

Računalniška omrežja

Dostop do prenosnega sredstva

doc. dr. Peter Rogelj (peter.rogelj@upr.si)

Uvod

- Prenosno sredstvo je v računalniških omrežjih pogosto skupno več uporabnikom / vozliščem.
- Če v komunikacijski kanal sočasno oddaja več virov, pride do "trčenja" (ang. colision).
- Pravila komunikacije, ki preprečujejo trčenja oziroma omogočajo hkratno komunikacijo več uporabnikov, tvorijo podsloj za dostop do prenosnega sredstva (ang. Media Access Control - MAC)
- MAC je del linijskega sloja, neposredno nad fizičnim slojem.
- MAC je potreben (le) v omrežjih, kjer se za medij poteguje več uporabnikov (broadcasting), v povezavah točka-točka ni potreben.

Vsebina

- Problem dodeljevanja kanala (statično, dinamično)
- Protokoli za dostop do prenosnega sredstva
- Ethernet
- Brezžična omrežja (wlan)
- Bluetooth
- Povezovanje različnih omrežij

Problem dodeljevanja kanala

Statično in dinamično dodeljevanje

Multipleksiranje

- Tradicionalen način delitve kanala med več uporabnikov je frekvenčno multipleksiranje (FDM).
 - Za N uporabnikov je celotno frekvenčno področje razdeljeno na N eanko velikih pasov.
 - Vsak uporabnik uporablja svoj frekvenčni pas zato ni medsebojnega motenja.
 - Takšen statičen način delitve kanala je učinkovit za majhno število uporabnikov pri enakomerni obremenitvi.
- Poleg FDM kanal statično lahko delimo še s:
 - □ TDM časovno multipleksiranje

Statično dodeljevanje kanala

- Statično dodeljevanje je težavno v primeru velikega števila uporabnikov in neenakomerne obremenitve.
 - □ Večje št. uporabnikov od št. kanalov
 - □Različne potrebe uporabnikov po kapaciteti kanala vsak ima na voljo enako.
 - □ Neaktivni uporabniki zasedajo celoten kanal večina kanalov bo večino časa nezasedenih.

Čas čakanja na prenos okvirja

Povprečen čas čakanja na prenos okvirja se podreja Poisson-ovi porazdelitvi.

$$T = \frac{1}{\mu C - \lambda}$$

Če kanal razdelimo na N delov z N krat manjšo kapaciteto in N krat manjšim pritokom okvirjev, se povprečni čas čakanja na prenos okvirja poveča N krat!

$$T_{N} = \frac{1}{\mu(C/N) - (\lambda/N)} = \frac{N}{\mu C - \lambda} = NT$$

C – kapaciteta kanala; $1/\mu$ - povprečna dolžina okvirjev, λ - pritok okvirjev

Primer

- Podatki enotnega kanala
 - \Box C = 100 Mb/s
 - $\square \lambda = 5000$ okvirjev/s
 - $\Box 1/\mu = 10.000 \text{ b}$

- → T₁ = 200 μs
- N-kratna delitev kanala
 - \Box N = 32
 - $C_N = 3.125 \text{ Mb/s}$
 - $\lambda = 156.25$ okvirjev/s
 - $-1/\mu = 10.000 b$

 \rightarrow T_N = 6.4 ms

Dinamično dodeljevanje kanala

- Omejitve in slabosti statičnega dodeljevanja kanala lahko odpravimo/omilimo z dinamičnim dodeljevanjem kanala:
 - Uporabimo enoten komunikacijski kanal
 - Na kakšen način, kdaj in za koliko časa dano vozlišče zaseže kom. kanal določa protokol.
 - Ptrebujemo pravila za dostopanje do prenosnega sredstva (MAC podsloj)

MAC podsloj

Vsa vozlišča uporabljajo protokol dostopa do prenosnega sredstva, ki določa na kakšen način, kdaj in za koliko časa lahko vozlišče zasede komunikacijski kanal.

Protokoli za dostop do prenosnega sredstva

Dinamično dodeljevanje kanala

Predpostavke

- □ Enotni kanal
 - Vsi uporabniki uporabljajo isti komunikacijski kanal (za pošiljanje in sprejem podatkov).
- □ Uporabniški model:
 - Komunikacijski kanal si deli N neodvisnih uporabnikov (računalniki, telefoni, PDA...).
 - Nov okvir uporabnika se ne generira dokler ni bil uspešno poslan predhodni okvir.
- Predpostavke trčenj
 - Če se pošilajnje dveh (ali več) postaj časovno prekriva pride do trčenja in obe (vse) oddaji sta neuspešni.
 - Trčenje zaznajo vse postaje na kanalu.
 - Okvir udeležen v trčenju mora biti posnovn poslan.
 - Enine napake so napake zaradi trčenj.

Načini dostopanja do kanala

- Centralizirano upravljanje
 - Centralno vozlišče poziva oziroma izbira končna vozlišča, da oddajo čakajoče okvire.
- Sistem z žetonom
 - Po omrežju kroži okvir, ki predstavlja žeton. Postaja, ki ima v nekem trenutku žeton, ima s tem pravico do oddajanja.
- Naključni dostop
 - Vsaka postaja lahko (pod določenimi pogoji) oddaja kadar koli želi. Če pride do trčenja ponovi oddajo po preteku naključnega časa.
 - Dober predvsem za manj obremenjene sisteme
 - Manj primeren za časovno kritične sisteme
 - Možne so tudi izvedbe, ki se izognejo trčenjem.

Čisti ALOHA

- Osnovna ideja
 - □ Temelji na ideji omrežja ALOHA (Norman Abramson, University of Hawaii, 1971)
 - □Vsako vozlišče lahko oddaja kadar koli ima potrebo (ima na voljo podatke za oddajo)
 - □Trčenja vozlišče zazna s poslušanjem kanala (razlika med oddanim in prejetim signalom)
 - Če pride do trčenja, pošiljatelj počaka naključno dolgo preden ponovno poskuša z oddajo.

Čosti ALOHA - prepustnost

- Če kanal ni obremenjen:
 - □ Potreb po oddaji je malo
 - Praktično vsaka postaja dobi kanal takoj ko ga potrebuje.
 - Prepustnost kanala je dobra.
- Obremenjen kanal
 - □ Poveča se število trčenj
 - □ Prepustnost močno upade

Čisti ALOHA - prepustnost

- Vsi trije okvirji so uničeni, kanal je v tem času neizkoriščen!
- Okvir bo uspešno oddan če:
 - □ Ni pred njim nihče začel z oddajo vsaj čas T_F,
 - □ Nihče ne bo začel z oddajo v času negove odaje (T_F)

Čisti ALOHA - izkoristek

Da se okvir uspešno odpošlje sme v času 2 x T_F začeti z oddajo samo ena postaja!

Število oddaj na časovno enoto oz. okvir (k) modeliramo s Poissonovim porazdelitvenim zakonom (λ - povprečno število oddaj na časovno enoto).

$$p_k = \frac{\lambda^k e^{-\lambda}}{k!} \qquad (k = 0, 1, 2, 3, \dots)$$

<u>Čisti ALOHA - izkoristek</u>

Verjetnost oddaje ene postaje v času dveh enot:

$$p_k = \frac{(2\lambda)^k e^{-2\lambda}}{k!}$$
 $(k=0,1,2,3,...)$ $p_1 = (2\lambda)e^{-2\lambda}$

Poiščimo optimum:

$$\frac{dp_1}{d\lambda} = 2e^{-2\lambda} + 2\lambda e^{-2\lambda}(-2) = 0 \Rightarrow \lambda_{opt} = \frac{1}{2}, \qquad p_{1opt} = e^{-1}$$

$$E_{ALOHA(opt)} = \frac{p_{1opt}T_F}{2T_F} = \frac{1}{2e} \approx 0.18$$

Predalčni ALOHA (s-ALOHA)

 Postaja sme začeti z oddajanjem v točno določenih trenutkih, ki definirajo predale.

Za uspešno oddajo sme v enem predalu z oddajo začeti ena sama postaja!

Predalčni ALOHA - izkoristek

Verjetnost oddaje ene postaje v času ene enote:

$$p_{k} = \frac{\lambda^{k} e^{-\lambda}}{k!} \qquad (k = 0, 1, 2, 3, \dots) \qquad p_{1} = \lambda e^{-\lambda}$$

Poiščimo optimum:

$$\frac{dp_1}{d\lambda} = e^{-\lambda} + \lambda e^{-\lambda} (-1) = 0 \Rightarrow \lambda_{opt} = 1, \quad p_{1 opt} = e^{-1}$$

$$E_{S-ALOHA(opt)} = \frac{p_{1opt}T_F}{T_F} = \frac{1}{e} \approx 0.368$$

Predalčni ALOHA – čakalni čas

- Optimalno delovanje S-ALOHA:
 - □ 37% izkoristek (enkratna oddaja)
 - □ 37% predalov praznih
 - □ 26% trčenj.
- Višje vrednosti λ zmanjšajo število prostih predalov in eksponentno povečajo število trčenj!
- Uspešnost pošiljanja okvirja v k-tem poskusu je:

$$P_{k} = e^{-\lambda} (1 - e^{-\lambda})^{k-1}$$

Povprečno število prenosov enega okvirja:

$$\overline{k} = \sum_{k=1}^{\infty} k P_k = \sum_{k=1}^{\infty} k e^{-\lambda} (1 - e^{-\lambda})^{k-1} = e^{\lambda}$$

 eksponentna odvisnost – majhno povečanje λ lahko drastično zmanjša izkoristek.

ALOHA

CSMA

- CSMA Carier Sense Multiple Access
 - Prislušlkovalni protokol poslušaj predno govoriš.
 - Postaje spremljajo dogajanje na kanalu in z oddajo ne začnejo, če že oddaja druga postaja.
 - Omejitev: zakasnitve zaradi širjenja signala morajo biti razmeroma majhne (lokalna omrežja).
 - Večja ko je zakasnitev kanala τ, večja je možnost trčenja in manjša prepustnost kanala.

CSMA – čas detekcije trčenja

Največji čas detektiranja trčenja je tisti, ko trčita najbolj oddaljeni postaji.

 Največji čas detektiranja trčenja enak dvakratniku zakasnitve kanala - 2τ.

CSMA - različice

- Poznamo več CSMA različic
 - □ 1-perzistenten
 - če kanal ni prost, počakaj z oddajo
 - če je kanal prost, začni z oddajo takoj
 - če trčiš, poskusi ponovno po naključnem času
 - □ Neperzistenten
 - če kanal ni prost, počakaj z oddajo in poskusi ponovno po naključnem času
 - če je kanal prost, začni z oddajo
 - če trčiš, poskusi ponovno po naključnem času
 - □ p perzistenten (predalčni)
 - če kanal ni prost, počakaj z oddajo
 - če je kanal prost, začni z oddajo z verjetnotjo p
 - če trčiš, poskusi ponovno po naključnem času.

1-perzistenten CSMA

Neperzistenten CSMA

P-perzistenten CSMA

Verjetnost začetka oddajanja vsake čakajoče postaje ob začetku vsakega predala je p.

CSMA - izkoristek

CSMA/CD

- Carrier Sense Multiple Access with Collision Detection
- CSMA/CD izboljša prepustnost osnovnih CSMA protokolov tako, da v primeru zaznanega trčenja preneha z oddajo.
 - Čas izgubljen zaradi trka na kanalu je krajši zato pričakujemo boljši izkoristek.
- CSMA/CD zahteva strojno opremo, ki omogoča poslušanje tudi med oddajanjem (poslušaj tudi ko govoriš).
- Protokoli CSMA/CD se množično uporabljajo v lokalnih omrežjih (ethernet).

CSMA/CD - protokol

- Če kanal ni prost, počakaj z oddajo!
- Če je kanal prost, začni z oddajo!
- Če trčiš, prekini z oddajo in poskusi ponovno po naključnem času.

CSMA/CD

- Število zaporednih trkov med dvema oddanima okvirjema je v splošnem poljubno in nepredvidljivo.
- CSMA/CD torej realizira naključen dostop do kanala ne da se zagotovo napovedati, kdaj bo postaja prišla z oddajo na vrsto (neprimerno za sisteme realnega časa)!

CSMA/CD

- V najslabših razmerah je čas zaznave trčenja enak 2τ.
 - \Box Primer: kabel dolžine 1000m \rightarrow τ =5 μs \rightarrow 2τ =10 μs
- Daljši kanal pomeni večjo možnost trčenja.
- Zaznavanje trčenj je analogen problem
 - Ugotavlja se ali se oddani signal razlikuje od prejetega,
 - Kodiranje mora omogočati razlikovnje pokvarjenega signala (nemogoče je ugotoviti trčenje dveh signalov z vrednostjo 0 voltov).
 - V večini primerov se uporablja Manchester kodiranje.

CSMA/CD - izkoristek

$$E = \frac{T_F}{T_F + \overline{T}} \hspace{1cm} \begin{array}{ccc} T_F & \text{- obdobje izkoriščenosti kanala} \\ \overline{T} & \text{- dogovorni čas} \end{array}$$

- V neobremenjenem omrežju je kanal večinoma prazen in postaje dobijo kanal kadar želijo.
- Analizo naredimo za močno in enakomerno obremenjeno omrežje
 - □ z N postajami.
 - □ vsaka postaja začne z oddajo z verjetnostjo *p*.
 - verjetnost, da se ena postaja polasti kanala i se s tem konča dogovorni interval je:

$$p_u = N \times p \times (1-p)^{N-1}$$

CSMA/CD – dogovorni interval

- Dolžina dogovornega intervala je mnogokratnik časovnega presledka ∆t.
 - □Verjetnost dolžine intervla k × ∆t:

$$p_k = (1 - p_u)^k \times p_u$$

□Povprečna dolžina dogovornega intervala:

$$\overline{T} = \frac{1 - p_u}{p_u} \Delta t$$

Iztkoristek:

$$E_{CSMA/CD} = \frac{T_F}{T_F + \frac{1-p_u}{p_u} \Delta t} = \frac{1}{1 + \frac{1-p_u}{p_u} \frac{\Delta t}{T_F}}$$

CSMA/CD - največji izkoristek

Izkoristek je največji, če je:

$$p = 1/N \implies p_{u.max} = \left(\frac{N-1}{N}\right)^{N-1}$$

- Vrednost izraza se z N malo spreminja in je vedno okrog 0.4.
- Izkoristek CSMA/CD je torej

$$E_{CSMA/CD} = \frac{1}{1 + 3\frac{\tau}{T_F}} = \frac{1}{1 + 3\frac{LC}{vF}}$$

- Izkoristek pada z dolžino in kapaciteto kanala!
- Prepustnost = Izkoristek × hitrost oddajanja!

Protokoli brez trčenj

- Pri CSMA/CD še vedno prihaja do trčenj, ko je kanal neizkoriščen. Kanal je slabo izkoriščen če je
 - □ velik zakasnilni čas (dolg kanal),
 - □ visoka hitrost prenosa,
 - □ kratki okvirji.
- Trčenjem se lahko izognemo
 - □ z napovedovanjem oddaje,
 - z eksplicitnim dodeljevanjem pravice za oddajo,
 - če ne naprave ne uporabljajo skupnega medija.

Protokoli z napovedovanjem oddaje

- Izhodišče
 - □ V omrežju je N postaj
 - □ Vsaka postaja ima dodeljeno številko od 0 do N-1.
- V kanalu se izmenjujeta dve obdobji:
 - □ napovedni interval
 - N časovnih predalov, vsak pripada eni postaji, ki v tem času lahko napove svojo oddajo.
 - □ oddajni interval
 - Čas dejanskega oddajanja napovedanih oddaj.

Napovedni protokol - izkoristek

- V primeru močne obremenitve dobijo možnost oddaje vse postaje (N).
- Če ne upoštevamo zakasnitev (neizkoriščen čas med oddajami posameznih postaj) je izkoristek:

$$E = \frac{NF}{N + NF} = \frac{F}{F + 1}$$

Protokol z binarnim naslavljanjem

- Ang. Binary Countdown.
- Namenjen je kratkim omrežjem in omogoča prioritetno obravnavanje postaj.
- Oddajanje se začne s pošiljanjem naslova postaje.
- Kodiranje je takšno, da bit 1 na omrežju prevlada.
- Postaja odstopi od oddaje, če sliši drugo kar oddaja.
- Če z oddajo začne več postaj, "zmaga" postaja z najvišjim naslovom.
- Če je naslov del okvirja, je izkoristek 100%.

Protokol z binarnim naslavljanjem

Sistem z žetonom

- Eksplicitno dodeljevanje pravice za oddajo.
- Postaje so logično urejene v zaporedje, v katerem si izmejujejo pravico zaoddajo (žeton)

Ethernet

Razvoj, izvedbe Ethernet-a

	Oznaka	Segment	Opis		
Hitrost	802.3		Manchester (bifazno) kodiranje signala		
	10BASE5	500 m	Debeli (10 mm) koaksialni kabel - osnovni Ethernet		
	10BASE2	185 m	Tanki (5mm) koaksialni kabel - tanki Ethernet		
	10BASE-T	100 m	Dve parici kategorije UTP 3 ali več		
	10BASE-F	2000 m	vlakno		
	802.3u		Hitri Ethernet, NRZ, 4B5B, 8B6T, ipd, kodiranje		
Frekvenčni pas	100BASE-T	100 m	Skupno ime za "hitri" 100 MB/s Ethernet na parici		
	100BASE-TX	100 m	Polni dupleks na dveh paricah kategorije UTP 5, 4B5B		
	100BASE-T4	100 m	Poldupleks na štirih paricah UTP 3, 8B6T		
	100PASE-FX	2000 m	Polni dupleks na dvopramenskem vlaknu, 4B5B		
	100BASE-SX	300 m	Kot FX, le z LED diodami namesto laserskih virov		
	802.3z		Gigabitni Ethernet, NRZ, PAM5, 8B10B		
	1000BASE-T	100 m	Štiri parice (za obe smeri) kategorije UTP 5/5e/6		
	1000BASE-SX	550 m	8B10B NRZ, večrodovno vlakno		
	1000BASE-LX	5000 m	8B10B NRZ, enorodovno vlakno		
	802.3ae		10 gigabitni Ethernet na vlaknu		
Щ	802.3an		10 gigabitni Ethernet na neoklopljeni (UTP) parici		

Prenosno sredstvo

Splošno

- CSMA/CD protokol
- Binarni exponencialni čas čakanja ob trku (ang. Binary Exponential Backoff Algorithm)
 - □ ΔT določen glede na največjo dovoljeno dolžino omrežja.
 - □ Prvi trk: čakanje 0 ali 1 ∆T.
 - □ Drugi trk: čakanje 0,1, 2 ali 3 ∆T.
 - □ K-ti trk: čakanje 0...2^κ-1 ΔT.
 - □ Največji dopustni čas čakanja 1023 ∆T.
- Ob trčenju generira JAM signal za javljanje trka.

Izkoristek

Topologija etherneta

Vodilo: vse postaje uporabljajo na skupen medij

Zvezda: vse postaje so povezane na centralno vozlišče (spojišče, stikalo, usmerjevalnik...)

Fizične povezave postaj!

Arhitektura

Klasična arhitektura Etherneta

Arhitektura – pojišča in stikala

Signal se neomejeno širi povsod

Stikalo omejuje širjenje okvirjev

10BASE-T

- 10Base-T
 - □ 10 Mbit/s
 - \square 20 Mhz \rightarrow 20 M baudov
 - Manchester kodiranje.
 - □ Dve parici kategorije CAT3 ali več.

100Base-T4

- 100 Mbit
- 25 Mhz signal
- 4 parice CAT3
 - ena vedno v vsako od smeri,
 - dve v smeri trenutnega prenosa.
- Ne uporablja Manchester kodiranja, pač pa 3 signalne nivoje.
 - □ V smeri prenosa s tremi paricami je to 27 različnih simbolov 4 biti z redundanco (4 bit/simbol x 25 baud = 100 Mb/s)
 - Povratna parica nudi prepustnost 33.3Mb/s (8 bitov se zapiše v 3 simbole)

100Base-TX

- 100 Mbit (full duplex)
- 125 Mhz signal
- 2 parici CAT5
 - ena v vsako od smeri
- Kodiranje 4B/5B
 - Vsakih 5 urinih period določa 4 bite
 - 16 kombinacij je podatkovnih, nekaj od ostalih je kontrolnih (za označevanje mej okvirjev)

100Base-T

- 100Base-T je skupna oznaka za 100Base-T4 in 100Base-TX
- Možna je uporaba spojišč (hub) in stikal (switch)
 - □ V primeru uporabe spojišč sme hkrati oddajati le ena postaja!
 - □ Spojišča zahtevajo half-duplex povezavo!

Gigabitni ethernet

- Dovoljene so le še povezave točka-točka
 - Še vedno je možna uporaba spojišč in stikal.
- Možna sta dva načina delovanja
 - □ Full-duplex (običajno)
 - Zahteva uporabo stikal.
 - Trčenja na kanalu niso mogoča, ni potrebe po CSMA/CD, Oddajniku ni treba poslušati kanala.
 - Največja dolžina kanala ni omejena s protokolom, pač pa z močjo signala (in šuma).
 - ☐ Half-duplex
 - Kadar so uporabljena spojišča.
 - Uporablja CSMA/CD
 - Zaradi 10x večje hitrosti je dopustna dolžina 10x manjša (25m)
 - Zadostna najmanjša dolžina okvirja se pridobi z dodajanjem signala ob koncu okvirja (carier extension)
 - Uvedena je možnost druževanja okvirjev (frame bursting)

1000Base-T

- 1 Gb/s
- 125 Mhz signal
- 4 parice CAT 5;
 - □ Vse parice se uporabljajo obojesmerno.
- Kodiranje PAM5: 5 signalnih nivojev za zapis 4 simbolov + kontrolni simbol
 - □ 2 bita/ parico, urin signal * 4 parice = 8bit/urin signal
- Dodana funkcionalnost kontole pretoka (flow control)
 - □ z dodatnimi kontrolnimi okvrji (tip 0x8808).
 - □ PAUSE okvirji omogočajo čakanje do 33.6 msec.

1000Base-SX, 1000Base-LX

- Optični kabel, laser (1270–1355 nm)
- Kodiranje 8B/10B
 - □ 8 bitov zapisanih z 10 simboli
 - Preprečitev več kot 4 zaporednih enakih simbolov
 - □ Noben simbol nima več kot 6 ničel ali enic.

Sinhronizacija

- Pred ethernet okvirom se pošlje uvodni niz (ang. preamble)
 - □56 bitov izmenjajočih 1 in 0 (7 x 10101010)
 - namenjeno sihnronizaciji oddajnika in sprejemnika.
 - □ne šteje se za del okvirja.

Ethernet okvir

Bytes	8	6	6	2	0-1500	0-46	4
(a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum
					-))-		
(b)	Preamble S o F	Destination address	Source address	Length	Data	Pad	Check- sum

- (a) Ethernet (DIX). (b) IEEE 802.3.
- Začetni bajt (SOF start of frame): 10101011
- Naslov sprejemnika oz. oddajnika: 48 bitna (MAC) naslova,
 - npr: 00-C0-9F-56-F0-CD
- Dolžina / tip: vrednost tipa je vedno večja od 1500
- CRC-32

MAC naslovi

Broadcast: vsi biti naslovnika so 1.

Brezžična omrežja (wlan)

WLAN - uporaba

- Ključni načini uporabe WLAN
 - □razširitev omrežja LAN,
 - povezovanje med zgradbami,
 - prenosna/prehodna uporaba
 - □"ad hoc" omrežja

omrežja z bazno postajo

WLAN brezžična omrežja

Omrežje z bazno postajo

"Ad hoc" omrežje

Enocelična razširitev LAN

Večcelična razširitev LAN

Protokoli 802.11

Opomba 1 : običajni 802.11 produkti niso več v proizvodnji

Opomba 2: 802.11n (2009) - MIMO in OFDM

Fizični sloj

- Fizični sloj se podreja OSI
 - □ 1997: **802.11** infrared, FHSS, DHSS
 - □ 1999: **802.11a** OFDM
 - □1999: **802.11b** HR-DSSS
 - □2001: **802.11g** OFDM
 - □2009: **802.11n** OFDM, MIMO

Fizični sloj 802.11 (1 ali 2 Mb/s)

- 802.11 Infrared
 - Kapaciteta.
 - Doseg 10 do 20 meterov, ne prehaja skozi stene.
 - Omejen na notranjo uporabo (ne deluje na prostem).
- 802.11 FHSS (Frequence Hopping Spread Spectrum)
 - Poudarek na interferenci odbitih signalov oz. "multipath fading".
 - 79 ne prekrivajočih se kanalov, vsak širok 1 Mhz, v 2.4 GHz frekvenčnem območju, FSK.
 - Vse postaje uporabljajo isti pseudo-naključni generator za določitev zaporedja kanalov.
- 802.11 DSSS (Direct Sequence Spread Spectrum)
 - Razprostrti prenos z uporabo pseudo-naključnih zaporedij.
 - Vsak bit odposlan kot 11 bitno zaporedje "chips Barker sequence", PSK.

Fizični sloj 802.11a (do 54 Mb/s)

- 802.11a OFDM (Orthogonal Frequency Divisional Multiplexing)
 - Deluje v 5.5 GHz frekvenčnem pasu.
 - □ Slabši prehod skozi ovire (npr. stene).
 - Vsak kanal tvori več nosilnih frekvenvc (subcariers), spektri podkanalov se prekrivajo.
 - Visoka spektralna učinkovitost.
 - Kompleksno kodiranje, dobra odpornost na odboje in motnje.
 - Konvolucijsko (redundančno) kodiranje (npr. pri 54Mbps 216 podatkovnih bitov kodira z 288-bitnimi simboli).

Fizični sloj 802.11b (do 11 Mb/s)

- 802.11b HR-DSSS (High Rate Direct Sequence Spread Spectrum)
 - 11b je bil potrjen pred 11a. Protokola sta med seboj nezdružljiva
 - 2.4 GHz frekvenčni pas, uporablja 11 million kod v sekundi (chips/sec).
 - □ Kode (CCK) so dolžine 8 bitov.

Fizični sloj 802.11g (do 54 Mb/s)

- 802.11g OFDM (Orthogonal Frequency Division Multiplexing)
 - □ Poskus združitve 802.11a and 802.11b z uporabo prednosti vsakega od niju.
 - □ Uporablja 2.4 GHz frekvenčno območje.
 - □ Združljiv z 802.11b.

Fizični sloj 802.11n (do 600 Mb/s)

- 802.11n MIMO (Multiple-Input Multiple-Output)
 - □ MIMO z večjim številom anten prostorsko multipleksiranje signala (do štirje hkratni tokovi).
 - □ 20 ali 40 Mhz širina kanala.
 - Uporablja 2.4 ali 5GHz frekvenčni pas.
 - □ OFDM

MAC

- Dva dodatna problema glede na kabelske medije:
 - problem zakritega postaje (ang. Hidden Terminal Problem)
 - problem izpostavljene postaje (ang. Exposed Station Problem)
- Dva načina delovanja:
 - DCF (Distributed Coordination Function) in
 - □ PCF (Point Coordination Function).
- Podpora DCF je obvezna, PCF opcijska.

Problem medija

- a) problem zakrite postaje:
 - A želi poslati B, vendar ne more vedeti, da je B zaseden.
- b) problem izpostavljene postaje:
 - B želi poslati C, vendar napačno sklepa, da bo prenos neuspešen.

Problem medija in DCF

- Brezžične postaje imajo omejen doseg in nekatere od postaj se med seboj ne "slišijo".
- Običajni CSMA ni primeren, uporablja se CSMA/ CA (CSMA with Collision Avoidance).
 - □ Uporablja se zaznavanje fizičnega in virtualnega nosilca (ang. physical and virtual carrier sensing).
- Podprta sta dva načina:
 - □ MACAW (Multiple Access with Collision Avoidance for Wireless) z virtualnim zaznavanjem kanala.
 - 1-perzistentni način fizičnega zaznavanja kanal.

MACA, MACAW

- MACA (Multiple Access with Collision Avoidance)
 - Rešuje težavo zakritih in izpostavljenih postaj.
- Delovanje:
 - Pošiljanje Ready-to-Send (RTS) in Clear-to-Send (CTS) okvirja pred pošiljanjem podatkov (napovedovanje).
 - RTS, CTS pomagata pri določitvi postaj v dosegu oddajnika in sprejemnika.
 - RTS in CTS vsebujeta podatek o trajanju podatkovnega okvirja.
 - Ali lahko še vedno pride do trkov?
 - Dve postaji istočasno odpošljeta CTS. Tista, ki ne prejme RTS, se umakne in počaka naključno dolgo časa (exponential backoff).
- MACAW (Multiple Access with Collision Avoidance for Wireless)
 - MACA razširi z obveznim potrjevanjem prejetih podatkovnih okvirjev (ACK)

MACAW

- A želi pošiljati B, zato odpošlje RTS
- B sprejme RTS in potrdi s CTS
- C, E sprejmeta RTS in počakata
- D sprejme CTS in počaka (E že čaka)
- A sprejme CTS in lahko začne z oddajo podatkovnega okvirja

Virtualno zaznavanje kanala

- Virtualno zaznavanje kanala s CSMA/CA:
 - C (v dosegu A) sprejme RTS in glede na podatek o dolžini podatkovnega okvirja kreira virtualni vektor zasedenosti kanala NAV (Network Allocation Vector).
 - □ D (v dosegu A) sprejme CTS in kreira NAV.

MACA(W)

- Kakšna je prednost pošiljanja RTS/CTS?
 - □RTS je dolžžine 20 bajtov, CTS 14 bajtov
 - □ Podatkovni okvir (MPDU) je dolžine do 2300 bajtov!
 - □Trčenje RTS/CTS je manj problematično.
- Virtualnost: NAV je določen glede na podatek o trajanju prenosa (duration) in ne glede ne dejansko zaznavanje kanala.

Fragmentacija 802.11

- Pogostost napak je pri brezžičnem prenosu večja kot sicer, zato imajo daljši paketi slabo verjetnost uspeha.
- Rešitev: MAC fragmentacija s "stop-and-wait" protokolom na fragmentih (delovanje z bazno postajo).
- Trčenja drugih postaj ureja PCF način delovanja.

Fizično zaznavanje kanala

- 1-perzistentni način fizičnega zaznavanja kanala:
 - Postaja posluša kanal pred oddajo.
 - □ Če je kanal prazen (nič ne sliši), začne z oddajo.
 - Med oddajanjem postaje ne morejo poslušati!
 - Če je kanal zaseden, se postaja umakne dokler ni kanalni prost.
 - □ V primeru trčenja postaja čaka naključno dolgo do ponovnega poskusa pošiljanja (exponential backoff).

PCF način delovanja

- PCF (ang. Point Coordination Function) je namenjen delovanju z bazno ostajo.
- Bazna postaja poziva ostale postaje, kadar jim dovoli oddajanje.
- Centralno uporavljanje prepreči trke na kanalu.
- Bazna postaja periodično odpošlje signalni okvir (beacon frame):
 - □ Sistemski parametri (sinhronizacija...)
 - □ Povabilo novim postajam za vključitev v pozivanje.
- Bazna postaja lahko drugi postaji dovoli "spanje", v tem času pa zanjo hrani prihajajoče okvirje (varčevanje z energijo).

Hkratni DCF in PCF način

- Distribuirano (DCF) in centralizirano (PCF) upravljanje kanala je lahko v uporabi hkrati z upravljanjem medokvirne časovne reže.
- Definirani so časovni intervali s pripadajočimi dovoljenimi aktivnostmi:
 - SIFS (Short IFS): V tem intervalu je možno nadaljevanje obstoječega dialoga potrditev (ACK) ali naslednji fragment okvirja.
 - PIFS (PCF IFS): V tem intervalu se lahko odda PCF okvir (bazna postja poziva ostale ali odpošlje signalni okvir).
 - DIFS (DCF IFS): V tem intervalu lahko z oddajanjem začne poljubna postaja (DCF način).
 - □ EIFS (Extended IFS): V tem intervalu imajo postaje možnost sporočiti sprejem okvarjenega ali nepoznanega okvirja.

Medokvirne časovne reže

802.11 okvirji

- IEEE 802.11 določa tri tipe okvirjev:
 - Upravljalski okvirji: za upravljanje (vključevanje, izločanje) postaj pri pozivanju, sinhronizaciji, avtentikaciji in deavtentikaciji.
 - □ Kontrolni okvirji: za nadzor pretoka v DCF (in PCF) načinu delovanja.
 - Podatkovni okvirji: prenos podatkov v DCF in PCF načinu delovanja.

802.11 podatkovni okvir

- Version: omogoča uporabo več verzij okvirjev.
- Type: tip okvirja (podatkovni, kontrolni)
- Subtipe: CTS, RTS...
- To DS/From DS: označuje ali se okvir posreduje v/iz dugega omrežja.
- More frag.: označuje, da okvirju sledi naslednji fragment.

802.11 podatkovni okvir

- Retry: označuje ponovno pošiljanje predhodnega okvirja.
- Pwr. mgt.: omogoča, da gredo postaje v način "spanja".
- More data: pošiljatelj ima za pošiljanje pripravljene dodatne okvirje.
- Protected: označuje, da je okvir kriptiran.
- Order: označuje, da morajo biti okvirji obdelani v zaporednem vrstnem redu.

802.11 podatkovni okvir

- Duration: čas, ko bosta okvir in potrditev zasedala kanal.
- Address 1: naslov končnega prejemnika
- Address 2: naslov originalnega oddajnika
- Address 3: naslov dostopne točke, ki prejema okvir.
- Address 4: naslov dostopne točke, ki oddaja okvir.
- Sequence: omogoča številčenje okvirjev in fragmentov (12 bitov za številčenje okvirja, 4 za številčenje fragmentov).
- Data: podatki.
- Check sequence: CRC-32

Opomba: vsi naslovi niso vedno/nujno potrebni!

802.11 varnost

- WEP (Wire Equivalent Privacy), 1999
 - □ napaka v protokolu in algoritmu, zlomljen.
- WPA (2003), WPA2 (IEEE 802.11i, 2004)
 - □ WPA (WiFi Protected Access)
 - □ Overovitev preko strežnika 802.1X
 - □ Uporaba RC4, in AES
 - □

Bluetooth

Bluetooth standard

- Bluetooth označuje celotnen komunikacijski sistem, od fizičnega do aplikacijskega sloja.
 - Razvija ga Bluetooth SIG (special interest group), ki so ga ustanovili Ericson, IBM, Intel, Nokia, Toshiba (sedaj ima 13000 članov).
- IEEE 802.15 je standard, ki določa fizični in podatkovno-linijski sloj.
- Bluetooth SIG in IEEE verziji standarda nista enaki:
 - □ Bluetooth SIG vodi razvoj standarda Bluetooth...

Bloetooth in IEEE 802.15.1

- 1994 Ericson
 - Želja po nadomestitvi RS 232 povezav
- 1999 SIG Bluetooth specifikacija V1.0
- 2002 IEEE 802.15.1 (Bluetooth v1.1)
- •
- 2010 Bluetooth v4.0:
 - Classic Bluetooth (predhodni Bluetooth protokoli)
 - □ Bluetooth high speed (na osnovi WiFi)
 - Bluetooth low energy (nov sklad protokolov za enostavne povezave)

Piconet in scatternet

- Piconet: osnonovna skupina Bluetoth sistema
 - □ Ena glavna in do 7 aktivnih podrejenih enot (do 255).
- Scatternet: povezana skupina več piconet-ov.

Piconet

- Izvedba poderjenih enot mora biti poceni (do \$5), zato enostaven način delovanja.
- SIG Bluetooth določa 25 (?) aplikacij za Bluetooth, ki jih imenuje profili.
 - □ 6 profilov za različne audio in video potrebe.
 - Profil za uporabniško interakcijo (Human interface profile)
 - Omrežne storitve...
- Velika kompleksnost Bluetooth specifikacije.

Protokolni sklad

Bluetooth fizični sloj

- Nizkoenergijski sistem, doseg 10m
- 2.4 GHz frekvenčno področje (enako kot WLAN)
- 79 neprekrivajočih se kanalov širine 1Mhz.
- Delovanje ob drugih sistemih zagotavlja FHSS:
 - □ Do 1600 skokov na sekundo.
 - "Dwell" čas (čas enega kanala) 625 μs
 - Vse naprave simultano menjajo kanal (kot to diktira glavna enota).
 - Možnost izločanja kanalov, ki so zasedeni z drugimi sistemi (adaptive frequency hopping).
 - □ Osnovna modulacija je FSK (1bit/simbol, 1Mbps).

Bluetooth MAC sloj

- Glavna enota določa serijo 625 μs časovnih intervalov (time slot).
- Oddajanje glavne enote se lahko začne v sodih intervalih, podrejene enote si delijo začetke v lihih intervalih (TDM).
- Okvirji so dolžine 1,3 ali 5 intervalov.
- Vsak okvir se začne z dostopno kodo in glavo ter 250-260 μs za začetno stabilizacijo vezij.
- Podatki so lahko kriptirani.

Bluetooth MAC sloj

- Okvirji se pošiljajo po logičnih kanalih (link) med glavno in podrejeno enoto.
- Dve vrsti kanalov:
 - Asinhroni nepovezavni (ACL Asinchronous Connection-Less)
 - Paketno usmerjanje, nestalni interval.
 - Brez zagotavljanja pravilnosti prenosa (po potrebi je mogoč ponoven prenos okvirja)
 - □ Sinhroni povezavni način (SCO Synchronous Connection Oriented)
 - Vnaprej alocirani intervali v obe smeri komunikacije.
 - Okvirji se nikoli ne pošljejo ponovno, možno je vnaprejšnje odpravljanje napak.
 - Podrejena enota ima lahko do 3 SCO povezave z glavno enoto (vsaka povezava omogoča 64kb/s.

Bluetooth okvirji

Povezovanje različnih omrežij

Linijsko usmerjanje

- Linijsko usmerjanje (Data Link Layer Switching)
 - Več lokalnih omrežij povezanih s hrbteničnim omrežjem.
 - Skupna obremenitev je lahko višja kot v enotnem orežju.

Arhitktura – most (bridge)

- Most omogoča razširitev omrežja.
- Enako kot stikalo je most naprava linijskega sloja.
- Most se lahko uporablja tudi za premoščanje različnih omrežij.

Most med 802.x in 802.y

Most med 802.x in 802.y

Primeri okvirjev omrežij IEEE 802 Dolžine polj niso narisane sorezmerno.

Problemi prehoda med omrežji

- Različni formati okvirjev različnih omrežij
 - □ Neobstoječa polja
 - Duration (802.11) nima smisla v ethernetu (802.3)
 - ____
 - Različna hitrost omrežij
 - Most ne more zagotavljati velikega medpomnenja pri prehodu iz hitrega na počasno omrežje.
 - Več omrežij pošilja okvirje v v isto omrežje.
 - Različna dolžina okvirjev
 - 802.3: 1500 b; 802.11: 2312 b
 - Delitev okvirjev na manjše dele na linijskem sloju ni mogoče.
 - Ni rešitve; preveliki okvirji morajo biti zavrženi.

Problemi prehoda med omrežji

Varnost

- □Ethernet ne omogoča kriptiranja na linijskem nivoju (802.11 in 802.16 omogočata).
 - Kriptiranje je izgubljeno, če prenos poteka po 802.3
 - Okvirjev 802.11 ni mogoče dekriptirati kadar pridejo preko 802.3.
- Rešitev je kriptiranje na višjih slojih.

Problemi prehoda med omrežji

- Kvaliteta storitev (QOS)
 - □Ethernet ne pozna koncepta QOS (802.11, 802.16 omogočata QOS na različne načine).
 - 802.11 PCF način
 - 802.16 uporaba stalne bitne hitrosti

Most med lokalnimi omrežji

- Most je popolnoma transparentna naprava (sprememba na omrežju ne zahteva sprememb v programski ali strojni opremi)
 - S priklopom novega računalnika je ta pripravljen za delo v omrežju (brez kakršnih koli nastavitev)
 - □ Deluje v skupinskem načinu (promiscous mode)
 - Sprejme vsak paket
 - Se uči (backward learning)
 - Okvire za nepoznane prejemnike posreduje vsem omrežjem.
 - Sprememba na omrežju se upošteva samodejno
 - Zaznavanje spremenjenega priklopa naprav
 - Samodejno brisanje naučenih naslovov po nekaj minutah.

Delovanje mostu (in stikala)

- Transparentni most/stikalo vzvratno učenje (Backward Learning)
- Če naslov ni poznan, se uporablja preplavljanje.
- Ko je naslov poznan, se na osnovi tega usmerja okvir pošlje naprej, v predvideno smer, ali zavrže okvir

Redundančne povezave omrežij

- Če oba mostova delujeta v običajnem načinu, pride do težav (neskončno ciklanje okvirjev med omrežjema).
- Rešitev je delovanje mostov po protokolu "spanning tree".

"Spanning tree" mostovi

Delovanje:

- Določitev korenskega mostu
 - Most z najnižjo serijsko številko
- □ Gradnja povezavnega drevesa (spanning tree)
 - Vsako stikalo ugotovi na katerem priključku (port-u) je "najceneje" dostopati do korenskega mostu (designated port).
 - Ceno posameznih segmentov je mogoče korigirati.
 - Most, ki ima najmanjšo ceno do korenskega mostu, postane izbrano za povezavo na določen LAN segment.
- Po vzpostavitvi povezavnega drevesa se le to obnavlja, da se omogoči avtomatska detekcija sprememb v topologiji omrežja.

"Spanning tree" mostovi - primer

Povezana omrežja

Povezavno drevo (spanning tree)

Oddaljeni mostovi

- Oddaljeni mostovi (remote bridges) omogočajo povezavo oddaljenih omrežij.
- Povezava med vozlišči poteka z uporabo standardnih protokolov točka-točka (npr. PPP).

Omrežne naprave

Prehod med omrežji lahko poteka z različnimi napravami, ki delujejo na različnih komunikacijskih slojih:

Application layer	Application gateway
Transport layer	Transport gateway
Network layer	Router
Data link layer	Bridge, switch
Physical layer	Repeater, hub

Aplikacijski prehod

Transportni prehod

Usmerjevalnik

Most, stikalo

Ponavljalnik, spojišče

Omrežne naprave

Črte predstavljajo domene trkov (collision domain).

Vprašanja

- Jumbo frames:
 - https://en.wikipedia.org/wiki/Jumbo_frame
- IEEE ali DIX okvirji?
 - □ Wireshark...