

Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level In Statistics S1 (WST01) Paper 01

1. (a)	$P(C') = \frac{103}{120}$ oe awrt 0.858	B1 (1)
(b)	$P(A \cap B \cap C') = 0$	B1 (1)
(c)	$P(A \cup B \cup C') = \frac{9+3+2+5+1+93}{120} \text{ or } P(A \cup B \cup C') = 1 - \frac{7}{120}$	M1
	$= \frac{113}{120} \text{ oe} \qquad \text{awrt } 0.942$	A1 (2)
(d)	P(At most 1) = P(0 or 1) = $\frac{93+9+7+1}{120}$ or $\frac{120-2-5-3}{120}$	M1
	$= \frac{110}{120} \text{ oe} $ awrt 0.917	A1 (2)
(e)	$P(A \mid \text{At most 1}) = \frac{9/120}{110/120}$	M1
	$= \frac{9}{110} \text{ oe} \qquad \text{awrt } 0.0818$	A1 (2)
(f)	$P(X=0) = \frac{93}{120} \qquad P(X=1) = \frac{17}{120} P(X=2) = \frac{8}{120} P(X=3) = \frac{2}{120}$	M1
	$E(X) = \left[\frac{93}{120} \times 0\right] + \frac{17}{120} \times 1 + \frac{8}{120} \times 2 + \frac{2}{120} \times 3$	M1
	$=\frac{13}{40}$ or 0.325 oe	A1 (3)
	Notes	[11]
(a)	B1 (allow awrt 0.858)	
(b)	B1 cao condone 0/120 but do not allow other denominators	
(c)	M1 for either correct expression for $P(A \cup B \cup C')$ A1 o.e. (allow awrt 0.942)	
(d)	M1 correct expression	
	A1 $\frac{11}{12}$ o.e. (allow awrt 0.917)	
(e)	12	
	denominator of 120 $\frac{m}{\text{"their }110\text{"}}$ where $0 < m < \text{their }110$ Allow $\frac{n}{120 - 3 - 2 - 5}$ or $\frac{n}{110}$	where
	0 < n < 110 A1 o.e. (allow awrt 0.0818)	
(f)	1 st M1 for the probability distribution of X (condone missing $P(X = 0)$) awrt 0.14 awrt 0.06 awrt 0.017 May be implied by a correct expression for $E(X)$. At least 2 correct must be assowith the correct x value	
	2 nd M1 correct follow through expression for E(X) ft their probabilities and X values A1 Dep on both previous method marks being awarded. Working must be checked. A correct answer with no working scores 3/3	.0.10
	SC $P(X = 17) = 17/120$ (awrt 0.14) $P(X = 8) = 8/120$ (awrt 0.067) $P(X = 14) = 14/120$ (a	wrt 0.12)
	leading to awrt 4.58 or 183 / 40 gains M0M1A0	

Question	Scheme	Monks
Number	Scheme	Marks

2. (a)	$S_{dp} = 5240.8 - \frac{1029 \times 50.8}{10} [= 13.48]$	M1	
	$r = \frac{13.48}{\sqrt{344.9 \times 0.576}}$	M1	
	= 0.9563834526 awrt 0.956	A1	(3)
(b)(i)	w = 50 - p	B1	
(ii)	-1	B1	
			(2)
(c)	-0.956	B1ft	
			(1)
		[6]	
	Notes		
(a)	$1^{\rm st}$ M1 correct expression for S_{dp}		
	2^{nd} M1 valid attempt at r with their S_{dp} not equal to 5240.8 and the correct denominato	r	
	A1 awrt 0.956		
(b)(i)	B1 allow equivalent rearrangements		
(ii)	B1-1 cao		
(c)	B1ft follow through $-1 \times \text{their}(a)$ providing $-1 < \text{their}(a) < 1$		

3. (a)	lower quartile = 116 upper quartile = 125		B1
	$"125" + 1.5 \times ("125" - "116") \text{ or } "125" + 1$.5 × (9)	M1
	Outlier is greater than 138.5, so $c = 9*$		A1*cso (3)
(b)	$\overline{x} = \frac{-96}{24} [= -4]$	$\sum d = 125 \times 24 - 96[= 2904]$	M1
	$\overline{x} = \frac{-96}{24} [= -4]$ $\overline{d} = '\overline{x}' + 125$	$\sum_{\bar{d}} d = 125 \times 24 - 96[= 2904]$ $\bar{d} = \frac{"2904"}{24}$	M1
		$\overline{d} = 121$	A1 (3)
(c)	$\left[\sigma_x = \sigma_d\right] = \sqrt{\frac{1306}{24}}$		M1
	ν 24	$[\sigma_d] = 7.3767$ awrt <u>7.38</u>	A1 (2)
(d)	$[P(D > 118 X < 0)] = \frac{P(118 < D < 125)}{P(D < 125)} \text{ or}$	$\frac{P(-7 < X < 0)}{P(X < 0)} \text{ or } \frac{\frac{5}{24}}{\frac{14}{24}}$	M1
	$=\frac{5}{14}$		A1
			[10]
		Notes	1 2
(a)	implied by the IQR = 9 M1 use of $Q_3 + 1.5 \times IQR$ with their value	be seen either in the calculation or separately es. May be implied by 138.5 if B1 awarded o not accept $c = 139$) with no errors. Answer	
	working must be shown.		
(b)	1^{st} M1 for correct expression for \bar{x}	1^{st} M1 for correct expression for \sum	
	2^{nd} M1 use of $\overline{d} = '\overline{x}' + 125$	2^{nd} M1 use of " $\sum d$ " ÷ 24 must be of sum	clear it is their
	A1 121	I	
	NB condone no labelling or incorrect label	ling throughout part(b)	
(c)	M1 correct expression $\sqrt{\frac{1306}{24}}$		
	A1 awrt 7.38 final answer		
(d)	M1 correct probability statement (allow	a probability of $\frac{k}{14}$ where $0 < k < 14$ to score	re M1)
	A1 allow awrt 0.357	14	

A1 allow awrt 0.357

Question Number	Scheme	Marks
4. (a)	$\frac{2}{5}$	B1
	5	(1)
(b)	E(W) = 3	B1
	E(5-2W) = 5-2E(W)	M1
	E(X) = -1	A1 (3)
(c)	$P(X < W) = P(5 - 2W < W) = P(W > \frac{5}{3}) \text{ or } P(W \ge 2)$	M1
	$=\frac{4}{5}$	A1
	5	(2)
(d)(i)		B1
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
(ii)	$E(Y) = \frac{1}{5} \left(1 + \frac{1}{2} + \frac{1}{5} \right) \text{ or } \frac{1}{5} + \frac{1}{10} + \frac{1}{15} + \frac{1}{20} + \frac{1}{25} \left[= \frac{137}{300} = 0.4566 \right]$	M1
	$E(Y^{2}) = \frac{1}{5} \left(1^{2} + \left(\frac{1}{2} \right)^{2} + \dots + \left(\frac{1}{5} \right)^{2} \right) \text{ or } \frac{1}{5} + \frac{1}{20} + \frac{1}{45} + \frac{1}{80} + \frac{1}{125} \left[= \frac{5269}{18000} = 0.2927 \right]$	M1
	$Var(Y) = '0.2927' - ('0.4566')^2$ awrt <u>0.0842</u>	M1 A1 (5)
(e)	$Var(2-3Y) = (-3)^2 Var(Y)$ awrt <u>0.758</u>	M1 A1ft (2)
	Notes	[13]
(a)	B1 oe	
(b)	B1 sight of $E(W) = 3$ or the x values 3, 1, -1, -3, -5 (they may be added)	
	M1 use of $E(5-2W) = 5-2E(W)$ or $\frac{1}{5}(3+1++5)$ Condone use of X instead of	W
	A1 cao and labelled $E(X)$	
(c)	M1 for identifying $W > \frac{5}{3}$ or $W \ge 2$ eg $1 - P(W = 1) \ge 2$ or $1 - P(W \le 1) \ge 2$	
	Al oe	
(d)(i) (ii)	B1 Correct distribution (probabilities may be implied by correct use). May be seen in any part	
	M1 attempt at expression for $E(Y^2)$ using their values of y and p (at least 2 terms seen) (0.2885 if have 0.3 rather than 1/3) Condone incorrect labelling	or awrt 0.293
	M1 For use of " $E(Y^2)$ " – (" $E(Y)$ ") ² ft their values for $E(Y^2)$ and $E(Y)$	
	A1 awrt 0.0842 or $\frac{947}{11250}$	
(e)	M1 for use of $(-3)^2 \text{Var}(Y)$ with their $\text{Var}(Y) > 0$ condone $(3)^2 \text{Var}(Y)$	
	A1ft $\frac{947}{1250}$ or $9 \times$ "their part (d) > 0" evaluated correctly to 3sf or exact fraction	

Question Number	Scheme	Marks
5. (a)	$P(X < 37) = P\left(Z < \frac{37 - 40}{2.4}\right) = P(Z < -1.25)$	M1
	= 1 - 0.8944 ; $= 0.105649$ awrt <u>0.106</u>	M1; A1 (3)
(b)	P(one value is greater than 32) = $\sqrt{0.16}$ [=0.4]	M1
	$\frac{32-m}{2.4} = 0.2533$	M1 B1
	m = 31.392 awrt <u>31.4</u>	A1 (4)
(c)	$P(Y<0) = P\left(Z < \frac{0-4}{8}\right) = P\left(Z < -0.5\right) [= 0.3085]$	M1
	Let X be the number of negative values $P(X \ge 1) = 1 - P(X = 0)$ oe	M1
	$= 1 - (0.6915)^5$	M1
	= 0.84188 awrt 0.842	A1
	Notes	(4) [11]
(a)	1^{st} M1 standardising 37 (or 43) with 40 and 2.4 (allow \pm) 2^{nd} M1 for $1-p$ (where $0.88) Implied by correct answer. A1 for awrt 0.106 (calc. 0.105649)$	
(b)	1^{st} M1 correct expression for one value > 32 (may be implied by sight of 0.2533 Allowed between 0.25 and 0.26 inclusive)	w any value
	2^{nd} M1 standardising 32 with m and 2.4 and setting equal to z value $0.2 < z < 0.3$	
	B1 for $z = \pm 0.2533$ or better (calc gives 0.2533470931) used in a linear equation A1 awrt 31.4 or better	for m
	SC [using 0.16]Allow M0M1 B0 A0 for $\frac{32-m}{2.4} = z$ where $0.99 \le z < 1.04$	
(c)	1^{st} M1 standardising 0 with 4 and 8 (allow \pm) or seeing 0.3085 or 0.6915 2^{nd} M1 realising they need to find $1 - P(X = 0)$ ie writing or using $1 - P(\text{no negative value})$ May be implied by $1 - p^5$ 0	es)oe
	3 rd M1 use of $1-p^5$ where p is 1 —"their $P\left(Z < \frac{0-4}{8}\right)$ "	
	A1 awrt 0.842 (tables: 0.8418894 calculator: 0.84193233)	
	NB If they use Binomial	
	and get 0.842 full marks.and get 0.125 then award M1M1M0A0	
	• otherwise send to Review	

Question Number		Scheme	Marks
6. (a)	$\overline{f} = 10.8 + 0.748 \overline{p} = 10.8 + 0.748(62)$.4) awrt <u>57.5</u>	M1 A1 (2)
(b)	For each additional <u>mark</u> scored on the <u>pre-test</u> , the average <u>mark</u> on the <u>final exam</u> increases by 0.748		B1 (1)
(c)	The statement is not reliable as there is	no data below 19 (extrapolation).	B1 (1)
(d)	76		B1 (1)
(e)	p < 10.8 + 0.748 p		M1
	0.252 p < 10.8	. 40.0	M1
		p < awrt 42.9	A1 (3)
(f)	[No change to] $S_{pp} = 15 573.76$		
	$\sum pf = 133486 - 2842 + 9016$ [= 139660]	$\sum pf$ increases by $98(92-29)[=6174]$	M1
	$\sum f = "57.47" \times 34 + (92 - 29)$ or	$\sum \sum_{i} $ 2120(92 – 29)	
	$\frac{133486 - 11648.35}{2120} \times 34 + (92 - 29)$	$\frac{\sum_{p} \sum_{f} f}{\text{increases by } \frac{2120(92-29)}{34}}$	M1
	2120	[= 3928.235]	
	$[=1954+92-29\approx 2017]$		
	$S_{pf} = "139660" - \frac{2120 \times "2017"}{34}$		
	$S_{pf} = 139000 - \frac{34}{34}$	S _{pf} increases by '6174' -'3928.235'	dM1
	[=	[=2245.764]	GIVII
	13894]	11640.25 : 112245.76411	
	$b = \frac{"13894"}{15573.76} [= 0.89]$	$b = \frac{11648.35 + "2245.764"}{15573.76}$	M1
	155/3.76	155/3./6 awrt 0. 9	A1 (5)
		Notes	A1 (5)
(a)	M1 for substituting 62.4 into the regres	ssion equation. Allow answer between 57 and 58	1 11
	A1 awrt 57.5		
(b)	B1 must include context and reference to 0.748 Needs to refer to each mark being 0.748 or a multip of eg 10 marks is 7.48 Allow equivalent words eg score/ point for mark, pre or test for pre-test, exam or final for final exam		
(c)		g reason eg it (10.8)is an outlier, outside the range	
(d)	B1 76 cao		
(e)		ly or for drawing the line $f = p$ on the graph. May b	
	by $p < n$ (ignore any lower limit	it) where $40 \le n < 46$ (allow incorrect inequality si	gn or =)
	Allow trial and improvement.		
	2^{nd} M1 rearranging to the form $ap < b$ v	with correct inequality sign. Allow $(1-0.748) p <$	10.8
	May be implied by $p < n$ (ignormal)	re any lower limit) where $42 < n < 44$	
	A1 p < awrt 42.9 (ignore any lower line)		
(f)	1^{st} M1 Correct method to find new \sum_{i}	pf or change in $\sum pf$	
		$\int_{a}^{\infty} f$ or change in $\frac{\sum_{p} \sum_{f} f}{n}$ Allow 2018 or 2017	
	3 rd dM1 dep on both previous method i	marks being awarded. Correct method to find new	S_{pf} with
	their changed $\sum pf$ and $\sum f$ or change	**	
	4 th M1 expression for $b = \frac{\text{'S}_{pf}'}{15573.76}$	with their changed S_{pf} and unchanged S_{pp}	
	A1 awrt 0.9 (from correct working)		
l.			

Question Number	Scheme	Marks	
7. (a)	$P(X=3) = F(3) - F(2) = \frac{1}{38}$	M1	
	$P(X=3) = \frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2}$	M1	
	$\frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2} = \frac{1}{38} \to n(n-1)(n-2) = 7980 $ (*)	M1 A1cso	
(b)	21, 20, 10 7090	(4)	
(b)	$21 \times 20 \times 19 = 7980$	B1cso	
	14 13 12	(1)	
(c)	$a = F(0) = P(X=0) = \frac{14}{21} \times \frac{13}{20} \times \frac{12}{19}$	M1	
	$a = \frac{26}{95}$	A1	
	$P(X=1) \ \ 3 \times \frac{14}{21} \times \frac{13}{20} \times \frac{7}{19} \left[= \frac{91}{190} \right] \text{ or } P(X=2) \ \ 3 \times \frac{7}{21} \times \frac{6}{20} \times \frac{14}{19} \left[= \frac{21}{95} \right]$	M1 M1	
	$b = F(1) = P(X=0) + P(X=1) = \frac{26}{95} + \frac{91}{190} \text{ or } b = \frac{37}{38} - \frac{21}{95}$	dM1	
	$b = \frac{143}{190}$	A1	
	170	(6)	
	Notes		
(a)	1 st M1 for use of F(3) – F(2) Accept $\frac{1}{38}$		
	2^{nd} M1 product of 3 probabilities where the denominators are n , $(n-1)$ and $(n-2)$ and the numerators are decreasing k , $(k-1)$ and $(k-2)$ This may be seen as a single term in a longer expression. 3^{rd} M1 setting up equation for $P(X=3)$ = product of correct 3 probabilities without replacement A1cso fully correct solution with no errors seen		
(b)	B1cso correctly evaluated product. Allow 21($21 - 1$)($21 - 2$) = 7980		
(c)	1 st M1 product of 3 probabilities for $P(X=0)$ The three probabilities can be in any arran	gement May	
	be implied by $\frac{26}{95}$		
	1 st A1 $a = \frac{26}{95}$ oe must be clear this is the value for a		
	2 nd M1 product of 3 probabilities for P(X=1) or P (X=2) or $\frac{91}{190}$ or $\frac{91}{570}$ or $\frac{21}{95}$ or $\frac{7}{95}$	oe seen.	
	Condone incorrect labelling. The three probabilities can be in any arrangement		
	3^{rd} M1 × 3 or adding the 3 sets of the 3 fractions or $\frac{91}{190}$ or $\frac{21}{95}$ Condone incorrect labelling		
	4 th dM1 their $P(X=0)$ + their $P(X=1)$ or $F(2) - P(X=2)$ (dep on 2 nd M1 being scored)		
	$2^{\text{nd}} \text{ A1} b = \frac{143}{190}$ oe must be clear this is the value for b		
	NB if $a = 0.273$ and $b = 0.7526$ implies the method marks.		