Contenu de la présentation orale

(Version 4, novembre 2019)

Rappel : Il faut limiter le θ_{cmd} à \pm 60 deg sinon la capsule décroche (α devient trop grand).

Identification intégration numérique et par lissage

Informations à fournir

- Méthode d'intégration choisie
- Intégration numérique des données accélérométriques pour obtenir numériquement la vitesse v(t)
- Erreur d'intégration de la vitesse en m/s
- Intégration numérique de la vitesse pour obtenir numériquement l'altitude h(t)
- Erreur d'intégration de l'altitude en m
- Équation des Y et X transformés pour l'approximation linéaire à deux paramètres
- Coefficients de l'approximation à deux paramètres, erreur RMS dans les Y transformés, coefficient R²
- Identification de la densité de référence à la surface de la planète ρ_0 et du facteur d'échelle de la densité h_s
- Erreur RMS absolue dans les accélérations (en m/s²)
- Erreur RMS relative dans les accélérations et comparaison avec la précision de l'accéléromètre

Commentaires

• Discuter la comparaison de l'erreur RMS relative avec la précision de l'accéléromètre

Graphiques (tous en fonction du temps)

- Accélération approximée (lissée) superposée sur les mesures accélérométriques des Russes
- Vitesse obtenue par intégration des mesures accélérométriques
- Altitude obtenue par intégration de la vitesse

Loi de guidage : validation de la RAA

Graphiques (tous en fonction de l'altitude)

- Accélération (D_{aero}/m) calculée avec la RAA superposée sur les mesures accélérométriques des Russes
- Vitesse calculée avec la RAA superposée sur celle obtenue par intégration des mesures accélérométriques

Commentaires

Discuter la précision de la RAA par rapport aux données expérimentales des Russes

Loi de guidage : limites structurelles

Informations à fournir dans le tableau suivant (NB avec tolérance = 10^{-08})

v_{fin}^* (m/s)	γ_{ref} (deg)	h_{min} (m)	$v_{min} \ m (m/s)$	h _{départ} , # itérations	h _{max} (m)	<i>v_{max}</i> (m/s)	h _{départ} , #itérations	$\widehat{\Delta t}_{lim}$ (s)
250								
300								

- h_{min} et v_{min} sont la basse altitude et basse vitesse où D_{aero} atteint 2000 N
- h_{max} et v_{max} sont la haute altitude et haute vitesse où D_{aero} atteint 2000 N
- $h_{départ}$ est l'altitude de départ choisie pour les itérations Newton-Raphson
- # itération est le nombre d'itérations Newton-Raphson requises pour converger avec la précision de 10⁻⁰⁸
- $\widehat{\Delta t}_{lim}$ est la durée prédite par la loi de guidage, <u>incluant la gravité</u>, pendant laquelle $D_{aero} > 2000 \text{ N}$.

Commentaires

- Discuter Δt_{lim} en fonction de sa limite permise de 45 s
- Dans l'application de la méthode de Newton-Raphson, donner au long l'équation de la fonction *F* et de sa dérivée *F*′, cette dernière obtenue <u>sous forme analytique</u>.

Conception d'asservissements : loi de commande en translation

Informations à fournir

- Équation de la consigne γ_{ref} calculée en temps réel dans la simulation
- Équation de la commande par rétroaction linéarisante : θ_{cmd} et θ_{eq} en fonction de γ_{ref} et explication
- Équation dynamique asservie de $\dot{\gamma}$ et explication
- Valeur du gain proportionnel K_P et comment il a été calculé

Conception d'asservissements : loi de commande en rotation

Informations à fournir

- Équation de la commande par rétroaction linéarisante : δ_{cmd} et δ_{eg} en fonction de θ_{cmd} et explication
- Équation dynamique asservie de $\ddot{\theta}$ et explication
- Valeur du gain proportionnel K_P et du gain dérivé K_D et comment ils ont été calculés

Validation par simulation numérique

Informations à fournir dans le tableau suivant

	v_{fin}^*	Avec asser	rvissement	Sans asservissement						
	(m/s)	<i>v_{fin}</i> (m/s)	Δt_{lim} (s)	v _{fin} (m/s)	Δt_{lim} (s)					
	250									
	300									

- v_{fin} est la vitesse finale (obtenue par simulation) à $h_{fin} = 10$ km
- Δt_{lim} est la durée (obtenue par simulation) pendant laquelle $D_{aero} > 2000 \text{ N}$

Graphiques sans asservissement

- Tous les graphiques sont en fonction du temps sauf indication contraire.
- Faire les zooms nécessaires, utiliser le « data cursor » pour indiquer des vitesses, altitudes, etc.
- v(t)
- v(h) en fonction de l'altitude h en km avec un data cursor à $h_{fin} = 10$ km pour y voir la vitesse
- $\theta(t)$ et $\alpha(t)$ sur le même graphique
- q(t)
- $D_{aero}(t)$ et $L_{aero}(t)$ sur le même graphique
- Intégrale du temps quand $D_{aero} > 2000$ N (voir comment en classe) avec un data cursor pour voir Δt_{lim}

Commentaires: simulation sans asservissement

- Est-ce que la simulation sans asservissement démontre qu'on peut atteindre une vitesse $v_{fin} \le 300 \text{ m/s}$?
- Est-ce que la simulation sans asservissement démontre que la capsule va se désintégrer ($\Delta t_{lim} > 45 s$)?

<u>Graphiques avec asservissement pour chaque vitesse</u> v_{fin} (250 m/s et 300 m/s)

- Tous les graphiques sont en fonction du temps sauf indication contraire.
- Faire les zooms nécessaires, utiliser le « data cursor » pour indiquer des vitesses, altitudes, etc.
- $\gamma(t)$ superposé sur γ_{ref} calculé en ligne (avec axes limités entre -25 deg et -10 deg pour bien voir)
- $\gamma(h)$ en fonction de l'altitude h en km
- v(t)
- v(h) en fonction de l'altitude h en km avec un *data cursor* à $h_{fin} = 10$ km pour y voir la vitesse
- h(t) en km
- $\theta(t)$ et $\alpha(t)$ sur le même graphique
- q(t) avec axes limités entre -5 deg/s et +5 deg/s pour bien voir
- $D_{aero}(t)$ et $L_{aero}(t)$ sur le même graphique
- Intégrale du temps quand $D_{aero} > 2000$ N (voir comment en classe) avec un data cursor pour voir Δt_{lim}

Commentaires: simulation avec asservissement

- Discuter des différences entre le γ_{ref} de la simulation et le γ_{ref} prédit plus tôt avec la loi de guidage.
- Discuter des différences entre le Δt_{lim} par simulation et le Δt_{lim} prédit plus tôt avec la loi de guidage.
- Expliquer les raisons de ces différences.
- Identifier la vitesse finale qui rencontre tous les critères.