ച

A = direction I want to go

b) B+C=A

a) I need to angle my plane southwest, so once the wind blows me back east, I am going south.

d) Now redraw this with numbers:

#1 cont.

d=20m ice: 0;=-2 m/s2 S=30m 500W: 05=2 m/s2 a) What is vat the time that x=5?" - On the snow, X= zast2 V= act · Find time that x=s: t=12s · Find vat that time: V = as \[\frac{25}{a_1} = \int 25 a_3 \]. or use "third kinematics equation": V₄?-1/2 = 2a_s(x_f-1/2) -> V₄ = J2a_ss = 7.7 m/s. b) At what time is x = d?" (using a second set of constant-accel kinematics) X= = a; t + /2ast V= ait + Jass = don't actually need

		Prince

#2 con'H · Set x=d and solve Por t: d= = ait + /2asst $0 = \frac{1}{2}(-2^{m/s^{2}}), t^{2} + (7,74^{m/s})t - 20^{m}$ -1 M/s2 Quadratic Formula: answer is imaginary. +- $-7.74 \pm \sqrt{59.9-80}$ Driver is sad, in Velocik

43			

 $\frac{1}{\sqrt{30^{\circ}=6}}$ $\sqrt{30^{\circ}=6}$ $\sqrt{30^{\circ}=6}$ $\sqrt{30^{\circ}=6}$ $\sqrt{30^{\circ}=6}$ $\sqrt{30^{\circ}=6}$ $\sqrt{30^{\circ}=6}$ $\sqrt{30^{\circ}=6}$

()
$$X(t) = (V_0 \cos \theta) t$$

 $Y(t) = (V_0 \sin \theta) t - \frac{1}{2}gt^2$

h=(vo sin 0)t- 2gt2 -> = gt2 (vo sin 0)t+h=0

b and c): The ball hits the crossbar on the way back down according to the picture.

That corresponds to the + sign. The - sign gives you the earlier time the ball was at that height.

Walnut free B 1100 m A = (50,0) B = (0,100) C = (30 cos 20°, -30 sin 20°) Pecan to walnut = A+B+C= (50 + 30 cos 20°, 100-30 sin 20° = (78.2, 89.7) Use Pythagorean theorem to find magnitude of CA+B+C) = 78.22 + 89.72 = 19 M. b) Find direction of that vector:

0=48.9° north of east

#5|
$$\rightarrow v_0:60\%$$

a) "What value of x_0 makes it so that

 $x=0$ at the same time that $y=0$?"

$$\begin{pmatrix} x(t)=v_0t-d & v_1(t)=v_0 \\ y(t)=h-\frac{1}{2}gt^2 & v_1(t)=-gt \\ 0=h-\frac{1}{2}gt^2 & v_2(t)=g \\ 0=v_0t-d & v_1(t)=-gt \\ 0=v_0t-d & v_2(t)=-gt \\ 0=v_0t-d & v_1(t)=-gt \\ 0=v_0t-d & v_2(t)=-gt \\ 0=v_0t-d & v_1(t)=-gt \\ 0=v_0t-$$

Directly above. The sand accelerates downward, but this doesn't affect its horizontal motion; in the x-direction it continues moving at the same rate as the plane,

#6 a) This is just freefall in one dimension from rest.

$$y(t) = -\frac{1}{2}gt^2 + h$$

"When is
$$y=0?" \Rightarrow 0=\frac{1}{2}gt^2+h$$

$$\Rightarrow t=\sqrt{2h/g}$$

b) "What is
$$V$$
 at the time when $y=0$?"
$$V(t)=V_0-gt \longrightarrow V=-g\sqrt{2h}/g=J2gh$$

a After bounce, need a new "set" of kinematics relations, with
$$V_0 = -\frac{1}{2}V_f$$
 from the previous phase. $\sqrt{\frac{2gh}{2}} = \sqrt{\frac{2gh}{4}} = \sqrt{\frac{gh}{2}}$.

So: $y(t) = -\frac{1}{2}gt^2 + \sqrt{\frac{9h}{2}}t$ and $v(t) = -gt + \sqrt{\frac{9h}{2}}$.

Highest point happens at the time V=0:

$$0 = -gt + \sqrt{\frac{gh}{2}} \longrightarrow t = \sqrt{\frac{h}{2g}}$$

Height at that time:

#7
Origin

Freetabl
For time 7

Motor
On

- a) Before the rocket fires, it is in feefall:

 y(t)= \frac{1}{2}gt^2

 -> \frac{1}{2}gt^2 below the window

 y(t) = gt

 -> velocity of gt in the y-direction and O in x
- b) After motor is fined: $\chi(t) = \frac{1}{2}(2g)t^2$

Rocket hits building when $x(t)=d \rightarrow d=gt^2$, and so it hits the building a time $T_2: \sqrt{g}$ after motor fires. So the total time in the air is $T+T_2=T+\sqrt{g}$

a) "What is the time when y=0?"

b) "What is x at that time?"

c) Find magnitude of V at that time.

$$V_x = V_0$$

 $V_y = -gt$ \longrightarrow at floor, $V_y = -\sqrt{2gL}$

d) Find direction of V:

below the horizontal

#8 cont. 1

e) Now I need to decompose the initial velocity vector into x- and y-components, and

Vx = Vo cos & y vy = Vo sin O.

Nothing else changes in the approach.