AEs, Swarm Intelligence

1 CERINŢE

1. Să se implementeze un algoritm evolutiv pentru optimizarea unei funcții.

- a. Reprezentarea soluției și funcția de fitness
- b. Operatorii de încrucișare, mutație și selecție
- c. Structura algoritmului evolutiv și parametrizare (dimensiunea populației, numărul de generații, parametri ai selecției, probabilitatea de încrucișare și de mutatie)
- d. Experimente pe o funcție din lista de mai jos (cf numărului din grupă)
- e. Obligatoriu: analiza evolutiei celui mai bun individ din populatie per generatie

La alegere una dintre cerințele 2 și 3:

2. Să se implementeze un algoritm PSO pentru optimizarea unei funcții.

- a. Iniţializare particule și calcul fitness
- b. Algoritm PSO modificare personal best, global best, viteza și poziție particule. Structurarea cât mai eficientă a codului, ex. *Position* reține poziția x în d dimensiuni a unei particule, *Velocity* reține viteza particulei în fiecare dimensiune, *Particle* este caracterizată de *Position*, *Velocity* și un fitness
- c. Parametrizarea algoritmului (dimensiunea grupului de particule și numărul de iterații)
- d. Experimente pe o funcție din lista de mai jos (cf numărului din grupă)

3. Să se implementeze un algoritm ACO (AS sau ACS) pentru problema TSP.

- Algoritm, parametrizare (numărul de furnici, alpha, beta, coeficientul de evaporare a feromonului, alți parametri), <u>comparatii</u>.
- Experimente pe aceeași instanță TSP primită la Tema 2

2 TERMEN DE PREDARE

• Lab 5

Total Punctaj Tema 4 = 150p

3 PREDAREA TEMEI PRIN MS TEAMS

Incarcati urmatoarele fisiere **INAINTE** de a incepe lab-ul in care este setat termenul de predare:

- 1. O arhiva cu codul sursa
- 2. Un document (Word/PDF) care sa contina:
 - ✓ Descrierea pe scurt a algoritmului implementat (pseudocod) si principalelor componente (reprezentare solutie, functie de fitness, operatori, etc)
 - ✓ Indicarea parametrilor algoritmului
 - ✓ Tabele/grafice cu rezultatele obtinute (comparatii pentru cel putin 3 seturi de valori ale parametrilor pentru fiecare instanta de problema)
 - ✓ Analiza rezultatelor

4 LISTA FUNCTII

f	Nume	Plot	Formula	Optim global	Caracteristici
1	Functia sfera (aka Functia 1 De Jong)	0E JCRGs truction 1 200 100 100 variable 2 -10 -10 -5 variable 1	$f_1(x) = \sum_{i=1}^{n} x_i^2 -5.12 \le x_i \le 5.12$	f(x)=0, x(i)=0, i=1:n.	Continua Convexa Unimodala
2	Weighted Sphere Model (Axis parallel hyper-ellipsoid)	Also paraltal hyper-otipood 1 a	$f_{la}(x) = \sum_{i=1}^{n} i \cdot x_i^2$ $-5.12 \le x_i \le 5.12$	f(x)=0; x(i)=0, i=1:n.	Continua Convexa Unimodala
3	Functia Schwefel 1 (Rotated hyper- ellipsoid function)	Rictated hyser-discostd to 15000 15	$f_{\text{Ib}}(x) = \sum_{i=1}^{n} \left(\sum_{j=1}^{i} x_j \right)^2$ $-65.536 \le x_i \le 65.536$	f(x)=0; x(i)=0, i=1:n.	Continua Convexa Unimodala

4	Moved axis parallel hyper-ellipsoid function	Moved also parallel hyper-ellipseed to x 10 y 1.5 y 1.5 y 2 y 3 y 3 y 40 y 4	$f_{1c}(x) = \sum_{i=1}^{n} 5i \cdot x_i^2$ $-5.12 \le x_i \le 5.12$	f(x)=0; x(i)= 5*i, i=1:n.	Derivata din axis parallel hyper- ellipsoid (1a) – cu alt minim
5	Rosenbrock's valley (aka Banana function) (aka De Jong's function 2)	2008 - 200 -	$f_2(x) = \sum_{i=1}^{n-1} 100 \cdot (x_{i+1} - x_i^2)^2 + (1 - x_i)^2$ $-2.048 \le x_i \le 2.048$	f(x)=0; x(i)=1, i=1:n.	Optimul global este intr-o vale plata, ingusta, parabolica.
6	Functia Rastrigin	Top So	$f_6(x) = 10 \cdot n + \sum_{i=1}^{n} (x_i^2 - 10 \cdot \cos(2 \cdot \pi \cdot x_i))$ $-5.12 \le x_i \le 5.12$	f(x)=0; x(i)=0, i=1:n.	Bazata pe functia 1 cu adaugarea modularii cosine care produce multe minime locale. Functie multimodala (dar distributia optimelor locale este regulata).

7	Functia Schwefel	SCHAEFB.s function 7 1000 1000 1000 1000 1000 1000 Variable 2 -500 -500 variable 1	$f_7(x) = \sum_{i=1}^n -x_i \cdot \sin\left(\sqrt{ x_i }\right)$ $-500 \le x_i \le 500$	f(x)=- n·418.9829; x(i)=420.968 7, i=1:n.	Functie deceptiva: minimul global este geometric distant fata de un optim local.
8	Functia Griewank	GRIEVVANOKA function 8	$f(\mathbf{x}) = \sum_{i=1}^{d} \frac{x_i^2}{4000} - \prod_{i=1}^{d} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$ $\mathbf{x_i} \in [-600, 600], \mathbf{i} = 1, \dots, \mathbf{d}.$	f(x)=0; x(i)=0, i=1:d.	Similara cu Rastrigin's function. Functie multimodala, optime locale distribuite regulat.
9	Sum of different powers function	Sum of different power function 9	$f(\mathbf{x}) = \sum_{i=1}^d x_i ^{i+1}$ $x_i \in [-1, 1], i = 1,, d.$	f(x)=0; x(i)=0, i=1:d.	Unimodala

10	Functia Ackley	Addey Function 25 20 15	$f(\mathbf{x}) = -a \exp\left(-b\sqrt{rac{1}{d}\sum_{i=1}^d x_i^2} ight)$	f(x)=0; x(i)=0, i=1:d.	Multimodala
		S 10 20 20 40 20 x1	$-\exp\left(rac{1}{d}\sum_{i=1}^d\cos(cx_i) ight)$		
			$+a+\exp(1)$		
			a = 20, b = 0.2, c = 2π		
			x _i ∈ [-32.768, 32.768], i = 1,, d		
11	Functia Styblinski- Tang	Sydmatr Teng Terchon 259 268 190 190 100 100 100 100 100 100 100 100	$f(\mathbf{x}) = rac{1}{2} \sum_{i=1}^{d} (x_i^4 - 16x_i^2 + 5x_i)$	$f(\mathbf{x}^*) = -39.16599d,$ $\mathbf{x}^* = (-2.903534,$,	
		-189 -189 -189 -199 -199 -199 -199 -199	$x_i \in [-5, 5], i = 1,, d.$	-2.903534)	
12	Functia Michalewicz	Mchelesc Furdion 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$f(\mathbf{x}) = -\sum_{i=1}^{d} \sin(x_i) \sin^{2m} \left(\frac{ix_i^2}{\pi}\right)$	f(x) = -4.687 (d=5); x(i) = ????, i=1:d.	Multimodala (n! optime locale) m defineste adancimea vailor
			m=10 $x_i \in [0, \pi], i = 1,, d.$	f(x)=-9.66 (d=10); x(i)=???, i=1:n.	si marginilor (m mare => complexitate mare)

13	Functia Easom	Essen Fundion 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$f(\mathbf{x}) = -\cos(x_1)\cos(x_2)$ $\exp\left(-(x_1 - \pi)^2 - (x_2 - \pi)^2\right)$ $x_i \in [-100, 100], i = 1, 2.$	$f(x_1, x_2) = -1;$ $(x_1, x_2) =$ (pi, pi).	Unimodala
14	Functia Goldstein- Price	Goldstein-Price Function 12 13 14 15 16 17 17 18 18 18 18 18 18 18 18	$f(\mathbf{x}) = [1 + (x_1 + x_2 + 1)^2 $ $(19 - 14x_1 + 3x_1^2 - 14x_2 + 6x_1x_2 + 3x_2^2)] $ $\times [30 + (2x_1 - 3x_2)^2 $ $(18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2)] $ $x_i \in [-2, 2], i = 1, 2.$	f $(x_1, x_2) = 3;$ $(x_1, x_2) =$ (0, -1)	Mai multe minime locale
15	Functia Six-hump camel back	Sx-Pump candidate function	$f(\mathbf{x}) = \left(4 - 2.1x_1^2 + \frac{x_1^4}{3}\right)x_1^2 + $ $x_1x_2 + (-4 + 4x_2^2)x_2^2$	$f(x_1, x_2) = -1.0316;$ $(x_1, x_2) = (-0.0898, 0.7126);$ (0.0898, -0.7126).	Are 6 minime locale, 2 globale.

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm