SEMVI/RDES/ILO16022 CO/ECE/IT

RAMRAO ADIK INSTITUTE OF TECHNOLOGY, NERUL

(D Y Patil Deemed to be University)

Program: T.Y. B. Tech.

End Semester Examination: B.Tech. Semester: VI

Course Code: ILOT6022 Course Name: Renewable and Distributed Energy

Systems (RDES)

Time: 2 hour Max. Marks: 60

Instructions: 1. All three questions are compulsory

Que. No.	Question	Max. Marks	СО	BT
Q1	Solve any Four	noitzude	ioo te n	BIN EXTR
i)	Explain the types of renewable energy systems with applications.	5	C01	ВТ2
ii)	Compare and contrast Horizontal Axis Wind Turbines (HAWT) and Vertical Axis Wind Turbines (VAWT). (Minimum 5 pts).	5	CO2	ВТ5
iii)	With a neat labelled graph explain the Maximum Power Point Tracking (MPPT) and the understanding of Current-Voltage and Power-Voltage Curves.	5	C03	ВТ2
iv)	What are the Biomass resources? Explain with the help of block diagram a Biomass based power generation system.	5	CO4	ВТ2
v.)	Classify and explain the various types of wells.	5	CO5	BT5
vi)	List the methods of Hydrogen storage? Explain any one?	5	C06	ВТ2

Que. No.	Question	Max. Marks	СО	ВТ
Q2 A	Solve any Two	unis partire		
i)	Discuss the merits and de-merits of conventional energy sources.	5	CO1	BT2
ii)	Determine the power output of a wind turbine whose blades are 12 m in diameter, and when the wind speed is 6 m/s, the air density is about 1.2 kg/m ³ and the maximum power coefficient of the wind turbine is 0.35.	5	CO2	BT5
iii)	Illustrate with neat diagram the basic principle of solar photovoltaic conversion.	5	CO3	BT4
iv)	Classify and explain the various methods of harnessing geothermal energy?	5	CO5	BT5
Q2B	Solve any One			. ,
i)	Explain the need, potential & development of renewable energy sources.	10	CO1	ВТ2
ii)	With the help of neat block/cross sectional diagram illustrate the process of Wind Energy Conversion in the Wind Power Plants (WPP).	10	CO2	BT5

RAMRAO ADIK INSTITUTE OF TECHNOLOGY, NERUL

(D Y Patil Deemed to be University)

Que. No.	Question	Max. Marks	СО	BT
Q3	Solve any Two	TIZEST TRO		
i)	What is solar PV system and their types?	10	CO3	BT4
	Illustrate the working of ON-Grid Solar system with			DIT
08.0	neat diagram, its advantages and disadvantages.		18	pd.\$:
ii)	The following data is given for a biogas digester suitable for the output of four cows:	10	CO4	BT5
	Retention time = 30 days, temperature = 30 °c dry			
	matter consumed per day = 5 kg, biogas yield = 0.38			
	m ³ /kg, Burning efficiency is 65%, methane proportion =			
	0.9, heat of combustion of methane = 38 MJ/m^3 , density			Solve
	of dry material = 55 kg/ m ³ . Find:	i lo eng		Explai
	i) Volume of the biogas digester.			applic
	ii) Volume of the biogas.	H tenator		Come
	iii) Power available from digester.	A lamina		WATE
iii)	Discuss the basic principle of Ocean Thermal Energy	10	CO6	BT2
	Conversion (OTEC). Describe a closed cycle OTEC	A		I (XELLWA)
	with its advantages and disadvantages.	lang-ostite		S ALL W

Course Outcomes (CO) -Learner will be able to:

CO1: To highlight the global and national energy scenario and issues related to them.

CO2. To enlighten the points related to wind power generation capacity.

CO3. To enlighten the points related to solar power generation capacity.

CO4. To highlight the benefits and utilization of biomass energy and geothermal energy.

CO5. To highlight the benefits and utilization of geothermal energy.

CO6. To highlight the benefits and utilization of Tidal Energy, Ocean Thermal Energy Conversion.

BT1- Remembering, BT2- Understanding, BT3- Applying, BT4- Analyzing, BT5- Evaluating, BT6- Creating