Redundant Via Insertion

Introduction

- Vias connect wire segments on different metal layers
- A chip may have billions of vias
- One via defect can render an entire IC useless

Redundant Via

- Enable a single via failure to be tolerated
- Improve the chip yield and reliability

Post-Routing Redundant Via Insertion for Yield/Reliability Improvement

K.Y. Lee and T.C. Wang

Optimal Post-Routing Redundant Via Insertion

K.Y. Lee, C.K. Koh, T.C. Wang, K.Y. Chao

Post-Routing Double Via Insertion (DVI)

Input

 A routed design and a set of via-related design rules

Goal

 To replace as many single vias with double vias as possible

Constraints

- Do not re-route any net
- Each single via either remains unchanged or is replaced by a double via
- After replacement, no design rule is violated

Maximum Independent Set (MIS)-based approach to DVI [Lee+ ASPDAC06]

Conflict Graph Construction

Heuristic for solving the MIS Problem – H2K

- H2K solves the MIS problem on a conflict graph in an iterative manner
- •In each iteration, a subgraph of size k is extracted from the conflict graph, a maximal independent set solution to the subgraph is sought and added to the final solution, and the conflict graph is updated

H2K (cont'd)

- •For the conflict graph G(V,E), we construct a priority queue Q of V by using the **feasible number** and **degree** of a vertex as the first and second keys.
 - We give a vertex a higher priority if it has smaller feasible number and degree.
- •Feasible no. of a vertex = # other feasible double vias originating from the same single

via

Illustration of H2K

Assume k = 3

0-1 ILP approach to DVI [Lee+ ISPD08]

Maximize

$$\sum_{1 \le i \le 10} R_i$$

Subject to

$$R_2 + R_5 \le 1$$
 $R_5 + R_6 \le 1$ $R_1 + R_2 \le 1$

$$R_1 + R_2 \le 1$$

$$R_2 + R_9 \le 1$$
 $R_6 + R_7 \le 1$ $R_1 + R_3 \le 1$

$$R_1 + R_3 \le 1$$

$$R_5 + R_9 \le 1$$
 $R_5 + R_7 \le 1$ $R_1 + R_4 \le 1$

$$R_1 + R_4 \le 1$$

$$R_8 + R_9 \le 1$$

$$R_8 + R_9 \le 1$$
 $R_2 + R_3 \le 1$

$$R_9 + R_{10} \le 1$$

$$R_9 + R_{10} \le 1$$
 $R_2 + R_4 \le 1$

$$R_8 + R_{10} \le 1$$

$$R_8 + R_{10} \le 1$$
 $R_3 + R_4 \le 1$

Speed-up - Pre-selection

- We can efficiently pre-select a subset of vertices
- The size of given conflict graph can be reduced
- May even solve the whole DVI problem directly

Speed-up - Connected Components

- Divide into smaller 0-1 ILP problems
 - Compute connected components (by depth-firstsearch algorithm)

Speed-up -**Reduction in Constraints**

$$R_2 + R_5 \le 1$$

$$R_2 + R_9 \le 1$$

$$R_5 + R_9 \le 1$$

$$R_5 + R_6 \le 1$$

$$R_6 + R_7 \le 1$$

$$R_5 + R_7 \le 1$$

$$R_8 + R_9 \le 1$$

$$R_9 + R_{10} \le 1$$

$$R_8 + R_{10} \le 1$$

$$R_1 + R_2 \le 1$$

$$R_1 + R_3 \le 1$$

$$R_1 + R_4 \le 1$$

$$R_2 + R_3 \le 1$$

$$R_2 + R_4 \le 1$$

$$R_3 + R_4 \le 1$$

Clique

$$R_1 + R_2 + R_3 + R_4 \le 1$$

$$R_i \in \{0,1\}$$

Speed-up – Reduction in constraints (cont'd)

Maximize

$$\sum_{1 \le i \le 10} R_i$$

Subject to

$$R_{2} + R_{5} \le 1 \qquad R_{1} + R_{2} + R_{3} + R_{4} \le 1$$

$$R_{2} + R_{9} \le 1 \qquad R_{5} + R_{6} + R_{7} \le 1$$

$$R_{5} + R_{9} \le 1 \qquad R_{8} + R_{9} + R_{10} \le 1$$

$$R_{i} \in \{0,1\}$$

•# of inequalities: $15 \rightarrow 6$

Overall approach

1. Pre-selection

Overall approach

Overall Approach

1. Pre-selection

3.Reduced 0-1 ILP

Overall Approach (cont'd)

Statistics on Test Circuits

Circuit	Size(µm)	#Nets	#I/Os	#Vias	#Layers
C1	350.000 *350.000	4309	20	24594	5
C2	419.433 *413.28	5252	211	41157	5
C3	799.124 *776.16	18157	85	127059	5
C4	691.272 *680.400	17692	415	151912	5
C5	1383.482 *1375.92	44720	99	357386	5

DVI Results

Circuit	Tool	MIS		0-1 ILP	
	#DVI	#DVI	T(s)	#DVI	T(s)
C1	14402	17461	5	17461	3
C2	25918	28507	11	28507	3
C3	80827	91461	86	91461	4
C4	91574	101765	86	101766	5
C5	225142	254428	104	254429	3
Normalized			15.7		1

Speed-up results

	Runtime T(s)				
Circuit	W/O	W	Speed-up		
C1	5	3	1.6X		
C2	8	3	2.6X		
C3	92	4	23X		
C4	93	5	18.6X		
C5	843	3	281X		

Additional Consideration: Via Density

- Minimum via density rule
- Maximum via density rule

Double Via Insertion with Via Density Consideration (DVI w/ VD)

Input

 A routed design (satisfying via density rules) and a set of viarelated design rules

Goal

• To replace as many single vias with double vias as possible

Constraints

- Do not re-route any net
- Each single via either remains unchanged or is replaced by a double via
- After replacement, no design rule is violated (including the maximum via density rule)

0-1 ILP approach to DVI w/ VD

- Add constraint for each region which may exceed maximum via density after DVI
- E.g.

max density = 5

At most 3 redundant vias can be inserted

Modifications – Pre-selection

- Vertex candidate for pre-selection
 - No external edges
 - Not involved in any potential violating region

Modifications – Connected Components

Avoid splitting a potential violating region into two ILPs

DVI w/ VD results

Circuit	Two-Stage		0-1 ILP	
Circuit	#DVI	T(s)	#DVI	T(s)
C1	17074	6	17249	3
C2	27881	12	28064	4
C3	89960	88	90482	5
C4	91134	100	93240	48
C5	252056	106	252768	3
Normalized		12.0		1

References

- [Lee+ ASPDAC06] Post-Routing Redundant Via Insertion for Yield/Reliability Improvement
- •[Lee+ ISPD08] Optimal Post-Routing Redundant Via Insertion