T. T	
Name:	

Final Exam

Math 253

Fall 2022

You have 2 hours to complete this exam and turn it in. You may use a scientific calculator, but not a graphing one, and you may not consult the internet or other people. If you have a question, don't hesitate to ask — I just may not be able to answer it. Enough work should be shown that there is no question about the mathematical process used to obtain your answers.

- 1. (16 points) Multiple choice. You don't need to show your work.
- a) (4 points) Which of the following series converges?
 - A) $\sum_{n=1}^{\infty} \ln(n).$
 - B) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n} + 1/4}$.
 - C) $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - D) $\sum_{n=1}^{\infty} \frac{\cos(\pi n)}{n}.$
- b) (4 points) Evaluate $\sum_{n=0}^{\infty} (-1)^n \frac{4^n}{(2n)!}.$
 - A) ln(2).
 - B) $\cos(2)$.
 - C) 1.
 - D) The sum diverges.
- c) (4 points) Which power series has the largest interval of convergence?
 - A) $\sum_{n=1}^{\infty} n! x^n$.
 - B) $\sum_{n=1}^{\infty} \frac{x^n}{n}$.
 - C) $\sum_{n=1}^{\infty} x^n$.
 - $D) \sum_{n=1}^{\infty} x.$
- d) (4 points) The series $\sum\limits_{k=1}^{\infty}\frac{(-2)^k}{3^k+1}$
 - A) converges absolutely.
 - B) converges conditionally.
 - C) diverges.

- 2. (48 points) Short-answer. Explain your reasoning and/or show your work for each question.
- a) (8 points) Does the series $\sum_{n=0}^{\infty}\frac{1}{n^2+n+1}$ converge or diverge?

b) (8 points) The Harmonic series diverges because it is a p-series with p = 1. Show that it diverges using another test.

c) (8 points) Estimate $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2 + 1}$ to within .1 of its actual value.

d) (8 points) Let
$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$
. Find $f'\left(\frac{1}{2}\right)$.

e) (8 points) Find the Maclaurin series for $x \sin(x^2)$.	
f) (8 points) Give an example of a power series with an interval of convergence of exactly $(-2,2)$.	Show that your
answer is correct.	

9	(22 mainta)	Define a gastiones	(a) bus 1 and a 2ma	
o.	(52 points)	Denne a sequence ((a_n) by $a_0 = 1$ and $a_n = 3na_{n-1}$	1.

a) (8 points) Find a_1 , a_2 , and a_3 .

b) (8 points) Find an explicit formula for (a_n) . Check your answer by plugging in n = 0, n = 1, n = 2, and n = 3, and making sure they match.

c) (8 points) Let $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{a_n}$, where a_n is the same sequence from the previous parts. Determine the interval of convergence of f.

d) (8 points) Find the exact value of f(-1).

4. (32 points) Define a function g by $g(x) = \ln(x)$.	4.	(32 points)	Define	a	function	g	by	g(x)	=	$\ln($	x).	
--	----	-------------	--------	---	----------	---	----	------	---	--------	-----	--

a) (8 points) For $n \ge 1$, find an expression for $g^{(n)}(x)$ (i.e. the *n*th derivative of g).

b) (12 points) Find the Taylor series for g centered at 1 and determine its interval of convergence.

c) (12 points) Approximate $g(1.1)$ with a degree-3 Taylor polynomial and determine the maximum error.
d) (4 points extra credit) Give an example of a power series with an interval of convergence of exactly [1,2]. Hint try combining the Maclaurin series from this question with another.