Operační systémy

Jiří Zacpal

DEPARTMENT OF COMPUTER SCIENCE PALACKÝ UNIVERSITY, OLOMOUC

KMI/YUDIT Úvod do informačních technologií

Osnova

- Co je to operační systém
- Proces
- Správa operační paměti
- Souborový systém
- Správa zařízení

Literatura

- Aleš Keprt: Operační systémy
- Andrew Tanenbauma: Modern Operation Systems
- http://phoenix.inf.upol.cz/~outrata/courses/udit/syllabus.html

Operační systém

Co to je operační systém

- základní softwarové vybavení počítače rozhraní mezi uživatelem a hardware počítače
- umožňuje programům (aplikacím) běh na/v počítači pomocí programového rozhraní (API) a uživatelům práci s počítačem pomocí svého uživatelského rozhraní (UI) a programů
- cíl: snadné a efektivní využití počítače (pro uživatele i aplikace)
 - víceméně protichůdné požadavky dříve důraz na efektivitu (a vůbec možnost), nyní spíše snadnost
 - kompromis, závisí na způsobu využití a typu počítače -> různé OS
- poskytuje abstrakci (funkcí) hardware počítače, odstiňuje uživatele a aplikace od hardware

Operační systém

- Virtuální počítač OS prostředník mezi hardwarem a aplikačními programy
- Správa prostředků OS přiděluje a odebírá systémové prostředky procesům

Části OS

- jádro (kernel) vlastní OS,
- základní obslužné programy pro práci s OS a zdroji počítače, např. administrátorské a diagnostické nástroje, diskové utility, programy pro práci se zařízeními, sítí apod.
- uživatelské rozhraní (UI) součást OS (jádra?) nebo programy? -> záleží na typu OS, neinteraktivní (dávkové), interaktivní - textová konzole s interpretem příkazů (shell) nebo grafické s okenním systémem

Jádro

- Jádro je základním kamenem operačního systému. Zavádí se do operační paměti počítače při startu a zůstává v činnosti po celou dobu běhu operačního systému.
- Druhy:
 - Monolitické jádro jádro je jedním funkčním celkem. Tento typ jádra je použit v operačním systému UNIX.
 - Mikrojádro jádro je velmi malé a všechny oddělitelné části pracují samostatně jako běžné procesy.
 - Hybridní jádro kombinuje vlastnosti monolitického jádra i mikrojádra. Tento typ jádra je použit u operačních systémů Windows.

Typy OS

- univerzální pro desktopové a přenosné počítače typu PC, servery, mainframe aj.
- embedded specializované pro embedded zařízení, dnes i upravené univerzální (např. Linux, MS Windows)
- reálného času zaručení vyřízení požadavku/odpovědi v pevně daném čase, např.
 VxWorks, QNX, upravené univerzální (např. RTLinux, MS WindowsCE) i HW řešení, např.
 pro řízení strojů
- distribuované pro běh současné na více počítacích, simulace např. jedné společné paměti, pro počítačové klastry (cluster)
- dnes nejvíce používané: na desktopových PC MS Windows (majoritní), Mac OS X,
 GNU/Linux, Unix, na (síťových) serverech unixové, na embedded zařízeních různé (MS Windows, Linux)

Linux

- Linux je označení pro jádro operačního systému. Na počítači se setkáte s tzv. distribucí.
- Nejznámější distribuce:
 - Debian Jedna z nejstarších distribucí
 - Fedora Sponzoruje firma Red Hat, jejíž distribuce je na tomto systému založena.
 - Slackware Jedna z prvních distribucí, vhodná spíše pro pokročilejší uživatele.
 - Mandriva (dříve Mandrakelinux) Tato distribuce používá balíčkovací systém RPM.
 - SUSE Původně samostatná distribuce, později koupena firmou Novell.
 - Ubuntu Tato distribuce vhodná pro začátečníky vychází z Debianu.

Windows

- Operační systém (či správně operační systémy) Windows jsou asi nejznámější operační systémy.
- Druhy:
 - Windows pro DOS
 - 3.1x (1992)
 - Win 95, 98, Me
 - Windows NT (1993)
 - Win 2000, XP, 7,8,8.1
 - Windows CE
 - Windows Mobile, Windows Phone

Vykonávání instrukcí

- program = sekvence (binárních) kódů instrukcí, registrů procesoru a dat (čísla, texty, hodnoty adres do operační paměti a vstupně/výstupních zařízení)
- stejná (RISC) nebo proměnná (CISC) délka kódů instrukcí 1 až 2 byty
- operandy = parametry instrukcí, registry a data, specický počet (obvykle 0 až 2),
 přípustné kombinace pro každou instrukci
- výsledek instrukce často ukládán do prvního operandu
- vykonávání instrukce
 - trvá určitý počet taktů (na vnitřní frekvenci procesoru), jednotky až desítky
 - až 7 fází: např. načtení, dekódování, načtení operandů, provedení, uložení výsledku
 - pipelining částečně současné provádění instrukcí, fáze za sebou, nelze vždy, např.
 podmíněné skoky

Programovací jazyky

- Jazyk symbolických adres ("assembler")
 - jazyk (textově) pojmenovaných instrukcí, např. MOV, ADD, MUL, AND, CMP, JE, JMP, a registrů procesoru, (zápisů) čísel a textu, hodnot adres, proměnných atd.

MOV eax, promenna1; CMP ebx, promenna2; JE adresa

- překládán do kódu instrukcí
- přímá a nepřímá adresa do paměti adresa vypočítána z hodnot v registrech a zadaných přímo, např. posunutí + báze + index x faktor, použití pro přístup do pole, k lokální proměnné apod.
- Vyšší programovací jazyky
 - vyšší úroveň abstrakce, např. iterace přes prvky seznamu -> cyklus průchodu seznamem -> jména instrukcí procesoru (přesuny z/do paměti, log. operace, skoky aj.) -> kódy instrukcí
 - překladač přeloží (přepíše) program z jednoho (vyššího) prog. jazyka do jiného (nižšího) jazyka, typicky až do kódù instrukcí
 - interpret přeloží program z prog. jazyka do programových bloků interní formy a tyto vykoná

Přerušení (Interrupt)

- původně pro řešení komunikace (rychlého) procesoru s (pomalými) zařízeními:
 - dříve: vyslání požadavku, aktivní čekání na vyřízení (= smyčka testující stav oznamující vyřízení), pokračování ve výpočtu
 - dnes: vyslání požadavku, pokračování ve výpočtu zatímco zařízení zpracovává požadavek, oznámení vyřízení požadavku = přerušení procesoru
 - př. procesor vyšle požadavek čtení sektoru z disku (dá požadavek s číslem sektoru na sběrnici) a pokračuje ve výpočtu, disk najde sektor, načte do své cache a vyvolá přerušení, procesor vyšle požadavek zaslání bytu dat, disk pošle, procesor uloží do operační paměti, další byte atd.
- pozastavení vykonávání programu, vykonání programu (rutiny) obsluhy přerušení implementované OS (např. ovladači zařízení), pokračování vykonávání programu (od následující instrukce)
- během vykonávání obsluhy přerušení další přerušení zakázána nebo systém priorit přerušení

Přerušení (Interrupt)

- hardwarová přídavné karty (dříve), disková zařízení (dříve), vstupně/výstupní zařízení aj., 256 přerušení u Intel 80x86
- softwarová vyvolána OS pro vlastní potřeby fungování, programy pro služby OS (tzv. systémová volání)
- DMA (Direct Memory Access) způsob přenosu dat mezi zařízením a pamětí přímo, pro větší množství dat, např. disková zařízení, procesor pouze naprogramuje řadič DMA a vyšle prvotní požadavek, zbytek řeší řadič

Procesy

Procesy

- Proces je spuštěný program
- Vlákno je prvek reprezentující vykonávání kódu procesu. Neformálně řečeno, vlákno je "vykonávání kódu", zatímco proces je "paměť a další prostředky".
- Stavy procesů:
 - Vytvořený (created)
 - Běžící (running)
 - Připravený (ready)
 - Blokovaný (blocked)
 - Ukončený (terminated)

Stavy procesů

Plánování procesů

- Plánování procesů řeší výběr, kterému následujícímu procesu bude přidělen procesor a proces tak poběží.
- Tuto úlohu má na starosti plánovač (scheduler), který je součástí operačního systému.
- Plánovače používají dvě základní strategie:
 - cyklickou obsluhu každému procesu je přiděleno stejné časové kvantum
 - systém priorit každý proces má určitou prioritu s tím, že procesům s vyšší prioritou
 je přidělován procesor přednostně
- V praxi se používá kombinace obou strategií

Přepnutí kontextu

- Při přepínání procesů je nutné, aby proces po opětovném spuštění pokračoval od stejného místa, ve kterém byl přerušen a aby v procesu až na časové zpoždění nebylo poznat, že k přerušení došlo => přepínaní kontextu
- uložení kontextu (anglicky context save) kompletní uložení stavu procesu
- obnovení kontextu (anglicky context restore) zpětné načtení stavu procesu do procesoru
- změna kontextu (anglicky context switch) uložení kontextu jednoho a obnovení kontextu druhého

Komunikace a synchronizace

- pro procesy a pro vlákna
- procesy jsou paměťově oddělené (každý má svoji přidělenou paměť) komunikace pomocí speciální sdílené paměti a posíláním zpráv
- vlákna sdílejí paměť procesu komunikace pomocí sdílení paměti -> soupeření (race) o
 sdílenou paměť a jiné zdroje počítače, zvláště při více procesorech
- chyba souběhu (race condition) = chybné pořadí běhu vedoucí k nekonzistetním stavům při konfliktních operacích, např. čtení-zápis - fáze operací (i instrukcí procesoru) např. čtení z paměti, operace, zápis do paměti

Synchronizace

- určení specifického pořadí běhu
- atomické operace = nedělitelné, nepřerušitelné, sekvenčně prováděné (ty konfliktní), např. nastavení nebo inkrementace atomické proměnné, použití pro implementaci tzv. synchronizačních primitiv
- synchronizační primitiva: zámek (mutex), semafor (počítadlo), kritická sekce, událost, monitor a další
- hardwarová podpora: atomické instrukce procesoru (test-and-set, fetch-and-add, compare-and-swap aj.), zakázání přerušení (při jednom procesoru), preempce (při více procesorech)
- softwarové implementace: Dekkerův (1965), Petersonův (1981) algoritmus, vyžadují atomické uložení hodnoty do proměnné
- implementovaná a poskytovaná OS, ale i využívaná v rámci samotného OS!

Uváznutí (deadlock)

- vzájemné čekání na výlučně vlastněné zdroje (např. chráněné zámky) při modelu využívání "požadavek na přivlastnění-používání-uvolnění"
- podmínky vzniku:
 - 1. výlučné vlastnictví,
 - čekaní při vlastnictví jiného,
 - vzájemné (cyklické) čekání,
 - 4. nemožnost preempce (násilné odebrání prostředku)
- řešení deadlocku:
 - neřešení (ignorování),
 - detekce a zotavení,
 - prevence (zamezení vzniku, tj. nenaplnění podmínek),
 - vyhýbání se (přidělování prostředkù tak, aby nenastaly podmínky)
- dnešní OS neřeší (ignorují)

Správa operační paměti

Správa operační paměti

- S operační pamětí souvisí především tyto funkce, na kterých se podílí hardware a operační systém:
 - přidělování (alokace) a uvolňování (dealokace) paměti procesům na požádání
 - udržování informací o obsazení paměti
 - zabezpečení ochrany paměti zabránění přístupu procesu k paměti mimo jeho přidělený region
 - realizace virtuální paměti

Přidělování operační paměti

- Operační systém může přidělovat procesům buď:
 - souvislé úseky paměti
 - přidělování pevných bloků paměti
 - přidělování bloků paměti proměnné velikosti
 - nebo malé bloky paměti stránky
 - fyzický adresový prostor rámce
 - logický adresový prostor stránky
 - Kdykoliv proces přistupuje do paměti, je logická adresa hardwarově přeložena na fyzickou adresu

Virtuální paměť

- Operační paměť (zde se jí říká primární) rozšířena o místo na pevném disku (sekundární paměť), které je sice výrazně pomalejší, ale také výrazně lacinější
- Systém virtuální paměti funguje stejně jako stránkování, jen fyzický prostor je rozšířen o místo na disku
- Při přístupu procesu ke stránce, která není v primární paměti zajistit její nahrání do primární paměti.
- Pokud není v primární paměti volné místo, je nutno ještě nějakou stránku z primární paměti přemísti do sekundární. Tomuto procesu se říká swapování.

Souborový systém

Souborový systém

- Úkolem operačního systému je především:
 - Umožnit procesům ukládat velké množství informací obvykle ve formě souborů.
 - Umožnit přístup k těmto informacím všem procesům, které o to požádají.
- Aby bylo možné tyto úkoly správně plnit, musí být data ve vnější paměti nějak organizována. Organizaci těchto dat se říká souborový systém.
- Nejčastější způsob organizace dat je pomocí hierarchického uspořádání souborů a adresářů.

Souborový systém

- Pevné disky jsou obvykle na fyzické úrovni rozděleny na oddíly (partitions).
- Souborový systém se rozkládá jen na konkrétním oddílu a ne na celém disku.
- Operační systém vnímá jednotlivé oddíly jako tzv. svazky (volumes), které se do systému připojují pomocí tzv. mountování (mounting).

Soubory

- Soubor je pojmenovaná posloupnost bytů, která je uložena na nějakém datovém médiu (pevný disk, CD disk, flash disk, ...)
- Každý soubor je charakterizován svým jménem.
- Část jména, která je za znakem ".", se nazývá přípona názvu souboru.
- Většina operačních systému podporuje různé druhy souborů. Nejzákladnější rozdělení je na:
 - Normální soubory soubory, které obsahují uživatelské informace. Tyto se pak rozdělují na textové a binární soubory.
 - Adresáře systémové soubory, které udržují strukturu souborového systému.

Atributy souboru

- Atributy další informace o souboru:
 - délka velikost souboru v počtech bajtů,
 - přístupová oprávnění kdo smí se souborem pracovat (čtení, zápis, ...) pro uživatele a skupiny,
 - vlastník uživatel vlastnící soubor (též skupina),
 - časové informace (čas vytvoření, čas posledního přístupu k souboru, čas poslední změny v obsahu souboru, ...).
- Tyto atributy jsou většinou uloženy v adresáři, ve kterém je soubor uložen

Adresáře

- Adresář je zvláštní druh souboru, který obsahuje množství záznamů
- Každý záznam se týká jednoho souboru (normálního nebo adresáře) a obsahuje jeho jméno, atributy a adresu, kde je na disku uložen.
- Některé operační systémy umožňují vytvořit jen jeden adresář (tento se nazývá kořen root), který obsahuje všechny soubory
- Většina moderních operačních systémů však umožňuje vytvářet libovolné množství adresářů, které vytvářejí hierarchickou strukturu souborového systému.
- Cesta určuje posloupnost adresářů od kořenového adresáře až k samotnému souboru

Linky

- V souborovém systému rozlišujeme dva druhy linků:
 - Hard link což je ukazatel na fyzické tělo souboru. Každý pojmenovaný soubor na disku je tedy vlastně hard link. Moderní operační systémy umožňují vytvářet více hard linků k jednomu souboru.
 - Soft link je odkaz na jiný soubor, který je specifikován jeho cestou.

Souborové systémy

- FAT32 je jednoduchý souborový systém, proto je podporován prakticky všemi operačními systémy
 - FAT tabulka
 - kořenový adresář
- NTFS byl navržen jako souborový systém pro Windows NT
 - podpora pro přidělování práv k souborům
 - kompresi na úrovni souborového systému
 - šifrování
 - diskové kvóty umožňující nastavit maximálně využitelné místo na diskovém oddíle pro konkrétního uživatele
 - sturktura
 - bootovací sektor
 - master file table (MFT), což je seznam všech souborů na disku
 - systémové soubory
 - ostatní soubory.
- UFS (Unix File Systém) je souborový systém používaný v Unixu

Správa zařízení

Správa zařízení

- Jednou ze základních funkcí operačního systémů je správa vstupně výstupních zařízení
- Vstupní zařízení se dělí na:
 - Bloková (například disky). V těchto zařízeních se data ukládají v blocích (nejčastější velikost bloku je od 128 B do 1 024 B), které mají svou adresu. Základní vlastností těchto zařízení je to, že umožňují čtení či zápis celého bloku.
 - Znaková (například klávesnice, myši, tiskárny). Tato zařízení pracují s proudy znaků, které nemají žádnou adresu. Data se tedy čtou a jsou i ukládána po znacích.

Správa zařízení

- Úkolem operačního systému při správě zařízení je především:
 - Zajistit nezávislost na zařízení. To znamená, že například můžeme napsat program, který vytváří a ukládá soubory na libovolná zařízení (disk, flash disk, ...) a pro každé z těchto zařízení není potřeba tento program měnit.
 - Zajistit ošetření chyb zařízení. Při čtení nebo zápisu na zařízení se může vyskytnout chyba. Operační systém by měl tuto chybu odstranit, pokud to jde, a pokud ne, měl by tuto chybu ošetřit (pokusit se o danou akci znovu, ohlásit chybu, ...).
 - Zajistit sdílení zařízení. Každé zařízení může využívat více uživatelů v tu samou chvíli.
- Tyto cíle zajišťuje operační systém pomocí ovladačů zařízení

Disky

- Disky jsou vstupně-výstupní zařízení, které slouží pro zápis a čtení dat, obvykle ve formě souborů
- Nevýhodou oproti operační paměti je větší časová náročnost při čtení i ukládání dat. Čas pro tyto operace se skládá z:
 - hledání přesunu ramena nad odpovídající cylindr,
 - rotace čas pro najetí správného sektoru pod čtecí hlavu,
 - přenos dat čtení sektoru.

RAID

- RAID je metoda zabezpečení dat proti selhání pevného disku
- Zabezpečení je realizováno specifickým ukládáním dat na více nezávislých disků, kdy jsou uložená data zachována i při selhání některého z nich
- Metody:
 - Pruhování
 - Zrcadlení
- Druhy: RAID 0, RAID 1, RAID 5, RAID 6

Podrobnější informace

- J. Hronek: Struktura počítačů
- P. Tišnovský: Seriál Co se děje v počítači (http://www.root.cz/serialy/co-se-deje-v-pocitaci/)
- http://phoenix.inf.upol.cz/~outrata/courses/udit/syllabus.html

Příště

- Počítačové sítě, technologie a principy fungování. Celosvětová síť Internet a její služby.
- Studijní texty:
 - P. Příhoda: Počítačové sítě
 - uvt_3_pocitacove_site.pdf (Vyuka\KMI_UVT\vyukovy_text)
 - Andrew S. Tanenbauma Computer Networks.
 - Jiří Peterka: Báječný svět počítačových sítí (http://www.earchiv.cz/i serial.php3)