Python para Machine Learning!

Por: @vmesel

Quem sou eu?

- github.com/vmesel
- twitter.com/vmesel
- Pesquisador de Machine Learning no IME-USP

COGNITIVO. AI

Por que devemos ficar atentos a esta buzzword?

Learning "tradicional", não de Deep Learning!

Disclaimer: Vou falar somente de Machine

Para quem nunca ouviu falar de Machine Learning:

Para quem não sabe, Machine Learning é uma área da ciência da computação e inteligência artificial.

Só para poder resumir

Algoritmos de Machine Learning

E o que o Python tem com isso?

- Linguagem escolhida por ser fácil
- Meio acadêmico e indústria estão usando loucamente
- Várias ferramentas de Machine/Deep Learning disponíveis com baterias inclusas

Outras bibliotecas de Machine Learning (elas também existem)

Como nós podemos montar os nossos modelos de Machine Learning da melhor forma possível?

Escolha dados confiáveis

Entenda o tipo de problema que você quer resolver e que dados você têm

- Não adianta você querer resolver um problema supervisionado sem saber as classes dos itens a serem classificados
- Você deve também saber se o problema é classificatório ou regressivo

Teste diferentes modelos matemáticos

Diferentes modelos possuem diferentes métodos para aproximar e manipular dados, por isso sempre teste modelos diferentes para testar sua predição

from sklearn import svm cl = svm.LinearSVC() # Otimizações aqui cl.fit(train[features], train["FILE"]) from sklearn.ensemble import RandomForestClassifier cls = RandomForestClassifier() # Otimizações aqui cls.fit(train[features], train['FILE'])

Faça o tuning do algoritmo que você está utilizando

As vezes um modelo, em seu estado original, pode não ser o mais otimizado, para isso você pode tunar os parâmetros do modelo. Utilize um GridSearchCV ou RandomSearchCV para poder tunar hiperparâmetros.

RandomForestClassifier(n_estimators=10, criterion='gini', max_depth=None,min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None,bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False,class_weight=None)

Cross-Validation

Dado um dataset X, dividimos ele em dois outros pedaços Y, Z, onde Y contém uma certa porcentagem e Z contém 100 - porcentagem de Y. Em seguida utilize o algoritmo de cross-validation com uma certa porcentagem de Y rodando A vezes.

sklearn.model_selection.cross_val_score

Faça um pouco de *Feature Engineering*

- Engenharia de Feature é um campo do ML que visa aumentar a precisão do modelo alterando suas features originais, para as que somente predizem.
- Algumas técnicas:
 - Trate dados outliers (dados muito gritantes) normalizando todos os dados
 - Remova campos não preenchidos (caso você tenha que lidar com usuários)
 ou campos que você não irá usar
 - Crie novas features com dados que possam ser relevantes (médias, desvios padrões, classe do item e etc)

Diminua a dimensionalidade do seu dataset

Se você estiver trabalhando com matrizes esparsas (matrizes cheias de valores nulos e poucos campos com valores significativos) utilize um algoritmo de diminuição de dimensionalidade.

Fique interado das novidades!

Acompanhe o meu Twitter @vmesel e o Zona de Dados!