ПАМЯТЬ

Цифровые устройства и микропроцессоры

Логическое адресное пространство

Память (запоминающее устройство) — элемент МП, в котором хранятся программы и данные.

Число битов в адресе определяет максимальное количество адресуемых ячеек памяти и не зависит от числа битов в ячейке.

Ячейка – минимальная адресуемая единица памяти.

Иерархическая структура памяти

Кэш-память

Кэш-память (КП) представляет собой организованную в виде ассоциативного запоминающего устройства (АЗУ) быстродействующую буферную память ограниченного объема, которая располагается между регистрами процессора и относительно медленной основной памятью и хранит наиболее часто используемую информацию совместно с ее признаками (тегами), в качестве которых выступает часть адресного кода.

Типы кэш-памяти

- 1) с прямым отображением;
- 2) полностью ассоциативная;
- 3) множественно-ассоциативная.

414698	Тэг		Index					
	25	18	17	5	4		0	
	Номер страницы в основной памяти		Номер стро	ки на странице		Смещение в строке		

Принцип организации кэш-памяти с прямым отображением

Принцип организации полностью ассоциативной кэш-памяти

Принцип организации множественно-ассоциативной кэш-памяти

Стратегии замещения

- 1) LRU замещается строка, к которой дольше всего не было обращений;
- 2) FIFO замещается самая давняя по пребыванию в кэш-памяти строка;
- 3) Random замещение проходит случайным образом.

Алгоритмы записи

- 1) Алгоритм сквозной записи;
- 2) Алгоритм обратной записи.

Логическое адресное пространство

- *плоское* (*линейное*) *ЛАП*: состоит из массива байтов, не имеющего определенной структуры;
- сегментированное ЛАП: состоит из сегментов непрерывных областей памяти, содержащих в общем случае переменное число байтов; логический адрес содержит 2 части: идентификатор сегмента и смещение внутри сегмента;
- *страничное ЛАП*: состоит из страниц непрерывных областей памяти, каждая из которых содержит фиксированное число байтов. Логический адрес состоит из номера (идентификатора) страницы и смещения внутри страницы;
- *сегментно-страничное ЛАП*: состоит из сегментов, которые, в свою очередь, состоят из страниц; логический адрес состоит из идентификатора сегмента и смещения внутри сегмента.

Сегментированное адресное пространство

Примеры значений сегмента и его границ

Значение сегментного регистра	Начальный адрес	Конечный адрес
2000H	20000H	2FFFFH
2001H	20010H	3000FH
2100H	21000H	30FFFH
AB00H	AB000H	BAFFFH
1234H	12340H	2233FH

1000:2000 (сегмент: 1000Н; смещение: 2000Н; адрес: 12000Н)

Высокая память: 0FFFF0H – 10FFEFH

FFFF:4000

Сегментный адрес: FFFFH

Результирующий адрес:

FFFF0H + 4000H = 103FF0H

Примеры значений сегмента и его границ

4000H:(F000H+3000H)

F000H+3000H = 12000H => 4000H:12000H => 52000H

F000H+3000H = 2000H => 4000H:2000H => 42000H

Пример расположения сегментов кода, данных и стека прикладной программы

Страничная организация памяти

Принцип *виртуальной памяти* предполагает, что пользователь при подготовке своей программы имеет дело не с физической памятью, имеющей некоторую фиксированную емкость, а с виртуальной одноуровневой памятью, емкость которой равна всему адресному пространству.

Для преобразования виртуальных адресов в физические физическая и виртуальная память разбиваются на блоки фиксированной длины, называемые **страницами**.

Загрузка виртуальных страниц в оперативную память

Структура управляющих регистров

Формат линейного адреса

5	22	23	5	=		0
Каталог	TEST THE STATE OF	Таблица	страниц		Смещение	

Страничный механизм в микропроцессорах 80386 – Pentium 4

Структура элементов каталога таблиц страниц и таблицы страниц

Буфер ассоциативной трансляции TLB

Виды памяти

	Категория	Стир ание	Изменен ие по байтам	Необходи мость питания	Применение
SRAM	Чтение и запись	+	+	+	Кэш-память 2 уровня
DRAM	Чтение и запись	+	+	+	Основная память
SDRAM	Чтение и запись	+	+	+	Основная память
ROM	Чтение	-	-	-	Устройства большого объема
PROM	Чтение	-	-	-	Устройства небольшого объема
EPROM	Чтение	+	-	-	Прототипы устройств
EEPROM	Чтение	+	+	-	Прототипы устройств
Флэш- память	Чтение и запись	+	-	-	Цифровые камеры