

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Compiled by

(position+printed name+signature)..: File administrators Kevin Liu

Supervised by

(position+printed name+signature)..: Project Engineer Kevin Liu

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... May 18, 2015

Representative Laboratory Name .: SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTD

Address No.12 Building Shangsha, Innovation & Technology Park, Futian

District, Shenzhen, P.R.China

Testing Laboratory Name Shenzhen Academy of Metrology and Quality Inspection

Applicant's name...... Noblex Argentina S.A.

Address : Jaramillo 3670 – CIUDAD AUTONOMA DE BUENOS AIRES –

ARGENTINA

Test specification:

Standard FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz

kevim Line kevim Line Exic Wang

TRF Originator...... SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTD

SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTD All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTD as copyright owner and source of the material. SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTDtakess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Smart Phone

Trade Mark NOBLEX

Manufacturer AMER MOBILE CO.,LIMITED

Model/Type reference...... N401

Listed Models N/A

Modulation Type GFSK,8DPSK,π/4DQPSK

Operation Frequency...... From 2402MHz to 2480MHz

Rating DC 3.70V

Hardware version TMBIc

Result..... PASS

Page 2 of 60 Report No.: JTT20150500103

TEST REPORT

Test Report No. :	JTT20150500103	May 18, 2015
	31120130300103	Date of issue

Equipment under Test : Smart Phone

Model /Type : N401

Listed Models : N/A

Applicant : Noblex Argentina S.A.

Address : Jaramillo 3670 – CIUDAD AUTONOMA DE BUENOS AIRES –

ARGENTINA

Manufacturer : AMER MOBILE CO.,LIMITED

Address : Room A30, 9th floor, Silvercorp International Tower No 707-

713, Nathan Road, mongkok, Kowloon, Hong Kong

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	TEST STANDARDS	<u> 4</u>
<u>2.</u>	SUMMARY	<u> 5</u>
2.1.	General Remarks	5
2.1. 2.2.	Product Description	5 5
2.2. 2.3.	Equipment Under Test	6
2.3. 2.4.	Short description of the Equipment under Test (EUT)	6
2.4. 2.5.	EUT operation mode	6
2.5. 2.6.	Internal Identification of AE used during the test	7
2.0. 2.7.	Related Submittal(s) / Grant (s)	7
2.7. 2.8.	Modifications	7
2.0. 2.9.	NOTE	7
Z .J.	NOTE	•
3.	TEST ENVIRONMENT	8
3.1.	Address of the test laboratory	8
3.2.	Test Facility	8
3.3.	Environmental conditions	8
3.4.	Test Conditions	8
3.5.	Summary of measurement results	9
3.6.	Equipments Used during the Test	10
<u>4 .</u>	TEST CONDITIONS AND RESULTS	11
4.1.	AC Power Conducted Emission	11
4.2.	Radiated Emission	13
4.3.	Maximum Peak Output Power	22
4.4.	20dB Bandwidth	23
4.5.	Band Edge	27
4.6.	Frequency Separation	39
4.7.	Number of hopping frequency	41
4.8.	Time of Occupancy (Dwell Time)	43
4.9.	Spurious RF Conducted Emission	47
4.10.	Pseudorandom Frequency Hopping Sequence	58
4.11.	Antenna Requirement	59
E	TEST SETUD DUOTOS OF THE EUT	6.0
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	טט

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2009</u>: American National Standard for Testing Unlicensed Wireless Devices

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Apr 20, 2015
Testing commenced on	:	Apr 21, 2015
Testing concluded on	:	May 20, 2015

2.2. Product Description

The **Noblex Argentina S.A.**'s Model: N401 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Smart Phone
Model Number	N401
Madilation Type	GMSK for GSM/GPRS/EDGE, 8-PSK for EDGE only
Modilation Type	Downlink,QPSK for UMTS
Antenna Type	Internal
UMTS Operation Frequency Band	Device supported UMTS FDD Band II and FDD Band V
	IEEE 802.11b:2412-2462MHz
WLAN FCC Operation frequency	IEEE 802.11g:2412-2462MHz
WEAR FOO Operation frequency	IEEE 802.11n HT20:2412-2462MHz
	IEEE 802.11n HT40:2422-2452MHz
BT FCC Operation frequency	2402MHz-2480MHz
HSDPA Release Version	Release 10
HSUPA Release Version	Release 6
DC-HSUPA Release Version	Not Supported
WCDMA Release Version	R99
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)
WLAN FCC Modulation Type	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
WEAR FOC Modulation Type	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
BT Modulation Type	GFSK (BT 4.0)/GFSK,8DPSK,π/4DQPSK(BT 3.0+EDR)
Hardware version	TMBIc
Software version	Newsan_NOBLEX_AR_SW_V1.0_HW_V1.0_20150417
Android version	Android 4.4.2
GPS function	Supported
WLAN	Supported 802.11b/802.11g/802.11n
Bluetooth	Supported BT 4.0/BT 3.0+EDR
GSM/EDGE/GPRS	Supported GSM/GPRS/EDGE
GSM/EDGE/GPRS Power Class	GSM900:Power Class 4/DCS1800:Power Class 1
GSM/EDGE/GPRS Operation Frequency	GSM900 :880MHz-915MHz/DCS1800:1710MHz-1785MHz
GSM/EDGE/GPRS Operation Frequency	GSM900/DCS1800/GPRS900/ GPRS
Band	1800/EDGE900/EDGE1800
GSM Release Version	R99
GPRS/EDGE Multislot Class	GPRS/EDGE: Multi-slot Class 12
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	3.40VDC to 4.20VDC (nominal: 3.70VDC)
GPRS operation mode	Class B

Page 6 of 60 Report No.: JTT20150500103

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow))

DC 3.70V

2.4. Short description of the Equipment under Test (EUT)

N401 is subscriber equipment in the WCDMA/GSM system. The HSPA/UMTS frequency band is Band II, Band IV; The GSM/GPRS/EDGE (EDGE downlink only) frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900, but only Band II and Band V and GSM850 and PCS1900 bands test data included in this report. The Smart Phone implements such functions as RF signal receiving/transmitting, HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS and WIFI etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and SIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.5. EUT operation mode

The EUT has been tested under typical operating condition. There are EDR (Enhanced Data Rate) and BDR (Basic Data Rate) mode. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried out at the lowest channel, middle channel and highest channel.

Channel	Frequency(MHz)	Channel	Frequency(MHz)		
00	2402	40	2442		
01	2403	2403 41 244			
02	2404	42	2444		
03	2405	43	2445		
04	2406	44	2446		
05	2407	45	2447		
06	2408	46	2448		
07	2409	47	2449		
08	2410	48	2450		
09	2411	49	2451		
10	2412	50	2452		
11	2413	51	2453		
12	2414	52	2454		
13	2415	53	2455		
14	2416	54	2456		
15	2417				
16	2418	56	2458		
17	2419	57	2459		
18	2420	58	2460		
19	2421	59	2461		
20	2422	60	2462		
21	2423	61 24			
22	2424				
23	2425	63	2465		
24	2426	64	2466		
25	2427	65	2467		
26	2428	66 2468			
27	2429	67 2469			
28	2430	68	2470		

Page 7 of 60 Report No.: JTT20150500103

29	2431	69	2471
30	2432	70	2472
31	2433	71	2473
32	2434	72	2474
33	2435	73	2475
34	2436	74	2476
35	2437	75	2477
36	2438	76	2478
37	2439	77	2479
38	2440	78	2480
39	2441		

2.6. Internal Identification of AE used during the test

AE ID*	Description
AE1	Charger

AE1

Model: S005UA0500100

INPUT: 100-240V 50/60Hz 0.15A OUTPUT: DC 5.0V,1000mAh

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AEP7N401** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. Modifications

No modifications were implemented to meet testing criteria.

2.9. **NOTE**

1. The EUT is a Mobile Phone with WCDMA/GSM/GPRS/EDGE,WiFi and Bluetooth fuction,The functions of the EUT listed as below:

	Test Standards	Reference Report	
GSM/GPRS/EDGE	FCC Part 22/FCC Part 24 JTT2015050010		
WCDMA	FCC Part 22/FCC Part 24 JTT20150500102		
Bluetooth	FCC Part 15 C 15.247	JTT20150500103	
BLE	FCC Part 15 C 15.247	JTT20150500104	
WiFi	FCC Part 15 C 15.247	JTT20150500105	
USB Port	FCC Part 15 B	JTT20150500106	
SAR	FCC Part 2 §2.1093	JTT20150500107	

^{*}AE ID: is used to identify the test sample in the lab internally.

Page 8 of 60 Report No.: JTT20150500103

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Academy of Metrology and Quality Inspection

No.4 TongFa Road, Xili TownNanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration information:

Shenzhen Academy of Metrology and Quality Inspection No.4 TongFa Road, Xili TownNanshan District, Shenzhen, China Test Firm FCC Registration number: 806614

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Test Conditions

	Test Conditions		
Test Case	Configuration	Description	
	Meas. Method	ANSI C63.10:2009	
20dB Emission	Test Environment	NTNV	
Bandwidth (EBW)	EUT Conf.	TM1_DH5_Ch00,TM1_DH5_Ch39,TM1_DH5_Ch78, TM3_3DH5_Ch00,TM3_3DH5_Ch39,TM3_3DH5_Ch78,	
Carrier Farance	Meas. Method	ANSI C63.10:2009	
Carrier Frequency	Test Environment	NTNV	
Separation	EUT Conf.	TM1_DH5_Hop, TM3_3DH5_Hop,	
No make a refule major a	Meas. Method	ANSI C63.10:2009	
Number of Hopping Channel	Test Environment	NTNV	
Channel	EUT Conf.	TM1_DH5_Hop ,TM3_3DH5_Hop,	
Time of Occupancy (Dwell Time)	Meas. Method	ANSI C63.10:2009	
	Test Environment	NTNV	
	EUT Conf.	TM1_DH5_Ch39 ,TM3_3DH5_Ch39.	
	Meas. Method	ANSI C63.10:2009	
 Maximum Peak	Test Environment	NTNV	
Conducted Output Power	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch39,TM1_DH3_Ch78,TM2 _2DH3_Ch00,TM2_2DH3_Ch39,TM2_2DH3_Ch78,TM3 _3DH3_Ch00,TM3_3DH3_Ch39,TM3_3DH3_Ch78,	
Dan da da a anunia un	Meas. Method	ANSI C63.10:2009	
Bandedge spurious emission	Test Environment	NTNV	
(Conducted)	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch78,	
(Conducted)	EUT COIII.	TM3_3DH3_Ch00,TM3_3DH3_Ch78,	
	Meas. Method	ANSI C63.10:2009	
Conducted RF Spurious Emission	Test Environment	NTNV	
	EUT Conf.	TM1_DH5_Ch00, TM1_DH5_Ch39, TM1_DH5_Ch78, TM3_3DH5_Ch39, TM3_3DH5_Ch78.	
Radiated Emissions in the Restricted Bands	Meas. Method	ANSI C63.10:2009 30 MHz to 1 GHz:	

Page 9 of 60 Report No.: JTT20150500103

	Pre: RBW=100kHz; VBW=300kHz; Det. = Peak.
	Final: RBW=120kHz; Det. = CISPR Quasi-Peak.
	1 GHz to 26.5GHz:
	Average: RBW=1 MHz; VBW= 10Hz; Det. = Peak;
	Sweep-time= Auto; Trace = Single.
	Peak: RBW=1 MHz; VBW= 3 MHz; Det. = Peak; Sweep-
	time= Auto;
	Trace≥ MaxHold * 100.
Test Environment	NTNV
	30 MHz-1GHz TM1_DH5_Ch00 (Worst Conf.).
EUT Conf.	1-18 GHz: TM1_DH5_Ch00, TM1_DH5_Ch39,
	TM1_DH5_Ch78, (Worst Conf.).

Test Case	Test Conditions	
rest Case	Configuration	Description
AC Dower Line Conducted	Measurement Method	AC mains conducted.
AC Power Line Conducted Emissions	Test Environment	NTNV
EIIIISSIOIIS	EUT Configuration	TM1_DH5_Ch39. (Worst Conf.).

Note:

- 1. For Radiated Emissions, By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.
- 2. For $\pi/4$ QPSK its same modulation type with 8-DPSK, and based exploratory test, there is no significant difference of that two types test result, so except output power, all other items final test were only performed with the worse case 8-DPSK and GFSK.

3.5. Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	GFSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(e)	Power spectral density	-/-	-/-	-/-	-/-			\boxtimes		Not applicable for FHSS!
§15.247(a)(1)	Carrier Frequency separation	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK 8DPSK	⊠ Middle	\boxtimes				complies
§15.247(a)(1)	Number of Hopping channels	GFSK 8DPSK	⊠ Full	GFSK 8DPSK	⊠ Full	\boxtimes				complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK 8DPSK	⊠ Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK 8DPSK	✓ Lowest✓ Middle✓ Highest	\boxtimes				complies
§15.247(b)(1)	Maximum output power	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest					complies
§15.247(d)	Band edge compliance conducted	GFSK 8DPSK		GFSK 8DPSK		\boxtimes				complies
§15.205	Band edge compliance radiated	GFSK 8DPSK		GFSK		\boxtimes				complies
§15.247(d)	TX spurious emissions conducted	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions radiated	GFSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.109	RX spurious	-/-	-/-	-/-	-/-	\boxtimes				complies

Page 10 of 60 Report No.: JTT20150500103

	emissions radiated							
§15.209(a)	TX spurious Emissions radiated < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes		complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	GFSK	-/-	GFSK	-/-	\boxtimes		complies

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed
- 3. We tested all test mode and recorded worst case in report

3.6. Equipments Used during the Test

No.	Equipment	Manufacturer	Model No.	Last Cal.
SB2603	EMI Test Receiver	Rohde & Schwarz	ESCS30	Dec.19, 2014
SB3321	AMN	Rohde & Schwarz	ESH2-Z5	Jan.18, 2015
SB2604	AMN	Rohde & Schwarz	ESH3-Z5	Nov.18, 2014
SB8501/09	EMI Test Receiver	Rohde & Schwarz	ESU40	Mar.19, 2015
SB8501/04	Bilog Antenna	Schwarzbeck	VULB9163	Mar.19, 2015
SB3435	Horn Antenna	Rohde & Schwarz	HF906	Jan.19, 2015
SB3435/01	Amplifier(1-18GHz)	Rohde & Schwarz		Jan.19, 2015
SB3435/02	Amplifier(18-40GHz)	Rohde & Schwarz		Jan.19, 2015
SB5392/02	Horn Antenna	Amplifier Research	AT4560	Jan.19, 2015
SB3450/01	3m Semi-anechoic chamber	Albatross Projects	9X6X6	Oct.09, 2014
SB3345	Loop Antenna	Schwarzbeck	FMZB1516	Jan.20,2015
SB3437	Power meter	Rohde & Schwarz	NRVD	Jul.03,2014
SB3437/01	Power sensor	Rohde & Schwarz	URV5-Z2	Jul.03,2014
SB9721/02	Signal Analyzer	Agilent	N9020A	Jan.05,2014
N/A	EMI TEST Software	Rohde&Schwarz	ESK1	N/A
N/A	EMI TEST Software	Rohde&Schwarz	EMC32	N/A

The Cal.Interval was one year

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2009.
- 2. Support equipment, if needed, was placed as per ANSI C63.10-2009
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2009
- 4. The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguenav		Maximum RF Lin	e Voltage (dBµV)	
Frequency (MHz)	CLAS	SS A	CLA	SS B
(IVITIZ)	Q.P.	Ave.	Q.P.	Ave.
0.15 - 0.50	79	66	66-56*	56-46*
0.50 - 5.00	73	60	56	46
5.00 - 30.0	73	60	60	50

^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

Note: We tested Conducted Emission of GFSK, $\pi/4$ DQPSK and 8DPSK mode from 0.15 KHz to 30MHz (DH1, DH3 and DH5) and all channels (low, middle and high), recorded the worst case data at GFSK DH5 middle channel.

Fraguenay	QP	QP	AV	AV	QP	AV	Factor	QP	AV	V Dhase	
Frequency	level	Limit	level	Limit	read	read		margin	margin	Phase	
0.162	39.6	65.4	26.5	55.4	29.9	16.8	9.7	25.8	28.9	LINE	
0.39	38.7	58.1	28.6	48.1	29.0	18.9	9.7	19.4	19.5	LINE	
1.718	41.0	56.0	30.7	46.0	31.2	20.9	9.8	15.0	15.3	LINE	
2.358	39.3	56.0	28.9	46.0	29.4	19.0	9.9	16.7	17.1	LINE	
2.518	38.7	56.0	28.0	46.0	28.8	18.1	9.9	17.3	18.0	LINE	
19.596	36.7	60.0	26.33	50.0	26.8	16.4	9.9	23.3	23.7	LINE	

Frequency	QP	QP	AV	AV	QP	AV	Factor	QP	AV	Phase
Frequency	level	Limit	level	Limit	read	read	racioi	margin	margin	Filase
0.358	36.3	58.8	26.5	48.8	26.6	16.8	9.7	22.5	22.3	NEUTRAL
0.722	30.9	56.0	22.0	46.0	21.1	12.2	9.8	25.1	24.0	NEUTRAL
1.626	35.9	56.0	24.2	46.0	26.1	14.4	9.8	20.1	21.8	NEUTRAL
2.382	31.8	56.0	20.2	46.0	21.9	10.3	9.9	24.2	25.8	NEUTRAL
2.594	33.4	56.0	20.3	46.0	23.5	10.4	9.9	22.6	25.7	NEUTRAL
15.011	31.9	60.0	20.4	50.0	22.0	10.5	9.9	28.1	29.6	NEUTRAL

4.2. Radiated Emission

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT.

- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768 KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9 KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	Peak
1GHz-40GHz	Sweep time=Auto	(Receiver)
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=3MHz,	Average
	Sweep time=Auto	(Receiver)

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	300	20log(2400/F(KHz))+80	2400/F(KHz)
0.49-1.705	30	20log(24000/F(KHz))+40	24000/F(KHz)
1.705-30	30	20log(30)+40	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

- 1. The radiated measurement are performed the each channel (low/mid/high) at all Packet type (DH1, DH3 and DH5) also for difference modulation type (GFSK, 8DPSK), recorded worst case at GFSK_DH5_Low channel (Channel 00) for below 1GHz and GFSK_DH5_Low channel (Channel 00), GFSK_DH5_Middle channel (Channel 39), GFSK_DH5_High channel (Channel 78).
- 2. ULTRA-BROADBAND ANTENNA for the radiation emission test below 1G.
- 3. HORN ANTENNA for the radiation emission test above 1G.
- 4. We tested both battery powered and powered by adapter charging mode at three orientate ones, recorded worst case at powered by adapter charging mode.
- 5. "---" means not recorded as emission levels lower than limit.
- 6. Margin= Limit Level

For 9KHz to 30MHz

	Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Result
Ī	12.00	43.44	69.54	26.10	QP	PASS
Ī	24.00	41.25	69.54	28.29	QP	PASS

For 30MHz to 1000MHz

Frequency	Polarity	cable loss	Antenna factor	Readings	Level	Limit	Margin
(MHz)	•	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
30	Vertical	0.6	12.3	40.6	28.9	43.5	14.6
55.27	Vertical	0.8	13.0	32.7	20.5	43.5	23.0
74.709	Vertical	1.0	8.7	31.4	23.7	43.5	19.8
84.428	Vertical	0.9	8.5	33.1	25.5	43.5	18.0
267.154	Vertical	1.9	12.1	30.5	20.3	46.0	25.7
284.649	Vertical	2.0	12.7	33.2	22.5	46.0	23.5
74.709	Horizontal	1.0	8.7	29.9	22.2	43.5	21.3
80.541	Horizontal	0.9	8.5	32.2	24.6	43.5	18.9
84.428	Horizontal	0.9	8.5	31.4	23.8	43.5	19.7
175.791	Horizontal	1.5	9.0	25.1	17.6	46.0	28.4
274.929	Horizontal	1.9	12.1	36.1	25.9	46.0	20.1
282.705	Horizontal	2.0	12.7	39.6	28.9	46.0	17.1

For 1GHz to 25GHz

Note:We tested GFSK Mode and BDPSK, rcorded the worst case at the GFSK (DH5) Mode.

Frequency in GHz

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value- Emission level.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to ANSI C63.10:2009 Maximum peak conducted output power: Connent antenna port into power meter and reading Peak values.

LIMIT

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS

Remark: We test maximum peak output power at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5

4.3.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	0.60	30	PASS
39	2441	1.25	30	PASS
78	2480	1.51	30	PASS

Note:

1. The test results including the cable lose.

4.3.2 π/4 DQPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	0.53	21	PASS
39	2441	1.14	21	PASS
78	2480	1.23	21	PASS

Note:

1. The test results including the cable lose.

4.3.3 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	0.52	21	PASS
39	2441	1.16	21	PASS
78	2480	1.33	21	PASS

Note:

1. The test results including the cable lose.

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

4.4.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	0.9333	Plot 4.4.1 A	/	PASS
39	2441	0.9343	Plot 4.4.1 B	/	PASS
78	2480	0.9341	Plot 4.4.1 C	/	PASS

Note: 1. The test results including the cable lose.

B. Test Plots

(Plot 4.4.1 A: Channel 00: 2402MHz @ GFSK)

(Plot 4.4.1 B: Channel 39: 2441MHz @ GFSK)

(Plot 4.4.1 C: Channel 78: 2480MHz @ GFSK)

4.4.2 8DPSKTest Mode

A. Test Verdict

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	1.299	Plot 4.4.2 A	/	PASS
39	2441	1.301	Plot 4.4.2 B	/	PASS
78	2480	1.292	Plot 4.4.2 C	/	PASS

Note: 1.The test results including the cable lose.

B. Test Plots

(Plot 4.4.2 A: Channel 00: 2402MHz @ 8DPSK)

(Plot 4.4.2 B: Channel 39: 2441MHz @ 8DPSK)

(Plot 4.4.2 C: Channel 78: 2480MHz @ 8DPSK)

4.5. Band Edge

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a
 EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low
 Channel and High Channel within its operating range, and make sure the instrument is operated in its
 linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

TEST CONFIGURATION

For Radiated

For Conducted

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.

- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed...
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz,	Peak
IGHZ-40GHZ	Sweep time=Auto	(Receiver)
1GHz-40GHz	Average Value: RBW=1MHz/VBW=3MHz,	Average
IGHZ-40GHZ	Sweep time=Auto	(Receiver)

LIMIT

Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

TEST RESULTS

Remark:

- 1. We test Band Edge at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.
- 2. "---" means not recorded as emission levels lower than limit.

4.5.1 For Radiated Bandedge Measurement

Remark: we tested radiated bandedge at both hopping and no-hopping modes, recorded worst case at no-hopping mode

4.5.1.1 GFSK Test Mode

Frequency in MHz

Low Channel (AV) Test mode: Polarization Horizontal FCC Electric Field Strength 2.4GHz Bandedge-AV 100_T X2.479999800 G H z \96.592 d B μ V / 90 8 0-Level in dBµV/ 70-60 FCC 15.247 AV 50 2485 2478 2480 2490 2495 2500 Frequency in MHz Polarization Test mode: Vertical Low Channel (AV) FCC Electric Field Strength 2.4GHz Bandedge-AV 100_T X2.479993200 G H z 96.403 dB µ V / 90-80 Level in dBµV/ 70 60-F<u>CC 15.247</u> AV 50-2478 2480 2485 2490 2495 2500 Frequency in MHz

4.5.1.2 8DPSKTest Mode Test mode: Low Channel (Peak) Polarization Horizontal FCC Electric Field Strength 2.4GHz Bandedge-PK

Report No.: JTT20150500103

2490

Frequency in MHz

2495

2500

2485

2479

Frequency in MHz

4.5.2 For Conducted Bandedge Measurement

4.5.2.1 GFSK Test Mode

(Plot 4.5.2.1 A: Hopping Mode @ GFSK)

(Plot 4.5.2.1 B: Hopping Mode @ GFSK)

4.5.2.2 8DPSK Test Mode

(Plot 4.5.2.2 A: Hopping Mode @ 8DPSK)

(Plot 4.5.2.2 B: Hopping Mode @ 8DPSK)

4.6. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz.

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5) and all test channels, recorded worst case at DH5 and middle channel.

4.6.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
38	2440	1.002	Plot 4.6.1 A	0.8702	PASS
39	2441	1.002	P101 4.0.1 A	0.0702	PASS

(Plot 4.6.1 A: Channel 39: 2441MHz @ GFSK)

4.6.2 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
38	2440	0.000	Plot 4.6.2 A	0.04036	DAGG
39	2441	0.999	F101 4.0.2 A	0.84936	PASS

Report No.: JTT20150500103

(Plot 4.6.2 A: Channel 39: 2441MHz @ 8DPSK)

4.7. Number of hopping frequency

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=100 KHz and VBW=300 KHz.

LIMIT

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

TEST RESULTS

Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.

4.7.1 GFSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.1 A1	≥15	PASS

(Plot 4.7.1 A1: @ GFSK)

4.7.2 8DPSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.2 A1	≥15	PASS

(Plot 4.7.2 A1: @ 8DPSK)

Page 43 of 60 Report No.: JTT20150500103

4.8. Time of Occupancy (Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz, Span=0Hz.

LIMIT

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation:0.4[s]*hopping number=0.4[s]*79[ch]=31.6[s*ch];

The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.

The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s] The hops per second on one channel: 266.67 [ch*hops/s]/79 [ch]=3.38 [hop/s];

The total hops for all channels within the dwell time calculation duration: 3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];

The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

Remark: 1. We test Frequency Separation at all test channels, recorded worst case at middle channel.

4.8.1 GFSK Test Mode

A. Test Verdict

GFSK:

Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict
DH1	2441	0.400	0.128	0.4	Plot 4.8.1 A	PASS
וחט	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 2	÷ 79) ×31.6 Sec	ond	
DH3	2441	1.670	0.267	0.4	Plot 4.8.1 B	PASS
סחט	Note: Dwell tin	ne=Pulse time (r	ns) × (1600 ÷ 4	÷ 79) ×31.6 Sec	ond	
DH5	2441	2.900	0.309	0.4	Plot 4.8.1 C	PASS
סחט	Note: Dwell tin	ne=Pulse Time ($(ms) \times (1600 \div 6)$	÷ 79) ×31.6 Sec	cond	

4.8.2 8DPSK Test Mode

Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict
DH1	2441	0.410	0.131	0.4	Plot 4.8.2 A	PASS
ВПІ	Note: Dwell tin	ne=Pulse time (r	ns) x (1600 ÷ 2	÷ 79) ×31.6 Sec	ond	
DH3	2441	1.660	0.266	0.4	Plot 4.8.2 B	PASS
рпз	Note: Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second					
DH5	2441	2.920	0.311	0.4	Plot 4.8.2 C	PASS
DHS	Note: Dwell time=Pulse Time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second					

(Plot 4.8.1.A: Channel 39: 2441MHz @ GFSK @ DH1)

(Plot 4.8.1.B: Channel 39: 2441MHz @ GFSK @ DH3)

(Plot 4.8.1.C: Channel 39: 2441MHz @ GFSK @ DH1)

(Plot 4.8.2.A: Channel 39: 2441MHz @ 8DPSK @ DH1)

(Plot 4.8.2.B: Channel 39: 2441MHz @ 8DPSK @ DH3)

(Plot 4.8.2.C: Channel 39: 2441MHz @ 8DPSK @ DH5)

4.9. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2009 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBM= 300KHz to measure the peak field strength, and measurement frequency range from 9KHz to 26.5GHz.

LIMIT

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

TEST RESULTS

Remark:

- 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.
- 2.For 9KHz -30MHz, Because there was only background, So We did not recorded data.

4.9.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
		2.402 GHz	Plot 4.9.1 A1		PASS
00	2402	30MHz-3GHz	Plot 4.9.1 A2	-20	PASS
		3GHz-26.5GHz	Plot 4.9.1 A3	-20	PASS
		2.441 GHz	Plot 4.9.1 B1		PASS
39	2441	30MHz-3GHz	Plot 4.9.1 B2	-20	PASS
		3GHz-26.5GHz	Plot 4.9.1 B3	-20	PASS
		2.480 GHz	Plot 4.9.1 C1		PASS
78	2480	30MHz-3GHz	Plot 4.9.1 C2	-20	PASS
		3GHz-26.5GHz	Plot 4.9.1 C3	-20	PASS

Note:

- 1. The test results including the cable lose.
- B. Test Plots

(Plot 4.9.1 A1: Channel 00: 2402MHz @ GFSK)

(Plot 4.9.1 A2: Channel 00: 2402MHz @ GFSK)

Date: 11.MAY.2015 10:48:15

(Plot 4.9.1 A3: Channel 00: 2402MHz @ GFSK)

(Plot 4.9.1 B1: Channel 39: 2441MHz @ GFSK)

(Plot 4.9.1 B2: Channel 39: 2441MHz @ GFSK)

Date: 11.MAY.2015 10:49:09

(Plot 4.9.1 C1: Channel 78: 2480MHz @ GFSK)

(Plot 4.9.1 C2: Channel 78: 2480MHz @ GFSK)

Date: 11.MAY.2015 11:46:14

(Plot 4.9.1 C2: Channel 78: 2480MHz @ GFSK)

4.9.2 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
		2.402 GHz	Plot 4.9.2 A1		PASS
00	2402	30MHz-3GHz	Plot 4.9.2 A2	-20	PASS
		3GHz-26.5GHz	Plot 4.9.2 A3	-20	PASS
		2.402 GHz	Plot 4.9.2 B1		PASS
39	2441	30MHz-3GHz	Plot 4.9.2 B2	-20	PASS
		3GHz-26.5GHz	Plot 4.9.2 B3	-20	PASS
		2.402 GHz	Plot 4.9.2 C1		PASS
78	2480	30MHz-3GHz	Plot 4.9.2 C2	-20	PASS
		3GHz-26.5GHz	Plot 4.9.2 C3	-20	PASS

Note:

- 1. The test results including the cable lose.
- B. Test Plots

(Plot 4.9.2 A1: Channel 00: 2402MHz @ 8DPSK)

(Plot 4.9.2 A2: Channel 00: 2402MHz @ @ 8DPSK)

Date: 11.MAY.2015 12:26:12

(Plot 4.9.2 A3: Channel 00: 2402MHz @ @ 8DPSK)

(Plot 4.9.2 B1: Channel 39: 2441MHz @ @ 8DPSK)

(Plot 4.9.2 B2: Channel 39: 2441MHz @ @ 8DPSK)

(Plot 4.9.2 C1: Channel 78: 2480MHz @ @ 8DPSK)

(Plot 4.9.2 C2: Channel 78: 2480MHz @ @ 8DPSK)

Date: 11.MAY.2015 10:51:44

(Plot 4.9.2 C3: Channel 78: 2480MHz @ @ 8DPSK)

Report No.: JTT20150500103

4.10. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE

For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.11. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.For normal BT devices, the GFSK mode is used.

Measurement parameters

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	1MHz		
Video bandwidth:	3MHz		
Trace-Mode:	Max hold		

Limits

FCC	IC			
Antenna Gain				
6 dBi				

Results

T _{nom}	V_{nom}	Lowest Channel 2402 MHz	Middle Channel 2440 MHz	Highest Channel 2480 MHz
	power [dBm] GFSK modulation	0.60	1.25	1.51
	Radiated power [dBm] Measured with GFSK modulation		1.61	1.69
	[dBi] ulated	-0.45	0.36	0.18
Measuremer	nt uncertainty	± 0.6	dB (cond.) / ± 2.56 dB	(rad.)

Report No.: JTT20150500103

5. Test Setup Photos of the EUT

.....End of Report.....