Защита информации

Павел Юдаев

МГТУ им. Баумана, Кафедра ИУ-9

Москва, 2014

Раздел 7 - Код целостности сообщения

MAC

Код целостности сообщения

MAC, message authentication code

Цель: обеспечить целостность открытой инф-и.

МАС передается вместе с сообщением. CRC не годится.

Опр.

МАС I=(S,V) - это пара алгоритмов $S,V\in \mathrm{PT}$: алгоритм $S:K\times M\to T$ (to sign) алгоритм $V:K\times M\times T\to \{0,1\}$ (to verify)

Криптостойкий МАС

Модель атаки: с выбранным открытым текстом.

 $orall m_1,...,m_q$ злоум-к получает $t_i=S(k,m_i)$

Цель: создать новую пару

$$(m,t) \not\in \{(m_1,t_1),...,(m_q,t_q)\} : V(k,m,t) = 1.$$

Т.е. верный тэг t для нового сообщения m или новый верный тэг $t_i' \neq t_i$ для сообщения m_i .

Опр.

МАС над K, M, T наз. *криптостойким*, если для любого злоум-ка $A \in \operatorname{PPT}$ вероятность успешной атаки пренебр. мала. Т.е.

 $Adv_{MAC}[A,I] = P($ успешная атака $) < \varepsilon(min(log(|K|),log(|T|))),$ $\varepsilon(n)$ - пренебр. малая функция.

На практике требуем $\forall A: time(A) < N$ $Adv_{MAC}[A,I] = P($ успешная атака $) < \varepsilon = const$

Задача

пусть (S,V) - МАС и всем известно сообщение m_0 : для половины значений ключей $k\in K$ злоум-к может найти $m_1\neq m_0: S(k,m_0)=S(k,m_1)$. Будет ли этот МАС криптостойким?

Задача

пусть (S,V) - MAC и $T=\{0,1\}^5$. Будет ли он криптостойким? (Чему равна вероятность угадать MAC?)

Пример

использование МАС при размещении баннеров на сайтах.

Реализация МАС с помощью ПСФ:

Утверждение

Пусть $F: K \times X \to Y$ - ПСФ и 1/|Y| - пренебр. малая, $1/|Y| < \varepsilon$. Тогда I_F - стойкий МАС. В частности, для любой атаки $A \in \operatorname{PPT}$ на МАС, \exists атака $B \in \operatorname{PPT}$ на ПСФ F такая, что $Adv_{MAC}[A,I_F] \leq Adv_{PRF}[B,F] + 1/|Y|$

Док-во

злоум-к берет некоторое сообщение. Может или просто угадать тэг для него, или использовать атаку на ПСФ.

Поэтому вер-ть успешной атаки на МАС = P(успеш. атака на ПСФ)+P(угадали тэг)-P(оба эти события). Ч.т.д.

Лемма

Пусть $F: K \times X \to Y$ - ПСФ. Тогда $F_t(k,m) = F(k,m)[1,...,t]$ - ПСФ для $1 \le t \le n$.

Т.е., если обрежем стойкую ПСФ, снова получим стойкую ПСФ.

Задача

доказать лемму (от противного).

Задача

Следствие из леммы: МАС, построенный по обрезанной стойкой ПСФ, будет стойким, если ...

Пример

для 128-битного сообщения можно MAC = AES(m).

Раздел 7 - Код целостности сообщения

CBC-MAC, NMAC, CMAC

Построение МАС для длинного сообщения по ПСФ для короткого сообщения $X = \{0,1\}^{128}, n$ - длина блока.

1) Зашифрованный СВС-МАС (ЕСВС-МАС)

Зашифрованный код целостности сообщения в режиме сцепления блоков.

F:K imes X o Y - криптостойкая ПСФ. $F_{ECBC}:K^2 imes X^{\leq L} o X$

2) вложенный MAC (NMAC)

F:K imes X o Y - криптостойкая ПСФ. $F_{NMAC}:K^2 imes X^{\leq L} o K$

NMAC медленнее CBC-MAC: каждый раз новое расписание ключей у шифра, реализующего F.

Задача (Обосновать уязвимости без последнего шага - шифрования)

- 1. NMAC: Известно cascade(k,m) и w. Получить cascade(k,m||w) при неизв. k
- 2. Пусть для raw CBC-MAC известна пара (m, t), длина m один блок. Предложить сообщение длиной 2 блока вида m|u (т.е значение второго блока u), для которого можно найти верный тэг, и вычислить верный тэг для этого сообщения.

Пример

На основе ECBC-MAC построен стандарт NIST - CMAC.

Утверждение

 $\forall L>0$, \forall оракула $A\in \mathrm{PPT}$ на ECBC-MAC (NMAC), совершающего q запросов пар (m,t), $\exists F\in \mathrm{PPT}$ - алгоритм атаки на ПСФ:

$$Adv_{PRF}[A, F_{ECBC-MAC}] \le Adv_{PRP}[B, F] + 2q^2/|X|$$

$$Adv_{PRF}[A, F_{NMAC}] \le qL \cdot Adv_{PRF}[B, F] + 2q^2/(2|K|)$$

ECBC-MAC стойкий при $q \ll \sqrt{|X|}$,

NMAC стойкий при $q \ll \sqrt{|K|}$.

Если F - блочный шифр, NMAC на каждом шаге требует вычисления нового расписания ключей.

Без док-ва.

Частота замены ключа

Пусть хотим
$$Adv_{PRF}[A, F_{ECBC}] < 2^{-32}$$
 $\Rightarrow q^2/|X| < 2^{-32}$

AES: $q < 2^{48}$, 3DES: $q < 2^{16}$

Задача (Свойство "продолжения" у ECBC-MAC и NMAC)

 $\forall x, y, w$ верно

$$MAC(k,x) = MAC(k,y) \Rightarrow MAC(k,x||w) = MAC(k,y||w)$$

Это полезное свойство или вредное?

Атака на MAC за счет коллизии при парадоксе дня рождения

Пусть $F: K \times X \to Y$ - ПСФ, имеющая свойство продолжения. Тогда на соответствующий ей МАС возможна следующая атака:

- 1. получить $\sqrt{|Y|}$ пар сообщений (m_i, t_i) для случайных сообщений.
- 2. по парадоксу дня рождения, с вер-ю более 1/2 в полученных тэгах \exists коллизия $t_u = t_v$ при $m_u \neq m_v$
- 3. возьмем любое продолжение w и получим тэг $t = F(m_u || w)$
- 4. имеем новую коллизию $(m_v||w,t), (m_u||w,t).$

Продление сообщения до длины блока

Используем ECBC-MAC на осн. блочного шифра - нужно продление сообщения.

Продлим нулями: MAC(k, m) = MAC(k, m||0..0) Тогда: Продлить посл-тью 10..0, а если длина сообщ. кратна длине блока, допишем целый блок 10..0.

TODO: в 2015, возможно, убрать CMAC? Их и так слишком много.

CMAC (стандарт NIST)

Ключ $k \Rightarrow$ два ключа k_1 , k_2 и слегка изменим схему CBC-MAC:

- не нужно шифрование результата, т.к. $\oplus k_i$
- не нужен лишний блок, если длина сообщ. кратна длине блока.

Раздел 7 - Код целостности сообщения

PMAC

TODO: в 2015 точно убрать РМАС. Их и так слишком много.

3) РМАС, параллельный МАС

ключ = (k, k_1) , дополнение до длины блока как в CBC-MAC.

Задача

Пусть (m_0,t_0) - верная пара. Пусть m_1 - сообщ. m_0 , измененное в j-м блоке: $m_0[j]\neq m_1[j],\ m_0[i]=m_1[i],\ i\neq j$. Найти быстрый способ вычисления t_1 по t_0 и m_1 .

Утверждение

 $\forall L > 0$, $\forall A \in \mathrm{PPT}$ - алгоритма атаки на PMAC, совершающего q запросов пар (m,t), $\exists B \in \mathrm{PPT}$ - алгоритм атаки на ПСФ F:

$$Adv_{PRF}[A, F_{PMAC}] \le qL \cdot Adv_{PRF}[B, F] + 2q^2L^2/(|X|)$$

Без док-ва.

РМАС стойкий при $qL < \sqrt{|X|}$.

Литература к лекции

1. Black, Rogaway, A Block-Cipher Mode of Operation for Parallelizable Message Authentication, 2002.

http://web.cs.ucdavis.edu/~rogaway/ocb/pmac.pdf