

advanced generative algorithms

techniques discussed

- Genetic algorithms
- Fractals
- L-systems
- Lissajous curves
- we've already seen:
 - random number generation
 - Perlin noise
 - sin / cosine
 - emergence

genetic algorithms

• <u>basic principle</u> - a set of agents / creatures / ideas / techniques evolve over a period of time

why Genetic Algorithms?

- in math/optimization:
 - When you don't know how to find a solution, but it's easy to evaluate any possible solution to a problem
- in art:
 - Can make hybrids of different images / sounds etc., using people as fitness function
 - Or use process of GA itself to generate art
 - Or use it to solve an optimization problem

real world examples

NASA's antenna with best radiation pattern – an "evolved" antenna

NASA's rocket firing patterns are designed using genetic algorithms

genetic algorithms

basic ingredients

- **population:** a set of individuals
- **DNA:** each individual has genes which encode some property/action(s)
- fitness function: that computes the fitness or quality of any individual
- reproduction:
 - crossover + mutation
 - fittest individuals are more likely to be selected for reproduction

what do genes encode?

real world	virtual world
eye color	RGB values
height	location
number of wings	thruster speed
hair color	shape

phenotype vs. genotype in biology

Phenotype

Possible genotypes

BBEE, BbEe
BBEe, BbEE

Phenotype

Possible genotypes

bbEE, bbEe

bbee

phenotype vs. genotype in code

genotype	phenotype
float []	location on canvas
float []	speed
ofVector()[]	movement sequence
ofTriangle() []	shapes on canvas (an image)

genotype vs. phenotype

evolutionary pipeline

genetic photobooth

total generations: 1972 average fitness: 16.8244 total populationation: 150

mutation rate: 1%

evolved virtual creatures by Karl Sims

genetic algorithms as a sculptor's "chisel"

genetic algorithms considerations

- sexual vs. asexual reproduction
 - sexual: best n individuals have have babies
 - asexual: individual mutates, if mutation improves fitness changes kept
- variable mutation rate
 - High mutation rate at first, finer later
- picking top % vs. gaussian selection
- interpolating between individuals
 - move smoothly between branches / generations

revisiting recursion

"...when the solution to a problem depends on solutions to smaller instances of the same problem..."

recursion (cont.)

this is how we describe a setting in which objects repeat each other in selfsimilar ways (ie. mirrors facing each other)"

Droste effect

The image contains a smaller copy of itself which in turn contains a smaller copy of itself, which in turn contains a smaller copy of itself, which in turn contains a smaller copy of itself...

Bjork - bachelorette

hilarious recursive computing jokes

fractals

- from Latin "fractus" (broken)
- shapes that repeat on many levels
- these shapes don't even have to be the same on the different levels, as long as they share some similarity features
- they exist everywhere in nature and they are a much more accurate way of describing many of it's phenomena

fractals in nature

mountains in Thibet

rivers in Georgia

fractals in nature

fractals in nature

edible fractals

beware of infinity!

- a computer can't deal with infinity
- one of the central problems of artificial intelligence: "does a problem have a solution or does it continue ad infinitum?"

```
int x = 1;
while (x > 0)
{x++;}
```


L-systems

Generative grammar

 A set of simple rules about what "token" can be replaced with what.

- Alphabet: **A B**

Axiom: A

- Rules: (A → AB)

 $(B \rightarrow A)$

Generation 0:

Generation 1:

Generation 2:

Generation 3:

Generation 4:

ABA ABAAB ABAABABA

L-system interpretation

```
F: ofLine(0,0,0,len); ofTranslate(0,len);
G: ofTranslate(0,len);
+: ofRotate(angle);
-: ofRotate(-angle);
[: ofPushMatrix();
]: ofPopMatrix();
```

L-System interpretation

stochastic L-Systems

1.7. Stochastic L-systems

Figure 1.27: Stochastic branching structures

ofxRules

curve drawing with Lissajous

