

CoinCat Zwischenpräsentation

Tarik Glasmacher

Tim Bering

Bildverarbeitung WS22/23

Freiwilliges Projekt

Agenda

- Überblick
 - Allgemein
 - Vorbereitung der Eingangsbilder
 - Neurales Netzwerk
- Herausforderungen
- To-Do

Überblick

Überblick: Allgemein

- Ampelstatus: Gelb
 - Vorwiegender Grund: Herausforderungen bezüglich des neuralen Netzwerkes
- Name abgeändert: DINGUS => CoinCat
- Weitere genutzte Toolboxen
 - Neural Networking Toolbox
 - Parallel Processing Toolbox

Überblick: Vorbereitung der Eingangsbilder

- Anfängliches Problem: Hough-Algorithmus funktioniert nicht richtig bei perspektivisch verzerrten Bildern
 - Potenzieller Lösungsansatz: Wechsel auf Python / opencv (verworfen)
 - Tatsächlicher Lösungsansatz: Parameter angepasst
- Münzen werden erkannt
 - Nicht-Münzen-Kreise (siehe Torbogen auf dem 10€-Schein) werden sollen durch das neurale Netzwerk aussortiert werden
- Münzen werden (mit Rand) ausgeschnitten
 - Werden in eigenem Ordner abgespeichert
 - Werden auf Eingabegröße des neuralen Netzwerkes gebracht

Überblick: Neurales Netzwerk I

- Anfangs: Merkmalserkennung über SURF u.Ä.
 - Sehr ungenau
 - Potenzielle Fehlerquellen:
 - Hintergrund zu detailliert
 - Auflösung zu niedrig
 - Abgleich mit vorher abgespeichertem Referenzbild schwierig, vor allem bei perspektivisch verzerrten und abgeschnittenen Münzen
 - Ausrichtung an einer bestimmten Kante (siehe Gruppe Lyx / Florian) nicht möglich (auch wegen Rückseite der Münze)

Überblick: Neurales Netzwerk II

- Verschiedene neurale Netzwerke ausprobiert
 - ...Klassisches" FF-Neural-Network
 - Zu generell
 - Nicht auf Bildverarbeitung zugeschnitten
 - Stacked Autoencoder
 - Training gibt keine / schlechte Ergebnisse
 - Ergebnisse werden beim Erstellen des Stacked-Netzes noch schlechter
 - Image Classification / SGDM
 - Ideal für den Sachzusammenhang
 - Dynamisches Hinzufügen von Trainings- und Validierungsdaten über imageDatastore

Überblick: Neurales Netzwerk III

- Trainings- und Validierungsdaten werden aus einem Referenzbild gewonnen
 - Zufällige Rotation
- Anfangs: Genauigkeit von < 20.0%
 - Gründe: Weißer Hintergrund der Referenzbilder, Geringe Auflösung, Falsch eingestellte Parameter
- Deutliche Zeitkostenverringerung durch Parallel Processing
 - Parallel Processing Toolbox ermöglicht das Nutzen von bis zu 8 GPUs (Standardeinstellung) für das Training anstatt eines einzelnen CPU-Kernes
 - Parallel Pooling / Parpooling
 - Zeitersparnis: ca. 55.0% pro Training
- Aktuell: Genauigkeit von 99,95%
 - Epochen: 4
 - Validierungshäufigkeit: 30
 - I.000 Bilder: 750 Trainingsbilder / 250 Validierungsbilder (Zuweisung zufällig aus den 1.000 Gesamtbildern)

Herausforderungen: Neurales Netzwerk

1. Einseitige Trainingsdaten

- 1. Trainingsdaten werden aus einem einzigen Referenzbild generiert
- 2. Aktuell: Ausschließlich zufällige Rotation des Referenzbildes
- 3. Entstehendes Problem: Klassifiziert (fast) alle Daten aus dem Eingabebild als 0.10€

2. Performance auf Mobilgeräten

- 1. Trainiertes Modell ist sehr groß
- 2. Übertragen / Laden des Modells im Transpiler
 - I. Befehl load serializedNet
 - 2. Mitliefern der .m-Datei?
- 3. Potenziell sehr langsam / ressourcenintensiv

To-Do

To-Do

- 1. Trainings- und Validierungsdaten verbessern
- 2. Klassifikation anpassen
 - I. Konfusionsmatrix anzeigen
 - 2. Konfusions-Schwellwert festlegen, ab welchem die Eingangsdaten als "Nicht valide" markiert / ignoriert werden
- 3. Interne Programmstruktur verbessern
- 4. Entwicklung eines massentauglichen Logos
- 5. Applikation inklusive User-Interface
- 6. Testen

Zusammenfassung

CoinCat kommt in der Entwicklung mit großen Schritten voran, jedoch stellten sich einige Herausforderungen in den Weg. Sobald diese überwunden sind, ist die Fertigstellung des Projektes in Sichtweite.

Vielen Dank für Ihre Aufmerksamkeit!

Für Fragen und Anmerkungen stehen wir Ihnen nun zur Verfügung.

Tarik Glasmacher, Tim Bering

