## EE360C ALGORITHMS - FALL 2018 - Sep 4 2018

A path from vertex u to v is a sequence of v entices  $(v_0, v_1, \dots, v_k)$  s.t.  $v_0 = u$ ,  $v_k = v$  and  $v = v_1 = v_2 = v_3 = v_4 = v_4$ 





E= {..., (a, 1), (b, 7), ...}

multigraphs



There is a path from 1 to 3, but no path from 3 to 1

v is reachable from u if I padh from u to v.

Note: v is always reachable from itself.

A path is simple if all its voltices are distinct.

e.g. In the graph above. path (1,2,4) simple path (1,2,3,2,4)

not simple



| 0 | FOREST: Undirected acyclic graph                        |
|---|---------------------------------------------------------|
|   | zant direngulitation in the manufacture of a government |
| q | TREE: Undirected acyclic connected graph.               |
|   | there is a path between any 2 vertices                  |
|   | NOTE: A graph is acyclic if Zpath that's a cycle.       |
|   | e.g. this is a forest: 9 9 9                            |
|   | a p a mand a stante of the                              |
|   |                                                         |
|   | TREE TELEOREM                                           |
|   | Let G= (V, E) be an undirected graph.                   |
|   | Then the following are equivalent:                      |
| Ť | 1. G is a tree                                          |
|   | 2 Any two vertices are connected by a unique            |
|   | Simple path.                                            |
|   | 3. G is connected but if any edge is removed,           |
|   | it's not. "minimally connected"                         |
|   | 4. G is acyclic but if any edge is added,               |
|   | it becomes cyclic. "maximally acyclic"                  |
|   | 5. G is connected and  E =  V -1                        |
|   | 6. G is acyclic and  E =  V -1.                         |
|   |                                                         |
|   |                                                         |
|   | 3                                                       |
|   |                                                         |

