Nombre completo y Nro. de legajo:

	1	2	3	4	5	Calif.
ſ						

Juegos y comportamiento estratégico (grupo 3) Parcial (simulacro) - 8 de abril de 2022

Cada ejercicio vale 2 puntos. Los requisitos mínimos para aprobar son obtener 1 punto en el ejercicio 1, 2 en cualquiera de los otros ejercicios y 4 en total. Buena suerte y **justifique todas sus respuestas**.

1. (Ejercicio teórico.) Explicar qué es una estrategia y qué debe cumplir para pertenencer al conjunto

$$M_1 = \{ s_1 \in S_1 : \text{existe } \sigma_{-1} \in \Delta S_{-1} \text{ tal que } s_1 \in MR_1(\sigma_{-1}) \}.$$

Ayuda: plantee un ejemplo numérico.

2. Hallar todos los equilibrios de Nash del siguiente juego dado en forma normal por

	X	Y	Z
A	1,1	8, 2	0, 1
B	2,8	5, 5	3, 4
C	1,4	6, 3	4,2
D	1, 4	4, 7	2,8

- 3. Tres jugadoras deben decidir cómo dividirse un peso. Eligen simultáneamente con cuántos centavos quisieran quedarse: c_1 para la primera, c_2 para la segunda y c_3 para la tercera. Además $0 \le c_1 \le 1/2$, $0 \le c_2 \le 1/2$ y $0 \le c_3 \le 1/2$. Si $c_1 + c_2 + c_3 \le 1$ entonces reciben las sumas de dinero elegidas y si $c_1 + c_2 + c_3 > 1$ entonces las tres reciben cero centavos. Encuentre todos los equilibrios de Nash de este juego.
- **4.** (Juego de la ubicación.) Consideremos un juego simultáneo y simétrico de dos jugadoras en el cual cada una debe elegir una las siguientes cinco columnas

I	II	III	IV	V
60	60	n	60	60

donde n es un número positivo. El conjunto de estrategias es $S_1 = S_2 = \{I, II, III, IV, V\}$. La función de pagos $u_1(s_1, s_2)$ de la jugadora 1 es igual a la suma de la fila inferior de cada columna que se encuentra más próxima a s_1 y la mitad de la fila inferior de cada columna que se encuentre a igual distancia de s_1 que de s_2 . De forma simétrica es la función de pagos de la jugadora 2. Hallar, para cada jugadora, la única estrategia (pura) racionalizable.

5. (Subasta discreta de primer precio.) Consideremos una subasta con $n \ge 2$ jugadoras cuya valuación del bien es

$$v_1 > v_2 > \dots > v_n > 0$$

donde donde cada v_i es un número entero positivo ($v_i \in \mathbb{N}$ para todo i). La ganadora de la subasta (por hacer la mayor oferta) paga lo que ofertó y en caso de empate el objeto se adjudica a la jugadora con la valuación más alta. Las ofertas deben ser número enteros. Consideremos el perfil de estrategias ($v_2 - 1, v_2 - 1, b_3, \dots, b_n$) donde $v_i \le v_i - 1$ si $v_i \ge 3$. Mostrar que este perfil de estrategias es un equilibrio de Nash.

¹Por ejemplo $u_1(I, II) = 60$, $u_2(I, II) = n + 60 \times 3$ y $u_1(I, III) = 60 + 60/2$.

Resoluciones

1. Una estrategia es un plan de acción completo, es una colección de acciones, una y solo una, para cada conjunto de información. Para que una estrategia s_1 pertenezca a M_1 debe existir σ_{-1} tal que si todas las demás jugadoras usan σ_{-1} , jugar s_1 es mejor respuesta. Es decir, paga, al menos, tan bien como cualquier otra estrategia s_1' (siempre frente al hecho de que las demás usan σ_{-1}).

De igual forma, $s_1 \in M_1$ si existe $\sigma_{-1} \in \Delta S_{-1}$ tal que

$$u_1(s_1, \sigma_{-1}) \ge u_1(s_1', \sigma_{-1})$$

para todo $s_1' \in S_1$.

2. Notemos que, para la jugadora 1, la estrategia *B* domina a la *D*. Como buscamos los equilibrios de Nash podemos eliminar jugar *D* de nuestro análisis. Si no consideramos *D* entonces, para la jugadora 2, *Y* domina a *Z*. Enotonces debemos analizar

	X	Y
A	1,1	8, 2
B	2,8	5, 5
C	1,4	6, 3

y veamos que C está dominada. Consideremos la estrategia mixta $\sigma_1=(p,1-p,0)^2$ para la primera jugadora. Si σ_1 domina a C entonces

$$u_1(C, X) = 1 < u_1(\sigma_1, X) = p + 2(1 - p) = 2 - p \leftrightarrow p < 1$$

 $u_1(C, Y) = 6 < u_1(\sigma_1, Y) = 8p + 5(1 - p) = 3p + 5 \leftrightarrow 1/3 < p$

con lo cual (1/2, 1/2, 0) domina a C y, también, podemos eliminarla del análisis. Entonces nos queda estudiar

	X	Y
A	1,1	8, 2
B	$\underline{2},\underline{8}$	5,5

y marcando las mejores respuestas nos queda que (A,Y) y (B,X) son equilibrios (puros) de Nash. ¿Hay alguno mixto? Para esto si 2 juega (q,1-q) necesitamos que 1 esté indiferente. Así

$$u_1(A, (q, 1-q)) = q + 8(1-q) = 8 - 7q = u_1(B, (q, 1-q)) = 2q + 5(1-q) = 5 - 3q$$

entonces debe ser 8 - 7q = 5 - 3q y 3 = 4q, es decir, q = 3/4. Notemos que por simetría, si hacemos la cuenta para u_2 llegamos al mismo resultado. Luego tenemos un equilibrio mixto de Nash dado por ((3/4, 1/4), (3/4, 1/4)). Si queremos escribir todos los equilibrios en el juego original nos quedan

$$(A, Y), (B, X), ((3/4, 1/4, 0, 0), (3/4, 1/4, 0)).$$

3. Queremos estudiar los equilibrios de Nash, para esto primero pensemos el problema informalmente desde la perspectiva de la jugadora 1. Notemos que si la suma da mayor a 1 entonces los pagos son cero $(c_1^* + c_2^* + c_3^* > 1)$. Entonces para que 1 tenga incentivos a desviarse debe elegir c_1 tal que $c_1 + c_2^* + c_3^* \leq 1$. Por otro lado, si $c_1^* + c_2^* + c_3^* < 1$ siempre habrá incentivos a aumentar un poquito c_1^* (si nos centramos en la primera jugadora, también las demás tendrán incentivos a cambiar) salvo que $c_1^=1/2$, pero, en ese caso, alguna otra tendrá incentivos a aumentar. Por último notemos que si $c_2^* = c_3^* = 1/2$ entonces haga lo que haga 1, su pago será nulo.

Ahora formalicemos, con lo anterior afirmamos que (c_1^*, c_2^*, c_3^*) es un equilibrio de Nash si y solo si

- o bien $c_1^* + c_2^* + c_3^* = 1$,
- o bien $c_i^* = 1/2$ para i = 1, 2, 3.

Para ver esto notemos que si $c_1^* + c_2^* + c_3^* = 1$ y cualquier jugadora i cambia su estrategia a c_i entonces o bien $c_i < c_i^*$ (notar que esto solo es posible si $c_i^* > 0$) y su pago se reduce, por lo cual no tiene incentivos a desviarse; o bien $c_i > c_i^*$ entonces $c_1 + c_2^* + c_3^* > 1$ y su pago pasa a ser nulo, por lo cual tampoco tiene incentivos a desviarse. Además si $c_i^* = 1/2$ para i = 1, 2, 3 entonces el pago de todas las jugadoras es nulo y ninguan puede cambiar tal que su propio pago se vuelva positivo: para que haya algún pago la

 $^{^2}$ Estamos trabajando como si solo hubiera tres estrategias para la jugadora 1, descartamos por completo D de nuestro análisis.

jugadora i debe cambiar a c_i tal que $c_i + c_j^* + c_k^* \le 1$ ($j, k \ne i$), pero como $c_j^* + c_k^* = 1$ esto solo puede suceder si $c_i = 0$ y su pago sigue siendo cero, por lo cual no hay incentivos a desviarse de c_i^* .

Resta ver que si (c_1^*, c_2^*, c_3^*) es un Nash entonces cumple alguno de los dos puntos. Razonemos por el absurdo y supongamos que no cumple ninguno de los dos puntos. Para que no se cumplan los dos puntos debe suceder que $c_1^* + c_2^* + c_3^* \neq 1$ y algún c^* deber ser menor a 1/2. Primero supongamos que $c_1^* + c_2^* + c_3^* > 1$. Si $c_1^* < 1/2$. Luego $c_1^* + c_2^* < 1$ (recordemos que $c_2^* \leq 1/2$) por lo tanto la jugadora 3 puede cambiar a $c_3 = 1 - c_1^* + c_2^* > 0$ y pasar de un pago nulo (pues teníamos que $c_1^* + c_2^* + c_3^* > 1$) a uno positivo: tiene incentivos a desviarse de (c_1^*, c_2^*, c_3^*) , es decir, no puede ser un equilibrio de Nash. Notemos que por simetría llegamos al mismo resultado si suponemos que $c_2^* < 1/2$ o $c_3^* < 1/2$. Segundo, si supongamos que $c_1^* + c_2^* + c_3^* < 1$. Luego, como para alguna jugadora i sucede que $c_i^* < 1/2$ esta tiene incentivos a aumentar su pago pidiendo un $c_i > c_i^*$ y (c_1^*, c_2^*, c_3^*) tampoco puede ser un equilibrio de Nash. Entonces el ejercicio queda resuelto.

4. Estudiemos las estrategias dominadas y hagamos iteración. Para esto veamos los valores de u_1 :

y	I	II	III	IV	V
$u_1(I,y)$	120 + n/2	60	90	120	120 + n/2
$u_1(II,y)$	180 + n	120 + n/2	120	120 + n/2	120 + n
$u_1(III,y)$	150 + n	120 + n	120 + n/2	120 + n	150 + n

Notemos que la estrategia II domina (estrictamente) a I. Por simetría, la estrategia V también está dominada. Entonces ninguna jugadora racional usa las estrategias I o V. Ahora miremos nuevamente la tabla sabiendo que 2 nunca usa I o V, entonces III domina a II. Y, de nuevo por simetría, también sucede que III domina a II para la jugadora 2. Por todo esto lo racional es que ambas jugadoras usen III.

5. Veamos que el perfil de estrategias $(v_2-1,v_2-1,b_3,\ldots,b_n)$ es un equilibrio de Nash. El pago de la jugadora 1 es

$$v_1 - (v_2 - 1) = v_1 - v_2 + 1 > 0.$$

Si la jugadora 1 aumenta su oferta entonces disminuye su ganacia y si reduce su oferta deja de ganar el bien y su pago es nulo, por lo tanto no tiene incentivos a desviarse. Para cualquier otra jugadora distinta de 1 su pago es nulo y solo puede cambiar si gana el bien, pero para esto debe ofertar más que la jugadora 1, es decir, debe ofertar, al menos, v_1 . Pero en este caso su utilidad pasa a ser negativa, por lo cual no tiene incentivos a desviarse. Por lo tanto $(v_2-1,v_2-1,b_3,\ldots,b_n)$ es un equilibrio de Nash.

³Observar que debido a que n > 0 entonces 120 + n/2 < 120 + n.