Faculté des Sciences Aïn Chock



جامعة الحسن الثانيبالدار البيضاء -----كلية العلوم عين الشق

Département de Mathématiques & Informatique

SMI6-SID-+SMA6-STAT-, 28-3-2020 Pr. H.CHAMLAL ANALYSE EXPLORATOIRE DE DONNEES

## EXERCICES CORRIGE ENNONCE

Soit le tableau de données Y:

|   | Y1 | Y2 | Y3 |
|---|----|----|----|
| 1 | 1  | -1 | 1  |
| 2 | 0  | 0  | 0  |
| 3 | -1 | 1  | -1 |
| 4 | 0  | 0  | 0  |
| 5 | 1  | -1 | 1  |
| 6 | 1  | -1 | 1  |

- 1. Donner X pour le cas A.C.P.C ainsi que pour le cas A.C.P.N
- 2. Donner les éléments principaux
- 3. Calculer les qualités de représentation ainsi que les contributions.
- 4. Projeter les individus

## **SOLUTION**

- I. Cas A.C.P.C.
- 1. On doit centrer Y:

X=

| 0.6666667  | -0.6666667 | 0.6666667  |
|------------|------------|------------|
| -0.3333333 | 0.3333333  | -0.3333333 |
| -1.3333333 | 1.3333333  | -1.3333333 |
| -0.3333333 | 0.3333333  | -0.3333333 |
| 0.6666667  | -0.6666667 | 0.6666667  |
| 0.6666667  | -0.6666667 | 0.6666667  |

• La matrice à diagonaliser est  $\frac{1}{6}t(X)X = V$ 

V=

- Une seule valeur propre non nulle  $\lambda = 5/3$
- Vecteur propre normé est :

$$u = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} : \underline{\text{vecteur principal}}$$

• Composante principale : 
$$C=Xu = \frac{1}{\sqrt{3}}\begin{pmatrix} 2\\ -1\\ -4\\ -1\\ 2\\ 2\end{pmatrix}$$

• Coordonnées des variables :



Département de Mathématiques & Informatique

SMI6-SID-+SMA6-STAT-, 28-3-2020

Pr. H.CHAMLAL

ANALYSE EXPLORATOIRE DE DONNEES

$$\sqrt{5}$$
 Coordonnée de X1 sur l'axe principal

$$-\sqrt{5}$$
 Coordonnée de X2sur l'axe principal

Coordonnée de X3 sur l'axe principal

Qualité de représentation des individus sur le premier axe

$$ql(i) = \frac{c^2(i)}{\sum (Xj^2(i))}$$

On trouve:

•  $\sum (Xj^2(i))$  pour i=1,2,3,4,5 et 6 sont :

 $1.3333333 \ 0.3333333 \ 5.3333333 \ 0.33333333 \ 1.33333333 \ 1.33333333$ 

•  $c^2(i)$  pour i=1,2,3,4,5 et 6 sont :

 $\sqrt{\lambda}u =$ 

Ainsi la qualité de représentation de chaque individu est 1 soit 100%

Qualité de représentation des variables sur le premier axe

$$cos2(Xj) = (cord(Xj))^{2}(cas\ ACPN) = \left(\frac{cord(Xj)}{\sigma_{I}}\right)^{2}(ACPC)$$

On trouve 1 pour chaque variable.

Contribution des individus à l'inertie expliquée par l'axe principal  $Ctr(i) = \frac{\frac{1}{6}c^2(i)}{\lambda}$ 

$$Ctr(i) = \frac{\frac{1}{6}c^2(i)}{\lambda}$$

On trouve:

0.13

0.033

0.53

0.033

0.13

0.13

Contribution des variabless à l'inertie expliquée par l'axe principal

$$cos(Xj) = (cord(Xj)) (cas\ ACPN) = \left(\frac{cord(Xj)}{\sigma_J}\right) (ACPC)$$

On trouve respectivement 1,-1 et 1

Cas A.C.P.N.

1. On doit centrer et réduire Y:

Faculté des Sciences Aïn Chock



جامعة الحسن الثانيبالدار البيضاء -----كلية العلوم عين الشق

Département de Mathématiques & Informatique

SMI6-SID-+SMA6-STAT-, 28-3-2020 Pr. H.CHAMLAL ANALYSE EXPLORATOIRE DE DONNEES

X=

$$\frac{1}{\sqrt{5}} \begin{pmatrix} 2 & -2 & 2 \\ -1 & 1 & -1 \\ -4 & 4 & -4 \\ -1 & 1 & -1 \\ 2 & -2 & 2 \\ 2 & -2 & 2 \end{pmatrix}$$

• La matrice à diagonaliser est  $\frac{1}{6}t(X)X = R$ 

R=

$$\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$

- Une seule valeur propre non nulle  $\lambda=3$
- Vecteur propre normé est :

$$u = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
: vecteur principal

- Composante principale:  $C=Xu=\frac{1}{\sqrt{5}}\begin{pmatrix} 2\\ -1\\ -4\\ -1\\ 2\\ 2\end{pmatrix}$
- Coordonnées des variables :

$$\frac{1}{\sqrt{\lambda}u} = \frac{1}{\sqrt{\lambda}u} =$$

1 Coordonnée de X3 sur l'axe principal

• Qualité de représentation des individus sur le premier axe

$$ql(i) = \frac{c^2(i)}{\sum (Xj^2(i))}$$

On trouve:

•  $\sum (Xj^2(i))$  pour i=1,2,3,4,5 et 6 sont :

4/5 1/5 16/5 1/5 4/5 4/5

•  $c^2(i)$  pour i=1,2,3,4,5 et 6 sont :

4/5 1/5 16/5 1/5 4/5 4/5

Ainsi la qualité de représentation de chaque individu est 1 soit 100%

• Qualité de représentation des variables sur le premier axe

$$cos2(Xj) = (cord(Xj))^{2}(cas\ ACPN) = \left(\frac{cord(Xj)}{\sigma_{J}}\right)^{2}(ACPC)$$



جامعة الحسن الثانيبالدار البيضاء ------كلية العلوم عين الشق

Département de Mathématiques & Informatique

SMI6-SID-+SMA6-STAT-, 28-3-2020 Pr. H.CHAMLAL ANALYSE EXPLORATOIRE DE DONNEES

On trouve 1 pour chaque variable.

• Contribution des individus à l'inertie expliquée par l'axe principal

$$Ctr(i) = \frac{\frac{1}{6}c^2(i)}{\lambda}$$

On trouve:

0.13

0.033

0.53

0.033

0.13

0.13

• Contribution des variabless à l'inertie expliquée par l'axe principal

$$cos(Xj) = (cord(Xj)) (cas\ ACPN) = \left(\frac{cord(Xj)}{\sigma_J}\right) (ACPC)$$

On trouve respectivement 1,-1 et 1