LECTURE 4 - 9/19/2022

Introduction to the Simplex Method

Hw posted, due in 2 weeks.

key Ideas from Last time:

· Polytope, convex combination of vectors, convex holl, extreme point x 2 vector V, w Sall convex {x & R | Ax 2 b} > Exi=1, Exix; . 5. + N+11-10 Wix contained tions

In the typial cases, when we sound for the extreme points, we have very good performance

Convex functions and convex sets/simplex nonempty boundary > Polyhadral is Action (=) externe point of its extreme (3) local min on (3) global convex function (5) min.

Recall: Fro linear transformations are equivalent if they have the Jane solutions. Linear transformations preserved under linear ops, siglar mult, addy rous:

Reall: Equality form us. inequality form.

Ex: Assembling fruit bushets. 10 Bananas, 24 appks, 16 mons. Two configurations. Mix I sells for \$3, contains I banana, 3 apple, 1 melon. Mix 2 sells for \$2, contains I banana, 2 apple, 2 melon. How Should you configure to maximite profit?

max 3x,+2+2

X, + X2 510 (=) S.E. X,+X2+S, =10 s.t. 37,+24, =24 1x, +2x2 = 16 +1,+2 ≥ O

3x, +2x2+52=24 +1+2+2+S3=16 X1, +2 =0 S1,52,53 =0.

To do Simplex Method:

Step 1: Transform to equality form
Rewrite in grid/tabular form

Basis	1 X1	142	5,	52	53	KHS
7	-3	- 2	O	0	0	0
5,	ı	1	1	0	0	10
5	3	1	0	1		24
53	1	2	0	0	1	16

See in sticks the operations.

+1 62 51 52 53 RHS

2 0 0 3/2 1/2 0 27

+2 0 1 3/2 -1/2 0 3

+1 1 0 -1/2 1/2 0 7

53 0 0 -5/2 1/2 1 3

Sensitivity Analysis:

How much would an additional fruit be worth?

Give already have 3 left over melons, so no value in getting

() what about banana? Charges the constraint, expands the feasible region. Then quantify the new objective.

Dual Price: inextense in optimal solution per unit increase in RHS of ingrovement constraint. Positive mens inacuse for max problem, operase for min problem.

Stadow Pria: Strand actual change in value of optimal solution por unit increase in the RHS of a constraint.

Cost of Constraints		L'antice Film Land
Each constraint has	a cost/price to how	good the objective function
can be.	The Dual Problem:	
- (+1+t2 =10)	The Dual Problem:	Dual
+ (3+,+ +2 = 24)	Primal	
+ (x1424 = 16)	Max CTX	Min PT b
3+1+2+2 = 30.	S.t. Ax66 x20	S.t. PTA≥C PZO.
	1.514.65	
Forming Duyl (0	Midleral).	
Primal (Max)	Dual (M Variable	in)
Constraint	p; 20	
9:74; =5	Pi & C	
9; Tx; Zb;	e- fre	
9; 7 +; = b;	Cousto	in t
variable		
4.1		
	Change Che	the objective function.
What IT Charge my	pries. Every	
This inpacts the t	engency point.	
TI , 100% Rule	0 1 70 1	a paranty s of the allower
The local function	, cost chars, som 1.	
in chesis / decreases. M	ust be sicon	nuc constraints
Note: Obj func o	hereje.	12+15 Constraint
- Slope of o	bjective function change	Carlo Van Compan
		- extraner pls chape. - oft pt adjust.
- althy !		opt va (change.
- opt val	Vaga.	3

Two Phases Simplex Method

Phase I: 1. Put the problem in equality form. Some Multiply some of the constraints by -1 so that b=0.

for each constraint 2. Introduce artificial variables /1/2,.../m and apply the simplex method maximizing for - Exi.

3. a) If optimal value is not 0 the publican is in fasible.
b) If 0 and no artificial was than remove corresponding Eds, remainder is fearible basis-

c) If the baris var is artificial, then

(i) it all non-artifical entries O than drop ble raturdant.

(ii) if ith every is don-zero pivot and have x; enter busis

1.2: Max +, ++2+ +3

Max -1. +12+13+14

s.t. X, x2+ x3 = 3 -> add 7, 1/4 -x1+2x2+6x3=2 4 x2+9+3=5 3.+3+64=1

74., xy 20