

OpenRPAS Annexe technique

Image source : https://pixabay.com/
As of 2018/01/13

Projet de Master 2 informatique
Parcours Systèmes Autonomes Communicants
Master Informatique, Université de bordeaux
Année 2017-2018

OpenRPAS - Projet PFE / Parcours SMAC / Master Informatique / Université de bordeaux / 2017-2018 Contact : serge.chaumette@labri.fr

• L'objectif de ce projet est de mettre en œuvre un simulateur de système de drone avec ses différents composants:

- Autopilote
- Capteurs
- UC
- Communication
- Etc.

Les capteurs

- Équipements physiques
 - Téléphone mobile \rightarrow attitude
 - Raspberry Pi + capteur ultra sons → altitude
 - Arduino + capteur construit → contact

- Simulations logicielles
 - Vitesse
 - Position (calculée à partir de la vitesse, de l'attitude, de l'altitude, de l'horodatage et de la position précédente)

• Le bus lui-même

• Une API associée

- Des outils de visu/debug
 - De l'état du bus
 - Des modules connectés au bus (capteurs, AP, visu., etc.)

• Il reçoit des entrées en provenance des capteurs

- Il donne des ordres aux actuateurs
 - Monter
 - Descendre
 - Vitesse
 - Direction

Les actuateurs sont mise en œuvre par un humain

Mise en œuvre des actuateurs

- Monter/descendre
 - On fait monter/descendre le RaspberryPi
- Accélérer/ralentir
 - On modifie le slider sur l'interface

- Tourner à droite/tourner à gauche
 - On fait tourner le téléphone mobile

Simulation de l'environnement (vent, etc.)

- Monter/descendre
 - On fait monter/descendre le Pi
- Accélérer/ralentir
 - On modifie le slider sur l'interface

- Tourner à droite/tourner à gauche
 - On fait tourner le téléphone mobile

Le processeur du drone

Communique avec la GCS

- Elle communique avec le drone
 - Input
 - Position du drone
 - Output
 - Monter
 - Descendre
 - Vitesse
 - Direction
- Elle affiche la position du drone
- Elle est interfacée avec googlemap

• La GCS transmet au drone une position de destination

• La GCS trace le parcours du drone

• L'AP se charge de faire en sorte que le drone atteigne ce point et se pose.

Répartition des tâches

- Bus + API Bus
- Debug Bus + visu capteurs
- Capteurs (5 capteurs)
- AP + UC (intègre la communication avec la GCS)
- GCS (intègre la communication avec le drone)