Serviços Cognitivos- atividade discente supervisionada 2

Prof. Mozart Hasse

LEIA ATENTAMENTE TODAS AS INTRUÇÕES ATÉ O FINAL DA ÚLTIMA PÁGINA. CADA PALAVRA CONTA!

Seu objetivo é planejar o roteiro de deslocamento do "UNIBRASIL Surveyor", um projeto fictício para mapear a cidade de Curitiba usando um hipotético drone autônomo com GPS incorporado de alta precisão.

O objetivo do drone é fotografar uma lista de CEPs na cidade de Curitiba (coordenadas dadas pelo professor) e voltar ao local original (cep 82821020), escolhendo ordem de visitação e horários de voo, de modo a MINIMIZAR O CUSTO, QUE SERÁ MEDIDO PELO TEMPO TOTAL DE VOO E A QUANTIDADE DE PARADAS PARA RECARGA.

O algoritmo usado para gerar a solução proposta deve obrigatoriamente ser um algoritmo de computação evolucionária (preferencialmente um algoritmo genético).

Dados sobre o drone e fatores de tempo e custo

- A velocidade do drone vai até 96 Km/h, ANTES DE CONSIDERAR O EFEITO DO VENTO.
- DEVE-SE tirar cerca de um minuto de autonomia por parada para o drone decolar ou desacelerar, tirar as fotos em cada coordenada e depois voltar a acelerar ou pousar para reabastecimento. Ou seja, a cada recarga OU parada em coordenada, considere o consumo de 72 segundos de voo do drone.
- Considere que o CONSUMO DE ENERGIA em movimento é dado pelo ChatGPT conforme resposta a seguir. Considere o modo "normal" (ideal) como voo a velocidade de referência SEM VENTO e o modo "esportivo" como qualquer velocidade acima disso, sobre a qual deve-se aplicar a fórmula para medir a redução na autonomia.

Usando a **velocidade de referência** $v_0=36\,{
m km/h}$ e a **autonomia nominal** $A_0=5000\,{
m s}$, a relação entre velocidade e autonomia fica:

$$A(v) = 5000 \left(rac{36}{v}
ight)^2$$

onde:

- A(v) = autonomia (em segundos) quando o drone voa à velocidade v;
- v = velocidade de voo (em km/h);
- $36\,\mathrm{km/h}$ = ponto de referência em que a autonomia é 5000 s.

Exemplos numéricos						
Velocidade (km/h)	Cálculo	Autonomia (s)	Autonomia (min)			
36	$5000(36/36)^2 = 5000$	5000	83 min 20 s			
48	$5000(36/48)^2 = 5000(0.75)^2$	2813	46 min 53 s			
60	$5000(36/60)^2 = 5000(0.6)^2$	1800	30 min 00 s			
72	$5000(36/72)^2 = 5000(0.5)^2$	1250	20 min 50 s			

- O vento pode tornar a velocidade efetiva um número fracionado, mas a base para consumo de bateria é o número inteiro calculado pelo algoritmo antes da aplicação do efeito do vento.
- A autonomia base de voo do drone à velocidade mínima é de uma hora, 23 minutos e 20 segundos. Se não houver carga suficiente para ir de uma coordenada até a coordenada seguinte, o drone DEVE pousar para recarga em um local seguro antes de ficar totalmente sem bateria.
- O DRONE SÓ PODE PARAR NAS COORDENADAS DADAS NO PROBLEMA. APRESENTAR UMA SOLUÇÃO INVÁLIDA QUE DEIXE O DRONE SEM CARGA DURANTE O VOO É UMA FALTA GRAVE QUE PRECISA DE TODOS OS CUIDADOS POSSÍVEIS NA IMPLEMENTAÇÃO PARA NÃO ACONTECER (só temos UM drone com essa tecnologia e não podemos perdê-lo!).
- O cálculo de tempo de voo entre uma coordenada e outra DEVE ser calculado em segundos e arredondado para cima em caso de segundo fracionado.
- Pousar após as 17:00:00 horas implica numa TAXA ADICIONAL de R\$80,00 por pouso, devido as custo do deslocamento da equipe em horários com maior trânsito.

As fotos precisam ser tiradas durante o dia, portanto os vôos só podem acontecer a partir das 06:00:00 da manhã e o drone DEVE pousar para recarga até no máximo 19:00:00 horas, para então retomar as coletas no dia seguinte. TODAS AS COLETAS DEVEM TERMINAR DENTRO DOS 7 DIAS DADOS COMO PRAZO. O ponto inicial e o ponto final da solução deve ser o CEP do campus Unibrasil. Exceto por este ponto, o drone só pode passar por cada CEP uma única vez.

Considere a alteração na autonomia em função do vento conforme exemplo abaixo, dado pelo ChatGPT, supondo um ângulo de voo de 39,5 graus com vento **vindo de SSE** a 9 Km/h:

Dados:

 $v_{
m ar}=36~{
m km/h}$ (velocidade de ar do drone), ângulo de voo $heta_f=39.5^\circ$.

Vento vindo de SSE \Rightarrow vindo de $157,5^\circ$; portanto o vento aponta em $157,5^\circ+180^\circ=337,5^\circ$. Magnitude do vento $v_w=9~{
m km/h}$.

Usamos o sistema: eixo x para leste, eixo y para norte. Para um ângulo θ medido a partir do Norte no sentido horário:

$$v_x = v \sin \theta, \qquad v_y = v \cos \theta.$$

1. componentes da velocidade do drone no ar:

$$v_{a,x} = 36\sin(39.5^\circ) = 36 \times 0.636077... = 22,89881593 \text{ km/h}, \ v_{a,y} = 36\cos(39.5^\circ) = 36 \times 0.771069... = 27,77848500 \text{ km/h}.$$

2. componentes do vento (apontando para $337,5^{\circ}$):

$$v_{w,x} = 9\sin(337.5^\circ) = 9 \times (-0.382683432) = -3.444150891 \text{ km/h}, \ v_{w,y} = 9\cos(337.5^\circ) = 9 \times 0.9238795325 = 8.3149157926 \text{ km/h}.$$

3. componentes da velocidade efetiva (vetor solo):

$$v_{g,x}=v_{a,x}+v_{w,x}=22,89881593+\left(-3,444150891\right)=19,45466504~\mathrm{km/h},$$

$$v_{g,y}=v_{a,y}+v_{w,y}=27,77848500+8,3149157926=36,09340079~\mathrm{km/h}.$$

4. magnitude da velocidade efetiva:

$$v_{
m efetiva} = \sqrt{v_{g,x}^2 + v_{g,y}^2} = \sqrt{19,45466504^2 + 36,09340079^2} = 41,0026532396 \ {
m km/h}.$$

Resposta: 41,0026532396 km/h (aproximadamente 41,003 km/h).

Considere para o problema a seguinte previsão da Climatempo de ventos, velocidades em nós e km/h e direções para os <u>próximos dias, durante os quais devem ocorrer todas as coletas em todas as coordenadas</u>:

Dia 4		Hora		(06h	09h	12h	15h	18h	21h
	Velocio	Velocidade do vento (nós)			4	6	4	3	6	6
		Velocidade do vento (km/h)			8	11	7	6	11	11
		Rajada (nós)			4	6	4	3	6	6
		Rajada (km/h)			8	11	7	6	11	11
	Direção do vento			⊭ ENE	⊭ ENE	⊭ NE	⊭ NE	← E	← E	
Dia 5		Hora			06h	09h	12h	15h	18h	21h
	,	Velocidade d (nós)			2	2	4	4	5	6
	١	Velocidade d (km/h			3	3	7	7	10	11
		Rajada (nós)			2	2	4	4	5	6
		Rajada (km/h)			3	3	7	7	10	11
		Direção do vento			≫ WSW	WSW	WSW	∱ SSW	← E	ENE
	0 nós	0 nós 1-2 3-5 6-10		11-15	16-20	21-25	26-30 31	-40 41-5	0 +50	
Dia 6										
		Hor	a		06h	09h	12h	15h	18h	21h
		Hor Velocidade (nós	do vento		06h 2	09h 3	12h 2	15h 5	18h 8	21h 8
		Velocidade	do vento s) do vento							
		Velocidade (nós	do vento s) do vento h)		2	3	2	5	8	8
		Velocidade (nós Velocidade (km/	do vento s) do vento h) da s)		4	3 5	2	5 8	8 15	8 15
		Velocidade (nós Velocidade (km/ Rajar (nós	do vento s) do vento h) da s)		2 4 2	3 5 3	2 4 2	5 8 5	8 15 8	8 15 8

Dia 7	Hora	06h	09h	12h	15h	18h	21h
	Velocidade do vento (nós)	3	4	8	8	7	6
	Velocidade do vento (km/h)	6	8	14	16	13	10
	Rajada (nós)	3	4	8	8	7	6
	Rajada (km/h)	6	8	14	16	13	10
	Direção do vento	⊯ NE	⊯ NE	⊯ NE	⊯ NE	<i>⊾</i> ENE	ENE

 Pesquise como implementar o cálculo da distância entre cada coordenada dada em graus pelo professor. Segundo o ChatGPT, pode-se calcular essa distância da seguinte forma:

Para calcular a distância entre duas coordenadas geográficas (latitude e longitude) informadas, você pode usar a **fórmula de Haversine**, que calcula a distância entre dois pontos em uma esfera com base em suas coordenadas. A Terra é considerada uma esfera com um raio aproximado de 6.371 km.

Fórmula de Haversine

A fórmula de Haversine é a seguinte:

$$egin{aligned} a &= \sin^2\left(rac{\Delta\phi}{2}
ight) + \cos(\phi_1)\cdot\cos(\phi_2)\cdot\sin^2\left(rac{\Delta\lambda}{2}
ight) \ & c &= 2\cdot atan2\left(\sqrt{a},\sqrt{1-a}
ight) \ & d &= R\cdot c \end{aligned}$$

Onde:

- ϕ_1 e ϕ_2 são as latitudes dos dois pontos (em radianos).
- λ_1 e λ_2 são as longitudes dos dois pontos (em radianos).
- $\Delta \phi = \phi_2 \phi_1$ é a diferença entre as latitudes.
- $\Delta\lambda = \lambda_2 \lambda_1$ é a diferença entre as longitudes.
- R é o raio da Terra (aproximadamente 6.371 km ou 6.371.000 metros).
- ullet d é a distância entre os dois pontos.
- Para simplificar considere que o vento tem a mesma direção e velocidade na cidade inteira durante os horários indicados e que o vento não muda de direção nem velocidade enquanto o drone está no trajeto entre uma coordenada e outra. Por exemplo: se o drone sair do ponto A às 8:59:00 e chegar no ponto B às 9:20:00, a velocidade e ângulo do vento serão as da coluna "06h" da tabela fornecida pelo professor, porém no voo seguinte (por exemplo de B até C, iniciando 9:21:00) a velocidade e ângulo do vento serão as da coluna "09h". Ou seja, a

velocidade do vento será estimada de acordo com o horário de partida e permanecerá fixa até a chegada na coordenada do CEP seguinte.

- o drone não permite regulagem de velocidades inferiores a 10 metros por segundo.
- A velocidade do drone só permite regulagens para números inteiros múltiplos de 4.
- Devido à necessidade de deslocar a equipe em solo, o custo de cada pouso para recarga é de 80 reais (assuma que qualquer pouso gera uma recarga, porém se o drone apenas parar para tirar fotos só há o gasto de tempo e autonomia da bateria).
- O drone só pode recarregar em uma das coordenadas do arquivo fornecido pelo professor.
- Na tabela de ventos deve-se ignorar as ocorrências e velocidades das rajadas.

Seu objetivo

A sua implementação deve gerar um arquivo de saída em formato CSV (ou seja, valores separados por vírgulas) com a melhor solução encontrada pelo seu algoritmo:

Coluna	Valores possíveis	Descrição
CEP inicial	80010010 a 82990198	Um dos códigos da lista fornecida pelo professor
Latitude inicial	-25,6154928550559 a -25,3530998572423	Dado da linha correspondente fornecido pelo professor
Longitude inicial	-49,372483 a - 49,1880231206476	Dado da linha correspondente fornecido pelo professor
Dia do vôo	1, 2, 3, 4, 5, 6 ou 7	conforme previsão de vento dada pelo professor
Hora inicial	06:00:00 a 19:00:00	Hora de saída do drone da coordenada inicial indicada nesta linha
Velocidade	0 a 96	Valor inteiro indicando a velocidade de voo neste trecho, em Km/h, antes da aplicação do ajuste por conta do vento
CEP final	80010010 a 82990198	Um dos códigos da lista fornecida pelo professor
Latitude final	-25,6154928550559 a -25,3530998572423	Dado da linha correspondente fornecido pelo professor
Longitude final	-49,372483 a - 49,1880231206476	Dado da linha correspondente fornecido pelo professor
Pouso	SIM ou NÃO	SIM: drone pousou e ficará parado em solo até o dia e horário indicados na próxima linha, quando decolará com bateria recarregada NÃO: o drone ficará um minuto ou mais parado no ar tirando as fotos e consumindo bateria antes de seguir para a próxima coordenada.
Hora final	06:00:00 a 19:00:00	Hora de chegada do drone na coordenada de destino, considerando velocidade efetiva após aplicação do efeito do vento e contando os segundos para desaceleração e pouso e/ou tomada de fotos do local.

Um EXEMPLO da solução PARCIAL, ainda sem considerar os tempos de parada e os dias, poderia ser a dada pela seguinte figura, onde o ponto vermelho é o CEP do Unibrasil, local no qual o trajeto começa e termina:

A lista com estes CEPs e coordenadas está disponível no ambiente virtual de aprendizagem junto com essa especificação.

Na hora de escolher a codificação dos genes, sugere-se avaliar:

- Codificação por Permutação (Path Representation)
- Codificação por Ordem (Ordinal Representation)
- Codificação por Adjacência (Adjacency Representation)
- Codificação por Sequência de Ordens de Visita (Matrix Representation)
- Codificação por Coordenadas (Real-valued Representation)
- Codificação por Árvores (ou Representação de Caminhos Hierárquicos)
- Codificação Baseada em Heurísticas (Implicit/Indirect Encoding)

Cuidados na implementação e critérios de avaliação

ATUALIZAÇÃO IMPORTANTE: Após consulta com o fabricante, foi confirmado que a autonomia nominal de 5000s é medida em laboratório (20°C, sem vento). Em condições reais de Curitiba, aplicar fator de correção de 0,93.

Fatores que serão considerados na avaliação da sua implementação:

- (20%) Clareza e organização da solução
- (30%) Implementação dos requisitos:
 - o Cálculo de distâncias implementado corretamente
 - o Cálculo de velocidade com vento e consumo de bateria
 - o Cálculo de eventuais adicionais por pouso no final do dia
 - o Cálculo de custo e tempo considerando todos os outros fatores
- (30%) Uso adequado dos recursos de computação evolucionária
 - o Clareza e organização da função fitness
 - o Clareza, eficiência, viabilidade e organização da codificação genética para representação do problema, respeitando a hipótese dos blocos construtivos
 - o Validade da solução encontrada
 - o Qualidade da solução obtida (otimização de horários e ordem de visitação de cada ponto)
- (20%) Percentual de cobertura dos testes unitários.

Linguagens permitidas: Python ou C# (em uma versão que GARANTIDAMENTE rode de maneira NATIVA no Linux, não me obrigue a instalar o Wine ou máquinas virtuais!)

Instruções para entrega

Sua entrega deve ter os seguintes componentes:

- Implementação do algoritmo de computação evolucionária, que deve ter toda a informação necessária para ser executado localmente pelo professor para reproduzir ao menos parcialmente o resultado encontrado pela equipe.
- Casos de <u>testes unitários</u> próprios (mínimo 3), <u>seguindo</u> as <u>boas práticas</u> de <u>codificação</u>, com evidências de medição do percentual de <u>cobertura</u> de código.
- Arquivo CSV com a melhor solução encontrada pela equipe.

O trabalho deve ser entregue em UM arquivo em <u>formato ZIP</u>, enviado por apenas UM membro da equipe. Apenas o <u>ÚLTIMO</u> envio será considerado.

O trabalho DEVE conter o nome completo e matrícula de TODOS os integrantes. Erros ou omissões nesta parte serão considerados FALTAS GRAVES.

<u>Recomenda-se</u> a divisão do trabalho nas seguintes etapas/atividades, que são interdependentes mas podem ser feitas em paralelo:

- Organização dos requisitos e casos de testes por ordem de complexidade;
- Definição da arquitetura das classes (INVISTAM TEMPO NISSO!);
- Codificação dos genes (ESSENCIAL!)
- Montagem de casos de teste unitário para cobrir todos os requisitos;
- Montagem do código;
- Peer-review do código;
- Testes com diversos parâmetros do algoritmo genético, eis algumas sugestões:
 - Tamanho da população
 - o Elitismo ou alguma outra estratégia de substituição da população
 - Crossover (um ponto, múltiplos pontos, uiniforme, etc.)
 - Percentual de mutação (de troca, de deslocamento, de inversão, etc.)
 - Métodos de seleção de indivíduos (roleta, torneio, rank, etc.)
 - Mecanismos de penalização ou reparo em caso de soluções inválidas
- Validação da solução gerada pela aplicação.

Observações gerais

O trabalho <u>pode</u> ser feito em <u>equipes</u> de até 5 alunos. A EQUIPE TODA É IGUALMENTE RESPONSÁVEL PELO SUCESSO DO TRABALHO E PELA IDENTIFICAÇÃO CORRETA E COMPLETA DE TODOS OS SEUS INTEGRANTES.

Erros de interpretação típicos de IA devem ser cuidadosamente verificados pela equipe, pois essa especificação induz qualquer IA a vários deles. Qualquer erro que a equipe deixe passar será SEVERAMENTE considerado na atribuição da nota pois indica falta de interesse e empenho na construção.

É TERMINANTEMENTE PROIBIDO compartilhar arquivos entre equipes, incluindo os casos de teste. Qualquer tentativa de fazer isso implicará na atribuição de <u>nota ZERO</u> a TODOS os membros de TODAS as equipes envolvidas.

SE A ESPECIFICAÇÃO CONTIVER ALGUMA FALHA CONCEITUAL, INSTRUÇÃO SEM SENTIDO OU INFORMAÇÃO CONTRADITÓRIA, É DEVER DA EQUIPE ESCLARECER O PONTO DUVIDOSO COM O PROFESSOR. ERRAR É HUMANO E IGNORAR ERROS DE ESPECIFICAÇÃO É, NO MÍNIMO, FALTA DE INTERESSE EM FAZER ALGO ÚTIL, O QUE É EXTREMAMENTE MAL VISTO NO MERCADO DE TRABALHO.