Corrigé du CNC 2008 Math2 PSI

Rédigé par KHOUTAIBI Abdelaziz professeur en PSI à Marrakech

I.

1. (a) $M \in \mathcal{S}_{\mathbb{K}}(A) \iff \exists P \in GL_2(\mathbb{K}), M = PAP^{-1}$

d'où $\mathscr{S}_{\mathbb{K}}(A) = \{PAP^{-1}/P \in GL_2(\mathbb{K})\}.$

- (b) $\forall x \in \mathbb{K}, \mathcal{S}_{\mathbb{K}}(xI_2) = \{xI_2\}.$
- 2. (a) Soit $\lambda \in \mathbb{K}$, alors $\det(E_{\lambda}) = \det(F_{\lambda}) = 1 \neq 0$ donc E_{λ} et F_{λ} sont inversibles et $E_{\lambda}^{-1} = \begin{pmatrix} 1 & -\lambda \\ 0 & 1 \end{pmatrix}$, $F_{\lambda}^{-1} = \begin{pmatrix} 1 & 0 \\ -\lambda & 1 \end{pmatrix}$

(b)
$$E_{\lambda}AE_{\lambda}^{-1} = \begin{pmatrix} a+\lambda c & -c\lambda^2+(d-a)\lambda+b \\ c & d-\lambda c \end{pmatrix}$$
, $F_{\lambda}AF_{\lambda}^{-1} = \begin{pmatrix} a-\lambda b & b \\ -b\lambda^2+(a-d)\lambda+c & b\lambda+d \end{pmatrix}$.

(c) Soit $A \in \mathcal{M}_2(\mathbb{K})$.

A est semblable à elle même, donc $A \in \mathcal{L}_{\mathbb{K}}(A)$.

Si $\mathscr{S}_{\mathbb{K}}(A)$ est réduite à un singleton alors $\mathscr{S}_{\mathbb{K}}(A) = \{A\}$,

de plus, $\forall \lambda \in \mathbb{K}$, $E_{\lambda}AE_{\lambda}^{-1} \in \mathscr{S}_{\mathbb{K}}(A)$ et $E_{\lambda}AE_{\lambda}^{-1}$ sont dans $\mathscr{S}_{\mathbb{K}}(A)$, donc

$$\forall \lambda \in \mathbb{K}, E_{\lambda}AE_{\lambda}^{-1} = F_{\lambda}AF_{\lambda}^{-1} = A$$

En identifiant les premières lignes on obtient:

b = c = 0, a = d et par suite $A = aI_2$.

3. Soit $\psi: \mathscr{M}_2(\mathbb{K}) \to \mathbb{K}^4$, $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (a,b,c,d)$ l'isomorphisme canonique de $\mathscr{M}_2(\mathbb{K})$ sur \mathbb{K}^4 et $N: (a,b,c,d) \mapsto (|a|^2 + |b|^2 + |c|^2 + |d|^2)^{1/2}$ la norme euclidienne usuelle de \mathbb{K}^4 alors

$$\forall A \in \mathcal{M}_2(\mathbb{K}), ||A||_S = N(\psi(A))$$

Soit $(A, B) \in (\mathcal{M}_2(\mathbb{K}))^2$ et $\lambda \in \mathbb{K}$.

- $||A||_S = 0 \iff N(\psi(A)) = 0 \iff \psi(A) = 0 \iff A = 0$
- $||\lambda A||_S = N(\psi(\lambda A)) = N(\lambda \psi(A)) = |\lambda|N(\psi(A)) = |\lambda|||A||_S$.

•

$$||A + B||_S = N(\psi(A + B))$$

= $N(\psi(A) + \psi(B))$
 $\leq N(\psi(A)) + N(\psi(B))$
= $||A||_S + ||B||_S$

Des trois points précédents on déduit que $\|.\|_S$ est une norme sur $\mathcal{M}_2(\mathbb{K})$.

4. (a) Posons

$$\mathscr{E} = \left\{ E_{\lambda} A E_{\lambda}^{-1}, \lambda \in \mathbb{K} \right\} = \left\{ \begin{pmatrix} a + \lambda c & -c\lambda^{2} + (d-a)\lambda + b \\ c & d - \lambda c \end{pmatrix}, \lambda \in \mathbb{K} \right\}$$

$$\mathscr{F} = \left\{ F_{\lambda} A F_{\lambda}^{-1}, \lambda \in \mathbb{K} \right\} = \left\{ \begin{pmatrix} a - \lambda b & b \\ -b\lambda^{2} + (a-d)\lambda + c & b\lambda + d \end{pmatrix}, \lambda \in \mathbb{K} \right\}$$

On a alors

 $\mathscr{E} \subset \mathscr{S}_{\mathbb{K}}(A)$ et $\mathscr{F} \subset \mathscr{S}_{\mathbb{K}}(A)$, et puisque $\mathscr{S}_{\mathbb{K}}(A)$ est bornée, alors \mathscr{E} et \mathscr{F} le sont aussi.

(b) Puisque toute application polynômiale à coefficients dans \mathbb{K} , bornée sur \mathbb{K} est constante alors:

$$b = c = 0$$
 et $a = d$, par suite $A = aI_2$.

- 5. Si $\mathscr{S}_{\mathbb{K}}(A)$ est compacte alors elle est bornée et d'après b) A est scalaire.
- 6. L'application trace est une forme linéaire sur $\mathcal{M}_2(\mathbb{K})$, qui est de dimension finie, donc elle est continue.

L application det:

$$\mathcal{M}_2(\mathbb{K}) \to \mathbb{K}, A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \mapsto ad - bc$$

est polynômiale donc continue sur $\mathcal{M}_2(\mathbb{K})$.

- 7. Soit *A* et *B* deux matrices semblables de $\mathcal{M}_2(\mathbb{K})$ alors, il existe $P \in GL_2(\mathbb{K})$ tel que $B = PAP^{-1}$, d'où
 - $\det(B) = \det(PAP^{-1}) = \det(P)\det(A)\det(P^{-1}) = \det(PP^{-1})\det(A) = \det(A)$.
 - $\forall \lambda \in \mathbb{K}$ $\chi_B(\lambda) = \det(B \lambda I_2) = \det(PAP^{-1} \lambda I_2) = \det(P(A \lambda I_2)P^{-1}) = \det(A \lambda I_2) = \chi_A(\lambda)$, d'où $\chi_A = \chi_B$.

II.

- 1. (a) Si $\operatorname{Sp}_{\mathbb{K}}(A) = \{\lambda, \mu\}$ alors A est une matrice d'ordre 2 qui admet deux valeurs propres distinctes donc elle est diagonalisable dans $\mathscr{M}_2(\mathbb{K})$ et par suite elle est semblable à la matrice $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$.
 - (b) $\operatorname{Sp}_{\mathbb{K}}(A) = \{\lambda\}$ donc, A est digonalisable si et seulement si elle est semblable à λI_2 c.à.d $A = \lambda I_2$.
 - (c) Soit $f \in \mathcal{L}(\mathbb{K}^2)$ l'endomorphisme canoniquement associé à A, id l'identité de \mathbb{K}^2 et notons $N_{\lambda} := \text{Ker}(f \lambda id)$.

 χ_f est de degré 2 et admet une unique racine λ , donc il est scindé sur \mathbb{K} et $\chi_f = (\lambda - X)^2$, comme f non diagonalisable alors dim $N_\lambda = 1$.

Soit $v \in \mathbb{K}^2 \setminus N_{\lambda}$ et $u = (f - \lambda i d)(v)$.

On a $v \notin N_{\lambda}$, donc $u = (f - \lambda i d)(v) \neq 0$, et d'après Cayley-hamilton $(f - \lambda i d)^2 = 0$ donc, $(f - \lambda i d)(u) = (f - \lambda i d)^2(v) = 0$ et par suite $u \in N_{\lambda} \setminus \{0\}$ et (u, v) est libre de \mathbb{K}^2 qui est de dimension 2, donc $\beta' = (u, v)$ est une base de \mathbb{K}^2 et $mat_{\beta'}(f) = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$.

A et $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ représentent le même endomorphisme f de \mathbb{K}^2 , donc elles sont semblables dans $\mathscr{M}_2(\mathbb{K})$.

- 2. (a) Si $A = xI_2$ où $x \in \mathbb{K}$, alors d'après I.1.b $\mathcal{S}_{\mathbb{K}}(A) = \{xI_2\}$ est un singleton qui est un fermé de $\mathcal{M}_2(\mathbb{K})$.
 - (b) On pose $P_k = \begin{pmatrix} 2^{-k} & 0 \\ 0 & 1 \end{pmatrix}$ et $T = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ alors $A_k = P_k T P_k^{-1}, P_k \in GL_2(\mathbb{K})$ donc A_k est semblable à T et T semblable à A d'aprés II.1.c donc par transitivité A_k est semblable à A, d'où $\forall \ k \in \mathbb{N}, A_k \in \mathscr{S}_{\mathbb{K}}(A)$

D'autre part:
$$\forall k \in \mathbb{N}, A_k = \begin{pmatrix} \lambda & 2^{-k} \\ 0 & \lambda \end{pmatrix}$$
, donc $\lim_{k \to +\infty} A_k = \lambda I_2$.

 λI_2 est diagonale et A n'est diagonalisable , donc A n'est pas semblable à λI_2 et par suite $\lambda I_2 \notin \mathscr{S}_{\mathbb{K}}(A)$.

 $(A_k)_{k\in\mathbb{N}}$ est une suite d'éléments de $\mathscr{S}_{\mathbb{K}}(A)$ qui converge vers $\lambda I_2 \notin \mathscr{S}_{\mathbb{K}}(A)$, donc d'après la caractérisation séquentielle d'un fermé $\mathscr{S}_{\mathbb{K}}(A)$ n'est pas fermée.

(c) i. $\forall k \in \mathbb{K}, P_k(A - \alpha I_2)P_k^{-1} = P_k A P_k^{-1} - \alpha I_2, \text{ donc}$

$$\lim_{k\to+\infty} P_k(A-\alpha I_2)P_k^{-1} = B-\alpha I_2$$

d'après 7) l'application det est continue sur $\mathcal{M}_2(\mathbb{K})$, donc

$$\lim_{k \to +\infty} \det(P_k(A - \alpha I_2) P_k^{-1}) = \det(B - \alpha I_2)$$

D'autre part,

 $\forall k \in \mathbb{N}, \det(P_k(A - \alpha I_2)P_k^{-1}) = \det(A - \alpha I_2) = 0 \Rightarrow \lim_{k \to +\infty} \det(P_k^{-1}(A - \alpha I_2)P_k) = 0.$ L'unicité de la limite donne $\det(B - \alpha I_2) = 0.$

ii. D'après i) on a $\det(B - \lambda I_2) = \det(B - \mu I_2) = 0$, donc $\{\lambda, \mu\} \subset \operatorname{Sp}_{\mathbb{K}}(B)$, comme $B \in \mathscr{M}_2(\mathbb{K})$ alors elle admet au plus deux valeurs propres, d'où $\operatorname{Sp}_{\mathbb{K}}(B) = \operatorname{Sp}_{\mathbb{K}}(A) = \{\lambda, \mu\}$, et d'après 1.a, A et B sont semblables à $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ et par transitivité de la relation de similitude dans $\mathscr{M}_2(\mathbb{K})$, B est semblable à A d'où $B \in \mathscr{S}_{\mathbb{K}}(A)$.

On a montré que pour toute suite d'éléments de $\mathscr{S}_{\mathbb{K}}(A)$ qui converge dans $\mathscr{M}_{2}(\mathbb{K})$, sa limite est dans $\mathscr{S}_{\mathbb{K}}(A)$ donc $\mathscr{S}_{\mathbb{K}}(A)$ est fermée.

3. $A \in \mathcal{M}_2(\mathbb{C})$, son polynôme caractéristique est scindé sur \mathbb{C} , soit λ et μ ses valeurs propres éventuellement confondues.

 \Rightarrow)

Supposons que $\mathscr{S}_{\mathbb{C}}(A)$ est fermée

Si A n'est pas diagonalisable alors $\lambda = \mu$ et d'après 2.b $\mathscr{S}_{\mathbb{K}}(A)$ n'est pas fermée, ce qui contredit l'hypothèse, d'où A est daigonalisable.

 \Leftarrow)

Supposons que A est diagonalisabe

- Si $\lambda = \mu$ alors d'après 1.b, $A = \lambda I_2$ et d'après 2.a, $\mathscr{S}_{\mathbb{K}}(A)$ est fermée.
- Si $\lambda \neq \mu$ alors d'après 2.c, $\mathscr{S}_{\mathbb{K}}(A)$ est fermée.
- 4. (a) On a $\operatorname{Sp}_{\mathbb{R}}(A) = \emptyset$, donc le polynôme caractéristique $\chi_A(X) = X^2 \operatorname{tr}(A)X + \det(A)$ de A n'admet pas de racines dans \mathbb{R} , par suite son discriminant $\Delta = (\operatorname{tr}(A))^2 4\det(A)$ est strictement négatif, d'où $4\det(A) (\operatorname{tr}(A))^2 > 0$.

(b)
$$A'^2 = \frac{4}{\delta^2} \left(A^2 - \text{tr}(A)A + \frac{(\text{tr}(A))^2}{4} I_2 \right)$$
, or d'après cayley-hamilton $A^2 = \text{tr}(A)A - \det(A)I_2$, donc $A'^2 = \frac{4}{\delta^2} \left(-\det(A) + \frac{(\text{tr}(A))^2}{4} \right) I_2 = \frac{4}{\delta^2} \frac{(-\delta^2)}{4} I_2 = -I_2$

(c) Supposons que (e, f(e)) liée, comme $e \neq 0$ alors : $\exists \alpha \in \mathbb{R}$, $f(e) = \alpha e$ et comme $f^2 = -id_{\mathbb{R}^2}$ alors:

$$f^2(e) = \alpha f(e) = \alpha^2 e \Rightarrow -e = \alpha^2 e \Rightarrow \alpha^2 = -1$$
.

ceci est absurde car $\alpha \in \mathbb{R}$,

d'où $\beta_1 = (e, f(e))$ est libre de \mathbb{R}^2 qui est de dimension 2 et par suite c'est une base de \mathbb{R}^2 et

$$mat_{\beta_1}(f) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

(d) On a $A' = PA_1P^{-1}$ où P est la matrice de passage de la base canonique à la base β_1 de \mathbb{R}^2 .

$$A'' = \frac{\delta}{2}A_1 + \frac{\operatorname{tr}(A)}{2}I_2 = \frac{\delta}{2}P^{-1}A'P + \frac{\operatorname{tr}(A)}{2}I_2 = P^{-1}\left(\frac{\delta}{2}A' + \frac{\operatorname{tr}(A)}{2}I_2\right)P = P^{-1}AP,$$

d'où A et A'' sont semblables dans $\mathcal{M}_2(\mathbb{R})$.

- (e) i. D'après I.7), on a $\forall k \in \mathbb{N}$, $\operatorname{tr}(P_kAP_k^{-1}) = \operatorname{tr}(A)$ et $\det(P_kAP_k^{-1}) = \det(A)$ or d'après I.6, les applications tr et det sont continues sur $\mathscr{M}_2(\mathbb{K})$, donc $\lim_{k \to +\infty} \operatorname{tr}(P_kAP_k^{-1}) = \operatorname{tr}(\tilde{A})$ et $\lim_{k \to +\infty} \det(P_kAP_k^{-1}) = \det(\tilde{A})$ l'unicité de la limite donne alors: $\operatorname{tr}(\tilde{A}) = \operatorname{tr}(A)$ et $\det(A) = \det(\tilde{A})$.
 - ii. D'parés i) $\chi_A = \chi_{\tilde{A}}$ donc $\operatorname{Sp}_{\mathbb{R}}(\tilde{A}) = \emptyset$ et d'après 4.d, A est semblable à $A'' = \frac{1}{2}\begin{pmatrix} \operatorname{tr}(A) & -\delta \\ \delta & \operatorname{tr}(A) \end{pmatrix}$ et \tilde{A} est semblable à $\tilde{A}'' = \frac{1}{2}\begin{pmatrix} \operatorname{tr}(\tilde{A}) & -\delta' \\ \delta' & \operatorname{tr}(\tilde{A}) \end{pmatrix}$ où $\delta' = \sqrt{\operatorname{4det}(\tilde{A}) (\operatorname{tr}(\tilde{A})^2)}$, Comme d'après i) $\operatorname{det}(\tilde{A}) = \operatorname{det}(A)$ et $\operatorname{tr}(\tilde{A}) = \operatorname{tr}(A)$ alors $\delta = \delta'$ et par suite $A'' = \tilde{A}''$. Ainsi A et \tilde{A} sont semblables à A'' donc elles sont semblables.

 $5. \Rightarrow)$

On procède par contraposée et on suppose que $\operatorname{Sp}_{\mathbb{R}}(A) \neq \emptyset$ et A non diagonalisable alors $\operatorname{Sp}_{\mathbb{R}}(A) = \{\lambda\}$ et donc d'après II.2.b $\mathscr{S}_{\mathbb{R}}(A)$ n'est pas fermée.

(⇒

- Si A est diagonalisable alors $\operatorname{Sp}_{\mathbb{R}}(A) = \{\lambda\}$ ou $\operatorname{Sp}_{\mathbb{R}}(A) = \{\lambda, \mu\}$ donc d'après II.2.a et II.2.c $\mathscr{S}_{\mathbb{R}}(A)$ est fermée.
- Si $\operatorname{Sp}_{\mathbb{R}}(A) = \emptyset$ alors d'après II.4, pour toute suite (A_k) d'éléments de $\mathscr{S}_{\mathbb{K}}(A)$ qui converge vers \tilde{A} , on a $\tilde{A} \in \mathscr{S}_{\mathbb{K}}(A)$, et par suite $\mathscr{S}_{\mathbb{K}}(A)$ est fermée.

III.

A

1. Le polynôme caractéristique de G est de degré 2 et puisque $\operatorname{Sp}_{\mathbb{R}}(A) \neq \emptyset$ alors χ_G admet au moins une racine réelle λ , d'où il existe $\mu \in \mathbb{R}$, $\chi_A = (\lambda - X)(\mu - X)$ et par suite les racines de χ_G sont λ et μ qui sont réelles .

2. (a) Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$
 alors $A^{\dagger}A = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix}$ d'où,

$$||A||_S = (a^2 + b^2 + c^2 + d^2)^{1/2} = \sqrt{\operatorname{tr}(A^{\mathsf{t}}A)}$$

(b)

$$||UA^{t}U||_{S} = (\operatorname{tr}(U^{t}A^{t}UUA^{t}U))^{1/2}$$

$$= \operatorname{tr}(U^{t}AA^{t}U))^{1/2} \quad (\operatorname{car}^{t}UU = I_{2})$$

$$= (\operatorname{tr}({}^{t}AA^{t}UU))^{1/2} \quad (\operatorname{car}\operatorname{tr}(AB) = \operatorname{tr}(BA))$$

$$= (\operatorname{tr}({}^{t}AA))^{1/2} = ||A||_{S}$$

En remplaçant *U* par ^t*U* qui est aussi orthogonale on obtient l'autre égalité

$$||A||_{S} = ||^{t}UAU||_{S}$$

3. $\mathscr{A} = \{\|PAP^{-1}\|_S; \ P \in GL_2(\mathbb{R})\}$ est une partie de \mathbb{R} \mathscr{A} n'est pas vide car $GL_2(\mathbb{R})$ n'est pas vide et \mathscr{A} est minorée par 0 , donc elle possède une borne inférieure.

- B.
- 1. (a) $u_1 = \frac{u_1'}{\|u_1'\|}$ et $u_2 = \frac{w}{\|w\|}$ où $w = u_2' (u_2'|u_1)u_1$
 - (b) U est la matrice de passage de la base canonique à la base (u_1, u_2) , ces deux bases sont orthonormées pour le produit scalaire (.|.) donc U est orthogonale et par suite ${}^{t}UU = I_{2}$.
 - (c) On a: $g(u_1) = \frac{1}{\|u_1'\|} g(u_1') = \frac{\lambda}{\|u_1'\|} u_1' = \lambda u_1$, posons $g(e_2) = \alpha u_1' + \gamma u_2'$, alors: $T = mat_{(u'_1, u'_2)}(g) = \begin{pmatrix} \lambda & \alpha \\ 0 & \gamma \end{pmatrix}, \text{ de plus } (\lambda - X)(\mu - X) = \chi_g(X) = \chi_T(X) = (\lambda - X)(\gamma - X), \text{ d'où } \gamma = \mu$ et $T = \begin{pmatrix} \lambda & \alpha \\ 0 & \mu \end{pmatrix}$

D'après la formule de changement de matrice : $G = UTU^{-1} = UT^{\dagger}U$ car d'après b) ${}^{\dagger}U = U^{-1}$.

D'après A.2.b on a: $||G||_S = ||T||_S = \sqrt{\lambda^2 + \mu^2 + \alpha^2}$

(a) Soit $B \in \mathcal{S}_{\mathbb{R}}(A)$ alors A et B sont semblables donc d'après I.7) elles ont le même polynôme caractéristique et donc les mêmes valeurs propres λ et μ et d'après 1.c), il existe $\alpha_1 \in \mathbb{R}$ tel que:

$$||B||_{S} = \sqrt{\lambda^{2} + \mu^{2} + \alpha_{1}^{2}} \ge \sqrt{\lambda^{2} + \mu^{2}}$$

- (b) Soit $t \in \mathbb{R}^*$, alors $\begin{pmatrix} \lambda & t\alpha \\ 0 & \gamma \end{pmatrix} = \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda & \alpha \\ 0 & \mu \end{pmatrix} \begin{pmatrix} t^{-1} & 0 \\ 0 & 1 \end{pmatrix}$, donc $\begin{pmatrix} \lambda & t\alpha \\ 0 & \gamma \end{pmatrix} \in \mathscr{S}_{\mathbb{R}}(A)$
- (c) Posons pour $t \in \mathbb{R}^*$, $A(t) = \begin{pmatrix} \lambda & t\alpha \\ 0 & \gamma \end{pmatrix}$, alors d'après b) $\forall t \in \mathbb{R}^*$ $A(t) \in \mathscr{S}_{\mathbb{R}}(A)$ et par suite

$$||A(t)||_{S} = \sqrt{\lambda^{2} + \mu^{2} + t^{2}\alpha^{2}} \ge \inf_{B \in \mathscr{S}_{\mathbb{R}}(A)} ||B||_{S}$$

En faisant tendre t vers 0, on obtient:

$$\sqrt{\lambda^2 + \mu^2} \ge \inf_{B \in \mathscr{S}_{\mathbb{R}}(A)} ||B||_{S}$$

et d'après 2.a), on a:

$$\inf_{B \in \mathscr{S}_{\mathbb{R}}(A)} ||B||_{S} = \sqrt{\lambda^{2} + \mu^{2}}$$

 $(d) \Rightarrow$

On suppose que A est diagonalisable alors, A est semblable à $D = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ donc $D \in \mathscr{S}_{\mathbb{R}}(A)$ et $\sqrt{\lambda^2 + \mu^2} = ||D||_S$, d'où $\inf_{B \in \mathscr{S}_{\mathbb{R}}(A)} ||B||_S$ est atteinte en D.

 \Leftarrow) On suppose que $\exists G \in \mathscr{S}_{\mathbb{R}}(A)$, $\inf_{B \in \mathscr{S}_{\mathbb{R}}(A)} \|B\|_{S} = \|G\|_{S}$. Puisque $G \in \mathscr{S}_{\mathbb{R}}(A)$ alors $\chi_{A} = \chi_{B} = (\lambda - X)(\mu - X)$ et d'après 1)c) il existe $\alpha \in \mathbb{R}$ tel que G est semblable à $\begin{pmatrix} \lambda & \alpha \\ 0 & \mu \end{pmatrix}$ et $||G||_S = \sqrt{\lambda^2 + \mu^2 + \alpha^2}$ d'où,

 $\sqrt{\lambda^2 + \mu^2 + \alpha^2} = \sqrt{\lambda^2 + \mu^2}$, par suite $\alpha = 0$ et G est semblable à $D = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ donc elle est bien diagonalisable.

(a) Soit $\mathcal{A} = \{ \|PAP^{-1}\|_S; P \in GL_2(\mathbb{R}) \}.$

On a $\sqrt{\lambda^2 + \mu^2} = \inf \mathcal{A}$, donc d'après la caractérisation de la borne inférieure:

$$\forall \varepsilon > 0, \exists ||PAP^{-1}||_{S} \in \mathcal{S}_{\mathbb{R}}(A), ||PAP^{-1}||_{S} \leq \sqrt{\lambda^{2} + \mu^{2}} + \varepsilon,$$

en particulier pour $\varepsilon = \frac{1}{k+1}$, avec $k \in \mathbb{N}$, $\exists P_k \in GL_2(\mathbb{R})$, $||P_kAP_k^{-1}||_S \leq \sqrt{\lambda^2 + \mu^2} + \frac{1}{k+1}$, d'où l'existence de la suite $(P_k)_{k \in \mathbb{N}}$ souhaitée.

(b) D'après a) $\forall k \in \mathbb{N}$, $||P_k A P_k^{-1}||_S \le \sqrt{\lambda^2 + \mu^2} + \frac{1}{k+1} \le \sqrt{\lambda^2 + \mu^2} + 1$ Donc la suite $(P_k A P_k^{-1})_{k \in \mathbb{N}}$ est bornée.

(c) Il existe une application $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que la suite $(P_{\varphi(k)}AP_{\varphi(k)}^{-1})_{k \in \mathbb{N}}$ converge vers \tilde{A} .

 $\forall \ k \in \mathbb{N}, \ \|P_{\varphi(k)}AP_{\varphi(k)}^{-1}\|_S \leq \sqrt{\lambda^2 + \mu^2} + \frac{1}{\varphi(k) + 1}, \ \text{de la continuité de l'application } \|.\|_S, \ \text{on déduit que} \\ \lim_{k \to +\infty} \|P_{\varphi(k)}AP_{\varphi(k)}^{-1}\|_S = \|\tilde{A}\|_S \leq \sqrt{\lambda^2 + \mu^2}$

D'autre part $\mathscr{S}_{\mathbb{R}}(A)$ est supposée fermée et $\forall k \in \mathbb{N}$, $P_{\varphi(k)}AP_{\varphi(k)}^{-1} \in \mathscr{S}_{\mathbb{R}}(A)$ alors $\tilde{A} \in \mathscr{S}_{\mathbb{R}}(A)$ et d'après 2)a) $\|\tilde{A}\|_{S} \geq \sqrt{\lambda^{2} + \mu^{2}}$, d'où

$$\|\tilde{A}\|_{S} = \sqrt{\lambda^{2} + \mu^{2}}$$

La borne inférieure de $\{\|PAP^{-1}\|_S; P \in GL_2(\mathbb{R})\}$ est atteinte en $\tilde{A} \in \mathcal{S}_{\mathbb{R}}(A)$, donc d'après 2.d) A est diagonalisable.

C.

1. On a
$$M' = \frac{2}{\delta} \begin{pmatrix} \frac{a-d}{2} & b \\ c & \frac{d-a}{2} \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}$$
, où $\alpha = \frac{a-d}{\delta}$, $\beta = \frac{2b}{\delta}$, $\gamma = \frac{2c}{\delta}$

$$-I_2 = M'^2 = \begin{pmatrix} \alpha^2 + \beta\gamma & 0 \\ 0 & \beta\gamma + \alpha^2 \end{pmatrix} = (\alpha^2 + \beta\gamma)I_2$$
, d'où $\alpha^2 + \beta\gamma = -1$

2. On a $f(v) = (\alpha x + \beta y, \gamma x - \alpha y)$, donc:

$$(v|f(v) = x(\alpha x + \beta y) + y(\gamma x - \alpha y) = \alpha^2 x^2 + (\beta + \gamma)xy - \alpha^2 y^2$$

- Si $\alpha = 0$ alors $(v|f(v)) = (\beta + \gamma)xy$, il suffit de prendre e = (1,0).
- Si $\alpha \neq 0$, on prend y=1, le discriminant du polynôme du second degré en x est $\Delta = (\beta + \gamma)^2 + 4\alpha^4 \ge 0$,

donc il admet au mois une racine x dans \mathbb{R} on prend alors e = (x, 1).

On a $\det(f) = \det(M') = -\alpha^2 - \beta \gamma = 1$, donc $f \in GL(\mathbb{R}^2)$ et comme $e \neq 0$ alors $f(e) \neq 0$.

3. On a $(u_1|u_2) = \frac{1}{\|e\|\|f(e)\|}(e|f(e)) = 0$ car (e|f(e)) = 0 et $\|u_1\| = \|u_2\| = 1$, donc (u_1, u_2) est une base orthonormée de \mathbb{R}^2 .

$$f(u_1) = \frac{1}{\|e\|} f(e) = \frac{\|f(e)\|}{\|e\|} u_2 \text{ et } f(u_2) = \frac{1}{\|f(e)\|} f^2(e) = -\frac{1}{\|f(e)\|} e = -\frac{\|e\|}{\|f(e)\|} u_1 \text{ d'où }$$

$$M_1 = \max_{\{u_1, u_2\}} (f) = \begin{pmatrix} 0 & -\frac{\|e\|}{\|f(e)\|} \\ \frac{\|f(e)\|}{\|e\|} & 0 \end{pmatrix}$$

4. Pour *U* matrice orthogonale, c'est la même réponse que la question III.B.1.b.

On a
$$\frac{\delta}{2}M' = M - \frac{\operatorname{tr}(M)}{2}I_2$$
 donc

$$M = \frac{\delta}{2}M' + \frac{\operatorname{tr}(M)}{2}I_2 = \frac{\delta}{2}UM_1 U + \frac{\operatorname{tr}(M)}{2}I_2 = U\left(\frac{\delta}{2}M_1 + \frac{\operatorname{tr}(M)}{2}I_2\right) U = UM_2 U, \text{ où }$$

$$M_2 = \left(\frac{\delta}{2}M_1 + \frac{\operatorname{tr}(M)}{2}I_2\right) = \frac{1}{2}\begin{pmatrix} \operatorname{tr}(M) & -\delta\ell \\ \frac{\delta}{\ell} & \operatorname{tr}(M) \end{pmatrix} \text{ et } \ell = \frac{\|e\|}{\|f(e)\|}.$$

5. (a) M'' est semblable à M dans $\mathscr{M}_2(\mathbb{R})$ donc $M'' \in \mathscr{S}_{\mathbb{R}}(M)$ et par suite : $\inf_{B \in \mathscr{S}_{\mathbb{K}}(A)} ||B||_S \leq ||M''||_S.$

$$||M''||_S = \sqrt{\frac{1}{2}((\operatorname{tr}(M))^2 + \delta^2)} = \sqrt{2\det(M)}.$$

(b) $||M_2||_S = \sqrt{\frac{1}{2}(\operatorname{tr}(M))^2 + \frac{1}{4}(\ell^2 + \frac{1}{\ell^2})\delta^2}$,

d'autre part d'après l'inégalité $x^2 + y^2 \ge 2xy$ on a

$$||M_2||_S \ge \sqrt{\frac{1}{2}((\operatorname{tr}(M))^2 + \delta^2)} = ||M''||_S.$$

Soit $B \in \mathcal{S}_{\mathbb{R}}(M)$, alors B est semblable à M et comme $\operatorname{Sp}_{\mathbb{R}}(A) = \emptyset$ alors $\operatorname{Sp}_{\mathbb{R}}(B) = \emptyset$ et d'après 4)

$$\exists U \in O_2(\mathbb{R}), \ B = UB_2^{-t}U \text{ et d'après I.7) } \operatorname{tr}(B) = \operatorname{tr}(M) \text{ et det}(B) = \operatorname{det}(M), \operatorname{donc} B_2 = \frac{1}{2} \begin{pmatrix} \operatorname{tr}(M) & -\delta \ell' \\ \frac{\delta}{\ell'} & \operatorname{tr}(M) \end{pmatrix}$$

où ℓ' est un réel strictement positif,

et d'après III.A.2.b $||B||_S = ||B_2||_S \ge ||B''|| = ||M''||_S = \sqrt{2\det(M)}$ (d'après a)

6. D'après 5.b), $\forall B \in \mathscr{S}_{\mathbb{R}}(M)$, $||B||_{S} \geq \sqrt{2\det(M)} \operatorname{donc} \inf_{B \in \mathscr{S}_{\mathbb{R}}(M)} ||B||_{S} \geq \sqrt{2\det(M)}$,

d'autre part $||M''||_S = \sqrt{2\det(M)}$ et $M'' \in \mathcal{S}_{\mathbb{R}}(M)$ donc

$$\inf_{B \in \mathscr{S}_{\mathbb{R}}(M)} ||B||_{S} = \sqrt{2 \operatorname{det}(M)} = ||M''|| \ (*)$$

d'où $\inf_{B\in\mathscr{S}_{\mathbb{R}}(M)} ||B||_{S}$ est atteinte en M''.

Soit $B \in \mathscr{S}_{\mathbb{R}}(M)$, tel que $||B||_{S} = \sqrt{2 \text{det}(M)}$ et soit comme dans 4) la matrice $B_{2} = \frac{1}{2} \begin{pmatrix} \operatorname{tr}(M) & -\delta \ell' \\ \frac{\delta}{\ell'} & \operatorname{tr}(M) \end{pmatrix}$

on a d'après 4) $B = UB_2 {}^tU$ où $U \in O_2(\mathbb{R})$, donc

$$||B||_{S} = ||B_{2}||_{S} = \sqrt{\frac{1}{2}(\operatorname{tr}(M))^{2} + \frac{1}{4}(\ell'^{2} + \frac{1}{\ell'^{2}})\delta^{2}},$$

$$||B||_{S} = ||M''||_{S} \iff \sqrt{\frac{1}{2}(\operatorname{tr}(M))^{2} + \frac{1}{4}(\ell'^{2} + \frac{1}{\ell'^{2}})\delta^{2}} = \sqrt{\frac{1}{2}(\operatorname{tr}(M))^{2} + \frac{1}{2}\delta^{2}}$$

$$\iff \ell' = 1 \ (\operatorname{car}\ell' > 0)$$

$$\iff B_{2} = B'' = M'' \ (\operatorname{car}\operatorname{tr}(M) = \operatorname{tr}(B) \operatorname{et} \operatorname{det}(M) = \operatorname{det}(B))$$

Ainsi si $||B||_S = ||M''||_S$ alors $B_2 = M''$, et d'après 4),

$$\exists U \in O_2(\mathbb{R}), B = UB_2 \,^{\mathsf{t}}U = UM'' \,^{\mathsf{t}}U$$

Réciproquement si $B = UM'' \, ^tU$, alors d'après III.A.2.b) et (*) on a

$$\begin{split} & \|B\|_{S} = \|M''\|_{S} = \inf_{P \in GL_{2}(\mathbb{R})} \|PMP^{-1}\|_{S}, \\ & \text{d'où:} \inf_{P \in GL_{2}(\mathbb{R})} \|PMP^{-1}\|_{S} = \|B\|_{S} \Longleftrightarrow \exists U \in O_{2}(\mathbb{R}), \ B = UM'' \ ^{\mathrm{t}}U \end{split}$$

D.

D'après l'équivalence du II.5, il suffit de montrer que:

 $\inf_{B\in\mathscr{S}_{\mathbb{R}}(A)} \|B\|_{S} \text{ est atteinte si et seulement si } \mathrm{Sp}_{\mathbb{R}}(A) = \emptyset \text{ ou bien } A \text{ est diagonalisable dans } \mathscr{M}_{2}(\mathbb{R}).$

 \Rightarrow)

On suppose que $\inf_{B\in\mathscr{S}_{\mathbb{R}}(A)}\|B\|_{S}$ est atteinte alors Si $\operatorname{Sp}_{\mathbb{R}}(A)\neq\emptyset$ on a d'après III.B.2.d A est digonalisable dans $\mathscr{M}_{2}(\mathbb{R})$.

Si $\operatorname{Sp}_{\mathbb{R}}(A) = \emptyset$ alors d'après III.C.6 $\inf_{B \in \mathscr{S}_{\mathbb{R}}(A)} \|B\|_{S}$ est atteinte. Si A est digonalisable alors $\operatorname{Sp}_{\mathbb{R}}(A) \neq \emptyset$ et d'après III.B.2.d $\inf_{B \in \mathscr{S}_{\mathbb{R}}(A)} \|B\|_{S}$ est atteinte.