Computer Networks

Internet Routing Protocols

Jianping Pan Fall 2022

Review

- Internet Protocol (IP)
 - IP header
 - addressing
 - class-based, classless, hierarchical, NAT
 - routing algorithms
 - flooding
 - distance vector
 - link state
 - hierarchical

Distance vector routing

Distributed Bellman-Ford algorithm

 $Path_{new}^{CSc 361}(A, X) = min_{B} \{Path_{old}^{CSc 361}(A, X), Link(A, B) + Path(B, X)\}$

Link state routing

Dijkstra algorithm

4

11/15/22 CSc 361

Hierarchical routing

- Why hierarchical
 - scalability
- Internet
 - autonomous system (AS)
 - Inter-domain routing
 - distance vector
 - Intra-domain routing
 - distance vector or link state

Hierarchical routing: example

Full table for 1A

(a)

T dir table for 174		
Dest.	Line	Hops
1A	_	_
1B	1B	1
1C	1C	1
2A	1B	2
2B	1B	3
2C	1B	3
2D	1B	4
ЗА	1C	3
3B	1C	2
4A	1C	3
4B	1C	4
4C	1C	4
5A	1C	4
5B	1C	5
5C	1B	5
5D	1C	6
5E	1C	5
(b)		

Dest.	Line	Hops
1A		-
1B	1B	1
1C	1C	1
2	1B	2
3	1C	2
4	1C	3
5	10	4

Hierarchical table for 1A

(b) (c)

Today's topics

- Internet routing protocols
 - how does the Internet really route my packets?
 - hierarchical structures
- Intra-domain routing
 - AS: autonomous systems
 - e.g., RIP, OSPF, ISIS, IGRP
- Inter-domain routing
 - e.g., BGP

36 30 30 AS3

Intra-AS Routing

- Also known as Interior Gateway Protocols (IGP)
- Most common Intra-AS routing protocols:

algorithm

DV

LS

- RIP: Routing Information Protocol
- OSPF: Open Shortest Path First
- IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

RIP (Routing Information Protocol)

- Distance vector algorithm
- Included in BSD-UNIX Distribution in 1982
- Distance metric: # of hops (max = 15 hops)

From router A to subsets: destination hops next-hop		
destination	<u>hops</u>	next-hop
u	1	
V	2	В
W	2	В
×	3	\mathbf{C}
У	3	\mathbf{C}
Z	2	C

11/15/22 CSc 361

Q: why max 15 hops?

H: CTI problems in DV

RIP advertisements

- Distance vectors: exchanged among neighbors every 30 sec via RIP Response Message (also called advertisement)
- Each advertisement: list of up to 25 destination subnets within AS.
 - UDP port 520
 - /etc/services
 - newer implementations also use TCP
- Routing metric: the number of hops

11/15/22 CSc 361

RIP: Example

Destination Network	Next Router	Num. of hops to dest.
w	A	2
y	В	2
Z	В	7
×		1
••• •	••••	• • • •

Routing table in router D
CSc 361

11/15/22

RIP: Route update example

11/15/22

Routing table in D

RIP: Link Failure and Recovery

If no RIP advertisement heard after 180 sec --> neighbor/link declared dead (not reachable)

- routes via neighbor invalidated
- new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- link failure info quickly propagates to entire net
- poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

1/15/22 CSc 361

OSPF (Open Shortest Path First)

- "open": publicly available
- Uses Link State algorithm
 - LS packet dissemination
 - A router constructs a complete topological map (i.e., a graph)
 - Route computation using Dijkstra's algorithm to determine a shortest path tree to all subnets
- OSPF advertisement carries one entry per neighbor router
- Advertisements disseminated to entire AS (via flooding)
 - Carried in OSPF messages directly over IP (rather than TCP or UDP)
 - IP protocol ID: 89
 - /etc/protocols
- Multiple routing metrics

OSPF messages

Message type	Description	
Hello	Used to discover who the neighbors are	
Link state update	Provides the sender's costs to its neighbors	
Link state ack	Acknowledges link state update	
Database description	Announces which updates the sender has	
Link state request	Requests information from the partner	

Hierarchical OSPF

11/15/22

Hierarchical OSPF

- Two-level hierarchy: local area, backbone.
 - Link-state advertisements only in area
 - each node has detailed area topology; only know direction (shortest path) to subnets in other areas.
- Area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- Backbone routers: run OSPF routing limited to backbone.
- Boundary routers: connect to other AS's.

Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto exterior gateway protocol (version 4)
- BGP provides each AS a means to:
 - Obtain subnet reachability information from neighboring ASs.
 - Propagate the reachability information to all routers internal to the AS.
 - Determine "good" routes to subnets based on reachability information and policy.
- Allows a subnet to advertise its existence to rest of the Internet: "I am here"

Distributing reachability info

- With eBGP session between 3a and 1c, AS3 sends a prefix reachability info, reachable from AS3 to the prefix, to AS1.
- 1c can then use iBGP do distribute this new prefix reach info to all routers in AS1
- 1b can then re-advertise the new reach info to AS2 over the 1b-to-2a eBGP session
- When a router learns about a new prefix, it creates an entry for the prefix in its forwarding table.

Q: why Path Vector?

Path attributes & BGP routes

- When advertising a prefix, advertisement includes BGP attributes.
 - prefix + attributes = "route"
 - path vector routing
- Two important attributes:
 - AS-PATH: contains the ASs through which the advert for the prefix passed: AS3 AS1
 - NEXT-HOP: Indicates the specific internal-AS router to next-hop AS. (There may be multiple links from current AS to next-hop-AS.)
- When gateway router receives route advert, uses import routing policy to accept/decline.

BGP messages

- BGP messages exchanged using TCP.
- BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg;
 also used to close connection

BGP route selection

- Router may learn about more than 1 route to some prefixes. Router must select route.
- Elimination rules:
 - Local preference value attribute: routing policy decision
 - Shortest AS-PATH
 - Closest NEXT-HOP router: hot potato routing
 - Additional criteria

Comparison: intra/inter-domain routing

Policy:

- Inter-AS: admin wants control over how its traffic routed, who routes through its net.
- Intra-AS: single admin, so no policy decisions needed

Scale:

hierarchical routing saves table size, reduced update traffic

Performance:

- Intra-AS: can focus on performance
- Inter-AS: policy may dominate over performance

This lecture

- Internet routing
 - RIP: distance vector routing
 - OSPF: hierarchical, link-state routing
 - BGP basics: path vector routing
- Explore further
 - Advanced Computer Networks (CSC466)
 - IGP routing metrics, BGP routing dynamics
 - routing security

Next lectures

- The Link Layer
 - framing control
 - flow/error control
 - media access control
- IEEE 802 family
 - IEEE 802.3: Ethernet
 - IEEE 802.11: "wireless Ethernet" (WiFi)

