POLYHEDRA: VERTICES

Linear Programming Problem

From Two Weeks Ago.

max.
$$x_1 + 2x_2$$

s.t. $-3x_1 + x_2 \le 2$
 $+x_2 \le 11$
 $x_1 - x_2 \le 3$
 $x_1 \le 6$
 $x_1, x_2 \ge 0$

Goal: Solve LP using Simplex and visualize!

Active Constraints

Active Constraints

x_1			\leq	1
	x_2		\leq	1
		x_3	\leq	1
x_1			\geq	0
	x_2		\geq	0
		x_3	\geq	0

Basic Geometric Facts

- Intersection of 2 lines in 2D yields a point.
 - Lines must be non-parallel.

- Intersection of 3 planes in 3D yields a point.
 - Exclude parallel planes, or other corner cases.

- Intersection of 4 hyper-planes in 4D yields a point.
 - Again, some corner cases.

Intersection of n hyper-planes

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \leftarrow \mathcal{H}_1$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \leftarrow \mathcal{H}_n$$

$$\mathbf{rank} \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ & \ddots & \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = n$$

Vertex (Definition)

A feasible solution x to the constraints is a vertex iff

$$\begin{vmatrix} a_{11}x_1 & +a_{12}x_2 & +\cdots + & a_{1n}x_n & \leq & b_1 \\ & & \ddots & & \vdots \\ a_{j1}x_1 & +a_{j2}x_2 & +\cdots + & a_{jn}x_n & \leq & b_j \\ & & \ddots & & \vdots \\ a_{m1}x_1 & +a_{m2}x_2 & +\cdots + & a_{mn}x_n & \leq & b_m \end{vmatrix}$$

at least n ineqs. are active for x.

rank of the active constraints for x is n

Vertex Issue #1

Does every point x that activates n constraints form a vertex?

Vertex Issue #2

Can a vertex activate more than n constraints?

Vertex Issue #3

What if there are more variables than constraints?

Number of Vertices

n-dimensional hyper cube has 2ⁿ vertices.

In general, combinatorial explosion of vertices.

• m constraints, n variables: $\binom{m}{n}$ upper bound on vertices