

3

Image Processing

- 1. Spatial Filtering
- 2. Edge Detection
- 3. Histogram Equalization
- 4. OCR of Hand-written Data using kNN

❖ 공간 영역 처리

- 영상의 한 픽셀과 이웃한 픽셀 값을 이용한 공간 영역 연산
- 입력 픽셀과 이웃한 각 픽셀에 가중치를 곱한 합을 출력 픽셀로 생성
- 공간 마스크 필터링(Spatial Mask Filtering)
 - 가중치 마스크(mask)를 원 영상에 회선 처리(Convolution Processing)

$$g[y][x] = \sum_{j=-w}^{w} \sum_{i=-w}^{w} m[j][i]f[y+j][x+i]$$

•g[y][x]: 회선 처리로 출력한 필셀

•f[y+j][x+j] : 입력 영상의 픽셀

• m[j, i] : 가중치 마스크

- 마스크 (mask)
 - 이웃 픽셀의 가중치 값을 표현,
 - 윈도우(window), 템플릿(template), 커널(kernel), 필터(filter)

Convolution Processing

I_1	I_2	I_3
I_4	I_5	I_6
I_7	I_8	I_9

(a)	입력	! 영상
(U)		1 00

M ₁	M ₂	Мз
M ₄	M_5	M ₆
M ₇	M ₈	M ₉

(b) 회선 마스크

출력 픽셀 값 :
$$O_5$$
= $I_1 \times M_1 + I_2 \times M_2 + I_3 \times M_3 + I_4 \times M_4 + I_5 \times M_5 + I_6 \times M_6 + I_7 \times M_7 + I_8 \times M_8 + I_9 \times M_9$

회선 기법으로 출력 화소 생성

Convolution Processing

❖ Convolution Processing 수행방법

- (1)가중치를 포함한 마스크를 이동하면서 회선처리 수행
- (2) 회선마스크가 영상의 왼쪽 위 픽셀에서 오른쪽으로 한 픽셀씩 차례로 이동하면서 처리하여 새로운 결과 픽셀을 생성
- (3)한 줄에서의 회선 수행이 끝나면, 다음 줄로 이동하여 다시 한 픽셀씩 오른쪽으로 이동하면서 차 례로 수행

회선 수행이 시작되는 위치

❖ Convolution 선의 경계 부분 처리

- 회선처리에서는 이웃 픽셀이 필요한데 영상의 경계부분에는 이웃픽셀이 없기 때문에 경계 부분 처리가 필요
- 경계 부분 처리 방법
 - (1)경계를 0로 확장하여 회선 수행
 - 회선 마스크에 대응되는 경계를 벗어나는 부분을 0으로 가정해서 회선을 수행하는 방법
 - 원본 영상의 가장자리를 확장하여 0로 설정 후 처리결과에서 확장 부분을 제거하는 방법

(2)중첩 부분에서만 회선 수행

- 회선 마스크와 영상이 완전하게 중첩되는 위치에서 회선을 시작하도록 하는 방법
- 회선 마스크의 크기가 3×3이면 모든 회선 마스크의 요소와 영상의 화소가 중첩되는 영상 위치 (1, 1)에서 회선을 시작
- 경계부분은 회선처리 없이 입력 영상과 같은 픽셀 값을 복사해서 사용

(3)영상의 크기를 조정하여 회선 수행

- 영상의 시작과 끝부분이 연결된 것으로 처리하는 방법

❖ Convolution의 경계 부분 처리 방법

(1)데두리를 확장 0로 확장한 처리 방법

(3)영상의 끝부분을 연결한 처리 방법

KSA 한국표준협회 (2)경계부분 픽셀을 제외한 처리 방법

❖ 공간 영역 처리 기술

- 연산 시 사용되는 가중치 마스크에 따라 결과영상의 특성이 결정
- 블러링(Blurring), 샤프닝(Sharpening), 경계선 검출(Edge Detection), 잡음 제거(Noise Removal) 등의 기술이 있음.
- Blurring
 - 영상을 흐리게(부드럽게) 하는 처리
- Sharpening
 - 영상을 세밀하게 하는 처리

Blurring

- 영상의 세밀한 부분을 흐리게 하거나 부드럽게 하여 잡음을 제거하는 기술
- 픽셀 값의 변화율을 낮출 수 있는 가중치 마스크 사용
- Mean Filter
 - 주변 픽셀 값들에 대한 평균값으로 출력 필셀 값을 계산
 - 마스크는 모든 계수가 양수로 전체 합은 1 로 구성

	1	1	1
$\frac{1}{9}$ ×	1	1	1
,	1	1	1

	1	1	1	1	1
	1	1	1	1	1
$\frac{1}{2.5}$	1	1	1	1	1
	1	1	1	1	1
	1	1	1	1	1

평균값 필터 마스크 (3X3, 5X5)

❖ Blurring 처리 예

1/9	1/9	1/9		
1/9	1/9	1/9		
1/9	1/9	1/9		
평균값필터 마스크				

90	90	90	90	90	90	90
90	90	90	90	90	90	90
90	90	255	255	255	90	90
90	90	255	255	255	90	90
90	90	255	255	255	90	90
90	90	90	90	90	90	90
90	90	90	90	90	90	90
(a)원본영상						

90	90	90	90	90	90	90
90	108	127	145	127	108	90
90	127	163	200	163	127	90
90	145	200	255	200	145	90
90	127	163	200	163	127	90
90	108	127	145	127	108	90
90	90	90	90	90	90	90
		(b)블	러링	영산		

***** Blurring

3x3 mean filter 적용

5x5 mean filter 적용

Blurring in OpenCV

- cv2.filter2D() 함수로 kernel(filter)을 이미지에 Convolution처리
- cv.blur()함수로 Blurring

```
img = cv2.imread('images/opency-logo.png')
print("img.shape=", img.shape)
kernell = np.ones((3,3),np.float32)/9 #3X3 커널 생성
kernel2 = np.ones((5.5).np.float32)/25 #5X5 커널 생성
dst1 = cv2.filter2D(img.-1.kernel1)
                                         #convolution
dst2 = cv2.filter2D(img.-1.kernel2)
                                         #convolution
plt.figure(figsize=(10,8))
plt.subplot(131),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(dst1),plt.title('3X3 Averaging')
plt.xticks([]), plt.yticks([])
plt.subplot(133).plt.imshow(dst2).plt.title('5X5 Averaging')
plt.xticks([]), plt.vticks([])
                                                   Original
plt.show()
```

blur1 = cv.blur(img,(3,3)) blur2 = cv.blur(img,(5,5))

❖ 가우시안(Gaussian) 필터링

- 자연현상을 가장 잘 표현한 함수
- 평균을 기준으로 좌우 대칭 형태
- 양끝으로 갈수록 수치가 낮아지는종 모양
- 정규분포에서 평균(μ)을 0로 간주 하고 표준편차(σ)로 유도한 분포 의 함수식
- 가우시안 잡음을 제거하는 블러링 마스크로 이용
- 표준편차(σ)가 클수록 블러링 효과가 큼

❖ 가우시안(Gaussian) 필터링

• 2차원 가우시안 필터 마스크(σ = 1.0)

-4
$$\sigma$$
 <= x, y <= 4 σ (mask size = 8 σ +1, 9X9)

0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0002	0.0011	0.0018	0.0011	0.0002	0.0000	0.0000
0.0000	0.0002	0.0029	0. 0131	0.0215	0.0131	0.0029	0.0002	0.0000
0.0000	0.0011	0.0131	0.0585	0.0965	0.0585	0.0131	0.0011	0.0000
0.0001	0.0018	0.0215	0.0965	0.1592	0.0965	0.0215	0.0018	0.0001
0.0000	0.0011	0.0131	0.0585	0.0965	0.0585	0.0131	0.0011	0.0000
0.0000	0.0002	0.0029	0. 0131	0.0215	0.0131	0.0029	0.0002	0.0000
0.0000	0.0000	0.0002	0.0011	0.0018	0.0011	0.0002	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000

• 2차원 가우시안 함수

$$G_{\sigma}(x, y) = \frac{1}{2\pi\sigma^{2}} e^{\left(-\frac{x^{2}+y^{2}}{2\sigma^{2}}\right)}$$

평균=(0,0), 표준편차(σ) = 1.0

Gaussian blurring in OpenCV

- cv2.GaussianBlur ()
- sigmaX값에 따른 출력 결과 확인

```
img = cv2.imread('images/noise1.bmp')
dst1 = cv.GaussianBlur(img,(5,5),0) #sigma=0
dst1 = cv.GaussianBlur(img,(5,5),1) #sigma=1
dst3 = cv.GaussianBlur(img,(5,5),5) #sigma=5

plt.imshow(img)
plt.title('Original')
plt.figure(figsize=(14,8))
plt.subplot(131),plt.imshow(dst1),plt.title('GaussianKerne sigma0')
plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(dst2),plt.title('GaussianKerne sigma1')
plt.xticks([]), plt.yticks([])
plt.subplot(133),plt.imshow(dst3),plt.title('GaussianBlur sigma5')
plt.xticks([]), plt.yticks([])
GaussianKerne sigma0

GaussianKerne sigma1
```


1. 'noise1.bmp' 이미지에 대해 5X5 mean filtering결과와 Gaussian filtering (sigma 5)결과를 비교하세요.

❖ 미디언(Median) 필터

- 잡음 제거를 위한 비선형 필터
- 입력 영상의 (x,y) 좌표 주변 픽셀들의 값들을 오름 또는 내림 차순으로 정렬 하여 그 중앙에 있는 픽셀 값을 사용

❖ 미디언(Median) 필터

■ 소금&후추(salt & pepper noise) 잡음이 포함된 영상에 미디언 필터를 적용한 결과

Median Blurring in OpenCV

■ cv.medianBlur () 함수 이용

```
img1 = cv2.imread('images/lenna_SPN10.bmp')
img2 = cv2.imread('images/lenna_SPN20.bmp')
dst1 = cv2.medianBlur(img1, 3)
dst2 = cv2.medianBlur(img2, 3)

plt.figure(figsize=(8,8))
plt.subplot(221),plt.imshow(img1),plt.title('Original N10')
plt.xticks([]), plt.yticks([])
plt.subplot(222),plt.imshow(dst1),plt.title('Median filtering N10')
plt.xticks([]), plt.yticks([])
plt.subplot(223),plt.imshow(img2),plt.title('Original N20')
plt.xticks([]), plt.yticks([])
plt.subplot(224),plt.imshow(dst2),plt.title('Median filtering N20')
plt.xticks([]), plt.yticks([])
```

Sharpening

- 영상의 경계부분을 강조하여 영상을 선명하게 하는 영상처리 기법
- 픽셀 값의 변화율을 높일 수 있는 가중치 마스크 사용

-1	-1	-1
-1	9	-1
-1	-1	-1

(a) 샤프닝 회선 마스크 1 (8방향 마스크)

0	-1	0
-1	5	-1
0	-1	0

(b) 샤프닝 회선 마스크 2 (4방향 마스크)

❖ Sharpening 처리 예

0	-1	0
-1	5	-1
0	-1	0

10	10	10	10	10	10	10
10	10	10	10	10	10	10
10	10	50	50	50	10	10
10	10	50	50	50	10	10
10	10	50	50	50	10	10
10	10	10	10	10	10	10
10	10	10	10	10	10	10

10	10	10	10	10	10	10
10	10	0	0	0	10	10
10	0	130	90	130	0	10
10	0	90	50	90	0	10
10	0	130	90	130	0	10
10	10	0	0	0	10	10
10	10	10	10	10	10	10

(a) 원본 영상

(b) 샤프닝 영상

Sharpening in OpenCV

```
img = cv2.imread('images/lenna_g.bmp')
kernel1 = np.full((3,3),-1, np.float32)
                                         #3X3 8방향 Sharpening 마스크 생성
kernel1[1,1] = 9
imgB = cv.GaussianBlur(img,(5,5),5) #sigma=5
dst1 = cv2.filter2D(img,-1,kernel1)
                                         #convolution
dst2 = cv2.filter2D(imgB.-1.kernel1)
                                          #convolution
plt.figure(figsize=(10,8))
plt.subplot(221),plt.imshow(img),plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(222),plt.imshow(dst1),plt.title('Sharpening')
plt.xticks([]), plt.yticks([])
plt.subplot(223),plt.imshow(imgB),plt.title('Blur')
plt.xticks([]), plt.yticks([])
plt.subplot(224),plt.imshow(dst2),plt.title('Sharpening')
plt.xticks([]), plt.yticks([])
plt.show()
```


❖ 그래디언트(Gradients)

■ 2차원 공간에서 정의된 함수 f(x, y)가 있을 때 이 함수의 x축 방향 미분과 y축 방향 미분을 한꺼번에 벡터로 표현한 것

$$\nabla f = \begin{bmatrix} f_x \\ f_y \end{bmatrix} = f_x \mathbf{i} + f_y \mathbf{j}$$

■ 그래디언트는 벡터이므로 크기(magnitude)와 방향(phase) 성분으로 표현

$$\|\nabla f\| = \sqrt{f_x^2 + f_y^2}$$
 $\theta = \tan^{-1}\left(\frac{f_y}{f_x}\right)$

- 그래디언트 방향: 변화 정도가 가장 큰 방향
- 그래디언트 크기 : 변화율 세기

❖ 그래디언트(Gradients)

- a, b, c 세 점에서의 그래디언트
- 빨간색 화살표: 그래디언트 방향과 크기
- 흰색 화살표 : 그래디언트 방향에 수직, 에지 방향
- 에지: 그래디언트 크기가 임계값보다 큰 경우

Sobel mask filtering

- X축 미분은 수평선을 미분하여 수직성분만 남음
- Y축 미분은 수직선을 미분하여 수평성분만 남음

-1	0	1
-2	0	2
-1	0	1
	(a)	

-1	-2	-1
0	0	0
1	2	1
	(b)	

- (a) x축 방향으로의 편미분을 구하는 소벨 마스크
- (b) y축 방향으로의 편미분을 구하는 소벨 마스크

Laplacian

- 영상의 2차 미분을 이용하여 경계부분을 추출
- X축, y축에 대한 2차 미분의 합으로 계산

$$\nabla^{2} f = \frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}}$$

$$= \left[f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) \right]$$

$$-4 f(x, y)$$

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

4방향, 8방향 라플라시안 필터 마스크

Edge Detection in OpenCV

```
img = cv2.imread('images/sudoku.png', 0)
Taplacian = cv2.Laplacian(img,cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5) # x방향 편미분, 수직성분 추출
sobelv = cv2.Sobel(img.cv2.CV_64F,0,1,ksize=5) # y반향 편미분, 수평성분 추출
plt.figure(figsize=(10,8))
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4), plt.imshow(sobely, cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()
```


Canny Edge Detection

- (1)Noise Reduction
 - 이미지의 Noise를 제거, 5x5의 Gaussian filter 사용
- (2) Edge Gradient Detection
 - 이미지에서 Gradient의 방향과 강도를 계산
 - 경계부분에서 미분값(밝기의 변화량)이 크므로 Edge 후보로 추출
- (3) Non-maximum Suppression
 - 이미지의 pixel을 모두 scan하여 Edge가 아닌 pixel은 제거.
- (4) Hysteresis Thresholding
 - Edge 후보들이 진짜 edge인지 판별
 - 임계값을 max, min을 설정하여 max 이상은 강한 Edge, min과 max사이는 약한 edge로 설정
 - 약한 edge는 강한edge와 연결이 되어 있으면 edge로 판단하고, 아니면 제거

Canny Edge Detection in OpenCV

cv2.Canny(image, threshold_min , threshold_max)

```
img = cv2.imread('images/lenna.bmp',0)
edges = cv2.Canny(img,80,240)
plt.subplot(121),plt.imshow(img,cmap = 'gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
plt.show()
```

Original Image

Edge Image

- 1. 'lenna.bmp'를 가우시안 블러링을 처리 한 후 Sobel, Laplacian
- , Canny Edge Detection 처리 결과를 확인하세요.

- ❖ 히스토그램 균일화, 평활화(Histogram Equalization)
 - 이미지의 contrast(대비)를 향상시키기 위해 히스토그램을 스트레칭

❖ 히스토그램 평활화

- 영상의 밝기 분포를 재분배하여 명암 대비(Intensity Contrast)를 최대화하는 기법
- 히스토그램의 분포를 균등하게 변환
 - 영상의 히스토그램을 명암 값 전 구간에서 일정하게 분포되게 하는 방법
- 정규화된 누적분포함수 이용

$$s = T(r) = \int_0^r p_r(\tau) d\tau$$

Histograms Equalization in OpenCV

```
img = cv.imread('images/lenna.bmp',0)
equ = cv.equalizeHist(img)

plt.figure(figsize=(8,8))
plt.subplot(221),plt.imshow(img,cmap = 'gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(222),plt.imshow(equ,cmap = 'gray')
plt.title('equalizeHist'), plt.xticks([]), plt.yticks([])
plt.subplot(223),plt.hist(img.flatten(),256,[0,256], color = 'r')
plt.yticks([])
plt.subplot(224),plt.hist(equ.flatten(),256,[0,256], color = 'b')
plt.yticks([])
```

Original Image

equalizeHist

Histograms Equalization in OpenCV

```
import numby as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('images/lenna.bmp',0)
#(1)히스토그램을 구한다
hist, bins = np.histogram(img.flatten(),256,[0,256])
#(2)정규화된 누적분포함수를 구한다.
cdf = hist.cumsum() #누적합. 누적분포함수(CDF)
cdf_normalized = cdf * float(hist.max()) / cdf.max() #누적합에 최대밝기값을 곱하여 픽셀개수로 나누어 정규화
plt.plot(cdf normalized, color = 'b')
plt.hist(img.flatten(),256,[0,256], color = 'r')
plt.xlim([0.256])
plt.legend(('cdf','histogram'), loc = 'upper left')
                                                                                   cdf
plt.show()
                                                                                 histogram
#(3)CDF 균일화 처리
                                                                            2000
cdf_m = np.ma.masked_equal(cdf,0) #odf에서 값이 0인 부분 제외
cdf_m = (cdf_m - cdf_m.min())*255/(cdf_m.max()-cdf_m.min()) #균일화 처리
                                                                            1500
cdf = np.ma.filled(cdf_m,0).astype('uint8') #cdf에서 마스크부분을 0으로 제우기
                                                                            1000
#(4)정규화된 odf 값으로 영상의 픽셀 값을 변환
                                                                             500
img2 = cdf[img]
                                                                                            100
                                                                                                         200
                                                                                                  150
                                                                                                                250
```

Knn 필기체 손글씨 인식

❖ 5000 개의 필기 숫자 (각 숫자에 대해 500)가 있는 이미지 'digital.png' 제공

Knn 필기체 손글씨 인식

```
import numpy as np
import cv2 as cv
img = cv.imread('images/digits.png')
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
print('gray.shape=', gray.shape)
# 5000 셀을 100개씩 50줄로 분리
# 각 셸은 20x20
cells = [np.hsplit(row,100) for row in np.vsplit(gray,50)]
# Numpy array로 생성 (50,100,20,20)
x = np.arrav(cells)
print('x.shape=', x.shape)
#training data, test data 是己
train = x[:,:50].reshape(-1,400).astype(np.float32) # Size = (2500,400)
test = x[:,50:100].reshape(-1,400).astype(np.float32) # Siz\theta = (2500,400)
# train, test data의 라벨 생성
k = np.arange(10)
train_labels = np.repeat(k,250)[:,np.newaxis] #0-9, 250번 반복하여 값을 저장
test_labels = train_labels.copy()
```

Knn 필기체 손글씨 인식

```
# KNN 초기화
knn = cv.ml.KNearest_create()
#training data로 학습
knn.train(train, cv.ml.ROW_SAMPLE, train_labels)
#5-NN으로 test와 가까운 이웃에 대한 라벨을 결정
ret,result,neighbours,dist = knn.findNearest(test,k=5)
# 분류 정확도 확인
matches = result==test_labels
correct = np.count_nonzero(matches)
accuracy = correct*100.0/result.size
print( accuracy )

gray.shape= (1000, 2000)
x.shape= (50, 100, 20, 20)
91.76
```

수고하셨습니다.

