SEMINAR 13

1) a) Fie $\varphi \in \mathbb{R}$. Să se arate că rotația în plan de unghi φ , adică funcția

$$h: \mathbb{R}^2 \to \mathbb{R}^2, \ h(x,y) = (x\cos\varphi - y\sin\varphi, x\sin\varphi + y\cos\varphi),$$

este automorfism al lui \mathbb{R}^2 . Să se scrie matricea lui h în baza canonică a lui \mathbb{R}^2 (adică în baza (e_1, e_2) , cu $e_1 = (1, 0)$, $e_2 = (0, 1)$).

- b) Să se arate că funcțiile $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x,-y) (simetria în raport cu axa Ox) și $g: \mathbb{R}^2 \to \mathbb{R}^2$, g(x,y) = (-x,y) (simetria în raport cu axa Oy) sunt automorfisme ale lui \mathbb{R}^2 . Să se scrie matricele lui f, g, f-g, f+2g și $g\circ f$ în baza canonică.
- 2) Fie $f: \mathbb{R}^2 \to \mathbb{R}^3$, f(x,y) = (x+y,2x-y,3x+2y). Să se arate că f este o transformare liniară, să se arate că v = ((1,2),(-2,1)), respectiv v' = ((1,-1,0),(-1,0,1),(1,1,1)) este bază în \mathbb{R}^2 , respectiv \mathbb{R}^3 și să se scrie matricea lui f în perechea de baze (v,v').

3) Fie
$$A=\begin{pmatrix}1&2&0&1\\3&0&-1&2\\2&5&3&1\\1&2&1&3\end{pmatrix},\ v=(v_1,v_2,v_3,v_4)$$
o bază a $\mathbb R$ -spaţiului vectorial $\mathbb R^4,$

vectorii

$$u_1 = v_1, \ u_2 = v_1 + v_2, \ u_3 = v_1 + v_2 + v_3, \ u_4 = v_1 + v_2 + v_3 + v_4$$

- $\operatorname{si} f \in End_{\mathbb{R}}(\mathbb{R}^4).$
- a) Să se arate că $u=(u_1,u_2,u_3,u_4)$ este o bază a lui \mathbb{R}^4
- b) Știind că $[f]_v = A$, să se scrie matricea $[f]_u$.
- c) Știind că $[f]_u = A$, să se scrie matricea $[f]_v$.
- 4) Fie V, V' două \mathbb{R} -spații vectoriale, $a = (a_1, a_2, a_3), b = (b_1, b_2, b_3)$ câte o bază în V, respectiv V' și $f: V \to V'$ o transformare liniară a cărei matrice în perechea de baze (a,b) este

$$[f]_{a,b} = \left(\begin{array}{rrr} -1 & 0 & 1\\ 1 & 0 & -1\\ 0 & 0 & 0 \end{array}\right).$$

Să se determine:

- i) f(v) pentru orice $v \in V$;
- ii) dimensiunea spațiilor vectoriale $\operatorname{Im} f$ și $\operatorname{Ker} f$;
- iii) matricea $[f]_{a',b'}$, unde $a' = (a_1, a_1 + a_2, a_1 + a_2 + a_3)$ și $b' = (b_1, b_1 + b_2, b_1 + b_2 + b_3)$.
- 5) Fie V, V' \mathbb{R} -spații vectoriale, $v=(v_1,v_2,v_3)$ o bază în $V,\,v'=(v_1',v_2',v_3')$ o bază în V' și $f:V\to V'$ transformarea liniară cu

$$[f]_{v,v'} = \begin{pmatrix} 0 & -1 & 5 \\ 1 & 0 & 0 \\ 0 & 1 & -5 \end{pmatrix}.$$

1

Să se determine:

i) dimensiunea și câte o bază pentru $\operatorname{Im} f$ și $\operatorname{Ker} f$;

- ii) $[f]_{v,e'}$ în cazul în care $V' = \mathbb{R}^3$, $v'_1 = (1,0,0)$, $v'_2 = (0,1,1)$, $v'_3 = (0,0,1)$ și e' este baza canonică a lui \mathbb{R}^3 ;
- iii) f(x) pentru $x = 2v_1 v_2 + 3v_3$, în condițiile de la ii).
- 6) Fie $f\in End_{\mathbb{Q}}(\mathbb{Q}^4)$ pentru care matricea în baza canonică este

a)
$$\begin{pmatrix} 1 & 2 & 1 & 2 \\ 3 & 2 & 3 & 2 \\ -1 & -3 & 0 & 4 \\ 0 & 4 & -1 & -3 \end{pmatrix}; b) \begin{pmatrix} 0 & 1 & 2 & 3 \\ -1 & 2 & 1 & 0 \\ 3 & 0 & -1 & -2 \\ 5 & -3 & -1 & 1 \end{pmatrix}.$$

Să se determine câte o bază în Ker f, Im f, Ker f + Im f şi Ker $f \cap \text{Im } f$.