Abstract Harmonic Analysis

Ikhan Choi

April 16, 2024

Contents

Ι		2
1	Locally compact groups	3
	1.1	3
	1.2	4
	1.3	5
2		8
	2.1 Spectral synthesis	8
3		9
II	Topological quantum groups	10
4	Bialgebras	11
	4.1	11
	4.2	11
5	Compact quantum groups	12
	5.1 Kac algebras	12
6	Locally compact quantum groups	13
	6.1 Multiplicative unitaries	13
II	I Representation categories	14
7	Representations of compact groups	15
	7.1 Peter-Weyl theorem	
	7.2 Tannaka-Krein duality	15
	7.3 Mackey machine	15

Part I

Locally compact groups

1.1

- 1.1 (Non- σ -finite measures). Following technical issues are important
 - (a) The Fubini theorem
 - (b) The Radon-Nikodym theorem
 - (c) The dual space of L^1 space
- 1.2 (Existence of the Haar measure).
- 1.3 (Left and right uniformities).
- 1.4 (Modular functions).
- **1.5** (Uniformly continuous functions). G acts on $C_{lu}(G)$ and $L^1(G)$ continuously with respect to the point-norm topology. A function on G is left uniformly continuous if and only if it is written as f * x for some $f \in L^1(G)$ and $x \in L^{\infty}(G)$. $g \in C_c(G)$ is two-sided uniformly continuous.
- **1.6** (Convolution Hilbert algebra). Let G be a locally compact group. Since G is a locally compact Hausdorff space and the left Haar measure is a faithful semi-finite lower semi-continuous weight on the commutative C^* -algebra $C_0(G)$, we have a corresponding semi-cyclic representation $m: C_0(G) \to B(L^2(G))$ which is normally extended to a von Neumann algebra $L^\infty(G)$ with $m(L^\infty(G)) = m(C_0(G))''$, and $L^1(G)$ is identified with the predual $L^\infty(G)_*$.

By the left Haar measure, $C_c(G)$ has a natural non-commutative left Hilbert algebra structure

$$(f*g)(s) := \int f(t)g(t^{-1}s) dt, \qquad \langle f,g \rangle := \int \overline{g(s)}f(s) ds, \qquad f^{\sharp}(s) := \nabla(s^{-1})\overline{f(s^{-1})},$$

where ∇ is the modular function for G, and it induces the regular representation $\lambda: C_c(G) \to B(L^2(G))$. By the group structure of G, the Hilbert algebra $C_c(G)$ is also a commutative counital multiplier Hopf *-algebra

$$(fg)(s) := f(s)g(s), \qquad \Delta f(s,t) = f(st), \qquad f^*(s) := \overline{f(s)}, \qquad \kappa f(s) = f(s^{-1}).$$

We start from this structures.

They satisfy a compatibility condition $\langle f g, h \rangle = \langle f, g^*h \rangle$.

With the integral notation $\lambda(f) = \int \lambda_s f(s) ds$, we can write

From now on, we are going to exclude any measure theory and the theory of non-commutative L^p spaces. First, we have the completion $H =: L^2(G)$. Consider two representations

$$\lambda: (C_c(G), *, ^{\sharp}) \rightarrow B(L^2(G)), \qquad m: (C_c(G), \cdot, ^{\ast}) \rightarrow B(L^2(G)).$$

- (a) λ is well-defined.
- (b) *m* is well-defined.

Proof. The multiplication representation m is well-defined because for $f \in C_c(G)$ we have $f^*f \in C_c(G) \subset L^2(G)$ so

$$||m(f)g||^2 = \langle fg, fg \rangle = \langle f^*fg, g \rangle, \qquad g \in C_c(G).$$

1.2

We use the notation $L^p(G)$ for the non-commutative L^p -spaces constructed with the left Haar measure on G, which is a faithful semi-finite normal weight of $L^\infty(G)$. The predual of $L^\infty(G)$ can be identified with $L^1(G)$. The regular representation on $L^2(G)$ is the Gelfand-Naimark-Segal representation associated with the left Haar measure.

Density of $C_c(G)$?

1.7 (Convolution algebra). Let G be a locally compact group. Then, $L^1(G)$ is a hermitian Banach *-algebra such that

$$(f * g)(x) := (f \otimes g)\Delta(x), \qquad f, g \in L^1(G), \ x \in L^\infty(G).$$

Importance of L^1 instead of C_c : representation equivalence and predual.

- (a) $L^1(G)$ has a two-sided approximate unit in $C_c(G)$.
- (b) $\alpha: G \to \operatorname{Aut}(L^1(G))$ is point-norm continuous.
- (c) $\lambda: G \to U(L^2(G))$ and $\lambda: L^1(G) \to B(L^2(G))$ are strongly continuous.
- (d) Convolution inequalities.
- (e) Representation theory equivalence.

Proof. Let (U_{α}) be a directed set of open neighborhoods of the identity e of G. By the Urysohn lemma, there is $e_{\alpha} \in C_c(U)^+$ such that $\|e_{\alpha}\|_1 = 1$ for each α . We claim that e_{α} is a two-sided approximate unit for $L^1(G)$. Suppose $g \in C_c(G)$, which is two-sided uniformly continuous. For any $\varepsilon > 0$, take α_0 such that $\|g - \lambda_s g\| < \varepsilon$ and $\|g - \rho_s g\| < \varepsilon$ for all $s \in U_{\alpha}$ for $\alpha \succ \alpha_0$. Then, we have

$$\begin{aligned} \|e_{\alpha} * g - g\|_{1} &= \int |e_{\alpha} * g(t) - g(t)| dt \le \iint e_{\alpha}(s) |g(s^{-1}t) - g(t)| ds dt \\ &= \int_{U_{-}} e_{\alpha}(s) \|\lambda_{s}g - g\|_{1} ds < \varepsilon \int e_{\alpha}(s) ds \le \varepsilon, \end{aligned}$$

and

$$\begin{aligned} \|g * e_{\alpha} - g\|_{1} &= \int |g * e_{\alpha}(s) - g(s)| \, ds \leq \iint |g(t) - g(s)| e_{\alpha}(t^{-1}s) \, dt \, ds \\ &= \iint |g(t) - g(ts)| e_{\alpha}(s) \, dt \, ds = \int \|g - \rho_{s}g\|_{1} e_{\alpha}(s) \, ds < \varepsilon \int e_{\alpha}(s) \, ds \leq \varepsilon, \end{aligned}$$

and they imply $\lim_{\alpha} \|e_{\alpha} * g - g\|_1 = \lim_{\alpha} \|g * e_{\alpha} - g\|_1 = 0$. We can approximate $f \in L^1(G)$ with compactly supported continuous functions by the $\varepsilon/3$ argument.

Note that we have

$$\begin{aligned} |\langle \lambda(\xi)\eta, \zeta \rangle|^2 &= |\int \int \xi(t)\eta(t^{-1}s)\overline{\zeta(s)} \, ds \, dt|^2 \\ &\leq \int \int |\xi(t)| |\eta(t^{-1}s)|^2 \, ds \, dt \cdot \int \int |\xi(t)| |\zeta(s)|^2 \, ds \, dt \\ &= \|\xi\|_1^2 \|\eta\|_2^2 \|\zeta\|_2^2 \end{aligned}$$

and

$$\begin{split} |\langle \rho(\xi)\eta, \zeta \rangle|^2 &= | \iint \eta(t)\xi(t^{-1}s)\overline{\zeta(s)} \, ds \, dt |^2 \\ &\leq \iint |\xi(t^{-1}s)||\eta(t)|^2 \, ds \, dt \cdot \iint |\xi(t^{-1}s)||\zeta(s)|^2 \, ds \, dt \\ &= \|\xi\|_1 \|F\xi\|_1 \|\eta\|_2^2 \|\zeta\|_2^2 \end{split}$$

imply

$$\|\lambda(\xi)\|_{2\to 2} \le \|\xi\|_1, \qquad \|\rho(\xi)\|_{2\to 2} \le \sqrt{\|\xi\|_1 \|F\xi\|_1}.$$

The equalities do not hold, consider $\|\lambda(\xi)\| = \|\hat{\xi}\|_{\infty}$ if $G = \mathbb{R}$.

1.8 (Riemann sum approximation). $\lambda(\delta_s) = \lambda_s$, $\langle \delta_s^{\frac{1}{2}}, \delta_t^{\frac{1}{2}} \rangle = \delta_{s,t}$ For $f \in L^1(G)$,

$$f = \int_G \delta_s f(s) ds, \qquad \lambda(f) = \int_G \lambda_s f(s) ds.$$

For $\xi \in L^2(G)$,

$$\xi = \int_{G} \delta_{s}^{\frac{1}{2}} \xi(s) \, ds, \qquad \langle \xi, \eta \rangle = \iint_{G^{2}} \overline{\eta(t)} \xi(s) \langle \delta_{s}^{\frac{1}{2}}, \delta_{t}^{\frac{1}{2}} \rangle \, ds \, dt.$$

1.3

1.9 (Regular representation). Let G be a locally compact group. Associated to the Hilbert algebra $C_c(G)$, we have a standard form $(W_r^*(G), L^2(G), J, P)$, where $W_r^*(G) := \lambda(C_c(G))'' \subset B(L^2(G))$ is called the *group von Neumann algebra* of G.

$$M(G) \xrightarrow{\lambda} W_r^*(G)$$

$$\uparrow \qquad \qquad \uparrow$$

$$L^1(G) \xrightarrow{\lambda} C_r^*(G).$$

(a)

$$\square$$
 Proof.

1.10 (Fourier algebras). Let G be a locally compact group. The *Fourier algebra* is the algebra A(G) of *matrix coefficients* of the regular representation $\lambda: G \to U(L^2(G))$, that is, the linear span of functions $s \mapsto \langle \lambda(s)\xi, \xi \rangle$ for $\xi \in L^2(G)$. Since every normal state of $W_r^*(G)$ is a vector state in the regular representation, the Fourier algebra also can be defined as the image of the adjoint $\lambda^*: W_r^*(G)_* \to C_0(G)$.

$$A(G) \longrightarrow C_0(G)$$

$$\downarrow \qquad \qquad \downarrow$$

$$C_r^*(G)^* \stackrel{\lambda^*}{\longrightarrow} L^{\infty}(G).$$

(a) A(G) is a dense Banach subalgebra of $C_0(G)$ such that $A(G) \to W_r^*(G)_* : \eta^* \xi \mapsto \omega_{\xi,\eta}$ is an isometric isomorphism.

$$\square$$

- **1.11** (Fourier-Stieltjes algebras). Let G be a locally compact group.
 - (a) On $B(G)_1$, the compact open topology is stronger than the weak* topology.
 - (b) On $B(G)_1$, the strict topology with respect to A(G) is equivalent to the weak* topology.

1.12 (Plancherel theorem). With the left Haar measure on a Banach *-algebra $L^1(G)$ or M(G), we want to construct a faithful semi-finite normal weight called the *Plancherel weight*, and describe the corresponding semi-cyclic representation and left Hilbert algebra for $C_r^*(G)$ and $W_r^*(G)$.

By analyze the decomposition of the canonical representation of $C_r^*(G)$ and $W_r^*(G)$ in $B(L^2(G))$? Then, we can consider a unitary operator from $L^2(G)$ to the square integrable section space of a bundle on \hat{G} ...

1.13 (Locally compact abelian groups). Let G be a locally compact abelian group. Since every irreducible representation of a locally compact abelian group is one-dimensional, we introduce the notation $\langle s,p\rangle=p_{s^{-1}}\in\mathbb{T}$. The *Fourier transform* of an integrable function $f\in L^1(\widehat{G})$ is defined as

$$\mathcal{F}f(p) := \int_G \overline{\langle s, p \rangle} f(s) ds, \qquad p \in \widehat{G},$$

and the Fourier-Stieltjes transform of a finite complex measure $\mu \in M(G)$ is defined as

$$\mathcal{F}\mu(p) := \int_G \overline{\langle s, p \rangle} \, d\mu(s), \qquad p \in \widehat{G}.$$

- (a) The compact open topology of C(G) and the weak* topology of $L^{\infty}(G)$ coincide on \widehat{G} , which provides a locally compact abelian group.
- (b) The canonical homomorphism $\Phi: G \to \widehat{G}$ defined such that $\Phi(s)(p) = \langle s, p \rangle$ for $s \in G$ and $p \in \widehat{G}$ is a topological isomorphism.

Proof. (b) Consider a commutative diagram of topological *-algebras

$$M(G) \longrightarrow W_r^*(G) \xrightarrow{(3)} L^{\infty}(\widehat{G})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$L^1(G) \longrightarrow C_r^*(G) \xrightarrow{(2)} C_0(\widehat{G})$$

$$\parallel \qquad \qquad \uparrow \qquad \qquad \parallel$$

$$L^1(G) \longrightarrow C^*(G) \xrightarrow{(1)} C_0(\widehat{G})$$

of injective densely valued *-homomorphisms. The bijectivity of (1) follows from the equivalence between representation theories of G and $C^*(G)$ and the Gelfand duality. The existence of (2) follows from the amenability of G. The isomorphism (3) is constructed by taking double commutant in the Plancherel isomorphism $B(L^2(G)) \to B(L^2(\widehat{G}))$. Note that the third and first rows are respectively the Fourier transform and Fourier-Stieltjes transform.

Putting \hat{G} instead of G on the third row and taking the dual for the first row, we have tow injective densely valued *-homomorphisms

$$L^1(\widehat{G}) \to C_0(\widehat{\widehat{G}}), \qquad L^1(\widehat{G}) \to C_0(G).$$

Then, the restriction map $C_0(\hat{G}) \to C_0(G)$ along $\Phi : G \to \hat{G}$ is obtained. The surjectivity is clear because it is a *-homomorphism between C*-algebras with dense range. Since $L^1(G)$ is dense in $C_0(\hat{G})$ via Fourier transform, and $C_0(\hat{G})$ is weakly * dense in $B(\hat{G})$, so M(G) is weakly* dense in $M(\hat{G}) \cong B(\hat{G})$, which means that $C_0(\hat{G}) \to C_0(G)$ is injective.

1.14 (Absorption principle). Let G be a locally compact group.

w:

The *structure operator* of G is an operator $w \in U(L^2(G \times G))$ defined such that $w\xi(s,t) := \xi(s,st)$, or $w \in L^{\infty}(G) \overline{\otimes} W_r^*(G)$ such that $\operatorname{Ad} w(\lambda_s \otimes \lambda_s) := \lambda_s \otimes 1$. If $w(x \otimes x)w^* = x \otimes 1$, then $x = \lambda_s$ for some $s \in G$.

(a) $\lambda \otimes u$ and $\lambda \otimes 1$ are unitarily equivalent. It is called the *Fell absorption principle*.

Proof. The Fell absorption principle states that the composition of equivariant operators

$$L^{2}(G) \otimes H \xrightarrow{\Delta \otimes 1} L^{2}(G) \otimes L^{2}(G) \otimes H \xrightarrow{1 \otimes ?} L^{2}(G) \otimes H$$

$$\lambda \otimes 1 \longmapsto \lambda \otimes \lambda \otimes 1 \longmapsto \lambda \otimes \mu$$

is unitary.

The structure operator is a special case of the Fell absorption operator

$$L^{2}(G) \otimes L^{2}(G) \xrightarrow{\Delta \otimes 1} L^{2}(G) \otimes L^{2}(G) \otimes L^{2}(G) \xrightarrow{1 \otimes ?} L^{2}(G) \otimes L^{2}(G)$$

$$\lambda \otimes 1 \longmapsto \lambda \otimes \lambda \otimes 1 \longmapsto \lambda \otimes \lambda$$

2.1 Spectral synthesis

Part II Topological quantum groups

Bialgebras

4.1

Multiplier Hopf *-algebras

Algebraic quantum groups
idempotent ring assumption

4.2

- **4.1.** A counital coalgebra is a vector space A over a field equipped with
 - (i) a unital homomorphism $\delta: A \to A \otimes A$ called the *comultiplication* such that $(\delta \otimes id)\Delta = (id \otimes \delta)\Delta$,
 - (ii) a homomorphism $\varepsilon : A \to \mathbb{C}$ called the *counit* such that $(\varepsilon \otimes id)\Delta = (id \otimes \varepsilon)\Delta$.

A bialgebra if comultiplication is an algebra homomorphism.

A *Hopf algebra* is a biunital bialgebra *A* over a field together with a linear map $S: A \rightarrow A$, called the *antipode*, satisfying

$$\nabla (S \otimes id)\Delta = \eta \varepsilon = \nabla (id \otimes S)\Delta.$$

A morphism between Hopf algebras is a linear map preserving multiplication, unit, comultiplication, counit, and antipode.

The convolution algebra is a bialgebra for a monoid, and is a Hopf algebra for a group.

matrix coefficients, coordinate algebra. universal enveloping algebra. q-deformations of the coordinate Hopf algebras $\mathcal{O}(G)$ of a semi-simple complex Lie group, and the universal enveloping algebra $U(\mathfrak{g})$ of a semi-simple complex Lie algebra.

If *A* is a coalgebra and *B* is an algebra, then $\operatorname{Hom}_{\mathbb{C}}(A,B)$ becomes an algebra with convolution. If *A* is a coalgebra, then A^* is an algebra. If *A* is a bialgebra, then *A* is a bimodule over A^* .

Duality for finite-dimensional Hopf (*-)algebras. dual pairing

matrix coefficients for compact groups regular functions for affine algebraic groups

Compact quantum groups

5.1 (Compact quantum groups). A compact quantum group $\mathbb{G} = (C(\mathbb{G}), \Delta)$ is a bisimplifiable C^* -bialgebra $C(\mathbb{G})$. It is not in general a Hopf algebra.

$$C_0(G)$$
, $L^{\infty}(G)$, $C^*(G)$, $C^*_r(F)$, $W^*_r(G)$
 $A(G), B(G)$

For a compact group G, C(G) has a coalgebra structure induced from $C(G) \subset L^1(G)$.

5.2. A compact algebraic quantum group is a Hopf *-algebra with a positive integral. For a compact quantum group \mathbb{G} , the subspace $\mathbb{C}(\mathbb{G})$ spanned by the matrix coefficients of corepresentations is an algebraic quantum group.

A *locally compact quantum group* is a von Neumann bialgebra admitting left-invariant and right-invariant faithful semi-finite normal weights. A *reduced locally compact quantum group* is a C*-bialgebra such that 8.1.17.

Probably, a Hopf-von Neumann algebra in Enock-Schwartz is just a von Neumann bialgebra in Timmerman, a coinvolutive Hopf-von Neumann algebra in Enock-Schwartz is just a Hopf-von Neumann algebra in Timmerman. Since a locally compact quantum group has counit and antipode as unbounded operators, I do not know if I can say there is a Hopf algebra structure.

5.1 Kac algebras

Locally compact quantum groups

6.1 Multiplicative unitaries

Part III Representation categories

Representations of compact groups

- 7.1 Peter-Weyl theorem
- 7.2 Tannaka-Krein duality
- 7.3 Mackey machine

Example of non-compact Lie groups, Wigner classification