DOCKET NO.: 274300US2PCT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Masaki YAMADA, et al.

SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/JP04/15851

INTERNATIONAL FILING DATE: October 26, 2004

FOR: POWER SUPPLY APPARATUS

REQUEST FOR PRIORITY UNDER 35 U.S.C. 119 AND THE INTERNATIONAL CONVENTION

Commissioner for Patents Alexandria, Virginia 22313

Sir:

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

COUNTRY

APPLICATION NO

DAY/MONTH/YEAR

Japan 2003-366077

27 October 2003

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/JP04/15851. Receipt of the certified copy(s) by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

Respectfully submitted, OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Customer Number 22850

(703) 413-3000 Fax No. (703) 413-2220 (OSMMN 08/03) Marvin J. Spivak Attorney of Record Registration No. 24,913 Surinder Sachar

Registration No. 34,423

日本国特許庁 JAPAN PATENT OFFICE

REC'D 2 3 DEC 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年10月27日

出 願 番 号 Application Number:

特願2003-366077

[ST. 10/C]:

[JP2003-366077]

出 願 人 Applicant(s):

三菱電機株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年12月 9日

特許庁長官 Commissioner, Japan Patent Office 1) 11]

【書類名】 特許願 【整理番号】 547525JP01 【提出日】 平成15年10月27日 【あて先】 特許庁長官 殿 【国際特許分類】 H02J 9/06 【発明者】 【住所又は居所】 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 【氏名】 山田 正樹 【発明者】 【住所又は居所】 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 【氏名】 岩田 明彦 【発明者】 【住所又は居所】 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 【氏名】 畠山 善博 【特許出願人】 【識別番号】 000006013 【氏名又は名称】 三菱電機株式会社 【代理人】 【識別番号】 100073759 【弁理士】 【氏名又は名称】 大岩 増雄 【選任した代理人】 【識別番号】 100093562 【弁理士】 【氏名又は名称】 児玉 俊英 【選任した代理人】 【識別番号】 100088199 【弁理士】 【氏名又は名称】 竹中 岑生 【選任した代理人】 【識別番号】 100094916 【弁理士】 【氏名又は名称】 村上 啓吾 【手数料の表示】 【予納台帳番号】 035264 【納付金額】 21,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1

【物件名】

要約書 1

【曹類名】特許請求の範囲

【請求項1】

電源と負荷とを結ぶ系統に直列に接続され、電源から負荷に対する電力の供給および遮断を行う直送スイッチと、前記系統に並列に接続された第一の単相インバータと、前記系統に直列に接続された第二の単相インバータと、前記第一及び第二の単相インバータの直流側端子に接続されたバッテリーを備えたことを特徴とする無瞬断電源装置。

【請求項2】

前記第二の単相インバータは前記第一の単相インバータと負荷との間に接続されたことを特徴とする請求項1記載の無瞬断電源装置。

【請求項3】

前記第一及び第二の単相インバータの少なくとも一方は、DC―DCコンバータを通してバッテリーに接続されたことを特徴とする請求項1あるいは請求項2に記載の無瞬断電源装置。

【請求項4】

前記第一及び第二の単相インバータは、それぞれ異なる出力電圧が互いに重畳して前記 負荷に供給されるように接続したことを特徴とする請求項1記載の無瞬断電源装置。

【請求項5】

前記第一及び第二の単相インバータは、系統電圧が低下し、直送スイッチが切り離された以降において、両者の出力電圧の組み合わせによって複数の出力レベルを持つ電圧波形からなる擬似正弦波を形成し、負荷に出力することを特徴とする請求項1~4のいずれかに記載の無瞬断電源装置。

【請求項6】

前記第二の単相インバータは、正常運転時の系統電圧変動に対し、その出力電圧のパルス幅あるいは電圧値を制御することにより、上記変動分を補償する電圧を系統に重畳するようにしたことを特徴とする請求項1~4のいずれかに記載の無瞬断電源装置。

【請求項7】

前記第一及び第二の単相インバータの少なくとも一方は、DC―DCコンバータを通してバッテリーに接続され、上記DC―DCコンバータを介して前記第一及び第二の単相インバータ間においてエネルギーの授受を行うようにしたことを特徴とする請求項1に記載の無瞬断電源装置。

【請求項8】

前記第一の単相インバータは互いに直列接続された複数のインバータ群から構成された 特徴とする請求項1に記載の無瞬断電源装置。

【請求項9】

前記第一の単相インバータを構成する複数の単相インバータが保有する直流電源の電圧の関係は、少なくとも2つは1:2もしくは1:3であることを特徴とする請求項8に記載の無瞬断電源装置。

【請求項10】

前記第一の単相インバータは、正常時の無効電力を補償するような電流を系統に流出入するように制御されることを特徴とする請求項8あるいは請求項9に記載の無瞬断電源装置。

【請求項11】

前記第二の単相インバータは、その直流電圧が第一の単相インバータ群のうち最も小さな電圧を出力する単相インバータの直流電圧の0.5あるいはそれ以上としてPWM制御することを特徴とする請求項8に記載の無瞬断電源装置。

【請求項12】

前記第二の単相インバータは、その直流電圧が系統電圧の低下・増加量に応じて、上記DC-DCコンバータによって変化されることを特徴とする請求項7に記載の無瞬断電源装置。

【請求項13】

【請求項14】

前記第一の単相インバータは、系統電圧が低下し、直送スイッチが切り離された以降において、複数の出力レベルを持つ電圧波形からなる擬似正弦波を形成し、負荷に出力することを特徴とする請求項13に記載の無瞬断電源装置。

【請求項15】

前記直送スイッチは機械式リレーあるいは半導体スイッチで構成されたことを特徴とする請求項1に記載の無瞬断電源装置。

【魯類名】明細書

【発明の名称】無瞬断電源装置

【技術分野】

[0001]

この発明は、無瞬断電源装置に関し、特に系統に直列に直送スイッチを接続した無瞬断電源装置に関するものである。

【背景技術】

[0002]

従来、無瞬断電源装置として種々の回路構成のものが提案されており、例えば特開平1-222635号公報 (特許文献1参照)や特開平8-223822号公報 (特許文献2参照) に示されるものがある。

[0003]

特許文献1に示される従来の無瞬断電源装置は、交流入力電圧を一旦直流に変換した後、再び交流に逆変換して出力する定電圧定周波数電源装置(CVCF)と、このCVCFをバイパスする半導体スイッチからなるバイパス回路とを備えており、正常時も電圧低下時もコンバータを通して一旦交流を直流化し、その直流をインバータで交流化する構成を採っている。このため、正常時においても常に電流が半導体を通過することとなり、ロスが常に発生すると共に、装置全体の総合効率を低下させ、冷却のために装置が大型化する問題がある。また、インバータの出力はPWM制御された矩形波が必要となるため、その平滑のために大型のフィルタが必要となる課題があった。

[0004]

また、特許文献 2 に示される従来の無瞬断電源装置では、正常時には直送スイッチで商用ラインを負荷に直結しているが、商用ラインが一定電圧以下に低下した場合には、直送スイッチを切り離し、インバータと昇圧トランスを通してバッテリーの電力を負荷に供給する構成を採っている。このような構成の場合、昇圧トランスは、インバータにて発生する矩形電圧の平滑機能を備える必要があり、また商用周波数の電圧を伝達する必要があるため、電圧時間積(磁束量)の大きなものが要求されることとなり、そのため大型で高価なシステムとなる問題があった。

[0005]

【特許文献1】特開平1-222635号公報

【特許文献2】特開平8-223822号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

この発明は、上述のような課題を解決するためになされたもので、2種類の単相インバータの出力を組み合わせることにより、正常時における系統電圧の変動を補償すると共に、系統が所定電圧以下に低下して直送スイッチが切り離された後でも、負荷に所定電圧を供給するようにした無瞬断電源装置を提供するものである。

【課題を解決するための手段】

[0007]

この発明に係る無瞬断電源装置は、電源と負荷との間に接続され系統に対する電力の供給・遮断を行う直送スイッチと、前記負荷に並列に接続された第一の単相インバータと、前記負荷に直列に挿入された第二の単相インバータと、前記第一及び第二の単相インバータの直流側に接続されたバッテリーを備えたものである。

【発明の効果】

[0008]

この発明の無瞬断電源装置によれば、単相インバータの組み合わせにより、増電圧・減電圧補償を行うと共に、停電時の電圧補償が可能となり、いかなる電圧の状態においても負荷に安定した電圧を供給できる効果を有する。

【発明を実施するための最良の形態】

図1は本発明の実施の形態1に係る無瞬断電源装置の概略構成図を示している。図1において、電源1は通常、系統電圧 V_0 を有する商用交流電源であり、リレー等の機械式スイッチからなる直送スイッチ3を介して負荷2へ直接電力を供給している。上記負荷2には、それぞれの交流側端子が上記負荷と並列関係に挿入された第一の単相インバータ4と、上記負荷と直列関係に挿入された第二の単相インバータ5とが接続されている。この第一の単相インバータ4の直流側端子はコンデンサC1を介してDC-DCコンバータ6が、また第二の単相インバータ5の直流側端子はコンデンサC2を介してDC-DCコンバータ7がそれぞれ接続され、これら各DC-DCコンバータ6、7の他方端はバッテリー8に共通に接続されている。

[0010]

ここで単相インバータ4、5は単相ブリッジ接続された例えばMOSFETからなる半導体素子と、各素子に逆並列接続されたダイオードとからなる周知の構成であってよく、またDC-DCコンバータ6、7は、入力された直流電圧をMOSFETや制御ICからなるスイッチング回路により交流化し、更にトランスにより電圧変換したものを整流して入力とは異なる直流電圧を得るようにした周知の構成を用いることができる。また、9は平滑フィルタ、10は電圧異常低下検出回路を示している。なお、直送スイッチ3はリレー等の機械式スイッチ以外にサイリスタ等の半導体スイッチで構成してもよい。

[0011]

以下、図1の無瞬断電源装置の動作について図2を参照しながら説明する。正常時においては、直送スイッチ3が閉じており、電源1から系統電圧 V_0 が直接負荷へ供給されている。また、単相インバータ4、5を整流器として働かせ、DC-DCコンバータ6、7を通してバッテリー8を充電している。なお、図示していないが、損失を少なくするために、単相インバータ5の交流側端子を別のリレーで短絡しておき、単相インバータ4だけでバッテリー8を充電してもよい。

[0012]

[0013]

リレーが切り離されると、各単相インバータ4、5は完全なインバータ動作をするようになり、インバータ4、5にはバッテリー8からDCーDCコンバータ6、7を通して電圧 V1、V2の直流電圧が印加されている。この場合、電圧V1は電圧V2より大きな値に設定されており、またV1+V2が大略Voの最大絶対電圧値(100 V交流の場合は141 V)になるように設定されている。時刻 t 1において、単相インバータ4、5は入力電圧 V1、V2に見合った出力電圧 VB1、VB2を出力し、この出力電圧は互いに重合され、図示するように擬似正弦波電圧を発生し負荷に供給し始める。すなわち、第一の単相インバータ4と第二の単相インバータ5との出力パターンの組み合わせにより、V2、V1-V2、V1、V1+V2の4種類の電圧が発生し、この4つの組み合わせにより、擬似正弦波を形成することができる。

[0014]

図 2 (a) 中、VB1、VB2のそれぞれの波形と、VB1+VB2の波形とから出力電圧の重畳によって擬似正弦波が作成されることが明らかである。なお、図 2 (b) 中には、V1:V2の電圧関係によって得られる典型的な出力パターンを示しており、V1:V2=3:1の場合には、各電圧レベル間の変化は同じような擬似正弦波となる。一方 V

[0015]

次に、図3を参照しながら系統電圧が低下もしくは増加した場合の電圧増減動作について説明する。図中、Vola は系統電圧で、時間と共に低下しており、また、Vola は負荷に掛かる電圧で、Vola B1とVola B2の波形と対照して示してある。

ここでは、時刻 t o にて電圧の異常(低下)を検出し始め、例えば時刻 t 1 から電圧を補償する場合について示している。時刻 t 1 から第二の単相インバータ 5 を負荷電圧が増加するように動作させる。それにより、負荷に供給される電圧の波高値は正常な系統電圧時のそれとほぼ等しくなる。図 4 にはいろいろなパターンでの増電圧波形を示している。

[0016]

図4のAは正常時の系統電圧(破線)と電圧低下時の系統電圧Voが示されている。Bは低下した系統電圧の全域にVB2の電圧を均等に加算した場合の波形を示している。この場合、負荷に印加される電圧の実効値は正常時よりもやや大きめの値が得られる。Cは、正弦波の立ち上がり部分の途中から一定幅だけVB2を加算した例が示されている。この場合、VB2を出力するパルス幅を調整することにより、負荷への実効電圧は正常時の値と一致させることも可能であり、実効値が重要となる負荷にとっては非常に都合がよい。なお、B、Cの例では波形の最大値は正常の値と一致した例を示している。Dは波形の最大値が正常時の値より大きい場合の例を示している。この場合、負荷への実効電圧を調整するためにパルス幅をAおよびBより比較的狭く設定するとよい。更に、E、F、Gは、負荷への波形の最大値が一定となるよう、VB2の電圧をコントロールした場合の例(幅は一定の波形の最大値が一定となるよう、VB2の電圧をコントロールした場合の例(幅は一定)を示している。これにより、波形の最大値が重要な意味を持つ負荷に対して、確実に波形の補償が可能となる。

[0017]

一方、図 5 には、系統電圧 V o が所定値以上に増大した場合における種々のパターンでの減電圧波形を示している。図 5 のAは正常時の系統電圧(破線)と電圧増加時の系統電圧 V o が示されている。Bは低下した系統電圧の全域に V B 2 の電圧を均等に減算した場合の波形を示している。この場合、負荷に印加される電圧の実効値は正常時よりもやや小さめの値が得られる。Cは、正弦波の立ち上がり部分の途中から一定幅だけ V B 2 を減算した例が示されている。この場合、幅を調整することにより、負荷への実効電圧は正常時の値と一致させることも可能であり、実効値が重要となる負荷にとっては非常に都合がい。なお、B、Cの例では波形の最大値は正常の値と一致した例を示している。Dは波形の最大値が正常時の値より大きい場合の例を示している。この場合、負荷への実効電圧を調整するためにパルス幅をAおよびBより比較的狭く設定するとよい。E、Fは、負荷への波形の最大値が一定となるよう、V B 2 の電圧をコントロールした場合の例を示している。これにより、波形の最大値が重要な意味を持つ負荷に対して、確実に波形の補償が可能となる。

[0018]

実施の形態2.

図 6 は本発明の実施の形態 2 を示す図 1 の変形例であり、第二の単相インバータ 5 を直接バッテリー 8 に接続した以外は図 1 と全く同一のものである。電圧増減動作、電圧補償動作は実施の形態 1 と同一である。このような構成とすれば、第二の単相インバータ 5 の入力電圧 V 2 が一定となるため、上述した V 1 : V 2 の比を細かく設定することは出来ないものの、DC-DCコンバータ 7 を省略することにより、構成が簡単、安価になる特徴がある。

[0019]

実施の形態3.

図7は本発明の実施の形態3に係る無瞬断電源装置の変形例を示す。

図1、図6においては、第二の単相インバータ5の接続位置は第一の単相インバータ4と

負荷2との間であったが、図7では第二の単相インバータ5の位置は系統電源1と第一の単相インバータ4との間である。このような構成では、以下の動作が前述の実施の態様と異なってくる。すなわち、まず、系統の電圧が低下しリレーがオフ動作に入ったときにリレー電流を零に制御するモードにおいて、前述の実施の態様では、第一の単相インバータ4のみでPWM制御等を行っていたが、この実施の形態では、第一の単相インバータ4と第二の単相インバータ5の出力電圧の合計がリレーに印加されることとなり、各出力電圧を個別に制御することによって、きめ細かくリレー電流を制御することができるため、確実かつ高速にリレーを開放することが可能となる。

[0020]

次に、リレー3が開放し、負荷の補償の電圧を供給するときには、第一の単相インバータ4のみが動作する。このとき単相インバータ4をPWM制御すれば、平滑フィルタ9の作用によって正弦波を出力することができる。また、PWM制御しなければ、矩形波を出力することが可能となる。これにより、実施の態様1、2のように第二の単相インバータ5を経由しないため、効率のよい装置が得られる。

なお、上記実施の形態 $1 \sim 3$ の無瞬断電源装置においては、増減電圧動作時、電圧補償動作時に、各単相インバータ4、5の直流電圧V1、V2の電圧が所定の関係からずれる可能性がある。それは、各インバータ4、5の出力総電流が一致しないからである。それを補正するために、DC-DCコンバータ6、7を以下のように動作させる。

[0021]

増電圧動作時には、必ずV2の電圧はより低下しようとする。そこで図1の例ではDC-DCコンバータ6から一旦バッテリー8にエネルギーを送り、DC-DCコンバータ7を経由してV2にエネルギーを補給する。その場合、V1の電圧は急激に低下しようとするが、系統電圧の瞬時値がV1より高いときに、単相インバータ4をオンすることにより、エネルギーを系統からV1へと供給することができる。反対に、減電圧動作時においては、V2の電圧はより増加しようとするが、DC-DCコンバータ7から一旦バッテリー8を経由し、DC-DCコンバータ6を経由してV1にエネルギーを供給する。V1に送られたエネルギーは単相インバータ4を通して、V1が系統電圧の瞬時値より高い時間帯に単相インバータ4をオンすることにより系統にエネルギーを返送する。

[0022]

増電圧・減電圧動作において、図6に示す実施の形態2の場合にも同様の動作をするが、V2へのエネルギーの流入・流出はバッテリー8がバッファとして受け持つことになるから、電圧そのものはバッテリー電圧で支配される。バッテリー8のエネルギー変化が全体で零になるように、DC-DCコンバータ6によってV1にエネルギーを流出入し、また系統に流出入する。図7も図6の場合と同様な動作をする。このように、DC-DCコンバータを用いてバッテリー8に電流を蓄積せずまたはバッテリー電流を消費しない動作をすることにより、バッテリー実効電流を低下し劣化を防止できる効果がある。

なお、このDC-DCコンバータによるエネルギー流出入作用は、上記した電圧補償動作中においても機能させることができ、例えば実施の形態1(図1)ではDC-DCコンバータ6、7を、また、実施の形態2(図6)では、DC-DCコンバータ6を用いて上記V1、V2を安定化させるように動作させることにより、所定の補償電圧波形を維持できるものである。

[0023]

実施の形態4.

本発明の形態4を図8について説明する。この形態においては、形態1における単相インバータ4部分が単相インバータ4a、4b、4cにて構成されている。図8において、4cの直流電源VB4はバッテリー8から双方向性DC-DCコンバータ6aを通して安定化されている。また、前記VB4と単相インバータ5、4a、4bの直流電源VB1、VB2、VB3は双方向性DC-DCコンバータ7aによって安定化されている。それにより単相インバータ4a、4b、4cの出力電圧は常に特定の関係となるようDC-DCコンバータ7aによって制御されている。

図9は、単相インバータ4a、4b、4cの出力電圧の関係およびその合計の出力レベルの一例を記載している。単相インバータ4a:4b:4cの出力電圧が1:2:4の関係 (A) から1:3:9の関係 (J) までの10種類について示している。1:3:9の関係の場合には、最も多くの出力レベルを出すことができ、図10にその場合の電圧パターンと正弦波出力時の波形イメージを示している。これにより、最大で13段階のレベル変更が可能となるため、比較的細かい波形制御ができ擬似正弦波を生成することができる。図11はさらに各出力レベルの間でPWM制御を施した場合の例であり、PWM制御を出力レベルの変化を最小単位とし、レベルを上げ下げする頻度によって平均的な波形をコントロールすることができる。このような制御を施すことにより、VB2~VB4までの全体の電圧波形は非常にきめ細かいものとなり、平滑フィルタ9は従来の場合に比べて格段に小さな容量で済む。

[0025]

次に、系統が正常時の動作について説明する。系統が正常時には、単相インバータ4a、4b、4cは無効電力補償装置として動作する。その動作を図12に示す。図12(a)は負荷が遅れ負荷、すなわち系統電圧Voに対して、負荷電流Idoの位相が遅れて動作する場合を示している。ここで、単相インバータ4a、4b、4cは、系統の電流Ioが系統の電圧Voと同じ位相になるよう電流Ixを系統に流し込む動作を行う。すなわち、Ixが単相インバータ4a、4b、4cから系統に流れ込むように、各出力レベルをおり、Ixが単相インバータ4a、4b、4cから系統に流れ込むように、各出力レベルをおり、系統電流と系統電圧とは位相が一致するので、系統から見ると力率1の負責が接続されているように見え、無効電力を補償できることとなり、また高調波成分による系統への逆流を防止することができる。更に、系統に流れる電流の実効値を低下するとができるため、ケーブル等の損失が低下するものである。

[0026]

図12(b)は、整流器負荷が接続された場合の動作例である。(a)の場合と同様に、単相インバータ4a、4b、4cは系統に力率1の電流 I_0 が流れるよう、電流 I_x を系統に流し込む。単相インバータ4a、4b、4cではきめ細かい波形の制御が可能であるため、整流器負荷等の電流変化が激しい場合でも、系統に力率1の電流 I_0 が確実に流れるよう制御することが可能である。これは、フィルタ9が小さな容量で済むことにより制御系のゲインを上げることができることによる。このような動作においては、単相インバータ4a、4b、4cへ流入出する電流の量は異なる場合がほとんどであり、 $VB2\sim VB4$ の電圧関係は容易に崩れてしまう。これを補正するために、先に説明したように、DC-DCコンバータ7aを動作させ、DC-DCコンバータ7aが $VB2\sim VB4$ の電圧がそれぞれ所定の値を保つようにエネルギーをやりとりする。

[0027]

次に、単相インバータ5部分は実施の形態1における単相インバータ5と同じであり、従って、増電圧・減電圧機能における単相インバータ5の動作は実施の形態1と同じである。なお、増電圧・減電圧時にVB1の電圧の変化は、DC—DCコンバータ7aによって、VB4にエネルギーを流入出させることによって安定化させる。VB4に送られたエネルギーは、単相インバータ4a、4b、4cによる電流制御により系統に流出入する。なお、先に示した無効電力補償制御と、増電圧・減電圧制御を同時に行うことも可能である。増電圧機能と無効電力補償制御を同時に行うときは、無効電力分を補償するIxより低めの電流を系統に流入させればよい。また減電圧機能と無効電力制御を同時に行うときは、無効電力分を補償するIxより高めの電流を系統に流入させればよい。

[0028]

次に、実施の形態4における電圧補償時の動作について図13を参照して説明する。図中、パターン(a)はPWM制御を併用しない場合を、パターン(b)はPWM制御を併用する場合の波形図を示している。今、時刻toにて系統電圧の低下を検出し、リレーをオフにすると同時に、リレーの電流を零に制御するように、系統電圧と同じ電圧を単相イ

上記単相インバータ 5、 4 a、 4 b、 4 c の制御方法としてはいくつかのパターンが考えられる。例えば、単相インバータ 5: 4 a: 4 b: 4 c の関係を 1: 3: 9: 2 7 となるよう D C D D D C

[0030]

実施の形態5.

図15は本発明の実施の形態5を示す回路図であり、上記実施の形態4(図8)の変形例である。DC—DCコンバータ6aがなく、第一の単相インバータ4aを直接バッテリー8に接続した以外は図8と全く同一のものであり、従って電圧増減動作、電圧補償動作は実施の形態4と同一である。このような構成とすれば、単相インバータ4aは9種類の電圧比を持つ最も大きな電圧の単相インバータであり、エネルギーの流出入も最も大きい。そのため、特に補償時においてDC—DCコンバータ6aを通らずにバッテリー8から直接エネルギーを取り出せるので非常に効率が良くなり、その結果、装置が小形軽量となる効果を有する。

[0031]

実施の形態 6.

図16は本発明の実施の形態6を示す回路図であり、上記実施の形態4(図8)の変形例である。DC—DCコンバータ7aがバッテリーから直接接続されている以外は図8と全く同じである。バッテリー8の電圧は通常一定であるから、単相インバータ5、4a、4bの電圧のコントロールが容易となり、無駄の無いDC—DCコンバータ7aの設計が可能なり、装置が小形軽量となる特徴がある。

[0032]

実施の形態7.

図17は本発明の実施の形態7を示す回路図であり、それぞれの単相インバータ5、4a、4b、4cの直流電源にはバッテリー8d、8a、8b、8cがそれぞれ接続されており、また、DC—DCコンバータ11は単相インバータ5、4a、4b、4cに共通に挿入され、それぞれの直流電圧の安定化が保たれている。しかし、各バッテリーへの電流の流入にアンバランスが生じると、バッテリーの電圧の上がり過ぎや下がり過ぎが生じてしまい、結果的に単相インバータ5、4a、4b、4cの電圧の関係も崩れてしまう。そのため、DC—DCコンバータ11により、バッテリーへの入力電流のアンバラスンを補正するよう、各バッテリー間でエネルギーのやりとりを行う。これにより、バッテリーへの電流の流出入のバランスがとれ、安定した動作を行うことができる。

[0033]

実施の形態8.

図18は本発明の実施の形態8を示す回路図であり、単相インバータ5の位置が系統と単相インバータ4a、4b、4cのインバータ群の間に挿入された場合の例である。この構成においては、リレー電流を零にするために制御において単相インバータ5、4a、4b、4cの4つを使えるのでよりきめ細かい電流制御が可能となる。また、リレー開放後の補償動作時点では負荷への電圧の供給は単相インバータ4a、4b、4cのみで行うこととなり、そのときの電流が単相インバータ5を経由しないので、損失の発生が少なく、装置効率が増加し、小形軽量化が図れる効果を有する。

【図面の簡単な説明】

[0034]

- 【図1】本発明の実施の形態1に係る無瞬断電源装置の概略構成図である。
- 【図2】図1に示す無瞬断電源装置の電圧補償動作についての説明図である。
- 【図3】図1に示す無瞬断電源装置の電圧増減動作についての説明図である。
- 【図4】図1に示す無瞬断電源装置の増電圧波形のパターンを示す図である。
- 【図 5 】図 1 に示す無瞬断電源装置の減電圧波形のパターンを示す図である。
- 【図6】本発明の実施の形態2に係る無瞬断電源装置の変形例を示す回路図である。
- 【図7】本発明の実施の形態3に係る無瞬断電源装置の変形例を示す回路図である。
- 【図8】本発明の実施の形態4に係る無瞬断電源装置の変形例を示す回路図である。
- 【図9】本発明の実施の形態4において、単相インバータ群を構成する各インバータの出力電圧の関係およびその合計の出力レベルの一例を記載した図表である。
- 【図10】本発明の実施の形態4において、電圧パターンと正弦波出力時の波形イメージの関係の一例を示す図である。
- 【図11】本発明の実施の形態4において、各出力レベルの間でPWM制御を施した場合の例を示す図である。
- 【図12】本発明の実施の形態4において、単相インバータ群を無効電力補償装置として動作させた場合の波形図である。
- 【図13】本発明の実施の形態4において、電圧補償動作を行う場合の波形説明図である。
- 【図14】本発明の実施の形態4において、各インバータの動作と出力波形の関係を示す波形図である。
- 【図15】本発明の実施の形態5に係る無瞬断電源装置の変形例を示す回路図である
- 【図16】本発明の実施の形態6に係る無瞬断電源装置の変形例を示す回路図である
- 【図17】本発明の実施の形態7に係る無瞬断電源装置の変形例を示す回路図である
- 【図18】本発明の実施の形態8に係る無瞬断電源装置の変形例を示す回路図である

【符号の説明】

[0035]

1 交流電源

- 2 負荷
- 3 直送スイッチ
- 4 第一の単相インバータ
- 7、7a DC-DCコンバータ

5 第二の単相インバータ

8 バッテリー

6、6a DC-DCコンバータ

【曹類名】図面 【図1】

【図6】

【図8】

【図9】

	Γ	\.	0	-	~	14.	4	140	9	7	00	0	2	11	2				Ž,	0	F	7	က	4	5	9	7	00	0-	10	=	2	3]					
		*																	く																				
	8		0	0	0	10	0	F	-	-	=	=	-	-	-			6	-	0	0	0	0	0	1	-	Ŧ	1	1	=	1	-	=	1					
-	·	٥			İ											-	اد		ζ																				
	3	-	0	0	-	-	-	-	7	0	0	0	=	-	_			3		0	0	1	-	-	-1	7	T	0	0	0	1	-	-						
		28						'											γp	l					•	i													
	=	>	ō	-	7	0	-	0	1	-1	0	-	7	0	1		ŀ	=		0	1	T	0	뒥	-1	0	=	7	히	-	-1	0	=						
		ø			'					'			'						Z/a			'			•		ŀ		ı					ŀ					
	Ш	≥			L_	L	<u> </u>	<u></u>		Ш			L.J	Ш	لــ		Ĺ		≥	_					لـــا		!	!					L_i	l					
			0	-	7	က	4	5	9	~	~	6	9		ſ	1.	J	তা	- -	~	က	4	40	9	~	80	허	9	\equiv										
		バシノ										j				-	7		ļ																				
	9	-2	0	0	0	0	0	-	-	=	-	=	=		}	7	十	0	허	9	0	9	=	ᅱ	뒥	=	=	ᅻ	ᅴ										
U		Λc												J	-		2	İ								-			-										
	8	2	0	0	1	-	-	0	0	히	=	-	=		ŀ	6	_	9	0	=	-	-	7	허	0	5	-	=	ᅱ										
		a P															۹				1			-	ł				- [
	H	\$	0	1	.1	0	-	7	0	-	=	0	=		1	╡		ᆸ	+	7	0	-	-	7	0	=	-	9	ᅱ										
		Za Za			1			'	1		'						Z	1		1			1				'	ı	-										
	Ш	اح			لــــا	ш			_				ا		Ĺ		<u>></u> 1	_							i	<u>_</u> _													
	П	اد	ö	- -	7	4	2	9	7	∞	6	<u> </u>		ſ	Т		5	-	ন	က	4	3	او	<u>~</u>	∞		٢	Τ.		न	$\overline{-}$	~	4	2	9	ন	অ	Я	
		2														7	١	-		1				1			İ		?									1	
\sim	7	-	0	0	0	-	=	-	=	+	ᅱ	ᅱ			4	늭,	5	허	9	0	0	=	٠	=	=	μ	_	5	ᅱ	히	히	0	0	-	=	+	╬	\exists	
Δ		ပ							١				L	비		او						İ				•			၁	Ì									
	7	۶	6	0	-	-	7	0	0	0	=	=		ŀ	ㅋ		ᆉ	5	= .	=	-	9	-	=	\exists		1	2	_	6	9	-	-	0	6	= ,	+	\exists	
		ام				•	'				-			-		9		1		i				ļ	- [2	ł					1				
		څ	0	=	0	-	9	-	0	=	6	=		F	+		5	+	7	5	=	=	7	6	=		ŀ	=		0	-	ᅱ		0	┿	7	5 -	=	
		g				'		'	١						İ	g			'				'		1				g							`	ł		
	Ш	>]		1				لــا		L	٠Ļ	≥∟	_			<u> </u>							L	Ŀ	>									لـ	
1			ठा	- 1	7	က	4	न्त	তা	\subseteq		٢	7	7	<u> </u>	0 7	-10	য	اص	41	2	ज	ন	∞		Г	7	1-	_ा	তা	- -T	থ	<u>س</u>	4	ন	10	≂ •	তাৰ	57
_		7										-	1		?		1	1	-		ļ			ł		1		۶	3	-					-			1	
4	4	-	0	0	0	0	-	-	-	=	a	ן נ	ᇬ	+	+	9	5	5	5	-	-	-	= -	=	(ᆉ	o	-	+	허	히	히	9	_	#	- -	- -	+,	\exists
		Š													ပ္	İ		١			Ì	1	1					1.	٤								ı		
	7		0	0	-	=	ᅙ	0	-	=		ŀ	ᅯ	+		9	5	- -	_ •	히	0	9	╤╪	=		1	7	十		허	히	=	=	_	+,	9	하	╬	=
		اه.								-					۹														76					•					
	-	%	0	-	0	-	0	-	0	=		ŀ	+	一	7	0	+	9	=	7	0	-	5	=		+	+	+	_	9	-	9	=	0.	, †,	0	-	5	=
		٧a										1			3			}		'									Z										
	Ш	<u>></u>							_			L		_12	21	L						L	4			L			21	L								_	_

1	3	9	
Va	Vb	V <i>c</i>	レベル
0	0	0	0
1	0	0	1
-1	1	0	2
0	1	0	3
1	1	0	4
-1	-1	1	5
0	-1	1	6
1	-1	1	7
-1	0	1	8
0	0	1	9
1	0	1	10
-1	1	1	11
0	1	1	12
1	1	1	13

【図11】

【図12】

【図15】

【図16】

【図17】

【図18】

【書類名】要約書

【要約】

【課題】 この発明は、2種類の単相インバータの出力を組み合わせることにより、正常時における系統電圧の変動を補償すると共に、系統が所定電圧以下に低下して直送スイッチが切り離された後でも、負荷に所定電圧を供給するようにした無瞬断電源装置を提供するものである。

【解決手段】 電源と負荷との間に接続され系統に対する電力の供給・遮断を行う直送スイッチを備えた無瞬断電源装置において、上記負荷に並列に接続された第一の単相インバータと、上記負荷に直列に挿入された第二の単相インバータと、上記第一及び第二の単相インバータの直流側に接続されたバッテリーを備えたものである。

【選択図】図1

特願2003-366077

出願人履歴情報

識別番号

[000006013]

1. 変更年月日 [変更理由] 住 所 氏 名

1990年 8月24日 新規登録 東京都千代田区丸の内2丁目2番3号 三菱電機株式会社