Math 527 - Homotopy Theory Spring 2013 Homework 11 Solutions

Problem 1. Show that a path-connected space is weakly equivalent to a product of Eilenberg-MacLane spaces if and only if it admits a Postnikov tower of principal fibrations with trivial k-invariants (all of them).

Note. Here, we follow Hatcher's convention that the k-invariants are used to build the Postnikov tower of X starting from P_1X and not P_0X . In other words, by "Postnikov tower of principal fibrations", we mean that the maps $P_nX \to P_{n-1}X$ are principal fibrations for all $n \ge 2$. Using $n \ge 1$ instead would force π_1X to be abelian.

Solution. Some preliminary observations.

- 1. A path-connected space X is weakly equivalent to a product of Eilenberg-MacLane spaces if and only if it is weakly equivalent to $\prod_{i>1} K(\pi_i X, i)$.
- 2. A projection $\pi_B : B \times F \to B$ is always a fibration, so that the sequence

$$F \xrightarrow{\iota} B \times F \xrightarrow{\pi_B} B$$

is a fiber sequence. Here $\iota = (c_{b_0}, \mathrm{id}_F) \colon F \to B \times F$ denotes the "slice inclusion" $\iota(f) = (b_0, f)$.

3. The homotopy fiber of the constant map $c: X \to Y$ is

$$F(c) = \{(x, \gamma) \in X \times Y^{I} \mid \gamma(0) = c(x), \gamma(1) = y_{0}\}$$
$$= \{(x, \gamma) \in X \times Y^{I} \mid \gamma(0) = \gamma(1) = y_{0}\}$$
$$= X \times \Omega Y.$$

Iterating the homotopy fiber once more yields the fiber sequence

$$\Omega Y \xrightarrow{\iota} X \times \Omega Y \xrightarrow{\pi_X} X \xrightarrow{c} Y.$$

In particular, the fibration $\pi_B \colon B \times F \twoheadrightarrow B$ can be extended to the right by the constant map if and only if F admits a delooping.

Now onto the proof of the statement.

 (\Rightarrow) Assume given a (zigzag of, but WLOG a single) weak equivalence $\varphi \colon X \xrightarrow{\sim} \prod_{i>1} K(\pi_i X, i)$.

Then the successive projections

form a Postnikov tower for X.

The truncation map between successive stages $P_nX \to P_{n-1}X$ is a projection with fiber $K(\pi_nX, n)$, which admits a delooping $K(\pi_nX, n+1)$ since π_nX is abelian (as $n \ge 2$).

By observation (3), $P_nX \to P_{n-1}X$ is a principal fibration which can be extended to the right by the constant map

$$P_nX \to P_{n-1}X \xrightarrow{*} K(\pi_nX, n+1)$$

so that the k-invariant $k_{n-1} \in H^{n+1}(P_{n-1}X; \pi_n X)$ is trivial.

 (\Leftarrow) Assume all k-invariants of X are trivial, i.e. for all $n \geq 2$ we have fiber sequences

$$P_nX \to P_{n-1}X \xrightarrow{*} K(\pi_nX, n+1).$$

By observation (3), this implies the equivalence

$$P_nX \simeq P_{n-1}X \times \Omega K(\pi_n X, n+1)$$
$$\simeq P_{n-1}X \times K(\pi_n X, n).$$

Repeating this equivalence inductively, we conclude that for all $n \geq 1$, the Postnikov stages of X are products

$$P_n X \simeq \prod_{i=1}^n K(\pi_i X, i).$$

Since these truncation maps $P_nX \to P_{n-1}X$ are projections, in particular fibrations, the homotopy limit of the tower is (equivalent to) its strict limit. We conclude:

$$X \xrightarrow{\sim} \underset{n}{\text{holim}} P_n X$$

$$\simeq \underset{n}{\text{holim}} \prod_{i=1}^n K(\pi_i X, i)$$

$$\simeq \underset{n}{\text{lim}} \prod_{i=1}^n K(\pi_i X, i)$$

$$\cong \prod_{i=1}^\infty K(\pi_i X, i)$$

and thus X is weakly equivalent to a product of Eilenberg-MacLane spaces.

Problem 2. Let X be a path-connected CW complex and G a group. Show that the map

$$\pi_1 \colon [X, K(G, 1)]_* \to \operatorname{Hom}_{\mathbf{Gp}}(\pi_1(X), G)$$

is a bijection.

Solution. WLOG X has a single 0-cell. Indeed, X is pointed homotopy equivalent to such a CW complex, and the functors on both sides $[-, K(G, 1)]_*$ and $\operatorname{Hom}_{\mathbf{Gp}}(\pi_1(-), G)$ are invariant under pointed homotopy equivalence.

WLOG X is 2-dimensional. Indeed, the skeletal inclusion $\iota_2 \colon X_2 \hookrightarrow X$ induces an isomorphism $\iota_{2*} \colon \pi_1(X_2) \xrightarrow{\simeq} \pi_1(X)$ and a bijection

$$\iota_2^* \colon [X, K(G, 1)]_* \xrightarrow{\simeq} [X_2, K(G, 1)]_*$$

as shown in the notes from 5/29.

True for wedges of circles. When X is a wedge of circles $X \simeq \bigvee_{j \in J} S^1$, then π_1 does induce a bijection, as shown by the commutative diagram:

where $\psi \colon \pi_1 K(G,1) \xrightarrow{\simeq} G$ is some fixed identification.

True in general. Let X be a 2-dimensional CW complex with a single 0-cell. WLOG all attaching maps of the 2-cells are pointed, so that $X = X_2$ sits in a cofiber sequence

$$\bigvee S^1 \to X_1 \to X_2 \to \bigvee S^2. \tag{1}$$

By the theorem on the fundamental group of CW complexes, applying π_1 to this specific cofiber sequence (1) yields a right exact sequence of groups

$$\pi_1(\bigvee S^1) \to \pi_1(X_1) \twoheadrightarrow \pi_1(X_2) \to 0.$$

Applying $\text{Hom}_{\mathbf{Gp}}(-,G)$ then yields a left exact sequence of pointed sets, which is the bottom row in the diagram below.

Applying $[-, K(G, 1)]_*$ to the cofiber sequence (1) yields an exact sequence of pointed sets. The natural transformation π_1 yields a map of exact sequences:

Because $X_1 \simeq \bigvee S^1$ is also a wedge of circles, the two downward maps to the right are bijections, and hence so is the downward map

$$\pi_1: [X_2, K(G,1)]_* \to \operatorname{Hom}_{\mathbf{Gp}}(\pi_1(X_2), G). \quad \Box$$

Problem 3. Let X be a CW complex, with n-skeleton X_n , and let Y be a path-connected simple space. Let $n \geq 2$, and let $f_n, g_n \colon X_n \to Y$ be two maps which agree on X_{n-1} , i.e.

$$f_n|_{X_{n-1}} = g_n|_{X_{n-1}}.$$

Let $d(f_n, g_n) \in C^n(X; \pi_n Y)$ denote their difference cochain.

Show that $f_n \simeq g_n$ rel X_{n-2} holds if and only if $[d(f_n, g_n)] = 0 \in H^n(X; \pi_n Y)$ holds, i.e. $d(f_n, g_n)$ is a coboundary.

Solution. Since Y is path-connected and simple, we can safely ignore basepoints and work with unpointed maps.

WLOG $X = X_n$.

Consider the map

$$S: (X_n \times \partial I) \cup (X_{n-1} \times I) \to Y$$

defined by

$$S|_{X_n \times \{0\}} = f_n$$

$$S|_{X_n \times \{1\}} = g_n$$

$$S|_{X_{n-1}\times\{t\}}=f_{n-1}$$
 for all $t\in I$.

(The letter S was chosen for "Stationary".)

The condition $f_n \simeq g_n$ rel X_{n-2} can be stated as being able to extend the restriction

$$S_{n-1} := S|_{X_n \times \partial I \cup X_{n-2} \times I}$$

to all of $X_n \times I$. In other words, $S = S_n$ is defined on the relative n-skeleton of the relative CW complex

$$(X_n \times I, X_n \times \partial I)$$

and we want to extend its restriction S_{n-1} from the relative (n-1)-skeleton to the relative (n+1)-skeleton $X_n \times I$. There exists such an extension if and only if the obstruction class of S_n

$$c(S_n) \in C^{n+1}(X_n \times I, X_n \times \partial I; \pi_n Y)$$

is a coboundary.

The short exact sequence of cellular chain complexes

$$0 \to C_*(X \times \partial I) \to C_*(X \times I) \to C_*(X \times I, X \times \partial I) \to 0$$

yields a short exact sequence of cellular cochain complexes

$$0 \to C^*(X \times I, X \times \partial I; \pi_n Y) \to C^*(X \times I; \pi_n Y) \to C^*(X \times \partial I; \pi_n Y) \to 0.$$

Using the fact that $C_*(I)$ is finitely generated and free in each degree, we obtain the isomorphism

$$C^{n+1}(X_n \times I, X_n \times \partial I; \pi_n Y) \cong C^n(X_n; \pi_n Y) \otimes_{\mathbb{Z}} C^1(I)$$
(2)

and moreover, the coboundary operator in the relative cellular cochain complex $C^*(X_n \times I, X_n \times \partial I; \pi_n Y)$ corresponds to the coboundary in $C^*(X_n; \pi_n Y)$. In other words, the diagram

$$C^{n+1}(X_n \times I, X_n \times \partial I; \pi_n Y) \stackrel{\cong}{\longleftarrow} C^n(X_n; \pi_n Y) \otimes_{\mathbb{Z}} C^1(I) \stackrel{\cong}{\longrightarrow} C^n(X_n; \pi_n Y)$$

$$\delta \uparrow \qquad \qquad \delta \otimes \operatorname{id} \uparrow \qquad \qquad \delta \uparrow \qquad \qquad C^n(X_n \times I, X_n \times \partial I; \pi_n Y) \stackrel{\cong}{\longleftarrow} C^{n-1}(X_n; \pi_n Y) \otimes_{\mathbb{Z}} C^1(I) \stackrel{\cong}{\longrightarrow} C^{n-1}(X_n; \pi_n Y)$$

commutes.

Therefore, the obstruction class $c(S_n) \in C^{n+1}(X_n \times I, X_n \times \partial I; \pi_n Y)$ is a coboundary if and only if the corresponding cochain in $C^n(X_n; \pi_n Y)$ is a coboundary.

Relative (n+1)-cells of $(X_n \times I, X_n \times \partial I)$ are of the form $e_{\alpha}^n \times e^1$ for some n-cell e_{α}^n of X_n with attaching map $\varphi_{\alpha} \colon S^{n-1} \to X_{n-1}$ and characteristic map

$$\Phi_{\alpha} \colon (D^n, S^{n-1}) \to (X_n, X_{n-1}).$$

Here e^1 denotes the unique 1-cell of the interval I.

The value of the cochain $c(S_n)$ on the relative (n+1)-cell $e_{\alpha}^n \times e^1$ is the composite

$$\partial(D^{n} \times D^{1}) \xrightarrow{\qquad} (X_{n} \times I)_{n} \xrightarrow{S} Y.$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\partial D^{n} \times D^{1} \cup D^{n} \times \partial D^{1} \xrightarrow{\qquad} X_{n-1} \times I \cup X_{n} \times \partial I$$

$$\varphi_{\alpha} \times \operatorname{id}_{I} \cup \Phi_{\alpha} \times \operatorname{id}_{\partial I}$$

By definition of S, that composite is homotopic to the map $d(f_n, g_n)(e_\alpha^n \times e^1) \in \pi_n Y$ (or minus it, depending on our sign convention in the definition of the difference construction). This proves the equality

$$c(S_n) = \pm d(f_n, g_n)$$

via the isomorphism (2).

Therefore the obstruction class $c(S_n)$ is a coboundary if and only if the difference cochain $d(f_n, g_n)$ is a coboundary.