Real Analysis Exercise Sheet

1. Let X be an infinite set. For $p, q \in X$, define

$$d(p,q) = \begin{cases} 1 & \text{if } p \neq q, \\ 0 & \text{if } p = q. \end{cases}$$

- (a) Prove that this is a metric.
- (b) Which subsets of the resulting metric space are open?
- (c) Which are closed?
- (d) Which are compact? (Definition. A metric space (X, d) is called compact if every sequence in X has a convergent subsequence whose limit lies in X; a subset $Y \subset X$ is called compact if the subspace $(Y, d|_{Y \times Y})$ is compact).
- (e) Prove that a sequence $\{x_n\} \subset X$ converges to $x \in X$ in the discrete metric if and only if there exists $N \in \mathbb{N}$ such that $x_n = x$ for all $n \geq N$.
- 2. Let (X, d) be a metric space. Show that $d'(x, y) = \sqrt{d(x, y)}$ is also a metric on X, and that the open sets for d' are the same as the open sets for d.
- 3. Consider \mathbb{R} with the standard metric. Let $E \subset \mathbb{R}$ be a subset which has no limit points. Show that E is at most countable.
- 4. Let (X,d) be a compact metric space, and $f: X \to X$ a map such that d(f(x), f(y)) < d(x,y) for all $x \neq y$. Prove that there exists a point x such that f(x) = x. Hint: how small can d(x, f(x)) get? Comment: this is an example of a fixed point theorem, very popular in various sciences for showing the existence of equilibria and such.
- 5. Let (X, d) be a metric space.
 - (a) Prove the following:
 - (i) For all $x, y, z \in X$

$$|d(y,z) - d(z,x)| \le d(x,y).$$

(ii) For any $n \in \mathbb{N}$ and any $x_1, x_2, \ldots, x_n \in X$

$$d(x_1, x_n) \le d(x_1, x_2) + d(x_2, x_3) + \dots + d(x_{n-1}, x_n).$$

- (b) For $x \in \mathbb{R}$ and $y \in \mathbb{R}$ define
 - (i) $d_1(x,y) = (x-y)^2$
 - (ii) $d_2(x,y) = \sqrt{|x-y|}$
 - (iii) $d_3(x,y) = |x^2 y^2|$
 - (iv) $d_4(x,y) = |x 2y|$

Determine, for each of these, whether it is a metric or not.

- 6. (a) In a metric space (X, d), prove that if a sequence (x_n) converges, then its limit is unique. That is, show that if $x_n \to x$ and $x_n \to y$, then x = y.
 - (b) Prove that a subset E of a metric space (X, d) is closed if and only if

$$E = \overline{E},$$

where \overline{E} denotes the closure of E.

7. Let \mathbb{R}^2 be equipped with the Taxicab metric/Manhattan metric defined by

$$d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|.$$

1

- (a) Prove that d is a metric.
- (b) Draw the open balls $B_1((0,0))$, $B_2((0,0))$, and $B_{\frac{1}{2}}((0,0))$ in \mathbb{R}^2 .

- (c) On the same axes, sketch the corresponding Euclidean balls (under the usual metric) of the same radii.
- (d) What geometric shape do the taxicab balls form?
- (e) Are these taxicab balls open sets in the usual metric on Euclidean space? Prove that these two metrics are equivalent.
- (f) Let

$$A = \{(x, y) \in \mathbb{R}^2 : d((x, y), (1, 1)) \ge 2\}.$$

Sketch the set A. Is it closed in the taxicab metric?

- 8. (a) Let us consider the set $X = \mathbb{R} \setminus \{\sqrt{2}\}$ equipped with the usual metric d(x,y) = |x-y|. Is (X,d) a complete metric space? Justify your answer with appropriate reasoning.
 - (b) Let R be the set of real numbers with the usual metric d(x,y) = |x-y|.
 - (i) Show that the sequence $x_n = \frac{1}{n}$ is a Cauchy sequence in R.
 - (ii) Show that the sequence $x_n = n$ is not a Cauchy sequence in R.
- 9. Let C[0,1] be the set of all real-valued continuous functions on [0,1]. Define:

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx.$$

Define a sequence $\{f_n\} \subset C[0,1]$ by:

$$f_n(x) = \begin{cases} 0, & 0 \le x \le \frac{1}{2} - \frac{1}{n} \\ n(x - (\frac{1}{2} - \frac{1}{n})), & \frac{1}{2} - \frac{1}{n} < x < \frac{1}{2} \\ 1, & \frac{1}{2} \le x \le 1 \end{cases}$$

- (a) Draw the graph of each function f_n and verify that $f_n \in C[0,1]$ by observing that each f_n is piecewise linear and continuous.
- (b) Prove that f_n pointwise converge to f where

$$f(x) = \begin{cases} 0, & 0 \le x < \frac{1}{2}, \\ 1, & \frac{1}{2} \le x \le 1. \end{cases}$$

- (c) Verify that $\{f_n\}$ is a Cauchy sequence in $(C[0,1],d_1)$.
- (d) Is $(C[0,1], d_1)$ a complete metric space?
- 10. Let l^2 be the set of all sequences $x = \{x_n\}$ over the real numbers R such that $\sum_{n \geq 1} x_n^2$ converges. Prove that $d(x,y) = \sqrt{\sum_{n \geq 1} (x_n - y_n)^2}$ gives a metric on l^2 .
- 11. Let (X,d) be a metric space and A be a non-empty subset of X. For $x \in X$, we define

$$d(x, A) = \inf\{d(x, a) : a \in A\}.$$

- (a) Show that d(x, A) = 0 if and only if x lies in the closure of A.
- (b) Show that if A is compact, then d(x, A) = d(x, a) for some $a \in A$.
- (c) The ϵ -neighborhood of A is defined to be

$$N(A; \epsilon) = \{ x \in X : d(x, A) < \epsilon \}.$$

Prove that $N(A; \epsilon)$ is the union of the open balls $B_{\epsilon}(a)$ for $a \in A$.

(d) If A is compact and U is an open set containing A, prove that there exists $\epsilon > 0$ such that

$$A \subset N(A; \epsilon) \subset U$$
.

Is this fact still true if A is just a closed set?

12. Let (X, d) be a metric space. Then verify the following properties:

- (a) The union of any collection $\{G_{\alpha}\}$ of open sets is open; that is, $\bigcup_{\alpha} G_{\alpha}$ is open.
- (b) The intersection of any collection $\{F_{\alpha}\}$ of closed sets is closed; that is, $\bigcap_{\alpha} F_{\alpha}$ is closed.
- (c) The intersection of any finite collection G_1, \ldots, G_n of open sets is open; that is, $\bigcap_{i=1}^n G_i$ is open.
- (d) The union of any finite collection F_1, \ldots, F_n of closed sets is closed; that is, $\bigcup_{i=1}^n F_i$ is closed.
- 13. In vector spaces, metrics are usually defined in terms of norms which measure the length of a vector. If V is a vector space defined over \mathbb{R} , then a norm is a function from vectors to real numbers, denoted by $||\cdot||$, satisfying:
 - (i) $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$,
 - (ii) For any $\lambda \in \mathbb{R}$, $||\lambda x|| = |\lambda|||x||$,
 - (iii) $||x + y|| \le ||x|| + ||y||$.

Prove that every norm defines a metric.

14. Let M be a metric space with metric d. Show that d_1 defined by

$$d_1(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

is also a metric on M. Observe that M itself is bounded in this metric.

15. Let A and B be two subsets of a metric space M. Recall that A° , the interior of A, is the set of interior points of A. Prove the following:

$$a)A^{\circ} \cup B^{\circ} \subset (A \cup B)^{\circ}, \quad b)A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$$

Give an example of two subsets A and B of the real line such that $A^{\circ} \cup B^{\circ} \neq (A \cup B)^{\circ}$.

- 16. Let A be a subset of a metric space M. Recall that \overline{A} , the closure of A, is the union of A and its limit points. Recall that a point belongs to the boundary of A, ∂A , if every open ball centered at the point contains points of A and points of A^c , the complement of A. Prove that:
 - (a) $\partial A = \overline{A} \cap \overline{A^c}$
 - (b) $p \in \partial A \iff p \text{ is in } \overline{A}, \text{ but not in } A^{\circ} \text{ (symbolically, } \partial A = \overline{A} \backslash A^{\circ})$
 - (c) ∂A is a closed set
 - (d) A is closed $\iff \partial A \subseteq A$
- 17. Show that, in \mathbb{R}^n with the usual (Euclidean) metric, the closure of the open ball $B_R(p)$, R > 0, is the closed ball

$$\{q \in \mathbb{R}^n : d(p,q) \le R\}.$$

Give an example of a metric space for which the corresponding statement is false.

18. Prove directly from the definition that the set $K \subseteq \mathbb{R}$ given by

$$K = \{0, 1, \frac{1}{2}, \frac{1}{3}, \dots \frac{1}{n}, \dots \}$$

is compact.

19. Let K be a compact subset of a metric space M, and let $\{\mathcal{U}_{\alpha}\}_{{\alpha}\in I}$ be an open cover of K. Show that there is a positive real number δ with the property that for every $x\in K$ there is some $\alpha\in I$ with

$$B_{\delta}(x) \subseteq \mathcal{U}_{\alpha}$$

- 20. Let M be a non-empty set, and let d be a real-valued function of ordered pairs of elements of M satisfying
 - (a) $d(x,y) = 0 \iff x = y$
 - (b) $d(x,y) \le d(x,z) + d(y,z)$.

Show that d is a metric on M.

- 21. Determine the boundaries of the following sets, $A\subseteq X$:
 - (i) $A = \mathbb{Q}, X = \mathbb{R}$
 - (ii) $A = \mathbb{R} \backslash \mathbb{Q} \ X = \mathbb{R}$
 - (iii) $A = (\mathbb{Q} \times \mathbb{Q}) \cap B_R(0) \ X = \mathbb{R}^2$
- 22. Describe the interior of the Cantor set.
- 23. Let M be a metric space with metric d, and let d_1 be the metric defined above (in problem 2). Show that the two metric spaces (M, d), (M, d_1) have the same open sets.