Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	B.E. Computer Science & Engineering Semester		V
Subject Code & Name	ICS1512 - Machine Learning Algorithms Laboratory		
Academic year	2025-2026 (Odd)	Batch: 2023-2028	Due date:

Experiment 3: Email Spam or Ham Classification using Naïve Bayes, KNN, and SVM

1 Aim:

To classify emails as spam or ham using three classification algorithms — Naïve Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM)—and evaluate their performance using accuracy metrics and K-Fold cross-validation.

2 Libraries used:

- Pandas
- Numpy
- Matplotlib
- Scikit-learn
- Seaborn

3 Objective:

The objective of this assignment is to implement and compare the performance of three classification algorithms—Naïve Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM)—for classifying emails as spam or ham. This includes preprocessing the dataset, training the models using K-Fold cross-validation, and evaluating them based on accuracy metrics.

4 Code with Plot

```
# TRAINING + EVALUATION CODE OF GIVEN MODEL
def evaluate_model(name, model, X_train, X_test):
    start_time = time.time()
    model.fit(X_train, y_train)
```

```
end_time = time.time()
y_pred = model.predict(X_test)
print(f"\n{name} Performance:")
print(f"Accuracy : {accuracy_score(y_test, y_pred):.4f}")
print(f"Precision: {precision_score(y_test, y_pred, average='macro'):.4f}")
print(f"Recall
                : {recall_score(y_test, y_pred, average='macro'):.4f}")
print(f"F1 Score : {f1_score(y_test, y_pred, average='macro'):.4f}")
print(f"Training Time: {(end_time - start_time):.4f} seconds")
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
cm = confusion_matrix(y_test, y_pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot(ax=axes[0], cmap='Blues')
axes[0].set_title('Confusion Matrix')
y_prob = model.predict_proba(X_test)[:, 1]
fpr, tpr, _ = roc_curve(y_test, y_prob)
roc_auc = auc(fpr, tpr)
axes[1].plot(fpr, tpr, label=f'AUC = {roc_auc:.2f}', color='darkorange')
axes[1].plot([0, 1], [0, 1], linestyle='--', color='gray')
axes[1].set_xlabel('False Positive Rate')
axes[1].set_ylabel('True Positive Rate')
axes[1].set_title('ROC Curve')
axes[1].legend()
axes[1].grid(True)
plt.tight_layout()
plt.show()
```

NAIVE BAYES - GAUSSIAN evaluate_model("GaussianNB", GaussianNB(), X_train, X_test)

NAIVE BAYES - MULTINOMIAL evaluate_model("MultinomialNB", MultinomialNB(), X_train, X_test)

NAIVE BAYES - BERNOULLI
evaluate_model("BernoulliNB", BernoulliNB(), X_train, X_test)

K-NEAREST NEIGHBOURS - VARYING K VALUES[1, 3, 5, 7]
for k in [1, 3, 5, 7]:
 evaluate_model(f"KNN (k={k})", KNeighborsClassifier(n_neighbors=k),
 X_train, X_test)

Figure 1: k = 1

Figure 2: k = 3

Figure 3: k = 5

Figure 4: k = 7

K-NEAREST NEIGHBOURS - KDTREE
evaluate_model("KNN (KDTree)", KNeighborsClassifier(algorithm='kd_tree'),
X_train, X_test)

K-NEAREST NEIGHBOURS - BALLTREE
evaluate_model("KNN (BallTree)", KNeighborsClassifier(algorithm='ball_tree'),
X_train, X_test)

HYPERPARAMETER TUNING

grid = GridSearchCV(SVC(kernel='linear', probability=False),
{'C': [0.01, 0.1, 1]}, cv=5)
grid.fit(X_train, y_train)
C = grid.best_params_['C']
print("Best C:", C)

Best C: 1

SUPPORT VECTOR MACHINE - LINEAR
evaluate_model("SVM (Linear)", SVC(kernel='linear', C=C, probability=True),
X_train, X_test)

SUPPORT VECTOR MACHINE - POLYNOMIAL
evaluate_model("SVM (Polynomial)", SVC(kernel='poly', C=C, gamma='scale',
degree=3, probability=True), X_train, X_test)

SUPPORT VECTOR MACHINE - RBF
evaluate_model("SVM (RBF)", SVC(kernel='rbf', C=C, gamma='auto', probability=True),
X_train, X_test)

SUPPORT VECTOR MACHINE - SIGMOID
evaluate_model("SVM (Sigmoid)", SVC(kernel='sigmoid', C=C, gamma='auto',
probability=True), X_train, X_test)


```
# K-FOLD CROSS VALIDATION (K=5)
models = {
    "Naive Bayes": BernoullinB(),
    "KNN": KNeighborsClassifier(n_neighbors=1),
    "SVM": SVC(kernel='rbf', C=C, gamma='auto', probability=True)
}
kf = KFold(n_splits=5, shuffle=True, random_state=42)
results = {name: [] for name in models}

for fold, (train_idx, test_idx) in enumerate(kf.split(X_encoded), start=1):
    X_train, X_test = X_encoded.iloc[train_idx], X_encoded.iloc[test_idx]
    y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]
```

```
for name, model in models.items():
        model.fit(X_train, y_train)
        acc = model.score(X_test, y_test)
        results[name].append(acc)
        print(f"Fold {fold} - {name} Accuracy: {acc:.4f}")
    print()
print("\nAverage:")
for name, scores in results.items():
    avg_acc = sum(scores) / len(scores)
    print(f"{name}: {avg_acc:.4f}")
```

```
Fold 1 - Naive Bayes Accuracy: 0.8627
Fold 1 - KNN Accuracy: 0.7643
Fold 1 - SVM Accuracy: 0.7643
Fold 2 - Naive Bayes Accuracy: 0.8993
Fold 2 - KNN Accuracy: 0.7712
Fold 2 - SVM Accuracy: 0.7689
Fold 3 - Naive Bayes Accuracy: 0.8673
Fold 3 - KNN Accuracy: 0.7666
Fold 3 - SVM Accuracy: 0.7368
Fold 4 - Naive Bayes Accuracy: 0.8810
Fold 4 - KNN Accuracy: 0.7529
Fold 4 - SVM Accuracy: 0.7574
Fold 5 - Naive Bayes Accuracy: 0.8947
Fold 5 - KNN Accuracy: 0.8009
Fold 5 - SVM Accuracy: 0.7872
Average:
Naive Bayes: 0.8810
KNN: 0.7712
SVM: 0.7629
```

5 Comparison Tables:

Naïve Bayes Variant Comparison:

Metric	Gaussian NB	Multinomial NB	Bernoulli NB
Accuracy	0.8140	0.7744	0.8811
Precision	0.8304	0.7677	0.8837
Recall	0.8347	0.7665	0.8706
F1 Score	0.8139	0.7671	0.8756

Table 1: Performance Comparison of Naïve Bayes Variants

KNN: Varying k Values

k	Accuracy	Precision	Recall	F1 Score
1	0.7683	0.7616	0.7592	0.7603
3	0.7591	0.7524	0.7482	0.7499
5	0.7622	0.7572	0.7475	0.7508
7	0.7561	0.7528	0.7381	0.7423

Table 2: KNN Performance for Different k Values

KNN: KDTree vs BallTree

Metric	KDTree	BallTree
Accuracy	0.7622	0.7622
Precision	0.7572	0.7572
Recall	0.7475	0.7475
F1 Score	0.7508	0.7508
Training Time(s)	0.0117	0.0089

Table 3: KNN Comparison : KDTree vs BallTree

SVM Kernel-wise Results

Kernel	Hyperparameters	Accuracy	F1 Score	Training Time
Linear	C = 1	0.9268	0.9231	398.0380
Polynomial	C = 1, degree = 3, gamma = scale	0.6957	0.5476	1.1503
RBF	C = 1, gamma = scale	0.7872	0.7644	1.5646
Sigmoid	C = 1, gamma = scale	0.4177	0.3224	0.5035

Table 4: SVM Performance with Different Kernels and Parameters

K-Fold Cross-Validation Results (K = 5)

Fold	Naïve Bayes Accuracy	KNN Accuracy	SVM Accuracy
Fold 1	0.8627	0.7643	0.9268
Fold 2	0.8993	0.7712	0.9268
Fold 3	0.8673	0.7666	0.9108
Fold 4	0.8810	0.7529	0.9176
Fold 5	0.8947	0.8009	0.9268
Average	0.8810	0.7712	0.9217

Table 5: Cross-Validation Scores for Each Model

6 Observations and Conclusions

• Which classifier had the best average accuracy?

The Linear SVM achieved the highest mean accuracy of 0.9217 across all classifiers in the 5-fold cross-validation, indicating its effectiveness in capturing the dataset's decision boundaries with a linear separation.

• Which Naïve Bayes variant worked best?

Of the Naïve Bayes variants tested, Bernoulli Naïve Bayes classifier yielded the best performance, demonstrating superior accuracy compared to Gaussian and Multinomial variants.

• How did KNN accuracy vary with k and tree type?

Accuracy decreased as k increased, with the highest accuracy observed at k=1. The choice of tree type (e.g., KD-Tree vs. Ball Tree) also influenced performance, but the variation was less pronounced compared to changes in k.

• Which SVM kernel was most effective?

Among the SVM kernels tested (Linear, Polynomial, RBF, Sigmoid), the Linear kernel achieved the highest accuracy, indicating that the dataset was well-suited to a linear decision boundary.

• How did hyperparameters influence performance?

For SVM, the regularization parameter C and the kernel choice were critical, with optimal performance achieved at the tuned C value and the Linear kernel. For KNN, smaller k values improved accuracy, suggesting that the dataset benefits from more localized decision boundaries.

7 Learning Outcomes

- Understood and implemented classification algorithms, including Naïve Bayes, KNN, and SVM for binary classification
- Applied k-fold cross-validation to obtain reliable performance metrics and reduce model evaluation bias.
- Explored the effect of hyperparameters (e.g., k in KNN, C and kernel choice in SVM) on model performance.
- Enhanced skills in visualizing results using confusion matrices and ROC curves for model interpretation.
- Learned how dataset characteristics influence the suitability of different classifiers.

GitHub Repository:

https://github.com/vidarshanaa15/ml-expt-3