Graph search on an explicit graph

Depth First Search Breadth First Search

Open	Closed	Open	Closed
		1	
		1	
		J [

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

```
closed \leftarrow an empty set
    fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
    loop do
3
         if fringe is empty then return failure
4
5
         node \leftarrow Remove-Front(fringe)
         if GOAL-TEST(problem, STATE[node]) then return node
6
7
         if STATE[node] is not in closed then
8
             add STATE[node] to closed
             fringe \leftarrow InsertAll(Expand(node, problem), fringe)
9
10
    end
```

(This is figure 3.19 from your book)

Fringe is also called "OPEN"

Graph search on an explicit graph

Depth First Search

Breadth First Search

1	Open	Closed	Open	Closed
2	Α		Α	
3	В	Α	В	Α
4	С	AB	С	AB
5	DH	ABC	DH	ABC
6	EFH	ABCD	HEF	ABCD
7	FH	ABCDE	EFI	ABCDH
8	GH	ABCDEF		
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				

function GRAPH-SEARCH (problem, fringe) returns a solution, or failure

```
closed \leftarrow an empty set
    fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)
    loop do
3
         if fringe is empty then return failure
         node \leftarrow Remove-Front(fringe)
5
6
         if GOAL-TEST(problem, STATE[node]) then return node
7
         if STATE[node] is not in closed then
             add STATE[node] to closed
8
9
             fringe \leftarrow InsertAll(Expand(node, problem), fringe)
10
    end
```

(This is figure 3.19 from your book)

Fringe is also called "OPEN"