João Penedones joao.penedones@epfl.ch

Fields and Strings Laboratory, Institute of Physics, EPFL Rte de la Sorge, BSP 728, CH-1015 Lausanne, Switzerland Centro de Física do Porto, Universidade do Porto, Portugal Theoretical Physics Department, CERN, Geneva, Switzerland

We introduce the AdS/CFT correspondence as a natural extension of QFT in a fixed AdS background. We start by reviewing some general concepts of CFT, including the embedding space formalism. We then consider QFT in a fixed AdS background and show that one can define boundary operators that enjoy very similar properties as in a CFT, except for the lack of a stress tensor. Including a dynamical metric in AdS generates a boundary stress tensor and completes the CFT axioms. We also discuss some applications of the bulk geometric intuition to strongly coupled QFT. Finally, we end with a review of the main properties of Mellin amplitudes for CFT correlation functions and their uses in the context of AdS/CFT.

Contents

1.	Introduction
2.	Conformal Field Theory
	2.1. Conformal Transformations
	2.2. Local Operators
	2.3. Ward identities
	2.4. State-Operator Map
	2.5. Operator Product Expansion
	2.6. Conformal Bootstrap
	2.7. Embedding Space Formalism
	2.8. Large N Factorization
3.	Anti-de Sitter Spacetime
	3.1. Particle dynamics in AdS
	3.2. Quantum Field Theory in AdS
	3.3. Gravity with AdS boundary conditions
4.	The AdS/CFT Correspondence
	4.1. Quantum Gravity as CFT
	4.2. String Theory
	4.3. Finite Temperature
	4.4. Applications
5.	Mellin amplitudes
	5.1. Definition
	5.2. OPE \Rightarrow Factorization
	5.3. Holographic CFTs
	5.4. Open questions
References	

1. Introduction

The AdS/CFT correspondence [1–3] is a well established general approach to quantum grav However, it is often perceived as a particular construction specific to string theory. In these lectu I will argue that the AdS/CFT correspondence is the most conservative approach to quant gravity. The quick argument goes as follows:

- System in a box we work with Anti-de Sitter (AdS) boundary conditions because Ads the most symmetric box with a boundary. This is useful to control large IR effects, evithout dynamical gravity.
- QFT in the box Quantum Field Theory (no gravity) in a fixed AdS background leads the construction of boundary operators that enjoy an associative and convergent Opera Product Expansion (OPE). The AdS isometries act on the boundary operators like conformal group in one lower dimension.
- Boundary stress-tensor from gravitons perturbative metric fluctuations around AdS le to a boundary stress tensor (weakly coupled to the other boundary operators).

Starting from these 3 facts it is entirely natural to define quantum gravity with AdS bound conditions as Conformal Field Theory (CFT) in one lower dimension. Of course not all CFTs leading gravity in our universe. That requires the size of the box to be much larger than the Plantength and all higher spin particles to be very heavy (relative to the size of the box). As we shall see, these physical requirements imply that the CFT is strongly coupled and therefore hard to for construct. The major role of string theory is to provide explicit examples of such CFTs maximally supersymmetric Yang-Mills (SYM) theory.

There are many benefits that follow from accepting the AdS/CFT perspective. Firstly, it may the holographic nature of gravity manifest. For example, one can immediately match the scal of the CFT entropy density with the Bekenstein-Hawking entropy of (large) black holes in A Notice that this is a consequence because it was not used as an argument for AdS/CFT in previous paragraph. More generally, the AdS/CFT perspective let us translate questions about an about CFT. Another benefit of gauge/gravity duality is that it gives us a geometric description of QFT phenomena, which can very useful to gain physical intuition and to create phenomenological models.

This introduction to AdS/CFT will not follow the historical order of scientific developments Section 2 reviews general concepts in CFT. This part is not entirely self-contained because the topic is discussed in detail in the chapter Conformal Bootstrap by David Simmons-Duffin [5]. The main purpose of this section is to set up notation, introduce the embedding space formalism addiscuss large N factorization. Section 3 deals with Anti-de Sitter (AdS) spacetime. The first general here is to gain intuition about particle dynamics in AdS and QFT in a fixed AdS background. From this point-of-view, we will see that a gravitational theory with AdS boundary conditions natural defines a CFT living on its boundary. In section 4, we discuss the AdS/CFT corresponders

^aIt might not be possible to formulate all quantum gravity questions in CFT language. For example, it is unc if the experience of an observer falling into a black hole in AdS is a CFT observable [4].

^bSee also the lecture notes [6, 7].

in more detail and emphasize its importance for quantum gravity. We also consider what k of CFTs have simple AdS duals and the role of string theory. Furthermore, we discuss seven applications of the gauge/gravity duality as a tool to geometrize QFT effects. Finally, in sect 5, we introduce the Mellin representation of CFT correlation functions. We explain the analy properties of Mellin amplitudes and their particular simplicity in the case of holographic CFTs

There are many reviews of AdS/CFT available in the literature. Most of them are complem tary to these lecture notes because they discuss in greater detail concrete examples of AdS/C realized in string theory. I leave here an incomplete list [8–16] that can be useful to the read interested in knowing more about AdS/CFT. The lecture notes [17] by Jared Kaplan discuss greater detail many of the ideas presented here.

2. Conformal Field Theory

This section briefly describes the basic concepts necessary to formulate a non-perturbative definition of CFT. In the last part, we explain in more detail the embedding space formalism for C and 't Hooft's large N expansion, which will be very important in the following sections.

2.1. Conformal Transformations

For simplicity, in most formulas, we will consider Euclidean signature. We start by discuss conformal transformations of \mathbb{R}^d in Cartesian coordinates,

$$ds^2 = \delta_{\mu\nu} dx^{\mu} dx^{\nu} \ .$$

A conformal transformation is a coordinate transformation that preserves the form of the meters or up to a scale factor,

$$\delta_{\mu\nu} \frac{d\tilde{x}^{\mu}}{dx^{\alpha}} \frac{d\tilde{x}^{\nu}}{dx^{\beta}} = \Omega^{2}(x) \delta_{\alpha\beta} .$$

In other words, a conformal transformation is a local dilatation.

Exercise 2.1. Show that, for d > 2, the most general infinitesimal conformal transformation given by $\tilde{x}^{\mu} = x^{\mu} + \epsilon^{\mu}(x)$ with

$$\epsilon^{\mu}(x) = a^{\mu} + \lambda x^{\mu} + m^{\mu\nu}x_{\nu} + x^2b^{\mu} - 2x^{\alpha}b_{\alpha}x^{\mu} .$$

In spacetime dimension d > 2, conformal transformations form the group SO(d + 1, 1). The generators P_{μ} and $M_{\mu\nu}$ correspond to translation and rotations and they are present in any restriction transformations QFT. In addition, we have the generators of dilatations D and special conformations K_{μ} . It is convenient to think of the special conformal transformations as composition of an inversion followed by a translation followed by another inversion. Inversion the conformal transformation^c

$$x^{\mu}
ightarrow rac{x^{\mu}}{x^2}$$
 .

^cInversion is outside the component of the conformal group connected to the identity. Thus, it is possible to h CFTs that are not invariant under inversion. In fact, CFTs that break parity also break inversion.

4

João Penedones

Exercise 2.2. Verify that inversion is a conformal transformation.

The form of the generators of the conformal algebra acting on functions can be obtained fr

$$\phi(x^{\mu} + \epsilon^{\mu}(x)) = \left[1 + i a^{\mu} P_{\mu} - \lambda D + \frac{i}{2} m^{\mu\nu} M_{\mu\nu} + i b^{\mu} K_{\mu}\right] \phi(x^{\mu}) ,$$

which leads to d

$$P_{\mu} = -i\partial_{\mu} , \qquad \qquad D = -x^{\mu}\partial_{\mu} ,$$

$$M_{\mu\nu} = -i \left(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu} \right) , \qquad \qquad K_{\mu} = 2i x_{\mu} x^{\nu} \partial_{\nu} - i x^{2} \partial_{\mu} .$$

Exercise 2.3. Show that the generators obey the following commutation relations

$$\begin{split} [D,P_{\mu}] &= P_{\mu} \ , \qquad [D,K_{\mu}] = -K_{\mu} \ , \qquad [K_{\mu},P_{\nu}] = 2\delta_{\mu\nu}D - 2i\,M_{\mu\nu} \ , \\ [M_{\mu\nu},P_{\alpha}] &= i\left(\delta_{\mu\alpha}P_{\nu} - \delta_{\nu\alpha}P_{\mu}\right) \ , \qquad [M_{\mu\nu},K_{\alpha}] = i\left(\delta_{\mu\alpha}K_{\nu} - \delta_{\nu\alpha}K_{\mu}\right) \ , \\ [M_{\alpha\beta},M_{\mu\nu}] &= i\left(\delta_{\alpha\mu}M_{\beta\nu} + \delta_{\beta\nu}M_{\alpha\mu} - \delta_{\beta\mu}M_{\alpha\nu} - \delta_{\alpha\nu}M_{\beta\mu}\right) \ . \end{split}$$

2.2. Local Operators

group SO(d),

Local operators are divided into two types: primary and descendant. Descendant operators operators that can be written as (linear combinations of) derivatives of other local operators. Primary operators can not be written as derivatives of other local operators. Primary operators the origin are annihilated by the generators of special conformal transformations. Moreover, the are eigenvectors of the dilatation generator and form irreducible representations of the rotat

$$[K_{\mu}, \mathcal{O}(0)] = 0$$
, $[D, \mathcal{O}(0)] = \Delta \mathcal{O}(0)$, $[M_{\mu\nu}, \mathcal{O}_A(0)] = [M_{\mu\nu}]_A^B \mathcal{O}_B(0)$.

Correlation functions of scalar primary operators obey

$$\langle \mathcal{O}_1(\tilde{x}_1) \dots \mathcal{O}_n(\tilde{x}_n) \rangle = \left| \frac{\partial \tilde{x}}{\partial x} \right|_{x_1}^{-\frac{\Delta_1}{d}} \dots \left| \frac{\partial \tilde{x}}{\partial x} \right|_{x_n}^{-\frac{\Delta_n}{d}} \langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle$$

for all conformal transformations $x \to \tilde{x}$. As explained above, it is sufficient to impose Poinc invariance and this transformation rule under inversion,

$$\left\langle \mathcal{O}_1\left(\frac{x_1}{x_1^2}\right)\dots\mathcal{O}_n\left(\frac{x_n}{x_n^2}\right)\right\rangle = \left(x_1^2\right)^{\Delta_1}\dots\left(x_n^2\right)^{\Delta_n}\left\langle \mathcal{O}_1(x_1)\dots\mathcal{O}_n(x_n)\right\rangle.$$

This implies that vacuum one-point functions $\langle \mathcal{O}(x) \rangle$ vanish except for the identity opera (which is the unique operator with $\Delta = 0$). It also fixes the form of the two and three points and the points of the two and three points are the form of the two and the

 $[\]overline{}^{\mathrm{d}}$ We define the dilatation generator D in a non-standard fashion so that it has real eigenvalues in unitary CFT

functions,

$$\langle \mathcal{O}_{i}(x)\mathcal{O}_{j}(y)\rangle = \frac{\delta_{ij}}{(x-y)^{2\Delta_{i}}} ,$$

$$\langle \mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})\mathcal{O}_{3}(x_{3})\rangle = \frac{C_{123}}{|x_{12}|^{\Delta_{1}+\Delta_{2}-\Delta_{3}} |x_{13}|^{\Delta_{1}+\Delta_{3}-\Delta_{2}} |x_{23}|^{\Delta_{2}+\Delta_{3}-\Delta_{1}}} ,$$

where we have normalized the operators to have unit two point function.

The four-point function is not fixed by conformal symmetry because with four points one construct two independent conformal invariant cross-ratios

$$u = z\bar{z} = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} , \qquad v = (1-z)(1-\bar{z}) = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2} . \tag{}$$

The general form of the four point function is

$$\langle \mathcal{O}(x_1) \dots \mathcal{O}(x_4) \rangle = \frac{\mathcal{A}(u,v)}{(x_{13}^2 x_{24}^2)^{\Delta}}.$$

2.3. Ward identities

To define the stress-energy tensor it is convenient to consider the theory in a general backgroum etric $g_{\mu\nu}$. Formally, we can write

$$\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle_g = \frac{1}{Z[g]} \int [d\phi] e^{-S[\phi,g]} \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) ,$$

where $Z[g] = \int [d\phi]e^{-S[\phi,g]}$ is the partition function for the background metric $g_{\mu\nu}$. Recalling classical definition

$$T^{\mu\nu}(x) = -\frac{2}{\sqrt{g}} \frac{\delta S}{\delta g_{\mu\nu}(x)} ,$$

it is natural to define the quantum stress-energy tensor operator via the equation

$$\frac{Z[g+\delta g]}{Z[g]} = 1 + \frac{1}{2} \int dx \sqrt{g} \delta g_{\mu\nu}(x) \left\langle T^{\mu\nu}(x) \right\rangle_g + O(\delta g^2) ,$$

and

$$\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle_{g+\delta g} - \langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle_g$$

$$= \frac{1}{2} \int dx \sqrt{g} \delta g_{\mu\nu}(x) \left[\langle T^{\mu\nu}(x) \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle_g - \langle T^{\mu\nu}(x) \rangle_g \langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle_g \right] + O(\delta g^2) .$$

Under an infinitesimal coordinate transformation $\tilde{x}^{\mu} = x^{\mu} + \epsilon^{\mu}(x)$, the metric tensor chan $\tilde{g}_{\mu\nu} = g_{\mu\nu} - \nabla_{\mu}\epsilon_{\nu} - \nabla_{\nu}\epsilon_{\mu}$ but the physics should remain invariant. In particular, the partit function $Z[g] = Z[\tilde{g}]$ and the correlation functions ^e

$$\langle \mathcal{O}_1(\tilde{x}_1) \dots \mathcal{O}_n(\tilde{x}_n) \rangle_{\tilde{g}} = \langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle_g$$
,

eIf the operators are not scalars (e.g. if they are vector operators) then one also needs to take into account rotation of their indices.

do not change. This leads to the conservation equation $\langle \nabla_{\mu} T^{\mu\nu}(x) \rangle_{q}$ and

$$\sum_{i=1}^{n} \epsilon^{\mu}(x_i) \frac{\partial}{\partial x_i^{\mu}} \langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle_g$$

$$= -\int dx \sqrt{g} \epsilon_{\nu}(x) \langle \nabla_{\mu} T^{\mu\nu}(x) \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle_g$$
(6)

for all $\epsilon^{\mu}(x)$ that decays sufficiently fast at infinity. Thus $\nabla_{\mu}T^{\mu\nu}=0$ up to contact terms.

Correlation functions of primary operators transform homogeneously under Weyl transform tions of the metric $^{\rm f}$

$$\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle_{\Omega^2 g} = \frac{\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle_g}{\left[\Omega(x_1)\right]^{\Delta_1} \dots \left[\Omega(x_n)\right]^{\Delta_n}} .$$

Exercise 2.4. Show that this transformation rule under local rescalings of the metric (toget with coordinate invariance) implies (9) under conformal transformations.

Consider now an infinitesimal Weyl transformation $\Omega = 1 + \omega$, which corresponds to a mervariation $\delta g_{\mu\nu} = 2\omega g_{\mu\nu}$. From (16) and (19) we conclude that

$$\sum_{i=1}^{n} \Delta_{i} \,\omega(x_{i}) \,\langle \mathcal{O}_{1}(x_{1}) \dots \mathcal{O}_{n}(x_{n}) \rangle_{g}$$

$$= -\int dx \sqrt{g} \,\omega(x) g_{\mu\nu} \left[\langle T^{\mu\nu}(x) \mathcal{O}_{1}(x_{1}) \dots \mathcal{O}_{n}(x_{n}) \rangle_{g} - \langle T^{\mu\nu}(x) \rangle_{g} \,\langle \mathcal{O}_{1}(x_{1}) \dots \mathcal{O}_{n}(x_{n}) \rangle_{g} \right] .$$

Consider the following codimension 1 integral over the boundary of a region B, ${}^{\rm g}$

$$I = \int_{\partial B} dS_{\mu} \epsilon_{\nu}(x) \left[\langle T^{\mu\nu}(x) \mathcal{O}_{1}(x_{1}) \dots \mathcal{O}_{n}(x_{n}) \rangle_{g} - \langle T^{\mu\nu}(x) \rangle_{g} \langle \mathcal{O}_{1}(x_{1}) \dots \mathcal{O}_{n}(x_{n}) \rangle_{g} \right] .$$

$$(2)$$

One can think of this as the total flux of the current $\epsilon_{\nu}T^{\mu\nu}$, where $\epsilon_{\nu}(x)$ is an infinitesimal conformation. Gauss law tells us that this flux should be equal to the integral of the divergence of the current

$$\nabla_{\mu} \left(\epsilon_{\nu} T^{\mu\nu} \right) = \epsilon_{\nu} \nabla_{\mu} T^{\mu\nu} + \nabla_{\mu} \epsilon_{\nu} T^{\mu\nu} = \epsilon_{\nu} \nabla_{\mu} T^{\mu\nu} + \frac{1}{d} \nabla_{\alpha} \epsilon^{\alpha} g_{\mu\nu} T^{\mu\nu} ,$$

where we used the symmetry of the stress-energy tensor $T^{\mu\nu} = T^{\nu\mu}$ and the definition of infinitesimal conformal transformation $\nabla_{\mu}\epsilon_{\nu} + \nabla_{\nu}\epsilon_{\mu} = \frac{2}{d}\nabla_{\alpha}\epsilon^{\alpha}g_{\mu\nu}$. Using Gauss law and (18) at (20) we conclude that

$$I = -\sum_{x_i \in B} \left[\epsilon^{\mu}(x_i) \frac{\partial}{\partial x_i^{\mu}} + \frac{\Delta_i}{d} \nabla_{\alpha} \epsilon^{\alpha}(x_i) \right] \left\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \right\rangle_g .$$

fIn general, the partition fungion is not invariant in even dimensions. This is the Weyl anomaly $Z[\Omega^2 g]$

gIn the notation of the Conformal Bootstrap chapter [5] this is the topological operator $Q_{\epsilon}[\partial B]$ inserted in correlation function $\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle_q$.

TASI-AdSCFT-cha

TASI Lectures on AdS/CFT

The equality of (21) and (23) for any infinitesimal conformal transformation (3) is the most use form of the conformal Ward identities.

Exercise 2.5. Conformal symmetry fixes the three-point function of a spin 2 primary opera and two scalars up to an overall constant, ^h

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)T^{\mu\nu}(x_3)\rangle = C_{12T} \frac{H^{\mu\nu}(x_1, x_2, x_3)}{|x_{12}|^{2\Delta - d + 2}|x_{13}|^{d - 2}|x_{23}|^{d - 2}} ,$$
 (

where

$$H^{\mu\nu} = V^{\mu}V^{\nu} - \frac{1}{d}V_{\alpha}V^{\alpha}\delta^{\mu\nu} , \qquad V^{\mu} = \frac{x_{13}^{\mu}}{x_{13}^{2}} - \frac{x_{23}^{\mu}}{x_{23}^{2}} .$$

Write the conformal Ward identity (21)=(23) for the three point function $\langle T^{\mu\nu}(x)\mathcal{O}(0)\mathcal{O}(y)\rangle$ the case of an infinitesimal dilation $\epsilon^{\mu}(x)=\lambda x^{\mu}$ and with the surface ∂B being a sphere centred the origin and with radius smaller than |y|. Use this form of the conformal Ward identity in limit of an infinitesimally small sphere ∂B and formula (24) for the three point function to derive the conformal ward identity in the conformal ward identity.

$$C_{\mathcal{OOT}} = -\frac{d\Delta}{d-1} \frac{1}{S_d} \ ,$$

where $S_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}$ is the volume of a (d-1)-dimensional unit sphere.

2.4. State-Operator Map

Consider \mathbb{R}^d in spherical coordinates. Writing the radial coordinate as $r=e^{\tau}$ we find

$$ds^{2} = dr^{2} + r^{2}d\Omega_{d-1}^{2} = e^{2\tau} \left(d\tau^{2} + d\Omega_{d-1}^{2} \right) .$$

Thus, the cylinder $\mathbb{R} \times S^{d-1}$ can be obtained as a Weyl transformation of euclidean space \mathbb{R}^d .

Exercise 2.6. Compute the two-point function of a scalar primary operator on the cylinder us the Weyl transformation property (19).

A local operator inserted at the origin of \mathbb{R}^d prepares a state at $\tau = -\infty$ on the cylinder. the other hand, a state on a constant time slice of the cylinder can be propagated backwards time until it corresponds to a boundary condition on a arbitrarily small sphere around the ori of \mathbb{R}^d , which defines a local operator. Furthermore, time translations on the cylinder corresponds to dilatations on \mathbb{R}^d . This teaches us that the spectrum of the dilatation generator on \mathbb{R}^d is same as the energy spectrum for the theory on $\mathbb{R} \times S^{d-1}$.

^hYou can try to derive this formula using the embedding space formalism of section 2.7.

ⁱMore precisely, there can be a constant shift equal to the Casimir energy of the vacuum on S^{d-1} , which is relative to the Weyl anomaly. In d=2, this gives the usual energy spectrum $\left(\Delta-\frac{c}{12}\right)\frac{1}{L}$ where c is the central character and L is the radius of S^1 .

2.5. Operator Product Expansion

The Operator Product Expansion (OPE) between two scalar primary operators takes the follow form

$$\mathcal{O}_{i}(x)\mathcal{O}_{j}(0) = \sum_{k} C_{ijk}|x|^{\Delta_{k} - \Delta_{i} - \Delta_{j}} \left[\mathcal{O}_{k}(0) + \underbrace{\beta \, x^{\mu} \partial_{\mu} \mathcal{O}_{k}(0) + \dots}_{\text{descendants}} \right]$$
(1)

where β denotes a number determined by conformal symmetry. For simplicity we show only contribution of a scalar operator \mathcal{O}_k . In general, in the OPE of two scalars there are prim operators of all spins.

Exercise 2.7. Compute β by using this OPE inside a three-point function.

The OPE has a finite radius of convergence inside correlation functions. This follows from state operator map with an appropriate choice of origin for radial quantization.

2.6. Conformal Bootstrap

must satisfy several constraints:

Using the OPE successively one can reduce any n-point function to a sum of one-point function which all vanish except for the identity operator. Thus, knowing the operator content of theory, *i.e.* the scaling dimensions Δ and SO(d) irreps \mathcal{R} of all primary operators, and the O coefficients C_{ijk} , one can determine all correlation functions of local operators. This set of d is called CFT data because it essentially defines the theory. k The CFT data is not arbitrary

- **OPE** associativity Different ways of using the OPE to compute a correlation funct must give the same result. This leads to the conformal bootstrap equations describelow.
- Existence of stress-energy tensor The stress-energy tensor $T_{\mu\nu}$ is a conserved prim operator (with $\Delta = d$) whose correlation functions obey the conformal Ward identities
- Unitarity In our Euclidean context this corresponds to reflection positivity and it imp lower bounds on the scaling dimensions. It also implies that one can choose a basis of roperators where all OPE coefficients are real. In the context of statistical physics, the are interesting non-unitary CFTs.

It is sufficient to impose OPE associativity for all four-point functions of the theory. For a forpoint function of scalar operators, the bootstrap equation reads

$$\sum_{k} C_{12k} C_{k34} G_{\Delta_k, l_k}^{(12)(34)}(x_1, \dots, x_4) = \sum_{q} C_{13q} C_{q24} G_{\Delta_q, l_q}^{(13)(24)}(x_1, \dots, x_4),$$

^jFor primary operators \mathcal{O}_1 , \mathcal{O}_2 , \mathcal{O}_3 transforming in non-trivial irreps of SO(d) there are several OPE coefficients C_{123} . The number of OPE coefficients C_{123} is given by the number of symmetric traceless tensor representation that appear in the tensor product of the 3 irreps of SO(d) associated to \mathcal{O}_1 , \mathcal{O}_2 and \mathcal{O}_3 .

^kHowever, there are observables besides the vacuum correlation functions of local operators. It is also interest to study non-local operators (line operators, surface operators, boundary conditions, etc) and correlation function spaces with non-trivial topology (for example, correlators at finite temperature).

where $G_{\Delta,l}$ are conformal blocks, which encode the contribution from a primary operator of mension Δ and spin l and all its descendants.

2.7. Embedding Space Formalism

The conformal group SO(d+1,1) acts naturally on the space of light rays through the origin $\mathbb{R}^{d+1,1}$,

$$-(P^{0})^{2} + (P^{1})^{2} + \dots + (P^{d+1})^{2} = 0.$$

A section of this light-cone is a d-dimensional manifold where the CFT lives. For example, i easy to see that the Poincaré section $P^0 + P^{d+1} = 1$ is just \mathbb{R}^d . To see this parametrize this sect using

$$P^{0}(x) = \frac{1+x^{2}}{2}$$
, $P^{\mu}(x) = x^{\mu}$, $P^{d+1}(x) = \frac{1-x^{2}}{2}$, (

manifold can be obtained as a section of the light-cone in the embedding space $\mathbb{R}^{d+1,1}$. Using parametrization $P^A = \Omega(x)P^A(x)$ with $x^{\mu} \in \mathbb{R}^d$, one can easily show that the induced met is simply given by $ds^2 = \Omega^2(x)\delta_{\mu\nu}dx^{\mu}dx^{\nu}$. With this is mind, it is natural to extend a prim operator from the physical section to the full light-cone with the following homogeneity proper

with $\mu = 1, \dots, d$ and $x^{\mu} \in \mathbb{R}^d$ and compute the induced metric. In fact, any conformally

$$\mathcal{O}(\lambda P) = \lambda^{-\Delta} \mathcal{O}(P) , \qquad \lambda \in \mathbb{R} .$$

This implements the Weyl transformation property (19). One can then compute correlation furtions directly in the embedding space, where the constraints of conformal symmetry are j homogeneity and SO(d+1,1) Lorentz invariance. Physical correlators are simply obtained restricting to the section of the light-cone associated with the physical space of interest. This is goes back to Dirac [18] and has been further develop by many authors [19–25].

Exercise 2.8. Rederive the form of two and three point functions of scalar primary operators \mathbb{R}^d using the embedding space formalism.

Vector primary operators can also be extended to the embedding space. In this case, we imp

$$P^{A}\mathcal{O}_{A}(P) = 0$$
, $\mathcal{O}_{A}(\lambda P) = \lambda^{-\Delta}\mathcal{O}_{A}(P)$, $\lambda \in \mathbb{R}$,

and the physical operator is obtained by projecting the indices to the section,

$$\mathcal{O}_{\mu}(x) = \left. \frac{\partial P^A}{\partial x^{\mu}} \mathcal{O}_A(P) \right|_{P^A = P^A(x)}$$
.

Notice that this implies a redundancy: $\mathcal{O}_A(P) \to \mathcal{O}_A(P) + P_A\Lambda(P)$ gives rise to the same physicoperator $\mathcal{O}(x)$, for any scalar function $\Lambda(P)$ such that $\Lambda(\lambda P) = \lambda^{-\Delta-1}\Lambda(P)$. This redundant together with the constraint $P^A\mathcal{O}_A(P) = 0$ remove 2 degrees of freedom of the (d+2)-dimension vector \mathcal{O}_A .

Exercise 2.9. Show that the two-point function of vector primary operators is given by

$$\langle \mathcal{O}^A(P_1)\mathcal{O}^B(P_2)\rangle = const \frac{\eta^{AB}(P_1 \cdot P_2) - P_2^A P_1^B}{(-2P_1 \cdot P_2)^{\Delta+1}},$$

up to redundant terms.

Exercise 2.10. Consider the parametrization $P^A = (P^0, P^\mu, P^{d+1}) = (\cosh \tau, \Omega^\mu, -\sinh \sigma)$ of the global section $(P^0)^2 - (P^{d+1})^2 = 1$, where Ω^μ ($\mu = 1, ..., d$) parametrizes a μ ($\mu = 1, ..., d$) parametrizes a μ ($\mu = 1, ..., d$) parametrizes a μ ($\mu = 1, ..., d$) parametrizes a μ ($\mu = 1, ..., d$) parametrizes a μ (μ) parametrizes a μ parametrizes a μ (μ) parametrizes a μ parametri

Conformal correlation functions extended to the light-cone of $\mathbb{R}^{1,d+1}$ are annihilated by generators of SO(1,d+1)

$$\sum_{i=1}^{n} J_{AB}^{(i)} \langle \mathcal{O}_1(P_1) \dots \mathcal{O}_n(P_n) \rangle = 0 , \qquad ($$

where $J_{AB}^{(i)}$ is the generator

$$J_{AB} = -i\left(P_A \frac{\partial}{\partial P^B} - P_B \frac{\partial}{\partial P^A}\right) ,$$

acting on the point P_i . For a given choice of light cone section, some generators will preserve section and some will not. The first are Killing vectors (isometry generators) and the second conformal Killing vectors. The commutation relations give the usual Lorentz algebra

$$[J_{AB}, J_{CD}] = i \left(\eta_{AC} J_{BD} + \eta_{BD} J_{AC} - \eta_{BC} J_{AD} - \eta_{AD} J_{BC} \right) . \tag{}$$

Exercise 2.11. Check that the conformal algebra (8) follows from (37) and

$$D = -i J_{0,d+1} ,$$
 $P_{\mu} = J_{\mu 0} - J_{\mu,d+1} ,$ $M_{\mu \nu} = J_{\mu \nu} ,$ $K_{\mu} = J_{\mu 0} + J_{\mu,d+1} .$

Exercise 2.12. Show that equation (35) for $J_{AB} = J_{0,d+1}$ implies time translation invariance the cylinder

$$\sum_{i=1}^{n} \frac{\partial}{\partial \tau_i} \langle \mathcal{O}_1(\tau_1, \Omega_1) \dots \mathcal{O}_n(\tau_n, \Omega_n) \rangle = 0 ,$$

and dilatation invariance on \mathbb{R}^d

$$\sum_{i=1}^{n} \left(\Delta_i + x_i^{\mu} \frac{\partial}{\partial x_i^{\mu}} \right) \langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle = 0 .$$

In this case, you will need to use the differential form of the homogeneity property $P^A \frac{\partial}{\partial P^A} \mathcal{O}_i(P - \Delta_i \mathcal{O}_i(P))$. It is instructive to do this exercise for the other generators as well.

2.8. Large N Factorization

Consider a U(N) gauge theory with fields valued in the adjoint representation. Schematically, can write the action as

$$S = \frac{N}{\lambda} \int dx \operatorname{Tr} \left[(D\Phi)^2 + c_3 \Phi^3 + c_4 \Phi^4 + \dots \right]$$

where we introduced the 't Hooft coupling $\lambda = g_{YM}^2 N$ and c_i are other coupling constants in pendent of N. Following 't Hooft [26], we consider the limit of large N with λ kept fixed. The propagator of an adjoint field obeys

$$\left\langle \Phi^i_j \Phi^k_l
ight
angle \propto rac{\lambda}{N} \delta^i_l \delta^k_j$$

where we used the fact that the adjoint representation can be represented as the direct product the fundamental and the anti-fundamental representation. This suggests that one can represent propagator by a double line, where each line denotes the flow of a fundamental index. Start considering the vacuum diagrams in this language. A diagram with V vertices, E propagators edges) and F lines (or faces) scales as

$$\left(\frac{N}{\lambda}\right)^V \left(\frac{\lambda}{N}\right)^E N^F = \left(\frac{N}{\lambda}\right)^{\chi} \lambda^F$$
,

where $\chi = V + F - E = 2 - 2g$ is the minimal Euler character of the two dimensional surfamere the double line diagram can be embedded and g is the number of handles of this surfamere fore, the large N limit is dominated by diagrams that can be drawn on a sphere (g = 1). These diagrams are called planar diagrams. For a given topology, there is an infinite number diagrams that contribute with increasing powers of the coupling λ , corresponding to tesselate the surface with more and more faces. Figure 1 shows two examples of vacuum diagrams in double line notation. This topological expansion has the structure of string perturbation the with λ/N playing the role of the string coupling. As we shall see this is precisely realized maximally supersymmetric Yang-Mills theory (SYM).

Fig. 1. Vacuum diagrams in the double line notation. Interaction vertices are marked with a small blue dot. 'left diagram is planar while the diagram on the right has the topology of a torus (genus 1 surface).

Let us now consider single-trace local operators of the form $\mathcal{O} = c_J \text{Tr} \left(\Phi^J\right)$, where c_J is normalization constant independent of N. Adapting the argument above, it is easy to concludate the connected correlators are given by a large N expansion of the form

$$\langle \mathcal{O}_1 \dots \mathcal{O}_n \rangle_c = \sum_{g=0}^{\infty} N^{2-n-2g} f_g(\lambda) ,$$

which is dominated by the planars diagrams (g = 0). Moreover, we see that the planar two-portunction is independent of N while connected higher point functions are suppressed by powers

N. This is large N factorization. In particular it implies that the two-point function of a mutrace operator $\tilde{\mathcal{O}}(x) =: \mathcal{O}_1(x) \dots \mathcal{O}_k(x)$: is dominated by the product of the two-point function of its single-trace constituents

$$\left\langle \tilde{\mathcal{O}}(x)\tilde{\mathcal{O}}(y)\right\rangle \approx \prod_{i} \left\langle \mathcal{O}_{i}(x)\mathcal{O}_{i}(y)\right\rangle = \frac{1}{(x-y)^{2}\sum_{i}\Delta_{i}},$$
 (

where we assumed that the single-trace operators were scalar conformal primaries properly numbers. We conclude that the scaling dimension of the multi-trace operator $\tilde{\mathcal{O}}$ is given $\sum_i \Delta_i + O(1/N^2)$. In other words, the space of local operators in a large N CFT has structure of a Fock space with single-trace operators playing the role of single particle states of weakly coupled theory. This is the form of large N factorization relevant for AdS/CFT. However, notice that conformal invariance was not important for the argument. It is well known that late N factorization also occurs in confining gauge theories. Physically, it means that colour single (like glueballs or mesons) interact weakly in large N gauge theories (see [27] for a clear summar

The stress tensor has a natural normalization that follows from the action, $T_{\mu\nu} \frac{N}{\lambda} \text{Tr} (\partial_{\mu} \Phi \partial_{\nu} \Phi)$. This leads to the large N scaling

$$\langle T_{\mu_1\nu_1}(x_1)\dots T_{\mu_n\nu_n}(x_n)\rangle_c \sim N^2$$
,

which will be important below. This normalization of $T_{\mu\nu}$ is also fixed by the Ward identities.

3. Anti-de Sitter Spacetime

Euclidean AdS spacetime is the hyperboloid

$$-(X^0)^2 + (X^1)^2 + \dots + (X^{d+1})^2 = -R^2, \quad X^0 > 0,$$

embedded in $\mathbb{R}^{d+1,1}$. For large values of X^0 this hyperboloid approaches the light-cone of embedding space that we discussed in section 2.7. It is clear from the definition that Euclide AdS is invariant under SO(d+1,1). The generators are given by

$$J_{AB} = -i \left(X_A \frac{\partial}{\partial X^B} - X_B \frac{\partial}{\partial X^A} \right) .$$

Poincaré coordinates are defined by

$$X^{0} = R \frac{1 + x^{2} + z^{2}}{2z}$$

$$X^{\mu} = R \frac{x^{\mu}}{z}$$

$$X^{d+1} = R \frac{1 - x^{2} - z^{2}}{2z}$$
(6)

where $x^{\mu} \in \mathbb{R}^d$ and z > 0. In these coordinates, the metric reads

$$ds^2 = R^2 \frac{dz^2 + \delta_{\mu\nu} dx^\mu dx^\nu}{z^2} \ .$$

This shows that AdS is conformal to $\mathbb{R}^+ \times \mathbb{R}^d$ whose boundary at z = 0 is just \mathbb{R}^d . These coordina make explicit the subgroup $SO(1,1) \times ISO(d)$ of the full isometry group of AdS. These corresponds

TASI-AdSCFT-chap

TASI Lectures on AdS/CFT

to dilatation and Poincaré symmetries inside the d-dimensional conformal group. In particular the dilatation generator is

$$D = -i J_{0,d+1} = -X_0 \frac{\partial}{\partial X^{d+1}} + X_{d+1} \frac{\partial}{\partial X^0} = -z \frac{\partial}{\partial z} - x^{\mu} \frac{\partial}{\partial x^{\mu}} . \tag{}$$

Another useful coordinate system is

$$X^{0} = R \cosh \tau \cosh \rho$$

$$X^{\mu} = R \Omega^{\mu} \sinh \rho$$

$$X^{d+1} = -R \sinh \tau \cosh \rho$$

where Ω^{μ} ($\mu = 1, ..., d$) parametrizes a unit (d-1)-dimensional sphere, $\Omega \cdot \Omega = 1$. The metric given by

$$ds^{2} = R^{2} \left[\cosh^{2} \rho \, d\tau^{2} + d\rho^{2} + \sinh^{2} \rho \, d\Omega_{d-1}^{2} \right] . \tag{6}$$

To understand the global structure of this spacetime it is convenient to change the radial coordin via $\tanh \rho = \sin r$ so that $r \in [0, \frac{\pi}{2}[$. Then, the metric becomes

$$ds^{2} = \frac{R^{2}}{\cos^{2} r} \left[d\tau^{2} + dr^{2} + \sin^{2} r \, d\Omega_{d-1}^{2} \right] ,$$

which is conformal to a solid cylinder whose boundary at $r = \frac{\pi}{2}$ is $\mathbb{R} \times S^{d-1}$. In these coordinate the dilatation generator $D = -i J_{0,d+1} = -\frac{\partial}{\partial \tau}$ is the hamiltonian conjugate to global time.

3.1. Particle dynamics in AdS

For most purposes it is more convenient to work in Euclidean signature and analytically continuous to Lorentzian signature only at the end of the calculation. However, it is important to discuss Lorentzian signature to gain some intuition about real time dynamics. In this case, AdS is defined by the universal cover of the manifold

$$-(X^{0})^{2} + (X^{1})^{2} + \dots + (X^{d})^{2} - (X^{d+1})^{2} = -R^{2},$$

embedded in $\mathbb{R}^{d,2}$. The universal cover means that we should unroll the non-contractible (timelicycle. To see this explicitly it is convenient to introduce global coordinates

$$X^{0} = R \cos t \cosh \rho$$

$$X^{\mu} = R \Omega^{\mu} \sinh \rho$$

$$X^{d+1} = -R \sin t \cosh \rho$$
(1)

where Ω^{μ} ($\mu = 1, ..., d$) parametrizes a unit (d-1)-dimensional sphere. The original hyperbol is covered with $t \in [0, 2\pi[$ but we consider $t \in \mathbb{R}$. The metric is given by

$$ds^{2} = R^{2} \left[-\cosh^{2} \rho \, dt^{2} + d\rho^{2} + \sinh^{2} \rho \, d\Omega_{d-1}^{2} \right] .$$

Notice that this is just the analytic continuation $\tau \to it$ and $X^{d+1} \to iX^{d+1}$ of the Euclidean global coordinates (52).

To understand the global structure of this spacetime it is convenient to change the rac coordinate via $\tanh \rho = \sin r$ so that $r \in [0, \frac{\pi}{2}[$. Then, the metric becomes

$$ds^{2} = \frac{R^{2}}{\cos^{2} r} \left[-dt^{2} + dr^{2} + \sin^{2} r \, d\Omega_{d-1}^{2} \right] ,$$

which is conformal to a solid cylinder whose boundary at $r = \frac{\pi}{2}$ is $\mathbb{R} \times S^{d-1}$.

Geodesics are given by the intersection of AdS with 2-planes through the origin of the embedd space. In global coordinates, the simplest timelike geodesic describes a particle sitting at ρ = This corresponds to (the universal cover of) the intersection of $X^{\mu} = 0$ for $\mu = 1, \ldots, d$ with hyperboloid (55). Performing a boost in the X^1, X^{d+1} plane we can obtain an equivalent timel geodesic $X^1 \cosh \beta = X^{d+1} \sinh \beta$ and $X^{\mu} = 0$ for $\mu = 2, \ldots, d$. In global coordinates, this given an oscillating trajectory

$$\tanh \rho = \tanh \beta \, \sin t \,\,,$$

with period 2π . In fact, all timelike geodesics oscillate with period 2π in global time. One can AdS acts like a box that confines massive particles. However, it is a very symmetric box that d not have a center because all points are equivalent.

Null geodesics in AdS are also null geodesics in the embedding space. For example, the null $X^{d+1} - X^1 = X^0 - R = X^\mu = 0$ for $\mu = 2, ..., d$ is a null ray in AdS which in global coordinatis given by $\cosh \rho = \frac{1}{\cos t}$. This describes a light ray that passes through the origin at t = 0 reaches the conformal boundary $\rho = \infty$ at $t = \pm \frac{\pi}{2}$. All light rays in AdS start and end at conformal boundary traveling for a global time interval equal to π .

One can also introduce Poincaré coordinates

$$X^{\mu} = R \frac{x^{\mu}}{z}$$

$$X^{d} = \frac{R}{2} \frac{1 - x^{2} - z^{2}}{z}$$

$$X^{d+1} = \frac{R}{2} \frac{1 + x^{2} + z^{2}}{z}$$
(1)

where now $\mu = 0, 1, \dots, d-1$ and $x^2 = \eta_{\mu\nu}x^{\mu}x^{\nu}$. However, in Lorentzian signature, Poince coordinates do not cover the entire spacetime. Surfaces of constant z approach the light-surface $X^d + X^{d+1} = 0$ when $z \to \infty$. This null surface is often called the Poincaré horizon.

We have seen that AdS acts like a box for classical massive particles. Quantum mechacally, this confining potential gives rise to a discrete energy spectrum. Consider the Klein-Gord equation

$$\nabla^2 \phi = m^2 \phi \ .$$

in global coordinates (57). In order to emphasize the correspondence with CFT we will solve to problem using an indirect route. Firstly, consider the action of the quadratic Casimir of the Asisometry group on a scalar field

$$\frac{1}{2}J_{AB}J^{BA}\phi = \left[-X^2\partial_X^2 + X \cdot \partial_X \left(d + X \cdot \partial_X\right)\right]\phi.$$

Formally, we are extending the function ϕ from AdS, defined by the hypersurface $X^2 = -1$ to the embedding space. However, the action of the quadratic Casimir is independent of the extension because the generators J_{AB} are interior to AdS, i.e. $[J_{AB}, X^2 + R^2] = 0$. If we folious the embedding space $\mathbb{R}^{d,2}$ with AdS surfaces of different radii R, we obtain that the laplacian the embedding space can be written as

$$\partial_X^2 = -\frac{1}{R^{d+1}} \frac{\partial}{\partial R} R^{d+1} \frac{\partial}{\partial R} + \nabla_{AdS}^2 \ . \tag{}$$

Substituting this in (62) and noticing that $X \cdot \partial_X = R\partial_R$ we conclude that

$$\frac{1}{2}J_{AB}J^{BA}\phi = R^2\nabla_{AdS}^2\phi \ . \tag{}$$

Therefore, we should identify m^2R^2 with the quadratic Casimir of the conformal group. The Lorentzian version of the conformal generators (38) is

$$D = -J_{0,d+1} , P_{\mu} = J_{\mu 0} + i J_{\mu,d+1} , ($$

$$M_{\mu \nu} = J_{\mu \nu} , K_{\mu} = J_{\mu 0} - i J_{\mu,d+1} . ($$

Exercise 3.1. Show that, in global coordinates, the conformal generators take the form

$$\begin{split} D &= i \frac{\partial}{\partial t} \ , \qquad M_{\mu\nu} = -i \left(\Omega_{\mu} \frac{\partial}{\partial \Omega^{\nu}} - \Omega_{\nu} \frac{\partial}{\partial \Omega^{\mu}} \right) \ , \\ P_{\mu} &= -i e^{-it} \left[\Omega_{\mu} \left(\partial_{\rho} - i \tanh \rho \, \partial_{t} \right) + \frac{1}{\tanh \rho} \nabla_{\mu} \right] \ , \\ K_{\mu} &= i e^{it} \left[\Omega_{\mu} \left(-\partial_{\rho} - i \tanh \rho \, \partial_{t} \right) - \frac{1}{\tanh \rho} \nabla_{\mu} \right] \ , \end{split}$$

where $\nabla_{\mu} = \frac{\partial}{\partial \Omega^{\mu}} - \Omega_{\mu} \Omega^{\nu} \frac{\partial}{\partial \Omega^{\nu}}$ is the covariant derivative on the unit sphere S^{d-1} .

In analogy with the CFT construction we can look for primary states, which are annihilated K_{μ} and are eigenstates of the hamiltonian, $D\phi = \Delta\phi$. The condition $K_{\mu}\phi = 0$ splits in one to proportional to Ω_{μ} and one term orthogonal to Ω_{μ} . The second term implies that ϕ is independ of the angular variables Ω^{μ} . The first term gives $(\partial_{\rho} + \Delta \tanh \rho) \phi = 0$, which implies that

$$\phi \propto \left(\frac{e^{-it}}{\cosh \rho}\right)^{\Delta} = \left(\frac{R}{X^0 - X^{d+1}}\right)^{\Delta}$$
.

This is the lowest energy state. One can get excited states acting with P_{μ} . Notice that all t states will have the same value of the quadratic Casimir

$$\frac{1}{2}J_{AB}J^{BA}\phi = \Delta(\Delta - d)\phi .$$

This way one can generate all normalizable solutions of $\nabla^2 \phi = m^2 \phi$ with $m^2 R^2 = \Delta(\Delta - d)$. T shows that the one-particle energy spectrum is given by $\omega = \Delta + l + 2n$ where l = 0, 1, 2, ...

the spin, generated by acting with $P_{\mu_1} \dots P_{\mu_l} - traces$, and $n = 0, 1, 2, \dots$ is generated by act with $(P^2)^n$.

Exercise 3.2. Given the symmetry of the metric (54) we can look for solutions of the form

$$\phi = e^{i\omega t} Y_l(\Omega) F(r) ,$$

where $Y_l(\Omega)$ is a spherical harmonic with eigenvalue -l(l+d-2) of the laplacian on the unit spherical. Derive a differential equation for F(r) and show that it is solved by

$$F(r) = (\cos r)^{\Delta} (\sin r)^{l} {}_{2}F_{1}\left(\frac{l+\Delta-\omega}{2}, \frac{l+\Delta+\omega}{2}, l+\frac{d}{2}, \sin r\right) , \qquad ($$

with $2\Delta = d + \sqrt{d^2 + 4(mR)^2}$. We chose this solution because it is smooth at r = 0. Now we denote to impose another boundary condition at the boundary of AdS $r = \frac{\pi}{2}$. Imposing that there no energy flux through the boundary leads to the quantization of the energies $|\omega| = \Delta + l + 2n$ of $n = 0, 1, 2, \ldots$ (see reference [8]).

If there are no interactions between the particles in AdS, then the Hilbert space is a Fock sp and the energy of a multi-particle state is just the sum of the energies of each particle. Turning small interactions leads to small energy shifts of the multi-particle states. This structure is v similar to the space of local operators in large N CFTs if we identify single-particle states w single-trace operators.

3.2. Quantum Field Theory in AdS

Let us now return to Euclidean signature and consider QFT on the AdS background. For simplic consider a free scalar field with action

$$S = \int_{AdS} dX \left[\frac{1}{2} \left(\nabla \phi \right)^2 + \frac{1}{2} m^2 \phi^2 \right] .$$

The two-point function $\langle \phi(X)\phi(Y)\rangle$ is given by the propagator $\Pi(X,Y)$, which obeys

$$\left[\nabla_X^2 - m^2\right] \Pi(X, Y) = -\delta(X, Y) .$$

From the symmetry of the problem it is clear that the propagator can only depend on the invariance $X \cdot Y$ or equivalently on the chordal distance $\zeta = (X - Y)^2 / R^2$. From now on we will set R = 1 and all lengths will be expressed in units of the AdS radius.

Exercise 3.3. Use (62) and (64) to show that

$$\Pi(X,Y) = \frac{\mathcal{C}_{\Delta}}{\zeta^{\Delta}} {}_{2}F_{1}\left(\Delta, \Delta - \frac{d}{2} + \frac{1}{2}, 2\Delta - d + 1, -\frac{4}{\zeta}\right) ,$$

where $2\Delta = d + \sqrt{d^2 + (2m)^2}$ and

$$\mathcal{C}_{\Delta} = rac{\Gamma(\Delta)}{2\pi^{rac{d}{2}}\Gamma\left(\Delta - rac{d}{2} + 1
ight)} \; .$$

For a free field, higher point functions are simply given by Wick contractions. For example

$$\langle \phi(X_1)\phi(X_2)\phi(X_3)\phi(X_4)\rangle = \Pi(X_1, X_2)\Pi(X_3, X_4) + \Pi(X_1, X_3)\Pi(X_2, X_4) + \Pi(X_1, X_4)\Pi(X_2, X_3) .$$

$$(4)$$

Weak interactions of ϕ can be treated perturbatively. Suppose the action includes a cubic term

$$S = \int_{AdS} dX \left[\frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 + \frac{1}{3!} g \phi^3 \right] . \tag{}$$

Then, there is a non-vanishing three-point function

$$\langle \phi(X_1)\phi(X_2)\phi(X_3)\rangle = -g \int_{AdS} dY \Pi(X_1,Y)\Pi(X_2,Y)\Pi(X_3,Y) + O(g^3) ,$$

and a connected part of the four-point function of order g^2 . This is very similar to perturbat QFT in flat space.

Given a correlation function in AdS we can consider the limit where we send all points infinity. More precisely, we introduce

$$\mathcal{O}(P) = \frac{1}{\sqrt{C_{\Delta}}} \lim_{\lambda \to \infty} \lambda^{\Delta} \phi (X = \lambda P + \dots),$$

where P is a future directed null vector in $\mathbb{R}^{d+1,1}$ and the ... denote terms that do not grow with whose only purpose is to enforce the AdS condition $X^2 = -1$. In other words, the operator $\mathcal{O}(P)$ is the limit of the field $\phi(X)$ when X approaches the boundary point P of AdS. Notice that, definition, the operator $\mathcal{O}(P)$ obeys the homogeneity condition (31). Correlation functions of are naturally defined by the limit of correlation functions of ϕ in AdS. For example, the two-point P is a future directed null vector in $\mathbb{R}^{d+1,1}$ and the ... denote terms that do not grow with two-points P is a future directed null vector in $\mathbb{R}^{d+1,1}$ and the ... denote terms that do not grow with two-points P is a future directed null vector in $\mathbb{R}^{d+1,1}$ and the ... denote terms that do not grow with two-points P is a future directed null vector in $\mathbb{R}^{d+1,1}$ and the ... denote terms that do not grow with two-points P is a future directed null vector in $\mathbb{R}^{d+1,1}$ and the ... denote terms that do not grow with two-points P is a future directed null vector in $\mathbb{R}^{d+1,1}$ and the ... denote the points P is a future directed null vector in $\mathbb{R}^{d+1,1}$ and the ... denote the points P is a future directed null vector in $\mathbb{R}^{d+1,1}$ and the ... denote the points P is a future directed null vector in $\mathbb{R}^{d+1,1}$ and the ... denote the points P is a future directed null vector in $\mathbb{R}^{d+1,1}$ and the ... denote the points P is a future directed null vector in $\mathbb{R}^{d+1,1}$ and the ... denote the points P is a future directed null vector in $\mathbb{R}^{d+1,1}$ and the ... denote the $\mathbb{R}^{d+1,1}$ and the ... denote the points $\mathbb{R}^{d+1,1}$ and $\mathbb{R}^{d+1,1}$ an

$$\langle \mathcal{O}(P_1)\mathcal{O}(P_2)\rangle = \frac{1}{(-2P_1 \cdot P_2)^{\Delta}} + O(g^2) ,$$

which is exactly the CFT two-point function of a primary operator of dimension Δ . The three-pofunction $\langle \mathcal{O}(P_1)\mathcal{O}(P_2)\mathcal{O}(P_3)\rangle$ is given by

$$-g C_{\Delta}^{-\frac{3}{2}} \int_{AdS} dX \Pi(X, P_1) \Pi(X, P_2) \Pi(X, P_3) + O(g^3) ,$$

where

function is given by

$$\Pi(X, P) = \lim_{\lambda \to \infty} \lambda^{\Delta} \Pi(X, Y = \lambda P + \dots) = \frac{C_{\Delta}}{(-2P \cdot X)^{\Delta}}$$

is the bulk to boundary propagator.

Exercise 3.4. Write the bulk to boundary propagator in Poincaré coordinates.

Exercise 3.5. Compute the following generalization of the integral in (79),

$$\int_{AdS} dX \prod_{i=1}^{3} \frac{1}{\left(-2P_i \cdot X\right)^{\Delta_i}} ,$$

and show that it reproduces the expected formula for the CFT three-point funct $\langle \mathcal{O}_1(P_1)\mathcal{O}_2(P_2)\mathcal{O}_3(P_3)\rangle$. It is helpful to use the integral representation

$$\frac{1}{\left(-2P\cdot X\right)^{\Delta}} = \frac{1}{\Gamma(\Delta)} \int_0^\infty \frac{ds}{s} s^{\Delta} e^{2sP\cdot X}$$

to bring the AdS integral to the form

$$\int_{AdS} dX e^{2X \cdot Q}$$

with Q a future directed timelike vector. Choosing the X^0 direction along Q and using the Poince coordinates (49) it is easy to show that

$$\int_{AdS} dX e^{2X \cdot Q} = \pi^{\frac{d}{2}} \int_0^\infty \frac{dz}{z} z^{-\frac{d}{2}} e^{-z + Q^2/z} \ .$$

To factorize the remaining integrals over s_1, s_2, s_3 and z it is helpful to change to the variate t_1, t_2, t_3 and z using

$$s_i = \frac{\sqrt{z \, t_1 t_2 t_3}}{t_i} \ .$$

3.2.1. State-Operator Map

We have seen that the correlation functions of the boundary operator (77) have the correct mogeneity property and SO(d+1,1) invariance expected of CFT correlators of a primary scale operator with scaling dimension Δ . We will now argue that they also obey an associative OI The argument is very similar to the one used in CFT. We think of the correlation functions vacuum expectation values of time ordered products

$$\langle \phi(X_1)\phi(X_2)\phi(X_3)\dots\rangle = \langle 0|\dots\hat{\phi}(\tau_3,\rho_3,\Omega_3)\hat{\phi}(\tau_2,\rho_2,\Omega_2)\hat{\phi}(\tau_1,\rho_1,\Omega_1)|0\rangle ,$$

where we assumed $\tau_1 < \tau_2 < 0 < \tau_3 < \dots$. We then insert a complete basis of states at $\tau = 0$

$$\langle \phi(X_1)\phi(X_2)\phi(X_3)\dots\rangle$$

$$= \sum_{\sigma} \langle 0|\dots\hat{\phi}(\tau_3,\rho_3,\Omega_3)|\psi\rangle\langle\psi|\hat{\phi}(\tau_2,\rho_2,\Omega_2)\hat{\phi}(\tau_1,\rho_1,\Omega_1)|0\rangle.$$

Using $\hat{\phi}(\tau, \rho, \Omega) = e^{\tau D} \hat{\phi}(0, \rho, \Omega) e^{-\tau D}$ and choosing an eigenbasis of the Hamiltonian $D = -\frac{\partial}{\partial \tau}$ is clear that the sum converges for the assumed time ordering. The next step, is to establish one-to-one map between the states $|\psi\rangle$ and boundary operators. It is clear that every bound operator (77) defines a state. Inserting the boundary operator at $P^A = (P^0, P^\mu, P^{d+1}) = (\frac{1}{2}, 0, 0)$ which is the boundary point defined by $\tau \to -\infty$ in global coordinates, we can write

$$\langle \dots \phi(X_3)\mathcal{O}(P)\rangle = \langle 0|\dots \hat{\phi}(\tau_3, \rho_3, \Omega_3)|\mathcal{O}\rangle$$
, (

where

$$\begin{aligned} |\mathcal{O}\rangle &= \lim_{\tau \to -\infty} \left(e^{-\tau} \cosh \rho \right)^{\Delta} \hat{\phi}(\tau, \rho, \Omega) |0\rangle \\ &= \sum_{\psi} |\psi\rangle \left(\cosh \rho \right)^{\Delta} \lim_{\tau \to -\infty} \langle \psi | \, e^{\tau(D-\Delta)} \hat{\phi}(0, \rho, \Omega) |0\rangle \ . \end{aligned}$$

The limit $\tau \to -\infty$ projects onto the primary state with wave function (67).

The map from states to boundary operators can be established using global time translat invariance,

$$\langle 0| \dots \hat{\phi}(\tau_3, \rho_3, \Omega_3) | \psi(0) \rangle$$

$$= \lim_{\tau \to -\infty} \langle 0| \dots \hat{\phi}(\tau_3, \rho_3, \Omega_3) e^{\tau D} | \psi(\tau) \rangle \equiv \langle \dots \phi(X_3) \mathcal{O}_{\psi}(P) \rangle$$
(6)

where $|\psi(\tau)\rangle = e^{-\tau D}|\psi\rangle$ and $P^A = \left(\frac{1}{2},0,\frac{1}{2}\right)$ is again the boundary point defined by $\tau \to -\infty$ global coordinates. The idea is that $|\psi(\tau)\rangle$ prepares a boundary condition for the path integer on a surface of constant τ and this surface converges to a small cap around the boundary per $P^A = \left(\frac{1}{2},0,\frac{1}{2}\right)$ when $\tau \to -\infty$. This is depicted in figure 2.

Fig. 2. Curves of constant τ (in blue) and constant ρ (in red) for AdS₂ stereographically projected to the disk (Poincaré disk). This shows how surfaces of constant τ converge to a boundary bound when $\tau \to -\infty$. cartesian coordinates in the plane of the figure are given by $\vec{w} = \frac{(\cosh \rho \sinh \tau, \sinh \rho)}{1 + \cosh \rho \cosh \tau}$ which puts the AdS₂ metric the form $ds^2 = \frac{4d\vec{w}^2}{1 - \vec{w}^2}$.

The Hilbert space of the bulk theory can be decomposed in irreducible representations of isometry group SO(d+1,1). These are the highest weight representations of the conformal gro labelled by the scaling dimension and SO(d) irrep of the the primary state. Therefore, the C conformal block decomposition of correlators follows from the partial wave decomposition in A i.e. the decomposition in intermediate eigenstates of the Hamiltonian organized in irreps of isometry group SO(d+1,1). For example, the conformal block decomposition of the disconnec part of the four-point function,

$$\langle \mathcal{O}(P_1)\dots\mathcal{O}(P_4)\rangle = \frac{1}{(P_{12}P_{34})^{\Delta}} + \frac{1}{(P_{13}P_{24})^{\Delta}} + \frac{1}{(P_{14}P_{23})^{\Delta}},$$

where $P_{ij} = -2P_i \cdot P_j$, is given by a sum of conformal blocks associated with the vacuum ϵ

two-particle intermediate states

$$\langle \mathcal{O}(P_1) \dots \mathcal{O}(P_4) \rangle = G_{0,0}(P_1, \dots, P_4) + \sum_{\substack{l=0 \ even}}^{\infty} \sum_{n=0}^{\infty} c_{n,l} G_{2\Delta+2n+l,l}(P_1, \dots, P_4) .$$

Exercise 3.6. Check this statement in d = 2 using the formula [28]

$$G_{E,l}(P_1, P_2, P_3, P_4) = \frac{k(E+l, z)k(E-l, \bar{z}) + k(E-l, z)k(E+l, \bar{z})}{(-2P_1 \cdot P_2)^{\Delta} (-2P_3 \cdot P_4)^{\Delta} (1 + \delta_{l,0})}$$
(6)

where

$$k(2\beta, z) = (-z)^{\beta} {}_{2}F_{1}(\beta, \beta, 2\beta, z)$$
.

Determine the coefficients $c_{n,l}$ for $n \leq 1$ by matching the Taylor series expansion around $z = \bar{z} = \mathbf{Extra}$: using a computer you can compute many coefficients and guess the general formula.

3.2.2. Generating function

There is an equivalent way of defining CFT correlation functions from QFT in AdS. We introduce the generating function

$$W\left[\phi_b\right] = \left\langle e^{\int_{\partial AdS} dP\phi_b(P)\mathcal{O}(P)} \right\rangle ,$$

where the integral over ∂AdS denotes an integral over a chosen section of the null cone in \mathbb{R}^{d+1} with its induced measure. We impose that the source obeys $\phi_b(\lambda P) = \lambda^{\Delta-d}\phi_b(P)$ so that integral is invariant under a change of section, i.e. conformal invariant. For example, in Poincaré section the integral reduces to $\int d^dx \phi_b(x) \mathcal{O}(x)$. Correlation functions are easily obtain with functional derivatives

$$\langle \mathcal{O}(P_1) \dots \mathcal{O}(P_n) \rangle = \left. \frac{\delta}{\delta \phi_b(P_1)} \dots \frac{\delta}{\delta \phi_b(P_n)} W \left[\phi_b \right] \right|_{\phi_b = 0} .$$

If we set the generating function to be equal to the path integral over the field ϕ in AdS

$$W\left[\phi_{b}\right] = \frac{\int_{\phi \to \phi_{b}} \left[d\phi\right] e^{-S\left[\phi\right]}}{\int_{\phi \to 0} \left[d\phi\right] e^{-S\left[\phi\right]}} ,$$

with the boundary condition that it approaches the source ϕ_b at the boundary,

$$\lim_{\lambda \to \infty} \lambda^{d-\Delta} \phi(X = \lambda P + \dots) = \frac{1}{2\Delta - d} \frac{1}{\sqrt{C_{\Lambda}}} \phi_b(P) ,$$

then we recover the correlation functions of \mathcal{O} defined above as limits of the correlation function of ϕ

For a quadratic bulk action, the ratio of path integrals in (95) is given e^{-S} computed on classical solution obeying the required boundary conditions. A natural guess for this solution

$$\phi(X) = \sqrt{C_{\Delta}} \int_{\partial AdS} dP \frac{\phi_b(P)}{(-2P \cdot X)^{\Delta}} . \tag{}$$

This automatically solves the AdS equation of motion $\nabla^2 \phi = m^2 \phi$, because it is an homogeneous function of weight $-\Delta$ and it obeys $\partial_A \partial^A \phi = 0$ in the embedding space (see equations (62) as

(1

TASI Lectures on AdS/CFT

(64)). To see that it also obeys the boundary condition (96) it is convenient to use the Poinc section.

Exercise 3.7. In the Poincaré section (30) and using Poincaré coordinates (49), formula (reads

$$\phi(z,x) = \sqrt{C_{\Delta}} \int d^d y \frac{z^{\Delta} \phi_b(y)}{(z^2 + (x-y)^2)^{\Delta}}$$

and (96) reads

$$\lim_{z \to 0} z^{\Delta - d} \phi(z, x) = \frac{1}{2\Delta - d} \frac{1}{\sqrt{C_{\Delta}}} \phi_b(x) .$$

Show that (99) follows from (98). You can assume $2\Delta > d$.

The cubic term $\frac{1}{3!}g\phi^3$ in the action will lead to (calculable) corrections of order g in the classissolution (97). To determine the generating function $W[\phi_b]$ in the classical limit we just have compute the value of the bulk action (76) on the classical solution. However, before doing the we have to address a small subtlety. We need to add a boundary term to the action (76) in or to have a well posed variational problem.

Exercise 3.8. The coefficient β should be chosen such that the quadratic action ^m

$$S_2 = \int_{AdS} dw \sqrt{G} \left[\frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 \right] + \beta \int_{AdS} dw \sqrt{G} \nabla_\alpha (\phi \nabla^\alpha \phi)$$
 (2)

is stationary around a classical solution obeying (99) for any variation $\delta \phi$ that preserves the bou ary condition, i.e.

$$\delta\phi(z,x) = z^{\Delta} \left[f(x) + O(z) \right] . \tag{1}$$

Show that $\beta = \frac{\Delta - d}{d}$ and that the on-shell action is given by a boundary term

$$S_2 = \frac{2\Delta - d}{2d} \int_{AdS} dw \sqrt{g} \, \nabla_\alpha \left(\phi \nabla^\alpha \phi \right) . \tag{1}$$

Finally, show that for the classical solution (98) this action is given by ⁿ

$$S_2 = -\frac{1}{2} \int d^d y_1 d^d y_2 \phi_b(y_1) \phi_b(y_2) K(y_1, y_2) , \qquad (1)$$

where

$$K(y_1, y_2) = C_{\Delta} \frac{2\Delta - d}{d} \lim_{z \to 0} \int \frac{d^d x}{z^{d-1}} \frac{z^{\Delta}}{(z^2 + (x - y_1)^2)^{\Delta}} \partial_z \frac{z^{\Delta}}{(z^2 + (x - y_2)^2)^{\Delta}}$$
$$= \frac{1}{(y_1 - y_2)^{2\Delta}}$$

is the CFT two point function (78).

^mHere w stands for a generic coordinate in AdS and the index α runs over the d+1 dimensions of AdS.

ⁿThis integral is divergent if the source ϕ_b is a smooth function and $\Delta > \frac{d}{2}$. The divergence comes from the sl distance limit $y_1 \to y_2$ and does not affect the value of correlation functions at separate points. Notice that a sr value of z > 0 provides a UV regulator.

Exercise 3.9. Using $\phi = \phi_0 + O(g)$ with ϕ_0 given by (97), show that the complete on-shell act is given by

$$S = -\frac{1}{2} \int d^d y_1 d^d y_2 \phi_b(y_1) \phi_b(y_2) K(y_1, y_2) + \frac{1}{3!} g \int_{AdS} dX \left[\phi_0(X) \right]^3 + O(g^2) \ ,$$

and that this leads to the three-point function (79). Extra: Compute the terms of $O(g^2)$ in on-shell action.

We have seen that QFT on an AdS background naturally defines conformal correlation function living on the boundary of AdS. Moreover, we saw that a weakly coupled theory in AdS gives to factorization of CFT correlators like in a large N expansion. However, there is one miss ingredient to obtain a full-fledged CFT: a stress-energy tensor. In the next section, we will that this requires dynamical gravity in AdS. The next exercise also shows that a free QFT AdS_{d+1} can not be dual to a local CFT_d.

Exercise 3.10. Compute the free-energy of a gas of free scalar particles in AdS. Since particle are free and bosonic one can create multi-particle states by populating each single particle stan arbitrary number of times. That means that the total partition function is a product over single particle states and it is entirely determined by the single particle partition function. M precisely, show that

$$F = -T \log Z = -T \log \prod_{\psi_{sp}} \left(\sum_{k=0}^{\infty} q^{kE_{\psi_{sp}}} \right) = -T \sum_{n=1}^{\infty} \frac{1}{n} Z_1(q^n) , \qquad (1$$

$$Z_1(q) = \sum_{\psi_{sp}} q^{E_{\psi_{sp}}} = \frac{q^{\Delta}}{(1-q)^d} , \qquad (1$$

where $q=e^{-\frac{1}{RT}}$ and we have used the single-particle spectrum of the hamiltonian $D=-\frac{\partial}{\partial \tau}$ AdS in global coordinates. Show that

$$F \approx -\zeta(d+1)R^d T^{d+1}$$

in the high temperature regime and compute the entropy using the thermodynamic relation $S = \frac{\partial F}{\partial T}$. Compare this result with the expectation

$$S \sim (RT)^{d-1} , \qquad ($$

for the high temperature behaviour of the entropy of a CFT on a sphere S^{d-1} of radius R. section 4.3 of reference [29] for more details.

3.3. Gravity with AdS boundary conditions

Consider general relativity in the presence of a negative cosmological constant

$$I[G] = \frac{1}{\ell_P^{d-1}} \int d^{d+1} w \sqrt{G} \left[\mathcal{R} - 2\Lambda \right] . \tag{1}$$

The AdS geometry

$$ds^2 = R^2 \frac{dz^2 + dx_\mu dx^\mu}{z^2} \ , \tag{1}$$

TASI-AdSCFT-chap

TASI Lectures on AdS/CFT

is a maximally symmetric classical solution with $\Lambda = -\frac{d(d-1)}{2R^2}$. When the AdS radius R is making larger than the Planck length ℓ_P the metric fluctuations are weakly coupled and form an approximate Fock space of graviton states. One can compute the single graviton states and verify they are in one-to-one correspondence with the CFT stress-tensor operator and its descendary (with AdS energies matching scaling dimensions). One can also obtain CFT correlation function of the stress-energy tensor using Witten diagrams in AdS. The new ingredients are the bulk boundary and bulk to bulk graviton propagators [30–34].

In the gravitational context, it is nicer to use the partition function formulation

$$Z[g_{\mu\nu}, \phi_b] = \int_{G \to g \atop \phi \to \phi} [dG] [d\phi] e^{-I[G, \phi]}$$
(1)

where

$$I[G,\phi] = \frac{1}{\ell_P^{d-1}} \int d^{d+1}w \sqrt{G} \left[\mathcal{R} - 2\Lambda + \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 \right]$$
 (1)

and the boundary condition are

$$ds^{2} = G_{\alpha\beta}dw^{\alpha}dw^{\beta} = R^{2}\frac{dz^{2} + dx^{\mu}dx^{\nu}\left[g_{\mu\nu}(x) + O(z)\right]}{z^{2}},$$

$$\phi = \frac{z^{d-\Delta}}{2\Delta - d}\left[\phi_{b}(x) + O(z)\right].$$
(1)

By construction the partition function is invariant under diffeomorphisms of the boundary met $g_{\mu\nu}$. Therefore, this definition implies the Ward identity (18). The generating function is a invariant under Weyl transformations

$$Z\left[\Omega^2 g_{\mu\nu}, \Omega^{\Delta - d} \phi_b\right] = Z\left[g_{\mu\nu}, \phi_b\right] \qquad (naive)$$

This follows from the fact that the boundary condition

$$ds^{2} = R^{2} \frac{dz^{2} + dx^{\mu} dx^{\nu} \left[\Omega^{2}(x)g_{\mu\nu}(x) + O(z)\right]}{z^{2}}$$

$$\phi = \frac{z^{d-\Delta}}{2\Delta - d} \left[\Omega^{\Delta - d}(x)\phi_{b}(x) + O(z)\right]$$
(1)

can be mapped to (113) by the following coordinate transformation

$$z \to z \,\Omega - \frac{1}{4} z^3 \Omega \left(\partial_\mu \log \Omega\right)^2 + O(z^5)$$

$$x^\mu \to x^\mu - \frac{1}{2} z^2 \partial^\mu \log \Omega + O(z^4)$$

$$(1)$$

where indices are raised and contracted using the metric $g_{\mu\nu}$ and its inverse. In other words, a b geometry that satisfies (113) also satisfies (115) with an appropriate choice of coordinates. If partition function (111) was a finite quantity this would be the end of the story. However, even the classical limit, where $Z \approx e^{-I}$, the partition function needs to be regulated. The divergen originate from the $z \to 0$ region and can be regulated by cutting off the bulk integrals at $z = \epsilon$ it happened for the scalar case discussed above). Since the coordinate transformation (116) do not preserve the cutoff, the regulated partition function is not obviously Weyl invariant. This latest transformation (116) do not preserve the cutoff, the regulated partition function is not obviously Weyl invariant.

been studied in great detail in the context of holographic renormalization [35, 36]. In particular

it leads to the Weyl anomaly $g^{\mu\nu}T_{\mu\nu} \neq 0$ when d is even. The crucial point is that this is a effect that does not affect the connected correlation functions of operators at separate points. particular, the integrated form (21)=(23) of the conformal Ward identity is valid.

We do not now how to define the quantum gravity path integral in (111). The best we can is a semiclassical expansion when $\ell_P \ll R$. This semiclassical expansion gives rise to connect correlators of the stress tensor $T_{\mu\nu}$ that scale as

$$\langle T_{\mu_1\nu_1}(x_1)\dots T_{\mu_n\nu_n}(x_n)\rangle_c \sim \left(\frac{R}{\ell_P}\right)^{d-1}$$
 (1)

This is exactly the scaling (46) we found from large N factorization if we identify $N^2 \sim \left(\frac{R}{\ell_P}\right)^d$. This suggests that CFTs related to semiclassical Einstein gravity in AdS, should have a la number of local degrees of freedom. This can be made more precise. The two-point function the stress tensor in a CFT is given by

$$\langle T_{\mu\nu}(x)T_{\sigma\rho}(0)\rangle = \frac{C_T}{S_d^2} \frac{1}{x^{2d}} \left[\frac{1}{2} I_{\mu\sigma} I_{\nu\rho} + \frac{1}{2} I_{\mu\rho} I_{\nu\sigma} - \frac{1}{d} \delta_{\mu\nu} \delta_{\sigma\rho} \right] , \qquad (1$$

where $S_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}$ is the volume of a (d-1)-dimensional unit sphere and

$$I_{\mu\nu} = \delta_{\mu\nu} - 2\frac{x_{\mu}x_{\nu}}{r^2} \ .$$
 (1)

The constant C_T provides an (approximate) measure of the number of degrees of freedom. instance, for n_{φ} free scalar fields and n_{ψ} free Dirac fields we find [37]

$$C_T = n_{\varphi} \frac{d}{d-1} + n_{\psi} 2^{\left[\frac{d}{2}\right]-1} d ,$$
 (1)

where [x] is the integer part of x. If the CFT is described by Einstein gravity in AdS, we find [x]

$$C_T = 8\frac{d+1}{d-1} \frac{\pi^{\frac{d}{2}} \Gamma(d+1)}{\Gamma^3(\frac{d}{2})} \frac{R^{d-1}}{\ell_P^{d-1}} , \qquad ($$

which shows that the CFT dual of a semiclassical gravitational theory with $R \gg \ell_P$, must have very large number of degrees of freedom.

In summary, semiclassical gravity with AdS boundary conditions gives rise to a set of correlat functions that have all the properties (conformal invariance, Ward identities, large N factorization expected for the correlation functions of the stress tensor of a large N CFT. Therefore, it is natural to ask if a CFT with finite N is a quantum theory of gravity.

4. The AdS/CFT Correspondence

4.1. Quantum Gravity as CFT

What is quantum gravity? The most conservative answer is a standard quantum mechanic theory whose low energy dynamics around a weakly curved background is well described by general relativity (or some other theory with a dynamical metric). This viewpoint is particularly use with asymptotically AdS boundary conditions. In this case, we can view the AdS geometry we

 $\overline{^{\text{o}}}$ However, for d > 2, C_T is not a c-function that always decreases under Renormalization Group flow.

a radius much larger than the Planck length as a background for excitations (gravitons) that weakly coupled at low energies. Therefore, we just need to find a quantum system that reproduct the dynamics of low energy gravitons in a large AdS. In fact, we should be more precise about word "reproduces". We should define observables in quantum gravity that our quantum system treproduce. This is not so easy because the spacetime geometry is dynamical and we can define local operators. In fact, the only well defined observables are defined at the (conform boundary like the partition function (111) and the associated correlation functions obtained taking functional derivatives. But in the previous section we saw that these observables have the properties expected for the correlation functions of a large N CFT. Thus, quantum grave with AdS boundary conditions is equivalent to a CFT.

There are many CFTs and not all of them are useful theories of quantum gravity. Firstly, i convenient to consider a family of CFTs labeled by N, so that we can match the bulk semiclass expansion using $N^2 \sim \left(\frac{R}{\ell_P}\right)^{d-1}$. In the large N limit, every CFT single-trace primary operator scaling dimension Δ gives rise to a weakly coupled field in AdS with mass $m \sim \Delta/R$. Therefore are looking for a UV completion of pure gravity in AdS without any other low energy fields, tl we need to find a CFT where all single-trace operators have parametrically large dimension, exc the stress tensor. This requires strong coupling and seems rather hard to achieve. Notice t a weakly coupled CFT with gauge group SU(N) and fields in the adjoint representation has infinite number of primary single-trace operators with order 1 scaling dimension. It is natural conjecture that large N factorization and correct spectrum of single-trace operators are suffici conditions for a CFT to provide a UV completion of General Relativity (GR) [38]. However, this is not obvious because we still have to check if the CFT correlation functions of $T_{\mu\nu}$ ma the prediction from GR in AdS. For example, the stress tensor three-point function is fixed conformal symmetry to be a linear combination of 3 independent conformal invariant structure P On the other hand, the action (109) predicts a specific linear combination. It is not obvious t all large N CFTs with the correct spectrum will automatically give rise to the same three-po function. There has been some recent progress in this respect. The authors of [39] used causal to show that this is the case. Unfortunately, their argument uses the bulk theory and can be formulated entirely in CFT language. In any case, this is just the three-point fuction and predicts the leading large N behaviour of all n-point functions. It is an important open problem. to prove the following conjecture:

Any large N CFT where all single-trace operators, except the stress tensor, have parametrical large scaling dimensions, has the stress tensor correlation functions predicted by General Relation AdS.

Perhaps the most pressing question is if such CFTs exist at all. At the moment, we do know the answer to this question but in the next section we will discuss closely related example that are realized in the context of string theory.

If some CFTs are theories of quantum gravity, it is natural to ask if there are other CFT servables with a nice gravitational interpretation. One interesting example that will be extensive discussed in this school is the entanglement entropy of a subsystem. In section 4.3, we will disc

PHere we are assuming $d \ge 4$. For d = 3 there are only 2 independent structures.

how CFT thermodynamics compares with black hole thermodynamics in AdS. In addition, in stion 4.4 we will give several examples of QFT phenomena that have beautiful geometric mean in the holographic dual.

4.2. String Theory

The logical flow presented above is very different from the historical route that led to the AdS/C correspondence. Moreover, from what we said so far AdS/CFT looks like a very abstract constrtion without any concrete examples of CFTs that have simple gravitational duals. If this we the full story probably I would not be writing these lecture notes. The problem is that we have stated properties that we want for our CFTs but we have said nothing about how to constrthese CFTs besides the fact that they should be strongly coupled and obey large N factorizating Remarkably, string theory provides a "method" to find explicit examples of CFTs and their disparitational theories.

The basic idea is to consider the low energy description of D-brane systems from the perspect of open and closed strings. Let us illustrate the argument by quickly summarizing the prototical example of AdS/CFT [1]. Consider N coincident D3-branes of type IIB string theory in dimensional Minkowski spacetime. Closed strings propagating in 10 dimensions can interact with D3-branes. This interaction can be described in two equivalent ways:

- (a) D3-branes can be defined as a submanifold where open strings can end. This means to a closed string interacts with the D3-branes by breaking the string loop into an open string we endpoints attached to the D3-branes.
- (b) D3-branes can be defined as solitons of closed string theory. In other words, they creat non-trivial curved background where closed strings propagate.

Fig. 3. (a) Closed string scattering off branes in flat space. (b) Closed string propagating in a curved background branes in flat space.

These two alternatives are depicted in figure 3. Their equivalence is called open/closed du

ity. The AdS/CFT correspondence follows from the low-energy limit of open/closed duality. implement this low-energy limit by taking the string length $\ell_s \to 0$, keeping the string coupl g_s , the number of branes N and the energy fixed. In description (a), the low energy excitation of the system form two decoupled sectors: massless closed strings propagating in 10 dimension Minkoski spacetime and massless open strings attached to the D3-branes, which at low energy are well described by $\mathcal{N}=4$ Supersymmetric Yang-Mills (SYM) with gauge group SU(N). description (b), the massless closed strings propagate in the following geometry

$$ds^{2} = \frac{1}{\sqrt{H(r)}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \sqrt{H(r)} \left[dr^{2} + r^{2} d\Omega_{5}^{2} \right] , \qquad (1)$$

where $\eta_{\mu\nu}$ is the metric of the 4 dimensional Minkowski space along the branes and

$$H(r) = 1 + \frac{R^4}{r^4}$$
, $R^4 = 4\pi g_s N \ell_s^4$. (1)

Naively, the limit $\ell_s \to 0$ just produces 10 dimensional Minkowski spacetime. However, one has be careful with the region close to the branes at r=0. A local high energy excitation in this reg will be very redshifted from the point of view of the observer at infinity. In order to determ the correct low-energy limit in the region around r=0 we introduce a new coordinate $z=R^2$ which we keep fixed as $\ell_s \to 0$. This leads to

$$ds^{2} = R^{2} \frac{dz^{2} + \eta_{\mu\nu} dx^{\mu} dx^{\nu}}{z^{2}} + R^{2} d\Omega_{5}^{2} , \qquad (1$$

which is the metric of $AdS_5 \times S^5$ both with radius R. Therefore, description (b) also leads t decoupled sectors of low energy excitations: massless closed strings in 10D and full type IIB str theory on $AdS_5 \times S^5$. This led Maldacena to conjecture that

$$\begin{array}{ccc} SU(N) \; \mathrm{SYM} & \Leftrightarrow & \mathrm{IIB \; strings \; on \; AdS}_5 \times S^5 \\ g_{YM}^2 = 4\pi g_s & \Leftrightarrow & \frac{R^4}{\ell_+^4} = g_{YM}^2 N \equiv \lambda \end{array}$$

SYM is conformal for any value of N and the coupling constant g_{YM}^2 . The lagrangian of theory involves the field strength

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i\left[A_{\mu}, A_{\nu}\right] , \qquad ($$

6 scalars fields Φ^m and 4 Weyl fermions Ψ^a , which are all valued in the adjoint representation SU(N). The lagrangian is given by

$$\frac{1}{g_{YM}^{2}} \operatorname{Tr} \left[\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} \left(D^{\mu} \Phi^{m} \right)^{2} + \bar{\Psi}^{a} \sigma^{\mu} D_{\mu} \Psi_{a} \right. \\
\left. - \frac{1}{4} \left[\Phi^{m}, \Phi^{n} \right]^{2} - C_{m}^{ab} \Psi_{a} \left[\Phi^{m}, \Psi_{b} \right] - \bar{C}_{mab} \bar{\Psi}^{a} \left[\Phi^{m}, \bar{\Psi}^{b} \right] \right] , \tag{1}$$

where D_{μ} is the gauge covariant derivative and C_{m}^{ab} and \bar{C}_{mab} are constants fixed by the SO(6) SU(4) global symmetry of the theory. Notice that the isometry group of $AdS_5 \times S^5$ is SO(5, 1 SO(6), which matches precisely the bosonic symmetries of SYM: conformal group \times global SO(6). There are many interesting things to say about SYM. In some sense, SYM is the simplest interact

QFT in 4 dimensions [40]. However, this is not the focus of these lectures and we refer the rea to the numerous existing reviews about SYM [10, 41].

The remarkable conjecture of Maldacena has been extensively tested since it was first propo in 1997 [1]. To test this conjecture one has to be able to compute the same observable on be sides of the duality. This is usually a very difficult task. On the SYM side, the regime accessible perturbation theory is $g_{YM}^2 N \ll 1$. This implies $g_s \ll 1$, which on the string theory side suppressing loops. However, it also implies that the AdS radius of curvature R is much smaller than string length ℓ_s . This means that the string worldsheet theory is very strongly coupled. In fathe easy regime on the string theory side is $g_s \ll 1$ and $R \gg \ell_s$, so that (locally) strings propaging an approximately flat space. Thus, directly testing the conjecture is a formidable task. The are three situations where a direct check can be made anality cally.

The first situation arises when some observable is independent of the coupling constant. In tase, one can compute it at weak coupling $\lambda \ll 1$ using the field theory description and at stracture coupling $\lambda \gg 1$ using the string theory description. Usually this involves completely differ techniques but in the end the results agree. Due to the large supersymmetry of SYM there many observables that do not depend on the coupling constant. Notable examples include scaling dimensions of half BPS single-trace operators and their three-point functions [42].

The second situation involves observables that depend on the coupling constant λ but prese enough supersymmetry that can be computed at any value of λ using a technique called localizati Important examples of this type are the sphere partition function and the expectation value circular Wilson loops [43, 44].

Finally, the third situation follows from the conjectured integrability of SYM in the plantimit. Assuming integrability one can compute the scaling dimension of non-protected single-troperators at any value of λ and match this result with SYM perturbative calculations for $\lambda \ll 1$ with weakly coupled string theory for $\lambda \gg 1$ (see figure 1 from [45]). Planar scattering amplituan three-point functions of single-trace operators can also be computed using integrability [46, 4].

There are also numerical tests of the gauge/gravity duality. The most impressive study in t context, was the Monte-Carlo simulation of the BFSS matrix model [48] at finite temperature to reproduced the predictions from its dual black hole geometry [49–55].

How does the Maldacena conjecture fit into the general discussion of the previous section. One important novelty is the presence of a large internal sphere on the gravitational side. We operform a Kaluza-Klein reduction on S^5 and obtain an effective action for AdS_5

$$\frac{1}{(2\pi)^7 \ell_s^8} \int d^{10}x \sqrt{g_{10}} e^{-2\Phi} \left[\mathcal{R}_{10} + \dots \right] \to \frac{R^5}{8(2\pi)^4 g_s^2 \ell_s^8} \int d^5x \sqrt{g_5} \left[\mathcal{R}_5 + \dots \right] .$$

This allows us to identify the 5 dimensional Planck length

$$\ell_P^3 = \frac{8(2\pi)^4 g_s^2 \ell_s^8}{R^5}$$

and verify the general prediction $N^2 \sim R^3/\ell_P^3$. Remarkably, at strong coupling $\lambda \gg 1$ all sing trace non-protected operators of SYM have parametrically large scaling dimensions. This is sim to understand from the string point of view. Massive string states have masses $m \sim 1/\ell_s$. It we saw in the previous sections that the dual operator to an AdS field of mass m has a scale

dimension $\Delta \sim mR \sim R/\ell_s \sim \lambda^{\frac{1}{4}}$. The only CFT operators that have small scaling dimens for $\lambda \gg 1$ are dual to massless string states that constitute the fields of type IIB supergrav (SUGRA). Therefore, one can say that SYM (with $N \gg \lambda \gg 1$) provides a UV completion of SUGRA with $AdS_5 \times S^5$ boundary conditions.

String theory provides more concrete examples of AdS/CFT dual pairs. These examples usual involve SCFTs (or closely related non-supersymmetry theories). This is surprising because SU played no role in our general discussion. At the moment, it is not known if SUSY is an essemingredient of AdS/CFT or if it is only a useful property that simplifies the calculations. The lat seems more likely but notice that SUSY might be essential to stabilize very strong coupling a allow the phenomena of large scaling dimensions for almost all single-trace operators. Anot observation is that it turns out to be very difficult to construct AdS duals with small interspaces (for SYM we got a 5-sphere with the same radius of AdS_5). It is an open problem to for CFTs with gravity duals in less than 10 dimensions (see [56, 57] for attempts in this direction)

Another interesting class of examples are the dualities between vector models and Higher S Theories (HST) [58, 59]. Consider for simplicity the free O(n) model in 3 dimensions

$$S = \int d^3x \sum_{i=1}^n \frac{1}{2} \partial_\mu \varphi^i \partial^\mu \varphi^i \ . \tag{1}$$

In this case, the analogue of single-trace operators are the O(n) singlets $\mathcal{O}_l = \sum_i \varphi^i \partial_{\mu_1} \dots \partial_{\mu}$ with even spin l and dimension $\Delta = 1 + l$. At large n, the correlation functions of these operat factorize with n playing the role of N^2 in a SU(N) gauge theory with adjoint fields. The AdS d of this CFT is a theory with one massless field for each even spin. These theories are rather n local and they can not be defined in flat spacetime. Even if we introduce the relevant interact $(\varphi^i \varphi^i)^2$ and flow to the IR fixed point (Wilson-Fisher fixed point), the operators \mathcal{O}_l with l > 2 anomalous dimensions of order $\frac{1}{n}$ and therefore the classical AdS theory still contains the sa number of massless higher spin fields. This duality has been extended to theories with ferminand to theories where the global O(n) symmetry is gauged using Chern-Simons gauge fields. I remarkable that HST in AdS seems to have the correct structure to reproduce the CFT observable that have been computed so far. Notice that in these examples of AdS/CFT supersymmetry plano role. However, it is unclear if the AdS description is really useful in this case. In practice, large n limit of these vector models is solvable and the dual HST in AdS is rather complicated work with even at the classical level. There are also analogous models in AdS₃/CFT₂ duality [6]

4.3. Finite Temperature

In section 3.3, we argued that holographic CFTs must have a large number of local degrees freedom, using the two-point function of the stress tensor. Another way of counting degrees freedom is to look at the entropy density when the system is put at finite temperature. For a C in flat space and infinite volume, the temperature dependence of the entropy density is fixed

^qIn practice it was very useful because it led to an intensive study of Chern-Simons matter theories, which gave to the remarkable conjecture of fermion/boson duality in 3 dimensions [60, 61].

dimensional analysis because there is no other scale available,

$$s = c_s T^{d-1} (1$$

The constant c_s is a physical measure of the number of degrees of freedom.

The gravitational dual of the system at finite temperature is a black brane in asymptotica AdS space. The Euclidean metric is given by

$$ds^{2} = \frac{R^{2}}{z^{2}} \left[\frac{dz^{2}}{1 - (z/z_{H})^{d}} + \left(1 - \frac{z^{d}}{z_{H}^{d}} \right) d\tau^{2} + \delta_{ij} dx^{i} dx^{j} \right] . \tag{1}$$

Exercise 4.1. Show that in order to avoid a conical defect at the horizon $z=z_H$, we need identify Euclidean time τ with period $\frac{4\pi z_H}{d}$. This fixes the Hawking temperature $T=\frac{d}{4\pi z_H}$.

The formula $T = \frac{d}{4\pi z_H}$ illustrates a general phenomena in holography: high energy correspond to the region close to the boundary and low energy corresponds to the deep interior of the degeometry.

The entropy of the system is given by the Bekenstein-Hawking formula

$$S = \frac{A_H}{4G_N} = \frac{4\pi}{\ell_P^{d-1}} \frac{R^{d-1}}{z_H^{d-1}} \int d^{d-1}x \qquad \Rightarrow \qquad c_s = \frac{(4\pi)^d}{d^{d-1}} \frac{R^{d-1}}{\ell_P^{d-1}} \ . \tag{1}$$

As expected c_s is very large in the bulk classical limit $R \gg \ell_P$. Interestingly, the ratio

$$\frac{c_s}{C_T} = \frac{\pi^{\frac{d}{2}}}{8} \left(\frac{4}{d}\right)^d \frac{d-1}{d+1} \frac{\Gamma^3\left(\frac{d}{2}\right)}{\Gamma(d)} \tag{1}$$

only depends on the spacetime dimension d if the CFT has a classical bulk dual [63]. It wo be very nice to prove that all large N CFTs where all single-trace operators, except the stressor, have parametrically large scaling dimensions, satisfy (132). Notice that (132) is automatically large scaling dimensions, satisfy (132). Notice that (132) is automatically large scaling dimensions, satisfy (132). Notice that (132) is automatically large scaling dimensions are uniquely fixed in terms of the central charge c. planar SYM, $C_T = 40N^2$ is independent of the 't Hooft coupling but c_s varies with λ (although not much, $c_s(\lambda = \infty) = \frac{3}{4}c_s(\lambda = 0)$). In this case, (132) is only satisfied at strong coupling, where c all primary operators with spin greater than 2 have parametrically large scaling dimensions.

Exercise 4.2. Consider a CFT on a sphere of radius L and at temperature T. In this can the entropy is a non-trivial function of the dimensioless combination LT. Let us compute a function assuming the CFT is well described by Einstein gravity with asymptotically AdS bound conditions. There are two possible bulk geometries that asymptote to the Euclidean boundary S S^{d-1} . The first is pure AdS

$$ds^{2} = R^{2} \left[\frac{dr^{2}}{1+r^{2}} + (1+r^{2}) d\tau^{2} + r^{2} d\Omega_{d-1}^{2} \right]$$
 (1)

with Euclidean time periodically identified and the second is Schwarzschild-AdS

$$ds^{2} = R^{2} \left[\frac{dr^{2}}{f(r)} + f(r)d\tilde{\tau}^{2} + r^{2}d\Omega_{d-1}^{2} \right] , \qquad (1)$$

where $f(r) = 1 + r^2 - \frac{m}{r^{d-2}}$. At the boundary $r = r_{max} \gg 1$, both solutions should be conforma $S^1 \times S^{d-1}$ with the correct radii. Show that this fixes the periodicities

$$\Delta \tau = \frac{1}{TL} \frac{r_{max}}{\sqrt{1 + r_{max}^2}} , \qquad \Delta \tilde{\tau} = \frac{1}{TL} \frac{r_{max}}{\sqrt{f(r_{max})}} . \tag{1}$$

Show also that regularity of the metric (134) implies the periodicity

$$\Delta \tilde{\tau} = \frac{4\pi}{f'(r_H)} = \frac{4\pi}{r_H d + \frac{d-2}{r_H}} ,$$
 (1)

where $r = r_H$ is the largest zero of f(r). Notice that this implies a minimal temperature Schwarzschild black holes in AdS, $T > \frac{\sqrt{d(d-2)}}{2\pi L}$.

Both (133) and (134) are stationary points of the Euclidean action (109). Therefore, we me compute the value of the on-shell action in order to decide which one dominates the path integers Show that the difference of the on-shell actions is given by

$$I_{BH} - I_{AdS} = -2S_d \frac{R^{d-1}}{\ell_D^{d-1}} \left[r_{max}^d \Delta \tau - \left(r_{max}^d - r_H^d \right) \Delta \tilde{\tau} \right]$$
 (1)

$$\longrightarrow S_d \frac{R^{d-1}}{\ell_P^{d-1}} \frac{1}{TL} r_H^{d-2} (1 - r_H^2) \tag{1}$$

where S_d is the area of a unit (d-1)-dimensional sphere and in the last step we took the lie $r_{max} \to \infty$. Conclude that the black hole only dominates the bulk path integral when $r_H > 1$, where $r_H > 1$ is the Hawking-Page phase transition [64]. It is natural to set free-energy of the AdS phase to zero because this phase corresponds to a gas of gravitons around AdS background whose free energy does not scale with the large parameter $(R/\ell_P)^{d-1}$. Therefore the free energy of the black hole phase is given by

$$F_{BH} = \frac{1}{L} S_d \frac{R^{d-1}}{\ell_P^{d-1}} r_H^{d-2} (1 - r_H^2) . {1}$$

Verify that the thermodynamic relation $\frac{\partial F}{\partial T} = -S$ agrees with the Bekenstein-Hawking formula the black hole entropy. Since this a first order phase transition you can also compute its latheat.

In the last exercise, we saw that for a holographic CFT on a sphere of radius L, the entropy discontinuous function of the temperature. In fact, we found that for sufficiently high temperature $T > \frac{d-1}{2\pi L}$, the entropy was very large $S \sim C_T$, while for lower temperatures the entropy was sn because it did not scale with C_T . This can be interpreted as deconfinement of the numerous degree of freedom measured by $C_T \gg 1$ which do not contribute to the entropy below the transit temperature $T_c = \frac{d-1}{2\pi L}$. How can this bevavior be understood from the point of view of a large gauge CFT?

4.4. Applications

The AdS/CFT correspondence (or the gauge/gravity duality more generally) is a useful framwork for thinking about strong coupling phenomena in QFT. Besides the specific examples

strongly coupled CFTs that can be studied in great detail using the gravitational dual description AdS/CFT provides a geometric reformulation of many effects in QFT. Usually, we do not know the precise gravitational dual of a given QFT of interest (like QCD) but it is still very useful study gravitational toy models that preserve the main features we are interested in. These mode enlarge our intuition because they are very different from QFT models based on weakly interact quasi-particles. There are many examples of QFT observables that have a nice geometric interptation in the dual gravitational description. Perhaps the most striking one is the computation entanglement entropy as the area of a minimal surface in the dual geometry [65]. Let us illustration the context of confining gauge theories like pure Yang-Mills theory.

Confinement means that the quark anti-quark potential between static quarks grows lines with the distance L at large distances

$$V(L) \approx \sigma L \; , \qquad L \to \infty \; , \tag{1}$$

where σ is the tension of the flux tube or effective string. This potential can be defined through the expectation value of a Wilson loop (in the fundamental representation)

$$W[C] = \text{Tr P exp} \oint_C A_{\mu} dx^{\mu} , \qquad (1$$

for a rectangular contour C with sides $T \times L$,

$$\langle W[C] \rangle \sim e^{-TV(L)} , \qquad T \to \infty .$$
 (1)

This is equivalent to the area law $\langle W[C] \rangle \sim e^{-\sigma Area[C]}$ for large contours. In the gauge/str duality there is a simple geometric rule to compute expectation values of Wilson loops [66]. On should evaluate the path integral

$$\langle W[C] \rangle = \int_{\partial \Sigma - C} [d\Sigma] e^{-S_s[\Sigma]} \tag{}$$

summing over all surfaces Σ in the dual geometry that end at the contour C at the boundar The path integral is weighted using the dual string world-sheet action. At large N, we expect that the dominant contribution comes from surfaces Σ with disk topology. In specific examplike SYM, this can be made very precise. For example, at large 't Hooft coupling the world-shaction reduces to Γ

$$S_s[\Sigma] = \frac{1}{4\pi \ell_s^2} Area[\Sigma] \ . \tag{1}$$

In this case, since the theory is conformal, there is no confinement and the quark anti-quark potential is Coulomb like,

$$V(L) = \frac{a(N,\lambda)}{L} \ . \tag{}$$

For most confining gauge theories (e.g. pure Yang-Mills theory) we do not know neither the d geometry nor the dual string world-sheet action. However, we can get a nice qualitative pictur

^rIn fact, the total area of Σ is infinite but the divergence comes from the region close to the boundary of AdS. To can be regulated by cutting of AdS at $z = \epsilon$, and renormalized by subtracting a divergent piece proportional to length of the contour C.

we assume (144) and only change the background geometry. The most general (d+1)-dimension geometry that preserves d-dimensional Poincaré invariance can be written as

$$ds^{2} = R^{2} \left[\frac{dz^{2}}{z^{2}} + A^{2}(z)dx^{\mu}dx_{\mu} \right] . \tag{1}$$

The profile of the function $A^2(z)$ encodes many properties of the dual QFT. For a CFT, so invariance fixes $A(z) \propto z^{-1}$. For asymptotically free gauge theories, we still expect that A diverges for $z \to 0$ however the function should be very different for larger values of z. In particular, it should have a minimum for some value $z = z_* > 0$. Let us see what this implies for expectation value of a large Wilson loop. The string path integral (143) will be dominated by surface Σ with minimal area. For large contours C, this surface will sink inside AdS until the value $z = z_*$ that minimizes $A^2(z)$ and the worldsheet area will be given by

$$R^2A^2(z_{\star})Area[C] + O(Length[C])$$
 (1)

Therefore, we find a confining potential with flux tube tension

Hawking-Page phase transition). The metric can then be written as

$$\sigma = \frac{A^2(z_\star)}{4\pi} \frac{R^2}{\ell_s^2} \ . \tag{1}$$

What happens if we put the QFT at finite temperature? In this case, we can probe confinem by computing

$$\langle W(C_x)\bar{W}(C_{x+L})\rangle_{\beta} = e^{-\beta F_{q\bar{q}}(\beta,L)}$$
 (1)

where C_x is the contour around the Euclidean time circle at the spatial position x (Polyakov loc $F_{q\bar{q}}(\beta,L)$ denotes the free energy of a static quark anti-quark pair at distance L and temperat $1/\beta$. If $F_{q\bar{q}}(\beta,L) \to \infty$ as we separate the pair, then we are in the confined phase. On the ot hand, if $F_{q\bar{q}}(\beta,L)$ remains finite when $L\to\infty$, we are in the deconfined phase. Let us see how tworks in the holographic dual. For low temperatures, the dual geometry is simply given by (1 with Euclidean time identified with period β . Therefore, the bulk minimal surface that ends C_x and C_{x+L} will have a cylindrical topology and its area will scale linearly with L at large L fact, we find $F_{q\bar{q}}(\beta,L)\approx\sigma L$ like in the vacuum. On the other hand, for high enough temperat we expect the bulk path integral to be dominated by a black hole geometry (see exercise 4.2 above).

$$ds^{2} = R^{2} \left[\frac{dz^{2}}{z^{2} f(z)} + f(z) d\tau^{2} + g(z) dx^{i} dx_{i} \right] , \qquad (1$$

where f(z) vanishes for some value $z=z_H$. This means that the Euclidean time circle is c tractible in the bulk. Therefore, for large L, the minimal surface has two disconnected pie with disk topology ending on C_x and C_{x+L} whose area remains finite when $L \to \infty$. This me deconfinement

$$\lim_{L \to \infty} \langle W(C_x) \bar{W}(C_{x+L}) \rangle_{\beta} = \langle W(C_x) \rangle_{\beta}^2 = e^{-2\beta F_q(\beta)} > 0.$$
 (6)

Another feature of a confining gauge theory is a mass gap and a discrete spectrum of mess and glueballs. To compute this spectrum using the bulk dual one should study fluctuations around the vacuum geometry (146). Consider for simplicity, a scalar field obeying $\nabla^2 \phi = m^2 \phi$. Si

we are interested in finding the spectrum of the operator $P_{\mu}P^{\mu}$ we look for solutions of the for $\phi = e^{ik\cdot x}\psi(z)$, which leads to

$$\frac{z}{A^d(z)}\partial_z \left(zA^d(z)\partial_z\psi\right) - \frac{k^2}{A^2(z)}\psi = m^2R^2\psi \ . \tag{1}$$

The main idea is that this equation will only have solutions that obey the boundary condition $\psi(0) = \psi(\infty) = 0$ for special discrete values of k^2 . In other words, we obtain a discrete m spectrum as expected for a confining gauge theory.

Exercise 4.3. Consider the simplest holographic model of a confining gauge theory: the hard z model. This is just a slice of AdS, i.e. we take A(z) = 1/z and cutoff space at $z = z_{\star}$. Show to (152) reduces to the Bessel equation

$$\left[z^2\partial_z^2 + z\partial_z - \alpha^2 - k^2 z^2\right]h(z) = 0 , \qquad ($$

where $\alpha^2 = m^2 R^2 + d^2/4$ and $h(z) = z^{-\frac{d}{2}} \psi(z)$. Finally, show that the boundary conditi $h(0) = h(z_*) = 0$, lead to the quantization

$$h_n(z) = J_\alpha \left(\frac{z}{z_*} u_{\alpha,n}\right) , \qquad m_n^2 = -k^2 = \frac{u_{\alpha,n}^2}{z_*^2} , \qquad n = 1, 2, \dots$$
 (1)

where $u_{\alpha,n}$ is the nth zero of the Bessel function J_{α} .

It is instructive to compare the lightest glueball mass m_1 with the flux tube tension $\sigma = \frac{1}{4\pi z_*^2}$ in the hard wall model. We find that $\frac{\sigma}{m_1^2} \sim \frac{R^2}{\ell_s^2}$. The fact that this ratio is of order 1 in pure Ya Mills theory is another indication that its holographic dual must be very stringy (curvature rad of the same order of the string length).

Above the deconfinement temperature, the system is described by a plasma of deconfinement partons (quarks and gluons in QCD). The gauge/gravity duality is also very useful to describe the strongly coupled plasma. The idea is that the hydrodynamic behavior of the plasma is dual to long wavelength fluctuations of the black hole horizon. This map can be made very precise and led to significant developments in the theory of relativistic hydrodynamics. One important feat of the gravitational description is that dissipation is built in because black hole horizons natural relax to equilibrium. A famous result from this line of work was the discovery of a universal rate of shear viscosity η to entropy density s. Any CFT dual to Einstein gravity in AdS has $\frac{\eta}{s} = 1$. This is a rather small number (water at room temperature has $\frac{\eta}{s} \sim 30$) but remarkably it is the same order of magnitude of that observed in the quark-gluon plasma produced in heavy collisions [67].

There are also many interesting applications of the gauge/gravity duality to Condensed Mat physics [9, 14]. There are many materials that are not well described by weakly coupled quaparticles. In this case, it is useful to have alternative models based on gravitational theories AdS that share the same qualitative features. This can give geometric intuition about the systin question.

The study of holographic models is also very useful for the discovery of general property of CFT (and QFT more generally). If one observes that a given property holds both in wear

coupled and in holographic CFTs, it is natural to conjecture that such property holds in all CF This reasoning has led to the discovery (and sometimes proof) of several important facts about CFTs, like the generalization of Zamolodchikov's c-theorem to d > 2 (known as F-theorem in d = 4) [68–71] or the existence of universal bounds on the three-point funct of the stress tensor and its relation to the idea of energy correlators [72–74].

Onother example along this line is the existence of "double-trace" operators with large spin any CFT. The precise statement is that in the OPE of two operators \mathcal{O}_1 and \mathcal{O}_2 there is an infin number of operators $\mathcal{O}_{n,l}$ of spin $l \gg 1$ and scaling dimension

$$\Delta_{n,l} \approx \Delta_1 + \Delta_2 + 2n + l + \frac{\gamma_n}{l^{\tau_{min}}} \tag{}$$

where τ_{min} is the minimal twist (dimension minus spin) of all the operators that appear in be OPEs $\mathcal{O}_1 \times \mathcal{O}_1$ and $\mathcal{O}_2 \times \mathcal{O}_2$. In a generic CFT, this will be the stress tensor with $\tau_{min} = d-2$ as one can derive explicit formulas for γ_n [75–78]. This statement has been proven using the conformation bootstrap equations but its physical meaning is more intuitive in the dual AdS language. Consist two particle primary states in AdS. Without interactions the energy of such states is given $\Delta_1 + \Delta_2 + 2n + l$ where $n = 0, 1, 2, \ldots$ is a radial quantum number and l is the spin. Turning interactions will change the energies of these two-particle states. However, the states with last spin and fixed n correspond to two particles orbitating each other at large distances and therefore they will suffer a small energy shift due to the gravitational long range force. At large spin, other interactions (corresponding to operators with higher twist) give subdominant contribution to this energy shift. In other words, the general result (155) is the CFT reflection of the simulation fact that interactions decay with distance in the dual AdS picture.

5. Mellin amplitudes

Correlation functions of local operators in CFT are rather complicated functions of the cross-rations. Since these are crucial observables in AdS/CFT it is useful to find simpler representations. T is the motivation to study Mellin amplitudes. They were introduced by G. Mack in 2009 [79, following earlier work [81, 82]. Mellin amplitudes share many of the properties of scatter amplitudes of dual resonance models. In particular, they are crossing symmetric and have simple analytic structure (related to the OPE). As we shall see, in the case of holographic CF we can take this analogy further and obtain bulk flat space scattering amplitudes as a limit of dual CFT Mellin amplitudes. Independently of AdS/CFT applications, Mellin amplitudes can useful to describe CFTs in general.

5.1. Definition

Consider the n-point function of scalar primary operators ^s

$$\langle \mathcal{O}_1(P_1) \dots \mathcal{O}_n(P_n) \rangle = \int [d\gamma] M(\gamma_{ij}) \prod_{1 \le i \le j \le n} \frac{\Gamma(\gamma_{ij})}{(-2P_i \cdot P_j)^{\gamma_{ij}}}$$
(1)

 $[\]overline{}^{s}$ We shall use the notation $M(\gamma_{ij})$ to denote a function $M(\gamma_{12}, \gamma_{13}, \dots)$ of all Mellin variables.

Conformal invariance requires weight $-\Delta_i$ in each P_i . This leads to constraints in the Me variables which can be conveniently written as

$$\sum_{j=1}^{n} \gamma_{ij} = 0 , \qquad \gamma_{ij} = \gamma_{ji} , \qquad \gamma_{ii} = -\Delta_i .$$
 (1)

Notice that for n=2 and n=3 the Mellin variables are entirely fixed by these constraints. these cases, there is no integral to do and the Mellin representation just gives the known form the conformal two and three point function. The integration measure $[d\gamma]$ is over the n(n-3) independent Mellin variables (including a factor of $\frac{1}{2\pi i}$ for each variable) and the integrat contours run parallel to the imaginary axis. The precise contour in the complex plane is dictarby the requirement that it should pass to the right/left of the semi-infinite sequences of poles the integrand that run to the left/right. This will become clear in the following example.

Fig. 4. Integration contour for the Mellin variable γ_{12} . The crosses represent (double) poles of the Γ-function given by (160) and (161). In general, the Mellin amplitude has several semi-infinite sequence of poles. Each sequeshould stay entirely on one side of the contour.

Consider the case of a four-point function of a scalar operator of dimension Δ . In this can there are two independent Mellin variables which we can choose to be γ_{12} and γ_{14} . This leads

$$\langle \mathcal{O}(P_1) \dots \mathcal{O}(P_4) \rangle = \frac{1}{(P_{13}P_{24})^{\Delta}} \int_{-i\infty}^{i\infty} \frac{d\gamma_{12}\gamma_{14}}{(2\pi i)^2} \hat{M}(\gamma_{12}, \gamma_{14}) u^{-\gamma_{12}} v^{-\gamma_{14}},$$
 (

where u and v are the cross ratios (11) and

$$\hat{M}(\gamma_{12}, \gamma_{14}) = M(\gamma_{12}, \gamma_{14}) \Gamma^2(\gamma_{12}) \Gamma^2(\gamma_{14}) \Gamma^2(\Delta - \gamma_{12} - \gamma_{14}). \tag{1}$$

Consider the first the complex plane of γ_{12} depicted in figure 4. The Γ -functions give rise semi-infinite sequences of (double) poles at

$$\gamma_{12} = 0, -1, -2, \dots \tag{1}$$

$$\gamma_{12} = \Delta - \gamma_{14}, \Delta - \gamma_{14} + 1, \Delta - \gamma_{14} + 2, \dots$$
 (1)

As we shall see in the next section, the Mellin amplitude $M(\gamma_{ij})$ also has the same type of serinfinite sequences of poles. The integration contour should pass in the middle of these sequences poles as shown in figure 4. Invariance of the four-point function under permutation of the insert points P_i , leads to crossing symmetry of the Mellin amplitude

$$M(\gamma_{12}, \gamma_{13}, \gamma_{14}) = M(\gamma_{13}, \gamma_{12}, \gamma_{14}) = M(\gamma_{14}, \gamma_{13}, \gamma_{12}) , \qquad (2)$$

where we used 3 variables obeying a single constraint $\gamma_{12} + \gamma_{13} + \gamma_{14} = \Delta$. This is reminiscent crossing symmetry of scattering amplitudes written in terms of Mandelstam invariants.

It is convenient to introduce fictitious momenta p_i such that $\gamma_{ij} = p_i \cdot p_j$. Imposing moment conservation $\sum_{i=1}^{n} p_i = 0$ and the on-shell condition $p_i^2 = -\Delta_i$ automatically leads to the c straints (157). These fictitious momenta are a convenient trick but we do not know how to def them directly. In all formulas, we will only use their inner products $\gamma_{ij} = p_i \cdot p_j$. In particular is not clear in what vector space do the momenta p_i live.

Let us be more precise about the number of independent cross ratios. The correct formula

$$\frac{n(n-3)}{2} , n \le d+2 (1$$

$$nd - \frac{(d+1)(d+2)}{2}$$
, $n \ge d+2$ (1)

In fact, for n > d + 2 one can write identities like

$$\det_{i,j} P_i \cdot P_j = 0 \tag{1}$$

using d+3 embedding space vectors. Notice that this makes the Mellin representation non-unique we can shift the Mellin amplitude by the Mellin transform of

$$F(P_1, \dots, P_n) \det_{i,j} P_i \cdot P_j = 0 \tag{1}$$

where F is any scalar function with the appropriate homogeneity properties. This non-uniquenof the Mellin amplitude is analogous to the non-uniqueness of the n-particle scattering amplitu (as functions of the invariants $k_i \cdot k_j$) in (d+1)-dimensional spacetime if n > d+2.

5.2. $OPE \Rightarrow Factorization$

Consider the OPE

$$\mathcal{O}_1(x_1)\mathcal{O}_1(x_2) = \sum_k C_{12k} \left(x_{12}^2\right)^{\frac{\Delta_k - \Delta_1 - \Delta_2}{2}} \left[\mathcal{O}_k(x_2) + c \, x_{12}^2 \partial^2 \mathcal{O}_k(x_2) + \dots \right] \tag{1}$$

where the sum is over primary operators \mathcal{O}_k and, for simplicity, we wrote the contribution of scalar operator. The term proportional to the constant c is a descendant and is fixed by conformal symmetry like all the other terms represented by Let us compare this with the Mellin representation. When $x_{12}^2 \to 0$, it is convenient to integrate over γ_{12} closing the contour to the left the γ_{12} -complex plane. This gives

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_1(x_2)\dots\rangle = \sum_{\bar{\gamma}_{12}} \left(x_{12}^2\right)^{-\bar{\gamma}_{12}} \int [d\gamma]' \operatorname{Res}_{\bar{\gamma}_{12}} \hat{M}(\gamma_{ij}) \prod' \left(x_{ij}^2\right)^{-\gamma_{ij}}$$

^tThe flat space limit of AdS discussed in section 5.3.2, suggests a d+1 dimensional space but this is unclear be the limit.

where $[d\gamma]'$ and \prod' stand for the integration measure and product excluding ij = 12. Compar the two expressions we conclude that \hat{M} must have poles at

$$\gamma_{12} = \frac{\Delta_1 + \Delta_2 - \Delta_k - 2m}{2}, \qquad m = 0, 1, 2, \dots$$
(1)

where the poles with m > 0 correspond to descendant contributions. If the CFT has a discrepentation of scaling dimensions then its Mellin amplitudes are analytic functions with single poles its only singularities (meromorphic functions). It is also clear that the residues of these poles will be proportional to the product of the OPE coefficient C_{12k} and the Mellin amplitude of lower point correlator $\langle \mathcal{O}_k \dots \rangle$. The precise formulas are derived in [79, 83]. Here we shall just the main results without derivation.

5.2.1. Four-point function

In the case of the four-point function it is convenient to write the Mellin amplitude in terms 'Mandelstam invariants'

$$s = -(p_1 + p_2)^2 = \Delta_1 + \Delta_2 - 2\gamma_{12} \tag{1}$$

$$t = -(p_1 + p_3)^2 = \Delta_1 + \Delta_3 - 2\gamma_{13} \tag{1}$$

Then, the poles and residues of the Mellin amplitude take the following form [79]

$$M(s,t) \approx C_{12k}C_{34k} \frac{Q_{l_k,m}(t)}{s - \Delta_k + l_k - 2m} , \qquad m = 0, 1, 2, \dots$$
 (1)

where $Q_{l,m}(t)$ is a kinematical polynomial of degree l in the variable t.

This strengthens the analogy with scattering amplitudes. Each operator of spin l in the O $\mathcal{O}_1 \times \mathcal{O}_2$ gives rise to poles in the Mellin amplitude very similar to the poles in the scatter amplitude associated to the exchange of a particle of the same spin.

5.2.2. Planar correlators

Notice that the polynomial behaviour of the residues requires the inclusion of the Γ -functions in definition (156) of Mellin amplitudes. On the other hand, the Γ -functions themselves have poles fixed positions. For example, $\Gamma(\gamma_{12})$ gives rise to poles at $s = \Delta_1 + \Delta_2 + 2m$ with m = 0, 1, 2, . In a generic CFT, there are no operators with these scaling dimensions and therefore the Me amplitude must have zeros at these values to cancel these unwanted OPE contributions. However, in correlation functions of single-trace operators in large N CFTs we expect precisely this type contributions. At the planar level, the Γ -functions account for all multi-trace OPE contributions

and the Mellin amplitude only has poles associated to single-trace operators.

5.2.3. n-point function

Considering the OPE of k scalar operators, one can derive more general factorization formulas [8] For example, for each primary operator \mathcal{O} of dimension Δ and spin l that appears in the OF

 $\mathcal{O}_1 \times \cdots \times \mathcal{O}_k$ and $\mathcal{O}_{k+1} \times \cdots \times \mathcal{O}_n$, we obtain the following sequence of poles in the *n*-point Me amplitude,

$$M_n \approx \frac{Q_m}{\gamma_{LR} - \Delta + l - 2m}, \qquad m = 0, 1, 2, \dots$$
 (1)

where

$$\gamma_{LR} = -\left(\sum_{i=1}^{k} p_i\right)^2 = \sum_{i=1}^{k} \sum_{j>k}^n \gamma_{ij}.$$
(1)

In general, the residue can be written in terms of lower point Mellin amplitudes. For example l=0 the residue factorizes

$$Q_0 = -2\Gamma(\Delta)M_{k+1}^L M_{n-k+1}^R \,, \tag{}$$

with M_{k+1}^L the Mellin amplitude of $\langle \mathcal{O}_1 \dots \mathcal{O}_k \mathcal{O} \rangle$ and M_{n-k+1}^R the Mellin amplitude $\langle \mathcal{O} \mathcal{O}_{k+1} \dots \mathcal{O}_n \rangle$. The satellite poles also factorize but give rise to more complicated formulae

$$Q_m = \frac{-2\Gamma(\Delta)m!}{\left(\Delta - \frac{d}{2} + 1\right)_m} L_m R_m , \qquad (1)$$

with

$$L_m = \sum_{\substack{n_{ab} \ge 0 \\ \sum n_{ab} = m}} M^L(\gamma_{ab} + n_{ab}) \prod_{1 \le a < b \le k} \frac{(\gamma_{ab})_{n_{ab}}}{n_{ab}!}$$
(1)

and similarly for R_m .

There also factorization formulas for the residues associated with operators with non-zero s [83]. However, the general case including external operators with spin has not been worked ou

5.3. Holographic CFTs

As discussed in section 4.1, holographic CFTs have two special properties: large N factorizat and a small number of low dimension single-trace operators. Therefore, one should expect the corresponding Mellin amplitudes are particularly simple, at least at the planar level. We show confirm this expectation with a few simple examples.

5.3.1. Witten diagrams

Consider the contact Witten diagram of figure 5. It corresponds to an interaction vertex $\lambda \phi_1 \dots$ in the bulk lagrangian and it contributes ^u

$$\langle \mathcal{O}_1(P_1)\dots\mathcal{O}_n(P_n)\rangle = \lambda \int_{AdS} dX \prod_{i=1}^n \frac{\sqrt{\mathcal{C}_{\Delta_i}}}{(-2P_i \cdot X)^{\Delta_i}}$$
 (

to the dual CFT correlation function. One can show that this corresponds to a constant Me amplitude,

$$M = \lambda \frac{1}{2} \pi^{\frac{d}{2}} \Gamma\left(\frac{\sum \Delta_i - d}{2}\right) \prod_{i=1}^n \frac{\sqrt{C_{\Delta_i}}}{\Gamma(\Delta_i)} . \tag{1}$$

^uWe are using CFT operators \mathcal{O}_i normalized to have unit two point function.

TASI-AdSCFT-chap

40 João Penedones

Fig. 5. Witten diagram for a n-point contact interaction in AdS. The interior of the disk represents the bull AdS and the circumference represents its conformal boundary. The lines connecting the boundary points P_i to bulk point X represent bulk to boundary propagators.

Exercise 5.1. Check the last statement. Start by using the integral representation of the bulk boundary propagators and performing the integral over AdS using Poincare coordinates as explain exercise 3.5. This turns (178) into

$$\lambda \pi^{\frac{d}{2}} \Gamma\left(\frac{\sum \Delta_i - d}{2}\right) \int_0^\infty e^{-\sum_{i < j} s_i s_j P_{ij}} \prod_{i=1}^n \frac{\sqrt{\mathcal{C}_{\Delta_i}}}{\Gamma(\Delta_i)} s_i^{\Delta_i - 1} ds_i . \tag{1}$$

Next, use the Mellin representation (c > 0)

$$e^{-s_i s_j P_{ij}} = \int_{c-i\infty}^{c+i\infty} \frac{d\gamma_{ij}}{2\pi i} \Gamma(\gamma_{ij}) (s_i s_j P_{ij})^{-\gamma_{ij}}$$
(1)

for n(n-3)/2 exponential factors. A good choice is to keep n factors, corresponding to the expential

$$e^{-s_1 \sum_{i=2}^n s_i P_{1i} - s_2 s_3 P_{23}}. (1$$

The integrals over s_4, \ldots, s_n can be easily done in terms of Γ -functions. Finally, do the integral over s_1, s_2, s_3 using the same type of change of variables as in exercise 3.5.

This result can be easily generalized to interaction vertices with derivatives. For example, vertex $\lambda(\nabla_{\alpha}\phi_1\nabla^{\alpha}\phi_2)\phi_3\dots\phi_n$ gives rise to

$$\langle \mathcal{O}_1(P_1) \dots \mathcal{O}_n(P_n) \rangle = \lambda \int_{AdS} dX \prod_{i=3}^n \frac{\sqrt{\mathcal{C}_{\Delta_i}}}{(-2P_i \cdot X)^{\Delta_i}} \times$$

$$\times (\eta^{AB} + X^A X^B) \frac{\partial}{\partial X^A} \frac{\sqrt{\mathcal{C}_{\Delta_1}}}{(-2P_1 \cdot X)^{\Delta_1}} \frac{\partial}{\partial X^B} \frac{\sqrt{\mathcal{C}_{\Delta_2}}}{(-2P_2 \cdot X)^{\Delta_2}}.$$

$$(1)$$

Here we have used the fact that covariant derivatives in AdS can be computed as partial derivati in the embedding space projected to the AdS sub-manifold. This gives

$$\lambda \Delta_1 \Delta_2 \left(-2P_{12} D_{\Delta_1 + 1, \Delta_2 + 1, \Delta_3, \dots, \Delta_n} + D_{\Delta_1, \Delta_2, \Delta_3, \dots, \Delta_n} \right) \prod_{i=1}^n \sqrt{\mathcal{C}_{\Delta_i}}$$
 (1)

where we introduced the D-function [33]

$$D_{\Delta_1,\dots,\Delta_n} \equiv \int_{AdS} dX \prod_{i=1}^n \frac{1}{(-2P_i \cdot X)^{\Delta_i}}.$$
 (1)

More generally, it is clear that the contact Witten diagram associated with a generic ver $\lambda \nabla \dots \nabla \phi_1 \nabla \dots \nabla \phi_2 \dots \nabla \dots \nabla \phi_n$ with all derivatives contracted among different fields, gives to a linear combination of terms of the form

$$D_{\Delta_1 + \Lambda_1, \dots, \Delta_n + \Lambda_n} \prod_{i < j}^n P_{ij}^{\lambda_{ij}} \tag{1}$$

where λ_{ij} are non-negative integers and $\Lambda_i = \sum_{j \neq i} \lambda_{ij}$. As we will see in the next exercise, Mellin amplitude of (186) is a polynomial in the Mellin variables. Therefore, the Mellin amplitude associated to contact Witten diagrams is polynomial. The absence of poles in the Mellin amplitude means that the conformal block decomposition of the contact diagram only contains multi-troperators, in agreement with previous results [85, 86].

Exercise 5.2. If the vertex $\lambda \nabla ... \nabla \phi_1 \nabla ... \nabla \phi_2 ... \nabla ... \nabla \phi_n$ has $2N = 2 \sum_{i < j} \alpha_{ij}$ derivative with α_{ij} contractions of derivatives acting on ϕ_i and ϕ_j , show that the contact Witten diagram given by

$$\lambda \left(\prod_{i=1}^{n} \sqrt{\mathcal{C}_{\Delta_i}} \right) D_{\Delta_1 + \Lambda_1, \dots, \Delta_n + \Lambda_n} \prod_{i < j}^{n} (-2P_{ij})^{\alpha_{ij}} + \dots$$
 (1)

where $\Lambda_i = \sum_{j \neq i} \alpha_{ij}$ and the ... represent similar terms with less P_{ij} factors. Hint: use the troof writing covariant derivatives in AdS as partial derivatives in the embedding space projected the AdS sub-manifold.

The Mellin representation of the D-functions is very simple. As we saw in exercise 5.1, Mellin amplitude associated to $D_{\Delta_1,...,\Delta_n}$ is simply

$$\frac{\pi^{\frac{d}{2}}\Gamma\left(\frac{\sum \Delta_i - d}{2}\right)}{2\prod_{i=1}^n \Gamma(\Delta_i)} \ . \tag{1}$$

Show that the Mellin amplitude associated to the correlation function (187) is given by the poly mial

$$\lambda \left(\prod_{i=1}^{n} \sqrt{\mathcal{C}_{\Delta_i}} \right) \frac{\pi^{\frac{d}{2}} \Gamma\left(\frac{\sum \Delta_i + 2N - d}{2}\right)}{2 \prod_{i=1}^{n} \Gamma(\Delta_i + \Lambda_i)} \prod_{i < j}^{n} (-2\gamma_{ij})^{\alpha_{ij}} + \dots$$
 (1)

where the ... represent terms of lower degree in γ_{ij} . Hint: this follows easily from shifting integration variables in the Mellin representation (156).

Fig. 6. Witten diagram describing the exchange of a bulk field dual to an operator of dimension Δ and spin

Consider now the Witten diagram shown in figure 6 describing the exchange of a bulk fidual to a single-trace boundary operator \mathcal{O} of dimension Δ and spin l. The conformal bladecomposition of this diagram in the (12)(34) channel contains the single-trace operator \mathcal{O} produble-trace operators schematically of the form $\mathcal{O}_1(\partial^2)^n\partial_{\mu_1...\mu_j}\mathcal{O}_2$ and $\mathcal{O}_3(\partial^2)^n\partial_{\mu_1...\mu_j}\mathcal{O}_4$. Moreover, the OPE in the crossed channels only contains double-trace operators. This means that Mellin amplitude is of the form

$$M = C_{12\mathcal{O}}C_{34\mathcal{O}} \sum_{m=0}^{\infty} \frac{Q_{l,m}(t)}{s - \Delta + l - 2m} + R(s,t)$$
 (1)

where the OPE coefficients $C_{12\mathcal{O}}$ and $C_{34\mathcal{O}}$ are proportional to the bulk cubic couplings and R(s) is an analytic function. The residues are proportional to degree l Mack polynomials $Q_{l,m}(t)$ where entirely fixed by conformal symmetry as we saw in 5.2.1. If we choose minimal coupling between the spin l bulk field and the external scalars, then R(s,t) is a polynomial of degree l 1. This particularly simple in the case of a scalar exchange (l = 0). Then the residues are independent l and l = 0 [87]. Notice that this simple looking Mellin amplitude gives rise to a rather involution of the cross-ratios in position space. This example illustrates clearly the advantage using the Mellin representation to describe Witten diagrams.

The Mellin amplitude of a general tree-level scalar Witten diagrams was determined in [88–9]. The final result can be summarized in the following Feynman rules:

- Associate a momentum p_j to every line (propagator) in the Witten diagram. Exter lines have incoming momentum p_i satisfying $-p_i^2 = \Delta_i$. Momentum is conserved at evertex of the diagram.
- Assign an integer m_j to every line. External lines have $m_i = 0$.

vSee appendix F.1 of [84] for a derivation of this statement in the analogous case of a sphere embedded in Euclid space.

• Every internal line (bulk-to-bulk propagator) contributes a factor

$$\frac{S_{m_j}^{\Delta_j}}{p_j^2 + \Delta_j + 2m_j} \tag{1}$$

where Δ_j is the dimension of the propagating scalar field.

• Every vertex, $g\phi_1 \dots \phi_k$ joining k lines, contributes a factor^x

$$g V_{m_1 \dots m_k}^{\Delta_1 \dots \Delta_k} \tag{1}$$

- Sum over all integers m_j associated with internal lines. Each sum runs from 0 to ∞ .
- Multiply by

$$\mathcal{N} = \frac{\pi^{\frac{d}{2}}}{2} \prod_{i=1}^{n} \frac{\sqrt{\mathcal{C}_{\Delta_i}}}{\Gamma(\Delta_i)} \tag{1}$$

to get the n-point Mellin amplitude in our normalization of the external operators.

Fig. 7. A tree level scalar Witten diagram contributing to a 5-point function. The auxiliary momenta p_i is conser at each vertex, i.e. $p_6 = p_1 + p_2$ and $p_7 = p_4 + p_5$.

$$S_m^{\Delta} = rac{\Gamma\left(\Delta - rac{d}{2} + 1 + m\right)}{2(m!)\Gamma^2\left(\Delta - rac{d}{2} + 1\right)} \,.$$

^xThe vertex factor is given by

$$V_{m_1...m_k}^{\Delta_1...\Delta_k} = \sum_{n_1=0}^{m_1} \cdots \sum_{n_k=0}^{m_k} \Gamma\left(\frac{\sum_j (\Delta_j + 2n_j) - d}{2}\right) \prod_{j=1}^k \frac{(-m_j)_{n_j}}{n_j! \left(\Delta_j - \frac{d}{2} + 1\right)_{n_j}}.$$

^wThe propagator numerator is given by

As an example, the Witten diagram in figure 7 gives rise to the following Mellin amplitude

$$\mathcal{N} \sum_{m_6=0}^{\infty} \sum_{m_7=0}^{\infty} V_{0\,0\,m_6}^{\Delta_1\Delta_2\Delta_6} \frac{S_{m_6}^{\Delta_6}}{p_6^2 + \Delta_6 + 2m_6} V_{m_6\,0\,m_7}^{\Delta_6\Delta_3\Delta_7} \frac{S_{m_7}^{\Delta_7}}{p_7^2 + \Delta_7 + 2m_7} V_{m_7\,0\,0}^{\Delta_7\Delta_4\Delta_5}$$

where $p_6^2 = (p_1 + p_2)^2 = 2\gamma_{12} - \Delta_1 - \Delta_2$ and $p_7^2 = (p_4 + p_5)^2 = 2\gamma_{45} - \Delta_4 - \Delta_5$. These Feynmanules suggest that we should think of the Mellin amplitude as an amputated amplitude because bulk to boundary propagators do not contribute. In the case of scalar tree level diagrams (would non-derivative interaction vertices), the only dependence in the Mellin variables γ_{ij} comes from bulk-to-bulk propagators. It is not known how to generalize these Feynman rules for loop diagram or tree-level diagrams involving fields with spin. There are partial results in literature [83, 89] to nothing systematic. Mellin amplitudes are also useful in the context of weakly coupled CFTs. The associated Feynman rules for tree level diagrams were given in [92].

Exercise 5.3. Consider the residue of the Mellin amplitude at the first pole (m = 0) associated a bulk-to-bulk propagator. Show that the Feynman rules above are compatible with the factorizate property (175) of this residue. **Extra:** check the factorization formula (176) for the satellite powith m > 0.

5.3.2. Flat space limit of AdS

If we consider a scattering process where all length scales are much smaller than the AdS rad R then the curvature effects should be negligible. Consider a relativistic invariant theory in spacetime with a characteristic length scale ℓ_s (this scale could come from a mass or from dimensionful coupling). Then, a scattering amplitude \mathcal{T}_n of n massless scalar particles in theory will depend on ℓ_s and on the relativistic invariants $k_i \cdot k_j$, where k_i are the momentathe external particles. On the other hand, this theory in AdS will give rise to Mellin amplitute that depend on the dimensionless parameter $\theta = R/\ell_s$ and the Mellin variables γ_{ij} . We claim these two quantities are related by

$$\frac{\mathcal{T}_n(\ell_s, k_i)}{\ell_s^{n\frac{d-1}{2} - d - 1}} = \lim_{\theta \to \infty} \frac{1}{\mathcal{N}} \int_{\Gamma} \frac{d\alpha}{2\pi i} \alpha^{\frac{d-\sum \Delta_i}{2}} e^{\alpha} \frac{M_n\left(\theta, \gamma_{ij} = \frac{\theta^2}{2\alpha} \ell_s^2 k_i \cdot k_j\right)}{\theta^{n\frac{1-d}{2} + d + 1}}$$
(1)

where the contour Γ runs parallel to the imaginary axis and passes to the right of the branch point $\alpha = 0$ and to the left of all poles of M_n . The powers of ℓ_s where introduced to make both si of the equation dimensionless and the constant \mathcal{N} was given in (194). The external particles massless in flat space but in AdS they can have any scaling dimension Δ_i of order 1. We expethis equation to hold when both sides of the equation are well defined. In case the flat special scattering amplitude \mathcal{T}_n is IR divergent, we expect that the limit $\theta \to \infty$ of the Mellin amplitude will not be finite.

Exercise 5.4. Consider the vertex $\lambda \nabla \dots \nabla \phi_1 \dots \nabla \phi_n$ discussed in exercise 5.2 in d-spacetime dimensions. Start by writing the coupling constant λ as a power $(\ell_s)^q$ of a characteristic constant λ and λ and λ as a power $(\ell_s)^q$ of $(\ell_s)^q$ of

^yIt might be useful to think of large θ as an IR regulator for the scattering amplitude.

length scale ℓ_s and determine the value of q. Then, use the Mellin amplitude (189) in the flat sp limit formula (195) and obtain the expected n-particle scattering amplitude

$$\mathcal{T}_n = \lambda \prod_{i < j} (-k_i \cdot k_j)^{\alpha_{ij}} . \tag{1}$$

The last exercise can be seen as a derivation of the flat space limit formula (195). The point is that a generic Feynman diagram can be written as a (infinite) sum of contact diagrams we any number of derivatives. This corresponds to integrating out the internal particles and replace there effect by contact vertices among the external particles. Since formula (195) works for a contact diagram it should work in general. This has been tested in several explicit examp including 1-loop diagrams [87, 88, 93]. In addition, the same formula was derived in [90] using wave-packet construction where the scattering region was limited to a small flat region of AdS

In principle, formula (195) provides a non-perturbative definition of string theory scatter amplitudes in terms of SYM correlation functions. However, we do not know how to direct compute SYM correlators at strong coupling. In practice, what we can do is to use form (195) in the opposite direction, *i.e.* we can use known string scattering amplitudes in flat sp to obtain information about the strong coupling expansion of SYM correlators [87, 94]. If external particles are massive in flat space then formula (195) is not adequate. This case vestudied in [95].

5.4. Open questions

what conditions do we have a well defined analytic Mellin amplitude. For example, in free CF the Mellin representation requires some form of regularization. This might be a technical debut it would be useful to understand in general the status of the Mellin representation. Anot important question is the asymptotic behavior of the Mellin amplitude when the Mellin variable are large. In the case of the four-point Mellin amplitude discussed in 5.2.1, the limit of large s w fixed t is called the Regge limit in analogy with flat space scattering amplitudes. In [96], we stude this limit using Regge theory techniques and making some reasonable assumptions about the last spin behaviour of the conformal partial amplitudes. Proving these assumptions is an import open question. The bound on chaos [97] is another possible approach to the Regge limit of Me amplitudes. Notice that if we can tame the asymptotic behaviour of M(s,t) when $s \to \infty$, the we can write a dispersion relation that expresses M(s,t) in terms of its poles in s, which are given and the sum of the state of the state

The study of Mellin amplitudes is still very incomplete. Firstly, it is important to understand

In the holographic context, it would be interesting to establish more general Feynman rules Mellin amplitudes associated to Witten diagrams involving loops and particles with spin. It wo also be useful to generalize more modern approaches to scattering amplitudes, like BCFW [98] CHY [99], to Mellin amplitudes.

by (172). This could provide a reformulation of the conformal bootstrap approach.

Acknowledgements

I would like to thank the students of TASI 2015 for their questions and enthusiasm. I am a grateful to the organizers Joe Polchinski, Pedro Vieira, Tom DeGrand and Oliver DeWolfe for the invitation and their patience with my delays in finishing these notes. Centro de Física do Police partially funded by FCT. The research leading to these results has received funding from People Programme (Marie Curie Actions) of the European Union's Seventh Framework Program FP7/2007-2013/ under REA Grant Agreement No 317089 and CERN/FIS-NUC/0045/2015.

References

- [1] J. M. Maldacena, "The Large N limit of superconformal field theories and supergravity," Int. J. Theor. Phys. 38 (1999) 1113–1133, arXiv:hep-th/9711200 [hep-th].
- [2] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, "Gauge theory correlators from noncritical str theory," *Phys. Lett.* B428 (1998) 105-114, arXiv:hep-th/9802109 [hep-th].
- [3] E. Witten, "Anti-de Sitter space and holography," Adv. Theor. Math. Phys. 2 (1998) 253-291, arXiv:hep-th/9802150 [hep-th].
- [4] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, "Black Holes: Complementarity or Firewalls? JHEP 02 (2013) 062, arXiv:1207.3123 [hep-th].
- [5] D. Simmons-Duffin, "TASI Lectures on the Conformal Bootstrap," arXiv:1602.07982 [hep-th]
- [6] S. Rychkov, "EPFL Lectures on Conformal Field Theory in $D \ge 3$ Dimensions," arXiv:1601.05 [hep-th].
- [7] J. D. Qualls, "Lectures on Conformal Field Theory," arXiv:1511.04074 [hep-th].
- [8] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, "Large N field theories, string theory and gravity," Phys. Rept. 323 (2000) 183-386, arXiv:hep-th/9905111 [hep-th].
- [9] J. McGreevy, "Holographic duality with a view toward many-body physics," Adv. High Energy Phys. 2010 (2010) 723105, arXiv:0909.0518 [hep-th].
- [10] E. D'Hoker and D. Z. Freedman, "Supersymmetric gauge theories and the AdS / CFT correspondence," arXiv:hep-th/0201253 [hep-th].
- [11] D. Mateos, "String Theory and Quantum Chromodynamics," Class. Quant. Grav. 24 (2007) S713-S740, arXiv:0709.1523 [hep-th].
- [12] H. Nastase, "Introduction to AdS-CFT," arXiv:0712.0689 [hep-th].
- [13] S. S. Gubser and A. Karch, "From gauge-string duality to strong interactions: A Pedestrian's Guide," *Ann. Rev. Nucl. Part. Sci.* **59** (2009) 145–168, arXiv:0901.0935 [hep-th].
- [14] S. A. Hartnoll, "Lectures on holographic methods for condensed matter physics," *Class. Quant. Grav.* **26** (2009) 224002, arXiv:0903.3246 [hep-th].
- [15] J. Polchinski, "Introduction to Gauge/Gravity Duality," arXiv:1010.6134 [hep-th].
- [16] S. A. Hartnoll, "Horizons, holography and condensed matter," arXiv:1106.4324 [hep-th].
- [17] J. Kaplan, "Lectures on AdS/CFT from the Bottom Up." http://www.pha.jhu.edu/~jaredk/AdSCFTCourseNotesPublic.pdf.
- [18] P. A. M. Dirac, "Wave equations in conformal space," Annals Math. 37 (1936) 429-442.
- [19] G. Mack and A. Salam, "Finite component field representations of the conformal group," Annals Phys. 53 (1969) 174–202.
- [20] D. G. Boulware, L. S. Brown, and R. D. Peccei, "Deep-inelastic electroproduction and conformal symmetry," *Phys. Rev.* **D2** (1970) 293–298.
- [21] S. Ferrara, R. Gatto, and A. F. Grillo, "Conformal algebra in space-time and operator product expansion," *Springer Tracts Mod. Phys.* **67** (1973) 1–64.

- [22] S. Ferrara, A. F. Grillo, and R. Gatto, "Tensor representations of conformal algebra and conformally covariant operator product expansion," *Annals Phys.* **76** (1973) 161–188.
- [23] L. Cornalba, M. S. Costa, and J. Penedones, "Deep Inelastic Scattering in Conformal QCD," JH 03 (2010) 133, arXiv:0911.0043 [hep-th].
- [24] S. Weinberg, "Six-dimensional Methods for Four-dimensional Conformal Field Theories," *Phys. I* **D82** (2010) 045031, arXiv:1006.3480 [hep-th].
- [25] M. S. Costa, J. Penedones, D. Poland, and S. Rychkov, "Spinning Conformal Correlators," JHEI 11 (2011) 071, arXiv:1107.3554 [hep-th].
- [26] G. 't Hooft, "A Planar Diagram Theory for Strong Interactions," Nucl. Phys. B72 (1974) 461.
- [27] E. Witten, "Baryons in the 1/n Expansion," Nucl. Phys. **B160** (1979) 57–115.
- [28] F. A. Dolan and H. Osborn, "Conformal four point functions and the operator product expansion Nucl. Phys. **B599** (2001) 459-496, arXiv:hep-th/0011040 [hep-th].
- [29] S. El-Showk and K. Papadodimas, "Emergent Spacetime and Holographic CFTs," *JHEP* **10** (20: 106, arXiv:1101.4163 [hep-th].
- [30] H. Liu and A. A. Tseytlin, "D = 4 superYang-Mills, D = 5 gauged supergravity, and D = 4 conformal supergravity," Nucl. Phys. B533 (1998) 88-108, arXiv:hep-th/9804083 [hep-th].
- [31] H. Liu and A. A. Tseytlin, "On four point functions in the CFT / AdS correspondence," *Phys. I*
- D59 (1999) 086002, arXiv:hep-th/9807097 [hep-th].
 [32] E. D'Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, "Graviton and gauge bo propagators in AdS(d+1)," Nucl. Phys. B562 (1999) 330-352, arXiv:hep-th/9902042 [hep-th]
- [33] E. D'Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, "Graviton exchange and complete four point functions in the AdS / CFT correspondence," *Nucl. Phys.* **B562** (1999) 353–394, arXiv:hep-th/9903196 [hep-th].
- [34] M. S. Costa, V. Gonçalves, and J. Penedones, "Spinning AdS Propagators," JHEP 09 (2014) 06arXiv:1404.5625 [hep-th].

[35] V. Balasubramanian and P. Kraus, "A Stress tensor for Anti-de Sitter gravity," Commun. Math.

- Phys. 208 (1999) 413-428, arXiv:hep-th/9902121 [hep-th].
 [36] K. Skenderis, "Lecture notes on holographic renormalization," Class. Quant. Grav. 19 (2002)
- [36] K. Skenderis, "Lecture notes on holographic renormalization," Class. Quant. Grav. 19 (2002 5849-5876, arXiv:hep-th/0209067 [hep-th].
- [37] H. Osborn and A. C. Petkou, "Implications of conformal invariance in field theories for general dimensions," Annals Phys. 231 (1994) 311-362, arXiv:hep-th/9307010 [hep-th].
 [38] J. Haarrakerk, J. Paradonas, J. Palakirski, and J. Sully, "Halarranky from Conformal Field.
- [38] I. Heemskerk, J. Penedones, J. Polchinski, and J. Sully, "Holography from Conformal Field Theory," *JHEP* 10 (2009) 079, arXiv:0907.0151 [hep-th].
- [39] X. O. Camanho, J. D. Edelstein, J. Maldacena, and A. Zhiboedov, "Causality Constraints on Corrections to the Graviton Three-Point Coupling," *JHEP* 02 (2016) 020, arXiv:1407.5597 [hep-th].
- [40] N. Arkani-Hamed, F. Cachazo, and J. Kaplan, "What is the Simplest Quantum Field Theory?," JHEP 09 (2010) 016, arXiv:0808.1446 [hep-th].
- [41] N. Beisert et al., "Review of AdS/CFT Integrability: An Overview," Lett. Math. Phys. 99 (2012) 3–32, arXiv:1012.3982 [hep-th].
- [42] S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, "Three point functions of chiral operators in = 4, N=4 SYM at large N," Adv. Theor. Math. Phys. 2 (1998) 697-718, arXiv:hep-th/9806074 [hep-th].
- [43] V. Pestun, "Localization of gauge theory on a four-sphere and supersymmetric Wilson loops," Commun. Math. Phys. **313** (2012) 71–129, arXiv:0712.2824 [hep-th].
- [44] J. K. Erickson, G. W. Semenoff, and K. Zarembo, "Wilson loops in N=4 supersymmetric Yang-Methory," *Nucl. Phys.* **B582** (2000) 155–175, arXiv:hep-th/0003055 [hep-th].
- [45] N. Gromov, V. Kazakov, and P. Vieira, "Exact Spectrum of Planar $\mathcal{N}=4$ Supersymmetric

- Yang-Mills Theory: Konishi Dimension at Any Coupling," *Phys. Rev. Lett.* **104** (2010) 211601, arXiv:0906.4240 [hep-th].
- [46] B. Basso, A. Sever, and P. Vieira, "Spacetime and Flux Tube S-Matrices at Finite Coupling for N=4 Supersymmetric Yang-Mills Theory," *Phys. Rev. Lett.* 111 no. 9, (2013) 091602, arXiv:1303.1396 [hep-th].
- [47] B. Basso, S. Komatsu, and P. Vieira, "Structure Constants and Integrable Bootstrap in Planar N SYM Theory," arXiv:1505.06745 [hep-th].
- [48] T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, "M theory as a matrix model: A Conjecture," *Phys. Rev.* **D55** (1997) 5112-5128, arXiv:hep-th/9610043 [hep-th].
- [49] S. Catterall and T. Wiseman, "Towards lattice simulation of the gauge theory duals to black hole and hot strings," *JHEP* 12 (2007) 104, arXiv:0706.3518 [hep-lat].
- [50] K. N. Anagnostopoulos, M. Hanada, J. Nishimura, and S. Takeuchi, "Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature," *Ph. Rev. Lett.* 100 (2008) 021601, arXiv:0707.4454 [hep-th].
- [51] S. Catterall and T. Wiseman, "Black hole thermodynamics from simulations of lattice Yang-Mill theory," *Phys. Rev.* **D78** (2008) 041502, arXiv:0803.4273 [hep-th].
- [52] M. Hanada, Y. Hyakutake, J. Nishimura, and S. Takeuchi, "Higher derivative corrections to blace hole thermodynamics from supersymmetric matrix quantum mechanics," *Phys. Rev. Lett.* 102 (2009) 191602, arXiv:0811.3102 [hep-th].
- [53] S. Catterall and T. Wiseman, "Extracting black hole physics from the lattice," *JHEP* **04** (2010) 077, arXiv:0909.4947 [hep-th].
- [54] M. Hanada, J. Nishimura, Y. Sekino, and T. Yoneya, "Direct test of the gauge-gravity correspondence for Matrix theory correlation functions," *JHEP* 12 (2011) 020, arXiv:1108.5153 [hep-th].
- [55] M. Hanada, Y. Hyakutake, G. Ishiki, and J. Nishimura, "Holographic description of quantum bla hole on a computer," Science 344 (2014) 882–885, arXiv:1311.5607 [hep-th].
- [56] J. Polchinski and E. Silverstein, "Dual Purpose Landscaping Tools: Small Extra Dimensions in AdS/CFT," arXiv:0908.0756 [hep-th].
- [57] S. de Alwis, R. K. Gupta, F. Quevedo, and R. Valandro, "On KKLT/CFT and LVS/CFT Dualities," JHEP 07 (2015) 036, arXiv:1412.6999 [hep-th].
- [58] I. R. Klebanov and A. M. Polyakov, "AdS dual of the critical O(N) vector model," *Phys. Lett.* **B550** (2002) 213-219, arXiv:hep-th/0210114 [hep-th].
- [59] E. Sezgin and P. Sundell, "Massless higher spins and holography," Nucl. Phys. B644 (2002) 303-370, arXiv:hep-th/0205131 [hep-th]. [Erratum: Nucl. Phys. B660,403(2003)].
- 303-370, arXiv:hep-th/0205131 [hep-th]. [Erratum: Nucl. Phys.B660,403(2003)].
 [60] S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R. Wadia, and X. Yin, "Chern-Simons Theorems".

with Vector Fermion Matter," Eur. Phys. J. C72 (2012) 2112, arXiv:1110.4386 [hep-th].

- [61] O. Aharony, G. Gur-Ari, and R. Yacoby, "Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions," *JHEP* 12 (2012) 028, arXiv:1207.4593 [hep-th].
- [62] M. R. Gaberdiel and R. Gopakumar, "Minimal Model Holography," J. Phys. A46 (2013) 214002 arXiv:1207.6697 [hep-th].
- [63] P. Kovtun and A. Ritz, "Black holes and universality classes of critical points," *Phys. Rev. Lett.* **100** (2008) 171606, arXiv:0801.2785 [hep-th].
- [64] S. W. Hawking and D. N. Page, "Thermodynamics of Black Holes in anti-De Sitter Space," Commun. Math. Phys. 87 (1983) 577.
- [65] S. Ryu and T. Takayanagi, "Holographic derivation of entanglement entropy from AdS/CFT," Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001 [hep-th].
- [66] J. M. Maldacena, "Wilson loops in large N field theories," Phys. Rev. Lett. 80 (1998) 4859–4862,

arXiv:hep-th/9803002 [hep-th].

- [67] P. Romatschke and U. Romatschke, "Viscosity Information from Relativistic Nuclear Collisions: How Perfect is the Fluid Observed at RHIC?," *Phys. Rev. Lett.* 99 (2007) 172301, arXiv:0706.1 [nucl-th].
- [68] A. B. Zamolodchikov, "Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory," JETP Lett. 43 (1986) 730–732. [Pisma Zh. Eksp. Teor. Fiz.43,565(1986)].
- [69] R. C. Myers and A. Sinha, "Holographic c-theorems in arbitrary dimensions," JHEP 01 (2011) 1 arXiv:1011.5819 [hep-th].
- [70] Z. Komargodski and A. Schwimmer, "On Renormalization Group Flows in Four Dimensions," *JHEP* 12 (2011) 099, arXiv:1107.3987 [hep-th].
- [71] H. Casini and M. Huerta, "On the RG running of the entanglement entropy of a circle," *Phys. R* **D85** (2012) 125016, arXiv:1202.5650 [hep-th].
- [72] D. M. Hofman and J. Maldacena, "Conformal collider physics: Energy and charge correlations," JHEP 05 (2008) 012, arXiv:0803.1467 [hep-th].
- [73] D. M. Hofman, D. Li, D. Meltzer, D. Poland, and F. Rejon-Barrera, "A Proof of the Conformal Collider Bounds," JHEP 06 (2016) 111, arXiv:1603.03771 [hep-th].
 [74] T. Faulkner, R. G. Leigh, O. Parrikar, and H. Wang, "Modular Hamiltonians for Deformed.
- [74] T. Faulkner, R. G. Leigh, O. Parrikar, and H. Wang, "Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition," arXiv:1605.08072 [hep-th].
- Half-Spaces and the Averaged Null Energy Condition," arXiv:1605.08072 [hep-th].

 [75] A. L. Fitzpatrick, J. Kaplan, D. Poland, and D. Simmons-Duffin, "The Analytic Bootstrap and A

Superhorizon Locality," JHEP 12 (2013) 004, arXiv:1212.3616 [hep-th].

- [76] Z. Komargodski and A. Zhiboedov, "Convexity and Liberation at Large Spin," *JHEP* 11 (2013) 140, arXiv:1212.4103 [hep-th].
- [77] A. Kaviraj, K. Sen, and A. Sinha, "Analytic bootstrap at large spin," JHEP 11 (2015) 083, arXiv:1502.01437 [hep-th].
- [78] A. Kaviraj, K. Sen, and A. Sinha, "Universal anomalous dimensions at large spin and large twist *JHEP* **07** (2015) 026, arXiv:1504.00772 [hep-th].
- [79] G. Mack, "D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes," arXiv:0907.2407 [hep-th].
- [80] G. Mack, "D-dimensional Conformal Field Theories with anomalous dimensions as Dual Resonar Models," Bulg. J. Phys. 36 (2009) 214-226, arXiv:0909.1024 [hep-th].
- [81] K. Symanzik, "On Calculations in conformal invariant field theories," Lett. Nuovo Cim. 3 (1972) 734–738.
- [82] V. K. Dobrev, V. B. Petkova, S. G. Petrova, and I. T. Todorov, "Dynamical Derivation of Vacuu Operator Product Expansion in Euclidean Conformal Quantum Field Theory," *Phys. Rev.* D13 (1976) 887.
- [83] V. Gonçalves, J. Penedones, and E. Trevisani, "Factorization of Mellin amplitudes," *JHEP* 10 (2015) 040, arXiv:1410.4185 [hep-th].
- (2015) 040, arXiv:1410.4185 [hep-th].
 [84] M. S. Costa, T. Hansen, J. Penedones, and E. Trevisani, "Projectors and seed conformal blocks for the c
- traceless mixed-symmetry tensors," *JHEP* **07** (2016) 018, arXiv:1603.05551 [hep-th].

 [85] H. Liu, "Scattering in anti-de Sitter space and operator product expansion," *Phys. Rev.* **D60** (19 106005, arXiv:hep-th/9811152 [hep-th].
- [86] E. D'Hoker and D. Z. Freedman, "General scalar exchange in AdS(d+1)," Nucl. Phys. **B550** (19 261-288, arXiv:hep-th/9811257 [hep-th].
- [87] J. Penedones, "Writing CFT correlation functions as AdS scattering amplitudes," *JHEP* **03** (201 025, arXiv:1011.1485 [hep-th].
- [88] A. L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju, and B. C. van Rees, "A Natural Language for AdS/CFT Correlators," JHEP 11 (2011) 095, arXiv:1107.1499 [hep-th].

- [89] M. F. Paulos, "Towards Feynman rules for Mellin amplitudes," JHEP 10 (2011) 074, arXiv:1107.1504 [hep-th].
- [90] A. L. Fitzpatrick and J. Kaplan, "Analyticity and the Holographic S-Matrix," *JHEP* **10** (2012) 1 arXiv:1111.6972 [hep-th].
- [91] D. Nandan, A. Volovich, and C. Wen, "On Feynman Rules for Mellin Amplitudes in AdS/CFT," JHEP 05 (2012) 129, arXiv:1112.0305 [hep-th].
- [92] A. A. Nizami, A. Rudra, S. Sarkar, and M. Verma, "Exploring Perturbative Conformal Field Theory in Mellin space," arXiv:1607.07334 [hep-th].
- [93] A. L. Fitzpatrick and J. Kaplan, "Unitarity and the Holographic S-Matrix," *JHEP* 10 (2012) 03: arXiv:1112.4845 [hep-th].
- [94] V. Gonçalves, "Four point function of $\mathcal{N}=4$ stress-tensor multiplet at strong coupling," *JHEP* (2015) 150, arXiv:1411.1675 [hep-th].
- [95] M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees, and P. Vieira, "The S-matrix Bootstrap I QFT in AdS," arXiv:1607.06109 [hep-th].
- [96] M. S. Costa, V. Goncalves, and J. Penedones, "Conformal Regge theory," JHEP 12 (2012) 091, arXiv:1209.4355 [hep-th].
- [97] J. Maldacena, S. H. Shenker, and D. Stanford, "A bound on chaos," arXiv:1503.01409 [hep-th
- [98] R. Britto, F. Cachazo, B. Feng, and E. Witten, "Direct proof of tree-level recursion relation in Yang-Mills theory," *Phys. Rev. Lett.* **94** (2005) 181602, arXiv:hep-th/0501052 [hep-th].
- [99] F. Cachazo, S. He, and E. Y. Yuan, "Scattering of Massless Particles in Arbitrary Dimensions," *Phys. Rev. Lett.* **113** no. 17, (2014) 171601, arXiv:1307.2199 [hep-th].