

Model Development Phase Template

Date	29 October 2024
Team ID	SWTID1727274979
Project Title	Deep learning techniques for breast cancer risk prediction
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report Initial Model Training Code (5 marks):

Step 1: Importing necessary libraries

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
```

Step 2 : Downloading and preparing the dataset

```
!pip install -q kaggle
!mkdir ~/.kaggle
!cp /content/kaggle.json ~/.kaggle/
!kaggle datasets download -d paultimothymooney/breast-histopathology-images
```

Step 3 : Unzipping the dataset

```
import zipfile
!unzip /content/breast-histopathology-images.zip
```


Step 4 : Importing the ImageDataGenerator to load and augment images

"12932" folder contains balanced data(images) to some extent for training part .

```
data_dir = '/content/12932'
```

Importing ImageDataGenerator to load image:

```
# Image data generator for loading and augmenting images
datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)

train_generator = datagen.flow_from_directory(
    data_dir,
    target_size=(128, 128),
    batch_size=32,
    class_mode='binary',
    subset='training'
)

val_generator = datagen.flow_from_directory(
    data_dir,
    target_size=(128, 128),
    batch_size=32,
    class_mode='binary',
    subset='validation'
)
```


Step 5 : Building the CNN model by adding necessary layers

```
# Building The Model by Adding Necessary Layers
model = Sequential([
    Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)),
    MaxPooling2D(pool_size=(2, 2)),
    Conv2D(64, (3, 3), activation='relu'), #Adding Convolutional layer
    MaxPooling2D(pool_size=(2, 2)), # Adding MaxPooling Layer
    Conv2D(128, (3, 3), activation='relu'),
    MaxPooling2D(pool_size=(2, 2)),
    Flatten(), # Adding Flatten Layer
    Dense(128, activation='relu'), # Adding Dense Layer
    Dropout(0.5),
    Dense(1, activation='sigmoid')
])
```

Step 6 : Compiling the model

Step 7: Training and fitting the model

```
# Training and fitting the model , using Earlystopping to avoid model Overfitting
history = model.fit(
    train_generator,
    validation_data=val_generator,
    epochs=20,
    callbacks=[tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)]
)
```

Step 8 : Evaluating the model

```
# Printing Accuracy
val_loss, val_accuracy = model.evaluate(val_generator)
print(f"Validation Accuracy: {val_accuracy * 100:.2f}%")
```


Step 9: Plotting training and validation accuracy and loss

```
# Plotting Accuracy and Validation Loss
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.legend()
plt.show()
```

Step 10 : Saving the model

```
model.save("breastcancer.h5")
```

• Initial Model Testing Code:

Step 1: Importing the necessary libraries

```
[ ] # Importing necessary packages
import numpy as np
import matplotlib.pyplot as plt
from keras.models import load_model
from keras.preprocessing import image
from keras.layers import Flatten, Reshape
```

Step 2: Loading The Model

```
# Loading the saved model as breastcancer.h5
model = load_model('breastcancer.h5')
```


Specifying the path to dataset :-

```
[ ] # Specifying the path to dataset
   data_dir = '12932'
   batch_size = 32
   img_size = (128, 128)
```

Step 3: Printing Sample of Images Belonging to Benign and Malignant classes

```
import os
print("Benign samples:", len(os.listdir('/content/12932/0')))
print("Malignant samples:", len(os.listdir('/content/12932/1')))

Benign samples: 433
Malignant samples: 304
```

Step 4: Preprocessing The Image

```
# Preprocessing the Images
from tensorflow.keras.preprocessing import image

def predict_image(img_path):
    img = image.load_img(img_path, target_size=(128, 128))
    img_array = image.img_to_array(img) / 255.0
    img_array = np.expand_dims(img_array, axis=0)

prediction = model.predict(img_array)
    return "Malignant" if prediction > 0.5 else "Benign"
```


Step 5 : Making Predictions for the test Image Belonging to class 0

```
# Making prediction for the test image for the class 0
# Path of image is mentioned for prediction
print(predict_image('/content/12242/0/12242_idx5_x1001_y251_class0.png'))

1/1 ______ 0s 16ms/step
Benign
```

Step 6: Making Predictions for the test Image Belonging to class 1

```
[ ] # Making prediction for the test image for the class 1

# Path of image is mentioned for prediction
    print(predict_image('/content/12932/1/12932_idx5_x1001_y1251_class1.png'))

1/1 — Os 16ms/step
Malignant
```

Step 7: Taking Any random Sample image from the Dataset To see whether the Model is predicting right or not

Conclusion:

THE MODEL IS TRAINED AND TESTED CORRECTLY AND PREDICTING RIGHT CLASSES OF IMAGES.

Model Validation and Evaluation Report (5 marks):

A Brief Summary for the model Validation and Evaluation is presented in the following table which includes the following :

- 1) Training Epochs Summary.
- 2) Visualization plot of Training and Validation Accuracy .
- 3) Visualization plot of Training and Validation Loss .
- 4) Accuracy Obtained.

Model	Summary	Training and Validation Performance Metrics
Model 1 (CNN)	Epochs Summary (EarlyStopping is used to avoid overfitting) – The training accuracy steadily increases	### Epoch 1/28 ### /### /### / ### /### /### /### /### /### /### /### /### /### /### /### /####
	from 0.5123 to 0.8288 over the 6 epochs , while the training loss consistently decreases. This suggests that the model is learning effectively from the training data . • The validation accuracy initially increases to 0.8882 in epoch 3 but then fluctuates slightly. The validation loss also decreases initially but then stabilizes. This indicates that the model is generalizing well to unseen data and is not overfitting significantly.	
	Early stopping: Early stopping is a technique that helps prevent overfitting by automatically stopping the training process when the model's performance on a validation set starts to deteriorate. Key Benefit of earlystopping:	

a) Prevents Overfitting:

By stopping training early, we can avoid the model memorizing the training data and improve its generalization ability.

2) Training and Validation Accuracy Plot

 A training and validation accuracy plot is a visual representation of how well a model performs. This plot is a crucial tool for understanding and optimizing model performance.

• Training Accuracy:

Measures the model's accuracy on the training dataset .

• Validation Accuracy:

Measures the model's accuracy on a separate validation dataset , which the model hasn't seen during training .

3) Training and Validation Loss Plot –

A training and validation loss plot is a visual representation of how well a model is learning and generalizing during the training process.

• Training Loss:

Measures the error the model makes on the training data .

• Validation Loss:

Measures the error the model makes on a separate validation dataset, which the model hasn't seen during training .

This is a crucial metric to assess the model's ability to generalize to new, unseen data .

4) Obtained accuracy after training and testing the CNN Model – 82.88 %