Data-analysis and Retrieval Case study k-grams: Biological sequence alignment

Hans Philippi

May 9, 2025

Text search

- So far, we considered exact text search ...
- ... supported by indexing techniques ...
- ... and possibly with wildcards
- But (almost) everyone knows this phenomenon:

Approximate string matching

- Application: automatic spelling correction
- Can be solved using dynamic programming techniques
- But in large scale applications, this may be computationally (too) heavy
- Heuristic indexing techniques based on k-grams
- Application: biological sequence alignment

Sequence alignment: searching for homologies

How Genetically Related Are We to Bananas?

https://www.pfizer.com/news/articles/how_genetically_related_are_we_to_bananas

Sequence alignment: searching for homologies

Queries in context:

- We have a number of patients with disease X. Can we find a sequence that is common in their genomes and that is different from corresponding sequences in genomes of non-patients?
- We have a new virus that has a lot properties in common with some known viruses. Can we find the differences in genetic properties? Can these differences be the result of a plausible sequence of spontaneous mutations, or is it likely to be engineered?

DNA sequencing: milestones

- 1953 Crick & Watson discover the molecular structure of DNA (double helix)
- 1977 Sanger pioneers with sequencing techniques
- 2000-2003 human genome sequenced
- 2008-2015 dramatic decrease of sequencing cost
- Currently: e.g. individual DNA analysis

Some genetics

- The Model: a DNA sequence is a string over the alphabet {A,C,G,T}
- Each of the letters represents a base, in the chemical sense
- ullet A = adenine, G = guanine, C = cytosine and T = thymine
- T in DNA corresponds to U (uracil) in RNA
- A gene is a part of the genome that codes for a specific protein
- The length of a gene varies from a few hundreds to several thousands characters
- Example: ATGGGCGTGATCAAGCCCGACATGAAGATC...
- Background reading: Altman, Computer Applications in Molecular Biology

Some genetics

- Gene expression: a part of the genome is copied as messenger-RNA (transcription)
- The ribosome translates the mRNA code into a protein

Genetics: protein coding

- A protein is represented by a sequence of amino acids. On earth, 20 different amino acids are known. Each of the amino acids is identified by a unique letter.
- A codon is a triplet of base characters. There are $4^3 = 64$ different codons
- Each codon determines an amino acid. Most amino acids are represented by more than codon
- A DNA/RNA string that encodes a protein is can be seen as a sequence of codons, for instance ATGACCAGGATCTTTAAGTGA ...
- ... can be read as ATG-ACC-AGG-ATC-TTT-AAG-TGA

Reference: https://en.wikipedia.org/wiki/Genetic_code

Genetics: protein coding

- A DNA/RNA string that encodes a protein is can be seen as a sequence of codons, for instance ATG-ACC-AGG-ATC-TTT-AAG-TGA
- ATG is start codon; TGA is stop codon
- translated to amino acids: methionine-threonine-arginine-...
- encoded to string representing amino acids: MTR...

Reference: https://en.wikipedia.org/wiki/DNA_codon_table

Genetics: the codon table

Second letter

		90 MAN WARRY TO THE MEN AND ADDRESS OF THE PARTY OF THE P								
		U	С	Α	G					
FIRST JEITER	U	UUU }Phe UUC }Leu UUG }Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGG Trp	UCAG				
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIn CAG GIn	CGU CGC CGA CGG	UCAG				
	А	AUU AUC AUA Met	ACU ACC ACA ACG	AAU Asn AAC Lys AAG Lys	AGU Ser AGC AGA Arg	UCAG				
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG Glu	GGU GGC GGA GGG	UCAG				

Third letter

Some genetics

• The ribosome translates the mRNA triplet code into a protein

Biological sequence databases

- SWISSPROT, GENBANK
- Contain both protein sequences and base sequences
- Generic query:
 Find protein sequences similar to
 MKYMTVTDLNNAGATV...

Biological sequence databases

SWISSPROT example entries (FASTA format):

>gi|1171675|sp|P42268|NDD_BPR70 NUCLEAR DISRUPTION PROTEIN MKYMTVTDI.NNAGATVIGTIKGGEWFI.GTPHKDII.SKPGFYFI.VSEFDGSCV SARFYVGNQRSKQGFSAVLSHIRQRRSQLARTIANNNMAYTVFYLPASKMKP LTTGFGKGQLALAFTRNHHSEYQTLEEMNRMLADNFKFVLQAY >gi|123527|sp|P05228|HRP2_PLAFA HISTIDINE-RICH PROTEIN PRECURSOR (CLONE PFHRP-III) MVSFSKNKVLSAAVFASVLLLDNNNSEFNNNLFSKNAKGLNSNKRLLHESQA HACDAHHAHHVADAHHAHHVADAHHAHHAANAHHAANAHHAANAHHAANAHHAANAHH Α ΑΝΑΗΗΑ ΑΝΑ HHAADANHGFHFNLHDNNSHTLHHAKANACFDDSHHDDAHHDGAHHDDAHHD GAHHDDAHHDGAHHDGAHHDGAHHNATTHHLHMKYMTVTDLNNAGATV

Protein based sequence similarity

- Two DNA fragments are homologous if they show similarities based on common descent
- Below left, we see two homologous fragments. Not only do we have eight matching letters, also the S-N, Q-K and G-A pairings are likely (+) due to electrochemical properties of the amino acids
- We are looking for a formal notion of sequence similarity that comprises letter distance and gapping

```
seq1: GSAQVKGHGKKVA | seq3: HV---D--DMPNAL
mtch: G+ +VK+HGKKV | mtch: ++ +L
seq2: GNPKVKAHGKKVL | seq4: QLQVTGVVVTDATL
```

Scoring

- There exists a classic solution for approximate string matching based on dynamic programming and edit distance
- We will refine this approach according to the specific properties of this domain, especially the letter distance
- Analysis of collections of protein strings provides us with probabilities of letters, when picking them randomly
- Analysis of collections of protein strings that represent known homologies provides us with probabilities of letter pairings

Reference: http://en.wikipedia.org/wiki/Edit_distance

Scoring model

- Each string x consists of a list of symbols x_i
- Symbol a has probability q_a , based on relative frequency
- A pair of symbols a, b has combined probability p_{ab} under the Match assumption, expressing the probability to be seen together in case of homology

Scoring model

 According to the Random Model R, the probability to observe x and y is

$$P(x,y|R) = \prod_i q_{x_i} \prod_i q_{y_i}$$

 According to the Match Model M, the probability to observe x and y is related to the probability of the pairings

$$P(x,y|M) = \prod_i p_{x_iy_i}$$

Scoring model

• The odds-ratio

$$\frac{P(x,y|M)}{P(x,y|R)} = \prod_{i} \frac{p_{x_iy_i}}{q_{x_i}q_{y_i}}$$

is an indicator for homology

 For mathematical reasons, we prefer to do our calculations in log-space

Scoring model: log space

• The odds-ratio

$$\frac{P(x,y|M)}{P(x,y|R)} = \prod_{i} \frac{p_{x_iy_i}}{q_{x_i}q_{y_i}}$$

• The log-odds ratio for character pairs

$$s(a,b) = log(\frac{p_{ab}}{q_a q_b})$$

• The log-odds ratio for strings x and y

$$S(x,y) = \sum_{i} s(x_i,y_i)$$

Scoring model: Blocks Substitution Matrix (BLOSUM)

- BLOSUM matrices represent log-odds ratios
- Several variants, for instance:
 - BLOSUM80: used for strongly related proteins
 - BLOSUM62: midrange
 - BLOSUM45: distantly related proteins
- Below you see a part of the BLOSUM50 matrix
- D, E and K charged; V, I and L hydrophobe

	D	Ε	K	V	- 1	L
D	8	2	-1	-4	-4	-4
Ε	2	6	1	-3	-4	-3
Κ	-1	1	6	-3	-3	-3
V	-4	-3	-3	-4 -3 -3 5 4	4	1
ı	-4	-4	-3	4	5	2
L	-4	-3	-3	1	2	5

Reference: https://en.wikipedia.org/wiki/BLOSUM

Scoring model: gaps

We give a penalty for gaps with length g

$$\gamma(d) = -gd$$

• Based on empirical tuning, d = 8 is often suggested

Intermezzo: example alignments

Using BLOSUM50 and $\gamma(d) = -gd, d = 8$, calculate the scores for the following alignments:

```
seq1: GSAQVKGHGKKVA seq3: HV---D--DMPNAL
mtch: G+ +VK+HGKKV mtch: ++ +L
seq2: GNPKVKAHGKKVL seq4: QLQVTGVVVTDATL
```

Intermezzo: example alignments

Using BLOSUM50 and $\gamma(d) = -gd, d = 8$, calculate the scores for the following alignments:

Alignment algorithms

- Gapping enlarges the search space dramatically
- But, we can apply dynamic programming
- The optimal alignment between strings $x = x_1 \dots x_m$ and $y = y_1 \dots y_n$ can be expressed in the optimal alignments of subsequences of x and y

Alignment algorithms: Needleman-Wunsch

- Suppose we know optimal alignments for
 - $x_1 \dots x_{m-1}$ and $y_1 \dots y_{n-1}$
 - $x_1 ... x_m$ and $y_1 ... y_{n-1}$
 - $x_1 ... x_{m-1}$ and $y_1 ... y_n$
- The optimal alignment for $x_1 ldots x_m$ and $y_1 ldots y_n$ can be determined by choosing the best option from:
 - solution for $x_1 \dots x_{m-1}$ and $y_1 \dots y_{n-1}$; pair x_m with y_n
 - solution for $x_1 \dots x_{m-1}$ and $y_1 \dots y_n$; pair x_m with gap
 - solution for $x_1 ... x_m$ and $y_1 ... y_{n-1}$; pair y_n with gap

Needleman-Wunsch

- Now we can fill the dynamic programming matrix from upper left to bottom right
- The score F for entry i, j can be calculated as follows:

$$F(i,j) = max egin{cases} F(i-1,j) - d \ F(i,j-1) - d \ F(i-1,j-1) + s(x_i,y_j) \end{cases}$$

• Arrows indicate which of the three options was chosen for the calculation of F(i,j)

Align HEAGAWGHEE with PAWHEAE

$$\gamma(d) = -gd, d = 8$$

Initialized matrix:

	-	Н	E	Α	
-	0	← -8	← -16	← -24	
Р	↑ -8				
Α	↑ -16				
W	↑ -24				

Align HEAGAWGHEE with PAWHEAE

$$\gamma(d) = -gd, d = 8$$

One step:

Align HEAGAWGHEE with PAWHEAE

$$\gamma(d) = -gd, d = 8$$

Two more steps:

Align HEAGAWGHEE with PAWHEAE

$$\gamma(d) = -gd, d = 8$$

Six more steps:

Align HEAGAWGHEE with PAWHEAE default is $\ ^{\nwarrow}$

$$\gamma(d) = -gd, d = 8$$

	-	Н	E	Α	G	Α	W	G	Н	E	E
								< -56			
								< -49			
Α	↑ -16	↑ -10	-3	-4	< -12	-20	< -28	< -36	< -44	< -52	< -60
W	↑ -24	↑ -18	↑ -11	-6	-7	-15	-5	< -13	< -21	< -29	< -37
Н	↑ -32	-14	-18	-13	-8	-9	↑ -13	-7	-3	< -11	< -19
E	↑ -40	↑ -22	-8	< -16	↑ -16	-9	-12	↑ -15	-7	3	-5
Α	↑ -48	↑ -30	↑ -16	-3	< -11	-11	-12	-12	↑ -15	↑ -5	2
E	↑ -56	↑ -38	↑ -24	↑ -11	-6	-12	-14	-15	-12	-9	1
	1										

- Alignment is finished when lower right field is reached
- This field contains the alignment score: +1
- Time complexity is O(mn)
- Backward arrows indicate the alignment path
- Corresponding alignment ?

- Alignment is finished when lower right field is reached
- ullet This field contains the alignment score: +1
- Time complexity is O(mn)
- Backward arrows indicate the alignment path
- Corresponding alignment:

```
seq1: HEAGAWGHE-E
seq2: --P-AW-HEAE
```

Global versus local alignment

• Global alignment: score = +1:

```
seq1: HEAGAWGHE-E
seq2: --P-AW-HEAE
```

• Local alignment: score = +21:

```
seq1: HEA
seq2: HEA
```

 Local matches are much more interesting, especially when comparing a relatively short query string to a long database string

Local alignment: Smith-Waterman

- Question: How do you adapt Needleman-Wunsch to find local matches?
- Remember: the score F according to N-W for entry i, j can be calculated as follows:

$$F(i,j) = max egin{cases} F(i-1,j) - d \ F(i,j-1) - d \ F(i-1,j-1) + s(x_i,y_j) \end{cases}$$

Local alignment: Smith-Waterman

- Question: How do you adapt Needleman-Wunsch to find local matches?
- Make it possible to start anywhere in the matrix from scratch, i.e. with score = 0
- Make it possible to stop anywhere in the matrix
- The score F for entry i, j can be calculated as follows:

$$F(i,j) = max egin{cases} 0, & (\textit{start new alignment}) \ F(i-1,j) - d \ F(i,j-1) - d \ F(i-1,j-1) + s(x_i,y_j) \end{cases}$$

Align HEAGAWGHEE with PAWHEAE

$$\gamma(d) = -gd, d = 8$$

A less exciting start:

$$\gamma(d) = -gd, d = 8$$

	-	Н	Ε	Α	
-	0	0	0	0	
Ρ	0	0	0	0	
Α	0	0	0	5	
W	0	0 0 0 0	0	0	

Align HEAGAWGHEE with PAWHEAE

$$\gamma(d) = -gd, d = 8$$

default is √; backpointer irrelevant for zero fields

	-	Н	Ε	Α	G	Α	W	G	Н	Ε	Ε
-	0	0	0	0	0	0	0	0	0	0	0
Ρ	0	0	0	0	0	0	0	0	0	0	0
Α	0	0	0	5	0	5	0		0	0	0
W	0	0	0	0	2	0	20	< 12	<4	0	0
Н	0	10	<2	0	0			18	22	<14	<6
Ε	0	† 2	16	< 8	0	0	↑ 4	↑ 10	18	28	20
Α	0	0	↑8	21	< 13	5	0	4	† 10	† 20	27
Е	0	0	6	↑ 13	18	12	< 4	0	4	16	26

Alignment = ?

Align HEAGAWGHEE with PAWHEAE

	-	Н	Ε	Α	G	Α	W	G	Н	Ε	Ε
-	0	0	0	0	0	0	0	0	0	0	0
Р	0	0	0	0	0	0	0	0	0	0	0
Α	0	0	0	5	0	5	0	0	0	0	0
W	0	0	0	0	2	0	20	< 12	<4	0	0
Н	0	10	<2	0	0	0	† 12	18	22	<14	<6
Ε	0	† 2			0		↑ 4	↑ 10	18	28	20
Α	0	0	↑8	21	< 13	5	0	4	† 10	† 20	27
Е	0	0	6	↑ 13	18	12	< 4	0	4	16	26

Alignment: seq1: AWGHE

seq2: AW-HE

Heuristics

- Complexity of dynamic programming algorithms is O(mn), where m = length of query string and n = length of database
- Unsatisfying for large databases, heuristic required
- Two step approach
 - step 1 (filtering): select a number of promising candidate sections in the database
 - step 2 (expansion): apply further analysis to select best matches to query
- Blast-approach: heuristic based on k-gram filtering
- k = 3 for protein string matching (20 char alphabet)
- k = 11 for base string matching (ACGT alphabet)

Heuristics: BLAST

- Example: 3-gram match (a hit) between HEAGAWGHEE and PAWHEAE
- A hit points to positions in x and y that are candidates for further processing by an expansion algorithm
- First observation: if size of k
 - increases, then precision increases, recall decreases
 - decreases, then precision decreases, recall increases

BLAST Protein search

- Blast uses 3-grams for protein matching and 11-gram for base string matching
- Having just one 3-gram match (hit) between two strings gives a lot of false positives
- Blast applies other techniques to influence precision and recall

BLAST increasing precision

- Two hit diagonal principle
- A database string is a candidate when it shares two hits with the query string on the same diagonal, i.e. with the same distance between the hits
- OK: qu: CWYWRWYYC db: RRWYWAWYYRR
- Wrong: qu: CWYWRWYYC
 - db: RR<mark>WYWABC</mark>WYYRR

BLAST increasing recall

- Extended version of hit notion
- Two 3-grams match if their score exceeds a threshold (default = 11)
- Example: HEAGAWGHEE and PAWHEAE
- Score for GAW PAW is -2 + 5 + 15 = +18

BLAST scores & probabilities

- Intuitively, it is clear that a high score ($\gg 0$) indicates a homology, ...
- ... whereas a negative score makes it unlikely.
- Altschul (see references) gives a way to calculate probabilities from raw scores, ...
- ... but we will not go into further detail here.

Looking further...

Multiple sequence alignment

References

- Durban, Eddy e.a., Biological Sequence Analysis
- Altschul e.a., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs