

Podstawy Sztucznej Inteligencji (PSZT)

Paweł Wawrzyński

Uczenie maszynowe Klasyfikacja i klasyfikatory

Plan na dziś

- Maszyny wektorów nośnych
- Drzewa decyzyjne i lasy losowe
- Gradient boosting

Maszyny wektorów nośnych Support Vector Machines – SVM

- Klasyfikator
- Na podstawie danych buduje funkcję

$$f(x)>0 \rightarrow x \in Klasa$$

 $f(x) \le 0 \rightarrow x \notin Klasa$

SVM – przypadek liniowo separowalny

 x_i - i-ty obraz y_i =1 jeśli x_i \in Klasa y_i =-1 jeśli x_i \notin Klasa

Funkcja rozgraniczająca $f(x)=w^Tx-b$

$$(w,b) = \underset{w,b}{\operatorname{arg min}} ||w||^2$$

przy ograniczeniach $w^T x_i - b \ge 1$ dla $x_i \in K$ lasa $w^T x_i - b \le -1$ dla $x_i \notin K$ lasa inaczej, przy ograniczeniach $(w^T x_i - b) y_i \ge 1$

SVM – przypadek nieseparowalny liniowo

$$f(x) = w^{T} x - b$$

$$(w, b) = \underset{w, b}{\operatorname{arg min}} \sum_{i} \xi_{i} + \lambda ||w||^{2}$$

$$\lambda > 0$$

przy ograniczeniach dla każdego i: $\xi_i \ge 0$ $(w^T x_i - b) y_i \ge 1 - \xi_i$

Wniosek z powyższego $\xi_i = \max\{1 - f(x_i)y_i, 0\}$

Twierdzenie o reprezentacji $w = \sum_{i} \alpha_{i} y_{i} x_{i}$ $\alpha_{i} \neq 0$ tylko dla $i \in SVs$

SVM – postać nieliniowa

 Zasada taka sama, ale nowa przestrzeń

$$z = \phi(x)$$

$$w = \sum_{i} \alpha_{i} y_{i} \phi(x_{i})$$

$$f(x) = w^{T} \phi(x) - b$$

$$(\alpha_{1...N}, b) = \underset{\alpha_{1...N}, b}{\min} \sum_{i} \max\{1 - f(x_{i}) y_{i}, 0\} + \lambda ||w||^{2}$$

0.8

0.6

SVM – postać nieliniowa

$$f(x) = w^{T} \phi(x) - b$$

$$w = \sum_{i} \alpha_{i} y_{i} \phi(x_{i})$$

$$f(x) = \sum_{i} \alpha_{i} y_{i} \phi(x_{i})^{T} \phi(x) - b$$

Jądra (kernels) SVM

$$\phi(x)^T \phi(y) = k(x, y)$$

liniowe: $k(x, y) = x^T y$

wielomianowe: $k(x, y) = (1 + x^T y)^d$, d > 0

gaussowskie (RBF): $k(x, y) = \exp(-\|x - y\|^2/2\sigma^2)$

SVM – jądro RBF

$$(\alpha_{1...N}, b) = \underset{\alpha_{1...N}, b}{\operatorname{arg \, min}} \sum_{i} \max \{1 - f(x_i) y_i, 0\} + \lambda ||w||^2$$
$$f(x) = \sum_{i} \alpha_i y_i \exp(-||x_i - x||^2 / 2\sigma^2)$$

Indukcja drzew decyzyjnych

- Baza danych przypadków z ich klasyfikacją
- Na jej podstawie
 - → mechanizm decyzyjny w formie drzewa

 Czy Tiger Woods gra w golfa?

Algorytm ID3

```
funkcja ID3( C:zbiór klas,
                R: zbiór atrybutów poza klasą,
                S:zbiór obiektów )
    jeśli S = \emptyset: zwróć błąd
1:
2:
    jeśli wszystkie obiekty w S są tej samej klasy:
3:
       zwróć węzeł zawierający tylko tę klasę
4:
    jeśli R = \emptyset:
5:
        zwróć węzeł zawierający klasę najczęstszą w S
6: D = \text{atrybut maksymalizujacy } InfGain(D, S)
7: d_i = j – ta wartość tego atrybutu, j = 1, 2, ...
     S_i = \{o \in S | D(o) = d_i\}
8:
9:
   zwróć drzewo z korzeniem oznaczonym przez D,
10: krawędziami d_i, j=1,2,..., prowadzącymi do drzew
11: ID3(R-\{D\},C,S_1),ID3(R-\{D\}S_2),...
```

InfGain

- Entropia zbioru, f_i częstość *i*-tej klasy $I(S) = -\sum_i f_i \ln f_i$
- Entropia zbioru podzielonego na podzbiory

$$Inf(D,S) = \sum_{j} \frac{|S_{j}|}{|S|} I(S_{j})$$

Zdobycz informacyjna

$$InfGain(D,S)=I(S)-Inf(D,S)$$

Algorytm C4.5

```
funkcja C 4.5 ( C: zbiór klas,
                 R: zbiór atrybutów poza klasa,
                 S:zbiór obiektów
    T = ID3
1:
    Dla każdego liścia T:
2:
      Dla każdego węzła w na drodze liść-korzeń:
3:
        e_0 = oszacowanie błędu testowego w poddrzewie w
4:
        e_1 = oszacowanie błędu testowego,
5:
           gdyby w zwracał najczęstszą w nim klasę
6:
7:
        jeśli e_0 \ge e_1:
           zastąp poddrzewo liściem zwracającym
8:
           najczęstszą w nim klasę
9:
```

Szacowanie błędu testowego

 e_S – błąd na zbiorze treningowym e_T – szacowany błąd na zbiorze testowym

$$e_T \approx e_S + \frac{\sqrt{\overline{e_S(1-e_S)}}}{|S|}$$

W stronę lasów losowych

- Wadą ID3 jest przeuczenie (overfitting)
- Pomysł:
 - Zbudować wiele różnych drzew na bazie różnych problemów niesprzecznych z danym
 - Klasyfikacja ← dominanta klasyfikacji dokonywanych przez drzewa

Budowa lasu losowego (random forest)

```
procedura Twórz las (C:zbiór klas,
                          R: zbiór atrybutów poza klasą,
                          S:zbiór obiektów
    dla b = 1, ..., B:
   S_b = B obiektów z S wylosowanych ze zwracaniem
2:
3: R_b = |\sqrt{|R|}| atrybutów wylosowanych bez zwracania z R
4: f_b = \text{drzewo decyzyjne zbudowane na podstawie } C, R_b, S_b
funkcja Zaklasyfikuj ( o:obiekt )
1: dla b=1,...,B:
2: c_b = klasa obiektu o wskazana przez f_b
3: zwróć najczęstszą klasę w \{c_1, ..., c_B\}
```

Gradient Boosting - idea

- Zadanie aproksymacji na zbiorze skończonym $\langle x_i, y_i \rangle$, $i \in \{1, ..., n\}$
- Modele

$$\overline{f}_m: R^{n_x} \to R^{n_y}, \quad \gamma_m \in R, \quad \overline{F}_m(x_i) = \sum_m \gamma_m \overline{f}_m(x_i) \approx y_i$$

Funkcja straty

$$q_i: R^{n_y} \to R$$
, np. $q_i(y) = 0.5 ||y - y_i||^2$

- W pętli:
 - Kolejne f_m poprawia błędy dotychczasowego modelu

Gradient Boosting – algorytm

1: Inicjalizacja wartością stałą

$$F_0(x) \equiv \arg\min_{\gamma} \sum_{i=1}^n q_i(\gamma).$$

- 2: Dla m=1 do M:
 - 2.1. Oblicz pseudo-rezidua:

$$r_{i,m} = -\left[\frac{\partial q_i(F_{m-1}(x_i))}{\partial F_{m-1}(x_i)}\right], i = 1,...,n, \text{ np. } r_{i,m} = y_i - F_{m-1}(x_i)$$

- 2.2. Naucz \overline{f}_m używając $\langle x_i, r_{i,m} \rangle$, i = 1, ..., n jako zbioru treningowego
- 2.3. Oblicz γ_m

$$\gamma_m = \arg\min_{\mathbf{y}} \sum_{i=1}^n q_i (F_{m-1}(x_i) + \gamma \overline{f}_m(x_i)).$$

2.4.
$$F_m(x) = F_{m-1}(x) + \gamma_m \overline{f}_m(x)$$

3. Zwróć $F \equiv F_M$

XGBoost – biblioteka

- eXtreme Gradient Boosting
- Algorytm: Gradient Boosting
- \overline{f}_m mają postać drzew
- Do ściągnięcia z github-a
- Projekt rozpoczęty przez Tianqi Chen'a z Distributed Machine Learning Community
- Często wygrywa konkursy na Kaggle.com
- "When in doubt, use xgboost"