Логика и алгоритмы

Задачи семинаров 2

Обозначения: $0 := \emptyset$, $x + 1 := x \cup \{x\}$. Множество Y называется undyктивным, если $0 \in Y$ и $\forall x \ (x \in Y \to x + 1 \in Y)$. Множество натуральных чисел $\mathbb N$ определяется, как наименьшее по включению (\subset -наименьшее) множество. Элементы этого множества называются undy undy

ТЕОРЕМА 1 (принцип математической индукции). Дано некоторое множество A. $Ecnu\ 0 \in A\ u\ \forall n \in \mathbb{N}\ (n \in A \to n+1 \in A),\ mo\ \mathbb{N} \subset A.$

Обозначение: $x < y : \Leftrightarrow x \in y$.

ТЕОРЕМА 2 (принцип порядковой индукции). Дано некоторое множество A. Если $\forall n \in \mathbb{N} \ (\forall m < n \ m \in A \to n \in A), \ mo \ \mathbb{N} \subset A.$

ТЕОРЕМА 3 (принцип минимального элемента). Пусть A – некоторое непустое подмножество \mathbb{N} . Тогда A содержит <-минимальный элемент, т.е. такой элемент $n \in A$, что $\forall m < n \ m \not\in A$.

- 1. Почему существует хотя бы одно индуктивное множество? Могут ли существовать два различных наименьших по включению индуктивных множества?
- 2. Докажите, что $x+1 \neq 0$ и $x+1=y+1 \to x=y$ для любых множеств x и y.
- 3. Докажите, что $\forall n \in \mathbb{N} \ (n=0 \vee \exists m \in \mathbb{N} \ (n=m+1)).$
- 4. Докажите, что < задает на $\mathbb N$ строгий частичный порядок, т.е. что $\forall n \in \mathbb N (n \not< n)$ и $\forall n, m, k \in \mathbb N \ (n < m < k \to n < k)$.
- 5. Докажите, что для любого $n \in \mathbb{N}$ не существует инъективного отображения из n+1 в n.
- 6. Для натуральных чисел n и m докажите, что не существует инъекции из n в m, если m < n.
- 7. Докажите, что порядок, задаваемый < на №, является линейным.
- 8. Докажите, что два различных натуральных числа неравномощны.
- 9. Дана функция $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, удовлетворяющая следующим рекурсивным условиям:

$$\begin{cases}
 m + 0 = m \\
 m + (n+1) = (m+n) + 1.
\end{cases}$$

Докажите, что m + n = n + m для любых натуральных числе n и m.

Множество x называется *конечным*, если $x \sim n$ для некоторого $n \in \mathbb{N}$. В последнем случае мы также говорим, что x содержит n элементов. Множество x называется cчетным, если $x \sim \mathbb{N}$.

10. Докажите, что любое подмножество конечного множества конечно, а также, что любое подмножество счетного множества конечно или счетно.

Дополнительные задачи к листку sem2 (26.01)

- 0. Если $y \in x \in \mathbb{N}$, то $y \in \mathbb{N}$ (т. е. N транзитивно).
 - 0.05. Если x+1∈**N**, то x∈**N**.
 - 0.5. Если $m,n \in \mathbb{N}$, то $m \subseteq n \Leftrightarrow m \le n$.
- 5.1 Если $n \in \mathbb{N}$ и $x \in (n+1)$, то $(n+1) \setminus \{x\} \sim n$.
 - 11. Объединение двух конечных множеств конечно.
 - 12. Декартово произведение двух конечных множеств конечно.

$$\begin{cases} x \mid \varphi(x) \end{cases} - \text{whotherefor?} \\ \text{S} \\ \text{O} \\ \text{O} \\ \text{S} \end{cases}$$

ynx= Ø

$$\frac{1}{8}$$
 $\frac{1}{8}$
 $\frac{1$

$$X = \{A\}$$

$$\{y \cap X = \emptyset$$

$$\exists y \in X$$

$$A \cap \{A\} = \{A\}$$

Ö

He cyly.

$$a_0 \ni a_1 \ni a_2 \ni \dots$$

$$d = (a_n)_{n \in \mathbb{N}}$$

$$X = \{a_0, a_1, a_2, \dots \} = 29n \alpha$$

$$y \in X$$

$$y = \alpha_i$$

$$y=\alpha_i$$

$$\alpha_{i+j} \in \alpha_i$$

$$\Rightarrow a_{i+1} \in a_i \cap X$$

T 76 RH3 4 Th Q40: UTCT To 20 5 27 5 27 t' $aeteT \rightarrow aeT$ tet -tct Ble Hat zucua Tpattsutulati {{\display}, {\psi}, \psi}

$$\times + 1 = y + 1 \longrightarrow X = y$$

$$X_0 = Y$$

$$X = y + \frac{1}{2}$$

$$X \cup \{x\} = X$$

mek -> nekck+1 (4) N KN WOHHO DOK. Ses perys.

Krpans:

Myn(n < m < k -> h < k)

F Vshehtman @ gmail.com . О Транз. . в транз -> R+1 транз.