AuB: 2.Übung (14.11.23)

Dienstag, 14. November 2023

Alphabete, Wörter, Sprachen

- 1 6,0 (L2UL3) = L10L2 U L10L3 s1.) (Diese Aufgabe ist eine schriftliche Hausaufgabe, die bewertet wird.)
 - a) Es seien $L_1,\ L_2,\ L_3\subseteq \Sigma^*$ drei Sprachen über einem Alphabet $\Sigma.$ Beweisen Sie: $L_1 \cdot (L_2 \cap L_3) \subseteq L_1 \cdot L_2 \cap L_1 \cdot L_3$
 - b) Es seien L_1, L_2, L_3 Sprachen über dem Alphabet $\{|\}$. $L_1(L_2 \cap L_3) = L_1 \cdot L_2 \cap L_1 \cdot L_3$?
 - c) Es seien $L_1 \subseteq \Sigma_1^*$ und $L_2, L_3 \subseteq \Sigma_2^*$ und $\Sigma_1 \cap \Sigma_2 = \emptyset$. $L_1(L_2 \cap L_3) = L_1 \cdot L_2 \cap L_1 \cdot L_3$?
- 1a) L, L2, L3 & E* Lo(L20L3) & L10L20L10L3

Beweis: We Lo (L2 n L3)

- ← V V V V (UE LA N (VE L2 N (VE L2 N V E L3) N W = UV)
- ↔ V V ((ue LA N V E LZ N W= WV) N (ue LA N V E LZ N W= WV))
- → VEZ* (ueL, A VeL, A W=UV) A VEX* VEX* (ueL, A VeL3 = W=UV)
- ← we Laolz A we Laol3
- → we hotz n hotz

Frage: L, OLZ n L, O Lz & L, n (Lz OLz)

Antwort: NEIN ? - mil Gegenbeispielen

1b)
$$\Xi = \{l\} = \sum_{unar} / un(5) = ||l|| = ||s||, un(2) = ||l|| = ||s|| / (ab)|^2 = abab$$

Wie finde ich ein Gegenbsp? Idee: $L_z \cap L_3 = \emptyset$ (sind disjunkt)

ein Gegenbsp: livee:
$$L_2 \cap L_3 = \emptyset$$
 (sind disjunkt)

dann: $L_1 \circ (L_2 \cap L_3) = \emptyset$

1. Ansatz:
$$L_2 = \{1\}$$
 , $L_3 = \{1\}$, $L_1\{\lambda,1\}$

- minimalistisches Gegenbeispiel

| N = {0,1,2,...} = {n | ne N}

 $N_{+} = \{1,2,...\} = \{n \mid n > 0\}$

$$L_2' \cup L_3' = \{1\}^*$$

$$L_2' \cap L_3' = \emptyset$$

$$L_4 = \{\lambda_1 \mid \} \quad (\text{wie oben})$$

$$-L_{1} \circ L_{2}^{2} = L_{2}^{1} \cup (L_{3}^{1} \setminus \{\lambda\}) = \{1\}^{*} \setminus \{\lambda\} = \{1\}^{+}$$

$$L_{1} \circ L_{3}^{1} = L_{3}^{1} \cup L_{2}^{1} = \{1\}^{*} \Rightarrow L_{1}^{1} \circ L_{2}^{1} \cap L_{3}^{1} = \{1\}^{+}$$

1c) Ly 5 Z1, Lz, Lz 5 5 mil Z1 0 Zz = 0

1a) ist bewieden, deswegen nehmen wir & alo Ansalz

$$\leftrightarrow \bigvee_{\mathsf{u} \in \Sigma_1^\mathsf{v}} \bigvee_{\mathsf{v} \in \Sigma_2^\mathsf{v}} \left(\mathsf{u} \in \mathcal{L}_1 \wedge \mathsf{v} \in \mathcal{L}_2 \wedge \mathsf{w} = \mathsf{u} \mathsf{v} \right) \wedge \bigvee_{\mathsf{u}' \in \Sigma_1^\mathsf{v}} \bigvee_{\mathsf{v}' \in \Sigma_2^\mathsf{v}} \left(\mathsf{u}' \in \mathcal{L}_1 \wedge \mathsf{v}' \in \mathcal{L}_3 \wedge \mathsf{w} = \mathsf{u}' \mathsf{v}' \right)$$

wir wissen also: |u| = |u'| To u = u'

Das bedeutef: w = uv = u'v = uv'

VIVELS FUELZOLZ

1 w∈ 40 (42 n 43)

 ${\bf s2.)}\ (Diese\ Aufgabe\ ist\ eine\ schriftliche\ Hausaufgabe,\ die\ bewertet\ wird.)$

Für diese Aufgabe legen wir das Alphabet $\Sigma = \{a,b\}$ zu Grunde. Beweisen Sie induktiv:

Für jedes Wort $w \in \Sigma$ gilt: $aw \neq wb$.

per Worlinduktion

IA:
$$\omega = \lambda$$
, $|\omega| = 0$

Ind. beueis: Variante 1: direkter Beweis mit Follunterscheidung

(2. Fall):
$$x = b$$
, dann $a(wb) + (wb)b$

Variante 2: indirekter Beweit

Angen:
$$a(wx) =$$