Summary of Key Concepts

Math of Quantum: Single Qubits

Week of January 21, 2024

Key Terms	2
Lecture and Lab	3
Learning Objectives	3
Key Ideas	3

Key Terms

Key Term	Definition	
Inner Product	The inner product, or dot product, calculates the amount of overlap between two states.	
Bra-Ket Notation	A mathematical framework using kets to represent the state we're in and their "twin" bras to represent the state we're going to or measuring.	
Matrix	A mathematical representation for a gate. It is made up of rows and columns which act on a vector such that the final result is a vector.	

Lecture and Lab

Learning Objectives

- 1. Recognize what the inner product is and how to calculate it with statevectors and bra-kets.
- 2. Recognize how to use Born's rule for statevectors and bra-kets.
- 3. Recognize how to apply gates using matrices.

Key Ideas

1. **Statevectors** are mathematical objects that can represent quantum states.

- 2. The **inner product**, or **dot product**, calculates the amount of overlap between two states. It says how much one state contributes to another on a scale of 0 to 1. We perform this in 3 steps:
 - a. Multiply the contributions from 0.
 - b. Multiply the contributions from 1.
 - c. Add these numbers together.

$$\begin{bmatrix}
0 \\ 1
\end{bmatrix} \bullet \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\
\langle \mathbf{0} | \mathbf{1} \rangle$$

$$\begin{vmatrix}
\mathbf{1} * \mathbf{0} \\ + \mathbf{0} * \mathbf{1} \\
\hline
= \mathbf{0}$$

3. We can make quantum math easier by using **bra-ket notation**:

4. The four main states we've discussed can be represented as follows:

Vectors	Kets	Bras
$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 angle	$\langle 0 $
$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$ {f 1} angle$	$\langle 1 $
$\left[\begin{array}{cc} rac{1}{\sqrt{2}} \left[egin{smallmatrix} 1 \\ 1 \end{array} ight]$	$\ket{+}$	(+
	$ -\rangle$	$\langle - $

5. In turn the inner product can be calculated with either vectors or bra-kets:

Vectors	Kets and Bras	Value
$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \bullet \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\langle 0 1 angle$	0
$\boxed{\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}} \bullet \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\langle + +\rangle$	1
$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \bullet \frac{1}{\sqrt{3}} \begin{bmatrix} \sqrt{2} \\ 1 \end{bmatrix}$	$\frac{1}{\sqrt{3}}(\sqrt{2}\langle 0 0\rangle + \langle 0 1\rangle)$	$rac{\sqrt{2}}{\sqrt{3}}$

6. Using the inner product, we can use **Born's rule** to determine the probability of different measurement outcomes:

$$\mathbf{prob(measuring} \begin{bmatrix} a \\ b \end{bmatrix} \mathbf{in} \mathbf{the} \begin{bmatrix} x \\ y \end{bmatrix} \mathbf{state}) = \left(\begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} \right)^2$$

prob(measuring state a in state b) =
$$|\langle \mathbf{a} | \mathbf{b} \rangle|^2$$

7. Gates can be represented by grids of numbers called **matrices**:

8. We can apply gate matrices to vectors by taking an inner product with each row of the matrix and the whole vector:

$$\begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$