```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

Scatter Plots

```
x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]

plt.scatter(x, y)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title("Scatter Plot")

Text(0.5, 1.0, 'Scatter Plot')
```


Change The Color

```
x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]

plt.scatter(x, y, color='red')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title("Scatter Plot")

Text(0.5, 1.0, 'Scatter Plot')
```


Add Edges To The Plots

```
x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]

plt.scatter(x, y, edgecolors='black', color="yellow")
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title("Scatter Plot")
```


Change The Linewidth Of The Plots

```
x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]

plt.scatter(x, y, linewidth=3)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title("Scatter Plot")

Text(0.5, 1.0, 'Scatter Plot')
```


Change The Transparent Of The Plots

```
x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]

plt.scatter(x, y, color='black', alpha=0.5)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title("Scatter Plot")

Text(0.5, 1.0, 'Scatter Plot')
```


Change The Size Of The Plots

```
x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]

# s: refers to the size of the plots
plt.scatter(x, y, s = 100)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title("Scatter Plot")

Text(0.5, 1.0, 'Scatter Plot')
```


Change The Size Of The Plots

```
x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]

plt.scatter(x, y, s=5)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title("Scatter Plot")

Text(0.5, 1.0, 'Scatter Plot')
```


Change The Colors Of The Plots Based On Other Data

```
x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]

colors = [9, 10, 1, 7, 5, 7, 3, 5, 6, 7, 1, 10, 8, 1, 9, 2, 1, 6, 7, 5]

# c: refers to the colors
# change the colors of plots that based on the data exists on colors
list
plt.scatter(x, y, c=colors, edgecolors='cyan')
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title("Scatter Plot")

Text(0.5, 1.0, 'Scatter Plot')
```


Change The Size Of Plots Based On Other Data

```
x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]

colors = [9, 10, 1, 7, 5, 7, 3, 5, 6, 7, 1, 10, 8, 1, 9, 2, 1, 6, 7, 5]
sizes = [200, 443, 390, 291, 291, 333, 222, 551, 422, 394, 458, 217, 321, 126, 154, 349, 257, 347, 345, 251]

# s: refers to the size of the plots
plt.scatter(x, y, c=colors, edgecolors='blue', s=sizes)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title("Scatter Plot")
Text(0.5, 1.0, 'Scatter Plot')
```


Change The Colors Of Plots

- cmap: refers to "color Map"
- the colors that can be used: Accent_r Blues_r BrBG_r BuGn_r BuPu_r CMRmap_r Dark2_r GnBu_r Greens_r Greys_r OrRd_r gist_earth_r Oranges_r binary_r

```
x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]

colors = [9, 10, 1, 7, 5, 7, 3, 5, 6, 7, 1, 10, 8, 1, 9, 2, 1, 6, 7,
5]
sizes = [200, 443, 390, 291, 291, 333, 222, 551, 422, 394, 458, 217,
321, 126, 154, 349, 257, 347, 345, 251]

# change the color of the plots
plt.scatter(x, y, c=colors, s=sizes, cmap='CMRmap_r')
plt.xlabel('Y-axis')
plt.ylabel('Y-axis')
plt.title("Scatter Plot")

Text(0.5, 1.0, 'Scatter Plot')
```


Write Labels That Identify Name For Each Color

```
x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]

colors = [9, 10, 1, 7, 5, 7, 3, 5, 6, 7, 1, 10, 8, 1, 9, 2, 1, 6, 7,
5]
sizes = [200, 443, 390, 291, 291, 333, 222, 551, 422, 394, 458, 217,
321, 126, 154, 349, 257, 347, 345, 251]

# change the color of the plots
plt.scatter(x, y, c=colors, s=sizes, cmap='CMRmap_r')

# show the color bar
plt.colorbar()

plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title("Scatter Plot")

Text(0.5, 1.0, 'Scatter Plot')
```


Title The Color Bar

```
x = [5, 7, 8, 5, 6, 7, 9, 2, 3, 4, 4, 4, 2, 6, 3, 6, 8, 6, 4, 1]
y = [7, 4, 3, 9, 1, 3, 2, 5, 2, 4, 8, 7, 1, 6, 4, 9, 7, 7, 5, 1]

colors = [9, 10, 1, 7, 5, 7, 3, 5, 6, 7, 1, 10, 8, 1, 9, 2, 1, 6, 7,
5]
sizes = [200, 443, 390, 291, 291, 333, 222, 551, 422, 394, 458, 217,
321, 126, 154, 349, 257, 347, 345, 251]

# change the color of the plots
plt.scatter(x, y, c=colors, s=sizes, cmap='CMRmap_r')

# name the color bar
cbar = plt.colorbar()
cbar.set_label('X-axis')
plt.xlabel('Y-axis')
plt.ylabel('Y-axis')
plt.title("Scatter Plot")

Text(0.5, 1.0, 'Scatter Plot')
```


Make Scatter Plot To Real Data

Read The DataSet

<pre>data = pd.read_csv('train.csv') data.head()</pre>												
	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape				
\												
0	1	60	RL	65.0	8450	Pave	NaN	Reg				
1	2	20	RL	80.0	9600	Pave	NaN	Reg				
2	3	60	RL	68.0	11250	Pave	NaN	IR1				
3	4	70	RL	60.0	9550	Pave	NaN	IR1				
4	5	60	RL	84.0	14260	Pave	NaN	IR1				
	Land Sold	Contour Util	lities	PoolArea P	oolQC Fend	ce Misc	Feature	e MiscVal				
		`										

0		Lvl	Αl	lPub		0	NaN	NaN	NaN	0
2 1		Lvl	Αl	lPub		0	NaN	NaN	NaN	0
5 2		Lvl	Αl	lPub		0	NaN	NaN	NaN	0
9 3		Lvl	Al.	lPub		0	NaN	NaN	NaN	0
3 2 4		Lvl	Al.	lPub		0	NaN	NaN	NaN	0
12			,,,			-				
Υ	rSold	SaleT	ype	Sale	Condition	Sale	Price			
0	2008	WD			Normal		98500			
1	2007	WD			Normal 181500					
2 2008		WD		Normal 223500						
3	2006	WD		Abnorml 140000						
4	2008		WD		Normal	2.	50000			
[F roug v 01 columns]										
[5 rows x 81 columns]										

Make Scatter plot To The OverallQual, and SalePrie Columns On The Dataset

```
plt.scatter(data['OverallQual'], data['SalePrice'])
<matplotlib.collections.PathCollection at 0x2254ab3e030>
```


Make Scatter Plot Between The YearBuilt, and SalePrice, Then Color Them Using Color Bar

```
plt.scatter(data['YearBuilt'], data['SalePrice'],
c=data['OverallQual'], cmap='gray_r')
cbar = plt.colorbar()
cbar.set_label("Quality")
```

