Math 143 Set 6

1. Do the following series converge or diverge? State which test you used.

b.
$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{3n^4 + 1}$$

c.
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+2}}$$

d.
$$\sum_{n=1}^{\infty} \frac{100^n}{n!}$$

e.
$$\sum_{n=0}^{\infty} \frac{2n}{\sqrt{n}+1}$$

f.
$$\sum_{n=0}^{\infty} \frac{(n!)^n}{n^{4n}}$$

g.
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^n}$$

h.
$$\sum_{n=0}^{\infty} n^2 e^{-n}$$

i.
$$\sum_{n=0}^{\infty} \frac{(n!)^2}{2^{n^2}}$$

j.
$$\sum_{n=1}^{\infty} \frac{n^4 + n^6}{n^8}$$

k.
$$\sum_{n=1}^{\infty} \frac{1}{e^n}$$

$$1. \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

m.
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{(n-1)!}$$

n.
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n^2}$$

o.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{1+\sqrt{n}}$$

p.
$$\sum_{n=1}^{\infty} \frac{(-1)^n 5^n}{4^n}$$

r.
$$\sum_{n=1}^{\infty} (-1)^n n^n$$

s.
$$\sum_{n=1}^{\infty} (-1)^n$$

2. Approximate the sum of each of the following alternating series to within 1/100 of the true value. You may leave your answer as a sum of fractions.

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n!}}.$$

b.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
.

c.
$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{n^2}{2^n}$$
.