Problem 1

Describe a polynomial-time reduction from Vertex Cover to Set Cover.

Given an instance $\langle G = (V, E), k \rangle$ of Vertex Cover, the reduction outputs the instance $\langle U, C, k' \rangle$ of Set Cover, where U, C, and k' are defined as follows:

Let U = E be the set of edges in G;

let C_i be the edges touched by v_i , that is $C_i = \{e_{v_i v_j} | e_{v_i v_j} \in E\}$, unioned with v_i itself;

Let k' be k from the Vertex Cover problem.

Here is why the reduction can be computed in polynomial time:

Constructing C will require at worst a loop over the edge set for each vertex, resulting in O(VE) time, which is polynomial.

Here is a proof that the reduction is correct.

Lemma 1. Given any instance $\langle G, k \rangle$ of Vertex Cover, let $\langle U, C, k \rangle$ be the instance of Set Cover produced by the reduction. Then G has a vertex cover of size k if and only if there is a set cover, C' of size k'.

Proof (long form).

- 1. First we show the "only if" direction.
- 2. Assume that G has a vertex cover of size k.
- 2.1. Let I be the vertex cover of size k in G.
- 2.2. Take C' to be the set of sets in C corresponding to the vertices in I.
- 2.3. Then C' has size k'.
- 2.4. Since every edge, $v_i v_j$ in E, has a vertex in I (that is, either v_i or v_j is in I by definition of vertex cover), all of the edges will be present in the union of the sets of C'.
- 2.5. That is, the union of the sets of C' will produce a set of all the edges in the graph, which is exactly U.
- 2.6. So there is a subset of size k of C such that the union over them all will equal U.
- 3. Next we show the "if" direction.
- 4. Assume that there are some k' sets of C such that the union over them all will equal U.
- 4.1. Let C' be the set of k' sets of C.
- 4.2. Take I to be the vertices corresponding to sets in C'.
- 4.3. Then I has size k.
- 4.4. The union of the edges touched by the nodes in I will be U, which is exactly E.
- 4.5. There is a vertex cover of size k = k' in G.
- 5. By blocks 2 and 4, G has a vertex cover of size k if and only if there is a set cover, C' of size k'.

П

Problem 2

Describe a polynomial-time reduction from Subset Sum to Zero Path.

Definition of Zero Path: The input is $\langle G, s, t \rangle$, where G = (V, E) is an acyclic directed graph with (possibly negative) integer edge weights, and s and t are vertices. The output is 'yes' if there is a path P from s to t in G such that the total weight of the edges in P is zero, and 'no' otherwise.

Definition of SUBSET SUM: The input is $\langle x, T \rangle$, where $x = (x_1, x_2, \dots, x_n)$ is a sequence of n integers, and T is an integer. The output is 'yes' if there is a subset $S \subseteq \{1, 2, \dots, n\}$ with $\sum_{i \in S} x_i = T$, and 'no' otherwise.

Create two vertices, v_s and $v_{s'}$ with an edge, $v_s v_{s'}$ of weight, -T.

Then create a widget for each x_i in x with two vertices, v_i and v'_i and two edges between them, $v_iv'_i$ of weights 0 and x_i .

String together any two widgets, i and j by creating an edge $v_i'v_j$ of weight 0.

Connect the first widget, k with the start by creating the edge $v_{s'}v_k$ of weight 0.

Connect the last widget, l to the end node, v_t by adding the edge $v_l'v_t$ of weight 0.

Here is why the reduction can be computed in polynomial time:

The reduction as described makes a single pass over the set x to construct the graph, so it'll work in polynomial time.

Here is a proof that the reduction is correct.

Lemma 2. Given any instance $\langle x, T \rangle$ of Subset Sum, let $\langle G = (V, E), s, t \rangle$ be the instance of Zero Path produced by the reduction. Then x has a Subset Sum if and only if G has a Zero Path.

Proof (long form).

- 1. First we show the "only if" direction.
- 2. Assume that x has a Subset Sum of T.
- 2.1. For each $x_i \in x$, if x_i was used in the sum to get T, take the edge in the corresponding widget of weight x_i . Else, take the edge of weight 0.
- 2.2. Among the widgets traversed, the weight of the path will be T, but the first edge taken, edge $v_s v_{s'}$ was of weight -T, so the path weight will be 0.
- 2.3. So G has a path from v_s to v_t of weight 0.
- 3. Next we show the "if" direction.
- 4. Assume that G has a Zero Path from v_s to v_t .
- 4.1. Let P be such a path.
- 4.2. P must traverse the edge $v_s v_{s'}$ as it is the only edge out of v_s .
- 4.3. P must traverse every widget since there is no other way to reach v_t from v_s .
- 4.4. At every widget, the weight of the path either increased by some x_i , or remained unchanged.
- 4.5. For the weight of P to be Zero, some set x' of non-zero widget edges must've been traversed that sum to the weight of $v_s v_{s'}$.
- 4.6. Then x' is the set of widget weight that sum to $v_s v_{s'}$, which is exactly T.
- 4.7. Further, the non-zero widget weights, $x' \subseteq x$.
- 4.8. There is a subset, $x' \subseteq x$ whose values sum to T.

5. By blocks 2 and 4, x has a Subset Sum if and only if G has a Zero Path.