

RDKit: The State of the Toolkit

Gregory Landrum

NIBR Informatics

Novartis Institutes for BioMedical Research

RDKit UGM 2014, Darmstadt

Overview

History

Where are we today?

What next?

Presentations, tutorials, notes, data, etc.

https://github.com/rdkit/UGM 2014

Please do pull requests or just send me materials

History and milestones

- 2000-2006: initial development work at Rational Discovery
- 2006: code open sourced and released on sourceforge.net
- 2007: First NIBR contribution (chemical reaction handling); Noel discovers the RDKit (=first rdkit-discuss post?)
- 2008: first POC of Java wrapper; Mac support added; SLN and Mol2 parsers;
- 2009: Morgan fingerprints; switch to cmake; switch to VF2 for SSS
- 2010: PostgreSQL cartridge; First iteration of the KNIME nodes; \$RDBASE/Contrib appears; SaltRemover and FunctionalGroups code
- 2011: New Java wrappers; more functionality moved to C++; InChI support; Avalontools integration
- 2012: First UGM; Speed improvements; MCS implementation; IPython integration; "RDKit Cookbook" appears
- 2013: Move to github; Pandas integration; MMFF and Open3DAlign support; PDB support; rdkit blog started
- 2014: python3 support; conda integration; experimental lucene integration;

Overview

History

Where are we today?

What next?

RDKit

RDKit: What is it?

- Open-source C++ toolkit for cheminformatics
- Wrappers for Python (2.x), Java, C#
- Functionality:
 - 2D and 3D molecular operations
 - Descriptor generation for machine learning
 - PostgreSQL database cartridge for substructure and similarity searching
 - Knime nodes
 - IPython integration
 - Lucene integration (experimental)
 - Supports Mac/Windows/Linux
- Releases every 6 months
- business-friendly BSD license
- Code: https://github.com/rdkit
- http://www.rdkit.org

The RDKit "ecosystem"

Exact same algorithms/implementations accessible from many different endpoints

Some features

- Input/Output: SMILES/SMARTS, SDF, TDT, PDB, SLN [1], Corina mol2 [1]
- "Cheminformatics":
 - Substructure searching
 - Canonical SMILES
 - Chirality support (i.e. R/S or E/Z labeling)
 - Chemical transformations (e.g. remove matching substructures)
 - Chemical reactions
- 2D depiction, including constrained depiction
- 2D->3D conversion/conformational analysis via distance geometry
- UFF and MMFF94 implementation for cleaning up structures
- Fingerprinting: Daylight-like, atom pairs, topological torsions, Morgan algorithm, "MACCS keys", etc.
- Similarity/diversity picking
- 2D pharmacophores [1]
- Gasteiger-Marsili charges
- Hierarchical subgraph/fragment analysis
- Bemis and Murcko scaffold determination
- RECAP and BRICS implementations

- Multi-molecule maximum common substructure
- Feature maps
- Shape-based similarity
- Fraggle similarity (from GSK)
- Molecule-molecule alignment
- Open3DAlign implementation
- Integration with PyMOL for 3D visualization
- Functional group filtering
- Salt stripping
- Molecular descriptor library:

Topological (κ3, Balaban J, etc.), Compositional (Number of Rings, Number of Aromatic Heterocycles, etc.), EState, SlogP/SMR (Wildman and Crippen approach), "MOE like" VSA descriptors, Feature-map vectors

- Machine Learning:
 - Clustering (hierarchical)
 - Information theory (Shannon entropy, information gain, etc.)
- Tight integration with the IPython notebook and pandas
- Integration with the InChI library

^[1] These implementations are functional but are not necessarily the best, fastest, or most complete.

The contrib dir

- LEF (Anna Vulpetti, NIBR): Local Environment of Fluorine
- PBF (Nicholas Firth, ICR): Plane of best fit descriptor
- SA_Score (Peter Ertl, NIBR): synthetic-accessibility score
- fraggle (Jameed Hussain, GSK): fragment-based similarity
- mmpa (Jameed Hussain, GSK): molecular matched pairs
- pzc (Paul Czodrowski, Merck KGaA): tools for building and validating classifiers
- ConformerParser (Sereina Riniker, ETH): parser for Amber trajectory files

RDKit: Documentation?

The documentation:

The RDKit 2013.06.1 documentation »

next | index

The RDKit Documentation

- · An overview of the RDKit
 - What is it?
 - · Functionality overview
 - The Contrib Directory
 - License
- Installation
 - · Linux and the Mac
 - Installation from repositories
 - Ubuntu 12.04 and later
 - Fedora, CentOS, and RHEL
 - MacOS
 - Building from Source
 - Prerequisites
 - Building the RDKit
 - Testing the build (optional, but recommended)
 - Advanced
 - Frequently Encountered Problems
 - Windows

Open-Source Cheminformatics and Machine Learning

Table Of Contents

An overview of the RDKit Installation Getting Started with the RDKit in Python The RDKit Book RDKit Cookbook The RDKit database cartridge

Next topic

Built using Python's standard docs tool: Sphinx

RDKit: Documentation?

Sample section from introductory docs:

Reading and Writing Molecules

Reading single molecules

The majority of the basic molecular functionality is found in module rdkit.Chem:

```
>>> from rdkit import Chem
```

Individual molecules can be constructed using a variety of approaches:

```
>>> m = Chem.MolFromSmiles('Cc1cccc1')
>>> m = Chem.MolFromMolFile('data/input.mol')
>>> stringWithMolData=file('data/input.mol','r').read()
>>> m = Chem.MolFromMolBlock(stringWithMolData)
```

All of these functions return a Mol object on success:

```
>>> m
<rdkit.Chem.rdchem.Mol object at 0x...>
```

Molecules

- Working with Molecules
- Substructure Searching
- Fingerprinting and Molecular Similarity
- Descriptor Calculation
- Chemical Reactions
- Chemical Features and Pharmacophores
- Molecular Fragments
- Non-Chemical Functionality
- Getting Help
- Advanced Topics/Warnings
- Miscellaneous Tips and Hints
- List of Available Descriptors
- List of Available Fingerprints
- Feature Definitions Used in the Morgan Fingerprints
- License

The RDKit Book

Pravious tonic

Note: docs that include python code snippets are tested.

RDKit: Who is using it?

- Hard to say with any certainty
- >900 downloads of last release
- Active contributors to the mailing list from:
 - Big pharma
 - Small pharma/biotech
 - Software/Services
 - Academia
- Contributions coming from the community (wiki pages, code patches, changes to the build system, new features etc.) as well as active use in other systems.
- Community contributions for packaging:
 - rpms/debs for Fedora/Debian linux
 - homebrew recipe for MacOS
 - conda packages

Sustainability of the RDKit

... thinking about the bus problem

This clearly isn't just a hobby project any more

Used internally in NIBR in multiple production systems

Contributions coming in from the community

I'm no longer the only one answering questions on the mailing list

Overview

History

Where are we today?

What next?

What's next?

- We'll decide some of that here in the round-table session, discussions, and the hackathon
- Obvious candidates:
 - Further performance improvements
 - Improved documentation
 - Move more code into C++ (allows access from Knime and the cartridge)
 - Better packaging
- Some things that are queued up:
 - Improved canonicalization performance
 - Molecular interaction field (MIF) implementation
 - A new molecular hash function
 - 3D shape-based alignment

Presentations, tutorials, notes, data, etc.

https://github.com/rdkit/UGM 2014

Please do pull requests or just send me materials

