## **Supplementary material**

pyisotopomer: A Python package for obtaining nitrous oxide isotopocules from isotope ratio mass spectrometry

Colette L. Kelly,<sup>1\*</sup> Cara Manning,<sup>2</sup> Claudia Frey,<sup>3</sup> Noah Gluschankoff,<sup>1</sup> and Karen L. Casciotti

- 1. Stanford University, Department of Earth System Science, Stanford, CA 94305, USA
- 2. University of Connecticut, Department of Marine Sciences, Groton, CT 06340, USA
- 3. Department of Environmental Science, University of Basel, Basel, Switzerland.
- \* Correspondence to: Colette L. Kelly (clkelly@stanford.edu).

**Table S1:** Different pairings of reference materials. Pooled standard deviations of  $\gamma$  and  $\kappa$  calculated from different pairings of reference materials, and the corresponding pooled standard deviations of  $\delta^{15}N^{\alpha}$ ,  $\delta^{15}N^{\beta}$ , and SP, are shown for tests performed on the Lab 1 and Lab 2 IRMS. Pooled standard deviations are also shown for scrambling and isotopomer calculations done in the MATLAB and Python versions of the software.

|                                                 | Pooled standard deviations |                  |                                                    |                      |                  |
|-------------------------------------------------|----------------------------|------------------|----------------------------------------------------|----------------------|------------------|
| Test                                            | $\gamma$                   | $\kappa$         | $\delta^{15}N^{lpha}$                              | $\delta^{15}N^{eta}$ | SP               |
|                                                 | (% uncertainty*)           | (% uncertainty*) | $(\% \ vs. Air N_2)$                               | $(\% vs.AirN_2)$     | $(\% vs.AirN_2)$ |
| Lab 1 three ref. pairings, no extreme values    | 0.39                       | 0.16             | 0.47                                               | 0.44                 | 0.91             |
| Lab 2 three ref. pairings, incl. extreme values | 0.77                       | 1.17             | 2.54                                               | 2.29                 | 4.83             |
| Lab 2 one ref. pairing, excl. extreme values    | 0.15                       | 0.61             | (see section 4.7 for precision between replicates) |                      |                  |
| MATLAB vs. Python                               | 0.44                       | 0.93             | 0.028                                              | 0.026                | 0.054            |
| *Percent uncertainties represent pooled SD as a | a percentage of the        | mean             |                                                    |                      |                  |



**Figure S1.** Solutions for  $\gamma$  and  $\kappa$  calculated across a range of initial guesses (x0) for the least squares solver function at the core of pyisotopomer. The default values for x0 are  $\gamma$ =0.17 and  $\kappa$ =0.08, based on the performance of the ThermoFinnigan Delta V mass spectrometer at Lab 1.



**Figure S2:** Isotopocule values and error associated with an uncertainty of  $\pm 6.83*10^{-4}$  in  $\gamma$  and  $\pm 1.48*10^{-4}$  in  $\kappa$ , based on Monte Carlo simulation results. The violin plots are based on a kernel density estimate of the distribution and show the mean value  $\pm 1\sigma$ .



**Figure S3:** Pooled standard deviation of  $\delta^{15}N^{\alpha}$ ,  $\delta^{15}N^{\beta}$ , and SP resulting from increasing relative uncertainties in γ and κ. Each point corresponds to 1,000 values of γ and κ sampled from a distribution with standard deviation equal to the given level of uncertainty, and the corresponding pooled standard deviation of 1,000 simulated values of  $\delta^{15}N^{\alpha}$ ,  $\delta^{15}N^{\beta}$ , and SP.



**Figure S4:** Intercalibration results for lake water unknowns taken at 10 meters and 90 meters depth from lake Lugano in Switzerland. Independent measurements of the isotopic composition of N<sub>2</sub>O in each sample, performed by Lab 1 and Lab 2, respectively, are plotted against each other. Data points represent the mean from replicate bottles taken at the same depth (n=2-5) and error bars represent one standard deviation. A one-to-one line (black dashed line) is plotted for comparison.