CS2842 Computer Systems – Lecture VIII

I/O and Peripheral Devices

Dr. Sapumal Ahangama Department of Computer Science and Engineering

TYPICAL I/O DEVICES

- Keyboard
- Mouse
- Printers
- Display Screens
- Disk Drives
- Peripherals Devices Input, Output and Storage

TYPICAL I/O DEVICES

Examples of I/O Devices Categorized by a Typical Data Rate

Device	Input/Output	Data rate	Туре
Keyboard	Input	100 bps	char
Mouse	Input	3800 bps	char
Voice input/output	Input/Output	264 Kbps	block burst
Sound input	Input	3 Mbps	block burst or steady
Scanner	Input	3.2 Mbps	block burst
Laser printer	Output	3.2 Mbps	block burst
Sound output	Output	8 Mbps	block burst or steady
Flash drive	Storage	480-800 Mbps read; 80 Mbps write	block burst
USB	Input or output	1.6-480 Mbps	block burst
Network/Wireless LAN	Input or output	11-100 Mbps	block burst
Network/LAN	Input or output	100-1000 Mbps	block burst
Graphics display	Output	800-8000 Mbps	block burst or steady
Optical disk	Storage	4-400 Mbps	block burst or steady
Magnetic tape	Storage	32-90 Mbps	block burst or steady
Magnetic disk	Storage	240-3000 Mbps	block burst

DESIGN CONSIDERATIONS FOR I/O

- It is not practical to directly connect CPU with I/O device
 - Formats of different devices vary
 - Incompatible speed
 - Specialized control requirements (Ex: disk drives)
- ▶ I/O modules

PROGRAMMED I/O

- I/O module is directly connected to registers of the CPU
- Full instruction fetch-execute cycle for each and every I/O data word being transferred
 - Slow execution
 - Used in Keyboard

POLLING

- Checking for each input in rotation at frequent intervals
 - Example: Keyboard?
 - ▶ Hundreds of I/O devices?

INTERRUPTS

Interrupt the normal flow of a program in the computer to react to special events

Interrupt lines

- Special control lines to the CPU
- ▶ For example, as many as 32 interrupt lines (IRQ0 –IRQ3 I)
- Messages sent on the lines are known as interrupts
- Example: Keyboard

SERVICING INTERRUPTS

- Temporary suspension of the program in process when an interrupt signal arrive
 - Suspend the current program
 - Saved in the Stack Memory
 - CPU branches to interrupt handler program
 - Servicing the interrupt!
 - Restore and resume original program
 - Interrupt may alter original program

SERVICING INTERRUPTS

Servicing an Interrupt

 Before interrupt arrives, program A is executing. The program counter points to the current instruction.

Stack area

- 2. When the interrupt is received by the CPU, the current instruction is completed, all the registers are saved in the stack area (or in a special area known as a process control block). The PC is loaded with the starting location of program B, the interrupt handler program. This causes a jump to program B, which becomes the executing program.
- When the interrupt routine is complete, the registers are restored, including the program counter, and the original program resumes exactly where it left off.

- External event notifier
 - Example: Keyboard Input

Using a Keyboard Handler Interrupt

- Completion Signal
 - **Example: Printer**

Using a Print Handler Interrupt

Allocating CPU time

- Method of allocating CPU time for different programs or threads sharing the CPU
- Dispatcher

Using an Interrupt for Time Sharing

Abnormal event indicator

- For the computer to respond to specific course of action during an abnormal event
- Generated from inside of CPU
- Example: power failure, divide by 0, nonexistent op code, hardware errors

- Software interrupts
 - ▶ CPUs include instructions that simulate an interrupt
 - Example: Software requesting I/O

MULTIPLE INTERRUPTS

- ▶ Multiple interrupts can arrive at the same time
 - Priority
 - Which device initiated the interrupt
- Which device?
 - Vectored interrupt
 - Polling

MULTIPLE INTERRUPTS

Priority

- Keyboard Input vs. Task Completion?
- Non-Maskable vs. Maskable interrupts

Multiple Interrupts

DIRECT MEMORY ACCESS

- Impractical to transfer data to the CPU using programmed I/O
 - Transfer to memory in blocks from devices I/O module
- Direct Memory Access (DMA)
 - Initiated by CPU using programmed I/O
 - Data transfer between I/O module and memory, under the control of I/O module
 - I/O module will notify CPU once done

DIRECT MEMORY ACCESS

Implementation concerns of DMA?

PERIPHERAL DEVICES

- All items external to the main processing function (CPU, Memory, Power Supply)
- Input devices, Output devices, Storage devices

STORAGE DEVICES

- Primary storage
- Secondary storage

The Storage Hierarchy

Increasing storage capacity

Device	Typical access times	
CPU registers	0.25 nsec	
Cache memory (SRAM)	1-10 nsec	
Conventional memory (DRAM)	10-50 nsec	
Flash memory	120 μsec	
Magnetic disk drive	10-50 msec	
Optical disk drive	100-500 msec	
Magnetic tape	0.5 and up sec	

Increasing access times

STORAGE DEVICES

- Secondary storage
 - Data will not immediately available to the CPU
 - Data in secondary storage needs to be copied to memory
 - Online vs. offline storage devices

SOLID STATE MEMORY

- Flash Memory
 - Nonvolatile integrated circuit memory
 - ROM vs. Flash Memory?
 - Needs to be written in blocks
- Solid State Drives (SSDs)
 - Less weight, low power consumption and small size
 - Relatively immune to physical shock and vibration
 - Generate little heat and no noise

MAGNETIC DISKS

A Hard Disk Layout

MAGNETIC DISKS

Locating a Block of Data: (a) Seek Time, (b) Latency Time, (c) Transfer Time

a. Seek time

b. Latency time

c. Transfer time

MAGNETIC DISKS

Data blocks

A Single Data Block

- Constant Angular Velocity (CAV)
- Constant Linear Velocity (CLV)

OPTICAL DISKS

 Optical storage technologies include various types of CDs and DVDs

> Layout of a CD-ROM versus a Standard Disk

OPTICAL DISKS

Read process of optical disks

DISPLAY

- True color system
 - ▶ 24 bits per pixel
 - ▶ RGB layers with 8 bits per color
 - ▶ 256 × 256 × 256, or more than 16 million different colors

▶ 1024-pixel by 768-pixel graphic image would require over 2.3MB

DISPLAY

Liquid Crystal Display Technology

Liquid Crystal Display

DISPLAY

- Organic Light-Emitting Diode (OLED)
 - Consists of a thin display panel that contains red, green, and blue LEDs for each pixel
 - Transistors for each LED will generate electrical current to light the LED

PRINTERS

Nearly all modern computer printers produce their output as a combination of dots

PRINTERS

Laser printer operation

Operation of a Laser Printer

THANK YOU

REFERNCES

Chapter 9 and 10: The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach -4th Edition, Irv Englander -John Wiley and Sons