Examen partiel du 2 novembre 2011

I — On considère un **R**-espace vectoriel E muni d'une norme $||\ ||$. On note d la distance sur E associée à cette norme. Soit K un compact non vide contenu dans E. Pour tout $x \in E$, on pose :

$$d(x,K) = \inf_{y \in K} d(x,y)$$

1) Montrer qu'il existe une fonction f de E dans K telle que :

$$\forall x \in E, \ d(x, f(x)) = d(x, K)$$

Déterminer l'image de f.

- 2) On suppose que f est continue. Montrer que K est connexe.
- II On considère un R-espace vectoriel E muni d'une norme || ||. On note d la distance sur E associée à cette norme. Soient X et Y deux parties non vides de E. Pour tout réel $c \geq 0$, on note Z(c) le sous-ensemble de $E \times E$ formé des couples $(x, y) \in E \times E$ tels que :

$$x \in X, y \in Y, d(x,y) \le c$$

- 1) On suppose X et Y fermés. Montrer que Z(c) est fermé.
- 2) Soit x un point de l'adhérence \overline{X} de X et y un point de Y. Soit c un réel strictement supérieur à d(x,y). Montrer que (x,y) appartient à l'adhérence de Z(c).
 - 3) On suppose que pour tout $c \geq 0$, Z(c) est fermé. Montrer que X et Y sont fermés.
- 4) On suppose E de dimension finie. On suppose X fermé et Y compact. Montrer que Z(c) est compact.
- III Soit $f : \mathbf{R} \longrightarrow \mathbf{R}$ une fonction continue et croissante (au sens large). Pour tous réels x et y on pose : d(x,y) = |f(x) f(y)|.
 - 1) Montrer que d est une distance sur \mathbf{R} si et seulement si f est strictement croissante.
- 2) On suppose dorénavant f strictement croissante. Montrer que toute boule ouverte de (\mathbf{R}, d) est un ouvert de \mathbf{R} .
 - 3) Montrer que la topologie de (\mathbf{R}, d) est la topologie usuelle de \mathbf{R} .
 - 4) Construire une isométrie de (\mathbf{R}, d) sur un ouvert de \mathbf{R} .
- 5) On suppose que f est la fonction $x \mapsto e^x$. Montrer qu'il existe une boule fermée de (\mathbf{R}, d) qui n'est pas compacte.

Corrigé et résultats sur :

http://www.math.jussieu.fr/~vogel/topo-cd.cor.pdf http://www.math.jussieu.fr/~vogel/topo-cd.res.pdf