

C4.5 Decision Trees

Goals:

C4.5 decision tree algorithm

- What do we use it for
- What calculations are behind the decision making (simplified)
- What C4.5 handles that ID3 does not

- ♦ Use C4.5 algorithm to predict the class in which a new instance belongs
- Supervised learning

What we need:

Training Data:
things already
classified

Continuous
or discrete

Can have

unknown values **Test Data**

ID3: common decision tree algorithm cannot handle continuous data and missing values

Question: which customers are most likely to take advantage of the new life insurance promotion based on past behavior

Income Range	Magazine Promo	Watch Promo	Life Ins. Promo	Credit Card Ins.	Sex	Age
40-50K	Υ	N	N	N	М	45
30-40K	Υ	Υ	Y	N	F	40
40-50K	N	N	N	N	M	42
30-40K	Υ	Υ	Y	Υ	M	43
50-60K	Υ	N	Y	N	F	38

For each branch being used, choose the most frequently occurring decision

Cost: 3 branches

<u>Accuracy: (4+3+2) / (5+4+2) = 9/11 = 82%</u>

<u>Goodness Score:</u> 9/11/3 = .273

For each branch being used, choose the most frequently occurring decision

Cost: 3 branches

Accuracy: (4+3+2) / (5+4+2) = 9/11 = 82%

<u>Goodness Score:</u> 9/11/3 = .273

Repeat for all

	Cost	Accuracy	Goodness
CC ins	2 branches	60%	.3
Age	2 branches	80%	.4
Sex	2 branches	73%	.37

Consider: are there any subtrees we could terminate?

Handling Continuous Data

A binary split is performed

Handling Missing Values

 Missing data treated as separate class ("?") and not used in calculation of gain

Pruning

- Reduce overfitting
- ID3 grows a tree until it makes no errors over the set of training data

