- Q.1 A = (0+1)*00(0+1)*, B = (0+1)*11(0+1)*. Which of the following regular expressions represent(s) $A \cap B$.
 - (A) (0+1)*0011(0+1)*+(0+1)*1100(0+1)*
 - (B) $(0+1)^*(00(0+1)^*11+11(0+1)^*00)(0+1)^*$
 - (C) (0+1)*00(0+1)*+(0+1)*11(0+1)*
 - (D) 00(0+1)*11+11(0+1)*00
- Q.2 Which of the following regular expressions represent the set all binary strings with odd number of 1s?
 - (A) $((0+1)^*1(0+1)^*)^*10^*$
 - (B) (0*10*10*)*0*1
 - (C) 10*(0*10*10*)*
 - (D) (0*10*10*)*10*
- Q.3 Consider the following statements
 - I. If $L_1 \cup L_2$ is regular, then both L_1 and L_2 must be regular.
 - II. The class of regular languages is closed under infinite union.

Which of the above statements is/are TRUE?

- (A) I only
- (B) II only
- (c) Both I and II
- (D) Neither I nor II
- Q.4 A is a regular language and B is not a regular language. Which of the following languages is/are necessarily regular?
 - (A) A \ B
 - (B) A / B
 - (C) A* \ B
 - (D) A* / B
- Q.5 If L is regular over $\Sigma = \{a, b\}$, which of the following is/are necessarily regular?
 - (A) $L \cdot L^R = \{xy \mid x \in L, y^R \in L\}$
 - (B) $\{ww^R \mid w \in L\}$
 - (C) Prefix $(L) = \{x \in \Sigma^* | \exists y \in \Sigma^* \text{ such that } xy \in L\}$
 - (D) Suffix $(L) = \{ y \in \Sigma^* | \exists x \in \Sigma^* \text{ such that } xy \in L \}$

Q.6 Language L_1 is defined by the grammar: $S_1 \rightarrow aS_1b|\varepsilon$ Language L_2 is defined by the grammar: $S_2 \rightarrow abS_2|\varepsilon$

Consider the following statements:

P: L₁ is regular Q: L₂ is regular

Which one of the following is TRUE?

- (A) Both P and Q are true
- (B) P is true and Q is false
- (C) P is false and Q is true
- (D) Both P and Q are false
- Q.7 Let $\mathcal{L} =$ The set of all languages over $\{a\}$ Let $\mathcal{R} =$ The set of all regular languages over $\{a, b\}$

Which of the following is/are correct?

- (A) Both \mathcal{L} and \mathcal{R} are countable.
- (B) Only \mathcal{R} is countable.
- (C) Only \mathcal{L} is countable.
- (D) None of the above.
- Q.8 L is an ϵ -free language over $\{a,b\}$. Consider following statements :

P: The exists a Mealy machine M with output alphabet $\{0,1\}$ s.t. on input x, M outputs a string in $(0+1)^*1$ if and only if $x \in L$.

Q: L is regular.

Which of following is/are correct?

- (A) P implies Q.
- (B) Q implies P.
- (C) P if and only if Q.
- (D) None of the above.
- Q.9 Which one of the following regular expressions represents the language: the set of all binary strings having two consecutive 0s and two consecutive 1s?
 - (A) $(0+1)^*0011(0+1)^* + (0+1)^*1100(0+1)^*$
 - (B) $(0+1)^*(00(0+1)^*11+11(0+1)^*00)(0+1)^*$
 - (C) (0+1)*00(0+1)*+(0+1)*11(0+1)*
 - (D) 00(0+1)*11+11(0+1)*00

Q.10 Consider string homomorphism $h: \{0,1\} \to \{a\}$ s.t. h(0) = a, h(1) = aa. Cardinality of $h^{-1}(h(010))$ is _____.

Q.11 The order of a language L is defined as the smallest k such that $L^k = L^{k+1}$. Consider the language L_1 (over alphabet 0) accepted by the following automaton.

The order of L_1 is _____.

Q.12 Consider the following language.

 $L = \{x \in \{a, b\}^* | \text{ number of } a's \text{ in } x \text{ is divisible by 2 but not divisible by 3} \}$

The minimum number of states in a DFA that accepts L is _____.

- Q.13 $L = \{w_1 a w_2 \mid w_1, w_2 \in \{a, b\}^*, |w_1| = 2, |w_2| \ge 3\}$ and R is the equivalence relation on $\{a, b\}^*$ s.t. xRy iff $\forall z \in \{a, b\}^*, xz \in L \Leftrightarrow yz \in L$. Index of R is _____.
- Q.14 Let $(a + b)^*b(a + b)^*$ represent the language L over $\Sigma = \{a, b\}$. If we consider DFAs with partial transition function, the minimum possible number of states of a DFA that accepts the regular language \overline{L} is _____.
- Q.15 Language L is accepted by a NFA with 3 states. Number of states in the minimal DFA accepting L is at most _____.