Lecture 9 – Modeling, Simulation, and Systems Engineering

- Development steps
- Model-based control engineering
- Modeling and simulation
- Systems platform: hardware, systems software.

Control Engineering Technology

- Science
 - abstraction
 - concepts
 - simplified models
- Engineering
 - building new things
 - constrained resources: time, money,
- Technology
 - repeatable processes
- Control platform technology
- Control engineering technology

Controls development cycle

- Analysis and modeling
 - Control algorithm design using a simplified model
 - System trade study defines overall system design
- Simulation
 - Detailed model: physics, or empirical, or data driven
 - Design validation using detailed performance model
- System development
 - Control application software
 - Real-time software platform
 - Hardware platform
- Validation and verification
 - Performance against initial specs
 - Software verification
 - Certification/commissioning

Algorithms/Analysis

Much more than real-time control feedback computations

- modeling
- identification
- tuning
- optimization
- feedforward
- feedback
- estimation and navigation
- user interface
- diagnostics and system self-test
- system level logic, mode change

Model-based Control Development

Controls Analysis

The rest of the lecture

- Modeling and Simulation
- Deployment Platform
- Controls Software Development

Modeling in Control Engineering

Models

- Why spend much time talking about models?
 - Modeling and simulation could take 80% of control analysis effort.
- Model is a mathematical representations of a system
 - Models allow simulating and analyzing the system
 - Models are never exact
- Modeling depends on your goal
 - A single system may have many models
 - Large 'libraries' of standard model templates exist
 - A conceptually new model is a big deal (economics, biology)
- Main goals of modeling in control engineering
 - conceptual analysis
 - detailed simulation

Modeling approaches

- Controls analysis uses deterministic models. Randomness and uncertainty are usually not dominant.
- White box models: physics described by ODE and/or PDE
- Dynamics, Newton mechanics

$$\dot{x} = f(x, t)$$

• Space flight: add control inputs u and measured outputs y

$$\dot{x} = f(x, u, t)$$

$$y = g(x, u, t)$$

Orbital mechanics example

• Newton's mechanics

- fundamental laws
- dynamics

$$\dot{v} = -\gamma m \cdot \frac{r}{|r|^3} + F_{pert}(t)$$

$$\dot{r} = v$$

Laplace

- computational dynamics(pencil & paper computations)
- deterministic model-based prediction

Control Engineering

$$\dot{x} = f(x,t) \qquad x = \begin{vmatrix} r_2 \\ r_3 \\ v_1 \\ v_2 \\ v_3 \end{vmatrix}$$

Sampled and continuous time

- Sampled and continuous time together
- Continuous time physical system + digital controller
 - ZOH = Zero Order Hold

Servo-system modeling

- Mid-term problem
- First principle model: electro-mechanical + computer sampling
- Parameters follow from the specs

$$m\ddot{y} + \beta \dot{y} + b(\dot{y} - \dot{x}) + c(y - x) = F$$

$$M\ddot{x} + b(\dot{x} - \dot{y}) + c(x - y) = 0$$

$$F = fI, \quad T_I \dot{I} + I = gu$$

Finite state machines

TCP/IP State Machine

Control Engineering

Hybrid systems

- Combination of continuous-time dynamics and a state machine
- Thermostat example
- Analytical tools are not fully established yet
- Simulation analysis tools are available
 - Stateflow by Mathworks

PDE models

- Include functions of spatial variables
 - electromagnetic fields
 - mass and heat transfer
 - fluid dynamics
 - structural deformations
- For 'controls' simulation, model reduction step is necessary
 - Usually done with FEM/CFD data
 - Example: fit step response

Example: sideways heat equation

$$\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2}$$

$$T(0) = u; \qquad T(1) = 0$$

$$y = \frac{\partial T}{\partial x} \Big|_{x=1}$$

Simulation

- ODE solution
 - dynamical model: $\dot{x} = f(x, t)$
 - Euler integration method: $x(t+d) = x(t) + d \cdot f(x(t),t)$
 - Runge-Kutta method: ode45 in Matlab
- Can do simple problems by integrating ODEs
- Issues with modeling of engineered systems:
 - stiff systems, algebraic loops
 - mixture of continuous and sampled time
 - state machines and hybrid logic (conditions)
 - systems build of many subsystems
 - large projects, many people contribute different subsystems

Model development and validation

- Model development is a skill
- White box models: first principles
- Black box models: data driven
- Gray box models: with some unknown parameters
- Identification of model parameters necessary step
 - Assume known model structure
 - Collect plant data: special experiment or normal operation
 - Tweak model parameters to achieve a good fit

First Principle Models - Aerospace

Aircraft models

• Component and subsystem modeling and testing

CFD analysis

 Wind tunnel tests – to adjust models (fugde factors)

Flight tests – update
 aerodynamic tables and
 flight dynamics models

Airbus 380: \$13B development

Step Response Model - Process

Approximate Maps

- Analytical expressions are rarely sufficient in practice
- Models are computable off line
 - pre-compute simple approximation
 - on-line approximation
- Models contain data identified in the experiments
 - nonlinear maps
 - interpolation or look-up tables
 - AI approximation methods
 - Neural networks
 - Fuzzy logic
 - Direct data driven models

Empirical Models - Maps

- Aerospace and automotive have most developed modeling approaches
- Aerodynamic tables
- Engine maps
 - turbines jet engines
 - automotive ICE

Empirical Models - Maps

- Process control mostly uses empirical models
- Process maps in semiconductor manufacturing
- Epitaxial growth (semiconductor process)
 - process map for run-to-run control

Multivariable B-splines

- Regular grid in multiple variables
- Tensor product of B-splines
- Used as a basis of finite-element models

$$y(u,v) = \sum_{j,k} w_{j,k} B_j(u) B_k(v)$$

Neural Networks

• Any nonlinear approximator might be called a Neural Network

Linear in parameters

- RBF Neural Network
- Polynomial Neural Network`
- B-spline Neural Network
- Wavelet Neural Network
- MPL Multilayered Perceptron
 - Nonlinear in parameters
 - Works for many inputs

$$y(\bar{x}) = w_{1,0} + f\left(\sum_{j} w_{1,j} y_{j}^{1}\right), y_{j}^{1} = w_{2,0} + f\left(\sum_{j} w_{2,j} x_{j}\right)$$

$$f(x) = \frac{1 - e^{-x}}{1 + e^{-x}}$$

EE392m - Spring 2005 Gorinevsky **Control Engineering**

9-26

Multi-Layered Perceptrons

- Network parameter computation
 - training data set
 - parameter identification

$$y(\bar{x}) = F(\bar{x}; \theta)$$

Noninear LS problem

$$V = \sum_{j} \left\| y^{(j)} - F(\overline{x}^{(j)}; \boldsymbol{\theta}) \right\|^2 \to \min$$

- Iterative NLS optimization
 - Levenberg-Marquardt
- Backpropagation
 - variation of a gradient descent

Neural Net application

- Internal Combustion Engine maps
- Experimental map:
 - data collected in a steady state regime for various combination of parameters
 - 2-D table
- NN map
 - approximation of the experimental map
 - MLP was used in this example
 - works better for a smooth surface

Fuzzy Logic

- Function defined at nodes. Interpolation scheme
- Fuzzyfication/de-fuzzyfication = interpolation
- Linear interpolation in 1-D

$$y(x) = \frac{\sum_{j} y_{j} \mu_{j}(x)}{\sum_{j} \mu_{j}(x)}$$

$$very pale right too brown black colour$$

- Marketing (communication) and social value
- Computer science: emphasis on interaction with a user
 - EE emphasis on mathematical analysis

Local Modeling Based on Data

System platform for control computing

Workstations

- advanced process control
- enterprise optimizers
- computing servers(QoS/admission control)
- Specialized controllers:
 - PLC, DCS, motion controllers, hybrid controllers

Control Engineering

System platform for control computing

- Embedded: μP + software
- DSP

• FPGA

ASIC / SoC

MPC555

Embedded processor range

Control Engineering

System platform, cont'd

- Analog/mixed electric circuits
 - power controllers
 - RF circuits
- Analog/mixed other
 - Gbs optical networks

EM = Electr-opt Modulator

Functional Block Diagram of 10-Gbit/s Optical Transmitter/Receiver.

AGC = Auto Gain Control

Control Software

- Algorithms
- Validation and Verification

Ford Motor Company

Control application software development cycle

- Matlab+toolboxes
- Simulink
- Stateflow
- Real-time Workshop

EE392m - Spring 2005 Gorinevsky

Real-time Embedded Software

- Mission critical
- RT-OS with hard real-time guarantees
- C-code for each thread generated from Simulink
- Primus Epic, B787, A380

Hardware-in-the-loop simulation

- Aerospace
- Process control
- Automotive

Control Engineering

