CS 254: Computability and Complexity

 ${\bf Anonymous\ submission}$

Problem Set #03

 $October\ 1,\ 2019$

5. Want to show that \sum = a, b, c where L has a length of w that is 3 times the number of a's in w.

Proof: by contradiction

Assume L is a regular language with a pumping length p. Our string $s = a^p b^p c^p$. Because $|s| \ge p$ we know s can be pumped. To prove that s is regular there exists a way to write $s = xy^iz$ s.t. it follows the 3 conditions of pumping lemma:

i. xy i z in L for every $i \ge 0$

ii.|y| > 0

iii. $|xy| \le p$

Let p=2, x = a, y = a, z = bbcc

s = aabbcc and since 1/3 of the letters are a this $\in L$

However, if we let i = 0 meaning y becomes ϵ the string becomes $xy^0z = abbcc$. Therefore the ratio of a's is only $1/5 \neq 1/3$.

This is a contradiction as it does not follow case i that state $xy^iz \in L$ for every $i \ge 0$.