] Any of sublingual, buccal or instant oral disintegration formulations may be a solid formulation such as a tablet, etc., or may be an oral mucosa plaster (film).

[0528] Each of sublingual, buccal or instant oral disintegration formulations is preferably a formulation containing an inventive compound or a concenitant medicament together with an excipient. An auxiliary agent may also be contained such as a lubricant, osmotic agent, hydrophilic carrier, water-dispersible polymer and stabilizer. For the purpose of promoting the absorption and enhancing the bioavailability, β-cyclodextrin or β-cyclodextrin derivatives (e.g., hydrox-yropy-β-cyclodextrin, etc., bc. may also be contained.

[0529] Such an excipient may for example be lactose, sugar, D-mannitol, starch, crystalline cellulose, light silicic anhydride and the like. A lubricant may for example be magnesium stearate, calcium stearate, talc, colloidal silica and the like, with magnesium stearate and colloidal silica being preferred. An osmolic agent may for example be socium chloride, glucose, fructose, mannitol, sorbitol, lactose, saccharose, glycerin and urea, with mannitol being preferred sepscallay. A hydrophilic carrier may for example be a swelling hydrophilic carrier such as a crystalline cellulose, ethyl cellulose, crosslinked polyvinyl pyrrolidone, light silicic anhydride, sillicic acid, dicaklum phosphate, calcium carbonate and the like, with a crystalline cellulose (e.g., microcrystalline cellulose) being preferred. A water dispersible polymer may for example be a gum (e.g., tragacanth gum, acacia gum, guar gum), alginate (e.g., sodium alginate), cellulose derivative (e.g., methyl cellulose, carboxymethyl cellulose, hydroxypropyrinethyl cellulose, polyvinylgropyrinethyl cellulose, polyvinylgropyrinethyl cellulose, polyvinylgropyrinethyl cellulose, polyvinylgropyrinethyl cellulose, polyvinylgropyrinethyl cellulose is especially preferred. A stabilizer may for example be cysteine, thiosorbitol, tartaric acid, citric acid, sodium carbonate, ascorbic acid, glycine and sodium sulfite, with citric acid and ascorbic acid being preferred.

[0530]. Each of sublingual, buccal or instant oral disintegration formulations can be produced by mixing an inventive compound or concomitant medicament with an excipient by a method known per se. If desired, an auxiliary agent described above, such as lubricant, osmotic agent, hydrophilic carrier, water-dispersible polymer, stabilizer, colorant, sweeteners and preservative, may also be incorporated. After mixing the components described above simultaneously or at a certain time interval, the mixture is compressed and molded into each of sublingual, buccal or instant oral disintegration formulations. For the purpose of obtaining a suitable hardness, a solvent such as water and alcohol may be employed to hydrate the mixture before or after the tablet impaction, and then drief finality.

15

25

30

25

45

[0531] When an oral mucosa plaster (film) is to be molded, an inventive compound or concomitant medicament and a water-dispersible polymer (preferably, hydroxypropyl cellulose, hydroxypropylmethyl cellulose) and excipient described above are dissolved in a solvent such as water, and then the resultant solution is casted into a film. Additives may also be added such as plasticizers, stabilizers, antioxidants, preservatives, colorants, buffering agents and sweethers. A glycol such as polyethylene glycol or propylene glycol or may be added for the purpose of imparting a film with an appropriate elasticity, and a bioadhesive polymer (e.g., polycarbophile, carbopol) may be added for the purpose of enhancing the adhesion of the film to the oral mucosal laing. The casting may be accomplished by pouring a solution not a non-adhesive surface, spreading the solution using a coater such as a doctor blade, etc. into a uniform thickness (preferably about 10 to 1000 microns), and then drying the solution to form a film. The film thus formed is dried at room temperature or with warming, and then cut into loices seach having a desired surface area.

[0532] A preferred Instant oral disintegration formulation may for example be a rapid diffusion formulation in the form of a solid network consisting of an inventive compound or concomitant medicament together with a water-soluble or water-diffusible carrier which is inert to the inventive compound or concomitant medicament. Said network is obtained by sublimating a solvent from a solid composition consisting of a solution of an inventive compound or concomitant medicament in a suitable solvent.

[0533] In addition to an inventive compound or concomitant medicament, a matrix-forming agent and a secondary component are contained preferably in the composition of said instant oral disintegration formulation.

[0534] Sald matrix-forming agents may for example be an animal or vegetable protein such as a gelatin, dextrin and soybean, wheat and psyllium seed proteins; a gummy material such as gum arabic, guar gum, agar and xanthane gum; polysaccharide; alginate; carboxymethyl cellulose; carrageenan; dextran; pectin; synthetic polymer such as polyvinylpyrrolidone; a material derived from a gelatin-gum arabic complex. Those which are also included are saccharides such as mannitol, dextrose, lactose, galactose and trehalose, etc.; cyclic saccharides such as cyclodextrin, etc.; Inorganic satts such as sodium phosphate, sodium chloride and aluminum silicate, etc.; amino acids having 2 to 12 carbon atoms such as glycine, L-atanine, L-asparite acid, L-gluranic acid, L-ylguranic acid, L-ylgur

[0535] One or more matrix-forming agents may be introduced into a solution or suspension before solidification. Such a matrix-forming agent may be present in addition to a surfactant, or may be present in the absence of the surfactant. The matrix-forming agent serves not only to form a matrix itself, but also to add in maintaining the inventive compound or concomitant medicament as being diffused in the solution or suspension.

[0536] A secondary agent may be contained in a composition such as a preservative, antioxidant, surfactant, thickening agent, colorant, pH modifier, flavor, sweetner or taste masking agent, etc. A suitable colorant may for example be iron oxide red, black and yellow, FD&C dyes available from ERIS AND EVERALD such as FD&C Blue No.2 and FD&C Red No.40. A suitable flavor may for example be mint, raspberry, licorice, orange, lemon, grape fruit, caramel, vanilla, cherry and grape flavor as well as a combination thereof. A suitable pH modifier may for example be citric acid, tartaric acid, phosphoric acid, hydrochloric acid and maleic acid. A suitable sweetner may for example be aspartame, acesulfame K and thaumatine. A suitable taster masking agent may for example be sodium bicarborate, io nexchange

resin, cyclodextrin inclusion compound, adsorbent and microencapsulated apomorphine.

[0537] A formulation contains an inventive compound or concomitant medicament in an amount usually of about 0.1 to about 50% by weight, and is preferably about 0.1 to about 30% weight, and is preferably about 0.1 to about 30% by weight, and is preferably a formulation (sublinging or buccal formulation described above) which allows 90% or more of the inventive compound or concomitant medicament to be dissolved (in water) within a time period of about 1 to about 60 minutes, preferably about 1 minutes to about 150 minutes, more preferably about 2 minutes to about 50 minutes, more preferably about 2 minutes to about 50 minutes, more and disintegration formulation which disintegrates within about 1 to about 60 seconds, preferably about 1 to about 30 seconds, more preferably about 1 to about 30 seconds after being placed in the oral cavity.

[0538] The amount of an excipient described above based on the entire formulation is about 10 to about 99% by weight. The amount of β -cyclodoxtrin or β -cyclodoxtrin derivative based on the entire formulation is about 0 to about 30% by weight. The amount of a lubricant based on the entire formulation is about 0.1 to about 90% by weight. The amount of an ubricant based on the entire formulation is about 0.1 to about 90% by weight, preferably about 1 to about 5% by weight. The amount of an esmolic agent based on the entire formulation is about 0.0 1 to about 90% by weight, preferably about 10 to about 10% by weight, preferably about 10 about 100% by weight, preferably about 10 to about 30% by weight. The amount of a water-dispersible polymer based on the entire formulation is about 0.1 to about 30% by weight, preferably about 10 to about 25% by weight, preferably about 10 to about 50% by weight. The amount of a vater-dispersible polymer based on the entire formulation is about 0.1 to about 50% by weight, preferably about 10 to about 50% by weight. The amount of a vater-dispersible polymer based on the entire formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by weight. The formulation is about 0.1 to about 10% by wei

[0539] While the dose of an inventive concomitant preparation may vary depending on the type of the inventive compound, the subject's age, body weight, condition, and the dosage form as well as administration mode and duration, the daily dose for example in a patient having a breast cancer (adult, body weight; about 80 kg) is about 0.01 to about 1000 mg/kg, as an inventive compound and concomitant medicament, preferably about 0.01 to about 100 mg/kg, more preferably about 0.1 to about 100 mg/kg, more to about 0.00 mg/kg, expectively about 1.01 to about 0.00 mg/kg, expectively about 1.01 to about 0.00 mg/kg, expectively about 0.01 to about 0.00 mg/kg, which is given intravenously at once or in several portions. It is a matter of course that the dose may vary depending on various factors as described above, and a less amount may sometimes be sufficient and an excessive amount should sometimes be required.

[0540] A concomitant medicament may be employed in any amount within the range causing no problematic side effects. The daily dose of a concomitant medicament is not limited particularly and may vary depending on the severity of the disease, the subject's age, sex, body weight and susceptibility as well as time and interval of the administration and the characteristics, preparation, type and active ingredient of the pharmaceutical formulation, and the daily oral dose per kg body weight in a mammal is about 0.001 to 2000 mg, preferably about 0.01 to 500 mg, more preferably about 0.01 to about 100 ma as medicaments, which is given usually in 1 to 4 bortions.

[0541] When the inventive concomitant preparation is administered, it may be administered at the same time, but it is also possible that the concomitant medicament is first administered and then the inventive compound is administered, or that the inventive compound is administered, or that the inventive compound is first administered and then the concomitant medicament is administered. When such an intermittent administration is employed, the time interval may vary depending on the active ingredent administered, the dosage form and the administration mode, and when the concomitant medicament is first administered, the inventive compound may be administered within 1 minutes to 3 days, preferably 10 minutes to 1 day, more preferably 15 minutes to 1 hour after the administration of the concomitant medicament. When the inventive compound is first administered, then the concomitant medicament may be administered within 1 minutes to 1 day, preferably 10 minutes to 6 hours, more preferably 15 minutes to 1 hour after the administration of the inventive compound.

[0542] The present invention is further detailed in the following Reference Examples, Examples, Formulation Examples and Experiment Examples, any of which serves only a practice and is not intended to restrict the invention and can be modified without departing from the scope of the invention.

49 [O543] In the following Reference Examples and Examples, the term "room temperature" usually means a temperature from about 10 to about 35°C. A % means a mol/mol% when employed for a yield and a % by volume when employed for a chromatographic solvent, and otherwise it is a % by weight. A basic silica gol employed was NH-DM1020 manufactured by FUJI SILYSIA CHEMICAL LTD. Any unidentifiable broad peak such as those of OH and NH protons in each proton NMR spectrum are not included in the data.

[0544] Abbreviations shown below are employed here.

s: Singlet

15

25

30

25

- d: Doublet
- t: Triplet
- q: Quartet
- m: Multiplet
- hr: Broad
 - J: Coupling constant

Hz: Hertz

CDCl₃: chloroform-d

5

20

25

25

45

50

DMSO-de: dimethylsulfoxide-de

¹H NMR: Proton nuclear magnetic resonance

[0545] A transformant Escherichia coli BL21/pPDE4D3 obtained in Experiment Example 1 described below was deposited on March 8, 2000 to National Institute of Bioscience and Human-Technology Agency of Industrial Science and Technology (NIBH) under the deposition No.FERM BP-7075 and on February 24, 2000 to Institution for Fermentation, Osaka (IFO) under the deposition No.IFO 16383.

[0546] The gene engineering operations employing Escherichia coli was in accordance with Molecular Cloning.

[0547] The Sequence ID Nos, in the sequence listing in this specification indicate the following sequences. 10

[Sequence ID No.1]

[0548] Sequence ID No.1 indicates the base sequence of a primer employed in Experiment Example 1.

[Sequence ID No.2] 15

[0549] Sequence ID No.2 indicates the base sequence of a primer employed in Experiment Example.

[Sequence | D No.3]

[0550] Sequence ID No.3 indicates the cDNA base sequence possessed by Escherichia coli BL21/pPDE4D3 obtained in Experiment Example 1.

[Sequence ID No.4]

[0551] Sequence ID No.4 indicates the amino acid sequence encoded by the cDNA base sequence possessed by Escherichia coli BL21/pPDE4D3 obtained in Experiment Example 1.

EXAMPLES 20

REFERENCE EXAMPLE 1

4-Hvdroxv-3-methoxy-5-(2-methyl-2-propenyl)benzaldehyde

[0552] To a solution of vanillin (25.6 g. 0.168 mol) in N.N-dimethylformamide (150 mL), 3-chloro-2-methyl-1-propene (19.9 mL, 0.202 mol) and potassium carbonate (30.2 g, 0.219 mol) was added and the mixture was stirred at 75 °C for 2.5 hours under nitrogen atmosphere. Water was added to the reaction mixture and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed twice with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 5:1) to obtain 3-methoxy-4-(2-methyl-2-propenyloxy)benzaldehyde (35.4 g) as an oil.

[0553] This 34.3 g of the material was dissolved in N,N-diethylaniline (80 mL), and stirred at 200 °C for 5 hours under nitrogen atmosphere. The reaction mixture was dissolved in diisopropyl ether, washed with 1 M hydrochloric acid (twice) and brine, dried over magnesium sulfate, treated with activated charcoal, filtered, and concentrated under reduced pressure. The residue was crystallized from diisopropyl ether-hexane to obtain the title compound (27.1 g, yield: 79%). Melting point: 53-54 °C

¹H NMR (CDCl₋) δ 1.75 (3H, s), 3.42 (2H, s), 3.97 (3H, s), 4.69-4.75 (1H, m), 4.82-4.97 (1H, m), 6.31 (1H, s), 7.31 (2H, s), 9.81 (1H, s).

REFERENCE EXAMPLE 2

4-Hydroxy-3-methoxy-5-(2-methyl-2-propenyl)benzaldehyde

[0554] To a solution of 3-ethoxy-4-hydroxybenzaldehyde (25.6 g, 0.154 mol) in N,N-dimethylformamide (150 mL), 3-chloro-2-methyl-1-propene (16.7 mL, 0.169 mol) and potassium carbonate (24.5 q, 0.177 mol) were added, and the mixture was stirred at 80 °C for 3 hours under nitrogen atmosphere. Water was added to the reaction mixture and the reaction mixture was extracted twice with ethyl acetate. The combined organic layer was washed twice with water, and then concentrated under reduced pressure to obtain 3-ethoxy-4-(2-methyl-2-propenyloxy)benzaldehyde (35.5 g) as an oil

[0555] This was dissolved in N,N-diethylaniline (25 mL), and stirred at 210 °C for 5 hours under nitrogen atmosphere. The reaction mixture was dissolved in ethyl acetate, washed twice with 1 M hydrochloric acid and twice with water, and then concentrated under reduced pressure. The residue was crystallized from diisopropyl ether-hexane to obtain the title compound (26.7 g, yield: 79%).

Melting Point: 85-86 °C

5

10

15

20

25

20

25

45

55

¹H NMR (CDCl₃) δ 1.48 (3H, t, J = 7.0 Hz), 1.75 (3H, s), 3.42 (2H, s), 4.20 (2H, q, J = 7.0 Hz), 4.68-4.73 (1H, m), 4.82-4.87 (1H, m), 6.34 (1H, s), 7.29 (2H, s), 9.80 (1H, s).

REFERENCE EXAMPLE 3

2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofurancarboxaldehyde

[0555] To a solution of 4-hydroxy-3-methoxy-5-(2-methyl-2-propenyl)benzaldehyde (26.2 g. 0.127 mol) in toluene (130 mL), boron trifluoride diethyl ether complex (172 mL, 0.140 mol) was added, and the mixture was sirred at 110 °C for 1 hour. The reaction mixture was washed with water and saturated sodium hydrogen carbonate, dried through sodium sulfate and a silica gel (eluted with hexane/ethyl acetate 3:1), and then concentrated under reduced pressure. The residue was crystallized from diisopropyl ether-hexane to obtain the title compound (17.1 g. yield: 65%). Methion point: 58:49 °C.

¹H NMR (CDCl₂) δ 1.56 (6H, s), 3.11 (2H, s), 3.94 (3H, s), 7.28-7.35 (2H, m), 9.80 (1H, s).

(Alternative synthetic method)

[0557] A suspension of 4-hydroxy-3-methoxy-5-(2-methyl-2-propeny)benzaldehyde (88.4 g. 0.429 mol) and Amberlyst 15 (trade name) (17 g) in toluene (300 mL) was stirred at 100 °C for 1.5 hours. The reaction mixture was filtered, and washed with ethyl acetate. The filtrate was washed with 0.5 M aqueous solution of sodium hydroxide and water (twice), and concentrated under reduced pressure. The residue was crystallized from diisopropyl ether-hexane to obtain the title compound (72.1 q, yeldic 82%).

REFERENCE EXAMPLE 4

7-Ethoxy-2,3-dihydro-2,2-dimethyl-5-benzofurancarboxaldehyde

[0558] To a solution of 3-ethoxy-4-hydroxy-5-(2-methyl-2-propenyl)benzaldehyde (28.9 g, 0.131 mol) in toluene (150 mt), boron trifluoride diethyl ether complex (17.8 mt), 0.145 mol) was added, and the mixture was stirred at 100°C for hour. The reaction mixture was washed with water, saturated aqueous solution of sodium hydrogen carbonate and brine, dried through sodium sulfate and a silica gel (eluted with hexane/ethyl acetate 5:1), and then concentrated under reduced pressure to obtain the title compound (26.8 g, yield: 93%).

Melting poin: 3-93.6 °C

¹H NMR (CDCl₃) δ 1.47 (3H, t, J = 7.0 Hz), 1.56 (6H, s), 3.09 (2H, s), 4.19 (2H, q, J = 7.0 Hz), 7.26-7.35 (2H, m), 9.78 (1H. s).

REFERENCE EXAMPLE 5

2,3-Dihydro-7-methoxy-2,2-dimethyl-5-(2-methyl-1-propenyl)benzofuran

[0559] To a suspension of 2,3-dihydro-7-methoxy-2.2-dimethyl-5-benzofurancarboxaldehyde (1 50 g, 7 27 mmol) and isopropyltriphenylphosphonium lodide (3.77 g, 8.73 mmol) in tetrahydrofuran (20 mL), sodium hydride (68% suspension in oil) (397 mg, 11 mmol) was added, and the mixture was heated under reflux for 1.5 hours. The reaction mixture was poured into a 10% aqueous solution of ammonium chloride, and extracted twice with ethyl acetale. The combined organic layer was washed with water and brine, dried over magnesium suitate, filtered, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 50:1 followed by 30:1) to bloist in the title compound (1;22 q, velfact 72%). An oil

 1 H NMR (CDCl₃) δ 1.51 (6H, s), 1.867 (3H, d, J = 1.4 Hz), 1.874 (3H, d, J = 1.4 Hz), 3.02 (2H, s), 3.85 (3H, s), 6.20 (1H, s), 6.61 (1H, s), 6.65 (1H, s).

(Alternative synthetic method)

[0560] To a solution of guaiacol (124 g, 1.00 mol) in N,N-dimethylformamide (500 mL), 3-chloro-2-methyl-1-propene

(128 mL, 130 mol) and potassium carbonate (166 g, 1.20 mol) were added, and the mixture was stirred at :80 °C for 5 hours under nitrogen atmosphere. Water was added to the reaction mixture and the mixture was extracted twice with hexane. The combined organic layer was washed each twice with 0.5 M aqueous solution of sodium hydroxide and water, and then concentrated under reduced pressure to obtain 1-methoxy-2-{(2-methyl-2-propenyl)oxylbenzene (178 g) as an oil.

[0561] This was dissolved in N,N-diethylaniline (250 mL), and stirred at 205 °C for 5 hours under nitrogen atmosphere. The reaction mixture was cooled with i.e., combined with 2 M hydrochloric acid (850 mL), and extracted with ethyl acetate. The organic layer was washed twice with water, and concentrated under reduced pressure to obtain 2-methoxy-6-12-methyl-2-propentylohenol (178 o) as an oil.

[0562] This was dissolved in N,N-dimethylfornamide (600 mL). 3-chloro-2-methyl-1-propene (128 mL, 1.30 mol) and potassium carbonate (166 g, 1.20 mol) were added to the mixture and the mixture was stirred at 80 °C for 7 hours under nitrogen atmosphere. Water was added to the reaction mixture and the mixture was extracted twice with hexane. The combined organic layer was washed each twice with water, an aqueous solution of sodium hydroxide and water, and then concentrated under reduced pressure to obtain 1-methoxy-3-(2-methyl-2-propenyl) 2-([2-methyl-2-propenyl) oxylbenzene (231 c) as an oil.

[0563]. This was dissolved in N,N-diethylaniline (250 mL), and stirred at 205 °C for 5 hours under nitrogen atmosphere. The reaction mixture was cooled with ice, combined with 2 M hydrochloric acid (850 mL), and extracted twice with ethyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was distilled under reduced pressure to obtain 2-methoxy-4,6-bis(2-methyl-2-propenyl)phenol (186 g, yleid: 80%).

Boiling point: 104-115 °C / 0.11 kPa (0.8 mmHg).

[0564] 164 g (0.706 mol) of this material was dissolved in ethanol (300 mL), conc. hydrochloric acid (75 mL) and ethanol (75 mL) were added to the reaction mixture and the mixture was heated under reflux for 13 hours. The reaction mixture was combined with hexane and water, and the organic layer was separated, and then the aqueous layer was extracted with hexane. The combined organic layer was washed with water, 5 M aqueous solution of sodium hydroxide and water (twice), treated with activated charcoal, filtered, and then concentrated under reduced pressure to obtain the title compound (163 g) as a noil. This was used in the next reaction without further purification.

REFERENCE EXAMPLE 6

5

25

20

45

55

7-Ethoxy-2.3-dihydro-2,2-dimethyl-5-(2-methyl-1-propenyl)benzofuran

[0565] The title compound was obtained from 7-ethoxy-2,3-dihydro-2,2-dimethyl-5-benzofurancarboxaldehyde by the method similar to that in Reference Example 5. Yield: 91%. An oil.

35 ¹H NMR (CDCl₃) δ 1.42 (3H, t, J = 6.9 Hz), 1.51 (6H, s), 1.83-1.89 (6H, m), 3.00 (2H, s), 4.11 (2H, q, J = 6.9 Hz), 6.18 (1H, br s), 6.61 (1H, s), 6.64 (1H, s).

REFERENCE EXAMPLE 7

1-(2.3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2-methyl-1-propanol

[0568] To a 15% solution of isopropylimagnesium bromide / tetrahydrofuran (101 g, 0.10 mol), a solution of 2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzoflurancarboxaldshyde (20,2,9,9.79 mmol) in betrahydrofuran (100 mL) was added dropwise, and the mixture was stirred at room temperature for 40 minutes. The reaction mixture was poured into a saturated aqueous solution of ammonium chloride, and axtracted twice with ethyl acetate. The combined organic layer was washed twice with water, treated with activated charcoal, filtered, and concentrated under reduced pressure. The residue was recrystallized from ethyl acetate-hexane to obtain the title compound (17.4 g, yield: 71%). Melino point: 113-118 °C.

¹H NMR (CDCl₃) δ 0.78 (3H, d, J = 7.0 Hz), 1.03 (3H, d, J = 6.6 Hz), 1.51 (6H, s), 1.92 (1H, sixtet, J = 6.9 Hz), 3.02 (2H, s), 3.87 (3H, s), 4.23 (1H, d, J = 7.6 Hz), 6.71 (2H, s).

REFERENCE EXAMPLE 8

1-(2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2-methyl-1-propoyl acetate

[0567] To a solution of 1-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2-methyl-1-propanol (937 mg, 3.74 mmol) in pyridine (5 mL), acetic anhydride (0.35 mL, 3.7 mmol) was added dropwise with cooling in ice, and the mixture was stirred at 60 °C for 2 hours. The reaction mixture was dissolved in diisooroovi ether, washed with vater, 1 M

hydrochloric acid (twice), a saturated aqueous solution of sodium hydrogen carbonate and water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 20:1 followed by 10:1) to obtain the title compound (915 mg, yield: 84%).

¹H NMR (CDCl₃) δ 0.78 (3H, d, J = 6.6 Hz), 0.98 (3H, d, J = 6.6 Hz), 1.50 (6H, s), 1.95-2.17 (1H, m), 2.06 (3H, s), 3.01 (2H, s), 3.86 (3H, s), 5.35 (1H, d, J = 8.4 Hz), 6.66 (1H, s), 6.71 (1H, s).

REFERENCE EXAMPLE 9

5

15

25

30

25

55

2.3-Dihydro-7-methoxy-2,2-dimethyl-5-(2-methyl-2-propenyl)benzofuran

[0568] To a solution of gualacol (12.5 g, 0.101 mol) in dichloromethane (50 mL), a solution of bromine (5.3 mL, 0.10 mol) in dichloromethane (10 mL) was added dropwise at -10 °C over 50 minutes, and the mixture was stirred at room emperature for 1 hour. The reaction mixture was combined with water, the organic layer was separated, and the aqueous layer was extracted with dichloromethane. The combined organic layer was washed with a saturated aqueous solution of sodium hydrogen carbonate and brine, dried over magnesium sulfate, filtered, and concentrated under reduced prossague to obtain an ellipse.

[0569] This was dissolved in N,N-dimethylformamide (80 mL), 3-Chioro-2-methyl-1-propene (11 mL, 0.11 mo)) and potassium carbonate (16.6 g. 0.120 mo)) were added to the mixture and the mixture was stirred at 80 °C for 3 hours under nitrogen atmosphere. The reaction mixture was combined with water, and extracted twice with eithyl acetate/ hoxane (1:1). The combined organic layer was washed with 0.5 M aqueous solution of sodium hydroxide and water (twice), treated with activitate deharcoal, filtered, and concentrated under reduced pressure to obtain an oil.

[0570] This was dissolved in N,N-diethylaniline (20 mL), and stirred at 205 °C for 5 hours under nitrogen atmosphere. The reaction mixture was dissolved in disopropyl ether, washed with 1 M hydrochloric acid (twice) and water, treated with activated charcoal, filtered, and concentrated under reduced pressure to obtain an oil.

[0571] This was dissolved in ethanol (40 mL). Conc. hydrochloric acid (10 mL) and ethanol (10 mL) were added to the mixture and the mixture was heated under reflux for 2.5 hours. The reaction mixture was combined with hexane, the organic layer was separated, and the aqueous keyer was extracted with hexane and dissopropy lether. The combined organic layer was washed with 2 M aqueous solution of sodium hydroxide (twice) and water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethy) acetate, 20: 1) to obtain an iol (15.7 q).

[0572] 2.57 g of this material was clissolved in tetrahydrofuran (10 mL), a 1.6 M solution of n-butyllithium/hexane (7.5 mL, 12 mmol) was added dropwise to the mixture at -40 °C, and the mixture was stirred at the same temperature for 1 hour. To this, copper (I) loidide (1.14 g, 5.99 mmol) was added, and the mixture was stirred at the same temperature for 1 hour. To the resultant mixture, 3-chloro-2-methyl-1-propene (1.1 mL, 11 mmol) was added dropwise, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was poured into be water, the insolubles were filtered off, and washed with ethyl acetate. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with water and brine, dried over magnesium sulfate, filtered and concentrated under reduced prossure. The residue was subjected to a column chromatography on a silica gel (hexane/ ethyl acetate. 50.1) to obtain the title compound (1.77 g, yield: 45%).

 1 H NMR (CDCl₃) 5 1.50 (6H, s), 1.69 (3H, s), 3.00 (2H, s), 3.24 (2H, s), 3.85 (3H, s), 4.74 (1H, br s), 4.79 (1H, br s), 6.55 (1H, s), 6.59 (1H, s).

45 REFERENCE EXAMPLE 10

An oil.

6-Ethoxy-1,2,3,4,8,9-hexahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline

[0573] To a solution of 8-ethoxy-3.4,8,9-tertanlydro-3.3,8.8-tertamethyl-1-phenyflurof(2.8-h)[seculinoline (2.27 g, 6.50 mmo) in methanol (30mL), 0.8 M solution of hydrogen chloridormethanol (87 mL), 0.8 M solution for hydrogen chloridormethanol (8.7 mL) was added dropwise. The resultant mixture was cooled with ice, treated portionwise with sodium borohydride (90%) (0.28 g, 7.8 mmol), and stirred at room temperature for 10 minutes. The reaction mixture was combined with water, and oxtracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure to obtain the title compound (2.20 g, yield: 96%).

¹H NMR (CDC₃) δ 1.16 (3H, s), 1.21 (3H, s), 1.24 (3H, s), 1.34 (3H, s), 1.43 (3H, t, J = 7.0 Hz), 1.76 (1H, d, J = 15.7 Hz), 2.43 (1H, d, J = 15.7 Hz), 2.54 (1H, d, J = 15.0 Hz), 2.80 (1H, d, J = 15.0 Hz), 4.11 (2H, q, J = 7.0 Hz), 4.93 (1H, s), 6.49 (1H, s), 7.16-7.38 (6H, m).

REFERENCE EXAMPLE 11

1,2,3,4,8,9-Hexahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline

5 [0574] The title compound was obtained from 3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h] isoquinoline by the method similar to that in Reference Example 10.

Quantitative, Amorphous,

10

25

25

40

45

50

¹H NMR (CDCl₃) δ 1.17 (3H, s), 1.21 (3H, s), 1.24 (3H, s), 1.34 (3H, s), 1.76 (1H, d, J = 15.8 Hz), 2.44 (1H, d, J = 15.8 Hz), 2.55 (1H, d, J = 15.0 Hz), 2.81 (1H, d, J = 15.0 Hz), 3.86 (3H, s), 4.93 (1H, s), 6.49 (1H, s), 7.13-7.38 (5H, m).

REFERENCE EXAMPLE 12

4-(6-Ethoxy-1,2,3,4,8,9-hexahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

15 [0575] The title compound was obtained from 4-(6-ethoxy-3.4,8,9-tetrahydro-3.3,8,8-tetramethylfuro[2,3-h]isoquin-olin-1-ylbenzamide by the method similar to that in Reference Example 10. Yield: 96%. Melting point: 157-163 °C (ethyl acetate-hexane).

¹H NMR (CDC₃) δ 1.17 (3H, s), 1.22 (3H, s), 1.24 (3H, s), 1.34 (3H, s), 1.43 (3H, t, J = 7.0 Hz), 1.76 (1H, d, J = 15.5 Hz), 2.42 (1H, d, J = 15.5 Hz), 2.54 (1H, d, J = 15.4 Hz), 2.82 (1H, d, J = 15.4 Hz), 2.81 (1H, d, J = 15.4 Hz), 2.82 (1H, d, J = 8.2 Hz), 7.75 (2H, d, J = 8.2 Hz).

REFERENCE EXAMPLE 13

3-(2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-3-hydroxy-2,2-dimethylpropionic acid ethyl ester

[0576] To a solution of 1,1,1,3,3,3-hexamethydisliazane (1.88 g, 11.6 mmol) in tetrahydrofuran (40 mL), a 1.53 M solution of n-butylithium/hexane (7.61 mL, 11.6 mmol) was added dropwise at -78°C, and the mixture was stirred at the same temperature for 15 minutes. To the reaction mixture, a solution of ethyl isobutyrate (1.35 g, 11.6 mmol) in tetrahydrofuran (1 mL) was added dropwise, and the mixture was stirred with cooling in ice for 30 minutes. The reaction mixture was cooled at -78°C again, and treated dropwise with a solution of 2,3-61mydro-7-methoxy-2-d-dimethyl-5-ber-zofurancarboxaldehyde (2.00 g, 9.70 mmol) in tetrahydrofuran (3 mL). The reaction mixture was stirred for 1 hour, combined with an aqueous solution of ammonium chloride, and then extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 4:1 to 13:7) to obtain the title compound (1.56 g, yleid: 50%).

¹H NMR (CDCl₃) δ 1.11 (3H, s), 1.16 (3H, s), 1.28 (3H, t, J = 7.2 Hz), 1.50 (6H, s), 3.01 (2H, s), 3.86 (3H, s), 4.18 (2H, g, J = 7.2 Hz), 4.80 (1H, s), 6.70 (1H, s), 6.71 (1H, s).

(Alternative synthetic method)

[0577] To a mixture of zinc (powder, 11 g, 170 mmol) and toluene (300 mL), a solution of 2,3-dilhydro-7-methoxy-2,2-dimethyl-5-benzofurancarboxaldehyde (17 g, 82 mmol) and 2-bromoisobutyric acid ethyl ester (35 g, 180 mmol) in toluene (300 mL) was added at 100 °C. The reaction mixture was heated under reflux for 3 hours. The reaction mixture was cooled to room temperature, and then thisolubles were filtered off. The filtrate was washed with 1 M hydrochloric acid and brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced resure. The resultant residue was purified by a column chromatography on a silica gel (hexane/ethyl acetate, 5:1) to obtain the title compound (17 c, yelde (82%).

REFERENCE EXAMPLE 14

3-(2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2,2-dimethylpropionic acid ethyl ester

[0578] To a solution of 3-(2.3-dihydro-7-methoxy-2.2-dimethyl-5-benzofuranyl)-3-hydroxy-2.2-dimethylpropionic acid ethyl ester (1.50 g. 4.65 mmol) and triethylsilane (0.817 mL, 5.12 mmol) in dichloromethane (15 mL), boron trifluorida diethyl ether complex (0.648 mL, 5.12 mmol) was added with cooling in ice, and the mixture was stirred with cooling in ice for 1 hour. The reaction mixture was combined with a saturated aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetale. The extract was washed with water, and concentrated under reduced pressure. The residue was subjected to a column chromatoproathy on a silice cell (hexane/eth) acetale. 5:11 to obtain the title com-

pound (1.30 g, yield: 91%).

An oil

5

20

25

55

¹H NMR (CDCl₃) δ 1.17 (6H, s), 1.24 (3H, t, J = 7.4 Hz), 1.49 (6H, s), 2.77 (2H, s), 2.98 (2H, s), 3.83 (3H, s), 4.11 (2H, g, J = 7.4 Hz), 6.49 (1H, s), 6.52 (1H, s).

REFERENCE EXAMPLE 15

3-(2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2,2-dimethylpropionic acid

[0579] To a solution of 3-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2,2-dimethylpropionic acid ethyl ester (125 g, 4.08 mmol) in methanol (10 mL), 2 M aqueous solution of sodium hydroxido was added, and the mixture was stirred for 1.5 hours. The reaction mixture was acidified with 1 M hydrochloric acid, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica ged (hexane/ethyl acetate, 3.2), and then recrystallized from hexane-ethyl acetate to obtain the title compound (0.87 or vield 169%).

to obtain the title compound (0.87 g, yield: 69%). Melting point: 88-89 °C

¹H NMR (CDCI_a) δ 1.21 (6H, s), 1.50 (6H, s), 2.81 (2H, s), 2.99 (2H, s), 3.82 (3H, s), 6.55 (2H, s).

REFERENCE EXAMPLE 16

N-[2-(2.3-dihvdro-7-methoxy-2.2-dimethyl-5-benzofuranyl)-1.1-dimethylethyl]-N'-phenylurea

[0580] To a solution of 3-[2,3-dihydro-7-methosy-22-dimethyl-5-benzofuranyl)-2,2-dimethylpropionic acid (0.80 g, 2.87 mmo)) and diphenylphosphoryl azied (0.850 mL, 3.01 mmo)) in toluene (5 mL), triethylamine (0.421 mL, 3.01 mmo)) was added, and the mixture was stirred at 7.0 °C for 1 hour. The reaction mixture was allowed to cool to room temperature. Anilline (0.275 mL, 3.01 mmo)) was added to the mixture and the mixture was stirred at 80 °C for 1 hour. The reaction mixture was stirred at 80 °C for 1 hour. The reaction mixture was diffround and water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/cethyl acetate, 7.31) to obtain the title compound (0.89 q, yield: 65%).

30 Amorphous.

 1 H NMR (CDCl₃) δ 1.34 (6H, s), 1.48 (6H, s), 2.96 (4H, s), 3.73 (3H, s), 4.54 (1H, br s), 6.28 (1H, br s), 6.55 (2H, s), 7.04 (1H, t, J = 7.0 Hz), 7.18-7.30 (4H, m).

REFERENCE EXAMPLE 17

N-[2-(2.3-Dihydro-7-methoxy-2.2-dimethyl-5-benzofuranyl)-1.1-dimethylethyl]-N'-(4-methoxyphenyl)urea

[0581] The title compound was obtained employing 4-methoxyaniline by the method similar to that in Reference Example 16.

Yield: 88%.

An oil.

 ^{1}H NMR (CDCl₃) δ 1.32 (6H, s), 1.49 (6H, s), 2.93 (2H, s), 2.97 (2H, s), 3.77 (3H, s), 3.78 (3H, s), 4.37 (1H, br s), 6.01 (1H, br s), 6.53 (2H, s), 6.80 (2H, d, J = 8.8 Hz), 7.04 (2H, d, J = 8.8 Hz).

45 REFERENCE EXAMPLE 18

N-[2-(2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-1,1-dimethylethyl]-1-piperidinecarboxamide

[0582] The title compound was obtained employing piperidine by the method similar to that in Reference Example 16.

Melting Point: 133-134 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.34 (eH, s), 1.48-1.60 (6H, m), 1.50 (6H, s), 2.93 (2H, s), 2.99 (2H, s), 3.21-3.28 (4H, m), 3.83 (3H, s), 4.11 (1H, br s), 6.53 (1H, s), 6.55 (1H, s).

BEFERENCE EXAMPLE 19

Cyclohexyltriphenylphosphonium bromide

[0583] A mixture of cyclohexyl bromide (10.0 g. 61.3 mmol) and triphenylphosphine (16.1 g. 61.3 mmol) was stirred

at 140-150 °C for 72 hours. The reaction solution was cooled, and then crystallized from ethyl acetate to obtain the title compound (19.1 g. vield; 73%). This was used in the next reaction without further purification.

REFERENCE EXAMPLE 20

5

15

20

25

30

25

45

50

5-(Cyclohexylidenemethyl)-2.3-dihydro-7-methoxy-2.2-dimethylbenzofuran

[084] A suspension of cyclohexyltriphenylphosphonium bromide (7.42 g, 17.4 mmol) in tetrahydrofuran (70 mL) was cooled at -78 °C, to this, a 1.5 M solution of n-bulylithium in hexane (11.4 mm, 17.4 mmol) was added dropside, and the mixture was stirred with cooling in ice for 1 hour. To this, 2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuran-carboxatlohyde (3.00 g, 14.5 mmol) was added, and the mixture was allowed to sir with cooling in ice further for hour. The reaction solution was combined with water, and extracted with eithyl acetaio. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (fexeneeityr) acetals, 19·1) to obtain the title compound (0.87 g, yields: 22%).

An oil.

1H NMR (CDCl₃) δ 1.51 (6H, s), 1.59 (6H, br s), 2.20-2.26 (2H, m), 2.35-2.42 (2H, m), 3.02 (2H, s), 3.85 (3H, s), 6.16 (1H, s), 6.55 (1H, s), 6.63 (1H, s).

REFERENCE EXAMPLE 21

3-FormvI-α.α-dimethylbenzeneacetic acid ethyl ester

[0585] To a solution of 3-methylbenzeneacetic acid ethyl ester (10.0 g, 56.1 mmol) in N.N-dimethylformamide (30 mL), sodium hydride (66% suspension in oil) (4.29 g, 118 mmol) was added with cooling in ice, and the mixture was stirred at room temperature for 3 hours. A solution of lodomethane (7.34 mL, 118 mmol) in N.N-dimethylformamide (20 mL) was added dropwise with cooling in ice, and the mixture was stirred at room temperature for 3.5 hours. Ice water was poured into the reaction mixture, and the mixture was extracted twice with ethyl acetate. The combined organic layer was washed with a dilute aqueous solution of sodium chloride twice, and brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure to obtain the mixture (13.3 g) containing o, o, 3-trimethyl-benzeneacetic acid ethyl ester as an oil.

[0586] This was dissolved in ethyl acetate (100 mL). N-bromosuccinimide (10.5 g, 58.9 mmol) and 2,2-azobis(iso-butyronitrile) (82 mg, 0.581 mmol) were added to the mixture and the mixture was stirred at 60 °C for 9 hours. Ice water was poured into the reaction mixture, and the mixture was washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 50.1 followed by 10.1) to obtain the mixture (15.6 g) containing 3-(bromomethyl)-α.α-dimethyl-berzeneactic acid ethyl seter as an oil.

[0587] This was dissolved in acetic acid (35 mL) and water (35 mL). Hoxamethylenetetramine (15.7 g, 112 mmol) was added to the mixture and the mixture was heated under reflux at 90 °C for 1 hour. Ethyl acetate was poured into the reaction mixture, and the mixture was washed with water, a saturated aqueous solution of sodium hydrogen carbonate and brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 50:1 followed by 30:1) to obtain the title compound (5.84 g, yield: 47%).

TH NMR (CDCl₃) § 1.91 (3H, t, J = 7.1 Hz), 1.63 (6H, s), 4.14 (2H, q, J = 7.1 Hz), 7.46-7.65 (2H, m), 7.74-7.89 (2H, m), 10.02 (1H, s).

REFERENCE EXAMPLE 22

3-Cyano-α,α-dimethylbenzeneacetic acid ethyl ester

[0588] 3-FormyI-α, α-dimethylbenzeneaectic acid ethyl ester (5.49 g, 24.9 mmol) was dissolved in ethanol (30 mL). Hydroxylamine hydrochloride (3.46 g, 49.9 mmol) and sodium acetate (4.09 g, 49.9 mmol) were added to the mixture and the mixture was heated under reflux for 40 hours. Ethanol was distilled off under reduced pressure, ethyl acetate was poured into the residue, and the mixture was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was dissolved in aceta enhydride (30 mL), and stirred at 130 °C for 15 hours. 5 M aqueous solution of sodium hydroxide was poured into the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous solution of sodium hydroxide restroate, water, and brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The

residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 40:1 followed by 20:1) to obtain the title compound (4.21 g, yield: 78%).
An nil

¹H NMR (CDCI_o) δ 1.19 (3H, t, J = 7.1 Hz), 1.59 (6H, s), 4.13 (2H, α, J = 7.1 Hz), 7.39-7.65 (4H, m),

REFERENCE EXAMPLE 23

4-Hydroxy-3-(2-methyl-2-propenyl)benzaldehyde

[0589] The title compound was obtained from p-hydroxybenzaldehyde by the method similar to that in Reference Example 1, Yield: 59%.

An oil.

An oil.

5

15

20

25

45

50

 1 H NMR (CDCl₃) δ 1.75 (3H, s), 3.45 (2H, s), 4.89 (1H, s), 4.98 (1H, s), 6.19 (1H, br s), 6.96 (1H, d, J = 8.1 Hz), 7.70 (1H, d, J = 8.1 Hz), 7.74 (1H, s), 9.86 (1H, s).

REFERENCE EXAMPLE 24

2.3-Dihydro-2.2-dimethyl-5-benzofurancarboxaldehyde

20 [0590] To a solution of 4-hydroxy-3-(2-methyl-2-propeny))benzaldehyde (8.52 g. 4.84 mmol) in toluene (40 mL), boron trifluoride diethyl either complex (6.74 mL, 53 2 mmol) was added, and the mixture was stirred at 110 °C for 1 hour. The reaction mixture was weshed with water, a saturated aqueous solution of sodium hydrogen carbonate, and brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 20:1 followed by 10:1) to obtain the title compound (6.41 g. yield: 75%).

¹H NMR (CDC_{l3}) δ 1.51 (6H, s), 3.06 (2H, s), 6.82 (1H, d, J = 8.4 Hz), 7.64-7.71 (2H, m), 9.82 (1H, s).

REFERENCE EXAMPLE 25

7-Bromo-2,3-dihydro-2,2-dimethyl-5-benzofurancarboxaldehyde

[0591] To a solution of 2.3-dihydro-2.2-dimethyl-5-benzofurancarboxaldehyde (5.90 g, 33.5 mmo) in acetic acid (20 mL), a solution of bromine (2.07 mL, 40.2 mmol) in acetic acid (5 mL) was added, and the mixture was stirred at room temperature for 5 hours. An aqueous solution of sodium thisoulfate was poured into the reaction mixture, and the mixture was extracted twice with eithyl acetate. The combined organic layer was washed with brine, dried over magnesium suiffate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 10:1) to obtain the title compound (8.08 g, yield: 94%).

⁴⁰ 1H NMR (CDCl₂) δ 1.57 (6H, s), 3.16 (2H, s), 7.63 (1H, d, J = 1.6 Hz), 7.83 (1H, d, J = 1.8 Hz), 9.77 (1H, s).

REFERENCE EXAMPLE 26

7-Bromo-2,3-dihydro-2,2-dimethyl-5-(2-methyl-1-propenyl)benzofuran

[0592] The title compound was obtained from 5-bromo-2,3-dihydro-2,2-dimethyl-5-benzofurancarboxaldehyde by the method similar to that in Reference Example 5, Yield: 81%.

11 NMR (CDCl₃) 5 1.52 (6H, s), 1.83 (3H, d, J = 1.1 Hz), 1.86 (3H, d, J = 1.1 Hz), 3.07 (2H, s), 6.12 (1H, s), 6.91 (1H, s), 7.13 (1H, s).

REFERENCE EXAMPLE 27

7-Ethylthio-2.3-dihydro-2.2-dimethyl-5-(2-methyl-1-propenyl)benzofuran

[0593] To a solution of 1.54 M solution of tert-butylithium/pentane (3.45 mL, 5.34 mmol) in tetrahydrofuran (1 mL), a solution of N,N,N,Y-tetramethylethylenediamine (0.81 mL, 5.34 mmol) and 7-bromo-2,3-difnydro-2,2-dimethyl-5-(2-methyl-1-propenyl)benzofuran (300 mg, 1.07 mmol) in tetrahydrofuran (1 mL) was added, and the mixture was stirred at -78 °C for 30 minutes. A solution of diethyl disulfide (1.32 mL, 10.7 mmol) in tetrahydrofuran was added to

the mixture and the mixture was warmed gradually from -78 °C to room temperature, and then stirred for 15 hours. Water was poured into the reaction mixture, and the mixture was extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane followed by hexane/ethyl acetate, 50: 1) to obtain the title compound (264 md, wide; 94%).

An oil.

5

15

25

20

25

55

¹H NMR (CDCl₃) δ 1.26 (3H, t, J = 7.3 Hz), 1.50 (6H, s), 1.84 (3H, s), 1.87 (3H, s), 2.90 (2H, q, J = 7.3 Hz), 6.15 (1H, s), 6.89 (1H, s), 7.00 (1H, s).

Ø BEFERENCE EXAMPLE 28

2.3-Dihydro-2,2,7-trimethylbenzofuran

[0594] To a solution of o-cresol (19.1 mL, 184 mmol) in N,N-dimethylformamide (100 mL), 3-chloro-2-methyl-1-propene (20.1 mL, 203 mmol) and potassium carbonate (30.5, g.21 mmol) were added, and the mixture was stired at 80 °C for 3 hours. Ice water was poured into the reaction mixture, and the mixture was extracted twice with ethyl acetate. The combined organic layer was washed with water (twice) and brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure to obtain 1-methyl-2-([2-methyl-2-propeny]boxy]benzene (30.8g) as an oil. [0595] This was dissolved in N,N-diethylaniline (27 mL), and stirred at 210 °C for 5 hours under nitrogen atmosphere. Ethyl acetate was poured into the reaction mixture, and the mixture was washed with 1 M hydrochloric acid, 2 M hydrochloric acid and brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure to obtain 2-methyl=6-(2-methyl-2-prophylphenol (34.3 g) as an oil.

[0596] 1.20 g of this material was dissolved in ethanol (6 mL), conc. Hydrochloric acid (1.5 mL) was added to the mixture and the mixture was heated under reflux for 2 hours. Ethanol was distilled off under reduced pressure, ethyl acetate was poured into the residue, and the mixture was washed with water and brine, dried over magnesium sulfate, flittered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (nexane) to obtain the title compound (710 mg, yield: 59%).

¹H NMR (CDCl₃) δ 1.47 (6H, s), 2.19 (3H, s), 3.00 (2H, s), 6.69-6.76 (1H, m), 6.91-6.98 (2H, m).

REFERENCE EXAMPLE 29

2.3-Dihydro-2.2.7-trimethyl-5-benzofurancarboxaldehyde

[0597] To a solution of phosphorus oxychloride (0.78 ml., 8.38 mmol) in N,N-dimethylformamide (0.71 ml., 9.22 mmol), a solution of 2,3-dihydro-2,2,7-timethylbenzofuran (880 mg, 4.19 mmol) in N,N-dimethylformamide (2 ml.) was added, and the mixture was stirred at 80 °C for 15 hours. Los water was poured into the reaction mixture, and the mixture was neutralized with 5 M aqueous solution of sodium hydroxide, and extracted twice with ethyl acetate. The combined organic layer was washed with water (twice) and brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 30:1 followed by 10:1) to obtain the title compound (640 mg, yield: 80%).
An oil.

¹H NMR (CDCl₃) δ 1.51 (6H, s), 2.23 (3H, s), 3.05 (2H, s), 7.50 (1H, d, J = 0.8 Hz), 7.53 (1H, d, J = 0.8 Hz), 9.78 (1H, s).

45 REFERENCE EXAMPLE 30

2,3-Dihydro-2,2,7-trimethyl-5-(2-methyl-1-propenyl)benzofuran

[0598] The title compound was obtained from 2,3-dihydro-2,2,7-trimethyl-5-benzofurancarboxaldehyde by the method similar to that in Reference Example 5. Yield: 93%.

An oil.

¹H NMR (CDCl₂) δ 1.47 (6H, s), 1.85 (6H, s), 2.17 (3H, s), 2.99 (2H, s), 6.16 (1H, s), 6.80 (1H, s), 6.85 (1H, s).

REFERENCE EXAMPLE 31

4-Cyclohexylbenzaldehyde

[0599] To a mixture of phenylcyclohexane (24.9 g, 155 mmol) and aluminum chloride (20.9 g, 157 mmol) in nitrometh-

ane (200 mL), a solution of dichloromethylmethyl ether (18.0 g, 157 mmol) in nitromethane (50 mL) was added dropwise at 0 °C over 40 minutes, and the mixture was poured into ice water, and the organic material was extracted with diethyl ether. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain the mixture (27.8 g) containing the title compound. This was used in the next reaction without further purification.

BEFERENCE EXAMPLE 32

4-Cyclohexylbenzonitrile

5

15

20

40

55

[0600] A solution of 4-cyclohexylbenzaldehyde (13.4, g.71.1 mmol) and hydroxylamine hydrochloride (6.82 g, 99.1 mmol) in formic acid (200 mL) was heated under reflux for 2 hours. The reaction solution was cooled to room temperature, and then poured into ice water, and the solution was basified with potassium hydroxide. The organic material was extracted with hexane. The extract was washed with brine, dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a silica gel (hexane/ethyl acetate, 20:1 followed by 10:1) to obtain the title compound (5.75 g, yield: 44%).

¹H NMR (CDCl₂) δ 1,26-1.52 (4H, m), 1,74-1.89 (6H, m), 2,56 (1H, br), 7,27-7,39 (2H, m), 7,50-7,62 (2H, m),

REFERENCE EXAMPLE 33

4-Phenoxybenzaldehyde

28 [0601] A suspension of 4-fluorobenzatdehyde (30.5 g. 246 mmol), phenol (23.5 g. 249 mmol), and potassium carbonate (34.8 g. 252 mmol) in N,N-dimethylformamide (500 mL) was heated under reflux for 11.5 hours. The reaction solution was cooled to room temperature, and then the solvent was distilled off under reduced pressure. The resultant residue was combined with water, and the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain the mixture (48.1 g) containing the title compound. This was used in the next reaction without further purification.

An oil.

REFERENCE EXAMPLE 34

35 4-Phenoxybenzonitrile

[0602] The title compound was obtained from 4-phenoxybenzaldehyde by the method similar to that in Reference Example 32. Yield: 80%.

¹H NMR (CDCl₃) δ 6.97-7.19 (4H, m), 7.20-7.28 (1H, m), 7.37-7.46 (2H, m), 7.57-7.64 (2H, m).

REFERENCE EXAMPLE 35

4-(1-Piperidinyl)benzonitrile

49 [0603] A suspension of 4-fluorobenzontirile (6.0 g, 50 mmol), piperidine (4.0 g, 47 mmol), and potassium carbonate (5.5 g, 62 mmol) in N-reimethylformamile (100 mL) was stirred at 95 °C for 37 hours. The reaction solution was cooled to room temperature, and the solvent was distilled off under reduced pressure. The resultant residue was combined with water, and the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a silica gel (hexane/ethyl acetate, 20:1 followed by 5:1) to obtain the title compound (8.3 q, videt 90%).

¹H NMR (CDCl₂) δ 1.66 (6H, s), 3.33 (4H, s), 6.84 (2H, d, J = 8.8 Hz), 7.46 (2H, d, J = 8.8 Hz).

REFERENCE EXAMPLE 36

3,5-Bis(1,1-dimethylethyl)-4-hydroxybenzonitrile

[0604] The title compound was obtained from 3,5-bis(1,1-dimethylethyl)-4-hydroxybenzaldehyde by the method sim-

ilar to that in Reference Example 32. Yield: 45%.

¹H NMR (CDCl₂) δ 1.44 (18H, s), 5.74 (1H, s), 7.47 (2H, s).

REFERENCE EXAMPLE 37

5

15

25

30

25

4-Methyl-2-phenyl-1H-imidazole-5-carbonitrile

[0605] The title compound was obtained from 4-methyl-2-phenyl-1H-imidazole-5-carboxaldehyde by the method similar to that in Reference Example 32, Yield: 54%.

⁰ ¹H NMR (DMSO-d_e) δ 2.41 (3H, s), 3.19 (1H, s), 7.42-7.54 (3H, m), 7.92 (2H, dd, J = 7.8, 1.4 Hz).

REFERENCE EXAMPLE 38

4-(1-Methylethoxy)benzonitrile

[0806] A solution of 2-propanel (4.4 g, 73 mmol) and sodium hydride (60% in oil, 2.9 g, 73 mmol) in N.N-dimethylformarnide (100 m.)) was stirred at 0 °C for 10 minutes. A solution of 4-fluorobenzonitrile (7.1 g, 59 mmol) in N.Ndimethylformarnide (25 m.) was added to the reaction mixture at 0 °C, and stirred at the same temperature for 3 hours, and at room temperature further for 15.5 hours. The reaction solution was poured into water, and extracted with ethyl sectate. The extract was washed with brine, circle dover magnesistim sulfate, and then the solvent was distilled of under reduced pressure. The resultant residue was crystalized from hexane to obtain the title compound (7.4 g, yield: 85%). *IN NM (CDC), § 1.3 (8 H.), 4 = 8.2 Hz), 4.5 e2.4 (4 H.), H.), 9.1 (2H.), 4. = 8.8 Hz), 7.5 (7 H.), 4. = 8.8 Hz).

REFERENCE EXAMPLE 39

4-Cyanobenzyl acetate

[0607] A mixture of 4-cyanobenzylbromide (12.6 g, 64 rimol)) and sodium acetate (10.6 g, 129 mmol) in N,N-dimerthylformamide (50 mL) was stirred at 80 °C for 25 hours. The solvent was distilled off under reduced pressure, the resultant residue was combined with water, and the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a silica gel (hexane/ethyl acetate, 20:1 followed by 2: 1) to obtain the title compound (8.9 g, yleid: 80%).

¹H NMR (CDCl₃) δ 2.14 (3H, s), 5.16 (2H, s), 7.47 (2H, d, J = 8.4 Hz), 7.68 (2H, d, J = 8.4 Hz).

REFERENCE EXAMPLE 40

4-[2-(4-Methoxyphenyl)ethoxy]benzonitrile

10 [0608] The title compound was obtained from 4-methoxyphenethyl alcohol and 4-fluorobenzonitrile by the method similar to that in Reference Example 38. Yield 93%.

 $^{1} \text{H NMR (CDCl}_3) \ \delta \ 3.06 \ (2\text{H}, \ t, \ J=7.0 \ \text{Hz}), \ 3.80 \ (3\text{H}, \ s), \ 4.17 \ (2\text{H}, \ t, \ J=7.0 \ \text{Hz}), \ 6.87 \ (2\text{H}, \ t, \ J=8.7 \ \text{Hz}), \ 6.93 \ (2\text{H}, \ d, \ J=9.0 \ \text{Hz}), \ 7.19 \ (2\text{H}, \ d, \ J=8.7 \ \text{Hz}), \ 7.57 \ (2\text{H}, \ d, \ J=9.0 \ \text{Hz}).$

45 REFERENCE EXAMPLE 41

2,3-Dihydro-7-methoxy-5-benzofurancarbonitrile

[0609] The title compound was obtained from 7-methoxy-2,3-dihydro-5-benzofurancarboxaldehyde by the method similar to that in Reference Example 32. Yield 77%.

¹H NMR (CDCI₃) δ 3.28 (2H, t, J = 8.8 Hz), 3.89 (3H, s), 4.73 (2H, t, J = 8.8 Hz), 7.00 (1H, s), 7.16 (1H, s).

REFERENCE EXAMPLE 42

4-[(1,3-Dihydro-1,3-dioxo-2H-isoindol-2-yl)methyl]benzonitrile

[0610] A mixture of 4-cyanobenzylbromide (4.0 g, 20 mmol) and potassium phthalimide (3.8 g, 21 mmol) in N,N-dimethylformamide (40 mL) was stirred at room temperature for 20 hours. The reaction solution was concentrated

under reduced pressure, the resultant residue was combined with water, and the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain the mixture (4.6 g) containing the title compound. This was used in the next reaction without further purification.

REFERENCE EXAMPLE 43

4-(Aminomethyl)benzonitrile

10 [0611] A solution of 4-[(1,3-dihydro-1,3-dioxo-2+l-isoindol-2-yl)methyl|benzonitrile (4.6 g, 18 mmol) and hydrazine monohydrate (3.9 g, 180 mmol) in ethanol (30 mL) was heated under reflux for 33 hours. The reaction solution was cooled to room temperature, and concentrated under reduced pressure. The residue was combined with water, basfiled with potassium hydroxide, and then extracted with diethyl ether. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain the title compound (1.9 g, yield: 81%).

An oil.

5

20

25

45

50

¹H NMR (CDCl₂) δ 3.96 (2H, s), 7.45 (2H, d, J = 8.0 Hz), 7.63 (2H, d, J = 8.0 Hz).

REFERENCE EXAMPLE 44

N-f(4-cvanophenyl]methyl]methanesulfonamide

[0612] To a solution of 4-(aminomethyl)benzonitrile (1.9 g, 1.4 mmol) and triethylamine (3.0 mL, 22 mmol) in tetrallydrofuran (30 mL), methanesulfonyl chloride (1.1 mL, 14 mmol) was added dropwise at 0 °C. The reaction solution was stirred at room temperature for 9 hours. The reaction solution was poured into water, and the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled under reduced pressure to obtain crude crystals. The resultant crude crystals were washed with hexanediethylether to obtain the title compound (2.0 g, yield: 68%).

 $^{1}\text{H NMR (CDCl}_{3})\,\delta\,2.94\,(3\text{H},s),\,4.40\,(2\text{H},d,J=6.6\,\text{Hz}),\,5.01\,(1\text{H},br),\,7.50\,(2\text{H},d,J=8.6\,\text{Hz}),\,7.67\,(2\text{H},d,J=8.6\,\text{Hz}).$

REFERENCE EXAMPLE 45

6-Methoxy-3-pyridinecarbonitrile

[0613] A solution of sodium methoxide (2.42 g, 44.8 mmol) and 6-chloronicotinonitrile (3.04 g, 21.9 mmol) in N.N-dimethylformamide (50 mL) was stirred at room temperature for 10 hours. The reaction solution was poured into water, and the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a silice age (hexane/ethyl acetate, 2-11 to obtain the title compound (2.98 n, yield; 78%).

¹H NMR (CDCl₃) δ 4.00 (3H, s), 6.83 (1H, dd, J = 8.8, 0.8 Hz), 7.78 (1H, dd, J = 8.6, 2.4 Hz), 8.50 (1H, d, J = 1.4 Hz).

REFERENCE EXAMPLE 46

3-(1-Methylethoxy)benzonitrile

[0614] The title compound was objected from 2-propanol and 3-fluorobenzonitrile by the method similar to that in Reference Example 38. Yield: 78%.

¹H NMR (CDCl₃) δ 1.35 (6H, d, J = 6.0 Hz), 4.51-4.63 (1H, m), 7.07-7.13 (2H, m), 7.21 (1H, dt, J = 7.6, 1.2 Hz), 7.36 (1H, td, J = 7.6, 1.4 Hz).

REFERENCE EXAMPLE 47

4-Pyridinecarboxamide 1-oxide

[0615] A solution of isonicotinamide (52 g, 430 mmol) and a 30% aqueous solution of hydrogen peroxide (65 mL, 570 mmol) in acetic acid (170 mL) was stirred at 80 °C for 12 hours. The reaction solution was cooled to room temperature, precipitated crystals were recovered by filtration, and washed with water and hexane to obtain the title compound (30 g, yield: 50%).

¹H NMR (DMSO-d₆) δ 7.66 (1H, br), 7.82-7.87 (2H, m), 8.17 (1H, br), 8.26-8.33 (2H, m).

REFERENCE EXAMPLE 48

4-Methylquinoline 1-oxide

[0616] The title compound was obtained from 4-methylquinoline by the method similar to that in Reference Example 47. Yield: 75%.

¹H NMR (CDCl₃) δ 2.67 (3H, s), 7.14 (1H, d, J = 6.2 Hz), 7.65-7.84 (2H, m), 7.96-8.01 (1H, m), 8 45 (1H, d, J = 6.4 Hz), 8.79-8.84 (1H, m).

REFERENCE EXAMPLE 49

3-Methylquinoline 1-oxide

15

25

45

[0617] The title compound was obtained from 3-methylquinoline by the method similar to that in Reference Example 47, Yield: 91%.

¹H NMR (CDCl₃) δ 2.46 (3H, s), 7.53-7.81 (4H, m), 8.43 (1H. s). 8.69 (1H, d, J = 8.8 Hz).

20 REFERENCE EXAMPLE 50.

7-Methylquinoline 1-oxide

[0618] The title compound was obtained from 7-methylquinoline by the method similar to that in Reference Example From Yelet: 48%.

19 47, Yield: 48%.

19 NMR (CDCL) 5 2.61 (3H. s), 7.20-7.27 (1H. m), 7.49-7.51 (1H. m), 7.69-7.79 (2H. m), 8.50-8.56 (2H. m).

REFERENCE EXAMPLE 51

30 4-Pvridinecarboxvlic acid ethyl ester 1-oxide

[0619] The title compound was obtained from isonicotinic acid ethyl ester by the method similar to that in Reference Example 47. Yield: 80%.

¹H NMR (CDCl₃) δ 1.39 (3H, t, J = 7.0 Hz), 4.42 (2H, q, J = 7.0 Hz), 7.92-7.97 (2H, m), 8.33-8.39 (2H, m).

REFERENCE EXAMPLE 52

6-Methylquinoline 1-oxide

40 [0620] The title compound was obtained from 6-methylquinoline by the method similar to that in Reference Example 47. Yield: 87%.

 $^{1}\text{H NMR (CDCl}_{3})\,\delta\,2.55\,(3\text{H, s}), \\ 7.22-7.29\,(1\text{H, m}), \\ 7.56-7.68\,(3\text{H, m}), \\ 8.47\,(1\text{H, d}, J=6.0\,\text{Hz}), \\ 8.64\,(1\text{H, d}, J=8.8\,\text{Hz}).$

REFERENCE EXAMPLE 53

7-Methoxy-2-benzofurancarboxylic acid

[0621] A solution of o-vanillin (51 g. 340 mmol), bromomalonic acid diethyl ester (73 g. 310 mmol), and potassium carbonate (82 g. 590 mmol) in 2-butanone (200 mL) was heated under reflux (or 3.5 hours. The reaction solution was cooled to room temperature, and then the solvent was distilled off under reduced pressure. The resultant residue was combined with water, and the organic material was extracted with diethyl ether. The extract was washed with brine, dired over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The solution of the resultant residue and potassium hydroxide (43 g. 740 mmol) in ethanol (400 mL) was heated under reflux for 1 hour. The reaction solution was cooled to room temperature, poured into water, and then acidified by the addition of 8 M hydrochloric acid. The organic material was extracted with ethyl acetate, the extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was crystallized from discopropyl tehre to obtain the tittle compound (28 g. kyleit; 45%).

¹H NMR (DMSO- d_{c}) δ 3.97 (3H, s), 5.71 (1H, s), 7.99 (1H, dd, J = 7.4, 1.5 Hz), 7.27 (1H, t, J = 7.8 Hz), 7.33 (1H, dd,

J = 7.8, 1.5 Hz), 7.65 (1H, s).

REFERENCE EXAMPLE 54

7-Methoxybenzofuran

[0632] A suspension of 7-methoxy-2-benzofurancerboxylic acid (23 g. 120 mmol) and copper (powder, 5.8 g. 9.2 mmol) in quolinio (70 mL) was heated under reflux for 12 hours. The reaction solution was cooled to room temperature. The insolubies were filtered off, filtrate was poured into water, and acidified by the addition of 2 M hydrochloric acid. The organic material was extracted with ethyl acetate, the extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a silica gel (hexane/ethyl acetate, 10:1) to obtain the title compound (8.0 g, yield 46%).

¹H NMR (CDCl₃) δ 4.02 (3H, s), 6.77 (1H, d, J = 2.2 Hz), 6.81 (1H, dd, J = 6.8, 2.2 Hz), 7.12-7.22 (2H, m), 7.63 (1H, d, J = 2.2 Hz).

REFERENCE EXAMPLE 55

15

25

20

25

2.3-Dihydro-7-methoxybenzofuran

[0623] To a solution of 7-methoxybenzofuran (8.0g, 54 mmol) in acetic acid (55 mL), 10% palladium on carbon (3.9 , 49% hydrate) was added, and the mixture was stirred at room temperature for 8 hous under hydrogen atmosphere. The reaction solution was filtered to remove the catalyst, and then the filtrate was concentrated under reduced pressure. The resultant residue was neutralized by the addition of 8 M aqueous solution of sodium hydroxide, and the organic material was extracted with fieldity either. The extract was washed with brind, circle over magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain the title compound (7.2 g, yield: 90%).

¹H NMR (CDCl₃) δ 3.17 (2H, t, J = 8.6 Hz), 3.82 (3H, s), 4.56 (2H, t, J = 8.6 Hz), 6.65-6.72 (1H, m), 6.72-6.78 (2H, m).

REFERENCE EXAMPLE 56

2.3-Dihydro-7-methoxy-5-benzofurancarboxaldehyde

[0824] To N.N-dimethylformamide (8.0 mL), phosphorus oxychioride (8.0 mL, 86 mmol) was added dropwise at 0 to "C. A solution of 2.3 dihydro-rehethoxybenzoluran (8.7 g, 44 mmol) in N.N-dimethylformamide (26 mL) was added to be reaction mixture and the mixture was stirred at 80 °C for 1 hour. The reaction solution was cooled to room temperature, and then poured into water. The solution was basilised by the addition of 8 M aqueous solution of socioum hydroxide, and then extracted with diethyl ether. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a silica gelf (hexane/ethyl acctate, 10.1 followed by 6.2) to obtain the title compound (3.6 g, yield: 44%).

40 1H NMR (CDCl₃) 8 3.32 (2H, t, J = 8.8 Hz), 3.94 (3H, s), 4.77 (2H, t, J = 8.8 Hz), 7.32 (1H, d, J = 1.2 Hz), 7.38 (1H, d, J = 1.2 Hz), 9.82 (1H, s).

REFERENCE EXAMPLE 57

45 2,3-Dihydro-7-methoxy-5-(2-methyl-1-propenyl)benzofuran

[0825] To a suspension of 2.3-dihydro-7-methoxy-5-benzofurancarboxaidehyde (3.5 g, 20 mmol) and isopropyliriphenylphosphonium iodide (10 g, 24 mmol) in tetrahydrofuran (60 mL), sodium hydride (60% in oil, 1.1 g, 28 mmol) was added at 0 °C, and the mixture was heated under reflux for 2.5 hours. The reaction solution was cooled to room temperature, and poured into water. The organic material was extracted with ethyl acetate, the extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a silica gel (hexanofetryl acetate, 50.1 followed by 10.1) to obtain the title compound (2.0 g, yield: 50%).

⁵ ¹H NMR (CDCl₃) § 1.86-1.88 (6H, m), 3.22 (2H, t, J = 8.6 Hz), 3.86 (3H, s), 4.62 (2H, t, J = 8.6 Hz), 6.20 (1H, br s), 6.61 (1H, s), 6.71 (1H, s).

REFERENCE EXAMPLE 58

3-lodo-5-methoxy-4-[(2-methyl-2-propenyl)oxy]benzaldehyde

5 [0626] A suspension of 5-iodovanillin (20 q. 72 mmol), 3-chloro-2-methyl-1-propene (13 q. 140 mmol), and potassium carbonate (20 g. 140 mmol) in N.N-dimethylformamide (100 mL) was stirred at 80 °C for 6 hours. The reaction solution was cooled to room temperature, and then the solvent was distilled off under reduced pressure. The residue was combined with water, and the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a silica gel (hexane/ethyl acetate, 10:1 followed by 5:1) to obtain the title compound (22 g, yield: 93%).

15

20

55

¹H NMR (CDCl₃) δ 1.94 (3H, s), 3.91 (3H, s), 4.54 (2H, s), 5.01 (1H, s), 5.17 (1H, s), 7.41 (1H, d, J = 1.8 Hz), 7.87 (1H, d, J = 1.8 Hz), 9.83 (1H, s).

REFERENCE EXAMPLE 59

2.3-Dihydro-7-methoxy-3.3-dimethyl-5-benzofurancarboxaldehyde

[0627] A suspension of 3-iodo-5-methoxy-4-[(2-methyl-2-propenyl)oxy]benzaldehyde (22 g, 66 mmol), palladium(II) acetate (0.60 g, 27 mmol), potassium carbonate (9.0 g, 65 mmol), sodium formate (4.3 g, 63 mmol), and tetrabutylammonium bromide (18 g, 55 mmol) in N,N-dimethylformamide (300 mL) was stirred at 100 °C for 2.5 hours. The reaction solution was cooled to room temperature, and then the solvent was distilled off under reduced pressure. The residue was combined with water, and the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a silica gel (hexane/ethyl acetate, 10:1 followed by 2:1) to obtain the title compound (7.7 g, yield: 57%).

An oil. ¹H NMR (CDC_{i3}) δ 1.40 (6H, s), 3.95 (3H, s), 4.43 (2H, s), 7.31-7.32 (2H, m), 9.84 (1H, s).

REFERENCE EXAMPLE 60

2.3-Dihydro-7-methoxy-3.3-dimethyl-5-(2-methyl-1-propenyl)benzofuran

25 [0628] The title compound was obtained from 2.3-dihydro-7-methoxy-3.3-dimethyl-5-benzofurancarboxaldehyde and isopropyltriphenylphosphonium iodide by the method similar to that in Reference Example 57, Yield 59%. An oil

¹H NMR (CDCl₃) δ 1.33 (6H, s), 1.87-1.89 (6H, m), 3.87 (3H, s), 4.29 (2H, s), 6.23 (1H, br s), 6.61 (1H, s), 6.62 (1H, s).

REFERENCE EXAMPLE 61

2.3-Dihydro-7-methoxy-2.2-dimethyl-5-benzofuranmethanol

[0629] A solution of 2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofurancarboxaldehyde (7.5 g, 36 mmol) and sodium 45 borohydride (0.72 g, 19 mmol) in methanol (60 mL) was stirred at 0 °C for 3 hours. The reaction solution was concentrated under reduced pressure, and the resultant residue was combined with water. The solution was acidified by the addition of 1 M hydrochloric acid, and then the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a silica gel (hexane/ethyl acetate, 5:1 followed by 2:1) to obtain the title compound (5.8 g, yield:77%).

¹H NMR (CDCl₂) δ 1.50 (6H, s), 2.20 (1H, br), 3.01 (2H, s), 3.86 (3H, s), 4.57 (2H, s), 6.76 (2H, s).

REFERENCE EXAMPLE 62

[(2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)methyl]triphenylphosphonium bromide

[0630] To a solution of 2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranmethanol (5.8 g, 28 mmol) in diethyl ether

(90 m.l.), phosphorus tribromide (0.90 m.l., 9.5 mmol) was added dropwise at 0 °C. The reaction solution was stirred at 0 °C for 30 minutes, and then pured into water. The organic layer was washed with brine, dried over magnesian sulfate, and then the solvent was distilled off under reduced pressure. The solution of the resultant residue (7.2 g) and triphenylphosphine (7.5 g, 29 mmol) in toluene (70 mL) was stirred at 80 °C for 10 hours. The reaction solution was cooled to room temperature, and precipitated crystals were recovered by filtration and washed with diethyl ether to obtain the tilt compound (1.2 or yield; 84%).

 1 H NMR (CDCl₃) 3 1.45 (6H, s), 2.83 (2H, s), 3.49 (3H, s), 5.33 (2H, d, J = 13.6 Hz), 6.50 (1H, s), 6.58 (1H, s), 7.59-7.81 (15H, m).

Ø BEFERENCE EXAMPLE 63

5

5-(2-Ethyl-1-butenyl)-2,3-dihydro-7-methoxy-2,2-dimethylbenzofuran

[0631] To a suspension of [(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)methyllriphenylphosphonium bromide (5.8 g, 10 mmol) in tetrahydrofuran (50 mL), potassium tert-butoxide (1.3 g, 11 mmol) was added at 0 °C. 3-pentanone (2,2 mL, 21 mmol) was added to the reaction mixture and the mixture was heated under reflux for 20 hours.
The reaction solution was cooled to room temperature, and then poured into water. The solution was acidified by the
addition of 1 M hydrochiora cold, and then the organic material was extracted with ethyl acetate. The extract was
washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The
resultant residue was purified by a column chromatography on a silica gel (hexane/ethyl acetate, 50:1 followed by 5:
1) to obtain the title compound (2.4 g, yield: 87%).

An oil.

14 NMR (CDCi₃) \$ 1.09 (6H, td, J = 7.6, 1.8 Hz), 1.51 (6H, s), 2.12-2.34 (4H, m), 3.02 (2H, s), 3.85 (3H, s), 6.16 (1H, s), 6.61 (1H, s), 6.64 (1H, s).

25 REFERENCE EXAMPLE 64

2.3-Dihvdro-5-benzofurancarbonitrile

30 [0832] A solution of 2,3-dihydro-5-benzofurancarboxaldehyde (6,00 g, 33.7 mmnl) and hydroxylamine hydrochloride (3.52 g, 50.8 mmol) in formic acid (70 mL) was heated under reflux for 2 hours. The reaction mixture was poured into ice water, and neutralized with potassium hydroxide to recover precipitated crystals. The resultant crystals were dissolved in ethyl acetate, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was recrystallized from ethyl acetate-hexane to obtain the title compound (3.03 g, yield: 62%).
35 Melting opinit: 69-70 °C.

¹H NMR (CDC₁₂) δ 3.26 (2H, d, J = 8.8 Hz), 4.67 (2H, d, J = 8.8 Hz), 6.82 (1H, dd, J = 8.8, 1.0 Hz), 7.42-7.46 (2H, m).

REFERENCE EXAMPLE 65

40 2.3-Dihydro-7-methoxy-2.2-dimethyl-5-benzofurancarbonitrile

[0633] A solution of 2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofurancarboxaldehyde (8.40 g, 40.7 mmol) and hydroxylamine hydrochloride (4.25 g, 61.1 mmol) in formic acid (100 mL) was heated under reflux for 3 hours. The reaction mixture was poured into be water, neutralized with potassium hydroxide to recover precipitated crystals. The resultant crystals were dissolved in ethyl acetate, dired over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 5:1) to obtain the title compound (6.73 g, yield: 81%).

Melting point: 73-74 °C

¹H NMR (CDC_b) δ 1.54 (6H, s), 3.07 (2H, s), 3.89 (3H, s), 7.00 (1H, br s), 7.12 (1H, br s),

REFERENCE EXAMPLE 66

45

50

4-(Phenylthio)benzonitrile

6 [0834] To a solution of 4-fluorobenzonitrile (5.00 g, 41.3 mmol) in N,N-dimethylformamide (100 mL), thiophenol (4.55 g, 41.3 mmol) and potassium carbonate (5.71 g, 41.3 mmol) were added, and the mixture was stirred at 150 °C for 2.5 days under nitrogen almosphere. The reaction solution was cooled to room temperature, the reaction solvent was concentrated and distilled off under reduced pressure, and the residue was poured into water. The organic material

was extracted with ethyl acetate, the extract was washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromategraphy on a silica gel (hexane followed by hexane/ethyl acetate, 20:1) to obtain the title compound (6.03 g, yield: 69%).

5 ¹H NMR (CDCl₂) δ 7.15-7.20 (2H, m), 7.42-7.55 (7H, m).

REFERENCE EXAMPLE 67

4-(1-Methylethyl)benzonitrile

10

20

25

[0635] The title compound was obtained employing 4-(1-methylethyl)benzaldehyde by the method similar to that in Reference Example 65. Yield: 77%.
An oil.

 1 H NMR (CDCl₃) δ 1.26 (6H, d, J = 7.0 Hz), 2.89-3.03 (1H, m), 7.00 (2H, ddd, J = 8.4, 2.0, 1.6 Hz), 7.12 (2H, ddd, J = 8.4, 2.0, 1.6 Hz).

BEFERENCE EXAMPLE 68

5-Methyl-2-thiophenecarbonitrile

[0636] The title compound was obtained employing 5-methyl-2-thiophenecarboxaldehyde by the method similar to that in Reference Example 65. Yield: 60%.

¹H NMR (CDC_{Ia}) δ 2.46 (3H, s), 6.95 (1H, d, J = 5.0 Hz), 7.47 (1H, d, J = 5.0 Hz).

REFERENCE EXAMPLE 69

4-(Trifluoromethoxy)benzonitrile

30 [0637] The title compound was obtained employing 4-(trifluoromethoxy)benzaldehyde by the method similar to that in Reference Example 65. Yield: 71%.

¹H NMR (CDC_{la}) δ 7.33 (2H, d, J = 8.6 Hz), 7.76 (2H, d, J = 8.6 Hz).

35 REFERENCE EXAMPLE 70

3.5-Dichloro-4-pyridinecarboxaldehyde

[0638] To a solution of disopropylamine (24 9 mL, 177 mmol) in tetrahydrofuran (150 mL), 1.6 M solution of n-butyllithium/hexane (116 mL, 188 mmol) was added dropwise at -78 °C over 20 minutes under nitrogen atmosphere, and then a solution of 3,5-dichloropyridine (25.0 g, 169 mmol) in tetrahydrofuran (100 mL) was added dropwise over 15 minutes, and the mixture was stirred further for 20 minutes. N,N-dimethylformamide (18.3 mL, 237 mmol) was added to the mixture, and the mixture was stirred at room temperature for 18 hours. The reaction solution was poured into a solution of conc. hydrochloric acid (60 mL) in water (400 mL), and stirred at room temperature for 24 hours. The aqueous layer was separated, and the organic material was extracted with diethyl ether. The extract was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 10.1 followed by 5.1) to obtain the title compound (7.96 g, yield: 27%).

¹H NMR (CDCI₆) δ 8.64 (2H, s), 10.46 (1H, s).

REFERENCE EXAMPLE 71

3.5-Dichloro-4-pyridinecarbonitrile

55 [0639] The title compound was obtained employing 3,5-dichloro-4-pyridinecarboxaldehyde by the method similar to that in Reference Example 64. Yield: 86%.
Meltin opint: 114-115 contin 114-115

¹H NMR (CDCl₃) δ 8.69 (2H, s).

REFERENCE EXAMPLE 72

3-Methyl-2-thiophenecarbonitrile

5 [0640] The title compound was obtained employing 3-methyl-2-thiophenecarboxaldehyde by the method similar to that in Reference Example 65. Yield: 59%.

¹H NMR (CDC_b) δ 2.55 (3H, d, J = 1.0 Hz), 6.78 (1H, dd, J = 4.0, 1.0 Hz), 7.44 (1H, d, J = 4.0 Hz),

REFERENCE EXAMPLE 73

4-(Methylsulfinyl)benzonitrile

10

[0641] To a mixture solution of 4-(methythio)benzonitrile (5.00 g, 33.5 mmol) in methanol (200 mL), tetrahydrofuran (50 mL) and water (50 mL), sodium metaperiodate (7.89 g, 36.9 mmol) was added, and the mixture was heated under reflux for 2 hours. The reaction solution was cooled to room temperature, and then precipitated crystals were recovered by filtration, washed with water, and air-dried to obtain the title compound (4.39 g, yield: 79%). Melting onitin 87:49 °C.

¹H NMR (CDC_b) δ 2.81 (3H, s), 7.89 (2H, dd, J = 8.4, 2.0 Hz), 8.07 (2H, dd, J = 8.4, 2.0 Hz),

20 REFERENCE EXAMPLE 74

4-(Methylsulfonyl)benzonitrile

[0642] To a solution of 4-(methythio)benzonitrile (5.00 g, 33.5 mmol) in dichloromethane (150 mL), m-chloroperbenzolc acid (15.0 g, 73.7 mmol) was added, and the mixture was stirred at 0 °C for 30 minutes, and at room temperature further for 5 hours. The reaction solution was poured into 2 M aqueous solution of sodium hydroxide, and extracted with dichloromethane. The extract was washed with a mixture aqueous solution of sodium hydroxide, sodium thiosultate, and sodium iodide, and brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was recrystalized from ethyl acetate-hoxane to obtain the title compound (4.53 g, yield: 75%).

30 Melting point: 142-144 °C

¹H NMR (CDCI₂) δ 3.10 (3H, s), 7.90 (2H, d, J = 8.8 Hz), 8.10 (2H, d, J = 8.8 Hz).

REFERENCE EXAMPLE 75

35 3.4.5-Trimethoxybenzonitrile

[0643] The title compound was obtained employing 3,4,5-trimethoxybenzaldehyde by the method similar to that in Reference Example 65. Yield: 60%.

Melting point: 93-94 °C

¹H NMR (CDCI₆) δ 3.89 (6H, s), 3.91 (3H, s), 6.87 (2H, s).

REFERENCE EXAMPLE 76

2,2'-Bipyridyl 1-oxide

45

55

[0644] To a solution of 2.2-bipyridy (25.0 g, 160 mmol) in chloroform (400 mL), m-chloroperbenzoic said (38.4 g, 160 mmol) was added with cooling in lee, and the mixture was stirred at room temperature for 12 hours. The reaction solution was washed with a 5% aqueous solution of sodium carbonate, and the aqueous layer was extracted with dichloromethane. The combined organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residuce was subjected to a basic column chromatography on a silica gel (hexane/ethyl acetate 1:1 followed by ethyl acetate), and the precipitated crystals were washed with diethyl ether to obtain the title compound (16.1 g, yield: 58%).

Melting point: 58-60 °C

¹H NMR (CDCl₃) δ 7.45-7.52 (3H, m), 7.89-7.98 (1H, m), 8.09-8.14 (1H, m), 8.35-8.39 (1H, m), 8.73-8.78 (2H, m).

REFERENCE EXAMPLE 77

1-[2,2'-Bipyridin]-6-yl-1,6-dihydro-6-oxo-3-pyridinecarboxamide

5 [0845] To a solution of 6-chloronicotinamide (4.70 g. 30.0 mmol) and 2,2* bipyridy1 1-oxide (10.3 g. 6.0.0 mmol) in xylene (90 mL) and acetic acid (18 mL), a 25% solution of hydrogen bromide/acetic acid (12 mL) was added, and the mixture was heated under reflux for 10 hours. The reaction mixture was poured into an aqueous solution of sodium hydroxide, and precipitated crystals were recovered, and air-dried to obtain the title compound (9.20 g, yield: 36%). HNMR (50Cb) à 6.6 of HL, J. = 10.0 Hz), 7.39.7-66 (34 mL), 7.83-8.0 (34 mL), 8.14-8.6 (34 mL), 8.18-8.5 (34 mL), 8.14-8.5 (34 mL), 8.18-8.5 (34 mL), 8.18-8.5

REFERENCE EXAMPLE 78

10

25

20

25

45

1-[2,2'-Bipyridin]-6-yl-1,6-dihydro-6-oxo-3-pyridinecarbonitrile

15 [0646] To a solution of NN-dimethyflormamide (2.04 mL, 26.4 mmol) in acetonitrie (30 mL), oxalyl chloride (2.09 mL, 24.0 mmol) was added drowise with cooling on ice, and the mixture was stirred at the same temperature for 15 minutes. 1-(2.2-bipyridin)-6-yl-1,6-dihydro-6-oxo-3-pyridinecarboxamide (3.50 g, 12.0 mmol) was added to the mixture, triethylamine (7.36 mL, 52.8 mmol) was added dropwise to the mixture with cooling in ice, and then the mixture was stirred at room temperature for 24 hours. The reaction solvent was concentrated and distilled off under reduced pressure, and the residue was poured into water. The practipitated crystals were recovered, and dissolved in chloroform. This was dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was washed with diethyl ether to obtain the title compound (2.06 q, yleid: 65%).

1H NMR (CDCJ₃) 8 689 (1H, d, J = 9.6 Hz), 751 (1H, ddd, J = 7.4, 4.8, 1.0 Hz), 7.82 (1H, dd, J = 9.6, 2.2 Hz), 7.83 (1H, dd, J = 7.6 Hz), 7.99 (1H, td, J = 7.6, 1.8 Hz), 8.19 (1H, t, J = 7.6 Hz), 8.42 (1H, d, J = 7.6 Hz), 8.49 (1H, d, J = 7.6 Hz), 8.74 (1H, dd, J = 4.8, 0.6 Hz), 8.97 (1H, d, J = 2.2 Hz).

REFERENCE EXAMPLE 79

1,6-Dihydro-1-(8-methyl-2-quinolinyl)-6-oxo-3-pyridinecarbonitrile

[0847] To a solution of 5-chloronicotinamide (5.90 g. 37.7 mmol) and 8-methylquinoline 1-oxide (9.00 g. 56.5 mmol) in xylene (90 mL) and acetic acid (18 mL), a 25% solution of hydrogen bromide/acetic acid (12 mL) was added, and the mixture was heated under reflux for 6 hours. The reaction mixture was poured into an aqueous solution of sodium hydroxide, and a precipitated crystals were recovered, and air-dried to obtain 1,6-dihydro-1-(8-methyl-2-quinolinyl)-6-xxx-3-vn/dinecarboxamide (9.03 d. v)deit 86%).

[0848] To a solution of NN-dimethyltormamide (7.48 mL, 96.6 mmol) in acetonitria (200 mL), oxally chloride was then added dropwise with cooling in ice, and the mixture was stirred at the same temperature for 15 minutes. 1,6-di-hydro-1-(8-methyl-2-quinoyly)-6-oxo-3-pyridinecarboxamide (9.00 g, 32.2 mmol) was added to the mixture, and then triathylamine (26.9 mL, 193 mmol) was added dropwise to the mixture with cooling in ice, and the mixture was stirred at room temperature for 20 hours. The reaction solvent was concentrated and distilled off under reduced pressure, and the residue was poured into an aqueous solution of sodium hydroxide. The organic material was extracted with ethyl acetate and chloroform, washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hoxana/ethyl acetate, 2-1), and precipitated crystals were washed with diethyl ether to obtain the title compound (2.04 g, yield: 25%). Melting point 26-92-71 °C

 ${}^{1}H\ NM\ddot{R}\ (CDC_{13})\ \delta\ 2.73\ (3H,\,s),\ 6.70\ (1H,\,dd,\,J=9.6,\,0.6\ Hz),\ 7.82\ (1H,\,dd,\,J=7.6,\,7.0\ Hz),\ 7.73\ (1H,\,d,\,J=7.0\ Hz),\ 7.84\ (1H,\,d,\,J=8.8\ Hz),\ 7.84\ (1H,\,dd,\,J=9.6,\,2.6\ Hz),\ 7.93\ (1H,\,d,\,J=7.6\ Hz),\ 8.55\ (1H,\,d,\,J=8.8\ Hz),\ 8.93\ (1H,\,d,\,J=2.6\ Hz),\ 8.93\ (1H,\,d,\,J=2.6\ Hz),\ 8.93\ (1H,\,d,\,J=3.6\ Hz),\ 8.93\ ($

90 REFERENCE EXAMPLE 80

1,6-Dihydro-1-(4-methyl-2-pyridinyl)-6-oxo-3-pyridinecarboxamide

[0649] To a solution of 6-chloronicotinamide (6.88 g. 42.7 mmol) and 4-methylpyrdine 1-oxide (9.32 g. 85.4 mmol) in xylene (120 mL) and acetic acid (25 mL), a 25% solution of hydrogen bromide/acetic acid (15 mL) was added, and the mixture was heated under reflux for 3 hours. The reaction mixture was poured into an aqueous solution of sodium hydroxide, and precipitated crystals were recovered by filtration, and air-dried to obtain the title compound (5.14 g. yield: 55%).

¹H NMR (CDCl₃) δ 2.42 (3H, s), 6.55 (1H, d, J = 9.4 Hz), 7.33 (1H, br s), 7.36-7.40 (1H, m), 7.61-7.62 (1H, m), 7.86 (1H, br s), 7.96 (1H, dd, J = 9.4, 2.6 Hz), 8.49 (1H, d, J = 2.6 Hz), 8.51 (1H, s).

REFERENCE EXAMPLE 81

5

15

20

25

25

50

1.6-Dihydro-1-(4-methyl-2-pyridinyl)-6-oxo-3-pyridinecarbonitrile

[0650] To a solution of N,N-dimothylformamide (2.30 mL, 29.7 mmol) in acotonitrile (70 mL), oxalyl chloride (2.38 mL, 27.0 mmol) was added dropwise with cooling in ice, and the mixture was stirred at the same temperature for 15 minutes. 1.6-dihydro-1-(4-methyl-2-pyridinyl)-8-oxo-3-pyridinecarboxamide (2.88 g. 13.5 mmol) was added to the mixture, trichtylyamine (4.14 mL, 29.7 mmol) was added dropwise to the mixture with cooling in ice, and then the mixture was stirred at room temperature for 12 hours. The reaction solvent was concentrated and dissilled off under reduced pressure, and the residue was poured into an aqueous solution of sodium hydroxide. The organic material was extracted with othyl acotale, washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic sitilica gel (hexane/ethyl acotate), 2.1 followed by 1:1); and precipitated crystals were washed with diethyl either to obtain the title compound (2.02 g. yield: 71%).

¹H NMR (CDCl₃) δ 2.47 (3H, s), 6.68 (1H, dd, J = 9.4, 0.8 Hz), 7.20-7.24 (1H, m). 7.45 (1H, dd, J = 9.4, 2.6 Hz), 7.71-7.73 (1H, m). 8.43 (1H, d, J = 5.0 Hz), 8.46 (1H, d, J = 0.8 Hz).

REFERENCE EXAMPLE 82

2-Chlorocyclopentanone

[0551] To a solution of cyclopentanone (84.1 g, 1.00 mol) and N-chlorosuccinimide (134 g, 1.00 mol) in carbon tetrachloride (250 mL), 2,2-azobis(sobutyronltrile) (1.64 g, 0.10mol) was added, and the mixture was stirred under a light irradiation for 6 hours. The reaction solution was filtered, and concentrated under reduced pressure. The residue was distilled under reduced pressure to obtain the title compound (59.2 g, yield: 50%). Boiling point: 80-98 °C/1.7 kPa (13 mmHz).

30 ¹H NMR (CDCl₃) δ 1.84-2.72 (6H, m), 4.12 (1H, t, J = 6.8 Hz).

REFERENCE EXAMPLE 83

2-(2-Methoxyphenoxy)cyclopentanone

[0652] To a solution of gueiacol (3.1.0 g. 250 mmol) in N,N-dimethylformamide (400 mL), sodium hydride (60% suspension in oil) (12.0 g. 300 mmol) was added, and the mixture was stirred at 0.7°C for 30 minutos. A solution of 2-chiorocyclopentanone (59.2 g. 499 mmol) in N,N-dimethylformamide (100 mL) was added dropwise to the mixture, and the mixture was stirred at 0.5°C uther for 1 hour. The reaction solvent was concentrated and distilled off under reduced pressure, and the residue was poured into water. The organic material was extracted with thetyl acetate, the extract was washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 4:1) to obtain the title compound (28.4 g. yield: 55%).

45 ¹H NMR (CDCl₃) δ 1.62-2.51 (6H, m), 3.86 (3H, s), 4.61 (1H, td, J = 7.8, 1.4 Hz), 6.84-7.04 (4H, m).

REFERENCE EXAMPLE 84

1-Methoxy-2-f(2-methylenecyclopentyl)oxylbenzene

[0653] To a solution of methyltriphenylphosphonium bromide (103 g, 288 mmol) in lateralydrofuran (600 mL), potassium tert-butoxide (30.9 g, 275 mmol) was added, and the mixture was stirred at 0 °C for 3 hours. A solution of 2-(2-methoxyphenoxylycyclopentanone (28.4 g, 138 mmol) in tertarydrofuran (200 mL), was added dropwise, and the mixture was stirred at 0 °C further for 1 hour. The reaction solution was combined with water, and the organic layer was separated. The aqueous layer was extracted with eithyl acetate, and the combined organic layer was washed with brindried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 20:1) to obtain the title compound (22.4 g, yield: 79%). An oil.

¹H NMR (CDCI₃) δ 1.60-2.55 (6H, m), 3.85 (3H, s), 4.89-4.93 (1H, m), 5.07-5.17 (2H, m), 6.83-7.00 (4H, m).

REFERENCE EXAMPLE 85

2-(1-Cyclopenten-1-vimethyl)-6-methoxyphenol

[0854] 1-Methoxy-2-((2-methylenceyclopentyl)oxylpenzene (22.4 g, 110 mmol) was dissolved in N,N-diethylaniline (30 mL), and stirred at 180 °C for 3 hours under nitrogen atmosphere. The reaction mixture was cooled with ice, combined with 2 M hydrochloric acid, and oxtracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/sithy location, 50 both inthe title compound (19.3 g, jedic 86%).

AH 0II.

H NMR (CDCl₃) δ 1.78-1.94 (2H, m), 2.24-2.36 (4H, m), 3.42 (2H, s), 3.88 (3H, s), 5.30-5.32 (1H, m), 5.68 (1H, s), 6.70-6.83 (3H, m).

REFERENCE EXAMPLE 86

15

25

20

25

7-Methoxyspiro[benzofuran-2(3H),1'-cyclopentane]

[0655] To a solution of 2-(1-cyclopentan-1-ylmethyl)-8-methoxyphenol (22.4 g, 110 mmol) in methanol (200 mL), conc. suffuric acid (20 mL) was added dropowise with cooling in ice, and the mixture was heated under reflux of a hours. The reaction solvent was concentrated and distilled under reduced pressure, and the residue was poured into ice water. The organic material was extracted with ethyl accitate, washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexano/ ethyl acetate, 50:1) to obtain the title compound (17.0 g, 88%).

¹H NMR (CDC_{i3}) δ 1.67-2.21 (8H, m), 3.19 (2H, s), 3.86 (3H, s), 6.70-6.80 (3H, m).

REFERENCE EXAMPLE 87

7-Methoxyspiro[benzofuran-2(3H),1'-cyclopentane]-5-carboxaldehyde

[0858] Phosphorus oxychloride (15.5 ml., 168 mmol) was added dropwise to N,N-dimethylformamide (6.4 ml., 168 mmol), a solution of 7-methoxyspiro(benzofuran-2(3H),1'-cyclopentane] (17.0 g, 83.2 mmol) in N,N-dimethylformamide (30 ml.) was added dropwise with cooling in ice, and then the mixture was stirred at 60 °C for 6 hours. The reaction mixture was poured into ice water, neutralized with 8 M aqueous solution of sodium hydroxide, and then extracted with ethyl acetate. The extract was washed with brine, dried over sodium sulfate, filtered, concentrated under reded pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 10:1), and crystallized from diethyl ether-hexane to obtain the title compound (110 a, vielo: 57%).

40 Melting point: 54 °C

¹H NMR (CDC_{Is}) δ 1.70-2.26 (8H, m), 3.26 (2H, s), 3.93 (3H, s), 7.31-7.34 (2H, m), 9.80 (1H, s).

REFERENCE EXAMPLE 88

45 7-Methoxy-5-(2-methyl-1-propenyl)spiro[benzofuran-2(3H),1'-cyclopentane]

[0857] To a suspension of 7-methoxyspiro[benzofuran-2(3H),1'-cyclopentane]-5-carboxalidehydo (10.5 g. 45.2 mmol) and isopropyltriphenylphosphonium lodide (31.4 g. 72.6 mmol) in tetrahydrofuran (150 mL), sodium hydride (60% suspension in oil) (3.26 g. 81.4 mmol) was added, and the mixture was heated under reflux for 1 hour. The reaction mixture was poured into a 10% aqueous solution of ammonium chloride, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 20:1) to obtain the title compound (11.0 g. yield: 94%).

⁵⁵ ¹H NMR (CDCl₃) δ 1.54-2.20 (14H, s), 3.17 (2H. s), 3.85 (3H, s), 6.20 (1H, s), 6.60 (1H, s), 6.66 (1H, s).

BEFERENCE EXAMPLE 89

2-Bromo-3-pentanone

- 5 [0558] To a solution of 3-pentanone (172 g, 2.00 mo) in methanol (500 mL), bromine (51.1 mL, 1.00 mol) was added dropwise, and the mixture was stirred at room temperature for 3 hours. The reaction solvent was concentrated and distilled off under reduced pressure, and the residue was treated with an aqueous solution of sodium thiosulfate, and extracted with athyl acetate. The extract was washed with brine, dired over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was distilled under reduced pressure to bottain the title compound (72.3).
- 10 g, yield: 44%). Bolling point: 65 °C /3.3 kPa (25 mmHg)

 1 H NMR (CDCl₃) δ 1.12 (3H, t, J = 7.4 Hz), 1.75 (3H, t, J = 7.0 Hz), 2.61 (1H, dq, J = 18.0, 7.4 Hz), 2.87 (1H, dq, J = 18.0, 7.4 Hz), 4.42 (1H, q, J = 7.0 Hz).

15 REFERENCE EXAMPLE 90

2-(2-Methoxyphenoxy)-3-pentanone

[0659] The title compound was obtained from 2-bromo-3-pentanone by the method similar to that in Reference Example 83.

Quantitative.

An oil.

25

25

45

¹H NMR (CDCl₃) δ 1.07 (3H, t, J = 7.4 Hz), 1.51 (3H, t, J = 6.8 Hz), 2.59 (1H, dq, J = 18.0, 7.4 Hz), 2.75 (1H, dq, J = 18.0, 7.4 Hz), 3.87 (3H, s), 4.62 (1H, q, J = 6.8 Hz), 6.75-6.99 (4H, m).

REFERENCE EXAMPLE 91

1-Methoxy-2-(1-methyl-2-methylenebutoxy)benzene

30 [0660] The title compound was obtained from 2-(2-methoxyphenoxy)-3-pentanone by the method similar to that in Reference Example 84. Yield: 79%.

¹H NMR (CDCl₃) δ 1.07 (3H, t, J = 7.2 Hz), 1.50 (3H, t, J = 6.6 Hz), 2.13 (2H, q, J = 7.2 Hz), 3.86 (3H, s), 4.74 (1H, q, J = 6.6 Hz), 4.88 (1H, d, J = 1.4 Hz), 5.07-5.08 (1H, m), 6.78-6.91 (4H, m).

REFERENCE EXAMPLE 92

2-(2-Ethyl-2-butenyl)-6-methoxyphenol

49 [0661] The title compound was obtained from 1-methoxy-2-(1-methyl-2-methylenebutoxy)benzene by the method similar to that in Reference Example 85. Yield: 97%.
An 0ii.

¹H NMR (CDCl₃) δ 0.98 (3H, t, J = 7.6 Hz), 1.61 (3H, d, J = 7.0 Hz), 2.04 (2H, q, J = 7.6 Hz), 3.35 (2H, s), 3.88 (3H, s), 5.19 (1H, q, J = 7.0 Hz), 5.68 (1H, s), 6.69-6.83 (3H, m).

REFERENCE EXAMPLE 93

2,2-Diethyl-2.3-dihydro-7-methoxybenzofuran

[0662] The title compound was obtained from 2-(2-ethyl-2-butenyl)-6-methoxyphenol by the method similar to that in Reference Example 86. Yield: 85%.
An oil

¹H NMR (CDCl₂) δ 0.94 (6H, t, J = 7.4 Hz), 1.78 (4H, g, J = 7.4 Hz), 3.01 (2H, s), 3.87 (3H, s), 6.71-6.78 (3H, m),

55

REFERENCE EXAMPLE 94

2.2-Diethyl-2.3-dihydro-7-methoxy-5-benzofurancarboxaldehyde

5 [0663] The title compound was obtained from 2,2-diethyl-2,3-dihydro-7-methoxybenzofuran by the method similar to that in Reference Example 87. Yield: 59%.

An oil

10

20

25

50

55

¹H NMR (CDCl₃) δ 0.95 (6H, t, J = 7.4 Hz), 1.82 (4H, q, J = 7.4 Hz), 3.08 (2H, s), 3.93 (3H, s), 7.30 (1H, br s), 7.31 (1H, br s), 9.79 (1H, s).

REFERENCE EXAMPLE 95

2,2-Diethyl-2,3-dihydro-7-methoxy-5-(2-methyl-1-propenyl)benzofuran

15 [0664] The title compound was obtained from 2,2-diethyl-2,3-dihydro-7-methoxy-5-benzofurancarboxaldehyde by the method similar to that in Reference Example 88. Quantitative.
An oil

¹H NMR (CDCl₃) & 0.94 (6H, t, J = 7.4 Hz), 1.77 (4H, q, J = 7.4 Hz), 1.87 (6H, s), 2.99 (2H, s), 3.85 (3H. s). 6.19 (1H, s), 6.59 (1H. s), 6.64 (1H, s).

REFERENCE EXAMPLE 96

2.3-Dihvdro-7-methoxy-a.a.2.2-tetramethyl-5-benzofuranethanamine

28 [0665] A mixture of 3-(2,3-dihydror-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2,2-dimethylproplonic acid (5.0 g. 18 mmol), diphenylphosphoryl azide (5.6 g. 20 mmol), and triethylamine (2.8 mL, 20 mmol) in toluene (100 mL) was heated under reflux for 1 hour. The reaction solution was cooled to room temperature, and then washed with water and brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. 6 M Hydrochloric acid (30 mL) was added to the resultant residue and the mixture was stirred at 60 °C for 1.5 hours. The reaction solution was cooled to room temperature, basified by the addition of 8 M aqueous solution of sodium hydroxide, and then the organic material was extracted with diethyl ether. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced or ressure to obtain the title compound (3.6 c. v)leid: 0.36 c. v)

¹H NMR (CDCl_a) δ 1.13 (6H, s), 1.51 (6H, s), 2.58 (2H, s), 3.02 (2H, s), 3.86 (3H, s), 6.55 (1H, s), 6.59 (1H, s).

REFERENCE EXAMPLE 97

An oil.

6-Chloro-N-[2-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-1,1-dimethylethyl]-3-pyridinecarboxamide

40 [0666] A mixture of 2,3-dihydro-7-methoxy-a, a,2,2-teiramethyl-5-benzofuranethanamine (3.7 g, 15 mmo)), 6-chicronicotinoyi chloride hydrochloride (3.9 g, 18 mmol), sedium hydrogen carbonate (4.7 g, 56 mmol), tetrahydrofuran (30 ml.), toluene (60 ml.) and water (30 ml.) was stirred at room temperature for 14.5 hours. The reaction solution was concentrated under reduced pressure, and the residue was combined with water. The organic material was extracted with entry facetate. The extract was washed with brinc, dried over magnesium sulfate, and then the solvent was distilled with entry for under reduced pressure. The resultant residue was recrystallized from ethyl acetate-hexane to obtain the title compound (4.9 a. vield: 86%) a. vield: 86%.

Melting point: 118-119 °C

¹H NMR (CDCl₃) δ 1.48 (6H, s), 1.49 (6H, s), 2.97 (2H, s), 3.04 (2H, s), 3.73 (3H, s), 5.72 (1H, br), 6.51 (1H, s), 6.56 (1H, s), 7.38 (1H, d, J = 8.4 Hz), 7.96 (1H, dd, J = 8.4, 2.1 Hz), 8.62 (1H, d, J = 2.1 Hz).

REFERENCE EXAMPLE 98

N-[2-(2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyi)-1,1-dimethylethyl]-1,6-dihydro-1-(6-methyl-2-quinolinyl)-6-oxo-3-pyridinecarboxamide

[0667] A solution of 6-chloro-N-[2-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-1,1-dimethylethyl]-3-pyridinecarboxamide (1.5 g, 3.9 mmol), E-methylquinoline 1-oxide (3.9 g, 24 mmol), a 25% solution of hydrogen bromide/ acetic acid (1.5 m.), and acetic acid (2.4 ml.) in foluene (13 ml.) was heated under reflux for 19.5 hours. The reaction

solution was cooled to room temperature, and then the reaction mixture was poured into water. The mixture was weakalkalized by the addition of 8 M aqueous solution of sodium hydroxide, and then the organic material was extracted with ethyl acetate. The extract was washed with brine, and then dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a basic silica gel (hexane/chloroform/ethyl acetate, 1:1.1 followed by 1.1.2), and crystallized from hexane-discopropyl ether to obtain the title compound (1.2 a. vield: 59%).

Melting point: 192-193 °C

5

15

25

25

40

45

¹H NMੌR (CDCl₃) δ 1.45 (12H, s), 2.57 (3H, s), 2.92 (2H, s), 3.03 (2H, s), 3.75 (3H, s), 5.80 (1H, br s), 6.54 (2H, d, J = 7.4 Hz), 6.65 (1H, d, J = 8.4 Hz), 7.58-7.70 (3H, m), 7.86 (1H, d, J = 8.8 Hz), 7.97 (1H, d, J = 8.4 Hz), 8.20 (1H, d, J = 8.8 Hz), 8.51 (1H, d, J = 2.2 Hz).

REFERENCE EXAMPLE 99

5-(3-Cyanophenyl)-1H-tetrazole-1-acetic acid methyl ester

[0688] 3-(1H-tetrazo-15-yl)benzonitrie (1.77 g, 10 mmol) was dissolved in N,N-dimethylformamide (20 mL). Sodium carbonate (1.85 g, 12 mmol) and methyl bromoacetate (1.84 g, 12 mmol) were added to the mixture with cooling in ice. The reaction mixture was allowed to warm to room temperature, and stirred for 1 hour. The reaction mixture was combined with lee water, and extracted twice with ethyl acetate. The extract was washed with an aqueous solution of sodium chloride, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel eluted with hexane/ethyl acetate (2:1), and the objective fraction was collected to concentrate, and recrystallized from hexane to obtain the title compound (1.98 g, yield: 81%).

¹H NMR (CDCl₂) δ 3.86 (3H, s), 5.51 (2H, s), 7.5-8.6 (4H, m).

REFERENCE EXAMPLE 100

2,3-Dihydro-7-methoxy-2,2-dimethyl-5-(2-nitroethenyl)benzofuran

[0669] A mixture of 2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofurancarboxaldehyde (17,5 g, 84.9 mmol), and ammonium acetate (4,38 g, 56.6 mmol) in nitromethane (85 mL) was stirred at 100-105 °C for 1.5 hours. The reaction mixture was dissolved in ethyl acetate, washed with water and brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was recrystallized from ethyl acetate-disopropyl ether to obtain the title compound (17.1 g, yield: 81%).

Melting point: 154-156 °C

¹H NMR (CDCl₃) δ 1.55 (6H, s), 3.08 (2H, s), 3.92 (3H, s), 6.91 (1H, s), 7.04 (1H, s), 7.51 (1H, d, J = 13.6 Hz), 7.96 (1H, d, J = 13.6 Hz).

REFERENCE EXAMPLE 101

N-[2-(2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)ethyl]benzamide

[0670] To a solution of 2,3-dihydro-7-methoxy-2,2-dimethyl-5-(2-nitroethenyl)benzofuran (16.3 g, 65.4 mmol) in tetrahydrofuran (250 mL), lithium aluminum hydride (7.44 g, 0.196 mol) was added in portions, and the mixture was heated under reflux for 4 hours. The reaction mixture was cooled with ice, combined with Hydro Super-Cell (trade name) (37 g), and ethyl acetate (100 mL) was added dropwise, followed by water (15 mL). The resultant mixture was stirred at the same temperature for 10 minutes, filtered, and concentrated under reduced pressure to obtain the mixture (12.9 g) containing 2,9-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranethanamine. 2.22 g of this material was dissolved in tetrahydrofuran (10 mL). A solution of sodium carbonate (1.38 g, 13.0 mmol) in water (10 mL) was added to the reaction mixture, and then benzoy chloride (1.28 mL, 1.10 mmol) was added dropwise to the mixture with cooling in ice. The mixture was stirred at the same temperature for 20 minutes. The reaction mixture was combined with water, and extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hoxano/ethyl acetate, 10:1 followed by 3:1), and recrystallized from ethyl acetate-hexane to obtain the title compound (929 mg, vield 25%).

Melting point: 137-138 °C

 ^1H NMR (CDCl3) δ 1.51 (6H, s), 2.86 (2H, t, J = 6.8 Hz), 3.01 (2H, s), 3.61-3.75 (2H, m), 3.83 (3H, s), 6.08-6.22 (1H, m), 6.59 (1H, s), 6.65 (1H, s), 7.35-7.55 (3H, m), 7.67-7.75 (2H, m).

REFERENCE EXAMPLE 102

2.3-Dihydro-7-methoxy-2.2-dimethyl-5-(2-nitro-1-propenyl)benzofuran

i0671] A solution of 2,3-dihydro-7-melhoxy-2,2-dimethyl-5-benzofurancarboxaldehyde (20.0 g, 97.0 mmol), nitro-ethane (7.70 mL, 107 mmol), piperidine (2.00 mL, 20.2 mmol) and acetic acid (5.60 mL, 97.8 mmol) in toluene (9.71 mL) was heated under reflux for 5 hours using Dean-Stark water separator. The reaction solution was cooled to room temperature. The mixture was separated into water and ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and then distilled off under reduced pressure. The resultant residue was crystallized from discopropy there to obtain the title compound (20.9 q. yield: 82%).

Melting point: 120-121 °C

¹H NMR (CDCl₂) § 1.55 (6H, s), 2.50 (3H, s), 3.99 (2H, s), 3.91 (3H, s), 6.85 (1H, s), 6.96 (1H, s), 8.08 (1H, s).

REFERENCE EXAMPLE 103

15

20

25

2.3-Dihvdro-7-methoxy-a.2.2-trimethyl-5-benzofuranethanamine

[0672] To a solution of 2.3-dihydro-7-methoxy-2.2-dimethyl-5-(2-nitro-1-propeny))benzofuran (10.9, g. 41.4 mmol) in tetrahydrofuran (150 ml), lithium aluminum hydride (3.58, g. 8.3 mmol) was added at 0 °C in portions. The reaction solution was stirred at 0 °C for 15 minutes, and heated under reflux for 1 hour. The reaction solution was cooled with ice, water was added in portions, and the insolubles were filtered off. The filtrate was dried over sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain the title compound (9.00 g, yjelds 29%).

¹H NMR (CDCl₃) δ 1.12 (3H, d, J = 6.4 Hz), 1.50 (6H, s), 2.40 (1H, dd, J = 13.2, 8.4 Hz), 2.66 (1H, dd, J = 13.2, 5.2 Hz), 3.01 (2H, s), 3.07-3.17 (1H, m), 3.85 (3H, s), 6.56 (1H, s), 6.59 (1H, s).

REFERENCE EXAMPLE 104

N-[2-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-1-methylethyl]benzamide

[0673] To a solution of 2,3-dihydro-7-methoxy-a,2-trimethyl-5-benzofuranethanamine (3.00 g, 12.7 mmo) and tri-ethylamine (2.10 mL, 15.1 mmol) in tetrahydrofuran (50.0 mL) and ethyl acetate (50.0 mL), benzoyl chloride (1.50 mL, 12.9 mmol) was added dropwise at 0 °C. The reaction solution was stirred at room temperature for 4 hours, and then the solvent was distilled off. The resultant residue was combined with water, and the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over magnesium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was recrystallized from ethyl acetate-isopropyl ether to obtain the title compound (1.94 g, yield: 45%).

Mething point 141-142 °C.

1H NMR (CDO₃) § 1.24 (3H, d, J = 6.6 Hz), 1.50 (6H, s), 2.76 (1H, dd, J = 13.4, 7.0 Hz), 2.88 (1H, dd, J = 13.8, 5.6 Hz), 3.00 (2H, s), 3.80 (3H, s), 4.34-4.48 (1H, m), 5.93 (1H, br), 6.58 (1H, s), 6.63 (1H, s), 7.37-7.53 (3H, m), 7.71 (2H, dd, J = 8.6, 2.0 Hz).

REFERENCE EXAMPLE 105

45 N-[2-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-1-methylethyl]-4-pyridinecarboxamide

[0674] The title compound was obtained from 2,3-dihydro-7-methoxy-α,2,2-trimethyl-5-benzofuranethanamine and isonicotinoyi chloride hydrochloride by the method similar to that in Reference Example 97. Yield: 75%. Melling point 159-160 °C (ethyl acotate-discorpov) ether)

¹H NMR (CDCl₃) § 1.26 (3H, d, J = 6.6 Hz), 1.51 (6H, s), 2.71-2.93 (2H, m), 3.00 (2H, s), 3.82 (3H, s), 4.34-4.47 (1H, m), 6.00 (1H, br d, J = 8.4 Hz), 6.56 (1H, s), 6.61 (1H, s), 7.52-7.55 (2H, m), 8.71-8.74 (2H, m).

REFERENCE EXAMPLE 106

55 2-(Benzoylamino)-3-(2,3-dihydro-7-methoxy-2.2-dimethyl-5-benzofuranyl)-2-propenoic acid methyl ester

[0675] A suspension of 2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofurancarboxaldehyde (12.8 g, 62.1 mmol), hippuric acid (12.2 g, 68.1 mmol) and sodium acetate (5.60 g, 68.3 mmol) in acetic anhydride (65 mL) was stirred at 100

°C for 1.5 hours. The reaction mixture was cooled to room temperature, combined with diethyl other, and crystals were recovered by filtration to obtain a mixture (15.9 g) containing 4+(2.3-diimydr-7-methoxye.2-diimethyls-5-benzefuranyl) methylene]-2-phenyl-5(4H)-oxazolone. The mother liquor was concentrated again, and crystals were washed with disopropyl either to obtain the same mixture (3.72 g). These were suspended in methanol (100 mL). Sodium carbonate (0.20 g. 1.9 mmol) was added to the suspension and the mixture heated under reflux for 3 hours. The reaction mixture was concentrated under reduced pressure and the residue was partitioned between ethyl acetate and water. The aqueous layer was separated, the organic layer was washed and concentrated under reduced pressure. The residue was crystallized from methanol-diisopropyl either to obtain the title compound (10.5 g, yield: 44%). Meltino point: 184-186 °C.

¹H NMR (CDCl₃) § 1.50 (6H, s), 2.99 (2H, s), 3.66 (3H, s), 3.85 (3H, s), 7.00 (2H, s), 7.43-7.64 (4H, m), 7.67 (1H, br s), 7.86-7.95 (2H, m).

REFERENCE EXAMPLE 107

5

25

20

25

15 α-(Benzoylamino)-2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranpropanoic acid methyl ester

[0976] To a solution of 2-(benzoylamino)-3-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2-propenoic acid methyl ester (11.5 g., 30.2 mmol) in tetrahydrofuran (100 ml.). 10% palladium on carbon (50% hydrate) (1.2 g) was added, and the mixture was stirred at 50 °C for 4 hours under hydrogen atmosphere. The catalyst was filtered off and filtrate was concentrated under reduced pressure. The resultant crystals were washed with diisopropyl ether to obtain the title compound (10.1 a, vielic 37%).

Melting point: 160-162 °C

1H NMR (CDC₁₃) 8 1.50 (6H, s), 2.98 (2H, s), 3.15 (1H, dd, J = 13.9, 5.1 Hz), 3.23 (1H, dd, J = 13.9, 5.9 Hz), 3.75 (3H, s), 3.78 (9H, s), 5.04 (1H, dt, J = 7.5, 5.5 Hz), 6.48 (1H, s), 6.53 (1H, s), 6.59 (1H, br d, J = 7.5 Hz), 7.36-7.57 (3H, m), 7.71-7.79 (2H, m).

REFERENCE EXAMPLE 108

2-Amino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)benzoic acid methyl ester

[0677] To a solution of methyl 5-iodoanthranilate (2.87 g, 10.0 mmol) and triethylamine (4.2 mL, 30 mmol) in 1.4-dioxane (20 mL); (1.1-bis(gliphemylphosphino)letrocene)[chilorposplatidim (II) (dichroremshane complex (28 mg, 10.0 mmol) was added and 4.4.5.5-tetramethyl-1,3.2-dioxaborolane (3.7 mL, 25 mmol) was added dropwise. The resultant mixture was strred at 80 °C for 14 hours under nitrogen atmosphere. The reaction mixture was combined with water, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, filtered through a silica gel (clutting with ethyl acetate), and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (nexana/ethyl acetate, 5-11), and recrystallized from ethyl acetate-hexane to obtain the title compound (1.45 g, yield: 52%).

 40 1H NMR (CDCl₃) 5 1.33 (12H, s), 3.86 (3H, s), 5.96 (2H, br s), 6.63 (1H, d, J = 8.3 Hz), 7.67 (1H, dd, J = 8.3, 1.5 Hz), 8.33 (1H, d, J = 1.5 Hz).

REFERENCE EXAMPLE 109

45 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolane-2-yl)benzoic acid ethyl ester

[0678] To a solution of ethyl 4-iodobenzoate (2.76 g. 1.0.0 mmol) and trieftylamine (4.2 ml., 30 mmol) in 1.4-dioxane (20 ml.), [1.1-bis(diphenylphosphino)ferrocene]dichloropalladium(II) dichloromethane complex (82 mg, 0.10 mmol) was added, and 4.4.5.5-letramethyl-1,3.2-dioxaborolane (3.2 ml., 22 mmol) was added dropwise. The resultant mixture was stirred at 80 °C for 14 hours under nitrogen atmosphere, and at 100 °C for 3 hours. The reaction mixture was acombined with water, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried through sodium sulfate-silica gel (eluting with ethyl acetate), and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 20-1) to obtain the title compound (2.26 g. yieldic 82°).

An oi

55

 1 H NMR (CDCl₃) δ 1.36 (12H, s), 1.40 (3H, t, J = 7.1 Hz), 4.39 (2H, q, J = 7.1 Hz), 7.86 (2H, d, J = 8.4 Hz), 8.03 (2H, d, J = 8.4 Hz).

REFERENCE EXAMPLE 110

B-(Benzoylamino)-2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranpropanol

5 [0679] To a suspension of α-(benzoylamino)-2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranpropanoic acid methyl ester (3.84 g. 10.0 mmoly in tetrahydrotran (30 m.), sodium bronydride (90%) (1.5 g. 3.0 mmol) was added. Methanol (5 ml.) was added dropwise to the resultant mixture while heating under reflux over 30 minutes, and then the mixture was heated under reflux for 5 minutes. The reaction mixture was allowed to cool, combined with water, and extracted twice with ethyl acetate. The combined organic layer was washed wice with water and concentrated or under reduced pressure. The residue was recrystallized from methanol-disopropyl ether to obtain the title compound (2.65 g., yield: 75%).

Melting point: 155-158 °C

15

20

45

¹H NMR (CDCl₃) § 1.50 (6H, s), 2.91 (2H, d, J = 7.2 Hz), 3.00 (2H, s), 3.66-3.87 (2H, m), 3.82 (3H, s), 4.20-4.38 (1H, m), 6.37-6.48 (1H, m), 6.63 (1H, s), 6.67 (1H, s), 7.35-7.55 (3H, m), 7.65-7.73 (2H, m).

REFERENCE EXAMPLE 111

2-(Benzoviamino)-3-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)propyl acetate

20 [0880] To a suspension of β-(Benzoylamino):2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranpropanol (3.13 g, 8.81 mmo)) and 4-(dimethylamino)pyridine (108 mg, 0.884 mmo)) in tetrahydrofuran (30 mL), triethylamine (1.84 mL, 13.2 mmo)) and acedic anhydride (1.15 mL, 12.3 mmo)) was added dropwise, and the mixture was stirred at room temperature for 20 minutes. The reaction mixture was combined with water and extracted twice with eityl acetate. The combined organic layer was washed twice with water and concentrated under reduced pressure. The residue was recrystallized from methanot-dilsopropyl ether to obtain the title compound (3.28 g, yield: 93%). Welling point: 141-142 ° 2.00.

1H NMR (CDC₃) 8 1.50 (8H, s), 2.11 (3H, s), 2.79 (1H, dd, J = 13.7, 8.3 Hz), 2.93-3.05 (1H, m), 3.00 (2H, s), 3.82 (3H, s), 4.15 (1H, dd, J = 11.4, 4.1 Hz), 4.28 (1H, dd, J = 11.4, 6.2 Hz), 4.47-4.84 (1H, m), 6.43 (1H, br d, J = 8.4 Hz), 6.61 (1H, s), 6.84 (1H, s), 7.38-7.57 (3H, m), 7.70-7.78 (2H, m).

REFERENCE EXAMPLE 112

N-[3]-(1,2,3,4,8,9-Hexahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yi)[1,1]-biphenyi]-3-yi]acetamide

35 [0681] The title compound was obtained from N-[3'-(3,4,6,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]so-quinolin-1-yl/[1,1'-b]phenyl[3-y]glectamide by the method similar to that in Reference Example 10. Yield: 84%. Meltin on point: 182-185 °C fethyl acetate-hexane)

¹H NMR (CDCl₃) 3 1.18 (3H, s), 1.21 (3H, s), 1.25 (3H, s), 1.34 (3H, s), 1.85 (1H, d, J = 15.8 Hz), 2.20 (3H, s), 2.47 (1H, d, J = 15.8 Hz), 2.56 (1H, d, J = 15.4 Hz), 2.83 (1H, d, J = 15.4 Hz), 3.87 (3H, s), 5.00 (1H, s), 6.50 (1H, s), 7.15-7.96 (9H, m).

REFERENCE EXAMPLE 113

3-Cyano-N-(3,5-dichloro-4-pyridinyl)benzamide

[0682] A mixture of 3-cyanobenzoic acid (2.71 g, 18.4 mmol) and thionyl chloride (10 mL) was heated under reflux for 1.5 hours. The reaction solution was concentrated under reduced pressure, and the residue was combined with toluene and concentrated under reduced pressure again. A suspension of 4-amino-3.5-dichloropyndine (2.50 g, 15.3 mmol) in tetrahydrofuran (30 mL) was cooled with ice. Then sodium hydride (66% suspension in oil) (1.34 g, 36.7 mmol) followed by the concentrated residue prepared previously were added to the suspension. The mixture was stirred at room temperature for 2 hours, poured into ice water, and then extracted with ethyl acetale. The extract was washed with water and concentrated under reduced pressure. The residue was recrystalized from ethyl acetale—texane to obtain the tille compound (0.45 g, yield: 11%). The mother fliquor was concentrated, the residue was subjected to a column chromatography on a basic sitilice gol (ethyl acetate/methanol, 19.1), and then recrystallized from ethyl acetate-hexane to obtain the additional title compound (0.68 g, yield: 15%). Melting point: 242.244 **C

 $^{1}\text{H NMR (CDCl}_{3} + \text{DMSO-d}_{6}) \ \delta \ 7.65 \ (1\text{H, t, J} = 8.0 \ \text{Hz}), \ 7.87 \ (1\text{H, dd, J} = 1.4, 8.0 \ \text{Hz}), \ 8.34 \ (1\text{H, dd, J} = 1.4, 8.0 \ \text{Hz}), \ 8.49 \ (1\text{H, s}), \ 8.58 \ (2\text{H, s}), \ 10.24 \ (1\text{H, br s}).$

REFERENCE EXAMPLE 114

3-Cyano-N-(3,5-dichloro-1-oxido-4-pyridinyl)benzamide

5 [0863] A suspension of 3-cyano-N-(3.5-dichloro-4-pyridinyl)benzamide (1.06 g., 3.78 mmol) and m-chloroperbenzoic acid (70%) (2.80 g., 11.3 mmol) in ethyl acetate (20 mL) was stirred at 50 °C for 15 hours under nitrogen atmosphere. The reaction mixture was combined with water and an aqueous solution of sodium thiosulfate, and extracted with ethyl acetate. The extract was washed with water and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (ethyl acetate/methanol, 49:1 to 23:2) and recrystallized from ethyl acetate-hexane to obtain the title compound (0.88 q. yield; 79%).

Melting point: 234-235 °C

¹H NMR (CDCl₃+DMSO-d₆) δ 7.65 (1H, t, J = 8.0 Hz), 7.87 (1H, d, J = 8.0 Hz), 8.26 (2H, s), 8.32 (1H, d, J = 8.0 Hz), 8.47 (1H, s), 10.16 (1H, br s).

15 REFERENCE EXAMPLE 115

1-(7-Ethoxy-2,3-dihydro-2,2-dimethyl-5-benzofuranyl)-2-methyl-1-propanol

[0884] A solution of 7-ethoxy-2,3-dihydro-2,2-dimethyl-5-benzofurancarboxaldehyde (30.0 g, 0.136 mo) in tetrahydrofuran (50 mL) was cooled with ice, to this a suspension of the Grignard reagent prepared from 2-bromopropane (25.1 g, 0.204 mol) and magnesium (4.97 g, 0.204 mol) in tetrahydrofuran (50 mL) was added, and the mixture was stirred at room temperature for 1 hour. The reaction solution was poured into ice water and extracted with ethyl acetate. The extract was washed with water and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-hoxane to obtain the title compound (29.9 q, vield: 63%).

Melting point: 100-101 °C

 $^{1}\text{H NMR (CDCl}_{3}) \delta 0.77 \ (3\text{H}, \ d, \ J = 6.6 \ \text{Hz}), \ 1.02 \ (3\text{H}, \ d, \ J = 6.6 \ \text{Hz}), \ 1.42 \ (3\text{H}, \ t, \ J = 7.0 \ \text{Hz}), \ 1.51 \ (6\text{H}, \ s), \ 1.77 \ (1\text{H}, \ d, \ J = 6.6 \ \text{Hz}), \ 1.80 \ -1.99 \ (1\text{H}, \ m), \ 3.00 \ (2\text{H}, \ s), \ 4.12 \ (2\text{H}, \ q, \ J = 7.0 \ \text{Hz}), \ 4.21 \ (1\text{H}, \ dd, \ J = 2.8 \ \text{Hz}, \ 7.2 \ \text{Hz}), \ 6.70 \ (2\text{H}, \ s), \ 4.72 \ (2\text{H}, \$

REFERENCE EXAMPLE 116

1-Ethoxy-2-(2-methyl-2-propenyloxy)benzene

[0885] A suspension of 2-ethoxyphenol (5.00 g, 36.2 mmol), 3-chloro-2-methyl-1-propene (3.93 mL, 39.8 mmol), potassium carbonate (6.75 g, 41.6 mmol) and potassium iodide (0.50 g, 3.62 mmol) in N.N-dimethylformamide (25 mL) was stirred at 90 °C for 1.5 hours under nitrogen atmosphere. The reaction mixture was allowed to cool to combemperature, combined with water, and then extracted with ethyl acetate. The extract was washed with 1 M aqueous solution of sodium hydroxide and water, and then concentrated under reduced pressure to obtain the title compound (5.90 g, yield: 85%).

An oil.

⁴⁰ ¹H NMR (CDCl₃) δ 1.44 (3H, t, J = 6.9 Hz), 1.84 (3H, s), 4.09 (2H, q, J = 6.9 Hz), 4.50 (2H, s), 4.97 (1H, s), 5.10 (1H, s), 6.88-6.91 (4H, m).

REFERENCE EXAMPLE 117

45 2-Ethoxy-6-(2-methyl-2-propenyl)phenol

[0886] A solution of 1-ethoxy-2-(2-methyl-2-propen)toxy)benzene (5.80 g, 30.2 mmol) in N.N-diethylaniline (12 mL) was stirred at 205 °C for 3.5 hours under integen atmosphere. The reaction mixture was allowed to cool to room temperature, cooled with ice, combined with 2 M hydrochloric acid (39 mL), and then extracted with ethyl acetate. The extract was washed with water and then concentrated under reduced pressure to obtain the title compound (5.80 g, yield: 97%).

An oil.

 1 H NMR (CDCl₃) δ 1.44 (3H, t, J = 7.0 Hz), 1.75 (3H, s), 3.36 (2H, s), 4.10 (2H, q, J = 7.0 Hz), 4.69 (1H, s), 4.80 (1H, s), 6.65-6.79 (3H, m).

55

20

25

REFERENCE EXAMPLE 118

7-Ethoxy-2,3-dihydro-2,2-dimethylbenzofuran

[0887] To a solution of 2-ethoxy-6-(2-methyl-2-propenyl)phonol (5.50 g. 28.6 mmol) in toluene (30 mL), boron trifluoride diethyl ether complex (3.99 mL, 31.5 mmol) was added, and the mixture was stirred at 100 °C for 1.5 hours under nitrogen atmosphere. The reaction solution was allowed to cool to room temperature, combined with 1 M aqueous solution of sodium hydroxide (30 mL), and then extracted with hexane. The extract was washed with 1 M aqueous solution of sodium hydroxide and water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel to obtain the title compound (2.90 g, yield: 53%).

¹H NMR (CDCl₂) δ 1.43 (3H, t, J = 7.0 Hz), 1.51 (6H, s), 3.02 (2H, s), 4.12 (2H, q, J = 7.0 Hz), 6.71-6.78 (3H, m).

REFERENCE EXAMPLE 119

15

25

20

25

5-Bromo-7-ethoxy-2.3-dihydro-2.2-dimethylbenzofuran

[0888] A solution of 7-ethoxy-2,3-dihydro-2,2-dimethylbenzofuran (10.0,52.0 mmol) in foluene (50 mL) was cooled to -40 °C, and bromine (8.72 g, 54.6 mmol) was added dropwise. The reaction solution was stirred at the same termerature for 20 minutes, combined with an aqueous solution of sodium thiosulfate, and then extracted with hexane. The extract was washed with water and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 19·1) to obtain the title compound (13.6 g, yield: 96%). Meltin point 5:5-58 °C (nentane)

¹H NMR (CDCl₃) δ 1.43 (3H, t, J = 7.0 Hz), 1.50 (6H, s), 3.00 (2H, s), 4.09 (2H, q, J = 7.0 Hz), 6.83-6.85 (1H, m), 6.86-6.88 (1H, m).

REFERENCE EXAMPLE 120

7-Ethoxy-2,3-dihydro-2,2-dimethyl-5-(2-methyl-2-propenyl)benzofuran

[0889] A solution of 5-bromo-7-ethoxy-2.3-dimydro-2.2-dimethylbenzofuran (3.60 g. 13.3 mmol) in tetrahydrofuran (3.00 m.L) was cooled to -78 °C, a 1.57 M solution of n-bulylithium in hexane (9.30 m.L, 14.6 mmol) was added dropwise, and the mixture was stirred at the same temperature for 15 minutes. To this copper (1) lodide (1.39 g. 7.32 mmol) was added, and the mixture was stirred under ice cooling for 15 minutes. After cooling the mixture to -40 °C, 3-chloro-2-methyl-1-popene (1.44 m.l, 1.46 mmol) was added dropwise, and the mixture was stirred under ice cooling for 5 minutes. The reaction mixture was combined with water and extracted with ethyl scotate. The extract was washed with water and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 19:1) to obtain the title compound (2.34 g, yield: 71%).

⁴⁰ ¹H NMR (CDCl₃) δ 1.41 (3H, t, J = 7.0 Hz), 1.50 (6H, s), 1.68 (3H, s), 2.99 (2H, s), 3.22 (2H, s), 4.11 (2H, q, J = 7.0 Hz), 4.73 (1H, s), 4.78 (1H, s), 6.56 (1H, s), 6.58 (1H, s).

REFERENCE EXAMPLE 121

45 3-Cyano-N-methylbenzenesulfonamide

[0890] To a suspension of methylamine hydrochloride (1,67g, 24.8 mmol) in pyridine (6 m.), 3-cyanobenzenesulfonyl chloride (5,00 g, 24.8 mmol) was added with cooling in loe, and the mixture was stirred at room temperature for 3 hours. The reaction mixture was pound into lice water, acidified with 1 M hydrochloric acid, and extracted twice with ethyl acetale. The combined organic layer was washed with 1 M hydrochloric acid, water and brine, dired over magnesium sulfate, and concentrated under reduced pressure to obtain the title compound (4.49 g, yield: 25%) as crystats: 1 H MMR (CDCl₂) 8.2.73 (3H, d, J = 5.4 Hz), 4.51 (1H, br), 7.89 (1H, t, J = 7.8 Hz), 7.88 (1H, dt, J = 7.8, 1.5 Hz), 8.00 (1H, dt, J = 7.8 1.5 Hz), 8.17 (1H, t, J = 7.8 Hz), 4.80 (1H, dt, J = 7.8 Hz

55

REFERENCE 122

N-[3-[[(3-Cyanobenzene)sulfonyl]amino]phenyl]acetamide

[0691] To a solution of 3'-aminoacetanilide (745 mg, 4.96 mmol) in letrahydrofuran (10 mL), triethylamine (0.76 mL), 5.46 mmol) and 3-cyanobenzenesulfonyl chloride (1.00 g, 4.96 mmol) were added, and the mixture was stirred at room temperature for 3 hours. Water was poured into the reaction mixture, which was then extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hoxane/ethyl acetate, 1:1 followed by 1:2) to obtain the title compound (1.39 at, vield) 8:39% as crystale.

¹H NMR (CDCl₃) δ 2.23 (3H, s), 6.97-7.03 (2H, m), 7.21 (1H, d, J = 8.2 Hz), 7.51-7.64 (2H, m), 7.73-7.81 (2H, m), 7.96-8.10 (2H, m).

REFERENCE EXAMPLE 123

15

25

25

40

45

2-[[(3-Cvanobenzene)sulfonvl]amino]acetamide

[0692] To a solution of 3-cyanobenzonsulfonyi chloride (538 mg, 2 67 mmol) in pyridine (3 mL), glychamdle hydrochloride (301 mg, 2 67 mmol) was added, and the mixture was stirred at room temperature for 1 hour, at 60 °C 2 hours, and at 90 °C for 4 hours. Water was poured into the reaction mixture, which was then extracted twice with ethyl acetate. The combined organic layer was washed with 1 M hydrochloric acid and brine, dried over socialim sulfate, filtered, and concentrated under reduced pressure to obtain the title compound (180 mg, yield: 28%) as crystate. 1H NMR (CDCl₂) 8 3.57 (2H, d, J = 5.7 Hz), 6.25 (1H, br.e), 7.00 (1H, br.e), 7.68 (1H, L, J = 7.8 Hz), 7.76 (1H, L, J = 5.7 Hz), 4.14 Hz), 8.14 (1H, L, J = 1.4 Hz).

REFERENCE EXAMPLE 124

3-Cyano-N-(hexahydro-2-oxo-1H-azepin-3-yl)benzenesulfonamide

[0693] To a solution of 3-aminohexahydro-2H-azepin-2-one (305 mg, 2.38 mmol) in tetrahydrofuran (3 mL), 14 aqueous solution of sodium hydroxide (2 mL) and 3-oyanobenzenesulfonyl chloride (400 mg, 1.98 mmol) was added, and the mixture was stirred at room temperature for 3 hours. Discopropyl ether was poured into the reaction mixture, and precipitated crystalis were filtered off and washed with water and dilscopropyl ether to obtain the title compound (360 mg, vield: 62%) as crystals.

¹H NMR (CDC₃) 3 1.34-1.90 (4H, m), 2.02-2.16 (2H, m), 3.11-3.25 (2H, m), 3.87-3.92 (1H, m), 5.99 (1H, br s), 6.25 (1H, brs), 7.65 (1H, dd, J = 8.4, 7.8 Hz), 7.84 (1H, ddd, J = 7.8, 1.6, 1.4 Hz), 8.04 (1H, ddd, J = 8.4. 1.6, 1.4 Hz), 8.15 (1H, dd, J = 1.6, 1.4 Hz).

REFERENCE EXAMPLE 125

2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranacetonitrile

[0694] Potassium tert-butoxide (11.8 g, 105 mmol) was suspended in dimethoxyethane (75 mL), cooled at a temperature not higher than -70 °C. Then toluenesulfonyimethyl isocyanide (10.2 g, 52.5 mmol) was added to the mixture and the mixture was stirred at a temperature not higher than -70 °C for 30 minutes. A solution of 22-dinightor-7-methoxy-2.2-dimethyl-5-benzofurancarboxaldehyde (10.4 g, 50 mmol) in dimethoxyethane (25 mL) was added dropwise to the reaction mixture for 10 minutes. After stirring at a temperature not higher than -70 °C for 30 minutes, the mixture was combined with methanol (75 mL), allowed to warm to room temperature, and heated under reflux further for 2 hours. The reaction solution was concentrated under reduced pressure, and iced water was poured into the residue, which was then extracted twice with thyl acctalc. The extract was washed with brine, dried over magnesium sulfate, filled, and concentrated under reduced pressure. Diethyl either was poured into the residue, and precipitated crystals were recovered by filtration, washed with directly at 15 mc filed to obtain the title compound (6.85 g, yield: 63%).

11 MNR (COC), § 1.5 16 (61, § 3.0 30 (21, §), 3.67 (21, §)

REFERENCE EXAMPLE 126

2-(2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2-methylpropanenitrile

5 [0695] A 60% sodium hydride in oil (2.92 g, 73 mmol) was suspended in N.N-dimethylformamide (75 ml.), and 2,3-di-hydro-7-methoxy-2.2-dimethylfs-benzofunaceiontiller (7.95 g, 3.85 mmol) was added thereto in portions with cooling in ice. The mixture was stirred at room temperature for 30 minutes, and iodomethane (13 g, 92 mmol) was added dropwise with cooling in ice again over 5 minutes. After stirring at room temperature for 3 hours, the reaction mixture was poured into ice water, and extracted twice with ethyl acetate. The extract was washed with brine, dried over magnetimes used to a continuous difference of the continuous continuous difference and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica goll ething with hexame-derly acetate (5:1), and the desired fraction was collected and concentrated to obtain the title compound (8.6 g, yield 96%).

¹H NMR (CDCI₃) δ 1.52 (6H, s), 1.71 (6H, s), 3.04 (2H, s), 3.90 (3H, s), 6.82 (1H, s), 6.87 (1H, s).

REFERENCE EXAMPLE 127

15

25

20

25

45

50

2-(2.3-Dihydro-7-methoxy-2.2-dimethyl-5-benzofuranyl)-2-methylpropanamide

[0696] 2-(2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2-methylpropanenitinle (8,6 g, 35 mmol) was dissolved in methanol (105 mL). 1M aqueous solution of sodium hydroxide (52 mL) and 30% aqueous solution of hydrogen peroxide (7,94 mL), were added to the mixture was threat at room temperature for 18 hours. Methanol was distilled off under reduced pressure, and the residue was extracted twice with ethyl acetate. The extract was exahed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was combined with diethyl ether, and crystallized to obtain the title compound (7.73 g, yield: 84%). Melting point: 112-113 °C ¹H NMR (CDCl₃) \$ 1.51 (6H, s), 1.56 (6H, s), 3.03 (2H, s), 3.87 (3H, s), 5.30 (1H, br), 5.45 (1H, br), 6.73 (1H, s), 6.81 (1H, s)

REFERENCE EXAMPLE 128

N-[2-(2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2-methylpropyl]benzamide

[0697] To a suspension of lithium aluminum hydride (0.285 g, 7.5 mmol) in tetrahydroturan (15 mL), 2-(2.8-dihydro-Zmeihoxy-2-2-dimethyt-5-beno/urany)2-zmethytoppanamide (0.791 g, 3 mmol) was added in Intlogen (10 kL) for stirring at room temperature for 30 minutes, the mixture was heated under reflux further for 1 hour. The mixture was combined with tely acetate (15 mL) with cooling in ice stirred for 30 minutes, and combined with tice water (15 mL), the insolubles were removed using Celite, and the filtrate was extracted twice with ethyl acetate. The extract was washed with brine, dried over magnesium suilate, filtered, and concentrated under reduced pressure. The residue was assolved in tetrahydrofuran (10 mL). Pyridine (0.73 mL, 9 mmol) and benzoyl chloride (0.83 mL, 4.5 mmol) were added to the mixture and the mixture was stirred at room temperature for 15 hours. The reaction solution was combined with ethyl acetate (20 mL), washed with water and an aqueous solution of sodium chloride, dried over magnesium suifate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel leiuting with hexane/ethyl acetate (31), and the desired fraction was collected and concentrated to obtain the title compound (0.572 g, yield: 53%), which was then recrystallized from diethyl ether/hexane (1:1).

¹H NMR (CDCl₃) δ 1.38 (6H, s), 1.53 (6H, s), 3.04 (2H, s), 3.61 (2H, d, J = 6 Hz), 3.88 (3H, s), 5.80 (1H, br), 6.76 (1H, s), 6.81 (1H, s), 7.3-7.7 (5H, m).

REFERENCE EXAMPLE 129

3-Cyano-N-[2-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2-methylpropyl]benzamide

[0698] To a suspension of lithium aluminum (0.475 g, 12.6 mmol) in tetrahydrofuran (33 mL), 2-(2.3 ciliydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2-methylpropanamide (1.32 g, 5 mmol) was added in nitrogen flow. After strining at room temperature for 30 minutes, the mixture was heated under reflux further for 1 hour. The mixture was combined with ethyl acetate (26 mL) with cooling in ice, stirred for 30 minutes, combined with ice water (15 mL), the insolubles were removed using Cellite, and the filtrate was extracted twice with terhyl acetate. The extract was washed very an auguous solution of sodium chloride, dried over magnesium sulfate, filtered, and concentrated under reduced pressure.

The residue was dissolved in tetrahydrofuran (10 mL), added to a solution of activated ester which had been prepared by stirring 3-cyanohoenzoic acid (0.883 g. 6 mmol) and N.Ni-catonydidimidazole (0.882 g. 6 mmol) at room temperature for 30 minutes, and stirred at room temperature for 15 hours. The reaction solution was combined with ethyl acetate (33 mL), washed with water and an aqueous solution of sodium-ribrided, dried over magnesium suifate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silice equilibrium suifate (2:1), and the desired fraction was collected and concentrated under reduced pressure to obtain the tiltie compound (0.955 g. yield: 50%).

¹H NMR (CDCl₃) δ 1.39 (6H, s), 1.52 (6H, s), 3.06 (2H, s), 3.62 (2H, d, J = 6 Hz), 3.88 (3H, s), 5.80 (1H, br), 6.75 (1H, σ), 8), 6.81 (1H, s), 7.4-8.0 (4H, m).

REFERENCE EXAMPLE 130

5

15

25

45

[[2-(2,3-Dihydro-7-methoxy-2,2-dimethyl-1-benzofuran-5-yl)-2-methylpropyl]amino]oxoacetic acid ether ester

[0699] To a suspension of lithium aluminum hydride (0.285 g, 7.5 mmol) in tetrahydrofuran (20 mL), 2-(2.3-dihydrof-methoxy-2,2-dimethyl-5-benzofuranyly-2-methylpropanamide (0.791 g, 3 mmol) was added in nitrogan flow. After stirring at room temperature for 30 minutes, the mixture was heated under reflict wither for 1 hour. The mixture was beated under reflict wither for 1 hour. The mixture was beated under reflict wither for 1 hour. The mixture was beated under reflict sets of the extract was washed with an aqueous solution of sodium chloride, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was dissolved in tetrahydrofuran (10 mL). Pyridine (0.73 mL, 9 mmol) and ethyl chlorogyoxylate (0.615 g, 4.5 mmol) were added to the mixture and the mixture was stirred at room temperature for 15 hour. The reaction solution was combined with ethyl acetate (20 mL), washed with water and an aqueous solution of sodium chloride, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel eluting with hexanedershyl acetate (21), and the desired fraction was colected and concentrated to obtain the title compound (0.51 g, yield: 49%).

¹H NMR (CDCl₃) δ 1.26 (3H, t, J = 7 Hz), 1.34 (6H, s), 1.52 (6H, s), 3.03 (2H, s), 3.48 (2H, d, J = 6 Hz), 3.88 (3H, s), 4.13 (2H, g, J = 7 Hz), 6.69 (1H, s), 6.74 (1H, s), 6.92 (1H, br),

REFERENCE EXAMPLE 131

3-Bromo-N-[2-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2-methylpropyl]benzamide

[070] To a solution of 2-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2-methylpropanamide (1,00 g, 3.80 mmo) in tetrahydrofuran (10 mL), lithium aluminum hydride (80%) (0.38 g, 7.6 mmo) was added with cooling in ice, and the mixture was heated under reflux for 1 hour. The reaction mixture was cooled with ice, lyflo Super-Cell (trade name) (1.5 g) was added thereto, ethyl acetate (1 mL) and water (0.5 mL) were added dropwise thereto slowly, and ethyl acetate was added do suspend, and the mixture was filtered and concentrated under reduced pressure to obtain 2-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl-2-methylpropanamine.

[0701] This was dissolved in tetrahydrofuran (8 mL) and triethylamine (0,64 mL, 4.6 mmol) was added to the mixture. The resultant mixture was coloid with ice, 3-bromobenzoyl chloide (0,55 mL, 4.2 mmol) was added to drowise thereto, and the mixture was stirred at the same temperature for 10 minutes. The reaction mixture was combined with water and extracted twice with chloroform. The combined organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was crystallized from chloroform-diisopropyl ether to obtain the title compound (1.41 g, yield: 86%).

Welling opini: 157-163 "C

¹H NMR (CDCl₃) 5 1.38 (6H, s), 1.52 (6H, s), 3.06 (2H, s), 3.58 (2H, d, J = 5.8 Hz), 3.89 (3H, s), 5.65-5.80 (1H, m), 6.76 (1H, s), 6.80 (1H, s), 7.21-7.31 (1H, m), 7.51 (1H, dt, J = 7.8, 2.5 Hz), 7.59 (1H, ddd, J = 7.8, 2.0, 1.1 Hz), 7.73 (1H, t, J = 1.8 Hz).

REFERENCE EXAMPLE 132

55 (4-lodophenyl)carbamic acid phenylmethyl ester

[0702] To a solution of 4-iodoaniline (4.38 g, 20.0 mmol) in tetrahydrofuran, a solution of sodium carbonate (2.65 g, 25.0 mmol) in water (15 mL) was added, benzyl chloroformate (3.1 mL, 22 mmol) was added dropwise with cooling in

ice, and the mixture was stirred at the same temperature for 15 minutes. The reaction mixture was combined with water and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over magnesium sulfate, treated with activated charcoal, filtered, and concentrated under reduced pressure. The residue was recrystallized from diisporroot ether to obtain the title compound (4.71 a. vield: 67%).

5 Melting point, 132-134 °C

¹H NMR (CDC₃) δ 5.20 (2H, s), 6.64 (1H, br s), 7.18 (2H, d, J = 8.8 Hz), 7.33-7.45 (5H, m), 7.60 (2H, d, J = 8.8 Hz).

REFERENCE EXAMPLE 133

6 [4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]carbamic acid phenylmethyl ester

[0703] To a solution of (4-lodophenyl)carbamic acid phenylmethyl ester (6.50 g. 18.4 mmol) and triethylamine (7.7 mm., 55 mmol) in 1,4-dioxane (35 mL), [1,1'-bis(diphenylphosphino)lerrocene|dichloropalladium(II) dichloromethan complex (150 mg, 0.184 mmol) was added, and 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5.9 mL, 41 mmol) was added dropwise. The resultant mixture was stirred at 85 °C for 2.5 hours under nitrogen atmosphere. The reaction mixture was cooled with ice, combined organic layer was washed with exact and brine, dried through sodium sulfate-silica gel (eluting with ethyl acetate), and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate, 10:1 followed by 4;1) to obtain the title compound (5,47 g, 46:6: 49%).

20 An oil.

15

25

¹H NMR (CDCl₃) δ 1.33 (12H, s), 5.20 (2H, s), 6.76 (1H, br s), 7.25-7.52 (7H, m), 7.75 (2H, d, J = 8.4 Hz).

REFERENCE EXAMPLE 134

25 N-[3'-(1,2,3,4,8,9-Hexahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]acetamide

[0704] The title compound was obtained from N-[3-(3.4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyfluro[2,3-h]iso-quinolin-1-y)[1,1-b]pheny[1-4-yi]acetamide by the method similar to that in Reference Example 10. Yield: 88%. Amorphous.

30 ¹H NMR (CDC_{ij}) δ 1.19 (3H, s), 1.20 (3H, s), 1.25 (3H, s), 1.35 (3H, s), 1.85 (1H, d, J = 15.7 Hz), 2.19 (3H, s), 2.48 (1H, d, J = 15.7 Hz), 2.57 (1H, d, J = 15.6 Hz), 2.83 (1H, d, J = 15.6 Hz), 3.87 (3H, s), 5.00 (1H, s), 6.50 (1H, s), 7.17 (1H, d, J = 7.4 Hz), 7.30-7.60 (8H, m).

REFERENCE EXAMPLE 135

3'-(1,2,3,4,8,9-Hexahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)[1,1'-biphenyl]-4-amine

[0705] The title compound was obtained from 3'-(3,4.8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-b]phenyl]-4-amine by the method similar to that in Reference Example 10. Yield: 91%. Amorphous.

 $^{1} H \ MMR \ (CDC_{3}) \ \delta \ (1.18 \ (3H, s), 1.20 \ (3H, s), 1.26 \ (3H, s), 1.34 \ (3H, s), 1.87 \ (1H, d, J = 15.4 \ Hz), 2.43 \cdot 2.60 \ (2H, m), 2.82 \ (1H, d, J = 15.4 \ Hz), 3.72 \ (2H, brs), 3.87 \ (3H, s), 4.98 \ (1H, s), 6.49 \ (1H, s), 6.73 \ (2H, d, J = 8.4 \ Hz), 7.11 \ (1H, d, J = 7.3, 1.5 \ Hz), 7.287 \ A7 \ (5H, m).$

45 REFERENCE EXAMPLE 136

3-Cyano-N-methylbenzamide

[0706] A solution of 3-cyanobenzoic acid (2.00 g, 13.6 mmol) in tetrahydrofuran (10 mL) was cooled with ice, N.N'carbonyldimidazole (2.42 g, 15.0 mmol) was added to this, and the mixture was stirred with cooling in ice for 30 minutes. 40% Solution of methylamine/methanol (2 mL) was added to the mixture and the mixture was stirred further for 30 minutes. The reaction solution was concentrated under reduced pressure, the residue was combined with water and extracted with ethyl acetate. The extract was washed with 1 M hydrochloric acid, 1 M aqueous solution of sodium hydroxide and water, and then concentrated under reduced pressure. The residue was crystallized from ethyl acetatehexane to obtain the title compound (1.66 g, yield: 78%).

Melting point: 132-133 °C

 ${}^{1}\text{H NMR (CDCl}_{3}) \ \delta \ 3.04 \ (3\text{H, d, J} = 4.8 \ \text{Hz}), \ 6.33 \ (1\text{H, br s}), \ 7.58 \ (1\text{H, t, J} = 7.8 \ \text{Hz}), \ 7.78 \ (1\text{H, d, J} = 7.8 \ \text{Hz}), \ 8.00-8.08 \ (2\text{H, m}).$

REFERENCE EXAMPLE 137

2.3-Dihydro-6,7-dimethoxy-2.2-dimethyl-5-(2-methyl-1-propenyl)benzofuran

- 5 [0707] 4-Hydroxy-2.3-dimethoxy-5-(2-methyl-2-propenyl)benzaldehyde was obtained from 4-hydroxy-2.3-dimethoxy-braceledhyde by the method similar to that in Reference Example 1. This was converted to 2,3-dihydro-6,7-dimethoxy-2.2-dimethyl-5-benzofurancarboxaldehyde by the method similar to that in Reference Example 3 and converted to the title compound by the method similar to that in Reference Example 5. Yield: 48%. An oil.
- O ¹H NMR (CDCl₃) δ 1.50 (6H, s), 1.79 (3H, d, J = 1.2 Hz), 1.89 (3H, d, J = 1.2 Hz), 2.97 (2H, s), 3.73 (3H, s), 3.93 (3H, s), 6.22 (1H, s), 6.69 (1H, s).

REFERENCE EXAMPLE 138

15 1-(1,2,3,4.8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-2-yl)ethanone

[0708] To a solution of 1,2,3,4,8,1-tertanlydro-6-methoxy-3,3,8,8-tetramethyl-1-phenyfluro[2,3-h]isoquinoline (503 mg, 1,49 mmol) in tetrahydrofuran (5 mL), triethylamine (0,23 mL, 1,64 mmol) and acetyl chloride (0,12 mL, 1,64 mmol) were added, and the mixture was stirred at room temperature for 1 hour. Ice water was poured into the reaction mixture, which was then extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The precipitated crystals were recovered by filtration, and washed with diethyl ether to obtain the title compound (380 mg, yield: 67%).

1H NMR (CDCl₃) δ 1.25 (3H, s), 1.59 (3H, s), 1.61 (3H, s), 1.72 (3H, s), 2.17 (1H, d, J = 14.6 Hz), 2.54 (1H, d, J = 14.6 Hz), 2.27 (3H, s), 3.12 (2H, s), 3.88 (3H, s), 5.81 (1H, br s), 6.56 (1H, s), 7.03 (5H, m).

REFERENCE EXAMPLE 139

Phenyl(1,2,3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-2-yl)methanone

[0709] To a solution of 1,2,3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline (420 mg, 1.24 mmol) in tetrahydrofuran (5 mL), triethylamline (0.19 mL, 1.37 mmol) and acetyl chloride (0.16 mL, 1.37 mmol) were added, and the mixture was stirred at room temperature for 3 hours. The reaction mixture was poured into ice water and extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The precipitated crystals were recovered by filtration and washed with hexane to obtain the title compound (415 mg, yield: 76%).

Meltina point: 190-225 °C

¹H NMR (CDCl₃) & 1.42 (3H, s), 1.50 (3H, s), 1.57 (3H, s), 1.75 (3H, s), 2.29 (1H, d, J = 14.5 Hz), 2.60 (1H, d, J = 14.5 Hz), 2.71 (2H, s), 3.92 (3H, s), 5.85 (1H, s), 6.65 (1H, s), 7.07 (2H, d, J = 8.6 Hz), 7.23-7.27 (3H, m), 7.36 (5H, m).

EXAMPLE 1

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline

45 [0710] A solution of 2,3-dihydro-7-methoxy-2,2-dimethyl-5-(2-methyl-1-propenyl)benzofuran (2.09 g, 9.00 mmol) and benzonitrile (1.24 g, 12.0 mmol) in acetic acid (3 m.l.) was treated dropwise with conc. sulfuric acid (1.0 ml.) at 10°C, and stirred at room temperature for 40 minutes. The reaction mixture was poured into ice water and washed with disopropyl ether. The aqueous layer was neutralized with conc. aqueous armonia and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, lilitered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate, 15:1 followed by 10:1), and crystallized from hexane to obtain the title compound (1.55 g, yield: 51%). Mellin point: 128:129 eth.

1H NMR (CDCL) δ 1.25 (6H, s), 1.30 (6H, s), 2.19 (2H, s), 2.69 (2H, s), 3.92 (3H, s), 6.61 (1H, s), 7.38 (5H, s),

20

25

40

EXAMPLE 2

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-(1-naphthyl)furo[2,3-h]isoquinoline

5 [0711] The title compound was obtained using 1-naphthonitrile by the method similar to that in Example 1. Yield: 49%.
Melting point: 162-164 °C (ethyl acetate-hexane)

¹H NMR (CDC₃) δ 0.92 (3H, s), 1.17 (3H, s), 1.28 (3H, s), 1.29 (1H, d, J = 16.3 Hz), 1.46 (3H, s), 1.91 (1H, d, J = 16.3 Hz), 2.78 (1H, d, J = 15.6 Hz), 2.90 (1H, d, J = 15.6 Hz), 2.90 (1H, d, J = 15.6 Hz), 3.93 (3H, s), 6.65 (1H, s), 7.30-7.55 (4H, m), 7.61-7.68 (1H, m), 7.81-79 (12H, m).

EXAMPLE 3

10

4-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenol

15 [0712] The title compound was obtained using 4-cyanophenol by the method similar to that in Example 1. Yield: 48%. Melting point: 236-239 °C (methanol-discorporal ether)

¹H NMR (CDCl₃) δ 1.29 (6H, s), 1.30 (6H, s), 2.26 (2H, s), 2.72 (2H, s), 3.92 (3H, s), 6.50 (2H, d, J = 8.4 Hz), 6.60 (1H, s), 7.05 (2H, d, J = 8.4 Hz).

20 EXAMPLE 4

3,4,8,9-Tetrahydro-6-methoxy-1-(4-methoxyphenyl)-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

[0713] The title compound was obtained using 4-methoxybenzonitrile by the method similar to that in Example 1.
25 Yield: 49%.

Melting point: 151-152 °C (ethyl acetate-hexane)

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.33 (6H, s), 2.28 (2H, s), 2.67 (2H, s), 3.85 (3H, s), 3.92 (3H, s), 6.60 (1H, s), 6.91 (2H, d, J = 8.8 Hz), 7.34 (2H, d, J = 8.8 Hz).

30 EXAMPLE 5

3,4,8,9-Tetrahydro-6-methoxy-1-(2-methoxyphenyl)-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

[0714] The title compound was obtained using 2-methoxybenzonitrile by the method similar to that in Example 1.

35 Yield: 51%.

Melting point: 124-125 °C (ethyl acetate-hexane)

¹H NMR (CDC_b) § 1.13 (3H, s), 1.27 (3H, s), 1.30 (3H, s), 1.42 (3H, s), 2.07 (1H, d, J = 16.2 Hz), 2.17 (1H, d, J = 16.2 Hz), 2.61 (1H, d, J = 15.6 Hz), 2.63 (1H, d, J = 15.6 Hz), 2.63 (3H, s), 3.91 (3H, s), 6.57 (1H, s), 6.85 (1H, d, J = 8.0 Hz), 7.00 (1H, td, J = 7.5, 1.0 Hz), 7.21-7.28 (1H, m), 7.34 (1H, ddd, J = 8.3, 7.6, 1.9 Hz).

EXAMPLE 6

40

50

(3,4-Dimethoxyphenyl)-3,4,8,9-tetrahydro-1-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

45 [0715] The title compound was obtained using 3,4-dimethoxybenzonitrile by the method similar to that in Example 1. Yield: 42%.

Melting point: 121-122 °C (diisopropyl ether-hexane)

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.33 (6H, s), 2.30 (2H, s), 2.68 (2H, s), 3.89 (3H, s), 3.91 (3H, s), 3.92 (3H, s), 6.61 (1H, s), 6.87 (1H, d, J = 8.1 Hz), 6.93 (1H, d, J = 1.8 Hz), 6.97 (1H, dd, J = 8.1, 1.8 Hz).

EXAMPLE 7

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-(phenylmethyl)furo[2,3-h]isoquinoline

[0716] The title compound was obtained using phenylacetonitrile by the method similar to that in Example 1. Yield:

Melting point: 77-79 °C (hexane)

¹H NMR (CDCl₂) δ 1.25 (6H, s), 1.34 (6H, s), 2.65 (2H, s), 3.06 (2H, s), 3.87 (3H, s), 4.01 (2H, s), 6.54 (1H, s), 7.06-7.27

(5H, m).

EXAMPLE 8

5 Phenyl(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)methanone

[0717] The mother liquor after filtration of the desired material in Example 7 was concentrated under reduced pressure, the residue was allowed to stand at room temperature, and then crystallized from diisopropyl ether-hexane to obtain the title compound. Yeld: 7.3%.

Melting point: 135-137 °C

¹H NMR (CDCl₃) δ 1.33 (6H, s), 1.35 (6H, s), 2.66 (2H, s), 2.75 (2H, s), 3.92 (3H, s), 6.60 (1H, s), 7.42-7.53 (2H, m), 7.56-7.67 (1H, m), 7.96-8.02 (2H, m).

EXAMPLE 9

15

25

25

1-[1,1'-Biphenyl]-4-yl-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

[0718] The title compound was obtained using 4-cyanobiphenyl by the method similar to that in Example 1. Yield: 33%

Amorphous.

 1 H NMR (CDCl₃) δ 1.26 (6H, s), 1.33 (6H, s), 2.32 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 6.63 (1H, s), 7.32-7.52 (5H, m), 7.60-7.69 (4H, m).

EXAMPLE 10

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-(4-methylphenyl)furo[2.3-h]isoquinoline

[0719] The title compound was obtained using 4-methylbenzonitrile by the method similar to that in Example 1. Yield: 51%

30 Melting point: 158-161 °C (ethyl acetate-hexane)

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.32 (6H, s), 2.25 (2H, s), 2.39 (3H, s), 2.67 (2H, s), 3.92 (3H, s), 6.60 (1H, s), 7.18 (2H, d, J = 8.0 Hz), 7.24-7.32 (2H, m).

EXAMPLE 11

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-(2-methylphenyl)furo[2.3-h]isoguinoline hydrochloride

[0720] A free base of the title compound was obtained using 2-methylbenzonitrile by the method similar to that in Example 1. This was dissolved in methanol, combined with 10% solution of hydrogen chloride/methanol, and concentrated under reduced pressure to obtain the title compound. Yield: 54%. Amorphous.

 1 H NMR (CDCl₃) δ 1.28 (3H, s), 1.30 (3H, s), 1.52 (3H, s), 1.56 (3H, s), 2.01 (2H, s), 2.21 (3H, s), 2.92 (2H, s), 3.96 (3H, s), 6.68 (1H, s), 7.15-7.48 (4H, m).

45 EXAMPLE 12

1-(4-Bromophenyl)-3.4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline hydrochloride

[0721] The title compound was obtained using 4-bromobenzonitrile by the method similar to that in Example 11.

50 Yield: 40%.

Melting point: 140-145 °C (ethyl acetate-diethyl ether).

 1 H NMR (DMSO-d₆) δ 1.25 (6H, s), 1.43 (6H, s), 2.25 (2H, s), 3.15 (2H, s), 3.94 (3H, s), 7.10 (1H, s), 7.59 (2H, d, J = 8.6 Hz), 7.89 (2H, d, J = 8.6 Hz).

55

EXAMPLE 13

3.4.8.9-Tetrahydro-6-methoxy-1-(3-methoxyphenyl)-3.3.8.8-tetramethylfuro[2,3-h]isoquinoline hydrochloride

5 [0722] The title compound was obtained using 3-methoxybenzonitrile by the method similar to that in Example 11. Yield: 49%.

Amorphous.

¹H NMR (CDCl₃) δ 1.34 (6H, s), 1.48 (6H, br s), 2.30 (2H, s), 2.86 (2H, br s), 3.91 (3H, s), 3.97 (3H, s), 6.67 (1H, s), 6.99-7.10 (2H, m), 7.21 (1H, br s), 7.35 (1H, t. J = 7.9 Hz).

EXAMPLE 14

10

20

25

45

55

3,4,8,9-Tetrahydro-6-methoxy-1,3,3,8,8-pentamethylfuro[2,3-h]isoquinoline

19 [0723] A solution of 2,3-dihydro-7-methoxy-2,2-dimethyl-1-propenylibenzofuran (697 mg, 3.00 mL) in acetonitrile (0.9 mL) was treated dropwise with cone, sulfuric acid (0.45 mL) with cooling in ice, and stirred at room temperature for 22 hours. The reaction mixture was poured into ice water and washed with disopropyl ether. The acqueous layer was neutralized with 2 M solution of sodium hydroxide and extracted twice with orthyl acetate. The combined organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate, 5:1) and crystalized from diisoprocyl ether-hexane to obtain the title compound (431 me, vield; 53%).

Melting point: 112-113 °C

¹H NMR (CDCI₂) δ 1.17 (6H, s), 1.53 (6H, s), 2.30 (3H, s), 2.58 (2H, s), 3.27 (2H, s), 3.90 (3H, s), 6.53 (1H, s),

25 EXAMPLE 15

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-(4-pyridinyl)furo[2,3-h]isoquinoline

[0724] A solution of 4-oyanopyridine (312 mg, 3.00 mmol) in toluene (1.5 mL) was treated dropwise with conc. sulfurio acid (1.2 mL), with cooling in ice. Ice bath was removed, a solution of 2,3-dihydro-7-methoxy-2,2-dimethyl-5-(2-methyl-1-propenyl)benzofuran (697 mg, 3.00 mmol) in toluene (0.5 mL) was added to the mixture, and the mixture was stirred at 80 °C for 45 minutes. The reaction mixture was combined with loe and diluted with water and toluene. The organic layer was separated, and the aqueous layer was neutralized with conc. aqueous ammonia and extracted wide with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate, 3:1) and crystallized from ethyl'acetate-hexane to obtain the title compound (294 mg, yield: 29%).

Melting point: 173-175 °C

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.33 (6H, s), 2.23 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 6.63 (1H, s), 7.35 (2H, d, J = 6.0 Hz). 8.67 (2H, d, J = 6.0 Hz).

EXAMPLE 16

1-(2-Fluorophenyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline hydrochloride

[0725] A free base of the title compound was obtained using 2-fluorobenzonitrile by the method similar to that in Example 15. This was dissolved in ethyl acetate, combined with 0.8 M solution of hydrogen chloride/methanol, and concentrated under reduced pressure to obtain the title compound. Yield: 50%. Amorphous.

¹⁰ H NMR (CDC₀) § 1.33 (3H, s), 1.38 (3H, s), 1.61 (3H, s), 1.81 (3H, s), 2.20 (1H, d, J = 17.0 Hz), 2.32-2.45 (1H, m), 2.95 (1H, d, J = 16.2 Hz), 3.18 (1H, d, J = 16.2 Hz), 4.02 (3H, s), 6.74 (1H, s), 7.15-7.28 (1H, m), 7.41 (1H, t, J = 7.7 Hz), 7.59-7.76 (2H, m).

EXAMPLE 17

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-(3-pyridinyl)furo[2,3-h]isoquinoline

[0726] Conc. sulfuric acid (0.60 mL) was added to a solution of 3-cyanopyridine (312 mg, 3.00 mmol) in toluene (1

m.l.) and acetic acid (1 m.l.) with cooling in ice and then a solution of 2,3-dihydro-7-methoxy-2,2-dimethyl-5/2-methyl-1-propenyl)benzofuran (697 mg, 3.00 mmol) in toluene (0.5 ml.) was added to the mixture. The mixture was stirred at 80 °C for 1 hour. The reaction mixture was poured into ice water and washed with discoproyl either, and the aqueous layer was neutralized with conc. aqueous armonia and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate, 5:1) and crystallized from dispropoyl ether-hexane to obtain the title compound (301 mg, yield: 30%).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.32 (6H, s), 2.21 (2H, s), 2.71 (2H, s), 3.93 (3H, s), 6.63 (1H, s), 7.34 (1H, ddd, J = 7.7, 4.9, 0.8 Hz), 7.75 (1H, dt, J = 7.7, 1.9 Hz), 8.63 (1H, d, J = 0.8 Hz), 8.65 (1H, dd, J = 4.9, 1.9 Hz).

EXAMPLE 18

5

15

25

25

45

55

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-(2-pyridinyl)furo[2.3-h]isoquinoline

[0727] The title compound was obtained using 2-cyanopyridine by the method similar to that in Example 17. Yield: 27%

Melting point: 146-147 °C (disopropyl ether-hexane)

¹H NMR (CDCl₃) δ 1.28 (6H, s), 1.32 (6H, s), 2.15 (2H, s), 2.73 (2H, s), 3.91 (3H, s), 6.60 (1H, s), 7.33 (1H, ddd, J = 7.6, 4.9, 1.4 Hz), 7.56-7.63 (1H, m), 7.99 (1H, td, J = 7.6, 1.8 Hz), 8.63 (1H, ddd, J = 4.9, 1.8, 1.0 Hz).

EXAMPLE 19

1-(4-Fluorophenyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

[0728] The title compound was obtained using 4-fluorobenzonitrile by the method similar to that in Example 17. Yield:

Melting point: 131-132 °C (hexane)

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.33 (6H, s), 2.22 (2H, s), 2.68 (2H, s), 3.92 (3H, s), 6.61 (1H, s), 7.08 (2H, t, J = 8.8 Hz), 7.39 (2H, dd, J = 8.8, 5.4 Hz).

EXAMPLE 20

1-(3-Bromophenyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

[0729] The title compound was obtained using 3-bromobenzonitrile by the method similar to that in Example 17. Yield: 51%.

Melting point: 108-109 °C (hexane)

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.34 (6H, s), 2.24 (2H, s), 2.68 (2H, s), 3.92 (3H, s), 6.61 (1H, s), 7.25 (1H, t, J = 7.6 Hz), 7.34 (1H, dt, J = 7.6, 1.6 Hz), 7.52 (1H, dt, J = 7.6, 1.6 Hz), 7.57 (1H, t, J = 1.6 Hz).

EXAMPLE 21

4-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzenesulfonamide

[0730] The title compound was obtained using 4-cyanobenzenesulfonamide by the method similar to that in Example 17. Yield: 55%.

Melting point: 153-168 °C (decomposition) (ethyl acetate-hexane).

¹H NMR (DMSO-d₆) δ 1.15 (6H, s), 1.22 (6H, s), 2.22 (2H, s), 2.65 (2H, s), 3.82 (3H, s), 6.83 (1H, s), 7.54 (2H, d, J = 9.4 Hz), 7.86 (2H, d, J = 8.4 Hz).

EXAMPLE 22

6-Ethoxy-3.4.8.9-tetrahydro-3.3.8.8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline

[0731] The title compound was obtained from 7-ethoxy-2,3-dihydro-2,2-dimethyl-5-(2-methyl-1-propenyl)benzofuran and benzonitrile by the method similar to that in Example 17. Yield: 65%.

Gummv.

 1H NMR (CDCl₃) δ 1.24 (6H, s), 1.30 (6H, s), 1.46 (3H, t, J = 7.0 Hz), 2.17 (2H, s), 2.67 (2H, s), 4.18 (2H, q, J = 7.0 Hz), 6.60 (1H, s), 7.38 (5H, s).

EXAMPLE 23

5

15

25

45

55

6-Ethoxy-3.4.8.9-tetrahydro-1-(4-methoxyphenyl)-3.3.8.8-tetramethylfurol2.3-hlisoquinoline

[0732] The title compound was obtained using 7-ethoxy-2,3-dihydro-2,2-dimethyl-5-(2-methyl-1-propenyl)benzofuran and 4-methoxybenzonitrile by the method similar to that in Example 17. Yield: 55%.

Melting point: 140-142 °C (hexane).

¹H NMR (CDCl₃) δ 1.22 (6H, s), 1.32 (6H, s), 1.46 (3H, t, J = 7.0 Hz), 2.26 (2H, s), 2.65 (2H, s), 3.84 (3H, s), 4.18 (2H, q, J = 7.0 Hz), 6.59 (1H, s), 6.90 (2H, d, J = 8.4 Hz), 7.34 (2H, d, J = 8.4 Hz),

EXAMPLE 24

3-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoguinolin-1-yl)benzoic acid methyl ester

[0733] Conc, sulfurle acid (1.8 mL) was added to a solution of methyl 3-cyanobanzoate (2.42 g. 15.0 mmol) in bluene (15 mL) and sectle acid (8 mL), with ecoling in the earth en a solution of 2.3-dhighor-7-methys-2-dhimethyl-5-(2-methyl-1-propenyl)benzofuran (3.49 g. 15.0 mmol) in toluene (15 mL) was added to the mixture. The mixture was solided with ice, combined with an aqueous solution containing sodium acidate (6.69 g. 8 l. 6 mmol), and then neutralized with cone, aqueous ammonia and extracted twice with ethyl acidate. The combined organic layer was washed with water and extracted with 1 M hydrochloric acid 3 times. The combined aqueous layer was neutralized with cone, aqueous ammonia and extracted twice with ethyl acidate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 10:1) and crystallized from ethyl acetate-hexane to obtain the title compound (2.18 g., Yield: 37%).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.30 (6H, s), 2.16 (2H, s), 2.70 (2H, s), 3.92 (3H, s), 3.93 (3H, s), 6.63 (1H, s), 7.48 (1H, t, J = 7.8 Hz), 7.62 (1H, dt, J = 7.8.1.5 Hz), 8.05-8.12 (2H, m).

EXAMPLE 25

4-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoic acid methyl ester

[0734] The title compound was obtained using methyl 4-cyanobenzoate by the method similar to that in Example 24. Yield: 48%.

Melting point: 150-152 °C (disopropyl ether-hexane).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.30 (6H, s), 2.17 (2H, s), 2.70 (2H, s), 3.92 (3H, s), 3.95 (3H, s), 6.62 (1H, s), 7.48 (2H, d, J = 8.6 Hz), 8.07 (2H, d, J = 8.6 Hz).

EXAMPLE 26

4-(6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoic acid methyl ester

[0735] The title compound was obtained from 7-ethoxy-2,3-dihydro-2,2-dimethyl-5-(2-methyl-1-propenyl)benzofuran and methyl 4-cyanobenzoate by the method similar to that in Example 24. Yield: 43%. Metina point: 81-85 °C (hexane).

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.30 (6H, s), 1.46 (3H, t, J = 7.0 Hz), 2.15 (2H, s), 2.68 (2H, s), 3.95 (3H, s), 4.18 (2H, g), J = 7.0 Hz), 6.61 (1H, s), 7.48 (2H, d, J = 8.3 Hz), 8.07 (2H, d, J = 8.3 Hz).

EXAMPLE 27

4-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzenamine

[0736] Conc. sulfuric acid (3.6 mL) was added to a suspension of N-(4-cyanophenyl)-2,2,2-trifluoroacetamide (6.43 g, 30.0 mmol) in foluene (30 mL) and acetic acid (15 mL) with cooling in ice and then a solution of 2,3-dihythor-7-methoxy-2-2-dimethyl-5-(2-methyl-1-opponylbenzo/duran (10.5 a, 45.2 mmol) in foluene (20 mL) was added to the mixture. The

mixture was stirred at 80 °C for 1 hour. The reaction mixture was cooled with ice and combined with water and a small amount of methanol, and the organic layer was separated, and the aqueous layer was washed with diisopropyl ether, neutralized with conc. aqueous ammonia, and extracted twice with ethyl acetate. The combined organic layer was washed with water and concentrated under reduced pressure. The residue was dissolved in ethanol (30 mL), combined with 2 M aqueous solution of sodium hydroxide (15 mL, 30 mm0), and heated under reflux for 40 minutes. The reaction mixture was concentrated under reduced pressure, and the residue was combined with water and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 1.1) and recrystallized from ethanol-diisopropyl ether to obtain the title compound (6.32 g, Yield:

Melting point: 192-195 °C.

¹H NMR (CDCl₃) δ 1.21 (6H, s), 1.33 (6H, s), 2.36 (2H, s), 2.65 (2H, s), 3.45-3.95 (2H, br), 3.91 (3H, s), 6.59 (1H, s), 6.68 (2H, d, J = 8.5 Hz), 7.21 (2H, d, J = 8.5 Hz).

15 EXAMPLE 28

5

25

30

45

50

3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzenamine

[0737] A solution of 3-aminobenzonitrile (9.48 g, 80.2 mmol) in toluene (100 mL) and acetic acid (80 mL) was cooled with ice, conc. sulfuriz acid (16 mL) was added dropwise thereto, and then 1-(2.3-dinyto-7-methoxy-2.2-dimethyl-5-benzofuranyl)-2-methyl-1-propanol (22.1 g, 88.3 mmol) was added in portions thereto. The resultant mixture was stirred at 85 °C for 1 hour. Ethanol was added dropwise to the reaction mixture, which was then stirred at the same temperature for 45 minutes. The resultant mixture was cooled and then combined with water to separate an aqueous layer, and the organic layer was extracted with water. The combined aqueous layer was neutralized with conc. aqueous ammonia and extracted twice with eithyl acetale. The combined organic layer was washed with water, and then extracted twice with a 10% aqueous solution of acetic acid. The combined aqueous layer was neutralized with conc. aqueous ammonia and extracted twice with eithyl acetale. The combined again clayer was washed twice with water and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic sitiac gel (hexane/ethyl acetate, 4:1 followed by 1:1) and crystallized from ethyl acetate-hexane to obtain the title compound (12.7 o. Yield: 45%).

Melting point: 131-134 °C.

 1 H NMR (CDCl₃) δ 1.26 (6H, br s), 1.33 (6H, s), 2.33 (2H, s), 2.67 (2H, s), 3.69 (2H, br s), 3.91 (3H, s), 6.59 (1H, s), 6.66-6.77 (3H, m), 7.09-7.19 (1H, m).

35 (Alternative synthetic method)

[0738] A solution of 1-(2,3-bihydro-7-methoxy-2,2-dimethyl-5-benzofuranyly2-methyl-1-propyl acotate (907 mg, 3.10 mmol) and 3-aminobenzonitrile (440 mg, 3.72 mmol) in toluene (5 mL) was heated at 85°C, a solution of conc. sulfuric acid (0.58 mL) in acetic acid (3 mL) was added dropwise thereto, and the mixture was stirred at the same temperature for 1.5 hours. Ethanol was added dropwise to the reaction mixture, which was then stirred at the same temperature for 1 hour. The resultant mixture was cooled with ico and combined with water to separate an auguous layer, and the organic layer was extracted with water. The combined aqueous layer was neutralized with conc. aqueous ammonia and extracted twice with ethyl acetale. The combined organic layer was washed with water, and then extracted twice with at 10% aqueous solution of acetic acid. The combined aqueous layer was neutralized with conc. aqueous ammonia and extracted twice with ethyl acetate. The combined organic layer was washed with evice with water and concentrated under reduced pressure. The residue was crystallized from diethyl ether-hexane to obtain the title compound (379 mg, 1961; 34%).

EXAMPLE 29

3-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-hlisoquinolin-1-yl)benzenamine dihydrochloride

[0739] 3-(3.4.8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]benzenamine (351 mg, 1.00 mmol) was dissolved in ethyl acetate (10 mL), combined with 0.8 M hydrogen chloride/methanol (3 mL), and concentrated under reduced pressure. The residue was recrystallized from ethanol-diisopropyl ether to obtain the title compound (401 mg, Yleid: 95%).

Melting point: 176-180 °C.

¹H NMR (DMSO-d_c) δ 1.26 (6H, br s), 1.43 (6H, s), 2.23-2.38 (2H, m), 3.15 (2H, br s), 3.94 (3H, s), 6.80-7.22 (3H, m),

7.09 (1H, s), 7.30-7.48 (1H, m).

EXAMPLE 30

5 N-(3-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoguinolin-1-yl)phenyl]acetamide

[0740] A solution of 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yi)benzenamine (351 mg, 1.00 mmol) and triethylamine (0.17 mL, 1.2 mmol) in tetrahydrofuran (3 mL) was treated dropwise with acetyl choride (78 uL, 1.1 mmol) with cooling in its can distined at the same temperature for 10 minutes. The reaction mixture

- was combined with water and a saturated aqueous solution of sodium hydrogen carbonate and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dired over sodium sulfate, filtered, and concentrated under reduced pressure. The resultant crystals were washed with disopropyl ether to obtain the title compound (305 mg, Yeld: 78%). Melting point 246-247 *C.
- 15 1H NMR (DMSO-d₆) 8 1.13 (6H, s), 1.21 (6H, s), 2.02 (3H, s), 2.28 (2H, s), 2.62 (2H, s), 3.81 (3H, s), 6.80 (1H, s), 6.96-7.04 (1H, m), 7.31 (1H, t, J = 7.9 Hz), 7.55-7.67 (2H, m), 9.99 (1H, br s).

EXAMPLE 31

- 20 2,2,2-Trifluoro-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoguinolin-1-yl)phenyl]acetamide
 - [0741] The title compound was obtained using trifluoroacetic anhydride by the method similar to that in Example 30. Yield: 86%.
- Melting point: 241-242 °C (ethyl acetate-diisopropyl ether).
- ²⁵ ¹H NMR (DMSO-d_θ) δ 1.14 (6H, s), 1.21 (6H, s), 2.28 (2H, s), 2.63 (2H, s), 3.82 (3H, s), 6.82 (1H, s), 7.17-7.25 (1H, m), 7.45 (1H, t, J = 7.7 Hz), 7.65-7.78 (2H, m), 11.31 (1H, br s).

EXAMPLE 32

- 30 N-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]methanesulfonamide
 - [0742] The title compound was obtained from 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzenamine and methanesulfonyl chloride by the method similar to that in Example 30. Yield: 58%. Meting point: 245-247 °C (ethanol).
- 35 1H NMR (CDCl₃) δ 1.27 (6H, br s), 1.33 (6H, s), 2.24 (2H, s), 2.71 (2H, s), 2.88 (3H, s), 3.92 (3H, s), 6.61 (1H, s), 7.15 (1H, dt, J = 6.3, 1.9 Hz), 7.19-7.23 (1H, m), 7.26-7.40 (2H, m).

EXAMPLE 33

- 40 2.2.2-Trifluoro-N-[4-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-yl)phenyllacetamide
 - [0743] The title compound was obtained from 4(3,4,8.9-tetrahydro-6-methoxy-3,3,8.8-tetramethylfuro(2,3-h)isoquinolin-1-yl)benzenamine and trifluoraecotic anhydride by the method similar to that in Example 30. Yield: 89%. Metting point: 117-123 °C (ethyl acetate-distogropyl ether).
- 45 1H NMR (CDCl₃) 8 1.25 (6H, s), 1.32 (6H, s), 2.23 (2H, s), 2.69 (2H, s), 3.92 (3H, s), 6.62 (1H, s), 7.39 (2H, d, J = 8.6 Hz), 7.56 (2H, d, J = 8.6 Hz), 8.30-8.60 (1H, br).

EXAMPLE 34

- 50 N-[4-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]acetamide
 - [0744] The title compound was obtained from 4-(3,4,9.4-tetrahydro-6-methoxy-3,3,8.4-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzenamine and acetyl chloride by the method similar to that in Example 30. Yield. 90%. Meting point: 119-123°C (ethyl acetate-diisopropyl ether).
- ⁵⁵ ¹H NMR (CDCl₃) \(\delta \) 1.23 (6H, s), 1.32 (6H, s), 2.19 (3H, s), 2.27 (2H, s), 2.68 (2H, s), 3.92 (3H, s), 6.61 (1H, s), 7.35 (2H, d, J = 8.5 Hz), 7.44 (1H, br s), 7.54 (2H, d, J = 8.5 Hz).

EXAMPLE 35

3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenylcarbamic acid phenyl ester

5 [0745] The title compound was obtained using phenyl chloroformate by the method similar to that in Example 30. Yield: 88%.

Melting point: 155-164 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.26 (6H, br s), 1.32 (6H, s), 2.30 (2H, s), 2.69 (2H, br s), 3.92 (3H, s), 6.60 (1H, s), 7.05-7.11 (1H, m), 7.13-7.57 (9H, m).

EXAMPLE 36

10

20

20

45

50

N-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]benzamide

15 [0746] The title compound was obtained from benzoyl chloride by the method similar to that in Example 30. Yield:

Melting point: 124-130, 174-176 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) ô 1.21 (6H, br s), 1.33 (6H, s), 2.35 (2H, s), 2.65 (2H, s), 3.92 (3H, s), 6.60 (1H, s), 7.12 (1H, dt, J = 7.8, 1.3 Hz), 7.38 (1H, t, J = 7.8 Hz), 7.41-7.60 (4H, m), 7.82-7.98 (3H, m), 8.26 (1H, br s).

EXAMPLE 37

2-Chloro-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]acetamide

25 [0747] The title compound was obtained using chloroacetyl chloride by the method similar to that in Example 30. Yield: 86%.

Melting point: 205-207 °C (ethyl acetate-diethyl ether).

¹H NMR (CDCl₃) δ 1.24 (6H, br s), 1.32 (6H, s), 2.28 (2H, s), 2.68 (2H, s), 3.92 (3H, s), 4.18 (2H, s), 6.61 (1H, s), 7.12-7.19 (1H, m), 7.37 (1H, t, J = 7.9 Hz), 7.46 (1H, t, J = 1.7 Hz), 7.73-7.80 (1H, m), 8.37 (1H, br s).

EXAMPLE 38

2-(Methylthio)-N-[3-(3.4,8.9-tetrahydro-6-methoxy-3,3.8.8-tetramethylfuro[2,3-h]isoguinolin-1-yl)phenyl]acetamide

39 [0748] A suspension of 2-chloro-M-[3-(3.4.8.9-letrahydro-6-methoxy-3.3.8.8-letramethyffuro[2.3-h]isoquinolin-1-y/) phenyljacetamide (2.20 g. 5.15 mmol) in N,N-dimethylformamide (15 mL) was treated dropwise with a 15% aqueous solution of methylmercaptan sodium satl (3.1 g. 6.6 mmol) slowly, and stirred at 60 °C for 40 minutes. The reaction mixture was combined with water, and extracted twice with ethyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-diethyl ether to obtain the title compound (1.92, c) yield: 85%.

Melting point: 139-141 °C.

¹H NMR (CDC₃) ô 1.25 (6H, br.s), 1.32 (6H, s), 2.19 (3H, s), 2.29 (2H, s), 2.69 (2H, s), 3.34 (2H, s), 3.92 (3H, s), 6.61 (1H, s), 7.12 (1H, dt, J = 7.9 Hz), 7.36 (1H, t, J = 7.9 Hz), 7.44 (1H, t, J = 2.0 Hz), 7.84 (1H, ddd, J = 7.9, 2.0, 1.1 Hz), 8.81 (1H, br.s).

EXAMPLE 39

2-(Methylsulfinyl)-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)phenyl] acetamide

[0749] A suspension of 2-(methythin)-N-[3-(3,4,8,5-tetrahydro-6-methoxy-3,3,8.8-tetramethyfluro[2,3-h]isoquinolin-1-yilphenyl]acetamide (1.37 g, 3.12 mmol) in methanol (15 mL) was treated dropwise with a solution of sodium metaperiodate (1.67 g, 7.81 mmol) in water(10 mL) slowly, and stirred at room temperature for 15 minutes. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted wice with ethyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate, 1:1 followed by ethyl acetate/methanol 10:1) and crystallized from ethyl acetate-diethyl ether to obtain the title compound (1.02 o. Yield: 22%).

Melting point: 198-201 °C.

¹H NMR (CDC₁₃) 61.23 (6H. br s), 1.32 (6H. s), 2.28 (2H. s), 2.68 (2H. s), 2.76 (3H. s), 3.38 (1H. d, J = 14.6 Hz), 3.87 (1H. d, J = 14.6 Hz), 3.82 (3H. s), 6.60 (1H. s), 7.12 (1H. dt, J = 7.8, 1.3 Hz), 7.33 (1H. t, J = 7.8 Hz), 7.48-7.53 (1H. m), 2.21 (1H. br s).

EXAMPLE 40

5

10

15

2-(Methylsulfonyl)-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)phenyl] acetamide

[0750] A suspension of 2-(methythio)-N-[3-(3.4.8)-tetrahydro-6-methoxy-3,3.8.8-tetramethyfluro[2.3-h)isoquinolinryl)phenyjlacetamide (877 mg.2.00 mmol) in methanol (15 mL) was treated dropwise with a solution of sodium metaperiodate (1.43 g. 6.69 mmol) in water (10 mL) and heated under reflux for 24 hours. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted twice with chloroform. The combined organic layer was washed with water and brine, dried over sodium suitate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ sthyl acetate, 11, 1.13 followed by 1:20) and crystals were washed with a mixture of ethyl acetate and diethyl either to obtain the title compound (239 mg. Yield: 25%).

O 1H NMR (DMSO-d_e) δ 1.14 (6H, s), 1.22 (6H, s), 2.29 (2H, s), 2.63 (2H, s), 3.16 (3H, s), 3.81 (3H, s), 4.27 (2H, s), 6.81 (1H, s), 7.10 (1H, d, J = 7.7 Hz), 7.38 (1H, t, J = 7.7 Hz), 7.59 (1H, d, J = 7.7 Hz), 7.66 (1H, s), 10.54 (1H, br s).

EXAMPLE 41

25 3-(Methylthio)-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]propanamide

[0751] The title compound was obtained using 3-methylthiopropionyl chloride by the method similar to that in Example 30. Yield: 99%.

Melting point: 195-197 °C (ethyl acetate-diethyl ether).

¹ H. Ni, H. (CDC₂), 3 1.25 (6H, br s), 1.32 (6H, s), 2.16 (3H, s), 2.29 (2H, s), 2.61 (2H, t, J = 7.0 Hz), 2.86 (2H, br s), 2.86 (2H, t, J = 7.0 Hz), 3.92 (3H, s), 6.60 (1H, s), 7.07 (1H, d, J = 7.4 Hz), 7.25-7.37 (1H, m), 7.42 (1H, s), 7.72 (1H, d, J = 7.6 Hz), 7.87 (1H, br s).

EXAMPLE 42

25

45

 $3-(Methylsulfinyl)-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)phenyl]\ propanamide$

[0752] The title compound was obtained from 3-(methylthio)-N-[3-(3, 4, 8, 8-tetrahydro-6-methoxy-3, 3, 8, 8-tetrameth-ylfuro[2,3-h]isoquinolin-1-yliphenyl|propanamide by the method similar to that in Example 39. Yield: 83%. Metiting point: 178-179 °C (ethyl acetate-diethyl ether).

¹H NMR (CDCl₃) δ 1.23 (6H, br s), 1.31 (6H, s), 2.25 (2H, s), 2.65 (3H, s), 2.67 (2H, br s), 2.87-3.03 (3H, m), 3.15-3.34 (1H, m), 3.92 (3H, s), 6.59 (1H, s), 7.03 (1H, d, J = 7.2 Hz), 7.21-7.32 (1H, m), 7.43 (1H, s), 7.72 (1H, d, J = 8.0 Hz), 9.27 (1H, br s)

EXAMPLE 43

N-[4-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)phenyl]methanesulfonamide

f0 [0753] A solution of 4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyfluro(2,3-h)lisoquinolin-1-yl)benzenamine (1.05 g, 3.00 mmol) in pyridine (7 mL) was treated dropwise with methanesulfonyl chloride (0.50 mL, 6.5 mmol) with cooling in ice, and stirred at the same temperature for 1 hour and at room temperature for 80 minutes. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate and extracted twice with othyl acctate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was suspended in folluene, concentrated under reduced pressure, and then recrystallized from ethanol-diethyl ether to obtain the title compound (500 mg, Yleid: 39%). Melling point; 235-237 c.

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.33 (6H, s), 2.24 (2H, s), 2.69 (2H, s), 3.00 (3H, s), 3.92 (3H, s), 6.61 (1H, s), 7.21

(2H, d, J = 8.8 Hz), 7.38 (2H, d, J = 8.8 Hz).

EXAMPLE 44

5 N-(Methylsulfonyl)-N-[4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl] methanesulfonamide

[0754] A suspension of N-(4-(3.4.8,9-tetrahydro-6-methoxy-3.3.8,8-tetramethyfuro[2.3-h]lsoquinolin-1-yl)phenyl methanesulforamide (664 mg, 1.28 mmb) and tiethylamine (0.5 ml, 3.9 mmb) in tetrahydrotruna (6ml) was treated dropwise with methanesulfonyl chloride (0.20 ml, 2.6 mmb)), and stirred at 70 °C for 30 minutes. The reaction mixture was combined with water and a saturated aquous solution of sodium hydrogen carbonate, and extracted twice with etryl acctate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acctate, 3.1 followed by 1:1) and recryptatilized from ethyl acctate-ethyl tether to obtain the title compound (545 mg, Yielde, 68%).

15 Melting point: 223-225 °C.

 1 H NMR (CDCl₃) δ 1.26 (6H, s), 1.30 (6H, s), 2.14 (2H, s), 2.70 (2H, s), 3.41 (6H, s), 3.92 (3H, s), 6.62 (1H, s), 7.39 (2H, d, J = 8.6 Hz), 7.50 (2H, d, J = 8.6 Hz),

EXAMPLE 45

20

25

45

50

N-(Methylsulfonyl)-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl] methanesulfonamide

[0755] The title compound was obtained from 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro(2,3-h)isoquinolin-1-ylbenzenamine by the method similar to that in Example 44. Yield: 63%. Mellin a point: 192-195 °C (acetone-hexane).

¹H NMR (CDCl₃) δ 1.25 (6H, br s), 1.32 (6H, s), 2.05-2.55 (2H, m), 2.70 (2H, br s), 3.41 (6H, s), 3.92 (3H, s), 6.61 (1H, s), 7.29 (1H, t, J = 1.7 Hz), 7.38 (1H, dt, J = 7.5, 1.7 Hz), 7.53 (1H, t, J = 7.5 Hz), 7.61 (1H, dt, J = 7.5, 1.7 Hz).

30 EXAMPLE 46

N-[4-/3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-vl)phenyll-3-pyridinecarboxamide

[0756] Nicotinoyl chloride hydrochloride (712 mg, 4.00 mmol) was added to a solution of 4-(3,4,8-s-tetrahydro-e-methoxy-3,3,8-tetramethylturo[2,3-h]isoquinolin-1-yl)benzenamine (701 mg, 2.00 mmol) and 4-dimethylaminopy-ridine (611 mg, 5.00 mmol) in Ni-dimethylformamide (10 mL) and the mixture was stirred at room temperature for 20 minutes. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted wice with ethyl actetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate, 2:1 followed by 1:3) and crystallized from ethyl acetate-hexane to obtain the thie compound (181 mg, Yield: 20%).

Melting point, 130-137 °C.

1H NMR (CDC)₃) 5 1.25 (6H, s), 1.33 (6H, s), 2.31 (2H, s), 2.69 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 7.38-7.51 (1H, m), 7.42 (2H, d, J = 8.6 Hz), 7.70 (2H, d, J = 8.6 Hz), 8.21 (1H, brs), 8.25 (1H, dt, J = 8.0, 2.0 Hz), 8.79 (1H, dd, J = 4.8, 14. Hz), 9.14 (1H, dd, J = 2.6, 0.8 Hz).

EXAMPLE 47

N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-4-pyridinecarboxamide

[0757] The title compound was obtained from 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzenamine and isonicotinoyl chloride hydrochloride by the method similar to that in Example 46. Yield: 83%.

Melting point: 233-236 °C (ethyl acetate-diethyl ether).

 ^{1}H NMR (CDC) $_{2}$ δ 1.17 (6H, br s), 1.33 (6H, s), 2.33 (2H, s), 2.60 (2H, s), 3.92 (3H, s), 6.59 (1H, s), 7.13 (1H, d, J=7, 7Hz), 7.36 (1H, t, J=7, 7Hz), 7.51-7.56 (1H, m), 7.71 (2H, d, J=6.1 Hz), 7.86-7.93 (1H, m), 8.76 (2H, d, J=6.1 Hz), 8.98 (1H, br s).

EXAMPLE 48

N-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-2-pyridinecarboxamide

[0758] The title compound was obtained from 3-(3.4,8.9-tetrahydro-6-methoxy-3,3,8.8-tetramethylfuro(2,3-h)isoquinolin-1-yl)benzenamine and picolinoyl chlorido hydrochlorido by the method similar to that in Example 46. Yield: 86%. Melting point: 179-183 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) 5 1.26 (6H, br s), 1.32 (6H, s), 2.32 (2H, s), 2.70 (2H, s), 3.92 (3H, s), 6.61 (1H, s), 7.15 (1H, d, J = 7.8 Hz), 7.41 (1H, t, J = 8.1 Hz), 7.44 (1H, m), 7.71 (1H, t, J = 1.8 Hz), 7.867.96 (1H, m), 7.97-8.04 (1H, m), 8.26-8.32 (1H, m), 8.06 (1H, dt, J = 4.7, 0.7 Hz), 10.12 (1H, br s).

EXAMPLE 49

15

25

25

N-[4-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-4-pyridinecarboxamide

[0759] The title compound was obtained using isonicotinoyl chloride hydrochloride by the method similar to that in Example 46. Yield: 90%.

Melting point: 159-163 °C (ethyl acetate-diethyl ether).

¹H NMR (CDC₃) δ 1.25 (6H, s), 1.33 (6H, s), 2.30 (2H, s), 2.69 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 7.42 (2H, d, J = 8.4 Hz), 7.69 (2H, d, J = 8.4 Hz), 7.75 (2H, d, J = 6.2 Hz), 8.21 (1H, br s), 8.81 (2H, d, J = 6.2 Hz).

EXAMPLE 50

N-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-3-pyridinecarboxamide

[0760] A solution of sodium carbonate (466 mg, 4.40 mmol) in water (4 mL) was added to a solution of 3-(3.4, 8.9-ter-rahydro-6-methoxy-3.3, 8.8-tetramethyfluro[2.3-h]isoquinolin-1-yl)benzenamine (701 mg, 2.00 mmol) in tetrahydro-furan (4 mL). Nicotinoyi chloride hydrochloride (392 mg, 2.20 mmol) was added to the mkture with cooling in ice, and the mixture was stirred at room temperature for 20 minutes. Furthermore a solution of sodium carbonate (466 mg, 4.40 mmol) in water (2 mL) and nicotinoyi chloride hydrochloride (392 mg, 2.20 mmol) were added to the mixture and the mixture was stirred at room temperature for 15 minutes. The reaction mixture was combined with water and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-hexane to obtain the title compound (783 mg, Yield:86%).

Melting point: 219:219 °C.

¹H NMR (CDC_{is}) § 1.16 (6H, br.s), 1.33 (6H, s), 2.34 (2H, s), 2.60 (2H, br.s), 3.92 (3H, s), 6.58 (1H, s), 7.09-7.18 (1H, m), 7.30-7.46 (2H, m), 7.52-7.58 (1H, m), 7.88-7.97 (1H, m), 8.75 (1H, dd, J = 5.0, 1.6 Hz), 8.875 (1H, dd, J = 6.0, 1.6 Hz), 8.88-9.10 (1H, m), 9.08 (1H, dd, J = 6.0, 1.6 Hz), 8.88-9.10 (1H, m), 9.08 (1H, dd, J = 6.0, 1.6 Hz), 8.88-9.10 (1H, m), 9.08 (1H, dd, J = 6.0, 1.6 Hz), 8.88-9.10 (1H, m), 9.08 (1H, dd, J = 6.0, 1.6 Hz), 8.88-9.10 (1H, m), 9.08 (1H, dd, J = 6.0, 1.6 Hz), 8.88-9.10 (1H, m), 9.08 (1H, dd, J = 6.0, 1.6 Hz), 8.88-9.10 (1H, m), 9.08 (1H, dd, J = 6.0, 1.6 Hz), 9.08 (1H, dd, J = 6.0, 1.6 Hz

40 EXAMPLE 51

N-(3-Pyridine carbonyl)-N-[3-(3,4,8,9-tetra hydro-6-methoxy-3,3,8,8-tetra methyl furo [2,3-h] is oquinolin-1-yl) phenyl] qlycine methyl ester

¹H NMR (CDCl₃) δ 1.23 (6H, br s), 1.36 (6H, s), 2.09 (2H, br s), 2.67 (2H, br s), 3.79 (3H, s), 3.92 (3H, s), 4.66 (2H, br s), 6.00 (1H, s), 7.10-7.30 (4H, m), 7.36 (1H, br s), 7.82 (1H, dt, J = 8.0, 2.0 Hz), 8.49 (1H, dd, J = 4.9, 1.7 Hz), 8.55 (1H, d, J = 2.0 Hz).

EXAMPLE 52

5

10

15

25

40

45

N-Methyl-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-3-pyridinecarboxamide

[0762] The title compound was obtained using iodomethane by the method similar to that in Example 51. Yield: 69%. Melting point: 151-153 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.23 (6H, br s), 1.36 (6H, s), 2.08 (2H, br s), 2.67 (2H, br s), 3.54 (3H, s), 3.92 (3H, s), 6.61 (1H, s), 6.99-7.07 (1H, m), 7.13-7.37 (4H, m), 7.76 (1H, dt, J = 7.9, 1.8 Hz), 8.47 (1H, dd, J = 4.9, 1.8 Hz), 8.50-8.54 (1H, m).

EXAMPLE 53

N-(3-Pyridinylmethyl)-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl] benzamide

[0763] The title compound was obtained from N-I-3.(3.4.8,9-tetrahydro-8-methoxy-3,3.8.8-tetramethyfuro(2,3-h)isoquinolin-1-yi)phenyl[benzamide and 3-chloromethylpyridine by the method similar to that in Example 51. Yield: 95%. Melting opin: 98-104 °C (ethyl acetate-hexane).

¹H NMR (CDC₃) δ 1.22 (6H, br s), 1.30 (6H, s), 2.02 (2H, s), 2.65 (2H, s), 3.91 (3H, s), 5.17 (2H, br s), 6.60 (1H, s), 6.81 (1H, dt, J = 6.4, 2.5 Hz), 7.05-7.32 (7H, m), 7.37-7.45 (2H, m), 7.77 (1H, dt, J = 7.9, 1.9 Hz), 8.52 (1H, dd, J = 4.7.1.9 Hz), 8.59 (1H, dJ, J = 1.8 Hz).

EXAMPLE 54

25 N-(3-pyridinylmethyl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzenamine trihydrochloride

[0754] 5 M aqueous solution of sodium hydroxide (1.9 mt., 9.5 mmol) was added to a solution of N-(3-pyridinylmethyl). AN(3-(3.4.6.9-tetrahydro-6-methoxy-3.8.8-tetramethyltru(2.5.4-bilsoquinion1-vyl)phenylberazmide (1.05 g. 1.02 mmol) in methanol (5 mt.) and the mixture was heated under reflux for 8 hours. The reaction mixture was combined with water, and extracted twice with othyl acetale. The combined organic layer was washed with water and brine, dried over socium suitate, filtered, and concentrated under reduced pressure to obtain a free base of the title compound. This was dissolved in methanol (5 mt.), combined with 0.8 M solution of hydrogen chloride/methanol (10 mt.), and concentrated under reduced pressure. The residue was crystallized from ethanol-diethyl ether to obtain the title compound (826 mg., Yelic: 78%).

 $^{1} H \ NMR \ (DMSO-d_0) \ \delta \ 1.23 \ (6H, s), \ 1.43 \ (6H, s), \ 2.25 \ (2H, s), \ 3.14 \ (2H, s), \ 3.93 \ (3H, s), \ 4.62 \ (2H, s), \ 6.71-6.79 \ (1H, m), \ 6.84 \ (1H, d_J) \ = \ 8.4 \ 1.4 \ Hz), \ 7.09 \ (1H, s), \ 7.33 \ (1H, t, J = 7.9 \ Hz), \ 8.07 \ (1H, dd, J = 8.0, 5.5 \ Hz), \ 8.00 \ (1H, d_J) \ = \ 8.00 \ (1H, d_J) \ = \ 8.01 \ (1H, d_J) \ = \ 8.$

EXAMPLE 55

N-(Methylsulfonyl)-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]glycine methyl ester

[0765] The title compound was synthesized from N-[3-(3,4,8,9-letrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] isoquinolin-1-yl)phenyl[methanesulfonamide by the method similar to that in Example 51. Yield: 98%. Amorphous.

¹H NMR (CDCl₃) δ 1.25 (6H, br s), 1.32 (6H, s), 2.23 (2H, br s), 2.70 (2H, br s), 3.16 (3H, s), 3.75 (3H, s), 3.92 (3H, s), 4.51 (2H, br s), 6.61 (1H, s), 7.39-7.58 (4H, m).

EXAMPLE 56

N-[(Dimethylamino)methylene]-3-[(methylsulfonyl)]3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] isoquinolin-1-yl)phenyl[amino]propanesulfonamide

[0766] N,N-dimethylformamide dimethylacetal (0.73 mL, 5.5 mmol) was added to a suspension of 3-chloro-1-propanesulfonamide (788 mg, 5.00 mmol) in toluene (10 mL), and the mixture was stirred at $60\,^{\circ}\text{C}$ for 30 minutes. The

reaction mixture was concentrated under reduced pressure to obtain the mixture (1.15 g) containing 3-chloro-N-((dimeth-vlamino)methylenel-1-propanesulfonamide.

[0757] Sodium hydride (68% suspension in oil) (77 mg, 2.1 mmol) was added to a solution of N13-(3.4.8.8-letrallydro-6-me/howy-5.3.8.8-letrame/hydros/2.3-higo-hydros/hors/letrallydros/2.4-higo-hydros/hors/letrallydros/2.4-higo-hydros/hors/letrallydros/2.3-higo-hydros/1.8-higo-hydros/1.-higo-hydros/1.8-higo-hydros/1.8-higo-hydros/1.8-higo-hydros/1.8-higo-hydros/1.8-higo-hydros/1.8-higo-hydros/1.8-higo-hydros/1.8-

TH NMR (CDCl₃) & 1.25 (6H, br s), 1.32 (6H, s), 1.91-2.08 (2H, m), 2.23 (2H, s), 2.70 (2H, s), 2.92 (3H, s), 3.02 (3H, s), 3.03 (3H, s), 3.13 (3H, s), 3.82 (2H, t, J = 6.9 Hz), 3.92 (3H, s), 6.61 (1H, s), 7.27-7.52 (4H, m), 8.00 (1H, s).

EXAMPLE 57

5

15

20

45

50

55

3-[(Methylsulfonyl)][3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]|soquinolin-1-yl)phenyl]amino] propanesulfonamide hydrochloride

[0768] N-{(dimethylamino)methylene}-3-{(methylsulfony)[3-(3.4,8.9-tetrshydro-6-methoxy-3.3,8.8-tetrsmethylfuro [2.3-h]isoquinolin-1-yliphenyljamino]propanesulfonamide (625 mg. 1.03 mmol) was dissolved in 2 M hydrochroric acid (2 ml.), and heated under reflux for 30 minutes. The reaction mixture was neutralized with sodium hydrogen carbonate, diluted with water, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure to obtain a free base of the title compound. This was dissolved in methanol (2 ml.), and concentrated under reduced pressure to obtain the little compound (682 mg, Yield: 98%).

Amorphous.

1H NMR (DMSC-d_g) 6 1.20 (3H, s), 1.23 (3H, s), 1.45 (3H, s), 1.46 (3H, s), 1.70-1.90 (2H, m), 2.05 (1H, d, J = 18.6 Hz), 2.31 (1H, d, J = 18.6 Hz), 2.95-3.20 (2H, m), 3.11 (3H, s), 3.18 (2H, br s), 3.81 (2H, t, J = 6.1 Hz), 3.94 (3H, s), 6.84 (2H, br s), 7.10 (1H, s), 7.50-7.82 (4H, m), 12.80-12.95 (1H, br).

EXAMPLE 58

35 2-[(Methylsulfonyl)[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]amino] acetamide

[0769] Potassium tert-butoxide (90%) (225 mg. 1.8 mmol) was added to a solution of N-13-(3.4.8,9-tetralydro-6-methoxy-3.8.8 k-termethytifurg 2.5-hilpsoquinoin-t-ylphpreyl/methanesutlonamide (645 mg. 1.50 mmol) in tetralydrotina (5 mL) and the mixture was stirred at room temperature for 5 minutes. 2-Bromoacetamide (290 mg. 2.10 mmol) was added to the resultant mixture and the mixture was stirred at 60 °C for 1 hour. Potassium tert-butoxide (90%) (56 mg. 0.45 mmol) ware added to the mixture and the mixture was stirred at 80 °C for 30 minutes. The reaction mixture was stored added to the mixture and the mixture was stirred at 80 °C for 30 minutes. The reaction mixture was cooled with ice, combined with water, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetate), and crystallized from ethyl acetate-diethyl ether to obtain the title compound (469 mg, Yield: 64%).

¹H NMR (CDCl₃) δ 1.25 (6H, br s), 1.32 (6H, s), 2.26 (2H, br s), 2.70 (2H, s), 3.09 (3H, s), 3.92 (3H, s), 4.32 (2H, s), 5.36-5.58 (1H, br), 6.08-6.28 (1H, br), 6.61 (1H, s), 7.38-7.56 (4H, m).

EXAMPLE 59

2-[[[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]amino]carbonyl]benzoic

[0770] A solution of phthalic anhydride (222 mg, 1.50 mmol) in tetrahydrofuran (2 mL) was added to a solution of 3-(3.4,8.9-tetrahydro-6-methoxy-3.8,8-tetramethyfuro(2,3-h)isoquinolin-1-yi)benzenamine (526 mg, 1.50 mmol) in tetrahydrofuran (3 mL), and sturred at room temperature for 15 minutes. The reaction insture was combined with di-

isopropyl ether, and crystals were recovered by filtration and recrystallized from ethanol- ethyl acetate to obtain the title compound(630 mg, Yield: 84%).

Melting point: 194-197 °C.

¹H NMR (DMSO-d₆) δ 1.15 (6H, s), 1.24 (6H, s), 2.35 (2H, br s), 2.66 (2H, br s), 3.82 (3H, s), 6.82 (1H, s), 7.08 (1H, d, J = 7.6 Hz), 7.37 (1H, t, J = 7.7 Hz), 7.50-7.65 (3H, m), 7.67 (1H, d, J = 7.8 Hz), 7.81 (1H, s), 7.83-7.90 (1H, m), 10.46 (1H, br s).

EXAMPLE 60

5

25

30

25

50

55

2-(3-(3.4.8,9-Tetrahydro-6-methoxy-3,3,8.8-tetramethylfuro(2,3-h)isoguinolin-1-yl)phenyl)-1H-isoindole-1,3(2H)-dione

[0771] A mixture of 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyffurd(2,3-h)[soquinolin-1-yl)benzenamine (491 mg, 1.40 mmol) and phthalic anhydride (208 mg, 1.40 mmol) in xylene (3 mL) was heated under reflux for 10 minutes. The reaction mixture was dissolved in ethyl acetate, washed with water, a saturated aqueous solution of sodium hydrogen carbonate and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 2:1 followed by 1:2), and crystallized from ethyl acetate-hexane to obtain the title compound (439 mg, Yield: 65%).

Melting point: 162-168 °C.

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.37 (6H, s), 2.10-2.80 (2H, br), 2.68 (2H, s), 3.92 (3H, s), 6.60 (1H, s), 7.44-7.61 (4H, m), 7.73-7.84 (2H, m), 7.88-7.99 (2H, m).

EXAMPLE 61

6-[3-(3.4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-5H-pyrrolo[3,4-b]pyridine-5.7(6H)-dione

[0772] A mixture of 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro(2,3-h)isoquinolin-1-yl)benzenamine (701 mg, 2.00 mmol) and 2,3-pyridinedicarboxylic anhydride (288 mg, 2.00 mmol) in tetrahydrofural (4mL) was stirred at room temperature for 16 minutes. The reaction mixture was combined with diethyl ether, and crystals were recovered by filtration. This was suspended in acetic anhydride (4 mL), and stirred at 100 °C for 1 hour. The reaction mixture was concentrated under reduced pressure, and the residue was combined with ethyl acetate and a saturated aqueous solution of sodium hydrogen carbonate, stirred vigorously, and diluted with water, and then the organic layer was weshed with water and brine, dried over sodium sullate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 1:3) to obtain the title compound (724 mg, 75%).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.38 (6H, s), 2.25-2.60 (2H, br), 2.69 (2H, s), 3.93 (3H, s), 6.61 (1H, s), 7.46-7.60 (4H, m), 7.70 (1H, dd, J = 7.7, 4.8 Hz), 8.26 (1H, dd, J = 7.7, 1.5 Hz), 9.05 (1H, dd, J = 4.8, 1.5 Hz).

40 EXAMPLE 62

2-[3-(3.4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-1H-pyrrolo[3,4-c]pyridine-1.3(2H)-dione

45 [0773] The title compound was obtained using 3,4-pyridinedicarboxylic anhydride by the method similar to that in Example 61. Yield: 77%.

Melting point: 123-129 °C (decomposition) (ethyl acetate-hexane).

1H NMR (CDCI_b) δ 1.26 (6H. s), 1.38 (6H. s), 2.15-2.70 (2H. br), 2.69 (2H. s), 3.92 (3H. s), 6.61 (1H. s), 7.42-7.63 (4H.

m), 7.84 (1H, dd, J = 4.8, 0.8 Hz), 9.14 (1H, d, J = 4.8 Hz), 9.24 (1H, d, J = 0.8 Hz).

EXAMPLE 63

4-[[[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]amino]carbonyl]-1-piperidinecarboxylic acid 1,1-dimethylethyl ester

[0774] 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.00 g, 5.22 mmol) was added to a solution of N-(tert-butoxycarbonyl)isonipecotic acid (1.01 g, 4.41 mmol) and 1-hydroxy-1H-benzotriazole monohydrate (678 mg, 443 mmol) in N-dimethyldromamide (15 mL) and the mixture was sittred at room temperature for 1 hour, 3-(3.4.8.9-Tet-

rahydro-E-methoxy-3.3,8.8-letramethyfluro(2.3-h]isoquinolin-1-yl)benzenamine (1.41 g, 4.02 mmol) was added to the resultant mixture and the mixture was stirred at zoom temperature for 4 hours. The reaction mixture was comised at zoom temperature for 4 hours. The reaction mixture was comised with a saturated sodium hydrogen carbonate and water, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, died over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetata 3.1, 1.1 followed by 1: 2). This was dissolved in ethyl acetata and washed with a 2% aqueous solution of acetic acid (twice), water and a saturated aqueous solution of sodium hydrogen carbonate, dried over sodium sulfate, filtered, and concentrated under reduced pressure to obtain the title compound (1.83 g, Yield: 81%).

H NMR (CDCl₃) § 1.23 (6H, br s), 1.32 (6H, s), 1.46 (9H, s), 1.60-1.92 (4H, m), 2.22-2.42 (1H. m), 2.30 (2H, s), 2.62-2.85 (2H, m), 2.68 (2H, br s), 3.92 (3H, s), 4.06-4.29 (2H, m), 6.60 (1H, s), 7.05 (1H, d, J = 7.6 Hz), 7.25-7.36 (1H, m), 7.48 (1H, s), 7.87-7.85 (2H, m).

EXAMPLE 64

5

15

N-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethy/furo[2,3-h]isoquinolin-1-y/l)phenyl)-4-piperidinecarboxamide dihydrochloride

[0775] 4 M solution of hydrogen chloride/eithyl acetate (2.0 mL) was added to a solution of 4-f[[3-(3.4.8,9-tetrahydro-6-methoxy-3.3,8.8-tetramethyfluro[2,3-h]isoquinolin-1-yl)phenyl]amino|pathonyl]-1-piperidinearboxylic acid 1,1-dimethylethyl ester (1.44 g, 2.56 mmol) in ethyl acetate (15 mL) and the mixture was stirred at froom temperature for 1.5 hours, and then at 80 °C for 1 hour. Ethanol (3 mL) was added to the resultant mixture and the mixture was stirred at 60 °C for 1 hour. The reaction mixture was cooled, and the crystals were recovered by filtration to obtain the title compound (774 mg, 57%).

5 Melting point: 217-224 °C.

¹H NMR (DMSO-d_g) & 12.3 (BH, s), 1.44 (BH, br. s), 1.88-2.07 (4H, m), 2.10-2.50 (2H, m), 2.65-3.40 (7H, m), 3.95 (3H, s), 7.11 (1H, s), 7.31 (1H, d, J = 8.2 Hz), 7.59 (1H, t, J = 8.2 Hz), 7.86 (1H, d, J = 8.2 Hz), 8.03 (1H, s), 8.70-9.35 (2H, m), 10.78-10.90 (1H, m), 12.50-12.80 (1H, br), 10.78-10.90 (1H, m), 12.50-12.80 (1H, br), 10.78-10.90 (1H

30 EXAMPLE 65

25

45

N-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-4-pyridineacetamide

[0778] Triethylamine (0.77 mL, 5.5 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodilmide hydrochloride (537 mg, 2.80 mmol) were added to a solution of 3-(3.4,8,9-tetrahydro-8-methoxy-3.3,8,8-tetramethyfluro[2,3-h]isoquinolin-1-yilbenzenamine (701 mg, 2.00 mmol), 4-pyridineacetic acid hydrochloride (417 mg, 2.40 mmol) and 1-hydroxy-1H-benzotriazole monohydrate (388 mg, 2.40 mmol) in N.N-dimethylfornamide (10 mL) and the mixture was stirred at room temperature for 1 hour. The mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted twice with a mixture of ethyl acetate/methanol (5:1). The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was recrystallized from ethanol-diethyl ether to obtain the tiltic compound (523 mg, yleid: 56%).

Melting point: 124-128 °C.

¹H NMR (CDCl₃) δ 1.23 (6H, br s), 1.30 (6H, s), 2.27 (2H, s), 2.67 (2H, br s), 3.67 (2H, s), 3.92 (3H, s), 6.60 (1H, s), 7.03-7.10 (1H, m), 7.24-7.40 (4H, m), 7.67-7.74 (1H, m), 7.91 (1H, br s), 8.60 (2H, d, J = 5.8 Hz).

EXAMPLE 66

N-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-3-pyridineacetamide

[0777] The title compound was obtained using 3-pyridineacetic acid hydrochloride by the method similar to that in Example 65. Yield: 70%.

Melting point: 122-127 °C (ethanol-diethyl ether).

¹H NM² (CDCl₃) & 1.23 (6H, br s), 1.30 (6H, s), 2.26 (2H, s), 2.67 (2H, s), 3.67 (2H, s), 3.91 (3H, s), 6.59 (1H, s), 7.06 (1H, d, J = 7.4 Hz), 7.24-7.37 (3H, m), 7.64-7.80 (3H, m), 8.52-8.58 (2H, m).

55

FXAMPLE 67

N-[3-(3.4,8.9-Tetrahydro-6-methoxy-3,3,8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-2-pyridineacetamide

[0778] The title compound was obtained using 2-pyridineacetic acid hydrochloride by the method similar to that in Example 65. Yield: 75%.

Melting point: 176-177 °C (ethanol-diethyl ether).

 1 H NM 2 (CDC $_{13}$) 8 1.24 (6 1 H, br.s), 1.29 (6H, s), 2.27 (2H, s), 2.88 (2H, s), 3.87 (2H, s), 3.92 (3H, s), 6.60 (1H, s), 7.07 (1H, d, J = 7.7, 1.3 Hz), 7.21-7.37 (3H, m), 7.42 (1H, t, J = 1.6 Hz), 7.77 (1H, td, J = 7.7, 1.9 Hz), 7.80 (1H, ddd, J = 8.2, 2.0, 0.8 Hz), 8.83 (1H, ddd, J = 4.9, 1.8, 1.1 Hz), 9.82 (1H, br.s).

EXAMPLE 68

[[4-[[[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]amino]carbonyl]phenyl]

15 methyl]phosphonic acid diethyl ester hydrochloride

[0779] 1-Ethyl-3-(3-dimethylaminopropyl)-athodimide hydrochloride (1.55 g. 8.08 mmol) and thethylamine (1.0 mL, 7.2 mmol) were added to a solution of 3-(3.4.8.9-letrahydro-6-methoxy-3.3.8.8-letramethylfuro[2,3-h]sequinolin-1-yi) benzenamine (2.18 g. 6.22 mmol), 4-[(delthoxyphosphinyl)methyl[benzole acid (1.86 g. 6.83 mmol) and 1-hydroxy-1H-benzotriazole monohydrate (1.05 g. 6.86 mmol) in NI.-dimethylformamide (30 mL) and the mixture was stirred at room temperature for 17 hours. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetate 3 times. The combined organic layer was washed with water and brine, dried over sodium suffate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 2:1, 1:1, 1:3, followed by 1:10) to obtain a free base of the title compound. This was dissolved in ethyl acetate (20 mL), combined with 0.8 M solution of hydrogen chloride/methanol (8.5 mL), and concentrated under reduced pressure. The residue was recrystallized from ethanolethyl acetate to obtain the title compound (3.28 g., Yield: 81%).

¹H NMR (DMSO-d₂) δ 1.18 (8H, t, J = 7.1 Hz), 1.25 (6H, br s), 1.37-1.58 (6H, m), 2.16-2.57 (2H, m), 3.05-3.35 (2H, m), 3.35 (2H, d) = 22.0 Hz), 3.89-4.05 (4H, m), 3.96 (3H, s), 7.12 (1H, s), 7.34-7.48 (3H, m), 7.65 (1H, t, J = 8.1 Hz), 7.97 (2H, d, J = 8.0 Hz), 8.05-8.16 (2H, m), 10.89 (1H, br s), 12.60-12.80 (1H, br).

EXAMPLE 69

35 [[4-[[[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]amino]carbonyl]phenyl] methyllohosohonic acid

[0780] A solution of [[4-[[]3-(3.4,8.4-sterahydro-6-methoxy-3.3,8.8-tertamethyfluro[2.3-h]isoquinolin-1-yl)phenyl]metholicarbonyl[phenyl]methyl[phenyl]methyl[phenyl]methyl[phenyl]metholicaria did didniy lester hydrochloride (1.6 og, 2.5 ommol) in dichloromethane (10 ml.) was treated dropwise with trimethylsily bromide (1.0 ml., 7.6 mmol), and stirred at room temperature for 22 hours. The reaction mixture was concentrated under reduced pressure, and the residue was dissolved in methanol (7.5 ml.) was added to the resultant solution and the mixture was stirred at room temperature. The precipitated crystals were recovered by filtration to obtain the title compound (1.31 g, Yield: 95%).

45 Melting point: 237-241 °C.

¹H NMR (DMSO-d_g) δ 1 20 (6H, s), 1.22 (6H, s), 2.34 (2H, br s), 2.73 (2H, br s), 3.00 (2H, d, J = 21 2 Hz), 3.84 (3H, s), 6.86 (1H, s), 7.11 (1H, d, J = 7.8 Hz), 7.33-7.46 (3H, m), 7.82-7.97 (4H, m), 10.32 (1H, br s).

EXAMPLE 70

50

2-Methyl-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyi]-2-[(2,2,2-trifluoroacetyl)amino]propanamide hydrochloride

[0781] The title compound was obtained using 2-methyl-2-[(2,2,2-trifluoroacetyl)amino]propionic acid by the method similar to that in Example 68. Yield: 89%.

Melting point: 210-217 °C (decomposition) (methanol-ethyl acetate).

 ^{1}H NMR (DMSO-dg) δ 1.23 (6H, s), 1.30-1.60 (6H, m), 1.53 (6H, s), 2.10-2.53 (2H, m), 3.00-3.35 (2H, m), 3.95 (3H, s), 7.11 (1H, s), 7.35 (1H, d, J = 8.0 Hz), 7.59 (1H, t, J = 8.0 Hz), 7.91 (1H, s), 7.98 (1H, d, J = 8.0 Hz), 9.44 (1H, br s),

10.16 (1H, br s), 12.60-12.80 (1H, br s).

EXAMPLE 71

5 2-Amino-2-methyl-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl] propanamide

[0782] 1-Ethyl-3-(3-d'imethylaminopropyl)carbodilmide hydrochloride (4.98 g. 26.0 mmol) was added to a solution of 3-(3.4.8.9-tethylam/do-E-methoy-3.3.8.8-tetramethyllur(2,3-h)lsoquinoin-1-yl)benzenamine (7.01 g. 20 0 mmol). 2-methyl-2-(2.2.2-trilluoroacetyl)aminoj:propionic acid (4.38 g. 22.0 mmol) and 1-hydroxy-1H-benzotriazole monohydrate (3.37 g. 22.0 mmol) in N.N-dimethyllormamide (76 ml.) and the mixture was stirred at room temperature for 4.5 bours, and then at 48 °C for 30 minutes. The reaction mixture was combined with water and a saturated aquess solution of sodium hydrogen carbonate, and extracted twice with wethyl acetate. The combined organic layer was washed wice with water, and concentrated under reduced pressure. The residue was dissolved in ethanol (40 ml.), combined with 2 M aqueous solution of sodium hydroxide (25 ml., 50 mmol), and heated under reflux for 1.5 hours. The reaction mixture was concentrated under reduced pressure, and the residue was combined with water, and extracted twice with tetyl acetate. The combined organic layer was washed twice with water, treated with activated charcoal, illered, and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-hexane to obtain the title compound 17.28 g. Yelde 84%).

Melting point, 175-177 °C.

¹H NMR (CDCl₃) δ 1.24 (6H, br s), 1.32 (6H, s), 1.45 (6H, s), 2.30 (2H, s), 2.67 (2H, br s), 3.92 (3H, s), 6.60 (1H, s), 7.04-7.10 (1H, m), 7.33 (1H, t, J = 8.1 Hz), 7.55 (1H, t, J = 2.0 Hz), 7.83 (1H, ddd, J = 8.1, 2.0, 1.0 Hz), 9.93 (1H, br s).

EXAMPLE 72

15

25

5, 5-Dimethyl-3-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)phenyl-2, 4-imidazolidinedione

[0783] N.N'-carbonyldimidazole (426 mg. 2.63 mmol) was added to a solution of 2-amino-2-methyl-N-[3-(3,4,6,9-tet-rahydro-6-methoxy-3,3,8,8-tetramethyfluro[2,3-hijsoquindin-1-yl)phenylginopanamide (10 mL) and the mixture was stirred at room temperature for 2 hours. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted twice with eithyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was crystalized from ethyl acetate-diethyl ether to obtain the title compound (686 mg, Yield: 59%).

Melting point: 289-294 "Carbon 2.64" and concentrated under reduced pressure. The residue was crystalized from ethyl acetate-diethyl ether to obtain the title compound (686 mg, Yield: 59%).

¹H NMR (CDCl₃) δ 1.28 (6H, br s), 1.33 (12H, s), 2.36 (2H, br s), 2.70 (2H, s), 3.92 (3H, s), 6.61 (1H, s), 7.16 (1H, br s), 7.30-7.51 (3H, m), 7.56-7.60 (1H, m).

EXAMPLE 73

3-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-2,4-imidazolidinedione

[0784] 3-(3.4.8,9-Tetrahydro-6-methoxy-3.3,8.8-tetramethyffuro[2,3-h]isoquinolin-1-yl)benzenamine (3.51 g. 10.0 mmol) was added to a solution of ethyl isocyanatoacetate (1.42 g. 11.0 mmol) in tetrahydrofuran (15 mL) and the mixture was heated under reflux for 15 minutes. The reaction mixture was concentrated under reduced pressure, and the residue was dissolved in 5 M hydrochloride (20 mL). The resultant mixture was stirred at 80 °C for 2 hours. The mixture was cooled with ice, neutralized with conc. aquoous ammonia, and extracted twice with othly accetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was recrystallized from ethyl accetate-hexane, and furthermore recrystallized from methanol-accitate-hexane to obtain the title compound (2.50 g. Yelfeld. 58%).

Melting point: 214-216 °C.

 ^{1}H NMR (CDCl₃) δ 1.25 (6H, s), 1.33 (6H, s), 2.37 (2H, br s), 2.68 (2H, s), 3.92 (3H, s), 4.04 (2H, s), 6.22 (1H, br s), 6.60 (1H, s), 7.39-7.57 (4H, m).

55

40

45

EXAMPLE 74

5

1-Methyl-3-[3-(3.4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl) phenyll-2.4-imidazolidinedione

[0785] Sodium hydride (66% suspension in oil) (80 mg, 2.2 mmol) was added to a solution of 3-[3-(3.4.8.4-letrahydro-6-methoxy-3.3.8.8-tetramethyllturg(2.3-h)sequinoin-1-yl)phenyl]-2.4-midazolidinedione (867 mg, 2.00 mmol) in N-h, dimethylltomamide (4 mL) with cooling in i.e., and the mixture was stirred at room temperature for 15 minutes. The resultant mixture was cooled with i.e., treated dropwise with idomethane (0.19 mL, 3.1 mmol), and stirred at room temperature for 45 minutes. The reaction mixture was combined with water, and extracted twice with ethyl acotate. The combined organic layer was weshed twice with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 2.1 followed by 1.2) to obtain the title compound (724 mg, Yield: 81%).

15 1H NMR (CDCl₃) & 1.24 (6H, s), 1.33 (6H, s), 2.38 (2H, br s), 2.67 (2H, s), 3.07 (3H, s), 3.91 (3H, s), 4.01 (2H, s), 6.59 (1H, s), 7.39-7.55 (4H, m).

EXAMPLE 75

2,4-Dioxo-3-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-imidazolidineacetic acid methyl ester

[0786] The title compound was obtained using methyl bromoacetate by the method similar to that in Example 74. Yield: 77%.

25 Amorphous.

 ^{1}H NMR (CDCl₃) δ 1.24 (6H, s), 1.33 (6H, s), 2.37 (2H, br s), 2.67 (2H, s), 3.79 (3H, s), 3.92 (3H, s), 4.16 (2H, s), 4.24 (2H, s), 6.80 (1H, s), 7.40-7.56 (4H, m).

EXAMPLE 76

20

25

45

55

N-methyl-3-[3-(3,4,8,9+tetrahydro-6-methoxy-3,3,8,8+tetramethylfuro[2,3-h] is oquinolin-1-yl)phenyl]-2,4-dioxo-1-imidazolidineacetamide

[0787] 5 M equeous solution of sodium hydroxide (1.5 mL) was added to a solution of 3-[3-(3,4,8,8)-eterahydro-6-methoxy-3,3,8,8-terramethyfluro[2,3-h]isoquinolin-1-y(h)penyl)-2,4-dioxo-1-imidazoildineacetic acid methyl ester (1.87 g, 3.70 mmol) in methanol (10 mL) and the mixture was stirred at room temperature for 15 minutes. 2 M hydroxinoire acid was added to the reaction mixture and the reaction mixture was concentrated under reduced pressure. The residue was combined with ethanol, and the insolubles were filtered off, and filtrate was concentrated under reduced pressure. The same procedure was repeated twice, and then suspended in ethanol-ethyl acetate, filtered, and concentrated under reduced pressure to obtain an amorphous material (2.08 g) containing 3-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8-tetrahydro-6-methoxy-3

[0788] 1-Ethyl-3-(3-d-imethylaminopropyl)catbodilmide hydrochloride (312 mg., 1.63 mmol) and 40% solution of methylamine/methanol (0.27 mL, 6.6 mmol) were added to a solution of 700 mg of the material and 1-hydroxy-1H-benzo-toriazole monohydrate (211 mg, 1.38 mmol) in N.N-dimethylformamide (10 mL) with cooling in ice and the mixture was stirred at room temperature for 43 hours. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonale, and exhacted twice with therly acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 1:1 followed by ethyl acetate) to obtain the title compound (289 mg, Yield: 48%).

Amorphous.

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.33 (6H, s), 2.37 (2H, br s), 2.67 (2H, s), 2.81 (3H, d, J = 5.2 Hz), 3.92 (3H, s), 4.00 (2H, s), 4.18 (2H, s), 6.10-6.25 (1H, m), 6.60 (1H, s), 7.38-7.56 (4H, m).

EXAMPLE 77

1-[1,1'-Biphenyl]-3-yl-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

[0789] A solution of phenylboronic acid (219 mg, 1.80 mmol) in ethanol (2 mL), a solution of sodium carbonate (210

ng. 1.98 mmol) in water (2 mL) and tetraks(triphenylphosphine)palladium(0) (58 mg. 0.050 mmol) were added to a solution of 1-(3-bromophenyl)-3.4,8,9-tetrahydro-6-methoxy-3.3,8-tetramethyfluro[2.3-h]isoquinoline (497 mg. 1.20 mmol) in 1.2-dimethoxyethane (6 mL) and the mixture was stirred at 80 °C for 15 hours under nitrogen atmospher. The reaction mixture was combined with water, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 10:1), and crystallized from hexane to obtain the title compound (353 mg, Yield: 71%).

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.30 (6H, s), 2.26 (2H, s), 2.71 (2H, s), 3.93 (3H, s), 6.63 (1H, s), 7.28-7.51 (5H, m), 7.57-7.66 (4H, m).

EXAMPLE 78

5

15

25

25

40

55

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[3-(4-pyridinyl)phenyl]furo[2,3-h]isoquinoline

[0790] The title compound was obtained using 4-pyridinylboronic acid by the method similar to that in Example 77.

Melting point: 148-150 °C (disopropyl ether-hexane).

¹H NMR (CDCl₃) § 1.28 (6H, s), 1.30 (6H, s), 2.23 (2H, s), 2.72 (2H, s), 3.93 (3H, s), 6.64 (1H, s), 7.44-7.57 (4H, m), 7.64-7.72 (2H, m), 8.66 (2H, d, J = 6.2 Hz).

EXAMPLE 79

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[3-(2-quinolinyl)phenyl]furo[2,3-h]isoquinoline

[0791] Hexamethyditin (879 mg, 2.68 mmol) was added to a suspension of 1-(3-bromophenyl)-3.4.8-letrahydro-emethoxy-3.3,8,8-tetramethydruc(2.3-h)isoquinoline (1.04 g, 2.51 mmol), 2-quinolinyl trifluoromethanesulfonate (731 mg, 2.64 mmol), lithium chiloride (319 mg, 7.53 mmol) and tetrakis(triphenylphosphine)palladium(0) (1.45 mg, 0.125 mmol) in 1.4-dioxane (15 mL), and stirred at 100 ° C or 15.5 hours under nitrogen atmosphere. The reaction mixture was poured into a mixture of a 10° s aqueous solution of potassism fluoride (26 mL), but such that care (25 mL), and stirred at room temperature for 2 hours. The insolubles were filtered off, and the organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl) acetate 20:1, 5:1 followed by 3:1), and crystallized from ethyl acetate-hexane to obtain the title compound (529 mg, Yield: 459 mg, Yield: 459 mg, Yield: 459 mg.)

Melting point: 167-169 °C.

 $^{1}\text{H-MMR}\left(\text{CDC}_{\frac{1}{2}}\right)\delta\ 1.28\left(6\text{H, s}\right),\ 1.29\left(6\text{H, s}\right),\ 2.34\left(2\text{H, s}\right),\ 2.74\left(2\text{H, s}\right),\ 3.94\left(3\text{H, s}\right),\ 6.65\left(1\text{H, s}\right),\ 7.49-7.62\left(3\text{H, m}\right),\ 7.23\left(1\text{H, ddd},\ J=8.4,\ 6.9,\ 1.5\ \text{Hz}\right),\ 7.80-7.87\left(1\text{H, m}\right),\ 7.93\left(1\text{H, d},\ J=8.4\ \text{Hz}\right),\ 8.13-8.26\left(3\text{H, m}\right),\ 8.29\left(1\text{H, dt},\ J=7.0,\ 1.8\ \text{Hz}\right)$

EXAMPLE 80

3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoic acid hydrochloride

45 [0792] 5 M aqueous solution of sodium hydroxide (2.0 m.l., 10 mmol) was added to a suspension of 3-(3.4,8.8-1et-rantydro-8-methoxy-3,3.8,8-teramethyfuro(2.3-h)isoquinolin-1-yl)benzoic acid methyl ester (1.81 g, 4.60 mmol) in eth-anol (6 ml.) and the mixture was stirred at room temperature for 4 hours. 1 M hydrochloric acid (10 ml., 20 mmol) was added to the reaction mixture and the resultant mixture was concentrated under reduced pressure. The residue was combined with ethanol, and the insolubles were filtered off using Hyllo Super-Cell (trade name), and the filtrate was concentrated under reduced pressure. The same procedure was repeated twice, and then the residue/was recrystal-lized from ethanol-ethyl acetate to obtain the title compound (1.92 g, quantitative).

¹H NMR (DMSO-d₆) δ 1.21 (6H, br s), 1.46 (6H, br s), 2.05-2.25 (2H, m), 3.17 (2H, br s), 3.95 (3H, s), 7.11 (1H, s), 7.77 (1H, t, J = 7.6 Hz), 7.86 (1H, d, J = 7.6 Hz), 8.17 (1H, s), 8.27 (1H, s).

EXAMPLE 81

4-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoic acid hydrochloride

5 [0793] The title compound was obtained from 4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoic acid methyl ester by the method similar to that in Example 80. Yield: 83%.

Melting point: 195-204 °C (ethanol-ethyl acetate).

¹H NMR (DMSO- d_6) δ 1.31 (6H, s), 1.74 (6H, s), 2.15 (2H, s), 3.10 (2H, s), 4.03 (3H, s), 6.76 (1H, s), 7.66 (2H, d, J = 8.3 Hz). 8 11 (2H, d, J = 8.3 Hz).

EXAMPLE 82

10

20

4-(6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoic acid hydrochloride

15 [0794] The title compound was obtained from 4-(6-ethoxy-3.4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl/benzoic acid methyl ester by the method similar to that in Example 80. Yield: 99%. Melting point: 206-217 (c) fethanol-ethyl acetate).

¹H NMR (DMSO- d_6) δ 1.23 (6H, s), 1.37 (3H, t, J = 6.9 Hz), 1.46 (6H, s), 2.16 (2H, s), 3.17 (2H, s), 4.25 (2H, q, J = 6.9 Hz), 7.10 (1H, s), 7.75 (2H, d, J = 8.3 Hz), 8.16 (2H, d, J = 8.3 Hz).

EXAMPLE 83

N-(4-Methoxyphenyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-hlisoguinolin-1-yl)benzamide

- 28 [0795] 1-Ethyl-3-(3-dimethylaminopropyl)carbodilmide hydrochloride (300 mg, 1.56 mmol) was added to a solution of 4-(3.4.8)-etrahydro-6-methoxy-3.3.8,8-tetramethyffuro[2,3-h]soquinolin-1-yl)benzoic acid hydrochloride (500 mg, 1.20 mmol) and 1-hydroxy-11+benzoirtazole monohydrate (202 mg, 1.32 mmol) in N.N-dimethylformamide (3 mL) with cooling in ice and the mixture was stirred at for 20 minutes. 4-Methoxyaniline (177 mg, 1.44 mmol) was added to the resultant mixture at the same temperature, and the mixture was stirred at room temperature for 2 hours. The reaction mixture was combined with water, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine dried over acidius visite afficient under produced prossure. The reseitue was
- with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 2:1 followed by 1:1), and recrystallized from ethyl acetate-hexane to obtain the title compound (442 mg, Yield: 76%). Melino point: 120-122 °C.
- 35 1H NMR (CDCl₃) δ 1.26 (6H, s), 1.32 (6H, s), 2.22 (2H, s), 2.71 (2H, s), 3.83 (3H, s), 3.93 (3H, s), 6.63 (1H, s), 6.93 (2H, d, J = 8.8 Hz), 7.52 (2H, d, J = 8.6 Hz), 7.57 (2H, d, J = 9.2 Hz), 7.84 (1H, br s), 7.90 (2H, d, J = 8.4 Hz).

EXAMPLE 84

4-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-yl)benzamide

[0796] The title compound was obtained using 4 M solution of ammonia/methanol by the method similar to that in Example 83. Yield: 74%.

Melting point: 229-231 °C (ethyl acetate-hexane).

45 1H NMR (CDCl₃) & 1.26 (6H, s), 1.31 (6H, s), 2.19 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 5.50-6.50 (2H, m), 6.62 (1H, s), 7.49 (2H, d, J = 8.4 Hz), 7.84 (2H, d, J = 8.4 Hz).

EXAMPLE 85

N-Methyl-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[0797] The title compound was obtained using a 40% aqueous solution of methylamine by the method similar to that in Example 83. Yield: 77%.

Melting point: 168-169 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.30 (6H, s), 2.17 (2H, s), 2.70 (2H, s), 3.04 (3H, d, J = 5.2 Hz), 3.92 (3H, s), 6.32-6.43 (1H, m), 6.62 (1H, s), 7.45 (2H, d, J = 8.3 Hz), 7.78 (2H, d, J = 8.3 Hz).

EXAMPLE 86

3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoguinolin-1-yl)benzamide

[0798] The title compound was obtained from 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoqui-nolin-1-yl)benzoic acid hydrochloride and 4 M solution of ammonia/methanol by the method similar to that in Example 83, Yeleif 75%.

Melting point: 219-220 °C (methanol-diisopropyl ether).

¹H NMR (CDOl₃) δ 1.25 (6H, br s), 1.30 (6H, s), 2.17 (2H, s), 2.69 (2H, s), 3.93 (3H, s), 5.30-6.60 (2H, m), 6.62 (1H, σ), 7.45-7.57 (2H, m), 7.84-7.87 (1H, m), 7.90 (1H, dt, J = 6.9, 2.1 Hz).

EXAMPLE 87

15

30

4-(6-Ethoxy-3,4.8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[0799] The title compound was obtained from 4-(6-ethoxy-3.4,8,9-tetrahydro-3,3,8,8-tetramethyffuro[2,3-h]isoquinolin-1-ylibenzoic acid hydrochloride and 4 M solution of ammonia/methanol by the method similar to that in Example 83, Yield: 71%.

Melting point: 179-182 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.30 (6H, s), 1.46 (3H, t, J = 6.9 Hz), 2.17 (2H, s), 2.68 (2H, s), 4.19 (2H, q, J = 6.9 Hz), 5.50-6.50 (2H, m), 6.61 (1H, s), 7.28 (2H, d, J = 8.6 Hz), 7.84 (2H, d, J = 8.6 Hz).

EXAMPLE 88

25 N-Phenyl-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide hydrochloride

[0800] 1-Ethyl-3-(3-dimethylaminopropyl)carbodimide hydrochloride (300 mg, 1.56 mmol) was added to a solution of 4-(3.4,8.9-tetrahydro-6-methoxy-3.3,8.8-tetramethylfuro[2,3-hilsoquinolin-1-yl)benzoic acid hydrochloride (500 mg, 1.20 mmol) and 1-hydroxy-1H-benzotriazole monohydrate (202 mg, 1.32 mmol) in N.N-dimethylformamide (3 mL) with cooling in ice and the mixture was stirred for 25 minutes Aniline (0.13 mL, 1.4 mmol) was added to the resultant mixture at the same temperature, and the mixture was stirred at room temperature for 2 hours. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and con-entrated under reduced pressure. The residue was subjected to a column chromatography on a basis clisic age (flexane/ethyl acetate 2.1 followed by 1:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate (5 mL), combined with 0.8 M solution of hydrogen chloride/methanol (2.1 mL), and concentrated under reduced pressure to obtain the title compound (537 mg, Yield: 91%).

¹H NMR (CDCl₃) δ 1.31 (6H, s), 1.64 (6H, s), 2.24 (2H, s), 3.07 (2H, s), 4.01 (3H, s), 6.72 (1H, s), 7.11 (1H, t, J = 7.4 Hz), 7.33 (2H, t, J = 7.9 Hz), 7.60 (2H, d, J = 8.0 Hz), 7.92 (2H, d, J = 7.6 Hz), 8.18 (2H, d, J = 7.6 Hz), 9.96 (1H, br s).

EXAMPLE 89

N,N-Dimethyl-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide hydrochloride

[0801] The title compound was obtained using a 50% aqueous solution of dimethylamine by the method similar to that in Example 88. Yield: 88%.

⁵⁰ 1H NMR (CDCl₃) ô 1.36 (6H, s), 1.69 (6H, s), 2.35 (2H, s), 3.01 (3H, br s), 3.05 (2H, s), 3.13 (3H, br s), 4.03 (3H, s), 6.75 (1H, s), 7.61 (2H, d, J = 8.4 Hz), 7.72 (2H, d, J = 8.4 Hz), 14.20-14.60 (1H, br).

EXAMPLE 90

55 [[4-[[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoyl]amino]phenyl]methyl] phosphonic acid diethyl ester

[0802] 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (748 mg, 3,90 mmol) and triethylamine (1.0 mL,

7.2 mmol) were added to a solution of 3-(34.8, 9-tetralydro-6-methosy-3,3.8,8-tetramethydro(2,3-h)|soquinolin-1-y/) benzoic acid hydrochloride (1.37 g, 3.29 mmol), diethyl 4-aminobenzylphosphonate (730 mg, 3.00 mmol) and 1-hydroxy-1H-benzotriazole monohydrate (506 mg, 3.30 mmol) in N.N-dimethylformamide (15 mL) and the mixture was stirred at room temperature for 18 hours. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted twice with ethyl acetate. The combined organic layer was washed twice with water and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 1:1 followed by 1:5) to obtain the title compound (1.16 g, Yield: 64%).

1+ NMR (CDC₃) 5 1.26 (6H, s), 1.25 (6H, t, J = 7.1 Hz), 1.31 (6H, s), 2.22 (2H, s), 2.88 (2H, s), 3.14 (2H, d, J = 21.6 (9Hz), 3.92-4.10 (4H, m), 3.93 (3H, s), 6.63 (1H, s), 7.247.34 (2H, m), 7.467.53 (2H, m), 7.64 (2H, d, J = 8.0 Hz), 7.948.02 (2H, m), 8.63 (1H, br s).

EXAMPLE 91

5

25

30

25

40

45

50

15 3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-furo[2,3-h]isoquinolinol hydrobromide

[0803] 48% Hydrobromic acid (7.5 mL) was added to 3.4,8,9-tetrahydro-6-methoxy-3.3,8,8-tetramethyl-1-phenylfuro [2.3-h]lsoquinoline (500 mg, 1.49 mmol) and the mixture was stirred at 105 °C for 18 hours. The reaction mixture was cooled, and the precipitated crystals were recovered by filtration, washed with water, and then air-dried overnight to obtain the title compound (463 mg, Yield: 77%).

 1 H NMR (DMSO-d₆) δ 1.23 (6H, s), 1.42 (6H, s), 2.15 (2H, s), 3.09 (2H, s), 6.79 (1H, s), 7.57-7.80 (5H, m), 11.2-11.4 (1H, br), 12.1-12.4 (1H, br).

EXAMPLE 92

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-furo[2,3-h]isoquinolinol

(0804) 48% Hydrobromic acid (45 mL) was added to 3.4.8,9-tetra/ydro-6-methoxy-3.3,8,8-tetramethy-1-phenyfuro-(2,3-h)isoquinoline (3.02 g, 9.00 mmol) and the mixture was heated under reflux for 16 hours. The reaction mixture was cooled with ice, neutralized with cone. aqueous ammonia, diluted with water, and extracted with ethyl acetate 3 times. The combined organic layer was washed with brine, dried over sodium sulfate, treated with activated charcoal, filtered and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-diisopropyl ether to obtain the title compound (2.70 g, Yleid: 93%).

Melting point: 208-210 °C.

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.28 (6H, s), 2.16 (2H, s), 2.66 (2H, s), 6.54 (1H, s), 7.38 (5H, m).

EXAMPLE 93

3.4.8.9-Tetrahydro-1-(4-hydroxyphenyl)-6-methoxy-3.3.8.8-tetramethyl-6-furo[2,3-h]isoguinolinol hydrobromide

[0805] The title compound was obtained from 3,4,8,9-tetrahydro-6-methoxys-1-(4-methoxyphenyl)-3,3,8,8-tetrame-thylfuro(2,3-h)[sequioniene by the method similar to that in Example 91. Yield: 77%. Meltin a point: 194-200 °C.

¹H NMR (DMSO-dg) δ 1.27 (6H, s), 1.38 (6H, s), 2.34 (2H, s), 3.03 (2H, s), 6.77 (1H, s), 6.99 (2H, d, J = 8.4 Hz), 7.46 (2H, d, J = 8.4 Hz), 10.59 (1H, s), 11.17 (1H, br s), 11.80-11.95 (1H, br).

EXAMPLE 94

1-(3-Bromophenyl)-3.4.8.9-tetrahydro-3.3.8.8-tetramethyl-6-furo[2,3-h]isoquinolinol

[0806] The title compound was obtained from 1-(3-bromophenyl)-3,4,8,9-letrahydro-6-methoxy-3,3,8,8-letramethylfuro[2,3-h)isoquinoline by the method similar to that in Example 92. Yield: 91%. Meltina point: 202-208 °C Cethyl acetate-disporopovi ethen.

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.32 (6H, s), 2.22 (2H, s), 2.63 (2H, s), 6.52 (1H, s), 7.24 (1H, t, J = 7.6 Hz), 7.34 (1H, t, J = 7.6, 1.4 Hz), 7.47-7.54 (1H, m), 7.57 (1H, t, J = 1.4 Hz).

EXAMPLE 95

Trifluoromethanesulfonic acid (3.4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)ester

5 [0807] A solution of 3.4,8,9-totrahydro-3.3,8,8-totramethyl-1-phenyl-6-furo(2,3-h)isoquinolinol (1.03,g.3.20 mmol) in pyridine (10 mL) was treated dropwise with trilluoromethanesulfonic anhydride (0.60 mL, 3.6 mmol) with cooling in ice, and stirred for 10 minutes. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted twice with ethyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane-fethyl acetate 1.01) to obtain the title compound (1.37, g., Yfeld; 94%).

¹H NMR (CDCI₂) δ 1.25 (6H, s), 1.30 (6H, s), 2.23 (2H, s), 2.70 (2H, s), 6.94 (1H, s), 7.41 (5H, s).

EXAMPLE 96

An oil

15

25

30

25

Trifluoromethanesulfonic acid (3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-6-yl)ester hydrochloride

[0808] The title compound was obtained from trifluoromethanesulfonic acid (3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyffuro(2,3-th)isoquinolin-6-yl)ester by the method similar to that in Example 29. Yield: 84%. Melting opint: 152-160 °C (methanol-ethyl acetate).

¹H NMR (DMSO-d_e) δ 1.28 (6H, s), 1.43 (6H, br s), 2.32 (2H, s), 3.17 (2H, br s), 7.56 (1H, s), 7.57-7.83 (5H, m).

EXAMPLE 97

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline hydrochloride

[9809] Formic acid (0.17 mL, 4.5 mmol) was added to a solution of trifluoromethanesulfonic acid (3.4.8,9-tetrahydro-3,3.8.8-tetramethyl-1-phenylfuro(2,3-h)lisoquinolin-6-yl)seter (1.00 g, 2.2 mmol), thethylamine (0.92 mL, 6.6 mmol), paliadium(II) acetate (9.9 mg, 0.044 mmol) and triphenylphosphine (23.1 mg, 0.0881 mmol) in N,N-dimethylformamide (4mL) and the mixture was strired at 60°C for 3.5 hours under nitrogen atmosphere. The reaction mixture was combined with water, and extracted twice with eithy acetate. The combined organic layer was extracted twice with 1th ylorcholoric acid. The combined aqueous layer was neutralized with conc. aqueous armonia, and extracted twice with eithy lacetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexame/ethyl acetate 15:1) to obtain a free base of the title compound. The mixture was dissolved in ethyl acetate (3 mL), and combined with 0.8 M solution of hydrogen chloride/methanol (3.0 mL). The resultant mixture was concentrated under reduced pressure, and the residue was crystallized from ethyl acetate-diisopropyl ether to obtain the title compound (705 mg, Yield: 93%). Meltino point: 187-179 °C.

⁴⁰ ¹H NMR (DMSO-d_e) δ 1.23 (6H, s), 1.46 (6H, s), 2.19 (2H, s), 3.16 (2H, s), 7.17 (1H, d, J = 8.1 Hz), 7.30 (1H, d, J = 8.1 Hz), 7.62-7.84 (6H, m).

EXAMPLE 98

45 3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-[3-(4-pyridinyl)phenyl]-6-furo[2,3-h]isoquinolinol

[0810] A solution of sodium carbonate (480 mg, 4.53 mmol) in water (5 mL) and tetrakis(triphenylohosphine)palladium(0) (105 mg, 0.0909 mmol) were added to a suspension of 1-(3-bromophenyl)-3,4,8,9-tetrahydro-3.3,8-tetram-chtyi-6-fung(3,3-hi)soquinolinol (725 mg, 1.81 mmol) and 4-pyridinylboronia exid (334 mg, 2.72 mmol) in toluene (10 mL) and ethanol (3 mL) and the mixture was stirred at 90 °C for 15 hours under nitrogen atmosphere. The reaction mixture was cooled and combined with 1 M hydrochloric acid, and the insolubles were filtered off, and the organic layer was separated. The aqueous layer was neutralized with one, aqueous ammonia, and cytracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetate followed by ethyl acetate/methanol 20:1), and crystallized from ethyl acetate-diisopropyl ether to obtain the title compound (294 mg, Yield; 41%).

Melting point: 141-149 °C.

¹H NMR (CDCl₃) δ 1.27 (12H, s), 2.21 (2H, s), 2.67 (2H, s), 6.58 (1H, s), 7.43-7.58 (4H, m), 7.64-7.73 (2H, m), 8.66

(2H, d, J = 6.2 Hz).

EXAMPLE 99

3.4.8.9-Tetrahydro-3.3.8.8-tetramethyl-6-propoxy-1-[3-(4-pyridinyl)phenyl]furo[2,3-h]isoquinoline

[0811] Sodium hydride (66% suspension in oil) (96 mg, 2.6 mmol) was added to a solution of 3.4.8 e-tertarydro-3.3.8. e-tertarethyri-1;3-(4-pvidiny)phenyle-f-knr2(2.3-h)lacquinolinol (612 mg, 2.00 mmol) and i-todepropane (55 mL, 6.0 mmol) in N,N-dimethylformamide (4 mL) and the mixture was stirred at room temperature for 30 minutes. The reaction mixture was poured into water, and extracted twice with dryl accetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (fivane/ethyl accetate 10:1 followed by 2:1), and recrystallized from eithyl accetate-hexane to obtain the title compound (614 mg, Yeld-170%).

15 H NMR (CDCl₃) 8 1.04 (3H, t, J = 7.5 Hz), 1.27 (6H, s), 1.30 (6H, s), 1.87 (2H, sixlet, J = 7.2 Hz), 2.21 (2H, s), 2.70 (2H, s), 4.97 (2H, t, J = 6.9 Hz), 6.63 (1H, s), 7.43-7.57 (4H, m), 7.64-7.71 (2H, m), 8.66 (2H, d, J = 6.0 Hz).

EXAMPLE 100

Melting point: 132-134 °C.

2-[[3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-[3-(4-pyridinyl)phenyl]furo[2,3-h]isoquinolin-6-yl]oxy]acetamide

[0812] The title compound was obtained using 2-bromoacetamide by the method similar to that in Example 99. Yield: 69%

Melting point: 120-125 °C (ethyl acetate-hexane).

¹H NMR (CDC₃) § 1.28 (6H, s), 1.30 (6H, s), 2.24 (2H, s), 2.71 (2H, s), 4.63 (2H, s), 5.55-5.85 (1H, br), 6.65 (1H, s), 6.70-6.95 (1H, br), 7.43-7.59 (4H, m), 7.64-7.73 (2H, m), 8.67 (2H, d, J = 6.4 Hz).

EXAMPLE 101

1-(3-Bromophenyl)-6-ethoxy-3.4.8.9-tetrahydro-3.3.8.8-tetramethylfuro[2,3-h]isoguinoline

[0813] The title compound was obtained from 1-(3-bromophenyl)-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-6-furo [2,3-h]isoquinolinol and iodomethane by the method similar to that in Example 99. Quantitative.

Amorphous

35 ¹H NMR (CDCl₃) § 1.23 (6H, s), 1.34 (6H, s), 1.46 (3H, t, J = 7.1 Hz), 2.22 (2H, s), 2.66 (2H, s), 4.18 (2H, q, J = 7.1 Hz), 6.60 (1H, s), 7.25 (1H, t, J = 7.5 Hz), 7.33 (1H, dt, J = 7.5, 1.7 Hz), 7.52 (1H, dt, J = 7.5, 1.7 Hz), 7.57 (1H, t, J = 1.7 Hz).

EXAMPLE 102

40

45

50

1-(3-Bromophenyl)-6-ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline hydrochloride

[0814] The title compound was obtained from 1-(3-bromophenyl)-8-ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]bioquindle by the method similar to that in Example 29. Yield: 74%. Melting point: 219-229 °C, gealed tube) (methanol-ethyl acetate-diethyl ether).

Menting point: 213-223 °C (sealed tibe) (mentanoi-entry) acetate-dietry) enery.

¹H NMR (DMSO-d_e) δ 1.25 (6H, s), 1.37 (3H, t, J = 7.0 Hz), 1.44 (6H, br s), 2.22 (2H, s), 3.12 (2H, br s), 4.24 (2H, q,

J = 7.0 Hz), 7.08 (1H, s), 7.52-7.65 (2H, m), 7.88-7.99 (2H, m).

EXAMPLE 103

1-(3-Bromophenyl)-6-butoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

[0815] The title compound was obtained from 1-(3-bromophenyl)-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-6-furo [2,3-h]isoquinolinol and 1-iodobutane by the method similar to that in Example 99. Yield: 84%.

Gummy.

¹H NMR (CDC₃) 8 0.98 (3H, t, J = 7.2 Hz), 1.23 (6H, s), 1.33 (6H, s), 1.38-1.59 (2H, m), 1.74-1.90 (2H, m), 2.21 (2H, s), 2.62 (2H, s), 4.10 (2H, t, J = 6.8 Hz), 6.60 (1H, s), 7.20-7.29 (1H, m), 7.34 (1H, dt, J = 7.5, 1.5 Hz), 7.48-7.55 (1H, m), 7.57 (1H, t, J = 1.5 Hz).

EXAMPLE 104

1-(3-Bromophenyl)-6-butoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline hydrochloride

5 [0816] The title compound was obtained from 1-(3-Bromophenyl)-6-butoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-furo(2,3-h)isoguinoline by the method similar to that in Example 29, Yield: 75%.

Melting point: 201-205 °C (sealed tube) (methanol-ethyl acetate-diethyl ether).

¹H NMR (DMSO-d₆) δ 0.94 (3H, t, J = 7.2 Hz), 1.20-1.60 (8H, m), 1.25 (6H, s), 1.65-1.82 (2H, m), 2.21 (2H, s), 3.12 (2H, br s), 4.18 (2H, t, J = 6.5 Hz), 7.10 (1H, s), 7.48-7.66 (2H, m), 7.90-7.99 (2H, m), 12.50-13.00 (1H, br).

EXAMPLE 105

10

20

40

50

6-Butoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-[3-(4-pyridinyl)phenyl]furo[2,3-h]isoquinoline

15 [0817] A solution of sodium carbonate (5.10 g, 48.1 mmol) in water (45 mL) and tetrakis(triphenylphosphinolp)alladium(0) (1.69 g, 1.46 mmol) were added to a suspension of 1.3-bromophenyl)-6-butaxy-3.4,8,9-tetrahydro-3.3,8,8-tetramethyllura(2.3-hjlosoquinoline (18.2 g, 39.9 mmol) and 4-pyridinylporonic acid (5.88 g, 48.8 mmol) in N.N-dimethylomamide (75 mL) and the mixture was storied at 120 °C for 1.5 hours under nitrogen atmosphere. The reaction mixture was coroled and combined with water and ethyl acetate, and the organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic sitics age (inexare/retyl acetate 10.1 followed by 2:1), and recrystallized from diethyl ether-hexane to obtain the title compound (9.12 g, Yield: 50%). Meltin popin: 1:14-116 °C.

¹H NMR (CDCl₃) δ 0.98 (3H, t, J = 7.3 Hz), 1.27 (6H, s), 1.29 (6H, s), 1.39-1.60 (2H, m), 1.75-1.92 (2H, m), 2.21 (2H, s), 2.70 (2H, s), 4.11 (2H, t, J = 6.9 Hz), 6.63 (1H, s), 7.45-7.57 (4H, m), 7.64-7.72 (2H, m), 8.66 (2H, d, J = 6.2 Hz).

EXAMPLE 106

6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-[3-(4-pyridinyl)phenyl]furo[2,3-h]isoquinoline

[0818] The title compound was obtained from 1-(3-bromophenyl)-6-ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline by the method similar to that in Example 105. Yield: 59%. Mething point: 102-104 °C (diethyl ether-hexane).

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.30 (6H, s), 1.47 (3H, t, J = 7.0 Hz), 2.22 (2H, s), 2.70 (2H, s), 4.19 (2H, q, J = 7.0 Hz), 6.63 (1H, s), 7.42-7.58 (4H, m), 7.65-7.71 (2H, m), 8.66 (2H, d, J = 6.0 Hz).

EXAMPLE 107

6-Ethoxy-3.4.8.9-tetrahydro-3.3.8.8-tetramethyl-1-phenylfuro[2,3-h]isoguinoline hydrochloride

[0819] A free base of the title compound was obtained from 3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl6-furo [2,3-hi]soquinolinol and iodomethane by the method similar to that in Example 99. This was dissolved in ethyl acetate, combined with 0.8 M solution of hydrogen chloride/methanol, and concentrated under reduced pressure to obtain the title compound. Quantitative.

45 Amorphous.

¹H NMR (CDCl₃) δ 1.33 (6H, s), 1.51 (3H, t, J = 7.0 Hz), 1.69 (6H, s), 2.23 (2H, s), 3.02 (2H, s), 4.28 (2H, q, J = 7.0 Hz), 6.73 (1H, s), 7.50-7.75 (5H, m).

EXAMPLE 108

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-phenyl-4-furo[2.3-h]isoguinolinol

[0820] Aluminum chioride (0.88 g, 5.1 mmol) was added to a solution of 2.3-dihydro-7-methoxy-2.2-dimethyli-5-(2-methyl-1-propenyi)benzofuran (1.17 g, 5.04 mmol) in benzonitrile (10 mL) at -10 °C and the mixture was stirred at the same temperature for 5 minutes. The resultant mixture was treated dropwise with bromine (0.25 mL, 5.0 mmol), and stirred at room temperature for 20 minutes and then at 60 °C for 2 hours. The reaction mixture was cooled, combined with water and disporpoyl either, stirred, and then the organic layer was separated. The aqueous layer was neutralized with conc. aqueous ammonia, combined with ethyl acetate, and then the insolubles were filtered off. The aqueous layer

was separated, and the organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was recrystallized from tetrahydrofuran diethyl ether to obtain the title compound (722 mg, Yield: 41%)

⁵ ¹H NMR (CDCl₃) δ 1.25 (3H, s), 1.31 (6H, s), 1.32 (3H, s), 2.21 (2H, s), 3.96 (3H, s), 4.48 (1H, brs), 6.96 (1H, s), 7.40 (5H, s).

EXAMPLE 109

15

25

45

50

Melting point: 207-212 °C.

3-(Bromomethyl)-3,4.8,9-tetrahydro-6-methoxy-3,8,8-triethyl-1-phenylfuro[2,3-h]isoguinoline

[0821] Aluminum chloride (1,01 g, 7.57 mmol) was added to a solution of 2,3-dihydro-7-methoxy-2-2-dimethyl-5-(2-methyl-2-propeny))benzofuran (1.76 g, 7.58 mmol) in benzonitrile (1.5 mL) at -5 °C and the mixture was stirred at the same temperature for 5 minutes. The resultant mixture was treated dropwise with bromine (0.39 mL, 7.6 mmol), and stirred at room temperature for 25 minutes and then at 60 °C for 30 minutes. The reaction mixture was cooled, combined with water and disorpoyl ether, stirred, and then the aqueous layer was separated, and the organic layer was extracted twice with 1 M hydrochloric acid. The combined aqueous layer was neutralized with cone, aqueous ammonia with cooling in ice, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (fiexane-ethyl acetate 10:1), and crystallized from diethyl ether-hexane to obtain the title compound (297 mc. Nickli 9.5%).

Melting point: 108-110°C.

14 NMR (CDCl₀) δ 1.31 (6H, s), 1.34 (3H, s), 2.20 (2H, s), 2.80 (1H, d, J = 15.8 Hz), 2.96 (1H, d, J = 15.8 Hz), 3.41 (1H, d, J = 9.9 Hz), 3.57 (1H, d, J = 9.9 Hz), 3.93 (3H, s), 6.80 (1H, s), 7.40 (5H, s).

EXAMPLE 110

6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline 2-oxide

30 [0822] A solution of sodium tungstate(VI) dihydrate (310 mg, 0.940 mmol) in water (3 mL) was added to a solution of 6-ethoxy-1.2.3.4.8.9-hoxylpro-3.9.3 heteramethy-1-ph-mytur(2.3-hisoquinoline) (1.65 g, 4.89 mmol) in methanol (10 mL). This was cooled, treated dropwise with 30% aqueous hydrogen peroxide (1.6 g, 14 mmol), and stirred at room temperature for 15 hours. The reaction mixture was combined with water, and extracted with eliminative castal 3 times. The combined organic layer was washed with water, as 10% aqueous solution of sodium thiosulfate and brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (fivaxene/ethyl acetate 5: followed by 1:1), and crystallized from diisopropyl etherhexane to obtain the title compound (1.33 g, Yield: 78%).
Melting point: 126-126 °C.

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.45 (3H, t, J = 7.0 Hz), 1.48 (6H, s), 1.98 (2H, s), 3.04 (2H, s), 4.16 (2H, q, J = 7.0 Hz), 6.62 (1H, s), 7.32-7.47 (5H, m).

EXAMPLE 111

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline 2-oxide

[0823] The title compound was obtained from 1,2,3,4,8,9-hexahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenyifuro [2,3-h]isoquinoline by the method similar to that in Example 110. Yield: 84%. Metino apolit. 177-180 °C (discorpov) ether).

¹H NMR (CDCl₃) δ 1.28 (6H, s), 1.49 (6H, s), 1.99 (2H, s), 3.06 (2H, s), 3.91 (3H, s), 6.63 (1H, s), 7.27-7.47 (5H, m).

EXAMPLE 112

4-(6-Ethoxy-3.4.8.9-tetrahydro-3.3.8.8-tetramethyl-2-oxidefuro[2.3-h]isoquinolin-1-yl)benzamide

1624 The title compound was obtained from 4-(6-ethoxy-1.2,3.4,8.9-hexathydro-3,3,8.8-tetramethylfuro(2,3-h)iso-quinolin-1-yl)benzamide by the method similar to that in Example 110. Yield: 83%. Melting point: 134-136, 218-219 °C (ethyl acetate-disopropyl ether).

¹H NMR (CDCl₃) δ 1.28 (6H, s), 1.46 (3H, t, J = 7.1 Hz), 1.48 (6H, s), 2.00 (2H, s), 3.06 (2H, s), 4.17 (2H, q, J = 7.1

Hz), 5.40-6.50 (2H, m), 6.64 (1H, s), 7.55 (2H, d, J = 8.4 Hz), 7.89 (2H, d, J = 8.4 Hz).

EXAMPLE 113

5-[(Dimethylamino)methyl]-3.4.8.9-tetrahydro-3.3.8.8-tetramethyl-1-phenyl-6-furo[2.3-h]isoquinolinol

[0825] A mixture of 3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-furo[2,3-h]|socquinolinol (1,50,9,467 mmol), paraformaldehyde (94%) (0,298,9,9.4 mmol), a 2M solution of dimethylamine/tetrahydroturan (7,00 mL, 14,0 mmol) and ethanol (7 mL) was stirred at 80 °C for 20 minutes. The reaction solution was concentrated under reduced pressure, and the residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 3:1), and re-crystallized from hexane-ethyl acetate to obtain the title compound (1,38,9, Yelle, 78%)

Melting point: 164-166 °C.

¹H NMR (CDCl₂) δ 1.23 (6H, s), 1.30 (6H, s), 2.14 (2H, s), 2.38 (6H, s), 2.58 (2H, s), 3.74 (2H, s), 7.37 (5H, s).

15 EXAMPLE 114

3,4,8,9-Tetrahydro-6-methoxy-N,N,3,3,8,8-hexamethyl-1-phenyl-5-furo[2,3-h]isoquinolinemethanamine

[0826] Dilsopropyl azodicarboxylate (0.624 ml., 3.18 mmol) was added to a solution of 5-((dimethylamino)methyl-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-furo[2,3-h]isoquinolinol (0.40g, 1.08 mmol), methanol (0.128 ml., 3.18 mmol) and triphenyliphosphine (0.832 g, 3.18 mmol) in tetrahydrofuran (3 ml.) with cooling in ice, and the mixture was stirred at room temperature for 30 minutes. The reaction solution was combined with 1 M hydrochloric acid, and washed with ethyl acetate. The aqueous layer was basified with 1 M aqueous solution of sodium hydroxide, and then extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 9:1) to obtain the title compound (0.40 x. Vicils '96%). An allauot was reconstallized from hexane.

Melting point: 124-125 °C.

14 NMR (CDCl₃) δ 1.23 (6H, s), 1.27 (6H, s), 2.13 (2H, s), 2.25 (6H, s), 2.77 (2H, s), 3.45 (2H, s), 3.92 (3H, s), 7.38 (5H, s).

EXAMPLE 115

20

25

45

3.4.8.9-Tetrahydro-6-methoxy-N.N.N.3.3.8.8-heptamethyl-1-phenyl-5-furo[2,3-h]isoquinolinemethanaminium iodide

[0827] Ibdomethane (0.309 mL, 4.97 mmol) was added to a solution of 3,48,8-tetrahydro-6-methoxy-NN, 3,3,8.8-hexamethyl-1-phenyl-5-furo[2,3-h]isoquinolinemethanamine (1.50 g, 3.82 mmol) in toluene (10 mL) and the mixture was stirred at room temperature for 15 hours. The reaction solution was combined with hexane, and the precipitated crystals were recovered by filtration, dried, and then recrystallized from ethanol-ethyl acetate-hexane to obtain the title compound (1.90 a. Vield: 33%).

Melting point: 174-178 °C.

 ^1H NMR (DMSO-d₆) δ 1.17 (6H, s), 1.26 (6H, s), 2.21 (2H, s), 2.78 (2H, s), 3.07 (9H, s), 3.94 (3H, s), 4.60 (2H, s), 7.37-7.46 (5H, m).

EXAMPLE 116

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenyl-5-[(phenylthio)methyl]furo[2,3-h]isoquinoline hydrochloride

[0828] Sodium hydride (66% suspension in oil) (68.0 mg, 1.87 mmol) was added to a solution of thiophenol (0.192 mL, 1.87 mmol) in N.N-dimethylformamide (3 mL) with cooling in ice, and the mixture was stirred at room temperature for 30 minutes. 3.4,8,9-tentaphyto-6-methoxy-N.N.N.3,3,8,8-heptamethyl-1-phenyl-5-fure(2,3-h)isoquinolinemethanaminium iodide (0.40 g, 0.748 mmol) was added to the mixture, and the mixture was stirred at 70 °C for 1 hour. The reaction solution was combined with water, and extracted with ethyl acetate. The extract was washed with 14 aqueous solution of sodium hydroxide and water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 7.3) to obtain a free base (0.31 g, Yield: 91%) of the title compound as an oil.

 1 H NMR (CDCl₃) δ 1.23 (6H, s), 1.28 (6H, s), 2.13 (2H, s), 2.67 (2H, s), 3.92 (3H, s), 4.24 (2H, s), 7.18-7.45 (10H, m). [0829] This was converted into a hydrochloride with 4 M solution of hydrogen chloride/ethyl acetate, and then converge to the convergence of the con

centrated under reduced pressure to obtain the title compound (0.31 g, Yield: 84%). Amorphous.

¹H NMR (DMSO-d_e) δ 1.25 (6H, s), 1.43 (6H, s), 2.15 (2H, s), 3.15 (2H, s), 3.90 (3H, s), 4.29 (2H, s), 7.25-7.45 (5H, m), 7.62-7.80 (5H, m).

EXAMPLE 117

5

6-Ethoxy-3,4,8,9-tetrahydro-N,N,3,3,8,8-hexamethyl-1-phenyl 5-furo[2,3-h]isoquinolinemethanamine

[0830] The title compound was obtained using ethanol by the method similar to that in Example 114. Yield: 89%. Melting point: 106-107 °C (hexane).

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.25 (6H, s), 1.36 (3H, t, J = 7.2 Hz), 2.12 (2H, s), 2.25 (6H, s), 2.77 (2H, s), 3.46 (2H, s), 4.19 (2H, q, J = 7.2 Hz), 7.37 (5H, s).

15 EXAMPLE 118

5-[(Dimethylamino)methyl]-3.4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl acetate

[0831] Acetic anhydride (82.3 µL, 0.872 mmol) was added to a solution of 5-{(dimethylamino)methyl-3.4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-furo[2,3-h]isoquinoilinol (0.30 g, 0.793 mmol) in pyridine (3 mL), and the mixture was stirred at room temperature for 1 hour. The reaction solution was combined with water, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was recrystallized from hexane to obtain the title compound (0.24 g, Yield: 72%). Welting point: (25-126 °C.)

25 ¹H NMR (CDC₃) δ 1.25 (12H, s), 2.17 (2H, s), 2.21 (6H, s), 2.31 (3H, s), 2.79 (2H, s), 3.33 (2H, s), 7.38 (5H, s).

EXAMPLE 119

20

25

40

50

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenyl-5-[(1-pyridinyl)methyl]-6-furo[2,3-h]isoquinolinol

[0832] The title compound was obtained using piperidine by the method similar to that in Example 113. Yield: 85%. Melting point: 164-165 °C.

¹H NMR (CDCl₃) δ 1.22 (6H, s), 1.29 (6H, s), 1.40-1.72 (6H, m), 2.14 (2H, s), 2.40-2.79 (4H, m), 2.56 (2H, s), 3.76 (2H, s), 5.32 (1H, br s), 7.37 (5H, s).

EXAMPLE 120

(2H, s), 3.89 (3H, s), 7.38 (5H, s),

3.4,8.9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenyl-5-[(1-piperidinyl)methyl] furo [2,3-h] is oquinolined ihydrochloride

[0833] A free base of the title compound was obtained as an oil from 3.4,8,9-tetrahydro-3.3,8,8-tetramethyl-1-phenyl-5-[(1-piperdinyl)methyl)-6-turo[2,3-h]isoquinolinol by the method similar to that in Example 114. Yield: 85%.
H NMR (CDCI₄) 5 1.23 (6H, s), 1.26 (6H, s), 1.37-1.60 (6H, m), 2.13 (2H, s), 2.37-2.44 (4H, m), 2.82 (2H, s), 3.48

45 [0834] This free base was converted into a hydrochloride with 4 M solution of hydrogen chloride/ethyl acetate, and then concentrated under reduced pressure to obtain the title compound. Yield: 80%.

¹H NMR (DMSO-d_g) δ 1.27 (6H, s), 1.47 (6H, s), 1.55-1.86 (6H, m), 1.90-2.10 (2H, m), 2.19 (2H, s), 2.90-3.10 (2H, m), 3.80-3.88 (2H, m), 3.96 (3H, s), 4.37 (2H, br s), 7.60-7.82 (5H, m).

EXAMPLE 121

6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl-5-[(1-piperidinyl)methyl]furo[2,3-h]isoquinoline

Mediasi The title compound was obtained from 3,4,8,9-tetrahydro-3,3,8,8-tetramethyi-1-phenyl-5-((1-piperidinyl)methyl-6-furo(2,3-h)lisoquinolinol and ethanol by the method similar to that in Example 114. Yield: 87%. Melting point: 75-77 °C (ethyl acetate-hexane).

¹H NMR (CDCl₂) δ 1.23 (6H, s), 1.26 (6H, s), 1.36 (3H, t, J = 7.0 Hz), 1.40-1.58 (6H, m), 2.12 (2H, s), 2.37-2.43 (4H,

m), 2.82 (2H, s), 3.49 (2H, s), 4.16 (2H, q, J = 7.0 Hz), 7.35-7.42 (5H, m).

EXAMPLE 122

5 3,4,8,9-Tetrahydro-3,3.8,8-tetramethyl-1-phenyl-5-[(1-piperidinyl)methyl]furo[2,3-h]isoquinolin-6-yl acetate dihydrochloride

[0836] A free base of the title compound was obtained from 3.4.8.9-tetrahydro.3.3.8.8-tetramethyi-1-phenyi-5-(it-pip-eridinyi)methyli-6-turo[2,3-h]isoquinolinol by the method similar to that in Example 118. This was converted into a hydrochloride with 4 M solution of hydrogen chloride/ethyl acetate, and then concentrated under reduced pressure to obtain the title compound. Yield: 96%.

All H NMR (DMSO-d₆) δ 1.22 (6H, s), 1.49 (6H, s), 1.61-1.82 (4H, m), 1.93-2.45 (7H, m), 2.95-3.10 (2H, m), 3.38-3.64 (4H, m), 4.40-4.48 (2H, m), 7.60-7.83 (5H, m).

EXAMPLE 123

15

25

45

55

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-(3-nitrophenyl)furo[2,3-h]isoquinoline

[0837] Conc. sulfuric acid (2.75 mL, 51.6 mmol) was added to a solution of 2.3-dihydro-7-methoxy-2.2-dimethyl-5-(2-methyl-1-propenyi)benzofuran (6.00 g. 25.8 mmol), 3-nitrobenzonitrile (3.83 g. 25.8 mmol) and acetic acid (18 mL); in toluene (24 mL), and the mixture was stirred at 80 °C for 1 hour. The reaction solution was combined with exoessive aqueous ammonia, and extracted with ethyl acetate. The extract was washed with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 17:3) to obtain the title compound (4.28 g. Yield: 44%).

Amorphous.

14 NMR (CDCl₃) δ 1.28 (6H, s), 1.32 (6H, s), 2.19 (2H, s), 2.71 (2H, s), 3.94 (3H, s), 6.65 (1H, s), 7.59 (1H, t, J = 7.8 Hz), 7.73-779 (1H, m), 8.22-8.32 (2H, m).

30 EXAMPLE 124

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-(3-nitrophenyl)-6-furo[2,3-h]isoquinolinol

[0838] Under nitrogen atmosphere, a mixture of 3,4,8,9-tetrahydro-6-methoxy-3,8,8-tetramethyl-1(3-nitrophenyl) furo[2,3-h]isoquinoline (4,20 g. 11.0 mmol) and hydrobromic acid (42 mL) was stirred at 100 °C for 20 hours. The reaction solution was cooled, combined with aqueous ammonia, and then extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica get (hexane/éthyl acetate 1:1). and recrystallized from ethyl acetate-hexane to obtain the title compound (2,50 g. Yield: 62%).

40 Melting point: 239-241 °C.

 1 H NMR (CDCl₃) δ 1.26 (6H, s), 1.30 (6H, s), 2.18 (2H, s), 2.67 (2H, s), 6.62 (1H, s), 7.58 (1H, t, J = 7.8 Hz), 7.73-7.80 (1H, m), 8.22-8.31 (2H, m).

EXAMPLE 125

3.4.8.9-Tetrahydro-3.3.8.8-tetramethyl-1-(3-nitrophenyl)-5-[(1-piperidinyl)methyll-6-furo[2.3-hlisoguinolinol

[0839] The title compound was obtained from 3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-(3-nitrophenyl)-6-furo[2,3-h] isoquinolinol and piperidine by the method similar to that in Example 113. Yield: 78%.

Amorphous.

 ^{1}H NMR (CDCl₃) δ 1.24 (6H, s), 1.31 (6H, s), 1.46-1.72 (6H, m), 2.13 (2H, s), 2.40-2.80 (4H, m), 2.58 (2H, s), 3.78 (2H, s), 6.30 (1H, s), 7.56 (1H, t, J = 8.0 Hz), 7.72-7.78 (1H, m), 8.22-8.31 (2H, m).

EXAMPLE 126

6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-(3-nitrophenyl)-5-[(1-piperidinyl)methyl]furo[2,3-h]isoquinoline

[0840] The title compound was obtained from 3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-(3-nitrophenyl)-5-[(1-piperidi-

myl)methyll-6-furo[2,3-h]isoquinolinol and ethanol by the method similar to that in Example 114. Yield: 97%, Amorphous. 14 NMR (CDCl₃) δ 1.24 (6H, s), 1.28 (6H, s), 1.37 (3H, t, J = 7.0 H₂), 1.40-1.60 (6H, m), 2.11 (2H, s), 2.36-2.44 (4H, m), 2.84 (2H), 3.49 (2H, s), 4.18 (2H, d), 2.7.0 H₂), 7.57 (1H, t, J = 8.0 H₂), 7.78 (1H, d), 2.8.0 H₂), 8.29-8.31 (2H, m).

5 FXAMPLF 127

3-[6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-5-[(1-piperidinyl)methyl]furo[2,3-h]isoquinolin-1-yl]benzenamine

[0841] 20% aqueous solution of titanium trichloride (9.13 ml., 14.2 mmol) was added to a solution of 6-ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-(3-nitrophenyl)-5-{(1-piperidinyl)methyl[furo](2,3-h]isoquinoline (1.00 g, 2.03 mmol) in acetic acid (5 ml.) and the mixture was stirred at room temperature for 30 minutes. The reaction solution was poured into an excessive saturated aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure to obtain the title compound (0.90 g, Yield: 96%).

15 Amorphous.

 $^{1}\text{H NMR (CDC}_{3}) \ \delta \ 1.21 \ (6\text{H, s}), \ 1.28 \ (6\text{H, s}), \ 1.36 \ (3\text{H, t}, \ J=7.2 \ Hz), \ 1.42-1.58 \ (6\text{H, m}), \ 2.27 \ (2\text{H, s}), \ 2.38-2.45 \ (2\text{H, m}), \ 2.80 \ (2\text{H, s}), \ 3.48 \ (2\text{H, s}), \ 3.77 \ (2\text{H, br s}), \ 4.16 \ (2\text{H, q}, \ J=7.2 \ Hz), \ 6.66-6.76 \ (3\text{H, m}), \ 7.13 \ (1\text{H, t}, \ J=7.4 \ Hz).$

EXAMPLE 128

20

25

50

2-[[[3-[6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-5-[(1-piperidinyl)methyl]furo[2,3-h]isoquinolin-1-yl]phenyl] amino|carbonyl|benzoic acid

[0842] A solution of phthatic anhydride (0.814 g, 2.12 mmol) in tetrahydrofuran (3 mL) was added to a solution of 3-(8-ethosy-3.4,8-9-tetrahydro-3.8,8-1etramethyl-5-(1-piperidinyl)methyl[uno(2,3-h]sequinolin-1-yl]benzanamine (0.98 g, 2.12 mmol) in tetrahydrofuran (3 mL), and the mixture was stirred at room temperature for 4 hours. The reaction solution was combined with disopropyl ether, and the precipitated crystals were recovered by filtration and dried to obtain the title compound (1.20 g, Yield: 63%).

Melting point: 155-157 °C.

¹H NMR (DMSO-d_g) δ 1.13 (6H, s), 1.26 (6H, s), 1.28 (3H, t, J = 7.0 Hz), 1.40-1.60 (6H, m), 2.34 (2H, s), 2.42-2.56 (4H, m), 2.78 (2H, s), 3.80 (2H, s), 4.12 (2H, q, J = 7.0 Hz), 7.08 (1H, d, J = 7.8 Hz), 7.36 (1H, t, J = 7.8 Hz), 7.58-7.84 (7H, m), 10.77 (1H, br s).

EXAMPLE 129

2-[3-[6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-5-[(1-piperidinyl)methyl]/[uro[2,3-h]] is oquinolin-1-yl] phenyl]-1 H-isoindole-1,3(2H)-dione

[0843] A mixture of 2-[[[3-[6-ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethy-6-[(1-piperidinyl)methyl]furo[2,3-h]isoquinolin-1-yl]phenyl]amino|carbonyl]benzoic acid and acetic anhydride (5 mL) was stirred at 100 °C for 1 hour. The reaction solution was combined with an excessive saturated aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (ethyl acetate), and recrystallized from methanol-diisopropyl ether to obtain the title compound (0.50 g. Yield: 52%).

45 Melting point: 176-177 °C.

¹H NMR (DMSO- $d_{\rm e}$) δ 1.18 (6H, br s), 1.23 (3H, t, J = 7.0 Hz), 1.27 (6H, s), 1.43 (6H, br s), 2.35 (4H, br s), 2.62-2.83 (4H, m), 3.42 (2H, s), 4.11 (2H, q, J = 7.0 Hz), 7.38-7.40 (1H, m), 7.43-7.61 (3H, m), 7.84-7.96 (4H, m).

EXAMPLE 130

 $N-[3-[6-Ethoxy-3,4,8,9+tetrahydro-3,3,8,8-tetramethyl-5-[(1-piperidinyl)methyl] furo \cite{Constraints} furo \cite{Constrain$

[0844] Methanesulforyl chloride (0.352 ml., 4.56 mmol) was added to a solution of 3-(6-ethoxy-3, 4.8-9-tetrahydro-3, 3.8-letramethyl-5-(1-piendifuy)methyllfur(2.3-hisquainoin-1-ylipenzenamine (0.70 g., 1.5 mmol) in pyridine (ml.) and the mixture was stirred at room temperature for 3 hours. The reaction solution was combined with an excessive saturated aqueous solution of sodium hydrogen catonate, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was recrystallized from methanol-disopropyl

ether to obtain the title compound (0.52 g, Yield: 63%).

Melting point: 230-231 °C.

¹H NMR (DMSO-d₆) δ 1.12 (6H, s), 1.24 (6H, s), 1.28 (3H, t, J = 7.0 Hz), 1.42 (6H, br s), 2.22 (2H, s), 2.34 (4H, br s), 2.74 (2H, s), 2.99 (3H, s), 3.44 (2H, br s), 4.09 (2H, q, J = 7.0 Hz), 7.10-7.15 (2H, m), 7.28-7.43 (2H, m), 9.72 (1H, br s).

EXAMPLE 131

5

10

15

25

25

N-[3-[6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-5-[(1-piperidinyl)methyl]furo[2,3-h]isoquinolin-1-yl]phenyl]
-N-(methylsulfonyl)methanesulfonamide

[0845] Methanesulfonyl chloride (0.184 ml., 2.38 mmol) was added to a solution of N-[3-fle-othoxy-3, 4.8.8-tetrahydro-3, 3,8.8-tetramethyl-5-fl(1-piperidinyl)methyl/fluro[2,3-h)isoquinolin-1-yl/phenyl/methanesulfonamide (0.64 g. 1.19 mmol) and triethylamine (0.496 ml., 3.57 mmol) in tetrahydrofuran (5 ml.) and the mixture was heated under reflux for 20 minutes. The reaction mixture was cooled, poured into a saturated aqueous solution of sodium hydrogen carbonate, and then extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gol (hexane/sthyl acetate 2:1), and then recrystallized from methanol-diisopropyl ether to obtain the title compound (0.45 g, Yield: 61%). Meltina point: 118-119 °C.

¹H NMR (DMSO-d_s) δ 1.10-1.31 (15H, m), 1.42 (6H, br s), 2.35 (4H, br s), 2.60-2.83 (4H, m), 3.43 (2H, s), 3.55 (6H, s), 4.08 (2H, q, J = 7.0 Hz), 7.42 (1H, s), 7.50-7.60 (3H, m).

EXAMPLE 132

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-5-(2-methylethyl)-1-phenyl-6-furo[2,3-h]isoquinolinol

[0846] A mixture of 3.4,8,9-tertahydro-3,3,8,8-tertamethyl-1-phenyl-6-furo[2,3-h]isoquinolinol (0.30 g, 0.933 mmol), 2-propanol (0.357 mL, 4.67 mmol) and come: sulfuric acid (0.995 mL, 18.7 mmol) was stirred at 55° Cfor 1 hour. The reaction solution was poured into an excessive saturated aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 3:1), and then recrystallized from ethyl acetate hexane to obtain the title compound (0.18 g, Yidić 55%).

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.27 (6H, s), 1.38 (6H, d, J = 7.2 Hz), 2.15 (2H, s), 2.70 (2H, s), 3.25-3.46 (1H, m), 7.37 (5H, m).

EXAMPLE 133

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-5-(1-methylethyl)-1-phenylfuro[2,3-h]isoquinoline hydrochloride

0 [0847] A free base of the title compound was obtained as an oil from 3,4 8,9-tetrahydro-3,3 8,8-tetramethyl-5-(1-methylethyl)-1-phenyl-6-furo(2,3-h)isoquinolinol by the method similar to that in Example 114. Yield: 69%. This free base was converted into a hydrochloride with 4 M solution of hydrogen chloride/eithyl acetate, and then concentrated under reduced pressure to obtain the title compound. Yield: 65%.

45 1H NMR (DMSO-d₆) δ 1.25 (6H, s), 1.30 (6H, d, J = 7.0 Hz), 1.45 (6H, s), 2.12 (2H, s), 3.17 (2H, s), 3.23-3.45 (1H, m), 3.97 (3H, s), 7.52-7.78 (5H, m).

EXAMPLE 134

6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-5-(1-methylethyl)-1-phenylfuro[2,3-h]isoquinoline hydrochloride

[0848] A free base of the title compound was obtained as an oil from 3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-5-{1-methylethyl-1-phenyl-6-fure[2,3-h]isoquinolinol and ethanol by the method similar to that in Example 114. Yield: 40%. This free base was converted into a hydrochloride with 4 M solution of hydrogen chloride/ethyl acetate, and then concentrated under reduced pressure to obtain the title compound. Yield: 39%.

Amorphous.

 ^{1}H NMR (DMSO-d₆) δ 1.23 (6H, s), 1.32 (6H, d, J = 7.0 Hz), 1.34 (3H, t, J = 7.0 Hz), 1.45 (6H, s), 2.11 (2H, s), 3.17 (2H, s), 3.31-3.46 (1H, m), 4.33 (2H, q, J = 7.0 Hz), 7.52-7.78 (5H, m).

EXAMPLE 135

3.4.8.9-Tetrahydro-3.3.8.8-tetramethyl-5-(1-methylethyl)-1-phenylfuro[2,3-h]isoquinolin-6-yl acetate hydrochloride

[0849] A free base of the title compound was obtained as an oil from 3.4,8,9-tetrahydro-3,3,8,8-tetramethyl-5-(1-methviethyl)-1-phenyl-6-furo[2.3-h]isoguinolinol by the method similar to that in Example 118, Yield: 93%. This was converted into a hydrochloride with 4 M solution of hydrogen chloride/ethyl acetate, and then concentrated under reduced pressure to obtain the title compound. Yield: 87%.

Amorphous.

¹H NMR (DMSO- d_c) δ 1.19 (6H, s), 1.26 (6H, d, J = 7.0 Hz), 1.48 (6H, s), 2.17 (2H, s), 2.35 (3H, s), 3.23 (2H, s), 3.35 (1H, septet, J = 7,0 Hz), 7.60-7.80 (5H, m).

EXAMPLE 136

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-6-[(2-methyl-2-propenyl)oxy]-1-phenylfuro[2,3-h]isoquinoline hydrochloride

[0850] Under nitrogen atmosphere, a suspension of 3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-furo[2,3-h] isoquinolinol (0.80 g. 2.49 mmol), 3-chloro-2-methyl-1-propene (0.258 mL, 2.61 mmol) and potassium carbonate (0.361 g. 2.61 mmol) in N.N-dimethylformamide (4 mL) was stirred at 80 °C for 2 hours. The reaction mixture was combined with water and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 9:1) to obtain a free base (0.93 g, quantitative) of the title compound as an oil. An aliquot was converted into a hydrochloride salt with 4 M solution of hydrogen chloride/ethyl acetate, and then concentrated under reduced pressure to obtain the title compound. Amorphous.

20

25

¹H NMR (DMSO-d_c) δ 1,23 (6H, s), 1,46 (6H, s), 1,78 (3H, s), 2,17 (2H, s), 3,15 (2H, s), 4,70 (2H, s), 5,02 (1H, s), 5,08 (1H, s), 7.11 (1H, s), 7.61-7.80 (5H, m).

EXAMPLE 137

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-5-(2-methyl-2-propenyl)-1-phenyl-6-furo[2,3-h]isoquinolinol

[0851] Under nitrogen atmosphere, a solution of 3.4.8.9-tetrahydro-3.3.8.8-tetramethyl-6-[(2-methyl-2-propenyl) oxy]-1-phenylfuro[2,3-h]isoquinoline (0.78 g, 2.08 mmol) in N,N-diethylaniline (4 mL) was stirred at 205 °C for 4.5 hours. The reaction solution was cooled, and then combined with hexane, and the precipitated crystals were recovered by filtration. Recrystallization from ethyl acetate-hexane gave the title compound (0.41 g, Yield: 53%). Melting point: 196-198 °C.

¹H NMR (CDCl₃) δ 1.22 (6H, s), 1.28 (6H, s), 1.84 (3H, s), 2.17 (2H, s), 2.59 (2H, s), 3.37 (2H, s), 4.51 (1H, s), 4.80 (1H. s), 7.37 (5H. s),

EXAMPLE 138

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-[(2-propynyl)oxy]furo[2,3-h]isoquinoline hydrochloride

45 [0852] Under nitrogen atmosphere, a mixture of 3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-furo[2,3-h]isoquinolinol (1.00 g. 3.11 mmol), proparayl bromide (0.305 mL, 3.42 mmol), potassium carbonate (0.473 g. 3.42 mmol) and N,N-dimethylformamide (10 mL) was stirred at 60 °C for 2 hours. The reaction mixture was combined with water, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 1:1) to obtain a free base (1.11 g, quantitative) of the title compound as an oil.

¹H NMR (CDCl₂) δ 1.25 (6H, s), 1.30 (6H, s), 2.19 (2H, s), 2.55 (1H, t, J = 2.4 Hz), 2.70 (2H, s), 4.83 (2H, d, J = 2.4 Hz), 6.77 (1H, s), 7.39 (5H, s).

[0853] An aliquot was converted into a hydrochloride salt with 4 M solution of hydrogen chloride/ethyl acetate, and then concentrated under reduced pressure to obtain the title compound.

¹H NMR (DMSO-d_c) δ 1.23 (6H, s), 1.46 (6H, s), 2.18 (2H, s), 3.17 (2H, s), 3.76 (1H, s), 5.02 (2H, s), 7.14 (1H, s), 7.62-7.80 (5H, m).

EXAMPLE 139

4-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoyl chloride hydrochloride

- 5 [0854] A mixture of 4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoic acid hydrochloride (0.30 g. 0.721 mmol) and thionyl chloride (1 mL) was stirred at 70 °C for 1 hour. The reaction solution was concentrated under reduced pressure to obtain the title compound (0.30 g. Yield: 96%). This was used in the next reaction without further purification.
- EXAMPLE 140

3-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)benzoyl chloride hydrochloride

[0855] The title compound was obtained as an amorphous material using 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-te-15 tramethylfuro[2,3-h]isoquinolin-1-yl)benzoic acid hydrochloride by the method similar to that in Example 139. Yield: 96%. This compound was used in the next reaction without further purification.

EXAMPLE 141

N-(4-Pyridinyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide dihydrochloride

[0856] 4-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoguinolin-1-vI)benzovI chloride hydrochloride (0.30 g, 0.691 mmol) was added to a solution of 4-aminopyridine (71.5 mg, 0.760 mmol) and triethylamine (0.116 mL, 0.829 mmol) in N,N-dimethylformamide (1 mL) with cooling in ice, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was combined with a saturated aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (ethyl acetate/methanol 19:1) to obtain a free base (0.31 g, Yield: 98%) of the title compound as an oil. This was converted into a hydrochloride salt with 4 M solution of hydrogen chloride/ethyl acetate, concentrated under reduced pressure, and then recrystallized from methanol-ethyl acetate to obtain the title compound (0.29 g, Yield: 74%).

Melting point: 194-198 °C. ¹H NMR (DMSO-d_s) δ 1.24 (6H, s), 1.49 (6H, s), 2.22 (2H, s), 3.20 (2H, s), 3.96 (3H, s), 7.13 (1H, s), 7.84 (2H, d, J = 8.0 Hz), 8.45 (2H, d, J = 8.0 Hz), 8.63 (2H, d, J = 7.0 Hz), 8.82 (2H, d, J = 7.0 Hz), 12.55 (1H, s).

EXAMPLE 142

25

40

N-(3-Pyridinyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide dihydrochloride

[0857] The title compound was obtained using 3-aminopyridine by the method similar to that in Example 141. Yield: 85%.

Amorphous.

¹H NMR (DMSO-d₆) δ 1.24 (6H, s), 1.49 (6H, s), 2.23 (2H, s), 3.20 (2H, s), 3.96 (3H, s), 7.14 (1H, s), 7.84 (2H, d, J = 45 8.0 Hz), 8.08-8.17 (1H, m), 8.46 (2H, d, J = 8.0 Hz), 8.71 (1H, d, J = 5.4 Hz), 9.10 (1H, d, J = 7.6 Hz), 9.56 (1H, s), 12.15 (1H. s).

FXAMPLE 143

N-(2-Pyridinyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide dihydrochloride

[0858] The title compound was obtained using 2-aminopyridine by the method similar to that in Example 141, Yield: 74%

Amorphous.

¹H NMR (DMSO-d_e) δ 1.24 (6H, s), 1.49 (6H, s), 2.22 (2H, s), 3.20 (2H, s), 3.96 (3H, s), 7.13 (1H, s), 7.38-7.46 (1H, m), 7.83 (2H, d, J = 7.8 Hz), 7.91-7.99 (1H, m), 8.12-8.20 (1H, m), 8.37 (2H, d, J = 7.8 Hz), 8.53 (1H, d, J = 4.4 Hz), 12.04 (1H, s).

EXAMPLE 144

5

 $N-(4-Pyridinylmethyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro \cite{2},3-h\cite{2}isoquinolin-1-yl) benzamide dihydrochloride$

[0859] The title compound was obtained using 4-(aminomethyl)pyridine by the method similar to that in Example 141 Yield 75%

Melting point: 220-225 °C (methanol-ethyl acetate).

¹H NMR (DMSO-d_d) δ 1.24 (6H, s), 1.48 (6H, s), 2.22 (2H, s), 3.19 (2H, s), 3.95 (3H, s), 4.77 (2H, d, J = 5.4 Hz), 7.13 (2H, d), J = 8.4 Hz), 7.98 (2H, d, J = 6.2 Hz), 8.23 (2H, d, J = 8.4 Hz), 8.87 (2H, d, J = 6.2 Hz), 9.96-10.03 (1H, m).

EXAMPLE 145

5 N-(3-Pyridinylmethyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide dihydrochloride

[0860] The title compound was obtained using 3-(aminomethyl)pyridine by the method similar to that in Example

Amorphous.

 $^{1} H \ NMR \ (DMSO-d_g) \ \delta \ 1.23 \ (6H, s), \ 1.47 \ (6H, s), \ 2.22 \ (2H, s), \ 3.18 \ (2H, s), \ 3.95 \ (3H, s), \ 4.70 \ (2H, d, J = 4.0 \ Hz), \ 7.12 \ (1H, g), \ 7.77 \ (2H, d, J = 8.0 \ Hz), \ 8.01 \ (2H, g), \ 8.08 \ (1H, d), \ 8.22 \ (2H, d, J = 8.0 \ Hz), \ 8.58 \ (1H, d, J = 7.4 \ Hz), \ 8.85 \ (1H,$

25 EXAMPLE 146

 $N-(2-Pyridinylmethyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro \cite{2},3-h\cite{2}isoquinolin-1-yl)benzamide dihydrochloride$

[0861] The title compound was obtained using 2-(aminomethyl)pyridine by the method similar to that in Example 141. Yield: 75%. Amorphous.

¹H NMR (DMSO- d_6) δ 1.24 (6H, s), 1.48 (6H, s), 2.21 (2H, s), 3.19 (2H, s), 3.95 (3H, s), 4.90 (2H, s), 7.13 (1H, s), 7.78 (2H, d, J = 7.2 Hz), 7.90-8.04 (2H, m), 8.24 (2H, d, J = 7.2 Hz), 8.46-8.55 (1H, m), 8.85 (1H, d, J = 4.8 Hz), 10.05 (1H, s).

EXAMPLE 147

25

40

45

50

N-[2-(4+Pyridinyl)ethyl]-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquino lin-1-yl) benzamide dihydrochloride

[0862] The title compound was obtained using 4-(2-aminoethyl)pyridine by the method similar to that in Example 141. Yelid: 83%.
Amorphous.

¹H NMR (DMSO-d₆) δ 1.23 (6H, s), 1.47 (6H, s), 2.18 (2H, s), 3.16-3.27 (4H, m), 3.65-3.76 (2H, m), 3.95 (3H, s), 7.12 (1H, s), 7.72 (2H, d, J = 7.6 Hz), 7.96-8.12 (4H, m), 8.84 (2H, d, J = 5.6 Hz), 9.25 (1H, br s).

EXAMPLE 148

N-(4-Pyridinylmethyl)-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoguinolin-1-yl)benzamide

[0863] 3-(3.4.8,9-Tetrahydro-6-methoxy-3.3.8,8-tetramethyffuro(2.2-h)[soquinolin-1-yl)[benzoyl chloride hydrochloride (0.5.0 g. 1.15 mmol) was added to a solution of 4-(aminomethyl)pyridine (0.128 mt., 1.27 mmol) and triethylamine (0.193 mt., 1.38 mmol) in N,N-dimethylformeride (5 mt.) with cooling in ice, and the mixture was strred with cooling in ice for 30 minutes. The reaction mixture was combined with a saturated aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was recrystallized from ethyl acetate-diisopropyl ether to obtain the title compound (0.32 g, Nield: 56%).

Melting point: 197-198 °C.

 1 H NMR (CDCl₃) δ 1.19 (6H, s), 1.30 (6H, s), 2.18 (2H, s), 2.63 (2H, s), 3.93 (3H, s), 4.59 (2H, d, J = 6.0 Hz), 6.61 (1H, s), 7.19 (2H, d, J = 5.8 Hz), 7.41-7.53 (3H, m), 7.93-8.01 (2H, m), 8.51-8.56 (2H, m).

EXAMPLE 149

5

N-[2-(4-Pvridinyl)ethyl]-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)benzamide

[0864] The title compound was obtained using 4-(2-aminoethyl)pyridine by the method similar to that in Example 148, Yield:68%.

Melting point: 144-145 °C (ethyl acetate-diisopropyl ether).

¹H NMR (CDC₂) δ 1.24 (6H, s), 1.30 (6H, s), 2.17 (2H, s), 2.68 (2H, s), 2.91 (2H, t, J = 7.2 Hz), 3.70 (2H, q, J = 7.2 Hz), 3.93 (3H, s), 6.62 (1H, s), 6.65 (1H, br s), 7.17 (2H, d, J = 6.2 Hz), 7.41-7.50 (2H, m), 7.79 (1H, s), 7.81-7.87 (1H, m), 8.51 (2H, d, J = 6.2 Hz).

15 EXAMPLE 150

N-(2-Pyrimidinyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl] benzamide dihydrochloride

20 [0865] 4-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8-tetramethyfluro(2,3-h)isoquinolin-1-yl)benzoyl chloride hydrochioride (0.30 g. 0.691 mmol) was added to a solution of 2-eminopyrimidine (72,3 mg. 0.760 mmol) in pyrdine (3 mL), and the mixture was stirred at room temperature for 2 hours. The reaction solution was combined with a saturated aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was converted into a hydrochloride sat with 4 M solution of hydro-29 gen chloride/ethyl acetate, and then concentrated under reduced pressure to obtain the title compound (0.29 g, Yield: 73%).

Amorphous.

¹H NMR (DMSO-d₆) δ 1.24 (6H, s), 1.48 (6H, s), 2.18 (2H, s), 3.20 (2H, s), 3.97 (3H, s), 7.11 (1H, s), 7.38-7.51 (1H, m), 7.83 (2H, d, J = 8.0 Hz), 8.50 (2H, d, J = 8.0 Hz), 8.92-9.98 (2H, m), 11.82 (1H, br s).

EXAMPLE 151

20

N-Pyrazinyl-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

39 [0866] 4-(3.4.8,3-Tetrahydro-6-methoxy-3.3,8.8-tetramethyfluro(2.3-hijsoquinolin-1-yl)benzoyl chloride hydrochioride (0.30 g. 0.691 mmol) was added to a solution of aminopyrazine (72.3 mg. 0.760 mmol) in pyridine (3 mL) and the mixture was stirred at room temperature for 5 hours. The reaction solution was combined with a saturated aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetate/methanol 19.1) to obtain the title compound (0.27 q. Yleit's 18%).

Amorphous.

 $^{1}\text{H NMR (DMSO-d}_{6})\,\delta\,1.27\,(6\text{H},\,\text{s}),\,1.32\,(6\text{H},\,\text{s}),\,2.21\,(2\text{H},\,\text{s}),\,2.72\,(2\text{H},\,\text{s}),\,3.93\,(3\text{H},\,\text{s}),\,6.64\,(1\text{H},\,\text{s}),\,7.58\,(2\text{H},\,\text{d},\,\text{J}=8.4\,\text{Hz}),\,7.99\,(2\text{H},\,\text{d},\,\text{J}=8.4\,\text{Hz}),\,8.27\cdot8.33\,(1\text{H},\,\text{m}),\,8.42\,(1\text{H},\,\text{d},\,\text{J}=2.6\,\text{Hz}),\,8.61\,(1\text{H},\,\text{br}\,\text{s}),\,9.75\,(1\text{H},\,\text{d},\,\text{J}=1.6\,\text{Hz}).$

45 EXAMPLE 152

N-(6-Chloro-3-pyridazinyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[0867] The title compound was obtained using 3-amino-6-chloropyridazine by the method similar to that in Example 50 151, Yield: 85%.

Amorphous.

 1 H NMR (DMSO-d₆) δ 1.27 (6H, s), 1.33 (6H, s), 2.21 (2H, s), 2.71 (2H, s), 3.93 (3H, s), 6.64 (1H, s), 6.74 (1H, d, J = 9.2 Hz), 7.25 (1H, d, J = 9.2 Hz), 7.59 (2H, d, J = 8.4 Hz), 8.00 (2H, d, J = 8.4 Hz), 9.18 (1H, br.s).

EXAMPLE 153

N-(4-Pyridinyl)-3-(3.4.8.9-tetrahydro-6-methoxy-3,3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-yl)benzamide

- [0868] 3-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoguinolin-1-yl)benzoyl chloride hydrochloride (0.50 g. 1.15 mmol) was added to a solution of 4-aminopyridine (0.119 g. 1.27 mmol) in pyridine (5 mL) and the mixture was stirred at 50 °C for 1 hour. The reaction solution was combined with a saturated aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was recrystallized from ethyl acetate-diisopropyl ether to obtain the title compound (0.25 g. Yield: 48%).
 - Melting point: 175-176 °C.

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.31 (6H, s), 2.22 (2H, s), 2.71 (2H, s), 3.93 (3H, s), 6.64 (1H, s), 7.48-7.58 (2H, m), 7.72-7.88 (2H, m), 8.00-8.06 (2H, m), 8.48-8.54 (2H, m), 9.71 (1H, br s).

15 EXAMPLE 154

> N-(3,5-Dichloro-4-pyridinyl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl) benzamide

- [0869] A mixture of 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoic acid hydrochloride (2.17 g. 5.22 mmol) and thionyl chloride (2 mL) was stirred at 70 °C for 1 hour. The reaction solution was concentrated under reduced pressure, and the residue was combined with toluene, and concentrated under reduced pressure again, A solution of 4-Amino-3.5-dichloropyridine (0.50 g. 3.07 mmol) in N.N-dimethylformamide (10 mL) was cooled with ice and sodium hydride (66% suspension in oil) (0.379 g, 10.4 mmol) was added to the solution. And then, the acid chloride which had been previously prepared was added thereto. The mixture was stirred at room temperature
 - for 30 minutes, poured into ice water, and then extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetate) to obtain the title compound (0.35 g. Yield: 22%). Melting point: 227-228 °C.

¹H NMR (CDCl₃) δ 1.21 (6H, s), 1.32 (6H, s), 2.23 (2H, s), 2.66 (2H, s), 3.93 (3H, s), 6.63 (1H, s), 7.52 (1H, t, J = 7.8) Hz), 7.69 (1H, t, J = 7.8 Hz), 8.00-8.06 (2H, m), 8.57 (2H, s), 9.02 (1H, br s).

EXAMPLE 155

- 25 N-[3-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)benzovl]glycine ethyl ester hydrochloride
- [0870] Triethylamine (5.86 mL, 42.0 mmol) was added to a solution of 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoguinolin-1-vI)benzoic acid hydrochloride (5,00 g, 12,0 mmol), glycine ethyl ester hydrochloride (1.85 g. 13.2 mmol) and 1-hydroxy-1H-benzotriazole monohydrate (2.03 g. 13.2 mmol) in N.N-dimethylformamide (30 mL). And then, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (3.00 g, 15.6 mmol) was added thereto. The mixture was stirred at room temperature for 5 hours, and then poured into a saturated aqueous solution of sodium hydrogen carbonate. This was extracted with ethyl acetate, and then the extract was washed with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ 45
- ethyl acetate 1:1) to obtain a free base (5.05 g, Yield: 94%) of the title compound. ¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.30 (3H, t, J = 7.2 Hz), 1.31 (6H, s), 2.17 (2H, s), 2.69 (2H, s), 3.93 (3H, s), 4.21-4.30 (4H, m), 6.62 (1H, s), 6.89-6.95 (1H, m), 7.42-7.55 (2H, m), 7.83-7.91 (2H, m),
 - [0871] An aliquot was converted into a hydrochloride salt with 4 M solution of hydrogen chloride/ethyl acetate, and then concentrated under reduced pressure to obtain the title compound.

Amorphous.

¹H NMR (DMSO-d_e) δ 1.21 (6H, s), 1.22 (3H, t, J = 7.8 Hz), 1.47 (6H, s), 2.19 (2H, s), 2.78 (2H, s), 3.95 (3H, s), 4.03 (2H, t, J = 6.2 Hz), 4.12 (2H, q, J = 7.8 Hz), 7.12 (1H, s), 7.75-7.83 (2H, m), 8.16 (1H, s), 8.22-8.29 (1H, m), 9.28-9.35 (1H, m).

55

EXAMPLE 156

N-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoyl]glycine hydrochloride

- 5 [0872] 5 M aqueous solution of sodium hydroxide (5 mL) was added to a solution of N-[3-(3,4,8,9-texhydro-6-meth-oxy-3,3,8-tertramethyliro(2,3-hi)soquinolin-1-yl)benzoyllyptione ethyl set (5.00 g, 11.1 mmol) in ethandro (20 mL) and the mixture was stirred at room temperature for 1 hour, 5 M hydrochloric acid (7.5 mL) was added to the reaction mixture and the mixture was concentrated under neduced pressure. The residue was combined with ethanol and filtered, and the filtrate was concentrated under reduced pressure, and this procedure was repeated 3 times. The residue was 0 combined with disopropyl ether, and a precipitate was recovered by filtration and dried to obtain the title compound (5.15 a, '1964: 98%).
 - Amorphous.

 1H NMR (DMSO-d_a) § 1.23 (6H, s), 1.47 (6H, s), 2.21 (2H, s), 3.18 (2H, s), 3.95 (3H, s), 3.96-4.06 (2H, m), 7.12 (1H,

¹H NMR (DMSO-d_g) δ 1.23 (6H, s), 1.47 (6H, s), 2.21 (2H, s), 3.18 (2H, s), 3.95 (3H, s), 3.96-4.06 (2H, m), 7.12 (1H, s), 7.70-7.82 (2H, m), 8.18-8.28 (2H, m), 9.20-9.28 (1H, m).

EXAMPLE 157

15

N-(2-Amino-2-oxoethyl)-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)benzamide

- 20 [0873] 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.422 g, 2.20 mmol) was added to a solution of N-19-14, 48, 9-lettarylor-6-methoya-3, 38, 8-tetramethyldruc(2-3-hijsounipini-1-y)benzoylghyche hydrochloride (0.80 g, 1.69 mmol) and 1-hydroxy-1H-benzotriazole monohydrate (0.285 g, 1.86 mmol) in N.N-dimethylformamide (4 mL) and the mixture was stirred at room temperature for 5 nours. Conc. aqueous ammonia (1.7mL) was added thereto, and the mixture was stirred at room temperature further for 1.5 hours. The reaction solution was combined with water, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column formomotography on a basic silica gel (ethyl acetate followed by ethyl acetate/methanol 19:1) to obtain the title compound (0.43 g, Yield: 58%). An aliquot was recrystallized from ethyl acetate-disporpovel ether.
 - Melting point: 141-142 °C.
- 39 1H NMR (CDCl₃) 8 1.23 (6H, s), 1.30 (6H, s), 2.16 (2H, s), 2.67 (2H, s), 3.93 (3H, s), 4.08 (2H, d, J = 5.0 Hz), 5.72 (1H, br s), 6.33 (1H, br s), 6.62 (1H, s), 7.43-7.55 (2H, m), 7.62-7.70 (1H, m), 7.89-7.99 (2H, m).

EXAMPLE 158

- 35 N-[2-(Methylamino)-2-oxoethyl]-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl) benzamide
 - [0874] The title compound was obtained using a 40% solution of methylamine/methanol by the method similar to that in Example 157. Yield: 40%.
 - Melting point: 212-213 °C (ethyl acetate-hexane).
 - ¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.30 (6H, s), 2.16 (2H, s), 2.68 (2H, s), 2.83 (3H, d, J = 4.8 Hz), 3.93 (3H, s), 4.05 (2H, d, J = 4.8 Hz), 6.21 (1H, br s), 6.62 (1H, s), 7.42-7.55 (3H, m), 7.88-7.96 (2H, m).

EXAMPLE 159

45

- N-[2-Oxo-2-(phenylamino)ethyl]-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl) benzamide
- [0875] Triethylamine (0.707 mL, 5.07 mmol) and aniline (0.170 mL, 1.86 mmol) were added to a solution of N.[3-(3,4.84-blertahydro-6-methoxy-3,3.84-betramethyfurlog.2-hilsoquinolin-1-ybpenzyol[gycine hydrochloride (0.80 g, 1.69 mmol) and 1-hydroxy-1H-benzotriazole monohydrate (0.285 g, 1.86 mmol) in N,N-dimethylformamide (4 mL). And then, 1-ethyl-3-(3-dimethylaminopropy)learbolinide hydrochloride (0.425g, 2.20 mmol) was added therate and the mixture was stirred at room temperature for 2 hours. The reaction mixture was combined with a saturated aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silical gel (hexane/eithyl acetate 1:1 followed by ethyl acetate/methanol 19:1) to obtain the title compound (0.30 g, Yield:35%).
 - ¹H NMR (DMSO-d₆) δ 1.23 (6H, s), 1.27 (6H, s), 2.14 (2H, s), 2.65 (2H, s), 3.93 (3H, s), 4.21 (2H, d, J = 5.6 Hz), 6.62

(1H, s), 7.10 (1H, t, J = 7.6 Hz), 7.26-7.41 (3H, m), 7.46-7.57 (3H, m), 7.87-7.94 (2H, m), 8.06-8.15 (1H, m), 8.90 (1H, s).

EXAMPLE 160

5 N-[2-Oxo-2-[(4-pyridinylmethyl)amino]ethyl]-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] isoguinolin-1-yl)benzamide

[0876] The title compound was obtained using 4-(aminomethyl)pyridine by the method similar to that in Example 159. Yield: 62%.

Melting point: 197-198 °C (ethyl acetate-diisopropyl ether).

 $^{1}H \ NMR \ (CDCl_{2}) \ \delta \ 1.22 \ (6H, s), 1.29 \ (6H, s), 2.16 \ (2H, s), 2.67 \ (2H, s), 3.93 \ (3H, s), 4.12 \ (2H, d, J = 5.4 \ Hz), 4.43 \ (2H, d, J = 6.0 \ Hz), 6.62 \ (1H, s), 7.11-7.19 \ (3H, m), 7.41-7.50 \ (2H, m), 7.65-7.71 \ (1H, m), 7.84-7.91 \ (1H, m), 7.97 \ (1H, m), 7.84-7.91 \ (1H, m), 7.97 \$

15 EXAMPLE 161

N-[2-Oxo-2-[[2-(4-pyridinyl)ethyl]amino]ethyl]-3-[3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethy/furo[2,3-h]isoguinolin-1-vilbenzamide

20 [0877] The title compound was obtained using 4-(2-amlnoethyl)pyridine by the method similar to that in Example 159. Yield: 82%.

Amorphous.

14 NMR (CDCl₃) 6 1.20 (6H, s), 1.30 (6H, s), 2.17 (2H, s), 2.66 (2H, s), 2.81 (2H, t, J = 6.0 Hz), 3.52 (2H, q, J = 6.0 Hz), 3.92 (3H, s), 3.97 (2H, d, J = 6.4 Hz), 6.61 (1H, s), 6.72-6.78 (1H, m), 7.10 (2H, d, J = 6.2 Hz), 7.41-7.50 (2H, m), 7.76-7.81 (1H, m), 7.89-7.94 (1H, m), 7.96 (1H, s), 8.41-847 (2H, m).

EXAMPLE 162

N-[2-(3-pyridinyl)ethyl]-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[0878] The title compound was obtained from 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]benzoic acid hydrochloride and 3-(2-aminoethyl)pyridine by the method similar to that in Example 159. Yield: 88%.

Amorphous.

20

40

45

50

35 ¹H NMR (CDCl₃) § 1.24 (6H, s), 1.30 (6H, s), 2.18 (2H, s), 2.68 (2H, s), 2.87-2.96 (2H, m), 3.69 (2H, q, J = 6.6 Hz), 3.93 (3H, s), 6.82 (1H, s), 6.71 (1H, br s), 7.21-7.28 (1H, m), 7.43-7.48 (2H, m), 7.58-7.62 (1H, m), 7.80-7.86 (2H, m), 8.49-8.50 (2H, m).

EXAMPLE 163

N-[2-(2-Pyridinyl)ethyl]-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[0879] The title compound was obtained from 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoic acid hydrochloride and 2-(2-aminoethyl)pyridine by the method similar to that in Example 159. Yield: 71%.

Amorphous.

¹H NMR (CDC₃) δ 1.26 (6H, s), 1.27 (6H, s), 2.17 (2H, s), 2.70 (2H, s), 3.00 (2H, t, J = 6.2 Hz), 3.85 (2H, q, J = 6.2 Hz), 3.94 (3H, s), 6.64 (1H, s), 7.10-7.22 (2H, m), 7.4-0-7.51 (2H, m), 7.59-7.70 (2H, m), 7.80 (1H, m), 7.84-7.90 (1H, m), 8.42 (1H, d. J = 4.4 Hz).

EXAMPLE 164

N-[3-(4-Pyridinyl)propyl]-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

The title compound was obtained from 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoqui-nolin-1-yljbenzoic acid hydrochloride and 4-(3-aminopropyl)pyridine by the method similar to that in Example 159. Yield 639.

Melting point: 175-176 °C (ethyl acetate-diisopropyl ether).

¹H NMR (CDCl₃) & 1.23 (6H, s), 1.29 (6H, s), 1.82-1.99 (2H, m), 2.16 (2H, s), 2.62-2.72 (4H, m), 3.41-3.50 (2H, m), 3.92 (3H, s), 6.60-6 65 (1H, m), 7.13 (2H, d, J = 6.0 Hz), 7.43-7.46 (2H, m), 7.83-7.90 (2H, m), 8.50 (2H, d, J = 6.0 Hz).

EXAMPLE 165

5

15

20

20

N-I3-(3-Pyridinyl)propyll-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-yl)benzamide

[0881] The title compound was obtained from 3-(3,4,6,9-tetrahydro-6-methoxy-3,3,6,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoic acid hydrochloride and 3-(3-aminopropyl)pyridine by the method similar to that in Example 159.

Melting point: 161-162 °C (ethyl acetate-diisopropyl ether).

¹H NMR (CDCl₃) δ 1.21 (6H, s), 1.29 (6H, s), 1.79-1.95 (2H, m), 2.14-2.18 (2H, m), 2.60-2.69 (4H, m), 3.38-3.49 (2H, m), 3.92 (3H, s), 6.61 (1H, s), 6.81-6.90 (1H, m), 7.18-7.24 (1H, m), 7.41-7.55 (3H, m), 7.86-7.93 (2H, m), 8.42-8.47 (2H, m), 6.81-6.90 (1H, m), 7.86-7.93 (2H, m), 8.42-8.47 (

EXAMPLE 166

 $N-[3-(1H-Imidazol-1-yl)propyl]-3-(3,4.8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] isoquinolin-1-yl) \\ benzamide$

[0882] The title compound was obtained from 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzolo acid hydrochloride and 1-(3-aminopropyl)imidazole by the method similar to that in Example 159. Yield: 70%

Melting point: 104-106 °C (ethyl acetate-hexane).

¹H NMR (CDC(₃) 5 1,22 (6H, s), 1.30 (6H, s), 2.04 (2H, quintet, J = 7.0 Hz), 2.18 (2H, s), 2.68 (2H, s), 3.36-3.47 (2H, m), 3.93 (3H, s), 4.01 (2H, t, J = 7.0 Hz), 6.62 (1H, s), 6.90-6.97 (2H, m), 7.05 (1H, s), 7.44-7.50 (3H, m), 7.85-7.90 (2H, m).

EXAMPLE 167

 $N-[2-[4-(Aminosulfonyl)phenyl]-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro \cite{Aminosulfonyl}-1-yl) benzamide$

[0883] The title compound was obtained from 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-ylbacroia acid hydrochloride and 4-(2-aminoethyl)benzenesulfonamide by the method similar to that in Example 159, Yield-85%.

Melting point: 138-139 °C (ethyl acetate-diisopropyl ether).

¹H NMR (CDCl₃) § 1.21 (6H, s), 1.28 (6H, s), 2.15 (2H, s), 2.68 (2H, s), 2.91-2.98 (2H, m), 3.63-3.75 (2H, m), 3.93 (3H, s), 5.22 (2H, br), s), § 6.82 (1H, s), § 7.78-6.84 (1H, m), 7.33 (2H, d, J = 8.0 Hz), 7.46 (2H, d, J = 4.8 Hz), 7.73-7.80 (3H, m), 7.83-7.89 (1H, m).

EXAMPLE 168

N-(Hexahydro-2-oxo-1H-azepin-3-yl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl/uro[2,3-h]isoquinolin-1-yl) benzamide

[0884] The title compound was obtained from 3-(3.4,8,9-tetrahydro-6-methoxy-3,3.8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzolc acid hydrochloride and 3-aminohexahydro-2-azepinone by the method similar to that in Example 159, Yield 65%.

Melting point: 187-188 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) & 1.25 (3H, s), 1.27 (3H, s), 1.30 (6H, s), 1.50-2.25 (6H, m), 2.16 (2H, s), 2.70 (2H, s), 3.18-3.40 (2H, m), 3.93 (3H, s), 4.68-4.77 (1H, m), 6.41 (1H, brs), 6.62 (1H, s), 7.41-7.49 (2H, m), 7.75-7.80 (1H, m), 7.88-7.96 (2H, m).

EXAMPLE 169

5

N- (Hexahydro-5-oxo-1,4-thiazepin-6-yl)-3- (3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl) benzamide

[0885] The title compound was obtained from 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoic acid hydrochloride and 6-amino-1,4-thiazepin-5-one by the method similar to that in Example 159.

Melting point: 206-207 °C (ethyl acetate-diisopropyl ether).

O 1H NMR (CDCl₃) δ 1.26 (6H, s), 1.29 (6H, s), 2.14 (2H, s), 2.50-2.89 (3H, m), 2.71 (2H, s), 2.87-2.97 (1H, m), 3.58-3.83 (2H, m), 3.93 (3H, s), 5.05-5.13 (1H, m), 6.62 (1H, s), 6.80-6.88 (1H, m), 7.45-7.50 (2H, m), 7.89-7.96 (3H, m).

EXAMPLE 170

N-[2-(4-Pyridinylamino)ethyl]-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl) benzamide

[0886] The title compound was obtained from 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinollin-1-ylbenzoic sacih ydrochloride and 4-{(2-aminoethyl)amino|pyridine by the method similar to that in Example 156, Yield: 55%.

Amorphous.

¹H NMR (CDCl₃) ⁸ 1.22 (6H, s), 1.29 (6H, s), 2.17 (2H, s), 2.66 (2H, s), 3.30-3.39 (2H, m), 3.60-3.70 (2H, m), 3.92 (3H, s), 5.12-5.18 (1H, m), 6.44 (2H, d, J = 5.2 Hz), 6.62 (1H, s), 7.38-7.44 (3H, m), 7.82-7.90 (2H, m), 8.14 (2H, d, J = 5.2 Hz).

EXAMPLE 171

25

N-[2-(2-Pyridinylamino)ethyl]-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl) benzamide

20

[0887] The title compound was obtained from 3-{3.4,8.9-tetrahydro-6-methoxy-3.3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzole acid hydrochloride and 2-{(2-aminoethyl)amino]pyridine by the method similar to that in Example 159. Yleid: 33%. Amorphous.

³⁵ ¹H NMR (CDCl₃) 8 1.27 (12H, s), 2.14 (2H, s), 2.71 (2H, s), 3.63 (4H, s), 3.93 (3H, s), 4.91 (1H, br s), 6.40-6.52 (2H, m), 6.64 (1H, s), 7.29-7.39 (1H, m), 7.43-7.48 (2H, m), 7.84 (1H, s), 7.90-7.99 (2H, m), 8.49 (1H, br s).

EXAMPLE 172

N-[2-(Diethylamino)ethyl]-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-hlisoquinolin-1-yl)benzamide dihydrochloride

[0888] The title compound was obtained from N,N-diethylenediamine by the method similar to that in Example 155. Yield: 47%.

Amorphous.

45

50

¹H NMR (DMSO-dg) δ 1.22 (6H, t, J = 7.4 Hz), 1.24 (6H, s), 1.48 (6H, s), 2.20 (2H, s), 3.12-3.32 (4H, m), 3.62-3.81 (6H, m), 3.95 (3H, s), 7.12 (1H, s), 7.72-7.81 (2H, m), 8.25-8.34 (2H, m).

EXAMPLE 173

N-{8-Methyl-8-azabicyclo[3.2.1]oct-3-yl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h])isoquinolin-1-yl)benzamide dihydrochloride

[0889] The title compound was obtained using 3-amino-8-methyl-8-azabicycio[3.2.1]octane by the method similar to that in Example 155. Yield: 49%.

Amorphous.

 ^{1}H NMR (DMSO-dg) δ 1.23 (6H, s), 1.43 (6H, s), 2.17-2.80 (14H, m), 2.96-3.22 (2H, m), 3.85 (2H, br s), 3.95 (3H, s), 7.12 (1H, s), 7.72-7.79 (2H, m), 8.14-8.19 (1H, m), 8.27 (1H, s).

EXAMPLE 174

N-(1-Azabicyclo[2.2.2]oct-3-yl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl) benzamide dihydrochloride

[0890] The title compound was obtained using 3-amino-1-azabicyclo[2.2.2]octane by the method similar to that in Example 155. Yield: 49%.

Amorphous.

5

15

¹H NMR (DMSO-d₆) δ 1.23 (6H, s), 1.48 (6H, s), 1.88-2.38 (7H, m), 3.18-3.83 (8H, m), 3.97 (3H, s), 4.27-4.48 (1H, m), 7.12 (1H, s), 7.70-7.78 (2H, m), 8.22-8.33 (1H, m), 8.43 (1H, s).

EXAMPLE 175

N-(2-Amino-2-oxoethyl)-4-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[0891] The title compound was obtained from 4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl])benzole acid hydrochloride and glycinamide hydrochloride by the method similar to that in Example 159. Yleld: 31%.

Melting point: 135-136 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.31 (6H, s), 2.18 (2H, s), 2.70 (2H, s), 3.92 (3H, s), 4.13 (2H, d, J = 5.0 Hz), 5.85 (1H, br s), 6.56-6.65 (2H, m), 7.44-7.57 (3H, m), 7.86 (2H, d, J = 8.0 Hz).

EXAMPLE 176

25 2-Methyl-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoyl]alanine ethyl ester

[0.839] Triethylamine (0.938 mL, 6.72 mmol) and 1-ethyl-S-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.479 g, 2.50 mmol) were added to a solution of 3-(3.48,9-tetrahydro-8-methoxy-3.3,8.8-tetramethylfuro(2,3-h)iso-quinolin-1-yl)benzoic acid hydrochloride (0.80 g, 1.92 mmol), 1-hydroxy-1+benzotiazole monohydrate (0.324 g, 2.11 mmol), ethyl 2-aminoisobutyrate hydrochloride (0.355 g, 2.11 mmol), in N.N-dimethylformamide (4 mL) and the mixture was stirred at room temperature for 2 hours. The reaction mixture was combined with water, and extracted with ethyl acctate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl accetate/methanol 1:1), and recrystallized from diisopropyl ether-hexane to obtain the title compound (0.85 q, Yielde 67%).

Melting point: 114-115 °C

 1 H NMR (CDCl₃) δ 1.26 (6H, s), 1.28 (3H, t, J = 7.0 Hz), 1.30 (6H, s), 1.67 (6H, s), 2.17 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 4.23 (2H, q, J = 7.0 Hz), 6.62 (1H, s), 6.88 (1H, br s), 7.42-7.51 (2H, m), 7.81-7.91 (2H, m).

40 EXAMPLE 177

2-Methyl-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl) benzoyl] alanine hydrochloride alaning hydrochloride alani

45 [0893] 1 M aqueous solution of sodium hydroxide (8.0 ml.) was added to a solution of 2-methyl-N-[3-(3.4.8.9-tetrahyl-dro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]soquinolin-1-yl/benzoyl|alanine ethyl ester (2.60 g, 5.28 mmol) in ethanol (10 ml.) and the mixture was stirred at room temperature for 12 hours. 1 M hydrochloric acid (13.5 ml.) was added to the reaction mixture and the mixture was concentrated under reduced pressure. The residue was combined with ethanol and filtered, and the filtrate was concentrated under reduced pressure, and this procedure was repeated 3 times. The residue was crystalized from ethyl acetate to obtain the title compound (2.38 g., Yield: 90%).

Melting point: 197-201 °C.

¹H NMR (DMSO-d_g) δ 1.24 (6H, br s), 1.49 (6H, s), 1.53 (6H, s), 2.22-2.30 (2H, m), 3.10-3.22 (2H, m), 3.95 (3H, s), 7.12 (1H, s), 7.65-7.78 (2H, m), 8.16-8.22 (1H, m), 8.30 (1H, s), 8.90 (1H, m).

55

25

EXAMPLE 178

5

20

N-(2-Amino-1,1-dimethyl-2-oxoethyl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl) benzamide

[0894] 1-Ethyl-3-[G-d-limethylaminopropyl)carbodilimide hydrochloride (0.920 g. 4.80 mmol) was added to a solution of z-methyl-N-13(3,4.8,9-tenthydro-6-methoyd-3,3.8,8-tertamethyllrufe) 2-higoquionion1-ylybenzoylilaatine hydrochloride (1.85 g. 3.89 mmol), 1-hydroxy-1H-benzotriazole monohydrate (0.822 g. 4.06 mmol) in N.N-dimethylformamide (20 ml.) and the mixture was stirred at room temperature for 15 minutes. Conc. aqueous ammonia (3.7 ml.) was added thereto and the mixture was stirred at room temperature further for 15 minutes. The reaction solution was combined with water, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under educed pressure. The residue was subjected to a column chromotography on a basic silica gel (chyl) acetate/horder educed pressure. The residue was subjected to a column chromotography on a basic silica gel (chyl) acetate/horder educed pressure. The residue of 151%).

15 Melting point: 129-131 °C.

 ^{1}H NMR (CDCl₃) δ 1.25 (6H, s), 1.31 (6H, s), 1.69 (6H, s), 2.19 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 5.58 (1H, br s), 6.48 (1H, br s), 6.62 (1H, 5), 7.11 (1H, s), 7.42-7.48 (2H, m), 7.86-7.90 (2H, m).

EXAMPLE 179

N-Methyl-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[0895] 1-Ethyl-3-(3-dimethylaminopropyl)-carbodimide hydrochloride (0.479 g, 2.50 mmol) was added to a solution of 3-(3.4,8,9-tetrahydro-6-methoxy-3.3,8,8-tetramethylfluro[2.3-h]isoquinolin-1-yl)benzoic acid hydrochloride (0.80 g, 1.92 mmol), 1-hydroxy-114-benzotriazole monohydrate (0.2344 g, 2.11 mmol) in N,N-dimethylomnamide (4 mL) and the mixture was stirred a room temperature for 20 minutes. 40% solution of methylamine/methanol (1.0 mL) was added to the reaction mixture and the mixture was stirred at room temperature for 2 hours. The reaction solution was combined with water, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was recrystallized from ethyl acetate-diisopropyl ether to obtain the title compound (0.39 g, Yield: 62%).

Melting point: 206-207 °C.

 ^{1}H NMR (CDCl₃) δ 1.24 (6H, s), 1.29 (6H, s), 2.16 (2H, s), 2.67 (2H, s), 2.98 (3H, d, J = 4.6 Hz), 3.93 (3H, s), 6.58-6.70 (1H, m), 6.62 (1H, s), 7.40-7.48 (2H, m), 7.78 (1H, s), 7.83-7.90 (1H, m).

35 (Alternative synthetic method)

[0896] A mixture of 1-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-2-methyl-1-propanol (1.13 g, 4.50 mmol), 3-cyano-N-methyl-benzamide (0.60 g, 3.75 mmol), acetic acid (4 mL) and toluene (6 mL) was cooled with ice, and conc. sulfuric acid (0.519 mL, 9.75 mmol) was added thereto. The mixture was stirred at 80 °C for 1 hour, and then the reaction solution was allowed to cool to room temperature, and combined with water. This was held with diethyl either, and then the aqueous layer was basified with once, aqueous ammonia, and extracted with eithyl acetate. The extract was washed with water, and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-hexane to obtain 0.79 g of the material. This was recrystallized from ethyl acetate to obtain the title compound (0.61 q, Yield: 42%).

45 Melting point: 202-203 °C.

EXAMPLE 180

50

N-Ethyl-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[0897] The title compound was obtained from 3-(3.4,8.9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-ylbenzoic acid hydrochloride and a 70% aqueous solution of ethylamine by the method similar to that in Example 157. Yildi: 58%

Melting point: 186-187 °C (ethyl acetate-diisopropyl ether).

 1H NMR (CDCl₃) δ 1.24 (3H, t, J = 5.4 Hz), 1.25 (6H, s), 1.30 (6H, s), 2.17 (2H, s), 2.69 (2H, s), 3.41-3.55 (2H, m), 3.93 (3H, s), 6.38-6.45 (1H, m), 6.62 (1H, s), 7.42-7.48 (2H, m), 7.78 (1H, s), 7.85-7.91 (1H, m).

EXAMPLE 181

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-N-phenyl-1-furo[2,3-h]isoguinolinamine

5 [0898] Phosphorus pentoxide (0.68 g, 2.41 mmol) was added to a solution of N-[2-(2.3-dlhydro-7-methoxy-2.2-dlm-thyl-5-benzofuranyl)-1,1-dimethylethyl-N'-phenylurea (0.68 g, 1.85 mmol) in phosphorus oxychloride (3 mL) and the mixture was stirred at 80°C for 10 minutes. The reaction mixture was added to an excessive saturated aqueous solution of sodium hydrogen carbonate, and the mixture was extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on additional gel (hexane/ethyl acetate 3:2) to obtain the title compound (0.34 g, Yidki: 52%). An aliquot was recrystalized from

hoxane-ethyl acetate. Melting point: 135-136 °C.
14 NMR (CDCl₂) δ 1.17 (6H, s), 1.51 (6H, s), 2.79 (2H, s), 3.53 (2H, s), 3.91 (3H, s), 4.59 (1H, br s), 6.52 (1H, s), 6.88-6.93 (2H, m), 6.95-704 (1H, m), 7.29-7.37 (2H, m).

15 EXAMPLE 182

3,4,8,9-Tetrahydro-6-methoxy-N-(4-methoxyphenyl)-3,3,8,8-tetramethyl-1-furo[2,3-h]isoguinolinamine

[0899] Amixtureoftn-12-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-1,1-dimethylethyl;N-'(4-methoxyphenyl)urea (1,00 g, 2.5 in mol), phosphorus oxypholioid (1,92 g, 1.2 6 mmol) and foluene (1 on L) was stirred at room temperature for 2 hours, and at 80 °C further for 30 minutes. The reaction mixture was poured into excessive aqueous solution of sodium hydroxide, and extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (havane/athyl acetate 2:3) to obtain the title compound (0.50 g, Yield: 52%). An aliquot was recrystallized from hexane-ethyl acetate. Melting point: 139-140 °C.

 1 H NMR (CDCl₃) δ 1.17 (6H, s), 1.51 (6H, s), 2.78 (2H, s), 3.53 (2H, s), 3.80 (3H, s), 3.90 (3H, s), 4.62 (1H, br s), 6.52 (1H, s), 6.81-6.93 (4H, m).

EXAMPLE 183

25

20

25

45

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-(1-piperidinyl)furo[2,3-h]isoquinoline hydrochloride

[0900] A free base of the title compound was obtained from N-[2-(2-3-dihydro-7-methoxy-2-2-dimethyl-5-benzofuranyl)-1,1-dimethylethyl-1-piperidinecarboxamide by the method similar to that in Example 182. This was dissolved in ethanol. 4 M solution of hydrogen chloride/ethyl acetate was added to the reaction mixture and the mixture was concentrated under reduced pressure. The residue was recrystallized from ethanol-diethyl ether to obtain the title compound. Yield: 20%.

Melting point: 137-139 °C.

¹H NMR (DMSO-d₆) δ 1.22 (6H, s), 1.42 (6H, s), 1.64 (6H, s), 2.86 (2H, s), 3.12 (2H, s), 3.42-3.75 (4H, m), 3.86 (3H, s), 6.96 (1H, s), 9.31 (1H, s).

EXAMPLE 184

8',9'-Dihydro-6'-methoxy-8',8'-dimethyl-1'-phenylspiro[cyclohexane-1,3'(4'H)-furo[2,3-h]isoquinoline] hydrochloride

[0901] Conc. sulfuric acid (0.333 mL, 6.24 mmol) was added to a solution of 5-(cyclohoxylidenemethyl-2.3-dihydro-7-methoxye.2-c-dimethylbenzoturin (0.85 g. a.12 mmol) and benzontirile (0.350 ml., 3.43 mmol) in acetic acid (4 ml.) and the mixture was strred at 80 °C for 10 minutes. The reaction solution was added to an aqueous solution of sodium hydroxido, and the mixture was extracted with ethyl acetate. The extract was washed with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica get (flexare/ethyl acetate 3:1) to obtain a free base (0.54 g. Yield: 46%) of the title compound as an oil. This was dissolved in ethanol. 4 M solution of hydrogen chiloridesthyl acetate was added to the mixture was concentrated under reduced pressure. The residue was precipitated from ethanol-disopropyl ether to obtain the title compound (0.51 g. Yield: 40%).

⁵⁵⁵ ¹H NMR (DMSO-d_θ) δ 1.22 (6H, s), 1.25-1.85 (10H, m), 2.15 (2H, s), 3.31 (2H, s), 3.94 (3H, s), 7.19 (1H, s), 7.58-7.80 (5H, m).

EXAMPLE 185

5

15

25

30

25

45

50

8',9'-Dihydro-6'-methoxy-1'-(4-methoxyphenyl)-8',8'-dimethylspiro[cyclohexane-1,3'(4'H)-furo[2,3-h]isoquinoline] hydrochloride

[0902] The title compound was obtained using 4-methoxybenzonitrile by the method similar to that in Example 184. Yield: 45%.
Amorphous.

¹H NMR (DMSO-d₆) δ 1.25 (6H, s), 1.32-1.80 (10H, m), 2.31 (2H, s), 3.33 (2H, s), 3.88 (3H, s), 3.92 (3H, s), 7.14 (1H, s), 7.16 (2H, d, J = 8.6 Hz), 7.55 (2H, d, J = 8.6 Hz),

EXAMPLE 186

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-6-(1-methylethoxy)-1-phenylfuro[2,3-h]isoquinoline hydrochloride

[0903] A free base of the title compound was obtained from 3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl-8-furo [2,3-hi]soquinclinol and 2-tedopropane by the method similar to that in Example 99. This was dissolved in hexane and 4 M solution of hydrogen chloride/ethyl acetate was added thereto. The mixture was concentrated under reduced pressure, and crystallized from hexane-ethyl acetate to obtain the title compound. Yield: 71%.

EXAMPLE 187

7.10 (1H, s), 7.62-7.77 (5H, m).

6-(Cyclopentyloxy)-3.4.8.9-tetrahydro-3.3.8.8-tetramethyl-1-phenylfuro[2.3-h]isoquinoline

[0904] The title compound was obtained from 3.4.8,9-tetrahydro-3.3,8.8-tetramethyl-1-phenyl-6-furo[2,3-h]isoquinolinol and bromocyclopentane by the method similar to that in Example 99. Yield: 43%. Metling point: 73-74 °C (hexane).

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.28 (6H, s), 1.55-2.00 (8H, m), 2.15 (2H, s), 2.66 (2H, s), 4.84-4.92 (1H, m), 6.59 (1H, s), 7.38 (5H, s).

EXAMPLE 188

3.4.8.9-Tetrahydro-3.3.8.8-tetramethyl-1-phenylfuro[2.3-h]isoguinolin-6-yl acetate hydrochloride

[9965] Acetic anhydride (2 m.l) was added to a solution of 3,4,8,9-tertahydro-3,3,8,8-tertamethyl-1-phonyl-6-fur [2,3-h]lacquinloni (587 mg. 1.76 mmol) in pydinia (2 m.l.) and the mixture was stirred at troom temperature for 12 hours. A saturated aqueous solution of sodium hydrogen carbonate was poured into the reaction mixture, which was then extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 3:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 is solution of hydrogen chlorid-derlyl acetate, combined with 4 is solution of hydrogen chlorid-derlyl acetate, combined with 4 is solution of hydrogen chlorid-derlyl acetate, cometrated under reduced pressure, and crystallized from hexane-ethyl acetate to obtain the title compound (533 mg, Yield: 76%).

1H NMR (DMSO-de) 81.23 (6H, s), 1.45 (6H, s), 2.37 (2H, s), 2.31 (3H, s), 3.16 (2H, s), 7.22 (1H, s), 7.66-7.80 (5H, m),

EXAMPLE 189

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl benzoate hydrochloride

[0906] The title compound was obtained from benzoyl chloride by the method similar to that in Example 188. Yield: 75%

Melting point: 160-165 °C (ethyl acetate).

 $^{1}\text{H NMR (DMSO-d}_{6}) \ \delta \ 1.23 \ (6\text{H}, \ s), \ 1.47 \ (6\text{H}, \ s), \ 2.28 \ (2\text{H}, \ s), \ 3.18 \ (2\text{H}, \ s), \ 7.34 \ (1\text{H}, \ s), \ 7.60-7.85 \ (8\text{H}, \ m), \ 8.14 \ (2\text{H}, \ d), \ J = 7.4 \ Hz).$

EXAMPLE 190

6-Butoxy-3,4.8,9-tetrahydro-3,3,8.8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline

- 5 (9907) Sodium hydride (66% suspension in oil) (61 mg, 1.69 mmol) and 1-iodobutane (0.19 mL, 1.65 mmol) were added sequentially to a solution of 3.4,8-jettanythor.3.3,8-lettamenthy1--jhenpl-ef-fure(3-jh)sequioniloid (495 mg, 1.54 mmol) in N,N-dimethylformamide (5 mL) and the mixture was stirred at room temperature for 2 hours. The reaction mixture was poured into water, and extracted twice with ethyl acetta. The combined organic layer was washed with water (twice) and a brine, dried over magnesium sulfate, filtered, and concentrated under ordisced pressure. The res
 - water (twice) and a brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 5:1 followed by 3:1), and recrystallized from hexane to obtain the title compound (357 mg, Yield: 61%).

 Melting point: 99-101 °C.

¹H NMR (CDCl₃) δ 0.98 (3H, t, J = 7.4 Hz), 1.25 (6H, s), 1.29 (6H, s), 1.39-1.58 (2H, m), 1.68-1.90 (2H, m), 2.17 (2H, s), 2.67 (2H, s), 4.10 (2H, t, J = 7.0 Hz), 6.60 (1H, s), 7.38 (5H, s).

EXAMPLE 191

15

20

25

3.4.8.9-Tetrahydro-3.3.8.8-tetramethyl-1-phenyl-6-propoxyfuro[2,3-h]isoquinoline hydrochloride

(0908) A free base of the title compound was obtained using 1-iodopropane by the method similar to that in Example 190. This was dissolved in ethyl acetate, combined with 4 M solution of hydrogen chloride/ethyl acetate, and concentrated under reduced pressure to obtain the title compound. Yield: 91%. Amorphous.

¹H NMR (DMSO-d₆) δ 0.97 (3H, t, J = 7.3 Hz), 1.23 (6H, s), 1.44 (6H, s), 1.68-1.88 (2H, m), 2.16 (2H, s), 3.15 (2H, s), 25 4.14 (2H, t, J = 6.8 Hz), 7.10 (1H, s), 7.60-7.80 (5H, m).

EXAMPLE 192

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-(phenylmethoxy)furo[2,3-h]isoquinoline

[0909] The title compound was obtained using benzyl bromide by the method similar to that in Example 190. Yield:

Melting point: 129-131 °C (diethyl ether-hexane).

1H NMR (CDCI₃) δ 1.22 (6H, s), 1.31 (6H, s), 1.18 (2H, s), 2.62 (2H, s), 5.23 (2H, s), 6.60 (1H, s), 7.30-7.48 (10H, m).

EXAMPLE 193

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-(2-pyridinylmethoxy)furo[2,3-h]isoquinoline dihydrochloride

- 40 [0910] A free base of the title compound was obtained using 2-(chloromethyl)pyridine hydrochloride by the method similar to that in Example 190. This was dissolved in ethyl acetate, combined with 4 M solution of hydrogen chloride/ ethyl acetate, concentrated under reduced pressure, and crystallized from ethanol-ethyl acetate to obtain the title compound. Yield: 90%. Melling opinit: 170-210 °C.
- 45 1H NMR (CDCl₃) \$ 1.33 (6H, s), 1.69 (6H, s), 2.25 (2H, s), 3.05 (2H, s), 5.92 (2H, s), 7.09 (1H, s), 7.57-7.74 (5H, m), 7.85-7.95 (1H, m), 8.20 (1H, d, J = 7.6 Hz), 8.42-8.56 (1H, m), 8.75 (1H, d, J = 4.8 Hz).

EXAMPLE 194

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-(3-pyridinylmethoxy)furo[2,3-h]isoquinoline

[0911] The title compound was obtained from 3-(chloromethyl)pyridine hydrochloride by the method similar to that in Example 190. Yield: 85%.

Melting point: 112-115 °C (hexane).

⁵ ¹H NMR (CDCl₃) § 1.31 (6H, s), 1.32 (6H, s), 2.19 (2H, s), 2.70 (2H, s), 5.26 (2H, s), 6.64 (1H, s), 7.33 (1H, d, J = 7.4, 4.8 Hz), 7.43 (5H, s), 7.80 (1H, dd, J = 7.4, 1.6 Hz), 8.59 (1H, dd, J = 4.8, 1.6 Hz), 8.68 (1H, d, J = 1.6 Hz).

EXAMPLE 195

3,4.8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-(4-pyridinylmethoxy)furo[2,3-h]isoquinoline

5 [0912] The title compound was obtained from 4-(chloromethyl)pyridine hydrochloride by the method similar to that in Example 190, Yield: 79%.

Melting point: 122-124 °C (hexane).

¹H NMR (CDCl₃) δ 1.22 (6H, s), 1.32 (6H, s), 2.19 (2H, s), 2.61 (2H, s), 5.25 (2H, s), 6.53 (1H, s), 7.36 (2H, d, J = 6.2 Hz), 7.38 (5H, s), 8.61 (2H, d, J = 6.2 Hz).

EXAMPLE 196

10

20

25

45

55

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-[(3-phenyl-2-propenyl)oxy]furo[2,3-h]isoquinoline

15 [0913] The title compound was obtained using cinnamyl chloride by the method similar to that in Example 190. Yield: 789.

Melting point: 121-123 °C (hexane-diethyl ether).

¹H NMR (DMSO-d₆) δ 1.13 (6H, s), 1.21 (6H, s), 2.18 (2H, s), 2.63 (2H, s), 4.78 (2H, d, J = 6.0 Hz), 6.45-6.59 (1H, m), 6.78 (1H, d, J = 16.8 Hz), 6.88 (1H, s), 7.28-7.52 (10H, m).

EXAMPLE 197

3.4.8.9-Tetrahydro-3.3.8.8-tetramethyl-1-phenyl-6-(3-phenylpropoxy)furo[2.3-h]isoguinoline hydrochloride

29 [0914] A free base of the title compound was obtained using 1-bromo-3-phenylpropane by the method similar to that in Example 190. This was dissolved in ethyl acetate, combined with 4 M solution of hydrogen chloride/ethyl acetate, concentrated under reduced pressure, and crystallized from hexane to obtain the title compound. Yield: 89%. Melting point: 165-180 °C.

¹H NMR (DMSO-d₆) δ 1.24 (6H, s), 1.45 (6H, s), 2.02-2.16 (2H, m), 2.17 (2H, s), 2.74 (2H, t, J = 8.0 Hz), 3.14 (2H, s), 4.19 (2H, t, J = 6.0 Hz), 7.07 (1H, s), 7.18-7.38 (5H, m), 7.63-7.80 (5H, m), 12.68 (1H, br.s).

EXAMPLE 198

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-[(5-phenylpentyl)oxy]furo[2,3-h]isoquinoline

[0915] The title compound was obtained using 1-bromo-5-phenylpentane by the method similar to that in Example 190, Yield: 79%.

Melting point: 104-106 °C (hexane).

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.29 (6H, s), 1.45-1.94 (6H, m), 2.17 (2H, s), 2.64 (2H, t, J = 7.8 Hz), 2.67 (2H, s), 4.09 (2H, t, J = 6.8 Hz), 6.58 (1H, s), 7.17-7.35 (5H, m), 7.38 (5H, s).

EXAMPLE 199

Ethyl (3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl) carbonate hydrochloride

[0916] A free base of the title compound was obtained using ethyl chloroformate by the method similar to that in Example 190. This was dissolved in ethyl acetate, combined with 4 M solution of hydrogen chloride/ethyl acetate, concentrated under reduced pressure, and crystallized from hexane-ethyl acetate to obtain the title compound. Yield: 71%.

50 Melting point: 144-147 °C.

¹H NMR (DMSO-d_g) δ 1.24 (6H, s), 1.29 (3H, t, J = 7.1 Hz), 1.45 (6H, s), 2.25 (2H, s), 3.16 (2H, s), 4.28 (2H, q, J = 7.1 Hz), 7.33 (1H, s), 7.65-7.80 (5H, m).

EXAMPLE 200

3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-[(1-phenyl-1H-tetrazol-5-yl)oxy]furo[2,3-h]isoquinoline

[0917] The title compound was obtained using 5-chloro-1-phenyl 1H-tetrazole by the method similar to that in Ex-

ample 190. Yield: 88%.

Melting point: 191-193 °C (diethyl ether).

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.27 (6H, s), 2.24 (2H, s), 2.71 (2H, s), 7.09 (1H, s), 7.41 (5H, s), 7.50-7.62 (3H, m),

7.82-7.88 (2H, m).

EXAMPLE 201

5

6-(Fluoromethoxy)-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline

[0918] The title compound was obtained using bromofluoromethane by the method similar to that in Example 190. Yield: 75%.

Melting point: 120-122 °C (hexane-diethyl ether).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.31 (6H, s), 2.21 (2H, s), 2.69 (2H, s), 5.80 (2H, d, J=54.2 Hz), 6.85 (1H, s), 7.40 (5H, s).

15 EXAMPLE 202

2 + [[(3,4,8,9-Tetrahydro-3,3,8,8+tetramethyl-1-phenylfuro[2,3-h] is oquino lin-6-yl) oxy] methyl] - 1 + iso indole-1,3(2 + indole-1,3) + iso indole-1,3(2 + indole-1,3) + indol

[0919] The title compound was obtained using N-(bromomethyl)phthalimide by the method similar to that in Example 190. Yield: 92%.

Melting point: 191-193 °C (diethyl ether).

¹H NMR (CDCl₃) δ 1.20 (6H, s), 1.24 (6H, s), 2.16 (2H, s), 2.62 (2H, s), 5.73 (2H, s), 6.77 (1H, s), 7.38 (5H, s), 7.75-7.79 (2H, m), 7.89-7.94 (2H, m).

EXAMPLE 203

25

25

[(3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)oxy]acetic acid methyl ester

39 [0920] The title compound was obtained using methyl bromoacetate by the method similar to that in Example 190. Yield: 72%.

Melting point: 82-84 °C (hexane-diethyl ether).

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.29 (6H, s), 2.17 (2H, s), 2.65 (2H, s), 3.81 (3H, s), 4.78 (2H, s), 6.57 (1H, s), 7.38 (5H, s).

EXAMPLE 204

2-[(3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)oxy]acetamide

40 [0921] 5 M solution of ammonia/methanol (7 mL) was added to a mixture of ((3.4.8)-tetrahydro-3.3.8.8-tetramethytic-1-phenyfunc(2.5-hi|soquinoinfe-9/)eosyleactic active methy leater (501 mg, 1.27 mmol) and sodium cyanide (62 mg, 0.127 mmol) and the mixture was stirred in sealed tube at 45 °C for 5 hours. Methanol was distilled off under reduced pressure, and water was poured into the residue, which was then extracted twice with ethyl actetate. The combined organic layer was washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure.

45 The resultant crystals were washed with diethyl ether to obtain the title compound (409 mg, Yield: 85%). Melting point: 117-119 °C.

 $^{1}\text{H NMR} \ (\text{CDC}|_3) \ \delta \ 1.25 \ (6\text{H, s}), \ 1.30 \ (6\text{H, s}), \ 2.20 \ (2\text{H, s}), \ 2.68 \ (2\text{H, s}), \ 4.62 \ (2\text{H, s}), \ 5.63 \ (1\text{H, br s}), \ 6.63 \ (1\text{H, s}), \ 6.80 \ (1\text{H, br s}), \ 7.39 \ (5\text{H, s}), \ 6.63 \ (1\text{H, s}), \ 6.80 \ (1\text{H, br s}), \ 7.39 \ (5\text{H, s}), \ 6.63 \ (1\text{H, s}), \ 6.80 \ (1\text{H, br s}), \ 7.39 \ (5\text{H, s}), \ 6.63 \ (1\text{H, s}), \ 6.6$

50 EXAMPLE 205

[(3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)oxy]acetate hydrochloride

[0922] 2 M aqueous solution of sodium hydroxide (3.13 mt., 6.26 mmol) was added to a solution of [(3.4.8,9-tetrahy-dro-3,3.8,8-tetramethyl-1-phenyfluro[2,3-h]soquinolin-6-yl)oxy]acetic acid methyl ester (1.23 g, 3.13 mmol) in methanol (6 mt.) and the mixture was stirred at room temperature for 4 hours. Methanol was distilled off under reduced pressure, and water was poured into the residue, which was then neutralized with 2 M hydrochloric acid. 4 M solution of hydrogen cholide/eithyl scelate (1.17 mt., 4.68 mmol) was added to the mixture was concentrated

under reduced pressure. The residue was dissolved in methanol, and the insolubles were filtered off, and mother liquor was concentrated under reduced pressure. The same procedure was repeated twice, and then the title compound (1.17 g, Yield: 90%) was obtained.

Amorphous.

⁵ ¹H NMR (CDCl₂) δ 1.29 (6H, s), 1.54 (6H, s), 2.18 (2H, s), 2.93 (2H, s), 4.66 (2H, s), 6.66 (1H, s), 7.48-7.70 (5H, m).

EXAMPLE 206

10

15

N-Methyl-2-f/3.4.8.9-tetrahydro-3.3.8.8-tetramethyl-1-phenylfurof2.3-hlisoguinolin-6-yl\u00e4oxylacetamide hydrochloride

[9923] N,N*Carbonyldimidazole (187 mg, 1.15 mmol) was added to a solution of [(3.4,8.9+tetrahydro-3.3,8.8-tetram-ethyl-1-phenylfuro[2.3-h]]soquinolin-6-yl)oxylacetate hydrochloride (435 mg, 1.05 mmol) in N,N-dimethylformamide (4 mL) and the mixture was stirred at room temperature for 2 hours. Methylamine hydrochloride (78 mg, 1.15 mmol) and triethylamine (0.32 mL, 2.31 mmol) were added, and the mixture was stirred at room temperature further for 5 hours. Ice water was poured into the reaction mixture, which was then extracted twice with ethyl acetate. The combined organic layer was washed twice with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 1:1 followed by ethyl acetate) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M solution of hydrogen chloride/ethyl acetate, and concentrated under reduced pressure to obtain the title compound (330 mg, Yeld, 73%).

Amorphous.

¹H NMR (DMSO- d_6) δ 1.24 (6H, s), 1.44 (6H, s), 2.17 (2H, s), 2.66 (3H, d, J = 4.8 Hz), 3.13 (2H, s), 4.72 (2H, s), 6.99 (1H, s), 7.63-7.80 (5H, m), 8.17 (1H, d, J = 4.8 Hz),

25 EXAMPLE 207

N,N-Dimethyl-2-[(3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)oxy]acetamide

[0924] Triothylamine (0.22 mL, 1.60 mmol) was added to a solution of ([3.4, 8.9-tetrahydro-3.3, 8.8-tetramethyl-1-pine-nyfuro(2.4)-shipsoquionile-pyloyalgoetia exici hydrochtoride (604 mg, 1.46 mmol) in tetrahydrofurar (6 mL) and the mixture was stirred at room temperature for 3 minutes. N.N-carbonyldiimidazole (259 mg, 1.80 mmol) was added to the reaction mixture and the mixture was stirred at room temperature for 2 hours. 2 M solution of dimethylamine/ tetrahydrofurar (0.80 mL, 1.60 mmol) was added to the reaction mixture and the mixture was stirred at room temperature for 1 hour. Water was poured into the mixture, which was then extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium suitate, filtered, and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-diethyl ether to obtain the title compound (422 mg, Yield: 72%). Meltin popint: 120-140 ethi.

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.29 (6H, s), 2.17 (2H, s), 2.69 (2H, s), 2.99 (3H, s), 3.10 (3H, s), 4.83 (2H, s), 6.67 (1H, s), 7.39 (5H, s).

EXAMPLE 208

40

2-[(3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)oxy]ethanamine

Sodium hydride (66% suspension in oil) (142 mg, 3.92 mmol) was added to a solution of 3,4,8.9-tetrahydro-3,3,8.8-tetramethyl-1-phenyl-6-func];3-h]isoquinoinol (1,20 g, 3.73 mmol) in N,N-dimethylformamide (6 mL) and the mixture was stirred at room temperature for 1 for finituse. N-(2-Bromoethylphthalimide (948 mg, 3.73 mmol) was added to the reaction mixture, and the mixture was stirred at room temperature for 1 hour, and then at 50 °C for 3 hours.
 N-(2-bromoethylphthalimide (948 mg, 3.73 mmol) and polassium earbonate (642 mg, 3.92 mmol) were added at room temperature, and the mixture was stirred at 50 °C for 3 hours. Water was poured into the reaction mixture, which was then extracted twice with ethyl acetate. The combined organic layer was washed twice with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexanofethyl acetate 50 °C for 10 hours by the subject of the subject of the column chromatography on a silica gel (hexanofethyl acetate) 50 °C for 3 hours.
 HMR (CDCl₃) 5 1.21 (6H, s), 1.22 (6H, s), 2.13 (2H, s), 2.62 (2H, s), 4.12 (2H, t), J = 6.4 Hz), 4.39 (2H, t), J = 6.4 Hz), 6.70 (1H, s), 7.35 °7 (5H, m), 7.70 (7H, m), 7.45 -7.48 (2H, t), J = 6.4 Hz), 6.70 (1H, s), 7.35 °7 (5H, m), 7.70 (7H, m), 7.45 -7.48 (2H, t), J = 6.4 Hz), 6.70 (1H, s), 7.35 °7 (5H, m), 7.70 (7H, m), 7.45 -7.48 (2H, t), 4.12 (2H, t), 4.39 (2H, t), 4.30 (2H, t), 6.4 Hz), 6.70 (1H, s), 7.35 °7 (5H, m), 7.70 (7H, m), 7.45 -7.48 (2H, t), 4.12 (2H, t), 4.30 (2H, t), 4.30 (2H, t), 6.4 Hz), 6.70 (1H, s), 7.35 °7 (5H, m), 7.70 (7H, m), 7.45 -7.48 (2H, t), 4.71 (2H, t), 4.30 (2H, t), 4.20 (2H, t), 4

[0926] 2-[2-[(3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)oxy]ethyl]-1H-isoindole-1,3 (2H)-dione (708 mg, 1,42 mmol) was dissolved in ethanol (7 mL), hydrazine monohydrate (0,072 mL, 1,50 mmol) was

added thereto, and the mixture was stirred at 80 °C for 1.5 hours. The insolubles were removed by filtration, and the filtrate was concentrated under reduced pressure. A dilute aqueous solution of sodium hydroxide was poured into the residue, which was then extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 3.1 followed by ethyl acetate), and crystallized from hexane-diethyl either to obtain the title compound (66 m.) Yeld: 1196.)

Melting point: 77-79 °C.

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.30 (6H, s), 2.18 (2H, s), 2.67 (2H, s), 3.11 (2H, t, J = 5.3 Hz), 4.08-4.18 (2H, m), 6.63 (1H, s), 7.38 (5H, s).

10 EXAMPLE 209

5

2-[(3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)oxy]ethanol

¹⁵ [0927] 2-Bromoethanol (0.11 mL, 1.57 mmol) and potassium carbonate (217 mg, 1.57 mmol) were added to a solution of 3.4.8.9-tetrahydro-3.3.8.4-tetramethyl-1-phenyl-6-furo[2.3-h]isoquinolinol (459 mg, 1.43 mmol) in N,N-dimethylformamide (4.5 mL), and the mixture was stirred at 60 °C for 36 hours. Water was poured into the reaction mixture, which was then extracted twice with ethyl acetate. The combined organic layer was washed with water and brine (twice), dired over sodium sulfate, litered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 3:1 followed by 1:1), and crystallized from hexane-diethyl

ether to obtain the title compound (366 mg, Yield: 70%). Melting point: 90-92 °C.

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.30 (6H, s), 2.19 (2H, s), 2.67 (2H, s), 3.92-3.98 (2H, m), 4.21 (2H, d, J = 4.4 Hz), 6.65 (1H, s), 7.39 (5H, s).

EXAMPLE 210

25

25

45

6-(2-Fluoroethoxy)-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline

39 [0928] The title compound was obtained using 1-bromo-2-fluoroethane by the method similar to that in Example 209. Yield: 56%.

Melting point: 77-79 °C (diethyl ether-hexane).

 ^{1}H NMR (CDCl3) δ 1.25 (6H, s), 1.30 (6H, s), 2.18 (2H, s), 2.67 (2H, s), 4.29-4.47 (2H, m), 4.64-4.92 (2H, m), 6.65 (1H, s), 7.39 (5H, s).

EXAMPLE 211

Dimethylcarbamothioic acid O-(3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl) ester

40 [0929] The title compound was obtained using dimethylthiocarbamoyl chloride by the method similar to that in Example 209. Quantitative. Amorphous.

1H NMR (CDCl₃) δ 1.25 (6H, s), 1.27 (6H, s), 2.19 (2H, s), 2.69 (2H, s), 3.34 (3H, s), 3.45 (3H, s), 6.76 (1H, s), 7.35-7.47 (5H, m).

EXAMPLE 212

 $\label{thm:continuous} Dimethyl carbamothloic\ acid\ O-(3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro \cite{1.5} acid\ O-(3,4,8,9-tetrahydro-3,8,8-tetramethyl-1-phenylfuro \cite{1.5} acid\ O-(3,4,8,9-tetrahydro-3,8,8-tetramethyl-1-phenylf$

hydrochloride 50

> [0930] Dimethylcarbamothloic acid O-{3.4,8.9-tetraphydro-3,3.8,8-tetramethyl-1-phenyfluro{2,3-h}soquinolin-6-yl) ester (902 mg, 2.21 mmol) was dissolved in ethyl sectate and combined with 4 M hydrogen chloride/ethyl acetate solution (0.55 mL). The resultant mixture was concentrated under reduced pressure to obtain crystals, which were washed with diethyl ether to obtain the title compound (946 mg, yield: 96%).

55 Melting point: 170-180 °C.

 ^{1}H NMR (DMSO-d₆) δ 1.22 (6H, s), 1.46 (6H, s), 2.22 (2H, s), 3.18 (2H, s), 3.30 (3H, s), 3.36 (3H, s), 7.17 (1H, s), 7.66-7.82 (5H, m).

EXAMPLE 213

5

20

25

45

55

 $\label{lem:continuous} Dimethyl carbamothio ic acid S-(3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl furo [2,3-h] is oquino lin-6-yl) ester hydrochloride$

[0931] Dimethylcarbamothloic acid C-(3.4,8,9-tetrahydro-3.3,8,8-tetramethyl-1-phenyfluro(2,3-h)ljsoquinolin-6-yi) seter (4.92 g, 12.0 mmol) was stirred at 190 °C for 24 hours. The reaction mixture was subjected to a column chromatography on a silica gel (hoxano'ethyl acetato 5:1 followed by 3:1) to obtain a free base of the title compound.

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.29 (6H, s), 2.21 (2H, s), 2.68 (2H, s), 3.05 (3H, br s), 3.10 (3H, br s), 7.11 (1H, s), 7.40 (5H, s).

[0932] This was dissolved in eltryl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, crystallized from hexane-diethyl ether to obtain the title compound (404 mg, yield: 8.2%). Melting point: 148-148 °C.

 1 H NMR (DMSO-dg) δ 1.23 (6H, s), 1.45 (6H, s), 2.25 (2H, s), 2.94 (3H, s), 3.06 (3H, s), 3.15 (2H, s), 7.40 (1H, s), 7.66-7.77 (5H, s).

EXAMPLE 214

3.4.8.9-Tetrahydro-3.3.8.8-tetramethyl-6-(methylthio)-1-phenylfuro[2,3-h]isoguinoline hydrochloride

[0933] A solution of dimethylcarbamothioic acid S-(34,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro(2,3-h)lsoquinolin-8-yl)ester (539 mg, 1.32 mmol) in 10% aqueous solution of potassium hydroxide (5 mL) was heated under reflux for 1 hour. Water was poured into the reaction mixture, which was neutralized with 2 M hydrochloric acid and extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure to obtain 3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-furo(2,3-h)isoquinolinethio (434 mc).

[9934] This was dissolved in NN-dimethylformamide (5 mL), sodium hydride (65% dispersion in oil) (57 mg. 1.8 mnol) was added thereto, and the mixture was stirred at room temperature for 20 minutes. While cooling in ice, ic-domethane (0.098 mL, 1.58 mmol) was added thereto, and the mixture was stirred at room temperature for 1 hour. Water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium suitate, filtered, and concentrated under reduced pressure. The residues subjected to a column chromatography on a basic silice gel (hexane/ethyl acetate 10:1 followed by 5:1) to obtain a free base of the title compound. This was dissolved in eithyl acetate, combined with 4 M hydrogen chlorid/ethyl acetate solution, concentrated under reduced pressure to obtain the title compound (287 mg, yield: 56%).

¹H NMR (DMSO-d₆) δ 1.24 (6H, s), 1.45 (6H, s), 2.20 (2H, s), 2.57 (3H, s), 3.17 (2H, s), 7.20 (1H, s), 7.64-7.80 (5H, m).

EXAMPLE 215

6-Chloro-3.4.8.9-tetrahydro-3.3.8.8-tetramethyl-1-phenylfuro[2.3-h]isoguinoline hydrochloride

[0935] Phosphorus oxychloride (0.44 ml., 4.67 mmol) was added to a solution of 3.4,8,9-tetrahydro-3.8,8-tetramethyl-1-phenyl-4-furo[2.3-h]sequinolinol (1.00, 3.11 mmol) in N.N-dimethylformamide (1 ml.) and the mixture was stirred at 90 °C for 15 hours and then at 130 °C for 3 hours. The reaction mixture was poured into 2 M aqueous solution of sodium hydroxide and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium suifate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silice gel (hexane/sthyl acetate) 100.1 followed by 30·1) to obtain a free base of the titile compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, crystallized from hexane-ethyl acetate to obtain the title compound (380 mg, yield: 33%).

Melting point: 165-167 °C.

¹H NMR (CDCl₃) δ 1.36 (6H, s), 1.71 (6H, s), 2.31 (2H, s), 3.01 (2H, s), 7.21 (1H, s), 7.55-7.75 (5H, m).

EXAMPLE 216

6-Chloro-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-[3-(4-pyridinyl)phenyl]furo[2,3-h]isoquinoline dihydrochloride

[0936] The title compound was obtained from 3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-[3-(4-pyridinyl)phenyl]-6-furo

[2.3-h]isoquinolinol by the method similar to that in EXAMPLE 215. Yield: 30%.

Melting point: 145-155 °C (ethanol-ethyl acetate).

1H NMR (DMSO-d₆) δ 1.27 (6H, s), 1.50 (6H, s), 2.40 (2H, s), 3.17 (2H, s), 7.51 (1H, s), 7.85-7.87 (2H, m), 8.37-8.39 (2H, m), 8.47 (2H, d, J = 6.3 Hz), 9.13 (2H, d, J = 6.3 Hz).

EXAMPLE 217

5

30

25

40

45

50

3,4,8,9-Tetrahydro-N,3,3,8,8-pentamethyl-1-phenyl-6-furo[2,3-h]isoquinolinamine hydrochloride

[0937] 40% Methylamine/methanol solution (5 mL) was added to a mixture of 3.4.8,9-tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-phonyfluro[2.3-h]iscoquinoline (518 mg, 1.54 mmol) and ammonlum chhoride (195 mg, 3.09 mmol) and the mixture was stirred in a sealed tube at 150 °C for 15 hours. Methanol was distilled off under reduced pressure, and water was poured into the residue, and the mixture was extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, officed over magnesim sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 3:1 followed by hexane/ethyl acetate/triet/hamine 25:25:11 to obtain a free base of the title compound.

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.30 (6H, s), 2.16 (2H, s), 2.72 (2H, s), 2.93 (3H, s), 6.31 (1H, s), 7.40 (5H, s).

[0938] This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution and concentrated under reduced pressure to obtain the title compound (376 mg, yield: 76%).

Amorphous.

¹H NMR (CDC₁) δ 1.28 (6H, s), 1.67 (6H, s), 2.19 (2H, s), 2.96 (2H, s), 3.03 (3H, s), 6.35 (1H, s), 7.50-7.70 (5H, m),

EXAMPLE 218

25 3,4,8,9-Tetrahydro-N,N,3,3,8,8-hexamethyl-1-phenyl-6-furo[2,3-h]isoquinolinamine dihydrochloride

[0939] A mixture of 3,4,8,9-tetralydro-N,3,3,8,8-petnamethyl-1-phenyl-6-fur0f2,3-flasoquinolinamine (321 mg. 0.865 mmol), 37% aqueous solution of formaldehyde (0.14 mL, 1.90 mmol) and formic oid (0.16 mL, 4.33 mmol) was stirred at 60 °C for 1.5 hours and at 100 °C for 1 hour. The reaction mixture was neutralized with 2 M aqueous solution of sodium hydroxide and extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium suitate, filtered, and concentrated under reduced pressure. The residue was subjected to a column-to-matography on a basic silica gel (hexane/ethyl acetate 100:1 followed by 10:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution and crystallized from ethyl acetate to obtain the title compound (114 mg, yield: 31%).

Melting point: 105-115 °C.

 ^{1}H NMR (DMSO-dg) δ 1.22 (6H, s), 1.41 (6H, s), 2.05 (2H, s), 3.05 (2H, s), 3.16 (6H, s), 6.64 (1H, s), 7.53-7.73 (5H, m), 11.69 (1H, br s).

EXAMPLE 219

N-Ethyl-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-furo[2,3-h]isoquinolinamine hydrochloride

[0940] The title compound was obtained from 70% aqueous solution of ethylamine by the method similar to that in EXAMPLE 217. Yield: 21%.

Amorphous.

1H NMR (DMSO-d_R) δ 1.24 (6H, s), 1.40 (6H, s), 1.70 (3H, t, J = 7.4 Hz), 2.09 (2H, s), 3.04 (2H, s), 3.26-3.50 (2H, m),

6.59 (1H, s), 7.08 (1H, br s), 7.52-7.84 (5H, m), 11.37 (1H, br s).

EXAMPLE 220

3.4.8.9-Tetrahydro-3.3.8.8-tetramethyl-1-phenyl-6-furo[2.3-h]isoguinolinamine

[0941] 5 M Ammonia/methanol solution (40 mL) was added to a mixture of 3,4,8,9-letrahydro-6-methoxy-3,3,8,8-letramethyl-1-phenylfuro(2,3-h)isoquinoline (3,77 g, 11.2 mmol) and ammonium chloride (1,20 g, 22.5 mmol) and the mixture was stirred in a sealed tube at 150 °C for 24 hours. Methanol was distilled off under reduced pressure, and water was poured into the residue, which was neutralized with sodium hydrogen carbonate, and extracted three times with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hex-

ane/ethyl acetate 50:1 followed by 5:1) and crystallized from diethyl ether to obtain the title compound (1.58 g, yield: 44%).

Melting point: 158-162 °C

¹H NMR (CDCl₃) δ 1.26 (12H, s), 2.15 (2H, s), 2.63 (2H, s), 6.40 (1H, s), 7.36-7.44 (5H, m).

EXAMPLE 221

5

N-(3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)formamide

10 [0942] A solution of formic acid (3 mL) and acetic anhydride (1 mL) was stirred at room temperature for 1.5 hours, and 3.4.8-tetrahydro-3.3.8-tetramethyl-1-phenyl-6-furo[2.3-h]isoquinolinamite (500 mg., 1.56 mmol) was acided thereto and the mixture was stirred at room temperature for 2 hours. The reaction mixture was poured into 3.5 M aqueous solution of sodium hydroxide and extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure to obtain the little compound (470 mg.) yelide 37%).

Amorphous.

 1 H NMR (CDCl₃) $^{\circ}$ 1.26 (6H, s), 1.29 (6H, s), 2.22 (2H, s), 2.69 (0.6H, s), 2.73 (1.4H, s), 7.40 (6H, s), 8.03 (1H, s), 8.45 (1H, d, J = 1.4 Hz).

20 EXAMPLE 222

N-(3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)acetamide

[0943] Acetic anhydride (2 mL) was added to a solution of 3.4.8.9-letra/hydro-3.3.8.8-letramethy/1-phenyl-6-furo [2.3-h]lsoquinolinamine (642 mg. 1.89 mmol) in pyridine (3 mL) and the mixture was stirred at room temperature for 12 hours. Aqueous solution of sodium hydrogen carbonate was poured into the reaction mixture, and the mixture was extracted three times with ethyl acetate. The combined organic layer was washed with brine, dired over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 5:1) and crystallized from hexane-diethyl ether to obtain the title compound 445 mg. vield: 74%).

Melting point: 175-180 °C.

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.28 (6H, s), 2.20 (2H, s), 2.22 (3H, s), 2.71 (2H, s), 7.32 (1H, s), 7.83 (5H, s), 8.04 (1H, br.s)

35 FXAMPLE 223

N-(3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)methanesulfonamide

[0944] While cooling in ice, methanesulfonyl chloride (0.22 mL, 2.74 mmol) was added to a solution of 3.4,8,3-tetrahydro-3.3,8,8-tetramethyl-1-phenyl-6-furo[2,3-h]isoquinolinamine (400 mg, 1.25 mmol) and triethylamine (0.38 mL,
2.74 mmol) in tetrahydrofuran (6 mL) and the mixture was stirred at room temperature for 2 hours. Water was poured
into the reaction mixture, which was neutralized with 1 M aqueous solution of sodium hydroxide and extracted twice
with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered
and concentrated under reduced pressure. The residue was subjected to a column orthomatography on a silica gel
(hexane/ethyl acetate 5:1 followed by 1:1) and crystallized from diethyl ether to obtain the title compound (27 mg, yield:
5.4%).

Melting point: 175-177 °C.

¹H NMR (CDCl₃) ô 1.25 (6H, s), 1.28 (6H, s), 2.21 (2H, s), 2.70 (2H, s), 3.06 (3H, s), 7.17 (1H, s), 7.39 (5H, s).

50 EXAMPLE 224

N-(3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)propanamide

[0945] The title compound was obtained from 3.4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-furo[2,3-h]isoquin-5 olinamine and propionyl chloride by the method similar to that in EXAMPLE 30. Yield: 57%.
Metling opint: 128-131 °C (diethyl ether-hexane).

 ^1H NMR (CDCl3) δ 1.24 (6H, s), 1.26 (3H, t, J = 7.5 Hz), 1.28 (6H, s), 2.20 (2H, s), 2.44 (2H, q, J = 7.5 Hz), 2.70 (2H, s), 7.31 (1H, s), 7.38 (5H, s), 8.07 (1H, br s).

EXAMPLE 225

(3.4.8.9-Tetrahydro-3,3,8.8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)carbamic acid ethyl ester

[0946] The title compound was obtained from 3.4.8.9-tetrahydro-3,3.8.8-tetramethyl-1-phenyl-6-furo[2,3-h]isoguinolinamine and ethyl chloroformate by the method similar to that in EXAMPLE 30. Yield: 3.2%. Melting point: 92-94 °C (diethyl ether-hexane).

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.27 (6H, s), 1.33 (3H, t, J = 7.1 Hz), 2.19 (2H, s), 2.70 (2H, s), 4.25 (2H, q, J = 7.1 Hz), 6.81 (1H, s), 7.38 (5H, s), 7.70 (1H, br s),

EXAMPLE 226

10

20

25

N-(3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)glycine ethyl ester

15 [0947] The title compound was obtained from 3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-furo[2,3-h]isoquinolinamine and ethyl bromoacetate by the method similar to that in EXAMPLE 209, Yield: 35%. Melting point: 79-81 °C (diethyl ether-hexane).

¹H NMB (CDCI₀) δ 1.23 (6H, s), 1.26 (6H, s), 1.31 (3H, t, J = 7.1 Hz), 2.15 (2H, s), 2.64 (2H, s), 3.98 (2H, d, J = 5.8 Hz), 4.27 (2H, q, J = 7.1 Hz), 4.52 (1H, t, J = 5.8 Hz), 6.20 (1H, s), 7.37 (5H, s),

EXAMPLE 227

N-(3.4.8.9-Tetrahydro-3.3.8.8-tetramethyl-1-phenylfuro[2.3-h]isoguinolin-6-yl)urea

[0948] While cooling with ice, trifluoroacetic acid (0.34 mL, 4.43 mmol) was added to a suspension of 3,4,8,9-tetrahydro-3.3.8.8-tetramethyl-1-phenyl-6-furo[2,3-h]isoquinolinamine (346 mg, 1.08 mmol) and sodium cyanate (140 mg, 2.16 mmol) in toluene (5 mL) and the mixture was stirred at room temperature for 3 hours. 1 M aqueous solution of sodium hydroxide was poured into the mixture, and the mixture was extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. 20

The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 3:1 followed by 1: 2), and the resultant crystals were washed with diethyl ether to obtain the title compound (178 mg, yield: 45%). Melting point: 151-153 °C.

¹H NMR (CDCI₂) δ 1.24 (6H, s), 1.26 (6H, s), 2.19 (2H, s), 2.70 (2H, s), 4.85 (2H, br s), 6.72 (1H, s), 7.37 (5H, s), 7.72 (1H, s).

EXAMPLE 228

N-Methyl-N'-(3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-6-yl)urea

[0949] While cooling with ice, phenyl chloroformate (0.22 mL, 1.67 mmol) was added to a solution of 3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-furo[2,3-h]isoquinolinamine (485 mg, 1.51 mmol) and triethylamine (0.23 mL, 1.67 mmol) in N.N-dimethylformamide (6 mL) and the mixture was stirred at room temperature for 4 hours. Triethylamine (0.12 mL, 0.84 mmol) and phenyl chloroformate (0.11 mL, 0.84 mmol) were further added, and the mixture was stirred at room temperature further for 4 hours. Methylamine hydrochloride (305 mg, 4.53 mmol) and triethylamine (0.63 mL, 45 4.53 mmol) were added to the reaction mixture and the mixture was stirred at room temperature for 15 hours. Ice water

was poured into the mixture and the mixture was extracted twice with ethyl acetate. The combined organic layer was washed with water (twice) and brine, dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 3:1 followed by 1: 1) and crystallized from diethyl ether to obtain the title compound (305 mg, yield: 54%).

Melting point: 209-211 °C.

¹H NMR (CDCl_o) δ 1.24 (6H, s), 1.25 (6H, s), 2.18 (2H, s), 2.69 (2H, s), 2.86 (3H, d, J = 5.0 Hz), 4.86 (1H, br g, J = 5.0 Hz), 6.47 (1H, s), 7.37 (5H, s), 7.75 (1H, s).

55

EXAMPLE 229

5

20

25

45

55

 $2-[(3,4,8,9-\text{Tetrahydro-6-methoxy-3},3,8,8-\text{tetramethyl-1-phenylfuro}[2,3-\text{h}] is oquino lin-5-yl) methyl]-1 \\ \text{H-iso} indol-1,3 \\ (2\text{H})-dione$

[0950] 3.4.8.9-Tetralydro-6-methoxy.3.3.8.8-tetramethyl-1-phenyfluro(2.3-h)isoquinoline (796 mg. 2.37 mmol) was dissolved in conc. sulfuria cald (3 ml.). N-flyorkoymethyl)phthalmide (482 mg. 2.31 mmol) was added thereto and the mixture was stirred at room temperature for 2 hours. Water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, littered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gol (hexane/eith) acetate 8.1 followed by 5:1) and the resultant crystais were washed with diethyl ether to obtain the till de compound (506 mg.) edick. 43%).

Melting point: 193-195 °C.

¹H NMR (CDCl₅) \$ 1.25 (6H, s), 1.28 (6H, s), 2.12 (2H, s), 2.81 (2H, s), 3.96 (3H, s), 4.92 (2H, s), 7.37 (5H, s), 7.69-7.71 (2H, m), 7.81-7.85 (2H, m).

EXAMPLE 230

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-phenyl-5-furo[2,3-h]isoguinolinemethanamine

[0951] Hydrazine monohydrate (0.71 mL, 14.7 mmo) was added to a suspension of 2-[63.4.8,9-terahydro-6-methow)-3.8.8 et-atmenthyl-1-perhentylinc/2.3-h)sequinoline-5-yimentyl). Halseindol-1,3(24)-h)dine, 64.9 g, 14.0 mm) in ethanol (40 mL) and the mixture was heated under reflux for 3 hours. Diisopropyl ether was poured into the reaction mixture and the precipitated crystals were removed off by filtration. The filtrate was combined with 1 M aqueous solution of sodium hydroxide and water, and the organic layer was separated and the aqueous layer was extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a slice gel (ethyl acetate followed by ethyl acetate/riethylamine 50.1) and crystallized from hexane-diethyl ether to obtain the title compound (3.46 g, yield: 68%). Melting point: 140-142 °C.

30 1H NMR (CDCl₃) δ 1.26 (6H, s), 1.28 (6H, s), 2.13 (2H, s), 2.71 (2H, s), 3.86 (2H, s), 3.97 (3H, s), 7.38 (5H, s).

EXAMPLE 231

N-[(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-5-yl)methyl]formamide

[0952] The title compound was obtained from 3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenyl-5-furo [2,3-h]isoquinolinemethanamine by the method similar to that in EXAMPLE 221. Yield: 84%.

Melting point: 205-208 °C (diethyl ether-hexane).

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.28 (6H, s), 2.14 (2H, s), 2.79 (2H, s), 4.00 (3H, s), 4.53 (2H, d, J = 5.4 Hz), 5.86 (1H, br s), 7.37 (5H, s), 8.17 (1H, s).

EXAMPLE 232

N-[(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-5-yl)methyl]acetamide

[0953] The title compound was obtained from 3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenyl-5-furo [2,3-h]isoquinolinemethanamine by the method similar to that in EXAMPLE 30. Yield: 90%. Meting oploit: 164-166 °C (digithyl ether-hexane).

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.28 (6H, s), 1.97 (3H, s), 2.14 (2H, s), 2.78 (2H, s), 3.99 (3H, s), 4.48 (2H, d, J = 5.6 Hz), 5.74 (1H, br s), 7.38 (5H, s).

EXAMPLE 233

N-[(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-5-yl)methyl]urea

[0954] The title compound was obtained from 3,4,6,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenyl-5-furo [2,3-h])isoquinolinemethanamine by the method similar to that in EXAMPLE 227. Yield: 59%. Melting point: 72-174 °C (diethyl ether-hexane).

¹H NMR (CDC₃) δ 1.24 (6H, s), 1.27 (1.8H, s), 1.28 (4.2H, s), 1.58 (2H, s), 2.13 (0.6H, s), 2.14 (1.4H, s), 2.77 (2H, s), 3.98 (2.1H, s), 4.00 (s)H, s), 4.38 (1.4H, d, J = 5.8 Hz), 4.45-4.58 (1.4H, m), 4.46 (0.6H, d, J = 5.8 Hz), 4.80-4.95 (0.6H, m), 7.33-7.38 (5H, m).

5 FXAMPLE 234

5-Bromomethyl-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline

[0955] Conc. sulfuric acid (3.39 mL, 63.6 mmol) was added to a suspension of 3.4,9,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-hjsoquinoline (7.12 g, 21.2 mmol), paraformaldehyde (94%) (1.02 g, 31.8 mmol) and sodium bromide (2.51 g, 24.4 mmol) in acetic acid (6.07 mL, 106 mmol) and the mixture was stirred at 90 °C for 15 hours. Ice water was poured into the reaction mixture, which was washed with delthyl ether, neutralized with conaqueous ammonia, and extracted twice with ethyl acetalte. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 7:1 followed by 5:1) to obtain the title compound (4.57 g, yield: 50%).

Amorphous.

1H NMR (CDCl₂) δ 1.28 (12H, s), 2.14 (2H, s), 2.71 (2H, s), 4.03 (3H, s), 4.65 (2H, s), 7.38 (5H. s).

20 EXAMPLE 235

25

45

55

3,4,8,9-Tetrahydro-6-methoxy-5-(methoxymethyl)-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline hydrochloride

[0956] 28% sodium methoxide/methanol solution (0.91 ml., 4.73 mmol) was added to a solution of 5-bromomethy-in-3.4, 8 9-testrydro-6-methoxy-3.8, 8-letremethy-1-phenyfuro(2.8-hijsoquionile) (1.8 q. 4, 30 mmol) in methanol (10 ml.) and the mixture was stirred at room temperature for 1 hour and then at 60 °C for 1 hour. Furthermore 28% sodium methoxide/methanol solution (1.82 ml., 9.46 mmol) was added to the mixture and the mixture was stirred at 80 °C for 1 hour. The reaction mixture was concentrated under reduced pressure, and the residue was combined with water and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromotography on a basic silica gel (hexanofethyl acetate 7:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 hydrogen chloride/eithyl acetate solution (0.77 ml.), and the resultant crystals were washed with ethyl acetate to obtain the title compound (1.16 g. yield: 65%).

35 ¹H NMR (DMSO-d₆) δ 1.26 (6H, s), 1.44 (6H, s), 2.16 (2H, s), 3.15 (2H, s), 3.29 (3H, s), 3.99 (3H, s), 4.50 (2H, s), 7.63-7.66 (5H, m).

EXAMPLE 236

5-(Ethoxymethyl)-3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-phenylfuro[2.3-h]isoquinoline hydrochloride

[0987] Sodium acotate (143 mg, 1.75 mmol) and 2 M aqueous solution of sodium hydroxide (2 mL) were added to a solution of 5-brommenthy-4,8-8-betraphore-methoxy-3,8-8-letrapmethy-1-phenyfutrog(2-h)-lispoquinoline (374 mg, 0.873 mmol) in ethanol (3 mL) and the mixture was stirred at 60 °C for 2 hours and then at 80 °C for 2 hours. Ice water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium suifate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 5:1) to obtain a free base of the title compound. This was dissolved in eithyl acetate, combined with 4 M hydrogen chioride/shyl acetate solution, concentrated under reduced pressure and crystallized from diethyl ether to obtain the title compound (191 mg, yield: 51%). Meltina point: 137-139 °C.

 1 H NMR (DMSO-d_g) δ 1.14 (3H, t, J = 7.2 Hz), 1.26 (6H, s), 1.44 (6H, s), 2.16 (2H, s), 3.16 (2H, s), 3.49 (2H, q, J = 7.2 Hz), 3.99 (3H, s), 4.54 (2H, s), 7.63-7.78 (5H, m).

EXAMPLE 237

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenyl-5-furo[2,3-h]isoquinolinemethanol

[0958] A suspension of 5-bromomethyl-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoqui-

noline (289 mg, 0.675 mrnol) and calcium carbonate (506 mg, 5.06 mmol) in 1.4-dioxane (3 mL) and water (3 mL) was stirred at 60 °C for 2 hours. Water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica get (hexane/ethyl acetate 3:1) and crystallized from hexane-diethyl either to obtain the title compound (159 mg, yeldic 65%).

Melting point: 160-163 °C.

1-1 NMR (CDC)₃) 5 1.25 (6H, s), 1.28 (6H, s), 1.97 (1H, t, J = 6.0 Hz), 2.14 (2H, s), 2.75 (2H, s), 4.00 (3H, s), 4.74 (2H, d, J = 6.0 Hz), 7.38 (6H, s).

0 FXAMPLE 238

5

15

20

25

5-(Fluoromethyl)-3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline hydrochloride

[0959] Potassium fluoride (spray dried material) (118 mg, 2.02 mmol) and 18-crown-6 (534 mg, 2.02 mmol) was added to a solution of 5-bromomethyl-3.4 g-Netrahydro-6-methoxy-3.3,8 l-tertamethyl-1-phenyfluro[2.3-bi]soquino-line (289 mg, 0.675 mmol) in acotonitrile (s mL) and the mixture was stirred at 80 °C for 7 hours. Acotonitrile was distilled off under reduced pressure, and water was poured into the residue and the mixture was extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfiate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 10:1 followed by 5:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, crystallized from diethyl ether to obtain the title compound (230 mg, ried: 34%).

Melting point: 146-158 °C.

¹H NMR (DMSO-d₆) δ 1.26 (6H, s), 1.45 (6H, s), 2.15-2.23 (2H, m), 3.22 (2H, s), 4.04 (3H, s), 5.57 (2H, d, J = 48.0 Hz), 7.63-7.80 (5H, m).

EXAMPLE 239

3,4,8,9-Tetrahydro-6-methoxy-3,3,5,8,8-pentamethyl-1-phenylfuro[2,3-h]isoquinoline hydrochloride

[0960] Tributyftin hydride (0.91 m.), 4.73 mmol) and 2.2-azobis(sobutyronktrile) (11 mg, 0.0677 mmol) were added to a solution of 5-bromomethyr-4.8.9-elterahydro-6-methoy-9.3.8.8-leteramethyr-1-phenyfur(c) 2-hilpoquioniler (200 mg, 0.877 mmol) in chlorobenzene (3 mL) and the mixture was stirred at 80 °C for 2 hours. Chlorobenzene was distilled off under reduced pressure and the residue was subjected to a column chromatography on a basic silica gel (hexane trity) acetate 10:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, and crystallized from ethyl acetate to obtain the title compound (63 mg, yield: 24%).

Melting point: 138-140 °C.

1H NMR (DMSO-d_o) & 1.24 (6H, s), 1.45 (6H, s), 2.12 (2H, s), 2.17 (3H, s), 3.08 (2H, s), 3.99 (3H, s), 7.58-7.76 (5H, m).

EXAMPLE 240

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenyl-5-furo[2,3-h]isoquinolineacetonitrile

45 [0961] A solution of potassium cyanide (143 mg, 2.20 mmol) in water (2.25 mL) was added to a solution of 5-bro-momethyl-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]soquinoline (947 mg, 2.20 mmol) in NN-dimenthylformamide (9.5 mL) and the mixture was stirred at room temperature for 3 hours. Water was poured into the reaction mixture, which was extracted twice with ethyl accetate. The combined organic layer was washed twice each with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl accetate 5:1 followed by 3:1) and crystallized from hexane-diethyl ether to obtain the title compound (465 mg, yield: 56%).
Mellin point: 95-68 °C.

1H NMR (CDCI₂) δ 1.28 (6H, s), 1.28 (6H, s), 2.15 (2H, s), 2.68 (2H, s), 3.74 (2H, s), 4.03 (3H, s), 7.38 (5H, s),

EXAMPLE 241

5

20

3.4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenyl-5-furo[2,3-h]isoquinolineacetic acid ethyl ester hydrochloride

[0962] While cooling in ice, cone. sulfuric acid (2.34 mt., 43.8 mmol) was added to a solution of 3.4.8.9-letra/hydrofsmethory-3.38.8-letramethyl-phophyl-5-turg/3.9-hipsoquinoineacetonitrile (4.01 g. 1.0.7 mmol) in entanot (38 mt.) and the mixture was heated under reflux for 60 hours. Ice water was poured into the reaction mixture, which was neutralized with cone. aqueous ammonia, and then extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residues subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 20:1 followed by 5:1) to obtain a free base of the title compound.

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.28 (6H, s), 1.28 (3H, t, J = 7.1 Hz), 2.14 (2H, s), 2.59 (2H, s), 3.73 (2H, s), 3.92 (3H, s), 4.18 (2H, q, J = 7.1 Hz), 7.38 (5H, s).

[0963] This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution and concentrated under reduced pressure to obtain the title compound (2.58 g, yield: 53%). Amorphous

 1 H NMR (DMSO-d₆) δ 1.21 (3H, t, J = 7.0 Hz), 1.26 (6H, s), 1.42 (6H, s), 2.17 (2H, s), 3.08 (2H, s), 3.78 (2H, s), 3.96 (3H, s), 4.91 (2H, a, J = 7.0 Hz), 7.63-7.80 (5H, m).

EXAMPLE 242

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-phenyl-5-furo[2.3-h]isoguinolineacetic acid

29 [0964] 5 M aqueous solution of sodium hydroxide (2 mL) was added to a solution of (3.4,8,9-tertahydro-6-methoxy-3.3,8,8-tertamethyt-1-peny-5-func(2,8-h)soquinolineacetic acid ethyle seter (756 mg. 1.78 mmo)) in ethanol (6 mL) and the mixture was stirred at room temperature for 5 hours. Ethanol was distilled off under reduced pressure, and water was pound into the residue, and the mixture was washed with discoproy lether. The aqueous layer was adjusted at pt 3.5 with 2 M hydrochloric acid, combined with sodium chloride, and extracted three times with tetrahydrofuran.

3º The combined organic layer was dried over sodium sulfate, filtered, concentrated under reduced pressure and crystallized from hexane-diethyl ether to obtain the title compound (176 mg, yield: 25%). Melting opin: 225-245 °C.

1H NMR (CDCI_o) δ 1.25 (6H, s), 1.27 (6H, s), 2.13 (2H, s), 2.61 (2H, s), 3.74 (2H, s), 3.94 (3H, s), 7.38 (5H, s),

35 FXAMPLE 243

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenyl-5-furo[2,3-h]isoquinolineacetamide

[0965] N.N'-Carbonyldimidazioe (226 mg. 1.40 mmol) was added to a solution of 3,4,8,9-tertahydro-6-methoxy3,3,8,8-tertamethyt-1-bhys-fure(2,2-8) lisequinolineacetic acid (499 mg. 1.27 mmol) in NN-dimethytformamide (5
mL) and the mixture was stirred at room temperature for 10 minutes. Powdered ammonium chloride (75 mg. 1.40
mmol) and trietlyhamine (0,20 mt.,1.40 mmol) were added and stirred at room temperature for 1 hour and then at 80
°C for 4 hours. Ice water was poured into the reaction mixture, which was extracted wice with ethyl accetate. The
combined organic layer was washed with water and brine (twice), dried over sodium sulfate, filtered and concentrated
under reduced pressure. The resultant crystals were washed with diethyl either to obtain the title compound (358 mg.

yield: 72%). Melting point: 171-176 °C.

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.29 (6H, s), 2.15 (2H, s), 2.74 (2H, s), 3.65 (2H, s), 4.00 (3H, s), 5.22 (1H, br s), 5.80 (1H, br s), 7.40 (5H, s).

EXAMPLE 244

50

3,4,8,9-Tetrahydro-6-methoxy-N,3,3,8,8-pentamethyl-1-phenyl-5-furo[2,3-h]isoquinolineacetamide

55 [0966] The title compound was obtained from methylamine hydrochloride by the method similar to that in EXAMPLE 243. Yield: 73%.

Melting point: 187-190 °C (hexane).

¹H NMR (CDCl₂) δ 1.23 (6H, s), 1.30 (6H, s), 2.15 (2H, s), 2.69 (2H, s), 2.76 (3H, d, J = 5.2 Hz), 3.63 (2H, s), 3.96

(3H, s), 5.68 (1H, br s), 7.38 (5H, s).

EXAMPLE 245

5 2-[(3,4,8,9-Tetrahydro-6-hydroxy-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinolin-5-yl)methyl]-1H-isoindol-1,3(2H)-dione

[0967] The title compound was obtained from 3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenyl-6-furo[2,3-h]isoquinolinol by the method similar to that in EXAMPLE 229, Yield: 16%.

Melting point: 239-242 °C (diethyl ether-hexane).

¹H NMR (CDCl₃) δ 1.28 (12H, s), 2.15 (2H, s), 2.98 (2H, s), 4.94 (2H. s), 7.35 (5H, s), 7.73-7.77 (2H, m), 7.86-7.91 (2H, m), 8.08 (1H, br s),

EXAMPLE 246

15

3.4.8.9-Tetrahydro-6-hydroxy-3.3.8.8-tetramethyl-1-phenyl-5-furo[2.3-h]isoguinolinemethanol

[0968] While cooling in ice, 3.4.8.4-tetrahydro-3.3.8.6-tetramethyl-1-phenyl-6-turo[2,3-h]isoculinolinol (200 mg, 0.622 mmn) was added to a solution of chloromethylmethyl efter (0.652 mL, 0.684 mmo) and aluminum chloride (31 mg, 0.684 mmo)) in 1,2-dichloroethane (2 mL) and the mixture was stirred at room temperature for 5 hours. The reaction mixture was poured into ice water, was hed with diethyl ether, neutralized with 5 M aqueous solution of solution hydroxide and extracted wide with they actetate. The combined organic layer was washed with water and brine, died over solution sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hoxane/ethyl acetate/rirelylarmine 52:55: followed by ethyl acetate/triethylarmine 50:1) and crystallized from hexane-ethyl acetate to obtain the title compound (31 mg, yield: 14%).

¹H NMR (CDCl₂) δ 1.28 (6H, s), 1.32 (6H, s), 2.13 (2H, s), 2.77 (2H, s), 4.84 (2H, s), 7.34-7.44 (5H, m).

EXAMPLE 247

20

25

50

55

1-(2-Bromophenyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline hydrochloride

[0969] While cooling in key, conc. sulfuric acid (2.52 m., 47.3 mmol) was added to a solution of 2-bromobenzonitrile (3.92 g, 21.5 mmol) in toluene (12 m.L) and acetic acid (12 m.L). And then, a solution of 2,3-dihydro-7-methoxy-2,2-dimethy-15-(2-methy-11-propenyi)benzofuran (5.00 g, 21.5 mmol) in toluene (12 m.L) was added thereto and the mixture was stirred at 80 °C for 1 hour. Lee water was poured into the reaction mixture, and the aqueous layer was separated and neutralized with conc. aqueous ammonia and extracted twice with they acetate. The combined organic layer was washed with water and brine, dided over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 20:1 followed by 10:1) to obtain a free base of the title compound.

¹H NMR (CDCl₃) δ 1.23 (3H, s), 1.29 (3H, s), 1.33 (3H, s), 1.38 (3H, s), 2.00 (1H, d, J = 16.1 Hz), 2.17 (1H, d, J = 16.1 Hz), 2.68 (1H, d, J = 15.7 Hz), 2.80 (1H, d, J = 15.7 Hz), 3.91 (3H, s), 6.60 (1H, s), 7.17-7.42 (3H, m), 7.56 (1H, d, J = 8.0 Hz).

[0970] This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution and concentrated under reduced pressure to obtain the title compound (3.27 g, yield: 34%).

 $^{1}\text{H NMR (DMSO-d_g)} \, \delta \, 1.21 \, (3\text{H}, \, \text{s}), \, 1.24 \, (3\text{H}, \, \text{s}), \, 1.47 \, (3\text{H}, \, \text{s}), \, 1.50 \, (3\text{H}, \, \text{s}), \, 1.99 \, (1\text{H}, \, \text{d}, \, \text{J} = \, 16\,\text{A Hz}), \, 2.12 \, (1\text{H}, \, \text{d}, \, \text{J} = \, 16\,\text{A Hz}), \, 2.12 \, (1\text{H}, \, \text{d}, \, \text{J} = \, 17.2\,\text{Hz}), \, 3.95 \, (3\text{H}, \, \text{s}), \, 7.14 \, (1\text{H}, \, \text{s}), \, 7.56 \, 7.68 \, (3\text{H}, \, \text{m}), \, 7.89 \, 7.93 \, (1\text{H}, \, \text{m}), \, 1.41 \,$

EXAMPLE 248

1-[3-(2-Furanyl)phenyl]-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

[0971] Dichlorobis(triphenylphosphine)palladium(II) (53 mg, 0.0750 mmol) and copper (I) iodide (14 mg, 0.0750 mmol) were added to a suspension of 1-(3-bromophenyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylluro(2,3-h) isoquinoline (622 mg, 1.50 mmol) and tributly-2-turanyltin (590 mg, 1.65 mmol) in tetrahydrofuran (6 mL) and the mixture was healed under reflux for 24 hours, and tributly-2-turanyltin (590 mg, 1.65 mmol) was added thereto and the

mixture was heated under reflux for 15 hours. The insolubles were filtered off and the filtrate was concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica get (hexane/ethyl acetate 100:1 followed by 10:1) and crystallized from diethyl ether-hexane to obtain the title compound (114 mg, yield: 19%). Melting point: 126-128 °C.

⁵ ¹H NMR (CDCl₃) § 1.27 (6H, s), 1.30 (6H, s), 2.27 (2H, s), 2.71 (2H, s), 3.93 (3H, s), 6.46-6.49 (1H, m), 6.63 (1H, s), 6.68 (1H, d, J = 3.4 Hz), 7.31-7.47 (3H, m), 7.69-7.74 (2H, m).

EXAMPLE 249

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-[4-(2-pyridinyl)phenyl]furo[2,3-h]isoquinoline

[0972] The title compound was obtained from 1-(4-bromophenyl)-3.4,8,9-tetrahydro-6-methoxy-3.3,8,8-tetramethylfuro[2,3-h]isoquinoline and tributyl-2-pyridinyttin by the method similar to that in EXAMPLE 248. Yield: 50%. Melting point: 127-129 °C (hexane).

15 1H NMR (CDCl₃) 8 1.26 (6H, s), 1.30 (6H, s), 2.32 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 7.22-7.30 (1H, m), 7.52 (2H, d, J = 8.4 Hz), 7.76-7.79 (2H, m), 8.04 (2H, d, J = 8.4 Hz), 8.72 (1H, d, J = 4.8 Hz).

EXAMPLE 250

20 3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[2-(2-pyridinyl)phenyl]furo[2,3-h]isoquinoline

[0973] The title compound was obtained from 1-(2-bromophenyl)-3.4,8,9-tetrahydro-6-methoxy-3.3,8,8-tetramethyl-furo[2,3-h)]soquinoline and tributyl-2-pyridinyltin by the method similar to that in EXAMPLE 248. Yield: 9.5%. Melting point: 120-122 °C, (hexane-diethyl ether).

²⁵ ¹H NMR (CDCl₃) § 1.13 (3H, s), 1.17 (3H, s), 1.25 (3H, s), 1.28 (3H, s), 1.98 (1H, d, J = 16.2 Hz), 2.42 (1H, d, J = 16.2 Hz), 2.64 (2H, s), 3.85 (3H, s), 6.45 (1H, s), 6.99-7.06 (1H, m), 7.35-7.50 (5H, m), 7.65-7.70 (1H, m), 8.41-8.44 (1H, m).

EXAMPLE 251

30 3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[3-(2-pyridinyl)phenyl]furo[2,3-h]isoquinoline

[0974] The title compound was obtained from tributyl-2-pyridinyltin by the method similar to that in EXAMPLE 248. Yield: 60%.

Melting point: 137-139 °C (diethyl ether-hexane).

35 1H NMR (CDCl₃) δ 1.28 (12H, s), 2.28 (2H, s), 2.71 (2H, s), 3.93 (3H, s), 6.63 (1H, s), 7.20-7.25 (1H, m), 7.42-7.55 (2H, m), 7.74-7.77 (2H, m), 8.03-8.07 (2H, m), 8.69 (1H, d, J = 5.0 Hz).

EXAMPLE 252

40 3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-[3-(2-thienyl)phenyl]furo[2.3-h]isoguinoline

[0975] The title compound was obtained from tributyl-2-thienyltin by the method similar to that in EXAMPLE 248. Yield: 37%.

Melting point: 172-175 °C (diethyl ether-hexane).

45 1H NMR (CDCl₃) δ 1.28 (6H, s), 1.31 (6H, s), 2.28 (2H, s), 2.72 (2H, s), 3.94 (3H, s), 6.63 (1H, s), 7.06-7.10 (1H, m), 7.29-7.44 (4H, m), 7.62-7.69 (2H, m).

EXAMPLE 253

50 3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[3-(5-pyrimidinyl)phenyl]furo[2,3-h]isoquinoline

[0976] Sodium (431 mg, 18.8 mmol) was added to a solution of naphthalene (2.20 g, 17.1 mmol) in 1,2-dimethoxyethane (20 mL) and the mixture was stirred at room temperature for 1.5 hours. While cooling in ice, chlorotrimethytin (2.91 g, 14.6 mmol) was added to the mixture and after 10 minutes, 5-bromopyrimidine (2.0 g, 12.6 mmol) was added thereto and the mixture was stirred at room temperature for 2 hours. 1.2-Dimethoxyethane was distilled off under reduced pressure, and water was poured into the residue, and the mixture was extracted twice with diethyl other. The combined organic layer was washed twice with water and then with brine, dried over sodium sulfate, filtered, concentrated under reduced pressure to obtain a muture of trimethylf-5-pyrimidinylin, naphthalene and 5-bromopyrimidine.

[0977] This mixture was used to obtain the title compound by the method similar to that in EXAMPLE 248. Yield: 32%. Melting point: 141-143 °C (diethyl ether-hexane).

¹H NMR (CDCl₃) δ 1.28 (6H, s), 1.31 (6H, s), 2.25 (2H, s), 2.73 (2H, s), 3.94 (3H, s), 6.64 (1H, s), 7.46-7.67 (4H, m), 8.99 (2H, s), 9.22 (1H, s).

EXAMPLE 254

5

25

25

45

55

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[2-(4-pyridinyl)phenyl]furo[2,3-h]isoquinoline

70 [0978] A solution of sodium carbonate (236 mg. 2.23 mmol) in water (2 mt.) and tetrakis(triphenyiphosphine)palladium(i) (66 mg.) 0.565 mmol) were added to a solution of 11-2-bromophenyi)-3.4, 8.4-letratydo-6-methory-3.8, 8.8-letramethylluro(2,3-h)isoquinoline (558 mg, 1.35 mmol) and 4-pyridinylboronic acid (248 mg, 2.02 mmol) in 1,2-dimethorycythane (6 mt.), and ethanol (2 mt.) and the mixture was stured at 80 °C for 24 hours under nitrogen atmosphere. Water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic sitilize gel (exame/ethyl acetate 20:1 followed by 3:1) and crystallized from diethyl ether-hexane to obtain the title compound (200 mg, yield: 36%).

¹H NMR (CDCl₃) δ 1.09 (3H, s), 1.25 (3H, s), 1.28 (6H, s), 1.94 (1H, d, J = 16.3 Hz), 2.13 (1H, d, J = 16.3 Hz), 2.60 (2H, s), 3.84 (3H, s), 6.44 (1H, s), 7.24 (2H, d, J = 6.2 Hz), 7.36-7.52 (4H, m), 8.44 (2H, d, J = 6.2 Hz).

EXAMPLE 255

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[4-(4-pyridinyl)phenyl]furo[2,3-h]isoquinoline dihydrochloride

[0973] By the method similar to that in EXAMPLE 254 and starting from 1-(4-bromophenyl-)-3.4.8.9-letrahydro-6-methoxy-3.3,8.8-tetramethylluro(2,3-h)isequinoline, a free base of the title compound was obtained. This was dissolved in ethyl acetate, combined with 4 M hydrogen othoride-ethyl acetate solution, concentrated under reduced pressure and crystallized from ethanol-ethyl acetate to obtain the title compound. Yield: 51%. Metino point: 115-117*C.

¹H NMR (DMSO-d_e) δ 1.23 (6H, s), 1.48 (6H, s), 2.70 (2H, s), 3.19 (2H, s), 3.96 (3H, s), 7.13 (1H, s), 7.86 (2H, d, J = 8.4 Hz), 8.27 (2H, d, J = 8.4 Hz), 8.35 (2H, d, J = 6.6 Hz), 8.96 (2H, d, J = 6.6 Hz).

EXAMPLE 256

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[3-(3-pyridinyl)phenyl] furo [2,3-h] is oquino line and the property of the propert

[0980] The title compound was obtained from 1-(3-bromophenyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline and 3-(diethylboryl)pyridine by the method similar to that in EXAMPLE 254. Yield: 70%. Melting point: 116-117°C (hexane-diethyl ether).

 1 H NMR (CDCl₃) δ 1.27 (6H, s), 1.30 (6H, s), 2.25 (2H, s), 2.72 (2H, s), 3.93 (3H, s), 6.63 (1H, s), 7.33-7.63 (5H, m), 7.85-7.93 (1H, m), 8.58-8.61 (1H, m

EXAMPLE 257

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[4-(3-pyridinyl)phenyl]furo[2,3-h]isoquinoline dihydrochloride

[0981] By the method similar to that in EXAMPLE 254 and starting from 1-(4-bromophenyl)-3.4.8.9-tetrahydro-6-methoxy-3.3.8,8-tetramethylltrol2,3-hijsoquinoline and 3-(diethylboryl)pyridine, a free base of the title compound was obtained. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure to obtain the title compound. Yield: 84%.

 ^{1}H NMR (DMSO-dg) δ 1.22 (6H, s), 1.48 (6H, s), 2.29 (2H, s), 3.19 (2H, s), 3.95 (3H, s), 7.13 (1H, s), 7.82 (2H, d, J=8.4 Hz), 7.92-7.99 (1H, in), 8.16 (2H, d, J=8.4 Hz), 8.74 (1H, d, J=7.8 Hz), 8.87 (1H, d, J=5.0 Hz), 9.31 (1H. s).

EXAMPLE 258

- 1-[3-(Benzofuran-2-yl)phenyl]-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline
- 5 [0982] The title compound was obtained from 1-(3-bromophenyl)-3.4,8,9-tetrahydro-6-methoxy-3.3,8,8-tetramethyl-furo(2,3-h)jsoquinoline and 2-benzofuranylboronic acid by the method similar to that in EXAMPLE 254. Yeld: 74%. Melling point: 160-161 °C (hexane-diethyl ether).
 - ¹H NMR (CDCl₃) δ 1.29 (12H, s), 2.29 (2H, s), 2.32 (2H, s), 3.94 (3H, s), 6.65 (1H, s), 7.07 (1H, s), 7.23-7.33 (2H, m), 7.37-7.61 (4H, m), 7.88-7 93 (2H, m).

EXAMPLE 259

10

25

25

- 3'-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-amine
- [0983] The title compound was obtained from 1-(3-bromophenyl)-3.4,6,9-tetrahydro-8-methoxy-3.3,8,8-tetramethyl-furo[2,3-h]isoquinoline and 4-(1,3,2-dioxaborynan-2-yf)aniline by the method similar to that in EXAMPLE 254. Yield: 40%.

Melting point: 224-225 °C (ethyl acetate).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.29 (6H, s), 2.26 (2H, s), 2.70 (2H, s), 3.72 (2H, brs), 3.93 (3H, s), 6.62 (1H, s), 6.74 (2H, d, J = 8.8 Hz), 7.30-7.57 (4H, m), 7.43 (2H, d, J = 8.8 Hz).

EXAMPLE 260

N-[3'-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]acetamide

[0984] The title compound was obtained from 3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]lsoquinolin-1-yi)[1,1'-b)phenyl'4-amine by the method similar to that in EXAMPLE 30. Yield: 82%. Metting opin: 224-225 °C (diethyl ether-hexane).

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.29 (6H, s), 2.18 (3H, s), 2.25 (2H, s), 2.71 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 7.32-7.60 (9H, m).

EXAMPLE 261

N-[3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl] methanesulfonamide

[0985] The title compound was obtained from 3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-b]phenyl]-4-amine and methanesulfonyl chloride by the method similar to that in EXAMPLE 222. Yield; 81%.

Melting point: 228-230 °C (diethyl ether-hexane).

 $^{1}\text{H NMR (CDCl}_{3}) \ \delta \ 1.30 \ (12\text{H}, \, s), \ 2.25 \ (2\text{H}, \, s), \ 2.73 \ (2\text{H}, \, s), \ 2.89 \ (3\text{H}, \, s), \ 3.93 \ (3\text{H}, \, s), \ 6.63 \ (1\text{H}, \, s), \ 7.22-7.57 \ (8\text{H}, \, m).$

EXAMPLE 262

- 45 3'-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-3-amine dihydrochloride
 - [0986] By the method similar to that in EXAMPLE 254 and starting from 1-(3-bromophenyl)-3.4,8.9-tetrahydro-6-methoxy-3.3.8,8-tetramethylfuro[2,3-h]isoquinoline and 3-aminophenylboronic acid hydrate, a free base of the title compound was obtained.
 - ¹H MMR (CDCl₃) & 1.26 (6H, s), 1.30 (6H, s), 2.25 (2H, s), 2.71 (2H, s), 3.72 (2H, br s), 3.93 (3H, s), 6.62 (1H, s), 6.62-6.70 (1H, m), 6.92 (1H, t, J = 1.8 Hz), 6.96-7.03 (1H, m), 7.20 (1H, t, J = 7.8 Hz), 7.32-7.48 (2H, m), 7.54-7.62 (2H, m), 7.54-7.62
 - [0987] This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution and concentrated under reduced pressure to obtain the title compound. Yield: 86%.

Amomhous

 ^{1}H NMR (DMSO-d₆) δ 1.21 (3H, s), 1.25 (3H, s), 1.45 (3H, s), 1.50 (3H, s), 2.17-2.35 (2H, m), 3.08-3.30 (2H, m), 3.95 (3H, s), 7.12 (1H, s), 7.25-7.80 (8H, m).

EXAMPLE 263

N-[3'-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-3-yl]acetamide

5 [0988] The title compound was obtained from 3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-vi)[1.1'-biohenvl]-3-amine by the method similar to that in EXAMPLE 30, Yield: 64%.

Melting point: 217-218 °C (ethanol).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.30 (6H, s), 2.17 (3H, s), 2.25 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 7.32-7.66 (9H, m).

(Alternative synthetic method)

[0989] The title compound was obtained from 1-(3-bromophenyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoguinoline and 3-acetamidobenzenboronic acid by the method similar to that in EXAMPLE 254, Yield: 87%.

EXAMPLE 264

10

15

20

20

2-Methyl-N-[3'-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl\[1.1'-b]phenyl]-3-yl\] alanine ethvi ester hydrochloride

[0990] By the method similar to that in EXAMPLE 209 and starting from 3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-3-amine and ethyl 2-bromoisobutyrate, a free base of the title compound was obtained. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution. concentrated under reduced pressure to obtain the title compound. Yield: 62%. Amorphous.

¹H NMR (DMSO-d_e) δ 1.07 (3H, t, J = 7.0 Hz), 1.21 (6H, s), 1.48 (12H, s), 2.15-2.32 (2H, m), 3.19 (2H, s), 3.96 (3H, s), 4.07 (2H, q, J = 7.2 Hz), 6.50-7.92 (9H, m), 12.68 (1H, br s).

EXAMPLE 265

N-[3'-(3.4.8,9-Tetrahydro-6-methoxy-3.3.8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-3-yl]urea hydrochloride

[0991] By the method similar to that in EXAMPLE 227 and starting from 3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-te-25 tramethylfuro[2,3-h]isoquinolin-1-vl)[1,1'-biphenyl]-3-amine, a free base of the title compound was obtained. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure to obtain the title compound. Yield: 76%. Amorphous.

¹H NMR (DMSO-d_e) δ 1.21 (6H, s), 1.47 (6H, s), 2.27 (2H, s), 3.19 (2H, s), 3.95 (3H, s), 6.00 (2H, br s), 7.12 (1H, s), 7.31-7.98 (8H, m), 8.92 (1H, s), 12.63 (1H, br s).

EXAMPLE 266

2,2,2-Trifluoro-N-[3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-3-yl] acetamide

[0992] The title compound was obtained from 3'-(3.4.8,9-tetrahydro-6-methoxy-3.3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-vi)[1.1'-biohenvi]-3-amine and trifluoroacetic anhydride by the method similar to that in EXAMPLE 222, Yield:

Melting point: 222-224 °C (diethyl ether).

1H NMR (CDCl₃) δ 1.26 (6H, s), 1.29 (6H, s), 2.23 (2H, s), 2.68 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 7.34-7.69 (8H, m), 8.67 (1H. br.s).

55

45

EXAMPLE 267

5

15

25

25

45

N-[3'-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquino lin-1-yl)[1,1'-biphenyl]-3-yl] methanesulfonamide

[0993] The title compound was obtained from 3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoqui-nolin-1-yl)(1,1'-biphenyl]-3-amine and methanesulfonyl chloride by the method similar to that in EXAMPLE 222. Yield:

Melting point: 141-143 °C (diethyl ether-ethyl acetate).

⁹ ¹H NMR (CDCl₃) δ 1.30 (12H, s), 2.24 (2H, s), 2.73 (2H, s), 2.98 (3H, s), 3.94 (3H, s), 6.64 (1H, s), 7.36-7.66 (8H, m).

EXAMPLE 268

N-Methyl-N-[3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-3-yl] methanesulfonamide hydrochloride

[0994] By the method similar to that in EXAMPLE 190 and starting from N-[3-(3,4,8,9-tetrahydro-G-methoxy-3,3,8.8-tetramethyffuro[2,3-h]isoquinolin-1-yyl](1.1'biphenyl]-3-yl]methanesulfonamide and lodomethane, a free base of the title compound was obtained. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure to obtain the title compound. Yield: 85%. Amorphous.

1H NMR (DMSO-d₈) δ 1.21 (3H, s), 1.25 (3H, s), 1.45 (3H, s), 1.13 (3H, s), 2.18-2.37 (2H, m), 2.89 (3H, s), 3.07-3.29 (2H, m), 3.32 (3H, s), 3.95 (3H, s), 7.12 (1H, s), 7.48-7.62 (3H, m), 7.74-7.83 (3H, m), 8.00 (1H, s), 8.08 (1H, d, J = 7.8 Hz)

EXAMPLE 269

 α , α -Dimethyl-4-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoguinolin-1-yl)benzeneacetonitrile

[0995] While cooling in ice, sodium hydride (66% dispersion in oil) (4.33 g, 119 mmol) was added to a solution of 4-cyanobenzeneacetonitrile (7.70 g, 54.2 mmol) in N.N-dimethyllormamide (88 mL) and the mixture was strired at room temperature for 15 minutes. While cooling in ice, iodomethane (7.43 mL, 119 mmol) was added to the mixture and the mixture was stirred at room temperature for 2 hours. The reaction mixture was poured into loe water, and extracted twice with eithyl acetate. The combined organic layer was washed with water (twice) and brine, died over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 5:1) and the resultant crystals were washed with hexane to obtain 4-cyano-2a.-dimethylboar-paceotonitrile (4.76 a. vield: 52%).

¹H NMR (CDCl₃) δ 1.75 (6H, s), 7.61 (2H, d, J = 8.6 Hz), 7.71 (2H, d, J = 8.6 Hz).

[0996] Using this and by the method similar to that in EXAMPLE 17, the title compound was obtained. Yield: 7.8%.

Melting point: 122-123 °C (disopropyl ether-hexane).

 ^1H NMR (CDCl₃) δ 1.25 (6H, s), 1.33 (6H, s), 1.74 (6H, s), 2.22 (2H, s), 2.69 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 7.43 (2H, d, J = 8.8 Hz), 7.50 (2H, d, J = 8.8 Hz),

EXAMPLE 270

α.α-Dimethyl-4-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-yl)benzeneacetamide

[0997] After separating a nitrile form by a column chromatography in EXAMPLE 269 followed by elution with ethyl accitate, the resultant crystals were washed with disopropyl either to obtain the title compound. Yield: 9.6%. Melting apair: 180-18° °C.

¹H NMR (CDC₃) § 1.25 (6H, s), 1.31 (6H, s), 1.62 (6H, s), 2.21 (2H, s), 2.69 (2H, s), 3.93 (3H, s), 5.17 (2H, br s), 6.62 (1H, s), 7.42 (4H, s).

55

EXAMPLE 271

5

15

25

30

25

40

45

 $\alpha.\alpha\text{-Dimethyl-4-}(3,4,8,9\text{-tetrahydro-6-methoxy-3},3,8,8\text{-tetramethylfuro}[2,3\text{-h}] is oquinolin-1-yl) benzene acetic acid ethylester. The properties of the properties$

[0998] The title compound was obtained from α,α-Dimethyl-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro [2,3-h]isoquinoiin-1-y)benzeneacetonitrile by the method similar to that in EXAMPLE 241. Yield: 43%. Melting point: 150-151 °C (ftexane).

¹H NMR (CDCl₃) δ 1.16 (3H, t, J = 7.0 Hz), 1.24 (6H, s), 1.30 (6H, s), 1.57 (6H, s), 2.19 (2H, s), 2.68 (2H, s), 3.92 (3H, s), 4.10 (2H, q, J = 7.0 Hz), 6.60 (1H, s), 7.34 (4H, s),

EXAMPLE 272

N,α,α-Trimethyl-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzeneacetamide

[0999] The title compound was obtained from a,a-Dimethyl-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro [2,3-h]isoquinolin-1-yl)benzoneacetamide and iodomethane by the method similar to that in EXAMPLE 190. Yield: 31%. Meting opint: 160-162 °C (hexane-diethyl ether).

¹H NMR (CDCl₃) § 1.25 (6H, s), 1.31 (6H, s), 1.60 (6H, s), 2.20 (2H, s), 2.69 (3H, d, J = 4.6 Hz), 2.69 (2H, s), 3.93 (3H, s), 5.10 (1H, br s), 6.62 (1H, s), 7.39 (4H, s).

EXAMPLE 273

N-[2-Methyl-2-[4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]propanoyl] glycine ethyl ester

[1000] Ethyl bromoacetate (0.23 m.L. 2.04 mmol) and potassium tert-butoxide (230 m.g. 2.04 mmol) were added to a solution of u,u-dimethyl-4-(3.4,8.9-tetrahydro-6-methoxy-3.0,8.e-tetramethylfuro[2.3-h]isoquinolin-1-y)benzenea-cetamide (782 m.g. 1.85 mmol) in N,N-dimethylformamide (7 m.l.) and the mixture was stirred at room temperature for 2 hours. Water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed twice with water and with brine, died over sodium suitate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 3:1 followed by ethyl acetate) and the resultant crystals were washed with diethyl ether-hexane to obtain the title compound (63 m.g., vield: 6.7%).

Melting point: 139-138°C.

14 NMR (CDCl₃) δ 1.24 (6H, s), 1.26 (9H, t, J = 7.1 Hz), 1.32 (6H, s), 1.61 (6H, s), 2.25 (2H, s), 2.68 (2H, s), 3.92 (3H, s), 3.93 (2H, d, J = 5.2 Hz), 4.15 (2H, q, J = 7.1 Hz), 5.67 (1H, br s), 6.61 (1H, s), 7.42 (4H, s).

EXAMPLE 274

 α , α -Dimethyl-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzeneacetic acid ethyl ester hydrochloride

[1001] By the method similar to that in EXAMPLE 17 and starting from 3-cyano-α,α-dimethylbenzeneacetic acid ethyl ester, a free base of the title compound was obtained

¹H NMR (CDCl₃) δ 1.16 (3H, t, J = 7.0 Hz), 1.25 (6H, br s), 1.30 (6H, s), 1.55 (6H, s), 2.15 (2H, s), 2.70 (2H, s), 3.92 (3H, s), 4.10 (2H, g, J = 7.0 Hz), 6.61 (1H, s), 7.22-7.38 (4H, m).

[1002] This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, and crystallized from ethyl acetate to obtain the title compound. Yield: 12%. Meltina point: 143-145 °C.

¹H NMR (DMSO-d₆) δ 1.10 (3H, t, J = 7.0 Hz), 1.21 (6H, s), 1.41 (3H, s), 1.45 (3H, s), 1.53 (6H, s), 2.10 (2H, s), 3.14 (2H, s), 3.94 (3H, s), 4.08 (2H, q, J = 7.0 Hz), 7.09 (1H, s), 7.48-7.65 (4H, m).

EXAMPLE 275

5

15

25

40

α,α-Dimethyl-3-(3.4,8.9-tetrahydro-6-methoxy-3,3.8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzeneacetic acid sodium salt

[1003] 5 M aqueous solution of sodium hydroxide (4 mL) was added to a solution of α.α-dimethyl-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoguinolin-1-yl)benzeneacetic acid ethyl ester (370 mg, 0.823 mmol) and α,α-Dimethyl-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzeneacetic acid ethyl ester hydrochloride (1.54 g. 3.17 mmol) in ethanol (8 mL) and the mixture was stirred at 70 °C for 7 hours. After distilling ethanol off under reduced pressure, the residue was combined with water-diethyl ether and the precipitated crystals were recovered by filtration to obtain the title compound (423 mg, yield: 24%).

Melting point: 153-155 °C. ¹H NMR (DMSO-d₆) δ 1.13 (6H, s), 1.20 (6H, s), 1.34 (6H, s), 2.22 (2H, s), 2.62 (2H, s), 3.80 (3H, s), 6.78 (1H, s), 7.12-7.41 (4H, m).

EXAMPLE 276

α.α-Dimethyl-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)benzeneacetic acid

- [1004] A mother liquor after filtration of the sodium salt in EXAMPLE 275 was concentrated under reduced pressure. The residue was combined with water, adjusted at pH 5.5 with 2 M hydrochloric acid, and extracted twice with tetrahydrofuran. The combined organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to obtain the title compound. Yield: 49%. Amorphous
- ¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.32 (6H, br s), 1.47 (6H, s), 2.08 (2H, s), 2.74 (2H, br s), 3.92 (3H, s), 6.60 (1H, s), 7.12-7.37 (4H, m).

EXAMPLE 277

- N.α.α-Trimethyl-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzeneacetamide hydrochloride
 - [1005] The title compound was obtained from α.α-dimethyl-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro [2,3-h]isoquinolin-1-yl)benzeneacetic acid by the method similar to that in EXAMPLE 206. Yield: 55%. Amorphous.
 - ¹H NMB (DMSO-d_a) δ 1.22-1.50 (18H, m), 2.02-2.24 (2H, m), 2.55 (3H, d, J = 4.4 Hz), 2.97-3.40 (2H, m), 3.94 (3H, s), 7.09 (1H, s), 7.45-7.69 (4H, m), 8.06 (1H, br s),

EXAMPLE 278

 α, α -Dimethyl-N-(4-pyridinylmethyl)-3-(3,4.8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl) benzeneacetamide dihydrochloride

[1006] The title compound was obtained from α,α-dimethyl-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro 45 [2,3-h]isoquinolin-1-yl)benzeneacetic acid and 4-(aminomethyl)pyridine by the method similar to that in EXAMPLE 206. Yield: 49%.

Amorphous

¹H NMR (DMSO-d_c) δ 1.17 (6H, s), 1.45 (6H, s), 1.60 (6H, s), 2.05-2.25 (2H, m), 3.05-3.30 (2H, m), 3.95 (3H, s), 4.33-4.50 (2H, m), 7.10 (1H, s), 7.49-7.69 (7H, m), 8.48-8.58 (1H, m), 8.68-8.71 (2H, m), 9.05 (1H, br s),

50 EXAMPLE 279

- 1-[4-(Bromomethyl)phenyl]-3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoquinoline
- [1007] The title compound was obtained from 4-cyanobenzyl bromide by the method similar to that in EXAMPLE 17. Yield: 27%. Amomhous

¹H NMR (CDCI₃) δ 1.24 (6H, s), 1.32 (6H, s), 2.21 (2H, s), 2.68 (2H, s), 3.92 (3H, s), 4.53 (2H, s), 6.60 (1H, s), 7.34-7.42

(4H, m).

EXAMPLE 280

4-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoquinolin-1-yi)benzeneacetonitrile

[1008] The title compound was obtained from 1-[4-(bromomethyl)phenyl]-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-hilisoquinoline by the method similar to that in EXAMPLE 240, Yield: 13%. Melting apoint: 182-184 °C (hexane-diethyl ether).

¹⁰ ¹H NMR (CDCl₃) & 1.24 (6H, s), 1.33 (6H, s), 2.21 (2H, s), 2.69 (2H, s), 3.80 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 7.36 (2H, d, J = 8.3 Hz), 8.44 (2H, d, J = 8.3 Hz).

EXAMPLE 281

4-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzeneacetic acid ethyl ester hydrochloride

[1009] While cooling in loe, conc. sulfurle acid (0.18 ml., 3.58 mmol) was added to a solution of 4-(3.4.8.49-letrahydrochembers, 9-3,88-letramethyluro(2,3-hilegoulnoini-1-y)benzeneacetohitrile (37 mg., 1.78 mmol) in ethanol (7 mL), and the mixture was heated under reflux for 24 hours. Ice water was poured into the reaction mixture, which was washed with disporpeyl either and the aqueous layer was neutralized with cone, aqueous ammonia, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residiue was subjected to a column chromatography on a basic sice gie (hexane/ethyl acetate) 10.1 followed by \$5.1) followed by a column chromatography on a silica gei (hexane/ethyl acetate) of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure and crystallized from ethyl acetate-ethanol to obtain the title compound (408 mg, yield: 50%).

¹H NMR (DMSO-d₆) δ 1.19 (3H, t, J = 7.2 Hz), 1.22 (6H, s), 1.44 (6H, s), 2.20 (2H, s), 3.16 (2H, s), 3.86 (2H, s), 3.94 (3H, s), 4.10 (2H, g, J = 7.2 Hz), 7.10 (1H, s), 7.52-7.62 (4H, m), 12.60 (1H, br s).

EXAMPLE 282

25

50

2-[[[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]amino]methylene]1.3-propanedioic acid diethyl ester

[1010] 2-(Chloromethylene)malonic acid diethyl sater (1.0 g. 4.84 mmol) and triethylamine (0.72 ml., 5.18 mmol) were added to a solution of 3-(3.4.8,9.5trahydro-6-methoxy-3.3,8.8-tetramethylfuro[2.3-h]isoquinolin-1-yl)benzenamine (1.76 g. 5.03 mmol) in toluene (3.5 ml.) and stirred at 85 °C for 3 hours. Water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium suitlets, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 10:1 followed by 5:1) and crystallized from diethyl ether-hexane to obtain the title compound (905 mg, yield: 36%). Mething point: 115-117 °C.

45 H NMR (CDC₆) 5 F .33 (12H, s), 1.33 (3H, t, J = 7.2 Hz), 1.38 (3H, t, J = 7.2 Hz), 2.24 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 4.25 (2H, q), 2 F .24 Hz), 4.31 (2H, q, J = 7.2 Hz), 6.62 (1H, s), 7.10-7.41 (4H, m), 8.57 (1H, d, J = 13.7 Hz), 11.09 (1H, d, J = 13.7 Hz).

EXAMPLE 283

N-Ethyl-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzenamine

[1011] Triethylamine (0.50 mL, 3.55 mmol) was added to a solution of 3-(3.4.8.9-letrahydro-6-methoxy-3.3.8.9-letramethylfurol(2.3-hijsoquinolin-1-yl)benzenamine (1.21 g, 3.45 mmol) and (2)-3-iodo-2-propenamide (654 mg, 3.3 mmol) in toluene (2.5 mL) and the mixture was stirred at 60 °C for 2 hours and then at 80 °C for 6 hours. The reaction mixture was extracted with 2 M hydrochloric acid, and the aqueous layer was neutralized with conc. aqueous ammonia, and extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over socium sulfate, filtered, and concentrated under reduced pressure. The residue was sublected to a column chromotograph on a basic

silica gel (hexane/ethyl acetate 5:1 followed by 3:1) and crystallized from hexane to obtain the title compound (178 mg, vield: 14%).

Melting point: 109-111 °C

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.24 (3H, t, J = 7.2 Hz), 1.32 (6H, s), 2.35 (2H, s), 2.67 (2H, s), 3.16 (2H, q, J = 7.2 Hz), 3.66 (1H, br s), 3.91 (3H, s), 6.59 (1H, s), 6.63-6.69 (3H, m), 7.11-7.19 (1H, m).

EXAMPLE 284

5

10

15

30

N-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl1-3-pyridinamine

[1012] Tris(dibenzy/ideneacetone)dipalladium (0) (66 mg, 0.0707 mmol) was added to a suspension of 3/3.4.8.9-tel-anytor-6-methoxy-3.8.8 tel-tramethy/fure/2-s-hijsoqualioni-1-yilbenzenamie (1.29 g, 3.6 mmol), 3-teromepyidie (0.32 mL, 3.43 mmol), sodium tert-butoxide (411 mg, 4.81 mmol) and 2.2-bis(dipheny/phosphino)-1,1'-binaphthyl (98 mg, 0.141 mmol) in toluene (30.5 mL) and the mixture was stimed at 110 °C for 24 hours. Water was poured into the reaction mixture, which was extracted twice with ethyl acetals. The combined organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (kexane/sthyl acetals 3: 1 followed by 1:1) and crystallized from hexane-diethyl ether to obtain the title compound (796 mg, ylekt; 54%).

⁹ ¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.34 (6H, s), 2.34 (2H, s), 2.69 (2H, s), 3.92 (3H, s), 5.79 (1H, s), 6.61 (1H, s), 6.97 (1H, d, J = 7.6 Hz), 7.11-7.43 (5H, m), 8.11 (1H, dd, J = 4.8, 1.4 Hz), 8.40 (1H, d, J = 2.6 Hz).

EXAMPLE 285

25 N-(3-Pyridinyl)-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]acetamide

[1013] While cooling in ice, sodium hydride (68% dispersion in oil) (67 mg, 1.57 mmol) was added to a solution of 1/3/2.48.48.9-terbarydro-6-methoxy-3.28.8-termathylluroig.2-hillsoquinoin-1/y)benyll-3-pyridinamine (513 mg, 1.20 mmol) in NN-dimethylformamide (6 mL) and the mixture was stirred at room temperature for 20 minutes under reduced pressure. And then, while cooling in ice, acetyl chloride (0.11 mL, 1.50 mmol) was added thereto and the mixture was stirred at room temperature for 15 hours. Lee water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with water (twice) and brine, dried over sodium suttlate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 1:1 followed by 1:2) to obtain a mixture of the starting material and the title compound. This was subjected to the similar reactions and work-ups and subjected to a column chromatography on a silica gel (hexane/ethyl acetate 3:1) and crystallized from diethyl ether to obtain the title compound (176 mg, yield: 31%).

Melting point: 157-158 °C.

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.24 (6H, s), 2.09 (5H, s), 2.68 (2H, s), 3.91 (3H, s), 7.09 (1H, s), 7.25-7.67 (6H, m), 8.45-8.53 (2H, m).

EXAMPLE 286

N-Methyl-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-3-pyridinamine trihydrochloride

[1014] By the method similar to that in EXAMPLE 288 and using lodomethane, a free base of the title compound was obtained. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution and concentrated under reduced pressure to obtain the title compound, Yield: 74%.

Amorphous.

 ^{1}H NMR (DMSC-dg) δ 1.21 (6H, s), 1.46 (6H, s), 2.30 (2H, s), 3.16 (2H, s), 3.43 (3H, s), 3.94 (3H, s), 7.10 (1H, s), 7.45-7.86 (6H, m), 8.27-8.29 (2H, m).

EXAMPLE 287

3-Pyridinyl[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]phenyl]carbamic acid ethyl ester dihydrochloride

[1015] By the method similar to that in EXAMPLE 190 and starting from N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8.4-tetramethylfuro[2,3-h]isoquinolin-1-ylphenyl[1-3-pyridinamine and ethyl chloroformate, a free base of the title compound was obtained. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution and concentrated under reduced pressure to obtain the title compound. Yield: 29%.

Amorphous.

5

 $^{1}\text{H NMR (DMSO-d_0)} \ \ 3.1.15 \ (3\text{H. t}, \ J = 7.0 \ \text{Hz}), \ 1.19 \ (6\text{H. s}), \ 1.41 \ (3\text{H. s}), \ 1.48 \ (3\text{H. s}), \ 1.98 \ 2.28 \ (2\text{H. m}), \ 3.00 \ 3.00 \ (2\text{H. m}), \ 3.00 \ 4\text{H. s}), \ 7.53 \ -7.74 \ (5\text{H. m}), \ 7.95 \ (1\text{H. d}, \ J = 8.0 \ \text{Hz}), \ 8.52 \ (1\text{H. d}, \ J = 3.0 \ \text{Hz}), \ 8.77 \ (1\text{H. d}, \ J = 2.2 \ \text{Hz}), \ 12.79 \ (1\text{H. b}, \ \text{Is}), \ 1.98 \ (1\text{H. d}, \ J = 2.2 \ \text{Hz}), \ 12.79 \ (1\text{H. b}, \ \text{Is}), \ 1.98 \ (1\text{H. d}, \ J = 2.2 \ \text{Hz}), \ 12.79 \ (1\text{H. b}, \ \text{Is}), \ 1.98 \ (1\text{H. d}, \ \text{Is}), \ 1.98 \ (1\text{H.$

15 EXAMPLE 288

N-(3-Pyridinyl)-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]urea

[1016] Chlorosulforyl isocyanate (0.075 ml., 0.865 mmol) was added to a solution of N-[3-(3,4,8,9-tetrahydro-6-methnxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-3-pyridinamine (336 mg, 0.786 mmol) in tetrahydrofuran (3 ml.) and the mixture was stirred at room temperature for 8 hours. Acetic acid (1 ml.) and water (0.5 ml.) were added to the reaction mixture and the mixture was stirred at room temperature further for 3 hours. The reaction mixture was noutralized with 5 M aqueous solution of sodium hydroxide and extracted twice with eithyl acetalet. The combined organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetale 1:2 followed by ethyl acetate) and crystallized from hexane-ethyl acetate to botaln the title compound (177 mx, vield: 487).

Molting point: 188-169 °C.

17. NMR (CDClg) 8 1.24 (6H, br s), 1.26 (6H, s), 2.14 (2H, s), 2.69 (2H, s), 3.91 (3H, s), 4.74 (2H, br s), 6.60 (1H, s), 7.24-7.31 (2H, m), 7.39-7.53 (3H, m), 7.70-7.78 (1H, m), 8.40 (1H, dd, J = 4.6, 1.3 Hz), 8.49 (1H, dd, J = 2.0 Hz).

EXAMPLE 289

20

25

50

N-Phenyl-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-yl)benzenamine

[1017] Calcium carbonate (670 mg. 1.75 mmol), palladium (II) acotate (8.4 mg. 0.0375 mmol) and 2.2°-bis (diphony)-phosphino)-1,1°-binaphthyl (35 mg. 0.0563 mmol) were added to a solution of 1-(3-bromophenyl)-3.4.8.9-tetrahydro-6-mehoxy-3,3.8,8-tetramethylturd(2,3-h]isequinoline (617 mg. 1.25 mmol) and aniline (0.04 mL. 1.50 mmol) in toluene (2.5 mL) and the mixture was stirred at 100 °C for 24 hours. Ice water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with brine, 'died over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 10.1 followed by 3.1) and crystallized from diethyl ether to obtain the title compound (226 mg. yield: 42%).

Melting point: 87-88 °C.

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.34 (6H, s), 2.36 (2H, s), 2.68 (2H, s), 3.91 (3H, s), 5.74 (1H, s), 6.59 (1H, s), 6.89-7.30 (9H, m).

EXAMPLE 290

N-Phenyl-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]acetamide hydrochloride

[1018] Triothylamine (0.18 ml., 1.28 mmol) and acoty chloride (0.086 ml., 1.22 mmol) were added to a solution of N-phenyl-3-(3.4, 8.9-laterhydro-6-methoxy-3.3, 8.8-laterhamlyflurig-2.3-hijlosquinoin-1-yliphorancamine (494 mg. 1.16 mmol) in N.N-dimethylformamide (2 ml.) and the mixture was stirred at room temperature for 10 hours. Ice water was poured into the reaction mixture, which was extracted twice with ethyl accitate. The combined organic layer was weshed with brine, dried over sodium suifate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hoxane/ethyl acetata 3-1) to obtain a free base of the title compound. This was dissolved in eithyl acetate, combined with 4 M hydrocen chloride/ethyl acetate solution, concentrated unit.

reduced pressure to obtain the title compound (364 mg, yield: 62%).

Amorphous.

5

25

25

45

50

¹H NMR (DMSO-d₆) δ 1.56 (6H, s), 1.37 (3H, s), 1.51 (3H, s), 1.95 (3H, s), 2.50 (2H, s), 3.26 (2H, s), 3.93 (3H, s), 7.09 (1H, s), 7.30-7.80 (9H, m), 12.70 (1H, s).

EXAMPLE 291

1-(3-Bromophenyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-4-furo[2,3-h]isoquinolinol hydrochloride

[1119] N-Bromsuccinimide (77a mg. 4.34 mmol) and 2.2°-azobis(sobulyronitrile) (79 mg. 0.483 mmol) were added to a solution of 1-(3-bromophenyl)-3,4.8.9-tetrahydro-6-methoxy-3,3.8.8-tetramethyfluro[2,3-h]isoquinollne (2.00 g. 4.83 mmol) in carbon tetrachloride (20 mL) and the mixture was sittred at 60 °C for 6 hours. The reaction mixture was extracted fwice with 2 M hydrochloric acid, and the combined aqueous layer was neutralized with cone. aqueous ammonia and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 5:1 followed by 1:2) to obtain a free base of the title compound.

1H NMR (CDCl₃) is 25 (3H, s.), 1.30 (3H, s.), 1.35 (3H, s.), 1.36 (3H, s.), 2.6 (2H, s.), 3.6 (3H, s.), 4.8 (1H, s.), 6.8

(H, s), 7.22-7.39 (2H, m), 7.50-7.62 (2H, m).

[1020] This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution and crystal-

lized from ethyl acetate to obtain the title compound (630 mg, yield: 31%). Melting point: 190-192 °C.

14 NMR (DMSO-d_b) δ 1.24 (3H, s), 1.28 (3H, s), 1.34 (3H, s), 1.41 (3H, s), 2.26 (2H, s), 3.97 (3H, s), 4.56 (1H, br s),
6.17 (1H, s), 7.24 (1H, s), 7.59-7.82 (2H, m), 7.95-7.99 (2H, m).

EXAMPLE 292

N-[3'-(3,4,8,9-Tetrahydro-4-hydroxy-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]lsoquinolin-1-yi)[1,1'-blphenyi]-3-yi] acetamide

[1021] The title compound was obtained from 1-(3-bromophenyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-4-furo[2,3-h]isoquinolinol and 3-acetamidobenzeneboronic acid by the method similar to that in EXAMPLE 254. Yield: 64%.

Amorphous.

¹H NMR (CDCl₃) δ 1.25 (3H, s), 1.30 (6H, s), 1.33 (3H, s), 2.18 (3H, s), 2.26 (2H, s), 3.97 (3H, s), 4.45 (1H, s), 6.96 (1H, s), 7.23-7 63 (8H, m), 7.72 (1H, br s).

EXAMPLE 293

N-[3'-(3,4,8,9-Tetrahydro-4-hydroxy-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-3-yl] acetamide hydrochloride

[1022] The title compound was obtained from N-[3'-(3.4,8.9-tetrahydro-4-hydroxy-6-methoxy-3.3,8,8-tetramethylfuro [2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-3-yl]acetamide by the method similar to that in EXAMPLE 212. Yield: 88%. Amonhous.

¹H NMR (DMSO-d_θ) δ 1.21 (6H, s), 1.37 (3H, s), 1.45 (3H, s), 2.07 (3H, s), 2.32 (2H, s), 3.98 (3H, s), 4.61 (1H, br s), 6.18 (1H, br s), 7.26 (1H, s), 7.42-8.06 (8H, m), 10.19 (1H, s), 12.67 (1H, br s).

EXAMPLE 294

N-[3'-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-4-oxofuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-3-yl] acetamide

[1023] Manganese dioxide (1.04 g, 12.0 mmol) was added to a solution of N-[3*(3,4,8,9-letrahydro-4-hydroxy-6-methoxy-3,3.8,9-letramethyfluro(2,3-h)sequinolin-1-y)[1,1*-bjheny|1-3-y]lacetamide (290 mg 0.598 mmol) in chio-roform (5 mL) and the mixture was stirred at room temperature for 6 hours. Inorganics were filtered off and the filtrate was concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 1:1 followed by 1:2) and crystallized from hexane-ethyl acetate to obtain the title compound (209 mg, yield: 7:29).

Melting point: 210-212 °C.

¹H NMR (CDCl₃) δ 1.34 (6H, s), 1.56 (6H, s), 2.20 (3H, s), 2.26 (2H, s), 4.00 (3H, s), 7.27-7.69 (8H, m), 7.84 (1H, s).

EXAMPLE 295

5-[3-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)phenyll-2-pyridinamine

[1024] A solution of sodium carbonate (198 mg, 1.86 mmol) in water (1 mL) and tetrakis(triphenyiphosphine)palladium(0) (56 mg, 0.425 mmol) were added to a solution of N-(6-bromo-2-pyridiny)pacetamice (243 mg, 1.13 mmol) and 3-cyanophenyiboronic acid (249 mg, 1.70 mmol) in 1,2-dimethoxyethane (2 mL) and ethanol (1 mL) and the mixture was stread at 00 °C of 15 hours. Valete was poured into the reaction mixture, which was extracted twice with tetrahydrofuran. The combined organic layer was washed with brine, dired over sodium suitate, filtered, and concentrad under reduced pressure. The resultant crystals were washed with diethyl either to obtain N-[5-(3-cyanophenyi)-2-pyridinyllacetamide (265 ms. vield, 77%).

1H NMR (CDCl₃) 8 2.25 (SH, s), 7.54-7.92 (SH, m), 8.02 (1H, br.s), 8.32 (1H, d, J = 8.0 Hz), 8.48 (1H, d, J = 2.2 Hz).

[1025] Using this and by the method similar to that in EXAMPLE 17, the title compound was obtained. Yield: 11%. Melting color: 185-168 °C (diathly either).

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.30 (6H, s), 2.26 (2H, s), 2.72 (2H, s), 3.93 (3H, s), 4.50 (2H, s), 6.57 (1H, dd, J = 8.4, 0.8 Hz), 6.63 (1H, s), 7.32-7.56 (4H, m), 7.70 (1H, dd, J = 8.4, 2.4 Hz), 8.34 (1H, d, J = 1.8 Hz).

20 EXAMPLE 296

N-[5-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-2-pyridinyl]acetamide

[1025] From a mixture of 5-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylluro[2,3-h]isoquinolin-1-yl)phonyl; 2-pyridinamine obtained by the column chromatography in EXAMPLE 295 and N-[5-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylluro[2,3-h]isoquinolin-1-yl)phenyl]-2-pyridinyllacetamide and by the method similar to that in EX-AMPLE 222, the title compound was obtained. Yield: 8.9%.
Metina obtain 208-209 °C (diethyl ether).

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.30 (6H, s), 2.23 (3H, s), 2.26 (2H, s), 2.72 (2H, s), 3.93 (3H, s), 6.63 (1H, s), 7.25 (1H, d, J = 8.4 Hz), 7.38-7.58 (4H, m), 7.91-7.96 (2H, m), 8.51 (1H, d, J = 1.4 Hz).

EXAMPLE 297

25

N-[5-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-2-pyridinyl] methanesulfonamide hydrochloride

[1027] By the method similar to that in EXAMPLE 222 and starting from 5-[3-(3,4,8,9-tetrahydro-6-methoxy-3,8,8-tetramethyfuro[2,3-th]isoquinolin-1-yl)phenyll-2-pyridinylamine and methanesulfonyl chloride, a free base of the title compound was obtained. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, and concentrated under reduced pressure to obtain the title compound. Yield: 54%.

Amorphous.

¹H NMR (DMSO-d₆) δ 1.21 (6H, s), 1.45 (3H, s), 1.52 (3H, s), 2.26 (2H, s), 3.00-3.40 (5H, m), 3.95 (3H, s), 7.13-7.15 (2H, m), 7.58-7.78 (2H, m), 8.02-8.52 (6H, m).

45 EXAMPLE 298

6-(Ethylthio)-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline hydrochloride

[1028] By the method similar to that in EXAMPLE 17 and starting from 7-(ethylthio)-2,3-dihydro-2,2-dimethyl-5-(2-me-othyl-1-propenyl)benzofuran and benzonitrile, a free base of the title compound was obtained. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, and concentrated under reduced pressure to obtain the title compound. Yield: 32%.

Amorphous.

 1 H NMR (DMSO-d₆) δ 1.23 (6H, s), 1.32 (3H, t, J = 7.5 Hz), 1.45 (6H, s), 2.19 (2H, s), 3.12 (2H, q, J = 7.5 Hz), 3.17 (2H, s), 7.23 (1H, s), 7.63-7.80 (5H, m).

EXAMPLE 299

5

25

N-(4-Pyridinylmethyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl) benzenesulfonamide dihydrochloride

[1029] 4-(Aminomethyl)pyridine (851 mg, 7.87 mmol) was dissolved in pyridine (2 mL) and, while cooling in ice, 4-cyanoberusesulfonyl chorised (1.75 g, 8.6 mmol) was added and the mixture was stirred at room temperature for 2 hours. The reaction mixture was combined with 2 M hydrochloric acid with cooling in ice, and washed with diethyl ether. The aqueous layer was adjusted at pH 8 with 5 M aqueous solution of sodium hydroxide and extracted twice with ethyl acottact. The combined organic layer was washed with brine, dried over sodium sutlate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetal) to both 4-cyanoN-44-pyrididynitehylbroxnessulfonamide (6.74 mg, loid: 31%).

¹H NMR (CDCl₃ + DMSO-d₆ 2 drops) δ 4.12 (2H, d, J = 5.4 Hz), 7.20 (2H, dd, J = 4.4, 1.4 Hz), 7.74-7.80 (2H, m), 7.94-8.00 (2H, m), 8.08 (1H, br.s), 8.50 (2H, dd, J = 4.4, 1.8 Hz),

[1030] Using this and by the method similar to that in EXAMPLE 17, a free base of the title compound was obtained. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure and crystallized from ethanol-ethyl acetate to obtain the title compound. Yield: 18%. Amorphous.

¹H NMR (DMSO-d₆) 3 1.24 (6H, s), 1.48 (6H, s), 2.16 (2H, s), 3.19 (2H, s), 3.95 (3H, s), 4.34 (2H, d, J = 6.0 Hz), 7.12 (1H, s), 7.83-7.89 (4H, m), 8.08 (2H, d, J = 8.4 Hz), 8.82 (2H, d, J = 6.6 Hz), 9.07 (1H, t, J = 6.0 Hz).

EXAMPLE 300

N-Methyl-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzenesulfonamide

[1031] Methylamine hydrochloride (1.05 g. 15.6 mmol) was dissolved in pyridine (4 m.), 4-cyanobenzenesulfonyl chloride (3.30 g. 18.4 mmol) was added thereto with cooling in ice, and the mixture was stirred at room temperature for 2 hours. The reaction mixture was combined with ice water, acidified with 1 M hydrochlorid acid, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over magnesium suifate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a slied gel (hexane/ethyl acetate 3:1 followed by 1:1), and the resultant crystals were washed with diethyl ether to obtain 4-cyanoN-methylbenzenesulfonaniel (1.54 a., vield: 55%).

TH NMR (CDCl₃) 8 2.72 (3H, d, J = 5.2 Hz), 4.50 (1H, q, J = 5.2 Hz), 7.84 (2H, dd, J = 6.6, 1.8 Hz), 7.99 (2H, dd, J = 6.6, 1.8 Hz).

35 [1032] The title compound was obtained from this by the method similar to that in EXAMPLE 17. Yield: 26%. Melting point: 146-148 °C (methanol-diethyl ether).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.32 (6H, s), 2.17 (2H, s), 2.65 (3H, d, J = 5.3 Hz), 2.71 (2H, s), 3.93 (3H, s), 4.43 (1H, q, J = 5.3 Hz), 6.63 (1H, s), 7.57 (2H, d, J = 8.3 Hz), 7.89 (2H, d, J = 8.3 Hz).

40 EXAMPLE 301

N-(2-Amino-2-oxoethyl)-N-methyl-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl) benzenesulfonamide

45 [1033] The title compound was obtained from N-methyl-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8.8-tetramethylfuro [2,3-h]isoquinolin-1-yl)benzenesulfonamide and 2-bromoacetamide by the method similar to that in EXAMPLE 190. Yield: 55%.

Melting point: 115-117 °C (ethyl acetate-diethyl ether).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.33 (6H, s), 2.14 (2H, s), 2.71 (2H, s), 2.84 (3H, s), 3.63 (2H, s), 3.93 (3H, s), 5.57 (1H, br s), 6.57 (1H, br s), 6.64 (1H, s), 7.62 (2H, d, J = 8.4 Hz), 7.84 (2H, d, J = 8.4 Hz).

EXAMPLE 302

55

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-(6-quinolinyl)furo[2,3-h]isoquinoline dihydrochloride

[1034] A free base of the title compound was obtained from 6-quinolinecarbontirile by the method similar to that in EXAMPLE 28. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, and crystallized from ethanol-ethyl acetate to obtain the title compound. Yield: 37%.

Melting point: 182-184 °C.

 $^{1} H \ NMR \ (DMSO-d_0) \ \delta \ 1.17 \ (6H, s), 1.50 \ (6H, s), 2.18 \ (2H, s), 3.05-3.35 \ (2H, m), 3.87 \ (3H, s), 7.15 \ (1H, s), 7.86 \ (1H, dd, J=8.6, 4.4 \ Hz), 8.02 \ (1H, dd, J=8.8, 1.8 \ Hz), 8.36 \ (1H, d, J=8.8 \ Hz), 8.51 \ (1H, s), 8.78 \ (1H, d, J=8.0 \ Hz), 9.21 \ (1H, dd, J=4.1 \ 4 \ Hz), 8.78 \ (1H, dd, J=8.0 \ Hz), 9.21 \ (1H, dd, J=8.0 \ Hz$

EXAMPLE 303

5

25

25

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-(7-quinolinyl)furo[2,3-h]isoquinoline

[1035] A solution of 7-quinolinecarboxamide (121 g, 7.03 mmn0) in chloroform (8 mL) was treated dropwise with phosphorus oxychloride (3.28 mL, 35.1 mmn0), and stirred at 90 °C for 3 hours. The reaction mixture was poured into loe water, neutralized with core, equeous ammonia and extracted twice with eithyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, and concentrated under reduced pressure to obtain 7-quinolinecarbonitrile (984 mg, yeldi: 7250).

⁵ ¹H NMR (CDCl₃) δ 7.57 (1H, dd, J = 8.5, 4.1 Hz), 7.72 (1H, dd, J = 8.4, 1.4 Hz), 7.94 (1H, d, J = 8.4 Hz), 8.20-8.27 (1H, m), 8.50 (1H, s), 9.06 (1H, dd, J = 4.2, 1.6 Hz).

[1036] The title compound was obtained from this by the method similar to that in EXAMPLE 28. Yield: 48%. Melting point: 172-174 °C (diethyl ether).

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.29 (6H, s), 2.19 (2H, s), 2.74 (2H, s), 3.94 (3H, s), 6.65 (1H, s), 7.43 (1H, dd, J = 8.2, 4.2 Hz), 7.61 (1H, dd, J = 8.2, 1.6 Hz), 7.85 (1H, d, J = 8.4 Hz), 8.15-8.21 (2H, m), 8.95 (1H, dd, J = 4.2, 1.6 Hz).

EXAMPLE 304

N-Methyl-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzenamine

[1037] The title compound was obtained from 3-(methylamino)benzonitrile by the method similar to that in EXAMPLE 28. Yield: 22%.

Melting point: 105-107 °C (diethyl ether-hexane).

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.32 (6H, s), 2.35 (2H, s), 2.68 (2H, s), 2.84 (3H, s), 3.73 (1H, br s), 3.92 (3H, s), 6.59 (1H, s), 6.63-6.70 (3H, m), 7.13-7.21 (1H, m).

EXAMPLE 305

3,4,8,9-Tetrahydro-3,3,6,8,8-pentamethyl-1-phenylfuro[2,3-h]isoquinoline hydrochloride

[1038] Phosphorus oxychloride (1.10 mL, 11.8 mmol) was added to a solution of 2,3-dihydro-2,2.7-timethyl-5-(2-melyl-1-ropenyl)benzofuran (1.20 g, 1.9 4 mmol) and benzamide (1.14 g, 9.4 mmol) in toluene (10 mL) and the mixture was stirred at 60 °C for 2 hours, and then at 90 °C for 3 hours. The reaction mixture was poured into water, and the aqueous layer was separated, neutralized by 5 M aqueous solution of sodium hydroxide, and extracted twice with ethyl acetate. The combined organic layer was washed with brine, dired over magnesium suifate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hxane/strpt) acetate 10.1 followed by 10.1 to obtain a free base of the title compount. This was dissolved in hexane, combined with 4 M hydrogen chloride/ethyl acetate solution, and concentrated under reduced pressure to obtain the title compound (65 mg, yield: 3.9%).

45 Amorphous.

¹H NMR (DMSO-d₆) δ 1.23 (6H, s), 1.43 (6H, s), 2.19 (2H, s), 2.21 (3H, s), 3.11 (2H, s), 7.16 (1H, s), 7 64-7.80 (5H, m).

EXAMPLE 306

1-(4-Cyclohexylphenyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline hydrochloride

[1039] A free base of the title compound was obtained from 4-cyclohexylbenzonitrile by the method similar to that in EXAMPLE 1. This was dissolved in ethanol, combined with 3.3 M solution of hydrogen chloride/ethanol, and concentrated under reduced, pressure. The resultant residue was crystallized from ethyl acetate to obtain the title compound, Yield: 21%.

Melting point: 213-214 °C.

 1 H NMR (CDCl₃) δ 1.23-1.54 (12H, m), 1.69-1.96(10H, m), 2.54-2.68 (1H, m), 2.28 (2H, s), 3.00 (2H, s), 4.01 (3H, s), 6.74 (1H, s), 7.39 (2H, d, J = 8.3Hz), 7.68 (2H, d, J = 8.3Hz).

EXAMPLE 307

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-(4-phenoxyphenyl)furo[2,3-h]isoquinoline hydrochloride

5 [1040] The title compound was obtained from 4-phenoxybenzonltrile by the method similar to that in EXAMPLE 306. Yield: 19%.

Melting point: 198-199 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.39 (6H, s), 1.68 (6H, s), 2.40 (2H, s), 3.00 (2H, s), 4.02 (3H, s), 6.74 (1H, s), 7.12 (4H, d, J = 8.7Hz), 7.18-7.26 (1H, m), 7.42 (2H, t, J = 8.2Hz), 7.75 (2H, d, J = 8.7Hz).

EXAMPLE 308

10

20

25

45

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-(2-naphthyl)furo[2,3-h]isoquinoline hydrochloride

15 [1041] The title compound was obtained from β-naphthonitrile by the method similar to that in EXAMPLE 306. Yield: 379/.

Melting point: 158-160 °C (ethyl acetate).

¹H NMR (CDCl₃) δ 1.29 (6H, s), 1.73 (6H, br s), 2.27 (2H, s), 3.05 (2H, br s), 4.03 (3H, s), 6.78 (1H, s), 7.56-7.70 (3H, m), 7.90-8.09 (3H, m), 8.49 (1H, s),

EXAMPLE 309

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-[4-(1-piperidinyl)phenyl]furo[2,3-h]isoquinoline hydrochloride

28 [1042] The title compound was obtained from 4-(1-piperidinyl)benzonitrile by the method similar to that in EXAMPLE 306. Yield: 18%.
Melting point: 188-190 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.63 (6H, s), 1.68 (12H, br), 2.58 (2H, s), 2.93 (2H, s), 3.42 (4H, br), 4.00 (3H, s), 6.71 (1H, s), 6.93

(2H, d, J = 8.4Hz), 7.77 (2H, d, J = 8.4Hz).

EXAMPLE 310

2.6 - Bis(1,1-dimethylethyl) - 4 - (3,4,8,9-tetra hydro-6-methoxy-3,3,8,8-tetra methylfuro[2,3-h] is oquinolin-1-yl) phenol hydrochloride

[1043] The title compound was obtained from 3,5-bis(1,1-dimethylethyl)-4-hydroxybenzonitrile by the method similar to that in EXAMPLE 306. Yield: 50%.

Melting point: 211-213 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.50 (18H, s), 1.69 (12H, s), 2.40 (2H, s), 2.98 (2H, s), 4.02 (3H, s), 5.90 (1H, s), 6.74 (1H, s), 7.53 (2H, s).

EXAMPLE 311

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-(4-methyl-2-phenyl-1H-imidazol-5-yl)furo[2,3-h]isoquinoline hydrochloride

[1044] The title compound was obtained from 4-methyl-2-phenyl-1H-imidazol-5-carbonitrile by the method similar to that in EXAMPLE 306. Yield: 5%.

Melting point: 238-240 °C (ethyl acetate).

⁵⁰ ¹H NMR (CDCl₃) δ 1.35 (6H, br), 1.65 (6H, br), 2.29 (1H, br), 2.63 (1H, br), 2.71 (3H, br), 3.08 (2H, br), 4.01 (3H, s), 6.70 (1H, s), 7.22 (1H, br), 7.49 (2H, br), 7.90 (2H, br), 8.39 (1H, br).

EXAMPLE 312

655 6-Methyl-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl/furo[2,3-h)isoquinolin-1-yl)-2(1H)-pyridinone hydrochloride

[1045] The title compound was obtained from 3-cyano-6-methyl-2(1H)-pyridinone by the method similar to that in

EXAMPLE 306. Yield: 53%.

Melting point: 178-180 °C (ethyl acetate).

¹H NMR (CDCl₃) δ 1.33 (6H, s), 1.51 (6H, s), 1.62 (2H, br), 2.36 (3H, s), 2.58 (2H, br), 3.90 (3H, s), 6.06 (1H, d, J = 7.3Hz), 6.59 (1H, s), 7.72 (1H, d, J = 7.3Hz).

EXAMPLE 313

5

15

25

25

45

50

1-Cyclopentyl-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline hydrochloride

[1046] The title compound was obtained from cyclopentanecarbonitrile by the method similar to that in EXAMPLE 306. Yield: 20%.

Melting point: 197-198 °C (ethyl acetate).

¹H NMR (CDCl₃) δ 1.57 (6H, s), 1.65 (6H, s), 1.76 (2H, br), 2.05-2.30 (4H, m), 2.44-2.57 (2H, m), 2.88 (2H, s), 3.20-3.58 (3H, m), 4.00 (3H, s), 6.67 (1H, s).

EXAMPLE 314

1-(4-Ethoxyohenyi)-3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoguinoline hydrochloride

[1047] The title compound was obtained from 4-ethoxybenzonitrile by the method similar to that in EXAMPLE 306. Yield: 57%.

Melting point: 158-160 °C (ethyl acetate).

¹H NMR (CDCl₃) δ 1.37 (6H, s), 1.46 (3H, t, J = 7.0Hz), 1.67 (6H, s), 2.41 (2H, s), 2.99 (2H, s), 4.02 (3H, s), 4.14 (2H, q, J = 7.0Hz), 6.74 (1H, s), 7.04 (2H, br d, J = 6.1Hz), 7.75 (2H, br d, J = 6.1Hz).

EXAMPLE 315

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[4-(1-methylethoxy)phenyl]furo[2,3-h]isoquinoline hydrochloride

30 [1048] The title compound was obtained from 4-(1-methylethoxy)benzonitrile by the method similar to that in EXAM-PLE 306. Yield: 21%.

Melting point: 130-132 °C (ethyl acetate).

 $^{1}\text{H NMR (CDC}_{0})\,\delta\,1.38\,(6\text{H},\,\text{s}),\,1.39\,(6\text{H},\,\text{d}.\,\text{J}=4.6\text{Hz}),\,1.66\,(6\text{H},\,\text{s}),\,2.43\,(2\text{H},\,\text{s}),\,2.97\,(2\text{H},\,\text{s}),\,4.01\,(3\text{H},\,\text{s}),\,4.65\cdot4.75\,(1\text{H},\,\text{m}),\,6.72\,(1\text{H},\,\text{s}),\,7.02\,(2\text{H},\,\text{d}.\,\text{J}=8.3\text{Hz}),\,7.76\,(2\text{H},\,\text{d}.\,\text{J}=8.3\text{Hz}).$

EXAMPLE 316

[4-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]methyl acetate hydrochloride

40 [1049] The title compound was obtained from 4-cyanobenzyl acetate by the method similar to that in EXAMPLE 306. Yield: 24%.

Melting point: 184-186 °C (ethyl acetate).

 ^{1}H NMR (CDCl₃) δ 1.35 (6H, s), 1.68 (9H, br s), 2.30 (2H, s), 3.05 (2H, br s), 4.02 (3H, s), 4.74 (2H, s), 6.74 (1H, s), 7.59 (4H, br).

EXAMPLE 317

 $3.4.8.9- Tetrahydro-6-methoxy-1-[4-[2-(4-methoxyphenyl]) ethoxy] phenyl]-3.3.8, \\ 8-tatramethy ifuro [2.3-h] is oquino line hydrochloride$

[1050] The title compound was obtained from 4-[2-(4-methoxyphenyl)ethoxy]benzonitrile by the method similar to that in EXAMPLE 306. Yield: 35%.

Melting point: 198-200 °C (ethyl acetate).

¹H NMR (CDC₅) ³ 1.37 (6H, s), 1.66 (6H, s), 2.39 (2H, s), 2.98 (2H, s), 3.07 (2H, t, J = 7.0Hz), 3.81 (3H, s), 4.01 (3H, s), 4.23 (2H, t, J = 7.0Hz), 6.72 (1H, s), 6.88 (2H, d, J = 8.6Hz), 7.03 (2H, d, J = 8.8Hz), 7.22 (2H, d, J = 8.6Hz), 7.72 (2H, d, J = 8.6Hz), 7

EXAMPLE 318

1-Cyclohexyl-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline hydrochloride

5 [1051] The title compound was obtained from cyclohexanecarbonitrile by the method similar to that in EXAMPLE 306. Yield: 28%.

Melting point: 210-211 °C (ethyl acetate).

¹H NMR (CDCl₃) δ 1.25-1.40 (2H, m), 1.58 (6H, s), 1.65 (6H, s), 1.69-1.85 (6H, m), 1.96-2.07 (2H, m), 2.58-2.78 (2H, m), 2.88-3.04 (3H, m), 3.99 (3H, s), 6.67 (1H, s).

EXAMPLE 319

10

20

20

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-(2-methylthiazol-4-yl)furo[2,3-h]isoquinoline

15 [1052] The title compound was obtained from 2-methylthiazol-4-carbonitrile by the method similar to that in EXAM-PLE 1. Yield: 5%.

Melting point: 127-128 °C (hexane).

 ^{1}H NMR (CDCl3) δ 1.26 (6H, s), 1.37 (6H, s), 2.34 (2H, s), 2.70 (2H, s), 2.74 (3H, s), 3.91 (3H, s), 6.59 (1H, s), 7.37 (1H, s).

EXAMPLE 320

1-(3-Fluorophenyl)-3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoguinoline hydrochloride

25 [1053] The title compound was obtained from 3-fluorobenzonitrile by the method similar to that in EXAMPLE 306. Yield: 47%.

Melting point: 198-199 °C (ethyl acetate-hexane).

¹H NMR (CDC₃) δ 1.24 (6H, s), 1.33 (6H, s), 2.24 (2H, s), 2.69 (2H, s), 3.92 (3H, s), 6.62 (1H, s), 7.06-7.18 (3H, m), 7.30-7.41 (1H, m).

EXAMPLE 321

1-(2.4-Diffuorophenyl)-3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoquinoline

35 [1054] The title compound was obtained from 2,4-diffuorobenzonitrile by the method similar to that in EXAMPLE 1. Yield: 45%.

Melting point: 143-144 °C (hexane).

¹H NMR (CDCl₃) δ 1.14 (3H, s), 1.32 (3H, s), 1.38 (3H, s), 1.39 (3H, s), 2.17 (1H, d, J = 15.8Hz), 2.34 (1H, d, J = 15.8 Hz), 2.63 (1H, d, J = 15.6 Hz), 2.81 (1H, d, J = 15.6 Hz), 3.92 (3H, s), 6.60 (1H, s), 6.77-7.00 (2H, m), 7.32-7.43 (1H, m).

40 EXAMPLE 322

1-(3,5-Diffuorophenyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline hydrochloride

45 [1055] The title compound was obtained from 3,5-difluorobenzonitrile by the method similar to that in EXAMPLE 306. Yield: 42%

Melting point: 198-199 °C (ethyl acetate-hexane-diethyl ether).

 ^{1}H NMR (CDClg) δ 1.24 (6H, s), 1.36 (6H, s), 2.30 (2H, s), 2.69 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 6.71-6.90 (1H, m), 6.93-6.98 (2H, m).

EXAMPLE 323

50

1-(2,3-Dihydro-7-methoxy-5-benzofuranyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

55 [1056] The title compound was obtained from 7-methoxy-2,3-dihydro-5-benzofurancarbonitrile by the method similar to that in EXAMPLE 1, Yield: 52%.

Melting point: 150-151 °C (hexane).

¹H NMR (CDCl_a) δ 1.22 (6H, s), 1.34 (6H, s), 2.35 (2H, s), 2.67 (2H, s), 3.23 (2H, t, J = 8.8 Hz), 3.85 (3H, s), 3.92 (3H,

s). 4.67 (2H, t, J = 8.8 Hz), 6.60 (1H, s), 6.75 (1H, s), 6.93 (1H, s).

EXAMPLE 324

5 N-[[4-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]methyl] methanesulfonamide hydrochloride

[1057] The title compound was obtained from N-[(4-cyanophenyl)methyl]methanesulfonamide by the method similar to that in EXAMPLE 306. Yield: 65%.

Melting point: 234-235 °C (ethyl acetate).

 1 H NMR (DMSO-d₆) δ 1.23 (6H, s), 1.45 (6H, s), 2.21 (2H, s), 2.92 (3H, s), 3.17 (2H, s), 3.95 (3H, s), 4.33 (2H, d, J = 3.8 Hz), 7.10 (1H, s), 7.61(4H, s), 7.84 (1H, br).

EXAMPLE 325

15

25

3.4.8.9-Tetrahydro-6-methoxy-1-(6-methoxy-3-pyridinyl)-3.3.8.8-tetramethylfuro[2,3-h]isoguinoline hydrochloride

[1058] The title compound was obtained from 6-methoxy-3-pyridinecarbonitrile by the method similar to that in EX-AMPLE 306, Yield: 6%.

Amorphous.

 1 H NMR (CDCl₃) δ 1.23 (6H, s), 1.35 (6H, s), 2.33 (2H, s), 2.68 (2H, s), 3.93 (3H, s), 3.98 (3H, s), 6.62 (1H, s), 6.77 (1H, dd, J = 8.4, 0.6 Hz), 7.63 (1H, dd, J = 8.4, 2.2 Hz), 8.19 (1H, d, J = 2.2 Hz).

EXAMPLE 326

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-[3-(1-methylethoxy)phenyl]furo[2,3-h]isoquinoline hydrochloride

[1059] The title compound was obtained as a main product from 3-(1-methylethoxy)benzonitrile by the method similar to that in EXAMPLE 306. Yield: 26%.

30 Melting point: 191-193 °C (ethyl acetate-hexane-diethyl ether).

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.30-1.33 (12H, m), 2.26 (2H, s), 2.69 (2H, s), 3.92 (3H, s), 4.52-4.63 (1H, m), 6.60 (1H, s), 6.89-6.96 (3H, m), 7.27 (1H, t, J = 7.4 Hz).

EXAMPLE 327

3-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)phenol

[1060] The title compound was obtained as a by-product in EXAMPLE 326. Yield: 17%. Melting point: 208-209 °C (hexane).

¹H NMR (CDCl₃) § 1.23 (6H, s), 1.31 (6H, s), 2.28 (2H, s), 2.74 (2H, s), 3.93 (3H, s), 6.61-6.73 (3H, m), 6.85 (1H, t, J = 2.2 Hz), 7.09 (1H, t, J = 7.8 Hz).

EXAMPLE 328

45 3,4,8,9-Tetrahydro-6-methoxy-1-(6-methoxybenzothiazol-2-yl)-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

[1061] The title compound was obtained from 2-cyano-6-methoxybenzothiazole by the method similar to that in EX-AMPLE 1, Yield: 18%.

Melting point: 170-171 °C (ethyl acetate-hexane).

⁵⁰ ¹H NMR (CDCl₃) & 1.27 (6H, s), 1.38 (6H, s), 2.70 (2H, s), 2.79 (2H, s), 3.91 (3H, s), 3.92 (3H, s), 6.61 (1H, s), 7.11 (1H, dd, J = 9.0, 2.5 Hz), 7.39 (1H, d, J = 2.5 Hz), 7.93 (1H, d, J = 9.0 Hz).

EXAMPLE 329

55 3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro(2,3-h]isoquinolin-1-yl)pyridine 1-oxide

[1062] The title compound was obtained from 3-cyanopyridine 1-oxide by the method similar to that in EXAMPLE 1. Yield: 27%. Melting point: 145-146 °C (ethyl acetate-hexane-diisopropyl ether).

 1 H NMR (CDCl₃) δ 1.24 (6H, s), 1.37 (6H, s), 2.39 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 6.63 (1H, s), 7.27-7.32 (2H, m), 8.22-8.26 (1H, m), 8.28 (1H, s).

EXAMPLE 330

5

15

25

1-(6-Chloro-3-pyridinyl)-3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoquinoline

[1063] The title compound was obtained from 6-chloronicotinonitrile by the method similar to that in EXAMPLE 1. Yield: 11%.

Melting point: 140-141 °C (hexane)

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.36 (6H, s), 2.28 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 6.63 (1H, s), 7.38 (1H, d, J = 7.8 Hz), 7.74 (1H, dd, J = 7.8, 2.2 Hz), 8.42 (1H, d, J = 2.0 Hz).

EXAMPLE 331

2-[2-Oxo-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridinyl]-4-pyridinecarboxamide

[1064] A solution of 1-(e-chioro-3-pyridinyl)-3.4.8.3-letrahydro-6-methoxy-3.3.8.8-letramethyfluro[2.5-h]isoquinoline (1.0 g, 2.7 mmol), 4-pyridinecarboxamide 1-oxide (2.9 g, 21 mmol), 25% solution of hydrogen bromide/acetic acid (2.0 mL) and acetic acid (6.0 mL) in toluene (10 mL) was heated under reflux for 30 hours. The reaction solution was cooled to room temperature, and then the reaction mixture was poured into water. After basifying by the addition of 8 M aqueous solution of sodium hydroxide, the organic meterial was extracted with ethyla cetate. The extract was washed with brine, dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a basic silica gel (chloroform/methanol 100:1 followed by 20:1) to obtain the title compound (0.46 g, vield: 48%).

Amorphous.

1h MMR (CDC₃) 8 1.20 (6H, s), 1.46 (6H, s), 2.65 (2H, s), 2.88 (2H, s), 3.93 (3H, s), 6.03 (1H, br), 6.62 (1H, s), 6.70 (1H, d, J = 9.2 Hz), 7.04 (1H, br), 7.61 (1H, dd, J = 9.2, 2.6 Hz), 7.79 (1H, d, J = 5.0 Hz), 8.08 (1H, d, J = 2.6 Hz), 8.28 (1H, s), 8.65 (1H, d, J = 5.0 Hz).

EXAMPLE 332

1-(2-Pyridinyl)-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)-pyridinone

[1065] The title compound was obtained from pyridine 1-oxide by the method similar to that in EXAMPLE 331. Yield: 47%.

Melting point: 203-204 °C (ethyl acetate-hexane).

¹H MMR (CDC₉) δ 1.20 (6H, s), 1.46 (6H, s), 2.65 (2H, s), 2.90 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 6.69 (1H, d, J = 9.4 Hz), 7.33 (1H, td, J = 5.8, 1.2 Hz), 7.57 (1H, dd, J = 9.4, 2.6 Hz), 7.80-7.95 (2H, m), 8.06 (1H, d, J = 2.2 Hz). 8.55 (1H, d, J = 4.2 Hz).

EXAMPLE 333

45 1-(4-Methyl-2-quinolinyl)-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)-pyridinone

[1066] The title compound was obtained from 4-methylquinoline 1-oxide by the method similar to that in EXAMPLE 331, Yield: 51%.

Melting point: 212-213 °C (ethyl acetate-hexane-disopropyl ether).

 $^{1}\text{H NMR (CDCl}_3) \, \delta \, 1.21 \, (6\text{H},\, \text{s}), \, 1.52 \, (6\text{H},\, \text{s}), \, 2.65 \, (2\text{H},\, \text{s}), \, 2.76 \, (3\text{H},\, \text{s}), \, 2.99 \, (2\text{H},\, \text{br}\, \text{s}), \, 3.93 \, (3\text{H},\, \text{s}), \, 6.62 \, (1\text{H},\, \text{s}), \, 6.74 \, (1\text{H},\, \text{d},\, \text{J} = 8.8 \, \text{Hz}), \, 7.57 - 7.75 \, (4\text{H},\, \text{m}), \, 8.00 - 8.09 \, (3\text{H},\, \text{m}).$

EXAMPLE 334

5

1-(3-Methyl-2-quinolinyl)-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)-2(1H)-pyridinone

[1067] The title compound was obtained from 3-methylquinoline 1-oxide by the method similar to that in EXAMPLE 331 Yield: 58%.

Melting point: 212-213 °C (ethyl acetate-hexane-disopropyl ether).

¹H MMR (CDC₃) 5 1.11 (3H, s), 1.30 (3H, s), 1.66 (6H, s), 2.42 (3H, s), 2.54-2.69 (2H, m), 2.73 (1H, d, J = 16.2 Hz), 3.29 (1H, brd, J = 16.2 Hz), 3.90 (3H, s), 6.58 (1H, s), 6.74 (1H, d, J = 9.4 Hz), 7.53-7.83 (5H, m), 7.99 (1H, d, J = 8.0 Hz), 8.10 (1H, s).

EXAMPLE 335

5 1-(7-Methyl-2-quinolinyl)-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)-pyridinone

[1068] The title compound was obtained from 7-methylquinoline 1-oxide by the method similar to that in EXAMPLE

Melting point. 232-233 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.58 (6H, s), 2.56 (2H, s), 2.58 (3H, s), 3.01 (2H, s), 3.93 (3H, s), 6.71 (1H, d, J = 9.4 Hz), 6.93 (1H, s), 7.44 (1H, dd, J = 8.4, 1.4 Hz), 7.72-7.88 (4H, m), 8.23 (1H, d, J = 8.4 Hz), 8.31 (1H, d, J = 1.8 Hz).

EXAMPLE 336

25

25

40

45

50

2-[2-Oxo-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]|soquinolin-1-yl)-1(2H)-pyridinyl]-4-pyridinecarboxylic acid ethyl ester dihydrochloride

[1089] A free base of the title compound was obtained from 4-pyridinecarboxylic acid ethyl ester 1-xide by the method similar to that in EXAMPLE 331. This was dissolved in ethanol, combined with 3.3 M solution of hydrogen chloride/ethanol, and concentrated under reduced pressure to obtain the title compound. Neld: 36%.

1H NMR (CDC $_3$) δ 1.20 (6H, s), 1.42 (6H, t, J = 7.4 Hz), 1.46 (6H, s), 2.65 (2H, s), 2.89 (2H, s), 3.93 (3H, s), 4.44 (2H, q, J = 7.4 Hz), 6.62 (1H, s), 6.71 (1H, d, J = 9.3 Hz), 7.59 (1H, dd, J = 9.3, 2.4 Hz), 7.89 (1H, dd, J = 4.8, 1.4 Hz), 8.04 (1H, d, J = 4.4 Hz), 8.47 (1H, s), 8.67 (1H, d, J = 4.8 Hz).

EXAMPLE 337

5-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)-2(1H)-pyridinone

[1070] A solution of 1-(6-chloro-3-pyridinyl)-3.4,8.9-4strahydro-6-methoxy-3.3,8.8-tetramethyfluro(2,3-f)sequionine (4.0 g, 11 mmo) in 6 M hydrochloric acid (40 mL) was heated under reflux for 11.5 hours. The reaction solution was cooled to room temperature, basified by the addition of 8 M aqueous solution of sodium hydroxide, and then the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was crystallized from ethyl acetate-hexanediisopropyl ether to obtain the title compound (3.6 g, yield: 94%).

¹H NMR (CDCl₉) § 1.17 (6H, s), 1.38 (6H, s), 2.59 (2H, s), 2.61 (2H, s), 3.91 (3H, s), 6.31 (1H, br), 6.52 (1H, d, J = 9.3 Hz), 6.58 (1H, s), 7.41 (1H, dd, J = 9.3, 2.2 Hz), 7.68 (1H, d, J = 2.2 Hz).

EXAMPLE 338

1-Methyl-5-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)-2(1H)-pyridinone

[1071] A solution of 5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro(2,3-h)jisoquinolin-1-yl)-2(1H)-pyridinone (1.0 g, 2.8 mmd) and sodium hydride (60% in oil, 0.35 g, 8.8 mmol) in N,N-dimethylformamide (10 mL) was stirred at room temperature for 15 minutes. Iodomethane (2.0 mL, 32 mmol) was added to the reaction mixture at room temperature and the mixture was stirred at room temperature for 9 hours. The reaction solution was poured into water,

and basified by the addition of 1 M aqueous solution of sodium hydroxide, and then the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a basic silica gel (hexane/ chloroform/ethyl acetate 2:1:1 followed by 1:2:2) to obtain crude crystals. The resultant crude crystals were recrystallized from ethyl acetate-hexane-diisopropyl ether to obtain the title compound (0.52 g, yield: 50%).

Melting point: 158-159 °C. ¹H NMR (CDCl₂) δ 1.20 (6H, s), 1.41 (6H, s), 2.61 (2H, s), 2.65 (2H, s), 3.60 (3H, s), 3.93 (3H, s), 6.56 (1H, d, J = 9.4 Hz), 6.61 (1H, s), 7.33 (1H, dd, J = 9.4, 2.6 Hz), 7.59 (1H, d, J = 2.6 Hz).

EXAMPLE 339

1-(3-Pyridinylmethyl)-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)pyridinone

[1072] The title compound was obtained from 3-(chloromethyl)pyridine hydrochloride by the method similar to that in EXAMPLE 338, Yield: 38%,

Melting point: 247-248 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.19 (6H, s), 1.33 (6H, s), 2.47 (2H, s), 2.64 (2H, s), 3.91 (3H, s), 5.18 (2H, s), 6.60 (1H, s), 6.65 (1H, d, J = 9.4 Hz), 7.27-7.32 (1H, m), 7.42 (1H, dd, J = 9.4, 2.6 Hz), 7.51 (1H, d, J = 2.2 Hz), 7.77 (1H, dd, J = 7.6) 1.8 Hz), 8.57 (1H, dd, J = 4.8, 1.4 Hz), 8.64 (1H, d, J = 2.2 Hz).

EXAMPLE 340

25

1-(4-Pyridinylmethyl)-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)pyridinone

[1073] The title compound was obtained from 4-(chloromethyl)pyridine hydrochloride by the method similar to that

in EXAMPLE 338, Yield: 63%, Melting point: 199-200 °C (ethyl acetate-diisopropyl ether).

¹H NMR (CDCl₃) δ 1.19 (6H, s), 1.35 (6H, s), 2.52 (2H, s), 2.64 (2H, s), 3.92 (3H, s), 5.17 (2H, s), 6.61 (1H, s), 6.68 (1H, d, J = 9.8 Hz), 7.21 (2H, d, J = 5.8 Hz), 7.45-7.48 (2H, m), 8.59 (2H, d, J = 5.8 Hz).

EXAMPLE 341

25 1-(2-Pyridinylmethyl)-5-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)-2(1H)pyridinone

[1074] The title compound was obtained from 2-(chloromethyl)pyridine hydrochloride by the method similar to that in EXAMPLE 338, Yield: 72%.

Melting point: 191-192 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.20 (6H, s), 1.35 (6H, s), 2.57 (2H, s), 2.65 (2H, s), 3.92 (3H, s), 5.22 (2H, s), 6.60 (1H, s), 6.61 (1H, d, J = 9.0 Hz), 7.17-7.27 (1H, m), 7.42 (1H, dd, J = 9.2, 2.2 Hz), 7.49 (1H, d, J = 7.6 Hz), 7.67 (1H, dd, J = 7.6. 1.8 Hz), 7.72 (1H, d, J = 2.2 Hz), 8.52 (1H, d, J = 4.8 Hz).

45 EXAMPLE 342

1-(2-Quinolinylmethyl)-5-(3.4.8,9-tetrahydro-6-methoxy-3,3,8.8-tetramethylfuro[2,3-h]isoguinolin-1-yl)-2(1H)pyridinone

[1075] The title compound was obtained from 2-(chloromethyl)quinoline hydrochloride by the method similar to that in EXAMPLE 338, Yield: 54%.

Melting point: 210-211 °C (ethyl acetate-diisopropyl ether).

¹H NMR (CDCl₃) δ 1.19 (6H, s), 1.23 (6H, s), 2.53 (2H, s), 2.64 (2H, s), 3.91 (3H, s), 5.45 (2H, s), 6.59 (1H, s), 6.66 (1H, d, J = 9.6 Hz), 7.37-7.50 (1H, m), 7.53-7.59 (2H, m), 7.65-7.73 (1H, m), 7.75 (1H, d, J = 2.2 Hz), 7.81 (1H, d, J = 8.0 Hz), 7.98 (1H, d, J = 8.6 Hz), 8.15 (1H, d, J = 8.8 Hz).

EXAMPLE 343

1-(Phenylmethyl)-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)-pyridinone

5 [1076] The title compound was obtained from benzyl bromide by the method similar to that in EXAMPLE 338. Yield. 38%. Melting point: 216-217 °C (ethyl acetate-hexane-disporpog) ether).
1 H NMR (CDCL) § 1.18 (6H. §). 1.30 (6H. §). 244 (2H. §). 2.63 (2H. §). 3.91 (3H. §). 5.17 (2H. br.). 6.58 (1H. §). 6.66

 1 H NMR (CDCl₃) 3 1.18 (6H, s), 1.30 (6H, s), 2.44 (2H, s), 2.63 (2H, s), 3.91 (3H, s), 5.17 (2H, br s), 6.58 (1H, s), 6.66 (1H, d, J = 9.8 Hz), 7.32 (5H, s), 7.38-7.43 (2H, m).

0 FXAMPLE 344

2-Oxo-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquino lin-1-yl)-1 (2H)-pyridine acetamide hydrochloride

15 [1077] A solution of 5-(3.4.8.4-letrahydro-6-methoxy-3.3.8.8-teramethydror(2.3-h)lisoquinolin-1-yl)-2(1H)-pyridinone (1.5.9.4.3 mmo) and sodium hydride (60% in oil, o.19.4.8 mm oil) in NN-dimethylformamide (10 mL) was atirred at room temperature for 25 minutes. 2-Chloroacetamide (0.51.9.5.5 mmo) was added to the reaction mixture at room temperature and the mixture was stirred at room temperature for 24 hours. The reaction solution was poured into water, basified by the addition of 1 M aqueous solution of sodium hydroxide, and then the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over sodium sulfate, and then the solvent was distilled of under reduced pressure. The resultant residue was purified by a column chromatography on a basic silica gel (chloroform/methanol 50:1 followed by 20:1) to obtain crude crystals. 3.3 M solution of hydrogen chloride/ethanol (5.0 mL, 17 mmol) was added to the solution of the resultant crude crystals in ethanol (20 mL) and the mixture was stirred at room temperature for 10 minutes. The reaction solution was concentrated under reduced pressure to obtain the title compound (1.3.9, yield: 53%).

Amorphous.

1 MMR (DMSO-d₀) δ 1.34 (6H, s), 1.40 (6H, s), 2.78 (2H, br), 3.08 (2H, s), 3.93 (3H, s), 4.60 (2H, br), 6.59 (1H, d, J = 9.5Hz), 7.06 (1H, s), 7.73 (1H, dd, J = 9.5, 2.4 Hz), 7.76 (1H, s), 8.27 (1H, d, J = 2.4 Hz), 8.33 (1H, s), 12.39 (1H, br).

30 EXAMPLE 345

2-Oxo-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridineacetic acid ethylester

The title compound was obtained from ethyl bromoacetate by the method similar to that in Example 338. Yield:
 17%. Amorphous.
 11 NMR (CDCl₃) 5 1.20 (6H, s), 1.30 (3H, t, J = 7.4 Hz), 1.42 (6H, s), 2.65 (2H, s), 2.73 (2H, s), 3.92 (3H, s), 4.25 (2H, q, J = 7.4 Hz), 4.88 (2H, br), 6.60-6.65 (2H, m), 7.42-7.47 (2H, m).

40 EXAMPLE 346

2-Oxo-N-(3-pyridinyl)-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)-1(2H)-pyridineacetamide

45 [1079] A solution of 2-oxo-5-(34,8,9-tertahydro-6-methoxy-3,3,8,8-tetramethyfluro(2,3-h)isoquinoin-1-y/h-1(2P1-)-px-ricineacetic acid ethy lester (1.4, g, 3.2 mmol) and 3-aminopyridine (0.58 g, 6.2 mmol) in docalin (10 mL) was stirred at 200 °C for 17 hours under argon atmosphero. The reaction solution was combined with 2 M hydrochloric acid, and washed with chloroform. The aqueous solution was basified with 8 M aqueous solution of sodium hydroxide, and then the organic material was extracted with ethyl acetate. The extract was washed with brine, dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a basic sities gel (ethyl acetate/methanol 50:1 followed by 10:1) to obtain roude crystals. The resultant crude crystals were recrystallized from ethyl acetate-disporpopyl ether to obtain the title compound (0.20 g, yield: 13%). Meltin point 276-277 °C.

¹H NMR (CDCl₃) δ 1.21 (6H, s), 1.40 (6H, s), 2.66 (4H, s), 3.93 (3H, s), 4.78 (2H, br s), 6.62 (1H, s), 6.71 (1H, d, J = 3.9 Hz), 7.18-7.27 (1H, m), 7.56 (1H, dd, J = 3.2.6 Hz), 7.69 (1H, d, J = 2.2 Hz), 8.04-8.08 (1H, m), 8.33 (1H, dd, J = 4.6 1.4 Hz), 8.63 (1H, J = 2.6 Hz), 9.65 (1H, s).

EXAMPLE 347

5

15

25

40

45

50

N-(2-Hydroxyethyl)-2-oxo-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)-1(2H)-pyridineacetamide

[1080] The title compound was obtained from 2-aminoethanol by the method similar to that in EXAMPLE 346. Yield: 50%

Melting point: 133-134 °C (ethyl acetate-diisopropyl ether).

¹H NMR (CDCl₃) δ 1.20 (6H, s), 1.42 (6H, s), 2.65 (2H, s), 2.68 (2H, s), 3.41 (2H, m), 3.69 (2H, t, J = 4.8 Hz), 3.92 (3H, s), 4.64 (2H, s), 6.61 (1H, s), 6.62 (1H, d, J = 7.6 Hz), 7.37-7.48 (2H, m), 7.63 (1H, d, J = 2.2 Hz).

EXAMPLE 348

2-Oxo-5-(3.4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridineacetic acid 1,1-dimethylethyl ester

[1081] The title compound was obtained from tert-butyl bromoacetate by the method similar to that in EXAMPLE 338, Yield: 51%.

Amorphous

⁹ 1H NMR (CDCl₃) δ 1.20 (6H, s), 1.42 (15H, s), 2.65 (2H, s), 2.72 (2H, s), 3.92 (3H, s), 4.65 (2H, br), 6.61-6.65 (2H, m), 7.40-7.48 (2H, m).

EXAMPLE 349

25 2-Oxo-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridineacetic acid hydrochloride

[1082] A solution of 2-oxo-5-(3.4,8-9-tetrahydro-6-methoxy-3,3.8-detramethyfluro(2,3-h)sequinolin-1-y)h-1(2H)-pyridineacetic acid 1,1-dimethylethyl ester (2.7 g, 5.8 mmol) in 6 M hydrochloric acid (30 mL) was heated under refuse for 1 hour. After cooling to room temperature, the reaction mixture was concentrated under reduced pressure. The resultant residue was crystallized from chloroform-disopropyl ether to obtain the title compound (2.5 g, yield: 97%). Meltin opinit: 231-233 °C (decomposition).

¹H NMR (DMSO- d_{0}) δ 1.34 (6H, s), 1.39 (6H, s), 2.80 (2H, br), 3.08 (2H, s), 3.94 (3H, s), 4.71 (2H, s), 6.63 (1H, d, J = 9.6 Hz), 7.07 (1H, s), 7.76 (1H, dd, J = 9.6, 3.0 Hz), 8.33 (1H, d, J = 3.0 Hz), 12.40 (1H, br).

EXAMPLE 350

 $\label{lem:condition} 4-[[2-Oxo-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)-1(2H)-pyridinyl] methyl] benzoic acid methyl ester$

[1083] The title compound was obtained from methyl 4-(bromomethyl)benzoate by the method similar to that in EX-AMPLE 338, Yield: 62%. Amprhous.

¹H NMR (CDCl₃) δ 1.18 (6H, s), 1.32 (6H, s), 2.47 (2H, s), 2.63 (2H, s), 3.91 (6H, s), 5.22 (2H, br s), 6.60 (1H, s), 6.67 (1H, d, J = 9.8 Hz), 7.37-7.46 (4H, m), 8.01 (2H, d, J = 8.4 Hz).

EXAMPLE 351

N-(2-Hydroxyethyl)-4-[[2-oxo-5-(3.4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridinyl]methyl]benzamide hydrochloride

[1084] A solution of 4-I[2-oxo-5-(3.4.8,3-tetrahydro-6-methoxy, 3.5.8.8-tetramethyfluro[2.5-hijs.oquinolin-1-y)-1(2+)pyridinylmethylbenzcie acid methyl seter (1 o. g. 2 mmol) and 2-aminoethanol (2.0 ml., 33 mmoh) in xylane (10) was heated under reflux for 4 hours. The reaction solution was cooled to room temperature, and the solvent was distilled off under reduced pressure. The residue was combined with water, and the mixture was made alkaline with 1 M aqueous solution of sodium hydroxide, and then the organic material was extracted with eithyl acetate. The extract was washed with brine and dried over sodium sulfate, and then the solvent was distilled offl under reduced pressure. The resultant residue was purified by a column chromatography on a basic sitiline agel (chityl acctate/methanol-501 followed by 20:1)

to obtain crude crystals. 3.3 M hydrogen chloride/ethanol solution (3.0 mL, 10 mmol) was added to a solution of the resultant crude crystals in ethanol (20 mL) and the mixture was stirred at room temperature for 10 minutes. The reaction solution was concentrated under reduced pressure, and the resultant residue was crystallized from chloroform-disopropul either to obtain the titile compound (1.1 q. Yield; 96%).

5 Melting point, 175-176 °C.

¹H MMR (DMSO-d₆) 5 1.28 (6H, s), 1.42 (6H, s), 2.66 (2H, s), 3.09 (2H, s), 3.30-3.40 (2H, m), 3.50 (2H, t, J = 5.6 Hz), 3.93 (3H, s), 5.24 (2H, bn), 6.62 (1H, d, J = 9.6 Hz), 7.07 (1H, s), 7.45 (2H, d, J = 8.0 Hz), 7.67 (1H, dd, J = 9.4, 2.2 Hz), 7.88 (2H, d, J = 8.0 Hz), 8.51-8.57 (2H, m).

0 FXAMPLE 352

4-[[2-Oxo-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1 (2H)-pyridinyl]methyl] benzoic acid hydrochloride

f3 [1085] The title compound was obtained from 4-[[2-oxo-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro [2,3-h]isoquinolin-1-yl)-1(2H)-pyridinyl]methyl]benzoic acid methyl ester by the method similar to that in EXAMPLE 349, Yiqit 62%.

Amorphous.

¹H NMR (DMSO-d₂) δ 1.27 (6H, s), 1.42 (6H, s), 2.65 (2H, s), 3.09 (2H, s), 3.93 (3H, s), 5.30 (2H, br), 6.64 (1H, d, J) = 9.6 Hz), 7.08 (1H, s), 7.49 (2H, d, J = 8.4 Hz), 7.70 (1H, dd, J = 9.6, 2.2 Hz), 7.93 (2H, d, J = 8.4 Hz), 8.58 (1H, d, J = 2.2 Hz), 12.62 (1H, br).

EXAMPLE 353

25 4-[[2-Oxo-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1 (2H)-pyridinyl]methyl] benzamide

[1086] N,N-Dimethyllomamide (0.1 mL) was added to a solution of 4-[[2-oxo-5-(3.4.8,9-tetrahydro-6-methoxy-3.3,8.8-tetramethyllruro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridinyllmethyllpenzoic acid hydrochloride (1.6.9,3.1 mmol) and oxalyl chloride (0.75 mL, 8.6 mmol) in tetrahydroluran (50 mL) at room temperature and the reaction mixture was stirred at room temperature for 1 hour. The reaction solution was concentrated under reduced pressure. 6.3 M ammonia/ ethanol solution (30 mL) was added to a solution of the resultant residue in tetrahydrofuran (50 mL) at room temperature, and the reaction mixture was stirred at room temperature for 1 hour. The reaction solution was concentrated under reduced pressure, and the residue was combined with water, and the organic material was extracted with chloroform. The extract was washed with brine and dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was combined with chloroform the extract was washed with brine and dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a basic silica gel (chloroform/methanol 50:1 followed by 20:1) to obtain crude crystals. The resultant crude crystals were recrystallized from ethyl acetate to obtain the title compound (0.44 g. Yield: 31%).

⁴⁰ 1H NMR (CDCl₃) 5 1.18 (6H, s), 1.33 (6H, s), 2.49 (2H, s), 2.63 (2H, s), 3.91 (3H, s), 5.21 (2H, s), 5.64 (1H, br), 6.08 (1H, br), 6.60 (1H, s), 6.66 (1H, d, J = 9.0 Hz), 7.39-7.47 (4H, m), 7.79 (2H, d, J = 8.0 Hz).

EXAMPLE 354

45 N-Methyl-4-[[2-oxo-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridinyl] methyllbenzamide

[1087] The title compound was obtained from a 40% methylamine/methanol solution by the method similar to that in EXAMPLE 353, Yield: 41%.

Amorphous.

¹H NMR (CDCl₃) δ 1.18 (6H, s), 1.33 (6H, s), 2.49 (2H, s), 2.63 (2H, s), 3.00 (3H, d, J = 5.2 Hz), 3.91 (3H, s), 5.20 (2H, br), 6.18 (1H, br), 6.59 (1H, s), 6.65 (1H, d, J = 10 Hz), 7.36-7.46 (4H, m), 7.73 (2H, d, J = 8.0 Hz).

25

EXAMPLE 355

5

15

 $\label{lem:condition} 4-[[2-Cxo-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)-1(2H)-pyridinyl] methyl]-N-propylbenzamide$

[1088] The title compound was obtained from propylamine by the method similar to EXAMPLE 353. Yield: 57%. Melting point: 193-195 °C (ethyl acetate-hexane-disopropyl ether).

¹H NMR (CDCl₃) δ 0.97 (3H, ř. J = 7.2 Hz), 1.18 (6H, s), 1.33 (6H, s), 1.55-1.65 (2H, m), 2.48 (2H, s), 2.63 (2H, s), 3.41 (2H, q, J = 7.2 Hz), 3.91 (9H, s), 5.20 (2H, s), 6.12 (1H, br), 6.59 (1H, s), 6.65 (1H, d, J = 9.0 Hz), 7.37-7.45 (4H, m), 7.73 (2H, d, J = 8.0 Hz).

EXAMPLE 356

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[4-(methylthio)phenyl]furo[2,3-h]isoquinoline hydrochloride

[1089] A solution of 4-(methythio)benzonitrile (0.776 g, 5.20 mmol) in toluene (5 mL) and acetic acid (5 mL) was treated dropsives with conc. sulfuria caid (0.5 mL) with cooling in ice. The loce bath was removed, and a solution of 2,3-dihydro-7-methoxy-2,2-dimethyl-5-(2-methyl-1-propenyl)benzofuran (0.929 g, 4.00 mmol) in toluene (5 mL) was added and the mixture was stirred at 80 °C for 1 hour. The reaction mixture was combined with ice, and the aqueous layer was neutralized with cortic, capeuous ammonis and extracted wice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chomatography on a silice gel (hexanefethyl acetate 2:1) to obtain a free base of the title compound. This was combined with 2.6 M hydrogen chloride/ethanol solution (7.4 mL) and the mixture was concentrated under reduced pressure. The residue was crystallized from diethyl ether, and recrystallized from ethyl acetate to obtain the title compound (0.72 g, Yield: 43%).

¹H NMR (CDCl₃) δ 1.37 (6H, s), 1.67 (6H, s), 2.39 (2H, s), 2.55 (3H, s), 3.00 (2H, s), 4.02 (3H, s), 6.74 (1H, s), 7.36 (2H, d, J = 8.2 Hz), 7.68 (2H, d, J = 8.2 Hz), 7.68 (2H, d, J = 8.2 Hz).

30 EXAMPLE 357

1-(2,3-Dihydro-5-benzofuranyI)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinoline hydrochloride

35 [1990] The title compound was obtained from 2,3-dihydro-5-benzofurancarbonitrile by the method similar to that in EXAMPLE 356. Yield: 51%. Metting point: 144-148 °C (ethyl acetate).

¹H NMR (CDCl₃) § 1.39 (6H, s), 1.65 (6H, s), 2.45 (2H, s), 2.98 (2H, s), 3.36 (2H, t, J = 8.8 Hz), 4.01 (3H, s), 4.72 (2H, t, J = 8.8 Hz), 6.73 (1H, s), 6.86 (1H, d, J = 8.4 Hz), 7.32 (1H, dd, J = 8.4, 1.8 Hz), 7.93 (1H, d, J = 1.8 Hz).

EXAMPLE 358

40

50

55

1-(1,3-Benzodioxol-5-yl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline hydrochloride

45 [1091] The title compound was obtained from 1,3-benzodioxol-5-carbonitrile by the method similar to that in EXAM-PLE 356. Yield: 44%.

Melting point: 156-160 °C (ethyl acetate).

¹H NMR (CDCl₃) δ 1.39 (6H, s), 1.65 (6H, s), 2.45 (2H, s), 2.99 (2H, s), 4.01 (3H, s), 6.11 (2H, s), 6.73 (1H, s), 6.97 (1H, d, J = 8.0 Hz), 7.17 (1H, br s), 7.27-7.29 (1H, m).

EXAMPLE 359

 $N, N-Dimethyl-4-(3,4,8,9-tetra hydro-6-methoxy-3,3,8,8-tetra methyl furo \cite{2},3-h\cite{1} is oquino lin-1-yl) benzenamine hydrochloride$

[1092] The title compound was obtained from 4-(dimethylamino)benzonitrile by the method similar to that in EXAMPLE 356. Yield: 24%.

Melting point: 165-168 °C (ethyl acetate-ethanol).

¹H NMR (CDCl₃) δ 1.40 (6H, s), 1.62 (6H, s), 2.58 (2H, s), 2.94 (2H, s), 3.10 (6H, s), 4.01 (3H, s), 6.73 (1H, s), 6.75 (2H, d, J = 9.0 Hz), 7.77 (2H, d, J = 9.0 Hz).

EXAMPLE 360

5

15

25

1-[4-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)phenyllethanone hydrochloride

[1093] The title compound was obtained from 4-acetylbenzonitrile by the method similar to that in EXAMPLE 356. Yield: 29%.

Melting point: 167-170 °C (ethyl acetate-ethanol).

¹H NMR (CDCl₃) δ 1.34 (6H, s), 1.71 (6H, s), 2.21 (2H, s), 2.69 (3H, s), 3.06 (2H, s), 4.03 (3H, s), 6.77 (1H, s), 7.80 (2H, d, J = 8.2 Hz), 8.14 (2H, d, J = 8.2 Hz).

EXAMPLE 361

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-(2-thienyl)furo[2.3-h]isoguinoline hydrochloride

[1094] Title compound was obtained from 2-thiophenecarbonitrile by the method similar to that in EXAMPLE 356. Yield: 30%

Melting point, 154-156 °C (ethyl acetate-ethanol).

 1 H NMR (CDCl₃) δ 1.41 (6H, s), 1.66 (6H, s), 2.59 (2H, s), 3.00 (2H, s), 4.02 (3H, s), 6.75 (1H, s), 7.29 (1H, br s), 7.82 (1H, d, J = 4.6 Hz), 8.05 (1H, br s).

EXAMPLE 362

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-[4-(trifluoromethyl)phenyllfuro[2,3-h]lsoquinoline hydrochloride

[1095] The title compound was obtained from 4-(trifluoromethyl)benzonitrile by the method similar to that in EXAM-PLF 356, Yield: 53%.

30 Melting point: 149-151 °C (ethyl acetate).

¹H NMR (CDCl₃) δ 1.35 (6H, s), 1.71 (6H, s), 2.19 (2H, s), 3.05 (2H, s), 4.03 (3H, s), 6.77 (1H, s), 7.84 (4H, s).

EXAMPLE 363

35 1-(2,3-Dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] isoquinoline hydrochloride

[1096] The title compound was obtained from 2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofurancarbonitrile by the method similar to that in EXAMPLE 356. Yield: 38%.

Melting point: 141-143 °C (diethyl ether-ethyl acetate).

 ^{1}H NMR (CDCl₃) δ 1.40 (6H, s), 1.56 (6H, s), 1.66 (6H, s), 2.50 (2H, s), 2.97 (2H, s), 3.08 (2H, s), 4.02 (3H, s), 4.06 (3H, s), 6.74 (1H, s), 7.12 (1H, br s), 7.46 (1H, br s).

EXAMPLE 364

45

Bis[3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-[4-(phenylthio)phenyl]furo[2.3-h]isoguinoline] trihydrochloride

[1097] The title compound was obtained from 4-(phenylthio)benzonitrile by the method similar to that in EXAMPLE 356. Yield: 48%.

50 Melting point: 130-132 °C (diethyl ether-ethyl acetate).

¹H NMR (CDC₃) δ 1.37 (6H, s), 1.67 (6H, s), 2.35 (2H, s), 3.00 (2H, s), 4.01 (3H, s), 6.74 (1H, s), 7.27-7.63 (9H, m).

EXAMPLE 365

55 3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[4-(1-methylethyl)phenyl]furo[2,3-h]isoquinoline hydrochloride

[1098] The title compound was obtained from 4-(1-methylethyl)benzonitrile by the method similar to that in EXAMPLE 356. Yield: 37%.

Melting point: 169-171 °C (ethyl acetate).

¹H NMF (CDCl₃) δ 1.31 (6H, d, J = 6.8 Hz), 1.35 (6H, s), 1.69 (6H, s), 2.29 (2H, s), 2.95-3.08 (1H, m), 3.01 (2H, s), 4.02 (3H, s), 6.75 (1H, s), 7.42 (2H, d, J = 8.4 Hz), 7.69 (2H, d, J = 8.4 Hz)

5 FXAMPLE 366

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-(5-methyl-2-thienyl)furo[2,3-h]isoquinoline hydrochloride

[1099] The title compound was obtained from 5-methyl-2-thiophenecarbonitrile by the method similar to that in EX-

Melting point: 177-179 °C (ethyl acetate).

 1 H NMR (CDCl₃) 5 1.39 (6H, s), 1.69 (6H, s), 2.30 (3H, s), 2.32 (2H, s), 3.02 (2H, s), 4.02 (3H, s), 6.73 (1H, s), 7.01 (1H, d, J = 4.8 Hz), 7.60 (1H, d, J = 4.8 Hz).

15 EXAMPLE 367

3.4.8.9-Tetrahydro-6-methoxy-3.3.8,8-tetramethyl-1-[4-(trifluoromethoxy)phenyl]furo[2,3-h]isoquinoline hydrochloride

[1100] The title compound was obtained from 4-(trifluoromethoxy)benzonitrile by the method similar to that in EX-AMPLE 356, Yield: 27%.

Melting point: 163-166 °C (ethyl acetate).

¹H NMR (CDCl₃) δ 1.36 (6H, s), 1.70 (6H, s), 2.25 (2H, s), 3.04 (2H, s), 4.03 (3H, s), 6.76 (1H, s), 7.41 (2H, d, J = 8.4 Hz), 7.81 (2H, d, J = 8.4 Hz).

25 EXAMPLE 368

2-Methoxy-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenol

[1101] A solution of 4-hydroxy-3-methoxybenzonitrile (0.885 g, 8.00 mmol) in toluene (5 mL) and acetic acid (5 mL) was treated dropwise with conc. sulfuric acid (0.6 mL) with cooling in ice. The ice bath was removed, and a solution of 2,3-dihydro-7-methoxy-2-2-dimethyl-5-(2-methyl-1-propenyl)benzofuran (1.16 g, 5.00 mmol) in toluene (5 mL) was added and stirred at 80 °C for 1 hour. The reaction mixture was combined with ice, and the aqueous layer was neutralized with conc. aqueous ammonia, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gol (hexane/ethyl acetate 2:1 followed by ethyl acetate) and recrystallized from sthyl acetate-hexane to obtain the filte compound (0.92 c, "ticit': 49%).

Melting point: 143-145 °C.

11 HMR (CDC)₂) 8 1.24 (6H, s), 1.33 (6H, s), 2.32 (2H, s), 2.55 (1H, br s), 2.68 (2H, s), 3.89 (3H, s), 3.92 (3H, s), 6.61 (1H, s), 8.86-9.2 (3H, m).

40 EXAMPLE 369

1-(3,5-Dichloro-4-pyridinyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

45 [1102] The title compound was obtained from 3,5-dichloro-4-pyridinecarbonitrile by the method similar to that in EXAMPLE 368, Yield; 23%.

Melting point: 147-148 °C (hexane).

1H NMR (CDCl₂) δ 1.34 (6H, s), 1.35 (6H, s), 2.19 (2H, s), 2.78 (2H, s), 3.92 (3H, s), 6.63 (1H, s), 8.56 (2H, s).

50 EXAMPLE 370

1-(2-Furanyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

[1103] The title compound was obtained from 2-furonitrile by the method similar to that in EXAMPLE 368. Yield: 25%.

Melting point: 125-127 °C (hexane).

 1 H NMR (CDCl₃) δ 1.23 (6H, s), 1.41 (6H, s), 2.51 (2H, s), 2.66 (2H, s), 3.92 (3H, s), 6.49 (1H, dd, J = 3.4, 1.8 Hz), 6.58 (1H, s), 6.66 (1H, d, J = 3.4 Hz), 7.48 (1H, d, J = 1.8 Hz).

EXAMPLE 371

2-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenol

5 [1104] The title compound was obtained from 2-cyanophenyl acetate by the method similar to that in EXAMPLE 368.

Melting point: 186-189 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.22 (6H, s), 1.42 (6H, s), 2.64 (2H, s), 2.74 (2H, s), 3.94 (3H, s), 6.64 (1H, s), 6.75-6.84 (1H, m), 6.98-7.03 (1H, m), 7.24-7.32 (2H, m).

EXAMPLE 372

10

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-(3-thienyl)furo[2,3-h]isoquinoline

15 [1105] The title compound was obtained from 3-thiophenecarbonitrile by the method similar to that in EXAMPLE 368. Yield: 45%.

Melting point: 119-122 °C (hexane).

 1 H NMR (CDCl₃) δ 1.23 (6H, s), 1.35 (6H, s), 2.36 (2H, s), 2.67 (2H, s), 3.92 (3H, s), 6.60 (1H, s), 7.11 (1H, dd, J = 5.0, 1.2 Hz), 7.30-7.39 (2H, m).

EXAMPLE 373

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-(3-methyl-2-thienyl)furo[2,3-h]isoquinoline

25 [1106] The title compound was obtained from 3-methyl-2-thiophenecarbonitrile by the method similar to that in EX-AMPLE 368. Yield: 23%.

Melting point: 195-197 °C (hexane-ethyl acetate).

¹H NMR (CDCl₃) 8 1.19 (6H, s), 1.40 (6H, s), 2.50 (3H, d, J = 0.8 Hz), 2.63 (2H, s), 2.67 (2H, s), 3.92 (3H, s), 6.59 (1H, s), 6.67-6.69 (1H, m), 6.84 (1H, d, J = 3.6 Hz).

EXAMPLE 374

20

45

55

1-(2-Chloro-3-pyridinyl)-3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoquinoline

35 [1107] The title compound was obtained from 2-chloro-3-pyridinecarbonitrile by the method similar to that in EXAM-PLE 368, Yield: 29%.

Melting point: 159-160 °C (ethyl acetate-hexane).

14: NMR (CDCl₃) 51.21 (9H, s), 1.30 (9H, s), 1.38 (9H, s), 1.39 (9H, s), 2.03 (1H, d, J = 15.8 Hz), 2.25 (1H, d, J = 15.8 Hz), 2.81 (1H, d, J = 15.8 Hz), 2.81 (1H, d, J = 15.8 Hz), 2.82 (3H, s), 6.62 (1H, s), 7.34 (1H, dd, J = 7.2, 4.8 Hz), 7.69 (1H, dd, J = 7.2, 1.8 Hz), 8.46 (1H, dd, J = 4.8, 1.8 Hz).

EXAMPLE 375

1-(2,6-Dichloro-4-methyl-3-pyridinyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

[1108] The title compound was obtained from 2,6-dichloro-4-methyl-3-pyridinecarbonitrile by the method similar to that in EXAMPLE 368. Yield: 25%.

Melting point: 97-101 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.32 (3H, s), 1.33 (3H, s), 1.34 (3H, s), 1.37 (3H, s), 2.02 (1H, d, J = 15.8 Hz), 2.19 (3H, s), 2.32 (1H, d, J = 15.8 Hz), 2.74 (1H, d, J = 15.8 Hz), 2.79 (1H, d, J = 15.8 Hz), 3.92 (3H, s), 6.62 (1H, s), 7.20 (1H, s).

EXAMPLE 376

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-pyrazinylfuro[2,3-h]isoquinoline

[1109] The title compound was obtained from pyrazinecarbonitrile by the method similar to that in EXAMPLE 368.

Melting point: 154-155 °C (ethyl acetate-hexane).

 1 H NMR (CDCl₃) δ 1.30 (6H, s), 1.34 (6H, s), 2.17 (2H, s), 2.74 (2H, s), 3.92 (3H, s), 6.62 (1H, s), 8.57 (1H, dd, J = 2.6, 1.6 Hz), 8.64 (1H, d, J = 2.6 Hz), 8.87 (1H, d, J = 1.6 Hz).

EXAMPLE 377

5

15

25

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-(4-nitrophenyl)furo[2,3-h]isoguinoline

[1110] The title compound was obtained from 4-nitrobenzonitrile by the method similar to that in EXAMPLE 368. Yield: 42%.

Melting point: 152-153 °C (ethyl acetate-hexane).

 1 H NMR (CDCl₃) δ 1.26 (6H, s), 1.33 (6H, s), 2.19 (2H, s), 2.71 (2H, s), 3.93 (3H, s), 6.64 (1H, s), 7.60 (2H, ddd, J = 8.6, 2.2, 1.8 Hz), 8.27 (2H, ddd, J = 8.6, 2.2, 1.8 Hz),

EXAMPLE 378

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-[4-(methylsulfinyl)phenyl]furo[2.3-h]isoguinoline

[1111] The title compound was obtained from 4-(methylsulfinyl)benzonitrile by the method similar to that in EXAMPLE 368 Yield: 26%

Melting point. 120-121 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.32 (6H, s), 2.19 (2H, s), 2.70 (2H, s), 2.72 (3H, s), 3.93 (3H, s), 6.63 (1H, s), 7.58 (2H, d, J = 8.4 Hz), 7.70 (2H, d, J = 8.4 Hz).

EXAMPLE 379

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-[4-(methylsulfonyl)phenyllfuro[2.3-h]lsoquinoline

[1112] The title compound was obtained from 4-(methylsulfonyl)benzonitrile by the method similar to that in EXAM-PLE 368. Yield: 52%.

30 Melting point: 189-190 °C (ethyl acetate-hexane).

 1 H NMR (CDCl₃) δ 1.26 (6H, s), 1.33 (6H, s), 2.18 (2H, s), 2.71 (2H, s), 3.04 (3H, s), 3.93 (3H, s), 6.63 (1H, s), 7.63 (2H, d, J = 8.4 Hz), 7.99 (2H, d, J = 8.4 Hz).

EXAMPLE 380

1-(3-Furanyl)-3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoquinoline

[1113] The title compound was obtained from 3-furonitrile by the method similar to that in EXAMPLE 368. Yield: 31%. Melting point: 130-131 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) § 1.21 (6H, s), 1.40 (6H, s), 2.65 (4H, s), 3.92 (3H, s), 6.46 (1H, dd, J = 1.8, 0.8 Hz), 6.59 (1H, s), 7.44 (1H, dd, J = 1.8, 1.4 Hz), 7.59 (1H, dd, J = 1.4, 0.8 Hz).

EXAMPLE 381

45 3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-(3,4,5-trimethoxyphenyl)furo[2,3-h]isoquinoline

[1114] The title compound was obtained from 3,4,5-trimethoxybenzonitrile by the method similar to that in EXAMPLE 368. Yield: 45%.

Melting point: 186-188 °C (ethyl acetate-hexane).

⁵⁰ ¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.34 (6H, s), 2.34 (2H, s), 2.69 (2H, s), 3.84 (3H, s), 3.86 (6H, s), 3.93 (3H, s), 6.61-6.62 (3H, m).

EXAMPLE 382

55 1-[2,2'-Bipyridin]-6-yl-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)-pyridinone

[1115] A solution of 1-[2,2'-bipyridin]-6-yl-1,6-dihydro-6-oxo-3-pyridinecarbonitrile (2.06 g, 7.51 mmol) in toluene (10

m.l.) was treated dropwise with cone, sulfuric acid (10 m.l.) with cooling in ice. A solution of 2,3-dihydro-7-methoxy-2,2-dimethyl-5-(2-methyl-1-propenyl)benzofuran (1.45 g, 6.26 mmol) in toluene (10 m.l.) was added dropwise and the mixture was stirred at 0 °C for 10 minutes. The reaction mixture was combined with ice, and the aqueous layer was neutralized with cone, aqueous ammonia and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, divide over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (1% methanol/ethyl acetate followed by 5%), recrystallized from ethyl acetate-hexane to obtain the title compound (0.43 g, Yield: 17%).

¹H NMiR (CDCl₃) δ 1.22 (6H, s), 1.42 (6H, s), 2.66 (2H, s), 2.89 (2H, s), 3.94 (3H, s), 6.62 (1H, s), 6.76 (1H, dd, J = 9.2, 0.6 Hz), 7.32 (1H, ddd, J = 7.2, 4.8, 1.0 Hz), 7.62 (1H, dd, J = 9.2, 2.6 Hz), 7.80 (1H, ddd, J = 8.0, 7.2, 1.0 Hz), 7.91 8.02 (2H, m), 8.09 (1H, dd, J = 2.6, 0.6 Hz), 8.28 (1H, dt, J = 8.0, 1.0 Hz), 8.44 (1H, dd, J = 6.6, 2.2 Hz), 8.68 (1H, ddd, J = 4.8, 1.8, 1.0 Hz).

EXAMPLE 383

5

15

25

20

25

1-(8-Methyl-2-quinolinyl)-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] isoquinolin-1-yl)-2(1H)-pyriolinona

[1116] The title compound was obtained from 1,6-dihydro-1-(8-methyl-2-quinolinyl)-6-oxo-3-pyridinecarbonitrile by the method similar to that in EXAMPLE 382. Yield: 29%.
Metting point: 182-183 °C (ethyl acetate-hexane).

1H NMR (CDCl₃) 5 1 22 (6H, s), 1.45 (6H, s), 2.66 (2H, s), 2.74 (3H, s), 2.88 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 6.74 (1H, dd, J = 9.2, 0.8 Hz), 7.47 (1H, dd, J = 7.6, 7.0 Hz), 7.565-7.62 (2H, m), 7.71 (1H, d, J = 7.6 Hz), 7.92 (1H, d, J = 8, Hz), 8.14 (1H, dd, J = 2.6, 9.8 Hz), 8.14 (1H, dd, J = 2.6, 9.8 Hz), 8.14 (1H, dd, J = 8.6 Hz), 8.

EXAMPLE 384

1-(4-Methyl-2-pyridinyl)-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)-2(1H)-pyridinone

[1117] A solution of 1.6-dihydro-1-(4-methyl-2-pyridinyl)-6-oxo-3-pyridinocarbonitrile (3.22 g. 15.2 mmol) in bluene (10 mL) was treated dropwise with conc. sulfuric acid (10 mL), with cooling in ice. A solution of 2.3-dihydro-7-methoxy-2.2-dimethyl-5-(2-methyl-1-propenyl)benzofuran (2.72 g. 11.7 mmol) in bluene (10 mL) was added dropwise, and the mixture was stirred at room temperature for 30 minutes. The reaction mixture was combined with ice, and the aqueous layer was neutralized with conc. aqueous ammonia, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dired over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a slice age (1% methanol/ethyl acetate followed by 5%) and further to a column chromatography on a basic silice age (1% methanol/ethyl acetate followed by 5%) and further to a column chromatography on a basic silice age (1% methanol/ethyl acetate followed by 5%) and further to a column chromatography on a basic silice age (1% methanol/ethyl acetate followed by 5%).

Melting point: 161-162 °C.

¹H MMR (CDC₃) 5 1.19 (6H, s), 1.45 (6H, s), 2.44 (3H, s), 2.64 (2H, s), 2.89 (2H, s), 3.92 (3H, s), 6.60 (1H, s), 6.68 (1H, d, J = 9.6 Hz), 7.13 (1H, ddd, J = 52, 1.6, 0.8 Hz), 7.55 (1H, dd, J = 9.6, 2.6 Hz), 7.70 (1H, d, J = 1.6 Hz), 8.00 (1H, d, J = 5.2 Hz).

45 EXAMPLE 385

4-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)pyridine 1-oxide

[1118] A solution of 4-cyanopyridine 1-oxide (1,26 g, 10.0 mmo) in folluene (5 mL) was treated dropwise with conc. sulfuric acid (6 mL) with cooling in ice. A solution of 2-3-diffyordor-7-methoxy-2-2-dimethyl-5-(2-methyl-1-propenyl)benzofuran (1,63 g, 7.00 mmol) in folluene (5 mL) was added dropwise, and the mixture was stirred at 0 °C for 30 minutes and then at 80 °C for 30 minutes. The reaction mixture was combined with ice, and the aqueous layer was neutralized with conc. aqueous ammonia, and extracted twice with ethyl acelate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetate) and recrystallized from ethyl acetate-hexane to obtain the title compound (1,33 g, Yield: 54%).

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.39 (6H, s), 2.41 (2H, s), 2.68 (2H, s), 3.94 (3H, s), 6.64 (1H, s), 7.38 (2H, d, J = 7.0

Hz), 8.25 (2H, d, J = 7.0 Hz).

EXAMPLE 386

5 4-Methyl-1-[4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2-pyridinyl]-2(1H)-quinolinone

[1119] 25% hydrogen bromide/accitic acid solution (4 mL) was added to a solution of 4-(3,4,8,8-tertarlydro-6-methnoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)pyridine 1-oxide (3,52 g, 10.0 mmol) and 2-chloro-4-methylquinoline (3,55 g, 20.0 mmol) in xylone (30 mL) and acetic acid (6 mL) and the mixture was heated under reflux for 4 hours. The reaction mixture was combined with ice water, and the aqueous layer was neutralized with conc. aqueous ammonia, and extracted wice with ethyl acetate. The combined organic layer was washed with water and brine, dired over socium sulfate. filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 2:1) and recrystallized from ethyl acetate to obtain the title compound (2,46 , Yield: 50%).

Melting point: 218-219 °C.

¹H NMR (CDC₃) δ 1.26 (6H, s), 1.40 (6H, s), 2.51 (3H, d, J = 1.0 Hz), 2.57 (2H, br s), 2.68 (2H, s), 3.91 (3H, s), 6.59 (1H, s), 6.61 (1H, d, J = 1.0 Hz), 6.64 (1H, dd, J = 8.4, 1.2 Hz), 7.17-7.26 (1H, m), 7.29-7.38 (2H, m), 7.61 (1H, dd, J = 5.2, 1.6 Hz), 7.70 (1H, dd, J = 8.0, 1.4 Hz), 8.82 (1H, dd, J = 5.2, 0.8 Hz).

EXAMPLE 387

15

20

1-[4-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-vI)-2-pyridinyll-2(1H)-pyridinone

28 [1120] 25% hydrogen bromide/acetic acid solution (6 mL) was added to a solution of 4-(3.4.8.9-tetrahydro-6-metinoxy-3.3.8.8-tetramethyfluro(2.3-h)lsoquinolin-1-yl)pyridine 1-oxide (6.00 g, 14.2 mmol) and 2-chloropyridine (16.1 g, 14.2 mmol) in xylene (46 mL) and acetic acid (9 mL) and the mixture was heated under reflux for 8 hours. The reaction mixture was combined with ince water, and the aqueous layer was neutralized with conc. aqueous ammonia, and extracted twice with entry acetate. The combined organic layer was washed with water and brine, died over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gol (ethyl acetate) followed by a column chromatography on a basic silica gol (hexane/ethyl acetate) to slow the title down the first part of the first part of

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.38 (6H, s), 2.54 (2H, br s), 2.69 (2H, s), 3.92 (3H, s), 6.24-6.32 (1H, m), 6.61 (1H, s), 6.61 (1H, dd), J = 9.2, 1.4, 0.8 Hz), 7.347-7.43 (2H, m), 7.78 (1H, ddd, J = 6.8, 2.2, 0.8 Hz), 7.93 (1H, dd, J = 1.4, 0.6 Hz), 8.81 (1H, dd, J = 5.0, 0.6 Hz).

EXAMPLE 388

Melting point: 223-224 °C.

4-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)-pyridinone

[1121] A solution of 4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyfluro(2,2-h)isequinolin-1-yi)pyridine 1-oxide (0.90 g, 2.55 mmo) in acetic anhydride (5 mL) was heated under reflux for 20 hours. The reaction mixture was dissolved in methanol (100 mL), conc. aqueous ammonia (20 mL) was added thereto and the mixture was stirred at room temperature for 30 minutes. The reaction solvent was concentrated and distilled off under reduced pressure, and the residue was combined with water. The organic material was extracted with chloroform, and the extract was washed with brine, dried ever sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (chloroform tollowed by 2% methanol/chloroform), and recrystallized from ethyl acetate-hexane to obtain the title compound (0.52 g, Yleld: 58%).

Melting point: 232-233 °C.

 ^1H NMR (CDCl_3) δ 1.24 (6H, s), 1.40 (6H, s), 2.63 (2H, s), 2.69 (2H, s), 3.92 (3H, s), 6.35 (1H, dd, J = 6.6, 1.4 Hz), 6.60 (1H, d, J = 1.4 Hz), 6.61 (1H, s), 7.43 (1H, d, J = 6.6 Hz), 11.42 (1H, br s).

55

45

EXAMPLE 389

5

20

25

20

25

40

50

55

1-(4-Pyridinylmethyl)-4-(3,4,8,9-tetra hydro-6-methox y-3,3,8,8-tetra methylfuro [2,3-h] is oquino lin-1-yl)-2(1H)-pyridinone

[1122] Sodium hydride (60% dispersion in ail) (0.360 g. 9.00 mmol) was added to a suspension of 4-(3.4, 8.9-tetrahydro-6-methoxy, 3.8, 8.4-ternamethyfurg(2.3-h)sequanion:1-yl) 2(1H)-pyridinone (1.06 g., 3.00 mmol) in N.N-dimethyformamide (15 mL) with cooling in ice and the mixture was stirred at room temperature for 30 minutes. 4-(chloromethyl) pyridine hydrochloride (0.738 g., 4.50 mmol) was added to the mixture and the mixture was stirred at room temperature turner for 1 hour. The reaction solvent was concentrated and distillide off under reduced pressure and the residue was combined with watter. The organic material was extracted with ethyl accetate, washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl accetate 1:1 followed by ethyl accetate), and recrystallized from ethyl accetate-hexane to obtain the tille compound (0.41 g., yleid. 31%).

Melting point: 171-172 °C.

 $^{1}\text{H NMR (CDCl}_3) \, \delta \, 1.24 \, (6\text{H},\, \text{s}), \, 1.40 \, (6\text{H},\, \text{s}), \, 2.65 \, (2\text{H},\, \text{s}), \, 2.67 \, (2\text{H},\, \text{s}), \, 3.92 \, (3\text{H},\, \text{s}), \, 5.18 \, (2\text{H},\, \text{br}\, \text{s}), \, 6.28 \, (1\text{H},\, \text{dd},\, \text{J}=7.0 \, \text{Hz}), \, 7.18 \, (2\text{H},\, \text{d},\, \text{J}=6.0 \, \text{Hz}), \, 7.32 \, (1\text{H},\, \text{d},\, \text{J}=7.0 \, \text{Hz}), \, 8.58 \, (2\text{H},\, \text{d},\, \text{J}=6.0 \, \text{Hz}).$

EXAMPLE 390

1-(2-Methoxyethyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)-pyridinone

[1123] The title compound was obtained from 2-bromoethyl methyl ether by the method similar to that in EXAMPLE 389, Yield: 38%

Melting point: 85-87 °C (hexane-ethyl acetate).

 $^{1}\text{H NMR (CDCl}_{3}\text{)} \delta 1.23 \text{ (6H, s), } 1.39 \text{ (6H, s), } 2.63 \text{ (2H, s), } 2.67 \text{ (2H, s), } 3.31 \text{ (3H, s), } 3.66 \text{ (2H, t, J} = 5.0 \text{ Hz), } 3.92 \text{ (3H, s), } 4.15 \text{ (2H, br s), } 6.18 \text{ (1H, dd, J} = 7.0, 1.8 \text{ Hz), } 6.58 \text{ (1H, d, J} = 1.8 \text{ Hz), } 6.60 \text{ (1H, s), } 7.39 \text{ (1H, d, J} = 7.0 \text{ Hz).}$

EXAMPLE 391

1-(2-Pyridinylmethyl)-4-(3,4,8,9-tetra hydro-6-methox y-3,3,8,8-tetra methylfuro [2,3-h] is oquino lin-1-yl)-2(1 H)-pyridinone

[1124] The title compound was obtained from 2-(chloromethyl)pyridine hydrochloride by the method similar to that in EXAMPLE 389, Yield: 57%.

Melting point: 165-166 °C (ethyl acetate-hexane).

¹H MMR (CDC₂) δ 1.22 (6H, s), 1.38 (6H, s), 2.63 (2H, s), 2.66 (2H, s), 3.91 (3H, s), 5.26 (2H, br s), 6.23 (1H, dd, J = 7.0, 1.8 Hz), 6.56 (1H, d, J = 7.6 Hz), 7.66 (1H

EXAMPLE 392

2-Oxo-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridineacetamide

45 [1125] The title compound was obtained as a main product from 2-chloroacetamide by the method similar to that in EXAMPLE 389, Yield: 56%.

Melting point: 251-252 °C (ethyl acetate-methanol).

¹H NMR (CDCl₃) δ 1.13 (6H, s), 1.29 (6H, s), 2.61 (4H, s), 3.81 (3H, s), 4.55 (2H, s), 6.14 (1H, dd, J = 7.0, 1.8 Hz), 6.22 (1H, d, J = 1.8 Hz), 6.80 (1H, s), 7.20 (1H, br s), 7.61 (1H, d, J = 7.0 Hz), 7.65 (1H, br s).

EXAMPLE 393

N-(2-Amino-2-oxoethyl)-2-oxo-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquino iin-1-yl)-1(2H)-pyridine acetamide

[1126] Similarly to EXAMPLE 392, the title compound was obtained as a by-product. Yield: 10%. Melting point: 166-168 °C (ethyl acetate).

¹H NMR (CDCl₂) δ 1.13 (6H, s), 1.29 (6H, s), 2.61 (4H, s), 3.68 (2H, d, J = 5.6 Hz), 3.81 (3H, s), 4.63 (2H, s), 6.19

(1H, dd, J = 6.8, 1.8 Hz), 6.25 (1H, d, J = 1.8 Hz), 6.80 (1H, s), 7.14 (1H, br s), 7.30 (1H, br s), 7.66 (1H, d, J = 6.8 Hz), 8.47 (1H, t, J = 5.6 Hz).

EXAMPLE 394

5

15

25

20

1-(3-Pyridinylmethyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)-pyridinone

[1127] The title compound was obtained from 3-(chloromethyl)pyridine hydrochloride by the method similar to that in EXAMPLE 389, Yield: 56%

Melting point: 126-128 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) 5 1.22 (6H, s), 1.39 (6H, s), 2.63 (2H, s), 2.66 (2H, s), 3.92 (3H, s), 5.19 (2H, br s), 6.25 (1H, dd, J = 6.8, 1.8 Hz), 6.60 (1H, s), 6.62 (1H, d, J = 1.8 Hz), 7.28 (1H, dd, J = 8.0 Hz), 7.35 (1H, d, J = 6.8 Hz), 7.72 (1H, d, J = 8.0 Hz), 8.57 (1H, dd, J = 4.8, 1.8 Hz), 8.65 (1H, d, J = 1.6 Hz).

EXAMPLE 395

1-Methyl-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)-pyridinone

[1128] The title compound was obtained from iodomethane by the method similar to that in EXAMPLE 389. Yield: 62%.

Melting point: 180-181 °C.

¹H NMR (CDCl₃) δ 1.22 (6H, s), 1.40 (6H, s), 2.64 (2H, s), 2.66 (2H, s), 3.58 (3H, s), 3.92 (3H, s), 6.23 (1H, dd, J = 7.0, 1.8 Hz), 6.58 (1H, d, J = 1.8 Hz), 6.60 (1H, s), 7.33 (1H, d, J = 7.0 Hz).

EXAMPLE 396

1-(2-Quino liny | methyl)-4-(3,4,8,9-tetra hydro-6-methoxy-3,3,8,8-tetra methyl furo [2,3-h] is oquino lin-1-yl)-2(1H)-pyridinone

[1129] The title compound was obtained from 2-(chloromethyl)quinoline hydrochloride by the method similar to that in EXAMPLE 389. Yield: 55%.

Melting point: 189-190 °C (ethyl acetate-hexane).

1H MMR (CDCl₂) 5 1.22 (eH, s), 1.37 (eH, s), 2.65 (4H, s), 3.91 (9H, s), 5.47 (2H, br s), 6.24 (1H, dd, J = 6.8, 1.8 Hz),

39 6.59 (H, s), 6.63 (H, d, J = 1.8 Hz), 7.51 (H, d, J = 8.4 Hz), 7.457 (H, d), 7.60 (H, d, J = 6.8 Hz), 7.68-7.77 (H, d, J = 8.4 Hz), 7.457 (H, d, J = 8.4 Hz), 7.457 (H, d, J = 8.4 Hz), 7.657 (Hz), 7.657 (Hz),

EXAMPLE 397

4º 2-[2-(2-Oxo-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridinyl]-1H-isoindole-1,3(2H)-dione

[1130] The title compound was obtained from N-(2-bromoethyl)phthalimide by the method similar to that in EXAMPLE 389. Yield: 14%.

45 Melting point: 226-228 °C (ethyl acetate-methanol).

 $^{1}\text{H NMR (CDCl}_3) \ \delta \ 1.19 \ (6\text{H}, s), \ 1.50 \ (6\text{H}, s), \ 2.65 \ (2\text{H}, s), \ 2.71 \ (2\text{H}, s), \ 3.92 \ (3\text{H}, s), \ 4.13 \ (2\text{H}, br s), \ 4.26 \ (2\text{H}, br s), \ 6.15 \ (1\text{H}, dd, J = 7.0, 1.8 \ Hz), \ 6.51 \ (1\text{H}, d, J = 1.8 \ Hz), \ 6.58 \ (1\text{H}, s), \ 7.14 \ (1\text{H}, d, J = 7.0 \ Hz), \ 7.72-7.84 \ (4\text{H}, m).$

EXAMPLE 398

50

1-[2-(Dimethylamino)ethyl]-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)-2(1H)-pyridinone

[1131] The title compound was obtained from 2-(dimethylamino)ethyl chloride hydrochloride by the method similar to that in EXAMPLE 389. Yield: 9%.

Melting point: 111-113 °C (ethyl acetate-hexane).

 $^{1}\text{H NMR (CDCl}_{3})\,\delta\,1.23\,(6\text{H},\,s),\,1.38\,(6\text{H},\,s),\,2.28\,(6\text{H},\,s),\,2.62\,(2\text{H},\,t,\,J=6.6\,\text{Hz}),\,2.63\,(2\text{H},\,s),\,2.67\,(2\text{H},\,s),\,3.92\,(3\text{H},\,s),\,4.05\,(2\text{H},\,t,\,J=6.6\,\text{Hz}),\,6.19\,(1\text{H},\,d,\,J=7.0,\,1.8\,\text{Hz}),\,6.56\,(1\text{H},\,d,\,J=1.8\,\text{Hz}),\,6.60\,(1\text{H},\,s),\,7.35\,(1\text{H},\,d,\,J=7.0\,\text{Hz}).$

EXAMPLE 399

1-(Phenylmethyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)-pyridinone

5 [1132] The title compound was obtained from benzyl bromide by the method similar to that in EXAMPLE 389. Yield: 68%

Melting point: 170-172 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.22 (6H, s), 1.38 (6H, s), 2.63 (2H, s), 2.66 (2H, s), 3.91 (3H, s), 5.18 (2H, br s), 6.19 (1H, dd, J = 7.0, 1.8 Hz), 6.59 (1H, s), 6.62 (1H, d, J = 1.8 Hz), 7.39-7.33 (6H, m).

EXAMPLE 400

10

15

30

40

45

4-[[2-Oxo-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1 (2H)-pyridinyl]methyl] benzoic acid methyl ester

[1133] The title compound was obtained from 4-(bromomethyl)benzoic acid methyl ester by the method similar to that in EXAMPLE 389, Yield: 73%.

Melting point: 193-194 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.39 (6H, s), 2.64 (2H, s), 2.67 (2H, s), 3.92 (6H, s), 5.23 (2H, br s), 6.24 (1H, dd, J = 7.0, 1.8 Hz), 6.60 (1H, s), 6.63 (1H, d, J = 1.8 Hz), 7.32 (1H, d, J = 7.0 Hz), 7.36 (2H, d, J = 8.4 Hz), 8.01 (2H, d, J = 8.4 Hz).

EXAMPLE 401

N-(2-Hydroxyethyl)-4-[[2-oxo-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridinyl]methyl]benzamide

[1134] A solution of 4:[2-oxo-4-(3.4, 8)-tetrahydro-6-methoxy-3,3,8,8-tetramethyflur(2,3-h)lsoquinolin-1-yl)-1(2H)pyridinyl)methyl)benzoic acid methyl ester (1.32 g, 2.64 mmol) and 2-aminoethanol (2 mL, 33.1 mmol) methyl ester (1.32 g, 2.64 mmol) and 2-aminoethanol (2 mL, 33.1 mmol) with beated under reflux for 7 hours. The reaction mixture was combined with ice water and extracted twice with chloroform. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetate/methanol 19-1 followed by 9:1), and recrystallized from ethyl acetate-methanol to obtain the title compound (0.81 g, Yield: 58%). Methion point: 220-222 °C.

35 ¹H MMR (CDCl₃) 5 1.22 (6H, s), 1.40 (6H, s), 2.64 (2H, s), 2.66 (2H, s), 3.48-3.59 (3H, m), 3.76 (2H, t, J = 5.0 Hz), 3.92 (3H, s), 5.18 (2H, br.s), 6.26 (1H, dd, J = 7.0, 1.8 Hz), 6.60 (1H, s), 6.63 (1H, d, J = 1.8 Hz), 7.07 (1H, br.t, J = 5.5 Hz), 7.30 (2H, d, J = 8.4 Hz), 7.35 (1H, d, J = 7.0 Hz), 7.74 (2H, d, J = 8.4 Hz).

EXAMPLE 402

$$\label{lem:condition} \begin{split} 4-[[2-Oxo-4-(3,4,8,9+tetrahydro-6-methoxy-3,3,8,8+tetramethylfuro[2,3-h]isoquinolin-1-yl)-1 (2H)-pyridinyl]methyl] \\ -N-(4-pyridinyl)benzamide \end{split}$$

[1135] 4-[[2-Oxo-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyfluro[2,3-h]isoquinolin-1-yi)-1(2H)-pyridinyi] methylipenzoic acid methyl ester (2.78 g, 5.55 mmol) was dissolved in 1 M aqueous solution of sodium hydroxide (30 mL) and the mixture was heated under refluct for 30 minutes. The reaction mixture was cooled to room temperature, and 2 M hydrochloric acid (30 mL) was added theroto. The solvent was concentrated and distilled off under reduced pressure, and diluted with ethanol. The resultant insolubles were filtered off, and ethanel was concentrated and distilled off under the reduced pressure. This procedure was repeated twice to obtain 4-[[2-oxo-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyfluro[2,3-h]isoquinolin-1-yi)-1(2H)-pyridinyl]methyllpenzoic acid hydrochloride (2.90 g, quantitative). 1-Ethyl-3-G-dimethylminopropylylaemoloridimide hydrochloride (4.98 g, 2.52 mmol) and 1-hydroxy-1H-benzoit acid hydrochloride (1.90 g, 2.25 mmol). 4-minopyridine (2.95 g, 2.75 mmol) and 1-hydroxy-1H-benzoitrazole monohydrate (0.701 g, 4.58 mmol) in N.N-dimethylformamide (10 mL) with cooling in ice, and stirred at the same temperature for 1 hour and then at room temperature for 30 hours. The reaction solvent was concentrated and distilled of flunder reduced pressure, and to the residue an aqueous solution of sodium hydroxide was poured. The organic material was extracted with ethyl acetale, and the extract was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was sublected to a column chromatorashy on a basic

silica gel (1% methanol/ethyl acetate followed by 2%) and recrystallized from ethyl acetate-hexane to obtain the title compound (0.15 g, Yield: 12%).

Melting point: 144-146 °C.

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.39 (6H, s), 2.63 (2H, s), 2.67 (2H, s), 3.92 (3H, s), 5.20 (2H, br s), 6.29 (1H, dd, J = 6.8, 1.8 Hz), 6.51 (2H, s), 7.32 (2H, d, J = 6.8 Hz), 7.70 (2H, dd, J = 4.8, 1.8 Hz), 7.84 (2H, dJ = 6.8 Hz), 7.70 (2H, dd, J = 4.8, 1.8 Hz), 7.84 (2H, dJ = 6.8 Hz), 7.70 (2H, dd, J = 4.8, 1.8 Hz), 9.06 (1H, br s).

EXAMPLE 403

2-Oxo-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridineacetic acid 1.1-dimethylethyl ester

[1136] The title compound was obtained from tert-butyl bromoacetate by the method similar to that in EXAMPLE 389, Yield: 80%

15 Melting point: 166-168 °C (diethyl ether-hexane).

 ^{1}H NMR (CDCl₃) δ 1.23 (6H, s), 1.40 (6H, s), 1.49 (9H, s), 2.67 (2H, s), 2.68 (2H, s), 3.92 (3H, s), 4.57 (2H, s), 6.25 (1H, dd, J = 7.0, 1.8 Hz), 6.59 (1H, d, J = 1.8 Hz), 6.59 (1H, s), 7.25 (1H, d, J = 7.0 Hz).

EXAMPLE 404

20

25

2-Oxo-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridineacetic acid hydrochloride

[1137] 2-Oxo-4/3 4,8 9-tetrahydro-6-methoxy-3,8,8-tetramethyfuro[2,3-h]soquinolin-1-yl-1(2H)-pyridineacetic acid 1,1-dimethylethyl ester (10.1 g, 21.6 mmol) was dissolved in 8 M hydrochloric acid (25 mL) and the mixture was heated under reflux for 1 hour. The reaction solution was cooled to room temperature, and the reaction solvent was concentrated and distilled off under reduced pressure to obtain the title compound (9.60 g, 99%). Amorphous

¹H NMR (CDCl₃) δ 1.41 (6H, s), 1.53 (6H, s), 2.68 (2H, s), 2.98 (2H, s), 3.98 (3H, s), 4.71 (2H, br s), 6.24 (1H, br s), 6.35 (1H, d, J = 7.0 Hz), 6.70 (2H, s), 7.72 (1H, d, J = 7.0 Hz).

EXAMPLE 405

2-Oxo-N-(3-pyridinyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridineacetamide

[1138] 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.566 g. 2.95 mmol) was added to a solution of 2-xov-4/3, 8.9-letrahydro-6-methoxy-3, 8.8-letramyllyru(2,3-h)sequinoin-1-yl)-(2h)-pyridineacetic acid hydrochloride (1.20 g. 2.68 mmol), 3-aminopyridine (0.303 g. 3.22 mmol) and 1-hydroxy-11-benzotriazole monohydrate (0.821 g. 5.36 mmol) in N.N-dimethylformamide (10 ml.) with cooling in ice, and the mixture was stirred at the same temperature for 1 hour and then at room temperature for 3 hours. The reaction solvent was concentrated and distilled off under reduced pressure, and to the residue an aqueous solution of sodium hydroxide was poured. The organic material was extracted with ethyl acetate, and the extract was washed with brine, dried over sodium sulfate, fillered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (5% methanolity) sociated in a coverabilized from ethyl acetate-methanol to obtain the title compound (0.51 q. gel (5% methanolity) sociation and concentrated under reduced pressure.

Yield: 39%). Melting point: 251-253 °C.

¹H NMR (CDCl₃) 5 1.23 (6H, s), 1.40 (6H, s), 2.63 (2H, s), 2.68 (2H, s), 3.93 (3H, s), 4.80 (2H, br s), 6.42 (1H, dd, J = 7.0, 1.8 Hz), 6.62 (1H, s), 6.75 (1H, d, J = 1.8 Hz), 7.20 (1H, dd, J = 8.4, 4.6 Hz), 7.52 (1H, d, J = 7.0 Hz), 7.94 (1H, ddd, J = 8.4, 1.8, 1.4 Hz), 8.31 (1H, dd, J = 4.6, 1.4 Hz), 8.64 (1H, d, J = 1.8 Hz), 9.82 (1H, br s).

EXAMPLE 406

2-Oxo-N-(5-quinolinyl)-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-55 pyridineacetamide

[1139] The title compound was obtained from 5-aminoquinoline by the method similar to that in EXAMPLE 405. Yield: 10%.

Melting point: 136-138 °C (ethyl acetate-hexane).

 $\begin{array}{l} 1 \text{H NMR (CDC}_{3}) \, \delta \, 1.22 \, (\text{eH, s.}), \, 1.31 \, (\text{sH, s.}), \, 2.59 \, (\text{2H, s.}), \, 2.66 \, (\text{2H, s.}), \, 3.92 \, (\text{3H, s.}), \, 4.89 \, (\text{2H, br s.}), \, 6.48 \, (\text{1H, dd.}), \\ 6.8, \, 1.8 \, \text{Hz}), \, 6.81 \, (\text{1H, s.}), \, 6.80 \, (\text{1H, d.}), \, 4.12 \, \text{Hz}), \, 7.47 \, (\text{1H, dd.}), \, 4.8 \, \text{Hz}), \, 7.50 \, (\text{1H, d.}), \, 7.50 \, (\text{1H, d.}), \\ 1.8.4 \, \text{Hz}), \, 7.93 \, (\text{1H, d.}), \, 3.21 \, (\text{1H, d.}), \, 8.21 \, (\text{1H, d.}), \, 3.21 \, (\text{1H, d.})$

EXAMPLE 407

5

10

15

25

25

45

50

55

1-(2-Quinolinyl)-5-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-yl)-2(1H)-pyridinone

[1140] 25% Hydrogen bromidofacetic acid solution (1 mL) was added to a solution of 1-(6-chloro-3-pyridinyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyfluro[2,3-h]sequinoline (0.78 g, 2.10 mmol) and quinoline 1-oxide monohydrate (3.05 g, 21.0 mmol) in toluene (6 mL) and acetic acid (6 mL) and the mixture was heated under reflux for 20 hours. The reaction mixture was combined with ice water, and the aqueous layer was neutralized with enco. aqueous amnonia, and extracted twice with ethyl acetate. The combined organic layer was swashed with water and brine, dried over sodfum sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 2:1) and recrystallized from ethyl acetata to obtain the title compound (0.41 g, Yfeld: 41%).

 $\label{eq:hammar} \begin{array}{l} \text{H NMR (CDCl_3) 8 1.21 (6H, s), 1.52 (6H, s), 2.65 (2H, s), 2.98 (2H, s), 3.94 (3H, s), 6.82 (1H, s), 5.74 (1H, d, J = 9.2 + 12), 7.557-63 (1H, m), 7.84 (1H, dd, J = 8.2, 2.6 + 12), 7.657-77 (1H, m), 7.88 (1H, dd, J = 8.0, 1.4 + 12), 8.72 (1H, d, J = 8.8 Hz), 8.04 (1H, dd, J = 8.0, 1.4 + 12), 8.12 (1H, d, J = 2.4 Hz), 8.26 (1H, d, J = 8.8 Hz), 8.74 (1H, d, J = 8.4 Hz), 8.74 (1H, d, J = 8.4 Hz), 8.24 (1H,$

FXAMPLE 408

1-(1-isoquinolinyl)-5-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-yl)-2(1H)-pyridinone

[1141] The title compound was obtained from isoquinoline 2-oxide by the method similar to that in EXAMPLE 407. Yield: 40%. Melting point: 147-149 °C (ethyl acetate-hexane).

¹H NMR (CDCl₂) δ 1.16 (3H, s), 1.23 (3H, s), 1.41 (3H, s), 1.55 (3H, s), 2.63 (2H, s), 2.75 (1H, d, J = 16.0 Hz), 3.22 (1H, d, J = 16.0 Hz), 3.90 (3H, s), 6.58 (1H, s), 6.78 (1H, d, J = 9.6 Hz), 7.62-7.80 (6H, m), 7.92 (1H, d, J = 8.4 Hz), 4.61 (1H, d, J = 5.8 Hz).

EXAMPLE 409

1-[4-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-hlisoguinolin-1-yl)-2-pyridinyll-2(1H)-guinolinone

[1142] A solution of 4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8-tetramethyfluro(2,3-h)lgoquinolin-1-y/lbyridine 1-oxide (0,95,g,2,7 mmol), 2-chloroquinoline (1,8,g,11 mmol), 25-bh (varlogen bromide/sociacia cial solution (0,7 mL) and accide ciacid (6,0 mL) in toluene (8,8 mL), was heated under reflux for 1 hour. The reaction solution was cooled to room temperature, and the reaction mixture was poured into water. After the mixture was made weakly alkaline with conc. aqueous ammonia, the organic material was extracted with ethyl acetate. The extract was washed with brine and dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromotography on a basic silica gel (ethyl acetate/hexane 2.1 followed by 1:1) to obtain crude crystals refreshed to the control of the compound (0.72 g, Yield: 56%). Meltin a opin: 1:90-191 °C.

 $^{1} \text{H MMR (DMSO-d_g)} \ \, 3.1.8 \ \, (6\text{H, s}), 1.24 \ \, (6\text{H, s}), 2.51 \ \, (2\text{H, s}), 2.67 \ \, (2\text{H, s}), 3.80 \ \, (3\text{H, s}), 6.48 \ \, (1\text{H, d}, J=8.8 \ \, \text{Hz}), 6.68 \ \, (1\text{H, d}, J=8.8 \ \, \text{Hz}), 7.40 \ \, (2\text{H, m}), 7.64 \ \, (1\text{H, dd}, J=4.9, 1.6 \ \, \text{Hz}), 7.79 \ \, (1\text{H, dd}, J=4.9, 1.6 \ \, \text{Hz}), 7.79 \ \, (1\text{H, dd}, J=4.9 \ \, \text{Hz}), 8.05 \ \, (1\text{H, dd}, J=9.6 \ \, \text{Hz}), 8.05 \ \, (1\text{H, dd}, J=9.6 \ \, \text{Hz}), 8.05 \ \, (1\text{H, dd}, J=4.9 \ \, \text{Hz}), 8.05 \ \, (1\text{H, dd}, J=6.8$

EXAMPLE 410

1,6-Dihydro-6-coxo-1-[4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)-2-pyridinyl]-3-pyridinecarboxamide

[1143] The title compound was obtained from 6-chloronicotinamide by the method similar to that in EXAMPLE 409. Yield: 31%.

Amorphous.

 $^{1}\text{H NMR (CDCl}_3) \, \delta \, 1.26 \, (6\text{H}, s), \, 1.38 \, (6\text{H}, s), \, 2.05 \, (2\text{H}, s), \, 2.69 \, (2\text{H}, s), \, 3.93 \, (3\text{H}, s), \, 6.12 \, (2\text{H}, br), \, 6.59 \, (1\text{H}, d, J=9.6, L^2), \, 6.82 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=5.0 \, \text{Hz}), \, 7.78 \, (1\text{H}, d, J=9.6, 2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 8.49 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.42 \, (1\text{H}, d, J=2.6 \, \text{Hz}), \, 7.90 \, (1\text{H}, s), \, 7.90 \, (1\text{H$

- 5 FXAMPLE 411
 - 1-(2-Chloro-4-pyridinyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline
 - [1144] A solution of 4-(3.4.8, 9-tetrahydro-6-methoxy-3,3.8.8-tetramethyfluro[2.3-h]isoquinolin-1-yi)pyridine 1-oxide (2.4.9, 6.8 mmol) in phosphorus oxychloride (20 mL, 210 mmol) was heated under reflux for 30 minutes. The reaction solution was cooled to room temperature, and then poured into ice water. After the mixture was made alkaline with an acucous solution of sodium hydroxide, the organic material was extracted with othyl acetate. The extract was washed with brine and dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a basic silica gel (hexane/ethyl acetate 5:1 followed by 3:1) to obtain crude crystals. The crude crystals were recrystallized from ethyl acetate-hexane to obtain, as a main product, the title compound (0.84 or, Yaleid: 33%).
 - Melting point: 139-140°C.

 1H NMR (CDCl₃) 5 1.26 (6H, s), 1.37 (6H, s), 2.30 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 6.64 (1H, s), 7.27 (1H, dd, J = 5.2, 0.8 Hz), 7.43 (1H, d.) = 0.8 Hz), 8.44 (1H, d.) = 5.2 Hz).

EXAMPLE 412

20

- 1-(3-Chloro-4-pyridinyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoguinoline
- 25 [1145] Similarly to EXAMPLE 411, the title compound was obtained as a by-product. Yield: 8%. Melting point: 126-128 °C (hexane).
 - 1 H NMR (CDCl₃) 1 1 1.23 (3H, s), 1.30 (3H, s), 1.35 (3H, s), 1.38 (3H, s), 2.05 (2H, s), 2.69 (1H, d, J = 15.7 Hz), 2.80 (1H, d, J = 15.7 Hz), 3.92 (3H, s), 6.62 (1H, s), 7.31 (1H, d, J = 4.8 Hz), 8.58 (1H, d, J = 4.8 Hz), 8.63 (1H, s).
- 30 EXAMPLE 413
 - 2-[2-Oxo-4-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-1(2H)-pyridinyl]-4-pyridinecarboxamide
- 3º [1146] A solution of 1-(2-chloro-4-pyridinyl)-3.4, 8,9-tetrahydro-6-methoxy-3.3,8,4-tetramethyfluro(2.3-h)jsoquinoline (1.0 g, 2.7 mmol), 4-pyridinoearboxamide 1-oxide (2.9 g, 21 mmol), 25% hydrogen bromide/acetic acid solution (1.0 mL) and acetic acid (5.6 mL) in xylene (10 mL) was heated under reflux for 9 hours. The reaction solution was cooled to room temperature, and the reaction mixture was poured into water. After the mixture was made weakly alkaline with 8 M aqueous solution of sodium hydroxide, the organic material was extracted with ethyl acetate. The extract was 4º washed with brine and dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a basic silica gel (chloroform/methanol 50:1 followed by 20:1) to obtain orude crystals. The resultant roude crystals were recrystallized from ethyl acetate-disopropyl ether to obtain the title compound (0.22 g, Yield: 17%).
 Melting point: 174-176 cm.
- 45 H NMR (CDCl₃) 5 1.26 (6H, s), 1.43 (6H, s), 2.69 (2H, s), 2.76 (2H, s), 3.93 (3H, s), 6.12 (1H, br), 6.43 (1H, d, J = 7.3 Hz), 6.83 (1H, s), 6.86 (1H, s), 7.167.39 (1H, br), 7.78 (1H, d, J = 4.4 Hz), 8.01 (1H, d, J = 7.3 Hz), 8.33 (1H, s), 8.67 (1H, d, J = 4.4 Hz).

EXAMPLE 414

- 1-(2-Pyridinyl)-4-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)-pyridinone
- [1147] The title compound was obtained from pyridine 1-oxide by the method similar to that in EXAMPLE 413. Yield: 56%
- Amorphous.

50

 1 H NMR (CDCl₃) δ 1.25 (6H, s), 1.42 (6H, s), 2.69 (2H, s), 2.78 (2H, s), 3.93 (3H, s), 6.39 (1H, dd, J = 7.1, 1.8 Hz), 6.62-6.67 (2H, m), 7.30-7.37 (1H, m), 7.80-7.89 (1H, m), 7.96-8.00 (2H, m), 8.57-8.60 (1H, m).

EXAMPLE 415

1-(2-Quinolinyl)-4-(3.4.8.9-tetrahydro-6-methoxy-3,3.8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-2(1H)-pyridinone

5 [1148] The title compound was obtained from quinoline 1-oxide by the method similar to that in EXAMPLE 413. Yield: 24%

Melting point: 175-176 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) 61.26 (6H, s), 1.44 (6H, s), 2.70 (2H, s), 2.82 (2H, s), 3.94 (3H, s), 6.45 (1H, dd, J = 7.4, 1.8 Hz), 6.63 (1H, s), 6.70 (1H, d, J = 1.4 Hz), 7.51 (1H, d, J = 7.6, 1.2 Hz), 7.77 (1H, dd, J = 8.4, 1.4 Hz), 7.99 (1H, d, J = 8.4 Hz), 7.99 8.16 (3H, m), 8.27 (1H, d, J = 8.8 Hz).

EXAMPLE 416

15

25

20

40

3,4,8,9-Tetrahydro-6-methoxy-1-(4-methoxyphenyl)-3,3-dimethylfuro[2,3-h]isoquinoline

[1149] The title compound was obtained from 4-anisonitrile and 2,3-dihydro-7-methoxy-5-(2-methyl-1-propenyl)benzofuran by the method similar to that in EXAMPLE 1. Yield: 49%.

Melting point: 147-148 °C (ethyl acetate-hexane).

Melting point: 161-162 °C (chloroform-hexane).

¹H NMR (CDCl₃) δ 1.23 (6H, s), 2.46 (2H, t, J = 8.8 Hz), 2.68 (2H, s), 3.87 (3H, s), 3.93 (3H, s), 4.37 (2H, t, J = 8.8 Hz), 6.61 (1H, s), 6.91 (2H, d, J = 8.7 Hz), 7.34 (2H, d, J = 8.7 Hz).

EXAMPLE 417

3,4,8,9-Tetrahydro-6-methoxy-3,3,9,9-tetramethyl-1-phenylfuro[2,3-h]isoquinoline

[1150] The title compound was obtained from benzonitrile and 2,3-dihydro-7-methoxy-3,3-dimethyl-5-(2-methyl-1-propenyl)benzofuran by the method similar to that in EXAMPLE 1. Yield: 1.4%. Metting opin: 142-143 °C (hexane-diethyl ether).

1H NMR (CDCl₃) δ 0.78 (6H, s), 1.18 (6H, s), 2.61 (2H, s), 3.93 (3H, s), 4.03 (2H, s), 6.65 (1H, s), 7.32-7.44 (5H, m).

EXAMPLE 418

3.3-Diethyl-3.4.8.9-tetrahydro-6-methoxy-8.8-dimethyl-1-phenylfuro[2,3-h]isoquinoline hydrochloride

39 [1151] The title compound was obtained from benzonitrile and 5-(2-ethyl-1-butenyl)-2,3-dihydro-7-methoxy-2,2-dimethylbenzofuran by the method similar to that in EXAMPLE 306. Yield: 36%. Melting point: 178-179 °C (ethyl acetate).

¹H NMR (CDCl₃) δ 1.07 (6H, t, J = 7.8 Hz), 1.33 (6H, s), 1.94-2.18 (4H, m), 2.22 (2H, s), 3.07 (2H, s), 4.01 (3H, s), 6.76 (1H, s), 7.57-7.67 (5H, m).

EXAMPLE 419

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-furo[2,3-h]isoguinolinecarboxylic acid methyl ester

45 [1152] The title compound was obtained from methyl cyanoformate by the method similar to that in EXAMPLE 1. Yield: 16%.

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.49 (6H, s), 2.65 (2H, s), 2.94 (2H, s), 3.91 (3H, s), 3.93 (3H, s), 6.55 (1H, s).

50 EXAMPLE 420

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-furo[2,3-h]isoquinolinecarboxylic acid hydrochloride

[1153] 5 M aqueous solution of sodium hydroxide was added to a solution of 3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-teramethyl-1-furo(2,3-h)soquinoilnecarboxylic acid methyl ester (1,49 g, 4.69 mmol) in methanol (5 mL) and the mixture was stirred at 60 °C for 5 hours. The reaction solution was made acidic with 5 M hydrochloric acid, and concentrated under reduced pressure. The residue was combined with ethanol and the mixture was filtered, and the filtrate was concentrated under reduced pressure, and this procedure was repeated three times to bottain the title compound (1,50).

g, Yield: 94%).

Amorphous.

¹H NMR (DMSO-d_e) δ 1.35 (6H, s), 1.41 (6H, s), 3.02 (2H, s), 3.17 (2H, s), 3.91 (3H, s), 6.99 (1H, s),

EXAMPLE 421

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-N-[2-(4-pyridinyl)ethyl]-1-furo[2,3-h]isoquinolinecarboxamide

[1154] The title compound was obtained from 3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-furo[2,3-h]isoquinolinecarboxylic acid hydrochloride and 4-(2-aminoethyl)pyridine by the method similar to that in Example 159. Yield: 42%.

Melting point: 160-161 °C (diisopropyl ether-hexane).

¹H NMR (CDCl₂) δ 1.15 (6H, s), 1.47 (6H, s), 2.59 (2H, s), 2.93 (2H, t, J = 7.0 Hz), 3.02 (2H, s), 3.68 (2H, q, J = 7.0 Hz) Hz), 3.89 (3H, s), 6.52 (1H, s), 6.93-7.02 (1H, m), 7.22 (2H, d, J = 6.0 Hz), 8.55 (2H, d, J = 6.0 Hz),

EXAMPLE 422

15

25

40

50

3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethyl-N-phenyl-1-furo[2,3-h]isoguinolinecarboxamide

[1155] The title compound was obtained from 3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-furo[2,3-h]isoquinolinecarboxylic acid hydrochloride and aniline by the method similar to that in EXAMPLE 159, Yield: 60%. Melting point: 175-176 °C (ethyl acetate-hexane).

¹H NMR (CDCI₂) δ 1.22 (6H, s), 1.48 (6H, s), 2.63 (2H, s), 3.21 (2H, s), 3.91 (3H, s), 6.55 (1H, s), 7.14 (1H, t, J = 7.4) Hz), 7.38 (2H, d, J = 7.4 Hz), 7.68 (2H, d, J = 7.4 Hz), 8.84 (1H, s).

EXAMPLE 423

N-(1-Azabicyclo[2,2,2]oct-3-vl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-furo[2,3-h] isoquinolinecarboxamide

20

[1156] The title compound was obtained from 3.4,8,9-tetrahydro-6-methoxy-3,3,8.8-tetramethyl-1-furo[2,3-h]isoquinolinecarboxylic acid hydrochloride and 3-amino-1-azabicyclo[2,2,2]octane by the method similar to that in EXAMPLE 159. Yield: 60%.

Melting point: 139-142 °C (ethyl acetate-hexane).

¹H NMR (CDCI₂) δ 1.17 (3H, s), 1.19 (3H, s), 1.48 (6H, s), 1.62-1.86 (4H, m), 2.02-2.10 (1H, m), 2.58-2.66 (1H, m), 2.59 (2H, s), 2.80-2.98 (4H, m), 3.14 (2H, s), 3.35-3.49 (1H, m), 3.89 (3H, s), 3.97-4.08 (1H, m), 6.52 (1H, s), 6.96 (1H, d. J = 7.2 Hz).

EXAMPLE 424

3,4,8,9-Tetrahydro-6-methoxy-3,3-dimethyl-1-(2-thienyl)furo[2,3-h]isoquinoline

[1157] The title compound was obtained from 2,3-dihydro-7-methoxy-5-(2-methyl-1-propenyl)benzofuran and 2-thiophenecarbonitrile by the method similar to that in EXAMPLE 368. Yield: 23%. 45

Melting point: 122-125 °C (hexane).

¹H NMR (CDCl₂) δ 1.23 (6H, s), 2.67 (2H, s), 2.73 (2H, t, J = 8.6 Hz), 3.93 (3H, s), 4.43 (2H, t, J = 8.6 Hz), 6.60 (1H, s), 7.01-7.09 (2H, m), 7.35 (1H, dd, J = 5.0, 1.4 Hz).

EXAMPLE 425

3'.4'-Dihydro-6'-methoxy-3'.3'-dimethyl-1'-phenylspiro[cyclopentane-1.8'(9'H)-furo[2.3-h]isoquinoline]

[1158] A solution of benzonitrile (0.700 g. 6.50 mmol) in toluene (5 mL) and acetic acid (5 mL) was treated dropwise with conc. sulfuric acid (0.6 mL) with cooling in ice. The ice bath was removed, and a solution of 7-methoxy-5-(2-methyl-1-propenyl)spiro[benzofuran-2(3H),1'-cyclopentane] (1.29 g, 5.00 mmol) in toluene (5 mL) was added to the mixture and the mixture was stirred at 80 °C for 1 hour. The reaction mixture was combined with ice, and the aqueous layer was neutralized with conc. aqueous ammonia, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue

was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 10:1) and recrystallized from ethyl acetate-hexane to obtain the title compound (0.87 g, Yield: 48%).

Melinn point: 130-131 °C.

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.43-2.05 (8H, m), 2.32 (2H, s), 2.69 (2H, s), 3.91 (3H, s), 6.60 (1H, s), 7.38 (5H, s).

EXAMPLE 426

5

15

25

45

55

3',4'-Dihydro-6'-methoxy-3',3'-dimethyl-1'-(2-thienyl)spiro[cyclopentane-1,8'(9'H)-furo[2,3-h]isoquinoline]

[1159] The title compound was obtained from 2-thiophenecarbonitrile by the method similar to that in EXAMPLE 425, Yield: 28%.

Melting point: 142-143 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.22 (6H, s), 1.54-2.10 (8H, m), 2.65 (2H, s), 2.67 (2H, s), 3.92 (3H, s), 6.59 (1H, s), 7.03 (1H, dd, J = 5.0, 3.6 Hz), 7.07 (1H, dd, J = 3.6, 1.4 Hz), 7.35 (1H, dd, J = 5.0, 1.4 Hz).

EXAMPLE 427

4-[3'.4'-Dihydro-6'-methoxy-3',3'-dimethylspiro[cyclopentane-1,8'(9'H)-furo[2,3-h]isoquinoline]-1'-yl]pyridine 1-oxide

20 [1160] The title compound was obtained from 4-cyanopyridine 1-oxide by the method similar to that in EXAMPLE 425. Yield: 12%.

Melting point: 205-207 °C (ethyl acetate-hexane).

 ^{1}H NMR (CDCl₃) δ 1.23 (6H, s), 1.47-2.09 (8H, m), 2.56 (2H, s), 2.67 (2H, s), 3.92 (3H, s), 6.62 (1H, s), 7.39 (2H, d, J = 5.0 Hz), 8.24 (2H, d, J = 5.0 Hz).

EXAMPLE 428

8,8-Diethyl-3,4,8,9-tetrahydro-6-methoxy-3,3-dimethyl-1-phenylfuro[2,3-h]isoquinoline hydrochloride

30 [1161] A solution of benzonitirile (0.670 g, 6.50 mmol) in toluene (6 mL) was treated dropwise with conc. suffuric acid (0.6 mL) with cooling in ice. The ice bath was removed, and a solution of 2.2-diethyl-2,3-dihydro-7-methoxy-5-(2-methyl-1-propenyl)benzofuran (1.30 g, 5.00 mmol) in toluene (6 mL) was added to the mixture and the mixture was stirred at 80 °C for 1 hour. The reaction mixture was combined with ice, and the aqueous ammonia, and extracted twice with ethyl acetate. The combined organic layer was neutralized with conc. aqueous ammonia, and extracted twice with ethyl acetate. The combined organic layer was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 10:1) to obtain a free base of the title compound. This was combined with 3.35 M hydrogen chloride/ethanol solution (9.61 mL), and the mixture was concentrated under reduced pressure. The residue was crystallized from diethyl ether, and the crystals were recrystallized from the title compound. This was combined with 6.35 M hydrogen chloride/ethanol solution (9.61 mL), and the mixture was concentrated under reduced pressure. The residue was crystallized from diethyl ether, and the crystals were recrystallized from the properties of the compound (5.90 v. Yeld: 5.90 v. Yeld:

40 Melting point: 167-169 °C.

 1 H NMR (CDCl₃) 3 3 0.78 (6H, t, J = 7.4 Hz), 1.58 (2H, q, J = 7.4 Hz), 1.60 (2H, q, J = 7.4 Hz), 1.70 (6H, s), 2.20 (2H, s), 3.02 (2H, s), 4.02 (3H, s), 6.73 (1H, s), 7.28-7.72 (5H, m).

EXAMPLE 429

8.8-Diethyl-3.4.8.9-tetrahydro-6-methoxy-3.3-dimethyl-1-(2-thienyl)furo[2,3-h]isoguinoline hydrochloride

[1162] The title compound was obtained from 2-thiophenecarbonitrile by the method similar to that in EXAMPLE 428, Yield; 20%.

Melting point: 152-154 °C (ethyl acetate-diethyl ether).

 $^{1}\text{H NMR (CDCl}_{3}) \, \delta \, 0.84 \, (6\text{H}, \, \text{t}, \, \text{J} = 7.4 \, \text{Hz}), \, 1.60 \, 1.72 \, (4\text{H}, \, \text{m}), \, 1.66 \, (6\text{H}, \, \text{s}), \, 2.56 \, (2\text{H}, \, \text{s}), \, 2.98 \, (2\text{H}, \, \text{s}), \, 4.02 \, (3\text{H}, \, \text{s}), \, 6.71 \, (1\text{H}, \, \text{s}), \, 7.29 \, (1\text{H}, \, \text{dd}, \, \text{J} = 4.8, \, 3.8 \, \text{Hz}), \, 7.81 \, (1\text{H}, \, \text{dd}, \, \text{J} = 4.8, \, 1.2 \, \text{Hz}), \, 8.06 \, (1\text{H}, \, \text{dd}, \, \text{J} = 3.8, \, 1.2 \, \text{Hz}).$

EXAMPLE 430

4-(8,8-Diethyl-3,4,8,9-tetrahydro-6-methoxy-3,3-dimethylfuro[2,3-h]isoquinolin-1-yl)pyridine 1-oxide hydrochloride

[1163] The title compound was obtained from 4-cyanopyridine 1-oxide by the method similar to that in EXAMPLE

428. Yield: 4%.

Melting point: 184-186 °C (ethyl acetate).

¹H NMR (CDCl₃) δ 0.84 (6H, t, J = 7.4 Hz), 1.60-1.73 (4H, m), 1.67 (6H, s), 2.43 (2H, s), 3.03 (2H, s), 4.04 (3H, s), 6.75 (1H, s), 7.74 (2H, d, J = 6.8 Hz), 8.34 (2H, d, J = 6.8 Hz).

EXAMPLE 431

5

10

15

25

1-(6-Methyl-2-quinolinyl)-5-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]] soquinolin-1-yl)-2(1H)-pyridinone

[1164] A solution of N-[2-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-1.1-dimethylehyl-1,6-dihydro-1-(6-methyl-2-quinolinyl)-6-oxo-3-pyridimecarboxamide (0.70 g, 1.4 mmol) in phosphorus oxychioride (5.0 mL, 5.4 mmol) was heated under reflux for 4.5 hours. The reaction solution was cooled to room temperature, and the reaction mixture was poured into water. After the mixture was made weakly alkaline with 8 M aqueous solution of sodium hydroxide, and the organic material was extracted with eithyl acotate. The extract was washed with brine and dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The resultant residue was purified by a column chromatography on a basic sitilia ged (hexan-6-drivity) acotate 2.1 followed by 1.1 to obtain crude crystals. The resultant crude crystals were recrystallized from hexane-diisopropyl ether to obtain the title compound (0.13 g, 19let: 19%).

Melting point, 201-202 °C (hexane-diisopropyl ether).

¹H NMR (CDC₃) δ 1.21 (6H, s), 1.51 (6H, s), 2.56 (3H, s), 2.65 (2H, s), 2.98 (2H, s), 3.94 (3H, s), 6.62 (1H, s), 6.73 (1H, d, J = 9.4 Hz), 7.55 (1H, dd, J = 8.8, 1.3 Hz), 7.61 -7.67 (2H, m), 7.87 (1H, d, J = 8.8 Hz), 7.92 (1H, d, J = 8.6 Hz), 8.10 (1H, d, J = 2.6 Hz), 8.10 (1H, d, J = 8.6 Hz), 8.1

25 EXAMPLE 432

1-(6-Chloro-3-pyridinyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline

[1165] The title compound was obtained from 6-chloro-N-[2-(2,3-dihydro-7-methony-2,2-dimethyl-5-benzofuranyl)1,1-dimethyldthyl]-3-pyridinecarboxamide by the method similar to that in EXAMPLE 431. Yield: 45%.

1H NMR (CDCi) 5 1.25 (6H, s), 1.36 (6H, s), 2.28 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 6.83 (1H, s), 7.38 (1H, d, J = 7.8

Hz), 7.74 (1H, dd, J = 7.8, 2.2 Hz), 8.42 (1H, d, J = 2.0 Hz).

EXAMPLE 433

[5-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-1H-tetorazol-1-yl]methyl 2.2-dimethylpropanoate

[1166] 3-(1H-Totrazol-5-ylibenzonitrile (0.587 g. 3.4 mmol) was suspended in toluene (5 mL) and acotic acid (5 mL). While cooling in ice, cone, suffur acid (6 v mL). Yollowed by a solution of 1-(2.3-dirlydro-7-methoxy-2.2-dimethy-5-benzofuranyi)-2-methyl-1-propanol (0.751 g. 3.0 mmol) in toluene were added thereto and the mixture was stirred at 80 °C for 3 hours. The reaction mixture was combined with ice water, followed by an aqueous solution of sodium hydrogen carbonate to adjust at pH 4, and then extracted three times with tetrahydrotran. The extract was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was dissolved in NI-climethyflormamide (6 mL), potassium carbonate (1.11 g. 8.0 mmol) and chloromethyl pivatate (1.04 mL, 7.2 mmol) were added thereto and the mixture was stirred at room temperature for 18 hours. The reaction mixture was combined with ice, water and extracted twice with ethyl acetate. The extract was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gol, eluted with hexane/ethyl acetate (2.1) to collect the intended fraction, which was concentrated and recrystallized from diethyl ether/kazan (1.1) to obtain the title compound (0.122 g. yleid: 7.292 g. yleid: 7.292

Melting point: 134-136 °C

¹H NMR (CDCl₃) δ 1.22 (9H, s), 1.26 (6H, s), 1.29 (6H, s), 2.25 (2H, s), 2.72 (2H, s), 3.93 (3H, s), 6.52 (2H, s), 6.64 (1H, s), 7.5-8.3 (4H, m).

55

45

5

5-[3-(3.4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-1H-tetrazole-1-acetic acid sodium salt

[1167] 5-(3-Cyanophenyl)-1H-fatrazole-1-acetic acid methyl ester (0.730 g, 3.0 mmol) was dissolved in toluene (5 mL) and acetic acid (6 mL), and, while cooling in ice, conc. sulfuric acid (0.4 mL) followed by a solution of 1-(2.3-dihydro-7-methox)-2-2-dimethyl-5-benzofuraryl)-2-methyl-1-propanol (0.751 g, 3.0 mmol) in foluene were added thereto and the mixture was stirred at 80 °C for 4 hours. The reaction mixture was combined with lice water, and washed with diethyl other. The aqueous layer was combined with aqueous solution of sodium hydrogen carbonate to adjust at pt 1, and subjected to a column chromatography on a polystyrene gel[MCI GEL CHP20P (MITSUBISHI KASEI KOGYO)], eluted with entanolywater (3.7) to collect the intended fraction, which was concentrated to remove ethanol, and then freezedried to obtain the title compound (0.68 g, Yield: 47%).

¹⁵ ¹H NMR (DMSO-d₆) § 1.17 (6H, s), 1.19 (6H, s), 2.26 (2H, s), 2.67 (2H, s), 3.82 (3H, s), 4.97 (2H, s), 6.83 (1H, s), 7.4-8.2 (4H, m).

EXAMPLE 435

3,4,8,9-Tetrahydro-6-methoxy-8,8-dimethyl-1-phenylfuro[2,3-h]isoquinoline hydrochloride

[1168] Phosphorus oxychloride (3.4 mL, 36 mmol) was added to a suspension of N-[2-(2,9-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranylyethyl[benzamide (2.89 g., 9.00 mmol) in yoline (30 mL) and the mixture was heated under reflux for 5 hours, and then stirred at room temperature for 15 hours. The reaction mixture was cold with lex, combined with 5 M solution of sodium hydroxide (35 mL) and poured into ice water (100 mL). The aqueous layer was extracted whice with dielty either, and the combined organic layer was extracted twice with 2 M hydroxide; acid. The combined aqueous layer was neutralized with 5 M aqueous solution of sodium hydroxide, and extracted three times with diethyl ether. The combined organic layer was exhated with a brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/bhy) acetate 2:1 followed by 1:2) to obtain a free base of the title compound. This was dissolved in ethyl acetate (15 mL), combined with 4 M hydrogen chloride/ethyl acetate solution (3 mL), and the precipitated solid was recovered by filtration and washed with deithyl ether to obtain the title compound (2.10 g, Yield: 68%).

¹H NMR (CDCl₃) δ 1.36 (6H, s), 2.35 (2H, s), 3.08 (2H, t, J = 7.3 Hz), 3.96-4.08 (2H, m), 4.02 (3H, s), 6.82 (1H, s), 7.54-7.77 (5H, m), 14.50-14.80 (1H, br).

EXAMPLE 436

25

40

45

50

3.4.8.9-Tetrahydro-6-methoxy-3.8.8-trimethyl-1-phenylfuro[2.3-h]isoguinoline

[1169] The title compound was obtained from N-[2-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-1-methylethyl]benzamide by the method similar to that in EXAMPLE 431. Yield: 71%. Meting point: 138-134 °C (hexane-dusogropyl ether).

¹H NMR (CDCl₃) δ 1.29 (3H, s), 1.35 (3H, s), 1.47 (3H, d, J = 7.0 Hz), 2.17-2.25 (2H, m), 2.44-2.73 (2H, m), 3.47-3.66 (1H, m), 3.92 (3H, s), 6.65 (1H, s), 7.40 (5H, s).

EXAMPLE 437

3.4.8.9-Tetrahydro-6-methoxy-3.8.8-trimethyl-1-(4-pyridinyl)furo[2,3-h]isoguinoline

[1170] The title compound was obtained from N-[2-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyl)-1-methylethyl)-4-pyridineoarboxamide by the method similar to that in EXAMPLE 431. Yield: 24%. Melting opin: 135-136 °C floxane-diethyl ether).

¹H NMR (CDCl₃) δ 1.30 (3H, s), 1.37 (3H, s), 1.47 (3H, d, J = 6.8 Hz), 2.19-2.37 (2H, m), 2.45-2.75 (2H, m), 3.51-3.66 (1H, m), 3.93 (3H, s), 6.67 (1H, s), 7.37 (2H, d, J = 5.8 Hz). 8.68 (2H, d, J = 5.8 Hz).

EXAMPLE 438

3,4,8,9-Tetrahydro-6-methoxy-8,8-dimethyl-1-phenyl-3-furo[2,3-h]isoquinolinecarboxylic acid methyl ester

- 5 [1171] A mixture of α-(benzoylamino)-2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranpropanoic acid methyl esser (2.81 g, 7.33 mmol) and phosphorus oxychloride (15 mL) was stirred at 100 °C for 2.5 hours. The reaction mixture was concentrated under reduced pressure, and the residue was combined with ice and ethyl acetate. The resultant mixture was neutralized with conc. aqueous ammonia and the organic layer was esperanted, and the aqueous layer was extracted with ethyl acetate. The combined organic layer was washed twice with water, and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 2.1,
 - reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 2:1, 1:1 followed by 1:2) and crystallized from ethyl acetate-diisopropyl ether to obtain the title compound (1.41 g, Yield: 53%).

 Melting point: 182-184 °C.

¹H MMR (CDCl₃) & 1.29 (3H, s), 1.35 (3H, s), 2.20 (1H, d, J = 16.3 Hz), 2.31 (1H, d, J = 16.3 Hz), 2.86-3.10 (2H, m), 3.82 (3H, s), 3.93 (3H, s), 4.24 (1H, dd, J = 12.0, 6.6 Hz), 6.69 (1H, s), 7.35-7.51 (5H, m).

EXAMPLE 439

20

N-[3'-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]propanamide

[1172] The title compound was obtained from 3*(3,4,9-tetrathydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1*-b]phenyl]-4-amine and propionyl chloride by the method similar to that in EXAMPLE 30. Yield: 92%. Melting point: 176-184 °C (ethyl acetate-diethyl ether).

¹H NMR (CDCl₃) δ 1.20-1.32 (3H, m), 1.27 (6H, s), 1.29 (6H, s), 2.26 (2H, s), 2.40 (2H, q, J = 7.6 Hz), 2.71 (2H, s), 5 3.93 (3H, s), 6.63 (1H, s), 7.26-7.68 (9H, m).

EXAMPLE 440

N-[3'-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]-

30 2,2-dimethylpropanamide

[1173] The title compound was obtained from 3"(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoquinollin-1-yi)[1,1"-biphenyi]-4-amine and trimethylacetyl chloride by the method similar to that in EXAMPLE 30. Yield: 68%. Methig point: 189-193 °C (ethyl acetate-diethyl ether-hexane).

35 1H NMR (CDCl₃) δ 1.27 (6H, s), 1.30 (6H, s), 1.34 (9H, s), 2.26 (2H, s), 2.71 (2H, s), 3.93 (3H, s), 6.63 (1H, s), 7.32-7.50 (3H, m), 7.53-7.70 (6H, m).

EXAMPLE 441

40 2,2,2-Trifluoro-N-[3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-y|][1,1'-biphenyl]-4-yl] acetamide

[1174] A solution of 3"(3.4 g.9-letrahydro-6-methoxy-3.3,8,8-tetramethylluro[2,3-h]soquinolin-1-yll[1,1'sbjhenyl]-4-mine (192 mg, 0.450 mmol) and triethylamine (2θ μ, 0.55 mmol) in tetrahydroturan (1 ml.) was treated dropwise-45 with trifluoroacetic anhydride (70 μL, 0.50 mmol) with cooling in ice, and stirred at the same temperature for 10 minutes. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted twice with ethyl acotate. The combined organic layer was washed with brine, dried through sodium suifate, and concentrated. The residue was crystallized from ethyl acetate-hexane to obtain the title compound (222 mg, Yield: 94%).

Melting point: 149-154 °C.

 ^{1}H NMR (CDCl₃) δ 1.28 (6H, s), 1.32 (6H, br s), 2.02 (2H, s), 2.76 (2H, s), 3.94 (3H, s), 6.65 (1H, s), 7.29-7.59 (8H, m), 8.95-9.20 (1H, m).

EXAMPLE 442

55

N-[3'-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyi]-4-yl]benzamide

[1175] The title compound was obtained from 3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoqui-

nolin-1-yi)[1,1'-biphenyl]-4-amine and benzoyl chloride by the method similar to that in EXAMPLE 30. Quantitative. Melting point: 204-207 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.30 (6H, s), 2.27 (2H, s), 2.71 (2H, s), 3.93 (3H, s), 6.63 (1H, s), 7.34-7.38 (1H, m), 7.42-7.64 (8H, m), 7.67-7.73 (2H, m), 7.87-7.92 (2H, m), 7.94-8.07 (1H, m).

EXAMPLE 443

5

10

15

25

[3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]carbamic acid methyl ester

[1176] A solution of socilum carbonate (72 mg, 0.68 mmol) in water (0.5 mL) was added to a solution of 3°,43.4.8 btel-rabydro-6-methory 3.8.8 e-tramentlyflure(2.5-th) isocular moly 1.1 e-bipternyl-4-amine (1829m.), 0.450 mmol) in their rabydrofturan (1 mL), and while cooling in ice, methyl chloroformate (43 µL, 0.54 mmol) was added therete, and the mixture was strired at the same temperature for 15 minutes. The reaction mixture was combined with water, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dride over solution suifate, filtered and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-diethyl other to obtain the tile compound (165 mL, 796t; 75%).

Melting point: 129-133 °C.

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.30 (6H, s), 2.26 (2H, s), 2.71 (2H, s), 3.79 (3H, s), 3.93 (3H, s), 6.63 (1H, s), 6.69 (1H, br s), 7.34 (1H, dt, J = 7.7, 1.5 Hz), 7.39-7.49 (3H, m), 7.52-7.63 (4H, m).

EXAMPLE 444

N-[3'-(3.4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]formamide

[1177] Formic acid (0.5 mL) was treated dropwise with acetic anhydride (0.13 mL, 1.4 mmol) with cooling in ice, and the mixture was stirred at the same temperature for 30 minutes. 3'-(3.4,8,9-Tetrahydro-8-methoxy-3.8,8-tetramethylluro[2,3-h]isoquinolin-1yll[1,1'-biphenyl]-4-amine (192 mg,0.450 mmol) was added to the resultant solution and the mixture was stirred at room temperature for 1.5 hours. To a suspension of sodium hydrogen carbonate (1.85 g, 22.0 mmol) in water-ethyl acetate, the reaction mixture was added dropwise, and the mixture was vartacted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was crystallized from ethyl acetate to obtain the title compound (196 mg, Yleid: 98%).

Melting point: 129-133 °C.

35 1H NMR (CDCl₃) δ 1.24-1.32 (12H, m), 2.26 (2H, s), 2.73 (2H, s), 3.93 (3H, s), 6.63 (1H, s), 7.05-7.17 (1H, m), 7.32-7.64 (8H, m), 8.36 (0.6H, d, J = 1.8 Hz), 8.72 (0.4H, d, J = 11.2 Hz).

EXAMPLE 445

40 2-(Acetylamino)-N-[3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoguinolin-1-yi)[1,1'-biphenyi]-4-vilacetamide

[1178] 1-Ethyl-3-(3-dimethylaminopropyl)carbodimide hydrochloride (100 mg., 0.522 mmol) was added to a solution of 3-(3.4.8,9-tetrahydro-6-methoxy-3.3,8,8-tetramethylfuro(2.3-h)isoquinolin-1-yl)[1,1-biphenyl]-4-amine (171 mg. 0.401 mmol), N-acetylglycine (52 mg., 0.44 mmol) and 1-hydroxy-1H-benzotriazole (68 mg., 0.44 mmol) in NN-dimethylformamide (0.5 ml.) and the mixture was stirred at room temperature for 16 hours. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, fillered and concentrated under reduced pressure. The residue was recrystallized from chloroform-diethyl ether to obtain the title compound (182 mg. Yield: 88%).

Melting point: 218-221 °C.

¹H NMR (CDCl₃) δ 1.28 (6H, s), 1.29 (6H, s), 2.10 (3H, s), 2.52 (2H, s), 2.73 (2H, s), 3.93 (3H, s), 4.08 (2H, d, J = 5.4 Hz), 6.45-6.55 (1H, m), 6.63 (1H, s), 7.31-7.36 (1H, m), 7.43 (1H, t, J = 7.7 Hz), 7.49-7.60 (6H, m), 8.73-8.87 (1H, m).

45

EXAMPLE 446

N-Methyl-N'-[3'-(3.4,8.9-tetrahydro-6-methoxy-3,3,8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]urea

5 [1179] A solution of 3*(3,4,8,9+tetrahydro-6-methoxy-3,8,8,8+tetramethyffuro[2,2-h]sequinolin-1-yl)f[1,1*b]phenyl;4-amine (171 mg, 0.401 mmol) in chloroform (1 mL) was treated dropwise with methyl isocyanate (26 µL, 0.44 mmol) and stirred at room temperature for 3.5 hours. The reaction mixture was concentrated under reduced pressure, and the residue was subjected to a column chromatography on a basic silica gel (ethyl acetate) to obtain the title compound (186 mg, Veid: 98%).

Amorphous.

15

25

40

45

 1 H NMR (CDCl₃) δ 1.29 (12H, s), 2.25 (2H, s), 2.74 (2H, s), 2.77 (3H, d, J = 4.5 Hz), 3.93 (3H, s), 5.05 (1H, br s), 6.64 (1H, s), 6.98 (1H, br s), 7.25-7.33 (3H, m), 7.38-7.45 (3H, m), 7.49-4.57 (2H, m).

EXAMPLE 447

 $4-0xo-4-[[3^{\perp}+(3,4,8,9+tetrahydro-6-methoxy-3,3,8,8+tetramethy/furo[2,3-h]] is oquinolin-1-yl)[1,1^{\perp}-biphenyl]-4-yl] aminolin-1-yll in the properties of the properties$

[1180] A solution of succinic anhydride (45 mg, 0.45 mmol) in tetrahydrofuran (0.5 mL) was added to a solution of 3'(3,4,8-9-tetrahydro-6-methoxy-3,3,8-tetramethyfluro(2,3-h)isoquinolin-1-yi)f1,1'-biphenyll-4-amine (192 mg, 0.450 mmol) in tetrahydrofuran (1 mL) and the mixture was stirred at 50 °C for 2.5 hours. The reaction mixture was concentrated under reduced pressure, and the residue was subjected to a column chromatography on a silica gel (chloroform followed by chloroform/methanol 5:1) to obtain the title compound (219 mg, Yield: 92%).

Amorphous

¹H NMR (CDCl₃) § 1.26 (6H, s), 1.38 (6H, br s), 2.24 (2H, s), 2.46 (4H, br s), 2.81 (2H, s), 3.94 (3H, s), 6.65 (1H, s), 7.25-7.60 (7H, m), 7.61 (1H, s), 9.45-9.75 (1H, br).

EXAMPLE 448

N-Methyl-N-[3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]

[181] The title compound was obtained from N-[3'-(3,4,8,9-tetrahydro-8-methoxy-3,3,8,8-tetramethy/furo(2,3-h)]so-quinolin-1-y1)[1,1'-b|phenyl]-4-yf]acetamide by the method similar to that in EXAMPLE 74. Yield: 79% Amorphous

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.30 (6H, s), 1.92 (3H, s), 2.26 (2H, s), 2.71 (2H, s), 3.29 (3H, s), 3.93 (3H, s), 6.63 (1H, s), 7.20-7.30 (2H, m), 7.34 (1H, dt, J = 7.6, 1.5 Hz), 7.48 (1H, t, J = 7.6 Hz), 7.58-7.69 (4H, m).

EXAMPLE 449

3'-(6-Butoxy-3,4.8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-amine

drochloride (493 mg. 1.00 mmol) in 1.2-dimethoxyethane (3 mL), ethanol (1.5 mL) and water (1.5 mL), sodium carbonate (265 mg. 2.50 mmol), 4-(4.4,5.5-tetramethyl-1.3,2-dioxaborolane-2-yl)aniline (283 mg. 1.20 mmol) and tetrakis(triphenyiphosphine)palladium (0) (24 mg. 0.021 mmol) were added, and the mixture was stirred at 80 °C for 14 hours. The reaction mixture was combined with water, and washed withe awahed with eather, and extracted twice with 0.5 M hydrochloric acid. The aqueous layer was neutralized with onc. aqueous ammonia, and extracted twice with 0.5 M hydrochloric acid. The aqueous layer was washed with water and brine, dired over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate), 3:1 followed by 2:1), and recrystallized from ethyl acetate hexane to obtain the title compound (373 mg, Yield: 80%).

[1182] To a solution of 1-(3-bromophenyl)-6-butoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline hy-

¹H NMR (CDC_{Ig}) δ 0.98 (3H, t, J = 7.3 Hz), 1.26 (6H, s), 1.28 (6H, s), 1.38-1.60 (2H, m), 1.74-1.91 (2H, m), 2.24 (2H, s), 3.72 (2H, br s), 4.10 (2H, t, J = 6.9 Hz), 6.61 (1H, s), 6.74 (2H, d, J = 8.4 Hz), 7.25-7.32 (1H, m), 7.35-747 (3H, m), 7.51-759 (2H, m).

N-[3'-(6-Butoxy-3.4,8,9-tetrahydro-3.3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]acetamide

[1183] The title compound was obtained from N-3'-(6-butoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoqui-nolin-1-y)[1,1'-b)phenyi]-4-amine by the method similar to that in EXAMPLE 30. Yield: 95%.

Melting point: 202-204 °C (ethyl acetate-diethyl ether).

¹H NMR (CDCl₃) δ 0.98 (3H, t, J = 7.4 Hz), 1.28 (12H, s), 1.38-1.59 (2H, m), 1.74-1.91 (2H, m), 2.15 (3H, s), 2.23 (2H, s), 2.70 (2H, s), 4.11 (2H, t, J = 6.8 Hz), 6.62 (1H, s), 7.29-7.60 (8H, m), 7.72 (1H, br s).

EXAMPLE 451

10

15

25

25

45

4-Amino-3'-{3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-b|phenyl]-3-carboxylic acid methyl ester

[1184] A suspension of 1-(3-bromophenyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyfuro(2,2-h]soquinoline (1,86 g, 4.01 mmol), 2-amino-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid methyl ester (1,22 g, 4.40 mmol), sodium carbonate (687 mg, 6.01 mmol) and tetrakis(triphenylphosphine)paliadium (0) (93 mg, 0.080 mmol) in 1,2-dimethoxyethane (12 mL), ethanol (6 mL) and water (6 mL) was stirred at 85 °C for 14 hours under nitrogen atmosphere. The reaction mixture was combined with water, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate-basic silice gel (eluting with ethyl acetate), and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silice gel (hexane-lethyl acetate), 3:1). The resultant material was dissolved in ethyl acetate, extracted twice with 0.5 M hydrochloric acid, neutralized with conc. aqueous ammonia, and extracted twice with ethyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure to obtain the title compound (1.85 g, yleid: 95%).

¹H NMR (CDCl₃) 8 1.27 (6H, s), 1.31 (6H, s), 2.28 (2H, s), 2.71 (2H, s), 3.89 (3H, s), 3.93 (3H, s), 5.79 (2H, br s), 6.63 (1H, s), 6.73 (1H, d, J = 8.4 Hz), 7.32 (1H, dt, J = 7.3, 1.5 Hz), 7.38-7.47 (1H, m), 7.51-7.59 (3H, m), 8.11 (1H, d, J = 2.2 Hz).

EXAMPLE 452

4-(Acetylamino)-3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-3-carboxylic acid methyl ester

[1185] A solution of 4-amino-3*(3.4.8,9-tetrahydro-6-methoxy-3.3.8,8-tetramethyfluro[2.3-h]lsoquinolin-1-yll/[1,1*ob-peny]-8-carboxylic acid methyl ester (1.4.8, 2.9.5 mmol) in pyrdine (1.0 mL) was treated from the grows with aceid: anhydride (0.28 m.L.,3.0 mmol) with cooling in ice, and stirred at room temperature for 10 minutes and then at 60 °C for 1 hour. The same volume of acetic anhydride was added to the mixture, and the mixture was stirred at 100 °C for 2 hours. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was subjected to a column form compactory on a basic sitilize (gl (hexane/eithyl acetate, 4:1 followed by 2:1), and recrystallized from ethyl acetate-hexane to obtain the title compound (1.12 g, yield: 72%). Melting point: 116-119 °C.

1H NMR (CDCl₃) 8 1.27 (8H, s), 1.31 (8H, s), 2.26 (8H, s), 2.27 (2H, s), 2.72 (2H, s), 3.93 (8H, s), 3.95 (3H, s), 6.83 (1H, s), 7.39 (1H, dt, J = 7.3, 1.6 Hz), 7.47 (1H, td, J = 7.3, 1.2 Hz), 7.56-7.64 (2H, m), 7.79 (1H, dd, J = 8.8, 2.4 Hz), 8.26 (1H, d, J = 2.4 Hz), 8.78 (1H, d, J = 8.8 Hz), 11.07 (1H, br s).

50 EXAMPLE 453

4-(Acetylamino)-3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-3-carboxylic acid

[1186] 5 M aqueous solution of sodium hydroxide (0.52 mL, 2.6 mmol) was added to a solution of 4-(acetylamino)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,4-tetramethylluro[2,3-hjisoquinolin-1-ylf[1,1-biphenyl]-3-carboxylic acid methyl ester (692 mg, 1.32 mmol) in methanol (5 mL) and the mixture was stirred at room temperature for 40 minutes and then heated under reflux for 10 minutes. The reaction mixture was concentrated under reduced pressure, combined

with water (2 mL), and neutralized by adding 2 M hydrochloric acid (1.3 mL, 2.6 mmol) dropwise, and the precipitated powder was recovered by filtration, washed with water and diethyl ether to obtain the title compound (671 mg, quantitative).

Melting point: 181-186 °C.

¹H NMR (DMSC-d_b) 6 1 20 (8H, s), 1.22 (8H, s), 2.14 (9H, s), 2.28 (2H, s), 2.76 (2H, s), 3.85 (3H, s), 6.88 (1H, s), 7.38 (1H, d, J = 7.6 Hz), 7.55 (1H, I, J = 7.6 Hz), 7.63 (1H, s), 7.81 (1H, d, J = 7.6 Hz), 7.84 (1H, d, J = 2.2 Hz), 8.85 (1H, d, J = 8.8 Hz), 11,76 (1H, br s).

EXAMPLE 454

5

10

15

25

25

40

45

55

N-[4'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]acetamide

[1187] 4:(4.4.5.5-Tetramethyl-1.3,2-dioxaborolan-2-y)lacetanilide (116 mg, 0.444 mmol) and tetrakis(triphenyl-phaphine)palladium (0) (11 mg, 0.0095 mmol) were added to a suspension of 1-(4-bromophenyl-3,4.8,9-tetrahydro-6-methoxy-3,3.8,8-tetramethyfluro(2,3-h)isoquinoline hydrochloride (181 mg, 0.402 mmol) and sodium carbonate (149 mg, 1.41 mmol) in 1,2-dimethoxyethane (1.2 mL), ethanol (0.6 mL) and water (0.6 mL) and the mixture was stirred at 85 °C for 15 hours under nitrogen atmosphere. The reaction mixture was combined with water, and washed with exity alcetate. The combined organic layer was washed with water and brine, and dried through sodium sulfate-basic silica gel (eluting with ethyl acetate) and then concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate, 2:1 followed by 1:1), and crystallized from ethyl acetate-hexane to obtain the title compound (102 mg, yield: 54%).

¹H NMR (CDCl₃) § 1.26 (6H, s), 1.33 (6H, s), 2.21 (3H, s), 2.32 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 7.23 (1H, br s), 7.46 (2H, d, J = 8.6 Hz), 7.56-7.64 (4H, m), 7.60 (2H, d, J = 8.6 Hz).

EXAMPLE 455

N-[4'-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-3-yl]acetamide

[1188] The title compound was obtained from 3-acetamidobenzeneboronic acid by the method similar to that in EXAMPLE 454, Yield: 84%. Amorphous.

 1 H NMR (CDCl₃) δ 1.27 (6H. s), 1.33 (6H. s), 2.20 (3H. s), 2.31 (2H. s), 2.71 (2H. s), 3.93 (3H. s), 6.63 (1H. s), 7.34-7.66 (8H, m), 7.79 (1H, br s).

EXAMPLE 456

3'-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1.1'-biphenyl]-4-carboxylic acid ethylester

[1189] A suspension of 1-(3-bromophenyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinoline (2,81 g, 6.78 mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid ethyl ester (2,25 g, 8.15 mmol), sodium carbonate (1,08 g, 10,2 mmol) and

tetrakis(triphenylphosphine)palladium (0) (157 mg, 0.138 mmol) in 1,2-dimethoxyethane (24 mL), ethanol (12 mL) and water (12 mL) was stirred at 80 °C for 14 hours under nitrogen atmosphere. The reaction mixture was combined with water and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried through sodium sulfate-basic silica gel (eluting with ethyl acetate), and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate), 10:1) to obtain the title compound (2.67 m, wletic 88%).

Amorphous.

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.30 (6H, s), 1.42 (3H, t, J = 7.1 Hz), 2.26 (2H, s), 2.72 (2H, s), 3.93 (3H, s), 4.40 (2H, q, J = 7.1 Hz), 6.63 (1H, s), 7.37-7.54 (2H, m), 7.62-7.71 (4H, m), 8.10 (2H, d, J = 8.4 Hz).

EXAMPLE 457

3'-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-carboxylic acid

[1190] 1 M aqueous solution of sodium hydroxide (20 mL, 20 mmol) was added to a solution of 3'-(3,4,8,9-tetrahydro-

6-methoxy-3,3.8,8-terramethyffuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-carboxylic acid ethyl ester (2.74 g, 5.7 mm0) in ethanol (15 mL) and the mixture was stirred at 70 °C for 30 minutes. The reaction mixture was cooled with ice, combined with 1 M hydrochloric acid (20 mL, 20 mmol), saturated with sodium chloride, and then extracted three times with ethyl acetate. The combined organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-diethyl ether to obtain the title compound (2.26 g, vield: 37%).

Melting point: 161-165 °C.

 1 H NMR (DMSO- 1 Ge) δ 1.17 (6H, s), 1.19 (6H, s), 2.26 (2H, s), 2.67 (2H, s), 3.82 (3H, s), 6.84 (1H, s), 7.40 (1H, d, J = 7.7 Hz), 7.56 (1H, t, J = 7.7 Hz), 7.67 (1H, s), 7.79-7.87 (3H, m), 8.03 (2H, d, J = 8.4 Hz).

EXAMPLE 458

5

10

25

45

3'-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yi)[1,1'-biphenyl]-4-carboxamide

15 [1191] 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (200 mg, 1.04 mmol) was added to a suspension of 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyffuro[2,3-h]soquinolin-1-yl)(1,1-biphenyl]-4-carboxylic acid (365 mg, 0.801 mmol) and 1-hydroxy-1H-benzotriazole ammonium salt (147 mg, 0.966 mmol) in N,N-dimethylformamide (1.5 mL) and the mixture was stirred at room temperature for 15 hours. The reaction mixture was combined with water and saturated aqueous solution of sodium hydrogen carbonate, and extracted twice with ethyl acetate. The combined organic layer was washed with water and a brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-hexane to obtain the title compound (286 mg, yield: 79%).

Melting point: 134-137 °C (decomposition).

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.30 (6H, s), 2.25 (2H, s), 2.72 (2H, s), 3.93 (3H, s), 5.50-6.40 (2H, m), 6.63 (1H, s), 7.39-7.54 (2H, m), 7.61-7.63 (2H, m), 7.69 (2H, d, J = 8.5 Hz), 7.88 (2H, d, J = 8.5 Hz).

EXAMPLE 459

N-Methyl-3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]4-carboxamide

[1192] 1-Ethyl-3-(3-dimethylaminopropy)carbodilmide hydrochloride (200 mg, 1.04 mmol) was added to a suspension of 3'(3,4.8,9-tetrahydro-6-methoxy-3,3.8,8-tetramethyffuro(2,3-h)lsoquinolin-1-yl)(1,1'b)phonyl)-4-carboxylic acid (365 mg, 0.801 mmol), 40% methylamine/methanol solution (75 mg, 0.97 mmol) and 1-hydroxy-1+benzoriazole (135 mg, 0.880 mmol) in N,N-dimethylformamide (1.5 mL) and the mixture was stirred at room temperature for 20 hours. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonical, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried through sodium sulfate-basic silica gel (eluting with ethyl acetate), and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-hexane to obtain the title compound (317 mg, yield: 84%).

Melting point: 242-244 °C.

 $^{1}\text{H NMR (CDCl}_{3}) \, \delta \, 1.27 \, (6\text{H}, \, \text{s}), \, 1.30 \, (6\text{H}, \, \text{s}), \, 2.25 \, (2\text{H}, \, \text{s}), \, 2.72 \, (2\text{H}, \, \text{s}), \, 3.04 \, (3\text{H}, \, \text{d}, \, \text{J} = 4.8 \, \text{Hz}), \, 3.93 \, (3\text{H}, \, \text{s}), \, 6.15 \cdot 6.30 \, (1\text{H}, \, \text{m}), \, 6.63 \, (1\text{H}, \, \text{s}), \, 7.37 \cdot 7.53 \, (2\text{H}, \, \text{m}), \, 7.59 \cdot 7.70 \, (2\text{H}, \, \text{m}), \, 7.66 \, (2\text{H}, \, \text{d}, \, \text{J} = 8.4 \, \text{Hz}), \, 7.82 \, (2\text{H}, \, \text{d}, \, \text{J} = 8.4 \, \text{Hz}).$

EXAMPLE 460

N,N'-Dimethyl-3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yi)[1,1'-biphenyi]-4-carboxamide

[1193] 1-Ethyl-S-(3-dimethylaminopropyl)carbodimide hydrochloride (200 mg, 1.04 mmol) was added to a suspension of 3°(3.4, 8-9-tertanylor-6-methows, 3.8, 8-1etramethylum(2,3-h)sequinioni-1-yl)(1.1-b)phenyl)-4-carboxylic acid (365 mg, 0.801 mmol), 2 M dimethylamine/tetrahydrofuran solution (0.48 mL, 0.96 mmol) and 1-hydroxy-1H-benzotriazole (135 mg, 0.880 mmol) in NH-dimethylformamide (1.5 mL) and the mixture was stirred at room temperature for 17 nours. The reaction mixture was sombined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted twice with eithyl acetate. The combined organic layer was washed with water and brine, dried through sodium sulfate-basic silica gel (eluting with ethyl acetate), concentrated under reduced pressure to obtain the title compound (319 mg, yield: 83%).

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.30 (6H, s), 2.25 (2H, s), 2.71 (2H, s), 3.03 (3H, br s), 3.12 (3H, br s), 3.93 (3H, s),

6.63 (1H, s), 7.36-7.53 (4H, m), 7.58-7.68 (4H, m).

EXAMPLE 461

5 N-[3'-(3,4,8,9-Tetrahydro-6-hydroxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yi)[1,1'-biphenyi]-4-yl]acetamide

[1194] A suspension of 1-(3-bromophenyl)-3,4,8,9-tetrahydro-3,3.8,8-tetramethyfluro(2,3-h)isoquinolinol (14.0 g. 3.50 mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acetaniide (1.01 g. 3.87 mmol), sodium carbonate (927 mg. 8.75 mmol) and tetraks(triphenylphosphine)palladium (0) (81 mg. 0.070 mmol) in 1,2-dimethoxyethane (10 mL), ethanol (5 mL) and water (6 mL) was stirred at 80 °C for 14 hours under nitrogen atmosphere. The reaction mixture was combined with water, and extracted trive with ethyl acetate. The combined organic layer was washed with brine, dried through sodium sulfate-basic silica gel (eluting with ethyl acetate followed by ethyl acetate/methanol, 10-1) and concentrated under reduced pressure, and the precipitated powder was recovered by filtration, washed with ethyl acetate-diethyl ether mixture to obtain the title compound (921 mg. vield; 58%).

Melting point: 185-189 °C.

¹H NMR (DMSO-d₀) δ 1.14 (6H, s), 1.19 (6H, s), 2.06 (3H, s), 2.23 (2H, s), 2.56 (2H, s), 6.56 (1H, s), 7.29 (1H, d, J = 7.6 Hz), 7.42-7.77 (7H, m), 10.05 (1H, s).

EXAMPLE 462

15

20

25

45

55

1-[4'-(Acetylamino)[1,1'-biphenyl]-3-yl]-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-6-yl trifluoromethanesulfonate

[1195] The title compound was obtained from N-[3'-(3.4,8,9-tetrahydro-6-hydroxy-3,3,8.8-tetramethylfuro[2,3-h]iso-quinolin-1-yl/j.1,1-biphenyli-4-yl]acetamide by the method similar to that in EXAMPLE 95. Yield: 96%. Amorphous

¹H NMR (CDCl₃) δ1.28 (6H, s), 1.29 (6H, s), 2.13-2.23 (3H, m), 2.30 (2H, s), 2.72 (2H, s), 6.95 (1H, s), 7.29-7.70 (9H, m).

EXAMPLE 463

N-[3'-(3,4,8,9-Tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl][1,1'-biphenyl]-4-yl]acetamide

[1196] Formic acid (64 µL, 1.7 mmol) was acided to a solution of 1.44*-(acetylamino)(1.1*-biphenylf-3-yl)3.4,8.9-teir-ahydro-3.3,8.9-teir-methylfuro/[2.3-hijscquinolini-6-yl trifluoromethanesulfonate (496 mg, 0.846 mmol), triethylamine (0.36 mL, 2.5 mmol), palladium (II) acetate (4.7 mg, 0.021 mmol) and triphenylphosphine (11 mg, 0.042 mmol) in N, N-dimethylformamide (1.5 mL) and the mixture was stirred at 60 °C for 4 hours under nitrogen atmosphere. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried through sodium sulfate-basic silica gel (eluting with ethyl acetate), and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate, 2:1 followed by 1:1), crystallized from ethyl acetate-hexane to obtain the title compound (294 mg, yield: 79%).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.28 (6H, s), 2.16 (3H, s), 2.24 (2H, s), 2.72 (2H, s), 6.76 (1H, d, J = 7.8 Hz), 6.99 (1H, d, J = 7.8 Hz), 7.35 (1H, dt, J = 7.4, 1.4 Hz), 7.44 (1H, td, J = 7.4, 1.0 Hz), 7.49-7.62 (7H, m).

EXAMPLE 464

1-(3-Bromophenyl)-3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-6-furo[2,3-h]isoquinolin-6-yl trifluoromethanesulfonate

[1197] The title compound was obtained from 1-(3-bromophenyl)-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h] isoquinolinol by the method similar to that in EXAMPLE 95. Quantitative.

A aum.

1H NMR (CDCI₃) δ 1.25 (6H, s), 1.34 (6H, s), 2.29 (2H, s), 2.69 (2H, s), 6.95 (1H, s), 7.14-7.38 (2H, m), 7.53-7.60 (2H, m).

EXAMPLE 465

3'-(3,4,8,9-Tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-amine

5 [198] Formic acid (0.73 mL, 19 mmol) was added to a solution of 1-(3-bromophenyl)-3.4,8.9-tetrahydro-3.3.8.8-te-tramethyfurc(2.3-hijosunionin-6-yt influoromethanesulforate (6.13 g., 9.64 mmol), intellylamine (4.0 mL, 28 mmol), palladium (II) acetate (54 mg, 0.24 mmol) and triphenylphosphine (126 mg, 0.480 mmol) in N.N-dimethylformamide (20 mL) and the mixture was stirred at 65 °C for 2 hours under nitrogen almosphere. The reaction mixture was combined with water and saturated aqueous solution of sodium hydrogen carbonate, and extracted twice with ethig acetate. The combined organic layer was washed with water and brine, dried through sodium sulfate-basic silica gel (eluting with ethi) acetate), and concentrated under reduced pressure. The residue was subjected to a column chromatorgraphy on a silica gel (hexane/ethyl acetate, 10:1) to obtain an oil containing 1-(3-bromophenyl-)-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfurc(2-3-hijosunionine.

[1199] This material, 4-(4.4,5.5-tertamethyl-1.3.2-dioxaborolan-2-yl)aniline (1.21 g, 5.52 mmol), sodium carbonate (795 mg, 7.50 mmol) and tetrakis(riphenylphosphine)palladium (0) (116 mg, 0.100 mmol) were suspended in 1,2-dimethoxyethane (15 ml), othanol (7 mL) and water (7 mL), and the mixture was stirred at 80 °C for 15 hours under nitrogen atmosphere. The reaction mixture was combined with water and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried through sodium sulfate-basic silica gel (eluting with ethyl acetate), and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate, 10.1 followed by 2:1), and crystallized from ethyl acetate-hexane to obtain the title compound (1,35c, vicid 35%).

Melting point: 161-163°C.

14 NMR (CDC₃) δ 1.25 (12H, s), 2.24 (2H, s), 2.70 (2H, s), 3.73 (2H, br s), 6.74 (2H, d, J = 8.4 Hz), 6.75 (1H, d, J = 8.0 Hz), 6.98 (1H, d, J = 8.0 Hz), 7.27-7.34 (1H, m), 7.36-7.48 (3H, m), 7.54-7.60 (2H, m).

EXAMPLE 466

15

25

25

40

2,2,2-Trifluoro-N-[3'-(3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]acetamide

0 [1200] The title compound was obtained from 3-(3,4,8,9-letrahydro-3,3,8,8-tetramethylfuro(2,3-h)isoquinolin-1-yi) [1,1'-biphenyi]-4-amine by the method similar to that in EXAMPLE 441. Yield: 83%. Metiling point: 228-230 °C (ethyl acetate-hexane).

 1 H NMR (CDCl₃) 5 1.25 (6H, s), 1.30 (6H, s), 2.19 (2H, s), 2.75 (2H, s), 6.78 (1H, d, J = 7.9 Hz), 7.01 (1H, d, J = 7.9 Hz), 7.31-7.62 (8H, m), 8.82 (1H, br s).

EXAMPLE 467

4-[[[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]phenyl]amino]carbonyl]benzoic acid methyl ester

[1201] Terephthaloyl monomethyl chloride (1.91 g. 9.82 mmol) was added to a solution of 3-(3.4.8.9-tetrahydro-6-methoxy-3.9.8.8-tetraheydro-(1.91) molecular (1.91) molecular (1

¹⁴ NMR (CDCl₃) 5 1.16 (6H, br.s.), 1.33 (6H, s), 2.34 (2H, s), 2.60 (2H, br.s.), 3.92 (3H, s), 3.96 (3H, s), 6.59 (1H, s), 7.13 (1H, d, J = 7.7 Hz), 7.37 (1H, t, J = 7.7 Hz), 7.56 (1H, t, J = 1.8 Hz), 7.89-7.98 (3H, m), 8.12 (2H, d, J = 7.8 Hz), 8.66 (1H, br.s.).

5

30

25

45

55

4-[[[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]phenyl]amino]carbonyl]benzoic acid hydrochloride

[1202] 5 M aqueous solution of sodium hydroxide (0.50 mL, 2.5 mmol) was added to a solution of 4-[[[3-(3,4.8,9-tel-rahydro-6-methoxy-3,3,8.8-tetramethylfuro[2.3-h]isoquinolin-1-yliphenyljamino|carbonyliphenzoic acid methyl ester (1.03 g, 2.01 mmol) in methanol (10 mL) and the mixture was stirred at room temperature for 1.5 hours and then heated under reflux for 1.5 hours. The reaction mixture was concentrated under reduced pressure, and treated dropwise with M hydrochloric acid (5.0 mL, 5.0 mmol) with cooling in ice. Brine was added to the mixture, and the mixture was extracted twice with ethyl acetate-tetrahydroturan mixture. The combined organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to obtain the title compound (1.06 g, yleid: 99%).

¹H NMR (CDCl₃) 51.34 (6H, s), 1.62 (3H, br s), 1.73 (3H, br s), 2.66-2.54 (2H, m), 2.94-3.24 (2H, m), 3.98 (3H, s), 6.72 (1H, s), 7.24 (1H, d, J = 8.1 Hz), 7.47 (1H, t), J = 8.1 Hz), 7.38 (2H, d, J = 8.6 Hz), 7.90 (2H, d, J = 8.6 Hz), 8.25 (1H, s), 8.35 (1H, d, J = 8.1 Hz), 10.01 (1H, br s), 12.88 (1H, br s).

EXAMPLE 469

N-Methyl-N'-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl-1.4-benzenedicarboxemide

[1203] Triethylamine (0.17 mL, 1.2 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (125 mg, 0.852 mmol) were added to a solution of 4f[[]3-(3.4.8,0-letrahydro-6-methoxy-3.3,8.8 letramethyfluro[2,3-h]iso-quinolin-1-y)phenyljaminojearbonyljberzole acid hydrochloride (288 mg, 0.501 mmol), 40% methyfaminethanol solution (55 mg, 0.56 mmol) and 1-hydroxy-1H-berzotriazole (86 mg, 0.56 mmol) in NN-dimethyflormamide (1 mL) and the mixture was stirred at room temperature for 24 hours. The reaction mixture was combined with water, and extracted twice with chloroform-methanol mixture. The combined organic phase was washed with brine, dried through sodium sulfate-basic silica gol (cluting with chyll acetate/methanol, 10:1) and concentrated under reduced pressure. The residue was recrystallized from chloroform-methanol-diethyl ether to obtain the title compound (215 mg, Yled: 48%).

Melting point: 310-312 °C

1H NMF (DMSO-d₆) 5 1.15 (6H, s), 1.23 (6H, s), 2.33 (2H, br s), 2.64 (2H, s), 2.81 (3H, d, J = 4.5 Hz), 3.82 (3H, s), 6.82 (1H, s), 7.09-7.12 (1H, m), 7.40 (1H, t, J = 8.0 Hz), 7.77-7.81 (1H, m), 7.88-7.94 (1H, m), 7.95 (2H, d, J = 8.3 Hz), 8.04 (2H, d, J = 8.3 Hz), 8.57-8.63 (1H, m), 1.040 (1H, s)

EXAMPLE 470

2-[(3,4,8,9-Tetrahydro-6-methoxy-3,8,8-trimethyl-1-phenylfuro[2,3-h]isoquinolin-3-yl)methyl]-1H-isoindole-1,3(2H)-dione

[1204] A suspension of 3-(bromomethyly-3.4,8,9-tetrahydro-6-methoxy-3.8,8-trimethyl-1-phenylluroj2.5-hilpequinoine (2.49 g, 6.01 mmol), potassium phthelimide (90%) (1.86 g, 9.0 mmol) in NN-dimethyl-ispeatamide (26 mL) was
heated under reflux for 2.5 hours under nitrogen atmosphere. The reaction mixture was combined with water, and
extracted twice with ethyl acetate. The combined organic layer was washed twice with water, and concentrated under
reduced pressure. The residue was subjected to a column chromatography on a silica gel (flexane/ethyl acetate, 2:1),
crystallized from ethyl acetate-hexane, and recrystallized from methanol-acetone-hexane to obtain the trile compound
(1.56 g, yields, 54%).

Melting point: 121-125 °C

¹H NMR (CDCl₃) δ 1.19 (3H, s), 1.22 (3H, s), 1.38 (3H, s), 1.97-2.19 (2H, m), 2.81 (1H, d, J = 15.9 Hz), 3.02 (1H, d, J = 15.9 Hz), 3.85 (1H, d, J = 13.6 Hz), 3.86 (3H, s), 3.96 (1H, d, J = 13.6 Hz), 6.54 (1H, s), 7.36-7.52 (5H, m), 7.61-7.80 (4H, m).

EXAMPLE 471

3,4,8,9-Tetrahydro-6-methoxy-3,8,8-trimethyl-1-phenyl-3-furo[2,3-h]isoquinolinemethanamine

[1205] Hydrazine monohydrate (0.25 mL, 5.2 mmol) was added to a suspension of 2-[(3,4,8,9-tetrahydro-6-methoxy-

3.8.8 trimethyl-1-phenylfuro[2.3-h]isoquinoin-3-yl/methyl)-1H-isoindoi-1,3(2H)-dione (2.08 g. 4.33 mmol) in ethanol (20 ml.) and heated under reflux for 4 hours with adding the same amount of the hydrazine monohydrate after 2 hours and after 3 hours. The reaction mixture was combined with 1 M aqueous solution of sodium hydroxide (9.0 ml., 9.0 mmol), diluted with water, and extracted twice with ethyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetate/methanol, 100:1), and recrystallized from ethyl acetate-hexane to obtain the title compound (823 mg. Yield: 54%).

Melting point: 143-145 °C

¹H NMR (CDCl₃) 5 1.06 (3H, s), 1.29 (3H, s), 1.33 (3H, s), 2.16 (1H, d, J = 16.5 Hz), 2.25 (1H, d, J = 16.5 Hz), 2.49 (1H, d, J = 15.4 Hz), 2.80 (1H, d, J = 12.6 Hz), 2.89 (1H, d, J = 12.6 Hz), 2.93 (1H, d, J = 15.4 Hz), 3.92 (3H, s), 6.63 (1H, s), 7.39 (5H, s).

EXAMPLE 472

5

5 (3,4,8,9-Tetrahydro-6-methoxy-8,8-dimethyl-1-phenylfuro[2,3-h]isoguinolin-3-yl)methyl acetate

[126] Phosphorus oxychloride (9.4 mt., 0.10 mol) was added to a suspension of 2-(benzoylarnino)-3-(2.3-dilydro-7-methoxy-2.2-dimethyl-5-benzofuranyl)propyl acetate (3.34 g, 8.40 mmol) in acetonitrile (65 mt.) and heated under reflux for 1.5 hours. Water was poured into the reaction mixture, which was neutralized with conc. aqueous ammonia with cooling in ice, and extracted twice with ethyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was recrystallized from ethyl acetate-hexane to obtain the title compound (2.62g, yield. 82%).

Metin on joint: 188-169 °C.

¹H NMR (CDC₃) δ 1.28 (3H, s), 1.36 (3H, s), 2.12 (3H, s), 2.19 (1H, d, J = 8.1 Hz), 2.31 (1H, d, J = 8.1 Hz), 2.52-2.79 (2H, m), 3.54-3.76 (1H, m), 3.93 (3H, s), 4.34 (1H, dd, J = 11.0, 6.6 Hz), 4.54 (1H, dd, J = 11.0, 6.2 Hz), 6.68 (1H, s), 7.42 (5H, s)

EXAMPLE 473

25

30 3.4.8.9-Tetrahydro-6-methoxy-8.8-dimethyl-1-phenyl-3-furo/2.3-hlisoquinolinemethanol

[1207] 5 M aqueous solution of sodium hydroxide (1.5 mL, 8.0 mmol) was added to a solution of (3.4.8.8-tetrahydroc-methoxy-8,8-dimethyl-1-phenyfluro[2.3-h]isoquinolin-3-yi)methyl acetate (1.00 g. 2.64 mmol) in methanol (5 mL) and tetrahydrofuran (5 mL), and the mixture was stirred at room temperature for 10 minutes. The reaction mixture was combined with water, and extracted twice with ethyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was recrystallized from ethyl acetate-diisopropyl ether to obtain the title compound (653 mg, yield: 62%).

Melting point: 156-158 °C

¹+ NMR (CDCl₃) δ 1.28 (3H, s), 1.38 (3H, s), 2.21 (1H, d, J = 8.1 Hz), 2.35 (1H, d, J = 8.1 Hz), 2.51-2.70 (2H, m), 2.90-3.15 (1H, b), 3.36-3.57 (1H, m), 3.76 (1H, dd, J = 10.7, 7.7 Hz), 3.87-4.03 (1H, m), 3.93 (3H, s), 6.68 (1H, s), 7.43 (5H, s).

EXAMPLE 474

45 2-[(3,4,8,9-Tetrahydro-6-methoxy-8,8-dimethyl-1-phenylfuro[2,3-h]isoquinolin-3-yl)methyl]-1H-isoindole-1,3(2H)-dione

[1208] A solution of 3,4,8,9-tetraly/dro-6-methoxy-8,8-dimethyl-1-phenyl-3-furo(2,3-h)jisoquinolinemethanol (793 mg, 2.35 mmol) in pyridine (10 mL) was cooled with ice, treated dropwise with methanesulfonyl chloride (0.22 mL, 2.8 mmol), stirred at the same temperature for 30 minutes, treated further with methanesulfonyl chloride (0.04 mL, 2.8 mmol), and stirred further for 30 minutes. The reaction mixture was combined with water and a saturated aqueous solution of sodium hydrogen carbonate, and extracted twice with ethyl acetate. The combined organic layer was washed twice with water and concentrated under reduced pressure. The residue was combined with toluene, and concentrated under reduced pressure again to obtain (3,4,8,9-tetrahydro-6-methoxy-8,8-dimethyl-1-phenylfuro(2,3-h)jisoquinolin-3-vhmethyl methanesulfonate.

[1209] This was dissolved in N,N-dimethylformamide, potassium phthalimide (90%, 725 mg, 3.5 mmol) was added thereto, and the mixture was stirred at 100 °C for 4.5 hours. The reaction mixture was combined with water, and extracted twice with ethil acetate. The combined organic leaver was washed twice with water, and concentrated under

reduced pressure. The residue was crystallized from ethyl acetate-diisopropyl ether to obtain the title compound (337 mg. vield: 31%).

Melting point: 228-229 °C

¹H NMR (CDCl₃) δ 1.26 (3H, s), 1.34 (3H, s), 2.18 (1H, d, J = 16.5 Hz), 2.32 (1H, d, J = 16.5 Hz), 2.57-2.75 (2H, m), 3.78-4.15 (2H, m), 3.87 (3H, s), 4.24 (1H, dd, J = 13.2, 5.4 Hz), 6.61 (1H, s), 7.34-7.48 (5H, m), 7.68-7.92 (4H, m).

EXAMPLE 475

5

10

3.4.8.9-Tetrahydro-6-methoxy-8.8-dimethyl-1-phenyl-3-furo[2.3-h]isoquinolinemethanamine dihydrochloride

[1210] Hydrazine monohydrate (84 µL, 1.7 mmol) was added to a suspension of 2-[(3.4.8.9.-tetrahydro-6-methoxy-8.9-dimethyl-1-phenyifuro(2.3-h)isoquinolin-3-yl)methyll-1H-isoindole-1,3(2H)-dione (350 mg, 0.750 mmol) in ethanol (4 mL) and the mixture was heated under reflux for 2.5 hours. The reaction mixture was combined with 1 M aqueous solution of sodium hydroxide, diluted with water, and extracted twice with ethyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetate followed by ethyl acetate/methanol, 10:1) to obtain 3.4.8,9-tetrahy-dro-6-methoxy-8.8-dimethyl-1-phenyl-3-turo[2,3-h)isoquinolinemethanamine (164 mg) as an amorphous material. This was dissolved in ethyl acetate (2 mL), combined with 0.8 M hydrogen chloride/methanol solution (1.8 mL, 1.4 mmol) and concentrated under reduced pressure. The residue was crystallized from ethanol-ethyl acetate to obtain the title compound (140 mc, vield: 46%).

Melting point: 192-194 °C

 1 H NMR (DMSO-d_g) δ 1.22 (3H, s), 1.26 (3H, s), 2.26 (2H, s), 3.05-3.40 (4H, m), 3.80-4.50 (1H, m), 3.94 (3H, s), 7.10 (1H, s), 7.55-7.78 (5H, m), 8.35-8.65 (3H, m).

25 EXAMPLE 476

N-[3'-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-2-oxidofuro[2,3-h] is oquinolin-1-yl)[1,1'-biphenyl]-3-yl] acetamide

[1211] The title compound was obtained from N-[3"-(1,2,3,4,8,9-hexahydro-6-methoxy-3,3,8,8-letramethylfuro[2,3-h] isoquinolin-1-yi|[1,1"biphenyl]-3-yi|[1,2]-6" when the method similar to that in EXAMPLE 110. Yield: 66%. Methino gold in 158-162" (Cimethanol-diethy either).

¹H NMR (CDCl₃) δ 1.24 (3H, s), 1.28 (3H, s), 1.51 (6H, s), 2.04 (2H, s), 2.13 (3H, s), 3.09 (2H, s), 3.91 (3H, s), 6.65 (1H, s), 7.27-7.53 (5H, m), 7.56-7.69 (3H, m), 7.69 (1H, br s).

EXAMPLE 477

25

40

45

55

 $N-(3,5-Dichloro-1-oxido-4-pyridinyl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro \cite{2,3-h} is oquino lin-1-yl) benzamide$

[1212] Conc. sulfuric acid (0.393 m.L., 7.38 mmol) was added to a mixture of 3-cyano-N-(3,5-diohloro-1-oxido-4-py-ridiny))benzamide (0.84 g. 2.84 mmol), 1-(2,3-dihlydro-7-methoxy-2,2-dimethyl5-benzofuranyl)-2-methyl-1-propanol (1 or g., 4.26 mmol), acetic acid (7 mL) and toluene (10 mL) and the mixture was stirred at 80 °C for 1 hour. The reaction sollution was cooled with ice, combined with water and washed with diethyl ether. The aqueous layer was made basic with aqueous ammonia and 1 M aqueous solution of sodium hydroxide, and washed with disporpoyl ether-citelyl ether (1:). The aqueous layer was adjusted at pH 7 with 2 M hydrochloric acid, and extracted with ethyl acetate. The extract was washed with brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residule was subjected to a column chromatography on a silica gel (ethyl acetate followed by ethyl acetate/methanol.

23:2), and then crystallized from ethyl acetate to obtain the title compound (0.20 g, yield: 13%).
Melting point: 264-266 °C.

 1 H NMR (DMSO-d₆) δ 1.17 (6H, s), 1.22 (6H, s), 2.23 (2H, s), 2.67 (2H, s), 3.82 (3H, s), 6.84 (1H, s), 7.57-7.68 (2H, m), 8.01-8.09 (2H, m), 8.72 (2H, s), 10.58 (1H, br s).

EXAMPLE 478

N-(2-Oxo-3-piperidinyl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[1213] The title compound was obtained from 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoqui-

nolin-1-yl)benzoic acid hydrochloride and 3-amino-3,4,5,6-tetrahydro-2(1H)-pyridinone by the method similar to that in EXAMPLE 159. Yield: 63%

Amorphous.

5

15

20

25

25

50

¹H NMR (CDCl₃) of 1.29 (3H, s), 1.28 (3H, s), 1.30 (6H, s), 1.58-1.80 (2H, m), 1.88-1.96 (2H, m), 2.18 (2H, s), 2.59-2.72 (3H, m), 3.27-3.38 (2H, m), 3.92 (3H, s), 4.40-4.50 (1H, m), 6.27 (1H, br s), 6.62 (1H, s), 7.33-7.36 (1H, m), 7.43-7.48 (1H, m), 7.88-7.95 (2H, m)

EXAMPLE 479

(S)-N-[Hexahydro-2-oxo-1H-azepin-3-yl]-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[1214] The title compound was obtained from 3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro(2,3-h)isoquinolin-1-y)benzoic acid hydrochloride and (S)-3-aminohexahydro-2H-azepin-2-one by the method similar to that in EX-AMPLE 159, Yeld: 65%.

Amorphous.

[α]D +23.1° (c 1.0, methanol)

¹H NMR (CDCl₃) δ 1.23 (3H, s), 1.30 (9H, s), 1.51-2.05 (6H, m), 2.16 (2H, s), 2.70 (2H, s), 3.20-3.38 (2H, m), 3.92 (3H, s), 4.68-4.78 (1H, m), 6.53 (1H, br s), 6.62 (1H, s), 7.42-7.51 (2H, m), 7.69-7.73 (1H, m), 7.88-7.92 (2H, m),

EXAMPLE 480

(R)-N-[Hexahydro-2-oxo-1H-azepin-3-yl]-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[1215] The title compound was obtained from 3-(3.4,8.9-tetrahydro-6-methoxy-3.3,8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoic acid hydrochloride and (R)-3-aminohexahydro-2H-azepin-2-one by the method similar to that in EX-AMPLE 159, Yield: 33%.

Amorphous.

[α]D -22.5° (c 1.0, methanol).

¹H NMR (CDCl₃) δ 1.23 (3H, s), 1.30 (9H, s), 1.51-2.25 (6H, m), 2.17 (2H, s), 2.70 (2H, s), 3.20-3.36 (2H, m), 3.92 (3H, s), 4.69-4.78 (1H, m), 6.29 (1H, br s), 6.62 (1H, s), 7.41-7.51 (2H, m), 7.69-7.73 (1H, m), 7.88-7.91 (2H, m),

EXAMPLE 481

3-(6-Ethoxy-3.4.8.9-tetrahydro-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)benzoic acid methyl ester

[1216] Conc. sulfuric acid (7.86 mL, 0.147 mol) was added to a mixture of 1-(7-ethoxy-2.3-dihydro-2.2-dimethyl-5-benzofuranyl-2-methyl-1-propanol (15.0 g, 5.67 mmol), acetic add (80 mL) and toluene (100 mL) and the mixture was stirred at 80 °C for 1 hour. The reaction mixture was cooled with conc. adjusted and combined with water, and washed with diethyl either. The aqueous layer was cooled with ice made basic with conc. adjusted ammonium, and extracted with ethyl acetate. The extract was washed with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate, 4:1) to obtain the title compound (8.00 g, yield: 39%).

45 Amorphous.

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.29 (6H, s), 1.47 (3H, t, J = 7.0 Hz), 2.15 (2H, s), 2.68 (2H, s), 3.92 (3H, s), 4.18 (2H, q, J = 7.0 Hz), 6.62 (1H, s), 7.47 (1H, t, J = 8.0 Hz), 7.61 (1H, d, J = 8.0 Hz), 8.05-8.08 (2H, m).

EXAMPLE 482

3-(6-Ethoxy-3.4.8.9-tetrahydro-3.3.8.8-tetramethylfuro[2,3-h]isoguinolin-1-vl)benzoic acid hydrochloride

[1217] 5 M aqueous solution of sodium hydroxide (12 mL) was added to a solution of 3-(8-ethoxy-3, 4,8 8-tetrahydro-3,3,8 8-tetramethyfluro(2,3-h)isoquinolin-1-yi)benzoic acid methyl ester (8.80 g, 21.6 mmol) in methanol (40 mL) and the mixture was stirred at 50 °C for 12 hours. The reaction mixture was coded with ice, combined with 5 M hydrochloric acid(17 mL), and concentrated under reduced pressure. The residue was combined with ethanol, filtered, and the filtrate was concentrated under reduced pressure repetitively for three times. The residue was crystallized from ethyl acetate to obtain the title compound (6.15 a. vield: 68%).

Melting point: 240-243 °C.

¹H NMR (DMSO-d_g) δ 1.22 (6H, s), 1.37 (3H, t, J = 7.0 Hz), 1.46 (6H, s), 2.02-2.25 (2H, m), 3.16 (2H, s), 4.24 (2H, q, J = 7.0 Hz), 7.09 (1H, s), 7.76 (1H, t, J = 7.8 Hz), 7.86 (1H, d, J = 7.8 Hz), 8.16 (1H, s), 8.26 (1H, d, J = 7.8 Hz).

5 FXAMPLE 483

3-(6-Ethoxy-3.4.8.9-tetrahydro-3.3.8.8-tetramethylfuro[2,3-h]isoguinolin-1-yl)-N-methylbenzamide

[1218] 1-Ethyl-3-(3-dimethylaminopropyl)sarbodimide hydrochloride (0.580 g, 3.03 mmol) was added to a suspension of 3-(6-ethoxy-3.4,8.9-tetrahydro-3.3,8.e-tetramethylfuro(2,3-h)isoquinolin-1-y)lbenzoic adid hydrochloride (1.00 g, 2.33 mmol), 1-hydroxy-1H-benzotriazole monohydrate (0.392 g, 2.56 mmol) in N.N-dimethylformamide (10 m.), and the mixture was stirred at room temperature for 30 minutes. To this, 4.0% methylamine/methanol solution (1.2 m.), was added, and the mixture was stirred at room temperature for 10 minutes. To thus. The reaction solution was combined with water, and extracted with ethyl acetate. The extract was washed with water, and concentrated under reduced pressure.

15 The residue was recrystallized from ethyl acetate-hexane to obtain the title compound (0.80 g, yield: 84%). Melting point: 173-174 °C.

¹H NMR (CDCl₃) δ 1.21 (6H, s), 1.28 (6H, s), 1.47 (3H, t, J = 7.0 Hz), 2.13 (2H, s), 2.61 (2H, s), 2.94 (3H, d, J = 5.2 Hz), 4.19 (2H, q, J = 7.0 Hz), 6.60 (1H, s), 6.85-6.90 (1H, m), 7.38-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.38-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.38-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.38-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.38-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.88-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.88-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.88-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.88-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.88-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.88-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.88-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.88-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.88-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.88-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.88-7.44 (2H, m), 7.77 (1H, d, J = 1.2 Hz), 7.85-7.90 (1H, m), 7.88-7.90 (1H, m)

FXAMPI F 484

N-[2-Amino-2-oxoethyl]-3-(6-ethoxy-3.4.8.9-tetrahydro-3.3.8.8-tetramethylfuro[2,3-h]isoguinolin-1-yl)benzamide

25 [1219] Triethylamine (0.810 mL, 5.83 mmol) was added to a suspension of 3-(6-ethoxy-3.4,8,9-tetrahydro-3,3,8,8-tetramethylfuro(2,3-hijsoquinolin-1-yijbenzoic acid hydrochloride (1.09 g. 2.33 mmol) in tetrahydrofuran (10 mL) and the mixture was stirred at room temperature for 10 minutes. This was cooled with ice, treated dropwise with isobutyl chloroformate (0.362 mL, 2.80 mmol), and the mixture was stirred with cooling in ice for 45 minutes.

A solution of glycinamide hydrochloride (0.386 g, 3.50 mmol) dissolved in 2 M aqueous solution of sodium hydroxide of (1.75 mL, 3.5 mmol) was added to the reaction mixture, and the mixture was stirred with cooling in lee for 3 hours. The reaction mixture was combined with an aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetate. The extract was washed with water, and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-diethyl ether to obtain the title compound (0.82 g, yield: 75%). Melting object 127-128 C?

35 ¹H NMR (CDCl₃) & 1.22 (6H, s), 1.29 (6H, s), 1.47 (3H, t, J = 7.0 Hz), 2.14 (2H, s), 2.64 (2H, s), 4.05 (2H, d, J = 5.0 Hz), 4.18 (2H, q, J = 7.0 Hz), 5.81 (1H, br s), 6.40 (1H, br s), 6.61 (1H, s), 7.41-7.50 (2H, m), 7.85-7.99 (3H, m).

EXAMPLE 485

45

40 N-[3-(6-Ethoxy-3.4.8.9-tetrahydro-3.3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-yl)benzoyl]-2-methylalanine ethyl ester

[1220] Triethylamine (2.50 mL, 18.6 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)earbodiimide hydrochloride (1.16 g, 6.05 mmol) were added to a solution of 3-(6-ethoxy-3,4,8,9-etrahydro-3,3,8,4-etramethylfuro[2,3-h]soquinolin-1-yl) benzioia acid hydrochloride (2.00 g, 4.65 mmol), 1-hydroxy-1H-benzotriazole monohydrate (0.784 g, 5.12 mmol) and ethyl 2-aminoisobutyrate hydrochloride (1.05 g, 6.05 mmol) in N,N-dimethylformamide (20 mL) and the mixture was stirred at room temperature for 3 hours. The reaction mixture was combined with water and extracted with ethyl acetate. The extract was washed with water, and concentrated under reduced pressure. The residue was recrystallized from ethyl acetate-hoxane to obtain the title compound (1.82 g, yleid: 77%).

⁵⁰ 1H NMR (CDCl₃) & 1.24-1.30 (15H, m), 1.47 (3H, t, J = 7.0 Hz), 1.66 (6H, s), 2.16 (2H, s), 2.68 (2H, s), 4.13-4.28 (4H, m), 6.61 (1H, s), 6.93 (1H, s), 7.42-7.50 (2H, m), 7.83-7.89 (2H, m).

EXAMPLE 486

N-[3-(6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoyl]-2-methylalanine hydrochloride

[1221] 5 M aqueous solution of sodium hydroxide (3.0 mL) was added to a solution of N-[3-(6-ethoxy-3,4,8,9-tet-

rahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzoyl}-2-methylalanine ethyl ester (1,25 g, 2,47 mmol) in ethanol (7 mL) and the mixture was stirred at room temperature for 3 hours. The reaction solution was combined with M hydrochloric acid (3,7 mL), and concentrated under reduced pressure. The residue was combined with ethanol and filtered, and the filtrate was concentrated under reduced pressure repetitively 3 times. The residue was crystallized from ethyl acetate to obtain the title compound (1,28 g, quantitative). Melting point: 234-238 °C.

¹H NMR (DMSO-d₆) δ 1.22 (12H, s), 1.34 (3H, t, J = 6.9 Hz), 1.45 (6H, s), 2.19 (2H, s), 2.72 (2H, s), 4.12 (2H, q, J = 6.9 Hz), 6.85 (1H, s), 7.51-7.53 (2H, m), 7.92-7.96 (2H, m), 8.61 (1H, s).

0 FXAMPLE 487

5

N-(2-Amino-1,1-dimethyl-2-oxoethyl)-3-(6-ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl) benzamide

- 15 1222 A solution of N-[3-(6-ethoxy-3.4,8.9-tetrahydro-3.3,8.4-tetramethyfluro[2.3-h]isoquinolin-1-yilbenzoyi]-2-methylalanine hydrochloride (0.80 g, 1.55 mmol), 1-hydroxy-1H-benzotriazole ammonium sait (0.307 g, 2.02 mmol) in NN-dimethylarimetide (6 miL) was cooled with ice, 1-ethyl-2-(3-dimethylarimiopropyl)carbodilimide hydrochloride (0.387 g, 2.02 mmol) was added thereto, and the mixture was stirred with cooling in ice for 30 minutes. Triethylamine (0.541 mil, 3.88 mmol) was added to the reaction mixture, and the mixture was stirred at room temperature for 4 hours. The reaction mixture was combined with a small amount of water, and concentrated under reduced pressure. The residue was combined with a small amount of water, and concentrated under reduced pressure. The residue was combined with water, and concentrated under reduced pressure. The residue was combined with a sturated aqueous solution of sodium hydrogen carbonate, and extracted with ethyl acetate. The extract was washed with water, and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-hexane to obtain the title compound (0.50 g, yield: 68%).
- ¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.30 (6H, s), 1.47 (3H, t, J = 6.9 Hz), 1.69 (6H, s), 2.17 (2H, s), 2.68 (2H, s), 4.18 (2H, g, J = 6.9 Hz), 5.54 (1H, br s), 6.50 (1H, br s), 6.61 (1H, s), 7.07 (1H, s), 7.42-7.49 (2H, m), 7.85-7.89 (2H, m).

EXAMPLE 488

30 3-(6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzenamine

[123] A mixture of 1-(7-ethoxy-2,3-dihydro-2,2-dimethyl-5-benzofuranyl)-2-methyl-1-propanol (11.2 g, 42.3 mmol), 3-aminobenzonitrile (5.00 g, 42.3 mmol), acetic acid (60 mL) and toluene (75 mL) was cooled with ice, conc. sulfuric acid (6.77 mL, 0.127 mol) was added thereto, and the mixture was stirred at 80 °C for 1 hour. The reaction solution was allowed to cool to room temperature, combined with water, and washed with diethyl either. The acueous layer was made basic with conc. aqueous ammonia, and then extracted with ethyl acetate. The extract was washed with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (fixane/ethyl acetate 2:1) to obtain the title compound (8.17 g, yield: 53%).

40 1H NMR (CDCl₃) δ 1.23 (6H, s), 1.32 (6H, s), 1.46 (3H, t, J = 7.0 Hz), 2.32 (2H, s), 2.65 (2H, s), 3.70 (2H, br s), 4.16 (2H, q, J = 7.0 Hz), 6.58 (1H, s), 6.70-7.21 (4H, m).

EXAMPLE 489

25

45 N-[3-(6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]methanesulfonamide

[1224] A solution of 3-(6-ethosy-3-4,8,9-tetrahydro-3,3,8,8-tetramthyffuro(2,3-h)soquinolin-1-y))benzonamine (0.73 g, 2.00 mmoy) in pyrtidine (5 mL) was cooled with be, treated dropwise with methanesulflow) chloride (0.186 mL, 2.40 mmo)), and the mixture was stirred with cooling in ice for 1 hour. The reaction solution was combined with a saturated aqueous solution of sodium hydrogen carbonate and extracted with ethyl acetate. The extract was washed with water and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetate/methanol 97:3), crystallized from ethyl acetate-hexane to obtain the title compound (0.52 g, yield: 59%).

Melting point: 181-182 °C.

¹H NMR (CDCl₃) δ 1.27 (6H, br s), 1.32 (6H, s), 1.46 (3H. t, J = 7.2 Hz), 2.23 (2H, s), 2.71 (2H, s), 2.77 (3H, s), 4.18 (2H, q, J = 7.2 Hz), 6.60 (1H, s), 7.08-7.14 (1H, m), 7.22-7.35 (4H, m).

EXAMPLE 490

5

N-[3-(6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)phenyl]-N-(methylsulfonyl) methanesulfonamide

[1225] The title compound was obtained from 3-(6-ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethyffuro[2,3-h]lsoquinolin-1-yl)benzenamin and methanasulfonyl chloride by the method similar to that in EXAMPLE 30. Yield: 53%. Melting point: 183-184 °C (ethyl acotate-hexane).

¹H MMR (CDCl₃) 3 1.25 (6H, s), 1.31 (6H, s), 1.46 (3H, t, J = 6.9 Hz), 2.23 (2H, br s), 2.68 (2H, s), 3.40 (6H, s), 4.18 (2H, q, J = 6.9 Hz), 7.35-7.40 (1H, m), 7.52 (1H, t, J = 7.8 Hz), 7.61 (1H, dt, J = 7

EXAMPLE 491

15 N-[3-(6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyil-2-(methylthio)acetamide

[1226] By the method similar to that in EXAMPLE 30, 3-(6-ethoxy-3.4,8,9-tetrahydro-3,3,8,8-tetramethylluro[2,3-h] isoquinolin-1-yl)benzenamine and chloroacetyl chloride were employed to obtain 2-chloro-N-[3-(6-ethoxy-3,4,8,8-tetramethylluro[2,3-h])isoquinolin-1-yl)phenyl[acetamide. This was converted to the title compound by the method similar to that in EXAMPLE 38.

vield: 50%.

25

20

25

45

55

Melting point: 162-163 °C (ethyl acetate-hexane).

1H NMR (CDC₃) 8 1 24 (6H, s), 1.32 (6H, s), 1.46 (3H, t, J = 6.9 Hz), 2.19 (3H, s), 2.28 (2H, s), 2.67 (2H, s), 3.34 (2H, s), 4.18 (2H, q, J = 6.9 Hz), 6.60 (1H, s), 7.12 (1H, d, J = 7.2 Hz), 7.36 (1H, t, J = 7.2 Hz), 7.43 (1H, s), 7.84 (1H, d, J = 7.2 Hz), 8.82 (1H, s)

EXAMPLE 492

N-[3-(6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-2-(methylsulfinyl)acetamide

[1227] The title compound was obtained from N-I3-(6-eithoxy-9.4,8,9-tetrahydro-3,3,8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenylj-2-(methylthio)acetamide by the method similar to that in EXAMPLE 39. Yield: 67%. Metling point: 114-118 °C (eithyl acetate-hexane).

¹H NMR (CDC_{b)} 8 1.13 (6H, s), 1.22 (6H, s), 1.33 (3H, t, J = 7.0 Hz), 2.28 (2H, s), 2.62 (2H, s), 2.69 (3H, s), 3.73 (1H, d, J = 12.8 Hz), 3.93 (1H, d, J = 12.8 Hz), 4.09 (2H, q, J = 7.0 Hz), 6.78 (1H, s), 7.06 (1H, d, J = 7.6 Hz), 7.32-7.39 (1H, m), 7.61 7.75 (2H, m), 1.04 0 (1H, s), 7.05 (1H, d), 7.75 (2H, m), 7.75 (

EXAMPLE 493

40 N-(Hydroxymethyl)-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-yl)benzamide

[1228] A suspension of 3-(3.4.8,9-letrahydro-6-methoxy-3.3.8.8-letramethyfluro[2.3-h]isoquinolin-ly/blorazmide (0.50 q. 1.30 rmmol), 37% formalin (1.07 q. 13.2 mmol) and polassium carbonate (0.365 g. 2.6 mmo)) in acciontinitie (5 mL) was stirred at 60 °C for 3 hours, and then allowed to stand for 1 month. The reaction mixture was combined with a saturated aquicous solution of socium hydrogen carbonate, and extracted with orbit accident to extract was washed with water, and concentrated under orduced pressure. The residue was subjected to a column chromatography on a silica gel (ethyl acetate/methanol 19:1) to obtain the title compound (0.40 g, yield: 74%).

 ^{1}H NMR (CDClg) δ 1.23 (6H, s), 1.29 (6H, s), 2.14 (2H, s), 2.65 (2H, s), 3.93 (3H, s), 4.87 (2H, d, J = 6.2 Hz), 6.62 (1H, s), 7.39-7.48 (2H, m), 7.83-7.89 (2H, m), 8.05-8.11 (1H, m).

EXAMPLE 494

N-Methyl-3-(3.4,8,9-tetrahydro-4-hydroxy-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[1229] The title compound was obtained from N-methyl-3-(3,4,8,9-letrahydro-6-methoxy-3,3,8,8-letramethylfuro [2,3-h]isoquinolin-1-yi)benzamide by the method similar to that in EXAMPLE 291, yield: 35%. Methig point: 215-216 °C (othyl acetate).

 1 H NMR (CDCl₃) 5 1.25 (6H, s), 1.29 (6H, s), 2.16 (2H, s), 2.95 (3H, d, J = 4.4 Hz), 3.95 (3H, s), 4.44 (1H, s), 6.98 (1H, s), 7.18 (1H, br s), 7.42-7.50 (2H, m), 7.81 (1H, s), 7.87-7.91 (1H, m).

EXAMPLE 495

5

15

25

20

45

N-Methyl-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethyl-4-oxofuro[2.3-h]isoguinolin-1-yl)benzamide

[1230] The title compound was obtained from N-methyl-3-(3,4,8,9-tetrahydro-4-hydroxy-6-methoxy-3,3,8,8-tetram-ethylfuro[2,3-h]isoguinolin-1-yhbenzamide by the method similar to that in EXAMPLE 294. Yield: 45%.

Melting point: 229-231 °C (ethyl acetate-diisopropyl ether).

¹H NMR (CDCl₃) δ 1.34 (cH, s), 1.52 (6H, s), 2.17 (2H, s), 3.00 (3H, d, J = 4.8 Hz), 4.00 (3H, s), 6.36-6.48 (1H, m), 7.44-7.59 (3H, m), 7.78 (1H, s), 7.85-7.91 (1H, m).

EXAMPLE 496

N-(2-Amino-1,1-dimethyl-2-oxoethyl)-3-(3,4,8,9-tetrahydro-4-hydroxy-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] isoquinolin-1-yl)benzamide

[1231] The title compound was obtained from N-(2-amino-1,1-dimethyl-2-oxoethyl)-3-(3,4,8,9-tetrahydro-6-meth-oxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide by the method similar to that in EXAMPLE 291. Yield: 6494.

Melting point: 155-158 °C (ethyl acetate).

 1 H NMR (CDCl₃) δ 1.25-1.31 (12H, m), 1.69 (6H, s), 2.20 (2H, s), 3.96 (3H, s), 4.48 (1H, s), 5.82 (1H, br s), 6.77 (1H, br s), 7.03 (1H, s), 7.43-7.52 (3H, m), 7.91 (2H, s).

EXAMPLE 497

 $N-(2-Amino-1,1-dimethyl-2-oxoethyl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl-4-oxofuro \cite{2.3-h} isoquinolin-1-yl)benzamide$

[1232] The title compound was obtained from N-(2-amino-1,1-dimethyl-2-oxoethyl)-3-(3,4,8,9-tetrahydro-4-hydroxy-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide by the method similar to that in EXAMPLE 294, vield: 52%.

Melting point: 180-181 °C (ethyl acetate).

35 ¹H NMR (DMSO-d_g) 5 1.26 (6H, s), 1.41 (6H, s), 1.45 (6H, s), 2.24 (2H, s), 3.91 (3H, s), 6.85 (1H, br s), 7.19 (1H, br s), 7.47-7.55 (3H, m), 7.90-7.98 (2H, m), 8.29 (1H, br s).

EXAMPLE 498

9 3-(Bromomethyl)-6-ethoxy-3.4.8.9-tetrahydro-3.8.8-trimethylfuro[2,3-h]isoquinoline hydrochloride

[1233] Benzonitrile (20 mL) was cooled to -5 °C, aluminum chloride (2.38 g, 17.9 mmol) was added thereto and the mixture was stirred.

Immediately after adding 7-ethoxy-2.3-dihydro-2.2-dimethyl-6-[2-methyl-2-propenyl)benzofuran (2.20 g. 8.93 mmol), bromine (0.46 ml., 8.93 mmol) was added dropwise to the mixture, and the mixture was stirred at 6 °C for 1 hand then at room temperature further for 3 hours. The reaction mixture was poured into 1 M hydrochloric acid, and washed with disopropyl either. The aqueous layer was made basic with onor, aqueous ammonia, and extracted with eithyl acetae. The extract was washed with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetae 17.3 followed by 7.3) to obtain 3-(bromomethyl)-6-ethoxy-3.4,8-j-etten)/give-3.8-trimethylfurgol-2-hilipocupinoline (1.41 s, yields 37%).

An oil.

1H NMR (CDCl₃) § 1.31 (6H, s), 1.34 (3H, s), 1.47 (3H, t, J = 7.2 Hz), 2.18 (2H, s), 2.78 (1H, d, J = 15.9 Hz), 2.93 (1H, d, J = 15.9 Hz), 3.40 (1H, d, J = 9.9 Hz), 3.55 (1H, d, J = 9.9 Hz), 4.19 (2H, q, J = 7.2 Hz), 6.85 (1H, s), 7.39 (6H, s). [1234] This was converted into a hydrochloride salt, which was triturated from diethyl ether to obtain the title compound (1.40 g, yield from 7-ethoxy-2.3-dihydro-2.2-dimethyl-2-propenylbenzofuran: 34%). An aliquot was

pound (1.40 g., yield from 7-ethoxy-2,3-dihydro-2,2-dimethyl-5-(2-methyl-2-propenyl)benzofuran: 34%). An aliquot wa crystallized from ethyl acetate. Melling point: 156-159 °C.

¹H NMR (DMSO-d₆) δ 1.22 (3H, s), 1.24 (3H, s), 1.37 (3H, t, J = 6.9 Hz), 1.59 (3H, s), 2.17 (2H, s), 3.35 (2H, s), 3.83

(1H, d, J = 10.8 Hz), 3.92 (1H, d, J = 10.8 Hz), 4.24 (2H, q, J = 6.9 Hz), 7.11 (1H, s), 7.59-7.78 (5H, m).

EXAMPLE 499

6-Ethoxy-3.4.8.9-tetrahydro-N.N.3.8.8-pentamethyl-3-furo[2,3-h]isoquinolinemethanamine dihydrochloride

[1235] A mixture of 3-(bromomethyl)-6-ethoxy-3.4,8-)-tetrahydro-3,8,8-trimethylturo[2,3-h]isoquinoline hydrochioriode (0.50 g., 1.08 mmol), 40% aqueous solution of methylamine (2 mL) and N,N-dimethylacetamide (3 mL) was stirred at 180 °C for 14 hours in a sealed tube. The reaction solution was combined with a saturated aqueous solution of sodum hydrogen carbonate, and extracted with ethyl acetate. The extract was washed with water, and concentrated order reduced pressure. The residue was subjected to a column chromatography on a silice age (hexanof-ethyl acetate 1:1 followed by hexanofethyl acetate/triethylamine 92.5:3), and then to a column chromatography on a basic silica gel (hexanofethyl acetate 4:1) to obtain 6-ethoxy-3,4,6,9-letrahydro-N,N,3,8,8-pentamethyl-3-furo[2,3-h]isoquinoinemethanamine (0.22 g. yield: 52%).

An oil.

¹H NMR (CDCl₃) & 1.22-1.32 (9H, m), 1.45 (3H, t, J = 7.0 Hz), 2.18 (2H, s), 2.31 (6H, s), 2.35-2.51 (2H, m), 2.64 (1H, d, J = 15.6 Hz), 2.97 (1H, d, J = 15.6 Hz), 4.17 (2H, q, J = 7.0 Hz), 6.62 (1H, s), 7.38 (5H, s).

[1236] This was converted into a hydrochloride salt, crystallized from ethyl acetate to obtain the title compound (0.20 g, yield from 3-(bromomethyl)-8-ethoxy-3.4.8,9-tetrahydro-3,8.8-trimethylfuro[2,3-h]lsoquinoline hydrochloride: 40%). Mettin a point: 145-147 °C.

¹H NMR (DMSO-d₆) δ 1.23 (3H, s), 1.25 (3H, s), 1.38 (3H, t, J = 6.9 Hz), 1.54-1.62 (3H, m), 2.11 (1H, d, J = 16.2 Hz), 2.28 (1H, d, J = 16.2 Hz), 2.91 (6H, s), 3.20 (2H, s), 3.60 (2H, s), 4.23 (2H, q, J = 6.9 Hz), 7.03 (1H, s), 7.59-7.69 (5H, m).

EXAMPLE 500

15

25

25

45

55

6-Ethoxy-N-ethyl-3.4.8.9-tetrahydro-N.3.8.8-tetramethyl-3-furo[2.3-h]isoguinolinemethanamine dihydrochloride

[1237] The title compound was obtained from 3-(bromomethyl)-6-ethoxy-3.4,8,9-tetrahydro-3.8.8-trimethylfuro [2,3-h)isoquinoline hydrochloride and N-ethylmethylamine by the method similar to that in EXAMPLE 499. Yield: 33%. Melting point: 146-149 °C (ethyl acetate).

¹H NMR (DMSO-d₆) & 1.23 (6H, s), 1.27 (3H, t, J = 7.4 Hz), 1.38 (3H, t, J = 6.8 Hz), 1.58 (3H, s), 2.13 (1H, d, J = 16.4 Hz), 2.26 (1H, d, J = 16.4 Hz), 2.26 (1H, d, J = 16.4 Hz), 2.89 (3H, s), 3.20-3.61 (6H, m), 4.23 (2H, q, J = 6.8 Hz), 7.03 (1H, s), 7.60-7.65 (5H, m).

EXAMPLE 501

 $O-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl) phenyl]\ dimethylcarbamothioate hydrochloride$

[1238] 3-(3.4.8,9-Tetrahydro-6-methoxy-3.3.8.4-tetramethyffuro(2.3-h)[soquinolin-1-y)[phenol (3.50 g, 9.96 mmo)] was added to a solution of potassium hydroxide (687 mg, 1.05 mmo)] in water (30 mL)-actoner (30 mL), and the mixture was sirred at room temperature for 20 minutes. With cooling in ice, N.N-dimethythiccarbamoyl chloride (1.42 g, 11.5 mmo)) was added to the mixture, and the mixture was sirred at room temperature for 3 hours. Acetone was distilled off under reduced pressure, the mixture was made basic by adding 1 M aqueous solution of sodium hydroxide, and extracted twice with tetryl acetate. The combined organic layer was washed with 1 M aqueous solution of sodium hydroxide and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic sitica get (hexane/éthyl acetate 5.1 followed by 3:1) to obtain 3:40 g of a free base of the title compound. 753 mg of them was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, triturated from diethyl ether to obtain the title compound (754 mg, y)eldic 574 mg,

Amorphous.

 1 H NMR (DMSO-d₆) δ 1.23 (6H, s), 1.41 (3H, s), 1.47 (3H, s), 2.05-2.75 (2H, m), 3.17 (2H, s), 3.20-3.50 (6H, m), 3.94 (3H, s), 7.09 (1H, s), 7.37-7.54 (3H, m), 7.67-7.74 (1H, m), 12.70 (1H, br s).

EXAMPLE 502

2-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenoxy]acetamide

[1239] Potassium tert-butoxide (380 mg, 3.37 mmol) was added to a solution of 3-(3,4,8,9-tetrahydro-6-methoxy-

3,3 8 A-teramethylfur(2,3-h)isoquinolin-1-y)phenol (215 mg, 0.612 mmol) in NN-dimethylformamide (2 ml.) with cooling in ice, and the mixture was stirred at room temperature for 1 hour. 2-Bromoacetamide (279 mg, 2.02 mmol) was added and the mixture was stirred at room temperature for 2 hours, and then stirred at 90 °C for 24 hours. Water was poured into the reaction mixture, which was then extracted twice with ethyl acetate. The combined organic layer was washed with 1 M aqueous solution of sodium hydroxide and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 1:2 followed by hexane/ethyl acetate/friethylamine 15:30-11), crystallized from diethyl ether-hexane to obtain the title compound (130 mg, yleid: 52°s).

⁰ ¹H NMH (CDCl₃) δ 1.25 (6H, s), 1.32 (6H, s), 2.24 (2H, br s), 2.69 (2H, s), 3.93 (3H, s), 4.53 (2H, s), 5.63 (1H, br s), 6.60 (1H, br s), 6.62 (1H, s), 6.93-7.05 (3H, m), 7.29-7.37 (1H, m).

EXAMPLE 503

Melting point: 172-174 °C.

5

5 N-Methyl-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzenesulfonamide hydrochloride

[1240] A suspension of 3-cyano-N-methylbenzenesulfonamide (2.10 g. 10.7 mmol) in acetic acid (10 mL)-folluene (17 mL) was retated with onos culturia cold (1 z mL, 22 S mmol) with cooling line, 1-(2.3-d1)wordo-7-methyly-2-d-climethyl-5-benzeduranyl)-2-methyl-1-propanol (3.20 g. 12.8 mmol) was added thereto at room temperature, and the mixture was stirred at 80 °C for 1 hour. Ice water was poured into the reaction mixture, which was then washed with diethyl ether. The aqueous layer was neutralized with cone. aqueous armonia, and extracted tiwes with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a side age (Inexane/fethyl acetate 1:1 followed by hexane/ethyl acetate/trichylamine 25:25:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chiloride-orthyl acetate solution, concentrated under reduced pressure, and crystallized from ethano-lethyl acetate to obtain the title compound (3.19 g, yield: 64%).

¹H NMR (DMSO-d₆) δ 1.22 (6H, s), 1.46 (6H, br s), 2.13 (2H, s), 2.45 (3H, d, J = 4.8 Hz), 3.04-3.30 (3H, m), 3.95 (3H, s), 7.11 (1H, s), 7.76-8.26 (4H, m).

EXAMPLE 504

25

45

50

55

2-[(Methyl)][(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]sulfonyl]amino]acetic acid ethyl ester hydrochloride

[1241] Sodium hydride (68% dispersion in oil) (148 mg. 4.07 mmol) was added to a solution of N-methyl-3-(3.4,8,9-tet-nahydro-6-methoxy-3,3,8,8-tetramethyfluro(2,3-h)lisoquinolin-1-yl)benzenesulfonamide hydrochloride (900 mg. 1.94 mmol) in N,N-dimethylformamide (9 ml.) with booling in ice, and the mixture was stirred at room temperature for 30 minutes. With cooling in ice, ethyl bromoacetate (0.23 ml., 2.03 mmol) was added to the mixture was three dat room temperature for 5 hours. Water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic sities of (hexane/ethyl acetate 3:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, crystallized from ethyl acetate to obtain the title compound (880 mc. vield: 64%).

Melting point: 122-125 °C.

 1H NMR (DMSO-d₆) δ 1.17 (3H, t, J = 7.0 Hz), 1.22 (6H, s), 1.46 (6H, br s), 2.17 (2H, s), 2.87 (3H, s), 3.17 (2H, s), 3.94 (3H, s), 4.06 (2H, q, J = 7.0 Hz), 4.12 (2H, s), 7.11 (1H, s), 7.81-7.92 (2H, m), 8.09-8.13 (2H, m).

EXAMPLE 505

2-[(Methyl)[[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]sulfonyl]amino] acetamide

[1242] 5 M aqueous solution of sodium hydroxide (1.5 mL) was added to a solution of 2-[(methyn)][[(3.4,8.9-tetrahydro-6-methoxy-3,3.8-tetramethylluro[2,3-h)isoquinolin-1-ylphenylisulfonyljaminojacetic acid ethyl ester hydrochloride (464 m. 0.842 mnol) in ethanol (1.5 mL) and the mixture was stirred at room temperature for 1 hour. After distillina

chanol off under reduced pressure, water was added and the mixture was adjusted at pH 6 with 5 M hydrochloric acid, and extracted twice with ethyl acetate-tetrahydrofuran. The combined organic layer was dried over sodium sulfate, filtered, concentrated under reduced pressure to obtain 2-{(methyl)[6:4], 8.8 etetrahydro-6-methoxy-3.8,8 etetramethyfurc/[2.3-h]isoquinolin-1-yl/phenyl[sulfonyl]amino] acetate acid (394 mg). 1-Ethyl-3-(3-dimethylaminopropyl)carbod-limide hydrochloride (199 mg, 1.04 mmol) and 1-hydroxy-114-benzottiazole monohydrate (123 mg, 0.802 mmol) were added to a solution of the resultant acetic acid derivative (390 mg) in Ni-dimethylformamide (2 mi.) and the mixture was stirred at room temperature for 30 minutes. After cooling with ice, conc. aqueous ammonia (0.5 mi.) was added to the mixture, and the mixture was stirred at room temperature for 1 hour. Water was poured into the reaction mixture, which was then extracted twice with ethyl acctate-tetrahydrofuran. The combined organic layer was washed with a brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/thyl acetate 3:1), crystallized from ethyl acetate-hexane to obtain the title compound (55 mg, yield: 14%).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.33 (6H, s), 2.16 (2H, s), 2.72 (2H, s), 2.86 (3H, s), 3.66 (2H, s), 3.93 (3H, s), 5.58 (1H, br s), 6.58 (1H, br s), 6.64 (1H, s), 7.59-7.86 (4H, m).

EXAMPLE 506

5

20

25

30

25

40

45

55

N-[3-[[[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]||soquinolin-1-yl)phenyl||sulfonyl||amino||phenyl||acetamide||hydrochloride

[1243] A solution of N-[3-([3-cyanobenzenesulfony)]aminolphenylacetamide (1.39 g, 4.41 mmol) in acetic acid (5 mL)-toluene (8 mL) was treated dropwise with conc. sulfurio acid (0.52 mL, 9.70 mmol) with cooling in ice, and 1-(2.3-di-hydro-7-methoxy-2.2-dimethyl-5-benzofuranyl)-2-methyl-1-propanol (1.32 g, 5.29 mmol) was added thereto at room temperature, and the mixture was stirred at 60 °C for 3 hours. Ice water was poured into the reaction mixture, which was washed with delibyl ether. The aqueous layer was neutralized with conc. aqueous ammonia, and extracted weak with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexanofethyl acetate 1:2 followed by 1:3) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, triturated from diethyl ether to obtain the title compound (35 mg, yleid: 48%).

¹H NMR (DMSO-d₆) δ 1.09 (6H, s), 1.45 (6H, s), 1.73-2.00 (2H, m), 1.94 (3H, s), 3.17 (2H, s), 3.93 (3H, s), 6.65-6.78 (1H, m), 7.10-7.13 (3H, m), 7.66 (1H, s), 7.80-7.90 (2H, m), 8.05-8.20 (2H, m), 10.05 (1H, s), 10.58 (1H, s).

EXAMPLE 507

2-[[[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8+etramethylfuro[2,3-h]] is oquinolin-1-yl)phenyl] sulfonyl] amino] acetamide hydrochloride

[1244] A suspension of 2-f[(3-cyanobenzene)sulfonyl[amino]acetamide (180 mg, 0.752 mmol) in acetic acid (1 mL)toluene (1.6 mL) was treated dropwise with conc. sulfuric acid (0.088 mL, 1.65 mmol) with cooling in loe, 1-(2.3-dihydro7-methoxy-2-2-dimethyl-5-benzofuranyl)-2-methyl-1-propanol (226 mg, 0.903 mmol) was added thereto at room temperature, and the mixture was stirred at 60 °C for 2 hours. Water was poured into the reaction mixture, which was
washed twice with diethyl either. The aqueous layer was neutralized with conc. aqueous ammonia, and extracted viawith ethyl acctate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (ethyl acctate
followed by ethyl acctate/methanol 10-1) to obtain a fireo base of the title compound. This was dissolved in ethyl acctate,
combined with 4 M hydrogen chloride/ethyl acctate solution, concentrated under reduced pressure, triturated from
diethyl dehr to obtain the title compound (189 mg, viold: 50%).

Amorphous.
¹H NMR (DMSO-d_e) δ 1.22 (6H, s), 1.46 (6H, br s), 2.00-2.30(2H, m), 3.17 (2H, s), 3.30-3.60 (2H, m), 3.94 (3H, s),

7.10 (2H, s), 7.42 (1H, s), 7.80-7.87 (2H, m), 8.04 (1H, s), 8.11-8.25 (2H, m),

5

15

20

25

25

45

N-(Hexahydro-2-oxo-1H-azepin-3-yl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl) benzenesulfonamide hydrochloride

[1245] A suspension of 3-cyano-N-(hexahydro-2-oxo-1H-azepin-3-y)benzenesulfonamide (360 mg, 1:23 mmol) in acetic acid (2 mL)-foluene (3.2 mL) was treated dropwise with conc. sulfuric acid (0.14 mL, 2.71 mmol) with cooling in ice, and stirred at room temperature for 5 minutes. 1-(2.3-dihydro-7-methoy-2-2-dimethyl-5-benzofuranyl)-2-methyl-1-propanol (369 mg, 1.47 mmol) was added to the mature, and the mixture was stirred at 65 °C for 3 hours. Water was poured into the reaction mixture, which was washed wize with diethyl either. The aqueous layer was neutralized with conc. aqueous ammonia, and extracted twico with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexanofethyl acetate 1:2) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, triturated with diethyl ether to obtain the title compound (27 ma, yletic) 399.

¹H NMR (DMSO-d₆) δ 1.22 (6H, s), 1.44 (3H, s), 1.45-1.85 (4H, m), 1.47 (3H, s), 2.00-2.35 (2H, m), 2.90-3.15 (2H, m), 3.16 (2H, s), 3.99-3.45 (2H, m), 3.94 (3H, s), 4.00-4.15 (1H, m), 7.10 (1H, s), 7.65-7.90 (2H, m), 7.82 (2H, br.s), 8.03-8.20 (2H, m).

EXAMPLE 509

Amorphous.

 $S-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8.8-tetramethyl furo[2,3-h] is oquino lin-1-yl) phenyl]\ dimethyl carbamothio atehydrochloride$

[1246] A suspension of S-(3-eyanophenyl) dimethylicarbamothioate (637 mg, 3.09 mmol) in acetic acid (4 mL)-toluene (6.5 mL) was treated dropwise with cone, sulfuria caid (0.35 mL, 6.80 mmol) with cooling in ice, 1-(2,3-dihydro-7-methro-yo-2-2-dimethyl-5-benzofuranyl-2-endryl-1-propanol (928 mg, 3.71 mmol) was added thereto at room temperature, and the mixture was sitred at 80 °C for 1 hour. Ice water was poured into the reaction mixture, which was then washed with diethyl ether. The aqueous layer was neutralized with cone, aqueous ammonia, and extracted twice with ethyl acetate. The combined organic layer was washed with brine, oried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 5:1 followed by 3:1) to lottain a free base of the title compound as an amorphous material.

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.33 (6H, s), 2.39 (2H, br s), 2.67 (2H, s), 3.03 (6H, br s), 3.91 (3H, s), 6.59 (1H, s), 7.38-7.58 (4H, m).

[1247] This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, triturated with diethyl ether to obtain the title compound (618 mg, yield: 42%).

¹H NMR (DMSO-d₆) δ 1.23 (6H, s), 1.42 (3H, s), 1.45 (3H, s), 2.13 (1H, br d, J = 15.8 Hz), 2.40-2.60 (1H, m), 2.94 (3H, s), 3.00-3.50 (2H, m), 3.05 (3H, s), 3.94 (3H, s), 7.09 (1H, s), 7.68-7.80 (4H, m).

EXAMPLE 510

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[3-(methylthio)phenyl]furo[2,3-h]isoquinoline hydrochloride

[1248] 28% sodium methoxide/methanol solution (2 mL) was added to a solution of S-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8-tetramethylluro[2,3-h]lsoquinolin-1-ylbomyl gimethylcamemothiota(1,12,9,2.55 mmol) in N.N-dimethylformamide (10 mL) with cooling in ice, and the mixture was stirred at room temperature for 1 hour. Lee water was poured into the reaction mixture, which was neutralized with 5 M hydrochloric acid, and extracted three times with ethyl acetate. The combined organic layer was washed with brine, dired over sodium suitlate, filtered and concentrated under reduced pressure. The residue was dissolved in N.N-dimethylformamide (10 mL), sodium hydride (66% dispersion in id) (93 mg, 2.55 mmol) was added thereto and the mixture was stirred at room temperature for 20 minutes (10 mL), 2.55 mmol) was added to the mixture and the mixture was stirred at room temperature for 20 minutes (10 mL). 2.55 mmol) was added to the mixture and the mixture was stirred at room temperature for 20 minutes. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 10·1) to obtain a free base of the title compound as an amorphobus material.

¹H NMR (CDCl₂) δ 1.25 (6H, s), 1.33 (6H, s), 2.24 (2H, s), 2.49 (3H, s), 2.69 (2H, s), 3.93 (3H, s), 6.61 (1H, s), 7.13-7.31

(4H, m).

5

15

[1249] This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, crystallized from ethyl acetate to obtain the title compound (247 mg, yield: 23%). Meltina point: 130-140 °C.

¹H NMR (DMSO-d_c) δ 1.24 (6H, s), 1.44 (6H, s), 2.25 (2H, s), 2.55 (3H, s), 3.14 (2H, s), 3.94 (3H, s), 7.09 (1H, s), 7.31-7.35 (1H, m), 7.51-7.63 (3H, m).

EXAMPLE 511

9 3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[3-(methylsulfinyl)phenyl|furo|2,3-h|isoquinoline hydrochloride

[1250] A solution of sodium metaperiodate (404 mg, 1.89 mmol) in water (2.5 mL) was added to a solution of 3.4.8.9-letarylordon-Emethoxy.3.8.8-letaramethyl-13-(methylito)phenylifun(2.3-hl)sequionibine (288 mg, 0.755 mmol) in methanol (3.5 mL) and the mixture was stirred at room temperature for 1 hour. Water was pured into the reaction mixture, which was combined with sodium hydrogen carbonate, and extracted twice with ethyl acetale. The combined organic layer was washed with water and brine, dired over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic sitica gel (hexane/ethyl acetate 2.1 followed by 1.11) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, triturated with diethy ether to obtain the title compound (257 mg, vield: 78%).

Amorphous.

 ^{1}H NMR (DMSO-de) δ 1.22 (6H, s), 1.47 (6H, s), 2.15 (2H, s), 2.85 (3H, s), 3.17 (2H, s), 3.94 (3H, s), 7.11 (1H, s), 7.76-8.05 (4H, m).

25 EXAMPLE 512

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-[3-(methylsulfonyl)phenyl]furo[2,3-h]isoquinoline hydrochloride

[1251] A solution of sodium metaperiodate (517 mg, 2.42 mmol) in water (2 mL) was added to a solution of 3.4,8,9-tetrahydro-6-methoxy-3.3,8,8-tetramethyl-1-(3-(methythio)phenylfuro[2,3-h]isoquinoline hydrochloride (202 mg, 0.483
mmol) in methanol (3 mL) and the mixture was stirred at 60 °C for 4 hours. Water was poured into the reaction mixture,
which was combined with sodium hydrogen carbonate and extracted twice with ethyl acetate. The combined organic
layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure.
The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 3:1) to obtain a
free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate
solution, concentrated under reduced pressure, crystallized from ethanol-ethyl acetate-diisopropyl ether to obtain the
title compound (171 mg, yield: 79%).
Melting point: '41-145 °C.
Melting point: '41-145 °C.

¹H NMR (DMSO-d₆) δ 1.22 (6H, s), 1.47 (6H, s), 2.14 (2H, s), 3.16 (2H, s), 3.34 (3H, s), 3.94 (3H, s), 7.11 (1H, s), 7.86-8.00 (2H, m), 8.23-8.27 (2H, m).

EXAMPLE 513

45

2-[[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]thio]acetamide

[1252] S-[3-(3.4.8.9-Tetrahydro-6-methoxy-3.3.8.8-tetramethylluro[2,3-h]isoquinolin-1-yliphenyl] dimethydroxbramthiolate (1.6.2 g. 3.69 mmol) was added to a solution of 28% sodium nethoxide/methanol solution (1.43 g. 7.39 mmol) in N.N-dimethylformamide (8 mL) with cooling in loe, and the mixture was stirred at room temperature for 30 minutes. Water was poured into the reaction mixture, which was extracted twice with ethyl acetate-tetrahydrofuran. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 1:2) to obtain an amorphous material (1.25 g). An Aliquot (369 mg) was crystallized from ethyl acetate-hexane to obtain the title compound (298 mg, yeld: 64%).

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.33 (6H, s), 2.20 (2H, s), 2.71 (2H, s), 3.66 (2H, s), 3.93 (3H, s), 5.44 (1H, br s), 6.62 (1H, s), 6.81 (1H, br s), 7.21-7.43 (4H, m).

5

15

20

25

45

55

2-[[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl)phenyl] sulfinyl] acetamide hydrochloride

[1253] A solution of sodium metaperiodate (655 mg, 3.06 mmol) in water (2.5 mL), was added to a solution of 2:[[3:(3,4.8,9.1etralytydo-8-methoxy-3.8,8.8 Letramethyllur(2.3,8-1) isoquinoini-1-yiphenyllihoipleciamide (401 mg, 0.945 mmol) in methanol (4 mL) and the mixture was stirred at room temperature for 3 hours. Water was poured into the reaction mixture, which was neutralized with sodium hydrogen carbonate, and extracted three times with etnyl acetate. The combined organic layer was washed with water and brine, dried over sodium sullate, filtered and concontrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexame/ethyl acetate 1.3 followed by ethyl acetate) to obtain a free base of the title compound. This was dissolved in exity acetate, combined with 4 M hydrogen chlorida/ethyl acetate solution, concentrated under reduced pressure, triturated with diethyl ether to obtain the title compound (357 mg, yield: 79%).

Amorphous.

 1H NMR (DMSO-d₆) δ 1.23 (6H, s), 1.47 (6H, s), 2.17 (2H, s), 3.17 (2H, s), 3.80 (1H, br d, J = 13.4 Hz), 3.94 (3H, s), 4.04 (1H, d, J = 13.4 Hz), 7.10 (1H, s), 7.36 (1H, s), 7.75-8.03 (5H, m).

EXAMPLE 515

 $2-[[3-(3,4,8,9-\mathrm{Tetrahydro-6-methoxy-3,3,8,8-tetramethy| furo[2,3-h] is oquino lin-1-yl]) phenyl] sulfonyl] acetamide hydrochloride$

[1254] A solution of sodium metaperiodate (1,22 g, 5.72 mmol) in water (4 mL) was added to a solution of 2-[3-(3-4.8 4-9-tetrahydro-6-methoxy-3.8.8 4-teramethydruc/2.9-hispoundinot-1yphenyl(thiologateriamide (486 mg, 1.14 mmol) in methanol (6 mL) and the mixture was stirred at 70 °C for 6 hours. Water was poured into the reaction mixture, which was combined with sodium hydrogen eurobnate, and activated twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 1:3) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride of thyl acetate solution, concentrated under reduced pressure, triturated with diethyl ether to obtain the title compound (370 mg. vield: 68%).

Amorphous.

¹H NMR (DMSO-d_e) δ 1.21 (6H, s), 1.47 (6H, s), 2.00-2.40 (2H, m), 3.17 (2H, s), 3.94 (3H, s), 4.30-4.60 (2H, m), 7.10 (1H, s), 7.35 (1H, s), 7.80 (1H, s), 7.84-7.98 (2H, m), 8.15-8.19 (2H, m).

EXAMPLE 516

3-Chloro-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-1-propanesulfonamide

[1255] A solution of 3-(3.4.8,9-letrahydro-6-methoxy-3.3.8,9-tetramethylfuro[2.3-h)[soquinolin-1-y])benzenamine (729 mg, 2.08 mmol) and triethylamine (0.32 mL, 2.29 mmol) in tetrahydrofuran (7 mL) was treated dropwise with 3-chloropropanesulfonyl chloride (0.25 mL, 2.08 mmol) with cooling in ice, and stirred at room temperature for 3 hours. Ice water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with brine, died over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 2:1 followed by hexane/ethyl acetate/ triethylamine 25:25:1) to obtain an oil (820 mg). An aliquot (520 mg) was crystallized from ethyl acetate-hexane to obtain the title compound (453 mg, yledi: 70%).

Melting point: 163-165 °C.

 1H NMR (CDCl3) δ 1.27 (6H, s), 1.33 (6H, s), 2.17-2.31 (2H, m), 2.24 (2H, s), 2.72 (2H, s), 3.12 (2H, t, J = 6.5 Hz), 3.64 (2H, t, J = 6.2 Hz), 3.93 (3H, s), 6.61 (1H, s), 7.12-7.39 (4H, m).

EXAMPLE 517

2-[3-(3.4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]isothiazolidine 1,1-dioxide

[1256] 1,8-Diazabicyclo[5.4.0]undec-7-ene(0.11 mL,0.753 mmol) was added to a solution of 3-chloro-N-[3-(3,4,8,9-tet-

rahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-1-propanesulfonamide (352 mg, 0.717 mm0)) in toluene (3 ml) and the mixture was stirred at 110 °C for 1 hour. Water was poured into the reaction mixture. The mixture was neutralized with 1 M hydrochloric acid, and extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-diethyl ether to obtain the title compound (112 mg, yield: 34%). Meltino point: 114-116 °C.

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.33 (6H, s), 2.30 (2H, s), 2.45-2.60 (2H, m), 2.70 (2H, s), 3.38 (2H, t, J = 7.5 Hz), 3.81 (2H, t, J = 6.6 Hz), 3.92 (3H, s), 6.60 (1H, s), 7.24-7.27 (2H, m), 7.39-7.42 (2H, m).

EXAMPLE 518

5

N.N-Dimethyl-N'-[3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-yl)phenyl]sulfamide

[1257] Triethylamine (0.15 mL, 1.07 mmol) and dimethylsulfamoyl chloride (0.10 mL, 0.970 mmol) were added to a solution of 3-(3.4,8.9-tetrahydro-6-methoxy-3.3,8,8-tetramethylfuro(2,3-h)isoquinolin-1-yl)benzenamine (340 mg, 0.970 mmol) in tetrahydrofuran (3 mL) with cooling in ico, and the mixture was heated under reflux for 15 hours. Water was poured into the reaction mixture, which was made basic by adding 1 M aqueous solution of sodium hydroxide, and extracted twice with ethyl acatate. The combined organic layer was washed with a brine, dired over magnesium sulfate. filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 1:2), and crystallized from diethyl ether to obtain the title compound (226 mg, vigid: 51%).

Melting point: 134-136 °C

¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.32 (6H, s), 2.24 (2H, s), 2.70 (2H, s), 2.82 (6H, s), 3.92 (3H, s), 6.61 (1H, s), 7.09-7.13 (2H, m), 7.21-7.36 (2H, m).

EXAMPLE 519

25

25

50

N-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-2-propenamide

[1258] Triathylamine (0.47 mL, 3.86 mmol) and 3-chloropropionyl chloride (0.31 mL, 3.21 mmol) were added to a substantial of 3-(3.4,8)-sterahydro-6-methoxy-3,3,8,8-tetramethyffuro[2,3-h]isoquinolin-1-yl)benzenamine (1.07 g, 3.05 mmol) in tetrahydrofuran (10 mL) with cooling in ice, and the mixture was stirred at the same temperature for 1.5 hours. Ice water was poured to the reaction mixture, which was extracted three times with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 1:1 followed by hexane/ethyl acetate/ methanol 25:25:1), crystallized from diethyl ether-hexane to obtain ca. 1:1 mixture (1.12 g) of the title compound and 3-chloro-N-1/3 d. 8.9-tistra/hydro-6-methoxy-3.8.8-bitramethyfur/10/2-3-hisoquinolin-1-yhohenylloropanamide.

[1259] Potassium-carbonate (220 mg, 1.59 mmol) and potassium iodide (22 mg, 0.133 mmol) were added to a solution of this substance in NN-dimenty/formamide (10 mL) and the mixture was stirred at 60 °C for 4 hours. Water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with a content and brine, dried over sodium sulfate, filtered and concentrated under reduce pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 3:1), crystallized from diethyl ether-diisopropyl ether to obtain the title compound (419 mg, yield: 34%). Melting point: 188-190 °C.

45 In MMR (CDC₉) 8 1.25 (6H, s), 1.32 (6H, s), 2.30 (2H, s), 2.68 (2H, s), 3.92 (3H, s), 5.74 (1H, dd, J = 10.0, 1.6 Hz), 6.22 (1H, dd, J = 16.9, 10.0 Hz), 6.41 (1H, dd, J = 16.9, 1.6 Hz), 6.60 (1H, s), 7.07 (1H, d, J = 8.0 Hz), 7.31 (1H, t, J = 8.0 Hz), 7.44 (1H, s), 7.77 (1H, d, J = 8.0 Hz), 7.64 (1H, s).

EXAMPLE 520

4-Chloro-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]butanamide

[1260] Triethylamine (0.81 ml., 5.81 mmol) and 4-chlorobutyryl chloride (0.62 ml., 5.54 mmol) were added to a solution of 3-(3.4,8.9-tetrahydro-6-methoxy-3.3,8.8-tetramethylfuro[2,3-hjisooqiinolin-1-yljbenzenamine (1.85 g. 5.28 mmol) in tetrahydrofuran (15 ml.) with cooling in ios, and the mixture was stirred at the same temperature for 1 hour loce water and an aqueous solution of sodium hydroxide were poured into the reaction mixture, which was extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was crystallized from dictive their-discoprovel their to obtain the title compound (2.25

g, yield: 94%).

Melting point: 146-148 °C.

14 NMR (CDCl₃) δ 1.25 (6H, s), 1.32 (6H, s), 2.10-2.23 (2H, m), 2.30 (2H, s), 2.52 (2H, t, J = 7.1 Hz), 2.69 (2H, s), 3.65 (2H, t, J = 6.0 Hz), 3.92 (3H, s), 6.60 (1H, s), 7.07 (1H, d, J = 7.6 Hz), 7.31 (1H, t, J = 7.6 Hz), 7.45 (1H, s), (1H, d, J = 7.6 Hz), 7.78 (1H, s),

EXAMPLE 521

5

15

25

20

25

45

1-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2.3-h]isoquinolin-1-yl)phenyl]-2-pyrrolidinone hydrochloride

1321] Potassium carbonate (5/4 mg. 3.72 mmol) and potassium lodide (56 mg. 0.338 mmol) were added to a solution of 4-chioro-N-(3-(3,4,8-4 tetrahydro-6-methoxy-3,3,8-8 tetramethylfuro(2,3-h)lacquinolin-1-ylphenyl]butanudid (1.54 g. 3.38 mmol) in N,N-dimethylformamide (10 mL) and the mixture was stirred at 60 °C for 2 hours and 80 °C for 5 hours. Water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sultate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (ethyl acetate followed by ethyl acetate/nethylamine 50-1) to obtain a free base of the title compound. This was dissolved in eithyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, triturated with delthyl ether to obtain the tile compound (941 mg. yield: 61%).

Amorphous.

 $^{1}\text{H NMR (DMSO-d}_{0}) \, \delta \, 1.\, 23 \, (6\text{H, s}), \, 1.\, 44 \, (6\text{H, s}), \, 2.\, 02-2.\, 15 \, (2\text{H, m}), \, 2.\, 20-2.\, 40 \, (2\text{H, m}), \, 2.\, 45-2.\, 60 \, (2\text{H, m}), \, 3.\, 14 \, (2\text{H, s}), \, 3.\, 70-4.\, 05 \, (2\text{H, m}), \, 3.\, 94 \, (3\text{H, s}), \, 7.09 \, (1\text{H, s}), \, 7.35 \, (1\text{H, d}, \, J=8.0\, \text{Hz}), \, 7.60-7.68 \, (1\text{H, m}), \, 7.90 \, (1\text{H, s}), \, 7.94 \, (1\text{H, d}, \, J=8.0\, \text{Hz}), \, 7.60-7.68 \, (1\text{H, m}), \, 7.90 \, (1\text{H, s}), \, 7.94 \, (1\text{H, d}, \, J=8.0\, \text{Hz}), \, 7.00-7.68 \, (1\text{H, m}), \, 7.90 \, (1\text{H, s}), \, 7.94 \, (1\text{H, d}, \, J=8.0\, \text{Hz}), \, 7.00-7.68 \, (1\text{H, m}), \, 7.90 \, (1\text{H, s}), \, 7.94 \, (1\text{H, d}, \, J=8.0\, \text{Hz}), \, 7.00-7.68 \, (1\text{H, m}), \, 7.90 \, (1\text{H, s}), \, 7.94 \, (1\text{H, d}, \, J=8.0\, \text{Hz}), \, 7.00-7.68 \, (1\text{H, m}), \, 7.90 \, (1\text{H, s}), \, 7.94 \, (1\text{H, d}, \, J=8.0\, \text{Hz}), \, 7.00-7.68 \, (1\text{H, m}), \, 7.90 \, (1\text{H, s}), \, 7.94 \, (1\text{H, d}, \, J=8.0\, \text{Hz}), \, 7.00-7.68 \, (1\text{H, m}), \, 7.90 \, (1\text{H, s}), \, 7.94 \, (1\text{H, d}, \, J=8.0\, \text{Hz}), \, 7.00-7.68 \, (1\text{H, m}), \, 7.90 \, (1\text{H, s}), \, 7.90 \, (1\text{H, s$

EXAMPLE 522

3- Chloro-2, 2- dimethyl-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethyl furo[2,3-h] is oquinolin-1-yl) propanamide

[1262] Triethylamine (1.30 mt., 9.30 mmol) and 3-chloropivaloyl chloride (1.15 mt., 887 mmol) were added to a solution of 3-(3.4,8.9-tetrahydro-6-methoxy-3.3,8.4-tetramethylfuro(2,3-h]sequinolin-1-yl)senzenamine (2.86 g a.45 mmol) in tetrahydrofuran (20 mt.) with cooling in ice, and the mixture was stimed at room temperature for 30 minutes. Ice water was poured into the reaction mixture, which was extracted twice with ethyl accetate. The combined organic layer was washed with a brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was crystalized from ethyl acetate-hexane to obtain the title compound (3.83 g, yield: 97%). Melting opini: 189-191 °C.

¹H NMR (CDC₃) δ 1.24 (6H, s), 1.32 (6H, s), 1.42 (6H, s), 2.31 (2H, s), 2.68 (2H, s), 3.70 (2H, s), 3.92 (3H, s), 6.61 (1H, s), 7.12 (1H, dd, J = 7.6, 1.4 Hz), 7.35 (1H, t, J = 7.6 Hz), 7.48 (1H, t, J = 1.4 Hz), 7.55 (1H, br s), 7.81 (1H, dd, J = 7.6, 1.4 Hz).

EXAMPLE 523

3,3-Dimethyl-1-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-2-azethidinone hydrochloride

[1263] Potassium carbonate (529 mg, 3.83 mmol) and potassium iodide (58 mg, 0.348 mmol) were added to a solution of 3-chitor-2-2-dimethyl-147-3-d, 8.49 lettaryldro-6-methoxyl-3, 8.8-tetramethyltro(2,3-h)legounionlin-1ylphenyl) propanamide (1.63 g, 3.48 mmol) in N.N-dimethylformamide (15 mL) and the mixture was stirred at 70°C for 3 hours, tee water was added to the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with brine, dired over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica sign (fiexane/ethyl acetate 5.1 followed by 3:1) to obtain a free base of the title compound. This was dissolved in eithyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, crystallized from ethyl acetate-disopropyl ether to obtain the title compound (1.50 g, ylidici 92%).

Melting point: 191-193 °C.

 ^{1}H NMR (DMSO-dg) δ 1.24 (6H, s), 1.32 (6H, s), 1.44 (6H, s), 2.29 (2H, s), 3.14 (2H, s), 3.58 (2H, s), 3.94 (3H, s), 7.09 (1H, s), 7.29-7.31 (1H, m), 7.62-7.64 (3H, m).

5

15

25

25

40

45

5-Oxo-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-2-pyrrolidinecarboxamide

[1264] Thionyl chloride (2.06 mL, 28.3 mmol) and N,N-dimethylformamide (1 drop) were added to a solution of D,Lpyroglutamic acid (3.65 g, 28.3 mmol) in butene (16 mL) and the mixture was sittered at 50 °C for 40 minutes. After distilling the solvent offl under reduced pressure, the residue was dissolved in N,N-dimethylformamide (10 mL) and 3-(3.4,8-y-tetrahydro-6-methoxy-3.3,8-tetramethylfuro[2,3-h]isoquinoiln-1-yl/benzenamine (1.98 g, 5.66 mmol) and trithylamine (3.94 mL, 28.3 mmol) were added thereto, and the mixture was sittered at room temperature for 3 hours. An aqueous solution of sodium chloride was poured into the reaction mixture, which was extracted twice with ethyl acetate-tetrahydrofuran. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetate foliowed by ethyl acetate/methanol 30·1), and crystallized from ethyl acetate-hexane to obtain the title compound (1.57 x, wledic 650°x).

Melting point: 145-147 °C.

¹H NMR (CDC₃) δ 1.23 (6H, s), 1.31 (6H, s), 2.27 (2H, s), 2.30-2.59 (4H, m), 2.67 (2H, s), 3.92 (3H, s), 4.20-4.30 (1H, m), 6.60 (1H. s), 6.94 (1H, s), 7.09 (1H, d, J = 8.0 Hz), 7.23-7.37 (1H, m), 7.53 (1H, s),7.74 (1H, d, J = 8.0 Hz), 8.50 (1H, s).

EXAMPLE 525

N-Methyl-5-oxo-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-2-pyrrolidinecarboxamide hydrochloride

[1253] Thionyl chioride (0.51 mL, 7.04 mmol) and N,N-dlmethylformamide (1 drop) were added to a solution of D,Lpyroglutamic acid (995 mg, 7.04 mmol) in toluene (4 mL) and the mixture was sittered at 50 °C for 40 minutes. After distilling the solvent off, the residue was dissolved in N,N-dimethylformamide (4 mL), and N-methyl-3(3,4,8) eterahydro-6-methoxy 3,3,8,8-tetramethylfuro(2.3-hilsoquinolin-1-yl)benzonamine (493 mg, 1.35 mmol) and triethylamine (0.98 mL, 7.04 mmol) were added thereto with cooling in ice, and the mixture was stirred at room temperature for 3 hours. Brince was pourced into the reaction mixture, which was extracted three times with ethyl accetate-tetrahydrofuran. The combined organic layer was washed with brine, diel over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gei (ethyl acetate) to obtain a free base of the title compound. This was dissolved in eithyl acetate, combined with 4 M hydrogen chloride/ethyl aceta solution, concentrated under reduced pressure, triturated with diethyl ether to obtain the title compound (516 mg, yield: 75%).

Amorphous.

 1 H NMR (DMSO-d_e) δ 1.23 (6H, s), 1.47 (6H, s), 1.90-2.30 (4H, m), 2.19 (2H, s), 3.17 (2H, s), 3.25 (3H, s), 3.94 (3H, s), 4.00-4.15 (1H, m), 7.11 (1H, s), 7.55-7.85 (5H, m).

EXAMPLE 526

2,6-Dichloro-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-3-pyridinecarboxamide

[1266] N.N'-Carbony(dimidazole (160 mg, 0.988 mmol) was added to a solution of 2.6-dichlononicolinic acid (80%) (188 mg, 0.881 mmol) in N.N-dimethylformamide (2.5 mL) and the mixture was stirred at room temperature for 1 hour. 3-(3.4.8.9-Tatrahydro-6-methoxy-3.3.8.8-teiramethyfluro(2.3-f)lipsoquinolin-1-ylbenzenamine (347 mg, 0.989 mmol) was added to the mixture, and the mixture was stirred at room temperature for 1 hour and at 60° C for 2 hours and 90° C for 15 hours. Water was poured into the reaction mixture, which was extracted wide with eithyl acetate-tetrahydro-furan. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hoursed thyl acetate-12-11 followed by 1:1), crystallized from ethyl acetate-hexane to obtain the title compound (95 mg, yleid: 18%).

Melting point: 130-132 °C.

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.34 (6H, br s), 2.33 (2H, s), 2.69 (2H, s), 3.93 (3H, s), 6.61 (1H, s), 7.19 (1H, d, J = 7.5 Hz), 7.37-7.43 (2H, m), 7.61 (1H, s), 7.84 (1H, d, J = 7.5 Hz), 8.13 (1H, d, J = 8.0 Hz), 8.56 (1H, s).

5

15

20

25

25

45

50

N-[3-[[[[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]]isoguinolin-1-yl)phenyl]amino]carbonyl]amino] phenyl]acetamide hydrochloride

1267] N.N°-Carbonyldimidazole (151 mg. 0.933 mmol) was added to a solution of 3-(3,4,8,9-tertarlydro-6-methoxy-33,8-tertamethyllruc(2,4)) sequal copium of 1-10 mg. 2-Mminoacetanilide (140 mg. 0.933 mmol) was added to mixture was stirred at room temperature for 1 hour. 3'-Aminoacetanilide (140 mg. 0.933 mmol) was added to the mixture was stirred at room temperature for 3 hours. Lee water was poured into the reaction mixture, which was extracted three times with eithyl acetate. The combined organic layer was concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silice gel (hexane/ethyl acetate 1:2, ethyl acetate followed by ethyl acetate/methanol 20-1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, triturated with eligibility after the obtain the title compound (128 mg. yield: 24%).

Amorphous.

1H NMR (DMSO-d_g) δ 1.24 (6H, s), 1.44 (6H, s), 2.02 (3H, s), 2.18-2.55 (2H, m), 3.15 (2H, br s), 3.94 (3H, s), 7.09 (1H, s), 7.13-7.23 (4H, m), 7.50-7.88 (4H, m), 9.30 (1H, s), 9.50 (1H, s), 9.93 (1H, s)

EXAMPLE 528

[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoguinolin-1-yl)phenyllurea

[1268] Sodium cyanate (121 mg, 1.87 mmol) and trifluoreacetic acid(0,36 mL, 4.67 mmol) were added to a solution of 3-(3.4.8.6-terhaydro-6-nethoxy-3.8.8-letramethythru(2,3-th)sequincin-1-ybbenzenamine (227 mg, 0.933 mmol) in tetrahydrofuran (3 mL) with cooling in ice, and the mixture was sittred at room temperature for 1 hour. The reaction mixture was neutralized with 1 M aqueous solution of sodium hydroxide, and extracted twice with ethyl acetale. The combined organic layer was washed with a brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetale), crystallized from disappropri ether to toblatin the title compound (303 mg, yield: 83%).

30 Melting point: 174-176 °C.

¹H NMR (CDCl₃) δ 1.23 (6H, s), 1.32 (6H, s), 2.28 (2H, s), 2.70 (2H, s), 3.93 (3H, s), 4.89 (2H, br s), 6.60 (1H, s), 6.98 (1H, d, J = 7.6 Hz), 7.25-7.33 (2H, m), 7.49 (1H, d, J = 8.2 Hz), 7.55 (1H, s).

EXAMPLE 529

N-Methyl-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]urea

[1269] Sodium cyanate (125 mg, 1.92 mmol) and Influoroacetic acid (0.37 mL, 4.80 mmol) were added to a solution of N-methyl-3-(3.4,8.9-tetrahydro-6-methoxy-3.3.8,9-tetramethyffuro[2.3-h]isoquinolin-1-yl)benzenamine (350 mg, 0.960 mmol) in tetrahydroturan (3 mL) with cooling in ice, and stirred at room temperature for 1 hour. The reaction mixture was neutralized with 1 M aqueous solution of sodium hydroxide, and extracted twice with ethyl acetate. The combined organic layer was washed with a brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/sthyl acetate 1:2), crystallized from ethyl acetate. hexane to obtain the title compound (263 mg, yield: 67%).

 1 H NMR (CDCl₃) δ 1.26 (6H, s), 1.33 (6H, s), 2.22 (2H, s), 2.70 (2H, s), 3.28 (3H, s), 3.93 (3H, s), 4.42 (2H, br s), 6.62 (1H, s), 7.30-7.52 (4H, m).

EXAMPLE 530

N-Methyl-N'-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoguinolin-1-yl)phenyllurea

[1270] Phenyl chlorocarbonate (0.11 ml., 0.902 mmol) and triethylamine (0.13 ml., 0.902 mmol) were added to a solution of 3-(3.4.8.9-tetrahydro-6-methoxy-3.3,8.9-tetramethyfluro[2.3-h]isoquinolin-1-yl)benzenamine (316 mg, 0.902 mmol) in N.N-dimethylflormamide (3 ml.) and the mixture was stirred at room temperature for 1 hour. Methylamine hydrochloride (73 mg, 1.08 mmol) and triethylamine (0.31 ml., 2.26 mmol) were added to the mixture, and the mixture was stirred at room temperature for 2 hours and at 50 °C for 5 hours. Water was added to the reaction mixture, which was extracted three times with eithyl acetate. The combined organic laver was washed with brine, dired over sodium

sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gei (ethyl acetate followed by ethyl acetate/methanol 50:1), crystallized from ethyl acetate-diisopropyl ether to obtain the title compound (278 mg, yield: 76%).

Melting point: 125-127 °C.

5 1H NMR (CDCl₃) ô 1.24 (6H, s), 1.31 (6H, s), 2.29 (2H, s), 2.69 (2H, s), 2.74 (3H, d, J = 4.4 Hz), 3.92 (3H, s), 5.13 (1H, br.s), 6.60 (1H, s), 6.95 (1H, d, J = 7.6 Hz), 7.02 (1H, s), 7.21-7.39 (2H, m).

EXAMPLE 531

9 N-(2-Pyridinyl)-N'-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]urea

[1271] Triethylamine (0.13 m.l., 0.899 mmol) and phenyl chlorocarbonate (0.11 m.l., 0.899 mmol) were added to a solution of 3.(3.4, 8.9-itershydro-6-methoxy-3.8, 8.1-etramelyfur(2.2-h)lgourionin-1-y)lencramamine (31 m.g., 0.899 mmol) in N.N-dimethylformamide (3 m.l.) with cooling in ice, and the mixture was stirred at room temperature for 40 minutes. 2-Aminopyridine (83 mg, 0.899 mmol) was added to the mixture and the mixture was stirred at room temperature for temperature of 2-hours and at 60 °C for 2 hours. Lee water was poured into the reaction mixture, which was extracted twice with ethyl accetate. The combined organic layer was washed with water and brine, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (fexana/ethyl acetate 1:1 foliowed by 1:2), crystallized from dilsopropyl ether to obtain the title compound (166 mg, yield: 39%).

¹H NMM (CDCi₃) 8 1.27 (6H, s), 1.32 (6H, s), 2.35 (2H, s), 2.71 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 6.81 (1H, d, J = 8.0 Hz), 631-6.97 (1H, m), 7.09 (1H, d, J = 7.6 Hz), 7.36 (1H, t, J = 8.0 Hz), 7.56-7.66 (2H, m), 7.81 (1H, d, J = 7.6 Hz), 8.26-8.28 (2H, m), 1.19 1 (2H, d, J = 7.6 Hz), 8.26-8.28 (2H, m), 1.26 (2H, m), 1.2

25 EXAMPLE 532

N-(2-Chloroethyl)-N'-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]urea

1272] 2-Chlorocthyl isocyanate (0.12 m.l., 1.48 mmol) was added to a solution of 3-(3.4.8,0-tertahydro-6-methoxy-3.3,8.8-tertamentylintrac/2-3-hilsoquinolin-tylphozenatinis (51 mg., 1.48 mmol) in Nh-dimentylformamide (5 ml.) and the mixture was stirred at room temperature for 3 hours. An aqueous solution of sodium chloride was poured into the reaction mixture, which was extracted three times with eithy acetate. The combined organic layer was washed with brine, order over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 1:1 followed by ethyl acetate), crystallized from diethyl ether to obtain the title compound (477 mg. yleid: 17%).

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.32 (6H, s), 2.30 (2H, s), 2.71 (2H, s), 3.45-3.63 (4H, m), 3.92 (3H, s), 5.68 (1H, t, J = 5.2 Hz), 6.60 (1H, s), 6.95 (1H, d, J = 7.8 Hz), 7.20 (1H, s), 7.24 (1H, t, J = 7.8 Hz), 7.42 (1H, d, J = 7.8 Hz), 7.59 (1H, s).

40 EXAMPLE 533

Melting point: 147-150 °C.

1-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoguinolin-1-yl)phenyl]-2-imidazolidinone

[1273] Potassium tert-butoxide (86 mg. 0.770 mmol) was added to a solution of N-[2-chloroethy]-N-[3-(3,4,8,0-te-framethy-frame

Melting point: 225-227 °C.

¹H NMR (CDC₃) δ 1.24 (6H, s), 1.32 (6H, s), 2.30 (2H, br s), 2.68 (2H, s), 3.57 (2H, t, J = 8.1 Hz), 3.92 (3H, s), 3.99 (2H, t, J = 8.1 Hz), 4.60 (1H, s), 6.60 (1H, s), 7.05 (1H, d, J = 7.8 Hz), 7.35 (1H, t, J = 7.8 Hz), 7.35 (1H, s), 7.80 (1H, d, J = 7.8 Hz), 7.35 (1H, d, J = 7.8 Hz), 7.35

55

5

25

N,N'-Dimethyl-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] is oquinolin-1-yl) phenyl] sulfamide hydrochloride in the sum of the sum

[1274] Chlorosulfonyl isocyanate (0.14 ml., 1.57 mmol) was added to a solution of 2-methyl-2-propanol (0.15 ml., 1.57 mmol) in tetrahydrouran (0.15 ml.) with cooling in ice and the mixture was stirred at room temperature for 30 minutes. With cooling in ice, 3 (3.4,8,9-letrahydro-6-methoxy-3.3,8,8-letramethylfurol(2.3-h)isoquinolin-1-y)benzenamine (5.00 mg. 1.34 mmol) and tetrahydmine (0.24 ml., 1.72 mmol) were added to the mixture and the mixture was stirred at room temperature for 2 hours. Ice water was poured into the reaction mixture, which was extracted three times with othly acctate-letrahydrofuran. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexano' ethyl acctate 2:1 followed by 1:1) to obtain [[3.4,8,9-letrahydro-6-methoxy-3.3,8.8. tetramethylfuro(2.3-h)isoquin-olin-1-yhlpentylaminosulfon/laghamic add 1.1-dimethyltethyl sets (610 m.) welds (67%) as covstals.

15 1H NMR (CDCl₃) § 1.27 (6H, s), 1.33 (6H, s), 1.41 (9H, s), 2.22 (2H, s), 2.71 (2H, s), 3.93 (3H, s), 6.62 (1H, s), 7.21-7.41 (4H, m).

[1275] Sodium hydride (66% dispersion in oil) (36 mg, 0.991 mmol) was added to a solution of the resultant carbamic acid derivative (500 mg, 0.944 mmol) in N.N-climethylformamide (5 mL) with cooling in ice, and the mixture was stirred at room temperature for 30 minutes. With cooling in ice, iodomethane (0.06 mL, 0.991 mmol) was added to the mixture and the mixture was stirred at room temperature for 30 hours.

Water was poured into the reaction mixture, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a slica gel (hexane/ethyl acetate 2:1) to obtain an about 1:1 mixture of (methyl)[[[3-(3,4.8.9-tetrahydro-6-methoxy-3,3.8.8-tetramethylfuro[2,3-h]soquinolin-1-yl)phenyl]amino]sulfonyl] carbamic acid 1.1-dimthylethyl ester and (methyl)[[[3-(3,4.8.9-tetrahydro-6-methoxy-3,3.8.8-tetramethylfuro [2,3-h]soquinolin-1-yl)phenyllaminolsulfonylladamic acid 1.1-dimethylethyl ester (379 mg).

[1276] 4 M hydrogen chloride/eithyl acetate solution (3 mL) was added to the resultant mixture (370 mg) and the mixture was stirred at room temperature for 1 hour. Water was poured into the reaction mixture, which was neutralized with 5 M aqueous solution of sodium hydroxide, and then extracted with eithyl acetate. The organic layer was washed with a brine, dried over sodium suifate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (haxane/eithyl acetate 1:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/eithyl acetate solution, concentrated under reduced pressure, triturated with diethyl either to obtain the title compound (129 mg, yield: 28%).

35 1H NMR (DMSO-d_θ) δ 1.19 (6H, s), 1.40 (3H, s), 1.45 (3H, s), 1.97-2.50 (2H, m), 2.51 (3H, d, J = 4.8 Hz), 3.14 (2H, s), 3.15 (3H, s), 3.91 (3H, s), 7.06 (1H, s), 7.43-7.67 (4H, m).

EXAMPLE 535

N-Methyl-N'-[3-(3.4.8,9-tetrahydro-6-methoxy-3,3,8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl[sulfamide

[1277] After separating N.N'-dimethyl form in the column chromatography in Example 534, followed by elution with hexane/ethyl acetate 1:2 followed by crystallization from diethyl ether, the title compound was obtained (85 mg, yield: 21%).

45 Melting point: 135-136 °C.

¹H NMR (CDCl₃) δ 1.28 (6H, s), 1.33 (6H, br s), 2.25 (2H, s), 2.60 (3H, s), 2.72 (2H, s), 3.93 (3H, s), 5.86 (1H, br s), 6.62 (1H, s), 7.03-7.14 (2H, m), 7.28-7.39 (2H, m).

EXAMPLE 536

50

N-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]sulfamide hydrochloride

[1278] 4 M hydrogen chloride/eithyl acetate solution (3 mL) was added to [[[3-(3,4,8]-s-Tetrahydro-5-methoxy-3,3,8.8-tetramethylfuro/[2,3-h]isoquinolin-1-yliphenyljaminojsulfonyljcarbamic acid 1,1-dimethylethyl ester (639 mg, 1,02 mmo) and the mixture was stirred at room temperature for 3 hours. The reaction mixture was neutralized with 5 M aqueous solution of sodium hydroxide, and extracted with ethyl acetate. The organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatoraphy on a basic silica ed (hexane/eithyl acetate) to blink acetate) to blain a free base of the

title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concontrated under reduced pressure, and crystallized from ethanol-disopropyl ether to obtain the title compound (333 mg, vield: 70%).

Melting point: 191-194 °C.

5 1H NMR (DMSO-dg) δ 1.22 (6H, s), 1.41 (3H, s), 1.47 (3H, s), 2.00-2.55 (2H, m), 3.00-3.40 (2H, m), 3.94 (3H, s), 7.09 (1H, s), 7.18-7.59 (6H, m), 9.99 (1H, s).

EXAMPLE 537

15

25

20

25

40

45

5-[3-(3.4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-1,2,5-thiadiazolidine-2-carboxylate 1,1-dimethylethyl ester 1,1-dioxide

[1279] Sodium hydride (66% disposion in oil) (45 mg. 1.24 mmol) was added to a solution of [[5-(3.4.8.9-ticahydro-firmitiony-3.3.8.8-letramethy/urc(2.3-h)sequinion-1.4y)phanylamine judinopylamathenia cid 1.1-dimethylatipy later (312 mg. 0.589 mmol) in N. N-dimethylformamide (3 mL) and the mixture was stirred at room temperature for 3.0 minutes. With cooling in ice, 1,2-dibromeethane (0.05 i mL, 0.589 mmol) was added to the mixture and the mixture was stirred at room temperature for 3.5 hours. Water was poured into the reaction mixture, which was extracted twice with whith acetate. The combined organic layer was washed with water and a brine, dried over sodium suitate, filtered and connentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 3:1 followed by 2:1, recrystallized from diisopropyl ether to obtain the title compound (133 mg, yield: 41%).

Melting point: 157-159 °C.

¹H NMR (CDCl₃) δ 1.24 (6H, s), 1.32 (6H, s), 1.56 (9H, s), 2.26 (2H, br s), 2.69 (2H, s), 3.78-3.85 (2H, m), 3.92 (3H, s), 3.92-3.99 (2H, m), 6.60 (1H, s), 7.32-7.36 (2H, m), 7.44-7.46 (2H, m).

EXAMPLE 538

 $2\hbox{-}[3\hbox{-}(3,4,8,9\hbox{-}Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]} is oquinolin-1-yl)phenyl]-1,2,5-thiadiazolidine 1,1-dloxide$

[1280] 4 M hydrogen chloride/athyl acetate solution (10 mL) was added to 5/3-(3.4,8.-Tetrahydro-6-methoxy-3.8.8.tetramethyfluro[2.3-h]soquinolin-1-yl)phenyl]-1,2,5-hiadiazolidine-2-carboxylic acid 1,1-dimethylethyl ester 1,1-dioxide (1.30 g. 2.34 mmol) and the mixture was stirred at room temperature for 2 hours. The reaction mixture was neutralized with 2 M aqueous solution of sodium hydroxide, and extracted twice with ethyl acetate. The combined organic layer was washed with a brine, dired over sodium sulfate, filtered and concentrated under reduced pressure. The crystals of the residue were washed with disopropyl ether to obtain the title compound (922 mg, yield: 87%).

¹H NMR (CDCl₃) δ 1.32 (12H, s), 2.22 (2H, s), 2.72 (2H, s), 3.18 (2H, br s), 3.64-3.80 (2H, br), 3.93 (3H, s), 6.61 (1H, s), 7.04-7.07 (2H, m), 7.39 (1H, t, J = 7.6 Hz), 7.59 (1H, d, J = 7.6 Hz).

EXAMPLE 539

[5-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-1,2,5-thiadiazolidine-2-acetamide 1.1-dioxide

[1281] Potassium tert-butoxide (77 mg, 0.687 mmol) was added to a solution of 2;4:(3,4,8.9-terterbydro-6-methoxy-3,3,8.8-teramethyfluro(2,3-h)isoquivolini-1-yl)phenyl]-1,2,5-thiadiazoildine 1,1-dioxide (313 mg, 0.687 mmol) in N.N-dimethyflormamide (9 mL) and the mixture was stirred at room temperature for 30 minutes. 2-Bromacetamide (95 mg, 0.687 mmol) was added to the mixture and the mixture was stirred at room temperature for 2 hours, and 2-bromacetamide (95 mg, 0.687 mmol) was further added and the mixture was stirred at room temperature for 2 hours, and 2-bromacetamide (95 mg, 0.687 mmol) was further added and the mixture was proved into the reaction mixture, which was extracted three times with ethyl acetate. The combined organic layer was washed with brinc, died over sodium suitate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetate, ethyl acetate/triothylamine 50:1 followed by ethyl acetate/michanol/triethylamine 50:1:1), crystallized from ethyl acetate-disopropyl ether to obtain the title compound (206 mg, yleid: 59%).

Melting point: 206-208 °C.

 $^{1}\text{H NMR (CDCl}_{3}) \delta \ 1.25 \ (6\text{H}, \, \text{s}), \ 1.32 \ (6\text{H}, \, \text{s}), \ 2.26 \ (2\text{H}, \, \text{br} \, \text{s}), \ 2.69 \ (2\text{H}, \, \text{s}), \ 3.65 \ (2\text{H}, \, \text{t}), \ J = 6.6 \ \text{Hz}), \ 3.85 \ (2\text{H}, \, \text{s}), \ 3.92 \ (2\text{H}, \, \text{t}), \ 5.63 \ (1\text{H}, \, \text{br} \, \text{s}), \ 6.61 \ (1\text{H}, \, \text{s}), \ 6.62 \ (1\text{H}, \, \text{br} \, \text{s}), \ 7.26 \ -7.30 \ (2\text{H}, \, \text{m}), \ 7.38 \ -7.45 \ (2\text{H}, \, \text{m}).$

5

25

30

25

5-[3-(3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]-1,2,5-thiadiazolidine-2-acetic acid ethyl ester 1,1-dioxide

[1282] Potassium tert-butoxide (985 mg, 6.19 mmol) was added to a solution of 2;3-(3,4,8.9-tetrahydro-6-methoxy-3,3.8 a-tetramethyfluro[2,3-h]isoquinolin-1-yliphenyl]-1,2,5-thiadiazoildine 1,1-dioxide (1.88 g, 4.13 mmol) Nh. dimethyflormanide (15 mL) and the nixture was stimed at room temperature for 30 minutes. Ethyl bromoacetate (0.48 mL, 4.13 mmol) was added to the mixture, and the mixture was stimed at room temperature for 1 hour. Water was poured into the reaction mixture, which was extracted three times with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexanolethyl acetata 3:1 followed by 1:1), crystallized from diethyl ether to obtain the title compound (583 mg, yield: 26%).

15 1H NMR (CDCl₃) 8 1.25 (6H, s), 1.31 (3H, t, J = 7.0 Hz), 1.32 (6H, s), 2.27 (2H, s), 2.69 (2H, s), 3.73 (2H, t, J = 6.2 Hz), 3.92 (2H, t, J = 6.2 Hz), 3.92 (5H, s), 4.25 (2H, a, J = 7.0 Hz), 6.60 (1H, s), 7.23-7.27 (2H, m), 7.41-7.43 (2H, m).

EXAMPLE 541

2-[(2-Oxo-3-pyrrolidinyl)amino]-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl) phenyllacetamide dihydrochloride

[1283] D.L.-3.Amino-2-pyrrolidinone (83 mg. 0.825 mmol), potassium carbonate (114 mg. 0.825 mmol) and potassium carbonate (114 mg. 0.875 mmol) were added to a solution of 2-chloro-Nl-3(3.4.8, by etertarybrio-e-themboxy 3.8 8 bettramethylfuro(2,3-h)lsoquinolin-1-yi)phenyl[acetamide (320 mg. 0.750 mmol) in N,N-dimethylformamide (3 mL) and the mixture was stirred at 60 °C for 1 hour. An aqueous solution of sodium chloride was poured into the reaction mixture, which was extracted wide with third, effective reaction associated extensive forum as uffacts, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetate/methanol 10.1 followed by ethyl acetate/methanol/teritylamine 50:5f1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride ethyl acetate solution, concentrated under reduced pressure, crystallized from ethanol-ethyl acetate-diisopropyl ether to obtain the title compound (245 mg. yield: 58%).

¹H NMR (DMSO-d₂) 8 1.24 (6H, s), 1.44 (6H, s), 2.10-2.42 (4H, m), 3.16-3.30 (4H, m), 3.94 (3H, s), 4.01-4.33 (3H, m), 7.10 (1H, s), 7.37 (1H, d, J = 8.0 Hz), 7.85 (1H, t, J = 8.0 Hz), 7.86 (1H, s), 7.87 (1H, d, J = 8.0 Hz), 8.40 (1H, s), 9.40-1.00.0 (2H, m), 11.32 (1H, s).

EXAMPLE 542

2-[Acety/(2-oxo-3-pyrrolidinyl)amino]-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]acetamide hydrochloride

[1284] D.L-3-Anino-2-pyrrollidinone (87 mg. 0.871 mmol), potassium carbonate (120 mg. 0.871 mmol) and potassium iodide (13 mg. 0.0792 mmol) were added to a solution of 2-cholron-N[-3.6, 8.9 stertalyrof-6-methoxy-3.3.8.8 tetram-ethylfuro[2,3-h]isoquinolin-1-yl)phenyl[sectamide (338 mg. 0.792 mmol) in N,N-dimethylformamide (3 mL) and the mixture was stirred at 60 °C for 2.5 hours. With cooling in ice, acety chloride (0.12 mL, 0.174 mmol) and triethylamide (0.36 mL, 2.61 mmol) were added to the mixture, and the mixture was stirred at room temperature for 2 hours. Water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silice gel (ethyl acetate/methanol 50:1 followed by 10:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, crystallized from ethanol-disoporpyl ether to obtain the title compound (167 mg. yield: 37%). Miking point: 197-200 °C.

¹H MMR (DMSO-d₂) 8 1.22 (6H, s), 1.42 (6H, s), 1.96 (3H, s), 2.05-2.33 (4H, m), 3.10-3.58 (4H, m), 3.94 (3H, s), 4.15-4.81 (3H, m), 7.10 (1H, s), 7.29 (0.5H, d, J = 7.6 Hz), 7.55-7.67 (1H, m), 7.70-8.05 (1H, m), 7.98 (1H, s), 8.12 (0.5H, s), 8.19 (0.5H, s), 10.49 (0.5H, s), 11.23 (0.5H, s).

EXAMPLE 543

5

15

20

30

25

40

2-[Methyl(2-oxo-3-pyrrolidinyl)amino]-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]acetamide

[1285] Potassium carbonate (89 mg. 0.645 mmol) and todomethane (0.021 ml., 0.338 mmol) were added to a solution of 2-[(2-oxo-3-pyrrolidinyl)amino]-N-[3-(3.4,8,9-tetrahydro-6-methoxy-3.3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-y) phenyl[acetamide dihydrochloride (173 mg. 0.907 mmol) in NN-dimethylformamide (1.5 ml.) with cooling in i.e., and the mixture was stirred at room temperature for 2 hours. Brine was poured into the reaction mixture, which was extracted wice with ethyl acetale-tetrahydrofuran. The combined organic layer was washed with brine, dired over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gei (hexane/ethyl acetale/firethylamine 30:1:1), crystallized from ethyl acetate-diethyl ether to obtain the title compound (4 mg. yield: 3%).

Melting point: 112-114 °C.

¹H NMR (CDC₃) δ 1.23 (3H, s), 1.27 (3H, s), 1.32 (6H, s), 2.05-2.45 (2H, m), 2.30 (2H, s), 2.50 (3H, s), 2.68 (2H, s), 3.29 (2H, s), 3.29-34 (2H, m), 3.55-3.64 (1H, m), 3.92 (3H, s), 5.54 (1H, s), 6.60 (1H, s), 7.07 (1H, d, J = 8.0 Hz), 7.54 (1H, s), 5.60 (1H, s), 6.00 (1H, s),

EXAMPLE 544

3-(6-Ethoxy-3.4.8.9-tetrahydro-3.3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-yl)benzoic acid ethyl ester

[1886] A solution of ethyl 3-cyanobenzoate (27.6 g., 157 mmol) in acetic acid (90 mL)-toluene (150 mL) was treated dropwise with conc. sulfuric acid (17.8 mL, 330 mmol) with cooling in ice, and 1-(7-ethoxy-2,3-dihydro-2,2-dimethyl-5-benzofuranyl)-2-methyl-1-propanol (50.0 g, 189 mmol) was added thereto at room temperature, and the mixture was stirred at 55 °C for 1 hour. Ethanol (105 mL) was added dropwise to the mixture and the mixture was stirred at 65 °C for 40 minutes. Water was poured into the reaction mixture, and the organic phase was separated and extracted with 2 M hydrochloric acid. The combined aqueous layer was neutralized with conc. aqueous ammonia, and extracted wice with ethyl acetate (I). The combined organic layer was washed with 0.5 M aqueous solution of sodium hydroxide (ii), water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was crys-

tallized from hexane to obtain the title compound (11.8 g, yield: 18%).
Melting point: 97-100 °C.

EXAMPLE 545

3-(6-Ethoxy-3.4.8.9-tetrahydro-3.3.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl)benzoic acid

[1287] The aqueous layers in EXAMPLE 544 ((I) and (II)) were combined, neutralized with 5 M hydrochloric acid, and extracted three times with ethyl acetate-tetrahydrofuran. The combined organic layer was concentrated under reduced pressure, crystallized from ethyl acetate to obtain the title compound (2.77 g, yield: 5%). Melting point: 137-139 °C.

45 ¹H NMR (CDCl₃) § 1.28 (12H, s), 1.49 (3H, t, J = 7.1 Hz), 2.17 (2H, s), 2.66-3.10 (2H, br), 4.23 (2H, q, J = 7.1 Hz), 6.65 (1H, s), 7.33-7.41 (2H, m), 7.94-7.97 (1H, m), 8.27 (1H, s).

EXAMPLE 546

9 3-(6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzenamine dihydrochloride

[1288] 3-(6-Ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro(2,3-h)jsoquinolin-1-yl)benzenamine (9,36 g, 25.7 mmol) was dissolved in ethyl acetate, 4 M hydrogen chloride/ethyl acetate solution was added thereto, and the mixture was concentrated under reduced pressure, crystallized from ethanol-ethyl acetate to obtain the title compound (4.47 g, yield: 40%).

Melting point: 240 °C (decomposition).

 $^{1}\text{H NMR (DMSO-d}_{6}) \, \delta\, 1.26\, (6\text{H},\, s),\, 1.37\, (3\text{H},\, t,\, J=7.0\, \text{Hz}),\, 1.42\, (6\text{H},\, s),\, 2.10\text{-}2.55\, (2\text{H},\, m),\, 3.00\text{-}3.30\, (2\text{H},\, m),\, 4.23\, (2\text{H},\, q,\, J=7.0\, \text{Hz}),\, 6.99\text{-}7.07\, (3\text{H},\, m),\, 7.19\, (1\text{H},\, d,\, J=7.6\, \text{Hz}),\, 7.44\, (1\text{H},\, dd,\, J=8.2,\, 7.6\, \text{Hz}).$

EXAMPLE 547

5

15

25

30

25

45

[[4-[[[3-(6-Ethoxy-3,4.8,9-tetrahydro-3,3,8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]amino]carbonyl]phenyl] methyl]phosphonic acid diethyl ester hydrochloride

[1289] 1-Hydroxy-1H-benzotriazole monohydrate (327 mg, 2.13 mmol), triethylamine (0.95 mL, 6.79 mmol) and 1-ethyl-3 (3-dimethylaminopropyloarbodimide hydrochloride (483 mg, 2.52 mmol) were added to a solution of 3-(6-ethoxy-3-4,8.9-letrahydro-3.3,8.8-tetramethylfurol(2,3-h]lsoquinolin-1-yil)benzenamine dihydrochloride (680 mg, 1.94 mmol) and 4-{(diethoxyphosphiny)methylplenzoic acid (529 mg, 1.94 mmol) in N.N-dimethylformamide (6 mL) and the mixture was stirred at room temperature for 7 hours. 4-((Diethoxyphosphiny)methylplenzoic acid (211 mg, 0.776 mmol) was added to the mixture and the mixture was stirred under the same condition for 12 hours. Ice water was poured into the reaction mixture, which was extracted three times with ethyl acetale. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 1: followed by ethyl acetate) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 hydrogen chloride ethyl acetate oscilution, concentrated under reduced pressure, crystallized from ethanol-diisopropyl ether to obtain the title compound (682 mg, vield: 54%).

Melting point: 190-191 °C.

 $^{1}\text{H NMR (DMSO-d}_{8}\text{-}D_{2}\text{O (1 drop))} \, \delta \, 1.18 \, (6\text{H, t, J} = 7.1 \, \text{Hz}), \, 1.25 \, (6\text{H, s}), \, 1.38 \, (3\text{H, t, J} = 7.0 \, \text{Hz}), \, 1.42 \, (6\text{H, s}), \, 2.20 \, 2.32 \, (1\text{H, m}), \, 2.40 \, -2.53 \, (1\text{H, m}), \, 3.00 \, -3.30 \, (2\text{H, m}), \, 3.95 \, (2\text{H, d, J} = 2.1 \, \text{Hz}), \, 3.91 \, -4.03 \, (4\text{H, m}), \, 4.25 \, (2\text{H, c, J} = 7.0 \, \text{Hz}), \, 7.09 \, (1\text{H, s}), \, 7.36 \, (1\text{H, d, J} = 7.7 \, \text{Hz}), \, 7.44 \, (2\text{H, dd, J} = 8.3 \, 2.3 \, \text{Hz}), \, 7.64 \, (1\text{H, t, J} = 7.7 \, \text{Hz}), \, 7.94 \, (2\text{H, d, J} = 8.3 \, \text{Hz}), \, 8.06 \, (1\text{H, d, J} = 7.7 \, \text{Hz}), \, 8.09 \, (1\text{H, s}), \, 10.59 \, (1\text{$

EXAMPLE 548

6-(Ethylsulfinyl)-3.4.8.9-tetrahydro-3.3.8.8-tetramethyl-1-phenylfuro[2.3-h]isoguinoline

[1290] A solution of sodium metaperiodate (434 mg, 2.03 mmol) in water (2.5 m.l.) was added to a solution of 6-(ethyl-thio)-3.4,8,9-tetrahydro-3,3,8,8-tetrahydro-3,3,8,8-tetrahydro-3,3,8,8-tetrahydro-6,3-h]isoquinoline hydrochloride (326 mg, 0.811 mmol) in methanol (3.5 ml.) and the mixture was stirred at room temperature for 2 hours. Water was poured into the reaction mixture, which was combined with sodium hydrogen carbonate, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium suifate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 5:1), crystallized from disopropyl ether-hexane to obtain the title compound (168 mg, yield: 54%). Metling point: 146-147 °C.

¹H NMR (CDCl₃) δ 1.20-1.30 (15H, m), 2.19 (2H, s), 2.77 (2H, s), 2.82-3.18 (2H, m), 7.41-7.42 (6H, m).

EXAMPLE 549

3-[3.4,8,9-Tetrahydro-3,3,8,8-tetramethyl-6-(propylthio)furo[2,3-h]isoquinolin-1-yl]benzoic acid ethyl ester

[1291] 1.57 M h-butylithium /hexane solution (42.3 ml., 66.4 mmol) was treated dropwise successively with a solution of N, N, N, N*-termenthylethylenediamine (10 on., 66.4 mmol) in tetrahydrotrun (15 ml.), a solution of 7-promo-2,3-di-hydro-2,2-dimethyl-5-(2-methyl-1-prepryl)benzofuran (4.68 g, 16.6 mmol) in tetrahydrofuran (15 ml.) and a solution of n-propyl disulfide (20 g, 133 mmol) in tetrahydrofuran (15 ml.) at 78°C, and the mixture was allowed to warm to room temperature while stiming for 15 hours. The reaction mixture was pourced into a staturated aqueous solution of ammonium chloride, and extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane followed by hexane/ethyl acetate 50·1) to obtain an about 152 mixture of 2,3-dihydro-2,2-dimethy-5-(2-methyl-1-propenyl)-7-(propylthio)benzofuran and 2,3-dihydro-2,2-dimethyl-5-(2-methyl-1-propenyl) benzofuran (4.11 g).

[1292] A suspension of the resultant mixture (1.01 g) and ethyl 3-cyanobenzoate (601 mg, 3.43 mmol) in accide and (2 mL) toluene (4.5 mL) was treated dropwise with conc. sulfuria caid (0.38 mL, 7.20 mmol) with cooling in ice, and stirred at 60 °C for 1 hour. Ethanol (2.1 mL, 34.9 mmol) was added dropwise to the mixture, and the mixture was stirred at the same temperature for 30 minutes, lice water was poured into the reaction mixture, which was neutralized with sodium hydrogen carbonate, and extracted twice with ethyl acetalet. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatoraphy on a basic silide and (thexane/ethyl acetale 50:1 followed by 10:11, and subjected again the

column chromatography on a silica gel (hexane/ethyl acetate 10:1 followed by 5:1), crystallized from hexane to obtain the title compound (136 mg, yield: 9%). The mother liquor was crystallized from hexane to obtain the second crystal of the title compound (78 mg, yield: 5%).

Melting point: 83-84 °C.

⁵ ¹H NMR (CDCl₃) 6 1.05 (3H, t, J = 7.3 Hz), 1.25 (6H, s), 1.29 (6H, s), 1.39 (3H, t, J = 7.2 Hz), 1.64-1.76 (2H, m), 2.16 (2H, s), 2.68 (2H, s), 2.95 (2H, t, J = 7.2 Hz), 4.39 (2H, q, J = 7.2 Hz), 6.92 (1H, s), 7.48 (1H, dd, J = 7.8 Hz), 8.07-8.10 (2H, m).

EXAMPLE 550

10

15

3-[6-(Ethylthio)-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]benzoic acid isopropyl ester

[1293] To a suspension of 7-(ethylthio)-2.3-dihydro-2.2-dimethyl-5-(2-methyl-1-propenyl)benzofuran (811 mg. 3.21 mmol) and isopropyl 3-cyanobenzoate (585 mg. 9.29 mmol) in acetic acid (8 ml.)-toluene (6 ml.) was treated dropwise with conc. sulfuric acid (0.33 ml., 6.13 mmol) with cooling in ice, and stirred at 70 °C for 1.5 hours. Ice water was poured into the restoction mixture, which was neutralized with sodium hydrogen carbonate and extracted twice with ethyl acetate. The combined organic layer was washed with a brine, dried over sodium sulfate, iffiltered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 10:1) and crystalized from pentane to obtain the title compound (86 mg., lydid: 7%).

Melting point. 108-110 °C.

¹H NMR (CDCl₂) & 1.26 (6H, s), 1.92 (6H, s), 1.34 (3H, t, J = 7.5 Hz), 1.36 (6H, d, J = 6.3 Hz), 2.17 (2H, s), 2.69 (2H, s), 3.00 (2H, q, J = 7.5 Hz), 5.20-5.33 (1H, m), 6.94 (1H, s), 7.48 (1H, t, J = 7.8 Hz), 7.61 (1H, dd, J = 7.8, 1.5 Hz), 8.04 (1H, t, J = 1.5 Hz), 8.09 (1H, dd, J = 7.8, 1.5 Hz), 8.04 (1H, t, J = 1.5 Hz), 8.09 (1H, dd, J = 7.8, 1.5 Hz), 8.04 (1H, t, J = 1.5 Hz), 8.09 (1H, dd, J = 7.8, 1.5 Hz), 8.04 (1H, t, J = 7.8 Hz), 7.61 (1H, dd, J = 7.8, 1.5 Hz), 8.04 (1H, t, J = 7.8 Hz), 8.04 (

25 EXAMPLE 551

3-[5-(Cyanomethyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]benzoic acid methyl ester hydrochloride

30 [1294] Paraformaldehyde (94%) (841 mg, 26.3 mmol), sodium bromide (2.98 g, 29.0 mmol) and cone. sulfuria acid (2.11 mL, 39.6 mmol) were added to a solution of 3/(3,4.8.9-tetrahydro-6-methoxy-3.3,8.8-tetramethyffuro(2,3-h)iso-quinolin-1-yilbenzoic acid methyl ester (4.99 g, 12.7 mmol) in acetic acid (6.5 mL) and the mixture was sitred at 100 °C for 11 hours. Methanol was added dropwise at 75 °C, and the mixture was sitred at the same temperature for 3 hours. Water was poured into the reaction mixture, which was washed with disporpoy lether, neutralized with sodium solution of sodium hydroxide and a brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a sitica gel (hoxane/ethyl acetate 5.1) to obtain 3/5-(formomethyl)-3,4.8,-fetrahydro-6-methoxy-3,3.8,-letramethyfluro(2,3-h)isoquinolin-1-yilbenzoic acid methyl ester (1.30 c, widt 21%) as a morprobus material.

⁴⁰ ¹H NMR (CDCl₃) δ 1.28 (6H, s), 1.29 (6H, s), 2.12 (2H, s), 2.72 (2H, s), 3.92 (3H, s), 4.05 (3H, s), 4.64 (2H, s), 7.48 (1H, t, J = 7.9 Hz), 7.61 (1H, dd, J = 7.9, 1.6 Hz), 8.06 (1H, d, J = 1.6 Hz), 8.08 (1H, dd, J = 7.9, 1.6 Hz).

[1255] A solution of potassium cyanide (174 mg, 2.67 mmol) in water (2.5 mL) was added to a solution of the resultant bromo-derivative (1.30 g, 2.67 mmol) in N,N-dimethylformamide (8 mL) and the mixture was stirred at room temperature for 1 hour. Ice water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic siting eql (hexanefethyl acetate 10.1 followed by 5:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, crystallized from ethyl acetate to obtain the title compound (36% m. vield. 74%).

Melting point: 186-188 °C.

¹H NMR (DMSO-d_g) δ 1.25 (6H, s), 1.45 (6H, s), 2.15 (2H, s), 3.19 (2H, s), 3.91 (3H, s), 4.02 (2H, s), 4.07 (3H, s), 7.78 (1H, t, J = 7.6 Hz), 7.89 (1H, d, J = 7.6 Hz), 8.21 (1H, s), 8.28 (1H, d, J = 7.6 Hz).

EXAMPLE 552

5

 $3-[5-(Cyanomethyl)\cdot 3,4,8,9-tetrahydro-6-methoxy\cdot 3,3,8,8-tetramethylfuro \cite{2},3-h\cite{1}] is oquinolin-1-yl\cite{2} benzoic acid hydrochloride$

[1296] The title compound was obtained from 3-[5-(cyanomethyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]jsoquinolin-1-yljbenzoic acid methyl ester hydrochloride by the method similar to that in EXAMPLE 80. Quantitative. Metling point: 182-184 °C (acetone-ethyl acetate).

¹H NMR (DMSO-d₆) δ 1.25 (6H, s), 1.45 (6H, s), 2.16 (2H, s), 3.19 (2H, s), 4.02 (2H, s), 4.07 (3H, s), 7.75 (1H, t, J = 7.8 Hz), 7.87 (1H, d, J = 7.8 Hz), 8.18 (1H, s), 8.26 (1H, d, J = 7.8 Hz).

EXAMPLE 553

3-[5-(Cyanomethyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]-N-methylbenzamide hydrochloride

[1297] N.N°-Carbony(dilmidazole (118 mg, 0.728 mmol) was added to a solution of 3-(5-(cyanomethyl)-3.4,8.9-tet-rahydro-6-methoxy-3.3,8.9-tetramethylfuro(2.3-h)lsoquinolin-1-yllbenzole acid hydrochloride (331 mg, 0.728 mmol) in N.N-dimethylformamide (3 mL) and the mixture was stirred at room temperature for 40 minutes. Triethylamine (0.11 mL, 0.801 mmol) and methylamine hydrochloride (54 mg, 0.801 mmol) were added to the mixture, and the mixture was stirred at room temperature for 4 hours. Ice water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with 1 M aqueous solution of sodium hydroxide, water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic sitics gel (haxanelethyl acetate 1:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, crystalized from ethyl acetate to obtain the title compound (39 mg, yleid: 41%).

¹H NMR (DMSO-d_g) δ 1.26 (6H, s), 1.45 (6H, s), 2.18 (2H, s), 2.81 (3H, d, J = 4.0 Hz), 3.18 (2H, s), 4.02 (2H, s), 4.07 (3H, s), 7.67-7.74 (2H, m), 8.12-8.19 (2H, m), 8.77 (1H, br s).

EXAMPLE 554

20

25

50

Melting point: 160-162 °C.

3-[5-(Cyanomethyl)-3,4,8,9-tetrahydro-6-methoxy-3.3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]-N-(hexahydro-2-oxo-1H-azepin-3-yl)benzamide

[1298] Triethylamine (0.10 mL, 0.74s mmol) and N.N'-carbonyldimidazole (120 mg, 0.74s mmol) were added to a solution of 3-(5-(cyanomethyl)-3.4.8) e-lathaydro-6-methoxy-3.8,8-b-tarmenthyltur(e2,3-hisoculonion-1-yi)benzoic acid hydrochloride (38 mg, 0.74s mmol) in N.N-dimethylformamide (3 mL) and the mixture was stirred at room temperature for 40 minutes. 3-Aminohexahydro-2H-azepin-2-one (101 mg, 0.784 mmol) was added to the mixture and the mixture was stirred at room temperature for 4.5 hours. Lee water was poured into the reaction mixture, which was extracted twice with ethyl acotate. The combined organic layer was washed with 1 M aqueous solution of sodium hydroxide, water and a brine, died over sodium sullate, filtered and concentrate under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acotate) column chromatography on a basic silica gel (hexane/ethyl acotate) cystallized from ethyl acotate to obtain the title compound (260 mg, yleits £5%). Melting point: 130-132 °C.

45 IH MMR (CDC₅) § 1.28 (12H, s), 1.48-1.70 (2H, m), 1.80-2.30 (4H, m), 2.13 (2H, s), 2.69 (2H, s), 3.25-3.40 (2H, m), 3.74 (2H, s), 4.04 (3H, s), 4.69-4.77 (1H, m), 6.15 (1H, br s), 7.47-7.49 (2H, m), 7.71 (1H, d, J = 5.6 Hz), 7.88-7.95 (2H, m).

EXAMPLE 555

N-[3-[5-(Cyanomethyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]benzoyl]-2-methylalanine ethyl ester

[1299] 1-Hydroxy-1H-benzotriazole monohydrate (829 mg, 5.41 mmol), triethylamine (2.40 ml., 17.2 mmol) and -tethyl-3-(3-dimethylaminopropyl)carbodimide hydrochloride (1.23 g, 6.40 mmol) were added to a solution of 3-[5-(cy-anomethyl)-3.4,8.9-tetrahydro-6-methoxy-3.3,8.8-tetramethylluro(2,3-h)isoquinolin-1-yllbenzole: add hydrochloride (2.24 g, 4.92 mmol) and ethyl 2-aminoisobutyrate hydrochloride (907 mg, 5.41 mmol) in N,N-dimethylformamide (10 ml.) and the mixture was stirred at room temperature for 1.5 hours, loc water was bound into the reaction mixture.

which was extracted three times with ethyl acetate. The combined organic layer was washed with 0.5 M aqueous solution of sodium hydroxide and a brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 3.1 followed by 2: 1). crystallized from athyl acetate diethyl ether to obtain the title compound (1.50 a. yield: 57%).

Melting point: 126-128 °C.

¹H NMR (CDCl₃) δ 1.29 (3H, t, J = 7.0 Hz), 1.29 (12H, s), 1.68 (6H, s), 2.13 (2H, s), 2.69 (2H, s), 3.75 (2H, s), 4.04 (3H, s), 4.24 (2H, g, J = 7.0 Hz), 6.89 (1H, s), 7.46-7.48 (2H, m), 7.81-7.89 (2H, m).

EXAMPLE 556

5

10

15

25

N-[3-[5-(Cyanomethyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]benzoyl]-2-methylalanine hydrochloride

[1300] 5 M aqueous solution of sodium hydroxida (2 mL) was added to a solution of N-[3-15-(cyanomethyl)-3.4,8,9-tetrahydro-6-methoxy-3.3,8-fetramethylfunc/3-shipsouinoint-1yllpencylly-5-methylalanine tellyt ester (1.05 g, 1.98 mmol) in ethanol (8 mL) and the mixture was stirred at room temperature for 1 hour. The reaction mixture was made acidic with 5 M hydroxhoric acid, and the solvent was distilled off. The residue was dissolved in methanol, and the insolubles were filtered off. The filtrate was concentrated under reduced pressure, and this procedure was repeated three times. The residue was crystallized from acetone-ethyl acetate to obtain the title compound (1.04 g, yleid: 97%). Meltina point: 191-194 °C.

 ${}^{1}\text{H NMR} (\text{DMSO-d}_{8}) \, \delta \, 1.27 \, (6\text{H}, \text{br}\,\text{s}), \, 1.42 \, (6\text{H}, \text{br}\,\text{s}), \, 1.48 \, (6\text{H}, \,\text{s}), \, 2.24 \, (2\text{H}, \,\text{s}), \, 3.05 \cdot 3.30 \, (2\text{H}, \,\text{m}), \, 3.95 \cdot 4.13 \, (5\text{H}, \,\text{m}), \, 7.65 \cdot 7.80 \, (2\text{H}, \,\text{m}), \, 8.18 \cdot 8.30 \, (2\text{H}, \,\text{m}), \, 8.80 \, (1\text{H}, \,\text{s}).$

EXAMPLE 557

LAMINI LL 557

N-(2-Amino-2-oxoethyl)-3-[5-(cyanomethyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]benzamide hydrochloride

[1301] 1-Hydrox-1H-benzofitizole monohydrate (377 mg, 2.46 mmol), triethlylamine (1.09 mL, 7.84 mmol) and 1-ethlyl-3-(d-dimethlylaminopropy)clambined hydrochiotide (659 mg, 2.91 mmol) were added to a solution of 3-fi-(cyanomethlyl)-3-4,8-9-tertahydro-6-methoxy-3-3,8-8-tertamethylfuro(2.3-hijsoquinolin-1-ylipenzoic acid hydrochioride (1.02 g, 2.24 mmol) in N.N-dimethylfuromamide (6 mL) and the mixture was stirred at room temperature for 6 hours. Water was poured into the reaction mixture, which was extracted three times with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromotography on a basic silica gel (ethyl acetate/methanol 100:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined dwith 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, triturated with diethyl ether to obtain the title compound (425 mg, yield: 37%).

40 1H NMR (DMSO-d₆) δ 1.27 (6H, s), 1.46 (6H, s), 2.22 (2H, s), 3.20 (2H, s), 3.85 (2H, d, J = 3.8 Hz), 4.03 (2H, s), 4.08 (3H, s), 7.09 (1H, s), 7.47 (1H, s), 7.74-7.80 (2H, m), 8.18-8.25 (2H, m), 8.99 (1H, s).

EXAMPLE 558

45 N-(2-Amino-1,1-dimethyl-2-oxoethyl)-3-{5-(cyanomethyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h] isoquinolin-1-yl]benzamide

[1302] 1-Hydrow-1-H-benzotriazole ammonium salt (176 mg. 1.16 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodilmide hydrochloride (240 mg. 1.25 mmol) were added to a solution of N-[3-[5-(cyanomethyl)-3-4,8.9-tetrahydro-6-methoxy-3.3.8-8-tetramethylluro[2.3-h]isoquinolin-1-yllbenzoyl]-2-methylalanine hydrochloride (521 mg. 0.995 mmol) in N-M-dimethyllormamide (5 ml.) and the mixture was stirred at room temperature for 10 minutes. Triethylamine (0.40 ml., 2.90 mmol) was added to the mixture was the mixture was stirred at room temperature for 3 hours, lec water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 1:2 followed by ethyl acetate), crystallized from ethyl acetate-diisopropyl ether to obtain the title compound (323 mg, yled: 67%).

¹H NMR (CDCl₃) & 1.29 (12H, s), 1.71 (6H, s), 2.14 (2H, s), 2.69 (2H, s), 3.74 (2H, s), 4.04 (3H, s), 5.44 (1H, br s),

6.42 (1H, br s), 7.26-7.27 (1H, m), 7.47-7.48 (2H, m), 7.84-7.89 (2H, m).

EXAMPLE 559

5 3-[5-(Cyanomethyl)-3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]-N-[1,1-dimethyl-2-oxo-2-t(2-oxo-3-ovrrolidinyl)aminolethyllbenzamide

[1303] 1-lhydroxy-1H-benzotriazole monohydrate (138 mg, 0.904 mmol), triethylamine (0.29 mL, 2.06 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (205 mg, 1.07 mmol) were added to a solution of N-3-(5-(cyanomethyl)-3-8, 8-9-tetrahydro-6-methoxy-3-3, 8,8-tetramethyliruc[2-3-hjisoquinolin-1-yi[benzoyl)-2-methylalanine hydrochloride (444 mg, 0.822 mmol) and D,L-3-amino-2-pyrrolidimone (82 mg, 0.822 mmol) in N,N-dimethylormamide (4 mL) and the mixture was stirred at room temperature for 6 hours, loe water was poured into the order of the continuous sulfate, which was extracted three times with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (ethyl acetate/methanol 1001: followed by 10:1), and the resultant crystals were washed with disporply ether to obtain the title compound (157 mg, yield: 33%).

¹H NMR (CDCl₉) δ 1.29 (12H, s), 1.70 (3H, s), 1.72 (3H, s), 1.94-2.08 (1H, m), 2.14 (2H, s), 2.69 (2H, s), 2.70-2.85 (1H, m), 3.16-3.45 (2H, m), 3.76 (2H, s), 4.04 (3H, s), 4.26-4.34 (1H, m), 5.99 (1H, s), 6.91 (1H, d, J = 3.6 Hz), 7.13 (1H, s), 7.44-7.49 (2H, m), 7.87 (2H, s).

EXAMPLE 560

25

30

25

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenyl-5-furo[2,3-h]isoquinolinecarboxaldehyde hydrochloride

[1304] Manganese dioxide (4.90 g, 56.4 mmol) was added to a solution of 3.4.8.9-letrahydro-6-methoxy-3.3.8-tetramethyl-6-furol(2.9-h])soquinolinemethanol (1.03 g, 2.82 mmol) in chloroform (15 mL) and the mixture was stirred at room temperature for 2 hours, and at 50 °C for 15 hours. Inorganic salts were filtered off and the filtrate was concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hexane/ethyl acetate 5:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, crystallized from ethyl acetate-hexane to obtain the title compound (344 mg, yield: 31%).

¹H NMR (DMSO-d_a) δ 1.29 (6H, s), 1.43 (6H, s), 2.24 (2H, s), 3.40 (2H, s), 4.14 (3H, s), 7.60-7.82 (5H, m), 10.42 (1H, s).

EXAMPLE 561

3,4,8,9-Tetrahydro-6-methoxy-3,3,8,8-tetramethyl-1-phenyl-5-furo[2,3-h]isoquinolinecarbonitrile

40 [1305] Hydroxylamine hydrochloride (30 mg. 0.455 mmol) was added to a solution of 3.4.8,8-tetrahydro-6-methoxy-3.3.8.8-tetramethyl-1-penty-5-fun/[2.3-h]isoquinolineacroxotalehyde hydrochloride (116 mg. 0.290 mmol) in formic acid (1 mL) and the mixture was stirred at 100 °C for 3 hours. Water was poured into the reaction mixture, which was neutralized with conc. aqueous ammonia and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dired over sociulin sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (nexane/ethyl acetate 5:1), and the resultant crystals were washed with dislopropy ether-hexane to obtain the title compound (55 mg. vielet. 53%).

Melting point: 166-168 °C.

1H NMR (CDCl₃) δ 1.27 (6H, s), 1.30 (6H, s), 2.19 (2H, s), 2.87 (2H, s), 4.13 (3H, s), 7.35-7.43 (5H, m).

FXAMPLE 562

3-[5-(Cyanomethyl)-6-ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl]benzoic acid ethyl ester hydrochloride

5 [1306] Paraformaldehyde (94%) (613 mg, 19.2 mmol), sodium bromide (2.17 g, 21.1 mmol) and conc. sulfuric acid (1.71 mL, 32.0 mmol) were added to a solution of 3-(6-ethoxy-3.4, 8,9-tetrahydro-3.3,8,8-tetramethylluro(2,3-h)isoqui-nolin-1-yi)benzoic acid (5.03 g, 12.8 mmol) in acetic acid (10 mL) and the mixture was stirred at 105 °C for 14 hours. Paraformaldehyde (94%) (409 mg, 12.8 mmol), sodium bromide (1.45 g, 14.1 mmol) and conc. sulfuric acid (0.68 mL,

1.2 B mmol) were further added to the mixture and the mixture was stirred at 115 °C for 10 hours. The reaction mixture was adjusted at pH 8 with 5 M aqueous solution of sodium hydroxide, and extracted with ethyl acetals. The organic layer was washed with brine, dhed over sodium sulfate, filtered and concentrated under reduced pressure. The residue was dissolved in ethanol (12 mL) and thionyl chloride (0.65mL, 8.94 mmol) was added thereto with cooling in ice, and the mixture was stirred at room temperature for 24 hours. The solvent was distilled off under reduced pressure, and the residue was combined with water, neutralized with sodium hydrogen carbonate, and extracted twice with ethyl acetale. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel (hoxanofethyl acetate 511) to obtain 345 (bronnomethyl)-6-chtoxy-34,8,9-tetrahydro-3,3,8.8-tetramethylfuro[2,3-h)isoquinolin-1-yl|benzoic acid ethyl ester (17 om, yield: 3%) as an oil.

 $^{1} H \ NMR \ (CDC_{13}) \ \delta \ 1.27 \ (6H, s), 1.28 \ (6H, s), 1.37-1.42 \ (6H, m), 2.12 \ (2H, s), 2.77 \ (2H, s), 4.31 \ (2H, q, J = 7.1 \ Hz), 4.76 \ (2H, s), 7.48 \ (1H, t, J = 7.8 \ Hz), 7.61 \ (1H, dd, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, m), 8.09 \ (1H, dt, J = 7.8, 1.5 \ Hz), 8.05-8.07 \ (1H, dt, J = 7.8, 1.$

[1307] A solution of sodium cyanide (18 mg, 0.382 mmol) in water (0.5 mL) was added to a solution of the resultant bromo-derivative (170 mg, 0.330 mmol) in N.N-dimethylformamide (0.7 mL) and the mixture was stirred at room temperature for 1 hour and at 60 °C for 2 hours. Water was poured into the reaction mixture, which was extracted wice with ethyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residuce was subjected to a column chromatography on a silica gel (havane/ethyl acetate 3:1) to obtain a free base of the title compound. This was dissolved in ethyl acetate, combined with 4 M hydrogen chloride/ethyl acetate solution, concentrated under reduced pressure, crystallized from ethyl acetate to obtain the title compound (1111 mg, yleid: 68%).

Melting point: 126-128 °C.

¹H NMR (DMSO-d₆) δ 1.25 (6H, s), 1.30-1.37 (6H, m), 1.44 (6H, s), 2.16 (2H, s), 3.16 (2H, s), 4.01 (2H, s), 4.33-4.47 (4H, m), 7.37-90 (2H, m), 8.18-8.29 (2H, m).

EXAMPLE 563

5

15

25

25

45

(S)-N-(2-Oxo-3-azetidinyl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[1308] 3-(3.4.8.9. Tetrahydro-6-methoxy-3.3.8.4 tetramethyfluro/(2.3-h)|soquinolini-1-yl)benzolc acid hydrochloride (2.5 g., 0.6 mmol) was dissolved in N,N-dimethyflormamide (3 mL), N-ethyddisopropylamine (0.104 mL, 0.6 mmol) was added thereto, and the mixture was stirred for 5 minutes N,N-Carbonyldimidazole (0.107 g. 0.66 mmol) was added to the mixture and the mixture was stirred at room temperature for 30 minutes (S)-3-Amino-2-azetidinone (0.057 g., 0.66 mmol) was added to the reaction mixture and the mixture was stirred at room temperature for 15 hours. Loe water was added to the reaction mixture, which was extracted twice with ethyl acetate. The extract was washed with an aqueous solution of sodium chloride, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel, eluted with ethyl acetate/methanolrifethylamine (95:5:1) to collect the intended fraction, which was concentrated to obtain the title compound (0.171 g., yield: 63%). The title compound was recystallized from diethyl ether.

40 Melting point: 154-157 °C.

 ^{1}H NMR (CDCl₃) δ 1.29 (6H, s), 1.31 (6H, s), 2.16 (2H, s), 2.61 (2H, s), 3.22 (1H, br), 3.60 (1H, t, J = 5 Hz), 3.93 (3H, s), 5.10 (1H, br), 6.32 (1H, br), 6.61 (1H. s), 7.4-8.0 (4H, m), 8.03 (1H, br).

EXAMPLE 564

N-(2-Oxo-3-pyrrolidinyl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[1309] 3-(3.4.8,9-Tetrahydro-6-methoxy-3.3.8,8-tetramethyffuro(2,2-h)[soquinolin-1-y)[benzoic acid hydrochloride (0.25 g, 0.6 mmol) was dissolved in N,N-dimethyfformamide (3 mL), N-ethyfdisopropylamine (0.104 mL, 0.6 mmol) followed by N,N-carbonyfdimidazole (0.107 g, 0.66 mmol) were added therete, and the mixture was stirred at room temperature for 1 hour. 3-Amino-2-pyrrolidinone (0.067 g, 0.66 mmol) was added to the reaction mixture, which was extracted the was stirred at room temperature for 15 hours. Lee water was added to the reaction mixture, which was extracted view with ethyl acetate. The extract was washed with an aqueous solution of sodium chloride, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silicate, elucid with ethyl acetate/methanol (10:1) to collect the intended fraction, which was concentrated to obtain the title compound (0.184 g, yield: 66%). The title compound was recrystallized from diethyl ether.

Melting point 191-193 °C.

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.30 (6H, s), 1.7-2.3 (2H, m), 2.15 (2H, s), 2.70 (2H, s), 3.2-3.5 (2H, m), 3.93 (3H, s),

4.62 (1H, br), 6.62 (1H, s), 7.00 (1H, br), 7.4-8.0 (4H, m), 7.70 (1H, br).

EXAMPLE 565

3.4.8.9-Tetrahydro-6-methoxy-4.4.8.8-tetramethyl-1-phenylfuro[2.3-h]isoquinoline

[1310] N-[2-(2-3-Dihydro-7-methoxy-2-2-dimethyl-5-benzofuranyl)-2-methylpropyllbenzamide (0.289 g. 0.76 mmol) was suspended in phosphorus oxychloride (3.5 g. 22.8 mmol) and the mixture was stirred at 100-105 °C for 2 hours. After cooling to room temperature, the reaction mixture was poured into an aqueous solution of sodium carbonate while cooling in ice with stirring, adjusted at pH 7 and extracted twice with ethyl acetate. The extract was washed with an aqueous solution of sodium carbonate over magnesium sultate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel, eluted with hexane/ethyl acetate/triethyl-amine (67.33:1) to collect the intended fraction, which was concentrated to obtain the title compound (0.175 g, yield: 68%). The title compound was recrystalized from diethyl tether/exane (1:2).

15 Melting point: 137-139 °C.

¹H NMR (CDCl₃) δ 1.28 (6H, s), 1.32 (6H, s), 2.26 (2H, s), 3.63 (2H, s), 3.95 (3H, s), 6.79 (1H, s), 7.42 (5H, s).

EXAMPLE 566

20 3-(3,4,8,9-tetrahydro-6-methoxy-4,4,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzonitrile

[1311] 3-Cyano-N1-2-(2.3-dihydro-7-methoxy-2.2-dimethyl-5-benzofuranyly-2-methylpropyl)benzamide (0.955 g. 2.52 mmol) was suspended in phosphorus oxychloride (11.6 g., 75.6 mmol) and the mixture was stirred at 100-105 °C for 2 hours. After cooling to room temperature, the reaction mixture was poured into an aqueous solution of potassium carbonate while cooling in ice with stirring, and adjusted at pH 7 and extracted twice with ethyl accetate. The extract was washed with an aqueous solution of sodium chloride, died over magnesium sutlate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gel, eluted with hexane/ethyl acetate (3.2) to collect the intended fraction, which was concentrated to obtain the title compound (0.65 g., yield: 71%). The title compound was recrystallized from diethyl ethyl

30 Melting point: 178-180 °C.

¹H NMR (CDCI₃) δ 1.24 (6H, s), 1.27 (6H, s), 2.23 (2H, s), 3.64 (2H, s), 3.96 (3H, s), 6.81 (1H, s), 7.4-7.9 (4H, m).

EXAMPLE 567

35 3-(3,4,8,9-Tetrahydro-6-methoxy-4,4,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide

[1312] 3-(3,4,8,9-Tetrahydro-6-methoxy-4,4,8,8-tetramethyfuro(2,3-h)jisoquinolin-1-yl)benzonitrile (0.446 g, 1.23 mmol) was dissolved in methanol (7 mL), 1 M aqueous solution of sodium hydroxide (1.97 mL) and 30% aqueous solution of hydrogen peroxide (0.28 mL) were added thereto with cooling in ice, and the mixture was stirred at room temperature for 20 hours. Methanol was distilled off under reduced pressure, and the residue was diluted with water and extracted twice with eithyl acetate. The extract was washed with an aqueous solution of sodium choride, dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was recrystallized from ethyl acetate to obtain the title compound (0.275 g, yield: 59%).
Methino point: 191-193 °C.

45 1H NMR (CDCl₃) δ 1.28 (6H, s), 1.31 (6H, s), 2.24 (2H, s), 3.63 (2H, s), 3.95 (3H, s), 5.85 (1H, br), 6.35 (1H, br), 6.81 (1H, s), 7.4-7.9 (4H, m).

EXAMPLE 568

50 3,4,8,9-Tetrahydro-6-methoxy-4,4,8,8-tetramethyl-1-furo[2,3-h]isoquinolinecarboxylic acid ethyl ester

[1313] Eltryl [[2-(2,3-dihydro-7-methoxy-2,2-dimethyl-5-benzofuranyly-2-methylpropyllaminojoxoacetate (0,510 g, 0.76 mmol) was dissolved in phosphorus oxychloride (6.72 g, 1.83 mmol) and stirred at 100-105 6°C for 3 hours. After cooling to room temperature, the reaction mixture was poured into 2 M aqueous solution of sodium hydroxide (30 mL) while cooling in Ice with stirring, adjusted at pH 5 with sodium hydrospen carbonate, and extracted twice with ethyl accitate. The extract was washed with an aqueous solution of sodium chloride, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a silica gei, eluted with hexane/ethyl acetate (2.71) to collect the intended fraction, which was concentrated to obtain the title compound

(0.286 g, yield: 68%). The title compound was recrystallized from diethyl ether/hexane (1:1). Melting point: 117-121 °C.

 1 H NMR (CDCl₃) δ 1.23 (6H, s), 1.26 (3H, t, J = 7 Hz), 1.49 (6H, s), 2.99 (2H, s), 3.61 (2H, s), 3.94(3H, s), 4.12 (2H, q, J = 7 Hz), 6.75 (1H, s).

EXAMPLE 569

5

20

25

40

45

50

1-(3-Bromophenyl)-3,4,8,9-tetrahydro-6-methoxy-4,4,8,8-tetramethylfuro[2,3-h]isoquinoline

[1314] Phosphorus oxychloride (3.3 mL, 35 mmnl) was added to a suspension of 3-bromo-N-12-(2.3 dihydro-7-meth-oxy-2.2-dimethyl-5-benz/outramyl)-2-methylpropyl]benz-mide (1.28 g., 2.66 mmo) in tolurne (25 mL) and the mixture was heated under reflux for 3.5 hours. The reaction mixture was poured into ice water, and neutralized with 5 M aqueous solution of sodium hydroxide with colling in ice. The organic layer was separated, and the aqueous layer was extracted with toluren. The combined organic layer was washed twice with water, and concentrated under reduced pressure.
5 The residue was subjected to a column chromatography on a silica get (hoxane/athyl acetate 4:1 followed by 2:1) and recrystallized from hoxane to obtain the title compound (741 mc, vield; 690 ftm.)

¹H NMR (CDCl₃) δ 1.26 (6H, s), 1.35 (6H, s) 2.31 (2H, s), 3.63 (2H, s), 3.95 (3H, s), 6.79 (1H, s), 7.28 (1H, t, J = 7.7 Hz), 7.38 (1H, dt, J = 7.7, 1.6 Hz), 7.55 (1H, dt, J = 7.7, 1.6 Hz), 7.61 (1H, t, H = 1.6 Hz).

EXAMPLE 570

Melting point: 127-129 °C

3'-(3,4,8,9-Tetrahydro-6-methoxy-4,4,8,8-tetramethylfuro[2,3-h]isoguinolin-1-yl)[1,1'-biphenyl]-4-amine

28 [1315] A suspension of 1-(3-bromophenyl)-3.4.8,9-tetrahydro-6-methoxy-4.4.8,8-tetramethylfuro(2.3-h)[soquinoline (607 mg, 1.46 mmol), 4-(4.4.5,5-tetramethyl-1.3,2-dloxaborolan-2-y)anlline (353 mg, 1.61 mmol), sodium carbonate (388 mg, 3.68 mmol) and tetrakis(triphenylphosphine)palladium (0) (34 mg, 0.029 mmol) in 1,2-dimethoxyethane (4.5 mL), ethanol (2 mL) and water (1.5 mL) was stirred at 80 °C for 14 hours under nitrogen atmosphere. The reaction mixture was combined with water, and extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried through sodium sulfate-basic silica gel (eluting with ethyl acetate), and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (levende by 1:1), recystallized from methano-diethyl ether to obtain the title compound (400 mg, yield: 64%).

¹H NMR (CDCl₃) δ 1.29 (6H, s), 1.30 (6H, s), 2.34 (2H, s), 3.64 (2H, s), 3.73 (2H, br s), 3.96 (3H, s), 6.74 (2H, d, J = 8.4 Hz), 6.81 (1H, s), 7.32 (1H, dt, J = 7.7, 1.5 Hz), 7.37-7.49 (3H, m), 7.56-7.63 (2H, m).

EXAMPLE 571

Melting point: 232-234 °C.

N-[3'-(3,4,8,9-Tetrahydro-6-methoxy-4,4,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]acetamide

[1316] By the method similar to that in Example 30, 31-(3.4,8,9-tetrahydro-6-methoxy-4,4,8,8-tetramethylfuro[2,3-h] isoquinolin-1-yi)[1,11-biphenyl]-4-amine was employed to obtain the title compound, yield: 57%. Mething point: 223-227°C (ethyl acetate-diethyl ether).

¹H NMR (CDCl₃) δ 1.29 (6H, s), 1.31 (6H, s), 2.15-2.21 (3H, m), 2.33 (2H, s), 3.65 (2H, s), 3.96 (3H, s), 6.81 (1H, s), 7.26-7.85 (9H, m).

EXAMPLE 572

1-(3-Bromophenyl)-3.4.8.9-tetrahydro-4.4.8.8-tetramethyl-6-furo[2,3-h]isoquinolinol

[1317] 48% Hydrobromic acid (50 mL) was added to 1-(3-Bromophenyl)-3,4,8,9-tetrahydro-6-methoxy-4,4,8,8-tetramethylluro[2,3-h]isoquinoline (4.73 g, 11.4 mmol) and the mixture was heated under reflux for 22 hours. The reaction mixture was cooled with ice, neutralized with conc. aqueous ammonia, and extracted twice with athyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-diethyl ether to obtain the title compound (3.96 g, yield: 87%). Meltino point: \$20.258 °C.

¹H NMR (CDCl₃) δ 1.21 (6H, s), 1.32 (6H, s), 2.29 (2H, s), 3.59 (2H, s), 6.74 (1H, s), 7.27 (1H, t, J = 7.8 Hz), 7.40 (1H, dt, J = 7.8, 1.6 Hz), 7.55 (1H, dt, J = 7.8, 1.6 Hz), 7.60 (1H, t, J = 1.6 Hz).

EXAMPLE 573

5

20

20

25

[3'-(3.4,8,9-Tetrahydro-6-hydroxy-4,4,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]carbamic acid phenylmethyl ester

[1318] A suspension of 1-(3-bromophenyl)-3.4 8,9-tetrahydro-4.4 8.8-tetramethyle-f-uro[2,3-h]isoquinolinol (2.40 g. 8.00 mmol), (4.4 4.5-f-stetramethyl-1.3-2 dioxaborolin-2-yliphonylipcatharia caid phenylmethyl ester (2.6 f g. 17 mmol), sodium carbonate (1.58 g. 15 o mmol) and tetraksit(riphenylphosphine)palladium(0) (138 mg. 0.120 mmol) in 1.2-dimethoxyethane (20 mL), ethanol (10 mL) and water (10 mL) was stirred at 85 °C tor 16 hours under nitrogen atmosphere. The reaction mixture was combined with othyl acotate and water, and the organic layer was separated, and the aqueous layer was extracted with othyl acotate. The combined organic layer was washed with brine, dried through sodium sultate-silica gel (feluting with ethyl acotate) and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acotate) 1.2 followed by ethyl acotate), crystallized from ethyl acotate chloroform to obtain the title compound (2.83 g. jeldt: 80%).

15 Melting point: 161-165 °C.

 ^{1}H NMR (DMSO-dg) δ 1.15 (6H, s), 1.19 (6H, s), 2.25 (2H, s), 3.48 (2H, s), 5.17 (2H, s), 6.74 (1H, s), 7.31-7.75 (13H, m), 9.74 (1H, s), 9.91 (1H, s).

EXAMPLE 574

[3'-[3,4,8,9-Tetrahydro-4,4,8,8-tetramethyl-6-[[(trifluoromethyl)sulfonyl]oxy]furo[2,3-h]isoquinolin-1-yl][1,1'-biphenyl]-4-yl]carbamic acid phenylmethyl ester

[319] The title compound was obtained from [3-(3,4,6,9-tetrahydro-6-hydroxy-4,4,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,11-b]phenyl]-4-yl[carbamic acid phenylimethyl ester by the method similar to that in EXAMPLE 95. Yield: 92%.

Amorphous.

¹H NMR (CDCl₃) δ 1.28 (6H, s), 1.30 (6H, s), 2.37 (2H, s), 3.70 (2H, s), 5.22 (2H, s), 6.80 (1H, br s), 7.08 (1H, s), 7.31-7.51 (9H, m), 7.57 (2H, d, J = 8.7 Hz), 7.62-7.68 (2H, m).

EXAMPLE 575

[3'-(3.4,8,9-Tetrahydro-4,4,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-yl]carbamic acid phenylmethyl ester

[1320] Formic acid (0.30 m.l., 8.0 mmol) was added to a solution of (3.4)3.4, 8.5-tershydro-4.4, 8.8-tersmethyl-6-t[futoromethylysulfonyl(ox)y[tro(2,3-h]loaquioni-1-y[l](1.1)-thphonyl[-4-y]loadmic acid palmymethyl ester (2.74 §, 4.04 mmol), triethylamine (1.7 mL, 12 mmol), palladium acetate (II) (23 mg, 0.10 mmol) and triphenylphosphine (53 mg, 0.20 mmol) in NN-dimethylformamide (8 mL) and the mixture was setured at 70° c for 4 hours under nitrogen atmosphere. The reaction mixture was combined with water and a saturated aquoous solution of sodium hydrogen carbonate, and extracted twice with ethyl acetate. The combined organic layer was washed twice with water, and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica gel (hexane/ethyl acetate 2:1), crystallized from ethyl acetate-diethyl ether to obtain the title compound (1.72 g, yield: 80%).

45 1H NMR (CDCl₃) & 1.27 (6H, s), 1.28 (6H, s), 2.32 (2H, s), 3.68 (2H, s), 5.22 (2H, s), 6.77 (1H, br s), 6.83 (1H, d, J = 8.4 Hz), 7.19 (1H, d, J = 8.4 Hz), 7.31-7.50 (9H, m), 7.55-7.68 (4H, m).

EXAMPLE 576

3'-(3,4,8,9-Tetrahydro-4,4,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl](1,1'-biphenyl]-4-amine dihydrobromide

[1321] 25% Hydrobromic acid/acetic acid solution (7 m.l.) was added to a solution of [3°(3,4,8,9-letrahydro-4.4.8,8-letramethylturo[2,3-h]isoquinolin-1.yll(1,1'biphenyl)-4-yl[carbamic acid phenylmethyl ester (1,90 g, 3.58 mmol) in ohloroform (20 m.l.) and the mixture was stirred at room temperature for 3 hours. The reaction mixture was concentrated under reduced pressure, and the residue was combined with diethyl ether, and the solid was recovered by filtration to obtain the tilte compound (1,97,9,99%).

Melting point: 206-210 °C.

 1 H NMR (DMSO-d₆) δ 1.21 (3H, s), 1.25 (3H, s), 1.37 (6H, s), 2.25-2.50 (2H, m), 3.70-3.90 (2H, m), 7.15-7.32 (2H, m),

m), 7.27 (1H, d, J = 8.4 Hz), 7.50 (1H, d, J = 8.4 Hz), 7.62-7.70 (1H, m), 7.72-7.85 (3H, m), 8.05-8.07 (1H, m), 8.08 (1H, d, J = 7.8 Hz).

EXAMPLE 577

5

20

20

25

N-f3'-(3.4.8.9-Tetrahydro-4.4.8.8-tetramethylfuro[2.3-h]isoguinolin-1-yl\[1.1'-biphenyl]-4-yl\[1.2]acetamide

[1322] A solution of sodium carbonate (185 mg, 1.75 mmol) in water (1 mL) was added to a suspension of 3"(3,4,8)-ettrahydro-4,4,8 -tetramethylruc(2,3-hisquaindin-1-yll),11-bihenyll-4-mine (dillydrobromide (279 mg, 0.500 mmol) in tetrahydrofuran (1 mL). The resultant mixture was cooled with ice, treated dropwise with acetyl chloride (46) LL, 0.65 mmol), and sitrred at the same temperature for 15 minutes. The reaction mixture was combined with water, and extracted twice with chloroform. The combined organic layer was washed with brine, fried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-diethyl ether to obtain the tilt compound (149 mc, 68%).

15 Melting point: 246-249 °C.

 1H NMR (CDCl₃) δ 1.27 (6H, s), 1.29 (6H, s), 2.19 (3H, s), 2.32 (2H, s), 3.68 (2H, s), 6.83 (1H, d, J = 8.1 Hz), 7.19 (1H, d, J = 8.1 Hz), 7.36-7.43 (2H, m), 7.47 (1H, t, J = 7.5 Hz), 7.57 (4H, s), 7.61-7.68 (2H, m).

EXAMPLE 578

N-[3'-(3.4.8.9-Tetrahydro-4.4.8.8-tetramethylfuro[2.3-hlisoquinolin-1-yl)[1.1'-biphenyll-4-yl[propanamide

[1323] The title compound was obtained from propionyl chloride by the method similar to that in EXAMPLE 577. Yield: 56%. Melting point: 215-218 °C (ethyl acetate-diethyl ether).

¹H NMR (CDCl₂) ³ 1.23-1.31 (3H, m), 1.27 (6H, s), 1.29 (6H, s), 2.32 (2H, s), 2.41 (2H, q, J = 7.5 Hz), 3.68 (2H, s), 6.83 (1H, d, J = 8.1 Hz), 7.19 (1H, d, J = 8.1 Hz), 7.19 (1H, d, J = 8.1 Hz), 7.20-7.27 (1H, m), 7.37-7.42 (1H, m), 7.47 (1H, t, J = 7.5 Hz), 7.59 (4H, s), 7.62-7.68 (2H, m).

EXAMPLE 579

N-[3'-(3,4,8,9-Tetrahydro-4,4,8,8-tetramethylfuro[2,3-h]isoquinolin-1-vI)[1,1'-biphenyl]-4-vI]formamide

[1324] Formic acid (0.5 mL) was treated dropwise with acetic anhydride (0.14 mL, 1.5 mmol) with cooling in loc, and strired at the same temperature (for 1.5 hours. The resultant solution was added dropwise to a solution of 3:9(3.4 8.9-tet-rahydro-4.4,8.8-tet-ramethyfluro(2.3-h)[soquinolin-1-yi)[1,1'-b)phenyl]-4-amine dihydrobromide (279 mg, 0.500 mmol) and sodium formate (75 mg, 1.1 mmol) in formic acid (0.5 mL), and the mixture was sittered at room temperature for 1.5 hours. The reaction mixture was added dropwise to a suspension of sodium hydrogen carbonate (3.1 g, 37 mmol) in water-ethyl acetate, and the organic layer was washed with brine, died over sodium sulfate, filtered and concentrated under reaction results. The combined organic layer was washed with brine, died over sodium sulfate, filtered and concentrated under reaction present. The residue was crystallized from ethyl acetate-hexane to obtain the title compound (147 mg, yield: 69%). Meltino point: 197-198 °C.

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.29 (6H, s), 2.32 (2H, s), 3.69 (2H, s), 6.84 (1H, d, J = 8.4 Hz), 7.13 (1H, d, J = 8.7 Hz), 7.20 (1H, d, J = 8.4 Hz), 7.38-7.69 (8H, m), 8.38 (0.55H, d, J = 1.8 Hz), 8.73 (0.45H, d, J = 11.1 Hz).

45 EXAMPLE 580

 $3' - (6-Hydroxy-4,4,8,8-tetramethyl-3,4,8,9-tetrahydrofuro \cite{A} - (2,3-h) is oquino lin-1-yi) \cite{A} - (1,1'-biphenyl)-4-carboxylic acid ethylester$

[1325] The title compound was obtained from 1-(3-bromophenyl)-3,4,8,9-letrahydro-4,4,8,8-tetramethyl-6-furo [2.3-h]iscoulnoilnol and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid ethyl ester by the method similar to that in EXAMPLE 461. Yield: 52%.

Melting point: 214-217 °C (ethyl acetate-diethyl ether).

¹H NMR (CDCl₃) δ 1.21 (6H, s), 1.28 (6H, s), 1.41 (3H, t, J = 7.2 Hz), 2.32 (2H, s), 3.60 (2H, s), 4.40 (2H, q, J = 7.2 Hz), 6.73 (1H, s), 7.38-7.54 (2H, m), 7.63-7.77 (2H, m), 7.68 (2H, d, J = 8.4 Hz), 8.09 (2H, d, J = 8.4 Hz).

EXAMPLE 581

5

15

25

25

40

45

[3'-[3.4,8,9-tetrahydro-4,4.8,8-tetramethyl-6-[[(trifluoromethyl)sulfonyl]oxy]furo[2,3-h]isoquinolin-1-yl][1,1'-b|phenyl]-4-carboxylic acid ethyl ester

[1326] The title compound was obtained from 3*(6-hydroxy-4,4,8,8-tetramethyl-3,4,8,9-tetrahydrofuro[2,3-h]isoquinolin-1-yl)[1,1*-b]phenyl]-4-carboxylic acid ethyl ester by the method similar to that in EXAMPLE 95. Yield: 97%. Melting point: 147-149 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.29 (6H, s), 1.31 (6H, s), 1.42 (3H, t, J = 7.2 Hz), 2.38 (2H, s), 3.72 (2H, br s), 4.41 (2H, q, J = 7.2 Hz), 7.10 (1H, s), 7.42-7.48 (1H, m), 7.50-7.57 (1H, m), 7.67-7.76 (4H, m), 8.12 (2H, d, J = 8.1 Hz),

EXAMPLE 582

3'-(3,4,8,9-Tetrahydro-4,4,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-carboxylic acid ethyl ester

[1327] The title compound was obtained from [3'-[3,4,8,9-tetrahydro-4,4,8,8-tetramethyl-6-[[(trifluoromethyl)sulfony] oxyfluro[2,3-h]isoquinolin-1-y|[1,1'-biphenyi]-4-carboxylic acid ethyl ester by the method similar to that in EXAMPLE 575. Yleid: 75%.

Melting point: 144-149 °C (hexane).

¹H NMR (CDCl₃) 5 1.28 (6H, s), 1.29 (6H, s), 1.42 (6H, t, J = 7.1 Hz), 2.32 (2H, s), 3.69 (2H, s), 4.40 (2H, q, J = 7.1 Hz), 5.84 (1H, d, J = 8.4 Hz), 7.20 (1H, d, J = 8.4 Hz), 7.47 (1H, dt, J = 7.6, 1.7 Hz), 7.52 (1H, td, J = 7.6, 0.6 Hz), 7.67-7.76 (4H, m), 8.08-8.13 (2H, m).

EXAMPLE 583

3'-(3,4,8,9-Tetrahydro-4,4,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-carboxylic acid

[1328] 1 M aqueous solution of sodium hydroxide (10 mL) was added to a suspension of 3".43.4.8 -letranethylluro(2.3-h)liquoiunion.1-yill, 1-biphenyll-4-carboxylie acid eithy elset (1.30 g. 2.8 7 mmol) in ethanol (15 mL) and the mixture was stirred at 70 °C for 45 minutes, the reaction mixture was cooled with ice, treated dropwise with 1 M hydrochioric acid (10 mL), and extracted twice with chloroform. The combined organic layer was washed with brine, combined with a small amount of methanol, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was crystallized from chloroform-ethyl acetate to obtain the title compound (1.19 g, yleid: 97%). Methion a poli: 288-291 °C.

1H NMR (DMSO-d₀) 5 1.19 (6H, s), 1.21 (6H, s), 2.28 (2H, s), 3.58 (2H, s), 6.86 (1H, d, J = 8.3 Hz), 7.24 (1H, d, J = 8.3 Hz), 7.44 (1H, dt, J = 7.6, 1.4 Hz), 7.58 (1H, t, J = 7.6 Hz), 7.74 (1H, t, J = 1.4 Hz), 7.87-7.88 (3H, m), 8.03 (2H, d, J = 8.4 Hz), 12.80-13.05 (1H, bt).

EXAMPLE 584

3'-(3,4,8,9-Tetrahydro-4,4,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-carboxamide

[1329] 1-Ethyl-3-(3-dimethylaminopropyl)carbodininide hydrochloride (125 mg, 0.652 mmol) was added to a suspension of 3-(3.4.8 4-9-tethylavd-4.4,8.4-tetharhylfurg)2-3-higoquinolini-1-yil);1-biphenyl-1-carboxylic acid (213 mg, 0.501 mmol) and 1-hydroxy-1H-benzotriazole ammonium salt (92 mg, 0.60 mmol) in N,N-dimethylformamide (1 mL) and the mixture was stirred at room temperature for 15 hours. Theithylamine (0.16 mL, 1.1 mmol) was added to the resultant mixture and the mixture was stirred at room temperature for 2 hours. The reaction mixture was combined with water and extracted twice with tethyl acetate-tetrahydrofuran mixture. The combined organic layer was washed with brine, dried through soldium sulfate-basic silica gel (ethicing with ethyl acetate), and concentrated under reduced pressure. The resultant solid was washed with ethyl acetate-hexane to obtain the title compound (89.5 mg, yield: 42%). Melting point: 244-259 C.

¹H MMR (DMSO-d₀) 5 1.19 (6H, s), 121 (6H, s), 2.29 (2H, s), 3.58 (2H, s), 6.86 (1H, d, J = 8.1 Hz), 7.24 (1H, d, J = 8.1 Hz), 7.36-7.45 (2H, m), 7.57 (1H, t, J = 7.7 Hz), 7.73 (1H, t, J = 1.5 Hz), 7.79 (2H, d, J = 8.6 Hz), 7.81-7.87 (1H, m), 7.97 (2H, d, J = 8.6 Hz), 8.04 (1H, br s), 7.97 (2H, d, J = 8.6 Hz), 8.04 (1H, br s), 7.97 (2H, d, J = 8.6 Hz), 8.04 (1H, br s), 7.97 (2H, d, J = 8.6 Hz), 8.04 (1H, br s), 7.97 (2H, d, J = 8.6 Hz), 8.04 (1H, br s), 8.04

EXAMPLE 585

N-Methyl-3'-(3,4.8,9-tetrahydro-4.4.8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)[1,1'-biphenyl]-4-carboxamide

[1330] The title compound was obtained from 3-(3,4,8,9-tetrahydro-4,4,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl) [1,1'-biphenyl]-4-carboxylic acid by the method similar to that in EXAMPLE 459. Yield: 70%.

Melting point: 242-244 °C (ethyl acetate-hexane).

¹H NMR (CDCl₃) δ 1.27 (6H, s), 1.29 (6H, s), 2.32 (2H, s), 3.05 (3H, d, J = 4.8 Hz), 3.69 (2H, s), 6.15-6.25 (1H, m), 6.84 (1H, d, J = 8.4 Hz), 7.20 (1H, d, J = 8.4 Hz), 7.46 (1H, dt, J = 7.7, 1.5 Hz), 7.47-7.54 (1H, m), 7.66-7.74 (4H, m), 7.83 (2H, d, J = 8.4 Hz).

EXAMPLE 586

15

3-(3,4,8,9-Tetrahydro-3,3,8,8-tetramethyl-6-(propylthio)furo[2,3-h]isoquinolin-1-yl)benzoic acid

[1331] A solution of an about 15.2 mixture of 2.3-dihydro-2.2-dimethyl-5-(2-methyl-1-propenyl)-7-(propylthiolbenzoturan and 2.3-dihydro-2.2-dimethyl-5-(2-methyl-1-propenyl)benzofuran obtained in EXAMPLE 549 (3.10 g) and isopropyl 3-cyanobenzoate (1.83 g). 8.65 minol) in acetic acid (6 miL)-toliuene (13 miL) was treated dropwlse with conc. sulfurio acid (1.80 miL, 33.7 minol) with cooling in ice, and stirred at 60 °C for 1.5 hours. Isopropyl alcohol (11.7 mil) was added dropwise to the mixture, and the mixture was heated under reflux for 5 hours. Ice waster was poured into the reaction mixture, which was neutralized with sodium hydrogen carbonate, and extracted twice with sthyl acetate. The combined organic layer was washed with brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was dissolved in N.N-dimethylformamide (20 miL), potassium carbonate (688 mg, 4.83 mmol) and 2-iodopropane (0.48 miL, 4.83 mmol) were added thereto, and the mixture was stirred at room temperature for 5 hours. Water was poured into the reaction mixture, which was extracted twice with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a sitilic age (flexame/ethyl acetate 1.15 followed by 51:10 obtain 3-(3.4,8.9-tetrahydro-3,3,8.8-tetrahydro-5,3,8.8-tetrahydro-6,5,8,8-tetrahydro

30 [1332] The resultant ester derivative (1.00 g, 2.15 mmol) was dissolved in methanol (4 mL), 5 M aqueous solution of sodium hydroxide (2 mL) was added thereto, and the mixture was stirred at room temperature for 15 hours. The reaction mixture was adjusted at pH 4.5 with 5 M hydrochloric acid, combined with sodium chloride, and extracted twice with ethyl acetate. The combined organic layer was washed with brine, dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was crystallized from ethyl acetate-dilsopropyl ether to obtain the title compound (153 mg, vieid: 17%).

Melting point: 206-208 °C.

¹H NMR (CDCl₃) 8 1.11 (3H, t, J = 7.5 Hz), 1.25 (6H, s), 1.51 (3H, s), 1.74-1.86 (2H, m), 1.91 (3H, s), 2.05-2.17 (2H, m), 2.83-3.04 (1H, m), 3.04 (2H, t, J = 7.2 Hz), 3.30-3.50 (1H, m), 6.97 (1H, s), 7.60-7.72 (2H, m), 8.00 (1H, d, J = 7.5 Hz), 8.12 (1H, d, J = 7.8 Hz).

EXAMPLE 587

45

N-(2-Amino-1,1-dimethyl-2-oxoethyl)-3-(3,4,8,9-tetrahydro-3,3,8,8-tetramethyl-6-(propylthio)furo[2,3-h]isoquinolin-1-yl)benzamide

[1333] 1-Hydroxy-1H-benzotriazole monohydrate (280 mg, 1.83 mmol), triethylamine (0.58 mL, 4.15 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodimide hydrochloride (141 mg, 2.16 mmol) were added to a solution of 3/3,4.8,9-tetrahydro-3,3.8.8-teramethyl-6-propylthiofuro(2,3-h)lisoquinolin-1yl)benzolcacid (703 mg, 1.66 mmol) and 2-amino-2-methylpropanamide hydrochloride (254 mg, 1.83 mmol) in NN-dimethylformamide (4 mL) and the mixture was stirred at room temperature for 4 hours. Water was poured into the reaction mixture, which was extracted wite with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subjected to a column chromatography on a basic silica got (hoxano-fethyl acetate) 1.2 followed by ethyl acetate), and the resultant crystals were washed with discorpopyl ether to obtain the title compound (478 mg, yield: 57%).

¹H NMR (CDCl₃) δ 1.05 (3H, t, J = 7.2 Hz), 1.25 (6H, s), 1.30 (6H, s), 1.62-1.78 (2H, m), 1.71 (6H, s), 2.17 (2H, s), 2.68 (2H, s), 2.95 (2H, t, J = 7.3 Hz), 5.49 (1H, br s), 6.43 (1H, br s), 6.92 (1H, s), 6.96 (1H, s), 7.43-7.52 (2H, m), 7.85-7.89 (2H, m).

EXAMPLE 588

3.4.8.9-Tetrahydro-5.6-dimethoxy-3.3.8.8-tetramethyl-1-phenylfuro[2,3-h]isoquinoline hydrochloride

- 5 [1334] A solution of 2,3-dillydro-6,7-dimethoxy-2,2-dimethyl-5-(2-methyl-1-propenyl)benzofuran (220 mg, 0.839 mmol) and benzontirile (0.086 mL, 0.839 mmol) in acetic acid (0.4 mL,1-blouner (1.1) was treated dropwise with conc. sulfuric acid (0.11 mL, 2.10 mmol) with cooling in ice, and stirred at 80 °C for 40 minutes, loe water was poured into the reaction mixture, which was washed with diisopropyl ether. The aqueous layer was neutralized with conc. aqueous ammonia, and extracted with ethil acetate. The combined organic layer was washed twice with brine, cried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was subicced to a column chromatography
 - on a basic silica gel (hexane/ethyl acetate 10:1 followed by 5:1) to obtain a free base of the title compound.
 - ¹H NMR (CDCl₃) δ 1.25 (6H, s), 1.29 (6H, s), 2.13 (2H, s), 2.69 (2H, s), 3.83 (3H, s), 3.99 (3H, s), 7.38 (5H, s).
 - [1335] This was dissolved in ethyl acetate, 4 M hydrogen chloride/ethyl acetate solution was added thereto, and the mixture was concentrated under reduced pressure crystallized from ethyl acetate-disopropyl ether to obtain the title compound (6 mg, yield: 2%).

Melting point: 155-157 °C.

20

25

30

25

45

50

55

[1336] The compounds produced in EXAMPELS described above are indicated in Tables 1 to 22 shown below.

Table 1

					-			
ex.	R ¹	addilive	ex.	R ¹	additive	ex.	R [†]	additive
1	\Diamond		16	\supset	нсі	34	7" Y	
2		•	17	\bigcirc		35 J	کہار	
3	₩		18	\bigcirc		36 L	اين	
•	C) OCH,	•	19		٠,	57 J	Ila,	٠.
5	CHAO	•	20	○ Br		30 J	I La	•
•	COCH ₃		21	O SO,N	™ ₂ .	» [I,LE	
. 7	\sim		24	\bigcirc	**s	یک مه	2 ix	
8	O	٠.	25	O coro	ж.	41 J	ک _ا ٹر۔	
	00		27	₩,		e [-
10	O		28	O HOL		" <u>(</u>	J ⁱ X	
11	D	нся	29	Q _{MH}	2HCI	" 〔	j ^k x	•
12	€ Br	на	30	i,Q		45	J.X	
13	Q _{och}	на	31	O,i	CF9 ·	" <u>[</u>	THO	
14	сн₃	-	32	Ü,¥		., .	Jio	•
15	\bigcirc	-	33		CF1 .	40 L	ايار	

Table 2

				CHO				
, ex.	R¹	additive	ex.	R ¹	additive	ex.	R ¹	additive
** \$	}	-	60	016		71	O _N L _{NMs}	
50 K			61			72		
₅₁	N CO.CH.		62			73	Onlan	
62 L	المائل		63			74		
s			. 64		2HCI	75		
, L		зно	65	المني		76	CONF	
ss	N_CO2CH4	•	66			77	00	-
)	k.	67			76		٠.
57	N SO ₂ NI	н, на	68	O.io.	HCI C ₂ H ₆	79		
ss	N CONH,		69		н -	90	Oco,H	HCI
59 K	J. J. CO.H		70		на	81	€ COOLH	нсі

Table 3

	CHO	C		
ex. R ^f	additive	ex.	R ¹	additive
" J';()	осн _а .	144	o'ro	2HCI
84 CONH ₂	٠	145		2HC1
as CONHCH ₃	-	148		2НСІ
86 CONH2		147		2HCI
	нсі	148		
ss CON(CH ₃) ₂	нсі	149		
· Offa	0 R-0C ₂ H ₅ OC ₂ H ₅	150	O', D	2HCI
125 ANO2		151		2HCI
139 CCCC	на	152		•
140 Q coci	HCI	153	O,O	-
" OILO	2HC1	154		
	2HCI	155	Cotch	ь на
	2HCI	156	ÇŞ Ä, coşH	нсі

Table 4

5		CHO THE	
	ex. R ⁴ additive	ex. R ¹ additive	ex. R ^t additive
10	157 H CONH ₂	169 Of " Sun .	181 H
15	158 Д Н солнон;		182 .N OCH ₃ .
20	150		183 N HGI
		172 A HO	247 B1 HCI
25	161	173 AH NOH, 2HG	248 00
30	102	174 JANH 2HG	249
35	163	175 H CONH ₂ .	250
40	164 OHLON	176 H CO ₇ C ₂ H ₆ .	251 .
40	185 A	177 N CO ₂ H HC	282 00
45	166 A NON	178 H CONH ₂ .	253 CN .
50	167 H H SO ₂ NH ₂	179 CONHOH	254
55	168	180 CONHC ₂ H ₅	255 CN 2HCI

Table 5

5					CHO THE				
	ex.	R1	addtive	ex.	R ¹	additive	ex.	R¹	additive
10	256			268	00%	на	280	CN	-
15	257	00	2HCI	269	Xcn		281	CO ₂ C ₂ H ₈	на
20	258			270	CONN.		282	N TCO2C2H8	Hs -
	259	O CONNE	•	271	COSCSHS		283	Q NHC2H6	
25	260	Dai			CONHOH		284	0,0	•
30	261	DOX		273	₩_co.c.	м.	285	ozo.	•
35	262	ONH ₂	2НСІ	274	CO.C.M.	на	296	0,0	энся
	263	OUT		275	COLERE		287	O CO.C.H.	2HQI
40	264	CO3C3H	's нсі	276	CO.H		288	Q _N Q	
45	265		нсі	277	CONHCH ₃	нсі	289	0,0	-
50	266	O je		278	OX:C	2HCI	290	oro	нсі
	267	Ook		279	₩		295		

Table 6

5					CHIO THE				
	ex.	A¹	additive	ex.	R ¹	additive	ex.	A ¹	additive
10	296	٥٥٠		311	T-O	на	324	O'N	на
15	297		на	312	Ü	на	325	CN OCH₃	HCI
	299	Ofic	2HCI	313	\mathcal{Q}_{\perp}	нся	326	Och,	на
20	300	SO ₂ NHCH ₂		314	© oc⁴re	на	327	OH	
25	301	Who conh		315	J 0'C3H4	нст	328)0CH ₃	
	302	∞	2HCI	316	O°!	HCI	329	Orto-	•
30 .	303	\square	٠	317	O~O	нсі	330	CT°	•
35	304	NHCH ₆		318	Q	на	331	CAN CONH	
	306	00	нсі	319	[-		332	C.O.	•
40	307	00	нсі	320	Q,	нсі	333	CT CO	
45	308	∞	нся	321	***	-	334		
50	309		нсь	322	Ġ,	на	335		-
55	310	CaHe OH	на	323			336	CN CO2C2H4	2HCI

Table 7

	ex.	a,	additive	ex.	R ¹	additive	ex.	· R¹	additive
10	337	CNH.		350	CACO COSCHS		363	осн,	нсі
15	338		•	351		н .	364	00	1.5HCl
	339		-	352	CLO COOLH	нсі	365	(C,H)	HCI
20	340		•	353	Cho Conh,	•	368	1	нсі
	341		-	354	CHO CONHCH	•	367	OCF ₃	нсі
25	342			385	CNO CONHC ₃ H ₇	٠	368	CCOCH ₅	
30	343			356	SCH₁	HCI	369		•
	344	CN_CONH ₂	HCI	357	∞	нсі	370	L)	
35	345	Ch coacama	•	358		HCI	371	HO	•
40	346			359	○ N(CH ₃) ₂	HCI	372	Ç.	
	347	Choil No on		360	COCH,	на	373	Ď	
45	348	CN_C02/C,He	•	361	\mathbb{Q}	нсі	374	CI XI	•
	349	Ch Coah	на	362	₽ cr,	нсі	375	CILITA	
50									

Table 8

5					CH ₂ O	· **			
10	ex.	R ¹	additive	ex.	R ¹	additive	ex.	R ¹	additive
	376			387	Ci		398	NO N(CH ₉) ₂	
15	377	₩ NO2		388	CNIH.		399	(1)	
20	376		•	389			400	CN CO _{COPCH}	•
	379	O ^X		390	CN OCH ₃	٠	401	CT, Cyin,	эн .
25	380	\bigcirc		391			402		
30	381	OCH ₃		392	CN_CONH;		403	Chacatan,	•
	382			393	CN TH-CONH	٠.	404	CM CO ₂ H	HCI
35	383		•	394	C,C		405		
40	384			395	CC.		406		
45	385	Si ^o		396			407		
50	386			397	a H		408		

Table 9

J 13'
Y
CH3O

10	ex.	R ¹	additive	ex.	R ¹	additive
15	409			420	-со₂н	нсі
20	410	CN CON	H₂ .	421		-
25	411	∑N _C CI	-	422		
30	412	G Z	-	423	I N N	
35	413	CN CON	1 ₂ ·	431		•
40 .	414			432	CI	-
45	415		•	433		<u>.</u>
50	419	-CO₂CH₃ .		434	CO ₂ Na	-

Table 10

ех.	R ⁵	×	additive	ex.	R ^S	×	additive	ex.	R ⁵	x	additive
22	-CaHs	o		195		0		213	L,	s	на
91	44	٥	HBr	198	~0	0		214	-СН _а	8	на
92	-#	o		197	~ 0	0	нсі	215 .	-cı `	bond	нсі
95	-SO ₂ CF ₃	0		199	~~0	0		217	-СН ₂	NH	HCi
96	-80 ₂ CF ₃	0	на	199	-CO ₂ C ₂ H ₆	0	HCI	218	-CH ₃	NCH ₃	2HCI
97	-#	bond	HCI	200		٥	•	219	-C ₂ H ₆	NH	нся
107	-C ₂ H ₆	0	на	201	-CH ₂ F	0		220	-H	NH	
136	$ \uparrow $	0	на	202	B	۰		221	-сно	NH	٠.
138	~	0	HCI	203	-CH ₂ CO ₂ CH ₃	o		222	-COCH ₃	NH	
186	-C ₃ H ₇	0	HCI	204	-CH2CONH2	0		223	-SO ₂ CH ₃	NH	
187	\square	0	•	205	-CH ₂ CO ₂ H	0	HCI	224	-COC ₂ H ₆	NH	•
188	-COCH ₂	0	HCI	206	-СН2СОМНСН4	٥	нсі	225	-CO ₂ C ₂ H ₅	NH	
189		0	нсі	207	-CH ₂ CON(CH ₃) ₂	0		226	-CH2CO2C2H5	NH	
190	-C₄H ₀	0		206	-CH ₂ CH ₂ NH ₂	٥	•	227	-CONH ₂	NH	٠
191	-C ₃ H ₇	0	HCI	209	-сн₂сн₂он	٥	-	228	-CONHCH ₃	NH	-
192	$\hat{\nabla}$	0		210	-CH ₂ CH ₂ F	0	-	296	-C ₂ H ₅	s	на
193		o	2HCI	211	i,	o		305	-CH ₃	bond	HCI
194	\sim	0		212	i,	٥	HCI				

Table 11

10	ex.	R1	R ⁵	x	additive	ex.	R ¹	R ⁵	×	additive
	23	C) OCH	-C ₂ H ₅	0		101	\bigcirc_{Br}	-C₂H₅	0	
15	26	ÇCO₂CH ₃	C₂H₅	o		102	\bigcirc _{Br}	-C ₂ H ₅	0	HCI
20	82	CO2H	-C ₂ H ₄	0	нсі	103	\bigcirc Br	+CaHg	0	
	87	CONH ₂	-C ₂ H ₅	0		104	\bigcirc _{Br}	-C ₄ H ₉	0	нсі
25	93	○ OH	-н	0	HBr	105		-C₄H₀	0	
30	94	△ _{Br}	- H	0		106		-C₂H₅	0	
35	98		-#	0		124	O _{NO2}	-н	o	
40	99		-C ₃ H ₇	0		216		-CI	bond	2HCl
45	100		-CH ₂ CONH ₂	o						

Table 12

ex.	R ⁴	R ⁵	additive	ex.	R ⁴	A ⁵	additive	ex.	R ⁴	A ⁵	additive
113	-CH ₂ N(CH ₃) ₂	-н	•	133	·1C3H3	-CH ₃	HCI	236	-CH ₂ OC ₂ H ₅	-СН _э	HCI
114	-CH ₂ N(CH ₃) ₂	-CH ₃	•	134	·C ₃ H ₇	-C2H5	на	237	-сн₂он	-CH ₃	•
15	-CH ^S N ₄ (CH ³) ³ l.	-CH ²		135	·C+H+	-COCH ₃	на	238	-CH ₂ F	-сн ₃	нсі
16	$\mathbb{Q}_{\mathfrak{F}^{\wedge}}$	-CH ₃	HCI	137	$ \uparrow $	-H		239	-CH ₃	-сн	нсі
17	-CH ₂ N(CH ₃) ₂	-C ₂ H ₆		229	\Rightarrow	-СН3		240	-CH ₂ CN	-СН3	
18	-CH ₂ N(CH ₃) ₂	-COCH ₂		230	-CH ₂ NH ₂	-сн,		241	-CH ₂ CO ₂ C ₂ H ₅	-СН ₃	нся
9	$^{\smallfrown}\bigcirc$	#			н —					-CH ₃	
20	\bigcirc	-СН ₃	2HCI	232	~ _N L	-СН ₃	-	243	-CH ₂ CONH ₂	-CH ₃	
21	\bigcirc	-C ₂ H ₅		233	~NH2	-CH ₃		244	-CH2CONHCH3	-CH ₃	
22	$^{\frown}\bigcirc$	-COCH ₃	SHCI	234	-CH ₂ Br	-СН3		245		-11	
32	-'C ₃ H ₇	+		235	-CH ₂ OCH ₃	-СН3	HCI	246	-сн₂он	-н	

Table 13

ex.	R¹	R ⁴	R ⁵	additive	ex.	R¹	R ⁴	A ₂	additive
125	△ _{NO₂}	$\hat{\mathcal{A}}$	н		129		\bigcirc	-C₂H₅	
126	NO₂	$\bigcirc \widehat{\ }$	-C₂H ₆			N _i X		-C ₂ H ₅	-
127	□ _{NH₂}	70	-C ₂ H ₈	٠	131	O.X	70	-C ₂ H ₅	
128	C N COSH	$^{\smallfrown}\bigcirc$	-C ₂ H ₅	٠					

Table 14

ex.	R ¹	R ²	R³	R ⁰	R ⁷	R ^d	R ^g	additive
109		-CH ₂ Br	-Сн _э	-CH ₃	-СН ₂	-н	-н	. •
184	\Diamond	-(CH	28-	-CH ₃	-CH ₃	-14	-н	HCI
165	© OCH4	-(Сн	1h-	-CH ₃	-CH ₂	-н	-11	HCI ,
416	ÇÇOCH,	-CH3	-сн _э	41	'44	-н	41	
417		-CH3	-CH ₃	41	-н	-сн _з	-CH ₃	-
418		-СаН	·C ₂ H ₅	-CH ₉	-сн _э	4н	-н	HCI
424	\mathcal{L}	-сн,	-сн _з	-н	-н	+ Н	-н	•
425		-CH ₂	-сн,	-(CH	2)4-	-н	-н	
426	\mathcal{L}	-сн ₃	-CH ₃	-(CH	2)4-	-н	-н	
427	Ciro-	-CH ₃	-CH ₃	-(CH	2)4-	-н	-н	
428		-CH ₃	-CH ₃	-C ₂ H ₆	-C ₂ H ₆	-н	-н	HGI
429	\square	-CH ₃	-CH ₃	Сн	-C ₂ H ₆	-н	-H	HCI
430	Cho-	-CH ₃	-CH ₃	-C ₂ H ₅	-C ₂ H ₅	-н	-н	HCI
435	\bigcirc	-#	-н	-сн,	-CH ₀	-14	-4	нсі
436		-CH ₃	-н	-СН _э	-CH ₃	-11	-н	
437		-CH ₃	-н	-CH ₃	-CH ₃	-11	#	•
438	\bigcirc	-CO ₂ CH ₃	44	-CH ₃	-CH ₃	-11	-н	

Table 15

ex.	R ¹	R ⁵	Υ	n	additive
108		-CH₃	-CH(OH)-	0	•
110		-C ₂ H ₅	-CH ₂ -	1	
111		-CH ₃	-CH ₂	1	-
112	CONH ₂	-C ₂ H ₅	-CH ₂ -	1	-
291	₩ Br	-CH ₃	-CH(OH)-	0	HCI
292		-СН ₃	-CH(OH)-	0	
293		-CH ₃	-CH(OH)-	0	нсі
294	The state of the s	-CH ₃	-C(=O)-	0	•

Table 16

est.	R ¹	adótiva	ex.	orlo XXX	additive	ex.	R ¹	additive
439	Og.		452	C) CO.CH.		469	C L CONH	
440	Ook		·453	C C C C C C C C C C C C C C C C C C C		477		
441	Oglor,		454	700		478		
442	منه		455			479		
443			458	$\mathcal{O}_{\mathcal{O}_{\text{co,c,m}}}$		480		
444			457			493	Cyli-on	
445	Oglij		458	CONH		501	Oir	нсі
446	Oali	-	459	CONHON,	-	502		
447	مايت		460	CON(CH ₀)z	•	503	C SO, NHCH,	нсі
448	aq!		487	Orio	-	504	Cogo, Ho	HCI ,
451	CO ₂ CH ₃		468		на	505	Ogh-conh,	-

Table 17

				040				
ex.	R ¹	additive	ex.	R ¹	additive	ex.	R¹	additive
, 508		у на	520	مرياب محمليات		534	O'K	нсі
507	CONH2	HCI	521	Oy	нсі	535		
508		HCI	522		٠		Q NH2	HCI
509	Oir	нсі	523	at	нсі	537		
510	C) son,	нс	524					
511		нсі	525	art.	нсі	539	O P CON	
512	$\mathcal{Q}_{\tilde{\chi}}$	нсі	526	O'IL		540	a go one	He
	S_CONH ₂		527		<u>Г</u> на	541		MH SHCI
514	CONH;	на	528	NH2		542	Oil	HCI NH
516	CONH ₂	HCI	529	Q _p l _{nrs}	-	543		
516	Q, %		530			563		
817			631		• (564		
518	O'K		532					
				_				

Table 18

				REX.		-			
ex.	R ¹	R ⁶	x	additive	ex.	R'	R ^d	×	additive
449	O _O NH ₀	-C ₄ H ₉	۰		489	₽ NH₂	-C ₂ H ₅	o	
450	Oai	-C ₄ H ₆	0	-	489	O'K	-C ₂ H ₅	۰	
461	Ogi	н	0	٠,	490	Q.Y.	-CaHs	0	
462	Ogi	-SO ₂ CF ₃	0		491	D _N Ls.	-C ₂ H ₅	0	
463	OQL	#	bond		492	Oil	-C,H ₆	o	
464	٠ (-80 ₂ CF ₃	۰.		544	COSCHS	-C ₂ H ₆	0	
465		44	bond		545	CO ₂ H	-C ₂ H ₆	o	-
466	Opl.	4	bond		546	Q _{NMa}	-C ₂ H ₆	•	2HCi
481	€ coscords	-C ₂ H ₃	0		547	C L CC,Hs	-C ₂ H ₆	0	нсі
482	.Cop#	-C ₂ H ₅	0	на	548	\Diamond	-C ₂ H ₆	s*(·O)	
483	CONHCH ₉	-CzHs	۰		549	COICH	.^C ₃ H ₇	s	•.
484	L CONNI	СН	o		550	CO2/C3H7	-C ₂ H ₆	8	•
485	The XCOGCORD HIS	-C ₂ H ₆	0		586	CO₂H	.^C ₃ H ₇	s	•
486	Q 1 × 00,44	Сън	D	нся	587	C THX CONH.	.^C₃H₂	s	
487	CONH,	-C ₂ H ₅	٥	-					

Table 19

$\downarrow 0$
o h
R ⁵ O R ²

ex.	R ²	R ³	R⁵	additive
470		-CH ₃	-CH ₃	
471	∕NH ₂	-СН₃	-CH ₃	-
472	~~~	-H	-CH ₃	-
473	○ OH	-H	· -CH ₃	-
474		-н	-CH₃	•
475 •	^ _{NH₂}	-н	-CH ₃	2HCI
498	∕_ _{Br}	-CH₃	-C ₂ H ₅	HCI
499	\ <u>\</u>	-CH₃	-C₂H₅	2HCI
500	^n/^	-CH₃	-C₂H₅	2HCI

Table 20

7	R1 (0)
Y	N CO'A
CH30^	✓ Y ✓ H3

ex.	R ¹	R ²	R ³	Y	п	additive
476		-CH₃	-CH ₃	-CH ₂ -	1	
494	CONHCH	-СН ₂	-сн ₃	-CH(OH)-	0	•
495	CONHCH,	-CH ₃	-сн ₃	-C(=O)-	0	
496	H CONH₂	∙СН ₃	-сн _з	-CH(OH)-	0	
497	H CONH2	-CH ₃	-CH ₃	-C(=O)-	0	
565	\bigcirc	. H	-н	-C(CH ₃) _{2*}	0	
566	CN	+	44	-C(CH ₃) ₂ -	0	
567	CONH ₂	44	44	-C(CH ₃) ₂ -	0	
568	,CO₂C₂H ₈	н	-н	-C(CH ₃) ₂ -	0	٠.
569	∭ _{Br}	н	-н	-C(CH ₃) ₂ -	0	
570	NH ₂	#1	-#1	-C(CH ₃) ₂ -	0	
571		#	#	-C(CH ₃) ₂ -	0	

Table 21

Table 22

5					H ^x ,	Ċ,				
10	ex.	R1	R ⁵	×	additive	ex.	R ¹	R ^S	×	additive
10	572	€ Br	#	o	•	579		-н	bond	
15	573		н	0		580	COCCHE	н	0	
20	574		-SO ₂ CF ₃	0		581	O _{CO₂C₂H₆}	-SO ₂ CF	. 0	
25	575		44	bond		582	CO _{CO,CA} H ₀	4	bond) -
30	576	○ NH ₂	-н	bond	2HBr	583	O _{CO2H}	41	bond	
35	577	Dal	.н	bond		584	CONH ₂	н .	bond	
	578	Ooi	н	bond		585	CONHCH,	44	bond	

Formulation Example 1

[1337]

45

50

	(1) Compound of Example 1	10.0 mg
	(2) Lactose	60.0 mg
	(3) Corn starch	35.0 mg
	(4) Gelatin	3.0 mg
	(5) Magnesium stearate	2.0 mg

[1338] A mixture of 10.0 mg of the compound obtained in Example 1, 60.0 mg of lactose and 35.0 mg of a corn starch was granulated using 0.03 ml of 10% aqueous solution of gelatin (3.0 mg as gelatin) through a 1 mm mesh sieve, dried at 40°C and then sieved again. The resultant granule was combined with 2.0 mg of magnesium stearate and then compressed. The resultant core was coated with a sugar coating comprising sucrose, titanium dioxide, talc and gum arabic in an aqueous suspension. The resultant coated tablet was imparted with a gloss with a beeswax to obtain a coated tablet.

Formulation Example 2

[1339]

5

10

15

20

25

25

45

50

55

(1) Compound of Example 1	10.0 mg
(2) Lactose	70.0 mg
(3) Corn starch	50.0 mg
(4) Soluble starch	7.0 mg
(5) Magnesium stearate	3.0 mg

[1340] 10.0 mg of the compound obtained in Example 1 and 3.0 mg of magnesium stearate were granulated using 0.07 mL of an aqueous solution of a soluble stanch (7.0 mg as soluble stanch), died, and then combined with 70.0 mg of lactose and 50.0 mg of a com starch. The mixture was compressed into a tablet.

Formulation Example 3

[1341]

(1) Compound of Example 11	5.0 mg
(2) Sodium chloride	20.0 mg
(3) Distilled water	to 2 mL

[1342] 5.0 mg of the compound obtained in Example 11 and 20.0 mg of sodium chloride were dissolved in distilled water and water was then added to make the entire volume 2.0 mL. The solution was filtered, and filled aseptically in a 2 mL ampoule. The ampoule was sterilized, scaled, whereby obtaining an injection solution.

Formulation Example 4

[1443] In a fluidized bed granulating drior (FD-55, KK POWREX Corporation), 1500 g of the compound obtained in Example 1, 2025 g of lactose and 556.5 g of com starch were mixed homogeneously, and then an aqueous solution in which 126 g of hydroxypropyl cellulose was dissolved was sprayed in the drier to effect a granulation, after which the mixture was dried in the fluidized bed granulating drier. The resultant granule was ground using a power mill and sieved through a 1.5 mm punching screen to obtain a sized granule. 9927 g of this sized granule was combined with 210 g of sodium croscarmellose and 83 g of magnesium stearate, and mixed in a tumbler mixer to obtain a granule to be compacted into tablets. This granule was compacted into 300 mg tablets using a 6.5 mm frame in a tablet compacting machine. The resultant plain tablet was coated with a solution containing hydroxypropylmethyl cellulose 2910 (TC-5) and macrogol 8000 dissolved therein and titanium oxide and iron(III) oxide dispersed therein to obtain about 13500 film-coated tablets seach containing 100 mm whose composition is shown below.

Tablet formulation:	
Composition	Content (mg)
(1) Compound of Example 1	100.0
(2) Lactose	135.0
(3) Corn starch	37.1
(4) Sodium croscarmellose	15.0
(5) Hydroxypropyl cellulose	8.4
(6) Magnesium stearate	4.5
Total (plain tablet)	300.0
Film-coated tablet composition:	
(1) Plain tablet	300.0
(Film component)	
(2) Hydroxypropylmethyl cellulose 2910	7.485
(3) Macrogol 6000	1.5

(continued)

Tablet formulation:	
Composition	Content (mg)
(Film component)	
(4) Titanium oxide	1.0
(5) iron(III) oxide	0.015
Total	310.0

Formulation Example 5

[1344] According to the method described in Formulation Example 4, about 13500 film-coated tablets having the formulation shown below each containing 25 mg of the compound obtained in Example 1 were obtained.

Tablet formulation:	
Composition	Content (mg)
(1) Compound of Example 1	25.0
(2) Lactose	210.0
(3) Corn starch	37.1
(4) Sodium croscarmellose	15.0
(5) Hydroxypropyl cellulose	8.4
(6) Magnesium stearate	4.5
Total (plain tablet)	300.0
Film-coated formulation:	•
(1) Plain tablet	300.0
(Film components)	
(2) Hydroxypropyl cellulose 2910	7.485
(3) Macrogol 6000	1.5
(4) Titanium oxide	1.0
(5) iron(III) oxide	0.015
Total	310.0

Formulation Example 6

[1345] According to the method described in Formulation Example 4, about 13500 film-coated tablets having the formulation shown below each containing 5 mg of the compound obtained in Example 1 were obtained.

Tablet formulation:		
Composition	Content (mg)	
(1) Compound of Example 1	5.0	
(2) Lactose	230.0	
(3) Corn starch	37.1	
(4) Sodium croscarmellose	15.0	
(5) Hydroxypropyl cellulose	8.4	
(6) Magnesium stearate	4.5	
Total (plain tablet)	300.0	
Film-coated formulation:		
(1) Plain tablet	300.0	
(Film components)		

(continued)

Tablet formulation:		
Composition	Content (mg)	
Film-coated formulation:		
(2) Hydroxypropyl cellulose 2910	7.485	
(3) Macrogol 6000	1.5	
(4) Titanium oxide	1.0	
(5) iron(III) oxide	0.015	
Total	310.0	

Formulation Example 7

5

10

15

20

25

30

35

45

50

[1346] According to the method described in Formulation Example 4, about 13500 film-coated tablets having the formulation shown below each containing 1 mg of the compound obtained in Example 1 were obtained.

Tablet formulation:	
Composition	Content (mg)
(1) Compound of Example 1	1.0
(2) Lactose	234.0
(3) Corn starch	37.1
(4) Sodium croscarmellose	15.0
(5) Hydroxypropyl cellulose	8.4
(6) Magnesium stearate	4.5
Total (plain tablet)	300.0
Film-coated formulation:	
(1) Plain tablet	300.0
(Film components)	
(2) Hydroxypropyl cellulose 2910	7.485
(3) Macrogol 6000	1.5
(4) Titanium oxide	1.0
(5) iron(III) oxide	0.015
Total	310.0

Formulation Example 8

[1347]

White vaseline	40 g
Cetanol	10 g
Bleached beeswax	5 g
Sorbitan sesquioleate	5 g
LauroMOCROGOLD	0.5 g
Methyl p-hydroxybenzoate	0.1 g
Propyl p-hydroxybenzoate	0.1 g
Purified water	Appropriate

[1348] A topical wettable ointment having the composition shown above (100 g) was heated preliminarily at 70°C, and the solution was combined with a solution which was obtained by dissolving 1 g of the compound obtained in Example 1 in 20 mL of methanol with heating. At the same temperature, the mixture was stirred with heating for 10 minutes to remove residual methanol, and then cooled to room temperature to obtain a wetable ointment.

Experiment Example 1 Assay of phosphodiesterase IV-inhibiting effect

(1) Human brain-derived phosphodiesterase 4D3-encoding gene cloning

[1349] From a human brain cDNA library, a gene encoding phosphodiesterase 4D3 was cloned. Using 1 ng of brain QUICK-Cone™ cDNA (Clontech) as a template, each 20 pmol of a primer set: 5°-CCACGATAGCTGCTCAAACAA-CAG-3' (SEQ, ID, No.1) and 5°-ATAGAAACCCCAACTCCAATAAAC3' (SEQ, ID, No.2) which was propared referring to the phosphodiesterase 4D3 gene base sequence reported by Nemoz et al. (FEBS Lotters 384, 97-102, 1996) was added to effect a PCR by a MiniCycler™ (MJ RESEARCH) using TakARR EX Taq (TAKARA) (reaction condition: 30 cycles of 0.5 minutes at 94°C, 0.5 minutes at 55°C and 4 minutes at 72°C). The resultant PCR product was subjected to an agarose gel electrophoresis and an about 2.4 kb DNA fragment was recovered. This fragment was made blunt using a Pfu DNA polymerase (STRATAGENE) and then a phosphodiesterase 4D3 gene was cloned using Zero Blunt PCR Cloning ktil (mivropen) fix

15 (2) Construction of E.coli expression vector

[1350] The plasmid obtained in Section (1) described above was digested with a restriction enzyme EcoRl (Takara) and subjected to an agense gel electrophoresis to recover an about 2.4 to DNA fragment. This DNA fragment was digested with a restriction enzyme EcoRl (Takara) and ligated with a pGEX4T-3 (Pharmacia) which had been treated with BAP (Takara). The resultant cDNA fragment had the base sequence represented by Sequence ID No.3, and the amino acid sequence represented by Sequence ID No.4 was found to be encoded by the 74th to the 2092nd based of this base sequence. This cDNA fragment was transformed into an E.coil BL21 (FUNAKOSHI) using a ligation solution, whereby obtaining an Escherichia ceil BL21/PDEAD3 caabel of expression the phosphodiseterase 4D3 gene.

25 (3) Expression of recombinant human brain-derived phosphodiesterase 4D3 in Escherichia coli and purification thereof

[1351] Using the Escherichia coli BL21/pPDE4D3 obtained in Section (2) described above, a recombinant human brain-derived phosphodiesterase 4D3 was obtained. The expression and purification of E. coli were in accordance with the protocol attached to GST Gene Fusion System (Pharmacia). As a result, 34 mg of an about 78 kDa recombinant human brain-derived phosphodiesterase 4D3 was obtained as a tarret substance from 1 L of the E. coli culture medium.

(4) Assay of phosphodiesterase IV-inhibiting effect

30

25

45

50

55

[1352] To a 95-well plate (OPTI plate, Packard), 10 µ of a buffer solution [0.5 M Tris+ICI (pht7.5), 83 mM MC[0_a T7mM EGTA], 0 µ of the recombinant human brain-derived phosphodiesterase 403 (0.0034 mg/ml), obtained in Section (1) described above, 65 µ of Ultrapure water, 5 µ of an inhibitor sample and 10 µ of [9HpAMP were added and reacted for 50 minutes at 30°C. After completing the reaction, 50 µ of SPA beads solution [18 mg/ml. Yttrium silicate beads, 18mM ZnSO_q) was added, allowed to stand at room temperature for about 20 minutes, and the radioactivity was counted using a scintillation counter (Topcount, Packard). The radioactivy observed in the presence of the recombinant human brain-derived phosphodiesterase 403 was 28245 cpm, which was in contrast with the control radioactivity (1020 cpm). This reaction underwent the inhibition of the phosphodiesterase Vihibitor rolpram (Bl00MC). Research Laboratories, [no.), and rolpram inhibited this enzymatic reaction by 50% at about 100 nM. This assay system was employed to determine the recombinant human brain-derived phosphodiesterase-inhibiting offect ((C₀₀) of each inventive compound. The results are shown in Table 23.

IΤa	bl	le	231	

Example No.	PDE IV-inhibiting effect (IC ₅₀ , nM)		
39	19.4		
45	9.36		
149	40.1		
157	82.0		
179	124		
180	123		

[Table 23] (continued)

Example No.	PDE IV-inhibiting effect (IC ₅₀ , nM)
263	13.7

Example 2 Inhibiting effect on antigen-induced bronchoconstriction in guinea pigs

(1) Preparation of rabbit anti-ovalbumin (OA) serum

5

10

15

20

25

30

25

45

50

55

[1353] A white rabbit (body weight: about 3 kg; New Zealand white: KITAYAMA LABES) was immunized by an intramuscular administration of 1.0 mL of an emulsion of 0.5 mL of a 10% OA (Grade III, Sigma) solution and 0.5 mL of Freund Complete Adjuvant (WAKO PURE CHEMICAL INDUSTRIES, LTD.). This procedure was conducted once very week repetitively 4 times in total. One week after the final immunization, the whole blood was sampled. The blood sample was allowed to stand at room temperature for 1 hour or longer, and then in a refrigeration room for a day. On the following day, the serum fraction was isolated and centrifuged (3000 rpm, 10 min.), and the supernatant was stored as an antiserum at 20°C.

(2) Antigen-induced bronchoconstriction

[1354] The bronchoconstriction was measured by a modified Konzett-Rossler method. Each male Hartley guinea pig welghing 400 to 500 g (NIPPON SLC, Shizuoka) was anesthetized with ether, treated intravenously with 1.0 mL of a 8- to 16-fold diluted anti-OA serum, and subjected to an experiment after 16 to 24 hours. Under an anesthesia with urethane (1.2 g/kg jp) (Aldrich), a tracheal cannula was inserted, and gallamine triethiodide (1 mg/kg, iv) (Sigma) was administered to arrest the spontaneous respiration. The animal was ventilized artificially using an artificial respirator (Harward model 683) at 70 respirations/minutes, with each ventilation volume of 2 to 3 mL and initial load of 10 cmH₂O, and the intratracheal pressure was measured at the side arm of the tracheal cannula using a differential pressure type transducer. Mepyramine maleate (1.0 mg/kg) (Sigma) and propranolol (1.0 mg/kg) (Sigma) were administered intravenously 2 minutes after the administration of gallamine triethiodide, and after further 2 minutes the OA anticen (1.0 mg/kg) was administered intravenously to induce the bronchoconstriction.

[1355] A compound of Example was dissolved in 25% dimethylacetamide, 25% polyethylene glycol 400 and 50% physiological saline, and administered intravenously 5 minutes before the antigen challenge at a dose of 1 mg/kg. Percent inhibition was calculated based on the comparison with a control group (intravenous administration of a mixture of 25% dimethylacetamide, 25% polyethylene glycol 400 and 50% physiological saline). The % inhibition by each inventive compound is shown in Table 24.

[Table 24]

Example No.	% inhibition in bronchoconstriction
39	45
45	44
149	58
157	57
179	46
180	57
263	59

INDUSTRIAL APPLICABILITY

[1356] A turoisoquinoline derivative of the invention has an excellent phosphodiselerase (PDE) N-inhibiting effect, and is useful as a prophylactic or therapeutic agent against an inflammation-induced disease, such as bronchial asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease and diabetes, etc.

SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.	
<120> Furnisoquinoline Derivatives, Their Production and Use	
<130> 2701W00P	
<150> JP2000-087121	
<151> 2000-03-23	
<160> 4	
<210> 1	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
⟨400⟩ 1	
ccacgatage tgetcaaaca agag 24	
⟨210⟩ 2	
⟨211⟩ 24	
<212> DNA	
<213> Artificial Sequence	
<400> 2	
atagaaaccc caagtccaat aaac 24	
⟨210⟩ 3	
<211> 2435	
<212> DNA	
<213> Human	
<222> (74)(2092)	
⟨400⟩ 3	
gaattcatci giaaaaalca ciacaigiaa cgiaggagac aagaaaaata tiaaigacag	60
	120
tittgatgtg gacaatggca catctgcggg acggagtccc ttggatccca tgaccagccc	180

	aggateeggg	ctaattctcc	aagcaaattt	tgtccacagt	caacgacggg	agiccitcci	240
	gtatcgatcc	gacagegat t	atgacctctc	iccaaagici	aigtcccgga	actcctccat	300
5	tgccagtgat	atacacggag	atgacttgat	tgtgactcca	tttgctcagg	tcttggccag	360
	tctgcgaact	gtacgaaaca	actttgctgc	attaactaat	tigcaagaic	gagcacctag	420
10	caaaagatca	cccatgtgca	accaaccatc	catcaacaaa	gccaccataa	cagaggaggc	480
	ctaccagaaa	ctggccagcg	agacccigga	ggagctggac	tggtgtctgg	accagctaga	540
	gaccctacag	accaggcact	ccgtcagtga	gatggcctcc	aacaagtita	aaaggatget	600
15	taatcgggag	ctcacccatc	tctctgaaat	gagicggict	ggaaatcaag	tgtcagagtt	660
	tatatcaaac	acattettag	ataagcaaca	tgaagtggaa	attecticte	caactcagaa	720
	ggaaaaggag	aaaaagaaaa	gaccaatgtc	tcagatcagt	ggagtcaaga	aattgatgca	780
20	cagctctagt	cigactaatt	caagtateee	aaggitigga	gttaaaactg	aacaagaaga	840
	tgtccttgcc	aaggaactag	aagatgtgaa	caaatggggt	cttcatgttt	tcagaatagc	900
25	agagttgtct	ggtaaccggc	ccttgactgt	tatcatgcac	accattttc	aggaacggga	960
	tttattaaaa	acatttaaaa	ttccagtaga	tactttaatt	acatatetta	tgactctcga	1020
	agaccattac	catgctgatg	tggcctatca	caacaatatc	catgctgcag	atgitgicca	1080
30	gtctactcat	gtgctattat	ctacaccigc	tttggaggct	gtgtttacag	atttggagat	1140
	tettgeagea	atttttgcca	gtgcaataca	tgatgtagat	catectggtg	tgiccaatca	1200
35	atttctgatc	aa tacaaac t	cigaactige	ctigatgiac	aatgatteet	cagtcttaga	1260
35	gaaccatcat	ttggctgtgg	gctttaaatt	gcttcaggaa	gaaaactgtg	acattttcca	1320
	gaatttgacc	aaaaaacaaa	gacaatcttt	aaggaaaatg	gtcattgaca	tegtacttge	1380
40	aacagatatg	tcaaaacaca	tgaatctact	ggctgatttg	aagactatgg	ttgaaactaa	1440
	gaaagtgaca	agctctggag	ttettettet	tgataattat	tccgatagga	ttcaggttct	1500
	tcagaatatg	gtgcactgtg	cagatcigag	caacccaaca	aagcctctcc	agetgtaccg	1560
45	ccagtggacg	gaccggataa	tggaggagt t	cticcgccaa	ggagaccgag	agagggaacg	1620
	tggcatggag	ataagcccca	tgtgtgacaa	gcacaatgct	tccgtggaaa	aatcacaggt	1680
50	gggcttcata	gactatatig	ttcatcccct	ctgggagaca	tgggcagacc	tcgtccaccc	1740
	tgacgcccag	gatatttigg	acactttgga	ggacaatcgt	gaatggtacc	agagcacaat	1800
	ccctcagagc	ccctctcctg	caccigatga	cccagaggag	ggccggcagg	gtcaaactga	1860
55	gaaattccag	tttgaactaa	ctttagagga	agatggtgag	tcagacacgg	aaaaggacag	1920

	tggcagtcaa	gtggaagaag	acactaget	g cagtgactcc	aagactcttt	giactcaaga	1980
	ctcagagict	actgaaattc	cccttgatg	a acaggitgaa	gaggaggcag	taggggaaga	2040
5	agaggaaagc	cagcctgaag	cctgtgtca	t agatgategt	tctcctgaca	cgtaacagtg	2100
	caaaaacttt	catgcctttt	ttttttta	a gtagaaaaat	tgtttccaaa	gtgcatgtca	2160
10	catgccacaa	ccacggtcac	acctcactg	l catcigccag	gacgtttgtt	gaacaaaac t	2220
	gaccttgact	actcagtcca	gcgctcagg	a atategtaac	cagtttttc	acctccatgt	2280
	tcatccgagc	aaggtggaca	tcttcacga	a cagegittit	aacaagattt	cagcttggta	2340
15	gagcigacaa	agcagataaa	atctactcc	a aattattttc	aagagagtgt	gactcatcag	2400
	gcagcccaaa	agtttattgg	acttggggt	t tctat			2435
20	<210> 4						
20	<211> 673						
	<212> PRT						
25	<213> Human	n .					
	<400> 4						
	Met Met His	al Asn A	sn Phe Pro	Phe Arg Arg	His Ser Trp	Ile Cys	
30	1	5		10		15	
	Phe Asp Va	Asp Asn G	ly Thr Ser	Ala Gly Arg	Ser Pro Leu	Asp Pro	
35		20		25	30		
	Met Thr Sei	Pro Gly S	er Gly Leu	Ile Leu Gin	Ala Asn Phe	Val His	
	35	5	40		45		
40	Ser Gln Arg	g Arg Glu S	er Phe Leu	Tyr Arg Ser	Asp Ser Asp	Tyr Asp	
	. 50		55		60		
45	Leu Ser Pro	Lys Ser Mo	et Ser Arg	Asn Ser Ser	Ile Ala Ser	Asp Ile	
	65		70	75		. 80	
	His Glv Asr	Aso Leu I	le Val Thr	Pro Phe Ala	Gin Val Leu	Ala Ser	
50		85		90		95	
	Len Arg Thi		sn Asn Phe	Ala Ala Leu	Thr Asn Len		
55	200 mg m	100		105	110		

	Arg	Ala	Pro	Ser	Lys	Arg	Ser	Pro	Met	Cys	Asn	Gln	Pro	Ser	He	Asn
5			115					120					125			
	Lys	Ala	Thr	He	Thr	Glu	Glu	Ala	Tyr	Gln	Lys	Leu	Ala	Ser	Glu	Thr
		130					135					140				
10	Leu	Glu	Glu	Leu	Asp	Trp	Cys	Leu	Asp	Gln	Leu	Glu	Thr	Leu	Gln	Thr
	145					150					155					160
15	Arg	His	Ser	۷al	Ser	Glu	Met	Ala	Ser	Asn	Lys	Phe	Lys	Arg	Met	Leu
					. 165					170					175	
	Asn	Arg	Glu	Leu	Thr	His	Leu	Ser	Glu	Met	Ser	Arg	Ser	Gly	Asn	Gln
20				180					185					190		
	Val	Ser	Glu	Phe	He	Ser	Asn	Thr	Phe	Leu	Asp	Lys	Gln	His	Glu	Val
25			195					200					205			
	Glu	He	Pro	Ser	Pro	Thr	Gin	Lys	Glu	Lys	Glu	Lys	Lys	Lys	Arg	Pro
		210					215					220				
30	Met	Ser	Gln	Ile	Ser	Gly	Val	Lys	Lys	Leu	Met	His	Ser	Ser	Ser	Leu
	225					230					235					240
35	Thr	Asn	Ser	Ser	He	Рго	Arg	Phe	Gly	Val	Lys	Thr	Glu	Gln	Glu	Asp
35					245					250					255	
	Vai	Leu	Ala	Lys	Glu	Leu	Glu	Asp	Val	Asn	Lys	Trp	Gly	Leu	His	Val
40				260					265					270		
	Phe	Arg	Ιĺε	Ala	Glu	Leu	Ser		Asn	Arg	Pro	Leu	Thr	Val	lle	Met
45			275					280					285			
	His	Thr	lle	Phe	Gln	Glu	Arg	Asp	Leu	Leu	Lys	Thr	Phe	Lys	lie	Pro
		290					295					300				
50		Asp	Thr	Leu	lle		Tyr	Leu	Met	Thr		Glu	Asp	His	Tyr	
	305					310					315					3 2 0
**	Ala	Asp	Val	Ala		His	Asn	Asn	He		Ala	Ala	Asp	Val	Val	Gln
55					325					330					335	

	Ser	Thr	His	Val	Leu	Leu	Ser	Thr	Pro	Ala	Leu	Glu	Ala	Val	Phe	Thr	
5				340					345					350			
	Asp	Leu	Glu	Ile	Leu	Ala	Ala	He	Phe	Ala	Ser	Ala	Ile	His	Asp	Val	
			355					360					365				
10	Asp	His	Pro	Gly	Val	Ser	Asn	Gln	Phe	Leu	Ile	Asn	Thr	Asn	Ser	Glu	
		370					375					380					
15	Leu	Ala	Leu	Me t	Tyr	Asn	Asp	Ser	Ser	Val	Leu	Glu	Asn	His	His	Leu	
	385					390					395					400	
	Ala	Val	Gly	Phe	Lys	Leu	Leu	Gln	Glu	Glu	Asn	Cys	Asp	He	Phe	Gln	
20					405					410					415		
	Asn	Leu	Thr	Lys	Lys	Gln	Arg	Gln	Ser	Leu	Arg	Lys	Me t	Val	He	Asp	
25				420				٠.	425					430			
	Ile	Val	Leu	Ala	Thr	Asp	Met	Ser	Lys	His	Met	Asn	Leu	Leu	Ala	Asp	
			435					440					445				
30	Leu	Lys	Thr	Met	Val	Glu	Thr	Lys	Lys	Val	Thr	Ser	Ser	Gly	Val	Leu	
		450					455					460			•		
35		Leu	Asp	Asn	Tyr	Ser	Asp	Arg	He	Gln	Val	Leu	Gln	Asn	Met	Val	
	465					470					475					480	
	His	Cys	Ala	Asp		Ser	Asn	Pro	Thr		Pro	Leu	Gln	Leu		Arg	
40		_			485					490					495		
	Gin	Trp	Thr		Arg	He	Met	Glu		Phe	Phe	Arg	Gin		Asp	Arg	
45	0.1			500	a 1		٥.		505			•		510			
	GIU	Arg		Arg	GLY	met	Glu		Ser	Pro	Met	Cys	-	Lys	HIS	Asn	
	41-	0	515	a		o	C1	520	01	DI.	*1.		525	*1.	w. 1	TT : .	
50	Ala		vai	GIU	Lys	261		vai	GIY	rne	Ile		ıyr	116	vai	HIS	
	Dro	530	Ter	C1 e	The.	Trn	535	400	Lar	Va l	His	540 Bro	Aar	A1 a	CI-	Ann	
55	545	red	rth	GIU	1111	550	nid	ush	red	141	555	T.1 Q	ւտի	nid		560	

lle Leu Asp Thr Leu Glu Asp Asn Arg Glu Trp Tyr Gln Ser Thr Ile Pro Gln Ser Pro Ser Pro Ala Pro Asp Asp Pro Glu Glu Gly Arg Gln Gly Gln Thr Glu Lys Phe Gln Phe Glu Leu Thr Leu Glu Glu Asp Gly Glu Ser Asp Thr Glu Lys Asp Ser Gly Ser Gln Val Glu Glu Asp Thr Ser Cys Ser Asp Ser Lys Thr Leu Cys Thr Gln Asp Ser Glu Ser Thr Glu lle Pro Leu Asp Glu Glu Val Glu Glu Glu Ala Val Glv Glu Glu Glu Glu Ser Gln Pro Glu Ala Cys Val Ile Asp Asp Arg Ser Pro Asp Thr

Claims

1. A compound having a partial structure represented by Formula:

or its salt.

2. The compound according to Claim 1 represented by Formula:

$$\begin{array}{c|c} R^7 & R^8 & R^1 \\ \hline 0 & & & \\ 0 & & & \\ R^5 & & & \\ R^4 & & & \\ \end{array}$$

(wherein R^1 is a hydrogen atom, optionally substituted hydrocarbon group, optionally substituted heterocyclic group or optionally substituted amino group,

each of R² and R³ is a hydrogen atom, optionally substituted hydrocarbon group or acyl group, and R² and R³ may be taken together with the adjacent carbon atom to form an optionally substituted 3 to 8-membered ring, R⁴ is a hydrogen atom, cyano group, optionally substituted hydrocarbon group, acyl group or optionally substituted hydroxy group.

R5 is (1) a hydrogen atom, (2) an optionally substituted hydrocarbon group, (3) an acyl group, (4) an optionally substituted heterocyclic group or (5) a halogen atom,

each of R^6 and R^7 is a hydrogen atom or optionally substituted hydrocarbon group, and R^6 and R^7 are taken together with the adjacent carbon atom to form an optionally substituted 3- to 8-membered ring,

each of R8 and R9 is a hydrogen atom or optionally substituted hydrocarbon group.

X is a bond, oxygen atom, optionally oxidized sulfur atom or optionally substituted nitrogen atom,

Y is an optionally substituted methylene group or carbonyl group, and n is 0 to 1).

5

10

15

20

25

30

40

45

50

55

- 3. The compound according to Claim 2, wherein each of R² and R³ is a hydrogen atom, optionally substituted hydrocarbon group or acyl group, R² and R³ are taken together with the adjacent carbon atom to form an optionally substituted 3- to 8-membered homocyclic or heterocyclic group, R⁴ is a hydrogen atom or optionally substituted hydrocarbon group, each of R⁶ and R⁷ is a hydrogen atom or optionally substituted hydrocarbon group, R⁶ and R⁷ may be taken together with the adjacent carbon atom to form an optionally substituted 3- to 8-membered homocyclic group, Y Is methylene group which may have a hydroxy group or carbonly group.
- The compound according to Claim 2 wherein R1 is any of the following (i) to (iii):

 a C₁₋₈ alkyl group, C₂₋₆ alkenyl group, C₂₋₆ alkynyl group, C₃₋₆ cycloalkyl group, C₃₋₆ cycloalkenyl group, C₆₋₁₄ aryl group or C₇₋₁₆ aralkyl group which may have 1 to 5 substituent(s) selected from the group (hereinafter referred to as Substituent Group A) consisting of (1) a halogen atom, (2) a C1-3 alkylenedioxy group, (3) a nitro group, (4) a cyano group, (5) an optionally halogenated C1-6 alkyl group, (6) an optionally halogenated C2.6 alkenyl group, (7) an optionally halogenated C2.6 alkynyl group, (8) a C3.6 cycloalkyl group, (9) a C6.14 aryl group, (10) an optionally halogenated C1.6 alkoxy group, (11) an optionally halogenated C1.6 alky/thio group, (12) a hydroxy group, (13) an amino group, (14) a mono-C1-6 alkylamino group, (15) a mono-C6-14 arylamino group, (16) a di-C₁₋₆ alkylamino group, (17) a di-C₆₋₁₄ arylamino group, (18) an acyl group selected from formyl, carboxy, carbamoyl, C_{1,6} alkyl-carbonyl, C_{2,6} cycloalkyl-carbonyl, C_{1,8} alkoxy-carbonyl, C_{6,14} arylcarbonyl, C7-16 aralkyl-carbonyl, C8-14 aryloxy carbonyl, C2-16 aralkyloxy-carbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mono-C_{1.6} alkyl-carbamoyl, di-C_{1.6} alkyl-carbamoyl, C_{6.14} aryl-carbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbamoyl, C1-6 alkyl-thiocarbonyl, C3-6 cycloalkyl-thiocarbonyl, C1-6 alkoxy-thiocarbonyl, C6-14 aryl-thiocarbonyl, C7-16 aralkyl-thiocarbonyl, C6-14 aryloxy-thiocarbonyl, C7-16 aralkyloxy-thiocarbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbonyl, thiocarbamoyl, mono-C1-8 alkyl-thiocarbamoyl, di-C1-8 alkyl-thiocarbamoyl, C₆₋₁₄ aryl-thiocarbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbamoyl, mono-C_{1,6} alkylsulfamoyl, di-C1.6 alkylsulfamoyl, C6.14 arylsulfamoyl, C1.6 alkylsulfonyl, C6.14 arylsulfonyl, C1.6 alkylsulfinyl, C6.14 arylsulfinyl, sulfino, sulfo, C1-6 alkoxysulfinyl, C6-14 aryloxysulfinyl, C1-6 alkoxysulfonyl and C6-14 aryloxysulfonyl, (19) an acylamino group selected from formylamino, C₁₋₆ alkyl-carboxamido, C₆₋₁₄ aryl-carboxamido, C₁₋₆

alkosy-carboxamido, $C_{1,6}$ alkylsulfonylamino and $C_{6,14}$ anylsulfonylamino, (20) an acyloxy group selected from $C_{1,6}$ alkyl-carbonyloxy, $C_{6,14}$ anyl-carbonyloxy, $C_{6,14}$ anyl-carbamoyloxy, $C_{6,14}$ anyl-carbamoyloxy, and nicotinoyloxy, (21) a 4-to 14-membered heterocyclic group having, in addition to carbon atoms, 12 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms, (22) a phosphonog roup, (23) a $C_{6,14}$ anyloxy group, (24) a $C_{6,14}$ alkyl-prosphonyl group, (25) a $C_{6,14}$ anylthio group, (26) a nox ogroup, (29) an ureido group, (30) a $C_{6,14}$ anylthio group, (31) a $C_{6,14}$ alkyl-ureido group, (31) a $C_{6,14}$ alkyl-ureido group, (32) an oxide group and (33) a group formed by binding 2 or 3 groups selected from (1) to (32) listed above.

(ii) a 5-to 14-membered heterocyclic group having, in addition to carbon atoms, 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms which may have 1 to 5 substituent(s) selected from Substituent Group A described above.

(iii) an amino group which may have 1 or 2 substituent(s) selected from the following (ia) to (lila):

(ia) a hydrogen atom.

5

10

15

20

25

30

35

40

45

50

55

(iiia) a C_{1-6} alkyl group, C_{2-6} alkenyl group, C_{2-6} alkynyl group, C_{3-6} cycloalkenyl group, C_{3-6} cycloalkenyl group, C_{4-1} aryl group or C_{7-16} arallyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above,

(ilia) an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₈ alkyl-carbonyl, C₂₋₈ cycloalkyl-carbonyl, C₁₋₈ alkoxy-carbonyl, C₂₋₁₆ alkyl-carbonyl, C₂₋₁₆ aralkyl-carbonyl, C₂₋₁₆ alkyl-carbonyl, C₂₋₁₆ alkyl-carbonyl, C₂₋₁₆ alkyl-carbonyl, C₂₋₁₆ alkyl-carbonyl, C₂₋₁₆ alkyl-carbonyl, C₂₋₁₆ alkyl-carbonyl, C₂₋₁₆ alkyl-thiocarbonyl, C₂₋₁₆ alkyl-thiocarbonyl, C₂₋₁₆ alkyl-thiocarbonyl, C₂₋₁₆ alkyl-thiocarbonyl, C₂₋₁₆ alkyl-thiocarbonyl, C₂₋₁₆ aralkyl-thiocarbonyl, C₂₋₁₆ aralyl-thiocarbonyl, C₂₋₁₆ aralyl-thiocarbonyl-thiocarbonyl, C₂₋₁₆ aralyl-thiocarbonyl-thiocarbonyl, C₂₋₁₆ aralyl-thiocarbonyl-thiocarbonyl, C₂₋₁₆ aralyl-thiocarbonyl-thioc

each of R2 and R3 is any of the following (i) to (iii):

(i) a hydrogen atom,

(ii) a C_{1,6} alkyl group, C_{2,6} alkenyl group, C_{2,6} alkynyl group, C_{3,6} cycloalkyl group, C_{3,6} cycloalkenyl group, C_{6,14} anyl group or C_{7,16} aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above.

 $\rm R^2$ and $\rm R^3$ may be taken together with the adjacent carbon atom to form a $\rm C_{3.6}$ cycloalkane or 3- to 8-mothered heterocyclic ring which may have 1 to 3 substituent(s) selected from a $\rm C_{1.6}$ alkyl, $\rm C_{6.14}$ aryl, $\rm C_{7.16}$ aralkyl, arnino, mono- $\rm C_{1.6}$ alkylamino, di- $\rm C_{6.14}$ arylamino and 4-to 10-membered aromatic heterocyclic group;

R⁴ is (i) a hydrogen atom, (ii) a cyano group, (iii) a C₁₋₆ alkyl group, C₂₋₆ alkenyl group, C₂₋₆ alkynyl group, C₃₋₆ cylcolakly group, C₃₋₆ cylcolakly group, C₃₋₁₄ aryl group or C₇₋₁₄ arallyl group which may have 1 to 5 substituent (so substituent from Substituent Group A described above.

(iv) an acyl group selected from formyl, carboxy, carbamoyl, $C_{1.6}$ alkyl-carbonyl, $C_{2.6}$ cycloalkyl-carbonyl, $C_{1.6}$ alkyl-carbonyl, $C_{2.6}$ cycloalkyl-carbonyl, $C_{1.6}$ alkyl-carbonyl, $C_{2.6}$ cycloalkyl-carbonyl, $C_{2.6}$ arabyl-carbonyl, $C_{2.6}$ arabyl-carbonyl, $C_{2.6}$ arabyl-carbonyl, $C_{2.6}$ arabyl-carbonyl, $C_{2.6}$ alkyl-carbamoyl, $C_{2.6}$ alkyl-carbamoyl, $C_{2.6}$ alkyl-carbamoyl, $C_{2.6}$ arabyl-carbamoyl, $C_{2.6}$ alkyl-carbamoyl, $C_{2.6}$ arabyl-carbamoyl, $C_{2.6}$ arabyl-carbonyl, $C_{2.6}$ arabyl-thiocarbonyl, $C_{2.6}$ arabyl-thiocarbo

(v) a group represented by Formula: -OR4

(R4 is <1> a hydrogen atom,

5

10

15

20

25

30

35

40

45

50

55

<2> a C₁₋₆ alkyl group, C₂₋₆ alkenyl group, C₂₋₆ alkynyl group, C₃₋₆ cycloalkenyl group, C₃₋₆ cycloalkenyl group, C₅₋₁₄ aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above, or,

c3s an axyl group selected from formyl, carboxy, carbamoyl, $C_{1,6}$ alkyl-carbonyl, $C_{2,4}$ aryl-carboyl, C_{7-16} aralkyl-carboyl, C_{7-16} aralkyl-carboyl, C_{7-16} aralkyl-carboyl, C_{7-16} aralkyl-carboyl, C_{7-16} aralkyl-carboyl, carboyl, C_{7-16} aralkyl-carboyl, carboyl, C_{7-16} aralkyl-carboyl, carboyl, and oxygen atoms)-carboyl, mono- $C_{1,6}$ alkyl-carbamoyl, di- $C_{1,6}$ alkyl-carbamoyl, $C_{1,6}$ aralkyl-arboyl, $C_{1,6}$ aralkyl-arboyl, $C_{1,6}$ aralkyl-thicarbonyl, $C_{1,6}$ aralkyl-thicarboyl, $C_{1,6}$ alkyl-thicarboyl, $C_{1,6}$ alkyl-thicarboyl, $C_{1,6}$ aralkyl-thicarboyl, $C_{1,6}$ aralyl-thicarboyl-

R5 is any of the following (i) to (v):

(i) a hydrogen atom.

(ii) a C_{1-6} alkyl group, C_{2-6} alkenyl group, C_{2-6} alkynyl group, C_{3-6} cycloalkyl group, C_{3-6} cycloalkyl group, C_{3-6} cycloalkyl group, C_{3-6} cycloalkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above.

(iii) an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₂₋₆ cydoalkyl-carbonyl, C₁₋₆ alkyl-carbonyl, C₂₋₆ and polycarbonyl, C₂₋₇ (a ralkyl-carbonyl, C₂₋₆ and polycarbonyl, C₂₋₇ (a ralkyl-carbonyl, C₂₋₆ and polycarbonyl, C₂₋₇ (a ralkyl-carbonyl, C₂₋₆ and polycarbonyl, C₂₋₆ and and oxygen atoms)-carbonyl, more C₁₋₆ alkyl-charbonyl, c₁₋₆ alkyl-carbonyl, C₂₋₆ and and oxygen atoms)-carbonyl, c₁₋₆ alkyl-thiocarbonyl, C₂₋₆ and subject to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, c₁₋₆ alkyl-thiocarbonyl, C₂₋₆ eycloalkyl-thiocarbonyl, C₁₋₆ alkyl-thiocarbonyl, C₂₋₆ and sikoxy-thiocarbonyl, C₂₋₆ alkyl-thiocarbonyl, C₂₋₆ alkyl-thioca

C₆₋₁₄ aryloxysulfonyl, which may have 1 to 5 substituent(s) selected from Substituent Group A described above.

(iv) a 5 - to 14-membered heterocyclic ring containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group A described above,

(v) a halogen atom;

5

10

15

20

25

30

25

45

50

55

each of R⁶ and R⁷ is (i) a hydrogen atom, (ii) a C₁₋₆ alkyl group, C₂₋₆ alkenyl group, C₂₋₆ alkynyl group, C₃₋₆ cycloalkenyl group, C₃₋₆ cycloalkenyl group, C₃₋₆ cycloalkenyl group, C₃₋₆ cycloalkenyl group, C₃₋₆ arylkyl group which may have 1 to 5 substituent (s) selected from Substituent Group A described above.

 ${\rm R}^6$ and ${\rm R}^7$ may be taken together with the adjacent carbon atom to form a ${\rm C}_{3.8}$ cycloalkane or 3- to 8-membered heterocyclic ring which may have 1 to 3 substituent(s) selected from ${\rm C}_{1.6}$ alkyl, ${\rm C}_{6.14}$ anyl, ${\rm C}_{7.16}$ aralkyl, amino, ono- ${\rm C}_{1.6}$ alkylamino, ono- ${\rm C}_{6.14}$ anylamino, oi- ${\rm C}_{6.14}$ anylamino and 4- to 10-membered aromatic heterocyclic group;

each of ${\rm R}^9$ and ${\rm R}^9$ is (i) a hydrogen atom, (ii) a ${\rm C}_{1.8}$ alkyl group, ${\rm C}_{2.6}$ alkenyl group, ${\rm C}_{2.6}$ alkenyl group, ${\rm C}_{2.6}$ alkenyl group, ${\rm C}_{2.6}$ alkenyl group, ${\rm C}_{2.6}$ aryl group or ${\rm C}_{7.18}$ aralkyl group which may have 1 to 5 substituent (s) selected from Substituent Group A described above;

X is (i) a bond, (ii) an oxygen atom, (iii) an optionally oxidized sulfur atom, (iv) a C_{1-6} alkyi group, C_{2-6} alkenyl group, C_{3-6} alkenyl group, C_{3-6}

(v) a nitrogen atom having an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₄ alky-carbonyl, C₂₋₆ ey-cicaliky-carbonyl, C₁₋₈ alky-carbonyl, C₂₋₈ any-carbonyl, C₂₋₈ any-carbonyl, C₃₋₈ anisky-carbonyl, C₂₋₄ any-carbonyl, C₃₋₈ anisky-carbonyl, C₃₋₄ anisky-carbonyl, C₃₋₄ arisky-carbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mono-C₁₋₈ alkyl-carbamoyl, G₂₋₁ any-carbonyl, G₂₋₁ anisy-carbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatomoyl, C₃₋₈ alkyl-thiocarbonyl, C₃₋₈ anisy-carbamoyl, C₃₋₈ alkyl-thiocarbonyl, C₃₋₈ anisy-carbamoyl, G₃₋₈ anisy-carbamoyl,

(vi) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group A described above;

Y is <1> a methylene group which may have substituent(s) selected from Substituent Group A described above or <2> a carbonyl group;

n is 0 or 1.

- 5. The compound according to Claim 2 or 3. wherein R¹ is (1) an optionally substituted aromatic hydrocarbon group, (2) an optionally substituted heterocyclic group, (3) an optionally substituted alicyclic hydrocarbon group or (4) a group represented by Formula: -L-R^{1a} wherein L is methylene, carbonyl or an optionally substituted nitrogen atom, R¹ is a hydrogen atom, optionally substituted aromatic group, optionally substituted hydroxy group or optionally substituted armino group.
- 6. The compound according to Claim 5, wherein R1 is any of the following (i) to (iv):

(i) a C₆₋₁₄ anyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above, (ii) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group A described above.

(iii) a C_{3-6} cycloalkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above.

(iv) a group represented by Formula: -L-R^{1a} wherein L is (a) a methylene, (b) a carbonyl or (c) a nitrogen atom which may be substituted by the following (ia) to (iiia):

(ia) a hydrogen atom,

5

10

15

20

25

30

25

40

45

50

55

(iiia) a C_{16} alkyl group, C_{26} alkenyl group, C_{26} alkynyl group, C_{36} cycloalkyl group, C_{3-6} cycloalkenyl group, C_{6-14} anyl group or C_{7-16} aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above,

icini an ady group selected from formyl, carboxy, carbamoyl, C_{1.6} alkyl-carboryl, C_{2.6} cycloalkyl-carboryl, C_{1.6} alkoxy-carboryl, C_{2.16} arkivoxy-carboryl, C_{2.16} alkyl-carbamoyl, C_{6.14} arkyl-carbamoyl, C_{6.14} arkyl-carbamoyl, C_{6.14} arkyl-carbamoyl, C_{6.16} alkyl-carbamoyl, C_{6.16} alkyl-carbamoyl, C_{6.16} alkyl-carbamoyl, C_{6.16} alkyl-carbamoyl, C_{6.16} alkyl-carbamoyl, C_{6.16} alkyl-carbamoyl, C_{7.16} alkyl-carbamoyl, C_{7.16} alkyl-carbamoyl, C_{7.16} arkiv-libicoarboryl, C_{7.16} alkyl-libicoarboryl, C_{7.16} arkiv-libicoarboryl, C_{7.16} arkiv-libicoarboryl, C_{7.16} arkiv-libicoarboryl, C_{7.16} alkyl-libicoarboryl, C_{7.16} arkiv-libicoarboryl, C_{7.16} alkyl-libicoarboryl, C_{7.16} arkiv-libicoarboryl, C

R^{1a} is (i) a hydrogen atom.

(ii) <1 > a $C_{e-1,4}$ aryl group or <2 > a 5 - to 14-membered aromatic heterocyclic group containing 1 to 4 heteroatom (s) selected from 1 or 2 kind(s) of nitrogen, sulfur and oxygen atoms in addition to carbon atoms, both of which may contain 1 to 5 substituent(s) selected from Substituent Group A described above,

(iii) a hydroxy group which may have C₁₋₆ alkyl group, C₂₋₆ alkenyl group, C₂₋₆ a kynyl group, C₃₋₆ cycloalkyl group, C₃₋₆ cycloalkyl group, C₃₋₆ cycloalkyl group, C₃₋₆ cycloalkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above,

(iv) an amino group which may be substituted by the following (ia) to (iiia):

(ia) a hydrogen atom, (iia) a C_{1,6} alkyl group, C_{2,6} alkenyl group, C_{2,6} alkynyl group, C_{3,6} cycloalkyl group, C_{3,6} cycloalkyl group, C_{6-1,6} arally group or C_{7-1,6} aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above,

7. The compound according to Claim 2 wherein R1 is a group represented by Formula:

(wherein R1b is a hydrogen atom or an optionally substituted hydrocarbon group or optionally substituted hetero-

cyclic group, Ring D is an optionally substituted aromatic hydrocarbon ring or optionally substituted neterocyclic group, E is a bond, methylene, oxygen atom, optionally oxidized sulfur atom, optionally substituted nitrogen atom or a group represented by Formula: $-CS-O_-$, $-CO-O_-$, $-S-CO_-$, $-(CH_2)_CO_-$, $-NR^{1C}-CO-(CH_2)_m$, -NR

- The compound according to Claim 7 wherein R^{1b} is (i) a C₁₋₆ alkyl group, C₂₋₆ alkenyl group, C₂₋₆ alkenyl group, C₃₋₆ cycloalkenyl group, C₃₋₆ cycloalkenyl group, C₃₋₆ cycloalkenyl group, C₃₋₆ cycloalkenyl group, C₃₋₆ taralkyl group which may have 1 to 5 substituentist selected from Substituent Group A described above, or.
- (ii) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group A described between

Ring D is (i) a C₈₋₁₄ aryl ring which may have 1 to 5 substituent(s) selected from Substituent Group A described above or (ii) a 5- to 14-membered heterocyclic ring containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group A described above:

E is any of the following (i) to (viii):

5

10

15

20

25

30

25

40

45

50

- (i) a bond, (ii) methylene, (iii) an oxygen atom, (iv) an optionally oxidized sulfur atom,
- $\stackrel{(v)}{\sim}$ a $C_{1,6}$ alkyl group, $C_{2,6}$ alkenyl group, $C_{2,6}$ alkynyl group, $\stackrel{(v)}{\sim}$ a $C_{3,6}$ cycloalkyl group, $C_{3,6}$ cy
- (w) a nitrogen atom having an anyl group selected from formyl, carboxy, carbarnoyl, C_{1,4} alkyl-carbonyl, C_{1,4} alkyl-carbonyl, C_{1,4} anyl-carbonyl, C_{1,4} alkyl-carbonyl, C_{1,4} alkyl-thicarbonyl, C_{1,4}
- (vii) a nitrogen atom having a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group A described above:
- (viii) -CS-O-, -CO-O-, -S-CO-, -(CH₂)_k·CO-, -NR^{1C}-CO-(CH₂)_m·, -NR^{1C}-SO₂·(CH₂)_m·, -SO₂·NR^{1C}-(CH₂)_m·, -O-SS-NR^{1C}-(CH₂)_m·, -NR^{1C}-CO-NR^{1C}-(CH₂)_m·, or -NR^{1C}-CO-(CH₂)_m·, NR^{1C}-wherein R^{1C} is (ia) a hydrogen atom, (iia) a C₁₋₆ alkyl group which may have 1 to 5 substituent(s) selected from Substituent Group A described above or
- (iiia) an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₃₋₆ cycloalkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₃₋₆ cycloalkyl-carbonyl, C₃₋₆ and kloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, C₇₋₁₆ aralyloxy-carbonyl, C₇₋₁₆ aralyloxy-carbonyl, C₇₋₁₆ aralyloxy-carbonyl, C₇₋₁₆ aralyloxy-carbonyl, C₇₋₁₆ aralyloxy-thiocarbonyl, C

k is 0 or 1, m is an integer of 0 to 3).

- The compound according to Claim 7, wherein R1b is:
 - (1) a C_{1.6} alkly group (this C_{1.6} alkly group may have a substituent selected from a halogen atom, cyano, hydroxy, C_{1.6} alkoy-carbonyl, di-C_{1.6} alklytamino, optionally halogenated C_{1.6} alklyt-carbonyl-amino, carboxy, carbamoyl, C_{1.6} alklyt-carbomyl, C_{1.6} alklyt-carbomyl-C_{1.6} a
 - (2) a Cas cycloalkyl group,

5

10

15

20

25

30

25

40

45

- (3) a C_{g-14} anyl group (fish C_{g+4} anyl group may have a substituent selected from $C_{1,6}$ alloxy, amino, carboxy, potionally halogenated $C_{1,6}$ alkyl-carbonylamino, $C_{1,6}$ alkyl-sulfonylamino, ($C_{1,6}$ alkyl-gibrilloxy) amino, $C_{1,6}$ alkyl-carbonyl- $C_{1,6}$ alkyl-distribrilloxy-carbonyl- $C_{1,6}$ alkyl-distribrilloxy-carbonyl- $C_{1,6}$ alkyl-carbonyl- $C_{1,6}$ alkyl-carbonyl-distribrilloxy-carbonyl-distributed ($C_{1,6}$ alkyl-carbonyl-distribrilloxy-carbonyl-distributed ($C_{1,6}$ alkyl-carbonyl-distribrilloxy-carbonyl-distributed ($C_{1,6}$ alkyl-carbonyl-distributed ($C_{1,6}$ alky
- (4) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms [this heterocyclic group may be substituted by 1 or 2 substituent(s) selected from a halogen atom, C_{1-6} alkyl, C_{1-6} alkoy-carbonyl, C_{1-6} alkoy-carbonyl, C_{1-6} alkoy, C_{1-6} alkyl, C_{1-6} alkoy alkoy-carbonyl, oxo and 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms!
- Ring D is (i) a C₆₋₁₄ aryl ring or (ii) a 5- to 14-membered heterocyclic ring containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms;
- E is (i) a bond, (ii) methylene, (iii) O, (iv) S, (v) SO, (vi) SO₂, (vii)-NH-, (viii)-N(C₁₋₆ alkyl)-(xiv)-N(C₁₋₆ alkyl-carbonyl)-, (xi)-N(C₂₋₆ alkyl-sulfonyl)-, (xi)-N(C₂₋₆ alkyl-sulfonyl)-, (xi)-N(C-C-O-, (xill)-SCO-), (xiv) a group represented by Formula: $(CH_{b_{2}}, CO)$ wherein k is o $(T_{1}, (w)-NH-C-(CH_{b_{2}}, T_{1})$ wherein P is a hydrogen atom or C_{1-6} alkyl-group which may be substituted by a heterocyclic group containing 1 to 3 heteroatom (s) selected from nitrogen, oxygen, sulfur atoms and the like in addition to carbon atoms, and m1 is an integer of 0 to 3.
- (xvi) a group represented by Formula -NR9-SO₂-(CH₂)_{m2}- wherein R9 is a hydrogen atom or C₁₋₆ alkyl-sulfonyl group and m2 is 0.
- (xviii) a group represented by Formula -SO₂-NRh-(CH₂)_{m3}- wherein Rh is a hydrogen atom or C_{1.6} alkyl group and m3 is 0 or 1.
 - (xviii) a group represented by Formula -O-CS-NRI-(CH $_2$) $_{m4}$ wherein RI is a hydrogen atom or C $_{1-6}$ alkyl group and
- (xix) a group represented by Formula -NPi-CO-NRk-(CH₂)_{m5}- wherein Pi is a hydrogen atom or C₁₋₆ alkyl group, Rk is a hydrogen atom or C₁₋₆ alkyl group
 - and m5 is 0 or 1,

 (xx) a group represented by Formula -NRL-CO-CH₂·(CH₂)_{m6}·NR^m. wherein RL is a hydrogen atom or C_{1.6} alkyl
- group, R^m is a hydrogen atom or C₁₋₆ alkyl group and m6 is 0 or 1.
- 10. The compound according to Claim 2 wherein R1 is a group represented by Formula:

wherein Hal is a halogen atom, Ring D is defined as described in Claim 7.

11. The compound according to Claim 2, wherein R1 is a group represented by Formula:

wherein each symbol is defined as described in Claim 7 or a group represented by Formula:

wherein each symbol is defined as described in Claim 7, each of R 2 and R 3 is a hydrogen atom or optionally substituted hydrocarbon group, and R 2 and R 3 may be taken together with the adjacent carbon atom to form an optionally substituted 3- to 8-membered ring, R 4 is a hydrogen atom, cyano group, optionally substituted hydrocarbon group early group. R 3 is an optionally substituted hydrocarbon group or a group represented by Formula: -OR 4 wherein R 4 is a hydrogen atom, optionally substituted hydrocarbon group each of R 3 and R 7 is an optionally substituted hydrocarbon group, R 6 and R 7 may be taken together with the adjacent carbon atom to form an optionally substituted by the R 4 is an optionally substituted hydrocarbon group, R 6 and R 7 may be taken together with the adjacent carbon atom can optionally substituted solution at the results of R 6 and R 7 may be taken together with the adjacent carbon atom can optionally solution atom of the R 6 and R 7 may be taken together with the adjacent carbon atom can optionally solution atom of the R 6 and R 7 may be taken together with the adjacent carbon atom can optionally solution atom of the R 7 may be taken together with the adjacent carbon atom can optionally solution ato

- 12. The compound according to Claim 2, wherein R1 is.
 - (i) a C_{6,14} aryl group which may have 1 to 3 substituent(s) selected from the following (1) to (23):
 - a halogen atom,
 - (2) a nitro group.

5

10

15

20

25

30

25

40

45

50

55

- (3) a C₁₋₆ alkyl group
- [this C_{1-6} alkyl group may have a substituent selected from a halogen atom, cyano, carbamoyl, C_{1-6} alkyl-carbamoyl, C_{1-6} alkyl-carbamoyl, C
- (4) a C₃₋₆ cycloalkyl group,
- (5) a C₆₋₁₄ aryl group

this $C_{6,14}$ anyl group may have a substituent selected from amino, carboxy, $C_{1,6}$ alkyoxy-carbonyl, carbamoyl, mono- or di- $C_{1,6}$ alkylcarbamoyl, formylamino, $C_{1,6}$ alkyl-carbonylamino which may have a halmogen atom or carboxy, $C_{6,14}$ alkyl-carbonylamino, $C_{1,6}$ alkyl-carbonylamino, credo, mono- or di- $C_{1,6}$ alkylsulfonylamino, $C_{1,6}$ alkylsulfonylamino, $C_{1,6}$ alkylsulfonylamino, $C_{1,6}$ alkylsulfonylamino, $C_{1,6}$ alkyl-carbonylomino, $C_{1,6}$ alkyl-carbonylomino, $C_{1,6}$ alkyl-carbonylomino, $C_{1,6}$ alkyl-carbonylamino, $C_{1,6}$ alkyl-car

- (6) a C1-6 alkoxy group which may have a halogen atom or C1-6 alkoxy-C6-14 aryl,
- (7) a C₆₋₁₄ aryloxy group,
 - (8) a C_{1.6} alkylthio group which may have a carbamoyl,
 - (9) a C1-6 alkylsulfinyl group which may have a carbamoyl,
 - (10) a C₆₋₁₄ arylthio group,
 - (11) a hydroxy group,

(12) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms (this heterocyclic group may have a substituent selected from oxo, carboxy-C_{1,6} alkyl. C1-6 alkyl-carbonyloxy-C1-6 alkyl, C1-6 alkyl, C1-6 alkoxy-carbonyl-C1-6 alkyl, C1-6 alkoxy-carbonyl, carbamoyi-C_{1.6} alkyl and C_{1.6} alkyl-carbamoyi-C_{1.6} alkyl],

- (13) a carboxy group.
- (14) a group represented by Formula: -CO-Hal (wherein Hal is a halogen atom),
- (15) a C₁₋₆ alkyl-carbonyl group,
- (16) a C_{1.6} alkyl-sulfonyl group.
- (17) a C₁₋₆ alkoxy-carbonyl group,
- 10 (18) a sulfamoyl group

5

15

20

25

30

35

40

45

50

55

[this sulfamoyl group may have 1 or 2 substituent(s) selected from C1.6 alkyl, carbamoyl-C1.6 alkyl, C1.6 alkoxy-carbonyl-C_{1.6} alkyl, (5- to 8-membered heterocyclic ring which may have an oxo group)-C_{1.6} alkyl and C1-6 alkyl-carbonylamino-C6-14 aryl],

(19) a group represented by Formula: -NRaRb

[each of Ra and Rb is (i) a hydrogen atom, (ii) a C1-6 alkyl, (iii) (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms) -C₁₋₆ alkyl, (iv) a C₁₋₆ alkoxy-carbonyl-C₁₋₆ alkyl, (v) a di-C₁₋₆ alkylamino-methylene-sulfamoyl-C₁₋₆ alkyl, (vi) a carbamoyl-C₁₋₆ alkyl, (vii) a sulfamoyl-C₁₋₆ alkyl, (viii) a C₁₋₆ alkyl-sulfonyl, (ix) a C₁₋₆ alkoxy-carbonyl, (x) a di-C1-6 alkoxy-carbonyl-C2-6 alkenyl, (xi) a C6-14 aryl, (xii) a 5- or 6-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms [this 5- or 6-membered heterocyclic group may have a substituent selected from amino, C₁₋₆ alkylcarboxamido and C₁₋₆ alkyl-sulfonylamino], (xiii) an optionally halogenated C₁₋₆ alkyl-carbonyl, (xiv) a C₁₋₆ alkylthio-C1-8 alkyl-carbonyl, (xv) a C1-8 alkylsulfinyl-C1-8 alkyl-carbonyl, (xvi) a C1-6 alkylsulfonyl-C1-8 alkyl-carbonyl, (xvii) an amino-C₁₋₆ alkyl-carbonyl, (xviii) an optionally halogenated C₁₋₆ alkyl-carbonylamino-C1-6 alkyl-carbonyl, (xix) a C6-14 aryl-carbonyl, (xx) a carboxy-C6-14 aryl-carbonyl, (xxi) an optionally C1-6 alkyl-esterified phosphono-C1-6 alkyl-C6-14 aryl-carbonyl, (xxii) (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have a halogen atom, oxy or a C1.6 alkoxy-carbonyl)-carbonyl, (xxiii) (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-C1-6 alkyl-carbonyl, (xxiv) a C6-14 aryl-oxy-carbonyl, (xxv) a carboxy-C1-6 alkyl, (xxvi) a carbamoyl, (xxvii) an optionally halogenated C1-6 alkylcarbamoyl, (xxviii) a C6-14 arylcarbamoyl which may have a C1-6 alkyl-carbonylamino, (xxix) (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-carbamoyl, (xxx) a C2.6 alkenyl-carbonyl, (xxxi) a (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom (s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxo group)-amino-C1.6 alkyl-carbonyl, (xxxii) a (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxo group)(C1-6 alkyl) amino-C1-6 alkyl-carbonyl, (xxxiii) a (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxo group)(C1-6 alkylcarbonyl) amino-C1-6 alkyl-carbonyl, (xxxiv) a C1-6 alkylthio-C1-6 alkylcarbonyl (sulfur atom may be oxidized), (xxxv) an optionally halogenated C_{1.6} alkylsulfonyl, (xxxvi) a sulfamoyl or (xxxvii) a C1-6 alkylsulfamoyl],

(20) a group represented by Formula: -C(=O)NRcRd

[each of Rc and Rd is (i) a hydrogen atom, (ii) a C1-6 alkyl, (iii) a (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-C1.6 alkyl, (iv) a carboxy-C1.6 alkyl, (v) a C1.6 alkoxy-carbonyl-C1.6 alkyl, (vi) a di-C1.6 alkylamino-C₁₋₆ alkyl, (vii) a carbamoyl-C₁₋₆ alkyl, (viii) a C₁₋₆ alkylcarbamoyl-C₁₋₆ alkyl, (ix) (5- or 6-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-C1-6 alkylcarbamoyl-C1-6 alkyl, (x) (5- or 6-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)amino-C₁₋₆ alkyl, (xi) a sulfamoyl-C₆₋₁₄ aryl-C₁₋₆ alkyl, (xii) a C₆₋₁₄ aryl which may have a C₁₋₆ alkoxy, (xiii) an optionally C₁₋₆ alkyl-esterified phosphono-C₁₋₆ alkyl-C₆₋₁₄ aryl, (xiv) a 4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms [this 4- to 10-membered heterocyclic group may have 1 to 2 substituent(s) selected from a halogen atom, C1.6 alkyl and oxo], (xv) a C6.14 aryl-carbamoyl-C1.6 alkyl, (xvi) a hydroxy-C1.6 alkyl or (xvii) a (5or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have a oxo group)-carbamoyl-C_{1.6} alkyl],

(21) a cyano group,

- (22) a mono- or di-C1.8 alkylcarbamoylthio group,
- (23) a mono- or di-C₁₋₆ alkylthiocarbamoyloxy group;

(ii) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 3 substituent(s) selected from the following (1) to (8):

(1) a halogen atom,

5

10

15

20

25

30

25

40

45

50

55

- (2) a C₁₋₆ alkyl group [this alkyl may have a substituent selected from carboxy, C₁₋₆ alkoxy, C₁₋₆ alk
- (3) a C_{1.6} alkoxy group,
- (4) a C₆₋₁₄ aryl group,
- (5) a C₇₋₁₈ aralkyl group [this C₇₋₁₈ aralkyl group may have a substituent selected from carboxy, C₁₋₈ alkoy-carbonyl, carbamoyl, C₁₋₈ alkyl-carbamoyl which may have a hydroxy, (4- to 10-membered heterocyclic fing containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-carbamoyl,

(6) a 4- to 10-membered heterocyclic group containing 1 to 3 heterostom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms (this 4- to 10-membered heterocyclic group may have a substituent selected from a C_{1-c} alkyl, C_{1-a} alkoxy-carbonyl, carbamyl, oxo, 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms[.

- (7) an oxo group.
- (8) an oxide group;
- (iii) a C_{2,6} cycloalkyl group; or, (v) a group represented by Formula: -L'-R¹a' (L' is methylene, carbonyl or an optionally substituted nitrogen atom, R¹a' is (1) a hydrogen atom, (2) a C₆₋₁₄ anyl group which may have 1 to 5 substituent(s) selected from a C_{1,6} alkyl group (4) a C_{1,6} alkyl group, (4) a C_{1,6} alkyl group which may be substituted by a C_{1,6} alkyl group, (4) a C_{1,6} alkyl-amino group which may be substituted by a 4 to 10 nembered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms, (6) a C₆₋₁₄ aryl-amino group or (7) a (4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms).

each of R² and R³ is (1) a hydrogen atom, (2) a $C_{1,0}$ alklyl group which may be substituted by <1> a halogen atom, <2> a hydrowy group which may be substituted by a substitute to selected from a $C_{1,0}$ alklyl, $C_{1,0}$ alklyl-carbonyl, $C_{1,0}$ alklyl-carbonyl and $C_{2,1,0}$ arrived an amino group which may be substituted by 1 or 2 $C_{1,0}$ alklyl, $C_{1,0}$ alklyl-carbonyl and $C_{2,1,0}$ arrived and sufficient of a to 10 membered heterocyclic group containing 1 to 3 heterostomis) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms, $c_{3,0}$ and $c_{3,0}$ by which may be substituted by $C_{1,0}$ alklyl, <6> a $C_{1,0}$ alklyl-sulfinyl group or <7> a $C_{1,0}$ alklyl-sulfonyl group, or (3) a $C_{1,0}$ alklyl-sulfonyl group.

R2 and R3 may be taken together with the adjacent carbon atom to form a C3.8 cycloalkane,

 \mathbf{R}^{i} s (i) a hydrogen atom, (ii) a cyano group, (iii) a $\mathbf{C}_{i,q}$ alkyl group (hils $\mathbf{C}_{i,q}$ alkyl group may have a substituent selected from (1) a halogen atom, (2) a cyano group, (3) a $\mathbf{C}_{i,q}$ alkovy group, (4) a hydroxy group, (5) an amino group, (6) a mono- $\mathbf{C}_{i,q}$ alkylamino group, (7) a \mathbf{d} - $\mathbf{C}_{i,q}$ alkylamino group, (8) a tri- $\mathbf{C}_{i,q}$ alkylaminonium group, (8) a 4-to 10-membered heterocyclic group containing 1 of a heteroatom(s) selected from nitrogen, suffur and oxygen atoms in addition to carbon atoms which may have an oxo, (9) a $\mathbf{C}_{i,q}$ alkylo; (1) an ureido, (11) a carboxy, (12) a carbox mover $\mathbf{C}_{i,q}$ alkylo; (13) a $\mathbf{C}_{i,q}$ alkoxy-carbonyl, (14) a mono- $\mathbf{C}_{i,q}$ alkyl-carbamoyl, (15) a formylamino and (15) a $\mathbf{C}_{i,q}$ alkyl-carbamoyl, (15) a formylamino and (15) a $\mathbf{C}_{i,q}$

(iv) a C2-6 alkenyl group or (v) a formyl group;

X is a bond, oxygen atom, optionally oxidized sulfur atom, -NH- or -N(methyl)-,

R⁵ is,

when X is a bond, then (i) a hydrogen atom, (ii) a C1-6 alkyl group or (iii) a halogen atom.

when X is an oxygen atom, then (i) a hydrogen atom, (ii) a C₁₋₈ alkyl group [this C₁₋₈ alkyl group may have a substituent selected from (1) a halogen atom, (2) a hydroxy group, (3) an amino group, (4) a carboxy, (5) a

carbamoyl, (6) a $C_{1,6}$ alkoxy-carbamyl, (7) a mono- $C_{1,6}$ alkyl-carbamoyl, (8) a di- $C_{1,6}$ alkyl-carbamoyl, (9) a 4- to 10-membered heterocyclic group containing 1 to 3 heteroatmo(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms], (iii) a $C_{2,6}$ alkenyl group pug (15) a $C_{2,6}$ alkenyl group may have a $C_{2,14}$ anyl, (iv) a $C_{2,6}$ alkenyl group, (v) a $C_{2,6}$ eycloalkyl group, (vi) a $C_{3,6}$ aralkyl group, (vi) a $C_{3,6}$ alkyl-carbonyl group, (vi) a $C_{3,6}$ alkyl-carbonyl group, (vi) a $C_{1,6}$ alkyl-viabonyl group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms [this heterocyclic group may have a $C_{2,6,14}$ arvil).

when X is an optionally oxidized sulfur, then (i) a C₁₋₆ alkyl group or (ii) a mono- or di-C₁₋₆ alkyl-carbamoyl group.

when X is -NH- or -N(methyl)-, then (i) a hydrogen atom, (ii) a C_{1.6} alkyl group [this C_{1.6} alkyl; group may have a C_{1.6} alkxoy-carbonyl], (iii) formyl, (iv) a C_{1.6} alkyl-carbonyl group, (v) a C_{1.6} alkxoy-carbonyl group, (vii) a carbamoyl group, (vii) a mono- or di-C_{1.6} alkyl-carbamoyl group or (viii) a C_{1.6} alkyl-sulfonyl group,

each of R⁶ and R⁷ is a hydrogen atom or C₁₋₆ alkyl group,

R6 and R7 may be taken together with the adjacent carbon atom to form a C3.8 cycloalkane,

Each of R8 and R9 is a hydrogen atom or a C₁₋₆ alkyl group,

Y is <1> a methylene group which may have 1 or 2 C_{1.6} alkyl or hydroxy group or <2> a carbonyl group, n is 0 or 1.

- 20 13. The compound according to Claim 3, wherein R1 is,
 - a C₆₋₁₄ aryl group which may have 1 to 3 substituent(s) selected from the following (1) to (20):
 - a halogen atom,
 - (2) a nitro group,

5

10

15

25

30

25

40

45

50

- (3) a C_{1,6} alkyl group [fills C_{1,6} alkyl group may have a substituent selected from a halogen atom, cyano, carbamoyl, C₁₋₆ alkyl-carbamoyl, C₁₋₆ alkylsulfonylamino, C₁₋₆ alkoxy-carbonyl and carboxyl.
 - (4) a C_{3.6} cycloalkyl group.
- (5) a C₆₋₁₄ aryl group
- [this C_{6:14} anyl group may have a substituent selected from amino, optionally halogenated C₁₋₆ alkyl-carbonylamino, ureido, C₁₋₆ alkylsulfonylamino, (C₁₋₆ alkylsulfonyl) amino, C₁₋₆ alkoxy-carbonyl-C₁₋₆ alkylamino],
- (6) a C_{1.6} alkoxy group which may have a halogen atom or C_{1.6} alkoxy-C_{6.14} aryl,
- (7) a C₆₋₁₄ aryloxy group,
- (8) a C₁₋₆ alkylthio group,
- (9) a C₁₋₆ alkylsulfinyl group,
- (10) a C₆₋₁₄ arylthio group,
- (11) a hydroxy group,
- (12) a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms [this heterocyclic group may have a substituent selected from oxo, carboxy-C₁₋₈ alkyl, C₁₋₈ alkyl, C₁₋₈ alkyl, C₁₋₈ alkyl-(2-arbomyloxy-C₁₋₆ alkyl, C₁₋₈ alkyl), C₁₋₈ alkyl, C₁₋₈ alkyl,
- (13) a carboxy group,
 - (14) a group represented by Formula: -CO-Hal (Hal is a halogen atom),
 - (15) a C₁₋₆ alkyl-carbonyl group,
 - (16) a C1.6 alkyl-sulfonyl group,
 - (17) a C1-6 alkoxy-carbonyl group,
 - (18) a sulfamoyl group [this sulfamoyl group may have a substituent selected from C₁₋₆ alkyl, carbamoyl-C₁₋₆ alkyl, (5- or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-C₁₋₆ alkyl,
 - (19) a group represented by Formula: NPaPb [each of R* and R*) is (i) a hydrogen atom, (ii) a C₁₋₆ alkyl, (iii) a (6-or 6-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-C₁₋₆ alkyl, (iv) a C₁₋₆ alkyl, accompleted and containing the discontaining the discon

sulfur and oxygen atoms in addition to carbon atoms [this 5- or 6-membered heterocyclic group may have asubstituent selected from amino. C_{+6} allyl-setzhoxamido and C_{+6} allyl-setzhoyamino], (xii) an optionally halogenated C_{+6} allyl-carbonyl, (xiv) a C_{+6} allyl-fixed horover, (xiv) a C_{+6} allyl-carbonyl, (xiv) a C_{+6} allyl-carbonyl, (xiv) a C_{+6} allyl-carbonyl, (xiv) an amino- C_{+6} allyl-carbonyl, (xiv) an optionally halogenated C_{+6} allyl-carbonyl, eximino- C_{+6} allyl-carbonyl, (xix) an optionally C_{-6} allyl-carbonyl, (xix) a C_{-6} allyl-carbonyl, (xix) an optionally C_{-6} allyl-carbonyl, (xix) a C_{-6} anyl-carbonyl, (xix) an optionally C_{-6} allyl-carbonyl, (xix) an optionally C_{-6} allyl-carbonyl, (xix) a C_{-6} anyl-carbonyl, (xix) and oxygen atoms in addition to carbon atoms)-carbonyl, (xxiii) a C_{-6} of -membered heterocyclic important C_{-6} and C_{-6} and C_{-6} and C_{-6} allyl-carbonyl, C_{-6} and C_{-6} and C_{-6} and C_{-6} alloy-carbonyl, C_{-6} allyl-carbonyl, C_{-6} allyl-carbonyl,

(ii) a C $_{1-4}^{-1}$ grant propresented by Formula: -C(=0)NRFR⁴ [each of Re and Re is (i) a hydrogen atom. (ii) a C $_{1-6}$ alkyl, (iii) a (5 or 6-membered heterocyclic ing containing 1 to 3 heterostanding) selected from nitrogen sulfur and oxygen atoms in addition to carbon atoms)- C_{1-6} alkyl, (iv) a carboxyr C_{1-6} alkyl, (iv) a C $_{1-6}^{-1}$ alk

(ii) a 5 - to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 3 substituent(s) selected from the following (1) to (8):

a halogen atom,

5

10

15

20

25

30

25

40

45

50

- (2) a C₁₋₈ alkyl group [lihis alkyl may have a substituent selected from carboxy, C₁₋₈ alkoxy, C₁₋₈ alkoxy, C₁₋₈ alkoyl-carbonyl, mono-C₁₋₈ alkyl-amino, cit-C₁₋₈ alkyl-amino, carbamoyl, C₁₋₈ alkyl-carbamoyl which may have a hydroxy, 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have oxo, (4-to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-carbamoyl, carbamoyl-C₁₋₈ alkyl-carbamoyl],
- (3) a C₁₋₆ alkoxy group,
- (4) a C₆₋₁₄ aryl group,
- (5) a C₇₋₁₈ aralkyl group [this C₇₋₁₈ aralkyl group may have a substituent selected from carboxy, C₁₋₈ alkoxy-carbonyl, carbamoyl, C₁₋₈ alkyl-carbamoyl which may have a hydroxy, (4- to 10-membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms)-carbamoyli,
- (6) a 4- to 10-membere heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms (this 4- to 10-membered heterocyclic group may have a substituent selected from a C_{1-a} alklyi, C_{1-a} alkloxy-carbonyl, carbamoyl, oxo, 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atomsl.
- (7) an oxo group,
- (8) an oxide group;
- (iii) a C_{3.6} cycloalkyl group; or,
 - (iv) a group represented by Formula: -L'-RIe* (L' is methylene, carbonyl or -NI+, RIe* is (1) a hydrogen atom, (2) a C_{0+,14} anyl group which may have 1 to 5 substititune(s) selected from a C₁₊₆ alklyl-arnino group which may be substituted by a -L of themselved to the accordance of the substituted by a -L of themselved heterocyclic ring containing 1 to 3 beterostom(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms. (6) a C₀₊₄ anyl-amino group or (7) a (4-10 -membered heterocyclic ring containing 1 to 3 heteroatom(s) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms.)

each of R² and R³ is (1) a hydrogen atom, (2) an optionally halogenated C₁₋₆ alkyl group or (3) a C₁₋₆ alkoxycarbonyl group.

R² and R³ may be taken together with the adjacent carbon atom to form a C_{2.0} cycloalkane.

R⁴ is (i) a hydrogen atom, (ii) a $C_{1,0}$ alkyl group (finis $C_{1,0}$ alkyl group may have a substituent selected from (1) a halogen atom, (2) a cyang group, (3) a $R_{1,0}$ alkoys group, (4) a hydroxy group, (5) an atmin group, (6) a mono- $C_{1,0}$ alkylamino group, (7) a di- $C_{1,0}$ alkylamino group, (8) a tri- $C_{1,0}$ alkylamino group, (9) a 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom(6) selected from intrigen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxo, (10) a $C_{0,1}$ any little, (11) an unique, (12) a carboxy, (13) a carbamoyl, (14) a $C_{1,0}$ alkyl-carboxomido) or (iii) a $C_{0,0}$ alkyl-group;

X is a bond, oxygen atom, sulfur atom, -NH- or -N(methyl)-,

R⁵is

5

10

15

20

25

30

25

45

50

55

when X is a bond, then (i) a hydrogen atom, (ii) a C_{1.6} alkyl group or (iii) a halogen atom.

when X is an oxygen atom, then (i) a hydrogen atom, (i) a C_{1-6} alkyl group (this C_{1-6} alkyl group may have a substituent selected from (1) a haldgen atom, (2) a hydroxy group, (3) an amino group, (4) a carboxy, (5) a carboxy, (5) a carboxy, (5) a C₁₋₆ alkyl-carboxy, (7) a mone C_{1-6} alkyl-carboxy, (8) a di- C_{1-6} alkyl-carboxy, (9) a 4-10 to 10-membered heterocyclic group containing 1 to 3 heterostom(s) selected from nitrogen, suffur and oxygen atoms in addition to action atoms which may have a nox), (iii) a C_{2-6} alkenyl group [this C_{2-6} alkenyl group group may have a C_{2-6} alyl-carboxyl group, (vi) a C_{1-6} alkyl-carboxyl group, (vii) a C_{1-6} alkyl-carboxyl group, (viii) a C_{1-6} alkyl-tiliocarboxyl grou

when X is a sulfur, then (i) a C1-6 alkyl group or (ii) a mono- or di-C1-6 alkyl-carbamoyl group,

when X is -NIH- or -N(methyl)-, then (i) a hydrogen atom, (ii) a C₁₋₆ alkyl group [this C₁₋₆ alkyl group may have a C₁₋₆ alkoxy-carbonyl], (iii) formyl, (iv) a C₁₋₆ alkyl-carbonyl group, (v) a C₁₋₆ alkoxy-carbonyl group, (vii) a mone- or di-C₁₋₆ alkyl-carbonyl group (roup) a C₁₋₆ alkyl-sulfonyl group,

each of R6 and R7 is a hydrogen atom or C1-6 alkyl group,

R6 and R7 may be taken together with the adjacent carbon atom to form a C3-8 cycloalkane,

each of R8 and R9 is a hydrogen atom or a C1-8 alkyl group,

Y is a methylene group which may have a hydroxy group or carbonyl group.

n is 0 or 1

- The compound according to Claim 2, wherein each of R² and R³ is a C_{1.6} alkyl group.
- 15. The compound according to Claim 2, wherein R4 is a hydrogen atom.
- 16. The compound according to Claim 2, wherein each of R6 and R7 is a C1.6 alkyl group.
- 17. The compound according to Claim 2, wherein each of R⁸ and R⁹ is a hydrogen atom.
 - 18. The compound according to Claim 2, wherein n is 0.
 - 19 (i) 2-(methylsulfinyl)-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl] acetamide, (ii) N-(methylsulfonyl)-N-[3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)phenyl]methanesulfonamide, (iii) N-[2-(4-pyridinyl)ethyl]-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]|soquinolin-1-yl)benzamide, (iv) N-(2-amino-2-oxoethyl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide, (v)N-methyl-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethvlfuro(2.3-hlisoguinolin-1-vl)benzamide. (vi) N-ethyl-3-(3.4.8.9-tetrahydro-6-methoxy-3.3.8.8-tetramethylfuro (2,3-h)isoquinolin-1-yi)benzamide, (vii) N-[3'-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h)isoquinolin-1-vl)[1,1'-biphenvl]-3-vl]acetamide, (viii) N-(2-amino-1,1-dimethyl-2-oxoethyl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide, (ix)3-(6-ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)-N-methylbenzamide, (x) N-(2-amino-2-oxoethyl)-3-(6-ethoxy-3,4,8,9-tetrahydro-3.3.8.8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide, (xi) N-(2-amino-1,1-dimethyl-2-oxoethyl)-3-(6-ethoxy-3,4,8,9-tetrahydro-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide, (xii)N-[3-(6-ethoxy-3,4,8,9-tetrahydro-3.3.8.8-tetramethylfuro[2.3-h]isoquinolin-1-vI)phenyl]methanesulfonamide. (xiii) N-(hydroxymethyl)-3-(3,4,8,9-tetrahydro-6-methoxy-3,3,8,8-tetramethylfuro[2,3-h]isoquinolin-1-yl)benzamide or its salts.

20. A prodrug of a compound according to Claim 2.

5

10

15

20

25

30

25

45

50

55

21. A process for producing a compound having a partial structure represented by Formula:

wherein R1 is defined as described in Claim 2, or a salt thereof, comprising:

(1) reacting a compound having a partial structure represented by Formula:

wherein R¹⁰ is an optionally substituted vinyl group or allyl group, or a salt thereof with a compound represented by Formula: R¹-CN or Formul

wherein R¹¹ is an optionally substituted methyl group, Z is an optionally substituted hydroxy group or halogen atom or a salt thereof with a compound represented by Formula: R¹-CN wherein R¹ is defined as described above or a salt thereof.

- 22. A process for producing a compound according to Claim 2, comprising:
 - reacting a compound represented by Formula:

wherein each symbol is defined as described in Claim 2 or a salt thereof with a compound represented by Formula: R¹-CN or Formula: R¹-CONlɨg wherein R¹ is defined as described in Claim 2 or a salt thereof, or, reacting a compound represented by Formula:

 $\begin{array}{c|c} R^{g} & R^{g} & R^{g} \\ \hline R^{g} & R^{g} & R^{g} \\ \hline R^{g} & R^{g} & R^{g} & R^{g} \\ \hline \end{array}$

wherein Z is an optionally substituted hydroxy group or halogen atom, and other symbols are defined as described In Claim 2 or a salt thereof with a compound represented by Formula: R1-CN wherein R1 is defined as described in Claim 2 or a salt thereof.

23. A phosphodiesterase IV inhibitor comprising a compound having a partial structure represented by Formula:

wherein - - - is a single bond or double bond or a salt thereof.

5

10

15

20

25

30

45

50

55

- 24. A pharmaceutical composition comprising a compound according to Claim 1 or a salt thereof.
- 35 25. A pharmaceutical composition comprising a compound according to Claim 2 or a salt or prodrug thereof.
 - 26. The pharmaceutical composition according to Claim 24 or 25, which is a phosphodiesterase IV inhibitor.
 - The pharmaceutical composition according to Claims 23 to 26, which is a prophylactic or therapeutic agent against inflammatory diseases.
 - 28. The pharmaceutical composition according to Claims 23 to 26, which is a prophylactic or therapeutic agent against asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes.
 - 29. A pharmaceutical comprising (1) a compound having a partial structure represented by Formula:

wherein --- is a single bond or double bond or a salt thereof in combination with (2) a drug selected from antiasthma agents, antiallerige agents, anticholinergic agents, antiinflammatory agents, antibacterial agents, antifungal agents and antidiabetic agents.

- 30. A pharmaceutical comprising (1) a compound according to Claim 1 or a salt thereof in combination with (2) a drug selected from aniasthma agents, antiallergic agents, anticholinergic agents, antiinflammatory agents, antibacterial agents, antifungal agents and antidiabetic agents.
- 31. A pharmaceutical comprising (1) a compound according to Claim 2, or a salt or prodrug thereof in combination with (2) a drug selected from antiasthma agents, antiallergic agents, anticholinergic agents, antiinfiammatory agents, antibacterial agents, antifunda acents and antidabetic acents.
- 32. The pharmaceutical according to Claims 29 to 31, which is a prophylactic or therapeutic agent against inflammatory diseases.
 - 33. The pharmaceutical according to Claims 29 to 31, which is a prophylactic or therapeutic agent against asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes.
- 15 34. Escherichia coli BL21/pPDE4D3 (FERM BP-7075).

25

25

45

50

A method for inhibiting a phosphodiesterase IV comprising administering an effective amount of a compound having
a partial structure represented by Formula:

wherein - - - is a single bond or double bond or a salt thereof to a mammal.

36. A method for preventing or treating inflammatory diseases comprising administering an effective amount of a compound having a partial structure represented by Formula:

wherein - - - is a single bond or double bond or a salt thereof to a mammal.

37. A method for preventing or treating asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes comprising administering an effective amount of a compound having a partial structure represented by Formula:

- 55 wherein - is a single bond or double bond or a salt thereof to a mammal.
 - 38. A method for inhibiting a phosphodiesterase IV comprising administering an effective amount of the compound according to Claim 1 or a salt thereof to a mammal.

- A method for preventing or treating inflammatory diseases comprising administering an effective amount of the compound according to Claim 1 or a salt thereof to a mammal.
- 40. A method for preventing or treating asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes comprising administering an effective amount of the compound according to Claim 1 or a salt thereof to a mammal.

10

15

20

25

30

25

50

- 41. A method for inhibiting a phosphodiesterase IV comprising administering an effective amount of the compound according to Claim 2 or a salt or prodrug thereof to a mammal.
- 42. A method for preventing or treating inflammatory diseases comprising administering an effective amount of the compound according to Claim 2 or a salt or prodrug thereof to a mammal.
- 43. A method for preventing or treating asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabeties comprising administering an effective amount of the compound according to Claim 2 or a salt or prodrug thereof to a mammal.
 - 44. A method for preventing or treating inflammatory diseases comprising administering (1) an effective amount of a compound having a partial structure represented by Formula:

- wherein --- is a single bond or double bond or a salt thereof in combination with (2) an effective amount of a drug selected from antiasthma agents, antiallergica gents, antibolinergic agents, antiinflammatory agents, antibacterial agents, and antibiabetic agents to a mammal.
- 45. A method for preventing or treating asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes comprising administering (1) an effective amount of a compound having a partial structure represented by Formula:

- 45 wherein --- is a single bond or double bond, or a salt thereof in combination with (2) an effective amount of a drug selected from antiasthma agonts, antiallergic agents, antionlergic agents, antiinflammatory agents, antibacterial agents, antifunda agents and antidabetic agents to a mammal.
 - 46. A method for preventing or treating inflammatory diseases comprising administering (1) an effective amount of the compound according to Claim 1 or a salt thereof in combination with (2) an effective amount of a drug selected from antiasthma agents, antiallergic agents, antionlinergic agents, antiinflammatory agents, antibacterial agents, antifungal agents and antidiabetic agents to a mammal.
 - 47. A method for preventing or treating asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes comprising administering (1) an effective amount of the compound according to Claim 1 or a sall thereof in combination with (2) an effective amount of a drug selected from antiasthma agents, antiallergic agents, anticholinergic agents, antiinflammatory agents, antibacterial agents, antifungal agents and antidiabetic agents to a mammal.

- 48. A method for preventing or treating inflammatory diseases comprising administering (1) an effective amount of the compound according to Claim 2 or a salt or producy thereof in combination with (2) an effective amount of a drug selected from antiasthma agents, antiallergic agents, anticholinergic agents, antiinflammatory agents, antibacterial agents, antifundal agents and antidiabetic agents to a mammal.
- 49. A method for preventing or treating asthma, chronic obstructive pulmonary disease (COPD), rhoumatoid arthritis, autoimmune disease or diabetes comprising administering (1) an effective amount of the compound according to Claim 2 or a sail or prodrug thereof in combination with (2) an effective amount of a drug selected from antiasthma agents, antialloric agents, anticholinergic agents, antiinflammatory agents, antibacterial agents, antifungal agents and antidiabetic agents to a mammal.
- 50. A use of a compound having a partial structure represented by Formula:

10

15

20

25

30

25

45

50

55

wherein - - - is a single bond or double bond, or a salt thereof for producing a phosphodiesterase IV inhibitor.

51. A use of a compound having a partial structure represented by Formula:

wherein - - - is a single bond or double bond, or a salt thereof for producing a prophylactic or therapeutic agent against inflammatory diseases.

52. A use of a compound having a partial structure represented by Formula:

wherein ___ is a single bond or double bond, or a salt thereof for producing a prophylactic or therapeutic agent against asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes.

- 53. A use of the compound according to Claim 1 or a salt thereof for producing a phosphodiesterase IV inhibitor.
- 54. A use of the compound according to Claim 1 or a salt thereof for producing a prophylactic or therapeutic agent against inflammatory diseases.
- 55. A use of the compound according to Claim 1 or a salt thereof for producing a prophylactic or therapeutic agent against asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabelies.

- 56. A use of the compound according to Claim 2 or a salt or prodrug thereof for producing a phosphodiesterase IV inhibitor.
- 57. A use of the compound according to Claim 2 or a salt or prodrug thereof for producing a prophylactic or therapeutic agent against inflammatory diseases.
- 58. A use of the compound according to Claim 2 or a salt or prodrug thereof for producing a prophylactic or therapeutic agent against asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, autoimmune disease or diabetes.
- 59. A compound represented by Formula:

10

15

20

30

25

45

55

25 wherein each of R^{2a} and R^{3a} is an optionally substituted aliphatic hydrocarbon group or acyl group,

R^{4e} is a hydrogen atom, optionally substituted hydrocarbon group, acyl group or optionally substituted hydroxy group,

R^{5a} is an optionally substituted hydrocarbon group, acyl group, optionally substituted heterocyclic group or halogen atom,

Each of R6a, R7a, R8a and R9a is a hydrogen atom or optionally substituted hydrocarbon group,

Xª is a bond, oxygen atom, optionally oxidized sulfur atom or optionally substituted nitrogen atom, or by Formula:

wherein each of R^{2a} and R^{3a} is an optionally substituted aliphatic hydrocarbon group or acyl group,

 R^{4a} is a hydrogen atom, optionally substituted hydrocarbon group, acyl group or optionally substituted hydroxy group,

R5n is an optionally substituted hydrocarbon group, acyl group, optionally substituted heterocyclic group or halogen atom,

Each of R^{6a}, R^{7a}, R^{8a} and R^{9a} is a hydrogen atom or optionally substituted hydrocarbon group,

Xa is a bond, oxygen atom, optionally oxidized sulfur atom or optionally substituted nitrogen atom,

Z is an optionally substituted hydroxy group or halogen atom, or a salt thereof.

60. The compound according to Claim 59, wherein each of R^{2a} and R^{3a} is any of the following (i) to (ii):

(i) a C₁₋₆ alkyl group or C₃₋₆ cycloalkyl group which may have 1 to 5 substituent(s) selected from the group

(hereinafter referred to as Substituent Group B) consisting of (1) a halogen atom, (2) a C_{1,3} alkylenedioxy group, (3) a nitro group, (4) an optionally halogenated C₁₋₆ alkyl group, (5) a C₃₋₆ cycloalkyl group, (6) a C₆₋₁₄ aryl group, (7) an optionally halogenated C₁₋₆ alkoxy group, (8) an optionally halogenated C₁₋₆ alkylthio group, (9) a hydroxy group, (10) an amino group, (11) a mono-C_{1,6} alkylamino group, (12) a mono-C_{6,14} arylamino group, (13) a di-C₁₋₆ alkylamino group, (14) a di-C₆₋₁₄ arylamino group, (15) an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₃₋₆ cycloalkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₄ aryl-carbonyl, C7-16 aralkyl-carbonyl, C6-14 aryloxy-carbonyl, C7-16 aralkyloxy-carbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl carbamoyl, C₆₋₁₄ aryl-carbamoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbamoyl, C1.6 alkyl-thiocarbonyl, C2.6 cycloalkyl-thiocarbonyl, C1.6 alkoxy-thiocarbonyl, C6.14 arylthiocarbonyl, C7-16 aralkyl-thiocarbonyl, C6-14 aryloxy-thiocarbonyl, C7-16 aralkyloxy-thiocarbonyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbonyl, thiocarbamoyl, mono-C1.6 alkyl-thiocarbamoyl, di-C1.6 alkyl-thiocarbarnoyl, C₈₋₁₄ aryl-thiocarbarnoyl, (5- or 6-membered heterocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbamoyl, mono-C1.6 alkylsulfamoyl, di-C1-6 alkylsulfamoyl, C6-14 arylsulfamoyl, C1-6 alkylsulfonyl, C6-14 arylsulfonyl, C1-6 alkylsulfinyl, C6-14 arylsulfinyl, sulfino, sulfo, C₁₋₆ alkoxysulfinyl, C₆₋₁₄ aryloxysulfinyl, C₁₋₆ alkoxysulfonyl and C₆₋₁₄ aryloxysulfonyl, (16) an acylamino group selected from formylamino, C₁₋₆ alkyl-carboxamido, C₆₋₁₄ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆ alkylsulfonylamino and C₆₋₁₄ arylsulfonylamino, (17) an acyloxy group selected from C1.6 alkyl-carbonyloxy, C6.14 aryl-carbonyloxy, C1.6 alkoxy-carbonyloxy, mono-C1.6 alkyl-carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₄ aryl-carbamoyloxy and nicotinoyloxy, (18) a 4- to 14-membered heterocyclic group having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms, (19) a phosphono group, (20) a C₆₋₁₄ aryloxy group, (21) a di-C₁₋₆ alkoxy-phosphoryl group, (22) a C6.14 arylthio group, (23) a hydrazino group, (24) an imino group, (25) an oxo group, (26) an ureido group, (27) a C₁₋₆ alkyl-ureido group, (28) a di-C₁₋₆-alkyl-ureido group, (29) an oxide group and (30) a group formed by binding 2 or 3 groups selected from (1) to (29) listed above,

(ii) an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₂₋₆ cycloalkyl-carbonyl, C₁₋₆ alkyl-carbonyl, C₂₋₁₆ aralkyl-carbonyl, C₁₋₆ alkyl-carbonyl, C₂₋₁₆ aralkyloxy-carbonyl, C₁₋₆ aralkyloxy-carbonyl, C₁₋₆ aralkyloxy-carbonyl, C₁₋₆ aralkyloxy-carbonyl, C₁₋₆ aralkyloxy-carbonyl, C₁₋₆ aralkyl-carbonyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkyl-darbonyl, C₁₋₆ alkyl-dar

R4a is (i) a hydrogen atom,

5

10

15

20

25

30

35

40

45

50

55

(ii) a C₁₋₆ alkyl group, C₃₋₆ cycloalkyl group, C₆₋₁₄ aryl group or C₇₋₁₆ aralkyl group which may have 1 to 5 substituent
 (s) selected from Substituent Group B described above,

(iii) an anyl group selected from formyl, carboxy, carbamoyl, C_{16} allyl-carbonyl, C_{26} cycloallyl-carbonyl, C_{16} allowy-carbonyl, C_{7-16} arallyl-carbonyl, C_{7-16} arallyl-carbonyl, C_{7-16} arallyl-carbonyl, C_{7-16} arallyl-carbonyl, C_{7-16} arallyl-carbonyl, (5-or 6-membered heierocycle having, in addition to carbon atoms, 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-carbonyl, mono- C_{16} allyl-carbamoyl, C_{16} allyl-carbamoyl, C_{16} allyl-carbamoyl, C_{16} allyl-discarbonyl, C_{16} allyl-discarbonyl-discarbonyl-disca

alkoxysulfinyl, C₆₋₁₄ aryloxysulfinyl, C₁₋₆ alkoxysulfonyl and C₆₋₁₄ aryloxysulfonyl, which may have 1 to 5 substituent(s) selected from Substituent Group B described above:

(iv) a group represented by Formula: -OR4a

(wherein R^{4a'} is <1> a hydrogen atom,

5

10

15

20

25

25

40

45

50

55

<2> a C₁₋₆ alkyl group, C₃₋₆ cycloalkyl group, C₆₋₁₄ aryl group or C₇₋₁₆ aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group B described above, or,

-33 an acyl group selected from formyl, carboxy, carbamoyl, C₁₋₆ allyl-carbonyl, C₃₋₆ cycloallxyl-carbonyl, C₁₋₆ alloy-carbonyl, C₆₋₁₄ aryloxy-carbonyl, C₆₋₁₄ aryloxy-carbonyl, C₁₋₆ aryloxy-carbonyl, C₁₋₆ aryloxy-carbonyl, C₁₋₆ aryloxy-carbonyl, C₁₋₆ aryloxy-carbonyl, C₁₋₆ aryloxy-carbonyl, C₁₋₆ aryloxy-carbonyl, C₆₋₁₄ aryloxy-carbonyl, C₆₋₁₅ aryloxy-carbonyl, C₆₋₁₅ aryloxy-carbonyl, C₆₋₁₆ aryloxy-thiocarbonyl, C₆₋₁₆ a

R5 is any of the following (i) to (iv):

 (i) a C₁₋₆ alkyl group, C₃₋₆ cycloalkyl group, C₆₋₁₄ aryl group or C₇₋₁₆ aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group B described above,

(iii) an acyl group selected from formyl, carboxyc, carbamoyl, $C_{1,0}$ alfyly-carbonyl, $C_{2,6}$ cycloalkyl-carbonyl, $C_{1,6}$ alkyl-carbonyl, $C_{2,6}$ cycloalkyl-carbonyl, $C_{1,6}$ alkyl-carbonyl, $C_{2,6}$ aryl-carbonyl, $C_{2,6}$ aryl-carbonyl, $C_{2,6}$ aryl-carbonyl, $C_{2,6}$ arally/cyc-carbonyl, $C_{2,6}$ arally/cyc-carbonyl, $C_{2,6}$ arally/cyc-carbonyl, $C_{2,6}$ arally/cyc-carbonyl, $C_{2,6}$ arally-carbonyl, $C_{2,6}$ arally-thiocarbonyl, $C_{2,6}$ alky-thiocarbonyl, $C_{2,6}$ aryl-carbonyl, $C_{$

(iii) a 5- to 14-membered heterocyclic ring containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group B described above.

(iv) a halogen atom;

each of R^{6a}, R^{7a}, R^{6a} and R^{6a} is (i) a hydrogen atom or (ii) a C₁₋₆ alkyl group, C₃₋₆ cycloalkyl group, C₆₋₁₄ anyl group or C₇₋₁₆ aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group B described above.

X^a is (i) a bond, (ii) an oxygen atom, (iii) an optionally oxidized sulfur atom, (iv) a nitrogen atom which may be a to a lawly group, C_{2,6} alkynyl group, C_{3,6} cycloalkyl group, C_{3,6} cycloalkenyl group, C_{6,14} aryl group or C_{7,16} aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group B described above,

(v) a nitrogen atom having an acyl group selected from formyl, carboxy, carbamoyl, C_{1-6} alklyl-carbonyl, C_{2-6} aralkyl-carbonyl, C_{1-6} alkoxy-carbonyl, C_{2-6} aralkyl-carbonyl, C_{3-6} aralkyl-carbonyl, C_{6-16} and C_{6-16} aralkyl-carbonyl, C_{6-16} and C_{6-16} aralkyl-carbonyl, C_{6-16} and C_{6-16} aralkyl-carbonyl, C_{6-16} and C_{6-16} aralkyl-carbonyl, C_{6-16} aralkyl-thiocarbonyl, C_{6-16} aralkyl-thiocarbony

atoms. 1 to 3 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms)-thiocarbonyl, thiocarbamoyl, mono-C_{1,6} alkyl-thiocarbamoyl, di-C_{1,6} alkyl-thiocarbamoyl, mono-C_{1,6} alkyl-sulfamoyl, di-C_{1,6} alkyl-thiocarbamoyl, di-C_{1,6} alkyl-thiocarbamoyl, di-C_{1,6} alkyl-thiocarbamoy

(vi) a nitrogen atom having a 5- to 14-membered heterocyclic group containing 1 to 4 heteroatom(s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may contain 1 to 5 substituent(s) selected from Substituent Group B described above;

Z is (i) a group represented by Formula: $-OZ^{\alpha}$ (Z^{α} is <1> a hydrogen atom,

5

10

15

20

25

30

25

40

45

50

55

<2> a C_{1.8} alkyl group, C_{2.6} alkenyl group, C_{2.6} alkynyl group, C_{3.6} cycloalkyl group, C_{3.6} cycloal kyl group, C_{3.6} cycloal kyl group, C_{3.6} cycloal kyl group, C_{3.6} cycloal kenyl group, C_{3.6} aryl group or C_{7.6} aralkyl group which may have 1 to 5 substituent(s) selected from Substituent Group B described above. or.

«3» an azyl group solecled from formyl, carboxy, carbamoyl, C_{1,2} allyl-carbonyl, C_{2,6} cydoellyl-carbonyl, C_{1,6} allalyl-carbonyl, C_{1,6},1 allyl-carbonyl, C_{1,6},1 allyl-carbonyl, C_{1,6},1 allyl-carbonyl, C_{1,6},1 allyl-carbonyl, C_{1,6} allyl-carbonyl, C_{1,6} allyl-carbonyl, C_{1,6} allyl-carbonyl, carbonyl, c

61. The compound according to Claim \$5, wherein each of R^{2a} and R^{3a} is (1) a C₁₊₈ alklyl group which may be substituted by 4 = a heliogen atom, <2 = h qivfory group which may be substituted by a substitutent selected from a C₁₊₈ alkyl, C₁₊₈ alkyl-carbonyl, C₁₊₈ alkylsutlonyl and C₇₊₁₆ aralkyl, <3> an amino group which may be substituted by 1 or 2 C₁₊₈ alkyl, C₁₊₈ alkyl-carbonyl and C₈₊₄ anyl-carbonyl, <4> a 4 + to 10-membered heterocyclic group containing 1 to 3 heterorating) selected from nitrogen, oxygen and sulfur atoms in addition to carbon atoms, <5> a thio group which may be substituted by C₁₊₈ alkyl, <6> a C₁₊₈ alkyl-sulfinyl group or <7> a C₁₊₈ alkyl-sulfonyl group or (2) a C₁₊₈ alkoy-carbonyl group.

 R^{4a} is (i) a hydrogon atom, (ii) a C_{+6} alkyl group (his C_{+6} alkyl group may have a substituent selected from (i) a halogen atom, (2) a C_{+6} alkylamino group, (3) a hydroxy group, (4) an amino group, (5) a nono- C_{+6} alkylamino group, (7) a 4- to 10-membered heterocyclic group containing 1 to 3 heteroatom (s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms which may have an oxo, (8) a C_{6-14} anylthio, (9) an ureido, (10) a carboxxy, (11) a carbamoyl, (12) a C_{1-6} alkoxy-carboxnino and (15) a C_{7-6} alkyl-carboxnidol or (iii) a formyl group;

Xa is a bond, oxygen atom, optionally oxidized sulfur atom, -NH- or -N(methyl)-,

when Xa is a bond, then (i) a C1-6 alkyl group or (ii) a halogen atom,

when X^a is an oxygen atom, then (i) a $C_{1,4}$ alkyl group [this $C_{1,4}$ alkyl group may have a substituent selected from (1) a halogen atom, (2) a hydroxy group, (3) an amino group, (4) a carboxy, (5) a carbaroxy), (6) a $C_{1,4}$ alkyl-carbaroyl, (8) a di- $C_{1,4}$ alkyl-carbaroyl, (9) a 4- to 10-membered heterocyclic group containing 1 to 5 heteroatom(s) selected from mitogen, sulfur and oxygen atoms in addition to carbon atoms], (ii) a $C_{2,4}$ exploalikyl group, (iii) a $C_{7,4}$ explicitly group, (iii) a $C_{7,4}$ explicitly group, (iii) a $C_{7,4}$ explicitly group, (iii) a mone- or di- $C_{1,4}$ alkyl-carbarroxyl group, (vii) an optionally hatogenated $C_{7,4}$ alkyl-carbox group containing 1 to 4 heteroatom (s) selected from nitrogen, sulfur and oxygen atoms in addition to carbon atoms [this heterocyclic group may have a $C_{8,8}$ and C_{8

when Xa is an optionally oxidized sulfur, then (i) a C₁₋₆ alkyl group or (ii) a mono- or di-C₁₋₆ alkyl-carbamoyl group,

whon X^a is -NH- or -N(methyl), then (i) a C_{1+a} allyl group [this C_{1+a} alkyl group may have a C_{1-a} alkoxy-carbonyl, (iii) a C_{1+a} alkyl-carbonyl group, (iv) a C_{1+a} alkoxy-carbonyl group, (v) a carbamoyl group, (vi) a C_{1+a} alkyl-sulfonyl group, (vi) a rono- or G_{1+a} alkyl-carbamoyl group or (vii) a C_{1+a} alkyl-sulfonyl group,

each of R6a, R7a, R8a and R9a is a hydrogen atom or C1.6 alkyl group,

Z is (i) a hydroxy group which may be substituted by a C₁₋₆ alkyl-carbonyl or (ii) a halogen atom.

62. A use of the compound according to Claim 59 or a salt thereof for producing the compound according to Claim 2 or a salt thereof.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/02277

A. CLASSFICATION OF SUBJECT MAYTER
Int. Cl⁷ CO7D491/048, CO7D453/02, CO7D519/00, A61K31/4741, A61P43/00,
A61P29/00, A61P11/00, A61P11/06, A61P19/02, A61P37/06, A61P3/10, C12N1/20,

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int. C1² CO7D491/048, C07D453/02, C07D53/9/00, A61E31/4741, A61P43/00,
A61P29/00, A61P311/00, A61P11/06, A61P39/02, A61P37/06, A61P3/10, C12N1/20, C12N15/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA(STN), REGISTRY(STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	JP, 1-246272, A (KISSEI PHARMACEUTICAL CO., LTD.), 02 October, 1989 (02.10.89), Claims (Family: none)	59-61
х	DE, 2045371, A (J.R.Geigy AG), 18 March, 1971 (18.03.71), Claims & FR, 2070692, A & GB, 1275164, A	59-61
A	PINTO DE SOUZA E. et al., "Synthesis and biological activity2H-pyrano[2,3-h]isoquinoline-1,8-dione", Indian Journal of Chemistry, Vol.33B, 1994, pp.552-555	1-33,50-62
Y	NEMOZ G. et al., "Identification of cyclic AMP mononuclear cells", FEBS letters, Vol.384, 1996, pp.97-102, esp., Fig. 2	34
Y	FURRNANN M.et al. "Indentification and Function Epithelial Cells", Am. J. Respir. Cell Mol. Biol., Vol.20, 1999, pp.292-302, esp., table 2	34
Y	WO, 95/03069, A1 (NORTH AMERICAN VACCINE, INC.),	34

Further documents are listed in the continuation of Box C. See patent family annex.

"A" "E" "C"	Special categories of cited documents: considered to be of periodized references considered to be of periodized reference of periodized reference passion transace (as specified) consument referring to a real disciousne, sue, subbilidox or other document referring to a real disciousne, sue, subbilidox or other document referring to a real disciousne, sue, subbilidox or other document referring to a real disciousne, sue, subbilidox or other document referring to case disciousne, sue, subbilidox or other document ref	"T" "X" "Y"	later document published after the international filing date or printing that and not concilet with the pullplation but cited to the understand the principle or decory underlying the invention document of gradient redevence; the following the vertices cannot decorate the redevence that the principle of the principle of stage when the document is taken to be stage when the document is taken to be considered to involve an invention temporary to document of parisonic redevence; the client invention cannot document of parisonic redevence; the client invention cannot considered to involve an invention temporary to considered with our control other cond-control, considered the control of the control of the control of the control of document, remained or the control family document, remained or the same parison family.
	of the actual completion of the internetional search 08 June, 2001 (08.06.01)		of mailing of the international search report 19 June, 2001 (19.06.01)
	e and mailing address of the ISA/ Japanese Patent Office		orized officer

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP01/02277

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		7101/022//
	the relevant manager	Relevant to claim No
Category* Citation of document, with indication, where appropriate, of 02 February, 1995 (02.02.95),	tuo resevant passages	Actionant to claim No
page 8		
& BP, 724455, A1 & US, 6153406, A & JP, 9-500537, A		
		l .
		1
		ì
- (0)		
		1
		1
		1
)
		1
		1
i		
		}
		ł
		1
		1
		1
		1
		}
		1
		(
		1
		1
		1
		(
		1
		1
		1

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

ternational application No. PCT/JP01/02277

		101/0101/022//
Box I	Observations where certain claims were found unsearchable (Continuation	of item 1 of first sheet)
This ir	ternational search report has not been established in respect of certain claims und	er Article 17(2)(a) for the following reasons:
1. 🗵	Claims Nos.: 35-49	
1. 🔼	because they relate to subject matter not required to be searched by this Author	rity, namely:
	The inventions as set forth in claims 35 to 49	involve methods for treatment
	of the human body by therapy.	
2.	Claims Nos.:	
	because they relate to parts of the international application that do not comply extent that no meaningful international search can be carried out, specifically:	with the prescribed requirements to such an
	on the state of th	
3.	Claims Nos.:	
	because they are dependent claims and are not drafted in accordance with the	second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 o	f first sheet)
This Ir	ternational Searching Authority found multiple inventions in this international ap	plication, as follows:
	The invention as set forth in claim 34 relates to	
		is used for testing the
tech	macological effect of the compound as set forth in nical feature common to claims 34 and 1. Such being the	case claimlianot considered
as c	omplying with the requirement of unity of invention	n to the specified invention
of c	laim 1.	-
1.	As all required additional search fees were timely paid by the applicant, this in	ternational search report covers all searchable
	claims.	
	1 4-41	
4 14	As all searchable claims could be searched without effort justifying an addition of any additional fee.	is see, this Authority did not invite payment
3.	As only some of the required additional search fees were timely paid by the ap	plicant, this international search report covers
	only those claims for which fees were paid, specifically claims Nos.;	
4 [No required additional search fees were timely paid by the applicant, Consequ	ently this international
۰ ـ	search report is restricted to the invention first mentioned in the claims; it is or	
Remai	rk on Protest The additional search fees were accompanied by the app	ticant's protest.
Remai	rk on Protest The additional search fees were accompanied by the app	-

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)