DATA AND ARTIFICIAL INTELLIGENCE

Capstone Session 5

Machine Learning for Modeling

Machine Learning End Goal

The intelligence provided by Aura will help customers make decisions for their omnichannel marketing and customer acquisition programs.

Project Statement

Aura must do the following:

Predict bike-sharing demand

Classify incomes

Cluster credit card users

Build a recommendation engine

Week 5: Dataset Description

FloridaBikeRentals.csv

Variable	Description	Variable	Description
Date	Date in year-month-day format	Windspeed	Speed of the wind in meters per sec (m/s)
Rented Bike count	Count of bikes rented at each hour	Visibility	Visibility in meters
Hour	Hour of the day	Dew point temperature	Dew point temperature in Celcius
Temperature	Temperature in Celsius	Solar radiation	Radiant energy from the sun measured in MJ/m ²
Humidity	Humidity in percentage	Rainfall	Rainfall in mm
Snowfall	Snowfall in cm	Seasons	Season of the year – Winter, Summer, Spring, and Autumn
Holiday	Is it a holiday? Holiday/ No holiday	Functional Day	Bike rented during functional (Fun) and nonfunctional hours (NoFunc)

Week 5

Task: Based on rented bike count, the hour of the day, the day's temperature, humidity, wind speed, rainfall, holidays, and many other factors, build a model to predict the bike count required at each hour for the stable supply of rental bikes.

- Load the dataset
- Check for null values in any columns and handle the missing values
- Convert Date columns to Date format and extract day, month, day of week and weekdays/weekend from date column
- Check correlation of features using heatmap
- Plot the distribution plot of Rented Bike Count
- Plot the histogram of all numerical features
- Plot the box plot of Rented Bike Count against all the categorical features (Hint: Categorical features on X-axis and Rented Bike Count on Y-axis)

Week 5

- Plot the Seaborn **catplot** of Rented Bike Count against features like Hour, Holiday, Rainfall(mm), Snowfall (cm), weekdays_weekend and give your inferences
- Encode the categorical features into numerical features.
 (Hint: use get_dummies())
- Identify the target variable and split the dataset into train and test with a ratio of 80:20 and random state 1
- Perform Standard Scaling of the train dataset.
- Perform Linear Regression, Lasso Regression and Ridge Regression for predicting the bike count required at each hour and compare the results.

Thank You

