

Algorithmen und Datenstrukturen Kapitel 7A: Graphen – Tiefensuche, Breitensuche

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Wintersemester 2019/2020

Graphen

Internet network

Quelle: [3]

collaboration network

Übersicht

Graphen als Datenstruktur

- Definition
- Speichern von Graphen: Adjazenzliste und Adjazenzmatrix
- Durchlaufen von Graphen: Breitensuche
- Durchlaufen von Graphen: Tiefensuche
- Topologische Sortierung von gerichteten Graphen
- Kürzeste Wege
 - Siehe Kapitel 7B

Anwendungen von Graphen

- Navigation zwischen 2 Orten in einem Straßennetz
 - Kürzeste Route
 - Schnellste Route
- Wegefindung (Routing) im Internet
- Rundreise
 - Wie besucht man alle Knoten mit einer kürzest möglichen Rundreise?
 - Eulerkreis: Rundweg durch Königsberg, so dass jede Brücke genau einmal überquert wird und man am Schluss beim Ausgangspunkt ist?
- Wie viele Farben benötigt man, um die Länder einer Karte einzufärben?
- Abstimmung von Arbeitsabläufen
 - Welche Aufgaben können parallel erledigt werden?

Gerichteter Graph: Definition

- Nützliche Abstraktion für zahlreiche Anwendungen
- Definition: Ein gerichteter Graph G (V,E) (directed graph, digraph) besteht aus:
 - Menge von Knoten (nodes, vertices)
 - $V = \{0, 1, 2, ..., |V| 1\}$
 - Annahme im Folgenden:
 - Knotennamen sind Integer.
 - Vorteile für Implementierung: Über Arrayindizes schneller Zugriff auf Knoteninformation.
 - Falls nötig: zusätzliche Abbildungstabelle (Array) für die Zuordnung Integer und Knotennamen.
 - Menge von gerichteten Kanten (Edges), die Knoten miteinander verbinden.
 - $E \subseteq V \times V$.
- Falls eine Kante von v zu v' zeigt, so nennt man v und v' adjazent (=benachbart).

Gerichteter Graph: Begriffe

- Anzahl der Nachbarn von v
 - Eingangsgrad indeg(v): # einmündender Pfeile
 - Ausgangsgrad outdeg(v): # ausgehender Pfeile
- □ Graph G'(V', E') ist **Teilgraph** von G falls:
 - $V' \subseteq V$
 - $_{\circ}$ $E' \subseteq E$
- Pfade, Wege zwischen 2 Knoten
 - Jeder Knoten darf nur einmal besucht werden
 - > 1 Weg möglich

- Zyklus / Kreis
 - Weg der Länge > 1, der am Ausgangspunkt endet.
- 💶 Falls nicht anders erwähnt: Nur 1 Kante zwischen 2 Knoten erlaubt.

Ungerichteter Graph

- Definition analog zu gerichtetem Graphen
 - Unterschied: Kanten haben keine Richtung
- Grad eines Knoten v. deg(v)
 - Anzahl der Kanten eines Knoten
 - Sprechweise: "v ist mit deg(v) Kanten inzident".
- Alle weiteren Definitionen analog zu gerichteten Graphen.

Übersicht

- Graphen als Datenstruktur
 - Definition
 - Speichern von Graphen
 - Durchlaufen von Graphen: Breitensuche
 - Durchlaufen von Graphen: Tiefensuche
 - Topologische Sortierung von gerichteten Graphen
- Kürzeste Wege
 - Siehe Kapitel 7B

Adjazenzliste

- Array von |V| Listen, eine Liste für jeden Knoten u
- Liste von Knoten u enthält alle (benachbarten) Knoten v, so dass $(u, v) \in E$
- Falls Kanten Gewichte haben, so kann man diese in der Adjazenzliste mitspeichern.

Adjazenzmatrix

 \square $|V| \times |V|$ Matrix

□ Eintrag a_{ij} gibt an, ob zwischen dem Knoten i und Knoten j eine Kante existiert.

	0	1	2	3	4	5	6	7
0	0	0	0	1	0	0	0	0
1	0	0	0	1	0	0	0	0
2	0	0	0	1	0	0	0	0
3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	1	1
5	0	0	1	0	0	0	0	0
6	0	1	0	0	0	0	0	0
7	0	0	1	0	0	0	0	0

Diskussion

	Adjazenzliste	Adjazenzmatrix
Speicher	$\Theta(V + E)$	$\Theta(V ^2)$
Laufzeit, um alle Knoten zu finden, die zu einem Knoten u benachbart sind.	$\Theta(degree(u))$	$\Theta(V)$
Laufzeit, um zu entscheiden, ob Kante (u,v) existiert.	O(degree(u))	Θ(1)

- Adjazenzliste meist effizienter, da Graph nie alle möglichen Kanten enthält.
 - Prüfen ob bestimmte Kante in Graphen enthalten ist, dauert aber etwas länger.
- Falls nicht anders erwähnt wird im Folgenden immer eine Adjazenzliste verwendet.

Quellcode: UndirectedGraph.java

Publikums-Joker:

Was ist die kleinste obere Schranke für die Worst-Case Laufzeit, um bei einem Graphen, der als Adjazenzmatrix abgespeichert ist, die Anzahl der Kanten zu ermitteln?

- A. O(|V|)
- B. $O(|E|^2)$
- c. O(|E|)
- D. $O(|V|^2)$

Übersicht

- Graphen als Datenstruktur
 - Definition
 - Speichern von Graphen: Adjazenzliste und Adjazenzmatrix
 - Durchlaufen von Graphen: Breitensuche
 - Durchlaufen von Graphen: Tiefensuche
 - Topologische Sortierung von gerichteten Graphen
- Kürzeste Wege
 - Siehe Kapitel 8B

Durchlaufen von Graphen

- Motivation: Labyrinth
 - Person ist in Labyrinth und beginnt ausgehend von einer Kreuzung alle Kreuzungen zu besuchen.
 - Unterschied zu Pledge-Algorithmus: Möglichkeit z.B. mit Kreide zu markieren.
 - Mögliche Ansätze
 - Man geht so lange wie möglich geradeaus ("Suche in der Tiefe")
 - Man besucht erst alle n\u00e4chstgelegenen Kreuzungen ("Suche in der Breite")
- 2 Verfahren zum Besuchen aller Knoten:
 - Breitensuche (jetzt)
 - Tiefensuche (im Anschluss)
- Annahmen
 - Jeder Knoten kennt seine Nachbarn (Adjazenzliste!)
 - Manchmal wird zusätzlich ein fester Startknoten vorgegeben.
- Grundlage für zahlreiche Algorithmen

Breitensuche (engl. Breadth-First Search)

Eingabe

- Gerichteter oder ungerichteter Graph G(V,E)
- Startknoten

Ausgabe

- v.d: Entfernung ("distance") von Startknoten s zu Knoten v
 - Kürzester Pfad = Pfad mit minimaler Kantenanzahl zwischen wischen s und v
- \circ $v.\pi$: Vorgängerknoten u auf kürzestem Weg von Startknoten s zu Knoten v.
 - (u,v) ist die letzte Kante auf kürzestem Pfad.
 - u ist Vorgänger/Predecessor im "Baum der kürzesten Wege".

Idee

- Schicke von s eine Welle aus.
- Welle trifft zunächst alle Knoten, die 1 Kante entfernt sind.
- Dann alle Knoten, die 2 Kanten entfernt sind, usw.
- Abspeichern und Abarbeiten von Tasks in der FIFO Reihenfolge
 - Welche Datenstruktur?

Farben

- Attribute eines Knoten, siehe vorherige Folie
 - o v.d und
 - \circ $V.\pi$

- Weiteres Attribut: Farbe eines Knoten
 - v.color: WHITE, BLACK und GRAY
 - Erlaubt es Knoten zu markieren und sich z.B. zu merken ob man den Knoten schon mal besucht hat ("Kreide").
 - Farbe hilfreich für Verständnis des Algorithmus.

Bedeutung:

- WHITE: Knoten noch nie besucht, Knoten noch unentdeckt.
- BLACK: Knoten besucht und alle Nachbarknoten entdeckt.
- GRAY: Knoten bereits entdeckt, hat aber möglicherweise noch unentdeckte (weiße) Nachbarknoten.
 - Grenze zwischen entdeckten und unentdeckten Knoten.

Breitensuche: Algorithmus

```
BFS(V, E, s)
// s ist der Startknoten
     for each u \in V \setminus \{s\}
        u \cdot d = \infty
3
        u_*\pi = NIL
        u.color = WHITE
4
5
    s.d = 0
     s.\pi = NIL
    s.color = GRAY
    O = \emptyset
     ENQUEUE(Q,s)
     while Q \neq \emptyset
10
11
        u = DEQUEUE(Q)
12
        for each v \in G.Adj[u]
            if v.d == \infty
13
                v.color = GRAY
14
15
                v.d = u.d + 1
16
                v.\pi = u
17
                ENQUEUE(Q, v)
        u.color = BLACK
18
```

Breitensuche auf Graph *G(V,E)* beginnend bei Startknoten *s*

Queue: enthält zu Beginn Startknoten s, der als GRAY markiert wird. Im weiteren Verlauf enthält Queue stets "graue" Knoten

While-Schleife iteriert solange es noch graue Knoten gibt (Knoten, von denen noch nicht alle Nachbarn entdeckt wurden).

Quellcode: UndirectedGraph.java / bfs

Breitensuche: Übung

Breitensuche ausgehend vom Startknoten s.

Annahme

Es wird immer zunächst der alphabetisch kleinere Nachbar besucht.

Frage

- Mögliche Besuchsreihenfolge?
- Werte von $v \cdot d$ und $v \cdot \pi$ für jeden Knoten v nach Beendigung der Breitensuche?

- Innerhalb jedes Knotens *u* steht der berechnete Wert von *u.d.*
- Die verwendeten "Vorgängerkanten" sind schattiert.
- Q zeigt jeweils den Inhalt der Queue am Anfang der Iteration

Quelle[1]

- Innerhalb jedes Knotens *u* steht der berechnete Wert von *u.d.*
- Die verwendeten "Vorgängerkanten" sind schattiert.
- Q zeigt jeweils den Inhalt der Queue am Anfang der Iteration

Quelle[1]

Breitensuche: Diskussion

- Queue Q enthält zu jedem Zeitpunkt Menge der grau gefärbten Knoten.
- Laufzeit: O(| V|+|E|)
 - Jeder Knoten wird höchstens einmal in die Queue eingetragen. Warum?
 - Es finden höchstens O(|V|) Operationen auf der Queue statt.
 - Für jeden Knoten wird die Adjazenzliste durchlaufen → insgesamt werden alle Kanten einmal "besucht": O(|E|):
- Breitensuche findet von Start- zu jedem Zielknoten die kürzeste Entfernung
 - Aber nur unter der Annahme: Alle Kantengewichte sind 1.
 - "BFS-Tree": Der Kürzeste-Wege-Baum kann über die Vorgänger ν.π rekonstruiert werden (siehe Vorgängerfolie)
- Implementierung
 - UndirectedGraph.java, Methode bfs
- Animation: https://www.cs.usfca.edu/~galles/visualization/BFS.html

Publikums-Joker:

Was ist die kleinste obere Schranke für die Worst-Case Laufzeit bei der Breitensuche, falls der Graph n Knoten und $n^{1,25}$ Kanten hat?

C.
$$O(n^{2,25})$$

D. $O(n^*n)$

Übersicht

- Graphen als Datenstruktur
 - Definition
 - Speichern von Graphen: Adjazenzliste und Adjazenzmatrix
 - Durchlaufen von Graphen: Breitensuche
 - Durchlaufen von Graphen: Tiefensuche
 - Topologische Sortierung von gerichteten Graphen
- Kürzeste Wege
 - Siehe Kapitel 7B

Tiefensuche (engl. Depth-First Search)

Eingabe

- Gerichteter oder ungerichteter Graph G(V,E)
- Zur Abwechslung: Dieses Mal kein Startknoten vorgegeben!
- Funktioniert auch, falls Graph G nicht zusammenhängend ist.
- Ausgabe: 2 "Zeitstempel" für jeden Knoten
 - Discovery Time v.d = Zeitpunkt, an dem Knoten entdeckt wird.
 - D.h. "grau" eingefärbt wird (wie bei Breitensuche)
 - Finish Time v.f = Zeitpunkt, an dem alle Nachbarn eines Knotens entdeckt
 - D.h. "schwarz" eingefärbt sind (wie bei Breitensuche)
 - o Zeitstempel des Pseudocodes so gewählt, dass: $1 \le v$. d < v. $f \le 2|V|$
 - Zeitstempel nützlich für einige Anwendungen, siehe topologische Sortierung!
 - ν π "Vorgänger", über den ein Knoten entdeckt wurde.
 - Entfernung wird nicht gespeichert!

Idee

- Sobald neuer Knoten entdeckt wird, setze zunächst Erforschung vom neuen Knoten fort ("LIFO"-Strategie)
- Vergleich Breitensuche: Dort eher "FIFO"-Strategie.

Tiefensuche: Algorithmus

Tiefensuche: Übung

- Führe den Pseudocode auf folgendem Graphen aus.
- Beginne beim markierten Knoten.
- Ergänze die Discovery d und Finish Times f ein.
- Die Adjazenzlisten jedes Knoten seien alphabetisch sortiert.

Tiefensuche: Ergebnis der Übung

Diskussion

- Laufzeit: Θ(|V|+|E|)
 - Zeile 1-3 benötigt Θ(|V|)
 - DFS-VISIT wird für jeden Knoten genau 1mal aufgerufen.
 - Jede inzidente Kante wird innerhalb dieser Methode besucht.
 - Insgesamt werden alle Kanten besucht.

- Der Beispielgraph ist nicht zusammenhängend!
 - Bsp: Knoten G von z.B. Knoten A und B aus nicht erreichbar!
 - Der vorgestellte Pseudocode besucht dennoch alle Knoten.
 - Allerdings besteht der Graph der Vorgängerkanten (ν.π) aus mehreren nicht zusammenhängenden Bäumen (=Wald)

(e)

(1)

(m)

(n)

(o)

Schwarz, graue und weiße Knoten: Bedeutung wie bei BFS

29

Tiefensuche: Diskussion

- Laufzeit: Θ(|V|+|E|)
- Implementierung auch per Stack möglich
 - Jedoch ist die Speicherung der "Finish Time" etwas komplizierter
- Tiefensuche ist Bestandteil von vielen Algorithmen
 - Auffinden von Zusammenhangskomponenten eines Graphen.
 - Testen eines Graphen auf Kreise.
 - Auflösung von Abhängigkeiten → siehe topologische Sortierung
 - O ...
- Animation
 - https://www.cs.usfca.edu/~galles/visualization/DFS.html

Übersicht

- Graphen als Datenstruktur
 - Definition
 - Speichern von Graphen: Adjazenzliste und Adjazenzmatrix
 - Durchlaufen von Graphen: Breitensuche
 - Durchlaufen von Graphen: Tiefensuche
 - Topologische Sortierung von gerichteten

- Kürzeste Wege
 - Siehe Kapitel 8B

Beispiel: Informatikstudent "Genau"

- Student Genau überlegt in welcher Reihenfolge er sich ankleiden muss,
 z.B.
 - erst Socken, dann Schuhe
 - erst Hemd, dann Krawatte
- Modellierung als gerichteter Graph

In welcher zeitlichen Reihenfolge kann er die verschiedenen Kleidungsstücke anziehen?

Topologische Sortierung

Idee

- Verwende Tiefensuche
- Knoten, die spät schwarz eingefärbt werden (hohe "Finish Time"), müssen am Anfang der Ordnung stehen
- "Kleidungsstücke", die spät schwarz eingefärbt werden, müssen zu einem frühen Zeitpunkt angezogen werden.
- In der Regel gibt es mehrere, mögliche topologische Sortierungen
- Topologische Sortierung nur möglich, falls gerichteter Graph zyklenfrei ist.

TOPOLOGICAL-SORT(G)

- Rufe DFS(G) auf
- Jedes Mal wenn ein Knoten fertig ist (schwarz eingefärbt wird), füge ihn vorne in eine Ergebnisliste ein
- Gib die Liste zurück

Lösung: Informatikstudent "Genau"

- Es gibt mehrere mögliche Lösungen!
- Absteigend bzgl. Finish Time durchlaufen ergibt topologische Sortierung.
- Topologische Sortierung nur bei gerichteten Graphen sinnvoll.
- Mögliche Lösung:

Publikums-Joker:

Wie oft wird jeder Knoten v bei der Tiefensuche "gesehen"?

- A. Einmal
- B. Zweimal.
- c. indeg(v)-mal.
- D. |E|-mal.

Graphen in Java

- Leider bietet die Java-Standard Library keine Graphalgorithmen!
- Mögliche Bibliotheken, z.B.
 - JGraph: http://jgrapht.org/
 - JUNG: http://jung.sourceforge.net/

Zusammenfassung

Graphen als Datenstruktur

- Definition
- Speichern von Graphen: Adjazenzliste und Adjazenzmatrix
- Durchlaufen von Graphen: Breitensuche
- Durchlaufen von Graphen: Tiefensuche
- Topologische Sortierung von gerichteten Graphen

Kürzeste Wege

- Definitionen
- Algorithmus von Bellman-Ford
- Algorithmus von Dijkstra
- ADT: Priority Queue

Quellenverzeichnis

- [1] Cormen, Leiserson, Rivest and Stein. *Introduction to Algorithms*, Third Edition, The MIT Press, 2009.
- [2] Ottmann, Widmayer. *Algorithmen und Datenstrukturen*, Kapitel 9, 5. Auflage, Spektrum Akademischer Verlag, 2012.
- [3] Quelle: http://people.seas.harvard.edu/~babis/amazing.html (abgerufen am 03.12.2016)
- [4] Rubik's Cube, *Introduction to Algorithms*, https://courses.csail.mit.edu/6.006/fall11/rec/rec16.pdf (abgerufen am 11.12.2016)
- [5] https://commons.wikimedia.org/wiki/File%3ARubiks-Cube.gif (abgerufen am 11.12.2016)