Transmission Line Event Detection and Identification

ECE 6160 Spring 2022

By: Jackson Murrin and Jimmy Nguyen

Background

- A major theme for this class is: "How exactly will integrating smart grid and new technologies improve monitoring and control of the grid?
- Through Synchronized Measurement Technology like PMUs, time-synchronized system-wide data can be collected in real time.
- For this project, we used a feedforward artificial neural network to examine an immense amount of data trained by the Levenberg-Marquardt algorithm.

Impacts and Innovations

- Due to the complexity of the power system, it is necessary to continuously monitor the transmission of power to avoid major contingencies.
- Through the use of distributed architecture of ANNs data can be evaluated quickly and accurately.
- Analytics paired with visualization should help operators have a much easier time monitoring the status of the grid which bolsters the robustness of the power system.

Code Architecture

- 1) The PMU data is loaded in.
- 2) The data is truncated so that only the current magnitude values remain.
- 3) 19 neural networks are then created and trained with the input and output data of each of their respective TL branches.
- 4) Once the NNs are trained, simulation data can be evaluated in real time when connected to servers.
- 5) When the output from the trained NN is received, it is estimated to be 1 or 0 which is on and off respectively.

Feedforward Neural Network

Distributed Architecture Neural Network

Results

- First progress report used single
 Levenberg-Marquardt neural
 network
- Created 19 separate Distributed
 Architecture Neural Networks to
 increase accuracy

Training Method	% Accuracy	Training Time
Levenberg-Marquardt	98%	1:16
Gradient Descent	91.40%	0:08
One Step Secant	97.50%	0:11
Scaled Conjugate Gradient	97.00%	0:03
Fletcher-Powell Conjugate Gradient	97.10%	0:05
Bayesian Regularization	98.30%	10:00
Quasi-Newton	96.90%	0:53
Resilient Backpropagation	97.50%	2:04
19 Levenberg-Marquardt Distributed Neural Networks	99.8%	0:30

Graphical User Interface

- Used MATLAB AppDesigner to create graphical user interface tool.
- Green lines to indicate expected results, red lines to indicate event on grid
- Start button in bottom corner

Video Demo

Conclusion and Future Directions

- Tools like our visualization will help operators maintain situational awareness of the grid. To make the grid more safe and efficient data from synchronized measurement technology must be utilized effectively.
- For future direction, testing all of the available training algorithms with the distributed architecture can maybe help increase accuracy closer to 100%.
- Adding voltage magnitude may also help increase the accuracy.