Ros Roger, Alexandre

Abril 2023

- **1. MAX-CUT**. Donat un graf no dirigit G = (V, E), el problema del maximum cut (MAX-CUT) és trobar la partició $S \cup \overline{S}$ de V tal que maximitzi el nombre d'arestes entre S i \overline{S} . Considereu el algorisme golafre que ordena els vèrtexs en ordre decreixent respecte al seu grau i on cada pas col·loquem el següent vèrtex a S o \overline{S} tal que maximitzi el tall.
 - 1. Demostreu la correctesa i doneu la complexitat de l'algorisme golafre.
 - 2. Demostreu que l'algorisme és una 2-aproximació al MAX-CUT.

Solució:

L'algorisme és correcte donat que per a cada vèrtex v_i decidim si $v_i \in S$ o si $v_i \in \overline{S}$. D'aquesta manera, es genera una partició de V en dos subconjunts. A més, és una partició donat que l'algorisme no afegirà tots els vèrtexs en el mateix subconjunt (donat que el tall tindria cost 0 i al afegir el segon vèrtex d'alguna aresta aquest vèrtex seria enviat al subconjunt oposat) a excepció de si |E| = 0. Per tant, cap subconjunt serà mai buit.

La complexitat depèn de l'ordenació dels vèrtexs respecte el grau i del bucle principal.

L'ordenació, suposant que el graf ve donat en una llista d'adjacències, té cost $O(n \log n)$ on n = |V|.

Si el graf fos dispers, l'ordenació es podria fer de manera linial respecte m (límit superior del grau d'un vèrtex) i es podria aconseguir un temps O(n).

Per a cada iteració del bucle principal, hem de calcular $|C(S,\overline{S})|$ per els dos casos $(v_i \in S \text{ o } v_i \in \overline{S})$. Tot i així, només és necessari computar la diferència $\Delta |C(S,\overline{S})|$ pels dos casos. Si a la iteració i-èsima sabem la destinació dels vèrtexs $v_0 \dots v_{i-1}$, computar aquest increment en el tall requereix visitar tots els vèrtexs adjacents a v_i , i per tant el cost del bucle serà $O\left(\sum_{i=1}^n g_G(v_i)\right) = O(|E|)$.

El algorisme tindrà cost $O(m + n \log n)$ on m = |E|, n = |V|.

Per a demostrar que l'algorisme és una 2-aproximació, primer observem que $opt(x) \le m$ per a qualsevol instància x del problema. Per tant, ja tenim una fita superior del cost òptim.

Seguidament, considerem qualsevol aresta del graf. Un dels dos vèrtexs adjacents a l'aresta, el que apareix més tard en l'ordenació, serà qui decidirà si l'aresta serà del tall o no (donat que l'altre vèrtex ja estarà a S o \overline{S}). Sigui h_i el nombre d'arestes que decidirà el vèrtex v_i (és a dir, el nombre d'arestes $\{v_i, v_j\}$ amb j < i).

A l'hora de visitar v_i , podem veure que com a mínim $\frac{h_i}{2}$ arestes seran afegides al tall, doncs entre les dues opcions que tenim $(v_i \in S \text{ o } v_i \in \overline{S})$ en total decidirem h_i arestes, i triarem l'opció que més cost ens doni. En el cas pitjor, tindriem $\frac{h_i}{2}$ vèrtexs adjacents a v_i membres de S i els altres $\frac{h_i}{2}$ adjacents a v_i membres de \overline{S} .

A més a més, donat que cada aresta serà decidida per exactament un vèrtex, tenim $\sum_{i=1}^{n} h_i = m$.

Per tant, $A(x) \ge \sum_{i=1}^n \frac{h_i}{2} = \frac{m}{2}$. Donat que $A(x) * 2 \ge m \ge \text{opt}(x)$, l'algorisme és una 2-aproximació. QED.