## 日本国特許庁 JAPAN PATENT OFFICE

25.10.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年12月 3日

出 願 番 号 Application Number:

特願2003-404020

[ST. 10/C]:

[JP2003-404020]

出 願 人
Applicant(s):

明治製菓株式会社

REG'D 16 DEC 2004

WIPO

PCT

## PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月 3日

1) 11]



BEST AVAILABLE COPY

特許願 【書類名】 PF0710 【整理番号】

平成15年12月 3日 【提出日】 特許庁長官殿 【あて先】

C12N 【国際特許分類】

【発明者】

明治製菓株式会社 ヘルス・バ 埼玉県坂戸市千代田5-3-1 【住所又は居所】

イオ研究所内

古賀 仁一郎 【氏名】

【発明者】

明治製菓株式会社 ヘルス・バ 埼玉県坂戸市千代田5-3-1 【住所又は居所】

イオ研究所内 馬場 裕子

【氏名】 【発明者】

埼玉県坂戸市千代田5-3-1 明治製菓株式会社 ヘルス・バ 【住所又は居所】

イオ研究所内

中根 公隆 【氏名】

【発明者】

明治製菓株式会社 ヘルス・バ 埼玉県坂戸市千代田5-3-1 【住所又は居所】

イオ研究所内

花村 聡 【氏名】

【発明者】

埼玉県坂戸市千代田5-3-1 明治製菓株式会社 ヘルス・バ 【住所又は居所】

イオ研究所内 西村 智子

【氏名】

【発明者】

神奈川県小田原市栢山788 明治製菓株式会社 微生物資源研 【住所又は居所】

究所内

五味 修一 【氏名】

【発明者】

埼玉県坂戸市千代田5-3-1 明治製菓株式会社 ヘルス・バ 【住所又は居所】

イオ研究所内 窪田 英俊

【氏名】 【発明者】

明治製菓株式会社 ヘルス・バ 埼玉県坂戸市千代田5-3-1 【住所又は居所】

イオ研究所内 河野 敏明

【氏名】 【特許出願人】

000006091 【識別番号】

明治製菓株式会社 【氏名又は名称】

佐藤 尚忠 【代表者】 03-3273-3357 【電話番号】

【手数料の表示】

【予納台帳番号】 008305 21,000円 【納付金額】

【提出物件の目録】

特許請求の範囲 1 【物件名】

明細書 1 【物件名】 要約書 1 【物件名】

## 【書類名】特許請求の範囲

## 【請求項1】

スタフィロトリクム (Staphylotrichum) 属の菌由来であって、エンドグルカナーゼ活 性を有するタンパク質。

#### 【請求項2】

以下の (A) および (B) の特性を有する、請求項1に記載のタンパク質:

- (A) エンドグルカナーゼ活性を有し、
- (B) N末端のアミノ酸配列が配列番号1で表わされる配列である。

## 【請求項3】

以下の(A)、(B)および(C)の特性を有する、請求項2に記載のタンパク質:

- (A) エンドグルカナーゼ活性を有し、
- (B) N末端のアミノ酸配列が配列番号1で表わされる配列を有し、
- (C) SDS-PAGEにより測定した平均分子量が45kDである。

## 【請求項4】

以下の(A)、(B)および(C)の特性を有する、請求項2に記載のタンパク質:

- (A) エンドグルカナーゼ活性を有し、
- (B) N末端のアミノ酸配列が配列番号1で表わされる配列を有し、
- (C) SDS-PAGEにより測定した平均分子量が49kDである。

## 【請求項5】

スタフィロトリクム・ココスポラム(<u>Staphylotrichum</u> <u>coccosporum</u>)由来である、請 求項1~4のいずれか一項に記載のタンパク質。

#### 【請求項6】

下記からなる群より選択される、タンパク質:

- (a) 配列番号 3 で表わされるアミノ酸配列を含んでなる、タンパク質、
- (b) 前記 (a) のアミノ酸配列において、1個もしくは複数個のアミノ酸が欠失、置 換、挿入、削減もしくは付加されたアミノ酸配列を含んでなり、かつエンドグルカナーゼ 活性を有する改変タンパク質、
- (c) 前記 (a) のアミノ酸配列を含んでなるタンパク質と少なくとも 8 5 %の相同性 を有するアミノ酸配列を含んでなり、かつエンドグルカナーゼ活性を有する相同タンパク 質。

## 【請求項7】

請求項1~6のいずれか一項に記載のタンパク質をコードするポリヌクレオチド。

## 【請求項8】

下記からなる群より選択される、ポリヌクレオチド:

- (i) 配列番号2で表わされる塩基配列を含んでなるポリヌクレオチド、
- (ii) 前記(i)の塩基配列において、1個もしくは複数個の塩基が欠失、置換、挿 入、削減もしくは付加された塩基配列を含んでなり、かつエンドグルカナーゼ活性を有す るタンパク質をコードするポリヌクレオチド、
- (iii) 前記(i)の塩基配列からなるポリヌクレオチドとストリンジェントな条件下 でハイブリダイズし、かつエンドグルカナーゼ活性を有するタンパク質をコードするポリ ヌクレオチド。

#### 【請求項9】

請求項7又は8のいずれか一項に記載のポリヌクレオチドを含んでなる発現ベクター。

## 【請求項10】

請求項9に記載の発現ベクターにより形質転換された、宿主細胞。

## 【請求項11】

宿主が、酵母又は糸状菌である、請求項10に記載の宿主細胞。

## 【請求項12】

酵母が、サッカロミセス (Saccharomyces) 属、ハンゼヌラ (Hansenula) 属又はピキア (Pichia) 属に属するものである、請求項11に記載の宿主細胞。

## 【請求項13】

糸状菌が、フミコーラ (<u>Humicola</u>) 属、トリコデルマ (<u>Trichoderma</u>) 属、スタフィロ トリクム (<u>Staphylotrichum</u>) 属、アスペルギルス (<u>Aspergillus</u>) 属、フザリウム (<u>Fusa</u> rium) 属又はアクレモニウム (Acremonium) 属に属するものである、請求項11に記載の 宿主細胞。

## 【請求項14】

糸状菌が、フミコーラ・インソレンス (Humicola insolens) 又はトリコデルマ・ビリ デ(Trichoderma viride)である、請求項13に記載の宿主細胞。

## 【請求項15】

請求項10~14のいずれか一項に記載の宿主細胞を培養する工程、および該培養によ って得られる宿主細胞もしくはその培養物から請求項1~6のいずれか一項に記載のタン パク質を採取する工程を含んでなる、タンパク質の製造方法。

## 【請求項16】

請求項15に記載の方法で生産されたタンパク質。

#### 【請求項17】

請求項1~6および請求項16のいずれか一項に記載のタンパク質を含んでなる、セル ラーゼ調製物。

## 【請求項18】

請求項1~6および請求項16のいずれか一項に記載のタンパク質、又は請求項17に 記載のセルラーゼ調製物を含んでなる、洗剤組成物。

#### 【請求項19】

セルロース含有繊維の処理方法であって、セルロース含有繊維を、請求項1~6および 請求項16のいずれか一項に記載のタンパク質、請求項17に記載のセルラーゼ調製物、 又は請求項18に記載の洗剤組成物と接触させる工程を含んでなる、方法。

#### 【請求項20】

セルロース含有繊維が毛羽立ち始める速度を低減させるか又はセルロース含有繊維の毛 羽立ちを低減する方法であって、セルロース含有繊維を、請求項1~6および請求項16 のいずれか一項に記載のタンパク質、請求項17に記載のセルラーゼ調製物、又は請求項 18に記載の洗剤組成物と接触させる工程を含んでなる、方法。

## 【請求項21】

セルロース含有繊維の肌触りおよび外観の改善を目的として減量加工する方法であって 、セルロース含有繊維を、請求項1~6および請求項16のいずれか一項に記載のタンパ ク質、請求項17に記載のセルラーゼ調製物、又は請求項18に記載の洗剤組成物と接触 させる工程を含んでなる、方法。

## 【請求項22】

着色されたセルロース含有繊維の色を澄明化する方法であって、着色されたセルロース 含有繊維を、請求項1~6および請求項16のいずれか一項に記載のタンパク質、請求項 17に記載のセルラーゼ調製物、又は請求項18に記載の洗剤組成物と接触させる工程を 含んでなる、方法。

#### 【請求項23】

着色されたセルロース含有繊維の色の局所的な変化を提供する方法であって、着色され たセルロース含有繊維を、請求項1~6および請求項16のいずれか一項に記載のタンパ ク質、請求項17に記載のセルラーゼ調製物、又は請求項18に記載の洗剤組成物と接触 させる工程を含んでなる、方法。

#### 【請求項24】

セルロース含有繊維がごわつき始める速度を低減させるか又はセルロース含有繊維のご わつきを低減する方法であって、セルロース含有繊維を、請求項1~6および請求項16 のいずれか一項に記載のタンパク質、請求項17に記載のセルラーゼ調製物、又は請求項 18に記載の洗剤組成物と接触させる工程を含んでなる、方法。

#### 【請求項25】



## 【請求項26】

古紙を脱インキ薬品により処理して脱インキを行う工程において、請求項1~6および . 請求項16のいずれか一項に記載のタンパク質、請求項17に記載のセルラーゼ調製物を 用いることを特徴とする、古紙の脱インキ方法。

## 【請求項27】

紙パルプのろ水性の改善方法であって、紙パルプを、請求項1~6および請求項16の いずれか一項に記載のタンパク質、請求項17に記載のセルラーゼ調製物で処理する工程 を含んでなる、方法。

## 【請求項28】

動物飼料の消化能を改善する方法であって、セルロース含有繊維を、請求項1~6およ び請求項16のいずれか一項に記載のタンパク質、請求項17に記載のセルラーゼ調製物 で処理する工程を含んでなる、方法。

#### 【書類名】明細書

【発明の名称】エンドグルカナーゼSTCEおよびそれを含んでなるセルラーゼ調製物 【技術分野】

## [0001]

本発明は、エンドグルカナーゼSTCE (Endoglucanases STCE) およびそれを含んで なるセルラーゼ調製物、並びにそれらを利用したセルロース含有繊維の処理方法に関する ものである。

#### 【背景技術】

#### [0002]

従来から、セルロース含有繊維を、その繊維に所望の特性を与えるためにセルラーゼで 処理することが行われている。例えば、繊維業界においては、セルロース含有繊維の肌触 りおよび外観を改善するために、又は着色されたセルロース含有繊維にその色の局所的な 変化を提供する「ストーンウオッシュ」の外観を与えるために、セルラーゼによる処理が 行われている [欧州特許第307, 564号明細書(特許文献1)]。

## [0003]

また、着色されたセルロース含有繊維は繰り返し洗濯をすることによって毛羽が生じ、 着色生地の色を不鮮明にすることが知られている。そこで、洗剤中にセルラーゼを含ませ ることによって、毛羽を除去する、もしくは毛羽が生じないようにすることによって着色 生地の色を鮮明にする、すなわち澄明化することから[欧州特許第220,016号明細 書(特許文献 2)、国際公開第95/02675号パンフレット(特許文献 3)、国際公 開第97/30143号パンフレット(特許文献4)、国際公開第98/08926号パン フレット (特許文献 5)]、セルラーゼを含んだ洗剤が欧米を中心に市販されている。

## [0004]

洗剤に用いられるセルラーゼとして、洗剤中において、フミコーラ(<u>Humicola</u>)属由来 の精製された43kDエンドグルカナーゼ成分(EGV)が従来の複数のセルラーゼ成分 の混合物であるセルラーゼ調製物に対して約30倍もの澄明化活性(生地に生ずる毛羽を 取り、生地の色を鮮やかにする活性)があることが知られている [国際公開第91/17 243号パンフレット(特許文献6)]。また、フミコーラ属由来のエンドグルカナーゼ NCE5 (以下「NCE5」と略記することもある。) を洗剤中で反応させることによっ て、着色生地の澄明化をもたらすことが知られている [国際公開第01/90375号パ ンフレット(特許文献 7)]。さらには、洗剤中において、リゾプス(<u>Rhizopus</u>)属由来 のエンドグルカナーゼRCEI (以下「RCEI」と略記することもある。) をフミコー ラ・インソレンス(<u>Humicola insolens</u>)にて増強発現させた培養液が、RCEIを増強 発現させていないフミコーラ・インソレンス培養液の20倍以上もの澄明化活性があるこ とが知られている [国際公開第00/24879号パンフレット(特許文献8)]。

#### [0005]

このように、様々なエンドグルカナーゼが着色生地の澄明化活性をもつことは知られて いるものの、実際に、欧米の洗剤に配合された場合、十分に活性を発揮できるエンドグル カナーゼは少ない。これは、欧米の洗剤に含まれている多量のアニオン界面活性剤やビル ダーなどが活性を阻害するためと考えられる。

#### [0006]

また、洗濯に用いられる欧米の水道水は一般的に硬度が高く、C a ²+やM g ²+などの 2 価のカチオンが多量に含まれている。この2価のカチオンは洗剤中の界面活性剤による洗 浄能力を著しく低下させるため、洗剤にはこの2価のカチオンを吸着させるためにビルダ ーが配合されている [ "Fragrance Journal", 1995年, 11巻, p. 33-55 (非特許文献1)]。また、地域によって水道水の硬度はかなり違うため 、洗剤に配合するビルダーの種類や添加量には地域別に工夫が凝らされている。また、洗 剤による洗浄能力だけでなく、セルラーゼ活性もこれら2価のカチオンの影響を受ける事 が知られている [Mansfield, S. D. et al., "Enzyme Mic rob. Technol."23, 1998年, p. 133-140 (非特許文献2)

, Jenkins, C. C. AND Suberkropp, K., "Freshwa ter Biology", 33卷第2号, 1995年, p. 245-253 (非特許文 献3)]。したがって、水の硬度によっては、セルラーゼ活性が阻害され、満足な澄明化 効果が得られない問題や、反対に、セルラーゼ活性が増強され、生地の強度低下をおこす 問題が発生する。

## [0007]

ビルダー自体がセルラーゼ活性に影響を与えるため、セルラーゼの澄明化活性に対して 水の硬度が及ぼす影響を、ビルダーの添加によって緩和することは難しい。そこで、水道 水の硬度の影響を受けにくく、安定した澄明化活性を有するセルラーゼが求められている

## [0008]

従来、セルロース含有繊維の処理には、複数のセルラーゼ成分の混合物が使用されてき たが、その実用化は、セルロース含有繊維に対して所望の効果を得るには多量のセルラー ゼ調製物を使用する必要から生じる困難性によって妨げられてきた。そこで多くの場合、 セルラーゼ調製物は、多量の高活性エンドグルカナーゼを含む調製物として提供されてい る。その製造方法としては、遺伝子組換えの技術を用いて、目的の高活性エンドグルカナ ーゼ成分を宿主細胞において大量に発現させる方法が知られている [国際公開第91/1 7243号パンフレット(特許文献6)、国際公開第98/03667号パンフレット( 特許文献 9)、国際公開第 98/11239号パンフレット(特許文献 10)]。

## [0009]

そして、これらの方法において好ましい宿主細胞としては、不完全菌類に属する糸状菌 、例えば、アスペルギルス(<u>Aspergillus</u>)属、フミコーラ(<u>Humicola</u>)属、トリコデル マ (Trichoderma) 属の糸状菌等が挙げられている。さらに、洗剤に用いるセルラーゼを 生産させる場合、洗剤中のpHがアルカリ性であるため、酸性セルラーゼを生産するトリ コデルマ属の糸状菌よりも、中性セルラーゼを生産するアスペルギルス属やフミコーラ属 の糸状菌を宿主とする方が適している。特に、工業レベルでの酵素の生産を考慮した場合 、生産性の高いフミコーラ属の菌は極めて優良な宿主となる[国際公開第01/9037 5号パンフレット(特許文献7)、国際公開第98/03640号パンフレット(特許文 献11)]。

## [0010]

しかしながら、異種由来の遺伝子を、フミコーラ属の糸状菌において発現させる際、そ の塩基配列上の特性が異なる(遺伝子のコドン使用頻度が違う)等の理由で、発現が妨げ られる場合が多い。そのため、異種由来の遺伝子に対して改変操作を行うことが必要とな る。例えば、接合菌類に属するリゾプス属由来のエンドグルカナーゼRCEIをフミコー ラ・インソレンスにおいて大量発現させるためには、RCEIをコードする遺伝子を宿主 細胞のコドン使用頻度に合わせて最適化しなければならない [国際公開第00/2487 9号パンフレット(特許文献 8)]。しかし、このように最適化されたとしても、通常、 同種遺伝子の発現量と同程度の発現量を得ることは難しいことが予想されている。

## [0011]

【特許文献1】欧州特許第307,564号明細書

【特許文献2】欧州特許第220,016号明細書

【特許文献3】国際公開第95/02675号パンフレット

【特許文献4】国際公開第97/30143号パンフレット

【特許文献 5】 国際公開第 9 8/0 8 9 2 6 号パンフレット

【特許文献6】国際公開第91/17243号パンフレット

【特許文献 7】 国際公開第 0 1/9 0 3 7 5 号パンフレット

【特許文献8】国際公開第00/24879号パンフレット

【特許文献9】国際公開第98/03667号パンフレット

【特許文献10】国際公開第98/11239号パンフレット

【特許文献11】国際公開第98/03640号パンフレット

【非特許文献1】"Fragrance Journal", 1995年, 11巻, n. 33 - 55

【非特許文献2】Mansfield, S.D. et al., "Enzyme M icrob. Technol."23, 1998年, p. 133-140

【非特許文献3】 Jenkins, C. C. AND Suberkropp, K. ,"Freshwater Biology",33巻第2号, 1995年, p. 2 45-253

## 【発明の開示】

【発明が解決しようとする課題】

## [0012]

これまでに、繊維用・洗剤用途に使用するために、フミコーラ (Humicola) 属、トリコ デルマ(<u>Trichoderma</u>)属、リゾプス(<u>Rhizopus</u>)属、ムコール(<u>Mucor</u>)属、ファイコマ イセス(<u>Phycomyces</u>)属などの様々な糸状菌からセルラーゼが単離され、それらセルラー ゼをコードする遺伝子が単離されている。しかしながら、アニオン界面活性剤およびビル ダーを多量に含有する欧米タイプの洗剤中において高い澄明化活性を有し、なおかつ、水 道水の硬度の影響を受けにくく、安定した澄明化活性を有するセルラーゼはいまだ報告さ れていない。

## [0013]

さらに、優良な宿主であるフミコーラ属の糸状菌において、遺伝子改変操作なしで大量 に発現させることができるような異種糸状菌由来のセルラーゼ遺伝子があれば、その産業 上の価値は計り知れないが、まだそのような遺伝子の報告もない。

## 【課題を解決するための手段】

## [0014]

本発明者等は、今般、セルラーゼ酵素やセルラーゼ遺伝子を単離した報告は全くされて いなかったスタフィロトリクム (Staphylotrichum) 属から、新規な高いエンドグルカナ ーゼ活性を有するタンパク質およびその遺伝子を見出し、これらを提供するものである。

## [0015]

本発明者等は、本発明のスタフィロトリクム (Staphylotrichum) 属から単離された新 規な高いエンドグルカナーゼ活性を有するタンパク質が、欧米の洗剤中において、セルロ ース含有着色生地に対して極めて強い澄明化活性を示すことを見出した。例えば、スタフ ィロトリクム・ココスポラム(<u>Staphylotrichum</u> <u>coccosporum</u>)由来の本発明のエンドグ ルカナーゼ、特にその一例であるエンドグルカナーゼSTCE1(以下「STCE1」と 略記することもある)は、代表的なヨーロッパ洗剤中において、洗剤用セルラーゼとして 澄明化活性を有することが知られているエンドグルカナーゼNCE5(以下「NCE5」 と略記することもある) (国際公開第01/90375号パンフレット) に比べて約16 倍、エンドグルカナーゼRCEI(国際公開第00/24879号パンフレット)に比べ て約80倍以上もの高い澄明化活性を有していた。

#### [0016]

さらに、そのエンドグルカナーゼSTCE1は、水道水の硬度によらず、安定した澄明 化活性を有するという驚くべき知見を得た。例えば、セルロース含有繊維に対して高い毛 羽除去活性を有することが知られているエンドグルカナーゼNCE4(国際公開第98/ 03640号パンフレット) やNCE5 (国際公開第01/90375号パンフレット) は、水道水中の硬度が上がると澄明化活性が上がるのに対して、エンドグルカナーゼRC EI (国際公開第00/24879号パンフレット)は、水道水中の硬度が上がると澄明 化活性が下がる。しかしながら、本発明のエンドグルカナーゼSTCE1は、水道水の硬 度によらず、安定した澄明化活性を有していた。このように、欧米の洗剤中において高い 澄明化活性を有し、しかも、水道水の硬度によらず、安定した活性を有するセルラーゼに 関する知見は今までに全くない。

## $[0\ 0\ 1\ 7]$

さらに驚くべきことに、スタフィロトリクム・ココスポラム由来エンドグルカナーゼS 出証特2004-3110537 TCE1は、スタフィロトリクム・ココスポラムとは異種菌株であるフミコーラ・インソ レンス (<u>Humicola insolens</u>) を宿主として用いた形質転換において、エンドグルカナー ゼSTCE1遺伝子の改変操作を全く行わないで大量発現することを見出した。

## [0018]

したがって、本発明は、スタフィロトリクム (Staphylotrichum) 属の菌由来のエンド グルカナーゼ活性を有する新規なタンパク質およびその遺伝子、並びに前記タンパク質を 含有し、良好な特性を有するセルラーゼ調製物を提供するものである。また、本発明は、 当該タンパク質をコードする遺伝子によって形質転換された宿主細胞、および当該宿主細 胞を培養して目的タンパク質を採取する方法を提供するものである。さらに、本発明のタ ンパク質又は本発明のセルラーゼ調製物によりセルロース含有繊維を処理する方法を提供 するものである。

## [0019]

すなわち、本発明は以下の発明を包含する。

- (1) スタフィロトリクム (Staphylotrichum) 属の菌由来であって、エンドグルカナー ゼ活性を有するタンパク質。
- (2) 以下の(A) および(B) の特性を有する、(1) に記載のタンパク質:
- . (A) エンドグルカナーゼ活性を有し、
  - (B) N末端のアミノ酸配列が配列番号1で表わされる配列である。
- (3) 以下の(A)、(B) および(C) の特性を有する、(2) に記載のタンパク質:
  - (A) エンドグルカナーゼ活性を有し、
  - (B) N末端のアミノ酸配列が配列番号1で表わされる配列を有し、
  - (C) SDS-PAGEにより測定した平均分子量が45kDである。
- (4) 以下の(A)、(B) および(C) の特性を有する、(2) に記載のタンパク質:
  - (A) エンドグルカナーゼ活性を有し、
  - (B) N末端のアミノ酸配列が配列番号1で表わされる配列を有し、
  - (C) SDS-PAGEにより測定した平均分子量が49kDである。
- (5) スタフィロトリクム・ココスポラム (<u>Staphylotrichum</u> <u>coccosporum</u>) 由来である
  - (1)~(4)のいずれか一項に記載のタンパク質。
- (6) 下記からなる群より選択される、タンパク質:
  - (a) 配列番号 3 で表わされるアミノ酸配列を含んでなる、タンパク質、
- (b) 前記 (a) のアミノ酸配列において、1個もしくは複数個のアミノ酸が欠失、置 換、挿入、削減もしくは付加されたアミノ酸配列を含んでなり、かつエンドグルカナーゼ 活性を有する改変タンパク質、
- (c) 前記 (a) のアミノ酸配列を含んでなるタンパク質と少なくとも85%の相同性 を有するアミノ酸配列を含んでなり、かつエンドグルカナーゼ活性を有する相同タンパク 質。
- (7) (1) ~ (6) のいずれか一項に記載のタンパク質をコードするポリヌクレオチド
- (8) 下記からなる群より選択される、ポリヌクレオチド:
  - (i) 配列番号2で表わされる塩基配列を含んでなるポリヌクレオチド、
- (ii) 前記(i)の塩基配列において、1個もしくは複数個の塩基が欠失、置換、挿 入、削減もしくは付加された塩基配列を含んでなり、かつエンドグルカナーゼ活性を有す るタンパク質をコードするポリヌクレオチド、
- (iii) 前記(i)の塩基配列からなるポリヌクレオチドとストリンジェントな条件下 でハイブリダイズし、かつエンドグルカナーゼ活性を有するタンパク質をコードするポリ ヌクレオチド。
- (9) (7) 又は(8) のいずれか一項に記載のポリヌクレオチドを含んでなる発現ベク ター。
- (10) (9) に記載の発現ベクターにより形質転換された、宿主細胞。
- (11) 宿主が、酵母又は糸状菌である、(10)に記載の宿主細胞。

- (12) 酵母が、サッカロミセス (<u>Saccharomyces</u>) 属、ハンゼヌラ (<u>Hansenula</u>) 属又はピキア (<u>Pichia</u>) 属に属するものである、(11) に記載の宿主細胞。(13) 糸状菌が、フミコーラ (<u>Humicola</u>) 属、トリコデルマ(<u>Trichoderma</u>)属、スタフィロトリクム(<u>Staphylotrichum</u>)属、アスペルギルス(<u>Aspergillus</u>)属、フザリウム(<u>Fusarium</u>)属又はアクレモニウム(<u>Acremonium</u>)属に属するものである、(11)に記載の宿主細胞。
- (14)糸状菌が、フミコーラ・インソレンス( $\underline{\text{Humicola insolens}}$ )又はトリコデルマ・ビリデ( $\underline{\text{Trichoderma viride}}$ )である、(13)に記載の宿主細胞。(15)(10)  $\sim$  (14) のいずれか一項に記載の宿主細胞を培養する工程、および該培養によって得られる宿主細胞もしくはその培養物から(1) $\sim$  (6) のいずれか一項に記載のタンパク質を採取する工程を含んでなる、タンパク質の製造方法。
  - (16) (15) に記載の方法で生産されたタンパク質。
- (17) (1) ~ (6) および (16) のいずれか一項に記載のタンパク質を含んでなる 、セルラーゼ調製物。
- (18) (1)  $\sim$  (6) および (16) のいずれか一項に記載のタンパク質、又は (17) ) に記載のセルラーゼ調製物を含んでなる、洗剤組成物。
- (19) セルロース含有繊維の処理方法であって、セルロース含有繊維を、 $(1) \sim (6)$  および (16) のいずれか一項に記載のタンパク質、(17) に記載のセルラーゼ調製物、又は(18) に記載の洗剤組成物と接触させる工程を含んでなる、方法。
- (20) セルロース含有繊維が毛羽立ち始める速度を低減させるか又はセルロース含有繊維の毛羽立ちを低減する方法であって、セルロース含有繊維を、(1)~(6)および(16)のいずれか一項に記載のタンパク質、(17)に記載のセルラーゼ調製物、又は(18)に記載の洗剤組成物と接触させる工程を含んでなる、方法。
- (21) セルロース含有繊維の肌触りおよび外観の改善を目的として減量加工する方法であって、セルロース含有繊維を、(1)~(6)および(16)のいずれか一項に記載のタンパク質、(17)に記載のセルラーゼ調製物、又は(18)に記載の洗剤組成物と接触させる工程を含んでなる、方法。
- (22) 着色されたセルロース含有繊維の色を澄明化する方法であって、着色されたセルロース含有繊維を、(1)  $\sim$  (6) および (16) のいずれか一項に記載のタンパク質、
- (17) に記載のセルラーゼ調製物、又は(18) に記載の洗剤組成物と接触させる工程を含んでなる、方法。
- (23)着色されたセルロース含有繊維の色の局所的な変化を提供する方法であって、着色されたセルロース含有繊維を、(1)~(6)および(16)のいずれか一項に記載のタンパク質、(17)に記載のセルラーゼ調製物、又は(18)に記載の洗剤組成物と接触させる工程を含んでなる、方法。
- (24) セルロース含有繊維がごわつき始める速度を低減させるか又はセルロース含有繊維のごわつきを低減する方法であって、セルロース含有繊維を、(1)~(6) および(16) のいずれか一項に記載のタンパク質、(17) に記載のセルラーゼ調製物、又は(
- 18) に記載の洗剤組成物と接触させる工程を含んでなる、方法。
- (25) 繊維の処理がその繊維の浸漬、洗濯、又はすすぎを通じて行われる、(19)~ (24) のいずれか一項に記載の方法。
- (26) 古紙を脱インキ薬品により処理して脱インキを行う工程において、(1)~(6) および (16) のいずれか一項に記載のタンパク質、(17)に記載のセルラーゼ調製物を用いることを特徴とする、古紙の脱インキ方法。
- (27) 紙パルプのろ水性の改善方法であって、紙パルプを、(1) ~ (6) および(16) のいずれか一項に記載のタンパク質、(17) に記載のセルラーゼ調製物で処理する工程を含んでなる、方法。
- (28)動物飼料の消化能を改善する方法であって、セルロース含有繊維を、(1)~(6)および(16)のいずれか一項に記載のタンパク質、(17)に記載のセルラーゼ調製物で処理する工程を含んでなる、方法。

【発明の効果】

## [0020]

本発明のタンパク質、エンドグルカナーゼSTCEは、セルロース含有繊維の色の澄明化、毛羽立ちの低減、肌触りおよび外観の改善、色の局所的変化、ごわつきの低減等を目的とした洗剤用、並びに繊維加工用途に有用である。

【発明を実施するための最良の形態】

#### [0021]

## エンドグルカナーゼ活性を有するタンパク質

本明細書において「エンドグルカナーゼ」とは、エンドグルカナーゼ活性を有する酵素、すなわちエンドー1, $4-\beta-$ グルカナーゼ(EC3.2.1.4)を意味し、当該酵素は、 $\beta-1$ ,4-グルカンの $\beta-1$ ,4-グルコピラノシル結合を加水分解する。また、本明細書の「エンドグルカナーゼ活性」とは、CMCアーゼ活性を意味する。さらに、「CMCアーゼ活性」とは、カルボキシメチルセルロース(CMC、東京化成工業株式会社製)を加水分解する活性を意味し、被験タンパク質とCMC溶液を一定時間インキュベーションした後に遊離してくる還元糖量を測定して、1分間に $1\mu$ molのグルコース相当の還元糖を生成する酵素量を1単位と定義する。

#### [0022]

エンドグルカナーゼ活性は、例えば、次のような手順により測定することができる。ま ず、被験タンパク質を含む溶液 0.5 m L を、2%の C M C を溶解させた 50 m m o 1/ L酢酸-酢酸ナトリウム緩衝液 (p H 6. 0) 0. 5 m L に添加し、5 0 ℃で3 0 分間イ ンキュベーションする。次いで、得られる反応液の生成還元糖濃度を、3,5ージニトロ サリチル酸法 (DNS法) で定量する。すなわち、反応30分後の反応液1.0mL中に DNS試薬3.0mLを添加し、沸騰水浴中で5分間インキュベーションした後、蒸留水 8. 0 m L で希釈し、5 4 0 n m の吸光度を測定する。段階的に希釈したグルコース溶液 を用いて検量線を作成し、酵素反応液中の生成還元糖量をグルコース換算で決定する。 1 分間に 1 μ m o 1 のグルコース相当の還元糖を生成する酵素量を 1 単位として活性を算出 する。なお、DNS試薬は文献(例えば、「生物化学実験法1-還元糖の定量法」、p. 19~20、福井作蔵著、学会出版センター)の記載に従って調製することができるが、 例えば、次のような手順で調製することができる。まず、4.5%水酸化ナトリウム水溶 液300mLに、1%3,5-ジニトロサリチル酸溶液880mL、およびロッセル塩2 55gを添加する(溶液A)。別に、1.0%水酸化ナトリウム水溶液22mLに結晶フ エノール10gを加え、さらに水を加えて溶解して100mLとする(溶液B)。溶液B 69mLに炭酸水素ナトリウム 6.9gを加えて溶解させ、溶液Aを注いでロッセル塩が 十分に溶解するまで攪拌混合し、2日間放置した後に濾過する。

## [0023]

本発明によるタンパク質は、糸状菌類、具体的には、スタフィロトリクム(<u>Staphylotrichum</u>)属、好ましくは、スタフィロトリクム・ココスポラム(<u>Staphylotrichum</u> coccosporum)、より好ましくはスタフィロトリクム・ココスポラム(<u>Staphylotrichum</u> coccosporum)IFO 31817株の微生物由来のタンパク質である。また、これらはその変異株であってもよい。

#### [0024]

さらに、本発明によるタンパク質は、典型的には、そのN末端のアミノ酸配列が配列番号1で表わされる配列を有する。N末端のアミノ酸配列は、例えば後述の実施例2で示した方法により決定することができる。

#### [0025]

本発明によれば、スタフィロトリクム (Staphylotrichum) 属由来の、下記の特性を有するタンパク質が提供される:

- (A) エンドグルカナーゼ活性を有し、
- (B) N末端のアミノ酸配列が配列番号1で表わされる配列を有し、
- (C) SDS-PAGEにより測定した平均分子量が45kDである。

## [0026]

さらに、下記の特性を有するタンパク質が提供される:

- (A) エンドグルカナーゼ活性を有し、
- (B) N末端のアミノ酸配列が配列番号1で表わされる配列を有し、
- (C) SDS-PAGEにより測定した平均分子量が49kDである。

### [0027]

ここで、SDS-PAGEによる平均分子量は、実施例1に示した方法によって決定することができる。

## [0028]

本発明の別の態様では、配列番号3で表わされるアミノ酸配列を含んでなるタンパク質、並びにその改変タンパク質又はその相同タンパク質が提供される。

## [0029]

## [0030]

本発明における「改変タンパク質」とは、配列番号 3 で表わされるアミノ酸配列を含んでなるタンパク質において、1 個もしくは複数個のアミノ酸が欠失、置換、挿入、削減もしくは付加されたアミノ酸配列を含んでなり、かつエンドグルカナーゼ活性を有するタンパク質である。ここで、「欠失、置換、挿入、削減もしくは付加」などの改変に係るアミノ酸の数は、好ましくは  $1\sim3$  0 個、より好ましくは  $1\sim1$  0 個、さらに好ましくは  $1\sim6$  6 個である。

#### [0031]

さらに、改変タンパク質には、配列番号 3 で表わされるアミノ酸配列を含んでなるタンパク質において、1 個もしくは複数個のアミノ酸残基が、保存的置換されたアミノ酸配列を含んでなり、かつエンドグルカナーゼ活性を有するタンパク質を包含する。ここで、「保存的置換」とは、タンパク質の活性を実質的に改変しないように1 個もしくは複数個のアミノ酸残基を、別の化学的に類似したアミノ酸で置き換えることを意味する。例えば、ある疎水性残基を別の疎水性残基によって置換する場合、ある極性残基を同じ電荷を有する別の極性残基によって置換する場合などが挙げられる。

このような保存的置換を行うことができる機能的に類似のアミノ酸は、アミノ酸毎に当該技術分野において公知である。具体的には、非極性(疎水性)アミノ酸としては、アラニン、バリン、イソロイシン、ロイシン、プロリン、トリプトファン、フェニルアラニン、メチオニン等が挙げられる。極性(中性)アミノ酸としては、グリシン、セリン、スレオニン、チロシン、グルタミン、アスパラギン、システイン等が挙げられる。陽電荷をもつ(塩基性)アミノ酸としては、アルギニン、ヒスチジン、リジン等が挙げられる。また、負電荷(酸性)アミノ酸としては、アスパラギン酸、グルタミン酸等が挙げられる。

#### [0032]

本発明における「相同タンパク質」とは、配列番号 3 で表わされるアミノ酸配列を含んでなるタンパク質と少なくとも85%、好ましくは90%、最も好ましくは95%以上の相同性を有するアミノ酸配列を含んでなり、かつエンドグルカナーゼ活性を有するタンパク質である。ここで示した相同性の数値は、当業者に公知の相同性検索プログラムであるFASTA3 [Science, 227, 1435-1441 (1985); Proc. Natl. Acad. Sci. USA, 85, 2444-2448 (1988); http://www.ddbj.nig.ac.jp/E-mail/homology-j.html]においてデフォルト(初期設定)のパラメータを用いて算出される数値を示す。

## [0033]



## [0034]

なお、本発明のタンパク質は、例えば実施例1に記載のように微生物から単離、精製す ることにより得ることができる。また、後述のように遺伝子組換え技術により本発明のタ ンパク質をコードするポリヌクレオチドを適当な宿主において発現させ、生産されたタン パク質を単離、精製することによっても得ることができる。

#### [0035]

# エンドグルカナーゼ活性を有するタンパク質をコードするポリヌクレオチド

本発明によれば、配列番号3で表わされるアミノ酸配列を含んでなるタンパク質、その 改変タンパク質、および相同タンパク質(以下、単に「本発明のタンパク質」という)を コードするポリヌクレオチドが提供される。タンパク質のアミノ酸配列が与えられれば、 それをコードする塩基配列は容易に定まり、よって、本発明のタンパク質をコードする種 々の塩基配列を選択することができる。なお、本明細書において、用語「ポリヌクレオチ ド」には、DNAおよびRNAの両方が含まれ、DNAが好ましい。

## [0036]

本発明のポリヌクレオチドは、典型的には、下記からなる群より選択されるものである

- (i) 配列番号2で表わされる塩基配列を含んでなるポリヌクレオチド、
- (i i) 前記(i) の塩基配列において、1個もしくは複数個の塩基が欠失、置換、挿入 、削減もしくは付加された塩基配列を含んでなり、かつエンドグルカナーゼ活性を有する タンパク質をコードするポリヌクレオチド、
- (i i i) 前記 (i) の塩基配列からなるポリヌクレオチドとストリンジェントな条件下 でハイブリダイズし、かつエンドグルカナーゼ活性を有するタンパク質をコードするポリ ヌクレオチド。

## [0037]

前記(i)の塩基配列において、欠失、置換、挿入、削減もしくは付加されてもよい塩 基の数は、具体的には1~50個、好ましくは1~30個、より好ましくは1~18個、 さらに好ましくは1~9個である。

### [0038]

ここで、前記 (i i i) における「ストリンジェントな条件下」とは、配列番号2で表 わされる塩基配列を含んでなるプローブと、相同タンパク質をコードするポリヌクレオチ ドとがハイブリダイズする一方で、このプローブが、エンドグルカナーゼNCE5遺伝子 (国際公開第01/90375号パンフレット)とはハイブリダイズしない程度に制御さ れた条件を意味する。

#### [0039]

より具体的には、例えば、プローブとして標識化したエンドグルカナーゼSTCE1の アミノ酸配列をコードする塩基配列の全長を有するものを用い、ECLダイレクトDNA /RNAラペリング検出システム(アマシャム社製)の添付の操作方法に従って、42℃ で1時間のプレハイブリダイゼーションの後、前記プローブを添加し、42℃で15時間 のハイプリダイゼーションを行った後、0.4%SDSおよび6mo1/L尿素添加0. 4倍以下の濃度のSSC (1倍濃度のSSC; 15mmol/Lクエン酸三ナトリウム、 150mmol/L塩化ナトリウム)で42℃にて20分間の洗浄を2回繰り返し、次に 5 倍濃度のSSCで室温にて10分間の洗浄を2回行うような条件が挙げられる。

## [0040]

本発明によるポリヌクレオチドは、天然由来のものであっても、全合成したものであっ てもよく、また、天然由来のものの一部を利用して合成を行ったものであってもよい。本 発明によるポリヌクレオチドの典型的な取得方法としては、スタフィロトリクム・ココス ポラムのゲノミックライブラリーから、遺伝子工学の分野で慣用されている方法、例えば 、部分アミノ酸配列の情報を基にして作製した適当なDNAプローブを用いて、スクリー ニングを行う方法などが挙げられる。

## [0041]

本発明による、エンドグルカナーゼSTCE1のアミノ酸配列をコードする、典型的塩 基配列は、配列番号2で表わされる塩基配列を有するものである。配列番号2で表わされ る塩基配列は、1~3位のATGで始まり、949~951位のTAAで終了するオープ ンリーディングフレームを有する。また、64~66のヌクレオチド配列は、295アミ ノ酸残基からなるエンドグルカナーゼSTCE1の成熟タンパク質(配列番号3)のN末 端アミノ酸に対応する。

## [0042]

## 発現ベクターおよび形質転換された微生物

本発明においては、配列番号3で表わされるアミノ酸配列を含んでなるタンパク質、そ の改変タンパク質および相同タンパク質をコードする塩基配列(以下「本発明によるポリ ヌクレオチド」という)を、宿主微生物内で複製可能で、かつ、その塩基配列がコードす るタンパク質を発現可能な状態で含んでなる発現ベクターが提供される。本発現ベクター は、自己複製ベクター、すなわち、染色体外の独立体として存在し、その複製が染色体の 複製に依存しない、例えば、プラスミドを基本に構築することができる。また、本発現べ クターは、宿主微生物に導入されたとき、その宿主微生物のゲノム中に組み込まれ、それ が組み込まれた染色体と一緒に複製されるものであってもよい。本発明によるベクター構 築の手順および方法は、遺伝子工学の分野で慣用されているものを用いることができる。

### [0043]

本発明による発現ベクターは、これを実際に宿主微生物に導入して所望の活性を有する タンパク質を発現させるために、前記の本発明によるポリヌクレオチドの他に、その発現 を制御する塩基配列や形質転換体を選択するための遺伝子マーカー等を含んでいるのが望 ましい。発現を制御する塩基配列としては、プロモーター、ターミネーターおよびシグナ ルペプチドをコードする塩基配列等がこれに含まれる。プロモーターは宿主微生物におい て転写活性を示すものであれば特に限定されず、宿主微生物と同種もしくは異種のいずれ かのタンパク質をコードする遺伝子の発現を制御する塩基配列として得ることができる。 また、シグナルペプチドは、宿主微生物において、タンパク質の分泌に寄与するものであ れば特に限定されず、宿主微生物と同種もしくは異種のいずれかのタンパク質をコードす る遺伝子から誘導される塩基配列より得ることができる。また、本発明における遺伝子マ ーカーは、形質転換体の選択の方法に応じて適宜選択されてよいが、例えば薬剤耐性をコ ードする遺伝子、栄養要求性を相補する遺伝子を利用することができる。

## [0044]

さらに、本発明によれば、この発現ベクターによって形質転換された微生物が提供され る。この宿主-ベクター系は特に限定されず、例えば、大腸菌、放線菌、酵母、糸状菌な どを用いた系、および、それらを用いた他のタンパク質との融合タンパク質発現系などを 用いることができる。また、この発現ベクターによる微生物の形質転換も、この分野で慣 用されている方法に従い実施することができる。

#### [0045]

さらに、この形質転換体を適当な培地で培養し、その宿主細胞又は培養物から前記の本 発明によるタンパク質を単離して得ることができる。したがって、本発明の別の態様によ れば、前記の本発明による新規タンパク質の製造方法が提供される。形質転換体の培養お よびその条件は、使用する微生物についてのそれと本質的に同等であってよい。また、形 質転換体を培養した後、目的のタンパク質を回収する方法は、この分野で慣用されている ものを用いることができる。

#### [0046]

また、本発明における好ましい態様によれば、本発明によるポリヌクレオチドの塩基配 列によってコードされる、エンドグルカナーゼを発現させ得る酵母細胞が提供される。本 発明における酵母細胞としては、例えばサッカロミセス (Saccharomyces) 属、ハンゼヌ



#### [0047]

また、本発明における新規タンパク質の最も好適な製造方法として、不完全菌類に属す る糸状菌における発現方法が提供される。本発明における好適な宿主糸状菌として、フミ コーラ (<u>Humicola</u>) 属、トリコデルマ (<u>Trichoderma</u>) 属、スタフィロトリクム (<u>Staphyl</u> otrichum) 属、アスペルギルス (Aspergillus) 属、フザリウム (Fusarium) 属又はアク レモニウム (Acremonium) 属に属するものが挙げられるが、より好ましくは、フミコーラ (Humicola) 属、又はトリコデルマ (Trichoderma) 属が挙げられる。より具体的には、 フミコーラ・インソレンス(<u>Humicola</u> <u>insolens</u>)、フミコーラ・サーモイデア(<u>Humicol</u> <u>a thermoidea</u>) 、トリコデルマ・ビリデ(<u>Trichoderma viride</u>)、トリコデルマ・レーセ イ(Trichoderma reesei)、トリコデルマ・ロンジブラシアトウム(Trichoderma longib rachiatum)、スタフィロトリクム・ココスポラム (Staphylotrichum coccosporum)、ア スペルギルス・ニガー (Aspergillus niger) 、アスペルギルス・オリゼ (Aspergillus o ryzae)、フザリウム・オキシスポーラム (Fusarium oxysporum)、又はアクレモニウム ・セルロリティカス (Acremonium cellulolyticus) が挙げられるが、さらにより好まし くは、フミコーラ・インソレンス( $ext{Humicola}$  insolens)、又はトリコデルマ・ビリデ( $ext{T}$ richoderma viride) が挙げられる。

## [0048]

## セルラーゼの用途/セルラーゼ調製物

本発明は、本発明のタンパク質、および本発明の宿主細胞を培養することにより得られ るタンパク質(以下「本発明のタンパク質等」という)を含んでなるセルラーゼ調製物に 関する。

#### [0049]

一般に、セルラーゼ調製物とは、セルラーゼ酵素の他に、例えば、賦形剤(例えば、乳 糖、塩化ナトリウム、ソルビトール等)、防腐剤、非イオン系界面活性剤等を含有させる ことができる。また、セルラーゼ調製物の形態は、固形状であっても液体状であってもよ く、具体的には、粉剤、粒剤、顆粒剤、非粉塵化顆粒、又は液体製剤が挙げられる。本発 明のセルラーゼ調製物には、本発明のタンパク質等に加えて、他のセルラーゼ酵素、例え ば、セロビオヒドロラーゼ、eta - グルコシダーゼおよび本発明以外のエンドグルカナーゼ を含めてもよい。

#### [0050]

セルラーゼ調製物の1種である非粉塵化顆粒(好ましくは、飛散性のない顆粒状)は、 通常の乾式造粒法を用いて製造することが可能である。すなわち、粉末状態の本発明のタ ンパク質等を、中性でエンドグルカナーゼ活性に影響を及ぼさない無機塩(例えば、硫酸 ナトリウム、塩化ナトリウム)、エンドグルカナーゼ活性に影響を及ぼさない鉱物(例え ば、ベントナイト、モンモリナイト)、および中性の有機物(例えば、澱粉又は粒状セル ロース等) 等から選ばれる1種又は複数種に混合した後、非イオン界面活性剤の1種又は 複数種の粉末、あるいは微細に懸濁された懸濁液を加え、充分に混合又は混練する。状況 に応じ、固形物を結着させる合成高分子(例えば、ポリエチレングリコール等)又は天然 高分子(例えば、スターチ等)を適宜添加し、さらに混練した後、ディスクペレッターな どの押し出し成形造粒を行い、成形物をマルメライザーにより球状に成形後、乾燥させる ことで非粉塵化顆粒を製造することが可能である。非イオン界面活性剤の1種又は複数の 添加量は特に限定されないが、本発明のセルラーゼ調製物の全体に対して、好ましくは 0 . 1~50重量%、より好ましくは0.1~30重量%、さらに好ましくは1~10重量 %とする。また、顆粒表面をポリマー等でコーティングすることにより、酸素透過や水分 透過をコントロールすることも可能である。

## [0051]

一方、セルラーゼ調製物の1種である液状製剤(好ましくは、安定化された液体状)は 、本発明のタンパク質等を含む溶液に、エンドグルカナーゼの安定化剤(例えば、合成高



## [0052]

さらに、本発明は、本発明のタンパク質等又は本発明のセルラーゼ調製物を含んでなる洗剤組成物を提供する。該洗剤組成物は、界面活性剤(アニオン性、ノニオン性、カチオン性、両性又は双性イオン性あるいはそれらの混合物であり得る)をも含有し得る。また、該洗剤組成物は、当分野で既知の他の洗剤成分、例えば、ビルダー、漂白剤、漂白活性剤、腐食防止剤、金属イオン封鎖剤、汚れ解離ポリマー、香料、他の酵素(例えばプロテアーゼ、リパーゼ、アミラーゼなど)、酵素安定剤、製剤化補助剤、蛍光増白剤、発泡促進剤等をも含有し得る。代表的なアニオン性界面活性剤は、直鎖状アルキルベンゼンスルホン酸塩(LAS)、アルキル硫酸塩(AS)、アルファーオレフィンスルホン酸塩(ACS)、ポリオキシエチレンアルキルエーテル硫酸塩(AES)、αースルホ脂肪酸エステル塩(α-SFMe)および天然脂肪酸のアルカリ金属塩等がある。ノニオン性界面活性剤の例としては、ポリオキシエチレンアルキルエーテル(AE)、アルキルポリエチレングリコールエーテル、ノニルフェノールポリエチレングリコールエーテル、脂肪酸メチルエステルエトキシレート、スクロース、およびグルコースの脂肪酸エステル、並びにアルキルグルコシド、ポリエトキシル化アルキルグルコシドのエステル等がある。

## [0053]

本発明のセルロース含有繊維の処理方法は、本発明のタンパク質等、本発明のセルラーゼ調製物又は本発明の洗剤組成物を、セルロース含有繊維と接触させることにより行う。本発明の繊維処理方法により改善されうる、セルロース含有繊維の性質としては、以下のものが含まれる。

- (1) 毛羽の除去 (毛羽立ち始める速度の低減、毛羽立ちの低減)
- (2) 減量による繊維の肌触りおよび外観の改善
- (3) 着色セルロース含有繊維の色の澄明化
- (4) 着色セルロース含有繊維の色の局所的な変化の付与、すなわち、着色セルロース含有繊維、代表的にはジーンズへのストーンウォッシュ様の外観および風合いの付与
  - (5) 柔軟化 (ごわつき始める速度の低減、ごわつきの低減)

本発明の繊維処理方法は、具体的には、繊維が浸漬されているか又は浸漬されうる水に、本発明のタンパク質等又は本発明のセルラーゼ調製物を添加することにより行うことができ、例えば、繊維の浸漬工程又はすすぎ工程で行うことができる。

#### [0054]

接触温度、又は該タンパク質等又は該セルラーゼ調製物の添加量などの条件は、他の種々の条件を勘案して適宜決定されてよいが、例えば、セルロース含有繊維の毛羽立ち始める速度を低減するか又はセルロース含有繊維の毛羽立ちを低減する場合、10~60℃程度の温度で、0.01~20mg/Lのタンパク質濃度の上記タンパク質等又は上記セルラーゼ調製物を使用することが好ましい。

#### [0055]

さらに、セルロース含有繊維の肌触りおよび外観の改善を目的とした減量加工の場合、 10~60℃程度の温度で、0.1~50mg/Lのタンパク質濃度の上記タンパク質等 又は上記セルラーゼ調製物を使用することが好ましい。

## [0056]

また、着色されたセルロース含有繊維の色を澄明化することを目的とした場合、10~60℃程度の温度で、0.01~20mg/Lのタンパク質濃度の上記タンパク質等又は上記セルラーゼ調製物を使用することが好ましい。

#### [0057]

また、着色されたセルロース含有繊維の色の局所的な変化を提供するために用いる場合

、20~60℃程度の温度で、0.1~100mg/Lのタンパク質濃度の上記タンパク 質等又は上記セルラーゼ調製物を使用することが好ましい。

## [0058]

また、上記の方法は、セルロース含有繊維がごわつき始める速度を低減するか又はセル ロース含有繊維のごわつきを低減させる場合、10~60℃程度の温度で、0.01~2 0 m g/Lのタンパク質濃度の上記タンパク質等又は上記セルラーゼ調製物を使用するこ とが好ましい。

## [0059]

さらに、本発明は、古紙を脱インキ薬品により処理して脱インキを行う工程において、 本発明のタンパク質等又は本発明のセルラーゼ調製物を用いることを特徴とする古紙の脱 インキ方法に関する。

## [0060]

本発明のタンパク質等又はセルラーゼ調製物は、古紙に作用させると脱インキの効率を 向上させるため、古紙から再生紙を製造する過程において有用である。上記脱インキ方法 によれば、残インキ繊維が大幅に減少するため、古紙の白色度を向上させることができる

## [0061]

上記脱インキ薬品は、一般に古紙の脱インキに用いられる薬品であればよく、特に限定 されないが、例えば、水酸化ナトリウム、炭酸ナトリウム等のアルカリ、硅酸ソーダ、過 酸化水素、燐酸塩、アニオン系の界面活性剤、ノニオン系の界面活性剤、オレイン酸等の 補集材などが挙げられ、助剤として、pH安定剤、キレート剤、分散剤等が挙げられる。

## [0062]

上記脱インキ方法を適用し得る古紙は、一般に古紙と呼ばれるものであればよく、特に 限定されないが、例えば、機械パルプおよび化学パルプを配合した新聞古紙、雑誌古紙、 下級~中級印刷古紙、化学パルプよりなる上質古紙、これらの塗工紙等の印刷古紙が挙げ られる。さらに、一般に古紙と呼ばれるもの以外であっても、インクの付着している紙で あれば、上記脱インキ方法を適用することができる。

[0063] さらに、本発明は、紙パルプのろ水性の改善方法に関し、該方法は、紙パルプを、本発 明のタンパク質等又は本発明のセルラーゼ調製物で処理する工程を含む。

## [0064]

該方法によれば、紙パルプのろ水性が、強度の著しい低下を伴うことなく、有意に改善 されるものと考えられる。該方法を適用し得るパルプは特に限定されないが、例えば、古 紙パルプ、再循環板紙パルプ、クラフトパルプ、亜硫酸パルプ、加工熱処理その他の高収 率パルプ等が挙げられる。

#### [0065]

さらに、本発明は、動物飼料の消化能を改善する方法に関し、動物飼料を、本発明のタ ンパク質等又は本発明のセルラーゼ調製物で処理する工程を含む。

## [0066]

該方法によれば、動物飼料中のグルカンが適度に低分子化されるため、動物飼料の消化 能を改善することができる。

## [0067]

さらに、本発明によるタンパク質を動物飼料中で用いることにより、飼料中のグルカン の消化能を改善することができる。したがって、本発明によれば、動物飼料の消化能を改 善する方法であって、本発明のタンパク質又はセルラーゼ調製物で動物飼料を処理する工 程を含んでなる方法が提供される。

## [0068]

#### 微生物の寄託

ラム(<u>Staphylotrichum</u> <u>coccosporum</u>) I F O 3 1 8 1 7 株は、1 9 8 5 年に財団法人

醗酵研究所に国内寄託されたものであり、国内受託番号は、IFO 31817である。IFO 31817株は現在、独立行政法人製品評価技術基盤機構バイオテクノロジー本部(〒292-0818 千葉県木更津市かずさ鎌足2-5-8かずさアカデミアパーク内)にNBRC 31817として受託されている。同菌株が第三者に公開され、分譲可能な状態にあることは、同本部から交付された証明書[平成15年(2003年)11月19日付]によって明らかとなっている。

## [0069]

本発明によるプラスミド p U C 1 1 8 - S T C E e x で形質転換された大腸菌 D H 5  $\alpha$  株は、 2 0 0 3 年(平成 1 5 年) 1 2 月 1 日に独立行政法人産業技術総合研究所特許生物 寄託センターに国内寄託されたものである。国内受託番号は、F E R M P - 1 9 6 0 2 である。

## [0070]

本発明の発現ベクターの宿主となりうるフミコーラ・インソレンス(<u>Humicola insolens</u>)MN200-1株は、1996年(平成8年)7月15日に独立行政法人産業技術総合研究所特許生物寄託センターに国内寄託(原寄託)されたものであり、1997年(平成9年)6月13日から国際寄託に移管されている。国際受託番号(国際受託番号に続く[]内は国内受託番号)は、FERM BP-5977[FERM P-15736]である。

#### [0071]

本発明の発現ベクターの宿主となりうるトリコデルマ・ビリデ(<u>Trichoderma viride</u>) MC300-1株は、1996年(平成8年)9月9日に独立行政法人産業技術総合研究 所特許生物寄託センターに国内寄託(原寄託)されたものであり、1997年(平成9年)8月11日から国際寄託に移管されている。国際受託番号(国際受託番号に続く [] 内は国内受託番号)は、FERM BP-6047 [FERM P-15842] である。

#### [0072]

以下、実施例をもって本発明をさらに具体的に説明するが、本発明はこれら実施例に限 定されるものではない。

#### 【実施例1】

### [0073]

スタフィロトリクム・ココスポラムからの脱脂綿フィブリル遊離活性を有する成分の単 離精製

#### [0074]

スタフィロトリクム・ココスポラム IFO 31817株を、(T)培地(2.0% アビセル、2.0%酵母エキス、2.0%コーンスチープリカー、1.0%グルコース、0.2%リン酸ーカリウム)中、28℃で振とう培養した。10日間培養の後、菌体を除去した培養上清液を粗精製セルラーゼ調製液とした。

この粗精製セルラーゼ調製液を最終濃度 1.5mol/Lの硫酸アンモニウムの溶液になるように調製した後、1.5mol/L硫酸アンモニウム液で平衡化させた $HiTrap^{TM}PhenylHP$ カラム(アマシャムバイオサイエンス社製)にアプライし、脱イオン水中、硫酸アンモニウム濃度が 1.5mol/L、0.9mol/L、0.75mol/L、0.6mol/L、0.15mol/L、0mol/L0.75mol/L、0.6mol/L0.15mol/L、0mol/L0.75mol/L以份的出版出して、分画した。このうち硫酸アンモニウム濃度が 0.75mol/L00mol/Lのときに溶出した画分に脱脂綿フィブリル遊離活性が強く認められた。

次に、硫酸アンモニウム  $0 \, \text{mol/L}$  溶出画分をウルトラフリー/Biomax-5K (ミリポア社製)を用いて脱塩した後、 $50 \, \text{mmol/L}$  肛酸緩衝液( $p \, \text{Hu 4.0}$ )となるよう調整し、 $50 \, \text{mmol/L}$  正酸緩衝液( $p \, \text{Hu 4.0}$ )で平衡化させた $M \, \text{onoS}$   $5 \, / \, 5 \, \text{HR}$  カラム(アマシャムバイオサイエンス社製)にアプライした。そして、 $50 \, \text{mmol/L}$  正酸緩衝液( $p \, \text{Hu 4.0}$ )から  $50 \, \text{mmol/L}$  正酸緩衝液( $p \, \text{Hu 5.0}$ )中  $1 \, \text{mol/L}$  塩化ナトリウムに対して、リニアグラジェント溶離法で溶出し、分画した。その結果、塩化ナトリウム濃度が約  $0.05 \, \text{mol/L}$  のときに得られた画分に脱脂綿フ

ィブリル遊離活性が強く認められた。この画分をSTCE1として単離した。

また、硫酸アンモニウム 0.75m 01/L溶出画分も同様にウルトラフリー/Bio max-5K (ミリポア社製)を用いて脱塩した後、50mmol/L酢酸緩衝液(pH 4. 0) となるよう調整し、50mmol/L酢酸緩衝液(pH4. 0) で平衡化させた MonoS 5/5HRカラム (アマシャムバイオサイエンス社製) にアプライした。そ して、50mmol/L酢酸緩衝液(pH4.0)から50mmol/L酢酸緩衝液(p H5.0)中1mol/L塩化ナトリウムに対して、リニアグラジェント溶離法で溶出し 、分画した。その結果、塩化ナトリウム濃度が約0.05mo1/Lのときに得られた画 分に脱脂綿フィブリル遊離活性が強く認められた。この画分をSTCE3として単離した 。これらSTCE1画分、STCE3画分は、前記カラムによる分画精製操作を何回も繰 り返すことによって、大量の精製サンプルを取得した。

このSTCE1画分、STCE3画分はSDS-PAGEにおいて各々単一なバンドを 示し、その平均分子量 (MW) は順に約49kD、約45kDであった。SDS-PAG Eは、セイフティーセルミニSTC-808電気泳動槽(テフコ社製)およびプリキャス トミニゲル 10%-SDS-PAGEmini、1.0mmゲル厚(テフコ社製)を使 用し、泳動および染色は製品取扱い説明書の方法に従った。分子量マーカーはプレシジョ ンプロテインスタンダード(バイオラッドラボラトリーズ社製)を使用した。また、ST CE1画分、STCE3画分はいずれもCMCアーゼ活性を有していた。

#### [0075]

脱脂綿フィブリル遊離活性はNeena Dinらによる方法(Neena Din al., "Biotechnology", 9 (1991), p. 1096-1099)を改良した方法で行った。すなわち、洗濯堅牢度試験機を用いて以下の条件で反応 させた場合の脱脂綿から遊離される毛羽の量を600mm吸光度にて測定した。

試験機械:洗濯堅牢度試験機L-12(大栄科学精器製作所社製)

:40℃ 温度 :120分

反応pH:pH7 (50mmol/Lリン酸緩衝液)

処理液には、分画液とともにステンレスビーズと脱脂綿を適当量加えた。

## 【実施例2】

## [0076]

スタフィロトリクム・ココスポラム由来エンドグルカナーゼSTCE1、STCE3の 部分アミノ酸配列の決定

#### [0077]

(1) STCE1、STCE3のN末端アミノ酸配列の同定

実施例1において得られた精製STCE1画分および精製STCE3画分をSDS-P AGEに供した後、PVDF膜プロブロットTM (アプライドバイオシステムズ社製) に電 気的に写し取った。そしてCBB染色液(0. 1%クマシーブルーG250、30%メタ ノール、10%酢酸)で染色した後、脱色し、風乾した。この膜からSTCE1画分、S TCE3画分に該当する分子量約49kD、約45kDのタンパク質(STCE1、ST CE3) がブロットされた部分を切り出し、極少量のメタノールで湿らせ、還元用緩衝液 (8mol/Lグアニジン塩酸塩、0.5mol/Lトリス、0.3%EDTA-2ナト リウム、5%アセトニトリル)でこの膜片を軽く洗浄し、それぞれの膜片をマイクロチュ ープ中で100μL程度の還元用緩衝液に浸漬した。そこに1mgのジチオスレイトール を添加し、窒素封入して密閉し、1時間以上静置した。さらに4-ビニルピリジン(アル ドリッチ社製) 1. 5 μ Lを加え、遮光し、時々撹拌しながら 2 0 分以上置いてタンパク 質のシステイン残基のピリジルエチル化を行った。その後、蒸留水、2%アセトニトリル 水の順でSTCE1、STCE3の膜片を洗浄し、プロテインシークエンサーProci se491 (アプライドバイオシステムズ社製) に供し、それぞれN末端アミノ酸配列を 25残基決定した。STCE1、STCE3のN末端25残基のアミノ酸配列は同じであ り、得られた配列は以下の通りであった。

STCE1、STCE3のN末端アミノ酸配列:Ala-Asp-Gly-Lys-Ser-Thr-Arg-Tyr-Trp-Asp-Cys-Cys-Lys-Pro-Ser-Cys-Ser-Trp-Pro-Gly-Lys-Ala-Ser-Val-Asn (25残基)(配列番号1)

## [0078]

(2) STCE3の内部アミノ酸の同定

実施例1において得られた精製STCE3画分をウルトラフリー/Biomax-5K (ミリポア社製)を用いて脱塩し、凍結乾燥した。凍結乾燥したSTCE3約40 $\mu$ gを1.5mL容量のマイクロチューブに入れ、500 $\mu$ Lの還元用緩衝液を添加して溶解した。そこに1.4mgのジチオスレイトールを添加し、窒素封入して密閉し、5時間管した。さらにモノヨード酢酸2.7mgを添加し、遮光して30分静置してタンパク質のシステイン残基のカルボキシメチル化を行った。その後、ウルトラフリー/Biomax-5K (ミリポア社製)を用いて脱塩濃縮した。この還元カルボキシメチル化したSTCE3約10 $\mu$ gに対し、約1/100モル量のリシルエンドペプチダーゼ(和光純薬社製)を添加し、50mmo1/Lトリス緩衝液(pH9.0)50 $\mu$ L中で、37 $\mathbb C$ で72時間反応させた。この消化液を173Aマイクロブロッターシステム(アプライドバイオシステムズ社製)に供したところ、7種のペプチドが分離され、pVDF膜にブロットされた。得られたペプチド断片のアミノ酸配列を前述のプロテインシークエンサーにより決定した。その結果は以下に示される通りであった。

#### [0079]

LE-1: Pro-Ser-Cys-Ser-Trp-Pro-Gly-Lys

(8残基) (配列番号4)

LE-2: Ser-Thr-Arg-Tyr-Trp-Asp-Cys-Cys-Lys

(9残基) (配列番号5)

LE-3: Asn-Ala-Asp-Asn-Pro-Thr-Phe-Thr-Phe-Arg (10残基) (配列番号6)

LE-4: Ala-Ser-Val-Asn-Gln-Pro-Val-Phe-Ala-Cys-Ser-Ala-Asn-Phe-Gln-Arg(1 6 残基)(配列番号 7)

LE-5: Ser-Gly-Cys-Asp-Gly-Gly-Ser-Ala-Tyr-Ala-Cys-Ala-Asp-Gln-Thr-Pro-Trp-Ala-Val-Asp-Asp (22残基) (配列番号8)

LE-6:Pro-Gly-Cys-Tyr-Trp-Arg-Phe-Asp-Trp-Phe-Lys (1 1 残基) (配列番号 9)

LE-7: Thr-Met-Val-Val-Gln-Ser-Thr-Ser-Thr-Gly-Gly-Asp-Leu-Gly-Thr-Asn(1 6 残基)(配列番号 1 0)

## [0080]

これらN末端アミノ酸配列およびペプチドマッピングによって得られた内部アミノ酸配列の相同性検索から、STCE3はファミリー45に属する新規なエンドグルカナーゼであることが示唆された。またSTCE1も同様に、N末端アミノ酸配列から、ファミリー45に属するエンドグルカナーゼであることが示唆された。

#### 【実施例3】

### [0081]

精製エンドグルカナーゼSTCE1によるセルロース含有繊維の毛羽除去活性の評価

#### [0082]

実施例1で得られた粗精製セルラーゼ調製液と、精製エンドグルカナーゼSTCE1を用いて、綿ニット生地に対する毛羽除去活性を以下のように評価した。

あらかじめ染色された青色綿ニットの生地を界面活性剤およびゴムボールとともに大型ワッシャー中で毛羽立たせた。その後、この毛羽立たせた青色綿ニット生地を下記の条件で毛羽除去処理を行うことにより、形成された毛羽が目視評価でほぼ50%除去されるのに要する粗精製セルラーゼ調製液と、精製エンドグルカナーゼSTCE1のタンパク質濃度を算出した。

試験機械:洗濯堅牢度試験機 L-12 (大栄科学精器製作所社製)

温度:40℃ 時間:60分

処理液量: 40mL

反応pH:pH6 (5mmol/Lリン酸緩衝液)

処理液には、エンドグルカナーゼ溶液とともにゴムボールを適当量加えた。 タンパク質濃度はプロテインアッセイキット(バイオラッドラボラトリー社製)を用い 、牛血清アルブミンをスタンダードとして定量した。その結果を第1表に示した。

[0083] 【表 1】

綿生地の毛羽が50%除去されるのに

必要なタンパク質濃度(m g / L) 試料\_

粗精製セルラーゼ調製液

95.0

精製STCE1\_

 $0. \ \ 21$ 

## 【実施例4】

[0084]

精製エンドグルカナーゼSTCE1によるインデイゴ染めセルロース含有繊維の脱色活 性の評価

[0085]

実施例1で得られた粗精製セルラーゼ調製液と、精製エンドグルカナーゼSTCE1を 用いて、糊抜きした12オンスのブルージーンズパンツを下記の条件で脱色処理した。

試験機械:20kgワッシャー (三洋電機株式会社製 全自動洗濯機 SCW510 1)

温度:55℃ 時間:60分

反応pH:pH6. 2 (6. 7 mm o l/Lリン酸緩衝液)

処理液量:15L

処理液には、エンドグルカナーゼ溶液とともにゴムボールを適当量加えた。

脱色度を分光測色計(ミノルタ社製、CM-5251)を用い、Lab表示系のL値( 明度)を測定した。コントロール(未処理繊維)に対するL値の増加(白色度の増加)=  $\Delta$  L値を求め、この $\Delta$  L値により脱色の度合いを評価した。すなわち、各試験区につき 10点の $\Delta$  L値を測定し(n=1 0)、その平均値を算出した。そして、 $\Delta$  L値=5 となる のに必要な粗精製セルラーゼ調製液と、精製エンドグルカナーゼSTCE1のタンパク質 濃度を算出した。

タンパク質濃度はプロテインアッセイキット(バイオラッドラボラトリー社製)を用い 、牛血清アルブミンをスタンダードとして定量した。その結果を第2表に示した。

[0086]

【表2】

## 脱色 $\Delta$ L値=5となるのに必要な

| 試料          | タンパク質濃度(m g / L) |  |  |  |
|-------------|------------------|--|--|--|
| 粗精製セルラーゼ調製液 | 108.0            |  |  |  |
| 精製STCE1     | 0.37             |  |  |  |

## 【実施例5】

[0087]

洗剤として配合した場合の精製エンドグルカナーゼSTCE1、NCE4、NCE5、 RCEIの毛羽除去活性(澄明化活性)の比較評価

[0088]

実施例1で得られた精製エンドグルカナーゼSTCE1、フミコーラ・インソレンス培 養液から得られた精製エンドグルカナーゼNCE4(国際公開第98/03640号パン フレット)、フミコーラ・インソレンス培養液から得られた精製エンドグルカナーゼNC E5 (国際公開第01/90375号パンフレット)、フミコーラ・インソレンスにおい て大量発現させたものから単一に精製されたエンドグルカナーゼRCEI [セルロース結 合領域が欠失したRCEI-H4(25kD)(国際公開第02/42474号パンフレ ット)]を用いて、欧米の洗剤中における綿ニット生地に対する毛羽除去活性(澄明化活 性)を以下のように評価した。

あらかじめ染色された青色綿ニットの生地を界面活性剤およびゴムボールとともに大型 ワッシャー中で毛羽立たせた。その後、この毛羽立たせた青色綿ニット生地を下記の条件 において洗剤中で処理することにより、形成された毛羽が目視で約50%除去されるのに 要する、精製エンドグルカナーゼSTCE1、NCE4、NCE5、RCEIのタンパク 質濃度を算出した。

試験機械:洗濯堅牢度試験機 L-12 (大栄科学精器製作所社製)

温度:40℃ 時間:60分

処理液量: 40mL

洗剤の種類:NEW Persil (Performance Tablets b iological) (LEVER社製:イギリスにて2002年3月に入手したもの。 )

洗剤の添加量: 0.8%

処理液:人工硬度水(25FH:脱イオン水に80mmo1/Lの塩化カルシウム、 20mmol/Lの塩化マグネシウムを加えた1000FHの人工硬度水を脱イオン水で 希釈して作製。)

処理液には、エンドグルカナーゼ溶液とともにゴムボールを適当量加えた。

タンパク質濃度はプロテインアッセイキット(バイオラッドラボラトリー社製)を用い 、牛血清アルブミンをスタンダードとして定量した。その結果を第3表に示した。

[0089] 【表3】

## 綿生地の毛羽が50%除去されるのに

|         | #.···             |
|---------|-------------------|
| 試料      | 必要なタンパク質濃度(m g/L) |
| 精製STCE1 | 2. 5              |
| 精製NCE 4 | 2. 5              |
| 精製NCE5  | 40.0              |
| 精製RCEI  | 200.0以上           |

#### 【実施例6】

[0090]

水道水中の硬度が各種精製エンドグルカナーゼの毛羽除去活性に与える影響

[0091]

実施例1で得られた精製エンドグルカナーゼSTCE1、フミコーラ・インソレンス培 養液から得られた精製エンドグルカナーゼNCE5(国際公開第01/90375号パン フレット)、フミコーラ・インソレンス培養液から得られた精製エンドグルカナーゼNC E4 (国際公開第98/03640号パンフレット)、フミコーラ・インソレンスにおい て大量発現させたものから単一に精製されたエンドグルカナーゼRCEI[セルロース結 合領域が欠失したRCEI-H4(25kD)(国際公開第02/42474号パンフレ ット)]を用いて、人工硬度水中における綿ニット生地に対する毛羽除去活性を以下のよ



あらかじめ染色された茶色綿ニットの生地を界面活性剤およびゴムボールとともに大型ワッシャー中で毛羽立たせた。その後、この毛羽立たせた茶色綿ニット生地を、各種硬度  $(0\,\mathrm{FH},\,5\,\mathrm{FH},\,1\,0\,\mathrm{FH},\,2\,0\,\mathrm{FH},\,4\,0\,\mathrm{FH})$  の人工硬度水中において、4種の精製エンドグルカナーゼ溶液を用いて、下記の条件下で処理をした。処理後の生地において、形成された毛羽が目視で約 $5\,0\,\%$ 除去されるのに要する精製エンドグルカナーゼSTCE1、NCE5、NCE4、RCEIのタンパク質濃度を算出し、そのタンパク質濃度の逆数値を毛羽除去活性値とした。そして、 $0\,\mathrm{FH}$ の硬度における毛羽除去活性値を $1\,0\,0\,$ としたときの、各硬度での毛羽除去活性相対値を求めた。

試験機械:洗濯堅牢度試験機 L-12 (大栄科学精器製作所社製)

温度:40℃時間:60分

処理液量: 100mL

反応pH:pH6 (5mmol/Lリン酸緩衝液)

処理液:人工硬度水 (0FH, 5FH, 10FH, 20FH, 40FH:脱イオン水に80mmol/Lの塩化カルシウム、20mmol/Lの塩化マグネシウムを加えた1000FHの人工硬度水を脱イオン水で希釈して作製。)

処理液には、エンドグルカナーゼ溶液とともにゴムボールを適当量加えた。

タンパク質濃度は、プロテインアッセイキット (バイオラッドラボラトリー社製) を用い、牛血清アルブミンをスタンダードとして定量した。その結果を第4表に示した。

【0092】 【表4】

| 各硬度での毛羽除去活性相対値 | (%) |
|----------------|-----|
|                |     |

|         | 0FH | 5FH | 10FH | 20FH_ | 40FH_ |
|---------|-----|-----|------|-------|-------|
| 精製STCE1 | 100 | 100 | 90   | 90    | 90    |
| 精製NCE4  | 100 | 108 | 140  | 160   | 200   |
| 精製NCE5  | 100 | 125 | 150  | 175   | 250   |
| 精製RCEI  | 100 | 70  | 60   | 40    | 25    |

#### 【実施例7】

[0093]

エンドグルカナーゼSTCE遺伝子のクローニング

[0094]

実施例2で明らかにしたSTCE1、STCE3の内部およびN末端アミノ酸配列は、同じファミリー45であるフミコーラ・インソレンス由来のエンドグルカナーゼNCE5 (国際公開第01/90375号パンフレット)のアミノ酸配列と相同性を有していた。そこで、スタフィロトリクム・ココスポラムのゲノムDNA中のエンドグルカナーゼSTCE遺伝子を検索するために、NCE5遺伝子をプローブとしてサザンハイプリダイゼーションによる解析を行い、さらにその相同性遺伝子を単離した。

### [0095]

(1) スタフィロトリクム・ココスポラム由来のゲノムDNAの単離

スタフィロトリクム・ココスポラム IFO 31817株を (T) 培地 (2.0% アビセル、2.0% 酵母エキス、2.0% コーンスチープリカー、1.0% グルコース、0.2% リン酸ーカリウム)で 28%、72 時間培養し、遠心分離によって菌体を回収した。得られた菌体を凍結乾燥し、プレンダーにて細かく破砕した後、 $TE(10\,mmol/L)$  Lトリス塩酸 (pH8.0)、1mmol/L EDTA)緩衝液 8mLに溶解した。こ

#### [0096]

## (2) サザンハイブリダイゼーションによるNCE5相同性遺伝子の検索

実施例 7 (1) で得られたスタフィロトリクム・ココスポラムのゲノム DNA約  $10\mu$  gを、複数の制限酵素(EcoRI、BamHI、HindIII、XhoI、NcoI 等)で各々切断し、0.8%アガロースゲル電気泳動に供した。これをナイロンメンブラン (ハイボンドN+ナイロントランスファーメンブラン、アマシャム社製) に移しとり、0.4N 水酸化ナトリウムで DNAを固定し、5 倍濃度 SSC(75 mmo1/Lクエン酸三ナトリウム、750 mmo1/L塩化ナトリウム)で洗浄し、乾燥させ、DNAを固定した。

プローブは、NCE5遺伝子のcDNAを含むプラスミドpJNDーc5(国際公開第01/90375号パンフレット)をBamHIで消化した後、0.8%アガロースゲル電気泳動に供し、約700bpのDNA断片を回収することにより得た。これをECLダイレクトDNA/RNAラベリング検出システム(アマシャム社製)により標識化した。前述キット添付の説明書記載の方法に従って、ゲノムDNAを固定したナイロンメンブランを42 $\mathbb C$ で1時間のプレハイブリダイゼーションをした後、標識化したNCE5プローブを添加し、42 $\mathbb C$ で15時間、ハイブリダイゼーションを行った。

ハイブリダイゼーション後のナイロンメンブランの洗浄は前述キット添付の説明書記載の方法に従った。まず、0.4%SDS、6mol/L尿素を添加した0.6倍濃度SSC(9mmol/Lクエン酸三ナトリウム、90mmol/L塩化ナトリウム)で42℃、20分間の洗浄を2回繰り返し、次に5倍濃度SSCで室温、5分間の洗浄を2回行った。洗浄処理を施したナイロンメンブランを、添付されている検出溶液に1分間浸したあと、フジメディカルX線フィルム(富士写真フィルム社製)に感光させた。

#### [0097]

## (3) ゲノムDNAライブラリーの作製

スタフィロトリクム・ココスポラムのゲノムDNAをEcoRIにより消化し、SeaKemLEアガロース(FMC社製)を用いた 0.8%アガロースゲル電気泳動に供した。 10 k b p 付近を含むよう、約8~12 k b p の大きさのDNA断片を定法に従って抽出、精製した。このDNA断片をファージベクター、Lambda DASH II ベクター(ストラタジーン社製)に連結した。これをエタノール沈殿後、TE緩衝液に溶解し、この全量をギガパック III ゴールドパッケージングキット(ストラタジーン社製)を用いて、ラムダヘッドにパッケージし、得られたファージを大腸菌 XL1-BlueMRA株に感染させた。この方法により得られた  $5\times10^4$  個のファージライプラリーを

用いて目的遺伝子のクローニングを行った。

## [0098]

(4) プラークハイブリダイゼーションによるNCE5相同遺伝子のスクリーニング 次に、実施例 7 (3) に従って得られたゲノム DNA ライプラリー (EcoRI ライ **ブラリー)をナイロンメンプラン(ハイボンドN+ナイロントランスファーメンブラン、** アマシャム社製)に移しとり、0.4N水酸化ナトリウムでDNAを固定し、5倍濃度S SCで洗浄し、乾燥させDNAを固定した。キットの方法に従って、42℃で1時間のプ レハイブリダイゼーションの後、実施例7 (2) で標識化したNCE5遺伝子のプローブ を添加し、42℃で15時間、ハイブリダイゼーションを行った。

ハイブリダイゼーション後のナイロンメンブランの洗浄は前述キット添付の説明書の方 法に従った。まず、0.4%SDS、6mol/L尿素を添加した0.6倍濃度SSCで 42℃、20分間の洗浄を2回繰り返し、次に5倍濃度SSCで室温、5分間の洗浄を2 回行った。洗浄処理を施したナイロンメンブランを、添付されている検出溶液に 1 分間浸 したあと、フジメディカルX線フィルム(富士写真フィルム社製)に感光させ、4個のフ ァージクローンを得た。

次に、大腸菌XL1-Blue MRA株にファージを感染させ、18時間後にファー ジ粒子を集めた。これら粒子を、Grossbergerの方法(Grossberge r, D., "Nucleic Acids. Res.", 15, 6737, 1987) に準じてプロテイナーゼKおよびフェノール処理を行った後、エタノール沈殿により、フ ァージDNAを分離した。

## [0099]

(5) NCE 5 相同遺伝子のサブクローニング

4種のファージDNAを複数の制限酵素で切断し、0.8%アガロースゲル電気泳動に 供した。DNAをSouthernの方法(Southern, E. M., "J. Mol . Biol.", 98, p. 503-517, 1975) によりナイロンメンブランに移 しとり、実施例7(4)と同様にハイブリダイゼーションを行った。その結果、4種のフ ァージDNAは、複数の制限酵素の切断によっても共通のハイブリダイゼーションのパタ ーンを示した。また、4種のファージDNAをSalIで切断し、実施例7(4)と同様 にハイブリダイゼーションを行った場合、共通して約4.4kbpのバンドに強いシグナ ル、および約2.5 k b p のバンドに弱いシグナルを示した。そのことから、この相同遺 伝子はこの約4.4kbpと約2.5kbpのDNAにまたがって存在していると考え、 この2つの大きさのDNAを回収し、プラスミドpUC119のSalIサイトにそれぞ れサブクローニングを行った。約4.4kbpのDNAをサブクローニングして得られた プラスミドをpSTCE-Sal4.4、約2.5kbpのDNAをサブクローニングし て得られたプラスミドをpSTCE-Sal2.5とした。

## 【実施例8】

[0100]

NCE5相同遺伝子の塩基配列の決定

#### [0101]

実施例7 (5) にてサブクローニングしたNCE5相同遺伝子の塩基配列解析は以下の 様に進めた。

塩基配列解析装置は、A. L. F. DNAシーケンサーII (ファルマシアバイオテク 社製)を用いた。シーケンシングゲルは、ハイドロリンクロングレンジャー (FMC社製 ) として入手可能なアクリルアミド担体を使用した。ゲル作成用各種試薬(N, N, N ' , N'ーテトラメチルエチレンジアミン、尿素、および過硫酸アンモニウム) はA. L. F. グレードの試薬 (ファルマシアバイオテク社製) を用いた。塩基配列解読反応は、オ ートリードシーケンシングキット(ファルマシアバイオテク社製)を用いた。ゲル作製条 件、反応条件および泳動条件の各々は、キットに添付の各説明書を参照し、設定した。 このようにしてプラスミドpSTCE-Sal4.4内の約4.4kbpのDNA断片 とプラスミドpSTCE-Sal2.5内の約2.5kbpのDNA断片の塩基配列を常



そこでこれ以降においては、このNCE5相同遺伝子をSTCE1遺伝子として記載する。また、このゲノムDNAから翻訳されたSTCE1アミノ酸配列から、STCE1は、N末端側に触媒領域(catalytic domain)、C末端側にセルロース結合領域(cellulose-binding domain)を有するファミリー45に属するエンドグルカナーゼであることが判明した。しかしながら、このDNA配列にはイントロンと考えられる領域が含まれていることが推察されたため、RT-PCRによるSTCE1遺伝子のcDNAの単離を行うこととした。

### 【実施例9】

#### [0102]

RT-PCRによるSTCE1遺伝子のcDNAの単離と塩基配列決定

## [0103]

(1) スタフィロトリクム・ココスポラムからのmRNAの単離

スタフィロトリクム・ココスポラム IFO 31817株を30mLの(T) 培地(2.0%アビセル、2.0%酵母エキス、2.0%コーンスチープリカー、1.0%グルコース、0.2%リン酸ーカリウム)で28℃、72時間培養し、遠心分離によって菌体を回収した。得られた菌体を凍結乾燥し、スパーテルにて細かく破砕した。全RNAはIsogen(和光純薬工業社製)を用いて単離した。

まず、菌体粉末にIsogen 5mlを入れ、30秒間Vortex ミキサーで攪拌した後、50  $\mathbb C$ で10  $\mathcal C$ 間保温した。その後、室温で5  $\mathcal C$ 間放置した。次に、0.8m  $\mathcal C$   $\mathcal C$ 

次に、mRNAの調製は、mRNAアイソレーションキット(Stratagene社製)を用いて行った。まず前記で調製した <math>0.2mLの全RNAに10mLのエリューションバッファーを加え、さらに 5mLのオリゴ d T溶液を加えた。上清液を除いた後、このオリゴ d Tをハイソルトバッファーで3回、ロウソルトバッファーで2回洗浄した後、68 Cに加温したエリューションバッファーで溶出した。この溶液をエタノール沈殿し、沈殿物を 75 %エタノールで洗浄後、乾燥し、15  $\mu$  L の水に溶解し、これをmRNA 画分とした。

#### [0104]

(2) RT-PCRによるSTCE1遺伝子のcDNAの単離

RT-PCRによるmRNAからのSTCE1遺伝子のcDNAの調製は、Takara RNA PCR Kit (AMV) Ver. 2. 1を用い実施した。N末端側のプライマー配列は、STCE1のN末端アミノ酸配列と実施例8で解析したゲノム配列から翻訳されるアミノ酸を考慮して決定し、C末端側のプライマー配列は、良く保存されているセルロース結合領域の情報(Hoffren, Annna-Marja. et al., "Protein Engineering", 8, p. 443-450, 1995)と実施例8で解析したゲノム配列から翻訳されるアミノ酸を考慮して決定した。すなわち、以下の配列を有するオリゴヌクレオチドプライマーを作製し、前記のように調製したmRNAのうち1μLを鋳型とし、STCE1遺伝子のcDNAのみをPCR法により増幅した。

STCE1-CN: 5'-GCGGATCCATGCGTTCCTCCCCCGTC-3' (26mer) (配列番号 1 1)

STCE1-CC: 5'-GCGGATCCTTAAAGGCACTGCGAGTACC-3' (28mer) (配列番号 1 2)

RT-PCR反応は、以下の条件で行った。まず、C末端のプライマーを加えて、逆転 写酵素によって、反応させた後、Tagポリメラーゼ (リコンビナントTag)、宝酒造 社製)、N末端のプライマーを加え、94℃・1分間、50℃・2分間、72℃・2分間 の反応条件を30回繰り返すことにより増幅した。増幅された断片は、アガロースゲル電 気泳動の結果、約1kbpの1断片であった。これをpUC18にサブクローニング(プ ラスミドpUC-STCE1) した。

## [0105]

## (3) STCE1遺伝子の塩基配列の決定

前記断片の塩基配列を実施例8の方法に従い決定した。さらに、この塩基配列とゲノム の塩基配列を比較し、イントロンを決定した。この解析の結果、スタフィロトリクム・コ コスポラム由来のSTCE1遺伝子のcDNA全塩基配列を決定した(配列番号2)。

得られたSTCE1遺伝子のcDNAの配列情報をもとに、イントロンを含んだ状態の STCE1遺伝子翻訳領域を含むDNA断片の単離を行った。実施例7(5)で用いた4 種のファージDNAを混合したものを鋳型に、プライマーSTCE-HNBamおよびS TCE-HCBamを用いてPCRを行った。増幅した断片をアガロース電気泳動により 分離精製し、BamHIにて切断後、再度アガロース電気泳動による分離精製を行った。 STCE-HNBam:

5'-GGG GGA TCC TGG GAC AAG ATG CGT TCC TCC CCC GTC CTC-3' (39mer) (配列番号 1 3 )

#### STCE-HCBam:

5'-GGG GGA TCC GCT CAA AGG CAC TGC GAG TAC CAG TC-3' (35mer) (配列番号 1 4)

プラスミドpUC118のBamHI部位に、約1.1kbpの前記断片を挿入し、プ ラスミドpUC118-STCEex (FERM P-19602) を得た。更に、この 挿入断片について前述の方法にて塩基配列を決定し、STCE1遺伝子のイントロンおよ び翻訳領域の配列 (配列番号15) を確認した。なお、PCRの際に、プライマーSTC E-HCB a mを使用することで、終止コドンの配列が、TAAからTGAに変わってい るが、生成してくるタンパク質のアミノ酸配列に変化はない。

## 【実施例10】

## [0106]

STCE1遺伝子のフミコーラ・インソレンスでの発現

## [0107]

フミコーラ・インソレンス MN200-1株 (FERM BP-5977) における 発現ベクターpJND-STCE1は、発現したタンパク質がNCE4のN末端16アミ ノ酸残基とSTCE1の残りのアミノ酸残基を融合するように作製した。すなわち、プラ スミドp J D 0 1 (国際公開第 0 0 / 2 4 8 7 9 号パンフレット) の<u>B a m</u> H I 部位に、 NCE4遺伝子(国際公開第98/03640号パンフレット)を連結したプラスミドp JND-NCE4を利用して構築した。

この理由として、NCE4のN末端16アミノ酸残基は、STCE1のN末端16アミ ノ酸残基と一致しているため、NCE4のN末端16アミノ酸残基とSTCE1の残りの アミノ酸残基を融合させても、発現させたタンパク質はSTCE1と同一のものが得られ るためである。

なお、プラスミドpJND-NCE4は以下のように作製した。まず、NCE4遺伝子 (国際公開第98/03640号パンフレット) を、プラスミドp J D 0 1 の <u>B a m</u> H I 部位に連結できるように、開始コドンのすぐ上流の配列と終止コドンのすぐ下流に<u>B a m</u> HIサイトを含む形で下記プライマーを設計し、国際公開第01/90375号パンフレ ットの実施例4 (1)1)記載の方法に従って、プラスミドpCNCE4(国際公開第98 /03640号パンフレット)を鋳型に、PCR法にて変異を導入し、増幅した。

## NCE4-N-BamHI: 5'-GGGGATCCTGGGACAAGATGCGTTCCTCCCCTCTCCTCC-3' (39mer) (配列番号 1 6)

NCE4-C-BamHI:

5'-GGGGATCCTGCGTTTACAGGCACTGATGGTACCAGTC-3'(37mer)(配列番号17)

増幅されたDNAを<u>Bam</u>HIで消化後、プラスミドpJD01 (国際公開第00/2 4 8 7 9 号パンフレットの実施例 D 1 (2) (b))の <u>B a m</u> H I サイトにサブクローニ ングしたプラスミドをpJND-NCE4とした。

[0108]

(1) STCE1発現プラスミドの構築

実施例9(2)で作製したプラスミドpUC-STCE1を鋳型に、STCE1-N-S9A4、STCE1-C-FokFをプライマーに用いてPCRにて増幅した断片をア ガロース電気泳動により分離精製し、 $\underline{Bam}HI$ と $\underline{Fok}I$ にて切断後、再度アガロース 電気泳動により分離精製を行った。

STCE1-N-S9A4:

5'-GGGATCCTGCGTTTAAAGGCACTGCGAGTACCAG-3' (34mer) (配列番号 1 8)

STCE1-C-FokF:

5'-GGGATGCAAGCCGTCGTGCTCGTG-3' (24mer) (配列番号19)

次に前述のプラスミドp J N D - N C E 4 を S T C E 1 - N - F o k R 4 、 S T C E 1 -C-BamFプライマーにより、PCRにて増幅した断片をアガロース電気泳動により 分離精製し、BamHIとFokIにて切断後、再度アガロース電気泳動により分離精製 を行った。

STCE1-N-FokR4:5'-GGGATGGGCCCAGCCGCACGAAG-3'(23mer)(配列番号20)

STCE1-C-BamF:5'-GGGATCCTGGGACAAGATGC-3'(20mer)(配列番号21)

プラスミドpJD01のBamHI部位に、上記2断片を挿入し、プラスミドpJND -STCE1を得た。更に、この挿入断片について前述の方法にて塩基配列を決定し、S TCE1遺伝子(配列番号2)と同じであることを確認した。

[0109]

(2) プラスミドpJND-STCE1によるフミコーラ・インソレンスの形質転換体の 作製

フミコーラ・インソレンス MN200-1株をNS培地(3.0%グルコース、2. 0%酵母エキス、0.1%ペプトン、0.03%塩化カルシウム、0.03%塩化マグネ シウム、pH6.8)において、37℃で24時間培養し、3000r.p.m.で10 分間遠心分離し、集菌した。得られた菌体を 0.5 m o 1 / L シュークロースで洗浄し、  $0.45 \mu m$ のフィルターで濾過したプロトプラスト化酵素溶液( $3 m g / m L \beta - グル$ クロニダーゼ (β-glucuronidase)、lmg/mLキチナーゼ (Chit inase)、1mg/mLザイモリエース (Zymolyase)、0.5mol/L シュークロース)10mLに懸濁した。30℃で60~90分間振盪し、菌糸をプロト プラスト化させた。この懸濁液を濾過した後、2500 r. p. m. で10分間遠心分離 してプロトプラストを回収し、SUTC緩衝液(0.5mo1/Lシュークロース、10 mmol/L塩化カルシウム、10mmol/Lトリス塩酸(pH7.5))で洗浄した

このプロトプラストを1mLのSUTC緩衝液に懸濁し、この100μLに対し10μ gのプラスミドpJND-STCE1が入った溶液10μLを加え、氷中に5分間静置し た。次に、400μLのPEG溶液(60%PEG4000、10mmol/L塩化カル シウム、10mmol/Lトリス塩酸(pH7.5))を加え、氷中に20分間静置した 後、10mLのSUTC緩衝液を加え、2500r. p. m. で10分間遠心分離した。 集めたプロトプラストを1mLのSUTC緩衝液に懸濁した後、4000r.p.m.で 5 分間遠心分離して、最終的に 1 0 0 μ Lの S U T C 緩衝液に懸濁した。

このプロトプラストを、ハイグロマイシン(200μg/ml)添加YMG培地(1% グルコース、0.4%酵母エキス、0.2%モルトエキス、1%寒天(pH6.8))上 に、YMG軟寒天とともに重層し、37℃で5日間培養し、形成したコロニーを形質転換 体とした。

[0110]

(3) p J N D - S T C E 1 の形質転換体の培養および同定

(i) SDS-PAGEによる評価

プラスミドpJND-STCE1をフミコーラ・インソレンス MN200-1株に導 入し、ハイグロマイシン耐性を示す株を40株選抜した。これらを(N)培地(5.0% アビセル、2.0%酵母エキス、0.1%ポリペプトン、0.03%硫酸マグネシウム、 pH6.8)において、37℃で4日間培養し、得られた培養上清をSDS-PAGE電 気泳動(プリキャストミニゲル 14%-SDS-PAGEmini、1.0mmゲル厚 (テフコ社製)) により解析した。その結果、13クローンにおいて、STCE1と推定 される分子量45~49kD付近のタンパク質が顕著に増強されていることが確認できた

#### [0111]

- (i i) 組換えSTCE1のN末端アミノ酸残基の同定
- (3) (i)で大量発現したタンパク質がSTCE1遺伝子由来であることを確認する ために、N末端アミノ酸配列を決定した。まず、培養上清についてSDS-PAGE電気 泳動にて分離し、実施例2の方法にしたがってPVDF膜にタンパク質を電気的に写し取 り、分子量45~49kD付近のタンパク質について、プロテインシーケンサーに供した 。その結果、エンドグルカナーゼSTCE1のN末端アミノ酸配列(配列番号1)と一致 した。

## 【実施例11】

[0112]

フミコーラ・インソレンスによって発現したSTCE1によるセルロース含有繊維の毛 羽除去活性の評価

## [0113]

実施例10(3)のSDS-PAGEにおいて、分子量45~49kD付近のタンパク 質の発現が確認された13株のうち、特に発現が顕著な1株(4A-9株)の培養上清液 を用いて、綿ニット生地毛羽除去活性を測定した。コントロールとして非形質転換体であ る親株由来の培養上清液を用いた。方法は実施例3に従い、pH6、40℃、1時間の処 理条件で、あらかじめ毛羽立たせた青色綿ニット生地を各種培養上清液で毛羽除去処理を 行うことにより、形成された毛羽が目視評価でほぼ100%除去されるのに要する培養上 清液中のタンパク質濃度を算出した。

タンパク質濃度はプロテインアッセイキット(バイオラッドラボラトリー社製)を用い 、牛血清アルプミンをスタンダードとして定量した。その結果を第5表に示した。

[0114]【表 5】

綿生地の毛羽が100%除去されるのに

必要なタンパク質濃度(mg/L)

フミコーラ・インソレンス MN200-1 株 (親株)

96.3

フミコーラ・インソレンス 4A-9 株

#### 【実施例12】

[0115]

フミコーラ・インソレンスによって発現したエンドグルカナーゼSTCE1によるイン デイゴ染めセルロース含有繊維の脱色活性の評価

[0116]

実施例10で得られたSTCE1大量発現株(4A-9株)と非形質転換体である親株 出証特2004-3110537

(MN200-1株) の培養上清液を用いて、糊抜きした12オンスのブルージーンズパ ンツを下記の条件で脱色処理をした。

試験機械:20kgワッシャー(三洋電機株式会社製 全自動洗濯機 SCW510 1)

温度:55℃ 時間:60分

反応pH:pH6. 2 (6. 7 mm o l / L リン酸緩衝液)

処理液量:15L

処理液には、培養上清液とともにゴムボールを適当量加えた。

## [0117]

脱色度を分光測色計(ミノルタ社製 СM-5251)を用い、Lab表示系のL値( 明度)を測定した。コントロール(未処理繊維)に対するL値の増加(白色度の増加)= △L値を求め、この△L値により脱色の度合いを評価した。すなわち、各試験区につき1 0点の $\Delta$  L値を測定し(n=1 0)、その平均値を算出した。そして、 $\Delta$  L値= 7 となる のに必要な培養上清液中のタンパク質濃度を算出した。

タンパク質濃度はプロテインアッセイキット(バイオラッドラボラトリー社製)を用い 、牛血清アルブミンをスタンダードとして定量した。その結果を第6表に示した。

[0118]【表 6】

脱色 ΔL値=7となるのに必要な

タンパク質濃度(mg/L)

フミコーラ・インソレンス MN200-1 株 (親株)

58.9

フミコーラ·インソレンス 4A-9 株

3.3

## 【実施例13】

[0119]

洗剤として配合した場合のフミコーラ・インソレンスによって発現されたエンドグルカ ナーゼSTCE1の毛羽除去活性(澄明化活性)の評価

## [0120]

実施例10で得られたSTCE1大量発現株(4A-9株)と非形質転換体である親株 (MN200-1株) の培養上清液を用いて、欧米の洗剤中における綿ニット生地に対す る毛羽除去活性(澄明化活性)を以下のように評価した。

あらかじめ染色された茶色綿ニットの生地を界面活性剤およびゴムボールとともに大型 ワッシャー中で毛羽立たせた。その後、この毛羽立たせた茶色綿ニット生地を下記の条件 において洗剤中で処理することにより、形成された毛羽が目視で約50%除去されるのに 要する、培養上清液量中のタンパク質濃度を求めた。

試験機械:洗濯堅牢度試験機 L-12 (大栄科学精器製作所社製)

温度:40℃ 時間:60分 処理液量: 40mL

洗剤の種類:NEW Persil (Performance Tablets biological) (LEVER社製:イギリスにて2002年3月に入手したもの 。)

洗剤の添加量: 0.4%

処理液:人工硬度水(25FH:脱イオン水に80mmo1/Lの塩化カルシウム、 20mmol/Lの塩化マグネシウムを加えた1000FHの人工硬度水を脱イオン水で 希釈して作製。)

ページ: 26/

処理液には、培養上清液とともにゴムボールを適当量加えた。

タンパク質濃度は、プロテインアッセイキット(バイオラッド社製)を用い、牛血清ア ルプミンをスタンダードとして定量した。その結果を第7表に示した。

[0121] 【表7】

綿生地の毛羽が50%除去されるのに

必要なタンパク質濃度(mg/L)

フミコーラ·インソレンス MN200-1 株 (親株)

833

フミューラ·インソレンス 4A-9株

22

## 【実施例14】

[0122]

水道水中の硬度が、フミコーラ・インソレンスにより発現された各種エンドグルカナー ゼの毛羽除去活性に与える影響

## [0123]

実施例10で得られたエンドグルカナーゼSTCE1大量発現株(4A-9株)、NC E5を大量発現させたフミコーラ・インソレンス形質転換株(国際公開第01/9037 5号パンフレット)、NCE4を大量発現させたフミコーラ・インソレンス形質転換株( 国際公開第98/03640号パンフレット)、RCEI(セルロース結合領域が欠失し たRCEI-H4(25kD))を大量発現させたフミコーラ・インソレンス形質転換株 (国際公開第02/42474号パンフレット)の計4株の培養上清液を用いて、洗剤中 の各種硬度の水における、綿ニット生地の毛羽除去活性を以下のように評価した。

あらかじめ染色された茶色綿ニットの生地を、界面活性剤およびゴムボールとともに大 型ワッシャー中で毛羽立たせた。その後、この毛羽立たせた茶色綿ニット生地を、各種硬 度 (0FH, 5FH, 10FH, 20FH, 40FH) の人工硬度水中において、4種の 培養上清液を用いて、下記の条件下で処理をした。

試験機械:洗濯堅牢度試験機 L-12 (大栄科学精器製作所社製)

温度:40℃ 時間:60分

処理液量:100mL

洗剤の種類:NEW Persil (Performance Tablets b iological) (LEVER社製:イギリスにて2002年3月に入手したもの。

洗剤の添加量: 0.4%

処理液:人工硬度水(0FH,5FH,10FH,20FH,40FH:脱イオン水 に80mmol/Lの塩化カルシウム、20mmol/Lの塩化マグネシウムを加えた1 000FHの人工硬度水を脱イオン水で希釈して作製。)

処理液には、培養上清液とともにゴムボールを適当量加えた。

処理後の生地において、形成された毛羽が目視でほぼ50%除去されるのに要する培養 上清液量中のタンパク質濃度を求め、そのタンパク質濃度の逆数値を毛羽除去活性値とし た。そして、0FHの硬度における毛羽除去活性値を100としたときの、各種硬度での 毛羽除去活性相対値を求めた。その結果を第8表に示した。

[0124]

#### 【表8】

## 各種硬度での毛羽除去活性相対値(%)

| _                     | 0FH_ | 5FH | 10FH | 20FH | 40FH |
|-----------------------|------|-----|------|------|------|
| フミコーラ・インソレンスSTCE1高発現株 | 100  | 100 | 100  | 100  | 93   |
| フミコーラ・インソレンスNCE4高発現株  | 100  | 107 | 127  | 140  | 160  |
| フミコーラ・インソレンスNCE5高発現株株 |      |     |      | 171  | 257  |
| フミコーラ・インソレンスRCEI高発現株  | 100  | 70  | 55   | 40   | 30   |

## 【実施例15】

[0125]

STCE1遺伝子のトリコデルマ・ビリデでの発現

[0126]

(1) STCE1発現プラスミドSTCE1N-pCB1の構築

STCE1遺伝子は、開始コドンの上流の配列に<u>Sma</u>I、終止コドンの下流に<u>Xho</u> I をあらかじめ含む形で以下のような変異導入用プライマーを設計し、PCR法にて増幅 した。

STCE1-N-SmaI:

5'-CAGCCCGGGGCGCATCATGCGTTCCTCCCCTCTCC-3' (35mer)(配列番号 2 2)

STCE1-C-XhoI:

5'-GCCTCGAGTACCTTAAAGGCACTGCGAGTACCA-3' (33mer) (配列番号 2 3)

PCRの反応は、プラスミドpJND-STCE1を鋳型に、STCE1-N-Sma I、STCE1-C-XhoIの2本の合成DNAをプライマーにして、TaKaRa LA Taq with GC buffer (宝酒造社製)を用いて行った。反応条件 については酵素に添付の説明書の条件に従った。アガロースゲル電気泳動により反応後の サンプルを分離し、さらに制限酵素  $\underline{Sma}$  I および  $\underline{Xho}$  I にて切断し、約0.9 k b p の遺伝子断片STCE1-Nを得た。

一方、pCB1-M2(国際公開第98/11239号パンフレット)を制限酵素<u>St</u>  $\underline{\mathbf{u}}$   $\mathbf{I}$  および  $\mathbf{X}$   $\mathbf{h}$   $\mathbf{o}$   $\mathbf{I}$  で切断し、7. 3  $\mathbf{k}$   $\mathbf{b}$   $\mathbf{p}$  の断片を回収した。これに約0. 9  $\mathbf{k}$   $\mathbf{b}$   $\mathbf{p}$  の 遺伝子断片STCE1-NをTaKaRa DNA Ligation Kit Ver . 1 (宝酒造社製)を用いて連結し、プラスミドSTCE1N-M2を作製した。

さらに、プラスミドSTCE1-M2のXbaIサイトにPDH25(Cullen,

Leong, S. A., Wilson, L. J. AND Henne D. J., "Gene", 57, p. 21-26、1987) 由来ハイグロマイシ ンB耐性カセットを挿入し、プラスミドSTCE1N-pCB1を構築した。酵素等の反 応条件についてはキットに添付の説明書の条件に従った。プラスミドSTCE1N-pC B1は、宿主のトリコデルマ内にて、自身の開始コドンを用いてSTCE1タンパク質を 発現するように構築した。

[0127]

(2) 融合STCE1発現プラスミドSTCE1M-pCB1の構築

STCE1遺伝子は、N末端をコードするアミノ酸(Ala)のコドンのすぐ上流に<u>S</u>  $\underline{p\ h}\ I$ 、終止コドンの下流に $\underline{X\ h\ o}\ I$  をあらかじめ含む形で以下のような変異導入用プラ 

STCE1-M-SphI:

5'-CCGCATGCGCTGATGGCAAGTCCACC-3' (26mer) (配列番号 2 4)

STCE1-C-XhoI:

(33mer) (配列番号25) 5'-GCCTCGAGTACCTTAAAGGCACTGCGAGTACCA-3'

出証特2004-3110537

PCRの反応は、プラスミドpJND-STCE1を鋳型に、STCE1-M-Sph I、STCE1-C-XhoIの2本の合成DNAをプライマーにして、TaKaRa Taq with GC buffer (宝酒造社製)を用いて行った。反応条件 については酵素に添付の説明書の条件に従った。アガロースゲル電気泳動により反応後の サンプルを分離し、さらに制限酵素 Sph I および Xho I にて切断し、約0.9 k b p の遺伝子断片STCE1-Mを得た。

一方、pCB1-M2 (国際公開第98/11239号パンフレット)を制限酵素<u>Sp</u> h I および X h o I で切断し、7 . 3 k b p の断片を回収した。これに0 . 9 k b p の遺 - 伝子断片STCE1-MをTaKaRa DNA Ligation Kit Ver. 1 (宝酒造社製)を用いて連結し、プラスミドSTCE1-M2を作製した。

さらに、プラスミドSTCE1-M2のXbaIサイトにPDH25 (Cullen, D., Leong, S.A., Wilson, L.J. AND Henne D. J., "Gene", 57, p. 21-26、1987) 由来ハイグロマイシ ンB耐性カセットを挿入し、プラスミドSTCE1M-pCB1を構築した。酵素等の反 応条件についてはキットに添付の説明書の条件に従った。プラスミドSTCE1M-pC B1は、宿主のトリコデルマ内にて、ベクター由来の開始コドンを用い、CBHIタンパ ク質のpre-pro配列との融合タンパク質の形でSTCE1タンパクを発現するよう に構築した。

## [0128]

(3) プラスミドSTCE1N-pCB1、STCE1M-pCB1によるトリコデルマ ・ビリデの形質転換体の作製

トリコデルマ・ビリデ MC300-1株 (FERM BP-6047) をS培地 (3 . 0%グルコース、1. 0%イーストエキス、0. 1%ポリペプトン、0. 14%硫酸ア ンモニウム、0.2%リン酸カリウム、0.03%硫酸マグネシウム、p H 6.8) にお いて、28℃で24時間培養し、3000r.p.m.で10分間遠心分離し、集菌した 。得られた菌体を 0. 5 m o 1 / Lシュークロースで洗浄し、 0. 4 5 μ m のフィルター で濾過したプロトプラスト化酵素溶液(5mg/m1ノボザイム234、5mg/m1セ ルラーゼオノズカ R - 1 0 、0.5 m o 1 / Lシュークロース) に懸濁した。30℃で6 0~90分間振盪し、菌糸をプロトプラスト化させた。この懸濁液を濾過した後、250 0 r. p. m. で10分間遠心分離してプロトプラストを回収し、SUTC緩衝液で洗浄 した。

このプロトプラストを1mLのSUTC緩衝液に懸濁し、この100μLに対し10μ gのSTCE1N-pCB1、又はSTCE1M-pCB1の入ったDNA溶液10μL を加え、氷中に 5 分間静置した。次に、400 μ L の P E G 溶液 (60% P E G 4000 、10mmol/L塩化カルシウム、10mmol/Lトリス塩酸(pH7.5))を加 え、氷中に20分間静置した後、10mLのSUTC緩衝液を加え、2500r.p.m . で10分間遠心分離した。集めたプロトプラストを1mLのSUTC緩衝液に懸濁した 後、4000r. p. m. で5分間遠心分離し、最終的に100μLのSUTC緩衝液に 懸濁した。

このプロトプラストを、ハイグロマイシンB (20μg/m1) 添加ポテトデキストロ ース (PD) 寒天培地 (3.9%ポテトデキストロースアガー、17.1%シュークロー ス)上に、PD軟寒天(1.3%ポテトデキストロースアガー、17.1%シュークロー ス)とともに重層し、28℃で5日間培養後、形成したコロニーを形質転換体とした。

## 【実施例16】

## [0129]

STCE1遺伝子のトリコデルマ・ビリデ形質転換体培養液中のSTCE1の同定およ び毛羽除去活性評価

## [0130]

(1) HPLCによる評価

プラスミドSTCE1N-pCB1、STCE1M-pCB1をトリコデルマ・ビリデ

MC300-1株に導入し、ハイグロマイシンBに耐性を示す株を50株選抜した。これらをS培地において、37℃で5日間培養し、得られた培養上清液を、TSKgelTMS-250カラム(4.6mmI.D.×7.5cm)(東ソー社製)を用いたHPLC分析により、0.05%TFA(トリフルオロ酢酸)中、アセトニトリル濃度を0%から80%までのリニアグラジエントにより流速1.0mL/minで溶出し、UV280nmでピークを検出した。その結果、STCElN-pCBl形質転換体、STCElM-pCBl形質転換体、STCElM-pCBl形質転換体をNぞれ3株に、野生株トリコデルマ・ビリデ MC300-1株培養上清液には見られないピークを認めたため、それらピークを分取し、N末端アミノ酸分析を実施例2の方法に従って決定した結果、STCElのN末端アミノ酸配列(配列番号1)と一致した。

#### [0131]

(2) STCE 1 形質転換体培養液の毛羽除去活性の評価

実施例16(1)においてSTCE1が発現している2株と非形質転換体である親株(MC300-1株)の培養上清液を用いて、実施例3に従い、pH10(5mmo1/L炭酸ナトリウム緩衝液)、40℃で1時間の処理条件で、あらかじめ毛羽立たせた青色綿ニット生地を各種培養上清液で毛羽除去処理を行うことにより、形成された毛羽が目視評価でほぼ50%除去されるのに要する培養上清液中のタンパク質濃度を算出した。

タンパク質濃度はプロテインアッセイキット(バイオラッドラボラトリー社製)を用い 、牛血清アルブミンをスタンダードとして定量した。その結果を第9表に示した。

[0132]

【表9】

綿生地の毛羽が50%除去されるの

に必要なタンパク質濃度(mg/L)

トリコデルマ·ビリデ MC300·1 株(野生株)

330 mg/L入れても毛羽が50%

取れるには至らなかった。

トリコデルマ・ビリデ(STCE1N·pCB1 形質転換株)

2 7

トリコデルマ・ビリデ (STCE1M-pCB1 形質転換株)

28

## 【配列表】

## SEQUENCE LISTING

```
MEIJI SEIKA KAISHA, LTD.
<110>
      Endoglucanases STCE and cellulase preparation containing thereof
<120>
<130> PF0710
<160>
       25
<170> PatentIn version 3.1
<210>
      1
<211> 25
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 1
Ala Asp Gly Lys Ser Thr Arg Tyr Trp Asp Cys Cys Lys Pro Ser Cys
                                                         15
                 5
 1
Ser Trp Pro Gly Lys Ala Ser Val Asn
             20
 <210> 2
 <211> 951
 <212> DNA
        Staphylotrichum coccosporum IFO 31817
 <213>
 <220>
 <221>
        sig_peptide
        (1)...(63)
 <222>
 <223>
  <220>
  <221>
        CDS
  <222>
         (64)...(951)
  <223>
  <400> 2
  atgcgttcct cccccgtcct ccgcacggcc ctggccgctg ccctcccct ggccgccctc
                                                                         60
  gct gcc gat ggc aag tcg acc cgc tac tgg gac tgt tgc aag ccg tcg
                                                                        108
      Ala Asp Gly Lys Ser Thr Arg Tyr Trp Asp Cys Cys Lys Pro Ser
                                                               15
                                           10
                      5
      1
```

| 13 458 20 00 0 10 10 10 10                                                                                                                            |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| tgc tcg tgg ccc ggc aag gcc tcg gtg aac cag ccc gtc ttc gcc tgc<br>Cys Ser Trp Pro Gly Lys Ala Ser Val Asn Gln Pro Val Phe Ala Cys<br>20 25 30        | 156                     |
| agc gcc aac ttc cag cgc atc agc gac ccc aac gtc aag tcg ggc tgc<br>Ser Ala Asn Phe Gln Arg Ile Ser Asp Pro Asn Val Lys Ser Gly Cys<br>35 40 45        | 204                     |
| gac ggc ggc tcc gcc tac gcc tgc gcc gac cag acc ccg tgg gcc gtc<br>Asp Gly Gly Ser Ala Tyr Ala Cys Ala Asp Gln Thr Pro Trp Ala Val<br>50 55 60        | 252                     |
| aac gac aac ttc tcg tac ggc ttc gcc gcc acg tcc atc tcg ggc ggc<br>Asn Asp Asn Phe Ser Tyr Gly Phe Ala Ala Thr Ser Ile Ser Gly Gly<br>65 70 75        | 300                     |
| aac gag gcc tcg tgg tgc tgt ggc tgc tac gag ctg acc ttc acc tcg<br>Asn Glu Ala Ser Trp Cys Cys Gly Cys Tyr Glu Leu Thr Phe Thr Ser<br>80 85 90 95     | 348                     |
| ggc ccc gtc gct ggc aag acc atg gtt gtc cag tcc acc tcg acc ggc Gly Pro Val Ala Gly Lys Thr Met Val Val Gln Ser Thr Ser Thr Gly 100 105 110           | 396                     |
| ggc gac ctc ggc acc aac cac ttc gac ctg gcc atg ccc ggt ggt ggt<br>Gly Asp Leu Gly Thr Asn His Phe Asp Leu Ala Met Pro Gly Gly<br>115 120 125         | 444                     |
| gtc ggc atc ttc gac ggc tgc tcg ccc cag ttc ggc ggc ctc gcc ggc<br>Val Gly Ile Phe Asp Gly Cys Ser Pro Gln Phe Gly Gly Leu Ala Gly<br>130 135 140     | 492                     |
| gac cgc tac ggc ggc gtc tcg tcg cgc agc cag tgc gac tcg ttc ccc<br>Asp Arg Tyr Gly Gly Val Ser Ser Arg Ser Gln Cys Asp Ser Phe Pro<br>145 150 155     | 540                     |
| gcc gcc ctc aag ccc ggc tgc tac tgg cgc ttc gac tgg ttc aag aac<br>Ala Ala Leu Lys Pro Gly Cys Tyr Trp Arg Phe Asp Trp Phe Lys Asi<br>160 165 170 175 | .1                      |
| gcc gac aac ccg acc ttc acc ttc cgc cag gtc cag tgc ccg tcg gag<br>Ala Asp Asn Pro Thr Phe Thr Phe Arg Gln Val Gln Cys Pro Ser Gl<br>180 185 190      | g 636<br>u              |
| ctc gtc gcc cgc acc ggc tgc cgc cgc aac gac gac ggc aac ttc ccc<br>Leu Val Ala Arg Thr Gly Cys Arg Arg Asn Asp Asp Gly Asn Phe Pre<br>195 200 205     | c 684<br>o              |
| gtc ttc acc cct ccc tcg ggc ggt cag tcc tcc tcg tct tcc tcc tc<br>Val Phe Thr Pro Pro Ser Gly Gly Gln Ser         | c 732<br>er<br>-3110537 |

210

215

220

| 210 215                                                                                                                                           |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| agc agc gcc aag ccc acc tcc acc tcc acc tcg acc acc tcc acc aag<br>Ser Ser Ala Lys Pro Thr Ser Thr Ser Thr Ser Thr Thr Ser Thr Lys<br>225 230 235 | 780 |
| gct acc tcc acc acc tcg acc gcc tcc agc cag acc tcg tcg tcc acc Ala Thr Ser Thr Thr Ser Thr Ala Ser Ser Gln Thr Ser Ser Ser Thr 240 245 250 255   | 828 |
| ggc ggc tgc gcc gcc cag cgc tgg gcg cag tgc ggc ggc atc ggg<br>Gly Gly Cys Ala Ala Gln Arg Trp Ala Gln Cys Gly Gly Ile Gly<br>260 265 270         | 876 |
| ttc tcg ggc tgc acc acg tgc gtc agc ggc acc acc tgc aac aag cag Phe Ser Gly Cys Thr Thr Cys Val Ser Gly Thr Thr Cys Asn Lys Gln 275 280 285       | 924 |
| aac gac tgg tac tcg cag tgc ctt taa<br>Asn Asp Trp Tyr Ser Gln Cys Leu<br>290 295                                                                 | 951 |
| <210> 3 <211> 295 <212> PRT <213> Staphylotrichum coccosporum IFO 31817                                                                           |     |
| <pre>&lt;400&gt; 3 Ala Asp Gly Lys Ser Thr Arg Tyr Trp Asp Cys Cys Lys Pro Ser Cys 1</pre>                                                        |     |
| Ser Trp Pro Gly Lys Ala Ser Val Asn Gln Pro Val Phe Ala Cys Ser<br>20 25 30                                                                       |     |
| Ala Asn Phe Gln Arg Ile Ser Asp Pro Asn Val Lys Ser Gly Cys Asp<br>35 40 45                                                                       |     |
| Gly Gly Ser Ala Tyr Ala Cys Ala Asp Gln Thr Pro Trp Ala Val Asn<br>50 55 60                                                                       |     |
| Asp Asn Phe Ser Tyr Gly Phe Ala Ala Thr Ser Ile Ser Gly Gly Asn 65 70 75 80                                                                       |     |



Glu Ala Ser Trp Cys Cys Gly Cys Tyr Glu Leu Thr Phe Thr Ser Gly 85 90 95

Pro Val Ala Gly Lys Thr Met Val Val Gln Ser Thr Ser Thr Gly Gly 100 105 110

Asp Leu Gly Thr Asn His Phe Asp Leu Ala Met Pro Gly Gly Gly Val

Gly Ile Phe Asp Gly Cys Ser Pro Gln Phe Gly Gly Leu Ala Gly Asp 130 135 140

Arg Tyr Gly Gly Val Ser Ser Arg Ser Gln Cys Asp Ser Phe Pro Ala 145 150 155 160

Ala Leu Lys Pro Gly Cys Tyr Trp Arg Phe Asp Trp Phe Lys Asn Ala 165 170 175

Asp Asn Pro Thr Phe Thr Phe Arg Gln Val Gln Cys Pro Ser Glu Leu 180 185 190

Val Ala Arg Thr Gly Cys Arg Arg Asn Asp Asp Gly Asn Phe Pro Val 195 200 205

Ser Ala Lys Pro Thr Ser Thr Ser Thr Ser Thr Thr Ser Thr Lys Ala 225 230 235 240

Thr Ser Thr Thr Ser Thr Ala Ser Ser Gln Thr Ser Ser Ser Thr Gly 245 250 255

Gly Gly Cys Ala Ala Gln Arg Trp Ala Gln Cys Gly Gly Ile Gly Phe 260 265 270

Ser Gly Cys Thr Thr Cys Val Ser Gly Thr Thr Cys Asn Lys Gln Asn 275 280 285

```
Asp Trp Tyr Ser Gln Cys Leu
                        295
   290
<210> 4
<211> 8
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 4
Pro Ser Cys Ser Trp Pro Gly Lys
 <210> 5
 <211> 9
 <212> PRT
 <213> Staphylotrichum coccosporum IFO 31817
 <400> 5
 Ser Thr Arg Tyr Trp Asp Cys Cys Lys
 <210> 6
 <211> 10
 <212> PRT
 <213> Staphylotrichum coccosporum IFO 31817
 <400> 6
 Asn Ala Asp Asn Pro Thr Phe Thr Phe Arg
                                      10
                 5
  1
  <210> 7
  <211> 16
  <212> PRT
        Staphylotrichum coccosporum IFO 31817
  <400> 7
  Ala Ser Val Asn Gln Pro Val Phe Ala Cys Ser Ala Asn Phe Gln Arg
                                                           15
                                      10
                  5
```

6/

```
特願2003-404020
<210> 8
<211> 22
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 8
Ser Gly Cys Asp Gly Gly Ser Ala Tyr Ala Cys Ala Asp Gln Thr Pro
                                   10
Trp Ala Val Asn Asp Asn
           20
<210> 9
<211> 11
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 9
Pro Gly Cys Tyr Trp Arg Phe Asp Trp Phe Lys
                5
<210> 10
<211> 16
<212> PRT
<213> Staphylotrichum coccosporum IFO 31817
<400> 10
Thr Met Val Val Gln Ser Thr Ser Thr Gly Gly Asp Leu Gly Thr Asn
                                    10
 <210> 11
 <211> 26
 <212> DNA
 <213> Artificial Sequence
 <220>
      Description of Artificial Sequence: Primer STCE1-CN
 <223>
```

<210> 12

<400> 11

gcggatccat gcgttcctcc cccgtc

26



```
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer STCE1-CC
<400>
     12
                                                                      28
gcggatcctt aaaggcactg cgagtacc
<210> 13
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer STCE-HNBam
<400> 13
                                                                      39
gggggatcct gggacaagat gcgttcctcc cccgtcctc
<210> 14
<211> 35
<212> DNA
<213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Primer STCE-HCBam
 <400> 14
                                                                       35
gggggatccg ctcaaaggca ctgcgagtac cagtc
 <210> 15
 <211> 1037
 <212> DNA
 <213> Staphylotrichum coccosporum IFO 31817
 <220>
 <221> sig_peptide
 <222> (1)..(63)
 <223>
 <220>
 <221> exon
 <222> (64)..(333)
 <223>
```



| <220> <221> exon <222> (420) (1037) <223>                                                                                                         |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <220> <221> Intron <222> (334)(419) <223>                                                                                                         |     |
| <400> 15<br>atgcgttcct cccccgtcct ccgcacggcc ctggccgctg ccctcccct ggccgccctc                                                                      | 60  |
| gct gcc gat ggc aag tcg acc cgc tac tgg gac tgt tgc aag ccg tcg Ala Asp Gly Lys Ser Thr Arg Tyr Trp Asp Cys Cys Lys Pro Ser 1 5 10 15             | 108 |
| tgc tcg tgg ccc ggc aag gcc tcg gtg aac cag ccc gtc ttc gcc tgc<br>Cys Ser Trp Pro Gly Lys Ala Ser Val Asn Gln Pro Val Phe Ala Cys<br>20 25 30    | 156 |
| agc gcc aac ttc cag cgc atc agc gac ccc aac gtc aag tcg ggc tgc<br>Ser Ala Asn Phe Gln Arg Ile Ser Asp Pro Asn Val Lys Ser Gly Cys<br>35 40 45    | 204 |
| gac ggc ggc tcc gcc tac gcc tgc gcc gac cag acc ccg tgg gcc gtc<br>Asp Gly Gly Ser Ala Tyr Ala Cys Ala Asp Gln Thr Pro Trp Ala Val<br>50 55 60    | 252 |
| aac gac aac ttc tcg tac ggc ttc gcc gcc acg tcc atc tcg ggc ggc<br>Asn Asp Asn Phe Ser Tyr Gly Phe Ala Ala Thr Ser Ile Ser Gly Gly<br>65 70 75    | 300 |
| aac gag gcc tcg tgg tgc tgt ggc tgc tac gag tgagtgcttc ccccccccc<br>Asn Glu Ala Ser Trp Cys Cys Gly Cys Tyr Glu<br>80 85 90                       | 353 |
| ccccccac cccggttcg gtcccttgcc gtgccttctt catactaacc gcctacccc                                                                                     | 413 |
| tccagg ctg acc ttc acc tcg ggc ccc gtc gct ggc aag acc atg gtt Leu Thr Phe Thr Ser Gly Pro Val Ala Gly Lys Thr Met Val 95 100                     | 461 |
| gtc cag tcc acc tcg acc ggc ggc gac ctc ggc acc aac cac ttc gac<br>Val Gln Ser Thr Ser Thr Gly Gly Asp Leu Gly Thr Asn His Phe Asp<br>105 110 120 | 509 |
| ctg gcc atg ccc ggt ggt ggt gtc ggc atc ttc gac ggc tgc tcg ccc<br>Leu Ala Met Pro Gly Gly Val Gly Ile Phe Asp Gly Cys Ser Pro<br>125 130 135     | 557 |



| cag ttc ggc ggc ctc gcc ggc gac cgc tac ggc ggc gtc tcg tcg cgc Gln Phe Gly Gly Leu Ala Gly Asp Arg Tyr Gly Gly Val Ser Ser Arg 140 145 150       | 605  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| agc cag tgc gac tcg ttc ccc gcc gcc ctc aag ccc ggc tgc tac tgg<br>Ser Gln Cys Asp Ser Phe Pro Ala Ala Leu Lys Pro Gly Cys Tyr Trp<br>155 160 165 | 653  |
| cgc ttc gac tgg ttc aag aac gcc gac aac ccg acc ttc acc ttc cgc<br>Arg Phe Asp Trp Phe Lys Asn Ala Asp Asn Pro Thr Phe Thr Phe Arg<br>170 175 180 | 701  |
| cag gtc cag tgc ccg tcg gag ctc gtc gcc cgc acc ggc tgc cgc cgc Gln Val Gln Cys Pro Ser Glu Leu Val Ala Arg Thr Gly Cys Arg Arg 185 190 195 200   | 749  |
| aac gac gac ggc aac ttc ccc gtc ttc acc cct ccc tcg ggc ggt cag<br>Asn Asp Asp Gly Asn Phe Pro Val Phe Thr Pro Pro Ser Gly Gln<br>205 210 215     | 797  |
| tcc tcc tcg tct tcc tcc tcc agc agc gcc aag ccc acc tcc acc tcc<br>Ser Ser Ser Ser Ser Ser Ser Ser Ser Ala Lys Pro Thr Ser Thr Ser<br>220 225 230 | 845  |
| acc tcg acc acc tcc acc aag gct acc tcc acc acc tcg acc gcc tcc Thr Ser Thr Thr Ser Thr Lys Ala Thr Ser Thr Thr Ser Thr Ala Ser 235 240 245       | 893  |
| agc cag acc tcg tcg tcc acc ggc ggc ggc tgc gcc gcc cag cgc tgg<br>Ser Gln Thr Ser Ser Ser Thr Gly Gly Gly Cys Ala Ala Gln Arg Trp<br>250 255 260 | 941  |
| gcg cag tgc ggc ggc atc ggg ttc tcg ggc tgc acc acg tgc gtc agc Ala Gln Cys Gly Gly Ile Gly Phe Ser Gly Cys Thr Thr Cys Val Ser 265 270 275 280   | 989  |
| ggc acc acc tgc aac aag cag aac gac tgg tac tcg cag tgc ctt tga<br>Gly Thr Thr Cys Asn Lys Gln Asn Asp Trp Tyr Ser Gln Cys Leu<br>285 290 295     | 1037 |
| <210> 16<br><211> 39<br><212> DNA<br><213> Artificial Sequence                                                                                    |      |

| <400><br>ggggato                 | 16 cctg ggacaagatg cgttcctccc ctctcctcc                  | 39  |
|----------------------------------|----------------------------------------------------------|-----|
| <210><br><211><br><212><br><213> | 37                                                       |     |
| <220><br><223>                   | Description of Artificial Sequence: Primer NCE4-C-BamHI  |     |
| <400><br>ggggat                  | 17<br>cctg cgtttacagg cactgatggt accagtc                 | 37  |
| <210><br><211><br><212><br><213> | 34                                                       |     |
| <220><br><223>                   | Description of Artificial Sequence: Primer STCE1-N-S9A4  |     |
| <400><br>gggato                  | 18<br>ctgc gtttaaaggc actgcgagta ccag                    | 34  |
|                                  | 24                                                       |     |
| <220><br><223>                   | Description of Artificial Sequence: Primer STCE1-C-FokF  |     |
| <400><br>gggat                   | 19<br>gcaag ccgtcgtgct cgtg                              | 24  |
| <210><br><211><br><212><br><213> | 23                                                       | ,   |
| <220><br><223>                   | Description of Artificial Sequence: Primer STCE1-N-FokR4 |     |
| <400>                            | 20                                                       | 0.0 |

gggatgggcc cagccgcacg aag

| <210><br><211><br><212><br><213> | 20                                                      |    |
|----------------------------------|---------------------------------------------------------|----|
| <220><br><223>                   | Description of Artificial Sequence: Primer STCE1-C-BamF |    |
| <400><br>gggatc                  | 21<br>ctgg gacaagatgc                                   | 20 |
| <210><br><211><br><212><br><213> | 35                                                      |    |
| <220><br><223>                   | Description of Artificial Sequence: Primer STCE1-N-SmaI |    |
| <400>                            | 22<br>egggg egcateatge gtteeteece tetee                 | 35 |
| <210><br><211><br><212><br><213> | 33                                                      |    |
| <220><br><223>                   | Description of Artificial Sequence: Primer STCE1-C-XhoI |    |
| <400><br>gcctc                   | gagta ccttaaaggc actgcgagta cca                         | 33 |
|                                  |                                                         |    |
| <220><br><223>                   | Description of Artificial Sequence: Primer STCE1-M-SphI |    |
| <400><br>ccgca                   | > 24<br>atgcgc tgatggcaag tccacc                        | 26 |

<210> 25

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer STCE1-C-XhoI

<400> 25

gcctcgagta ccttaaaggc actgcgagta cca

33



【要約】

【課題】セルロース含有繊維の色の澄明化、毛羽立ちの低減、肌触りおよび外観の改善、 色の局所的変化、ごわつきの低減等を目的とした洗剤用、並びに繊維加工用途に有用なエ ンドグルカナーゼを提供する。

【解決手段】スタフィロトリクム・ココスポラム(<u>Staphylotrichum coccosporum</u>)から新規エンドグルカナーゼSTCEを単離精製する。さらには、STCEをコードする遺伝子を単離し、その遺伝子をフミコーラ・インソレンス(<u>Humicola insolens</u>)、トリコデルマ・ビリデ(<u>Trichoderma viride</u>)などの宿主にて発現させる。

【選択図】 なし。

特願2003-404020

出願人履歴情報

識別番号

[000006091]

1. 変更年月日

1990年 8月 3日

[変更理由]

新規登録

住所

東京都中央区京橋2丁目4番16号

氏 名 明治製菓株式会社

## This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS                                         |
|-------------------------------------------------------|
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES               |
| ☐ FADED TEXT OR DRAWING                               |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                |
| ☐ SKEWED/SLANTED IMAGES                               |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                |
| ☐ GRAY SCALE DOCUMENTS                                |
| LINES OR MARKS ON ORIGINAL DOCUMENT                   |
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
| OTHER:                                                |

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.