Scientific Programming in Python

Inteligencia Artificial en los Sistemas de Control Autónomo Máster Universitario en Ingeniería Industrial

Departamento de Automática

Objectives

- 1. Introduce some Python tools for scientific programming.
- 2. Motivate the need of efficient matrix manipulation.
- 3. Handle matrices and dataframes in Python.
- 4. Basic data visualization with Python.

Bibliography

Jake VanderPlas. Python Data Science Handbook. Chapters 1, 2, 3 and 4. O'Reilly. (Link).

Table of Contents

I. Overview

- Data Science
- The data scientist toolkit
- Anaconda
- Python IDEs for Data Science

2. Basics

- Magic commands
- Pasting code blocks
- Running external code
- Input and output history
- iPython shell commands
- Automagic

3. NumPy

- Understanding Data Types in Python
- Introduction
- Matrix creation
- NumPy data types
- NumPy array attributes
- Accessing single elements
- Accessing subarrays
- Reshaping of arrays
- Concatenation of arrays
- Splitting of arrays
- Universal functions
- Aggregations
- Broadcasting
- Structured arrays
- 4. Pandas = ASDF

The data scientist tookit (I)

Data science is about manipulating data

- Need of specialized tools
- Two main languages: R and Python

Python is a general purpose programming language

- Easy integration
- Huge ecosystem of packages and tools

Need of data-oriented tools

• Features provided by third-party tools

The data scientist tookit (II)

Tool	Туре	Description
iPython	Software	Advaced Python interpreter
Jupiter	Software	Python notebooks (Python interpreter)
Numpy	Package	Efficient array operations
Pandas	Package	Dataframe support
Matplotlib	Package	Data visualization
Seaborn	Package	Data visualization with dataframes
Scikit-learn	Package	AI/ML package for Python

Data Science Anaconda

All those tools are packaged in Anaconda

Python distribution for Data Science

Anaconda provides Spyder

- Python IDE designed for Data Science Other tools provided by Anaconda
 - Conda: Packages management tool
 - TensorFlow: Deep Learning
 - Many others

Python IDEs for Data Science (I)

iPython

iPython = Interactive Python

- Extended funcionality
- Enhanced UI
- External editor

Running iPython: \$ ipython

Jupyter

Python notebooks

- Web-based IDE
- Documentation
- Integration with GitHub
- Uses iPython

Running Jupyter: \$ jupyter

notebook

Rodeo

Python version of **RStudio**

- Good for R developers
- Not included in Anaconda
- Uses iPython

Spyder Matlab-like IDE

Python IDEs for Data Science (II)

Exercises

Write a Python script that shows the multiplication table of the number 5. Write the script using each one of the following environments:

- 1. iPython + text editor of your choice.
- 2. Jupiter.
 - Bonus track: Publish the notebook in GitHub.
- 3. Spyder.
- 4. Rodeo.

In regular Python ...

- most objects come with a docstring attribute
- docstring accesible thorugh help()

iPython provides `?', a shortcut to help()

- len?, list?, list.append?
- Try to type just `?'

Easy access to source code with `??'

Does not work with most buildin functions!

Press <tab> to complete almost everything

• Object contents

Packages

Wildcards

iPython

Basics (III): Keyboard shortcuts

Navigation

Keystroke	Action
Ctrl-a	Move cursor to the beginning of the line
Ctrl-e	Move cursor to the end of the line
Ctrl-b	Move cursor back one character
Ctrl-f	Move cursor forward one character

History

Keystroke	Action
Ctrl-p (†)	Previous command
Ctrl-n (\downarrow)	Next command
Ctrl-r	Reverse-search

Text entry

<i>1</i>				
Keystroke	Action			
Ctrl-d	Delete next character in line			
Ctrl-k	Cut text from cursor to end of line			
Ctrl-u	Cut text from beginning of line to cursor			
Ctrl-y	Yank (paste) previously cut text			

iPython magic commands

Magic commands: iPython extension of Python syntax

- Not valid in regular Python
- Provides handly features
- Widely used in DS and ML

Two flavours

- % prefix: Line magics single line
- % % prefix: Cell magics several lines

Help available

- %magic: Magic commands
- %lsmagic: List of magic commands

Pasting code blocks: %paste and %cpaste

Basics 0000000

Pasting code in Python is troublesome

- %paste: Paste one time
- %%cpaste: Paste several times

```
In [20]: %paste
  def donothing(x):
    return x
## -- End pasted text --
```

```
def donothing(x):
    return x
```

```
In [25]: %cpaste
Pasting code; enter '--' alone on the line
to stop or use Ctrl-D.
        def donothing(x):
            return x:
```

*i*Python

Running external code: %run and %timeit

%run: Execute script

- Many optional arguments
- Checkout %run?

In [40]: %run donothing.py

In [41]: donothing(10)

Out[41]: 10

%timeit: Computes execution time

- Executes a single line
- Automatic adjustment of runs
- Shows basic statistics

```
In [33]: %timeit [n ** 2 for n in range(200)]
71.6 µs ± 1.84 µs per loop
(mean ± std. dev. of 7 runs, 10000 loops each)
```

```
In [34]: %timeit [n ** 2 for n in range(2000)]
753 µs ± 16.2 µs per loop
(mean ± std. dev. of 7 runs, 1000 loops each)
```

%%timeit: Several lines

iPython

Input and output history (I)

iPython stores its history as objects

- In: Input commands
 - List storing commands
- Out: Commands output
 - Dictionary storing outputs
 - Not all commands have outputs

In [1]: import math
In [2]: math.sin(2)
Out[2]: 0.9092974268256817
In [3]: math.cos(2)
Out[3]: -0.4161468365471424
In [4]: Out[2] ** 2 + Out[3] ** 2

Out[4]: 1.0

Fast access to history: Underscore (_)

- Variable containing the last output
- Example: print(_)

Double and triple underscores

- Example: print(__)
- Example: print(___)

Trick: Shortcut to access (_n)

- Out[n] = _n, with n=number
- Example: print(_2)

Magic command to show history

• %history

Supressing command output (;)

• Example: 4 * 2;

iPython provides easy interaction with the shell

- Execution of shell commands from iPython
- Use prefix `!'
- Example: !ls, !pwd

Save shell output in Python variables

- Example: files = !ls
- Use Python variables in shell
 - Example: !echo {files}

Automagic

Problems with some shell commands

In [23]: !pwd /repositorios/pythonCourse In [24]: !cd .. In [25]: !pwd /repositorios/pythonCourse

Some magic commands here to help

• %cd, %ls, %mkdir, %pwd,

Those magics are regularly used ...

- ... so common that % is no longer required (automagic)
- Working with iPython is almost like working with a Unix-like shell

Automagic commands

cat, cp, env, ls, man, mkdir, more, mb, pwd, rm and rmdir

Understanding Data Types in Python (I)

```
Static typing
/* C code */
int result = 0;
for(int i=0: i<100: i++){
    result += i:
```

- Data types must be declared
- Data types cannot change
- Error detection in compilation
- Variables names are, basicly, labels

Dynamic typing

```
# Python code
result = 0
for i in range(100):
   result += i
```

- Data types are not declared
- Data types can change
- Error detection in run-time
- Variables are complex data structures (even for simple types)

Understanding Data Types in Python (II)

Dynamic typing must be implemented somewhere ...

```
Python 3.4 source code
struct _longobject {
    long ob_refcnt;
    PyTypeObject *ob_type;
    size t ob size;
    long ob_digit[1];
};
```


Understanding Data Types in Python (III)

A Python list may contain different types

```
In [1]: L3 = [True, "2", 3.0, 4]
   ...: [type(item) for item in L3]
Out[1]: [bool, str, float, int]
```


Understanding Data Types in Python (IV)

Standard Python data types are powerful and flexible

- Flexibility has a price: Reduced performance
- Not an big issue in generic programming
- A big issue in scientific programming
- We require efficient data manipulation mechanisms: NumPy

NumPy: Python package for numeric computation

- Efficient array implementation
- Fast mathematical functions
- Random numbers generation
- Static data types: Less flexibility

Most Python modules for AI/ML depend on NumPy, in particular

Pandas (dataframes), Scikit-learn (ML), Seaborn (data visualization)

NumPy must be imported in order to be available

• Remember, you can use np? or np. <TAB>

The main component of NumPy is ndarray

- Python object
- Efficient matrix representation
- Homogeneus elements

Convention

import numpy as np

```
array = np.array
    ([I,2,3])
In [2]: array
Out[1]: array([1, 2, 3])
In [3]: array = np.array
    ([[I,2],[3,4]])
```


Matrix creation

NumPy functions for array creation from lists

- Lists must contain the same type, NumPy will upcast if needed
- np.array([1, 4, 2, 5, 3])
- np.array([1, 2, 3, 4], dtype='float32'): Explicit data type
- np.array([3.14, 4, 2, 3]): Upcast

NumPy functions for array creation from scratch

- np.zeros(10, dtype=int): All zeros
- np.ones((3, 5), dtype=float): All ones
- np.full((3, 5), 3.14): Fill matrix
- np.arange(0, 20, 2): Similar to Python's range()
- np.linspace(0, 1, 5): Evenly spaced numbers
- np.random.random((3, 3)): Random numbers
- np.random.normal(0, 1, (3, 3)): Random normal numbers
- np.random.randint(0, 10, (3, 3)): Random integers
- np.eye(3): Identity matrix
- np.empty(3): Empty matrix

Python is implemented in C

• Data types in NumPy are based on those in C

Two styles to declare types

- String:
 np.zeros(10,
 dtype='int16')
- NumPy object: np.zeros(10, dtype=np.int16)

Data type	DESCRIPTION
bool_	Boolean (True or False) stored as a byte
int_	Default integer type
intc	Identical to C
intp	Integer used for indexing
int8	Byte
int16	Integer
int32	Integer
int64	Integer
uint8	Unsigned integer
uint16	Unsigned integer
uint32	Unsigned integer
uint64	Unsigned integer
float_	Shorthand for float64
float16	Half precision float
float32	Single precision float
float64	Double precision float
complex_	Shorthand for complex128
complex64	Complex number
complex128	Complex number

NumPy array attributes

Ndarray objects expose several attributes

- ndim: Dimensions
- shape: Size of each dimension
- size: Number of elements
- dtype: Data type
- itemsize: Size of each element (in bytes)
- nbytes: Size of the array (in bytes)

Accessing single elements

Unidimensional array

array[index]

Unidimensional array from the end

array[-index]

Multidimensional array

• array[row,column]

```
x = np.array([5, 0, 3, 3, 7, 9])
x[0] # 5
x [4] # 7
x[-1] # 9
x[-2] # 7
x = np. array([[3, 5, 2, 4],
    [7, 6, 8, 8],
    [I, 6, 7, 7]])
X2[2, 0] # I
x_{2}[2, -1] # 7
```

Warning

Ndarray has fixed types, values can be truncaded without warning. Big source of problems!

Accessing subarrays

Slice notation can be used with ndarray

• x[start:stop:step]

Default values

- Start = 0
- Stop = Size of dimension
- Step = 1

Step may take a negative value

Reverse order

These operations return a view

• Use copy () to get a copy

Unidimensional array

```
x[:5] # first five elements
x[5:] # elements after index 5
x[4:7] # middle sub-array
x[::2] # every other element
x[1::2] # every other element,
    starting at index 1
```

x[::-1] # all elements, reversed

Multidimensional a rray

```
x[:2, :3] # 2 rows, 3 columns
x[:3, ::2] # all rows, every
other column
x[::-1, ::-1]
```


Reshaping of arrays

Reshaping arrays is a very common task

• Change data number of dimensions

Important ndarray method: reshape()

- Changes the dimensions of an array
- Sizes must match

Conversion of 1-D arrays into column or row matrices

- Using method reshape()
- Using the keyword np.newaxis

General reshaping

1-D to row

```
x = np.array([1, 2, 3])
x.reshape((1, 3))
x[np.newaxis, :]
```

1-D to column

```
x.reshape((3, 1))
x[:, np.newaxis]
```


Concatenation of arrays

Three methods to join arrays

- np.concatenate()
- np.vstack()
- np.hstack()

```
In [1]: x = np.array([1, 2, 3])
In [2]: y = np.array([3, 2, 1])
In [3]: np.concatenate([x, y])
Out[1]: array([1, 2, 3, 3, 2, 1])
```

NumPy

```
In [1]: x = np.array([1, 2, 3])
In [2]: grid = np.array([[9, 8, 7],
                         [6, 5, 4]])
In [3]: np.vstack([x, grid])
Out [107]:
array ([[1, 2, 3],
      [9, 8, 7],
       [6, 5, 4]])
```


NumPy Splitting of arrays

Three methods to split arrays

- np.split()
- np.vsplit()
- np.hsplit()

np.split

```
In [1]: x = [1, 2, 3, 99, 99, 3, 2, 1]
In [2]: x1, x2, x3 = np. split(x, [3, 5])
In [3]: print(x1, x2, x3)
[1 2 3] [99 99] [3 2 1]
```

np.vstack()

Universal functions (I)

Python may be ridiculously slow

- Run-time type checks and function dispatching
- Evident when an operation is repeated over a collection of data

```
def compute_reciprocals(values):
    output = np.empty(len(values))
    for i in range (len (values)):
        output[i] = 1.0 / values[i]
    return output
big_array = np.random.randint(1, 100, size=1000000)
# Stardand CPython
%timeit compute_reciprocals(big_array)
# 3.59 s ± 139 ms per loop
# NumPy
%timeit (1.0 / big_array)
#5.41 ms ± 182 μs per loop
```

Vectorized operations: Functions that are aware of NumPy's static typing

- Avoid dynamic type-checking
- Loop related code pushed into the compiled layer
- Hugely improved performance
- · Perform an operation with the first element and then it to the rest

In NumPy, vectoriced operations are named universal functions, of ufuncs

- Regular functions
- Arrays as arguments (one or multi-dimensional)
- Operates between arrays of different sizes (broadcasting)

In order to take advantange of NumPy's performance, ufuncs must be used

Universal functions: Arithmetic functions

NumPy makes use of Python's native arithmetic operators

- Used like regular Python operators
- Operators are wrappers for NumPy's functions

OPERATOR	EQUIVALENT UFUNC	DESCRIPTION
+	np.add	Addition (e.g., $I + I = 2$)
-	np.subtract	Subtraction (e.g., $3 - 2 = 1$)
-	np.negative	Unary negation (e.g., -2)
*	np.multiply	Multiplication (e.g., $2 * 3 = 6$)
/	np.divide	Division (e.g., $\frac{3}{2} = 1.5$)
//	np.floor_divide	Floor division (e.g., $3 // 2 = 1$)
**	np.power	Exponentiation (e.g., $2 ** 3 = 8$)
%	np.mod	Modulus/remainder (e.g., $9 \% 4 = 1$)

Universal functions (III)

```
x = np.arange(4)
print("x = ", x)
print("x + 5 = ", x + 5)
print("x - 5 = ", x - 5)
print ("x * 2 = ", x * 2)
print("x / 2 = ", x / 2)
print("x // 2 =", x // 2) # floor division
np.add(x, 2)
                            # array plus scalar
```

```
print("-x = ", -x)
print("x ** 2 = ", x ** 2)
print("x \% 2 = ", x \% 2)
```

Universal functions: Basic functions

Absolute value

• np.absolute(x) and np.absolute(x)

Trigonometric functions

- np.sin(theta), np.cos(theta), np.tan(theta)
- np.arcsin(theta),np.arccos(theta),np.arctan(theta)

Exponents and logarithms

- np.exp(x),np.exp2(x),np.power(base, x)
- np.log(x), np.log2(x), np.log10(x)

Advanced mathematical functions

Checkout module scipy.special for exotic mathematical functions

Output as argument

- Avoid temporal variables using out argument in ufuncs
- Example: np.multiply(x, 10, out=y)

Universal functions: Special functions

Aggregation functions

- Applied to any ufunc
- reduce(x): Repeatedly applies an ufunc to the elements of an array until only a single result remains
- accumulate(x): Like reduce(), but it stores intermediate values
- outer(x): Compute the output of all pairs of two different inputs

reduce() example

```
In [1]: x = np.arange(1, 6)
In [2]: np.add.reduce(x)
Out[1]: 15
```

accumulate() example

```
In [1]: np.add.reduce(x)
Out[1]: 15
```

Outer() example

Many ufuncs to summarize data

- Basic step in exploratory data analysis
- Argument axis determines to which dimension the summary is to be applied

f elements
ire true
re true

NumPy

Universal functions: Aggregations (II)

(Download dataset)

• Use wget or curl to download the file within iPython

```
import pandas as pd
data = pd.read_csv('president_heights.csv')
heights = np.array(data['height(cm)'])
print (heights)
print("Mean height: ", heights.mean())
print("Standard deviation:", heights.std())
print("Minimum height: ", heights.min())
print("Maximum height: ", heights.max())
print ("25th percentile: ", np. percentile (heights, 25))
print ("Median:
                 ", np.median(heights))
print ("75th percentile: ", np. percentile (heights, 75))
```


Universal functions: Aggregations (III)

```
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn; seaborn.set() # set plot style
plt. hist (heights)
plt.title ('Height Distribution of US Presidents')
plt.xlabel('height (cm)')
plt.ylabel('number');
```


NumPy

Universal functions: Broadcasting (I)

Broadcasting is a mechanism to operate over arrays of different sizes

- Used in ufuncs
- Implicit array expansion through three rules

Broadcasting rules

- r. Rule r: If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is padded with ones on its leading (left) side.
- 2. Rule 2: If the shape of the two arrays does not match in any dimension, the array with shape equal to τ in that dimension is stretched to match the other shape.
- Rule 3: If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

Universal functions: Broadcasting (II)

np. arange
$$(3) + 5$$

np. one
$$s((3, 3)) + np. ar ange(3)$$

$$np. arange(3).reshape((3,1)) + np. arange(3)$$

$\overline{}$			7
0	1	2	J
1	2	3	J
2	3	4	Į

Array expansion does not consume memory!

Universal functions: Broadcasting (III)

Normalization

```
X = np.random.random((10, 3))

Xmean = X.mean(0)

X_centered = X - Xmean
```

3D plot

```
%matplotlib inline
import matplotlib.pyplot as plt

x = np.linspace(o, 5, 50)
y = np.linspace(o, 5, 50)[:, np.newaxis]
z = np.sin(x)**io+np.cos(io+y*x)*np.cos(x)

plt.imshow(z, origin='lower',
    extent=[o, 5, o, 5], cmap='viridis')
plt.colorbar();
```


Comparisons, masks, and Boolean logic (I)

(Download dataset)

```
import numpy as np
import pandas as pd
# pandas to extract rainfall inches as a ndarray
rainfall = pd.read_csv('Seattle2014.csv')['PRCP'].values
inches = rainfall / 254.0 # 1/10mm -> inches
inches.shape
# Outputs (365,)
%matplotlib
import matplotlib.pyplot as plt
import seaborn; seaborn.set()
plt.hist(inches, 40);
```

NumPy

Comparisons, masks, and Boolean logic (II)

Data filtering is a recurrent task

- How many rainy days were there in the year?
- What is the average precipitation on those rainy days?
- How many days were there with more than half an inch of rain?

Two filtering methods in NumPy

- Boolean arrays masks
- Fancy indexing

Comparisons, masks, and Boolean logic: Booleans arrays masks (I)

We've seen arithmetic ufuncs ...

- ... but they also support comparison and boolean operations
- Return an array of booleans

OPERATOR	Ufunc
	np.equal
!=	np.not_equal
<	np.less
<=	np.less_equal
>	np.greater
>=	np.greater_equal

Operator	Ufunc
&	np.bitwise_and
1	np.bitwise_or
۸	np.bitwise_xor
~	np.bitwise_not

Comparisons, masks, and Boolean logic: Booleans arrays masks (II)

```
print(x)
[[5, 0, 3, 3]
[7, 9, 3, 5]
[2, 4, 7, 6]]
np.count_nonzero(x < 6) # Returns 8
np.sum(x < 6) # Returns 8
np.sum(x < 6, axis = 1) # By row, returns
    array ([4,2,2])
np.any(x > 8) # Returns True
np.any(x < o) # Returns False
np.all(x < 10)# Returns True
np.sum(~((inches <= 5) | (inches >= 1)))
```

Comparisons, masks, and Boolean logic: Fancy indexing

So far we've seen three accessing methods

- Simple indices (x [1])
- Slices (x[:5])
- Boolean masks (x [x>0])

Fancy indexing: Pass arrays on indices instead of scalars

Example

```
x = rand.randint(roo, size=ro)
[x[3], x[7], x[2]] # Simple indices
ind = [3, 7, 4] # Array of indices
x[ind] # Fancy indexing
x[[3,5,6]] # Also valid
```

The shape of the result reflects the shape of the index arrays rather than the shape of the array being indexed

So far we've seen three accessing methods

- Simple indices (x [1])
- Slices (x[:5])
- Boolean masks (x [x>0])

Fancy indexing: Pass arrays on indices instead of scalars

Example

```
x = rand.randint(roo, size=ro)
[x[3], x[7], x[2]] # Simple indices
ind = [3, 7, 4] # Array of indices
x[ind] # Fancy indexing
x[[3,5,6]] # Also valid
```

The shape of the result reflects the shape of the index arrays rather than the shape of the array being indexed

XXX

So far we've seen three accessing methods

- Simple indices (x [1])
- Slices (x[:5])
- Boolean masks (x [x>0])

Fancy indexing: Pass arrays on indices instead of scalars

Example

```
x = rand.randint(100, size=10)
[x[3], x[7], x[2]] # Simple indices
ind = [3, 7, 4] # Array of indices
x[ind] # Fancy indexing
x[[3,5,6]] # Also valid
```

The shape of the result reflects the shape of the index arrays rather than the shape of the array being indexed

