Modern Multivariate Statistical Techniques

Jinhong Du,15338039

November 26, 2018

Content

1 Ex 11.3

1 Ex 11.3

The "2-norm soft margin" optimization problem for SVM classification: Consider the regularization problem of minimizing $\frac{1}{2}\|\boldsymbol{\beta}\|^2 + C\sum_{i=1}^n \xi_i^2$ subject to the constraints $y_i(\boldsymbol{\beta}_0 + \mathbf{x}_i^{\top}\boldsymbol{\beta}) \geq 1 - \xi_i$, and $\xi_i \geq 0$, for $i = 1, 2, \dots, n$.

- (a) Show that the same optimal solution to this problem is reached if we remove the constraints $\xi_i \geq 0$, $i = 1, 2, \dots, n$, on the slack variables. (Hint: What is the effect on the objective functional if this constraint is violated?)
- (b) Form the primal Lagrangian F_P , which will be a function of β_0 , β , ξ , and the Lagrangian multipliers α . Differentiate F_P wrt β_0 , β , and ξ , set the results equal to zero, and solve for a stationary solution.
- (c) Substitute the results from (b) into the primal Lagrangian to obtain the dual objective functional F_D . Write out the dual problem (objective functional and constraints) in matrix notation. Maximize the dual wrt $\boldsymbol{\alpha}$. Use the Karush Kuhn Tucker complementary conditions $\alpha_i\{y_i(\boldsymbol{\beta}_0 + \mathbf{x}_i^{\top}\boldsymbol{\beta})(1\xi_i)\} = 0$ for $i = 1, 2, \dots, n$.
- (d) If $\boldsymbol{\alpha}^*$ is the solution to the dual problem, find $\hat{\boldsymbol{\beta}}$ and its norm, which gives the width of the margin.