Distribuição Normal

PROBABILIDADE

TUANY CASTRO

Modelo Normal

Dizemos que X tem distribuição Normal com parâmetros μ e σ^2 , se sua função densidade de probabilidade é dada por:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, -\infty < x < \infty$$

Dizemos que $X \sim N(\mu, \sigma^2)$.

- $\Box E(X) = \mu$
- $\square Var(X) = \sigma^2$

Modelo Normal

Considere $X \sim N(\mu, \sigma^2)$ e $Z = \frac{X - \mu}{\sigma}$:

$$\Box E(Z) = E\left(\frac{X-\mu}{\sigma}\right) = \frac{E(X)-\mu}{\sigma} = \frac{\mu-\mu}{\sigma} = 0$$

 $Z \sim N(0,1)$: Normal Padrão

Modelo Normal - Exemplos

Seja $X \sim N(2,9)$, calcule a probabilidade:

A)
$$P(2 < X < 5) = P(\frac{2-2}{\sqrt{9}} < Z < \frac{5-2}{\sqrt{9}}) = P(0 < Z < 1) = 0.3413$$

B)
$$P(0 < X < 2) = P\left(\frac{0-2}{\sqrt{9}} < Z < \frac{2-2}{\sqrt{9}}\right) = P\left(-\frac{2}{3} < Z < 0\right) = P\left(0 < Z < \frac{2}{3}\right) = 0.2475$$

C)
$$P(X < 3) = P\left(Z < \frac{3-2}{\sqrt{9}}\right) = P\left(Z < \frac{1}{3}\right) = 0.5 + 0.1293 = 0.6305$$

D)
$$P(X > 4) = P\left(Z > \frac{4-2}{\sqrt{9}}\right) = P\left(Z > \frac{2}{3}\right) = 0.5 - 0.2486 = 0.2524$$

Exercícios

Exercício 7: Seja $X \sim N(4,1)$, determine:

- A) $\mathbb{P}[X \leq 4]$.
- B) $\mathbb{P}[4 < X < 5]$.
- C) $\mathbb{P}[2 \le X < 5]$.
- D) $\mathbb{P}[5 \le X \le 7]$.
- E) $\mathbb{P}[X \leq 1]$.
- F) $\mathbb{P}[0 \le X \le 2]$.

Exercícios

Exercício 8: Doentes, sofrendo de certa moléstia, são submetidos a um tratamento intensivo cujo tempo de cura foi modelado por uma densidade Normal de média 15 e desvio-padrão 2 (em dias). Seja X o tempo de cura, temos que $X \sim N(15, 4)$.

- A) Qual a probabilidade de um paciente demorar mais de 17 dias para se recuperar?
- B) Qual a probabilidade de um paciente demorar menos de 20 dias?

Exercício 9: Os depósitos efetuados em um banco durante o mês de janeiro são distribuídos normalmente com média de \$10.000,00 e desvio-padrão de \$1.500,00. Um depósito é selecionado ao acaso no mês de janeiro. Encontre a probabilidade de que o depósito seja:

- A) \$10.000 ou menos.
- B) pelo menos \$10.000
- C) Um valor entre \$12.000 e \$15.000
- D) Maior do que \$20.000

Aproximação Normal para o Modelo Binomial

Exemplo: Estudo do sindicato dos Bancários indica que cerca de 30% dos funcionários de banco têm problemas de estresse, provenientes das condições de trabalho. Numa amostra de 200 bancários, qual seria a probabilidade de pelo menos 50 com essa doença?

Admitindo que esses bancários foram sorteados ao acaso dentre todos os trabalhadores dessa categoria, podemos considerar que cada um deles tem a mesma probabilidade de ter ou não problema de estresse. Assim, X é o número total de bancários com problema dentre os 200 funcionários:

$$X \sim Bin(200; 0,3)$$

Queremos calcular:

$$P(X \ge 50) = \sum_{k=50}^{200} P(X = k) = \sum_{k=50}^{200} {200 \choose k} 0,3^k 0,7^{200-k} \approx 0,9304$$

Aproximação Normal para o Modelo Binomial

Como a obtenção desse resultado será trabalhoso, podemos obter uma probabilidade aproximada através da distribuição Normal.

$$X \sim Bin(200; 0,3)$$

 $E(X) = 200 * 0,3 = 60$
 $Var(X) = 200 * 0,3 * 0,7 = 42$
 $Y \sim N(\mu = 60; \sigma^2 = 42)$

$$P(X \ge 50) \approx P(Y \ge 50) = P\left(Z \ge \frac{50-60}{\sqrt{42}}\right) = P(Z \ge -1.54) = 0.5 + 0.4386 = 0.9386$$

Aproximação Normal para o Modelo Binomial

