EVALUACIÓN FINAL DEL CURSO TALLER "RESOLUCIÓN DE PROBLEMAS CON GEOGEBRA"

ACTIVIDAD 1: RECTAS DE SIMSON

- 1. Cree una herramienta, Pie Perpendicular.ggt, que determine los pies (A_1, B_1, C_1) de las perpendiculares, desde un punto P, a los lados (o a su prolongación) de un triángulo ABC. Incorpore esta herramienta para que esté disponible en los otros archivos.
- 2. En un archivo Simson1.ggb, dibuje un triángulo ABC, un punto P sobre la circunferencia circunscrita de ABC, del otro lado de AC con respecto a B; y U es la intersección de la recta PA_1 con la circunferencia que circunscribe al triángulo ABC. justifique que:
 - a) los cuadriláteros PAUC y PB_1A_1C son cíclicos ¹.
 - b) Suponga que $\angle PUA$ y $\angle PCA$ están en el mismo arco con respecto a PA. Pruebe que $\angle PUA = \angle PCA = \angle PCB_1 = \angle PA_1B_1$.
 - c) Corrija la prueba para el item anterior si están en arcos distintos.
 - d) La recta de Simson de P es paralela a la recta AU
- 3. Sean (A_2, B_2, C_2) los pies de las perpendiculares, desde un punto P', y U' es la intersección de la recta PA_2 con la circunferencia que circunscribe al triángulo ABC. Pruebe que el ángulo entre las rectas de Simson de dos puntos P y P' en la circunferencia circunscrita es la mitad del del arco PP'.
 - a) En un archivo, Simson2.ggb, dibuje un triángulo ABC y trace las rectas de Simson, r y r', correspondientes a P y P' respectivamente.
 - b) Justifique que:
 - 1) $\angle(r,r') = \angle UAU'$
 - 2) $\angle UAU' = \frac{1}{2}\angle UOU' = \frac{1}{2}\angle POP'$ (o sea que las Rectas Simson giran a la mitad de la velocidad angular de sus puntos pedales)
- 4. ¿En qué caso, las rectas de Simson son perpendiculares?
- 5. En un archivo Deltoide.ggb:
 - a) Introduzca en la línea de comandos: $c: x^2 + y^2 = 1$.
 - b) Cree un deslizador t. Elija la opción Ángulo. Fije un incremento de 10°.
 - c) Introduzca en la línea de comandos: P = (cos(t), sin(t)).
 - d) Trace la recta de Simson (p) del punto P asociada a un triángulo ABC inscrito en c

¹Un cuadrilátero cíclico es un cuadrilátero inscribible en una circunferencia

- e) Trace la recta AU y haga clic en Activa Rastro y active el deslizador t. Explique lo que observa. Justifique. Quite Activa Rastro.
- f) Active rastro en la recta de Simson y mueva el deslizador t.
- g) Introduzca en la línea de comandos el punto Q = (-cos(t), -sin(t)).
- h) Trace la recta de Simson (q) de Q.
- i) Determine el punto R de intersección de $p \neq q$ y active rastro en dicho punto.
- j) Mueva el deslizador t.
- k) Explique lo que observa.
- 6. Consulte el libro Retorno a la Geometría de Coxeter-Greitzer y demuestre de manera detallada el siguiente teorema.

Teorema 1. La recta de Simson de un punto (en la circunferencia circunscrita) corta en su punto medio al segmento que une este punto con el ortocentro.

ACTIVIDAD 2: ROTACIÓN DE LA CÓNICA

- 1. Haga los cálculos con 4 decimales. (Opciones \rightarrow Redondeo)
- 2. Dibuje un triángulo escaleno ABC cualquiera. Llámele T.
- 3. Abra la vista→Hoja de cálculo.
- 4. Abra un deslizador α , tipo ángulo.
- 5. En la linea de comandos teclee $p = \cos(\alpha)$ y $q = \sin(\alpha)$.
- 6. En la línea de comando teclee A1 = p, B1 = -q, A2 = q y B2 = p. Observe lo que pasa en la Hoja de Cálculo.
- 7. Seleccione las 4 celdas escritas en la hoja de cálculo. Use el icono "crear matriz". Renombre esta matriz a M.
- 8. Teclee en la línea de comandos AplicaMatriz[M,T]. ¿Qué significado geométrico tiene la matriz C?
- 9. Oculte los Triángulos y sus vértices.
- 10. Considere la transformación R

(0.1)
$$x' = px - qy$$
$$y' = qx + py$$

¿qué significa?¿Es lineal? ¿Puede escribirla en forma matricial?

11. Aplique R a los puntos de la cónica con ecuación (reemplace x' y y' según 0.1)

$$4(x')^{2} + 24(x')(y') + 11(y')^{2} = 5$$

y dibuje el resultado. Mueva el deslizador α . ¿De qué cónica se trata?

12. Anote los ángulos α_0 y β_0 para los cuales los ejes de la cónica coincidan con los ejes coordenadas. Para estos ángulos, ¿qué forma toma la ecuación de la cónica?

EVALUACIÓN FINAL DEL CURSO TALLER "RESOLUCIÓN DE PROBLEMAS CON GEOGEBRA3"

- 13. Corrobore su deducción con el comando Aplica Matriz
- 14. Encuentre la forma que tiene que tener α_0 , en general, en función de los coeficientes de la ecuación

$$a(x') + 2h(x')(y') + b(y')^{2} = 1$$