Definitions

- 1.) Given a set X, a topology on X is a subset $\mathcal{T} \subseteq \mathcal{P}(X)$ that satisfies the following properties:
 - i. $\emptyset, X \in \mathcal{T}$
 - ii. Given a collection $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ of sets in \mathcal{T} , $\bigcup_{{\alpha}\in\mathcal{A}}U_{\alpha}\in\mathcal{T}$
 - iii. Given a finite collection $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ of sets in \mathcal{T} , $\bigcap_{{\alpha}\in\mathcal{A}}U_{\alpha}\in\mathcal{T}$
- 2.) Given a topological space X, an equivalence relation \sim on X, and the quotient map q on X, the quotient topology \mathcal{T} on X/\sim is defined as

$$\mathcal{T} = \left\{ U \subseteq X / \sim : q^{-1}(U) \text{ is open in } X \right\}$$

3.) Given sets X and Y, the cartesian product $X \times Y$ is defined as

$$X \times Y = \{(x, y) : x \in X \land y \in Y\}$$

4.) Given topological spaces X and Y, the product topology \mathcal{T} on $X \times Y$ is defined as

$$\mathcal{T} = \left\{ U \subseteq X \times Y : U = \bigcup_{\alpha \in \mathcal{A}} V_{\alpha} \times V_{\alpha}' \right\}$$

where $\{V_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ and $\{V'_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ are collections of open sets in X and Y respectively.

- 5.) Given sets X and Y, the projection maps $p_X: X \times Y \to X$ and $p_Y: X \times Y \to Y$ out of $X \times Y$ are the the respective mappings $(x, y) \mapsto x$ and $(x, y) \mapsto y$.
- 6.) Given a collection of sets $\{X_{\alpha}\}_{{\alpha}\in\mathcal{A}}$, the direct product $\prod_{{\alpha}\in\mathcal{A}}X_{\alpha}$ is defined as

$$\prod_{\alpha \in \mathcal{A}} X_{\alpha} = \left\{ \left\{ x_{\alpha} \right\}_{\alpha \in \mathcal{A}} : x_{\alpha} \in X_{\alpha} \text{ for all } \alpha \right\}$$

7.) Given a collection of topological spaces $\{X_{\alpha}\}_{{\alpha}\in\mathcal{A}}$, the product topology \mathcal{T} on $\prod_{{\alpha}\in\mathcal{A}}X_{\alpha}$ is defined as

$$\mathcal{T} = \left\{ U \subseteq \prod_{\alpha \in \mathcal{A}} X_{\alpha} : U = \bigcup \prod_{\alpha \in \mathcal{A}} V_{\alpha} \right\}$$

where V_{α} is open in X_{α} for all α and where $V_{\alpha} = X_{\alpha}$ for almost all α .

Proofs

- a.) Let $\theta_1, \theta_2 \in \mathbb{R}$ where $\theta_1 \sim \theta_2$ and $\theta_1 \neq \theta_2$, then there exists a nonzero $n \in \mathbb{Z}$ where $\theta_1 \theta_2 = \pi n$. Consider $\bar{f}([\theta_1])$ and $\bar{f}([\theta_2])$. Since $\theta_1 = \theta_2 + \pi n$, we can see that $f([\theta_1]) = f(\theta_1) = (\cos(2\theta_1), \sin(2\theta_1)) = (\cos(2(\theta_2 + \pi n)), \sin(2(\theta_2 + \pi n))) = (\cos(2\theta_2 + 2\pi n), \sin(2\theta_2 + 2\pi n)) = (\cos(2\theta_2), \sin(2\theta_2)) = f(\theta_2) = f([\theta_2])$, thus the value of $\bar{f}([\theta_1])$ does not depend on the representation of $[\theta_1]$, and thus \bar{f} is well defined.
- b.) Since $f(\theta) = (\cos(2\theta), \sin(2\theta))$, we know that the components of f are continuous, and thus f is continuous. Also note that $f = \bar{f} \circ q$. Let $U \subseteq Y$ be open, then $f^{-1}(U)$ is open, but $f^{-1}(U) = q^{-1}(\bar{f}^{-1}(U))$, thus $q^{-1}(\bar{f}^{-1}(U))$ is open, thus $\bar{f}^{-1}(U)$ is open in X/\sim , thus \bar{f} is continuous.
- c.) Let $\theta_1, \theta_2 \in \mathbb{R}$ where $f([\theta_1]) = f([\theta_2])$, thus $f(\theta_1) = f(\theta_2)$, thus $(\cos(2\theta_1), \sin(2\theta_1)) = (\cos(2\theta_2), \sin(2\theta_2))$, thus $\cos(2\theta_1) = \cos(2\theta_2)$ and $\sin(2\theta_1) = \sin(2\theta_2)$, thus $\theta_1 = \theta_2$, and thus \bar{f} is injective.
- d.) Let $(a,b) \in S^1$ and choose $\theta = \cos^{-1}(a)/2 = \sin^{-1}(b)/2$, then $\bar{f}([\theta]) = f(\theta) = (\cos(2\cos^{-1}(a)/2), \sin(2\sin^{-1}(b)/2)) = (a,b)$, thus \bar{f} is surjective.
- e.) We must also show that the inverse of \bar{f} is continuous.