复旦大学数学科学学院 2011~2012 学年第二学期期末考试试卷

A 卷

课程名称:	高等数学 A (下)					课程代码:MATH120002		
开课院系:	数学科学学院					考试形式:闭卷		
姓 名:_	生 名: 学 号:					专业:		
题 号	1	2	3	4	5	6	7	总 分

1. (本题满分42分,每小题7分)计算下列各题:

(1) 设
$$z = \sqrt[4]{\frac{x+y}{x-y}}$$
, 求 dz 。

得 分

(2) 求曲线 $(2x+y+1)^2+(x+2y+3)^2=1$ 所围有界区域的面积。

(3) 计算三重积分 $\iint_{\Omega} (x^2 + y^2) dx dy dz$, 其中 Ω 为抛物面 $z = x^2 + y^2$ 与平面 z = h (h > 0) 所围的有界闭区域。

(4) 计算第一类曲面积分 $\iint\limits_{\Sigma}y^2dS$,其中 Σ 是球面 $x^2+y^2+z^2=a^2$ (a>0)。

(5) 求幂级数 $\sum_{n=1}^{\infty} \frac{n+1}{n!} x^n$ 的和函数。

(6) 求微分方程 $\frac{dy}{dx} - \frac{4}{x}y = x\sqrt{y}$ (x>0, y>0) 的通解。

2. (本题满分 8 分) 求函数 $f(x,y,z) = x^2 + y^2 + z^2$ 在条件 ax + by + cz = 1下的最小值,其中a,b,c为常数。

3. (本题满分 10 分)确定常数 λ ,使得右半平面 $\{(x,y)|x>0\}$ 上的向量值函数 $r(x,y) = 2xy(x^4+y^2)^{\lambda} \pmb{i} - x^2(x^4+y^2)^{\lambda} \pmb{j}$ 为某二元函数 u(x,y) 的梯度,并求 u(x,y) 。

4. (本题满分 10 分) 计算第二类曲面积分 $\iint_{\Sigma} 2(1-x^2) dydz + 8xydzdx - 4zxdxdy$,其中 Σ 是由 Oxy 平面上的曲线 $x=e^{y^2}$ ($0 \le y \le 1$)绕 x 轴旋转一周而成的旋转曲面,且该曲面的法向量与 x 轴正向的夹角不小于 $\frac{\pi}{2}$ 。

- 5. (本题满分 10 分) 设 $y_n(x)$ 是定解问题 $\begin{cases} x \frac{d^2 y}{dx^2} n \frac{dy}{dx} = x^{n-1}, & \text{的解 } (n = 2, 3, \cdots). \\ y(1) = 0, \ y'(1) = 0 \end{cases}$
 - (1) 求 $y_n(x)$ ($n=2,3,\cdots$); (2) 问级数 $\sum_{n=2}^{\infty} y_n(0) \ln n$ 是否收敛? 请说明理由。

6. (本题满分 12 分) 设
$$0 < \varphi < \pi$$
。(1) 求函数 $f(x) = \begin{cases} 1, & |x| \leq \varphi, \\ 0, & \varphi < |x| \leq \pi \end{cases}$ 的 Fourier

级数; (2) 求级数
$$\sum_{n=1}^{\infty} \frac{\sin 2n\varphi}{n}$$
 及 $\sum_{n=1}^{\infty} \frac{\sin^2 n\varphi}{n^2}$ 的和。

7. (本题满分 8 分)已知曲面 Σ_1 : $R_Z = x^2 + y^2 + R^2$ 和 Σ_2 : $R_Z = x^2 + y^2$ (R > 0)。证明: Σ_1 上任一点处的切平面与曲面 Σ_2 所围立体的体积与该点的位置无关。