Advanced Topics on Artificial Intelligence

Alban Grastien

The Australian National University

Second Semester, 2020

Second Approach

From Value Iteration to Policy Iteration

General Idea of Policy Iteration

- Start with some policy
- Find a better policy
- Iterate until no better policy can been found (then, we have the optimal policy)

Value Function of a Policy

Given a policy π , the value function V_{π} is:

$$V_{\pi}(s) = \left\{ \begin{array}{ll} 0 & \text{if } s \in G \\ Q_{\pi}(s,\pi(s)) & \text{otherwise.} \end{array} \right.$$

$$Q_{\pi}(s,a) = \Sigma_{s' \in S} \bigg(P(s,a,s') \cdot \big(C(s,a,s') + \gamma \, V_{\pi}(s) \big) \bigg)$$

Dead-end states need to be handled separately.

Value Function of a Policy

Given a policy π , the value function V_{π} is:

$$V_{\pi}(s) = \left\{ \begin{array}{ll} 0 & \text{if } s \in G \\ Q_{\pi}(s, \pi(s)) & \text{otherwise.} \end{array} \right.$$

$$Q_{\pi}(s, a) = \Sigma_{s' \in S} \bigg(P(s, a, s') \cdot \big(C(s, a, s') + \gamma \, V_{\pi}(s) \big) \bigg)$$

Compare to Bellmann Equations:

$$\begin{split} V^*(s) &= \left\{ \begin{array}{l} 0 & \text{if } s \in G \\ \min_{a \in A(s)} \ Q^*(s,a) \end{array} \right. \\ Q^*(s,a) &= \Sigma_{s' \in S} \bigg(P(s,a,s') \cdot \left(C(s,a,s') + \gamma \, V^*(s') \right) \bigg) \end{split}$$

Little Robot: Policy Value

- Choose a random policy
- Compute the value of the states with this policy

Little Robot: Policy Value

- Choose a random policy
- Compute the value of the states with this policy

Improving a Policy

THEOREM

Let π be a policy and let V_{π} be the value function of this policy.

Then $\pi_{V_{\pi}}$ (the policy built from V_{π}) is better than π unless π is the optimal policy

Little Robot: Computing a new policy

- Choose a random policy
- Compute the value of the states with this policy

Little Robot: Computing a new policy

- Choose a random policy
- Compute the value of the states with this policy
- New policy (in blue)

Policy Iteration

POLICY-ITERATION

- t := 0
- Choose an arbitrary policy π^t
- repeat
 - t += 1
 - $V^{t-1} := V_{\pi^{t-1}}$
 - $\pi^t := \pi_{V^{t-1}}$
- $\bullet \ \ \text{until} \ \pi^t = \pi^{t-1}$
- return π^t

Advantages and Drawbacks

Advantage:

Terminates and computes the optimal policy

Drawbacks:

- Fairly slow (requires to compute the value of many policies)
 - Termination requires to compute this value precisely!
- Estimates the last actions first

APPROXIMATE-VALUE-OF-POLICY

- Input: policy π
- t := 0
- ullet Choose an arbitrary value function V^t
- repeat
 - t += 1
 - for all $s \in S$

•
$$V^t(s) := C(\pi(s)) + \sum_{s' \in S} \left(P(s, \pi(s), s') \times V^{t-1}(s') \right)$$

- until some condition is satisfied
- ullet return V^t

Approximate Computation of the Value of a Policy

Comments

- Approximate values of policy can prevent PI from terminating
- Rather than starting with an arbitrary value function V^0 , could start with the value function for the previous policy