UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA

Leonardo de Andrade Santos

Projeto de um circuito integrado de um pré-distorcedor digital baseado em polinômio de memória

Curitiba 2024

Leonardo de Andrade Santos

Projeto de um circuito integrado de um pré-distorcedor digital baseado em polinômio de memória

Trabalho de conclusão de curso do Curso de Graduação em Engenharia Elétrica da Universidade Federal do Paraná, como exigência parcial para obtenção do grau de Bacharel em Engenharia Elétrica.

Orientadora: Sibilla Batista da Luz França

Curitiba 2024

Resumo

A evolução dos sistemas de comunicação sem fio acarretou na implementação de diversas aplicações moveis e sem fio como desenvovimento web, aplicação IoT, entre outros. Neste cenario, melhorar a eficiência energética se torna uma alternativa desejavel tanto para os dispositivos móveis que buscam melhorar a autonomia das suas baterias, quanto para as estações de rádio base, que buscam reduzir sues desperdicio em perdas de calor. No entanto uma melhor eficiência energética implica em uma menor linearidade nos sistemas de amplificação de sinais, presentes nos sistemas trasmissores de sinais de radio. Isto é importante de ser ressaltado, pois a banda reservada para aplicações móveis é reduzida, de forma que para se alcançar maiores taxas de trasmissão é necessário alternar estratégias de modulação tanto da fase (FM), quanto da amplitude (AM) da onda portadora. E isso conflitoso ja que a modulação AM é sensivel a linearidadede, de forma que quanto mais linear um sistema menores erros de transmissão ocorrem. Sendo assim uma alternativa para contornar esse obstaculo, que é implementar um sistemas, eficiente energéticamente e linear é a implementação de um Pré-Distorcedor Digital (DPDP - Digital Pre-Distorter) em cascata com um Amplificador de Potência (PA - Power Amplifier). Portanto, o objetivo deste trabalho de conclusão de curso é o design de um circuito integrado dedicado de um DPD.

Palavras-chave: VHDL, FPGA, DPD .

Lista de abreviaturas e siglas

DPD Pré-Distorcedor Digital

FPGA Matriz de Portas Programáveis em Campo

PA Amplificador de Potência

RF Rádio Frequência

PARF Amplificador de Potência de Rádio Frequência

HDL Linguagem de Descrição de software

VHSIC Circuito integrado de Velocidade Muito Elevada

VHDL VHSIC Hardware Description Language

LUT Look Up Table

SOP Soma de Produtos

LAB Logic Array Block

ALM Adaptive Logic Module

LE Logic Element

HEMT transistor de efeito de campo de heterojunção

VSA analisador de sinal vetorial

NMSE Erro Médio Quadrado Normalizado

Lista de ilustrações

Figura 1 –	Sistema de transmissão simplificado	3
Figura 2 –	Curva de saida do amplificador	4
Figura 3 –	ilustração do pré-distorcedor em cascata	4
Figura 4 –	Estrutura Interna da FPGA Stratix X da Intel	6
Figura 5 –	Estrutura Interna da FPGA Ultrascale+	7
Figura 6 –	Fluxo de projeto VLSI	10
Figura 7 –	Grafico Numero de bits x NMSE	11

Sumário

1	INTRODUÇÃO	1
1.1	Objetivo Geral	. 1
1.2	Objetivos Específicos	2
2	REVISÃO DE LITERATURA	3
2.1	Modelagem Matemáticas	5
2.2	FPGA	6
3	MATERIAL E MÉTODOS	8
3.1	Estudo dos DPDs	8
3.2	Implementação em software	8
3.3	Implementação em FPGA	9
3.4	Design e validação	9
4	RESULTADOS E DISCUSSÃO	11
4.1	Etapa 2	11
5	CONCLUSÃO	12
	REFERÊNCIAS	13
	ANEXOS	14

1 Introdução

A evolução dos sistemas de comunicação móveis, impulsionada pela crescente demanda por comunicações mais rápidas e eficientes, tem levado à implementação de uma variedade de serviços, incluindo aplicações multimídia, desenvolvimento web e aplicações IoT (1). No entanto, essa evolução também trouxe desafios significativos, como a necessidade de melhorar a eficiência energética, tanto para dispositivos móveis, visando aumentar a autonomia da bateria, quanto para estações de rádio base, visando reduzir o consumo de energia devido às perdas de calor. Para atender a essas demandas, estratégias de modulação que alteram tanto a fase quanto a amplitude de ondas portadoras em radiofrequência se tornaram essenciais (2). Além disso, a modulação na amplitude requer linearidade na transmissão para evitar erros e interferências na comunicação entre usuários vizinhos (3). Essa complexa tarefa recai sobre o projetista do amplificador de potência de radiofrequência (PARF), que enfrenta o desafio de desenvolver um hardware eficiente em termos energéticos e linear ao mesmo tempo, uma vez que esses dois objetivos podem entrar em conflito (4). Uma solução para contornar esse desafio é a implementação de um pré-distorcedor de Sinais Digital em Banda Base, que visa compensar a distorção causada pelo PARF (3). O DPD é conectado em cascata ao PARF e requer um modelo de alta precisão e baixa complexidade computacional para representar as características de transferência direta e inversa do PARF. Existem duas abordagens para modelar o PARF: modelos físicos, que são detalhadas e computacionalmente complexos, e modelos empíricos, que se baseiam em medições de entrada e saída do PARF, com menor complexidade computacional, mas com uma possível diminuição da precisão. Devido às exigências rigorosas de frequência de operação, a paralelização das operações torna-se essencial, e os Arranjos de Portas Programáveis em Campo emergem como uma alternativa viável para a implementação de circuitos pré-distorcedores (5). As FPGAs são dispositivos lógicos programáveis que permitem a reconfiguração física de componentes de eletrônica digital, acelerando processos e suportando operações paralelas e sequenciais. Neste contexto esse projeto foi planejado com os seguintes objetivos geral e específicos

1.1 Objetivo Geral

o desenvolvimento de um circuito integrado dedicado para um pré-distorcedor digital na tecnologia BiCMOS 130 nm 8HP.

1.2 Objetivos Específicos

Para alcançar esse objetivo geral esse trabalho foi desenvolvido, separando-o nos seguintes objetivos específicos:

- 1. Fazer modelagem fiel do PA em software;
- 2. Fazer modelagem do DPD em sofware a partir da modelagem do PA;
- 3. Implementar o DPD em hradware utilizando uma HDL;
- 4. Fazer Design do circuito integrado

2 Revisão de Literatura

O sistema de comunicação pode ser divido em 3 sub-sistemas principais:

- Meio transmissor;
- Receptor;
- Transmissor;

No entanto, este trabalho foca exclusivamente no sistema transmissor, ilustrado pela figura 1, onde observa-se diversos elementos de que compõem o transmissor de sinal e dentre esses elementos tem-se que o amplificador de sinal é o componente de maior demanda energética, por se tratar do componente que converte a energia da fonte em energia irradiada pela antes de transmissão. Então para que o sistema de transmissão atue de maneira eficiênte é imprescindível que o trasmissor atue da maneira mais eficiênte o possivel. Conforme argumentado por (6).

Figura 1 – Sistema de transmissão simplificado

Sabe-se que a evolução dos sistemas de comunicação móveis causou na implementação de diversos serviços como aplicações multimídias, desenvolvimento web, aplicações IoT. De acordo com (1), há uma demanda cada vez maior por sistemas de comunicação mais rápidos, robustos e eficientes, devido ao aumento no número de usuários. Nesse contexto, melhorar a eficiência energética se mostra uma alternativa desejável tanto para aparelhos moveis, visando melhorar a autonomia da bateria, quanto para estações rádio base, uma vez que diminuiria o gasto de potência por perdas em calor. Considerando também que a largura de banda reservada para sistemas de comunicação sem fio é reduzida, torna-se desejável que ela seja utilizada da maneira mais eficiente o possível. Diante desse cenário, segundo (2), só é possível alcançar as maiores taxas utilizando estratégias de modulações, que alterem tanto a fase quanto a amplitude de uma onda portadora em rádio frequência. Ainda segundo (2), a modulação na amplitude, exige linearidade na transmissão afim de evitar erros e interferência na comunicação entre os usuários vizinhos. Ante esse panorama, o projetista do PARFT se depara com esse desafio, que é desenvolver um hardware eficiente, energeticamente, e com uma boa linearidade simultaneamente, uma vez que esse compromisso é conflitante, conforme descrito por (3). Esse comportamento se

deve, pois, um PARF, atua de forma eficiente, ou seja, com baixo consumo de energia, na área próxima à de saturação, que é a região em que eles operam em regimes não lineares, conforme ilustrado pela figura 2.

Figura 2 – Curva de saida do amplificador

A fim de contornar esse obstáculo foi adicionado a cadeia de transmissão, um método de equalização de sinais, conforme argumentado por (2). Um exemplo de técnica de linearização de sinais é a implementação de um pré-distorcedor de Sinais Digital em banda base, o qual apresenta um melhor custo-benefício (2). Essa técnica consiste em distorcer o sinal de entrada utilizando técnicas de processamento digital, antes que esse module uma portadora, de forma compensativa à distorção causada pelo PARF. De maneira sucinta, o DPD é conectado em cascata ao PARF e é projetado de forma que apresenta a função transferência inversa ao PARF. Para isso, é necessário um modelo de alta precisão e baixa complexidade computacional, capaz de representar as características de transferência direta e inversa de um PARF. Isso significa então modelar o seu comportamento real utilizando um software. A figura 3 ilustra o processo do um pré-distorcedor digital.

Figura 3 – ilustração do pré-distorcedor em cascata

Segundo (1), existem duas técnicas utilizadas para fazer essa modelagem. Uma consiste na descrição detalhada do PARF, que implica em uma maior complexibilidade computacional, esses modelos são conhecidos como modelos físicos. A outra abordagem

é conhecida como modelo empírico, este modelo consiste em coletadas amostradas na entrada e na saída do PARF em domínio temporal, e através destes dados simulam um modelo matemático do sistema. Uma das vantagens desse método é que ele não exige conhecimento prévio da estrutura do PARF e possui baixa complexidade computacional e mesmo se todos os parâmetros fossem conhecidos, conhecendo o equacionamento completo do circuito, uma função inversa poderia ser encontrada, possivelmente muito mais complexa que séries de Volterra. No entanto, sua precisão pode ser ligeiramente afetada pelo modelo adotado. Sendo assim, como a proposta do projeto é a implementação de um DPD em hardware, então se faz necessário que o circuito apresente a menor complexidade possivel, por tanto, torna-se mais viavel fazer a implementação utilizando modelagem matemática.

2.1 Modelagem Matemáticas

Séries de Volterra

Segundo (7) série de Volterra pode ser vista como uma extensão multidimensional da série de Taylor para sistemas dinâmicos. A modelagem começa com a representação do sistema através de uma série infinita de integrais convolucionais, onde cada termo da série corresponde a uma ordem de não linearidade e memória.

A saída y(t) de um sistema pode ser expressa pela equação 2.1:

$$y(t) = h_0 + \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h_n(\tau_1, \tau_2, \dots, \tau_n) \prod_{i=1}^{n} x(t - \tau_i) d\tau_i$$
 (2.1)

Onde h_n são os núcleos de Volterra, que caracterizam a resposta do sistema para a n-ésima ordem de não linearidade e x(t) é a entrada do sistema.

Os núcleos de Volterra h_n são funções de várias variáveis que capturam a dinâmica do sistema em diferentes ordens. Para a maioria das aplicações práticas, a série é truncada para incluir apenas um número finito de termos, já que a identificação de todos os núcleos de uma série infinita é impraticável.

Polinômio de memória

Um modelo simples, utilizado na modelagem comportamental simplificada das séries de Volterra considerando apenas componentes unidimensionais2 é o MP, que é um modelo compacto, de baixo custo computacional e linear em seus parâmetros3. O MP gera baixo erro quando aplicado à PAs que apresentam pouco efeito de memória4. O DPD e pós distorsor apresentam característica inversa a do PA (6), portanto o mesmo modelo pode ser utilizado. A equação 2.2 apresenta o MP conforme apresenta (6):

$$y(n) = \sum_{p=1}^{P} \sum_{m=0}^{M} h_{p,m} x(n-m) |x(n-m)|^{p-1}$$
(2.2)

Como a proposta do trabalho é a implementação em hardware desse modelo, então torna-se necessário paralelizar operações aritiméticas de forma a alcançar uma taxa de operação que satisfaça a norma regulamentadora. Nesse contexto, as FPGAs apresentam-se como uma alternativa viável para a implementação de circuitos pré-distorcedores

2.2 FPGA

Como foi visto em (5), FPGAs, são uma classe de dispositivos lógicos programáveis, ou seja, permitem a reconfiguração física de seus componentes de eletrônica digital, que ocorre através de uma linguagem de descrição de hardware. As FPGAs consistem, basicamente, em um conjunto de sub circuitos digitais interconectados que realizam funções comuns e ao mesmo tempo, possuem alto nível de flexibilidade, portanto, pode ser utilizada para processamento de imagem em tempo real, machine learning, entre outras aplicações. As FPGAs possuem a capacidade de sintetizar complexas arquiteturas de eletrônica digital o que acaba resultando em um funcionamento bastante paralelizado, permitindo um processamento rápido envolvendo várias portas de entrada e saída, mas sem excluir a possibilidade de desenvolver códigos sequenciais. A estrutura interna de uma FPGA é fundamentalmente composta por blocos lógicos interligados, dispostos como uma matriz. Cada bloco é composto por um determinado número de sub-blocos, e os sub-blocos possuem os componentes mais básicos da hierarquia. As FPGAs da Intel e da Xilinx possuem diferenças na nomenclatura dos blocos e sub-blocos, bem como na organização dos sub-blocos, como exemplificado na Figura 4 e na Figura 5, que mostram as FPGAS Intel Stratix X e Xilinx Ultrascale+, respectivamente. As arquiteturas fundamentalmente são semelhantes, já que a forma de matriz dos blocos e a funcionalidade dos componentes fundamentais são universais. Os blocos lógicos recebem o nome de LAB em FPGAs da Intel, e CLB em FPGAs da ilinx. Os sub-blocos são denominados ALM ou LE dependendo da FPGA da Intel, e são denominados Slices nos FPGAs da Xilinx.

Figura 4 – Estrutura Interna da FPGA Stratix X da Intel

Os sub-blocos das FPGAs são compostos por LUTs e registradores. As LUTs são compostas por uma árvore binária de multiplexadores 2:1, permitindo o armazenamento de uma função lógica na forma de SOP. Os registradores são os componentes síncronos

Figura 5 – Estrutura Interna da FPGA Ultrascale+

dos sub-blocos. Além da estrutura mencionada, FPGAs comumente possuem diversos módulos integrados, como CPUs, DSPs, memória Flash, PLLs, que aumentam ainda mais as capacidades do FPGA.

Como mencionado anteriormente, as FPGAs são programadas utilizando uma linguagem de descrição de hardware, sendo VHDL uma das mais comuns para a síntese de circuitos integrados de alta velocidade. Foi criada por uma iniciativa financiada pelo departamento de defesa dos Estados Unidos em meados dos anos 80 e foi a primeira linguagem de descrição de hardware padronizada pela IEEE. A estrutura de um código VHDL consiste em três partes principais: declaração de bibliotecas/pacotes, entidade e arquitetura. Na primeira parte, são listadas as bibliotecas e pacotes necessários para o projeto. As bibliotecas padrão incluem a std e a work. A entidade, que é a interface do sistema, descreve as entradas e saídas e é dividida em duas partes: parâmetros e conexões. Os parâmetros são valores constantes, como a largura de um barramento, que são declarados como genéricos. As conexões, por sua vez, definem a transferência de informações e correspondem aos pinos de entrada e saída do circuito. Já a arquitetura é a parte principal do sistema, onde o circuito é descrito. Nessa seção, são definidas as atribuições, operações lógicas e aritméticas, comparações, entre outros. Há também uma parte declarativa da sintaxe, que apresenta uma ampla variedade de declarações possíveis. Sendo assim, circuitos digitais para processamento de sinais em tempo real são muito utilizados em sistemas de comunicações sem fio. Um exemplo de aplicação são os pré-distorcedores para transmissores sem fio. Os PDs são baseados em operações matemáticas que envolvem uma grande quantidade de operações de soma, produto e tabelas de busca. Devido às rigorosas exigências de frequência de operação, torna-se fundamental a paralelização das operações necessárias. Nesse contexto, as FPGAs são uma alternativa viável para a implementação de circuitos pré-distorcedores.

3 Material e Métodos

Conforme dito anteriormente o trabalho busca o desenvolvimento do design do circuito integrado de um DPD, a partir de um modelo validado em software, e em hardware, no caso, FPGA. Para isso esse projeto foi divido em 4 etapas principais:

- Estudo DPD;
- Implementação em software;
- Implementação em FPGA;
- Design e validação do circuito integrado.

O cronograma para o desenvolvimento dessas atividades esta disponivel na tabela 1 a seguir:

	mar/24	abr/24	mai/24	jun/24	jul/24	ago/24	set/24	out/24	nov/24
Etapa 1									
Etapa 2									
Etapa 3									
Etapa 4									

Tabela 1 – Cronograma de Etapas

3.1 Estudo dos DPDs

A etapa consistiu no estudo dos DPDs, conforme apresentado no Capítulo 2, onde foi feito todo o levantamento sobre os tipos de modelagem dos DPDs. O objetivo deste estudo é entender as diferentes abordagens de modelagem, avaliar seus desempenhos e identificar as mais adequadas para a aplicação em amplificadores de potência.

3.2 Implementação em software

Nesta etapa, foi realizada a implementação do modelo DPD em software, utilizando a linguagem de programação Python. Python é uma linguagem amigável, amplamente difundida na comunidade acadêmica e prática de usar.

Para essa modelagem, foram coletados sinais de entrada e saída de um amplificador de potência classe AB, que utiliza um HEMT fabricado com tecnologia GaN. O amplificador foi excitado por um sinal portador de frequência de 900 MHz, modulado por um sinal de envelope WCDMA 3GPP com aproximadamente 3,84 MHz de largura de banda. Os dados

de entrada e saída do amplificador de potência foram medidos usando um VSA Rohde & Schwarz FSQ com uma taxa de amostragem de 61,44 MHz, conforme disponível em (8).

A seguir, foi realizado o cálculo da estimativa do sinal utilizando números com vírgula fixa. Para verificar a precisão dessa estimativa em relação ao sinal original, foi calculado o NMSE. Para essa validação, os dados foram inicialmente divididos em conjuntos de extração e validação. A matriz de confusão foi calculada com os dados de extração, conforme descrito na seção 2.1, utilizando o código disponível no anexo 5. Esse cálculo é essencial para a extração dos coeficientes do polinômio de memória. Após a extração dos coeficientes, foi calculado o modelo do PA, que foi então validado com os dados de validação. O NMSE obtido para um polinômio de 2° grau com uma amostra memorizada foi de -23,57 dB.

Em seguida, o algoritmo foi ajustado para operar com números em vírgula fixa e o número total de bits foi reajustado para atingir a menor resolução possível, buscando o menor NMSE simulado, conforme ilustrado pelo anexo 5, perceba que por ser tratar de um calculo em virgula flutuante, foi necessário fazer uma readequação do resultado obtido entre cada multiplicação de forma a manter a resolução inicial.

3.3 Implementação em FPGA

Essa etapa conssise no desenvolvimento do DPD do polinomio de memória

3.4 Design e validação

Finalmente, na última etapa, realiza-se o processo de concepção do circuito integrado do DPD como um circuito dedicado integrado na tecnologia BiCMOS 130 nm 8HP, utilizando as ferramentas do Cadence. O fluxo de projeto VLSI para design de um circuito integrado de aplicação específica, inclui a descrição do circuito em VHDL, síntese lógica utilizando as células padrão da tecnologia, place and route e simulações comportamentais e temporais. O diagrama do fluxo VLSI pode ser ilustrado pela figura 6.

No processo de desenvolvimento do circuito, várias etapas são executadas. Primeiro, há a simulação comportamental para verificar se o circuito VHDL atende às expectativas, utilizando um testbench em VHDL e a ferramenta Cadence NCLaunch. Em seguida, ocorre a síntese lógica, onde a partir do modelo comportamental, utiliza-se a ferramenta Genus para criar um modelo RTL com células padrão de tecnologia específica, considerando restrições de área, frequência e consumo de energia. A síntese gera dois arquivos: um com componentes e conexões, em Verilog, e outro com informações de atraso no formato SDF. A simulação pós-síntese é realizada para validar o netlist gerado, usando o mesmo testbench da simulação comportamental. Em seguida, na etapa de PAR, o layout é criado posicionando as células e realizando as conexões entre essas células, utilizando a ferramenta

Figura 6 – Fluxo de projeto VLSI

Innovus. Por fim, na simulação pós-PAR, o circuito é simulado considerando as resistências e capacitâncias parasitas. Cada etapa é fundamental para garantir o correto funcionamento do circuito.

4 Resultados e Discussão

Conforme dito no capitulo 3 o trabalho foi divido em 4 etapas, nas quais a primeira etapa consistiu no estudo dos DPDs e nos métodos de modelagem deles, a segunda etapa consistiu na implementação desta modelagem em software, que foi optado em utilizar o python, a etapa 3 que consiste na implementação do modelo de DPD escolhido em hardware ultilizando a linguagem VHDL e finalmente na quarta etapa e feita o design do circuito integrado do circuito integrado. Neste capitulo serão exibidos os resultados das etapas 2 ja que a etapa 1 cosiste no pesquisa bibliográfica e as etapas 3 e 4 serão desenvolvidas na segunda etapa do projeto.

4.1 Etapa 2

A etapa 2 consiste na modelagem do PA em software para posteriormente ser feito a modelagem do DPD, e finalmente ser feito o levantamento da quantidade de bits necessarios para a implementação do DPD em hardware minimizando os erros de quantização. O resultado desse levantamento esta presente no grafico na figura 7, onde observa-se que a partir de 7 bits de resolução não tem uma melhora expressiva no NMSE do sinal.

Figura 7 – Grafico Numero de bits x NMSE

5 Conclusão

A evolução dos sistemas de comunicação sem fio tem promovido a implementação de diversos serviços móveis, tornando essencial que esses sistemas operem com a máxima eficiência. Nesse cenário, a implementação de um DPD em cascata com o PA surge como uma alternativa de baixo custo e interessante para melhorar o desempenho desses sistemas.

O objetivo deste trabalho de conclusão de curso é implementar em hardware um DPD baseado no modelo de Polinômio de Memória. Para isso, o projeto foi dividido em quatro etapas: estudo do DPD e da modelagem matemática, modelagem do DPD em software, implementação do DPD em hardware e, finalmente, design do circuito integrado.

Atualmente, o projeto está na etapa 3, que corresponde à implementação em hardware, conforme o cronograma exibido na tabela 1.

Conclui-se, portanto, que as atividades estão sendo realizadas dentro dos prazos estabelecidos e que o projeto está progredindo conforme o esperado.

Referências

- 1 JOHN, E. Modelagem comportamental de amplificadores de potência de radiofrequência usando termos unidimensionais e bidimensionais de séries de Volterra. 2016.
- 2 KENINGTON, P. High Linearity RF Amplifier Design. [S.l.: s.n.], 2000.
- 3 CRIPPS, S. RF Power Amplifiers for Wireless Communications. [S.l.: s.n.], 2006.
- 4 CHAVEZ, J. H. Estudo comparativo entre as arquiteturas de identificação de pré-distorcedores digitais através das aprendizagens direta e indireta. 2018.
- 5 PEDRONI, V. Eletrônica Digital e VHDL. [S.l.: s.n.], 2010.
- 6 SCHUARTZ, L.; LIMA, E. Polinômios com Memória de Complexidade Reduzida e sua Aplicação na Pré-distorção Digital de Amplificadores de Potência. 2017.
- 7 LIMA, E. G. de; GHIONE, G. Behavioral modeling and digital base-band predistortion of RF power amplifiers. 2009.
- 8 BONFIM, E. J.; LIMA, E. G. D. A Modified Two Dimensional Volterra-Based Series for the Low-Pass Equivalent Behavioral Modeling of RF Power Amplifiers. 2016. 27-35 p.
- 9 H.E.WESTE, N.; HARRIS, D. M. CMOS VLSI Design: A Circuits and Systems Perspective (4th Edition). [S.l.: s.n.], 2010.

ANEXO A - função que calcula matriz de confusão em virgula flutuante

ANEXO B - Função que calcula matriz de confusão em virgula fixa

```
readeq = lambda val, precision: np.floor(val / (2 ** precision))
      def mp_int(P, M, xn, bits):
      L = xn.shape
      XX = np.zeros((L[0] - M, P * (M+1)), dtype=np.complex128)
      for l in range(M+1, L[0]):
          for p in range(1, P+1):
               for m in range(0, M+1):
                       A = np.real(xn[1-m])[0]
                       B = np.imag(xn[1-m])[0]
                       modulo_power = 2**bits
                       modulo_square = readeq(A ** 2 + B ** 2, bits)
10
                       for _ in range(1, p):
11
                           modulo_power = readeq(modulo_power *
12
                              modulo_square, bits)
                       real_part = readeq(A * modulo_power,bits)
13
                       imag_part = readeq(B * modulo_power,bits)
14
                       XX[1-M-1, ((p-1)*(M+1))+m] = complex(
15
                          real_part,imag_part)
      return XX
16
```