Contents

Theme I Challenges for Wireless Sensor Networks

1		position and Scaling Challenges in Sensor Networks: An	
	Inter	raction-centric View	29
	Tarek	k Abdelzaher	
	1.1	Introduction	29
	1.2	Functional Interactions	30
		1.2.1 Troubleshooting Interactive Complexity	31
		1.2.2 Troubleshooting Examples	32
	1.3	Data Interactions	35
			36
			37
	1.4		42
		1.4.1 Temporal Analysis of Distributed Systems	43
		1.4.2 Reduction-based Analysis and Delay Composition	
			44
	1.5		47
		·	47
			49
	1.6		53
	Refer	*	53
The	eme II	Models, Topology, Connectivity	
2	Sche	duling and Power Assignments in the Physical Model	57
		ander Fanghänel and Berthold Vöcking	
	2.1	Introduction	58
	2.2	Notation and Preliminaries	60
			61
	2.3	•	62
		2	62

12		Contents
	2.4	2.3.2Upper Bounds for the Linear Power Assignment66Scheduling with the Square Root Power Assignment722.4.1Scheduling Directed Requests72
		2.4.2 Scheduling Bidirectional Requests
	2.5	The Gap of Oblivious Power Schemes
	2.6	Summary and Open Problems
	Refer	ences
3	Main	taining Connectivity in Sensor Networks Using Directional
		nnae
	Evang	gelos Kranakis and Danny Krizanc and Oscar Morales
	3.1	Introduction
		3.1.1 Antenna orientation problem
		3.1.2 Preliminaries and notation
		3.1.3 Related work
		3.1.4 Outline of the presentation
	3.2	Orienting the Sensors of a Point-set
		3.2.1 Sensors with one antenna
		3.2.2 Sensors with multiple antennae
	3.3	Lower bounds
		3.3.1 One antenna per sensor
		3.3.2 Two antennae per sensor
	3.4	Sum of angles of antennae
	3.5	Orienting Planar Spanners
		3.5.1 Basic construction
	3.6	Conclusion
	Refer	ences
		IN ALLE DI L. NGG (I.D. d
4		nal Placement of Ad-Hoc Devices under a VCG-style Routing
		col III
		Anderegg, Stephan Eidenbenz, Leon Peeters, and Peter Widmayer
	4.1	Introduction
		4.1.1 Model and Notation
		4.1.2 The Device Placement Problem
		4.1.3 Related Work
	4.2	Placing Multiple Identical Devices for a Single Commodity 115
		4.2.1 The Optimal Position of a Single Additional Device 115
		4.2.2 Multiple Identical Devices
	4.3	Single Device Placement for Multiple Commodities
		4.3.1 Single Maximization Diagram Approach
		4.3.2 Multiple Maximization Diagrams Approach 120
	4.4	Placing Multiple Individual Devices for a Single Commodity 122
	4.5	Placing Multiple Devices for Multiple Commodities
	Dafan	122

Cor	ntents		13		
5	Population Protocols and Related Models				
	5.1	Introdu	ction		
	5.2	Populat	tion Protocols		
		5.2.1	The Model		
		5.2.2	Stable Computation		
	5.3	Mediat	ed Population Protocols		
		5.3.1	Formal Definition		
		5.3.2	Computational Power		
	5.4	The GI	DM model		
		5.4.1	Formal Definition		
		5.4.2	Weakly Connected Graphs		
		5.4.3	All Possible Directed Graphs		
	5.5	Commu	unity Protocols		
		5.5.1	The Model		
		5.5.2	Computational Power		
	5.6	Logarit	hmic-Space Machines		
	5.7	Algorit	hmic Verification of Population Protocols		
		5.7.1	Necessary Definitions		
		5.7.2	NP-hardness Results		
		5.7.3	An Efficiently Solvable Special Case 177		
		5.7.4	Algorithmic Solutions for BPVER		
	5.8	Open P	roblems		
	Refe	rences			
6	Theo	retical A	spects of Graph Models for MANETs		
	Josep	,	eter Mitsche, and Paolo Santi		
	6.1		ction		
	6.2		Properties		
	6.3		y models for MANETs		
	6.4		ral properties of Random WayPoint mobile networks 195		
		6.4.1	RWP node spatial distribution		
		6.4.2	RWP average nodal speed		
		6.4.3	The "perfect" simulation		
	6.5	Formal	studies of connectivity on MANETs' models 202		
		6.5.1	Connectivity threshold for mobility models 202		
		6.5.2	Connectivity periods on mobile models		
		6.5.3	The effect of mobility to speed up message		
			dissemination in sparse networks		
	6.6	Conclu	sions		

14		Contents				
7		Networked distributed source coding				
	Shizh	eng Li and Aditya Ramamoorthy				
	7.1	Introduction				
	7.2	Basics of distributed source coding				
		7.2.1 Slepian-Wolf Theorem				
		7.2.2 Equivalence between Slepian-Wolf coding and channel				
		coding				
		7.2.3 Distributed source coding with a fidelity criterion 223				
	7.3	Networked distributed source coding: An introduction 225				
	7.4	Networked distributed source coding: Single terminal				
		7.4.1 Optimal rate and flow allocation				
	7.5	Networked distributed source coding: Multiple terminals 235				
		7.5.1 A network coding primer				
		7.5.2 Multicasting correlated sources over a network				
		7.5.3 Separating distributed source coding and network coding 239				
		7.5.4 Practical joint distributed source coding and network				
		coding				
		7.5.5 Resource allocation for multicasting correlated sources				
		over a network				
	7.6	Conclusion				
	Refer	ences				
The	eme III	Localization, Time Synchronization, Coordination				
8	The S	Spatial Smoothing Method of Clock Synchronization in				
	Wireless Networks					
	Arvin	d Giridhar and P. R. Kumar				
	8.1	Introduction				
	8.2	Synchronizing two clocks				
	8.3	A network of clocks				
	8.4	Estimating node offsets from edge offsets				
		8.4.1 Geometric graphs				
	8.5	Spatial smoothing				
	8.6	Estimating nodal skews				
	8.7	Properties of the least-squares solution				
	8.8	The Distributed Spatial Smoothing Algorithm Based on				
		Coordinate Descent				
	8.9	Convergence Analysis of the Spatial Smoothing Algorithm 274				
	8.10	Decomposition Techniques to Speed up				
		Convergence				
	8.11	Conclusion				
	Pafarancas 290					

Contents 15

)	Algor	rithmic A	Aspects of Sensor Localization	283
	Sajal	K. Das a	nd Jing Wang and R. K. Ghosh and Rupert Reiger	
	9.1	Introdu	ction	
		9.1.1	Importance of Localization	284
		9.1.2	Generic Approach to Solution	285
		9.1.3	Known Algorithmic Approaches	
		9.1.4	Inherent Challenges	28
		9.1.5	Chapter Organization	288
	9.2	Range-	free Localization	
		9.2.1	Anchor-based Approaches	
		9.2.2	Anchor-free Approaches	
	9.3	Range-	based Localization	
		9.3.1	Range Measurements	
		9.3.2	Localization Problems Using Range Measurements .	
		9.3.3	Anchor-based Approaches	
		9.3.4	Anchor-free Approaches	
	9.4	Technic	ques with Additional Hardware	
		9.4.1	Angle Measurement	
		9.4.2	Localization with Angle Measurement	
	9.5		ques based on Iterative Process	
	9.6		y-assisted Localization	
	9.7		cal Techniques	
	9.8		ary on Localization Techniques	
		9.8.1	Localization Accuracy	
		9.8.2	Computation and Communication Costs	
		9.8.3	Network and Anchors Density	
		9.8.4	Summary of Performances	
	9.9		ssues	
	9.10		sions	
	Refer	ences		314
10	Spati	o-Tempo	oral Context in Wireless Sensor Networks	319
			osyan and Azzedine Boukerche	
	10.1		ction	319
		10.1.1	What is Context?	
	10.2	Node L	ocalization in WSNs	
		10.2.1	The Task of Localization Algorithms for WSNs	32
		10.2.2	Estimation of Distances and Angles	
		10.2.3	Trilateration	
		10.2.4	Multilateration	324
		10.2.5	Localization Algorithms for WSNs	325
	10.3	Tempor	ral Event Ordering in WSNs	
		10.3.1	Delaying Techniques	
		10.3.2	Heartbeat	330
		10.3.3	Temporal Message Ordering Scheme	33

16		Contents
		10.3.4 Ordering by Confirmation
		Networks
	10.4	Time Synchronization in WSNs
		10.4.1 Time Synchronization Techniques
		10.4.2 Synchronization Algorithms for WSNs
		10.4.3 Comparison of Features of the Time Synchronization
		Algorithms
	10.5	Summary
	Refer	ences
11	Coor	dination problems in ad hoc radio networks
		usz R. Kowalski
	11.1	Introduction
		11.1.1 Model and problems
		11.1.2 Results
	11.2	Wake-up on a multiple access channel
		11.2.1 Deterministic synchronization
		11.2.2 Randomized synchronization
		11.2.3 Explicit constructions
	11.3	Wake-up in multi-hop radio networks
		11.3.1 Deterministic wake-up
		11.3.2 Randomized wake-up
	11.4	Leader election and clock synchronization
		11.4.1 Leader election protocol .367 11.4.2 Clock synchronization .369
	11.5	11.4.2 Clock synchronization .369 Mutual exclusion .370
	11.5	11.5.1 From wake-up to mutual exclusion
	11.6	Remarks and open problems
		ences
The	eme IV	Data Propagation and Collection
12	Prob	abilistic Data Propagation in Wireless Sensor Networks
		s Nikoletseas and Paul G. Spirakis
	12.1	Introduction
		12.1.1 A Brief Overview of Wireless Sensor Networks
		12.1.2 Critical Challenges
		12.1.3 Models and Relations between them
		12.1.4 The Energy Efficiency Challenge in Routing
	12.2	LTP: A Single-Path Data Propagation Protocol
		12.2.1 The Protocol
		12.2.2 Analysis of the expected hops efficiency

Contents 17

		12.2.3 Local Optimization: The Min-two Uniform Targets	
		Protocol (M2TP)	9.
		12.2.4 Tight upper bounds to the hops distribution of the	
		general target protocol	
	12.3	PFR - A Probabilistic Multi-path Forwarding Protocol	
		12.3.1 The Protocol	
		12.3.2 Properties of PFR	
		12.3.3 The Correctness of PFR	
		12.3.4 The Energy Efficiency of PFR	
		12.3.5 The Robustness of PFR	
	12.4	An experimental comparison of LTP, PFR	
	12.5	Conclusions	09
	Refer	ences	1(
13	Oblin	vious Routing for Sensor Network Topologies	113
13		is Busch and Malik Magdon-Ismail and Jing Xi	1.
	13.1	Introduction	112
	13.1	13.1.1 Geometric Networks	
		13.1.2 Mesh Networks	
	13.2	Geometric Networks	
	13.2	13.2.1 Preliminaries on Geometric Networks	
		13.2.2 Oblivious Routing on Geometric Networks	
		13.2.3 Applications of Geometric Networks	
	13.3	Mesh Networks	
	13.3	13.3.1 Preliminaries on Mesh Networks	
	Dofor	13.3.2 Oblivious Routing on 2-Dimensional Mesh Networks 4	
	Keler	ences)(
14	Scheo	duling Algorithms for Tree-Based Data Collection in Wireless	
	Senso	or Networks	39
	Ozlen	n Durmaz Incel and Amitabha Ghosh and Bhaskar Krishnamachari	
	14.1	Introduction	
	14.2	Classification Approach and Methodology	42
		14.2.1 Design Objectives	4.
		14.2.2 Design Constraints and Assumptions	4
	14.3	Scheduling Algorithms for Data Collection	40
		14.3.1 Algorithms on Minimizing Schedule Length 4	40
		14.3.2 Algorithms on Minimizing Latency	60
		14.3.3 Algorithms with Other Objectives	6.
		14.3.4 Algorithms with Joint Objectives	6
		14.3.5 Taxonomy	
	14.4	Future Research Directions / Open Problems	
	14.5	Conclusions	
	Refer	ences 4	

18			Content

15		ion-based routing in wireless ad-hoc and sensor networks 479 die Mitton and Tahiry Razafindralambo and David Simplot-Ryl		
	15.1 Introduction			
	15.2	Geometric routing based on geographic coordinates 481		
		15.2.1 Greedy and directional approaches		
		15.2.2 Guaranteed delivery approaches		
		15.2.3 Anycasting		
	15.3	Virtual coordinates systems		
		15.3.1 Landmark-based coordinate system		
		15.3.2 Tree-based coordinate system 500		
	15.4	Conclusion		
	Refer	ences		
Γhe	eme V	Energy Optimization		
16		gy Balanced Data Propagation in Wireless Sensor Networks 513		
	Pierre	Leone, Sotiris Nikoletseas and Jose Rolim		
	16.1	Introduction		
	16.2	The Model and the Problem		
	16.3	The EBP Distributed Data Propagation Protocol		
	16.4	Basic Definitions-Preliminaries		
	16.5	The General Solution		
	16.6	A closed form for the forwarding probability		
	16.7	A generalized algorithm		
	16.0	16.7.1 A remark about the underlying assumption		
	16.8	On the optimality of energy-balance protocols		
		16.8.1 Learning the protocol's parameters 536 16.8.2 A simple distributed strategy 540		
	16.9	Conclusions 542		
		ences 542		
	Kerer	CIRCS		
۱7		e, Concentric and Non-uniform Multi-hop Sensor Networks 545		
		K. Das, Alfredo Navarra and Cristina M. Pinotti		
	17.1	Introduction		
	17.2	Related work		
		17.2.1 About localization		
		17.2.2 About the energy hole problem		
	17.3	Our model and assumptions		
		17.3.1 Basic modular arithmetic		
	17.4	Localization problem		
		17.4.1 Correctness and performance analysis		
		17.4.2 Improvements		
		17.4.3 The Cooperative Protocol		
	17.5	17.4.4 Experimental results		
	17.5	Energy hole problem		
		17.5.1 General non-uniform sensors distribution strategy 570		

Con	tents			1
		17.5.2	Energy depletion analysis	57
		17.5.3	Sub-balanced energy depletion	572
		17.5.4	q-Switch routing and comparison with other node	
			distribution strategies	574
	17.6	Conclu	ding remarks	
	Refer			
18			Lifetime of Wireless Sensor Networks Through	501
			eneral Optimization Framework	. 58.
	18.1	uo and L	Elements in Wireless Sensor Networks:	
	18.1		the Pond	50
	18.2	Sur Up	ing Traffic Load with Mobile Sinks:	28.
	18.2		se of Constrained Mobility	50/
		18.2.1	Network Model and Problem Formulation	
		18.2.2	Complexity Analysis of MNL	589
		18.2.3	Duality Theory and TMNTM	
		18.2.4	A Primal-Dual Algorithm to Solve MNL	
		18.2.5 18.2.6	Numerical Results	
	10.2		Summary	00
	18.3		ing Traffic Load with Mobile Sinks:	60
			se of Unconstrained Mobility	
		18.3.1 18.3.2	Node-Associated Transmission Energy	
			Link-Associated Transmission Energy	
	10.4	18.3.3	Summary	600
	18.4	-	Conservation with Mobile Nodes:	60
			treme Usage of The Substitution Effect	
		18.4.1	MNL with Multiple Mobile Nodes (MNL–MMN)	
		18.4.2	Theorem, Complexity, and Algorithm	
		18.4.3	Numerical Results	
	10.5	18.4.4	Summary	61
	18.5		Conservation with Mobile Relays:	61
			Mechanical Data Transportation Smartly	61
		18.5.1	The Single Mobile Relay Positioning (SMRP) Problem	
		18.5.2	A Variation of SMRP	
	10.6	18.5.3	Summary	
	18.6		sion	
	Refer	ences		61
The	eme VI	Mobilit	ty Management	
19	Infor	mation S	Spreading in Dynamic Networks: An Analytical	
				. 62
	Andre		nti and Francesco Pasquale	
	19.1		ction	
		19.1.1	Warm-up and Road Map	623

20			Contents
	19.2	Edge-N	Tarkovian Evolving Graphs
		19.2.1	The upper bound
		19.2.2	The lower bounds
	19.3	Stationa	ary Markovian Evolving Graphs
		19.3.1	Flooding Time and Expansion Properties
		19.3.2	Stationary Edge-MEGs
		19.3.3	Parsimonious flooding in stationary Edge-MEGs 635
		19.3.4	Stationary Geometric MEGs
		19.3.5	Stationary Geometric MEGs under the connectivity
			threshold
	19.4	Radio E	Broadcasting in Dynamic Networks
		19.4.1	The worst-case evolving graph
		19.4.2	The random evolving graph: case p known
		19.4.3	The random evolving graph: case p unknown 645
	19.5		sions and Open problems
	Refer	ences	
20	Self-S	Stabilizin	g and Self-Organizing Virtual Infrastructures for
			rks
	Shlor	mi Dolev	and Nir Tzachar
	20.1	Introdu	ction
	20.2	Self-Sta	abilizing and Self-Organizing distributed algorithms 655
	20.3	System	Settings
	20.4	Expand	er Extraction
		20.4.1	The Complete Graph
		20.4.2	An Arbitrary Expander
	20.5	Expans	ion Monitoring
		20.5.1	Monitoring by Random Sampling
		20.5.2	Mixing Rate Based Monitoring
		20.5.3	Self-Stabilizing Distributed Monitoring 667
	20.6		ated Hierarchical Spanner Construction 678
	Refer	ences	
21	Comp	outing by	Mobile Robotic Sensors
	Paola	Flocchin	i, Giuseppe Prencipe, and Nicola Santoro
	21.1	Introdu	ction
		21.1.1	Distributed Computing and Mobile Entities 685
		21.1.2	Robots, Sensors, and Mobility
		21.1.3	Mobile Robotic Sensors
	21.2		ng Mobile Robotic Sensors
		21.2.1	Capabilities
		21.2.2	Behavior
		21.2.3	Synchronization
		21.2.4	Memory
	21.3	Self De	ployment
		21.3.1	Introduction

Cont	ents		21
	21.4	21.3.2 21.3.3 21.3.4 21.3.5 Pattern	Uniform Deployment On Linear Borders
		21.4.1 21.4.2	Forming Scale-Free Patterns 708 Circle Formation 709
	21.5		ng712
		21.5.1	Asynchronous Gathering
		21.5.2	Semi Synchronous Gathering715
		21.5.3	Fully Synchronous Gathering
		21.5.4	Coalescence
	21.6		sions and Open Problems
	Refere	nces	721
The	me VII	Securi	ty Aspects
22			Trust in Sensor Networks
	22.1	*	aśkiewicz, Mirosław Kutyłowski
	22.1		r in (wireless) sensor networks
	22.2	22.2.1	Chaining protocols
		22.2.1	Asymmetric methods
		22.2.3	Sensing mobile artefacts
		22.2.4	Communication authentication: a framework example 752
	22.3		nagement
	22.0	22.3.1	Master key schemes
		22.3.2	Random assignment schemes
		22.3.3	Polynomial share
		22.3.4	Multi-group deployment
		22.3.5	Powerful third-party
		22.3.6	Dynamic key structures
		22.3.7	LEAP: a full key infrastructure
	22.4	Encodin	ng
		22.4.1	Multiple paths
		22.4.2	Block ciphers
	22.5	Compro	mised node detection
		22.5.1	Alert based protocols
		22.5.2	Detect and tolerate
		22.5.3	Suicidal pointer
	Defero	mage	760

22		Contents
23	Dahai	Management in Sensor Networks
	Chian	
	23.1	Introduction
		23.1.1 Motivation
		23.1.2 Summary of our study between representative
		probabilistic and deterministic schemes
	23.2	Fragility Analysis for Probabilistic Key Management
		23.2.1 SAP for a static network
		23.2.2 SAP for a mobile network
	23.3	Secret-Protecting Processor Architecture
		23.3.1 Reduced Hardware Architecture
		23.3.2 Expanded Sensor-mode SP Architecture
	23.4	Security and Economics Analysis of SP Architecture Based
		Solution
		23.4.1 Attacks on Protected Keys
		23.4.2 Attacks on Changing the TSM or the Device Key 789
		23.4.3 Economics Analysis
	23.5	Simulation Results
		23.5.1 Comparison of Probabilistic and Deterministic Key
		Predistribution
		23.5.2 Security Improvement with SP architecture
	23.6	Implications to Related Work
	2010	23.6.1 Reinforcements on the Basic EG Scheme
		23.6.2 Selective Node Capture
	23.7	Key Establishment Approach
	23.7	23.7.1 An Analytical Framework for Key Establishment 800
		23.7.2 Characterization of Optimal Resilience
		23.7.3 Low-Complexity Algorithm for Key Establishment 804
		23.7.4 Numerical Simulations
		23.7.5 Proof of Theorem 1
		23.7.6 Proof of Theorem 2
	23.8	Concluding Remarks
		ences
	Kelen	ences
24		Predistribution in Wireless Sensor Networks when Sensors are
		n Communication Range
	Sushn	nita Ruj, Amiya Nayak and Ivan Stojmenovic
	24.1	Introduction
		24.1.1 Shared-key discovery
		24.1.2 Network models
		24.1.3 Performance measures and notation
		24.1.4 Identifying compromised nodes 829
		24.1.5 Node and key revocation
	24.2	Key predistribution schemes in WSN

Cont	tents			23
		24.2.1	Blom's Scheme	835
		24.2.2	Blundo et al's Scheme.	
	24.3		ic and O-composite Schemes	
	24.4		pairwise schemes	
	24.4	24.4.1	Chan-Perrig-Song scheme	
		24.4.2	Liu-Ning-Li polynomial-pool-based key predistribution	
		24.4.3	Probabilistic scheme of Zhu et al	
	24.5		sed key predistribution schemes	
	2	24.5.1	PIKE scheme of Chan and Perrig	
		24.5.2	Liu-Ning-Du Scheme	
		24.5.3	Martin-Paterson-Stinson's improvement of Liu et al's	
			scheme	. 844
	24.6	Key pre	distribution using combinatorial structures	
		24.6.1	Camtepe and Yener's scheme	
		24.6.2	Lee and Stinson's schemes	
		24.6.3	Chakrabarti-Maitra-Roy Scheme	
		24.6.4	Ruj and Roy Scheme	
		24.6.5	Key predistribution schemes using codes	
	24.7	Key pre	distribution in Multi-hop networks	
	24.8	Conclus	ion	. 857
	Refere	ences		. 859
The	me VI	II Tools,	Applications andd Use Cases	
The				869
	Realis	stic Appli	ications for Wireless Sensor Networks	869
	Realis	stic Appli A. Stanko		
	Realis John A	stic Appli A. Stanko Introduc	ications for Wireless Sensor Networks	. 869
	Realis John A 25.1	stic Appli A. Stanko Introduc	ications for Wireless Sensor Networks	. 869 . 870
	Realis John A 25.1	stic Appli A. Stanko Introduc Challen	ications for Wireless Sensor Networks	. 869 . 870 . 870
	Realis John A 25.1	stic Appli A. Stanko Introduc Challens 25.2.1	ications for Wireless Sensor Networks wic, Anthony D. Wood, Tian He tion ges From Raw Data to Knowledge Robust System Operation	. 869 . 870 . 870 . 871
	Realis John A 25.1	A. Stanko Introduc Challen 25.2.1 25.2.2	ications for Wireless Sensor Networks wic, Anthony D. Wood, Tian He tion ges From Raw Data to Knowledge	. 869 . 870 . 870 . 871 . 871
	Realis John A 25.1	A. Stanko Introduc Challeng 25.2.1 25.2.2 25.2.3	ications for Wireless Sensor Networks wic, Anthony D. Wood, Tian He etion ges From Raw Data to Knowledge Robust System Operation Openness and Heterogeneity	. 869 . 870 . 870 . 871 . 871
	Realis John A 25.1	A. Stanko Introduc Challeng 25.2.1 25.2.2 25.2.3 25.2.4	ications for Wireless Sensor Networks wic, Anthony D. Wood, Tian He etion ges From Raw Data to Knowledge Robust System Operation Openness and Heterogeneity Security	. 869 . 870 . 870 . 871 . 871 . 872
	Realis John A 25.1	A. Stanko Introduc Challen 25.2.1 25.2.2 25.2.3 25.2.4 25.2.5	ications for Wireless Sensor Networks vic, Anthony D. Wood, Tian He etion ges From Raw Data to Knowledge Robust System Operation Openness and Heterogeneity Security Privacy	. 869 . 870 . 870 . 871 . 871 . 872 . 872
	Realis John A 25.1	A. Stanko Introduc Challen 25.2.1 25.2.2 25.2.3 25.2.4 25.2.5 25.2.6	ications for Wireless Sensor Networks wic, Anthony D. Wood, Tian He etion ges From Raw Data to Knowledge Robust System Operation Openness and Heterogeneity Security Privacy Real-Time	. 869 . 870 . 870 . 871 . 871 . 872 . 872 . 872
	Realis John A 25.1	Stic Applia A. Stanko Introduc Challeng 25.2.1 25.2.2 25.2.3 25.2.4 25.2.5 25.2.6 25.2.7	ications for Wireless Sensor Networks wic, Anthony D. Wood, Tian He etion ges From Raw Data to Knowledge Robust System Operation Openness and Heterogeneity Security Privacy Real-Time Energy Management	. 869 . 870 . 870 . 871 . 871 . 872 . 872 . 873 . 873
	Realis John A 25.1	stic Appli A. Stanko Introduc Challeng 25.2.1 25.2.2 25.2.3 25.2.4 25.2.5 25.2.6 25.2.7 25.2.8 25.2.9	ications for Wireless Sensor Networks wic, Anthony D. Wood, Tian He etion ges From Raw Data to Knowledge Robust System Operation Openness and Heterogeneity Security Privacy Real-Time Energy Management Control and Actuation	. 869 . 870 . 870 . 871 . 871 . 872 . 872 . 872 . 873 . 873
	Realis John A 25.1 25.2	stic Appli A. Stanko Introduc Challeng 25.2.1 25.2.2 25.2.3 25.2.4 25.2.5 25.2.6 25.2.7 25.2.8 25.2.9 Surveilla 25.3.1	ications for Wireless Sensor Networks wic, Anthony D. Wood, Tian He tition ges From Raw Data to Knowledge Robust System Operation Openness and Heterogeneity Security Privacy Real-Time Energy Management Control and Actuation Challenges and Applications	. 869 . 870 . 870 . 871 . 871 . 872 . 872 . 873 . 873 . 874
	Realis John A 25.1 25.2	stic Appli A. Stanko Introduc Challeng 25.2.1 25.2.2 25.2.4 25.2.5 25.2.4 25.2.5 25.2.6 25.2.7 25.2.8 25.2.9 Surveille	ications for Wireless Sensor Networks wic, Anthony D. Wood, Tian He stion ges From Raw Data to Knowledge Robust System Operation Openness and Heterogeneity Security Privacy Real-Time Energy Management Control and Actuation Challenges and Applications ance Application – VigilNet Application Requirements VigilNet Architecture	. 869 . 870 . 870 . 871 . 871 . 872 . 872 . 873 . 873 . 874 . 874 . 875 . 876
	Realis John A 25.1 25.2	stie Appli A. Stanko Introduc Challeng 25.2.1 25.2.2 25.2.3 25.2.4 25.2.5 25.2.6 25.2.7 25.2.8 25.2.9 Surveilla 25.3.1 25.3.2 25.3.3	ications for Wireless Sensor Networks wic, Anthony D. Wood, Tian He tition ges From Raw Data to Knowledge Robust System Operation Openness and Heterogeneity Security Privacy Real-Time Energy Management Control and Actuation Challenges and Applications ance Application – VigilNet Application Requirements	. 869 . 870 . 870 . 871 . 871 . 872 . 872 . 873 . 873 . 874 . 874 . 875 . 876
	Realis John A 25.1 25.2	stic Appli A. Stanko Introduc Challeng 25.2.1 25.2.2 25.2.3 25.2.4 25.2.5 25.2.6 25.2.7 25.2.8 25.2.9 Surveilla 25.3.1 25.3.2	ications for Wireless Sensor Networks wic, Anthony D. Wood, Tian He stion ges From Raw Data to Knowledge Robust System Operation Openness and Heterogeneity Security Privacy Real-Time Energy Management Control and Actuation Challenges and Applications ance Application – VigilNet Application Requirements VigilNet Architecture	. 869 . 870 . 870 . 871 . 871 . 872 . 872 . 873 . 873 . 874 . 874 . 875 . 876
	Realis John A 25.1 25.2	stic Appli A. Stanko Introduc Challeng 25:2.1 25:2.2 25:2.3 25:2.4 25:2.5 25:2.6 25:2.7 25:2.8 25:2.9 Surveilla 25:3.1 25:3.3 25:3.3 25:3.4 25:3.5	ications for Wireless Sensor Networks wic, Anthony D. Wood, Tian He etion gges From Raw Data to Knowledge Robust System Operation Openness and Heterogeneity Security Privacy Real-Time Energy Management Control and Actuation Challenges and Applications ance Application – VigilNet Application Requirements VigilNet Architecture The Programming Interface System Work Flow VigilNet Summary	. 869 . 870 . 871 . 871 . 872 . 872 . 872 . 873 . 873 . 874 . 875 . 876 . 881 . 882 . 883
	Realis John A 25.1 25.2	stic Appli A. Stanko Introduc Challeng 25:2.1 25:2.2 25:2.3 25:2.4 25:2.5 25:2.6 25:2.7 25:2.8 25:2.9 Surveilla 25:3.1 25:3.3 25:3.3 25:3.4 25:3.5	ications for Wireless Sensor Networks vic, Anthony D. Wood, Tian He etion ggs From Raw Data to Knowledge Robust System Operation Openness and Heterogeneity Security Privacy Real-Time Energy Management Control and Actuation Challenges and Applications ance Application – VigilNet Application Requirements VigilNet Architecture The Programming Interface System Work Flow	. 869 . 870 . 871 . 871 . 872 . 872 . 872 . 873 . 873 . 874 . 875 . 876 . 881 . 882 . 883

24		Cont	ents
		25.4.2 AlarmNet Architecture	886
		25.4.4 Circadian Activity Rhythms	
		25.4.6 AlarmNet Summary	
	25.5	Environmental Science Applications - Luster	
	20.0	25.5.1 Application Requirements	
		25.5.2 Luster's Architecture	
		25.5.3 Luster Summary	
	25.6	Summary	
	25.7	Acknowledgements	
	Refer	ences	896
26	High-	level Application Development for Sensor Networks:	
		driven Approach	899
		esh Pathak and Viktor K. Prasanna	
	26.1	Introduction	899
		26.1.1 Node-level Programming	900
		26.1.2 High-Level Abstractions for WSNs	901
		26.1.3 Macroprogram Compilation	
	26.2	Data-driven Macroprogramming	
		26.2.1 Programming Model	
		26.2.2 Runtime System	
	26.3	Compilation Process	
		26.3.1 Input	
		26.3.2 Output	
		26.3.3 Process Overview	
	26.4	26.3.4 Challenges	
	26.4	Compilation Framework	
	26.6	Evaluation	
	20.0	26.6.1 Reference Applications	
		26.6.2 Evaluation of the Compiler	
		26.6.3 Evaluation of the Toolkit	
	26.7	Concluding Remarks	
		ences	
27	Towa	rds integrated real world sensing environment - applications	
		hallenges	927
	Srdja	r Kreo and Konrad Wrona	
	27.1	Introduction	927
	27.2	Military perspective	928
	27.3	Civilian perspective	
	27.4	Selected WSN applications and traffic models	
		27.4.1 Control and automation domain applications	
		27.4.2 Transport applications	024

Contents 25
27.4.3 Environmental monitoring for emergency services .934 27.4.4 Health monitoring application traffic model .935 27.4.5 Traffic model summary .935 27.5 Characteristics of the WCDMA networks .936 27.6 Network dimensioning methodology .938 27.7 Results .940 27.7.1 Common channels analysis .943 27.8 Conclusions .946 References .947
Index951