Longitudinal Data Subject to Irregular Observation

A review of methods with a focus on visit process, assumptions, and study design

Elanor M Pullenayegum e Lily SH Lim

6 de novembro de 2017

Statistical Methods in Medical Research, 2014

Roteiro

- 1. Exemplo Motivacional
- 2. Processo de Visita
- 3. Métodos
- 4. Planejamento do Estudo
- 5. Comentários

- ► Tumor na Bexiga
- ► Estudo Longitudinal
- ► Após a primeira remoção, o paciente é aleatorizado em dois grupo (Placebo e Pyrodoxine)

- ► Tumor na Bexiga
- ► Estudo Longitudinal
- Após a primeira remoção, o paciente é aleatorizado em dois grupo (Placebo e Pyrodoxine)
- ► Acompanhamento: Visitas Trimestrais

- ► Tumor na Bexiga
- ► Estudo Longitudinal
- Após a primeira remoção, o paciente é aleatorizado em dois grupo (Placebo e Pyrodoxine)
- ► Acompanhamento: Visitas Trimestrais
- ▶ Resposta: A pyrodoxine diminui a recidiva ?

Frequência das Visitas

Figura 1: Distribuições das Visitas por Pacientes

Modelos

- ▶ GEE
- ► Modelos Mistos
- ► Lin-Ying
- ► IIW GEE
- ► Modelo conjunto Semi-paramétrico
- ► Modelo conjunto Paramétrico

► Visitas regulares

► Visitas regulares

► Visitas regulares

Visitas Irregulares

► Visitas Completamente ao acaso (VCAR)

► Visitas regulares

- ► Visitas Completamente ao acaso (VCAR)
- ► Visitas ao acaso (VAR)

► Visitas regulares

- ► Visitas Completamente ao acaso (VCAR)
- ► Visitas ao acaso (VAR)
- ► Visitas não esperadas (VNAR)

► Visitas regulares

- ► Visitas Completamente ao acaso (VCAR)
- ► Visitas ao acaso (VAR)
- ► Visitas não esperadas (VNAR)

Protocolo

▶ Visitas Fixas (Regularidade)

Protocolo

- ► Visitas Fixas (Regularidade)
- ► Histórico de Dependência
 - A intensidade da visita é alterada conforme a presença de sintomas ou do tratamento

Protocolo

- ► Visitas Fixas (Regularidade)
- ► Histórico de Dependência
 - A intensidade da visita é alterada conforme a presença de sintomas ou do tratamento

Sem Protocolo

Médico recomenda somente a próxima visita

Protocolo

- ► Visitas Fixas (Regularidade)
- ► Histórico de Dependência
 - A intensidade da visita é alterada conforme a presença de sintomas ou do tratamento

Sem Protocolo

- Médico recomenda somente a próxima visita
- ► Paciente livre

Visita Regulares

Figura 2: Hemodiálise

Figura 3: Visitas Hemodiálise

VCAR

Figura 4: Contratempo

Figura 5: Visitas Contratempo (VCAR)

VAR

Figura 6: Acompanhamento Gravidez

Figura 7: Visitas Gravidez (VAR)

VNAR

Figura 8: Gravidez

Figura 9: Visitas Gravidez (VNAR)

- $ightharpoonup N_i = Visita$
- ightharpoonup Y = Resposta
- ► X = Covariáveis
- ► Z = Variáveis Auxiliares
- ▶ i = Indivíduos
- ightharpoonup t = Tempo
- $\blacktriangleright \ \infty = \mathsf{Qualquer}$

- $ightharpoonup N_i = Visita$
- ► Y = Resposta
- ► X = Covariáveis
- ► Z = Variáveis Auxiliares
- ▶ i = Indivíduos
- ightharpoonup t = Tempo
- $\blacktriangleright \ \infty = \mathsf{Qualquer}$

VCAR

- $ightharpoonup N_i = Visita$
- ► Y = Resposta
- ► X = Covariáveis
- ► Z = Variáveis Auxiliares
- ▶ i = Indivíduos
- ▶ t = Tempo
- ightharpoonup $\infty = Qualquer$

VCAR

$$E(\Delta N_i(t)|\bar{Y}_i(\infty),\bar{X}_i(\infty),\bar{Z}_i(\infty))=E(\Delta N_i(t))$$

- $ightharpoonup N_i = Visita$
- ► Y = Resposta
- ► X = Covariáveis
- ► Z = Variáveis Auxiliares
- ▶ i = Indivíduos
- ► t = Tempo
- ightharpoonup $\infty = Qualquer$

VCAR

$$E(\Delta N_i(t)|\bar{Y}_i(\infty),\bar{X}_i(\infty),\bar{Z}_i(\infty))=E(\Delta N_i(t))$$

VAR

$$E(\Delta N_i(t)|\bar{X}_i(t),\bar{Z}_i(t),\bar{N}_i(t^-),\bar{Y}_i^{obs}(t^-))$$

- $ightharpoonup N_i = Visita$
- ► Y = Resposta
- ► X = Covariáveis
- ► Z = Variáveis Auxiliares
- ▶ i = Indivíduos
- ▶ t = Tempo
- ightharpoonup $\infty = Qualquer$

VCAR

$$E(\Delta N_i(t)|\bar{Y}_i(\infty),\bar{X}_i(\infty),\bar{Z}_i(\infty))=E(\Delta N_i(t))$$

VAR

$$E(\Delta N_i(t)|\bar{X}_i(t),\bar{Z}_i(t),\bar{N}_i(t^-),\bar{Y}_i^{obs}(t^-))$$

VNAR

- $ightharpoonup N_i = Visita$
- ► Y = Resposta
- ► X = Covariáveis
- ► Z = Variáveis Auxiliares
- ▶ i = Indivíduos
- ► t = Tempo
- ightharpoonup $\infty = Qualquer$

VCAR

$$E(\Delta N_i(t)|\bar{Y}_i(\infty),\bar{X}_i(\infty),\bar{Z}_i(\infty))=E(\Delta N_i(t))$$

VAR

$$E(\Delta N_i(t)|\bar{X}_i(t),\bar{Z}_i(t),\bar{N}_i(t^-),\bar{Y}_i^{obs}(t^-))$$

VNAR

$$\begin{split} &E(\Delta \textit{N}_i(t)|\bar{X}_i(t),\bar{Z}_i(t),\bar{N}_i(t^-),\bar{Y}_i^{obs}(t^-),Y_i(t) \neq \\ &E(\Delta \textit{N}_i(t)|\bar{X}_i(t),\bar{Z}_i(t),\bar{N}_i(t^-),\bar{Y}_i^{obs}(t^-)) \end{split}$$

Métodos

Pressupostos

Table 1. Validity of analytic methods for various visit process models.

Visit process	Measured covariates for the visit process					Latent covariates for the visit process		Analytic model					
	No covariates permitted		Past outcomes	No restrictions	May covariates be time dependent?	Correlated with outcome process?	May latent covariates be time varying?	Mixed models	GEE	Lin-Ying	Inverse- intensity weighted GEE	Semiparametric joint models	Parametric joint models
Regular	_	-	_	_	_	-	-	/	/	/	1	1	1
Visiting completely at random	•				N/A	No	Yes	1	1	1	✓	✓	1
Visiting at random		•			Yes	No	Yes	/	/	/	/	✓	/
			•		Yes	No	Yes	/	×	×	/	×	/
				•	No	No	Yes	×	×	×	/	✓	/
				•	No	No	Yes	×	×	×	/	×	/
Random-effect-		•			No	Yes	No	×	×	×	×	√ †	/
dependent visits				•	Yes	Yes	No	×	×	×	×	√ †	/
(special case				•	No	Yes	No	×	×	×	×	×	/
of visiting not at random)				•	No	Yes	Yes	×	×	×	×	×	✓‡

Figura 10: Validade dos Métodos Analíticos para vários configurações do processo de visita

Visitas Regulares

Figura 11: Hemodiálise

Figura 12: Visitas Hemodiálise

Visitas Regulares

- ▶ GEE
- ► Modelos Mistos
- ► Lin Ying
- ► IIW GEE
- ► Modelo Conjunto Semi-paramétrico
- ► Modelo Conjunto Paramétrico

VCAR

Figura 13: Contratempo

Figura 14: Contratempo

VCAR

- ▶ GEE
- ► Modelos Mistos
- ► Lin Ying
- ► IIW GEE
- ► Modelo Conjunto Semi-paramétrico
- ► Modelo Conjunto Paramétrico

VAR

Figura 15: Acompanhamento Gravidez

Figura 16: Visitas Gravidez (VAR)

VAR

Figura 17: Pressupostos

$$E(\Delta N_i^*(t)|X_i(t)) \tag{1}$$

Figura 18: Pressupostos

$$E(\Delta N_i^*(t)|Y_i^-(t)) \tag{2}$$

VAR

▶ Não há correlação entre a resposta

Figura 19: Pressupostos

Figura 20: Gravidez

Figura 21: Visitas Gravidez (VNAR)

Figura 22: Pressupostos

Figura 23: Pressupostos

Figura 24: Pressupostos

Figura 25: Pressupostos

Como identificar

Como identificar

- ► Objetivo do modelo
- Qual a distribuição dos tempos visitas
- Quais as variáveis que predizem a intensidade de visita
- ► Há fatores não medidos que podem influenciar na intensidade da visita

Voltando ao Exemplo

Distribuição das Visitas

Figura 26: Distribuições das Visitas por Pacientes

- ► Estudo Longitudinal
- ► Acompanhamento: Visitas Trimestrais

- ► Estudo Longitudinal
- ► Acompanhamento: Visitas Trimestrais
- Após a primeira remoção, o paciente é aleatorizado em dois grupo (Placebo e Pyrodoxine)

- ► Estudo Longitudinal
- ► Acompanhamento: Visitas Trimestrais
- Após a primeira remoção, o paciente é aleatorizado em dois grupo (Placebo e Pyrodoxine)
- ► Resposta: A pyrodoxine diminui a recidiva ?

- ► Estudo Longitudinal
- ► Acompanhamento: Visitas Trimestrais
- Após a primeira remoção, o paciente é aleatorizado em dois grupo (Placebo e Pyrodoxine)
- ► Resposta: A pyrodoxine diminui a recidiva ?
- ▶ O modelo de interesse é a taxa de recorrência

$$E(Y_i(t)|X_i(t)) = \beta_0(t)exp(X_i,\beta)$$
(3)

- ► Estudo Longitudinal
- ► Acompanhamento: Visitas Trimestrais
- Após a primeira remoção, o paciente é aleatorizado em dois grupo (Placebo e Pyrodoxine)
- ► Resposta: A pyrodoxine diminui a recidiva ?
- ▶ O modelo de interesse é a taxa de recorrência

$$E(Y_i(t)|X_i(t)) = \beta_0(t) \exp(X_i, \beta)$$
(3)

 Desvio da visita, pode estar associado a n\u00e3o relatos do pacientes ou fatores n\u00e3o observados

Modelos Semi-Paramétrico

Tabela 1: Comparação de Modelos Semi-paramétricos Conjunto; Respostas e Intensidade de Visita

Métodos	Modelo de Resposta	Intensidade da Visita
Liang et al ⁶	$\beta_0(t) + X_i(t)\beta + W_i(t)V_{il}$	$V_{i2}\lambda_0(t)exp(Z_i\gamma)$
Sun et al ¹²	$\beta_0(t; V_{il}) + X_i(t)\beta$	$\lambda_0(t; V_{i2}exp(X_i\gamma)$
Sun el al ⁸	$V_i\beta_0(t)$ exp $(X_i\beta)$	$V_i\lambda_0(t)$ exp $(X_i\gamma)$
Song et al ¹¹	$\beta_0(t) + X_i(t) + V_{il}$	$V_{i2}\lambda_0(t)exp(X_i(t)\gamma)$

- ► V_i, V_{il} e V_{i2} Efeitos aleatórios
- ► X_i Covariáveis
- $ightharpoonup X_i(t)$ Covariáveis que permitem tempo dependente
- ► Z_i Vetor auxiliar de variáveis base
- \triangleright β_0 , β e γ Coeficientes de Regressão
- \triangleright λ_0 , Risco Inicial
- ► *W_i*, Subconjunto de covariáveis

Validade

Tabela 2: Pressupostos da Visita

Métodos	Pressupostos
Liang et al ⁶	$C_i \perp \!\!\! \perp \!\!\! \bar{N}_i^*(\infty), \bar{Y}_i(\infty) \bar{X}_i(\infty), Z_i$
Sun et al ¹²	$C_i \perp \!\!\! \perp V_{i1}, V_{i2}D_i, \bar{Y}_i(\infty)\bar{N}_i^*(\infty) \bar{X}_i $
Sun el al ⁸	$C_i \perp \!\!\! \perp \!\!\! \bar{N}_i^*(\infty), \bar{Y}_i(\infty) \bar{X}_i V_i$
Song et al ¹¹	$C_i \perp \!\!\! \perp \!\!\! \bar{N}_i^*(\infty), \bar{Y}_i(\infty) \bar{X}_i V_{i1}, V_{i2}$
	$C_i \perp \!\!\! \perp V_{i1}, V_{i2} \bar{X}_i(\infty);$

- $ightharpoonup C_i = Censura$
- $ightharpoonup N_i^* = ext{Visitas que não houveram censuras}$
- $ightharpoonup D_i^* = Doença terminal$

Validade

Tabela 2: Pressupostos da Visita

Métodos	Pressupostos
Liang et al ⁶	$C_i \perp \!\!\! \perp \!\!\! \bar{N}_i^*(\infty), \bar{Y}_i(\infty) \bar{X}_i(\infty), Z_i$
Sun et al ¹²	$C_i \perp \!\!\! \perp V_{i1}, V_{i2}D_i, \bar{Y}_i(\infty)\bar{N}_i^*(\infty) \bar{X}_i $
Sun el al ⁸	$C_i \perp \!\!\! \perp \!\!\! \bar{N}_i^*(\infty), \bar{Y}_i(\infty) \bar{X}_i V_i$
Song et al ¹¹	$C_i \perp \!\!\! \perp \!\!\! \bar{N}_i^*(\infty), \bar{Y}_i(\infty) \bar{X}_i V_{i1}, V_{i2}$
	$C_i \perp \!\!\! \perp V_{i1}, V_{i2} \bar{X}_i(\infty);$

- $ightharpoonup C_i = Censura$
- $ightharpoonup N_i^* = ext{Visitas que não houveram censuras}$
- $ightharpoonup D_i^* = Doença terminal$
- Como não há a informação do status do paciente, a censura inclui a morte ou perda de acompanhamento

Tabela 2: Pressupostos da Visita

Métodos	Pressupostos
Liang et al ⁶	$C_i \perp \!\!\! \perp \!\!\! \bar{N}_i^*(\infty), \bar{Y}_i(\infty) \bar{X}_i(\infty), Z_i$
Sun et al ¹²	$C_i \perp \!\!\! \perp V_{i1}, V_{i2}D_i, \bar{Y}_i(\infty)\bar{N}_i^*(\infty) \bar{X}_i $
Sun el al ⁸	$C_i \perp \!\!\! \perp \!\!\! \bar{N}_i^*(\infty), \bar{Y}_i(\infty) \bar{X}_i V_i$
Song et al ¹¹	$C_i \perp \!\!\! \perp \!\!\! \bar{N}_i^*(\infty), \bar{Y}_i(\infty) \bar{X}_i V_{i1}, V_{i2}$
	$C_i \perp \!\!\! \perp V_{i1}, V_{i2} \bar{X}_i(\infty);$

- $ightharpoonup C_i = Censura$
- $ightharpoonup N_i^* = ext{Visitas que não houveram censuras}$
- $\triangleright D_i^* = \text{Doença terminal}$
- Como não há a informação do status do paciente, a censura inclui a morte ou perda de acompanhamento
- O modelo de visita requer independência condicional nos efeitos aleatórios e a aleatorização nos grupos

Resultados

► Houve 53% de redução usando pyrodoxine pelo Sun et al⁸

Resultados

- ► Houve 53% de redução usando pyrodoxine pelo Sun et al⁸
- ▶ Houve 51% de redução usando pyrodoxine pelo GEE

Planejamento do Estudo

► Cultive um positivo relacionamento com os pacientes(presentei, cartão de aniversário)

- ► Cultive um positivo relacionamento com os pacientes(presentei, cartão de aniversário)
- ► Especifique no protocolo quais os fatores podem influenciar a visita

- ► Cultive um positivo relacionamento com os pacientes(presentei, cartão de aniversário)
- ► Especifique no protocolo quais os fatores podem influenciar a visita
- ► Defina intervalos para a próxima visita

- ► Cultive um positivo relacionamento com os pacientes(presentei, cartão de aniversário)
- ► Especifique no protocolo quais os fatores podem influenciar a visita
- ▶ Defina intervalos para a próxima visita
- ▶ Registre os motivos da antecipação ou adiamento da visita

- ► Cultive um positivo relacionamento com os pacientes(presentei, cartão de aniversário)
- ► Especifique no protocolo quais os fatores podem influenciar a visita
- Defina intervalos para a próxima visita
- ▶ Registre os motivos da antecipação ou adiamento da visita
- Especifique o mínimo de acompanhamento no protocolo Paciente Livre

Comentários

▶ Primeiro contato com técnicas em dados longitudinais irregulares

- ▶ Primeiro contato com técnicas em dados longitudinais irregulares
- ► Atentar-se para caracterizar o processo da visita com a resposta

- ▶ Primeiro contato com técnicas em dados longitudinais irregulares
- ► Atentar-se para caracterizar o processo da visita com a resposta
- ► Diversas técnicas de modelagem foram apresentadas

- ▶ Primeiro contato com técnicas em dados longitudinais irregulares
- ► Atentar-se para caracterizar o processo da visita com a resposta
- ▶ Diversas técnicas de modelagem foram apresentadas
- ▶ Diferenciação de censuras informativas e não informativas

- ▶ Primeiro contato com técnicas em dados longitudinais irregulares
- ► Atentar-se para caracterizar o processo da visita com a resposta
- ▶ Diversas técnicas de modelagem foram apresentadas
- ▶ Diferenciação de censuras informativas e não informativas

▶ Quais as desvantagens em visitas irregulares?

- ► Quais as desvantagens em visitas irregulares?
- ▶ Quais os métodos de validar a influência de visita?

- Quais as desvantagens em visitas irregulares?
- ▶ Quais os métodos de validar a influência de visita?
- ► Como tratar intersecção de processo de visita?

- Quais as desvantagens em visitas irregulares?
- ▶ Quais os métodos de validar a influência de visita?
- ► Como tratar intersecção de processo de visita?
- ▶ Qual o preço a se pagar no modelo conjunto paramétrico?

Dúvidas ?