

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта» (РУТ (МИИТ)) Кафедра «Физика» им. П.Н. Лебедева

Институт, группа	К работе допущен	
		(дата, подпись преподавателя)
Студент	Работа выполнена	· · · · · · · · · · · · · · · · · · ·
		(дата, подпись преподавателя)
Преподаватель	Отчет принят	
-		(дата, подпись преподавателя)
		(,, , ,, F A)

РАБОЧАЯ ТЕТРАДЬ ПО ЛАБОРАТОРНОЙ РАБОТЕ № К-5

Изучение зависимости излучения абсолютно черного тела от температуры

Нарисуйте схему установки.

1. Запишите цель проводимого эксперимента:			
2.	Что такое тепловое излучение?		
3.	Что называется абсолютно черным	телом? Как оно реализуется на практике?	
4.		ваконов теплового излучения, рассматриваемых в ность каждой буквы, входящей в формулу.	
	Законы теплового излучения	Физические величины и константы	
1.	Законы теплового излучения	Физические величины и константы	
1.	Законы теплового излучения	Физические величины и константы	
1.	Законы теплового излучения	Физические величины и константы	
1. 2.	Законы теплового излучения	Физические величины и константы	
	Законы теплового излучения	Физические величины и константы	
	Законы теплового излучения	Физические величины и константы	
2.			
2.			

	энергетической светимости от температуры.
7.	Какое значение температуры нельзя превышать при выполнении работы?

8. Заполните таблицу измерений в лаборатории.

Снимите показания напряжения на термостолбике при повышении и при понижении температуры печи. Результаты занесите в таблицу 1.

Таблица 1

No	Показания индикатора температуры t (°C)		ение на голбике мВ) при ↓ <i>t</i>	Температура излучателя $T = t + 273 + \Delta T (K)$	T^4 $(10^{11} K^4)$
1	300	<u>F</u> ,	V ·		
2	350				
3	400				
4	450				
5	500				
6	550				
7	600				
8	650				
9	700				
	$\alpha =$				

Дата и подпись преподавателя _____

Обработка результатов измерений

1. Вычислите температуру излучателя в кельвинах и запишите в таблицу 1.

$$T = t + 273 + \Delta T$$
.

- 2. Рассчитайте T^4 . Данные занести в таблицу 1.
- 3. Постройте графики зависимости U от T^4 при подъёме и при спаде температуры (рис. 1).

U, 10⁻³B

T-4, 10⁻¹K

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 10

Рис. 1. Экспериментальная зависимость $U(T^4)$.

4. Определите коэффициенты наклона каждой прямой и занесите в таблицу 2.

$$k_{1} = \frac{\Delta U}{\Delta (T^{4})} = k_{2} = \frac{\Delta U}{\Delta (T^{4})} = k_{2} = \frac{\Delta U}{\Delta (T^{4})} = k_{3} = k_{4} = k_{4} = k_{5}$$

Таблица 2

k_1		k_2	
b_1	b_2	b_1	b_2
Δk_1		Δk_2	
σ_1		σ_2	
$\sigma_{ m cp}$		p	
$\delta\sigma_1 = \delta k_1$		$\delta\sigma_2=\delta k_2$	
$\Delta\sigma_1$		$\Delta\sigma_2$	
	Δο	2	

5. Оцените погрешность коэффициентов наклона экспериментальных прямых Δk_1 и Δk_2 и запишите результат в таблицу 2.

$$\Delta k_1 = \frac{b_2 - b_1}{\sqrt{n}} =$$

$$\Delta k_2 = \frac{b_2 - b_1}{\sqrt{n}} =$$

6. По коэффициентам наклона прямых k рассчитайте для обоих случаев постоянную Стефана – Больцмана σ .

$$\sigma_1 = \alpha k_1 =$$

$$\sigma_2 = \alpha k_2 =$$

7. Рассчитайте среднее значение постоянной Стефана-Больцмана.

$$\sigma_{\rm cp} = \frac{\sigma_1 + \sigma_2}{2} =$$

8. Определите относительную погрешность постоянных Стефана-Больцмана для каждой прямой $\delta \sigma_1$ и $\delta \sigma_2$, которые будут равны соответственно относительным погрешностям коэффициентов наклона каждой прямой δk_1 и δk_2 .

$$\delta\sigma_1 = \delta k_1 = \frac{\Delta k_1}{k_1} =$$

$$\delta\sigma_2 = \delta k_2 = \frac{\Delta k_2}{k_2} =$$

9. Определите абсолютную погрешность постоянных Стефана-Больцмана для каждой прямой $\Delta \sigma_1$ и $\Delta \sigma_2$ и запишите в таблицу 2.

$$\Delta \sigma_1 = \delta \sigma_1 \cdot \sigma_1 =$$
$$\Delta \sigma_2 = \delta \sigma_2 \cdot \sigma_2 =$$

9. Определите абсолютную ошибку измерений $\Delta \sigma$ и запишите в таблицу 2.

$$\Delta \sigma = \frac{\Delta \sigma_1 + \Delta \sigma_2}{2} =$$

10. Запишите окончательный результат измерений в виде:

$$\sigma = \sigma_{\rm cp} + \Delta \sigma =$$

11. Сравните полученное значение σ с учётом ошибки измерений с табличным значением постоянной Стефана — Больцмана $\sigma = 5,67\cdot 10^{-8}~{\rm Br/(m^2\cdot K^4)}.$

Полимом отхудомто	Пото	
12. Сформулируите оощие выводь	ы по выполненнои раооте	