Section 1.7 - Cramer's Rule

Cramer's Rule

Theorem

If AX = B is a system of a linear equations in n unknowns such that $det(A) \neq 0$, then the system has a unique solution. This solution is

$$x_1 = \frac{\det(B_1)}{\det(A)}$$

$$x_2 = \frac{\det(B_2)}{\det(A)}$$

: :

$$x_n = \frac{\det(B_n)}{\det(A)}$$

Where
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & & & & \\ \vdots & & & & a_{nn} \end{bmatrix}$$
 $X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ $B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$

$$\det(B_1) = \begin{vmatrix} b_1 & a_{12} & \dots & a_{1n} \\ b_2 & & & & \\ \vdots & & & & \\ b_n & a_{n2} & & a_{nn} \end{vmatrix}$$

Example

Use Cramer's rule to solve

$$x_1 + x_2 + x_3 = 1$$

 $-2x_1 + x_2 = 0$
 $-4x_1 + x_3 = 0$

Solution

$$\begin{vmatrix} A \\ A \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ -2 & 1 & 0 \\ -4 & 0 & 1 \end{vmatrix} = 7$$

$$\begin{vmatrix} B_1 \\ A \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1$$

$$\begin{vmatrix} B_2 \\ A \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ -2 & 0 & 0 \\ -4 & 0 & 1 \end{vmatrix} = 2$$

$$\begin{vmatrix} B_3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ -2 & 1 & 0 \\ -4 & 0 & 0 \end{vmatrix} = 4$$

$$x_1 = \frac{\left|B_1\right|}{\left|A\right|} = \frac{1}{7} \qquad x_1 = \frac{\det(A_1)}{\det(A)}$$

$$x_2 = \frac{\left|B_2\right|}{\left|A\right|} = \frac{2}{7}$$

$$x_3 = \frac{\left|B_3\right|}{\left|A\right|} = \frac{4}{7}$$

Solution: $\left(\frac{1}{7}, \frac{2}{7}, \frac{4}{7}\right)$

Example

Use Cramer's Rule to solve.

$$x_1 + 2x_3 = 6$$

$$-3x_1 + 4x_2 + 6x_3 = 30$$

$$-x_1 - 2x_2 + 3x_3 = 8$$

Solution

$$A = \begin{bmatrix} 1 & 0 & 2 \\ -3 & 4 & 6 \\ -1 & -2 & 3 \end{bmatrix} \implies \det(A) = 44$$

$$\det\left(A_{1}\right) = \begin{vmatrix} 6 & 0 & 2 \\ 30 & 4 & 6 \\ 8 & -2 & 3 \end{vmatrix} = -40$$

$$\det(A_2) = \begin{vmatrix} 1 & 6 & 2 \\ -3 & 30 & 6 \\ -1 & 8 & 3 \end{vmatrix} = 72$$

$$\det\left(A_{3}\right) = \begin{vmatrix} 1 & 0 & 6 \\ -3 & 4 & 30 \\ -1 & -2 & 8 \end{vmatrix} = 152$$

$$x_{1} = \frac{-40}{44}$$

$$x_{1} = \frac{\det(A_{1})}{\det(A)}$$

$$= -\frac{10}{11}$$

$$x_{2} = \frac{72}{44}$$

$$x_{2} = \frac{\det(A_{2})}{\det(A)}$$

$$= \frac{18}{11}$$

$$x_3 = \frac{152}{44}$$

$$= \frac{38}{11}$$

$$x_3 = \frac{\det(A_3)}{\det(A)}$$

Solution:
$$\left(-\frac{10}{11}, \frac{18}{11}, \frac{38}{11}\right)$$

A Formula for A^{-1}

Theorem: Inverse of a matrix using its Adjoint

The i, j entry of A^{-1} is the cofactor C_{ji} (not C_{ij}) divided by det(A):

Formula for
$$A^{-1}$$
: $\left(A^{-1}\right)_{ij} = \frac{C_{ji}}{|A|}$ and $A^{-1} = \frac{C^T}{|A|}$

$$A^{-1} = \frac{1}{\det(A)} adj(A)$$

Example

Find the inverse matrix of $A = \begin{bmatrix} 1 & 1 & 1 \\ -2 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ using its adjoint.

Solution

$$C_{11} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1; \qquad C_{12} = -\begin{vmatrix} -2 & 0 \\ -4 & 1 \end{vmatrix} = 2; \qquad C_{13} = \begin{vmatrix} -2 & 1 \\ -4 & 0 \end{vmatrix} = 4$$

$$C_{21} = -\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = -1; \qquad C_{22} = \begin{vmatrix} 1 & 1 \\ -4 & 1 \end{vmatrix} = 5; \qquad C_{23} = -\begin{vmatrix} 1 & 1 \\ -4 & 0 \end{vmatrix} = -4$$

$$C_{31} = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1; \qquad C_{32} = -\begin{vmatrix} 1 & 1 \\ -2 & 0 \end{vmatrix} = -2; \qquad C_{33} = \begin{vmatrix} 1 & 1 \\ -2 & 1 \end{vmatrix} = 3$$

$$C = \begin{bmatrix} 1 & -1 & -1 \\ 2 & 5 & -2 \\ 4 & -4 & 3 \end{bmatrix}$$

$$\det(A) = \frac{1}{7}$$

$$\Rightarrow A^{-1} = \frac{1}{7} \begin{bmatrix} 1 & -1 & -1 \\ 2 & 5 & -2 \\ 4 & -4 & 3 \end{bmatrix}$$

Theorem

If A is an $n \times n$ matrix, then the following statements are equivalent

- a) A is invertible
- **b**) Ax = 0 has only the trivial solution
- c) The reduced row echelon form of A is I_n
- d) A can be expressed as a product of elementary matrices
- e) Ax = b is consistent for every $n \times 1$ matrix b
- f) $\det(A) \neq 0$

Exercises Section 1.7 – Cramer's Rule

1. Use Cramer's Rule with ratios $\frac{\det B_j}{\det A}$ to solve Ax = b. Also find the inverse matrix $A^{-1} = \frac{C^T}{\det A}$.

Why is the solution x is the first part the same as column 3 of A^{-1} ? Which cofactors are involved in computing that column x?

$$Ax = b \quad is \quad \begin{bmatrix} 2 & 6 & 2 \\ 1 & 4 & 2 \\ 5 & 9 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

2. Verify that $\det(AB) = \det(BA)$ and determine whether the equality $\det(A+B) = \det(A) + \det(B)$ holds

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad and \quad B = \begin{bmatrix} 1 & -1 & 3 \\ 7 & 1 & 2 \\ 5 & 0 & 1 \end{bmatrix}$$

3. Verify that $\det(kA) = k^n \det(A)$

$$a) \quad A = \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}, \quad k = 2$$

b)
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 3 & 2 & 1 \\ 1 & 4 & 5 \end{bmatrix}$$
, $k = -2$

c)
$$A = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 1 & -2 \end{vmatrix}$$
, $k = 3$

$$(4-58)$$
 Use Cramer's rule to solve the system

4.
$$\begin{cases} 3x + 2y = -4 \\ 2x - y = -5 \end{cases}$$

$$\begin{cases} 3x + 4y = 2 \\ 2x + 5y = -1 \end{cases}$$

12.
$$\begin{cases} 2x + 10y = -14 \\ 7x - 2y = -16 \end{cases}$$

5.
$$\begin{cases} 2x + 5y = 7 \\ 5x - 2y = -3 \end{cases}$$

9.
$$\begin{cases} 5x - 2y = 4 \\ -10x + 4y = 7 \end{cases}$$

13.
$$\begin{cases} 4x - 3y = 24 \\ -3x + 9y = -1 \end{cases}$$

6.
$$\begin{cases} 4x - 7y = -16 \\ 2x + 5y = 9 \end{cases}$$

$$\begin{cases} x - 4y = 7 \\ 5x - 20y = -40 \end{cases}$$

14.
$$\begin{cases} 4x + 2y = 12 \\ 3x - 2y = 16 \end{cases}$$

$$2x + 5y = 9$$
7.
$$\begin{cases} 3x + 2y = 4 \\ 2x + y = 1 \end{cases}$$

$$5x - 20y = -40$$
11.
$$\begin{cases} 2x + y = 3 \\ x - y = 3 \end{cases}$$

15.
$$\begin{cases} x + 2y = -1 \\ 4x - 2y = 6 \end{cases}$$

16.
$$\begin{cases} x - 2y = 5 \\ -10x + 2y = 4 \end{cases}$$

$$\begin{cases} x + 2y - 3 = 0 \\ 12 = 8y + 4x \end{cases}$$

3.
$$\begin{cases} x - 2y - z = 2 \\ 2x - y + z = 4 \\ -x + y + z = 4 \end{cases}$$

16.
$$\begin{cases} x - 2y = 5 \\ -10x + 2y = 4 \end{cases}$$
17.
$$\begin{cases} 12x + 15y = -27 \\ 30x - 15y = -15 \end{cases}$$
18.
$$\begin{cases} 4x - 4y = -12 \\ 4x + 4y = -20 \end{cases}$$
19.
$$\begin{cases} x + y = 7 \\ x - y = 3 \end{cases}$$

$$33. \quad \begin{cases} 7x - 2y = 3 \\ 3x + y = 5 \end{cases}$$

44.
$$\begin{cases} x + y + z = 3 \\ -y + 2z = 1 \\ -x + z = 0 \end{cases}$$

18.
$$\begin{cases} 4x - 4y = -12 \\ 4x + 4y = -20 \end{cases}$$

34.
$$\begin{cases} 3x + 2y - z = 4 \\ 3x - 2y + z = 5 \\ 4x - 5y - z = -1 \end{cases}$$

$$\begin{cases}
-y + 2z = 1 \\
-x + z = 0
\end{cases}$$

$$\begin{cases} x + y = 7 \\ x - y = 3 \end{cases}$$

35.
$$\begin{cases} x + y + z = 2 \\ 2x + y - z = 5 \end{cases}$$

45.
$$\begin{cases} 3x + y + 3z = 14 \\ 7x + 5y + 8z = 37 \\ x + 3y + 2z = 9 \end{cases}$$

$$20. \quad \begin{cases} 2x + y = 3 \\ x - y = 3 \end{cases}$$

35.
$$\begin{cases} 2x + y - z = 5 \\ x - y + z = -2 \end{cases}$$

46.
$$\begin{cases} 4x - 2y + z = 7 \\ x + y + z = -2 \\ 4x + 2y + z = 3 \end{cases}$$

21.
$$\begin{cases} 12x + 3y = 15 \\ 2x - 3y = 13 \end{cases}$$

36.
$$\begin{cases} 2x + y + z = 9 \\ -x - y + z = 1 \\ 3x - y + z = 9 \end{cases}$$

47.
$$\begin{cases} 2y - z = 7 \\ x + 2y + z = 17 \\ 2x - 3y + 2z = -1 \end{cases}$$

22.
$$\begin{cases} x - 2y = 5 \\ 5x - y = -2 \end{cases}$$

32.
$$\begin{cases} x+2y-3=0\\ 12=8y+4x \end{cases}$$
33.
$$\begin{cases} 7x-2y=3\\ 3x+y=5 \end{cases}$$
34.
$$\begin{cases} 3x+2y-z=4\\ 3x-2y+z=5\\ 4x-5y-z=-1 \end{cases}$$
35.
$$\begin{cases} x+y+z=2\\ 2x+y-z=5\\ x-y+z=-2 \end{cases}$$
36.
$$\begin{cases} 2x+y+z=9\\ -x-y+z=1\\ 3x-y+z=9 \end{cases}$$
37.
$$\begin{cases} 3y-z=-1\\ x+5y-z=-4\\ -3x+6y+2z=11 \end{cases}$$
38.
$$\begin{cases} x+3y+4z=14\\ 2x-3y+2z=10\\ 3x-y+z=9 \end{cases}$$
39.
$$\begin{cases} x+4y-z=20\\ 3x+2y+z=8 \end{cases}$$

48.
$$\begin{cases} 2x - 2y + z = -4 \\ 6x + 4y - 3z = -24 \end{cases}$$

22.
$$\begin{cases} x - 2y = 5 \\ 5x - y = -2 \end{cases}$$
23.
$$\begin{cases} 3x + 2y = 2 \\ 2x + 2y = 3 \end{cases}$$

38.
$$\begin{cases} x + 3y + 4z = 14 \\ 2x - 3y + 2z = 10 \\ 3x - y + z = 9 \end{cases}$$

$$x - 2y + 2z = 1$$

$$\begin{cases} 9x + 3y + z = 4 \\ 16x + 4y + z = 2 \end{cases}$$

24.
$$\begin{cases} 4x - 5y = 17 \\ 2x + 3y = 3 \end{cases}$$

39.
$$\begin{cases} x + 4y - z = 20 \\ 3x + 2y + z = 8 \\ 2x - 3y + 2z = -16 \end{cases}$$

49.
$$\begin{cases} 16x + 4y + z = 2 \\ 25x + 5y + z = 2 \end{cases}$$

25.
$$\begin{cases} x - 3y = 4 \\ 3x - 4y = 12 \end{cases}$$
26.
$$\begin{cases} 2x - 9y = 5 \\ 3x - 3y = 11 \end{cases}$$

36.
$$\begin{cases} 2x + y + z = 9 \\ -x - y + z = 1 \\ 3x - y + z = 9 \end{cases}$$
46.
$$\begin{cases} 2y - z = 7 \\ 4x + 2y + z = 3 \end{cases}$$
37.
$$\begin{cases} 3y - z = -1 \\ x + 5y - z = -4 \\ -3x + 6y + 2z = 11 \end{cases}$$
48.
$$\begin{cases} 2x - 2y + z = 17 \\ 2x - 3y + 2z = -1 \end{cases}$$
38.
$$\begin{cases} x + 3y + 4z = 14 \\ 2x - 3y + 2z = 10 \\ 3x - y + z = 9 \end{cases}$$
49.
$$\begin{cases} 2x - 2y + z = -4 \\ 6x + 4y - 3z = -24 \\ x - 2y + 2z = 1 \end{cases}$$
39.
$$\begin{cases} x + 4y - z = 20 \\ 3x + 2y + z = 8 \\ 2x - 3y + 2z = -16 \end{cases}$$
40.
$$\begin{cases} -2x + 6y + 7z = 3 \\ -4x + 5y + 3z = 7 \\ -6x + 3y + 5z = -4 \end{cases}$$
50.
$$\begin{cases} 2x - y + z = 7 \\ x + y + z = -2 \\ 4x + 2y + z = 17 \end{cases}$$

$$\begin{cases} 2y - z = 7 \\ x + 2y + z = 17 \end{cases}$$

$$\begin{cases} 2x - 2y + z = -4 \\ 6x + 4y - 3z = -24 \end{cases}$$

$$\begin{cases} 2x - 2y + z = -4 \\ 6x + 4y - 3z = -24 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y + 2z = 1 \end{cases}$$

$$\begin{cases} 2x - 2y$$

50.
$$\begin{cases} 2x - y + 2z = -8 \\ x + 2y - 3z = 9 \\ 3x - y - 4z = 3 \end{cases}$$

27.
$$\begin{cases} 3x - 4y = 4 \\ x + y = 6 \end{cases}$$

40.
$$\begin{cases} -2x + 6y + 7z = 3 \\ -4x + 5y + 3z = 7 \\ -6x + 3y + 5z = -4 \end{cases}$$
41.
$$\begin{cases} 2x - y + z = 1 \\ 3x - 3y + 4z = 5 \\ 4x - 2y + 3z = 4 \end{cases}$$
42.
$$\begin{cases} 3x - 4y + 4z = 7 \\ x - y - 2z = 2 \\ 2x - 3y + 6z = 5 \end{cases}$$

51.
$$\begin{cases} x - 3z = -5 \\ 2x - y + 2z = 16 \\ 7x - 3y - 5z = 19 \end{cases}$$

28.
$$\begin{cases} 3x = 7y + 1 \\ 2x = 3y - 1 \end{cases}$$
29.
$$\begin{cases} 2x = 3y + 2 \\ 5x = 51 - 4y \end{cases}$$

41.
$$\begin{cases} 2x - y + z = 1 \\ 3x - 3y + 4z = 5 \\ 4x - 2y + 3z = 4 \end{cases}$$

52.
$$\begin{cases} x + 2y - z = 5 \\ 2x - y + 3z = 0 \end{cases}$$

$$\begin{cases} 2x - 3y + 2 \\ 5x = 51 - 4y \end{cases}$$

42.
$$\begin{cases} 3x - 4y + 4z = 7 \\ x - y - 2z = 2 \\ 2x - 3y + 6z = 5 \end{cases}$$

5z = 5
53.
$$\begin{cases} x + y + z = 6 \\ 3x + 4y - 7z = 1 \\ 2x - y + 3z = 5 \end{cases}$$

$$\begin{cases} y = -4x + 2 \\ 2x = 3y - 1 \end{cases}$$

31.
$$\begin{cases} 3x = 2 - 3y \\ 2y = 3 - 2x \end{cases}$$

54.
$$\begin{cases} 3x + 2y + 3z = 3 \\ 4x - 5y + 7z = 1 \\ 2x + 3y - 2z = 6 \end{cases}$$

56.
$$\begin{cases} x - 4y + z = 6 \\ 4x - y + 2z = -1 \\ 2x + 2y - 3z = -20 \end{cases}$$

54.
$$\begin{cases} 3x + 2y + 3z = 3 \\ 4x - 5y + 7z = 1 \\ 2x + 3y - 2z = 6 \end{cases}$$
56.
$$\begin{cases} x - 4y + z = 6 \\ 4x - y + 2z = -1 \\ 2x + 2y - 3z = -20 \end{cases}$$
58.
$$\begin{cases} -x_1 - 4x_2 + 2x_3 + x_4 = -32 \\ 2x_1 - x_2 + 7x_3 + 9x_4 = 14 \\ -x_1 + x_2 + 3x_3 + x_4 = 11 \\ -x_1 - 2x_2 + x_3 - 4x_4 = -4 \end{cases}$$
55.
$$\begin{cases} 4x + 5y = 2 \\ 11x + y + 2z = 3 \\ x + 5y + 2z = 1 \end{cases}$$
57.
$$\begin{cases} 2x - y + z = -1 \\ 3x + 4y - z = -1 \\ 4x - y + 2z = -1 \end{cases}$$

55.
$$\begin{cases} 4x + 5y = 2\\ 11x + y + 2z = 3\\ x + 5y + 2z = 1 \end{cases}$$

57.
$$\begin{cases} 2x - y + z = -1 \\ 3x + 4y - z = -1 \\ 4x - y + 2z = -1 \end{cases}$$

Show that the matrix A is invertible for all values of θ , then find A^{-1} using $A^{-1} = \frac{1}{\det(A)} adj(A)$ **59.**

$$A = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$