Electrónica Digital 1

Lógica combinacional -álgebra de boole

Ferney Alberto Beltrán Molina

Marzo 2020

Contacto

Nombre: Ferney Alberto Beltrán Molina, Ing, MSc, PhD(c)

Email: fabeltranm@unal.edu.co

oficina: Centro de Investigación e Innovación

Contenido

Recordando

Introducción a la lógica combinacional

Álgebra de Boole

Índice

Recordando

Introducción a la lógica combinacional

Álgebra de Boole

Tipos de sistema de numeración

- 1. Sistema Hexadecimal
- 2. Sistema Decimal
- 3. Sistema Octal
- 4. Sistema binario

Ejm: 123 en base 10

	1	2	3
(pesos)	10^{2}	10^1	10^{0}
123 ₁₀ =	$1 * 10^2 + 2 * 10^1 + 3 * 10^0$		
123 ₁₀ =	$7B_{16}$		
123 ₁₀ =			1738
123 ₁₀ =		11	11012

¿Cuantos símbolos tiene cada sistema ? ¿cómo es la conversión de un sistema de numeración a otro?

Índice

Recordando

Introducción a la lógica combinacional

Álgebra de Boole

caja negra / caja funcional

En electrónica digital, un circuito es una sistema que procesa variables discretas, y se representa por:

- Uno o más terminales de entrada discretas.
- Uno o más terminales de salida de valor discreto.
- Especificación funcional que describe la relación entre las entradas y las salidas
- Especificación de tiempo que describe el retardo entre el cambio de las entradas y resultados que se reflejan en la salida

caja negra / caja funcional

Tipos de circuitos digitales

Circuitos combinacionales

Las salidas del circuito en cada instante de tiempo dependen única de los valores de entrada. combina los valores de entrada en un intante de tiempo para calcular la salida

Circuitos secuenciales.

Las salidas del circuito secuencial dependen tanto de los valores actuales como de los anteriores de las entradas; en otras palabras, depende de la secuencia de entrada.

Tipos de circuitos digitales

10 / 26

ejemplo

Sumador 4bit

Sumador a partir de tablas de verdad

Sumador 4BCC a partir de tablas de verdad

Sumador 1B a partir de tablas de verdad

Α	В	Cin	Cout	Out
0	0	0	0	0
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1	1	1

Sumador 1B a partir de tablas de verdad

ÁLGEBRA DE BOOLE

A partir de puertas lógicas

Índice

Recordando

Introducción a la lógica combinacional

Álgebra de Boole

Álgebra de Boole Postulados

Conjunto finito de elementos sobre el cual se han definido dos operaciones: suma y producto

$$B = \{0,1\}, operaci\'on+, operaci\'on-$$

P1 -
$$\forall a,b \in B$$
, $a+b \in B$ y $a \cdot b \in B$
P2 - $\forall a \in B$, $a+0=a$, $a \cdot 1=a$
P3 - $\forall a \in B$, $\exists \overline{a} \in B \mid a+\overline{a}=1$, $a \cdot \overline{a}=0$
P4 - $a+b=b+a$, $a \cdot b=b \cdot a$
P5 - $a \cdot (b+c) = a \cdot b + a \cdot c$, $a+b \cdot c = (a+b) \cdot (a+c)$

Álgebra de Boole Postulados

```
P1 - \forall a,b \in B, a+b \in B y \cdot a \cdot b \in B

P2 - \forall a \in B, a+0=a, a \cdot 1=a

P3 - \forall a \in B, \exists \overline{a} \in B \mid a+\overline{a}=1, a \cdot \overline{a}=0

P4 - a+b=b+a, a \cdot b=b \cdot a

P5 - a \cdot (b+c) = a \cdot b + a \cdot c, a+b \cdot c = (a+b) \cdot (a+c)
```

```
AND x_1 \cdot x_2 (Also x_1 x_2)
OR x_1 + x_2
NOT x_1'
Exclusive-OR (x_1 x_2') + (x_1' x_2)
```

- ▶ Las operaciones + y * son internas
- Existe un elemento neutro para cada operación
- Existencia del elemento inverso
- Las operaciones son conmutativas
- Las operaciones son distributivas

Álgebra de Boole vs puertas lógicas

$$a+b\cdot c=(a+b)\cdot (a+c)$$

Álgebra de Boole propiedades

- 1 Elemento inverso, $\overline{0} = 1$, $\overline{1} = 0$
- 2 Idempotencia, a+a=a, $a\cdot a=a$
- 3 Involución, $\overline{a} = a$
- 4 Asociatividad, a+(b+c)=(a+b)+c, $a\cdot(b\cdot c)=(a\cdot b)\cdot c$
- 5 Absorción, a + a.b = a, $a \cdot (a + b) = a$
- 6 (sin nombre), $a + \overline{a}b = a + b$, $a \cdot (\overline{a} + b) = a.b$
- 7 de Morgan, $(\overline{a+b}) = \overline{a}.\overline{b}, \quad \overline{a.b} = \overline{a} + \overline{b}$
- 8 de Morgan generalizada, $(\overline{a_1 + a_2 + ... + a_n}) = \overline{a_1}.\overline{a_2}...\overline{a_n}, \overline{a_1.a_2...a_n} = \overline{a_1} + \overline{a_2} + ... + \overline{a_n}$

Funciones Booleanas - Tablas de Verdad

- Toda función booleana puede representarse explícitamente por una tabla de verdad
- Dada una tabla de verdad se puede encontrar su función Booleana (literal, MINTERM)
- Toda función booleana puede representarse de una manera única como la suma de sus minterms (Representación canónica)

а	b	с	f(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

$$f(a,b,c) = \bar{a}.\bar{b}.\bar{c} + \bar{a}.b.c + a.b.\bar{c} =$$

= $\bar{a}.b(\bar{c}+c) + b.\bar{c}.(\bar{a}+a) = \bar{a}.b + b.\bar{c}$

if ((b=1 and c=0) or (a=0 and b=1)) then f=1; else f=0; end if:

Funciones Booleanas - Ejemplo

► DescripciónFuncional ► TabladeVerdad ► función(s)Booleana(s) ► CircuitoDigital

$$\begin{split} s &<= x_i + y_i + c_i; \\ \text{if } s &= 0 \text{ then } z_i <= 0; c_o = 0; \\ \text{elsif } s &= 1 \text{ then } z_i <= 1; c_o <= 0; \\ \text{elsif } s &= 2 \text{ then } z_i <= 0; c_o <= 1; \\ \text{else } z_i <= 1; c_o <= 1; \\ \text{end if;} \end{split}$$

x_i	y_i	c_i	c_o	z_i	l
0	0	0	0	0	l
0	0	1	0	1	ı
0	1	0	0	1	ı
0	1	1	1	0	l
1	0	0	0	1	ı
1	0	1	1	0	١
1	1	0	1	0	l
1	1	1	1	1	

end if;

$$\begin{split} c_o &= y.\,c_i + x.\,c_i + x.y\\ z &= \bar{x}.\bar{y}.\,c_i + \bar{x}.y.\overline{c_i} + x.\bar{y}.\overline{c_i} + x.y.c_i \end{split}$$

Funciones Booleanas - Ejemplo BCD2SSEG

PREGUNTAS