Assignment 9

AI1110: Probability and Random Variables

Indian Institute of Technology, Hyderabad

JARUPULA SAI KUMAR CS21BTECH11023

Question 10.10 [Papoullis Textbook]:

If
$$R_n(\tau) = N\delta(\tau)$$
 and $x(t) = A\cos\omega_0 t + n(t)$ $H(\omega) = \frac{1}{\alpha + j\omega}$ $y(t) = B\cos(\omega_0 + t + \phi) + y_n(t)$ where $y_n(t)$ is the component of the output $y(t)$ due to $y_n(t)$ is the value of $y_n(t)$ to noise ratio $y_n(t)$ $y_n($

We Know that,

$$B = A|H(\omega_0)| = \frac{A}{\sqrt{\alpha^2 + \omega_0^2}}$$
 (1)

$$S_{y_n}(\omega) = \frac{N}{\alpha^2 + \omega_0^2} \tag{2}$$

$$R_{y_n}(\tau) = \frac{N}{2\alpha e^{-\alpha|\tau|}} \tag{3}$$

$$Ey_n^2(t) = R_{y_n}(0) = \frac{N}{2\alpha} \tag{4}$$

Hence, We can written it as,
$$\frac{B^2}{E(y_n^2(t))} = \frac{2A^2}{N} \frac{\alpha}{\alpha^2 + \omega_0^2}$$
 Differentiating, we get

$$\frac{1(\alpha^2 + \omega_0^2) - \alpha(2\alpha)}{(\alpha^2 + \omega_0^2)^2} = 0$$
 (5)

$$\omega_0^2 - \alpha^2 = 0 \tag{6}$$

$$\alpha = \omega_0 \tag{7}$$

Also, $f''(\alpha) < 0$

 $\alpha = \omega_0$ which is the maxima value for given ratio.