heart disease prediction project

it is very important and rare case for medical department.. generally it won't possible in python but machine learning code gives us best preference...

.....

```
In [9]:
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
In [11]: | df = pd.read_excel('C:\\Users\\ACER\\Downloads\\heart.xls')
          print(df)
                                trestbps
                                                  fbs
                                                                                     oldpeak
                           ср
                                           chol
                                                        restecg
                                                                  thalach
                                                                             exang
                age
                      sex
          0
                 63
                            3
                                      145
                                             233
                                                     1
                                                                       150
                                                                                 0
                                                                                         2.3
                        1
                                                               0
                            2
          1
                 37
                        1
                                      130
                                             250
                                                     0
                                                               1
                                                                       187
                                                                                 0
                                                                                         3.5
                                                                                         1.4
          2
                 41
                            1
                                             204
                                                               0
                                                                                 0
                        0
                                      130
                                                     0
                                                                       172
          3
                 56
                        1
                            1
                                      120
                                             236
                                                     0
                                                               1
                                                                       178
                                                                                 0
                                                                                         0.8
          4
                 57
                                             354
                             0
                                      120
                                                     0
                                                               1
                                                                       163
                                                                                 1
                                                                                         0.6
                      . . .
                                             . . .
                                                  . . .
                                                             . . .
                                                                       . . .
                                                                               . . .
                                                                                         . . .
          298
                 57
                        0
                            0
                                      140
                                             241
                                                    0
                                                               1
                                                                       123
                                                                                 1
                                                                                         0.2
          299
                 45
                        1
                            3
                                      110
                                             264
                                                               1
                                                                       132
                                                                                 0
                                                                                         1.2
                                                     0
                                                                                         3.4
          300
                 68
                        1
                            0
                                      144
                                             193
                                                     1
                                                               1
                                                                       141
                                                                                 0
          301
                 57
                        1
                             0
                                      130
                                             131
                                                     0
                                                               1
                                                                       115
                                                                                 1
                                                                                         1.2
                            1
                                             236
                                                               0
                                                                       174
          302
                 57
                        0
                                      130
                                                                                 0
                                                                                         0.0
                slope
                            thal
                                   target
                        ca
                         0
          0
                     0
                                1
                                         1
                                2
          1
                     0
                         0
                                         1
          2
                     2
                         0
                                2
                                         1
                                2
          3
                     2
                         0
                                         1
                     2
                                2
          4
                         0
                                         1
                        . .
                              . . .
                                       . . .
          . .
                         0
                                3
          298
                    1
                                         0
          299
                    1
                         0
                                3
                                         0
          300
                         2
                                3
                                         0
                     1
                                3
          301
                     1
                         1
                                         0
                                2
          302
                     1
                         1
```

[303 rows x 14 columns]

display elements

In [12]: df.head()

Out[12]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

check last elements

In [13]: df.tail()

Out[13]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0
4			_											

shape of all elements

In [15]: df.shape

Out[15]: (303, 14)

get overall statistics

In [16]: | df.describe()

Out[16]:

	age	sex	ср	trestbps	chol	fbs	restecg	tl
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.0
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.6
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.9
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.0
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.5
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.0
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.0
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.0
4								•

draw correlation matrix

In [18]: | sns.heatmap(df.corr())

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x1242f70>

now we analysis it

1. how many people are suffering / not from heart disease

In [19]: sns.countplot(df['target'])

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x1395070>

2. find gender distribution

In [28]: sns.countplot(df['sex'])

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x636bf10>

3.check age distribution

In [29]: sns.distplot(df['age'],bins=20)
plt.show()

4.check type of chest pain

In [30]: sns.countplot(df['cp'])

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x9db89b8>

->value 0:typical angina

->value 1:atypical angina

->value 2:non-anginal pain

->value 3:asymptoatic

```
In [34]: plt.figure(figsize=(20,10))
    sns.heatmap(df.corr(),annot=True,cmap='terrain')
```

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x134ad30>

derive with calculation

```
In [46]: | df.isnull().sum()
Out[46]:
          age
                        0
                        0
          sex
                        0
          ср
          trestbps
                        0
          chol
                        0
          fbs
                        0
          restecg
                        0
                        0
          thalach
                        0
          exang
          oldpeak
                        0
                        0
          slope
          ca
                        0
          thal
          target
          dtype: int64
```

```
In [47]: sns.scatterplot(x='age',y='chol',data=df)
```

Out[47]: <matplotlib.axes._subplots.AxesSubplot at 0x1a2a84c0>


```
In [48]: | sns.barplot(x='cp',y='age',data=df)
```

Out[48]: <matplotlib.axes._subplots.AxesSubplot at 0x18b24958>

train test split

```
In [50]: lr.score(xtest,ytest)
```

NameError: name 'lr' is not defined

In [51]: print(df.info()) <class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns): # Column Non-Null Count Dtype 0 age 303 non-null int64 1 sex 303 non-null int64 2 303 non-null int64 ср 3 trestbps 303 non-null int64 4 chol 303 non-null int64 5 fbs 303 non-null int64 6 restecg 303 non-null int64 7 thalach 303 non-null int64 8 303 non-null int64 exang 9 oldpeak 303 non-null float64 10 slope 303 non-null int64 **11** ca 303 non-null int64 12 thal 303 non-null int64 13 target 303 non-null int64 dtypes: float64(1), int64(13) memory usage: 33.2 KB None gen =pd.crosstab(df['sex'],df['target']) In [52]: print(gen) target 1 0 sex 0 24 72 1 **114** 93 In [53]: gen.plot(kind='bar', stacked=True, color=['green', 'yellow'], grid=False) Out[53]: <matplotlib.axes._subplots.AxesSubplot at 0x18e43928> target 200 0 175 1

Out[56]:

In [58]: chest_pain.plot(kind='bar',stacked=True,color=['purple','blue'],grid=False)

Out[58]: <matplotlib.axes._subplots.AxesSubplot at 0x15681988>

In [61]: df['cp'].value_counts()

Out[61]: 0 143 2 87 1 50 3 23

Name: cp, dtype: int64

```
In [65]: sns.countplot( x='cp',hue='target',data=df,palette='rocket')
```

Out[65]: <matplotlib.axes._subplots.AxesSubplot at 0x181c4fb8>


```
In [66]: df['sex'].value_counts()
```

Out[66]: 1 207 0 96

Name: sex, dtype: int64

```
In [67]: sns.catplot(data=df,x='sex',y='age',hue='target',palette='husl')
```

Out[67]: <seaborn.axisgrid.FacetGrid at 0x1562ed48>


```
In [68]: sns.barplot(data=df,x='sex',y='chol',hue='target',palette='spring')
```

Out[68]: <matplotlib.axes._subplots.AxesSubplot at 0x1913a730>

Done by:-

K.K.Sreevalli