# Pre-Calculus and Calculus

## Nathan Alspaugh

## December 6, 2024

## Contents

| 1 | Line | eal Programming  | 2 |
|---|------|------------------|---|
|   | 1.1  | What is it?      | 2 |
|   | 1.2  | Example Problems | 2 |

### 1 Lineal Programming

Notes about Lineal Programming!

#### 1.1 What is it?

Lineal programming is a way to find the best outcome (maximum or minimum) represented by linear relationships.

#### 1.2 Example Problems

**Problem 1** A factory has 2 products A and B. The profit for each product is \$20 and \$30 respectively. The factory has 2 machines, machine 1 and machine 2. Machine 1 has a maximum time of production of 800 hours and Machine 2 has a maximum production time of 600 hours. Product A needs 2 hours in Machine 1 and 1 hour in Machine 2. Product B requires 1 hour in Machine 1 and 3 hours in Machine 2. How many products of each type should be produced to maximize the profit?

Maximize 
$$20A + 30B$$
  
Subject to  $2A + B \le 800$   
 $A + 3B \le 600$   
 $A, B \ge 0$  (1)

The function 
$$F(A, B) = 20A + 30B$$
  
Can be represented as  $F(x, y) = 20x + 30y$  (2)

|   |           | A    | B    | Max  |
|---|-----------|------|------|------|
| ĺ | Machine 1 | 2    | 1    | 800h |
| ĺ | Machine 2 | 1    | 3    | 600h |
| ĺ | Price     | \$20 | \$30 |      |



Using the function F(A, B) = 20A + 30B

$$F(x,y) = 20x + 30y$$

$$F(360, 80) = 20(360) + 30(80)$$

$$F(360, 80) = 9600$$
(6)

The maximum of the function is at the point (360,80) (7)