# Продължения на функции в $H^k$

#### Александър Гудев

1 декември 2024 г.

Дефиниция. Нека  $\Omega \subseteq \Omega'$  и  $f \in L_2(\Omega)$ . Продължение на f в  $\Omega'$  се нарича всяка функция  $f' \in L_2(\Omega')$ , за която  $f'\big|_{\Omega} = f$ .

**Пример.** Всяко  $f \in L_2(\Omega)$  можем да продължим до  $\Omega'$ , нулирайки f извън  $\Omega$ .

$$f' \coloneqq \begin{cases} f & \mathsf{B} \ \Omega \\ 0 & \mathsf{B} \ \Omega' \setminus \Omega \end{cases}.$$

Remark. Целта ни е да продължим функцията  $f \in H^k(\Omega)$  до  $\Omega'$  така, че продължението да е от  $H^k(\Omega')$ . В горната дефинция това не се изисква — както е ясно от примера, продълженията могат по принцип дори да са прекъснати.

## 1 Продължение от полукуб до куб

По-долу с  $\{y_n > 0\}$  и аналогичен запис бележим подмножеството на  $\mathbb{R}^n$  от векторите  $(y_1, \ldots, y_n)$ , удовлетворяващи условието в скобите.

Даваме следните означения за хиперкуба, центриран около нулата с радиус a, и "горната" и "долната" му половина:

$$K_a := \{(y_1, \dots, y_n) \in \mathbb{R}^n : |y_i| < a \,\forall i\}$$

$$K_a^+ := K_a \cap \{y_n > 0\}$$

$$K_a^0 := K_a \cap \{y_n = 0\}$$

$$K_a^- := K_a \cap \{y_n < 0\}.$$

Означаваме още с y' за произволен вектор  $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$  вектора  $y' \coloneqq (y_1, \ldots, y_{n-1})$ . За краткост за  $y \in \mathbb{R}^n$  с (y', c) ще отбелязваме вектора  $(y_1, \ldots, y_{n-1}, c)$ .

### 1.1 На функции от $C^k$

1. Построяване



Фигура 1: Стойността на Z в y се определя от стойността на z в точките  $\left(y',-\frac{y_n}{i}\right)$  .

Нека  $z(y)\in C^k(\overline{K_a^+})$ . Ще я продължим до  $K_a$ . Върху точките  $y\in\overline{K_a^-}$  продължението дефинираме с помощта на точки от  $K_a^+$  от вида  $(y',-\frac{y_n}{i})$ . Полагаме

$$Z|_{\overline{K_a^+}} := z,$$
 $Z|_{\overline{K_a^-}} := \sum_{i=1}^m A_i z (p_i(y))$ 

където  $p:\overline{K_a^-} o \overline{K_a^+}$  е функцията

$$p_i(y) \coloneqq \left(y', -\frac{y_n}{i}\right),$$

а числото m коефициентите  $(A_1,\ldots,A_m)$  ще определим по-късно по такъв начин, че полученото продължение  $Z:\overline{K_a}\to\mathbb{R}$  на  $z:\overline{K_a^+}\to\mathbb{R}$  да бъде от клас  $C^k$ .

#### 2. Непрекъснатост на продължението

Z е непрекъсната в  $K_a^+$  по построение. Лесно се вижда, че Z е непрекъсната и в  $K_a^-$  директно от непрекъснатостта на z в  $K_a^+$ . Остава да проверим непрекъснатост в  $\bar{y} \in K_a^0$ , когато y клони към  $\bar{y}$  откъм  $K_a^-$ :

$$\begin{split} \lim_{K_a^-\ni y\to \bar{y}} Z(y) &= \lim_{K_a^-\ni y\to \bar{y}} \sum_{i=1}^m A_i z\left(p_i(y)\right) \\ &= \sum_{i=1}^m A_i \lim_{y\to \bar{y}} z\left(p_i(y)\right) \\ &= \sum_{i=1}^m A_i z\left(p_i(\bar{y})\right) = \sum_{i=1}^m A_i z\left(\bar{y}\right) = z\left(\bar{y}\right) \sum_{i=1}^m A_i \end{split}$$

За да бъде Z непрекъсната в  $\bar{y}$  е достатъчно горната граница да е

равна на  $z(\bar{y})$ , което се случва точно когато

$$\sum_{i=1}^{m} A_i = 1.$$

3. Гладкост на продължението

Нека  $\alpha$  е мултииндекс с  $|\alpha| \leq k$ . Ще проверим, че съществува производната  $\partial^{\alpha} Z(y)$  във всяко  $y \in K_a$ .

- (a) В  $K_a^+$  това е просто  $\partial^{\alpha} z$ .
- (б) Z очевидно има  $\alpha$ -производна и в  $y \in K_a^-$ :

$$\partial^{\alpha} Z(y) = \sum_{i=1}^{m} A_i \partial^{\alpha} \left( z \left( p_i(y) \right) \right)$$
$$= \sum_{i=1}^{m} A_i \partial^{\alpha} p_i(y) \partial^{\alpha} z \left( p_i(y) \right). \tag{1}$$

(в) Остава да видим, че Z има  $\alpha$ -производна и в  $y \in K_a^0$ . Ще го направим с индукция по дължината на  $\alpha$ .

і. Нека  $|\alpha|=1$ , тоест  $\partial^{\alpha}=\frac{d}{dx_{j}}$  за някое  $j\in\{1,\ldots,n\}$ . Да намерим при какви условия производната  $\frac{\partial Z}{\partial x_{j}}$  съществува в  $y_{0}\in K_{a}^{0}$ . Необходимо е производната, идваща "отгоре"  $\lim_{K_{a}^{+}\ni y\to y_{0}}\partial^{\alpha}z(y)$ , да е равна на производната, идваща "отдолу"

$$\lim_{K_a^- \ni y \to y_0} \partial^{\alpha} Z \stackrel{(1)}{=} \lim_{K_a^- \ni y \to y_0} \sum_{i=1}^m A_i \partial^{\alpha} p_i(y) \partial^{\alpha} z \left( p_i(y) \right)$$

$$= \sum_{i=1}^m A_i \partial^{\alpha} p_i(y_0) \partial^{\alpha} z \left( p_i(y_0) \right)$$

$$= \sum_{i=1}^m A_i \partial^{\alpha} p_i(y_0) \partial^{\alpha} z \left( y_0 \right)$$

$$= \partial^{\alpha} z \left( y_0 \right) \sum_{i=1}^m A_i \partial^{\alpha} p_i(y_0).$$

Производните ще съвпаднат очевидно, когато десният множител не участва:

$$\sum_{i=1}^{m} \partial^{\alpha} p_i(y_0) A_i = 1.$$

ії. Аналогично, за  $1<|\alpha|\le k$ , пресмятайки както горе производната, получаваме същото условие

$$\sum_{i=1}^{m} \partial^{\alpha} p_i(y_0) A_i = 1.$$

В частност, ако вземем  $p_i(y) = \left(y_1, \dots, y_{n-1}, -\frac{1}{i}y_n\right)$ , получаваме системата

$$\sum_{i=1}^{m} \left( -\frac{1}{i} \right)^{l} A_{i} = 1, \quad \forall i = 0, \dots k,$$

която, бидейки система на Вандермонд, има единствено решение, когато m=k+1.

4. Оценка на  $\|Z\|_{H^k(K_a)}$  чрез  $\|z\|_{H^k(K_a^+)}$ 

С неравенство на Минковски по-горе:

$$\begin{aligned} \left| \partial^{\alpha} Z(y) \right|^{2} &= \left| \sum_{i=1}^{m} A_{i} \left( -\frac{1}{i} \right)^{\alpha_{n}} \partial^{\alpha} z \left( p_{i}(y) \right) \right|^{2} \\ &= \left( \sum_{i=1}^{m} \left( A_{i} \left( -\frac{1}{i} \right)^{\alpha_{n}} \right) \left( \partial^{\alpha} z \left( p_{i}(y) \right) \right) \right)^{2} \\ &\leq \left( \sum_{i=1}^{m} A_{i}^{2} \left( -\frac{1}{i} \right)^{2\alpha_{n}} \right) \left( \sum_{i=1}^{m} \left( \partial^{\alpha} z \left( p_{i}(y) \right) \right)^{2} \right) \\ &= C_{\alpha} \sum_{i=1}^{m} \left( \partial^{\alpha} z \left( p_{i}(y) \right) \right)^{2} \end{aligned}$$

и след интегриране по  $K_a^-$ :

$$\begin{split} \int_{K_a^-} \left| \partial^\alpha Z(y) \right|^2 & \leq C_\alpha \sum_{i=1}^{k+1} \int_{K_a^-} \left( \partial^\alpha z \left( p_i(y) \right) \right)^2 \\ & = C_\alpha \sum_{i=1}^{k+1} i \int\limits_{K_a^{\leq a/i}} \left( \partial^\alpha z \left( y \right) \right) \right)^2 \quad \text{(смяна } x = p_i(y)) \\ & \leq C_\alpha \sum_{i=1}^{k+1} (k+1) \int\limits_{K_a^{\leq a/i}} \left( \partial^\alpha z \left( y \right) \right) \right)^2 \\ & = \underbrace{C_\alpha(k+1)^2}_{C_\alpha'} \int\limits_{K_a^{\leq a/i}} \left( \partial^\alpha z \left( y \right) \right) \right)^2, \end{split}$$

където  $K_a^{\leq a/i} \coloneqq K_a^+ \cap \left\{y_n < \frac{a}{i}\right\}$  . Тогава в цялото  $K_a$  имаме

$$\begin{split} \int_{K_a} \left| \partial^{\alpha} Z(y) \right|^2 &= \int_{K_a^+} \left| \partial^{\alpha} z(y) \right|^2 + \int_{K_a^-} \left| \partial^{\alpha} Z(y) \right|^2 \\ &\leq \int_{K_a^+} \left| \partial^{\alpha} z(y) \right|^2 + C_{\alpha}' \int_{K_a^+} \left| \partial^{\alpha} z(y) \right|^2 \\ &\leq C_{\alpha}'' \int_{K_a^+} \left| \partial^{\alpha} z(y) \right|^2, \end{split}$$

и след сумиране по  $|\alpha| \le k$  получаваме оценката

$$||Z||_{H^k(K_a)} \le C ||z||_{H^k(K_a^+)},$$
 (2)

където C е константа, зависеща само от k.

### 1.2 На функции от $H^k$

Нека  $z \in H^k(K_a^+)$ . Ще намерим продължение  $Z \in H^k(K_a)$ , основавайки се на конструкцията по-горе за функции от  $C^k$ . След малко ще докажем следната лема:

Лема. Подпространството  $C^{\infty}\left(\overline{K_a}\right)$  е гъсто в  $H^k\left(K_a\right)$ .

Съгласно нея, към z клони някоя редица  $\{z_s\}_s \subset C^k(\overline{K_a^+})$  в нормата на  $H^k(K_a^+)$ . Продължаваме елементите ѝ като в предишната секция до  $\overline{K_a}$  и получаваме редица  $\{Z_s\}_s \subset C^k(\overline{K_a})$ . Остава да видим, че новополучената редица има граница Z в  $H^k(K_a)$ .

Тъй като  $H^k$  е пълно, е достатъчно да покажем, че  $\{Z_s\}$  е фундаментална. Да забележим, че разликата  $Z_s-Z_p$  се явява продължение по горната конструкция на разликата  $z_s-z_p$ . Тогава оценката  $\|Z\|_{H^k(K_a)} \le C \|z\|_{H^k(K_a^+)}$  е в сила и тук, тоест

$$||Z_s - Z_p||_{H^k(K_a)} \le C ||z_s - z_p||_{H^k(K_a^+)},$$

откъдето фундаменталността на  $\{Z_s\}_s$  следва от фундаменталността на  $\{z_s\}_s$  и значи границата  $Z\in H^k(K_a)$  съществува и се явява продължение на  $z\in H^k(K_a^+)$ .

Накрая, с граничен преход при  $p \to \infty$  в

$$||Z_p||_{H^k(K_a)} \le C ||z_p||_{H^k(K_a^+)}$$

виждаме, че оценката (2) е в сила и за продължения в  $H^k$ . Така доказахме следното

Допускане. Всяко  $z\in H^k(K_a^+)$  притежава продължение  $Z\in H^k(K_a),$  подчинено на оценката

$$||Z||_{H^k(K_a)} \le C ||z||_{H^k(K_a^+)}.$$

Време е да се върнем на доказателството на лемата.

Доказателство ( $C^{\infty}(K_a)$  е гъсто в  $H^k(K_a)$ ). Нека  $f \in H^k(K_a)$  и  $\varepsilon > 0$ . Трябва да намерим  $F \in C^{\infty}(\overline{K_a})$ , за което  $||f - F|| < \varepsilon$ .

**Идея** Основната (всъщност единствената, която сме виждали досега) техника за получаване на  $C^{\infty}$  функции от  $L_2$  функции идва от оператора за усредняване: знаем, че ако  $f \in L_2(\mathbb{R}^n)$ , то усреднението  $f_h$  е безкрайно гладко за всяко h > 0. Ще усредним функцията  $f \in H^k(K_a)$  в леееко стеснена област с достатъчно малък радиус на усредняване, така че  $H^k$ -нормата на усреднението да не се отдалечи много от тази на f. По този начин ще получим достатъчно близка (в  $H^k$ ) до f безкрайно гладка функция.

Преди да почнем да построяваме усреднението, ще си вземем апроксимации на производните, тъй като за близост (в  $H^k$ ) на усреднението до f е нужно производните също да са близки (в  $L_2$ ). Като елементи на  $L_2$  ( $K_a$ ), производните  $\partial^{\alpha} f$  са в  $\varepsilon$ -околност спрямо  $L_2$ -нормата на някакви функции  $\varphi_{\alpha} \in C$  ( $\overline{K_a}$ ), тоест

$$\forall \varepsilon > 0 \ \forall \alpha : |\alpha| \le k \ \exists \varphi_{\alpha} \in C(K_a) : \|\partial^{\alpha} f - \varphi_{\alpha}\|_{L_2} < \varepsilon.$$

Вместо да стесняваме  $K_a$  и да усредняваме в стеснената област, еквивалентно (но по-удобно за пресмятанията) ще разпънем  $K_a$  с коефициент  $\sigma > 1$  до

$$K_{\sigma a} := \left\{ x \in \mathbb{R}^n : |x_i| < \sigma a \right\},\,$$

разпъвайки едновременно с това и функцията f до  $F_{\sigma} \in H^k(K_{\sigma a}),$ 

$$F_{\sigma}(x) = f\left(\frac{x}{\sigma}\right),$$

а после ще усредним разпънатата функция в по-тясната област  $K_a \subset K_{\sigma a}$ .

Оценка на разтягането  $\|f-F_\sigma\|_{H^k(K_a)}$  За да оценим  $H^k$ -нормата, първо оценяваме  $L_2$ -нормите на всяка от производните поотделно. Имаме

$$\begin{split} \|\partial^{\alpha}F_{\sigma}(x) - \varphi_{\alpha}(x)\|_{L_{2}(K_{a})} &= \left\|\partial^{\alpha}F_{\sigma}(x) - \varphi_{a}\left(\frac{x}{\sigma}\right) + \varphi_{a}\left(\frac{x}{\sigma}\right) - \varphi_{\alpha}(x)\right\|_{L_{2}(K_{a})} \\ &\stackrel{\text{H-BO Ha } \Delta}{\leq} \left\|\partial^{\alpha}F_{\sigma}(x) - \varphi_{a}\left(\frac{x}{\sigma}\right)\right\|_{L_{2}(K_{a})} + \left\|\varphi_{a}\left(\frac{x}{\sigma}\right) - \varphi_{\alpha}(x)\right\|_{L_{2}(K_{a})} \\ &\leq \left\|\partial^{\alpha}F_{\sigma}(x) - \varphi_{a}\left(\frac{x}{\sigma}\right)\right\|_{L_{2}(K_{\sigma a})} + \left\|\varphi_{a}\left(\frac{x}{\sigma}\right) - \varphi_{\alpha}(x)\right\|_{L_{2}(K_{a})}. \end{split}$$

За лявото събираемо имаме

$$\begin{split} \left\| \partial^{\alpha} F_{\sigma}(x) - \varphi_{a} \left( \frac{x}{\sigma} \right) \right\|_{L_{2}(K_{\sigma a})} &\overset{\text{деф. Ha } F_{\sigma}}{=} \left\| \frac{1}{\sigma^{|\alpha|}} \partial^{\alpha} f \left( \frac{x}{\sigma} \right) - \varphi_{a} \left( \frac{x}{\sigma} \right) \right\|_{L_{2}(K_{\sigma a})} \\ &\overset{\text{\tiny H-BO Ha } \Delta}{\leq} \left\| \left( \frac{1}{\sigma^{|\alpha|}} - 1 \right) \partial^{\alpha} f \left( \frac{x}{\sigma} \right) \right\|_{L_{2}(K_{\sigma a})} + \left\| + 1 \partial^{\alpha} f \left( \frac{x}{\sigma} \right) - \varphi_{a} \left( \frac{x}{\sigma} \right) \right\|_{L_{2}(K_{\sigma a})} \\ &= \sigma^{n/2} \left( 1 - \frac{1}{\sigma^{|\alpha|}} \right) \left\| \partial^{\alpha} f \left( x \right) \right\|_{L_{2}(K_{a})} + \sigma^{n/2} \left\| \partial^{\alpha} f \left( x \right) - \varphi_{a} \left( x \right) \right\|_{L_{2}(K_{a})} \\ &\leq \sigma^{n/2} \left( 1 - \frac{1}{\sigma^{|\alpha|}} \right) \left\| \partial^{\alpha} f \right\|_{L_{2}(K_{a})} + \sigma^{n/2} \varepsilon \end{split}$$

и замествайки горе, получаваме

$$\|\partial^{\alpha} F_{\sigma}(x) - \varphi_{\alpha}(x)\|_{L_{2}(K_{a})} \leq \sigma^{n/2} \left(1 - \frac{1}{\sigma^{|\alpha|}}\right) \|\partial^{\alpha} f\|_{L_{2}(K_{a})} + \sigma^{n/2} \varepsilon + \left\|\varphi_{a}\left(\frac{x}{\sigma}\right) - \varphi_{\alpha}(x)\right\|_{L_{2}(K_{a})}.$$

Сега

$$\begin{split} \|\partial^{\alpha} f - \partial^{\alpha} F_{\sigma}\|_{L_{2}(K_{a})} &\leq \underbrace{\|\partial^{\alpha} f - \varphi_{\alpha}\|_{L_{2}(K_{a})}}_{\leq \varepsilon} + \|\partial^{\alpha} F_{\sigma} - \varphi_{\alpha}\|_{L_{2}(K_{a})} \\ &\leq \left(\mathbf{1} + \sigma^{n/2}\right) \varepsilon + \sigma^{n/2} \left(1 - \frac{1}{\sigma^{|\alpha|}}\right) \|\partial^{\alpha} f\|_{L_{2}(K_{a})} + \left\|\varphi_{a}\left(\frac{x}{\sigma}\right) - \varphi_{\alpha}(x)\right\|_{L_{2}(K_{a})}. \end{split}$$

Остава да оценим второто и третото събираемо.

• За второто събираемо имаме

$$\sigma^{n/2}\left(1-\frac{1}{\sigma^{|\alpha|}}\right) \xrightarrow[\sigma\to 1^+]{} 0,$$

следователно за някое  $\sigma > 1$ , второто събираемо е по-малко от  $\varepsilon$ .

• Тъй като  $\varphi_a$  е равномерно непрекъсната, то  $\varphi_\alpha\left(\frac{x}{\sigma}\right) \xrightarrow[\sigma \to 1]{} \varphi_\alpha(x)$ , и значи за някое  $\sigma > 1$ ,

$$\left\| \varphi_a \left( \frac{x}{\sigma} \right) - \varphi_\alpha(x) \right\|_{L_2(K_a)} \le \varepsilon.$$

От двете оценки следва, че за някое  $\sigma_0 > 1$  (б.о.о.  $\sigma_0 < 2$ )

$$\|\partial^{\alpha} f - \partial^{\alpha} F_{\sigma_0}\|_{L_2(K_a)} \le \left(1 + \sigma_0^{n/2}\right) \varepsilon + \varepsilon + \varepsilon$$
  
$$\le 4\varepsilon.$$

Сумирайки по всички  $\alpha$  с  $|\alpha| \leq k$  получаваме и аналогична оценка в  $H^k$ -нормата:

$$||f - F_{\sigma_0}||_{H^k(K_a)} \le 4n^k \varepsilon.$$

**УсредняванеТО** За достатъчно малко h>0  $(h< a(\sigma-1))$  разглеждаме усреднението  $(F_{\sigma_0})_h\in C^\infty(K_a)$  на  $F_{\sigma_0}$ . В по-тясната област  $K_a$  имаме

$$\|(F_{\sigma_0})_h - F_{\sigma_0}\|_{H^k(K_a)} \xrightarrow[h \to 0]{} 0,$$

следователно за достатъчно малко  $h = h_0$ ,

$$\left\| (F_{\sigma_0})_{h_0} - F_{\sigma_0} \right\| \le \varepsilon.$$

Остава да забележим, че

$$\|(F_{\sigma_0})_{h_0} - f\|_{H^k(K_a)} \le \underbrace{\|(F_{\sigma_0})_{h_0} - F_{\sigma_0}\|_{H^k(K_a)}}_{\le \varepsilon} + \underbrace{\|f - F_{\sigma_0}\|_{\le 4n^k \varepsilon}}_{\le 4n^k \varepsilon}$$

$$\le (1 + 4n^k) \varepsilon,$$

което означава, че построеното усреднение можем да направим достатъчно близо до f.  $\square$ 

### **2** Смяна на променливите в $H^k$

**Лема.** Нека  $\bar{Q}'\subset Q,\ f\in H^k(Q)\ u\ |\alpha|\le k$ . Тогава за  $h\le dist(Q',\partial Q),$  производната на усреднението  $f_h\in C^\infty$  е усреднението на производната, тоест

$$\partial^{\alpha} f_h = (\partial^{\alpha} f)_h$$
.

Доказателство. Ще го проверим за k=1. Нека  $1 \leq i \leq n.$  Трябва да докажем, че

$$\frac{\partial}{\partial x_i} \int\limits_{\mathcal{O}} \omega_{x,h}(y) \cdot f(y) \, \mathrm{d}y = \int\limits_{\mathcal{O}} \omega_{x,h}(y) \cdot \frac{\partial f}{\partial y_i}(y) \, \mathrm{d}y.$$

Разписваме дефиницията за обобщена производна  $\partial^{\alpha} f$  в дясната страна с тестова функция  $\omega_{x,\varepsilon}$ :

$$\int\limits_{Q} \omega_{x,h}(y) \cdot \frac{\partial f}{\partial y_i}(y) \, \mathrm{dy} = -\int\limits_{Q} \frac{\partial \omega_{x,h}}{\partial y_i}(y) \cdot f(y) \, \mathrm{dy}.$$

Следователно остава да се убедим в

$$\frac{\partial}{\partial x_i} \int_Q \omega_{x,h}(y) \cdot f(y) \, dy = -\int_Q \frac{\partial \omega_{x,h}}{\partial y_i}(y) \cdot f(y) \, dy.$$

Разписваме производната

$$\frac{\partial \omega_{x,h}(y)}{\partial y_{i}} = \frac{\partial \omega\left(\frac{x-y}{\varepsilon}\right)}{\partial y_{i}} = \frac{1}{\varepsilon}\omega'\left(\frac{x-y}{\varepsilon}\right) = \omega\left(\frac{x-y}{\varepsilon}\right)\frac{1}{\left(1-\left|x\right|^{2}\right)^{2}}\left(2\left|x\right|\right)$$

**Допускане.** Нека  $y: \bar{Q} \to \bar{\Omega} \ u \ x: \bar{\Omega} \to \bar{Q}$  са обратни една на друга функции от  $C^k$ .

Тогава,  $f \in H^k(\Omega)$  точно когато  $F = f \circ y \in H^k(Q)$ , и в този случай производните на F се смятат по обичайното правило за производна на съставна функция.

Cъщо, за тези x и y съществуват константи  $C_1, C_2, c$  които

$$C_1 \|f\|_{H^k(\Omega)} \le \|F\|_{H^k(Q)} \le C_2 \|f\|_{H^k(\Omega)} \quad \forall f \in H^k(\Omega).$$

Доказателство. Нека  $f \in H^k$ . Най-напред е ясно, че  $F \in L_2$ , защото  $F = f \circ y$  има сумируем квадрат от формулата за смяна на променливите в лебегов интеграл  $\int_O f(y(x)) \mathrm{d}x$ .

**Съществуване на първите производни.** Както в предната лема, ще апроксимираме почти навсякъде дефинираното  $f \in H^k$  с усредняване в  $C^{\infty}$ , а после ще видим, че производните на усреднението апроксимират производните на f.

За да правим изобщо усредняване, ни е нужно то да е дефинирано "и малко навън", така че стесняваме разглежданата област до  $\bar{\Omega}' \subset \Omega$ . Полагаме  $Q' = x(\Omega)$ , а  $f_h \in C^{\infty}(\Omega')$  — усреднението на f в  $\Omega'$  при достатъчно малък радиус  $h \leq \mathrm{dist}(\Omega', \partial\Omega)$ . Тогава от свойството

$$||f_h - f||_{L_2(Q)} \xrightarrow[h \to 0]{} 0$$

получаваме (отново със смяна на променливите в лебегов интеграл)

$$||F_h - F||_{L_2(Q')} = ||f_h \circ y - f \circ y|| = ||(f_h - f) \circ y|| \xrightarrow[h \to 0]{} 0.$$

Аналогична оценка искаме и за производната на F. От

$$\left\| \frac{\partial f_h}{\partial y_i} - \frac{\partial f}{\partial y_i} \right\|_{L_2(\Omega')} \xrightarrow[h \to 0]{} 0$$

следва

$$\begin{split} \left\| \frac{\partial}{\partial x_i} (f_h \circ y) - \frac{\partial}{\partial x_i} (f \circ y) \right\|_{L_2(\Omega')} &= \left\| \frac{\partial}{\partial x_i} \left( (f_h - f) \circ y \right) \right\|_{L_2(\Omega')} \\ &\leq \left\| \frac{\partial}{\partial x_i} \left( f_h - f \right) \right\| \left\| \frac{\partial}{\partial x_i} y \right\| \\ &= \tilde{C} \left\| \frac{\partial f_h}{\partial x_i} - \frac{\partial f}{\partial x_i} \right\| \\ &= \tilde{C} \left\| \left( \frac{\partial f}{\partial x_i} \right)_h - \frac{\partial f}{\partial x_i} \right\| \quad \text{(сменяме } \frac{\partial}{\partial x_i} \text{ и } (\cdot)_h) \\ &\xrightarrow[h \to 0]{} 0. \end{split}$$

От тези оценки следва, че функционалните редици  $\left\{F_{h=1/n}\right\}_{n=1}^{\infty}$  и  $\left\{\partial^{x_i}F_{h=1/n}\right\}_{n=1}^{\infty}$  са ограничени съответно от F+L и  $\partial^{x_i}F+L$ , където L е константа. Тогава в дефиницията за обобщена производна на  $F_h=f_h\circ y$ 

$$\int_{Q'} F_h \frac{\partial g}{\partial x_i} d\mathbf{x} = -\int_{Q'} \frac{\partial F_h}{\partial x_i} g d\mathbf{x} \quad \forall g \in C^1(\bar{Q})$$

можем да извършим от двете страни ограничен граничен преход при  $h \to 0$  и да получим

$$\int\limits_{Q} \underbrace{\left(\lim_{h \to 0} F_{h}\right)}_{P_{D}} \frac{\partial g}{\partial x_{i}} d\mathbf{x} = -\int\limits_{Q} \left(\lim_{h \to 0} \frac{\partial F_{h}}{\partial x_{i}}\right) g d\mathbf{x} \quad \forall g \in C^{1}(\bar{Q}),$$

с което имаме първите обобщени производни на F:

$$\frac{\partial F}{\partial x_i} = \lim_{h \to 0} \frac{\partial F_h}{\partial x_i}.$$

За да имаме F от  $H^1$ , остава само да се уверим, че производните имат сумируеми квадрати. След диференциране по правилото за диференциране на съставна функция

$$\frac{\partial F}{\partial x_i}(x) = \sum_j \frac{\partial f}{\partial y_j}(y(x)) \frac{\partial y_j}{\partial x_i}(x),$$

веднага излиза оценката

$$\left\| \frac{\partial F}{\partial x_i} \right\| \le \sum_{j} \left\| \frac{\partial f}{\partial y_j} \right\|_{L_2(\Omega)} \left\| \frac{\partial y_j}{\partial x_i} \right\|_{L_2(Q)}$$

$$\le C \|f\|_{H^1},$$

където константата C зависи само от y.

Производните от ред  $\geq 2$  получаваме след повторено диференциране във формулата за производна на съставна функция.  $\square$ 

## 3 Продължение извън Q при $\partial Q \in C^k$

#### 3.1 Локално

Да означим с  $B_r(\xi)$  кълбото  $\{x \in \mathbb{R}^n : \|x - \xi\| < r\}$  .



В следващата лема ще се уверим, че ако имаме продължение на f в околност на всяка точка ("поотделно") от границата, то можем да построим продължение на f в произволно разширение на разглежданата област.

**Лема.** Нека  $Q \subset \mathbb{R}^n$  е ограничена област,  $f \in H^k(Q)$  и във всяка точка от границата на Q е дадено продължение на f в някакво кълбо около тази точка, c "равномерно по-малка"  $H^k$  норма от f, тоест

$$\forall \xi \in \partial Q \quad \exists r_{\xi} > 0 \quad \exists F_{\xi} \in H^{k} (B_{r}(\xi)) :$$

$$F_{\xi}|_{Q} \equiv f \ u \ \|F_{\xi}\|_{H^{k}(B_{r}(\xi))} \leq C \|f\|_{H^{k}(Q)},$$

където C е константа.

Тогава във всяко разширение  $Q_{\rho} := \{x : dist(x,Q) < \rho\}$  на Q съществува продължение  $F \in H^k(Q_{\rho})$  на f, нулиращо се извън  $Q_{\rho/2}$  с "равномерно помалка" норма от f, тоест

$$\forall \rho > 0 \quad \exists F \in H^k(Q_\rho) : F\big|_Q \equiv f,$$

$$u F\big|_{Q_\rho \setminus Q_{\rho/2}} \equiv 0$$

$$u \|F\|_{H^k(Q_\rho)} \le C' \|f\|_{H^k(Q)}$$

където константата C не зависи от f.

Доказателство. С дадените по условие  $F_{\xi}$  ще образуваме краен брой продължения  $f_i$  на f в отворени разширения  $Q_i \supset Q$ , за които  $\bigcup_i Q_i \supset \bar{Q}$ . След това ще ги загладим до 0 извън  $Q_{\rho/2}$  и с подходящо претегляне ще положим сумата им за търсеното продължение.



В оцветените области използваме продължението по условие или оригиналните стойности на f, а в тъмносивата област  $\left(\frac{\rho}{2}\right)$  ще загладим скока, който се получава в общия случай между светлосивата и бялата област.

**1. Покритие и груби продължения** Нека  $\rho > 0$  е фиксирано. Можем да считаме, че радиусите  $r_{\xi}$  по условие са избрани с  $r_{\xi} < \rho \ \forall \xi$ .

Първо ще додефинираме  $r_{\xi}$  не само за  $\xi \in \partial Q$ , ами в цялото  $\bar{Q}$ . По условието на лемата около всяка точка  $\xi \in \bar{Q}$  има кълбо  $B_r(\xi), r = r(\xi)$ , в което е дефинирана или f, или нейно гладко продължение.

Ясно е, че

$$Q \subset \bigcup_{\xi \in \bar{Q}} B_{r_{\xi}/3}(\xi).$$

Ползваме само половин радиус  $\frac{1}{2}r_\xi$  с цел да имаме в последствие място, където да се случи срязването. Щом Q е ограничена, то  $\bar{Q}$  е компакт и значи от покритието  $\bigcup_{\xi\in\bar{Q}}B_{r_\xi/2}(\xi)$  можем да изберем крайно подпокритие  $B_{r_1/2}(\xi_1),\ldots,B_{r_N/2}(\xi_N).$ 

Сега определяме функциите  $f_i \in L_2(\mathbb{R}^n), i=1,\ldots,N$  по гореилюстрирания начин – (негладки) продължения на f в цялото  $\mathbb{R}^n$  с носител в  $Q \cup B_{r_i}(x_i)$ :

$$f_i(x)\coloneqq egin{cases} F_{x_i}(x) & ext{, ако } x\in B_{r_i}(x_i) \ f(x) & ext{, ако } x\in Q \ 0 & ext{, иначе} \end{cases}$$

Да направим оценка на нормата им

$$||f_i||_{H^k(Q \cup B_{r_i}(x_i))} \le ||F_{\xi_i}|| + ||f||$$

$$\le C ||f|| + ||f|| = \tilde{C} ||f||.$$

Остава да ги залепим с подходящи функции  $\gamma_i$ , за да дефинираме (вече гладко) продължение

$$F = \sum_{i} \gamma_i f_i.$$

**2.** Залепване с разлагане на единицата За да бъде F изобщо продължение на f, трябва  $F|_Q \equiv f$ . При  $x \in Q$  сме дефинирали  $f_i(x) = f(x)$ , следователно

$$F|_{Q} = \sum_{i} \gamma_{i} f_{i} = \sum_{i} \gamma_{i} f = f \sum_{i} \gamma_{i}.$$

Щом искаме  $F|_Q\equiv f$ , трябва да поискаме  $\sum_i \gamma_i|_Q\equiv 1$ . Това ни подсеща да използваме разлагане на единицата.

Нека  $\{\gamma_i\}_{i=1}^N$  е разлагане на единицата, подчинено на покритието  $\{B_{r_i/2}\}_{i=1}^N$  и съставено от финитни в  $Q_{\rho/2}$  функции, а  $F=\sum_i \gamma_i f_i$ . Съгласно току-що направената сметка и свойството  $\sum_i \gamma_i \big|_Q=1$ , F действително е npodължение на f. Остава да проверим, че то отговаря на исканите свойства:

1.  $F \in H^k(Q_\rho)$ , защото всяко  $\gamma_i$  изглажда ръбчето на съответното  $f_i$ , тъй като всяко  $f_i$  единствено може да не гладко по границата на светлосивата-област  $Q \cup B_{r_i}(x_i)$ , околност на която се съдържа  $Q_{\rho/2} \setminus B_{r_i/2}$  – допълнението на тъмната област, където  $\gamma_i$  е нулева.



- 2.  $F|_{Q_{\rho}\backslash Q_{\rho/2}}\equiv 0$ , тъй като поискахме  $\gamma_i$  да са финитни в съответното множество.
- 3.  $\|F\|_{H^k(Q_\rho)} \le C' \|f\|_{H^k(Q)}$ , тъй като

$$||F||_{H^{k}(Q_{\rho})} = \left\| \sum_{i} \gamma_{i} f_{i} \right\|_{H^{k}(Q_{\rho})}$$

$$\leq \sum_{i} ||\gamma_{i}|| ||f_{i}||$$

$$\leq \sum_{i} ||\gamma_{i}|| \tilde{C} ||f||$$

$$\leq C' ||f||,$$

като в последното неравенство използваме, че  $\gamma_i$  не зависят от f, а само от областта — тоест в нашия контекст, нормата им се явява константа.

#### 3.2 Глобално

**Теорема** (за продължението). *Нека Q и Q' са ограничени области в*  $\mathbb{R}^n$ ,  $\kappa amo\ \bar{Q}\subset Q'\ u\ \partial Q\in C^k$ .

Тогава всяко  $f \in H^k(Q)$  има финитно (нулиращо се в околност на  $\partial Q'$ ) продължение  $F \in H^k(Q')$ , за което е в сила оценката

$$||F||_{H^k(Q')} \le C ||f||_{H^k(Q)}$$

c константа C, независеща от f.

В оценката на F в теоремата можем също да вземем вместо  $H^k$ -нормата, коя да е норма  $H^s$  с  $s \leq k$ .

 $\ \ \,$ Доказателство. Ще построим продължение на f в околност на произволна точка от границата на областта, след което ще приложим предишната лема.

Нека  $\xi \in \partial Q$ . Продължение в околност  $U_{\xi}$  на  $\xi$  ще направим на 3 етапа:

- 1. Ще изправим (биективно) границата около  $\xi$  до хиперравнината  $\{y_n=0\}$ ;
- 2. Ще приложим лемата от предната секция за продължение от  $\overline{K_a^+}$  до  $\overline{K_a}$ ;
- 3. Ще изпратим продължението от  $K_a^-$  обратно зад "кривата" граница.



Щом  $\partial Q \in C^k$ , то в някоя околност  $U_\xi$  на  $\xi$  можем с точност до преномериране на променливите да представим уравнението на  $\partial Q$  във вида

$$x_n = \varphi(x_1, \dots, x_{n-1}),$$

където  $\varphi\in C^k(D)$  в област  $D\subset\mathbb{R}^{n-1}.$  Още ще поискаме в  $U_\xi$  областта Q да се намира "отгоре", тоест

$$x_n > \varphi(x_1, \dots, x_{n-1}) \quad \forall x \in U_{\xi} \cap Q.$$



Сменяме променливите така, че  $\xi$  да застане в началото на координатната система  $y_1,\dots,y_n$ , а повърхнината  $\{y_n=0\}$  да съвпадне с  $\partial Q\cap U_\xi$ , тоест

$$y' := x' - \xi'$$
$$y_n := x_n - \varphi(x').$$

Тогава  $U_\xi$  се изобразява биективно в околност  $\Omega$  на 0, а функцията  $f\big|_{Q\cap U_\xi}$  – във функцията

$$z(y) = f(y' + \xi', y_n + \varphi(y' + \xi')),$$

която, съгласно твърдение по-горе, отново е от  $H^k$ . Време е да приложим лемата от първата секция.

Нека  $K_a$  е куб с достатъчно малък радиус, че  $K_a \subset \Omega$ . Тогава z, като функция от  $H^k(\overline{K_a^+})$ , има продължение  $Z \in H^k(\overline{K_a})$ , което след обратната смяна на променливите ни дава продължение  $F_{\xi}$  на f в  $y^{-1}(K_a)$ .

 $y^{-1}(K_a)$  е отворено и съдържа  $\xi$ , и значи имаме продължение на f в някое кълбо  $B_r(\xi)$ . За да приложим предходната лема, обаче, ни е нужно още едно условие.

От свойството за смяна на променливите за функцията  $F_{\xi}$  имаме

$$||F_{\xi}||_{H^{k}(B_{r}(\xi))} \le ||F_{\xi}||_{H^{k}(y^{-1}(\Omega))} \le C_{3} ||Z||_{H^{k}(K_{a})},$$

а за функцията f –

$$||z||_{H^k(K_a^+)} \le C_4 ||f||_{H^k(Q \cap y^{-1}(\Omega))} \le C_4 ||f||_{H^k(Q)},$$

където константите  $C_3$ ,  $C_4$  зависят само от смяната y=y(x), тоест – в нашия случай – зависят от  $\partial Q$  и са универсални за всички функции, които искаме да продължим. С това вече имаме право да приложим последната лема с  $\rho < \mathrm{dist}(Q,Q')$  и да получим продължение на f около цялото Q.  $\square$ 

# 4 Продължение навътре в Q при $\partial Q \in C^k$

**Теорема.** Нека Q има гладка граница  $\partial Q \in C^k$  за някое  $k \geq 1$ . Тогава всяка функция  $f \in C^k(\partial Q)$  има продължение  $F \in C^k(\bar{Q})$ , удовлетворяващо оценката

$$||F||_{C^k(\bar{Q})} \le C ||f||_{C^k(\partial Q)},$$

в която константата C зависи само от  $\partial Q$ .

Без доказателство.