天津医科大学理论课教案首页

(共4页、第1页)

课程名称:系统生物学 课程内容/章节:基因组学(测序数据分析)/第2章

授课对象:生物医学工程与技术学院 2013 级生信班 (本)

听课人数:28

授课方式:理论讲授 学时数:2 教材版本:系统生物学,第1版

教学目的与要求 (分掌握、熟悉、了解、自学四个层次) :

- 掌握 FASTQ、BED、GFF 等数据格式,第二代测序数据分析的基本流程,外显子组测序的分析步骤。
- 熟悉 SAM、VCF 等数据格式,测序深度、覆盖度等术语,测序数据分析的常用工具。
- 了解 SRA、GEO 等数据库,外显子组测序的流程和应用。
- 自学 SRA、GEO 等数据库的使用、测序数据分析常用工具的使用。

授课内容及学时分配:

- (5') 引言与导入:回顾第二代测序的主要技术和基本流程。
- (30') 数据库与数据格式:介绍 SRA 和 GEO 等与第二代测序相关的数据库,讲解第二代测序数据分析中常见的 FASTO、SAM、BED、GFF 和 VCF 等数据格式。
- (40') 测序数据分析: 讲解测序深度和覆盖度等术语,总结测序数据分析的主要流程,介绍分析流程中每个步骤的作用、常用工具和注意事项。
- (20') 外显子组测序:介绍外显子组测序的基本流程,讲解外显子组测序数据分析的基本步骤,通过实例介绍外显子组测序的应用。
- (5') 总结与答疑: 总结授课内容中的知识点与技能, 解答学生疑问。

教学重点、难点及解决策略:

- 重点: FASTQ、BED、GFF 等数据格式,第二代测序数据的分析流程。
- 难点: SAM、VCF 等数据格式。
- 解决策略: 通过实例讲解和比较类比帮助学生理解、记忆。

专业外语词汇或术语:

深度 (depth)

外显子组测序 (WES, whole exome sequenc-

覆盖度(coverage)

ing)

质量控制 (QC, quality control)

全基因组测序(WGS, whole genome sequenc-

预处理 (preprocessing)

ing)

辅助教学情况:

- 多媒体:与第二代测序相关的数据库和数据格式。
- 板书: 第二代测序数据的分析流程。

复习思考题:

- 举例说明 FASTQ、BED 和 GFF 数据格式。
- 总结测序数据分析的基本流程。

• 解释测序深度和覆盖度。

• 列举测序数据分析中的常用工具。

参考资料:

• 维基百科等网络资源。

主任签字: 年 月 日 教务处制

天津医科大学理论课教案续页

(共4页、第2页)

- 一、 引言与导入 (5 分钟)
 - 1. 测序历史: 第一代 (Sanger) \Rightarrow 第二代 (高通量) \Rightarrow 第三代 (单分子)
 - 2. 二代测序: Roche/454, Illumina/Solexa (桥式扩增 + 边合成边测序), ABI/SOLiD
- 二、 数据库与数据格式 (30 分钟)
 - 1. 数据库
 - 测序数据: SRA (Sequence Read Archive), GEO (Gene Expression Omnibus)
 - 肿瘤相关: TCGA (Cancer Genome Atlas), ICGC (International Cancer Consortium)
 - 其他: 1000 Genomes Project
 - 2. 数据格式
 - (1) 简介
 - 序列与读段: FASTA、2bit, FASTQ
 - 读段比对: SAM、BAM
 - 特征注释: BED、GTF/GFF
 - 变异信息: VCF、BCF
 - (2) 序列格式: FASTA 和 FASTQ

- FASTQ = FASTA + PHRED (quality score)
- 常用后缀: .fq, .fastq
- ID: /1 和/2⇒PE
- PHRED: $Q_{sanger} = -10log_{10}p$

	Base Call Accuracy	Probability of Incorrect Base Call	Phred Quality Score
	90%	1 in 10	10
→ 1% error rate	99%	1 in 100	20
	99.9%	1 in 1,000	30
	99.99%	1 in 10,000	40
_	99.999%	1 in 100,000	50

- (3) 比对格式: SAM
 - SAM: Sequence Alignment/Map format, human readable
 - BAM: Binary version of SAM, compress⇒smaller, index⇒random access
- (4) 注释格式: BED 和 GTF/GFF
 - BED⇒bigBed, bedGraph
 - GTF: GFF2.5, Gene Transfer Format
 - GFF: GFF3, General Feature Format
 - 坐标系统
 - BED: [0-based), length=stop-start
 - GTF/GFF: [1-based], lengt=stop-start+1

chr1	817371	819837 ENSG00000177757.2 FAM87B_lincRNA	0 +
chr1	826206	827522 ENSG00000225880.5_LINC00115_lincRNA	0 -
chr1	827608	859446 ENSG00000228794.5_LINC01128_processed_transcript	0+
chr1	868071	876903 ENSG00000230368.2_FAM41C_lincRNA	0-
chr1	873292	874349 ENSG00000234711.1_TUBB8P11_unprocessed_pseudogene	0 +
chr1	904834	915976 ENSG00000272438.1_RP11-54O7.16_lincRNA	0+
chr1	911435	914948 ENSG00000230699.2_RP11-54O7.1_lincRNA	0 +
chr1	914171	914971 ENSG00000241180.1_RP11-5407.2_lincRNA	0+
chr1	916865	921016 ENSG00000223764.2_RP11-54O7.3_lincRNA	0 -
chr1	924880	944581 ENSG00000187634.7_SAMD11_protein_coding	0+

天津医科大学理论课教案续页

(共4页、第3页)

(5) 变异格式: VCF

三、 测序数据分析 (40分钟)

- 1. 常见术语
 - 深度: 测序得到的总碱基数与待测基因组织外的比值
 - 覆盖度: 测序获得的序列占整个基因组的比例
 - SE(single end) vs.PE(paired end)
 - PE: insert vs. inner mate distance
- 2. 分析流程

R1---->

fragment
fragment + adaptors

SE read

PE reads

- (1) Quality Control: FastQC, NGS QC Toolkit, SolexaQA
- (2) Preprocessing(trim & filter): FASTX-Toolkit, PRINSEQ
- (3) Mapping: BWA, Bowtie, SOAP
- (4) Calling Variants: Samtools, GATK, VarScan
- (5) Variant Annotation: SnpEff, ANNOVAR, SeattleSeq Annotation, SIFT, PolyPhen-2
- (6) Visualization: Genome Browser, IGV, Tablet, Circos
- (7) Others: Galaxy, Picard, bedtools, BEDOPS, csvkit

3. 补遗

- Removal of PCR duplicates
- Indel Realignment
- Base quality recalibration
- Ohters: Replicates(biological vs. technical), depth, length, SE vs. PE

天津医科大学理论课教案续页

(共4页、第4页)

四、 外显子组测序 (20分钟)

- 1. 基本概念
 - exome: genome \Rightarrow 1%, 30Mb
 - WES: exome ⇒ sequencing
 - WGS: genome \Rightarrow sequencing
- 2. 【重点】流程:实验+分析
- 3. 应用实例

五、 总结与答疑 (5分钟)

- 1. 知识点
 - 数据库: SRA、GEO
 - 数据格式: FASTQ、BED、GTF/GFF SAM、VCF
 - 测序术语: 深度、覆盖度、PE
 - 分析流程: QC、preprocessing, mapping、variants、annotation, visualization
 - 外显子组测序: 实验与分析流程
- 2. 技能
 - 测序数据分析软件: 使用方法
 - 全基因组测序: 数据分析
 - 外显子组测序: 数据分析

