Kévin Cazelles and Dominique Gravel

University of Évora, March 1st 2016

Species distributions

Ecological niche

Environmental gradient

Species distributions forecasts

Ecological interactions

Tomorrow

What have we done?

• Observed occurrence: $P_i = \mathbb{P}(X_i)$

- Observed occurrence: $P_i = \mathbb{P}(X_i)$
- Observed co-ccurrence: $P_{i,i} = \mathbb{P}(X_i, X_i)$

- Observed occurrence: $P_i = \mathbb{P}(X_i)$
- Observed co-ccurrence: $P_{i,j} = \mathbb{P}(X_i, X_j)$
- Independent co-ccurrence: P_{i,j;IND} = P_iP_j

- Observed occurrence: $P_i = \mathbb{P}(X_i)$
- Observed co-ccurrence: $P_{i,j} = \mathbb{P}(X_i, X_j)$
- Independent co-ccurrence: P_{i,j;IND} = P_iP_j
- $\frac{P_{i,j}}{P_iP_i}$ vs Network properties

Niche Model to build realistic networks
 (Williams and Martinez, 2000)

Niche Model to build realistic networks
 (Williams and Martinez, 2000)

 Trophic Theory of Island Biogeography as a theoretical distribution

(Gravel et al., 2011)

Theory of Island Biogeography

Trophic Theory of Island Biogeography

Two additionnal rules:

• Island without preys, predator cannot colonize

Trophic Theory of Island Biogeography

Two additionnal rules:

- Island without preys, predator cannot colonize
- Last preys goes extinct, predator goes extinct too

Shortest path

Shortest path and association strength

Cazelles et al., 2015, Theoretical Ecology

Shortest path and association strength

Number of links and association strength

Cazelles et al., 2015, Theoretical Ecology

Theoretically speaking YES

Theoretically speaking YES

 Direct and indirect interactions impact pairwise co-occurrence,

Theoretically speaking YES

- Direct and indirect interactions impact pairwise co-occurrence,
- The strength of an association decreases with the length of the shortest path between two species

Theoretically speaking YES

- Direct and indirect interactions impact pairwise co-occurrence,
- The strength of an association decreases with the length of the shortest path between two species
- The strength of an association decreases with the number of interactions a species is experiencing

Environmemental gradients?

• Environmemental gradients?

$$P_{i,j;IND} = P_i P_j$$

Environmemental gradients?

$$P_{i,j;IND} = P_i P_j$$

 $P_{i,j;ENV} = P_{i;ENV} P_{j;ENV}$

• Environmemental gradients?

$$P_{i,j;IND} = P_i P_j$$

 $P_{i,j;ENV} = P_{i;ENV} P_{j;ENV}$

• Empirical data?

Empirical datasets

S: Salix H: Herbivore P: Parasitoid

Empirical dataset

K. Cazelles – Interactions and co-occurence

Context Theory Data Perspectives

Empirally speaking YES

 Direct and indirect interactions impact pairwise co-occurrence,

Empirally speaking YES

- Direct and indirect interactions impact pairwise co-occurrence,
- The strength of an association decreases with the length of the shortest path between two species

Empirally speaking YES

- Direct and indirect interactions impact pairwise co-occurrence,
- The strength of an association decreases with the length of the shortest path between two species
- The strength of an association decreases with the number of interactions a species is experiencing

Do interacting species co-occur differently from not-interacting species?

Empirally speaking YES

- Direct and indirect interactions impact pairwise co-occurrence,
- The strength of an association decreases with the length of the shortest path between two species
- The strength of an association decreases with the number of interactions a species is experiencing
- Taking the abiotic environment into account makes the signal is weaker

Perspectives

- Mutualism and predation induce positive co-occurences
- What about competitiion?
- Can we really tease abiotic and biotic constraints apart?

1 Abiotic variables: λ,

- **1** Abiotic variables: λ ,
- **2 Biotic variables:** B,

- **1** Abiotic variables: λ ,
- Biotic variables: B,
- **3 Movement:** φ,

- **1** Abiotic variables: λ,
- 2 Biotic variables: B,
- Movement: φ,
- **4 Evolution:** τ.

- Abiotic variables: λ,
- Biotic variables: B,
- Movement: φ,
- 4 Evolution: τ.

$$\mathbb{P}(X_1, X_2,, X_n) = f(\phi, \lambda, B, \tau)$$

- **1 Abiotic variables:** λ,
- Biotic variables: B,
- Movement: φ,
- **4 Evolution:** τ.

$$\mathbb{P}(X_1, X_2,, X_n) = f(\phi, \lambda, B, \tau)$$

Functionnal traits may help to link theses fondamental variables

 Ecological interactions very likely impact species distributions

- Ecological interactions very likely impact species distributions
- Species distributions are changing, new SDM approaches are required

- Ecological interactions very likely impact species distributions
- Species distributions are changing, new SDM approaches are required
- We should keep thinking about the relevant unit for biogeography

- Ecological interactions very likely impact species distributions
- Species distributions are changing, new SDM approaches are required
- We should keep thinking about the relevant unit for biogeography
- 4 How can we develop suitable strategies for conservation at community/foodweb scale?

OBRIGADO