

### The Report about CirCNN

authors: Tianma Shen

University of Shanghai for Science and Technology

December 8, 2017



- Background and Motivation
- 2 Novelty of CirCNN
- Related Knowledge
- **4** CirCNN Algorithms



Background and Motivation

Novelty of CirCNN

Related Knowledge

- Background and Motivation
- 2 Novelty of CirCNN
- **3** Related Knowledge
- 4 CirCNN Algorithms



# Background

Background and Motivation

Novelty of CirCNN

Related Knowledge

- Large-scale deep neural networks (DNNs)
- Limitations of computer performance
- Difficult tasks with big data



## **Motivation**

Background and Motivation

Novelty of CirCNN

Related Knowledge

- Reduce weight storage (model size)
- Accelerate the computation
- Maintain accuracy



Background and Motivation

Novelty of CirCNN

Knowledge

- Background and Motivation
  - 2 Novelty of CirCNN
- **3** Related Knowledge
- 4 CirCNN Algorithms



## **Novelty of CirCNN**

Background and Motivation

Novelty of CirCNN

Related Knowledge

- Supporting both FC and CONV layers
- Block-circulant matrices



Background and Motivation

Novelty o CirCNN

Related Knowledge

- Background and Motivation
- 2 Novelty of CirCNN
- **3** Related Knowledge
- 4 CirCNN Algorithms



## **Full Connect Layers**

Background and Motivation

Novelty of CirCNN

Related Knowledge



$$a_1 = f(W_{11} \cdot X_1 + W_{12} \cdot X_2 + W_{13} \cdot X_3 + W_{14} \cdot X_4) \quad (1)$$

$$a_5 = f(W_{51} \cdot X_1 + W_{52} \cdot X_2 + W_{53} \cdot X_3 + W_{54} \cdot X_4) (2)$$



## **Convolution Layer**

Background and Motivation

Novelty of CirCNN

Related Knowledge



$$Y(x,y,p) = \sum_{i=1}^{r} \sum_{i=1}^{r} \sum_{c=1}^{c} F(i,j,c,p) X(x+i-1,y+j-1,c)$$
 (3)



#### **Circulant matrices**

Background and Motivation

Novelty of CirCNN

Related Knowledge

```
 \begin{bmatrix} W_{11} & W_{12} & W_{13} & \dots & W_{1n-2} & W_{1n-1} & W_{1n} \\ W_{1n} & W_{11} & W_{12} & W_{13} & \dots & W_{1n-2} & W_{1n-1} \\ W_{1n-1} & W_{1n} & W_{11} & W_{12} & W_{13} & \dots & W_{1n-2} \\ \vdots & & & & & \vdots \\ \vdots & & & & & \ddots \\ W_{13} & \dots & W_{1n-2} & W_{1n-1} & W_{1n} & W_{11} & W_{12} \\ W_{12} & W_{13} & \dots & W_{1n-2} & W_{1n-1} & W_{1n} & W_{11} \end{bmatrix}
```



### **Discrete Fourier Transform**

Background and Motivation

Novelty of CirCNN

Related Knowledge

CirCNN Algorithms The discrete Fourier transform transforms a sequence of N numbers  $x_0, x_1, \ldots, x_{N-1}$  into another sequence of complex numbers,  $X_0, X_1, \ldots, X_{N-1}$ , which is defined by

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-i2\pi k} \frac{n}{N}$$
 (5)

$$= \sum_{n=0}^{N-1} x_n \left[ \cos \left( 2\pi k \frac{n}{N} \right) - i \cdot \sin \left( 2\pi k \frac{n}{N} \right) \right]$$
 (6)

where the last expression follows from the first one by Euler's formula.

The transform is sometimes denoted by the symbol  $\mathcal{F}$ , as in  $\mathbf{X} = \mathcal{F}\{\mathbf{x}\}$  or  $\mathcal{F}(\mathbf{x})$  or  $\mathcal{F}\mathbf{x}$ .



#### **Convolution theorem**

Background and Motivation

Novelty of CirCNN

Related Knowledge

CirCNN Algorithms Let  $\mathcal F$  denote the Fourier transform operator, so  $\mathcal F\{f\}$  and  $\mathcal F\{g\}$  are the Fourier transforms of f and g, respectively. Then

$$\mathcal{F}\left\{f * g\right\} = \mathcal{F}\left\{f\right\} \cdot \mathcal{F}\left\{g\right\} \tag{7}$$

$$f * g = \mathcal{F}^{-1} \{ \mathcal{F} \{ f \} \cdot \mathcal{F} \{ g \} \}$$
 (8)

where · denotes point-wise multiplication.

\* denotes convolution.

 $\mathcal{F}^{-1}$  denotes inverse Fourier transform.



and Motivation

Novelty of CirCNN

Related Knowledge

- Background and Motivation
  - 2 Novelty of CirCNN
- **3** Related Knowledge
- 4 CirCNN Algorithms



## Forward propagation process

Background and Motivation

Novelty of CirCNN

Related Knowledge

CirCNN Algorithms



Figure: Illustration of the calculation of  $W_x$  in the inference process



#### **Block-circulant matrices**

Background and Motivation

Novelty of CirCNN

Related Knowledge

CirCNN Algorithms

| 0.36  | -1.39 | 0.06  | 0.43  | -0.24 | 3.42  | -0.12 | 1.56  |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.56  | 0.36  | -1.39 | 0.06  | 0.43  | -0.24 | 3.42  | -0.12 |
| -0.12 | 1.56  | 0.36  | -1.39 | 0.06  | 0.43  | -0.24 | 3.42  |
| 3.42  | -0.12 | 1.56  | 0.36  | -1.39 | 0.06  | 0.43  | -0.24 |
|       |       |       |       |       |       |       |       |
|       |       |       |       |       |       |       |       |
|       |       |       |       |       |       |       |       |
|       |       |       |       |       |       |       |       |

| 0.36  | -1.39 | 0.06 | 0.43 | -0.24 | 3.42  | -0.12 | 1.56  |
|-------|-------|------|------|-------|-------|-------|-------|
| -1.39 | 0.36  | 0.43 | 0.06 | 3.42  | -0.24 | 1.56  | -0.12 |
| 0.06  | 1.22  | 1.72 | 0.08 | 1.45  | -1.42 | 0.57  | 1.47  |
| 1.22  | 0.06  | 0.08 | 1.72 | -1.42 | 1.45  | 1.47  | 0.57  |

Figure: when the numbers of inputs and outputs are not equal

### Result

Background and Motivation

Novelty of CirCNN

Related Knowledge



Figure: (a) Storage saving and (b) test accuracy after using block-circulant FC layer for DCNN models on di erent datasets. (c) Storage saving after using both block-circulant FC layer and block-circulant CONV layer for DCNNs on MNIST, SVHN, CIFAR-10, and ImageNet datasets.