Титулка

3MICT

Список сокращений и условных обозначений	4
Словарь терминов	5
Введение	8
1 МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ	9
Теоретические ведомости	9
1 Симметричные криптосистемы	10
Задания	12
Вопросы для самоконтроля	14
2 Взлом. Частотная атака	16
Теоретические ведомости	16
Задания	16
Ход работы	16
Вопросы для самоконтроля	16
3 СИММЕТРИЧНЫЕ ШИФРЫ. Часть 1	17
Теоретические ведомости	17
Задания	17
Ход работы	17
Вопросы для самоконтроля	17
4 Симметричные шифры. Часть 2	18
Теоретические ведомости	
Задания	
Ход работы	18
Вопросы для самоконтроля	
5 Взлом. Часть 2	19
Теоретические ведомости	19

Задания	19
Ход работы	19
Вопросы для самоконтроля	19
6 Асимметричные шифры. Часть 1	20
Теоретические ведомости	20
Задания	20
Ход работы	20
Вопросы для самоконтроля	20
7 Асимметричные шифры. Часть 2	21
Теоретические ведомости	21
Задания	21
Ход работы	21
Вопросы для самоконтроля	21
8 Электронно-цифровая подпись	22
Теоретические ведомости	22
Задания	22
Ход работы	22
Вопросы для самоконтроля	22
Додаток А	23
Додаток Б	24

СЛОВАРЬ ТЕРМИНОВ

Открытый (исходный) текст — данные (не обязательно текстовые), передаваемые без использования криптографии.

Шифротекст, шифрованный (закрытый) текст — данные, полученные после применения криптосистемы.

Шифр, криптосистема — совокупность заранее оговоренных способов преобразования исходного секретного сообщения с целью его защиты.

Символ — это любой знак, в том числе буква, цифра или знак препинания. Алфавит — конечное множество используемых для кодирования информации символов. Стандартный алфавит может быть изменён или дополнен символами. Ключ — параметр шифра, определяющий выбор конкретного преобразования данного текста. В современных шифрах криптографическая стойкость шифра целиком определяется секретностью ключа (принцип Керкгоффса).

Шифрование — процесс нормального применения криптографического преобразования открытого текста на основе алгоритма и ключа, в результате которого возникает шифрованный текст.

Расшифровывание — процесс нормального применения криптографического преобразования шифрованного текста в открытый.

Асимметричный шифр, двухключевой шифр, шифр с открытым ключом — шифр, в котором используются два ключа, шифрующий и расшифровывающий. При этом, зная лишь ключ зашифровывания, нельзя расшифровать сообщение, и наоборот.

Открытый ключ — тот из двух ключей асимметричной системы, который свободно распространяется. Шифрующий для секретной переписки и расшифровывающий — для электронной подписи.

Секретный ключ, закрытый ключ — тот из двух ключей асимметричной системы, который хранится в секрете. Криптоанализ — наука, изучающая

математические методы нарушения конфиденциальности и целостности информации.

Система шифрования (шифрсистема) — это любая система, которую можно использовать для обратимого изменения текста сообщения с целью сделать его непонятным для всех, кроме адресата.

Криптостойкостью — это характеристика шифра, определяющая его стойкость к дешифрованию без знания ключа (т.е. способность противостоять криптоанализу).

Криптоаналитик — учёный, создающий и применяющий методы криптоанализа. Криптография и криптоанализ составляют криптологию, как единую науку о создании и взломе шифров (такое деление привнесено с запада, до этого в СССР и России не применялось специального деления).

Криптографическая атака — попытка криптоаналитика вызвать отклонения в атакуемой защищённой системе обмена информацией. Успешную криптографическую атаку называют взлом или вскрытие.

Дешифрование (дешифровка) — процесс извлечения открытого текста без знания криптографического ключа на основе известного шифрованного. Термин дешифрование обычно применяют по отношению к процессу криптоанализа шифротекста (криптоанализ сам по себе, вообще говоря, может заключаться и в анализе криптосистемы, а не только зашифрованного ею открытого сообщения).

Криптографическая стойкость — способность криптографического алгоритма противостоять криптоанализу.

Имитозащита — защита от навязывания ложной информации. Другими словами, текст остаётся открытым, но появляется возможность проверить, что его не изменяли ни случайно, ни намеренно. Имитозащита достигается обычно за счет включения в пакет передаваемых данных имитовставки.

Имитовставка — блок информации, применяемый для имитозащиты, зависящий от ключа и данных.

Электронная цифровая подпись(электронная подпись) — асимметричная имитовставка (ключ защиты отличается от ключа проверки). Другими словами, такая имитовставка, которую проверяющий не может подделать.

Центр сертификации — сторона, чья честность неоспорима, а открытый ключ широко известен. Электронная подпись центра сертификации подтверждает подлинность открытого ключа.

Хеш-функция — функция, которая преобразует сообщение произвольной длины в число («свёртку») фиксированной длины. Для криптографической хеш- функции (в отличие от хеш-функции общего назначения) сложно вычислить обратную и даже найти два сообщения с общей хеш-функцией.

введение

Использовать можно в двух системах:

Первый вариант — это выполняются первые 8 работ и получают нужную оценку.

Второй вариант — каждое задание добавляет балы, общая сумма балов определяет итоговую оценку. (Данная система более правильна и гибка, но требует набирать балы за работу)

1 МЕТОДЫ ЗАЩИТЫ ИНФОРМАЦИИ

Тема: Методы защиты информации. Классификация криптосистем.

Цель: Изучить основные методы криптографической защиты информации, использовать полученные знания для сокрытия путём шифрования.

Теоретические ведомости

Появление новых информационных технологий и развитие мощных компьютерных систем хранения и обработки информации повысили уровни защиты информации и вызвали необходимость того, чтобы эффективность защиты информации росла вместе со сложностью архитектуры хранения обязательной: Постепенно информации становится данных. защита разрабатываются всевозможные документы ПО защите информации; формируются рекомендации; даже проводится ФЗ о защите информации, который рассматривает проблемы и задачи защиты информации, а также решает некоторые уникальные вопросы защиты информации.

Таким образом, угроза защиты информации сделала средства обеспечения информационной безопасности одной из обязательных характеристик информационной системы.

Рисунок 1.1 – Пример вставки рисунков

1 Симметричные криптосистемы

1.1 Шифры перестановки

В шифрах средних веков часто использовались таблицы, с помощью которых выполнялись простые процедуры шифрования, основанные на перестановке букв в сообщении. Ключом в данном случае является размеры таблицы. Например, сообщение «Неясное становится ещё более непонятным» записывается в таблицу из 5 строк и 7 столбцов по столбцам.

Таблиця 1.1

Н	О	Н	C	Б	Н	Я	
Е	Е	O	Я	О	Е	T	
Я	С	В	Е	Л	Π	Н	
C	T	И	Щ	Е	O	Ы	
Н	A	T	Ë	Е	Н	M	

Для получения шифрованного сообщения текст считывается по строкам и группируется по 5 букв:

Несколько большей стойкостью к раскрытию обладает метод *одиночной перестановки* по ключу. Он отличается от предыдущего тем, что столбцы таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы. Используя в качестве ключа слово - **ЛУНАТИК**, получим следующую таблицу:

Таблиця 1.2 – Метод перестановки по ключу

1 4001	Taosings 1.2 We log hepce tanobku no ksho iy													
<u>Л</u>	$\underline{\mathbf{y}}$	<u>H</u>	<u>A</u>	<u>T</u>	<u>И</u>	<u>K</u>		<u>A</u>	<u>И</u>	<u>K</u>	<u>Л</u>	<u>H</u>	<u>T</u>	$\underline{\mathbf{y}}$
4	7	5	1	6	2	3		1	2	3	4	5	6	7
Н	О	Н	С	Б	Н	R	\rightarrow	С	Н	R	Н	Н	Б	О
Е	Е	О	Я	О	Е	T		R	Е	T	Е	О	O	Е
R	C	В	Е	Л	Π	Н	\rightarrow	Е	П	Н	R	В	Л	C
С	T	И	Щ	Е	О	Ы		Щ	O	Ы	C	И	Е	T
Н	A	T	Е	Е	Н	M		Е	Н	M	Н	T	Е	A

До перестановки

После перестановки

В верхней строке левой таблицы записан ключ, а номера под буквами ключа определены в соответствии с естественным порядком соответствующих букв ключа в алфавите. Если в ключе встретились бы одинаковые буквы, они бы нумеровались слева направо. Получается шифровка:

Для обеспечения дополнительной скрытности можно повторно шифровать сообщение, которое уже было зашифровано. Для этого размер второй таблицы подбирают так, чтобы длины её строк и столбцов отличались от длин строк и столбцов первой таблицы. Лучше всего, если они будут взаимно простыми.

Кроме алгоритмов одиночных перестановок применяются алгоритмы двойных перестановок. Сначала в таблицу записывается текст сообщения, а потом поочередно переставляются столбцы, а затем строки. При расшифровке порядок перестановок был обратный. Пример данного метода шифрования показан в таблице

Таблиця 1.3 – Метод перестановки по ключу

	2	4	1	3
4	П	Р	И	Ε
1	3	Ж	А	Ю
2	-	Ш	Ε	С
3	Т	0	Г	0

	1	2	3	4
4	И	П	Ε	Р
1	А	3	Ю	Ж
2	Ε	-	С	Ш
3	Г	Т	0	0

	1	2	3	4
1	А	3	Ю	Ж
2	Ε	-	С	Ш
3	Γ	Т	0	0
4	И	П	Ε	Р

Ключом к шифру служат номера столбцов 2413 и номера строк 4123 исходной таблицы. В результате перестановки получена шифровка:

АЗЮЖЕ_СШГТООИПЕР

Число вариантов двойной перестановки достаточно быстро возрастает с увеличением размера таблицы: для таблицы 3х3 их 36, для 4х4 их 576, а для 5х5 их 14400.

В средние века для шифрования применялись и магические квадраты. Магическими квадратами называются квадратные таблицы с вписанными в их клетки последовательными натуральными числами, начиная с единицы, которые дают в сумме по каждому столбцу, каждой строке и каждой диагонали одно и то же число. Для шифрования необходимо вписать исходный текст по приведённой в квадрате нумерации и затем переписать содержимое таблицы по строкам.

В результате получается шифротекст, сформированный благодаря перестановке букв исходного сообщения.

Число магических квадратов очень резко возрастает с увеличением размера его сторон:

- для таблицы 3×3⇒1 существует только один квадрат;
- для таблицы 4×4⇒880;
- для таблицы 5×5 ⇒ 250000.

Задания

В соответствии с вашим вариантом из табл. 1.4 зашифровать текст используя методы криптографической защиты представленные ниже. Регистр должен быть учтён.

1) Шифры перестановки:

- а) метод перестановки по ключу;
- b) алгоритм двойной перестановки;
- с) магические квадраты.

2) Шифры замены:

- а) шифр Цезаря;
- b) Аффиный шифр;
- с) шифр Виженера;

- d) шифра Плейфера.
- 3) Выполнить шифрование методом гаммирования.

Записать результаты шифрования в отчёт, сравнить методы, выбрать оптимальный для заданной фразы и аргументировать свой выбор.

Таблиця 1.4 – Список фраз для шифрования

таол	иця 1.4 – С	писок фраз для шифрования
1	6 x 6	небольшое сообщение для тестирования
2	3 x 13	В атмосфере происходит около 1800 гроз.
3	7 x 4	федеральное законодательство
4	4 x 6	Международные стандарты;
5	3 x 13	самая дорогая пицца в мире стоит \$1000.
6	4 x 9	применение информационных технологий
7	3 x 12	административный уровень секретности
8	3 x 11	83% младших братьев выше старших
9	3 x 11	обеспечение доступа к информации
10	10 x 4	Индонезия расположена на 17508 островах.
11	4 x 7	у рыбы сарган зеленые кости.
12	8 x 4	язык хамелеона длиннее его тела
13	6 x 4	защищенность информации.
14	5 x 6	в озеро Байкал впадает 336 рек
15	3 x 10	гоночный болид едет по трассе.
16	8 x 3	опасность ''открывается''
17	4 x 8	процесс обеспечения целостности
18	4 x 9	рекомендация использования терминов
19	5 x 6	обеспечивающее ее формирование
20	5 x 5	общегосударственный орган
21	8 x 4	технических средств ее передачи
22	3 x 11	ворон и ворона — два разных вида.
23	5 x 6	наибольший ущерб субъектам ИБ
24	9 x 3	информационная безопасность
25	8 x 4	ущерб при сервисном обслуживании
26	5 x 7	свойство аутентичности пользователя
27	8 x 4	данные были действия выполнены?!
28	6 x 6	законодательный уровень безопасности
29	8 x 4	из множества потенциально угроз
30	4 x 9	Защита процессов, процедур, программ

- 4) Криптография и её роль в обществе.
- 5) Объяснить цель и задачи криптографии.
- 6) Пояснить какие бывают криптографические методы.
- 7) Виды криптографии и их классификация.
- 8) Отличие симметричных и асимметричный шифров.

- 9) Пояснить что такое исходный текст, шифр, ключ.
- 10) Принцип подбора ключа в симметричных криптосистемах.
- 11) Принцип работы симметричных шифров. Приведите примеры.
- 12) Принцип работы асимметричных шифров. Приведите примеры.
- 13) Шифры одиночной перестановки и перестановки по ключевому слову. Шифр Гронфельда.
- 14) Шифры двойной перестановки. Шифрование с помощью магического квадрата.

2 ВЗЛОМ. ЧАСТОТНАЯ АТАКА

Тема: Тема.

Цель: Опишите цель.

Теоретические ведомости

Задания

Ход работы

3 СИММЕТРИЧНЫЕ ШИФРЫ. ЧАСТЬ 1

Тема: Тема.

Цель: Опишите цель

Теоретические ведомости

Задания

Ход работы

4 СИММЕТРИЧНЫЕ ШИФРЫ. ЧАСТЬ 2

Тема: Тема.

Цель: Опишите цель

Теоретические ведомости

Задания

Ход работы

5 ВЗЛОМ. ЧАСТЬ 2

Тема: Тема.

Цель: Опишите цель

Теоретические ведомости

Задания

Ход работы

6 АСИММЕТРИЧНЫЕ ШИФРЫ. ЧАСТЬ 1

Тема: Тема.

Цель: Опишите цель

Теоретические ведомости

Задания

Ход работы

7 АСИММЕТРИЧНЫЕ ШИФРЫ. ЧАСТЬ 2

Тема: Тема.

Цель: Опишите цель

Теоретические ведомости

Задания

Ход работы

8 ЭЛЕКТРОННО-ЦИФРОВАЯ ПОДПИСЬ

Тема: Тема.

Цель: Опишите цель

Теоретические ведомости

Задания

Ход работы

ДОДАТОК А

додаток б