Московский государственный университет имени М.В. Ломоносова Механико-математический факультет Кафедра вычислительной математики

Курсовая работа

Студент: Попов Илья Викторович

Преподаватель: Валединский Владимир Дмитриевич

Группа: 310

Москва

2025

Сравнение многогранников: оценка качества алгоритма построения объёмной модели трехмерного тела

Попов Илья

10 мая 2025 г.

Аннотация

Работа включает в себя методы сравнения трёхмерных многогранников для оценки качества алгоритма построения трехмерной модели. Предложена система метрик между гранями трехмерных многогранников для определения расстояние между ними и дальнейшего его использования в различных алгоритмах нахождения оптимального распределения: венгерский алгоритм и жадный алгоритм.

1 Введение

1.1 Постановка проблемы

Алгоритму необходимо получить число, которое характеризовало бы схожесть двух многогранников в некотором смысле.

2 Математическая модель

2.1 Формальное описание многогранника

Многогранник P может быть задан в виде тройки:

$$P = (V, E, F)$$
, где: (1)

- $V = \{\mathbf{v}_i\} \subset \mathbb{R}^3$ множество вершин
- ullet $E=\{e_{ij}\}$ множество рёбер
- $F = \{f_k\}$ множество граней

Для каждой грани f_k многогранника, определим её основные характеристики:

- Центр масс: $\mathbf{c}_k = \frac{1}{S_k} \sum_{T \in \mathcal{T}_k} S_T \cdot \mathbf{c}_T$ где:
 - \mathcal{T}_k множество треугольников триангуляции грани f_k с помощью диагоналей
 - T отдельный треугольник в триангуляции (элемент \mathcal{T}_k)
 - $-S_T=rac{1}{2}\|(\mathbf{v}_2-\mathbf{v}_1) imes (\mathbf{v}_3-\mathbf{v}_1)\|$ площадь треугольника T с вершинами $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$
 - $-\mathbf{c}_T = \frac{1}{3}(\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3)$ центр масс треугольника T
 - $-S_k = \sum_{T \in \mathcal{T}_k} S_T$ общая площадь грани f_k
- Нормаль: \mathbf{n}_k нормаль к плоскости, наилучшим образом приближающеё точки в смысле минимума суммы квадратов отклонений

3 Метрики сравнения граней

1. Евклидово расстояние между центрами и евклидово расстояние между нормалями:

$$d(f,g) = \alpha \cdot \|\mathbf{c}_f - \mathbf{c}_g\|_2 + \beta \cdot \|\mathbf{n}_f - \mathbf{n}_g\|_2$$
 (2)

где:

- \bullet α, β весовые коэффициенты
- $\alpha, \beta \in \mathbb{R}_{>0}$ множество положительных действительных чисел
- $\|\mathbf{c}_f \mathbf{c}_g\|_2$ евклидово расстояние между центрами
- ullet $\|\mathbf{n}_f \mathbf{n}_g\|_2$ евклидово расстояние между нормалями
- 2. Метрика на основе симметрической разности проекций Для граней f и g определим метрику сравнения плоскостности:

$$d(f,g) = \frac{S(A \triangle B)}{S(A) + S(B)} \tag{3}$$

где:

- H_{avg} усредненная плоскость между гранями
- $A = \operatorname{proj}_{H_{avg}}(f)$ проекция грани f на H_{avg}
- $B = \operatorname{proj}_{H_{avg}}(g)$ проекция грани g на H_{avg}
- $A\triangle B=(A\cup B)\setminus (A\cap B)$ симметрическая разность проекций
- $S(\cdot)$ площадь соответствующей проекции

Заметим, некоторые очевидые свойства этой метрики:

- $d_{sd} \in [0,1]$ (нормирована)
- ullet $d_{sd}=0$ при полном совпадении проекций
- ullet $d_{sd}=1$ при нулевом пересечении проекций

3. Метрика сравнения граней на основе хаусдорфова расстояния: Для двух компактных множеств $A, B \subset \mathbb{R}^2$ хаусдорфово расстояние определяется как: $d_H(A, B) = \max \{ \sup_{a \in A} \inf_{b \in B} \|a - b\|, \sup_{b \in B} \inf_{a \in A} \|a - b\| \}$

$$d(f,g) = d_H(\operatorname{proj}_{H_{avg}}(f), \operatorname{proj}_{H_{avg}}(g))$$
(4)

4 Алгоритмы сопоставления

Пусть заданы:

- Многогранник F_{ref} с гранями $\{f_i\}_{i=1}^n$
- Многогранник G_{rec} с гранями $\{g_j\}_{j=1}^m$
- Метрика $d(f_i,g_j) \ge 0$ (соответствий тем лучше, чем меньше расстояние)

4.1 Жадный алгоритм

4.1.1 Описание алгоритма

- 1. Инициализировать пустое множество соответствий $\phi = \emptyset$
- 2. Пока есть не сопоставленные грани:
 - (a) Для всех пар (f_i, g_j) найти минимальное значение метрики:

$$(f^*, g^*) = \underset{f_i \in F_{\text{Hecon.}}, g_j \in G_{\text{Hecon.}}}{\arg \min} d(f_i, g_j)$$

- (b) Добавить соответствие в множество: $\phi \leftarrow \phi \cup \{f^* \leftrightarrow g^*\}$
- (c) Удалить f^* из $F_{\text{несоп.}}, g^*$ из $G_{\text{несоп.}}$
- 3. Вернуть ϕ

4.1.2 Особенности алгоритма

Сложность:

Пусть
$$m>=n$$
, тогда
$$\sum_{i=0}^{m-1}(m-i)\cdot(n-i)=\sum_{i=0}^{m-1}(m\cdot n-i\cdot m-i\cdot n+i^2)=O(m^2\cdot n+\frac{1}{6}\cdot m^3)$$

Не гарантирует глобально оптимальное соответствие

4.2 Венгерский алгоритм

Положим $N=\max\big\{n,m\big\}$. В рамках этого алгоритма ищется совершенное паросочетание минимальной стоимости в двудольном графе. Вершины левой доли отвечают граням многогранника F, а правой - граням многогранника G. Двудольный граф можно представить как матрицу a[1...N][1...N], где $a[i][j]=d(f_i,g_j)$, то есть значение каждой ячеки матрицы - это вес соответствующего ребра в двудольном графе. Если $n\neq m$, то незаполненные места в матрице заполняются максимальным занчением метрики, ограниченной на множество граней сравниваемых многогранников.

Определение 1. Два массива $u[1 \dots n]$ и $v[1 \dots n]$ называются **потенциалом**, если:

$$u[i] + v[j] \le a[i][j] \quad \forall i, j = 1, \dots, n$$

Определение 2. Ребро, соедениющее грани с номерами ij называется **жест**-**ким**, если: u[i] + v[j] = a[i][j]

Утверждение 1. Заметим, что если есть решение, то есть совершенное паросочетание, использующее только жесткие ребра, то это паросочетание будет ответом на исходную минимализационную задачу.

 $\it O fo c ho b a hu e$. Пусть $\it sol$ - это суммарный вес всех ребер, входящих в результирующее паросочетание.

Пусть нашлось соврешенной паросочетание - номер 1 на жесткихх ребрах, тогда

 $\sum_{i=1}^{N}u[i]+\sum_{j=1}^{N}v[j]=sol_1$, но любого другого паросочетание под номером q имеем: $\sum_{i=1}^{N}u[i]+\sum_{j=1}^{N}v[j]=sol_q\leq sol_1$, то есть эта сумма не меньше, но ровно стлоько уже есть.

4.2.1 Описание алгоритма

Алгоритм будет изменять потенциалы таким образом, что бы нашлось совершенное паросочетание на жестких ребрах. Это корректно, благодаря вышедоказанному утверждению.

Пусть u, v - потенциалы, M - паросочетание в графе жёстких рёбер $H = \{(i,j)|u[i]+v[j]=a[i][j]\}$

- ullet В начале алгоритма пологается что $u[i]=v[i]=0 \quad \forall i=1,\ldots,n$ и $M=\emptyset$
- На каждом шаге алгоритма пытаемся увеличить мощность текущего паросочетания M на еденицу. Для этого в графе H оринтируем все ребра вправо, а ребра из паросочетания ориентируем в лево. Из новой ненасыщенной вершины левой доли ищем удлиняющую цепь, запуская dfs из неё, то есть обход в глубину. Если при этом обходе дошли до свободной вершины правой доли, то в этотм случае получали удлиняющую цепь, значит можем увеличить паросочетание. Иняче слудующий пункт.
- Если не дошли до какой-то свободной вершины правой доли. Обозначим L левую долю, R правую долю, L^+, R^+ вершины, которые были достигнуты во время обхода, L^-, R^- вершины, которые не были достигнуты во время обхода. Положим $\Delta := \min \{a[i][j] u[i] v[j], i \in L^+, j \in R^-\}$. Затем пересчитаем потенциалы следующим образом:

$$u[i]+=\Delta, i\in L^+;$$

$$v[j] - = \Delta, j \in \mathbb{R}^+$$

При таком пересчете потенциалов не теряются жесткие ребра, участвоващие

в предыдущем обходе, и появляется как минимум одно новое жесткое ребро из L^+ в R^- . Пытаемся снова найти удлиняющую цепь. Таким образом при каждом слудующем dfs увеличивается число число вершин, которых достиг алгоритм.

4.2.2 Особенности алгоритам

Сложность:
$$n \cdot (n \cdot (dfs + n^2)) = O(n^4)$$

Гарантируется глобально оптимальное соответствие.

Можно уменьшить сложность до $O(n^3)$ оптимизировав пересчет потенциалов и уменьшив количество поисков вглубину.

5 Заключение

Работа посвящена разработке методов сравнения трёхмерных многогранников. Были предложены метрики для срванения граней:

- Комбинированная метрика на основе евклидовых расстояний между центрами масс и нормалями.
- Метрика симметрической разности проекций с нормированным расстоянием в диапазоне [0, 1].
- Хаусдорфово расстояние между проекциями граней на усреднённую плоскость.

И описаны алгоритмы для сопастовления граней двух многогранников:

- Жадный алгоритм с вычислительной сложностью $O(m^2 \cdot n)$ для быстрого поиска локально оптимальных соответствий.
- Венгерский алгоритм, гарантирующий глобальный оптимум за $O(n^4)$, с возможностью оптимизации до $O(n^3)$.

В качестве меры схожести можно использовать максимальное расстояние между соответствующими гранями после оптимального сопоставления. Формально:

$$d(F,G) = \max_{(f_i,g_j)\in\phi} d(f_i,g_j),\tag{5}$$

где ϕ — соответствие между гранями многогранников F и G, а $d(f_i,g_j)$ — выбранная метрика расстояния между гранями