Universidad de Costa Rica - Sede Guanacaste Estructuras Discretas (MA-0320) - Práctica III

Prof. Luis Edo. Amaya B.

Noviembre 2020

1. Funciones

1.1. Ejercicios con Mathematica

- 1. Implemente una rutina en Mathematica que reciba $G_{\mathcal{R}}$ y determine si dicha relación es una función.
- 2. Diseñe una rutina, que reciba el criterio de una función y regrese: puntos de intersección con los ejes, intervalos donde es positiva, intervalos donde es negativa, determine si la función es par o impar, muestre la gráfica de la función.
- 3. Para: $E_p(m)$ denota el exponente del primo p en la factorización prima de m, entonces

$$E_p(n!) = \lfloor \frac{n}{p} \rfloor + \lfloor \frac{n}{p^2} \rfloor + \dots \lfloor \frac{n}{p^k} \rfloor + \dots$$

donde la suma es finita, pues es claro que, a partir de algún s, la potencia p^s será mayor que n y los términos sucesivos serán cero. Diseñe una rutina en Mathematica que apartir de la propiedad anterior determine $E_p(n!)$

1.2. Ejercicios de cálculo

- 1. Sea $A = \{1, 2, 3\}$ y las relaciones \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3 y \mathcal{R}_4 definidas sobre A, cuyos gráficos respectivos son:
 - a) $G_1 = \{(1,1), (2,3)\}$
 - b) $G_2 = \{(1,2), (2,3), (2,2), (3,3)\}$
 - c) $G_3 = \{(2,1), (3,1), (1,3)\}$
 - d) $G_4 = \{(3,1), (2,2), (1,3), (3,3)\}$

2

Para cada una de estas relaciones, determine si son funciones.

- 2. Sea $A = \{1, 2, 3, 4, 5\}$ y sea \mathcal{R} una relación definida en A, cuya gráfica H viene dada por $H = \{(1,1), (2,3), (4,2), (5,4), (3,5)\}$. Justifique si \mathcal{R} es una función biyectiva.
- 3. Determine todas las funciones biyectivas sobre $A = \{1, 2, 3\}$.
- 4. Determine todas las funciones sobreyectivas de $A = \{1, 2, 3\}$ en $B = \{1, 2\}$.
- 5. Si |A| = 4 y |B| = 6, ¿cuántas funciones existen de A en B?, ¿cuántas funciones inyectivas existen de A en B?
- 6. Sea $A = \{a, b, c\}$ y considere la función $f: P(A) \to \{0, 1, 2, 3, 4\}$ definida por f(B) = |B|.
 - a) Determine $f(\{a,c\})$ y $f(\{\{a\},\{a,b\},\{b\}\})$
 - b) Determine $f^{-1}(\{2,4\})$
 - c) Determine si f es inyectiva o sobreyectiva.
- 7. Para $A = \{0, 1, 2, 3, 4, 5, 6\}$ y la función $f: A \to A$ definida por:

$$f(a) = \begin{cases} a - 3 & si \quad a \ge 4\\ a + 3 & si \quad a < 4 \end{cases}$$

- a) Determine si f es invectiva y si f es sobrevectiva.
- b) Calcule $f(\{0,3,6\})$
- c) Calcule $f^{-1}(\{0\}) \cup f^{-1}(f(\{6\}))$
- 8. Sea $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\}$ y $f: A \times A \rightarrow B$, definida por

$$f((a,b)) = f(a) = \begin{cases} 1 & si & a < b \\ 3 & si & a > b \\ 4 & si & a = b \end{cases}$$

- a) Determine si f es inyectiva y si f es sobreyectiva.
- b) Determine $f^{-1}(\{2\}), f^{-1}(\{3\})$
- 9. Sea $A = \{2, 3, 5\}$ y $B = \{1, 2, 3, 4\}$, considere la función

$$f: A \times B \to \{1, 2, 3, 4, 5, 6\}$$

definida por

$$f((a,b)) = f(a) = \begin{cases} 2a & si \quad a < b \\ b & si \quad a > b \\ a+b & si \quad a = b \end{cases}$$

3

- a) Determine si f es invectiva y si f es sobrevectiva.
- b) Calcule $f^{-1}(\{1,3,5,\}), f(f^{-1}(\{5\})), f(f^{-1}(\{4,5\}))$
- c) Calcule f((f(3,2), f((f(3,2), f(3,2)))))
- 10. Pruebe que los últimos diez dígitos del número 45! son iguales a 0.
- 11. Calcule el valor de las siguientes expresiones

$$a) \frac{100! - 99!}{98!}$$

b)
$$\frac{100! \cdot 101!}{(5 \cdot 6 \cdot 7 \cdots 98 \cdot 99 \cdot 100)^2}$$

- 12. Calcule el exponente del 2 en la factorización prima de 75!.
- 13. Determine si las siguientes funciones son par, impar o ninguna de las anteriores.

a)
$$f(x) = 2x^3 - 3x^2 - 4x + 4$$

$$b) \ f(x) = \frac{2 - x^3}{2x + x^3}$$

c)
$$f(x) = \frac{2x}{x^2 + 1} - \frac{1}{x}$$

- 14. Determine el criterio de una función que sea par e impar al mismo tiempo.
- 15. Considere la función $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} x+1 & si \quad x < 2\\ 3 & si \quad x \ge 2 \end{cases}$$

- a) Con la ayuda de Mathematica realice la gráfica en el plano cartesiano de la función.
- b) Calcule las imágenes de 1, 2, 3 y las preimágenes de 1, 2, 3.
- c) Determine el dominio, el codominio y el ámbito de f.
- d) Determine si f es inyectiva y si es sobreyectiva.
- e) Calcule f([0,4]), es decir, la imagen directa de [0,4].
- 16. Considere la función $f: \mathbb{R} \{-1\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 2x+1 & si \quad x < -1 \\ 3 & si \quad -1 < x < 1 \\ -x+2 & si \quad x \ge 1 \end{cases}$$

a) Con la ayuda de Mathematica realice la gráfica en el plano cartesiano de la función.

- b) Calcule las imágenes de -2, 0, 3 y las preimágenes de -2 y de 1.
- c) Determine el dominio, el codominio y el ámbito de f.
- d) Determine si f es inyectiva y si es sobreyectiva.
- 17. Considere las funciones f(x) = 3x + 2 y g(x) = 1 2x. Calcule los criterios $(f \circ g)(x), (g \circ f)(x)$ y $(g \circ g)(x)$.
- 18. Encuentre las funciones lineales f tales que $(f \circ f)(x) = 4x + 1$.
- 19. Encuentre las funciones lineales f tales que $(f \circ f \circ f)(x) = -8x + 5$.
- 20. Sea $f(x) = 7 + \frac{1}{6-x}$. Pruebe que $(f \circ f \circ f)(x) = x$. Además, determine el dominio de f y el dominio de $f \circ f \circ f$.
- 21. Sea f una función de \mathbb{R} en \mathbb{R} , que satisface $f(x+1)=x^2-3x+2$. Determine el criterio de f(x).
- 22. Considere las funciones reales de variable real f, g, h, i, con criterios $f(x) = \sqrt{x}$, g(x) = x + 3, h(x) = 4 x, $i(x) = \sqrt[4]{4}$. Calcule los siguientes criterios de las respectivas funciones y su dominio:
 - $a) [f \circ (h-g)](x)$
 - b) $\left(\frac{f}{g \cdot h}\right)(x)$
 - c) $(f \circ g i \circ g)(x)$
- 23. Para cada caso, determine dos funciones f y g, diferentes de la función identidad, de manera que se cumpla que $h(x) = (f \circ g)(x)$:
 - a) $h(x) = (2x+3)^4$, y que g no sea una función lineal.
 - $b) \ h(x) = 4x^4 + 4x^2 + 1$
 - c) $h(x) = \sqrt{x^2 + 4x + 5} + x + 5$
 - d) $h(x) = \frac{x+3}{x^2+2x} 2x + 4$
- 24. Determine el dominio máximo de las siguientes funciones

a)
$$f(x) = \sqrt{\frac{x^2 - 2x - 3}{5 - x}} - \log(x^3 - 8)$$

b)
$$g(x) = \frac{2}{\sqrt[3]{2x^2 - 5x}} + \sqrt[6]{-x^2 + 7x} + 8$$

c)
$$h(x) = \log\left(-2x - \frac{x}{x+1}\right) + \frac{x^2}{x^4 - x^2 - 2}$$

- 25. Determine los puntos de intersección con los ejes e intervalos donde la función es positiva y negativa.
 - a) $f(x) = \sqrt{x^3 5x^2 + 6x}$

b)
$$f(x) = \frac{-x}{x+2} - \frac{5}{x-2}$$

26. Considere la función f definida por:

$$f(x) = \begin{cases} 2x - 3 & si \quad x \ge 2\\ -x + 2 & si \quad x < 2 \end{cases}$$

y la función g definida por $g(x) = x^2 + x + 2$.

- a) Determine el criterio de (f+g)(x)
- b) Determine el criterio de $(f \circ g)(x)$.
- 27. Considere la función f definida por:

$$f(x) = \begin{cases} 2x+1 & si \quad x \le 1\\ 1-2x & si \quad x > 1 \end{cases}$$

y la función g definida por

$$g(x) = \begin{cases} -x + 2 & si \quad x \le 3\\ x - 5 & si \quad x > 3 \end{cases}$$

- a) Determine el criterio de (f+g)(x)
- b) Determine el criterio de $(f \circ g)(x)$.
- 28. Si f(x) = -3x + 1, calcule $(f \circ f \circ f)^{-1}(x)$.
- 29. Considere las dos funciones f y g, definidas sobre sus respectivos dominios de números reales, con $g(x) = \frac{x}{x+2}$, f(x) = x-1. Verifique que $(g^{-1} \circ f \circ g)(x) = \frac{-4}{x+4}$.
- 30. Sea $f: \mathbb{R} \to \mathbb{R}$ biyectiva, si $(2,3) \in G_f$ y además $f^{-1}\left(\frac{k+3}{k-2}\right) = 2$, calcule el valor de k.
- 31. Dé un ejemplo de una función que sea inyectiva y no invertible.
- 32. Dé un ejemplo de una función que sea sobreyectiva y no invertible.

6

33. Sea
$$f: \mathbb{R} - \left\{\frac{2}{3}\right\} \to \mathbb{R} - \left\{\frac{5}{3}\right\}$$
 definida por $f(x) = \frac{5x+3}{3x-2}$.

- a) Pruebe que f es una función biyectiva.
- b) Calcule $f^{-1}(x)$ y compruebe que $(f \circ f^{-1})(x) = x$.

34. Sea
$$f: \mathbb{R} - \left\{\frac{-2}{3}\right\} \to \mathbb{R} - \left\{\frac{1}{3}\right\}$$
 definida por $f(x) = \frac{3x - 7}{9x + 6}$.

- a) Si se sabe que f es biyectiva, calcule el criterio de f^{-1} .
- b) Compruebe que $f^{-1}(x) = (f \circ f)(x)$.
- 35. Sea $f: \mathbb{R} \{3\} \to \mathbb{R}$ definida por $f(x) = \frac{2x+3}{x-3}$. Pruebe que f es inyectiva pero no es sobreyectiva.
- 36. Considere la función $f: \mathbb{R} \to]-\infty, 0[\cup [3, +\infty[$ definida por:

$$f(x) = \begin{cases} 2x+1 & si \quad x \ge 1\\ x-1 & si \quad x < 1 \end{cases}$$

Encuentre el criterio de $f^{-1}(x)$

37. Considere la función $f: \mathbb{R} \to \mathbb{R}$ definida por:

$$f(x) = \begin{cases} 1 - x^2 & si \quad x \ge 0\\ x + 1 & si \quad x < 0 \end{cases}$$

- a) Encuentre el criterio de $f^{-1}(x)$.
- b) Grafique f(x) y $f^{-1}(x)$ en un mismo sistema cartesiano.
- c) Encuentre los puntos en donde se intersecan f y f^{-1} .
- 38. Considere la función $f: \mathbb{R} \to]-\infty, -1[\cup]1, 3]$ definida por: $f(x) = \frac{x^2 + 2}{x^2}$.
 - a) Demuestre que f es biyectiva.
 - b) Determine el criterio de $f^{-1}(x)$.
 - c) Compruebe que $(f \circ f^{-1})(x) = x$
- 39. Sobre $A = \{1, 2, 3, 4, 5\}$, considere las permutaciones

$$p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 1 & 4 \end{pmatrix}, p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 2 & 5 & 3 \end{pmatrix}$$

- a) Calcule $p_2 \circ p_2$
- b) Calcule $p_1 \circ p_2$
- c) Calcule p_2^{-1}

2. Máquinas de estado finito

2.1. Ejercicios Programados

1. Realice con ayuda de *Mathematica*, el diagrama de transición de las siguientes máquinas de estado finito:

a)
$$M = (\sigma, \tau, \delta, \sigma^*, \Delta, \Omega)$$
, con $\sigma = {\sigma_0, \sigma_1, \sigma_2}$, $\tau = {a, b}$, $\delta = {0, 1, 2}$, $\sigma^* = \sigma_0$ y:

	(σ_0, a)	(σ_0,b)	(σ_1,a)	(σ_1,b)	(σ_2,a)	(σ_2,b)
Δ	σ_1	σ_0	σ_1	σ_2	σ_0	σ_1
Ω	0	2	1	0	3	2

b)
$$M = (\sigma, \tau, \delta, \sigma^*, \Delta, \Omega)$$
, con $\sigma = {\sigma_0, \sigma_1, \sigma_2}$, $\tau = {a, b, c}$, $\delta = {0, 1}$, $\sigma^* = \sigma_2$ y:

	(σ_0, a)	(σ_0,b)	(σ_0,c)	(σ_1,a)	(σ_1,b)
Δ	σ_1	σ_2	σ_0	σ_0	σ_1
Ω	1	0	1	0	1

	(σ_1,c)	(σ_2, a)	(σ_2,b)	(σ_2,c)
Δ	σ_2	σ_1	σ_0	σ_2
Ω	1	0	1	0

c)
$$M = (\sigma, \tau, \delta, \sigma^*, \Delta, \Omega)$$
, con $\sigma = {\sigma_0, \sigma_1, \sigma_2, \sigma_3}$, $\tau = {a, b, c}$, $\delta = {0, 1, 2}$, $\sigma^* = \sigma_3$ y:

	(σ_0, a)	(σ_0,b)	(σ_0,c)	(σ_1, a)	(σ_1,b)	(σ_1,c)
Δ	σ_3	σ_1	σ_0	σ_3	σ_1	σ_3
Ω	2	2	1	2	0	0

	(σ_2, a)	(σ_2,b)	(σ_2,c)	(σ_3, a)	(σ_3,b)	(σ_3,c)
Δ	σ_0	σ_1	σ_2	σ_3	σ_3	σ_0
Ω	2	1	0	2	0	1

- 2. Procese, con soporte de *software*, las siguientes hileras de símbolos de entrada en las máquinas de estados finitos del ejercicio 1.

 - 3. a = cccababababcbcbaaoabcabaaabccheceaabbecbaccbaaaccbb caaabbbccbcbcbcbaacacacabaabe, máquina (3).

3. Diseñe una máquina de estado infinito que resuelva la esta entre dos números binarios. En este caso, a tabla de restas básicas entre dos *bits*, corresponde a:

0 - 0 = 0
1 - 0 = 1
1 - 1 = 0
0 - 13 no cabe o se pide prestado al siguiente

4. En la dirección electrónica:

http://demonstrations.wolfram.com/AF in iteAutomaton Editor

se encuentra disponible un editor de autómatas de estado finito. Utilice este recurso para representar los DFA de los ejemplos 8 y 9.

5. Elabore con ayuda de Mathematica, los diagrama de transición de los autómatas de estado infinito determinísticos $A = (\sigma, \tau, \delta, \sigma^*, \Delta, \hat{A})$

a)
$$\sigma = {\sigma_0, \sigma_1, \sigma_2, \sigma_3}, \tau = {a, b, c}, \sigma^* = \sigma_2, \hat{A} = {\sigma_0} y$$
:

	(σ_0, a)	(σ_0,b)	(σ_0,c)	(σ_1,a)	(σ_1,b)	(σ_1,c)
Δ	σ_0	σ_0	σ_0	σ_0	σ_1	σ_3

	(σ_2, a)	(σ_2,b)	(σ_2,c)	(σ_3, a)	(σ_3,b)	(σ_3,c)
Δ	σ_3	σ_3	σ_1	σ_1	σ_2	σ_0

b)
$$\sigma = {\sigma_0, \sigma_1, \sigma_2, \sigma_3}, \tau = {a, b, c}, \sigma^* = \sigma_1, \hat{A} = {\sigma_1, \sigma_3} y$$
:

		(σ_0, a)	(σ_0,b)	(σ_0,c)	(σ_1, a)	(σ_1,b)	(σ_1,c)
4	2	σ_1	σ_2	σ_3	σ_0	σ_2	σ_2

	(σ_2, a)	(σ_2, b)	(σ_2,c)	(σ_3, a)	(σ_3,b)	(σ_3,c)
Δ	σ_0	σ_1	σ_3	σ_0	σ_1	σ_2

c)
$$\sigma = {\sigma_0, \sigma_1, \sigma_2}, \tau = {a, b, c, d}, \sigma^* = \sigma_0, \hat{A} = {\sigma_1, \sigma_2} y$$
:

	(σ_0, a)	(σ_0, b)	(σ_0,c)	(σ_0, d)	(σ_1, a)	(σ_1,b)
Δ	σ_0	σ_1	σ_2	σ_0	σ_0	σ_1

	(σ_1,c)	(σ_1, d)	(σ_2, a)	(σ_2,b)	(σ_2,c)	(σ_2,d)
Δ	σ_2	σ_0	σ_0	σ_1	σ_2	σ_0

- 6. Determine con soporte de software si las hileras de símbolos de entrada dadas, son aceptadas en los autómatas de estado finito del ejercicio 5.
- 7. Utilizando el comando Languages halle A° en los autómatas de estado finito del ejercicio 5.
- 8. Encontrar DFA con una cantidad mínima de estados, equivalentes de manera respectiva, a cada uno de los autómatas del ejercicio 5. Explique en cada caso.
- 9. Trace el diagrama de transición de un autómata de estado finito determinista que acepte el conjunto no nulo de hileras de símbolos de entrada $\{a,b\}$ dado. Realice distintas pruebas con Mathematica para verificar los resultados.
 - a) Cadenas de caracteres que posean un número impar de b's.
 - b) Hileras que empiecen con bab y terminen con aba.
 - c) Arreglos que contengan exactamente tres a y tres b.
- 10. Con ayuda de *Mathematica* forme el diagrama de transición de los autómata de estado finito no determinísticos $A = (\sigma, \tau, \delta, \sigma^*, \Delta, \hat{A})$, siguientes:

a)
$$\sigma = {\sigma_0, \sigma_1, \sigma_2, }, \tau = {a, b, c}, \sigma^* = \sigma_1, \hat{A} = {\sigma_0, \sigma_1} y$$
:

	(σ_0, a)	(σ_0,b)	(σ_0,c)	(σ_1, a)	(σ_1,b)
Δ	Ø	$\{\sigma_1\}$	$\{\sigma_0,\sigma_2\}$	$\{\sigma_0,\sigma_1\}$	$\{\sigma_2\}$

	(σ_1,c)	(σ_2, a)	(σ_2,b)	(σ_2,c)
Δ	$\{\sigma_0,\sigma_1\}$	$\{\sigma_0,\sigma_2\}$	$\{\sigma_0,\sigma_1,\sigma_2\}$	$\{\sigma_0\}$

b)
$$\sigma = {\sigma_0, \sigma_1, \sigma_2, \sigma_3}, \tau = {a, b}, \sigma^* = \sigma_3, \hat{A} = {\sigma_2} y$$
:

	(σ_0,a)	(σ_0,b)	(σ_1,a)	(σ_1,b)
Δ	$\{\sigma_0, \sigma_1 \sigma_2 \sigma_3\}$	$\{\sigma_0,\sigma_1\}$	$\{\sigma_3\}$	$\{\sigma_0\}$

	(σ_2,a)	(σ_2,b)	(σ_3,a)	(σ_3,b)
Δ	$\{\sigma_1\sigma_3\}$	Ø	$\{\sigma_0\sigma_2\}$	$\{\sigma_1,\sigma_2\}$

c)
$$\{\sigma = \sigma_0, \sigma_1, \sigma_2, \sigma_3, \sigma_4\}, \tau = \{a, b, c\}, \sigma^* = \sigma_0, \hat{A} = \{\sigma_0, \sigma_2, \sigma_3\} \text{ y:}$$

		(σ_0, a)	(σ_0,b)	(σ_0,c)	(σ_1, a)	(σ_1,b)
7	Δ	$\{\sigma_1\}$	$\{\sigma_3\sigma_4\}$	Ø	$\{\sigma_3,\sigma_4\}$	$\{\sigma_0\}$

	(σ_1,c)	(σ_2,b)	(σ_2,b)	(σ_2,c)	(σ_3, a)
Δ	$\{\sigma_1,\sigma_2\}$	$\{\sigma_3,\sigma_4\}$	Ø	$\{\sigma_3,\sigma_4\}$	$\{\sigma_0\}$

	(σ_3,b)	(σ_3,c)	(σ_4, a)
Δ	$\{\sigma_0\sigma_1,\sigma_2,\sigma_3\}$	$\{\sigma_0\sigma_1,\sigma_2,\sigma_3,\sigma_4\}$	$\{\sigma_1,\sigma_2\}$

	(σ_4,b)	(σ_4,c)
Δ	$\{\sigma_1\sigma_3,\sigma_4\}$	$\{\sigma_0,\sigma_4\}$

- 11. Con soporte de software, establezca si las hileras de símbolos de entrada dadas se aceptan en los autómatas de estado finito no deterministas del ejercicio 10.
- 12. Encuentra un autómata de estado finito equivalente para cada uno de los NDFA del ejercicio 10. Verifique los resultados simplificando el DFA y a través del uso del comando **NDFAToDFA**.
- 13. Considere la máquina de *Turing* dada a continuación. Conjeture cual es su lenguaje, $MT = (\sigma, \tau, \delta, \sigma^*, \Delta, \hat{A}, \Gamma, B)$, con $\sigma = \{\sigma_0, \sigma_1, \sigma_2 \sigma_3, \sigma_4, \sigma_5, \sigma_6\}$, $\tau = \{0, 1\}$, $\sigma^* = \sigma_0$, $\hat{A} = \{\sigma_6\}$, $\Gamma = \{0, 1, B\}$ y:

	$(\sigma_0,0)$	$(\sigma_0,1)$	$(\sigma_1,0)$	$(\sigma_1,1)$	$(\sigma_2,0)$
Δ	$\{\sigma_2, 1, 1\}$	$\{\sigma_6, 0, 0\}$	$\{\sigma_0, B, 1\}$	$\{\sigma_1,1,-1\}$	$\{\sigma_3, 0, -1\}$

	$(\sigma_2,0)$	(σ_2, B)	$(\sigma_3,0)$	$(\sigma_3,1)$	(σ_3, B)
Δ	$\{\sigma_4, 1, -1\}$	$\{\sigma_3, B, -1\}$	$\{\sigma_1,0,-1\}$	$\{\sigma_3, B, 1\}$	$\left[\left\{ \sigma_{0},B,1\right\} \right]$

	$(\sigma_4,0)$	$(\sigma_4,1)$	(σ_4, B)	$(\sigma_5,0)$	$(\sigma_5,1)$
Δ	$\{\sigma_2, 1, -1\}$	$\{\sigma_5, B, 1\}$	$\{\sigma_4, 0, -1\}$	$\{\sigma_6, B, 0\}$	$\{\sigma_5,1,1$

14. Construya una máquina de *Turing* que realiza la multiplicación de dos números enteros positivos. Probar la MT con: $5 \cdot 3$. Sugerencia: recuerde que una multiplicación entera $a \cdot b$ es la suma de a consigo mismo, la cantidad de veces indicada por b.