s(F) is a sheaf

Yiming Xu

22 March 2019

$$\mathbf{s}(F)(U) \xrightarrow{e} \Pi_{i \in I} \mathbf{s}(F)(U_{i}) \xrightarrow{q} \Pi_{i,j} \mathbf{s}(F)(U_{i} \cap U_{j})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Pi_{a \in A}F(B_{a}) \xrightarrow{e} \Pi_{i \in I}\Pi_{m \in M_{i}}F(B_{m}) \xrightarrow{\text{estimator}} \Pi_{i,j}\Pi_{k \in K_{ij}}F(B_{k})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Pi_{a,b}F(B_{a} \cap B_{b}) \qquad \Pi_{i \in I}\Pi_{m,n \in M_{i}}F(B_{m} \cap B_{n}) \qquad \Pi_{i,j}\Pi_{k,g \in K_{ij}}F(B_{k} \cap B_{g})$$

Note:

- $\{U_i\}_{i\in I}$ is a covering family of U, indexed by i.
- A is the set indexing all the basic open sets contained in U.
- M is a function $M: I \to \mathcal{P}(A)$. M is defined by M $i := \{a \in A \mid B_a \subseteq U_i\}$.
- K is a function $K: I \times I \to \mathcal{P}(A)$. K is defined by K i $j := \{a \in A \mid B_a \subseteq U_i \cap U_j\}$.

Goal: Define a bijection between $\mathbf{s}(F)(U)$ and the equalizer of p and q.

Subgoal 1: Define a function $\phi : \mathbf{s}(F)(U) \to eq[\Pi_{i \in I} \mathbf{s}(F)(U_i) \xrightarrow{p} \Pi_{i,j \in I} \mathbf{s}(F)(U_i \cap U_j)].$

Definition of the function:

Given $\alpha \in \mathbf{s}(F)(U) \subseteq \Pi_{a \in A} F(B_a)$, define $\beta \in \Pi_{i \in I} \Pi_{m \in M_i} F(B_m)$ to be β i $m := \alpha$ m.

It makes sense, since $m \in (M \ i) \subseteq A$ for all $i \in I$.

The function above is well defined:

Subgoal 1: $\beta \in \Pi_{i \in I} \mathbf{s}(F)(U_i)$

We want to show that $\forall (i \in I), \beta \ i \in \mathbf{s}(F)(U_i)$. Now fix any $i \in I$, we need to prove that $\beta \ i$ is in the equalizer of p_i and q_i in the following diagram (call it $(*_1)$):

$$\Pi_{m \in M_i} F(B_m) \stackrel{p_i}{\underset{q_i}{\Longrightarrow}} \Pi_{m,n \in M_i} F(B_m \cap B_n)$$

Note that the definitions of p_i and q_i are given by:

For any $b \in \Pi_{m \in M_i} F(B_m)$, denote $p_i(b)$ by $\gamma \in \Pi_{m,n \in M_i} F(B_m \cap B_n)$. Then γ is defined by for any $m, n \in M_i$, $\gamma \mid m \mid n := (b \mid m)|_{B_m \cap B_n}$.

Similarly, denote $q_i(b)$ by $\gamma \in \Pi_{m,n \in M_i} F(B_m \cap B_n)$. Then γ is defined by for any $m,n \in M_i$, γ m $n := (b \ n)|_{B_m \cap B_n}$.

From the above definitions of p_i and q_i , for any $i \in I$, $b \in \Pi_{m \in M_i} F(B_m)$, we have $b \in \mathbf{s}(F)(U_i)$ iff for all $m, n \in M_i$, $(b \ m)|_{B_m \cap B_n} = (b \ n)|_{B_m \cap B_n}$.

Hence what we want to show is that for all $i \in I$ and $m, n \in M_i$, we have $(\beta \ i \ m)|_{B_m \cap B_n} = (\beta \ i \ n)|_{B_m \cap B_n}$.

To prove this, we investigate the condition that $\alpha \in \mathbf{s}(F)(U)$, that is, α is in the equalizer of the diagram:

$$\Pi_{a \in A} F(B_a) \stackrel{p_0}{\underset{q_0}{\Longrightarrow}} \Pi_{a,b \in A} F(B_a \cap B_b)$$

Where the definitions of p_0 and q_0 are given by:

Denote $p_0(\alpha)$ as $\alpha' \in \Pi_{a,b \in A} F(B_a \cap B_b)$. Then for any $a,b \in A$, α' a $b := (\alpha a)|_{B_a \cap B_b}$.

Denote $q_0(\alpha)$ as $\alpha' \in \Pi_{a,b \in A} F(B_a \cap B_b)$. Then for any $a,b \in A$, α' a $b := (\alpha b)|_{B_a \cap B_b}$.

Hence $\alpha \in \mathbf{s}(F)(U)$ means for all $a, b \in A$, $(\alpha \ a)|_{B_a \cap B_b} = (\alpha \ b)|_{B_a \cap B_b}$. (*2)

Return to the discussion of proving β i is in the equalizer of $(*_1)$ for each $i \in I$, our goal is (a). By definition of β , for any $i \in I$, $m, n \in M_i$, we have β i $m := \alpha$ m and β i $n := \alpha$ n. As $m, n \in M_i \subseteq A$, plug in a, b to be m, n in the sentence above gives:

$$(\beta \ i \ m)|_{B_m \cap B_n} = (\alpha \ m)|_{B_m \cap B_n} = (\alpha \ n)|_{B_m \cap B_n} = (\beta \ i \ n)|_{B_m \cap B_n}$$

as desired.

This completes Subgoal 1 for well-definedness.

Subgoal 2: $p(\beta) = q(\beta)$.

We aim to show that β as defined as before is in the equalizer of the maps p and q in the following diagram:

$$\Pi_{i\in I} \mathbf{s}(F)(U_i) \stackrel{p}{\underset{q}{\Longrightarrow}} \Pi_{i,j\in I} \mathbf{s}(F)(U_i\cap U_j)$$

Note that the maps p and q are defined by:

For p:

For $\beta_0 \in \Pi_{i \in I} \mathbf{s}(F)(U_i) \subseteq \Pi_{i \in I} \Pi_{m \in M_i} F(B_m)$, denote $p(\beta_0)$ as γ , then $\gamma \in \Pi_{i,j \in I} \Pi_{k \in K_{ij}} F(B_k)$, and γ is defined as γ i j $k := \beta_0$ i k.

Now we show that p is well-defined, that is, such a γ we defined above is in $\prod_{i,j\in I} \mathbf{s}(F)(U_i\cap U_j)$. The aim is to show that for any $i,j\in I$, γ if $j\in \mathbf{s}(F)(U_i\cap U_j)$.

For any fixed pair of $i, j \in I$, consider the diagram:

$$\prod_{k \in K_{ij}} F(B_k) \stackrel{p_{ij}}{\underset{q_{ij}}{\Longrightarrow}} \prod_{k,g \in K_{ij}} F(B_k \cap B_g)$$

For any tuple $b_0 \in \Pi_{k \in K_{ij}} F(B_k)$, denote $p_{ij}(b_0)$ as c_0 . Then $c_0 \in \Pi_{k,g \in K_{ij}} F(B_k \cap B_g)$ is defined by for any $k, g \in K_{ij}$, c_0 k $g := (b_0 \ k)|_{B_k \cap B_g}$.

For any tuple $b_0 \in \Pi_{k \in K_{ij}} F(B_k)$, denote $q_{ij}(b_0)$ as c_0 . Then $c_0 \in \Pi_{k,g \in K_{ij}} F(B_k \cap B_g)$ is defined by for any $k, g \in K_{ij}$, c_0 k $g := (b_0 g)|_{B_k \cap B_g}$.

Hence for any $i, j \in I$, $b_0 \in \Pi_{k \in K_{ij}} F(B_k)$, b_0 is in the equalizer of p_{ij} and q_{ij} iff for any $k, g \in K_{ij}$, we have $(b_0 \ k)|_{B_k \cap B_g} = (b_0 \ g)|_{B_k \cap B_g}$.

Hence we want to show that for any $i, j \in I$, $k, g \in K_{ij}$, we have $(\gamma \ i \ j \ k)|_{B_k \cap B_g} = (\gamma \ i \ g)|_{B_k \cap B_g}$. By definition of γ , this is to show $(\beta_0 \ i \ k)|_{B_k \cap B_g} = (\beta_0 \ i \ g)|_{B_k \cap B_g}$. Recall $\beta_0 \in \Pi_{i \in I} \mathbf{s}(F)(U_i)$, that means the condition (a) holds for β_0 , namely 'for all $i \in I$, $m, n \in M_i$, $(\beta_0 \ i \ m)|_{B_m \cap B_n} = (\beta_0 \ i \ n)|_{B_m \cap B_n}$ '. As $k, g \in K_{ij} \subseteq M_i$, pluggin in k, g to be m, n gives us the result.

For q: For $\beta_0 \in \Pi_{i \in I} \mathbf{s}(F)(U_i) \subseteq \Pi_{i \in I} \Pi_{m \in M_i} F(B_m)$, denote $q(\beta_0)$ as γ , then $\gamma \in \Pi_{i,j \in I} \Pi_{k \in K_{ij}} F(B_k)$, and γ is defined as γ i j k:= β_0 j k. Similarly we can show q is well-defined.

Now we start proving that the β we defined in the beginning of this direction satisfies $p(\beta) = q(\beta)$. By definition of p and q as above and function extensionality, we need to show for all $i, j \in I, k \in K_{ij}$, we have β i $k = \beta$ j k. But by definition of β , we have β i $k = \alpha$ k and β j $k = \alpha$ k, as desired.

Subgoal 2: Define a function $\psi : eq[\Pi_{i \in I} \mathbf{s}(F)(U_i) \stackrel{p}{\underset{q}{\Longrightarrow}} \Pi_{i,j \in I} \mathbf{s}(F)(U_i \cap U_j)] \to \mathbf{s}(F)(U).$

Given $\beta \in \Pi_{i \in I} \mathbf{s}(F)(U_i) \subseteq \Pi_{i \in I} \Pi_{m \in M_i} F(B_m)$ such that $p(\beta) = q(\beta)$, we construct an element $\alpha \in \mathbf{s}(F)(U)$, that is, an element in $\Pi_{a \in A} F(B_a)$ which satisfies the condition as in $(*_2)$.

Define S to be a function $A \to \mathcal{P}(A)$. For any $a \in A$, $S := \{t \in A \mid \exists i. (i \in I \land t \in (M \ i) \land B_t \subseteq B_a)\}$. In words, $S := \{t \in A \mid \exists i. (i \in I \land t \in (M \ i) \land B_t \subseteq B_a)\}$. In words, $S := \{t \in A \mid \exists i. (i \in I \land t \in (M \ i) \land B_t \subseteq B_a)\}$.

Claim: For all $a \in A$, we have $\bigcup \{B_t \mid t \in S_a\} = B_a$.

Obviously $B_a \supseteq \bigcup \{B_t \mid t \in S_a\}$, it left to show that $B_a \subseteq \{B_t \mid t \in S_a\}$.

 $B_a = U \cap B_a$

- $= (\bigcup \{U_i \mid i \in I\}) \cap B_a$
- $= (\bigcup \{\bigcup \{B_t \mid (M \ i)\} \mid i \in I\}) \cap B_a.$
- $= \{ | \{ \{ \} \} \} \} \{ B_t \cap B_a \mid t \in (M \ i) \} \mid i \in I \} \}$
- $= \bigcup_{t \in \bigcup \{M \ i | i \in I\}} (B_t \cap B_a)$

As B is closed under intersection, for any $i \in I, t \in M_i$, there exists an $s \in S_a$ such that $B_t \cap B_a = B_s$. Hence the set above is a subset of $\bigcup_{t \in S_a} B_t$. This completes the proof of the claim.

For any $a \in A$, we can define a function $f_a : eq[\Pi_{i \in I} \mathbf{s}(F)(U_i) \overset{p}{\underset{q}{\Longrightarrow}} \Pi_{i,j \in I} \mathbf{s}(F)(U_i \cap U_j)] \to \Pi_{t \in S_a} B_t$, as follows: (Implicitly, f is a function, takes an element $a \in A$ and give the function f_a .)

For any $\beta \in eq[\Pi_{i \in I} \mathbf{s}(F)(U_i) \stackrel{p}{\underset{q}{\Longrightarrow}} \Pi_{i,j \in I} \mathbf{s}(F)(U_i \cap U_j)] \subseteq \Pi_{i \in I} \Pi_{m \in M_i}$, denote $f_a(\beta) \in \Pi_{t \in S_a} F(B_t)$ as β^{0a} , then for any $t \in S_a$, define $\beta^{0a} \ t := \beta$ (CHOICE $\{i \in I \mid t \in M_i\}$) t. Here the application of choice function makes sense, since by definition of S_a , $t \in S_a$ implies $\{i \in I \mid t \in M_i\} \neq \emptyset$.

Claim: For any $a \in A$, the definition of f_a is independent of choice.

This is, for all $a \in A, t \in S_a$, if $t \in M_i$ and $t \in M_j$, then β i $t = \beta$ j t. Recall $\beta \in eq[\Pi_{i \in I} \mathbf{s}(F)(U_i) \underset{q}{\Longrightarrow} \Pi_{i,j \in I} \mathbf{s}(F)(U_i \cap U_j)]$. By definition of p and q as in Direction 1, for any $i, j \in I$ and $k \in K_{ij}$, we have β i $k = \beta$ j k. As $t \in M_i$ and $t \in M_j$, by definition of M and K, we have $t \in K_{ij}$. Hence we have β i $t = \beta$ j t, as desire.

Consider the diagram:

$$F(B_a) \stackrel{e_a}{\hookrightarrow} \Pi_{t \in S_a} F(B_t) \stackrel{p_a}{\underset{g_a}{\Longrightarrow}} \Pi_{t_1, t_2 \in S_a} F(B_{t_1} \cap B_{t_2})$$

As proved before, the family of basic open sets $\{B_t \mid t \in S_a\}$ covers B_a . Here p_a and q_a are defined by:

For $\delta \in \Pi_{t \in S_a} F(B_a)$, denote $p_a(\delta)$ as $\delta' \in \Pi_{t_1, t_2 \in S_a} F(B_{t_1} \cap B_{t_2})$. Then δ' is given by δ' t_1 $t_2 := (\delta t_1)|_{B_{t_1} \cap B_{t_2}}$.

For $\delta \in \Pi_{t \in S_a} F(B_a)$, denote $q_a(\delta)$ as $\delta' \in \Pi_{t_1, t_2 \in S_a} F(B_{t_1} \cap B_{t_2})$. Then δ' is given by δ' t_1 $t_2 := (\delta t_2)|_{B_{t_1} \cap B_{t_2}}$.

And the map e_a is defined by for $\delta_0 \in F(B_a)$, denote $e_a(\delta)$ by δ'_0 , then define $\delta'_0 t := \delta_0|_{B_t}$.

Claim: For any $\beta \in eq[\Pi_{i \in I} \mathbf{s}(F)(U_i) \overset{p}{\underset{q}{\Longrightarrow}} \Pi_{i,j \in I} \mathbf{s}(F)(U_i \cap U_j)] \subseteq \Pi_{i \in I} \Pi_{m \in M_i}$, and any $a \in A$, the image $\beta^{0a} := f_a(\beta) \in \Pi_{t \in S_a} F(B_t)$ under f_a is in the equalizer of p_a and q_a .

Under the above conditions, we need to prove that for all $t_1, t_2 \in S_a$, $(\beta^{0a} \ t_1)|_{B_{t_1} \cap B_{t_2}} = (\beta^{0a} \ t_2)|_{B_{t_1} \cap B_{t_2}}$. By definition of β^{0a} , it amounts to show $(\beta \ (\mathsf{CHOICE} \ \{i \in I \mid t_1 \in M_i\}) \ t_1)|_{B_{t_1} \cap B_{t_2}} = (\beta \ (\mathsf{CHOICE} \ \{i \in I \mid t_2 \in M_i\}) \ t_2)|_{B_{t_1} \cap B_{t_2}}$.

By definition of S_a , there exists $i_1, i_2 \in I$, such that $t_1 \in M_{i_1}, t_2 \in M_{i_2}, B_{t_1} \subseteq B_a$ and $B_{t_2} \subseteq B_a$. As we have assumed the base is closed under intersection, there exists $c \in A$ such that $B_{t_1} \cap B_{t_2} = B_c$. As $B_c \subseteq B_{t_1}$ and $t_1 \in M_{i_1}$, by definition of M, we have $B_{t_1} \subseteq U_{i_1}$, and hence $B_c \subseteq U_{i_1}$ as well. Again by definition of M, it follows that $c \in M_{t_1}$ as well.

We have $(\beta \text{ (CHOICE } \{i \in I \mid t_1 \in M_i\}) \ t_1)|_{B_{t_1} \cap B_{t_2}} = (\beta \ i_1 \ t_1)|_{B_{t_1} \cap B_{t_2}}$ by independence of choice, as proved earlier. By definition of B_c , we have $B_{t_1} \cap B_{t_2} = B_{t_1} \cap B_c$, so $(\beta \ i_1 \ t_1)|_{B_{t_1} \cap B_{t_2}} = (\beta \ i_1 \ t_1)|_{B_{t_1} \cap B_c}$. Recall $\beta \in \Pi_{i \in I} \mathbf{s}(F)(U_i)$, as discussed in last direction (labeled condition (a)), it means for all $i \in I$, $m, n \in M_i$, $(\beta \ i \ m)|_{B_m \cap B_n} = (\beta \ i \ n)|_{B_m \cap B_n}$. In particular, we can plug in i_1 to be the i, t_1 to be m and c to be n, and hence conclude $(\beta \ i_1 \ t_1)|_{B_{t_1} \cap B_c} = (\beta \ i_1 \ c)|_{B_{t_1} \cap B_c}$.

Similarly (β (CHOICE $\{i \in I \mid t_2 \in M_i\}$) t_2) $|_{B_{t_1} \cap B_{t_2}} = (\beta \ i_2 \ c)|_{B_{t_2} \cap B_c}$.

By definition of B_c , we have $B_{t_1} \cap B_c = B_{t_2} \cap B_c = B_c$. So the task reduces to show $(\beta i_1 c)|_{B_c} = (\beta i_2 c)|_{B_c}$. Note that for all $i \in I, m \in M_i$, we have $\beta i m \in F(B_m)$, hence the restrictions are both identities. It remains to show $\beta i_1 c = \beta i_2 c$. But recall β is in the equalizer of p and q, hence for any $i, j \in I, c \in K_{ij}$, we have $\beta i k = \beta j k$. We do have $c \in K_{ij}$ by definition of K. Hence $\beta i_1 c = \beta i_2 c$, as desired.

Hence β^{0a} is in the equalizer of p_a and q_a . As F is a sheaf on the base, there exists a unique element $\beta_a^0 \in F(B_a)$ such that $e_a(\beta_a^0) = \beta^{0a}$.

Start with the β at the start of this direction, denote the element we get from β as $\alpha \in \Pi_{a \in A} F(B_a)$. Then α is defined by α $a := \beta_a^0$ as constructed above.

Now we check $\alpha \in \mathbf{s}(F)(U)$. This is, for any $a, b \in A$, we need to show $(\alpha \ a)|_{B_a \cap B_b} = (\alpha \ b)|_{B_a \cap B_b}$. As we have assumed that the base is closed under intersection, there exists $l \in A$ such that $B_a \cap B_b = B_l$. It suffices to prove that $(\alpha \ a)|_{B_a \cap B_b} = \alpha \ l$ and $(\alpha \ b)|_{B_a \cap B_b} = \alpha \ l$.

We prove $(\alpha a)|_{B_a \cap B_b} = \alpha l$, then the other equation will hold by a symmetric argument.

Consider the diagram:

$$F(B_l) \stackrel{e_l}{\rightarrowtail} \Pi_{t \in S_l} F(B_t) \stackrel{p_l}{\underset{q_l}{\Longrightarrow}} \Pi_{t_1, t_2 \in S_l} F(B_{t_1} \cap B_{t_2})$$

By definition of α , α l is the unique element in $F(B_l)$ which is mapped to the element $\beta_l \in \Pi_{t \in S_l} F(B_t)$ defined by for all $t \in S_l$, β_l $t = (\alpha l)|_{B_t}$. Hence to show $(\alpha a)|_{B_a \cap B_b} = \alpha l$, it suffices to show that for all $t \in S_l$, $((\alpha a)|_{B_a \cap B_b})|_{B_t} = (\alpha l)|_{B_t}$. By definition of S, we have for any $t \in S_l$, $B_t \subseteq B_l$. As F is a functor, $((\alpha a)|_{B_a \cap B_b})|_{B_t} = (\alpha a)|_{B_t}$. Therefore, it amounts to show that for all $t \in S_l$, $(\alpha a)|_{B_t} = (\alpha l)|_{B_t}$.

By definition of α , the above amounts to show $\beta_a^0|_{B_t}=\beta_l^0|_{B_t}$. Recall how we picked β_a^0 , it is the unique element in $F(B_a)$ such that $e_a(\beta_a^0)=\beta^{0a}$. By definition of e_a , as spelled out before, it means for all $t\in S_a$, $\beta_a^0|_{B_t}=\beta^{0a}$ t. But we know that β^{0a} $t=\beta$ (CHOICE $\{i\in I\mid t\in M_i\}$) t by definition of β^{0a} . As $S_l\subseteq S_a$, by conclusion, for all $t\in S_l$, $\beta_a^0|_{B_t}=\beta$ (CHOICE $\{i\in I\mid t\in M_i\}$) t.

Also consider $\beta_l^0|_{B_t}$, by the construction of β_l^0 , it is the unique element in $F(B_l)$ such that for all $t \in S_l$, $\beta_l^0|_{B_t} = \beta$ (CHOICE $\{i \in I \mid t \in M_i\}$) t.

Thus $\alpha \ a = \alpha \ l$.

Thus we have the two maps, it lefts to show that these two maps $\phi : \mathbf{s}(F)(U) \rightleftharpoons eq[\Pi_{i \in I} \mathbf{s}(F)(U_i) \stackrel{p}{\rightleftharpoons} \Pi_{i,j \in I} \mathbf{s}(F)(U_i \cap U_j)] : \psi$ are indeed inverses. Recall the definitions of these maps:

 ϕ is defined by: Given $\alpha \in \mathbf{s}(F)(U) \subseteq \Pi_{a \in A}F(B_a)$, define $\beta \in \Pi_{i \in I}\Pi_{m \in M_i}F(B_m)$ to be β i $m := \alpha$ m.

 ψ is defined by: Given $\beta \in eq[\Pi_{i \in I} \mathbf{s}(F)(U_i) \overset{p}{\underset{q}{\Longrightarrow}} \Pi_{i,j \in I} \mathbf{s}(F)(U_i \cap U_j)] \subseteq \Pi_{i \in I} \Pi_{m \in M_i} F(B_m)$, define $\psi(\beta)$ to be $\alpha \in \Pi_{a \in A} F(B_a)$ such that for all $a \in A$, α $a := \beta_a^0$.

 $\phi \circ \psi = id$:

We want for all $\beta \in eq[\Pi_{i \in I} \mathbf{s}(F)(U_i) \overset{p}{\underset{q}{\Longrightarrow}} \Pi_{i,j \in I} \mathbf{s}(F)(U_i \cap U_j)]$, Let α denote $\psi(\beta)$, then $\phi(\alpha) = \beta$. It amounts to show that for any $i \in I, m \in M_i$, we have $\phi(\alpha)$ i $m = \beta$ i m. By definition of ϕ , $\phi(\alpha)$ i $m = \alpha$ m. it remains to show α $m := \psi(\beta)$ $m = \beta$ i m. By definition of ψ , it is to show $\beta_m^0 = \beta$ i m. By construction of β_m^0 , for all $x \in S_m$, $\beta_m^0|_{B_x} = \beta^{0m} x$. In particular, by definition of S, we have $m \in S_m$, so $\beta_m^0|_{B_m} = \beta^{0m} m$. But we already have $\beta_m^0 \in F(B_m)$, as F is a functor, the restriction is the identity map, hence $\beta_m^0 = \beta^{0m} m$. By construction of β^{0m} , we have $\beta^{0m} m = \beta$ (CHOICE $\{i_0 \in I \mid m \in M_{i_0}\}$) m. As we have already know $i \in I$ and $m \in M_i$, by independence of choice as proved before, β (CHOICE $\{i_0 \in I \mid m \in M_{i_0}\}$) $m = \beta$ i m. This completes the proof.

 $\psi \circ \phi = id$:

We want for all $\alpha \in \mathbf{s}(F)(U) \subseteq \Pi_{a \in A} F(B_a)$, $\psi(\phi(\alpha)) = \alpha$. Let β denote $\phi(\alpha)$, we prove for all $a \in A$, $\psi(\beta)$ $a = \alpha$ a. By definition of ψ , this is to prove $\beta_a^0 = \alpha$ a. By definition of β_a^0 , it is the unique element in $F(B_a)$ such that for all $t \in S_a$, its restriction to B_t is $\beta_a^0|_{B_t}$. Hence it suffices to prove that for all $t \in S_a$, $\beta_a^0|_{B_t} = (\alpha \ a)|_{B_t}$. By construction of β_a^0 , $\beta_a^0|_{B_t} = \beta^{0a} \ t$. And $\beta^{0a} \ t = \beta$ (CHOICE $\{i \in I \mid t \in M_i\}$) t. By definition of ϕ , β (CHOICE $\{i \in I \mid t \in M_i\}$) $t = \alpha \ t$. Then the task reduced to showing $\alpha \ t = (\alpha \ a)|_{B_t}$. As $\alpha \in \mathbf{s}(F)(U)$, for any $a_1, a_2 \in A$, $(\alpha \ a_1)|_{B_{a_1} \cap B_{a_2}} = (\alpha \ a_2)|_{B_{a_1} \cap B_{a_2}}$. In particular, plug in t and a as a_1 and a as a_2 . Note that as $a_1 \in B_a$ and hence $a_2 \in B_a$. Hence $a_3 \in B_a$. Hence $a_3 \in B_a$. As the first restriction map is identity, the result follows.