UGANDA MARTYRS UNIVERSITY

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION SYSTEMS

END OF SEMESTER TWO EXAMINATION

ACADEMIC YEAR 2022/2023

COURSE : BACHELOR OF SCIENCE IN COMPUTER

SCIENCE

CLASS/YEAR : THREE

:

EXAM EMBEDDED SYSTEMS

CODE

CSC 3107

SEMESTER : THREE

DATE : 19TH MAY 2023

TIME : 9:30 – 12:30 PM

DURATION : 3 HOURS

Instructions

1. This exam consists of 7 questions, but you are only required to attempt 5 questions.

- 2. All questions carry equal marks.
- 3. You have a total of 3 hours to complete the exam.
- 4. Answer all questions in the answer booklet provided.
- 5. Write your answers clearly and legibly.
- 6. Ensure that you have written your name and student Registration number on the answer booklet.
- You are not allowed to communicate with other students during the exam.
 If you have any questions during the exam, please raise your hand and the invigilator will assist you.

Question One

- (a) Explain the classification of embedded systems based on their size. Clearly give real-world examples for each category. (10 marks)
- (b) With examples, give the applications of embedded systems. (10 marks)

Question Two

- (a) Explain in detail the differences between CISC and RISC architectures in embedded systems, including their design philosophies and performance characteristics. (10 marks)
- (b) With the aid of an illustration, describe the following
 - (i) Von-Neumann Architecture (5 marks)
 - (ii) Harvard architecture (5 marks)

Question Three

- (a) Discuss the different stages involved in the design process of an embedded system. (10 marks)
- (b) Name 4 tools used in programming embedded systems. (4 marks)
- (c) Briefly name six of the major components of an embedded system. (6 marks)

Question four

(Describe the following as used in embedded systems (20 marks)

- (i) Real time operating system (RTOS)
- (ii) Actuator
- (iii) Watchdog timer, give an application of the watchdog timer
- (iv) Synchronous Data Transmission and Asynchronous Data Transmission
- (v) ROM and EPROM

Question five

- (a) Write a program in C language to blink an LED connected to a microcontroller pin using a delay loop. Mention any assumptions for your program. (10 marks)
- (b) Briefly explain how the blinking led program can be modified for use with traffic lights. (6 marks)
- (c) Discuss any two number systems used in embedded systems. (4 marks)

Question Six

- (a) Explain the concept of a "producer-consumer problem" in embedded systems, including its importance in managing the communication between threads. (10 marks)
- (b) Discuss the implementation of a FIFO queue in embedded systems, including the use of circular buffers, linked lists, and other data structures. (10 marks)

Question Seven

- (a) Explain the concept of Analog-to-Digital Conversion (ADC) in embedded systems (5 marks)
- (b) Why is it important to convert Analog Signals to Digital Signals in embedded systems? (5 marks)
- (c) Discuss the challenges and limitations of ADCs in embedded systems. (10 marks)

END, GOOD LUCK