MLM	[AB112 <i>A</i>	L
2009.	február	5.

Név:
Szak:
Neptun kód:

Feladatok

1.
$$\underline{a}_1 := (1, 0, 3);$$
 $\underline{a}_2 := (2, 1, 1);$ $\underline{a}_3 := (4, 1, 7);$ $\underline{a}_4 := (-1, -1, 2);$ $\underline{a}_5 := (5, 2, 5);$ $H := \{\underline{a}_1, \underline{a}_2, \underline{a}_3, \underline{a}_4, \underline{a}_5\}$

Bázistranszformációt alkalmazva válaszoljon az alábbi kérdésekre! (Indoklás!)

- a) Határozza meg a H vektorhalmaz rangját!
- b) Van-e a *H* vektorhalmaznak két vektorból álló lineárisan független részhalmaza, illetve két vektorból álló lineárisan összefüggő részhalmaza? (4 pont)
- 2. Legyen $\underline{a} = (1, 2, -2)$, $\underline{b} = (3, 0, 4)$.
 - a) Határozza meg az a és b vektorok skaláris szorzatát!
 - b) Adja meg az <u>a</u> és <u>b</u> vektorok normáját (hosszát)!
 - c) Ellenőrizze a fenti vektorokra a Chauchy-Schwarz egyenlőtlenséget! (3 pont)

3. Legyen
$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 1 & 1 & -1 & 3 \\ 0 & 1 & 4 & 1 \\ 1 & 2 & 0 & 1 \end{bmatrix}$$
.

- a) Határozza meg az A mátrix determinánsát!
- b) A kiszámolt determinánsértékből milyen egyéb mátrixtulajdonságokra lehet következtetni? (4 pont)
- 4. Egy jegyiroda 4 héten keresztül 3 színházi előadásra kínált jegyeket. Az alábbi táblázat az egyes heteken az egyes előadásokra eladott jegyek számát tartalmazza:

	1. előadás	2. előadás	3. előadás
1. hét	24	30	18
2. hét	30	18	22
3. hét	26	40	34
4. hét	30	36	38

Az előadások jegyárait tartalmazza az alábbi vektor: $\underline{p} = (2000, 3000, 4000)^{T}$. Legyen A a táblázat adataiból nyert mátrix.

a) Számítsa ki és értelmezze az alábbi kifejezéseket!

$$A \cdot \underline{1}, \quad A \cdot \underline{e}_3, \quad \underline{e}_1^T \cdot A \cdot \underline{p}.$$

- b) Írja fel azokat a kifejezéseket, amelyek megadják, hogy
 - mennyi a második héten eladott összes jegyek száma;
 - mennyi az egyes heteken az árbevétel;
 - hány jegyet adtak el a négy hét alatt összesen?

(7 pont)

5. Legyen
$$A = \begin{bmatrix} 4 & -1 \\ 2 & 3 \end{bmatrix}$$
.

Adja meg az A mátrix adjungáltját és inverzét!

(2 pont)

6. a) Oldja meg bázistranszformáció alkalmazásával az alábbi lineáris egyenletrendszert!

$$x_1 + 3x_2 + 4x_3 = 7$$
 $x_2 + x_3 = 2$
 $2x_1 + 2x_3 = 2$
 $-x_1 + x_2 = 1$

b) Adja meg a fenti egyenletrendszer homogén párjának a megoldáshalmazát!

(7 pont)

7. A Cramer szabály alkalmazásával határozza meg az x_1 ismeretlen értékét az alábbi egyenletrendszerben!

$$x_1 + 2x_2 = 4$$
 $-x_1 + x_2 + 3x_3 = 13$
 $x_1 + x_2 + 2x_3 = 11$
(3 pont)

Elméleti kérdések

- Mit jelentenek az alábbi fogalmak: lineárisan független vektorhalmaz, lineárisan összefüggő vektorhalmaz, vektorhalmaz rangja?
 Milyen állításokat ismer lineárisan független vektorhalmazokra vonatkozóan? (6 pont)
- 2. Ismertesse a tanult mátrixműveletek (összeadás, skalárral való szorzás, mátrixszorzás) definícióját! Milyen tulajdonságai vannak a mátrixszorzásnak? (7 pont)
- 3. Mikor mondjuk azt, hogy egy négyzetes mátrix invertálható? Mi az invertálhatóság szükséges és elégséges feltétele? (Két feltételt adjon meg!) Mi a bázistranszformációval történő mátrixinvertálás lényege? (4 pont)
- 4. Mi a szükséges és elégséges feltétele annak, hogy egy lineáris egyenletrendszer megoldható legyen? Mikor van egy $A \cdot \underline{x} = \underline{b}$ lineáris egyenletrendszernek 1darab megoldásvektora és mikor van végtelen sok megoldásvektor? (3 pont)