Aula 03 Sistemas Operacionais I

Conceitos Básicos - Parte 02

Prof. Julio Cezar Estrella

jcezar@icmc.usp.br

Materia adaptado de

Sarita Mazzini Bruschi

baseados no livro Sistemas Operacionais Modernos de A. Tanenbaum

Roteiro

- Conceitos Básicos
- Chamadas ao Sistema
- Estrutura de Sistemas Operacionais

- Pode atuar de duas maneiras diferentes:
 - Como máquina estendida
 - Chamadas ao sistema interface
 - Parte externa
 - Como gerenciador de recursos
 - Parte interna

Estrutura dos Sistemas Operacionais – Baseados em *Kernel* (núcleo)

- Kernel é o núcleo do Sistema Operacional
- Provê um conjunto de funcionalidades e serviços que suportam várias outras funcionalidades do SO
- O restante do SO é organizado em um conjunto de rotinas não-kernel

Interface com usuário

Rotinas não *kernel Kernel*Hardware

- Principais tipos de estruturas:
 - Monolíticos;
 - Em camadas;
 - Máquinas Virtuais;
 - Arquitetura *Micro-kernel*;
 - Cliente-Servidor;

- Todos os módulos do sistema são compilados individualmente e depois ligados uns aos outros em um único <u>arquivo-objeto</u>;
- O Sistema Operacional é um conjunto de processos que podem interagir entre si a qualquer momento sempre que necessário;
- Cada processo possui uma interface bem definida com relação aos parâmetros e resultados para facilitar a comunicação com os outros processos;
- Simples;
- Primeiros sistemas UNIX e MS-DOS;

Em camadas

- Possui uma hierarquia de níveis;
- Primeiro sistema em camadas: THE (idealizado por E.W. Dijkstra);
 - Possuía 6 camadas, cada qual com uma função diferente;
 - Sistema em *batch* simples;
- Vantagem: isolar as funções do sistema operacional, facilitando manutenção e depuração
- Desvantagem: cada nova camada implica uma mudança no modo de acesso

Em camadas

Camadas definidas no THE

Camada	Função
5	O operador
4	Programas do usuário
3	Gerenciamento de entrada/saída
2	Comunicação operador-processo
1	Gerenciamento da memória e do tambor magnético
0	Alocação de processador e multiprogramação

Estrutura dos Sistemas Operacionais Máquina Virtual

- Idéia em 1960 com a IBM → VM/370;
- Modelo de máquina virtual cria um nível intermediário entre o SO e o Hardware;
- Esse nível cria diversas **máquinas virtuais independentes e isoladas**, onde cada máquina oferece um cópia virtual do hardware, incluindo modos de acesso, interrupções, dispositivos de E/S, etc.;
- Cada máquina virtual pode ter seu próprio SO;

Estrutura dos Sistemas Operacionais - Máquina Virtual

- Principais conceitos:
 - Monitor da Máquina Virtual (VMM): executa sobre o hardware e implementa multiprogramação fornecendo várias máquinas virtuais > é o coração do sistema;
 - CMS (Conversational Monitor System):
 - TimeSharing;
 - Executa chamadas ao Sistema Operacional;
 - Máquinas virtuais são cópias do hardware, incluindo os modos kernel e usuário;
 - · Cada máquina pode executar um Sistema Operacional diferente;

Máquina Virtual

Estrutura dos Sistemas Operacionais - Máquina Virtual

- A idéia de máquina virtual foi posteriormente utilizada em contextos diferentes:
 - Programas JAVA (Máquina Virtual Java-JVM): o compilador Java produz código para a JVM (bytecode). Esse código é executado pelo interpretador Java:

Estrutura dos Sistemas Operacionais - Máquina Virtual

- A idéia de máquina virtual foi posteriormente utilizada em contextos diferentes:
 - Computação em nuvem
 - Virtualização dos servidores simula diferentes ambientes em servidores físicos
- Vantagens
 - Flexibilidade;
- Desvantagem:
 - Simular diversas máquinas virtuais não é uma tarefa simples
 → sobrecarga;

- Reduzir o Sistema Operacional a um nível mais simples:
 - **Kernel**: implementa a comunicação entre processos clientes e processos servidores → Núcleo mínimo;
 - Maior parte do Sistema Operacional está implementado como processos de usuários (nível mais alto de abstração);
 - Sistemas Operacionais Modernos;

Cada processo servidor trata de uma tarefa

- Os processos servidores não têm acesso direto ao hardware.
 Assim, se algum problema ocorrer com algum desses servidores, o hardware não é afetado;
- O mesmo não se aplica aos serviços que controlam os dispositivos de E/S, pois essa é uma tarefa difícil de ser realizada no modo usuário devido à limitação de endereçamento. Sendo assim, essa tarefa ainda é feita no *kernel*.

Adaptável para Sistemas Distribuídos

- Linux
 - Monolítico + Módulos

- Windows
 - Microkernel (?) + Camadas + Módulos

Windows

Linux

https://makelinux.github.io/kernel/map/