CSE2023 Discrete Computational Structures

Lecture 6

1.8 Proof methods and strategy

$$((p_1 \lor p_2 \lor \dots \lor p_n) \to q)$$

 $\leftrightarrow ((p_1 \to q) \land (p_2 \to q) \land \dots \land (p_n \to q))$

- Proof by cases: $p_i \rightarrow q$ for i=1,2,...,n
- When it is not possible to consider all cases at the same time
- Exhaustive proof: some theorems can be proved by examining a relatively small number of examples

Example

- Prove (n+1)³≥3ⁿ if n is a positive integer with n<4
- Proof by exhaustion as we only need to verify n=1,2,3 and 4.
- For n=1, $(n+1)^3=8 \ge 3^1=3$
- For n=2, $(n+1)^3=27 \ge 3^2=9$
- For n=3, $(n+1)^3=64 \ge 3^3=27$
- For n=4, $(n+1)^3=125\ge 4^3=64$

Example

- An integer is a perfect power if it equals n^a, where a is an integer greater than 1
- Prove that the only consecutive positive integers not exceeding 100 that are perfect powers are 8 and 9
- Can prove this fact by examining positive integers n not exceeding 100
 - First check whether n is a perfect power, and then check whether n+1 is a perfect power

1

Example

- · For positive integers
 - The squares ≤ 100: 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100
 - The cubes ≤ 100: 1, 8, 27, and 64
 - The 4^{th} powers $n^4 \le 100$: 1, 16, and 81
 - The 5^{th} powers $n^5 \le 100$: 1 and 32
 - The 6^{th} powers $n^6 \le 100$: 1 and 64
 - Look at the list of perfect powers, we see that the pair of n=8 and n+1=9 is the only two consecutive powers ≤ 100

Proof by cases

- Prove that if n is an integer, then $n^2 \ge n$
- We prove this by 3 cases:
 - n=0: trivial case as $0^2 \ge 0$
 - n≥1: If n≥1 then n·n ≥ n·1 and thus n^2 ≥ n
 - n≤-1: If n ≤ -1 then $n^2 \ge 0$ >n and thus $n^2 \ge n$

Example

- Show that |xy| = |x| |y| for real numbers $((p_1 \lor p_2 \lor \cdots \lor p_n) \to q)$ $\leftrightarrow ((p_1 \to q) \land (p_2 \to q) \land \cdots \land (p_n \to q))$
- $x \ge 0$, $y \ge 0$: $xy \ge 0$ |xy| = xy = |x| |y|
- $x \ge 0$, y < 0: xy < 0 |xy| = -xy = x(-y) = |x||y|
- $x<0, y \ge 0:xy<0 |xy|=-xy=(-x)y=|x||y|$
- x<0, y<0: xy>0 |xy|=xy=(-x)(-y)=|x||y|

Example

- Formulate a conjecture about the decimal digits that occur at the final digit of the squares of an integer and prove the result
- The smallest perfect squares are: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225 and so on
- Note that the digits that occur at the final digit of a squares are: 0, 1, 4, 5, 6, and 9 (and no 2, 3, 7, and 8) → conjecture

2

Example

- We can express an integer n as 10a+b were a and b are positive integers and 0≤b≤9
- n²=(10a+b)²=100a²+20ab+b²=10(10a²+2b)+b²,
 so the final digit is the final digit of b²
- Note also that the final digit of (10-b)²=100-20b+b². Thus, we only consider 6 cases
- Case 1: if final digit of n is 1 or 9 (or b), then the last digit of n² is 1

Example

- Case 2: if the final digit of n is 2 or 8, then the final digit of n² is 4
- Case 3: if the final digit of n is 3 or 7, then the final digit of n² is 9
- Case 4: if the final digit of n is 4 or 6, then the final digit of n² is 6
- Case 5: if the final digit of n is 5, then the final digit of n² is 5
- Case 6: if the final digit of n is 0, then the final digit of n² is 0

Example

- Show that there are no solutions in integers x and y of x²+3y²=8
- x²>8 when |x|≥3, and 3y²>8 when |y|≥2. The only values for x are -2,-1,0,1,2 and for y are -1, 0, 1
- So, possible values for x² are, 0, 1, and 4. The possible values for 3y² are 0 and 3
- No pair of x and y can be solution

11

3