

#### **Kemi 112**

#### - Førstehjælp til formler

2. udgave, 2. oplag 2010 © Nyt Teknisk Forlag 2007, 2008

Forlagsredaktion: Thomas Rump, tr@nyttf.dk

Omslag: Henrik Stig Møller

Illustrationer: Thomas Rump og Henrik Stig Møller

Dtp: Gitte Frederiksen Tryk: Preses Nams Baltic ISBN: 978-87-571-2666-2

Bestillingsnummer: 74006-1

Bogen er sat med Minon 10/12 og Myriad Roman

Mekanisk, fotografisk, elektronisk eller anden gengivelse af denne bog eller dele heraf er ikke tilladt ifølge gældende dansk lov om ophavsret. Alle rettigheder forbeholdes.

Nyt Teknisk Forlag Ingerslevsgade 44 1705 København V info@nyttf.dk

www.nyttf.dk

# **Forord**

Kemi 112 – Førstehjælp til formler er udarbejdet til brug for kursister i faget kemi, ved de gymnasiale uddannelser STX, HTX og HF

Formelsamlingen er opbygget efter bekendtgørelsen i dette fag, og dækker således de emner man finder i pensa på gymnasielt niveau. Formelsamlingen dækker både C-, B- og A-niveau inden for kemi.

Formlerne er markeret med kolonner af forskellig farve.

- Markerer formler, man normalt finder på C-niveau.
- Markerer formler, man normalt først møder på B-niveau.
- Markerer formler, man normalt først møder på A-niveau eller valgemner.

Alle C-niveauformler hører således også til B-niveauet og ligeledes hører C- og B-niveauformlerne således også til A-niveauet.

I nogle formler er det en forudsætning af man indsætter talværdien af størrelsen, og ikke enheden sammen med tallet. Dette er gjort for at forenkle formlernes udseende, idet det er underforstået at man skal dividere med den pågældende størrelses standardværdi. Det er i alle tilfælde angivet som en bemærkning, når man skal være påpasselig med dette.

Indekset sidst i bogen er opbygget med samme farvemarkering af tallene, og angiver dermed de enkelte opslags niveau.

En række af formlerne, kan kun anvendes under bestemte forudsætninger, fx hvis nævneren i en brøk ikke er nul, osv. Fysiske konstanter er afrundet i formlerne, mens de eksakte værdier findes bagest i appendix.

Der er, så vidt muligt, medtaget figurer som illustration til formlerne. Illustrationen angiver oftest kun én mulighed, hvor mange flere tilfælde normalt kan forekomme.

Der er rettet fejl i 2. udgave.

En speciel tak til mine klasser på Holstebro Gymnasium & HF samt Holstebro Tekniske Skole for deres mange og konstant kritiske spørgsmål.

Holstebro, august 2008

Lars Pedersen

# **Indhold**

#### Atomer 1

Atomtabeller 4 Spændingsrækken 4 Oxidationstal 5

#### Mængdeberegninger 6

Mængdeberegninger tabeller 27 Egenskaber for grundstoffer 27 Molale fryse- og kogepunktsændring 28

#### Kemisk termodynamik 29

Gasser 31
Energi 44
Hovedsætninger 73
Kemisk termodynamik tabeller 76
Van der Walls gas 76
Massefylde for gas 77
Brændværdi 78
Entalpi, entropi og energi 79

#### Syre-base-teori 80

Syre-base tabeller 114 Vands ionprodukt og styrkeeksponent 114 Syre- og base styrkekonstanter og styrkeeksponenter 115

#### Kemisk ligevægt 116

Kemisk ligevægt tabeller 124 Opløselighedsprodukt 124 Henrys konstant 125 Kompleksitetskonstant 126

#### Reaktionskinetik 127

Reaktion af nulte orden 131 Reaktion af første orden 134 Reaktion af anden orden 137 Reaktionskinetik tabeller 141 Aktiveringsenergi og hastighedskonstant 141

#### Spektroskopi 142

Spektroskopitabeller *151* Hydrogens spektrallinjer *151* Ekstinktionskoefficient *152* 

#### Elektrokemi 153

Konduktans 158
Elektrodepotential 163
Elektrokemitabeller 173
Molar konduktivitet 173
Molar konduktivitet ved uendelig fortynding 174
Standard elektrodepotentialet 175

#### Appendix 176

Præfikser 176 Græske alfabet 177 Fysiske konstanter 178

#### Enheder 179

SI-enheder 179 Afledte enheder 180 Andre enheder 181

#### Index

Grundstoffernes periodesystem

# **Atomer**

1

#### **Nukleontal**



A = Z + N

A: Nukleontallet. A er enhedsløs

Z = A - N

Z: Antal protoner. Z er enhedsløs

N = A - 1

N: Antal neutroner. N er enhedsløs

2

#### **Antal elektroner**



 $n_e = \frac{Q}{}$ 

 $n_e\!\!:$  Antal elektroner.  $n_e$ er enhedsløs

 $Q = n_e \cdot e$ 

Q: Ladningen. [Q] = C (Coulomb)

 $e = \frac{Q}{n_e}$ 

*e*: Elementarladningen.  $e \approx 1,602 \cdot 10^{-19}$  C

Bemærkning: Se 4 for spændingsrækken.

3

### Redoxreaktion

Ved redoxreaktioner er proceduren:

- 1. Opskriv reaktionen uden koefficienter.
- 2. Oxidationstallet for alle atomer bestemmes (se 5) og oven på de atomer, der ændrer oxidationstal, skrives tallene på.
- 3. Koefficienterne i reaktionen bestemmes, således at den samlede stigning ↑ bliver lig med det samlede fald ↓.

#### 4 – 5 Atomer

- 4. Ionladningerne på venstre og højre side tælles, ved at gange koefficienterne foran en ion med ionens ladning og lægge tallene sammen. Hvis det ikke passer, skal man enten tilføje oxoniumioner (surt miljø) eller hydroxidioner (basisk miljø) på venstre side.
- 5. Antallet af oxoniumioner på venstre og højre side tælles og afstemmes, ved at tilføje vandmolekyler på venstre og højre side.

## **Atomtabeller**

4

#### **Spændingsrækken**



I spændingsrækken er metallerne anbragt i rækkefølge efter deres evne til at afgive elektroner. Jo længere mod venstre metallet står, jo mere villigt er det til at afgive elektroner (mere elektronegativt).

K Ba Ca Na Mg Al Zn Fe Sn Pb H<sub>2</sub> Cu Hg Ag Pt Au

5

#### **Oxidationstal**

Oxidationstallet kan bestemmes ud fra følgende regler:

- 1. Frie atomers oxidationstal er 0.
- 2. Rene grundstofsammensætninger har oxidationstal 0.
- 3. Enatomige ioners oxidationstal er lig med ionens ladning.
- 4. Hydrogen har i kemiske forbindelser, hvor hydrogen er bundet til et mere elektronegativt grundstof (se 4), oxidationstal +1.
- 5. Hydrogen har i kemiske forbindelser, hvor hydrogen er bundet til et mindre elektronegativt grundstof (se 4), oxidationstal -1.
- 6. Når oxygen er bundet til mindre elektronegative grundstoffer, har oxygen oxidationstallet -2.
- 7. I peroxider er oxidationstallet for oxygen -1.
- 8. Summen af oxidationstallene er lig med formelenhedens ladning.
- 9. Ved polære bindinger, lader man som om, at elektronparrene er fuldstændigt overført til det mest elektronegative af atomerne (se 4), så det får ædelgasstruktur.

# Mængdeberegninger

6

#### Stofmængde (definition)

 $n = \frac{m}{M}$  n: Stofmængden. [n] = mol  $m = M \cdot n$  m: Massen. [m] = g (gram)  $M = \frac{m}{n}$  M: Molmassen.  $[M] = \frac{g}{\text{mol}}$ 

Bemærkning: Se 27 for tabelværdier for molmassen.

7

## **Antal partikler**

Antallet af partikler kan bestemmes vha.:



 $N = N_A \cdot n$  N: Antallet af partikler. N er enhedsløs

 $N_{\rm A} = \frac{N}{n}$   $N_{\rm A}$ : Avagadros konstant.  $N_{\rm A} \approx 6.02 \cdot 10^{23} \, {\rm mol}^{-1}$ 

 $n = \frac{N}{N_A}$  n: Stofmængden. [n] = mol

8

### Stofmængdelov

Stofmængdeloven giver at den totale stofmængde, kan findes som summen af de enkelte stofmængder:

 $n_{\text{total}} = n(A_1) + n(A_2) + ... + n(A_r)$   $n_{\text{total}}$ : Total stofmængde.  $[n_{\text{total}}] = \text{mol}$   $n(A_i)$ : Stofmængden af stoffet  $A_i$ .  $[n(A_i)] = \text{mol}$ 

### **Masseprocent (definition)**

Masseprocenten defineres ved:



$$c_{\text{masse\%}} = \frac{m(A)}{m_{\text{total}}} \cdot 100\%$$

$$m(A) = \frac{c_{\text{masse}\%} \cdot m_{\text{total}}}{100\%}$$

$$m_{\text{total}} = \frac{m(A)}{c_{\text{masse}\%}} \cdot 100\%$$

 $c_{\text{masse}\%}$ : Masseprocent koncentration.

$$[c_{\text{masse}\%}] = \% \text{ (procent)}$$

m(A): Massen af stoffet A. [m(A)] = kg

$$m_{\text{total}}$$
: Totale masse.  $[m_{\text{total}}] = \text{kg}$ 

10

## **Masse-ppm (definition)**



$$c_{\text{masse ppm}} = \frac{m(A)}{m_{\text{total}}} \cdot 10^6 \text{ ppm}$$

$$m(A) = \frac{c_{\text{masse ppm}} \cdot m_{\text{total}}}{10^6 \text{ ppm}}$$

$$m_{\text{total}} = \frac{m(A)}{c_{\text{masse ppm}}} \cdot 10^6 \text{ ppm}$$

 $c_{\text{masse ppm}}$ : Masse-ppm koncentration. [ $c_{\text{masse ppm}}$ ] = ppm (parts per million, dele pr. million)

m(A): Massen af stoffet A. [m(A)] = kg

 $m_{\text{total}}$ : Totale masse.  $[m_{\text{total}}] = \text{kg}$ 

11

## Masse-ppb (definition)



$$c_{\text{masse ppb}} = \frac{m(A)}{m_{\text{total}}} \cdot 10^9 \text{ ppb}$$

 $c_{\text{\tiny masse\,ppb}}$ : Masse-ppb koncentration.

 $[c_{\text{masse ppb}}] = \text{ppb (parts per billion, dele pr. milliard)}$ 

$$m(A) = \frac{c_{\text{masse ppb}} \cdot m_{\text{total}}}{10^9 \text{ ppb}}$$

$$m(A)$$
: Massen af stoffet A.  $[m(A)] = kg$ 

$$m(A) = \frac{c_{\text{masse ppb}} \cdot m_{\text{total}}}{10^9 \text{ ppb}}$$

$$m_{\text{total}} = \frac{m(A)}{c_{\text{masse ppb}}} \cdot 10^9 \text{ ppb}$$

$$m_{\text{total}}$$
: Totale masse.  $[m_{\text{total}}] = \text{kg}$ 

## **Volumenprocent (definition)**

Volumenprocenten defineres ved:



$$c_{\text{Vol}\%} = \frac{V(A)}{V_{\text{total}}} \cdot 100\%$$

$$c_{\text{Vol}\%}$$
: Volumenprocent koncentration. [ $c_{\text{Vol}\%}$ ] = % (procent)

$$V(A) = \frac{c_{\text{Vol}\%} \cdot V_{\text{total}}}{100\%}$$

$$V(A)$$
: Volumen af stoffet A.  $[V(A)] = L$  (liter)

$$V_{\text{total}} = \frac{V(A)}{1000} \cdot 1000$$

 $V_{\text{total}}$ : Totale volumen.  $[V_{\text{total}}] = L$  (liter)

## **Volumen-ppm (definition)**



$$c_{\text{Vol ppm}} = \frac{V(A)}{V_{\text{total}}} \cdot 10^6 \text{ ppm}$$
$$V(A) = \frac{c_{\text{Vol ppm}} \cdot V_{\text{total}}}{10^6 \text{ ppm}}$$
$$V_{\text{total}} = \frac{V(A)}{c_{\text{Vol ppm}}} \cdot 10^6 \text{ ppm}$$

$$c_{\text{Vol ppm}}$$
: Volumen-ppm koncentration. [ $c_{\text{Vol ppm}}$ ] = ppm (parts per million, dele pr. million)

$$V(A) = \frac{c_{\text{Vol ppm}} \cdot V_{\text{tota}}}{10^6 \text{ ppm}}$$

$$V(A)$$
: Volumen af stoffet A.  $[V(A)] = L$  (liter)

$$V_{\text{total}} = \frac{V(A)}{c_{\text{Vol ppm}}} \cdot 10^6 \text{ ppm}$$

$$V_{\text{total}}$$
: Totale volumen.  $[V_{\text{total}}] = L$  (liter)

#### **Volumen-ppb** (definition)



$$c_{\text{Vol ppb}} = \frac{V(A)}{V_{\text{total}}} \cdot 10^9 \text{ ppb}$$

$$c_{\text{\tiny Vol ppb}}$$
: Volumen-ppb koncentration. [ $c_{\text{\tiny Vol ppb}}$ ] = ppb (parts per billion, dele pr. milliard)

$$V(A) = \frac{c_{\text{Vol ppb}} \cdot V_{\text{total}}}{10^9 \text{ ppb}}$$

$$V(A)$$
: Volumen af stoffet A.  $[V(A)] = L$  (liter)

$$V_{\text{total}} = \frac{V(A)}{c_{\text{Vol.pph}}} \cdot 10^9 \text{ pp}$$

$$V_{\rm total} = \frac{V({\rm A})}{c_{\rm Vol\, ppb}} \cdot 10^9 \; {\rm ppb}$$
  $V_{\rm total}$ : Totale volumen.  $[V_{\rm total}] = {\rm L} \; ({\rm liter})$ 

#### 15

#### Molare volumen (definition)

Molar volumen defineres som:

$$V_{\rm m} = \frac{V}{n}$$

$$V_{\rm m}$$
: Molare volumen.  $[V_{\rm m}] = \frac{L}{\rm mol}$ 

$$V = V_{m} \cdot n$$

V: Volumen. [V] = L (liter)

$$n = \frac{V}{V_{m}}$$

n: Stofmængden. [n] = mol

#### 16

## Formel stofmængdekoncentration (definition)

Den formelle stofmængdekoncentration er defineret ved stofmængden af stoffet A i væsken med volumenet *V*:



$$c(\mathbf{A}) = \frac{n(\mathbf{A})}{V}$$

c(A): Formel stofmængdekoncentration af stoffet A. [c(A)] = M (molær)

$$n(A) = c(A) \cdot V$$

$$n(A)$$
: Stofmængden af stoffet A.  $[n(A)] = mol$ 

$$V = \frac{n(A)}{c(A)}$$

$$V$$
: Volumen. [ $V$ ] = L (liter)

## Aktuel stofmængdekoncentration (definition)

Den aktuelle stofmængdekoncentration er defineret ved stofmængden af stoffet A, der er opløst i væsken med volumenet V:



$$[A] = \frac{n(A)}{V}$$

[A]: Aktuel stofmængdekoncentration.

$$[[A]] = M \text{ (molær)}$$

$$n(A) = [A] \cdot V$$

n(A): Stofmængden af stoffet A. [n(A)] = mol

$$V = \frac{n(A)}{[A]}$$

V: Volumen. [V] = L (liter)

18

## **Fortynding**

Ved en fortyndelse af en opløsning, gælder:



$$c_{\text{efter}} = \frac{c_{\text{før}} \cdot V_{\text{før}}}{V_{\text{efter}}}$$

 $c_{\mbox{\tiny effer}}$ : Formel stofmængdekoncentration efter fortyndingen.  $[c_{\mbox{\tiny effer}}] = {
m M~(molær)}$ 

$$c_{\text{før}} = \frac{c_{\text{efter}} \cdot V_{\text{efter}}}{V_{\text{før}}}$$

 $c_{\text{tor}}$ : Formel stofmængdekoncentration inden fortyndingen.  $[c_{\text{for}}] = M \text{ (molær)}$ 

$$V_{\text{før}} = \frac{c_{\text{efter}} \cdot V_{\text{efter}}}{c_{\text{før}}}$$

 $V_{\mbox{\tiny for}}$ : Volumen inden fortyndingen.  $[\,V_{\mbox{\tiny for}}] = {\rm L}\;({\rm liter})$ 

$$V_{\text{efter}} = \frac{c_{\text{før}} \cdot V_{\text{fø}}}{c_{\text{efter}}}$$

 $V_{\mbox{\tiny efter}}$ : Volumen efter fortyndingen. [ $V_{\mbox{\tiny efter}}] = {\rm L}$  (liter)

### Stofmængdebrøk (definition)

Stofmængdebrøken defineres som:



$$x(\mathbf{A}) = \frac{n(\mathbf{A})}{n_{total}}$$

x(A): Stofmængdebrøken (molbrøken) for stoffet A.

x(A) er enhedsløs

$$n(A) = n_{\text{total}} \cdot x(A)$$

n(A): Stofmængden af stoffet A. [n(A)] = mol

$$n_{\text{total}} = \frac{n(A)}{x(A)}$$

 $n_{\text{total}}$ : Totale stofmængde.  $[n_{\text{total}}] = \text{mol}$ 

20

## Stofmængdelov vha. stofmængdebrøker

 $Stofmængdeloven\ kan\ vha.\ stofmængdebrøkerne\ udtrykkes:$ 

$$x(A_1) + x(A_2) + ... + x(A_r) = 1$$
  $x(A_i)$ : Stofmængdebrøken (molbrøken) for stoffet  $A_i$ :  $x(A_i)$  er enhedsløs

Bemærkning: Se 8 for stofmængdeloven.

21

#### **Molal koncentration (definition)**

Molal koncentration defineres som:



$$c_{\text{molal}}(\mathbf{A}) = \frac{n(\mathbf{A})}{m_{\text{opløsningsmiddel}}}$$

 $c_{\text{molal}}(A)$ : Molale koncentration (molalitet) af stoffet A.

$$[c_{\text{molal}}(A)] = \frac{\text{mol}}{\text{kg}}$$

$$n(A) = c_{\text{molal}}(A) \cdot m_{\text{opløsningsmiddel}}$$

$$n(A)$$
: Stofmængden af stoffet A.  $[n(A)] = mol$ 

$$m_{\text{opløsningsmiddel}} = \frac{n(A)}{c_{\text{molal}}(A)}$$

$$m_{\mbox{\tiny opløsningsmiddel}}$$
: Massen af opløsningsmidlet.

$$[m_{\text{opløsningsmiddel}}] = \text{kg}$$

## Frysepunktssænkning

Frysepunktssænkningen for en opløsning af stofferne  $A_1, A_2, ..., A_n$  er givet ved:





$$\Delta T_{\mathrm{f}} = -K_{\mathrm{f}} \cdot (c_{_{\mathrm{molal}}}(\mathbf{A}_{1}) + c_{_{\mathrm{molal}}}(\mathbf{A}_{2}) + \dots + c_{_{\mathrm{molal}}}(\mathbf{A}_{n}))$$

$$\Delta T_{\epsilon}$$
: Frysepunktssænkningen.  $[\Delta T_{\epsilon}] = K$  (Kelvin)

$$K_{\rm f} = \frac{-\Delta T_{\rm f}}{c_{\rm molal}\left({\rm A}_{1}\right) + c_{\rm molal}\left({\rm A}_{2}\right) + \ldots + c_{\rm molal}\left({\rm A}_{n}\right)}$$

$$K_{\rm f}$$
: Molale frysepunktssænkning.

$$[K_{\scriptscriptstyle \mathrm{f}}] = \frac{\mathrm{K} \cdot \mathrm{kg}}{\mathrm{mol}}$$

$$c_{\text{molal}}\left(\mathbf{A}_{i}\right) = -\frac{\Delta T_{\mathbf{f}}}{K_{\mathbf{f}}} - c_{\text{molal}}\left(\mathbf{A}_{1}\right) - c_{\text{molal}}\left(\mathbf{A}_{2}\right) - \dots - c_{\text{molal}}\left(\mathbf{A}_{i-1}\right) - c_{\text{molal}}\left(\mathbf{A}_{i+1}\right) - \dots - c_{\text{molal}}\left(\mathbf{A}_{n}\right)$$

 $c_{\text{modal}}(A_i)$ : Molalitet af stoffet  $A_i$ .

$$[c_{\text{molal}}(A_i)] = \frac{\text{mol}}{\text{kg}}$$

*Bemærkning*: Se **28** for tabelværdier for den molale frysepunktssænkning. Frysepunktsforhøjelsen findes ved at beregne – frysepunktssænkningen.

#### Molal frysepunktssænkning

Den molale frysepunktssænkningen kan beregnes vha.:

$$K_{\rm f} = \frac{R \cdot T_{\rm s}^2}{L_{\rm c}}$$
  $K_{\rm f}$ : Molale frysepunktssænkning.  $[K_{\rm f}] = \frac{K \cdot \log r}{r}$ 

$$R = \frac{K_{\rm f} \cdot L_{\rm s}}{T_{\rm s}^2}$$
 R: Gaskonstanten.  $R \approx 8{,}31 \, \frac{\rm J}{\rm mol \cdot K}$ 

$$T_s = \sqrt{\frac{K_f \cdot L_s}{R}}$$
  $T_s$ : Smeltepunktstemperaturen.  $[T_s] = K$  (Kelvin)

$$L_s = \frac{R \cdot T_s^2}{K_f}$$
  $L_s$ : Specifik smeltevarme.  $[L_s] = \frac{J}{kg}$ 

*Bemærkning*: Se **28** for tabelværdier for den molale frysepunktssænkning og **27** for tabelværdier for smeltepunktstemperaturen og den specifikke smeltevarme.

24

### Kogepunktsforhøjelse

Kogepunktsforhøjelsen for en opløsning af stofferne  $A_1, A_2, ..., A_n$  er givet ved:



$$\Delta T_{\mathbf{k}} = K_{\mathbf{k}} \cdot (c_{\text{molal}}(\mathbf{A}_1) + c_{\text{molal}}(\mathbf{A}_2) + \ldots + c_{\text{molal}}(\mathbf{A}_n)) \quad \Delta T_{\mathbf{k}} \cdot \text{Kogepunktsforhøjelsen.}$$
 
$$[\Delta T_{\mathbf{k}}] = \mathbf{K} \text{ (Kelvin)}$$

$$K_{\mathbf{k}} = \frac{\Delta T_{\mathbf{k}}}{c_{\text{molal}}\left(\mathbf{A}_{1}\right) + c_{\text{molal}}\left(\mathbf{A}_{2}\right) + \ldots + c_{\text{molal}}\left(\mathbf{A}_{n}\right)}$$
 
$$K_{\mathbf{k}} : \text{Molale kogepunktsforhøjelse.}$$
 
$$[K_{\mathbf{k}}] = \frac{\mathbf{K} \cdot \mathbf{kg}}{\mathbf{mol}}$$

$$\begin{split} c_{\text{\tiny mobal}}(\mathbf{A}_i) &= \frac{\Delta T_{\mathbf{k}}}{K_{\mathbf{k}}} - c_{\text{\tiny mobal}}(\mathbf{A}_1) - c_{\text{\tiny mobal}}(\mathbf{A}_2) - ... - c_{\text{\tiny mobal}}(\mathbf{A}_{i\text{-}1}) - c_{\text{\tiny mobal}}(\mathbf{A}_{i+1}) - ... - c_{\text{\tiny mobal}}(\mathbf{A}_n) \\ c_{\text{\tiny mobal}}(\mathbf{A}_i) &: \text{Molalitet af stoffet } \mathbf{A}_i \\ &[c_{\text{\tiny mobal}}(\mathbf{A}_i)] &= \frac{\text{mol}}{\text{\tiny kg}} \end{split}$$

*Bemærkning*: Se 28 for tabelværdier for den molale kogepunktshævning. Kogepunktssænkningen findes ved at beregne –kogepunktsforhøjelsen.

#### Molal kogepunktsforhøjelse

Den molale kogepunktsforhøjelse kan beregnes vha.:

$$K_{k} = \frac{R \cdot T_{k}^{2}}{L_{f}}$$

$$K_{k} : \text{Molale kogepunktsforhøjelse. } [K_{f}] = \frac{K \cdot kg}{\text{mol}}$$

$$R = \frac{K_{k} \cdot L_{f}}{T_{k}^{2}}$$

$$R: \text{Gaskonstanten. } R \approx 8,31 \frac{J}{\text{mol} \cdot K}$$

$$T_{k} = \sqrt{\frac{K_{k} \cdot L_{f}}{R}}$$

$$T_{k} : \text{Kogepunktstemperaturen. } [T_{k}] = K \text{ (Kelving the first of the fir$$

$$R = \frac{K_k \cdot L_f}{T_k^2}$$
 R: Gaskonstanten.  $R \approx 8,31 \frac{J}{\text{mol} \cdot K}$ 

$$T_k = \sqrt{\frac{K_k \cdot L_f}{R}}$$
  $T_k$ : Kogepunktstemperaturen.  $[T_k] = K$  (Kelvin)

$$L_f = \frac{R \cdot T_k^2}{K_k}$$
  $L_f$ : Specifik fordampningsvarme.  $[L_f] = \frac{J}{kg}$ 

Bemærkning: Se 28 for tabelværdier for den molale kogepunktsændring og 27 for tabelværdier for kogepunktstemperaturen og den specifikke fordampningsvarme.

26

## Osmotisk tryk

Det osmotiske tryk kan beregnes vha.:

$$p_{\text{osmotisk}} = R \cdot T \cdot ([A_1] + [A_2] + ... + [A_n]) \qquad \qquad p_{\text{osmotisk}} \text{: Osmotiske tryk.}$$

$$[p_{\text{osmotisk}}] = \text{bar (bar)}$$

$$R = \frac{p_{\text{osmotisk}}}{T \cdot ([A_1] + [A_2] + ... + [A_n])}$$

$$R: \text{Gaskonstanten. } R \approx 0,0831 \quad \frac{\text{L} \cdot \text{bar}}{\text{mol} \cdot \text{K}}$$

$$T = \frac{p_{\text{osmotisk}}}{R \cdot ([A_1] + [A_2] + \dots + [A_n])}$$
 T: Temperaturen. [T] = K (Kelvin)

$$T = \frac{p_{\text{osmotisk}}}{R \cdot ([A_1] + [A_2] + ... + [A_n])}$$

$$T: \text{Temperaturen. } [T] = K$$

$$[A_i] = \frac{p_{\text{osmotisk}}}{R \cdot T} - [A_1] - [A_2] - ... - [A_{i-1}] - [A_{i+1}] - ... - [A_n]$$

$$[A_i] = \frac{p_{\text{osmotisk}}}{R \cdot T} - [A_1] - [A_2] - ... - [A_{i-1}] - [A_{i+1}] - ... - [A_n]$$

$$[A_i] : \text{Aktuel stofmængde-koncentration af stoffet } A_i.$$

$$[A_i] : \text{Aktuel stofmængde-koncentration af stoffet } A_i.$$

## Mængdeberegninger tabeller

27

## Egenskaber for grundstoffer

Navn: Grundstoffets navn.

Symbol: Grundstoffets forkortelse. Rød skrift angiver radioaktive grundstoffer.

Nr.: Atomnummeret på grundstoffet.

M: Molmassen.  $[M] = \frac{g}{\text{mol}}$ 

 $\rho$ : Densiteten (massefylden).  $[\rho] = \frac{\text{kg}}{\text{m}^3}$ 

 $t_s$ : Smeltepunktstemperaturen.  $[t_s] = {}^{\circ}C$  (grader Celsius)

 $t_k$ : Kogepunktstemperaturen.  $[t_k] = {}^{\circ}$ C (grader Celsius)

 $L_s$ : Specifik smeltevarme.  $[L_s] = \frac{kJ}{kg}$ 

 $L_f$ : Specifik fordampningsvarme.  $[L_f] = \frac{kJ}{kg}$ 

| Navn                               | Symbol         | Ŗ.             | Molmasse                      | Densitet              | Smeltepunkt             | Kogepunkt                | Specifik<br>smeltevarme | Specifik<br>fordampnings-<br>varme |
|------------------------------------|----------------|----------------|-------------------------------|-----------------------|-------------------------|--------------------------|-------------------------|------------------------------------|
|                                    |                |                | M<br>g<br>mol                 | $rac{ ho}{{ m kg}}$  | t¸<br>°C                | <i>t</i> <sub>k</sub> °C | L¸<br>kJ<br>kg          | L <sub>,</sub><br>kJ<br>kg         |
| Actinium<br>Aluminium<br>Americium | Ac<br>Al<br>Am | 89<br>13<br>95 | 227<br>26,98153<br>243        | 2698<br>13700         | 1050<br>660,32<br>1176  | 3300<br>2519<br>2607     | <br>396<br>             | 10778                              |
| Antimon<br>Argon<br>Arsen          | Sb<br>Ar<br>As | 51<br>18<br>33 | 121,760<br>39,948<br>74,92159 | 6692<br>1,66<br>5727  | 630,63<br>-189,3<br>817 | 1587<br>-185,8<br>614    | 163<br>30<br>—          | 558<br>163<br>—                    |
| Astat<br>Barium<br>Berkelium       | At<br>Ba<br>Bk | 85<br>56<br>97 | 210<br>137,327<br>247         | 3594<br>14790         | 302<br>727<br>986       | 354<br>1870<br>—         | <br>58<br>              | 1021                               |
| Beryllium<br>Bismuth<br>Bly        | Be<br>Bi<br>Pb | 4<br>83<br>82  | 9,01218<br>208,9804<br>207,2  | 1846<br>9800<br>11340 | 1287<br>271,3<br>327,46 | 2469<br>1564<br>1749     | 1232<br>47<br>23        | 33022<br>1478<br>866               |
| Bohrium<br>Bor<br>Brom             | Bh<br>B<br>Br  | 107<br>5<br>35 | 262<br>10,811<br>79,904       | 2466<br>3120          | 2076<br>-7,3            | —<br>3927<br>59          | 2090<br>132             | 46975<br>370                       |

| Navn                                | Symbol                     | Nr.              | Molmasse                       | Densitet                    | Smeltepunkt                  | Kogepunkt                 | Specifik<br>smeltevarme | Specifik<br>fordampnings-<br>varme      |
|-------------------------------------|----------------------------|------------------|--------------------------------|-----------------------------|------------------------------|---------------------------|-------------------------|-----------------------------------------|
|                                     |                            |                  | M<br>g<br>mol                  | $\frac{ ho}{rac{kg}{m^3}}$ | t¸<br>°C                     | <i>t</i> <sub>k</sub> °C  | <b>L</b> ¸<br>kJ<br>kg  | <i>L<sub>₁</sub></i><br><u>kJ</u><br>kg |
| Cadmium<br>Calcium<br>Californium   | Cd<br>Ca<br>Cf             | 48<br>20<br>98   | 112,411<br>40,078<br>251       | 8647<br>1530                | 321,07<br>842<br>900         | 767<br>1484<br>—          | 54<br>213               | 888<br>3859<br>—                        |
| Carbon<br>Cerium<br>Chlor           | C<br>Ce<br>Cl              | 6<br>58<br>17    | 12,0107<br>140,116<br>35,4527  | 2266<br>6711<br>2,95        | 3527<br>795<br>-101,5        | 4027<br>3360<br>-34,04    | <br>66<br>180           | 59670<br>2240<br>576                    |
| Chrom<br>Cobalt<br>Curium           | Cr<br>Co<br>Cm             | 24<br>27<br>96   | 51,9961<br>58,93320<br>247     | 7194<br>8800<br>13300       | 1907<br>1495<br>1340         | 2671<br>2927<br>3110      | 385<br>275<br>—         | 6529<br>6334<br>—                       |
| Cæsium<br>Darmstadtium<br>Dubnium   | Cs<br>Ds<br>Db             | 55<br>110<br>105 | 132,9054<br>269<br>262         | 1900<br>—<br>—              | 28,44<br>—                   | 671<br>—<br>—             | 16<br>—                 | 510<br>—<br>—                           |
| Dysprosium<br>Einsteinium<br>Erbium | Dy<br>Es<br>Er             | 66<br>99<br>68   | 162,50<br>254<br>167,259       | 8531<br>—<br>9044           | 1407<br>860<br>1497          | 2567<br>—<br>2868         | <br>102                 | —<br>—<br>1751                          |
| Europium<br>Fermium<br>Fluor        | Eu<br><mark>Fm</mark><br>F | 63<br>100<br>9   | 151,964<br>257<br>18,9984      | 5248<br>—<br>1,58           | 826<br>1527<br>-219,62       | 1527<br>—<br>—<br>—188,12 | 69<br>—<br>268          | 1156<br>—<br>344                        |
| Francium<br>Gadolinium<br>Gallium   | Fr<br>Gd<br>Ga             | 87<br>64<br>31   | 223<br>157,25<br>69,723        | 7870<br>5905                | 27<br>1312<br>29,76          | 680<br>3250<br>2204       | 98<br>80                | 1982<br>3673                            |
| Germanium<br>Guld<br>Hafnium        | Ge<br>Au<br>Hf             | 32<br>79<br>72   | 72,61<br>196,9665<br>178,49    | 5323<br>19281<br>13276      | 938,3<br>1064,18<br>2233     | 2820<br>2856<br>4876      | 438<br>63<br>122        | 4605<br>1647<br>3704                    |
| Hassium<br>Helium<br>Holmium        | Hs<br>He<br>Ho             | 108<br>2<br>67   | 265<br>4,0026<br>164,9303      | —<br>0,17<br>8797           | —<br>-272,2<br>1461          |                           | 5<br>104                | 20<br>1522                              |
| Hydrogen<br>Indium<br>Iod           | H<br>In<br>I               | 1<br>49<br>53    | 1,00794<br>114,818<br>126,9045 | 0,084<br>7290<br>4953       | -259,14<br>156,6<br>113,7    | -252,87<br>2072<br>184,3  | 109<br>28<br>123        | 893<br>1971<br>330                      |
| Iridium<br>Jern<br>Kalium           | Ir<br>Fe<br>K              | 77<br>26<br>19   | 192,217<br>55,845<br>39,0983   | 22500<br>7873<br>862        | 2466<br>1538<br>63,38        | 4428<br>2861<br>759       | 137<br>247<br>60        | 2932<br>6258<br>1967                    |
| Kobber<br>Krypton<br>Kviksølv       | Cu<br>Kr<br>Hg             | 29<br>36<br>80   | 63,546<br>83,80<br>200,59      | 8933<br>3,43<br>13546       | 1084,62<br>-157,36<br>-38,83 | 2927<br>-153,22<br>356,73 | 208<br>20<br>11         | 4729<br>108<br>295                      |

| Navn                                    | Symbol         | ž.               | Molmasse                       | Densitet               | Smeltepunkt            | Kogepunkt                | Specifik<br>smeltevarme    | Specifik<br>fordampnings-<br>varme |
|-----------------------------------------|----------------|------------------|--------------------------------|------------------------|------------------------|--------------------------|----------------------------|------------------------------------|
|                                         |                |                  | M<br>g<br>mol                  | $rac{ ho}{{ m kg}}$   | t,<br>°C               | <i>t</i> <sub>k</sub> °C | L <sub>s</sub><br>kJ<br>kg | L <sub>,</sub><br>kJ<br>kg         |
| Lanthan                                 | La             | 57               | 138,9055                       | 6174                   | 920                    | 3470                     | 81                         | 2877                               |
| Lawrencium                              | Lr             | 103              | 262                            | —                      | 1627                   | —                        | —                          | —                                  |
| Lithium                                 | Li             | 3                | 6,941                          | 533                    | 180,54                 | 1342                     | 432                        | 21193                              |
| Lutetium<br>Magnesium<br>Mangan         | Lu<br>Mg<br>Mn | 71<br>12<br>25   | 174,967<br>24,3050<br>54,93805 | 9842<br>1738<br>7473   | 1652<br>650<br>1246    | 3402<br>1090<br>2061     | —<br>368<br>266            | 5250<br>4000                       |
| Meitnerium<br>Mendelevium<br>Molybdæn   | Mt<br>Md<br>Mo | 109<br>101<br>42 | 266<br>258<br>95,94            | <br><br>10222          | 827<br>2623            | 4639                     | <br><br>375                | —<br>—<br>6154                     |
| Natrium                                 | Na             | 11               | 22,98977                       | 966                    | 97,72                  | 883                      | 113                        | 4236                               |
| Neodym                                  | Nd             | 60               | 144,24                         | 7000                   | 1024                   | 3100                     | 75                         | 1967                               |
| Neon                                    | Ne             | 10               | 20,1797                        | 0,84                   | -248,59                | -246,08                  | 17                         | 88                                 |
| Neptunium<br>Nikkel<br>Niobium          | Np<br>Ni<br>Nb | 93<br>28<br>41   | 237<br>58,6934<br>92,90638     | 20450<br>8907<br>8578  | 637<br>1455<br>2477    | 4000<br>2913<br>4744     | —<br>293<br>290            | 6432<br>7428                       |
| Nitrogen                                | N              | 7                | 14,00674                       | 1,17                   | -210,1                 | -195,79                  | 51                         | 399                                |
| Nobelium                                | No             | 102              | 259                            | —                      | 827                    |                          | —                          | —                                  |
| Osmium                                  | Os             | 76               | 190,23                         | 22580                  | 3033                   | 5012                     | 154                        | 3300                               |
| Oxygen                                  | O              | 8                | 15,9994                        | 1,33                   | -218,3                 | -182,9                   | 28                         | 426                                |
| Palladium                               | Pd             | 46               | 106,42                         | 11995                  | 1554,9                 | 2963                     | 157                        | 3696                               |
| Phosphor                                | P              | 15               | 30,97376                       | 1820                   | 44,2                   | 277                      | 20                         | 400                                |
| Platin<br>Plutonium<br>Polonium         | Pt<br>Pu<br>Po | 78<br>94<br>84   | 195,078<br>244<br>209          | 21450<br>19800<br>9400 | 1768,3<br>639,4<br>254 | 3825<br>3230<br>962      | 101<br>                    | 2616<br>—<br>—                     |
| Praseodym<br>Promethium<br>Protactinium | Pr<br>Pm<br>Pa | 59<br>61<br>91   | 140,9077<br>146,9151<br>231    | 6779<br>7220<br>15400  | 935<br>1100<br>1568    | 3290<br>3000<br>4120     | 71<br>—                    | 2361<br>                           |
| Radium                                  | Ra             | 88               | 226,0254                       | 5000                   | 700                    | 1737                     | 37                         | 605                                |
| Radon                                   | Rn             | 86               | 222                            | 9,23                   | -71                    | -61,7                    | —                          | —                                  |
| Rhenium                                 | Re             | 75               | 186,207                        | 21020                  | 3186                   | 5596                     | 177                        | 3797                               |
| Rhodium                                 | Rh             | 45               | 102,9055                       | 12420                  | 1964                   | 3695                     | 248                        | 4814                               |
| Roentgenium                             | Rg             | 111              | 272                            | —                      | —                      | —                        | —                          | —                                  |
| Rubidium                                | Rb             | 37               | 85,4678                        | 1533                   | 39,31                  | 688                      | 27                         | 810                                |
| Ruthenium                               | Ru             | 44               | 101,07                         | 12360                  | 2334                   | 4150                     | 252                        | 5618                               |
| Rutherfordium                           | Rf             | 104              | 261                            | —                      | —                      | —                        | —                          | —                                  |
| Samarium                                | Sm             | 62               | 150,36                         | 7536                   | 1072                   | 1803                     | 74                         | 1274                               |