Funzioni di più variabili 1

Funzioni, grafici, insiemi di livello

$$f: \mathbb{R}^n \to \mathbb{R}; \quad \mathbf{x} = (x_1, x_2, ..., x_n) \mapsto f(\mathbf{x}) = f(x_1, x_2, ..., x_n)$$

Esempi (n = 2, 3).

$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = e^x \sin y$.

$$g: D \to \mathbb{R}, \quad g(x,y) = \frac{1}{x-y}; \quad D = \{(x,y) \,|\, x \neq y\}.$$

$$h: B \to \mathbb{R} \,, \quad h(x,y) = \sqrt{1-x^2-y^2} \,; \quad B = \{(x,y) \,|\, x^2+y^2 \le 1\} \,.$$

$$U: \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}; \quad U(x,y,z) = \frac{k}{\sqrt{x^2 + y^2 + z^2}}$$

Diversi domini di definizione (insiemi di esistenza).

Grafico: Data $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}^n$, si dice *grafico* di f l'insieme

$$\{(\mathbf{x}, f(\mathbf{x})) \mid \mathbf{x} \in D\} \subset \mathbb{R}^{n+1}$$
.

Se n = 2, il grafico si chiama "superficie cartesiana" di equazione z = f(x, y).

Esempio. Il grafico di $h(x, y) = \sqrt{1 - x^2 - y^2}$ è la superficie della *semisfera* di equazione $z = \sqrt{1 - x^2 - y^2}$ di raggio unitario e centro nell'origine (0, 0, 0).

Insiemi di livello: Si definisce insieme di livello c di f l'insieme

$$\{\mathbf{x}\in D\,\big|\,f(\mathbf{x})=c\}\subset\mathbb{R}^n$$
.

Se n = 2, curve di livello; se n = 3, superfici di livello.

Esercizio. Disegnare, al variare di $c \in \mathbb{R}$, le curve di livello c delle funzioni

$$f(x,y) = 2x^2 + y^2$$
 e $g(x,y) = x^2 - y^2$.

Funzioni di più variabili 1

3/19

Topologia dei sottoinsiemi di \mathbb{R}^n

Si dice intorno sferico di $\mathbf{x}_0 \in \mathbb{R}^n$ un insieme

$$B_r(\mathbf{x}_0) := \left\{ \mathbf{x} \in \mathbb{R}^n \mid |\mathbf{x} - \mathbf{x}_0| < r \right\}$$

per qualche r > 0.

Sia E è un sottoinsieme di \mathbb{R}^n , e sia $E^c := \mathbb{R}^n \backslash E$.

Un punto $\mathbf{x}_0 \in \mathbb{R}^n$ si dice:

- i) interno ad E se esiste un intorno di \mathbf{x}_0 contenuto in E;
- ii) esterno ad E se esiste un intorno di \mathbf{x}_0 contenuto in E^c ;
- iii) di frontiera per E se non è interno né esterno.

Equivalente a iii): un punto \mathbf{x}_0 è di frontiera per E se *ogni* intorno di \mathbf{x}_0 contiene sia punti di E che punti di E^c .

Funzioni di più variabili 1

Un punto interno ad E appartiene ad E; un punto esterno ad E appartiene ad E^c .

Un punto di frontiera può appartenere ad E o a E^c .

- $\mathring{E} :=$ insieme dei punti interni ad E;
- ∂E := insieme dei punti di frontiera per E;
- $\bar{E} := E \cup \partial E$, chiusura di E.

Ovviamente: $\mathring{E} \subseteq E \subseteq \bar{E}$.

<u>Definizione</u> Un punto \mathbf{x}_0 si dice **punto di accumulazione** per E se *ogni* intorno di \mathbf{x}_0 contiene punti di E *diversi da* \mathbf{x}_0 .

oppure...se in ogni intorno di \mathbf{x}_0 esistono *infiniti punti di E*.

Osservazioni.

Un punto di accumulazione può appartenere o non appartenere a E; ogni punto interno di E è di accumulazione;

un punto di *E* che *non* è di accumulazione si dice *punto isolato*; un punto isolato è necessariamente di frontiera.

Esercizio.

Disegnare nel piano cartesiano l'insieme

$$E = \{(x,y) \mid 1 < x^2 + y^2 \le 4\} \cup \{(0,0)\}.$$

e identificare i punti interni, esterni, di frontiera, di accumulazione, isolati.

Definizioni.

Un insieme $E \subseteq \mathbb{R}^n$ si dice:

- aperto se $E = \mathring{E}$;
- chiuso se E^c è aperto;
- **limitato** se $E \subseteq B_R(\mathbf{0})$ per qualche R > 0;
- **connesso** (per archi) se per ogni coppia di punti **x**, **y** di *E* esiste una curva continua *contenuta in E* che ha per estremi i due punti.

Caratterizzazioni utili:

E è aperto \Leftrightarrow E non contiene punti della sua frontiera;

E è chiuso $\Leftrightarrow \partial E \subseteq E$, cioè se e solo se $E = \overline{E}$.

E è chiuso \Leftrightarrow E contiene tutti i suoi punti di accumulazione.

E è limitato \Leftrightarrow esiste R > 0 tale che $\mathbf{x} \in E \Rightarrow |\mathbf{x}| \leq R$.

 $(\emptyset \in \mathbb{R}^n \text{ sono aperti } e \text{ chiusi.})$

Esempi.

Consideriamo gli insiemi

$$B = \{(x,y) | x^2 + y^2 \le 1\}, \qquad D = \{(x,y) | x \ne y\} \quad e \quad \mathbb{R}^3 \setminus \{\mathbf{0}\}.$$

Il cerchio *B* include la sua frontiera, per cui è chiuso e limitato; inoltre *B*, essendo un insieme *convesso*, è anche connesso.

L'insieme D è unione dei due semipiani aperti x-y>0 e x-y<0; poiché l'unione di due (o più) aperti è ancora un insieme aperto, D è aperto.

Ovviamente, D non è limitato.

Infine, D non è connesso perché qualunque curva continua che unisce punti dei due semipiani deve attraversare la retta x=y (dimostrarlo formalmente usando il teorema degli zeri.)

Verificare che l'insieme $\mathbb{R}^3 \setminus \{\mathbf{0}\}$ è aperto, non limitato e connesso.

Limiti e continuità

Sia $f: D \to \mathbb{R}$, con $D \subseteq \mathbb{R}^n$ e sia \mathbf{x}_0 punto di accumulazione per D.

Definizione. Si dice che

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=L$$

se vale

$$\forall \epsilon > 0 \quad \exists r : \mathbf{x} \in D \text{ e } 0 < |\mathbf{x} - \mathbf{x}_0| < r \implies |f(\mathbf{x}) - L| < \epsilon.$$

$$(\forall \, \epsilon > 0 \quad \exists \, B_r(\mathbf{x}_0) \, : \, \mathbf{x} \in D \cap B_r(\mathbf{x}_0) \setminus \{\mathbf{x}_0\} \ \Rightarrow \ |f(\mathbf{x}) - L| < \epsilon \, .)$$

Si scrive in breve:

$$f(\mathbf{x}) \to L$$
 per $\mathbf{x} \to \mathbf{x}_0$

Si dice che

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=+\infty\quad (-\infty)$$

se

$$\forall M > 0 \quad \exists r : \mathbf{x} \in D \text{ e } 0 < |\mathbf{x} - \mathbf{x}_0| < r \Rightarrow f(\mathbf{x}) > M \quad (< -M).$$

Dal punto di vista formale, sono definizioni simili a quelle dei limiti di funzioni di una variabile reale.

⇒ Valgono i noti teoremi sui limiti.

Maggiori difficoltà nelle verifiche e nei calcoli.

Definizione. Si dice che f è **continua** in $\mathbf{x}_0 \in D \subseteq \mathbb{R}^n$ se

$$\lim_{\mathbf{x}\to\mathbf{x}_0}f(\mathbf{x})=f(\mathbf{x}_0).$$

Se f è continua in ogni punto di D si dice che è continua in D.

Verifiche di esistenza e non esistenza dei limiti (per n = 2).

$$\mathbf{x} = (x, y); \qquad |\mathbf{x} - \mathbf{x}_0| = \sqrt{(x - x_0)^2 + (y - y_0)^2} \equiv \rho.$$

Per verificare che

$$\lim_{(x,y)\to(x_0,y_0)}f(x,y)=L,$$

è spesso comodo utilizzare le coordinate polari centrate in (x_0, y_0) :

$$x = x_0 + \rho \cos \theta$$
, $y = y_0 + \rho \sin \theta$, $\rho \ge 0$, $0 \le \theta < 2\pi$.

Il limite è verificato se (c.s.) esiste $g: \mathbb{R}_+ \to \mathbb{R}$ tale che

$$|f(x_0 + \rho \cos \theta, y_0 + \rho \sin \theta) - L| \le g(\rho) \to 0$$

per $\rho \to 0$.

Infatti:

$$(x,y) \rightarrow (x_0,y_0) \Leftrightarrow \rho \rightarrow 0$$

e, per la precedente maggiorazione,

$$g(\rho) \to 0 \Rightarrow f(x,y) \to L$$
.

Esempi.

Verificare che

$$\lim_{(x,y)\to(0,0)}\frac{x^2y}{x^2+y^2}=0.$$

Ponendo $x = \rho \cos \theta$, $y = \rho \sin \theta$,

$$\left|\frac{x^2y}{x^2+y^2}-0\right|=\left|\frac{\rho^3\cos^2\theta\,\sin\theta}{\rho^2}\right|=\rho|\cos^2\theta\,\sin\theta|\leq\rho\,.$$

Poiché $\rho \to 0$, il limite è verificato.

Verificare che

$$\lim_{(x,y)\to(0,1)} x \cos\left(\frac{1}{y-1}\right) + y = 1.$$

Qui conviene usare le disuguaglianze:

$$\left|x\cos\left(\frac{1}{y-1}\right)+y-1\right| \leq \left|x\cos\left(\frac{1}{y-1}\right)\right|+\left|y-1\right| \leq \left|x\right|+\left|y-1\right|,$$

e ricavare poi il risultato ponendo $x = \rho \cos \theta$, $y = 1 + \rho \sin \theta$.

Esempio di non esistenza del limite.

Sia

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 $(x,y) \neq (0,0)$

Allora $\lim_{(x,y)\to(0,0)} f(x,y)$ non esiste.

Per verificarlo, avviciniamoci all'origine lungo le due rette x=t, y=t e x=t, y=-t, dove $t\to 0$.

Le restrizioni della funzione f alle due rette valgono rispettivamente

$$f(t,t) = 1/2$$
 e $f(t,-t) = -1/2$,

per cui hanno *limiti diversi* ($\pm 1/2$) per $t \to 0$. Ma il limite di f, se esiste, è *unico*. \Box

Esercizio

Verificare che

$$\lim_{(x,y)\to(0,0)}\frac{xy^2}{x^4+y^2}=0\,,$$

mentre

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$$

non esiste.

Dai teoremi sui limiti si deducono le usuali *proprietà delle funzioni continue* (continuità della somma, del prodotto...).

In particolare:

Se $f: \mathbb{R}^n \to \mathbb{R}$ è continua in un punto \mathbf{x}_0 e $f(\mathbf{x}_0) > 0$, allora esiste un intorno $B_r(\mathbf{x}_0)$ tale che $f(\mathbf{x}) > 0$ per ogni $\mathbf{x} \in B_r(\mathbf{x}_0)$ (permanenza del segno).

Esercizio

Dimostrare che se f è continua in \mathbb{R}^n , i sottoinsiemi

$$\{ \mathbf{x} \mid f(\mathbf{x}) > 0 \}, \qquad \{ \mathbf{x} \mid f(\mathbf{x}) < 0 \}, \qquad \{ \mathbf{x} \mid f(\mathbf{x}) \neq 0 \},$$

sono aperti.

Dimostrare che ogni insieme di livello di una funzione continua in \mathbb{R}^n è un insieme *chiuso*.

Composizione di funzioni:

Se $f: \mathbb{R}^n \to \mathbb{R}$ è continua in \mathbf{x}_0 e $g: \mathbb{R} \to \mathbb{R}$ è continua in $f(\mathbf{x}_0)$, la funzione $g \circ f: \mathbb{R}^n \to \mathbb{R}$ è continua in \mathbf{x}_0 ;

Se $\mathbf{r}: \mathbb{R} \to \mathbb{R}^m$ è continua in t_0 e $f: \mathbb{R}^m \to \mathbb{R}$ è continua in $\mathbf{r}(t_0)$, la funzione $f \circ \mathbf{r}: \mathbb{R} \to \mathbb{R}$ è continua in t_0 .

Esempio

La funzione $\mathbf{x} \mapsto |\mathbf{x}|$ è continua in \mathbb{R}^n (verificarlo per esercizio).

Se g è continua in \mathbb{R}_+ , la funzione *radiale* $g(|\mathbf{x}|)$ è continua in \mathbb{R}^n .

La funzione composta $f \circ \mathbf{r}(t) = f(\mathbf{r}(t))$, si dice *restrizione di f alla curva* \mathbf{r} .

Funzioni continue: proprietà topologiche

Teorema (Weierstrass).

Sia $E \subset \mathbb{R}^n$ chiuso e limitato (compatto) e $f: E \to \mathbb{R}$ continua. Allora

Esistono
$$\mathbf{x}_m, \mathbf{x}_M \in E$$
 $t.c.$ $f(\mathbf{x}_m) \leq f(\mathbf{x}) \leq f(\mathbf{x}_M) \quad \forall \mathbf{x} \in E$.

Cioè, f assume massimo e minimo in E.

Osservazioni

- i) I punti \mathbf{x}_m , \mathbf{x}_M si dicono *punti di minimo e di massimo* per f, mentre $f(\mathbf{x}_m)$ e $f(\mathbf{x}_M)$ sono i *valori* minimo e massimo (valori estremi) di f.
- ii) Le ipotesi del teorema sono condizioni *sufficienti* per l'esistenza dei massimi e dei minimi
- iii) Nessuna informazione dal teorema sulla molteplicità dei punti di minimo o di massimo.

Teorema (degli zeri).

Sia $E \subset \mathbb{R}^n$ connesso, e $f : E \to \mathbb{R}$ continua.

Supponiamo che esistano due punti \mathbf{x} , \mathbf{y} in E tali che $f(\mathbf{x}) > 0$ e $f(\mathbf{y}) < 0$.

Allora esiste un punto $\mathbf{z} \in E$ tale che $f(\mathbf{z}) = 0$.

Dimostrazione:

Poiché E è connesso, esiste una curva $\mathbf{r}:[a,b]\to E$ tale che $\mathbf{r}(a)=\mathbf{x}$ e $\mathbf{r}(b)=\mathbf{y}$. La funzione composta

$$g(t) = f(\mathbf{r}(t))$$

è continua in [a, b] e tale che g(a) > 0, g(b) < 0.

Per il teorema degli zeri unidimensionale, esiste $\overline{t} \in (a,b)$ tale che $g(\overline{t})=0$. Ma:

$$g(\overline{t}) = f(\mathbf{r}(\overline{t})),$$

per cui f si annulla nel punto $\mathbf{z} = \mathbf{r}(\overline{t})$. \square

Osservazione. Se $f: \mathbb{R}^n \to \mathbb{R}$ è continua, l'insieme (chiuso) $\{\mathbf{x} \mid f(\mathbf{x}) = 0\}$ divide lo spazio in *componenti connesse* dove f ha segno costante.