人工智能基础 编程作业 2

Part 1. 手写数字分类

设计函数显示图片

我实现了一个函数 showDigits 可以输入 digits_data 的任意一行, 显示出该数字的图像。 分别显示了黑白图像和灰度图像。

1. 实现一个朴素贝叶斯分类器

首先考虑将数据集二值化,即对于灰度值大于 127 的点视为 1,否则视为 0;统计训练集中数字 1 的比例,这是处理 Parameter estimation 即已知数字估计参数的后验概率的一个最简单的思考方式。

通过上述方式计算出 $P(X_i \mid C=3)$ 和 $P(X_i \mid C=8)$.完成参数的训练和估计。

对于测试集,需要计算 $P(C = d \mid X_1, X_2, ..., X_{256}) = \frac{P(C) * \prod_{i=1}^{256} P(X_i \mid C)}{P(X_1, X_2, ..., X_{256})}$,由于分母是常数,所以只需要考虑分子。为保证连乘不会使结果 0 溢出,我使用了取对数的方法,并且为了使求对数时不会出现 In(0)的情况,我统一加上了一个小数字 0.0000001。

根据公式分别计算出测试集的后验概率 $P(C=3\mid X_1,X_2,...,X_{256})$ $P(C=8\mid X_1,X_2,...,X_{256})$ 。

因为 $P(C=3\mid X_1,X_2,...,X_{256})+P(C=8\mid X_1,X_2,...,X_{256})=1$,所以我定义threshold为 $P(C=3\mid X_1,X_2,...,X_{256})<$ threshold。程序中即(prior_d3+log(1/threshold-1))<pri>or_d8

2. 实现一个最小二乘分类器

有两种方法计算参数 w 的值:

● 转化为求二次优化问题的解

$$\min_{w} ((Xw - y)^{2} + \lambda * w^{T}w)$$

$$= \min_{w} ((Xw - y)^{T}(Xw - y) + \lambda * w^{T}w)$$

$$= \min_{w} \left(\frac{1}{2}w^{T}2 * (X^{T}X + \lambda I)w - 2y^{T}Xw + y^{T}y\right)$$

用 quadprog 函数求解。

● 求关于 w 的偏导数, 得到 w 的解

解为
$$(X^T * X + \lambda I)^{-1} * X^T * y$$

为使结果更加准确,对于线性回归我添加了一个参数 b,即 W^Tx+b ,参数 b 在矩阵 w 的第一行第一列。

3. 实现一个支持向量机分类器

首先一个很实用的计算距离的函数 pdist 和 pdist2。其中 squareform(pdist(f, 'euclidean') 和 pdist2(f, f, 'euclidean'))效果是一样的。

那么线性基函数 X^TX =(traindata*traindata')

Gaussian RBF=

exp(-squareform(pdist(traindata, 'euclidean').*pdist(traindata, 'euclidean'))/(sigma^2))

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\frac{\left\|\mathbf{x}_i - \mathbf{x}_j\right\|^2}{\sigma^2}}$$

用解凸二次规划问题的方法解该问题中的参数 α_i 。

 $alpha = quadprog(H, -ones(n,1), [], [], y_train', 0, 0*ones(n,1), C*ones(n,1));\\$

根据公式计算出参数 b:

$$b = y_i - \sum_{j=1}^n \alpha_j y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
 for any i that $\alpha_i \neq 0$

再估计测试集:

$$y^* = \operatorname{sign}\left(\sum_{i \in SV} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x'}) + b\right)$$

注 svm 函数参数 sigma 是由数据集的 d 相关的, 即输入时是[0.01d, 0.1d, d, 10d, 100d], 此时输入参数时必须先计算数据集的 d, 这样才能得到正确的结果。

5-fold 验证

five-fold.m 是 5-fold 验证的统一的程序。

5-fold 编号	1	2	3	4	5
数据集	The rest				
测试集	1-200	201-400	401-600	601-800	801-1000

贝叶斯

横坐标是 threshold, 纵坐标是 5-fold 编号, 表格内为正确率

	0.5	0.6	0.7	0.75	8.0	0.85	0.9
1	0.9400	0.9400	0.9400	0.9400	0.9400	0.9450	0.9450
2	0.9650	0.9650	0.9600	0.9600	0.9600	0.9600	0.9600
3	0.9400	0.9400	0.9400	0.9450	0.9450	0.9550	0.9500
4	0.9650	0.9650	0.9650	0.9650	0.9600	0.9550	0.9550

5	0.9400	0.9450	0.9350	0.9400	0.9450	0.9450	0.9400
Average	0.95	0.951	0.948	0.95	0.95	0.952	0.95

由于是二分类的 bayes 分类器, 而且直观上理解数字 3 和数字 8 是均匀的, 按照这个理解归一化后可以认为概率高的即视为该数字。

在实测过程中,根据以上结果,可以看到 threshold=0.5 是,相对而言识别正确率都是较高的。比较符合直观的印象。

根据多分类 bayes classifier 公式:

$$\hat{y} = rgmax_{k \in \{1,\ldots,K\}} p(C_k) \prod_{i=1}^n p(x_i|C_k).$$

即认为识别为概率最大的 C, map 到二分类的情况下也是认为 threshold=0.5.。总而言之无论从数据实测角度还是从公式分析角度,在这个实例下 threshold=0.5 是最佳的。

线性回归

横坐标是 lambda, 纵坐标是 5-fold 编号, 表格内为正确率

	1e-4	0.01	0.1	0.5	1	5	10	100	1000	5000	10000
1	0.98	0.98	0.98	0.98	0.98	0.98	0.975	0.975	0.975	0.975	0.985
2	0.965	0.965	0.965	0.965	0.965	0.975	0.975	0.98	0.98	0.98	0.98
3	0.975	0.975	0.975	0.975	0.975	0.975	0.975	0.965	0.965	0.965	0.965
4	0.96	0.96	0.96	0.965	0.965	0.97	0.97	0.97	0.97	0.97	0.975
5	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.97	0.97	0.975	0.985
Average	0.972	0.972	0.972	0.973	0.973	0.976	0.975	0.972	0.972	0.973	0.978

规范化项的提出就是为了避免过拟合, lambda 越大则表示惩罚力度越强, 惩罚因子的确定和 w 的表现有一定的关系。在本实验中, 根据实测的数据, lambda 改变对于正确率的影响影响其实不算很大, 波动为 1-5 个判错, 综合表现而言 lambda=10000 时效果最好, 得到了很高的正确率。

SVM

横坐标是 sigma,纵坐标是 5-fold 编号,表格内为正确率

1	`	_	1	
l		_	- 1	

C=1	0.01d	0.1d	d	10d	100d
1	0.455	0.455	0.455	0.455	0.455
2	0.505	0.505	0.505	0.505	0.505
3	0.44	0.44	0.44	0.44	0.44
4	0.5	0.5	0.5	0.5	0.5
5	0.51	0.51	0.51	0.51	0.51
Average	0.482	0.482	0.482	0.482	0.482

C=10

C=10	0.01d	0.1d	d	10d	100d
1	0.94	0.455	0.455	0.455	0.455
2	0.965	0.505	0.505	0.505	0.505

3	0.955	0.44	0.44	0.44	0.44
4	0.975	0.5	0.5	0.5	0.5
5	0.955	0.51	0.51	0.51	0.51
Average	0.958	0.482	0.482	0.482	0.482
0 100					

C=100

C=100	0.01d	0.1d	d	10d	100d
1	0.98	0.455	0.455	0.455	0.455
2	0.985	0.505	0.505	0.505	0.505
3	0.98	0.44	0.44	0.44	0.44
4	0.82	0.5	0.5	0.5	0.5
5	0.805	0.51	0.51	0.51	0.51
Average	0.914	0.482	0.482	0.482	0.482

C=1000

C=1000	0.01d	0.1d	d	10d	100d
1	0.965	0.94	0.455	0.455	0.455
2	0.99	0.965	0.505	0.505	0.505
3	0.97	0.955	0.44	0.44	0.44
4	0.975	0.975	0.5	0.5	0.5
5	0.985	0.955	0.51	0.51	0.51
Average	0.977	0.958	0.482	0.482	0.482

理论上分析,C is the cost of classification as correctly stated by Dima. A large C gives you low bias and high variance. Low bias because you penalize the cost of missclasification a lot. A small C gives you higher bias and lower variance. 高斯 RBF 核函数中,Sigma 越大,分离面越平滑;Sigma 越小,分离面越细致。这是因为 sigma 越小,核函数对 x 的衰减越快,这就放大了数据 x 之间的差别,即 k(x)对 x 值的变化很敏感,因此 SVM 的分离面变得细致;同样的道理,sigma 越大,核函数对 x 的衰减越慢,这使 k(x)对 x 的变化变得钝化(即不敏感),进而使 SVM 的分离面变得平滑。

从本实验实践上看, C 偏大并且 sigma 偏小表现地正确率更好, 说明本实验比较偏 hard margin, 并且 SVM 的 Gaussian 分割面也比较 hard, 根据之前的 linear classifier 表现非常好来看, 这样的参数结果也是比较符合预期的。

Part 2. 图片去噪

设计函数显示图片

我实现了一个函数 showPics 可以输入图片数据的的任意一行,显示出该人脸图像。

可选的第二个参数是一个 bmp(bitmap)类型的字符串,用以存储该图片。

参考使用: showPics(ground_truth(1,:));

showPics(ground_truth(1,:),' groud_1.bmp');

实现算法

基本是按照 PPT 中的线性 PCA 算法设计。

$$S = \frac{1}{n}XX^{T}$$
$$X' = PP^{T}X$$

讨论

重构误差分析

取 threshold 0.9 0.95 0.999 0.999999

Threshold	0.9	0.95	0.999	0.999999
1	0.0253	0.0088	0.0079	0.0078
2	0.0145	0.0106	0.0060	0.0062
3	0.0186	0.0100	0.0056	0.0055
4	0.0213	0.0096	0.0045	0.0044
5	0.0189	0.0040	0.0026	0.0025
6	0.0089	0.0078	0.0034	0.0033

从重构误差来看,随着 threshold 的增加,重构误差都是降低的[1,2,3,4,5,6],而且重构误差在 0.9 到 0.95 间降低了很多,有 50%的降低,而且 threshold=0.999999 时重构误差基本差不多。

重构视觉上的分析

Threshold	0.9	0.95	0.999	0.999999	Ground truth
1	25	T	1	(3)	E
2	319	210	1	35	25
3	25	25	99	99	90
4	919	35	Sie	OLE	OJ6

从表中可以看出,threshold=0.9 时基本只能识别出人脸的基本特征,所有结果看上去都像是人脸但是和 ground truth 差距很远。

随着 threshold 增加降噪效果从视觉上看是越来越好,在 threshold=0.999 时,视觉上看和 ground truth 已经很像了。

为什么 PCA 可以降噪

举例而言,假设三维空间中有一系列点,这些点分布在一个过原点的斜面上,如果用自然坐标系 x,y,z 这三个轴来表示这组数据的话,需要使用三个维度,而事实上,这些点的分布仅仅是在一个二维的平面上,那么自然可以把 x,y,z 坐标系旋转一下,使数据所在平面与 x,y 平面重合。如果把旋转后的坐标系记为 x',y',z', 那么这组数据的表示只用 x'和 y'两个维度表示即可。这就是数据降维。

上面认为把数据降维后并没有丢弃任何东西,因为这些数据在平面以外的第三个维度的分量都为 0。现在,假设这些数据在 z'轴有一个很小的抖动,那么我们仍然用上述的二维表示这些数据,理由是我们可以认为这两个轴的信息是数据的主成分,而这些信息对于我们的分析已经足够了, z'轴上的抖动很有可能是噪声,也就是说本来这组数据是有相关性的,噪声的引入,导致了数据不完全相关,但是,这些数据在 z'轴上的分布与原点构成的夹角非常小,也就是说在 z'轴上有很大的相关性,综合这些考虑,就可以认为数据在 x',y' 轴上的投影构成了数据的主成分。

所以 PCA 的思想是将 n 维特征映射到 k 维上(k < n),这 k 维是全新的正交特征。这 k 维特征称为主成分,是重新构造出来的 k 维特征,而不是简单地从 n 维特征中去除其余 n-k 维特征。这样就剔除了和标签无关的特征,再按照转换矩阵生成原图,就达到了降噪的效果。

参考文档

https://en.wikipedia.org/wiki/Naive_Bayes_classifier#Probabilistic_model bayes 分类的基本思想

http://www.lx.it.pt/~mtf/learning/Bayes_lecture_notes.pdf 手写数字识别的 method of Parameter estimation

https://en.wikipedia.org/wiki/Tikhonov_regularization L2 Regularization 的特性简介

https://www.quora.com/What-are-C-and-gamma-with-regards-to-a-support-vector-

machine SVM 的参数理解

http://zzy07053437.blog.163.com/blog/static/2075520872012102725946123/ 高斯 RBF 核函数中 Sigma 的取值和 SVM 分离面的关系

http://blog.csdn.net/lujiandong1/article/details/46386201 SVM 的两个参数 C 和 gamma

http://blog.csdn.net/zhongkelee/article/details/44064401 主成分分析(PCA)原理详解http://yajunok.blog.163.com/blog/static/65657620089179480257/ matlab 矩阵运算https://mqshen.gitbooks.io/prml/content/Chapter3/basis/geometry_least_square.html 最小二乘法几何解释http://blog.sciencenet.cn/blog-531885-589056.html pdist pdist2 距离生成