CSCI 6100 Machine Learning From Data Fall 2018

HOMEWORK 5 Daniel Southwick 661542908 southd@rpi.edu

Exercise 2.8

- a) Consider generating K data sets $\mathcal{D}_1, ..., \mathcal{D}_k$ and apply the learning algorithm to each data set to produce hypothesis $g_1, ..., g_k$, then $\bar{g} = \frac{1}{K} \sum_{k=1}^K g_k(\mathbf{x}) = \frac{1}{K} g_1 + \frac{1}{K} g_2 + \cdots + \frac{1}{K} g_k$. And since g_i is in the hypothesis set \mathcal{H} , $\forall i \in 1, ..., K$, and the set is closed under linear combination, so $\frac{1}{K} \sum_{k=1}^K g_k(\mathbf{x})$ is in the set \mathcal{H} as well. Thus $\bar{g} \in \mathcal{H}$.
- b) Consider a binary target function, such that \mathcal{H} only contains two hypothesis: $\{+1, -1\}$. So if the final hypothesis is +1 fir sine data sets, and -1 for other data sets. Then for any x, $barg(x) = \frac{1}{K} \sum_{i=1}^{K} g_i(x) \in (-1, +1)$, thus $\bar{g} \notin \mathcal{H}$.
- c) No, Consider $g_1(\mathbf{x}) = \begin{cases} -1 & x < 0 \\ +1 & x > 0 \end{cases}$ and $g_2(\mathbf{x}) = \begin{cases} +1 & x < 0 \\ -1 & x > 0 \end{cases}$, which are both binary functions. But then $\bar{g}(x) = 0$ for all x, the average function is not a binary function.

Problem 2.14

- a) Since the VC dimension of \mathcal{H}_i is d_{vc} , $\forall i \in \{1, ..., K\}$, when break point $k = d_v c + 1$, then no data set of size k can be shattered by \mathcal{H}_i , $\forall i \in \{1, ..., K\}$. So, as $\mathcal{H} = \mathcal{H}_1 \cup ... \cup \mathcal{H}_K$, the overall possible dichotomies for the hypothesis $\mathcal{H} < (2^{dvc+1})^K = 2^{K(dvc+1)}$. Since $k_H = d_{vc}(H) + 1$, then $d_{vc}(\mathcal{H}) < K(d_{vc} + 1)$.
- b)Since $m_{\mathcal{H}}(N) \leq N^{d_{vc}} + 1$, then, $m_{\mathcal{H}_i}(l) \leq l^{d_{vc}} + 1$, $1 \leq i \leq K$ and based on (2.10), we know that $m_{\mathcal{H}}(l) \leq l^{d_{vc}} + 1$, thus $m_{\mathcal{H}}(l) \leq K l^{d_{vc}} + K$. And since $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_2 \cup \cdots \cup \mathcal{H}_K$, we have $m_{\mathcal{H}}(l) \leq K (l^{d_{vc}} + 1) \leq 2K l^{d_{vc}} \leq 2l$, thus $d_{vc}(\mathcal{H}) \leq l$
- c) Since we need to prove that $d_{vc}(\mathcal{H}) \leq \min(K(d_{vc}+1), 7(d_{vc}+K) \log_2(d_{vc}K))$, we can plug in the result, $d_{vc}(\mathcal{H}) < K(d_{vc}+1)$ from a) into b) with the term $l = 7(d_{vc}+K) \log_2(d_{vc}K)$. Then we can show that $2^l > 2Kl^{d_{vc}}$. So $d_{vc}(\mathcal{H}) \leq \min(K(d_{vc}+1), 7(d_{vc}+K) \log_2(d_{vc}K))$.

a)

Figure 1: Example of a 2D monotonic classifier

If x lies in the first quadrant then h(x) = +1, otherwise, h(x) = -1.

b) From the hint, Consider a set of N points generated by first choosing one point and, then generating the next point by increasing the first component and decreasing the second component until N points are obtained. So no matter $x_i = +1 or -1$, x_{i+1} are also +1 or -1. So given N points, the number of all possible dichotomies is $m(H) = 2^N$, Thus $d_{vc} = \infty$

Problem 2.24

a) From the data set $\{(x_1, x_1^2), (x_2, x_2^2)\}$, we can obtain the linear function:

$$g(x) = x_1^2 + \frac{x_2^2 - x_1^2}{x_2 - x_1}(x - x_1) = (x_1 + x_2)x - x_1x_2$$

Therefore, the average function is

$$\bar{g}(x) = \mathbb{E}_{\mathcal{D}}(g^{\mathcal{D}}(x))$$

$$= \frac{1}{2} \times \frac{1}{2} \int_{-1}^{1} \left(\int_{-1}^{1} \left[(x_1 + x_2)x - x_1 x_2 \right] dx_1 \right) dx_2$$

= 0

b) We first generate the test dataset with 2000 items selected uniformly from the interval [-1,+1] and compute f(x). Then for 1000 times, we choose two numbers x_1, x_2 randomly from [-1,+1] again, and determine the linear function g given $\{(x_1,x_1^2),(x_2,x_2^2)\}$. Then we calculate:

$$\begin{aligned} & \text{bias} = \mathbb{E}_x(\bar{g}(x) - f(x))^2 = \frac{1}{2} \int_{-1}^1 (\bar{g}(x) - f(x))^2 \; \mathrm{d}x \\ & \text{var} = \mathbb{E}_{\mathcal{D}}[g^{\mathcal{D}}(x)^2] - \bar{g}(x)^2 = \frac{1}{2} \int_{-1}^1 \left[\frac{1}{K} \sum_{k=1}^K (g_k(x) - \bar{g}(x))^2 \; \right] \mathrm{d}x \\ & \mathbb{E}_{\text{out}} = \mathbb{E}_x \left[\mathbb{E}_{\mathcal{D}}[(g^{(\mathcal{D})}(x) - f(x))^2] \right] = \frac{1}{2} \int_{-1}^1 \left[\; \frac{1}{K} \sum_{k=1}^K (g_k(x) - f(x))^2 \; \right] \mathrm{d}x \end{aligned}$$

c) In the stimulation, we used 2000 points from [-1,+1] and run through 1000 times for different g's the end average function is:

$$g(x) = -0.0031884x + 0.0019613$$

With bias = 0.18653, variance = 0.31428 and $\mathsf{E}_\mathsf{out} = 0.52038$. Note that $\mathsf{E}_\mathsf{out} \approx \mathsf{bias} + \mathsf{variance}$. Result from Matlab:

Figure 2: f(x) and g(x)

d)

bias =
$$\mathbb{E}_x(\bar{g}(x) - f(x))^2 = \frac{1}{2} \int_{-1}^1 (\bar{g}(x) - f(x))^2 dx$$

= $\frac{1}{2} \int_{-1}^1 (x^2)^2 dx$
= 0.2

$$\operatorname{var} = \mathbb{E}_{\mathcal{D}}[g^{\mathcal{D}}(x)^{2}] - \bar{g}(x)^{2} = \frac{1}{2} \int_{-1}^{1} \left[\frac{1}{K} \sum_{k=1}^{K} (g_{k}(x) - \bar{g}(x))^{2} \right] dx$$

$$= \frac{1}{2} \times \frac{1}{2} \int_{-1}^{1} \left(\int_{-1}^{1} ([(x_{1} + x_{2})x - x_{1}x_{2}] - 0)^{2} dx_{1} \right) dx_{2}$$

$$= \frac{1}{4} \times \frac{4}{9} (6x^{2} + 1) = \frac{1}{9} (6x^{2} + 1) = \frac{2}{3}x^{2} + \frac{1}{9}$$

$$= \frac{1}{2} \int_{-1}^{1} (\frac{2}{3}x^{2} + \frac{1}{9})^{2} dx$$

$$= \frac{1}{3}$$

$$\mathbb{E}_x = \mathsf{bias} + \mathsf{var} = \frac{1}{5} + \frac{1}{3} = \frac{8}{15}$$