Manuskript zur Vorlesung

KINEMATIK

von C. Woernle

(alle Rechte vorbehalten)

Institut A für Mechanik Universität Stuttgart

SS 1993

Übersicht

Teil I: Grundlagen der räumlichen Kinematik

- 1 Einführung
- 2 Grundlagen der Vektorrechnung und Tensorrechnung
 - 2.1 Vektoren
 - 2.2 Tensoren 2. Stufe
- 3 Bewegungen von Punkten und Körpern im Raum
 - 3.1 Bewegung eines Punktes im Raum
 - 3.2 Drehbewegung des starren Körpers im Raum
 - 3.3 Allgemeine Bewegung des starren Körpers im Raum
- 4 Koordinaten zur Beschreibung von Drehbewegungen
 - 4.1 Koordinaten des Drehtensors (Richtungscosinus)
 - 4.2 Drehzeiger (natürliche Invarianten der Drehbewegung)
 - 4.3 EULER-Winkel
 - 4.4 KARDAN-Winkel
 - 4.5 Ouaternionen und EULER-Parameter
 - 4.6 RODRIGUES-Parameter
- 5 Relativbewegungen
 - 5.1 Relative Zeitableitung von Vektoren
 - 5.2 Zusammensetzung zweier gegebener Bewegungen
- 6 Darstellung der allgemeinen Bewegung des starren Körpers mit Hilfe dualer Größen
 - 6.1 Duale Zahlen
 - 6.2 Duale Vektoren
 - 6.3 Übertragungsprinzip
 - 6.4 Gegenüberstellung von Fixpunktdrehung und Schraubbewegung
 - 6.5 Duale Darstellung von Geschwindigkeiten und Beschleunigungen
 - 6.6 Zusammensetzung zweier Bewegungen in dualer Darstellung

Teil II: Kinematik von Mechanismen

- 1 Grundbeziehungen kinematischer Ketten
 - 1.1 Struktur kinematischer Ketten
 - 1.2 Gelenke in kinematischen Ketten
 - 1.3 Freiheitsgrade und verallgemeinerte Koordinaten
- 2 Kinematik von offenen Gelenkketten (Vorwärtskinematik)
 - 2.1 Vorwärtskinematik bei allgemeinen Gelenken
 - 2.2 Vorwärtskinematik bei Standardgelenken
 - 2.3 Geometrische Parameter nach DENAVIT und HARTENBERG
 - 2.4 JACOBI-Matrix der Relativbewegung
- 3 Kinematik der Einzelschleife
 - 3.1 Schließbedingungen in einer allgemeinen Mehrkörperschleife
 - 3.2 Möglichkeiten zur Aufstellung der Schließbedingungen
 - 3.3 Schließbedingungen an einem geschnittenen Gelenk
 - 3.4 Schließbedingungen an einem "charakteristischen Gelenkpaar"
 - 3.5 Analyse der Geschwindigkeiten in einer kinematischen Schleife
 - 3.6 Analyse der Beschleunigungen in einer kinematischen Schleife
- 4 Kinematik mehrschleifiger Mechanismen
 - 4.1 Darstellung der kinematischen Struktur von Mechanismen
 - 4.2 Topologische Aufbereitung der Relativkinematik
 - 4.3 Einführung zusätzlicher Hilfskoordinaten
 - 4.4 Globale Kinematik

Literatur

- ANGELES, J.: Spatial Kinematic Chains. New York: Springer-Verlag 1982.
- ANGELES, J.: Rational Kinematics. New York: Springer-Verlag 1988.
- BEYER, R.: Technische Raumkinematik. Berlin: Springer 1960
- BLUME, C.; DILLMANN, R.: Frei programmierbare Manipulatoren. Würzburg: Vogel-Verlag 1981.
- BOTTEMA, O; ROTH, B.: Theoretical Kinematics. Amsterdam: North-Holland 1979.
- DUFFY, J.: Analysis of Mechanisms and Robot Manipulators. London: Arnold 1980.
- HARTENBERG, R.S.; DENAVIT, J.: Kinematic Synthesis of Linkages. New York: McGraw Hill 1964.
- HUNT, K.H.: Kinematic Geometry of Mechanisms: Oxford: Clarendon Press 1978.
- LUCK, K.; MODLER, K.-H.: Getriebetechnik. Wien: Springer-Verlag 1990.
- NIKRAVESH, P.: Computer-Aided Analysis of Mechanical Systems. Englewood Cliffs: Prentice Hall 1988.
- PAUL, R.P.: Robot Manipulators. Cambridge, Mass.: The MIT Press 1981,
- SCHIEHLEN, W.: Technische Dynamik. Stuttgart: Teubner 1986.
- SONI, A.H.: Mechanism Synthesis and Analysis. New York: McGraw-Hill 1980.
- SUH, C.; RADCLIFFE, C.W.: Kinematics and Mechanisms Design. New York: John Wiley, 1978.

Zur verwendeten Schreibweise

Für Vektoren und Spaltenmatrizen werden unterstrichene kleine Buchstaben und für Tensoren 2. Stufe und Matrizen unterstrichene große Buchstaben verwendet.

Vektorielle Größen werden nach dem folgenden Schema indiziert:

Koordinatensystem für Komponentenzerlegung

Punkt für Zeitableitung

Bezugssystem für Zeitableitung von Vektoren (nur in Verbindung Spezifikation der Größe

(Doppelindex i.a. ohne Komma)

mit Ableitungspunkt) → Abschnitt 5.1

Einheitliche Bezeichnungen werden für folgende Vektoren verwendet:

 \underline{r}_{ij} - Verbindungsvektor der Punkte O_i und O_j .

 $\mathbf{k}_{\mathbf{i},\mathbf{j}}$ - Zeitliche Änderung des Vektors $\mathbf{r}_{\mathbf{i},\mathbf{j}}$ relativ zu $\mathbf{K}_{\mathbf{k}}$.

u. - Einheitsvektor einer Gelenkachse.

 \underline{e}_{xi} , \underline{e}_{yi} , \underline{e}_{zi} - Einheitsvektoren des Koordinatensystems K_i .

 $\underline{\omega}_{ij}$ - Winkelgeschwindigkeit des K_i relativ zu K_i .

 \underline{v}_{ij} - Geschwindigkeit des Punktes O_j relativ zu K_i .

Damit ist $\underline{\mathbf{v}}_{ij} = i \dot{\underline{\mathbf{r}}}_{ij}$.

 $\underline{\alpha}_{ij}$ — Winkelbeschleunigung von K_j relativ zu K_i .

Damit ist $\underline{\alpha}_{ij} = i \underline{\dot{\omega}}_{ij}$.

 \underline{a}_{ij} - Beschleunigung des Punktes O_j relativ zu K_i .

Damit ist $\underline{a}_{ij} = \underline{i}\underline{\dot{v}}_{ij}$.

0 - Nullvektor.

Bei Absolutgrrößen wird im allgemeinen nur ein Index angeschrieben.

Für folgende Matrizen werden einheitliche Bezeichnungen verwendet:

- $\begin{array}{lll} {}^{ik}\underline{T} & \mbox{ Orthogonale } & [3\times3]\mbox{-Transformations matrix, transformiert Vektor-koordinaten von } K_k \mbox{ nach } K_i: {}^i\underline{r} = {}^{ik}\underline{T} \mbox{}^k\underline{r} \mbox{ .} \end{array}$
- Einheitsmatrix (Dimension aus Zusammenhang).
- $\underline{0}$ Nullmatrix (Dimension aus Zusammenhang).

1 Einführung

Aufgabe der Kinematik ist es, die Lage sowie die Lageänderungen von Bezugssystemen (z.B. Körpern) im Raum zu beschreiben. Kinematik ist damit die Lehre von den Bewegungen, ohne Berücksichtigung der Kräfte als Ursache dieser Bewegungen. Eine besondere Bedeutung hat die Kinematik bei der Untersuchung einer speziellen Klasse von Mehrkörpersystemen, den Mechanismen, bei denen die über Gelenke miteinander verbundenen Körper geschlossene kinematische Schleifen bilden. Hierdurch sind die Bewegungen der einzelnen Körper stark miteinander verkoppelt und weisen im allgemeinen ein stark nichtlineares Verhalten auf. Die kinematische Analyse von Mechanismen erfordert eine effektive Formulierung der Bindungen infolge kinematischer Schleifen.

Im ersten Teil des vorliegenden Manuskripts werden Grundlagen der räumlichen Kinematik behandelt. Sie bilden die Grundlage für die im zweiten Teil dargestellten Methoden zur kinematischen Analyse von räumlichen Mechanismen.

Beispiele für Mechanismen:

a) Entfaltmechanismus für eine Satelliten-Radarantenne (SAR-Antenne)

Entfaltmechanismus zur Realisierung einer hochgenauen ebenen Antennengeometrie, gebildet aus ebenen Gelenkvierecken, die nach dem Entfaltvorgang zu einem tragenden Fachwerk verriegelt werden.

b) Hauptrotorsteuerung eines Hubschraubers

Über einen komplizierten Mechanismus mit zahlreichen kinematischen Schleifen werden die Bewegungen des Steuerknüppels und des Kollektivsteuerhebels in die Anstellung der Rotorblätter umgesetzt.

c) Industrieroboter

Bewegung des "Endeffektors" (z.B. Werkzeug, Greifer, Plattform) mit bis zu sechs Freiheitsgraden im Raum.

Die zunächst offene kinematische Kette eines Industrieroboters wird bei der Bestimmung der Gelenkkoordinaten zu einer vorgegebenen Bahn ("Rückwärtstransformation") über die Bahn (gedanklich) geschlossen.

d) Räumliche Einzelradaufhängung für einen PKW

Fünf räumlich angeordnete Lenker führen den Radträger mit einem Freiheitsgrad der Bewegung.

2 Grundlagen der Vektorrechnung und der Tensorrechnung

2.1 Vektoren

In der Mechanik wird unter einem Vektor eine physikalische Größe verstanden, zu deren Festlegung durch Zahlenwert und Einheit noch die Angabe ihres Richtungssinnes erforderlich ist (Beispiele: Ortsvektor \underline{r} , Geschwindigkeit \underline{v} , Kraft \underline{F}).

2.1.1 Rechenregeln für Vektoren

- Summe $\underline{c} = \underline{a} + \underline{b} = \underline{b} + \underline{a}$

- Skalarprodukt $c = \underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{a}$

- Vektorprodukt $\underline{c} = \underline{a} \times \underline{b} = -\underline{b} \times \underline{a}$, $\underline{c} \perp \underline{a}, \underline{b}$

- Mehrfache Produkte von Vektoren

Spatprodukt: $\underline{\mathbf{a}} \cdot (\underline{\mathbf{b}} \times \underline{\mathbf{c}}) = \underline{\mathbf{b}} \cdot (\underline{\mathbf{c}} \times \underline{\mathbf{a}}) = \underline{\mathbf{c}} \cdot (\underline{\mathbf{a}} \times \underline{\mathbf{b}})$

Entwicklungssatz: $\underline{\mathbf{a}} \times (\underline{\mathbf{b}} \times \underline{\mathbf{c}}) = \underline{\mathbf{b}}(\underline{\mathbf{a}} \cdot \underline{\mathbf{c}}) - \underline{\mathbf{c}}(\underline{\mathbf{a}} \cdot \underline{\mathbf{b}})$

Lagrange-Identität: $(\underline{a} \times \underline{b}) \cdot (\underline{c} \times \underline{d}) = (\underline{a} \cdot \underline{c}) (\underline{b} \cdot \underline{d}) - (\underline{b} \cdot \underline{c}) (\underline{a} \cdot \underline{d})$

Zur Auswertung der vektoriellen Beziehungen führt man Koordinatensysteme ein und zerlegt die Vektoren in Komponenten.

2.1.2 Komponentenzerlegung in einem Koordinatensystem

Jeder Vektor \underline{s} läßt sich in Komponenten in Richtung der drei Basisvektoren (Einheitsvektoren) \underline{e}_{x_1} , \underline{e}_{y_1} , \underline{e}_{z_1} eines Koordinatensystems K_1 (orthogonales Rechtssystem, Achsen x_1 , y_1 , z_1) zerlegen:

$$\underline{s} = {}^{1}s_{x} \underline{e}_{x1} + {}^{1}s_{y} \underline{e}_{y1} + {}^{1}s_{z} \underline{e}_{z1} . \tag{2.1}$$

Die einzelnen Summanden von Gl. (2.1) sind die Komponenten von \underline{s} im System K_1 . Die orthogonalen Projektionen ${}^1s_x = \underline{s} \cdot \underline{e}_{x1}$, ${}^1s_y = \underline{s} \cdot \underline{e}_{y1}$, ${}^1s_z = \underline{s} \cdot \underline{e}_{z1}$ sind die Koordinaten (skalaren Komponenten) des Vektors \underline{s} im System K_1 , die für die praktische Rechnung in einer (3×1)-Spaltenmatrix angeordnet werden:

$${}^{1}\underline{s} = \begin{bmatrix} {}^{1}s_{x} \\ {}^{1}s_{y} \\ {}^{1}s_{z} \end{bmatrix} \qquad \text{oder} \qquad {}^{1}\underline{s} = \begin{bmatrix} {}^{1}s_{x} \\ {}^{s}y \\ {}^{s}z \end{bmatrix} \qquad . \tag{2.2}$$

2.1.3 Transformation von Vektorkoordinaten

Für die praktische Rechnung mit Vektoren wird der Zusammenhang zwischen den Koordinaten desselben Vektors in unterschiedlichen Koordinatensystemen benötigt. Mit den Komponentenzerlegungen des Vektors \underline{s} in zwei Koordinatensystemen K_1 und K_2 gilt

$$(\underline{s} =) {}^{1}s_{x}\underline{e}_{x1} + {}^{1}s_{y}\underline{e}_{y1} + {}^{1}s_{z}\underline{e}_{z1} \stackrel{!}{=} {}^{2}s_{x}\underline{e}_{x2} + {}^{2}s_{y}\underline{e}_{y2} + {}^{2}s_{z}\underline{e}_{z2}$$

Die skalare Multiplikation dieser Vektorgleichung mit \underline{e}_{x1} , \underline{e}_{y1} und \underline{e}_{z1} liefert:

$$\underbrace{\mathbf{e}_{\mathbf{x}1}}, \quad \Big| \ \ ^{1}\mathbf{s}_{\mathbf{x}} \underbrace{\mathbf{e}_{\mathbf{x}1} \cdot \mathbf{e}_{\mathbf{x}1}}_{1} \ + \ ^{1}\mathbf{s}_{\mathbf{y}} \underbrace{\mathbf{e}_{\mathbf{x}1} \cdot \mathbf{e}_{\mathbf{y}1}}_{0} \ + \ ^{1}\mathbf{s}_{\mathbf{z}} \underbrace{\mathbf{e}_{\mathbf{x}1} \cdot \mathbf{e}_{\mathbf{z}1}}_{0} = \ ^{2}\mathbf{s}_{\mathbf{x}} \underbrace{\mathbf{e}_{\mathbf{x}1} \cdot \mathbf{e}_{\mathbf{x}2}}_{1} + \ ^{2}\mathbf{s}_{\mathbf{y}} \underbrace{\mathbf{e}_{\mathbf{x}1} \cdot \mathbf{e}_{\mathbf{y}2}}_{2} + \ ^{2}\mathbf{s}_{\mathbf{z}} \underbrace{\mathbf{e}_{\mathbf{x}1} \cdot \mathbf{e}_{\mathbf{z}2}}_{2} ,$$

$$\underbrace{e_{y_1}}\cdot \left| \ ^1s_x\underbrace{e_{y_1}\cdot e_{x_1}}_0 + \ ^1s_y\underbrace{e_{y_1}\cdot e_{y_1}}_1 + \ ^1s_z\underbrace{e_{y_1}\cdot e_{z_1}}_0 \right| = \ ^2s_x\underbrace{e_{y_1}\cdot e_{x_2}}_0 + \ ^2s_y\underbrace{e_{y_1}\cdot e_{y_2}}_2 + \ ^2s_z\underbrace{e_{y_1}\cdot e_{z_2}}_2 ,$$

$$\underbrace{\mathbf{e}_{z_1}}\cdot \left| \ ^1\mathbf{s}_{\mathbf{x}}\underbrace{\mathbf{e}_{z_1}\cdot\mathbf{e}_{\mathbf{x}_1}}_{0} \right. + \left| ^1\mathbf{s}_{\mathbf{y}}\underbrace{\mathbf{e}_{z_1}\cdot\mathbf{e}_{\mathbf{y}_1}}_{0} \right. + \left| ^1\mathbf{s}_{\mathbf{z}}\underbrace{\mathbf{e}_{z_1}\cdot\mathbf{e}_{z_1}}_{1} \right. = \left| ^2\mathbf{s}_{\mathbf{x}}\underbrace{\mathbf{e}_{z_1}\cdot\mathbf{e}_{\mathbf{x}_2}}_{1} \right. + \left| ^2\mathbf{s}_{\mathbf{y}}\underbrace{\mathbf{e}_{z_1}\cdot\mathbf{e}_{\mathbf{y}_2}}_{1} \right. + \left| ^2\mathbf{s}_{\mathbf{z}}\underbrace{\mathbf{e}_{z_1}\cdot\mathbf{e}_{z_2}}_{1} \right. + \left| ^2\mathbf{s}_{\mathbf{z}$$

oder in Matrizenschreibweise:

$$\begin{bmatrix} \mathbf{s}_{\mathbf{x}} \\ \mathbf{s}_{\mathbf{y}} \\ \mathbf{s}_{\mathbf{z}} \end{bmatrix} = \begin{bmatrix} \underline{\mathbf{e}}_{\mathbf{x}1} \cdot \underline{\mathbf{e}}_{\mathbf{x}2} & \underline{\mathbf{e}}_{\mathbf{x}1} \cdot \underline{\mathbf{e}}_{\mathbf{y}2} & \underline{\mathbf{e}}_{\mathbf{x}1} \cdot \underline{\mathbf{e}}_{\mathbf{z}2} \\ \underline{\mathbf{e}}_{\mathbf{y}1} \cdot \underline{\mathbf{e}}_{\mathbf{x}2} & \underline{\mathbf{e}}_{\mathbf{y}1} \cdot \underline{\mathbf{e}}_{\mathbf{y}2} & \underline{\mathbf{e}}_{\mathbf{y}1} \cdot \underline{\mathbf{e}}_{\mathbf{z}2} \\ \underline{\mathbf{e}}_{\mathbf{z}1} \cdot \underline{\mathbf{e}}_{\mathbf{x}2} & \underline{\mathbf{e}}_{\mathbf{z}1} \cdot \underline{\mathbf{e}}_{\mathbf{y}2} & \underline{\mathbf{e}}_{\mathbf{z}1} \cdot \underline{\mathbf{e}}_{\mathbf{z}2} \end{bmatrix} \, {}^{2} \begin{bmatrix} \mathbf{s}_{\mathbf{x}} \\ \mathbf{s}_{\mathbf{y}} \\ \mathbf{s}_{\mathbf{z}} \end{bmatrix}$$

$$\mathbf{1}_{\underline{\mathbf{S}}} = \mathbf{1}^{2} \underline{\mathbf{T}} \qquad \mathbf{2}_{\underline{\mathbf{S}}} \quad . \tag{2.3}$$

Die Transformationsmatrix $^{12}\underline{T}$ transformiert damit Koordinaten eines beliebigen Vektors \underline{s} vom System K_2 in das System K_1 .

Eigenschaften der Transformationsmatrix $^{12}\mathrm{T}$:

- In den Spaltenvektoren von $^{12}\underline{T}$ stehen die Koordinaten der Einheitsvektoren \underline{e}_{x2} , \underline{e}_{y2} , \underline{e}_{z2} im System K_1 , in den Zeilenvektoren die Koordinaten der Einheitsvektoren \underline{e}_{x1} , \underline{e}_{y1} , \underline{e}_{y1} , \underline{e}_{z1} im System K_2 :

$${}^{12}\underline{\mathbf{T}} = \begin{bmatrix} & & & & & & \\ & \mathbf{1}_{\underline{\mathbf{e}}_{x2}} & \mathbf{1}_{\underline{\mathbf{e}}_{y2}} & \mathbf{1}_{\underline{\mathbf{e}}_{z2}} \\ & & & & & \end{bmatrix} = \begin{bmatrix} & -\frac{(2\underline{\mathbf{e}}_{x1})^{\mathsf{T}}}{(2\underline{\mathbf{e}}_{y1})^{\mathsf{T}}} - \\ & -\frac{(2\underline{\mathbf{e}}_{x1})^{\mathsf{T}}}{(2\underline{\mathbf{e}}_{z1})^{\mathsf{T}}} - \end{bmatrix}. \tag{2.4}$$

- Die Elemente T_{ij} der Matrix $^{12}\underline{T}$ stellen die "Richtungscosinus" der Winkel zwischen den Basisvektoren der beiden Koordinatensysteme dar:

- 2.3 -

$$T_{11} = \underbrace{e_{x1} \cdot e_{x2}}_{x2} = \cos \delta_{xx} . \quad T_{12} = \underbrace{e_{x1} \cdot e_{y2}}_{x2} = \cos \delta_{xy} . \quad T_{13} = \underbrace{e_{x1} \cdot e_{z2}}_{x2} = \cos \delta_{xz} .$$

$$T_{21} = \underbrace{e_{y1} \cdot e_{x2}}_{x2} = \cos \delta_{yx} . \quad T_{22} = \underbrace{e_{y1} \cdot e_{y2}}_{y2} = \cos \delta_{yy} . \quad T_{23} = \underbrace{e_{y1} \cdot e_{z2}}_{z2} = \cos \delta_{yz} .$$

$$T_{31} = \underbrace{e_{z1} \cdot e_{x2}}_{x2} = \cos \delta_{zx} . \quad T_{32} = \underbrace{e_{z1} \cdot e_{y2}}_{z2} = \cos \delta_{zy} . \quad T_{33} = \underbrace{e_{z1} \cdot e_{z2}}_{z2} = \cos \delta_{zz} .$$

- Da die Zeilen- bzw. Spaltenvektoren von $^{12}\underline{T}$ ein orthonormales Rechtssystem bilden, ist $^{12}\underline{T}$ eine orthogonale Matrix mit $\det(^{12}\underline{T})$ = 1. Damit ist die Transformationsmatrix $^{21}\underline{T}$ für die umgekehrte Transformation

$$^{2}s = ^{21}T^{1}s$$
 (2.6)

vom System K_1 in das System K_2 die Transponierte von $^{12}\underline{T}$:

$${}^{21}\underline{\mathbf{T}} = {}^{\left(12\underline{\mathbf{T}}\right)^{-1}} = {}^{\left(12\underline{\mathbf{T}}\right)^{\mathsf{T}}} . \tag{2.7}$$

- Aufgrund der sechs Orthonormalitätsbedingungen sind nur drei der neun Elemente von $^{12}\underline{T}$ unabhängig.

Durch das Transformationsverhalten seiner Koordinaten gemäß den Gln. (2.3) und (2.6) wird ein Vektor als Tensor 1. Stufe definiert.

2.1.4 Konstruktion von Koordinatensystemen

Ein Koordinatensystem wird günstig durch drei Punkte P,Q und R mit den Ortsvektoren \underline{r}_P , \underline{r}_Q und \underline{r}_R definiert. Die drei Basisvektoren werden daraus wie folgt berechnet:

$$\underline{\mathbf{e}}_{z1} = \frac{\underline{\mathbf{r}}_{\mathbf{Q}} - \underline{\mathbf{r}}_{\mathbf{P}}}{|\underline{\mathbf{r}}_{\mathbf{Q}} - \underline{\mathbf{r}}_{\mathbf{P}}|}$$

$$\underline{e}_{y1} = \frac{\underline{e}_{z1} \times (\underline{r}_R - \underline{r}_P)}{|\underline{e}_{z1} \times (\underline{r}_R - \underline{r}_P)|}$$

$$\underline{\mathbf{e}}_{\mathbf{x}\mathbf{1}} = \underline{\mathbf{e}}_{\mathbf{y}\mathbf{1}} \times \underline{\mathbf{e}}_{\mathbf{z}\mathbf{1}}$$

$$\Rightarrow {}^{01}\underline{T} = \left[{}^{0}\underline{e}_{x1} | {}^{0}\underline{e}_{y1} | {}^{0}\underline{e}_{z1} \right]$$

Durch diese Berechnungsvorschrift wird die Erfüllung der sechs Orthonormalitätsbedingungen für $^{01}\underline{T}$ sichergestellt.

2.2 Tensoren 2. Stufe

Wie Tensoren 1. Stufe sind auch Tensoren 2. Stufe durch das Transformationsverhalten ihrer Koordinaten erklärt. Es wird hier nur eine vereinfachte Betrachtung durchgeführt.

2.2.1 Tensorielles Produkt zweier Vektoren

Es wird das tensorielle (dyadische) Produkt

$$\underline{\mathbf{D}} = \underline{\mathbf{a}} \circ \underline{\mathbf{b}} \tag{2.8}$$

zweier Vektoren a und b eingeführt. Es soll folgenden Regeln genügen:

1. $\underline{a} \circ (\underline{b} + \underline{c}) = \underline{a} \circ \underline{b} + \underline{a} \circ \underline{c}$ (Distributivgesetz),

2. $(k\underline{a}) \circ \underline{b} = k(\underline{a} \circ \underline{b})$, k skalar (Assoziativgesetz). (kein Kommutativgesetz, also $\underline{a} \circ \underline{b} + \underline{b} \circ \underline{a}$)

Mit diesen Regeln und der Darstellung der Vektoren \underline{a} und \underline{b} in eines Koordinatensystem K_i ergibt sich:

$$\underline{D} = \underline{a} \circ \underline{b} = (^{i}a_{x}\underline{e}_{xi} + ^{i}a_{y}\underline{e}_{yi} + ^{i}a_{z}\underline{e}_{zi}) \circ (^{i}b_{x}\underline{e}_{xi} + ^{i}b_{y}\underline{e}_{yi} + ^{i}b_{z}\underline{e}_{zi}) =$$

$$= (^{i}a_{x}^{i}b_{x}\underline{e}_{xi} \circ \underline{e}_{xi} + ^{i}a_{x}^{i}b_{y}\underline{e}_{xi} \circ \underline{e}_{yi} + ... + ^{i}a_{z}^{i}b_{z}\underline{e}_{zi} \circ \underline{e}_{zi}) =$$

$$= (^{i}D_{xx}\underline{G}_{xxi} + ^{i}D_{xy}\underline{G}_{xyi} + ... + ^{i}D_{zz}\underline{G}_{zzi}. \qquad (2.9)$$

Man definiert D als Tensor 2. Stufe mit

 $^{i}D_{xx},...,^{i}D_{zz}$ - 9 Koordinaten des Tensors im System K_{i} ,

 $\underline{G}_{xxi},...,\underline{G}_{zzi}$ - 9 "Basistensoren" 2. Stufe.

Für die praktische Rechnung werden die 9 Koordinaten von \underline{D} in einer (3,3)-Matrix ${}^{i}\underline{D}$ angeordnet, die aus den Vektorkoordinaten ${}^{i}\underline{a}$ und ${}^{i}\underline{b}$ gebildet wird:

$${}^{i}\underline{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix} = \begin{bmatrix} a_{x}b_{x} & a_{x}b_{y} & a_{x}b_{z} \\ a_{y}b_{x} & a_{y}b_{y} & a_{y}b_{z} \\ a_{z}b_{x} & a_{z}b_{y} & a_{z}b_{z} \end{bmatrix} = \begin{bmatrix} a_{x} \\ a_{y} \\ a_{z} \end{bmatrix} = \begin{bmatrix} a_{x} \\ a_{y} \\ a_{z} \end{bmatrix} = \begin{bmatrix} a_{x} \\ a_{y} \\ a_{z} \end{bmatrix}$$

Die in Gl. (2.10) wiedergegebene Bildung der 9 Koordinaten D_{kl} eines Tensors 2. Stufe aus den Koordinaten zweier Vektoren ist ein Sonderfall. Allgemein ist ein Tensor 2. Stufe durch das Transformationsverhalten seiner 9 Koordinaten beim Übergang auf ein anderes Koordinatensystem definiert (wie ein Tensor 1. Stufe durch das Transformationsverhalten seiner drei Koordinaten erklärt war). Dies wird in Abschnitt 2.2.4 beschrieben. Zuvor wird jedoch noch eine weitere Produktbildung zweier Tensoren eingeführt.

2.2.2 Verjüngendes Produkt zweier Tensoren

Allgemein führt das "verjüngende" Produkt eines Tensors m-ter Stufe mit einem Tensor n-ter Stufe auf einen Tensor (m+n-2)-ter Stufe. Das verjüngende Produkt soll mit "·" gekennzeichnet werden.

a) Verjüngendes Produkte zweier Tensoren 1. Stufe (Skalarprodukt)

Das verjüngende Produkt zweier Tensoren 1. Stufe bzw. Vektoren \underline{a} und \underline{b} ist das bekannte Skalarprodukt zweier Vektoren. Im Fall orthonormierter Basisvektoren \underline{e}_x , \underline{e}_y , \underline{e}_z (Index für Koordinatensystem weggelassen) gilt:

$$\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = (\mathbf{a}_{\mathbf{x}} \underline{\mathbf{e}}_{\mathbf{x}} + \mathbf{a}_{\mathbf{y}} \underline{\mathbf{e}}_{\mathbf{y}} + \mathbf{a}_{\mathbf{z}} \underline{\mathbf{e}}_{\mathbf{z}}) \cdot (\mathbf{b}_{\mathbf{x}} \underline{\mathbf{e}}_{\mathbf{x}} + \mathbf{b}_{\mathbf{y}} \underline{\mathbf{e}}_{\mathbf{y}} + \mathbf{b}_{\mathbf{z}} \underline{\mathbf{e}}_{\mathbf{z}}) =$$

$$= \mathbf{a}_{\mathbf{x}} \mathbf{b}_{\mathbf{x}} \underbrace{\mathbf{e}_{\mathbf{x}} \cdot \mathbf{e}_{\mathbf{x}}}_{1} + \mathbf{a}_{\mathbf{x}} \mathbf{b}_{\mathbf{y}} \underbrace{\mathbf{e}_{\mathbf{x}} \cdot \underline{\mathbf{e}}_{\mathbf{y}}}_{0} + \mathbf{a}_{\mathbf{x}} \mathbf{b}_{\mathbf{z}} \underbrace{\mathbf{e}_{\mathbf{x}} \cdot \underline{\mathbf{e}}_{\mathbf{z}}}_{0} +$$

$$+ \mathbf{a}_{\mathbf{y}} \mathbf{b}_{\mathbf{x}} \underbrace{\mathbf{e}_{\mathbf{y}} \cdot \mathbf{e}_{\mathbf{x}}}_{0} + \mathbf{a}_{\mathbf{y}} \mathbf{b}_{\mathbf{y}} \underbrace{\mathbf{e}_{\mathbf{y}} \cdot \underline{\mathbf{e}}_{\mathbf{y}}}_{1} + \mathbf{a}_{\mathbf{y}} \mathbf{b}_{\mathbf{z}} \underbrace{\mathbf{e}_{\mathbf{y}} \cdot \underline{\mathbf{e}}_{\mathbf{z}}}_{0} +$$

$$+ \mathbf{a}_{\mathbf{z}} \mathbf{b}_{\mathbf{x}} \underbrace{\mathbf{e}_{\mathbf{z}} \cdot \underline{\mathbf{e}}_{\mathbf{x}}}_{0} + \mathbf{a}_{\mathbf{z}} \mathbf{b}_{\mathbf{y}} \underbrace{\mathbf{e}_{\mathbf{y}} \cdot \underline{\mathbf{e}}_{\mathbf{y}}}_{0} + \mathbf{a}_{\mathbf{z}} \mathbf{b}_{\mathbf{z}} \underbrace{\mathbf{e}_{\mathbf{y}} \cdot \underline{\mathbf{e}}_{\mathbf{z}}}_{0} + \mathbf{a}_{\mathbf{z}} \mathbf{b}_{\mathbf{z}} = \underline{\mathbf{a}}^{\mathsf{T}} \underline{\mathbf{b}} . \tag{2.11}$$

Dieselbe Rechnung lautet in Summenschreibweise:

$$\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = \left[\sum_{\alpha} \mathbf{a}_{\alpha} \underline{\mathbf{e}}_{\alpha} \right] \cdot \left[\sum_{\gamma} \mathbf{b}_{\gamma} \underline{\mathbf{e}}_{\gamma} \right] = \sum_{\alpha} \sum_{\gamma} \mathbf{a}_{\alpha} \mathbf{b}_{\gamma} \underline{\mathbf{e}}_{\alpha} \cdot \underline{\mathbf{e}}_{\gamma} = \sum_{\alpha} \sum_{\gamma} \mathbf{a}_{\alpha} \mathbf{b}_{\gamma} \delta_{\alpha\gamma} = \sum_{\alpha} \mathbf{a}_{\alpha} \mathbf{b}_{\alpha},$$

$$\mathbf{mit} \quad \underline{\mathbf{e}}_{\alpha} \cdot \underline{\mathbf{e}}_{\gamma} = \delta_{\alpha\gamma} = \begin{cases} 1 & \text{für } \alpha = \gamma \\ 0 & \text{für } \alpha \neq \gamma \end{cases}.$$

$$(2.12)$$

Die Summen laufen dabei jeweils über x, y, z.

b) Verjlingendes Produkt eines Tensors 2. Stufe mit einem Tensor 1. Stufe

Das verjüngende Produkt eines Tensors 2. Stufe \underline{D} mit einem Tensor 1. Stufe \underline{r} liefert einen Tensor 1. Stufe bzw. einen Vektor:

$$\underline{D} \cdot \underline{r} = (D_{xx} \underline{e}_{x} \circ \underline{e}_{x} + D_{xy} \underline{e}_{x} \circ \underline{e}_{y} + D_{xz} \underline{e}_{x} \circ \underline{e}_{z} + D_{yx} \underline{e}_{y} \circ \underline{e}_{x} + D_{yy} \underline{e}_{y} \circ \underline{e}_{y} + D_{yz} \underline{e}_{y} \circ \underline{e}_{z} + D_{yy} \underline{e}_{y} \circ \underline{e}_{y} + D_{zz} \underline{e}_{z} \circ \underline{e}_{z} + D_{zz} \underline{e}_{z} \circ \underline{e}_{z}$$

Die Summen laufen dabei jeweils liber x, y, z.

Das verjüngende Produkt wird nun so definiert, daß der rechte Basisvektor \underline{e}_{β} im tensoriellen Produkt herausgelöst wird und mit \underline{e}_{γ} ein Skalarprodukt bildet:

$$\underline{\mathbf{D}} \cdot \underline{\mathbf{r}} = \sum_{\alpha} \sum_{\beta} \sum_{\alpha} \mathbf{D}_{\alpha\beta} \mathbf{r}_{\gamma} \, \underline{\mathbf{e}}_{\alpha} \, (\underline{\mathbf{e}}_{\beta} \cdot \underline{\mathbf{e}}_{\gamma}) . \tag{2.14}$$

In der orthonormalen Basis gilt wieder $\underline{e}_{\beta} \cdot \underline{e}_{\gamma} = \delta_{\beta \gamma}$ und man erhält einen Vektor \underline{s} :

$$\underline{\mathbf{D}} \cdot \underline{\mathbf{r}} = \sum_{\alpha} \sum_{\beta} \sum_{\gamma} D_{\alpha\beta} r_{\gamma} \underline{\mathbf{e}}_{\alpha} \delta_{\beta\gamma} = \sum_{\alpha} \sum_{\beta} D_{\alpha\beta} r_{\beta} \underline{\mathbf{e}}_{\alpha} =$$

$$= (D_{xx} r_{x} + D_{xy} r_{y} + D_{xz} r_{z}) \underline{\mathbf{e}}_{x} +$$

$$+ (D_{yx} r_{x} + D_{yy} r_{y} + D_{yz} r_{z}) \underline{\mathbf{e}}_{y} +$$

$$+ (D_{zx} r_{x} + D_{zy} r_{y} + D_{zz} r_{z}) \underline{\mathbf{e}}_{z} = : \underline{\mathbf{s}} .$$
(2.15)

Für die praktische Rechnung kann wieder auf Matrizenschreibweise übergegangen werden:

$$\begin{bmatrix} s_{x} \\ s_{y} \\ s_{z} \end{bmatrix} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix} \begin{bmatrix} r_{x} \\ r_{y} \\ r_{z} \end{bmatrix}$$

$$\underline{s} = \underline{D} \qquad \underline{r} . \qquad (2.16)$$

Entsprechend läßt sich zeigen, daß für die Koordinatendarstellung des verjüngenden Produkt "von links", also

$$\underline{\mathbf{s}} = \underline{\mathbf{r}} \cdot \underline{\mathbf{D}} \,, \tag{2.17}$$

gilt:

$$\begin{bmatrix} s_{x} & s_{y} & s_{z} \end{bmatrix} = \begin{bmatrix} r_{x} & r_{y} & r_{z} \end{bmatrix} \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{yx} & D_{yy} & D_{yz} \\ D_{zx} & D_{zy} & D_{zz} \end{bmatrix}$$

$$\underline{s}^{\mathsf{T}} = \underline{r}^{\mathsf{T}} \qquad \underline{D} \qquad . \tag{2.18}$$

2.2.3 Abbildungen von Vektoren durch Tensoren 2. Stufe

Die Beziehung

$$\underline{s} = \underline{f}(\underline{r}) = \underline{D} \cdot \underline{r}$$

kann als eine lineare Abbildung des Vektors \underline{r} auf den Vektor \underline{s} mit dem Tensor 2. Stufe \underline{D} als linearem Operator aufgefaßt werden. Sie besitzt die Eigenschaften

$$\underline{f(\underline{r}_1 + \underline{r}_2)} = \underline{f(\underline{r}_1)} + \underline{f(\underline{r}_2)},$$

$$f(\lambda\underline{r}) = \lambda\underline{f(\underline{r})} \quad (\lambda \text{ skalar}).$$

Beispiele für Tensoren 2.Stufe:

- Darstellung des Vektorprodukts mit Hilfe eines Tensors 2. Stufe:

$$\underline{\mathbf{v}} = \underline{\omega} \times \underline{\mathbf{r}} = \underline{\widetilde{\omega}} \cdot \underline{\mathbf{r}} \quad . \tag{2.19}$$

Der Tensor 2. Stufe $\underline{\widetilde{\omega}}$ bildet \underline{r} auf \underline{v} ab. Unter Berücksichtigung der bekannten Beziehung für das Vektorprodukt lassen sich die Koordinaten $\underline{\widetilde{\omega}}$ des Tensors $\underline{\widetilde{\omega}}$ in einem Koordinatensystem K_i angeben:

$$\begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix} = \begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix} \begin{bmatrix} r_{x} \\ r_{y} \\ r_{z} \end{bmatrix} = \begin{bmatrix} \omega_{y} & r_{z} - \omega_{z} & r_{y} \\ \omega_{z} & r_{x} - \omega_{x} & r_{z} \\ \omega_{x} & r_{y} - \omega_{y} & r_{x} \end{bmatrix}.$$

$$\begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} = \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix}$$

$$\begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix}$$

$$\begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix}$$

$$\begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix}$$

$$\begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix}$$

$$\begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix}$$

$$\begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix}$$

$$\begin{bmatrix} v_{x} \\ v_{y} \end{bmatrix} \begin{bmatrix} v_{x$$

Die Matrix ${}^{i}\underline{\widetilde{\omega}}$ ist schiefsymmetrisch: ${}^{i}\underline{\widetilde{\omega}}$ = ${}^{-i}\underline{\widetilde{\omega}}^{T}$.

Herauslösen eines Vektors aus einem Skalarprodukt:
 Durch Umkehrung des Schrittes von Gl. (2.13) nach Gl. (2.14) läßt sich in dem Vektorausdruck a (b·r) der Vektor r herauslösen:

$$\underline{\mathbf{s}} = \underline{\mathbf{a}} (\underline{\mathbf{b}} \cdot \underline{\mathbf{r}}) = (\underline{\mathbf{a}} \circ \underline{\mathbf{b}}) \cdot \underline{\mathbf{r}} . \tag{2.21}$$

Der Tensor 2. Stufe a b bildet r auf s ab.

2.2.4 Transformation von Tensorkoordinaten

Die Koordinaten $i\underline{D}$ eines Tensors 2. Stufe im System K_i können mit der Transformationsmatrix $ik\underline{T}$ in die Koordinaten $k\underline{D}$ in einem zweiten System K_k transformiert werden. Für die Herleitung wird die Tensorgleichung $\underline{s} = \underline{D} \cdot \underline{r}$ in Koordinaten des Systems K_i angeschrieben:

$$i_S = i_D i_r$$
.

Einsetzen der Transformationsbeziehungen $i\underline{r} = ik\underline{T} k\underline{r}$ und $i\underline{s} = ik\underline{T} k\underline{s}$ ergibt:

$${}^{ik}\underline{T}\ ^k\underline{s}\ =\ ^i\underline{D}\ ^{ik}\underline{T}\ ^k\underline{r}\qquad \rightarrow \quad ^k\underline{s}\ =\quad ^{ki}\underline{T}\ ^{i}\underline{D}\ ^{ik}\underline{T}\ ^k\underline{r}\quad .$$

Der Vergleich mit der im System K_k angeschriebenen Tensorgleichung $k_{\underline{S}} = k_{\underline{D}} k_{\underline{T}}$ zeigt das Transformationsverhalten für Koordinaten von Tensoren 2. Stufe in Matrizenschreibweise:

$${}^{k}D = {}^{ki}\underline{T} {}^{i}\underline{D} \left({}^{ki}\underline{T} \right)^{\mathsf{T}} = {}^{ki}\underline{T} {}^{i}\underline{D} {}^{ik}\underline{T} . \tag{2.22}$$

2.2.5 Zur Schreibweise von Vektorgleichungen

Insgesamt können damit vektorielle Ausdrücke in koordinatenfreier Vektorschreibweise oder, mit Hilfe der Koordinaten in einem Koordinatensystem, in Matrizenschreibweise dargestellt werden:

	Vektor- schreibweise	Koordinaten in Matrizenschreibweise
Skalarprodukt:	$\lambda = \underline{\mathbf{a}} \cdot \underline{\mathbf{b}}$	$\lambda = {}^{i}\underline{a}^{\tau} {}^{i}\underline{b}$
Verjüngung e's Tensors 2. Stufe:	$\underline{\mathbf{s}} = \underline{\Theta} \cdot \underline{\mathbf{r}}$	$i\underline{s} = i\underline{\Theta} i\underline{r}$
Vektorprodukt:	$\underline{\mathbf{v}} = \underline{\mathbf{a}} \times \underline{\mathbf{b}} = \widetilde{\underline{\mathbf{a}}} \cdot \underline{\mathbf{b}}$	$i\underline{v} = i\underline{\widetilde{a}} i\underline{b}$
Dyadisches Produkt:	$\underline{\mathbf{D}} = \underline{\mathbf{a}} \circ \underline{\mathbf{b}}$	$^{i}\underline{D} = {^{i}\underline{a}} {^{i}\underline{b}}^{T}$

Es ist zu beachten, daß die angegebenen Matrizengleichungen nur für Komponentenzerlegungen in einem orthonormalen System von Basisvektoren gelten.

In den folgenden Kapiteln wird überwiegend die Matrizenschreibweise verwendet.

3 Bewegungen von Punkten und Körpern im Raum

3.1 Bewegung eines Punktes im Raum

3.1.1 Bahn eines Punktes

Die Beschreibung der Bewegung eines Punktes P relativ zu einem festen Referenzsystem (Inertialsystem) K_0 erfolgt über den Ortsvektor

$$\underline{\underline{r}}(t) = {}^{0}\underline{r}_{x}(t)\underline{\underline{e}}_{x0} + {}^{0}\underline{r}_{y}(t)\underline{\underline{e}}_{y0} + {}^{0}\underline{r}_{z}(t)\underline{\underline{e}}_{z0} \quad \Rightarrow \quad {}^{0}\underline{\underline{r}}(t) = \begin{bmatrix} r_{x}(t) \\ r_{y}(t) \\ r_{z}(t) \end{bmatrix} \quad . \tag{3.1}$$

Die drei unabhängigen Koordinaten von $\underline{r}(t)$ entsprechen den drei Freiheitsgraden der Bewegung eines Punktes im Raum.

3.1.2 Geschwindigkeit eines Punktes

Die Geschwindigkeit von P relativ zu K₀ (Absolutgeschwindigkeit) ist:

$$\underline{\mathbf{v}}(\mathbf{t}) = \frac{d\underline{\mathbf{r}}}{d\overline{\mathbf{t}}} = \left(\frac{d}{dt}{}^{0}\mathbf{r}_{x}(\mathbf{t})\right)\underline{\mathbf{e}}_{x0} + \left(\frac{d}{dt}{}^{0}\mathbf{r}_{y}(\mathbf{t})\right)\underline{\mathbf{e}}_{y0} + \left(\frac{d}{dt}{}^{0}\mathbf{r}_{z}(\mathbf{t})\right)\underline{\mathbf{e}}_{z0} = \\
= \underline{\dot{\mathbf{r}}}(\mathbf{t}) = {}^{0}\dot{\mathbf{r}}_{x}(\mathbf{t})\underline{\mathbf{e}}_{x0} + {}^{0}\dot{\mathbf{r}}_{y}(\mathbf{t})\underline{\mathbf{e}}_{y0} + {}^{0}\dot{\mathbf{r}}_{z}(\mathbf{t})\underline{\mathbf{e}}_{z0} = \\
= {}^{0}\mathbf{v}_{x}(\mathbf{t})\underline{\mathbf{e}}_{x0} + {}^{0}\mathbf{v}_{y}(\mathbf{t})\underline{\mathbf{e}}_{y0} + {}^{0}\mathbf{v}_{z}(\mathbf{t})\underline{\mathbf{e}}_{z0} . \tag{3.2a}$$

$$\rightarrow \quad {}^{0}\underline{v}(t) = \, {}^{0}\underline{r}(t) = \, \left[\begin{array}{c} v_{x}(t) \\ v_{y}(t) \\ v_{z}(t) \end{array} \right] . \tag{3.2b}$$

Die Richtung von v ist stets tangential zur Bahn.

Betrag:
$$v = |\underline{v}| = \sqrt{{}^{0}v_{x}^{2} + {}^{0}v_{y}^{2} + {}^{0}v_{z}^{2}} + \frac{d}{dt}|\underline{r}|$$
 (3.3)

3.1.3 Beschleunigung eines Punktes

Die Beschleunigung von P relativ zu K₀ (Absolutbeschleunigung) ist:

$$\underline{\underline{a}}(t) = \frac{d^2\underline{r}}{dt^2} = \frac{d\underline{y}}{dt} = \underline{\ddot{r}}(t) = {}^{0}\dot{v}_{x}(t) \ \underline{\underline{e}}_{x0} + {}^{0}\dot{v}_{y}(t) \ \underline{\underline{e}}_{y0} + {}^{0}\dot{v}_{z}(t) \ \underline{\underline{e}}_{z0}$$

$$= {}^{0}a_{x}(t) \ \underline{\underline{e}}_{x0} + {}^{0}a_{y}(t) \ \underline{\underline{e}}_{y0} + {}^{0}a_{z}(t) \ \underline{\underline{e}}_{z0} \ . \tag{3.4a}$$

$$\rightarrow \quad {}^{0}\underline{a}(t) = {}^{0}\underline{\dot{v}}(t) = \begin{bmatrix} a_{x}(t) \\ a_{y}(t) \\ a_{z}(t) \end{bmatrix} . \tag{3.4b}$$

Die Beschleunigung a läßt sich an der Bahnkurve in zwei Anteile zerlegen:

- Tangentialbeschleunigung (Bahnbeschleunigung): Betragsänderung von \underline{v}

$$\mathbf{a}_{\mathbf{T}} = \underline{\mathbf{a}} \cdot \frac{\underline{\mathbf{v}}}{|\mathbf{v}|} = \frac{\mathbf{d}\mathbf{v}}{\mathbf{d}\mathbf{t}} \quad . \tag{3.5}$$

- Normalbeschleunigung (Zentripetalbeschleunigung):

$$a_N = \frac{v^2}{\rho}$$
 Krümmungsradius ρ . (3.6)

Die Normalbeschleunigung zeigt stets in Richtung der Hauptnormalen der Bahn; sie zeigt auf den Krümmungsmittelpunkt.

Betrag von \underline{a} : $a = |\underline{a}| = \sqrt{a_T^2 + a_N^2}$.

3.2 Drehbewegung des starren Körpers im Raum

Bei der reinen Drehbewegung eines starren Körpers behält ein Körperpunkt seine Lage im Raum bei und bildet den *Fixpunkt* der Drehung. Zur Beschreibung der Drehbewegung eines starren Körpers um den Ursprungspunkt O_0 des Inertialsystems K_0 als Fixpunkt wird ein körperfestes Koordinatensystem K_1 (Ursprung $O_1 = O_0 = O$) eingeführt, das die Orientierung des Körpers repräsentiert. In der festen *Ausgangs-lage* des Körpers fällt K_1 mit K_0 zusammen.

Aus dieser Ausgangslage kann der Körper nach einem Theorem von EULER stets durch eine einzige Drehung um eine Achse (Richtungsvektor \underline{u} , Drehwinkel β) in eine beliebige andere Orientierung gebracht werden. Sowohl die Achse \underline{u} als auch der Winkel β ändern sich im allgemeinen während der Drehbewegung, d.h. zu jeder neuen Orientierung gehört ein neues Paar (\underline{u} , β), siehe Abschnitt 4.2.

1

3.2.1 Orientierung des starren Körpers

Der Übergang eines beliebigen körperfesten Vektors $\underline{\rho}$ von der festen Ausgangslage $\underline{\rho}_0$ in die aktuelle Lage $\underline{\rho}(t)$ kann mit Hilfe eines linearen Operators, des *Drehtensors* $\underline{R}(t)$, wie folgt als Vektorgleichung ausgedrückt werden (vgl. Abschn. 2.2.4):

$$\rho(t) = \underline{R}(t) \rho_0 . \tag{3.7}$$

Für die praktische Rechnung wird die Vektorgleichung (3.7) in Koordinaten eines zu wählenden Koordinatensystems ausgewertet. Wird z.B. das System K_0 gewählt, so lautet der Zusammenhang zwischen den Koordinaten der unterschiedlichen Vektoren ρ_0 und $\rho(t)$:

$$^{0}\rho(t) = {}^{0}\underline{R}(t) {}^{0}\rho_{0}$$
 (3.8)

Die neun Koordinaten ${}^0\underline{R}(t)$ des Drehtensors lassen sich unmittelbar angeben. Hierzu wird zunächst berücksichtigt, daß die *unterschiedlichen* Vektoren ϱ_0 und $\varrho(t)$ in K_0 bzw. K_1 dieselben (konstanten) Koordinaten besitzen, also

$$o_{\rho_0} = i_{\varrho}$$
 (3.9)

Einsetzen von Gl. (3.9) in die rechte Seite von Gl. (3.8) liefert den Zusammenhang

$$^{0}\rho(t) = {}^{0}R(t) {}^{1}\rho$$
 (3.10)

zwischen den Koordinaten desselben Vektors $\underline{\rho}(t)$ in den unterschiedlichen Koordinatensystemen K_0 bzw. K_1 . Dieser Zusammenhang läßt sich aber auch entsprechend Abschnitt 2.1.3 mit Hilfe der Transformationsmatrix ${}^{01}\underline{T}(t)$ darstellen:

$${}^{0}\underline{\varrho}(t) = {}^{01}\underline{T}(t) {}^{1}\underline{\varrho} . \tag{3.11}$$

Der Vergleich der Beziehungen (3.10) und (3.11) zeigt, daß die Koordinaten des Drehtensors $\underline{R}(t)$ im System K_0 gerade den Elementen der Transformationsmatrix $\underline{R}(t)$ entsprechen:

$${}^{0}\underline{R}(t) = {}^{01}\underline{T}(t) . \tag{3.12}$$

Die Transformation der Koordinaten ${}^0\underline{R}(t)$ des Drehtensors in das System K_1 entsprechend Gl. (2.22) zeigt ferner, daß die Koordinaten des Drehtensors $\underline{R}(t)$ in den Koordinatensystemen K_0 und K_1 übereinstimmen:

$${}^{1}\underline{R} = {}^{10}\underline{T} {}^{01}\underline{T} {}^{01}\underline{T} = {}^{01}\underline{T} = {}^{0}\underline{R} .$$
 (3.13)

Die drei unabhängigen Elemente der orthogonalen Transformationsmatrix entsprechen den drei Freiheitsgraden der Drehbewegung eines starren Körpers im Raum. Möglichkeiten zur Wahl von Koordinaten für die Drehbewegung werden in Kapitel 4 ausführlich behandelt.

Betrachtungsweisen der Drehbewegung

Insgesamt läßt sich damit die Drehung eines Körpers (bzw. eines Vektors) durch eine Matrizengleichung der Form

$$\begin{bmatrix} b_{x} \\ b_{y} \\ b_{z} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} & B_{33} \\ B_{21} & B_{22} & B_{33} \\ B_{31} & B_{32} & B_{33} \end{bmatrix} \begin{bmatrix} c_{x} \\ c_{y} \\ c_{z} \end{bmatrix} , \text{ mit } |\underline{b}| = |\underline{c}| \text{ und } \underline{B}^{\mathsf{T}} = \underline{B}^{-1}, \tag{3.14}$$

$$\underline{b} = \underline{B} \qquad \underline{c}$$

darstellen, die auf zwei gleichwertige Arten interpretiert werden kann:

- 1. Interpretation als Vektordrehung entsprechend G1. (3.8): ${}^{0}\varrho(t) = {}^{0}\underline{R}(t) {}^{0}\varrho_{0}$ G1. (3.14) vermittelt hier den Zusammenhang zwischen den Koordinaten $\underline{b} = {}^{0}\varrho(t)$ und $\underline{c} = {}^{0}\varrho_{0}$ der unterschiedlichen Vektoren ϱ_{0} und $\varrho(t)$ im gleichen Koordinatensystem K_{0} ; die Matrix $\underline{B} = {}^{0}\underline{R}(t)$ beinhaltet die Koordinaten des Drehtensors der Vektordrehung $\varrho_{0} \rightarrow \varrho(t)$.
- 2. Interpretation als Koordinatentransformation entspr. Gl. (3.11): ${}^0\underline{\rho}(t) = {}^{01}\underline{T}(t) {}^1\underline{\rho}$ Gl. (3.14) vermittelt hier den Zusammenhang zwischen den Koordinaten $\underline{b} = {}^0\underline{\rho}(t)$ und $\underline{c} = {}^1\underline{\rho}_0$ desselben Vektors $\underline{\rho}(t)$ in den unterschiedlichen Koordinatensystemen K_0 und K_1 ; die Matrix $\underline{B} = {}^{01}\underline{T}(t)$ entspricht der Transformationsmatrix der Koordinatentransformation ${}^1\underline{\rho} \to {}^0\underline{\rho}(t)$.

Koordinatentransformation $^{0}\rho(t) = ^{01}\underline{T}(t)^{-1}\rho$

Die Zeitableitung der Transformationsbeziehung (3.11), $^{0}\rho(t)$ = $^{01}\underline{T}(t)$ $^{1}\rho$ liefert die Koordinaten der zeitliche Änderung $\dot{\varrho}(t)$ des Vektors $\varrho(t)$ im Inertialsystem K_0 :

$${}^{0}\underline{\hat{\varrho}}(\mathbf{t}) = {}^{01}\underline{\hat{\mathbf{T}}}(\mathbf{t}) {}^{1}\underline{\varrho} + {}^{01}\underline{\mathbf{T}}(\mathbf{t}) {}^{1}\underline{\hat{\varrho}} . \tag{3.15}$$

Einsetzen der entgegengesetzten Transformation $^{1}\rho = ^{01}\underline{T}^{T}(t) ^{0}\rho(t)$ ergibt:

$$^{0}\dot{\varrho}(\mathbf{t}) = ^{01}\dot{\underline{T}}(\mathbf{t}) ^{01}\underline{T}^{\mathsf{T}}(\mathbf{t}) ^{0}\underline{\varrho}(\mathbf{t}) .$$
 (3.16)

Es läßt sich nun zeigen, daß die Matrix $\underline{C} = {}^{01}\underline{T} \, {}^{01}\underline{T}^{\mathsf{T}}$ schiefsymmetrisch ist, d.h. es gilt $\underline{C} = -\underline{C}^{\mathsf{T}}$. Hierzu wird die Orthogonalitätsbeziehung ${}^{01}\underline{T}$ ${}^{01}\underline{T}$ = \underline{I} nach der Zeit abgeleitet:

$$\frac{d}{dt} \begin{pmatrix} 0^{1}\underline{T} & 0^{1}\underline{T}^{\mathsf{T}} \end{pmatrix} = {}^{01}\underline{\dot{T}} & {}^{01}\underline{T}^{\mathsf{T}} & + {}^{01}\underline{T} & {}^{01}\underline{\dot{T}}^{\mathsf{T}} & = \underline{0} \\ & \Rightarrow & \underline{\mathbf{C}} & = - & \underline{\mathbf{C}}^{\mathsf{T}} \end{pmatrix} \xrightarrow{0^{1}} \mathbf{T} \xrightarrow{0^{1}} \mathbf{T$$

Damit ist:

$${}^{01}\underline{\dot{T}} \ {}^{01}\underline{T}^{\mathsf{T}} = \underline{C} = \begin{bmatrix} 0 & C_{12} & C_{13} \\ -C_{12} & 0 & C_{23} \\ -C_{13} & -C_{23} & 0 \end{bmatrix} = -\underline{C}^{\mathsf{T}} .$$

Werden nun den nichtverschwindenden Elementen von \underline{C} die neuen Bezeichnungen $C_{12} = {}^{-0}\omega_z$, $C_{13} = {}^{0}\omega_y$, $C_{23} = {}^{-0}\omega_x$ gegeben, so enthalt \underline{C} die Koordinaten des dem Vektor $\underline{\omega}$ zugeordneten schiefsymmetrischen Tensors $\underline{\widetilde{\omega}}$, vgl. Gl. (2.20), also

$${}^{0}\underline{\widetilde{\omega}} = {}^{01}\underline{\dot{T}} {}^{01}\underline{T}^{\mathsf{T}} \left(= {}^{01}\underline{\dot{T}} {}^{10}\underline{T} \right) . \tag{3.18}$$

Damit läßt sich (3.16) schreiben als

$$\begin{pmatrix}
\hat{\rho}_{x}(t) \\
\hat{\rho}_{y}(t)
\end{pmatrix} = \begin{pmatrix}
0 & -\omega_{z}(t) & \omega_{y}(t) \\
\omega_{z}(t) & 0 & -\omega_{x}(t) \\
-\omega_{y}(t) & \omega_{x}(t) & 0
\end{pmatrix} \begin{pmatrix}
\rho_{x}(t) \\
\rho_{y}(t)
\\
\rho_{z}(t)
\end{pmatrix}$$

$$\begin{pmatrix}
0 \\
\rho_{z}(t)
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix} (t) \qquad \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix} (t) \qquad \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix} (t) \qquad \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix} (t)$$
(3.19)

Da alle Vektoren im gleichen System K₀ dargestellt sind, gilt Gl. (3.19) auch als Vektorgleichung:

$$\dot{\rho}(t) = \widetilde{\omega}(t) \, \rho(t) = \underline{\omega}(t) \times \rho(t) \,. \tag{3.20}$$

Hierbei ist $\omega(t)$ der Vektor der Winkelgeschwindigkeit des starren Körpers.

3.2.3 Winkelbeschleunigung des starren Körpers

Die Zeitableitung von Gl. (3.20) liefert die zweite Zeitableitung

$$\frac{\ddot{\varrho}(t)}{\widetilde{\alpha}(t)} = \frac{\dot{\underline{\omega}}(t)}{\widetilde{\underline{\omega}}(t)} \underbrace{\varrho(t)}_{\underline{\varrho}(t)} + \underbrace{\widetilde{\underline{\omega}}(t)}_{\underline{\varrho}(t)} \underbrace{\varrho(t)}_{\underline{\varrho}(t)} + \underbrace{\widetilde{\underline{\omega}}(t)}_{\underline{\varrho}(t)} \underbrace{\varrho(t)}_{\underline{\varrho}(t)} \underbrace{\varrho(t)}_{\underline{\varrho}(t)}$$
(3.21)

des Vektors $\,\varrho(t)\,$ mit dem Vektor $\,\underline{\alpha}(t)\,$ der Winkelbeschleunigung. Der Zusammenhang zwischen den Koordinaten $0_{\underline{\alpha}}$ und der Transformationsmatrix $0_{\underline{1}}$ ergibt sich aus der Zeitableitung von Gl. (3.18):

$${}^{0}_{\alpha} = {}^{01}\ddot{T} {}^{01}T^{\dagger} + {}^{01}\dot{\underline{T}} {}^{01}\dot{\underline{T}}^{\dagger} . \tag{3.22}$$

3.3 Die allgemeine Bewegung des starren Körpers im Raum

Die allgemeine Bewegung des Körpers bzw. des damit verbundenen Koordinatensystems K_1 im Raum läßt sich als eine Überlagerung einer Bahnbewegung und einer Drehbewegung beschreiben:

- Bahnbewegung \underline{r}_1 (t) des Punktes O_1 entsprechend Abschnitt 3.1: 3 Freiheitsgrade der Translation.
- Drehbewegung um den Punkt O1 als Fixpunkt entsprechend Abschnitt 3.2: 3 Freiheitsgrade der Rotation.

3.3.1 Position des starren Körpers im Raum

Ausgehend von der Drehung des körperfesten Vektors $\underline{\rho}(t)$ aus Abschnitt 3.2.1 erhält man den Ortsvektor $\underline{r}(t)$ eines beliebigen Köperpunktes Q unter Hinzunahme des Ortsvektors $\underline{r}_1(t)$ zum Ursprung des körperfesten Systems K_1 :

$$\underline{\mathbf{r}}(t) = \underline{\mathbf{r}}_1(t) + \rho(t) = \underline{\mathbf{r}}_1(t) + \underline{\mathbf{R}}(t) \underline{\rho}_0 \quad . \tag{3.23}$$

Die Auswertung dieser Vektorgleichung in Koordinaten des Koordinatensystems K_0 liefert unter Berücksichtigung der Beziehung ${}^0\underline{R}(t)\,{}^0\underline{\rho}_0 = {}^{01}\underline{T}(t)\,{}^1\underline{\rho}$:

Diese Matrizengleichung läßt sich auch in einer kompakteren Form darstellen:

$$\begin{bmatrix}
\mathbf{r}_{\mathbf{x}}(t) \\
\mathbf{r}_{\mathbf{y}}(t) \\
\mathbf{r}_{\mathbf{z}}(t) \\
\mathbf{1}
\end{bmatrix} = \begin{bmatrix}
T_{11}(t) & T_{12}(t) & T_{13}(t) \mid {}^{0}\mathbf{r}_{1x}(t) \\
T_{21}(t) & T_{22}(t) & T_{23}(t) \mid {}^{0}\mathbf{r}_{1y}(t) \\
T_{31}(t) & T_{32}(t) & T_{33}(t) \mid {}^{0}\mathbf{r}_{1z}(t) \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1}
\end{bmatrix} \begin{bmatrix}
\rho_{x} \\
\rho_{y} \\
\rho_{z} \\
\mathbf{1}
\end{bmatrix}$$

$${}^{0}\underline{\mathbf{r}}^{*}(t) =$$

$${}^{01}\underline{\mathbf{A}}(t) & {}^{1}\underline{\mathbf{p}}^{*} . \tag{3.25}$$

3.3.2 Geschwindigkeit des starren Körpers im Raum

Die Zeitableitung der Vektorgleichung (3.23) liefert unter Berücksichtigung von Gl. (3.20) die (Absolut-)Geschwindigkeit $\underline{\mathbf{y}}(\mathbf{t})$ des Punktes Q:

$$v(t) = \dot{r}(t) = \dot{r}_1(t) + \dot{\rho}(t) = \underline{v}_1(t) + \underline{\widetilde{\omega}}(t)\rho(t)$$
 (3.26)

Die Auswertung dieser Vektorgleichung in Koordinaten des Koordinatensystems $\, K_0 \,$ ergibt:

$$\begin{pmatrix}
v_{\mathbf{x}}(t) \\
v_{\mathbf{y}}(t) \\
v_{\mathbf{z}}(t)
\end{pmatrix} = \begin{pmatrix}
v_{1\mathbf{x}}(t) \\
v_{1\mathbf{y}}(t) \\
v_{1\mathbf{z}}(t)
\end{pmatrix} + \begin{pmatrix}
0 & -\omega_{\mathbf{z}}(t) & \omega_{\mathbf{y}}(t) \\
\omega_{\mathbf{z}}(t) & 0 & -\omega_{\mathbf{x}}(t) \\
-\omega_{\mathbf{y}}(t) & \omega_{\mathbf{x}}(t) & 0
\end{pmatrix} \begin{pmatrix}
0 & -\omega_{\mathbf{z}}(t) & \omega_{\mathbf{y}}(t) \\
0 & \omega_{\mathbf{z}}(t) & 0 & -\omega_{\mathbf{x}}(t) \\
-\omega_{\mathbf{y}}(t) & \omega_{\mathbf{x}}(t) & 0
\end{pmatrix} \begin{pmatrix}
0 & -\omega_{\mathbf{z}}(t) \\
0 & \omega_{\mathbf{z}}(t) \\
0 & \omega_{\mathbf{z}}(t)
\end{pmatrix} = \begin{pmatrix}
0 & -\omega_{\mathbf{z}}(t) & \omega_{\mathbf{y}}(t) \\
0 & \omega_{\mathbf{z}}(t) & 0
\end{pmatrix} \begin{pmatrix}
0 & -\omega_{\mathbf{z}}(t) & \omega_{\mathbf{y}}(t) \\
0 & \omega_{\mathbf{z}}(t) & 0
\end{pmatrix} \begin{pmatrix}
0 & -\omega_{\mathbf{z}}(t) \\
0 & \omega_{\mathbf{z}}(t) \\
0 & \omega_{\mathbf{z}}(t)
\end{pmatrix}$$

$$(3.27)$$

Bewegungswinder:

Der "Geschwindigkeitszustand" eines starren Körpers wird durch die Angabe der Winkelgeschwindigkeit $\underline{\mathbf{v}}$ und der Translationsgeschwindigkeit $\underline{\mathbf{v}}_P$ eines Körperpunktes P vollständig beschrieben. Man bezeichnet das Paar dieser Vektoren als Bewegungswinder ($\underline{\mathbf{v}}_P$, $\underline{\mathbf{v}}_P$) des Körpers im Punkt P.

Mit Hilfe der Beziehung (3.26) wird der Bewegungswinder $(\underline{\omega},\underline{v}_Q)$ in einem anderen Bezugspunkt Q erhalten:

$$\underline{\mathbf{v}}_{\mathbf{O}} = \underline{\mathbf{v}}_{\mathbf{P}} + \underline{\omega} \times \underline{\mathbf{r}}_{\mathbf{P}} \mathbf{Q}$$
.

Durch gezielte Verschiebung des Bezugspunktes läßt sich der Bewegungswinder auf eine Bewegungsschraube (Geschwindigkeitsschraube) reduzieren. Sie ist dadurch gekennzeichnet, daß Winkelgeschwindigkeit und Translationsgeschwindigkeit parallel sind. Der allgemeine Geschwindigkeitszustand eines Körpers ist damit eine Schraubbewegung um die momentane Schraubachse.

3.3.3 Beschleunigung des starren Körpers im Raum

Die weitere Zeitableitung der Geschwindigkeitsgleichung (3.26) liefert unter Berücksichtigung von (3.21) die (Absolut-)Beschleunigung $\underline{a}(t)$ des Punktes Q:

$$\underline{\underline{a}}(t) = \underline{\ddot{r}}(t) = \underline{\ddot{r}}_1(t) + \underline{\ddot{\rho}}(t) = \underline{\underline{a}}_1(t) + \underline{\tilde{\alpha}}(t) \underline{\rho}(t) + \underline{\tilde{\omega}}(t) \underline{\tilde{\omega}}(t) \underline{\rho}(t) . \tag{3.28}$$

In Koordinaten von K₀ gilt:

4 Koordinaten zur Beschreibung von Drehbewegungen

Von den neun Komponenten des Drehtensors bzw. der Transformationsmatrix zur Beschreibung der Drehung eines starren Körpers sind aufgrund der sechs Orthonormalitätsbedingungen nur drei voneinander unabhängig, entsprechend den drei Freiheitsgraden der freien Drehbewegung im Raum. Der Drehtensor bzw. die Transformationsmatrix kann deswegen in Abhängigkeit von drei unabhängigen Koordinaten ausgedrückt werden. Aus später ersichtlichen Gründen werden jedoch häufig mehr als drei Koordinaten gewählt, die dann nicht mehr unabhängig voneinander sind, sondern zusätzlichen Nebenbedingungen unterliegen. In diesem Kapitel werden die Grundbeziehungen zu einigen wichtigen Koordinatendarstellungen der Drehbewegung zusammengestellt.

Die Zusammenhänge zwischen den Größen zur Beschreibung der Drehbewegung des körperfesten Systems K_1 relativ zum Ausgangssystem K_0 und den allgemein mit

$$\gamma = \left[\gamma_1, \dots \gamma_m \right]^{\mathsf{T}}, \qquad m \ge 3, \tag{4.1}$$

bezeichneten Koordinaten der Drehbewegung können wie folgt ausgedrückt werden:

- Drehtensor bzw. Transformationsmatrix, vgl. Abschnitt 3.2.1:

$${}^{0}\underline{R} = {}^{0}\underline{R}(\gamma) = {}^{1}\underline{R}(\gamma)$$
 bzw. ${}^{01}\underline{T} = {}^{01}\underline{T}(\gamma)$ (4.2a)

$$\gamma = \gamma(\underline{R})$$
 bzw. $\underline{\gamma} = \underline{\gamma}(01\underline{T})$. (4.2b)

- Winkelgeschwindigkeit (Koordinaten in K_0 oder in K_1):

$${}^{0}\underline{\omega} = \underline{H}_{0}(\gamma)\dot{\gamma} \quad \text{und} \quad {}^{1}\underline{\omega} = \underline{H}_{1}(\gamma)\dot{\gamma} \quad ,$$
 (4.3a)

$$\dot{\gamma} = \underline{K}_0(\gamma)^0 \underline{\omega} \quad \text{und} \quad \dot{\gamma} = \underline{K}_1(\gamma)^1 \underline{\omega} \quad .$$
 (4.3b)

- Winkelbeschleunigung (Koordinaten in K_0 oder in K_1):

$${}^{0}\underline{\alpha} = \underline{H}_{0}(\gamma) \ddot{\gamma} + \underline{\bar{\alpha}}_{0}(\gamma, \dot{\gamma}) \quad \text{und} \quad {}^{1}\underline{\alpha} = \underline{H}_{1}(\gamma) \ddot{\gamma} + \underline{\bar{\alpha}}_{1}(\gamma, \dot{\gamma}) , \qquad (4.4a)$$

$$\ddot{\gamma} = \underline{K}_0(\gamma) \, {}^{0}\underline{\alpha} + \ddot{\overline{\gamma}}_0(\gamma, \dot{\gamma}) \quad \text{und} \quad \ddot{\gamma} = \underline{K}_1(\gamma) \, {}^{1}\underline{\alpha} + \ddot{\overline{\gamma}}_1(\gamma, \dot{\gamma}) . \tag{4.4b}$$

Zusätzlich gelten m-3 algebraische Nebenbedingungen der Form

$$\underline{\Phi}(\underline{\gamma}) = \underline{O} \quad \text{bzw. } \Phi_{\mathbf{i}}(\underline{\gamma}) = 0 \quad , \quad \mathbf{i} = 1, ..., \mathbf{m} - 3 \quad . \tag{4.5}$$

Anwendungsbeispiel: Bewegungsgleichungen für die freie Drehung eines starren Körpers im Raum.

Mit den Drehkoordinaten $\underline{\gamma}$ als verallgemeinerten Lagekoordinaten und den Koordinaten der Winkelgeschwindigkeit im System K_1 (günstig, da ${}^1\underline{\Theta}$ = const) als verallgemeinerten Geschwindigkeiten ("Minimalgeschwindigkeiten") lauten die Bewegungsgleichungen mit den dazugehörigen Anfangsbedingungen:

$$\underline{\dot{\gamma}} = \underline{K}_1(\underline{\gamma})^{-1}\underline{\omega} \qquad ; \qquad \underline{\gamma}(t=t_0) = \underline{\gamma}(0^{1}\underline{T}(t=t_0)) \qquad , \tag{4.6a}$$

$${}^{1}\underline{\dot{\omega}} = {}^{1}\underline{\Theta}_{S}^{-1} \left({}^{1}\underline{M}_{S}^{e} - {}^{1}\underline{\widetilde{\omega}} \ {}^{1}\underline{\Theta}_{S} \ {}^{1}\underline{\omega} \right) \quad ; \quad {}^{1}\underline{\omega}(\mathsf{t} = \mathsf{t}_{0}) \tag{4.6b}$$

nit ${}^{1}\underline{\mathrm{M}}_{\mathsf{S}}^{\,\mathrm{e}}$: eingeprägte Momente bzgl. Massenmittelpunkt S

 $^{1}\underline{\Theta}_{S}$: Trägheitstensor bzgl. Massenmittelpunkt S

In den insgesamt m + 3 Bewegungsgleichungen (4.6) werden nur die Lagebeziehungen (4.2) und die Geschwindigkeitsgleichung (4.3b) benötigt. Die Beschleunigungsgleichungen (4.4) sind nur für die "LAGRANGE-Formulierung" der Bewegungsgleichungen erforderlich, bei der die Drehkoordinaten als verallgemeinerte Lagekoordinaten und deren Zeitableitungen als verallgemeinerte Geschwindigkeiten verwendet werden. Diese Formulierung ist allerdings im Vergleich zur "EULER-Formulierung" (4.6) wesentlich ungünstiger und wird deswegen kaum verwendet. Aus diesem Grund wird im folgenden auf die Herleitung der Beschleunigungsgleichungen (4.4) verzichtet.

4.1 Koordinaten des Drehtensors (Richtungscosinus)

4.1.1 Darstellung des Drehtensors bzw. der Transformationsmatrix → Gl. (4.2)

Es ist naheliegend, unmittelbar die m = 9 Koordinaten des Drehtensors als Koordinaten der Drehbewegung zu benutzen. Entsprechend Gl. (3.12) ist dann

$$\gamma = {}^{0}\underline{R} = {}^{01}\underline{T} \quad . \tag{4.7}$$

Zwischen den neun Elementen T_{ij} der Matrix $^{01}\underline{T}$ bestehen die sechs Orthonormalitätsbedingungen, d.h. die drei Zeilen- oder Spaltenvektoren von $^{01}\underline{T}$ haben die Länge 1 und stehen paarweise senkrecht aufeinander. Es sind dies die sechs unabhängigen Einzelgleichungen der Beziehung $^{01}\underline{T}$ $^{01}\underline{T}$ 1 = \underline{I} : \rightarrow GI. (4.5)

$$\underline{\Phi}(\underline{\gamma}) = \underline{0}$$
:

$$\sum_{i=1}^{3} T_{\alpha j} T_{\beta j} - \delta_{\alpha \beta} = 0 \quad \text{mit } \delta_{\alpha \beta} = \begin{cases} 1 & \text{für } \alpha = \beta \\ 0 & \text{für } \alpha \neq \beta \end{cases}, \quad \alpha = 1, 2, 3 ; \quad \beta = 1, 2, 3 . \quad (4.8)$$

4.1.2 Darstellung der Winkelgeschwindigkeit → Gl. (4.3)

a) Koordinaten von ω im Ausgangssystem K_0 :

Nach Gl. (3.18) gilt:

$${}^{0}_{\widetilde{\omega}} = {}^{0}_{1}\underline{\dot{T}} {}^{0}_{1}\underline{T}^{\mathsf{T}} . \tag{4.9}$$

Die Auflösung nach ⁰¹T liefert:

$${}^{01}\dot{T} = {}^{0}\tilde{\omega} \quad {}^{01}\underline{T} \quad . \tag{4.10}$$

b) Koordinaten von ω im körperfesten System K₁:

Mit der Transformation der Tensorkoordinaten $^{0}\underline{\widetilde{\omega}}$ entsprechend Gl. (2.22), also

$$^{0}\widetilde{\underline{\omega}} = ^{01}\underline{\underline{T}} ^{10} \widetilde{\underline{\omega}} ^{01}\underline{\underline{T}}^{\dagger}$$
,

gehen die Gln. (4.9) und (4.10) über in

$${}^{1}\widetilde{c}_{0} = {}^{01}T^{\mathsf{T}} {}^{01}\dot{T} \qquad (4.11)$$

bzw.

$${}^{01}\dot{\mathbf{T}} = {}^{01}\underline{\mathbf{T}} \, {}^{1}\widetilde{\boldsymbol{\omega}} \qquad . \tag{4.12}$$

4.2 Drehzeiger (natürliche Invarianten der Drehbewegung)

4.2.1 Darstellung des Drehtensors bzw. der Transformationsmatrix → G1. (4.2a)

Wie bereits in Abschnitt 3.2.1 angesprochen, kann ein starrer Körper stets durch eine einzige Drehung um eine Achse (normierter Richtungsvektor \underline{u} , Drehwinkel β) von einer Ausgangsorientierung in eine beliebige andere Orientierung überführt werden. Der Achsvektor \underline{u} und der Winkel β werden auch als "natürliche Invarianten" der Drehung bezeichnet, da sie (im Gegensatz zu den Euler- oder Kardanwinkeln) unabhängig von gewählten Koordinatensystemen sind. Die im Ausgangssystem K_0 und im körperfesten System K_1 gleichen Koordinaten von \underline{u} und der Winkel β können nun als m=4 Koordinaten der Drehbewegung gewählt werden:

$$\underline{Y} = \begin{bmatrix} 0 \mathbf{u}_{\mathbf{x}}, 0 \mathbf{u}_{\mathbf{y}}, 0 \mathbf{u}_{\mathbf{z}}, \beta \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 0 \mathbf{u}^{\mathsf{T}}, \beta \end{bmatrix}^{\mathsf{T}} \quad \left(= \begin{bmatrix} 1 \mathbf{u}^{\mathsf{T}}, \beta \end{bmatrix}^{\mathsf{T}} \right)$$

$$(4.13)$$

Die m-3=1 Nebenbedingung lautet: \rightarrow Gl. (4.5)

$$\Phi(\gamma) = 0: \qquad {}^{0}\underline{\mathbf{u}}^{\mathsf{T}} {}^{0}\underline{\mathbf{u}} - 1 = 0 \quad . \tag{4.14}$$

Die Herleitung des Drehtensors ${}^{0}\underline{R}(\underline{u},\beta) = {}^{01}\underline{T}(\underline{u},\beta)$ kann auf zwei Arten erfolgen:

a) Geometrische Herleitung

Der gedrehte Vektor $\underline{\varrho}$ (Betrag ϱ) wird durch eine Linearkombination der drei paarweise senkrecht aufeinanderstehenden Einheitsvektoren $\underline{f_1}$, $\underline{f_2}$ und $\underline{f_3}$ dargestellt:

$$\underline{\varrho} = c_1 \underline{f}_1 + c_2 \underline{f}_2 + c_3 \underline{f}_3$$

Die Auswertung im System K_0 liefert (Koordinatenindex 0 weggelassen):

$$\underline{\varrho} = \cos\beta \, \underline{\varrho}_0 + \sin\beta \, \underline{\widetilde{u}} \, \underline{\varrho}_0 + (1 - \cos\beta) \, (\underline{u}^{\mathsf{T}} \underline{\varrho}_0) \underline{u}$$

$$\Rightarrow \underline{\varrho} = (\cos\beta \, \underline{I} + \sin\beta \, \underline{\widetilde{u}} + (1 - \cos\beta) \underline{u} \, \underline{u}^{\mathsf{T}}) \underline{\varrho}_0 = \underline{R}(\underline{u}, \beta) \, \underline{\varrho}_0 . \tag{4.15}$$

- 4.4 -

Damit lautet der Drehtensor im System K_0 , vgl. Gl. (3.12):

$$R(\underline{u},\beta) = \cos\beta \underline{I} + \sin\beta \ \underline{\widetilde{u}} + (1-\cos\beta) \underline{u} \underline{u}^{\mathsf{T}} = {}^{01}\underline{T}(\underline{u},\beta) , \qquad (4.16a)$$

bzw. ausgeschrieben (Abkürzungen "s"=sin, "c"=cos)

$$\underline{R(u,\beta)} = {}^{01}\underline{T} = \begin{bmatrix} c\beta + (1-c\beta)\,u_x^2 & (1-c\beta)\,u_xu_y - s\beta\,u_z & (1-c\beta)\,u_xu_z + s\beta\,u_y \\ (1-c\beta)\,u_xu_y + s\beta\,u_z & c\beta + (1-c\beta)\,u_y^2 & (1-c\beta)\,u_yu_z - s\beta\,u_x \\ (1-c\beta)\,u_xu_z - s\beta\,u_y & (1-c\beta)\,u_yu_z + s\beta\,u_x & c\beta + (1-c\beta)\,u_z^2 \end{bmatrix}. \quad (4.16b)$$

Die Betrachtung der umgekehrten Drehung

$$\rho_0 = \underline{R}^{-1}(\underline{u}, \beta) \underline{\rho}$$
 (bzw. $\underline{h} \underline{\rho} = \underline{h}^{-1}(\underline{u}, \beta) \underline{h}^{0}\underline{\rho}$)

bestätigt die Orthogonalität des Drehtensors:

$$\underline{R}^{-1}(\underline{u},\beta) = \underline{R}(\underline{u},-\beta) = \underline{R}(-\underline{u},\beta) = \underline{R}^{\mathsf{T}}(\underline{u},\beta) . \tag{4.17}$$

Ferner läßt sich die Invarianz der Drehachse bezüglich der Drehung, also

$$\underline{\underline{u}} = \underline{R}(\underline{\underline{u}}, \beta) \underline{\underline{u}} \qquad \left(bzw. \, {}^{0}\underline{\underline{u}} = {}^{01}\underline{\underline{T}}(\underline{\underline{u}}, \beta) \, {}^{1}\underline{\underline{u}}\right), \tag{4.18}$$

durch Einsetzen einfach verifizieren.

b) Analytische Herleitung

Die endliche Drehung $\varrho(\underline{u},\beta)=\underline{R}(\underline{u},\beta)\,\varrho_0$ läßt sich auch durch die Integration einer Differentialgleichung herleiten. Wird die Achsrichtung \underline{u} in K_0 als fest angesehen, so erfährt ein Vektor ϱ bei einer Drehung um diese Achse mit dem Drehwinkel d β in erster Näherung die Änderung ("infinitesimale Drehung" von ϱ)

$$d\varrho = \underline{u} \times \varrho \, d\beta$$
 bzw. $d\varrho = \underline{\widetilde{u}} \, \varrho \, d\beta$.

$$\frac{d\varrho}{d\beta} = \widetilde{\underline{u}} \ \varrho \qquad bzw. \qquad \frac{d}{d\beta} \begin{bmatrix} \rho_x \\ \rho_y \\ \rho_z \end{bmatrix} = \begin{bmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{bmatrix} \begin{bmatrix} \rho_x \\ \rho_y \\ \rho_z \end{bmatrix}. \tag{4.19}$$

Mit der Anfangsbedingung $\varrho (\beta=0)=\varrho_0$ lautet die Lösung dieses homogenen linearen Differentialgleichungssystems:

$$\varrho(\beta) = e^{\widetilde{\underline{u}}\beta} \varrho_0$$

Die Fundamentalmatrix $e^{\widetilde{\underline{u}}\beta}$ läßt sich durch eine endliche Potenzreihe ausdrücken:

$$e^{\widetilde{\underline{U}}\beta} = c_0 \underline{I} + c_1 \underline{\widetilde{u}} + c_2 \underline{\widetilde{u}}^2 . \tag{4.20}$$

Nach dem Satz von CAYLEY und HAMILTON gilt diese Beziehung auch, wenn man die "Systemmatrix" $\tilde{\underline{u}}$ durch ihre Eigenwerte

$$\lambda_1 = 0$$
, $\lambda_2 = i$, $\lambda_3 = -i$

ersetzt. Dies liefert drei Gleichungen der Form

$$\begin{split} & e^{O\beta} = c_0 + c_1 0 + c_2 0^2 &, \\ & e^{i\beta} = c_0 + c_1 i + c_2 i^2 &, \\ & e^{-i\beta} = c_0 + c_1 (-i) + c_2 (-i)^2 &. \end{split}$$

Daraus ergeben sich die Koeffizienten

$$c_0 = 1$$
 , $c_1 = \sin \beta$, $c_2 = 1 - \cos \beta$.

Eingesetzt in Gl. (4.20) erhält man wieder den Drehtensor entsprechend Gl. (4.16):

$$e^{\widetilde{\underline{u}}\beta} = \underline{R}(\underline{u},\beta) = \underline{I} + \sin\beta \widetilde{\underline{u}} + (1-\cos\beta) \widetilde{\underline{u}} \widetilde{\underline{u}} =$$

$$= \cos\beta \underline{I} + \sin\beta \widetilde{\underline{u}} + (1-\cos\beta) \underline{u} \underline{u}^{\mathsf{T}}$$

$$(4.21)$$

Bei der letzten Umformung wurde die Beziehung $\widetilde{\underline{u}}$ $\widetilde{\underline{u}}$ = $\underline{\underline{u}}$ $\underline{\underline{u}}^T$ - $\underline{\underline{I}}$ berücksichtigt, die aus $\underline{\underline{u}}$ $\widetilde{\underline{u}}$ $\underline{\underline{\rho}}$ = $\underline{\underline{u}} \times (\underline{\underline{u}} \times \underline{\underline{\rho}})$ = $\underline{\underline{u}}$ $(\underline{\underline{u}}^T\underline{\underline{\rho}})$ - $\underline{\underline{\rho}}$ $(\underline{\underline{u}}^T\underline{\underline{u}})$ = $(\underline{\underline{u}}$ $\underline{\underline{u}}^T$ - $\underline{\underline{I}}$) $\underline{\underline{\rho}}$ folgt.

4.2.2 Bestimmung des Drehzeigers aus dem Drehtensor → Gl. (4.2b)

Für die Bestimmung des Drehzeigers $\underline{\gamma} = [{}^0\underline{u},\beta]$ aus einem gegebenen Drehtensor ${}^0\underline{R} = {}^{01}\underline{T} = (T_{ij})$ wird eine Berechnungsvorschrift angegeben, die alle Sonderfälle berücksichtigt und numerisch am günstigsten ist. Zunächst werden ausgehend von Gl. (4.16) alle zur Verfügung stehenden Gleichungen zusammengestellt.

a) Gleichungen aus den Hauptdiagonalelementen von $^{01}\underline{T} = (T_{ij})$

- Summe der Hauptdiagonalelemente (Spur):

$$sp(^{01}\underline{T}) = T_{11} + T_{22} + T_{33} = \cos\beta (1+1+1) + (1-\cos\beta) \left(\underbrace{u_x^2 + u_y^2 + u_z^2}_{1} \right) = 2\cos\beta + 1$$

$$\Rightarrow \cos\beta = \frac{1}{2} (T_{11} + T_{22} + T_{33} - 1)$$

$$\Rightarrow \sin\beta = \pm \sqrt{1 - \cos^2\beta}$$
(ii.1)

- einzelne Hauptdiagonalelemente:

$$T_{11} = \cos \beta + (1 - \cos \beta) u_x^2$$
 \Rightarrow $u_x = \pm \sqrt{\frac{T_{11} - \cos \beta}{1 - \cos \beta}}$, (ii.2)

I

$$T_{22} = \cos \beta + (1 - \cos \beta) u_y^2$$
 \Rightarrow $u_y = \pm \sqrt{\frac{T_{22} - \cos \beta}{1 - \cos \beta}}$, (ii.3)

$$T_{33} = \cos \beta + (1 - \cos \beta) u_z^2 \rightarrow u_z = \pm \sqrt{\frac{T_{33} - \cos \beta}{1 - \cos \beta}}$$
 (ii.4)

b) Gleichungen aus den Nebendiagonalelementen von $01\underline{T} = (T_{11})$

- schiefsymmetrische Nebendiagonalelemente:

$$2u_x \sin\beta = T_{32} - T_{23}$$
, (iii.1)

$$2u_{y}\sin\beta = T_{13} - T_{31} , \qquad (iii.2)$$

$$2u_{z}\sin\beta = T_{21} - T_{12} . {(iii.3)}$$

- symmetrische Nebendiagonalelemente:

$$2(1-\cos\beta)u_{y}u_{z} = T_{32} + T_{23} , \qquad (iii.4)$$

$$2(1-\cos\beta)u_{\nu}u_{\nu} = T_{13} + T_{31} , \qquad (iii.5)$$

$$2(1-\cos\beta)u_{x}u_{y} = T_{21} + T_{12} . \tag{iii.6}$$

Die Berechnungsvorschrift ist:

- 1. Auswertung von Gl. (i) liefert $\cos \beta$.
- 2. Mit einer der vier Gln. (ii) wird eine nichtverschwindende Größe $\sin\beta$, u_x , u_y oder u_z bestimmt, wobei das Vorzeichen beliebig gewählt wird. Im Hinblick auf die Genauigkeit des folgenden Berechnungsschritts ist es zweckmäßig, aus diesen vier Größen die betragsgrößte auszuwählen.
- 3. Aus drei der sechs Gln. (iii) können die drei fehlenden Größen eindeutig bestimmt werden, wobei durch die in Schritt 2 ausgewählte Größe dividiert wird.
- 4. Mit $\cos\beta$ und $\sin\beta$ liegt β in einem 2π -Bereich, z.B. $-\pi \le \beta \le \pi$, eindeutig fest.

Bemerkungen:

 Bei der Auswahl des Vorzeichens in Schritt 2 wird einer von zwei Drehzeigern ausgewählt, welche dieselbe Drehung beschreiben:

- Im Fall β = 0 (\rightarrow cos β = 1) versagen die Gln. (ii.2) (ii.4): \underline{u} ist nicht definiert.
- Falls β den 2π -Bereich aus Schritt 4 verläßt, tritt im Verlauf von β ein Sprung von 2π auf, der bei der Integration zusätzliche Maßnahmen erfordert.

4.2.3 Beschreibung mehrfacher Drehungen

Bei der Hintereinanderschaltung endlicher Drehungen ist zunächst zu beachten, daß endliche Drehungen nichtkommutativ sind, d.h. an eine festgelegte Reihenfolge gebunden sind.

Beispiel:

1. Drehungsfolge: 90°-Drehung um x-Achse, anschließend 90°-Drehung um y-Achse

2. Drehungsfolge: 90°-Drehung um y-Achse, anschließend 90°-Drehung um x-Achse

$$A \rightarrow B' \rightarrow C'$$

Ausgehend von einer gegebenen Ausgangslage führen dieselben Teildrehungen in unterschiedlicher Reihenfolge zu unterschiedlichen Endlagen. Nur bei infinitesimalen Drehungen sind die Teildrehungen kommutativ.

Die Darstellung mehrfacher Drehungen wird nun anhand eines "Zweiarmroboters" gezeigt. Der Endeffektor ist über zwei Drehgelenke (Drehwinkel β_1 und β_2) mit dem Grundgestell verbunden.

Zunächst werden die Einzeldrehungen jeweils für sich entsprechend Abschnitt 4.2.1 betrachtet. Hierbei wird die Betrachtungsweise als Koordinatentransformation gewählt, die bei der anschließenden Hintereinanderschaltung der Drehungen übersichtlicher ist.

a) Teildrehung (\underline{u}_1 , β_1): Ausgangssystem $K_0 \rightarrow \text{gedrehtes System } K_1$

$${}^{0}\underline{\mathbf{u}}_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \qquad \underbrace{\overset{(4.16)}{\longrightarrow}} \qquad \qquad {}^{01}\underline{\mathbf{T}}(\underline{\mathbf{u}}_{1},\beta_{1}) = \begin{bmatrix} \cos\beta_{1} & -\sin\beta_{1} & 0 \\ \sin\beta_{1} & \cos\beta_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Transformation der Koordinaten eines beliebigen Vektors \underline{r} :

$${}^{0}\mathbf{r} = {}^{01}\mathbf{T}(\mathbf{u}_{1}, \beta_{1}) {}^{1}\underline{\mathbf{r}} \qquad (4.22)$$

b) Teildrehung ($\underline{\mathbf{u}}_2$, β_2): Ausgangssystem $K_1 \Rightarrow \text{gedrehtes System } K_2$

$${}^{1}\underline{\mathbf{u}}_{2} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \qquad \qquad \underbrace{(4.16)}_{12\underline{\mathbf{T}}} (\underline{\mathbf{u}}_{2}, \beta_{2}) = \begin{bmatrix} \cos\beta_{2} & 0 & -\sin\beta_{2} \\ 0 & 1 & 0 \\ \sin\beta_{2} & 0 & \cos\beta_{2} \end{bmatrix}$$

Transformation der Koordinaten eines beliebigen Vektors r:

$${}^{1}\mathbf{r} = {}^{12}\underline{\mathbf{T}}(\underline{\mathsf{u}}_{2},\beta_{2}) {}^{2}\underline{\mathbf{r}} . \tag{4.23}$$

c) Gesamtdrehung: Ausgangssystem $K_0 \rightarrow \text{gedrehtes System } K_2$

Einsetzen von Gl. (4.23) in (4.22):

$${}^{0}\mathbf{r} = {}^{01}\underline{\mathbf{T}}(\underline{\mathbf{u}}_{1}, \beta_{1}) {}^{12}\underline{\mathbf{T}}(\underline{\mathbf{u}}_{2}, \beta_{2}) {}^{2}\underline{\mathbf{r}} = {}^{02}\underline{\mathbf{T}} {}^{2}\underline{\mathbf{r}} . \tag{4.24}$$

Für den dargestellten endeffektorfesten Vektor \underline{r} (Länge r) gilt beispielsweise:

Auch wenn die Interpretation mehrfacher Drehungen als Koordinatentransformationen übersichtlicher ist und deswegen in den späteren Abschnitten fast ausschließlich verwendet wird, soll im folgenden die zweifache Drehung (4.25) als Vektordrehung betrachtet werden.

Die zweifache Drehung des Vektors \underline{r} von seiner Ausgangslage \underline{r}_0 bei $\beta_1 = \beta_2 = 0$ in die Endlage $\underline{r}_2 = \underline{r}(\beta_1, \beta_2)$ wird mit Hilfe von Drehtensoren beschrieben. Alle Vektorbeziehungen werden in Koordinaten von K_0 dargestellt. Es sind zwei Reihenfolgen der Einzeldrehungen möglich, die beide dieselbe Endlage von \underline{r} liefern:

I Teildrehungen um "Ausgangsachsen"

1. Drehung

2. Drehung

a) 1. Drehung um die Achse $\underline{\mathbf{u}}_2(\beta_1=0) = \underline{\mathbf{u}}_{20}$: $\underline{\mathbf{r}}_1 = \underline{\mathbf{R}}(\underline{\mathbf{u}}_{20},\beta_2) \underline{\mathbf{r}}_0$

$$\underline{\mathbf{u}}_{20} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \qquad \Rightarrow \qquad \underline{\mathbf{R}}(\underline{\mathbf{u}}_{20}, \beta_2) = \begin{bmatrix} \cos \beta_2 & 0 & -\sin \beta_2 \\ 0 & 1 & 0 \\ \sin \beta_2 & 0 & \cos \beta_2 \end{bmatrix}.$$

b) 2. Drehung um die Achse $\underline{u}_1 = \underline{u}_{10}$: $\underline{r}_2 = \underline{R}(\underline{u}_1, \beta_1) \underline{r}_1$

$$\underline{u}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \rightarrow \qquad \underline{R}(\underline{u}_1, \beta_1) = \begin{bmatrix} \cos\beta_1 & -\sin\beta_1 & 0 \\ \sin\beta_1 & \cos\beta_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \,.$$

c) Gesamtdrehung: vgl. Gl. (4.25)

II Teildrehungen um "mitgedrehte Achsen"

a) 1. Drehung um die Achse $\underline{u}_{10} = \underline{u}_1$: $\underline{r}_1^* = \underline{R}(\underline{u}_1, \beta_1) \underline{r}_0$

$$\underline{\mathbf{u}}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad \rightarrow \qquad \underline{\mathbf{R}}(\underline{\mathbf{u}}_1, \beta_1) = \begin{bmatrix} \cos\beta_1 & -\sin\beta_1 & 0 \\ \sin\beta_1 & \cos\beta_1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Andere Zwischenlage right als bei der ersten Drehungsfolge!

b) 2. Drehung um die gedrehte Achse $\underline{\mathbf{u}}_2$: $\underline{\mathbf{r}}_2 = \underline{\mathbf{R}}(\underline{\mathbf{u}}_2, \beta_2) \ \underline{\mathbf{r}}_1^*$

$$\underline{\mathbf{u}}_{2}(\beta_{1}) = \underline{\mathbf{R}}(\underline{\mathbf{u}}_{1}, \beta_{1}) \underline{\mathbf{u}}_{20} = \begin{bmatrix} \sin \beta_{1} \\ -\cos \beta_{1} \\ 0 \end{bmatrix}$$

$$\Rightarrow \underline{R}(\underline{u}_{2},\beta_{2}) = \begin{bmatrix} c\,\beta_{2} + (1-c\,\beta_{2})\,s^{2}\beta_{1} & -(1-c\,\beta_{2})\,s\beta_{1}\,c\beta_{1} & -c\,\beta_{1}\,s\beta_{2} \\ -(1-c\,\beta_{2})\,s\beta_{1}\,c\beta_{1} & c\,\beta_{2} + (1-c\,\beta_{2})\,c^{2}\beta_{1} & -s\,\beta_{1}\,s\beta_{2} \\ c\,\beta_{1}\,s\beta_{2} & s\,\beta_{1}\,s\beta_{2} & c\,\beta_{2} \end{bmatrix}$$
 (Abkürzungen: "s"=sin , "c"=cos)

c) Gesamtdrehung: vgl. Gl. (4.25)

$$\frac{\mathbf{r}_{2}(\beta_{1},\beta_{2})}{r \sin \beta_{1} \cos \beta_{2}} = \underbrace{\frac{\mathbf{R}(\mathbf{u}_{2},\beta_{2})}{r \sin \beta_{1} \cos \beta_{2}}}_{\mathbf{c}\beta_{1} \cos \beta_{2}} = \begin{bmatrix} c \beta_{2} + (1 - c \beta_{2}) s \beta_{1} c \beta_{1} & -(1 - c \beta_{2}) s \beta_{1} c \beta_{1} & -c \beta_{1} s \beta_{2} \\ -(1 - c \beta_{2}) s \beta_{1} c \beta_{1} & c \beta_{2} + (1 - c \beta_{2}) c^{2} \beta_{1} & -s \beta_{1} s \beta_{2} \\ c \beta_{1} s \beta_{2} & s \beta_{1} s \beta_{2} & c \beta_{2} \end{bmatrix} \begin{bmatrix} c \beta_{1} & -s \beta_{1} & 0 \\ s \beta_{1} & c \beta_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r \\ 0 \\ 0 \end{bmatrix}$$

Aus

$$\left(\underline{r}_{2}(\beta_{1},\beta_{2}) = \right) \ \underline{R}(\underline{u}_{2},\beta_{2}) \ \underline{R}(\underline{u}_{1},\beta_{1}) \ \underline{r}_{0} = \ \underline{R}(\underline{u}_{1},\beta_{1}) \ \underline{R}(\underline{u}_{20},\beta_{2}) \ \underline{r}_{0}$$

 $\mbox{folgt der Zusammenhang zwischen den Drehtensoren} \quad \underline{R}(\underline{u}_2,\beta_2) \quad \mbox{und} \quad \underline{R}(\underline{u}_{20},\beta_2) :$

$$\underline{R}(\underline{\mathbf{u}}_{2},\beta_{2}) = \underline{R}(\underline{\mathbf{u}}_{1},\beta_{1}) \ \underline{R}(\underline{\mathbf{u}}_{20},\beta_{2}) \ \underline{R}^{\mathsf{T}}(\underline{\mathbf{u}}_{1},\beta_{1}) \ .$$

- 4.11 -

4.2.4 Winkelgeschwindigkeit und Drehzeiger → Gl. (4.3)

a) Koordinaten von $\underline{\omega}$ im Ausgangssystem K_0

Der Zusammenhang zwischen Drehtensor und Winkelgeschwindigkeit ist nach Gl. (3.18):

$${}^{0}\widetilde{\underline{\omega}}(t) = {}^{0}\underline{\dot{R}}(t) {}^{0}\underline{R}^{\mathsf{T}}(t) = {}^{0!}\underline{\dot{T}}(t) {}^{0!}\underline{T}^{\mathsf{T}}(t) . \tag{4.26}$$

Die Auswertung von Gl. (4.26) unter Verwendung von Gl. (4.16) ist aufwendig. Eine Herleitung über die EULER-Parameter wird in Abschnitt 4.6.3 angegeben. Das Ergebnis ist (Koordinatenindex bei $\underline{\mathbf{u}}$ weggelassen):

Die Winkelgeschwindigkeit hängt damit nicht nur von der zeitlichen Änderung $\dot{\beta}$ des Drehwinkels, sondern auch von der zeitlichen Änderung $\dot{\underline{u}}$ der Drehachse ab. Nur im Fall einer in K_0 (und damit auch in K_1) festen Drehachse \underline{u} gilt die einfache Beziehung

$$^{0}\omega = \dot{\beta} \underline{u}$$
.

Die Auflösung von Gl. (4.27) nach $\dot{\gamma}$ ergibt (Herleitung in Abschnitt 4.6.3):

$$\begin{bmatrix} \dot{\underline{u}} \\ \dot{\beta} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \begin{bmatrix} \frac{\sin\beta}{(1-\cos\beta)} (\underline{I} - \underline{u} \underline{u}^{\mathsf{T}}) - \widetilde{\underline{u}} \end{bmatrix} \end{bmatrix} \circ_{\underline{\omega}} ,$$

$$\dot{\gamma} = \underline{K}_{0}(\underline{\gamma}) \qquad \circ_{\underline{\omega}} .$$
(4.28)

Für $\beta = 0$ ist die Auflösung nach $\dot{\gamma}$ nicht möglich.

b) Koordinaten von $\underline{\omega}$ im körperfesten System K_1

Die entsprechenden Beziehungen für $^{1}\underline{\omega}$ lauten (vgl. Abschnitt 4.6.3):

$${}^{1}\underline{\omega} = \dot{\beta}\underline{u} + \sin\beta\,\underline{\dot{u}} - (1-\cos\beta)\,\underline{u} \times \underline{\dot{u}} = \left[\sin\beta\underline{I} - (1-\cos\beta)\,\widetilde{\underline{u}} \mid \underline{u}\right] \left[\frac{\dot{u}}{\dot{\beta}}\right] \qquad (4.29)$$

und

$$\begin{bmatrix} \dot{\underline{u}} \\ \dot{\beta} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \begin{bmatrix} \frac{\sin\beta}{(1-\cos\beta)} \left(\underline{I} - \underline{u} \, \underline{u}^{\mathsf{T}} \right) + \widetilde{\underline{u}} \end{bmatrix} \end{bmatrix}_{1}^{1} \underline{\omega} , \qquad (4.30)$$

$$\dot{\underline{Y}} = \underline{\underline{K}}_{1}(\underline{Y}) \qquad ^{1}\underline{\omega} .$$

` - 4.12 -

4.3 EULER-Winkel

Ţ

Ausgehend von den Überlegungen von Abschnitt 4.2.3 kann eine räumliche Drehung auch mit Hilfe der Drehwinkel von drei aufeinanderfolgenden Einzeldrehungen um drei verschiedene Achsen beschrieben werden, wobei neben den Drehachsen die Reihenfolge der Einzeldrehungen festzulegen ist. Zur Vereinfachung der Beziehungen führt man die Einzeldrehungen als "Elementardrehungen" um die Koordinatenachsen ein. Zweckmäßig ist hierbei die Veranschaulichung durch eine gedachte kinematische Kette mit drei Drehgelenken. Unter den zahlreichen Möglichkeiten zur Definition derartiger Drehungsfolgen werden am häufigsten die EULER- und die KARDAN-Winkel gewählt. Die Definitionen hierfür sind in der Literatur jedoch nicht einheitlich.

Die m = 3 EULER-Winkel $\underline{\gamma} = [\psi, \Theta, \Phi]^T$ sind dadurch gekennzeichnet, daß die erste und die dritte Drehung um dieselbe Achse erfolgen.

4.3.1 EULER-Winkel und Transformationsmatrix → Gl. (4.2a)

Beschreibt man die Einzeldrehungen mit Hilfe von Transformationsmatrizen, so lautet die Transformation der Koordinaten eines beliebigen Vektors \underline{r} vom gedrehten körperfesten System K_3 in das Ausgangssystem K_0 :

mit

$$\frac{\cos \psi \cos \Phi - \sin \psi \cos \Theta \sin \Phi - \cos \psi \sin \Phi - \sin \psi \cos \Theta \cos \Phi - \sin \psi \sin \Theta}{\sin \psi \cos \Phi + \cos \psi \cos \Theta \sin \Phi} = \frac{\cos \psi \sin \Phi - \sin \psi \sin \Phi + \cos \psi \cos \Theta \cos \Phi - \cos \psi \sin \Theta}{\sin \Theta \sin \Phi} = \frac{\cos \psi}{\sin \Theta}$$

$$\frac{\cos \psi \cos \Phi - \sin \psi \cos \Theta \sin \Phi - \cos \psi \sin \Phi - \sin \psi \cos \Theta \cos \Phi}{\sin \psi \sin \Theta} = \frac{\cos \psi}{\sin \Theta}$$

$$\frac{\sin \psi \cos \Phi + \cos \psi \cos \Theta \sin \Phi}{\sin \Theta \cos \Phi} = \frac{\cos \psi}{\cos \Theta}$$

$$\frac{\sin \psi \cos \Phi}{\sin \Theta \sin \Phi} = \frac{\sin \psi \cos \Theta \cos \Phi}{\sin \Phi} = \frac{\cos \psi}{\cos \Phi}$$

$$\frac{\sin \psi \cos \Phi}{\sin \Theta \cos \Phi} = \frac{\cos \psi}{\cos \Phi}$$

$$\frac{\sin \psi \cos \Phi}{\sin \Phi} = \frac{\cos \psi}{\cos \Phi}$$

$$\frac{\sin \psi \cos \Phi}{\sin \Phi} = \frac{\cos \psi}{\cos \Phi}$$

$$\frac{\sin \psi \cos \Phi}{\cos \Phi} = \frac{\cos \psi}{\cos \Phi}$$

$$\frac{\sin \psi \cos \Phi}{\sin \Phi} = \frac{\cos \psi}{\cos \Phi}$$

$$\frac{\sin \psi \cos \Phi}{\cos \Phi} = \frac{\cos \psi}{\cos \Phi}$$

$$\frac{\sin \psi \cos \Phi}{\cos \Phi} = \frac{\cos \psi}{\cos \Phi}$$

$$\frac{\sin \psi}{\cos \Phi} = \frac{\cos \psi}{\cos \Phi}$$

$$\frac{\sin \psi}{\cos$$

Aus einer vorliegenden Transformationsmatrix $^{03}\underline{T}$ = (T_{ij}) können die EULER-Winkel wie folgt bestimmt werden: \rightarrow Gl. (4.2b)

$$\begin{array}{c} \cos\theta = T_{33} \\ \sin\theta = \pm \sqrt{1-T_{33}^2} \end{array} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \Theta \hspace{0.2cm} \text{(2 L\"osungen!)} \hspace{0.2cm} \begin{array}{c} \text{Bemerkungen:} \\ - \hspace{0.2cm} \text{Die beiden L\"osungen entsprechen} \\ \text{den beiden Konfigurationen der} \\ \text{kinematischen Kette bei gegebener} \\ \text{Lage von } K_3 \hspace{0.2cm} . \end{array}$$

$$\cos \Phi = -\frac{T_{31}}{\sin \Theta} \hspace{0.2cm} \\ \sin \Phi = \frac{T_{13}}{\sin \Theta} \hspace{0.2cm} \\ \Rightarrow \hspace{0.2cm} \Phi \hspace{0.2cm} - \text{Für } \Theta = 0, \pm \pi \hspace{0.2cm} \text{sind} \hspace{0.2cm} \Phi \hspace{0.2cm} \text{und} \hspace{0.2cm} \Psi \\ \sin \Phi = \frac{T_{13}}{\sin \Theta} \end{array}$$

Drehungsfolge für EULER-Winkel

Ausgangslage: $(x,y,z)_0 = (x,y,z)_3$	1. Drehung: Winkel ψ um z ₃ -(=z ₀)-Achse	2. Drehung: Winkel Θ um x ₃ -(=x ₁)-Achse	3. Drehung: Winkel Φ um z ₃ -(=z ₂)-Achse
x_0 x_3 x_3 x_3 x_4 x_5 x_6 x_6	$Z_0 = Z_1$ $Z_0 = Z_1$ X_1 X_2 X_3 X_4	z_2 y_3 y_2 y_3 y_2 y_3 y_4 y_5 y_7 y_1 y_7	z_2 0 z_0
Beschreibung mit Transformationsmatrizen	$ \frac{01}{T}(\psi) = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} $	$ \frac{12}{T}(\Theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\Theta & -\sin\Theta \\ 0 & \sin\Theta & \cos\Theta \end{bmatrix} $	$\frac{23}{2}\underline{T}(\Phi) = \begin{bmatrix} \cos \Phi & -\sin \Phi & 0\\ \sin \Phi & \cos \Phi & 0\\ 0 & 0 & 1 \end{bmatrix}$
Transformation der Koordinaten eines beliebigen Vektors <u>r</u>	${}^{0}\underline{\mathbf{r}} = {}^{01}\underline{\mathbf{T}}(\psi) {}^{1}\underline{\mathbf{r}}$	${}^{1}\underline{\mathbf{r}} = {}^{12}\underline{\mathbf{T}}(\Theta) {}^{2}\underline{\mathbf{r}}$	$^{2}\underline{\mathbf{r}} = ^{23}\underline{\mathbf{T}}(\Phi)^{3}\underline{\mathbf{r}}$

Die Winkelgeschwindigkeit des Systems K_3 relativ zu K_0 ergibt sich aus der vektoriellen Summe der Teilwinkelgeschwindigkeiten:

$$\omega = \dot{\psi} \underline{e}_{z0} + \dot{\Theta} \underline{e}_{x1} + \dot{\Phi} \underline{e}_{z2}$$

Diese Vektorgleichung wird in Koordinaten von K_0 und K_3 ausgewertet.

a) Koordinaten von $\underline{\omega}$ im Ausgangssystem K_0

$${}^{0}\underline{\omega} = \dot{\psi} {}^{0}\underline{e}_{z0} + \dot{\Theta} {}^{0}\underline{e}_{x1} + \dot{\Phi} {}^{0}\underline{e}_{z2}$$

$$\Rightarrow \begin{bmatrix} {}^{0}\omega_{x} \\ {}^{0}\omega_{y} \\ {}^{0}\omega_{z} \end{bmatrix} = \begin{bmatrix} 0 & \cos\psi & \sin\psi \sin\Theta \\ 0 & \sin\psi & -\cos\psi \sin\Theta \\ 1 & 0 & \cos\Theta \end{bmatrix} \begin{bmatrix} \dot{\psi} \\ \dot{\Theta} \\ \dot{\Phi} \end{bmatrix} , \qquad (4.33)$$

$${}^{0}\underline{\omega} = \underline{H}_{0}(\underline{\gamma}) \qquad \dot{\underline{\gamma}} .$$

Aufgelöst nach $\dot{\underline{\dot{\gamma}}}$:

$$\begin{bmatrix} \dot{\psi} \\ \dot{\Theta} \\ \dot{\Phi} \end{bmatrix} = \frac{1}{\sin\Theta} \begin{bmatrix} -\sin\psi\cos\Theta & \cos\psi\cos\Theta & \sin\Theta \\ \cos\psi\sin\Theta & \sin\psi\sin\Theta & 0 \\ \sin\psi & -\cos\psi & 0 \end{bmatrix} \begin{bmatrix} {}^{0}\omega_{x} \\ {}^{0}\omega_{y} \\ {}^{0}\omega_{z} \end{bmatrix}, \tag{4.34}$$

$$\dot{\underline{\Upsilon}} = \underline{\underline{K}_{0}(\underline{\Upsilon})} \qquad {}^{0}\underline{\omega} .$$

Für $\Theta = 0, \pm \pi$ ist die Auflösung nach $\dot{\gamma}$ nicht möglich ("Singularität" der EULER-Winkel).

b) Koordinaten von $\underline{\omega}$ im körperfesten System K_3

$${}^{3}\underline{\omega} = \dot{\psi}^{3}\underline{e}_{x0} + \dot{\Theta}^{3}\underline{e}_{x1} + \dot{\Phi}^{3}\underline{e}_{x2} = {}^{30}\underline{\Upsilon}^{0}\underline{\omega}$$

$$\Rightarrow \begin{bmatrix} {}^{3}\omega_{x} \\ {}^{3}\omega_{y} \\ {}^{3}\omega_{z} \end{bmatrix} = \begin{bmatrix} \sin\Phi\sin\Theta & \cos\Phi & 0 \\ \cos\Phi\sin\Theta & -\sin\Phi & 0 \\ \cos\Theta & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\psi} \\ \dot{\Theta} \\ \dot{\Phi} \end{bmatrix}, \qquad (4.35)$$

$${}^{3}\underline{\omega} = \underline{H}_{3}(\underline{\Upsilon}) \qquad \dot{\underline{\Upsilon}} .$$

Aufgelöst nach $\dot{\underline{\dot{\gamma}}}$:

$$\begin{bmatrix} \dot{\psi} \\ \dot{\Theta} \\ \dot{\Phi} \end{bmatrix} = \frac{1}{\sin\Theta} \begin{bmatrix} \sin\Phi & \cos\Phi & 0 \\ \cos\Phi\sin\Theta & -\sin\Phi\sin\Theta & 0 \\ -\sin\Phi\cos\Theta & -\cos\Phi\cos\Theta & \sin\Theta \end{bmatrix} \begin{bmatrix} {}^{3}\omega_{x} \\ {}^{3}\omega_{y} \\ {}^{3}\omega_{z} \end{bmatrix} , \qquad (4.36)$$

$$\dot{\underline{\Upsilon}} = \underline{\underline{K}_{3}(\underline{\Upsilon})} \qquad {}^{3}\underline{\omega} .$$

4.4 KARDAN-Winkel

Die m=3 KARDAN-Winkel $\underline{\gamma}=[\alpha,\beta,\gamma]^T$ sind dadurch gekennzeichnet, daß die erste und die dritte Drehung um dieselbe Achse erfolgen.

4.4.1 KARDAN-Winkel und Transformationsmatrix → Gl. (4.2)

Die Transformation der Koordinaten eines beliebigen Vektors \underline{r} vom körperfesten System K_3 in das Ausgangssystem K_0 lautet:

mit

$${}^{03}\underline{T} = \begin{bmatrix} \cos\beta\cos\gamma & -\cos\beta\sin\gamma & \sin\beta \\ \cos\alpha\sin\gamma + \sin\alpha\sin\beta\cos\gamma & \cos\alpha\cos\gamma - \sin\alpha\sin\beta\sin\gamma & -\sin\alpha\cos\beta \\ \sin\alpha\sin\gamma - \cos\alpha\sin\beta\cos\gamma & \sin\alpha\cos\gamma + \cos\alpha\sin\beta\sin\gamma & \cos\alpha\cos\beta \end{bmatrix} = {}^{(30}\underline{T})^{\mathsf{T}}$$

$$(4.38)$$

Aus einer vorliegenden Transformationsmatrix $^{03}\underline{T}$ = (T_{ij}) können die KARDAN-Winkel wie folgt bestimmt werden:

$$\begin{array}{lll} \cos\beta &=& \pm \sqrt{1-T_{13}^2} \\ \sin\beta &=& T_{13} \end{array} \right\} \rightarrow \beta \ \ (2 \ L\"{o}sungen!) \\ \cos\gamma &=& \frac{T_{11}}{\cos\beta} \\ \sin\gamma &=& -\frac{T_{12}}{\cos\beta} \end{array} \right\} \rightarrow \gamma \\ &=& \frac{T_{12}}{\cos\beta} \\ \cos\alpha &=& \frac{T_{33}}{\cos\beta} \\ \sin\alpha &=& -\frac{T_{23}}{\cos\beta} \end{array} \right\} \rightarrow \alpha \\ &=& \frac{T_{23}}{\cos\beta}$$

$$\Rightarrow \alpha$$

$$\cos\alpha = \frac{T_{23}}{\cos\beta}$$

$$\sin\alpha &=& -\frac{T_{23}}{\cos\beta}$$

$$\Rightarrow \alpha$$

Für $\beta = \pm \frac{\pi}{2}$ ist die Auflösung nach $\dot{\gamma}$ nicht möglich ("Singularität" der KARDAN-Winkel).

Drehungsfolge für KARDAN-Winkel

Ausgangslage: $(x,y,z)_0 = (x,y,z)_3$	1. Drehung: Winkel α um x_3 -(= x_0)-Achse	2. Drehung: Winkel β um y ₃ -(=y ₁)-Achse	3. Drehung: Winkel γ um z_3 -(= z_2)-Achse
y_0	z_1 α 0 z_0 y_1 α y_0 $x_0 = x_1$	z_2 z_3 z_3 z_3 z_4 z_5 z_5 z_5 z_7 z_8 z_8 z_8 z_8 z_8 z_8 z_9	z_1 z_2 x_3 x_4 x_5
Beschreibung mit Transformationsmatrizen	$ \frac{01}{T}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} $	$ \frac{12}{T}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} $	$ \frac{23}{T}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix} $
Transformation der Koordinaten eines beliebigen Vektors <u>r</u>	${}^{0}\underline{\mathbf{r}} = {}^{01}\underline{\mathbf{T}}(\alpha)^{1}\underline{\mathbf{r}}$	${}^{1}\underline{\mathbf{r}} = {}^{12}\underline{\mathbf{T}}(\beta) {}^{2}\underline{\mathbf{r}}$	$^{2}\underline{\mathbf{r}} = ^{23}\underline{\mathbf{T}}(\gamma)^{-3}\underline{\mathbf{r}}$

1

4.4.2 Darstellung der Winkelgeschwindigkeit → Gl. (4.3)

Die Winkelgeschwindigkeit des Systems $\rm K_3$ relativ zu $\rm K_0$ ergibt sich aus der vektoriellen Summe der Teilwinkelgeschwindigkeiten:

$$\underline{\omega} = \dot{\alpha} \, \underline{e}_{x0} + \dot{\beta} \, \underline{e}_{y1} + \dot{\gamma} \, \underline{e}_{z2}$$

Diese Vektorgleichung in Koordinaten von K_0 und K_3 ausgewertet.

a) Koordinaten von $\underline{\omega}$ im Ausgangssystem K_0

$${}^{0}\underline{\omega} = \dot{\alpha} {}^{0}\underline{e}_{x0} + \dot{\beta} {}^{0}\underline{e}_{y1} + \dot{\gamma} {}^{0}\underline{e}_{z2}$$

$$\Rightarrow \begin{bmatrix}
0_{\omega_{x}} \\
0_{\omega_{y}} \\
0_{\omega_{z}}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & \sin\beta \\
0 & \cos\alpha & -\sin\alpha\cos\beta \\
0 & \sin\alpha & \cos\alpha\cos\beta
\end{bmatrix} \begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix},$$

$$\frac{0_{\omega}}{} = \frac{\underline{H}_{0}(\underline{\gamma})}{} \qquad \dot{\underline{\gamma}} \qquad (4.39)$$

Aufgelöst nach γ:

$$\begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix} = \frac{1}{\cos \beta} \begin{bmatrix} \cos \beta & \sin \alpha \sin \beta & -\cos \alpha \sin \beta \\ 0 & \cos \alpha \cos \beta & \sin \alpha \cos \beta \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} 0 \omega_x \\ 0 \omega_y \\ 0 \omega_z \end{bmatrix}, \tag{4.40}$$

$$\dot{\underline{\Upsilon}} = \underline{\underline{K}_0(\underline{\Upsilon})} \qquad 0 \underline{\underline{\omega}} .$$

Für $\beta = \pm \frac{\pi}{2}$ ist die Auflösung nach $\dot{\gamma}$ nicht möglich ("Singularität" der KARDAN-Winkel).

b) Koordinaten von ω im körperfesten System K₃

$$\frac{3}{\omega} = \dot{\alpha} \frac{3}{2} \underline{e}_{x0} + \dot{\beta} \frac{3}{2} \underline{e}_{y1} + \dot{\gamma} \frac{3}{2} \underline{e}_{z2} = \frac{30}{1} \frac{0}{\omega}$$

$$\Rightarrow \begin{bmatrix} 3\omega_{x} \\ 3\omega_{y} \\ 3\omega_{z} \end{bmatrix} = \begin{bmatrix} \cos\beta\cos\gamma & \sin\gamma & 0 \\ -\cos\beta\sin\gamma & \cos\gamma & 0 \\ \sin\beta & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix} , \qquad (4.41)$$

$$\frac{3}{\omega} = \underline{H}_{3}(\underline{\gamma}) \qquad \dot{\underline{\gamma}} .$$

Aufgelöst nach γ:

$$\begin{bmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{bmatrix} = \frac{1}{\cos \beta} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \cos \beta \sin \gamma & \cos \beta \cos \gamma & 0 \\ -\sin \beta \cos \gamma & \sin \beta \sin \gamma & \cos \beta \end{bmatrix} \begin{bmatrix} {}^{3}\omega_{x} \\ {}^{3}\omega_{y} \\ {}^{3}\omega_{z} \end{bmatrix} , \qquad (4.42)$$

$$\frac{\dot{\gamma}}{\dot{\gamma}} = \underline{\underline{K}_{3}(\underline{\gamma})} \qquad \qquad 3\underline{\omega} .$$

4.5 Quaternionen und EULER-Parameter

Die m=4 EULER-Parameter werden direkt aus dem Drehzeiger (\underline{u},β) gebildet. Der Vorteil der EULER-Parameter gegenüber dem Drehzeiger sowie den EULER-oder KARDAN-Winkeln liegt darin, daß sie keine "Singularitäten" aufweisen und damit für beliebige Drehungen definiert sind. Eine vorteilhafte mathematische Formulierung der entsprechenden Beziehungen wird mit Hilfe der auf HAMILTON zurückgehenden Algebra der "Quaternionen" erreicht, die hier in vereinfachter Form kurz dargestellt wird.

4.5.1 Algebra der Quaternionen

Eine Quaternion $\stackrel{q}{\overset{}{\circ}}$ ist eine viergliedrige "hyperkomplexe" Zahl, die über eine reelle Einheit e_0 und drei imaginäre Einheiten e_1 , e_2 und e_3 wie folgt definiert ist:

$$q = q_0 e_0 + q_1 e_1 + q_2 e_2 + q_3 e_3 . (4.43)$$

Man unterscheidet dabei den Realteil $\,q_0\,$ und die drei Imaginärteile $\,q_1\,,q_2\,$ und $\,q_3\,$. Für die Produkte der Einheiten gelten folgende Rechenregeln:

$$\begin{array}{l} e_0\,e_0\,=\,e_0\,=\,1\,\quad,\\ e_i\,e_i\,=\,-\,e_0\,=\,-1\,\quad,\quad i\,=\,1,2,3\,,\\ e_i\,e_0\,=\,e_0\,e_i\,=\,\,e_i\,\quad,\quad i\,=\,1,2,3\,\,,\\ e_i\,e_j\,=\,-\,e_j\,e_i\,\qquad,\quad i,j\,=\,1,2,3\,\,\,\text{mit}\,\,i\,\neq\,j,\,\,\,(vgl.\,\,\,Vektorprodukt)\\ e_i\,e_{i\,+\,1}\,=\,e_{i\,+\,2}\,\qquad,\quad i\,=\,1,2,3\,\,\,\,zyklisch. \end{array}$$

Aus diesen Definitionen ergeben sich die folgenden Rechenregeln für Quaternionen:

a) Summe zweier Quaternionen

$$\frac{s}{s} = \frac{q}{q} + \frac{r}{r} = (q_0 e_0 + q_1 e_1 + q_2 e_2 + q_3 e_3) + (r_0 e_0 + r_1 e_1 + r_2 e_2 + r_3 e_3) =
= (q_0 + r_0) e_0 + (q_1 + r_1) e_1 + (q_2 + r_2) e_2 + (q_3 + r_3) e_3 =
= s_0 e_0 + s_1 e_1 + s_2 e_2 + s_3 e_3 .$$
(4.44)

Die Summe zweier Quaternionen ist kommutativ: $\frac{s}{s} = \frac{q}{q} + \frac{r}{r} = \frac{r}{r} + \frac{q}{q}$.

b) Produkt zweier Quaternlonen

$$\begin{array}{l} \underline{s} = \underline{q} \ \underline{r} = (q_0 \ e_0 + q_1 e_1 + q_2 e_2 + q_3 e_3) \ (r_0 \ e_0 + r_1 e_1 + r_2 e_2 + r_3 e_3) = \\ \\ = (q_0 \ r_0 - q_1 r_1 - q_2 r_2 - q_3 r_3) e_0 + \\ \\ + \left[q_0 \ r_1 + q_1 r_0 + (q_2 r_3 - q_3 r_2)\right] e_1 + \\ \\ + \left[q_0 \ r_2 + q_2 r_0 + (q_3 r_1 - q_1 r_3)\right] e_2 + \\ \\ + \left[q_0 \ r_3 + q_3 r_0 + (q_1 r_2 - q_2 r_1)\right] e_3 = \\ \\ = s_0 \ e_0 + s_1 e_1 + s_2 e_2 + s_3 e_3 \ . \end{array}$$

Für die weiteren Überlegungen ist es sinnvoll, den Realteil als "Skalarteil" und den die drei Imaginärteile als "Vektorteil" der Quaternion aufzufassen. Schreibt man formal

so lautet das Produkt

$$\overset{s}{\sim} = \overset{q}{\overset{r}{\sim}} = (q_0 r_0 - \overset{q}{\overset{r}{\sim}}) + (q_0 \overset{r}{\sim} + \overset{q}{\overset{r}{\sim}} r_0 + \overset{q}{\overset{r}{\sim}} \overset{r}{\sim}).$$

$$\overset{s}{\sim} = s_0 + \overset{\underline{s}}{\overset{\underline{s}}{\sim}} (4.46)$$

Wegen der Nichtkommutativität des Vektorprodukts, also $\underline{q} \underline{r} = -\underline{r} \underline{q}$ bzw $\underline{q} \times \underline{r} = -\underline{r} \times \underline{q}$, ist das Quaternionenprodukt ebenfalls nichtkommutativ: $\underline{q} \underline{r} = -\underline{r} \times \underline{q}$.

Dagegen gilt: Assoziatives Gesetz: $(\underbrace{q}_{}, \underbrace{r}_{}) \underset{s}{\times} = \underbrace{q}_{}, (\underbrace{r}_{}, \underbrace{s}_{}) = \underbrace{q}_{}, \underbrace{r}_{}, \underbrace{s}_{}$ Distributives Gesetz: $\underbrace{q}_{}, (\underbrace{r}_{}, + \underbrace{s}_{}) = \underbrace{q}_{}, \underbrace{r}_{}, + \underbrace{q}_{}, \underbrace{s}_{}$

In manchen Fällen ist auch eine Matrizendarstellung des Produkts zweier Quaternionen zweckmäßig. Das Produkt $\underline{s} = \underline{q} \underline{r}$ kann dabei auf zwei Arten dargestellt werden:

- Zweiter Faktor r nach rechts herausgezogen:

$$\begin{bmatrix} s_0 \\ \underline{\underline{s}} \end{bmatrix} = \begin{bmatrix} q_0 & -\underline{q}^{\mathsf{T}} \\ \underline{q} & q_0\underline{l} + \underline{\widetilde{q}} \end{bmatrix} \begin{bmatrix} r_0 \\ \underline{r} \end{bmatrix} = \begin{bmatrix} q_0r_0 - \underline{q}^{\mathsf{T}}\underline{r} \\ q_0\underline{r} + \underline{q}r_0 + \underline{\widetilde{q}}\underline{r} \end{bmatrix} \leftarrow \text{Skalarteil}$$
 (4.47)

- Erster Faktor q nach rechts herausgezogen:

$$\begin{bmatrix} s_0 \\ \underline{s} \end{bmatrix} = \begin{bmatrix} r_0 & -\underline{r}^{\mathsf{T}} \\ \underline{r} & q_0 \underline{I} - \underline{\tilde{r}} \end{bmatrix} \begin{bmatrix} q_0 \\ \underline{q} \end{bmatrix} = \begin{bmatrix} r_0 q_0 - \underline{r}^{\mathsf{T}} \underline{q} \\ r_0 \underline{q} + q_0 \underline{r} - \underline{\tilde{r}} \underline{q} \end{bmatrix} \leftarrow \text{Skalarteil}$$

$$\leftarrow \text{Vektorteil}$$

$$(4.48)$$

Man kann ferner das "Quaternionenprodukt" $\underline{s} = \underline{q}\,\underline{r}$ zweier Vektoren \underline{q} und \underline{r} einführen, indem man diese als Quaternionen mit verschwindendem Skalarteil auffaßt:

$$\underline{s} = q\underline{r} = (0 + q)(0 + \underline{r}) = -\underline{q}^{\mathsf{T}}\underline{r} + \underline{\widetilde{q}}\underline{r} . \tag{4.49}$$

c) Konjugierte Quaternion

Die zur Quaternion $\underline{q} = q_0 + \underline{q}$ konjugierte Quaternion ist

$$\frac{\bar{q}}{\tilde{q}} = q_0 - \underline{q} . \tag{4.50}$$

Für die Konjugierte eines Produktes gilt:

$$\overline{q} r = \overline{r} \overline{q} . \tag{4.51}$$

d) Norm (Betrag) einer Quaternion

In Anlehnung an die Betragbildung gewöhnlicher komplexer Zahlen bildet man:

e) Inverse Quaternion

1

Durch Erweiterung mit q wird der Nenner skalar gemacht:

$$\underline{q}^{-1} = \frac{1}{\underline{q}} = \frac{\bar{q}}{\underline{q}\,\bar{q}} = \frac{\bar{q}}{|\underline{q}|^2} . \tag{4.53}$$

Zusammen mit Gl. (4.52) ist dann

$$q q^{-1} = 1 = 1 + 0$$
. (4.54)

Die Überlegenheit der Quaternionenrechnung gegenüber der herkömmlichen Vektorrechnung besteht darin, daß die vier Gruppenaxiome erfüllt sind:

- 1. Das Produkt einer Quaternion ist wieder eine Quaternion
- 2. Die Multiplikation ist assoziativ.
- 3. Es existiert das Einselement $\frac{1}{2}$ so, daß die Gleichung $\frac{1}{2} = \frac{1}{2} (1 + 0) = \frac{1}{2}$ erfüllt ist.
- 4. Zu einer Quaternion $\frac{q}{q}$ existiert die Inverse $\frac{q}{q}^{-1}$ so, daß $\frac{q}{q}$ $\frac{q}{q}^{-1}$ = $\frac{1}{1}$ erfüllt ist.

4.5.2 Bescheibung von Drehbewegungen mit EULER-Parametern → Gl. (4.2a)

Unter Verwendung der natürlichen Invarianten der Drehbewegung, also der Koordinaten ${}^0\underline{u}$ (= ${}^1\underline{u}$) der Drehachse und des dazugehörigen Drehwinkels β , wird die folgende Quaternion gebildet:

$$q({}^{0}\underline{u},\beta) = q_{0} + \underline{q} = \cos\frac{\beta}{2} + {}^{0}\underline{u}\sin\frac{\beta}{2}$$
 (4.55)

Die m=4 Anteile der Quaternion $\underline{q}({}^0\underline{u},\beta)$ werden nun als Koordinaten der Drehung verwendet und als EULER-Parameter bezeichnet:

$$\underline{\Upsilon} = \begin{bmatrix} q_0, q_1, q_2, q_3 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \cos \frac{\beta}{2}, & {}^0u_x \sin \frac{\beta}{2}, & {}^0u_y \sin \frac{\beta}{2}, & {}^0u_z \sin \frac{\beta}{2} \end{bmatrix}^{\mathsf{T}}. \tag{4.56}$$

Die EULER-Parameter unterliegen der Normierungsbedingung \rightarrow Gl. (4.5)

$$\Phi(\underline{\gamma}) = 0: \qquad \left(|\underline{q}|^2 = \right) \cos^2 \frac{\beta}{2} + {}^0 \underline{u}^{\mathsf{T}} {}^0 \underline{u} \sin^2 \frac{\beta}{2} - 1 = 0 . \tag{4.57}$$

Die Drehung eines Vektors $\underline{\varrho}$ von seiner Ausgangslage $\underline{\varrho}_0$ in die Lage $\underline{\varrho}$ wird durch das folgende doppelte Quaternionenprodukt beschrieben, das der Vektorgleichung (4.15), ${}^0\underline{\varrho}={}^0\underline{R}$ ${}^0\underline{\varrho}_0$, entspricht:

$$^{0}\rho = q \,^{0}\rho_{0} \,^{0}\bar{q}$$
 (4.58)

Die Vektorkoordinaten ϱ_0 und ϱ sind dabei als Quaternionen mit verschwindendem Skalarteil anzusehen. Mit $\underline{g} = q_0 + \underline{q}$ liefert die Auswertung des Ausdrucks (4.58):

$${}^{0}\underline{\varrho} = \underline{q} {}^{0}\underline{\varrho}_{0} \, \underline{q} = (q_{0} + \underline{q}) {}^{0}\underline{\varrho}_{0} \, (q_{0} - \underline{q}) = q_{0}^{2} {}^{0}\underline{\varrho}_{0} + q_{0} (\underline{q} {}^{0}\underline{\varrho}_{0} - {}^{0}\underline{\varrho}_{0} \, \underline{q}) - \underline{q} {}^{0}\underline{\varrho}_{0} \, \underline{q} . \tag{4.59}$$

1

Mit den Quaternionenprodukten

$$\begin{array}{lll} \underline{\mathbf{q}} \, {}^{0}\underline{\boldsymbol{\varrho}}_{0} & = & -\,\underline{\mathbf{q}}^{\mathsf{T}} \, {}^{0}\underline{\boldsymbol{\varrho}}_{0} \, + \, \underline{\widetilde{\mathbf{q}}} \, {}^{0}\underline{\boldsymbol{\varrho}}_{0} \quad , \\ \\ {}^{0}\underline{\boldsymbol{\varrho}}_{0}\,\,\underline{\mathbf{q}} & = & -\,{}^{0}\underline{\boldsymbol{\varrho}}_{0}^{\mathsf{T}}\,\,\underline{\mathbf{q}} \, + \, {}^{0}\underline{\widetilde{\boldsymbol{\varrho}}}_{0}\,\underline{\mathbf{q}} \quad , \\ \\ \underline{\mathbf{q}} \, {}^{0}\underline{\boldsymbol{\varrho}}_{0}\,\,\underline{\mathbf{q}} & = & (\,\underline{\mathbf{q}}^{\mathsf{T}}\,\underline{\mathbf{q}}\,) \,\, {}^{0}\underline{\boldsymbol{\varrho}}_{0} \, - \,\, 2(\,\underline{\mathbf{q}}^{\mathsf{T}}\,{}^{0}\underline{\boldsymbol{\varrho}}_{0})\,\underline{\mathbf{q}} \end{array}$$

wird daraus:

$${}^{0}\varrho = q {}^{0}\varrho_{0} \bar{q} = \left[(q_{0}^{2} - q^{T}q)\underline{1} + 2q_{0} \tilde{q} + 2qq^{T} \right] {}^{0}\varrho_{0} = {}^{0}\underline{R} {}^{0}\varrho_{0} . \tag{4.60}$$

Damit läßt sich der Drehtensor ${}^0\underline{R}$ bzw. die Transformationsmatrix ${}^{01}\underline{T}$ mit Hilfe der EULER-Parameter ausdrücken:

$${}^{0}\underline{R}(\underline{q}) = (q_{0}^{2} - \underline{q}^{T}\underline{q})\underline{I} + 2q_{0}\underline{\hat{q}} + 2\underline{q}\underline{q}^{T} =$$

$$= \begin{bmatrix} q_{0}^{2} + q_{1}^{2} - q_{2}^{2} - q_{3}^{2} & 2(q_{1}q_{2} - q_{0}q_{3}) & 2(q_{1}q_{3} + q_{0}q_{2}) \\ 2(q_{1}q_{2} + q_{0}q_{3}) & q_{0}^{2} - q_{1}^{2} + q_{2}^{2} - q_{3}^{2} & 2(q_{2}q_{3} - q_{0}q_{1}) \\ 2(q_{1}q_{3} - q_{0}q_{2}) & 2(q_{2}q_{3} + q_{0}q_{1}) & q_{0}^{2} - q_{1}^{2} - q_{2}^{2} + q_{3}^{2} \end{bmatrix} = {}^{01}\underline{T}(\underline{q}). \quad (4.61)$$

Eigenschaften von Gl. (4.58), ${}^{0}\varrho = g_{0} {}^{0}\varrho_{0} \bar{g}$:

- Wie die entsprechende Vektorgleichung kann auch die Quaternionenbeziehung (4.58) als Koordinatentransformation aufgefaßt werden und entspricht dann der Matrizengleichung $^0\varrho=^{01}\underline{T}^{-1}\varrho$. Mit einem in Anlehnung an die Transformationsmatrix eingeführten Doppelindex oben links gilt dann für die Transformation der Koordinaten des gedrehten Vektors ϱ von K_1 nach K_0 :

$$^{0}\varrho = ^{01}q \, ^{1}\varrho \, ^{01}\bar{q} \quad \text{mit} \quad ^{01}\bar{q} = ^{10}q \, .$$
 (4.62)

- Die EULER-Parameter $\overset{\cdot}{q}$ und $\overset{\cdot}{-q}$ beschreiben dieselbe Drehung. Dies ist auch in Gl. (4.61) erkennbar:

$${}^{0}\underline{R}(\underline{q}) = {}^{0}\underline{R}(-\underline{q})$$
 bzw. ${}^{01}\underline{T}(\underline{q}) = {}^{01}\underline{T}(-\underline{q})$ (4.63)

- Multiplikation mit $\,\bar{\underline{q}}\,$ von links und mit $\,\underline{q}\,$ von rechts liefert die umgekehrte Drehung

$${}^{0}\varrho_{0} = \overline{q} {}^{0}\varrho \ \underline{q} \ . \tag{4.64}$$

4.5.3 Bestimmung der EULER-Parameter aus dem Drehtensor \rightarrow G1. (4.2b)

Die Bestimmung der EULER-Parameter $\underline{\gamma} = [q_0, \underline{q}^T]^T$ aus einem gegebenen Drehtensor ${}^0\underline{R} = {}^{01}\underline{T} = (T_{ij})$ erfolgt analog zur Berechnung des Drehzeigers in Abschnitt 4.2.2. Ausgehend von Gl. (4.61) werden zunächst wieder die zur Verfügung stehenden Gleichungen zusammengestellt.

a) Gleichungen aus den Hauptdiagonalelementen von $01\underline{T} = (T_{ij})$

- Summe der Hauptdiagonalelemente (Spur):

$$sp(^{01}\underline{T}) = T_{11} + T_{22} + T_{33} = (q_0^2 - \underline{q}^{\mathsf{T}}\underline{q})(1+1+1) + 2(\underline{q_1^2 + q_2^2 + q_3^2}) = 3q_0^2 - \underline{\underline{q}^{\mathsf{T}}\underline{q}} = 4q_0^2 - 1,$$

$$1 - q_0^2 \triangle$$

$$\Rightarrow q_0^2 = \frac{1}{4} (1 + T_{11} + T_{22} + T_{33}) , \qquad (i)$$

$$\Rightarrow q_0 = \pm \sqrt{q_0^2} . \tag{ii.1}$$

- einzelne Hauptdiagonalelemente:

$$T_{11} = q_0^2 - \underline{q^T q} + 2 q_1^2 = 2(q_0^2 + q_1^2) - 1$$

 $\uparrow - 1 - q_0^2$

$$\Rightarrow q_1 = \pm \sqrt{\frac{1}{2}(T_{11} + 1) - q_0^2} . \tag{ii.2}$$

Entsprechend:
$$q_2 = \pm \sqrt{\frac{1}{2}(T_{22} + 1) - q_0^2}$$
, (ii.3)

$$q_3 = \pm \sqrt{\frac{1}{2}(T_{33} + 1) - q_0^2}$$
 (ii.4)

b) Gleichungen aus den Nebendiagonalelementen von $^{01}\underline{T} = (T_{ij})$

- schiefsymmetrische Nebendiagonalelemente:

$$4q_0q_1 = T_{32} - T_{23} , \qquad (iii.1)$$

$$4q_0q_2 = T_{13} - T_{31} , \qquad (iii.2)$$

$$4q_0q_3 = T_{21} - T_{12} . (iii.3)$$

- symmetrische Nebendiagonalelemente:

$$4q_2q_3 = T_{32} + T_{23}$$
, (iii.4)

$$4q_1q_3 = T_{13} + T_{31}$$
, (iii.5)

$$4q_1q_2 = T_{21} + T_{12} . (iii.6)$$

Die Berechnungsvorschrift lautet:

- 1. Auswertung von Gl. (i) liefert q_0^2 .
- 2. Mit einer der vier Gln. (ii) wird ein nichtverschwindender EULER-Parameter \mathbf{q}_0 , \mathbf{q}_1 , \mathbf{q}_2 oder \mathbf{q}_3 bestimmt, wobei das Vorzeichen beliebig gewählt wird. Im Hinblick auf die Genauigkeit des folgenden Berechnungsschritts ist es zweckmäßig, den betragsgrößten dieser vier Parameter auszuwählen.
- 3. Aus drei der sechs Gln. (iii) können die drei fehlenden EULER-Parameter eindeutig bestimmt werden, wobei durch die in Schritt 2 ausgewählte Größe dividiert wird.

Bemerkung:

- Bei der Auswahl des Vorzeichens in Schritt 2 wird einer von zwei EULER-Parametersätzen ausgewählt, welche dieselbe Drehung beschreiben, vgl. Gl. (4.63).

Die Darstellung mehrfacher Drehungen mit Hilfe von EULER-Parametern wird am Beispiel aus Abschnitt 4.2.3 durchgeführt, wobei die Interpretation als Koordinatentransformation gewählt wird.

a) Telldrehung (\underline{u}_1 , β_1): Ausgangssystem $K_0 \rightarrow$ gedrehtes System K_1

$${}^{01}\underline{q}\,(\underline{u}_1,\beta_1) \ = \ {}^{01}q_0 \ + \ {}^{01}\underline{q} \ = \ \cos\frac{\beta_1}{2} \ + \ {}^{0}\underline{u}_1\sin\frac{\beta_1}{2} \qquad \text{mit} \qquad {}^{0}\underline{u}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Transformation der Koordinaten eines beliebigen Vektors r:

$${}^{0}\underline{r} = {}^{01}\underline{q} {}^{1}\underline{r} {}^{01}\underline{\tilde{q}}$$
 mit ${}^{01}\underline{\tilde{q}} = {}^{10}\underline{q}$ (4.65)

b) Teildrehung ($\underline{\mathbf{u}}_2$, β_2): Ausgangssystem $K_1 \rightarrow \text{gedrehtes System } K_2$

$${}^{12}\underline{q}_{2}(\underline{u}_{2},\beta_{2}) = {}^{12}\underline{q}_{0} + {}^{12}\underline{q}_{2} = \cos\frac{\beta_{2}}{2} + {}^{1}\underline{u}_{2}\sin\frac{\beta_{2}}{2} \qquad \text{mit} \qquad {}^{1}\underline{u}_{2} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}.$$

Transformation der Koordinaten eines beliebigen Vektors r:

$$^{1}\underline{r} = ^{12}\underline{q} ^{2}\underline{r} ^{12}\underline{\bar{q}}$$
 mit $^{12}\underline{\bar{q}} = ^{21}\underline{q}$. (4.66)

c) Gesamtdrehung: Ausgangssystem $K_0 \rightarrow \text{gedrehtes System } K_2$

Einsetzen von Gl. (4.66) in (4.65):

$${}^{0}\underline{r} = {}^{01}\underline{q} {}^{12}\underline{q} {}^{2}\underline{r} {}^{12}\underline{\tilde{q}} {}^{01}\underline{\tilde{q}} = {}^{01}\underline{\tilde{q}} {}^{12}\underline{q} {}^{2}\underline{r} {}^{01}\underline{\tilde{q}} = {}^{02}\underline{q} {}^{12}\underline{\tilde{q}} = {}^{02}\underline{\tilde{q}} {}^{2}\underline{r} {}^{02}\underline{\tilde{q}} . \tag{4.67}$$

Für die EULER-Parameter der resultierenden Gesamtdrehung gilt dann:

4.5.5 EULER-Parameter und Winkelgeschwindigkeit → Gl. (4.3)

a) Koordinaten von $\underline{\omega}$ im Ausgangssystem K_0

Die Zeitableitung der Beziehung (4.58),

$$^{0}\varrho = q ^{0}\varrho_{0}\bar{q}$$
,

für die Drehung des körperfesten Vektors o liefert unter Berücksichtigung von $^{0}\dot{\rho}_{0} = \underline{0}$ (feste Ausgangslage) sowie der Produktregel:

$${}^0\dot{\underline{\varrho}} = \dot{\underline{q}} \, {}^0\underline{\varrho}_0 \, \ddot{\overline{q}} \, + \, \underline{q} \, {}^0\underline{\varrho}_0 \, \dot{\overline{q}} \, \ .$$

Der Vektor ϱ_0 wird mit Hilfe von Gl. (4.64), ${}^0\varrho_0 = \bar{q}_0 {}^0\varrho_0 = \bar{q}_0$, für die umgekehrte Drehung ausgedrückt:

$${}^{0}\underline{\dot{\varrho}} \; = \; \dot{\underline{q}} \; \bar{\underline{q}} \; {}^{0}\underline{\varrho} \; \underbrace{\underline{q} \; \bar{\underline{q}}}_{1} \; + \; \underbrace{\underline{q} \; \bar{\underline{q}}}_{1} \; {}^{0}\underline{\varrho} \; \; \underline{q} \; \dot{\bar{\underline{q}}}_{2} \; .$$

Unter Berücksichtigung von $q \dot{\vec{q}} = \overline{\vec{q}} \cdot \bar{\vec{q}}$, vgl. Gl. (4.51), gilt

$${}^{0}\underline{\dot{\varrho}} = \left(\underbrace{\dot{q}}_{r} \underbrace{\bar{q}}_{r}\right){}^{0}\underline{\varrho} + {}^{0}\underline{\varrho} \left(\underbrace{\underbrace{\dot{q}}_{r} \underbrace{\bar{q}}_{r}}_{\bar{r}}\right). \tag{4.69}$$

Für die weitere Umformung wird nun die Zeitableitung der Normierungsbedingung (4.57), $q \bar{q} = 1$, betrachtet:

$$\dot{q} \ddot{q} + q \ddot{q} = 0$$
 bzw. $\ddot{r} + \ddot{\bar{r}} = 0$ (4.70)

Daraus folgt, daß der Skalarteil der Quaternion $\underline{r} = \dot{q} \, \bar{q}$ verschwindet, also $\underline{r} = 0 + \underline{r}$ und $\bar{r} = 0 - \underline{r}$. Damit wird aus Gl. (4.69)

Der Vergleich mit Gl. (3.19), ${}^0\underline{\dot{\varrho}}={}^0\underline{\dot{\omega}}\,{}^0\underline{\varrho}={}^0\underline{\omega}\times{}^0\underline{\varrho}$, zeigt:

$${}^{0}\underline{\omega} = 2 \underline{r} = 2 \dot{q} \overline{q} . \tag{4.71}$$

In Matrizenschreibweise, vgl. Gl. (4.48), lautet diese Beziehung:

$$\begin{bmatrix} 0 \\ 0_{\underline{0}} \end{bmatrix} = 2 \begin{bmatrix} q_0 & \underline{q}^T \\ -\underline{q} & q_0 \underline{I} + \widetilde{q} \end{bmatrix} \begin{bmatrix} \dot{q}_0 \\ \dot{\underline{q}} \end{bmatrix} \leftarrow 1. \text{ Zeile: Gl. (4.70)}$$

$$(4.72a)$$

$$\Rightarrow \begin{bmatrix} {}^{0}\omega_{x} \\ {}^{0}\omega_{y} \\ {}^{0}\omega_{z} \end{bmatrix} = 2 \begin{bmatrix} -q_{1} & q_{0} & -q_{3} & q_{2} \\ -q_{2} & q_{3} & q_{0} & -q_{1} \\ -q_{3} & -q_{2} & q_{1} & q_{0} \end{bmatrix} \begin{bmatrix} \dot{q}_{0} \\ \dot{q}_{1} \\ \dot{q}_{2} \\ \dot{q}_{3} \end{bmatrix},$$

$${}^{0}\omega = \underline{H}_{0}(\gamma) \qquad \dot{\underline{\gamma}} \quad . \tag{4.72b}$$

Multiplikation von Gl. (4.71) mit $\frac{1}{2}\overline{\vec{q}}$ von rechts ermöglicht die Auflösung nach $\dot{\vec{q}}$:

$$\dot{\mathbf{q}} = \frac{1}{2} {}^{0} \widetilde{\mathbf{Q}} \mathbf{q} . \tag{4.73}$$

In Matrizenschreibweise, vgl. Gl. (4.48):

$$\begin{bmatrix} \dot{q}_0 \\ \dot{\underline{q}} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} q_0 & -\underline{q}^{\mathsf{T}} \\ \underline{q} & q_0 \underline{I} - \widetilde{\underline{q}} \end{bmatrix} \begin{bmatrix} 0 \\ o_{\widetilde{\underline{\omega}}} \end{bmatrix}$$
(4.74a)

$$\Rightarrow \begin{bmatrix} \dot{q}_0 \\ \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -q_1 & -q_2 & -q_3 \\ -q_0 & q_3 & -q_2 \\ -q_3 & q_0 & q_1 \\ q_2 & -q_1 & q_0 \end{bmatrix} \begin{bmatrix} {}^0\omega_x \\ {}^0\omega_y \\ {}^0\omega_z \end{bmatrix} ,$$

$$\dot{\underline{\Upsilon}} = \underline{\underline{K}_0(\underline{\Upsilon})} \qquad {}^0\underline{\omega} . \tag{4.74b}$$

b) Koordinaten von $\underline{\omega}$ im körperfesten System K_1

Berücksichtingung der Koordinatentransformation

$$^{0}\underline{\omega} = q^{1}\underline{\omega} \bar{q}$$

entsprechend Gl. (4.62) in Gl. (4.71) liefert

$$q^{-1}\underline{\omega} \ \bar{q} = 2\dot{q} \ \bar{q} \rightarrow {}^{-1}\underline{\omega} = 2 \ \bar{q} \ \dot{q} \ .$$
 (4.75)

In Matrizenschreibweise, vgl. Gl (4.47):

$$\begin{bmatrix} 0 \\ {}^{1}\underline{\omega} \end{bmatrix} = 2 \begin{bmatrix} q_{0} & \underline{q}^{\mathsf{T}} \\ -\underline{q} & q_{0}\underline{1} - \underline{\widetilde{q}} \end{bmatrix} \begin{bmatrix} \dot{q}_{0} \\ \dot{\underline{q}} \end{bmatrix}$$
(4.76a)

$$\Rightarrow \begin{bmatrix} {}^{1}\omega_{\mathbf{x}} \\ {}^{1}\omega_{\mathbf{y}} \\ {}^{1}\omega_{\mathbf{z}} \end{bmatrix} = 2 \begin{bmatrix} -q_{1} & q_{0} & q_{3} & -q_{2} \\ -q_{2} & |-q_{3} & q_{0} & q_{1} \\ -q_{3} & |q_{2} & -q_{1} & q_{0} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{q}}_{0} \\ \dot{\mathbf{q}}_{1} \\ \dot{\mathbf{q}}_{2} \\ \dot{\mathbf{q}}_{3} \end{bmatrix},$$

$$\mathbf{q}_{1} = \underline{\mathbf{H}}_{1}(\underline{\Upsilon}) \qquad \dot{\underline{\Upsilon}} \qquad . \tag{4.76b}$$

Multiplikation von Gl. (4.75) mit $\frac{1}{2}\ddot{q}$ von links ermöglicht die Auflösung nach \dot{q} :

$$\dot{\mathbf{q}} = \frac{1}{2} \mathbf{q}^{-1} \underline{\boldsymbol{\omega}} \qquad . \tag{4.77}$$

In Matrizenschreibweise, vgl. (gl. (4.47):

$$\begin{bmatrix} \dot{\mathbf{q}}_0 \\ \dot{\mathbf{q}} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \mathbf{q}_0 & -\mathbf{q}^\mathsf{T} \\ \mathbf{q} & \mathbf{q}_0 \mathbf{I} + \tilde{\mathbf{q}} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{1}_{\widetilde{\mathbf{\omega}}} \end{bmatrix}$$
 (4.78a)

$$\begin{bmatrix}
\frac{\dot{q}_0}{\dot{q}_1} \\
\dot{q}_2 \\
\dot{q}_3
\end{bmatrix} = \frac{1}{2} \begin{bmatrix}
-q_1 & -q_2 & -q_3 \\
q_0 & -q_3 & q_2 \\
q_3 & q_0 & -q_1 \\
-q_2 & q_1 & q_0
\end{bmatrix} \begin{bmatrix}
{}^1\omega_x \\ {}^1\omega_y \\ {}^1\omega_z \end{bmatrix},$$

$$\frac{\dot{\gamma}}{\dot{\gamma}} = \underline{K}_1(\underline{\gamma}) \qquad {}^1\underline{\omega} .$$
(4.78b)

4.6 RODRIGUES-Parameter

I

Die m = 3 RODRIGUES-Parameter $\underline{\lambda}$ werden aus dem Drehzeiger (\underline{u}, β) gebildet:

$$\underline{\gamma} = \underline{\lambda} = {}^{0}\underline{\mathbf{u}} \tan \frac{\beta}{2} : \begin{bmatrix} \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{bmatrix} = \begin{bmatrix} {}^{0}\mathbf{u}_{x} \\ {}^{0}\mathbf{u}_{y} \\ {}^{0}\mathbf{u}_{z} \end{bmatrix} \tan \frac{\beta}{2} . \tag{4.79}$$

Für $\beta = \pm \pi$ sind damit die RODRIGUES-Parameter nicht definiert.

Zu den EULER-Parametern besteht der direkte Zusammenhang:

$$\underline{\lambda} = \frac{\mathbf{q}}{\mathbf{q}_0}$$
 mit $\mathbf{q}_0 = \cos\frac{\beta}{2}$, $\underline{\mathbf{q}} = {}^0\underline{\mathbf{u}}\sin\frac{\beta}{2}$. (4.80)

4.6.1 Darstellung des Drehtensors mit Hilfe der RODRIGUES-Parameter -> Gl. (4.2)

Der Drehtensor (Koordinatenindex für System K₀ weggelassen)

$$\underline{R}(\underline{u},\beta) = \underline{I} + \sin\beta \, \underline{\widetilde{u}} + (1-\cos\beta) \, \underline{\widetilde{u}} \, \underline{\widetilde{u}} = {}^{01}\underline{T}(\underline{u},\beta)$$

aus Gl. (4.21) kann mit Hilfe der trigonometrischen Beziehungen $\left(x = \tan \frac{\beta}{2}\right)$

$$\sin\beta = \frac{2x}{1+x^2} \quad , \qquad \cos\beta = \frac{1-x^2}{1+x^2} \quad ,$$

umgeformt werden:

$$\underline{R} = \underline{I} + \frac{2x}{1+x^2} \widetilde{\underline{u}} + \frac{1+x^2-(1-x^2)}{1+x^2} \widetilde{\underline{u}} \widetilde{\underline{u}} = \underline{I} + \frac{2}{1+x^2} \underbrace{x \, \widetilde{\underline{u}}}_{\widetilde{\underline{\lambda}}} + \frac{2}{1+x^2} \underbrace{(x \, \widetilde{\underline{u}})}_{\widetilde{\underline{\lambda}}} \underbrace{(x \, \widetilde{\underline{u}})}_{\widetilde{\underline{\lambda}}}$$

$$\Rightarrow \underline{R(\underline{\lambda})} = \underline{I} + \frac{2}{1+\lambda^{\top}\lambda} \left(\widetilde{\underline{\lambda}} + \widetilde{\underline{\lambda}} \, \widetilde{\underline{\lambda}} \right) = {}^{01}\underline{T}(\underline{\lambda}) . \tag{4.81}$$

Ausgeschrieben:

$$\underline{\underline{R}(\underline{\lambda})} = \frac{1}{1 + \underline{\lambda}^{T} \underline{\lambda}} \begin{bmatrix} 1 + \lambda_{1}^{2} - \lambda_{2}^{2} - \lambda_{3}^{2} & 2(\lambda_{1} \lambda_{2} - \lambda_{3}) & 2(\lambda_{1} \lambda_{3} + \lambda_{2}) \\ 2(\lambda_{1} \lambda_{2} + \lambda_{3}) & 1 - \lambda_{1}^{2} + \lambda_{2}^{2} - \lambda_{3}^{2} & 2(\lambda_{2} \lambda_{3} - \lambda_{1}) \\ 2(\lambda_{1} \lambda_{3} - \lambda_{2}) & 2(\lambda_{2} \lambda_{3} + \lambda_{1}) & 1 - \lambda_{1}^{2} - \lambda_{2}^{2} + \lambda_{3}^{2} \end{bmatrix} = {}^{01}\underline{\underline{T}}(\underline{\lambda}).$$

$$(4.82)$$

Zur Bestimmung der RODRIGUES-Parameter aus einem vorliegenden Drehtensor werden zunächst die EULER-Parameter entsprechend Abschnitt 4.5.3 berechnet und anschließend Gl. (4.80) angewandt.

- 4.27 -

4.6.2 RODRIGUES-Parameter und Winkelgeschwindigkeit → Gl. (4.3)

Die Zusammenhänge zwischen der Winkelgeschwindigkeit und der Zeitableitung der RODRIGUES-Parameter können beispielsweise über die EULER-Parameter hergeleitet werden, siehe Abschnitt 4.6.3.

a) Koordinaten von $\underline{\omega}$ im Ausgangssystem K_0

$$o_{\underline{\omega}} = \frac{2}{1 + \underline{\lambda}^{\mathsf{T}} \underline{\lambda}} \left(\underline{\dot{\lambda}} + \underline{\widetilde{\lambda}} \underline{\dot{\lambda}} \right) = \left[\frac{2}{1 + \underline{\lambda}^{\mathsf{T}} \underline{\lambda}} \left(\underline{\mathbf{I}} + \underline{\widetilde{\lambda}} \right) \right] \underline{\dot{\lambda}} = \underbrace{H_0(\underline{\gamma})} \dot{\underline{\gamma}} . \tag{4.83}$$

Aufgelöst nach $\dot{\underline{\lambda}}$:

$$\underline{\dot{\lambda}} = \frac{1}{2} \left(\underline{\mathbf{I}} + \underline{\lambda} \ \underline{\lambda}^{\mathsf{T}} - \widetilde{\underline{\lambda}} \ \right) {}^{\mathsf{O}} \underline{\omega}$$

b) Koordinaten von w im körperfesten System Ki

$$i_{\underline{\omega}} = \frac{2}{1 + \underline{\lambda}^{\mathsf{T}} \underline{\lambda}} \left(\underline{\dot{\lambda}} - \widetilde{\underline{\lambda}} \underline{\dot{\lambda}} \right) = \left[\frac{2}{1 + \underline{\lambda}^{\mathsf{T}} \underline{\lambda}} \left(\underline{\mathbf{I}} + \widetilde{\underline{\lambda}} \right) \right] \underline{\dot{\lambda}} = \underbrace{H_1(\gamma)} \dot{\underline{\gamma}} . \tag{4.85}$$

Aufgelöst nach λ :

$$\underline{\dot{\lambda}} = \frac{1}{2} \left(\underline{\mathbf{I}} + \underline{\lambda} \ \underline{\lambda}^{\mathsf{T}} + \widetilde{\underline{\lambda}} \ \right)^{1} \underline{\omega}$$

$$\Rightarrow \begin{bmatrix} \dot{\lambda}_{1} \\ \dot{\lambda}_{2} \\ \dot{\lambda}_{3} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 + \lambda_{1}^{2} & \lambda_{1}\lambda_{2} - \lambda_{3} & \lambda_{1}\lambda_{3} + \lambda_{2} \\ \lambda_{1}\lambda_{2} + \lambda_{3} & 1 + \lambda_{2}^{2} & \lambda_{2}\lambda_{3} - \lambda_{1} \\ \lambda_{1}\lambda_{3} - \lambda_{2} & \lambda_{2}\lambda_{3} + \lambda_{1} & 1 + \lambda_{3}^{2} \end{bmatrix} \begin{bmatrix} {}^{1}\omega_{x} \\ {}^{1}\omega_{y} \\ {}^{1}\omega_{z} \end{bmatrix}, (4.86)$$

$$\dot{\underline{\Upsilon}} = \underline{\underline{K}_{1}(\underline{\Upsilon})} \qquad \qquad \underline{\underline{L}_{1}(\underline{\Upsilon})} \qquad \qquad \underline{\underline{L}_{1}(\underline{\Upsilon})$$

4.6.3 Herleitungen für RODRIGUES-Parameter und Drehzeiger

Die in den entsprechenden Abschnitten angegebenen Zusammenhänge zwischen der Winkelgeschwindigkeit im Ausgangssystem $\,\mathrm{K}_{\mathrm{0}}\,$ und den RODRIGUES-Parametern sowie dem Drehzeiger werden ausgehend von Gl. (4.71) hergeleitet:

- 4.28 -

$${}^{0}\underline{\tilde{\omega}} = 2\dot{\underline{q}} \,\,\bar{\tilde{q}} = 2(\dot{q}_{0} + \dot{\underline{q}})(q_{0} - \underline{q}) = 2(\underline{\dot{q}_{0}}q_{0} + \underline{\dot{q}}^{\mathsf{T}}\underline{q}) + 2(q_{0}\dot{\underline{q}} - \dot{q}_{0}\underline{q} - \dot{\tilde{q}}_{0}\underline{q}). \tag{4.87}$$

Die entsprechenden Beziehungen für $^{1}\underline{\omega}$ können in analoger Weise ausgehend von Gl. (4.75) hergeleitet werden.

a) Rodrigues-Parameter

- Winkelgeschwindigkeit ${}^{0}\underline{\omega} = {}^{0}\underline{\omega}(\underline{\lambda}, \underline{\dot{\lambda}}) \rightarrow Gl.$ (4.83)

G1. (4.80) ergibt:
$$\underline{q} = q_0 \underline{\lambda} \rightarrow \underline{\dot{q}} = \dot{q_0} \underline{\lambda} + q_0 \underline{\dot{\lambda}}$$
. (4.88)

Außerdem gilt:
$$q_0^2 = \cos^2 \frac{\beta}{2} = \frac{1}{1 + \tan^2 \frac{\beta}{2}} = \frac{1}{1 + \underline{\lambda}^T \underline{\lambda}}$$
 (4.89)

Gl. (4.88) in (4.87) eingesetzt:

$$q_{\underline{0}} = 2\left(q_{0} \dot{q}_{0} \dot{\underline{\lambda}} + q_{0}^{2} \dot{\underline{\lambda}} - \dot{q}_{0} q_{0} \dot{\underline{\lambda}} - \dot{q}_{0} q_{0} \frac{\widetilde{\lambda}}{\underline{\lambda}} - q_{0}^{2} \frac{\widetilde{\lambda}}{\underline{\lambda}} \dot{\underline{\lambda}}\right) = 2q_{0}^{2}\left(\dot{\underline{\lambda}} + \widetilde{\underline{\lambda}} \dot{\underline{\lambda}}\right).$$
(1) (1) (2) (4.89).

Mit Gl. (4.89):

$${}^{0}\underline{\omega} = \frac{2}{1 + \underline{\lambda}^{\mathsf{T}}\underline{\lambda}} \left(\underline{\dot{\lambda}} + \widetilde{\underline{\lambda}} \ \underline{\dot{\lambda}} \ \right) . \tag{4.90}$$

- Auflösung nach $\dot{\lambda} \rightarrow \dot{\lambda} = \dot{\lambda} (\lambda, 0_{\underline{\omega}})$

Skalare Multiplikation von Gl. (4.90) mit $\underline{\lambda}$:

$$\underline{\lambda}^{\mathsf{T}} \circ_{\underline{\omega}} = \frac{2}{1 + \underline{\lambda}^{\mathsf{T}} \underline{\lambda}} \left(\underline{\lambda}^{\mathsf{T}} \dot{\underline{\lambda}} + \underline{\lambda}^{\mathsf{T}} \frac{\widetilde{\lambda}}{0} \dot{\underline{\lambda}} \right) = \frac{2}{1 + \underline{\lambda}^{\mathsf{T}} \underline{\lambda}} \underline{\lambda}^{\mathsf{T}} \dot{\underline{\lambda}} \qquad (4.91)$$

Vektorielle Multiplikation von Gl. (4.90) von links mit $\underline{\lambda}$:

$$\begin{split} &\widetilde{\underline{\lambda}} \,\,^{0}\underline{\omega} = \,\, \frac{2}{1+\underline{\lambda}^{\mathsf{T}}\underline{\lambda}} \left(\,\, \widetilde{\underline{\lambda}} \,\, \dot{\underline{\lambda}} \,\, + \,\, \widetilde{\underline{\lambda}} \,\, \widetilde{\underline{\lambda}} \,\, \dot{\underline{\lambda}} \,\, \right) = \\ &= \,\, \frac{2}{1+\underline{\lambda}^{\mathsf{T}}\underline{\lambda}} \left(\,\, \widetilde{\underline{\lambda}} \,\, \dot{\underline{\lambda}} \,\, + \,\, \underline{\lambda} \,\, (\, \underline{\lambda}^{\mathsf{T}} \,\, \underline{\dot{\lambda}}) \,\, - \,\, \dot{\underline{\lambda}} \,\, (\, \underline{\lambda}^{\mathsf{T}} \,\, \underline{\dot{\lambda}}) \,\, \right) = \\ &= \,\, \frac{2}{1+\underline{\lambda}^{\mathsf{T}}\underline{\lambda}} \,\, \widetilde{\underline{\lambda}} \,\, \dot{\underline{\lambda}} \,\, + \,\, \frac{2}{1+\underline{\lambda}^{\mathsf{T}}\underline{\lambda}} \,\, (\, \underline{\lambda}^{\mathsf{T}} \,\, \dot{\underline{\lambda}}) \,\, \underline{\lambda} - \,\, \frac{2}{1+\underline{\lambda}^{\mathsf{T}}\underline{\lambda}} \,\, (\, \underline{\lambda}^{\mathsf{T}} \,\, \underline{\dot{\lambda}}) \,\, \dot{\underline{\lambda}} \,\, \\ &(4.90): \,\, {}^{0}\underline{\omega} - \frac{2}{1+\underline{\lambda}^{\mathsf{T}}\underline{\lambda}} \,\, \dot{\underline{\lambda}} \,\, \qquad \qquad (4.91): \,\, \underline{\lambda}^{\mathsf{T}} \,\,\, {}^{0}\underline{\omega} \end{split}$$

$$\Rightarrow \quad \widetilde{\underline{\lambda}} \, {}^{0}\underline{\omega} = \, {}^{0}\underline{\omega} - \frac{2}{1 + \underline{\lambda}^{\mathsf{T}}\underline{\lambda}} \, \underline{\dot{\lambda}} + (\underline{\lambda}^{\mathsf{T}} \, {}^{0}\underline{\omega}) \, \underline{\lambda} - \frac{2}{1 + \underline{\lambda}^{\mathsf{T}}\underline{\lambda}} \, (\underline{\lambda}^{\mathsf{T}} \, \underline{\lambda}) \, \underline{\dot{\lambda}} =$$

$$= \quad (\underline{I} + \underline{\lambda} \, \underline{\lambda}^{\mathsf{T}}) \, {}^{0}\underline{\omega} - 2 \, \frac{1 + \underline{\lambda}^{\mathsf{T}}\underline{\lambda}}{1 + \underline{\lambda}^{\mathsf{T}}\underline{\lambda}} \, \underline{\dot{\lambda}}$$

$$\Rightarrow \quad \dot{\underline{\lambda}} = \frac{1}{2} \left(\underline{\mathbf{I}} + \underline{\lambda} \, \underline{\lambda}^{\mathsf{T}} - \widetilde{\underline{\lambda}} \, \right)^{\mathsf{O}} \underline{\omega} \qquad . \tag{4.92}$$

- 4.29 -

I

b) Drehzeiger (\underline{u},β)

- Winkelgeschwindigkeit ${}^{0}\underline{\omega} = {}^{0}\underline{\omega} (\underline{\mathbf{u}}, \beta, \dot{\underline{\mathbf{u}}}, \dot{\beta}) \rightarrow Gl.$ (4.27)

Es gilt:
$$q_0 = \cos \frac{\beta}{2} \Rightarrow \dot{q}_0 = -\frac{\dot{\beta}}{2} \sin \frac{\beta}{2}$$
, (4.93)

$$q = \underline{u} \sin \frac{\beta}{2} \quad \Rightarrow \quad \dot{\underline{q}} = \dot{\underline{u}} \sin \frac{\beta}{2} + \underline{u} \frac{\dot{\beta}}{2} \cos \frac{\beta}{2} . \tag{4.94}$$

Gln. (4.93) und (4.94) in (4.87) eingesetzt:

$${}^{0}\underline{\omega}=2\left(\cos\frac{\beta}{2}\sin\frac{\beta}{2}\,\underline{\dot{u}}\,+\frac{\dot{\beta}}{2}\cos^{2}\frac{\beta}{2}\,\underline{\dot{u}}\,+\frac{\dot{\beta}}{2}\sin^{2}\frac{\beta}{2}\,\underline{\dot{u}}\,-\sin^{2}\frac{\beta}{2}\,\widetilde{\underline{\dot{u}}}\,\underline{\dot{u}}\,-\frac{\dot{\beta}}{2}\sin\frac{\beta}{2}\cos\frac{\beta}{2}\,\,\widetilde{\underline{\dot{u}}}\,\underline{\dot{u}}\right)$$

Mit

$$\sin\frac{\beta}{2}\cos\frac{\beta}{2} = \frac{1}{2}\sin\beta , \qquad \sin^2\frac{\beta}{2} = \frac{1}{2}\left(1-\cos\beta\right)$$

ergibt sich schließlich

$${}^{0}\underline{\omega} = \sin\beta \,\underline{\dot{u}} + \dot{\beta} \,\underline{u} + (1 - \cos\beta) \,\underline{\widetilde{u}} \,\underline{\dot{u}} \,. \tag{4.95}$$

- Auflösung nach $\underline{\dot{u}}$ und $\dot{\beta} \rightarrow \underline{\dot{u}} = \underline{\dot{u}}(\underline{u}, \beta, {}^{0}\underline{\omega})$, $\dot{\beta} = \dot{\beta}(\underline{u}, \beta, {}^{0}\underline{\omega}) \rightarrow Gl.$ (4.28)

Skalare Multiplikation von Gl. (4.95) mit \underline{u} liefert unter Berücksichtigung von $|\underline{u}|$ = 1 und \underline{u}_{\perp} $\underline{\dot{u}}_{\perp}$:

$$\underline{\mathbf{u}}^{\mathsf{T} \, 0} \underline{\omega} = \sin \beta \, \underline{\mathbf{u}}^{\mathsf{T}} \underline{\dot{\mathbf{u}}} + \dot{\beta} \, \underline{\mathbf{u}}^{\mathsf{T}} \underline{\dot{\mathbf{u}}} + (1 - \cos \beta) \, \underline{\underline{\mathbf{u}}^{\mathsf{T}} \, \underline{\dot{\mathbf{u}}}} \, \underline{\dot{\mathbf{u}}} = \dot{\beta}$$

$$\Rightarrow \dot{\beta} = \underline{\mathbf{u}}^{\mathsf{T} \, 0} \underline{\omega} . \tag{4.96}$$

Vektorielle Multiplikation von Gl. (4.95) von links mit u:

$$\underbrace{\tilde{u}}_{0} = \sin\beta \underbrace{\tilde{u}}_{\underline{u}} + \beta \underbrace{\tilde{u}}_{0} \underbrace{u}_{\underline{u}} + (1 - \cos\beta) \underbrace{\tilde{u}}_{\underline{u}} \underbrace{\tilde{u}}_{\underline{u}} = \\
= \sin\beta \underbrace{\tilde{u}}_{\underline{u}} + (1 - \cos\beta) \underbrace{\left(\underbrace{u}^{\mathsf{T}} \underline{u}\right)}_{\underline{u}} - \underbrace{\left(\underline{u}^{\mathsf{T}} \underline{u}\right)}_{\underline{u}} \underbrace{\dot{u}}_{\underline{u}} \right) \\
\Rightarrow \underbrace{\tilde{u}}_{\underline{u}} = \frac{1}{\sin\beta} \underbrace{\left(\underbrace{\tilde{u}}_{0} \underbrace{0}_{\underline{u}} + (1 - \cos\beta) \underbrace{\dot{u}}_{\underline{u}}\right)}_{\underline{u}} \tag{4.97}$$

Gln. (4.96) und (4.97) in (4.95) eingesetzt:

$${}^{0}\underline{\omega} = \sin\beta \, \underline{\dot{u}} + (\underline{u}^{T} \, {}^{0}\underline{\omega}) \, \underline{u} + \frac{(1-\cos\beta)}{\sin\beta} \left(\, \underline{\widetilde{u}} \, {}^{0}\underline{\omega} + (1-\cos\beta) \, \underline{\dot{u}} \, \right)$$

$$\rightarrow \sin\beta \, \left(\underline{I} - \underline{u} \, \underline{u}^{T} \, \right) \, {}^{0}\underline{\omega} = (2-2\cos\beta) \, \underline{\dot{u}} + (1-\cos\beta) \, \, \underline{\widetilde{u}} \, {}^{0}\underline{\omega}$$

$$\rightarrow \, \underline{\dot{u}} = \frac{\sin\beta}{2 \, (1-\cos\beta)} \, \left(\underline{I} - \underline{u} \, \underline{u}^{T} \, \right) \, {}^{0}\underline{\omega} - \frac{1}{2} \, \, \underline{\widetilde{u}} \, {}^{0}\underline{\omega}$$

$$= \frac{1}{2} \left[\frac{\sin\beta}{(1-\cos\beta)} \, \left(\underline{I} - \underline{u} \, \underline{u}^{T} \, \right) - \, \underline{\widetilde{u}} \, \right] \, {}^{0}\underline{\omega} \, . \tag{4.98}$$

5 Relativbewegungen

5.1 Relative Zeitableitung von Vektoren

Die Bildung zeitlicher Ableitungen von Vektoren erfordert die Angabe des Bezugssystems für die zeitliche Änderung. Während bisher (→Abschnitte 3.1.2/3, 3.2.2/3, 3.3.2/3) lediglich Zeitableitungen von Vektoren bezüglich des raumfesten Inertialsystems betrachtet worden sind, müssen häufig Zeitableitungen von Vektoren bezüglich bewegter Bezugssysteme durchgeführt werden. Zur Herleitung der entsprechenden Beziehungen werden die Basisvektoren zweier Koordinatensysteme K₀ und K₁ betrachtet, die sich beliebig im Raum bewegen, ferner ein beliebiger, ebenfalls zeitveränderlicher Vektor $\underline{s}(t)$. Entsprechend Abschnitt 2.2 kann $\underline{s}(t)$ gleichermaßen mit Hilfe der Komponenten in K_0 und K_1 dargestellt werden:

$$s(t) = {}^{0}s_{x}(t) \, \underline{e}_{x0}(t) + {}^{0}s_{y}(t) \, \underline{e}_{y0}(t) + {}^{0}s_{z}(t) \, \underline{e}_{z0}(t)$$
(5.1)

bzw.

$$\underline{s}(t) = {}^{1}s_{x}(t) \underline{e}_{x1}(t) + {}^{1}s_{y}(t) \underline{e}_{y1}(t) + {}^{1}s_{z}(t) \underline{e}_{z1}(t) . \tag{5.2}$$

Es wird nun die zeitliche Ableitung von s(t) relativ zum System Ko zunächst ausgehend von Gl. (5.1) gebildet:

$$\frac{o^{d}\underline{s}}{dt} = \left(\frac{d}{dt}{}^{0}s_{x}\right)\underline{e}_{x0} + \left(\frac{d}{dt}{}^{0}s_{y}\right)\underline{e}_{y0} + \left(\frac{d}{dt}{}^{0}s_{z}\right)\underline{e}_{z0} + {}^{0}s_{x} \circ \frac{d}{dt}\underline{e}_{x0} + {}^{0}s_{y} \circ \frac{d}{dt}\underline{e}_{y0} + {}^{0}s_{z} \circ \frac{d}{dt}\underline{e}_{z0} . \quad (5.3)$$

Das Bezugssystem K₀ für die Ableitung der Vektoren wird durch die Schreibweise "od" kenntlich gemacht. In Gl. (5.3) werden damit die Ableitungen der Einheitsvektoren \underline{e}_{x0} , \underline{e}_{y0} , \underline{e}_{z0} sowie des Vektors \underline{s} relativ zu K_0 bezeichnet. Da die Einheitsvektoren \underline{e}_{x0} , \underline{e}_{y0} , \underline{e}_{z0} ihre Richtungen relativ zum System K_0 nicht ändern, verschwinden in Gl. (5.3) ihre Ableitungen und es verbleibt

$$\frac{{}_{0}d\underline{s}}{dt} = \left(\frac{d}{dt}{}^{0}s_{x}\right)\underline{e}_{x0} + \left(\frac{d}{dt}{}^{0}s_{y}\right)\underline{e}_{y0} + \left(\frac{d}{dt}{}^{0}s_{z}\right)\underline{e}_{z0}. \tag{5.4}$$

(vgl. z.B. Abschnitt 3.1.2; dort war das Inertialsystem K_0 Bezugssystem für die Zeitableitung, was nicht explizit gekennzeichnet wurde.)

Ausgehend von Gl. (5.2) lautet die Ableitung von $\underline{s}(t)$ relativ zum System K_0 :

$$\frac{o^{\underline{d}}\underline{s}}{dt} = \left(\frac{d}{dt}{}^{1}s_{x}\right)\underline{e}_{x1} + \left(\frac{d}{dt}{}^{1}s_{y}\right)\underline{e}_{y1} + \left(\frac{d}{dt}{}^{1}s_{z}\right)\underline{e}_{z1} + {}^{1}s_{x} \circ \frac{d}{dt}\underline{e}_{x1} + {}^{1}s_{y} \circ \frac{d}{dt}\underline{e}_{y1} + {}^{1}s_{z} \circ \frac{d}{dt}\underline{e}_{z1}. \quad (5.5)$$

Die zeitliche Änderung der Basisvektoren \underline{e}_{x1} , \underline{e}_{y1} , \underline{e}_{z1} des Systems K_1 relativ zu K_0 kann entsprechend Gl. (3.20) mit Hilfe der Winkelgeschwindigkeit $\underline{\omega}_{01}$ von K₁ relativ zu K₀ ausgedrückt werden:

$$\circ \frac{d}{dt} \underline{e}_{x1} = \underline{\omega}_{01} \times \underline{e}_{x1} \quad , \quad \circ \frac{d}{dt} \underline{e}_{y1} = \underline{\omega}_{01} \times \underline{e}_{y1} \quad , \quad \circ \frac{d}{dt} \underline{e}_{z1} = \underline{\omega}_{01} \times \underline{e}_{z1} \quad . \tag{5.6}$$

Damit gilt:

I

$$\frac{0^{d}\underline{s}}{dt} = \left(\frac{d}{dt}^{1}s_{x}\right)\underline{e}_{x1} + \left(\frac{d}{dt}^{1}s_{y}\right)\underline{e}_{y1} + \left(\frac{d}{dt}^{1}s_{z}\right)\underline{e}_{z1} + \underline{\omega}_{01} \times \left({}^{1}s_{x}\underline{e}_{x1} + {}^{1}s_{y}\underline{e}_{y1} + {}^{1}s_{z}\underline{e}_{z1}\right),$$

$$\frac{0^{d}\underline{s}}{dt} = \frac{1^{d}\underline{s}}{dt} + \underline{\omega}_{01} \times \underline{s} . \tag{5.7a}$$

Kompakter läßt sich die Zeitableitung von Vektoren durch einen Ableitungspunkt in Verbindung mit einem Index unten links für das Bezugssystem schreiben:

$$0\dot{\underline{s}} = 1\dot{\underline{s}} + \underline{\omega}_{01} \times \underline{s} = 1\dot{\underline{s}} + \widetilde{\underline{\omega}}_{01} \underline{s}. \tag{5.7b}$$

Anmerkungen:

- Gl. (5.7) ist eine Vektorgleichung und kann als Koordinatengleichung in jedem beliebigen Koordinatensystem K; dargestellt werden, also

$$\frac{i}{0}\underline{\dot{s}} = \frac{i}{1}\underline{\dot{s}} + \frac{i}{2}\underline{\widetilde{\omega}}_{01} + \frac{i}{2}\underline{\widetilde{\omega}_{01} + \frac{i}{2}\underline{\widetilde{\omega}}_{01} + \frac{i}{2}\underline{$$

- Gl. (5.3) zeigt, daß die zeitliche Ableitung der Koordinaten is (t) des Vektors s(t) in einem System K_i die Koordinaten des Vektors $_i\dot{\underline{s}}(t)$ in K_i liefert, also

$$\frac{d}{dt} {i \underline{s}(t)} = \frac{d}{dt} {i \underline{s}_{x}(t) \atop i \underline{s}_{y}(t) \atop i \underline{s}_{z}(t)} = i \underline{\dot{s}}(t) .$$
 (5.9)

Bei der Differentiation der (3 x 1)-Koordinatenmatrizen ist die Angabe eines Bezugssystems nicht notwendig (und macht keinen Sinn), da hierbei die skalaren Vektorkoordinaten differenziert werden und nicht der Vektor selbst.

- Die Ableitungen der Koordinaten ${}^{0}\underline{s}(t)$ und ${}^{1}\underline{s}(t)$ desselben Vektors $\underline{s}(t)$ liefert also die Koordinaten $0 \le 5$ bzw. $1 \le 5$ der unterschiedlichen Vektoren $5 \le 5$ und $5 \le 5$ die - wenn notwendig - mit Hilfe der Transformationsmatrix ^{01}T in das jeweils andere System transformiert werden können:

$$\frac{1}{0\dot{S}} = {}^{10}\underline{T} \ {}^{0}\dot{S} \qquad , \tag{5.10}$$

$${}^{0}_{1}\underline{\dot{s}} = {}^{01}\underline{T} \ {}^{1}_{1}\underline{\dot{s}} \qquad . \tag{5.11}$$

- Entsprechend ist die Integration

$$\underline{\mathbf{s}}(\mathbf{t}) = \int_{0}^{\mathbf{t}} \mathbf{i} \, \underline{\dot{\mathbf{s}}}(\tau) \, d\tau \tag{5.12}$$

in Koordinaten des Systems K, auszuführen:

$${}^{i}\underline{s}(t) = \int_{0}^{t} \frac{i}{\underline{s}}(\tau) d\tau : \begin{bmatrix} s_{x}(t) \\ s_{y}(t) \\ s_{z}(t) \end{bmatrix} = \int_{0}^{t} \frac{i}{[i}\dot{s}_{x}(\tau) \\ i\dot{s}_{y}(\tau) \\ i\dot{s}_{z}(\tau) \end{bmatrix} d\tau .$$
 (5.13)

- Aus Gl. (5.7) ergibt sich, daß die Zeitableitungen der Winkelgeschwindigkeit $\underline{\omega}_{01}$ relativ zu K_1 und K_0 übereinstimmen:

$$\frac{0d\underline{\omega}_{01}}{dt} = \frac{1d\underline{\omega}_{01}}{dt} + \underbrace{\underline{\omega}_{01} \times \underline{\omega}_{01}}_{\check{\underline{O}}} \rightarrow 0\dot{\underline{\omega}}_{01} = 1\dot{\underline{\omega}}_{01}. \tag{5.14}$$

5.2 Zusammensetzung zweier gegebener Bewegungen

Eine grundlegende Aufgabenstellung der Kinematik besteht darin, aus zwei hintereinander ausgeführten Teilbewegungen die resultierende Gesamtbewegung zu berechnen, vgl Abschnitt 4.2.3. Diese beiden Teilbewegungen sollen dabei aus vorhergehenden Berechnungsschritten oder auch aus Messungen bekannt sein. Es werden dazu drei Bezugssysteme K_0 , K_1 und K_2 betrachtet.

Die beiden Teilbewegungen von K_1 relativ zu K_0 sowie von K_2 relativ zu K_1 seien auf Lage-, Geschwindigkeits- und Beschleunigungsebene wie folgt gegeben.

a) Bewegung von Bezugssystem K_1 relativ zu Bezugssystem K_0

Lage:

Transformationsmatrix der Drehung von K_0 nach $K_1: {}^{01}\underline{T} \left(= {}^{0}\underline{R}_{01}\right)$ Verbindungsvektor von K_0 nach $K_1:$ \underline{r}_{01}

Geschwindigkeit:

Winkelgeschwindigkeit von K_1 relativ zu K_0 : $\underline{\omega}_{01}$ Geschwindigkeit von K_1 (Punkt O_1) relativ zu K_0 : $\underline{v}_{01} = \frac{0 d \underline{r}_{01}}{dt} = 0 \underline{r}_{01}$

Beschleunigung:

Winkelbeschleunigung von K_1 relativ zu K_0 : $\underline{\alpha}_{01} = \frac{0}{d} \underline{\omega}_{01} = 0 \underline{\dot{\omega}}_{01}$ Beschleunigung von K_1 (Punkt O_1) relativ zu K_0 : $\underline{a}_{01} = \frac{0}{d} \underline{v}_{01} = 0 \underline{\dot{v}}_{01}$

b) Bewegung von Bezugssystem K2 relativ zu Bezugssystem K1

Lage:

- a) Transformationsmatrix der Drehung von K_1 nach $K_2: {}^{12}\underline{T} \left(= {}^{1}\underline{R}_{12}\right)$
- b) Verbindungsvektor von K_1 nach K_2 :

Geschwindigkeit:

- a) Winkelgeschwindigkeit von K_2 relativ zu $K_1:$ $\underline{\omega}_{12}$
- b) Geschwindigkeit von K_2 (Punkt O_2) relativ zu K_1 : $\underline{v}_{12} = \frac{1}{d} \underline{r}_{12} = \frac{1}{1} \underline{r}_{12}$

Beschleunigung:

- a) Winkelbeschleunigung von K_2 relativ zu K_1 : $\underline{\alpha}_{12} = \frac{1}{1} \underline{\omega}_{12} = \frac{1}{1} \underline{\omega}_{12}$
- b) Beschleunigung von K_2 (Punkt O_2) relativ zu K_1 : $\underline{a}_{12} = \frac{1}{d} \underline{v}_{12} = \frac{1}{2} \underline{v}_{12}$

Daraus läßt sich die gesuchte resultierende Bewegung von Bezugssystem $\,K_2\,\,$ relativ zu Bezugssystem $\,K_0\,\,$ wie folgt darstellen.

1

c) Bewegung von Bezugssystem K_2 relativ zu Bezugssystem K_0

Lage:

a) Transformationsmatrix der Drehung von K_0 nach K_2 (\Rightarrow Abschnitt 4.2.3):

$${}^{02}\underline{T} = {}^{01}\underline{T} {}^{12}\underline{T} \left(= {}^{0}\underline{R}_{02} \right) . \tag{5.15}$$

b) Verbindungsvektor von K_0 nach K_2 :

$$\underline{\mathbf{r}}_{02} = \underline{\mathbf{r}}_{01} + \underline{\mathbf{r}}_{12} . \tag{5.16}$$

Geschwindigkeit:

a) Winkelgeschwindigkeit von K_2 relativ zu K_0 :

$$\underline{\omega}_{02} = \underline{\omega}_{01} + \underline{\omega}_{12} . \tag{5.17}$$

b) Geschwindigkeit von K_2 (Punkt O_2) relativ zu K_0 :

$$\underline{v}_{02} = \frac{{}_{0}d\underline{r}_{02}}{dt} = \frac{{}_{0}d}{dt} \left(\underline{r}_{01} + \underline{r}_{12}\right) = \\
= \frac{{}_{0}d\underline{r}_{01}}{dt} + \frac{{}_{0}d\underline{r}_{12}}{dt} \\
\underline{v}_{02} = \underline{v}_{01} + \underline{v}_{12} + \underline{\omega}_{01} \times \underline{r}_{12}.$$
(5.18)

Beschleunigung:

a) Winkelbeschleunigung von K_2 relativ zu K_0 :

$$\underline{\alpha}_{02} = \frac{0 d \underline{\omega}_{02}}{dt} = \frac{0 d}{dt} (\underline{\omega}_{01} + \underline{\omega}_{12}) =$$

$$= \frac{0 d \underline{\omega}_{01}}{dt} + \frac{0 d \underline{\omega}_{12}}{dt}$$

$$\underline{\alpha}_{02} = \underline{\alpha}_{01} + \frac{\underline{\alpha}_{12} + \underline{\omega}_{01} \times \underline{\omega}_{12}}{dt}.$$
(5.19)

b) Beschleunigung von $\ K_2$ (Punkt $\ O_2$) relativ zu $\ K_0$:

$$\underline{\mathbf{a}}_{02} = \frac{{}_{0}\mathbf{d} \underline{\mathbf{v}}_{02}}{\mathbf{d}t} = \frac{{}_{0}\mathbf{d}}{\mathbf{d}t} \left(\underline{\mathbf{v}}_{01} + \underline{\mathbf{v}}_{12} + \underline{\boldsymbol{\omega}}_{01} \times \underline{\mathbf{r}}_{12} \right) =$$

$$= \frac{{}_{0}\mathbf{d} \underline{\mathbf{v}}_{01}}{\mathbf{d}t} + \frac{{}_{0}\mathbf{d} \underline{\mathbf{v}}_{12}}{\mathbf{d}t} + \frac{{}_{0}\mathbf{d} \underline{\boldsymbol{\omega}}_{01}}{\mathbf{d}t} \times \underline{\mathbf{r}}_{12} + \underline{\boldsymbol{\omega}}_{01} \times \frac{{}_{0}\mathbf{d}\underline{\mathbf{r}}_{12}}{\mathbf{d}t} =$$

$$= \underline{\mathbf{a}}_{01} + \underline{\mathbf{a}}_{12} + \underline{\boldsymbol{\omega}}_{01} \times \underline{\mathbf{v}}_{12} + \underline{\boldsymbol{\omega}}_{01} \times \underline{\mathbf{r}}_{12} + \underline{\boldsymbol{\omega}}_{01} \times (\underline{\mathbf{v}}_{12} + \underline{\boldsymbol{\omega}}_{01} \times \underline{\mathbf{r}}_{12}) =$$

$$\underline{\mathbf{a}}_{02} = \underline{\mathbf{a}}_{01} + \underline{\mathbf{a}}_{12} + \underline{\alpha}_{01} \times \underline{\mathbf{r}}_{12} + 2\underline{\omega}_{01} \times \underline{\mathbf{v}}_{12} + \underline{\omega}_{01} \times (\underline{\omega}_{01} \times \underline{\mathbf{r}}_{12}). \tag{5.20}$$

Herleitung von Gl. (5.17):

$$0_{\widetilde{\underline{\omega}}_{02}} \stackrel{(3.18)}{\stackrel{\downarrow}{=}} 0^{2}\underline{\underline{T}} \stackrel{(5.15)}{\stackrel{\downarrow}{=}} \left(\stackrel{0^{1}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} + \stackrel{0^{1}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \right) \left(\stackrel{0^{1}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \right)^{\mathsf{T}} =$$

$$= \underbrace{0^{1}\underline{\underline{T}} \stackrel{1^{2}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \stackrel{0^{1}}{\underline{T}}} + \underbrace{0^{1}\underline{T} \stackrel{1^{2}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \stackrel{0^{1}}{\underline{T}} \stackrel{1^{2}}{\underline{T}}} \stackrel{0^{1}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \stackrel{0^{1}}{\underline{T}} \stackrel{0^{1}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \stackrel{0^{1}}{\underline{T}} \stackrel{0^{1}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \stackrel{0^{1}}{\underline{T}} \stackrel{0^{1}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \stackrel{0^{1}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \stackrel{0^{1}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \stackrel{0^{1}}{\underline{T}} \stackrel{1^{2}}{\underline{T}} \stackrel{1^{2}}{\underline{T}$$

Die vektoriellen Beziehungen müssen in einem gemeinsamen Koordinatensystem ausgewertet werden. Hierzu sind mit Hilfe der gegebenen Transformationsmatrizen zusätzliche Koordinatentransformationen notwendig.

Beispiel:

- a) Gegebene Bewegung von Bezugssystem K_1 relativ zu Bezugssystem K_0 : $^{01}\underline{T}, \ ^{0}\underline{r}_{01}, \ ^{0}\underline{\omega}_{01}, \ ^{0}\underline{v}_{01}, \ ^{0}\underline{\alpha}_{01}, \ ^{0}\underline{a}_{01} \ .$
- b) Gegebene Bewegung von Bezugssystem K_2 relativ zu Bezugssystem $K_1:$ $^{12}\underline{T}, \ ^1\underline{r}_{12}, \ ^1\underline{v}_{12}, \ ^1\underline{v}_{12}, \ ^1\underline{a}_{12}.$
- c) Gesuchte Bewegung von Bezugssystem K_2 relativ zu Bezugssystem K_0 mit Darstellung aller Vektoren in K_0 :

Lage:

$$^{02}\underline{T} = ^{01}\underline{T} ^{12}\underline{T} ,$$
 $^{0}\underline{r}_{02} = ^{0}\underline{r}_{01} + ^{0}\underline{r}_{12}$ mit $^{0}\underline{r}_{12} = ^{01}\underline{T} ^{1}\underline{r}_{12} .$

Geschwindigkeit:

$$0_{\underline{\omega}_{02}} = 0_{\underline{\omega}_{01}} + 0_{\underline{\omega}_{12}}$$
 mit $0_{\underline{\omega}_{12}} = 0_{\underline{T}} 1_{\underline{\omega}_{12}}$, $0_{\underline{v}_{02}} = 0_{\underline{v}_{01}} + 0_{\underline{v}_{12}} + 0_{\underline{\omega}_{01}} 0_{\underline{\Gamma}_{12}}$ mit $0_{\underline{v}_{12}} = 0_{\underline{T}} 1_{\underline{v}_{12}}$.

Beschleunigung:

6 Darstellung der allgemeinen Bewegung des starren Körpers mit Hilfe dualer Größen

Die allgemeine Bewegung des starren Körpers läßt sich entsprechend Abschnitt 3.3 aus der Drehbewegung um einen beliebigen Körperpunkt und der Bahnbewegung diese Punktes im Raum aufbauen. Auch wenn diese Beschreibung prinzipiell für alle Anwendungen ausreichend ist, wird in diesem Abschnitt eine alternative Darstellung betrachtet, die sich stärker an den geometrischen Eigenschaften der räumlichen Bewegung orientiert. Während vom geometrischen Standpunkt die Fixpunktdrehung der sphärischen Geometrie zuzuordnen ist, kann die allgemeine Bewegung des starren Körpers als "Schraubbewegung" von Linien im Raum mit Methoden der Liniengeometrie beschrieben werden. Eine elegante mathematische Formulierung ist mit Hilfe der sogenannten dualen Größen (duale Zahlen, duale Vektoren, duale Tensoren, duale Matrizen) möglich, die im folgenden kurz eingeführt werden.

6.1. Duale Zahlen

Vergleichbar mit komplexen Zahlen sind duale Zahlen zweigliedrige Ausdrücke der Form

$$\hat{\mathbf{a}} = \mathbf{a} + \varepsilon \mathbf{a}' \tag{6.1}$$

mit dem Realteil a, dem Dualteil a' und der Dualeinheit ε mit der Eigenschaft

$$\varepsilon^2 = 0 . ag{6.2}$$

6.1.1 Rechenregeln

a) Summe/Differenz zweier dualer Zahlen

$$\hat{c} = \hat{a} \pm \hat{b} = (a + \epsilon a') \pm (b + \epsilon b') = (a \pm b) + \epsilon (a' \pm b') = c + \epsilon c'.$$

$$(6.3)$$

b) Produkt zweier dualer Zahlen

$$\hat{c} = \hat{a} \hat{b} = (a + \epsilon a') (b + \epsilon b') = ab + \epsilon (ab' + a'b) = \\ = c + \epsilon c'.$$
(6.4)

c) Quotient zweier dualer Zahlen

$$\hat{c} = \frac{\hat{a}}{\hat{b}} = \frac{a + \epsilon a'}{b + \epsilon b'} = \frac{a + \epsilon a'}{b + \epsilon b'} \frac{b - \epsilon b'}{b - \epsilon b'} = \frac{a}{b} + \epsilon \frac{a'b - ab'}{b^2} =$$

$$= c + \epsilon \quad c' \qquad , \quad b \neq 0 . \tag{6.5}$$

6.1.2 Analytische Funktionen von dualen Variablen

In Anlehnung an die Definition von Funktionen reeller oder komplexer Variabler ordnet eine Funktion f jedem Wert einer dualen Variablen $\hat{x} = x + \epsilon x'$ (aus einer Menge M_x dualer Zahlen) je einen Wert der Variablen $\hat{y} = y + \epsilon y'$ (aus einer Menge M_y dualer Zahlen) zu:

$$\hat{y} = f(\hat{x})$$
 bzw. $y + \varepsilon y' = f(x + \varepsilon x')$ (6.6)

Die Mengen $\,M_{_{\boldsymbol{X}}}\,$ und $\,M_{_{\boldsymbol{y}}}\,$ bilden den Definitions- bzw. Wertebereich der Funktion $\,f\,$

Mit Gl. (6.6) wird jedem Zahlenpaar x, x' (mit $x+\epsilon x'\in M_x$) ein Paar y, y' (mit $y+\epsilon y'\in M_y$) zugeordnet, d.h. y, y' sind zunächst als Funktionen der beiden unabhängigen reellen Variablen x, x' anzusehen:

$$y = y(x,x')$$
, $y' = y'(x,x')$. (6.7)

Damit kann man für $\hat{y} = f(\hat{x})$ auch schreiben:

$$\hat{\mathbf{y}} = \mathbf{f}(\hat{\mathbf{x}}) = \mathbf{f}(\mathbf{x} + \varepsilon \mathbf{x}') = \mathbf{y}(\mathbf{x}, \mathbf{x}') + \varepsilon \mathbf{y}'(\mathbf{x}, \mathbf{x}') . \tag{6.8}$$

Eine Funktion $f(\hat{x})$ ist genau dann in einem Punkt $\hat{x} = \hat{x}_0$ analytisch, wenn sie durch eine in einem Kreis um \hat{x}_0 konvergente Potenzreihe

$$f(\hat{\mathbf{x}}) = \sum_{k=0}^{\infty} c_k (\hat{\mathbf{x}} - \hat{\mathbf{x}}_0)^k \qquad , c_k \text{ reell },$$

dargestellt werden kann. Mit der Umformung (→binomischer Satz)

$$(\hat{x} - \hat{x}_0)^k = ((x + \varepsilon x') - (x_0 + \varepsilon x'_0))^k = ((x - x_0) + \varepsilon (x' - x'_0))^k = (x - x_0)^k + \varepsilon (x' - x'_0)^k + \varepsilon (x' - x'_0)^k + \varepsilon (x' - x_0)^{k-1} + \varepsilon^2 \dots = 0$$

gilt

$$\begin{split} f(\hat{x}) &= \sum_{k=0}^{\infty} c_k \, (\, \hat{x} - \, \hat{x}_0)^k \, = \sum_{k=0}^{\infty} c_k \, (x - x_0)^k \, + \, \epsilon \, (x' - x'_0) \, \sum_{k=0}^{\infty} c_k \, k \, (x - x_0)^{k-1} \, = \\ &= f(x) \, + \, \epsilon \, x' \, \frac{\mathrm{d} f(x)}{\mathrm{d} x} \, \, . \end{split}$$

Damit besitzen die beiden Anteile einer analytischen Funktion $\hat{y} = f(\hat{x})$ die Form

$$y = f(x)$$
 , $y' = x' \frac{df(x)}{dx}$, (6.9)

d.h. die Funktionen y(x,x') und y'(x,x') aus Gl. (6.7) genügen den Differentialgleichungen

$$\frac{\partial y}{\partial x} = \frac{\partial y'}{\partial x'}$$
 and $\frac{\partial y}{\partial x'} = 0$, (6.10)

vgl. CAUCHY-RIEMANN-Differentialgleichungen bei analytischen Funktionen komplexer Variabler.

Für eine Funktion mehrerer dualer Variabler $\hat{y} = f(\hat{x}_1, \hat{x}_2, ..., \hat{x}_n)$ mit $\hat{x}_i = x_i + \varepsilon x_i'$, i = 1,...,n, läßt sich ebenfalls durch eine Reihenentwicklung zeigen, daß gilt:

$$\hat{y} = f(\hat{x}_1, \hat{x}_2, ..., \hat{x}_n) = f(x_1, x_2, ..., x_n) + \epsilon \sum_{i=1}^{n} x_i^* \frac{\partial}{\partial x_i} f(x_1, x_2, ..., x_n) =$$

$$= y + \epsilon y^* . \tag{6.11}$$

Die Ableitung einer analytischen Funktion $f(\hat{x})$ nach der dualen Variablen \hat{x} lautet:

$$\frac{\mathrm{d}f(\hat{x})}{\mathrm{d}\hat{x}} = \frac{\mathrm{d}f(x)}{\mathrm{d}x} + \varepsilon x \cdot \frac{\mathrm{d}^2 f(x)}{\mathrm{d}x^2} . \tag{6.12}$$

Beispiele:

$$\sin \hat{x} = \sin x + \epsilon x' \cos x = -\frac{d \cos \hat{x}}{d \hat{x}}, \qquad (6.13a)$$

$$\cos \hat{x} = \cos x - \varepsilon x' \sin x = \frac{d \sin \hat{x}}{d \hat{x}}, \qquad (6.13b)$$

$$\sin(\hat{a} \hat{x}) = \sin(ax) + \varepsilon \left(a'x \cos(ax) + x'a \cos(ax)\right), \qquad (6.13c)$$

$$\sqrt{\hat{x}} = \sqrt{x} + \varepsilon \frac{x'}{2\sqrt{x}} \quad . \tag{6.13d}$$

6.2 Duale Vektoren

Duale Vektoren ermöglichen die vektorielle Darstellung von gerichteten Geraden im Raum und, in ihrer allgemeinen Form, die Darstellung von "Schrauben", d.h. gerichteten Geraden mit einer zugeordneten skalaren Größe (Steigung).

6.2.1 Dualer Einheitsvektor

Ein dualer Einheitsvektor

$$\hat{\underline{e}} = \underline{e} + \underline{\epsilon}\underline{e}' = \underline{e} + \underline{\epsilon}\underline{r} \times \underline{e} \quad , \quad |\underline{e}| = 1 , \qquad (6.14)$$

kennzeichnet eine gerichtete Gerade g im Raum. Er wird durch einen Doppelpfeil auf dieser Geraden gekennzeichnet. Im Realteil steht der normierte Richtungsvektor \underline{e} der Geraden, im Dualteil das Moment $\underline{e}' = \underline{r} \times \underline{e} = \underline{\widetilde{r}} \underline{e}$ von \underline{e} bezüglich eines frei wählbaren Punktes O . Hierbei ist \underline{r} ein Vektor von O zu einem beliebigen Punkt Q auf der Geraden g .

Zerlegt man die beiden Anteile \underline{e} und \underline{e}' in Komponenten eines orthonormierten Koordinatensystems K mit Ursprung im gewählten Punkt O, so stellen die insgesamt sechs Koordinaten die normierten PLÜCKER-Linienkoordinaten der Geraden in diesem System dar:

$$\left(\mathbf{e}_{\mathbf{x}},\mathbf{e}_{\mathbf{y}},\mathbf{e}_{\mathbf{z}},\mathbf{e}_{\mathbf{x}}',\mathbf{e}_{\mathbf{y}}',\mathbf{e}_{\mathbf{z}}'\right)$$
 (6.15)

Sie unterliegen den Nebenbedingungen

$$\underline{e}^{\mathsf{T}}\underline{e} = 1: \quad e_{\mathsf{x}}^2 + e_{\mathsf{y}}^2 + e_{\mathsf{z}}^2 = |\underline{e}|^2 = 1 ,$$

$$\underline{e}^{\mathsf{T}}\underline{e} = 0: \quad e_{\mathsf{x}} e_{\mathsf{x}}' + e_{\mathsf{y}} e_{\mathsf{y}}' + e_{\mathsf{z}} e_{\mathsf{z}}' = 0 .$$

Damit sind zur Bescheibung einer gerichteten Geraden vier Parameter erforderlich.

6.2.2 Allgemeiner dualer Vektor

Ein allgemeiner dualer Vektor

kennzeichnet eine Schraube, d.h. eine gerichtete Gerade g mit einem zugeordneten skalaren Größe, der Steigung h (Darstellung ebenfalls mit Doppelpfeil). Im Realteil steht der Richtungsvektor \underline{a} der Geraden (nicht unbedingt normiert), im Dualteil das Moment $\underline{a}_n' = \underline{r} \times \underline{a}$ von \underline{a} bezüglich eines Punktes O sowie ein Vektor $\underline{a}_1' = h\underline{a}$, der die Steigung h festlegt:

$$h = \frac{\underline{a}'_{t} \cdot \underline{a}}{\underline{a} \cdot \underline{a}} = \frac{\underline{a}' \cdot \underline{a}}{\underline{a}^{2}} . \tag{6.17}$$

Zerlegt man die beiden Anteile \underline{a} und \underline{a}' in Komponenten eines orthonormierten Koordinatensystems K mit Ursprung im gewählten Punkt O, so stellen die insgesamt sechs Koordinaten die Schraubenkoordinaten der Schraube in diesem System dar:

$$(a_x, a_y, a_z, a_x', a_y', a_z')$$
 (6.18)

Sie unterliegen der Nebenbedingung

$$\underline{a}^{\mathsf{T}}\underline{a} = a^2$$
: $a_x^2 + a_y^2 + a_z^2 = a^2$.

Damit sind zur Beschreibung einer Schraube fünf unabhängige Größen erforderlich.

Ein allgemeiner dualer Vektor $\hat{\underline{a}}$ kann im Fall $|\underline{a}| \pm 0$ wie folgt in einen dualen Betrag \hat{a} und einen dualen Einheitsvektor $\hat{\underline{e}}$ aufgespalten werden (\Rightarrow G1. (6.27)):

$$\frac{\hat{\mathbf{a}} = \underline{\mathbf{a}} + \varepsilon \underline{\mathbf{a}'} = \underline{\mathbf{a}} + \varepsilon (\underline{\mathbf{r}} \times \underline{\mathbf{a}} + \underline{\mathbf{h}}\underline{\mathbf{a}}) = a(\underline{\mathbf{e}} + \varepsilon (\underline{\mathbf{r}} \times \underline{\mathbf{e}} + \underline{\mathbf{h}}\underline{\mathbf{e}})) = \\
= (a(1 + \varepsilon \underline{\mathbf{h}}))(\underline{\mathbf{e}} + \varepsilon \underline{\mathbf{r}} \times \underline{\mathbf{e}}) = (a + \varepsilon \underline{\mathbf{h}}a)(\underline{\mathbf{e}} + \varepsilon \underline{\mathbf{r}} \times \underline{\mathbf{e}}) \\
= (a + \varepsilon \underline{\mathbf{a}'})(\underline{\mathbf{e}} + \varepsilon \underline{\mathbf{e}'}) \\
= \hat{\mathbf{a}} \qquad \hat{\underline{\mathbf{e}}} \qquad . \tag{6.19}$$

Der duale Einheitsvektor ist damit ein Sonderfall des allgemeinen dualen Vektors mit a=1 und a'=0 (d.h. h=0).

Im Fall a=0 und $a' \neq 0$ (d.h. $\frac{1}{h}=0$) verschwindet der Realteil. Es verbleibt die duale Darstellung eines freien Vektors $\underline{a'}$, der eine Raumrichtung kennzeichnet:

$$\hat{\underline{\mathbf{a}}} = \underline{\mathbf{0}} + \varepsilon \underline{\mathbf{a}}' = \varepsilon \underline{\mathbf{a}}' \quad . \tag{6.20}$$

6.2.3 Rechenregeln für duale Vektoren

Alle Verknüpfungen gewöhnlicher Vektoren können auf duale Vektoren übertragen werden, wobei die dualen Vektoren innerhalb einer Gleichung denselben Bezugspunkt besitzen müssen. Es besteht eine vollkommene Analogie zu den entsprechenden Rechenoperationen mit gewöhnlichen Vektoren.

a) Summe zweier dualer Vektoren

$$\underline{\hat{b}} = \underline{\hat{a}}_1 + \underline{\hat{a}}_2 = (\underline{a}_1 + \varepsilon \underline{a}_1^*) + (\underline{a}_2 + \varepsilon \underline{a}_2^*) = (\underline{a}_1 + \underline{a}_2) + \varepsilon (\underline{a}_1^* + \underline{a}_2^*) = \\
= \underline{b} + \varepsilon \underline{b}^*.$$
(6.21)

b) Skalarprodukt zweier dualer Vektoren

Für die Interpretation des Skalarprodukts zweier dualer Vektoren $\hat{\underline{a}}_1$ und $\hat{\underline{a}}_2$ ist es günstig, die dualen Beträge entsprechend Gl. (6.19) abzuspalten:

$$\hat{\mathbf{a}}_1 \cdot \hat{\mathbf{a}}_2 = (\hat{\mathbf{a}}_1 \, \hat{\mathbf{e}}_1) \cdot (\hat{\mathbf{a}}_2 \, \hat{\mathbf{e}}_2) = (\hat{\mathbf{a}}_1 \, \hat{\mathbf{a}}_2) \, \hat{\mathbf{e}}_1 \cdot \hat{\mathbf{e}}_2 \,. \tag{6.22}$$

Die Auswertung von $\underline{\hat{e}}_1 \cdot \underline{\hat{e}}_2$ ergibt unter Berücksichtigung von $\epsilon^2 = 0$:

$$\underline{\hat{e}}_1 \cdot \underline{\hat{e}}_2 = (\underline{e}_1 + \varepsilon \underline{e}_1') \cdot (\underline{e}_2 + \varepsilon \underline{e}_2') = \underline{e}_1 \cdot \underline{e}_2 + \varepsilon (\underline{e}_1 \cdot \underline{e}_2' + \underline{e}_1' \cdot \underline{e}_2),$$

⇒ Realteil:
$$\underline{e}_1 \cdot \underline{e}_2 = \cos \beta$$
, (6.23)

⇒ Dualteil:
$$\underline{e}_1 \cdot \underline{e}_2' + \underline{e}_1' \cdot \underline{e}_2 = (\underline{r}_1 \times \underline{e}_1) \cdot \underline{e}_2 + \underline{e}_1 \cdot (\underline{r}_2 \times \underline{e}_2) =$$

$$= \underline{r}_1 \cdot (\underline{e}_1 \times \underline{e}_2) - \underline{r}_2 \cdot (\underline{e}_1 \times \underline{e}_2) =$$

$$= -(\underline{r}_2 - \underline{r}_1) \cdot (\underline{e}_1 \times \underline{e}_2) =$$

$$= -b \sin \beta, \qquad (6.24)$$

 $\Rightarrow \text{Skalarprodukt:} \quad \underline{\hat{e}}_1 \cdot \underline{\hat{e}}_2 = \cos \beta - \epsilon b \sin \beta \stackrel{\downarrow}{=} \cos \hat{\beta} \quad . \tag{6.25}$

Hier ist $\hat{\beta} = \beta + \epsilon b$ der duale Winkel der beiden Geraden mit dem sphärischen Winkel β zwischen den Achsrichtungen, gemessen um das Gemeinlot \underline{e}_n , und dem kürzesten Kreuzungsabstand b entlang des Gemeinlots \underline{e}_n .

Damit ist z.B. auch:

- Skalarprodukt zweier allgemeiner dualer Vektoren:

$$\hat{\underline{a}}_1 \cdot \hat{\underline{a}}_2 = \hat{a}_1 \, \hat{a}_2 \, \cos \hat{\beta} \tag{6.26}$$

- Bestimmung des Betrags eines dualen Vektors, vgl. Gl. (6.19):

$$\sqrt{\underline{\hat{a}} \cdot \underline{\hat{a}}} = \sqrt{(\underline{a} + \varepsilon \underline{a'}) \cdot (\underline{a} + \varepsilon \underline{a'})} = \sqrt{\underline{a} \cdot \underline{a}} + \varepsilon 2\underline{a} \cdot \underline{a'}} =$$

$$= \sqrt{\underline{a} \cdot \underline{a}} + \varepsilon \frac{2\underline{a} \cdot \underline{a'}}{2\sqrt{\underline{a} \cdot \underline{a}}} = \underline{a} + \varepsilon \underline{a'} = \widehat{a} .$$

$$(6.27)$$

c) Vektorprodukt zweier dualer Vektoren

Für die Interpretation des Vektorprodukts zweier dualer Vektoren $\hat{\underline{a}}_1$ und $\hat{\underline{a}}_2$ werden ebenfalls die dualen Beträge abgespalten:

$$\hat{\underline{a}}_1 \times \hat{\underline{a}}_2 = (\hat{a}_1 \hat{\underline{e}}_1) \times (\hat{a}_2 \hat{\underline{e}}_2) = (\hat{a}_1 \hat{a}_2) \quad \hat{\underline{e}}_1 \times \hat{\underline{e}}_2 . \tag{6.28}$$

Zur Auswertung von $\hat{\underline{e}}_1 \times \hat{\underline{e}}_2$ werden die Ortsvektoren \underline{r}_1 und $\underline{r}_2 = \underline{r}_1 + \underline{b}\underline{e}_n$ zu den Wirkungslinien g_1 bzw. g_2 ohne Beschränkung der Allgemeinheit so gewählt, daß sie zu den Fußpunkten Q_1 und Q_2 des gemeinsamen Lotes n führen. Unter Berücksichtigung von $\epsilon^2 = 0$ ergibt sich:

$$\underline{\hat{e}}_1 \times \underline{\hat{e}}_2 = (\underline{e}_1 + \varepsilon \underline{e}_1') \times (\underline{e}_2 + \varepsilon \underline{e}_2') = \underline{e}_1 \times \underline{e}_2 + \varepsilon (\underline{e}_1 \times \underline{e}_2' + \underline{e}_1' \times \underline{e}_2)$$

$$\Rightarrow \text{ Realteil: } \underline{e}_1 \times \underline{e}_2 = \underline{e}_n \sin\beta , \qquad (6.29)$$

⇒ Dualteil:
$$\underline{e}_{1} \times \underline{e}_{2}^{2} + \underline{e}_{1}^{2} \times \underline{e}_{2} = (\underline{r}_{1} \times \underline{e}_{1}) \times \underline{e}_{2} + \underline{e}_{1} \times (\underline{r}_{2} \times \underline{e}_{2}) =$$

$$= \underline{e}_{1} (\underline{r}_{1} \cdot \underline{e}_{2}) - \underline{r}_{1} (\underline{e}_{1} \cdot \underline{e}_{2}) + \underline{r}_{2} (\underline{e}_{1} \cdot \underline{e}_{2}) - \underline{e}_{2} (\underline{e}_{1} \cdot \underline{r}_{2}) =$$

$$= (\underline{r}_{2} - \underline{r}_{1}) (\underline{e}_{1} \cdot \underline{e}_{2}) + \underline{e}_{1} (\underline{r}_{1} \cdot \underline{e}_{2}) - \underline{e}_{2} (\underline{e}_{1} \cdot \underline{r}_{2}) =$$

$$= \underline{e}_{n} b \cos \beta + \underline{e}_{1} (\underline{r}_{1} \cdot \underline{e}_{2}) - \underline{e}_{2} (\underline{e}_{1} \cdot \underline{r}_{2}) - \underline{b} \underline{e}_{2} (\underline{e}_{1} \cdot \underline{e}_{n}) =$$

$$= \underline{e}_{n} b \cos \beta + \underline{r}_{1} \times (\underline{e}_{1} \times \underline{e}_{2}) - \underline{e}_{2} (\underline{e}_{1} \cdot \underline{r}_{2}) - \underline{b} \underline{e}_{2} (\underline{e}_{1} \cdot \underline{e}_{n}) =$$

$$= \underline{e}_{n} b \cos \beta + \underline{r}_{1} \times (\underline{e}_{1} \times \underline{e}_{2}) - \underline{e}_{2} (\underline{e}_{1} \cdot \underline{r}_{2}) - \underline{e}_{2} (\underline{e}_{1} \cdot \underline{e}_{n}) =$$

$$= \underline{e}_{n} b \cos \beta + \underline{r}_{1} \times \underline{e}_{n} \sin \beta . \qquad (6.30)$$

Hierbei ist $\hat{\underline{e}}_n$ der duale Einheitsvektor des Gemeinlots. Damit ist z.B. auch:

- Vektorprodukt zweier allgemeiner dualer Vektoren:

$$\underline{\hat{\mathbf{a}}}_1 \times \underline{\hat{\mathbf{a}}}_2 = \hat{\mathbf{a}}_1 \hat{\mathbf{a}}_2 \quad \underline{\hat{\mathbf{e}}}_1 \times \underline{\hat{\mathbf{e}}}_2 = \hat{\mathbf{a}}_1 \hat{\mathbf{a}}_2 \sin \hat{\boldsymbol{\beta}} \ \underline{\hat{\mathbf{e}}}_n \ . \tag{6.32}$$

- Vektorprodukt zweier paralleler dualer Einheitsvektoren ($\cos \beta$ = 1, $\sin \beta$ = 0):

$$\underline{\hat{\mathbf{e}}}_1 \times \underline{\hat{\mathbf{e}}}_2 = \underline{\mathbf{e}}_n \, \mathbf{0} + \varepsilon \left(\underline{\mathbf{e}}_n \, \mathbf{b} \, \mathbf{1} + \underline{\mathbf{e}}_n^* \, \mathbf{0} \, \right) = \underline{\mathbf{0}} + \varepsilon \mathbf{b} \, \underline{\mathbf{e}}_n \, . \tag{6.33}$$

Dies ist der freie Richtungsvektor des entlang der beiden Geraden frei verschiebbaren Gemeinlots n, vgl. Gl. (6.20).

6.2.4 Komponentenzerlegung dualer Vektoren in einer dualen Vektorbasis

Drei duale Einheitsvektoren $\underline{\hat{e}}_{x1}$, $\underline{\hat{e}}_{y1}$ und $\underline{\hat{e}}_{z1}$, die sich in einem gemeinsamen Punkt O_1 senkrecht schneiden, bilden eine duale Vektorbasis \hat{K}_1 , deren Achsen mit \hat{x}_1 , \hat{y}_1 und \hat{z}_1 bezeichnet werden sollen. Es werden hier nur Rechtssysteme betrachtet. Jeder duale Vektor $\underline{\hat{s}}$ läßt sich dann in Komponenten in Richtung dieser drei dualen Basisvektoren zerlegen:

$$\underline{\hat{s}} = {}^{1}\hat{s}_{x} \ \underline{\hat{e}}_{x1} + {}^{1}\hat{s}_{y} \ \underline{\hat{e}}_{y1} + {}^{1}\hat{s}_{z} \ \underline{\hat{e}}_{z1} \ . \tag{6.34}$$

In Analogie zur gewöhnlichen Vektoralgebra sind die einzelnen Summanden von Gl. (6.34) die dualen Komponenten von $\hat{\underline{s}}$ in \hat{K}_1 . Die dualen Projektionen ${}^1\hat{s}_x = \hat{\underline{s}} \cdot \hat{\underline{e}}_{x1}$, ${}^1\hat{s}_y = \hat{\underline{s}} \cdot \hat{\underline{e}}_{y1}$, ${}^1\hat{s}_z = \hat{\underline{s}} \cdot \hat{\underline{e}}_{z1}$ sind die dualen Koordinaten des Vektors $\hat{\underline{s}}$ in \hat{K}_1 , die für die praktische Rechnung in einer (3×1)-Spaltenmatrix mit dualen Elementen angeordnet werden:

$${}^{1}\underline{\hat{\mathbf{s}}} = \begin{bmatrix} {}^{1}\hat{\mathbf{s}}_{\mathbf{x}} \\ {}^{1}\hat{\mathbf{s}}_{\mathbf{y}} \\ {}^{1}\hat{\mathbf{s}}_{\mathbf{z}} \end{bmatrix} \quad \text{bzw.} \quad {}^{1}\underline{\hat{\mathbf{s}}} = \begin{bmatrix} {}^{1}\hat{\mathbf{s}}_{\mathbf{x}} \\ {}^{2}\hat{\mathbf{s}}_{\mathbf{y}} \\ {}^{2}\hat{\mathbf{s}}_{\mathbf{z}} \end{bmatrix} . \tag{6.35}$$

Unter Verwendung der Schreibweise "(1)" im Dualteil anstelle von " \cdot " zur expliziten Kennzeichnung des Bezugspunkts O_1 ergibt die Aufspaltung in Real- und Dualteil

$${}^{1}\underline{\hat{\mathbf{S}}} = \begin{bmatrix} \hat{\mathbf{S}}_{\mathbf{X}} \\ \hat{\mathbf{S}}_{\mathbf{y}} \\ \hat{\mathbf{S}}_{\mathbf{z}} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{\mathbf{X}} \\ \mathbf{S}_{\mathbf{y}} \\ \mathbf{S}_{\mathbf{z}} \end{bmatrix} + \varepsilon \begin{bmatrix} \mathbf{S}_{(1)}^{(1)} \\ \mathbf{S}_{(1)}^{(1)} \\ \mathbf{S}_{\mathbf{z}}^{(1)} \end{bmatrix} =$$

$$= \frac{1}{\mathbf{S}} + \varepsilon \frac{1}{\mathbf{S}}(1) \quad . \tag{6.36}$$

Im Dualteil stehen die Koordinaten des Dualteils von $\hat{\underline{s}}$ für den Bezugspunkt O_1 im System K_1 . Dies läßt sich z.B. anhand der x-Koordinate zeigen:

$${}^{1}\hat{s}_{x} = \underline{\hat{s}} \cdot \underline{\hat{e}}_{x1} = \underline{s} \cdot \underline{e}_{x1} + \varepsilon \left(\underline{s}^{(1)} \cdot \underline{e}_{x1} + \underline{s} \cdot \underline{\underline{e}^{(1)}_{x1}} \right) =$$

$$= {}^{1}s_{x} + \varepsilon {}^{1}s^{(1)}_{x1} \qquad \underline{0}, \text{ da } O_{1} \text{ Bezugspunkt}$$
(6.37)

Die Koordinatendarstellung eines dualen Vektors in einer dualen Vektorbasis \hat{K}_i beinhaltet damit:

- 1. Festlegung des Ursprungs O_1 als Referenzpunkt für den Dualteil $\underline{s}^{(1)}$.
- 2. Festlegung der Richtungen für die Komponentenzerlegung des Realteils \underline{s} und des Dualteils $\underline{s}^{(i)}$.

6.2.5 Transformation von dualen Vektorkoordinaten

Für den Zusammenhang zwischen den Koordinaten desselben Vektors in unterschiedlichen Koordinatensystemen gilt in Analogie zur gewöhnlichen Vektoralgebra:

$$\begin{bmatrix}
\hat{s}_{x} \\
\hat{s}_{y} \\
\hat{s}_{z}
\end{bmatrix} = \begin{bmatrix}
\frac{\hat{e}_{x1} \cdot \hat{e}_{x2}}{\hat{e}_{x2}} & \frac{\hat{e}_{x1} \cdot \hat{e}_{y2}}{\hat{e}_{x1} \cdot \hat{e}_{y2}} & \frac{\hat{e}_{x1} \cdot \hat{e}_{z2}}{\hat{e}_{x1} \cdot \hat{e}_{z2}} \\
\frac{\hat{e}_{y1} \cdot \hat{e}_{x2}}{\hat{e}_{z1} \cdot \hat{e}_{x2}} & \frac{\hat{e}_{y1} \cdot \hat{e}_{y2}}{\hat{e}_{z1} \cdot \hat{e}_{z2}} & \frac{\hat{e}_{z1} \cdot \hat{e}_{z2}}{\hat{s}_{z2}}
\end{bmatrix}^{2} \begin{bmatrix}
\hat{s}_{x} \\
\hat{s}_{y} \\
\hat{s}_{z}
\end{bmatrix}$$

$$^{1}\hat{\underline{s}} =$$

$$^{12}\hat{\underline{T}} \qquad \qquad ^{2}\hat{\underline{s}} \qquad . \qquad (6.38)$$

Die duale Transformationsmatrix $^{12}\hat{\underline{T}}$ transformiert damit Koordinaten eines beliebigen Vektors $\hat{\underline{s}}$ vom System \hat{K}_2 in das System \hat{K}_1 .

Eigenschaften der Transformationsmatrix ${}^{12}\hat{\underline{\Upsilon}}$:

- In den Spaltenvektoren von $^{12}\hat{\underline{T}}$ stehen die Koordinaten der Einheitsvektoren $\hat{\underline{e}}_{x2}$, $\hat{\underline{e}}_{y2}$, $\hat{\underline{e}}_{x2}$ im System \hat{K}_1 , in den Zeilenvektoren die Koordinaten der Einheitsvektoren $\hat{\underline{e}}_{x1}$, $\hat{\underline{e}}_{y1}$, $\hat{\underline{e}}_{z1}$ im System \hat{K}_2 :

$$\begin{array}{lll}
12\underline{\hat{T}} &= \begin{bmatrix} 1\underline{\hat{e}}_{x2} & | 1\underline{\hat{e}}_{y2} & | 1\underline{\hat{e}}_{z2} \end{bmatrix} = \\
&= \begin{bmatrix} 1\underline{e}_{x2} & | 1\underline{e}_{y2} & | 1\underline{e}_{z2} \end{bmatrix} + \epsilon \begin{bmatrix} 1\underline{\hat{r}}_{12} & | \underline{e}_{x2} & | 1\underline{\hat{r}}_{12} & | \underline{e}_{y2} & | 1\underline{\hat{r}}_{12} & | \underline{e}_{z2} \end{bmatrix} = \\
&= \begin{bmatrix} 1\underline{e}_{x2} & | 1\underline{e}_{y2} & | 1\underline{e}_{z2} \end{bmatrix} + \epsilon \begin{bmatrix} 1\underline{\hat{r}}_{12} & | 1\underline{e}_{y2} & | 1\underline{e}_{y2} & | 1\underline{e}_{z2} \end{bmatrix} = \\
&= \begin{bmatrix} 1\underline{e}_{x2} & | 1\underline{e}_{y2} & | 1\underline{e}_{z2} \end{bmatrix} + \epsilon \begin{bmatrix} 1\underline{\hat{r}}_{12} & | 1\underline{e}_{y2} & | 1\underline{e}_{z2} \end{bmatrix} = \\
&= \begin{bmatrix} 1\underline{e}_{x2} & | 1\underline{e}_{y2} & | 1\underline{e}_{z2} \end{bmatrix} + \epsilon \begin{bmatrix} 1\underline{\hat{r}}_{12} & | 1\underline{e}_{z2} & | 1\underline{e}_{z2} \end{bmatrix} = \\
&= \begin{bmatrix} 1\underline{e}_{x2} & | 1\underline{e}_{y2} & | 1\underline{e}_{z2} & | 1\underline{e}_{z2}$$

Die Auswertung von Gl. (6.38) liefert damit:

$$\frac{1}{\hat{\mathbf{S}}} = \frac{12\hat{\mathbf{T}}}{\hat{\mathbf{T}}} = \frac{2\hat{\mathbf{S}}}{\hat{\mathbf{S}}} = \frac{12\hat{\mathbf{T}}}{\hat{\mathbf{T}}} + \varepsilon^{1}\hat{\mathbf{T}}_{12}^{2} + \varepsilon^{1}\hat{\mathbf{T}}_{12}^{2} + \varepsilon^{2}\hat{\mathbf{S}}^{(2)}) = \frac{12\hat{\mathbf{T}}}{\hat{\mathbf{T}}} = \frac{12\hat{\mathbf{T}}}{\hat$$

- Eine Änderung des Bezugspunkts ohne Drehung des Koordinatensystems läßt sich durch eine reine Parallelverschiebung von O_2 nach O_1 darstellen. Mit $^{12}T = I$ gilt ausgehend von Gl. (6.40):

$${}^{1}\underline{\hat{\mathbf{s}}} = \left(\underline{\mathbf{I}} + \varepsilon^{1}\underline{\hat{\mathbf{r}}}_{12}\right)\left({}^{1}\underline{\mathbf{s}} + \varepsilon^{1}\underline{\mathbf{s}}^{(2)}\right) = {}^{1}\underline{\mathbf{s}} + \varepsilon\left({}^{1}\underline{\hat{\mathbf{r}}}_{12} \,{}^{1}\underline{\mathbf{s}} + {}^{1}\underline{\mathbf{s}}^{(2)}\right) = \\ = {}^{1}\underline{\mathbf{s}} + \varepsilon\left({}^{1}\underline{\hat{\mathbf{r}}}_{12} \,{}^{1}\underline{\mathbf{s}} + {}^{1}\underline{\mathbf{s}}^{(2)}\right) =$$

$$(6.41)$$

- Bei der Transformation bleiben die folgenden Invarlanten der Vektorschraube erhalten:
 - * Länge und Richtung von s.
 - * Der parallel zu \underline{s} liegende Anteil des Dualteils und damit die Steigung h:

$$\mathbf{s}_{t}^{(1)} = \underline{\mathbf{s}}_{t}^{(2)} = \underline{\mathbf{s}}_{t}^{*} = \mathbf{h} \underline{\mathbf{s}} .$$
 (6.42)

* Die Lage der Schraubachse, ausgedrückt über den senkrecht auf <u>s</u> stehenden Anteil des Dualteils (Moment von <u>s</u>):

$$\underline{\underline{s}}_{n}^{(1)} = \underline{r}_{1} \times \underline{\underline{s}} = \underline{\underline{s}}_{n}^{(2)} + \underline{r}_{12} \times \underline{\underline{s}} \quad , \tag{6.43a}$$

$$\underline{\mathbf{s}}_{n}^{(2)} = \underline{\mathbf{r}}_{2} \times \underline{\mathbf{s}} = \underline{\mathbf{s}}_{n}^{(1)} + \underline{\mathbf{r}}_{21} \times \underline{\mathbf{s}} . \tag{6.43b}$$

- Die duale Orthogonalitätsbedingung lautet:

- Aus $^{12}\hat{\underline{T}}$ ergibt sich durch Transponieren die Matrix $^{21}\hat{\underline{T}}$ der umgekehrten Transformation:

- Die Transformation (6.40) kann auch in reeller Darstelllung mit einer (6×6)-Matrix ausgedrückt werden:

$$\begin{bmatrix}
\frac{1}{\underline{S}} \\
\frac{1}{\underline{S}}(1)
\end{bmatrix} = \begin{bmatrix}
\frac{12}{\underline{T}} & + & \underline{Q} \\
\frac{12}{\underline{T}} & + & \underline{12}\underline{T}
\end{bmatrix} \begin{bmatrix}
\frac{2}{\underline{S}} \\
\frac{2}{\underline{S}}(2)
\end{bmatrix} = \begin{bmatrix}
\frac{12}{\underline{T}} & - & & \underline{Q} \\
\frac{12}{\underline{T}} & 12\underline{T}
\end{bmatrix} \begin{bmatrix}
\frac{2}{\underline{S}} \\
\frac{2}{\underline{S}}(2)
\end{bmatrix} = \begin{bmatrix}
\frac{12}{\underline{T}} & - & & \underline{Q} \\
\frac{12}{\underline{T}} & 12\underline{T}
\end{bmatrix} \begin{bmatrix}
\frac{2}{\underline{S}} & & & \\
\frac{2}{\underline{S}}(2)
\end{bmatrix} = \begin{bmatrix}
\frac{12}{\underline{T}} & - & & \underline{Q} \\
\frac{12}{\underline{T}} & 12\underline{T}
\end{bmatrix} \begin{bmatrix}
\frac{2}{\underline{S}} & & & \\
\frac{2}{\underline{S}}(2)
\end{bmatrix} = \begin{bmatrix}
\frac{12}{\underline{T}} & - & & & \\
\frac{12}{\underline{T}} & 12\underline{T}
\end{bmatrix} \begin{bmatrix}
\frac{2}{\underline{S}} & & & \\
\frac{2}{\underline{S}}(2)
\end{bmatrix} .$$
(6.46)

6.3 Übertragungsprinzlp

In der gewöhnlichen Vektoralgebra werden freie Vektoren betrachtet, die vom geometrischen Standpunkt Raumrichtungen beschreiben. Eine Raumrichtung läßt sich durch einen freien Einheitsvektor e oder - gleichwertig - durch einen Punkt P auf der Oberfläche einer Einheitskugel festlegen. Damit stellt die Algebra freier Vektoren zugleich ein Hilfsmittel zur Beschreibung der zweidimensionalen Geometrie auf der Kugeloberfläche, der sphärischen Geometrie, dar.

In derselben Weise ist die in den vorhergehenden Abschnitten eingeführte Algebra dualer Vektoren ein Hilfsmittel zur Beschreibung der Liniengeometrie. Ihr Grundelement ist die gerichtete Gerade im Raum, die durch einen dualen Einheitsvektor $\hat{\underline{e}}$ repräsentiert wird. Damit ergibt sich die folgende Gegenüberstellung:

Sphärische Geometrie

Duale Einheitsvektoren $\hat{\underline{e}}_1$, $\hat{\underline{e}}_2$

Gerichtete Geraden g1, g2 im Raum

Dualer Winkel $\hat{\beta} = \beta + \varepsilon b$ von g₁ nach g₂ um ê_n

Liniengeometrie

Einheitsvektoren e_1 , e_2

Punkte P1, P2 auf der Einheitskugel

Sphärischer Winkel ß von P, nach P, um en

In den vorhergehenden Abschnitten wurde die vollkommene Analogie zwischen Beziehungen der gewöhnlichen und der dualen Vektoralgebra gezeigt. Für alle Operationen mit dualen Vektoren galt dabei:

- Der Realteil gibt eine Beziehung der gewöhnlichen Vektoralgebra bzw. der sphärischen Geometrie an.

- Der Dualteil erweitert die Gültigkeit dieser Beziehung für die Liniengeometrie. Dies begründet ein auf KOTELNIKOV (1895) und STUDY (1903) zurückgehendes Übertragungsprinzip:

Sämtliche Beziehungen der sphärischen Geometrie können durch Einsetzen dualer Größen ("duale Erweiterung") auf die Liniengeometrie übertragen werden.

In der Kinematik kann dieses Übertragungsprinzip dazu benuzt werden, sämtliche Beziehungen der Drehung eines starren Körpers um einen Fixpunkt aus den Abschnitten 3.2 und 4 durch duale Erweiterung auf die allgemeine räumliche Bewegung (Schraubbewegung) zu übertragen. Dies ist in einer Gegenüberstellung von Fixpunktdrehung und Schraubbewegung zusammengefaßt.

6.4 Gegenüberstellung von Fixpunktdrehung und Schraubbewegung

Fixpunktdrehung

Drehung

der körperfesten Vektorbasis: Ausgangslage $K_0 \rightarrow$ Endlage K_1

Drehzeiger ⁰u,β

Achse $\underline{\mathbf{u}}$ der endlichen Drehung Drehwinkel $\boldsymbol{\beta}$ Drehung eines körperfesten Vektors ${}^{0}\underline{\rho} = {}^{0}(\cos{\boldsymbol{\beta}} \ \underline{\mathbf{I}} + \sin{\boldsymbol{\beta}} \ \underline{\widetilde{\mathbf{u}}} + (1 - \cos{\boldsymbol{\beta}}) \ \underline{\mathbf{u}} \ \underline{\mathbf{u}}^{\mathsf{T}}) {}^{0}\underline{\rho}_{0}$ $= {}^{0}\underline{\mathbf{R}}(\underline{\mathbf{u}},\boldsymbol{\beta}) {}^{0}\underline{\rho}_{0}$ Drehtensor

Koordinatentransformation

$$^{0}\rho = {^{0}}^{1}\underline{T}(\underline{u},\beta) {^{1}}\rho = {^{0}}\underline{R}(\underline{u},\beta) {^{1}}\rho$$

EULER-Parameter (Quaternionen)

 $\underline{q}(\underline{u},\beta) = q_0 + \underline{q} = \cos\frac{\beta}{2} + {}^0\underline{u}\sin\frac{\beta}{2}$.

Drehung eines körperfesten Vektors ${}^0\underline{\varrho} = \underline{q}, {}^0\underline{\varrho}_0, \ \overline{\underline{q}},$

Koordinatentransformation

$${}^0\underline{\varrho} \ = {}^{01}\underline{q} \quad {}^1\underline{\varrho} \quad {}^{01}\underline{\tilde{q}} \qquad \quad \text{mit} \qquad {}^{01}\underline{\tilde{q}} \ = {}^{10}\underline{q} \quad .$$

Schraubbewegung

→ Schraubung

der dualen körperfesten Vektorbasis: Ausgangslage $\hat{K}_0 \rightarrow$ Endlage \hat{K}_1

\rightarrow Dualer Drehzeiger $0\hat{\underline{u}}$, $\hat{\beta}$

Achse $\hat{\mathbf{u}}$ der endlichen Schraubung

Dualer "Schraubwinkel" $\hat{\boldsymbol{\beta}} = \boldsymbol{\beta} + \boldsymbol{\epsilon} \mathbf{b}$ (6.47)

Schraubung eines körperf. dualen Vektors ${}^{0}\hat{\boldsymbol{\varrho}} = {}^{0}(\cos\hat{\boldsymbol{\beta}} \ \underline{\mathbf{I}} + \sin\hat{\boldsymbol{\beta}} \ \hat{\underline{\mathbf{u}}} + (1 - \cos\hat{\boldsymbol{\beta}} \) \ \hat{\underline{\mathbf{u}}} \ \hat{\underline{\mathbf{u}}}^{\intercal}) {}^{0} \ \hat{\underline{\varrho}}_{0}$ = ${}^{0}\hat{\underline{R}}(\hat{\underline{\mathbf{u}}}, \hat{\boldsymbol{\beta}})$ ${}^{0}\hat{\underline{\varrho}}_{0}$ dualer Schraubtensor (6.48)

Duale Koordinatentransformation

$${}^{\circ}\hat{\rho} = {}^{\circ 1}\hat{\underline{\Upsilon}}(\hat{\underline{u}}, \hat{\beta}) {}^{1}\hat{\rho} = {}^{\circ}\hat{\underline{R}}(\hat{\underline{u}}, \hat{\beta}) {}^{1}\hat{\rho}$$
 (6.49)

→ Duale EULER-Param. (duale Quaternionen)

$$\hat{\mathbf{q}}(\hat{\mathbf{u}},\hat{\boldsymbol{\beta}}) = \hat{\mathbf{q}}_0 + \hat{\mathbf{q}} = \cos\frac{\hat{\boldsymbol{\beta}}}{2} + {}^0\hat{\mathbf{u}}\sin\frac{\hat{\boldsymbol{\beta}}}{2} . \quad (6.50)$$
Schraubung eines körperf. dualen Vektors
$${}^0\hat{\boldsymbol{\rho}} = \hat{\mathbf{q}} {}^0\hat{\boldsymbol{\rho}}_0 \quad \bar{\hat{\mathbf{q}}} \qquad (6.51)$$

Duale Koordinatentransformation

$${}^{0}\hat{\varrho} = {}^{01}\hat{q}, {}^{1}\hat{\varrho}, {}^{01}\hat{q}, {}^{$$

6.5 Duale Darstellung von Geschwindigkeiten und Beschleunigungen

6.5.1 Geschwindigkeitsschraube

Betrachtet wird die Bewegung eines starren Körpers relativ zu einer beliebigen (ruhenden oder bewegten) dualen Vektorbasis \hat{K}_1 (Ursprung O_1 , duale Einheitsvektoren $\underline{\hat{e}}_{x1}$, $\underline{\hat{e}}_{y1}$, $\underline{\hat{e}}_{z1}$) mit der Winkelgeschwindigkeit $\underline{\omega}$ und der Translationsgeschwindigkeit \underline{v}_Q eines Körperpunktes Q auf der momentanen Schraubachse, vgl. Abschnitt 3.3.2. Die Geschwindigkeitschraube $(\underline{\omega},\underline{v}_Q)$ kann wie folgt als dualer Vektor in \hat{K}_1 dargestellt werden:

$${}^{1}\underline{\hat{\omega}} = {}^{1}\underline{\omega} + \epsilon {}^{1}(\underline{r}_{O} \times \underline{\omega} + \underline{v}_{O}). \tag{6.53}$$

Hier ist \underline{r}_Q der Vektor vom Bezugspunkt O_1 nach Q.

Zur Interpretation des Dualteils wird die Geschwindigkeit \underline{v}_Q mit Hilfe der Starr-körperbeziehung (3.26) über die Geschwindigkeit $\underline{v}^{(i)}$ des in der betrachteten Position momentan mit O_1 zusammenfallenden Körperpunktes (gegebenenfalls ist der der Körper gedanklich so zu erweitern, daß er sich über O_1 erstreckt) ausgedrückt:

$$\underline{\mathbf{v}}_{\mathbf{Q}} = \underline{\dot{\mathbf{r}}}_{\mathbf{Q}} = \underline{\mathbf{v}}^{(1)} + \underline{\dot{\mathbf{r}}}_{1\mathbf{Q}} = \underline{\mathbf{v}}^{(1)} + \underline{\omega} \times \underline{\mathbf{r}}_{1\mathbf{Q}}. \tag{6.54}$$

Hierbei ist \underline{r}_{1Q} der körperfeste Verbindungsvektor von dem mit O_1 momentan zusammenfallenden Körperpunkt nach Q. Der Vektor \underline{r}_{1Q} fällt deswegen momentan mit \underline{r}_Q zusammen:

$$\underline{\mathbf{r}}_{1Q} = \underline{\mathbf{r}}_{Q} \qquad \left(\text{aber } \underline{\dot{\mathbf{r}}}_{1Q} = \underline{\omega} \times \underline{\mathbf{r}}_{1Q} \quad \ddagger \quad \underline{\dot{\mathbf{r}}}_{Q} = \underline{\mathbf{v}}_{Q} \right).$$
 (6.55)

Einsetzen von (6.54) und (6.55) in den Dualteil von (6.53) liefert:

$${}^{1}\underline{\hat{\omega}} = {}^{1}\underline{\omega} + \epsilon {}^{1} \left(\underline{r}_{1Q} \times \underline{\omega} + \underline{v}^{(1)} + \underline{\omega} \times \underline{r}_{1Q} \right) = {}^{1}\underline{\omega} + \epsilon {}^{1}\underline{v}^{(1)}. \tag{6.56}$$

Damit $\underline{\hat{\omega}}$ ein "echter" dualer Vektor ist, muß die Transformationsbeziehung (6.40) für den Übergang auf eine andere duale Vektorbasis \hat{K}_2 (Ursprung O_2 , duale Einheitsvektoren $\underline{\hat{e}}_{x2}$, $\underline{\hat{e}}_{y2}$, $\underline{\hat{e}}_{z2}$) gelten:

$${}^{2}\underline{\widehat{\omega}} = {}^{21}\underline{\widehat{T}} {}^{1}\underline{\widehat{\omega}} = (\underline{I} + \varepsilon^{2}\underline{\widetilde{r}}_{21}) {}^{21}\underline{T} {}^{1}(\underline{\omega} + \varepsilon\underline{v}^{(1)}) =$$

$$= {}^{2}\underline{\omega} + \varepsilon^{2}(\underline{v}^{(1)} + \underline{r}_{21} \times \underline{\omega}) = {}^{2}\underline{\omega} + \varepsilon^{2}\underline{v}^{(2)}. \qquad (6.57)$$

Hierbei ist $\underline{v}^{(2)} = \underline{\omega} \times \underline{r}_{12}$ die Geschwindigkeit des momentan mit O_2 zusammenfallenden Körperpunktes relativ zu K_1 . Da $^2\underline{\hat{\omega}}$ wieder die Form eines dualen Vektors entsprechend $^1\underline{\hat{\omega}}$ hat, ist die Geschwindigkeitsschraube ein "echter" dualer Vektor.

6.5.2 Beschleunigungsschraube

Der Körper soll die Winkelbeschleunigung $\underline{\dot{\omega}} = \underline{\alpha}$ und die Beschleunigung $\underline{\dot{v}}_Q = \underline{a}_Q$ des Punktes Q relativ zu K_1 besitzen. Die Zeitableitung von Gl. (6.53) liefert dann:

$${}^{1}\dot{\hat{\omega}} = {}^{1}\underline{\dot{\omega}} + \epsilon^{1}(\dot{\underline{r}}_{O} \times \underline{\omega} + \underline{r}_{O} \times \dot{\underline{\omega}} + \dot{\underline{v}}_{O}) . \tag{6.58}$$

Die Beschleunigung $\dot{\underline{v}}_Q = \underline{a}_Q$ von Q läßt sich durch die Zeitableitung von Gl. (6.54) ausdrücken. Hierbei ist $\dot{\underline{v}}^{(i)} = \underline{a}^{(i)}$ die Beschleunigung des momentan mit O_1 zusammenfallenden Körperpunkts:

$$\underline{\dot{\mathbf{y}}}_{\mathbf{Q}} = \underline{\dot{\mathbf{y}}}^{(1)} + \underline{\dot{\mathbf{u}}} \times \underline{\mathbf{r}}_{1\mathbf{Q}} + \underline{\boldsymbol{\omega}} \times \underline{\dot{\mathbf{r}}}_{1\mathbf{Q}}. \tag{6.59}$$

Einsetzen von (6.54), (6.55) und (6.59) in den Dualteil von (6.58) führt auf:

$$\begin{array}{rcl}
\overset{1}{\underline{\dot{\omega}}} &=& \overset{1}{\underline{\dot{\omega}}} + \varepsilon^{1} \left((\underline{v}^{(1)} + \underline{\omega} \times \underline{r}_{1Q}) \times \underline{\omega} + \underline{r}_{1Q} \times \underline{\dot{\omega}} + \underline{\dot{v}}^{(1)} + \underline{\dot{\omega}} \times \underline{r}_{1Q} + \underline{\omega} \times (\underline{\omega} \times \underline{r}_{1Q}) \right) = \\
&=& \overset{1}{\underline{\dot{\omega}}} + \varepsilon^{1} \left(\underline{\dot{v}}^{(1)} + \underline{v}^{(1)} \times \underline{\omega} \right) \\
\downarrow & & \downarrow & & \downarrow \\
\overset{1}{\underline{\dot{\alpha}}} &=& \overset{1}{\underline{\omega}} + \varepsilon^{1} \left(\underline{a}^{(1)} + \underline{v}^{(1)} \times \underline{\omega} \right) .
\end{array} (6.60)$$

Dies ist die duale Darstellung der "Beschleunigungsschraube". Im Dualteil steht neben der Beschleunigung $\underline{a}^{(i)}$ des momentan mit O_1 zusammenfallenden Körperpunkts der Zusatzterm $\underline{v}^{(i)} \times \underline{\omega}$.

Damit $\hat{\underline{\alpha}}$ ein "echter" dualer Vektor ist, muß ebenfalls die Transformationsbeziehung (6.40) für den Übergang auf eine andere duale Vektorbasis K_2 gelten:

$${}^{2}\underline{\hat{\alpha}} = {}^{21}\underline{\hat{T}} {}^{1}\underline{\hat{\alpha}} = (\underline{I} + \epsilon^{2}\underline{\hat{r}}_{21}) {}^{21}\underline{T} {}^{1}(\underline{\alpha} + \epsilon(\underline{a}^{(1)} + \underline{v}^{(1)} \times \underline{\omega})) =$$

$$= {}^{2}\underline{\alpha} + \epsilon^{2}(\underline{a}^{(1)} + \underline{v}^{(1)} \times \underline{\omega} + \underline{\underline{r}}_{21} \times \underline{\alpha}) =$$

$$(\underline{v}^{(2)} - \underline{\omega} \times \underline{r}_{12})^{-1} \qquad \underline{\alpha} \times \underline{r}_{12}$$

$$= {}^{2}\underline{\alpha} + \epsilon^{2}(\underline{a}^{(1)} + \underline{\alpha} \times \underline{r}_{12} + \underline{\omega} \times (\underline{\omega} \times \underline{r}_{12}) + \underline{v}^{(2)} \times \underline{\omega}),$$

$${}^{2}\underline{\hat{\alpha}} = {}^{2}\underline{\alpha} + \epsilon^{2}(\underline{a}^{(2)} + \underline{v}^{(2)} \times \underline{\omega}). \qquad (6.61)$$

Hier ist $\underline{a}^{(2)}$ die Beschleunigung des momentan mit O_2 zusammenfallenden Körperpunktes relativ zu K_1 . Da $^2\underline{\hat{\alpha}}$ in dieselbe Form wie $^1\underline{\hat{\alpha}}$ hat, ist auch die Beschleunigungsschraube ein "echter" dualer Vektor.

6.6 Zusammensetzung zweier Bewegungen in dualer Darstellung

Entsprechend der Aufgabenstellung von Abschnitt 5.2 werden die relativen Bewegungen von drei dualen Basissysteme \hat{K}_0 , \hat{K}_1 und \hat{K}_2 betrachtet. Die beiden Bewegungen von \hat{K}_1 relativ zu \hat{K}_0 sowie von \hat{K}_2 relativ zu \hat{K}_1 seien auf Lage-, Geschwindigkeits- und Beschleunigungsebene wie folgt gegeben.

a) Bewegung von \hat{K}_1 relativ zu \hat{K}_0

Lage:

Duale Transformationsmatrix:

$${}^{01}\hat{T} = {}^{01}T + \epsilon {}^{0}\tilde{r}_{01}{}^{01}\underline{T} . \tag{6.62}$$

Geschwindigkeit:

Geschwindigkeitsschraube der Bewegung von \hat{K}_1 relativ zu \hat{K}_0 :

$${}^{0}\hat{\underline{\omega}}_{01} = {}^{0}\underline{\omega}_{01} + \epsilon {}^{0}\underline{v}_{01}^{(0)},$$
 (6.63)

 $\underline{\omega}_{01}$ - Winkelgeschwindigkeit von \hat{K}_1 relativ zu \hat{K}_0 ,

 $\underline{v}_{01}^{(0)}$ - Geschwindigkeit des momentan mit O_0 zusammenfallenden Punkts auf \hat{K}_1 relativ zu \hat{K}_0 .

Beschleunigung:

Beschleunigungsschraube der Bewegung von \hat{K}_1 relativ zu \hat{K}_0 :

$${}^{0}\hat{\alpha}_{01} = {}^{0}\alpha_{01} + \epsilon^{0}(\underline{a}_{01}^{(0)} + \underline{v}_{01} \times \underline{\omega}_{01}), \qquad (6.64)$$

 α_{01} - Winkelbeschleunigung von \hat{K}_1 relativ zu \hat{K}_0 ,

 $\underline{a}_{01}^{(0)}$ - Beschleunigung des momentan mit O_0 zusammenfallenden Punkts auf \hat{K}_1 relativ zu \hat{K}_0 .

b) Bewegung von \hat{K}_2 relativ zu \hat{K}_1

Duale Transformationsmatrix:

$${}^{12}\hat{\underline{T}} = {}^{12}\underline{T} + \epsilon {}^{1}\hat{\underline{r}}_{12} {}^{12}\underline{T} . \tag{6.65}$$

Geschwindigkeit:

Geschwindigkeitsschraube der Bewegung von \hat{K}_2 relativ zu \hat{K}_1 :

$${}^{1}\hat{\underline{\omega}}_{12} = {}^{1}\underline{\omega}_{12} + \epsilon {}^{1}\underline{v}_{12}^{(1)}$$
, (6.66)

 $\underline{\omega}_{12}$ - Winkelgeschwindigkeit von \hat{K}_2 relativ zu \hat{K}_1 ,

 $\underline{v}_{12}^{(1)}$ - Geschwindigkeit des momentan mit O_1 zusammenfallenden Punkts auf \hat{K}_2 relativ zu \hat{K}_1 .

Beschleunigung:

Beschleunigungsschraube der Bewegung von \hat{K}_2 relativ zu \hat{K}_1 :

$${}^{1}\underline{\hat{\alpha}}_{12} = {}^{1}\underline{\alpha}_{12} + \epsilon {}^{1}(\underline{a}_{12}^{(1)} + \underline{v}_{12}^{(1)} \times \underline{\omega}_{12}),$$
 (6.67)

 $\underline{\alpha}_{12}$ - Winkelbeschleunigung von \hat{K}_2 relativ zu \hat{K}_1 ,

 $\underline{a}_{12}^{(1)}$ - Beschleunigung des momentan mit O_1 zusammenfallenden Punkts auf \hat{K}_2 relativ zu \hat{K}_1 .

c) Bewegung von \hat{K}_2 relativ zu \hat{K}_0 .

Lage:

Duale Transformationsmatrix:

Gl. (6.68) ist die duale Erweiterung von Gl. (5.15).

Geschwindigkeit:

Transformation der in \hat{K}_1 gegebenen Geschwindigkeitsschraube $\hat{\underline{\omega}}_{12}$ nach \hat{K}_0 :

$${}^{0}\underline{\hat{\omega}}_{12} = {}^{01}\underline{\hat{T}} {}^{1}\underline{\hat{\omega}}_{12} = \left({}^{01}\underline{T} + \epsilon {}^{0}\underline{\hat{r}}_{01} {}^{01}\underline{T} \right) \quad \left({}^{1}\underline{\omega}_{12} + \epsilon {}^{1}\underline{v}_{12}^{(1)} \right) =$$

$$= {}^{0}\underline{\omega}_{12} + \epsilon {}^{0}\left(\underline{r}_{01} \times \underline{\omega}_{12} + \underline{v}_{12}^{(1)} \right) =$$

$$= {}^{0}\underline{\omega}_{12} + \epsilon {}^{0}\underline{v}_{12}^{(0)} , \qquad (6.69)$$

 $\underline{\omega}_{12}$ - Winkelgeschwindigkeit von \hat{K}_2 relativ zu \hat{K}_1 ,

- Geschwindigkeit des momentan mit Oo zusammenfallenden Punkts auf \hat{K}_2 relativ zu \hat{K}_1 .

Gesuchte Geschwindigkeitsschraube der Bewegung von $\;\hat{K}_2\;$ relativ zu $\;\hat{K}_0:$

$${}^{0}\underline{\hat{\omega}_{02}} = {}^{0}\underline{\hat{\omega}_{01}} + {}^{0}\underline{\hat{\omega}_{12}} = {}^{0}(\underline{\omega_{01}} + \underline{\omega_{12}}) + \varepsilon {}^{0}(\underline{v_{01}^{(0)}} + \underline{v_{12}^{(0)}}) =$$

$$= {}^{0}\underline{\omega_{02}} + \varepsilon {}^{0}\underline{v_{02}^{(0)}}.$$
(6.70)

 $\underline{\omega}_{02}$ - Winkelgeschwindigkeit von \hat{K}_2 relativ zu \hat{K}_0

 $\underline{v}_{02}^{(0)}$ - Geschwindigkeit des momentan mit O_0 zusammenfallenden Punkts auf \hat{K}_2 relativ zu \hat{K}_0 .

Gl. (6.70) ist die duale Erweiterung von Gl. (5.17).

Beschleunigung:

Transformation der in \hat{K}_1 gegebenen Geschwindigkeitsschraube $\hat{\alpha}_{12}$ nach \hat{K}_0 :

$${}^{0}\underline{\hat{\alpha}}_{12} = {}^{01}\underline{\hat{\Gamma}} {}^{1}\underline{\hat{\alpha}}_{12} = \left({}^{01}\underline{\Gamma} + \epsilon {}^{0}\underline{\tilde{\Gamma}}_{01} {}^{01}\underline{\Gamma}\right) \left({}^{1}\underline{\alpha}_{12} + \epsilon {}^{1}\left(\underline{a}_{12}^{(1)} + \underline{v}_{12}^{(1)} \times \underline{\omega}_{12}\right)\right) =$$

$$= {}^{0}\underline{\alpha}_{12} + \epsilon {}^{0}\left(\underline{r}_{01} \times \underline{\alpha}_{12} + \underline{a}_{12}^{(1)} + \underline{v}_{12}^{(1)} \times \underline{\omega}_{12}\right) =$$

$$= {}^{0}\underline{\omega}_{12} + \epsilon {}^{0}\left(\underline{a}_{12}^{(0)} + \underline{v}_{12}^{(0)} \times \underline{\omega}_{12}\right), \qquad (6.71)$$

 $\underline{\alpha}_{12}$ - Winkelbeschleunigung von \hat{K}_2 relativ zu \hat{K}_1 ,

- Beschleunigung des momentan mit O_0 zusammenfallenden Punkts auf \hat{K}_2 relativ zu \hat{K}_1 .

Gesuchte Beschleunigungsschraube der Bewegung von \hat{K}_2 relativ zu \hat{K}_0 :

$${}^{0}\hat{\underline{\alpha}}_{02} = {}^{0}\hat{\underline{\alpha}}_{01} + {}^{0}\hat{\underline{\alpha}}_{12} + {}^{0}(\hat{\underline{\omega}}_{01} \times \hat{\underline{\omega}}_{12}) . \tag{6.72a}$$

Realteil:
$$\underline{\alpha}_{01} + \underline{\alpha}_{12} + \underline{\omega}_{01} \times \underline{\omega}_{12} = \underline{\alpha}_{02}$$
. (6.72b)

Dualteil:
$$\left(\frac{a_{01}^{(0)} + v_{01}^{(0)} \times \omega_{01}}{v_{01}^{(0)} + v_{01}^{(0)} \times v_{01}^{(0)}}\right) + \left(\frac{a_{12}^{(0)} + v_{01}^{(0)} \times \omega_{12}}{v_{12}^{(0)} + v_{01}^{(0)} \times v_{12}^{(0)} + v_{01}^{(0)} \times v_{12}^{(0)}}\right) =$$

$$= \frac{a_{01}^{(0)} + a_{12}^{(0)} + \omega_{01} \times v_{12}^{(0)} + v_{01}^{(0)} \times (\omega_{01} + \omega_{12}) + v_{12}^{(0)} \times \omega_{12} + \omega_{01} \times v_{12}^{(0)} - \omega_{01} \times v_{12}^{(0)}}{\text{Erwelterung}} =$$

$$= \frac{a_{01}^{(0)} + a_{12}^{(0)} + 2\omega_{01} \times v_{12}^{(0)} + v_{01}^{(0)} \times (\omega_{01} + \omega_{12}) + v_{12}^{(0)} \times (\omega_{01} + \omega_{12}) =$$

$$= \frac{a_{01}^{(0)} + a_{12}^{(0)} + 2\omega_{01} \times v_{12}^{(0)} + (v_{01}^{(0)} + v_{12}^{(0)}) \times (\omega_{01} + \omega_{12}) =$$

$$= \frac{a_{02}^{(0)} + a_{12}^{(0)} + v_{12}^{(0)} \times v_{12}^{(0)} \times v_{12}^{(0)} + v_{12}^{(0)} \times v_{12}^{(0$$

Insgesamt:

$${}^{0}\hat{\underline{\alpha}}_{02} = {}^{0}\hat{\underline{\alpha}}_{01} + {}^{0}\hat{\underline{\alpha}}_{12} + {}^{0}(\hat{\underline{\omega}}_{01} \times \hat{\underline{\omega}}_{12}) = {}^{0}\underline{\alpha}_{02} + \epsilon {}^{0}(\hat{\underline{a}}_{02}^{(0)} + \underline{y}_{02}^{(0)} \times \underline{\omega}_{02}) . \tag{6.73}$$

 $\underline{\alpha}_{02}$ - Winkelbeschleunigung von \hat{K}_2 relativ zu \hat{K}_0

 $\underline{\underline{a}}_{02}^{(0)}$ - Beschleunigung des momentan mit O_0 zusammenfallenden Punkts auf \hat{K}_2 relativ zu \hat{K}_0 .

Gl. (6.73) ist die duale Erweiterung von Gl. (5.19).

Teil II: Kinematik von Mechanismen und Mehrkörpersystemen

1 Grundbeziehungen kinematischer Ketten

1.1 Aufbau kinematischer Ketten

Ein Mehrkörpersystem von gelenkig miteinander verbundenen Körpern wird als kinematische Kette bzw. als kinematisch zusammenhängendes Mehrkörpersystem bezeichnet. Ein kinematisch nicht zusammenhängendes Mehrkörpersystem kann, falls erforderlich, durch Einführung von "Gelenken" mit 6 Gelenkfreiheitsgraden in ein kinematisch zusammenhängendes System überführt werden.

kinematisch nicht zusammenhängend

kinematisch zusammenhängend

1.1.1 Topologische Klassifizierung

Man unterscheidet bei kinematischen Ketten zwei topologische Grundprinzipien.

a) Offene kinematische Ketten - Baumstruktur

Bei einer kinematische Kette mit Baumstruktur ist der Weg von jedem Körper zu jedem beliebigen anderen Körper eindeutig bestimmt. Damit kann jedem Körper eindeutig ein Vorgängerkörper bzw. ein Vorgängergelenk zugeordnet werden. Wird ein Körper als Bezugskörper der kinematischen Kette gewählt, so ist:

$$n_{\mathbf{G}} = n_{\mathbf{B}} , (1.1)$$

mit n_G - Anzahl Gelenke,

nn - Anzahl von Körpern (ohne Bezugskörper).

b) geschlossene kinematische Ketten - kinematische Schleifen

Ausgehend von einer kinematische Kette mit Baumstruktur gelangt man durch Einführung von je einem zusätzlichen Gelenk zu jeweils einer unabhängigen kinematischen Mehrkörperschleife. Ausgehend von Gl. (1.1) gilt damit für die Anzahl n_L von unabhängigen kinematischen Schleifen:

$$n_L = n_G - n_B . ag{1.2}$$

Topologische Klassifizierung kinematischer Ketten

kinematische Kette	allgemeine Darstellung	Beispiel
offen (Baumstruktur)		Sechsachsiger Industrieroboter
teilweise geschlossen		Scherenarm- Industrieroboter
vollständig geschlossen		Flugsimulator-Plattform

Weiter lassen sich teilweise und vollständig geschlossene kinematische Ketten unterscheiden. Ein System mit kinematischen Schleifen bildet eine teilweise geschlossene Kette, wenn

- einzelne Teilsysteme offene Ketten sind, oder
- mehrere geschlossene Teilsysteme "offen" miteinander verbunden sind.

Vollständig geschlossene kinematische Ketten sind dadurch gekennzeichnet, daß

- jeder Körper Teil einer Mehrkörperschleife ist, und
- jede Schleife mindestens einen Körper mit einer anderen Schleife gemeinsam hat.

Mechanismen sind geschlossene kinematische Ketten.

1.1.2 Kinematische Klassifizierung

Nach der Art der Bewegung der Körper lassen sich kinematische Ketten in drei Gruppen einteilen.

a) Ebene kinematische Ketten

In ebenen kinematischen Ketten bewegen sich alle Körperpunkte parallel zu einer Bewegungsebene. Die Bewegung der Körper hat damit ieweils einen rotatorischen und zwei translatorische Bewegungsanteile. Als relative Bewegungen der Körper an den Gelenken können nur Verschiebungen parallel zur Bewegungsebene oder Drehungen um Achsen senkrecht zur Bewegungsebene auftreten. Eventuell zusätzlich vorhandene Gelenkfreiheitsgrade werden nicht ausgenutzt, siehe Abschnitt 1.3.2.

II

Faltfachwerk einer Satellitenantenne

b) Sphärische kinematische Ketten

In sphärischen kinematischen Ketten bewegen sich alle Körperpunkte auf konzentrischen Kugeloberflächen um einen Fixpunkt. Die Körper haben damit drei rotatorische und keine translatorischen Bewegungsanteile. Die Relativbewegungen der Körper können nur Drehungen um Achsen durch den Fixpunkt sein. Eventuell zusätzlich vorhandene Gelenkfreiheitsgrade werden nicht ausgenutzt, siehe Abschnitt 1.3.2.

Wellen mit Kardangelenk

c) Räumliche kinematische Ketten

In räumlichen kinematischen Ketten führen die Körper allgemeine räumliche Bewegungen (Schraubbewegungen) mit je drei rotatorischen und drei translatorischen Bewegungsanteilen aus. Die Relativbewegung der Körper in den Gelenken ist (in Abhängigkeit vom Gelenktyp) im allgemeinen ebenfalls räumlich.

Fünfpunkt-Radaufhängung

1.2 Gelenke in kinematischen Ketten

Ein Gelenk verbindet jeweils zwei Körper einer kinematischen Kette. In Abhängigkeit vom Gelenkfreiheitsgrad f_G stellt es 6 - f_G geometrische Bindungen zwischen den beiden Körpern her.

Die relative Bewegung zweier durch ein Gelenk miteinander verbundener Körper läßt sich durch sogenannte natürliche bzw. relative Gelenkkoordinaten β_i beschreiben. Bei den in den späteren Kapiteln beschriebenen Untersuchungen räumlicher kinematischer Ketten werden die in der folgenden Tabelle zusammengestellten Gelenke betrachtet. Die natürlichen Gelenkkoordinaten dieser Gelenke sind Drehwinkel β_i = Θ_i und/oder Verschiebungen β_i = s_i . Das allgemeinste Gelenk der Zusammenstellung ist dabei das Schraubgelenk (Helical). Als Sonderfälle entstehen daraus unmittelbar das Drehgelenk (Revolute) (Steigung h = 0) und das Schubgelenk (Prismatic) (Steigung $h = \infty$). Die Gelenke mit mehreren Gelenkfreiheitsgraden, also das Dreh-Schubgelenk (Cylindrical), das Kardangelenk (T), das Kugelgelenk (Spherical) und das ebene Gelenk (Eben), können wiederum durch Hintereinanderschaltungen von Dreh- und Schubgelenken aufgebaut werden.

1.2.1 Klassifizierung von Gelenken in der Getriebelehre

In der Getriebelehre werden nach REULEAUX Standardgelenke ("niedrige Elementenpaare", lower pairs) und komplexe Gelenke ("höhere Elementenpaare", higher pairs) unterschieden:

a) Bei Standardgelenken haben die Körper Flächenberührung. Es werden die folgenden sechs Standardgelenke unterschieden:

Gelenk		Berührfläche		
Schraubgelenk	(H)	Schraubenfläche		
Drehgelenk	(R)	Rotationsfläche		
Schubgelenk	(P)	Mantelfläche eines Prismas		
Dreh-Schubgelenk	(C)	Zylindermantel		
Kugelgelenk	(S)	Kugeloberfläche		
Ebenes Gelenk	(E)	Ebene		

Π

Gelenk	E	Gelenk- koordinaten		
Schraubgelenk f _G = 1	S	β = Θ		
Drehgelenk f _G = l	R	β = Θ		
Schubgelenk f _G =1	P \$/	β = s		
Dreh-Schubgelenk f _G =2	g C g s		$\beta_1 = \Theta$ $\beta_2 = s$	
Kugelgelenk f _G =3	0 θ ₁ θ ₂ θ ₃ σ θ ₃		$\beta_1 = \Theta_1$ $\beta_2 = \Theta_2$ $\beta_3 = \Theta_3$	
Ebenes Gelenk f _G =3	E E	9, 1 9, n	$\beta_1 = \Theta_1$ $\beta_2 = \Theta_2$ $\beta_3 = \Theta_3$	
		B1	$\beta_1 = \Theta_1$ $\beta_2 = \Theta_2$ $\beta_3 = s_3$	
		θ ₁ 5 ₃ n	$\beta_1 = \Theta_1$ $\beta_2 = s_2$ $\beta_3 = s_3$	
Kardangelenk f _G =2	$\mathbb{J}\theta_1$ θ_2	θ ₁ θ ₂ θ ₂ θ ₃ θ ₄ θ ₃ θ ₄ θ ₅ θ ₇	$\beta_1 = \Theta_1$ $\beta_2 = \Theta_2$	

b) Bei komplexen Gelenken haben die Körper *Linien- oder Punktberührung*. Beispiele:

Kurvengetriebe (eben)

Stirnradgetriebe (eben)

Kegelradgetriebe (sphärisch)

Schneckengetriebe (räumlich)

Die Verbindung zweier Körper über mehrere gelenkig gekoppelte Zwischenkörper kann in ihrer Gesamtheit ebenfalls als ein komplexes Gelenk angesehen werden. Besitzt eine solche Verbindung z.B. einen Freiheitsgrad, so "berühren" sich die beiden Körper entlang der momentanen Drehachse (bei ebener und sphärischer Bewegung) bzw. entlang der momentanen Schraubachse (bei räumlicher Bewegung). Das Abrollen (bei reiner Drehbewegung) bzw. "Schroten" (bei Schraubbewegung) der körperfesten Polflächen erzeugt eine kinematisch äquivalente Bewegung.

Beispiele:

Die Bewegung von Körper 2 relativ zu Körper 1 läßt sich bei ebener Bewegung als Abrollen der mit Körper 2 verbundenen Polfläche (Polkurve) auf der mit Körper 1 verbundenen Spurfläche (Spurkurve) darstellen. Die "Berührlinie" ist die momentane Drehachse durch den Momentanpol M.

M - Momentanpol

11

Bei der Einfederungsbewegung der Fünfpunkt-Radaufhängung läßt sich die Bewegung des Radträgers relativ zum Fahrgestell als "Schroten" der radträgerfesten Polfläche auf der fahrgestellfesten Spurfläche darstellen. Die "Berührlinie" ist die momentane Schraubachse dieser räumlichen Bewegung.

- 1.7 -

1.3 Freiheitsgrade und verallgemeinerte Koordinaten

1.3.1 Anzahl der Freiheitsgrade von räumlichen kinematischen Ketten

Es wird eine beliebige räumliche kinematische Kette betrachtet mit:

n_B Körpern (ohne Bezugskörper) sowie

 n_G Gelenken mit jeweils

 f_{Gi} Gelenkfreiheitsgraden.

Die Anzahl der Freiheitsgrade f der gesamten kinematischen Kette relativ zum Bezugskörper ist dann

$$f = 6 n_B - \sum_{i=1}^{n_G} (6 - f_{Gi})$$
 bzw. (1.3a)

$$f = 6 (n_B - n_G) + \sum_{i=1}^{n_G} f_{Gi}.$$
 (1.3b)

Mit der Anzahl von kinematischen Schleifen

$$n_1 = n_G - n_R$$

aus Gl. (1.2) geht Gl. (1.3) über in

$$f = \sum_{i=1}^{n_G} f_{Gi} - 6n_L.$$
 (1.4)

In der Getriebetechnik wird Gl. (1.4) als Kriterium von GRÜBLER bezeichnet.

Man unterscheidet bei Mechanismen speziell:

- f = 1 zwangläufiger Mechanismus,
- f = 0 statisch bestimmte Struktur,
- f < 0 statisch unbestimmte Struktur.

Es ist zu beachten, daß die Gln. (1.3) bzw. (1.4) bei *überbestimmten* Mechanismen ein falsches Ergebnis liefern. Solche Mechanismen sind häufig eben oder sphärisch, siehe Abschnitt 1.3.2; es existieren jedoch auch räumliche überbestimmte Mechanismen.

Beispiele für räumliche Mechanismen:

a) 7H-Mechanismus (Schleife mit sieben Schraubgelenken)

Der 7H-Mechanismus kann als allgemeinster einschleifiger Mechanismus mit f=1 Freiheitsgrad angesehen werden. Durch Spezialisierung der Schraubgelenke zu Drehoder Schubgelenken kann eine Vielzahl von Mechanismen aufgebaut werden.

b) Räumliches Gelenkviereck (spezieller 7H-Mechanismus)

Bei zwei Kugelgelenken an den Hebelenden kommt als weiterer Freiheitsgrad die Drehung der Koppel um ihre Längsachse hinzu, der jedoch keinen Einfluß auf das Übertragungsverhalten β_2 (β_1) hat ("isolierter Freiheitsgrad").

c) Fünflenker-Radaufhängungen (jeweils 10 Kugelgelenke)

Die Drehung des Rades relativ zum Radträger wird nicht berücksichtigt.

 $n_B = 6$ Körper $n_C = 10$ Gelenke mit jeweils $f_{Gi} = 3$ Gelenkfreiheitsgraden. \rightarrow Anzahl Schleifen: $n_L = 4$ \rightarrow Anzahl Freiheitsgrade: f = 6

Ein Freiheitsgrad entspricht der Einfederbewegung, die übrigen fünf sind "isolierte Freiheitsgrade" der fünf Lenker um ihre Längsachsen. Durch Ersatz jeweils eines Kugelgelenks an jedem Lenker durch ein Kardangelenk werden die isolierten Freiheitsgrade vermieden.

1.3.2 Anzahl der Freiheitsgrade von ebenen und sphärischen kinematischen Ketten

Bei ebenen und sphärischen kinematischen Ketten besitzen die Körper jeweils nur maximal drei Bewegungsmöglichkeiten, vgl. Abschnitt 1.1.2:

eben: Bewegung der Körper parallel zu einer Ebene,

sphärisch: Drehungen der Körper um einen Fixpunkt.

Aufgrund dieser speziellen Bewegungen der Körper werden unter Umständen nicht alle vorhandenen Freiheitsgrade der Gelenke ausgenutzt. Die Gelenke können dadurch offensichtlich durch Gelenke mit weniger Freiheitsgraden ersetzt werden, ohne die Anzahl der Freiheitsgrade des Mechanismus zu verändern.

Beispiel: Doppelquerlenker-Radaufhängung

Die Bedingungen (1.3)/(1.4) liefern korrekt f=2 Freiheitsgrade (davon ein isolierter Freiheitsgrad des oberen Lenkers um seine Längsachse). Im ebenen und sphärischen Fall können die beiden Kugelgelenke am oberen Lenker jeweils durch Drehgelenke mit speziellen Achsrichtungen ersetzt werden, ohne die Zahl der Freiheitsgrade zu verändern.

→ ebenes Gelenkviereck

→ sphärisches Gelenkviereck

Für diese Gelenkmodellierungen liefern die Bedingungen (1.3)/(1.4) f=-2 und stimmen damit nicht mehr. Dies ist jedoch nicht überraschend, da diese beiden Mechanismen erst durch die speziellen Körperabmessungen (parallele bzw. sich schneidende Achsen der Drehgelenke) beweglich werden, die in den Gln. (1.3)/(1.4) überhaupt nicht berücksichtigt worden sind. Bei allgemeinen Abmessungen wäre f=-2 korrekt.

Für ebene und sphärische Mechanismen, bei denen alle nicht benötigten Gelenkfreiheitsgrade entfernt worden sind, lassen sich die Beziehungen (1.3)/(1.4) modifizieren, indem nur drei anstelle von sechs Bewegungsmöglichkeiten der Körper berlicksichtigt werden:

$$f = 3 (n_B - n_G) + \sum_{i=1}^{n_G} f_{Gi}$$
, bzw. (1.5a)

$$f = \sum_{i=1}^{n_G} f_{Gi} - 3n_L . (1.5b)$$

Beispiele:

a) Ebenes und sphärisches Gelenkviereck

n_B = 3 Körper

 $n_G = 4$ Gelenke mit jeweils

f_{Gi} = 1 Gelenkfreiheitsgraden.

→ Anzahl Schleifen:

 $n_L = 1$

→ Anzahl Freiheitsgrade: f = 1

b) SAR-Antenne (eben)

n_B = 8 Körper

 $n_G = 11$ Gelenke mit jeweils

 $f_{Gi} = 1$ Gelenkfreiheitsgraden.

 \rightarrow Anzahl Schleifen: $n_L = 3$

 \rightarrow Anzahl Freiheitsgrade: f =

1.3.3 Zur Wahl der verallgemeinerten Koordinaten (Minimalkoordinaten)

Die Lage eines mechanischen Systems mit f Freiheitsgraden läßt sich eindeutig durch f unabhängige Koordinaten $\underline{q} = \left[q_1, ..., q_n\right]^T$, die verallgemeinerten Koordinaten oder Minimalkoordinaten, beschreiben. Die Auswahl geeigneter Minimalkoordinaten erfordert bei kinematischen Ketten besondere Beachtung.

Beispiele:

a) Doppelpendel (Kinematische Kette mit Baumstruktur)

Glinstige Wahl:

Relative Gelenkkoordinaten $\underline{q} = [\beta_1, \beta_2]^T$

(Hier auch $q = [\beta_1, \beta_1 + \beta_2]^T$ günstig.)

Falsche Wahl:

Absolutkoordinaten $\underline{q} = [y_1, y_2]^T$; nicht eindeutig.

Falsche Wahl:

Absolutkoordinaten $\underline{q} = [x_1, y_1]^T$; nicht unabhängig.

Bei offenen kinematischen Ketten können stets die als Minimalkoordinaten gewählt werden.

relativen Gelenkkoordinaten

H

b) SAR-Antenne (eben, n_L=3 Schleifen, f = 2 Freiheitsgrade)

Es können f=2 Minimalkoordinaten gewählt werden.

Korrekte Wahl: $q = [\beta_{11}, \beta_{22}]^T$

Die Koordinaten sind unabhängig voneinander.

Falsche Wahl: $\underline{\mathbf{q}} = [\beta_{11}, \beta_{13}]^{\mathsf{T}}$

Die Position der Schleife L_1 ist überbestimmt, während die Lage der Schleifen L_2 und L_3 unbestimmt bleibt. Die gewählten Minimalkoordinaten sind nicht unabhängig voneinander (Schleife L_1 besitzt als ebenes Gelenkviereck nur eine unabhängige Gelenkkoordinate).

.

2 Kinematik von offenen Gelenkketten (Vorwärtskinematik)

Die kinematische Analyse offener kinematischer Ketten umfaßt die Auswertung der "Vorwärtskinematik", d.h. der Bestimmung der absoluten Bewegung der einzelnen Körper, wenn die relativen Bewegungen über die natürlichen Gelenkkoordinaten vorgegeben sind. Die erforderlichen Berechnungen werden mit Hilfe der Beziehungen für Relativbewegungen aus Abschnitt 5.2 (I) in rekursiver Form durchgeführt.

2.1 Vorwärtskinematik bei allgemeinen Gelenken

Es werden zwei aufeinanderfolgende Körper einer kinematischen Kette betrachtet, die über ein beliebiges Gelenk G_j miteinander verbunden sind. An einem solchen Gelenk werden zwei Koordinatensysteme, das "Eingangs-Koordinatensystem" K_j und das "Ausgangs-Koordinatensystem" K_j eingeführt, die jeweils fest mit den am Gelenk anschließenden Körpern verbunden sind. Die Relativbewegung im Gelenk G_j sei über den zeitlichen Verlauf der dazugehörigen natürlichen Gelenkkoordinaten gegeben. Damit ist auch die relative Bewegung der beiden zum Gelenk gehörenden Koordinatensysteme K_j und K_j bekannt. Zusammen mit den festen Körperabmessungen können dann aus der bekannten Bewegung des Koordinatensystems K_j die Bewegungen der folgenden Koordinatensysteme K_j und K_k bestimmt werden:

a) Position:

$${}^{0j'}T = {}^{0j}\underline{T} \quad {}^{jj'}\underline{T} \qquad (2.1)$$

$${}^{0k}T = {}^{0j'}\underline{T} {}^{j'k}\underline{T}$$
 (2.2)

$${}^{0}\underline{r}_{0j'} = {}^{0}\underline{r}_{0j} + {}^{0}\underline{r}_{jj'}$$
 mit ${}^{0}\underline{r}_{jj'} = {}^{0j}\underline{T}^{j}\underline{r}_{jj'}$, (2.3)

$$o_{\underline{\Gamma}_{0k}} = o_{\underline{\Gamma}_{0i'}} + o_{\underline{\Gamma}_{j'k}} \qquad \text{mit} \qquad o_{\underline{\Gamma}_{j'k}} = o_{j'}\underline{T} \stackrel{j'}{\underline{\Gamma}_{j'k}} . \tag{2.4}$$

Zur kompakteren Schreibweise können die Übergänge (2.1)/(2.3) und (2.2)/(2.4) jeweils zu einer (4,4)-Matrizengleichung zusammengefaßt werden:

$$\begin{bmatrix}
\frac{0^{k}\underline{T} & 0^{0}\underline{r}_{0k}}{0 & 0 & 0 & 1} \\
0^{0k}\underline{A} & 0^{j'}\underline{A}
\end{bmatrix} = \begin{bmatrix}
\frac{0^{j'}\underline{T} & 0^{0}\underline{r}_{0j'}}{0 & 0 & 0 & 1} \\
0^{j'}\underline{A} & 0^{j'k}\underline{A}
\end{bmatrix}.$$
(2.6)

b) Geschwindigkeit $(\underline{\omega}_{j'k} = \underline{O}, \underline{v}_{j'k} = \underline{O})$:

$${}^{0}\underline{\omega}_{0j'} = {}^{0}\underline{\omega}_{0j} + {}^{0}\underline{\omega}_{jj'} \qquad \qquad \text{mit} \qquad {}^{0}\underline{\omega}_{jj'} = {}^{0j}\underline{T} \, {}^{j}\underline{\omega}_{jj'} \quad , \tag{2.7}$$

$$^{0}\omega_{0k} = ^{0}\omega_{0i}, \qquad (2.8)$$

$${}^{0}\underline{\underline{v}}_{0j'} = {}^{0}\underline{\underline{v}}_{0j} + {}^{0}\underline{\underline{v}}_{jj'} + {}^{0}\underline{\widetilde{\omega}}_{0j} {}^{0}\underline{\underline{r}}_{jj'} \qquad \text{mit} \qquad {}^{0}\underline{\underline{v}}_{jj'} = {}^{0j'}\underline{\underline{T}} {}^{j}\underline{\underline{v}}_{jj'} \quad , \tag{2.9}$$

$${}^{0}\underline{\mathbf{y}}_{0\,\mathbf{k}} = {}^{0}\underline{\mathbf{y}}_{0\,\mathbf{j}}, \qquad \qquad + {}^{0}\underline{\widetilde{\omega}}_{0\,\mathbf{j}} {}^{0}\underline{\mathbf{r}}_{\mathbf{j}'\,\mathbf{k}} \tag{2.10}$$

c) Beschleunigung $(\underline{\alpha}_{j'k} = \underline{0}, \underline{a}_{j'k} = \underline{0})$:

$${}^{0}\underline{\alpha}_{0j'} = {}^{0}\underline{\alpha}_{0j} + {}^{0}\underline{\alpha}_{jj'} + {}^{0}\underline{\alpha}_{0j} {}^{0}\underline{\alpha}_{jj'} \qquad \text{mit} \qquad {}^{0}\underline{\alpha}_{jj'} = {}^{0j}\underline{T} {}^{j}\underline{\alpha}_{jj'} \qquad , \tag{2.11}$$

$${}^{0}\underline{\alpha}_{0k} = {}^{0}\underline{\alpha}_{0i}, \qquad (2.12)$$

$${}^{0}\underline{a}_{0j'} \quad = \ {}^{0}\underline{a}_{0j} \quad + \ {}^{0}\underline{a}_{jj'} \quad + \ {}^{0}\underline{\widetilde{\alpha}}_{0j} \quad {}^{0}\underline{r}_{jj'} \quad + \ 2 \ {}^{0}\underline{\widetilde{\omega}}_{0j} \ {}^{0}\underline{v}_{jj'} \quad + \ {}^{0}\underline{\widetilde{\omega}}_{0j} \ {}^{0}\underline{\widetilde{\omega}}_{0j} \quad {}^{0}\underline{\widetilde{\omega}}_{0j} \quad {}^{0}\underline{r}_{jj'}$$

mit
$${}^{0}\underline{a}_{ij'} = {}^{0i}\underline{T}^{i}\underline{a}_{jj'}$$
 , (2.13)

$${}^{0}\underline{\mathbf{a}}_{0\mathbf{k}} = {}^{0}\underline{\mathbf{a}}_{0\mathbf{j}}, \qquad + {}^{0}\underline{\widetilde{\alpha}}_{0\mathbf{j}}, {}^{0}\underline{\mathbf{r}}_{\mathbf{j}'\mathbf{k}} \qquad + {}^{0}\underline{\widetilde{\omega}}_{0\mathbf{j}}, {}^{0}\underline{\widetilde{\omega}}_{0\mathbf{j}}, {}^{0}\underline{\mathbf{r}}_{\mathbf{j}'\mathbf{k}} . \tag{2.14}$$

Ausgehend vom Bezugskörper der kinematischen Kette erhält man durch die rekursive Anwendung der Beziehungen (2.1) bis (2.14) bei gegebenen Gelenkkoordinaten sukzessive die Bewegung aller Körper relativ zum Koordinatensystem K_0 .

2.2 Vorwärtskinematik bei Standardgelenken

Bei kinematischen Ketten mit Standardgelenken ist es ausreichend, Drehgelenke (R) und Schubgelenke (P) zu betrachten. Die z-Achsen der Gelenk-Bezugssysteme können ohne Einschränkung in die Gelenkachsen (Einheitsvektoren u;) gelegt werden. Die Richtungen der x-Achsen in den Körpern sind frei wählbar.

Drehgelenk

Schubgelenk

a) Drehgelenk

Der Übergang vom Eingangs-Koordinatensystem K_j in das Ausgangs-Koordinatensystem $K_{j'}$ wird durch den Gelenkwinkel β_j = θ_j beschrieben:

$$i_{\underline{\omega}_{\mathbf{j}\mathbf{j}'}} = \dot{\Theta}_{\mathbf{j}} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}} , \quad i_{\underline{\mathbf{v}}_{\mathbf{j}\mathbf{j}'}} = \underline{0} ,$$
 (2.16)

$$i_{\underline{\alpha}_{jj'}} = \vec{\Theta}_j \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}} , \quad i_{\underline{\mathbf{a}}_{jj'}} = \underline{\mathbf{0}} .$$
 (2.17)

b) Schubgelenk

Der Übergang vom Eingangs-Koordinatensystem K_j in das Ausgangs-Koordinatensystem $K_{j'}$ wird durch die Gelenkverschiebung $\beta_j = s_j$ beschrieben:

$$^{ij'}\underline{\mathbf{T}} = \underline{\mathbf{I}} \qquad , \quad ^{j}\underline{\mathbf{r}}_{jj'} = \mathbf{s}_{j} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}} \quad ,$$
 (2.18)

$$i_{\underline{\omega}_{\mathbf{j}\mathbf{j}'}} = \underline{0} \qquad , \quad i_{\underline{v}_{\mathbf{j}\mathbf{j}'}} = \dot{\mathbf{s}}_{\mathbf{j}} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}} \quad ,$$
 (2.19)

$${}^{j}\underline{\alpha}_{jj'} = \underline{0}$$
 , ${}^{j}\underline{a}_{jj'} = \ddot{s}_{j} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$. (2.20)

2.3 Geometrische Parameter nach DENAVIT und HARTENBERG

Bei der Wahl der Gelenk-Koordinatensysteme für Standardgelenke in Abschnitt 2.2 sind die Richtungen der x_{j} - bzw x_{j} -Achsen in den Körpern sowie die Lage der Bezugspunkte O_{j} und $O_{j'}$ auf der Gelenkachse z_{j} noch frei. Dadurch sind die Matrizen $j'k\underline{T}$ und $j'\underline{r}_{j'k}$, die ausschließlich von den festen Körperabmessungen abhängen, im allgemeinen voll besetzt.

Zur Verringerung des Rechenaufwands bei der Auswertung des Körperübergangs (2.2)/(2.4) ist es sinnvoll, weitere Vereinbarungen für die Lage der Gelenk-Koordinatensysteme einzuführen. Die weitestgehenden Vereinfachungen werden erreicht, indem die x_j - bzw. x_j -Achsen in die Richtungen der gemeinsamen Lote der aufeinanderfolgenden Gelenkachsen und die Bezugspunkte O_j und O_j in die jeweiligen Lotfußpunkte gelegt werden. Dies ermöglicht die auf DENAVIT und HARTENBERG zurückgehende standardisierte Darstellung von unverzweigten kinematischen Ketten mit Dreh- und Schubgelenken mit einer Minimalzahl von geometrischen Parametern (DH-Parameter). Die typische Anwendung ist die kinematische Beschreibung von Industrierobotern. Für verzweigte kinematische Ketten, die Körper mit mehr als zwei Gelenken besitzen, ist die DH-Parametervereinbarung ungeeignet.

Zur systematischen Bestimmung der DH-Parameter einer offenen kinematischen Kette werden die Gelenkachsen beginnend am Grundgestell von 1 bis n durchnumeriert. Die Eingangs-Koordinatensysteme K_j der Gelenke werden nun wie folgt festgelegt (die Richtung der x_1 -Achse am ersten Gelenk ist frei wählbar):

- z_{j} Frei wählbare Richtung der Achse des Gelenks G_{j} .
- x_j Richtung des gemeinsamen Lotes der z_{j-1} und der z_j -Achse, gerichtet von der z_{j-1} zur z_j -Achse. Falls sich die z_{j-1} und die z_j -Achsen schneiden, ist die Richtung der x_j -Achse frei wählbar.
- y_j Ergänzung zum Rechtssystem.
- O_j Schnittpunkt der x_j und der z_j -Achse. Falls die Gelenkachsen z_{j-1} und z_j parallel sind, ist die Lage von O_j entlang der z_j -Achse nicht bestimmt und kann frei gewählt werden

Unter Berücksichtigung des Gelenktyps sind damit zugleich auch die Ausgangs-Koordinatensysteme $K_{j'}$ eindeutig festgelegt. Sie werden deswegen häufig überhaupt nicht explizit eingeführt. Die einzige Ausnahme ist das System $K_{n'}$ am letzten Gelenk G_n , dessen $x_{n'}$ -Achse frei gewählt werden kann.

Die relative Lage zweier aufeinanderfolgender Koordinatensystems K_j und K_{j+1} wird durch die folgenden vier DH-Parameter vollständig beschrieben:

- Θ_j Winkel von der x_j zur x_{j+1} -Achse, gemessen im mathematisch positiven Sinn um die z_i -Achse (vorzeichenbehaftet).
- s_j Verschiebung von der x_j zur x_{j+1} -Achse entlang der z_j -Achse (vorzeichenbehaftet).
- $\delta_{j,j+1}$ Winkel zwischen der z_j und der z_{j+1} -Achse, gemessen im mathematisch positiven Sinn um die x_{j+1} -Achse (vorzeichenbehaftet).

Der direkte Übergang von K_i nach K_{i+1} hängt unabhängig vom Gelenktyp nur noch von diesen vier DH-Parametern ab:

$$\frac{\sin \theta_{j} - \sin \theta_{j} - \cos \theta_{j} - \cos$$

$$\begin{array}{ll}
i_{\underline{\Gamma}_{j,j+1}} & = \begin{bmatrix} d_{j,j+1}\cos\Theta_{j} \\ d_{j,j+1}\sin\Theta_{j} \\ s_{j} \end{bmatrix}.
\end{array} (2.21b)$$

Ferner kann der gelenkspezifische, nur von den festen Körperabmessungen abhängende Übergang zwischen dem Ausgangs-Koordinatensystem K_{j^*} und dem Eingangs-Koordinatensystem K_{j^*1} angegeben werden:

a) Drehgelenke (Gelenkkoordinate Θ_i)

Die festen Parameter sind hier die Abstände s_j und $d_{j,j+1}$ sowie der Kreuzungswinkel $\delta_{j,j+1}$ der Gelenkachsen:

$$\frac{j^{i,j+1}\underline{T}}{0} = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \delta_{j,j+1} & -\sin \delta_{j,j+1} \\
0 & \sin \delta_{j,j+1} & \cos \delta_{j,j+1}
\end{bmatrix}, \qquad \frac{j^{i}\underline{r}_{j^{i},j+1}}{p^{i}} = \begin{bmatrix}
d_{j,j+1} \\
0 \\
s_{j}
\end{bmatrix}.$$
(2.22)

b) Schubgelenke (Gelenkkoordinate s;)

Die festen Parameter sind hier der Abstand $\ d_{j,j+1}$ und die Winkel $\ \Theta_{j}$ und $\ \delta_{j,j+1}$:

II

2.4 JACOBI-Matrix der Relativbewegung

2.4.1 Darstellung der Geschwindigkeit mit Hilfe der JACOBI-Matrix

Die Rekursionsbeziehungen (2.7) bis (2.10) ermöglichen die sukzessive Bestimmung der Winkel- und Translationsgeschwindigkeiten aller Körper einer kinematischen Kette bei gegebenen Relativgeschwindigkeiten an den Gelenken. Insbesondere für Anwendungen in der Roboterkinematik ist es zweckmäßig, diese Beziehungen so zusammenzufassen, daß der Vektor der Ableitungen $\dot{\beta}$ der natürlichen Gelenkkoordinaten als Faktor herausgelöst ist.

Als Beispiel wird eine kinematische Kette mit n Dreh-Schubgelenken (natürliche Gelenkkoordinaten Θ_i und s_i) betrachtet, wodurch sowohl Drehgelenke als auch Schubgelenke berücksichtigt sind. Die Geschwindigkeit ($\underline{\omega}_{0E}$, \underline{v}_{0E}) des Koordinatensystems K_E auf dem letzten Körper der Kette relativ zum System K_0 auf dem Basiskörper (erste Gelenkachse \underline{u}_1 fest in K_0) soll bei gegebener Position explizit in Abhängigkeit der Ableitungen $\dot{\Theta}_i$ und \dot{s}_i , i = 1,...,n, der Gelenke ausgedrückt werden. Hierzu werden die auf alle Gelenke der Kette angewandten Beziehungen (2.7) bis (2.10) ineinander eingesetzt:

$${}^{0}\underline{\omega}_{0E} = \sum_{i=1}^{n} \dot{\Theta}_{i} {}^{0}\underline{u}_{i} \qquad (2.24)$$

$${}^{0}\underline{\mathbf{v}}_{0E} = \sum_{i=1}^{n} \dot{\Theta}_{i} \, {}^{0}\underline{\widetilde{\mathbf{u}}}_{i} \, {}^{0}\underline{\mathbf{r}}_{iE} + \sum_{i=1}^{n} \dot{\mathbf{s}}_{i} \, {}^{0}\underline{\mathbf{u}}_{i} \qquad . \tag{2.25}$$

In G1. (2.25) wurden bei der Zusammenfassung der zu $\dot{\Theta}_i$ gehörenden Vektoren die Verbindungsvektoren

$${}^{0}\underline{r}_{iE} = {}^{0}\underline{r}_{0E} - {}^{0}\underline{r}_{0i}$$
 , $i = 1,...,n$, (2.26)

von den Ursprungspunkten O_i der Eingangs-Koordinatensysteme K_i der Gelenke zum Punkt O_E eingeführt. Gleichwertig können in Gl. (1.30) auch die Vektoren $\underline{r}_{i'E}$ von den Ursprungspunkten $O_{i'}$ der Ausgangs-Koordinatensysteme" $K_{i'}$ verwendet werden, da der Verbindungsvektor $\underline{r}_{ii'}$ = s_i \underline{u}_i keinen Beitrag zum Vektorprodukt in der ersten Summe in Gl. (2.25) liefert.

Die Gln. (2.24) und (2.25) lassen sich zu einer Matrizengleichung zusammenfassen, wobei jetzt wieder explizit zwischen Dreh- und Schubgelenken unterschieden wird:

$$\begin{bmatrix}
\underline{\omega}_{0E} \\
\underline{v}_{0E}
\end{bmatrix} = \begin{bmatrix}
\mu_1 \underline{u}_1 & \mu_2 \underline{u}_2 & \dots & \mu_n \underline{u}_n \\
\underline{c}_1 & \underline{c}_2 & \dots & \underline{c}_n
\end{bmatrix} \begin{bmatrix} \dot{\beta}_1 \\ \dot{\beta}_2 \\ \vdots \\ \dot{\beta}_n \end{bmatrix},$$
(2.27a)

$${}^{0}\dot{\underline{z}}_{OE} = {}^{0}\underline{J}_{OE}(\underline{\beta}) \qquad \qquad \dot{\underline{\beta}} \qquad , \tag{2.27b}$$

mit ${}^{0}\underline{c}_{i} = \mu_{i} {}^{0}\underline{\widetilde{u}}_{i} {}^{0}\underline{r}_{iE} + (1-\mu_{i}) {}^{0}\underline{u}_{i}$

Die $(6 \times n)$ -Matrix $^0\underline{J}_{0E}(\underline{\beta})$ wird als die JACOBI-Matrix der Bewegung des Systems K_E relativ zum Basissystem K_0 bezeichnet. Der Rang von J_E kennzeichnet die Anzahl der unabhängigen Teilbewegungen des Systems K_E relativ zu K_0 und wird als die Anzahl der Freiheitsgrade f_{0E} des Systems K_E relativ zu K_0 definiert:

$$f_{0E} = Rg(^{0}J_{0E}).$$
 (2.28)

Anstelle von K_0 kann in den Beziehungen (2.24)/(2.25) bzw. (2.27) auch jedes andere Koordinatensystem K_k für die Darstellung der Vektoren verwendet werden. Die dabei auftretende JACOBI-Matrix $^k\underline{J}_{0E}$ hat denselben Rang wie $^0\underline{J}_{0E}$.

In der Roboterkinematik spielt die Anzahl der Freiheitsgrade f_{0E} der Bewegung des Endeffektors (System K_E) relativ zum Basissystem K_0 eine wichtige Rolle. Tritt z.B. bei einem Roboter mit n=6 Gelenkachsen in einer bestimmten Stellung der Fall $f_{0E} < 6$ auf, so kann der Endeffektor in dieser Stellung nicht mehr beliebig verschoben oder gedreht werden: er ist in einer "Strecklage".

2.4.2 Darstellung der differentiellen Lageänderung mit Hilfe der JACOBI-Matrix

Die JACOBI-Matrix \underline{J}_{0E} stellt zugleich den linearisierten Zusammenhang zwischen der Lageänderung des Endeffektors und den Änderungen der Gelenkkoordinaten her:

$$\begin{bmatrix}
\mathbf{d} \underline{\Phi}_{0E} \\
\mathbf{d}\underline{\mathbf{r}}_{0E}
\end{bmatrix} = \begin{bmatrix}
\mu_1 \underline{\mathbf{u}}_1 & \mu_2 \underline{\mathbf{u}}_2 & \dots & \mu_n \underline{\mathbf{u}}_n \\
\underline{\mathbf{c}}_1 & \underline{\mathbf{c}}_2 & \dots & \underline{\mathbf{c}}_n
\end{bmatrix} \begin{bmatrix}
\mathbf{d}\beta_1 \\
\mathbf{d}\beta_2 \\
\vdots \\
\mathbf{d}\beta_n
\end{bmatrix}$$
(2.29a))

 $^{0}d\underline{z}_{0E}$ = $^{0}\underline{J}_{0E}(\underline{\beta})$ $d\underline{\beta}$, (2.29b)

Hierbei sind d β beliebige Änderungen der Gelenkkoordinaten. Der Vektor 0 d z_{0E} beschreibt den in d β linearen Anteil der Lageänderung des Systems K_E relativ zu K_0 (differentielle Lageänderung) mit

- dem in d $\underline{\beta}$ linearen Anteil d \underline{r}_{0E} der Verschiebung ${}^{0}\Delta\underline{r}_{0E}(d\underline{\beta}) = {}^{0}\underline{r}_{0E}(\underline{\beta}+d\underline{\beta}) {}^{0}\underline{r}_{0E}(\underline{\beta})$ von O_{E} relativ zu K_{0} , sowie
- dem in d $\underline{\beta}$ linearen Anteil ${}^0d\underline{\Phi}_{0E}$ der Orientierungsänderung $\underline{\Delta T}(d\underline{\beta}) = {}^{0E}\underline{T}^{\mathsf{T}}(\underline{\beta}) \stackrel{0E}{\underline{T}}(\underline{\beta} + d\underline{\beta}) \quad \text{von} \quad K_E \quad \text{relativ zu} \quad K_0 \; . \; \text{Der "Drehvektor"}$

$${}^{0}\mathrm{d}\underline{\Phi}_{0\mathsf{E}} = {}^{0}\underline{\mathsf{u}}_{0\mathsf{E}}\,\mathrm{d}\Phi_{0\mathsf{E}} \tag{2.30}$$

wird dabei aus den natürlichen Invarianten ($^0\underline{u}_{0E}$, $d\Phi_{0E}$) des in $d\underline{\beta}$ linearen Anteils von $\Delta\underline{T}(d\underline{\beta})$ gebildet.

Bem.: Da sich die Winkelgeschwindigkeit $\underline{\omega}_{0E}$ nicht als Ableitung einer Lagegröße darstellen läßt (im Gegensatz zur Translationsgeschwindigkeit $\underline{v}_{0E} = \underline{\dot{r}}_{0E}$), ist der Vektor \underline{z}_{0E} auf Lageebene nicht definiert ("Pseudokoordinate").

2.4.3 Darstellung der Beschleunigung mit Hilfe der JACOBI-Matrix

Die Zeitableitung von Gl. (2.27) liefert die Darstellung der Beschleunigung von System K_E relativ zu K_0 :

$$\begin{pmatrix}
\alpha_{OE} \\
\underline{a}_{OE}
\end{pmatrix} = \begin{pmatrix}
\alpha_{1} \underline{u}_{1} & \dots & \mu_{n} \underline{u}_{n} \\
\underline{c}_{1} & \dots & \underline{c}_{n}
\end{pmatrix} \begin{pmatrix}
\ddot{\beta}_{1} \\
\ddot{\beta}_{2} \\
\vdots \\
\ddot{\beta}_{n}
\end{pmatrix} + \begin{pmatrix}
\alpha_{1} \underline{\dot{u}}_{1} & \dots & \mu_{n} \underline{\dot{u}}_{n} \\
\dot{c}_{1} & \dots & \dot{c}_{n}
\end{pmatrix} \begin{pmatrix}
\dot{\beta}_{1} \\
\dot{\beta}_{2} \\
\vdots \\
\dot{\beta}_{n}
\end{pmatrix}, (2.31a)$$

$$\begin{pmatrix}
\alpha_{2} \\
\alpha_{3} \\
\alpha_{5} \\
\alpha$$

mit
$${}^{0}\underline{\dot{c}}_{i} = \mu_{i} \left({}^{0}\underline{\dot{u}}_{1} {}^{0}\underline{r}_{iE} + {}^{0}\underline{\widetilde{u}}_{1} {}^{0}\underline{\dot{r}}_{iE} \right) + (1-\mu_{i}) {}^{0}\underline{\dot{u}}_{i}$$

und μ_i = 1 bei Drehgelenken $(\beta_i = \Theta_i)$, μ_i = 0 bei Schubgelenken $(\beta_i = s_i)$.

Die in ${}^0\dot{\underline{j}}_{0E}(\beta,\dot{\beta})$ auftretenden Zeitableitungen von Verbindungs- und Achsvektoren werden bezüglich K_0 gebildet. Sie können mit Hilfe der in Abhängigkeit von $\dot{\beta}$ vorliegenden Winkel- und Translationsgeschwindigkeiten der Gelenk-Koordinatensysteme ausgedrückt werden (Koordinatenindex 0 weggelassen):

$$\dot{\mathbf{u}}_{i} = \widetilde{\underline{\omega}}_{0i} \ \underline{\mathbf{u}}_{i} \tag{2.32}$$

$$\dot{\underline{\Gamma}}_{iE} = \widetilde{\underline{\omega}}_{0i} \ \underline{\Gamma}_{iE} + \underbrace{\sum_{k=i}^{n} \left(\ \underline{\mu}_{k} \ \dot{\underline{\Theta}}_{k} \ \widetilde{\underline{u}}_{k} \ \underline{\Gamma}_{kE} + (1-\underline{\mu}_{k}) \ \dot{\underline{s}}_{k} \ \underline{\underline{u}}_{k} \right)}_{i\dot{\underline{\Gamma}}_{iE}}. \tag{2.33}$$

3.1 Schließbedingungen in einer allgemeinen Mehrkörperschleife

Für die folgenden Untersuchungen wird eine allgemeine Mehrkörperschleife mit n_{β} Körpern und Gelenken betrachtet. Beschränkt man sich auf Standardgelenke (außer Schraubgelenk), so ist es ausreichend, nur Drehgelenke (R) und Schubgelenke (P) mit jeweils einem Gelenkfreiheitsgrad zu berücksichtigen. Gelenke mit mehreren Freiheitsgraden können entsprechend Abschnitt 1.2.1 in spezielle Anordnungen von Dreh- und Schubgelenken aufgelöst werden. Die relative Bewegung der einzelnen Körper der Schleife wird dann durch natürliche Gelenkkoordinaten β_i , $i=1,...,n_{\beta}$, beschrieben.

Allgemeine Mehrkörperschleife

Im Gegensatz zu offenen kinematischen Ketten (vgl. Kapitel 2) sind bei kinematischen Schleifen nicht mehr alle Gelenkkoordinaten voneinander unabhängig. Wird eine kinematische Schleife durch einen Schnitt an einem beliebigen Körper aufgetrennt, so werden dadurch sechs geometrische Bindungen (jeweils drei für die Übereinstimmung von Position und Orientierung) aufgelöst. Umgekehrt werden beim Schließen einer offenen kinematischen Kette über den letzten Körper sechs zusätzliche Bindungen, die sechs Schließbedingungen, in das System eingebracht. Über die dazugehörigen sechs Bindungsgleichungen werden genau sechs Gelenkkoordinaten der Schleife festgelegt, die damit nicht mehr unabhängig vorgegeben werden können, sondern von den übrigen Gelenkkoordinaten abhängen. Die n_{β} Gelenkkoordinaten der Schleife können deswegen in

$$\mathbf{n_q} = \mathbf{n_\beta} - 6$$
 unabhängige Gelenkkoordinaten $\underline{\mathbf{q}} = \begin{bmatrix} \mathbf{q_1}, ..., \mathbf{q_{nq}} \end{bmatrix}^\mathsf{T}$ und
$$\mathbf{6} \qquad \text{abhängige} \qquad \text{Gelenkkoordinaten} \qquad \underline{\mathbf{y}} = \begin{bmatrix} \mathbf{y_1}, ..., \mathbf{y_6} \end{bmatrix}^\mathsf{T}$$

aufgeteilt werden. Die unabhängigen Gelenkkoordinaten \underline{q} sind Minimalkoordinaten (verallgemeinerte Koordinaten) der Schleife. Die Schließbedingungen können dann als ein System von sechs nichtlinearen algebraischen Gleichungen dargestellt werden:

$$\underline{g}(\underline{y}(t),\underline{q}(t)) = \underline{0}$$
 bzw. $g_i(\underline{y}(t),\underline{q}(t)) = 0$, $i = 1,...,6$. (3.1)

Durch das nichtlineare Gleichungssystem (3.1) wird die kinematische Übertragungsfunktion

$$\underline{y} = \underline{f}(\underline{q}) \tag{3.2}$$

der Schleife implizit definiert. Die Funktionen $g(\underline{y}(t),\underline{q}(t))$ sollen dabei als die Bindungsfunktionen bezeichnet werden. Die totale zeitliche Ableitung von Gl. (3.1) liefert die Schließbedingungen auf Geschwindigkeits- und Beschleunigungsebene:

$$\dot{\mathbf{g}}(\underline{y}, \underline{q}, \dot{\underline{y}}, \dot{\underline{q}}) = \underline{\mathbf{J}}_{\mathbf{y}} \dot{\underline{y}} + \underline{\mathbf{J}}_{\mathbf{q}} \dot{\underline{q}} = \underline{\mathbf{0}} , \qquad (3.3)$$

$$\underline{\ddot{\mathbf{g}}}(\underline{y},\underline{q},\dot{\underline{y}},\dot{\underline{q}},\ddot{\mathbf{y}},\dot{\underline{q}}) = \underline{\mathbf{J}}_{\mathbf{y}}\,\,\ddot{\underline{y}} + \underline{\mathbf{J}}_{\mathbf{q}}\,\,\ddot{\underline{q}} + \quad \ddot{\underline{\underline{g}}} = \underline{\mathbf{0}} \quad . \tag{3.4}$$

mit den partiellen Ableitungen

$$\underline{J}_{y}(\underline{y},\underline{q}) = \frac{\partial \underline{g}(\underline{y},\underline{q})}{\partial \underline{y}} , \qquad \underline{J}_{q}(\underline{y},\underline{q}) = \frac{\partial \underline{g}(\underline{y},\underline{q})}{\partial \underline{q}} , \qquad (3.5)$$

$$\ddot{\ddot{\mathbf{g}}}(\mathbf{y},\mathbf{q},\dot{\mathbf{y}},\dot{\mathbf{q}}) = \dot{\underline{\mathbf{j}}}_{\mathbf{y}}\dot{\mathbf{y}} + \dot{\underline{\mathbf{j}}}_{\mathbf{q}}\dot{\mathbf{q}} . \tag{3.6}$$

Aus den linearen Gleichungssystemen (3.3) und (3.4) ergeben sich die kinematischen Übertragungsfunktionen auf Geschwindigkeits- bzw. Beschleunigungsebene:

$$\underline{\dot{y}} = -\underline{J}_{y}^{-1}\underline{J}_{q}\underline{\dot{q}} \qquad , \tag{3.7}$$

$$\ddot{y} = -J_{\mathbf{v}}^{-1} \left(\underline{J}_{\mathbf{q}} \ \underline{\ddot{\mathbf{q}}} + \ \underline{\ddot{\mathbf{g}}} \right) . \tag{3.8}$$

Die Aufstellung und Lösung der Schließbedingungen zur Bestimmung der sechs abhängigen Gelenkkoordinaten ist die zentrale Aufgabe bei der kinematischen Analyse von Mechanismen. Eine Schwierigkeit liegt darin, daß die Schließbedingungen (3.1) mehrfache Lösungen für die gesuchten abhängigen Koordinaten y besitzen. Geometrisch entsprechen diese Lösungen unterschiedlichen Konfigurationen der kinematischen Schleife. Da die numerische Bestimmung sämtlicher Lösungen (Nullstellen) eines nichtlinearen Gleichungssystems im allgemeinen sehr schwierig ist (die üblichen Verfahren ermitteln nur die zum gewählten Startwärt nächstliegende Lösung), kommt der expliziten Darstellung der Übertragungsfunktion (3.2) eine besondere Bedeutung zu. In vielen praktisch wichtigen Fällen können solche expliziten Darstellungen durch eine geeignete Formulierung der Schließbedingungen Perreicht werden.

Im allgemeinen sind allerdings keine expliziten, sondern nur numerische Lösungen des Gleichungssystems (3.1) möglich. Hier muß man sich dann meist auf die Bestimmung derjenigen Lösung beschränken, die am nächsten an einer gegebenen "Ausgangslage" der kinematischen Schleife liegt (was wiederum für viele Aufgabenstellungen ausreichend ist).

3.2 Möglichkeiten zur Aufstellung der Schließbedingungen

3.2.1 Auftrennen der Schleife an einem Körper

Auftrennen der Schleife an einem Körper

Die kinematische Schleife wird hier mit einem Schnitt durch einen beliebigen Körper in zwei offene Teilketten aufgetrennt. Die Schließbedingungen ergeben sich dann unmittelbar aus der Forderung, daß die Schnittufer mit den Koordinatensystemen K_A und K_B an den Enden dieser Teilketten dieselbe Lage relativ zu einem Koordinatensystem K_0 besitzen:

$$^{OA}\underline{T} - ^{OB}\underline{T} = \underline{0} , \qquad (3.9)$$

$${}^{0}\underline{r}_{0A} - {}^{0}\underline{r}_{0B} = \underline{0} . \tag{3.10}$$

Die Ortsvektoren und die Transformationsmatrizen für die Koordinatensysteme K_A und K_B werden ausgehend vom Bezugskörper durch kinematische Vorwärtsrechnung entsprechend Abschnitt 2.1 in den dazugehörigen Teilketten ausgedrückt. Da hierbei alle Gelenkübergänge benötigt werden, gehen alle (abhängigen und unabhängigen) Gelenkkoordinaten der Schleiße in die Schließbedingungen (3.9)/(3.10) ein. Die Komponenten der Schließbedingungen (3.9)/(3.10) bilden ein System von insgesamt 12 nichtlinearen Gleichungen, von denen allerdings nur 6 voneinander unabhängig sind: drei Komponenten der Gleichung (3.9) sowie – wegen der sechs Orthonormalitätsbeziehungen in Transformationsmatrizen – drei der neun Komponenten der Matrizengleichung (3.10).

Werden die Transformationsmatrizen $^{0A}\underline{T}$ und $^{0B}\underline{T}$ durch die Quaternionen $^{0A}\underline{p}$ bzw. $^{0B}\underline{p}$ ersetzt (siehe Gl. (4.62) (I)), so tritt an die Stelle von Gl. (3.9) die nur noch vier Einzelgleichungen umfassende Schließbedingung

$${}^{\text{OA}}\underline{p} - {}^{\text{OB}}\underline{p} = \underline{0} \qquad . \tag{3.11}$$

Auf Geschwindigkeits- und Beschleunigungsebene gelten die Bedingungen

$${}^{0}\underline{\omega}_{0A} - {}^{0}\underline{\omega}_{0B} = \underline{O} , \qquad (3.12)$$

$${}^{0}\underline{\mathbf{v}}_{0A} - {}^{0}\underline{\mathbf{v}}_{0B} = \underline{\mathbf{0}} \quad , \tag{3.13}$$

bzw.

$${}^{0}\underline{\alpha}_{0A} - {}^{0}\underline{\alpha}_{0B} = \underline{0} , \qquad (3.14)$$

$${}^{0}\underline{a}_{0A} - {}^{0}\underline{a}_{0B} = \underline{0}$$
 (3.15)

Werden die Geschwindigkeiten und Beschleunigungen von K_A und K_B mit Hilfe der Beziehungen aus Abschnitt 2.4.1 in Abhängigkeit der Gelenkkoordinaten ausgedrückt, ergeben sich Schließbedingungen der Form (3.3) bzw. (3.4).

Die Methode des Auftrennens der Schleife an einem Körper hat den Vorteil, daß die Schließbedingungen unabhängig von den unterschiedliche Gelenktypen stets in der Form der Gleichungen (3.9)/(3.11) und (3.10) angesetzt werden können.

Der Hauptnachteil besteht darin, daß die gesuchten sechs Gelenkkoordinaten im allgemeinen in alle sechs Schließbedingungen eingehen. Eine explizite Auflösung nach den gesuchten Gelenkkoordinaten, die in vielen Fällen möglich ist, kann nur durch algebraische Umformungen des nichtlinearen Gleichungssystems erreicht werden, was allerdings im allgemeinen unübersichtlich und aufwendig ist.

3.2.2 Auftrennen der Schleife an einem Gelenk

Die Schleife wird bei dieser Methode an einem Gelenk, dessen Gelenkkoordinaten zu den sechs abhängigen Koordinaten \underline{y} der Schleife gehören, aufgetrennt. Besitzt dieses Gelenk f_{Ga} Gelenkfreiheitsgrade (vgl. Abschnitt 1.2.1), so werden die sechs abhängigen Koordinaten \underline{y} aufgeteilt in

- * 6 f_{Ga} Gelenkkoordinaten y_l außerhalb des geschnittenen Gelenks,
- * f_{Ga} Gelenkkoordinaten $\underline{y}_{\parallel}$ des geschnittenen Gelenks.

Auftrennen der Schleife an einem Gelenk (Das Schnittgelenk hat i.a. Zwischenkörper; z.B. ebenes Gelenk, Kugelgelenk)

Im Gegensatz zur Körperschnittmethode werden nur $6-f_{Ga}$ Bindungen aufgelöst und damit zunächst nur $6-f_{Ga}$ Schließbedingungen erhalten. Sie milssen unter Berücksichtigung der Geometrie des geschnittenen Gelenks aufgestellt werden. Für die Standardgelenke (außer Schraubgelenk) sind die Schließbedingungen in der folgenden Tabelle zusammengestellt. Die Vektoren der linken und rechten Seite der Schließbedingungen werden jeweils ausgehend vom Koordinatensystem K_0 durch kinematische Vorwärtsrechnung in den beiden Teilketten entsprechend Abschnitt 2.1 ausgedrückt. Hierbei wird der entscheidende Vorteil dieser Methode gegenüber der Körperschnittmethode erkennbar: Da der Gelenkübergang am geschnittenen Gelenk nicht benötigt wird, treten die dazugehörigen f_{Ga} Gelenkkoordinaten $\underline{y}_{\parallel}$ in diesen Schließbedingungen überhaupt nicht auf. Es wird damit bereits im Ansatz ein nichtlineares Gleichungssystem mit nur noch $6-f_{Ga}$ Gleichungen in $6-f_{Ga}$ Unbekannten $\underline{y}_{\parallel}$ erhalten.

Die Gelenkkoordinaten \underline{y}_{II} des geschnittenen Gelenks müssen durch weitere f_{Gi} Bedingungen bestimmt werden, die sich ebenfalls aus der Geometrie des geschnittenen Gelenks herleiten lassen.

Damit wird das Gleichungssystem der Schließbedingungen (3.1) bereits im Ansatz in zwei Teilsysteme aufgeteilt:

- Ein "Kernsystem"

$$g_1(y_1, q) = \underline{0} \tag{3.16}$$

mit $6 - f_{Ga}$ simultan nach den nicht im geschnittenen Gelenk G_a liegenden Gelenkkoordinaten \underline{y}_1 aufzulösenden Gleichungen. Die gegenüber den Gln. (3.9)/3.10) reduzierte Zahl von Gleichungen erleichtert eine algebraische Auflösung nach \underline{y}_1 in der Form

$$y_1 = \underline{f}_1(q) \tag{3.17}$$

(im allgemeinen existiert eine solche explizite Darstellung allerdings nicht).

- Ein zweites Teilsystem

$$g_{\parallel}(y_{\parallel}, y_{\parallel}, q) = \underline{0},$$
 (3.18)

in das zusätzlich die f_{Ga} verbleibenden Gelenkkoordinaten \underline{y}_{II} des geschnittenen Gelenks eingehen. Für die Standardgelenke zeigt sich, daß dieses Teilsystem nach der Bestimmung von \underline{y}_{I} aus Gl. (3.16) bzw. (3.17) explizit nach \underline{y}_{II} auflösbar ist, also

$$\underline{y}_{\parallel} = \underline{f}_{\parallel}(\underline{y}_{\parallel}, \underline{q}). \tag{3.19}$$

Als Nachteil der Gelenkschnittmethode bleibt, daß die explizite Lösungsdarstellung (3.17), sofern sie überhaupt möglich ist, weiterhin meist nur durch recht unübersichtliche algebraische Umformungen erreicht werden kann.

Die Aufstellung der Schließbedingungen (3.16) für konkrete Schnittgelenke wird in Abschnitt 3.3 betrachtet.

3.2.3 Auftrennen der Schleife an einem "charakteristischen Gelenkpaar"

Der Vorteil der Gelenkschnittmethode, nämlich die reduzierte Zahl von simultan zu lösenden Gleichungen, legt es nahe, diese Vorgehensweise weiter zu verallgemeinern. Zur Aufstellung der Schließbedingungen wird die kinematische Schleife an zwei Gelenken G_a und G_b geschnitten, deren Gelenkkoordinaten zu den gesuchten sechs abhängigen Gelenkkoordinaten \underline{y} gehören. Diese werden dadurch aufgeteilt in

- * $6 f_{Ga} f_{Gb}$ Gelenkkoordinaten \underline{y}_l außerhalb der geschnittenen Gelenke,
- * f_{Ga} + f_{Gb} Gelenkkoordinaten \underline{y}_{II} der geschnittenen Gelenke.

Es werden dann zwei offene Teilketten erhalten, die als das "untere" und das "obere" Segment der Schleife bezeichnet werden sollen.

Auftrennen der Schleife an einem "charakteristischen Gelenkpaar"

(Die Schnittgelenke haben i.a. Zwischenkörper; z.B. ebenes Gelenk, Kugelgelenk)

Besitzen die Schnittgelenke G_a und G_b jeweils f_{Ga} bzw. f_{Gb} Gelenkfreiheitsgrade, so werden mit dem Schnitt insgesamt

$$h' = (6 - f_{Ga}) + (6 - f_{Gb})$$
 (3.20)

geometrische Bindungen aufgelöst, die wie folgt zugeordnet werden können:

(3.23)

Sechs der h' Bindungen beschränken die Bewegung des - als "starre Einheit"
 betrachteten - oberen Segments relativ zum unteren Segment.

- 3.7 -

- Die verbleibenden

$$h = h' - 6 = 6 - (f_{Ga} - f_{Gb})$$
(3.21)

Bindungen beschränken zusätzlich die interessierenden Gelenkkoordinaten \underline{y}_{l} innerhalb der Segmente.

Die ersten sechs der h' Bindungen können nun dadurch umgangen werden, daß solche Schließbedingungen aufstellt werden, die unabhängig von der Lage der beiden Segmente sind. Entsprechend GI. (3.21) gibt es genau h solche Schließbedingungen.

Da die Lage der beiden Segmente noch nicht bekannt sind, müssen diese Schließbedingungen durch lageunabhängige, d.h. also skalare, Größen ausgedrückt werden, die hier als die Bindungsparameter" bezeichnet werden sollen. Diese Bindungsparameter werden gleichermaßen über die relative Lage der Gelenk-Bezugssysteme K_a , und K_b , an den Enden des oberen Segments und über die relative Lage der Gelenk-Bezugssysteme K_a und K_b an den Enden des unteren Segments ausgedrückt. Die Schließbedingungen verlangen dann, daß diese beiden Darstellungen des Bindungsparameters übereinstimmen. Da der Typ der Gelenke G_a und G_b die Auswahl der Bindungsparameter und damit die Schließbedingungen festlegt, werden diese Gelenke als das "charakteristische Gelenkpaar" der Schleife bezeichnet.

Die zur Darstellung des Bindungsparameters benötigten Vektoren werden ausgehend von zu wählenden Bezugssystemen K_u bzw. K_o auf den beiden Segmenten durch Vorwärtsrechnung ausgedrückt. Dabei werden nur die Übergänge an den Gelenken innerhalb der Segmente mit den Gelenkkoordinaten $\underline{y}_{\parallel}$ benötigt, nicht aber die Übergänge an den geschnittene Gelenken. Damit sind die h Schließbedingungen unabhängig von den Gelenkkoordinaten $\underline{y}_{\parallel}$ der geschnittenen Gelenke. Diese müssen – ähnlich wie bei der Gelenkschnittmethode – durch zusätzliche gelenkspezifische Beziehungen ermittelt werden. Man erhält auf diese Weise ebenfalls eine Aufteilung des Gleichungssystems in zwei Teilsysteme.

- Ein "Kernsystem"

$$g_1(y_1, q) = \underline{0} \tag{3.22}$$

mit h simultan zu lösenden Gleichungen ermöglicht die Bestimmung der h Gelenkkoordinaten \underline{y}_1 . Am günstigsten ist dabei der Fall $f_{Ga}+f_{Gb}=5$ (z.B. ein Kugel- und ein Kardangelenk als Schnittgelenke), da dann Gl. (3.22) lediglich aus h=1 Gleichung in einer unbekannten Gelenkkoordinate besteht. Umgekehrt erhält man im ungünstigsten Fall bei $f_{Ga}+f_{Gb}=2$ (z.B. zwei Drehgelenke als Schnittgelenke) ein System von h=4 Gleichungen (3.22), aus denen \underline{y}_1 numerisch zu bestimmen ist.

- Das zweite Teilsystem

$$\underline{\mathbf{g}}_{\mathbf{I}}(\underline{\mathbf{y}}_{\mathbf{I}},\underline{\mathbf{y}}_{\mathbf{I}},\underline{\mathbf{q}}) = \underline{\mathbf{0}},$$

mit 6-h Gleichungen liefert die 6-h Gelenkkoordinaten $\underline{y}_{\parallel}$ der beiden Schnittgelenke. Es zeigt sich, daß bei Standardgelenken (außer Schraubgelenk) dieses Teilsystem explizit nach den Gelenkkoordinaten $\underline{y}_{\parallel}$ aufgelöst werden kann. Die beiden Segmente werden dazu – jeweils als starre Einheiten betrachtet – unter Verwendung weiterer Bindungsgleichungen "zusammengebaut".

Die Methode des Schnitts an zwei Gelenken hat u.a. die folgenden Vorteile:

- In Abhängigkeit von den Gelenken der Schleife ist das Gleichungssystem bereits im Ansatz in ein simultan zu lösendes Kernsystem und einen anschließend explizit lösbaren Teilsystem zerlegt. Ohne algebraische Umformungen kann die Zahl der Gleichungen des Kernsystems möglichst klein gemacht werden. Für viele praktische Anwendungen lassen sich unmittelbar explizit auflösbare Schließbedingungen aufstellen.
- Die Bindungsparameter lassen sich mit Hilfe von Vektoren als koordinatenunabhängige "Invarianten" der Schleife formulieren.

Die Berücksichtigung der speziellen Eigenschaften einer kinematischen Schleife erfordert auf der anderen Seite einen deutlich höheren Aufwand bei der Initialisierung und Steuerung der Rechnung (Auswahl des günstigsten charakteristischen Gelenkpaares, Zusammenstellung der charakteristischen Bindungsparameter, Festlegung der Rechenvorschrift für die Bestimmung der Gelenkkoordinaten der Schnittgelenke).

Die Aufstellung der Schließbedingungen für konkrete Gelenke wird in Abschnitt 3.4 betrachtet.

3.3 Schließbedingungen an einem geschnittenen Gelenk \rightarrow Abschnitt 3.2.2

Zur Bestimmung der sechs abhängigen Gelenkkoordinaten gilt das folgende Schema.

1. Schritt: Wahl der unabhängigen Gelenkkoordinaten und des Schnittgelenks G_a

Die n_{β} Gelenkkoordinaten der kinematischen Schleife werden in die sechs abhängigen Gelenkkoordinaten \underline{y} und die $n_{q}=n_{\beta}$ -6 unabhängigen Gelenkkoordinaten \underline{q} aufgeteilt. Diese Aufteilung richtet sich zunächst nach der Aufgabenstellung, wobei der im allgemeinen begrenzte Definitionsbereich der Übertragungsfunktion $\underline{y}=\underline{f}(\underline{q})$ bei Annäherung an die Grenzwerte der unabhängigen Koordinaten \underline{q} eine Neuaufteilung der Koordinaten erfordert. Als Schnittgelenk G_a wird ein Gelenk gewählt, dessen Gelenkkoordinaten zu den abhängigen Koordinaten \underline{y} gehören und das möglichst viele Gelenkfreiheitsgrade f_{Ga} hat. Hierdurch wird die Anzahl der 6 - f_{Ga} simultan aufzulösenden Gleichungen (3.16) verringert.

Die sechs Schließbedingungen (3.1) bestehen dann aus einem Kernsystem mit $h = 6 - f_{Ga}$ Gleichungen und einen explizit auflösbaren System mit f_{Ga} Gleichungen:

$$\underline{\mathbf{g}}(\underline{\mathbf{y}},\underline{\mathbf{q}}) = \underline{\mathbf{Q}}: \begin{cases} \underline{\mathbf{g}}_{1}(\underline{\mathbf{y}}_{1},\underline{\mathbf{q}}) = \underline{\mathbf{Q}} & (3.16) \\ \underline{\mathbf{g}}_{1}(\underline{\mathbf{y}}_{1},\underline{\mathbf{y}}_{1},\underline{\mathbf{q}}) = \underline{\mathbf{Q}} & . \end{cases}$$
(3.18)

2. Schritt: Aufstellen und Lösen des Kernsystems (3.16)

Die $6-f_{Ga}$ Schließbedingungen des Kernsystems (3.16) sind für einige Gelenke in der folgenden Tabelle zusammengestellt. Da eine explizite Auflösung mit Hilfe algebraischer Umformungen meist nur schwierig zu erhalten ist, erfolgt die Auflösung nach den abhängigen Gelenkkoordinaten \underline{y}_1 im allgemeinen numerisch.

3. Schritt: Bestimmung der Gelenkkoordinaten des Schnittgelenks Ga

Mit der Auswertung von Gl. (3.16) sind alle relativen Gelenkkoordinaten der am Schnittgelenk aufgetrennten Schleife bekannt. Damit kann die Lage aller Körper durch kinematische Vorwärtsrechnung in Abhängigkeit der Gelenkkoordinaten $\underline{y}_{\mathbb{I}}$ dargestellt werden. Die Bestimmung der noch fehlenden Gelenkkoordinaten $\underline{y}_{\mathbb{I}}$ des Schnittgelenks aus Gl. (3.18) ist deswegen im allgemeinen nicht mehr erforderlich.

Falls \underline{y}_{11} dennoch bestimmt werden soll, wird zunächst die relative Lage der Koordinatensysteme K_a und K_a am Schnittgelenk aus

$$aa'\underline{T}(q,y_1) = {}^{0a}\underline{T}^{\mathsf{T}} {}^{0a'}\underline{T} \qquad (3.24)$$

$${}^{a}\underline{r}_{aa},(\underline{q},\underline{y}_{1}) = {}^{0a}\underline{T}^{T}\begin{pmatrix} {}^{0}\underline{r}_{0a}, & {}^{-}{}^{0}\underline{r}_{0a} \end{pmatrix}, \tag{3.25}$$

berechnet und daraus anschließend y_{\parallel} durch gelenkspezifische Beziehungen bestimmt.

Werden beispielsweise die drei Gelenkkoordinaten $\underline{y}_{\parallel}$ an einem Kugelgelenk als EULER- oder KARDAN-Winkel eingeführt, so können diese aus der Transformationsmatrix $^{aa'}\underline{T}$ mit Hilfe der Beziehungen aus den Abschnitten 4.3.1 (I) bzw. 4.4.1 (I) ermittelt werden.

Kugel- gelenk S f _{Ga} = 3	r _{0 a}	$\underline{\mathbf{r}}_{0\mathbf{a}'} - \underline{\mathbf{r}}_{0\mathbf{a}} = \underline{0}$	(3.26a-c)
Ebenes Gelenk E f _{Ga} = 3	y_{α} $y_{\alpha'}$ $y_$	$(\underline{r}_{0a'} - \underline{r}_{0a})^{T} \underline{e}_{za} = 0$ $\underline{e}_{za'}^{T} \underline{e}_{xa} = 0$ $\underline{e}_{za}^{T} \underline{e}_{ya} = 0$	(3.27a) (3.27b) (3.27c)
Kardan- gelenk T f _{Ga} = 2	r _{0a} r _{0a}	$\underline{\mathbf{r}}_{0\mathbf{a}'} - \underline{\mathbf{r}}_{0\mathbf{a}} = \underline{0}$ $\underline{\mathbf{e}}_{\mathbf{z}\mathbf{a}}^{T}, \underline{\mathbf{e}}_{\mathbf{z}\mathbf{a}} = 0$	(3.28a-c) (3.28d)
Dreh- schub- gelenk C f _{Ga} = 2	y _α	$(\underline{r}_{0a'} - \underline{r}_{0a})^{T} \underline{e}_{xa} = 0$ $(\underline{r}_{0a'} - \underline{r}_{0a})^{T} \underline{e}_{ya} = 0$ $\underline{e}_{xa'}^{T} \underline{e}_{xa} = 0$ $\underline{e}_{za'}^{T} \underline{e}_{ya} = 0$	(3.29a) (3.29b) (3.29c) (3.29d)
Dreh- gelenk R f _{Ga} = 1	Γ ₀ α	$\underline{r}_{0a'} - \underline{r}_{0a} = \underline{0}$ $\underline{e}_{za}^{T} \cdot \underline{e}_{xa} = 0$ $\underline{e}_{za}^{T} \cdot \underline{e}_{ya} = 0$	(3.30a-c) (3.30d) (3.30e)

Belsplel: Räumliches Gelenkviereck (RSTR-Mechanismus, f = 1)

$$q = \Theta_1$$
, $y = [\Theta_2, \Theta_3, \Theta_4, \Theta_5, \Theta_6, \Theta_7]^T$; $\Theta_5, \Theta_6, \Theta_7$ - Gelenkkoordinaten des Kugelgelenks.

Das Kugelgelenk wird als Schnittgelenk gewählt. Damit ist

$$\underline{\mathbf{y}}_1 = \left[\Theta_2, \Theta_3, \Theta_4\right]^{\mathsf{T}}.$$

2. Schritt: Aufstellen und Lösen des Kernsystems

Die Schließbedingungen (3.26) für den Schnitt am Kugelgelenk lauten (Vektorkoordinaten in System K_1):

$$\underline{\mathbf{g}}_{1}(\Theta_{1},\Theta_{2},\Theta_{3},\Theta_{4}) = {}^{1}\underline{\mathbf{r}}_{17}(\Theta_{1}) - {}^{1}\underline{\mathbf{r}}_{15}(\Theta_{2},\Theta_{3},\Theta_{4}) = \underline{\mathbf{0}}$$

$$\tag{3.31}$$

mit

$${}^{1}\underline{\Gamma}_{17}(\Theta_{1}) = {}^{11'}\underline{T}(\Theta_{1}) {}^{1'}\underline{\Gamma}_{17} ,$$

$${}^{1}\underline{\Gamma}_{15}(\Theta_{2},\Theta_{3},\Theta_{4}) = {}^{1}\underline{\Gamma}_{12} + {}^{12}\underline{T} {}^{22'}\underline{T}(\Theta_{2}) \left({}^{2'}\underline{\Gamma}_{23} + {}^{2'3}\underline{T} {}^{33'}\underline{T}(\Theta_{3}) {}^{3'4}\underline{T} {}^{44'}\underline{T}(\Theta_{4}) {}^{4'}\underline{\Gamma}_{45} \right) .$$

Die nicht mit einem Argument gekennzeichneten Vektorkoordinaten und Transformationsmatrizen werden aus konstanten Körperabmessungen gebildet. Das Gleichungssystem (3.31) wird numerisch nach den gesuchten Gelenkkoordinaten \underline{y}_1 aufgelöst.

3.4 Schließbedingungen an einem charakteristischen Gelenkpaar → Abschnitt 3.2.3

3.4.1 Elementare Schließbedingungen

Die Schließbedingungen der simultan zu lösenden Gleichungen (3.22) lassen sich auf die im folgenden beschriebenen fünf Grundtypen zurückführen. Sie werden jeweils mit Hilfe eines skalaren "Bindungsparameters" gebildet, der unabhängig von der relativen Lage der beiden Segmente ausgedrückt werden kann. Zur Veranschaulichung wird jeweils ein dazugehöriges Paar von Schnittgelenken angegeben.

1) Quadrat des Abstands zweier Gelenkpunkte

Gelenkpaar Kugelgelenk (S) - Kardangelenk (T), $f_{Ga} + f_{Gb} = 5$.

Bindungsparameter:

$${}^{\circ}\lambda_{1} = d^{2} = {}^{\circ}\underline{\Gamma}_{ba}^{\dagger} {}^{\circ}\underline{\Gamma}_{ba} \qquad \text{mit} \qquad {}^{\circ}\underline{\Gamma}_{ba} = {}^{\circ}\underline{\Gamma}_{oa} - {}^{\circ}\underline{\Gamma}_{ob}$$

$${}^{u}\lambda_{1} = d^{2} = {}^{u}\underline{\Gamma}_{ba}^{\dagger} {}^{u}\underline{\Gamma}_{ba} \qquad \text{mit} \qquad {}^{u}\underline{\Gamma}_{ba} = {}^{u}\underline{\Gamma}_{ua} - {}^{u}\underline{\Gamma}_{ub}$$

Schließbedingung Typ 1:

$$g = {}^{u}\lambda_{1} - {}^{o}\lambda_{1} \equiv {}^{u}\underline{r}_{ba}^{T} {}^{u}\underline{r}_{ba} - {}^{o}\underline{r}_{ba}^{T} {}^{o}\underline{r}_{ba} = 0 .$$
 (3.32)

Beispiel: RSTR-Mechanismus → Abschnitt 3.4.3

2) Abstand eines Gelenkpunktes von einer Gelenkebene

Gelenkpaar Kugelgelenk (S) - "reduziertes" ebenes Gelenk (RR), $f_{Ga}+f_{Gb}=5$.

Bindungsparameter:

$$^{\circ}\lambda_{2} = d = ^{\circ}\underline{r}_{b'a}^{\dagger} {^{\circ}\underline{u}}_{b}$$

$$^{u}\lambda_{2} = d = ^{u}\underline{r}_{ba}^{\dagger} ^{u}\underline{u}_{b}$$

Schließbedingung Typ 2:

$$g = {}^{u}\lambda_{2} - {}^{o}\lambda_{2} = {}^{u}\underline{r}_{ba}^{\mathsf{T}} {}^{u}\underline{u}_{b} - {}^{o}\underline{r}_{b'a}^{\mathsf{T}} {}^{o}\underline{u}_{b} = 0 . \tag{3.33}$$

Beispiel: Mitnehmermechanismus für die Taumelscheibe am Rotorkopf eines Hubschraubers

Abstand $d \equiv 0$ des Punkts O_5 von der Ebene $\perp \underline{u}_3$ durch O_3 .

Schließbedingung:

$$g_1(\Theta_1,\Theta_2) = (-\underline{r}_{15} + \underline{r}_{12} + \underline{r}_{23})^{\mathsf{T}} \underline{u}_3 = 0$$

 \rightarrow Übertragungsfunktion $\Theta_2 = f_1(\Theta_1)$

3) Abstand eines Gelenkpunktes von einer Gelenkachse

Gelenkpaar Kugelgelenk (S) - Dreh-Schubgelenk (C), $f_{Ga}+f_{Gb}=5$.

Bindungsparameter:

Schließbedingung Typ 3:

$$g = {}^{u}\lambda_{3} - {}^{o}\lambda_{3} = {}^{u}\underline{n}_{b'a}^{\mathsf{T}} {}^{u}\underline{n}_{b'a} - {}^{o}\underline{n}_{ba}^{\mathsf{T}} {}^{o}\underline{n}_{ba} = 0 . \tag{3.34}$$

Beispiel: RSCR-Mechanismus

Konstanter Abstand d des Punkts O_4 von der Geraden \underline{u}_3 .

Schließbedingung:

$$g_1(\Theta_1,\Theta_2) = \underline{n}_{34}^{\mathsf{T}} \underline{n}_{34} - d^2 = 0$$

mit

$$\underline{\mathbf{n}}_{34} = (-\underline{\mathbf{r}}_{23} - \underline{\mathbf{r}}_{12} + \underline{\mathbf{r}}_{14}) \times \underline{\mathbf{u}}_{3}$$

 \rightarrow Übertragungsfunktion $\Theta_2 = f_1(\Theta_1)$

Winkel zwischen zwei Gelenkachsen oder Gelenkebenen

Abstand zweier Gelenkachsen

Gelenkpaar Dreh-Schubgelenk (C) - Dreh-Schubgelenk (C), $f_{Ga}+f_{Gb}=4$

Bindungsparameter:

$$^{\circ}\lambda_4 = \cos \delta = ^{\circ}\underline{u}_b ^{\circ}\underline{u}_a$$

$$^{u}\lambda_{4} = \cos \delta = ^{u}\underline{u}_{b} ^{u}\underline{u}_{a}$$
.

Schließbedingung Typ 4:

$$g = {}^{u}\lambda_{4} - {}^{o}\lambda_{4} = {}^{u}\underline{u}_{b} {}^{u}\underline{u}_{a} - {}^{o}\underline{u}_{b} {}^{o}\underline{u}_{a} = 0.$$
 (3.35)

Bindungsparameter:

$$^{\circ}\lambda_{5} = d \sin \delta = ^{\circ}(\underline{u}_{b} \times \underline{u}_{a})^{\mathsf{T}} ^{\circ}\underline{r}_{b'a'}$$
,

$${}^{u}\lambda_{5} = d \sin \delta = {}^{u}(\underline{u}_{b} \times \underline{u}_{a})^{\mathsf{T}} {}^{u}\underline{r}_{ba}$$

Schließbedingung Typ 5:

$$g = {}^{u}\lambda_{5} - {}^{o}\lambda_{5} = {}^{u}(\underline{u}_{b} \times \underline{u}_{a})^{\mathsf{T}} {}^{u}\underline{r}_{ba} - {}^{o}(\underline{u}_{b} \times \underline{u}_{a})^{\mathsf{T}} {}^{o}\underline{r}_{b'a'} = 0. \tag{3.36}$$

Beispiel: RCCC-Mechanismus

Konstanter Abstand d und Winkel 8 zwischen den Geraden u2 und u3

Schließbedingungen:

$$g_{1,1}(\Theta_1,\Theta_4) = \underline{\mathbf{u}}_2^{\mathsf{T}} \underline{\mathbf{u}}_3 - \cos\delta = 0$$

$$g_{1,2}(\Theta_1,\Theta_4,s_4) = (\underline{u}_2 \times \underline{u}_3)^T \underline{r}_{23} - (-d) \sin \delta = 0$$

$$\underline{r}_{23} = -\underline{r}_{12} - \underline{r}_{41} + s_4 \underline{u}_4 + \underline{r}_{4'3}$$

 \Rightarrow Übertragungsfunktionen $\Theta_4 = f_{1,1}(\Theta_1)$

$$s_4 = f_{1,2}(\Theta_1)$$

3.4.2 Schema zur Bestimmung der sechs abhängigen Gelenkkoordinaten

1. Schritt: Wahl der Schnittgelenke (charakteristisches Gelenkpaar)

Die n_B Gelenkkoordinaten der kinematischen Schleife wird wieder in die sechs abhängigen Gelenkkoordinaten \underline{y} und die $n_q = n_\beta - 6$ unabhängigen Gelenkkoordinaten ${f q}$ aufgeteilt. Als charakteristisches Gelenkpaar werden zwei Gelenke ${f G}_{a}$ und ${f G}_{b}$ gewählt, deren Gelenkkoordinaten zu den abhängigen Koordinaten y gehören und die möglichst viele Gelenkfreiheitsgrade haben. Hierdurch wird die Anzahl der 6 - f_{Ga} - f_{Gb} simultan aufzulösenden Gleichungen (3.22) verringert.

Die sechs Schließbedingungen (3.1) bestehen dann aus einem Kern mit $h = 6 - f_{Ga} - f_{Gb}$ Gleichungen und einen explizit auflösbaren Teil mit f_{Ga} + f_{Gb} Gleichungen:

$$\left\{ \underline{\mathbf{g}}_{1}(\underline{\mathbf{y}}_{1},\underline{\mathbf{q}}) = \underline{\mathbf{0}} \right. \tag{3.22}$$

$$\underline{\mathbf{g}}(\underline{\mathbf{y}},\underline{\mathbf{q}}) = \underline{\mathbf{0}}: \begin{cases} \underline{\mathbf{g}}_{1}(\underline{\mathbf{y}}_{1},\underline{\mathbf{q}}) &= \underline{\mathbf{0}} \\ \underline{\mathbf{g}}_{1}(\underline{\mathbf{y}}_{1},\underline{\mathbf{y}}_{1},\underline{\mathbf{q}}) &= \underline{\mathbf{0}} \end{cases}$$
(3.23)

Da mindestens eine Gleichung (3.22) vorhanden sein muß, ist $f_{Ga} + f_{Gb} \le 5$. Bei Beschränkung auf Gelenke mit maximal drei Freiheitsgraden hat damit eines der beiden Schnittgelenke maximal zwei Freiheitsgrade. Dieses Schnittgelenk mit weniger Gelenkfreiheitsgraden wird im folgenden mit G_b bezeichnet.

2. Schritt: Aufstellen und Lösen des Kernsystems

Die h Schließbedingungen (3.22) werden aus den in Abschnitt 3.4.1 beschriebenen fünf Grundtypen zusammengestellt. Sie besitzen damit die allgemeine Form:

$$\underline{\mathbf{g}}_{1}(\underline{\mathbf{y}}_{1},\underline{\mathbf{q}}) = \begin{bmatrix} \mathbf{g}_{1}(\underline{\mathbf{y}}_{1},\underline{\mathbf{q}}) \\ \vdots \\ \mathbf{g}_{h}(\underline{\mathbf{y}}_{1},\underline{\mathbf{q}}) \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{\lambda_{1}} - \mathbf{o}_{\lambda_{1}} \\ \vdots \\ \mathbf{u}_{\lambda_{h}} - \mathbf{o}_{\lambda_{h}} \end{bmatrix} = \underline{\mathbf{0}} . \tag{3.37}$$

Die Anzahl und der Typ der impliziten Bindungsgleichungen sind für die möglichen Gelenkpaare in der folgenden Tabelle zusammengestellt. Während das Gleichungssystem (3.37) im Fall h > 1 wie bei der Gelenkschnittmethode im allgemeinen nur numerisch aufgelöst werden kann, ist es im Fall h = 1 explizit auflösbar.

Bei Auflösung nach einem Gelenkwinkel Θ_i liefern die Schließbedingungen der Typen 1,2,4 und 5 jeweils eine Gleichung der Form

$$A\cos\Theta_i + B\sin\Theta_i + C = 0$$

mit maximal zwei Lösungen, während die Schließbedingung des Typs 3 eine in $\sin\Theta_i$ und $\cos\Theta_i$ quadratische Gleichung mit maximal vier Lösungen liefert.

Bei Auflösung nach einer Gelenkverschiebung si liefern die Schließbedingungen der Typen 1 und 3 jeweils eine in s_i quadratische Gleichung, diejenigen der Typen 2 und 5 eine in si lineare Gleichung, während in die "sphärische" Schließbedingung des Typs 4 Gelenkverschiebungen überhaupt nicht eingehen.

Π

1. Schritt: Wahl des charakteristischen Gelenkpaares	<u>2. Schritt:</u> Aufstellen und Lösen des Kernsystems
O _a oberes Segment O _a O _b Gelenk G _a Gelenk G _b O _a Unteres Segment	u_a v_b v_b v_b v_b v_b v_b v_b
3. Schritt:	4. Schritt: Bestimmung der Gelenkkoordinaten
Bestimmung der Gelenkkoordinaten am Gelenk G_b ($f_{Gb} \le f_{Ga}$)	am Gelenk G _a
O_{a} Γ_{ba} O_{b} O_{b} O_{b} O_{b}	$C_{aa'}$ C_{ba}

Schema zur Bestimmung der Gelenkkoordinaten beim Schnitt an einem "charakteristischen Gelenkpaar"

Geler	k G _a	Gelenk G _b			Typ der Schließbedingung			ung	
Тур	f_{Ga}	Тур	f _{Gb}	h	1	2	3	4	5
S	3	T	2	1	1				
Е	3	Т	2	1		1			
S	3	E _R	2	1		1			
Е	3	E _P	2	1				1	
S	3	С	2	1			1		
Ε	3	С	2	1				1	
С	2	С	2	2				1	1
S	3	R	1	2	1	1			
Е	3	R	i	2		1		1	
С	2	R	1	3			1	1	1
R	1	R	1	4	1	2		1	
s	3	P	1	2		2			
Е	3	P	1	2				2	
С	2	P	1	3				2	1
R	1	P	i	4		2		2	
P	1	P	1	4				3	1

- R: Drehgelenk
- P: Schubgelenk
- C: Dreh-Schubgelenk
- S: Kugelgelenk
- T: Kardangelenk (zwei Drehgelenke mit sich schneidenden Achsen)
- E: Ebenes Gelenk
- E_R: Zwei Drehgelenke mit parallelen Achsen (RR) oder ein Dreh- und ein Schubgelenk mit orthogonalen Achsen (RP) oder zwei Schubgelenke mit nichtparallelen Achsen (PP)
- Ep: Zwei Drehgelenke mit parallelen Achsen (RR) oder ein Dreh- und ein Schubgelenk mit orthogonalen Achsen (RP)

Schließbedingungen des Kernsystems für alle Gelenkpaare

H

3. Schritt: Bestimmung der Gelenkkoordinaten im Gelenk Gb

Nach der Bestimmung der abhängigen Gelenkkoordinaten \underline{y}_1 aus Gl. (3.37) sind alle Gelenkkoordinaten innerhalb des oberen und des unteren Segments bekannt. Damit können die direkten Übergänge zwischen den Koordinatensystemen K_a , und K_b , an den Enden des oberen Segments sowie K_a und K_b an den Enden des unteren Segments berechnet werden (vgl. Bild in Abschnitt 3.2.3):

$$ba\underline{T} = bu\underline{T} ua\underline{T}$$
, $b\underline{r}_{ba} = bu\underline{T} (u\underline{r}_{ua} - u\underline{r}_{ub})$. (3.38)

$$b'a'\underline{T} = b'o\underline{T} \quad oa'\underline{T} \quad , \qquad b'\underline{r}_{b'a'} = b'o\underline{T} \quad (o\underline{r}_{oa'} - o\underline{r}_{ob'}) . \tag{3.39}$$

Zur Bestimmung der Gelenkkoordinaten an den Schnittgelenken G_a und G_b muß zusätzlich die Lage des oberen Segments relativ zum unteren Segment betrachtet werden, die bisher überhaupt noch nicht benötigt wurde. Dazu müssen die beiden Segmente unter Erfüllung der Schließbedingungen (3.23) »zusammengebaut« werden.

Hierbei zeigt sich, daß zunächst die maximal zwei Gelenkkoordinaten des Schnittgelenks G_b mit weniger Gelenkkoordinaten bestimmt werden können. Danach liegen am Gelenk G_b die Matrizen

vor, welche den Übergang vom Koordinatensystem K_b, nach K_b, beschreiben.

4. Schritt: Bestimmung der Gelenkkoordinaten des Gelenks Ga

Nach dem 3. Schritt kann die Lage aller Körper durch kinematische Vorwärtsrechnung dargestellt werden. Die Bestimmung der noch fehlenden Gelenkkoordinaten des zweiten Schnittgelenks $G_{\rm a}$ ist deswegen im allgemeinen nicht mehr erforderlich.

Falls die Gelenkkoordinaten von G_a dennoch bestimmt werden sollen, wird zunächst die relative Lage der Koordinatensysteme K_a und $K_{a'}$ mit Hilfe der Beziehungen

$$aa'T = abT bb'T b'a'T$$
 , (3.40)

$$a_{\underline{\Gamma}_{aa'}} = ab\underline{T} \left[-b\underline{r}_{ba} - b\underline{r}_{bb'} + bb'\underline{T} - b'\underline{r}_{b'a'} \right]$$
(3.41)

berechnet. Die Gelenkkoordinaten von G_a können daraus mit weiteren gelenkspezifischen Beziehungen ermittelt werden.

- 3.20 - II

3.4.3 Beispiel: Räumliches Gelenkviereck (RSTR-Mechanismus)

1. Schritt: Wahl der unabhängigen Gelenkkoordinaten und der Schnittgelenke Aufteilung der Gelenkkoordinaten:

$$\begin{array}{lll} q &=& \Theta_1 & , \\ & & \\ \underline{y} &=& \left[\Theta_2, \Theta_3, \Theta_4, \underline{\Theta}_5\right]^{\mathsf{T}} \ , & \underline{\Theta}_5 & \text{- Gelenkkoordinaten des Kugelgelenks} \ . \end{array}$$

Das Kugelgelenk und das Kardangelenk werden als charakteristisches Gelenkpaar gewählt. Damit ist

$$y_1 = \Theta_2$$

2. Schritt: Bestimmung von Θ_2 aus dem Kernsystem

Die Schließbedingung (3.32) für den Schnitt am Gelenkpaar Kugelgelenk-Kardangelenk wird so ausgewertet, daß der gesuchte Winkel Θ_2 herausgelöst weren kann:

$$g_1(\Theta_1, \Theta_2) = {}^{u}\lambda_1(\Theta_1, \Theta_2) - {}^{o}\lambda_1 = 0$$

mit
$$(K_u = K_2, K_0 = K_4)$$

$$\circ_{\lambda} = {}^{4'}\underline{r}_{45}^{\mathsf{T}} {}^{4'}\underline{r}_{45} = {}^{2}\underline{r}_{45}^{\mathsf{2}} = \text{const}$$

unc

H

Die Schließbedingung lautet damit

$${}^{2}\underline{\Gamma}_{27}^{\mathsf{T}} {}^{22'}\underline{\Gamma}(\Theta_{2}) {}^{2'}\underline{\Gamma}_{23} = \frac{1}{2} \left({}^{2}\underline{\Gamma}_{27}^{\mathsf{T}} {}^{2}\underline{\Gamma}_{27} + {}^{2}\Gamma_{23}^{\mathsf{T}} - {}^{2}\Gamma_{45}^{\mathsf{T}} \right). \tag{3.42}$$

Sie läßt sich nach Abschnitt 3.4.4a in eine Gleichung der Form

$$A_2(\Theta_1)\cos\Theta_2 + B_2(\Theta_1)\sin\Theta_2 + C_2(\Theta_1) = 0$$

mit zwei Lösungen entsprechend Gl. (3.46) umformen.

3. Schritt: Bestimmung der Winkel Θ_3 und Θ_4 am Kardangelenk

Der direkte Übergang vom Kardan- zum Kugelgelenk im unteren Segment lautet, vgl. Gl. (3.38):

$$^{3}\underline{\Gamma}_{37} = ^{32'}\underline{T} \left(^{2'2}\underline{T} \left(\Theta_{2} \right) ^{2}\underline{\Gamma}_{27} - ^{2'}\underline{\Gamma}_{23} \right)$$

Zur Bestimmung des Winkels Θ_3 kann durch einen Schnitt am Kugelgelenk und an der zweiten Drehachse des Kardangelenk die folgende Schließbedingung des Typs 4 aufgestellt werden:

$$g_{11,1}(\Theta_1,\Theta_2,\Theta_3) = {}^{\mathrm{u}}\lambda_4 (\Theta_1,\Theta_2,\Theta_3) - {}^{\mathrm{o}}\lambda_4 = 0$$

mit

$$^{\circ}\lambda_{4} = {^{4'}}_{145}^{\dagger} {^{4'}}_{24} = \cos \delta_{45} = \text{const}$$

und $(x_{3'} = x_4)$ Achse fest auf dem Kardankreuz)

$$u_{\lambda_4} = {}^3\underline{r}_{37}^{\mathsf{T}} {}^3\underline{u}_4 \qquad \text{mit} \qquad {}^3\underline{u}_4 = {}^{33'}\underline{T}(\Theta_3) {}^{-3'}\underline{u}_4.$$

Die Schließbedingung ergibt damit

$${}^{3}r_{37}^{7} {}^{33'}\underline{T}(\Theta_{3}) {}^{3'}\underline{u}_{4} = \cos\delta_{45} .$$
 (3.43)

Dies ist wieder eine Gleichung der Form

$$A_3(\Theta_1,\Theta_2)\cos\Theta_3 + B_3(\Theta_1,\Theta_2)\sin\Theta_3 + C_3(\Theta_1,\Theta_2) = 0$$

mit zwei Lösungen für den Winkel Θ_3 .

Der Winkel Θ_4 ergibt sich aus der Bedingung der Übereinstimmung der Vektoren \underline{r}_{37} und \underline{r}_{45} in den beiden Segmenten:

$$^{4}\underline{r}_{37} = ^{44}\underline{T}(\Theta_{4}) ^{4}\underline{r}_{45} \quad \text{mit} \quad ^{4}\underline{r}_{37} = ^{43}\underline{T} ^{3'3}\underline{T}(\Theta_{3}) ^{3}\underline{r}_{37} .$$
 (3.44)

Entsprechend Abschnitt 3.4.4b liefert diese Beziehung eindeutig den Winkel $\Theta_{\mathtt{A}}$. Insgesamt ergibt sich damit der folgende Lösungsfluß:

Die Berechnung der drei Gelenkwinkel Θ_5 , Θ_6 , Θ_7 am Kugelgelenk z.B. als KARDAN-Winkel würde zu insgesamt 8 Konfigurationen führen (für jede der Lösungen bis Gl. (3.44) jeweils zwei Lösungen für diese Winkel). Diese besitzen aber nur dann eine praktische Bedeutung, wenn das Kugelgelenk tatsächlich aus drei Drehgelenken aufgebaut ist.

П

zu 3.4.4a

zu 3.4.4b

a) Herauslösen eines Gelenkwinkels aus einem Skalarprodukt

Aus einer Schließbedingung sei der Wert S des Skalarprodukts

$$\underline{p}^{\mathsf{T}}\underline{r} = S$$

zweier beliebiger Vektoren \underline{p} und \underline{r} bekannt. Ferner liegen die Koordinaten von $\underline{\rho}$ im Koordinatensystem K_i sowie die Koordinaten von \underline{r} im Koordinatensystem Kir eines Drehgelenks Gi vor:

$${}^{i}\underline{\rho} = \begin{bmatrix} {}^{i}\rho_{x} \\ {}^{i}\rho_{y} \\ {}^{i}\rho_{z} \end{bmatrix} , \qquad {}^{i'}\underline{r} = \begin{bmatrix} {}^{i'}r_{x} \\ {}^{i'}r_{y} \\ {}^{i'}r_{z} \end{bmatrix} .$$

Unter Berücksichtigung von

$$\begin{array}{cccc}
\mathbf{ii'}\underline{\mathbf{T}}(\Theta_{\mathbf{i}}) & = \begin{bmatrix}
\cos\Theta_{\mathbf{i}} & -\sin\Theta_{\mathbf{i}} & 0 \\
\sin\Theta_{\mathbf{i}} & \cos\Theta_{\mathbf{i}} & 0 \\
0 & 0 & 1
\end{bmatrix}$$

ergibt sich eine skalare Bestimmungsgleichung für den Gelenkwinkel Θ_{i} :

$${}^{i}\underline{\rho}^{\mathsf{T}}{}^{ii'}\underline{\mathbf{T}}(\Theta_{i}){}^{i'}\underline{\mathbf{r}} = \mathbf{S} . \tag{3.45}$$

Die Auswertung von Gl. (3.48) liefert

$$A\cos\Theta_i + B\sin\Theta_i + C = 0 \qquad , \tag{3.46}$$

mit den Koeffizienten

$$\left. \begin{array}{lll} A & = & ^{i}p_{x} & ^{i'}r_{x} & + & ^{i}p_{y} & ^{i'}r_{y} \\ B & = & ^{i}p_{y} & ^{i'}r_{x} & - & ^{i}p_{x} & ^{i'}r_{y} \\ C & = & ^{i}p_{z} & ^{i'}r_{z} & - & S \end{array} \right. \label{eq:alpha}$$

Der Übergang auf die Variable $\tan\frac{\Theta_i}{2}$ zeigt, daß Gl. (3.46) eine quadratische Struktur besitzt. Um Schwierigkeiten bei Winkelwerten $\Theta_i = \pi$ zu umgehen, werden jedoch die Lösungen günstiger direkt aus der Form (3.46) bestimmt. Es werden zwei Lösungen für den Gelenkwinkel $\Theta_{\rm i}$ erhalten:

$$\cos \Theta_{i} = \frac{-AC - (-1)^{k} B \sqrt{A^{2} + B^{2} - C^{2}}}{A^{2} + B^{2}}$$

$$\sin \Theta_{i} = \frac{-BC + (-1)^{k} A \sqrt{A^{2} + B^{2} - C^{2}}}{A^{2} + B^{2}}$$

$$(3.47)$$

b) Herauslösen eines Gelenkwinkels aus zwei Koordinatendarstellungen eines Vektors

Gegeben seien die Koordinaten eines beliebigen Vektors r in den Koordinatensystemen K_i und $K_{i'}$ eines Drehgelenks G_i :

$$\mathbf{i}_{\underline{\Gamma}} = \begin{bmatrix} \mathbf{i}_{\Gamma_{\mathbf{X}}} \\ \mathbf{i}_{\Gamma_{\mathbf{y}}} \\ \mathbf{i}_{\Gamma_{\mathbf{z}}} \end{bmatrix} , \qquad \mathbf{i}_{\underline{\Gamma}} = \begin{bmatrix} \mathbf{i}_{\Gamma_{\mathbf{X}}} \\ \mathbf{i}_{\Gamma_{\mathbf{y}}} \\ \mathbf{i}_{\Gamma_{\mathbf{z}}} \end{bmatrix} .$$

Der Vektor r soll dabei nicht parallel zur Gelenkachse ui liegen. Aus den x- und y-Komponenten der Transformationsgleichung

$${}^{i}r = {}^{ii'}T(\Theta_i){}^{i'}\underline{r} \tag{3.48}$$

ergibt sich mit der Transformationsmatrix $^{ii'}\underline{\underline{T}}(\theta_i)$ eindeutig der Gelenkwinkel θ_i (die z-Komponente von Gl. (3.48), ${}^{i}r_{z} = {}^{i}r_{z}$, ist trivial):

$$\cos \Theta_{i} = \frac{i_{r_{x}} i'_{r_{x}} + i_{r_{y}} i'_{r_{y}}}{i'_{r_{x}}^{2} + i'_{r_{y}}^{2}}$$

$$\sin \Theta_{i} = \frac{i_{r_{y}} i'_{r_{x}} - i_{r_{x}} i'_{r_{y}}}{i'_{r_{x}}^{2} + i'_{r_{y}}^{2}}$$
(3.49)

H

c) Herauslösen von Gelenkverschiebungen aus Linearkombinationen von Vektoren

Die Bestimmungsgleichungen für Verschiebungen s_i bei Schubgelenken können als Linearkombinationen von bereits vorliegenden Vektoren formuliert werden, wobei die gesuchten Gelenkverschiebungen als Linearfaktoren auftreten. Bei der Auflösung nach den Gelenkverschiebungen sind drei Fälle zu unterscheiden.

- Eine unbekannte Gelenkverschiebung

Aus der Bestimmungsgleichung

$$s_1 \underline{p}_1 = \underline{r} \tag{3.50}$$

mit bekannten Vektoren $\underline{\rho}_1$ und \underline{r} ergibt sich die Gelenkverschiebung s_1 durch skalare Multiplikation mit dem Vektor $\underline{\rho}_1$:

$$\mathbf{s}_{1} = \frac{\underline{\rho}_{1}^{\mathsf{T}} \underline{\mathbf{r}}}{\underline{\rho}_{1}^{\mathsf{T}} \underline{\rho}_{1}} \tag{3.51}$$

- Zwei unbekannte Gelenkverschiebungen

Aus der Bestimmungsgleichung

$$s_1 p_1 + s_2 p_2 = r ag{3.52}$$

mit bekannten Vektoren $\underline{p}_1,\underline{p}_2$ und \underline{r} erhält man die Gelenkverschiebung s_1 durch skalare Multiplikation mit einem Vektor \underline{c}_1 , der senkrecht auf \underline{p}_2 steht (s_2 durch Indextausch 1-2):

$$s_1 = \frac{\underline{c}_1^{\mathsf{T}} \underline{r}}{\underline{c}_1^{\mathsf{T}} \underline{p}_1} \qquad \text{mit} \qquad \underline{c}_1 = \underline{p}_2 \times (\underline{p}_1 \times \underline{p}_2) \ . \tag{3.53}$$

- Drei unbekannte Gelenkverschiebungen

Die Bestimmungsgleichung

$$s_1 \underline{p}_1 + s_2 \underline{p}_2 + s_3 \underline{p}_3 = \underline{r} \tag{3.54}$$

stellt bei bekannten Vektoren \underline{p}_1 , \underline{p}_2 , \underline{p}_3 und \underline{r} ein lineares Gleichungssystem für die drei Gelenkverschiebungen s_1 , s_2 und s_3 dar. Eine geschlossene Lösungsdarstellung z.B. für die Gelenkkoordinate s_1 wird durch skalare Multiplikation mit dem Vektor $\underline{p}_2 \times \underline{p}_3$ (s_2 und s_3 durch zyklischen Indextausch 1-2-3) erhalten:

$$s_1 = \frac{(\underline{p}_2 \times \underline{p}_3)^T \underline{r}}{(\underline{p}_2 \times \underline{p}_3)^T \underline{p}_1} . \tag{3.55}$$

Dies entspricht der Lösung des linearen Gleichungssystems (3.54) mit Hilfe der CRAMERschen Regel.

3.5 Analyse der Geschwindigkeiten in einer kinematischen Schleife

Bei der Geschwindigkeitsanalyse in einer kinematischen Schleife werden für eine gegebene Position die sechs Geschwindigkeiten $\dot{\underline{y}}$ in Abhängigkeit der n_{β} – 6 unabhängigen Geschwindigkeiten $\dot{\underline{q}}$ aus dem linearen Gleichungssystem (3.3) bestimmt:

$$\underline{\dot{\mathbf{g}}}(\underline{\mathbf{y}},\underline{\mathbf{q}},\underline{\dot{\mathbf{y}}},\underline{\dot{\mathbf{q}}}) = \underline{\mathbf{J}}_{\mathbf{y}}\,\underline{\dot{\mathbf{y}}} + \underline{\mathbf{J}}_{\mathbf{q}}\,\underline{\dot{\mathbf{q}}} = \underline{\mathbf{0}} ,$$

$$\Rightarrow \mathbf{J}_{\mathbf{v}}\,\dot{\mathbf{y}} = -\mathbf{J}_{\mathbf{q}}\,\underline{\dot{\mathbf{q}}} .$$
(3.56)

Im folgenden Abschnitt wird das Gleichungssystem (3.56) mit Hilfe der Methode des Auftrennens der Schleife an einem Körper aufgestellt. Die anschließend beschriebenen Methoden des Auftrennens der Schleife an einem Gelenk bzw. an einem Gelenkpaar ermöglichen wieder die Aufstellung eines reduzierten Kernsystems, in das die Gelenkkoordinaten der Schnittgelenke nicht eingehen. Da (3.56) linear in den Unbekannten \dot{y} ist, haben diese Vorgehensweisen bei der Geschwindigkeitsanalyse allerdings keine so große Bedeutung wie bei der Positionsanalyse. Dennoch können sie insbesondere dann vorteilhaft angewandt werden, wenn nicht sämtliche Unbekannten \dot{y} bestimmt werden müssen. Die reduzierte Anzahl von Gleichungen des Kernsystems ermöglicht es ferner, Strecklagen (vertikale Tangenten der Übertragungsfunktionen $\dot{y} = \underline{f}(\dot{q})$) einfacher zu erkennen und zu interpretieren.

3.5.1 Auftrennen der Schleife an einem Körper -- Abschnitt 3.2.1

Auf Geschwindigkeitsebene gelten die Schließbedingungen (3.12) und (3.13), die zu einer Matrizengleichung zusammengefaßt werden können:

$$\begin{bmatrix} \omega_{\text{OA}} \\ \underline{v}_{\text{OA}} \end{bmatrix} - \begin{bmatrix} \omega_{\text{OB}} \\ \underline{v}_{\text{OB}} \end{bmatrix} = \underline{O} , \qquad (3.57a)$$

$${}^{0}\underline{\dot{z}}_{0A} - {}^{0}\underline{\dot{z}}_{0B} = \underline{0} . \tag{3.57b}$$

Werden die Gelenkkoordinaten der zwischen K_0 und K_A und der zwischen K_0 und K_B liegenden Gelenke in den Vektoren $\underline{\beta}_{0A}$ bzw. $\underline{\beta}_{0B}$ zusammengefaßt, so lassen sich die Geschwindigkeiten gemäß Gl. (2.27) in Matrizenform darstellen:

$${}^{0}\dot{z}_{0A} = {}^{0}J_{0A} \dot{\beta}_{0A}$$
, (3.58)

$${}^{0}\dot{z}_{0B} = {}^{0}J_{0B} \dot{\beta}_{0B} . \tag{3.59}$$

Hierbei sind \underline{J}_{0A} und \underline{J}_{0B} die JACOBI-Matrizen der Bewegungen von K_A bzw. K_B relativ zu K_0 . Mit (3.58)/(3.59) geht (3.57) über in

$${}^{0}\underline{J}_{OA} \stackrel{.}{\underline{\beta}}_{OA} - {}^{0}\underline{J}_{OB} \stackrel{.}{\underline{\beta}}_{OB} = \underline{O}$$
 ,

$$\rightarrow \quad {}^{0}\left[\underline{J}_{0A} \mid -\underline{J}_{0B}\right]\left[\dot{\underline{\beta}}_{0A}\right] = \underline{0} . \tag{3.60a}$$

$${}^{0}\underline{J}_{\beta}$$
 $\dot{\underline{\beta}}$ = \underline{O} . (3.60b)

Dies ist ein unterbestimmtes homogenes System mit 6 linearen Gleichungen für die n_{β} Geschwindigkeiten $\dot{\underline{\beta}}$ aller Gelenkkoordinaten der Schleife. Die (6,n_{\beta})-Matrix wird als die "JACOBI-Matrix der Schleife" bezeichnet.

Für die Lösung von (3.60) werden die n_{β} Gelenkkoordinaten $\underline{\beta}$ in die 6 abhängigen Koordinaten y und die 6 - n_B unabhängigen Koordinaten (Minimalkoordinaten) \underline{q} aufgeteilt. Nach entsprechender Umordnung wird dann ein lineares Gleichungsystem der Form (3.56) für die sechs Unbekannten y erhalten:

$${}^{0}\left[\begin{array}{c}\underline{J}_{y}+\underline{J}_{q}\end{array}\right]\left[\begin{array}{c}\underline{\dot{y}}\\\underline{\dot{q}}\end{array}\right]=\underline{O}\qquad\Rightarrow\qquad{}^{0}\underline{J}_{y}\;\underline{\dot{y}}\;\;=\;-\;{}^{0}\underline{J}_{q}\;\underline{\dot{q}}\;\;. \tag{3.61}$$

Als Anforderung an die Auswahl der unabhängigen Gelenkkoordinaten q ergibt sich daraus, daß die (6,6)-Matrix ${}^0\underline{J}_y$ regulär sein muß. Mit einer einmaligen Festlegung von q kann diese Bedingung im allgemeinen jedoch nicht im gesamten Definitionsbereich der unabhängigen Koordinaten q erfüllt werden. Dies erfordert dann während der Bewegung ein Umschalten auf einen anderen Satz von unabhängigen Koordinaten q, siehe Beispiele in den folgenden Abschnitten 3.5.2 und 3.5.3.

Bemerkungen:

- Die Zeitableitung der rotatorischen Lage-Schließbedingung (3.9), $\underline{g}^{r} = {}^{0A}\underline{T} - {}^{0B}\underline{T} = \underline{0}$, im Sinne von Gl. (3.3) ergibt

$$\underline{\dot{g}}^r = {}^{0A}\underline{\dot{T}} - {}^{0B}\underline{\dot{T}} = \underline{0} \ .$$

Die einfachere Schließbedingung (3.12), $^{0}\underline{\omega}_{0A}$ - $^{0}\underline{\omega}_{0B}$ = $\underline{0}$, entsteht daraus durch Multiplikation mit ${}^{0A}\underline{T}^{T} = {}^{0B}\underline{T}^{T}$ von rechts, vgl. Gl. (3.18) (I). Die Formulierung der Geschwindigkeits-Schließbedingung (3.3) als direkte Zeitableitung der Lage-Schließbedingung (3.1) ist damit in diesem Fall zu speziell. Tatsächlich kann (3.3) durch jedes andere lineare Gleichungssystem, das aus (3.3) durch äquivalente Umformungen entsteht, ersetzt werden. Dies wurde in (3.12)/3.57) dazu ausgenutzt, die rotatorische Schließbedingung direkt mit Hilfe der Winkelgeschwindigkeiten zu formulieren.

- Die JACOBI-Matrizen in (3.58)/(3.59) können gemäß (2.27) unmittelbar mit Hilfe von Vektoren, die aus der vorhergegangenen Positionsanalyse bekannt sind, analytisch dargestellt werden. Eine "symbolische" Differentiation der Lage-Schließbedingungen (3.1), $g(\underline{y},\underline{q}) = \underline{0}$, ist deswegen nicht erforderlich.

3.5.2 Auftrennen der Schleife an einem Gelenk -> Abschnitt 3.2.2

Die gelenkspezifischen Schließbedingungen, z.B. (3.26) bis (3.30), ergeben das Kernsystem (3.16), $g_1(\underline{y}_1,\underline{q}) = \underline{0}$, in das nur die $n_\beta - f_{Ga}$ Gelenkkoordinaten $\underline{\beta}_1 = [\underline{y}_1,\underline{q}]^T$ außerhalb des Schnittgelenks Ga eingehen. Die Zeitableitung von (3.16) ergibt ein lineares Gleichungssystem zur Bestimmung der $6-f_{Ga}$ Ableitungen \dot{y}_l der abhängigen Gelenkkoordinaten:

$$\begin{array}{lll} \underline{\dot{g}}_{1}(\underline{y}_{1},\underline{q};\underline{\dot{y}}_{1},\underline{\dot{q}}) &=& \underline{J}_{y_{1}}\;\underline{\dot{y}}_{1} &+& \underline{J}_{q_{1}}\;\underline{\dot{q}} &=& \underline{0}\;\;,\\ \\ \Rightarrow & \underline{J}_{y_{1}}\;\underline{\dot{y}}_{1} &=& -& \underline{J}_{q_{1}}\;\underline{\dot{q}}\;\;. \end{array} \tag{3.62}$$

Entsprechend den Überlegungen des vorhergehenden Abschnitts müssen die unabhängigen Koordinaten \underline{q} so gewählt werden, daß die (6-f $_{Ga}$,6-f $_{Ga}$)-Matrix \underline{J}_{yl} regulär ist.

Zur Aufstellung von (3.62) können die Schließbedingungen (3.26) bis (3.30) stets so umgeformt werden, daß die analog zu (3.58)/(3.59) ausgedrückten Geschwindigkeiten

$${}^{0}\underline{\dot{z}}_{0a'} = {}^{0}\underline{\dot{J}}_{0a'} \dot{\underline{\dot{\rho}}}_{0a'} : \qquad {}^{0}\underline{\underline{\dot{\omega}}}_{0a'} = {}^{0}\underline{\underline{\dot{J}}}_{0a'}^{r} \dot{\underline{\dot{\rho}}}_{0a'} \dot{\underline{\dot{\rho}}}_{0a'} , \qquad (3.63)$$

$${}^{0}\underline{\dot{z}}_{0a} = {}^{0}\underline{J}_{0a} \ \dot{\underline{\beta}}_{0a} : \qquad {}^{0}\left[\underline{\omega}_{0a}\right] = {}^{0}\left[\underline{J}_{0a}^{r}\right] \dot{\underline{\beta}}_{0a}$$

$$(3.64)$$

der Koordinatensysteme K_{a} , bzw. K_{a} relativ zu K_{0} eingesetzt werden können.

Beispiel:

Am Kardangelenk ergibt sich ausgehend von den Schließbedingungen (3.28) (Koordinatenindex o oben links weggelassen):

$$\underline{\underline{r}}_{0a}, \quad -\underline{\underline{r}}_{0a} = \underline{\underline{0}} \quad \Rightarrow \quad 0 \dot{\underline{r}}_{0a}, \quad -\underline{\underline{0}} \dot{\underline{r}}_{0a} = \underline{\underline{0}} ,$$

$$\Rightarrow \quad \underline{\underline{v}}_{0a}, \quad -\underline{\underline{v}}_{0a} = \underline{\underline{0}} ,$$
(i)

$$\underline{e}_{za}^{\mathsf{T}}, \ \underline{e}_{za} = 0 \qquad \Rightarrow \qquad 0 \underline{\dot{e}}_{za}^{\mathsf{T}}, \ \underline{e}_{za} + \underline{e}_{za}^{\mathsf{T}}, \ 0 \underline{\dot{e}}_{za} = 0 ,$$

$$\Rightarrow \qquad (\underline{\omega}_{0a}, \times \underline{e}_{za},)^{\mathsf{T}} \ \underline{e}_{za} + \underline{e}_{za}^{\mathsf{T}}, (\underline{\omega}_{0a} \times \underline{e}_{za}) = 0 ,$$

$$\Rightarrow \qquad (\underline{e}_{za}, \times \underline{e}_{za})^{\mathsf{T}} \ (\underline{\omega}_{0a}, -\underline{\omega}_{0a}) = 0 .$$
(ii)

Einsetzen der Geschwindigkeiten aus (3.63) und (3.64) in (i) und (ii) ergibt insgesamt ein unterbestimmtes System mit 6 - f_{Ga} Gleichungen in n_{β} - f_{Ga} Variablen $\dot{\underline{\beta}}_{l}$:

$$\begin{bmatrix} \underline{J}_{0a}^{t}, & -\underline{J}_{0a}^{t} \\ (\underline{e}_{za}, \times \underline{e}_{za})^{\mathsf{T}} \underline{J}_{0a}^{\mathsf{r}}, & -(\underline{e}_{za}, \times \underline{e}_{za})^{\mathsf{T}} \underline{J}_{0a}^{\mathsf{r}} \end{bmatrix} \begin{bmatrix} \dot{\underline{e}}_{0a}, \\ \dot{\underline{e}}_{0a} \end{bmatrix} = \underline{0} ,$$

$$\underline{\underline{J}}_{\beta 1} \qquad \qquad \dot{\underline{B}}_{1} . \qquad (iii)$$

Durch die Aufteilung von $\dot{\underline{\beta}}_1$ in $\dot{\underline{y}}_1$ und $\dot{\underline{q}}$ kann (iii) in ein Gleichungssystem der Form (3.62) zur Bestimmung von \dot{y}_1 umgeordnet werden.

Für die noch fehlenden $\,f_{Ga}\,$ Geschwindigkeiten $\,\underline{\dot{y}}_{\parallel}\,$ am Schnittgelenk können weitere Bestimmungsgleichungen aufgestellt werden. Sie werden häufig jedoch überhaupt nicht benötigt, da bereits mit der Kenntnis von $\dot{\underline{y}}_l$ die Geschwindigkeiten aller Körper in Abhängigkeit von q ausgedrückt werden können.

1

Beispiel: Räumliches Gelenkviereck (RSTR-Mechanismus, f = 1) Schnitt am Kugelgelenk.

Gelenkkoordinaten des Kernsystems:

$$\underline{\beta}_1 = \left[\Theta_1, \Theta_2, \Theta_3, \Theta_4\right]^{\mathsf{T}}.$$

Schließbedingungen (Bezugssystem für Zeitableitungen im Grundgestell):

Mit der Wahl von $q = \Theta_1$ ergibt sich durch Umordnen das Gleichungssystem (3.62):

 $\Rightarrow \quad \underline{\dot{y}}_{l} = - \quad \underline{J}_{yl}^{-1} \, \underline{J}_{ql} \, \dot{q} \ .$

Die Wahl von $q = \Theta_i$ ist möglich, solange $det(\underline{J}_{yi}) \neq 0$ gilt.

Der Fall $\det(\underline{J}_{y1})=0$ tritt ein, wenn die Spalten von \underline{J}_{y1} linear abhängig sind. Das Gelenkviereck befindet sich dann in einer *Strecklage*. Werden die Sonderfälle $|\underline{r}_{23}|=0$, $|\underline{r}_{45}|=0$ und $\underline{u}_3\parallel\underline{u}_4$ ausgeschlossen, gibt es hierfür zwei Möglichkeiten:

- (i) Die Vektoren $\underline{u}_2 \times \underline{r}_{25}$, $\underline{u}_3 \times \underline{r}_{45}$ und $\underline{u}_4 \times \underline{r}_{45}$ sind linear abhängig.
 - \rightarrow Die Vektoren \underline{r}_{25} und \underline{r}_{45} liegen in einer Ebene.

- \rightarrow Umschalten auf $q = \Theta_2$.
- (ii) Die Vektoren $\underline{u}_3 \times \underline{r}_{45}$ und $\underline{u}_4 \times \underline{r}_{45}$ sind linear abhängig.
 - \rightarrow Die Koppel \underline{r}_{45} liegt in der Ebene der Kardanachsen \underline{u}_3 und \underline{u}_4 .

 \Rightarrow Umschalten auf $q = \Theta_3$ oder $q = \Theta_4$.

Aus numerischen Gründen sollte bereits in einer gewissen Umgebung dieser Strecklagen auf die neue unabhängige Koordinate umgeschaltet werden.

3.5.3 Auftrennen der Schleife an einem Gelenkpaar → Abschnitt 3.2.3

Die fünf elementaren Schließbedingungen (3.32) bis (3.36) ergeben das Kernsystem (3.37), $\underline{g}_1(\underline{y}_1,\underline{q})=\underline{0}$, in das nur die n_β – f_{Ga} – f_{Gb} Gelenkkoordinaten $\underline{\beta}_1=[\underline{y}_1,\underline{q}]^T$ außerhalb der Schnittgelenke G_a und G_b eingehen. Die Zeitableitung von (3.37) ergibt ein lineares Gleichungssystem zur Bestimmung der h=6 – f_{Ga} – f_{Gb} abhängigen Geschwindigkeiten $\underline{\dot{y}}_1$:

$$\underline{\dot{g}}_{1}(\underline{y}_{1},\underline{q};\underline{\dot{y}}_{1},\underline{\dot{q}}) = \begin{bmatrix} u\dot{\lambda}_{1} - {}^{\circ}\dot{\lambda}_{1} \\ \vdots \\ u\dot{\lambda}_{h} - {}^{\circ}\dot{\lambda}_{h} \end{bmatrix} = \underline{J}_{y_{1}}\underline{\dot{y}}_{1} + \underline{J}_{q_{1}}\underline{\dot{q}} = \underline{0} ,$$

$$\Rightarrow \underline{J}_{y_{1}}\underline{\dot{y}}_{1} = -\underline{J}_{q_{1}}\underline{\dot{q}} . \tag{3.65}$$

Die unabhängigen Koordinaten \underline{q} müssen so gewählt werden, daß die (h,h)-Matrix \underline{J}_{yi} regulär ist.

Die Zeitableitungen der fünf elementaren Schließbedingungen lauten im einzelnen:

Typ 1: \rightarrow G1. (3.32)

$$\dot{\mathbf{g}} = 2 \left(\mathbf{u} \dot{\mathbf{r}}_{ba}^{\mathsf{T}} \mathbf{r}_{ba} \right) - 2 \left(\mathbf{o} \dot{\mathbf{r}}_{ba}^{\mathsf{T}} \mathbf{r}_{ba} \right) = 0 . \tag{3.66}$$

Typ 2: \Rightarrow G1. (3.33)

$$\dot{\mathbf{g}} = {}^{\mathbf{u}} \left(\mathbf{u} \dot{\underline{\mathbf{r}}}_{\mathbf{b}a}^{\mathsf{T}} \underline{\mathbf{u}}_{\mathbf{b}} + \underline{\mathbf{r}}_{\mathbf{b}a}^{\mathsf{T}} \mathbf{u} \dot{\underline{\mathbf{u}}}_{\mathbf{b}} \right) - {}^{\mathsf{o}} \left({}_{\mathsf{o}} \dot{\underline{\mathbf{r}}}_{\mathbf{b}'a}^{\mathsf{T}} \underline{\mathbf{u}}_{\mathbf{b}} + \underline{\mathbf{r}}_{\mathbf{b}'a}^{\mathsf{T}} \mathbf{o} \dot{\underline{\mathbf{u}}}_{\mathbf{b}} \right) = 0 . \tag{3.67}$$

Typ 3: \rightarrow G1. (3.34)

$$\dot{g} = 2^{\mathbf{u}} \left(\mathbf{u} \dot{\underline{r}}_{ba} \times \underline{\mathbf{u}}_{b} + \underline{\mathbf{r}}_{ba} \times \mathbf{u} \dot{\underline{\mathbf{u}}}_{b} \right)^{\mathsf{T}} \quad \mathbf{u} \left(\underline{\mathbf{r}}_{ba} \times \underline{\mathbf{u}}_{b} \right) - 2^{\circ} \left(\mathbf{o} \dot{\underline{\mathbf{r}}}_{b'a} \times \underline{\mathbf{u}}_{b} + \underline{\mathbf{r}}_{b'a} \times \mathbf{o} \dot{\underline{\mathbf{u}}}_{b} \right)^{\mathsf{T}} \quad \circ \left(\underline{\mathbf{r}}_{b'a} \times \underline{\mathbf{u}}_{b} \right) = 0.$$

$$\mathbf{u} \dot{\lambda}_{3} \qquad \qquad \circ \dot{\lambda}_{3} \qquad \qquad (3.68)$$

Typ 4: \rightarrow GI. (3.35)

$$\dot{\mathbf{g}} = {}^{\mathbf{u}} \left({}_{\mathbf{u}} \dot{\underline{\mathbf{u}}}_{\mathbf{b}}^{\mathsf{T}} \, \underline{\mathbf{u}}_{\mathbf{a}} + \underline{\mathbf{u}}_{\mathbf{b}}^{\mathsf{T}} \, \underline{\mathbf{u}}_{\dot{\mathbf{u}}} \right) - {}^{\mathsf{O}} \left({}_{\mathsf{O}} \dot{\underline{\mathbf{u}}}_{\mathbf{b}}^{\mathsf{T}} \, \underline{\mathbf{u}}_{\mathbf{a}} + \underline{\mathbf{u}}_{\mathsf{b}}^{\mathsf{T}} \, \underline{\mathbf{u}}_{\dot{\mathbf{a}}} \right) = 0 . \tag{3.69}$$

Typ 5: \rightarrow G1. (3.36)

$$\dot{g} = {}^{u} \left(\left({}_{u} \dot{\underline{u}}_{b} \times \underline{u}_{a} + \underline{u}_{b} \times {}_{u} \dot{\underline{u}}_{a} \right)^{T} \underline{r}_{ba} + \left(\underline{u}_{b} \times \underline{u}_{a} \right)^{T} \underline{r}_{ba} \right) +$$

$${}^{u} \dot{\lambda}_{5}$$

$$- {}^{o} \left(\left({}_{o} \dot{\underline{u}}_{b} \times \underline{u}_{a} + \underline{u}_{b} \times {}_{o} \dot{\underline{u}}_{a} \right)^{T} \underline{r}_{b'a'} + \left(\underline{u}_{b} \times \underline{u}_{a} \right)^{T} \underline{\sigma}_{b'a'} \right) = 0 .$$

$${}^{o} \dot{\lambda}_{5}$$

$$(3.70)$$

Mit Hilfe der analog zu (3.58)/(3.59) ausgedrückten Geschwindigkeiten

$$u_{\dot{Z}_{113}} = u_{J_{112}} \dot{\beta}_{112} , \qquad u_{\dot{Z}_{11}b} = u_{J_{11}b} \dot{\beta}_{11b} , \qquad (3.71)$$

$$\circ_{\underline{\dot{z}}_{OB'}} = \circ_{\underline{J}_{OB'}} \dot{\underline{\beta}}_{ua'} , \qquad \circ_{\underline{\dot{z}}_{OB'}} = \circ_{\underline{J}_{OB'}} \dot{\underline{\beta}}_{OB'} , \qquad (3.72)$$

können die Schließbedingungen (3.66) bis (3.70) so umgeformt werden, daß Gl. (3.65) aufgebaut werden kann, vgl. Abschnitt 3.5.2.

Die noch fehlenden f_{Ga} + f_{Gb} Geschwindigkeiten $\underline{\dot{y}}_{ll}$ an den beiden Schnittgelenken können anschließend aus weiteren Schließbedingungen bestimmt werden, die hier jedoch nicht betrachtet werden.

Belsplel: Räumliches Gelenkviereck (RSTR-Mechanismus, f = 1)

Schnitt am Gelenkpaar Kugelgelenk - Kardangelenk.

Gelenkkoordinaten des Kernsystems:

$$\underline{\beta}_1 = \left[\Theta_1, \Theta_2\right]^{\mathsf{T}}.$$

Schließbedingung Typ 1 ($K_u = K_2$, $K_o = K_4$):

$$2 \cdot 2 \cdot \dot{\underline{r}}_{37}^{\mathsf{T}} \cdot \underline{r}_{37} - 2 \cdot 4 \cdot \dot{\underline{r}}_{45}^{\mathsf{T}} \cdot \underline{r}_{45} = 0 \qquad \text{mit} \quad 2 \cdot \dot{\underline{r}}_{37} = \dot{\Theta}_{1} \underline{u}_{1} \times \underline{r}_{17} - \dot{\Theta}_{2} \underline{u}_{2} \times \underline{r}_{23} ,$$

$$4 \cdot \dot{\underline{r}}_{45} = \underline{0} \quad \text{(feste Koppellänge)} ,$$

Mit der Wahl von $q = \Theta_1$ gilt entsprechend Gl. (3.65):

$$\begin{split} &-(\underline{u}_2\times\underline{r}_{23})^T\underline{r}_{37}\ \dot{\Theta}_2\ =\ -(\underline{u}_1\times\underline{r}_{17})^T\underline{r}_{37}\ \dot{\Theta}_1\ ,\\ &J_{yl}\qquad \dot{y}_l\ =\ -J_{ql}\qquad \dot{q}\ ,\\ \\ &\rightarrow\ \dot{\underline{y}}_l\ =\ -J_{yl}^{-1}\ \underline{J}_{ql}\ \dot{q}\ ;\qquad \dot{\Theta}_2\ =\ \frac{(\underline{u}_1\times\underline{r}_{17})^T\underline{r}_{37}}{(\underline{u}_2\times\underline{r}_{23})^T\underline{r}_{37}}\ \dot{\Theta}_1\ . \end{split}$$

Der Fall J_{y1} = 0 tritt ein, wenn \underline{u}_2 , \underline{r}_{23} und \underline{r}_{37} = \underline{r}_{45} komplanar sind. Dies entspricht dem bereits im Beispiel in Abschnitt 3.5.2 betrachteten Fall (i).

3.6 Analyse der Beschleunigungen in einer kinematischen Schleife

Bei der Beschleunigungsanalyse in einer kinematischen Schleife werden für eine gegebene Position und gegebene Geschwindigkeiten die sechs Beschleunigungen \ddot{g} in Abhängigkeit der n_{β} – 6 unabhängigen Beschleunigungen \ddot{g} aus dem linearen Gleichungssystem (3.4) bestimmt:

Ausgehend von den Geschwindigkeitsbeziehungen aus Abschnitt 3.5.1 wird im folgenden Abschnitt das Gleichungssystem (3.73) mit Hilfe der Methode des Auftrennens der Schleife an einem Körper aufgestellt. Die Methoden des Auftrennens der Schleife an einem Gelenk bzw. an einem Gelenkpaar können durch Ableiten der entsprechenden Geschwindigkeitsbeziehungen aus den Abschnitten 3.5.2 und 3.5.3 ebenfalls angewandt werden. Hier werden allerdings lediglich die Beispiele aus diesen Abschnitten weitergeführt.

3.6.1 Auftrennen der Schleife an einem Körper -- Abschnitt 3.5.1

Auf Beschleunigungsebene gelten die Schließbedingungen (3.14) und (3.15), die entsprechend (3.57) zu einer Matrizengleichung zusammengefaßt werden können:

$$\begin{bmatrix}
\underline{\alpha}_{0A} \\ \underline{a}_{0A}
\end{bmatrix} - \begin{bmatrix}
\underline{\alpha}_{0B} \\ \underline{a}_{0B}
\end{bmatrix} = \underline{0} .$$
(3.74a)

$${}^{0}\underline{\ddot{z}}_{OA} - {}^{0}\underline{\ddot{z}}_{OB} = \underline{O} . \tag{3.74b}$$

Mit den Zeitableitungen der Geschwindigkeitsbeziehungen (3.58)/(3.59)

$${}^{\circ}\underline{z}_{0A} = {}^{\circ}J_{0A} \, \ddot{\beta}_{0A} + {}^{\circ}\underline{j}_{0A} \, \dot{\beta}_{0A} .$$
 (3.75)

$${}^{0}\ddot{z}_{OB} = {}^{0}J_{OB} \ddot{\beta}_{OB} + {}^{0}\dot{J}_{OB} \dot{\beta}_{OB} , \qquad (3.76)$$

vgl. Gl. (2.31), gehen die Schließbedingungen (3.74) über in

$${}^{0}\underline{J}_{OA}$$
 $\ddot{\underline{\beta}}_{OA}$ - ${}^{0}\underline{J}_{OB}$ $\ddot{\underline{\beta}}_{OB}$ + ${}^{0}\underline{j}_{OA}$ $\dot{\underline{\beta}}_{OA}$ - ${}^{0}\underline{j}_{OB}$ $\dot{\underline{\beta}}_{OB}$ = \underline{O} bzw.

$${}^{0}\left[\underline{J}_{0A} \mid -\underline{J}_{0B}\right] \left[\frac{\ddot{\beta}_{0A}}{\ddot{\beta}_{0B}} \right] = -{}^{0}\left[\underline{\dot{J}}_{0A} \mid -\underline{\dot{J}}_{0B}\right] \left[\frac{\dot{\beta}_{0A}}{\dot{\beta}_{0B}} \right], \tag{3.77a}$$

$${}^{\circ}\mathbf{j}_{\beta} \qquad \ddot{\beta} = - \qquad {}^{\circ}\dot{\mathbf{j}}_{\beta} \qquad \dot{\beta} \qquad (3.77b)$$

Dies ist ein unterbestimmtes lineares Gleichungssystem mit 6 Gleichungen für die n_{β} Beschleunigungen $\ddot{\beta}$ aller Gelenkkoordinaten der Schleife. Als Koeffizientenmatrix tritt wieder die $(6,n_{\beta})$ -JACOBI-Matrix \underline{J}_{β} der Schleife aus GI. (3.60) auf.

Mit der Aufteilung der n_{β} Gelenkkoordinaten $\underline{\beta}$ in die 6 abhängigen Koordinaten \underline{y} und die 6 - n_{β} unabhängigen Koordinaten (Minimalkoordinaten) \underline{q} ergibt sich daraus nach entsprechender Umordnung ein lineares Gleichungsystem der Form (3.73) für die sechs Beschleunigungen \underline{y} , vgl. Gl. (3.61):

3.6.2 Auftrennen der Schleife an einem Gelenk -> Abschnitt 3.5.2

Beispiel: Räumliches Gelenkviereck (RSTR-Mechanismus, f = 1)

Schließbedingungen:

$$\underline{a}_{15} - \underline{a}_{17} = \underline{0} \qquad \text{mit} \qquad \underline{a}_{17} = \ddot{\Theta}_1 \underline{u}_1 \times \underline{r}_{17} + \underline{\bar{a}}_{17} ,$$

$$\underline{a}_{15} = \ddot{\Theta}_2 \underline{u}_2 \times \underline{r}_{25} + \ddot{\Theta}_3 \underline{u}_3 \times \underline{r}_{35} + \ddot{\Theta}_4 \underline{u}_4 \times \underline{r}_{45} + \underline{\bar{a}}_{15} ,$$

$$\uparrow \underline{r}_{45}$$

Die von den Gelenkbeschleunigungen $\ddot{\Theta}_i$ unabhängigen Terme sind:

$$\begin{split} & \underline{\hat{a}}_{17} \; = \; \dot{\Theta}_1 \underbrace{\dot{\underline{u}}_1}_{\Omega} \times \underline{r}_{17} \; + \; \dot{\Theta}_1 \underline{u}_1 \times \dot{\underline{r}}_{17} \; , \\ & \underline{\bar{a}}_{15} \; = \; \dot{\Theta}_2 \left(\underbrace{\dot{\underline{u}}_2}_{\Omega} \times \underline{r}_{25} \; + \; \underline{u}_2 \times \dot{\underline{r}}_{25} \right) \; + \; \dot{\Theta}_3 \left(\dot{\underline{u}}_3 \times \underline{r}_{45} \; + \; \underline{u}_3 \times \dot{\underline{r}}_{45} \; \right) \; + \; \dot{\Theta}_4 \left(\dot{\underline{u}}_4 \times \underline{r}_{45} \; + \; \underline{u}_4 \times \dot{\underline{r}}_{45} \right) \; , \end{split}$$

mit

$$\begin{array}{lll} \underline{\dot{r}}_{17} &=& \dot{\Theta}_1 \, \underline{u}_1 \times \underline{r}_{17} \quad , & & \underline{\dot{u}}_3 &=& \dot{\Theta}_2 \, \underline{u}_2 \times \underline{u}_3 \, , & & \underline{\dot{u}}_4 &=& \left(\dot{\Theta}_2 \, \underline{u}_2 + \, \dot{\Theta}_3 \, \underline{u}_3\right) \times \underline{u}_4 \\ \underline{\dot{r}}_{45} &=& \underline{\dot{r}}_{17} - \, \underline{\dot{r}}_{23} \quad , & & \underline{\dot{r}}_{23} &=& \dot{\Theta}_2 \, \underline{u}_2 \times \underline{r}_{23} \, \, . \end{array}$$

Damit lauten die Schließbedingungen:

$$\begin{bmatrix} \underline{u}_2 \times \underline{r}_{25} \mid \underline{u}_3 \times \underline{r}_{35} \mid \underline{u}_4 \times \underline{r}_{45} \mid -\underline{u}_1 \times \underline{r}_{17} \end{bmatrix} \begin{bmatrix} \ddot{\Theta}_2 \\ \ddot{\Theta}_3 \\ \ddot{\Theta}_4 \\ \ddot{\Theta}_1 \end{bmatrix} = -(\underline{\tilde{a}}_{15} - \underline{\tilde{a}}_{17}),$$

$$\underline{J}_{\beta 1} \qquad \qquad \ddot{\beta}_1 = -\underline{\tilde{g}}_1.$$

Mit der Wahl von $q = \Theta_1$ ergibt sich daraus durch Umordnen:

$$\begin{bmatrix} \underline{u}_2 \times \underline{r}_{25} & | \underline{u}_3 \times \underline{r}_{45} & | \underline{u}_4 \times \underline{r}_{45} \end{bmatrix} \begin{bmatrix} \ddot{\Theta}_2 \\ \ddot{\Theta}_3 \\ \ddot{\Theta}_4 \end{bmatrix} = \begin{bmatrix} \underline{u}_1 \times \underline{r}_{17} \end{bmatrix} \ddot{\Theta}_1 - (\underline{\tilde{a}}_{15} - \underline{\tilde{a}}_{17}) ,$$

$$\underline{J}_{yi} \qquad \qquad \ddot{\underline{y}}_1 = -\underline{J}_{qi} \quad \ddot{q} - \ddot{\underline{g}}_1 ,$$

$$\Rightarrow \ddot{y}_1 = -\underline{J}_{yi}^{-1} (\underline{J}_{qi} \ddot{q} - \ddot{\underline{g}}_1) .$$

3.6.2 Auftrennen der Schleife an einem Gelenkpaar -> Abschnitt 3.5.3

Belspiel: Räumliches Gelenkviereck (RSTR-Mechanismus, f = 1)

Schließbedingung Typ 1:

II

$$2\left(\underline{2}\ddot{\Xi}_{37}^{\mathsf{T}}\ \underline{\Gamma}_{37}\ +\ \underline{2}\dot{\Xi}_{37}^{\mathsf{T}}\ \underline{2}\dot{\Xi}_{37}\right) - 2\left(\underline{4}\ddot{\Xi}_{45}^{\mathsf{T}}\ \underline{\Gamma}_{45}\ +\ \underline{4}\dot{\Xi}_{45}^{\mathsf{T}}\ \dot{\underline{\Gamma}}_{45}\right) = 0$$

$$\text{mit} \quad \underline{2}\ddot{\Xi}_{37}\ =\ \ddot{\Theta}_{1}\underline{u}_{1}\times\underline{\Gamma}_{17}\ -\ \ddot{\Theta}_{2}\underline{u}_{2}\times\underline{\Gamma}_{23}\ +\ \underline{2}\ddot{\Xi}_{37}\ ,$$

 $_{4}\ddot{r}_{45} = 0$ (konstante Koppellänge).

Der von den Gelenkbeschleunigungen $\ddot{\Theta}_{i}$ unabhängige Term $_{2}\ddot{\ddot{E}}_{37}$ ist:

$$\frac{\bar{z}}{2\bar{z}_{37}} = \dot{\Theta}_{1} \left(\underbrace{2\dot{\underline{u}}_{1} \times \underline{r}_{17} + \underline{u}_{1} \times 2\dot{\underline{r}}_{17}}_{\underline{O}} \right) - \dot{\Theta}_{2} \left(\underbrace{2\dot{\underline{u}}_{2} \times \underline{r}_{23} + \underline{u}_{2} \times 2\dot{\underline{r}}_{23}}_{\underline{O}} \right), \\
\dot{\Theta}_{1} \, \underline{u}_{1} \times \underline{r}_{17} \qquad \dot{\Theta}_{2} \, \underline{u}_{2} \times \underline{r}_{23}$$

Damit lautet die Schließbedingung:

$$\begin{bmatrix} -(\underline{\mathbf{u}}_{2} \times \underline{\mathbf{r}}_{23})^{\mathsf{T}} \underline{\mathbf{r}}_{37} & (\underline{\mathbf{u}}_{1} \times \underline{\mathbf{r}}_{17})^{\mathsf{T}} \underline{\mathbf{r}}_{37} \end{bmatrix} \begin{bmatrix} \ddot{\Theta}_{2} \\ \ddot{\Theta}_{1} \end{bmatrix} = -\left(2\ddot{\underline{\mathbf{r}}}_{37}^{\mathsf{T}} \underline{\mathbf{r}}_{37} + 2\dot{\underline{\mathbf{r}}}_{37}^{\mathsf{T}} 2\dot{\underline{\mathbf{r}}}_{37}\right)$$

$$\underline{\mathbf{g}}_{\mathbf{l}} \qquad \qquad \underline{\ddot{\mathbf{g}}}_{\mathbf{l}} = - \qquad \underline{\ddot{\mathbf{g}}}_{\mathbf{l}}$$

Mit der Wahl von $q = \Theta_1$ ergibt sich:

$$-(\underline{u}_{2} \times \underline{r}_{23})^{\mathsf{T}} \underline{r}_{37} \ \ddot{\Theta}_{2} = -(\underline{u}_{1} \times \underline{r}_{17})^{\mathsf{T}} \underline{r}_{37} \ \ddot{\Theta}_{1} - (\underline{z} \overline{\underline{r}}_{37}^{\mathsf{T}} \underline{r}_{37} + \underline{z} \dot{\underline{r}}_{37}^{\mathsf{T}} \underline{z} \dot{\underline{r}}_{37}) .$$

$$J_{y_{1}} \ \ddot{y}_{1} = -J_{q_{1}} \ \ddot{q} - \underline{\ddot{q}} - \underline{\ddot{g}}_{1} .$$

$$\Rightarrow \ \ddot{y}_{1} = -J_{y_{1}}^{-1} \left(J_{q_{1}} \ddot{q} + \underline{\ddot{g}}_{1}\right) :$$

$$\ddot{\Theta}_{2} = \frac{(\underline{u}_{1} \times \underline{r}_{17})^{\mathsf{T}} \underline{r}_{37}}{(\underline{u}_{1} \times \underline{r}_{23})^{\mathsf{T}} \underline{r}_{37}} \ \ddot{\Theta}_{1} + \frac{\underline{z} \overline{\ddot{r}}_{37}^{\mathsf{T}} \underline{r}_{37} + \underline{z} \dot{\underline{r}}_{37}^{\mathsf{T}} \underline{z} \dot{\underline{r}}_{37}}{(\underline{u}_{2} \times \underline{r}_{23})^{\mathsf{T}} \underline{r}_{37}} .$$

4 Kinematik mehrschleifiger Mechanismen

Bei der kinematischen Analyse von Mechanismen mit mehreren kinematischen Schleifen besteht wie bereits bei der Analyse der Einzelschleife die zentrale Aufgabe darin, die Bindungen zwischen den relativen Gelenkkoordinaten infolge der Schließbedingungen der einzelnen Schleifen zu bestimmen. Die effiziente Aufstellung und Lösung der Schließbedingungen einer Einzelschleife ist deswegen zugleich die Grundlage für die kinematische Analyse allgemeiner mehrschleifiger Mechanismen. Die gegenüber der Einzelschleife wesentliche Erweiterung ist dabei die Kopplung der Schließbedingungen mehrerer Schleifen durch Gelenkkoordinaten, die diesen Schleifen gemeinsam angehören. Die Schließbedingungen der einzelnen Schleifen können dadurch nicht unabhängig voneinander gelöst werden. Diese Verkopplung der Schleifen bzw. der dazugehörigen Schließbedingungen hängt sowohl von der topologischen Struktur des Mechanismus als auch von der Auswahl der unabhängigen Schleifen und der unabhängigen Koordinaten (Minimalkoordinaten) des Gesamtsystems ab.

Eine übersichtliche Darstellung der Verkopplung der Schleifen läßt sich durch die Betrachtung der einzelnen Schleifen als "kinematische Transformatoren" erreichen. Der gesamte Mechanismus läßt sich dann mit Hilfe von miteinander gekoppelten kinematischen Transformatoren als ein Blockschaltbild darstellen, das in übersichtlicher Form die Kopplungen der Schließbedingungen der Schleifen über gemeinsame Gelenkkoordinaten wiedergibt. In Verbindung mit der Wahl der Minimalkoordinaten läßt sich daraus erkennen, ob die Schließbedingungen simultan oder rekursiv aufgelöst werden können. Während im ersten Fall mehrere Schleifen zu einen komplexeren "kinematischen Transformator" zusammengefaßt werden können, kann im zweiten Fall der Übertragungscharakter der einzelnen Mehrkörperschleife voll ausgenutzt werden. Insgesamt ergibt sich dann ein Auflösungsfluß für die kinematische Analyse, bei dem die Schließbedingungen in Abhängigkeit von der topologischen Struktur teilweise simultan und teilweise hintereinander aufgelöst werden.

4.1 Darstellung der kinematischen Struktur von Mechanismen

4.1.1 Die Mehrkörperschleife als "kinematischer Transformator"

In einer kinematischen Schleife können die in den Schließbedingungen (3.1), (3.2) und (3.3) für Position, Geschwindigkeit und Beschleunigung festgelegten Abbildungen der unabhängigen Variablen q auf die sechs abhängigen Variablen y in einem nichtlinearen Übertragungselement zusammengefaßt werden. Aufgrund der Beschreibung in relativen Gelenkkoordinaten sind die Übertragungsfunktionen unabhängig von der globalen Lage und Bewegung der Schleife. Die kinematische Schleife kann deswegen innerhalb von allgemeinen Mechanismen als "kinematischer Transformator" verstanden werden, der relative "Eingangskoordinaten" q (und deren Zeitableitungen) auf relative "Ausgangskoordinaten" y (und deren Zeitableitungen) in nichtlinearer Form überträgt.

Schema des kinematischen Transformators für eine räumliche Einzelschleife

Der kinematische Transformator kann als "black-box" mit f_L Eingängen (entsprechend der Anzahl von Freiheitsgraden f_L der "freigeschnittenen" Schleife) und sechs Ausgängen (entsprechend den sechs abhängigen Koordinaten der Schleife) dargestellt werden. Bei ebenen und sphärischen kinematischen Schleifen, bei denen alle nicht benötigten Gelenkfreiheitsgrade entfernt worden sind, ist die Zahl der Ausgänge nur drei, vgl. Abschnitt 1.3.2.

Beispiele:

a) Räumliches Gelenkviereck

 $f_1 = 1$ Schleifenfreiheitsgrad \Rightarrow 1 "Schleifeneingang", z.B. $q = \Theta_1$

Wird das Kardangelenk durch ein Kugelgelenk ersetzt, so erhält die Schleife einen "isolierten" Freiheitsgrad für die Drehung der Koppel um ihre Längsachse, der dann durch einen zusätzlichen Schleifeneingang zu berücksichtigen ist.

b) Räumliches "Gelenksechseck"

 $f_L = 3$ Schleifenfreiheitsgrade \Rightarrow 3 "Schleifeneingänge", z.B. $\underline{q} = [\Theta_1, \Theta_2, \Theta_3]^T$

4.1.2 Aufbau von Blockschaltbildern am Beispiel von Übertragungsmechanismen

Bei Übertragungsmechanismen werden einzelnen Mehrkörperschleifen hintereinandergeschaltet, um Bewegungen über eine räumliche Entfernung zu übertragen und dabei bestimmte Übertragungsfunktionen zu realisieren. Als Übertragungselemente werden im einfachsten Fall Gelenkvierecke verwendet, die so hintereinandergeschaltet werden, daß jeweils der Ausgangshebel eines Gelenkvierecks mit dem Eingangshebel eines weiteren Gelenkvierecks zu einem gemeinsamen Körper ("Winkelhebel") verbunden wird. Der Drehwinkel eines solchen Winkelhebels tritt dadurch in beiden Schleifen als Gelenkkoordinate auf. Dies bedeutet, daß die beiden Schleifen über diesen Winkel miteinander verkoppelt sind, während die jeweils fünf Gelenkkoordinaten an den Koppelstangen (Kugel- und Kardangelenk) nur einer Schleife angehören.

Im Blockschaltbild wird der gemeinsame Winkel durch eine Verbindung zwischen den Transformatoren der beiden Schleifen dargestellt, während die fünf Gelenkkoordinaten an der Koppelstange keine Verbindung zu anderen Schleifen haben. Bei verzweigten Gelenkviereckketten sind mehrere Gelenkvierecke über einen gemeinsamen Winkelhebel miteinander verbunden. Die Schleifen dieser Gelenkvierecke sind dann über den Drehwinkel dieses Winkelhebels miteinander verkoppelt. Insgesamt können auf diese Weise die kinematischen Transformatoren der einzelnen Gelenkvierecke zu einem Blockschaltbild zusammengebaut werden, das losgelöst von der konkreten Ausführung der einzelnen Gelenkvierecke die Verknüpfung der Schleifenschließbedingungen über die Gelenkwinkel $\Theta_{\rm i}$ wiedergibt.

Durch Wahl eines Gelenkwinkels als Minimalkoordinate des Gesamtsystems ergibt sich in diesem Beispiel unmittelbar ein "Auflösungsfluß" für die Schließbedingungen der einzelnen Gelenkvierecke, der durch gerichtete Verbindungen der kinematischen Transformatoren gekennzeichnet wird.

Verzweigte Gelenkviereckkette

Blockschaltbild mit Auflösungsfluß für die Minimalkoordinate $q = \Theta_1$ (isolierte Koppelfreiheitsgrade nicht berücksichtigt)

Blockschaltbild mit Auflösungsfluß für die Minimalkoordinate $q = \Theta_5$

Die Kopplung zweier Mehrkörperschleifen über eine einzelne Gelenkkoordinate stellt den einfachsten und für die Auflösung der Schließbedingungen günstigsten Fall dar. Im allgemeinen sind jedoch in Mechanismen die einzelnen Schleifen über mehrere Gelenkkoordinaten miteinander verkoppelt. Hierdurch kann die Übertragungseigenschaft der einzelnen Mehrkörperschleife teilweise verlorengehen. Die Schließbedingungen mehrerer Schleifen müssen dann unter Umständen simultan gelöst werden. Werden jedoch solche Gruppen von Schleifen mit simultan zu lösenden Schließbedingungen zu einem neuen, komplexeren kinematischen Transformator zusammengefaßt, so kann der Fluß der kinematischen Information auch in diesen Fällen vorteilhaft in einem Blockschaltbild dargestellt werden.

4.2 Topologische Aufbereitung der Relativkinematik

Prinzipiell läßt sich zu jeden mehrschleifigen Mechanismus ein Blockschaltbild konstruieren, das die Kopplung der Schließbedingungen über Gelenkkoordinaten und einen dazugehörigen Auflösungsfluß wiedergibt. Der Aufbau eines solchen Blockschaltbildes erfolgt in drei Schritten:

- Auswahl eines unabhängigen "Fundamentalsystems" von Mehrkörperschleifen, deren Schließbedingungen in einen "kinematischen Transformator" zusammengefaßt werden können.
- Bestimmung der Kopplung der Schleifenschließbedingungen bzw. der kinematischen Transformatoren über Gelenkkoordinaten, die mehreren Schleifen angehören.
- Bestimmung des Auflösungsflusses für das Gesamtsystem der Schließbedingungen, repräsentiert durch gerichtete Verbindungen der Transformatoren im Blockschaltbild.

4.2.1 Fundamentalsystem von Schleifen

Ein "Fundamentalsystem" von Schleifen ist dadurch definiert, daß sich jeder weitere Schleife des Systems aus der Überlagerung der Schleifen des Fundamentalsystems ergibt. Damit ist allein die Anzahl n_L der unabhängigen Schleifen eindeutig. Die Wahl der unabhängigen Schleifen ist dagegen zunächst willkürlich.

Nach Gl. (1.2) ergibt sich die Anzahl n_L der unabhängigen Schleifen eines Mechanismus eindeutig zu

$$n_{L} = n_{G} - n_{B} \tag{1.2}$$

mit n_G - Anzahl Gelenke,

n_B - Anzahl von Körpern (ohne Bezugskörper).

Belspiel: Mechanismus mit $n_B = 7$ Körpern und $n_G = 10$ Gelenken. $\rightarrow n_L = n_G - n_B = 3$ unabhängige Schleifen.

- 4.6 -

L₂

Richtige Auswahl: L_1 , L_2 , L_3 sind unabhängig.

Falsche Auswahl: L_1 , L_2 , L_3 sind nicht unabhängig $(L_3 = L_1$ "+" L_2).

Kriterien für die Auswahl der unabhängigen Schleifen des Fundamentalsystems ergeben sich aus der Zielvorgabe, möglichst einfach auszuwertende Schleifenschließbedingungen zu erhalten, siehe Abschnitt 4.2.2.

4.2.2 Kopplung der Schleifenschließbedingungen über Gelenkkoordinaten

$$f_{Li} = \sum_{k=1}^{n_G(L_i)} f_{Gk} - 6 \quad \left(\text{eben/sphärisch:} \quad f_{Li} = \sum_{k=1}^{n_G(L_i)} f_{Gk} - 3 \right)$$
 (4.1)

 $\begin{array}{lll} \text{mit} & n_G(L_i) & - \text{ Anzahl Gelenke in der Schleife } L_i \;, \\ & f_{Gk} & - \text{ Anzahl der Freiheitsgrade der Gelenke } G_k \;, \; k = 1, \ldots, n_G(L_i) \\ & \text{in der Schleife} \;\; L_i \;. \end{array}$

Gelenkkoordinaten, die mehreren Schleifen angehören, führen zur Verkopplung der Schließbedingungen dieser Schleifen. Im Blockschaltbild werden nun solche gemeinsamen Gelenkkoordinaten durch Verbindungen zwischen den Transformatoren der entsprechenden Schleifen dargestellt. Gelenkkoordinaten, die nur einer einzelnen Schleife angehören, bekommen keine Verbindung zu anderen Schleifen.

Belspiel: Mechanismus zur Ansteuerung der Taumelscheibe eines Hubschraubers

 $\left. \begin{array}{ll} n_B = 7 & \text{K\"{o}rper} \\ n_G = 9 & \text{Gelenke} \end{array} \right\} \ \, \Rightarrow \ \, n_L = n_G - n_B = 2 \quad unabh\"{a}ngige \ \, \text{Schleifen}. \end{array}$

Wahl der unabhängigen Schleifen L_1 und L_2 .

Durch die Einführung der Kardangelenke werden isolierte Freiheitsgrade der Koppelstangen vermieden.

Kopplung der Schleifen L_1 und L_2 über s , Θ_3 und Θ_4 :

Die beiden kinematischen Transformatoren repräsentieren die Schließbedingungen der Schleifen L_1 bzw. L_2 . Sie können nach Abschnitt 2.2 jeweils günstig durch Schnitte an den Gelenkpaaren S_1 - T_1 bzw. S_2 - T_2 aufgestellt werden. Ein besonderer Vorteil ergibt sich nun daraus, daß die Gelenkkoordinaten dieser Gelenkpaare jeweils nur einer Schleife angehören, da die Kopplung der Schleifen nur über s, Θ_3 und Θ_4 erfolgt. Für die Analyse des Zusammenhangs zwischen den Gelenkkoordinaten s, Θ_1 , Θ_2 , Θ_3 und Θ_4 muß damit für jede Schleife nur das "Kernsystem" (3.16) aufgestellt werden, in das die Gelenkkoordinaten $\underline{\Theta}_{ST1}$ und $\underline{\Theta}_{ST2}$ der geschnittenen Gelenke nicht eingehen. Da beim Gelenkpaar Kugelgelenk-Kardangelenk das Kernsystem aus nur einer Gleichung besteht, erhält man insgesamt zwei Gleichungen der Form

$$g_{L1}(\Theta_1, \quad \Theta_3, \Theta_4, s) = 0 \quad , \tag{4.2}$$

$$g_{L2}(\Theta_2,\Theta_3,\Theta_4,s) = 0.$$

$$(4.3)$$

Diese Schließbedingungen können nach Wahl von f = 3 Minimalkoordinaten nach den beiden jeweils verbleibenden Koordinaten aufgelöst werden. Eine rekursive Auflösung der Schließbedingungen wie im Beispiel aus Abschnitt 4.1.2 ist dabei allerdings nicht für jede Kombination von Eingangsgrößen möglich, siehe Abschnitt 4.2.3.

Die Betrachtung dieses Beispiels liefert Kriterien für die Auswahl der unabhängigen Schleifen des Fundamentalsystems:

- Auswahl von Schleifen mit möglichst wenigen Schließbedingungen:

Die unabhängigen Schleifen sollten hierzu an einem Gelenk oder an einem Gelenkpaar mit möglichst vielen Gelenkfreiheitsgraden geschnitten werden können. Nach den Überlegungen aus Abschnitt 2.2 sollten die Schleifen damit z.B. ein Kugelgelenk oder ein ein ebenes Gelenk oder - noch günstiger - z.B. ein Gelenkpaar Kugelgelenk - Kardangelenk besitzen.

Auswahl von solchen Schleifen, die nicht über ein Schnittgelenk oder ein Schnittgelenkpaar mit anderen Schleifen gekoppelt sind:

Hierdurch sind nur die "Kernsysteme" der Schließbedingungen miteinander verkoppelt, während die Gelenkkoordinaten der Schnittgelenke überhaupt nicht bestimmt werden müssen.

Die Auswahl der unabhängigen Schleifen im vorangehenden Beispiel erfüllt diese Kriterien. Eine andere Wahl der unabhängigen Schleife L_2 ergibt dagegen:

Kopplung von L_1 und L_2 über Θ_1 und die 5 Gelenkkoordinaten $\underline{\Theta}_{S\,T\,1}$ des Gelenkpaars $S_1\text{-}T_1$:

Für Schleife L_1 müssen alle sechs Schließbedingungen aufgestellt werden, da die fünf Gelenkkoordinaten $\underline{\Theta}_{S\,T\,1}$ des Gelenkpaars S_1 - T_1 auch in Schleife L_2 enthalten sind. Für Schleife L_2 ist die Gleichung des Kernsystems für den Schnitt am Gelenkpaar S_2 - T_2 ausreichend, da die Gelenkkoordinaten $\underline{\Theta}_{S\,T\,2}$ dieses Gelenkpaars nur zu L_2 gehören und deswegen nicht ausgewertet werden müssen:

$$\underline{\mathbf{g}}_{\mathsf{L}\mathsf{I}}(\Theta_{\mathsf{I}}, \quad \Theta_{\mathsf{3}}, \Theta_{\mathsf{4}}, \mathsf{s}, \ \underline{\Theta}_{\mathsf{S}\,\mathsf{T}\,\mathsf{I}}) = \underline{0} \quad \text{(6 Gleichungen)} , \tag{4.4}$$

$$g_{L2}(\Theta_1,\Theta_2)$$
 , $\underline{\Theta}_{ST1}$) = 0 (1 Gleichung) . (4.5)

Diese Schließbedingungen sind im Vergleich zu (4.2)/(4.3) wesentlich aufwendiger.

4.2.3 Auflösungsfluß

Mit der Wahl der unabhängigen kinematischen Schleifen und der Aufstellung der dazugehörigen Schleifenschließbedingungen sind die kinematischen Systemeigenschaften festgelegt. Zur Lösung der Schließbedingungen müssen nun die Minimalkoordinaten q des gesamten Systems gewählt werden.

Die Auswahl der Minimalkoordinaten ist nicht eindeutig, vgl. Abschnitt 1.3.3. Speziell bei kinematischen Analysen sind die Minimalkoordinaten allerdings häufig bereits von der Aufgabenstellung her gegeben. In diesem Fall wird eine möglichst effiziente Auflösung der Schließbedingungen gesucht. Am günstigsten ist dabei die Möglichkeit einer vollständig "expliziten" Auflösung, d.h. die Schließbedingungen können hintereinander explizit nach den Ausgangsgrößen der jeweiligen Schleißen aufgelöst werden, vgl. Beispiel in Abschnitt 4.1.2. Im allgemeinen besteht diese Möglichkeit jedoch nicht. In diesen Fällen kann man nach einem "möglichst expliziten" Auflösungsfluß suchen, bei dem ein möglichst großer Teil der Schließbedingungen rekursiv abgearbeitet werden kann. Im ungünstigsten Fall sind alle Schließbedingungen als nichtlineares Gleichungssystem simultan zu lösen, wobei der Vorteil der reduzierten Zahl von Schließbedingungen durch Schnitte der Schleißen an Gelenken oder Gelenkpaaren weiterhin ausgenutzt werden kann.

Im Blockschaltbild kann der Auflösungsfluß dadurch dargestellt werden, daß jedem kinematischen Transformator mit f_{Li} Schleifenfreiheitsgraden eine entsprechende Zahl von Eingängen bereitgestellt wird. Diese Eingänge können entweder unmittelbar die gegebenen Minimalkoordinaten sein oder sich als "Ausgänge" anderer Schleifen ergeben, deren Schleißbedingungen bereits gelöst sind. Durch entsprechende Darstellung der Schleißeneingänge und -ausgänge entsteht ein gerichtetes Blockschaltbild, das den Lösungsfluß wiedergibt, vgl. auch Beispiel in Abschnitt 4.1.2.

Belspiel: Mechanismus zur Ansteuerung der Taumelscheibe eines Hubschraubers (Fortsetzung aus Abschnitt 4.2.2)

a) Minimalkoordinaten $\underline{q} = [s, \Theta_3, \Theta_4]^T$

Mit der Vorgabe von \underline{q} sind für jede Schleife drei Eingänge festgelegt. Mit jeweils f_{Li} = 3, i = 1,2, Schleifeneingängen kann jede der beiden Schleifenschließbedingungen (4.2) und (4.3) explizit nach der Auflösungsvorschrift aus Abschnitt 2.4.4a nach den verbleibenden Gelenkkoordinaten Θ_1 bzw. Θ_2 aufgelöst werden, die damit Schleifenausgänge werden. Die weiteren Ausgangskoordinaten $\underline{\Theta}_{ST1}$ und $\underline{\Theta}_{ST2}$ an den Schnittgelenkpaaren können anschließend, falls überhaupt benötigt, "lokal" innerhalb der beiden Schleifen bestimmt werden.

b) Minimalkoordinaten $\underline{q} = [s, \theta_1, \theta_2]^T$

Nach Vorgabe von \underline{q} sind für jede Schleife nur zwei Eingänge festgelegt. Mit jeweils f_{Li} = 3 , i = 1,2, Schleifeneingängen kann keine der beiden Schleifen für sich aufgelöst werden. Die beiden Schleifenschließbedingungen (4.2) und (4.3) können nur simultan nach den Unbekannten Θ_3 und Θ_4 aufgelöst werden. Hierzu ist ein numerisches (iteratives) Verfahren einzusetzen.

Die Übertragungseigenschaft der beiden kinematischen Schleifenkann in diesem Fall nicht direkt für die Lösung ausgenutzt werden. Es ist sinnvoll, die beiden Schleifen zu einem neuen komplexeren kinematischen Transformator zusammenzufassen, der die Eingänge $\mathbf{q} = [\mathbf{s}, \Theta_1, \Theta_2]^\mathsf{T}$ nichtlinear in die Ausgänge Θ_3 und Θ_4 (sowie die insgesamt 10 Gelenkkoordinaten der Schnittgelenke) umsetzt.

4.3 Einführung zusätzlicher Hilfskoordinaten

In manchen Fällen ist es sinnvoll, neben den in die Schleifenschließbedingungen eingehenden Koordinaten weitere Koordinaten zu bestimmen, für die dann zusätzliche Bindungsgleichungen formuliert werden können. Im folgenden werden zwei Fälle betrachtet, in denen die Verwendung solcher "Hilfskoordinaten" sinnvoll ist.

4.3.1 Hilfskoordinaten an Mehrfachgelenken

Als "Mehrfachgelenke" werden hier Drehgelenke oder Schubgelenke mit zusammenfallenden Gelenkachsen bezeichnet. Sie treten speziell in ebenen Mechanismen häufig auf. Die dargestellten Zweifachgelenke verbinden drei Körper 1,2 und 3. Sie beinhalten zwei "unabhängige" Dreh- bzw. Schubgelenke z.B. für die Relativbewegungen

Körper 2 relativ zu Körper 1: Θ_1 bzw. s_1 ,

Körper 3 relativ zu Körper 2: Θ_2 bzw. s_2 .

Daraus ergibt sich unmittelbar ein "abhängiges" Dreh- bzw. Schubgelenk mit der Relativbewegung

Körper 3 relativ zu Körper 1:
$$\Theta_1 + \Theta_2 - \Theta_3 = 2\pi \rightarrow \Theta_3 = \Theta_1 + \Theta_2 - 2\pi$$
, (4.6a) $s_1 + s_2 - s_3 = 0 \rightarrow s_3 = s_1 + s_2$. (4.6b)

Zweifach-Drehgelenk

Zweifach-Schubgelenk

Die Gelenkkoordinaten Θ_3 bzw. s_3 stellen Hilfskoordinaten dar, die über die Bindungsgleichungen (4.6) von den Gelenkkoordinaten der beiden "unabhängigen" Gelenke abhängen. Die Verwendung dieser Hilfskoordinaten ist sinnvoll, um den drei anliegenden Schleifen L_1 , L_2 und L_3 jeweils eine Gelenkkoordinate zuordnen zu können. Die Kopplung der Gelenkkoordinaten erfolgt dann über die Bindungsgleichungen (4.6).

Da die Bindungsgleichungen (4.6) linear sind, können sie im Blockschaltbild anschaulich durch eine "Additionsstelle" repräsentiert werden, die in die möglichen Auflösungsflüsse eingebunden werden kann. Aus Gl. (4.6a) ergeben sich die folgenden Möglichkeiten:

Beispiele:

a) Ebener Mechanismus

$$n_B = 9$$
 Körper $n_C = 13$ Drehgelenke $\rightarrow n_L = n_G - n_B = 4$ unabhängige Schleifen.

Bei der Bestimmung der Anzahl f der Freiheitsgrade des Gesamtsystems gemäß Gl. (1.5) ("ebene" Berechnung) werden für das Zweifach-Drehgelenk zwei Einzel-Drehgelenke mit je einem Gelenkfreiheitsgrad gezählt, vgl. Abschnitt 1.3.2:

$$f = \sum_{k=1}^{n_G} f_{Gk} - 3 n_L = 13.1 - 3.4 = 1$$
 Freiheitsgrad .

Dagegen wird bei der Bestimmung der Anzahl f_{Li} der Freiheitsgrade der gewählten vier unabhängigen Einzelschleifen für jede der am Zweifach-Drehgelenk anliegenden Schleifen ein Drehgelenk gezählt. Entsprechend Gl. (4.1) hat damit jede der vier Schleifen

$$f_{Li} = \sum_{k=1}^{n_G(L_i)} f_{Gk} - 3 = 4 - 3 = 1, i = 1,...,4,$$

Schleifenfreiheitsgrade.

Das Blockschaltbild für die Minimalkoordinate $q=\theta_1$ zeigt einen vollständig rekursiven Auflösungsfluß.

Kopplungsgleichung: $\Theta_3 + \Theta_5 - \Theta_4 = 2\pi$ \Rightarrow $\Theta_5 = -\Theta_3 + \Theta_4 + 2\pi$

Bei Wahl von $q=\Theta_6$ ist keine rekursive Auflösung über die Additionsstelle hinweg möglich. Die Schließbedingungen der Schleifen L_1 , L_2 und L_3 sind dann zusammen mit der Kopplungsgleichung simultan zu lösen.

b) SAR-Antenne, vgl. Abschnitt 1.3.2, Beispiel b

 $n_B = 8$ Körper, $n_G = 11$ Drehgelenke

- \rightarrow $n_1 = n_G n_B = 3$ unabhängige Schleifen,
- → f = 2 Gesamtfreiheitsgrade,
- \Rightarrow f_{Li} = 1 Schleifenfreiheitsgrade für die gewählten Schleifen L₁, L₂ und L₃.

Kopplungsgleichung: β_{31} + β_{13} + β_{23} = const \Rightarrow β_{31} = - β_{13} - β_{23} + const .

H

4.3.2 Hilfskoordinaten in gedachten kinematischen Ketten

In machen Anwendungsfällen ist es sinnvoll, über die "physikalisch" vorhandenen kinematischen Schleifen hinaus zusätzliche "gedachte" Schleifen einzuführen, um Zusammenhänge für problemspezifische Koordinaten auszudrücken.

Beispiele:

a) Riickwärtstransformation bei Robotern

Gesucht ist der Zusammenhang zwischen den sechs Lagekoordinaten β_{E1} bis β_{E6} des Endeffektors und den sechs Roboterkoordinaten β_1 bis β_6 . Durch Schließen der offenen kinematischen Kette des Roboters über eine gedachte kinematische Kette, deren Gelenkkoordinaten die sechs Lagekoordinaten β_{E1} bis β_{E6} des Endeffektors sind, läßt sich diese Aufgabe auf die Analyse einer kinematischen Schleife zurückführen.

b) Funfpunkt-Radaufhängung, vgl. Abschnitt 1.3.1

Der Mechanismus besitzt $n_L=4$ unabhängige Schleifen L_1 bis L_4 , deren Schließbedingungen (jeweils Schnitt am Gelenkpaar Kugelgelenk-Kardangelenk) über die Winkel ϕ_1 bis ϕ_5 miteinander verkoppelt sind. Ausgehend von den beiden Minimalkoordinaten $q_1=\phi_1$ (Federbewegung) und $q_2=\Theta_0$ (Lenkbewegung) müssen alle vier Schließbedingungen simultan (numerisch) aufgelöst werden, eine rekursive Auflösung ist nicht möglich. Die interessierende Radträgerposition muß nach der Lösung der Schließbedingungen durch Vorwärtskinematik aus den Winkeln ϕ_1 bis ϕ_5 berechnet werden.

Die Verwendung der Winkel ϕ_1 bis ϕ_5 ist hier allerdings nicht sehr günstig, da zur Berechnung der Radträgerposition jedes Mal die Auswertung von fünf Drehungen um räumlich angeordnete Achsen erforderlich ist. Es ist deswegen sinnvoll, die gesuchten sechs Lagekoordinaten des Radträgers (Ortsvektorkoordinaten \mathbf{r}_x , \mathbf{r}_y , \mathbf{r}_z , Drehwinkel α , β , γ um festgelegte Achsen) als Unbekannte der Schließbedingungen zu verwenden, um nach deren Lösung sofort die Radträgerposition zu erhalten.

H

II

Dies läßt sich durch Einführung einer gedachten kinematischen Kette mit drei Dreh- und drei Schubgelenken erreichen, deren Gelenkkoordinaten die Lagekoordinaten des Radträgers sind. Man erhält nun fünf Schleifen L_1 bis L_5 , deren Schließbedingungen über die sechs Lagekoordinaten des Radträgers miteinander verkoppelt sind. Dem Nachteil der zusätzlichen Schließbedingung steht der Vorteil gegenüber, daß zur Berechnung der Radträgerposition nur noch drei Drehungen um räumlich angeordnete Achsen notwendig sind.

4.4 Globale Kinematik

Die kinematische Analyse von Mehrkörpersystemen umfaßt die Darstellung der Bewegungen sämtlicher Körper in Abhängigkeit von den Minimalkoordinaten. Während diese Aufgabe bei offenen kinematischen Ketten mit der Lösung der Vorwärtskinematik entsprechend Kapitel 2 erledigt ist, müssen bei Systemen mit kinematischen Schleifen zusätzlich die in den Schleifenschließbedingungen festgelegten Abhängigkeiten zwischen den Gelenkkoordinaten berücksichtigt werden. Die Betrachtungen der vorangegangenen Abschnitte zeigen, daß in der Aufstellung und Lösung der Schleifenschließbedingungen der größte Aufwand bei der kinematischen Analyse steckt. Nach der Auswertung dieser "relativen Kinematik" sind die relativen Gelenkkoordinaten bekannt, so daß die Bewegungen aller Körper durch Vorwärtskinematik ausgehend vom Bezugskörper im Rahmen der "absoluten Kinematik" bestimmt werden können. Die Auswertung der relativen und der absoluten Kinematik ermöglicht damit die Analyse der "globalen Kinematik".

- q Minimalkoordinaten bei Schleifensystemen,
- Gelenkkoordinaten des "aufspannenden Baumes" nach Auftrennen aller Schleifen (ohne Gelenkkoordinaten der Schnittgelenke),
 zugleich Minimalkoordinaten bei baumstrukturierten Systemen,
- β_{II} Gelenkkoordinaten der Schnittgelenke, können nach der Bestimmung von β_{I} in jeder Schleife "lokal" bestimmt werden,
- w Lagekoordinaten aller Körper (z.B. Ortsvektoren und Drehparameter),
- Winkel- und Translationsgeschwindigkeiten aller Körper, vgl. Abschnitt 2.4a,
- \ddot{z} Winkel- und Translationsbeschleunigungen aller Körper, vgl. Abschnitt 2.4c.

Bem.: Beim Schnitt an einem "charakteristischen Gelenkpaar" sind für die Auswertung der Absolutkinematik die Gelenkkoordinaten eines der beiden Schnittgelenke erforderlich.