Física Nuclear y de Partículas Grado en Física UNED

Tema 7: Interacción de la radiación con la materia

César Fernández Ramírez Departamento de Física Interdisciplinar Universidad Nacional de Educación a Distancia (UNED)

Contextualización dentro de la asignatura

- Bloque I. Estructura nuclear
 - Tema 1: Principales características del núcleo atómico
 - Tema 2: La interacción nuclear. El deuterón y la interacción nucleón-nucleón
 - Tema 3: Modelos nucleares
- Bloque II. Radioactividad y desintegraciones nucleares
 - Tema 4: Desintegración nuclear
 - Tema 5: Procesos α , β y γ
- · Bloque III. Reacciones nucleares e interacción radiación-materia
 - Tema 6: Reacciones nucleares
 - · Tema 7: Interacción radiación-materia
- Bloque IV. Física subnuclear
 - Tema 8: El Modelo Estándar de partículas elementales
 - Tema 9: Quarks y hadrones

Cronograma

	L	М	Х	J	V	S	D
Octubre		1	2	3	4	5	6
	7	8	9	10	11	12	13
	14	15	16	17	18	19	20
	21	22	23	24	25	26	27
	28	29	30	31			
Noviembre					1	2	3
	4	5	6	7	8	9	10
	11	12	13	14	15	16	17
	18	19	20	21	22	23	24
	25	26	27	28	29	30	
Diciembre							1
	2	3	4	5	6	7	8
	9	10	11	12	13	14	15
	16	17	18	19	20	21	22
	23	24	25	26	27	28	29
_	30	31	4	0	•		-
Enero		_	1	2	3	4	5
	6	7	8	9	10	11	12
	13	14	15	16	17	18	19
	20	21	22	23	24	25	26
	27	28	29	30	31		

Bloque I	
	Tema 1
	Tema 2
	Tema 3
Bloque II	
	Tema 4
	Tema 5
Bloque III	
	Tema 6
	Tema 7
Bloque IV	
	Tema 8
	Tema 9

Material disponible

- · Material disponible en el repositorio Github de la asignatura
 - https://github.com/cefera/FNyP
 - Esta presentación:
 - ./Presentaciones/Tema7.pdf
 - Código en Python asociado:
 - ./Notebooks/Tema7.ipynb

Esquema

- · Interacción de partículas cargadas $(\alpha, \beta^{\pm}, \gamma, p)$
- Interacción de radiación gamma
- · Interacción de los neutrones.
- · Conceptos básicos de dosimetría y protección radiológica

Objetivos específicos

- Definir, describir y clasificar los procesos de interacción de las partículas cargadas con la materia.
- Definir e interpretar físicamente las magnitudes principales que caracterizan la interacción de las partículas cargadas, emitidas porlos radionucleidos con la materia. Precisar el campo de aplicabilidad de las fórmulas analíticas y de las expresiones empíricas que permiten estimar algunas de estas magnitudes y diferenciar, si fuera el caso, las partículas cargadas pesadas de los electrones y positrones.
- · Definir, describir y clasificar los procesos de interacción de los fotones con la materia.
- Analizar comparativamente los principales mecanismos de pérdida de energía en la interacción de los fotones con la materia y relacionarlo con los fundamentos físicos del proceso, partículas o radiación producidas, energía de ligadura, magnitudes que las caractericen y expresiones analíticas que las permitan estimar.
- Analizar los fenómenos de atenuación, absorción y difusión de la radiación electromagnética, determinar las leyes que los rigen, y definir e interpretar las magnitudes que los caracterizan.
- Estudiar los mecanismos de interacción de los neutrones.
- Estudiar los efectos biológicos de la radiación y entender los conceptos fundamentales de la dosimetría y protección radiológica.

Resumen