Systèmes asservis à temps continu

- Bâtir un cahier des charges
 - Qu'est-ce qu'un « bon asservissement » ?
 - DYNAMIQUE: Un système en BF stable avec des oscillations maîtrisées pour un « bon » temps de réponse
 - RÉGIME PERMANENT : Une précision répondant aux besoins
 - Le cahier des charges peut se penser
 - « En fréquentiel » : L'amortissement et le temps de réponse imposent la marge de phase
 - Marge de phase 45 60 degrés,
 - Marge de gain : 10 15dB
 - Introduction d'un intégrateur ou non selon les besoins en précision
 - « En temporel » : L'amortissement et le temps de réponse imposent les pôles désirés
 - $_{\rm \to}$ On s'appuie sur la réponse indicielle d'un 2nd ordre sans zéro à pôles dominants et sur la position des pôles dans le plan complexe

UPSSITECH - 2e Année Systèmes Robotiques & Interactifs

Université S P

Université
Paul Sabatier

LAAS CNRS

UPSSITECH - 2e Année Systèmes Robotiques & Interactifs

28

Systèmes asservis à temps continu

- Du cahier des charges aux pôles
 - > Réponse indicielle d'un second ordre sans zéro $F(p) = \frac{K\omega_n^2}{p^2 + 2\xi\omega_n p + \omega_n^2}$

Effet de ξ pour ω_n donné : + ξ augmente, + D_1 augmente

NB: $\xi = 0.7 \rightarrow meilleur$ compromis entre amortissement et rapidité $\rightarrow On$ impose souvent des pôles complexes conjugués.

Effet de ω_n pour ξ donné : + ω_n augmente, + la fréquence des oscillations augmente

Systèmes asservis à temps continu

- Du cahier des charges aux pôles
 - Feponse indicielle d'un second ordre sans zéro $F(p) = \frac{K\omega_n^2}{p^2 + 2\xi\omega_n p + \omega_n^2}$

Réponses

LAAS CNRS

$$y(t) = \alpha + \beta e^{p_1 t} + \gamma e^{p_2 t} \text{ si } \xi > 1$$

$$y(t) = \alpha + (\beta + \gamma t) e^{p_1 t} \text{ si } \xi = 1$$

$$y(t) = \alpha + \beta e^{-\xi \omega_n t} \sin(\omega_p t + \varphi) \text{ si } \xi < 1$$

- A retenir
 - Oscillations seulement si les pôles sont complexes conjugués
 - \rightarrow + ξ >, + les oscillations \(\mathbf{\geq} \) et inversement.
 - ω_p donne la pulsation des oscillations (s'il y en a). NB : Fréquence : $f_p = \omega_p / 2\pi$
 - → + ω_p ≯, + le système oscille avec une fréquence élevée.
 - \rightarrow Si ξ = 0 oscillations entretenues à la pulsation ω_p
 - Stabilité et rapidité liées à la partie réelle des pôles
 - \rightarrow + Re(p) < 0, + le pôle est rapide

Systèmes asservis à temps continu

- Du cahier des charges aux pôles
 - Figure Réponse indicielle d'un second ordre sans zéro $F(p) = \frac{K\omega_n^2}{p^2 + 2\xi\omega_n p + \omega_n^2}$
 - Lorsque les pôles sont réels :
 - Pas d'oscillation
 - Temps de réponse à 5 % : $3 |\tau_1|$ où $\tau_1 = 1/|p_1|$, τ_1 est la constante de temps associée au pôle p_1 qui est le pôle le plus < 0
 - Lorsque les pôles sont complexes conjugués :
 - Oscillations
 - Osciniations A retenir Premier dépassement : $D_1 = e^{-\pi\xi/\sqrt{1-\xi^2}}$ Temps de réponse à 5 % : $t_{rep} \simeq \frac{3}{\xi\omega_n} = \frac{3}{|Re(p_1)|}$ + ξ λ , + t_{rep} λ + t_{rep} λ

Connaissant t_{rep} et D_1 , on peut déterminer ξ et ω_n et de là les pôles désirés pour l'asservissement.

UPSSITECH - 2e Année Systèmes Robotiques & Interactifs

Systèmes asservis à temps continu

- Du cahier des charges aux pôles
 - ightharpoonup Réponse indicielle d'un second ordre sans zéro $F(p) = \frac{K\omega_n^2}{p^2 + 2\xi\omega_n p + \omega_n^2}$
 - Et s'il y a plus de deux pôles ?
 - On impose comme précédemment les deux pôles p_1 et p_2 via ξ et ω_n
 - On choisit les autres pôles réels et beaucoup plus rapides que p1 et p2
 - → 10 fois plus rapide au moins
 - → « on ne voit ainsi » que très peu leur effet dans la réponse temporelle
 - Vocabulaire :
 - Les pôles p₁ et p₂ sont dits 'pôles dominants'
 - · Les autres pôles sont dits 'pôles rapides' ou 'pôles non dominants'

UPSSITECH - 2e Année Systèmes Robotiques & Interactifs

3

Systèmes asservis à temps continu

- Du cahier des charges aux pôles
 - Propose indicielle d'un second ordre sans zéro $F(p) = \frac{K\omega_n^2}{p^2 + 2\xi\omega_n p + \omega_n^2}$
 - Positionnement des pôles et réponse temporelle

Courbes iso-amortissement et iso-pulsation

- Courbes iso-pulsation \rightarrow cercle centré sur l'origine de rayon ω_n \rightarrow tous les pôles sur un même cercle conduisent à la même pulsation ω_n
- Courbes iso-amortissement → demidroites définies par l'angle ψ
 → tous les pôles sur une même demi-droite conduisent au même amortissement ξ
- → Facilitent le placement de pôles

Systèmes asservis à temps continu

- Du cahier des charges aux pôles
 - ightharpoonup Réponse indicielle d'un second ordre sans zéro $F(p) = \frac{K\omega_n^2}{p^2 + 2\varepsilon\omega_n p + \omega_n^2}$
 - Positionnement des pôles et réponse temporelle

Au bilan

- Les pôles d'un 2nd ordre se situent à l'intersection d'une demi-droite définissant l'amortissement du système et d'un cercle définissant la pulsation naturelle
- Les systèmes de même temps de réponse ont leurs pôles complexes conjugués sur une même droite verticale.