

Não Linearidade de Features e Parâmetros

Por Emanuel Lopes Silva e Matheus Costa Alves

Sumário

PRINCIPAIS TÓPICOS DISCUTIDOS NESTA APRESENTAÇÃO

Conceitos Gerais	
Definição Geral	4
 Linear vs Não Linear 	5
Não Linearidade de Features	7
 Limitações dos Modelos Lineares 	11
o Engenharia de Features	14
o Interações entre Variáveis	22
Não Linearidade de Parâmetros	26
 Modelos Com Parâmetros Não Lineares 	29
 Consequências da Não Linearidade dos Parâmo 	etros.34
o Redes Neurais	39
 Funções de Ativação 	43
o Teorema da Aproximação Universal	49
 Limitações e Implicações 	52

Conceitos Gerais

Definição

A não linearidade representa uma situação em que a relação entre os elementos de um sistema não é proporcional, direta ou simples

Não Linear

- A relação entre variáveis não é proporcional.
- Gráfico: curvas, parábolas, ondas, etc.

Linear

- Uma relação proporcional entre variáveis.
- Gráfico: sempre uma reta (em 2D) ou plano (em 3D).

Não Linear

- Mais flexíveis: podem modelar padrões complexos.
- Não seguem uma única inclinação.
- Pequenas mudanças em x podem causar grandes mudanças em y.

Linear

- Simples de interpretar.
- Coeficiente angular (a) e linear (b) definem a relação
- Proporcionalidade constante: Dobrar x dobra y.

Não Linearidade de Features

Não Linearidade das Features

Não linearidade de features significa que os dados de entrada apresentam padrões complexos que não podem ser separados ou modelados por uma função linear simples

- As interações entre variáveis podem ser curvas, dobradas ou altamente interdependentes
- Os dados do mundo real não seguem relações diretas do tipo "aumenta um pouco aqui, aumenta um pouco ali"

Por Que a Não Linearidade de Features é Necessária?

sons, textos e dados financeiros não podem ser separados ou explicados apenas por linhas retas ou planos.

relações proporcionais Novos Casos e diretas

das vezes, têm interações complexas entre variáveis

Importância de Modelar Padrões Complexos

- A Maior Parte do Mundo Real Não É Linear
- Modelos Lineares São Limitados
- Flexibilidade e Capacidade de Representação

Detecção de Fraudes

Reconhecimento de Imagens

Limitações de Modelos Lineares Frente aos Dados

Exemplo: XORVisualização do Problema XOR com Tentativa de Separação Linear

• Não há reta que separe as classes.

Exemplo: Sazonalidade e Ruído

Importância da Engenharia de Features

O que é Engenharia de Features?

- Criar, combinar e editar features
- Auxilia o modelo a enxergar padrões complexos com uma representação mais adequada

Por Que Fazer Isso?

Como "Linearizar" o Problema

Muitas vezes, os dados não são linearmente separáveis em sua forma original

Dessa forma, temos que adaptar para o modelo poder entender

Pode-se criar uma nova feature baseada em uma combinação não linear das variáveis

Criar novas features ajuda a expor padrões escondidos no espaço original

Exemplo: XOR

Deve-se criar uma Nova Feature

A ideia é adicionar uma nova dimensão ao problema, para desenrolar a complexidade

- $\cdot Z = X1 \times X2$
- Agora, o problema tem três dimensões:
 X1, X2 e Z

02 O que Representa?

Z é uma feature de interação:

- Quando X1=0 ou X2 = 0, Z= 0 →
 Nenhuma interação ocorre
- Quando X1 = 1 e X2 = 1, Z=1 → Existe uma interação única que diferencia o ponto

Como isso Resolve o Problema?

Agora o modelo pode usar Z como base para uma decisão linear simples:

- Quando Z=1, a classe é 0
- Quando Z=0, a classe é 1
- É a tentativa de capturar uma relação não linear escondida nos dados originais X1 e X2

04 Intuição Geométrica

No plano X1 e X2, os pontos estão embaralhados, não dá para traçar uma linha reta que separe as classes

Quando usamos Z=X1 x X2, projetamos os dados em um eixo onde a separação linear é possível, ao adicionar uma nova dimensão

Exemplo: XOR

Exemplo: XOR

Plano Transformado: (x1, x2, z=x1*x2)

Limitações da Engenharia de Features

É preciso entender o problema profundamente para saber quais variáveis combinar

Muitas Interações

Em imagens, áudio e texto, são necessários milhares ou milhões de interações complexas

Risco de Omitir Padrões Importantes

Sem a feature certa, o modelo linear não consegue aprender o padrão

Interações entre Variáveis

O que são interações entre variáveis?

Definição

Interação entre variáveis ocorre quando o efeito combinado de duas (ou mais) variáveis não pode ser explicado apenas pela soma de seus efeitos individuais

O que são interações entre variáveis?

Para que serve?

- Interações entre variáveis criam padrões complexos que não podem ser aprendidos por modelos lineares simples
- Capturar essas interações é o que permite entender fenômenos do mundo real, como doenças, imagens e comportamento humano

Exemplos

Diagnóstico Médico

Em problemas de saúde, a interação entre variáveis como altura, idade e dieta é fundamental

O risco de uma doença não depende apenas de cada fator isoladamente, mas do efeito combinado entre eles

Reconhecimento de Dígitos

No reconhecimento de imagens, como identificar letras ou números escritos à mão, cada pixel isolado não diz muita coisa

O que realmente importa são os padrões formados pela interação entre vários pixels (linhas, bordas, formas)

search

Não Linearidade de Parâmetros

Não Linearidade dos Parâmetros

Não linearidade de parâmetros significa que o efeito de cada parâmetro no resultado final não é mais proporcional, direto e simples. Isso abre espaço para modelos muito mais ricos, capazes de capturar fenômenos reais mais complexos

- Ela precisa envolver funções não lineares (como ReLU, Sigmoid, Tanh) que quebrem a linearidade
- Pequenas mudanças nos parâmetros podem causar grandes saltos ou oscilações no resultado

Por Que a Não Linearidade de Parâmetros é Necessária?

Modelos com Parâmetros Não Lineares

Regressão Exponencial

Equação:
$$y = heta_0 \cdot e^{ heta_1 x}$$

- A relação entre os parâmetros e a saída não é linear.
- Pequenas mudanças em θ_1 causam mudanças exponenciais em Y.
- Não é possível resolver com equação normal (álgebra linear); é necessário ajuste iterativo .

Modelo Logístico

Equação:
$$y=rac{1}{1+e^{-(heta_0+ heta_1x)}}$$

- Os parâmetros θ_0 e θ_1 estão dentro de uma função sigmoide, o que quebra a linearidade.
- A saída é limitada entre 0 e 1, ideal para classificação.
- A relação entre os parâmetros e a saída não é proporcional: a sigmoide causa saturação em valores extremos.

RELU

Equação:

$$y = \operatorname{ReLU}(W_2 \cdot \operatorname{ReLU}(W_1x + b_1) + b_2)$$

- Cada camada aplica uma transformação linear (Wx+b)
- Mas depois, a função de ativação (ReLU, Sigmoid, Tanh) quebra a linearidade
- A composição de várias camadas não lineares cria um modelo extremamente poderoso

Consequências da Não Linearidade dos Parâmetros

A Função de Custo se Torna Não Convexa

Função Linear

Em uma regressão linear simples, a função de custo tem formato de tigela, onde existe apenas um mínimo global

Modelos com Parâmetros não Lineares

A função de custo não é mais uma tigela perfeita, ela pode ter múltiplos vales e picos, com múltiplos mínimos locais

Não Dá para Resolver com Fórmula Fechada

Regressão Linear

Na regressão linear, existe uma fórmula direta para calcular os coeficientes, a Equação Normal

Modelos com Parâmetros não Lineares

Com não linearidade nos parâmetros, não existe essa fórmula fechada. Você precisa:

- Definir uma função de perda
- Usar métodos iterativos como gradiente descendente para ir ajustando os parâmetros aos poucos

A Função de Custo se Torna Não Convexa

Maior Poder de Modelagem

Flexibilidade

Capturam curvas complexas, saturações, efeitos exponenciais, limites superiores/inferiores

Fenômenos Possíveis de Modelar

Conseguem modelar fenômenos que modelos lineares simplesmente não conseguem, como:

- Crescimento populacional
- Saturação de sensores
- Interações complexas em sistemas físicos ou econômicos

Redes Neurais

O que é uma Rede Neural?

- Uma rede neural é uma estrutura composta por camadas empilhadas
- Cada camada realiza duas operações básicas:
 - Transformação Linear
 - Função de Ativação

Transformação Linear

- Aqui, W(matriz de pesos) e b(vetor de bias) são os parâmetros aprendidos
- A relação entre os parâmetros
 e a saída Z é linear
- Se dobrarmos W, Z também dobra

Sem nada além disso, a rede é apenas uma grande equação linear

$$z = Wx + b$$

Transformação Linear

Funções de Ativação

A Fonte da Não Linearidade no Modelo

Por que são importantes?

$$a = f(z)$$

Sem funções de ativação, as redes neurais não seriam neurais, seriam apenas uma grande multiplicação de matrizes

Papel da Função de Ativação

São aplicadas em cada neurônio para "quebrar" a linearidade e permitir à rede aprender padrões complexos

Permite acessar mais recursos

Ela permite que a rede modele relações complexas entre as variáveis e aprenda representações profundas a partir de dados brutos

Função de Ativação ReLU

Saída: [0,∞)

 A ReLU "dobra" a reta no zero: valores negativos são anulados, valores positivos seguem linearmente

Função de Ativação Sigmoid

Saída: [0,1]

- Uma curva em "S" , logística
- Comprime a saída entre 0 e 1

Função de Ativação Tanh

Saída : [-1,1]

Curva em S centrada em zero

Teorema da Aproximação Universal

Definição do Teorema

Uma rede neural com pelo menos uma camada oculta e funções de ativação não linear pode aproximar qualquer função contínua definida em um intervalo compacto, com qualquer nível de precisão desejada

Redes neurais têm a capacidade teórica de aprender qualquer padrão, desde que haja neurônios suficientes

A Rede Neural só tem essa capacidade só se ela tiver funções de ativação não lineares

Importância do Teorema

Garante o Potencial das Redes Neurais

- A base teórica que justifica o uso de redes neurais para resolver problemas complexos e variados
- Traz Segurança Teórica para a Modelagem
- O desafio não está mais na capacidade da rede,
 mas em como treiná-la e configurá-la bem

Implicações e Limitações

Implicações para a Otimização

A não linearidade nos parâmetros dificulta a otimização

A função de custo pode ter múltiplos mínimos locais e máximos

Problemas como saddle points e planos rasos (plateaus) aparecem, complicando a convergência

Exige técnicas de ajuste de aprendizado, como:

- Inicialização cuidadosa dos pesos (Xavier, He)
- Métodos avançados de otimização: momentum, Adam, RMSProp

Overfitting e Generalização

Overfitting

Quando o modelo fica muito flexível, ele pode aprender demais:

- Não só os padrões reais do dado, mas também os ruídos e variações aleatórias
- O modelo vai muito bem no treino, mas vai mal em novos dados

Para evitar overfitting, usamos regularização:

- L2
- Dropout

Queremos um modelo flexível o suficiente para aprender o padrão, mas não tão flexível a ponto de aprender o ruído

O Resto da apresentação ocorrerá no Ipynb!

