Organische Chemie II

Für Studierende der Biologie, der Pharmazeutischen Wissenschaften sowie der Gesundheitswissenschaften und Technologie

2. Semester, FS 2017

Prof. Dr. Carlo Thilgen

Alkylhalogenide

Nukleophile Substitution am gesättigten $C-Atom(S_N1 und S_N2)$

Diese Unterlagen sind nur für den ETH-internen Gebrauch durch die Studierenden der Vorlesung OC II gedacht. Sie dürfen ohne ausdrückliche schriftliche Genehmigung des Dozenten nicht an Aussenstehende weitergegeben werden.

© Carlo Thilgen, ETH Zürich.

Lernziele

- ➤ Ein paar physikalische Eingenschaften von Halogenmethanen und ihre Variation innerhalb der homologen Reihe der Halogene.
- ▶ Die polare C-Hal-Bindung macht Halogenalkane prinzipiell zu Ausgangsstoffen für die ionisch verlaufende nukleophile Substitution (S_N-Reaktion). Das Hal-tragende C-Atom ist dabei ein elektrophiles Reaktionszentrum und wird von einem Nu angegriffen.
- Praktische Bedeutung von Halogenalkanen und organische Halogenide in der Natur.

Halogenmethane – physikalische Eigenschaften

Halogen- methan	Sdp. [°C]	ngslänge C–X [pm]	Dipol- moment [D]	dissoz enthal	idungs- iations- pie C–X cal/mol]
H ₃ C-H	_162	110	0		104
H ₃ C-F	-78	139	1.82		109
H ₃ C-Cl	-24	178	1.94		83
H ₃ C-Br	4	193	1.79		70
H ₃ C-I	42	214	1.64	V	56

Lipophile Verbindungen, kaum löslich in H₂O.

Bedeutung von Halogenalkanen

- Wichtige Synthesezwischenprodukte, auch industriell (im Gegensatz zu Alkanen leicht weiter chemisch umzusetzen).
- Einsatz als schwach polare bis unpolare Lösungsmittel (CH₂Cl₂ [Dichlormethan DCM, Methylenchorid], CHCl₃ [Trichlormethan, Chloroform], CCl₄ [Tetrachlormethan, Tetrachlorkohlenstoff], ClH₂C-CH₂Cl, Cl₂HC-CHCl₂).
- Viele Medikamente und Pflanzenschutzmittel enthalten Halogene (es besteht hohes Interesse an Fluorverbindungen).

Chlor-, brom- und iodhaltige Naturstoffe

Oft Sekundärmetaboliten mariner Organismen, aber auch von Pilzen, Bakterien oder Pflanzen; ca. 3000 Strukturen bekannt.

Chlor-, brom- und iodhaltige Naturstoffe

aus Aplysia californica

aus Mollisia ventosa

aus Laurencia obtusa

aus Rhodophyllus membranea

Purpur (6,6'-Dibromindigo) aus der Purpurschnecke Murex trunculus

aus Streptomyces spp.

L-Thyroxin (Schilddrüsenhormon von Säugetieren)

L-Thyroxin - Schilddrüsenhormon

Kendall, 1914:

• <u>Überfunktion</u>: *Basedow*-Syndrom, erhöhter Grundumsatz.

Unterfunktion: Myxödem, erniedrigter Grundumsatz.

CH₂ COOH COOH H₂N- H_2N CH₂ CH₂ **lodierung** $2 \times l_2$ 2 x HI OH OH **L-Tyrosin** 2 x H₂O **Periodase** OH

- Täglicher Iodid-Bedarf: 100-200 μg
- Total im Organismus: 20-50 mg

L-Thyroxin

COOH

H₂N

C. Thilgen, OC II, 6.3.17

Fluorhaltige Naturstoffe

 NH_2

Fluoressigsäure, aus etlichen höheren Pflanzen (2R,3R)-2-Fluorcitronensäure

(2S,3S)-4-Fluorthreonin, aus aus etlichen höheren Pflanzen S. cattleya in F-haltigem Nährmedium

18-Fluorölsäure aus etlichen höheren Pflanzen, z.B. D. toxicarium

Sekundärmetaboliten höherer Pflanzen, aber auch von Bakterien.

Nur rund 1 Dutzend Strukturen bekannt.

Nucleocidin, aus einem Stamm von Streptomyces calvus

 NH_2

Fluorhaltige Wirkstoffe

- Etwa 20% aller neuen Medikamente und Agrochemikalien enthalten Fluor.
- Vorteile: erhöhte metabolische Stabilität, erhöhte Lipophilie, z.T. spezifische WW mit Enzymen.

Fluoxethine / Prozac (Depression)

Ciprofloxazin / Cipro (Bakt. Infektionen)

Lansoprazole / Prevacid (gastrointestinale Störungen)

Fluticasone propionate / Advair (Asthma)

Efavirenz / Sustiva (HIV)

Gemcitabine / Gemzar (Krebs)

Lernziele

- Die nukleophile Substitution. Allgemeines Reaktionsschema und Einteilung in 2 Grundmechanismen:
 - die nukleophile Substitution 1. Ordnung (S_N1-Reaktion →
 2-stufig, mit Carbeniumion als Zwischenprodukt) und
 - die nukleophile Substitution 2. Ordnung (S_N2-Reaktion → einstufig, also ohne Zwischenprodukt).
- > S_N1-Reaktion: **Mechanismus** und **Kinetik**.
- > **S_N1**: Einfluss diverser **struktureller** und **elektronischer Faktoren** auf Verlauf und Geschwindigkeit unter besonderer Berücksichtigung der **Auswirkungen auf das intermediäre Carbeniumion**:
 - Substratstruktur (Substituenten mit σ und π -Effekten)
 - Lösungsmittel (Polarität, Protizität)
 - Abgangsgruppe [= substituierte Gruppe] (Basizität).

Nukleophile Substitution

Allgemeines Schema:

 $X^n = Nukleophil mit Ladung n \le 0$; $Y^m = Abgangsgruppe mit Ladung m \ge 0$

- Abgangsgruppe wird **mit Bindungs-e**--**Paar** aus Substrat verdrängt.
- Abgangsgruppe verlässt Substrat umso leichter, je weniger basisch Ÿ^{m-1} ist.

n	m	X^n R- Y^m X^{n+1} -R Y^{m-1}
0	0	$Me_3N + Me-I \longrightarrow Me_4N^{\oplus} + I^{\ominus}$
0	+1	$Et_3N + Me_3S \xrightarrow{\oplus} Et_3N-CH_3 + Me_2S$
_1	0	$Me - O^{\bigcirc} + Me - I \longrightarrow Me - O - Me + I^{\bigcirc}$
-1	+1	$Ph - O^{\bigcirc} + Me_3S^{\bigoplus} \longrightarrow Ph - O - Me + Me_2S$

C. Thilgen, OC II, 6.3.17

Nukleophile Substitution

Zur Erinnerung: Nukleophilie ist nicht identisch mit Basizität.

- Nukleophilie = kinetischer Begriff ("das bessere Nukleophil reagiert in einem standardisierten Vergleich schneller mit einem bestimmten Elektrophil" \rightarrow Vergleich von $k_{\rm rel}$).
- Basizität (Brønsted-Basizität) = thermodynamischer Begriff ("Gleichgewichtslage der Reaktion mit H+").

2 Grundmechanismen:

- S_N1 unimolekulare Reaktion, Kinetik 1. Ordnung:
 - → Reaktionsgeschwindigkeit (exp.): v = k·[Substrat]
 Das Nukleophil ist nicht am geschwindigkeitsbestimmenden Schritt beteiligt.
- S_N2 bimolekulare Reaktion, Kinetik 2. Ordnung:
 - \rightarrow Reaktionsgeschwindigkeit (exp.): $v = k \cdot [Substrat] \cdot [Nukleophil]$ Das Nukleophil **ist** am geschwindigkeitsbestimmenden Schritt beteiligt.

racemisches Gemisch Konkurrenzreaktionen (z.B. E₁-Eliminierung)

- 2-stufiger Mechanismus
- Reaktionsgeschw. $v \neq f([Nukleophil])$

Nota bene

Bei folgendem Reaktionsprofil einer **kinetisch kontrollierten Reaktion** ist Produkt **1** Hauptprodukt, weil die **Aktivierungsbarriere im produktbestimmenden Schritt kleiner** ist als diejenige, die zu Produkt **2** führt, was eine **schnellere Bildung von 1** zur Folge hat.

Und das obwohl Produkt 1 energetisch höher liegt als Produkt 2!

Chemische Reaktionen und Grenzorbitale

- Massgebend für chemische Reaktionen zwischen zwei Komponenten (Substrat u. Reagenz) ist die Wechselwirkung zwischen den Grenzorbitalen (HOMO des einen [nukleophilen] und LUMO des anderen [elektrophilen] Partners).
- Je näher HOMO und LUMO energetisch beieinander liegen, umso besser die WW. HOMO (Nu) wechselwirkt mit LUMO (E1), nicht umgekehrt.

S_N1 – Mechanismus

Das trigonal planare Carbeniumion wird durch ein achirales Nu von beiden Seiten (enantiotope Halbräume falls $R^1 \neq R^2 \neq R^3$!) mit gleicher Wahrscheinlichkeit angegriffen \rightarrow racemisches Produktgemisch.

Hammond-Postulat

Nach G. S. Hammond und J. E. Leffler (Hammond-Postulat) gilt:

Bei **endergonischen Reaktionsschritten** gleicht der ÜZ strukturell und energetisch dem **Produkt** ("später ÜZ").

→ Hier dem Zwischenprodukt (ZP), d.h. dem Carbeniumion.

$S_N 1 - Substratstruktur$

Aus dem *Hammond*-Postulat folgt für die S_N1 -Reaktion:

je stabiler das intermediäre Carbeniumion, umso schneller S_N1.

- \rightarrow 3° Substrate reagieren viel schneller als 2°. (1° reagieren nicht mehr nach S_N1).
- → Allyl- oder Benzylderivate sind gute S_N1-Substrate (Resonanzstabilisierung von Allyl- und Benzylkationen).

$$S_{N}1$$
 R-Br $\frac{H_{2}O}{25^{\circ}}$ R-OH + H-Br

Substrat	ZP (Carbeniumion)	∆ G ‡	t _{1/2}
H ₃ C—Br	⊕CH ₃	47	10 ¹⁶ y
CH ₃ CH ₂ —Br	prim.	30	10 ⁵ y
$(CH_3)_2CH$ —Br	sek.	27	220 y
$(CH_3)_3C$ —Br	tert.	14	0.7 s
PhH ₂ C—Br	benzylisch		0.007 s

S_N1 – Substratstruktur: Allylsystem

CI
$$H_2O$$

$$H_2O$$

$$\approx 10 : 1$$

Beide konstitutionsisomere Substrate

- reagieren etwa gleich schnell
- liefern das gleiche Produktgemisch

Grund: gleiches Intermediat (delokalisiertes Allylkation)

Bevorzugter Angriff des Nu (H₂O) am sterisch weniger gehinderten Ende (produktbestimmender Reaktionsschritt)

S_N1 – Substratstruktur: Donor- und Akzeptorsubstituenten

Benachbarte π -Donor-Substituenten stabilisieren Carbeniumionen sehr und begünstigen S_N 1-Reaktionen:

σ- und π -Akzeptor-Substituenten hingegen destabilisieren Carbeniumionen und erschweren S_N 1-Reaktionen.

S_N1 – Substratstruktur Reaktionen an Brückenköpfen

S_N1-Reaktionen an Brückenköpfen sind erschwert bis unmöglich.

<u>Grund</u>: intermediäres <u>Carbeniumion muss planar sein</u> (sp²-Hybridisierung), was in kleinen bi- oder polycyclischen Systemen zu <u>exzessiver Spannung</u> führen würde.

S_N1 – Einfluss von Lösungsmittel und Abgangsgruppe

LM, die sowohl Kationen (R₃C⁺) als auch Anionen (Y⁻) gut solvatisieren d.h. stabilisieren, beschleunigen die S_N 1-Reaktion:

> polare protische LM wie H₂O, Alkohole, Carbonsäuren und ihre Gemische mit anderen LM sind ideal.

Abgangsgruppen – Reihe abnehmender Austrittsleichtigkeit:

$$-N_2^+$$
> $-O-SO_2-CF_3$ >> $-O-SO_2-CH_3 \approx -O-SO_2-(C_6H_4)-CH_3 \approx -I$ > $-Br \approx -OH_2 \geq -CI$ > SR_2 Diazonium-Gruppe 'Triflat' 'Mesylat' 'Tosylat'

Methansulfonat 'Mesylat'

MsO-R

Methansulfonsäureester Trifluormethansulfonsäureester Trifluormethansulfonat 'Triflat' TfO-R

para-Toluolsulfonsäureester *p*-Toluolsulfonat 'Tosylat'

TsO-R

22

S_N1 – Einfluss der Abgangsgruppe

Folgende Gruppen sind als solche keine Abgangsgruppen:

werden aber nach Protonierung zu Abgangsgruppen!

vgl.:
$$R-OH \longrightarrow R + OH$$
 zu basisch!

p K_a der konjugierten Säure (= H_2O): 15.7

$$R_{-}^{\ominus}OH_{2} \longrightarrow R^{\ominus} + H_{2}O$$
 nicht zu basisch!

 pK_a der konjugierten Säure (= H_3O^+): -1.7

Anders ausgedrückt: je schwächer basisch das austretende Teilchen, umso besser die Abgangsgruppe.

Phosphat als Abgangsgruppe

Die biologisch (pH \approx 7) wichtigste Abgangsgruppe ist **Di- oder Pyrophosphat** ($H_2P_2O_7^{2-}$)

Pyrophosphorsäure = Diphosphorsäure:

$$pK_a^1 = 0.85$$

$$pK_a^2 = 1.49$$

$$pK_a^3 = 5.77$$

$$pK_a^4 = 8.22$$

$$pK_a^4$$
 ist irrelevant für Ester $RO - P - O - P - OH$

Einschub: ein paar in der OC relevante Phosphorverbindungen

Güte von Abgangsgruppen (Überblick)

Reaktant	Stoffklasse	Abgangs- gruppe	konjug. Säure	p <i>K</i> _a
R-I	Iodalkan	I-	HI	-10
R-Br	Bromalkan	Br-	HBr	-9.5
R-CI	Chloralkan	CI-	HCI	-7
R-OHR'+	protonierter Ether	R'OH	R-OH ₂ +	ca3
R-OH ₂ +	protonierter Alkohol	H ₂ O	H ₃ O ⁺	-1.7
R-OSO ₂ CH ₃	Sulfonsäureester (Mesylat; analog: Tosylat und Triflat)	H ₃ CSO ₃ ⁻ TsO ⁻ TfO ⁻	H ₃ CSO ₃ H TsOH TfOH	-2 -2.5 -13

gute Abgangsgruppen:

C. Schmuck

- entspr. Substrate reagieren schnell in S_N-Reaktionen;
- sie sind schwach basisch, d.h. die zu den austretenden Gruppen konjugierten Säuren sind stark.

Güte von Abgangsgruppen (Überblick)

Reaktant	Stoffklasse	Abgangs- gruppe	konjug. Säure	p <i>K</i> _a
R-F	Fluoralkan	F-	HF	3.2
R-OH	Alkohol	OH-	H ₂ O	15.7
R-OR'	Ether	OR'-	R'OH	16-18
R-NH ₂	Amin	NH ₂ ⁻	NH ₃	38
R-H	Alkan	H-	H ₂	35
R-CH ₃	Alkan	H ₃ C ⁻	CH ₄	50

C. Schmuck

> schlechte Abgangsgruppen:

- entspr. Substrate reagieren langsam in S_N-Reaktionen;
- sie sind stark basisch, d.h. die zu den austretenden Gruppen konjugierten Säuren sind schwach.

wird laut *Hammond* viel rascher gebildet

Lernziele

- > S_N2-Reaktion: **Mechanismus** und **Kinetik**.
- > S_N2 sterische Aspekte: 180°-Rückseitenangriff des Nu; Inversion (*Walden*sche-Umkehr) am Reaktionszentrum; Auswirkung sterischer Hinderung am Reaktionszentrum.
- > S_N2: Einfluss diverser **struktureller** und **elektronischer Faktoren** auf Verlauf und Geschwindigkeit:
 - Substratstruktur: Empfindlichkeit bzgl. sterischer Hinderung
 - HSAB-Natur des Nukleophils (hart/weich) → Nu ist im Gegensatz zu S_N1 am GBS beteiligt! Weiche Nu besonders gut.
 - Basizität der **Abgangsgruppe** [= substituierte Gruppe]: analog S_N1 → weiche, wenig basische AG gut!
 - Lösungsmittel: dipolar <u>aprotisch</u> am besten geeignet → "nacktes" Nu → besonders nukleophil!

S_N2-Mechanismus

Nukleophile Substitution

2 Grundmechanismen:

- S_N1 unimolekulare Reaktion, Kinetik 1. Ordnung:
 - → Reaktionsgeschwindigkeit v = k·[Substrat]
 Das Nukleophil ist nicht am geschwindigkeitsbestimmenden Schritt
 (GBS) beteiligt.
- S_N2 bimolekulare Reaktion, Kinetik 2. Ordnung:
 - \rightarrow Reaktionsgeschwindigkeit $v = k \cdot [Substrat] \cdot [Nukleophil]$ Das Nukleophil **ist** am einzigen und damit geschwindigkeitsbestimmenden Schritt bzw. ÜZ beteiligt.

S_N2 – kolinearer Rückseitenangriff

Angriff des Nukleophils X⁻ mit seinem freien e⁻-Paar (HOMO) auf das σ^* -Orbital (LUMO) der C-Y-Bindung:

→ Bruch von C—Y und gleichzeitige Ausbildung einer neuen X—C-Bindung!

S_N2 – Bedeutung des 180°-Rückseitenangriffs

Stereoelektronische Kontrolle der HOMO-LUMO-WW:

180°-Rückseitenangriff → möglichst früh **optimale Überlappung** zwischen dem einsamen e⁻-Paar des Nukleophils (HOMO) und dem antibindenden σ*-Orbital (LUMO) der zu brechenden C–Y-Bindung.

S_N2 – Stereochemischer Verlauf: *Walden***sche Umkehr**

enantiomerenrein

$$[\alpha]_{\mathsf{D}} = +33$$

ÜZ ist chiral!

enantiomerenrein

$$\alpha$$
_D = -33

Im gesamten Reaktionsverlauf tritt keine achirale Spezies auf (Ggs. zu $S_N1!$)

 S_N 2 führt **immer zur Inversion** am nukleophil angegriffenen C-Atom (*Paul Walden*, 1896).

→ Inversion der Konfiguration von Chiralitätszentren!

S_N2 – Sterische Hinderung

 S_N1 : Nu greift relativ leicht zugängliches trigonal planares Carbeniumzentrum an \rightarrow geringe Empfindlichkeit bzgl. sterischer Hinderung.

S_N2: Nu greift **tetraedrisches Substrat** an (kleinere Bindungswinkel !)

 \rightarrow grosse Empfindlichkeit bzgl. sterischer Hinderung, besonders in α - und β -Stellung relativ zum angegriffenen Zentrum.

S_N2 – Sterische Hinderung

Beispiel: Sterische Hinderung bei

der *Finkelstein*-Reaktion:

R-CI + KI
$$\frac{k}{\text{Aceton}}$$
 R-I + KCI $\stackrel{\downarrow}{\downarrow}$ (LM)

Keine S_N2 an Brückenköpfen, da Rückseitenangriff sterisch unmöglich.

S_N2 – Einfluss des Nukleophils

S_N2 – bimolekulare Reaktion, Kinetik 2. Ordnung:

 \rightarrow Reaktionsgeschwindigkeit $v = k \cdot [\text{Substrat}] \cdot [\text{Nukleophil}]$ Das **Nu ist im Ggs. zu S_N1 am geschwindigkeitsbestimmenden ÜZ beteiligt.**

→ Einfluss des **Nu** auf **v** sehr gross! Am leichtesten reagieren **weiche**, **leicht polarisierbare Nu** (s. HSAB-Prinzip, OC I).

 Nukleophilie X SCN > CN ≈
 I > Br ≈
 OH > CI > F ≈
 AcO

 pK_a(HX)
 0.7
 9.1
 -7
 -4.3
 15.7
 -1
 3.2
 4.6

Basizität von X \longrightarrow S_N2-Nukleophilie (keine *generelle* Korrelation)!

 \searrow Grund: H⁺ ist der Prototyp einer harten Säure, während das Nukleophil in einer S_N2-Reaktion als weiche Base reagiert.

Nur wenn Nukleophile mit **gleichem angreifendem Atom** (z.B. Ac**O**⁻, Ph**O**⁻, Me**O**⁻) untereinander verglichen werden, gilt: "je stärker basisch umso nukleophiler".

Harte und weiche Lewis-Säuren und -Basen: Übersicht

	Lewis-Basen (Nukleophile)	Lewis-Säuren (Elektrophile)
WEICH	 I⁻, RS⁻, HS⁻, SCN⁻, S₂O₃²⁻, CN⁻ H⁻, R⁻ [→ auch f(Kation)!] RSH, R₂S, R₃P, (RO)₃P CO, Alkene, Benzol 	 I₂, Br₂ RS-X, RCH₂-X, Cu(I), Ag(I), Pd(II), Pt(II), Hg(II)
MITTEL	 Br⁻, N₃⁻ ArNH₂, Pyridin 	 R₃C+, R₃B, Cu(II), Zn(II), Sn(II)
HART	 F-, Cl- HO-, RO-, RCO₂-, NO₃-, Oxyanionen (allg., z.B. NO₃-, SO₄²-, CO₃²-, PO₄³-) H₂O, ROH NH₃, RNH₂ 	 H-X, R₃SiX, BF₃, AlCl₃, AlH₃, AlR₃, H₃O⁺, Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Al(III), Sn(IV), Ti(IV)

Ambidente Nukleophile

S_N2 – Einfluss des Nukleophils

Nu: +
$$CH_3$$
-Br $\xrightarrow{S_N^2}$ Nu- CH_3 + Br^{\bigcirc}

Nu	Produkt	k _{rel.}
H ₂ O	H ₂ O-CH ₃	1
CH₃COO [⊝]	CH ₃ COO-CH ₃	500
NH ₃	H ₃ N−CH ₃	700
CI [⊖]	CI-CH ₃	1'000
HO [⊝]	HO-CH ₃	10'000
CH₃O [⊝]	CH ₃ O-CH ₃	25'000
	I-CH ₃	100'000
[⊝] CN	NC-CH ₃	125'000
HS [⊖]	HS-CH ₃	125'000

J. McMurry, "Organic Chemistry, A Biological Approach", Thomson (2007)

S_N2 – Einfluss der Abgangsgruppe

- Generell analog S_N1.
- Besonders geeignet für S_N2: weiche, gut polarisierbare Abgangsgruppen, die als Y⁻ wenig auf Solvatation angewiesen sind oder eine geringe negative Ladungsdichte aufweisen.
 oft: -I, -Br (weich) und -OTs/-OMs (Ladung gut delokalisiert).
- —OH ist keine gute Abgangsgruppe (OH⁻ ist hart, stark basisch und mit seiner neg. Ladung auf gute Solvatation angewiesen)
 - → Alkohole wandelt man zuerst in die entspr. **Tosylate** oder **Mesylate** um und führt anschl. die S_N2-Reaktion durch (s. nächste Folie).
 - <u>Vgl. S_N1</u> → Protonierung von OH zur Umwandlung in eine gute Abgangsgruppe.

Umwandlung einer schlechten (-OH) in eine gute Abgangsgruppe (-OTs)

S_N2 – Einfluss des Lösungsmittels

Sehr geeignet: *dipolar aprotische* LM wie **DMF**, **DMSO**, **HMPT** und **Aceton**.

- Kationen werden gut solvatisiert → einigermassen gute Löslichkeit von Metallsalzen.
- Anionen werden praktisch nicht solvatisiert → liegen 'nackt' vor
 → viel nukleophiler als solvatisierte Anionen.

Dementsprechend sind **protische Lösungsmittel weniger geeignet** für $S_N 2$.

S_N2 - "Nackte" Anionen

C. Thilgen, OC II, 6.3.17

S_N2 - "Nackte" Anionen

Auch durch **Komplexierung mit Kronenethern** können Kationen "lipophiler" gemacht und samt Gegen-Ion (= Anion X⁻) in wenig polaren bis apolaren LM gelöst werden.

S_N2 – "Nackte" Anionen

Beispiel: reines KMnO₄ (violett) ist in Benzol (farblos) unlöslich. **Zugabe von Kronenether** → farbloses K+ wird oktaedrisch von 6 **O-Atomen** umgeben (Ion-Dipol-WW), während die äussere Hülle des Komplexes lipophil ist → der Kronenether-K+-Komplex löst sich auch in apolarem Benzol. Aufgrund des Elektroneutralitätsprinzips wird das nackte Anion mitgeschleppt → violette Lösung.

□ violette Lösung "purple benzene"

Lernziele

- **➤ Auf S_N1 oder S_N2 beruhende gängige Synthesemethoden**
 - Herstellung von Halogeniden aus bereits funktionalisierten
 Vorläufern (≠ radikal. Halogenierung reiner Kohlenwasserstoffe).
 - Herstellung von **Aminen**: Alkylierung von Ammoniak oder Aminen; *Gabriel*-Synthese (\rightarrow 1° Amine).
- ➤ Weitere Aspekte von S_N-Reaktionen
 - Ambidente (zweizähnige) Nu
 - Nukleophile Öffnung von Dreiringen (synthetisch sehr nützlich)
 - Sind S_N-Reaktionen an sp²-hybridisierten Zentren möglich ??
- > S_N-Reaktionen in der **biologischen Chemie**.

C. Schmuck, Kap. 5

Ein paar Methoden zur Herstellung von Halogeniden

-OH₂⁺ ist eine viel bessere Abgangsgruppe als -OH!

Ein paar Methoden zur Herstellung von Halogeniden

via S_N1:

resonanzstabilis. Kation vom Allyl-Typ

Br greift vorzugsweise am sterisch weniger gehinderten Ende an

Ein paar Methoden zur Herstellung von Halogeniden

Ein paar Methoden zur Herstellung von Halogeniden – die *Finkelstein*-Reaktion

 $(S_N 2: Chlorid \rightarrow Iodid)$

Amin-Synthesen durch N-Alkylierung (S_N2)

• R
$$\stackrel{\text{NH}_3}{\longrightarrow}$$
 R $\stackrel{\text{NH}_3}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R $\stackrel{\text{NH}_2}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R $\stackrel{\text{NH}_2}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R $\stackrel{\text{NH}_2}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R $\stackrel{\text{NH}_2}{\longrightarrow}$ R $\stackrel{\text{NH}_3}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R $\stackrel{\text{NH}_2}{\longrightarrow}$ R $\stackrel{\text{NH}_3}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R $\stackrel{\text{NH}_2}{\longrightarrow}$ R $\stackrel{\text{NH}_3}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R $\stackrel{\text{NH}_2}{\longrightarrow}$ R $\stackrel{\text{NH}_3}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R $\stackrel{\text{NH}_2}{\longrightarrow}$ R $\stackrel{\text{NH}_3}{\longrightarrow}$ R $\stackrel{\text{NH}_3}{\longrightarrow}$ R $\stackrel{\text{NH}_3}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R $\stackrel{\text{NH}_3}{\longrightarrow}$ R $\stackrel{\text{NH}_3}{\longrightarrow}$ R $\stackrel{\text{NH}_3}{\longrightarrow}$ R $\stackrel{\text{NH}_4^+}{\longrightarrow}$ R

Gabriel-Synthese (selektive Herstellung primärer Amine)

Gabriel-Synthese (selektive Herstellung primärer Amine)

$$N = 0$$
 $N = 0$
 $N = 0$

Ambidente Nukleophile

Definition:

 ein ambidentes ("zweizähniges") Reagenz (Nukleophil) hat zwei reaktive (nukleophile) Zentren.

Faustregel:

- unter S_N 1-Bedingungen reagiert bevorzugt das härtere, elektronegativere Zentrum; die Reaktion ist ladungsdichtekontrolliert (Ion-Ion-WW). (Carbeniumionen sind härter als Alkylhalogenide, s. Tab. weiter oben.)
- Unter S_N 2-Bedingungen reagiert bevorzugt das weichere, leichter polarisierbare Zentrum; die Reaktion ist grenzorbitalkontrolliert (HOMO/LUMO-WW).

Beispiele (s. auch nächste Folie):

Cyanid (CN⁻), Nitrit (NO₂⁻), Enolat-Anionen (→ späteres Kapitel der Vorlesung).

Ambidente Nukleophile

Nukleophil	Reaktions- bedingungen (Reakt. mit R-Y)	Reaktions- modus	Hauptprodukt
[: C≡N:] [⊖]	AgCN, Prot. LM	S _N 1	⊕ ⊝ R−N≡C: + AgY Isonitril
Cyanid	NaCN, DMF	S _N 2	R−C≡N + NaY Nitril
[] ⁽⁾	AgNO ₂ , Prot. LM	S _N 1	R.O.N.O. + AgY Alkylnitrit
Nitrit	NaNO ₂ , DMF	S _N 2	R-N + NaY H O: Nitroalkan

Nukleophile Öffnung von Dreiringen

Wegen Spannungsabbaus (ca. 24 kcal/mol = 100 kJ/mol) ist die 3-Ring-Öffnung auch möglich, wenn die Abgangsgruppe \mathbf{Y} nicht so gut ist !

trans-Cyclohexan-1,2-diol (racemisches Gemisch)

analog: nukleophile Ringöffnung von:

s. *elektrophile Addition* von
Br₂ an Alkene

sp²-Hybridisierte Zentren und S_N-Reaktionen

S_N1 :

Folgende Carbeniumionen sind sehr instabil wegen eines unbesetzten Orbitals (sp²) mit s-Charakter:

Sie können nur mit extrem guten Abgangsgruppen wie Triflat (R-OSO₂CF₃) oder $Distickstoff\ N_2$ (\rightarrow Diazonium-Ion R-N₂⁺ als Substrat) erzeugt werden.

S_N2 :

Keine S_N2-Reaktionen an sp²-hybridisierten Zentren!

Biologische Methylierung mit S-Adenosylmethionin (SAM)

C-Methylierung mit SAM

N- und O-Methylierung mit SAM

N-Methylierung

Morphin und Codein

(aus Schlafmohn, Papaver somniferum)

- Narkotikum, stärkstes Analgetikum
- hohes Suchtpotenzial
- tödl. Dosis: ca. 200 mg (Atemlähmung)

- Antitussivum (Hustenmittel)
- kleines Suchtpotenzial
- deutlich weniger giftig

Morphin und Endorphine

Endorphine = **"end**ogene Morphine"

Schmerzrezeptoren des Zentralnervensystems

Pharmakophor: entscheidend ist die relative Lage von Phenol-OH und N

Morphin: bindet via H-Brücke Codein: CH₃ statt H, bindet nicht

Pentazocin (synthetisches Analgetikum) Met-Enkephalin (endogenes Opioidpeptid)

Morphin und Endorphine

Enkephaline (gr. enképhalos = ,Gehirn') = endogene Pentapeptide aus der Klasse der **Opioidpeptide**

Anhang

- Biosynthese von Thyroxin
- Methylierung von Coniin mit SAM

S. Mondal and G. Mugesh, *Angew. Chem. Int. Ed.* 2015, *54*, 10833–10837.

N-Methylierung von (+)-Coniin mit SAM

- Coniin: klare, ölige Flüssigkeit mit brennend scharfem Geschmack und Geruch nach Mäuseharn.
- Erstes synthetisch hergestelltes Alkaloid (A. Ladenburg, 1886).
- Nicotin- und Curare-ähnliche Giftwirkung, wobei die motorischen Nerven zunächst erregt, später jedoch gelähmt werden.
- Tod (LD₅₀ \approx 7 mg/kg) tritt nach 0,5 bis 5 Stunden bei vollem Bewusstsein durch Lähmung der Brustkorbmuskulatur ein.
- Prominentestes Opfer des Coniins: der griechische Philosoph Sokrates,
 399 v. Chr. hingerichtet durch Gabe eines Schierlingsbechers.