

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2019-1

[Cod: CM334] [Curso: Análisis Numérico I]

Práctica Dirigida N^o 3

1. Investigue la propagación de errores de los siguientes esquemas que aproximan $x_n = \left(\frac{1}{2^n}\right)_{n \ge 0}$:

a)
$$r_0 = 0.994, r_n = \frac{1}{2}r_{n-1}$$

b)
$$p_0 = 1, p_1 = 0.497, p_n = \frac{3}{2}p_{n-1} - \frac{1}{2}p_{n-2}$$

c)
$$q_0 = 1, q_1 = 0.497, q_n = \frac{5}{2}q_{n-1} - q_{n-2}$$

2. Las integrales exponenciales son las funciones E_n ,

$$E_n(x) = \int_1^\infty (e^{xt}t^n)^{-1}dt \quad (n \ge 0, x > 0)$$

y satisface la relación

$$nE_{n+1}(x) = e^{-x} - xE_n(x)$$

Analice la estabilidad de este esquema. Interfaz para la entrada de datos

3. Programe el <u>método de factorización LU</u> y aplíquelo la matriz

Validar las condiciones del problema si es inversible, triangular superior.

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

 Programe el método de eliminación gaussiana y aplíquelo para obtener la factorización LU de la matriz

$$A = \begin{bmatrix} 4 & -1 & 1/2 \\ -1 & 4 & -1 \\ 1/2 & -1 & 4 \end{bmatrix}$$

- 5. Considere el circuito DC mostrado en la figura, escriba las ecuaciones para los voltaje sen los nodos $V_1, V_2, ..., V_6$. Programe la eliminación gaussiana con factorización LU y sustitución para resolver el sistema, es decir si A = LU entonces resolver Ax = b es equivalente a resolver Ly = b, Ux = y
- 6. Segun * el procesador Intel Core i9 7980XE rinde 977.0 GFLOPS. Estime el tiempo necesario para resolver un sistema de 100 ecuaciones con 100 incógnitas mediante el método de eliminación gaussiana y sustitución regresiva, compare dicho tiempo con el necesario para aplicar la regla de Cramer a este sistema. También averigüe la edad del universo.
- 7. Programe el método de eliminación gaussiana sin intercambio de filas y resuelva el sistema Hx = b, donde H(i, j) = 1/(i + j - 1)y b(j) = 1.
- 8. Programe la eliminación de Gauss Jordan y muestre una base para el espacio columna de cualquier matriz A, Por ejemplo la matriz del problema 10.

 $^{^*} https://www.pugetsystems.com/labs/hpc/Intel-Core-i9-7900X-and-7980XE-Skylake-X-Linux-Linpack-Performance-1059/$

- 9. Resuelva el sistema Ax = b utilizando factorización LU cuando $b = \begin{bmatrix} 1 & 8 & 30 & 41 \end{bmatrix}^t$.
- Programe la factorización LU de Dolittle (L,U=Doolittle(A)) y aplíquelo con

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{bmatrix}$$

- 11. Se sabe que una matriz M tiene por norma infinito 0,1. Se requiere resolver un problema iterativo x = Mx + c. Se toma una semilla $x_0 = (1, 1, ..., 1)$ y se obtiene un x_1 con todas sus componentes positivas y menores que 1. ¿Cuantas iteraciones hacen falta para obtener una precisión de 10^{-6} ? ¿En que resultado te basas?
- 12. Programe un procedimiento que realice la factorización LU con pivoteo parcial de una matriz A. Aplíquelo a la matriz del problema 10.
- 13. Programe un procedimiento que encuentre la inversa de una matriz. Aplíquelo a la matriz del problema 10.
- 14. Se sabe que una matriz A es estrictamente diagonal dominante por filas y que, de hecho $|a_{ii}| \geq 2 \sum_{j \neq i} |a_{ij}|$ para cada fila i. Se pide:
 - a) Explicar si el algoritmo de Jacobi aplicado al sistema Ax = b (para cualquier b) converge o no.
 - b) Calcular, si se inicia el algoritmo con el vector $(1,0,\ldots,0)$, un número de iteraciones que garanticen que el error cometido es menor que 10^{-6} .

15. Programe un procedimiento que realice la factorización Cholesky de una matriz A. Aplíquelo a la matriz

$$A = \begin{bmatrix} 4 & -2 & 2 \\ -2 & 2 & -4 \\ 2 & -4 & 11 \end{bmatrix}$$

16. Sea I una imagen en blanco y negro (digamos con valores en una gama de 0 a 1) de 800×600 píxeles. Se considera la transformación del "desenfoque" que consiste en que el valor gris de cada píxel se cambia por una combinación lineal de los valores de los píxeles adyacentes y él mismo, según la caja

a_{11}	a_{12}	a_{13}
a_{21}	a_{22}	a_{23}
a_{31}	a_{32}	a_{33}

donde se supone que a_{22} (la ponderación del propio píxel) es mayor que la suma de todos los demás valores a_{ij} en valor absoluto. Se pide:

- a) Describir la matriz de dicha transformación si se entiende I como un vector.
- b) Si se desea realizar la operación inversa (enfocar), ¿se puede utilizar el algoritmo Gauss-Seidel o el de Jacobi? ¿Piensas que es mejor usar uno de estos (si es que se puede) o, por ejemplo, la factorización LU? ¿Por que?
- c) ¿Que condiciones se han de dar para que la matriz de la transformación sea simétrica? ¿Y definida positiva?

UNI, 11 de abril del 2019*

^{*}Hecho en LAT_FX