LA DÉRIVATION E07C

EXERCICE N°2 Du concret : Optimisation d'un bénéfice

Extrait du Sesamath 1er spe n°81 p158

Une coopérative fabrique du jus de pomme. Elle produit entre 0 et 200 litres de jus. Elle a établi que ses coûts de production, en euros, de x dizaines de litres de jus de pommes étaient donnés par la fonction $C: x \mapsto x^2 - x + 10$. Chaque dizaine de litres produite sera vendue $19 \in$.

1) Quel est l'ensemble de définition de la fonction C?

L'entreprise produit entre 0 et 200 litres de jus, donc le domaine de définition de C est [0; 20]

2) On appelle R(x) la recette gagnée par la coopérative pour x dizaines de litres vendus. Exprimer R(x) en fonction de x.

$$R(x) = 19x$$

Chaque dizaine de litres est vendue 19 €.

3) On appelle B(x) le bénéfice réalisé par la coopérative lorsqu'elle produit et vend x dizaines de litres de jus de pomme. Quel que soit x, on a B(x)=R(x)-C(x). Montrer que la fonction bénéfice B est définie sur [0; 20] par $B(x)=-x^2+20x-10$.

Soit
$$x \in [0; 20]$$
,
 $B(x) = R(x) - C(x)$
 $= 19x - (x^2 - x + 10)$
 $= 19x - x^2 + x - 10$
 $= -x^2 + 20x - 10$
Ainsi, pour tout $x \in [0; 20]$, $B(x)$

Ainsi, pour tout $x \in [0; 20]$, $B(x) = -x^2 + 20x - 10$.

4) Étudier les variations de la fonction $B \sup [0; 20]$.

B est une somme de fonctions de référence définies et dérivables sur [0; 20], elle l'est donc aussi et pour tout $x \in [0; 20]$,

$$B'(x) = -2x + 20$$

On en déduit le tableau de variations suivante :

x	0 10 20
f'(x)	- 0 +
f(x)	−10 90 −10

5) En déduire le nombre de litres que la coopérative doit produire afin d'obtenir un bénéfice maximum.

D'après le tableau de variations, la coopérative doit produire 100 L .

Attention à ne pas aller trop vite et oublier les unités de l'énoncé...