Л/р 1	Л/р 2	Л/р 3	Л/р 4	Л/р 5	Л/р 6
Решение двумерной гидродинамической задачи в переменных "функция тока-вихрь"	Решение уравнения диффузии	Решение уравнения баланса числа частиц	Сравнение методов решения уравнения баланса числа частиц (схема "уголок" и "z-схема")	Решение уравнения с дробной производной	Изучение соответствия задачи, решаемой методом конечных объемов, и конечно-разностной задачи
Л/р 7	Л/р 8	Л/р 9	Л/р 10	Л/р 11	Л/р 12
Стационарное течение за цилиндром	Нестационарное течение за цилиндром	Построение геометрической модели с сеткой для реактора осаждения из паровой фазы	Моделирование вращающегося дискового реактора осаждения из паровой фазы	Определение структуры молекул на основе DFT- моделирования	Определение энергии активации реакции методом координаты реакции

Лабораторная работа 1.

Решение двумерной гидродинамической задачи в переменных "функция тока"-"вихрь"

Найти поле скоростей жидкости, функции тока и вихря на области

 $t=[0;T_{max}],\ X=[0;\ X_{max}],\ Y=[0;\ Y_{max}].$ Уравнения движения в переменных "функция тока"-"вихрь"

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \xi$$

$$v_x = \frac{\partial \psi}{\partial y}$$

$$v_y = -\frac{\partial \psi}{\partial x}$$

Вариант 1-16:
$$\frac{\partial \xi}{\partial t} + v_x \frac{\partial \xi}{\partial x} + v_y \frac{\partial \xi}{\partial y} = 0$$

Граничные и начальные условия:

Вариант	1	2	3	4	5	6	7	8
X_{max}	5	4	5	1	4	1	1	1
Y _{max}	2	5	5	2	2	6	3	1
$\xi(t=0,x,y)=$	4	10	8	22	16	10	10	4
$\xi(t, x=0, y)=$								
$\xi(t,x,y=Y_{max})$								
$\psi(t,x=0,y)$	$1y^2$	$3y^2$	$3y^2$	$5y^2$	$4y^2$	$3y^2$	$2y^2$	$1y^2$
$\psi(t,x=X_{max},y)$			$25+3y^2$	$6+5y^2$	$64+4y^2$	$2+3y^2$	$3+2y^2$	$1+1y^2$
$\psi(t,x,y=0)$	$1x^2$						$3x^2$	$1x^2$
$\psi(t,x,y=Y_{max})$	$4+1x^{2}$	$75+2x^2$	$75+1x^2$	$20+6x^2$	$16+4x^2$	$108+2x^2$	$18+3x^2$	$1+1x^2$
Вариант	9	10	11	12	13	14	15	16
X_{max}	2	2	4	2	4	2	2	3
Y_{max}	1	2	4	4	2	3	1	2
$\xi(t=0,x,y)=$	8	20	8	12	12	6	10	10
$\xi(t, x=0, y)=$								
$\xi(t,x,y=Y_{max})$								
$\psi(t,x=0,y)$	$2y^2$	$5y^2$	$2y^2$	$2y^2$	$4y^2$	$2y^2$	$2y^2$	$2y^2$
$\psi(t,x=X_{max},y)$	$8 + 2y^2$	$20+5y^2$	$32+2y^2$			$4+2y^2$	12+2y ²	
$\psi(t,x,y=0)$	$2x^2$						$3x^2$	$3x^2$
$\psi(t,x,y=Y_{max})$	$2+2x^{2}$	$20+5x^{2}$	$32 + 2x^2$	$32 + 4x^2$	$16+2x^2$	$18+1x^2$	$2+3x^{2}$	$8+3x^{2}$

Вариант 17-32:

$$\frac{\partial \xi}{\partial t} + v_x \frac{\partial \xi}{\partial x} + v_y \frac{\partial \xi}{\partial y} = A$$

$$\xi(t=0,x,y)=0$$

Граничные и начальные условия:

$$\xi(t,x=0,y) = \xi(t,x,y=Y_{max}) = At$$

$$X_{max} = 1, Y_{max} = 1$$

$$\psi(t,x=0,y) = Aty^2/4$$

$$\psi(t,x=X_{max},y) = At + Aty^2/4$$

$$\psi(t,x,y=0) = Atx^2/4$$

$$\psi(t,x,y=Y_{\text{max}}) = At + Atx^2/4$$

Вариант	17	18	19	20	21	22	23	24
A	3	4	5	6	7	8	9	10
Вариант	25	26	27	28	29	30	31	32
A	11	12	13	14	15	16	17	18

Программу можно написать на любом языке программирования.

Note! Решение в электронных таблицах снижает оценку данной работы.

Результаты представить в виде таблиц, а также построить значения функции тока, скорости по x и по y при t=T/2 и $t=T_{max}$, где T_{max} — конечное время интегрирования системы. Последовательность решения: вихрь - функция тока - x - y. На первой итерации вихрь задан (начальное условие), вместо расчета задается двумерное поле значений вихря.

Лабораторная работа 2.

Моделирование диффузии примеси в трубчатом реакторе

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$

$$\left. D \frac{\partial c}{\partial x} \right|_{x=L} = \beta (c_s - c)$$

$$Nu = \frac{\beta d}{D} = 1 + \frac{1}{2} \left(0.55 \,\text{Re}^{\frac{1}{2}} \,\text{Pr}^{\frac{1}{3}} \right)$$

$$x = [0; L] M.$$

$$t = [0; 10000] c.$$

$$Pr = 400, c_s = 10 \text{ kg/m}^3,$$

Левое граничное условие

Варианты 1-16:
$$c(t, x = 0) = 200 \text{ кг/м}^3$$

Варианты 17-32, четные:
$$c(t, x = 0) = 205 \text{ кг/м}^3$$

Варианты 17-32, нечетные:
$$D \frac{\partial c}{\partial x}\Big|_{x=0} = 0$$

Коэффициент диффузии равен $D*10^{-6}$ м²/с. Учтите, что длина трубы L дана в м, диаметр d-в мм. Величины D, L, Re, d и начальное условие даны по вариантам в таблице.

Вариант	1	2	3	4	5	6	7	8
L, м	0.1	0.2	0.4	0.2	0.4	0.2	0.2	0.3
D	1	2	4	4	3	3	7	2
Re	8	1	8	1	10	6	3	5
d, мм	10	10	10	10	10	10	10	10
c(t = 0, x),	200 +	200 +	200 +	200 +	200 +	200 +	200 +	200 +
$\kappa\Gamma/M^3$	50 x							
Вариант	9	10	11	12	13	14	15	16
L, м	0.3	0.4	0.3	0.1	0.4	0.1	0.1	0.1
D	2	5	5	2	2	6	3	1
Re	4	3	8	2	6	10	10	4
d, мм	10	10	10	10	10	10	10	10
c(t = 0, x),	200 +	200 +	200 +	200 +	200 +	200 +	200 +	200 +
$\kappa\Gamma/M^3$	50 x							
Вариант	17	18	19	20	21	22	23	24
L, м	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
D	1	2	3	4	5	6	7	8
Re	1	1	1	1	1	1	1	1
d, мм	1	1	1	1	1	1	1	1

c(t = 0, x),	205	205	205	205	205	205	205	205
$\kappa\Gamma/M^3$								
Вариант	25	26	27	28	29	30	31	32
L, м	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
D	9	10	11	12	13	14	15	16
Re	1	1	1	1	1	1	1	1
d, мм	1	1	1	1	1	1	1	1
c(t = 0, x),	205	205	205	205	205	205	205	205
$\kappa\Gamma/M^3$								

Решение должно быть выполнено с помощью *неявной разностной схемы*. Явная разностная схема в данной задаче приводит к снижению оценки.

Разобраться, почему в правой части записано (c^s -c), а не (c- c^s), при приеме лабораторной спрашивается понимание этого момента. Также спрашивается теоретический материал по критериям подобия и уравнение переноса концентрации (знать физический смысл каждого слагаемого).

Результаты представить графически как поверхность или как семейство кривых в разные моменты времени (то есть зависимости концентрации от координаты х для 3-4 моментов времени t, обязательно включающих начальный и конечный момент времени, на одном графике).

Лабораторная работа 3.

Решение уравнения баланса числа частиц

Решите уравнение с помощью явной и неявной схемы, при различных значениях шага по времени и координате

$$\frac{\partial f}{\partial t} + \frac{\partial f}{\partial l} = \psi(t, l)$$

$$X = [0;1], t = [0;1].$$

$$f(t=0,x) = 0$$

$$f(t,x=0) = At$$

$$\psi(t,l) = Ae^x(1+t)$$

A = номер варианта (1-32).

Лабораторная работа 4.

Сравнение транспортных свойств разностной схемы "левый уголок" и "z-схемы"

$$\frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} = 0$$

$$f(t=0,x) = e^{-\left(\frac{x-m_1}{\sigma}\right)^2} + e^{-\left(\frac{x-m_2}{\sigma}\right)^2}$$

$$f(t, x = 0) = e^{-\left(\frac{-m_1}{\sigma}\right)^2} + e^{-\left(\frac{-m_2}{\sigma}\right)^2}$$

$$m_1 = \frac{15L}{40}, \ m_2 = \frac{25L}{40}$$

$$\sigma = \frac{L}{12.6}$$

$$X = [0;20], t = [0;10].$$

Шаг по оси x: h = 0.05

Вариант	1	2	3	4	5	6	7	8
L, м	5	6	7	8	9	10	11	12
Вариант	9	10	11	12	13	14	15	16
L, м	13	14	15	20	4	5.5	7.5	9.5

Решить двумя разностными схемами: 1) левый уголок 2) z-схема.

Каждую схему применить для трех значений шага по времени Δt:

$$\Delta t = 0.01$$
, $\Delta t = 0.05$, $\Delta t = 0.1$.

Построить зависимости f(x) в момент времени t=0 и в два момента времени t>0, когда волна находится в правой части рассматриваемого диапазона значений x и в конце этого диапазона (на графике — у правой границы). Сделать вывод о качестве транспортных свойств каждой из расчетных схем (транспортные свойства — здесь, конвективный перенос волны без искажений). Как влияет величина шага по времени на качество переноса волны для каждой из расчетной схем? Какая величина шага обеспечивает перенос волны без искажений?