一、是非題

■ 1. Let $V = \{(a_1, a_2) | a_1, a_2 \in \mathbb{R}\}$, define

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

$$c \cdot (a_1, a_2) = \begin{cases} 0 & \text{if } c = 0 \\ (a_1, a_2) & \text{if } c \neq 0 \end{cases}$$

Then $(V, +, \cdot)$ is a vector space.

- \blacksquare 2. A set V is a vector space if V satisfies the following properties:
 - (i) V has a zero vector;
 - (ii) whenever u and v benong to V, then u + v belongs to V; and
 - (iii) whenever v belongs to V and c is a scalar,

then cv belongs to v.

- 3. The set of vectors (x, y) in \mathbb{R}^2 with y = -3x + 1 is a vector space.
- 4. The number of vectors in each vector space is infinite.
- 5. Every vector space has at least two distinct subspaces.
- 6. The empty set is a vector space over any field.
- 7. The condition that a subset of a vector space contains the zero vector is a necessary and sufficient condition for the subset to be a subspace.
- 8. The subset of vectors in \mathbb{R}^3 with $b_1b_2b_3=0$ forms a subspace.
- 9. The subset of vectors in \mathbb{R}^3 with $b_1 + b_2 + b_3 = 0$ forms a subspace.
- 10. All vectors $v = (v_1, v_2, v_3)$ with $v_1 > v_2 > v_3$ form a subspace.
- 11. The set $\{(x, \cos x) | x \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- 12. The line passing through (0,1) and (1,0) is a subspace of \mathbb{R}^2 .
- 13. The set of x satisfying Ax = b, where A is a real $m \times n$ matrix and b is a real $m \times 1$ matrix with $b \neq 0$ is a subspace of \mathbb{R}^n .
- 14. The only vector space that contains a finite number of vectors is the zero vector space $Z = \{0\}$.
- 15. If V is a vector space other than the zero vector space $\{0\}$, then V contains a subspace H such that $W \neq V$.
- 16. Let \mathbb{R} denote the set of all real numbers. If S is a closed and bounded interval in \mathbb{R} and contains 0, then S is not a subspace of \mathbb{R} .
- 17. If A is a subspace, then its completement be a subspace.

- 18. For any $m \times n$ matrix A and $n \times p$ matrix B, the null space of B is contained in the null space of AB.
- 19. Any three nonzero vectors span \mathbb{R}^3 .
- 20. If w_1 , w_2 , w_3 are indepensent vectors, the differences $v_1 = w_2 w_3$ and $v_2 = w_1 w_3$ and $v_3 = w_1 w_2$ are independent.
- 21. In a vector space V, if v_i and v_j are linearly independent for $i, j = 1, 2, 3, i \neq j$, then v_1, v_2, v_3 are linearly independent.
- 22. If none of the vectors in the set $S = \{v_1, v_2, v_3\}$ in \mathbb{R}^3 is a multiple of one of the other vectors, then S is linearly independent.
- 23. If both $\{v_1, v_2, v_3\}$ and $\{v_2, v_3, v_4\}$ are linearly independent sets, then $\{v_1, v_2, v_3, v_4\}$ is linearly independent, where vectors v_1 , v_2 , v_3 and v_4 are in \mathbb{R}^4 .
- 24. If $S = \{v_1, ..., v_n\}$ is linearly dependent in a vector space V, where $n \ge 2$, then every vector in S can be expressed as a linear combination of the others.
- 25. Let $W = \{v_1, v_2, ..., v_k\} \subseteq \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$. If W is a linearly independent set, then $\{Av_1, Av_2, ..., Av_k\}$ is a linearly independent set.
- 26. Let $W = \{v_1, v_2, ..., v_k\} \subseteq \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$. If $\{Av_1, Av_2, ..., Av_k\}$ is a linearly independent set, then W is a linearly independent set.
- 27. The vector space \mathbb{R}^3 has a basis containing the vector (1,2,3).
- 28. Two vectors in \mathbb{R}^3 always span a two dimension subspaces.
- 29. Any two nonzero vectors in \mathbb{R}^2 that do not form a basis are collinear.
- 30. If $W_1 = \{A \in \mathbb{F}^{n \times n} | tr(A) = 0\}$, then $\dim(W_1) = n^2 1$.
- 31. Every subset of \mathbb{R}^n with more than n elements is a spanning set for \mathbb{R}^n .
- 32. Every vector space is spanned by a linearly dependent set.
- 33. If V and W are subspaces of \mathbb{R}^n having the same dimension, then V = W.
- 34. There are three linearly independent vectors in the \mathbb{R}^2 .
- \blacksquare 35. A subset of a vector space V is a basis if and only if the subset is linearly independent and finite.
- 36. If $x_1, x_2, ..., x_n$ span \mathbb{R}^n , then $\{x_1, x_2, ..., x_n\}$ is a basis for \mathbb{R}^n .
- 37. If $V = span\{v_1, ..., v_n\}$, then $dim(V) \le n$.
- 38. If an n-element subset of a finite-dimensional vector space V is linearly independent, then the dimension of V is greater than n.
- 39. Let $\{v_1, v_2, ..., v_n\}$ be a spanning set for the vector space V and let v be any other vector in V, then $v, v_1, v_2, ..., v_n$ are linear independent.
- 40. A set of three vectors in \mathbb{R}^2 can be linearly independent.
- 41. If V is a nonzero finite-dimensional vector spaces, and there exists a linearly dependent set $\{v_1, ..., v_p\}$ in V, then $\dim(V) \leq p$.
- 42. If V is a nonzero finite-dimensional vector spaces, and if every set of p elements in V fails to span V, then $\dim(V) > p$.

- 43. If the column of a matrix are dependent, so are the rows.
- 44. If a square matrix A has independent columns, so does A^2 .
- 45. Let V be a vector space of finite dimension. Let S,T and U be vector subspaces of V. Then $\dim(S+T+U) = \dim(S) + \dim(T) + \dim(U) \dim(S\cap T) \dim(T\cap U) \dim(U\cap S) + \dim(S\cap T\cap U).$
- 46. Let V be an n-dimensional vector space and W_1 , W_2 , ..., W_k be subspaces of V. Then $V = W_1 \oplus W_2$ if and only if $V = W_1 \oplus W_2 + \cdots + W_k$ and $W_i \cap W_j = \{0\}$ for $i \neq j, 1 \leq i, j \leq k$.

二、選擇題

- 1. Consider the following sets of vectors:
 - (A) $\{(a, b, a + 3) | a, b \in \mathbb{R}\}.$
 - (B) $\{(a, 4a, -3a | a \in \mathbb{R}\}.$
 - (C) $\{(a, b, 2) | a, b \in \mathbb{R}\}.$
 - (D) $\{(0, b, a + 3b) | a, b \in \mathbb{R}\}.$
 - (E) $\{(a, b, c) \in \mathbb{R}^3 | a + b + c = 0\}.$
 - (F) $\{(a, b, c) \in \mathbb{R}^3 | ab = 0\}$
 - (G) $\{(a, b, c) \in \mathbb{R}^3 | a + b + c = 1\}.$

Determine which of the sets are subspaces of \mathbb{R}^3 .

- 2. Which of the following subsets of \mathbb{R}^3 are also subspaces of \mathbb{R}^3 ?
 - (A) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + 2x_2 + 3x_3 = 0\}.$
 - (B) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 + 2x_2 + 3x_3 = 4\}.$
 - (C) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 x_2 x_3 = 0\}.$
 - (D) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1 = 5x_3\}.$
 - (E) None of the above are subspaces of \mathbb{R}^3 .
- 3. Which of the following statement is true?
 - (A) The set of all invertible matrices is a vector space.
 - (B) The set of all diagonal matrices is a vector space.
 - (C) The set of all symmetric matrices is a vector space.
 - (D) The set of a line passing through (1,-1) and (-1,1) is a vector space.

- 4. Let $\{u, v, w, z\}$ be linearly independent vectors. Which of the following are linearly independent?
 - (A) $\{u v, v w, u w\}$.
 - (B) $\{u + v, v + w, w + u\}$.
 - (C) $\{u v, v w, w z, z u\}$.
 - (D) $\{u + v, v + w, w + z, z + u\}$.
- 5. Which of the following sets of functions are linearly independent?
 - (A) $\{1, \sin x, \cos x\}$.
 - (B) $\{1, \sin^2 x, \cos^2 x\}$.
 - (C) $\{e^x, e^{-x}\}$.
 - (D) $\{1, \ln(2x), \ln(x^2)\}$.
 - (E) $\{\sin x, \sin 2x, \sin 3x\}$.
- 6. Which of the following is correct?
 - (A) $x^2 2x + 1$ and |x 1| are linearly dependent in the vector space $\mathbb{C}[0,2]$.
 - (B) $\cos x$, 1, $\sin x$ are linearly independent in $\mathbb{C}[-\pi, \pi]$.

(C)
$$A = \begin{pmatrix} \cos\left(\frac{\pi}{4}\right) & \sin\left(\frac{\pi}{4}\right) \\ -\sin\left(\frac{\pi}{4}\right) & \cos\left(\frac{\pi}{4}\right) \end{pmatrix}$$
, $B = \begin{pmatrix} e & 1 \\ 1 & e^{-1} \end{pmatrix}$, $C = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$, $E = \begin{pmatrix} 0 & 8 \\ 4 & 0 \end{pmatrix}$ are linearly independent in $\mathbb{R}^{2\times 2}$.

- (D) $v_1 = (1 \ 8 \ 9 \ 5)^T$, $v_2 = (1 \ 7 \ 8 \ 9)^T$, and $v_3 = (3 \ 0 \ 0 \ 1)^T$ form a spanning set for \mathbb{R}^4 .
- (E) None of the above.
- 7. Consider the vector space $S = \{(a, a + b, a + b, -b) | a, b \in \mathbb{R}\}$. Determine which of the following sets of vectors are spanning sets of S.
 - (A) $\{(1,0,0,1),(1,2,2,-1)\}.$
 - (B) $\{(1,1,0,0), (0,0,1,-1)\}.$
 - (C) $\{(2,1,1,1), (3,1,1,2), (3,2,2,1)\}.$
 - (D) $\{(1,0,0,0), (0,1,1,0), (0,0,0,1)\}.$
- 8. Let V be a vector space with dimension n. Then in the following, pick up the correct statements.
 - (A) Any linearly independent subset for V containing exactly n vectors is a basis for V.
 - (B) Any finite generating set for V contains at most n vectors.
 - (C) Any two bases for V have the same number of vectors.
 - (D) If $\{v_1, v_2, v_3, ..., v_{n-1}, v_n\}$ is a basis for V, then $\{v_1, v_1 + 2v_2, v_1 + 2v_2 + 3v_3, v_1 + 2v_2 + 3v_3, v_1 + 2v_2 + 3v_3 + 4v_4, ..., v_1 + 2v_2 + 3v_3 + ... + nv_n\}$ is also a basis for V.

- **9.** For any vector space V.
 - (A) If W is finite-dimensional, then W is a subspace of \mathbb{R}^n for some positive integer n.
 - (B) If W is finite-dimensional, then no infinite subset of W is linearly independent.
 - (C) If W is a function space, then W must be infinite-dimensional.
 - (D) If W is a infinite-dimensional, then every infinite subset of W is linearly independent.
 - (E) None of the preceding statements are true.