Statistique Descriptive

Kossi Tonyi Wobubey ABOTSI

default

```
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4
                     v readr
                                 2.1.5
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.5.1
                   v tibble
                                 3.2.1
                                 1.3.1
## v lubridate 1.9.3
                   v tidyr
## v purrr
            1.0.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
```

Importation des données:

```
# install.packages("readxl")
# Load the readxl package
# Read data from the Excel file
data <- read_excel("données pour R_28 classes_ MEFG_22 24.xlsx")
#Selection des colonnes utile
data = data %>% dplyr::select(college:classe, taille_cm : gender,sb:pmvpa,time,CA: CSP_P2)
#Renommage des colonnes
colnames(data)[23:24] = c("CSP_père", "CSP_mère")
data$weight_kg = as.double(data$weight_kg)
data$taille_cm = as.double(data$taille_cm)
data$age = as.integer(data$age)
data$time = as.double(data$time)
#Ajout de colonne des IMC
data$IMC_kg_m2 <- data$weight_kg / (data$taille_cm * 10^-2)^2
# Ajout d'une nouvelle colonne "IPS_categorie"
data$IPS_categorie <- ifelse(data$IPS < 89, "Faible",</pre>
                             ifelse(data$IPS >= 90 & data$IPS <= 114, "Moyenne", "Élevée"))
#Résolution du problème de facteur double
data$gender = ifelse(data$gender != 'M' & data$gender != 'F', 'M', data$gender)
```

```
#Suppression des valeurs manquantes
data = na.omit(data)
#data = data %%
# filter(data$CSP_mère != 'NA' & data$CSP_père != 'NA')
# Print the first few rows of the data to verify
head(data)
## # A tibble: 6 x 26
    college classe taille_cm weight_kg
                                         age gender
                                                      sb
                                                           lpa
                                                                 mpa
                                                                       vpa psb
                               <dbl> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
##
    <chr>>
            <chr>
                       <dbl>
## 1 aigle
           3.P
                        157
                                   55
                                          15 F
                                                    26.3 4.83 21.2 2.33 47,88~
## 2 aigle
           3.P
                        178
                                    61
                                          14 M
                                                           8.33 28
                                                                           25,45~
                                                    14
                                                                      4
                                                                           36,97~
## 3 aigle
           3.P
                        170
                                    75
                                          15 M
                                                    20.3 7.33 21.8 5
## 4 aigle
           3.P
                         153
                                    68
                                          15 F
                                                    26.2 7.33 18.7 2.83 47,58~
           3.P
                         181
                                    95
                                          15 M
                                                     12.2 12.3
                                                                22.3 6.17 22,12~
## 5 aigle
## 6 aigle
           3.P
                         164
                                    51
                                          15 F
                                                     20.5 6.5
                                                                20.3 4.83 37,27~
## # i 15 more variables: pla <chr>, pmpa <chr>, pvpa <chr>, mvpa <dbl>,
## #
      pmvpa <chr>, time <dbl>, CA <dbl>, activites <chr>, IPS <dbl>,
## #
      cat_IPS <chr>, Geographie <chr>, CSP_père <chr>, CSP_mère <chr>,
## #
      IMC_kg_m2 <dbl>, IPS_categorie <chr>
```

Statistique descriptive de la Population

Calculons l'age moyens des filles et garçons et l'age moyen des participants.

1. Age moyen des Participants

```
age_sexe_data=data %>%
  group_by(gender) %>%
  summarise(age_total = sum(age),effectif = n())

age_moyen = sum(age_sexe_data$age_total)/sum(age_sexe_data$effectif)

age_moyen
```

[1] 13.65499

Donc l'age moyen des participants est 13.65.

2. L'age moyen des filles et garçons

```
age_sexe_data$age_moyen = age_sexe_data$age_total/age_sexe_data$effectif
age_sexe_data
```

Sexe	F	M	Participant(les deux sexes)
Age Moyen	13.66	13.65	13.65

• IMC moyen selon le sexe

```
data %>%
  group_by(gender) %>%
  summarise(IMC_moyen = mean(na.omit(IMC_kg_m2)))
## # A tibble: 2 x 2
     gender IMC_moyen
##
##
     <chr>
                <dbl>
## 1 F
                 22.4
## 2 M
                 22.2
# Créer le diagramme en boîte pour l'IMC par classe et sexe
ggplot(data, aes(x = gender, y = IMC_kg_m2, fill = gender)) +
  geom_boxplot() +
  labs(x = "gender", y = "IMC (kg/m^2)", fill = "Sexe") +
  theme_minimal()
   50
   40
IMC (kg/m^2)
                                                                                     Sexe
   20
                                                            M
```

En moyenne l'IMC des filles est légèrement plus grand que celui des garçons.

```
mean(data$IMC_kg_m2)
```

```
## [1] 22.29897
```

En général la moyenne des IMC est de 22.3.

Récapitulatif dans le tableau suivant :

	Population globale	Filles	Garçons
IMC	22.3	22.45	22.16

gender

• CSP des parents

```
data_1 <- as.data.frame(table(data$CSP_père, data$gender))</pre>
# Renommer les colonnes
names(data_1) <- c("CSP", "sexe", "Effectif_Participant")</pre>
data_2 = as.data.frame(table(data$CSP_mère,data$gender))
# Renommer les colonnes
names(data_2) = c("CSP", "sexe", "Effectif_Participant")
CSP_data <- rbind(data_1, data_2)</pre>
# Renommer la première colonne
colnames(CSP_data)[1] <- "CSP_Parent"</pre>
# Grouper par CSP_Parent et sexe, puis calculer les totaux
CSP_data <- CSP_data %>%
  group_by(CSP_Parent, sexe) %>%
  summarise(Effectif_Participant_total = sum(Effectif_Participant)) %>%
  ungroup()
# Afficher le dataframe
print(CSP_data)
## # A tibble: 18 x 3
      CSP_Parent
##
                                                         sexe Effectif_Participant~1
##
      <fct>
                                                         <fct>
                                                                                <int>
## 1 Agriculteurs exploitants
                                                        F
                                                                                    7
## 2 Agriculteurs exploitants
                                                                                    3
                                                        M
## 3 Artisans commercants chefs entreprise
                                                        F
                                                                                   59
## 4 Artisans commercants chefs entreprise
                                                                                   47
                                                        М
## 5 Autres personnes sans activite professionnelle
                                                                                   32
## 6 Autres personnes sans activite professionnelle
                                                                                   50
                                                        Μ
## 7 Cadres et professions intellectuelles superieur~ F
                                                                                   52
## 8 Cadres et professions intellectuelles superieur~ M
                                                                                   47
## 9 Employes
                                                                                   90
                                                         F
                                                                                  123
## 10 Employes
                                                         M
## 11 NA
                                                         F
                                                                                   23
## 12 NA
                                                        М
                                                                                   20
## 13 Ouvriers
                                                        F
                                                                                   28
## 14 Ouvriers
                                                        М
                                                                                   38
## 15 Professions intermediaires
                                                        F
                                                                                   59
## 16 Professions intermediaires
                                                                                   57
                                                        М
## 17 Retraites
                                                        F
                                                                                    4
## 18 Retraites
                                                                                    3
## # i abbreviated name: 1: Effectif_Participant_total
# Créer le diagramme en barres empilées avec les modalités en abscisses affichées verticalement
ggplot(CSP_data, aes(x = CSP_Parent, y = Effectif_Participant_total, fill = sexe)) +
  geom_bar(stat = "identity") +
  geom_text(aes(label = Effectif_Participant_total), position = position_stack(vjust = 0.5), color = "b
  labs(x = "CSP_Parent", y = "Effectif Participant total", fill = "Sexe", title = "Répartition de la Qu
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5),
```


Voici le tableau des effectifs des participants dont l'un de ses parents au moins exerce une des fonctions ci dessous :

	Filles	Garçons	Population Globale
Agriculteurs exploitants	7	3	10
Artisans commercants chefs entreprise	59	47	106
Autres personnes sans activite professionnelle	32	50	82
Cadres et professions intellectuelles superieures	52	47	99
Employes	90	123	213
Ouvriers	28	38	66
Professions intermediaires	59	57	116
Retraites	4	3	7
NA	23	20	43

Statistique descriptive pour le lieu d'étude :

• Proportion de l'échantillon global de la population selon le CA

1 2 3 4

12.12938 26.14555 10.24259 51.48248

prop.table(table(data\$CA))*100

$\overline{\mathbf{C}\mathbf{A}}$	1	2	3	4
Proportion(%)	12.13	26.15	10.24	51.48

Illustration avec un barplot :

Proportion des valeurs dans la colonne CA

- Proportion de l'échantillon global de la population selon l'IPS
- -IPS faible inférieur à 89
- -IPS moyenne entre 90 et 114
- -IPS élevé supérieur à 115

```
prop.table(table(data$IPS_categorie))*100

##
## Élevée Faible Moyenne
## 30.99730 22.37197 46.63073

IPS Faible Moyenne Elevé
Proportion(%) 31 22.37 46.63
```

Illustration avec un barplot

Proportion des valeurs dans la colonne IPS

• Proportion de l'échantillon global de la population selon le milieu géographique

```
prop.table(table(data$Geographie))*100

##

## rural urbain

## 35.84906 64.15094

Milieu géographique urbain rural
Proportion(%) 64.15 35.85
```

Illustration avec un barplot

Proportion des valeurs dans la colonne Géographie

Milieu géographique