

=> d his

(FILE 'HOME' ENTERED AT 13:38:48 ON 11 FEB 2004)

INDEX 'ADISCTI, ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, AQUASCI, BIOBUSINESS, BIOCOMMERCE, BIOSIS, BIOTECHABS, BIOTECHDS, BIOTECHNO, CABA, CANCERLIT, CAPLUS, CEABA-VTB, CEN, CIN, CONFSCI, CROPB, CROPU, DISSABS, DDFB, DDFU, DGENE, DRUGB, DRUGMONOG2, ...' ENTERED AT 13:39:55 ON 11 FEB 2004

SEA (THREONI? (S) CARRIE? (S) EXPOR?) OR THRE

1 FILE ADISINSIGHT
15 FILE AGRICOLA
3 FILE ANABSTR
17 FILE AQUASCI
16 FILE BIOBUSINESS
254 FILE BIOSIS
69 FILE BIOTECHABS
69 FILE BIOTECHDS
27 FILE BIOTECHNO
19 FILE CABA
7 FILE CANCERLIT
148 FILE CAPLUS
10 FILE CEABA-VTB
15 FILE CIN
3 FILE CONFSCI
3 FILE CROPU
19 FILE DISSABS
7 FILE DDFU
37 FILE DGENE
28 FILE DRUGU
2 FILE IMSRESEARCH
1 FILE EMBAL
109 FILE EMBASE
23 FILE ESBIOBASE
64* FILE FEDRIP
1 FILE FOMAD
1 FILE FOREGE
3 FILE FROSTI
5 FILE FSTA
54 FILE GENBANK
2 FILE HEALSAFE
131 FILE IFIPAT
1 FILE IMSPRODUCT
93 FILE JICST-EPLUS
1 FILE KOSMET
29 FILE LIFESCI
52 FILE MEDLINE
2 FILE NIOSHTIC
17 FILE NTIS
3 FILE OCEAN
180 FILE PASCAL
3 FILE PHIN
198 FILE PROMT
2 FILE RDISCLOSURE
51 FILE SCISEARCH
96 FILE TOXCENTER
770 FILE USPATFULL
10 FILE USPAT2
3 FILE VETU
335 FILE WPIDS
335 FILE WPINDEX
2 FILE NAPRALERT
82 FILE NLDB

L1 QUE (THREONI? (S) CARRIE? (S) EXPOR?) OR THRE

FILE 'USPATFULL, WPIDS, BIOSIS, PROMT, PASCAL, CAPLUS, IFIPAT, EMBASE, TOXCENTER, JICST-EPLUS, NLDB, BIOTECHDS, FEDRIP, GENBANK, MEDLINE' ENTERED AT 13:42:40 ON 11 FEB 2004

L2 2635 S (THREONI? (S) CARRIE? (S) EXPOR?) OR THRE

L3 1317 S L2 AND (PRODUC? OR EXCRET?)
L4 170 S L3 AND CORYN?
L5 112 DUP REM L4 (58 DUPLICATES REMOVED)
L6 84 S L3 AND CORYN? AND THRE

Welcome to STN International! Enter x:x

LOGINID: ssspta1652dmr

PASSWORD :

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * * * * * * * Welcome to STN International * * * * * * * * * * * * * * *

NEWS 1 Web Page URLs for STN Seminar Schedule - N. America
NEWS 2 "Ask CAS" for self-help around the clock
NEWS 3 SEP 09 CA/CAplus records now contain indexing from 1907 to the present
NEWS 4 DEC 08 INPADOC: Legal Status data reloaded
NEWS 5 SEP 29 DISSABS now available on STN
NEWS 6 OCT 10 PCTFULL: Two new display fields added
NEWS 7 OCT 21 BIOSIS file reloaded and enhanced
NEWS 8 OCT 28 BIOSIS file segment of TOXCENTER reloaded and enhanced
NEWS 9 NOV 24 MSDS-CCOHS file reloaded
NEWS 10 DEC 08 CABAB reloaded with left truncation
NEWS 11 DEC 08 IMS file names changed
NEWS 12 DEC 09 Experimental property data collected by CAS now available in REGISTRY
NEWS 13 DEC 09 STN Entry Date available for display in REGISTRY and CA/CAplus
NEWS 14 DEC 17 DGENE: Two new display fields added
NEWS 15 DEC 18 BIOTECHNO no longer updated
NEWS 16 DEC 19 CROPUS no longer updated; subscriber discount no longer available
NEWS 17 DEC 22 Additional INPI reactions and pre-1907 documents added to CAS databases
NEWS 18 DEC 22 IFIPAT/IFIUDB/IFICDB reloaded with new data and search fields
NEWS 19 DEC 22 ABI-INFORM now available on STN
NEWS 20 JAN 27 Source of Registration (SR) information in REGISTRY updated and searchable
NEWS 21 JAN 27 A new search aid, the Company Name Thesaurus, available in CA/CAplus
NEWS 22 FEB 05 German (DE) application and patent publication number format changes

NEWS EXPRESS DECEMBER 28 CURRENT WINDOWS VERSION IS V7.00, CURRENT MACINTOSH VERSION IS V6.0b(ENG) AND V6.0b(JP), AND CURRENT DISCOVER FILE IS DATED 23 SEPTEMBER 2003
NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS INTER General Internet Information
NEWS LOGIN Welcome Banner and News Items
NEWS PHONE Direct Dial and Telecommunication Network Access to STN
NEWS WWW CAS World Wide Web Site (general information)

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 13:38:48 ON 11 FEB 2004

=> index bioscience medicine
FILE 'DRUGMONOG' ACCESS NOT AUTHORIZED
COST IN U.S. DOLLARS

FULL ESTIMATED COST

INDEX 'ADISCTI, ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, AQUASCI, BIOBUSINESS, BIOCOMMERCE, BIOSIS, BIOTECHABS, BIOTECHDS, BIOTECHNO, CABA, CANCERLIT, CAPLUS, CEABA-VTB, CEN, CIN, CONFSCI, CROPB, CROPU, DISSABS, DDFB, DDFU, DGENE, DRUGB, DRUGMONOG2, ...' ENTERED AT 13:39:55 ON 11 FEB 2004

71 FILES IN THE FILE LIST IN STNINDEX

Enter SET DETAIL ON to see search term postings or to view search error messages that display as 0* with SET DETAIL OFF.

=> s (threoni? (s) carrie? (s) expor?) or thre

1 FILE ADISINSIGHT
15 FILE AGRICOLA
3 FILE ANABSTR
17 FILE AQUASCI
16 FILE BIOBUSINESS
254 FILE BIOSIS
69 FILE BIOTECHABS
69 FILE BIOTECHDS
27 FILE BIOTECHNO
19 FILE CABA
7 FILE CANCERLIT
148 FILE CAPLUS
10 FILE CEABA-VTB
15 FILE CIN
3 FILE CONFSCI
3 FILE CROPU
19 FILE DISSABS
7 FILE DDFU
37 FILE DGENE
28 FILE DRUGU
2 FILE IMSRESEARCH
1 FILE EMBAL
109 FILE EMBASE
23 FILE ESBIOBASE

33 FILES SEARCHED...

64* FILE FEDRIP
1 FILE FOMAD
1 FILE FOREGE
3 FILE FROSTI
5 FILE FSTA
54 FILE GENBANK
2 FILE HEALSAFE
131 FILE IFIPAT
1 FILE IMSPRODUCT
93 FILE JICST-EPLUS
1 FILE KOSMET
29 FILE LIFESCI
52 FILE MEDLINE
2 FILE NIOSHTIC
17 FILE NTIS
3 FILE OCEAN
180 FILE PASCAL
3 FILE PHIN
198 FILE PROMT
2 FILE RDISCLOSURE
51 FILE SCISEARCH
96 FILE TOXCENTER
770 FILE USPATFULL
10 FILE USPAT2
3 FILE VETU
335 FILE WPIDS

67 FILES SEARCHED...

335 FILE WPINDEX
2 FILE NAPRALERT
82 FILE NLDB

53 FILES HAVE ONE OR MORE ANSWERS, 71 FILES SEARCHED IN STNINDEX

L1 QUE (THREONI? (S) CARRIE? (S) EXPOR?) OR THRE

```
=> d rank
F1      770  USPATFULL
F2      335  WPIDS
F3      335  WPINDEX
F4      254  BIOSIS
F5      198  PROMT
F6      180  PASCAL
F7      148  CAPLUS
F8      131  IFIPAT
F9      109  EMBASE
F10     96   TOXCENTER
F11     93   JICST-EPLUS
F12     82   NLDB
F13     69   BIOTECHABS
F14     69   BIOTECHDS
F15     64*  FEDRIP
F16     54   GENBANK
F17     52   MEDLINE
F18     51   SCISEARCH
F19     37   DGENE
F20     29   LIFESCI
F21     28   DRUGU
F22     27   BIOTECHNO
F23     23   ESBIOBASE
F24     19   CABA
F25     19   DISSABS
F26     17   AQUASCI
F27     17   NTIS
F28     16   BIOBUSINESS
F29     15   AGRICOLA
F30     15   CIN
F31     10   CEABA-VTB
F32     10   USPAT2
F33      7   CANCERLIT
F34      7   DDFU
F35      5   FSTA
F36      3   ANABSTR
F37      3   CONFSCI
F38      3   CROPU
F39      3   FROSTI
F40      3   OCEAN
F41      3   PHIN
F42      3   VETU
F43      2   IMSRESEARCH
F44      2   HEALSAFE
F45      2   NIOSHTIC
F46      2   RDISCLOSURE
F47      2   NAPRALERT
F48      1   ADISINSIGHT
F49      1   EMBAL
F50      1   FOMAD
F51      1   FOREGE
F52      1   IMSPRODUCT
F53      1   KOSMET
```

```
=> file f1-f17
COST IN U.S. DOLLARS          SINCE FILE      TOTAL
                                ENTRY          SESSION
FULL ESTIMATED COST          2.85          3.27
```

FILE 'USPATFULL' ENTERED AT 13:42:40 ON 11 FEB 2004
 CA INDEXING COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'WPIDS' ENTERED AT 13:42:40 ON 11 FEB 2004
 COPYRIGHT (C) 2004 THOMSON DERWENT

FILE 'WPINDEX' ACCESS NOT AUTHORIZED

FILE 'BIOSIS' ENTERED AT 13:42:40 ON 11 FEB 2004
 COPYRIGHT (C) 2004 BIOLOGICAL ABSTRACTS INC. (R)

FILE 'PROMT' ENTERED AT 13:42:40 ON 11 FEB 2004
COPYRIGHT (C) 2004 Gale Group. All rights reserved.

FILE 'PASCAL' ENTERED AT 13:42:40 ON 11 FEB 2004
Any reproduction or dissemination in part or in full,
by means of any process and on any support whatsoever
is prohibited without the prior written agreement of INIST-CNRS.
COPYRIGHT (C) 2004 INIST-CNRS. All rights reserved.

FILE 'CAPLUS' ENTERED AT 13:42:40 ON 11 FEB 2004
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'IFIPAT' ENTERED AT 13:42:40 ON 11 FEB 2004
COPYRIGHT (C) 2004 IFI CLAIMS(R) Patent Services (IFI)

FILE 'EMBASE' ENTERED AT 13:42:40 ON 11 FEB 2004
COPYRIGHT (C) 2004 Elsevier Inc. All rights reserved.

FILE 'TOXCENTER' ENTERED AT 13:42:40 ON 11 FEB 2004
COPYRIGHT (C) 2004 ACS

FILE 'JICST-EPLUS' ENTERED AT 13:42:40 ON 11 FEB 2004
COPYRIGHT (C) 2004 Japan Science and Technology Agency (JST)

FILE 'NLDB' ENTERED AT 13:42:40 ON 11 FEB 2004
COPYRIGHT (C) 2004 Gale Group. All rights reserved.

FILE 'BIOTECHABS' ACCESS NOT AUTHORIZED

FILE 'BIOTECHDHS' ENTERED AT 13:42:40 ON 11 FEB 2004
COPYRIGHT (C) 2004 THOMSON DERWENT AND INSTITUTE FOR SCIENTIFIC INFORMATION

FILE 'FEDRIP' ENTERED AT 13:42:40 ON 11 FEB 2004

FILE 'GENBANK' ENTERED AT 13:42:40 ON 11 FEB 2004

FILE 'MEDLINE' ENTERED AT 13:42:40 ON 11 FEB 2004

=> s (threoni? (s) carrie? (s) expor?) or thre
PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH
FIELD CODE - 'AND' OPERATOR ASSUMED 'THREONI? (S) CARRIE?'
PROXIMITY OPERATOR LEVEL NOT CONSISTENT WITH
FIELD CODE - 'AND' OPERATOR ASSUMED 'CARRIE? (S) EXPOR?'
L2 2635 (THREONI? (S) CARRIE? (S) EXPOR?) OR THRE

=> s l2 and (produc? or excret?)
4 FILES SEARCHED...
12 FILES SEARCHED...
L3 1317 L2 AND (PRODUC? OR EXCRET?)

=> s l3 and coryn?
L4 170 L3 AND CORYN?

=> dup rem 14
DUPLICATE IS NOT AVAILABLE IN 'FEDRIP, GENBANK'.
ANSWERS FROM THESE FILES WILL BE CONSIDERED UNIQUE
PROCESSING COMPLETED FOR L4
L5 112 DUP REM L4 (58 DUPLICATES REMOVED)

=> d ti 15 1-112

L5 ANSWER 1 OF 112 USPATFULL on STN DUPLICATE 1
TI Process for the fermentative preparation of L-amino acids with
amplification of the tkt gene

L5 ANSWER 2 OF 112 USPATFULL on STN DUPLICATE 2
TI Nucleotide sequences coding for the thre gene and process for
the enzymatic production of L-threonine using

coryneform bacteria

L5 ANSWER 3 OF 112 USPATFULL on STN
TI **Coryneform** bacteria which **produce** chemical compounds
I

L5 ANSWER 4 OF 112 USPATFULL on STN
TI Process for the preparation of L-amino acids with amplification of the zwf gene

L5 ANSWER 5 OF 112 USPATFULL on STN
TI Process for the preparation of L-amino acids with amplification of the zwf gene

L5 ANSWER 6 OF 112 USPATFULL on STN
TI Methods and compositions comprising Renilla GFP

L5 ANSWER 7 OF 112 USPATFULL on STN
TI Process for the preparation of L-amino acids using a gene encoding 6-phosphogluconate dehydrogenase

L5 ANSWER 8 OF 112 USPATFULL on STN
TI Process for the **production** of L-amino acids using strains of the family enterobacteriaceae that contain an attenuated aceA gene

L5 ANSWER 9 OF 112 USPATFULL on STN
TI Process for the **production** of L-amino acids using strains of the family enterobacteriaceae that contain an attenuated dgsA gene

L5 ANSWER 10 OF 112 USPATFULL on STN
TI **Corynebacterium glutamicum** genes encoding metabolic pathway proteins

L5 ANSWER 11 OF 112 USPATFULL on STN
TI Process for the **production** of L-amino acids using strains of the family enterobacteriaceae that contain an attenuated fruR gene

L5 ANSWER 12 OF 112 USPATFULL on STN
TI Process for the preparation of L-amino acids using strains of the enterobacteiaceae family

L5 ANSWER 13 OF 112 USPATFULL on STN
TI Process for the fermentative preparation of L-amino acids using strains of the enterobacteriaceae family

L5 ANSWER 14 OF 112 IFIPAT COPYRIGHT 2004 IFI on STN
TI PROCESS FOR THE FERMENTATIVE PREPARATION OF L-AMINO ACIDS USING **CORYNEFORM** BACTERIA

L5 ANSWER 15 OF 112 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
DUPLICATE 3
TI New ubiquitous translocators: Amino acid export by **Corynebacterium glutamicum** and *Escherichia coli*.

L5 ANSWER 16 OF 112 USPATFULL on STN DUPLICATE 4
TI New nucleotide sequences coding for the **thrE** gene and process for the enzymatic **production** of L-threonine using **coryneform** bacteria

L5 ANSWER 17 OF 112 USPATFULL on STN DUPLICATE 5
TI Process for the fermentative preparation of L-threonine

L5 ANSWER 18 OF 112 USPATFULL on STN DUPLICATE 6
TI Nucleotide sequences coding for the **thrE** gene and process for the enzymatic **production** of L-threonine using **coryneform** bacteria

L5 ANSWER 19 OF 112 USPATFULL on STN DUPLICATE 7
TI New nucleotide sequences coding for the **thrE** gene and process for the enzymatic **production** of L-threonine using **coryneform** bacteria

L5 ANSWER 20 OF 112 USPATFULL on STN DUPLICATE 8
TI Process for the fermentative preparation of L-amino acids using **coryneform** bacteria

L5 ANSWER 21 OF 112 USPATFULL on STN DUPLICATE 9
TI Nucleotide sequences coding for the **thrE** gene and process for the enzymatic production of L-threonine using **coryneform** bacteria

L5 ANSWER 22 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 10
TI Isolated polynucleotide from **Coryneform** bacteria, used for the fermentative production of L-amino acids, comprises a sequence coding for the **miKE17** gene.

L5 ANSWER 23 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 11
TI New polynucleotide from **coryneform** bacteria coding for **dep67** gene, where overexpression of the gene provides improved production of L-amino acids particularly L-lysine in **corynebacterium glutamicum**.

L5 ANSWER 24 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 12
TI Polynucleotides from **Coryneform** bacteria, coding for the enzymatic cobalt reducing gene **product cobW**, involved in the biosynthesis of L-amino acids (e.g. L-lysine).

L5 ANSWER 25 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 13
TI Isolated polynucleotide from **Coryneform** bacteria, used for the fermentative production of L-amino acids, comprises a sequence coding for the **msiK** gene.

L5 ANSWER 26 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 14
TI New **deaD** gene encoding polypeptide having activity of DNA/RNA helicase, useful in bacteria for the fermentative preparation of L-amino acids, particularly L-lysine, from glucose, molasses, starch, cellulose or ethanol.

L5 ANSWER 27 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 15
TI New **truB** gene encoding polypeptide having activity of tRNA pseudouridine 55 synthase, useful in bacteria for fermentative preparation of L-amino acids, particularly L-lysine, from glucose, molasses, starch or ethanol.

L5 ANSWER 28 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 16
TI Novel polynucleotide from **Coryneform** bacteria coding for **ppgK** gene, useful as hybridization probe for detecting DNA to isolate nucleic acids, polynucleotides or genes coding for transcription activator **ppgK**.

L5 ANSWER 29 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 17
TI Novel polynucleotide from **Coryneform** bacteria coding for **thyA** gene, useful as hybridization probe for detecting DNA to isolate nucleic acids, polynucleotides or genes coding for thymidilate synthase.

L5 ANSWER 30 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 18
TI New polynucleotide from **Coryneform** bacteria coding for C4-dicarboxylate transporter, useful for isolating nucleic acids, polynucleotides or genes which code for C4-dicarboxylate transporter gene.

L5 ANSWER 31 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 19
TI New **ppsA** gene of **Coryneform** bacteria, useful when overexpressed, for increasing fermentative production of L-amino acids, encodes a phosphoenol pyruvate synthase.

L5 ANSWER 32 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 20

TI New protein kinase B, pknB gene from **corynebacteria**, useful as hybridization probe and overexpression of which gene in **corynebacteria** is useful for producing L-amino acids, in particular L-lysine.

L5 ANSWER 33 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 21

TI Novel polynucleotide from **coryneform** bacteria coding for phosphotransferase system enzyme I, useful for isolating nucleic acids, polynucleotides or genes which code for phosphotransferase system enzyme I.

L5 ANSWER 34 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 22

TI New Atr61 gene of **Coryneform** bacteria, useful when overexpressed, for increasing fermentative production of L-amino acids, encodes an ABC transporter protein.

L5 ANSWER 35 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 23

TI New pknD gene of **Coryneform** bacteria, useful when overexpressed, for increasing fermentative production of L-amino acids, encodes a protein kinase D protein.

L5 ANSWER 36 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 24

TI Novel sahH gene from **coryneform** bacteria useful as probe to isolate genes coding for adenosyl homocysteinase, and overexpression of which gene in **coryneform** bacteria is useful for producing amino acids, e.g. L-lysine.

L5 ANSWER 37 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 25

TI New polynucleotide isolated from **coryneform** bacteria coding for the gap2 gene and a process for the fermentative preparation of amino acids using bacteria in which the gap2 gene is enhanced.

L5 ANSWER 38 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 26

TI New sigM gene from **coryneform** bacteria useful as probe to isolate genes which code for sigma factor M, and overexpression of which gene in **coryneform** bacteria is useful for producing amino acids, especially L-lysine.

L5 ANSWER 39 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 27

TI New sigH gene from **coryneform** bacteria useful as a probe to isolate genes which code for sigma factor H, and overexpression of which gene in **coryneform** bacteria is useful for producing amino acids, especially L-lysine.

L5 ANSWER 40 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 28

TI New dps gene of **coryneform** bacteria, useful when overexpressed, for increasing fermentative production of L-amino acids, encodes a DNA-protection protein.

L5 ANSWER 41 OF 112 USPATFULL on STN

TI Novel Polynucleotides

L5 ANSWER 42 OF 112 USPATFULL on STN

TI Method to monitor a fermentation process

L5 ANSWER 43 OF 112 USPATFULL on STN

TI Nucleotide sequences coding for the cysQ gene

L5 ANSWER 44 OF 112 USPATFULL on STN

TI **STREPTOCOCCUS PNEUMONIAE POLYNUCLEOTIDES AND SEQUENCES**

L5 ANSWER 45 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI New isolated deformylase polypeptide encoding polynucleotide from **coryneform** bacteria which when present in attenuated form in L-lysine producing bacteria, results in increased fermentative production of L-lysine;
 recombinant enzyme gene, vector expression in host cell, fermentation for L-amino acid production

L5 ANSWER 46 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI Polynucleotide sequence encoding *ndkA* gene useful for preparation of L-amino acids e.g. L-lysine, and as hybridization probes for discovering RNA, cDNA and DNA to isolate genes encoding nucleotide diphosphate kinase;
 plasmid vector-mediated dihydrodipicolinate-synthase gene transfer and expression in *Escherichia coli* and DNA microarray and DNA chip for use in L-lysine and L-amino-acid preparation

L5 ANSWER 47 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI New polynucleotides isolated from **coryneform** bacteria coding for the *luxS* gene and a process for the fermentative preparation of amino acids using bacteria in which the *luxS* gene are attenuated;
 vector plasmid pCR2-mediated *chrA* gene transfer and expression in *Escherichia coli*, fermentation, DNA primer, DNA probe, DNA chip and DNA microarray for use in L-lysine and L-amino-acid preparation, medicine and pharmaceutical industries and as feedstuff and food-additive

L5 ANSWER 48 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI New polynucleotides isolated from **coryneform** bacteria coding for the *chrA* gene and a process for the fermentative preparation of amino acids using bacteria in which the *chrA* gene are attenuated;
 vector plasmid pCR2-mediated *chrA* gene transfer and expression in *Escherichia coli*, fermentation, DNA primer, DNA probe, DNA chip and DNA microarray for use in L-lysine and L-amino-acid preparation, medicine and pharmaceutical industries and as feedstuff and food-additive

L5 ANSWER 49 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI Novel polynucleotide from **Coryneform** bacteria coding for *hisC2* gene, useful as hybridization probe for detecting DNA to isolate nucleic acids, polynucleotides or genes coding for transcription regulator *hisC2*; vector-mediated gene transfer, expression in host cell and DNA probe for strain improvement, L-amino acid preparation, DNA microarray or DNA chip construction and RNA, cDNA or DNA detection

L5 ANSWER 50 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI New polynucleotides isolated from **coryneform** bacteria coding for the *clpC* gene and a process for the fermentative preparation of amino acids using bacteria in which the *clpC* gene is attenuated;
 vector-mediated gene transfer and expression in **Corynebacterium glutamicum** host cell for strain improvement and L-amino acid preparation

L5 ANSWER 51 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI New polynucleotides isolated from **coryneform** bacteria coding for the *gpmB* gene and a process for the fermentative preparation of amino acids using bacteria in which the *gpmB* gene is enhanced;
 vector-mediated gene transfer and expression in **Corynebacterium glutamicum** host cell for strain improvement and L-amino acid preparation

L5 ANSWER 52 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI New polynucleotide sequence encoding the *sigC* gene useful for preparation of L-amino acids e.g. lysine, and as hybridization probes for discovering RNA, cDNA and DNA to isolate genes which code for sigma factor C;
 L-amino acid production by fermentation of bacterium containing the sigma factor-C gene

L5 ANSWER 53 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI Novel polynucleotide from **Coryneform** bacteria coding for sigma

factor E gene, useful as hybridization probe for isolating nucleic acids, polynucleotides or genes which code for sigE;
Corynebacterium glutamicum strain improvement for increased L-amino acid production by fermentation

L5 ANSWER 54 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI Novel **Coryneform** bacteria polynucleotide sequence of *ilvE* gene which codes for transaminase E, the expression of which is enhanced, particularly over expressed, for fermentative preparation of L-leucine, L-valine;
recombinant transaminase-E production and gene transfer for strain improvement for L-leucine and L-valine production by fermentation

L5 ANSWER 55 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI New L-lactate dehydrogenase gene from **coryneform** bacteria, useful, when overexpressed, for increasing fermentative production of L-amino acid;
vector-mediated gene transfer and expression in host cell for strain improvement and L-lysine preparation

L5 ANSWER 56 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI New *tmk* gene of **Coryneform** bacteria, useful when suppressed, for increasing fermentative production of L-amino acids, encodes a thymidylate kinase;
L-lysine production by recombinant **Corynebacterium glutamicum** useful for food, medicine and pharmaceutical industry

L5 ANSWER 57 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI New *cysD*, *N*, *K*, *E* and *H* genes from **coryneform** bacteria, useful, when over expressed, for increasing fermentative production of L-amino acids;
vector plasmid pEC-XK99E-mediated recombinant protein gene transfer and expression in *Escherichia coli* for use in L-amino acid preparation and medicine, pharmaceutical and food industries

L5 ANSWER 58 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI RodA genes from **coryneform** bacteria, useful, when overexpressed, for increasing fermentative production of L-amino acid, especially L-lysine;
vector plasmid pEC-XK99E-mediated recombinant protein gene transfer and expression in *Escherichia coli* for use in L-amino acid preparation and medicine, pharmaceutical and food industries

L5 ANSWER 59 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI New *ftsX* gene from **coryneform** bacteria, useful, when over expressed, for increasing fermentative production of L-amino acid, especially L-lysine;
vector plasmid pEC-XK99E-mediated recombinant protein gene transfer and expression in *Escherichia coli* for use in L-amino acid preparation, medicine, pharmaceutical and food industries

L5 ANSWER 60 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI New *dep34* gene from **coryneform** bacteria, useful, when inactivated, for increasing fermentative production of L-amino acid, especially L-lysine;
plasmid-mediated inactivated mutant gene transfer and expression in **Corynebacterium glutamicum** for use in food and pharmaceutical industry

L5 ANSWER 61 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI New *menE* gene of **coryneform** bacteria, useful when suppressed for increasing fermentative production of L-amino acids, encodes an O-succinylbenzoic acid CoA-ligase;
vector-mediated gene transfer and expression in host cell for strain improvement and L-lysine preparation

L5 ANSWER 62 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI Fermentative production of L-amino acids, especially lysine or valine, by fermenting **Coryneform** bacteria in which the *nadA* and/or *nadC* gene is weakened;

vector expression in bacterium host cell, fermentation and mutation for amino acid production and food

L5 ANSWER 63 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
TI New pepC gene of **Coryneform** bacteria, useful when suppressed, for increasing fermentative production of L-amino acids, encodes an aminopeptidase I; vector-mediated gene transfer and expression in host cell for strain improvement and L-lysine preparation

L5 ANSWER 64 OF 112 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
DUPLICATE 29
TI Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter **ThrE** to increase L-threonine accumulation by **Corynebacterium glutamicum**.

L5 ANSWER 65 OF 112 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
DUPLICATE 30
TI Influence of threonine exporters on threonine production in **Escherichia coli**.

L5 ANSWER 66 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 31
TI Preparing L-amino acids by fermenting **coryneform** bacteria transformed with the 6-phosphogluconate dehydrogenase gene is particularly useful to produce L-lysine and L-threonine.

L5 ANSWER 67 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 32
TI Preparation of L-amino acids, e.g. L-lysine, L-threonine or L-isoleucine, useful in animal nutrition or in human medicine, comprises fermenting L-amino acid-producing **coryneform** bacteria with amplification of the tkt gene.

L5 ANSWER 68 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 33
TI Nucleic acids encoding phosphoserine phosphatase and phosphoserine aminotransferase from **coryneform** bacteria useful to transform microorganisms for the microbial production of L-serine.

L5 ANSWER 69 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 34
TI New cloned **Corynebacterium glutamicum** **thrE** gene useful for producing **thrE**-overexpressing **coryneform** bacteria for production of L-threonine.

L5 ANSWER 70 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE 35
TI Fermentative production of L-threonine, useful in animal nutrition, comprises culturing **enterobacterium** with increased **thrE** gene activity.

L5 ANSWER 71 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN
TI Preparing L-amino acids by fermenting **coryneform** bacteria transformed with the glucose 6-phosphate dehydrogenase gene is particularly useful to produce L-lysine and L-threonine.

L5 ANSWER 72 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN
TI New polynucleotides from **coryneform** bacteria, specifically **Corynebacterium**, useful for preparing L-amino acids, especially L-lysine, L-threonine, L-isoleucine and L-tryptophan, by amplifying **tal** gene.

L5 ANSWER 73 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN
TI Production of L-amino acids by **coryneform** bacteria, useful e.g. in animal nutrition, by fermenting cells with reduced **glyA** (serine hydroxymethyltransferase) gene activity.

L5 ANSWER 74 OF 112 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
DUPLICATE 36
TI The cell wall barrier of **Corynebacterium glutamicum** and amino

acid efflux.

L5 ANSWER 75 OF 112 CAPLUS COPYRIGHT 2004 ACS on STN
TI Secretion and degradation of L-threonine in **Corynebacterium glutamicum**

L5 ANSWER 76 OF 112 USPATFULL on STN
TI Nucleotide and protein sequences of lats genes and methods based thereon

L5 ANSWER 77 OF 112 PASCAL COPYRIGHT 2004 INIST-CNRS. ALL RIGHTS RESERVED.
on STN DUPLICATE 37
TIEN Threonine diffusion and threonine transport in **Corynebacterium glutamicum** and their role in threonine production

L5 ANSWER 78 OF 112 PASCAL COPYRIGHT 2004 INIST-CNRS. ALL RIGHTS RESERVED.
on STN DUPLICATE 38
TIEN Metabolic design in amino acid producing bacterium
Corynebacterium glutamicum

L5 ANSWER 79 OF 112 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS
RESERVED. on STN
TI Molecular aspects of lysine, threonine, and isoleucine biosynthesis in
Corynebacterium glutamicum.

L5 ANSWER 80 OF 112 USPATFULL on STN
TI 2-oxy-4H-3,1-benzoxazin-4-ones and pharmaceutical use

L5 ANSWER 81 OF 112 USPATFULL on STN
TI Fermentative production of L-histidine

L5 ANSWER 82 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Deciphering the biology of **Mycobacterium tuberculosis**
from the complete genome sequence
TITLE (TI): Re-annotation of the genome sequence of **Mycobacterium tuberculosis** H37Rv
TITLE (TI): Direct Submission

L5 ANSWER 83 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): The complete **Corynebacterium glutamicum** ATCC
13032 genome sequence and its impact on the
production of L-aspartate-derived amino acids
and vitamins
TITLE (TI): Direct Submission

L5 ANSWER 84 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Deciphering the biology of **Mycobacterium tuberculosis**
from the complete genome sequence
TITLE (TI): Re-annotation of the genome sequence of **Mycobacterium tuberculosis** H37Rv
TITLE (TI): Direct Submission

L5 ANSWER 85 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Deciphering the biology of **Mycobacterium tuberculosis**
from the complete genome sequence
TITLE (TI): Re-annotation of the genome sequence of **Mycobacterium tuberculosis** H37Rv
TITLE (TI): Direct Submission

L5 ANSWER 86 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): The complete genome sequence and analysis of
Corynebacterium diphtheriae NCTC13129
TITLE (TI): Direct Submission

L5 ANSWER 87 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): The complete genome sequence and analysis of

TITLE (TI): *Corynebacterium diphtheriae* NCTC13129
Direct Submission

L5 ANSWER 88 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Comparative analysis of the genome sequences of *Bordetella pertussis*, *Bordetella parapertussis* and *Bordetella bronchiseptica*
TITLE (TI): Direct Submission

L5 ANSWER 89 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Comparative analysis of the genome sequences of *Bordetella pertussis*, *Bordetella parapertussis* and *Bordetella bronchiseptica*
TITLE (TI): Direct Submission

L5 ANSWER 90 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): The complete genome sequence of *Mycobacterium bovis*
TITLE (TI): Direct Submission

L5 ANSWER 91 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): The complete genome sequence of *Mycobacterium bovis*
TITLE (TI): Direct Submission

L5 ANSWER 92 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): The complete genome sequence of *Mycobacterium bovis*
TITLE (TI): Direct Submission

L5 ANSWER 93 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): The complete genome sequence of *Mycobacterium bovis*
TITLE (TI): Direct Submission

L5 ANSWER 94 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Sequencing and analysis of the genome of the Whipple's disease bacterium *Tropheryma whipplei*
TITLE (TI): Direct Submission

L5 ANSWER 95 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2)
TITLE (TI): Direct Submission

L5 ANSWER 96 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2)
TITLE (TI): Direct Submission

L5 ANSWER 97 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2)
TITLE (TI): Direct Submission

L5 ANSWER 98 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2)
TITLE (TI): Direct Submission

L5 ANSWER 99 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Complete genome sequence of the model actinomycete *Streptomyces coelicolor* A3(2)

TITLE (TI): Direct Submission

L5 ANSWER 100 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Nucleotide sequences coding for the **thrE** gene and process for the enzymatic production of L-threonine using **coryneform** bacteria

L5 ANSWER 101 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Nucleotide sequences coding for the **thrE** gene and process for the enzymatic production of L-threonine using **coryneform** bacteria

L5 ANSWER 102 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Novel nucleotide sequence encoding **thrE** and process for the enzymatic production of L-threonine with the use of **coryneform**

L5 ANSWER 103 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Novel nucleotide sequence encoding **thrE** and process for the enzymatic production of L-threonine with the use of **coryneform**

L5 ANSWER 104 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Complete genomic sequence of **Corynebacterium glutamicum** ATCC 13032

TITLE (TI): Direct Submission

L5 ANSWER 105 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Complete genomic sequence of **Corynebacterium glutamicum** ATCC 13032

TITLE (TI): Direct Submission

L5 ANSWER 106 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Complete genomic sequence of **Corynebacterium glutamicum** ATCC 13032

TITLE (TI): Direct Submission

L5 ANSWER 107 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Identification of **glyA** (Encoding Serine Hydroxymethyltransferase) and Its Use Together with the Exporter **ThrE** To Increase L-Threonine Accumulation by **Corynebacterium glutamicum**

TITLE (TI): Direct Submission

L5 ANSWER 108 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): Genome sequence of **Yersinia pestis**, the causative agent of plague

TITLE (TI): Direct Submission

L5 ANSWER 109 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): L-threonine export: use of peptides to identify a new translocator from **Corynebacterium glutamicum**

TITLE (TI): Direct Submission

L5 ANSWER 110 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): The genome sequence of the thermoacidophilic scavenger **Thermoplasma acidophilum**

TITLE (TI): Direct Submission

L5 ANSWER 111 OF 112 GENBANK.RTM. COPYRIGHT 2004 on STN

TITLE (TI): The genome sequence of the food-borne pathogen
Campylobacter jejuni reveals hypervariable sequences
TITLE (TI): Direct Submission

L5 ANSWER 112 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN
TI Simultaneous microbiological prodn of L-thre.

=> s 13 and coryn? and thre
L6 84 L3 AND CORYN? AND THRE

=> d ibib abs 15 1-5, 10, 15-18, 20, 45, 64 65 66 69-70, 74-75, 77, 79

L5 ANSWER 1 OF 112 USPATFULL on STN DUPLICATE 1
ACCESSION NUMBER: 2003:159401 USPATFULL
TITLE: Process for the fermentative preparation of L-amino
acids with amplification of the tkt gene
INVENTOR(S): Burke, Kevin, Newcastle, IRELAND
Duncan, L. K., Bushy Park, IRELAND
Duncian, Rita, Galway, IRELAND LR
McCormack, Ashling, Athlone, IRELAND
Stapleton, Cliona, Roscrea, IRELAND
Mockel, Bettina, Bielefeld, GERMANY, FEDERAL REPUBLIC
OF
Thierbach, Georg, Bielefeld, GERMANY, FEDERAL REPUBLIC
OF

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2003109014	A1	20030612
APPLICATION INFO.:	US 2002-143856	A1	20020514 (10)
RELATED APPLN. INFO.:	Continuation-in-part of Ser. No. US 2001-986649, filed on 9 Nov 2001, ABANDONED Continuation-in-part of Ser. No. US 2000-528196, filed on 17 Mar 2000, ABANDONED		

DOCUMENT TYPE: Utility
FILE SEGMENT: APPLICATION
LEGAL REPRESENTATIVE: PILLSBURY WINTHROP, LLP, P.O. BOX 10500, MCLEAN, VA,
22102
NUMBER OF CLAIMS: 7
EXEMPLARY CLAIM: 1
NUMBER OF DRAWINGS: 3 Drawing Page(s)
LINE COUNT: 1271
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
AB The invention relates to a process for the preparation of L-amino acids
by the fermentation of **coryneform** bacteria that over-express a
gene encoding transketolase.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 2 OF 112 USPATFULL on STN DUPLICATE 2
ACCESSION NUMBER: 2003:71517 USPATFULL
TITLE: Nucleotide sequences coding for the **thrE** gene
and process for the enzymatic production of
L-threonine using **coryneform** bacteria
INVENTOR(S): Ziegler, Petra, Aachen, GERMANY, FEDERAL REPUBLIC OF
Eggeling, Lothar, Julich, GERMANY, FEDERAL REPUBLIC OF
Sahm, Hermann, Julich, GERMANY, FEDERAL REPUBLIC OF
Thierbach, Georg, Bielefeld, GERMANY, FEDERAL REPUBLIC
OF
PATENT ASSIGNEE(S): Degusa Huls Aktiengesellschaft (non-U.S. corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2003049802	A1	20030313
APPLICATION INFO.:	US 2001-951535	A1	20010914 (9)
RELATED APPLN. INFO.:	Division of Ser. No. US 1999-431099, filed on 1 Nov 1999, PENDING		

	NUMBER	DATE

PRIORITY INFORMATION: DE 1999-19941478 19990901
DOCUMENT TYPE: Utility
FILE SEGMENT: APPLICATION
LEGAL REPRESENTATIVE: Pillsbury Winthrop LLP, Intellectual Property Group,
1600 Tysons Boulevard, McLean, VA, 22102
NUMBER OF CLAIMS: 15
EXEMPLARY CLAIM: 1
NUMBER OF DRAWINGS: 2 Drawing Page(s)
LINE COUNT: 1103

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention relates to preferably recombinant DNA derived from *Corynebacterium* and replicable in *coryneform* microorganisms, which contains at least one nucleotide sequence that codes for the *thrE* gene, and a process for the production of L-threonine, which is characterised in that the following steps are carried out:

- a) Fermentation of microorganisms in which at least the *thrE* gene is amplified (overexpressed), optionally in combination with further genes,
- b) Enrichment of the L-threonine in the medium or in the cells of the microorganisms, and
- c) Isolation of the L-threonine.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 3 OF 112 USPATFULL on STN
ACCESSION NUMBER: 2003:312284 USPATFULL
TITLE: *Coryneform* bacteria which produce chemical compounds I
INVENTOR(S): Brigitte, Bathe, Salzkotten, GERMANY, FEDERAL REPUBLIC OF
Caroline, Kreutzer, Melle, GERMANY, FEDERAL REPUBLIC OF
Bettina, Mockel, Dusseldorf, GERMANY, FEDERAL REPUBLIC OF
Georg, Thierbach, Bielefeld, GERMANY, FEDERAL REPUBLIC OF
PATENT ASSIGNEE(S): Degussa AG (non-U.S. corporation)

NUMBER	KIND	DATE
US 2003219881	A1	20031127
US 2003-358405	A1	20030205 (10)
Continuation-in-part of Ser. No. WO 2002-EP8464, filed on 30 Jul 2002, UNKNOWN		

NUMBER	DATE
US 2001-309878P	20010806 (60)

PRIORITY INFORMATION: US 2001-309878P 20010806 (60)
DOCUMENT TYPE: Utility
FILE SEGMENT: APPLICATION
LEGAL REPRESENTATIVE: PILLSBURY WINTHROP, LLP, P.O. BOX 10500, MCLEAN, VA,
22102
NUMBER OF CLAIMS: 48
EXEMPLARY CLAIM: 1
NUMBER OF DRAWINGS: 7 Drawing Page(s)
LINE COUNT: 4364

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention relates to *coryneform* bacteria which have, in addition to at least one copy, present at the natural site (locus), of an open reading frame (ORF), gene or allele which codes for the synthesis of a protein or an RNA, in each case a second, optionally third or fourth copy of this open reading frame (ORF), gene or allele at in each case a second, optionally third or fourth site in a form integrated into the chromosome and processes for the preparation of chemical compounds by fermentation of these bacteria.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 4 OF 112 USPATFULL on STN
 ACCESSION NUMBER: 2003:282702 USPATFULL
 TITLE: Process for the preparation of L-amino acids with
 amplification of the zwf gene
 INVENTOR(S): Burke, Kevin, Galway, IRELAND
 Sahm, Hermann, Jülich, GERMANY, FEDERAL REPUBLIC OF
 Eggeling, Lothar, Jülich, GERMANY, FEDERAL REPUBLIC OF
 Moritz, Bernd, Niederziger, GERMANY, FEDERAL REPUBLIC OF
 Dunican, L. K., Galway, IRELAND
 McCormack, Ashling, Westmeath, IRELAND
 Stapelton, Cliona, Roscrea, IRELAND
 Mockel, Bettina, Bielefeld, GERMANY, FEDERAL REPUBLIC
 OF
 Thierbach, Georg, Bielefeld, GERMANY, FEDERAL REPUBLIC
 OF
 Dunican, Rita, Galway, IRELAND LR

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2003199045	A1	20031023
APPLICATION INFO.:	US 2002-91342	A1	20020306 (10)
RELATED APPLN. INFO.:	Continuation-in-part of Ser. No. US 2000-531269, filed on 20 Mar 2000, ABANDONED		
DOCUMENT TYPE:	Utility		
FILE SEGMENT:	APPLICATION		
LEGAL REPRESENTATIVE:	Michael A. Sanzo, Fitch, Even, Tabin & Flannery, Suite 401L, 1801 K Street, N.W., Washington, DC, 20006-1201		
NUMBER OF CLAIMS:	16		
EXEMPLARY CLAIM:	1		
NUMBER OF DRAWINGS:	5 Drawing Page(s)		
LINE COUNT:	1910		
CAS INDEXING IS AVAILABLE FOR THIS PATENT.			
AB	The invention relates to a process for the preparation of L-amino acids. The process involves fermenting an L-amino acid producing coryneform bacteria in a culture medium, concentrating L-amino acid in the culture medium or in the cells of the bacteria, and isolating the L-amino acid produced. The bacteria has an amplified gene encoding the Zwischenferment protein.		

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 5 OF 112 USPATFULL on STN
 ACCESSION NUMBER: 2003:251125 USPATFULL
 TITLE: Process for the preparation of L-amino acids with
 amplification of the zwf gene
 INVENTOR(S): Hans, Stephen, Osnabrück, GERMANY, FEDERAL REPUBLIC OF
 Bathe, Brigitte, Salzkotten, GERMANY, FEDERAL REPUBLIC
 OF
 Reth, Alexander, Bielefeld, GERMANY, FEDERAL REPUBLIC
 OF
 Thierbach, Georg, Bielefeld, GERMANY, FEDERAL REPUBLIC
 OF
 Kreutzer, Caroline, Melle, GERMANY, FEDERAL REPUBLIC OF
 Mockel, Bettina, Düsseldorf, GERMANY, FEDERAL REPUBLIC
 OF

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2003175911	A1	20030918
APPLICATION INFO.:	US 2003-336049	A1	20030103 (10)
RELATED APPLN. INFO.:	Continuation-in-part of Ser. No. US 2002-91342, filed on 6 Mar 2002, PENDING Continuation-in-part of Ser. No. US 2000-531269, filed on 20 Mar 2000, ABANDONED		
DOCUMENT TYPE:	Utility		
FILE SEGMENT:	APPLICATION		
LEGAL REPRESENTATIVE:	Michael A. Sanzo, Fitch, Even, Tabin & Flannery, Suite 401L, 1801 K Street, N.W., Washington, DC, 20006-1201		
NUMBER OF CLAIMS:	57		
EXEMPLARY CLAIM:	1		
NUMBER OF DRAWINGS:	6 Drawing Page(s)		
LINE COUNT:	3651		

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention relates to a process for the preparation of L-amino acids by the fermentation of **coryneform** bacteria. The process involves: fermenting an L-amino acid-producing bacteria in which at least the zwf gene is amplified; concentrating the L-amino acid in the medium or in the cells of the bacteria; and isolating the L-amino acid produced.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 10 OF 112 USPATFULL on STN

ACCESSION NUMBER: 2003:71519 USPATFULL

TITLE: **Corynebacterium glutamicum** genes encoding metabolic pathway proteins

INVENTOR(S): Pompejus, Markus, Freinsheim, GERMANY, FEDERAL REPUBLIC OF
Kroger, Burkhard, Limburgerhof, GERMANY, FEDERAL REPUBLIC OF
Schroder, Hartwig, Nussloch, GERMANY, FEDERAL REPUBLIC OF
Zelder, Oskar, Speyer, GERMANY, FEDERAL REPUBLIC OF
Haberhauer, Gregor, Limburgerhof, GERMANY, FEDERAL REPUBLIC OF
Kim, Jun-Won, Seoul, KOREA, REPUBLIC OF
Lee, Heung-Shick, Seoul, KOREA, REPUBLIC OF
Hwang, Byung-Joon, Seoul, KOREA, REPUBLIC OF

NUMBER	KIND	DATE
--------	------	------

PATENT INFORMATION: US 2003049804 A1 20030313

APPLICATION INFO.: US 2000-746660 A1 20001222 (9)

RELATED APPLN. INFO.: Continuation-in-part of Ser. No. US 2000-606740, filed on 23 Jun 2000, PENDING Continuation-in-part of Ser. No. US 2000-603124, filed on 23 Jun 2000, PENDING

NUMBER	DATE
--------	------

PRIORITY INFORMATION: DE 1999-19931420 19990708
US 1999-141031P 19990625 (60)
US 1999-142101P 19990702 (60)
US 1999-148613P 19990812 (60)
US 2000-187970P 20000309 (60)

DOCUMENT TYPE: Utility

FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: LAHIVE & COCKFIELD, 28 STATE STREET, BOSTON, MA, 02109

NUMBER OF CLAIMS: 47

EXEMPLARY CLAIM: 1

LINE COUNT: 15004

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Isolated nucleic acid molecules, designated MP nucleic acid molecules, which encode novel MP proteins from **Corynebacterium glutamicum** are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing MP nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated MP proteins, mutated MP proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from C. glutamicum based on genetic engineering of MP genes in this organism.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 15 OF 112 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
DUPLICATE 3

ACCESSION NUMBER: 2003:528325 BIOSIS

DOCUMENT NUMBER: PREV200300532908

TITLE: New ubiquitous translocators: Amino acid export by **Corynebacterium glutamicum** and **Escherichia coli**.

AUTHOR(S): Eggeling, Lothar [Reprint Author]; Sahm, Hermann

CORPORATE SOURCE: Institut fuer Biotechnologie, Forschungszentrum Juelich
GmbH, 52425, Juelich, Germany
1.eggeling@fz-juelich.de

SOURCE: Archives of Microbiology, (September 2003) Vol. 180, No. 3,
pp. 155-160. print.
ISSN: 0302-8933 (ISSN print).
DOCUMENT TYPE: Article
LANGUAGE: English
ENTRY DATE: Entered STN: 12 Nov 2003
Last Updated on STN: 12 Nov 2003

AB Molecular access to amino acid **excretion** by **Corynebacterium glutamicum** and **Escherichia coli** led to the identification of structurally novel carriers and novel carrier functions. The exporters **LysE**, **RhtB**, **ThrE** and **BrnFE** each represent the prototype of new transporter families, which are in part distributed throughout all of the kingdoms of life. **LysE** of **C. glutamicum** catalyzes the export of basic amino acids. The expression of the carrier gene is regulated by the cell-internal concentration of basic amino acids. This serves, for example, to maintain homoeostasis if an excess of L-lysine or L-arginine inside the cell should arise during growth on complex media. **RhtB** is one of five paralogous systems in **E. coli**, of which at least two are relevant for L-threonine **production**. A third system is relevant for L-cysteine **production**. It is speculated that the physiological function of these paralogues is related to quorum sensing. **ThrE** of **C. glutamicum** exports L-threonine and L-serine. However, a **ThrE** domain with a putative hydrolytic function points to an as yet unknown role of this exporter. **BrnFE** in **C. glutamicum** is a two-component permease exporting branched-chained amino acids from the cell, and an orthologue in **B. subtilis** exports 4-azaleucine.

L5 ANSWER 16 OF 112 USPATFULL on STN DUPLICATE 4
ACCESSION NUMBER: 2002:301187 USPATFULL
TITLE: New nucleotide sequences coding for the **thrE** gene and process for the enzymatic **production** of L-threonine using **coryneform** bacteria
INVENTOR(S): Ziegler, Petra, Aachen, GERMANY, FEDERAL REPUBLIC OF
Eggeling, Lothar, Julich, GERMANY, FEDERAL REPUBLIC OF
Sahm, Hermann, Julich, GERMANY, FEDERAL REPUBLIC OF
Thierbach, Georg, Bielefeld, GERMANY, FEDERAL REPUBLIC OF
OF
PATENT ASSIGNEE(S): Degussa-Huls AG (non-U.S. corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2002168731	A1	20021114
APPLICATION INFO.:	US 2001-783388	A1	20010215 (9)
RELATED APPLN. INFO.:	Continuation-in-part of Ser. No. US 1999-431099, filed on 1 Nov 1999, PENDING		

	NUMBER	DATE
PRIORITY INFORMATION:	DE 1999-19941478	19990901
DOCUMENT TYPE:	Utility	
FILE SEGMENT:	APPLICATION	
LEGAL REPRESENTATIVE:	PILLSBURY WINTHROP LLP, 1600 TYSONS BOULEVARD, MCLEAN, VA, 22102	
NUMBER OF CLAIMS:	15	
EXEMPLARY CLAIM:	1	
NUMBER OF DRAWINGS:	4 Drawing Page(s)	
LINE COUNT:	1200	

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention relates to preferably recombinant DNA derived from **Corynebacterium** and replicable in **coryneform** microorganisms, which contains at least one nucleotide sequence that codes for the **thrE** gene, and a process for the **production** of L-threonine, which is characterised in that the following steps are carried out:

- a) Fermentation of microorganisms in which at least the **thrE** gene is amplified (overexpressed), optionally in combination with further genes,
- b) Enrichment of the L-threonine in the medium or in the cells of the microorganisms, and

c) Isolation of the L-threonine.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 17 OF 112 USPATFULL on STN DUPLICATE 5
ACCESSION NUMBER: 2002:280115 USPATFULL
TITLE: Process for the fermentative preparation of L-threonine
INVENTOR(S): Rieping, Mechthild, Bielefeld, GERMANY, FEDERAL
REPUBLIC OF
PATENT ASSIGNEE(S): DEGUSSA AG (non-U.S. corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2002155551	A1	20021024
APPLICATION INFO.:	US 2001-834721	A1	20010416 (9)

	NUMBER	DATE
PRIORITY INFORMATION:	DE 2000-10026494	20000527
	DE 2001-102823	20010123
	US 2000-229328P	20000901 (60)

DOCUMENT TYPE: Utility
FILE SEGMENT: APPLICATION
LEGAL REPRESENTATIVE: PILLSBURY WINTHROP LLP, 1600 TYSONS BOULEVARD, MCLEAN, VA, 22102
NUMBER OF CLAIMS: 18
EXEMPLARY CLAIM: 1
NUMBER OF DRAWINGS: 4 Drawing Page(s)
LINE COUNT: 1086

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Process for the fermentative preparation of L-threonine The invention provides a process for the fermentative preparation of L-threonine using Enterobacteriaceae which in particular already produce L-threonine and in which the nucleotide sequence(s) of coryneform bacteria which code(s) for the *thrE* gene are enhanced, in particular over-expressed.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 18 OF 112 USPATFULL on STN DUPLICATE 6
ACCESSION NUMBER: 2002:265905 USPATFULL
TITLE: Nucleotide sequences coding for the *thrE* gene and process for the enzymatic production of L-threonine using coryneform bacteria
INVENTOR(S): Ziegler, Petra, Aachen, GERMANY, FEDERAL REPUBLIC OF Eggeling, Lothar, Julich, GERMANY, FEDERAL REPUBLIC OF Sahm, Hermann, Julich, GERMANY, FEDERAL REPUBLIC OF Thierbach, Georg, Bielefeld, GERMANY, FEDERAL REPUBLIC OF
PATENT ASSIGNEE(S): Degusa Huls Aktiengesellschaft (non-U.S. corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2002146781	A1	20021010
APPLICATION INFO.:	US 2001-963521	A1	20010927 (9)
RELATED APPLN. INFO.:	Division of Ser. No. US 1999-431099, filed on 1 Nov 1999, PENDING		

	NUMBER	DATE
PRIORITY INFORMATION:	DE 1999-19941478	19990901
DOCUMENT TYPE:	Utility	
FILE SEGMENT:	APPLICATION	
LEGAL REPRESENTATIVE:	Intellectual Property Group, Pillsbury Winthrop LLP, 1600 Tysons Boulevard, McLean, VA, 22102	
NUMBER OF CLAIMS:	15	
EXEMPLARY CLAIM:	1	
NUMBER OF DRAWINGS:	2 Drawing Page(s)	
LINE COUNT:	1101	

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The invention relates to preferably recombinant DNA derived from *Corynebacterium* and replicable in *coryneform* microorganisms, which contains at least one nucleotide sequence that codes for the *thrE* gene, and a process for the production of L-threonine, which is characterised in that the following steps are carried out:

- a) Fermentation of microorganisms in which at least the *thrE* gene is amplified (overexpressed), optionally in combination with further genes,
- b) Enrichment of the L-threonine in the medium or in the cells of the microorganisms, and
- c) Isolation of the L-threonine.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 20 OF 112 USPATFULL on STN DUPLICATE 8
ACCESSION NUMBER: 2002:141116 USPATFULL
TITLE: Process for the fermentative preparation of L-amino acids using *coryneform* bacteria
INVENTOR(S): Ziegler, Petra, Aachen, GERMANY, FEDERAL REPUBLIC OF Eggeling, Lothar, Julich, GERMANY, FEDERAL REPUBLIC OF Sahm, Hermann, Julich, GERMANY, FEDERAL REPUBLIC OF Thierbach, Georg, Bielefeld, GERMANY, FEDERAL REPUBLIC OF Pfefferle, Walter, Halle, GERMANY, FEDERAL REPUBLIC OF

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2002072098	A1	20020613
	US 6596516	B2	20030722
APPLICATION INFO.:	US 2000-731826	A1	20001208 (9)

	NUMBER	DATE
PRIORITY INFORMATION:	DE 1999-19959329	19991209
DOCUMENT TYPE:	Utility	
FILE SEGMENT:	APPLICATION	
LEGAL REPRESENTATIVE:	Smith, Gambrell & Russell, LLP, Beveridge, DeGrandi, Weilacher & Young, Intellectual Property Group, 1850 M Street, N.W., Suite 800, Washington, DC, 20036	

NUMBER OF CLAIMS: 16
EXEMPLARY CLAIM: 1
NUMBER OF DRAWINGS: 1 Drawing Page(s)

LINE COUNT: 1021

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB A process for the preparation of L-amino acids, in which the following steps are carried out,

- a) fermenting the desired L-amino acid-producing bacteria in which at least the *glyA* gene is attenuated, in particular by removal of the natural promoter, and optionally
- b) concentrating the desired product in the medium or in the cells of the bacteria and
- c) isolating the L-amino acid,

and optionally bacteria in which further genes of the biosynthesis pathway of the desired L-amino acid are additionally amplified are employed, or bacteria in which the metabolic pathways which reduce the formation of the desired L-amino acid are at least partly eliminated are employed, and nucleotide sequences of the *lacI-tac-5'glyA* or *lacI-tac-glyA* unit.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

L5 ANSWER 45 OF 112 BIOTECHDS COPYRIGHT 2004 THOMSON DERWENT/ISI on STN
ACCESSION NUMBER: 2002-13374 BIOTECHDS

TITLE: New isolated deformylase polypeptide encoding polynucleotide from **coryneform** bacteria which when present in attenuated form in L-lysine producing bacteria, results in increased fermentative production of L-lysine;
recombinant enzyme gene, vector expression in host cell, fermentation for L-amino acid production

AUTHOR: FARWICK M; HUTHMACHER K; BREHME J; PFEFFERLE W

PATENT ASSIGNEE: DEGUSSA AG

PATENT INFO: WO 2002024922 28 Mar 2002

APPLICATION INFO: WO 2000-EP8602 19 Sep 2000

PRIORITY INFO: DE 2001-1013957 22 Mar 2001

DOCUMENT TYPE: Patent

LANGUAGE: English

OTHER SOURCE: WPI: 2002-394142 [42]

AN 2002-13374 BIOTECHDS

AB DERWENT ABSTRACT:

NOVELTY - An isolated **coryneform** bacteria polynucleotide (I) comprising a def gene polynucleotide which: (a) is 70% identical to polynucleotide coding for polypeptide (P) that has a fully defined deformylase (P) sequence of 193 amino acids (S2) as given in specification; and (b) codes for (P) which has an amino acid sequence that is 70% identical to (S2), where (P) preferably has activity of polypeptide deformylase, is new.

DETAILED DESCRIPTION - An isolated **coryneform** bacteria polynucleotide (I) comprising a nucleotide sequence coding for def gene which: (a) is 70% identical to polynucleotide coding for polypeptide which has a fully defined def polypeptide sequence of 193 amino acids (S2) as given in specification; (b) codes for polypeptide which comprises amino acid sequence that is 70% identical to (S2); (c) is complementary to (a) or (b), or comprises 15 contiguous nucleotides of (a), (b) or (c), where the encoded polypeptide preferably has the activity of polypeptide deformylase, is new. INDEPENDENT CLAIMS are also included for the following: (1) a vector pCR2.1defint (II), the restriction map of which is reproduced in the specification, and is deposited in the Escherichia coli strain Top10/pCR2.1defint under no. DSM 14146 at the Deutsche Sammlung fur Mikroorganismen und Zellenkulturen (German collection of microorganisms and cell cultures); (2) a **coryneform** bacterium which contains a vector which carries parts of (I), but at least 15 successive nucleotides of the polynucleotide; and (3) a **coryneform** bacterium (III) in which the def gene is attenuated, in particular eliminated.

WIDER DISCLOSURE - The following are disclosed: (1) polynucleotides which substantially comprise a polynucleotide sequence corresponding to a fully defined def polynucleotide sequence of 1040 nucleotides (S1) as given in specification; and (2) amino acid sequences that differ from (III) due to conservative amino acid substitutions.

BIOTECHNOLOGY - Preferred Polynucleotide: (I) is preferably a recombinant DNA which is capable of replication in **coryneform** bacteria. Optionally, (I) is a RNA. The recombinant DNA comprises: (1) a fully defined def polynucleotide sequence of 1040 nucleotides (S1) as given in specification; (2) at least one sequence which corresponds to sequence (S1) within the range of the degeneracy of genetic code; (3) at least one sequence which hybridizes with the sequences complementary to (S1) or its degenerate variant; or optionally (4) comprises sense mutations of neutral function in (S1). The recombinant DNA most preferably codes for a polypeptide comprising the sequence of (S2).

USE - (I) is useful as hybridization probes for discovering RNA, cDNA and DNA in order to isolate nucleic acids, polynucleotides or genes which code for deformylase or have a high similarity with the sequence of the def gene. (III) (preferably, *Corynebacterium glutamicum*) is useful for preparing L-amino acids in particular L-lysine by the following process which involves fermenting (III), concentrating L-amino acid in the medium or in the cells of the bacteria and isolating the L-amino acid, the biomass and/or constituents of the fermentation broth optionally remaining in their entire amount or in portions in the product obtained in this way. Preferably, bacteria in which: (a) further genes of the biosynthesis pathway of the desired L-amino acid are additionally enhanced; (b) the metabolic pathways that reduce the formation of desired L-amino acid are at least partially eliminated; (c) expression of polynucleotide(s) which code(s) for def gene is reduced in

particular eliminated; or (d) the catalytic properties of polypeptide (enzyme protein) encoded by def polynucleotide are produced, are used in the process. Under preferred conditions, for preparing L-amino acids, **coryneform** microorganisms in which at the same time one or more of the genes such as: (a) the dapA gene which codes for dihydrodipicolinate synthase; (b) the gap gene which codes for glyceraldehyde 3-phosphate dehydrogenase; (c) the zwf gene which codes for glucose 6-phosphate dehydrogenase; (d) the pyc gene which codes for pyruvate carboxylase; (e) the lysE gene which codes for lysine export; (f) the lysC gene which codes for a feed back resistant aspartate kinase; (g) the zwal gene which codes for the Zwal protein; (h) the tpi gene which codes for triose phosphate isomerase; (i) the pgk gene which codes for 3-phosphoglycerate kinase; (j) the mqo gene which codes for malate-quinone oxidoreductase; (k) the hom gene which codes for homoserine dehydrogenase; (l) the ilvA gene which codes for **threonine** dehydratase or the ilvA (Fbr) allele which codes for a feed back resistant **threonine** dehydratase; (m) the ilvBN gene which codes for acetohydroxyacid synthase; or (n) the ilvD gene which codes for dihydroxy-acid dehydratase is/are enhanced preferably, overexpressed are fermented. Additionally, bacteria in which at the same time one or more of the genes such as: (a) the pck gene which codes for phosphoenol pyruvate carboxykinase; (b) the pgi gene which codes for glucose 6-phosphate isomerase; (c) the poxB gene which codes for pyruvate oxidase; and (d) the zwa2 gene which codes for the zwa2 protein is/are attenuated, are employed for **producing** L-lysine (all claimed). (I) is also useful as polymerase chain reaction (PCR) primers.

ADVANTAGE - (I) provided in attenuated form allows improved fermentative preparation of L-lysine.

EXAMPLE - To isolate the deformylase (def) gene of **Corynebacterium glutamicum**, a gene library of this microorganism was first set up in *Escherichia coli*. Specifically a genomic cosmid gene library from *C. glutamicum* American Type Culture Collection (ATCC) 13032 was prepared. The cosmid DNA of an individual colony was isolated and partly cleaved with Sau3AI. The DNA fragments were dephosphorylated with shrimp alkaline phosphatase. After separation by gel electrophoresis, the cosmid fragments in the size range of 1500 to 2000 base pairs (bp) were isolated. The DNA of the sequencing vector pZero-1 was cleaved with BamHI and ligated with the cosmid fragments. This ligation mixture was then electroporated into the *E. coli* strain DH5alpahamcr. The plasmid preparation of the recombinant clones was carried out and sequencing was performed. The raw sequence data obtained were then processed using the Staden program package. The individual sequences of the pZero1 derivatives were assembled to a continuous contig. The computer-assisted coding region analyses were prepared with the XNIP program. The resulting nucleotide sequence had a fully defined sequence of 1040 nucleotides as given in specification. Analysis of the nucleotide sequence showed an open reading frame of 1582 bp, which was called the def gene. The def gene codes for a polypeptide of 193 amino acids. For preparing integration vector for integration mutagenesis of the def gene, chromosomal DNA was isolated from strain ATCC13032. On the basis of the sequence of the def gene known for *C. glutamicum* polymerase chain reaction primers were synthesized and amplification carried out. The primers allowed amplification of an internal fragment of the def gene 310 bp in size. The product amplified was tested electrophoretically. The amplified DNA fragment was ligated with the TOPO TA cloning kit in the vector pCR2.1-TOPO. The *E. coli* strain TOPO10 was then electroporated with the ligation batch. Selection of plasmid-carrying cells was carried out. Plasmid DNA was isolated from a transformant and checked by restriction with EcoRI and subsequent agarose gel electrophoresis. The plasmid was called pCR2.1defint which was electroporated in *C. glutamicum* DSM 5715 which is an AEC-resistant lysine producer. The vector pCR2.1defint cannot replicate independently in DSM5715 and is retained in the cell only if it has integrated into the chromosome of DSM 5715. Selection of clones with pCR2.1defint integrated into the chromosome was carried out. For detection of the integration, the defint fragment was labeled with the Dig hybridization kit. Chromosomal DNA of a potential integrant was isolated and in each case cleaved with EcoRI and PstI. The fragments formed were separated and hybridized at 68 degrees C with the Dig hybridization kit. The plasmid pCR2.1defint had been inserted into the chromosome of DSM 5715 within the chromosomal def gene.

The strain was called DSM5715::pCR2.1defint. The *C. glutamicum* strain DSM5715::pCR2.1defint was cultured in a nutrient medium suitable for the production of lysine and the lysine content in the culture supernatant was determined. Results showed that the strain DSM5715::pCR2.1defint produced 13.28 g/l of lysine HCl in comparison to strain DSM5715 which produced 12.64 g/l of lysine HCl. (41 pages)

L5 ANSWER 64 OF 112 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
DUPLICATE 29

ACCESSION NUMBER: 2002:416628 BIOSIS
DOCUMENT NUMBER: PREV200200416628
TITLE: Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter *ThrE* to increase L-threonine accumulation by *Corynebacterium glutamicum*.
AUTHOR(S): Simic, Petra; Willuhn, Juliane; Sahm, Hermann; Eggeling, Lothar [Reprint author]
CORPORATE SOURCE: Institut fuer Biotechnologie, Forschungszentrum Juelich GmbH, D-52425, Juelich, Germany
1.eggeling@fz-juelich.de
SOURCE: Applied and Environmental Microbiology, (July, 2002) Vol. 68, No. 7, pp. 3321-3327. print.
CODEN: AEMIDF. ISSN: 0099-2240.
DOCUMENT TYPE: Article
LANGUAGE: English
ENTRY DATE: Entered STN: 31 Jul 2002
Last Updated on STN: 23 Sep 2002

AB L-Threonine can be made by the amino acid-producing bacterium *Corynebacterium glutamicum*. However, in the course of this process, some of the L-threonine is degraded to glycine. We detected an aldole cleavage activity of L-threonine in crude extracts with an activity of 2.2 nmol min-1 (mg of protein)-1. In order to discover the molecular reason for this activity, we cloned glyA, encoding serine hydroxymethyltransferase (SHMT). By using affinity-tagged glyA, SHMT was isolated and its substrate specificity was determined. The aldole cleavage activity of purified SHMT with L-threonine as the substrate was 1.3 μmol min-1 (mg of protein)-1, which was 4% of that with L-serine as substrate. Reduction of SHMT activity in vivo was obtained by placing the essential glyA gene in the chromosome under the control of Ptac, making glyA expression isopropylthiogalactopyranoside dependent. In this way, the SHMT activity in an L-threonine producer was reduced to 8% of the initial activity, which led to a 41% reduction in glycine, while L-threonine was simultaneously increased by 49%. The intracellular availability of L-threonine to aldole cleavage was also reduced by overexpressing the L-threonine exporter *thrE*. In *C. glutamicum* DR-17, which overexpresses *thrE*, accumulation of 67 mM instead of 49 mM L-threonine was obtained. This shows that the potential for amino acid formation can be considerably improved by reducing its intracellular degradation and increasing its export.

L5 ANSWER 65 OF 112 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
DUPLICATE 30

ACCESSION NUMBER: 2002:462669 BIOSIS
DOCUMENT NUMBER: PREV200200462669
TITLE: Influence of threonine exporters on threonine production in *Escherichia coli*.
AUTHOR(S): Kruse, D.; Kraemer, R.; Eggeling, L.; Rieping, M.; Pfefferle, W.; Tchieu, J. H.; Chung, Y. J.; Saier, M. H., Jr.; Burkovski, A. [Reprint author]
CORPORATE SOURCE: Institut fuer Biochemie der Universitaet zu Koeln, Zuelpicherstrasse 47, 50674, Cologne, Germany
a.burkovski@uni-koeln.de
SOURCE: Applied Microbiology and Biotechnology, (July, 2002) Vol. 59, No. 2-3, pp. 205-210. print.
CODEN: AMBIDG. ISSN: 0175-7598.
DOCUMENT TYPE: Article
LANGUAGE: English
ENTRY DATE: Entered STN: 28 Aug 2002
Last Updated on STN: 28 Aug 2002
AB Threonine production in *Escherichia coli* threonine

producer strains is enhanced by overexpression of the *E. coli* *rhtB* and *rhtC* genes or by heterologous overexpression of the gene encoding the *Corynebacterium glutamicum* threonine **excretion carrier**, *thrE*. Both *E. coli* genes give rise to a threonine-resistant phenotype when overexpressed, and they decrease the accumulation of radioactive metabolites derived from (14C) L-threonine. The evidence presented supports the conclusion that both *RhtB* and *RhtC* catalyze efflux of L-threonine and other structurally related neutral amino acids, but that the specificities of these two carriers differ substantially.

L5 ANSWER 66 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE
31

ACCESSION NUMBER: 2001-602792 [68] WPIDS

CROSS REFERENCE: 2003-874649 [81]

DOC. NO. CPI: C2001-178618

TITLE: Preparing L-amino acids by fermenting **coryneform** bacteria transformed with the 6-phosphogluconate dehydrogenase gene is particularly useful to produce L-lysine and L-threonine.

DERWENT CLASS: B02 B05 D13 D16 E13 E16

INVENTOR(S): BURKE, K; DUNICAU, L K; MCCORMACK, A; MOECKEL, B; STAPELTON, C; DUNICAN, L K

PATENT ASSIGNEE(S): (DEGS) DEGUSSA AG; (UYNA-N) UNIV NAT IRELAND

COUNTRY COUNT: 33

PATENT INFORMATION:

PATENT NO	KIND	DATE	WEEK	LA	PG
WO 2001071012	A1	20010927	(200168)*	EN	30
RW: AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE					
W: AU BR CA CN HU ID JP KR MX PL RU SK UA ZA					
AU 2000064316	A	20011003	(200210)		
EP 1179076	A1	20020213	(200219)	EN	
R: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE					
BR 2000010817	A	20020305	(200225)		
KR 2001113832	A	20011228	(200240)		
SK 2001001654	A3	20020702	(200253)		
CN 1350586	A	20020522	(200258)		

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
WO 2001071012	A1	WO 2000-EP6299	20000705
AU 2000064316	A	AU 2000-64316	20000705
EP 1179076	A1	EP 2000-951336	20000705
		WO 2000-EP6299	20000705
BR 2000010817	A	BR 2000-10817	20000705
		WO 2000-EP6299	20000705
KR 2001113832	A	KR 2001-714821	20011120
SK 2001001654	A3	WO 2000-EP6299	20000705
		SK 2001-1654	20000705
CN 1350586	A	CN 2000-807548	20000705

FILING DETAILS:

PATENT NO	KIND	PATENT NO
AU 2000064316	A Based on	WO 2001071012
EP 1179076	A1 Based on	WO 2001071012
BR 2000010817	A Based on	WO 2001071012
SK 2001001654	A3 Based on	WO 2001071012

PRIORITY APPLN. INFO: US 2000-531265 20000320

AN 2001-602792 [68] WPIDS

CR 2003-874649 [81]

AB WO 2001071012 A UPAB: 20031216

NOVELTY - Preparing L-amino acids by fermenting **coryneform** bacteria, comprising fermenting the L-amino acid **producing** bacteria in which at least the 6-phosphogluconate dehydrogenase (gnd) gene is amplified, and concentrating and isolating the L-amino acid

produced, is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

(1) the plasmid vector pEC-T18mob2 deposited under accession number DSM 13244 in Escherichia coli K-12 DHS alpha ; and

(2) a **coryneform** microorganism, in particularly of the genus **Corynebacterium**, transformed with the vector of (1) which additionally contains the gnd gene.

USE - The L-amino acids **produced** are used in animal nutrition, human medicine and the pharmaceuticals industry.

Dwg.0/4

L5 ANSWER 69 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE
34

ACCESSION NUMBER: 2001-227606 [24] WPIDS

CROSS REFERENCE: 1998-089551 [09]; 1998-089552 [09]; 1998-089627 [09];
1998-089628 [09]; 1998-520868 [44]; 2001-203286 [51];
2001-203287 [51]; 2001-210815 [44]; 2001-210816 [44]

DOC. NO. CPI: C2001-068103

TITLE: New cloned **Corynebacterium glutamicum**
thrE gene useful for **producing**
thrE-overexpressing **coryneform** bacteria
for **production** of L-threonine.

DERWENT CLASS: B05 D16 E16

INVENTOR(S): EGGELING, L; SAHM, H; THIERBACH, G; ZIEGLER, P

PATENT ASSIGNEE(S): (DEGS) DEGUSSA-HUELS AG; (KERJ) FORSCHUNGSZENTRUM JUELICH
GMBH; (DEGS) DEGUSSA AG

COUNTRY COUNT: 35

PATENT INFORMATION:

PATENT NO	KIND	DATE	WEEK	LA	PG
DE 19941478	A1	20010308 (200124)*		21	
EP 1085091	A1	20010321 (200124)	GE		
		R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI			
CA 2315978	A1	20010301 (200125)	EN		
JP 2001095592	A	20010410 (200128)		23	
ZA 2000004560	A	20010531 (200134)		46	
CN 1291651	A	20010418 (200141)			
BR 2000003943	A	20011009 (200168)			
SK 2000001304	A3	20011106 (200176)			
KR 2001070044	A	20010725 (200206)			
AU 2000055024	A	20020103 (200209)			
US 6410705	B1	20020625 (200246)			
US 2002107378	A1	20020808 (200254)			
US 2002146781	A1	20021010 (200269)			
HU 2000003445	A1	20021028 (200277)			
US 2002168731	A1	20021114 (200277)			
US 2003049802	A1	20030313 (200321)			
EP 1085091	B1	20030723 (200356)	GE		
		R: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE			
DE 50002971	G	20030828 (200357)			

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
DE 19941478	A1	DE 1999-19941478	19990901
EP 1085091	A1	EP 2000-118053	20000823
CA 2315978	A1	CA 2000-2315978	20000828
JP 2001095592	A	JP 2000-263283	20000831
ZA 2000004560	A	ZA 2000-4560	20000831
CN 1291651	A	CN 2000-122891	20000831
BR 2000003943	A	BR 2000-3943	20000831
SK 2000001304	A3	SK 2000-1304	20000828
KR 2001070044	A	KR 2000-51207	20000831
AU 2000055024	A	AU 2000-55024	20000830
US 6410705	B1	US 1999-431099	19991101
US 2002107378	A1 Div ex	US 1999-431099	19991101
		US 2001-951536	20010914

US 2002146781 A1 Div ex	US 1999-431099	19991101
	US 2001-963521	20010927
HU 2000003445 A1	HU 2000-3445	20000831
US 2002168731 A1 CIP of	US 1999-431099	19991101
	US 2001-783388	20010215
US 2003049802 A1 Div ex	US 1999-431099	19991101
	US 2001-951535	20010914
EP 1085091 B1	EP 2000-118053	20000823
DE 50002971 G	DE 2000-502971	20000823
	EP 2000-118053	20000823

FILING DETAILS:

PATENT NO	KIND	PATENT NO
DE 50002971	G Based on	EP 1085091

PRIORITY APPLN. INFO: DE 1999-19941478 19990901

AN 2001-227606 [24] WPIDS
 CR 1998-089551 [09]; 1998-089552 [09]; 1998-089627 [09]; 1998-089628 [09];
 1998-520868 [44]; 2001-203286 [51]; 2001-203287 [51]; 2001-210815 [44];
 2001-210816 [44]

AB DE 19941478 A UPAB: 20020208

NOVELTY - Cloned *Corynebacterium glutamicum* *thrE* gene
 (I) is new

DETAILED DESCRIPTION - *Corynebacterium* DNA (I) that is
 replicable in *coryneform* microorganisms and comprises at least
 one nucleotide sequence that codes for the *thrE* gene (sic) is
 new.

INDEPENDENT CLAIMS are also included for the following:

(1) an amino acid sequence that is derived from the nucleic acid
 sequence of (I) and is selected from two sequences of 489 amino acids
 given in the specification;
 (2) *coryneform* microorganisms transformed with (I);
 (3) production of L-threonine by culturing
coryneform bacteria in which nucleotide sequences encoding the
thrE gene (sic) are overexpressed; and
 (4) a process for producing (I).

USE - *Coryneform* bacteria that overexpress (I) are useful
 for producing L-threonine, which is useful in animal nutrition,
 human medicine and the pharmaceutical industry.

Dwg.0/2

L5 ANSWER 70 OF 112 WPIDS COPYRIGHT 2004 THOMSON DERWENT on STN DUPLICATE
 35

ACCESSION NUMBER: 2002-115532 [16] WPIDS

DOC. NO. CPI: C2002-035623

TITLE: Fermentative production of L-threonine, useful
 in animal nutrition, comprises culturing *enterobacterium*
 with increased *thrE* gene activity.

DERWENT CLASS: B05 D16 E16

INVENTOR(S): RIEPING, M

PATENT ASSIGNEE(S): (DEGS) DEGUSSA AG

COUNTRY COUNT: 95

PATENT INFORMATION:

PATENT NO	KIND	DATE	WEEK	LA	PG
DE 10102823	A1	20011129 (200216)*			23
WO 2001092545	A1	20011206 (200216)		EN	
RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZW					
W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW					
AU 2001058316	A	20011211 (200225)			
US 2002155551	A1	20021024 (200273)			
EP 1285075	A1	20030226 (200319)		EN	
R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI TR					

KR 2003036199 A 20030509 (200358)
 CN 1430672 A 20030716 (200363)
 MX 2002008416 A1 20030101 (200373)

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
DE 10102823	A1	DE 2001-10102823	20010123
WO 2001092545	A1	WO 2001-EP3980	20010406
AU 2001058316	A	AU 2001-58316	20010406
US 2002155551	A1 Provisional	US 2000-229328P	20000901
		US 2001-834721	20010416
EP 1285075	A1	EP 2001-931575	20010406
		WO 2001-EP3980	20010406
KR 2003036199	A	KR 2002-716099	20021127
CN 1430672	A	CN 2001-810198	20010406
MX 2002008416	A1	WO 2001-EP3980	20010406
		MX 2002-8416	20020828

FILING DETAILS:

PATENT NO	KIND	PATENT NO
AU 2001058316	A Based on	WO 2001092545
EP 1285075	A1 Based on	WO 2001092545
MX 2002008416	A1 Based on	WO 2001092545

PRIORITY APPLN. INFO: DE 2000-10026494 20000527

AN 2002-115532 [16] WPIDS

AB DE 10102823 A UPAB: 20020308

NOVELTY - Fermentative production of L-threonine (I) using an *Enterobacterium*, especially one that already produces (I), in which activity of the *thrE* gene sequence (or sequences) is increased, particularly by overexpression, is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

(1) plasmid pZ1thrE containing the *thrE* gene of *Corynebacterium glutamicum* ATCC 13032; and

Brevibacterium flavum DM368-2 pZ1thrE, deposited as DSM 12840.

USE - (I) is useful in animal nutrition, human medicine and the pharmaceutical industry.

ADVANTAGE - Overexpression of *thrE* results in increased production of (I).

Dwg.0/4

LS ANSWER 74 OF 112 BIOSIS COPYRIGHT 2004 BIOLOGICAL ABSTRACTS INC. on STN
 DUPLICATE 36

ACCESSION NUMBER: 2001:557732 BIOSIS

DOCUMENT NUMBER: PREV200100557732

TITLE: The cell wall barrier of *Corynebacterium glutamicum* and amino acid efflux.

AUTHOR(S): Eggeling, Lothar [Reprint author]; Sahm, Hermann

CORPORATE SOURCE: Institut fuer Biotechnologie, Forschungszentrum Juelich GmbH, 52425, Juelich, Germany

l.eggeling@fz-juelich.de

SOURCE: Journal of Bioscience and Bioengineering, (2001) Vol. 92, No. 3, pp. 201-213. print.

ISSN: 1389-1723.

DOCUMENT TYPE: Article

LANGUAGE: English

ENTRY DATE: Entered STN: 5 Dec 2001

Last Updated on STN: 25 Feb 2002

AB *Corynebacterium glutamicum* is extremely well suited for the production of amino acids, and the way in which the biosynthesis pathways have to be engineered for this purpose is very well understood. However, the special significance of the cell envelope as a barrier for the production process is only just being recognized. In addition to the pathways it determines the cellular synthesis capacity. The cell wall of the *Corynebacteriaceae*, which also include *Mycobacterium tuberculosis*, has a complex structure and first detailed

findings on the structure and synthesis of their cell wall are available. In addition to the ubiquitous inner lipid bilayer, the cell envelope has an outer lipid layer which contains mycolic acids and is probably also organized as a bilayer. During export, the amino acid has to pass these different layers of the cell wall. Molecular investigations have now identified the L-lysine exporter LysE and the L-threonine exporter **ThrE** which are localized in the inner cytoplasmic bilayer. It was revealed that both carriers represent the prototype of previously unknown translocator families. This involves extended families whose members are present in bacteria and archeae. The L-lysine exporter also exports L-arginine. Its expression is regulated by an elevated concentration of the cell-internal amino acid, which may, for example, be the case in the presence of peptides. Export thus represents a new bacterial mechanism for regulating the cellular amino acid balance. The export of L-glutamic acid is still enigmatic, although the outer lipid layer seems to play a major role in the efflux of this amino acid. Very special and surprisingly different treatments, such as the addition of detergents, but also the addition of penicillin, are always required in order to obtain high efflux of L-glutamate. It is assumed that the ultimate target of these different additions is primarily the outer mycolic acid layer. The individual twenty amino acids might pass the various layers of the cell envelope in quite different ways. A major challenge for future work is to discover how this takes place in detail and to then apply these findings for a further strain improvement.

L5 ANSWER 75 OF 112 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 2001:213630 CAPLUS

DOCUMENT NUMBER: 135:1077

TITLE: Secretion and degradation of L-threonine in *Corynebacterium glutamicum*

AUTHOR(S): Ziegler, Petra

CORPORATE SOURCE: Germany

SOURCE: Berichte des Forschungszentrums Juelich (2000),
Juel-3816, i-xii, 1-130

CODEN: FJBEE5; ISSN: 0366-0885

DOCUMENT TYPE: Report

LANGUAGE: German

AB The aerobic, Gram-pos. soil bacterium *Corynebacterium glutamicum* is an effective producer of amino acids. It is able to excrete L-Thr which is economically important as an additive for animal feed. Recently, it was shown that an efficient prodn. of L-Thr with *C. glutamicum* is limited by its intracellular degrdn. and by the low capacity of an assumed L-Thr export carrier. The present work describes the investigation of L-Thr degrading enzymes in *C. glutamicum* as well as the identification and characterization of the L-Thr export carrier gene. Enzymic investigations revealed that L-Thr is converted to Gly and acetaldehyde. This aldol cleavage was shown to be catalyzed by Ser hydroxymethyltransferase (SHMT). The corresponding gene *glyA* was isolated and sequenced. However, since *glyA* was proved to be essential for *C. glutamicum* its inactivation was not possible. Therefore, a strain with a single chromosomal copy of *glyA* under control of the IPTG inducible tac-promoter was constructed. In this strain SHMT activity could be down-regulated by low IPTG concns. to 10% of the enzyme activity of the wild type. Previously, biochem. analyses have revealed that L-Thr efflux in *C. glutamicum* is carrier-mediated. To identify and clone the corresponding export carrier gene, an appropriate screening system for export deficient mutants was established. It was shown that the addn. of the tripeptide Thr-Thr-Thr to the medium led to retarded growth due to intracellular accumulation of L-Thr. Export deficient mutants should be unable to grow under these conditions due to extremely high intracellular amts. of L-Thr. A transposon mutant bank of *C. glutamicum* was constructed. Using the tripeptide screening system, 9 mutants were isolated that exhibited retarded growth in presence of Thr-Thr-Thr. Anal. of the insertion sites of the transposon showed that in 1 of these mutants the inactivated gene was the L-Thr export carrier gene **thrE**. This gene encodes a hydrophobic membrane protein which does not show homol. to any known transporter. It is 489 amino acids in size and is predicted to possess 9 putative transmembrane helices. It was proved that L-Thr export is correlated with **thrE** expression. Inactivation of **thrE** resulted in a reduced export rate for L-Thr of 1.0 nmol min⁻¹ mg⁻¹ dry wt., compared to 2.5 nmol min⁻¹ mg⁻¹ dry wt. for the wild

type, whereas with overexpressed *thrE* L-Thr was exported at a rate of 3.8 nmol min-1 mg-1 dry wt. Furthermore, the substrate specificity of the L-Thr export carrier was investigated. In addn. to L-Thr also L-Ser is transported by *ThrE*. Overexpression of *thrE* in combination with reduced L-Thr degrdn. led to an increase of extracellular accumulated L-Thr of about 50% in a L-Thr producing strain of *C. glutamicum*.

REFERENCE COUNT: 92 THERE ARE 92 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L5 ANSWER 77 OF 112 PASCAL COPYRIGHT 2004 INIST-CNRS. ALL RIGHTS RESERVED.
on STN DUPLICATE 37

ACCESSION NUMBER: 1996-0103519 PASCAL

COPYRIGHT NOTICE: Copyright .COPYRGT. 1996 INIST-CNRS. All rights reserved.

TITLE (IN ENGLISH): Threonine diffusion and threonine transport in *Corynebacterium glutamicum* and their role in threonine production

AUTHOR: PALMIERI L.; BERNS D.; KRAEMER R.; EIKMANNS M.

CORPORATE SOURCE: Forschungszent. Juelich, Inst. Biotechnologie, 52425 Juelich, Germany, Federal Republic of

SOURCE: Archives of microbiology, (1996), 165(1), 48-54, 26 refs.

ISSN: 0302-8933 CODEN: AMICCW

DOCUMENT TYPE: Journal

BIBLIOGRAPHIC LEVEL: Analytic

COUNTRY: Germany, Federal Republic of

LANGUAGE: English

AVAILABILITY: INIST-856, 354000052103240070

AN 1996-0103519 PASCAL

CP Copyright .COPYRGT. 1996 INIST-CNRS. All rights reserved.

AB Transmembrane threonine fluxes (i.e., uptake, diffusion, and carrier-mediated excretion) all contributing to threonine production by a recombinant strain of *Corynebacterium glutamicum*, were analyzed and quantitated. A threonine-uptake carrier that transports threonine in symport with sodium ions was identified. Under production conditions (i.e., when internal threonine is high), this uptake system catalyzed predominantly threonine/threonine exchange. Threonine export via the uptake system was excluded. Threonine efflux from the cells was shown to comprise both carrier-mediated excretion and passive diffusion. The latter process was analyzed after inhibition of all carrier-mediated fluxes. Threonine diffusion was found to proceed with a first-order rate constant of 0.003 min-1 or 0.004 .mu.1 min.sup.-.sup.1 (mg dry wt.).sup.-.sup.1, which corresponds to a permeability of 8 x 10.sup.-.sup.1.sup.0 cm s.sup.-.sup.1. According to this permeability, less than 10% of the efflux observed under optimal conditions takes place via diffusion, and more than 90% must result from the activity of the excretion carrier. In addition, the excretion carrier was identified by (1) inhibition of its activity by amino acid modifying reagents and (2) its dependence on metabolic energy in the form of the membrane potential. Activity of the excretion system depended on the membrane potential, but not on the presence of sodium ions. Threonine export in antiport against protons is proposed.

L5 ANSWER 79 OF 112 EMBASE COPYRIGHT 2004 ELSEVIER INC. ALL RIGHTS RESERVED. on STN

ACCESSION NUMBER: 94152608 EMBASE

DOCUMENT NUMBER: 1994152608

TITLE: Molecular aspects of lysine, threonine, and isoleucine biosynthesis in *Corynebacterium glutamicum*.

AUTHOR: Eikmanns B.J.; Eggeling L.; Sahm H.

CORPORATE SOURCE: Institut fur Biotechnologie, Forschungszentrum Juelich GmbH, D-52425 Juelich, Germany

SOURCE: Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, (1993) 64/2 (145-163).

ISSN: 0003-6072 CODEN: ALJMAO

COUNTRY: Netherlands

DOCUMENT TYPE: Journal; General Review

FILE SEGMENT: 004 Microbiology

LANGUAGE: English

SUMMARY LANGUAGE: English

AB The Gram-positive bacterium *Corynebacterium glutamicum* is used for the industrial production of amino acids, e.g. of L-glutamate and L-lysine. In the last ten years genetic engineering methods were developed for *C. glutamicum* and consequently, recombinant DNA technology was employed to study the biosynthetic pathways and to improve the amino acid productivity by manipulation of enzymatic, transport and regulatory functions of this bacterium. The present review summarizes the current knowledge on the synthesis and overproduction of the aspartate derived amino acids L-lysine, L-threonine and L-isoleucine in *C. glutamicum*. A special feature of *C. glutamicum* is its ability to convert the lysine intermediate piperideine-2,6-dicarboxylate to diaminopimelate by two different routes, i.e. by reactions involving succinylated intermediates or by the single reaction of diaminopimelate dehydrogenase. The flux distribution over the two pathways is regulated by the ammonium availability. The overall carbon flux from aspartate to lysine, however, is governed by feedback-control of the aspartate kinase and by the level of dihydrodipicolinate synthase. Consequently, expression of *lysC*(FBR) encoding a deregulated aspartate kinase and/or the overexpression of *dapA* encoding dihydrodipicolinate synthase led to overproduction of lysine. As a further specific feature *C. glutamicum* possesses a specific lysine export carrier which shows high activity in lysine overproducing mutants. Threonine biosynthesis is in addition to control by the aspartate kinase tightly regulated at the level of homoserine dehydrogenase which is subject to feedback-inhibition and to repression. *C. glutamicum* strains possessing a deregulated aspartate kinase and a deregulated homoserine dehydrogenase produce lysine and threonine. Amplification of deregulated homoserine dehydrogenase in such strains led to an almost complete redirection of the carbon flux to threonine. For a further flux from threonine to isoleucine the allosteric control of threonine dehydratase and of the acetohydroxy acid synthase are important. The expression of the genes encoding the latter enzyme is additionally regulated at the transcriptional level. By addition of 2-oxobutyrate as precursor and by bypassing the expression control of the acetohydroxy acid synthase genes high isoleucine overproduction can be obtained.

=> d kwic 15 77

L5 ANSWER 77 OF 112 PASCAL COPYRIGHT 2004 INIST-CNRS. ALL RIGHTS RESERVED.
on STN DUPLICATE 37

TIEN Threonine diffusion and threonine transport in *Corynebacterium glutamicum* and their role in threonine production

AB Transmembrane threonine fluxes (i.e., uptake, diffusion, and carrier-mediated excretion) all contributing to threonine production by a recombinant strain of *Corynebacterium glutamicum*, were analyzed and quantitated. A threonine-uptake carrier that transports threonine in symport with sodium ions was identified. Under production conditions (i.e., when internal threonine is high), this uptake system catalyzed predominantly threonine/threonine exchange. Threonine export via the uptake system was excluded. Threonine efflux from the cells was shown to comprise both carrier-mediated excretion and passive diffusion. The latter process was analyzed after inhibition of all carrier-mediated fluxes. Threonine diffusion was found to proceed with a first-order rate constant of 0.003 min⁻¹ or 0.004 .mu.1 min.sup.-.sup.1 (mg dry wt.).sup.-.sup.1, . . . efflux observed under optimal conditions takes place via diffusion, and more than 90% must result from the activity of the excretion carrier. In addition, the excretion carrier was identified by (1) inhibition of its activity by amino acid modifying reagents and (2) its dependence on metabolic energy in the form of the membrane potential. Activity of the excretion system depended on the membrane potential, but not on the presence of sodium ions. Threonine export in antiport against protons is proposed.

CT **Corynebacterium glutamicum; Threonine; Aminoacid; Membrane transport; Uptake; Secretion**
CTFR **Corynebacterium glutamicum; Threonine; Aminoacide; Transport membranaire; Captation; Secretion**
CTES **Corynebacterium glutamicum; Treonina; Aminoacido; Transporte membranal; Captacion; Secrecion**
BT **Corynebacteriaceae; Actinomycetes; Bacteria**
BTFR **Corynebacteriaceae; Actinomycetes; Bacterie**
BTES **Corynebacteriaceae; Actinomycetes; Bacteria**

=> d his

(FILE 'HOME' ENTERED AT 13:38:48 ON 11 FEB 2004)

INDEX 'ADISCTI, ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, AQUASCI, BIOBUSINESS, BIOCOMMERCE, BIOSIS, BIOTECHABS, BIOTECHDS, BIOTECHNO, CABA, CANCERLIT, CAPLUS, CEABA-VTB, CEN, CIN, CONFSCI, CROPB, CROPU, DISSABS, DDFB, DDFU, DGENE, DRUGB, DRUGMONOG2, ...' ENTERED AT 13:39:55 ON 11 FEB 2004

SEA (THREONI? (S) CARRIE? (S) EXPOR?) OR THRE

1 FILE ADISINSIGHT
15 FILE AGRICOLA
3 FILE ANABSTR
17 FILE AQUASCI
16 FILE BIOBUSINESS
254 FILE BIOSIS
69 FILE BIOTECHABS
69 FILE BIOTECHDS
27 FILE BIOTECHNO
19 FILE CABA
7 FILE CANCERLIT
148 FILE CAPLUS
10 FILE CEABA-VTB
15 FILE CIN
3 FILE CONFSCI
3 FILE CROPU
19 FILE DISSABS
7 FILE DDFU
37 FILE DGENE
28 FILE DRUGU
2 FILE IMSRESEARCH
1 FILE EMBAL
109 FILE EMBASE
23 FILE ESBIOBASE
64* FILE FEDRIP
1 FILE FOMAD
1 FILE FOREGE
3 FILE FROSTI
5 FILE FSTA
54 FILE GENBANK
2 FILE HEALSAFE
131 FILE IFIPAT
1 FILE IMSPRODUCT
93 FILE JICST-EPLUS
1 FILE KOSMET
29 FILE LIFESCI
52 FILE MEDLINE
2 FILE NIOSHTIC
17 FILE NTIS
3 FILE OCEAN
180 FILE PASCAL
3 FILE PHIN
198 FILE PROMT
2 FILE RDISCLOSURE
51 FILE SCISEARCH
96 FILE TOXCENTER
770 FILE USPATFULL
10 FILE USPAT2
3 FILE VETU

335 FILE WPIDS
335 FILE WPINDEX
2 FILE NAPRALERT
82 FILE NLDB
L1 QUE (THREONI? (S) CARRIE? (S) EXPOR?) OR THRE

FILE 'USPATFULL, WPIDS, BIOSIS, PROMT, PASCAL, CAPLUS, IFIPAT, EMBASE,
TOXCENTER, JICST-EPLUS, NLDB, BIOTECHDS, FEDRIP, GENBANK, MEDLINE'
ENTERED AT 13:42:40 ON 11 FEB 2004

L2 2635 S (THREONI? (S) CARRIE? (S) EXPOR?) OR THRE
L3 1317 S L2 AND (PRODUC? OR EXCRET?)
L4 170 S L3 AND CORYN?
L5 112 DUP REM L4 (58 DUPLICATES REMOVED)
L6 84 S L3 AND CORYN? AND THRE

=> log h

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	180.02	183.29
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	-0.69	-0.69

SESSION WILL BE HELD FOR 60 MINUTES
STN INTERNATIONAL SESSION SUSPENDED AT 14:16:47 ON 11 FEB 2004

110317

From: Steadman, David (AU1652)
Sent: Friday, December 12, 2003 7:56 AM
To: STIC-Biotech/ChemLib
Subject: 09/963,521 sequence search request

RECEIVED
DEC 12 2003
(STIC)

NAME: David Steadman
AU: 1652
Date: 12/12/03
Office: 10D-04
Mailbox: 10D-01

Please search the following sequences in commercial and pending databases:

- 1) Standard search of nucleotides 398-1864 of SEQ ID NO:1 against nucleic acid databases.
- 2) Standard search of SEQ ID NO:2 against nucleic acid databases.

Please align the following sequences:

- 3) SEQ ID NO:2 against SEQ ID NO:4

Please save results to diskette.

Thank you very much. Please contact me at the number listed below if the search request is unclear.

David J. Steadman
Patent Examiner
Art Unit 1652
Crystal Mall 1, Room 10D-04
(703) 308-3934

Searcher: _____
Phone: _____
Location: _____
Date Picked Up: _____
Date Completed: _____
Searcher Prep/Review: _____
Clerical: _____
Online time: _____

TYPE OF SEARCH:
NA Sequences: _____
AA Sequences: _____
Structures: _____
Bibliographic: _____
Litigation: _____
Full text: _____
Patent Family: _____
Other: _____

VENDOR/COST (where applic.)
STN: _____
DIALOG: _____
Questel/Orbit: _____
DRLink: _____
Lexis/Nexis: _____
Sequence Sys.: _____
WWW/Internet: _____
Other (specify): _____