ME40064: System Modelling & Simulation ME50344: Engineering Systems Simulation Lecture 12

Dr Andrew Cookson University of Bath, 2019-20

LECTURE 12 Solving Transient Problems - Theory

- Understand the general reasoning behind numerical time stepping schemes
- Ability to apply these to the FEM formulation
- Able to relate this to the static problem FEM formulation

DIFFUSION-REACTION EQUATION Bringing Back The Transient Form

Everything up to Lecture 8 allowed us to solve the static diffusion-reaction equation:

$$D\nabla^2 c + \lambda c + f = 0$$

Now we need to solve the transient version of this equation, which was derived in Lecture 3:

$$\frac{\partial c}{\partial t} = D\nabla^2 c + \lambda c + f$$

GENERAL TRANSIENT EQUATIONS A General Approach To Solving Them

Consider a general transient equation:

$$\frac{\partial c}{\partial t} = F\left(x, c, t\right)$$

Integrate both sides wrt to time, between to time points

$$\int_{t_n}^{t_{n+1}} \frac{\partial c}{\partial t} dt = \int_{t_n}^{t_{n+1}} F(x, c, t) dt$$

Left hand side is trivial to evaluate:

$$c(t_{n+1}) - c(t_n) = \int_{t_n}^{t_{n+1}} F(x, c, t) dt$$

GENERAL TRANSIENT EQUATIONS Using The Trapezium Rule

Integrate RHS using the trapezium rule:

$$\int_{t_n}^{t_{n+1}} F\left(x, c, t\right) dt = \frac{1}{2} \left(t_{n+1} - t_n\right) \left(F\left(x, c, t_{n+1}\right) + F\left(x, c, t_n\right)\right)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
width heights

Different between t_n and t_{n+1} is Δt

$$\frac{c(t_{n+1}) - c(t_n)}{\Delta t} = \frac{1}{2} \left(F^{n+1} + F^n \right), \qquad \theta = 1/2$$

The trapezium rule creates what is known as the Crank-Nicolson scheme

SOLVING TRANSIENT EQUATIONS Three Different Methods

Crank-Nicolson:

$$\frac{c(t_{n+1}) - c(t_n)}{\Delta t} = \frac{1}{2} \left(F^{n+1} + F^n \right), \qquad \theta = 1/2$$

$$\theta = 1/2$$

Forward Euler:

$$\frac{c(t_{n+1}) - c(t_n)}{\Delta t} = F^n(x, c, t), \qquad \theta = 0$$

$$\theta = 0$$

Backward Euler:

$$\frac{c(t_{n+1}) - c(t_n)}{\Delta t} = F^{n+1}(x, c, t), \qquad \theta = 1$$

SOLVING TRANSIENT EQUATIONS A Generalised Method

All these three schemes can be generalised in the theta scheme formulation:

$$\frac{c(t_{n+1}) - c(t_n)}{\Delta t} = \theta F^{n+1}(x, c, t) + (1 - \theta)F^n(x, c, t)$$

TRANSIENT FEM FORMULATION A Generalised Method

The weighted residual form, after integration by parts, for the domain x=[0,1] is now:

$$\int_0^1 \left(v \frac{\partial c}{\partial t} + D \frac{\partial v}{\partial x} \frac{\partial c}{\partial x} - \lambda cv \right) dx = \int_0^1 v f dx + \left[v D \frac{\partial c}{\partial x} \right]_0^1$$

The new term in the equation is:

$$v\frac{\partial c}{\partial t}$$

which, as before, can be represented by:

$$c = c_n \psi_n, v = \psi_m$$

LOCAL ELEMENT MASS MATRIX Element Integral For Time Derivative

The local element integral is thus:

$$\int_{-1}^{1} \frac{d(c_n \psi_n)}{dt} \cdot \psi_m J d\xi$$

Take the derivative outside of the integral:

$$\frac{dc_n}{dt} \int_{-1}^{1} \psi_n \psi_m J d\xi$$

But know that time derivative can be written:

$$\frac{dc_n}{dt} = \frac{c_n^{n+1} - c_n^n}{\Delta t}$$

LOCAL ELEMENT MASS MATRIX Element Integral For Time Derivative

The local element integral is thus:

$$\int_{-1}^{1} \frac{d(c_n \psi_n)}{dt} \cdot \psi_m J d\xi$$

Take the derivative outside of the integral:

$$\frac{dc_n}{dt} \int_{-1}^{1} \psi_n \psi_m J d\xi \longrightarrow \frac{\text{local element}}{\text{mass matrix}}$$

But know that time derivative can be written:

$$\frac{dc_n}{dt} = \frac{c_n^{n+1} - c_n^n}{\Delta t}$$

GLOBAL ELEMENT MATRICES The Mass And Stiffness Matrices

Local element mass matrix:

$$M_{element} = \int_{-1}^{1} \psi_n \psi_m J d\xi$$

Local element stiffness matrix:

$$K_{element} = \int_{-1}^{1} D \frac{d\psi_n}{d\xi} \frac{d\xi}{dx} \frac{d\psi_m}{d\xi} \frac{d\xi}{dx} J d\xi - \int_{-1}^{1} \lambda \psi_n \psi_m J d\xi$$

Looping over all element, assemble these into global mass, M, matrix, and global stiffness, K, matrix

GLOBAL ELEMENT MATRICES The Transient Fem Equation

Write the transient FEM equation in terms of these global matrices, using general theta scheme:

$$M\left(\frac{\mathbf{c}^{n+1}-\mathbf{c}^n}{\Delta t}\right) + K[\theta\mathbf{c}^{n+1} + (1-\theta)\mathbf{c}^n] = RHS$$
 Global solution vector at time solution vector step n+1 step n

and:

$$RHS = \theta \mathbf{F}^{n+1} + (1 - \theta)\mathbf{F}^n + \theta \mathbf{NBc}^{n+1} + (1 - \theta)\mathbf{NBc}^n$$

GLOBAL ELEMENT MATRICES The Transient Fem Equation

Rearrange this to have unknowns on LHS:

$$[M + \theta \Delta t K]\mathbf{c}^{n+1} = [M - (1 - \theta)\Delta t K]\mathbf{c}^n + \Delta t \theta [\mathbf{F}^{n+1} + \mathbf{N}\mathbf{B}\mathbf{c}^{n+1}] + \Delta t (1 - \theta)[\mathbf{F}^n + \mathbf{N}\mathbf{B}\mathbf{c}^n]$$

Final global matrix to invert to solve the system

Solution at previous time step

The Crank-Nicolson scheme is thus:

$$[M + \frac{1}{2}\Delta tK]\mathbf{c}^{n+1} = [M - \frac{1}{2}\Delta tK]\mathbf{c}^n + \frac{1}{2}\Delta t[\mathbf{F}^{n+1} + \mathbf{F}^n + \mathbf{N}\mathbf{B}\mathbf{c}^{n+1} + \mathbf{N}\mathbf{B}\mathbf{c}^n]$$