Universidad de la República - Facultad de Ingeniería - IMERL. Matemática Discreta 2

Examen - 11 de julio de 2017. Duración: 3 horas y media.

Ejercicio 1.

- a. Enunciar y demostrar la Identidad de Bézout.
- b. Deducir el Lema de Euclides.
- **c**. Hallar todos los $x \in \mathbb{Z}$ que cumplan:

$$\left\{ \begin{array}{ll} 5x \equiv 1 & \pmod{47} \\ x \equiv 21^{44} & \pmod{19} \, . \end{array} \right.$$

Solución.

a. Teorema. Dados $a, b \in \mathbb{Z}$ con $(a, b) \neq (0, 0)$, existen $x, y \in \mathbb{Z}$ tales que $ax + by = \operatorname{mcd}(a, b)$.

Demostración. Sea $S = \{ax + by : x, y \in \mathbb{Z}\} \cap \mathbb{Z}^+$. Basta probar que $d = \operatorname{mcd}(a, b) \in S$.

Por definición $S \subseteq \mathbb{Z}^+$, además $S \neq \emptyset$ pues $a^2 + b^2 \in S$. Por el principio del buen orden S tiene un mínimo que llamamos s_0 . Como $s_0 \in S$ podemos escribir $s_0 = ax_0 + by_0$.

Mostraremos que $s_0 = d$, probando ambas desigualdades. En primer lugar como $d \mid a$ y $d \mid b$ tenemos que $d \mid ax_0 + by_0 = s_0$. Concluimos que $d \leq s_0$.

Ahora veremos que s_0 divide a a y a b. Por el teorema de división entera existen $q, r \in \mathbb{Z}$ tales que $a = q s_0 + r$ con $0 \le r < s_0$. Entonces $r = a - q s_0 = a - q (ax_0 + by_0) = a(1 - qx_0) + b(-qy_0)$. Si r > 0 tendríamos $r \in S$ con $r < s_0$ lo que contradice que s_0 es el mínimo. Entonces r = 0 y concluimos que $s_0 \mid a$.

De la misma forma se prueba que $s_0 \mid b$. Entonces s_0 es un divisor común de a y de b y concluimos que $s_0 \leq d$.

En resumen, $d = s_0 \in S$ lo que concluye la demostración.

b. Teorema. Sean $a, b, c \in \mathbb{Z}$ con mcd(a, b) = 1. Si $a \mid bc$ entonces $a \mid c$.

Demostración. Por la identidad de Bézout existen $x, y \in \mathbb{Z}$ tales que ax + by = 1. Multiplicando por c obtenemos acx + bcy = c. Ahora $a \mid a$ y por hipótesis $a \mid bc$, concluimos que $a \mid a(cx) + bc(y) = c$.

c. Calculando el inverso de 5 módulo 47 encontramos que la primera ecuación equivale a $x \equiv 19 \pmod{47}$ (en efecto, $5 \cdot 19 - 2 \cdot 47 = 1$).

Para la segunda ecuación observamos que $21^{44} \equiv 2^{44} \pmod{19}$. Como 19 es primo y 2 no es múltiplo de 19 tenemos que $2^{18} \equiv 1 \pmod{19}$ (pequeño Teorema de Fermat) de modo que $2^{44} \equiv 2^8 \equiv 256 \equiv 9 \pmod{19}$.

Entonces el sistema es equivalente a

$$\begin{cases} x \equiv 19 & \pmod{47} \\ x \equiv 9 & \pmod{19} . \end{cases}$$

Por el Teorema Chino de los restos, el sistema tiene solución única módulo $19 \cdot 47 = 893$.

Como ya sabemos de la primer parte que $5 \cdot 19 \equiv 1 \pmod{47}$, es fácil ver que una solución es $x = 9 + 10 \cdot (19 \cdot 5) \equiv 66 \pmod{893}$.

En definitiva la solución es $\{66 + 893 \cdot k : k \in \mathbb{Z}\}$.

Ejercicio 2.

- a. Sea G un grupo y $g \in G$ un elemento de orden finito.
 - i) Probar que si $k \in \mathbb{Z}$ entonces

$$o\left(g^k\right) = \frac{o(g)}{\operatorname{mcd}(o(g), k)}.$$

- ii) Deducir que o $(g^k) = o(g)$ si y sólo si mcd(k, o(g)) = 1.
- **b.** Sabiendo que el grupo U(p) de invertibles módulo un primo p es cíclico, probar que existen $\varphi(p-1)$ raíces primitivas módulo p.

Solución.

a. i) Denotamos n = o(g), d = mcd(n, k) y $m = o(g^k)$. Podemos escribir n = d n' y k = d k' siendo n' y k' enteros coprimos. Tenemos que probar que m = n'. En primer lugar $(g^k)^{n'} = g^{k n'} = g^{d k' n'} = g^{n k'} = (g^n)^{k'} = e^{k'} = e$, entonces $m \mid n'$.

Por otro lado, $(g^k)^m = e$, entonces $g^{km} = e$ y como o(g) = n se sigue que $n \mid km$. Dividiendo entre d en ambos lados tenemos que $n' \mid k'm$ y por el Lema de Euclides $n' \mid m$.

En conclusión, $m \mid n' \vee n' \mid m$ por lo tanto m = n'.

- ii) Es claro.
- **b.** Como U(p) es cíclico, existe un generador $g \in U(p)$. Como o(g) = p 1 tenemos que $U(p) = \{g^1, g^2, \dots, g^{p-1}\}$ siendo estos elementos todos distintos.

Por la parte anterior $o(g^k) = p-1$ si y sólo si $\operatorname{mcd}(k, p-1) = 1$, entonces las raices primitivas (elementos de orden p-1) están en biyección con $\{k=1,2,\ldots,p-1 : \operatorname{mcd}(k,p-1) = 1\}$ cuyo cardinal es $\varphi(p-1)$.

Ejercicio 3.

- a. i) Probar que 103 es un número primo.
 - ii) Probar que q=5 es una raíz primitiva módulo el primo p=103.
 - iii) Sabiendo que $g^{102} \equiv 1752 \pmod{103^2}$, probar que g es una raíz primitiva módulo p^2 .
 - iv) Probar que q es una raíz primitiva módulo p^k para cada k > 2.
- b. i) Describir el método de intercambio de claves de Diffie-Hellman.
 - ii) Mostrar que en el método Diffie-Hellman ambos participantes llegan a la misma clave.

Solución.

- a. i) Basta con verificar que no es múltiplo de 2, de 3, de 5, o de 7, ya que $11^2 = 121 > 103$.
 - ii) Como 103 es primo $\varphi(103) = 102 = 2 \cdot 3 \cdot 17$, y alcanza probar que $5^{51} \not\equiv 1 \pmod{103}$, que $5^{34} \not\equiv 1 \pmod{103}$, y que $5^6 \not\equiv 1 \pmod{103}$.

En efecto calculamos $5^2 \equiv 25$, $5^4 \equiv 7$, $5^8 \equiv 49$, $5^{16} \equiv 32$, $5^{32} \equiv -6$. Ahora tenemos que $5^6 \equiv 5^4 \cdot 5^2 \equiv 7 \cdot 25 \equiv 72 \not\equiv 1$, que $5^{34} \equiv 5^{32} \cdot 5^2 \equiv -6 \cdot 25 \equiv 56 \not\equiv 1$, y que $5^{51} \equiv 5^{34} \cdot 5^{16} \cdot 5 \equiv 56 \cdot 32 \cdot 5 \equiv -1 \not\equiv 1$

iii) Llamemos n al orden de g módulo 103^2 . Como $g^n \equiv 1 \pmod{103^2}$ también $g^n \equiv 1 \pmod{103}$ y por la parte anterior tenemos que $102 \mid n$.

Por otra parte sabemos que $n \mid \varphi(103^2) = 102 \cdot 103$. Como 103 es primo las únicas posibilidades son n = 102 o $n = 102 \cdot 103$.

Como $g^{102} \not\equiv 1 \pmod{103^2}$, concluimos que $n=102 \cdot 103$ y por lo tanto g es raíz primitiva módulo 103^2 .

- iv) Por Lema 4.1.12 enunciado en teórico, si g es raíz primitiva módulo p^2 , donde p es un primo impar, entonces es raíz primitiva módulo p^k para todo k.
 - Si se quiere hacer explícitamente: llamando n_k al orden de g módulo p^k , procediendo como en la parte anterior se ve que $n_k = (p-1) p^i$ con $i \in \{0, ..., k-1\}$.
 - Para finalizar, usando que $g^{p-1} \equiv 1752 \equiv 1+17\,p \pmod{p^2}$ se puede probar por inducción en $k \geq 2$ que $g^{(p-1)\,p^{k-2}} \equiv 1+17\,p^{k-1} \not\equiv 1 \pmod{p^k}$. Concluimos que $n_k \nmid (p-1)\,p^{k-2}$ y la única opción posible es $n_k = (p-1)\,p^{k-1}$.
- **b.** i) Ana y Beto eligen un primo grande p y un elemento $g \in U(p)$ con orden grande (por ejemplo, una raiz primitiva).

Ana elige un entero secreto A y calcula $a \equiv g^A \pmod{p}$, enviándolo a Beto.

Beto elige un entero secreto B y calcula $b \equiv g^B \pmod{p}$, enviándolo a Ana.

Son públicos p, g, a, b, y secretos A (conocido por Ana) y B (conocido por Beto).

Ana calcula $k \equiv b^A \pmod{p}$ y Beto calcula $k' \equiv a^B \pmod{p}$.

ii) En efecto $k \equiv b^A \equiv (g^B)^A \equiv g^{BA} \equiv g^{AB} \equiv (g^A)^B \equiv a^B \equiv k'$.

Ejercicio 4.

- a. Describir todos los elementos de $(U(15), \times)$ indicando su orden y cuál es su inverso.
- **b.** Describir todos los homomorfismos de $(\mathbb{Z}_4, +)$ en $(U(15), \times)$. Indicar cuáles son inyectivos.
- c. i) Encontrar un homomorfismo inyectivo $f: (\mathbb{Z}_2, +) \to (U(15), \times)$ y un homomorfismo inyectivo $g: (\mathbb{Z}_4, +) \to (U(15), \times)$ tales que $\operatorname{Im}(f) \cap \operatorname{Im}(g) = \{1\}$.
 - ii) Probar que la función $h: (\mathbb{Z}_2 \times \mathbb{Z}_4, +) \to (U(15), \times)$ dada por

$$h(a,b) = f(a) g(b)$$

es un homomorfismo.

iii) ¿Es el homomorfismo h un isomorfismo?

Solución.

- a. $U(15) = \{x = 1, \dots, 15 : \operatorname{mcd}(x, 15) = 1\} = \{1, 2, 4, 7, 8, 11, 13, 14\}$. Elevando al cuadrado encontramos que $4^2 \equiv 11^2 \equiv 14^2 \equiv 1 \pmod{15}$ y $\{4, 11, 14\}$ son todos elementos de orden 2. Además $2^2 \equiv 7^2 \equiv 8^2 \equiv 13^2 \equiv 4 \pmod{15}$, entonces $2^4 \equiv 7^4 \equiv 8^4 \equiv 13^2 \equiv 1 \pmod{15}$ y $\{2, 7, 8, 13\}$ son todos elementos de orden 4 (no pueden tener orden 3 por el Teorema de Lagrange). Finalmente 1 tiene orden 1.
- **b**. Como \mathbb{Z}_4 es cíclico generado por 1 de orden 4, cualquier homomorfismo es de la forma $g(n) = x^n$ para algún $x \in U(15)$ con $o(x) \mid 4$. Esto último vale para cualquier $x \in U(15)$, entonces hay 8 homomorfismos $g : \mathbb{Z}_4 \to U(15)$, uno para cada posible x.

La imágen de $g(n) = x^n$ es el subgrupo $\langle x \rangle$ de U(15). Para que g sea inyectivo, su imagen debe tener orden 4, es decir o(x) = 4. Entonces los homomorfismos inyectivos son los cuatro dados por $g(n) = x^n$ donde x = 2, 7, 8, 13.

- c. i) Por ejemplo $f(n) = 11^n$ y $g(n) = 2^n$, ya que $Im(f) = \{1, 11\}$ y $Im(g) = \{1, 2, 4, 8\}$.
 - ii) Sean $(a,b) \in \mathbb{Z}_2 \times \mathbb{Z}_4$ y $(a',b') \in \mathbb{Z}_2 \times \mathbb{Z}_4$. Entonces $h(a+a',b+b') = 11^{a+a'} \cdot 2^{b+b'} = 11^a \cdot 11^{a'} \cdot 2^b \cdot 2^{b'} = (11^a \cdot 2^b) \cdot (11^{a'} \cdot 2^{b'}) = h(a,b) \cdot h(a',b')$.
 - iii) En efecto $\operatorname{Im}(h)$ contiene a $\operatorname{Im}(f)$ y a $\operatorname{Im}(g)$ entonces $|\operatorname{Im}(h)| \geq 5$ pero por el Teorema de Lagrange debe dividir a |U(15)| = 8. Entonces h es sobreyectiva, y como $|\mathbb{Z}_2 \times \mathbb{Z}_4| = 8 = |U(15)|$ se concluye que h es un isomorfismo.

Nota: también pueden calcularse explícitamente los 8 valores de h y verificar de manera directa que el núcleo es trivial.