ULTIMATE MATHEMATICS

134: AJAY MITTAL: 9891067390

CHAPTER: SEQUENCE & SERIES

CLASS NO:1

(') a, a+d, a+2d, a+3d-----n+/ein

(1) Common defleunce d= 92-9, =93-92

(') not tem general tem of AP an= a+(n-1)d

96= a+5d; 98= a+7d

(1) always Subfract

(.) Sum of noturn of A-P Sn= n/2 (2a+(n-1)d) Sn= 2 (a+1)

Tell Ban bac aurin A.P.
Then 2b=a+c

Majon: b-q = c-b = 2b = 9+c

(1) Selectory three terms in AP

Q-d, Q, a+d (So USI only when sum of
three terms in AP is given)

five tume a-2d, a-d, a, a+d, a+2d

focu tum.

a-3d, a-d, a+d a+3d

Sy u ence 1, 2, 3, 4, -- sures 1+2+3+4,--

$$a, A, b \rightarrow A \cdot p$$

$$A = \frac{a+b}{2}$$

$$d = \frac{b-a}{n+1}$$

$$\begin{cases} q_1 + k, & q_2 + k, & q_3 + k - - - & Ap \\ q_1 - k, & q_2 - k, & q_3 - k, & - - - & Ap \\ q_1 k, & q_2 k, & q_3 k, & - - - & Ap \\ q_2 k, & q_3 k, & - - - & Ap \end{cases}$$

CREOME TRIC PROGRESSION (G-P)

$$5n = Q(\frac{N^{n}-1}{1-1})$$
 : $3>1$

$$5n = 9\left(\frac{1-9^n}{1-8}\right) : 8<1$$

then
$$b^2 = ac$$

Ruger
$$\frac{b}{a} = \frac{c}{b}$$
 \Rightarrow $b = ac$

5 ES (class 10=1)
(') Selection of terms in GP
Thru kerns 9,9,0,01 Sus only when fin her of thru kern in ap or sion,
Fin hum 9, 9, 9, 01, 012 in Gp 28 51 cm)
four terms $\frac{9}{13}$, $\frac{9}{7}$, 92 , 91^3
I flecheur not grun then led a, as, as 2
(1) Greanshie Mean (GM)
$a, \frac{G}{2}, b \xrightarrow{3} GP$ $\Rightarrow G^{2} = ab$
$\Rightarrow \boxed{G_1 = \sqrt{9b}}$
(1) Geometre Means (G-MS)
a, G1, G2, G3
1= (b) hall when m -> No of Greeneter Heavy
G1= a1 + ; G2= a12, G3= a13,
= of 9y= 9+3d; Ay = 9+4d
opl 94-013; Gy= 914

SES (clan No. 1)

(5)

1.) Hopaly

Then
$$9, 192, 9, --- GP$$

then $9, k, 92k, 93k, --- GP$

then $2, 92k, 93k, --- GP$

(i) Infinite G-P

 $9, 9293 - - - - \infty$ $9, au, au, 3, - - \infty$

Sum y infinh GP

TS00 = 97 ;

12/41

03 -14841

Majon:

 $S_{n} = \frac{q(1-1^{n})}{1-2}$, x < 1

 $(2)^{9} - 16$; $(-2)^{9} = -00 16$

(0.2) = 0

(Extra)
Haymonic Regression (H.P)

(') of 9, 92, 9, --- auin AP then di, di 1 di 1 di --- auin H-P

(i) annim turny tip = Intragrap

(·) るのかくつから

De acata

$$\frac{1}{2} = \frac{4}{a+b}$$

$$\frac{1}{1} = \frac{2ab}{a+b}$$

SPECIAL SERIES

(1)
$$1+2+3+--n = sum y I^{it} n-natural numbers$$

 $1+2+3--n = n(n+1) = \Sigma n$

$$(1) | 1^2 + 2^2 + 3^2 - - - n^2 = n (n+1)(2n+1) = 5n^2$$

(')
$$1^3+2^3+3^3+--n^3=\frac{n^2(n+1)^2}{y}=\frac{2n^3}{y}$$

$$\begin{array}{ll}
\boxed{22} = 2+2+2+--n \text{ fm} = 2n \\
\boxed{23--3n} \\
\boxed{2k} = kn
\end{array}$$

(1) Properly
$$\int Z(x+y) = Zx+Zy$$
 (1) $Z = 3x^2$
 $Z(xy) + Zx = 3Zx^2$
 $Z(xy) + Zx = 1$
 $Z(xy) + Zx = 1$
 $Z(xy) + Zx = 1$
 $Z(xy) + Zx = 1$