

8.2.2 配合物的价键理论与配离子的空间构型(二)

配位键类型——内轨配键、外轨配键

▶ 内轨配键:由次外层(n-1)d与最外层ns、 np轨

道杂化所形成的配位键

由内轨配键形成的配合物---内轨型配合物

如 $[Fe(CN)_6]^{3-}$ 、 $[Co(NH_3)_6]^{3+}$ 、 $[Ni(CN)_4]^{2-}$

●外轨配键:全部由最外层ns、np、nd轨道杂化

所形成的配位键

由外轨配键形成的配合物---外轨型配合物

如 $[FeF_6]^{3-}$ 、 $[Co(NH_3)_6]^{2+}$ 、 $[Ni(NH_3)_4]^{2+}$

配离子的杂化轨道类型是由中心离子的电子构型、 电荷数、配位数及配位原子的电负性等因素决定的。

影响因素:

• 中心离子的电子构型

离子的电子 构型	形成配合物类型	实例		
d ¹⁰	外轨型	Cu+、Ag+、Zn ²⁺		
d ⁸	大多数为内轨型	Ni ²⁺ 、Pt ²⁺ 、Pd ²⁺		
$d^4 \sim d^7$	内轨型、外轨型	Fe ³⁺ 、Co ²⁺		

影响因素:

• 中心离子的电荷

电荷增多,易形成内轨型配合物

[Co(NH₃)₆]²⁺ 外轨型配合物

[Co(NH₃)₆]³⁺ 内轨型配合物

影响因素:

● 配位原子电负性

电负性	易形成 配合物类型	实例
大	外轨型	F、Cl、O
小	内轨型	C(CN- CO)

2. 配合物的稳定性、磁性与键型关系

稳定性 同一中心离子形成相同配位数

的配离子, 稳定性: 内轨型 > 外轨型

	[FeF ₆] ³⁻	[Fe(CN) ₆] ³⁻	[Ni(NH ₃) ₄] ²⁺	[Ni(CN) ₄] ²⁻
杂化 轨道	sp ³ d ²	d ² sp ³	sp ³	dsp ²
配键类型	外轨型	内轨型	外轨型	内轨型
/ √f	1014	1042	10 7. 96	10 31. 3

根据 $\mu = \sqrt{n(n+2)}$ 可用未成对电子数目n估算磁矩 μ 。

n(未成对电子数)	0	1	2	3	4	5
μ (理)/B.M.	0	1.73	2.83	3.87	4.90	5.92

 μ 磁矩,单位为波尔磁子,符号 B.M.

	$[\mathbf{FeF}_6]^{3-}$	[Fe(CN) ₆] ³⁻	
μ /B.M.	5.90	2.0	
n(未成对电子数)	5	1	
Fe³+的d电子构型	d ⁵		
杂化轨道	sp ³ d ²	d^2sp^3	
配键类型	外轨型	内轨型	

对价键理论的评价

对价键理论的评价:

- 很好地解释了配合物的空间构型、磁性、稳定性。
- 直观明了,使用方便。
- 无法解释配合物的颜色(吸收光谱)。