PREDICTING CHRONIC KIDNEY DISEASE

Q1. Identify your problem statement

- Here data are number formats, so it comes under Machine Learning.
- Requirement is clear and input and output data are present, so it comes under <u>Supervised Learning</u>.
- Going to predict the chronic kidney disease are present or not, so it meant the Classification.

Q2. Tell basic info about the dataset (Total number of rows, columns)

 Initially the data is 399 rows and 25 columns. Among 25 columns, "classification" feature represents the output/target variable.

Q3. Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

 One hot encoder is done in the original dataset using get_dummies. Because few features are in string format ex: sg, pa, etc. After preprocessing, it has 399 rows and 28 columns

data	iset															
	age	bp	al	su	bgr	bu	sc	sod	pot	hrmo	 pc_normal	pcc_present	ba_present	htn_yes	dm_yes	ca
0	2.000000	76.459948	3.0	0.0	148.112676	57.482105	3.077356	137.528754	4.627244	12.518156	 False	False	False	False	False	
1	3.000000	76.459948	2.0	0.0	148.112676	22.000000	0.700000	137.528754	4.627244	10.700000	 True	False	False	False	False	
2	4.000000	76.459948	1.0	0.0	99.000000	23.000000	0.600000	138.000000	4.400000	12.000000	 True	False	False	False	False	
3	5.000000	76.459948	1.0	0.0	148.112676	16.000000	0.700000	138.000000	3.200000	8.100000	 True	False	False	False	False	
4	5.000000	50.000000	0.0	0.0	148.112676	25.000000	0.600000	137.528754	4.627244	11.800000	 True	False	False	False	False	
394	51.492308	70.000000	0.0	0.0	219.000000	36.000000	1.300000	139.000000	3.700000	12.500000	 True	False	False	False	False	
395	51.492308	70.000000	0.0	2.0	220.000000	68.000000	2.800000	137.528754	4.627244	8.700000	 True	False	False	True	True	
396	51.492308	70.000000	3.0	0.0	110.000000	115.000000	6.000000	134.000000	2.700000	9.100000	 True	False	False	True	True	
397	51.492308	90.000000	0.0	0.0	207.000000	80.000000	6.800000	142.000000	5.500000	8.500000	 True	False	False	True	True	
398	51.492308	80.000000	0.0	0.0	100.000000	49.000000	1.000000	140.000000	5.000000	16.300000	 True	False	False	False	False	

Q4. Develop a good model with good evaluation metric. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.

- I have used following algorithms and evaluated with precision, recall, f1_score, accuracy and ROC AUC to get the best model
 - Support vector classifier
 - Decision Tree
 - o Random Forest
 - Logistic Regression
 - o KNN and
 - o Naïve Bayes Gaussian, Multinomial, Complement, Bernoulli
- So, Naïve Bayes Gaussian and Random Forest are best model in accuracy and roc auc curve.

Q5. All the research values of each algorithm should be documented. (You can make tabulation or screenshot of the results.)

Algorithm	Precisi	Precision	Recall_	Recall	F1-	F1-	Accurac	ROC_AUC
	on_No	_Yes	No	_Yes	score_	score_	у	
					No	Yes		
SVC	0.68	0.90	0.87	0.76	0.76	0.83	0.80	0.868
Decision Tree	0.95	0.96	0.93	0.97	0.94	0.97	0.96	0.987
Random	0.98	0.99	0.98	0.99	0.98	0.99	0.98	0.999
Forest								
Logistic	0.96	0.99	0.98	0.97	0.97	0.98	0.97	0.998
Regression								
KNN	0.66	0.95	0.93	0.71	0.77	0.81	0.79	0.858
Naïve Bayes	0.96	1.00	1.00	0.97	0.98	0.99	0.98	1.000
Gaussian								
Naïve Bayes	0.67	0.98	0.98	0.71	0.79	0.82	0.81	0.909
_								
Multinomial								

Naïve Bayes	0.67	0.98	0.98	0.71	0.79	0.82	0.81	0.909
_								
Complement								
Naïve Bayes	0.85	1.00	1.00	0.89	0.92	0.94	0.93	0.996
– Bernoulli								

Q6. Mention your final model, justify why u have chosen the same.

- Below models are best, because accuracy is 98% for Random Forest and Naïve Bayes- Gaussian.
- Naïve Bayes Gaussian ROC_AUC is performed well, which means it showed the prefect classification probability score.

Algorithm	Precisi on No	Precision Yes	Recall_ No	Recall Yes	F1- score	F1- score	Accurac v	ROC_AUC
	0.1				No	Yes _		
Random Forest	0.98	0.99	0.98	0.99	0.98	0.99	0.98	0.999
Naïve Bayes – Gaussian	0.96	1.00	1.00	0.97	0.98	0.99	<mark>0.98</mark>	1.000