Ускорение решения линейных систем с помощью декомпозиции на кланы

Одесская национальная академия связи, http://www.geocities.com/zsoftua

Представлена декомпозиция линейных систем на кланы. Применение декомпозиции обеспечивает ускорение вычислений для методов решения линейных систем, сложность которых превышает кубическую.

Рассмотрим линейную однородную систему из m уравнений с n неизвестными

$$A \cdot \overline{x} = 0 \,, \tag{1}$$

где A — матрица коэффициентов размерности $m \times n$, \bar{x} — векторстолбец неизвестных размерности n. Мы не будем указывать точно множества переменных и коэффициентов. Предположим только, что известен метод, позволяющий решить систему (1) и представить общее решение в форме

$$\overline{x} = G \cdot \overline{y} \,, \tag{2}$$

где G — матрица базисных решений, а \overline{y} — вектор-столбец свободных переменных.

Представим систему (1) в виде предиката

$$S(\bar{x}) = L_1(\bar{x}) \wedge L_2(\bar{x}) \wedge \dots \wedge L_m(\bar{x}), \qquad (3)$$

где $L_i(\bar{x})$ – уравнения системы:

$$L_i(\overline{x}) = (\overline{a}^i \cdot \overline{x} = 0)$$
,

 \overline{a}^i — і-я строка матрицы A . Будем предполагать также, что \overline{a}^i — ненулевой вектор, то есть, по крайней мере, один из компонентов \overline{a}^i ненулевой. Обозначим X множество неизвестных системы. Рассмотрим множество уравнений $\mathfrak{I}=\{L_i\}$ системы S . Введём отношения на множестве \mathfrak{I} .

Определение 1. Отношение близости. Два уравнения $L_i, L_j \in \mathfrak{I}$ близки и обозначаются как $L_i \circ L_j$ если и только если $\exists x_k \in X$: $a_{i,k}, a_{j,k} \neq 0$, $sign(a_{i,k}) = sign(a_{j,k})$.

Отношение близости рефлексивно и симметрично.

Определение 2. Отношение клана. Два уравнения $L_i, L_j \in \mathfrak{I}$ принадлежат к одному и тому же клану и обозначаются $L_i \circ L_j$, если и только если существует последовательность (возможно пустая) уравне-

ний $L_{l_1}, L_{l_2}, ..., L_{l_k}$ таких что: $L_{l_r} \circ L_{l_{r+1}}, r = \overline{0,k}$, $l_0 = i$, $l_{k+1} = j$. Заметим, что отношение клана представляет собой транзитивное замыкание отношения близости.

Утверждение 1. Отношение клана является отношением эквивалентности.

Утверждение 2. Отношение клана задаёт разбиение множества $\mathfrak{F}:\mathfrak{F}=\bigcup_i C^j$, $C^i\cap C^j=\varnothing$, $i\neq j$.

Определение 3. *Клан.* Блок разбиения $\{\mathfrak{I}, {}^{\mathsf{O}}\}$ будем называть *кланом* и обозначать C^j .

Определение 4. Переменные

 $X^j = X(C^j) = \{x_i \middle| x_i \in X, \exists L_k \in C^j : a_{k,i} \neq 0 \}$ будем называть переменными клана C^j . Переменные $x_i \in X(C^j)$ являются внутренними переменными клана C^j , если и только если для всех остальных кланов C^l , $l \neq j$ выполняется $x_i \notin X^l$. Множество внутренних переменных клана C^j будем обозначать \widehat{X}^j . Переменная $x_i \in X$ является контактной переменной если и только если существуют такие кланы C^j и C^l , что $x_i \in X^j$, $x_i \in X^l$. Множество всех контактных переменных обозначим X^0 . Обозначим также множество контактных переменных клана C^j как \widehat{X}^j таким образом что $X^j = \widehat{X}^j \cup \widehat{X}^j$ и $\widehat{X}^j \cap \widehat{X}^j = \emptyset$.

Утверждение 3. Контактная переменная $x_i \in X^0$ не может принадлежать различным кланам с одним и тем же знаком.

Утверждение 4. Контактная переменная $x_i \in X^0$ содержится ровно в двух кланах.

Определение 5. Клан C^j будем называть *входным кланом контактной переменной* $x_i \in X^0$ и обозначать $I(x_i)$, если и только если он содержит эту переменную со знаком плюс. Клан C^j будем называть выходным кланом контактной переменной $x_i \in X^0$ и обозначать $O(x_i)$, если и только если он содержит эту переменную со знаком минус.

Таким образом, получено с одной стороны разбиение множества уравнений на кланы, а с другой стороны, разбиение переменных на внутренние и контактные. Введём новую нумерацию уравнений и переменных. Нумерацию уравнений начнём с уравнений первого клана и так

далее до последнего клана разбиения. Нумерацию переменных начнём с контактных переменных и продолжим далее для внутренних переменных в порядке возрастания номеров кланов. Упорядочим множества уравнений и переменных в соответствии с новой нумерацией. В результате получим следующую блочную форму представления матрицы A:

$$A = \begin{vmatrix} A^{0,1} & \widehat{A}^1 & 0 & 0 & 0 \\ A^{0,2} & 0 & \widehat{A}^2 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A^{0,k} & 0 & 0 & 0 & \widehat{A}^k \end{vmatrix}.$$

Решим систему отдельно для каждого клана. Если рассматривать только переменные клана, то имеем систему уравнений

$$A^j \cdot \overline{x}^j = 0 \,, \tag{4}$$

где

$$A^j = \left\| \widecheck{A}^j \quad \widehat{A}^j \right\|, \ \overline{x}^j = \left\| \begin{smallmatrix} \widecheck{x}^j \\ \widehat{x}^j \end{smallmatrix} \right\|.$$

Систему (4) обозначим также $S^{C^j}(\overline{x})$. Заметим, что значения $X \setminus X^j$ могут быть выбраны произвольно.

Утверждение 5. Если система (1) имеет нетривиальное решение, то каждая из систем (4) также имеет нетривиальное решение.

Пусть общее решение системы (4) в соответствии с (2) имеет вид

$$\bar{x}^j = G^j \cdot \bar{y}^j \tag{5}$$

Каждая внутренняя переменная $x_i \in \widehat{X}^j$ входит ровно в одну систему (5); таким образом, для всех внутренних переменных кланов справедливо

$$\widehat{\overline{x}}^j = \widehat{G}^j \cdot \overline{v}^j$$
.

Каждая контактная переменная $x_i \in \breve{X}^j$ в соответствии с Утверждением 4 принадлежит ровно двум системам $S^{C^j}(\overline{x})$ и $S^{C^l}(\overline{x})$, где $C^j = O(x_i), \ C^l = I(x_i)$. Следовательно, её значения должны совпадать

$$\overline{x}_i^{\,j} = \overline{x}_i^{\,l}$$
 или $G_i^{\,j} \cdot \overline{y}^{\,j} = G_i^{\,l} \cdot \overline{y}^{\,l}$,

где G_i^j обозначает строку матрицы G^j соответствующую переменной \mathcal{X}_i . Таким образом, мы получаем систему

$$\begin{cases} \overline{x}^{j} = G^{j} \cdot \overline{y}^{j}, & j = \overline{1, k}, \\ G_{i}^{j} \cdot \overline{y}^{j} = G_{i}^{l} \cdot \overline{y}^{l}, & x_{i} \in X^{0}, & C^{j} = O(x_{i}), & C^{l} = I(x_{i}). \end{cases}$$

$$(6)$$

Теорема 1. Система (6) эквивалентна системе (1).

Уравнения системы (6) для контактных переменных

$$G_i^j \cdot \overline{y}^j = G_i^l \cdot \overline{y}^l$$

можно представить в блочной форме записи как

$$\left\|G_i^j - G_i^l\right\| \cdot \left\|\overline{y}^j\right\| = 0.$$

Занумеруем все переменные \bar{y}^j так чтобы получить общий вектор

$$\overline{y} = \left\| \overline{y}^1 \quad \overline{y}^2 \quad \dots \quad \overline{y}^k \right\|^T$$

и объединим матрицы $G_i^{\,j}$, $G_i^{\,l}$ в общую матрицу F . Тогда получим систему

$$F \cdot \overline{y} = 0$$
.

Полученная система имеет вид (1) следовательно, её общее решение имеет форму (2):

$$\overline{v} = R \cdot \overline{z} \ . \tag{7}$$

Построим объединённую матрицу G решений (5) системы (4) для всех кланов таким образом, что

$$\overline{x} = G \cdot \overline{y} . \tag{8}$$

Матрица имеет следующую блочную структуру

$$G = \begin{vmatrix} J^1 & \widehat{G}^1 & 0 & 0 & 0 \\ J^2 & 0 & \widehat{G}^2 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ J^k & 0 & 0 & 0 & \widehat{G}^k \end{vmatrix}^T.$$

Подставим (7) в (8):

$$\overline{x} = G \cdot R \cdot \overline{z}$$
.

Таким образом

$$\overline{x} = H \cdot \overline{z}, H = G \cdot R.$$
 (9)

Теорема 2. Выражение (9) представляет общее решение системы (1).

Заметим, что аналогичным образом можно получить результат и для неоднородных систем.

Пусть M(q) — временная сложность решения линейной системы размера q. Оценим общую сложность решения линейной системы с помощью декомпозиции. Пусть p — максимальное из количеств контактных переменных и внутренних переменных кланов. Тогда $q = k \cdot p$, $k \ge 1$. Заметим, что матрицу D = sign(A) можно рассматривать как

матрицу инцидентности сети Петри, и в [4] показано, что сложность декомпозиции сети Петри кубическая. Тогда следующее выражение представляет оценку сложности решения системы с помощью декомпозиции:

$$V(q) = V(k \cdot p) \approx (k \cdot p)^3 + k \cdot M(p) + M(p) + (k \cdot p)^3.$$

Упростим выражение:

$$V(k \cdot p) = 2 \cdot k^3 \cdot p^3 + (k+1) \cdot M(p) \approx k^3 \cdot p^3 + k \cdot M(p).$$

Оценим ускорение вычислений от использования декомпозиции. Искомое выражение имеет вид:

$$Acc(k \cdot p) = \frac{M(k \cdot p)}{k^3 \cdot p^3 + k \cdot M(p)}.$$

Следовательно, даже для полиномиальных методов степени, превышающей кубическую, получаем ускорение большее единицы. Оценим ускорение при решении диофантовых систем в целых неотрицательных числах. Так как известные методы [2,3] имеют экспоненциальную сложность $M(q) = 2^q$, получаем:

$$AccE(q) = \frac{2^q}{k^3 \cdot p^3 + k \cdot 2^p} \approx \frac{2^q}{2^p} = 2^{q-p}.$$

Таким образом, получено экспоненциальное ускорение вычислений.

- [1] Схрейвер А. Теория линейного и целочисленного программирования. В 2-х т. М.: Мир, 1991.
- [2] Крывый С.Л. О некоторых методах решения и критериях совместимости систем линейных диофантовых уравнений в области натуральных чисел // Кибернетика и системный анализ, 1999, № 4, с. 12-36.
- [3] Zaitsev D.A. Formal Grounding of Toudic Method // Proceedings of the 10th Workshop "Algorithms and Tools for Petri Nets".- Eichstaett, Germany, September 26-27, 2003, pp. 184-190.
- [4] Zaitsev D.A. Subnets with Input and Output Places // Petri Net Newsletter, Vol. 64, April 2003, pp. 3-6. Cover Picture Story.

Published: Artificial Intelligence. Intelligent and multiprocessor systems-2004, Proceedings of international conference, Vol. 1, Taganrog, TRTU, 2004, p. 259-264. In Russ.