XMAT Oxidation Modeling Report

Tianchen Hu^a, Stephanie Pitts^a, Benjamin W. Spencer^a

^aIdaho National Laboratory, Idaho Falls, Idaho

Abstract

placeholder

Keywords: oxidation, spallation, XFEM, moving interface

1. Model

Consider a sector of a centered circular domain with radius c. The oxide-metal interface is initially located at $\|x\| = b$, and the steam-oxide interface is initially located at $\|x\| = a$.

Two levelset functions are used to define the interfaces:

$$\phi_{\text{so}}(\boldsymbol{x}) = \|\boldsymbol{x}\| - a,\tag{1}$$

$$\phi_{\text{om}}(\boldsymbol{x}) = \|\boldsymbol{x}\| - b. \tag{2}$$

Interfaces and boundaries are defined as

$$\Gamma_{\text{so}} = \left\{ \boldsymbol{x} \mid \phi_{\text{so}}(\boldsymbol{x}) = 0 \right\},\tag{3}$$

$$\Gamma_{\text{om}} = \left\{ \boldsymbol{x} \mid \phi_{\text{om}}(\boldsymbol{x}) = 0 \right\},\tag{4}$$

$$\Gamma_{\text{mg}} = \{ \boldsymbol{x} \mid \|\boldsymbol{x}\| = c \}, \tag{5}$$

$$\Gamma_{\text{bottom}} = \left\{ \boldsymbol{x} \mid x_2 = 0 \right\},\tag{6}$$

$$\Gamma_{\text{left}} = \left\{ \boldsymbol{x} \mid x_1 = 0 \right\},\tag{7}$$

Domains are partitioned as

$$\Omega = \Omega_{\rm s} \cup \Omega_{\rm o} \cup \Omega_{\rm m},\tag{8}$$

$$\Omega_{s} = \left\{ \boldsymbol{x} \mid \phi_{so}(\boldsymbol{x}) < 0, \phi_{om}(\boldsymbol{x}) < 0 \right\}, \tag{9}$$

$$\Omega_{\text{o}} = \{ \boldsymbol{x} \mid \phi_{\text{so}}(\boldsymbol{x}) > 0, \phi_{\text{om}}(\boldsymbol{x}) < 0 \}, \tag{10}$$

$$\Omega_{\rm m} = \{ \boldsymbol{x} \mid \phi_{\rm so}(\boldsymbol{x}) > 0, \phi_{\rm om}(\boldsymbol{x}) > 0 \}. \tag{11}$$

Deformation is described by displacements u, and heat conduction is described by temperature T, governed by

$$\nabla \cdot \boldsymbol{\sigma} = \mathbf{0}, \quad \forall \boldsymbol{x} \in \Omega_{\mathrm{o}} \cup \Omega_{\mathrm{m}}, \tag{12}$$

$$\int_{\Omega} \boldsymbol{n} \cdot \boldsymbol{\varepsilon} \boldsymbol{n} \, dV = 0, \quad \forall \boldsymbol{x} \in \Omega_{o} \cup \Omega_{m},$$

$$\nabla \cdot \kappa \nabla T = 0, \quad \forall \boldsymbol{x} \in \Omega_{o} \cup \Omega_{m}.$$
(13)

$$\nabla \cdot \kappa \nabla T = 0, \quad \forall \boldsymbol{x} \in \Omega_{\rm o} \cup \Omega_{\rm m}. \tag{14}$$

where n is the surface (boundary) normal, κ is the thermal conductivity, and σ is the stress with constitutive relation to be defined, subject to constraints

$$\sigma n = -pn, \quad \forall x \in \Gamma_{\text{so}} \cup \Gamma_{\text{mg}},$$
 (15)

$$\kappa \nabla T \cdot \boldsymbol{n} = -h(T - T_{\infty}), \quad \forall \boldsymbol{x} \in \Gamma_{\text{so}} \cup \Gamma_{\text{mg}}, \tag{16}$$

$$\boldsymbol{u} \cdot \boldsymbol{n} = 0, \quad \forall \boldsymbol{x} \in \Gamma_{\text{bottom}} \cup \Gamma_{\text{left}},$$
 (17)

$$\llbracket \boldsymbol{u} \rrbracket = \boldsymbol{0}, \quad \forall \boldsymbol{x} \in \Gamma_{\text{om}},$$
 (18)

$$[T] = 0, \quad \forall x \in \Gamma_{\text{om}}.$$
 (19)

where h is the heat convection coefficient, p is the pressure, and T_{∞} is the environment temperature.

 σ is defined as

$$\sigma = \mathbb{C} : \varepsilon_{el},$$
 (20)

where \mathbb{C} is the elasticity tensor. The total strain is updated based on an incremental scheme with polar decomposition [1], and is additively decomposed into

$$\varepsilon_{\text{total}} = \varepsilon_{\text{el}} + \varepsilon_{\text{th}} + \varepsilon_{\text{cr}} + \varepsilon_{\text{ox}},$$
(21)

where $\varepsilon_{\rm th}$ is the thermal eigenstrain, $\varepsilon_{\rm cr}$ is the effective creep strain, and $\varepsilon_{\rm ox}$ is the accumulated strain due to oxidation.

The thermal eigenstrain is defined as

$$\varepsilon_{\rm th} = \int_{T_1}^{T_2} \alpha \, dT,$$
(22)

where α is the instantaneous thermal expansion coefficient.

The creep strain follows a temperature dependent power law:

$$\dot{\boldsymbol{\varepsilon}}_{\rm cr} = A(\sigma_{\rm vm})^n \exp\left(-\frac{Q}{RT}\right),\tag{23}$$

where A is the creep rate coefficient, $\sigma_{\rm vm}$ is the Von Mises stress, Q is the creep activation energy, R is the ideal gas constant.

Following [2], the oxide growth strain is decomposed into intrinsic growth strain and geometric growth strain:

$$\varepsilon_{\rm ox} = \varepsilon_{\rm ox}^{\rm intr} + \varepsilon_{\rm ox}^{\rm geo}.$$
(24)

The intrinsic growth strain is given as $\varepsilon_{\text{ox},\theta}^{\text{intr}} = \varepsilon_{\text{ox},z}^{\text{intr}} = \tau/B$, $\varepsilon_{\text{ox},r}^{\text{intr}} = 0$, where $\tau = \sqrt{2A_{\text{ox}}\exp(-\frac{Q_{\text{ox}}}{RT})t}$ is the oxide thickness. The geometric growth strain is given as $\varepsilon_{\text{ox},r}^{\text{geo}} = \varepsilon_{\text{ox},z}^{\text{geo}} = 0$, $\varepsilon_{\text{ox},\theta}^{\text{geo}} = -\ln(r_c/r_0)$, where r_c is the current radial coordinate and r_0 is the initial radial coordinate where the oxide is formed.

All model parameters and material properties are summarized in the appendix.

- 2. Benchmark
- 3. Creep strain
- 4. LAROMANCE

Figure 1. Comparison among the analytical solution, the numerical solution from [2], and the numerical solution obtained using MOOSE for (a) radial stress, (b) hoop stress and (c) axial stress.

Figure 2. Comparison between the numerical solution from [2] and the numerical solution obtained using MOOSE for (a) temperature, (b) radial stress, (c) hoop stress and (d) axial stress at different load profiles.

Figure 3

Figure 4

Figure 5

Appendix A Model parameters and material properties

Table A.1. Summary of material properties and model parameters for metal

Property/Parameter	Symbol	Value	Unit
Outer radius	c	25	mm
Thickness	au	11	mm
Young's modulus	E	190	GPa
Poisson's ratio	ν	0.3	nondim.
Thermal conductivity	κ	30	${ m W}{ m m}^{-1}{ m K}^{-1}$
Convection coefficient (metal-gas)	h	100	${ m W}{ m m}^{-2}{ m K}^{-1}$
Creep coefficient	A	2.3×10^{6}	s^{-1}
Creep exponent	n	5.06	nondim.
Creep activation energy	Q	400	${ m kJmol^{-1}}$

Table A.2. Summary of material properties and model parameters for oxide

Property/Parameter	Symbol	Value	Unit
Young's modulus	E	120	GPa
Poisson's ratio	ν	0.24	nondim.
Thermal conductivity	κ	3	${ m W}{ m m}^{-1}{ m K}^{-1}$
Convection coefficient (steam-oxide)	h	2800	${ m W}{ m m}^{-2}{ m K}^{-1}$
Creep coefficient	A	8.5875×10^{7}	s^{-1}
Creep exponent	n	3	nondim.
Creep activation energy	Q	421.62	${ m kJmol^{-1}}$
Growth strain scale factor	B	0.3	m
Oxidation coefficient	$A_{ m ox}$	6.22×10^{8}	$\mathrm{m}^2\mathrm{h}^{-1}$
Oxidation activation energy	$Q_{ m ox}$	326	$kJ mol^{-1}$

Table A.3. Summary of operation schedule

Load	Duration (h)	T_s (°C)	T_g (°C)	p_s (MPa)	p_g (MPa)	Transition (h)
Full	14	530	1100	17	0.2	Full to Partial: 1
Partial	8	525	845	10	0.1	Partial to Full: 1
Shutdown	25	25	25	0.1	0.1	Full to Shutdown: 6 Shutdown to Full: 3

 ${\bf Figure~A.6.}~{\rm instantaneous~thermal~expansion~coefficients~for~oxide~and~metal.}$

Figure A.7. Example schedule: five full – partial cycles followed by a shutdown.

References

- [1] M. Rashid, Incremental kinematics for finite element applications, International journal for numerical methods in engi-
- neering 36 (1993) 3937–3956.
 [2] F. Xue, T.-L. Cheng, Y.-H. Wen, Stress analysis of the steam-side oxide of boiler tubes: Contributions from thermal strain, interface roughness, creep, and oxide growth, Oxidation of Metals (2020) 1–29.