Introduction to data science & artificial intelligence (INF7100)

Arthur Charpentier

#433 Memoryless Process (Geometric, Exponential)

été 2020

... and the Poisson distribution

The Geometric Distribution

The Geometric $\mathcal{G}(p)$, $p \in (0,1)$

$$\mathbb{P}(X = k) = p(1 - p)^{k-1} \text{ for } k = 1, 2, \cdots$$

with cdf $\mathbb{P}(X \le k) = 1 - p^k$.

Observe that this distribution satisfies the following relationship

$$\frac{\mathbb{P}(X=k+1)}{\mathbb{P}(X=k)} = 1 - p \text{ (= constant) for } k \ge 1$$

First moments are here

$$\mathbb{E}(X) = \frac{1}{p}$$
 and $\operatorname{Var}(X) = \frac{1-p}{p^2}$.

The Period of Return & Memoryless

A return period, also known as a recurrence interval or repeat interval, is an average time or an estimated average time between events such as earthquakes, floods, landslides, or a river discharge flows to occur

$$\mathbb{E}(X) = \frac{1}{p} \text{ or } p = \frac{1}{\mathbb{E}(X)}$$

A 100-year flood is a flood event that has a 1 in 100 chance (1% probability) of being equaled or exceeded in any given year (wikipedia)

Note that $\mathbb{P}(X > h) = (1 - p)^h$, then

$$\mathbb{P}(X \ge k + h | X \ge h) = \frac{\mathbb{P}(X \ge k + h)}{\mathbb{P}(X \ge h)} = \frac{(1 - p)^{k + h}}{(1 - p)^{h}} = (1 - p)^{k}$$

i.e. $\mathbb{P}(X > k)$

The Exponential Distribution

The Exponential $\mathcal{E}(\lambda)$, $\lambda > 0$

$$\mathbb{P}(X > x) = e^{-\lambda x} \text{ for } x \ge 0$$

with density $\lambda e^{-\lambda x}$. $\mathbb{E}(X) = \frac{1}{\lambda}$ and $\text{Var}(X) = \frac{1}{\lambda^2}$

Note: if $X \sim \mathcal{E}(\lambda)$, $Y = |X| \sim \mathcal{G}(p)$ with $p = 1 - e^{-\lambda}$.

The geometric and the exponential distribution are memoryless

$$\mathbb{P}(X > t + h|X > t) = \mathbb{P}(X > h).$$

The Poisson Distribution

The Poisson distribution $\mathcal{P}(\lambda)$, $\lambda > 0$, has distribution

$$\mathbb{P}(X=k)=e^{-\lambda}\frac{\lambda^k}{k!}$$
 where $k=0,1,\cdots$

Then $\mathbb{E}(X) = \lambda$ and $Var(X) = \lambda$ (= $\mathbb{E}(X)$). Further, if $X_1 \sim \mathcal{P}(\lambda_1)$ and $X_2 \sim \mathcal{P}(\lambda_2)$ are independent, then

$$X_1 + X_2 \sim \mathcal{P}(\lambda_1 + \lambda_2)$$

Observe that a recursive equation can be obtained

$$\frac{\mathbb{P}(X=k+1)}{\mathbb{P}(X=k)} = \frac{\lambda}{k+1} \text{ pour } k \ge 1$$

Note: $\mathbb{P}(N=0)=e^{-\lambda}$, e.g. if $\lambda=1$, $\mathbb{P}(N=0)\simeq 36.788\%$ (and $\mathbb{P}(N > 0) \simeq 63.212\%$)

The Poisson Approximation

Let $X_i \sim \mathcal{B}(p)$,

$$\mathbb{P}(X=0)=1-p$$
 and $\mathbb{P}(X=1)=p$.

then $X = X_1 + \cdots + X_n \sim \mathcal{B}(n, p)$ (binomial distribution)

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ where } k=0,1,\cdots,n, \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

If
$$n \cdot p \simeq \lambda$$
, $X \simeq \mathcal{P}(\lambda)$

$$\mathbb{P}(X = 0) = (1 - p)^{n}$$

$$\simeq \left(1 - \frac{\lambda}{n}\right)^{n}$$

$$\simeq e^{-\lambda}$$

	Number of years without catastrophes				
	10	20	50	100	200
10	65.1%	40.1%	18.3%	9.6%	4.9%
20	87.8%	64.2%	33.2%	18.2%	9.5%
50	99.5%	92.3%	63.6%	39.5%	22.5%
100	99.9%	99.4%	86.7%	63.4%	39.5%
200	99.9%	99.9%	98.2%	86.6%	63.3%

The Poisson Distribution

Consider some 10×10 chess-board. Threw n = 100 stones on it. and count the number of stones in each square.

```
> data.frame(N,F=table(nb_cell),P=c
     (dpois(0:4,1),1-ppois(4,1)))
2
   0 36 36.78
4 2 1 39 36.78
3 2 16 18.39
 4 3 7 6.13
7 5 4 2 1.53
8 6 5+ 0 0.37
```


Consider some square, and let X denote the number of

The Poisson Distribution

Nombre de soldats de cavaliers morts par ruade de cheval, entre 1875 et 1894, dans 10 corps (soit 200 corps annuels) Bortkiewicz (1898)

The Poisson Process

Consider some bus arrivals, at times T_i , and let $X_i = T_i - T_{i-1}$, assume that $X_i \sim \mathcal{E}(\lambda)$ are independent.

The number of buses in the time interval [0, t] is $N_t \sim \mathcal{P}(\lambda t)$. See also queuing theory

The Records Process

Let X_1, X_2, \cdots denote some yearly observed value (maximum temperature, etc).

Let
$$T_1=\Delta_1=1,\ T_n=\Delta_1+\cdots+\Delta_n,$$
 and
$$\Delta_{n+1}=\min_k\{X_{T_n+k}>X_{T_n}\}$$

If X_t 's are independent and identically distributed,

$$\frac{\log \, T_n - n}{\sqrt{n}} \to \mathcal{N}(0,1)$$

hence $\mathbb{E}(\log T_n) \simeq n$ Note: similarly $\mathbb{E}(\log \Delta_n) \simeq n$

