APTOS 2019 Blindness Detection

Detect Diabetic Retinopathy to Stop Blindness Before it's too Late

Lugi Berducci Alessandro Steri

August 24, 2019

Abstract

Hei I'm a cool abstract.

Contents

1	Motivation Background								
2									
3	Preprocessing								
	3.1 data augmentation	2							
	3.2 crop								
	3.3 K-fold								
	3.4 VGG features								
4	Models								
	4.1 baseline	2							
	4.2 MLP								
	4.3 Multihead, Attention, ResNet								
5	Evaluation and Experimental Result								
	5.1 Evaluation								
	5.2 Hyperparameters								
	5.3 Experiments								
	5.4 Results								
	5.4.1 Analysis of the Results								
6	Conclusion and Future Work	9							

1 Motivation

Why kaggle: real problem.

2 Background

Few lines about the problem and medical stuff.

3 Preprocessing

- 3.1 data augmentation
- 3.2 crop
- 3.3 K-fold
- 3.4 VGG features
- 4 Models
- 4.1 baseline
- 4.2 MLP
- 4.3 Multihead, Attention, ResNet..

5 Evaluation and Experimental Result

5.1 Evaluation

How did we evaluate, 70/30~85/15. multiple tests to reduce variance ecc..

- 5.2 Hyperparameters
- 5.3 Experiments
- 5.4 Results

Experiments on specification S1

Algo	С	Avg Trace	Success Rate	Robustness			Time (sec)	
		Falsification		min	avg	std dev	tot	trace
URS		40.0	2/10	-4.07960	4.91882	5.514537	178.014	2.01
MCTS+RS	0.500		0/10	5.30248	8.34921	2.400517	559.916	5.59
MCTS+HC	0.500	94.0	1/10	-1.93401	5.07959	4.386757	1034.225	10.40
MCTS+SA	0.500	24.0	1/10	-0.68394	7.71311	4.152730	891.788	9.78
MCTS+RS	0.250	62.0	4/10	-4.52952	2.80386	4.995340	355.163	4.19
MCTS+HC	0.250	74.4	5/10	-3.63763	2.02058	4.289398	676.262	7.77
MCTS+SA	0.250	74.6	7/10	-10.29078	-2.38069	3.744391	597.866	7.29
MCTS+RS	0.125	46.5	8/10	-6.27352	-1.28520	3.320830	170.078	2.99
MCTS+HC	0.125	68.1	8/10	-4.61933	-0.07330	4.719893	380.664	5.12
MCTS+SA	0.125	48.5	8/10	-6.43350	-0.69363	5.875865	304.758	5.22
MCTS+RS	0.000	65.5	2/10	-4.20689	6.83323	7.070816	325.054	3.51
MCTS+HC	0.000	41.0	4/10	-2.64884	1.95654	3.712926	430.037	5.589
MCTS+SA	0.000	78.0	2/10	-1.51834	4.81908	6.613282	558.383	5.83

Table 1: Comparison between MCTS and URS, given a budget of 100 simulations and varying the parameter C in order to balance exploration and exploitation in the search. The input signals have been split into 2 and 3 region.

5.4.1 Analysis of the Results

comments on the results. comparing models and vs kaggle leaderboard.

6 Conclusion and Future Work

References