NSR Search Results Page 1 of 7

Visit the **Isotope Explorer** home page!

40 reference(s) found:

Keynumber: 2001PO13

Reference: Nucl.Instrum.Methods Phys.Res. A463, 309 (2001)

Authors: Yu.P.Popov, A.V.Voinov, P.V.Sedyshev, S.S.Parzhitsky, A.P.Kobzev, N.A.Gundorin,

D.G.Serov, M.V.Sedysheva

Title: Neutron Spectrometry Method for Partial Radiative Capture Cross-Section Measurements **Keyword abstract:** NUCLEAR REACTIONS ⁵⁸Ni(n,γ),E ≈ 10-90 keV; measured Eγ,Iγ; deduced σ

(E), resonance parameters.

Keynumber: 2000PO08

Reference: Yad.Fiz. 63, No 4, 583 (2000); Phys.Atomic Nuclei 63, 525 (2000)

Authors: Yu.P.Popov, A.V.Voinov, S.S.Parzhitsky, N.A.Gundorin, D.G.Serov, A.P.Kobzev,

P.V.Sedyshev

Title: Measurements of a Partial Cross Section for the Reaction 58 Ni $(n,\gamma^0)^{59}$ Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁸Ni(n, γ),E=10-120 keV; measured E γ , σ , neutron

resonance parameters, radiative strength function. Comparison with other measurements.

Keynumber: 1999DE10

Reference: Ann. Nucl. Energy 26, 1253 (1999)

Authors: K.Devan, R.S.Keshavamurthy

Title: A Rational Approximation to Reich-Moore Collision Matrix of Non-Fissile Nuclides

Keyword abstract: NUCLEAR REACTIONS ⁵⁸Ni(n,n), (n, γ), E \approx 15.3,285.4 keV; calculated σ .

Rational approximation to collision matrix.

Keynumber: 1998PO22

Reference: Bull.Rus.Acad.Sci.Phys. 62, 709 (1998)

Authors: Yu.P.Popov, P.V.Sedyshev, N.A.Gundorin, M.V.Sedysheva, A.P.Kobzev, S.S.Parzhitsky

Title: Analysis of Neutron Spectra in the Energy Range of 2-100 keV using High-Resolution γ

Spectrometry

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁷⁰Ge, ⁵⁸Ni(n,γ),E=spectrum; measured Eγ,Iγ.

Method proposed for neutron spectrometry.

Keynumber: 1997VE03

Reference: Appl.Radiat.Isot. 48, 493 (1997) **Authors:** L.Venturini, B.R.S.Pecequilo

Title: Thermal Neutron Capture Cross-Section of ⁴⁸Ti, ⁵¹V, ⁵⁰, ⁵², ⁵³Cr and ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti, ⁵¹V, ⁵⁰, ⁵², ⁵³Cr, ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni(n,γ),E=thermal;

measured E γ ,I γ ; deduced capture σ .

Keynumber: 1994YA25

Reference: Nucl.Sci.Eng. 118, 249 (1994)

Authors: N.Yamamuro

Title: Activation Cross-Section Calculations on the Production of Long-Lived Radionuclides

Keyword abstract: NUCLEAR REACTIONS ⁵⁹Co, ⁵⁸, ⁶²Ni, ⁹³Nb, ⁹², ⁹⁸Mo, ¹⁰⁷Ag, ¹⁵¹Eu, ¹⁸⁵Re

 (n,γ) , 60 Ni, 63 Cu, 94 Mo, 158 Dy(n,p), 61 Ni, 92 Mo(n,np), 63 Cu, 66 Zn (n,α) , 60 , 64 Ni, 95 , 93 Nb, 94 , 100 Mo,

NSR Search Results Page 2 of 7

 $^{109}\text{Ag},~^{151},~^{153}\text{Eu},~^{159}\text{Tb},~^{187}\text{Re}(n,2n),~^{95}\text{Mo}(n,3n), E \leq 20~\text{MeV};~\text{calculated activation}~\sigma(E).$

Vormumban 1002SE1

Keynumber: 1993SE13

Reference: Nucl.Instrum.Methods Phys.Res. A336, 171 (1993)

Authors: R.Semmler, L.P.Geraldo

Title: A New Experimental Apparatus for Production and Utilization of Capture Gamma Rays

Keyword abstract: NUCLEAR REACTIONS ⁶⁰, ⁵⁸, ⁶²Ni, ¹⁴N(n,γ),E=reactor; measured capture γ-ray

flux density; deduced device low energy fission usage suitability.

Keynumber: 1993HAZV

Reference: Proc.6th Intern.Conf.on Nuclei Far from Stability + 9th Intern.Conf.on Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992, R.Neugart, A.Wohr, Eds., p.69 (1993)

Authors: A.Harder, S.Michaelsen, A.Jungclaus, K.P.Lieb, A.P.Williams, H.G.Borner

Title: Precision Neutron Binding Energies of ⁵⁹, ⁶¹, ⁶³, ⁶⁴Ni and ⁹⁰Y Obtained from Thermal Neutron

Capture Reactions

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰, ⁶²Ni, ⁸⁹Y(n,γ),E=thermal; measured capture γ spectra. ⁵⁹, ⁶¹, ⁶³, ⁶⁴Ni, ⁹⁰Y deduced neutron binding energy,transition Iγ. Double neutron capture on ⁶²Ni.

Keynumber: 1993HA05

Reference: Z.Phys. A345, 143 (1993)

Authors: A.Harder, S.Michaelsen, K.P.Lieb, A.P.Williams

Title: Thermal Neutron Capture γ-Ray Spectroscopy of ⁵⁹Ni and ⁶¹Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰Ni(n,γ),E=thermal; measured Eγ,Iγ. ⁵⁹, ⁶¹Ni

deduced levels, J, π, γ -transitions, neutron binding energies.

Keyword abstract: NUCLEAR STRUCTURE A=30-80; compiled level density parameters; deduced

shell structure effects.

Keynumber: 1992KU17

Reference: Nucl. Phys. A549, 59 (1992)

Authors: A.Kuronen, J.Keinonen, H.G.Borner, J.Jolie, S.Ulbig

Title: Molecular Dynamics Simulations Applied to the Determination of Nuclear Lifetimes from

Dopler-Broadened γ -Ray Line Shapes Produced in Thermal Neutron Capture Reactions

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl, ⁴⁸Ti, ⁵³Cr, ⁵⁶Fe, ⁶⁰, ⁵⁸Ni(n,γ),E=thermal; analyzed

Doppler broadened γ -ray line shapes. ³⁶Cl levels deduced $T_{1/2}$,M1,E2 transition matrix

elements, branching ratio. 49 Ti, 54 Cr, 57 Fe, 61 , 59 Ni levels deduced $T_{1/2}$. Molecular dynamics simulations.

Keynumber: 1992HAZV

Reference: Contrib. 6th Intern.Conf.on Nuclei Far from Stability + 9th Intern.Conf.on Atomic Masses and Fundamental Constant, Bernkastel-Kues, Germany, PA4 (1992)

Authors: A.Harder, S.Michaelsen, A.Jungclaus, K.P.Lieb, A.P.Williams, H.G.Borner

Title: Precision Neutron Binding Energies of ⁵⁹, ⁶³, ⁶⁴Ni and ⁹⁰Y Obtained from Thermal Neutron Capture Reactions

Keyword abstract: NUCLEAR REACTIONS ⁸⁹Y, ⁵⁸, ⁶²Ni(n,γ),E=thermal; measured γ-spectra following capture. ⁹⁰Y, ⁶⁴, ⁶³, ⁵⁹Ni deduced binding energy,Iγ,intermediate states.

NSR Search Results Page 3 of 7

Keynumber: 1991UL01

Reference: Z.Phys. A338, 397 (1991)

Authors: S.Ulbig, K.P.Lieb, H.G.Borner, B.Krusche, S.J.Robinson, J.G.L.Booten **Title:** GRID Lifetime Measurements in ⁵⁹, ⁶¹, ⁶³Ni following Thermal Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰, ⁶²Ni(n,γ),E=thermal; measured γ-spectra Doppler

shifts,line shapes. ⁵⁹Ni levels deduced $T_{1/2}$, $B(\lambda)$. ⁶¹, ⁶³Ni levels deduced $T_{1/2}$. GRID technique.

Keynumber: 1986PE19

Reference: Radiat.Eff. 96, 297 (1986)

Authors: C.M.Perey, F.G.Perey, J.A.Harvey, N.W.Hill, R.L.Macklin

Title: ⁵⁸Ni + n Transmission, Capture and Differential Elastic Scattering Data Analysis in the Resonance

Region

Keyword abstract: NUCLEAR REACTIONS ⁵⁸Ni(n,n), (n,γ), (n,X), $E \le 5$ MeV; measured transmission,elastic,capture, $\sigma(\theta)$, σ . ⁵⁹Ni deduced resonance parameters En,Γn,s-,d-wave resonance parameters. Enriched targets, ⁶Li-glass,NE 110 detectors.

-

Keynumber: 1986MAYZ

Reference: Proc.Intern.Nuclear Physics Conference, Harrogate, U.K., p.341 (1986)

Authors: J.P.Mason

Title: Gamma-Ray Spectra following Resonance Neutron Capture in ⁵⁸Ni and ⁶⁰Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, 60 Ni(n, γ),E \approx resonance; measured capture γ -spectra.

⁵⁹, ⁶⁰Ni levels deduced relative transition strengths. Valence model.

Keynumber: 1986LO12

Reference: Radiat.Eff. 95, 199 (1986)

Authors: G.Longo, F.Fabbri

Title: Production of High-Energy Photons in Fast Neutron Radiative Capture

Keyword abstract: NUCLEAR REACTIONS ⁴⁸Ti, ⁵⁸Ni,Ni(n, γ),E=4-20 MeV; calculated σ (En), σ

(Εγ,θγ). Direct-semidirect model.

Keynumber: 1985KI09

Reference: J.Nucl.Sci.Technol.(Tokyo) 22, 337 (1985)

Authors: Y.Kikuchi, N.Sekine

Title: Evaluation of Neutron Nuclear Data of Natural Nickel and Its Isotopes

Keyword abstract: NUCLEAR REACTIONS Ni, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni(n,n), (n,n'), (n, γ), (n,2n), (n,3n), (n,p), (n, α), (n,n'p), (n,n' α), E <20 MeV; calculated σ (E); deduced average capture σ (E). Spherical

optical, statistical models.

Keynumber: 1984WI02

Reference: Nucl.Sci.Eng. 86, 168 (1984)

Authors: K. Wisshak, F. Kappeler, G. Reffo, F. Fabbri

Title: Neutron Capture in s-Wave Resonances of Iron-56, Nickel-58, and Nickel-60

Keyword abstract: NUCLEAR REACTIONS 58 Ni(n, γ),E=10-30 keV; 60 Ni(n, γ),E=10-20 keV; 20-44 keV; measured capture σ (E). 56 Fe(n, γ),E=27.7 keV; measured capture σ . 59 , 61 Ni, 57 Fe deduced s-wave

resonance capture $\Gamma \gamma$. Kinematically collimated neutron beam.

NSR Search Results Page 4 of 7

Kevnumber: 1984REZT

Reference: Proc.Conf.Neutron Physics, Kiev, Vol.1, p.157 (1984)

Authors: G.Reffo, F.Fabbri

Title: Role of E1 and M1 Transitions in the γ-Decay following the Neutron Capture in 58,60 Ni and 56 Fe **Keyword abstract:** NUCLEAR STRUCTURE 57 Fe, 59 , 61 Ni; calculated resonances, Γ γ, Γ n, average E1, M1 Γ γ. Axel-Brink model.

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁵⁸, ⁶⁰Ni(n,γ),E ≈ 15 keV; calculated total γ-spectra; deduced E1.M1 transitions contributions.

Keynumber: 1983WIZL

Reference: NEANDC(E)-242U, Vol.V, p.3 (1983) **Authors:** K.Wisshak, F.Kappeler, G.Reffo, F.Fabbri

Title: Neutron Capture in s-Wave Resonances of ⁵⁶Fe, ⁵⁸Ni, ⁶⁰Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁵⁸, ⁶⁰Ni(n, γ),E=resonance; measured capture γ -

spectra. ⁵⁷Fe, ⁵⁹, ⁶¹Ni deduced s-wave resonance capture Γγ.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980LI08

Reference: Nucl.Phys. A339, 205 (1980)

Authors: A.Lindholm, L.Nilsson, M.Ahmad, M.Anwar, I.Bergqvist, S.Joly

Title: Direct-Semidirect and Compound Contributions to Radiative Neutron Capture Cross Sections **Keyword abstract:** NUCLEAR REACTIONS 40 Ca, 58 Ni, 89 Y, 206 Pb(n, γ),E=0.5-11 MeV; measured E γ ,I γ . 41 Ca, 59 Ni, 90 Y, 207 Pb levels deduced production σ (E). Compound nucleus, direct-semidirect model analysis.

Keynumber: 1978BE04

Reference: Z.Phys. A284, 173 (1978) **Authors:** H.Beer, R.R.Spencer, F.Kappeler

Title: Measurement of Partial Radiation Widths of High Energy Transitions from keV Capture

NSR Search Results Page 5 of 7

Resonances in ⁵⁶Fe and ⁵⁸, ⁶⁰Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁵⁸, ⁶⁰Ni(n, γ),E=7-70 keV; measured σ(E γ). ⁵⁷Fe, ⁵⁹, ⁶¹Ni deduced resonances, partial radiation Γ ,M1 strength.

Keynumber: 1977IS01

Reference: Z.Phys. A281, 365 (1977)

Authors: A.F.M.Ishaq, A.Robertson, W.V.Prestwich, T.J.Kennett

Title: Thermal Neutron Capture in Isotopes of Nickel

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni(n, γ),E=th; measured E γ ,I γ . ⁵⁹, ⁶¹, ⁶³, ⁶⁵Ni

deduced levels.

Keynumber: 1975WI06

Reference: Phys.Rev. C11, 1477 (1975)

Authors: W.M.Wilson, G.E.Thomas, H.E.Jackson

Title: Thermal Neutron Capture Gamma Rays from Neutron Capture in ⁵⁹Ni and ⁶³Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶³Ni(n,γ),E=thermal; measured Εγ,Ιγ. ⁵⁹,

60, 61, 62, 64Ni deduced levels, binding energies.

Keynumber: 1975HOYT

Reference: Proc.Int.Symp.Neutron Capture Gamma-Ray Spectroscopy and Related Topics, 2nd, Petten,

p.537 (1975)

Authors: C.Hofmeyr

Title: Thermal Neutron Capture in ⁵⁸Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁸Ni(n,γ),E=thermal; measured Eγ,Iγ. ⁵⁹Ni deduced

levels, γ -branching, J, π .

Keynumber: 1975FRZV

Coden: JOUR BAPSA 20 174 IB21

Keyword abstract: NUCLEAR REACTIONS 56 Fe, 58 , 60 , 61 Ni(n, γ); calculated σ .

Keynumber: 1975BEYM

Coden: CONF Petten(Neutron Capture γ-ray Spect), Proc P285

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, 60 Ni(n, γ),E=7-70 keV; measured σ (E,E γ). ⁵⁹, 61 Ni

deduced resonances.

Kevnumber: 1974HOZC

Coden: CONF Petten(Neutron Capture Gamma Ray Spectroscopy),P319

Keyword abstract: NUCLEAR REACTIONS ⁵⁸Ni(n,γ),E=thermal; measured Eγ,Iγ. ⁵⁹Ni deduced

levels.

Keynumber: 1974BEYD

Coden: CONF Petten(Neutron Capture Gamma Ray Spectroscopy),P53

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰Ni(n, γ),E=7-70 keV; measured σ (E,E γ). ⁵⁹, ⁶¹Ni

resonances deduced J, π, γ -width.

Keynumber: 1973BO47

Reference: Nucl.Phys. A215, 605 (1973)

Authors: E.Boridy, C.Mahaux

NSR Search Results Page 6 of 7

Title: Radiative Capture of Low-Energy Neutrons in the Shell-Model Approach to Nuclear Reactions **Keyword abstract:** NUCLEAR REACTIONS 56 Fe, 58 Ni(n, γ); calculated I γ . 57 Fe, 59 Ni resonances calculated level-width.

Keynumber: 1972ST06

Reference: Nucl.Phys. A181, 250 (1972)

Authors: F.Stecher-Rasmussen, J.Kopecky, K.Abrahams, W.Ratynski

Title: Circular Polarization of Neutron Capture γ-Rays from Mn, Ni, Ga and W

Keyword abstract: NUCLEAR REACTIONS ⁵⁵Mn, ⁵⁸, ⁶⁰, ⁶²Ni, ⁶⁹, ⁷¹Ga, ¹⁸², ¹⁸³, ¹⁸⁶W(polarized n,γ),E=thermal; measured γ-CP. ⁵⁶Mn, ⁵⁹, ⁶¹, ⁶³Ni, ⁷⁰, ⁷²Ga, ¹⁸³, ¹⁸⁴, ¹⁸⁷W levels deduced J,π. Natural targets.

Keynumber: 1972AXZZ

Coden: REPT AERE-PR/NP 18,P4,8/16/72

Keyword abstract: NUCLEAR REACTIONS Ni, 58 Ni, 167 Er(n, γ),E <1 MeV; Ni, 58 Ni,Fe,C,Tm, 166 ,

¹⁶⁷, ¹⁷⁰Er(n,X),E <10 keV; measured σ (nt)(E), σ (E).

Keynumber: 1971GIZL **Reference:** ZfK-215 (1971)

Authors: P.Gippner, H.-U.Jager, W.Rudolph

Title: Verleich von (d,p)- und (n,γ) -Reaktionen an den Nukliden ⁵⁸Ni, ⁶⁰Ni, ⁶²Ni und ⁶⁴Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰, ⁶², ⁶⁴Ni(n,γ),E=thermal; measured Eγ,Iγ. ⁵⁹, ⁶¹,

⁶³, ⁶⁵Ni deduced levels.

Kevnumber: 1971DI10

Reference: Phys.Lett. 35B, 467 (1971)

Authors: F.Dickmann

Title: Single-Particle Model for Strongly Deformed Nuclei

Keyword abstract: NUCLEAR REACTIONS ⁵⁸Ni(n,γ),E=thermal; calculated Iγ. ⁵⁹Ni resonance

deduced level-width.

Keynumber: 1971BIZV

Coden: REPT ORNL-TM-3379, J R Bird,9/14/71

Keyword abstract: NUCLEAR REACTIONS F,Na,Mg,Al,S, ³⁵Cl,K,Ca, ⁴⁰, ⁴², ⁴⁴Ca,Ti,V,Fe, ⁵⁴,

 56 Fe,Ni, 58 , 60 Ni, 63 Cu,Zn(n, γ),E=10-100 keV; measured E γ ,I γ . 9 inx 12 in NaI detector.

Keynumber: 1969HO12

Reference: Phys.Rev. 178, 1746 (1969)

Authors: R.W.Hockenbury, Z.M.Bartolome, J.R.Tatarczuk, W.R.Moyer, R.C.Block

Title: Neutron Radiative Capture in Na, Al, Fe, and Ni from 1 to 200 keV

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni(n, γ), E=0.1-200 keV; measured σ (E). ²⁴Na, ²⁸Al, ⁵⁵, ⁵⁷, ⁵⁸, ⁵⁹Fe, ⁵⁹, ⁶¹, ⁶², ⁶³, ⁶⁵Ni deduced resonance

parameters.

Keynumber: 1968BE37

Reference: Nucl. Phys. A120, 161 (1968)

Authors: I.Bergqvist, B.Lundberg, L.Nilsson, N.Starfelt

Title: Radiative Capture in Nickel and Bismuth of Neutrons in the MeV Region

NSR Search Results Page 7 of 7

Keyword abstract: NUCLEAR REACTIONS ⁵⁸Ni, ²⁰⁹Bi(n, γ), En=0.9-8.3 MeV; measured σ (E; E γ).

Natural targets.

Keynumber: 1968AL18

Reference: Nucl.Phys. A122, 220 (1968) Authors: B.J.Allen, M.J.Kenny, R.J.Sparks Title: keV Neutron Capture in Nickel

Keyword abstract: NUCLEAR REACTIONS ⁵⁸, ⁶⁰, ⁶²Ni(n, γ), E=10-90 keV; measured σ (E; E γ). ⁵⁹,

 61 , 63 Ni deduced γ transition strengths. Ge(Li) detector, natural target.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹²C, ¹⁴N, ¹⁹F, ²³Na, ²⁴Mg, ²⁵Mg, ²⁶Mg, ²⁷Al, ²⁸Si, ³¹P, ³²S, ³⁵Cl, ⁴⁰Ca, ⁴⁵Sc, ⁴⁸Ti, ⁵¹V, ⁵⁵Mn, ⁵⁴Fe, ⁵⁶Fe, ⁵⁹Co, ⁵⁸Ni, ⁶⁰Ni, ⁶³Cu, ⁶⁵Cu, ⁶⁶Zn, ⁶⁷Zn, ⁷³Ge, ⁷⁶Se, ⁸⁵Rb, ⁸⁷Rb, ⁸⁹Y, ⁹³Nb, ¹⁰³Rh, ¹¹³Cd, ¹²³Te, ¹³³Cs, ¹³⁹La, ¹⁴¹Pr, ¹⁴⁹Sm, ¹⁵³Eu, ¹⁵⁷Gd, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁷Er, ¹⁶⁹Tm, ¹⁸¹Ta, ¹⁸²W, ¹⁹⁵Pt, ¹⁹⁷Au, ¹⁹⁹Hg, ²⁰³Tl, ²⁰⁷Pb(n,γ), E = thermal; measured Eγ; deduced O. Natural targets.
