OCR-Based Autograder for Handwritten Content

Nina Nguyen

The Problem

Hand grading free-response questions for physics and math is a pain.

It is a monotonous process that can be automated due to limited characters and symbols, unlike English/history.

Why should a human do this when a computer can?

Inspiration

Illuminate has rendered ScanTron obsolete with OCR grading.

Key Features:

- Test-specific forms
- Automatic gradebook entry
- Doc cam or webcam

Ink-spiration

Penstroke recognition by Microsoft

General Process

0) Convert InkML to .png

```
51 51, 651 51, 651 51, 651 51, 651 51, 651 51, 651 51, 651 51, 651 51,
raceGroup xml:id="31":
   <annotation type="truth">Connected Strk</annotation>
      <annotation type="truth">)</annotation>
<traceView traceDataRef="1"/>
       <traceView traceDataRef="2"/>
       <traceView traceDataRef="3"/:</pre>
       <traceView traceDataRef="5"
       <traceView traceDataRef="6")
       <annotationXML href="1 3"/>
       <traceView traceDataRef="7"/>
       <traceView traceDataRef="8"/
       <traceView traceDataRef= 9 /</pre>
       <annotationXML href="( 2"/>
```

InkML is a XML data type for digital ink data obtained from an electronic pen or stylus.

1) Raw Image

 $\int (2^{2}-3e^{2})dx$

2) Segmentation

3) Object isolation/processing

Segmentation Challenges

How many segments do you see?

$$\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$

As expected, we get:

and so on...

.....But wait, there's more!

Segmentation Challenges

Write code to ignore such segments before isolation.

...which helps most things, but can cause other issues.

Simplify the Problem at Hand:

Generate Test Images

Process

1) Raw Image Creation

2) Segmentation

3) The Fun Part

- a) Isolate objects
- b) Make square (non-trivial task)
- c) Resize to 28x28
- d) Make individual predictions

Decision Tree Classifier

SVM Classifier

Results

Size Error results needs a deeper look.

	image	truth	predict	correct
/merge_4_7	3982.png	[3, 9, 8, 2]	[3, None, 2, 8, 2]	False
/merge_4_8	1551.png	[1, 5, 5, 1]	[1, 2, 2, 8, 8]	False
nerge_4_17	9373.png	[9, 3, 7, 3]	[8, 3, 2, None, None]	False
nerge_4_21	0245.png	[0, 2, 4, 5]	[5, 2, 4, None, None, 2]	False
nerge_4_25	1037.png	[1, 0, 3, 7]	[8 <mark>, 0, 3,</mark> 2, None]	False
	100	100	144	
e_4_17477	5949.png	[5, 9, 4, 9]	[5, 8, None, None, 8]	False
e_4_17479	4067.png	[4, 0, 6, 7]	[4, 0, 6, None, 8]	False
e_4_17485	5881.png	[5, 8, 8, 1]	[None, 4, 8, 8, 1]	False
e_4_17488	3085.png	[3, 0, 8, 5]	[3, 0, 8, None, 4]	False
e_4_17489	3093.png	[3, 0, 9, 3]	[3, 0, 8, None, None]	False

score	correct	predict	truth	image	
1.00	[True, True, True, True]	[0, 4, 1, 4]	[0, 4, 1, 4]	0414.png	17460
1.00	[True, True, True, True]	[8, 4, 4, 3]	[8, 4, 4, 3]	8443.png	17461
0.75	[True, True, True, False]	[2, 4, 4, 8]	[2, 4, 4, 6]	2446.png	17463
0.25	[False, False, True, False]	[2, 2, 6, 8]	[7, 7, 6, 1]	7761.png	17464
0.75	[True, True, True, False]	[4, 8, 6, 8]	[4, 8, 6, 6]	4866.png	17465
0.75	[True, True, False, True]	[1, 1, 2, 0]	[1, 1, 7, 0]	1170.png	17466
0.75	[True, False, True, True]	[0, 2, 5, 1]	[0, 3, 5, 1]	0351.png	17468
0.25	[False, False, True, False]	[3, 8, 0, 0]	[9, 1, 0, 6]	9106.png	17470
0.25	[False, False, True, False]	[0, 7, 8, 5]	[6, 1, 8, 7]	6187.png	17473
0.50	[False, True, True, False]	[8, 4, 2, 2]	[9, 4, 2, 7]	9427.png	17474
0.25	[True, False, False, False]	[0, 8, 2, 8]	[0, 9, 7, 6]	0976.png	17475
0.50	[True, True, False, False]	[3, 6, 8, 8]	[3, 6, 9, 4]	3694.png	17476
0.75	[False, True, True, True]	[8, 0, 5, 8]	[7, 0, 5, 8]	7058.png	17478
0.75	[False, True, True, True]	[8, 6, 1, 8]	[9, 6, 1, 8]	9618.png	17480
0.25	[False, False, False, True]	[8, 0, 8, 3]	[9, 6, 9, 3]	9693.png	17481
0.50	[True, False, False, True]	[8, 0, 8, 0]	[8, 6, 6, 0]	8660.png	17482
0.75	[False, True, True, True]	[8, 3, 0, 2]	[4, 3, 0, 2]	4302.png	17483

Nitty Gritty

Text reagnition Areas

Future Directions

- 1) Units & direction
- 2) Organic chemistry
- 3) OCR + NLP

	Name:	Period:
) }	Kelli and Jarvis are members of the stage crew for the talent show. Equickly move a Baby Grand Piano onto the stage. After the curtain orightward force of 617 N to budge the piano from rest. The 220-kg p of friction. What is the piano's acceleration during this phase of its many from the piano's acceleration during this phase of its many from the piano's acceleration during this phase of its many from the piano's acceleration during this phase of its many from the piano's acceleration of the second problem of the piano's acceleration of the wagon. There is a 18 N friction force and the wagon and weight of 415 N. Construct a free body diagram depicting the types wagon. Then determine the net force, mass and acceleration of the wagon.	loses, they exert a sudden iano experiences 508 N notion? ov +0.50 m/s² vagon and takes him on a exerts a 70 N rightward d Casey have a combined of forces acting upon the
	a. Free-body diagram Fare Fare Fg =	70N→ 18N← - 415N↓
	b. What is the net force in the x-direction? $ \text{SF}_{X} = \text{Fapy} - \text{Ff}_{f} = 70 - 18 $ $ = 52 \text{ N} \rightarrow $	or +52N 52N→
	c. What is the net force in the y-direction?	01
	d. What is the mass of the wagon? $F_g = W = Mg$ $415 = M(9.8)$ $M = 415 = 42.35 + 9$	42.35kg
	e. BONUS: Find the acceleration of the wagon.	W_H.23 M/s2

 $\alpha = \frac{F}{m} = \frac{52}{42.35} = 1.23 \text{ m/s}^2 \rightarrow$