$$\hat{\alpha}\hat{\beta}\sum_{t}\varepsilon_{t}w_{t}\sigma_{\varepsilon}^{2}$$

Propriétés des estimateurs des MCO

September 16, 2021

Contents

1	Les estimateurs des MCO sont des fonctions linéaires de Y_t de Y	3
2	$\hat{\alpha}$ et $\hat{\beta}$ sont des estimateurs sans biais	3
3	$\hat{\alpha}$ et $\hat{\beta}$ sont des estimateurs à variance minimale de α et β	3
4	$\hat{\alpha}$ et $\hat{\beta}$ sont des estimateurs convergents	3
5	Détermination d'un estimateur sans biais de σ_{ε}^2	3
6	Les estimateurs des moindres carrés $\hat{\alpha}$ et $\hat{\beta}$ de α et β correspondant au maximum de vraisemblance	3

- 1 Les estimateurs des MCO sont des fonctions linéaires de Y_t de Y
- 2 $\hat{\alpha}$ et $\hat{\beta}$ sont des estimateurs sans biais
- \hat{a} et $\hat{\beta}$ sont des estimateurs à variance minimale de α et β
- $4 \quad \hat{\alpha} \text{ et } \hat{\beta} \text{ sont des estimateurs convergents}$
- 5 Détermination d'un estimateur sans biais de σ_{ε}^2
- 6 Les estimateurs des moindres carrés $\hat{\alpha}$ et $\hat{\beta}$ de α et β correspondant au maximum de vraisemblance