Assignment -2

Assignment Date	18 October2022
Team ID	PNT2022TMID02916
Project Name	AI Based Discourse for Banking Industry
Student Name	AJITHKUMAR P
Student Roll Number	727720EUIT501
Maximum Marks	2 Marks

Question-1. Download dataset

Solution:

lowNuml	Customer	Surname	CreditSco	Geograph	Gender	Age	Tenure	Balance	NumOfPrcHa	sCrCard IsA	ctiveM	Estimated Exi	ted
1	15634602	Hargrave	619	France	Female	42	2 2	0	1	1	1	101348.9	1
2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.6	0
3	15619304	Onio	502	France	Female	42	2 8	159660.8	3	1	0	113931.6	1
4	15701354	Boni	699	France	Female	39	1	0	2	0	0	93826.63	0
5	15737888	Mitchell	850	Spain	Female	43	3 2	125510.8	1	1	1	79084.1	0
6	15574012	Chu	645	Spain	Male	4/	8	113755.8	2	1	0	149756.7	1
7	15592531	Bartlett	822	France	Male	50	7	0	2	1	1	10062.8	0
8	15656148	Obinna	376	Germany	Female	29	4	115046.7	4	1	0	119346.9	1
9	15792365	He	501	France	Male	4/	4	142051.1	2	0	1	74940.5	0
10	15592389	H?	684	France	Male	27	7 2	134603.9	1	1	1	71725.73	0
11	15767821	Bearce	528	France	Male	31	L 6	102016.7	2	0	0	80181.12	0
12	15737173	Andrews	497	Spain	Male	24	3	0	2	1	0	76390.01	0
13	15632264	Kay	476	France	Female	34	10	0	2	1	0	26260.98	0
14	15691483	Chin	549	France	Female	25	5 5	0	2	0	0	190857.8	0
15	15600882	Scott	635	Spain	Female	35	5 7	0	2	1	1	65951.65	0
16	15643966	Goforth	616	Germany	Male	45	3	143129.4	2	0	1	64327.26	0
17	15737452	Romeo	653	Germany	Male	58	3 1	132602.9	1	1	0	5097.67	1
18	15788218	Henderso	549	Spain	Female	24	9	0	2	1	1	14406.41	0
19	15661507	Muldrow	587	Spain	Male	45	6	0	1	0	0	158684.8	0
20	15568982	Hao	726	France	Female	24	6	0	2	1	1	54724.03	0
21	15577657	McDonald	732	France	Male	41	L 8	0	2	1	1	170886.2	0
22	15597945	Dellucci	636	Spain	Female	32	2 8	0	2	1	0	138555.5	0
23	15699309	Gerasimo	510	Spain	Female	38	3 4	0	1	1	0	118913.5	1
24	15725737	Mosman	669	France	Male	46	5 3	0	2	0	1	8487.75	0
25	15625047	Yen	846	France	Female	38	3 5	0	1	1	1	187616.2	0
26	15738191	Maclean	577	France	Male	25	3	0	2	0	1	124508.3	0
27	15736816	Young	756	Germany	Male	36	5 2	136815.6	1	1	1	170042	0
28	15700772	Nebechi	571	France	Male	44	9	0	2	0	0	38433.35	0
29	15728693	McWillian	574	Germany	Female	43	3	141349.4	1	1	1	100187.4	0
30	15656300	Lucciano	411	France	Male	29	0	59697.17	2	1	1	53483.21	0
31	15589475	Azikiwe	591	Spain	Female	39	3	0	3	1	0	140469.4	1
32	15706552	Odinakac	533	France	Male	36	5 7	85311.7	1	0	1	156731.9	0
33	15750181	Sanderso	553	Germany	Male	41	L 9	110112.5	2	0	0	81898.81	0
34	15659428	Maggard	520	Spain	Female	42	2 6	0	2	1	1	34410.55	0
35	15732963	Clements	722	Spain	Female	29	9	0	2	1	1	142033.1	0
36	15794171	Lombardo	475	France	Female	45	0	134264	1	1	0	27822.99	1
37	15788448	Watson	490	Spain	Male	31	1 3	145260.2	1	0	1	114066.8	0
38	15729599	Lorenzo	804	Spain	Male	33	3 7	76548.6	1	0	1	98453.45	0
39	15717426	Armstron	850	France	Male	36	5 7	0	1	1	1	40812.9	0
40	15585768	Cameron	582	Germany	Male	41	6	70349.48	2	0	1	178074	0

Question-2. Load the dataset

Solution:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn
data = pd.read_csv(r'Churn_Modelling.csv')
df.head

0	100000000000000000000000000000000000000					619		Female		Geography	Genaci	
1		1 1563 2 1564		Hargrave Hill			Spain	PARTITION TO THE	5775			
2		3 1561		Onio			France					
3												
		4 1576					France					
4				Mitchell		850	Spain					
		00										
9995				Obijiaku		771		Male				
9996				Johnstone		516		Male				
9997	99			Liu		709						
9998	99			Sabbatini		772	-					
9999	10000 1562		8319	Walker	792		France	Female	28			
				fProducts	HasCrCa	rd I	sActiveMer	mber \				
0	2	0.00)	1		1		1				
1	1	83807.86	,	1		0		1				
2	8	159660.80	1	3		1		0				
3	1	0.00)	2		0		0				
4	8-9	125510.82		1		1		1				
				*								
9995	5			2		1		0				
9996		57369.61		1		1		1				
9997	7			_		0		1				
		75075.31		2		1		0				
9999	4	130142.79	lo Se	1		1		0				
	Estimat	edSalary	Exited	i								
0	1	01348.88	1	Les .								
1	1	12542.58	6)								
2	1	13931.57	1	L _{es}								
3		93826.63	6	9								
4		79084.10	6	50.0								
		05070.54										
9995		96270.64	6									
9996		01699.77	6									
9997		42085.58	1									
9998		92888.52	1									
9999		38190.78	6	9								

Question-3. Perform Below Visualizations.

3.1 Univariate Analysis

Solution:

sns.displot(data['CreditScore'])

sns.boxplot(x = data['CreditScore'])

sns.distplot(data['Age'])

sns.histplot(data['Age'])

sns.boxplot(data['Age'])

3.2 Bivariate Analysis

Solution:

plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')

plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')

plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')

plt.figure(figsize=(10,10))
sns.lineplot(data['Age'], data['EstimatedSalary'])

plt.figure(figsize=(17,17))
sns.barplot(data['Age'], data['EstimatedSalary'])

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')

3.3 Multivariate Analysis

Solution:

sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])

sns.scatterplot(data['Age'], data['Balance'], hue = data['Gender'])

Question-4. Perform descriptive statistics on the dataset.

Solution:

data.mean(numeric_only = True)

RowNumber	5.000500e+03					
CustomerId	1.569094e+07					
CreditScore	6.505288e+02					
Age	3.892180e+01					
Tenure	5.012800e+00					
Balance	7.648589e+04					
NumOfProducts	1.530200e+00					
HasCrCard	7.055000e-01					
IsActiveMember	5.151000e-01					
EstimatedSalary	1.000902e+05					
Exited	2.037000e-01					
dtype: float64						

data.median(numeric_only = True)

RowNumber	5.000500e+03
CustomerId	1.569074e+07
CreditScore	6.520000e+02
Age	3.700000e+01
Tenure	5.000000e+00
Balance	9.719854e+04
NumOfProducts	1.000000e+00
HasCrCard	1.000000e+00
IsActiveMember	1.000000e+00
EstimatedSalary	1.001939e+05
Exited	0.000000e+00
dtype: float64	

data['CreditScore'].mode()

```
0 850
dtype: int64
```

data['EstimatedSalary'].mode()

```
0 24924.92
dtype: float64
```

data['HasCrCard'].unique()

```
array([1, 0])
```

data['Tenure'].unique()

```
array([ 2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])
```

data.std(numeric_only=True)

RowNumber	2886.895680
CustomerId	71936.186123
CreditScore	96.653299
Age	10.487806
Tenure	2.892174
Balance	62397.405202
NumOfProducts	0.581654
HasCrCard	0.455840
IsActiveMember	0.499797
EstimatedSalary	57510.492818
Exited	0.402769

dtype: float64

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650,528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

data['Tenure'].value_counts()

2 1048

1035

7 1028

8 1025

5 1012

3 1009

4 989

9 984

6 967

10 490 0 413

Name: Tenure, dtype: int64

Question-5. Handle the Missing values.

Solution:

data.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

Question-6. Find the outliers and replace the outliers

Solution:

fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter plot ax.scatter(data['Balance'], data['Exited'])

x-axis label
ax.set_xlabel('Balance')

y-axis label
ax.set_ylabel('Exited')
plt.show()

sns.boxplot(x=data['Balance'])

from scipy import stats #Outlier detection - zscore
zscore = np.abs(stats.zscore(data['CreditScore']))
print(zscore)

print('No. of Outliers : ', np.shape(np.where(zscore>3)))

```
0
       0.332952
1
       0.447540
2
       1.551761
       0.500422
4
       2.073415
9995 1.250458
9996
     1.405920
9997
     0.604594
9998
     1.260876
     1.469219
9999
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers : (1, 0)
```

q = data.quantile([0.75,0.25])

q

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0.75	7500.25	15753233.75	2238.25	718.0	1.0	1.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0
0.25	2500.75	15628528.25	773.75	584.0	0.0	0.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	0.0

iqr = q.iloc[0] - q.iloc[1]

iqr

RowNumber	4999.5000				
CustomerId	124705.5000				
Surname	1464.5000				
CreditScore	134.0000				
Geography	1.0000				
Gender	1.0000				
Age	12.0000				
Tenure	4.0000				
Balance	127644.2400				
NumOfProducts	1.0000				
HasCrCard	1.0000				
IsActiveMember	1.0000				
EstimatedSalary	98386.1375				
Exited	0.0000				
dtype: float64					

u = q.iloc[0] + (1.5*iqr)

u

```
        RowNumber
        1.499950e+04

        CustomerId
        1.594029e+07

        Surname
        4.435000e+03

        CreditScore
        9.190000e+02

        Geography
        2.500000e+00

        Gender
        2.500000e+00

        Age
        6.200000e+01

        Tenure
        1.300000e+01

        Balance
        3.191106e+05

        NumOfProducts
        3.500000e+00

        HasCrCard
        2.500000e+00

        IsActiveMember
        2.500000e+0

        EstimatedSalary
        2.969675e+05

        Exited
        0.000000e+00

        dtype: float64
```

I = q.iloc[1] - (1.5*iqr)

Ī

```
        RowNumber
        -4.998500e+03

        CustomerId
        1.544147e+07

        Surname
        -1.423000e+03

        CreditScore
        3.830000e+02

        Geography
        -1.500000e+00

        Gender
        -1.500000e+00

        Age
        1.400000e+01

        Tenure
        -3.000000e+00

        Balance
        -1.914664e+05

        NumOfProducts
        -5.000000e-01

        HasCrCard
        -1.500000e+00

        IsActiveMember
        -1.500000e+00

        EstimatedSalary
        -9.657710e+04

        Exited
        0.000000e+00
```

Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
Q3 = data['EstimatedSalary'].quantile(0.75)
iqr = Q3 - Q1
print(iqr)
upper=Q3 + 1.5 * iqr
lower=Q1 - 1.5 * iqr

```
count = np.size(np.where(data['EstimatedSalary'] >upper))
count = count + np.size(np.where(data['EstimatedSalary'] <lower))</pre>
print('No. of outliers : ', count)
98386.1375
No. of outliers: 0
```

data['CreditScore'] = np.where(np.logical_or(data['CreditScore']>900, data['CreditScore']<383), 65 0, data['CreditScore'])

sns.boxplot(data['CreditScore'])


```
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma
lower = data.Age.mean() - (3 * data.Age.std())
columns = data[ ( data['Age'] > upper ) | ( data['Age'] < lower ) ]
print('Upper range : ', upper)
print('Lower range : ', lower)
print('No. of Outliers : ', len(columns))
 Upper range: 70.38521935511383
 Lower range : 7.458380644886169
 No. of Outliers: 133
```

columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', 'CreditScore'] #After outlier removal

```
for i in columns:
 Q1 = data[i].quantile(0.25)
 Q3 = data[i].quantile(0.75)
 iqr = Q3 - Q1
 upper=Q3 + 1.5 * iqr
 lower=Q1 - 1.5 * iqr
 count = np.size(np.where(data[i] >upper))
 count = count + np.size(np.where(data[i] <lower))</pre>
 print('No. of outliers in ', i, ' : ', count)
```

```
No. of outliers in EstimatedSalary : 0
No. of outliers in Age : 0
No. of outliers in Balance : 0
No. of outliers in NumOfProducts : 0
No. of outliers in Tenure : 0
No. of outliers in CreditScore : 0
```

Question-7. Check for Categorical columns and perform encoding

Solution:

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder le = LabelEncoder()
oneh = OneHotEncoder()
data['Surname'] = le.fit_transform(data['Surname'])
data['Gender'] = le.fit_transform(data['Gender'])
data['Geography'] = le.fit_transform(data['Geography'])
data.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	0

Question-8. Split the data into dependent and independent variables split the data in X and Y

Solution:

```
x # independent values ( inputs)
x = data.iloc[:, 0:13]
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10
	550	357	775	35%	1277	57%	17/19	1507	577	255	220	550	450
9995	9996	15606229	1999	771	0	1	39	5	0.00	2	1	0	96270.64
9996	9997	15569892	1336	516	0	1	35	10	57369.61	1	1	1	101699.77
9997	9998	15584532	1570	709	0	0	36	7	0.00	1	0	1	42085.58
9998	9999	15682355	2345	772	1	1	42	3	75075.31	2	1	0	92888.52
9999	10000	15628319	2751	792	0	0	28	4	130142.79	1	1	0	38190.78

10000 rows x 13 columns

y # dependent values (output)

1 0 1

3 0

4 0

9995 0 9996 0 9997 1

9998 1 9999 0

Name: Exited, Length: 10000, dtype: int64

Question-9. Scale the independent variables

Solution:

from sklearn.preprocessing import StandardScaler, MinMaxScaler
sc = StandardScaler()
x_scaled = sc.fit_transform(x)
x_scaled

```
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167, 0.97024255, 0.02188649],
[-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167, -1.03067011, 0.2406869],
...,
[1.73118479, -1.47928179, 0.07353887, ..., -1.54776799, 0.97024255, -1.00864308],
[1.7315312, -0.11935577, 0.98943914, ..., 0.64609167, -1.03067011, -0.12523071],
[1.73187761, -0.87055909, 1.4692527, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question-10. Split x and y into Training and Testing

Solution:

from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)

x_train

```
array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167, 0.97024255, -0.77021814],
[ 1.39655257, 0.71431365, -1.58808148, ..., 0.64609167, -1.03067011, -1.39576675],
[ -0.4532777, 0.96344969, -0.24082173, ..., -1.54776799, 0.97024255, -1.49965629],
...,
[ -0.60119484, -1.62052514, -0.36136603, ..., 0.64609167, -1.03067011, 1.41441489],
[ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167, 0.97024255, 0.84614739],
[ -0.78548505, -1.36411841, 1.3829808, ..., 0.64609167, -1.03067011, 0.32630495]])
```

x_train.shape

(7000, 13)

```
x_test
```

```
array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167, 0.97024255, 1.61304597],
[-1.42080128, -0.50381294, -0.78208925, ..., 0.64609167, -1.03067011, 0.49753166],
[-0.90118604, -0.7932923, 0.41271742, ..., 0.64609167, 0.97024255, -0.4235611 ],
...,
[ 1.49216178, -0.14646448, 0.6868966, ..., 0.64609167, 0.97024255, 1.17045451],
[ 1.1758893, -1.29228727, -1.38481071, ..., 0.64609167, 0.97024255, -0.50846777],
[ 0.08088677, -1.38538833, 1.11707427, ..., 0.64609167, 0.97024255, -1.15342685]])
```

x_test.shape

(3000, 13)

y_train

```
7681
       1
9031
       0
3691
       0
202
       1
5625
      0
9225
      0
4859
      0
3264
      0
9845
      0
2732
       1
Name: Exited, Length: 7000, dtype: int64
```

y_test

```
9394
        0
898
        1
2398
        0
5906
       0
2343
        0
       . .
4004
       0
7375
       0
9307
        0
8394
        0
5233
        1
Name: Exited, Length: 3000, dtype: int64
```