Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

- Les questions peuvent présenter une ou plusieurs réponses valides.
- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
- En cas d'erreur, utilisez du « blanco ».
- Soyez très vigilant, avant de répondre à une question, de cocher la bonne ligne dans la grille.
- N'oubliez pas vos nom, prénom et login (p62xxx). Par exemple, p62375 s'encode ainsi :

BON COURAGE!

1. Parmi les croissances comparées suivantes, lesquelles sont vraies?

2. Parmi les limites suivantes lesquelles sont vraies?

$$\begin{array}{ll} (1)\square & \lim_{x\to 0^+} x^\alpha \ln x = 0 \text{ avec } \alpha > 0 \\ (2)\square & \lim_{x\to +\infty} \lim \frac{x^\alpha}{e^{\beta x}} = +\infty \text{ avec } \alpha, \beta > 0 \\ (3)\square & \lim_{x\to +\infty} \frac{(\ln x)^\alpha}{x^\beta} = 0 \text{ avec } \alpha, \beta > 0 \\ (4)\square & \lim_{x\to +\infty} \frac{x^m}{x^n} = 1 \text{ si } m > n \\ (5)\square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$$

3. Soit f une fonction telle que $\forall \varepsilon > 0 \ \exists A \in \mathbb{R} \ \forall x \in I \ x \geqslant A \Rightarrow |f(x) - l| \leqslant \varepsilon$. Alors on a :

$$\lim_{x\to A} f(x) = l \qquad \text{(2)} \qquad \lim_{x\to l} f(x) = +\infty \qquad \text{(3)} \qquad \lim_{x\to +\infty} f(x) = l$$

$$\lim_{x\to +\infty} f(x) = +\infty \qquad \text{(5)} \qquad \text{aucune des réponses précédentes n'est correcte.}$$

- 4. Parmi les équivalentes suivantes, lesquelles sont vraies?

 - Si $f \sim g$ et $h \sim g'$, alors $f + h \sim g + g'$ Si $f \sim g$, alors f = O(g) et g = O(x)
 - f est dominée par g au voisinage de a si f/g est borné au voisinage de a. \square (3)
 - (4)Si deux fonctions ont la même limite en a, elles sont équivalentes au voisinage de a.
 - (5)aucune des réponses précédentes n'est correcte.

5. Au voisinage de 0 :
$$(1) \Box \qquad \frac{1}{1-x} = 1 + \frac{1}{x} + \frac{1}{x^2} + o\left(\frac{1}{x^2}\right)$$

$$(2) \Box \qquad \frac{1}{1-x} = \frac{1}{x} - \frac{1}{x^2} + o(x^2)$$

$$(3) \Box \qquad \frac{1}{1-x} = 1 + x + x^2 + o(x^2)$$

$$(4) \Box \qquad \frac{1}{1-x} = 1 - x + x^2 + o(x)$$

$$(5) \Box \qquad \text{aucune des réponses précédes}$$

$$\frac{1}{(2)}$$
 $\frac{1}{1-x} = \frac{1}{x} - \frac{1}{x^2} + o(x^2)$

$$_{(3)}\Box$$
 $\frac{1}{1-x} = 1 + x + x^2 + o(x^2)$

$$\frac{1}{1-x} = 1-x+x^2+o(x)$$

- ducune des réponses précédentes n'est correcte.
- 6. Le développement limité de $f(x) = \cos(x) \cdot \sin(x)$ à l'ordre 3 au voisinage de 0 est ...

$${}_{(1)}\Box \quad 1+x-\tfrac{2}{3}x^3+o(x) \qquad {}_{(2)}\Box \quad x+\tfrac{2}{3}x^3+o(x^2) \qquad {}_{(3)}\Box \quad x-\tfrac{2}{3}x^3+o(x^3)$$

 $(4)\square$ $x + o(x^3)$ aucune des réponses précédentes n'est correcte.

- 7. Soit f une fonction définie sur un intervalle ouvert contenant 0, telle que $f(x) = 1 + x + o(x^2)$.
 - $f(2x) = 1 + 2x + o(x^2)$

 - $\begin{array}{ll} (1)\square & f(2x) = 1 + 2x + o(x) \\ (2)\square & 2f(x) = 1 + 2x + o(x) \\ (3)\square & f^2(x) = 1 + x^2 + o(x^2) \\ (4)\square & f(x) x = o(x^2) \\ (5)\square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$
- 8. Soit $f(x) = x^2 \left(\frac{1}{x} \frac{1}{x+1}\right)$. Cocher la(les) limite(s) correcte(s)

$$\lim_{x \to 0^+} f(x) = 0$$
 $\lim_{x \to 0^+} f(x) = +\infty$ $\lim_{x \to +\infty} f(x) = +\infty$

 $\lim_{x\to 0^+} f(x) = 0 \qquad \text{(2)} \quad \lim_{x\to 0^+} f(x) = +\infty \qquad \text{(3)} \quad \lim_{x\to +\infty} f(x) = 1$ $\lim_{x\to +\infty} f(x) = -\infty \qquad \text{(5)} \quad \text{aucune des réponses précédentes n'est correcte.}$

- 9. Un polynôme est équivalent à
 - \Box (1) son terme de plus bas degré au voisinage de $\pm \infty$.
 - (2)son terme de plus haut degré au voisinage de $\pm \infty$.
 - \square (3) son terme de plus bas degré au voisinage de 0.
 - son terme de plus haut degré au voisinage de 0. (4)
 - $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 10. Soit $f(x) = x^{-1/3} \ln^3(x)$. On peut écrire que ...

$$\lim_{x \to 0^+} f(x) = -\infty \qquad \text{(2)} \square \quad \lim_{x \to 0^+} f(x) = 0 \qquad \text{(3)} \square \quad \ln^3(x) = o(x^{1/3}) \qquad \text{(4)} \square \quad x^{1/3} = o(\ln^3(x))$$

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

11. Soit f une fonction continue sur \mathbb{R} telle que $f(0) = 1$, $f(1) = 1$, $f(2) = -1$. Quelle(s) affirmation(s) est(sont) correcte(s)?	
(1)	f est constante $\sup[0,1]$ f s'annule $\sup[1,2]$
(2) \square (3) \square	f is a finite $\sup[1,2]$ f est décroissante $\sup[1,2]$
(4)	On ne peut rien affirmer sur le(s) sens de variation de f sur $[0,2]$
(5)□	aucune des réponses précédentes n'est correcte.

12. Soit P un polynôme de degré 3 et Q un polynôme de degré 2. On suppose que $\lim_{x\to +\infty} P(x) = +\infty$ et $\lim_{x\to +\infty} Q(x) = +\infty$. Alors

 $\lim_{x\to +\infty}\frac{P(x)}{Q(x)}=+\infty. \qquad \text{(2)} \square \quad \lim_{x\to +\infty}\frac{P(x)}{Q(x)}=0. \qquad \text{(3)} \square \quad \lim_{x\to -\infty}\frac{P(x)}{Q(x)}=-\infty. \qquad \text{(4)} \square \quad \lim_{x\to 0}\frac{P(x)}{Q(x)}=+\infty.$

13. Au voisinage de 0 :

$$(1)\square \qquad \cos(x) = 1 - x + x^2 - \frac{x^3}{3} + o(x^3)$$

$$(2)\square \qquad e^{1+x} = e(1 + x + x^2 + o(x^2))$$

$$(3)\square \qquad \frac{1}{1-2x} = 1 + 2x + 4x^2 + 8x^3 + o(x^3)$$

$$(4)\square \qquad \frac{1}{1-x} = 1 - x + x^2 - x^3 + o(x^3)$$

$$(5)\square \qquad \ln(1+2x) = 2x - 2x^2 + o(x^2)$$

14. Soit $f(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$ et \tilde{f} son prolongement s'il existe. Parmi les affirmations suivantes lesquelles sont vraies?

- $\begin{array}{ll} f(x) \text{ est prolongeable par continuit\'e en } x=1 \text{ et } \tilde{f}(1)=-\frac{1}{2} \\ (2)\square & f(x) \text{ n'est pas prolongeable par continuit\'e en } x=1 \\ (3)\square & f(x) \text{ est prolongeable par continuit\'e en } x=-1 \text{ et } \tilde{f}(1)=0 \\ (4)\square & f(x) \text{ n'est pas prolongeable par continuit\'e en } x=-1 \\ (5)\square & \text{aucune des r\'eponses pr\'ec\'edentes n'est correcte.} \end{array}$
- 15. La valeur de la limite $\lim_{x\to -\infty} \frac{1}{\sqrt{x^2+x}-\sqrt{x^2-x}}$ est ... ${}_{(1)}\square \quad 0 \quad {}_{(2)}\square \quad 1 \quad {}_{(3)}\square \quad -1 \quad {}_{(4)}\square \quad +\infty$ ${}_{(5)}\square \quad \text{aucune des réponses précédentes n'est correcte.}$

16. La valeur de la limite $\lim_{x\to 0} \frac{\sin(2x)}{\sqrt{1+x}-1}$ est ... $(1)^{\square} \quad 0 \quad (2)^{\square} \quad 1 \quad (3)^{\square} \quad 4 \quad (4)^{\square} \quad +\infty$ (5) \square aucune des réponses précédentes n'est correcte.

- 17. Parmi les affirmations suivantes, lesquelles sont vraies?
 - Au voisinage de $\pm \infty$, un polynôme est équivalent à son terme de plus bas degré. (1)
 - Au voisinage de 0, un polynôme est équivalent à son terme de plus haut degré.
 - \square (3) Si f(x) = o(g(x)) alors $f(x) + g(x) \sim g(x)$
 - $f(x) \sim g(x) \Leftrightarrow f(x) g(x) = o(g(x))$ (4)
 - aucune des réponses précédentes n'est correcte. (5)
- 18. Soit $f(x) = \frac{\cos(x) 1}{\sin^2(x)}$. On peut déduire que ...

$$\lim_{x\to 0} f(x) = -\infty \qquad \text{(2)} \square \quad \lim_{x\to 0} f(x) = 0 \qquad \text{(3)} \square \quad \lim_{x\to 0} f(x) = 1 \qquad \text{(4)} \square \quad \lim_{x\to 0} f(x) = -\frac{1}{2}$$

19. Le développement limité de $f(x) = \arcsin(x)$ à l'ordre 3 au voisinage de 0 est ...

$$_{(1)}\Box$$
 $\frac{\pi}{2} + x + \frac{1}{6}x^3 + o(x^3)$ $_{(2)}\Box$ $x + \frac{1}{6}x^3 + o(x^3)$ $_{(3)}\Box$ $x - \frac{1}{6}x^3 + \frac{3}{40}x^5 + o(x^3)$

$$_{(4)}\square$$
 $\frac{\pi}{2}+x-\frac{1}{6}x^3+\frac{7}{9}x^5+o(x)$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

20. La formule de Taylor-Young à l'ordre n d'une fonction $f \in \mathcal{C}^n$ au voisinage de a avec $\lim_{x \to a} \varepsilon(x) = 0$ est ...

$$\begin{array}{ll} f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + (x-a)^{n} \varepsilon(x) \\ (2) \Box & f(x) = \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + (x-a)^{n+1} \varepsilon(x) \end{array}$$

$$f(x) = \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} (x-a)^k + (x-a)^{n+1} \varepsilon(x)^{n+1} = 0$$

$$\begin{array}{ll} (3) \square & f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^{n+1}\varepsilon(x) \\ (4) \square & f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n\varepsilon(x) \\ (5) \square & \text{aucune des réponses précédentes n'est correcte.} \end{array}$$

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x)$$