This talk is about sequential decision making

Reinforcement learning:First learn the optimal policy; then apply it

Monte-Carlo Tree Search: Any-time algorithm: learn the next move; play it; iterate.

MCTS: computer-Go as explanatory example

Not just a game: same approaches apply to optimal energy policy

MCTS for computer-Go and MineSweeper

Go: deterministic transitions

MineSweeper: probabilistic transitions

							1	•
		1	1	2	1	1	1	1
		2	-	3	<u>_</u>	3	2	1
		2	-	3	2	-	-	2
		1	1	2	2	3	3	•
				1	-	1	1	1
				1	1	1		
1	1	1				1	1	1
1	-	1				1	-	1

The game of Go in one slide

Rules

- Each player puts a stone on the goban, black first
- ► Each stone remains on the goban, except:

group w/o degree freedom is killed

a group with two eyes can't be killed

▶ The goal is to control the max. territory

Go as a sequential decision problem

Features

- ► Size of the state space 2.10¹⁷⁰
- ► Size of the action space 200
- No good evaluation function
- ► Local and global features (symmetries, freedom, ...)
- A move might make a difference some dozen plies later

Setting

- ightharpoonup State space ${\cal S}$
- Action space A
- Known transition model: p(s, a, s')
- Reward on final states: win or lose

Baseline strategies do not apply:

- Cannot grow the full tree
- Cannot safely cut branches
- Cannot be greedy

Monte-Carlo Tree Search

- An any-time algorithm
- Iteratively and asymmetrically growing a search tree most promising subtrees are more explored and developed

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

Update information in visited nodes
 Propagate

4

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

- Returned solution:
 - Path visited most often

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis Random phase, roll-out
- Compute instant reward

Evaluate

 Update information in visited nodes **Propagate**

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Kocsis Szepesvári, 06 Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis Random phase, roll-out
- Compute instant reward

Evaluate

Update information in visited nodes

Propagate

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

Update information in visited nodes
 Propagate

Search Tree

Bandit-Ba

Phase

Explored Tree

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

Update information in visited nodes
 Propagate

Search Tree

Bandit-Ba

Phase

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis Random phase, roll-out
- Compute instant reward

Update information in visited nodes

Evaluate

Propagate

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis Random phase, roll-out
- Compute instant reward

Evaluate

- Returned solution:
 - Path visited most often

Gradually grow the search tree: Kocsis Szepesvári, 06

- ▶ Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

- Returned solution:
 - Path visited most often

MCTS Algorithm

Main

Input: number *N* of tree-walks

Initialize search tree $\mathcal{T} \leftarrow$ initial state

Loop: For i = 1 to N

TreeWalk(T, initial state)

EndLoop

Return most visited child node of root node

MCTS Algorithm, ctd

```
Tree walk
Input: search tree \mathcal{T}, state s
Output: reward r
If s is not a leaf node
    Select a^* = \operatorname{argmax} \{\hat{\mu}(s, a), tr(s, a) \in \mathcal{T}\}
    r \leftarrow \mathsf{TreeWalk}(\mathcal{T}, tr(s, a^*))
Else
    A_s = \{ \text{ admissible actions not yet visited in } s \}
    Select a^* in \mathcal{A}_s
    Add tr(s, a^*) as child node of s
    r \leftarrow \mathsf{RandomWalk}(tr(s, a^*))
End If
Update n_s, n_{s,a^*} and \hat{\mu}_{s,a^*}
Return r
```

MCTS Algorithm, ctd

```
Random walk
```

r = Evaluate(u)

Return r

```
Input: search tree \mathcal{T}, state u

Output: reward r

\mathcal{A}_{rnd} \leftarrow \{\} // store the set of actions visited in the random phase 
While u is not final state

Uniformly select an admissible action a for u

\mathcal{A}_{rnd} \leftarrow \mathcal{A}_{rnd} \cup \{a\}
u \leftarrow \operatorname{tr}(u, a)

EndWhile
```

4日 → 4団 → 4 三 → 4 三 → 9 へ ○

//reward vector of the tree-walk

Properties of interest

- ightharpoonup Consistency: Pr(finding optimal path) ightharpoonup when the number of tree-walks go to infinity
- ▶ Speed of convergence; can be exponentially slow.

Comparative results

2012 MoGoTW used for physiol neasurements of human players

2012 7 wins out of 12 games against professional players and 9 wins out of 12 games against 6D players

		IVIOGO I VV
2011	20 wins out of 20 games in 7x7 with minimal computer komi	MoGoTW
2011	First win against a pro (6D), H2, 13×13	MoGoTW
2011	First win against a pro (9P), H2.5, 13×13	MoGoTW
2011	First win against a pro in Blind Go, 9×9	MoGoTW
2010	Gold medal in TAAI, all categories	MoGoTW
	$19 \times 19, \ 13 \times 13, \ 9 \times 9$	
2009	Win against a pro (5P), 9×9 (black)	MoGo
2009	Win against a pro (5P), 9×9 (black)	MoGoTW
2008	in against a pro (5P), 9×9 (white)	MoGo
2007	Win against a pro (5P), 9×9 (blitz)	MoGo
2009	Win against a pro (8P), $19 imes 19$ H9	MoGo
2009	Win against a pro (1P), 19×19 H6	MoGo
2008	Win against a pro (9P), 19×19 H7	MoGo

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Action selection as a Multi-Armed Bandit problem

Lai, Robbins 85

In a casino, one wants to maximize one's gains while playing.

Lifelong learning

Exploration vs Exploitation Dilemma

- Play the best arm so far ?
- But there might exist better arms...

Exploitation **Exploration**

The multi-armed bandit (MAB) problem

- K arms
- ▶ Each arm gives reward 1 with probability μ_i , 0 otherwise
- ▶ Let $\mu^* = argmax\{\mu_1, \dots \mu_K\}$, with $\Delta_i = \mu^* \mu_i$
- ▶ In each time t, one selects an arm i_t^* and gets a reward r_t

$$n_{i,t} = \sum_{u=1}^{t} \mathbb{I}_{i_u^*=i}$$
 number of times i has been selected $\hat{\mu}_{i,t} = \frac{1}{n_{i,t}} \sum_{i_u^*=i} r_u$ average reward of arm i

Goal: Maximize $\sum_{u=1}^{t} r_u$

 \Leftrightarrow

$$\text{Minimize Regret } (t) = \sum_{u=1}^t (\mu^* - r_u) = t \mu^* - \sum_{i=1}^K n_{i,t} \, \hat{\mu}_{i,t} \approx \sum_{i=1}^K n_{i,t} \Delta_i$$

The simplest approach: ϵ -greedy selection

At each time t,

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$

$$i_t^* = argmax\{\hat{\mu}_{1,t}, \dots \hat{\mu}_{K,t}\}$$

▶ Otherwise, select i_t^* uniformly in $\{1...K\}$

Regret
$$(t)$$
 $t \frac{1}{K} \sum_{i} \Delta_{i}$

Optimal regret rate: log(t)

Lai Robbins 85

Upper Confidence Bound

Auer et al. 2002

Select
$$i_t^* = \operatorname{argmax} \left\{ \hat{\mu}_{i,t} + \sqrt{C \frac{\log(\sum n_{j,t})}{n_{i,t}}} \right\}$$

Decision: Optimism in front of unknown!

Upper Confidence bound, followed

UCB achieves the optimal regret rate log(t)

Select
$$i_t^* = \operatorname{argmax} \left\{ \hat{\mu}_{i,t} + \sqrt{c_e \frac{\log(\sum n_{j,t})}{n_{i,t}}} \right\}$$

Extensions and variants

- lacktriangle Tune $c_{
 m e}$ control the exploration/exploitation trade-off
- ▶ UCB-tuned: take into account the standard deviation of $\hat{\mu}_i$: Select $i_t^* = \operatorname{argmax}$

$$\left\{\hat{\mu}_{i,t} + \sqrt{c_e \frac{log(\sum n_{j,t})}{n_{i,t}} + min\left(\frac{1}{4}, \hat{\sigma}_{i,t}^2 + \sqrt{c_e \frac{log(\sum n_{j,t})}{n_{i,t}}}\right)}\right\}$$

- Many-armed bandit strategies
- Extension of UCB to trees: UCT

Kocsis & Szepesvári, 06

Monte-Carlo Tree Search. Random phase

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

- Add a node
 - Grow a leaf of the search tree
- Select next action bis Random phase, roll-out
- Compute instant reward

Evaluate

- ► Update information in visited nodes
 - Propagate

- Returned solution:
 - Path visited most often

Random phase — Roll-out policy

Monte-Carlo-based

Brügman 93

- Until the goban is filled, add a stone (black or white in turn) at a uniformly selected empty position
- 2. Compute r = Win(black)
- 3. The outcome of the tree-walk is r

Random phase — Roll-out policy

Monte-Carlo-based

Brügman 93

- Until the goban is filled, add a stone (black or white in turn) at a uniformly selected empty position
- 2. Compute r = Win(black)
- 3. The outcome of the tree-walk is r

Improvements?

- ▶ Put stones randomly in the neighborhood of a previous stone
- Put stones matching patterns

prior knowledge

▶ Put stones optimizing a value function

Silver et al. 07

Evaluation and Propagation

The tree-walk returns an evaluation r

win(black)

Propagate

For each node (s, a) in the tree-walk

$$\begin{array}{ll} \textit{n}_{\textit{s,a}} & \leftarrow \textit{n}_{\textit{s,a}} + 1 \\ \hat{\mu}_{\textit{s,a}} & \leftarrow \hat{\mu}_{\textit{s,a}} + \frac{1}{\textit{n}_{\textit{s,a}}} (\textit{r} - \mu_{\textit{s,a}}) \end{array}$$

Evaluation and Propagation

The tree-walk returns an evaluation r

win(black)

Propagate

For each node (s, a) in the tree-walk

$$\begin{array}{ll} \textit{n}_{\textit{s,a}} & \leftarrow \textit{n}_{\textit{s,a}} + 1 \\ \hat{\mu}_{\textit{s,a}} & \leftarrow \hat{\mu}_{\textit{s,a}} + \frac{1}{\textit{n}_{\textit{s,a}}} (\textit{r} - \mu_{\textit{s,a}}) \end{array}$$

Variants

Kocsis & Szepesvári, 06

$$\hat{\mu}_{s,a} \leftarrow \left\{ \begin{array}{ll} \min\{\hat{\mu}_x, x \text{ child of } (s,a)\} & \text{if } (s,a) \text{ is a black node} \\ \max\{\hat{\mu}_x, x \text{ child of } (s,a)\} & \text{if } (s,a) \text{ is a white node} \end{array} \right.$$

Dilemma

- ightharpoonup smarter roll-out policy ightharpoonup more computationally expensive ightharpoonup less tree-walks on a budget
- ▶ frugal roll-out → more tree-walks → more confident evaluations