# Learning Efficient Maneuver Sets for Kinodynamic Motion Planning Aravind Sivaramakrishnan, Zakary Littlefield and Kostas E. Bekris Department of Computer Science, Rutgers, the State University of New Jersey

### Motivation

If a kinodynamic planner [1] has access to local maneuvers that balance an exploitation-exploration trade-off, the planner's per iteration performance is significantly improved.

- Exploitation maneuvers guide the system towards the goal given local heuristic information
- Exploration maneuvers move the system in different directions so as to deal with situations that the heuristic does not provide good guidance.



Exploitative (green) and Explorative (red) maneuvers for a robot planning to reach  $X_G$  (green circle) behind an obstacle (black box).

## Motion planning with informed maneuvers

▶ Informed maneuvers can be computed online employing a metric similar to [2], tailored to each state of the robot selected for propagation during planning.

|         | Iteration | Comp. | Time | Path  | Cost |
|---------|-----------|-------|------|-------|------|
| Random  | 1471      | 0.2   |      | 50.47 |      |
| Curated | 686       | 12.15 |      | 48.13 |      |

First solution statistics between DIRT using random and curated maneuvers.

- ► Very effective in finding a high-quality solution in fewer number of iterations but computational becomes prohibitive.
- ▶ **Goal:** Develop an approach that achieves the same objective as the curation but can generate the maneuvers fast.

# Input to the learning process

- A regular set of points  $X_{local}$  in the vicinity of  $x_0$  are collision checked to generate a binary 2D map  $o_{local}$  indicating the presence of obstacles in the workspace.
- The heuristic h(x) is also evaluated at each  $x \in \mathbb{X}_{local}$ , resulting in a 2D matrix  $h_{local}$ .





**O**local

h<sub>local</sub>

# Proposed architecture

- Multi-layered neural networks  $F_x$ ,  $F_o$ ,  $F_h$  act on the inputs to produce  $x_0^*$ ,  $o_{local}^*$ ,  $h_{local}^*$ .
- An operator  $M_0(x_0^*, o_{local}^*, h_{local}^*)$  produces feature vector  $x_f^0$ .
- Exploitative control  $u^0$  is obtained as  $u^0 = F^0(x_f^0)$ , where  $F^0$  is also a neural network.
- ▶ Remaining **N** exploratory controls are obtained as follows.

$$x_f^k = M_k(x_f^0, U_{k-1})$$
  
 $u^k = F^k(x_f^k)$ 

where for all  $k \ge 1$ ,  $U_k = \{u^0, u^1, ..., u^{k-1}\}$ . For the exploitative control (k = 0),  $U_{k-1}$  is the empty set.



Computation graph of  $U_k = \hat{f}(x_0, o_{local}, h_{local})$ . For  $k = N, U_k = \hat{U} = \{u^0, \dots, u^N\}$ .

# **Solution statistics**

We compare the performance of DIRT (after 50k iterations) for the following maneuvers:

- random (DIRT Random)
- only exploitative control predicted by the network (DIRT FC (Exploit), DIRT Conv (Exploit))
- ▶ both exploitative and explorative controls are predicted by the networks ((DIRT FC (All), DIRT Conv (All))

| Algorithm             | NumSolns | FirstSolnIters | FirstSolnCost | FinalSoInIters | FinalSolnCost |
|-----------------------|----------|----------------|---------------|----------------|---------------|
| DIRT - Random         | 30       | 3446.67        | 59.64         | 23277.57       | 49.44         |
| DIRT - FC (Exploit)   | 30       | 2246.67        | 56.54         | 17050.37       | 49.89         |
| DIRT - FC (AII)       | 30       | 620            | 47.58         | 16921.5        | 45.47         |
| DIRT - Conv (Exploit) | 30       | 3366.67        | 65.03         | 27774.67       | 48.38         |
| DIRT - Conv (All)     | 30       | 2006.67        | 54.8          | 25671.07       | 48.16         |

Solution statistics for Greedy. All values are averaged over NumSolns. Best values highlighted in bold.

| Algorithm             | NumSolns | FirstSolnIters | FirstSolnCost | FinalSoInIters | FinalSolnCost |
|-----------------------|----------|----------------|---------------|----------------|---------------|
| DIRT - Random         | 30       | 15666.67       | 163.60        | 33254.13       | 149.47        |
| DIRT - FC (Exploit)   | 29       | 12000          | 155           | 31794.86       | 140.06        |
| DIRT - FC (All)       | 30       | 18766.67       | 133.83        | 28119.66       | 130.92        |
| DIRT - Conv (Exploit) | 29       | 27666.67       | 182.16        | 39924.96       | 172.14        |
| DIRT - Conv (All)     | 30       | 14066.67       | 143.71        | 28194.83       | 139.43        |

Solution statistics for Explore. All values are averaged over NumSolns. Best values highlighted in bold.

# Evaluation

- ► We consider a treaded vehicle with a 5 dim. state space (SE(2) augmented by steering angle and forward velocity) and 2 dim. control space (acceleration of left and right treads).
- ► For training, obstacles are randomly placed in a 2 dim. workspace so they cover one-third of the reachable workspace.
- ► The DIRT planner [1] is executed with the online curation procedure on multiple problem instances in such workspaces.
- ► Euclidean distance to the goal in the workspace is used as the heuristic function. The cost is the duration of the solution trajectory.
- For each node  $x_0$  the planner selects to propagate, the training process stores the  $o_{local}$  and  $h_{local}$  maps, as well as a maneuver set  $\hat{U}$  of size 5 curated from a set of 1000 randomly sampled maneuvers.
- ► Two networks fully connected (FC) and convolutional (Conv)



Greedy



Environments: The grey rectangle us the starting pose of the robot (facing right) and the green circle is the goal region. The robot must avoid the red obstacles.

# Challenges

- ► An improved learning process is necessary to increase the rate of collision-free maneuvers.
- Current cost of network inference is more expensive than returning a random control.
- For higher dimensional systems, more complex environments and realistic sensing input, there are additional considerations related to data efficiency and uncertainty that must be mitigated.

## References

- 1. Littlefield, Z., and Bekris, K. E. 2018. Efficient and asymptotically optimal kinodynamic motion planning via dominance-informed regions. In *IROS*.
- 2. Green, C.J., and Kelly, A. 2007. Toward optimal samplingin the space of paths. In *ISRR*.