

Electronic states of Ga4 and In4

K. Balasubramanian and P. Y. Feng

Citation: The Journal of Chemical Physics 94, 6664 (1991); doi: 10.1063/1.460294

View online: http://dx.doi.org/10.1063/1.460294

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/94/10?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Electronic states of oxidized GaN(0001) surfaces

Appl. Phys. Lett. 89, 171920 (2006); 10.1063/1.2370519

Influence of electronic states on precipitation of metallic As clusters in LT-GaAs

J. Appl. Phys. 88, 6016 (2000); 10.1063/1.1319324

The effect of plasma pretreatments on interface state electron emission in Si3N4-GaAs structures

J. Appl. Phys. 77, 5793 (1995); 10.1063/1.359594

Electronic states of GaAs and GaAs+

J. Chem. Phys. 86, 3410 (1987); 10.1063/1.451997

Defect states in electron irradiated InGaAsP

Appl. Phys. Lett. 42, 605 (1983); 10.1063/1.94017

Electronic states of Ga4 and In4

K. Balasubramanian^{a)} and P. Y. Feng
Department of Chemistry, Arizona State University, Tempe, Arizona 85287-1604

(Received 27 December 1990; accepted 5 February 1991)

Complete active space-multiconfiguration self-consistent-field (CAS-MCSCF) followed by configuration interaction calculations, which included up to 250 000 configurations, are carried out on 16 electronic states of Ga_4 and In_4 . Three nearly-degenerate electronic states of ${}^3B_{3u}$, 3A_u , and 1A_g symmetries with rhombus, square, and square geometries, respectively, are found as candidates for the ground states of Ga_4 and In_4 . The tetramers of Ga and Ga_4 and

I. INTRODUCTION

Geometries, ionization potentials, binding energies, spectroscopic properties, and other properties of main group clusters have been the topic of a large number of theoretical and experimental studies. ¹⁻³⁰ Specifically, the Group III clusters and other compounds containing B, Al, and Ga, have received considerable attention. ¹⁹⁻³³ While the dimers and trimers of Group III atoms have been studied extensively, this is not the case for the tetramers of Ga and In. As noted in a recent study by Janiak and Hoffmann, ²⁰ it is important to have insight into clusters of these atoms to understand the nature of metal–metal interaction in larger clusters and solids containing Tl and In atoms.

The study of Ga_n and In_n clusters are of considerable importance in the thin-film depositions and thin layer growth in the deposition of multilayer structures. The only study on tetramers and larger clusters containing Ga up to now is the molecular dynamics simulation of Ga microclusters. It was inferred that planar structures in general are more favored for these clusters.

The clusters of GaAs of the composition Ga_xAs_y have been generated by O'Brien et al. 12 by laser vaporization of GaAs crystal. These authors observed interesting odd—even alternations in the ionization potentials of the Ga_xAs_y cluster. Further, the relative abundance in the mass spectra of smaller clusters deviated considerably from the expected binomial distributions observed for the larger clusters. It is also interesting to note that while the experimental electronic spin resonance (ESR) spectra 14 in the rare gas matrix favor a quartet ground state for Al_3 , recent theoretical calculations yielded a ground state of Al_3 symmetry with a near-equilateral triangular geometry. 132

The objective of the present study is high-level *ab initio* study on several low-lying electronic states of Ga₄ and In₄ based on the complete active space–multiconfiguration self-consistent-field (MCSCF) followed by large-scale configuration interaction (CI) methods. We find three nearly degenerate candidates for the ground states of Ga₄ and In₄, all of which have planar rhombus geometries. We also find that the tetramers of Ga and In are roughly 1.3 and 1 eV more stable than the corresponding trimers.

II. METHOD OF INVESTIGATION

We employ relativistic effective core potentials (RECPs) for the Ga and In atoms with the outer ns^2np^1 shells (n = principal quantum number) explicitly retained in the calculations. In an earlier study, 26 the results obtained using (n-1) $d^{10}ns^2np^1$ (13e RECPs) RECPs were compared for In₃ with 3e RECPs. It was found that distances were within ± 0.04 Å and bond angles within 1.5°. A valence Gaussian basis set of the type (3s3p1d) described previously in our studies on Ga_3^{25} and In_3^{26} was used in the present study.

Complete active space-multiconfiguration self-consistent-field method (CAS-MCSCF) was used to generate the orbitals for CI calculations. Preliminary CAS-MCSCF computations considered different geometries for the low-lying electronic states considered here such as planar rhombus (including square), tetrahedron, linear, rectangular, etc. Among these planar rhombus structure and its variation, (square) were found to be the lowest. Hence, the rhombus geometry was studied extensively. A cubic multidimensional polynomial fit was used for optimizing geometries.

All final CAS-MCSCF and CI calculations of the rhombus structure were made in the D_{2h} group. The outer ns and np orbitals of the four atoms spanned four a_g , three b_{2u} , three b_{1u} , two b_{3g} , two b_{3u} , one b_{1g} , and one b_{2g} representations. Our preliminary calculations revealed that the lowest a_g orbital which is composed of the totally symmetric combination of the ns orbitals of the Group III atoms is considerably lower in energy. Consequently, no electronic excitations from this orbital were allowed at the CAS-MCSCF level. Furthermore, the b_{2g} orbital which is composed of the antisymmetric combination of the np_x orbitals of the Ga atoms located along the longer diagonal of the rhombus did not play an important role. Similarly the last b_{2u} , b_{1g} , b_{3g} , and $b_{3\mu}$ orbitals were antibonding combination. Omission of these orbitals resulted in an active space of three a_g , two b_{2u} , two b_{1u} , one b_{3g} , and one b_{3g} orbitals. Ten outer electrons (note that excitations from $1a_g^2$ were not allowed) were distributed in all possible ways among these nine orbitals in the CAS-MCSCF calculations. This resulted in a manageable number of less than 1000 configuration spin functions (CCSFs) at the CAS-MCSCF stage.

a) Camille and Henry Dreyfus Teacher-Scholar.

We carried out multireference singles + doubles configuration interaction (MRSDCI) calculations following CAS-MCSCF. All configurations in the CAS-MCSCF with coefficients ≥0.09 were included as reference configurations in the MRSDCI. An initial set of MRCI computations were made which did not allow two electrons to be distributed in the external space. The natural orbitals obtained from this calculation were used to truncate the external space into two sets, retaining only those orbitals with larger densities in the first set. In the final calculation, the second set consisted of 26 orbitals. The MRSDCI calculations included excitations of all 12 electrons. Single and double excitations were allowed for these configurations. Our MRSDCI calculations included up to 250 000 CSFs. The MRSDCI calculations were made for all electronic states considered in this study. The CASMCSCF and MRSDCI calculations were carried out using one of the present authors, K.B's35 modified version of the ALCHEMY II codes.36

III. RESULTS AND DISCUSSION

A. Electronic states of Ga4

Since the ground state of the Ga atom is a 2P state arising from the $4s^24p^1$ configuration, four Ga 2P atoms would together constitute a large array of singlet, triplet, quintet, and heptet electronic states. It is evident that high spin heptet states will not be strongly bound since there is no flexibility for bond pair formation in the high spin states. Previous studies on Ga_3^{25} also did not yield any bound sextet states. All these considerations eliminate the possibility of low-lying heptet states for Ga_4 .

The previous study on Ga_3^{25} yielded 2A_1 to be the ground state. Three electronic states of 4A_2 , 2B_1 , and 4B_1 states were found to be 0.3 eV above the ground state. Consequently, combination of these states with another $Ga({}^2P)$ would yield an array of triplet and singlet states. The quintet

TABLE I. CASSCF geometries and energy separations of electronic states of Ga_4 .

Electronic state	r_e (Å)*	$\theta_{\rm e}$ (°) ^b	E(eV)		
³ B _{3u} ³ A _u	2.63	78	0.0		
$^{3}A_{u}$	2.66	89	0.09		
¹A ₈	2.74	88	0.18		
$^{1}B_{3\mu}$	2.63	79	0.39		
$^{3}B_{1g}$	2.76	58	0.46		
$^{1}A_{u}^{"}$	2.68	86	0.66		
$^{1}B_{1_{R}}$	2.76	58	0.67		
$^{3}B_{2_{R}}$	2.76	60	0.82		
³ B _{1u}	2.87	68	0.92		
¹ B _{2g}	2.75	60	0.99		
³ B _{3g}	3.09	53	1.03		
¹ B _{1u}	2.82	63	1.19		
${}^{1}B_{3g}$	3.06	52	1.23		
¹ B _{2u}	2.88	70	1.55		
$^{3}A_{R}$	3.41	51	2.50		

[&]quot;r, is the Ga-Ga bond length of four equal sides of the rhombus.

states of Ga_4 are not likely candidates for the ground state of Ga_4 .

Table I shows the CAS-MCSCF geometries and energy separation of several triplet and singlet electronic states of Ga_4 . As seen from Table I at the CAS-MCSCF level, there are three nearly degenerate electronic states with rhombus and nearly square geometries. The small deviation in the bond angles of the square structures for 3A_u and 1A_g states is primarily an artifact of truncation of the active space in the CAS-MCSCF stage of calculations.

At the CAS-MCSCF level, the ${}^{3}B_{3u}$ state with a rhombus structure, whose Ga-Ga side length of 2.63 Å, is the lowest. This compares well with the Ga-Ga bond length of 2.51 Å and 2.62 Å for the ${}^{1}A_{1}$ and ${}^{4}A_{2}$ electronic states of Ga₃.²⁵

There are five electronic states within $0.5 \, \text{eV}$ energy separation for Ga_4 . Since the accuracy of energy separations obtained by the CAS-MCSCF method cannot be too much smaller than this value, all these states should be considered as candidates for the ground state of Ga_4 .

The geometries of some of the triplet and singlet states of the same spatial symmetries are alike as they arise from the same electronic configuration. For example, the ${}^3B_{3u}$ and ${}^1B_{3u}$, ${}^3B_{1g}$ and ${}^1B_{1g}$, 3A_u and 1A_u , ${}^3B_{2g}$ and ${}^1B_{2g}$, ${}^3B_{1u}$ and ${}^1B_{1u}$ states have bond angles within 5° of each other and bond lengths within 0.05 Å of each other. Hence, the configurations contributing to the triplet and singlet states of these symmetries are similar. The exception to this is the closed shell 1A_g state.

Table II shows the MRSDCI geometries and energy separations of the electronic states of Ga₄. In comparing Tables I and II, we note that the acute apex angles of the rhombus structures of these states open up due to higher-order correlation effects. Higher-order correlation effects tend to equalize the interactions of two diagonals of the rhombus structure. Hence, structures with geometries near

TABLE II. MRCI geometries and energy separations of Ga₄.

State	r_e (Å) ^a	θ (°) ^b	<i>E</i> (eV)		
$\overline{{}^{3}B_{3u}}$	2.65	92	0.0		
$^{3}A_{u}$	2.67	90	0.03		
$^{1}A_{8}$	2.74	89	0.08		
$^{1}B_{3u}^{\circ}$	2.67	83	0.24		
$^{1}A_{u}$	2.70	84	0.48		
$^{3}B_{1g}$	2.77	60	0.56		
$^{1}B_{1g}$	2.77	58	0.80		
$^{3}B_{1u}$	2.87	69	0.87		
$^{3}B_{2g}$	2.78	59	0.92		
B_{2u}	2.90	71	0.95		
$^{1}B_{2g}$	2.76	60	1.05		
$^{3}B_{3g}$	3.06	54	1.05		
$^{1}B_{1u}$	2.83	63	1.30		
$^{1}B_{3g}$	3.08	53	1.39		
$^{1}B_{2u}$	2.88	71	1.62		
$^{3}A_{g}$	3.34	52	2.60		

[&]quot;Equal sides of the rhombus.

 $[\]theta$ is the acute bond angle of the rhombus.

^b Acute Ga-Ga-Ga bond angle.

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

square at the CAS-MCSCF level almost attain square geometries as noted for the 3A_u , 1A_g states of Ga₄. This trend is similar to the trend we found for Ga₃. For example, at the CASSCF level, Ga-Ga bond lengths of the sides of the isosceles triangle of Ga₃²⁵ are 2.51 Å ($\theta_e = 62^\circ$) while at the MRCI level these values become 2.58 Å and $\theta_e = 61^\circ$.

The MRSDCI method essentially retains the three nearly degenerate states as candidates for the ground states of Ga_4 (${}^3B_{3u}$, 3A_u , and 1A_g). This is not surprising in view of the fact that Ga_3 has four very low-lying states of 2A_1 , 4A_2 , 2B_1 , and 4B_1 symmetries. Similarly, Ga_2 has very low-lying ${}^3\Pi_u$ and ${}^3\Sigma_g^-$ states (within 500 cm⁻¹). The near-degeneracy effects found in the smaller gallium clusters is also seen in Ga_4 .

Katircoğlu and Erkoc²¹ have investigated the energies and the structural stabilities of Ga_n (n = 3-7) using the molecular dynamics method employing two- and three-body interactions modeled by Lennard-Honnes and Axirod-Teller type functions. They find that Ga₄ has a rhombus structure with all four-equal bond lengths (a) being 2.5 Å. The shorter diagonal bond lengths obtained by these authors is 2.56 Å. Our MRCI a and b bond lengths for the ${}^{3}B_{3\mu}$ state are 2.65 and 3.48 Å. Hence, we conclude that the side bond lengths are more reasonably predicted in the molecular dynamics study than the diagonal bond lengths. However, such molecular dynamics studies typically yield only an average of bond lengths of several low-lying states. For example the ${}^{3}B_{1a}$ state has identical a and b value of 2.77 Å. Consequently, while molecular dynamics simulations predict a rhombus structure with very acute bond angles, our ab initio studies predict rhombus geometries tending towards square structures.

We compute the binding energy of Ga_4 relative to $Ga_3 + Ga$ as 1.4 eV. The atomization energy of Ga_3 was calculated before as 2.32 eV.²⁵ Hence, the atomization energy of Ga_4 is estimated as 3.72 eV. This is expected to be a lower bound and hence we predict that AE

TABLE III. CASSCF geometries and energy separations of In4.

State	r_c (Å) ^a	$ heta_c$ (°) $^{ ext{b}}$	<i>E</i> (eV)		
${{}^{3}B_{3u}}$	2.98	77	0.0		
$^{1}A_{_{\mathcal{R}}}$	3.10	90	0.02		
$^{3}A_{u}^{^{\circ}}$	3.02	86	0.07		
${}^{3}B_{1g}$	3.12	58	0.31		
$^{1}B_{3u}$	2.98	78	0.35		
$^{1}A_{u}$	3.03	90	0.43		
${}^{3}B_{1u}$	3.22	69	0.51		
$^{1}B_{1g}$	3.12	58	0.51		
$^{3}B_{2u}$	3.27	69	0.60		
$^{3}B_{2g}$	3.12	60	0.63		
$^{3}B_{3g}^{3}$	3.45	54	0.67		
$^{1}B_{2g}$	3.11	61	0.79		
${}^{1}B_{1u}$	3.18	63	0.86		
${}^{1}B_{3g}$	3.41	53	0.87		
$^{1}B_{2u}$	3.23	70	1.19		
$^{3}A_{\kappa}$	3.73	53	1.93		

^a Equal sides of the rhombus.

 $(Ga_4) = 3.9 \pm 0.2$ eV. Equivalently, the binding energy per atom is ~ 0.97 eV. Our computed values for Ga_4 are in excellent agreement with the AE of 3.834 eV predicted by Katircioğlu and Erkoc.²¹ Although this agreement should be considered fortuitous in view of the differences in the a and b bond lengths obtained by us and Katircioğlu and Erkoc,²¹ this is encouraging.

B. Electronic states of In₄

Table III shows the CAS-MCSCF geometries of the electronic states of In_4 considered in this study. There is considerable similarity in the geometries of In_4 and Ga_4 . The Ga-Ga-Ga acute angles of various electronic states of Ga_4 are very comparable to the corresponding electronic states of In_4 . For example, the CAS-MCSCF acute angle of the $^3B_{3u}$ states of Ga_4 and In_4 are 78° and 71°, respectively.

The ${}^{3}B_{3u}$, ${}^{1}A_{g}$, and ${}^{3}A_{u}$ states of In_{4} are even more closely clustered than in Ga_{4} . Higher-order electron correlation effects may eventually favor the ${}^{1}A_{g}$ state of In_{4} with a square equilibrium geometry.

The In-In bond lengths are considerably longer compared to the Ga-Ga bond lengths. The three lowest electronic states of In₃ are 4A_2 , 4B_1 , and 2B_1 , all of which have isosceles triangular geometries. The In-In bond lengths of the isosceles triangle of these three states are 2.95, 3.12, and 3.31 Å. The longer sides of the 2B_1 state are understandable since the 2B_1 state forms a very acute triangular geometry. Thus the In-In side bond lengths of the rhombus structures of the ${}^3B_{3u}$, 1A_g , and 3A_u states are closer to the In-In side bond lengths of 4A_2 and 4B_1 states of In₃.

Table IV shows the MRSDCI geometries and energy separations for In₄. The geometry changes induced by higher-order electron correlation effects for In₄ are akin to Ga₄. In general, the acute In–In–In bond angles open up. Structures which are close to square geometry become almost perfect squares. At the final MRSDCI level we find three elec-

TABLE IV. MRSDCI geometries and energy separations of electronic states of In_4 .

State	$r_{_{\scriptscriptstyle C}}({ m \AA})^{ m a}$	$ heta$ (°) h	<i>E</i> (eV)	
³ B ₃ ,,	3.00	83	0.0	
$^{1}A_{g}$	3.07	90	0.04	
$^{3}A_{u}$	3.09	90	0.06	
$^{1}A_{u}$	3.02	90	0.36	
$^{3}B_{1g}$	3.12	60	0.42	
$^{3}B_{1u}$	3.20	68	0.58	
$^{I}B_{^{I_{\mathcal{S}}}}$	3.11	60	0.68	
$^{3}B_{2u}$	3.23	71	0.69	
³ B ₂₈	3.10	60	0.70	
$^{3}B_{3g}$	3.38	55	0.80	
$^{1}B_{2_{8}}$	3.09	60	0.95	
$^{1}B_{1u}$	3.17	63	1.02	
${}^{1}B_{3g}$	3.43	54	1.08	
$^{1}B_{2u}$	3.20	71	1.33	
$^{3}A_{g}$	3.64	53	2.09	

[&]quot;Equal sides of the rhombus.

^bAcute In-In-In bond angle.

^bAcute In-In-In bond angle.

tronic states of ${}^3B_{3u}$, 1A_g , and 3A_u symmetries, two of which have perfect square geometries. Because of its closed-shell character, the 1A_g state retains a square geometry. Hence, we conclude that the ground state of ${\rm In}_4$ cannot be established unambiguously, but there are three probable candidates with planar square or rhombus geometries.

The energy required to remove an In atom from In_4 is computed as 1 eV. In a previous study the atomization energy of In_3 was computed as 2.1 eV.²⁶ Consequently, a lower bound for the AE (In_4) is established as 3.1 eV. We consider this as a lower bound since higher-order electron correlation effects and basis set improvements would increase the AE.

On the other hand, the spin-orbit coupling changes the symmetry of the Hamiltonian, thereby causing the ${}^3B_{1g}$ (A_g) state to mix with 1A_g (Ag) for ${\rm In_4}$. The other electronic states compatible with 1A_g (A_g) are the ${}^3B_{2g}$ (A_g) and ${}^3B_{3g}$ (A_g) states lying 0.7-0.8 eV above the ground state. The spin-orbit coupling of the closed shell 1A_g state with open shell states is likely to be small. But the atomic ${}^2P_{3/2}$ ${}^2P_{1/2}$ separation is 2200 cm ${}^{-1}$, which suggests that the ${}^2P_{1/2}$ state is stabilized relative to 2P by 1460 cm ${}^{-1}$. Hence, the ${\rm In_4}$ cluster will be destabilized by spin-orbit coupling. This destabilization is estimated as 0.3 eV. Hence, the spin-orbit corrected AE of ${\rm In_4}$ is 2.8 \pm 0.5 eV.

TABLE V. CASSCF-CI wave functions of electronic states of Ga₄.

Coefficient	1 <i>a</i> ₈	$2a_g$	$3a_g$	$4a_g$	$1b_{2u}$	$2b_{2u}$	$1b_{1u}$	2b14	$1b_{3g}$	$1b_{3u}$
					$^{3}B_{3u}$					
0.943	2	2	1	0	2	0	2	0	2	1
0.152	2	0	1	0	${}^{2}_{^{3}A_{u}}$	0	2	2	2	1
- 0.920	2	2	2	0	2	0	2	0	1	1
0.205	2	2	0	0	2	0	2	2	1	1
- 0.917	2	2	2	0	${}^{1}A_{g}$ 2	0	2	0	2	0
— 0.197	2	2	0	0	2	0	2	2	2	0
- 0.939	2	2	1	0	${}^{1}B_{3u}$	0	2	0	2	1
0.172	2	Õ	1	Ö	2	ō	2	2	2	1
0.911	2	2	1	0	$\frac{{}^{3}B_{1g}}{2}$	0	2	i	1	1
0.151	2	2	1	Ö	1	1	2	1	1	1
– 0.945	2	2	2	0	¹ A _u 2	0	2	0	1	1
0.216	2	2	0	0	2	0	2	2	1	1
0.940	2	2	1	0	${}^{1}B_{1g}$	0	2	1	1	1
0.152	2	2	1	0	1 3 p	1	2	1	1	1
0.946	2	2	0	0	${}^{3}B_{2g}$	0	2	1	2	1
- 0.139	2	2	0	0	${}^{3}B_{1u}$	2	2	1	0	1
- 0.954	2	2	1	0	2	0	2	1	2	0
0.153	2	2	1	0	${}^{3}B_{2u}$	2	2	1	0	0
0.952	2	2	2	0	2	0	2	1	1	0
0.148	2	2	0	0	${}^{1}B_{2_{8}}$	2	2	1	1	0
0.938	2	2	0	0	2	0	2	1	2	1
– 0.167	2	2	0	0	${}^{2}_{{}^{3}B_{3g}}$	2	2	1	0	1
- 0.956	2	2	1	0	$\frac{D_{3g}}{2}$ ${}^{1}B_{1u}$	0	2	2	1	0
0.944	2	2	1	0	2	0	2	1	2	0
- 0.145	2	2	1	0	${}^{1}B_{3_{R}}$	2	2	1	0	0
0.952	2	2	1	0	2	0	2	2	1	0
0.166	2	2	1	0	${}^{1}B_{2u}$	1	2	2	1	0
- 0.935	2	2	2	0	2	0	2	1	1	0
0.146	2	2	0	0	${}^{2}_{^{3}A_{g}}$	2	2	1	1	0
0.96	2	2	1	0	2	1	2	1	1	0

TABLE VI. CASSCF-CI wave function of electronic states of In4.

Coefficient	$1a_g$	$2a_g$	$3a_g$	$4a_g$	1 <i>b</i> ₂ ,	$2b_{2u}$	1 <i>b</i> 1 "	$2b_{1u}$	$1b_{3g}$	1 <i>b</i> ₃ ,
					³ B _{3u}					
0.942	2	2	1	0	2 ¹ A g	0	2	0	2	1
0.909	2	2	2	0	2	0	2	0	2	0
— 0.211	2	2	0	0	$\frac{2}{^{3}A_{u}}$	0	2	2	2	0
- 0.912	2	2	2	0	2	0	2	0	1	1
0.230	2	2	0	0	${}^{3}B_{1g}$	0	2	2	1	1
0.959	2	2	1	0	2	0	2	1	1	1
0.938	2	2	1	0	${}^{1}B_{3u}$	0	2	0	2	1
- 0.910	2	2	2	0	¹ <i>A</i> ″ 2	0	2	0	1	1
0.179	2	2	Õ	0	2	0	2	2	1	1
0.179	2	2	Ö	Ö	2	2	2	ō	î	1
– 0.955	2	2	1	0	${}^{3}B_{1u}$	0	2	1	2	0
0.940	2	2	1	0	${}^{1}B_{1g}$	0	2	1	1	1
0.151	2	2	1	ő	$\frac{1}{^{3}B_{2u}}$	1	2	1	1	1
 0.941	2	2	2	0	2	0	2	1	1	0
0.198	2	2	0	0	${}^{3}B_{2g}$	2	2	1	1	0
0.941	2	2	0	0	2	0	2	1	2	1
- 0.165	2	2	0	0	${}^{2}_{{}^{3}B_{3g}}$	2	2	1	0	1
 0.956	2	2	1	0	2	0	2	2	1	0
- 0.942	2	2	0	0	¹ B _{2g} 2	0	2	1	2	1
- 0.172	2	1	1	Ō	2 1B _{1u}	0	2	1	2	1
— 0.945	2	2	1	0	2	0	2	1	2	0
0.951	2	2	1	0	${}^{1}B_{3g}$	0	2	2	1	0
0.168	2	2	1	0	${}^{1}B_{2u}$	1	2	2	1	0
- 0.932	2	2	2	0	2	0	2	1	1	0
0.164	2	2	0	0	${}^{2}_{{}^{3}A_{8}}$	2	2	1	1	0
0.895	2	2	1	0	2	1	2	1	1	0
0.409	2	1	1	1	2	1	2	1	1	0

C. Nature of electronic states of Ga₄ and In₄

Tables V and VI show the leading configurations in the CASSCF–CI wave functions of the electronic states of Ga_4 and In_4 , respectively. As seen from these tables, almost all electronic states require at least two configurations to be described adequately. The coefficients of the leading configurations for all states of Ga_4 are greater than 0.90 while for In_4 this is true with the exception of the 3A_g state. As seen from Tables V and VI, the $^3B_{3u}$ state is dominated by the $1a_g^2 2a_g^2 3a_g 1b_{2u}^2 1b_{1u}^2 1b_{3g}^2 1b_{3u}$ configuration while the 3A_u and 1A_g states are predominantly described by the $1a_g^2 2a_g^2 3a_g^2 1b_{2u}^2 1b_{1u}^2 1b_{3g}^2 1b_{3u}$ and $1a_g^2 2a_g^2 3a_g^2 1b_{2u}^2 1b_{1u}^2 1b_{3g}^2$ configurations, respectively.

The $1a_g$ orbital is predominantly $Ga_1(4s) + Ga_2(4s) + Ga_3(4s) + Ga_4(4s)$ orbital, where Ga_1 and

 Ga_4 are the Ga atoms located on the z axis while Ga_2 and Ga_3 are the Ga atoms located on the y axis. The $2a_g$ orbital is composed of Ga_1 (4s) $-Ga_2$ (4s) $-Ga_3$ (4s) $+Ga_4$ (4s). The singly occupied $3a_g$ orbital in the $^3B_{3u}$ state is Ga_1 (4p_z) $-Ga_2$ (4p_y) $+Ga_3$ (4p_y) $-Ga_4$ (4p_z). The highest occupied $3a_g$ orbital is thus a bonding combination composed of the $4p_z$ orbitals located on the (Ga_1, Ga_4) atoms and the $4p_y$ orbitals of (Ga_2, Ga_3) atoms.

The $1b_{2u}$ orbital is predominately $Ga_2(4s) - Ga_3(4s)$, but the mixing with $-Ga_1(4p_y) - Ga_2(4p_y)$ is non-negligible. Hence, there is bonding interaction between $Ga_1(4p_y)$ and $Ga_2(4s)$ as well as $Ga_4(4p_y)$ and $Ga_3(4s)$. Consequently, the near degeneracy of the 4s and 4p orbitals is manifested in the $1b_{2u}$ orbital of Ga_4 . The $1b_{1u}$ orbital is composed of $-Ga_1(4s) - Ga_2(4p_z) - Ga_3(4p_z) + Ga_4(4s)$. Again, although this orbital is predominantly composed of the 4s orbitals of the 4s orbi

mixing of $4p_z$ orbitals located on the Ga atoms placed on the y axis is non-negligible.

The $1b_{3g}$ orbital is composed of $Ga_1(4p_y)-Ga_2(4p_z)+Ga_3(4p_z)-Ga_4(4p_z)$. Note that this results in Ga-Ga bonding interaction along the sides of the rhombus. The $1b_{3u}$ orbital is simply $Ga_1(4p_x)+Ga_2(4p_x)+Ga_3(4p_x)+Ga_4(4p_x)$. Hence, this represents perpendicular π -bonding interaction.

As seen from Table V in the ${}^3B_{3u}$ state, the $3a_g$ and $1b_{3u}$ (π orbital) orbitals are singly occupied, while in the 3A_u state, the $1b_{3g}$ and $1b_{3u}$ orbitals are singly occupied. The near degeneracy of the two states is explained by the near degeneracy of the $3a_g$ and $1b_{3g}$ orbitals. The $3a_g$ orbital has enhanced bonding along the diagonals, while the $1b_{3g}$ orbital has enhanced bonding along the sides. Hence, the ${}^3B_{3u}$ state has slightly shorter bond lengths along the sides compared to the 3A_u state.

The difference between the ${}^{1}A_{g}$ and $({}^{3}B_{3u}, {}^{3}A_{u})$ pair of states is in the composition of the $3a_{g}$ orbital which is doubly occupied in the ${}^{1}A_{g}$ state, while it is singly occupied in the ${}^{3}B_{3u}$ and ${}^{3}A_{u}$ states. The contribution of the - Ga₁ $(4p_{y})$ - Ga₄ $(4p_{y})$ orbital is significantly enhanced in the $3a_{g}$ orbital. Note that the $1b_{3u}$ orbital (π_{x}) orbital is unoccupied in the ${}^{1}A_{g}$ state. Hence, the in-plane bonding in the ${}^{1}A_{g}$ state is enhanced.

The bonding in In_4 is qualitatively similar to Ga_4 . The occupancy of the $3a_g$ orbital in the 1A_g state is a bit smaller (1.77) in In_4 compared to Ga_4 (1.82). The ratio of Ga-Ga to In-In Mulliken overlap populations was approximately 2-2.5, suggesting weaker In-In bond strength. This is consistent with significantly longer In-In bond.

IV. CONCLUSION

The CASSCF/MRCI calculations of 16 electronic states of Ga_4 and In_4 reveal three nearly degenerate electronic states of ${}^3B_{3u}$, 3A_u , and 1A_g symmetries, all of which have planar rhombus and near-square geometries. The atomization energies of Ga_4 and In_4 were computed as 3.9 ± 0.2 and 2.8 ± 0.5 eV, respectively. The analysis of MOs of the three lowest states reveals that the ${}^3B_{3u}$ and 3A_u states have singly occupied the $1b_{3u}$ orbital exhibiting π bonding perpendicular to the plane, while the 1A_g state exhibits enhanced in-plane bonding.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National Science Foundation Grant No. CHE-8818869. P.Y.F. thanks Shanghai Metallurgy Institute, Academia Sinica, P. R. China for providing a leave of absence.

- ¹ J. Koutecký and P. Fantucci, Chem. Rev. **86**, 439 (1986).
- ² M. D. Morse, Chem. Rev. 86, 1049 (1986).
- ³ K. Balasubramanian, Chem. Rev. 90, 83 (1990).
- ⁴ Physics and Chemistry of Small Clusters, NATO ASI Series, edited by P. Jena, B. K. Rao, and S. N. Khanna (Plenum, New York, 1987).
- ⁵J. C. Phillips, Chem Rev. 86, 619 (1986).
- ⁶ R. C. Baetzold and J. H. Hamilton, Prog. Solid State Chem. 15, 1 (1983).
 ⁷ R. G. Wheeler, K. LaiHing, W. C. Wilson, and M. A. Duncan, J. Chem. Phys. 88, 2831 (1988).
- ⁸ K. LaiHing, P. Y. Cheng, and M. A. Duncan, J. Chem. Phys. 87, 3401 (1987).
- ⁹ Z. Fu, G. W. Lemire, Y. M. Hamrick, S. Taylor, J. C. Shui, and M. D. Morse, J. Chem. Phys. 88, 3524 (1988).
- ¹⁰ J. E. Harrington and J. C. Weisshaar, J. Chem. Phys. 93, 854 (1990).
- ¹¹ L. B. Knight, Jr., S. T. Cobranchi, J. O. Herlong, and C. A. Arrington, 92, 5856 (1990).
- ¹² S. C. O'Brien, Y. Liu, Q. Zhang, J. R. Heath, F. K. Tittel, R. F. Curl, and R. E. Smalley, J. Chem. Phys. **84**, 1076 (1986).
- ¹³ M. F. Jarrold, J. E. Bower, and J. S. Kraus, J. Chem. Phys. 86, 3876 (1987).
- K. Raghavachari, J. Chem. Phys. 83, 3525 (1985); 84, 5622 (1986); C.
 M. Rohlfing and K. Raghavachari, Chem. Phys. Lett. 167, 559 (1990).
- ¹⁵ I. L. Alberts, R. S. Grev, and H. F. Schaefer III, J. Chem. Phys. **93**, 5046 (1990).
- ¹⁶G. H. F. Diercksen, N. E. Grunner, J. Oddershede, and J. R. Sabin, Chem. Phys. Lett. 117, 29 (1985).
- Chem. Phys. Lett. 117, 29 (1985).

 17 M. H. McAdon and W. A. Goddard II, J. Phys. Chem. 87, 2607 (1987).
- ¹⁸ F. Lelj and A. Rosa, Chem. Phys. Lett. 168, 417 (1990).
- ¹⁹ H. Basch, Chem. Phys. Lett. 136, 289 (1987).
- ²⁰C. Janiak and R. Hoffmann, J. Am. Chem. Soc. 112, 5924 (1990).
- ²¹ S. Katicioğlu and S. Erkoc, J. Crystal. Growth 96, 807 (1989).
- ²² D. K. Choi, T. Takai, S. Erkoe, T. Halicoğlu, and W. A. Tiller, J. Crystal. Growth 85, 9 (1987).
- ²³ P. J. Bruna and J. S. Wright, J. Phys. Chem. **94**, 1774 (1990).
- ²⁴ C. Liana, R. D. Davy, and H. F. Schaefer III, Chem. Phys. Lett. 159, 393 (1989); K. Lammertsma and J. Leszczynski, J. Phys. Chem. 94, 5563 (1990).
- ²⁵ K. Balasubramanian and P. Y. Feng 146, 155 (1988).
- ²⁶ P. Y. Feng and K. Balasubramanian, Chem. Phys. 138, 89 (1988).
- ²⁷ K. Balasubramanian, J. Phys. Chem. **94**, 7764 (1990); **90**, 6786 (1986).
- ²⁸ K. Balasubramanian, J. Chem. Phys. 86, 3410 (1987); 87, 3518 (1987); J. Mol. Spectrosc. 139, 405 (1990).
- ²⁹ K. Balasubramanian, Chem. Phys. Lett. 125, 400 (1986).
- ³⁰ P. J. Bruna and J. S. Wright, J. Chem. Phys. 93, 2617 (1990).
- ³¹ K. Balasubramanian, Chem. Phys. Lett. 135, 288 (1987).
- 32 J. Tse, J. Chem. Phys. 92, 2488 (1990).
- ³³ L. A. Curtiss and J. A. Pople, J. Chem. Phys. 91, (1989); 91, 4189 (1989); 91, 5118 (1989).
- ³⁴ J. A. Howard, R. Sutcliffe, T. S. Tse, H. Dahamane, and B. Mile, J. Phys. Chem. 89, 3595 (1985).
- 35 K. Balasubramanian, Chem. Phys. Lett. 127, 585 (1986).
- ³⁶ The major authors of ALCHEMY II are B. Liu, B. Lengsfield, and M. Yo-shimine.