UNCLASSIFIED
AD NUMBER
ADB015344
LIMITATION CHANGES
TO: Approved for public release; distribution is unlimited.
FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; APR 1976. Other requests shall be referred to Air Force Armament Laboratory, Eglin AFB, FL.
AUTHORITY
usadtc ltr, 3 jul 1979

AF

AFATL-TR-76-45, BOOK 2 /

Apr 16)

HELP - A MULTIMATERIAL EULERIAN PROGRAM
IN TWO SPACE DIMENSIONS AND TIME

1D-Bo/5 344

SYSTEMS, SCIENCE AND SOFTWARE P. O. BOX 1620 LA JOLLA, CALIFORNIA 92037

APRIL 1976

FINAL REPORT: JULY 1974 - JUNE 1975

Cleved for Open Tublication ADTC/05 #1, 15 Dune 1979.

AIR FORCE ARMAMENT LABORATORY

AIR FORCE SYSTEMS COMMAND . UNITED STATES AIR FORCE

EGLIN AIR FORCE BASE, FLORIDA

RETURN TO TECHNICAL LIBRARY, ARMANEIR LEVEL 1961 CENTER CO NOI DESINOY

ADTC/01 79-185

CHAPTER X

GUIDE TO THE FORTRAN PROGRAM

The primary functions of each subroutine as well as the definitions of important variables are given in the following sections. The flags and conventions which are unique to the HELP code are also listed and discussed.

10.1 A GENERAL FLOW DIAGRAM

The flow diagram given in Figure 10.1 indicates the organization of the code and describes the functions of the primary subroutines which are called from the main driver routine. The subroutines which in turn are called by each of the primary subroutines are also indicated. calculational cycle has six stages: (1) the calculation of the cell pressures and the time step (CDT); (2) the periodic editing of cell quantities and checking for energy conservation (EDIT); (3) the calculation of the effects of deviator stresses (SPHASE); (4) the calculation of mass transport terms for interface cells (INFACE); and (6) the calculation of the effects of transport (TPHASE). For calculations which ignore the strength effects, the third stage is skipped. For calculations in which a plug is generated, another stage (PLGGEN), following SPHASE, is added to the cycle. The rezone, if used, is invoked following the EDIT stage.

10.2 DESCRIPTION OF THE SUBROUTINES

The primary functions of each HELP subroutine are described below. The subroutines are listed alphabetically.

ADDENG

ADDENG is called only if one of the material packages is a high explosive. ADDENG examines the detonation time associated

GANG MENGALANG KENGTING KENGTAN PENGHAN PENGHAN PENGHAN PENGHAN PENGHAN PENGHAN PENGHAN PENGHAN PENGHAN PENGHAN

Figure 10.1--General flow diagram of the HELP code.

with each cell containing undetonated high explosives to ascertain if it is time for it to be detonated. Once it is determined that cell k is to be detonated, DETIM(k) is set to 0, which allows the cell to become active, and the energy of detonation is added to the cell and system. The DETIM array used by ADDENG is computed in DETIME when the problem is generated. After all cells containing high explosives have been detonated, ADDENG is no longer called.

ADDTCR

Material tracers can be added in a specified region at any point in the calculation by defining input flags (NADD, NTRACR, MINX, MINY, MAXX, MAXY). When NADD > 0, ADDTCR is called from EDIT every cycle which is a multiple of NADD. ADDTCR adds new tracers between existing pairs of tracers in the region defined by MINX, MINY, MAXX, MAXY but does not create a greater density of tracers than that specified by NTRACR. (See Section 8.2.)

CALFRC

CALFRC is part of the problem generator and is called only in the initial setup of a problem. Subroutine CALFRC follows each tracer string through the grid and, for each cell intersected by it, determines which side of the cell the string enters (storing this information in the variable KODENT) and through which side the string leaves (storing this information in the variable KODLEV). The X and Y centimeter coordinates of the entry point on the cell boundary are stored in the first location of the arrays XT and YT, respectively. centimeter coordinates of all successive tracer particles which lie inside the cell are stored in succeeding locations in the XT and YT arrays. When CALFRC determines the string has left the cell, the centimeter coordinates of the exit point are determined and stored in the next available location of the XT and YT arrays. There can be no more than 50 tracer particles which define the position of the material

interface in the mixed cell. CALFRC defines two other variables, NTST and NTND, which specify the initial and final material tracer particle numbers, respectively, which lie in the cell. These numbers are used in VOLFND to determine if the slipline lies in the cell.

CARDS

The input parameters stored in the Z-block of blank common are read by subroutine CARDS. The format of these input cards is described in Section 7.2.1.

CDT

A principal function of this routine is to compute a time step which ensures stability of the finite difference equations. This is done by finding the cell with the minimum ration, D/ω . Here D denotes the minimum of the cell's dimensions (cm) and ω denotes the sum of the cell's maximum velocity component and its sound speed (cm/sec). For an ideal gas the sound speed is computed as $\sqrt{\gamma P/\rho}$ and for other materials by the approximate relation $C = C_0 + \overline{B} \sqrt{P}$ where P is the pressure in the cell. The coefficient B is an input parameter and is described more fully in Section 10.3 (See BBAR). C_o is defined as $\sqrt{A/\rho_o}$, where A is the bulk modulus of the material. The values of C_{Ω} for nineteen materials are given in a DATA statement in the "included" element, COMDIM. In a multimaterial cell the sound speed is given by a mass weighted average of the sound speeds of the materials in the cell. Each cycle CDT prints the column and row (I,J) of the cell controlling the time step as well as the maximum sum of sound speed and velocity for any cell in the grid (MAXCUV), the maximum velocity for any cell in the grid (MAXUV), and the velocity and pressure cutoff values (UMIN, PMIN).

Another function of CDT is to equilibrate the pressures of materials in mixed cells by using an iteration scheme that adjusts the material densities. A detailed discussion of this iteration method is found in Section 4.6.1. The pressures for

pure cells are also updated in CDT by a call to the equation of state subroutine, EQST. The density, specific internal energy and material code number of the cell (RHOW, ENERGY, N) are passed through blank common.

When a high explosive is being detonated, CDT calls ADDENG to release energy in cells containing H.E. according to the detonation time (DETIM) associated with each cell.

CMPRSN

CMPRSN computes an average compression (ρ/ρ_0) of the material(s) in a cell. These compressions are used as weighting factors by HPHASE in the definition of cell boundary pressures and velocities when at least one of the cells contains the free surface or when the ratio of the average compressions of the two cells is large (> CRATIO). (See Section 2.2.2.4.)

COMDIM

COMDIM is not a subroutine, but is an element which is inserted in place of the statement "INCLUDE COMDIM" in most of the HELP subroutines. (This terminology is unique to UNIVAC computers, but the feature is offered by most large computer systems.)

This included element in HELP contains dimension, common and equivalence statements and two data statements which define material constants, ρ_{0} and C_{0} , for various solids and high explosives.

COMPRS

COMPRS is called by subroutine REZONE to create a new cell by combining two adjacent cells into one, the velocity and energy of the new cell being defined so that energy and momentum are conserved. If both cells are pure, then the new cell will also be pure. If one or both contain an interface, the new cell will be an interface cell. (See Section 8.1.)

DETIME

DETIME defines the detonation time array, DETIM, used in ADDENG. DETIME accomplishes this by computing the time required to traverse a line from an initiation point to the center of a cell, plus any delay time associated with the initiation point. All cells in the path must contain explosives, as any non-explosive cell in the path is treated as an obstacle and will prevent detonation of the cell by the initiation point. The X- and Y-coordinates, delay time (used by primary initiation points only), and material package number are read in for each primary and secondary initiation point. (Secondary initiation points are defined as initiation sites which are detonated by a primary initiation point.) After all initiation points are read in, the X- and Ycoordinates which describe the probable area of detonation (the area to be searched) corresponding to each of the primary and secondary initiation points are read in. The detonation time is computed for all explosive cells within the specified area to which there is an unobstructed path from the initiation point. See Section 2.3.4.1. The input cards are described in Section 7.2.7 and in Appendix B.

DMADJ

DMADJ adjusts the mass transport terms of interface cells. On the first subcycle of INFACE, DMADJ is called to define the mass transport terms of a material which must be evacuated from a cell because its interface has left the cell. The outflux terms are adjusted (in proportion to the outflux terms calculated on the previous cycle) so as to exactly equal the mass remaining in the cell. The influx terms are set to zero.

After all INFACE subcycles are completed, DMADJ is called again to check that the computed transport terms will not result in a negative mass. Also, if INFACE is being subcycled (CYCMX > 1), the evacuation procedure described above is repeated since an interface could have left a cell on a subsequent subcycle. (See Section 4.4.)

DMCALC

DMCALC computes the transport terms for each material across the four boundaries of each interface cell. DMCALC uses the fractional cell face areas (computed by subroutine FRACS) associated with each material package in the problem. In this way the position of the material interfaces in the cell is taken into account. The transport terms for the top, right, bottom and left boundaries of the interface cells are stored by DMCALC in the SAMPY, SAMMP, SAMMY, and SGAMC arrays, respectively. TPHASE performs the actual transport of mass, momentum and energy for both interface and pure cells.

EDIT

The periodic printing and writing on the restart tape are executed by subroutine EDIT. The frequency of printing and tape dumps is controlled by input parameters described in Section 7.2.1.

On every print cycle EDIT prints the mass, total energy, internal energy, kinetic energy, axial and radial momentum, and plastic work for each material package as well as for the entire grid. The changes in energy due to "evaporation" and to mass lost across grid boundaries are also accounted for. The coordinates of the material tracers circumscribing each package are printed in cell units. Summary graphs of the compression (or density), pressure, radial velocity, axial velocity and internal energy are printed if the input parameter, MAPS, is non-zero. And finally, the pressure, radial velocity, axial velocity, internal energy, mass, compression (or density) and stress deviators for all cells in the active grid are displayed on "long" EDIT prints and for only the cells in the axis column on "short" EDIT prints.

EDIT periodically calls ADDTCR to add tracer particles if the input parameter NADD is non-zero. (See Section 8.2.)

Another important function of EDIT is to check the relative error between the sum of the total energy of all the cells, and ETH, the theoretical energy of the grid. If this error exceeds a limit specified by the input variable DMIN, EDIT calls ERROR and the code performs an error exit.

EDIT also determines when execution should stop and sets the exit flag, WFLAGL.

ENCHCK

ENCHCK is called by the main routine, HELP, after each phase of the cycle to compute the relative error between the total grid energy and ETH. The energy of the cells is summed and compared to the theoretical energy, ETH, which is the energy at time T = 0 plus any energy added to the grid (e.g. when an explosive is being detonated), minus any energy subtracted from the grid (e.g., when material is "evaporated" or transported out of the grid). ENCHCK prints the name of the phase (TPHASE, SPHASE, HPHASE) which has just been completed, along with ETH, the energy sums and the relative error. Two energy sums are computed, one using material velocities (EMIX) and one using cell velocities (ESUM). The relative error is based on the EMIX sum.

These prints can be used to track down errors which result in energy not being conserved by noting if there are consistent, large increases in the relative error each cycle following the execution of one of the phases.

ENDMV

ENDMV is called only when the plugging model is being used. After the plug is completely formed, all the tracers on the vertical edge of the plug are moved with projectile and plug velocities except the tracer at the top, which is moved with target velocities only. The larger axial velocities in the plug will cause the tracers below the top point on this plug surface to eventually be moved above the top point by MOVTCR. Subroutine ENDMV relocates

these tracers at the position of the top point, thereby accumulating tracers at that point as the plug moves beyond the back surface of the target.

EOUT

EOUT keeps track of the changes in kinetic and internal energy of each material package due to changes in the theoretical grid energy, ETH. EOUT is called from HPHASE, TPHASE, and SPHASE.

EQST

Given a material code number as well as a density and specific internal energy, EQST computes a pressure. The equations of state used by EQST are discussed in Section 2.3.1. The material constants defined in DATA statements in EQST are listed in Tables 2.1 and 2.2. CDT calls EQST when computing the pressure of pure cells as well as when iterating to equilibrate material pressures in multimaterial cells.

ERROR

This subroutine is called in case certain error conditions are sensed by the code. ERROR prints a message identifying the general location within the subroutine which detected the error condition (see error message #6 in Section 9.1). It lists the Z-block variables (the first 150 words of blank common), and calls EDIT to do a long print and a tape dump, and then stops execution.

FILGRD

FILGRD is part of the problem generator and is executed only during the initial setup of the problem. FILGRD determines the MFLAG values of all pure cells in the grid except for the one in the lower left corner, which the user defines. Given the initial density, velocity components and internal energy of each material package, FILGRD defines the mass,

velocity components and specific internal energy of each cell in the grid. The mass of a pure cell is based on the cell's MFLAG value which indicates which package the cell belongs to. If the cell is an interface cell, the mass of each material in the cell is computed by FILGRD using the partial volumes computed by VOLFND.

FLGSET

FLGSET is called on each subcycle of INFACE, after the fractional cell face area terms are computed. Based on the updated area terms, FLGSET determines which (if any) interface cells have become pure (lost all interfaces), and which (if any) have lost some, but not all, interfaces. In either case one or more materials must be evacuated from the cell. FLGSET implements the following conventions to denote the occurrence of these events: (1) the density RHO(n,m) of any material(s) to be evacuated is set to zero; (2) the MFLAG of any interface cell that has become pure is made negative. However, any cell that has become pure is still handled as an interface cell until the end of the cycle, when its MFLAG is changed in TPHASE.

FLGSET also checks that the sum of the fractional cell face areas for each interface cell boundary equals the total area of that boundary. If the sum differs from the total area by more than 1% an error message is printed (see error message #30 in Section 9.1). The error is usually the result of interfaces crossing because the tracer particles have become too sparse.

FRACS

The straight line segments which connect the tracer particles that circumscribe each material package are used by FRACS to determine where the interfaces cut cell boundaries and to compute the fractional cell face areas. Section 4.3 gives a detailed description of the logic and conventions employed by FRACS.

HELP

The overall cycling of the calculation is controlled by HELP, as shown in Figure 10.1. HELP is the main routine of the code and calls INPUT, CDT, EDIT, REZONE (if it is a rezone cycle), SPHASE, PLGGEN (if the plugging option is used), HPHASE, INFACE and TPHASE in that order. When the user desires to see the effects of each phase of the calculational cycle, HELP will respond to the input parameter INTER and, on print cycles, call EDIT after SPHASE and HPHASE as well as after CDT (see Section 9.2). HELP also calls EXIT on the normal cessation of the calculation when WFLAGL > 0.

HPHASE

The effect of the pressure gradients in updating the velocities and the internal energies is computed in HPHASE. (The numerical method is described in detail in Section 2.2.2.)

INFACE

INFACE controls the subcycling of FRACS, FLGSET, DMADJ, DMCALC, and MOVTCR. the subroutines which compute the mass transport terms of interface cells and which advance the tracer particles. If sliplines are used (NOSLIP = 0) INFACE calls THETAS, after the subcycles are completed, to compute the angle of the slipline across each slipline cell.

INPUT

Instructions for running problems are interpreted by subroutine INPUT, which can either start or restart a calculation.
It calls CARDS to read the first part of the input deck, and,
on cycle 0, calls SETUP to generate the initial conditions of
the calculation. When generating a calculation, INPUT rewinds
and reads the restart file after SETUP writes the cycle 0 dump,
and, when restarting a calculation, INPUT finds and reads the
restart dump.

MAP

This subroutine is called by EDIT when the input parameter MAPS is non-zero. It displays the properties of each cell in the active grid using an alphabetic scale. The user obtains symbolic maps of the compression, pressure, radial and axial

velocities, and specific internal energy by setting MAPS = 1.

To get a density map instead of a compression map, the user sets MAPS = 2. Asterisks are displayed for the interface cells in the density and compression maps. The scale of each map is adjusted according to the current minimum and maximum values of each quantity.

MOVTCR

The material and passive tracer particles are moved with a local velocity field in MOVTCR. A description of the method for moving tracers is given in Section 4.1.2.

NEWFLG

NEWFLG determines the MFLAG value of new interface cells (see Section 4.2.1).

NEWMIX

NEWMIX is called from FRACS to define variables for a new interface cell. If a cell becomes an interface cell after the first subcycle of INFACE, NEWMIX calls DMCALC to make the definition of the mass transport terms for that cell consistent with the number of subcycles already completed. (See Sections 4.2.2 and 4.2.3.)

NEWRHO

When the material n interface first enters a cell, INFACE calls subroutine NEWRHO to define the density of material n for that cell by looking at the density of material n in the neighboring cells closest to the interface. (See Section 4.2.2.)

PLGADD

PLGADD is called by SETUP only when the plugging model is being used. It adds target and plug material tracer particles at the corner where the plug surface will begin. Those additional points will be used to define the vertical edge of the plug as it evolves. This edge will be a slipline and the plug will be package 2 and a "slave", so the number of tracers

added at the corner is defined by the plug slipline endpoints, NBGSD(2) and NENDSD(2), which in turn are defined by the user in the INPUT deck. (See Section 6.1.)

PLGALF

PLGALF computes the angle of maximum shearing stress for cells in the plugging region of the target, given their deviator strain rates. PLGALF is called from SPHASE only if the plugging model is being used.

PLGGEN

At the end of SPHASE, when the plugging model is activated, PLGGEN is called to update the specific plastic work of the material associated with each passive tracer in the plugging region of the target. If the criterion for extending the plug surface is satisfied, PLGTCR, PLGVOL and PLGMAS are called to enlarge the plug package. (See Section 6.2.1.)

PLGMAS

PLGMAS converts target material (package 3) into plug material (package 2) by redefining the RHO, SIE, and XMASS arrays. PLGMAS also updates the plug and slipline endpoints (SLPNDX, SLPNDY). (See Section 6.2.4.)

PLGTCR

When the slipline is advanced, PLGTCR moves the tracers at the top of the plug package into the row containing the new end point of the slipline. When the last row of the target fails, the tracers at the top of the plug are made coincident with the target tracers out to the point at which the slipline intercepts the top of the target. Two plug tracers are left at that intercept point. One moves out with the plug, the other remains attached to the target and is the end point of the slipline. The target tracers are also redefined. The target package is no longer attached to the axis, but begins at the top slipline endpoint. (The tracers

between the axis and the slipline are plug and free surface tracers.) The indices of the tracers of each package that define the endpoints of the slipline(NBGSD_i, NBGMD_i, NENDSD_i, NENDMD_i, i = i, NMAT) are changed as necessary at this time. (See Section 6.2.2.)

PLGVOL

When the plug is extended through another row of cells, PLGVOL is called to compute the partial cell volume of the plug material in the cell containing the extended plug surface. (See Section 6.2.4.2.)

PLUGUV

Once the plug has begun to evolve, the motion of the tracers on the plug interface is determined by special prescriptions in PLUGUV. These prescriptions are described in Section 6.2.3.

PTSAV

The intercepts between the slipline and grid lines are stored by subroutine PTSAV and used by subroutine THETAS to compute the angle of the slipline across each slipline cell. PTSAV is called by FRACS when a pair of master package tracers along the slipline are being used to compute a fractional cell face area. FRACS computes the intercept (in cm.) and PTSAV stores it in special arrays, XINT and YINT.

PTSAV uses a pointer array, MSLD, to associate the MFLAG and the i and j values of a cell with the intercept arrays, XINT and YINT, as follows:

MSLD (ms) = MFLAG (k)*1000000 + i*1000 + j

XINT $(1,ms) \rightarrow x$ -coordinate of the intercept at top of cell (k,i,j)

XINT $(2,ms) \rightarrow x$ -coordinate of the intercept at bottom of cell (k,i,j)

YINT $(1,ms) \rightarrow y$ -coordinate of the intercept at right of cell (k,i,j)

YINT $(2,ms) \rightarrow y$ -coordinate of the intercept at left of cell (k,i,j)

The XINT, YINT arrays are initialized on each subcycle of INFACE.

PTSAV also sets THETA (m) = 100 to indicate that the mixed cell k is cut by the slipline, where m = MFLAG(k) - 100.

REZONE

To add more material and diminish the number of zones in the active grid the REZONE routine combines either two cells (if rezoning in only one direction) or four cells (if rezoning in both directions) into one, and adds columns and/or rows to maintain an IMAX by JMAX grid. (See Section 8.1.)

REZONE is called from HELP only when certain input parameters (NUMREZ, REZ, IEXTX, JEXTY) are set. It can be "forced" on the first cycle of a restart run by setting REZ=1 in the input deck, or it can be "triggered" by TPHASE which sets REZ=1 when a signal reaches the edge of the grid.

RNDOFF

RNDOFF is called from DMADJ to insure that the sum of the mass transport terms of a given material exactly equals the mass of that material remaining in the cell. RNDOFF is called when a material is being evacuated or its transport terms are being adjusted to prevent a negative mass. (See Section 4.4.) SETUP

SETUP defines several problem constants and reads the cards defining the DX and DY arrays, the initial conditions and strength properties of the material packages, and the parameters defining the slipline. SETUP also generates the passive tracer particles and writes the cycle 0 tape dump.

SETUPA

SETUPA defines the X, Y and TAU arrays and converts the tracer particle positions from centimeter to cell units. It moves tracer particles that are close to a grid boundary onto that boundary, and forces positions of corresponding tracers from different packages to be exactly equal. SETUPA also initializes some of the mixed cell arrays and calculates the initial value of ETH, the total theoretical energy of the material in the grid. CALFRC and FILGRD are called from SETUPA to define the properties of each cell in the grid. For plugging calculations PLGADD is called from SETUPA to generate additional tracer particles

SPHASE

In subroutine SPHASE, the deviator stresses acting on each cell face and the hoop stress are determined, and the resulting velocity and internal energy increments are computed.

(Details are given in Sections 2.2.1 and 2.3.2,) SPHASE calls STRNG to compute the strength of the material in a cell. The effects of strength can be omitted and SPHASE bypassed by setting CYCPH3 = -1.

STRNG

The yield strength of the material in a cell is computed by STRNG. (See Section 2.3.2.) The strength of a multimaterial cell is a volume weighted average of the strength of its constituents. The strength constants for each material are defined by input cards when the problem is generated. STRNG is called from SPHASE.

THETAS

For calculations which use the slipline capability of the code (NOSLIP=0), THETAS is called to compute the angle of the slipline in each slipline cell for which PTSAV set THETA(m)=100. THETAS uses the intercepts saved by PTSAV to determine the angle of the slipline across a given slip cell. THETAS uses the first two non-zero cell boundary intercepts in this order:

top, bottom, right, and left. Therefore, if the slipline cuts the top, left, right, and bottom sides of a cell, THETAS uses only the top and bottom intercepts to define an average angle of the slipline through that cell.

TPHASE

Mass transport and the associated transport of momentum and energy are accounted for in TPHASE. (The numerical method is described in detail in Section 2.2.3.) Before printing a symbolic map which displays the material package numbers and interface cell locations, TPHASE redefines the flags of cells that have become pure.

TSETUP

TSETUP reads cards defining tracer particle locations.
TSETUP generates, in centimeter coordinates, tracer particle
positions which are on straight line segments or on arcs of
circles or ellipses. (See Section 7.2.5.)

UC

Given the magnitude of the velocity components normal and tangential to the slipline (WN, WT), subroutine UC computes the radial component of velocity in the grid coordinate system.

UVCALC

UVCALC is called by HPHASE to update the velocities of materials in slipline cells. The new material velocities are determined by solving the four simultaneous linear equations described in Section 5.2. If a cell does not contain a slipline (THETA(m) < 0), HPHASE sets the material velocities (US, VS) equal to the updated cell-centered velocities (U, V).

UVMOD

After material and cell velocities are modified in TPHASE due to momentum transport, UVMOD is called to insure that the material velocities of slipline cells satisfy the requirement that the master and slave velocity components

normal to the slipline are equal and that the total momentum of the cell is conserved. (See Section 5.4.) UVMOD is not called if sliplines are not used (NOSLIP > 0).

VC

Given the magnitude of the velocity components normal and tangential to the slipline (WN,WT), subroutine VC computes the axial component of velocity in the grid coordinate system.

VDCLOS

Given the second index (NVRTEX) of the free surface tracer particle which is the vertex of a void closing region, VDCLOS applies three criteria to determine if the void should be closed up to the next free surface tracer. (See Section 8.4.)

If one of the criteria is met, VDCLOS moves two material tracers and one free surface tracer to a specified point on the free surface. The specified point then becomes the new vertex of the void closing region. Two free surface tracers are removed, and, in the region where the void was closed, the interface becomes only a material interface and is no longer a free surface.

VOLFND

VOLFND is part of the problem generator and is called only in the initial setup of a problem. VOLFND defines the volume and surface areas of a given material package in a mixed cell. VOLFND accomplishes this by using the XT, YT arrays which define the tracer particles belonging to that package and located in that cell. VOLFND adds tracer particles at appropriate corners of the cell, as well as one having the same coordinates as the first tracer in the XT, YT array. The arrays, XT, YT, now define an enclosed volume in such a way that, as one proceeds between two consecutive tracers, the given material package is to the left. VOLFND calculates the partial volume and fractional surface

areas for that material through the use of the theorems of Pappus. For the volume calculation, the theorem states the volume generated by a plane area that is rotated about a line that lies in its plane but does not intersect the area, is equal to the product of the area and the distance traveled by its center of gravity. For the surface area calculation, the theorem states the surface area generated by a line that is rotated about a line that lies in its plane but does not intersect the line, is equal to the product of the length of the line and the distance traveled by its center of gravity. The partial volume is stored in the VOLM array. The fractional surface areas are stored in FRACRT and FRACTP.

VOLFND also determines if the slipline lies in the mixed cell and, if so, calculates the angle THETA the slipline makes with the X-axis.

WN

Given radial and axial velocity components and the angle of the slipline, WN computes the magnitude of the velocity component normal to the slipline.

WT

Given radial and axial velocity components and the angle of the slipline, WT computes the magnitude of the velocity component tangent to the slipline.

XCTOP

XCTOP converts the x-coordinate of a point from cell to centimeter units.

XPTOC

XPTOC converts the x-coordinate of a point from centimeter to cell units.

YCTOP

YCTOP converts the y-coordinate of a point from cell to centimeter units.

YPTOE

YPTOC converts the y-coordinate of a point from centimeter to cell units.

10.3 <u>DICTIONARY OF IMPORTANT VARIABLES</u>

This section includes a description of the use, units, dimension and location of all variables in common blocks, as well as many variables local to the subroutines. The following conventions are used in the dictionary in describing the storage location of the variables:

- (NAME) The variable is local to subroutine NAME.
- NAME The variable is in common block NAME.
- B.C. The variable is in Blank Common or equivalenced to a variable in Blank Common.
- =Z(N) The variable is equivalenced to a member of the Z-array, the first array in Blank Common. Most of these variables are used in generating and restarting problems.
- --- The variable is used as a calling argument.

In describing the dimensions of the variables the conventions are:

- --- The variable is not dimensioned.
- (30) The array is always dimensioned 30.
- (NVAR) The dimension of the array must be greater than or equal to the value of NVAR, where NVAR is determined by the user when the calculation is generated. (See Appendix A for procedures for dimensioning the HELP arrays.)

Variable Name	Location	Dimension of Array	Units	Definition
A	(EQST)			"a" in the thermal pressure term of the Tillotson equation of state. (See Section 2.3.1. Also, "a" in the JWL equation of state for detonated explosives. (See Section 2.3.1.1)
AIX	В.С.	(KMAX)	ergs/g	Specific internal energy in a cell.
ALE .	(MAP)	(41)		This array has alphabetic characters for positive values in the density (or compression), velocity, pressure and energy maps. Defined in a DATA statement.
ALFA	(EQST)			"a" in the Tillotson equation of state for hot, expanded materials (see Section 2.3.1.2). "a" in the JWL equation of state for a detonated high explosive. (See Section 2.3.1.1)
ALPHA	=Z(75)		radians	In PLGALF, ALPHA is the current angle of maximum shearing stress of a given cell. Used only in plugging calculations. In PLGTCR, PLGVOL and PLGMAS, it is

Variable Name	Location	Dimension of Array	Units	Definition
				the angle at which the plug edge is being extended.
ALPHSV	(PLGGEN)		radians	The angle of maximum shearing streed of material (associated with a passive tracer) which has just satisfied the plastic work criterion and is near the tip of the plug.
ALPSV	PLSTC	(IPLGRT, IPLGTP- IPLGBT+1)	radians	The angle of maximum shearing stress of each cell in the plugging region of the target is saved in the ALPSV array.
AMDM	B.C.	(NMAT)		The tensile failure criterion is based on material expansio If ρ/ρ < AMDM, t material cannot support hydrostat tensions or deviator stresses. (S Section 2.3.3)
AMMP	(TPHASE)		g	Mass transported across the right boundary of a cel (See Section 10.4.2)
AMMU	(TPHASE)		g-cm/sec	Radial momentum transported acros

Variable Name	Location	Dimension of Array	Units	Definition
			,	the bottom bound- ary of a cell. (See Section 10.4.2)
AMMV	(TPHASE)		g-cm/sec	Axial momentum transported across the bottom boundary of a cell. (See Section 10.4.2)
AMMY	(TPHASE)		g	Mass transported across the bottom boundary of a cell. (See Section 10.4.2)
AMPY	(TPHASE)		g	Mass transported across the top boundary of a cell. (See Section 10.4.2)
AMUR	(TPHASE)	11	g-cm/sec	Radial momentum transported across the right boundary of a cell. (See Section 10.4.2)
AMUT	(TPHASE)		g-cm/sec	Radial momentum transported across the top boundary of a cell. (See Section 10.4.2)
AMVR	(TPHASE)		g-cm/sec	Axial momentum transported across the right boundary of a cell. (See Section 10.4.2)
AMVT	(TPHASE)		g-cm/sec	Axial momentum transported across the top boundary of a cell. (See Section 10.4.2)

Second Consisted Con

Variable Name	Location	Dimension of Array	Units	Definition
AMX ·	B.C.	(KMAX)	g	Total mass in a cell.
AN	(PLGGEN)		Li .	The number of passive tracers near the tip of the plug whose material has passed the plastic work criteric on a given cycle.
В	(EQST)	~~~		"b" in the thermal pressure term of the Tillotson equation of state (See Section 2.3.1.2)
BBAR	= Z(149)	± 1		"B" used in CDT. INPUT parameter used in local sound-speed calculation for all materials other than an ideal gas. (Local
		13		sound-speed for material i in ce K is approximate as $(C_{0i})+B \cdot \sqrt{P(K)}$, where the
	il .			coefficient B is obtained by determining a typical slope
		• .		for the isentrop in Ref.11 and using the relati C = V/-dP/dV to evaluate B at a particular point
BBOUND.	= Z (74)	-	ergs	Calculated in SPHASE. Printed in EDIT under "Elastic Plastic Work." Total

Variable Name	Location	Dimension of Array	Units	Definition
				work done by the elastic and plastic stresses.
BETA	(EQST)			"β" in the Tillot son equation of state for hot, expanded material (See Section 2.3.1.2). "β" in
		• •	=	the JWL equation. (See Section 2.3.1.1)
ВОТМ	=Z(39)		g	Calculated in TPHASE. Printed in EDIT. Total mass transported across bottom of grid.
вотми	= Z (64)	***** *** ***	g-cm/sec	Calculated in TPHASE. Printed in EDIT. Total radial momentum transported acros bottom of grid.
BOTMV	= Z (40)	1 '	g-cm/sec	Calculated in TPHASE. Printed in EDIT. Total axial momentum transported acrosbottom of grid.
CAPA	(EQST)		dynes/cm ²	"A" in the mechanical pressure terof the Tillotson equation of state and of the JWL equation of state for detonated explosives. (See
			2	Sections 2.3.1.1 and 2.3.1.2)
CAPB	(EQST)	10-25	dynes/cm ²	"B" in the mechar ical pressure ter of the Tillotson and JWL equations of state. (See Sections 2.3.1.1 and 2.3.1.2)

Variable Name	Location	Dimension of Array	Units	Definition
CKE	(HPHASE)		ergs	The kinetic energy of a slipline cell after the material velocities are updated by UVCALC.
CNAUT	MXCELL	(30)	cm/sec	"Co" used in CDT. Approximate sound- speed of nineteen materials defined in a DATA State- ment in COMDIM, the "included" element. Coi = \[\begin{array}{c} \text{ESCAPA}_i \\ \text{RHOZ}_i \end{array} \]
				= $\sqrt{A_i/\rho_{oi}}$
COMPC	(CMPRSN)		3	The compression of the material in cell k. Used in HPHASE to weight pressures and
				velocities, when necessary, in computing cell boundary values. (Se Section 2.2.2.4)
CRATIO	=Z(148)			The cell boundary pressures and velocities are compression weighte in HPHASE if the ratio of the com-
	V			pressions of the two cells is greater than
				CRATIO, an input parameter. (See Section 2.2.2.4)
CSQR	B.C.	(NMAT)	dynes-cm/g	The constant energy compressi- bility of a
<u></u>			1 2 Y	material, computed and used in CDT in the pressure iteration. (See Section 4.6.1.1)

Used to describ the bottom boun ary condition. bottom grid boun is transmittive when CVIS = -1, reflective when CVIS = 0. CYC B.C A flag used in DMCALC, DMADJ a set in INFACE, SETUPA and NEWM In DMCALC it is used as a fact in the computat tion of the mas transport terms and is greater than 1 only when NEWMIX cal DMCALC to make subcycles for cells which be- come interface cells after the first subcycle INFACE. In DM CYC = 0 means mass transport terms have not been updated, CYC = 1 means all subcycles INFACE have be- completed and mass transport terms are upda: (See Section 4. CYCLE =Z(2) Used in INPUT, SETUP, CDT, ED; Cycle number (d integer value)	Variable Name	Location	Dimension of Array	Units	Definition
DMCALC, DMADJ a set in INFACE, SETUPA and NEWM In DMCALC it is used as a fact in the computation of the mastransport terms and is greater than 1 only when NEWMIX cal DMCALC to make subcycles for cells which become interface cells after the first subcycle INFACE. In DMC CYC = 0 means mass transport terms have not been updated, a CYC = 1 means all subcycles of INFACE have becompleted and mass transport terms are updated (See Section 4. CYCLE = Z(2) Used in INPUT, SETUP, CDT, ED Cycle number (a integer value)	CVIS	= Z (27)			INPUT parameter. Used to describe the bottom bound- ary condition. Th bottom grid bounda is transmittive when CVIS = -1, reflective when CVIS = 0.
SETUPA and NEWM In DMCALC it is used as a fact in the computa- tion of the mas transport terms and is greater than 1 only when NEWMIX cal DMCALC to make subcycles for cells which be- come interface cells after the first subcycle INFACE. In DM CYC = 0 means mass transport terms have not been updated, a CYC = 1 means all subcycles of INFACE have be completed and mass transport terms are updat (See Section 4. CYCLE = Z(2) Used in INPUT, SETUP, CDT, ED: Cycle number (a integer value)	CYC	В.С.			DMCALC, DMADJ and
than 1 only when NEWMIX cal DMCALC to make subcycles for cells which be- come interface cells after the first subcycle INFACE. In DM/ CYC = 0 means mass transport terms have not been updated, a CYC = 1 means all subcycles INFACE have be completed and mass transport terms are updat (See Section 4. CYCLE = Z(2) Used in INPUT, SETUP, CDT, EDI Cycle number (a integer value)					SETUPA and NEWMIX. In DMCALC it is used as a factor in the computa- tion of the mass transport terms
come interface cells after the first subcycle INFACE. In DM/CYC = 0 means mass transport terms have not been updated, a CYC = 1 means all subcycles of INFACE have been completed and mass transport terms are updated (See Section 4. CYCLE =Z(2) Used in INPUT, SETUP, CDT, EDT, Cycle number (a integer value)	(8)				than 1 only when NEWMIX calls DMCALC to make up subcycles for
mass transport terms have not been updated, a CYC = 1 means all subcycles of INFACE have been completed and mass transport terms are update (See Section 4. CYCLE =Z(2) Used in INPUT, SETUP, CDT, EDT Cycle number (a integer value)					come interface cells after the first subcycle of INFACE. In DMADJ
all subcycles of INFACE have been completed and mass transport terms are updated (See Section 4. CYCLE =Z(2) Used in INPUT, SETUP, CDT, EDT Cycle number (a integer value)			11		mass transport terms have not been updated, and
SETUP, CDT, EDT Cycle number (a integer value to the control of th	n -2				CYC = 1 means all subcycles of INFACE have been completed and the
integer value :	CYCLE	= Z(2)	-, 		Used in INPUT, MAR SETUP, CDT, EDIT. Cycle number (an
form).		E E		i	integer value in floating point

Variable Name	Location	Dimension of Array	Units	Definition
CYCMX	=Z(69)			INPUT parameter. Equals number of passes through INFACE on each cycle. Suggested minimum of 2 and maximum of 8. Used to minimize transport noise near interfaces.
СҮСРНЗ	=Z(70)	:		INPUT parameter. Number of times to subcycle SPHASE If it is set to -1 SPHASE is omitted.
CZERO	B.C.	(NMAT)	dynes/cm ²	Value of Y for caculation of materi yield strength. Defined by input cards for each material package in the grid. Used
-5				in STRNG. (See Section 2.3.2.3)
DELEB	(TPHASE)	 	ergs	The total energy transported across the bottom boundary of a cell. (See Section 10.4.2)
DELER	(TPHASE)		ergs	The total energy transported across the right boundary of a cell. (See Section 10.4.2)
DELET	(TPHASE)		ergs	The total energy transported across the top boundary of a cell. (See Section 10.4.2)
DELM	(TPHASE)		g	Total change in mass of a cell.

Variable Name	Location	Dimension of Array	Units	Definition
DENGY	(ADDENG)	(30)	ergs/g	The specific internal energy released by a high explosive, defined in a DATA statement in ADDENG for four explosives.
DETIM	B.C.	(KMAX)	sec	The time for the HE detonation front to reach the center of a cell. If cell K does not contain high explosive, or if the explosive has been detonated, DETIM(K)
		12 22 - 24		= 0. If the problem does not involve an explosive the DETIM array can be dimensioned 1.
DISTX	(MOVTCR)		cm	The distance in the x-direction a tracer moves on a given subcycle of INFACE.
DISTY	(MOVTCR)		cm	The distance in the y-direction a tracer
		\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.		moves on a given subcycle of INFACE.
DMIN	=Z(24)			INPUT parameter. Allowable relative error in energy sum. When relative error is > DMIN, calcu-
				lation is terminated. The relative energy error is checked in EDIT.

Variable Name	Location	Dimension of Array	Units	Definition
DNMS	(UVCALC)		g/cm ³	The average density of all the "master" material in a slipline cell.
DNSL	(UVCALC)	*****	g/cm ³	The average density of all the "slave" materials in a slipline cell.
DT	= Z (3)	- -	sec	Time step $\Delta t = \left(\frac{(\Delta X, \Delta Y) \min}{(C + (U, V) \max)}\right)_{min} \cdot S$ Calculated in CDT (See CDT, Section 10.2)
DTFACT	(SPHASE)		 .	Factor used in calculating a variable time step when subcycling the SPHASE calculatio
DTMIN	= Z (144)		sec	INPUT parameter. Used in CDT as ti step cutoff. Afte STAB = FINAL, if DT < DTMIN execut is stopped.
DTNA	= Z(26)	•	sec	DT from previous time cycle. Used in INPUT, CDT, ED HELP and REZONE.
DTSTR	(SPHASE)		sec	The time step use by SPHASE: DTSTR DT*DTFACT. When SPHASE is not subcycled, DTFACT = and DTSTR = DT.
DX	В.С.	(IMAX)	cm	The radial- dimension of cell

Variable Name	Location	Dimension of Array	Units	Definition
DXF	= Z (136)		Cm	DXF = DX(1) if the radial dimension of the cells is uniform.
DX 0 0	в.с.		cm	DX00 = DX(0).
DY	B.C.	(JMAX)	cm	The axial- dimension of cells
DYF ·	= Z(137)		cm	DYF = DY(1) if the axial dimension of the cells is uniform.
DY0 0	В.С.		cm	DY00 = DY(0).
EAMMP	(TPHASE)		ergs/g	Specific internal energy of mass transported across the right edge of a cell.
EAMPY	(TPHASE)		ergs/g	Specific internal energy of mass transported across the top of a cell.
ECK	= Z (76)			Used in EDIT. Relative error in energy sum:
				$ECK = \left(\sum_{k} E_{k} - ETH\right) / ETH$
				where E_k is total energy in cell k. If $ ECK > DMIN$, execution is stopped.
EMIN	= Z (85)		ergs/g	INPUT parameter. Minimum specific internal energy to be used in the gamma-law equation of state Usually EMIN 10

Variable Name	Location	Dimension of Array	Units	Definition
EMI X	(ENCHCK)		ergs	The sum of the energy in all the cells in the grid. Used by ENCHCK to compute the relative energy error
				after each phase of the cycle. Thi energy sum is com- puted using materi
				velocities rather than cell-centered velocities in interface cells.
ЕМОВ	=2(150)		ergs	Calculated in TPHA Printed in EDIT. Total energy trans ported across bottom grid boundary.
EMOR	=Z(135)		ergs	Calculated in TPHA Printed in EDIT. Total energy trans ported across right grid boundary.
ЕМОТ	=2(146)		ergs	Calculated in TPHA Printed in EDIT. Total energy trans ported across top grid boundary.
ENERGY	B.C.		ergs/g	Defined in CDT as the specific interrenergy of a cell or of a material in a multimaterial cell. Used in EQST to compute P = f(ENERG RHOW).
	24		, s	
ЕОВ	=Z(134)	 -	ergs	Calculated in HPHA and SPHASE. Printe in EDIT. Change in the energy of the
	E .	10-32		grid due to work done at the bottom boundary of the grid. (See Sectio 3.3.2)

Variable Name	Location	Dimension of Array	Units	Definition
EOR	= Z(132)		ergs	Calculated in HPHASE and SPHASE. Printed in EDIT. Change in the energy of the grid due to work done at the
				right boundary of the grid. (See Section 3.3.2)
EOT	= Z(133)		. ergs	Calculated in HPHASE and SPHASE. Printed in EDIT. Change in the energy of the grid due to work done at the top boundary of the grid. (See Section 3.3.2)
ERDUMP	B.C.			Used in EDIT and ERROR. Flags EDIT to do only a tape dump on an error exit.
ERR	(SPHASE)	(IMAX+1,3)	1/sec	The normal radial instantaneous strain rate associated with cell centers. (See Section 2.3.2.1)
ERRINT	MKPLUG	**** ***	1/sec	The normal radial instantaneous strain rate cor-
				rected for convection. Computed in SPHASE, used to update deviator stress, S_{rr} , and to compute the angle of maximum shearing stress in PLGALF. (See Section 2.3.2.1)

Variable Name	Location	Dimension of Array	Units	Definition
ERZ	(SPHASE)	(IMAX+1,3)	1/sec	The instantaneous shear strain rate associated with cell centers. (See Section 2.3.2.1)
ERZINT	MKPLUG		1/sec	The instantaneous shear strain rate corrected for convection. Computed in SPHASE, used to update shear stress, S_{rz} , and to compute the angle of maximum shearing stress in PLGALF.
ES	(EQST)		ergs/g	E _s , the specific internal energy necessary to bring material to vapor temperature. If material is expanded and its specific internal energy is greater than E _s , but less than E's, an equation of state is used which is a blend of the com-
	1 1			pressed and expanded formulations. (See Section 2.3.1.2)
ESA	(EQST)	(30)		Defined in DATA Statement. Values of "a" in equation of state for 19 inert materials \S 4 explosive [=(γ -1) when using perfect gas equation of state.]

Variable Name	Location	Dimension of Array	Units	Definition
ESALPH	(EQST)	(30)		Defined in DATA Statement. Values of "α" in equation of state for 19 inert materials and 4 explosives.
ESB	(EQST)	(30)		Defined in DATA Statement. Values of "b" in equation of state for 19 materials.
ESBETA	(EQST)	(30)		Defined in DATA Statement. Values of "β" in equation of state for 19 inert materials and 4 explosives.
ESCAPA	(EQST)	(30)	dynes/cm ²	Defined in DATA Statement. Values of "A" in equation of state for 19 ine materials and 4 explosives.
ESCAPB	(EQST)	(30)	dynes/cm ²	Defined in DATA Statement. Values of "B" in equation of state for 19 ine materials and 4 explosives.
ESES	(EQST)	(30)	ergs/g	Defined in DATA Statement. Values of "E," in equation of state for 19 ine materials.
ESESP	(EQST)	(30)	ergs/g	Defined in DATA Statement. Values of "E'" in equation of state for 19 incomaterials.

Variable Name	Location	Dimension of Array	Units	Definition
ESEZ	(EQST)	(30)	ergs/g	Defined in DATA Statement. Values of "E ₀ " in equation of state for 19 inert materials.
ESP	(EQST)		ergs/g	Es, the specific internal energy necessary to vaporize a material. If a material is expanded and its specific internal energy is greater than Es the expanded form of the Tillotson equation of state is used. (See
				Section 2.3.1.2)
ESUM	(EDIT, ENCHCK, UVMOD)		ergs	The sum of the energy in all the cells in the grid. Used by EDIT to
·		\$ ·		compute the rela- tive energy error. In ENCHCK, ESUM
				is the energy computed using cell centered velocities rather than material
	1			velocities in interface cells. (See EMIX) In
	* 1	H	μž	UVMOD, ESUM is the average specific internal
				energy of a slip- line cell.
ETA	(EQST)			ρ/ρ ₀ , the compression of a material. Used in EQST to com-
	* * ₀		·	pute the material pressure.

Variable Name	Location	Dimension of Array	Units	Definition
ЕТН	= Z (13)		ergs	Theoretical value of total energy in the mesh. Calculated in FILGRD initially.
EVAPEN	=Z(101)		ergs	Calculated in TPHASE and RNDOFF Printed in EDIT. Sum of energy los through "evaporation" of mass left in cells due to round-off error.
EVAPM	= Z (100)	3	g	Calculated in TPHASE and RNDOFF Printed in EDIT. Sum of mass lost through "evaporation". See EVAPEN.
EVAPMU	=Z(102)		g-cm/sec	Calculated in IPHASE and RNDOFF Printed in EDIT. Sum of radial momenta lost through "evaporation". See EVAPEN.
EVAPMV	= Z (103)		g-cm/sec	Calculated in TPHASE and RNDOFF Sum of axial momenta lost through "evaporation". See EVAPEN.
EXPMIN	(EQST)			EXPMIN• (ρ_0) is the density which connected a minimum value of the function $A\mu + B\mu^2$ used in the Tillotson equation of state In order for the

Variable Name	Location	Dimension of Array	Units	Definition
				pressure iteration to converge, $P(\rho,E)$ must have a positive slope. (See Section 4.6.1.3)
EZ	(EQST)		ergs/g	Fo in the thermal pressure term of the Tillotson equation of state. (See Section 2.3.1.2)
EZPH2	= Z (104)		ergs	Sum of the internal energy increments that are set to zero in TPHASE when \triangle SIE < SIEMIN. Printed in EDIT.
EZZ	(SPHASE)	(IMAX+1,3)	1/sec	The normal axial instantaneous strain rate associated with cell centers. (See Section 2.3.2.1)
EZZINT	MKPLUG		1/sec	The normal axial instantaneous strain rate corrected for convection. Computed in SPHASE, used to update deviator stress, S ₂₇ , and to compute the angle of maximum shearing stress in PLGALF.
FB	(DMADJ)		g	The mass being transported out of a cell across its bottom boundary. Computed and used by DMADJ to exactly evacuate materials from interface cells.

Variable Name	Location	Dimension of Array	Units	Definition
FINAL	=Z(113)			INPUT parameter. Maximum value of stability fraction (STAB). If FINAL = 0, the stability fraction will be constant. Used in CDT.
FL	(DMADJ)		g	The mass being transported out of a cell across its left boundary (See FB)
FLEFT	В.С.	(JMAX)	g-cm/sec	Radial momentum mass transported across left side of cell. Equiva lenced to UL arra(See Section 10.4.2)
FLX	(DMADJ)	(4)	g	The mass transport terms for a given material a the four boundar of a cell. Computed and used b DMADJ to adjust transport terms so that material are not overemptied.
FR	(DMADJ)		g	The mass being transported out of a cell across its right boundary. (See FB)
FRACRT	B.C.	(NVOID, NMXCLS)	cm ²	The fractional area of the right cell boundary associated with given material is an interface cell Used to compute mass transport terms of that
		10-39		material.

Variable Name	Location	Dimension of Array	Units	Definition
FRACTP	В.С.	(NVOID, NMXCLS)	cm ²	The fractional area of the top cell boundary associated with a given material in an interface cell.
	e so			Used to compute mass transport terms of that material.
FRACX	B.C.			The fraction of the x-dimension of the cell from the left of the cell to the intersection
	li e			of the interface with the cell's top boundary. Used in NEWRHO, as well as in FRACS, to indicate which
				dicate which boundary of a cell is crossed by the interface. (Equivalenced to WSC in FRACS.)
FRACY	(FRACS)			The fraction of the y-dimension of the cell from the bottom of the
				cell to the inter- section of the inte face with the cell's right boundary.
FRX	(MOVTCR, PLGGEN, PLUGUV, FRACS)			The fractional part of the x-coordinate of a tracer (in cell units).
FRY	(MOVTCR, PLGGEN, PLUGUV, FRACS)		2 ;	The fractional part of the y-coordinate of a tracer (in cell units)

) (JMAX)		The mass being transported <u>out</u> of a cell across its top boundary.
(JMAX)		(See FB)
(3.4.4.)	g	Mass transported across the left s of a cell. Equivalenced to PL array. (See Section 10.4.2)
(30)		A constant used in approximating the sound speed of a high explosive. Defined in
		a DATA statement in CDT for explo- sives. For ideal gas CDT sets GAMGAS(20)=GAMMA.
)	± 77 p	INPUT parameter. "y" in the ideal gas equation of state:
		$P = (\gamma-1)\rho E$. Use in EQST and CDT.
SE)	dynes/cm	the hoop stress,
		calculated when in cylindrical coordinates.
)		Used in most subroutines as tindex on the gricolumns.
9	,	A calling argume in DMCALC which identifies the leftmost column of the grid for

Variable Name	Location	Dimension of Array	Units	Definition
				transport terms of interface cells are to be computed (DMCALC is called from NEWMIX for a
				single cell and from INFACE for all interface cells in the active grid.)
ICLADD	=Z(38)		 -	Flag used when detonating a high explosive. When ICLADD = - 1 either all explo- sives have been
1	2.			detonated or the problem does not involve explosives. (Defined in DETIME initially, later in ADDENG.) When
				ICLADD = 0 some explosive in the problem has not yet been detonated.
ICSTOP	= Z (7)			INPUT parameter. Used in EDIT. Execution stops on the ICSTOP cycle when stopping on a specified cycle rather than on time.
ICY	INF			The number of passes through INFACE (=INT(CYCMX)).
IDL	(MAP, TPHASI	E)		The rightmost column of the grid represented by the symbolic maps. On cycle 0, IDL=IMAX; thereafter IDL=I1, the radial active grid counter.

Variable Name	Location	Dimension of Array	Units	Definition
IDLT	= Z (19)	• • • • · · ·		The leftmost column of the grid that contains a high explosive. Defined in DETIME.
IDRT	=2(31)	<u>i</u>		The rightmost column of the grid that contains a high explosive. Defined in DETIME. When
	- 1		Ē	IDRT = 0, the calculation does not involve an explosive.
IE				A calling argument in DMCALC which indentifies the right-most column of the grid for DMCALC to compute (see IB).
IEXTX	= Z (123)			Used in REZONE and TPHASE. When IEXTX = 1 the grid is rezoned in the x-direction. Enables
				user to rezone in the x-direction only Automatic rezones will not be trig- gered by signals reaching the right grid boundary unless IEXTX = 1.
IFLUX	(DMCALC)			In DMCALC, when IFLU 1, the top and right mass transport terms are computed; when IFLUX=2, the bottom and left terms are computed for the cel in column IT and row

Variable Name	Location	Dimension of Array	Units	Definition
IFS1	(DMÇALC)			When IFS1=1, the cell (IT,JT) DMCALC is operating on is a free surface cell. This cell will not be the "donor" cell unless the neighbor
				cell is also a free surface cell (IFS2=1)
IFS2	(DMCALC)			When IFS2=1, the neighbor cell DMCALC is operating on is a free surface cell. The neighbor cell will not be the "donor" unless the cell (IT, JT) is also a free surface cell (IFS1=1).
IGM	=2(21)			A flag which indicat which coordinate system is being used: IGM=1 for plane coordinates IGM=0 for cylindric coordinates.
MAX	=2(33)			INPUT parameter. Number of columns in the mesh. IMAX must be an even number if the grid is to be rezoned in the x-direction.
NTER	= Z (87)		**************************************	A flag which causes certain diagnostic messages to be printed each cycle. (See Section 9.2)
IPCYCL	= Z(49)			INPUT parameter. Used in EDIT. The number of cycles between EDIT prints when editing on cycles rather than on time.

Variable Name	Location	Dimension of Array	Units	Definition
IPLGBT	= Z (60)			The bottom-most row of the plugging region of the target. Used only in plugging calculations.
IPLGRT	= Z (56)			The right-most row of the plugging region of the target. Used only in plugging calculations.
IPLGTP	=2(61)			The top-most row of the plugging region of the target. Used only in plugging calculations.
IPR	=Z(15)			Maximum number of iterations to be performed by CDT to achieve pressure equilibration between
•	::	7.5		materials in multi- material cells.
ITC	(CDT)			The number of iterations CDT has processe while equilibrating the pressure of materials in a multimaterial cell. If ITC exceeds the input cutoff, IPR, the calculation is stopped.
ITFLAG	(ADDTCR)			A flag used in ADDTCR. ITFLAG=0 when points are interpolated in
				physical coordinates (NADD>0) ITFLAG=1 when points are interpolated in cell units (NADD<0). The second option is used only when the cel dimensions are constan in which case SETUPA s

Variable Name	Location	Dimension of Array	Units	Definition
ITXB	(FRACS)	******		ITXB+lis the column that contains the first tracer of a pair being considered by FRACS.
ITX1	(FRACS)			The vertical grid line crossed by the interface for which FRACS is computing a fractional cell face area.
ITX2	(FRACS)			ITX2+1 is the column that contains the second tracer of a pair being considered by FRACS.
ІТУВ	(FRACS)	,		ITYB+1 is the row that contains the first tracer of a pair being considered by FRACS.
ITY1	(FRACS)			The horizontal grid line crossed by the interface for which FRACS is computing a fractional cell face area.
ITY2	(FRACS)	; ******	*	ITY2+1 is the row that contains the second tracer of a pair being considered by FRACS.
IVARDX	= Z(83)			When IVARDX=1, the radial dimension of cells is non-uniform.
IVARDY	= Z (54)	<u></u>		When IVARDY=1, the axial dimension of cells is non-uniform.
I1 .	=Z(47)		****	INPUT parameter. Il is used to limit the calculation in the radial direction to an "active mesh". Initially, I1=2 +

Secretary Commence Commence of the Commence of

Variable Name	Location	Dimension of Array	Units	Definition
				the column-number of the last column in which a velocity and/or internal energy exists. Updated in HPHASE, TPHASE, ADDENG, and REZONE.
I 2	=2(48)			INPUT parameter. Like Il but for the axial direction.
13	B.C.			The rightmost column of cells printed by EDIT. I3=1 for a "short" print, I3=I1 (the radial edge of the active grid) for a "long" print.
J	= Z(89)			Used in most sub- routines as index on the grid rows.
JB				A calling argument in DMCALC which identify the bottom-most row of the grid for which the mass transport terms of interface cells are computed. (DMCALC is called from NEWMIX for a single cell and from INFACE for all interface cells in the active grid.)
JDBT	=2(28)	-		The bottom row of the grid that contains a high explosive. Defined in DETIME.
JDL	(MAP, TPHASE)	10-47		The topmost row of the grid represented by the symbolic maps. (cycle 0, JDL=JMAX; thereafter, JDL=I2, the axial active grid counter.

Variable Name	Location	Dimension of Array	Units	Definition
JDTP	= Z (29)			The topmost row of th grid that contains a high explosive. Defined in DETIME.
JE				A calling argument in DMCALC which identifi the topmost row of the grid for DMCALC to compute (see JB).
JEXTY	=Z(124)			A flag used in REZONE. When JEXTY = 1, the grid is rezoned in the y-direction. Enables user to rezone in y-direction only. Automatic rezones will not be triggered by signals reaching the upper grid boundary unless JEXTY = 1.
JMAX	= Z (35)			INPUT parameter. Number of rows in the grid. JMAX must be an even number if the grid is to be rezoned in the y-direction.
JSLIP	(PLGTCR)			The row across which the plug is being extended.
K	= Z (90)			Used as cell-index in all subroutines. K=(J-1)*IMAX+I+1.
KA	В.С.		1	Used as cell-index for the cell above K. KA = K + IMAX.

Variable Name	Location	Dimension of Array	Units	Definition
KB	(DMCALC, SPHASE	3)		Used as cell-index for the cell below cell K. KB=K-IMAX.
KDT	(EDIT, INPUT, SETUP)			The number of words in the DETIM array written on the restart file. KDT = 1 if there is no explosive in the problem; otherwise, KDT = KMAX.
KI	MOV	(4)		The K-indices of the four overlap cells used to compute the velocity components of a tracer particle.
KMAX	= Z (37)			Calculated in SETUP (=IMAX*JMAX+1). K-index of the last cell in the grid.
KPW .	(EDIT, INPUT, SETUP)			The number of words in PLWP array written on t restart file. KPW=1, i the plugging option is being used; otherwise, KPW=NTCC, the number of passive tracers.
KSPACE	(EDIT)	=======================================		Used for spacing printe output.
KSS	(EDIT, INPUT SETUP)	,		The number of words in the STRSZZ, STRSRR and the STRSRZ arrays writt on the restart file. KSS=1 if the strength phase is omitted (CYCPH -1); otherwise, KSS=KMAX
KUNITR	= Z (14)			Number of the file read by INPUT.

Variable Name	Location	Dimension of Array	Units	Definition
KUNITW	= Z (17)			Number of the file written on by SETUP and EDIT.
LABLE	= Z (1)	(1)		An array used by CARDS to store integer variab in the Z-block of blank common.
LAST	B.C.	 n = = ,		The last word of blank common. Used in the ma routine to initialize the blank common storage to zero.
LJ	INF			The number of the INFAC subcycle. (LJ goes fro 1 to ICY.)
LSAVE	(CDT, PLGTCR)			In CDT - the material package number of the o material in an interfactel that contains only one material.
				In PLGTCR - the second index of the target trate to the right of the integration cept of the plug edge withe back surface of the target.
LVF	(MOVTCR, ENDMV)			The second index of a void tracer that corresponds to a given materitracer.
LVISC	= Z (116)			A linear artificial viscosity term is added to the cell boundary pres- sures when LVISC=1.
М	=Z(91)	· · · · · · · · · · · · · · · · · · ·		Usually the index which links the material arrate to cell K:
			-	$M = MFLAG(K) - 100$ and $AMX(K) = \sum_{n} XMASS(N,M)$.

Variable Name	Location	Dimension of Array	Units	Definition
MA	В.С.			Usually the value of MFLAG for the cell above cell K.
MAPS	= Z(42)			INPUT parameter that determines the printing of symbolic maps on EDIT cycles. If MAPS = 0, maps are not printed; if MAPS = 1, they are printed and the first map is of
				compression; if MAPS = 2, they are printed and the first map is of density.
MASTER	(FRACS)			While processing the package n inter- face, FRACS sets MASTER = n if packag n is a "master"
	11 ⁽⁴			package. Its tracer will be used to compute the angle of the slipline in each slipline cell.
MASTRD	SLIDPK	(NMAT)	-	If MASTRD(n) = n, then package n is a master package and all or part of the package
				n interface is a sli line. If MASTRD(n)= then package n is a slave package (NSLAVD(n) = n) or it is neither and no part of its interfact is a slipline.

Variable Name	Location	Dimension of Array	Units	Definition
MAT	MXCELL	(30)		Material code numbers for the packages. MAT(1)=3 indicates the material in package one is iron. See list in Section 2.3.1 of this report or comments in the EQST subroutine.
MAXX	=2(120)			Used in ADDTCR. Right column and top row, respectively, of the
MAXY	= Z(122)			region in which trace particles are to be added (see NADD, MIN) MINY).
MFLAG	B.C.	(KMAX)	³	A flag which indicate whether a cell is pur or contains an interface. If MFLAG(K) < 100, cell K is pure. If MFLAG(K) > 100, cell K contains an interface and the flag gives the storaglocation in the material arrays for cell K.
MINX	=2(119)	1991		Used in ADDTCR. Left column and bottom
MINY	=Z(121)		="	the region in which tracer particles are to be added (see NADI MAXX, MAXY).
МО	B.C.			The MFLAG(K) of cell K when it was pure. Used by NEWMIX to define the material variables (XMASS, SIIUS, VS, etc.) of a cell that has just become an interface cell

Variable Name	Location	Dimension of Array	Units	Definition
MOS	B.C.		·	The number of cells taining the slipline any one cycle. Incr mented in PTSAV whic saves the slipline i cepts with cell boun
MPLUS	(ADDTCR)	,. 		An accumulative numb of tracers added to subpackage or packag
MR	B.C.	= = 1		Usually the value of MFLAG for the cell o the right of cell K.
MSLD	SLIDE	(NSLD)		A flag word for each slipline cell which stores its I,J, and MFLAG(K) values:
				MSLD(MS)=MFLAG(K)*1 + I*10 ³ + J This allows the user to have smaller di- mensions for the sli line arrays XINT, YIN than for the THETA array which is
	9 .			associated with every interface cell
MTK	MOV	(4)		The MFLAG values of the four overlap cel used to compute the velocity components of a tracer particle
N	=Z(92)	':		In EQST, N is the material code number transferred from CDT
NAD	(ADDTCR, EDIT,PLGA	DD)		Temporary storage for NADD in ADDTCR. In PLGADD, NAD is the number of tracers added at the corner where the plug will begin. In EDIT, NADD

Variable Name	Location	Dimension of Array	Units	Definition
NADD	=Z(118)			NADD has two function In EDIT it controls of frequency of calls to ADDTCR. In ADDTCR is used to determine how many tracers to add tween two existing tracers. Its input is saved in NAD and is stored at the end of
NAME	(ENCHCK)	4	5 S II	ADDTCR. (See Section & A string of hollerith symbols passed by HEI through a calling argment which identifies which phase of the calation (SPHASE, HPHASE TPHASE) has just been completed.
NB GMD	SLIDPK	(NMAT)		The second index of tracer which begins to slipline of a master package.
NBGP	(THETAS)		· · · · ·	The slave package who "beginning" slipline tracer (NBGSD) is an endpoint of the slip.
NBGSD	SLIDPK	(NMAT)		The second index of tracer which begins to slipline of a slave package.
NC	=2(30)		1 21	Cycle number. Set in tially to -1 in INPUT Incremented thereafted in CDT. (Decremented INPUT when restarting calculation.)
NDUMP7	=2(6)	2)		INPUT parameter. Use in EDIT to control frequency of restart dure.g., a dump will occon every EDIT print when NDUMP7 = 1, or on every EDIT print when NDUMP7 = 5.

Variable Name	Location	Oimension of Array	Units	Definition
NECYCL	=Z(77)		-	Defined and printed in EDIT. The cycle on which the largest relative error in the energy sum was computed.
NEND	(ENDMV)		2 .	The second index of the plug tracer which is at the top of the slipline.
NENDMD	SLIDPK	(NMAT)		The second index of the tracer which ends the slipline of a master package.
NENDMI	=2(108)			The second index of what is initially the last target tracer defining the slipline. The slipline gets extended along the target boundary to allow the projectile lipto slip on the target.
NEMBCD	GI I DDV	(MATE)		Used only in plugging calculations.
NENDSD	SLIDPK	(NMAT)		The second index of the tracer which ends the slipline of a slave package.
NENP	(THETAS)			The slave package whose "ending" slipline tracer (NENDSD) is an endpoint of the slipline.
NERR	B.C.			Used in ERROR as exit flag. Prevents ERROR from being called more than once during a single run.
NFLAG	(CDT)	a 1	1	A counter used in the pressure iteration to count the number of times the weighting factor, CSQR, is doubled to give all materials

Variable Name	Location	Dimension of Array	Units	Definition
	·			a positive partial volume. If NFLAG exceeds the input cutoff, IPR, the calculation is stopped.
NFRELP	= Z (5)			INPUT parameter. Used in EDIT to control frequency of "long" prints. A "long" print will
			1	occur with every EDIT if NFRELP = 1; when every fifth EDIT if NFRELP = 5.
NK	В.С.	. 9		Tells which statement number of a subroutine is near the call to ERROR.
NLINER	=2(105)			The package number of the material that forms the jet of a shaped charge. Used only when calculating the collapse of a shaped charge liner.
NMAT	= Z (68)		· · · · · · · · · · · · · · · · · · ·	The number of material packages in the problem. (Note: each material package can be made up of several disconnected subpackages. Also
				two packages can contain the same material but have different initial conditions.)
NMP	в.с.	(NMAT)		The number of tracer particles used to circumscribe the boundary of a given material package.
NMXCLS	= Z (73)		19 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The maximum number of interface cells that SETUP or NEWMIX can generate. This number should coincide with the dimension of variables in the MXCELL common block.

Variable Name	Location	Dimension of Array	Units	Definition
NODUMP	= Z (96)			INPUT parameter. Used in EDIT. When NODUMP=1 no restart dumps are
				written except by SETUP on cycle 0. Allows user t restart a problem without writing on the restart file.
NOSLIP	=Z(115)			A flag which when set to 1 indicates the calculation has no sliplines.
NPRINT	B.C.			NPRINT=1 during the cycle on which EDIT prints and checks the
NR ₀	В.С.			energy error. Identifies which subroutine calls ERROR. Used in ERROR for printing error message.
NRC	(TPHASE)			Used in TPHASE to signal that the active grid must be enlarged one column on the right.
NREC	(INPUT)		* 	The number of logical records in each restart dump.
NRT	(TPHASE)			Used in TPHASE to signal that the active grid must be enlarged one row at the top.
NSAVE	(FLGSET)	2		The package number of a material in a cell which was generated as an
II es				interface cell but is flagged a pure cell by FRACS and FLGSET.
NSLAVD	SLIDPK	(NMAT)		If NSLAVD(n)=n, then package n is a slave package and all or part

Variable Name	Location	Dimension of Array	Units	Definition
				of the package n interface is a slip- line. If NSLAVD(n) = 0, then package n is either a master package (MASTRD(n) = n) or no part of its interface is a slipline.
NSLD	=Z(112)			The maximum number of slipline cells in the grid on any one cycle. This number should coincide with the dimension of the variables in the SLIDE common block.
NSLPMN	=Z(107)			The initial value of NBGSD(2). (Used only in plugging calculations). Updated in PLGTCR so that NSLPMX-NSLPMN+1 is the number of identical tracers at the corner of the plug as the plug evolves.
NSLPMX	=Z(106)	⁶² ·	 	The initial value of NENDSD(2). Used in plugging calculations only.
NTCC	=Z(81)		1, ⁸⁰ 21	INPUT parameter. When NTCC>0 passive cell centered tracers are used.
NTPMX	=2(78)		71	INPUT parameter. Equal the maximum number of tracers that SETUP or ADDTCR can generate to circumscribe a single
	n *		2.	material package. The value of this number should coincide with the dimension of the TX and TY arrays.

Variable Name	Location	Dimension of Array	Units	Definition
NTRACR	= Z (72)	a = a		INPUT parameter. Used to determine the density of
				material tracer particles. (See Section 8.2)
NUMREZ	=Z(12)			INPUT parameter. Initially equals the number of auto- matic rezones allowed during a calculation. Dimin- ished by one after each rezone.
NUMSCA	= Z (43)		 	INPUT parameter. Number of times the print interval is to be rescaled. Used in EDIT. See PRDELT for further details.
NUMSP	=Z(4)			Used in EDIT to count the number of "short"
				prints since the last "long" print. When NUMSP=NFRELP, EDIT pro- duces a "long" print,
			, î	i.e., information on all the cells in the active grid, rather than just on the cells in the first column.
NUMSPT	=2(41)			Used in EDIT to count the number of prints
:			-1	(short or long) since the last tape dump.
NUNxxx	=Z(xxx)		·	Unused Z-storage.
NVOID	B.C.	- 		Defined in INPUT: =NMAT + 1, number of material packages +1. The number of the void package if there is one.

Variable Name	Location	Dimension of Array	Units	Definition
NVP	(MOVTCR)			The number of material packages plus one. Used
				as a limit on the do-lowhich moves the tracer particles. The void
	·			tracers are moved simul taneously with the material tracers and the
				passive tracers are moved (on the last subcycle of INFACE) when
				N = NVP.
NVRTEX	=Z(109)			The second index of the void tracer at the vert
				of the void closing region. If NVRTEX=0, the
				code does not call VDCLOS to automatically close a void.
N10	(CDT)	577.		Used in CDT to identify the I-index of the cell which controls the time step.
N11	(CDT)			Used in CDT to identify the J-index of the cell which controls the
			·	time step.
OKE	(HPHASE)		ergs	The kinetic energy of a slipline cell before
	e 1.			its material velocities are updated in UVCALC.
OUTFLX	(DMCALC)		g	The total mass of a material being trans-
	, a 9			ported out of an in- terface cell. Computed by DMADJ to see if the
•			(4 n	mass going out exceeds the mass in the cell. The mass transport
				terms are adjusted accordingly to prevent negative masses.

Variable Name	Location	Dimension of Array	Units	Definition
OUTIE	B.C.	(NMAT)	ergs	The total internal energy lost from each package due to "evaporation", cut-offs, or material leaving the grid. Printed by EDIT.
OUTKE	B.C.	(NMAT)	ergs	The total kinetic energlost from each package due to "evaporation", cut-offs, or material leaving the grid. Printed by EDIT.
p	B.C.	(KMAX)	dynes/cm ²	Cell pressure. Note that the P-storage is used by other arrays in INFACE, REZONE, and TPHASE. See equivalence statements in the "included" element
PABOVE	(HPHASE)		dynes/cm ²	The pressure at the boundary between cell and the cell above it, an average of the cell centered pressures of the two cells.
PAV	(CDT)		dynes/cm ²	The weighted average pressure computed in to pressure iteration to which the pressures of all materials must converge. (See Section 4.6.1.2)
PBLO	(HPHASE)		dynes/cm ²	The pressure at the boundary between cell and the cell below it, an average of the cell centered pressures of the two cells.
PI	=2(8)			π
PIDY	= Z(8)			π

Variable Name	Location	Dimension of Array	Units	Definition
PK	В.С.	(5)		The first array follow- ing the 150 word Z-block. PK(1) = problem number, PK(2) = restart cycle, PK(3) = restart flag. Note: PK(1) is equi- valent to Z(151) and
	- N			in the SETUP deck must be set equal to PROR (Z(1)). PK(2) and PK(3) are defined in the restart deck.
PL	B.C.	(See definition of JDX2 parameter in	dynes/cm ²	Used in HPHASE to store the pressure at the boundary between cell k and the cell on its left, an
		Appendix A)		average of the cell- centered pressures of the two cells. (Saved values of PRR when column on left was being processed.) Storage used for other purposes in CDT, MAP, and TPHASE.
PLGOPT	=Z(111)		· 11	Flag set to 1 when using plugging failure model. If PLGOPT=0, a plug will not be generated by the code.
PLUGON	=Z(125)			When PLUGON=1, the vertical edge of the plug package has been extended at least one row into the target. (The plug package now has a non-zero volume.) Used only when plugging option is being used.
PLW	MXCELL	(NMAT)	ergs	The total plastic work done by each material package.

		Dimension	4	
Name	Location	of Array	Units	Definition
PLWC	PLSTC	(IPLGRT, IPLGTP- IPLGBT+1)	ergs/g	An array which stores a specific plastic work increment for each cell in the plugging region of the target. Used
				only when the plugging option is activated to update the PLWP array.
PLWMIN	=Z(59)		ergs/g	The specific plastic work of the material near the top right edge of the plug must exceed PLWMIN before the plug edge will be extended.
PLWP	PLSTC	(NTCC)	ergs/g	An array which stores to accumulated specific plastic work of the material associated with each passive tracer particle in the pluggin
				region of the target. Used only when the plugging option is activated.
PMIN	= Z (86)		dynes/cm ²	
POSX	(MOVTCR)		·cm	The new x-coordinate of a tracer in centimeters
POSY	(MOVTCR)		cm	The new y-coordinate of a tracer in centimeters
PR .	B.C.	(IMAX)		The first two words of a restart dump are read from the file and store in PR(1)(the flag word = 555.0 or 666.0) and

Variable Name	Location	Dimension of Array	Units	Definition
				PR(2)(the cycle number of the dump). In MAP the PR array is used to store
				a row of hollerith symbol to be printed in one of the symbolic maps.
PRCNT	= Z (16)			Convergence requirement for equilibrating pressures in a multimaterial cell.
				If $\left \frac{P_i}{\overline{p}} \right \leq PRCNT$ for all materials (i) in cell K, then $P(K) = \overline{P}$.
PRDELT	= Z (45)		sec	INPUT parameter. Gives the initial time interval between EDIT prints.
				There are five parameter which control printing frequency: PRDELT, IPCYCL, PRLIM, PRFACT,
		7		and NUMSCA. If the user is printing on time (PRDELT≠0 and IPCYCL=0), DT will be adjusted so
		2 11 = 2		that a print will occur exactly every PRDELT seconds. If the user is printing on cycles (PRDELT=0, IPCYCL \neq 0), a
				print will occur every IPCYCL cycles. PRLIM, PRFACT and NUMSCA are used to increase the
	10 =			print interval. PRLIM is the time (or cycle) at which PRDELT (or
				IPCYCL) and PRLIM are multiplied by PRFACT. The new value of PRLIM establishes the next
·				time (or cycle) when the print interval will again be rescaled. This

Variable		Dimension		
Name	Location	of Array	Units	Definition
				process continues at most NUMSCA times.
				EXAMPLE: You wish to print every $1x10^{-8}$ sec until you reach $1x10^{-7}$ sec, then every $1x10^{-7}$ sec until $1x10^{-6}$ sec and every $1x10^{-6}$ sec thereafter:
				PRDELT = 1 x 10 ⁻⁸ PRLIM = 1 x 10 ⁻⁷ PRFACT = 10 NUMSCA = 2.
PRESUR	B.C.		dynes/cm ²	Defined in EQST: pressure $= f(\rho,E)$. Used in CDT to define $P(K)$ in the case of pure cells, and in the case of multimaterial cells to define PRS(1,i), the pressure of material (i).
PRFACT	= Z (46)	77		INPUT parameter. Used in EDIT for rescaling PRDELT, IPCYCL and PRLIM when the PRLIM time (or cycle) is reached (see PRDELT). Must be > 1.
PRLIM	= Z (44)	p		INPUT parameter: time or cycle at which to rescale PRDELT (or IPCYCL) and PRLIM by PRFACT (see PRDELT).
PROB	=2(1)			INPUT parameter. Identifying problem number. Must be be- tween 0.0001 and 99.9999, inclusively.
PROP	B.C.	(IMAX)		Used by MAP to store a row of cell quantities to be represented by a symbolic map.

Variable Name	Location	Dimension of Array	Units	Definition
PRR	(HPHASE)		dynes/cm ²	The pressure at the boundary between cell
		.1		and the cell on its right, an average of the cell-centered pres sures of the two cells
RTIME	= Z (131)		sec	Initially set to PRDEL in INPUT. Thereafter calculated in EDIT. When T=PRTIME, it is time to print and PRTIME becomes T + PRDELT, the next time to print.
SUM	(CDT)			Used as a flag in CDT. If the pressures of all the materials in a mulmaterial cell are less than PMIN, PSUM=0, whi flags the code to set the cell pressure to zero.
VOL	PLSTC	(IPLGRT)	cm ³	The volume asso- ciated with the plug package in a cell into which the vertical edge
			: :- :::::::::::::::::::::::::::::::::	of the plug has been of tended. Used to conve target mass into plug mass in PLGMAS. Com- puted in PLGVOL. Used
			-	only when the plugging option is activated.
PVOL3	(PLGMAS)	-11-1-	cm ³	The volume of the target material in a cell into which the plug edge has been extended.
PVRTEX	B.C.	 =	dynes/cm ²	The hydrostatic pressor of the cell which contains the vertex point of the void closing region. See Section 8.

Location (HPHASE) (CDT, DMAD.J, HPHASE)	Dimension of Array	Units dynes/cm ² sec (in CDT)	Definition The linear artificial viscosity term added to the top, bottom, left, and right cell boundary pressures, respectively. A different viscosity can be used by redefining these variables. (See Section 2.2.2.5) Used in the calculation of DT: the ratio of (DX,DY) min to [(U,V) max + local
(CDT, DMADJ,		sec	viscosity term added to the top, bottom, left, and right cell boundary pressures, respectively. A different viscosity can be used by redefining these variables. (See Section 2.2.2.5) Used in the calculation of DT: the ratio of (DX,DY) min
DMAD.J,			tion of DT: the ratio of (DX,DY) _{min} to
			sound speed] _{max} for a
			given cell. In DMADJ and HPHASE used as ratio of masses and compressions, respective
(EDIT, ENCHCK)			Used for storing and printing maximum relative error in the energy sum.
= Z (95)			A flag used to activate a grid rezone. Can be set by the user on a restart cycle or by the code if NUMREZ is greater than 0. (See Section 8.1.3)
MXCELL	(NVOID, NMXCLS)	g/cm ³	The density of the materials in an interface cell. If RHO (NVOID, m)=1 the interface cell K (where m = MFLAG(K)-100) is a free surface cell. If RHO(n, m)>0, the
			interface of package n crosses the cell, and if RHO(n,m) = 0, the n interface does not cross the cell, and any material n in the cell must be "evacuated". The RHO
		MXCELL (NVOID, NMXCLS)	MXCELL (NVOID, g/cm ³

STATE OF STA

Variable Name	Location	Dimension of Array	Units	Definition
				array is used as a flag as well as a material property. (See Section 4.2)
RHOC	(SPHASE)	(IMAX+1,3)	g/cm ³	The average cell density of three rows of cells.
RHOIN	B C.	(NMAT)	g/cm ³	The initial material density for each package. Defined by input cards read by SETUP.
RHOMAX	(CDT)	(30)	g/cm ³	The density of a high explosive corresponding to a
				maximum point in the JWL equation of state. The density of HE in a multi- material cell is no
		u u		allowed to exceed RHOMAX during the pressure iteration. Defined in a DATA statement for four explosives.
RHOW	B.C.		g/cm ³	Density of material Defined in CDT and used in EQST to define pressure: P = f(ENERGY,RHOW)
RHOZ	MXCELL	(30)	g/cm ³	Defined in DATA statement in COMDIN the "included" elem Normal density for 19 materials.
RHOZR	(EQST)	11 (B)	g/cm ³	ρ of a given material. Used in the Tillotson and JWL equations of
				state. RHOZR=RHOZ

Variable Name	Location	Dimension of Array	Units	Definition
				where RHOZ is defined in a DATA statement in the "included" element. (See Section 2.3.1)
RMOM	B.C.		g-cm/sec	The total post-HPHASE radial momentum of a slipline cell. Computed in HPHASE; used in UVCALC to update the master and slave material velocities. (See Section 5.2.)
RMU	B.C.	(NMAT)	dynes/cm ²	Rigidity modulus of each material package Defined by input card read by SETUP. Used in SPHASE.
ROEPS	= Z(110)			INPUT parameter. A round-off epsilon use in calculating cutoff of energy, velocity and mass.
RTM	= Z (57)		g	Calculated in TPHASE. Printed in EDIT. Tot mass lost out right side of grid.
RTMU	= Z (10)		g-cm/sec	Calculated in TPHASE. Printed in EDIT. Tot radial-momentum lost out right side of gri
RTMV	= Z (58)		g-cm/sec	Calculated in TPHASE. Printed in EDIT. Tot axial-momentum lost oright side of grid.
RTX	(FRACS)	**************************************		The grid line which i the right boundary of the cell being proces by FRACS.

Variable Name	Location	Dimension of Array	Units	Definition
RTY	B.C.			The distance from the bottom of the grid to the intercept of an interface with a cell's right boundary, converted to cell units. Used in NEWRHO as well as in FRACS. (Equivalence to WSY in FRACS.)
SALPHA	= Z (138)		radians	The angle with the x-axis at which the vertical edge of the plug was last extended. Initially, SALPHA=π/2 in INPUT. Used only for plugging calculations.
SAMMP	MXCELL	(NMAT, NMXCLS)	g	The mass of material package n which is transported across the right boundary of interface cell K is stored in SAMMP(n,m), where m =
				MFLAG(K)-100. If SAMMP(n,m) > 0, the mass is moving out of the cell; otherwise, it is moving into the
				cell. Computed in DMCALC. (See Section 10.4.2)
SAMMU	SL	(NMAT)	g-cm/sec	The radial momentum of a given material transported across the bottom of an interface cell. (See Section 10.4.2)
SAMMV	SL	(NMAT)	g-cm/sec	The axial momentum of a given material transported across the bottom of an interface cell. (See Section 10.4.2)

MXCELL	(NMAT, NMXCLS)	g	The mass of materia package n which is
			transported across the bottom boundary of interface cell K
	e		<pre>is stored in SAMMY (n,m), where m = MFLAG(K)-100. If SAMMY(n,m) >0, the</pre>
			mass is moving into the cell; otherwise it is moving out of the cell. Computed in DMCALC. (See Section 10.4.2)
MXCELL	(NMAT, NMXCLS)	. g	The mass of materia package n which is
			transported across the top boundary of interface cell K is stored in SAMPY(n,m
			where m = MFLAG(K) -100. If SAMPY(n,m > 0, the mass is
			moving out of the cell; otherwise, it is moving into the
et _{sa}			cell. Computed in DMCALC. (See Secti 10.4.2)
SL	(NMAT)	g-cm/sec	The radial momentum of a given material
			transported across the right of an in- terface cell. (See Section 10.4.2)
SL	(NMAT)	g-cm/sec	The radial momentum of a given material transported across the top of an interface cell. (See
	SL	NMXCLŚ)	NMXCLS) SL (NMAT) g-cm/sec

Variable Name	Location	Dimension of Array	Units	Definition	
SAMVR	SL	(NMAT)	g-cm/sec	The axial momentum of a given material transported across the right of an interface cell. (See Section 10.4.2)	
SAMVT	SL	(NMAT)	g-cm/sec	The axial momentum of a given material transported across the top of an interface cell. (See Section 10.4.2)	
SCALE	(MAP)			A scale factor used to determine which alphabetic symbol to associate with a given cell quantity	
				SCALE is based on the minimum and maximum of that quantity as well as the number of characters to be used by the symboli	
5				map.	
SDELEB	B.C.	(NMAT)	ergs	The internal energy of a given material transported across the bottom boundary of an interface cel (See Section 10.4.2	
SDELER	B.C.	(NMAT)	ergs	The internal energy of a given material transported across the right boundary of an interface cel (See Section 10.4.2)	
SDELET	B.C.	(NMAT) 10-72	ergs	The internal energy of a given material transported across the top boundary of interface cell. (Section 10.4.2)	

Variable Name	Location	Dimension of Array	Units	Definition
SDELM	B.C.	(NMAT)	g	The total change in the mass of a given material in an interface cell due to transport.
SDT .	B.C.		sec	Defined in INFACE (SDT=DT/CYCMX). Time step for each subcycle of INFACE.
SFLEFT	B.C.	(NMAT, JMAX)	g-cm/sec	The radial momentum of a given materia transported across the left boundary of an interface ce (See Section 10.4.
SGAMC	MXCELL	(NMAT, NMXCLS)	g ·	The mass of materi package n which is transported across the left boundary interface cell K i
				stored in SGAMC(n, where m = MFLAG(K) -100. If SGAMC(n, m > 0, the mass is moving into cell K otherwise, it is
				moving out of the cell. Computed in DMCALC. (See Sect 10.4.2)
SIE	MXCELL	(NMAT, NMXCLS)	ergs/g	The specific inter energy of material in interface cells
				These materials ha specific internal energies different from the cell spec
1	8 7			internal energy, A which is a mass weighted average of the material speci
	÷	10-73	r	internal energies. (See Section 4.2)

STATE OF THE PROPERTY OF THE P

Name	Location	Dimension of Array	Units	Definition
SIEMIN	= Z (82)		ergs/g	The cutoff on the specific internal energy increment
				in the transport phase (TPHASE). If this increment is less than SIEMI the increment is set to zero and ETH is adjusted accordingly.
SIGC	B.C.	(JMAX)	ergs	The total energy of the mass trans-
				ported across the left side of a cel in TPHASE. Equivalenced to PL. (See Section 10.4.2)
SIGMU	(TPHASE)		g-cm/sec	Total change in ramomentum of a cell
SIGMV	(TPHASE)		g-cm/sec	Total change in ax momentum of a cell
SLOPS	(PLGTCR)			The slope of the e
	* .g			tended edge of the See SLOPT.
SLOPT	(PLGTCR)		 -	The slope of the b surface of the tar between two consec tracer particles. to compute the int of the plug edge w
				the back surface o target.
SLPNDX	=Z(22)			The x-coordinate (
				cell units) of the of the slipline in plugging calculati Until the plug is pletely formed, th of the slipline is

Variable Name	Location	Dimension of Array	Units	Definition
				vertical edge of the plug was extended to, although the top of the plug itself can move beyond that grid line. See TXCL.
SLPNDY	=Z(25)		<u> </u>	The y-coordinate (in cell units) of the top of the slipline in a plugging calculation. See SLPNDX and TYCL.
SNB	(SPHASE)	(IMAX+1)	dynes/cm ²	Normal deviator stress at bottom of a cell.
SNL	(SPHASE)		dynes/cm ²	Normal deviator stress at left of cell.
SNLX	(SPHASE)		dynes/cm	= SNL*X(I-1) for cellin column I.
SNR	(SPHASE)		dynes/cm ²	Normal deviator stress at right of a cell.
SNT	(SPHASE)		dynes/cm ²	Normal deviator stress at top of a cell.
SOLID	(STRNG, SPHASE)		g/cm ³	= RHOZ _i *AMDM _i . If RHO _i < SOLID for any material in cell K, th deviator stresses of cell K are set to zero
SRATIO	(CDT)	3	sec	Used to calculate DT. The smallest ratio in the grid of a cell' minimum dimension to the sum of its maximum
			3	velocity and sound speed.
SRR	(SPHASE)	(IMAX+1,3)	dynes/cm ²	The normal radial stredeviator associated with cell centers. (Se Section 2.3.2.2)

Variable Name	Location	Dimension of Array	Units	Definition
SRRINT	(SPHASE)		dynes/cm ²	The normal radial stress deviator of the material that will be at the center of cell K at the end of the time step.
SRZ	(SPHASE)	(IMAX+1,3)	dynes/cm ²	The shear stress associated with cell centers. (See Section 2.3.2.2)
SRZINT	(SPHASE)		dynes/cm ²	The shear stress of the material that will be at the center of cell K at the end of the time step.
SSIE	B.C.	(2,NMAT)	ergs/g	Temporary storage for the material specific internal energies of the two cells being combined into one in COMPRS.
SSIEN	B.C.	(NMAT)	ergs/g	Initial specific internal energy of each mater package. Defined by input cards read in SETUP.
SSIGC	B.C.	(NMAT, JMAX)	ergs	The internal energy of a given material transported across the left boundary of an interface cell.
SSIGMU	SL	(NMAT)	g-cm/sec	The total change in the radial momentum of a given material in an interface cell due to transport.
SSIGMV	SL	(NMAT)	g-cm/sec	The total change in the axial momentum of a

Variable Name	Location	Dimension of Array	Units	Definition
STAB	=Z(139)			INPUT parameter. Used in CDT. Initial value of the "stability fraction" for the calculation of DT. If FINAL = 0, STAB is constant. Otherwise, its value changes from STAB to
				FINAL in a geometric progression. [Note: DT = STAB*SRATIO.]
STB	(SPHASE)	(IMAX+1)	dynes/cm ²	Shear stress at bottom of cell.
STEZ	B.C.	(NMAT)	ergs/g	E_{m} for each material
giv. s				package. Used in yield-strength calculation in STRNG. Defined by input cards read by SETUP. (See Section 2.3.2.3)
STK1	B.C.	(NMAT)	dynes/cm2	Y ₁ for each material
		= " .		package. Used in yield-strength calculation in STRNG. Defined by input cards read by SETUP. (See Section 2.3.2.3
STK2	B.C.	(NMAT)	dynes/cm ²	Y ₂ for each material
				package. Used in yield-strength calculation in STRNG. Defined by input cards read by SETUP. (See Section 2.3.2.3
STL	(SPHASE)		dynes/cm ²	Shear stress at left

Variable Name	Location	Dimension of Array	Units	Definition
STLX	(SPHASE)	* * * * · · ·	dynes/cm	= STL*X(I-1) for cell in column I.
STR	(SPHASE)	51.11	dynes/cm ²	Shear stress at right of cell.
STRENG	(SPHASE, STRNG)		dynes/cm ²	The shear yield strength of cell K:
				$Y = (Y_0 + Y_1 \mu + Y_2 \mu^2) (1 - \frac{1}{12})$
				It is calculated in subroutine STRNG an stored in WS, a blank common variable then WS is used to define STRENG in SPHASE.
STRSRR	ELPL	(KMAX)	dynes/cm ²	The cell centered normal deviatoric stress in the radia direction.
STRSRZ	ELPL	(KMAX)	dynes/cm ²	The cell centered deviatoric shear stress.
STRSZZ	ELPL	(KMAX)	dynes/cm ²	The cell centered normal deviatoric stress in the axial direction.
STT	(SPHASE)		dynes/cm ²	Shear stress at top of cell.
SUME	(TPHASE)		ergs	Used in TPHASE to sum energy incrementation being ignored on a
	, 'h , n			given cycle. (See SIEMIN). Used to adjust ETH, the
				theoretical energy total.

Variable Name	Location	Dimension of Array	Units	Definition
SYAMC	в.с.	(NMAT, JMAX)	g-cm/sec	The axial momentum of a given material transported across the left of an interface cell. (See Section 10.4.2)
SZZ	(SPHASE)	(IMAX+1,3)	dynes/cm ²	The normal axial stress deviator associated with cell centers. (See Section 2.3.2.2)
SZZINT	(SPHASE)		dynes/cm ²	The normal axial stresdeviator of the maters that will be at the center of cell k at the end of the time step.
T ·	= Z (84)		sec	Time. Initially defining INPUT. Incremented in CDT. Adjusted in EDIT for printing and stopping at specified time values.
TABLE	= Z (1)	(1)		An array used by CARDS to store real variable in the Z-block of black common.
TAU	B.C.	(IMAX)	cm ²	Initially defined in SETUP and redefined in REZONE: the area of the top face of cells in column I:
	e 2		n.	= $\pi[X(I)^2-X(I-1)^2]$.
TAUDTS	(HPHASE)		cm ² -sec	= TAU*DT.

Variable Name	Location	Dimension of Arra		Definition
TFLUX	(DMADJ)		g	The sum of the mass transport terms for which the mass is move
				ing out of a cell and is moving into a cell which is not flagged for evacuation. These
				"legitimate" transporterms are used to evaluate a material when interface leaves a co
THET	B.C.	(2)	radians	Temporary storage for the angle of the slip line across the two cells being combined into one in COMPRS.
ТНЕТА	MXCELL	(NMXCLS)	radians	The angle of the slip line (with reference to the x-axis) as it crosses a slipline cell.
°HO 3	(SPHASE)		1/sec	= 1/3 $(u_x + v_y + \frac{u}{x})$. (See Section 2.3.2.1)
rko	(SPHASE)		dynes ² /cm ⁴	= 2Y ² , where Y is the shear yield strength of the material.
rK1	(SPHASE)	-1-1	dynes ² /cm ⁴	Twice the second invariant of the stredeviator tensor:
		2		$S_{zz}^2 + S_{rr}^2 + S_{\theta\theta}^2 + 2S_{rz}^2$ when
				$S_{\theta\theta} = -(S_{rr} + S_{zz})$
	e A		P	is the hoop stress. Tested against TKO to see if material has yielded.
. 10				nas yrerueu.

Variable Name	Location	Dimension of Array	Units	Definition
ТОРМ	=2(63)		g	Calculated in TPHASE. Printed in EDIT. Total mass transported across top of grid.
TOPMU	= Z (9)		g-cm/sec	Calculated in TPHASE. Printed in EDIT. Total radial-momentum trans- ported across top of grid.
TOPMV	=Z(66)		g-cm/sec	Calculated in TPHASE. Printed in EDIT. Total axial-momentum transported across top of grid.
TPX	B.C.			The distance from the left boundary of the grid to the intercept of an interface with a cell's top boundary. Converted to cell units. Used in NEWRHO as well as FRACS. (Equivalenced to WSX in FRACS.)
TPY	(FRACS)			The grid line which is the top boundary of the cell being processed by FRACS.
TRIAL	(CDT)	,	cm/sec	Used in CDT. Maximum in the grid of a cell's sound-speed plus its largest velocity component. Printed in CDT as MAXCUV.
TSTOP	=Z(50)		sec	INPUT parameter. Value of T at which execution stops when stopping on time rather than cycles.

	Variable Name	Location	Dimension of Array	Units	Definition
-	TWOPI	B.C.			= 2π.
	TX	B.C.	(NVOID, NTPMX)		X-coordinates of trace particles circumscrithe material package
	TXCL	B.C.			The x-coordinate (in cell units) of the tright corner of the plug package.
	TX1	(FRACS)			The x-coordinate (in cell units) of the f of the pair of trace being considered by FRACS.
	TX2	(FRACS)			The x-coordinate (in cell units) of the second of the pair o tracers being consid by FRACS.
	TY .	В.С.	(NVOID, NTPMX)		Y-coordinates of tra particles circumscri the material package
	TYCL	B.C.			The y-coordinate (in cell units) of the tright corner of the plug package.
5 11_	TY1	(FRACS)			The y-coordinate (in cell units) of the f of the pair of trace being considered by FRACS.
	TY2	(FRACS)			The y-coordinate (in cell units) of the second of the pair of tracers being considery FRACS.
	U	B.C.	(KMAX)	cm/sec	Radial velocity of c
	UAMMP	(TPHASE)		cm/sec	Radial velocity of m transported across right cell boundary.
			10-82		

Variable Name	Location	Dimension of Array	Units	Definition
UAMPY	(TPHASE)		cm/sec	Radial velocity of mas transported across top cell boundary.
UEFF	MOV		cm/sec	The area-density weigh average of cell center radial velocities used to move a given tracer particle. If a tracer is on the plug package boundary, UEFF is computed in PLUGUV.
UK _	(SPHASE)	(IMAX+1,3)	cm/sec	Temporary storage for three rows of radial velocities.
UKT	(SPHASE)		cm/sec	Temporary storage for U(K) when computing the elastic-plastic work done by cell K.
UL .	B.C.	(See definition of JDX2 parameter in Appendix A)		Radial velocity at lef boundary of cell K. Used in HPHASE. Storag for other purposes in CDT, MAP, and TPHASE.
UMIN	= Z (129)		cm/sec	Calculated in CDT. Used as velocity cutof in TPHASE, DMCALC, and MOVTCR.
UMS	(UVCALC, UVMOD)		cm/sec	A mass weighted average of the radial velocition of all the "master" materials in a given slipline cell.
UMSNEW	(UVCALC)		cm/sec	The post-HPHASE radial velocity of the "master" materials in a slipline cell. (See Section 5.2)
UNXXX	= Z (xxx)			Unused Z-storage.

Variable Name	Location	Dimension of Array	Units	Definition
URR	B. C.		cm/sec	The radial velocity the right boundary of cell K, an average of the cell-centered vecities of the two coursed in HPHASE, DMC, and TPHASE.
US	MXCELL	(NMAT, NMXCLS)	cm/sec	The radial velocity a material in an in face cell. The materials in a slipline have different radial velocities. The ce centered radial velocities (U) of a slipline cois a mass-weighted average of the material velocities (See Section 4.2)
USL	(UVCALC, UVMOD)	 ,	cm/sec	A mass weighted ave of the radial veloc of all the "slave" materials in a give slipline cell.
USLNEW	(UVCALC)		cm/sec	The post-HPHASE rad velocity of the "sl materials in a slip cell. See Section
USSAVE	B.C.	(2,NMAT)	cm/sec	Temporary storage f the material radial velocities of two c being combined into in COMPRS.
UTK	MOV	(4)	cm/sec	The radial velocity components of the four overlap cells to compute the radivelocity of a trace particle.
UTL	B.C.	(NMAT,JMAX)	cm/sec	The radial velocity of a given material being transported across the left bound of a cell.
		10 04		or a cerr.

PASSITES SERVICE CONTROL OF SERVICES SERVICES SERVICES SERVICED SERVICES SE

our expenses a personal representation of the second contract of the

Variable Name	Location	Dimension of Array	Units	Definition
UTRANS	в.с.	(NMAT,4)	cm/sec	The radial velocity of a given material transported across one of the four boundaries of cell K (1=top, 2=bottom 3=right, 4=1eft).
UUR	В.С.	(NMAT)	cm/sec	Initial radial velocity of each material package. Defined by input cards read in SETUR
V	B.C.	(KMAX)	cm/sec	Axial velocity of cell.
VABOVE	B.C.		cm/sec	The axial velocity at the top boundary of cell K, an average of the cell centered velocities of the two cells. Used in HPHASE DMCALC and TPHASE.
VALUE	(MAP)	(41)		Maximum value associate with each symbol printed by MAP.
VAMMP .	(TPHASE)		cm/sec	Axial velocity of mass transported across rigicell boundary.
VAMPY	(TPHASE)		cm/sec	Axial velocity of mass moving across top cell boundary.
VBLO	(HPHASE)		cm/sec	The axial velocity at the bottom boundary of cell k, an average of the cell-centered velocities of the two cell
VCELL	(Local variable in several subroutines)		cm ³	The total volume of a cell. VCELL=TAU(I)*DY(.

Variable Name	Location	Dimension of Array	Units	Definition
VCT	(DMCALC)		cm ³	The minimum of the volume of the donor and acceptor cells. Calculated and used in DMCALC to test if a mass transport term is too small to be counted
VEFF	MOV		cm/sec	The area-density weight average of cell-centere axial velocities used to move a given tracer particle.
92 S		\$ +		ticle. If a tracer is on the plug package boundary, VEFF is computed in PLUGUV.
VK	(SPHASE)	(IMAX+1,3)	cm/sec	Temporary storage for three rows of axial velocities.
VKT	(SPHASE)		cm/sec	Temporary storage for V(K) when computing the elastic-plastic work done by cell K.
VMS	(UVCALC, UVMOD)		cm/sec	A mass weighted average of the axial velocities of all the "master" materials in a given slipline cell.
VMSNEW	(UVCALC)		cm/sec	The post-HPHASE axial velocity of the "master materials in a slipling cell. See Section 5.2
VOLM	MXCELL	(NVOID, NMXCLS)	cm^3	The partial cell volume of a material in an interface cell. Computed by VOLFND to
				determine the mass of each material of an in terface cell. Used only when generating a
				problem. Equivalenced to SAMMY array. (Note: this array is larger than the SAMMY array and overflows into the SGAMC array.)
	•	10-86		·

Variable Name	Location	Dimension of Array	Units	Definition
VOW	(EQST)			= p ₀ /p.
VS	MXCELL	(NMAT, NMXCLS)	cm/sec	The axial velocity of a material in an interface cell. The mater-
			· · · · · · · · · · · · · · · · · · ·	ials in a slipline cell have different axial velocities. The cell-centered axial velocity (V) of a slipline cell is a mass-weighted average of the material axial velocities (VS).
war	/111/CA1 O			(See Section 4.2.)
VSL	(UVCALC, UVMOD)		cm/sec	A mass-weighted average of the axial velocities of all the "slave" materials in a given slipline cell.
VSLNEW	(UVCALC)		cm/sec	The post-HPHASE axial velocity of the "slave" materials in a slipling cell. See Section 5.2.
VSSAVE	В.С.	(2,NMAT)	cm/sec	Temporary storage for the material axial velocities of two cells being combined into one in COMPRS.
VSUM	(CDT, FILGRD, TPHASE)		cm ³	The sum of the partial volumes of the material in an interface cell.
VTK	MOV	(4)	cm/sec	The axial velocity component of the four overlap cells used to
		U 1	* 4	compute the axial velocity of a tracer particle.
VTL	B.C.	(NMAT,JMAX)	cm/sec	The axial velocity of a given material being transported across the left boundary of cell K.

Variable Name	Location	Dimension of Array	Units	Definition
VTRANS	B.C.	(NMAT,4)	cm/sec	The axial velocity of a given material transported across on of the four boundarie of cell K (1=top, 2=bottom, 3=right, 4=left).
VVA	в.с.	(NMAT)	cm/sec	Initial axial velocit of each material package. Defined by input cards read by SETUP.
WF	MOV	(4)		The weighting factor associated with each the four overlap cell used to compute the velocity components o a tracer particle. Used by MOVTCR and PLUGUV.
WFLAGF	= Z (51)	-		Used in INPUT and EDI Set = 1 on first cycl of a run in INPUT. Triggers an EDIT prin on first cycle of eve run. Reset to 0 at e of EDIT.
WFLAGL	= Z (52)			Used in HELP and EDIT Flags last cycle. Se 1 in EDIT. Signals HELP to call exit.
WSA WSB WSC WSX WSY	B.C.	;====		Used in most sub- routines for working storage.
WSMAX	(MAP)	(5)	ulu "	The maximum value of each quantity represented by the symbolimaps.
WSMIN	(MAP)		4.1. 9	The minimum value of each quantity represe ed by the symbolic ma

Variable Name	Location	Dimension of Array	Units	Definition
WSQR	B.C.	(NMAT)	cm ⁵ /dynes-g	A term in the weighting factor used in the iteration to equilibrate materia pressures in multimaterial cells: WSQR _i =1/($\partial P_i/\partial V_i$) 1/(ρ_i^2 CSQR _i)
			73 19	(See Section 4.6.1)
WSUM	(CDT, PLGGEN, SPHASE)		dynes ₅ g ² /cm ⁵	The sum of the weig ing factors used in the pressure iterat
				$WSUM = \sum M_i / WSQR_i$.
a a			. 2	(See Section 4.6.1) In PLGGEN and SPHAS WSUM is the sum of area weighting fact
Χ .	B.C.,	(IMAX)	cm	The distance from t left grid boundary the right edge of a
•	•			cell.
X00	B.C.	5 8 5 E	Cm	The x-coordinate of X(0), the left grid boundary (assumed to be zero).
XAXIS	MISC	(NVOID, IMAX)	-1	The x-coordinate (i cell units) of a tracer on the x-axi
			* *.	of the grid. If XAXIS(n,I)>0 the in face of package n h a tracer on the x-a in column I.
VIENDO	-7(140)	5		
XIENRG	=Z(140)		ergs	Total internal ener in the grid. Calcul in EDIT and used for printing labels on tracer particle plo

Variable Name	Location	Dimension of Array	Units	Definition
XKENRG	= Z(141)		ergs	Total kinetic energin the grid. Calculated in EDIT and
134		£		used for printing labels on tracer particle plots.
XMAS	B.C.	(2,NMAT)	g	Temporary storage for the material masses of two cells being combined into
				one in COMPRS.
XMASS	MXCELL	(NMAT, NMXCLS)	g	The mass of a material in an interface cell. (See Section 4.2)
XMMS	(UVCALC, UVMOD)	n	g	The sum of the mas of the "master" materials in a sli line cell.
XMSL	(UVCALC, UVMOD)	1	g	The sum of the mas of the "slave" materials in a sli line cell.
XMSM	(PLGMAS)	percent.	g	The sum of the plu and target masses
				a cell in which al the target mass is being converted to plug mass. (See Section 6.2.4)
XP	TRACRS	(NTCC)		X-coordinates of passive tracer particles.
XRH	B.C.	(2,NMAT)	g/cm ³	Temporary storage for the material density of two cel being combined int
		3		one in COMPRS.

Variable Name	Location	Dimension of Array	Units	Definition
XSAVE	(FRACS)			The x-coordinate (in cell units) of the previous intercept of an interface with a given cell on the x-axis. Covers the case where an interface begins and ends in the same cell on the x-axis.
XTENRG	= Z(142)		ergs	Total energy in the grid. Calculated in EDIT and used for printing labels on tracer particle plots.
XUM	(MAP)	(41)		Used in MAP. Array has negative alphabetic characters for symbolic maps. Defined in a DATA statement.
Y	В.С.	(JMAX)	cm	The distance from the bottom of the grid to top of a cell.
Y00	B.C.	,	cm	The y-coordinate of Y(0), the bottom grid boundary (assumed to be zero).
YAMC	B.C.	(JMAX)	g-cm/sec	Calculated and used in TPHASE. Axial moment of mass transported across left side of cell. Equivalenced to UL array. (See Section 10.4.2)
YAXIS	MISC	(NVOID, JMAX)		The y-coordinate (in cell units) of a tracer on the y-axis of the grid. If YAXIS(n,J)>0, the interface package n has a tracer on the y-axis in column J.

Variable Name	Location	Dimension of Array	Units	Definition
YSAVE	(FRACS)	-		The y-coordinate (in cell units) of the previous intercept of an interface with a
	· ·			given cell on the y- axis. Covers the case where an interface be- gins and ends in the same cell on the y-ax
Z .	B.C.	(1)	2 1 E	Storage for most of the input parameters follows, the first word of blank common. The "Z block" (the first 150
			- (-	words of blank common is written on a file frestarting problems.
ZMOM	B.C.		g-cm/sec	The total post-HPHASE axial momentum of a slipline cell. Computed in HPHASE; used in UVCALC to update
		FI 65	× 6	the master and slave material velocities. See section 5.2.

10.4 FLAGS AND CONVENTIONS

MARKET AND AND THE PROPERTY OF THE PROPERTY OF

10.4.1 Flags Governing Interface Cells

FORTRAN Statements	Meaning
RHO $(1, M) = -1.0$	The M location in the material arrays (XMASS, RHO, SIE, FRACTP, FRACRT, US, VS, THETAS, SAMMP, SAMPY, SAMMY, SGAMC) is not in use.
NVOID = NMAT + 1	NVOID, the number of the "void" package, is always one greater than the number of material packages.
M = MFLAG(K) - 100 RHO(NVOID, M) = 1.0	Cell K contains the free surface interface.
MFLAG(K) = 0	Cell K is empty and is not cut by an interface.
0 < MFLAG(K) < 100	Cell K is nonempty and pure; i.e., it does not contain an interface.
MFLAG(K) = 2	Cell K is completely inside the material package 2 boundary and contains only package 2 material.
MFLAG(K) > 100	Cell K is an interface cell; i.e., it contains at least one interface. M = MFLAG(K) - 100 gives location of quantities in the material arrays for cell K.
MFLAG(K) < 0	Cell K was an interface cell on the previous cycle but is no longer cut by an interface and will be reflagged at the end of TPHASE.
MAT(2) = 3	The material code number of package 2 is 3. The list in EQST indicates that code number 3 corresponds to iron.
MAT(1) = 20	The material of package 1 is an ideal gas which is given special treatment in the sound speed calculation and in the strength phase of the code.

FORTRAN Statements	Meaning
M = MFLAG(K) - 100 RHO(N,M) = 0.	The interface of package N does not cut the interface cell K. Material of package N will not be transported into cell K.
M = MFLAG(K) - 100 RHO(N,M)>0. XMASS(N,M) = 0.	The package N interface cuts the interface cell K, but cell K does not contain any material of package N. Either no material N has yet entered the cell or it has all been transported out before the package N interface has left the cell.
M = MFLAG(K) - 100 RHO(N,M) = 0	The package N interface has left cell K, and the material of package N

RHO(N,M) = 0.

XMASS(N,M) > 0.

[XMASS(N,M)] should be completely evacuated from cell K on this cycle.

M = MFLAG(K) - 100 A slipline does not cross cell K, and the material velocities, (US, VS) are the same as the cell velocities, (U, V).

M = MFLAG(K) - 100) A slipline crosses cell K at an angle with the x-axis equal to THETA(M) radians. The material velocities (US, VS) of the master and slave packages will not (in general) be equal, and the cell velocities (U, V) will be a mass-weighted average of the material velocities. See Chapter V.

10.4.2 Definition of Transport Variables

In HELP there are four transported quantities: mass, radial momentum, axial momentum and total energy (or internal energy in the case of interface cells). There are sixteen variables which store these four quantities for the four boundaries of a cell; these variables are indicated in the Figure 10.2. The direction of the arrows indicates the direction of flow for which the variables are positive. Negative values of these variables indicate the flow is opposite to the direction of the arrows.

Figure 10.2--The sixteen variables which store the transported quantities between pure cells.

The variables given in Figure 10.2 are <u>cell</u> variables, and are used to compute the effects of transport for a <u>pure</u> cell. An interface cell, on the otherhand, must have each of these transport quantitites defined for each material package. The <u>material</u> transport variables were named by preceding the corresponding <u>cell</u> transport variable names with an "S". For example, the mass of package 2 transported across the top of cell K is stored in SAMPY (2, m), whereas the total mass transported across the top of cell K is stored in AMPY. Furthermore, the cell variables of interface cells are defined by summing the material variables. For example, for an interface cell

$$\underline{A}MPY = \sum_{n} SAMPY(n,m)$$

where m = MFLAG(K) - 100. Only the interface cell energy variables do not exactly correspond to the pure cell variables. For example, DELET is the total energy transported across the top of cell K and SDELET (n,m) is the internal energy of package n transported across the top of the cell. Therefore,

DELET =
$$\sum_{n} SDELET(n,m) + \frac{1}{2} \sum_{n} [SAMPY(n,m) \cdot (ud_{n}^{2} + vd_{n}^{2})]$$

where ud_n and vd_n are the donor cell material n velocity components. The energy variables at the other boundaries are defined in a like manner.

10.4.3 Radial and Axial Terms

Both x and r are used interchangeably in the FORTRAN variable names in the code and in the notation of this report to denote the radial direction. For example, the radial dimensions of the cells are stored in the DX array, but are printed out under the heading "DR". The following equation

for a strain rate deviator (from Section 2.3.2.1 of this report) also shows this mixture of x and r notation:

$$\dot{\varepsilon}_{rr} = u_x - \frac{1}{3}(u_x + v_y + \frac{u}{x})$$

In the axial direction y and z are likewise used interchangeably.

CHAPTER XI

SAMPLE HELP INPUT AND OUTPUT

The HELP input and output will be illustrated in this chapter by considering three representative calculations:

- 1. Shaped Charge Liner Collapse
- 2. Perforation of a Thin Target
- 3. Impact into a Thick Target.

The input cards for these problems will be listed, and the distinctive aspects of each problem will be discussed. The output resulting from cycle 0 of each calculation will also be presented, as well as configuration plots* showing the material interfaces and the calculational grid. Some important aspects of the HELP output will be discussed in Section 11.4.

11.1 SHAPED CHARGE LINER COLLAPSE

The shaped charge calculation presented here will illustrate the use of sliplines and high explosive detonation. The calculation consists of three material packages and a void (NMAT = 3): package one is a copper liner; package two is a charge of Comp B, which is detonated at a point on the axis of symmetry; package three is an aluminum casing; and package four is the void. (The void package number is always NMAT + 1.)

Figure 11.1 shows the initial configuration of the problem, and Figure 11.2 shows the initial zoning of the grid relative to the dimensions of the material packages. For this problem the finest zoning was chosen to be in the region of the grid where the high explosive detonates and where the jet forms since it is important to resolve the detonation front and the stagnation region behind the jet.

Because of the axis of symmetry in these calculations, only the right half of each figure is actually in the computational grid.

Figure 11.1--Initial configuration of the shaped charge liner collapse calculation.

Figure 11.2-- Initial zoning of the grid relative to the dimensions of the liner, explosive and casing in the shaped charge liner collapse calculation.

The coarest zoning is to the right of the casing since this region is not of great interest in the solution.

Since this is a shaped charge calculation, the variable NLINER is set to 1, the liner package number. The value of the variable NOSLIP remains 0, its default value, indicating that the slipline option will be used. All of the interfaces between the explosive and the metal are designated as sliplines since it is assumed that the expanded detonation products do actually "slip" on the metal surfaces. Both the liner and casing are defined to be "master" packages; the explosive is defined to be a "slave" package. (As discussed in Chapter V, the symmetry of the equations governing the motion of "master" and "slave" packages makes the designation of packages as "master" or "slave" an arbitrary one.)

Since tremendous distortions are expected for the material in the slug and jet portions of the liner, the variables NADD, MINX, MAXX, MINY, and MAXY are defined so that every ten cycles (NADD = 10) ADDTCR checks tracer spacing in that region and adds tracers when necessary.

Because of the geometry of the liner and the high explosive, only the portion of the explosive package which is shaded in Figure 11.3 can be "seen" by the primary initiation point (see Section 7.2.7). Thus it is necessary to define a secondary initiation point, denoted by \bigotimes on the figure, to calculate detonation times for the unshaded part of the explosive.

If the calculation is to be carried to late times after the jet has formed, the user may want to rezone the grid in the axial direction to keep the jet tip within the calculational grid. This must be decided at the time the problem is generated since in order to rezone the grid, JMAX (the number of rows in the grid) must be an even

Figure 11.3--The area "seen" by the primary initiation point is shaded. The secondary initiation points are denoted by .

number. Then, later in the calculation, just before the jet tip enters the top row of the grid, the calculation must be stopped and the rezone flags (REZ and JEXTY) set in the restart deck so that the grid will be rezoned on the restart cycle. The rezoned grid will have less resolution in the axial direction, but it will have JMAX/2 more void cells into which the jet can expand. This of course, is possible only if the problem is generated so that the jet moves toward the top rather than the bottom grid boundary. (See Section 8.1 for more details on rezoning procedures. In particular, see Section 8.1.2 for the reason the jet tip cannot be allowed to enter top row of grid before the grid is rezoned.)

The input cards for the shaped charge problem are listed on the following pages along with the cycle 0 output.

Column Indicator -Input 11.1.1

THE PROPERTY OF THE PROPERTY O

SHAPED CHARGE LINER COLLAPSE

0

Heading Card 1CSTOP NUMREZ PK(1) PRCR CVIS NSLD NACD X II I Y I E MAPS MAXX X X Y I メイジつ MAXY WFRELP NTRACR WLINER MOUND 7 PCYCL NEET MAXCLS NTPHX JEXTY

ISTOP

11-7

$\left]_{Y_{o},Y_{1},Y_{2},E_{m},G,AMDM}\right]$	+11, 9785 100 +11, 985	+094+55	+105.3 0.7.0		+396.95 +105.5 0.0.00.00.00.00.00.00.00.00.00.00.00.00	3.0
$ MFLAG(2) $ $ MAT, \rho, E_1, U, V $		30 3	<u></u>	 	1.717	0 2 - 3
DY	-121	•133	•1146	1911.	666 19	
DX	7 JJ 1 O- 1		243	.214	- 6,6	g - -
1-10 11-20 21-30 31-40 40-41 51-60 Column Indicator 1.334567899 12345678999 12345678999 123456789 1234567899 1234567899 12345678 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789	11-20 21-30 31-40 40-41 51-60	40 40-4 789 <u>p</u> 123456	31-4	0 21-3	.0 7899 <mark> 234567</mark>	1-10

secol Depositor Depositor Depositor Constant Research Depositor Constant Co

Column Indicator

1-516-10 11-1516-2021-30	31-40
--------------------------	-------

のの特別を大学の政権を持ち、政策を政策を対し、政策を支持を対し、これをいるとのは、関しての対象を対し、

		11 15			
	1-15-	2.30475	1.6		
•	•	1 95			Material Tracers
	7+3	2.8357	2.5354	7.5	Material Hacers
	1	1 .			for Package 1
2	.5356	7.5	2.3	7.5	for Package 1
	,	•			(Liner)
- 2	1.0	7.5	-3157	3.1123	(Liner)
	. 45874	3.14159	.,		
े	•				
		2 15.			
•		1.6	. 5	1.3	
	2	2 10			
•	.5	1.6		1.5	
	. '	5 30	2.5354	1.5	
	.5	7 92		1	Material Tracers
	2.535A	:.5	2.535/	7.5	
	,	2 60			for Package 2
	2.5356	7.5	10743	2.4327	
	- 4	2 15			(Explosive)
	2.30405	3.14159			
	C•	1.5	11.5		
		1 40			
	.5	1.0	3.5356	1.0	7
	ls °	3 182	3. 3336		: [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2
	3.2356 .	1.6	3.0354	7.5	Material Tracers
	1	3 5			Material Hacers
	3.035.	7.5	2.5354	7.5	for Dackage 3
	2	3 °C	4		for Package 3
	2.5354	1.5	2.5354	1.5	(Casina)
		3, 30	.5	1.5	(Casing)
	2.5354	3 10			
	• 5	1.5	•5	11.0	
					프라마 그 경우 아이들은 경우 보이다.
	•	4; 9'			
	3.14154	2.45624			
	0.	3.5	.5		
	3	• •el	2.5	17.5	Material Tracers
	.3157	3.1173	•••		Material Hacers
	2.0 1	7.5	2.5356	17.5	for Package 4
	1!	4 5			TOT Package 4
	2.5356	7.5	3.0356	7.5	(Void)
	2	4 100			(1014)
	3.3354	1.5	3.0354	1.0	
	l ₁	4. 42			
	3.2356	1.6	•5	1.0	
	-11	1.6	0.	1.0	
			1.0		

End of Material Tracer Data

Column Indicator-

1-10 | 11-20 | 21-30 | 31-40 | 41-50 | 234567890123456789012345678901234567890

Slipline Endpoints	Detonation Points End of Detonation Points	Area for each Detonation Point
	od	
Year o		
สอง	9 0	7.5
25.2	A 10	
275		v •
2 9 0	22	
- 6 4	٠.	n co
010	- N D	·
- 0 0		•
		. O

15010

End of Input

11.1.2 Cycle 0 Output

SHAPED CHARGE LINER COLLAPSE

INPUT CARDS

151 1 5.000000+00

INPUT CARDS

000000+00 000000+01 000000+02 000000+02 000000+03 00000+03 00000+03 00000+03 000000+03 000000+03 000000+03 000000+03		œ ·	3141590401 Am .0000000 NUMBER OF POINTS	C+D1 THZ# 2	5824
000000+00 000000+01 000000+02 000000+03 0000000+03 000000+03 0000			8 STAIC JO	ACKAG	
0000000+00 000000+01 000000+03 000000+03 000000+03 000000+03 100000+03 100000+03 100000+03 100000+03 100000+03 100000+03 10000000+03 100000000000000000000000000000000000	00+00		30+01 XZ=	2000000+01 YI#	O
0000000+00 000000+01 000000+03 000000+03 000000+03 000000+03 1000000+03 100000+03 1000000+03 1000000+03 1000000+03 1000000+03 1000000+03 1000000+03 1000000+03 1000000+03 1000000+03 1000000+03 1000000+03 100000000000000000000000000000000000			OF POINTS 90	PACKAG	
000000+00 000000+01 000000+02 000000+03 000000+03 000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 0000000+03 00000000	10+00	,20000	00+01 X2=		535
000000+00 000000+01 000000+03 000000+03 000000+03 000000+03 1000000+03 1000000+03 100000+03 100000+03 100000+03 100000+03 100000+03 100000+03 100000+03 100000+03 100000+03 100000+03 100000+03 100000+03 100000+03 1			OF POINTS	PACKAG)
.0000000+00 .000000+01 .000000+02 .000000+03 .400000+03 .00000+03 .000000+03	10.00	7 2 5 5 6	OF POINTS	PACKAG	
.0000000+00 .000000+00 .000000+00 .000000+01 .000000+01 .000000+01 .000000+01 .000000+00 .000000+00 .000000+00 .000000+00 .000000+00 .000000+00 .000000+01 .000000+01 .000000+01 .000000+01 .000000+01	•	æ	304050+01 Am		0
			OF POINT	~	
				•	
				.0000000.	
				+000000	
				9000038	
				+000000	
				0.000000	
				+000000	
				-0000c00·	
				.0000000	
				+8000003+	
				3+0500000	
				.3000000.	
				-000000·	
				• Scc 000 •	
				1000001	
				+600000	
				+0000000	
+ + + + + + + + + + + + + + + + + + +		Ē		+0000009.	
++0000000 ++00000000 +000000000000000				+	
0000000 0000000 0000000 0000000				+	
0000000 0000000 00000000 00000000				+	
+0000000				+60000	
+0000000				-000000C	
•				+000000	
				+0	

•50000000+

.3500000+01 R.

.7500000+01 .7500000+01 .3112300+01

. Y 2=

.1000000010

.3500000+01 Rm

.5000000+00 Y2* .1500000+01	.2535400+01 Y2= .150000+01	.2535600+01 Y2" .7500000+01	7430000 00 Y2 .2830700.01		*D*DDDDDD1*	.3035400+01 Y2= .1000000+01	10+000007, #5% 10+00+8:0:	•	.2535600+01 Y2= .750000+01	.2535400+01 Y2= .1500000+01	1	.5000000+00 Y2= .1500000+01	1	.5000000+00 Y2* .1000000+01	00+00000000 = 0+00000000000000000000000				.2535400+01 . Y2= .7500000+01	1	00000000 424 10+009<505	3035600+01 Y2= ,1000000+01		.5600000000 Y2* .10000000000	1 6 3	10+0000001.			ZENDS	ZENDS	ZENDS
	Z = 2			15	• 0000000 • 0000000	-	# 100 x 201	Ŋ		x2# 90 .253	30	Ť	9		2 P	90000	90 -62	•	X2= .253	w		100	9		15	XZ= .000					
STATE OF STATES	X	0+01 X2	POINTER	DINT	OF POINTS		POINTS	POINTS		N N N	OINTS		OINTS		FOISTON		01215	S T M T O		DINTS	XX	O I N T	STNIO	1 x2	DINTS	OINTS			Z M	S M	N M
	· 1500000+01	5 6	000	0	.3141570+01 A		NUMBER OF	NUMBER OF	100	* 7500000+01	NUMBER OF	.1500000+01	NUMBER OF	0	NUMBER OF		NUMBER OF P	NUMBER OF		NUMBER OF		.7500000+01	NUMBER OF	+00	HUMBER OF	• 1000000 • 0 ! NUMBER OF P		•	Z B 6 S	S 9 8 2	S 9 8 7
•	Y !=	×1=	Y 1	2	7 T	۲۱=	2 .		Y .	Z •	Z	¥1= .	2 0	*	2 d	00+7*	Z (2	¥1=	Z •	Z	¥1.	2	* Z			102	E -	E = 6
2000	•	•	PACKAGE 0 01	CKA	ACKAGE	Į .	ACKAGE=	PACKAGE		ACKAGE =	ACKAGE=	_	PACKAGE		CKA.	-	PACKA GE	PACKAGE	•	PACKAGE		PACKAGE #	ACKAGE	-	ACKAGE.	-00 CK 4 GE=	Z	;	SLAVE	SLAVE	SLAVE 0
00+00000000	·5000000+30	.2535600+01	3 PACK 2535600 01	74	.2304050+01	.50000000	PAC	9	.3035600+01	-2535600+D) (.2535600+0	-2 PA	•500005•	4	10+3461415+	A	2	*200ccc+c1	1 b	.2535600+01	2 PACK	74	-3035600+C	- i -	• 50000000+0100	,		MASTER	MASTER 1	MASTER 1
X	- X	# L # C	X 1 ×	TYPE=	TYPE	X I =	TYPER	TYPE	= X	TYPE X	TYPE	× 1 =	TYPER	# :	TYPE		TYPE	7 Y DE	X - X	TYPE	×	TYPE ×	TYPES	= 1 ×	TYPE	XIR	EFINITION		PKG. NO.		

DETONATION TIME CALCULATION FOR EXPLOSIVE PACKAGES

0.0000	0 DELAY TIME 0.00000	1.50000+00	5.00000-01	INITIATION POINTS 5.00000-01		EXPLOSIVE PACKAGE	8	TYPE OF INITIATION POINT
00000.0	1.00000+00 DELAY TIME 0.00000	1.00000+00	0000000	INITIATION POINTS 0.00000	7	EXPLOSIVE PACKAGE		TYPE OF INITIATION POINT

1.0000000+06 XHAX 5.0000000-01 YHAX 2.7000000+00 4.00000000000 DELAY TIME 0.0000000 0.0000000 0.0000000 SEARCH AREA XMIN 0.0

DETONATION TIME FOR EACH ROW(J)

. 7000000	00000000				000000000000000000000000000000000000000		
00000000.	0000000.						
00000000	00000000						
00000000	00000000			00000000		• • • • • • • • • • • • • • • • • • • •	
000000000	.00000000	00000000	000000000000000000000000000000000000000	. 9493595-06 •0000000 •0000000		.0000000 .1238347-05 .0000000 .0000000	.1453278-05 .0000000 .0000000 .1564731-05
5645235-06	.5839397-06 .0030000 .0030000	6282446-06 0000000 0000000 6526787-06	722196-0 000000 000000	.0000000 .0000000	0000000	1173230-05 0000000 0000000	0000000 0000000 0000000 1398207-05 0000000 0000000
.0000000	0000	.c000000 .0000000 .0000000 .0000000 .c951272-06		252 000 000 000 000	. 0000000 . 0000000 . 0000000 . 1004338-06	00000000000000000000000000000000000000	00000000000000000000000000000000000000
.31438.5-06 .0000000 .0000000	.3480485-06 .3480485-06 .0000000	-0000000 -4181428-06 -0000000 -0000000 -5098587-06		000	.83888870 .0000000 .0000000 .956281570 .000000	004000	.0000000 .000000 .1317245-65 .0000000 .0000000 .1439271-05
.1898331-26 .0000020 .0000000	90900 41593 00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90-000000 90-000000 90-000000 90-000000 9000000	1 0 0 0 0 0 0 0 0 0 0 0	.8008753-06 .00000000 .0000000 .0000000 .9228546-06		.00000000 .0000000 .0000000 .0000000 .000000
.0000000	.1643647-06	.2639417-66 .0000000 .0000000 .0000000 .0000000	.3330000 .0000000 .5312765-06 .0000000	.0500000 .0500000 .000000	.0000000 .0000000 .0000000 .000000 .000000	000000000000000000000000000000000000000	.0000000 .0000000 .0000000 .0000000 .000000
•	9	11 2	13	7	S 4	10 1	6 0

000000000000000000000000000000000000000	0000000.	00000000	.0000000	.0000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	00000000	000000000000000000000000000000000000000	00000000.	00000000	00000000
00000000	00000000	00000000	000000000000000000000000000000000000000	00000000	00000000
00000000	000000000	.00000000	00000000	00000000	000000000
.0000000	.00000000	.0000000	.2026801-05 .0000000	.2145069-05 .0000000 .0000000	.2264096-05 .0000000
.1630682-05	0000000	.1867858-05 .0000000 .0000000	.1987684-05	.2108148-05	000000000000000000000000000000000000000
					••••
.0000000 .1591696-08 .0000000	.1712506-08 .0000000	.1833921-08 .0000000 .0000000	.1955827-08 .0000000 .0000000	.2078139-08 .2078139-08 .0000000	00000000
.1564818-05 .1564818-05	.0000000 .1684772-05 .0080000	.1808050-05 .0000000 .0000000	.1931570-05 •0000000 •0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
.0000000 .1541578-05 .0000000	.0000000 .1666026-05 .0000000 .0000000	. 1798595-05 . 6000000	.1915261-65 .0000000 .0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
.0500500 .1531357-05 .0000000 .0000000	.1656574-05 .0000000 .0000000	.0000000 .1781863-95 .0000000 .00@6000	.1907044-05 .0000000 .0000000	000000000000000000000000000000000000000	00000000
21	22	23	7	25	56

SEARCH AREA XHIN S.0000000-01 YHIN 1.5000000-00 XHAX 2.6000000-00 YHAX 7.5000000+00
INITIATION POINT X S.0000000-01 Y 1.5000000-00 DELAY TIME 8.860+870-07
DETONATION TIME FOR EACH ROWILL)

				ம் ம	மிமி மிமி	เคเซ เกเด ม	n un
0000000	.0000000	•0000000 •0000000		45062210 70333210 000000 47003810	514343-0 514343-0 724125-0 000000 57877-0 747134-0	5831818 7818910 00000 168797 00000	.2862770-00 .0000000
		0.00	000 000				a u
.0000000	00000000	00000000		.1325484-0 .2578032-0 .0000000 .1350166-0	.1404812-0 .2600346-0 .0000000 .1481226-0 .2624994-0	.1572171-0 .2658181-0 .0000000 .1672624-0 .2699439-0	.1//382-0 .2748231-0 .0000000
000000000000000000000000000000000000000	00000000	.0000000	000 000	.1200485-05 .2462736-05 .0000000 .1234147-05 .2459836-05	.1304241-05 .2476808-05 .0000000 .1395957-05 .2503340-05	.1499674-05 .2538971-05 .0000000 .1610254-05 .2583129-05	.1724987-05 .2635169-05 .0000000
00000000	00000000	00000000	000000000000000000000000000000000000000	.1075902-05 .2327441-05 .000000 .1127602-05	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 242073410 .0000000 .00000000 .1565501-0 .2468196-0	.2523891-05 .0000000
000000000000000000000000000000000000000	00000000	000000000	000000000000000000000000000000000000000	.00000000 .9493595-06 .2202151-05 .3461421-05 .1039527-05	1365746-05 136379-05 2230717-05 3476135-05 1238347-05 226202-05	.1344268-05 .2303713-05 .3514771-05 .1453278-05 .2354961-05	.1544731+05 .2414788+05 .357429+05
.0000000	.5839397-06 .0000000 .0000000	.6282446-06 .0090000 .0000000	000 00		25 4 0 7 1 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	284532-05 188236-05 386009-05 398207-05 243850-05	.1513720-05 .2308358-05 .3450628-05
. 4393852-04	.0000000 .4640671-04 .0000000	.0000000 .E.187137-04 .0000000	.0000000 .5951272-06 .0000000 .0000000 .6000000	0000000 0000000 1951586-06 3204543-06 000000 9932805-06	209347-08 200000 004338-08 986675-08 220877-08 010810-08	1234664 1234664 1234664 1356365 1356337 2138429 32945734	14716 22052 33315
.3143865706 .0000000	.0000000 .3480485-06 .0000000	. 6000000 . 4 1 8 1 4 2 8 - 0 6 . 9000000 . 9000000	.5000000 .5096587-06 .0000000 .3000000 .135758-06	0000			143927 210630 32130
.1898031-06 .00000000	00000 41503 00000	00.00	0000000 000000 000000 000000 000000 0000	900	2000 2000 2000 2000 2000 2000 2000 200	00000000000000000000000000000000000000	41728
.6795861-07 .0000000 .0000000	.0000000 .1640647-06 .0000000	.283 4 417-06 .0000000 .0000000	.0000000 .4c71061-06 .0c00000 .0c00000 .5312765-06	.0000000 .655818-06 .1575824-65 .2628633-35	4	7546615 7546615 8988261 8988261 8988261 898881 69354581 69354581	40615 92562 97854
٠	0	=	13	2 2	• • •	oc o-	20

Word Divincial passesses not a fact he sees all makes and present a

2.2217-05 .191912-05 .191912-05 .228249-06 .349132-05 .448222-05 .2587011-05 .194912-05 .228249-06		0437-05 •1951144-05 3982-05 •2915377-05 0000 •0000000	4509-05 .2059329~05 6104-05 .2974!88-05 0000 .0000000	0762-05 +2170631-05 4018-05 +3038695-05 0000 +0000000	8635-05 .2284305-05 7148-05 .3108402-05 000C .0000000	738-05 .2399819-05 5031-05 .3182835-05 3080 .0000000	7795-05 2516781-05 7124-05 3261551-05	8605-05 .2634900-05 3008-05 .3344137-05 0000 .0000000	1019-05 .2753956-08 2274-05 .343021 .05 1000 .0000000	41926-05 .2873782-05 34596-05 .3519449-05 000000 .0000000	294237-05 .2994247-05 29427-05 .3611523-05 000000 .000000	.887-05 +3115246+05 .093-05 +3706160-05 .000 +0000000	744-05 +3236696-05 744-05 +38G3111-05 000 +0000000	000 .3358533-05 387-05 .3902153-05 000 .000000	000 .34e0701+05
1915319-05 191956-05 181918-05 191918-05 191918-05 191918-05 191918-05 191918-05 191918-05 191918-05 191918-05 191918-05 191919-05 191918-05 19191		1842380-05 •1 2694409-05 •2 0000000	1961562-05 ·200 2760167-05 ·286 0000000 ·000	2081998-05 .212 2831783-05 .293 0000000 .000	2203344-05 ·223 2908633-05 ·300 0000000 · C00	2325376-05 •23 2990146-05 •30 0000000 •00	2447917-05 .24 3075799-05 .31 0000000	2570871-05 .259 3165127-05 .325 0000000 .000	2694149-05 .27 325, 13,05 .33 0000000 .00	2817688-05 .28 3353192-05 .34 0000000	0000000 3451240-05 •35 0000000 · •00	3086 3627 0000	.3653945~05 .3726744 .0000000 .0000000	.000000 .0000 .3758136-05 .3828 .000000 .0000	0000000 0000000
1531355-05 1541918-05 1541918-05 15304000 153357-05 1541918-05 1541918-05 153040000 153357-05 1541918-05 1541918-05 153040000 153357-05 1541918-05 1541918-05 153040000 153357-05 1541918-05 1541918-05 1541918-05 1541919 153357-05 1541918-05 1541918-05 1541918 153357-05 1541918-05 1541918-05 1541918-05 1541918 153357-05 1541918-05 1541918-05 1541918-05 1541918 153357-05 1541918-05 1541918-05 1541918-05 1541918 153357-05 1541918-05 1541918-05 1541918-05 1541918 153357-05 1541918-05 1541918-05 1541918-05 1541918 153357-05 1541918-05 1541918-05 1541918 153357-05 1541918-05 1541918-05 1541918-05 1541918 153357-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541918-05 1541		.1808953-0 .2587011-0 .0000000	.1931951-0 .2656763-0 .0000000	.2732393-0 .2732393-0 .0000000	.2179281-0 .2813212-0 .0000000	.2303381-0 .2898593-0 .0000000	.2987980*0 .0000000	.2552125-D .3080885-D .0000000	. 31 6 0 . 31 6 0	.0000000 .3275590-0	.0000000 .3376695-0		.3585004- ₀ 5	.3671756~05 .3671756~05	0000000
153135-05 1541578-05 1541848-05 1541646-06 1540648-06 1540		. 1678141-0 5 .2482228-0 5 .3615186-0	.1793137+0 .2556361+0 .3659195+0	.1909431-0 .2636336-0 .3708087-0	.2026801-0 .2721389-0 .3761612-0	.2810847-0 .3819518-0	.2264096"0 .2904125"0 .3881548-0	.3000717-0 .3947755-0	.0000000 31001,000 4016991-0	.0000000 .3202172-0 .4089922-0	.0000000 .3306345-0	.34124	.0000000 .3520224-05	.0000000 .3629498-05	0000000
. 1531357-05 . 1541579-05 . 154181-05 . 15918-05 . 22828 . 23257772-05 . 22828 . 302371-05 . 2102568-05 . 2189803-05 . 22828 . 302371-05 . 210266-05 . 1684772-05 . 154181-05 . 3142552-05 . 3257712-05 . 33742 . 0000000 . 0000000 . 0000000 . 212445-05 . 2184821-05 .		.1630682-C .2380609-O .3491392-O	.1748801-0 .2459537-0 .3537456-0	1 .1867858-0 1 .2544188-0 1 .3588552-0	.1987684-0 .2633732-0 .3644397-0	.2727454-0 .3704712-0	.2824748-0 .3769214-0	.2925104-0	.0000000 .30200,100	.0000000 .3133347-0 .3985150-0	.3240568-0 .4063758-0	.33494	.345919-05 .4229531-05	.357,647-05	.000000
13 13 13 57 - 05 15 41 57 9 - 05 15 41 81 8 9 8 0 3 - 3 1 4 2 5 5 2 - 05 15 41 81 8 9 8 0 3 - 3 1 4 2 5 5 2 - 05 15 41 81 8 0 3 1 1 - 05 3 14 2 5 5 2 - 05 15 41 81 8 0 3 1 1 - 05 3 14 2 5 5 2 - 05 15 41 8 0 3 - 3 1 4 2 5 5 2 - 05 15 41 8 0 3 - 3 1 4 2 5 5 2 - 05 15 41 8 0 3 - 3 1 4 2 5 5 2 - 05 15 41 8 0 3 - 3 1 4 2 5 2 - 05 15 41 8 0 3 - 3 1 4 2 5 2 - 05 15 41 8 0 3 - 3 1 4 2 5 2 - 05 15 41 8 0 3 - 3 1 4 2 5 2 - 05 15 41 8 0 3 - 3 1 4 2 5 2 - 05 15 41 8 0 3 - 3 1 4 2 4 2 4 3 - 3 1 4 2 4 2 4 3 - 3 1 4 2 4 2 4 3 - 3 1 4 2 4 2 4 3 - 3 1 4 2 4 2 4 3 - 3 1 4 2 4 4 2 4 3 - 3 1 4 2 4 4 2 4 0 - 05 15 4 2 4 2 4 0 - 05 15 4 2 4 2 4 0 - 05 15 4 2 4 2 4 0 - 05 15 4 2 4 2 4 0 - 05 15 4 2 4 2 4 0 - 05 15 4 2 4 2 4 0 - 05 15 4 2 4 2 4 0 - 05 15 4 2 4 2 4 0 - 05 15 4 2 4 2 4 0 - 05 15 4 2 4 2 4 0 - 05 15 4 2 4 2 2 5 - 05 15 4 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	į	.1591696-0 .2282845-0 .337423560	.1712506-0 .2364992-0 .3422428-0	.0000000 .1833921-0 .2456640+0		.2005000 .2078139-0 .2649030-0	.0000000 .0000000 .2750422-0 .3663800-0	.0000000 .0000000 .2854571-0	.0000000 .276106170 .3809349-0	100000 100000 169551-0 187329-0	000000 000000 74756-0			,00000000 ,00000000 ,1518495-06 ,4228169-06	00000
1 232477-05 1541579-0 3028311-05 2102568-0 3028311-05 3142552-0 1050000 00000000000000000000000000000	•	.1541418-0 .1541418-0 .2189803-0	.1684772-0 .1684772-0 .2279540-0	.0000000 .1868050 .23745027 .3364243-3	.0000000 .1931590-0 .2473646-0 .3425027-0	.0000000 .0000000 .2576208-0	.0000000 .0000000 .2681773-0	.0000000 .0000000 .2789681-0 .3633730-0	.0000000 .27 .60 .0	.0000000 .0000000 .301124670	.0000000 .0000000 .312431570 .387532373	323863 323863 396185	405000000000000000000000000000000000000	.0000000 .0000000 .3470331-05 .4142494-05	00000
11	•	.0000000 .1541578-0 .2102568-0	.0000000 .1666026-0 .2198327-0 .3195585-0	.0000000 .1790595-0 .2298719-0	.0000000 .1915261-C .2402825-0 .3317609-C	.0000000 .0000000 .2509929-c	.0000000 .00000000 .2619477-0	.0000000 .0000000 .2731032-0 .3534790-0	.0000000 .00000000 .22442530 .3614863-0	.0000000 .00000000 .2958865=0	0600000 0600000 3974651-0	00000000000000000000000000000000000000	4000	.0000000 .0000000 .3427438-05 .4059455-05	00000
		.0000000 .1531357-0 .2022477-0 .3028311-0	.1656574-0 .2124445-0 .3084102-6	.0000000 .1781803-0 .2230367-0	.0000000 .1907044-0 .2339377-0 .3211982-0	.0000000 .0000000 .2450830-0 .3283201-0	.0000000	.0000000 .2679235-0 .3438168-0	.0000000 .0000000 .2, 552 _0 .3521178-6	.0000000 .0000000 .2912899-0	.0000000 .0000000 .3031168-3	.0000000 .3150194-05 .3788485-05	00000 26986 88277	.0000000 .0000000 .33%0089-05 .3979266-05	00000
					24								32	33	34

	.3510788-85	.3546444-05	.3587447-05	.3433559-08	.3684527-05	.3740070-05	.3799987-05	.3863954-05	.3931737-05	.4003086=05 .0000000
S)	.0000000 .0000000 .3631901-05	50000	.0000000 .0000000 .3705269705 .4331904705	.0000000 .3749484-08 .4412980-08	.0000000 .3798423-05	.0000000 .3851854~05 .4586 ⁹ 07-05	.0000000 .3909537-05	.0000000 .3971234-05	.0000000 .4036710-05	.0000000 .4105733*05 .0000000
•	.0000000 .0000000 .3753375-65	.0000000 .0000000 .3786049-05	.0000000 .0000000 .3823710-05	.0300000 .0300000 .3864168-06	.3913222-05	.0000000 .3944661+05 .4677910-05	.0000000 .4020269-05	.0000000 .4079827-05	.0000000 .4143121-05 .0000000	.0000000 .4209935~05 .0000000
_	.0000000 .0000000 .0000000 .438356-65	.0000000 .0000000 .3906523-05 .4454676-65	.0000000 .0000000 .3942700-05	.0000000 .0000000 .3983528-08	.4028824-05 .4684877-05	.0000000 .4078401-05 .4770823-05	.0000000 .4132041-05	.0000000. .4189605-05	.0000000 .4250834-05 .0000000	.0000000 .4315550-05 .000000
uo.	.0000000 .0000000 .0000000	.0000000 .0000000 .4027375-C5	.0000000 .0000000 .4062176-05	0 7-0 7-0	.0000000 .4145145-05 .4781657-05	.0000000 .4172978-05 .4865513-05	.0000000 .4244308-05 .0000000	.0000000 .4300452-05 .0000000	.0000000 .4359727-05 .0000000	.0000000 .4422451~05 .0000000
•	.0000000 .0000000 .0000000 .4594597-05	.0000000 .0000000 .4104526-05	.0000000 .0000000 .4182086-05	.0000000 .0000000 .4219983-08	.0030000 .4262109-05 .4880023-05	.0000000 .4308307-05 .4961856-35	.0000000 .4358416-05	.0000000	.0000000 .4469694-05	•0000000 •4530526*05 •0000000
ပ္	.0000000 .0000000 .4701911-05	.0000000 .0000000 .0000000	.0000000 .000000 .4302383=05 .4835384=05	000	.0000000 .4379652-05 .4979863-05	.0000000 .4424316-05 .5059739-05	.0000000 .4472804-05	.0000000 .4524964-05	.0000000 .4580639-05	.0000000 .4639674-05 .0000000
=	.0000000 .0000000 .0000000 .4810293-05	.0000cgo .0000cgc .c000000 .4873866=05	.0000000 .0000000 .4423029-05	0 0 1 - 0 5 2 - C 5	.0000000 .4497718-05	.0000000 .4540939-05	.0000000 .4587900+05	.0000000 .4638460-05	.0000000 .4692475-05 .0000000	.0000000 .4749802-05 .0000000
£ 5	CO CO	.0000000 .0000000 .4981473-05	.0000000 .4500433-05 .5046148-05	.0000000 .0000000 .4578173-06	.0000000 .4616256-05 .5183547-05	.0000000 .4658120-05 .5259705-05	.0000000 .4703639-05 .0000000	.0000000 .4752686-05 .0000000	.0000000 .4805127-05 .0000000	•0000000 •486829=05 •0000000
4 W	.0000000 .0000000 .0000000 .5629922-05	.0000000 .0000000 .0000000 .5000119-05	.0000000 .0000000 .5153147-05	.0000000 .0000000 .4698329-08	.0000000 .4735223-05	.0000000 .4775807-05 .5361601-05	.0000000 .4819965-05	.0000000 .4867579-05	.0000000 .4918527-05 .0000000	.0000000 .4972683-05 .0000000
3	30000 60000 60000 14162	.0000000 .0000000 .0000000 .5199668-05	.0000000 .0000000 .5261118-05	.0000000 .0000000 .4818807-05 .5325256-05	.4854582-05	.0000000 .4893957-05 .5464659-05	.0000000 .4936827-05 .0000000	.0000000 .4983084-05	.0000000 .5032612-05	.0000000 .5085297-05 .0000000
ي. بر	.0000000 .0000000 .0000000 .5252891-05	0000m	66698 60000 36999	.0000000 .0000000 .5432594-08	.0000000 .4974297-05	.0000000 .5012529-05 .5568803-05	.0000000 .5054181-05	.0000000 .5099148-05	.0000000 .5147328-05	.0000000 .5198612*05 .0000000
4	.0000000 .0000000 .5365472-05	.0000000 .0000000 .5421216-05	.0000000 .0000000 .5479704-05	. 2000000 . 0000000 . 0000000 . 5540831-08	.5094337-05 .5604495-05	.0000000 .5131489-05	.0000000 .5171984-05	-05	.0000000 .5262625-05	.5312574~05 .0000000
4 7	00000 00000 47871	000000000000000000000000000000000000000	00000 00000 00000 00000	000	.0000000 .5172452-05 .5712130-05	.5250805-05 .5250805-05	.5290203-05 .5290203-05	.5332784-05 .5332784-05	.5378459-05	.0000000 .5427134-05 .0000000

	.0000000	.715305	.00000000	52+08	.7284937-05	.7338315-05	0000000.	00000000	00000000	
62	.0000000 .0000000 .0000000 .7232016-05	.000000 .000000 .000000	.0000000 .0000000 .7313158-05	.0000000 .0000000 .7356988-08	.0000000	.0000000 .0000000 .7453405-05	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000
63	0000000	.0000000 .0000000 .0000000 .7396174-05	.0000000 .0000000 .7431090-05	.0000000 .0000000 .7474137=08	.0000000 .0000000 17519271-05	.0000000	000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000
37	00000000	.0000000 .0000000 .0000000	.0000000 .0000000 .0000000 .754927_05	.0000000 .0000000 .7591579-08	.0000000	.0000000 .0000000 .7684670-05	00000000	00000000	00000000	000
65	00000000	000	1	40000000 •0000000 •0000000 •709303-08	.0000000 .0000000 .7752892-05	.0000000 .0000000 .7800809-05	0000000.	00000000.	00000000	000
4	00000000		.0000000 .0000000 .7786449-05	.0000000 .0000000 .7827291-08	.0000000 .0000000 .7870144-05	.0000000 .0000000 .7917262-05	00000000	000000000000000000000000000000000000000	00000000	000
6	0000000	2000000. 20000000.	• ccopouo • occopouo • accopouo • 7 9 c 5 3 7 8 - o 5	.0000000 .0000000 .745533-06	.0000000 .0000000 .7987672-05	.0000000 .0000000 .8034015-05	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000.	000
4	0000000		.0000000 .0000000 .0000000	. COOCOOO . COOCOOO . OOOOOOO	.0000000 .0000000 .8165462-05	.0000000 .0000000 .8151054-05	0000000.	00000000.	0000000.	200
6 9	0000000.	000000000000000000000000000000000000000	000000000000000000000000000000000000000	.0000000 .0000000 .0000000	.0000000	.0000000 .0000000 .8268384-05	00000000	000000000000000000000000000000000000000	0000000	000
70				2000	00000	000000 000000 385933-0	00000000	00000000	0000000.	000
7.1	00000	00000 00000 00000	0000		.0000000 .0000000 .8460279-05	.0000000 .0000000 .8503749-05	00000000	00000000	00000000	000
72	0000000 0000000 0000000	0000000. 00000000.	00000	000000000000000000000000000000000000000	.0000000 .0000000 .857878-05	.0000000 .0000000 .8621800-05	000000000000000000000000000000000000000	00000000	00000000.	000
73	0000000.				.00000000.00000000000000000000000000000	.0000000 .0000000 .8740076-05	00000000	00000000	0000000.	000
7 4	000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000	.00000000 .00000000 .88588	00000000	000000000000000000000000000000000000000	0000000.	000

0000000 0000000 00000000 00000000

INPUT CARDS

IPLGRT	KUNIT	NL I NE R	N N N N N N N N N N N N N N N N N N N		FINAL 4.0000-01	PROB 5+0000+00						10-000-1		1.330-01
1 PL GBT	X CN I TR	HFRELP 10	NUMSCA		EHIN F1	PRLIM 6						* 10-000-1		1,210-01
IPCYCL 25	X 4 H J	NDUMP7	NTRACR 2		DTMIN 1.0000-11	PRFACT 0.0000		HATERIAL	COMP B	4 7 7 8 5 = 0 1 1 · 0 0 0 + 0 0 4 · 8 5 0 = 0 1		٥ - آ	20	
INTER	JEXTY	NADD 10	NTPHX		DMIN 1.0000-03	PRDELT 0.0000		>	0.0000 0.0000 0.0000	RMU 4.550+11 0.000 2.740+11	F 0	12 1.000-01		24 1 1 100-01
X TE	14C	NIII	NACC		CYCPH3 1.0000+00	PRCNT 1.0000-03	1510P 0.0000	vi Z		6 6	80	10-000-1	1.000-1	10-000-1
¥91	780C	XZII	NSLD		CYCHX 2.0000+00	P#1N 5.0000+06	STAB 1.0000-63	0 	0000	ν - z	-			25
1 EXTX 0	12	F & &	NOSLIP		CV1S	0.0000 0.0000	S1EMIN 1.0000+05	C O N S.I.E.	000000000000000000000000000000000000000	S 51 K 2	10 PR	1.000	17 1.000-01	1.000
10RT 26	11	HAXX 10	F 0 0 2		CRATIO 1.0000+94 -	PLG0PT PI	ROEPS S	I N I T I A L DENSITY (RHOIN)	8 - 900 1 - 717 2 - 790	57K1 6.950+10 0.000 0.000	œ		10-000-1	
1011	168 35	C HAPS	T NHXCLS	× 0	BBAK C	6 A M M A 0 • 0 0 0 0 0	REZ 0.000C	MORMAL 1 DENSITY D	8.900 1.717 2.790	S T K 2.350+09 0.000 3.000+09		7	• 4	
1CST0P	IPLGTP	LVISC	E A R B	NVRTEX				PACKAGE NUMBER	- 26	A A A A	1 0 0	1 1.000-01	8 1-000-0	22 1.000-01

																																											90+	
	ĸ	7 • 000-01	1 • 400+00	2 • 100 + 00	2.864+00			20	0-000.	-000			0-000		-000	-000	000	10-000-1	-0000	-000	000			_	9	2 6	2 9	00-177-7	9	9	9	9	9	0	Ď	Ö	O						*1N* 5.00000000+	
		1	*	21	28			7	7	*		; ;		n :	7	4	2.	63	70	7.7	4	i i			י כ		r .	7 6	9 0	ה ה	7 6	.	0 0	P (70	11	3						•	
2 - 430-01	, e	9 • 000 • 01	1,300+00	2.000+00	2 • 7 3 1 + 00		000000	20				0-000.	0000	0-000.	-000	-000	-0000+	10-000-1	-000	-000				•	7	10-01/-/	00+1/4-1	2 1 7 1 + 00	2 • 6 / 1 • 00	00-1/6-5	4.271+00	00+12415	246/1400	6 • 37 1 • 50	7.071.00	7.771.00	8 • 47 1 • 00						2 - 7092428 + 00	
* 6	H	•	-	20	27	Y (T	-	, 1		7 (20	27	70	- +	.t 00	25	6.2	64		, (n 30			ר י	•	F -	20	27	4	-	40	n L	62	69	76	. 83						Z	
2 · 1 40 • 01	ĸ	0-000	1 + 200+00	0+000	41040		04/6/.	70	0.00		0-000.	0-000	-000	-000	-000	6	-000	000	-000		10-000-1	-000			7	.710	.37	.07	.77	. 47	.17	.87	.57	.27	.97	.67	8 • 37 1 • 00						0.000000	
33	-	un	12	•				-	, "	n e	71	6-	56	33	4	47	4	9	4		0 0	7 89			7	u	12	<u> </u>	7.6	33	7	47	1. 1.	61	89	75	82						AXIIXA	
1.050-01	æ	5	1 - 1 00 + 00	00+00	200000000000000000000000000000000000000	00.000.7	3.543+00	2.0		10-017-1	•	•	10-000-1	•	•	1 - 000 - 1	•	10-000-1		•	10-000-1	•		1	7	2.610-01	1 • 27 1 • 00	1 • 97 1 • 00	2 • 671 + 00	3 • 3 7 1 + 00	4.071+00	4.771+00	5 - 471+00	9 - 171 - 00	6 • 8 7 1 • 00	7.571+00	8 - 271+00				THESE CELLS		4 50+8-4-9A	•
3.6	-	. 4	7	=		7	2	-	,	*		•	25	3.8	30	*	5	4) 4	h :	•	9			7												7 t -				10 NOI		- 2,7	
10-022-1	œ	0000		00000		0+00+.	.340+0		70	30-0	.0000.	0-000.	.000-	0-000	0000	0-000			0000	0-000	0	0-000			2	0-004.	171+6	.871+0	.571+0	.271+0	.971+0	.671+0	.371+0	071.0	77110	47.40	B 171+00				E TO DETONAT			
31	_		<u>-</u>	1	` ;	47	31	ī	, (n	0	1.7	24	31	38	4		4 0	1	0	73	80			ר	٣	01	17	7.4	31	38	t)	52	20	99	7 0	1 C	9			00 6300	•	382134	
10-019-1	Q	10000.0			•	.300+0	.171+0	ř	70	-394.	-000	-000	10-000-1	-000-	-000	-000			10-000-1		-300 •	1 - 000 - 1	-000		7	3.670-91	1.071+00	1.77!+00	2 • 47 1 + 00	3 - 171 + 00	3 - 871+00	4 - 571+00	5.271+06	5.971+06	70417140	7 - 7 - 1 - 0 - 1	004.70.0	00.170.0	8 • 7 7 1 + 0 6		HAS BEEN A	_		
30	-	٠,	4 0		0 (23	30	_	, יר	7	•	9 1	23	-	37	1	ū	- c	י ח	o (72	79	9 6		ר	7	0	16	23	30	37	3	, v	• ac) u	יים פיים	V 0		9		OPERGS			17586
10-094-1	•	. 0	9 6		• 500 •	· 200+0	•010•	7	70	-019-	-000	-000	00	-000	-000	100			8000	-000	0-000.	0	0-000.		2	1 • 6 10 - 01	9.710-01	1 • 67 1 + 00	2.371.00	3.071+00	3.771.00	4 - 47 1 + 0.0	5-171+00	5.87.400	4 - 5 7 1 + 00	0001100	00+1/2•/	00.174.7	0	0	.1895761+0			. v T .
2.	-		- 0		n (•		00	15	22	20	34	* *	. n	ם נ	\	•	_	8 2	00		ר	-	- 60												ي ا					∔ n⊃

PACKAGE NO.	1.8957410+08 0.0000000 1.8957410+08 0.0000000		00000000000000000000000000000000000000	H 0 - 0 1 -	101.EN. (SUM 0.0000000 1.895.7610.08 0.0000000	~	1.94eb310+02 1.93e0233+02 1.857e395+02 5.14(6937+02	00010	> 000 10	200010	**************************************	~ 1	000000000000000000000000000000000000000		0 1
~ ~			KE 0UT												
BOUNDARY	BOTTOM	u.	R I GH		404	SEV	SEVAPORATEDS								
MASS OUT ENERGY OUT MU OUT	0.0000000000000000000000000000000000000	0000	0.0000000000000000000000000000000000000	0000	000000000000000000000000000000000000000	0000	0000000								
11-23	0.0000000 0.00000000 0.000000000000000	0.000 1 NTS	0.00000000	00.0	00000000										
	2 E	50 -	I - 0 4	2 2 3 3 4 4 5 6 7	NENDH 105 275	. 2	A S O S O S O O S								
		CELL	L-COORE	CELL-COORDINATES C	GF TRACER	70 F OR	EACH MATER!	A .	ACKAGE						
PACKAGE 1	×	-	z	×	>	2	×	>	z	×	>	· 2	×	> -	
	•	N 1	7 1	• 4	23.31	7 4	N 10	3 . 3 6	* •	1.79	23.45	5 01	5.13 24	23.57	
	1 5.6	25.03	7 7	6.12		- II-	2.5	25.76	**		0 - 00	15	.43	26.60	
	16 7.43	29.22	22	M 4 9 9		. 2		0.27		.0	30.79	52	* u	.32	• •
	•	31.84	27	9.65	32.37			5.52		10.05	39.45	35		.57	
		37.09	16		37.61		•••	100.14		12.06	38.66		12.26 39		- 4 -
	13.4	70	7 7 1	70	70.0			3.39	• •			5 50 50 50		10	9 . 4
	54 15 49	44.06	57	15.49		22						3	.29	•	. Te o, Te
															- "

PROPERTY SERVICES INVESTIGATION FOR THE PROPERTY OF SERVICES IN SERVICES IN SERVICES IN SERVICES

		,		,	•	,			10.13	**			77	7.3	7
	-		7 •	70	0/00	****	•		7016			04.44		10.31	84.93
	• ;					7							7.		
	1.	9.5	2		•	2								0 . 3	
	76	. 5	8.0			•			•		3		;		9 . 6
		0.5	2.0		7.0	1 . 2			1 . 7		= ;	7 . 7	2		
		1 . 5	3.3		1 . 7	3:0		-		•	7 . 7	•	D 4	•	
		2 . 5	2.0		2.7			2.1				7 . 5	- (1	
		3.5	. 5	•		•	•		9 .	• (=		D (7	
		. 5	-	0	4.7	1 . 7	0		7 . 7	0		, ,	•		
		5.3	3.2	0	4 . 2	3.2	0	3.2	3.2	0	7.1	3 . 2	~ •	3 4	
		0.0	3.2	-	0.0	3.2		•	2 • 8	-	•	2 + 3	- 1		
		9.2	1.3	~	0.6		-	-		-	*	8 . 6	7	0 1	-
		8.3	8 . 8	2	8.1	8.3		7 . 9	7 . 8	N	7.7	7 . 3	7		
	1	7.3	6.3		7 . 1	5.9		6 . 9	5 . 4	N	4:1	*	~		
٠	n	4 . 9	3.9	~	5.9	3.4	•		2 . 9	m	5 .	2 . 4	~	•	•
•		5 . 4	*	~	.2	6.0	•	5.0	4.0	~	4.0	6	3	4 . 7	
	3		8.9	4	4.5	8 . 5		7:4	8:0	*	3.9	7 . 5	3.	3.7	0
	3	5	6 . 5	4	7	0.1		3.1	5 . 5	-	3.0	5.0	S	2.8	
	ď	2 .	1	S	4	3 . 5		2.2	3.0	-	2.0	2.5	S	-	2.0
	, v	9 .	1.6		1	•		1.2	9.0	•	1:1		•	6.0	*
	-0	2.0		•	·	9 . 8	•	0.3		•	0	7.6	•		
	-0	4.7	9.9		S	1.9	•	4.6	5.6	•	. 2	5 . 1	1	•	4.7
	-	. 00	4 . 2			3.7		*	3.2	-	. 2	2.7	1	ö	2 . 2
		4	1.7	-	1	1.2		S	0.7	-		0.2	8	-	4 . 7
	. 00		2	00		8 . 7		10	8.2	•		7.7	0	-	7.3
	0		00	•		6.3	-	•	5.8		*	5.3	6		
				0	9	3.8		•	3.3	•	*	2 . 8	•	. 2	2:3
	0	4 • 10	1 . 8	197	3.91	1 .3	1 0 8		30.89	• • •	ŝ	30.40	200		
		-	7.0	0	-	4 . 6	. 0		9 . 1	0		8 . 8	9	7.9	•
	206	*		0	6	8.3	0	*	1.3	0		8 . 2	101	0	•
PACKAGE	7				2	,		,	,	7	,	>	2	>+	*
	z	×	>	z	×	-	2	≺	_	Z	≺	-	2	¢	•
		•		•	48.		•	~	2	*	0	. 2	u	•	
				. ~	-	7	40	5		•		. 2	<u>.</u>		. 2
		ď				. 2		. 2	.2		9.	.2	15	•	8.2
			7		0			0	1		0	•	20	Ö	9
		C			Q	40		0	2 . 1		.0	2.7	25	0	3.2
		0	3.2			3.2		*	3 . 2		-	3.2	30	7 . 8	3.2
		'n	3.2		.2	3.2		4.4	3.2	*		3.2	ر ا		3.2
		2.0	3.2		2.7	3.2		3.4	3 . 2		4	3.2	9		7 . 6
		5.00	3.2		6.2	3.2			3 . 2		7.6	3.2	3		3:2
		9.0	3.2		4.7	3.2		*	3.2			3.2	5		3 . 2
		2 . 5	3.2		3.2	3.2		3.4	3.2		4:4	3 . 2	S	2.5	3 . 2
		5.3	3.2		5.3	3.9		5.3	4.6		5.3	5.5	09	5.3	2 . 4
		5 .3	9.9		5.3	7:3		5.3	9.0		5.3	8.6	• 2		
		5	0.0		5.3	0.7		5.3	1:3	•	5.3	2.0	0	2.5	2 . 7
		5.3	4		5.3	4.0		5.3	4 . 7	*	5.3	5.4	7.5	5.5	•
		5	6.7			7 . 4		5.3	1 . 0	7.0	5.3		0	5.0	*
	8	25.32	30.14	92	25.32	30.82	1	28.32	31.49	* (25.32	32-17	9	25.32	
		5.3	3.5		5.3	4:1		2:3			2:3	2 . 5	O :	7 .	7
		5.3			5:3	7.5		2:3			2:5	9 . 4	6	7 .	
		5.3	0.2		5.3			8:3	:	•	5:3	2 . 2	00	2.5	2 . 7
)			I									

												,	- 1		
	C	5.3	3.6	102	5.3	4.3	0	5.3	4.9		5.3	2.6	0		0 (
		5.3	7.0	101	5.3	7.6	0	5.3	8.3		5.3	4.0	-	2 .	
	-		0.3	-	5.3	0.1		5.3	1:1		5.3	2.3) :
	-	5	3.7	-	5.3	* . +	-	5.3	5.0		5.3	5.7	~	5 . 3	
		5	7.1	2	5.3	7.7		5.3	4.8		5.3	9.1	~	5.3	9 . 0
	10	3 6	4	N	5.0		-	5.3	1.8	~	5.3	2 . 5	~	5.3	3.1
	. (7)		9 .	~	5.3	4.5	-	5.3	5.2	~	5.3	5.8	~	5.3	6 . 5
	"	5	7 . 2	•	5.3	7.9	-	5.3	8.5	~	5.3	4.2	4	5.3	6 • 6
	1	5	0.5	4	5.3	1 . 2	-	5 . 3	1.9	4	5 • 3	2.6	3 (3 . 2
		~	3.2	147	25.14	72.77	9 # 1	24.95	72.24	44	24.75	71.72	150	24.55	71+17
	ഗ		9.0	S	4.1			3.9	9.6	S	3.7	0.6	n.	3.5	
	S	3.3	8.0	S	3.1	7.5		2.9	6.9	S	2.7	4	•	7 .	, י
	•	2.3	5.4	9	2 . 1	4.9	•	1.9	4.3	•	1 . 7	9	0 1	- C) L
	9	1.3	2.8	•	1 . 1	2.2	•	0.9	1.7	•	0.7	1 . 2	` '		•
	1-	0.3	1.0	~	1.0	9.6		0.		~ 1	9.7	9 0	- :		9 4
	-	9.3	7.5		9.1	7:0		8.9	6.5	-	8.7	2 . 4	0	0 1	
	Ø	8.3	4.0	Œ	8 . 1	4 . 4		7 . 9	3.8	00	7.7		o c	0 1	0 0
	8	7.3	2.3	8	7 . 1	1.7	-	6.0	1 . 2	•	6.7		•	r :	
	0	6.2	9.6	0	0.0	9.1		5.8	9 • 6	•	2 . 6	8	> (
	0	5.2	7.0	0	5.0	6.5		4 . 8	0.9	0	9 . 7	5.4	0	•	
	0	4.2	1 .	0	4.0	3.9	0	3.8	3.3	0	3.6	2 . 8	ο.	* :	? !
	Ó	3.2	1.8	0	o	1.2	0	2 . 8	0.7	0	2.6	0.5	-	5 . 7	
	_	2.2	1 . 6	-	2.0	8.6	t		8	-	1.6	1.6	1	•	0 :
	_	1 . 2	6.5	-	0	6.0	į	9.0	5.5	-	9.0	**	7		
	. 0	0.2	3.9	N	0.0	3 . 4	-		2 . 8	~	9	2.3	~		
1	2	9.2	. 3	N	c	0.7	-	4	0.2	~	•	9.7	~	*	7 . 6
1.	. ~	2	6.7	~	0	8 . 1	~	8	7.6	3		7 . 1	~	₹ ·	•
-2	3	7	9.9	m	•	6 . 1	•	S	5 . 7	~	-	5.3	7 :	•	י מי
5	*	-	4.7	4	9.	7 . 7	*	ů	+	4	ູ	3.9	₹ (•	
	246	2.37	23.57	4	~	3 . 4	-	~	3.3	#	•	3.3	S.	0	3.6
	51-	Ċ	0												
1															
PACKAGE	-n	>	>	2	×	>	2	×	>	z	×	>	Z	×	>
	2	٠,		:	¢	•	2.								
	-	C	2	2	9.	. 2			. 2	7	5.9	• 2	S	1	8 . 2 9
	9	. 64	2	7	•	.2		9.5	• 2		0 . 2	• 2	0		7.
		.5	. 2	12	2 . 1	.2		2 . 8	• 2		J . 4		5		•
		4.7	2	17	4.5	• 2		0.9	. 2		6.7		07	2 4	
		8.3	. 2	22	9 . 8				. 7			7	0 6	9 6	
	97	21.25	6.29	27	21.90	8.29	00 f	22.55	8 2 2 9	7 7	24.29	000	ם ער רו		. 2
		- t	7	32	- 0				,		7 . 4) (9.1	
			7 .	, t		7 0		-				0 . 2	45	9.1	0.9
				4	-	2.2		9.1	2 . 8		4.1	3 . 5	20	9.1	4 . 2
				52	6	5 . 5		9.1	6.1		9.1	6 . 8	55	9.1	7 . 4
				57				9.1	9 . 4				0,9	9.1	0.7
				79	9 . 1	2.0		9.1	2.7		9.1	3 • 3	.0		•
		6	4.7	67		5.3		9.1	0.9		7.1	9.9	0,	4	7.3
			7.9	72	4.1	9.8			9.30	~	1 . 6	6.6	75		• •
		9.1		11	9.1	•		•	• 58		9.1	. 2	80	-	•
		1 . 6	4 . 5	82	9.1	5.5		-	5.8				n (- 1
		1 . 6	7.8	87				:	:				0 0		
			-	42	29.16	1.7		4:1	2.4			3.0	5		•

			٠.																																														
0		n •	•		* *		3.0			7 . 2	3 . 8	* 0	7 . 1	3.7	0.3	7 00	9.6	2.0	0 H	7 .	•		7 0	9 4	3 . 2	3 . 2	13.29	3 . 2	3 . 2	3 • 2	3 . 2	D . a	•		,	-	•		2.3	4	7 . 3	4.7	2 • 2	7 . 4		60.00	7 . 7	1 0	
		-	-	- 6						5	5.3	5 . 3	5.3	5 . 3	5.3	, i	2.5	5.5				ח ו		י מ		2 . 5	19.04	5 • 5	2.0	ů.	0	9 0	•		,	×	6.	~		• 5	-	-	•	•	6 6	10.92	D 0	200	•
									٠ س	i in	9	•	-	~	8	0	0	6	ō	0	_	- (7 0	v r	'n	4	245	S	S.	•	0 1	~ r				=	ហ	0	5	20	25	30	35	4	45	0 ,	υ , υ ,	D 9	D
		7 . 4	6.2	4 . 5	2.7	0.9		9 . 7	2 . 4	7			7 . 7	* * *	1:0	1.6	4.3	6.0	7 . 5	4.	80	1 . 4	3 (2.5	13.29	3.2	3 . 2	3 • 2	3.2	9 .	D			>	8 • 5	4 . 4	. 8	4 • 3	9 . 9	9.2	1:1	4 . 2	9.9	49.13	•	9 4	0
-				1 . 6	9.1		-		0 4			5 .3	8	5.0	5.3	5.3	5.3	5 . 3	5 . 3	5 .3	5.3			,			19.74	6.2	2 . 7	. 2	• 1	•	•			×	1	-	-	ö	0	•	80	œ	4.7	10.73	9 - 1	2.6	2 • 5
	D	0	-	-	~	N	7	7 4	ra	r u) U	9		-	-	40			0	0	0	_	(N	4 6		244	*	S	S	•	-0 1	/			ïζ	*									*			
5:7		2.2	5.5	8.8	2 . 1	5.4	9.8	- (7.0			9 60	9	5.0	1 . 7	9.3	4.9	1.6	8.2	4.0	1 . 4	8.	4.7		9 7		13.29	3.2	3.2	3.2	3.2	2 . 1	*			3-	8.3	4 . 4		3.8	6.3	8.7	1.2	3.7	6 . 1	10.01		3.5	•
	7.	9.1	1 . 6	1.6	9.1	9.1				ם מ		5.3	4	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.0	5.0			20.44	6.9	3.4	٠.	4	•	•			×	•	•		00				•	9.5	10.54		£ (7 . 7
•	0	0	-		-	N							•					•	•	0	Q		-	•		7	243		4	•	•	4.				2	m	c 0	13	8	8 3	8	53	3.8	£ 3	6	E .	6 0 (7
5.0	9.3	1.6		8 . 1	*	4 . 7	8.0		3.5	0 0	7		-	5 . 7	2.3	9.0	9.9	2.2	8 . 9	5.5	2 • 1	8 • 6	4.	2.0	9 .	י ה	13.27	3.2	3.2	3.2	3 . 2	2.7	•			> -	8 . 3	1 . 6	0.8	3.3	5.8	8.2	1.0	3 . 2	9.5	48.15	9.0	3.0	5.5
4.1	-		4.1	9.1	4.1	1 . 6	4.1	-		י ר	י ה ה			5.0	5.3	5.3		5.3	5.3	5.3	5.3	5 . 3	5.3			1	21012	7.6		9.0	-	0	0			×	4		.7	•		5	.5	4	3				•
41	102	107	112	-	7	2	132	m :	* 4		701	1 4	4	1	1	•	8	0-	0	0	0	-	-	2	2	7 .	237	. 1	S	S	-0	9	-		0	z	8	7								4.7			
1.1	4.6	0	4 . 2	7 . 5	9.0		7.3	9 0	3.2	3.5	Y . Y		7 0	4	0 - 0	9.6	6.3	2.9	9.5	6.2	2.8	7 . 6	. 9	2 . 7	٠, ٠ د	7 . (13.29	3.6	3 . 2	3.2	3.2	3.2		00.	NVRTEX	>	8 . 2	60	4.0	2 . 8	5.3	7 . 7	0.2	2 . 7	5.1	47.65	1.0	2.5	5.5
29 - 16	9.1	1 . 6	9.1	4 . 1	9 . 1	1 . 6	9.1		•	m .				1 5	1	5.3	5 . 3	5.3	5 . 3	5.3	5.3	5 . 3	5 • 3	5.3	٠ د د د		25.32	• 11) 1		8)	Ċ	ري ت	00.000	ER	1	00	7	. ru	3	3	•		~	2.	13.16	-	2.0	3.0
9.6	101	106	111	116	121	126	131	136	# :	7 1		0 - 7 -	0 -	171		on.	œ	D-	0	O	C)	-	-	N	2	m (236	7 3	- տՈ	l Nu	-0	-0	-	_	FACE TRA	.7	-	• •0								4			
																																			EE SUR														
																									1 1	1) 4								OC.														

F 6 H 1.14+10 1.33+10 1.52*10 P 9 3.05+10 3.24+10 3.43*10 Z 4.*5*10			*2				
2.86+10 Y 4.76+10							
7.62+09 N 2.67+10 X 4.57+10		• •				• • • • •	• • •
S+71+09 M 2+47+10 W 4+38+10		• •					• • •
3.81+09 2.28+10 4 v y +10		• •		• • • • •		• • • • • •	• • •
2.09+10 4.00+10							
1.90+08 1.90+10 3.81+10							•
0.00 1 1.71+10 5 3.62+10							
SYMBOL MAXIMUM VALUE SYMBOL MAXIMUM VALUE SYMBOL MAXIMUM VALUE	5 O	75 1 1		.n .q	0 - 0	ະກ ະກ -	50 1

<u> </u>									:	•																!	i.		_	_	_			
1.071+00 HETA# #1.00	2	9.710-01	8.710-01	7.710-01	6.710-01	5.410-01	-00+	-070-	10-01-1	0	×	•	017140	1.071+00 HETA -1.00				2	9.710-01	8.710-01	7.710-01	6.710-01	5.610-01			1 1 1 1	0	2	1.271+00	9	~ ~			
0.0000 10)=1.0	SRZ	0.0000	0.000	000000	000000	0.0000	0.0000	000010	0.000.0	CYCLE =	SRZ	0.0000	0.000	000000				SRZ	00000	000	000000	000000	•	•	0000			SRZ	0.0000	000000	ē			
0.0000 RHO(NVO	28.2	•	000000	0.0000	0.0000	000000	0.000.0	0.0000	0.0000	0-1-1-1	SRR	•	000000	00000	A	-		SRR.		•	00000	0.000.0	0.0000	000000	00000		58414-08	S S S	0.000.0	0.000	00000	**********	e4	
7 A A C . 4 O C	275		0	•	•	•	0.000	000000	.000	1 = 6.79		0.0000	000000	0.000	FRAC. VOL.	0	0.00000	225	0		• •	00000	•	•	0000		562.9 # 1	225	0.000	000000		0.00000		000000
00000000000000000000000000000000000000	THASS	000010		000000	00000	00000	•		• 1	247780	TMASS	1.6182-02	1.6182-02	•	200	1.1469-02	0.000	THASS	-			•		•	0.0000		707963-01	THASS	16971	•	1.9149-02	00000	1.9149-02	0000.0
00000000000000000000000000000000000000	PHOD		0000	000000	00000		000000	0.00000	• 1		GMOO	1 • 00000 • 00	1 • 00000 • 00	_		1 • 00000 • 00	.00000	1 000		00000.0		0.0000	0000000		0000000		TAU(1) = 1.5	COMP	1.00000+00		000000	000000	•	0.00000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SIE	0					000	00	0.00		5 E S E	0.000	.000	0.000	SIE	000000000000000000000000000000000000000	.000	SIE		.000	000		000	.000			000000-01	S	000	0000	0.0000	S1E	9	.000
4.6573+10 RHO 0.0000 1.7170+00	•	.00						00000	0.000 0	DR(1) = 1.0		0.000	0	0.000	Z C	0.0000	.0000	۵	•	•	•	0000	•		0.0	00000	DR(1) . 1.	a		•	000000	O E C	.717	
0 000000000000000000000000000000000000	>		•	•	•			•	• 000	00000	· · · · · · · · · · · · · · · · · · ·	0.000	0.00.0	00000		00000	•	>		0.000.0	000000	00000		0.000	0.000.0	0.0000	-0000	>		00000	0.00.0	S > 0	0.0000	0.0000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5		000000	00000	•	•	00000	•		(1) = 2	5	00000	•	00000	Э	0.0000	•	=		•	•	•		000	•	0.0000	(I) = 3	,		0.000	•		000000	•.
247 NHAT 212	MFLAG	•	5 0	.	-	5 (> c	0	0	2	HFLAG	8	2	248	LAEN	2 - 7		4		0	0	5 (o c	6	0				~	4 74	249	NA A	7 7 7	
•	ר	3		-	• 1	n :	* *	2 0	4	•	,	_						-	,	40	^	•	U 1	-	~	-	1	ר ו	-		•			

7	9.710-0	8.710-0	7.710-0	0-017-9	2.610-0	0-00++	3.070-0	1.610-0		
SRZ	0.0000	0.000	0.000	0.0000	0.000	0.0000	0.0000	0.000	0000	0000
SRR	0.000.0	0.000	0.000	0.000	0.000	0.000.0	0000.0	000000		0.00000000
. 225	0.000	000000	000000	000000	000000	0000.0	000000	u	RELERR	
THASS	000010	0.000	0.000	0.0000	0.000	0.0000	000000	000010	1,89574102+08	1.89576102+08
COMP	0.0000	0000000	0000000	0000000	000000	0.00000	0.0000	0.00000	EHIX	EMIX
SIE	0.000	00000	0.000	0.000	0.000	0.0000	0.000	0.000	1.49576100+08	1.89574100+08
Q.	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	ESUM	ESUN=
>	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0.0000	0.000	576102+08	576102+08
2	00000	0.000	0.0000	0.000	0.000	0.000	0.0000	0.0000		ETHE 1.89
JHFLAG	. «	0	9	9	0	3	2 0	0		HPHASE E

					•	-
		=	000000000000000000000000000000000000000	.7120626+00 PHINE 0.00000000 1.05478529-08 1.05478529-08	1,174934+00 1,05495529400 1,05495529400 1,05495529600	1,05496529006.
			8 8년 1년 - 1년 1년 8년		A A B A B A B A B A B A B A B A B A B A	RELERRA
**********	*********	*****	* * * * * * * 30 1.89576102+08	MAXUVE 2.8202778+02 1.89576102+08 1.89576104+08 1.89576104+08	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.696741094505 1.69674104+08
		**************************************	20 25 + + + + + + + + + + + + + + + + + +	.89576102+08 EMIX= .89576102+08 EMIX= .89576102+08 EMIX=	#AXCUV# 2,7176934+05 89574102+08 EMIXE 89574102+08 EMIXE 89574102+08 EMIXE	HAXCUVE 2,7289283+05 89576102+08 EMIXE
		**************************************	+ + + + + + + + + + + + + + + + + + +	8 DT= 1.4748922"09 2+08 ESUM= 1 2+08 ESUM= 1 2+08 ESUM= 1	02+08 ESUN# 1.02+08 ESUN# 1.02+08 ESUN# 1.02+08 ESUN# 1.02+08 ESUN# 1.02+08 ESUN# 1.02+08 ESUN# 1.00	12-09 ESUNE 1.
E = = = = = = = = = = = = = = = = = = =	E E O O O O O O O O O O O O O O O O O O	11111 10000 10000 10000 10000	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 Tm 6.8696827-00 ETHm 1.8957610 ETHm 1.8957610 2	9 Tm 7.0171719=0 ETHm 1.8957610 ETHm 1.8957610	9 7= 7.3115391-08 ETHE 1.89576102
		11-37	72HASE CYCLE	CATION CA	C TRANSPORTED TO THE STANDER OF THE	SPHASE

\$+00000000+S

5 • 0000000 • S

\$ + 00000000+S

11.2 PERFORATION OF A THIN TARGET

This calculation is presented here to illustrate the use of the HELP plugging option to simulate the perforation of a thin metal plate by a blunt metal projectile. (See Chapter VI on the HELP plugging model and Section 12.2 for results of a plugging calculation.) As dictated by the plugging model, this calculation consists of three material packages and a void (NMAT = 3): package one is the steel projectile and its initial axial velocity is $3.71 \times 10^4 \, \text{cm/sec}$; package two is to be the plug (the plug has no volume at t = 0.); package three is the aluminum target, and package four is the void. (The void package number is always NMAT + 1.)

Figure 11.4 shows the initial configuration of the problem as well as the passive tracer particles which are automatically generated in the plugging region of the target when PLGOPT = 1. Figure 11.5 shows the initial zoning of the grid relative to the dimensions of the projectile and target. The finest zoning was chosen to be in the region of the impact and in the region where the plug is expected to form. The value of DY(1) was chosen so that the initial projectile-target interface would be coincident with a grid line, a desirable procedure but not a requirement. The coarsest zoning is at the lower portion of the projectile and at the right end of the target, where there is no need for a highly resolved solution.

Figure 11.4--Initial configuration of the perforation of a thin target calculation. The dots represent the passive tracers which are automatically generated in the plugging region of the target.

Figure 11.5--Initial zoning of the grid relative to the dimensions of the projectile and target in the perforation of a thin target calculation.

The Z-block variables which must be defined for a plugging calculation are:

	Z(111)	PLGOPT	a flag which, when set to 1.0, activates the plugging mechanisms
	Z(59)	PLWMIN	the specific plastic work limit for advancing the vertical edge of the plug
`	Z(56) Z(60) Z(61) Z(109)	IPLGRT IPLGBT IPLGTP	the rightmost column, the bottom row and the top row of the region of the target where the passive tracers are generated and where the plug is expected to form the second index of the free surface tracer at the vertex of the void closing region (the top right corner of the projectile)
	Z(112)	NSLD	the maximum number of slipline cells to be generated. The plugging option presumes the use of a slipline along the vertical edge of the plug.

The projectile and plug packages must be designated as "slaves" and the target as a "master" since the plugging routines make these assumptions. (Details on generating the tracer particles and sliplines for a plugging calculation are given in Section 6.1.) The user should read Chapter VI before attempting to apply the plugging option to an impact

situation. In its present form the plugging model has several limitations that the user should be aware of before using it.

The input cards for the plugging problem are listed on the following pages along with the cycle 0 output.

A THIN TARGET PERFORATION OF

> 1511134 1,174

27:1-1. 33125. 35150

Heading Card

PROB PK(1) NFRELP CVIS NDUMP7 ICSTOP IMAX XXXI MAPS NICC NSLO PCYCL IPLGRT HIMATI 165791 PLGTP NADO TRACR RMXCLS NEAH NTPHX WYRTEX × ... MAXX PLGOPT LVISC ANIW TSTUP MAXY

46:127 49110.

42.1.1

4718.

C+

59:201 62:25

\$ 1.05

61:34

6413.

72:20

73.1.4CC

711352

611352

29::25

12125

INTES.

1.19(1.1

(25'1) C.

21:120.

22145.

Solids.

Column Indicator 31-40 1234567896123456789312345678931234567893 1-10 11-20 21-30 123456789312345678931234567893

DX	DY	$\left.\begin{array}{c} \text{MFLAG(2)} \\ \\ \text{MAT, p, E}_{\text{I}}, \text{U, V} \end{array}\right.$	$\begin{bmatrix} Y_{o}, Y_{1}, Y_{2}, E_{m}, G, AMDM \end{bmatrix}$
-12 -28	.17094 .09052 .06350	+ O +	+111.97
6 8 9 6 8 9	-19619 -11307 -36517	3.71 5.	+168•b +692•74 +392•74
0 - 1 V = 0	.22306 .12977 .0748C	• • • ကောပ	4.7
. E5517 . 14 . 34	. 14804 . 14804	င်း ကို င်းကို ၁	តំ តំ តំ តំ តំ ទំ
666	1 1 29	2.79 2.79	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<u>s</u> ==	1-44	ម្យាប្រ	4 M M

1-5 6-10 11-1516-20 21-30 31-40 31-3456789012345678931234567890123456789012345678901

	racers	11e)		racers	ge 2.				racers	ge 5			140 C B 140 C	ge 4					erial Tracer Data
	Material Tracers	IOT FACKAGE I (Projectile)	1	Material Tracers	for Package	[Plug]	_		Material Tracers	tor Package (Target)	7	· .	Material Tracers	for Package	(Void)		*****		End of Material
																ţ			
• •	1.588	2.209	2.239		2.203	2.259		2.209	2.209	2.204.	2.844		Z . 844	2.209	2.239	1.583	90.	40.	
	• 39	.276	• • •		•276	(3		.275	0	2.962	0		2.962	1.05	.276	0.00	• 3 9		
oc	390.	1,538	2.239	2 12	2.299	2.239	12	2.209	3 30	2 2 2	3. 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5°	, s	2.844	2.239	2.239	2.2.9	ເກັສ ສ ເຄີຍ ເຄືອ ເຄືອ ເຄືອ ເຄືອ ເຄືອ ເຄືອ ເຄືອ ເຄືອ	0 0 0	
- <u>-</u> -	39 2	3.9	270	·		276	· - <u></u>		1 275	1 80•1	2.962			.962	0.	3 276	39	39	100

Column Indicator

1-5 6-10 11-15 16-20 21-25 26-30 1234567893123456789312345678931234567893123456789312345678931234567893

Detonation Point (dummy card)

Slipline Endpoints

End of Input

PERFORATION OF A THIN TARGET

INPUT CARDS

154 1 3.40000+01

INPUT CARDS

																														HBER OF	10-0000009	UNBER	10-000000	UMBER OF	0011
800	+00000	1.000000+00	000	+0000	0.0000	-0000000	0000	0.0000	0.0000	+00000	0+0000	0+00000	. 5000005.	0.00000	.0000000	.0000000	0.00000	0.00006	9000	0.00000	+0000	0+0000	+00000	1.00000001	+0000	+0000	0.0000	0+0000	000	PAC	-11 V	PACKAGE 1	-11 0000+000	_	3080+00 YI-
-	-	-	-	-	-		4 (4)	10	-	-	-			-	-	-	-	-	-		-	-	-	-	-	-		-	_	-	• 0000	~	.390	~	.3900
0	2	7	2	0 27	2 3!	3.5	2 42	2 47	2 46	2 49	2 54	0 54	2 60	2 61		2 72	2 73		2 81	2 109	0	2 112	2 116	2 . 114	2 119	2 120	2 124	2 122	1 50	TYPE	*1×	TYPER	# 1 ×	TYPE	×1.

.1500000-01

.3980000+00

- Y 2 .

	14 44	760000000 PACKAGE 000000 PACKAGE		• 2204 NUMBE	0+01 0F POT	*	•	90000	7.2		. 2204000+01				
10000000 1		PACKAGE DODOOO PACKAGE	¥1=	44	R OF POT	NTS.									
		DOCOCO PACKAGE	¥ 1 =												
1		TACKAGE	•		0000+01		•	00000			.2204000+01				
10 10 10 10 10 10 10 10		760000+09	¥1=		000*01	•		00000	Y2		.2209000+01			,	
		PACKAGE	•	NUMBE	OF POI	VISE									
1 1 1 1 1 1 1 1 1 1		000000	_	.2209	10000	(2=		00+0000		•	.2204000+01				
10000001 1 10000000 1 1 1		PACKAGE	m .	NOMBE DOMBE	1 OF PO!			100000		•	10000000				
10000001	•	76C000+00		NUMBE	00 POT	T.S.									
PACKAGE	1	050000+01	•	.2209	100+001	x2=		12000+01		•	.2209000+01				
10 10 10 10 10 10 10 10		PACKAGE	•	NUMBE	OF PO!										
STATE STAT		10+000296		• 2844	100+00			00000	Y 2		.2844000+01				
10000001 1	-	PACKAGE		NOMBE	204	٦									*,
		0000000	¥1=	T	000+01	X2=		\$2000+01	72		10+000+482.				
PACKAGE 1 1 1 2 2 2 2 2 2 2		PACKAGE	*	3	R OF POI	1.5m									
December Author		2962000+91	_	2	000+01			10+00005	7.		10+0004077*				
- 1000000000000000000000000000000000000		PACKAGE	₹ :	W 9	R OF POI			00.0000							
2 PECKAGE 1 WINNER OF TOTATS 6 390000000 T215880000000 T215880000000 T215880000000 T21588000000 T2158800000 T2158800000 T2158800000 T21588000000 T21588000000 T21588000000 T2158800000 T2158800000 T2158800000 T2158800000 T21588000000 T2158800000 T21588000000 T2158800000 T2158800000 T21588000000 T21588000000 T21588000000 T21588000000 T21588000000 T21588000000 T21588000000 T21588000000 T215880000000 T215880000000 T215880000000 T215880000000 T215880000000000000000000000000000000000		10000001	= : >		000000			000000			10.0001022				
Value Valu		3 PACKAGE		4 6	יייייייייייייייייייייייייייייייייייייי			00+0000		•	1688000401				
*** **********************************		27.60000+50	- :	1	000001	- V	•	20000							
		ZO FACTORIA SE		100			, ,	00+00000			10-00-0009				
NOF SLIDE FNOFOLNTS NUMBER OF POINTS CO00000 V2" CO00000001 CO		3700000+00	- :	0 0 0	0.0000		•	20000							
N OF SLIDE ENDPOLYCE 1864 NENDR NENDS NENDR		PACKAGE		7000	וחב בסיט	1 3 E	D	00000	× >		10-0000000				
HASTER SLAVE HBAY HBAS NENDH NENDS HASTER SLAVE HBAY HBAS NENDH NENDS 1		634UUUUUA4UU		2000	R OF POT	1154			•						
TRO TRACERS 10 102 0 103 11 0 102 0 103 12 10 0 102 13 2 0 0 103 14 1 12 0 102 15 10 0 102 16 10 0 103 17 1 12 0 102 18 10 10 103 18 10 10 103 18 10 10 103 18 10 10 10 10 18 10 10 10 18 10 10 10 18 10 10 10 18 10 10 10 18 10 10 10 18 10 10 10 18 10 10 10 18 10 18 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10		ASTER SLAV	82	C	9	NENOH	Z	FENDS							
TRED TRACERS 25 24.75 24.75 3 22.25 14 .75 24.75 5 22.25 15 .75 22.25 25.25 14 .75 22.25 15 .75 22.25 17.75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 15 .75 22.25 22.25 24.25 15 .75 22.25 24.25 15 .75 22.25 24.25 15 .75 22.25 24.25 15 .75 22.25 24.25 15 .75 22.25 24.25 15 .75 22.25 24.25 15 .75 22.25 24.25 15 .75 22.25 24.25 15 .75 22.25 24.25 15 .75 24.25 24.25 15 .75 24.25		-			0	0		103							
3 C C C C C C C C C C C C C C C C C C C						0		32							
RED TRACERS 25 24,25 3 25 24,75 4 .75 24,75 5 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25 10 .75 26,25		3			O			0							
25 24.25	Ξ	RED TRACERS			•	•		.1	1	,			N		36.
25 26.75 12 25.75 7 25 26.75 13 25 27.25 14 25 27.25 15 27.25 15 27.25 17 25 26.75 13 25 26.75 14 25 27.25 14 25 27.25 15 27.25 17 25 28.25 18 27.25 14 25 27.25 17 25 28.25 18 27.25 14 25 27.25 17 25 27.25 18 27.25 14 25 27.25 18 27.25 1		25 24.2	~ 1	• 75	240	52				7 0	2 / 5	2 4	n <u>-</u>	n 151	26.
25		75 25.2	٠,	7	25.						n u	, ,) v	.25	27.
25 27 25 29 25 29 25 29 25 29 25 29 25 29 25 29 25 29 25 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 <td< td=""><td></td><td>25 26.7</td><td>21</td><td>\ '</td><td>*07</td><td>.</td><td></td><td>67.</td><td></td><td>•</td><td>25</td><td></td><td>20</td><td>.75</td><td>28.</td></td<>		25 26.7	21	\ '	*07	.		67.		•	25		20	.75	28.
25 24.25 47 10.25 23.075 29 12.25 34 1.25 31.25 30 1.25 31.2		7.7.2	_ (7 F	•. D 0	n .		3.0	•	7	74		25	. 25	30.
25 31,75 33 25 34 75 32,25 34 75 32,25 34 75 33,75 40 75 33,75 40 75 33,75 40 75 33,75 40 75 33,75 40 75 33,75 40 75 33,75 40 10,25 24,75 44 10,25 24,75 45 10,25 26,25		2067 52	77					1 10		29	.25	_	0		31.2
25 32.75 33.75 40 .75 33.25 39 .25 33.75 40 .75 33.25 39 .25 33.75 40 .75 24.25 33.75 40 .75 24.25 43 10.25 24.75 44 10.25 24.75 49 10.25 24.75 49 10.25 25.85 26.85 2		31.1	, ,	1)			• 25	2		• 75	~	35	• 25	32.7
25 24-25 42 1-75 24-25 43 1-25 24-75 44 1-75 24-75 45 1-25 25-75 49 1-25 26-85 50 1-75 26-85 50 1-75 26-75 49 1-25 26-85 50 1-75 26-75 49 1-25 26-85 50 1-75 26-75 49 1-25 26-85 50 1-75 26-75 50 1-25 27-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-25 24-75 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-75 24-25 50 1-25 24-75 50 1-25 24-25		75 32.7	7 6		. 67	9		.75	. 2		.25	~	ę		~
75 25.25 47 1.25 25.75 49 1.25 26.75 50 1.75 25.75 50 1.75 26.25 54 1.75 26.25 59 1.25 27.25 59 1.25 27.25 59 1.25 28.25 59 1.25 28.75 60 1.75 28.75 28.75 60 1.75 28.75 28.75 60 1.75 28.75 <td></td> <td>25.</td> <td>40</td> <td></td> <td>7</td> <td>4</td> <td>-</td> <td>1.25</td> <td></td> <td></td> <td>1.75</td> <td>₹</td> <td>4.5</td> <td></td> <td>5</td>		25.	40		7	4	-	1.25			1.75	₹	4.5		5
25 26.75 52 10.75 26.75 53 10.25 27.25 54 10.75 27.25 55 10.25 27.25 57 10.25 28.25 59 10.25 28.75 60 10.75 28.75 60 10.75 28.75 60 10.75 29.75 67 10.25 29.75 69 10.25 29.75 67 10.25 30.75 69 10.25 31.25 70 10.75 31.75 72 10.75 31.75 73 10.75 31.75 74 10.75 31.75 77 10.25 31.75 79 10.25 31.		.75 25.9	4.7	. 2	25.5	1 T	_	1 • 75			1 • 25	•	50	1.75	•
25 27.75 57 1.25 28.25 58 1.75 28.25 59 1.25 28.75 60 1.75 28.25 30 25 29.25 62 1.25 29.75 64 1.75 29.75 65 1.25 30 30.25 47 1.25 30.75 69 1.25 31.25 70 1.75 31.25 32.25 74 1.75 32.25 79 1.25 33.75 80 1.75 33.75 80 1.75 33.75 80 1.75 33.75 80 1.75 33.75 80 1.75 33.75 80 1.75 33.75 80 1.75 33.75 80 1.75 33.75 80 1.75 33.75 80 2.25 28.25 <td></td> <td>4.76</td> <td>2 2</td> <td></td> <td>. 90</td> <td>· ·</td> <td></td> <td>1 • 25</td> <td>2</td> <td></td> <td>1.75</td> <td>~</td> <td>55</td> <td></td> <td>~</td>		4.76	2 2		. 90	· ·		1 • 25	2		1.75	~	55		~
25 29.25 62 1.75 29.25 63 1.25 29.75 64 1.75 29.75 65 1.25 30 25 29.25 67 1.25 30.75 69 1.25 31.25 70 1.75 31 25 31.75 72 1.75 31.75 73 1.25 32.25 74 1.75 32.25 75 1.25 32 25 32.75 77 1.25 33.25 79 1.25 33.75 80 1.75 33.75 25 24.25 87 2.25 24.75 89 2.25 26.25 90 2.75 26.25 90 2.75 27.25 27.25 94 2.75 27.25 95 2.25 27.25 27.25 94 2.75 27.25 95 2.25 27.25 94 2.75 27.25 95 2.25 27.25 27.25 94 2.75 27.25 95 2.25 27.25 94 2.75 27.25 95 2.25 27.25 94 2.75 27.25 95 2.25 27.25 94 2.75 27.25 95 2.25 27.25 94 2.75 27.25 95 2.25 27.25 94 2.75 27.25 95 2.25 27.25 27.25 94 2.75 27.25 95 2.25 27.25 94 2.75 27.25 95 2.25 27.25 94 2.75 27.25 95 2.25 27.25 27.25 94 2.75 27.25 95 2.25 27.25 97 2.25 27.25 97 2.25 27.25 97 2.25 27.25 94 2.75 27.25 95 2.25 27.25 97 2.25 27.25 94 2.75 27.25 95 2.25 27.25 97 2.25 27.25 97 2.25 27.25 97 2.25 27.25 94 2.75 27.25 97 2.25 27 27 27 27 27 27 27 27 27 27 27 27 27		7.62 27.7	27	. 7	78) (r		1 . 7 5	. 2		1.25	•	09	1.75	0
30.25 67 1.25 30.75 69 1.25 31.25 70 1.75 31.25 32 1.75 30.75 68 1.75 32.25 74 1.75 32.25 75 1.25 32.75 1.75 33.25 79 1.25 33.75 80 1.75 33.75 80 1.75 33.75 80 1.75 33.75 80 1.75 33.75 80 1.75 33.75 80 2.85								1.25	7	*	1.75	•	9		0
25 31.75 72 1.25 33.25 74 1.75 33.75 80 1.75 3 25 31.75 72 1.25 33.25 78 1.75 33.25 79 1.25 33.75 80 1.75 3 25 24.25 82 2.75 2.425 83 2.25 24.95 89 2.75 24.75 85 2.85 2 25 24.25 87 2.25 25.75 25.95 89 2.25 26.25 90 2.75 2.25 2.25 2.25 2.25 2.25 2.25 2.25		2012 221	17			7			7	•	1.25	-	70	•	31.2
25 24.25 87 2.25 24.25 83 2.25 24.45 84 2.75 24.75 85 2.25 2 25 24.25 87 2.25 25.75 25.45 84 2.75 2.25 24.25 87 2.75 2.25 2.25 2.25 2.25 2.25 2.25 2.2		7.60		, ,	2 6		. ~		2	74	1.75	~	75		32.
25 24.25 82 2.75 24.25 83 2.25 24.95 84 2.75 24.75 85 2.25 2 25 24.25 87 2.25 25.75 25.95 89 2.25 26.25 90 2.75 2 25.25 87 2.25 90 2.75 25.75 94 2.75 27.25 94 2.75 2.85 2		7. C.	7.6		, (e		-	1 P	2	7.9	1.25	~	90		33.
75 25.25 87 2.25 25.75 88 2.75 25.95 89 2.25 26.25 90 2.75 2 .75 25.25 87 2.25 25.75 84 2.75 27.25 94 2.75 27.25 95 2.85 2		. 25 24.2	. 0		24	· •		. N	*	=	2.75	24.75	8 6	•	25.
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		75 25.9	87	. 7	25.	· •	. ~	1	*	•	2.25	• 2	90	•	26.
		2.76			1		,			,		1		4	27.

) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	34.46			28.25	:		28.25	:	2.25	20.75	001		
								4.7	*0		4.7	105	~	0 • 2
0		4.2		•	•	2 6			•		1.2	0 1	•	1 + 2
0		. S		7 '	6/007			, ,	-		2.2	115	~	2 . 7
		1 . 7		•		2	•	,	•		1.7	120	-	3.7
1 -		2.7		7		0	-	7 :		•	7	125		5:2
121	. 2	4 . 2			•	123	7	-		•				6 . 2
126		5 . 2		.2	M.	128	-	2 . 7		7 '	•	2 4		7.7
131	. 2	6.7			26,75	133		7.2	***		4	n (•	
136		7 . 7	137	.2	•	138		9.2			1		•	֓֞֝֜֜֜֜֜֜֓֓֓֓֓֓֓֓֓֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֜֓֜֓֓֡֓֜֜֓֡֓֜֓֡֓֜֜֜֡֓֡֓֡֓֜֜֡֓֜֜֜֡֓֡֓֜֜֡֡֡֡֡֡
141	?	9.2			29.25	143	?	4.7			4.7		7.	5
9 77				. 2	0	148		0.7	149	7	1:2	150		7 1
4		- 10	157	1		153		2.2	154		2.2	155	N	7 . 7
						100	.7	3.2	159		3.7	160	•	3.7
				1	3			4 . 7	164		4.7	165	ň	5 , 2
	7 .	9 0			. 4	148	4 - 75	5.7			6.2	170	•	6 . 2
	•			,	34.35	173		7 . 2			7.2	175	4	7:1
	~ !		7/1	•		178		6.2	1	7	8.7	8	•	8 . 7
	•	:			0			9.7		-	4.7	8	~	0.2
		7 . 6		- "	- 6			0.7	8	. 2		0	•	1 . 2
	•	7		•	0 P			2.2	0		2.2	0	~	2.7
	7.		- 0			000		3 : 2	66		3.7	0	•	3.7
	•	1 . 7	- (•		200		4.7	204	-	4.7	0	7	5 . 2
	? .	N (> <	•	• •	200		5.7	0	. 2	4.2		•	6 . 2
	•	2 . 5	Э .	•) 4	2.7		7.2	-		7.2	-	. 2	7:7
7	. 2	6.7	-	•	0 0	21.5	4 1	8.2	-	7	1.1	~ ~	~	8.7
		7 . 7	- 1	7 1	0	7 7 7				-	9.7	N		0.2
7	2	4.2	2	•	- (228		7	. 1	. 7	1.2	~	5.75	1 . 2
~		0	N	7 '	•. 5	277			234		2.2	•	7	2 . 7
~	• 2	1.7	~			653	7	7.7	•		3.7	4		3,7
236	•	32.75	237		•.	430	•	32.25	777	4.75	24.75	245		5 . 2
	~	4.2	*			243	?		7 20		4.2	. rt		6 . 2
	6.7	5.5	7	7	•	0 1 7	•	7	٠ ١		7.2	10	~	7.7
	. 2	6.7	S I	` '	•	2010	7	7 .	1		7.0	4		8.7
		7.7	S	7	9.	25.5		7.0	7			4	. 1	0.2
	•	9.2	•		-	200	7 .		269		1.2	-		1 . 2
		2.0	9	7:	20.75	0 0 7	- 1	, ,	1		2.2		~	2 7
	~ (- 1			·	7 6	4	3.0		. ~	3.7	•		3.7
	• •	7 . 7		•	•.	2 8 2					4.7	•	*	5.2
97	7.25	7	0 9		· uf	288	1	5.7	289	. 2	6.2	0.	~	6.2
		7	0		24.75	293	7	7.2			7.2	0		7.7
	, ,		. 0			298		1.2	•	. 2	8.7	0		9.7
		1	٠ د	7		303	. 2	9.7	0	1	4.7	0		0.2
	7	7	5 C			308		0.7	0		1.2	-		1.2
			•		-	-		2.2	310		2.2	-	~	2.7
	, ,					310		3.2	-		3.7	320	•	3.7
			•					i						
	INPUT CARD	502												
-	150	0.000000												
•													,	
					3		40.	* 4 2 2		•	10400	161 687		PLGRT
	ICSTOR	IDLT		1041	LATE			i		•		•	1	

•	B N	K O	N O								101	-00	102
	KUNITE	NL I NER	NUMREZ		FINAL 4.0000-01	PR08					0.517-02 1.400-01	4 • 5 4 2 = 0 1 1 • 0 7 2 + 0 0	02 1-131-01 6-517-02
			8.2		7 T T T T T T T T T T T T T T T T T T T	3.400					- F #		7 ^ ±
25	KUNITR	NFRELP 2	NUMSCA		EHIN .	PRL 1 H 0 • 0000					6.517=02 1.200=01 4.600=01	R 3.910-01 9.317-01 2.962+00	02 1.298-01 4.517-02
07	X A M J	NDUMPT	NTRACR		DTM1N 1.0000-11	PRFACT 0.0000		HATERIAL	ALCHIRON ALCHIRON	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 F D	7 7 0	7 4 11
0	JEXTY	NA00	X 1 1 1 2 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5		E 0 - 0						6 - 5 1 7 - 0 2 9 - 0 0 0 - 0 2 4 - 0 0 0 - 0 1	R 3.258.01 8.11701 2.502+00	D2 1 • 4 6 9 • 0 1 6 • 5 1 7 • 0 2
90	107	M1NY 20	NTCC 320			PRDELT 3 0.0000		>	3.7100.04	8.000+11 2.740+11 2.740+11	4 2 5		7 ^{M N}
					CYCPH3 1.0000+00	PRCNT 1.0000-0	1510P 0.0000	ν z_	000	57£2 •300•10 •000•0	6 5 1 7 4 0 2 7 4 0 0 2 4 0 0 4 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	2.607-01 7.217-01 2.102+00	02 1.709-01 6.617-02
•	100	X Z I M	NSLD 25	¥1.	CYCHX 2.6606+60	PHIN .	.0000-93		00000	1-12-12-	#I #	₹ }∞ 4	3 ≈
0	27.2	A A A A A A A A A A A A A A A A A A A	NOSLIP		CV1S C	0+0 8	0+05	S + 1 + E	00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DR 6.517-02 6.517-02 2.800-01	R 955-01 6-517-01 1-762+00	1.962-01 7.480-02
		× o	4 D). 	PLWHIN 2.100	SIEMIN 1.000			J	1001	1 C C C	7 81 9
	# G	S HAXX	AWDDON S		CRATIO. 1.0000+64	PL60PT 1.0000+00	1.000n-05	I N I T I A DENSITY (THOIN)	7.800 2.790 2.790	2	DR 6-517-02 6-517-02 2-300-01	R 1-303-01 5-865-01 1-482-00	02 2-231-01 8-584-02
	1 B B B B B B B B B B B B B B B B B B B	HAPS	NWXCLS		884R 5.0000-01	6A H H A	REZ.	14 17 Y 32 J	1	N 60+0	7 0 9	1 2 9 3	J N 6
20	IPLGYP 34	LVISC	N A A T	NVRTEX 100	5.6	0.0		R DENSITY (RHOZ)	7.800 2.190 2.190	CZERO 6.000+09 3.000+09 3.000+09	08 6.517-02 6.517-02 1.800-61	R 6.517-02 5.214-01 1.252+00	0.059-02 9.852-02
								PACKAGE	- 26	NUSAGE 100 E	- -	eo 14	7 - 4

15 6.517-02 16 6.517-02 17 6.517-02 18 6.350-02 27 6.350-02 27 6.350-02 27 6.350-02 28 6.350-02 28 6.350-02 28 6.350-02 28 6.350-02 28 6.350-02 28 6.350-02 38 6.350-02 38 6.350-02 38 6.350-02 38 6.350-02 38 6.350-02 38 6.350-02 38 6.350-02 38 6.350-02 38 6.350-02 38 6.350-02 38 6.350-02 38 6.350-02 38 6.350-02 38 6.350-02 38 6.350-02 47 6.350-02 48 6.350-02 47 6.350-02 48 6.3
--

Company Comp	Maria E											2	777	SALT SOL		7	THE STATE OF
1 1 0 0 0 0 0 0 0 0	i de Liter	, • N M		0000	0.000	7914+09 0000		30 1	× 0 + 1	000000 021323+01	0.00	•		10 1	0001	000000000000000000000000000000000000000	
17 0.0000000 0.0000000 0.0000000 0.0000000	. Jin	OTALS	0.0000	000	5.09!	50+6166		0	9.9	220269+01	•	0+68000	2	0+69005h	ċ	0000000	0000000
## SEVAPORATEDS ## BOTTOH RIGHT ## SOUT 0-0000000 0-00000000 0-00000000 0-000000	72	- 25	0.00000 0.00000	T000	× 0000	00000 00000											
PACKAGE N				ee:													
PACKAGE N	•	OUNDARY	108	101	œ.	IGHT		9	SEV	APORATEDS							
PACKAGE N	IWII		0.0000000000000000000000000000000000000	60000	00000	00000	000000000000000000000000000000000000000	00000	0000	000000							
11 10 N X X N X X N X X N X X			0.0000	000	0.00.0	2000	040.0	0000									
NO. HASTER SLAVE NBGM NBGS NENDM NENDS 103 1	۵	EFINITION		ENDPOIN	2 L S												
CELL-COORDINATES OF TRACERS FOR EACH NATERIAL PACKAGE N X Y N X N X Y N X N X Y N X 1	•		MASTER 0 0	SLAVE 1 2 0	8		7 B G S 10 2 C C C C C C C C C C C C C C C C C C			ENDS 103 32 0							
1 1 3.52					CELL	-C00RD1		TRAC	P 0 R			CKAGE					
1 .00 .99	•						3	;	;	,	>	2		,	2	×	>
1 .000 .99					-	z	٠,	- ;		•		3				•	66.
11 3.52 .99 12 3.87 .99 14 4.22 .99 14 4.58 .99 15 4.93 15 2.26 .99 17 5.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1		4	- 0	200	000		2.11	6		2.46	66.		2.82		0	-	0.0
5.26 .99 17 5.45 .99 19 5.96 1.46 24 5.96 1.57 5.96 1.57 5.96 1.58 5.96 1.46 24 5.96 1.58 2.59 1.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2		(52	66.		3.87	. 64	6	4.22	66.		4.58		S	60.	66.
1.0 1.0				28	66.				0 "		. 4 4	. .		• •	20 20 20	.00	
State 32 State 33 State 2.71 34 State 35 35 35 35 35 35 35 35 35 35 35								. 60	9		0		5.48		30	.98 2	.31
5.96 3.12 37 5.98 3.87 46 5.98 5.98 4.21 44 5.96 4.38 4.5 5.98 4.5 5.98 4.5 5.98 4.5 5.98 4.5 5.98 4.5 5.98 4.5 5.98 4.5 5.98 4.73 47 5.98 4.90 4.9 5.98 5.98 5.98 5.98 5.98 5.98 5.98 5.					7		5.98	2.58	33	8	1.71	3 * (5.98	***	3	80 6	. 67
5.98 3.88 42 5.98 4.03 43 5.98 3.07 44 5.98 5.29 5.98 5.59 5.98 5.98 5.98 5.98 5.98 5.9					1.12		5.98	3.27	3.8		. 45	• :	•	.57	0 1		67.5
5.98 4.73 47 5.98 4.90 48 50.98 6.10 54 50.98 6.33 55 55.98 6 55.98 55.98 6.33 55 55.98 6					3.88		5.76	4.03	7			* •	•		n c		
7 10 10 10 10 10 10 10 10 10 10 10 10 10			u r	8 6	1.73		5.4		• •		• •	•	• •	.23	n c		
			un u	•	.00		B • 7 B		7 4		: ?		• •		0		

10 10 10 10 10 10 10 10			4	67		0.0	3:	• •	4.7		•	2.8		•	*
	77	֡		•				•	2.4		•	2 . 8			
				*	E . 0 .						•			•	3:2
			•	7:	•			•				4.3			
		•	9 . 6	-	•	•					1	*		ŝ	
			2 • 2	2 0	-	9 4	7 (•				4		-	9.9
		3	7.2	67	?	1:1		•				9 . 0			1.0
X		•	4.3	24	Ö		7 (2.7	0		3.1
N	•		*	•	•	-	D (•	7	٠ د			0	4	
	0	?	3.5	0	7.	0.4	D			3 (•		-		4
	0	0		0	~	0.4	0	•		o -	•	9 0	5.0	0.000	
	-	-	0	-		•	-	3	•	•	2				
N															
24.00	Z	×	>-	z	×	>	2	×	>	Z	×	>	2	×	-
1								(•	:	L	'1	2
1	-		.0	7	ň	4.0	m		.0		- (n a	
1	•			^	7	4.0		-	•		0	0		•	
		4			.2	4.0			*			•		7	
2.70 2.000 2.7 4.24 2.000 2.9 4.24 2.000 2.9 4.24 2.000 2.9 2.000 2.000 2.9 2.000 2.9 2.000 2.9 2.000 2.9 2.000 2.9 2.000 2.9 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.00						4.0			4.0		. 2	4.0			•
								2				4.0			•
2					•				9 0			4.0		• 2	
11			•		7	0		•	•			2		0	
24, 270 24, 000 42			*		7			•	•			9		-	0.
N X X N X X N X X N X X N X X N X X N X X N X X N X X N X X N X X N X X N X X N X X N X X N X X N X N X X N X			*		7	•		•	•	. :	R - (•		•	
N X X X X N X X N X X N X X N X X N X X N X X N X X N X X N X X N X X N X X N X X N X N X X N		-	0		ň	•		0	•		0.00				
N X X X X X X X X X X X X X X X X X X X							ÿ.								13
1	2	×	> -	z	×	>	2	×	>	Z	×	>	z	ĸ	-
0.00	:		•						-	3	-		uf	ď	
1 0.3 24.00 7 2.3 24.00 8 2.7 24.00 19 4.24 24.00 19 4.24 24.00 12 4.24 24.00 19 4.24 24.00 19 4.24 24.00 19 4.24 24.00 19 4.24 24.00 19 4.24 24.00 24 24.00 25 25 25 25 25 25 25	_	0	4.0	7	0	4.0	m	•	•	- 0	- (3	
11 3.85 28.00 12 4.24 24.00 13 4.24 24.00 14 4.24 24.00 24 4.24 24.00 25 4.24 24.00 25 4.24 24.00 25 4.24 24.00 25 4.24 24.00 25 4.24 24.00 25 4.24 24.00 25 4.24 24.00 25 4.24 24.00 25 4.24 24.00 25 4.24 24.00 25 4.24 24.00 25 2	9	•	4.0	1	~				0		•				
1. 4. 2. 4.	11		0			4 . 0			•		7	0 0			
21 4.24 24.03 27 4.24 24.00 83 4.24 24.00 34 4.24 24.00 35 5.38 24.00 34 24.03 37 4.24 24.00 33 4.24 24.00 34 6.53 24.00 34 6.53 24.00 34 6.53 24.00 34 6.53 24.00 34 6.53 24.00 34 6.53 24.00 34 6.53 24.00 34 6.53 24.00 34 6.53 24.00 34 6.53 24.00 34 6.53 24.00 34 6.53 24.00 34 6.53 24.00 34 6.53 24.00 34 6.53 24.00 34 6.50 24.00 34 6.50 24.00 34 6.50 24.00 34 6.50 24.00 34 6.50 24.00 34 6.50 24.00 34 6.50 24.00 34 6.50 24.00 34 6.50 24.00 34 6.50 24.00 34 6.50 24.00 34 6.50 24.00 34 6.50 24.00 34 6.50 34		.2	4.3			4.0			0						
26 4.24 24.00 32 4.24 24.00 33 4.24 24.00 34 6.92 24.00 35 5.32 24.00 35 6.92 34.00 35 6.92 24.00 35		. 2				4.0			*			D (
3.5 4.64 24.00 34.64 24.00 34.64 24.00 34.64 24.00 37.30 24.00 37.30 24.00 37.30 24.00 40.20 24		7			. 2	4.0		7			• 2	0		•	
5.77 24.00 37 6.15 24.00 38 6.53 24.00 37 6.92 24.00 47 6.92 24.00 47 6.92 24.00 47 6.92 24.00 47 6.92 24.00 47 7.99 24.00 83 11.87 24.00 54 12.11 24.00 55 12.32 24.00 55		7	0		. 2	4.0			4.0		0				2 0
7.68		-			-	4.0		Š			•			•	
\$\begin{array}{c c c c c c c c c c c c c c c c c c c		4				4.0		4 . 8			9.8	0		4.2	0
51 11.57 24.00 54 12.11 24.00 55 12.32 24.00 55 12.32 24.00 55 12.32 24.00 55 12.32 24.00 55 12.32 24.00 55 12.32 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.31 24.00 55 13.05 55 13.05 13.05 13.05 13.05 13.05 13.05 13.05 13.05					•	4.0		0.3	4:0		0.7			0	0
\$\begin{array}{c} 57 & 12.74 & 24.00 & 63 & 14.44 & 24.00 & 64 & 15.00 & 24.00 & 65 & 15.44 & 24.00 & 67 & 16.97 & 24.00 & 67 & 16.97 & 24.00 & 67 & 16.97 & 24.00 & 70 & 17.27 & 24.00 & 72 & 17.27 & 24.00 & 72 & 17.27 & 24.00 & 72 & 16.97 & 24.00 & 72 & 17.27 & 24.00 & 72 & 16.97 & 24.00 & 72 & 16.22 & 24.00 & 10.97 & 12.92 & 24.00 & 10.97 & 12.92 & 24.00 & 10.97 & 12.92 & 24.00 & 10.97 & 12.92 & 24.00 & 11.97 & 24.00 & 11.97 & 24.00 & 11.97 & 24.00 & 11.97 & 24.00 & 11.97 & 24.00 & 11.97 & 24.00 & 11.97 & 24.00 & 12.97 & 24.00 & 24.00 & 24.00 & 24.00 & 24.00 & 24.00 & 24.00 & 24.00 & 24.00 & 24.00 &		-	× C		•	4:0		-	*:0		2 . 1	•		2 . 3	5 6
6 15.87 24.00 67 13.85 24.00 69 16.64 24.00 64 15.00 24.00 75 16.7 24.00 77 17.27 24.00 107 11.2 14.00 107 11.2 14.00 107 11.2 14.00 107 11.2 14.00 11.3 14.00 11.4 13.67 24.00 11.5 11.2 11.2 11.2 11.2 11.2 11.2 11.2		2.5	4.0			4.0		2.4	*:0		3.	•		7 :	
15.87 24.00					•	4.0		* . *	*:0		5.0	•			
71 17.57 24.00 72 17.67 24.00 93 10.14 24.00 74 16.34 24.00 77 19.13 24.00 96 19.78 24.00 77 19.13 24.00 96 19.34 24.00 77 19.13 24.00 97 19.13 24.00 97 19.13 24.00 97 19.14 34.00 97 19.14 34.00 97 19.14 34.00 97 19.14 34.00 97 17.33 34.00 97 17.33 34.00 97 17.33 34.00 97 17.33 34.00 97 17.33 34.00 97 17.33 34.00 97 17.15 34.00 102 10.97 34.00 104 10.32 34.00 104 10.32 34.00 107 15.07 34.00 107 10.34 34.00 110 15.07 34.00 110 110 110 110 110 110 110 110 110		5.8	4.0		.2	4.0			•		6.9			7	
76 18-89 24-00 82 20-00 93 19-34 24-00 77 19-13 24-00 84 19-74 34-00 85 19-61 34-00 85 19-61 34-00 85 19-61 34-00 87 19-34 34-00 87 19-34 34-00 87 19-34 34-00 87 19-34 34-00 87 19-34 34-00 87 19-34 34-00 87 19-34 34-00 87 19-34 34-00 87 17-51 34-00 95 18-19 34-00 95 18-19 34-00 95 18-19 34-00 97 17-51 34-00 100 17-33 34-00 107 15-87 34-00 107 15-87 34-00 107 15-87 34-00 107 15-87 34-00 107 15-87 34-00 107 15-87 34-00 117 13-25 34-00 117 117 12-29 34-00 117 119 11-97 34-00 117 119 119-97 34-00 117 119 119-97 34-00 117 119-19-97 34-00 117 119-19-97 34-00 117 119-19-97 34-00 117 119-19-97 34-00 117 119-19-97 34-00 117 119-19-97 34-00 117 119-19-97 34-00 117 119-19-97 34-00 117 119-19-97 34-00 117 119-19-97 34-00 117 119-19-97 34-00 117 119-19-97 34-00 117 119-97 34-00 11		7.5	.0		•			-	4.0		6.3	•			
81 20.00 24.00 87 19.34 34.00 88 19.81 34.00 84 19.04 34.00 87 19.34 34.00 87 19.34 34.00 87 19.34 34.00 87 19.34 34.00 87 19.34 34.00 87 19.34 34.00 87 17.81 34.00 97 17.81 34.00 100 17.33 34.00 101 17.15 34.00 102 10.97 34.00 104 16.54 34.00 100 17.33 34.00 101 17.15 34.00 110 110 110 110 110 110 110 110 110		8.8	.0		4.1	4.0			4.0		4.5	0		1	
86 19.48 34.00 97 19.34 34.00 98 19.21 34.00 94 18.34 34.00 95 18.17 34.00 97 17.51 34.00 97 18.19 34.00 97 17.51 34.00 97 34.00 97 17.51 34.		0.0	. 0		0:0	4.0		4:0	.0						•
9 18-79 34-00 92 18-64 34-00 94 18-34 34-00 95 18-17 51 34-00 97 17-85 34-00 97 17-85 34-00 97 17-85 34-00 100 17-33 34-00 100 17-33 34-00 102 18-97 34-00 104 18-54 34-00 105 18-32 34-00 107 15-87 34-00 109 15-34 34-00 110 15-87 34-00 110 15-87 34-00 110 15-87 34-00 110 110 110 110 110 110 110 110 110					9.3	4:0		9.2	4:0		•	4.0			
96 18-04 34-90 102 10-97 34-00 103 16-75 34-00 104 16-54 34-90 105 16-32 34-90 107 15-87 34-90 109 15-34 34-90 105 16-32 34-90 107 15-87 34-90 109 15-34 34-90 110 15-02 34-90 107 15-87 34-90 110 18-34 34-90 115 13-25 34-90 117 12-29 34-90 117 11-71 34-90		8.7			4.8	4.0		*:			7:	**		•	
01 17.15 34.00 102 10.97 34.00 103 16.75 34.00 104 16.54 34.00 105 10.32 34.00 01 17.15 34.00 107 15.07 34.00 109 15.34 34.00 110 15.09 34.00 110 13.69 34.00 115 13.25 34.00 110 12.79 34.00 120 120 13.01 34.00 117 12.29 34.00 118 11.71 34.00 119 11.04 34.00 125 5.57 34.00 124 5.49 34.00 125 5.57 34.00 127					7.8	4.0		7.6		٠	7:5		0	? .	
16.11 34.00 107 15.87 34.00 108 15.60 34.00 109 15.34 34.00 110 15.05 34.00 10 10 10.25 34.00 11 14.76 34.00 112 14.43 34.00 11 14.76 34.00 12 12.79 34.00 12 12 12.79 34.00 12 12 12 12 12 12 12 12 12 12 12 12 12		7		0	•	4.0	0	4:1	4.0	0	6.9	4.0	0	•	
1 14.76 34.00 112 14.43 34.60 113 14.09 34.00 114 13.69 34.00 115 13.25 34.00 11 14.76 34.00 120 10.19 34.00 11 11.04 34.00 120 10.19 34.00 12 8.57 34.00 124 6.49 34.00 125 8.57 34.00 124 6.49 34.00 120 8.59 34.00 120 34.00 13	9 6		× (C		-		5.6	4:0	0	5.3	4:0	•	5.0	•
16 12.79 34.00 117 12.29 34.00 118 11.71 34.00 119 11.04 34.00 126 5.57 34.00 129 4.00 129 5.40 34.00 120 5.57 34.00 120 5.40 34.00 130 5.40 34.00 34.00 5.40 34.00 5.40 34.00 5.40 5.40 5.40 5.40 5.40 5.40 5.40	•		> 0	- (N -		4.0	-	3.6	4:0	-	3.2	•
0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40			9	-	•			1.7	4.0	-		4.0	N		4.0
0-40 C6. 00:00-40 40:1 62: 00:00 00:	*				•			7:4					~	ŝ	0
		7	> 0	in	•		-			~	•	4.0	m	•	0

	***	181	80.	34.00	132-1000	00.000	00.									
FREE	SURFACE	TRAC	ERS	NVRTEX	100										:	;
ļ.		2.		>	Z	×	>	*	×	>	z	×	>	2	×	-
			00.	4.0	~	. 63	9	•		*	*	.7		us	3.71	
		્	4	4.0	-^	5.57	4.0			4.0	6	*	4:0		9:3	
		8=			12	~	4.6		1.0	**		1.7			• 5	*
		1 6		**		3.2	4.0		3.6			4.0	4:0		*	
			4.76			5.0	4.0		5.3	4.0		2.6	4:0		2.6	•
		26	-	.0		7			4.5			4:7	4:0			0 :
			-			7.3	4.0		7:5			7 . 6	•		9 . /	
			ů	.0		18.10	4.0		::	0.		8.4	0		9:0	0 .
		_		4.0		. 10.94	4.0		•				•			
		•	4 . 4	4.0		19.61	4.0		4:7	4.0		•	4.0		0.0	
		_	0	4.0			0.4		4.5	4.0		4.3			-	
		4	8 . 8	. 0		•	4.0		1.3	4.0		8 . 1	4.0		7 . 8	4 0
		-	7.5	.0		~	4.0		4.9			• •	•		6.2	4.0
			40	4.0		*	4.0		5.0			* . 4			3.8	4:0
			3	4.0		3.3	4.0		3.1	4:0		2.9	4.0		. 7	0
			FU.	.0		2.3	4.0		2 . 1	4.0		1 . 6	4.0		•	
		i	~	4.0			4.0		0.7			0:3	•		•	
		•	4 . 6	4.0			4.0			4:0		*	0:1		ė	•
			9	.0			4.0		•	4:0		ŝ	4:0	0	-	•
		96	. 7	24.00	47	5.38			2.00	24.00	66	4.62	24.00	100	. 2	4.0
	7			3.5	0		3.1	C	4	2.7	0	ŝ	2 . 3	0	9	-
			9	1 . 4			1.0	0	•	9.0	0				ė	9.7
	-			9.3	-	-	8.9	•		• •	-		8.1	-		7.7
	-		*	7 . 2		ŝ	6.8	•	•	4.4	-	•	0.9	~		2.
	-		•	5 . 2		•	4.8			4.3	~	•	4.0	~	•	•
	-			3.6		6.	3.2	-	•	2.8	~	•	2 . 4	~	•	200
	ine		•	•		•	1 . 2	•	•	0.0	~	÷	**0	~	•	0.0
	-		•			•	9:3	-	•	••	•	•	•	3	•	~
	-		6	.0		•		-	•	5		•	• 2	7	•	0
	_					•	S		•			•		ທ	•	•
			6	9		•	*		•		S	•	ė	L)	•	•
	-	56		. 7	S	•	S	•	6.		5	•	• 2		•	ō
			•	60		•		•	•	5	•	•			•	. 2
		99	•	-		•		•	•		•	•	. 7		•	
	. –		•	3		6	7			-	^	•	0		•	-
		7		80			•		•	ŝ	^	•			•	~
	-		•	. 2		•	-		•			•	•		•	•
	7	9 6		•		•	•			9					•	
	-		S			-	•		•	66.		*			- '	
	-	96	1.76	•	197		66.		ė	• • •		~			~	**
	~	101	0			00.000										

H				
# • 0 • > ·				
0 0 0				4 3
M	+ 20 · 1			. <u>1</u>
000000000000000000000000000000000000000	7			
	1.022			
0, 100.1 100.1 1 100.1	1.021			
1.000 1.010 1.010				
CONPRESSION SYMBOL MAXIMUM VALUE SYMBOL MAXIMUM VALUE SYMBOL	MAXIMUM VALUE S VALUE S S S S S S S S S S S S S S S S S S S	D = = = = = = = = = = = = = = = = = = =	111111111 111111111 	

				1 11			1.7	
	* *		6.	· III				
	0 0				,			
	1					4		
	I . K .							
		- 1						
	9 9							
	2.43							
	• N							
	9 9 9							
	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							
	F . S . N .							
				4				
						7.0		
	A + 1							
	M . O . > .							
	u							
	3 5 5							
	- 0 4						,	
	0 × 0 ×	·						
	O · Z · X ·							
SECOND								
0								
W W	0 0 0							
						•		
	N							
0								
0900							,	
2	0 0 0					•		
•	: : :				·			
				• • • • • •				
3 H E	N 1- M	11.2 1 2 1			• • • •			
-		200		. 60. 8 0, 6. 6.				
11443	n + + .							
	43+03 57+04 00+04					7.		
	5 4 50						1	
	4 · X · D ·					112	·	
		0.0				2.14		- 1
Pare	0 0 0							
CYCLE	1643+02 1943+04 1 43+04 7 2 6 5 + 0 4							
ರ	1 - 7 · F ·					li wa		
5	0				• • • •			
					• • • •			
	0.00 1 1.28.04 5.71+04			• • • • •	• • • •			
	0.00 I 1.28+04 S 2.71+04					NHH	*****	1 N N
100	0.00 1.28 2.71		H. Fr		· · · · · · ·	инини	*****	HHI
	8 8 -				N P	инини		1111
-					N A	F 77 7		
VELOCITY								
2	SYMBOL MAXIMUM VALUE SYMBOL MAXIMUM VALUE SYMBOL MAXIMUM VALUE						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N M
A	SYMBOL MAXIMUM VALUE SYMBOL MAXIMUM VALUE SYMBOL MAXIMUM VALUE				N .	пинини	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	וחו
	> > >				nd has the his his h			
AXIAL	7 7 7	O 15	a a	9	25	20	ST.	0
=	B 5 B 5 B 5	K A S. P.	1.77 A = 124 A		7 · 1:		42	
4	> m > m > m	The tax period in	25 20 2					
	NXNXNX		12/1/20					
	I I I							

	-	9 = (1)&	5170-02	5	70000-02	TAU(I) = 1.	3342749-02	0000000	0000	CYCLE	0
,	ı x		>	a .	316	COHP	THASS	225	SRR	SR2	2
	-	. 000			0.0000	00000001	.3639-0	000		0.0000	2.399.00
12) m				000	0+00000	3439-	0.000	•	0000+0	2,334+00
2	135		-	0.000.0	000	•00000	.3439-0	000000	000	0.0000	•
	I	•	2 2				MASS	FRAC. VOL.	RHOCNYO	010) = .0 THE	ETA= -1.00
	_	0.00.0	000	7 - 8000+00	0000.0	1 • 00000 • 00	0.000				
	*	.000	000	.7900+0	•	٠	.0000				
	4	•000		.7900+0	•	9.99997-01	2,3639-03	1.00000+00			
7	MFLAG	n	>	•	SIE	COMP	THASS	275	SRR	SRZ	2
7	_		4.7150404	0.000	0.000	1.00000+00	6;4087-03	0.000	• 000	•	2.209+00
,			7	•	000	.00000	-1909	.000	0.000.0	• 000	. 145
2 .	• -		0 0	7 5	•	0.0000	16087-0	.000	000.	0.000	.082
7.	-					0+00000	.7825-0	000	.000	• 000	.01
(• •	000.	5				.7825-0	000	.000	000000	1.953+00
9			7100.0	•		00000	.7825	000	0.0000	0.0000	1.688+00
		000	7.100+0			0+00000	7825-0	000	•	•	1.823+00
		000	10017	שיים		1 • 00000 • 00	.7825-0		•	•	•
	• -		7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7		00000	.7825-0	000	0	•	1.693+00
0 1					000		.7825	.000	•	000000	27
		000	7 2000) · (00000	.7825-0	000		•	1.562+00
: :			7100+0	3. 6	900		.7825	0	0.000	0.000	•
7 (-		710000	7 (2	000	+00000	.7825	0	•	•	2
	•	200	1000	, ,	000	+00000	17825	0	•	000000	.367
			7100+0		000	•	7847	0.000	•	•	. 302
		000	.7100+		000	1 • 00000 • 00	9337		000000		.221
- 0		000	.7100+0	. 0	.000	1 - 00000 + 00	.0253	000000	•	000	
0 1	-	200	-7100+0		.000	1 - 00000 + 00	1.1768-02	000000	•	• 000	240.
. •	-		•7160+0		.000	1 • 00000 • 00	1.3506-02	000000	0.0000	•	.294-0
) u	_		113040		.000	٠	_	000000	•	•	-966.
1			7170+	•	.000	+00000	7790	000	•	00000	.507
•		9	710040		.000	1.00000+00	0-6	. •	•	•	2797
7 (5 6	7,0000		000	+00000	.3215-0	.000	0.0000	00000	2.836-01
٧.		200		,		00000	.2037-0		0.0000	0.000	6.050-02
-		•	0+061/4	. 0	200		HASS .	A C .	> z	010)=1.0 THE	TA= -1.0
		. ני ס פ	7100	2	. 6	9	5.2037-05	8.26447			
	1 3	000	2001	0000		00000	0000	00000			
	r:	000000		30		,					
	3		•								

				•							
ר	HFLAG	ɔ	>	L	4						
-	2	1	1.0	DR(I) = 6.51	70000-02	1 (1) T	0028248-02	000.0	000000	CLE	
7	HFLAG	, p			SIE	COMP	THASS	275	82.8	282	14
		•			•					0.000	2.399+
27	(1)	0000-0	0.0000	000000	0 (00.00000.1	7.0014.00		00000	000000	336
76		0.000.0	•	•	•	•					
		0.0000	0.00.0	•	•	000000	0-140.	00000	2000	H_ 0 = 10	
	NAA	Sn.	s A	OHW.	S	COMP			•		
	0	•	30G •	. 8600+	0	00+000000	0000				
	7 3	0.000.0	0.0000	2.7.50+60		9-99997-01					
	r	•	200)			į	•
7	MFLAG)	>	a .	SIE	COMP	THASS	275	82 82 82 82 82 82 82 82 82 82 82 82 82 8	. SR2	7
	•	•			0000	0000000	1.9826-02	00000	0.000		2.209+
7 6		630.	1000	3 6) (0.0000	. 9826	.000	0.000.0	0.000.0	2.145+
		020.	0+051/-		9		9826	•	0.0000	000000	2.082+
7,5		90	+001/				10347	•	•	0.000.0	2.018
		000	1000) C	9	.0347	•	0.000.0	0.000.0	1.953+
	• -		7.00.0		9 6	1 • 00000 • 00	2.0347-02	•	•	•	+ 999 - 1
	• -		21000	0	9	1.00000+00	.0347	0.000	000000	•	~
- 1	•	•	7100+0			0	.0347	000000	0000.0	•	S
¥		200	7100-6	•	•	1 • 00000 • 00	2.0347-02	000000	•000	•	~ :
	-	000	7150+	00000	0	1.00000+00	.0347	•	•	•	120
*	-	0.00.0	. •	•		1 • 00000 • 00	2.0347-02		•	•	10000
-	-	0.0000	3.710	•	•	1.00000+00	2,0347-02	•	•		432
12	-	0.0000	3.7120+0	•	0	-00000	20-7+60-2	0000			1 - 367+0
Ţ	-	0.000.0	3.7120+6		•	00000	20-1750-12				1.302+(
-	-	0.00.0	3.7190+9	•	•	00-00000-T	•				1.227+1
0	·	00000	3 - 7120+0	0	0 6		• •	• •		•	1.141+
90 1	.	00000	7.7.00			1 • 00000 • 00	3.5303-02	0.000	0.000.0	•	1.042+(
•	-	000000		3 5		1.00000+00	0517	•	•	•	4.294-
C U			0.0017.00) C	, 0	1 • 00000 • 00	4.6502-02	•	•	•	. 996
n :			3.7100+0	- C		1.00000+00	5,3371-02	0.000	•	•	6
			24062745	000		1.00000+00	4,1255-02	0.000		000	4.797
7 (00000	3.7100+	000		1.00000+00	6,9644-02	0,000	•	• 000	• (
٠ -		9 6	7100+	000	-	0.0000	1.5611-04	0.000	000	0.0000	0.05
-	1 4 2		2000				HASS.	u	RHO (NVOI	H 0.1=10	HETA= +1.
	(17		•	.80		1 • 00000 • 00	115611-04	8 • 26 4 4 7 - 0 3			
	3			0000		.00000	0.000	0.00000			
	. 4		•	0	0	00000.0	0.000.0	0.0000			
						-	THASS	272	SRR	SRZ	2
7	MFLAG	D	•	L) ! .				
		•	******							CYCLE	0
4	•				78-008×7	•)			

	HFLAG	3		•	316	COMP	THASS	278	200	282	H	
7 4 S	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			0.0000 0.0000 0.0000 7.0000 2.7900 2.7900 2.7900	000 000 000 000 000 000 000 000	000 00	000 000 000 000 000 000 000 000 000 00	A C C C C C C C C C C C C C C C C C C C	00000 00000 00000 00000 0000 0000 0000 0000	000000000000000000000000000000000000000	2.356.00 2.356.00 2.372.00 ETA -1.00	
	HFLAG	Þ	>	•	SIE	6100	THASS	225	52.2	SRZ	2	
		•							9		2000	
	-	•	.7100+0	Õ.	•	0-00000	20-10-1	8				
	-	Ď00·	7100+	000-	000	100000		.000	2 6		200	
22		8	·7100+0	0000	000	0-00000	•	•	000.	000	2000	
-		000.	.7100+0	000.	.000	0+0000	•	.000	0000	0000	0.00	
0		000.	120+0	000.	000	0.0000	•	.000	000	0000	0.564	
•	-	000.	.7100+0	000.	•000	0.00000	•	.000	000	000		
•		600.	·7190+0	000.	000-	0.00000		000	000	000	823+0	
		000.	·7100+0	000.	.000	0.00000	•	.000	000	0000		
	-	000.	.7100+0	000.	0000	0.00000	•	• 000	000	0000	0.56	
S		000.	.7100+0	000.	.000	0.00000	•	.000	000	0000	62740	
	-	0000	.7100+0	000-	.000	0.0000	•	000	000	000	04705	
m		000	7100+0	-000	000	+00000	. 3412-02	000	D (0	23300	
	-	.000	.7100+0	000.	000	0+00000	•	.000	0000	000	04275	
1 1	-	ÓO	·7100+	000.	000.	0.0000	•	.000	000	0000		
0		.000	.7100+0	-000	000.	0+0000	•	000	000-	000	20400	
•	-	000	10000	000-	.000	0000		• 000	000	0000	00/77	
•	-	.000	.7100+C	.000	.000	0.000	-	•000	0000	000+	0	
~	-	.000	.7100+0	.000	.000	0.0000		.000	•000	000	1.042+00	
•		000	1000	000	000	0 0000	•	000	000	000	2.400	
10	-	00	.7100+	000		6	-	.000	• 000	• 000	0.466.	
*	-	.000	.7100+0	000	.000	0+0000		.000	000	000	.507-0	
~		.000	.7100+0	.000	.000	0+0000	-	.000	8	1000	.797-0	
•		.000	.7100+0	000	000	-0000	-	.000	0.000	0001	. 836*0	
-	103	000	.7190+0	0000	.000	00000		۰	8	0000	0-050-9	
	E	SO	SA	OH	318	OHO	37	AC. VOL.	RHC(NVOI	F	ETA# -1.0	
	М	9	•	900	000.	0000	5	.2044				
	7	.00	00.	0000	0.000.0	0000	000	0006				
	Ŧ			• 000	.000	000000	0000*0	00000	•			
7	HFLAG	5	>		318	COMP	THASS	725	er er	28.2	2	
	4	1 = 2.6		15.9 - (1)	0000-02	AU(1) = 9.	399240=0	0000	000	YCLE	0	
7	HFLAG	Þ	>	•	318	COMP	VMASS	225	S & S	282	*	
	~1		.000	000	.000	5	1.6847-02	0,000	0	.000	.399.0	
77	· ~		9			+0000	.6547			8	3360	
25	132		9 6	0	000	.0000	647-0	•	.000	1000	.272.0	
	I	20	2 ×	2	SIE	Ö	MASS	AC. V	HOUNDION	F	ETAP -1.0	
	~	0.000	0.000	7 . 8000+50	0.000	ŏ	0.000	00000				

	••	0000000	000000	2.7900-00	000000	10-94444.4	0.00000	0.00000.1			
7	HFLAG	5	>	•	318	- HOU	THASS	225	8 E E	SRZ	Z
	-	, 60	7100.0		6	1.00000+00	4.6261-02		.000	0000.0	
	-		> c		9	0-00000	.6261-0	0000	.00	000010	. 1 4 5
			2001	000		0.00000	. 6261		.000	•	
	-	3 8	7100+0	000	9	+00000	7477-0	•	00	000000	•
20		0	7100+0	.00		0.000	7477	000000	000-	•	7
		000	.7100+0	000		0.00000	7477	•	.000	•	00+200
-	-	000	.7100+0	.000		0.000	7477	•	.000	•	2
	-	000	.7100+0	000	0	0+0000	.7477	41	000	•	
1		000	100+0	000	0000	0.00000	7477	•	00.	00000	00+64-1
	-	-000	·7100+0	.000	0	0.00000	7477	•	000	•	170
	-	.000	.7100+0	.000	9	0.0000	477	•	0000	•	7 ()
	-	000	·7100+0	.000	9	0.00000	17477	•	•	•	44
2	-	.000	.7100+0	000		0.00000	.7477	•	000	•	776
	-		-7100+0	000	9	0+0	.7477	•	000	•	100
: =	-		7100+0	000		0.00000	*	0000.0	• 000	000000	•
•			-7100+0	.000		0.00000	.2536	•	• 000	•	22/+
•			-7100+0	000		.00000	1773	•	000	•	- (
•	-		-7100+0	.000		0.00000	373	•	000.	•	* 7 *
•	• •		.7100+0	000		0.00000	.4534	•.	000.	•	. 244
.	• -		710000	000		0+00000	0650	. •	0	•	. 446
n a	• -		2000	0		0+00000	.2453-0	•	0000	•	. 507
•	• -		7 1 2 2 4 5	000		+00000	14293	•	8	•	4
		000	-7100+0	.00		0+00000	176250-01	000000	• 000	000000	
	***	000	-7100+0	.000	0.000	0000000	7	•	000	000000	4080.4
•	I	511	V S	RHO		COMP	¥	VOL.	REO (N O II	D	ETA -1.00
	1	Ō	.7.		0.000.0	1.00000+00	3.6424-04	***			
	*	000	.000	0000	.000	000	9	• 000			
	*	8	00000	0.000	•	0000000	0.000	0.0000			
					•	2			9	587	7
7	HFLAG	5	>	•	S .	1100	A 2 S		•	4 I	
8 8		1 -	10-50	R(1) = 6.51	0-0000	TAU (1) () () () () ()	008474-01	000.0	000000	YCLE .	
-		=				COMP	THASS	. 22	-	248	N
)	1	•	•		•				1		
	~	0.0000	•0	.000	000000	+00000	2	00000	000	0000	2.39990
7,	n	.00	.00	8	0.0000	0.00000	.1275	0.000	•		
	131	8	.000	.000	÷	•	•	0.000.0	00	00000	7/967
	LAKK	CS.	Y3.	. OH#	n	COMP		AC. YO		2	
	•	· 000	000·	0.0000.	•	0-00000	•	00000			
	7	0	0000.0	20	00000	-00000	_ {				
	•	•000	• 000	• 7700+0	•						
ר	MFLAG	5	>	•	312	4100	THASS .	228	SRR	282	7
					- 1				-	00000	2.209+01
7.	1 DO	0.0000 US	5.7186.04 73	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0		10/0/01 NASS	FRAC. VOL.	RHO(NYOID)		ETAR -1.

	2	2.145+00 THETAM -1.00	2	2.082+00 THETA# -1.00	7	2.018+00 THETAM -1.00	2	1.753+00 THETAR -1.00	7	1 • 888 • 00 1 • 823 • 00		() a d		1 . 1	- 01	0.0
	SRZ	0000 0.0000 RH0(NV01D)#1.0	SRZ	0000 0.0000 RHO(NVOID) #1.0	SRZ	0.000 0.0000	SRZ	00003 C.0000 RH0(NV010)=1.0	SRZ	0.000.0			000000000000000000000000000000000000000		0000	00000
	8.8	0.0000 RHO (NV	SRR	0.000 RHO (NV	8 8 8	0.0000 RHO(NVO10	SRR	0.0000 RH0(NV	S 8 8 8	• •	0000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000	000000
3.00453-01 0.00000 0.00000	225	0.0000 FRAC. VOL. 4.75903-01 0.00000	275	0.0000 6.58464-01 0.00000	225	0.0000 FRAC. VOL. 8.50691-01 0.00000	225	0.0000 FRAC. VOL. 9.93962-01 0.00000	. ZZS	000.		000000000000000000000000000000000000000		0000000		0.0000
1.7870-02 0.0000 0.0000	THASS	2.8306-02 MASS 2.8366-02 0.0000	THASS	3.9164-02 HASS 3.9164-02 0.0000	TMASS	S.1928-02 MASS S.1928-02 0.0000	THASS	6.0674-02 MASS 6.0674-02 0.0000	TMASS	042-0		1042-0	6.1042-02 6.1042-02	0 0	00	1,3951-01
1.00000+00	COMP	0.00000 1.00000 0.00000 0.00000	COMP	0.00000 0.00000 0.00000 0.00000	COMP	0.00000 0.00000 0.00000 0.00000	COMP	00000000000000000000000000000000000000	COMP	1.00000+00	1 • 00000 • 0000 • 00000 • 00000 • 00000 • 00000 • 00000 • 00000 • 00000 • 00000 • 00000 • 00000 • 000000	1.00000+000	1.00000+00		1.00000+00	1.00000+00
0.0000000000000000000000000000000000000	S	0.0000 SIE 0.0000 0.0000	315	0.0000 S 1E C.0000 0.0000	SIE		SIE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SIE	000	000.	0000	.000		000000000000000000000000000000000000000	000
7.8000+nc 0.0000 2.7900+ac	a	0.0000 7.0000 0.0000 0.0000	a	3.2000 RHU 7.9000+00 0.0000	۵	0+0006 RHU 7-8000+00 0-0000	_ &	2.9636 RHU 7.8060463 0.0603	a .	00000.0 00000.0	000000	0.000.0		• •	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.000
3 - 7 120 + 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	>	3.7150-04 3.7150-04 0.0000-04	>	3 - 7 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	>	8 + 71 - 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	>	3.7100.04 VS 3.7100.004 0.0070	>	3 - 71 gu + 64 3 - 71 gu + 64	0 0 + + 0 0	3.7100+64 3.7100+64 3.7100+64	7 C C C C C C C C C C C C C C C C C C C	• 715.0 • 719.0	3 - 7 1 70 + 0 + 3 - 7 1 70 + 0 + 3 - 7 1 70 + 0 +	+7100+0 •7100+0
0.0000	2			0.0000 0.0000 0.0000	כ	0 000 0 000 0 000 0 000	-	0.0000 0.0000 0.0000 0.0000	Þ	3 • 000 c	3500+3 3500+3	0.00.0	00000 00000	00.	0.00.0 0.000.0	.00.
ந்தத	. V	0 H H H H H H H H H H H H H H H H H H H	MFLAG	N N N N N N N N N N N N N N N N N N N	MFLAG	12.7 NEAT 4.4	FLAG	1	PFLAS		- -	and aug =-				
100	ר	23	ר	22	ר	2 1	7	2	٦	9 8	17	n 1 -	2	0 0	u r •	n a

1											0000	20700
		-		•7100+0	0.000	0.000	1.00000+00	. 9376-0	000000	000000	00000	0-454
				719040	00000	0.000	1.00000+00	.0173-0	0.000	0.000	00000	
			00000	0.00			000000	.6633-0	0.000			040+9
		501	•	0+001/•	00000			MASE	200	RHOCNVOIC	T 0:1:	ETA= -1
1		MAH	SO		OH &		LEOU	2000	-			
		m	0.00.0	.7100+0	· 8000 ·	•	• 00000•	701	_			
		*	0.0000	0.0000	•	000000	0.0000		000000			
National Color Nati		*	0.0000	0.0000	•	•	0.0000	•				
								2	643	900	SRZ	2
Head of the color Head		MFLAG	⊃	>	a .		A HOU	Λ 4 E		K 5	. 1	1
1		i	13	9102-01	R(1) = 6.5	7,000-02	AU(1) = 1.	677023-0	-		C. E.	
He He He He He He He He										t t		
1.0 1.0		MFLAG	5	>	a.	SIE	COMP	THASS	215	SRR	SRZ	2
134 0.0000		,		. 6	000	000	•	•	000000	0.000.0	000000	2.399+00
13		י ר	0.0000	3000		0	+00000	•	000000	0.000.0	000000	2,330+00
HELAG	_	1	000000		0000.0	0 0	00000		0.000	•		
He He He He He He He He		136	•	000.0	000.	-		•	_	RHO(NVOIL	1 0.1=(TA= -1.
He He He He He He He He		LAIZ			D (1 0		00000	0.0000			
He He He He He He He He		m) :	0.00.0		000		•	00000	•			
New York		* *			.7900+0	000	0.00000	.4002-0	0-26666			
He He He He He He He He)	,					Ċ	287	
December		MFLAG	5	>		SIE	LOU	10	725	4 4	745	•
Colored Colo							0000000	•	•	0.000.0	0.0000	2,207,00
Color Colo	_	Φ 1	00000	000.0				•	0.000	0.0000	0.0000	2.145+00
124 0.0000 0.00000	_	•	0.0000	100.0		000	0.0000	•	000000	000000	0.0000	2,082+00
12		5 (00000			000	0.0000	•	00000	0.000	000000	2.018.00
MASS FACT VOLUME 1.5		י כ י	00000			000		6-0465.	0.000	•	0.000	
NHAT US NHOON	_	1.55	000000	0.0017.00		215		HASS	RAC. VOL	NHO (N O I	1=1.0 T	TA = 1.
HELAG		- { r E Z		7170	8000	000	00000	0-0+65	81718-0			
HELAG U V P SIE COMP THASS SZZ SKR SKZ Z Z KR KL) 3	•	0.00.0	.0000	000.	0.0000	0.000	•			
124 0.0000 0.7100+04 0.0000 0.0000 1.6022-02 0.0000 0.0000 1.888 2 2 2 2 3 3 3 3 3 3		· 3F		0000	.000	.000	•	•	• 0000			
124 9.0000 3.7100-04 0.0000 0.00000 1.6022-02 0.0000 0.0000 1.888		N FI	5	>	۵.	SIE	FON	LA	225	SKR	SRZ	2
124 9.0000 3.7106+04 0.0000 0.0000 1.6022-02 0.0000 0.0000 1.6022-02 0.0000 0.0				ă								9
NHAT US VS RHU SIE COMP NASS FRAC. VOL. 3 0.0000 3.7120+04 7.8000+00 1.00000+00 1.0022-02 2.14752-01 4 0.0000 0.	•	124	•	3.7100+0	•	.000		.6022-0	0000	•	000000	
3 0.0000 3.7100+C4 7.8000+03 0.0000 1.00000+00 1.0022-02 2.17752-01		F V Z Z			SI S	SIE	COMP	HASS	MAC. VOL.	1041000		
# D-0000 0-000		•	0.0000	3 - 7 1 50 + 0	. 8000+n	• 000	+00000	. 6022-0	.14752			
NFLAG		*	0.0000		000	000	0000000		000000			
NFLAG		•	• 000	2000.0								•
123 3.0000 3.7103+54 0.0000 0.0000 2.9274-02 0.0000 0.0000 1.023 NMAT US VS RHO 3 0.0000 3.7100+54 7.8000+6 0.0000 1.00000+0 2.9274-02 3.92397-01 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 4 0.0000 0.0000 0.0000 0.0000 0.00000 HFLAG U V P SIE COMP THASS SZZ SRR SRZ Z		MFLAG	5	>	۵.	S16	COMP	THASS	N	S & S & S & S & S & S & S & S & S & S &	SRZ	7
123 3-7103+54 0-0003 0-0003 0-0000						6	50000	. 9274-0	0000		0.000	. 823
3.0000 3.7100+64 7.8000+nc 3.0000 1.000000+00 2.9276-02 3.92399-01 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000		123	00000	•7100+C	0000	A 1 F		MASS	RAC. VOL		0.1.0	TA= -1
0.0000 0.0000 0.0000 0.0000 0.000000		- 4 5	50		9000	000	-00000-	0	3.92399-0			
0.0000 0.0000 0.0000 0.0000 0.000000		า ส	000000	3+001/*5		000	•	•	0.0000			
U V P SIE COMP THASS SZZ SRR SRZ		* *	0.000.0	0000	00000	.000	0.0000	0.000				
							6700	*****	477	225	SRZ	
		MFLAG	ב	>	•	315						

11-63

1.758.00 THETAM -1.00	2	1.693+00 ETAB -1.00	2	1.627.00 HETA= -1.00	7	1.562400 TA= -1.00	2	1.497.00 TAE -1.00	7	1.432+00 TA# -1.00	7	1.347.00 HETA# #1.00
0.000	SRZ	0.0000 0.1.0 THE	282	0.0000 10)=1.0 THE	SRZ	0.0000 0)=1.0 THET	SRZ	0,0000 0)=1.0 THET	SRZ	0+0000 0)=1.0 THET	SRZ	o •
COLOVN) OHR	200	0.0000 RH0 (NV010)	888	0.0000 RHO(NVOI	SRR	0.0000 RH0(NV01D)	SRR	0.0000 0.000 RHO(NVOID)#1.0	S. S. R. R.	0.0000 RHO(NVOID)=1.0	SRR	0.0000 RHO(NVOID) =:-0
FAAC. VOL. 5.74.74-01	225	FAC. VOL. 7.66076-01 0.00000	225	0.0000 FRAC. VOL. 9.44523-01 0.00000	225	0.0000 9.82948-01 0.00000	228	0.0000 FRAC. VOL. 9.82948-01 0.00000	225	FRAC. VOL. 9.82948-01 0.00000	225	0.0000 9.82948-01 0.00000
4.2467-02 4.2467-02 0.0000	THASS	5.7158.02 MASS 5.7158-02 0.0000	THASS	7.0617-02 MASS 7.0617-02 0.0000	THASS	7.3335-02 HASS 7.335-02 0.0000	THASS	7.335-02 HASS 7.335-02 0.0000	THASS	7.3335-02 7.3335-02 0.0000	THASS	7.338-02 MASS. 7.338-02 0.0000
00 00 00 00 00 00 00 00 00 00 00 00 00	CONP	0.0000000000000000000000000000000000000	COMP	00000000000000000000000000000000000000	COMP	0.000000	COMP	000000000000000000000000000000000000000	COMP	00000000000000000000000000000000000000	LONP	000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SIE	0 0000	SIE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SIE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SIE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SIE	0.000 0.000 0.000 0.000	SIE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00000 00000 00000 00000	•	7	•	0.0000 0.0000 0.0000 0.0000	•	0.0000 7.8000 0.0000 0.0000	•	0.0000 0.0000 0.0000 0.0000 0.0000		0.0000 7.8000 0.0000 0.0000	a.	00000000000000000000000000000000000000
3.7190.04 VS 3.7190.0 0.0000	>	3.7100.04 3.7100.04 0.0070 0.0000	>	3.7180+04 13.7180+04 0.0000	>	3.7100+04 VS 3.7100+04 0.0000	>	3.7100+04 3.7100+04 0.6670	>	3.7100+04 VS 3.7100+04 0.0000	· >	3.7100+04 VS 3.7100+04 0.0000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5	000000000000000000000000000000000000000	Þ		5	00000000000000000000000000000000000000	ב	000000000000000000000000000000000000000	5	0.0000 0.0000 0.0000 0.0000	Э	00000 00000 00000 00000
N I N N T T N T N T N T N T N T N T N T	MFLAG	1 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	HFLAG	N H H H H H H H H H H H H H H H H H H H	MFLAG	F T T T T	MFLAG	N K M T T	MFLAG	N X X X X X X X X X X X X X X X X X X X	HFLAG	- Z - Z - 4 W T T
7	7	2	7	<u></u>	ד		ר	-	ר	12	ר	=

2	1,302+00 THETA# =1.00	2	1,227+00 THETA= -1,00	7	1.141400 THETA= -1.00	7	1.042.00 HETA= -1.00	2	9.294=01 THETA= -1.00	2	7.996-01 THETA# -1.00	7	THETAM -1.00
	00000	282	0.0000	SRZ	8	SRZ	0	SRZ	8	582	8000 0.0000 RHO(NVOID) 1.0 THE	SRZ	2
*0.	0.0000 RHO(NVOID)	SR.	010 V V O 10	8 8 8	0.0000 0.000 RHO(NVOID)#1.0	SRR	0.000 RHO(NVOID)#1.0	SRR	0.000 RHO(NVOID)#1.0	S. R. R.	0.0000 RH0(NV0I	SRR	0.0000 0.000 RHO(NYOID)=1.0
	7.46. VOL. 9.82948-01 0.00000	225	0.0000 FRAC. VOL. 9.82948-01 0.00000	275	9.0000 9.02948-01 0.00000	225	FAC. VOL. 9.82948-01 0.00000	275	0.0000 9.62948-01 0.00000	225	0.0000 FRAC. Vol 9.82948-01 0.00000	228	0.0000 FRAC. VOL. 9.82948-01
	# 4171-02 # 4171-02 0.0000 0.0000	THASS	9.6595-02 MASS 9.6595-02 0.0000	THASS	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	THASS	1.2724-01 HASS 1.2724-01 0.0000	THASS	1.4603-01 1.4603-01 0.0000-01 0.000000000000000000000000	THASS	1.6 4 4 6 6 0 1 1 6 6 4 4 6 6 0 0 1 6 7 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	THASS	1.9236-01 HASS 1,9236-01
	00000 - 0 00000 - 0 000000 - 0	COMP	0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COMP	000000 000000 000000	COMP	0.00000 1.000000 0.00000 0.00000	COMP	0300000 COMP 1+000000+00 0+00000	COMP	0 00000 0 000000 0 000000 0 000000	COMP	0000000
•	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	316	0 000 0 m 000 0 m 000 0 m 000 0 m 000	SIE	0.0000 0.0000 0.0000	SIE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S ! E	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SIE	00000	318	0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	0		0.0000 7.0000 0.0000 0.0000	Va.	0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0000 0.0000 0.0000 0.0000	•	0 % 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	7 - 0000 - 0000 - 0000 - 0000
	3.7108.04 3.7100.04 0.0000	>	3.7100+04 3.7100+04 0.0000		3.7100+04 VS 3.7100+04 0.0000	>	3.7100+04 VS 3.7100+04 0.0000	>	3 • 7 100 + 0 4	>	3 7100 VS 3 7100 0 0000 0 0000	>	3.7100+04 VS. 3.7100+04
	0 0000	5		, ,	0 0000 0 0 0 0 0 0 0 0 0 0	Þ	0 0000	၁	0 000 0 000 0 000 0 000	>		Ð	0.0000
	MET NE STATE OF STATE	MFLAG	+ 4m + + - I - Z	MFLAG	- Z - Z - Z - Z - Z	HFLAG	# X # E # E A A A	HFLAG	- 4 M # # - E - Z	MFLAG	04022	MFLAG	• ¥ # :
ď	, º	7	•	7	•	7	•	7	•	ר	w	~	*

	*	14ETA# -1.00	N	10 2.836-01 THETA= -1.00	2	0 6.050-02 THETA -1.00	2		2	14 (2.272.00	THETA		2	•••	2 145 + 00					_	
	282	0+000A	SRZ	0000 RHO(NV01D)=1.0	S#2	0000 RH0(NV01D)=1.0	(n	CYCLE	SRZ	0.000	00000	â		SRZ	00000	0000+0	0.000	00000	0.000	0000	000000	•
	22.2	0.0000 RHO(NV01D	SRR	•	S	0	SS	0000000	SER	0.0000	000000000000000000000000000000000000000			SR	0.0000	0.0000	0.000	00000	0.0000	0.0000	0.0000	
0.00000	775	78AC. VOL. 9.82948-0 0.00000	225	0.0000 FRAC: VOL: 9.82948*0 0.00000	225	FRAC. VOL. 8.12355-0. 0.00000	225	00.0	225	000000	0.000	FRAC. VOL.	0.00000	225	0.0000	0.000	00000					
0.000	THASS	2.2077-01 HASS 2.2077-01 0.0000	THASS	2.5101-01 HASS 2.5101-01 0.0000	THASS	5.6264-04 NASS-000 0.00000 0.00000	THASS	7345573-01	THASS	3.0730-02	3.0730-02	HASS	0.0000 0.0000 3.0730-02	THASS	0000		•		• •	0000		¢
0.0000	CONF	00000000000000000000000000000000000000	COMP	0.00000 0.000000 0.0000000	COMP	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COMP	TAU(1) - 1.7	COMP	1.00000+00	1.00000+00	200	0.0000000000000000000000000000000000000	COMP	000000	0000000	000000		000000	000000	00000	
0.000	318	0.0000 0.0000 0.0000	SIE	0.0000 0.0000 0.0000	318	0.0000 0.0000 0.0000	₩ ••	5170000-02	SIE	0.0000	00000	. S1E	000000000000000000000000000000000000000	SIE	0000-0	0.0000	0.000	000000		00000	0000	
0.000		0.0000 7.9000 0.0000 0.0000	•	0.0000 7.8000 0.0000 0.0000		0.0000 7.8000-00 0.0000	۵.	DR(I) = 6.517	۵.	0.000	•	о е о е о е о е о е о е о е о е о е о е	0.0000 0.0000 2.790000		0.00.0		0.000.0	•			• (
0.0000	*	3.7100+04 VS 3.7100+04 0.0000	>	3.7100+04 VS 3.7100+04 0.0070 0.9900	>	3.7106.04 VS 3.7100.04 0.0000	>	10-6175	>	0.0000	0	0.0000 VS.	0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	>			000000	•	•	• •	•	
0.000.0	>	0.000.0	Þ	0.000 0.000 0.000 0.0000	5	0.0000000000000000000000000000000000000	5	Z(1)) J	0.00.0		0.0000	000000000000000000000000000000000000000	Þ		0.000.0	000000	0400-0	0.00.0	00000		
•	MFLAG	6 40 F F	MFLAG	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	MFLAG	- Z O Z 0 4 W 3 3	MFLAG	,	LAG	•	e .	NAN	ा र र	HFLAG	C		0	0 0	0 0	> 0)	C
	7	•	7	~	7		7		ר	27	2.6	57		ד	24	23	22		20			•

2	4	2,399,00 2,336,00 2,272,00 ETAm #1.00	2	2 · 1 4 5 · 0 0 2 · 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	75000	97.0	2020	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	CYCLE **	000000000000000000000000000000000000000	SRZ	000000000000000000000000000000000000000			00000	00000
	0 8	0.0000 0.0000 0.0000 0.0000 PHO(NV	SRR	88888				
	528	7 A C C C C C C C C C C C C C C C C C C	275	00000				
	14123 14123	3,5456.02 3,5456.02 3,5456.02 3,5456.02 0,0000 0,0000 3,5456.02	THASS	00000				
	5 0	00000000000000000000000000000000000000	COMP					
	7000002	000000000000000000000000000000000000000	\$16					
	0.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000 0000 0000 0000 0000 0000 0000 0000	•			2000		
	2136101	00000000000000000000000000000000000000			8888	8888		
		000000000000000000000000000000000000000	_	00000	6666	0000		
000000000000	1 0 ×		HFLAG	00000	0000	0000	00000	00000
	! • ! ,	25 27 28 29	7	2222				4 W 2 D N -

41.6888131846Y 8,09199130+09 5.69199130+00 5.09199130+00 SPHASE ETH: 5.091197224-Q* ESUNE 5.09119130

11-68

11.3 IMPACT INTO A THICK TARGET

This calculation illustrates the impact of a heavy metal projectile into a thick metal target. This is a situation in which plugging failure is not expected, therefore the plugging option is not used and, by default, PLGOPT = 0. In this calculation there are two material packages and a void (NMAT = 2): package one is the tungsten projectile and its initial axial velocity is 5.5 x 10⁴cm/sec; package two is the steel target; and package three is the void. (The void package number is always NMAT + 1.)

Figure 11.6 shows the initial configuration of the problem, and Figure 11.7 shows the initial zoning of the grid relative to the dimensions of the projectile and target. The finest zoning was chosen to be in the region of the impact where the greatest material deformation is expected to occur. The value of DY(1) was chosen so that the initial projectile-target interface would be coincident with a grid line, a desirable procedure but not a requirement.

Sliplines are not necessary in this calculation, so NOSLIP is set to 1, and the cards defining the slipline endpoints are omitted from the input deck. The automatic void closing routine is used, however. It is activated by setting NVRTEX = 108 which indentifies the void tracer at the vertex point, which is the intercept between the target and projectile edge.

The input cards for this calculation are listed on the following pages along with the cycle 0 output.

Figure 11.6--Initial configuration of the impact into a thick target calculation.

Figure 11.7--Initial zoning of the grid relative to the dimensions of the projectile and target in the impact into a thick target calculation.

11.3.1 Input

1/23456/78901234567497123456789012345678901234567890123456789012345678901234567890 Column Indicator 8-16 12-6

IMPACT INTO A THICK TARGET

Heading Card

NFRELP NOUMP7 CVIS NMXCLS IMAX MAPS NADD MINX PROB MINY PK(1) VANO NTRACR NOSLIP NMAT NVRTEX PRDELI ISTOP 90-731430. 781350. 591138. 15115.5 115.5 4512.5 271-1. 33130. 35162, 4e:37. 18119. 20126. 21:15. 6!1. 22.145. 1511. 42:1. 4717. 6812. 721.3. •

Column Indicator

51-60 1-10 | 11-20 | 21-30 | 31-40 | 41-50 | 1234567890| 234567890|

		MFLAG(2) MAT, p, E _I , U, V	$^{\mathrm{Y}}_{\mathrm{o}},^{\mathrm{Y}}_{\mathrm{1}},^{\mathrm{Y}}_{\mathrm{2}},^{\mathrm{E}}_{\mathrm{m}},^{\mathrm{G}},^{\mathrm{AMDM}}$
DX	DY	MFLAG(2)] MAT, P, E] Yo,Y1
2.0	6 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		+11.9753
22.00.00.00.00.00.00.00.00.00.00.00.00.0	2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 	+89.7.75 +108.3
0.22 0.42 0.43 0.42 4.23 4.23		n :	2.28 1.3
1. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	200000	ာင်	• • • •
	0 4	71.8	• e e e e e e e e e e e e e e e e e e e
eac on a		() m	00

Column Indicator

	2345678991234567899123456789912345678961234567899123456789812345678901234567890
31-40	123456769
21-30	1234567394
-5 6-10 11-15 6-20 21-30 31-40	1234567890
-5 6-10	34567895

í	The State of	7	1007	•		005/
	20		.2601	ď	J. 3000	1 - 1
			54.	.7365	5.9	7365
			6.07	.7365	7,37	7365
	(Void)		7.44	.7365	9.98	2885
	for Package 3		9.08	. 2885	3 . 5	3.0
	Material Tracers				3 23	
			0	 G	3 25	
			10.15	10.61	14.89	4 . 4
			•	4	3 15.	2
			70	9	25.	· · · · · · · · · · · · · · · · · ·
			15.06	3.0	90.51	g.
					3 20.	
			15.06	င်	15.06	3.5
			6 7 8	57.5	2 25	
	(Target)				2. 25.	. 1
	for Package 2		14.89	19.41	16.15	16.4
	Material Tracers	,	86.6	1, 61	.9.98	3,33
					52 2.	-
			9.93	3.0	9.93	1 2885
			9.98	• 2524	86.6	
					ڻ رن	
	(Projectile)		86.6	0	9.98	.2524
	tor Package 1			5002	# # # # # # # # # # # # # # # # # # #	. / J.65
	770000000000000000000000000000000000000				1 15	
	Material Tracers		7.37	.7365	6.07	.7355
			6.0	.7365	មា ។	7365
					11 1	~
			200	U 7 E F	m : c	<u>.</u>

Column Indicator -

123456769212345678921234567894123456789012345678901234567890123456789012345678901234567890

Detonation Point (dummy card)

End of Input

۲)

.

.

15212

.

11.3.2 Cycle 0 Output

IMPACT INTO A THICK TARGET

INPUT CARDS

1 151 1 5.50000+50 INPUT CARDS

																										-		-					(N	
																						MBER OF POINTS	001000+0	MBER OF POINTS	4500000+n0	MBER OF POINTSE	6070000+n1	HBER OF POINTS	7440000+01	ER OF POINTS	10+00000466	OF POINTS	+80000+01	A OF POINTS	**************************************
5.500000+00	0+0000	0000	.6000003+	0.00000	0+00006	+0000	0-0000	.0000	.700000+0	.0000000	0.000000	.0000000	.5000003+	+	.000000	0.00000	+00000		· 500000+	.5000064	-0000	PACKA	*11 000	PACKAGE 1	Ö	PACKAGE 1	#11 000+000	PACKAGE# 1	-17 000+000	4	*17 00+000	PACKAGE 2	*1*	PACKAGE	-1.4 00+000
-	-		_	~		-	-	-	-		-		- -	-		-	_	- 0	-		-	_	00000	7	365	2	.7365	~	.7365(ī	.2524	_	.0000		588
	_	~	2	~	~	*	24.5	2 47				2 75			2 115	2 116				2 121		TYPER	X 1 =	TYPE	x 1 =	TYPE	x 1 =	TYPE=	= 1 ×	TYPE=	x 1 =	TYPES	¥ 1 #	TYPE	×1-
	•			•		- •	_	. •	. •		- •			•				-		•															

.2001000+00 .4000000+01 .7370000+01

72= 72=

.7365000+00

72 m 72 m 72 m

.7365000+00

Y2= Y2=

.2524000.00

.0000000

FINAL FOODO-01			× C I ii	F	CYCPH3	NSL CYCHX 2.0000+60		E 0 D 7 0 0 0	WHXCLS 460 460 88AR CRATIO
N N N N N N N N N N N N N N N N N N N	NUMBCA	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	NTPHX 350		O L	NSLD	NOSLIP	NOON	NWXCLS
N I NE	NFRELP 4	ZO CX	NADO		NINY 15	E Z	T T T T T	HAXX 20	Z A A L
KUN	RUNITR	1942 62	JEXTY		7 TO 0	1800	37	11	1 P.R.
X		IPCYCL	N H N		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 -	IEXTX	1081	1017
25 14.	T42.197					,	3	1,1	!
	16							·	0.00000
		.2001000+00	.2001	Y 2=	• 0000000			(1)	-1 FACKAGE
,		.4500000+00	. 4500	¥2=	.7365000+00	= -	**************************************		
		100+00	. 4070000+01	Y 2 =	.7365000+00	2 - 10	0+01	•	
		10+00	.7 4 4 0000 +01	Y 2=	.7365000+00	5 72	9.0		6 F
		10-00	. 9980000+01	120	.2885000+00	5 23	POINTS		
		10+00	. **********	¥2=	.3330000+01	25	OF POINTS	-	A GE .
		.1015000+02	.1015	¥2*	.1740000+02	15 2= 15	. 0		 6E =
		.1506000+02	.15060	¥2.	.1940000+02	52 s.	. 0		
		.1504000+02	15040	Y2*	.3000000+01	2 .	. 0		
		.1506000+02	.15060	¥2=	0000000				
		.1504000+02	15060	72=	.3330000+01				
		.1469000+02	.1 489	¥2.	.1740000+02	2. 25	90	71 · · · · · · · · · · · · · · · · · · ·	
		10-00000+4.	. ***	12.	1+46000+02		90	• 2	.3330000+01 T
						25	NUMBER OF POINTSP	EOZ ~	PACKAGE=

	GAHHA	4	PLGOPT	PLAHIN		PHIN	PRCNT	F .		PRFACT	PRL 1H	0 8 9 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8	PR08	
	00.00	00	0.000	0.00	_	B - 00000 • 8		•	>					
	0.00 0.00	RE2 0000	ROEPS 1.0000-05	SIEH	1.0000+05	STAB 1.0000-63	75TOF 2.5000-06	20						
PACKAGE	GE NORMAL ER DENSITY (RHOZ)	. ~	DENSITY (RHOIN)	_	S 1 6 6 0 8	- - -	۷۷ ح	>		MATERIAL	2			
- 7			19.170	51	0000000	000	0000	5.5000+	7	TUNGSTEN				
< L	SE	⊢	z v	U	STK2		STEZ	SE SE		AMOMA				
2 ~ 6	0+000·9	0.60	0000		0.0000	₩ 1•••	.300+10	7.759+1 8.000+1		9.753-01				
	œ	•	œ	-	8	-	80	-	8	•	8	_	2	
	1.840-01	. ~	.849-0		1.840-0		1 - 8 40 - 01	so :	2.000-		2+200-01	N *	2 * 400 - 0 1	
0	2.700-01	0 -	2.903-01	0 -	3.200-0		3 - 500 - 01	2 6	7.600-01	20 20	0-400-01	21	-200-	
22	1.010.1	23	110		1.220+01	28	1-350+00	7 9 7	1 - 490+		1 • 6 30 • 00	28	1.800+00	
29	1 - 980+00	36	•											
					•		•	1		•	· Co	-	œ	
	Œ		œ		OZ (-	2 1	_ '	K - 6		1.154+00	. ^	19440	
~ 0	1.840-01	~ 0	3.680-01	m 5	29-0	*	7 - 3 - 0 - 0 1	^ <u>~</u>	3.016+06	61	3 + 4 + 6 + 00	*	3.916+00	
• <u>u</u>			20.490.05	2.5	636+0		6.326+00	6	7.086+		7.926+00	23	0+948.	
22			1-097+01	5 4	.219+0	7	1 • 35 4 + 01	26	1.503+		1.666+01	58	0+4+8.	
29	•	0	2.064+01											
	3							ſ		•	2	7	20	
,	20	¬ '	20	ص	70	7 14	4-300-01		.700	,•		^	4 - 700-01	
(000	N 0			•	-	3.200-01	12	900			*	2 - 400-51	
9 <u>v</u>	200	9	2.002-01		2.000-0	::	2.006-01	6	•	. ~		21	2.000-01	
22	0-000-	23	2.009-01		0	1 28	2-000-01	26	•	7		35	7000000	
29	.000	30	2 - 000-01		0	a .	2.000-01	7 (•	7) 3		4 6	2.000-01	
4 t	000	W :	0-000		0 0	7 7	2.000-01	2 ~		T 3		+	2.000-01	
5 5		7 5		1 2	2.000-0	5.5	2.000-01	10	-000		2.000-01	95	2.000-01	
57	9-300.	. S	-000·		0		2.000-01	-	•	•				
7	7	-	7	7	7	٦	. 2	7	7 .	7	2	7		
	2-000-01	. ~	8 - 400-01	٣	1.480+0(2 - 1 10 + 00	'n	2.680.0		3 + 200 + 00	~ ;	3.670+00	
	4-100+00	•	4 - 490+00	10	.840+0		5-140+00	12	2.450+(5 - 7 20 + 00	= ;	2.40000	
40	00.001.0	-	6.380+00	17	9.580+0		00+001.9	- :	00+086+9		• •	17	00+005-7	
22	7.580.00	23	7.780+00	7 5	0.006	•	00+00	2 :	-0000			97	1.010-1	
× -	8-780-00	0 0	9.160+00	- 4	0.0000		1.044001	2 5	1 - 1 - 1	7 7	1+138+01	4.2	1 - 1 58 + 01	
;	10-850-1	1	2)										

				90+000
49 1.298+01	.438+01			2 + 00000
49 1	99			N. W.
48 1+278+01		1.558+01		DT# 8-6761754*10 MAXCUV# 4.5600000405 MAXUV# 5-5000000+04 UMIN# 4-559999+00 PMIN# 5+0000000+04
89	52	62		N N N
47 1.258+01	1.398+01	1.538+01		5.5000000+0*
				MAXUV
44 1-238-01	1+378+01	1.518+01		50+0000095
*	53	0.0		. + = A.
16+91	52 1.358+04	16+86		MAXCL
1.2	1.3	7.		54-10
				3.97617
44 1+198+01	10-338+31	10+874+1		
**	51	58		OT 4 21 T# 6.0905E0
10	10	31		7
43 1-178+61	1.318+	1 - 458+	Ç	2.1
			YCLE.	*
43	50	57	7	10

¥ !															
0+0000000 0+00000000 0+00000000 0+000000		:						-	2.26	90.0	?	0 · · · · · · · · · · · · · · · · · · ·		>-	000
00000000000000000000000000000000000000								×			.00	~ ~		×	1.57
					1.	•		2	, u 0	20.5	30	40		z	٠ <u>٠</u>
1.53585341VE) 0.00000000000000000000000000000000000									1.39	14.18	20.05	* 0	0	>	000
								×	00.4		4.00	- 5	0.0	×	1.37
0.000000 0.000000 0.0000000 0.0000000							PACKAGE	. 2	* •	**	* * *	**	44-100	*	**
-01-	. *						Y Y	>	1.00	1.98	0.23		4.00	-	000
.7724706+02 -6850132+04		SEVAPORATEDS	000000000000000000000000000000000000000			2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EACH HATER!	×	000	000	8	.61	.00	×	
Neir		SE	0000				F 0 F	2			7.0	22	63		n •
4.2236131+11 0.0000000 4.2236131+11 4.2236131+11		106	0.0000000000000000000000000000000000000	.0000000		N N N N N N N N N N N N N N N N N N N	OF TRACERS	-	1.00	0 0 0	19.61		34.00	,	34,00
F 7 0 1 7			0000	•		S 0 0	NATES	×	2.00	1 1	0	2.79	*	×	3.91
KE 0.00000000 0.12236131+11	F0000	RIGHT	00000	•0000000			CELL-COORDINATES	z				32		z	Nr
4.223	0.000000000000000000000000000000000000	œ	0.0000000000000000000000000000000000000	0.000	SEZ	E O O	CELL	· ·	1.00	09.0	18.78	26.74	4.00		34.00
0.0000000 0.0000000 0.0000000	1E 0UT 0.000000 0.000000	BOTTOM	000000000000000000000000000000000000000	.0000000	LIDE ENDPOINTS	TER SLAVE			0.0			2.96 2		×	2.24
	00		0000	•	- HO	HASTER O		a	- 1	= :	517	3 1 9	#	2	- •
PACKAGE NO. 1 2 1 07ALS		BOUNDARY	ENERGY OUT	WORK DONE	11-81	PKG. NO.		PACKAGE 1						PACKAGE 2	

***	011	33 34.0	41 34.0	10 34.0	33 34.0	79 34.0	78 34.0	48 38.2	48 44.7	18 22.1	78 59.4	79 59.4	33 . 59.4	10 59.4	41 59.4	15 59.4	79 59.4	77 59.4	72 59.4			•	43 59.4	** 65 60	80 59.4	76 26 96	1000	100	63 59.4	48 59.40	48 51.7		34.0	83 34.0	15 34.0	46 34.0	73 34.0	66 34.0	77 34.0	149 34.0	20.00	1.25 27	45 23.1	200	00 15.8	1001 00	00	
15 7.	0	2 -	0 15	5 20	0 23	5 25	0 27	5 28	0 28	5 28	0 27	5 25	0 23	2	0 15	95 11	00	05 50	10			×	m	0	5	-:		7 7 7	92 6	45 28.	0 28	2 2 2	27 0	7.4	5 22	0 18	5 12	01 0	95 8	9 00	e 50	0.	7 - 01	25.0	3	35 4	100	
-		*:0	4.0	4.0	4:0	4.0	4:0	9 . 5	5.0	3 . 4	4 . 4	4 . 4	4 . 4	*	4 . 4	0.40	0+-6	4 . 4	04.6		• =	> -	4.	4.4	4.4	4 . 4	4 :		4 . 4	29.40	3 . 4	5.0	9 6	0 0	4 4 C	.0	4.0	4.0	4.00	4.00	00.4	3.09	0.0	20.0	7 4	1.98	. 0	
	-			9.3	2.7	5.3	7 . 4		8 . 4			6 . 2	3.8	20.83	6.5	1.5	ņ	*	5			×	ŝ	4	. 3	. 5	6.5	9 0	6 . 0	28.14	8 . 4	9 . 4	J :		2 . 7	9.3	4	1.0	•	÷	7	1	•		9 9			•
*			N											7 0			0		o			2	7	•						7																		
0	0	4.0			0	4.0	4.0	4.8	3.3	1.7	4 . 4	4 . 4	4 . 4		4 . 4	4 . 4	4 . 4	4 . 4	4 . 4	ö		>-	4 . 4	4 . 4	4 . 4	4.6	4 . 4	•		59.40	5 . 1	4.7	8 . 2	•		4	.0	4.0		4.0	4.0	4	ar (•			4	•
64.9	-	9.0	2.7	4 . 8	2 . 1	4.8	7.0	8 . 4	4.0	* . 8	4.8	9.9			7.5	6 . 1	8 . 6	0	4.0	0		×			.7	-		- 1	5.7	27.78	8 . 4	4.8	4 .	: "	9		5 . 4	1.3	• 5	*		ů.	4	? () C	9 0		•
																		0		13-		2	e																		0	0		-			•	7
	4:0	4.0	4.0	4.0	4 .0	4.0	4	4.0	1.6	0.0	6	4 . 0		29.40	4.0	4 . 6	4.6	4.0	4.6	4 . 6		>	4.		4 . 4	4 . 4	* . 6	4.0	0 4	59.40	9	8.3	4.4			1	1	4.0	4.0	4.0	4.0	4.0	0 • 3	S .	7 .	9 4		7.
5.98	8.35		6 -	7.5	5	4.3	9.0	7.0	*	7 . 19		7.0	4	27.15	7	2.7	0.2					×	.84		b - 24		1.1			27 . 41	4.0	9 . 6	* .		7 0		9	1.6	0	6.	*	. 2		-	Ç	2		9
12	17	22	27	32	37	42	47	52	57	62	67	72	7.4	69	87	92	67	C	101	-		z	^	. ~	12	17	22	27	32	4 2	47	25	57	29	7 0	7.6	. 89	87	20	44	0	167		117	122	/71	70	137
6.1			» (:	7 (6 . 6		4) ()		4 .	4	4.0	4 . 4	4 . 4	NVRTEX	>	7	. 7	1 .	4 .	4 . 4	4.		13.00	8 . 5	0.0	1.6	ن . د تا ن	() ·) () · ·) L	. 0	4	.0	4.0	1.2	6.7	2.2	•		9.
*	•		*	4.5		3.8	6.2	8 . 1		8 . 4	4			77.76		-	C - 3	9.2	()		ک اما د	i i		,	4	2.3	2.7			27.04	7		4 . 6	e :	9.9	7 1		0	. ~	8.3		•	0	0	60	Ç (7	C.I
11	9 -	21	26					5			• •			0 -			96		90	111	URFACE TRA	2	-	• •	-	9 1	2.1	5.6	10.	0 T	. 4	5.1	56	£ 1	9 1	1 / 1	0 -	- 49 - 40			O		-		121		101	

00. 00.000 147-1000.00. 441

COMPRESSION	SION		CYCLE	Ä			0		•	1 1 1		.6	TIME - 0.00000	0	W 1	128	SECONDS	V 7	. 1,										, ;		
SYMBOL MAXINUM VALUE		.000	• 0		-	.00	1	1	1.002	47			.00		×.		0		73.7	:	000	÷	300.		1.00	- 20		00		1,73	00.1
SYMBOL MAXIMUM VA	LUE	1.010	0		1.01	7 = =			1.012	××		-	10.	J 70		-	X +				ZW	-	• 10.	A	1.017	L N		•	7 60		1001
SYMBOL MAXIMUM VA	VALUE	1.020	v o		1	.021			1.022	75€	8 .10	٠.ـ	.023	> m		1,5	W 024				.025	-	,026		1.027	77					
			- 23									4								<i>3</i> , ,							i i				
											11		117				,	.*													
	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	-										
H		•		•	•	•	•		1			•		•	•	. ~		•		•											
\$100 po-	• •		• •			• •								• •			• •	• •		•								•		4	
	•		•	•		•		·	1	•	•	•		•	٠		•	•	•	•	7			=.							
25	• •		• •	1 . 1	, ,	•						. 1				•	•	•		•		•					. 11				
		•)			• .•			1	•			•		8,			•	•	•			,								
1 but	•	•	1	•		•	•		1			•		•	•		•	•							•						
		•	1 0	• •		•					• •	•				~		• •													
2	•	• •		•			•			•		•			•		•	•	•	•											
6-4 (•	•	1	•		•				•		•	1		.0			•		•	П			•							i, i
H F	• •	• •	1 t	• •		• •						• •		• •		~ -	• •	• •		•							٠				
45 1	•		•	•		•	₽.			•		•	•				•	•	i	•					٠						
-	•	•	1	•		•	•			1 1		•				•	•	•		• •											
	• •		• •	• !		• •	1 1				, I	•	, ,		1		• •	• •							•						
	•	•	1	•	•	•	•	1	•			•	•		•		•	•		•											
# O#	•	•	t	•		•	٠,		•	•		•		•	• 1	-	•	•	, ,	• •											
	• •	• •	• •			• •						•					• •	• •		•											
, Prod. I	1		ů	•		•	3			0 1		•					•	• •		• •											
		•	•	•		• •	•		•	•	•	•			•	• •	•	• •	•	•						٠.	*				
-	•																					-									
•	•	,																													
⊷ • •⊷		• •																													
30		•																													
	• •	• •																													
•	1 1	•														4															
	•	i																													
25 1	•	• •																			٠										
). I	•		•																											
• •••		•	•																												
-	1	•	•																												

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
1.27+04 1.04 3.38+04 3.05 5.50+04			
1 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·			
0 0 0 + + + + + + 0 0 0 2 · 2 · x · 0 N	 	• • •	·
6 · 3 S · 0 3 7 · 7 S · 0 4 4 · 8 7 · 0 4			
4.23+03 L 2.54+04 V V 4.65+04			4
2 × 2 × 2 × 4 × 4 × 4 × 4 × 4 × 4 × 4 ×			
2.12+02 2.12+04 7.23+04			
0.00 I 1.90+04 S			, , , , , , , , , , , , , , , , , , ,
SYMBOL MAXIMUM VALUE SYMBOL MAXIMUM VALUE SYMBOL MAXIMUM VALUE			25

		70	77771	7 72								
			7 7 7 7 1	N F								
			, N	7 %								
		15	7 7							,		
			7 7 7 7 1	7 7 7	•							
			2 2									
		0	7 7									
			2 2									
			7 7									
			7 1								9	
		5	12		11.							
			7 7									
			7 7 7	2 2 2	,							
	9									•		
			•		+ + + + + +	* * * * *	25 30					
		-	# (1) #	8400-01	DR(1) = 1.8	10-00000+	TAU(1) # 1.0	:	00.0	0000	•	0
11.	. ;				i				•			•
-87	7	MFLAG	Э	>	•	SIE	FROD	THASS	275	K K	245	7
	•		5	.000	000	000	•00000•	.6592-0	.000	.000	000	.05
				Ġ	00000	8		:	• 000	0.000	0.0000	0.00
	9 6	142	. 0	000.0	.000	.000	000000		00000	0000	000000	5 ;
		Z	SO	× ×	RHO	SIE	COMP	< C	V 6		2	
		- 1	00	0.0	417	0000	10-5-6-6	2	0000			
		m	0.000	000.0	• • • • • •						1	
	7	HFLAG	כ	>	•	SIE	COMP	THASS	275	2 2 2	SR 2	7
					000	. 60	1.00000+00	4.0779-01	00000	.000	.000	. • • • •
	7		00000	0.00	0000	0.000	.00000	.0779-	.000	. 600	000	.780+0
				5.5000+0	000.0	.000	0,0000	:	.000	900		
	9		000	5.9000+0	0.000		.00000	0779-	00		38	
	30		.000	5-5003+0	0000	900	0.00000	4.0770-01		000	000	. ***
	2		000	0+0005+5	000.0	000		0779	000	.000	.000	780.0
	200		000	0000			0.0000	0774	8	.000	000	. \$10.0
	, ,	-	900			000	0,00000	6779-	000	.000	9	.360+0
	25	•	000	5 - 5000+0	0.00	.000	0.0000	0779	.000	9		0.000
	2 5	-	000	5 - 5000+0	00000	.000	0+0000	10779-	000	900		
	23		.000	S · 5000+0	00000	900	0.00000				000	2000
	22	-	000	5-5000+0	0.00	000	0.00000			000	3	.300+0
	~		000	0+0005-9				779-	000	90	8	.100+0
	9 :		000000		•	00000	-00000	79.	9	8	8	•
				0+0008+8		8	0.00000	1779-			0000	• 7 8 0 • 0
		_				٠						

00+005.9	0000000	00-301-0	20.400.00	00402/45	20.420.00	5.160+00	4.840+00	+0+	4.100+00	3,670+00	3.200+00	2.680+00		• 0	00:		ETA= -1.00			2	2.000-01	0		2	•	1.036+01	1.018+01	-			2	00+086-6				2	9.780+00	HETA# +1:00			2	9.580+00	THETA -1:00
00000	•	•	•	000000	000000	•	0.0000	0.0000	0.0000	0.000	0.0000				00000	0.0000	1 0 1 m			SRZ	0.0000			SRZ		00000	0.000	7 0.1.0			SRZ					SRZ	0.0000	- 0.			SRZ	0.0000	0.1
0.000	00000	000000	000000	00000	000000	0.0000	0.000	0.0000	0.0000	0.000	0.000		00000	00000	•	0000.0	RHO (NVOID			SRR	0.00	,0000000		888		00000	00000	RHO(NVOID			SRR		9			SRR	0.000	RHO (NVO 1D) = 1			SRR	0.0000	
0.000		•	000000	000000	0.000		0.000		•			•	•	0.000	0.000	00000	FRAC. VOL.	10-44966.6	000000	225	0000			225		0000		FRAC. VOL.	.0000	0-96666.6	225	4	0000 C. VOL.	5.90423-01		225	00000	AC. VOL	.1532	0000000	225	00000	FRAC. VOL.
4.0779-01	4.0774-01	4.4857-01	4.8935-01	5.5052-01	5.9130-01	6.5247-01	7.1363-01	7.9519-01	10-5797	9.5431-01	•	00.50.00.1	1.102200	1.2645.00	1.3049+00	1.3047.00	KASS	1.3047+00	0.000	TMASS	0			THASS	,	4.9777-01	4.6777-01	•	0000	4.9777-01	THASS		MASS	7.2231-01		THASS	9.9745-01	HASS	9.9745-01	0.000	THASS	1.2134+00	•
1.00000+00	1.00000+00	1.00000+00	1.00000+00	1.00000+00	1.00000+00	1.00000+00	1.00000+00	1 • 00000 • 00	00+00000	000000000000000000000000000000000000000		00-000001	00.00000	1.00000-00	1.00000+00	0.0000	COMP	1.00000+00	0.0000	COMP	0.00000	* C		- COMP		00+00000-1	00000		1.60000+00	1-00000+00	PHOD		00000	1 • 00000 • 00		COMP	0.0000		1 • 00000 • 00	0.0000	COMP		L N O O O
 0.0000	0.0000	0.0000	0.000.0	.000		00000					000		0.0000	000000	0.000	0.000.0	SIE	0.000	•	SIE	0.000.0		840000-01			00000	00000	S 18	.000	0.000	516		0.0000 SIE	00000	00000	SIE		SIE	00000	.000	SIE	0000	51E
0.000	0.0000	0.0000	0.000	0.000	0.00.0	0.000					0000.0	000000	0.000.0	0.000	0.0000	0.000	2	1.9170+01	.0000		0.000.0		X (1) H 1	a.		0.000	0000.0	00000	0+0	•			0.000 3HC	1.9170+01	00000		0000	S S S S S S S S S S S S S S S S S S S	1.9170+01	• 0000	•	0000	0 0 E
5.5000+04	\$ · \$0000 · 0 *	5.5000+04	5 - 6000+04	5-5000+04	****	5-5000+04	***************************************			•	•	•	5 - 5000 + 0 4	5 - 5006+04	5 - 5000+04		•	5 - 5000 + 0 +	.0000	>	0.000.0		6.00-01	>		0.0000	0.000	0000.0	0.0000	0.0000	>		5 • 5000 + 64 VS	5 - 5000 + 04	0000	>			5 • 5000+04)	>		\$ \$ \$ \$ \$ \$ \$ \$ \$
0.0000	0.000	0.0000	0.000	0.000				00000	000000	00000	000000	000000	0.0000	0.000	0.000		115	00000	000000	>	0.00.0	: '	E = (1) E	5		0.0000	00000	00000	0.0000	0.000.0	Þ	\	0.0000		0000.0	>		0000	0.00.0	0.000	Þ		0000 0000 0000
-		-	_	-	-			-	• •	-	-			-	_		- 4	-	М	HFLAG	٥		2	MFLAG		~	N :	* * * *		•	MFLAG		1 4 0 M A H	- (7	MFLAG	9	7	-	m	MFLAG		N T N
11	75	4	-	-		7 -	: :	9	•	-	1	4	w	*		•	•			7	-			1		37		5			7		34			ר		•			7		2

11-88

- N 1 4	•	-	M		· L			-	1 -	•		4	•	•	*											•	4.	Ī			-	-	_	-	-			-												
	2	-	360	. 190		.780.	.580+	-340+	180		1001	-08/	. 5 6 0 •	0	• 1 • 0 •	• 4 8 0 •	• 7 • 0 •	0	• 2 8 0 •	• 1 80	• 4 • 0 •	.720	-09-	•0•1	• 0 • 0	- 440+	• 0001	• 10 •	* 200÷		•	.400	•	ETA# +1.0(7		2.000-0	0	t	2	0.880	:	0100	ETAB -1.0				
	SAZ		000	•	0000	0000	0001	00		3 8	000	000	000	000	• 000	• 000	000	000	000	000	000	000	000	000	0000	0	000	000	000	000	.000	.000	0	010)=1.0 TH			SRZ		0000+0	Yele		SA2		90	000	1				
	S. R. R.		000	0000.0	000.	0.0000	.000				000	000	000	000	0000	• 000	• 000	000.	• 000	8	900	• 000	.000	000	• 000	9	• 000	8	• 000	• 000	.000	.000	.000	RHOCNY			SRA		0.0000	0000		25.0		• •		2000				
9.916%3-01 0.00000	275		000000	00000	000	000				• 000	000	8	.000	.000	8	.000	.000	.000	.000	000	.000	.000	.000	000	000	000000	000	000	.000	.000	000	000	00.	AC.	++866.4	0.00000	477	•	0.0000	0.00		225	-	9 5			- 66.6			
1.2134+60	THASS		1.2234+00	1.2234+00		42234+0	2234+0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.6577	0.65	234+0	.2234.0		234+0	234+0	234+0	234.0	.2234+0	234+0		0+0096.	.4516+0	.7739.0	0.42549	11409+0	3154+0	.4303+0	. 8749.	. 1 808+0	0.9986.	. 8536+0	4148+0	9142+	MASS	-	° 000	2000	E C	0.0			THASS		2044			E 6	2060	0-7	
0.00000.0	- HOU		1 - 00000 + 00	1 - 00000 + 00	0+0000	0+00000	00000	0.0000	000	0.0000	1 • 00000 • 00	0.0000	+0000	0+6000	0+00	0.0000	0+00	0+00	0+00	0.00000	0.00000	0+00000	0.0000	.0000	0.0000	0.0000	0.0000	+00000	0+0000	0+00000	0.00000	0+0000	00000	COMP	8	.0000			00000	TAU(1) = 5.3		FHOO		0000		900	T C C C		00000	
00000	315		.000	000	000			000	8	000.	.000	.000	000	000	.000	000	000	000	.000	000	.000	.000	.000	.000	000	.000	.000	000	.000	.000	000	000	9	215	0	9		316	9	00000-01		318		06	900	000	315			
1.9170.01			00	000			3	000.	•000	.000	000.	000	000	.000	000	.000	000	.000	.000) C	.000	000		000	00.	.000	.000	9	000	000					1.9170+01	0000		1 .	0.000.0	DR(1) = 1.040	***********	•	•	000	•	- 200	H	0000	• 0000	
5 · 5000 · 0	>		5 - 5000+04	20000	0.000		atobos.	. 2000+0	0+0006.	5 - 5000 + 0 4	• 500C+	.5000+0	5000+0	* \$000 ·	5000+0	.5000+0	.5006+0	.5000+0	040000	2000	5000+0	5000+0	50000	5000+0	.5000+0	5000+0	-5000		200040	040005			1000	20000	4047000	0000		>	•0000•	5200-01		>	•	0.0000	0000	00	× ×	- 800	0.000	
0.000.0	Þ		0.000.0	•	•	•	•	•	•	0.0000		0.000	•		00000	0.0000	0.000				•					•	•		•	•	•) (200		00000		5	0	R(1) # 5		2		00000	000000	0.000	Ś	00000	0.000	
-0	MFLAG		-	-			• •	-			-	-	. =		-	-	-	7	-			• -			_	-	. –	• -			• -	• -	.00	2 2 2	- C Z	• m		MFLAG	0	3		MFLAG		~ (~	- VIZ	- (~	
	7		~	2	9 6		9	27	26	25	7	2	22	2	20	•		-	7		0 =	-				•	i a	0 1	•	e u	n :	r	7 (٧				7	-			7		37	7	5				

		-				,						7.	
7	# # # # # # # # # # # # # # # # # # #	2	9.380+00 THETA = 1.00	2	9.180+00 THETAM -1.00	2	8.980+00 THETAR -1.00	2	8,780+00 THETAB +1.00	2	8,580+00 THETAR -1.00	2	7 · · · · · · · · · · · · · · · · · · ·
288	0001	SRZ	0000 0.0000 RHO(NVOID)=1.0	SRZ	0.0000	SRZ	0000 0.0000 RHO(NVOID)=1.0	SRZ	0000 0.0000 RHO(NV01D)=1.0	SRZ	0+0000	SRZ	000000
88	000	S & S	0.0000 RHO (N	SRR	0.0000 RH0(NV010)	S	0.0000 RHO (N	SRR	0.0000 RHO(N	SRR	0.0000 RH0(NV010	SR	
212	0.0000 0.0000 0.0000 FRAC. VOL. 4.37322-02	275	0.0000 FRAC. VOL. 2.03181-01 0.00000	225	0.0000 FRAC. VOL. 3.82228-01 0.00000	275	0.0000 FRAC: VOL: 5.75976-01 0.00000	225	0.0000 FRAC. VOL. 7.84426-61 0.00000	225	0.0000 FRAC: VOL: 9.74870-01	225	
THASS	8 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	THASS	4.1428-01 MASS 4.1428-01 0.0000	THASS	7.7935-01 HASS 7.7935-01 0.0000	THASS	1.1744+00 1ASS 1.1744+00	THASS	1.5994+00 MASS 1.5994+00	THASS	1.9877+00 HASS 1.9877+00 0.0000	THASS	2.0340+00 2.0340+00 2.0340+00 2.0340+00 2.0340+00 2.0340+00
exco	00000000000000000000000000000000000000	F 00	00000000000000000000000000000000000000	COMP	0.00000 1.00000 0.000000	a ROO	0.000000000000000000000000000000000000	COMP	0.00000 1.00000 1.00000	COMP	0.00000 C0MP 1.00000	COMP	000000000000000000000000000000000000000
212	0.0000000000000000000000000000000000000	SIE	0.0000 0.0000 0.0000	318	0.0000 0.0000 0.0000	SIE	0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SIE	0.0000 0.0000	SIE	0.0000 0.0000 0.0000	SIE	
	0.0000 0.0000 0.0000 1.9170 0.0000	a	0.0000 RH0 1.9170+01		0.0000 RHU 1.9170+01	a .	0.0000 RHU 1.9170+01 0.0000	۵	0.0000 RH0 1.9170+01	a .	0.0000 RHU 1.9170+01	a	
	6-0000 6-0000 5-8000 5-8000 6-0000 6-0000	>	5 • 5000 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	>	5 + 50000 + 0 4 V S 5 + 5000 + 0 4 0 + 0000	>	5 + 5000 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	>	5 • 5000+04 VS_ 5 • 5000+04 0 • 0000	>	5 • 5000 + 0 4 V S 5 • 5000 + 0 4 0 • 0000	>	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	000000000000000000000000000000000000000	Þ	0.0000 0.0000 0.0000	Þ	00000 00000 00000	Þ	0.000 0.000 0.0000 0.0000	2	0.0000 0.0000 0.0000	٥	0.0000000000000000000000000000000000000	Э	
4	NHAT S	MFLAG	4 X X X X X X X X X X X X X X X X X X X	MFLAG	NHAH NHAH NHAH	MFLAG	1 3 4 N 3 4 L 4 L 6	MFLAG	NHAN TAN	7 F L A 3	NHAH NHAH NHAH	HFLAG	~ ~ ~ ~ ~ ~ ~
	***	. 7	ē	ר	30	7	58	7	28	7	27	ר	0 - 12 H F U P

gymat negessantussessessatussessatungssessatussessatussessatussessatussessatussessatussessatussessatussessatus

	-																																							
	100		.096	.720-	+420+	160	.840+	.490+	·100+	• 670•	.200+	.0295	•	. 480	8.400-0	ETA= -1.0(7	2.000-0	0		•			ETA= -1.0(~		0.980+00	5.00	380+	1.00	. 9 60	.780	580+	ETA= -1.00			2
	000		000	000	000	000	000	.000	0000	0	000+	• 000	000	•000	0.000	D)=1.0 TH			SRZ	0.000	YCLE	6	4 <u>2</u> 7	00	0000	010)=100 TH		282		000000	•			•	•	•	10)=1.0 TH			SRZ
000	000	00000		000	.000	000	000	.000	• 000	.000	8	• 000	• 000	000.	0.000.0	RHO(NVOI			SRR		0000	a v	2	0.000.0	•	RHO(NVO	ī,	az CV		•	•	•			•	.00	RHOCKO			SRR
000000000000000000000000000000000000000		•	•	• •	•	•		•				000000	•	0000.0	.000	AC.	. 69844	0.00000	225	0000		.,	776	0.0000	•	¥	0.00000	237	4	0.000	000000	0.000	00000			00000	FRAC. VOL.	2-33622		775
0390+	0 0 0	10390+0	844740	752600	9565+0	72623 0	5682+0	9760+0	.3838+0	.7915+0	•	5.8:10+00	6.4227+00	6.5247+00	5236+0	MASS	.523	0.000	THASS	0.000	53234-		20.46	1.1615+00	.1615+0	MASS	1.1615.00	2 V 4 2 F	K	0.0000	•	•	•		•	6.6688-02	MASS	6.6688-02	•	THASS
+0000	0 0000	0+00000	0.00000		+00000		0+0000	0+00000	0+00000	0+00000	0.00000	9	0+0000	1 • 00000 • 00	0000	COMP	9	000000	COMP	•00000	AU(1) - 7.		E O O	00+00000+1	.00000	· O	0.00000	3		•	•	.00	8	0		90	O	00		COMP
	0 0000	000	000	000					000	000	000	000	000	.000	000	SIE	.000	000000	SIE	0.000	-000		SIE	0.0000	00000	SIE	0.000		315	.000	.000	.000	000	00000	000.		SIE	0.000	•	S1E
	C 000 3	•	0	•	•	00000	•			•		•	•	.000	000000	•	1.9170+01	•	a L	.0000	R(1) = 1.8	1 1 1 1 1 1 1 1	a.	0.00.0		RHO	0.0000			0.00.0		0.000.0	0.000	0.000.0	0.0000		H	1.9170+01	00000	•
-5000+c	2000	5090+0	• 50000 •	·50000+0	0+00 04	+0000	arnăne.	3000	2000	040000	50000	-50000	• 50003•	.5000+6	0.000	2000	· vi	0000	>	0.0035	500-01		>	000000		2 2 2	2000.0		>			ů	0.000.0	•	e i		2000	# C+ C C C C C C C C C C C C C C C C C C	2000	>
0.0000	000		600.	•	00000	•	000.	00000		•		•	•	•		200	0-00-0	0	Э	0300.3	R(1) = 7.3		Þ	0.00.0	00000	•	00	9	Þ	2.0000	•	•	000000	0.0000	00000	00000	•	.000	0.0000	>
	-	-		 .	•	-		- -	• -	• -		-	-	-	613.4	F 4 2	-	m	MFLAG	O	***		MFLAG	7 0	1 1 1	T.,	→ ?	1	NFLAG				0		0 (-	7 2		7	MFLAG
6 4	-	-	-	4 (•	12		0	• •	0 P	•) 3			7			״	11	-91	į	ר	37			•		ר	34	33	32	3.	C (57	2 6	ì			·

\$\text{5}{5}{\text{5}{5}{5}{5}{5}{5}{5}{5}{5}{5}{5}{5}{5}{	0.000.0		'n	5.5000+04	0000000	0.000	00000-0	5.0042-01	000000	0.0000	0.0000	8.380+00 THETAN +1.00
\$\frac{1}{2}\triangle \text{Site} \tag{5.22} \tag{5.87}	VS 5.5000+04 1 0.0000	.0000 5.5000+04 1	.5000+04 1	- 0	•	51E 0.0000 0.0000	000000	9	.75308-0 .00000	- TO A K) O E K		
\$\text{5.1E}\$\tag{0.0000}\$\tag{0.00000}\$\tag	HFLAG U V P	>		Q.		-	COMP	THASS	225	S 28	SRZ	2
51E COMP 1.5603-00 0.00000 0.0	129 0.0000 5.5000+04 0.0000 NHAT US VS RHU 1 0.0000 5.5000+34 1.9170 3 0.0000 0.0000	.0000 5.5000+04 0. US VS	.5000+04 6. VS .5000+04 1.		D	0.0000 0.0000 0.0000	000000.	# A S S	0.0000 RAC. VOL. 3.55705-0 0.00000	•	8	8.180+0
Common C	HFLAG U V	Α		0.		SIE	COMP	TMASS	225	SRR	SRZ	2
\$\text{SIE}\$ \$\text{COMP}\$ \$\t	128 C.DCOO S.5DJC+84 G.0DGO NMAT US VS RHU 1 J.COGO S.5DÇJ+C4 1.9170 3 O.DCOO 0.0OGJ C.0DGG	.0000 5.5036+04 C US VS .0000 5.5003+04 1	.50.00+04 0 .50.00+04 1	0.000 RHU 1.917 0.000	Çī.		.00000 .00000	+ +	0.0000 RAC. VOL. 5.46604-0 0.00000	0.0000 RHO(NV010	0.0000	7.980+0 HETA# -1.0
\$1E COMP	MFLAG U V	>		a .		SIE	O T O	MAS	225	SRR	SRZ	7
51E COMP THASS S2Z SRR. SRR. SRZ. SRR. S1E COMP THASS S2Z SRR. SRR. SRZ. SRR. S1E COMP THASS S2E S1E COMP THASS S2E S1E COMP THASS S2E S1E COMP THASS S2E S1E COMP THASS S2Z S2 SRR. SRR. SRZ. S2E S1E COMP THASS S2Z S2Z SRR SRR. SRZ. S2Z S2Z SRR. SRR. SRZ. SRZ. S2Z SZ SZZ SRR. SRR. SRZ. SZZ SZZ SZZ SRR. SRZ. SZZ SZZ SZZ SZZ SZZ SZZ SZZ SZZ SZZ S	127 . C.0655 5.5005+C4 9.5000 NMAT US VS RHU 1 0.0650 5.5000+C4 1.9170+C 3 0.0000 0.0000 6.0000	.0000 5.5000.04 9. US VS .0000 5.5000.04 1.	.5000.+04 g. VS .5000+04 1.		•		00000 COMP 000000	.1352+0 MASS .1352+0	0.0000 RAC. VOL. 7.48003-0 0.00000	*0000 RHO(NVOI	0.0000	7.780+0 HETA# -1.0
SIE COMP TASS FRAC. VOL. RHO(NVOID)=1.0 THETA COURSED	4 O O SETIME	>		۵		SIE	COMP	HAS	275	SRR.	SRZ	2
\$\text{51E}\$ \$\text{COMP}\$ \$\text{1.000000+0C}\$ \$\text{2.8545+00}\$ \$\text{0.0000}\$ \$\text{1.00000+0C}\$ \$\text{2.8545+00}\$ \$\text{0.0000}\$ \$\text{1.00000+0C}\$ \$\text{2.8545+00}\$ \$\text{0.0000}\$ \$\text{1.00000+0C}\$ \$\text{2.8545+00}\$ \$\text{0.0000}\$ \$\text{1.00000+0C}\$ \$\text{2.8545+00}\$ \$\text{0.0000}\$ \$\text{0.0000}\$ \$\text{1.00000+0C}\$ \$\text{2.8545+0O}\$ \$\text{0.0000}\$ \$0		.0000 S.5000+04 C. US VS VS .0000 5.5000+04 I.	.5000+04 0.4 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0		7		.00000 .00000	.7091+0 HASS .7091+0	0.0000 RAC. VOL. 9.49036-0 0.00000	*0000 RH0(NV01	0.0000	7.580+0
1.00000+0C 2.8545+00 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	P v P P	>		a		-	COMP	MAS	N	02.		7
1.00000+00 2.8545+00 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	1 0.0000 5.5000+0+0+000000 1	0000 +0+00003+3 0000	000.0 +0.0003.	000		000000000000000000000000000000000000000		.8545+0		000	000	7.380+0
10000 10000 100000+00 100000 100000+00 100000+00 100000+00 100000+00 100000+00 100000+00 100000+00 100000+00 100000+00 100000+00 100000+00 100000 100000+00 100000+00 100000+00 100000+00 100000+00 100000 100000+00 100000	000+0 F9+0008+5 0000+	000+0 F9+0008+5 0000+	- BOCO - BO+COOS -	.000		00000	1.00000+00	8545			000	0+080+9
10000 1.000000+00 2.8545+00 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• 6569 • • • 6679 • 64 · 6 • 668 • 6669 • 6 • 6699 • 6 • 6698		000.			0.00000	8545	•	•	• 000	6.580+0
10000 10000000000000000000000000000000	•0000 8 • SQQQ+C4 0 •	•0000 8 • SQQQ+C4 0 •	• 5000+04 0•			0.000	1 - 20000 + 20	. 8545	•			6.180+00
1.00000+00 3.8536+00 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000	*0000 5 *5000000	*0000 5*5000004 0*	*5000+04 G*				1 • 00000 • 00	4254		•	•	5.960+00
.0000 .00000+00 4.1371+00 0.0000	•0000 8+8000+34 0•	•0000 8+8000+34 0•	-5000+04 -5000+04	•		•	00000	.8536		•	•	5.720+00
.0000 .000000+00 .9954+00 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00 #0+0008+5 0.000	•000c S•8050+C4 C•0	*S050+04 G*0	ויכו		•		5673	00000	• •		5 - 1 60 + 00
.0000 1.00000+00 5.5463+00 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	.0000	.0000	*5000+04 C*000C*	900	5 a	000	00000	9954	0000	•	•	4 . 8 40 +0
.0000 1.00000+00 6.7082+00 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	.5000+64 0+0	0			1 - 00000 + 00	.5663	00000	•		00+001-9
.0000 1.000000+00 7.4218+00 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000	•000¢ 2•5050+54 0•000	•0000 2•5050+04 0•0	•5050+04 6•0	0	0	•	00+00000•1	7007	00000	• •		3.670+00
.0000 1.000000+00 8.1344+00 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000	000 · 0 · +0+000 · 5 · 0000 ·	000 · 0 · +0000 · 5 · 0000 ·	00000 +0+0005.	000.				4218	•	. 0	• 000	3.200+00
.0000 1.00000+00 8.9918+00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	.0000 5.50	*0000 2**5000+C4 0*000	.50000+040 0+0008+	0000		• •		1354		0.000.0	000	2.680.00
.0000 1.00000+0c 9.1345+00 0.0000 0.0000 0.0000	2000 - +0+0000+0 00000000000000000000000		.5000-0 PC+0000.	.000		0	00000	.9918		0	000	7 110+00
	•0200 5•5050+c4 G•	•000a 8•5000+C4 G•000	•5050+C4 G•000	.000		o.	0+00000	. 1345+0	•	•	2	

TA# -1.00	2	2.000-01		2	1.058+01	018+0	14= -1-00		7	9.980+00	00+084-0		•	•	8.76000		. 1.	-086.	7.780+00	7 4 4 4 T			2	7.380+00		* ₁₁	2	7.180+00 TAm -1.00	,
0.0000 10)=1.0 THE	SR2	0.0000	W I	SRZ	0.0000	000000	ID) = I • O THETA		SRZ	0.0000		00000	00000	0.0000	00000		•	000000	00000	ָיַ כ			· SR2	00	-		SRZ	0.0000 0)=1.0 THE	
0.0000 RH0(NV0	SRR	0.0000	000	SRR	0.000.0	0.0000	RHO (NVOID		SRR	0.000.0	00000	00000	0.000.0	0.0000	0.000	00000	•	•	•	000000			SRR	0.000	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SRR	0.0000 RHO(NVOI	٠,
0.0000 FRAC. VOL. 9.99844-01	225	0.000	0	225	0.0000	·	FRAC. VOL.		225	0.000	•	0000	0000	00000	0000	000000	0000	000000	000000	0.0000	FRAC. VOL.	.00000	225	0.000	C. VOL.	3	275		00000000
9.1331+00 HASS 9.1331+00	THASS	0.000	505486+0	THASS	1.6389+00	•	SS V H	•	THASS	•	•		000010	0.000	00000	0000	0000	0.000		• 1	7733	>	THASS	8.8479-03	MASS 8478	0000000	THASS		000000
0.00000 COMP 1.00000+00	COMP	0.00000	 < 	e KOO	1.00000+00	0.0000	COMP	•	COMP	•	•		000000		•		000000	•	•	000000	COMP	00000.0	COHP	0.0000	PHOU	000000000000000000000000000000000000000	COMP	0.00000 COHP 1.00000+00	0.0000
0.0000 0.0000 0.0000	SIE	0	.0000000	15	0.0000		SIE	0000	318.	.000	.000	000		000	.000	.000	000	00000	.000	0.000	SIE	00000	318	0.000	SIE	00000	SIE	.000 S1E	0.000
0.0000 RHU 1.9170+01	a.	0.000.0	DR(1) = 2.00000	a	0.000.0	0.000	RHO	7 - 8000+00	a .	9.0000	0.000.0	0000-0		00000	0.000.0	0.0000	0.0000	0.0000	.000	0.00.0		0.000.0	. •	0.0000	21.	0.0000	۵.	0.0000 RHU 1.9170+01	0.000.0
5 • 5000 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	>	0.0000	3600-01	>	0.000.0	000	5 / 6	00000	>	0.000.0	9.0000	0.0000		0.000.0	0.0000	0.6000	00000	0.000	0.000	5 • 50CC + 04	٠ × ٥	5 • 50 J 3 • C 4 0 • 60 C C	>	5 - 5000+04		5 - 5000 + C + C + C + C + C + C + C + C + C	>	5 - 5000 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	
0.0000 0.0000 0.0000	Э	.000		Þ	0.00.0	000000000000000000000000000000000000000	US	000000	ວ	0.000		0.0000	000000	0.0000	0.000.0	0.000.0	0.0000		0.00.0	0.000.0	Sn	0.00.0	כ	0.0000	SO	0.000.0	Э	0.0000	000000
NHA NHA 1	MFLAG	_	5	HFLAG	N N	145	T T T	• ന	MFLAG	0	0	o () (0	0	0	0 0	0	0	125	LAMA	- €	MFLAG	124	L A M Z	- n	HFLAG	123 NMAT	M
8	ר	-			37	35			7	34	33	32	- C	7 6	2.8	27	26	4 4	23	22			ר	21			7	50	

7	6.980+00 HETA= -1.00	7	6.780+00 THETAM -1.00	7	6.580+00 HETAm -1.00	2	6.380+00 THETAM -1.00	2	6.180+00 THETAM -1.00	2	5.960+00 THETAM -1.00	7	5.720+00 HETAm -1.00	2	5.450.00 THETAM =1.00
SRZ	8	SR2	8	SRZ	8	SRZ	8	SRZ	00	SRZ	0	SRZ	00	SRZ	8
SRR	0.0000 RHO(NVOID)=\$.0	SRR	0.0000 0.000 RHO(NVOID)=1.0	SRR	0.0000 0.00 RH0(NV0ID)#1.0	SRR	C-0000 0-00 RHO(NVOID)=1-0	SRR.	0.0000 0.000 RHO(NVOID)=1.0	SRR	0.0000 0.00 RHG(NVOID)#1.0	SRR	0.000 RH0(NV01D)=1.0	SRR	0.0000 0.000 RH0(NV0ID) #1.0
275	FRAC. VOL. 2.20166-03	225	0.0000 FRAC. VOL. 2.20168-03 0.00000	225	0.0000 FRAC. VOL. 2.20168-03 0.00000	225	0.0000 FRAC. VOL. 2.20168-03 0.00000	275	0.0000 FRAC. VOL. 2.20168-03 0.00000	275	0.0000 FRAC. VOL. 2.20162 03	225	0.0000 FRAC. VOL. 2.20168-03 0.00000	275	0.0000 FRAC. VOL: 2.20168-03
THASS	8.8679-03 HASS 8.8679-03	THASS	8.8679-03 HASS 8.8679-03 0.0000	THASS	8.8679-03 MASS 6.8679-03 0.0000	THASS	8.8679=03 MASS 8.8679=03 0.0000	THASS	9.7547-03 MASS 9.7547-03	THASS	1.0642-02 HASS 1.0642 02 0.0000	THASS	1.1972-02 MASS 1.1972-02 0.0000	THASS	1.2858-02 MASS 1.2858-02
COMP	0.00000 COMP 1.000000 0.00000	COMP	0.00000 1.000000 0.00000	COMP	0.00000 0.00000 0.0000000	COMP	0 · 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COMP	000000000000000000000000000000000000000	COMP	000000000000000000000000000000000000000	COMP	00000000000000000000000000000000000000	COMP	0.00000.1 COMP 1.00000-00
\$1E	0.0000 0.0000 0.0000	SIE	0.0000 0.0000	SIE	0.0000 0.0000	SIE	0.0000 0.0000	SIE	0.0000 0.0000 0.0000	318	C.CO00 S1E 0.0000	51E	0.0000 0.0000 0.0000	SIE	0.0000 51E 0.0000
	0.0000 RH0 1.9170+01	•	0.0000 RH0 1.9170+01	· a.	0.0000 RHU 1.9170+01 0.0000	۵.	0.6000 RHU 1.9170+01	a.	0.0000 RHU 1.9170+01 C.0000	•	0.0000 RHU 1 11,0101	Q.	0.0000 RHU 1.9170+01 0.0000	۵	0.0000 RHU 1.9170+01
^	5 · 5 9 8 6 + 5 4 V 5 · 5 9 9 6 + 6 4 0 · 5 0 5 6 6 0 4	>	5 · 50000+04 V S · 5000+04 0 · 0000	>	5 * 5000 + 0 4 8 * 5000 + 0 4 0 • 6000 +	>	5 · 50 0 0 0 + 0 4 0 4 0 • 0 0 0 0 0 0 4 0 4	>	5 · S0000+04 V S 5 · B0000+04 0 · 00000	>	5 • 5 0 0 0 + 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	>	5 • 5000 + 6 4 V S 5 • 5000 + 0 4 0 • 0000	>	5 • 5000 + 0 4 V 5 5 • 5000 + 0 4
.	0.0000	5	0.0000000000000000000000000000000000000	Þ	0.0000 0.0000 0.0000 0.0000	5	0.000 0.000 0.000 0.000	Э	0.00.0 0.00.0 0.00.0	Э	0.000.0 0.000.0	Þ	3.0000 0.0000 0.0000	•	0.000.0 U.S. 0.000.0
MFLAG	122 NHAT 1	MFLAG	NAT NAT	MFLAG	120 NHAT 1	MFLAG	0 T T M	HFLAG	N H A A B A A A A A A A A A A A A A A A A	MFLAG	7 X X X X X X X X X X X X X X X X X X X	HFLAG	2 1 1 6 1 1 6 1 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	MFLAG	NHA NA T
7	•	7	60	ר	17	7	-	7	<u>.s</u>	ר	3.	ר	=	ר	12

200		S Al Se Was		430		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	. ` .			rafferson and a site of			× " "			h 1 4 1 4
	2	5-160+0C THEIAM -1-0C	2	4.840+0(THETAM =1.0C	2	4.490+0(THETAM -1.0(2	4.100+01 THETA= -1.0(2	3.670+0(THETAM -1.0(2	3,200+0! THETAm =1.0!	2	2.680+0(THETAM -1.0(2	2-110-01
	SRZ	0000 0.0000 RHO(NVOID)=1.0	SRZ	0000 0.0000 RH0(NV01D)=1.0	SRZ	0000 0.0000 RH0(NV01D)=1.0	SRZ	0000 0+0000 RHO(NVOID) = 3+0	SRZ	0000 0.0000 RH0(NY01D)#1.0	SRZ	00000 0.0000 RH0(NVOID)#3.0	582	0000 0.0000 RH0(NV01D)=1.0	SRZ	0.000
	SRR	0.0000 RHO(N	SAR	0.0000 RH0(N	SRR	0.0000 RHO(N	SRR	0.0000 RHO(N	SRR	0.0000 RH0(N	888	0.0000 RHO(N	8 8 8	0.0000 RHO(N	K K K	0.0000
0000000	225	0.0000 FRAC. VOL. 2.20166-03 0.00000	275	0.0000 FRAC. VOL. 2.20167-03 0.00000	225	0.0000 FRAC. VOL. 2.20169-03 0.00000	225	0.0000 FRAC. VOL. 2.20179-03 0.00000	225	0.0000 FRAC. VOL. 2.20166-03 0.00000	225	0.0000 FRAC. VOL. 2.20169-03 0.00000	225	0.0000 FRAC: VOL: 2.20164-03 0.00000	225	000000
0.000	THASS	1.4189-02 MASS 1.4189-02	TMASS	1.5519-02 HASS 1.5519-02 0.0000	THASS	1.7293-02 MASS 1.7293-02 0.0000	TMASS	1.9067-02 HASS 1.9067-02 0.0000	THASS	2.0839-02 HASS 2.0839-02 0.0000	THASS	2.3057-02 HASS 2.3057-02 0.0000	THASS	2.5273-02 HASS 2.5273-02 0.0000	THASS	2,7934-02
0.00000	COMP	000000	COMP	00+000000 4H00	COMP	00+0000000 4H00 00000000	COMP	00000000000000000000000000000000000000	COMP	0.00000 COMP 1.000000000000000000000000000000000000	CORP	0.00000 COMP 1.000000	COMP	00000000000000000000000000000000000000	COMP	0000000
0.0000	318	0.0000 0.0000 0.0000	SIE	0.0000 0.0000 0.0000	SIE	0.0000 0.0000 0.0000	SIE	0.0000 0.0000 0.0000	SIE	0.0000 S1E 0.0000	SIE	0.0000 0.0000 0.0000	SIE	0.0000 0.0000 0.0000	SIE	0.000
0.0000	•	0.0000 RHU 1.9170+C1 0.0006		0.0000 RHU 1.9170+01	a .	0.0000 RHU 1.9170+01 0.0000		0.0000 RHU 1.9170+c1 0.0000	Q.	0.0000 RHU 1.9170+01	۵.	C.0000 RHO 1.9179+01 C.0000		0.0000 RH0 1.9170+01 0.0000	•	0.000.0
0.000.0	>	5 · 50000+04	>	8 · 8 · 8 · 8 · 8 · 8 · 8 · 8 · 8 · 8 ·	>	5 + 5000 0 + C 4 5 4 5 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4	>	5 • 5000 + 6 4 V S V S C 0 0 + 0 4 0 0 0 0 0 0 4 0 4	`>	\$ • \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	>	5 · SQCC + O + O + O + O + O + O + O + O + O +	>	5 · 5000 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	>	5 + 5 000 + C 4
0.0000	5	0.000.0	>	0.0000 US 0.0000000000000000000000000000	5	0.000c 0.0000 0.0000	Э	0.0000 0.0000 0.0000		0.000.0 0.00.0	:5	0.0000 0.0000 0.0000	5	0.0000 0.00000 0.00000	, Э	0.000.0
М	HFLAG	# # # # # # # # # # # # # # # # # # #	HFLAG	# X # # # #	HFLAG	NAAT BE	MFLAG	NA NA E	MFLAG	1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X	HFLAG	NHA NHA L	HFLAG	NHA NHA 1	MFLAG	101
	י	=	ר	0	ז	•	ר	45 ·	د .	^	ר	•	ד	ru.	ר	4

A STATE OF THE PROPERTY OF THE

THETA = 1.00	2	1.460+00 HETA# =1.00	2	8.400=0; HETAm =1.00	2	2.000-01	0	2	1.058+01	0 + 0	-1.0			7	0	80+0		180	. 980	80	.580	9 4	980	.780	•	9 0	980+0	.780+	.580+0	
•	SRZ	0.0000 10)=1.0 T	SRZ	0.0000 D.=1.0	SRZ	0.0000	CYCLE =	SRZ	00000	000000	TO1=101			582	0.000	000	00000	000	.000	.000	000	0000.0	000	000	000	900	0000	.000	00	
RHO (NVOID) = 1	SRR	0.0000 RHO(NVO	SRR	0.0000 RH0(NV0I	SRR	000000	0000	SRR	0.0000	0000.0	•			SRR	0.000	•	000		000000	•	00000	•	• •	•	00000	•	0000		. 300	
FRAC. VOL. 2.20166-03 0.80000	225	0.0000 2.20168-03 0.00000	225	0.0000 FRAC. VOL. 2.20133-03 0.00000	275	0.000	1 = 0.000	225	0.000	00000		0.0000	0-56666.6	225	000000	•		•	•	•	0.000	•			000000	•	•		88	
2.7934-02 0.0000	THASS	2.8377-02 HASS 2.8377-02 0.0000	THASS .	2.8373-02 HASS 2.8373-02 0.0000	THASS		886+0	THASS	.2556+0	2556+	N 254	0	2.2556+00	THASS	00000		•	•		•	•	•	0000		•	•	•		.00	
1-00000	COMP	00000000000000000000000000000000000000	COMP	0.00000 0.00000 0.00000 0.00000	COMP	• 00000	0(1) = 1.	0.0	.00000	•	000000	0.0000	1 • 00000 • 00	COMP	0.000.0		•		0000000	000000	0.00000	0.00000	000000	00000	•	•	•		00000	
S.I.E. 0.0000 0.0000	SIE	0.00 0.00 0.00 0.00 0.00	516	0.0000 0.0000 0.0000	516	0.0000	0000	SIE	0.000	.00	0000	, 8	000000	316		00		00.	9	9 6	90	.00	80		8	•	90	900	000000000000000000000000000000000000000	
1.9170+01 0.0000	ě.	0.0000 RHO 1.9170+01	٠.	0.0000 RH0 1.9170+01 0.0000	Œ.	0.00.0	R(1) = 2.2		0.000	0000.0	•	0.000	800	a .	,	00000	•	•	000000	•	00000	•	0.0000		00000	•	•	000	000000000000000000000000000000000000000	
5 - 5000 + 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	>	5 - 5000 + 0 4 5 - 5000 + 0 4 0 - 0000	>	5 • 5000 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	>	0	1560+00	>	0.0000	2000.0	0.0000		2000-0	>		0.0000	•	•	0.0000	•	• •	•		•		•	•	•	0000	
0.0000	3	0.0000	5	000000000000000000000000000000000000000		000000	! -		0.00.0	•	0000.0	50000	•	Э	•	0.00.0		•	0	•	000000		•	000	00000	000	000	000.	0000	; ;
A H E	MFLAG	106 106 1	MFLAG	NHAT	11FLAG	0	9	MFLAG	7	7		► × -	• m	MFLAG															o <	
	ר		7	~	ר			,	37	36	35			ר	•	7 6	7 0	3.	30	20	23	26	25	2 4	2,2	2.2	20	-	eo :	

																						-			_	-	•		•	-	•	_			3	,-	-	. "	- 10	-	1 70	-	-				9 .	JK ".	
000		0.094.	120+0	0.05.	1000	0.0.0	0+046	0 100 40	. • 70 • 0	.200+0	0.089.	.110.0	.460+0	400-0	0-000		0	1	2	.058+0	1.038.0		ETA# +1.0(_ Z		10+086·6	100	-000				•	.380+	.160+	.980+	.740.	.560+	.380+	.100	-00					200	480.	ļu
	0000	0000	000	000+	000	• 000	000	000	• 000	• 000	000	000+	.000	.000	000		CYCLE =		SRZ	.000	0.000	.000	T O			SRZ		000000	000	000		000			1000	.000	.000	.000	1000	• 000	000	0000	000				9 0	000	
0	000	.000	• 000	•000	000	• 000	• 000	000	•000	.000	000	000	.000	.000	000				SRR	000	8	.000	HOUNDOH			888		000	000	000	000	000.	0000			000	.000	.000	.000	•000	•000	000	0000	900	000		000	00000	
0.000	.000	.000	000	.000	.000	.000	000	.000	.000	.000	000	000					T = 0.00		225	0) Q	000	A C . V	0.000.0	444	225		• 000	000	• 000	000	.000	000	0 0			000	000	.000	.000	.000	.000	000	80	.000	000		000	
	.000	.000	.000	.000	.000	.000	000	.000	000	.000	000	000					41626.0	7 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	THASS	001700	-	0017+0	MASS	.000	3.0017+00	THASS		.000	000	000	.000	.000	000	000			000	000	.000	.000	0	.000	000	.000	000	000	000	9 6	
.0000	.0000	000	.0000	.0000	.0000	.0000	.0000	.0000	0000	0000	0000						0(1) - 1.		COMP				PHOL	.000	00	a woo		.0000	0000	-0000	0000	•0000	00000	8	0000			0000	.0000	.0000	.0000	• 0000	.0000	8	.0000	-0000	0000		
.000	00	.000	000	-000	000	000	000	.000	000	000			-	000	•	00000	0-00		SIE				200	00	0	9 18	•	.000	000	.000	.000	.000	.000	.000	000	000			000	.000	.000	.000	.000	.000	.000	900	000	Ó t	
.000	8	.000	.000	000	000	.000	.000	.000	0				000	000	0	00000	R(I) = 2.400		a.		0.000		2 2	9	800	4		00	000	000	000.	.000	.000	• 000	000.	000.	000			000	.000	.000	.000	.000	.000	.000	.000	0.000	000
• 000		000	000	000	000	000	200	000	300		700	don.	600.	000.	0	00000	00+04		>	•		0000	000		0	3	•	.000	000	.000	.000	.000	.000	000	000.	0000	6000	000			.000	.000	.000	000	000.	000.	.000	0	000•
.000	000	.000	000	000	000	000					000	9000	• 000	000	8	• 0000	R(1) = 1.39		Þ		0	000.	•		000	-	•	•	000	.000	.000	.000	.000	00	•000	000	000	000			9	.000	.000	.000	.000	9	.000	0	
0	a	0	0		0	0	· c		0 0)	.)	0	0	0		7		FLAG		7	7 .	1 1 1 1 1 1 1	- - - -	· m		2 × 1	a	0	0	0	0	0	0	0	0 (D	5 C) c		· a	0	0	0	0	0	0	0	•
14	5	*			· -				0 1		•	S.	*	~	7				Σ 7		70						7		33		31	30	7	28	27	97	52	7 6	? ;	7.7	20	•		17	-	57	*	64	2

2. 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0000 0000 0000 0000 0000 0000 0000 0000 0000
0000000000
00000 00000 00000 00000 00000 00000 0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##################################
N N T N A S N O O O O O O O O O O O O O O O O O O

| TOTAL PROPERTY | TOTA

90+0000000+5	.*5310382*00 PHINE -5.81871539-07	UMINE S RELERRE	MAXUVE 5.499997+04	5163035-08 MAXCUVE 5,5310382+05 ESUME 4.22361018+11 EMIXE	34 T= 9.1836924=08 DT= 8.516 ETH= 4.22361264+11 ESU	CDT 1 SPHASE
		ELERR	.223610	4.22361018+11 EMIX	•22361264+11 ES	TPHASE
		200	4,22361055+11	.2236105	4.22361293+11 ES	מו ר
0.0000000.00	#N142 00+757752.	UMINE ELERR	.22361059+1	15-08 MAXCUV= 5.2574579+0 4.22361055+11 EHIX	039609-08 DT= 4.	CDT 1
L						CYCLE
		K .	11.50010572.4	4.22361359+11	4.22381293+11 E	S
		2 0	11+0010677	4.22351084+11	4.22361309+11 E	5
	-5-23684328-07	2 0	4,22361088+11	.22361380+11	ETH= 4.22361309+11 E	SPHASE
5 + 0 A D D D D D D D D D D	0	Z	MAXUV= 5.4999998+04	03-08 MAXCUV	. 2.373r185-88 DT= 2.3	
						YCLE
		ELERR	4,22361092+11	4.22361084+11 EMIX	4.22361309+11	PHAS
		RELERR	4.22361092+11	6+1] EMIX	.22361317+11 .22361317+11 E	LPIANT
5 • 0 0 0 0 0 0 0 • 0 •	-8995840+00 PHINE -5.73484321-07	T WE WILL	MAXUVE 5.4999998+04	17-08 MAXCUV# 4 899584	1.1712759-08 DT# 1+2	- Q
					3	Y CL
	-5-13986457-07	ELERR	161100+1		THE 4-22361317+11 E	TPHASE
	-5.43080027-07	2 000	61092	4,22301692+11 Ent	.22361321+11	I
5.0000000+06	-7842164+00 PMIN-	q	HAXUVE 5.4999999404	77-09 MAXCUVE 4-784216	T# 5.5591908-09 DT# 6.1	CDT
			1140/010527	4.22361096+11 E	ETH# 4.22361321+11 E	TPHASE CYCLE
	10101111111111111111111111111111111111	RELERRA	4.22361100+11	4.22361108+1]	ETH= 4.22361321+11 E	
		# 00:1	.22361100+11	.22361104+11 E	34 Tm 2.4210520-07 OTF 3.1 ETHm 4.22381321+11 E	SPHASE
90+00000000	64.	1 2	-			י י י
	20071	K K	11+00119572*4	4.22361104+11 EFIX	4.22361321+11 E	T
	-5.13986450-07	RELERRE	4,22361108+11	4.2236111	TH= 4.22351326+11 E	· •
•0•000000•5	N	RELEASE 4	MAXUV= 5.5000000+04	351-09 MAXCUV= 4.5600000+0 4.22361108+11 EMIX	# 8.0701754-10 DT# 1.6	SPHASE
						CYCLE
	-5.13986450407	RELERR=	30 4.22361108+11	15 20 25 HH HH H- 4-2741108+11 ENIXE	HUNN 11445614666 H + + + + + + + 0	. H
					E E III II	3
					X E	
					E E	
					I X	

CHAPTER XII

REPRESENTATIVE APPLICATIONS OF THE HELP CODE

Over the past several years the HELP code has been applied to a wide variety of physical problems in the areas of fluid and solid mechanics. These applications, which have involved a large variety of materials with a wide range of material properties and initial conditions, include studies in hypervelocity and ballistic impact, high explosive-metal systems, shaped charge jet formation and penetration, and energy deposition and stress wave propagation. In this section selected results from these various applications are presented. References are provided for those interested in further details of the various investigations.

12.1 HYPERVELOCITY IMPACT

The selected hypervelocity impact results shown here were taken from a numerical parameter study [13] in which material properties were varied in order to assess the effects of those properties on cratering and mass loss.

Figures 12.1 and 12.2 show the predicted projectile/ target configuration at various times for spheres of equal masses of ice and water impacting normally into an aluminum target at a velocity of 3.05×10^5 cm/sec.

It is seen from Figure 12.3 that there is no significant difference in the predicted crater depths for the two impacts involving ice and water projectiles. The fact that the maxima in the crater depth curves do not occur at the latest times is a result of crater relaxation which is typical in soft aluminum targets. Figure 12.4 is a comparison of the predicted final crater shape (solid line) for the icealuminum impact with the measured profile (dashed lines) obtained from experimental data provided by Mr. William Gray at Martin Marietta in Orlando. As is seen in Figure 12.4, agreement between theory and experiment is quite good. The shaded region in the vicinity of the crater lip (Figure 12.4) shows the predicted crater ejecta which has been removed for comparison with experiment in Figure 12.4.

The results of a calculation involving a spherical glass projectile impacting 6061-T6 aluminum at 3.05 x 10⁵ cm/sec was also compared with experimental data provided by Martin Marietta. Figure 12.5 compares the calculated (solid line) and experimentally measured (dashed line) final crater profiles. The experimental crater was not exactly axisymmetric so profiles taken at two different cross sections are shown in the figure. Both the predicted crater

Figure 12.1--Projectile-target configurations at various times for the Ice/Al impact at 3.05 x 10⁵ cm/sec.

Figure 12.2--Projectile-target configurations at various times for the Water/Al impact at 3.05 x 10^5 cm/sec.

Figure 12.3--Predicted crater depth versus time for the calculations of Figures 12.1 and 12.2.

a) Shaded region indicates the predicted crater ejecta.

b) Final predicted crater with ejecta removed.

Figure 12.4--Comparison of the calculated and measured craters for an ice sphere impacting aluminum at 3.05×10^5 cm/sec.

a) Shaded region indicates the predicted crater ejecta.

b) Final predicted crater with ejecta removed.

Figure 12.5--Comparison of the calculated and measured craters for a 0.953 cm diameter glass sphere impacting aluminum at 3.05×10^5 cm/sec.

depth and crater diameter are in good agreement with experiment. Again, the shaded region (Figure 12.5a) has been removed in Figure 12.5b since it represents failed material.

Figure 12.6 shows the predicted final configurations for the calculation of a glass bead into ATJ-S graphite at 6.1 x 10⁵ cm/sec. The shaded regions represent material failure. In addition to the failure predicted in the vicinity of the crater and the lip, several radial bands of failed material are in evidence. This type of failure seems to be typical of ATJ-S graphite when impacted by particles in the hypervelocity regime.

a) Shaded region indicates predicted material failure.

b) Final predicted crater with failed material removed.

Figure 12.6--The predicted final target configuration for the calculation of glass into ATJ-S graphite at 6.1 x 10⁵ cm/sec. The shaded cells indicate regions of material failure. The initial position and size of the glass bead is also indicated.

12.2 PLUGGING FAILURE

When a blunt projectile impacts a relatively thin target, a plug of target material is sheared out ahead of the projectile. Plugging failure is modeled in HELP by allowing a slip surface to progress through the target in the direction of the maximum shear stress when the material ahead of the advancing slipline is subjected to conditions such that the plastic work exceeds a critical value. (See Chapter VI.) The results presented in this subsection were selected from several recent numerical investigations of plugging failure [14-17].

Figure 12.7 is a series of computer output plots showing the predicted steel projectile and aluminum target configuration for an impact calculation at various times after impact. The initial impact velocity was 5.56 x 104 cm/sec. Figure 12.8 is a similar plot for a calculation in which the impact velocity was 2.36 x 10⁴ cm/sec. Both calculations were carried out in time until the kinetic energy of the projectile approached its asymptotic value. Several differences in the computed results can be noted by comparing Figures 12.7 and 12.8. The plug forms much sooner in the higher velocity impact situation $(V_0 = 5.56 \times 10^4 \text{ cm/sec})$ of Figure 12.7 than in the lower velocity impact situation $(V_0 = 2.36 \times 10^4 \text{ cm/sec})$ of Figure 12.8. As might be expected, Figure 12.7 indicates that the projectile deforms considerably whereas very little projectile deformation is evident in Figure 12.8. Another numerically predicted velocity-related trend in the calculations which agrees with observation and is in evidence in Figures 12.7 and 12.8 involves the decrease in plug taper angle as the impact velocity decreases.

Figure 12.9 shows the calculated plug formation and subsequent deformation resulting from the impact of a steel

Figure 12.7--Projectile-target configurations at various times for the calculation of a steel cylinder impacting an aluminum target at a velocity of 5.56x104cm/sec.

Figure 12.8--Projectile-target configurations at various times for the calculation of a steel cylinder impacting an aluminum target at a velocity of 2.36 x 10⁴ cm/sec.

Figure 12.9--Projectile-target configurations at various times for the calculation of a steel cylinder impacting a steel target at a velocity of 8.81 x 10 cm/sec.

cylinder into a steel target at a velocity of 8.81×10^4 cm/sec. The effect of the increased target density and yield strength is clearly evident by noting the extensive projectile deformation.

A plot of residual projectile velocity versus impact velocity is shown in Figure 12.10. The predicted values from these calculations (solid circles) are compared with experimental data (open circles) provided by Eglin Air Force Base [16]. The agreement between the numerical predictions and experiment is quite good.

Figure 12.10--Residual projectile velocity versus impact velocity for the steel cylinders impacting aluminum targets. The solid circles represent computed values, and the open circles represent experimentally observed values.

12.3 LONG ROD PENETRATION AT OBLIQUE INCIDENCE

The plane strain option in HELP was employed to approximate a series of long rod oblique impacts. It is important to keep in mind, when analyzing the results from such a series of calculations, that the real three dimensional case is not being solved. For example, no strain is allowed in the direction perpendicular to the plane of impact (plane formed by initial impact velocity vector and target normal). In addition the mass of the projectile is based on the volume obtained by translating the central cross section of the projectile one unit length perpendicular to the plane of impact. However, many things can be learned from the plane strain approximation to oblique impact. In a recent parameter study [18] it was of interest to rank several different projectile designs according to the extent of nose tip failure and projectile bending. It was felt that these rankings could be accomplished by comparing results from a series of 2-D, plane-strain calculations. In the sample calculation presented here, a steel-jacketed, tungsten alloy penetrator is impacted at 60° obliquity against a thin steel target at a velocity of 1.53 x 10^5 cm/sec. The projectile-target configurations at various times for this impact solution are shown in Figure 12.11.

 $t = 94.7 \mu s.$

Figure 12.11--Two-dimensional plane strain approximation to an oblique impact.

12.4 MULTIPLE IMPACT

The HELP code was employed in an exploratory investigation of the effect of projectile geometry on back surface spall [19]. The initial configurations of the two impact situations of interest are shown in Figure 12.12. The solid projectile is a steel cylinder with a hemispherical nose. The spaced pellet projectile is composed of four steel pellets having a total mass (3g), equal to the mass of the solid projectile. Both projectiles were impacted into a 1-cm-thick steel plate at a velocity of 9.15 x 10^4 cm/sec. In order to compute the impact of spaced pellets the basic HELP code was modified so that voids between the pellets could be removed as the pellets impacted one another.

While it was of primary interest to compare the two projectile designs in terms of their ability to create stress conditions suitable for back surface spall, it was also of interest to compare the penetrability of the two projectiles. Figures 12.13 and 12.14 are computer plots of the projectile-target configurations at various times after impact for the solid and spaced pellet projectiles. respectively. The crater at 10 µsec in Figure 12.13 should be compared with the crater at 12 µsec in Figure 12.14 since the percent reduction in kinetic energy for the two projectiles is equal at those times. This time lag in projectile kinetic energy reduction is a result of the spacing in the spaced-pellet projectile. It can be concluded that the penetrability of the two projectile designs are equivalent for the impact situations considered here. Situations could exist, however, for which multiple impact might enhance the crater size. Such enhancement would be a function of relative dimensions and pellet spacing.

Figure 12.12--Initial configurations for the solid and spaced pellet projectile impact situations.

Figure 12.13--Projectile-target configurations at various times for the solid projectile impact.

Figure 12.14--Projectile-target configurations at various times for the spaced pellet projectile impact.

12.5 FRAGMENTATION MUNITIONS

This subsection presents results from a HELP solution to a fragmentation munitions problem. The calculation involved a hollow steel cylinder filled with Octol. Detonation was end-initiated at a point on the axis. This calculation was taken from a high explosive parameter study [20]. Figure 12.15 shows the initial configuration for the calculation.

The high explosive-casing configurations for various times after detonation initiation are shown in Figure 12.16. The calculation was continued in time until failure had been predicted throughout the entire casing. The maximum pressure in the detonated products by that time had been reduced to approximately one kilobar and the casing acceleration was small.

Figure 12.17 is a composite plot of the casing at various times after detonation initiation. The shaded regions, which indicate failed material, show that failure occurs first at the outside surface of the casing and moves inward until the entire casing has failed. In the calculation the stresses in failed cells were set to zero.

Figure 12.18 gives the HELP predictions of fragment velocity and projection angle. These quantities are plotted versus the initial relative position of the fragment and are compared with experimental data provided by the BRL [21].

Figure 12.15--Initial configuration of the fragmentation munition solution.

The high explosive employed was Octol.

Figure 12.16--High explosive-metal casing configurations at various times.

Figure 12.17--Casing configuration at various times.

Cross-hatched regions indicate material failure.

Figure 12.18--Plots of fragment velocity and projection angle versus initial relative position of fragment.

The solid lines are HELP predictions and the points were determined experimentally [21].

12.6 SHAPED CHARGE JET FORMATION

Recently HELP was used to perform several numerical studies involving shaped charge jet formation [22-26]. The results shown here are selected from Reference 26 and involve identical copper liners (21° half angle) and Comp B high explosive, but different casings. Figure 12.19 shows the initial configurations of the two selected calculations, and Figure 12.20 and 12.21 show the predicted configurations at various times after initiation for the charges confined in aluminum and steel, respectively. Transmittive boundaries at the bottom of the calculational grid allow the jet material to leave the grid; however, quantities of interest such as jet mass and velocity are retained.

Experimentally determined jet tip velocity data were made available by the BRL [27] for comparison with the results obtained from the calculations involving aluminum confinement. Figure 12.22 is a plot of calculated jet velocities versus the measured jet tip velocities. open circles correspond to the maximum calculated jet velocities. These calculated maxima did not occur at the jet tip because of the inverse velocity gradient in that region, but they do fall well within the 10% error limit shown by the dashed lines in Figure 12.22. However they are consistently slightly lower than the observed values. This is probably due to the fact that numerically calculated detonation fronts are somewhat broader than real detonation fronts, a result expected unless extremely fine resolution is employed in the calculations.

Figure 12.19--Initial configurations of two calculations involving copper liners, Comp B high explosive, and light (aluminum) and heavy (steel) casings.

Figure 12.20--Predicted configuration at various times for copper shaped charge with aluminum case.

Figure 12.21--Predicted configuration at various times for copper shaped charge with steel case.

12.7 SHAPED CHARGE JET PENETRATION

The HELP code has also recently been employed in an investigation involving shaped charge jet penetration of an armor plate [28, 29]. The calculations were carried out in time until the jet perforated the armor and the region of predicted material failure, which gives rise to behind-the-armor debris, had ceased to grow.

The initial conditions for the calculation presented here involve a copper jet having a bulb at the tip, impacting a 2.54 cm thick steel plate at a constant velocity of 7.6 x 10^5 cm/sec. The bulb, which comprised the leading 3.81 cm of the jet, was described by a straight line connecting the 1.27 cm diameter hemispherical tip to the constant diameter portion of the jet. Figure 12.23 shows the predicted jet and armor configurations at various times after impact. Figure 12.24 shows the predicted configuration 10.30 µsec after initial impact, with the failed cells shaded. The total stress components were set to zero in all of the failed cells.

Some of the results from the calculation can be compared with available experimental data obtained from the BRL. Figure 12.25 is a comparison of the numerically predicted debris cloud, the leading edge of which is shown at various times after impact, with a radiograph of actual behind-the-armor debris. The numerical prediction agrees well with the experiment.

Figure 12.23--Predicted jet and armor configurations at various times after impact.

Figure 12.24--Predicted configuration at t = 10.30 usec after initial impact of shaped charge jet with armor plate. Failed cells are shaded.

Figure 12.25--Radiograph of behind-the-armor debris superimposed upon the predicted shape of the debris cloud shown at various times after impact.

12.8 WAVE PROPAGATION STUDY

The HELP code has also been applied to the study of wave propagation in various media. A series of calculations was performed using a nitromethane source buried in media of various porosities [30]. Stress-time histories were obtained at stations located at several ranges from the center of the charge and compared with experimental results [30]. Some of these calculated histories, and associated data points, are presented in Figures 12.26 - 12.29. The first three figures were obtained at shot depth, at a radius of 3 meters from the center of the source, in soils of increasing porosity. The last figure, obtained in the calculation of the soil having the least porosity, is the history at the station 6 meters from the center of the source at shot depth.

Figures 12.26 - 12.28 show clearly the attenuation of the shock strength as the soil porosity increases. Each of the figures gives excellent agreement with the data as regards shock strength, time of arrival, and the shape of the release curve. Figure 12.29 shows that the agreement was obtained even at stress levels on the order of 1 kilobar.

It is worth noting that Figures 12.27 and 12.28 were calculated as part of a design study prior to the field experiment from which the data were obtained. The other two figures were calculated subsequent to the running of the experiment.

THE PROPERTY OF THE PROPERTY O

Figure 12.26--Predicted stress history of 3 meter station at shot depth for nitromethane source in 1.3% porosity soil. Data is from a test of the source in that material.

Figure 12.27--Predicted stress history of 3 meter station at shot depth for nitromethane source in 2% porosity soil. Data is from a test of the source in that material.

Figure 12.28--Predicted stress history of 3 meter station at shot depth for nitromethane source in 4.2% porosity soil. Data is from a test of the source in that material.

Figure 12.29--Predicted stress history of 6 meter station at shot depth for nitromethane source in 1.3% porosity soil. Data is from two different tests of the source in that material.

- 1. Hageman, L. J. and J. M. Walsh, "HELP, A Multi-material Eulerian Program for Compressible Fluid and Elastic-Plastic Flows in Two Space Dimensions and Time," Systems, Science and Software, 3SR-350, August 1970.
- 2. Dienes, J. K., M. W. Evans, L. J. Hageman, W. E. Johnson and J. M. Walsh, "An Eulerian Method for Calculating Strength Dependent Deformation," General Atomic Report GAMD-8497, Parts I, II, III and Addendum, AD 678565, 678566, 678567, and 678568, February 1968.
- 3. Johnson, W. E., "OIL, A Continuous Two-Dimensional Eulerian Hydrodynamic Code," General Atomic Report GAMD-5580 Revised, January 1965.
- 4. Harlow, F., and M. Evans, "The Particle-in-Cell Method for Hydrodynamics Calculations," Los Alamos Scientific Laboratory Report LA-2139, 1957.
- 5. Sedgwick, R. T. and L. J. Hageman, "Numerical, Analytical, and Experimental Investigation of Penetration by Kinetic Energy Projectiles," AFATL-TR-72-48, March 1972.

COSSOCIAL CONTRACTOR C

- 6. Sedgwick, R. T., M. S. Chawla and L. J. Walsh, "Parametric Application of Computer Codes to Metallic Projectile/ Target Interactions," AFATL-TR-73-103, April 1973.
- 7. Sedgwick, R. T., L. J. Walsh and M. S. Chawla, "Effects of High Explosive Parameters and Degree of Confinement on Jets from Lined Shaped Charges," Systems, Science and Software, SSS-R-75-2515, December 1974.
- 8. Sedgwick, R. T., A. J. Good and L. J. Hageman, "Theoretical Investigation of High Explosive Fragmentation Munitions," Systems, Science and Software, 3SR-867, November 1971.
- 9. Sedgwick, R. T., J. L. Waddell and L. J. Walsh, "A Theoretical Investigation of Several High Explosive-Metal Systems," Systems, Science and Software, SSS-R-74-2055, January 1974.
- 10. Lee, E., M. Finger and W. Collins, "JWL Equation of State Coefficients for High Explosives," Lawrence Livermore Laboratory, UCID-16189, January 1973.

- 11. Tillotson, J. H., "Metallic Equations of State for Hypervelocity Impact," General Atomic Report GA-3216, July 1962.
- 12. Sedgwick, R. T., M. S. Chawla, J. L. Waddell, L. J. Walsh and D. E. Wilkins, "Research Study and Analysis For Improvement of Shaped Charge Code," Systems, Science and Software, SSS-R-73-1862, August 1973.
- 13. Walsh, J. M. and R. T. Sedgwick, "Studies of Erosion and Impact Resistance of ABM Materials," Systems, Science and Software, SSS-R-74-2399, Contract DAAD05-73-C-0339, November 1974.
- 14. Sedgwick, R. T. and L. J. Hageman, "Numerical, Analytical and Experimental Investigation of Penetration by Kinetic Energy Projectiles," Systems, Science and Software Progress Report 3SR-670 under Contract F08635-71-C-0094, April 15, 1971.
- 15. Hageman, L. J. and R. T. Sedgwick, "Modifications to the HELP Code for Modeling Plugging Failure: User's Manual," AFATL-TR-72-106, June 1972.
- 16. Sedgwick, R. T., M. S. Chawla and L. J. Walsh, "Parametric Application of Computer Codes to Metallic Projectile/ Target Interactions," Systems, Science and Software, Air Force Armament Laboratory Report AFATL-TR-73-103, April 1973.
- 17. Sedgwick, R. T. and L. J. Hageman, "A Numerical Model For Plugging Failure," Proceedings of an International Conference on Dynamic Crack Propagation, July 1972.
- 18. Sedgwick, R. T., L. J. Hageman and J. L. Waddell, "A Comparison of Results From Two Long Rod Oblique Impact Calculations," Systems, Science and Software, SSS-R-75-2656, June 1975.
- 19. Walsh, J. M. and R. T. Sedgwick, "The Application of Computers to Kinetic Energy Projectiles," presented at JTCG/ME meeting held at Ballistics Research Laboratory February 13-14, 1973.
- 20. Sedgwick, R. T., A. J. Good and L. J. Hageman, "Theoretical Investigation of High Explosive Fragmentation Munitions," Final Report, Contract DAAD 05-71-C-0092, Systems, Science and Software Report 3SR-867, November 24, 1971.

- 21. S. Kronman and C. Brown, private communication, data obtained at the Ballistic Research Laboratories.
- 22. Gittings, M. L., R. T. Sedgwick and J. M. Walsh, "Numerical Analysis of Jet Formation from Lined Shaped Charges," Systems, Science and Software, Ballistic Research Laboratories Contract Report No. 51, August, 1971.
- 23. Sedgwick, R. T., M. S. Chawla, J. L. Waddell, L. J. Walsh and D. E. Wilkins, "Research Study and Analysis for Improvement of Shaped Charge Code," Systems, Science and Software, Contract No. DAAD 05-72-C-0291, Final Report, August 31, 1973.
- 24. Walsh, L. J., D. E. Wilkins and R. T. Sedgwick, "User's Manual for an Eulerian Shaped Charge Computer Program," Systems, Science and Software, Air Force Armament Laboratory Report AFATL-TR-73-24, February 1973.
- 25. Sedgwick, R. T., M. L. Gittings and J. M. Walsh, "Numerical Techniques for Shaped Charge Design," Systems, Science and Software, presented at 12th Annual Symposium, New Mexico Section American Society of Mechanical Engineers and University of N. M. College of Engineering, March 2-3, 1972.
- 26. Sedgwick, R. T., L. J. Walsh and M. S. Chawla, "Effects of High Explosive Parameters and Degree of Confinement on Jets from Lined Shaped Charges," Systems, Science and Software, SSS-R-75-2515 (Draft), DAAD 05-74-C-0758, December 1974.
- 27. Simon, J., "The Effect of Explosive Detonation Characteristics on Shaped Charge Performance," BRLM-2414, September 1974.
- 28. Sedgwick, R. T., P. L. Anderson, M. S. Chawla, C. R. Hastings and L. J. Walsh, "Characterization of Behind-the-Armor Debris Resulting From Shaped Charge Jet Perforation," Systems, Science and Software, SSS-R-74-2081, Final Report, DAAD 05-73-C-0542, June 1974.
- 29. Sedgwick, R. T. and L. J. Walsh, "Numerical Techniques for Modeling Armor Penetration and Behind-the-Armor Debris," Proceedings of the First International Symposium on Ballistics, Orlando, Fla., November 13-15, 1974.

30. Blake, T. R. and D. E. Wilkins, "Simulation of Low Yield, Buried Nuclear Explosions by High Explosive Detonation, ESSEX I - Phase I, Calculations (U)," Defense Nuclear Agency Report DNA 3572F, 1975. (Confidential)

APPENDIX A

DIMENSIONING THE ARRAYS

Dimensioning the arrays of the HELP code to enable it to handle problems of arbitrary size (limited only by the core memory of the user's computer) is a relatively straightforward procedure. It is necessary only to specify 16 primary parameters and 22 secondary parameters in order to uniquely determine all array dimensions and equivalences in the HELP code.

The primary parameters are listed in Table Al, along with a description of each and, when it exists, the name of the corresponding HELP variable. Because of equivalencing between various arrays, there are constraints placed on the values assigned to some of these parameters. These constraints are listed in Table A2.

After the user has determined the values of the 16 primary parameters, it is necessary to determine another 22 secondary parameters, which are functions of the primary parameters. These secondary parameters are defined in . Table A3.

Having defined these parameters, all that remains is for the user to incorporate their values into the common, dimension, and equivalence statements that use parameter rather than integer dimensions. Most of these statements are in the "included" element, and the remaining ones are in subroutine SPHASE. Any arrays which are dimensioned by integer values (not parameters) are fixed and should not be redimensioned.

TABLE A.1

PRIMARY PARAMETERS FOR DIMENSIONING THE HELP CODE

Parameter	Definition*
MDX	Maximum number of interface cells which can occur on any one cycle. (NMXCLS)
NMX	Number of material packages in the problem, excluding the void package. (NMAT)
NTPX	Maximum number of material tracer particles for any one package in the problem. (NTPMX)
IDX	Number of columns in the grid. (IMAX) See Table A2.
JDX	Number of rows in the grid. (JMAX) See Table A2.
IJDX	If problem is to be rezoned, IJDX is the maximum value of IDX and JDX. Otherwise, it can be set to 1.
KSTR	If problem will compute strength effects (CYCPH3>0), set KSTR to IDX • JDX + 1. Otherwise, set to 1.
IDXX	If problem will compute strength effects, set IDXX to IDX + 1. Otherwise set to 1. This parameter is used only to dimension local variables in SPHASE.

^{*} The analagous HELP variable, if any, is in parentheses.

Parameter	Definition								
KDET	If problem will detonate an explosive, set KDET								
	to IDX • JDX + 1. Otherwise, set to 1.								
KPX	Dimension of pressure array. See Table A.2 for								
	determining the value of this parameter.								
NSLDE	If the problem will have a slip line (NOSLIP=0),								
	set NSLDE to the maximum number of mixed cells								
4	which will contain the slip line. Otherwise,								
	set it to 1. (NSLD)								
JDX2	Dimension of UL and PL arrays. See Table A.2 for								
	determining the value of this parameter.								
IPLGR	If problem is a plugging calculation, set IPLGR								
	to the value of IPLGRT, defined in Section 7.2.1.								
	Otherwise set to 1. (IPLGRT)								
IPLGZ	If problem is a plugging calculation, set IPLGZ								
	to the number of rows in the target. Otherwise								
	set to 1. (IPLGTP-IPLGBT + 1.) See definition								
	of IPLGTP and IPLGBT in Section 7.2.1.								
KDX4	Maximum number of passive tracer particles the								
	problem will generate. If the problem is a								
	plugging calculation, set KDX4 to 4 • IPLGR • IPLGZ.								
	If passive tracers are not generated (NTCC = 0),								
	set KDX4 to 1. (NTCC)								
K4PL	Dimension of PLWP array. If problem is a plugging								
	calculation, set K4PL to 4 ● IPLGR ● IPLGZ.								
	Otherwise set to 1.								

TABLE A.2

CONSTRAINTS ON PARAMETER VALUES

Parameter	Applicable Constraint
IDX	Must be at least 3.
JDX	Must be at least 3.
крх	Set to maximum value of the following: IDX \bullet JDX + 1 $2 \bullet (\text{NMX} + 1) \bullet \text{MDX}$ NMX $\bullet (5 \bullet \text{JDX} + 12)$
	$10 \bullet \text{NMX} + (4 + 3 \bullet \text{NMX}) \bullet \text{IJDX} + 2$
JDX2	Set to maximum value of the following: IDX 2 ● JDX 6 ● NMX

TABLE A.3

SECONDARY PARAMETERS FOR DIMENSIONING THE HELP CODE

Parameter	Definition
KDX	IDX·JDX + 1
NMXX	NMX + 1
MDNMX	$MDX \cdot NMXX + 1$
NMX 2	2 · NMX + 1
NMX3	3 · NMX + 1
NMX 4	4 · NMX + 1
NMX 6	6 · NMX + 1
NMX 8	8 · NMX + 1
NMX10	10 · NMX + 1
NMX12	NMX10 + 2
JDXX	JDX + 1
NMXJD	NMX JDX + NMX4
NMXJD2	2·NMX·JDX + NMX4
NMXJD3	3·NMX·JDX + NMX4
NMXJD4	NMXJD3 + 4·NMX
NMJD	NMXJD4 + 4·NMX
NMJD1	NMJD + NMX·JDX
NMRZ	NMX12 + IJDX
NMRZ2	NMRZ + IJDX
NMRZ3	NMRZ2 +IJDX
NMRZ4	NMRZ3 + NMX·IJDX
NMRZ5	NMRZ4 + NMX·IJD)

APPENDIX B

ABBREVIATED HELP INPUT INSTRUCTIONS

After becoming familiar with the various input options and specifications discussed in Section 7.2, the user can use the following forms to quickly describe the input for a given HELP calculation. The default values of most Z-block variables are given in parentheses after the definition. If no value is specified, the default value is zero.

(Numbers in Parentheses are Non-zero Default Values)		Problem number. (Range: 00.0001 to 99.9999)	Problem number, same as PK(1).	Every "NFRELP" EDIT prints is a long print.	Every "NDUMP7" EDIT prints, a restart dump is written.	Cycle on which calculation stops if stopping on cycles.	Number of times grid is to be automatically rezoned.	Number-name of file INPUT reads from. (7)	Maximum number of iterations to equilibrate pressures in multimaterial cells. (35)	Convergence limit for pressure iteration (10^{-3})	Number-name of file SETUP and EDIT write on. (7)	When IGM=1, code uses plane rather than cylindrical coordinates.	Maximum relative error in energy sum. (10^{-3})	For transmittive bottom grid boundary, CVIS=-1. For reflective bottom grid boundary, CVIS=0.	Number of columns in grid. (Must be at least 3.)	Number of rows in grid. (Must be at least 3.)
		PK(1)	PROB	NFRELP	NDUMP7	ICSTOP	NUMREZ	KUNITR	IPR	PRCNT .	WILINDA	IGM	DMIN	CVIS	IMAX	JMAX
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16		1 1,5,1 1	1 1	2 1 5 1	2	2	2 1 2 1	2 1,4 1	2 1 5 1	1,611	2 1,7 1	2 1 1 2	2 4 1	2,7,1	2 2 3 3 1	2 , , 5, 5 1 , , , , , , , , , , , , ,
Heading 1	1			- 64	7		2	14	- 23	· · · · · · · · · · · · · · · · · · ·	17	[2]			(N)	[7]

*The input variables are described in more detail in Chapter VII. Instructions for restarting a calculation are given in Section 7.3.

(Numbers in Parentheses are Non-zero Default Values)	When MAPS=1, a symbolic map for compression is printed on EDIT prints. When MAPS=2, a symbolic map for density is printed on EDIT prints. When MAPS=0, maps are not printed.	Number of times print frequency is rescaled. Time or cycle to change print frequency.	Time (secs.) between EDIT prints when printing on time.	Factor by which print frequency is increased.	12	Number of cycles between EDIT prints when printing on cycles.	The right-most column of the plugging region of the target.	The specific plastic work criterion for extending the plug. (ergs/g)	The bottom row of the plugging region of the target.	The top row of the plugging region of the target.	" γ " in P=(γ -1) ρ E for material #20, an ideal gas.
	MAPS	NUMSCA PRLIM	PRDELT	PRFACT	17	IPCYCL	IPLGRI	PLWMIN	IPLGBT	IPLGTP	GANMA
1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16	2 4 2 1	2 4 5 1	4,51	2 , - 4 6 1	+ +	2 4,91	5.61	5.9 1	2 5.9 1	2	1 2 2 3

1 2	3 4 5	10	8 9 10 11 12 13 14 15 16		(Numbers in Parentheses are Non-zero Default Values)
7	9	8		NMAT (1)	Number of material packages, excluding the void package.
	9	-61		CYCMX	Number of passes through INFACE. (2.)
	7	0		СУСРНЗ	Number of passes through SPHASE. For a pure hydro calculation, set CYCPH3=-1. (1.)
2	7	7		NTRACR	The number of material tracers per cell diagonal to be maintained by ADDTCR. (See NADD)
2	7	3.1		NHXCLS (2)	Maximum number of interface cells in grid on any one cycle.
7	7	80		NTPMX (3)	Maximum number of material tracers per package to be generated by TSETUP or ADDICR.
2	8			NTCC (4)	Maximum number of passive tracers to be generated.
	α	2		SIEMIN	If change in specific internal energy of a cell due to transport is less than SIEMIN, the change is ignored. (10 ⁵)
	8	5.		EMIN	Minimum specific internal energy used to compute the pressure of material #20, an ideal gas. (10^7)
	8	- 1		PMIN	Minimum_non-zero pressure. If P(k) <pmin, p(k)="0.<br">(5×10⁶)</pmin,>

See first dimension of XMASS array. See second dimension of XMASS array. See second dimension of TX array. See dimension of XP array. **3325**

B - 4

iz 13 14 15 16 (Numbers in Parentheses are Non-zero Default Values)	INTER Ghen non-zero, INTER generates certain diagnostic prints. (See Section 9.2)	REZ When REL=1.0 on a restart cycle, the grid is retoured. (See Section 8.1 and IEXIX, JEXIY)	NODUMP When NODUMF=1, EDIT does not write any restart dumps.	NLINER The package number of the liner material that forms the jet. Define only when calculating the collapse of u shaped charge liner.	NVRTEX The second index of the void tracer that is at the vertex of the void closing region. Define only if using the automatic void closing routine, VDCLOS.	ROFPS Round-off epsilon. (10-5)	PLGOPT PLGOFT must be set to 1.0 to generate a plugging calculation.	NSLD(5) Maximum number of slipline cells in grid during any one cycle.	FINAL Final value of stability fraction. (.4)	NOSLIP NOSLIP should be set to 1 when sliplines are not used.	LVISC When LVISC=1 an artificial viscosity is added to cell
2 3 4 5 6 7 8 9 10 11 12 13		9.5.1	1 9 6	1 0 5 1	1 0 0 1	1 0 1	1,1,1	1 1 2 1	1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	1 1 5 1	1,1,6,1

(5) See dimension of MSLD array.

1 2	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	NADD	(Numbers in Parentheses are Non-zero Default Values) Every cycle that is a multiple of NADD, ADDICR checks the
•		MINX	Spacing of the material tracers in the region specified by MINX, MAXX, MINY, MAXY. (Define NTRACR also.)
7 (1	1, 2, 0, 1	MAXX	Rightmost column of region in which tracers will be added.
C3	1,2,1	MINY	Bottom row of region in which tracers will be added.
7	1, 2, 2, 1	MAXY	Top row of region in which tracers will be added.
72	1 2,3 1	IEXTX	If IEXTX=1, the grid will be rezoned in the X-direction.
2	1,2,4,1	JEXTY	If JEXTY=1, the grid will be rezoned in the Y-direction.
I	1,3,9,1	STAB	Initial value of stability fraction. (10-3)
	1,4,4,1	DTMIN	Minimum allowable value of time step. If DT <dtmin, <math="" calculation="" stops.="" the="">(10^{-11})</dtmin,>
	1 4 8 1	CRATIO	The minimum compression ratio of adjacent cells that will trigger compression-weighting of pressures and velocities in HPHASE; (See Section 2.2.2.4) (104)
	1 4,9 1	BBAR	Constant in approximation of local sound speed: $C*C_0+BBAR*\sqrt{P}$. Used to determine Δt . (.5)
	5,0 1	TSTOP	Time (secs.) calculation will stop if stopping on time. (Must be included even when stopping on cycles in which case TSTOP=0.)

Before the dummy end card (2(150)), insert the following sets of data cards, (The formats for these sets of cards are specified in the pages that follow.

Cards defining cell dimensions.

2. Cards defining initial conditions of each material package.

3. Cards defining strength properties of each material package.

Cards defining material tracer particles of each material package and the void.

Cards defining slipline endpoints. If NOSLIP=1, these cards are omitted.

Cards defining HE initiation points. If no HE, insert one blank card.

CARDS DEFINING DX AND DY ARRAYS

Define DX first. NNT(I) is the number of zones that have dimension TEMP (I). Set NNT(I) = 999 after all DX are defined and after all DY are defined.

1213.45	- i0 5!\$!7'8!8!0.1	03-11 03-12-12-12-12-12-12-12-12-12-12-12-12-12-	1 I	21-39 213[3[3[5]5[5]5]	3 -40 0 112 3 4 5 6 7 8 9 0	41-50	51-60 51-60 51-60	21-35 21-30 213131313131313131313131313131313131313
NNT(I) N	NNT(2)NNT (3) NNT(4)	(3) NNT(4)	١ .	TEMP (1)	TEMP (2)	TEMP(5)	TEMP(4)	(414,4X,4E10.2)
-	:	1			1	1	1	
	- 1	- 1	7.7.7	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.1 4.4.5.1.1	enter the second second
		- 1		4.4.1 1 [4 4 1		, the state of the		
1	. 4							
-		1	4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • • •		
1		- 1			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		1	- -1 -1	-1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
-1		-		4 1.44.1 4.4.4	4 1 1 4 1 1 1 1 1 1	4-1-4-4-1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1
 			:	* * * * * * * * * * * *	4-4-1 1 1 1-1-1-4		1.44 4.1	
-1	1	;	1	ما هما ما الما الما الما الما الما الما	1	Andrews L. L. Stranger		6 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
1	i		:		1.1 1.2.		- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	
	1	1	7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-4-4-4-1 4.4 4	
1	-	:	:			* * * * * * * * * * * * * * * * * * * *		
-		- ;	• 1			11.15 a Lephan 4.18 4.		
-	1.4.4.	:	-					
1	1	-						
		_						

CARDS DEFINING INITIAL CONDITIONS OF EACH MATERIAL PACKAGE

71–80 78[9[0] 1[2[3]4[5[5[7]8[9]0			erial package.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			* * * * * * * * * * * * * * * * * * * *	 اسف مديف داسف فيفيد لإسفيف				
51-60 51-60 1234515[7[8]9[9]	ce. erial package N.		One card for each material (15, 5X, 4E10.2)			and the state of t		 A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	***************************************	ساسط ماسطسطستان إراد ها طبيط التدارات المستد		
4'-50 2'3 4'5 6 7'8 9 0	tains an interface. pure cell in material pure void cell.	·	package.		4-6-4-6-1-1-1-1-1		In the sec to the thresh submarked	· · · · · · · · · · · · · · · · · · ·	-	1		
21-30 21345679990112[34567690	LAG of cell k = 2 con k = 2 is a k = 2 is a		I of each material Radial Velocity	1 *************************************	3. 1. 1. 4. A. A. A. 1. 1. 1.			 1	4		•	
	ining the = - 1 if = N if cc = 0 if ce		specific Specific Internal			1		 		•		
20 8 9 0 2 3 4 5 6 7 8 9 0	(IS) Card define MFLAG(2) MFLAG(2) MFLAG(2)		Cards defining initia	4 · - (* 4 - 1 * * 4 - 4 *)		1	1 - 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	. 1				
-10 -12[3]4[5]6[7]8[9]0	NFLAG(2)		Cards Material	1 1	1 1			1		4 91	3	1

CARDS DEFINING STRENGTH PROPERTIES OF EACH MATERIAL PACKAGE If material is not to fail in tension, set AMDM = .001. If material has no tensile strength, set AMDM = 1.0. Yield strength of material = $(Y_0 + Y_1 \mu + Y_2 \mu^2)(1$ Include one card for each material package.

71-80	[2[3]4[5]6[7]8[9:0]1[2[3]4[5]6[7]8[9]0[1 [2]3[4[5]6[7]8]9]	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	***********			*****			****		* * * * * * * * * * * * * *		*	* * * * * * * * * * * * * * * * * * *	4	
61-70	112345678	4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			***	4-4-4-7-4-4-4-4-4		4-4-4-4-4-4	4-1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4		4-1-1-1-1-1-1	4	4441-144			
- 1		-		11.14441.	* * * * * * * * * * *				111111		1.1 4.4.4.4.4.1.1	T-1-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1			
41-50	-	Rigidity Modulus, G.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1111111111				1	1 - 1 - 1 - 1	1	+++++++++++++++++++++++++++++++++++++++	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
	1234567890	E 1	-	4,	., ., ., ., ., ., .,		1		4,000,000	4. 1. 1. 1. 1. 1. 1. 1.	1 1.1 ()	* ***	1.1.1.1.1.1.1.1.1.1			
21-30		Y 2	1 : :		erra esperana e	+ + 1 1 1 1 · ·		1 144-1-11	***** .1 - * - * - *		1 1 1 1 1 1 1 1 1 1 1 1 1	ا استابت ا		1-1111111111111		
11-20	1 2 3 4 5 6 7 9 9 0 1 2 3 4 5 6 7 8 9 0	Y1		****	1 . 1 . 1 . 1 . 1	the fact of the fact of the fact of				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						
Ot-	112131451617181910	Y 			1-4-4-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-				*****							1

CARDS DEFINING TRACER PARTICLES OF EACH MATERIAL PACKAGE AND THE VOID

Repeat cards 1, 2 and (if required) 3 for each line segment or arc of each material and void package boundary (except package boundaries that are also grid boundaries).

Tracer particles for each package must be input in an order that will put the package to the left of any two consecutive particles. Refer to Section 7.2.5.

NPTS = Number of points to be placed along line or arc.
MPN = Material package number (void = NMAT + 1)
LTYPE = 1 straight horizontal line 2 straight vertical line 3 straight diagonal line 4 arc of circle 5 arc of ellipse

LTYPE must be negative on last segment of a package or subpackage. LTYPE = 100 after all boundaries of all packages are defined.

-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80	(315)	For line segment (cm) (4E10.4)		For arc of circle (cm) (3E10.4)		For arc of ellipse (cm) $\frac{(X-XC)^2 + (Y-YC)^2}{A^2} = 1$	
31-40		final y.coordinate				ХĊ	,
21-30		final x-coordinate	Starting Terminal	Radius of circle		χC	
11-20 112[3]4[5]6[7]8[9]0	NPTS	starting v-coordinate	Terminal	1	of circle	В	
1-10 1-13 4 5 6 7 8 9 0	LTYPE MPN	starting	Starting Terminal	x-coordinate of center	of circle	A	
		(7		(מי	

(Form for tracer particle definitions)

Oi-I	11-20	2:-30	31-40	1
1/2/3/4/5/6/7/8/9/5	12 3 4 5 6 7 8 9 0 112 3 4 5 6 7 6 9 0 112	112[3]4[5]6[7]8[9]0	12[3[4:5]6]7[8]910	112(314)5(6(7)8(9)0(1)2(3)4(5)6(7)8(9)0(1)2(3)
1		•	4	
			A. A. d	entropolitation de la company
	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-1 1-1 1 1 1 1 1		in the state of th
1	1	1	1	
	1 4 1 4	4.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	a second of the second of	The second secon
	······	1		
	1 11 11 11 11	-1-1-1-1-1-1	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
		e a alternation de la constitución de la constituci		يتميعيه معاليميه محمد والمستميسة بالكارد مرساة الإيارات الأراعيية الإيليمية المناز منتجسمانة المتعسمية
1				en en en de
				The second of th
		***************************************	1.1.1.1.1.1.1.1.1.1	the section of the se
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			are and the second discount of a country of the second sec
. !				
		;	3 4 4 1 4 1 4 1 1 1	
*** , , , , , , , , , , , , , , , , , ,				
				المستعملية والمسترحة والمستعمد أوالمدارين المرازين المرازية المراز

CARDS DEFINING SLIPLINE ENDPOINTS

Omit these cards if NOSLIP = 1 (sliplines are not being used). One card for each material package.

01-1	02-11	05-16	03-12 03-15 1-50 21-60
1121314151617181910	121314151617161910 1121314151617181910	12131	12,314,5617,890 112,34,51617,890 112,34,516,7(8)90 112,34,516,718,90 112,31
MASTRD NSLAVD	1-	NENDMD	(615)
:	1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	MASTRD = N if package N is a master package
1	1.1.	1	
• • • • • • • • • • • • • • • • • • • •		1	= 0 otherwise - Nii.package.N is a slave.package
L-1-4-4 · • 4-4-	1 1 1 1 1 1 1 1		The section of the se
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NBGND = First tracer of package N that will define
			it hernage was a
			ال
1	1-1-1-1-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Slipline if
	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-			
			of package N
			the slipline if pac 0 otherwise.
		1	
		4.4-4-4-4	NENDSD = Last tracer of package N that Will deline the slipline if package N is a slave package
			راد میاندسد. مایدست میادد، در تصدران در
1	1		عارية وما والمقورة في المواهدة من المواهد المواهدة والمواهدة والمو
:	:		en e
	:	:	marked and the second of the s
3 4			
		•	and the same of th
1			
	1		

CARDS DEFINING INITIATION POINTS OF HIGH EXPLOSIVES

The initiation points must be input in ascending order of probable detonation time. Insert one blank card if calculation does not involve detonation of a high explosive.

IDET IDET IDET

for primary initiation point for secondary initiation point end of initiation point data

61-70 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0	.2)				
21-30 31-40 41-50 51-60 61-70 71-80 71-80 81-50 61-70 71-80 71-80 81-50	(2110, 3E10.2)				
41-50	Time Delay (if any) (secs)	distance of the Section	4	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
31-40	oordinate y-coordinate initiation of Initiation Pt. (cm)			1	
21-30	x-coordinate y-coordinate of Initiation of Initiation Pt. (cm)		-4 6.0 . 4 . 4 . 4 . 4 . 4	· · · · · · · · · · · · · · · · · · ·	
1-10 11-20 11-20 12/3/4/5/5/7/8/9/01/2/3	Material Package Number of	1		1, 1, 4, 1, 1, 1, 1	
1-10	IDET				

CARDS DEFINING AREA OF INITIATION FOR EACH INITIATION POINT

Specify areas in same order as points are specified above

2!-30 31-40 41-50 51-60 61-70 71-80	[2]3[4]5[6]7[8]9[0]1[2]3[4]5[6]7[8[9]0[1[2]3[4]5[6]7[8]9[0]1[2]3[4]5[6]7[8]9[0	(4E10.2)	(cm) (cm) (cm)			the state of the s	
31-40	12]3[4]5[6]7]8[9]0]	Right Top	(cm)		A . C. (_
21-30	1234567890	Right x-coordinate	(E)		the state of the s	· · · · · · · · · · · · · · · · · · ·	
11-20	12 3 4 5 6 7 6 9 0 1 2 3 4 5 6 7 8 9 0 1 2	Bottom y-coordinate	(cm)	Anter Clarent	1.1 617 224.1	-1-4-4-4-1-1-1-1-4-4-4-4-4	
01-1	112 3 4 5 6 7 6 9 0	Left Bottom x-coordinate x-	(cm)	e de descentantes de la companya del companya de la companya de la companya del companya de la c	6.8.4.4.4.4.4.1.		-

		Dummy end of generation deck.	
13 14 15 16			
1 2 3 4 5 6 7 8 9 10 11 12 1		15.0 1 0 .	
1 2	1		

APPENDIX C

SEGMENTING THE HELP CODE

The user of the HELP code has several alternatives in configuring the code on the computer, ranging from having all the subroutines loaded into core at once, which decreases execution time but requires more core storage, to varying degrees of segmentation, which decrease the core storage requirements but increase execution time because of the extra time required to transfer the various segments in and out of core. The segmentation discussed here and represented schematically in Figure C.1 attempts to minimize the storage requirements, yet hold execution time down by minimizing the number of times per cycle the computer must roll segments in and out of core.

In the figure, the subroutines in the first column, which is labeled LEVEL 1, are loaded into core and remain in core for the duration of the calculation. The blocks of subroutines, or segments, under LEVEL 2 and LEVEL 3 are then rolled in and out of core as needed by the various stages of the computational cycle. The INPUT-GENERATOR segment is executed only once per run, either in generating or restarting a calculation. If the user is not performing a plugging calculation, the REZONE-PLUG block is executed only when the grid is rezoned, a relatively infrequent occurrence. Thus in most of the cycles only four LEVEL 2 segments (the CDT-EDIT segment, the HPHASE-SPHASE segment, the INFACE segment, and the TPHASE segment) and two LEVEL 3 segments are rolled in and out of core.

This configuration of the HELP code, and the associated systems routines, requires approximately 11,000 words of core storage for the instruction bank when executed on a UNIVAC 1108. The amount of storage required for the data bank is, of course highly dependent on the values of the parameters discussed in Appendix A.

Figure C.1. A schematic representation of a method of segmenting the HELP code which is efficient both in terms of execution time and the computer core requirements.

INITIAL DISTRIBUTION

TO BE SENTEN TO SENTEN TO SENTENCE TO SENT

USAF/SAMI	1		
AFSC/DLCAW	1		
AFIT/LD	1		
ASD/ENFEA	1		
TAC/DRA	1		
CIA, CRE/ADD/Publications	2		
AUL/AUL-LSE-70-239	1		
Redstone Sci Info Cntr, Ch, Doc Sec	2		
USA Wpns Comd/SAPRI-LW-A	1		
Picatinny Arsenal/SARPA-TS, Bldg 59	1		
USN Nav Ord Lab/Tech Lib	2		
Nav Ord Stn/Tech Lib	1		
Nav Sys Cntr, New Port Lab/Tech Lib	1		
USN WEA Cntr/Code 533	2		
AFWL/Tech Lib			
Ofc Nav Research/Code 473	1		
DDC	2		
US Atomic Energy Com/Lib Rm G-042			
Nav Research Lab/Code 2627			
ASD/ENESS/S. Johns			
AFIS/INTA			
TAWC/TRADOCLO			
AFATL/DL	. 1		
AFATL/DLOSL	9		
AFATL/DLDG	1		
Systems, Science & Software	10		
AFML/MAMD	1		
Georgia Inst of Tech	2		
Lehigh University			
Univ of Florida	2		
AFATL/DLJW	10		
AF Ofc of Sci Rsch, Aeromech Div	2		
AEDC/ARO, Inc, Lib/DLCS	1		
USAFE/DOQ	1		
PACAF/DOO	1		