5 Исследование работы компаратора

Использовал готовую схему (OU-4). Напряжения источников питания V2 и V3 установил в соответствии с вариантом \mathbf{X} (±17 B). Величину опорного напряжения \mathbf{V}_0 также установил в соответствии с вариантом \mathbf{X} (U₀=850 мB).

Рисунок 5.1 Схема компаратора (вариант **X**)

 $f = 1/T = 1/0.101 \approx 10 \Gamma$ ц.

Рисунок 5.3 Осциллограмма компаратора для определения Um при V_0 =850 mV

Um = 16.116 В (обведено синим цветом).

Рисунок 5.4 Осциллограмма компаратора при V_0 =850 mV для определения t_1 t_1 = 7.419 мс (обведено коричневым цветом). Точно на ось времени синий курсор установить не удалось.

$$K_3 = t_1/(t_1 + t_2) = t_1/T = 7.419/100.645 \approx 0.07.$$

Рисунок 5.5 Осциллограмма компаратора с опорным напряжением V₀=0

Период T = 99.677 мc = 0.099677 с (обведено красным цветом).

 $f = 1/T = 1/0.099677 \approx 10 \Gamma$ ц.

Рисунок 5.6 Осциллограмма компаратора для определения Um при $V_0 = 0$

Um = 16.117 В (обведено синим цветом).

Рисунок 5.7 Осциллограмма компаратора при $V_0=0$ для определения t_1 $t_1=49.677$ мс (обведено коричневым цветом).

$$K_3 = t_1/(t_1 + t_2) = t_1/T = 49.677 / 99.677 \approx 0.5.$$

Вывод:	 	 	 ,