Prediciting Housing Code Violations

EDSP - Final Presentation

Maxwell Austensen

2017-05-08

Recap

Topic Motivation

Housing Code Violations cause serious harm to tenants, and are proxy for other harmful conditions

Currently the City and non-profit organizations are complaint-driven

Desire for resources to facilitate more proactive action

Project Goal

Use available data sources to identify buildings likely to have serious housing code violations

```
getwd()
```

[1] "/Users/Maxwell/repos/edsp17proj-austensen"

Data

Data Sources

Currently using publicly available data sources:

- History of violations, complaints, and litigation (HPD)
- Physical characteristics of buildings (DOF & DCP)

Data Processing

- Download raw data and documentation files
- Select and clean variables
- Restrict to privately-owned rental units under HPD jurisdiction
- Adjust apartment-level violations by number of units
- Add census tract-level violation aggregates
- Reshape to wide building-level data set

Descriptives

Housing Maintanice Code Violations

Focusing on only class C "Immediately Hazardous" (serious) violations

- Peeling lead paint in dwellings where a child under 7 resides
- Inadequate supply of heat and hot water
- Broken or defective plumbing fixtures
- Defective plaster
- Defective faucets
- Rodents

Only 9.9% of buildings in sample had any serious violations in 2016.

Among these properties:

- The average adjusted number of serious violations was 1.7.
- Only 47.2% also had a serious violation in the previous year.

Adjusted Number of Serious Housing Code Violations per 1,000 Privately Owned Rental Units

Neighborhood Tabulation Areas, 2016

Models

Modeling strategy

Outcome: Binary indicator of whether a building had any serious violations

Training Data: 2013-14 data to predict violations in 2015

Test Data: 2014-15 data to predict violations in 2016

Classes are highly unbalanced:

- Each year ~90% of buildings do not have any serious violations
- Improvements over no-information accuracy are constrained
- Model evaluation will emphasize precision and recall

Past Violation

Predict violation if building had violation in previous year

Logistic Regression

Selected model using step-wise algorithm with AIC, removing number of buildings and tract-level serious violations from 2 years prior

Decision Tree

Not significantly higher accuracy compared to the logistic model

Random Forest

Significantly higher accuracy than all other models, and allows for specifying a threshold to balance the trade off between precision and recall

Statistic	Past	Violation 1	Logistic	Regression	Decision	Tree Randon	n Forest

Accuracy	0.907	0.904	0.905	0.923
Precision	0.531	0.516	0.519	0.644
Recall	0.529	0.528	0.592	0.505

ROC Space

Any Serious Violations in 2016

Precision-Recall Space

Any Serious Violations in 2016

13 / 19

Variable Importance

The following were associated with increased likelihood of violations:

HPD data sources:

- Complaints in previous year (both building- & tract-level)
- Violations in previous years (both serious & lesser categories, and building- & tract-level)
- Litigation against owner in previous year

Building Characteristics:

- Lower assessed value
- Older/Less recently renovated
- Larger buildings (# floors, # units, lot area)
- Smaller units
- Mixed-use buildings
- Full below-grade basement

App Prototype

Next Steps

Incorporate More Data Sources

- Housing Data Collective
- Neighborhood-level survey data

Develop Prediction Models Further

- Tuning model parameters
- Try different options for training/test splits
- Try techniques to deal with class imbalance
- Try regression with adjusted violations count

Continue App Development

- Test options optimizing performance
- Polish design elements
- · Add tab with methods and model info

Thanks!