

28nm FD-SOI Synopsys Reference Flow Place-and-Route Application Notes

Version 3.1

Digital Design Flows & Methodologies

January 2019

Revisions 2

Version	Date	Comment
3.1	January 2019	Add place legalize option to avoid placement DRC
3.0	October 2018	Add Voltage Spacing Rules
2.0	March 2018	Add IP/memory implementation guidelines
1.0	June 2017	Initial Version

Prerequisites: Documentation = 3

- Please refer to the Foundation_Synopsys_TechnoKit_cmos028FDSOI User Manual for the description of the technology files
- Please refer to the 28nm FD-SOI Synopsys Reference Flow Sign-Off **Application Notes for**
 - Description of 28nm-FDSOI Sign-Off RC extraction scenarios
 - Description of 28nm-FDSOI Sign-Off STA scenarios
 - Description of clock tree implementation rules
- On-Chip-Variation derating factors

Prerequisites: Technology

- In P&R, only dominant STA scenarios for setup, hold and worst leakage corner are sufficient (identified from a first Signoff loop)
- Clock tree must follow "Clock Tree Implementation Rules" from Sign-Off **Application Notes**
- Place-and-Route OCV values must be taken from Signoff Application Notes
- RVT and LVT standard-cells cannot be mixed in the same standard-cell placement area, due to LVT being flip-well architecture

EDA Tools Versions 5

 The 28nm FD-SOI Synopsys Reference Flow has been qualified with the following EDA tools

Place-and-Route Step	EDA Tool & Version
Place-and-Route	Synopsys ICCII 2017.09-SP6-0
Incremental DRC Fixing	Synopsys IC_Validator 2017.12

EDA tools versions used for flow execution are left up to user discretion

ICCII: Static Timing Analysis Settings

Required Settings for ICCII _____

 The following variables have to be set in ICCII for static timing analysis in 28nm-FDSOI:

• set app options -name time.remove clock reconvergence pessimism -value true

 set_app_options -name time.clock_reconvergence_pessimism -value same transition

• set app options -name time.si enable analysis -value true

CCS libraries mandatory

Setting STA 0y/2ey in ICCII

 The following lines describe how to mix fresh (0y) and aged (2ey) libraries using process labels in ICCII:

```
During libraries generation:
    read db -process label ss28 / ff28 / ss28 2ey / ff28 2ey <timingFile>
During P&R:
    create mode
    create corner
    create scenario -mode -corner -name
    set target library subset <list libraries> -top/-objects
    Foreach corner:
           set process number
           set temperature
           set parasitics parameters \
                  -library <generated tech lib containing .tf, TLU+, sites> -early spec \
                  -early temperature -late spec -late temperature -corners
           set process label -early ss28 / ff28 -late ss28 2ey / ff28 2ey \
                  -library ${libName}.ndm:$libName
           set voltage
    Foreach scenario:
           source <constraint files>
           set timing derate ...
```


ICCII Place-and-Route Flow

LVT vdds logic connection 10

The following statements must be included in the UPF file

```
set design attributes -elements {.} -attribute enable bias true
create supply set .... -function {pwell gnd} -function {nwell gnd}
```


Placement Settings -1-

 The following lines avoid DRC errors due to wrong abutment or spacing between cells, by using "LEF58_EDGETYPE" properties and applying spacing rules:

```
# Extracting spacing labels from LEF58_EDGETYPE

remove_placement_spacing_rules -all

define_user_attribute -persistent -type string -class lib_cell LEF58_EDGETYPE

set fileId [open "set_placement_spacing_label.tcl" w]

foreach_in_collection libCellFramePtr [get_lib_cells -quiet -filter "defined(LEF58_EDGETYPE)" */*/frame] {
    set libCellName [get_attribute $libCellFramePtr lib_name]/[get_attribute $libCellFramePtr name]
    set LEF58_EDGETYPE [get_attribute $libCellFramePtr LEF58_EDGETYPE]
    puts $fileId "\n# Lib cell: $libCellName \n# LEF58_EDGETYPE = '$LEF58_EDGETYPE'"

foreach item [split $LEF58_EDGETYPE ";"] {
    if { [regexp {EDGETYPE\s+(\S+)\s+(\S+)} $item m side label] } then {
```


Placement Settings -2-

```
switch -exact -- $side {
                 "TERT" -
                 "RIGHT" {
                     puts $fileId "set placement spacing label -name $label -side [string tolower $side] -
lib cell \[get lib cells $libCellName\]"
                 default {
                     puts "Unknown LEF58 EDGETYPE element '$item' on lib cell '$libCellName'."
close $fileId
source "set placement spacing label.tcl"
source ${Foundation Synopsys TechnoKitTRoot}/ICCOMPILERII/spacing label rule setup.tcl
set app options -name place.legalize.enable allowable orient
                                                            -value true
```


Routing Settings -1-

• The following line defines routing pitches:

```
source ${Foundation Synopsys TechnoKitTRoot}/ICCOMPILERII/layers setup COT.tcl
```

The following lines ensure multi-cut vias usage:

```
source ${Foundation Synopsys TechnoKitTRoot}/ICCOMPILERII/define optimized vias.tcl
```

To be called/tuned at different steps (runtime/QOR trade-off):

```
set app options -name route.common.concurrent redundant via mode -value reserve space
set app options -name route.common.eco route concurrent redundant via mode -value off / reserve space
set app options -name route.common.post detail route redundant via insertion -value off / low / medium
add redundant vias -effort medium
```


Routing Settings -2-

The following lines improve ICCII standard-cell pins access for non-default rules:

To be called/tuned at different steps (routing convergence/ routing QOR trade-off):

```
set app options -name route.detail.use wide wire effort level -value off / low
set app options -name route.detail.use wide wire to input pin -value true / false
set app options -name route.detail.use wide wire to output pin -value true / false
```

The following line improve convergence:

```
set app options -name route.common.route soft rule effort level -value off / min / medium
```

The following line allows diodes antenna fixing:

```
source ${Foundation Synopsys TechnoKitTRoot}/ICCOMPILERII/antenna rules.tcl
set app options -name route.detail.insert diodes during routing -value true
```


Routing Settings -3- 15

IC Compiler II tech file does not natively support negative voltages for FBB. The following lines will make the router comply with voltage spacings rules, when negative voltage is lower than -0.6V:

```
source ${Foundation Synopsys TechnoKitTRoot}/ICCOMPILERII/define non default rules.tcl
set routing rule -rule HighVoltageFBBLowerThan600mVvsGO1 [get nets -all vdds]
```


Timing Convergence -1- 16

• The following lines improve convergence by limiting the length of the wires, and manage delay cells:

```
• set app options -name opt.common.max net length
                                                 -value 900
• set app options -name cts.common.max net length
                                                      -value 300
```

• setDontUse <delay cells> true ; setOptMode -holdFixingCells <delay cells, buffers cells, inverter cells>

Timing Convergence -2-

• It is recommended to create a tcl script defining a double space shield rule and apply it to clock-tree nets using command: set_clock_routing_rules...:

```
create routing rule \
    -default reference rule \
    -taper over pin layers 1 \
    -cuts {{V1 {Vv 1}} {V1 {Vh 1}} {V2 {Vh 1}} {V2 {Vv 1}} {V3 {Vv 1}} {V3 {Vh 1}} {V4 {Vh 1}} {V4 {Vv 1}} {V5 {Vv 1}} {V5 {Vh 1}}
1}}} \
ctsDoubleCut
```


Timing Convergence -3-

```
create routing rule \
    -reference rule name ctsDoubleCut \
    -spacings {M2 {0.100 0.150} M3 {0.100 0.150} M4 {0.100 0.150} M5 {0.100 0.150} M6 {0.100 0.150}} \
    -spacing weight levels {M2 {medium low } M3 {high medium} M4 {high medium} M5 {high high } M6 {high high }} \
    -spacing length thresholds {M2 {2.000 2.000} M3 {2.000 2.000 } M4 {2.000 2.000 } M5 {2.000 2.000} M6 {2.000
2.000}} \
ctsDoubleCutDoubleSpacing
create routing rule \
    -reference rule name ctsDoubleCutDoubleSpacing \
    -shield \
    -shield spacings {M1 0.000 M2 0.000 M3 0.000 M4 0.000 M5 0.150 M6 0.150} \
    -shield widths {M1 0.000 M2 0.000 M3 0.000 M4 0.000 M5 0.050 M6 0.050}
    -snap to track \
ctsDoubleCutDoubleSpacingShield
```


Welltaps Insertion Flow

• The following lines ensure DRC-clean welltaps insertion: every standard-cell is at maximum 40u from a welltap:

Top/Bottom/Left/Right Endcaps Insertion Flow 20

- The following lines insert :
 - Top and bottom endcap standard-cells on the first bottom and the last top standard-cell row, to be avoid GR111 or **DRC** violations:

```
create boundary cells -top boundary cells <list of lib/cell/frame> \
     -bottom boundary cells <list of lib/cell/frame> -at va boundary \
     -prefix TOP BOTTOM
```

 Left and right endcap standard-cells, to ensure P&R context is the same as the one used during library timing characterization. Minimum size must be FILLERPFOP2:

```
create boundary cells \
     -left boundary_cell C28SOI_SC_12_PR_LL/C12T28SOI_LL_FILLERPFOP2/frame \
     -right boundary cell C28SOI SC 12 PR LL/C12T28SOI LL FILLERPFOP2/frame \
     -at va boundary -prefix LEFT RIGHT
```


CTS Halos 21

- The following lines define CTS halos, to avoid electromigration/IR-Drop issues, by keeping a certain minimum distance between clock inverters and/or gating cells...
- Recommended value: x halo=4u for drives<=X55 or 8u for drives>X55 (to be refined) depending on power grid pattern); y_halo=0.1u

• Example:

```
set clock cell spacing
     -lib cells <libname/cellname> \
     -x spacing 4
     -y spacing 0.1
```


Memories, IPs -1- 22

- Memory pins are drawn with vertical M4 shapes (non-preferential direction)
- To connect memory cuts to the PG grid, vias are stacked at each intersection between memory M4 pins and PG grid stripes.
- At floorplan-level, a 1 um hard halo is generally defined around the IPs
- Around memories/IPs, soft placement blockages may be defined to get easier pin access

Memories, IPs -2-

- Full metal obstructions are generally defined in the LEF file of the digital IPs
 - This avoids top-level routing over the IP
 - During top-level routing, the IP is seen as large metal shape, which forces the router to respect fat layer spacing rules (typically around 0.5um, which corresponds to 5 tracks)
- Routing blockages may be defined inside the digital IP at the boundary in order to avoid long nets in the preferentials directions. This will limit coupling effects between top-level routing and block-level routing.

Keep out distance between RVT and LVT

 LVT being a flip-well architecture, it cannot be mixed with RVT cells on a same standard cells area

- Some dedicated islands have to be created in case RVT and LVT are used for digital sections on the same chip, since both cannot be merged inside a standard cells row
- DRM rules have to be honored for such configurations

Top level placement of Deep NWell/ Block Construction level guidelines -1-

- To apply a body bias voltage to the P-Well, it is required to isolate the P-Well areas from the P-Substrate.
- This typically occurs in case of a single VT (LVT or RVT) design where we want to apply Back Bias (BB) voltages to some design portions
- The isolation is implemented using a deep n-type implant (Deep N-Well) and an N-Well ring.

Top level placement of Deep NWell/ Block Construction level guidelines -2-

• It is required to implement a power grid that distributes supply (vdd), ground (gnd) and substrates polarization (gnds, vdds)

To isolate the P-Well from P-Substrate it is required to:

- Add an N-Well ring around the biased region to side-isolate P-Well
- Add under the biased region a deep N-Well layer (T3) with boundary over N-Well ring

Please refer to DRM for

- Deep-NWell/T3 Deep-NWell/T3 spacing rules
- Deep-NWell/T3 NW spacing rules

IC Validator DRC Fixing Flow

ICV DRC Fixing 28

IC Validator DRC fixing flow allows to fix last DRC violations which are not described in ICCII techfile, but only in ICV runset.

postrouteOpt **DRCs** detection and repair using ICV postPTECOOpt runset

Mini deck ICV for DRC repair -1- 29

```
# Work directory & variables management
file delete -force ./ICV/auto fix.postrouteOpt ${route pass number}-run dir
file mkdir ./ICV/auto fix-postrouteOpt ${route pass number}-run dir/checks
file mkdir ./ICV/auto fix-postrouteOpt ${route pass number}-run dir/autofix
set app options -name route.global.timing driven
                                                                -value false
set app options -name route.global.crosstalk driven
                                                                 -value false
set app options -name route.track.timing driven
                                                                 -value false
set app options -name route.track.crosstalk driven
                                                                 -value false
set app options -name route.detail.timing driven
                                                                 -value false
set app options -name route.detail.antenna
                                                                 -value false
set app options -name route.common.post detail route redundant via insertion -value off
set app options -name route.common.net max layer mode
                                                                 -value soft
```


Mini deck ICV for DRC repair -2-

```
set app options -name route.common.single connection to pins
                                                                -value off
# Perform IC Validator DRC checks
set app options -name signoff.check drc.fill view data -value discard
set app options -name signoff.check drc.ignore blockages in cells -value true
set app options -name signoff.check drc.max errors per rule
                                                                -value 1000
set app options -name signoff.check drc.runset
                                                                -value
${Foundation Synopsys TechnoKitTRoot}/ICV/drc autofix runset.rs
                                                                -value ./ICV/auto fix-
set app options -name signoff.check drc.run dir
postrouteOpt ${route pass number}-run dir/checks
set app options -name signoff.physical.layer map file
                                                                -value
${Foundation Synopsys TechnoKitTRoot}/ICCOMPILERII/map out
```

signoff check drc -error data [get attribute [current block] name]@ICV DRC AUTOFIX.err

Mini deck ICV for DRC repair -3-

```
# Perform IC Validator DRC autofix
set app options -name signoff.fix drc.config file
                                                                 -value auto
set app options -name signoff.fix drc.init drc error db
                                                                 -value ./ICV/auto fix-
postrouteOpt ${route pass number}-run dir/checks
set app options -name signoff.fix drc.max errors per rule
                                                                 -value 1000
set app options -name signoff.fix drc.run dir
                                                                 -value ./ICV/auto fix-
postrouteOpt ${route pass number}-run dir/autofix
set app options -name signoff.fix drc.target clock nets
                                                                 -value true
signoff fix drc
(then restore orignal settings...)
```


IC Validator Litho Fixing Flow

ICV Lithography Hotspots Fixing

Can be done at each route step for better results

Hotspots detection and repair using pattern ICV library and ICV runset

Mini deck ICV for litho repair -1-

```
#configuration
set env(ICC2 INDESIGN INTERNAL ADR LARGE AMA THRESHOLD PITCH MULTIPLIER) 20
set env(PM LIB PATH) ${Foundation Synopsys TechnoKitTRoot}/ICV/litho.libraries
set env(PM LIB NAME1) Library1
set env(PM LIB NAME2) Library2
# Work directory & variables management
file delete -force ./ICV/litho pattern matching.postrouteOpt ${route pass number}-run dir
file mkdir ./ICV/litho pattern matching-postrouteOpt ${route pass number}-run dir/checks
file mkdir ./ICV/litho pattern matching-postrouteOpt ${route pass number} -run dir/autofix
set app options -name route.global.timing driven -value false
```


Mini deck ICV for litho repair -2-

```
set app options -name route.global.crosstalk driven
                                                       -value false
set app options -name route.track.timing driven
                                                       -value false
set app options -name route.track.crosstalk driven
                                                       -value false
set app options -name route.detail.timing driven
                                                      -value false
set app options -name route.detail.antenna
                                                      -value false
set app options -name route.common.post detail route redundant via insertion -value off
set app options -name route.common.net max layer mode -value soft
set app options -name route.common.single connection to pins -value off
```

```
# Perform IC Validator lithography checks
set app options -name signoff.check drc.fill view data
                                                                 -value discard
```


Mini deck ICV for litho repair -3-

```
set app options -name signoff.check drc.ignore blockages in cells -value true
set app options -name signoff.check drc.ignore child cell errors -value true
set app options -name signoff.check drc.max errors per rule
                                                                 -value 100000
set app options -name signoff.check drc.read design views -value *
set app options -name signoff.check drc.runset
                                                                 -value
${Foundation Synopsys TechnoKitTRoot}/ICV/litho.runset
set app options -name signoff.check drc.run dir
                                                                 -value
./ICV/litho pattern matchingpostrouteOpt ${route pass number}-run dir/checks
set app options -name signoff.check drc.user defined options -value {-D d SNPSINDESIGN=dx YES -D
d BEOL STACK=dx 6U1X 2U2X 2T8X LB}
                                      # dx 6U1X 2T8X LB for 8ML
set app options -name signoff.physical.layer map file
                                                                 -value
${Foundation Synopsys TechnoKitTRoot}/ICCOMPILERII/map out
```


signoff_check_drc -error_data [get_attribute [current_block] name]@ICV_LITHO.err

Mini deck ICV for litho repair -4-

```
# Perform IC Validator lithography autofix
set app options -name signoff.fix drc.config file
                                                                 -value
${Foundation Synopsys TechnoKitTRoot}/ICV/litho.cfg
set app options -name signoff.fix drc.init drc error db
                                                                 -value ./ICV/litho pattern matching-
postrouteOpt ${route pass number}-run dir/checks
set app options -name signoff.fix drc.max errors per rule
                                                                 -value 100000
set app options -name signoff.fix drc.run dir
                                                                 -value ./ICV/litho pattern matching-
postrouteOpt ${route pass number}-run dir/autofix
set app options -name signoff.fix drc.target clock nets
                                                                 -value true
set app options -name signoff.fix drc.user defined options
                                                                 -value {-D
d BEOL STACK=dx 6U1X 2U2X 2T8X LB}
             # dx 6U1X 2T8X LB for 8ML
signoff fix drc -start repair loop 1 -max number repair loop 2
(then restore original settings...)
```

