östeelseries

Neural-Assisted Feature Matching

Internship Report

Author: EL OUARRAT Haytam Internship Period: Mars – August 2025 Location: SteelSeries, Lille, France

Advisors: Pierre Biret, Damien Granger, Raphaël Greff University Supervisor: Phillipe Joly

June 24, 2025

Contents

1	Ack	nowled	lgements	6
2	Intr	oducti	on	7
	2.1	Host C	Organism	7
		2.1.1	Nahimic	7
		2.1.2	SteelSeries	7
		2.1.3	GN Group	7
		2.1.4	Mission	7
	2.2	Contex	xt & Motivation	7
		2.2.1	Role of Feature Matching in Computer Vision	7
		2.2.2	Challenges in Gaming Applications	7
		2.2.3	Limitations of Traditional Feature Matching Techniques	7
	2.3	Projec	t Objectives	7
		2.3.1	Reprodusing Feature Matching Techniques with Neural Networks .	7
		2.3.2	Improving computational efficiency	7
		2.3.3	Ensure matching accuracy for gaming footage	7
	2.4	Indust	rial Relevance	7
		2.4.1	Integration with SteelSeries Moments Software	7
		2.4.2	Real-time performance constraints	7
3	${ m Lite}$	erature	Review	8
	3.1	Tradit	ional Feature Matching	8
		3.1.1	Overview of SIFT, ORB, FAST	8
		3.1.2	Comparative Strengths, Weaknesses, and Computational Costs	8
	3.2	Neural	Feature Matching	8
		3.2.1	Review of Recent Methods: LoFTR, ALIKE, LightGlue, XFeat	8
	3.3	Knowl	edge Distillation	8
		3.3.1	Distillation Types: Response-Based, Feature-Based, Relation-Based	8
		3.3.2	Applications in Model Compression and Matching Tasks	8
	3.4	Lightw	reight Architectures for Edge Deployment	8
		3.4.1	MobileNet, ShuffleNet, XFeat-Style Networks	8
		3.4.2	Trade-Offs Between Efficiency and Accuracy	8
	3.5	Gaps a	and Opportunities	8
		3.5.1	Where Traditional Methods Fall Short	8
		3.5.2	Where Neural Methods Remain Overkill for Real-Time CPU Usage	8
		3.5.3	Motivation for a Hybrid/Distilled Approach	8

4	Methodology					
	4.1	Proble	m Formulation			
		4.1.1	Define Feature Matching as Correspondence Prediction			
		4.1.2	Objectives in Terms of Speed, Accuracy, and Robustness			
	4.2	Baselin	ne Selection			
		4.2.1	Justification for Using ORB or FAST as Teacher Models			
		4.2.2	Benchmark Datasets (e.g., HPatches, Gaming Clips)			
	4.3	Neural	Architecture Design			
		4.3.1	Choice of Lightweight CNN or Transformer Backbone			
		4.3.2	Feature Extraction vs. Matching Separation			
	4.4	Distilla	ation Strategy			
		4.4.1	Design of Teacher-Student Framework			
		4.4.2	Distillation Losses (e.g., L2 on Descriptors, Cross-Entropy on Match			
			Maps)			
	4.5	Evalua	tion Metrics			
		4.5.1	Matching Precision, Recall, Repeatability			
		4.5.2	Runtime (FPS), Memory Footprint, CPU Load			
5	Imp	lement	tation 10			
	5.1	Datase	et Preparation			
		5.1.1	Gaming Video Frame Extraction			
		5.1.2	Synthetic Transformation Generation for Ground Truth Correspon-			
			dences			
	5.2	Trainii	ng Pipeline			
		5.2.1	Data Augmentation Strategies			
		5.2.2	Loss Function Components and Training Schedule			
	5.3	Model	Optimization			
		5.3.1	Quantization, Pruning, or ONNX Export (if applicable) 1			
		5.3.2	Inference Optimization for CPU			
	5.4	Integra	ation with SteelSeries Pipeline			
		5.4.1	Data Flow Alignment with Moments Software (if available) 1			
		5.4.2	Latency Tracking and Bottleneck Identification			
6	Res	ults &	Analysis 1			
	6.1	Match	ing Quality			
		6.1.1	Quantitative Comparison with ORB, SIFT, and XFeat 1			
		6.1.2	Visual Results on Gaming Footage			
	6.2	Comp	ıtational Efficiency			
		6.2.1	FPS and Latency Benchmarks			
		6.2.2	Memory and CPU Usage Profiles			
	6.3	Ablatic	on Studies			
		6.3.1	Effect of Different Distillation Losses			
		6.3.2	Model Depth vs. Performance Trade-Offs			
	6.4		Time Viability			
		6.4.1	End-to-End Latency Breakdown			
		642	Suitability for Gaming Hardware			

7	Con	nclusion and Future Work	12	
	7.1 Summary of Contributions			
	7.2	Limitations	12	
		7.2.1 Domain Generalization	12	
		7.2.2 Extreme Low-Light or High-Motion Scenes	12	
	7.3	Future Work	12	
		7.3.1 Self-Distillation or Online Distillation Strategies	12	
		7.3.2 Hardware-Specific Optimizations (e.g., ARM CPU Tuning)	12	
		7.3.3 Real-Time Deployment on End-User Devices		
8	Refe	rerences	13	
9	App	pendices	14	
	9.1	Additional Figures	14	
	9.2	Code Snippets		
	9.3	Hyperparameter Tables		
	9.4	Hardware Specifications		

List of Figures

Chapter 1 Acknowledgements

Introduction

0 1	TT /	\circ	•
2.1	\mathbf{Host}	Orga	nism
	~	~ - ~	

- 2.1.1 Nahimic
- 2.1.2 SteelSeries
- 2.1.3 GN Group
- **2.1.4** Mission
- 2.2 Context & Motivation
- 2.2.1 Role of Feature Matching in Computer Vision
- 2.2.2 Challenges in Gaming Applications
- 2.2.3 Limitations of Traditional Feature Matching Techniques
- 2.3 Project Objectives
- 2.3.1 Reprodusing Feature Matching Techniques with Neural Networks
- 2.3.2 Improving computational efficiency
- 2.3.3 Ensure matching accuracy for gaming footage
- 2.4 Industrial Relevance
- 2.4.1 Integration with SteelSeries Moments Software
- 2.4.2 Real-time performance constraints

Literature Review

3.1	Traditional	Feature	Matching

- 3.1.1 Overview of SIFT, ORB, FAST
- 3.1.2 Comparative Strengths, Weaknesses, and Computational Costs
- 3.2 Neural Feature Matching
- 3.2.1 Review of Recent Methods: LoFTR, ALIKE, LightGlue, XFeat
- 3.3 Knowledge Distillation
- 3.3.1 Distillation Types: Response-Based, Feature-Based, Relation-Based
- 3.3.2 Applications in Model Compression and Matching Tasks
- 3.4 Lightweight Architectures for Edge Deployment
- 3.4.1 MobileNet, ShuffleNet, XFeat-Style Networks
- 3.4.2 Trade-Offs Between Efficiency and Accuracy
- 3.5 Gaps and Opportunities
- 3.5.1 Where Traditional Methods Fall Short
- 3.5.2 Where Neural Methods Remain Overkill for Real-Time CPU Usage
- 3.5.3 Motivation for a Hybrid/Distilled Approach

Methodology

4 1	T 1	1	T	1 . •
4.1	Pron	IDM	Formu.	Iation
T. I	-1100		TOLINU.	ιαυισιι

- 4.1.1 Define Feature Matching as Correspondence Prediction
- 4.1.2 Objectives in Terms of Speed, Accuracy, and Robustness
- 4.2 Baseline Selection
- 4.2.1 Justification for Using ORB or FAST as Teacher Models
- 4.2.2 Benchmark Datasets (e.g., HPatches, Gaming Clips)
- 4.3 Neural Architecture Design
- 4.3.1 Choice of Lightweight CNN or Transformer Backbone
- 4.3.2 Feature Extraction vs. Matching Separation
- 4.4 Distillation Strategy
- 4.4.1 Design of Teacher-Student Framework
- 4.4.2 Distillation Losses (e.g., L2 on Descriptors, Cross-Entropy on Match Maps)
- 4.5 Evaluation Metrics
- 4.5.1 Matching Precision, Recall, Repeatability
- 4.5.2 Runtime (FPS), Memory Footprint, CPU Load

Implementation

- 5.1 Dataset Preparation
- 5.1.1 Gaming Video Frame Extraction
- 5.1.2 Synthetic Transformation Generation for Ground Truth Correspondences
- 5.2 Training Pipeline
- 5.2.1 Data Augmentation Strategies
- 5.2.2 Loss Function Components and Training Schedule
- 5.3 Model Optimization
- 5.3.1 Quantization, Pruning, or ONNX Export (if applicable)
- 5.3.2 Inference Optimization for CPU
- 5.4 Integration with SteelSeries Pipeline
- 5.4.1 Data Flow Alignment with Moments Software (if available)
- 5.4.2 Latency Tracking and Bottleneck Identification

Results & Analysis

- 6.1 Matching Quality
- 6.1.1 Quantitative Comparison with ORB, SIFT, and XFeat
- 6.1.2 Visual Results on Gaming Footage
- 6.2 Computational Efficiency
- 6.2.1 FPS and Latency Benchmarks
- 6.2.2 Memory and CPU Usage Profiles
- 6.3 Ablation Studies
- 6.3.1 Effect of Different Distillation Losses
- 6.3.2 Model Depth vs. Performance Trade-Offs
- 6.4 Real-Time Viability
- 6.4.1 End-to-End Latency Breakdown
- 6.4.2 Suitability for Gaming Hardware

Conclusion and Future Work

- 7.1 Summary of Contributions
- 7.2 Limitations
- 7.2.1 Domain Generalization
- 7.2.2 Extreme Low-Light or High-Motion Scenes
- 7.3 Future Work
- 7.3.1 Self-Distillation or Online Distillation Strategies
- 7.3.2 Hardware-Specific Optimizations (e.g., ARM CPU Tuning)
- 7.3.3 Real-Time Deployment on End-User Devices

References

Appendices

- 9.1 Additional Figures
- 9.2 Code Snippets
- 9.3 Hyperparameter Tables
- 9.4 Hardware Specifications