

NATIONAL SCHOOL OF BUSINESS MANAGEMENT

B.Sc. in Computer Science 1st Year 1st Semester Examination-Special Repeat 22-September-2020 CS106.3 – Data Structures and Algorithms

Instructions to Candidates

- 1) This paper consists of 2 sections. Answer <u>ALL</u> questions.
- 2) Time allocated for the examination is three and half (3.5) hours.
- 3) Total number of pages Seven (07) including the MCQ marking grid.
- 4) If a page or a part of this question paper is not printed, please inform the Supervisor immediately.
- 5) Write your index number in all pages of answer script.

PART A: Multiple Choice Questions. Transfer your answer to answer script. (25*2=50 Marks)

Refer to below code snippets and answer question 1 to 3.

```
//TYPE A
void A(int a){
    if(a>0){
        printf("% d", a);
        A(a-1);
    }
}
void main(){
    int x=4;
    A(x);
}
```

```
//TYPE B

void A(int a){
		if(a>0){
			A(a-1);
			printf("%d", a);
		}
}

void main(){
			int x=4;
			A(x);
}
```

- 1. What is the programming concept below codes represents?
 - a) Backtracking
 - c) Recursion

- b) Divide and Conquer
- d) Iterative

- 2. What is the output of TYPE A?
 - a) 1,2,3,4
 - c) 4,3,2,1

- b) 1,2,3
- d) 3,2,1

- **3.** What is the output of TYPE B?
 - a) 1,2,3,4
 - c) 4,3,2,1

- b) 1,2,3
- d) 3,2,1
- 4. Identify the data structure/algorithm below diagrams represents:

- a) Queue, Stack, Tree, linear Search
- c) Queue, Tree, Stack, linear Search
- b) Queue, Stack, Tree, insertion sort
- d) Queue, Tree, Stack, insertion sort
- **5.** Perfect binary tree is a full binary tree and every full binary tree is also a perfect binary tree. This statement is:
 - a) True

b) False

Consider the following graph representation and related Breadth First Search (BFS) and Depth First Search (DFS) algorithms to answer questions from 6 to 9. Starting point is "A" and this follows alphabetical order.

				•		
6. What	data	a structure is used to d	lerive BFS ou	itput		
	a)	Queue		ŀ	b)	Stack
	c)	Tree		(d)	Array
7. What	data	a structure is used to c	lerive DFS ou	ıtput		
	a)	Queue		ŀ	b)	Stack
	c)	Tree		(d)	Array
8. What	is th	e output of BFS?				
	a)	A, B, C, D, E, F		ŀ	b)	A, B, D, C, E, F
	c)	A, C, E, F, B, D		(d)	None of the G
9. What	is th	e output of DFS?				
	a)	A, B, C, D, E, F		ŀ	b)	A, B, D, C, E, F
	c)	A, C, E, F, B, D		(d)	None of the
10. The i	num	ber of interchanges re	equired to so	rt 5, 1, 6, 2	<u>2</u> , 4	in ascending order using Bubble Sort
	a)	5		ŀ	၁)	7
	c)	8		(d)	6
11. Show	v the	e first pass/round outp	out of bubble	e sort on ar	า ur	nsorted array: [11, 15, 2, 13, 6]
	a)	11 2 13 6 15		ŀ	၁)	11 2 15 13 6
	c)	11 2 6 13 15			•	2 6 11 13 15

12. What is the data structure you can use to evaluate postfix expressions?

b) Stack

d) Array

a) Queue

c) Tree

is

	u use above structure to solve the below answer 2 3 1 * + 9 -	expr	ession consisting of tokens what would be
tile iiilai			h) 2
	a) 4		b) -2
	c) -4		d) 2
14. In a respecti	queue, the initial values of front pointer f r ively.	ear _l	pointer r should be and
	a. 0 and 1		b. 1 and 0
	c. 0 and -1		d1 and 0
15. Let th data	ne following circular queue can accommoda	ate m	naximum six elements with the following
	front = 2	rea	ar = 4
			M, N,,
	queue,	∟,	···, ···, <u> </u>
Wha	at will happen after ADD O operation takes	plac	e?
	a) front = 2 rear = 5		b) front = 2 rear = 4
	c) front = 3 rear = 5		d) front = 3 rear = 4
16. Using	512 nodes you can create a perfect binary	tree	
	a) True		b) False
	an array arr = {5,6,77,88,99} and key = 88; ound using bubble sort?	How	many iterations are done until the
a)	1	b)	3
c)	2	d)	4
	der the situation in which assignment opera ithm should be performed so that the num		
a)	Insertion Sort	b)	Selection Sort
a) c)	Bubble Sort	d)	None of the given
C)	DUBBIC SOIT	uj	Hone of the given

a) c)	Processor and memory Time and space	b) d)	Complexity and capacity Data and space
20. You ca	n create a binary tree using 217 nodes		
	a) True		b) False
21. The	searching technique that takes O (1) time to	o fin	d a data is
a) c)	Insertion to unordered array Deletion in unordered array	b) d)	Insertion to ordered array Deletion in ordered array
22. Link	ed lists are best suited		
	a. for relatively permanent collections of data		 b. for the size of the structure and the data in the structure are constantly changing
	c. for fixed size memory		d. For all the above situations
23. Each	node in a linked list has two pairs of	a	nd
	a. Link field and information fieldc. Data field and information field		b. Link field and Next fieldd. Address field and link field
24.	n Big O notation complexity analysis is O(1)) bet	ter than O(N).
	a) True		b) False
25. The algorithm is	complexity of searching an element from a	a set	of n elements using Binary search
	a) O(n) c) O(n²)		b) O(log n) d) O(n log n)

19. Two main measures for the efficiency of an algorithm are

Question 01: Searching algorithms aim to find position of a target value within an array/list.

(5+5+5 = 15 Marks)

- I. Compare and contrast linear and binary search algorithms.
- II. Search for value 65 on the [15,60,45,13,65,75] array using binary search algorithm. Note that the illustrations and labels are mandatory.
- III. Write a function using pseudo or source codes for searching an integer variable called *item* using linear search in an array called *unorderedArray*.

Question 02: Sorting algorithms aim to arrange a data set in an ordered manner (6+4+5 = 15 Marks)

- I. Briefly explain bubble sort and selection sort algorithms?
- II. Diagrammatically perform the bubble sort on the following array.

I. 29 II. 10 III. 14 IV. 37 V. 13	l. 29	II. 10	III. 14	IV. 37	V. 13
-----------------------------------	-------	--------	---------	--------	-------

III. Sort the following sequence of keys using merge sort (Diagrammatically show the steps)

```
i. 66, 77, 11, 88, 99, 22, 33, 44, 55
```

Question 03: A tree is a widely used abstract data structure that is also non-linear format storing data in a hierarchical structure. (5 + 5 + 6 + 4 = 20 Marks)

- I. Draw a binary tree by your own and identify the root, siblings, leaves, edges, height and paths of the above tree data structure.
- II. Given a binary search tree (BST) [50, 45, 27, 8, 65, 100, 82, 2, 90] find the sum of all leaf nodes.
- III. Derive the preorder, post order and in order traversal output of the above BST structure.
- IV. Derive the output of the below code. Show steps.

```
#include <stdio.h>
int fun(int n)
{
  if (n == 4)
  return n;
```

```
else return 2*fun(n+1);
}
int main()
{
    printf("%d ", fun(2));
    return 0;
}
```

END OF THE PAPER