Distributed Computing with Spark for Actionable Business Insights!

Stephan Kessler
SAP SE, Spark Developer

Who I am

- Stephan Kessler
- SAP HANA Vora Team, Walldorf, Germany
- Integrating SAP engines into Apache Spark since almost two years
- 2nd Spark Summit as a speaker

Today's talk

On average, between 60% and 73% of all data within an enterprise goes unused for business intelligence (BI) and analytics.

Skills gaps continue to be a major adoption inhibitor for 57% of respondents, while deciding how to get value from Hadoop was cited by 49% of respondents.

The Forrester Wave ™: Big Data Hadoop Distributions, Q1 2016," January 19, 2016 by Mike Gualtieri and Noel Yuhanna

Gartner: "Survey Analysis: Hadoop Adoption Drivers and Challenges," May 12, 2015 by Nick Heudecker and Merv Adrian

Current System Landscape

What is missing?

- Business application perspective:
 - Access to Big Data Landscape in a standardized way
 - Similar SQL expressiveness
- Big Data / Data Science perspective:
 - Access to specialized engines to perform analysis close to the data
 - Integration of 'business engines' into Spark

SAP Hana Vora

SAP Hana Vora – 10k ft POV

Data Science, Predictive, Business Intelligence, Visualization Apps

SAP HANA Vora

Data Modeler

OLAP

Time Series

Graph

Doc Store

Disk-to-Memory Accelerator

Distributed Transaction Log

ERP Systems

SAP HANA Platform

Goals

 Make data and functionality available in enterprise applications as well as Spark applications

 Allow an easy consumption, i.e., allow users to write SQL for computation jobs

Agenda

- Business functionality integration in Spark
- Utilizing different data sources in Spark
- HANA Vora 1.3
- Summary & Outlook

Focus on Spark User POV

Data Science, Predictive, Business Intelligence, Visualization Apps

SAP HANA Vora

Data Modeler

OLAP

Time Series

Graph

Doc Store

Disk-to-Memory Accelerator

Distributed Transaction Log

ERP Systems

SAP HANA Platform

SPARK SUMMIT EUROPE 2016

Business Functionality in Spark

- Questions answered in Spark:
 - What is the sentiment of users for product XYZ?
 - When will a certain part of this machinery fail?
- You might also want to know...
 - What is the sales volume for XYZ?
 - How much did this part cost?

Example: SAP Predictive Analytics and SAP HANA Vora

- 1. Business Analyst friendly No coding or in-depth Big Data expertise required
- 2. Support for end-to-end operationalisation of predictive models on Hadoop
 - Data preparation of Analytical Dataset for modelling
 - Native Spark Modelling Ultra wide datasets
 - Scoring using In Database Apply or Spark Stream API
- Usage of different sources (Vora, Hana, Spark, ...)

http://go.sap.com/solution/platform-technology/analytics/predictive-analytics.html

Business Functionality in Spark

- Important typical ERP function
 - Currency Conversion (i.e., EUR → GBP)
 - Done via SQL UDF
- Required to analyze enterprise data in Spark

Currency Conversion

TID	USERID	CURRENCY	AMOUNT	ORDERDATE
100	User1	USD	120.10	2014-12-15
101	User1	USD	24.99	2015-01-01
102	User5	EUR	24.11	2015-01-02
103	User3	DBP	542.00	2015-01-02

- Single currency makes transactions comparable
- Conversion not trivial: rates change over time

Currency Conversion

 Introducing an UDF implemented in Spark

```
CC( AMOUNT Double,

SOURCE_CURRENCY String,

TARGET_CURRENCY String,

REF_DATE String )
```

Converting everything in USD

```
SELECT TID, USERID, ORDERDATE,
CC( AMOUNT, CURRENCY, "USD", ORDERDATE )
FROM ORDERS
```


Currency Conversion

Conversion backed by a 'rates' table

SOURCE_CUR	TARGET_CUR	REF_DATE	RATE
EUR	USD	2015-01-01	1.32113
EURO	USD	2015-01-02	1.30121
USD	GBP	2015-01-01	0.68960

- Calculation simple, maintenance difficult
- Rates maintained in ERP system
 - Couldn't we use that?

Specialized Engine: Time Series

- HANA Vora Time Series Engine in a nutshell:
 - Effective Model-Based Compression
 - Multi-representation storage for time series
- Optimized usage for IOT applications
 - Fast injections paths
 - Long running processes in a cluster

Specialized Engine: Time Series

- Query Language: SQL Dialect
- How to use that in Spark?

```
SELECT STDDEV(val1)
FROM SERIES ts
BETWEEN "2000-01-01", "2001-12-31"

SELECT TREND(val1) OVER (SERIES)
FROM SERIES ts
BETWEEN "2000-01-01", "2001-12-31"
```

Temperature °C

SPARK SUMMIT EUROPE 2016

Agenda

- Business functionality integration in Spark
- Utilizing different data sources in Spark
- HANA Vora 1.3
- Summary & Outlook

What we have seen so far

- Currency Conversion:
 - Implementation in Spark SQL
 - Computation could be deferred
- Time Series Engine:
 - Special query language
 - .. but no implementation in Spark

→ "The pushdown of everything"

→ Raw SQL

The Pushdown of Everything

Spark datasource API

Limited to Filters and Projects

Vora Extension to Datasource API

- Datasource indicates its processing capabilities
- Arbitrary parts of logical plan can be computed where the data is
- Details in Spark Summit Europe Talk 2015
 - <u>https://www.youtube.com/watch?v=QNaf2Z8I8IY</u>
 - "The Pushdown of Everything"

Vora Extension to Datasource API

Consider this query

```
SELECT ORDERDATE,

AVG(CC( AMOUNT, CURRENCY, "USD", ORDERDATE ))
FROM ORDERS
GROUP BY ORDERDATE
```

- Pushing down filters an projects: SCAN on orders
- Pushing down arbitrary parts returns:
 - One row per orderdate
 - Converted currency

Raw SQL Extension

 Query Syntax on SparkSQL not supported but in the datasource → Raw SQL

Pushdown & Raw SQL

- Both extensions allow to incorporate other data sources extensively
- Computation happens where the data is
- Integration is mostly seamless for Spark developer
- Interfaces are open source:
 - https://github.com/SAP/HANAVora-Extensions

Agenda

- Business functionality integration in Spark
- Utilizing different data sources in Spark
- HANA Vora 1.3
- Summary & Outlook

HANA Vora 1.3 - Relational

- Relational Engines in memory and disk
- In-memory
 - Query compilation
 - Columnar data layout
- Disk based
 - Indices for fast data access

HANA Vora 1.3 – Graph & Doc Store

Graph:

- In-memory and distributed
- SQL-Like interface for graph analysis
- Combination of Graph patterns with relational operators

Doc Store

- Stored semi structured JSON
- Compresses in-memory representation
- Compiled queries with NUMA awareness

Agenda

- Business functionality integration in Spark
- Utilizing different data sources in Spark
- HANA Vora 1.3
- Summary & Outlook

Summary and Outlook

- Vora allows to combine all data source in an enterprise environment
 - Across different query languages
 - While moving computation close to the data
- Business Insights are driven by all the available data in the enterprise
- Integration into SQL makes it easily consumable

THANK YOU.

Stephan Kessler - stephan.kessler@sap.com

BACKUP

HANA Vora 1.3

- Project started 2013 by HANA Research Teams
- Shared concepts and libraries with HANA but independently developed
- Concepts
 - In memory
 - Distributed engines
 - Low memory footprint

SAP Predictive Analytics: Optimised for Big Data

- ✓ Native (scala code) Spark approach goes deeper than SQL
- ✓ Performance and Scalability with **Ultra wide datasets**
- ✓ Processing close to the data distributed across the cluster
- ✓ No data transfer

