Typst 简明使用教程 ^{卓能文}

目 录

1 Typst 简介	1
2 Typst 安装	1
3 Typst 使用	1
3.1 创建文件	1
3.2 章节设置	1
3.3 显示图片	2
3.3.1 设置宽度:	2
3.3.2 居中显示:	2
3.3.3 设置标题:	3
3.3.4 多图并列	3
3.3.5 多图并列(带标题)	4
3.3.6 多图并列含间距(带标题)	4
3.3.7 多图并列(带子标题)	5
3.3.8 多图并列(带子标题、子图无编号)	5
3.4 显示表格	6
3.5 显示公式	6
3.6 显示代码	7
3.6.1 添加标题	7
3.6.2 居左显示	7
3.6.3 显示代码文件	8
3.7 标签与引用	8
图形列表	
图 3.1: 玫瑰	3
图 3.2: 多图并列(带标题)	4
图 3.3: 多图并列含间距(带标题)	5
图 3.4: 多图并列(带子标题)	5
图 3.5: 玫瑰 1	5
图 3.6: 玫瑰 2	5
图 3.7: 多图并列(带子标题、子图无编号)	6
图 3.8: 玫瑰	8
表格列表	
表 3.1: 示例表格	6
代码列表	
代码 3.1: 计算斐波纳契	
代码 3.2: 计算斐波纳契	
代码 3.3: 计算斐波纳契	8

1 Typst 简介

Typst 是撰写任何长篇文本(如论文、文章、科学论文、书籍、报告和家庭作业)的优秀工具。此外,Typst 非常适合于编写任何包含数学符号的文档,例如在数学、物理和工程领域的论文。最后,由于其强大的风格化和自动化功能,它是任何一组具有共同风格的文件的绝佳选择,例如丛书。Typst 文档风格和 md 文档类似,所以很容易上手,同时内置了强大的脚本功能及较多的排版原语,因此,能比较轻松完成优质文档的撰写及排版工作。

2 Typst 安装

Typst 的本地安装非常简单,直接从 https://github.com/typst/typst/releases 下载适合自己操作系统的版本,解压到适当的地方即完成安装。另外,也可以在 https://typst.app 上注册账号,在线编辑 typst 文档,并下载生成的 PDF 文档。

编辑器建议采用 visual studio code,并安装 Typst LSP 和 Typst Preview 插件。

3 Typst 使用

3.1 创建文件

新建文本文档,以.typ 为后缀。建议克隆 https://github.com/soarowl/typst.git 到本地,并将其中的 article.typ 复制到文档所在的目录,并适当进行修改。然后在文档头部添加如下内容:

```
1 #import "article.typ":*
2
3 #show: article.with(title: "Typst简明使用教程", authors: ("卓能文",))
```

3.2 章节设置

格式有点类似 markdown, 比较简单:

```
      1 = 第一章
      typst

      2 内容
      3

      4 == 第一节
      5 内容

      6
      7 == 第二节

      8 内容
      9

      10 == 第三节
      11 内容

      12
      13 = 第二章

      14 == 第一节
      15
```

```
16
17 == 第二节
18 内容
19
20 = 第三章
```

3.3 显示图片

建议将图片保存在一个特定的目录,如 images、img 之类的地方。

3.3.1 设置宽度:

3.3.2 居中显示:

1 #align(center,image("images/rose.jpg", width: 50%)) typst

3.3.3 设置标题:

```
1 #figure(
2 caption: [玫瑰],
3 image("images/rose.jpg", width: 50%)
4 )
```


图 3.1: 玫瑰

注: 放入 #figure 命令中的图片同时会在图形列表中出现。

3.3.4 多图并列

```
1 #grid(
2 columns: (lfr, lfr),
3 image("images/rose.jpg"),
4 image("images/rose.jpg"),
5 )
```


3.3.5 多图并列 (带标题)

```
1 #figure(
2 caption: [多图并列(带标题)],
3 grid(
4 columns: (lfr, lfr),
5 image("images/rose.jpg"),
6 image("images/rose.jpg"),
7 )
8 )
```


图 3.2: 多图并列(带标题)

3.3.6 多图并列含间距(带标题)

```
1 #figure(
2 caption: [多图并列含间距(带标题)],
3 grid(
4 columns: (lfr, lfr),
5 gutter: 10pt,
6 image("images/rose.jpg"),
7 image("images/rose.jpg"),
8 )
9 )
```


图 3.3: 多图并列含间距(带标题)

3.3.7 多图并列 (带子标题)

```
1 #figure(
                                                                                                typst
     caption: [多图并列(带子标题)],
3
     grid(
4
       columns: (1fr, 1fr),
5
       gutter: 10pt,
6
       figure(
7
         caption: [玫瑰1],
         image("images/rose.jpg")
8
9
10
       figure(
11
         caption: [玫瑰2],
12
         image("images/rose.jpg")
13
       ),
14
15 )
```


图 3.5: 玫瑰1

图 3.6: 玫瑰 2

图 3.4: 多图并列(带子标题)

3.3.8 多图并列(带子标题、子图无编号)

```
1 #figure(
2 caption: [多图并列(带子标题、子图无编号)],
3 grid(
4 columns: (lfr, lfr),
5 gutter: l0pt,
6 [#image("images/rose.jpg")玫瑰 1],
7 [#image("images/rose.jpg")玫瑰 2],
```

9)

玫瑰1

玫瑰 2

图 3.7: 多图并列(带子标题、子图无编号)

3.4 显示表格

1	#figure(typst
2	caption: [示例表格],	
3	kind: table,	
4	supplement: "表",	
5	```tbl	
6	Rx Nx	
7	Rx Nx.	
8	_	
9	software version	
10	_	
11	AFL 2.39b	
12	Mutt 1.8.0	
13	Ruby 1.8.7.374	
14	TeX Live 2015	
15	_	
16		
17		

表 3.1: 示例表格

software	version
AFL	2.39b
Mutt	1.8.0
Ruby	1.8.7.374
TeX Live	2015

注: 由于目前 Typst 中有 bug,显示表格时,必须加上 kind 和 supplement 字段。 更多用法请参考 https://github.com/maxcrees/tbl.typ

3.5 显示公式

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \tag{1}$$

Typst 默认只能显示一级公式,不能按章节重新计数,可采用第三方包 i-figured 实现,本模板已经内置。格式请参考 latex 相关文档。

3.6 显示代码

代码可以很容易添加,格式和 markdown 一样。

3.6.1 添加标题

```
1 #figure(
2    caption: [计算斐波纳契],
3    ```py3
4    def fibonaci(n):
5         if n <= 1:
6             return n
7         else:
8             return fibonaci(n - 1) + fibonaci(n - 2)
9    ```
10 )</pre>
```

代码 3.1: 计算斐波纳契

3.6.2 居左显示

因为 figure 命令会导致代码居中显示,添加 align(start)命令让代码居左:

```
1 #figure(
2 caption: [计算斐波纳契],
3 align(start)[
4 ```py3
5 def fibonaci(n):
6 if n <= 1:
7 return n</pre>
```

```
9  return fibonaci(n - 1) + fibonaci(n - 2)

10  ```

11  ]

12 )
```

代码 3.2: 计算斐波纳契

```
1 def fibonaci(n):
2  if n <= 1:
3  return n
4  else:
5  return fibonaci(n - 1) + fibonaci(n - 2)</pre>
```

3.6.3 显示代码文件

在 Typst 文档中添加太多代码,导致可读性降低,也不便于后续采用相应的工具进行编辑、 更新、管理与维护,建议将代码组织在一个文件夹中。

```
1 #figure(
2 caption: [计算斐波纳契],
3 align(start, raw(read("src/fibonaci.py"), lang: "py3", block: true))
4 )
```

代码 3.3: 计算斐波纳契

```
1  def fibonaci(n):
2    if n <= 1:
3        return n
4    else:
5        return fibonaci(n - 1) + fibonaci(n - 2)
6</pre>
```

3.7 标签与引用

在被引用的图表等地方用<name>设置标签,在打算引用的地方输入@name即可。name后面如果是中文,添加一个空格可避免编译错误。在i-figured中,需要在引用的地方添加fig:、tbl:、lst:等,形成@fig:name形式。如:图 3.8 所示。

图 3.8: 玫瑰