- Phase 1: Core AI & Machine Learning (2–4 months)
- Goal: Understand the fundamentals of machine learning, including supervised and unsupervised learning, and how to implement them using Python libraries.
- Step-by-Step Topics List (In Order)

1. Introduction to Machine Learning

- What is Machine Learning?
- ML vs AI vs Deep Learning
- Types of ML: Supervised, Unsupervised, Reinforcement
- Resources:
 - Andrew Ng Week 1 (Coursera)
 - Kaggle: Intro to ML

2. Python Libraries for ML

Learn how to use key Python libraries:

- NumPy Arrays, broadcasting, linear algebra
- Pandas DataFrames, filtering, grouping
- Matplotlib & Seaborn Data visualization
- Scikit-learn ML algorithms

Resources:

- FreeCodeCamp Pandas + NumPy
- Kaggle: Pandas, NumPy, Data Viz

3. Data Preprocessing & Exploration

- Handling missing values
- Feature scaling (StandardScaler, MinMaxScaler)
- Encoding categorical data (LabelEncoder, OneHotEncoder)
- Train-test split

Resources:

- · Sklearn docs: preprocessing
- Kaggle Datasets to practice

4. Supervised Learning Algorithms

a. Linear Regression

- · Concept & cost function
- Gradient descent
- Implement with scikit-learn

Andrew Ng Week 2 & 3

b. Logistic Regression

- Sigmoid function
- Binary classification
- Evaluation metrics: accuracy, precision, recall, F1-score

c. Decision Trees & Random Forest

- Overfitting in Decision Trees
- Ensemble methods (Bagging, Random Forest)
- Feature importance

d. K-Nearest Neighbors (KNN)

- · Distance metrics (Euclidean)
- Choosing the right k

e. Naive Bayes

- Bayes Theorem
- Text classification (spam detection)

f. Support Vector Machine (SVM)

- Margins and hyperplanes
- Kernels (linear, RBF)

Resources for all supervised learning:

- Scikit-learn tutorials
- Kaggle ML Course
- StatQuest on YouTube

5. Model Evaluation

- Confusion Matrix
- ROC-AUC Curve
- Cross-validation
- Bias-Variance Tradeoff
- Overfitting vs Underfitting

• 6. Unsupervised Learning Algorithms

a. K-Means Clustering

- Clustering vs classification
- Elbow method to choose K

b. Hierarchical Clustering (optional)

- Dendrograms
- Kaggle: Clustering

7. Mini Projects / Practice

- Iris dataset (classification)
- Titanic dataset (binary classification)

- House price prediction (regression)
- Customer segmentation (clustering)

Datasets:

- Kaggle Datasets
- UCI ML Repository

8. Extra Concepts (Optional)

- Dimensionality Reduction (PCA)
- Feature engineering & selection
- Hyperparameter tuning (GridSearchCV)

Final Output of Phase 1

- By the end of Phase 1, you should be able to:
 - Preprocess and visualize real-world data
 - Implement ML models using scikit-learn
 - Evaluate and improve model performance
 - Build end-to-end ML projects

Suggested Learning Flow (Timeline)

Week Topics

- 1 ML Introduction, NumPy, Pandas, Data Viz
- 2 Data Preprocessing, Linear/Logistic Regression
- 3 Decision Trees, Random Forest, KNN
- 4 Naive Bayes, SVM
- 5 Model Evaluation, Unsupervised Learning (K-Means)
- 6 Mini Projects, Cross-validation, PCA
- 7–8 Portfolio Projects, Kaggle practice