Quiz #2. Answer key below.

Determine the series is convergent or divergent?

1.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{n^2 - \sqrt{n}+1}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sin(\frac{n\pi}{4})}{n^2+1}$$

- 3. $\sum_{n=0}^{\infty} \frac{n}{2^n}$. Hint: Can use Ratio Test.
- **4.** $\sum_{n=1}^{\infty} \frac{1}{n} \sin(\frac{1}{n})$. Hint: Limit comparison test with $b_n := \frac{1}{n^2}$ and use

$$\lim_{t\to 0}\frac{\sin t}{t}=1.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 める()

Quiz #2. Answer key.

1.
$$\sum_{n=2}^{\infty} \frac{\sqrt{n}+1}{n^3-\sqrt{n}+1}$$
.

Use the limit comparison test (LCT).

Let
$$a_n = \frac{\sqrt{n}+1}{n^3 - \sqrt{n}+1}$$
 and $b_n = \frac{1}{n^{5/2}}$.

Note that $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$ and $\sum_{n=2}^{\infty} b_n$ is convergent (p-series with

$$p = 5/2 > 1$$
). Thus, $\sum_{n=2}^{\infty} a_n$ is also convergent.

Quiz #2. Answer key.

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sin(\frac{n\pi}{4})}{n^2+1}$$

Use limit comparison test and comparison test.

Note that
$$\left|\frac{(-1)^n\sin(\frac{n\pi}{4})}{n^2+1}\right| \leq \frac{1}{n^2+1}$$
.

Note that $|\frac{(-1)^n\sin(\frac{n\pi}{4})}{n^2+1}| \leq \frac{1}{n^2+1}$. On the other hand, the series $\sum_{n=1}^\infty \frac{1}{n^2+1}$ is convergent by using the

limit comparison test with the series $\sum_{n=0}^{\infty} \frac{1}{n^2}$.

Therefore, the original series is absolutely convergent.

April 26, 2023

3/5

Quiz #2. Answer key.

3.
$$\sum_{n=2}^{\infty} \frac{n}{2^n}$$
.

One can use the ratio test.

Let
$$a_n = \frac{n}{2^n}$$
. We have

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)}{n} \frac{1}{2} = \frac{1}{2} < 1.$$

By the Ratio Test, the given series is absolutely convergent.

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

April 26, 2023

4/5

Quiz #2. Answer key.

4.
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin(\frac{1}{n})$$
.

Use the limit comparison test.

Let
$$a_n = \frac{1}{n} \sin(\frac{1}{n})$$
 and $b_n = \frac{1}{n^2}$.

Note that
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
. It implies that $\lim_{n\to \infty} \frac{a_n}{b_n} = \lim_{n\to \infty} \frac{\sin(\frac{1}{n})}{\frac{1}{n}} = 1$.

In addition, the series $\sum_{n=1}^{\infty} b_n$ is convergent (p-series with p=2).

As a result, $\sum_{n=1}^{\infty} a_n$ is also convergent.

イロト (個) (目) (目) (目) の(0)