NetID: 'rmudhi2'

NetID: 'ankurm3'

IE598 - Machine Learning in Finance - Group Project

Members:

1. Rakesh Reddy Mudhireddy

2. Ankur Mukherjee

3. Jianwei Su NetID : j	ianwei5
Index:	
Chapter 1:	pages 3-13
1. Introduction	3
2. Exploratory Data Analysis	<u>3 - 8</u>
1. Summary Statistics	3-4
2. Histograms	4
3. Box Plot	5
4. Correlation Heat Map	<u>6</u>
5. Scatter Plots	<u>7-8</u>
3. Preprocessing	9
4. Feature Selection	<u>9-10</u>
5. Feature Extraction	<u>11</u>
6. Model Fitting & Evaluation/ Hyperparameter tuning/ Ensembli	ng <u>12-13</u>
7. Conclusions	<u>13</u>
Chapter 2:	14-23
1. Introduction	<u>14</u>
2. Exploratory Data Analysis & Preprocessing	<u>15-20</u>
1. Summary Statistics	<u>15</u>

	_
2. Histogram for the USHPCI Index	<u>16</u>
3. Correlations	<u>17</u>
4. Correlation Heatmap	<u>18</u>
5. Pairwise Scatter plots	<u>19</u>
6. Bee Swarm plot	<u>20</u>
3. Model Fitting	<u>21</u>
4. Ensembling	<u>22</u>
5. Conclusions	<u>2</u> 3
Appendix	<u>24</u>

2 of 24

Click on the page number directly to go to corresponding section

Chapter 1 : Credit Score Problem

1. Introduction:

- In this problem, we have credit score data with 1700 observations of 26 financial and accounting metrics changes for a set of firms in several different industries.
- The Class label is the Moody's credit rating assigned to the firm in the following quarter. Certain ratings are considered Investment Grade (=1), other ratings are not (=0) and consequently may not be held in certain institutional portfolios (pension plans, etc.)
- It is a classification problem, goal being classifying Investment Grade and Moody's Score for a firm. Investment Grade being binary variable and Moody's Score being multiclass variable. So, two different set of models are built, one set for binary classification and another set for multiclass classification.

2. Exploratory Data Analysis:

1. Summary Statistics :

	Sales/R	levenues		Gross Margin	E	BITDA		BITDA largin		ome efore xtras	Total D	ebt	Net Deb	ot LT Deb	ot ST Debi	Cash	Free Cash Flow
count	170	0.000000	1700.	.000000	1700.0	000000	1700.00	00000	1700.00	0000	1700.000	000	1700.00000	0 1700.00000	0 1700.000000	1700.000000	1700.000000
mean		0.050378	0.	.026007	0.0	068718	0.0	21074	0.12	3026	0.822	405	-0.41981	0 1.25516	8 3.142797	0.466620	-0.312325
std		0.161910	0.	.273768	0.2	237365	0.18	89025	14.47	5689	13.317	075	28.38570	2 16.22445	3 51.986550	1.859494	8.895136
min	-	0.661715	-0.	.794722	-0.	782254	-0.80	05153	-289.00	0000	-0.903	014	-493.30557	8 -0.92151	5 -0.997692	-0.990982	-238.750000
25%	-	0.005693	-0.	.020028	-0.0	022640	-0.0	42771	-0.15	8478	-0.076	316	-0.12072	5 -0.09476	7 -0.337959	-0.195117	-0.527219
50%		0.034000	0.	.003403	0.0	049482	0.0	11134	0.05	6627	0.005	886	-0.00306	0 -0.00207	8 0.043092	0.075820	-0.058475
Debt/E	Total BITDA	Debt/EBI	Net TDA	Tota	al MV	De	Total ebt/MV	D	Net ebt/MV	CF	FO/Debt		CFO	Interest Coverage	Total Liquidity	Current Liquidity	Current Liabilities
1700.0	000000	1700.000	0000	1700.00	00000	1700.0	000000	1700.	.000000	1700	0.000000	1700	0.000000	1700.000000	1700.000000	1700.000000	1700.000000
0.7	731197	-0.819	9863	0.09	92043	1.2	270202	-0.	398624	-0	0.165088	-(0.189317	0.298785	-0.855714	0.436002	0.072802
12.2	280493	22.002	2550	0.38	35111	22.7	97054	41.	235876	6	6.277606	,	5.668669	5.265291	22.926862	1.904282	0.266471
-0.9	910486	-495.355	5952	-0.87	71567	-0.9	939190	-781.	502439	-172	2.654240	-16°	1.609425	-0.991976	-502.000000	-0.994141	-0.684678
-0.1	134477	-0.181	1621	-0.11	13241	-0.2	206442	-0.	267345	-0).211115	-(0.115159	-0.096996	-0.857013	-0.227327	-0.072734
-0.0	012302	-0.034	4452	0.06	66836	-0.0	018464	-0.	.032055	0	0.012847	(0.046983	0.043216	-0.229098	0.040446	0.041785
0.1	141443	0.163	3697	0.23	36566	0.2	242868	0.	274710	0).251992	(0.216432	0.177340	0.512778	0.416067	0.161215
256.0	050232	360.926	6171	3.96	61121	676.4	143064	1352.	.088710	15	5.821709	13	3.005788	182.131887	280.138728	34.372455	4.194381

InvGrd	ROE	ROA	PE	EPS Before Extras	Current Liabilities
1700.000000	1700.000000	1700.000000	1700.000000	1700.000000	1700.000000
0.757059	-0.217604	0.019394	0.497705	0.032196	0.072802
0.428986	15.389000	14.594193	12.102502	6.151994	0.266471
0.000000	-373.837267	-305.462167	-59.795133	-96.250000	-0.684678
1.000000	-0.233955	-0.208483	-0.293521	-0.152894	-0.072734
1.000000	-0.020392	-0.009403	-0.040405	0.066027	0.041785
1.000000	0.201596	0.156136	0.168897	0.236046	0.161215
1.000000	343.145356	474.847172	381.243282	187.000000	4.194381

2. Histograms of Dependent variables :

3. Box Plot:

4. Correlation Heat Map:

5. Scatter plots:

3. Preprocessing:

- 1. There are no missing values in dataset
- 2. Rating variable is categorical so converted it into numerical values
- 3. Dataset splitting is done using random state and stratify (since there is imbalance in values of target variables)
- 4. Feature scaling is not essential for this dataset, as already values are comparable (one can verify this from summary statistics)

4. Feature Selection:

Feature selection is done using two methods:

- 1. Correlation heat map and scatter plots
- From scatter plots 1 ('EBITDA', 'EBITDA Margin'), ('Net Income Before Extras', 'ROA', 'ROE'), ('Current Liquidity', 'Cash')
- These combinations are correlated, so out of these 7 variables, 3 variables can be selected:
- selection based on correlation with 'InvGrd' & 'Rating':
- selected ones for 'InvGrd' : ('EBITDA', 'Net Income Before Extras', 'Current Liquidity')
- selected ones for 'Rating': ('EBITDA', 'ROE', 'Current Liquidity')
- From scatter plots 2 ('Total Debt','LT Debt','Total Debt/EBITDA','Total Debt/MV'), ('Net Debt/EBITDA','Net Debt/MV', 'Net Debt')
- These combinations are correlated, so out of these 7 variables, 2 variables can be selected:
- selected ones for 'InvGrd': ('Total Debt', 'Net Debt')
- selected ones for 'Rating' : ('Total Debt/MV', 'Net Debt/MV')
- So from these 14 variables, we can select 5 variables for our model, with minimal loss of explained variance

• Modeling has been done with these subsets of features as well, but there is no significant difference in model performance or computational time (dataset is small)

2. Feature Importance using Random Forest Classifier:

• Even the subset of features using this method, doesn't give a significantly different model

5. Feature Extraction:

• Feature extraction is done using Principal Component Analysis. These PCA features also do not give any significant difference in model performance.

6. Model fitting and evaluation/Hyperparameter tuning/Ensembling :

Binary Classification (Investment Grade)											
Model	Best Hyperpara meters	Test Accuracy	F1-score	Time taken (for GridSearchC V)							
Logistic Regression	Penalty = 'l2', C = 100	74.70%	0.852	2.19s							
Logistic Regression with PCA	Penalty = 'l1', C = 1	74.70%	0.853	0.54s							
KNN	n_neighbors = 5, p = 1, weights = 'distance'	78.82%	o.867	5.92s							
KNN with PCA	n_neighbors = 5, p = 1, weights = 'distance'	78.82%	0.872	4.26s							
Decision Tree Classifier (DTC)	Criterion = 'entropy', max_depth = 20	79.41%	0.859	2.85s							
DTC with PCA	Criterion = 'entropy', max_depth = 10	76.47%	0.842	0.57s							
SVM Classifier (SVC)	gamma = 'auto'	78.82%	0.876	0.53s							
Random Forest Classifier (Ensembling)	criterion = 'entropy', max_depth = 20, n_estimators = 500	85.88%	0.91	155.85s							

Multiclass Classification (Rating)										
Model	Best Hyperparamete rs	Test Accuracy	Time taken (for GridSearchCV)							
Logistic Regression	Penalty = 'l1', C = 100	21.76%	49.56s							
Decision Tree Classifier (DTC)	Criterion = 'entropy', max_depth = 20	47.05%	2.81s							
KNN	n_neighbors = 5, p = 1, weights = 'distance'	47.05%	5.45s							
SVM Classifier (LinearSVC)	None given	20.58%	N/A							
Random Forest Classifier (Ensembling)	criterion = 'gini', max_depth = 50, n_estimators = 300	70.58%	298.05s							

7. Conclusions:

- Logistic Regression, KNN, Decision Trees & SVM Classifier are used in binary classification case and for ensembling Random Forest classifier is used.
- F1-score is considered as evaluation metric along with accuracy score, as the investment grade data is biased towards value '1'.
- Based on f1-score and accuracy score on test data, Random forest classifier gives best performance for this dataset.
- In the case of multiclass classification, Logistic Regression, Decision Trees, KNN, LinearSVC & for ensembling Random Forest Classifier are used to build models.
- Even in this case, Random Forest classifier performs well with this dataset.

Chapter 2 Predicting Economic Cycle based on CP and t-Bills

1. Introduction:

The underlying financial idea behind this study is that the spread on commercial paper, a short term form of corporate borrowing, and the US Treasury bill widens before recessions and contracts after and could be a useful predictor of real economic activity. This is similar to credit spreads widening before a stock market crash(eg in 1987 and 2008). There is considerable literature on this subject from a financial standpoint; our study in this project is to use sophisticated machine learning techniques to draw conclusions about this. The Economic Indicator that we are going to monitor is the **USHPCI Index**.

There are 223 sets of observations, with features like US treasury rates across the curve, the short term Commercial Paper borrowing rates, their spreads. The target variables are the 3/6/9 month forward change in the USHPCI Index based on the above inputs.

The rest of this study is divided into the following subsections:

- Studying the dataset, Preprocessing, handling missing/o values etc
- Exploratory data analysis to get an idea of driving factors, correlations etc
- Model fitting Three models have been used: Linear Regression,
 Regression Decision Tree and Support Vector Regression(SVR)
- 10 fold Cross Validation
- Random Forrest Regressor has also been implemented and yields the best result
- Conclusions summary/findings

Target Variables: PCT3MOFWD, PCT6MOFWD, PCT9MOFWD

Each of the above three are separately modeled and fitted with the attributes. The results are studied for each and an inference derived.

2. Exploratory Data Analysis & Preprocessing:

1. Summary Statistics:

The following table shows a basic summary of the dataset:

	T1Y Index	T2Y Index	T3Y Index	T5Y Index	T7Y Index	T10Y Index	CP1M	CP3M	CP6M	CP1M_T1Y	CP3M_T1Y	CP6M_T1Y	PCT3MOFWD	PCT6MOFWD	PCT9MOFWD
0	10.41	9.86	9.50	9.20	9.14	9.10	9.75	9.95	10.01	0.936599	0.955812	0.961575	0.011470	0.018060	0.024406
1	10.24	9.72	9.29	9.13	9.11	9.10	9.74	9.90	9.96	0.951172	0.966797	0.972656	0.009298	0.014866	0.020612
2	10.25	9.79	9.38	9.20	9.15	9.12	9.72	9.85	9.87	0.948293	0.960976	0.962927	0.010340	0.015455	0.020154
3	10.12	9.78	9.43	9.25	9.21	9.18	9.86	9.95	9.98	0.974308	0.983202	0.986166	0.006720	0.013141	0.017409
4	10.12	9.78	9.42	9.24	9.23	9.25	9.77	9.76	9.71	0.965415	0.964427	0.959486	0.005653	0.011451	0.016353

The basic characteristics of the features was found out using the describe function. As an example:

count	222.000000	
mean	0.007092	
std	0.004848	
min	-0.006811	
25%	0.005567	
50%	0.008272	
75%	0.010206	
max	0.020297	
Name:	PCT3MOFWD, dtype: float64	

• 'o' values: PCT9MOFWD has one observation as o. So, I first replaced it by NAN using np.nan then drop it since its only one row. I did not impute the data as there were no other o/missing observations.

2. Histogram for the USHPCI Index:

3. Correlations:

	T1Y Index	T2Y I	CP1M	CP3M	СР6М СР	1M_T1Y C	P3M_T1Y C	P6M_T1Y
T1Y Index	1.000000	0.99	0.962641	0.967578	0.972892	0.208129	0.152748	0.001319
T2Y Index	0.992364	1.00	0.938317	0.945106	0.954110	0.142681	0.089627	-0.050497
T3Y Index	0.981588	0.99	0.920249	0.927676	0.938247	0.109464	0.057786	-0.075841
T5Y Index	0.962056	0.98	0.891523	0.899770	0.912096	0.063193	0.013663	-0.111213
T7Y Index	0.947012	0.97	0.873208	0.881932	0.895172	0.045970	-0.001902	-0.122058
T10Y Index	0.935681	0.96	0.860518	0.869407	0.883008	0.034947	-0.011444	-0.127925
CP1M	0.962641	0.93	1.000000	0.998395	0.993283	0.449292	0.393453	0.229515
CP3M	0.967578	0.94	0.998395	1.000000	0.997943	0.427221	0.383779	0.231517
CP6M	0.972892	0.95	0.993283	0.997943	1.000000	0.393722	0.358950	0.221016
CP1M_T1Y	0.208129	0.14	0.449292	0.427221	0.393722	1.000000	0.960717	0.842279
CP3M_T1Y	0.152748	0.08	0.393453	0.383779	0.358950	0.960717	1.000000	0.946781
CP6M_T1Y	0.001319	-0.05	0.229515	0.231517	0.221016	0.842279	0.946781	1.000000
PCT3MOFWD	-0.406827	-0.38	-0.404316	-0.401550	-0.395089	-0.15010	4 -0.096440	<mark>) 0.01</mark> 0641
PCT6MOFWD	-0.454663	-0.42	-0.475103	-0.471441	-0.463500	-0.23930	4 -0.192718	<mark>3 -0.083</mark> 744
PCT9MOFWD	-0.483731	-0.44	-0.520132	-0.515032	-0.505840	-0.30391	2 -0.259039	<mark>9 -0.149</mark> 062

There is significant negative correlation between the target variables(PCT<>FWD) the CP rate and also the tbill-CP spread as can be seen above. This is further confirmed by the heat map, the pairwise scatter plots and the bee swarm plot that follows below. Consequently these are used as the features for further model buildings

4. Correlation Heatmap:

Factor 12,13,14 – the target Variables Factor 6-12 – the CP rate and its spreads with t-bills

5. Pairwise Scatter Plots:

6. Bee Swarm Plot:

Train/Test Split and feature Scaling

A 90/10 train test split is taken with random state = 42 and these parameters are kept constant across all the three target variables. Features are scaled before proceeding to individual models.

3. Model Fitting: For three month Fwd-PCT3MOFWD:

I. Linear regression model

OLS Regression Results

Dep. Variable:	у	R-squared (uncentered):	0.446
Model:	OLS	Adj. R-squared (uncentered):	-0.415
Method:	Least Squares	F-statistic:	0.5181
Date:	Sat, 19 Oct 2019	Prob (F-statistic):	0.870
Time:	19:48:45	Log-Likelihood:	84.887
No. Observations:	23	AIC:	-141.8
Df Residuals:	9	BIC:	-125.9
Df Model:	14		
Covariance Type:	nonrobust		

The R2 is only about 45%. Lets move on to the next model – regression tree

II. Regression Tree Model

max_depth=4, min_samples_leaf=0.1, random_state=3

RMSE: 0.00385

The regression Tree model fits extremely well with a very low rmse Using a 10 fold cross validation to improve the model reduces the MSE

Train MSE: 0.0000144 Test MSE: 0.00001485

III. SVR

R-square:-0.005509784364353454

R2 is negative which suggests that this model is arbitrarily worse.

4. Ensembling – Random Forrest regressor:

n_estimators=400, min_samples_leaf=0.12, random_state=1

Test set RMSE of rf: 0.004138

The Random Forest Regressor does a very good job in training the individual trees and introduces further randomization

Similar analysis were carried out for the other two target variables - PCT6MOFWD & PCT9MOFWD

Summarizing the results:

Model	PCT3MOFWD	PCT6MOFWD	PCT9MOFWD
Linear Regression(R^2)	0.45	0.43	0.9
Regression tree(RMSE)	0.00385	0.00161	0.0099
Support Vector Regreesion(R^2)	-0.0055	-0.007	-0.028
Random Forrest Regressor(RMSE)	0.004138	0.00225	0.009566

5. Conclusions:

- From the study above we find that random forrest is the best model for this problem set. Linear Regression does well for predicting the longer term target variable PCT9MOFWD but is less than 50% for the other two.
- On the other hand Regression Tree and random Forrest(which both use decision tree as its estimator) performs remarkably well.
- The negative R² on SVR suggests this model is arbitrarily worse and is not considered for further analysis.

Economic Rationale:

The Commercial Paper rate is the short term borrowing rate in the repo market. As predicted by our models (and indeed by the graph above from the Federal Reserve Bank), the cp rate and its spread over t-bills is a good indicator of upcoming economic downturn. We can see the change in index above decreased over all the major recession periods.

Appendix:

Chapter 1 GitHub link:

https://github.com/rakesh1827/IE598MLF_Group_project/blob/master/ MLF_GP1_CreditScore.py

Chapter 2 GitHub link:

https://github.com/rakesh1827/IE598MLF_Group_project/blob/master/ MLF_GP2_EconCycle.py