FONCTIONS POLYNOMIALES DU SECOND DEGRÉ E02C

EXERCICE N°4 Lien entre les racines et la forme développée réduite (Le corrigé)

La théorie :

On donne a, b et c des nombres réels avec $a \ne 0$ ainsi que la fonction f définie pour tout réel x par : $f(x) = ax^2 + bx + c$

On note Δ le discriminant du trinôme $ax^2 + bx + c$ et on suppose $\Delta > 0$.

On peut alors poser $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ les racines de f.

1) Simplifier les expressions suivantes : $s = x_1 + x_2$ et $p = x_1 x_2$

$$s = x_1 + x_2$$

$$= \frac{-b - \sqrt{\Delta}}{2a} + \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{-b - \sqrt{\Delta} + (-b) + \sqrt{\Delta}}{2a}$$

$$= \frac{-2b}{2a}$$

$$= \frac{-b}{2a}$$

Ainsi
$$s = x_1 + x_2 = \frac{-b}{a}$$

$$p = x_1 x_2$$

$$= \frac{-b - \sqrt{\Delta}}{2a} \times \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{(-b - \sqrt{\Delta})(-b + \sqrt{\Delta})}{4a^2}$$

$$= \frac{b^2 - \Delta}{4a^2}$$

$$= \frac{b^2 - (b^2 - 4ac)}{4a^2}$$

$$= \frac{4ac}{4a^2}$$

$$= \frac{c}{a}$$
Ainsi $s = x_1 x_2 = \frac{c}{a}$

La pratique :

2) En remarquant que 1 est une racine évidente de $3x^2+3x-6$ factorisez cette expression.

Avec les notations de l'exercice, on remarque que

$$3x^2+3x-6 = ax^2+bx+c$$
 avec $a=3$; $b=3$; $c=-6$

Posons alors $x_1 = 1$, d'après la question 1)

$$x_1 x_2 = \frac{c}{a}$$
 d'où $x_2 = \frac{-6}{3} = -2$

On en déduit que $3x^2 + 3x - 6 = 3(x-1)(x+2)$

3) En remarquant que -1 est une racine évidente de $-2x^2-6x-4$ factorisez cette expression.

Avec les notations de l'exercice, on remarque que

$$-2x^2-6x-4 = ax^2+bx+c$$
 avec $a=-2$; $b=-6$; $c=-4$

Posons alors $x_1 = -1$, d'après la question 1)

$$x_1 + x_2 = \frac{-b}{a}$$
 d'où $-1 + x_2 = \frac{-6}{-2}$ ou encore $x_2 = 3 + 1 = 4$