Lec 31 正项级数

31.1 无穷级数的基本概念

称 $a_1+a_2+a_3+\cdots:=\sum_{n=1}^\infty a_n$ 为无穷级数, 其中 a_n 为数列. 称有限项的和 $a_1+a_2+\cdots+a_n$ 为部分和, 记为 S_n . 如果 $\lim_{n\to\infty} S_n=A$, 则称无穷级数收敛, 并称 A 为无穷级数的和, 记为 $\sum_{n=1}^\infty a_n=A$. 如果 $\lim_{n\to\infty} S_n$ 不存在, 则称无穷级数发散.

通项 $a_n \to 0$ 是收敛的必要条件, 但不是充分条件. 例如 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 但 $\lim_{n \to \infty} \frac{1}{n} = 0$.

31.2 无穷级数 $\sum_{n=1}^{\infty} a_n$ 的基本性质

- 1. $\sum_{n=1}^{\infty} a_n$ 收敛 \iff S_n 收敛 \iff S_n 为 Cauchy 列 \iff $\forall \varepsilon > 0, \exists N \in \mathbf{N}, \forall m > n > N, |S_m S_n| < \varepsilon$.
- 2. 添加或去掉有限项不改变级数的收敛性.
- 3. 若正项级数 $\sum_{n=1}^{\infty} a_n = A$ 收敛, 则改变求和的顺序不改变收敛性以及和.

证明 仅证明 3. 设 $\sum_{n=1}^{\infty} a'_n$ 是级数 $\sum_{n=1}^{\infty} a_n$ 经过调换求和和顺序所得到的级数. 它的部分和记为 $S'_n = a'_1 + a'_2 + \cdots + a'_n$.

注意到 a'_n 不是新的项, 而是原级数中求和的项, 经过重新排列后处于第 n 个位置的项, 所以一定存在在 m 使得 a_1, a_2, \ldots, a_m 在原级数的前 m 项出现, 因此部分和有界, 也就是说新级数的部分和也有界, 所以收敛, 并且收敛值不会超过原级数的收敛值.

数的部分和也有界,所以收敛,并且收敛值不会超过原级数的收敛值. 反之,我们可以把 $\sum_{n=1}^{\infty} a_n$ 看成是 $\sum_{n=1}^{\infty} a_n'$ 经过调换顺序所得的级数.

31.3 正项级数的收敛性

定理 31.1

 $\sum_{n=1}^{\infty} a_n$ 收敛 \iff 部分和数列 S_n 有上界.

 \Diamond

证明 \Rightarrow : 设 $\sum_{n=1}^{\infty} a_n$ 收敛,则 S_n 收敛,故有界.

 \Leftarrow : 设 S_n 有上界 M, 则 S_n 单调递增, 故有极限 $A = \lim_{n \to \infty} S_n$. 对任意 $\varepsilon > 0$, 存在 $N \in \mathbb{N}$, 使得 n > N 时, $|S_n - A| < \varepsilon$, 故 $|S_{n+1} - S_n| = |a_{n+1}| < \varepsilon$, 故 $\sum_{n=1}^{\infty} a_n$ 收敛.

定理 31.2 (比较判别法)

设 $a_n \ge 0, b_n \ge 0$, 若存在 $N \in \mathbb{N}$, 使得 n > N 时, $a_n \le b_n$, 则

1. 若
$$\sum_{n=1}^{\infty} b_n$$
 收敛, 则 $\sum_{n=1}^{\infty} a_n$ 收敛.

2. 若
$$\sum_{n=1}^{\infty} a_n$$
 发散, 则 $\sum_{n=1}^{\infty} b_n$ 发散.

m

证明 因为改变有限项的值不改变级数的收敛性, 所以可以假定 $a_n \leq b_n$ 对所有的 n 都成立. 于是

$$\sum_{k=1}^{n} a_k \leqslant \sum_{k=1}^{n} b_k.$$

这表明当 $\sum_{n=1}^{\infty} b_n$ 收敛时, 其部分和有界, 因此 $\sum_{k=1}^{n} a_k$ 也有界, 所以 $\sum_{n=1}^{\infty} a_n$ 收敛; 如果 $\sum_{n=1}^{\infty} a_n$ 发散,则其部分和 $\sum_{k=1}^{n} a_k$ 无界, 因此 $\sum_{n=1}^{\infty} b_n$ 发散.

推论 31.1 (比较判别法的极限形式)

设 $a_n \ge 0, b_n \ge 0$,若 $\lim_{n \to \infty} \frac{a_n}{b_n} = A$,则

1. 若
$$0 < A < \infty$$
, 则 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 同时收敛或同时发散.

3. 若
$$A = \infty$$
 且 $\sum_{n=1}^{\infty} b_n$ 发散, 则 $\sum_{n=1}^{\infty} a_n$ 发散.

C

证明 对于第一种情况, 取 $\varepsilon = \frac{A}{2}$, 则存在 N, 使得当 n > N 时有

$$\left| \frac{a_n}{b_n} - A \right| < \frac{A}{2},$$

即有

$$\frac{A}{2} < \frac{a_n}{b_n} < \frac{3A}{2} \quad \forall \exists n > N.$$

所以分别对于两个不等式利用比较判别法,就能够得出结论.

同样, 当 $\lim_{n\to\infty}\frac{a_n}{b_n}=A=0$ 时, 存在 N, 使得当 n>N 时有

$$0 \leqslant \frac{a_n}{b_n} < 1,$$

即有

$$a_n < b_n$$
 对于 $n > N$.

而当 $\lim_{n\to\infty} \frac{a_n}{b_n} = +\infty$ 时, 存在 N, 使得当 n > N 时有

$$\frac{a_n}{b_n} > 1,$$

即有

$$a_n > b_n$$
 对于 $n > N$.

定理 31.3 (D'Alembert 判别法)

设 $\sum_{n=0}^{\infty} a_n$ 是正项级数.

- 1. 若从某项起有 $\frac{a_{n+1}}{a_n} \leq q$, 则级数收敛; 2. 若从某项起有 $\frac{a_{n+1}}{a_n} \geq 1$, 则级数发散;
- a_n 3. 若前后项之比具有极限

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q,$$

则当q < 1时,级数收敛;而当q > 1时,级数发散;当q = 1时,还不能判断.

证明 不妨设对所有的 n 都有 $\frac{a_{n+1}}{a_n} \leq q$, 故有

$$\frac{a_2}{a_1} \leqslant q, \quad \frac{a_3}{a_2} \leqslant q, \quad \dots, \quad \frac{a_n}{a_{n-1}} \leqslant q,$$

把这些不等式两端相乘,就得到

$$\frac{a_n}{a_1} \leqslant q^{n-1}.$$

由于q是一个常数,而 $\sum_{n=0}^{\infty}q^{n}$ 收敛,因此 $\sum_{n=0}^{\infty}a_{n}$ 收敛.

如果 $\frac{a_{n+1}}{a} \ge 1$, 则 a_n 增大, 即 $a_n \to \infty$, 因此级数发散.

如果
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$$
, 则有

$$a_n \leqslant a_1 q^{n-1}$$
.

此时级数的通项 a_n 不会趋于零, 因此级数发散.

定理 31.4 (Cauchy 判别法)

设 $\sum_{n=0}^{\infty} a_n$ 是正项级数. 则

- 1. 若从某项起有 $\sqrt{a_n} \leq q < 1$, 则级数收敛;
- 2. 若有无穷多个 n, 使得 $\sqrt{a_n} > 1$, 则级数发散;
- 3. 若 $\lim_{n\to\infty} \sqrt{a_n} = q$, 则当 q < 1 时, 级数收敛; 当 q > 1 时, 级数发散; 当 q = 1 时, 还 无法判断级数收敛还是发散.

证明 不妨设对所有的 n 都有 $\sqrt{a_n} \leq q < 1$, 也就是说有 $a_n \leq q^n$. 故由 $\sum_{n=0}^{\infty} q^n$ 的收敛性及比较

判别法, 可知 $\sum_{n=0}^{\infty} a_n$ 收敛.

如果有无穷多个 n 使得 $\sqrt{a_n} > 1$, 则 $\{a_n\}$ 不以零为极限, 所以 $\sum_{i=1}^{\infty} a_n$ 发散.

对于极限形式, 只要注意到一定存在一个正数 ϵ , 使得对于充分大的 n, 有 $q+\epsilon<1$ 或者 $\sqrt{a_n} > q - \epsilon$.

定理 31.5 (Cauchy 积分判别法)

如果 f(x) 在 $[1,+\infty)$ 上有定义的非负单调减少函数,那么级数

$$\sum_{n=1}^{\infty} f(n)$$

与积分

$$\int_{1}^{\infty} f(x) \, \mathrm{d}x$$

同时收敛或同时发散.

证明 由 f(x) 的单调性可知, 当 $k \le x \le k+1$ 时有

$$f(k+1) \leqslant f(x) \leqslant f(k),$$

于是

$$\int_{k}^{k+1} f(x) \, \mathrm{d}x \leqslant f(k).$$

将上式对 $k=1,2,\ldots,n$ 相加, 就得知, 对于任意 $n\in\mathbb{N}$ 有

$$\sum_{k=2}^{n+1} f(k) \leqslant \int_{1}^{n+1} f(x) \, \mathrm{d}x \leqslant \sum_{k=1}^{n} f(k).$$

若 $\int_1^\infty f(x)\,\mathrm{d}x$ 收敛,则上式左右两边均知 $\sum_{k=2}^\infty f(k)$ 有界,因此 $\sum_{n=1}^\infty f(n)$ 收敛. 若 $\int_1^\infty f(x)\,\mathrm{d}x$ 发散,则上式右半边可知

$$\sum_{k=1}^{n} f(k) \, \mathbb{Z} \, \mathbb{R}, \quad \sum_{n=1}^{\infty} f(n) \, \mathbb{Z} \, \mathbb{B}.$$

31.4 例题

例 31.1 若 $\sum_{n=1}^{\infty} |a_n|$ 收敛, 则 $\sum_{n=1}^{\infty} a_n$ 收敛. 此时称 $\sum_{n=1}^{\infty} a_n$ 绝对收敛. 若 $\sum_{n=1}^{\infty} a_n$ 收敛但 $\sum_{n=1}^{\infty} |a_n|$ 发散,则称 $\sum_{n=1}^{\infty} a_n$ 条件收敛.

证明 $|S_n| \leq |a_1| + |a_2| + \dots + |a_n|$, 故 S_n 有上界, 故 $\sum_{n=1}^{\infty} a_n$ 收敛.

例 31.2 证明:p- 级数 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 在 p > 1 时收敛, 在 $p \le 1$ 时发散.

证明 p- 级数与 $\int_1^\infty \frac{1}{x^p} dx$ 同时收敛或同时发散, 由之前课程对 p- 积分的讨论, 可知结论成立.

例 31.3 若 $\sum_{n=1}^{\infty} a_n = A$, $\sum_{n=1}^{\infty} b_n = B$, 则 $\sum_{n=1}^{\infty} (c_1 a_n + c_2 b_n) = c_1 A + c_2 B$, 其中 c_1 , c_2 为常数. 证明 设 $S_n = a_1 + a_2 + \dots + a_n$, $T_n = b_1 + b_2 + \dots + b_n$, 则 $S_n \to A$, $T_n \to B$, 故 $c_1 S_n + c_2 T_n \to c_1 A + c_2 B$. 而 $\{c_1 a_n + c_2 b_n\}_{n=1}^{\infty}$ 的部分和为 $c_1 S_n + c_2 T_n$, 故 $\sum_{n=1}^{\infty} (c_1 a_n + c_2 b_n) = c_1 A + c_2 B$.

▲ 作业 ex7.1:1(1),2(4)(5)(6)(9)(11),5,7.