Тропическая линейная алгебра

Никита Шапошник, Б05-024 научный руководитель: А. Э. Гутерман

August 10, 2021

1 Введение

Тропическая математика была придумана бразильским математиком Имре Симоном (Imre Simon) в конце XX века (название произошло от его места жительства). Матрицы над тропическим полукольцом имеют приложения в теории графов, отпимизации и биологии. В настоящей работе мы будем рассматривать матрицы над тропическим полукольцом, их связь с графами и некоторые их индексы: экспоненту, скрамблинг индекс, индекс цикличности.

2 Определения

1. Тропическое полукольцо ([1], [2]) — это множество $\mathbb{R}_{min} = \mathbb{R} \cup \{\infty\}$ с операциями сложения \oplus и умножения \odot :

$$a \oplus b = min(a, b)$$
$$a \odot b = a + b$$

или множество $\mathbb{R}_{\max} = \mathbb{R} \cup \{-\infty\}$ с другой операцией сложения и идентичным умножением:

$$a \oplus b = \max(a, b)$$

 $a \odot b = a + b$

2. $\mathbb{B} = \{0,1\}$ — множество с сложением, аналогичным дизъюнкции, и умножением, аналогичным конъюнкции: $\forall a \in \mathbb{B} \hookrightarrow$

$$a + \mathbf{0} = a$$
$$a + \mathbf{1} = \mathbf{1}$$
$$b \cdot \mathbf{0} = \mathbf{0}$$
$$b \cdot \mathbf{1} = b$$

3. Граф (в рамках данной задачи) $\mathcal{G}(V,E)$ — совокупность двух множеств — непустого множества $V=V(\mathcal{G})$ и множества $E=E(\mathcal{G})\subseteq V^2$.

Множество V называется множеством вершин, множество E называется множеством рёбер.

Если $\forall (u,v) \in E \Rightarrow (v,u) \in E$, то граф $\mathcal G$ называется неориентированным, в противном случае — ориентированным.

Путем из вершины u в вершину v в графе $\mathcal G$ называется последовательность вершин $u, w_1, w_2, \ldots, w_l, v \in V(\mathcal G)$ и последовательность ребер (u, w_1) , $(w_1, w_2), \ldots, (w_l, v) \in E(\mathcal G)$, где вершины и ребра могут повторяться. Длиной пути называется количество ребер в нем. Обозначим через $\mathcal W^t(i \to j)$ множество всех путей из вершины i в вершину j длины t, а через $\mathcal W(i \to j)$ — множество всех путей из вершины i в вершину j. Граф $\mathcal G(V, E)$ со введенной функцией $W: E \to \mathbb R$ называется взвешенным графом. Весом пути называется тропическое произведение (т.е. вещественная сумма) весов всех ребер в пути. Обозначим вес пути W через p(W). Ориентированный граф называется сильно связным, если для любых $u, v \in V(\mathcal G)$ существует путь из u в v и из v в v.

Граф \mathcal{G}' называется подграфом графа \mathcal{G} , если \mathcal{G}' получен из \mathcal{G} удалением некоторых ребер и, возможно, вершин. Иначе, $V(\mathcal{G}') \subseteq V(\mathcal{G})$ и $E(\mathcal{G}') \subset E(\mathcal{G})$.

Обхватом графа $\mathcal G$ называется наименьшая длина цикла в $\mathcal G$ и обозначается как $g(\mathcal G)$. Через $\hat g(\mathcal G)$ обозначается максимальный среди всех компонент сильной связности графа $\mathcal G$ обхват.

3 Примитивность вещественной неотрицательной матрицы

Определение 3.1. Вещественная матрица A называется примитивной, если существует натуральное число m такое, что A^m положительна, то есть все числа в ней положительны. При этом наименьшее такое m называется экспонентой матрицы и обозначается через $\exp(A)$.

Теорема 3.2 (Критерий примитивности матрицы). *Неотрицательная квадратная* матрица порядка п над полем вещественных чисел примитивна тогда и только тогда, когда граф смежности этой матрицы сильно связен и НОК всех длин замкнутых путей (циклов) равно 1.

Теорема 3.3 (Виландта[3]). Если неотрицательная квадратная матрица порядка n над полем вещественных чисел примитивна, то ее экспонента не превосходит число Виландта $Wi(n) = n^2 - 2n + 2$.

4 Примитивность тропических матриц

Замечание 4.1. Примитивность и экспонента тропической матрицы определяется так эксе, как и в вещественном случае, с отличием лишь в том, что в степени матрицы не должно быть нулей тропичкского полукольца, т.е. ∞ .

4.1 \mathbf{M} атрицы 2×2

Утверждение 4.2. Матрица $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ над тропическим полукольцом примитивна тогда и только тогда, когда $b \neq \infty \land c \neq \infty \land (a \neq \infty \lor d \neq \infty);$ причем ее экспонента равна 2.

Доказательство. Если перемножить матрицы, у которых в правом верхнем

углу стоят
$$\infty$$
, то у результата будет стоять ∞ в том же углу:
$$\begin{pmatrix} a & \infty \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a' & \infty \\ c' & d' \end{pmatrix} = \begin{pmatrix} \dots & a \odot \infty \oplus \infty \odot d' \\ \dots & \dots \end{pmatrix} = \begin{pmatrix} \dots & \infty \\ \dots & \dots \end{pmatrix}$$

Аналогично с левым нижнем углом. Значит, в правом верхнем и в левом нижним углах не могут стоять ∞ .

Перемножим 2 матрицы, у которых на главной диагонали стоят ∞ :

Поремпожим 2 матрицы, у которых на главной диагонали стоят
$$\infty$$
:
$$\begin{pmatrix} \infty & b \\ c & \infty \end{pmatrix} \cdot \begin{pmatrix} \infty & b' \\ c' & \infty \end{pmatrix} = \begin{pmatrix} \infty \odot \infty \oplus b \odot c' & \infty \odot b' \oplus b \odot \infty \\ c \odot \infty \oplus \infty \odot c' & c \odot b' \oplus \infty \odot \infty \end{pmatrix} = \begin{pmatrix} \dots & \infty \\ \infty & \dots \end{pmatrix}$$
У результата стоят ∞ на побочной диагонали. Перемножим такую

матрицу с матрицей с ∞ на главной диагонали:

$$\begin{pmatrix} a & \infty \\ \infty & d \end{pmatrix} \cdot \begin{pmatrix} \infty & b \\ c & \infty \end{pmatrix} = \begin{pmatrix} a \odot \infty \oplus \infty \odot c & a \odot b \oplus \infty \odot \infty \\ \infty \odot \infty \oplus d \odot c & \infty \odot b \oplus \infty \odot d \end{pmatrix} = \begin{pmatrix} \infty & \dots \\ \dots & \infty \end{pmatrix}$$
 Снова получилась матрица с ∞ на главной диагонали. Значит, в любой

степени матрицы с ∞ на главной диагонали будут ∞ . Значит, она не может быть примитивной.

Проверим, что матрица с описанными выше ограничениями будет примитивной:

$$A^{\odot 2} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\odot 2} = \begin{pmatrix} a \odot a \oplus b \odot c & a \odot b \oplus b \odot d \\ a \odot c \oplus c \odot d & b \odot c \oplus d \odot d \end{pmatrix} = \begin{pmatrix} min(2a, b + c) & b + min(a, d) \\ c + min(a, d) & min(b + c, 2d) \end{pmatrix}$$

Равным ∞ в этой матрице может быть или a, или d, или никто из них. В любом случае, в квадрате не будет ∞ . Значит, является примитивной с показателем степени 2. П

4.2Обобщение теоремы Виландта на тропические матрицы

Замечание 4.3. Под умножением (0,1)-матрии будем понимать умножение $\partial вух$ матрии над \mathbb{B} .

Замечание 4.4. Примитивность и экспонента В-матрицы определяется так же, как и в вещественном случае.

Теорема 4.5 (Виландта для \mathbb{B} -матриц). $Ecnu \mathbb{B}$ -матрица размера n примитивна, то ее экспонента не превосходит $n^2 - 2n + 2$.

Доказательство. Рассмотрим функцию $\beta': \mathbb{R}_{\geq 0} \to \mathbb{B}$ такую, что

$$\beta'(t) = \begin{cases} \mathbf{1}, t \neq 0 \\ \mathbf{0}, t = 0 \end{cases} \tag{1}$$

и функцию $B': M_n(\mathbb{R}_{\geq 0}) \to M_n(\mathbb{B})$ такую, что

$$B': A = (a_{ij}) \mapsto B'(A) = (\beta'(a_{ij}))$$
 (2)

Лемма 4.6. B' - гомоморфизм.

Доказательство леммы. Надо доказать, что

$$B'(X) + B'(Y) = B'(X + Y) \text{ if } B'(X) \cdot B'(Y) = B'(X \cdot Y)$$
 (3)

Первое верно, так как $\forall x, y \in \mathbb{R}_{\geq 0} \hookrightarrow \beta'(x) + \beta'(y) = \beta'(x+y)$. Рассмотрим элемент под номерами i, j:

$$(B'(X) \cdot B'(Y))_{ij} = \sum_{s=1}^{n} B'(X)_{is} \cdot B'(Y)_{sj} = \sum_{s=1}^{n} \beta'(X_{is}) \cdot \beta'(Y_{sj}) =$$

$$= \sum_{s=1}^{n} \beta'(X_{is} \cdot Y_{sj}) = \beta'(\sum_{s=1}^{n} X_{is} \cdot Y_{sj}) = \beta'((X \cdot Y)_{ij}) = (B'(X \cdot Y))_{ij} \quad (4)$$

Значит, B' — гомоморфизм.

Пусть A — \mathbb{B} -матрица. Рассмотрим матрицу A' над $\mathbb{R}_{\geq 0}$ такого же размера, что и A, в которой стоят 1 на тех же местах, что и в A, и 0 в тех же местах, что и в A. Значит, B'(A') = A, и, более того, $\forall m \hookrightarrow B'((A')^m) = A^m$. Следовательно, утверждение о том, что в A^m нет нулей, равносильно утверждению о том, что в $(A')^m$ нет нулей. Значит, экспонента \mathbb{B} -матрицы равна экспоненте соответствующей ей матрицы над $\mathbb{R}_{\geq 0}$. Но к неотрицательным матрицам применима теорема Виландта. Следовательно, теорема Виландта верна и для \mathbb{B} -матриц.

Теорема 4.7 (Вилантда для тропических матриц). *Если матрица* $A \in M_n(\mathbb{R}_{min})$ примитивна, то ее экспонента не превосходит Wi(n).

Доказательство. Рассмотрим функцию $\beta: \mathbb{R}_{min} \to \mathbb{B}$ такую, что

$$\beta(t) = \begin{cases} 1, t \neq \infty \\ 0, t = \infty \end{cases}$$
 (5)

и функцию $B: M_n(\mathbb{R}_{min}) \to M_n(\mathbb{B})$ такую, что

$$B: A = (a_{ij}) \mapsto B(A) = (\beta(a_{ij})) \tag{6}$$

Лемма 4.8. B - гомоморфизм.

Доказательство леммы. Надо доказать, что

$$B(X) + B(Y) = B(X \oplus Y)$$
 и $B(X) \cdot B(Y) = B(X \odot Y)$ (7)

Заметим, что доказательство аналогично доказательству леммы 4.6, но с заменой β' на β , B' на B и $\mathbb{R}_{\geq 0}$ на \mathbb{R}_{min} .

Вследствие этого, $\forall A \in M_n(\mathbb{T}) \hookrightarrow B(A^n) = (B(A))^n$.

В тропической матрице X нет бесконечностей, если в B(X) нет нулей; поэтому тропическая матрица A примитивна, если примитивна матрица B(A), состоящая из нулей и единиц, что покрывается условием теоремы Виландта.

В этом случае в $(B(A))^{n^2+2n+1}$ нет нулей, и, значит, в A^{n^2+2n+1} не будет ∞ . Значит, если $A \in M_n(\mathbb{T})$ примитивна, то в A^{n^2+2n+1} нет ∞ .

5 Примитивность тропических матриц и графы

По графу можно построить соответствующую ему тропическую матрицу, и по тропической матрице можно построить соответствующий ей граф, такая матрица называется матрицей смежности данного графа. При этом в матрице в ячейке с индексами i и j стоит:

- 1) $-\infty$ для случая с \mathbb{R}_{\max} (∞ для случая с \mathbb{R}_{min}) тогда и только тогда, когда вершины с номерами i и j не соединены ребром;
- 2) число $x \in \mathbb{R}$ тогда и только тогда, когда между вершинами с номерами i и j есть ребро веса x. Если граф не взвешенный, то в матрице стоит x=0. Обозначим через $\mathcal{G}(A)$ граф, соответствующий тропической матрице A. Степени тропических матриц интересны по многим причинам, в том числе по следующей:

Утверждение 5.1. Рассмотрим $A \in M_{d \times d}(\mathbb{R}_{max}), i, j \in V(\mathcal{G}(A)), t \in \mathbb{N} \cup \{0\}.$ Тогда:

$$a_{ij}^t = \bigoplus \{p(W) : W \in \mathcal{W}^t(i \to j)\}$$

Доказательство. Докажем это по индукции. База, очевидно, верна для t=0: в этом случае $A^t=I$ - единичная тропическая матрица, на главной диагонали которой стоят тропические единицы, т.е. 0, а на остальных местах стоят тропические нули, т.е. $-\infty$.

Докажем переход: пусть утверждение верно для t, докажем для t+1.

$$a_{ij}^{t+1} = \bigoplus_{k=1}^{k} a_{ik}^{t} \odot a_{kj} = \max_{k} a_{ik}^{t} + a_{kj}$$

Заметим, что любой путь из вершины i в вершину j длины t+1 есть конкатенация пути из вершины i в вершину k длины t и ребра из k в j для какой-то вершины k, а вес этого пути — это сумма веса первого пути и веса последнего ребра. Из всех возможных путей оптимальным будет путь с максимальным общим весом, что согласуется с определением тропического перемножения матриц.

5.1 Матрицы 2×2

Утверждение 5.2. Рассмотрим граф смежности данной матрицы А. Матрица А примитивна, если для любых двух (в том числе одинаковых)

вершин между ними есть путь длины ровно 2.

Доказательство. Пусть $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. Если $a_{12} = \infty$, то не будет существовать пути из первой вершины во вторую. Если $a_{21} = \infty$, то не будет существовать пути из второй вершины в первую. Если предыдущие два условия не выполняются, но $a_{11} = a_{22} = \infty$, то не будет существовать пути из первой вершины во вторую и из второй в первую. В этих случаях матрица A не будет примитивной. Если все вышеперечисленные условия не выполняются, то матрица будет примитивной, что подтверждает доказанный ранее путем перемножения матриц факт.

5.2 Общий случай

По тропической матрице A порядка n можно построить ориентированный граф G на n вершинах. При этом A примитивна тогда и только тогда, когда между любыми двумя вершинами (быть может, одинаковыми), найдется путь длины $Wi(n) = n^2 - 2n + 2$ (по теореме Виландта).

6 Цепной ранг тропической матрицы

Определение 6.1. Прямоугольная тропическая матрица $A=(a_{ik})$ без строк и столбцов, состоящих только из ∞ , называется цепной, если для каждой пары ее небесконечных элементов a_{ik} и a_{pq} существует цепочка, имеющая концами эти элементы, то есть последовательность небесконечных элементов $a_{i_1k_1}, a_{i_2k_2}, \ldots, a_{i_sk_s}$ такая, что

a)
$$i_1 = i, k_1 = k$$

$$b) i_s = p, k_s = q$$

c)
$$i_l = i_{l+1}$$
 usu $k_l = k_{l+1}, l = 1, 2, \dots, s-1$.

Пусть дана $A \in \mathbb{PT}$ размера $n \times m$. Говорят, что i-ая и j-ая строки пересекаются, если они имеют небесконечные элементы в некотором общем столбие

Введем бинарное отношение $\pi(A)$ на множестве индексов $\mathbf{n} = \{1, 2, \dots, n\}$, положив, что $(i, j) \in \pi(A)$, если i-я и j-я строки A пересекаются. Обозначим через $\hat{\pi}(A)$ транзитивное замыкание отношения $\pi(A)$; оно является отношением эквивалентности.

Определение 6.2. Цепным рангом $(n \times m)$ -матрицы $A \in \mathbb{PT}$ называется число классов эквивалентности $\hat{\pi}(A)$ на множестве n. Обозначим цепной ранг матрицы A через crk(A).

Теорема 6.3. Если для матриц $A, B \in \mathbb{PT}$ существует определение AB, то

$$crk(AB) \leq min(crk(A), crk(B))$$

Определение 6.4. По $(n \times m)$ -матрице $A \in \mathbb{PT}$ можно построить граф на n вершинах, в котором i-я u j-я вершины соединены ребром, если i-я u j-я строки матрицы A пересекаются. Этот граф называется графом пересечения A.

Утверждение 6.5. Граф пересечения матрицы A связен \Leftrightarrow матрица A — цепная.

Доказательства этих утверждений и теорем есть в [4], но для неотрицательных вещественных матриц. Заметим, что доказательства этих же утверждений для тропических матриц аналогичны. Нужно учесть особенности тропического полукольца: например, по-другому будут выглядеть матрицы перестановок (из нулей и ∞ - нейтральных элементов по сложению и умножению). Также условия $\neq 0$ нужно заменить на условия $\neq \infty$, условие на неотрицательность нужно убрать. При приведении матрицы к блочному виду, по бокам будут стоять ∞ , а не 0.

7 Индекс цикличности

Определение 7.1. Граф G_1 гомоморфен графу G_2 , если существует сюръективное отображение $f: V(G_1) \to V(G_2)$ такое, что

$$\forall (u, v) \in E(\mathcal{G}_1) \Rightarrow (f(u), f(v)) \in E(\mathcal{G}_2)$$

Определение 7.2. Графы G_1 и G_2 изоморфны, если существует биекция $\rho: V(G_1) \to V(G_2)$ такая, что

$$\forall u, v \in \mathcal{G}(V_1) \hookrightarrow (u, v) \in E(\mathcal{G}_1) \Leftrightarrow (\rho(u), \rho(v)) \in E(\mathcal{G}_2)$$

Определение 7.3. Индекс цикличности (или просто цикличность) ориентированного графа \mathcal{G} обозначается через $\sigma_{\mathcal{G}}$ и определяется следующим образом:

- 1. Если $\mathcal G$ сильно связен, $u |V(\mathcal G)| \ge 2$, то цикличность равна НОД всех длин ориентированных циклов в $\mathcal G$.
- 2. Если в $\mathcal G$ есть только одна вершина (с петлей или без), то $\sigma_{\mathcal G}=1$.
- 3. Если \mathcal{G} не сильно связен, то его цикличность равна HOK цикличностей всех максимальных его сильно связных подграфов.

Замечание 7.4. Цикличность сильно связного графа \mathcal{G} - это наибольшее k такое, что \mathcal{G} гомоморфен ориентированному циклу из k вершин.

Заметим, что в сильно связном графе $\mathcal G$ с цикличностью γ любые 2 пути, соединяющий 2 фиксированные вершины, имеют одинаковые длины по модулю γ . Из этого следует, что на множестве $V(\mathcal G)$ можно ввести отношение эквивалентности: 2 вершины лежат в одном классе эквивалентности тогда и только тогда, когда длина пути от одной к другой кратна γ .

Определение 7.5. Эти классы эквивалентности называются циклическими классами.

Пусть $\mathcal{G}=(V,E)$ — взвешенный ориентированный граф с матрицей смежности $A=(a_{ij})\in M_n(\mathbb{R}_{min})$. Пусть C — это ориентированный цикл в \mathcal{G} с весами ребер $a_{i_1},a_{i_2},\ldots,a_{i_l}$. Средний вес ребра в C - это тропическое среднее геометрическое весов ребер в C:

$$w_a(C) = \sqrt[\infty]{a_{i_1} \odot a_{i_2} \odot \cdots \odot a_{i_l}} = \frac{1}{1}(a_{i_1} + a_{i_2} + \cdots + a_{i_l})$$

Определение 7.6. Ориентированный цикл называется критическим, если y него максимальный средний вес. Критический подграф \mathcal{G}^c графа \mathcal{G} — это объединение всех критических циклов в \mathcal{G} .

Пусть $A \in M_n(\mathbb{R}_{min})$ — матрица смежности графа $\mathcal{G} = \mathcal{G}(A)$, который содержит хотя бы один ориентированный цикл.

Определение 7.7. Цикличностью A называется цикличность критического подграфа \mathcal{G}^c графа \mathcal{G} , то есть $\sigma(A) := \sigma_{\mathcal{G}^c}$. Если в $\mathcal{G}(A)$ нет ориентированных циклов, то $\sigma(A) = 1$.

8 Скрамблинг индекс

Определение 8.1. Скрамблинг индекс ориентированного графа \mathcal{G} — это наименьшее натуральное число k такое, что для любых $u, v \in V(\mathcal{G})$ существует $w \in V(\mathcal{G})$ такая, что есть путь длины k из u в w u из v в w. Обозначим скрамблинг индекс через $k(\mathcal{G})$. Если не существует таких k, то $k(\mathcal{G}) = 0$.

Определение 8.2. Графом Виландта называется ориентированный граф на $n \geq 2$ вершинах со множеством вершин $V = \{1, 2, \dots, n\}$ и множеством ребер

$$E = \{(1,2), (2,3), \dots, (n-1,n)\} \cup \{(n-1,1)\}$$

В этом графе есть два цикла длиной n-1 и n, следовательно, $\sigma_{W_n}=1$, он сильно связен. Следовательно, он примитивен.

Теорема 8.3 ([6]). Пусть $\mathcal{G}-$ примитивный ориентированный граф порядка $n\geq 2$. Тогда

$$exp(\mathcal{G}) \le n^2 - 2n + 1$$

Равенство достигается тогда и только тогда, когда $\mathcal{G}\cong W_n$.

Замечание 8.4. Для примитивного ориентированного графа верно неравенство

$$0 < k(\mathcal{G}) < exp(\mathcal{G})$$

Это следует из определений скрамблинг индекса и экспоненты.

Теорема 8.5 ([6]). Обозначим через [x] наименьшее целое число, большее или равное x.

Eсли \mathcal{G} — примитивный граф c $n \geq 2$ вершинами, то

$$k(\mathcal{G}) \le \left\lceil \frac{Wi(n)}{2} \right\rceil$$

При $n \geq 3$ равенство достигается тогда и только тогда, когда $\mathcal{G} \cong W_n$. При n = 2 равенство достигается тогда и только тогда, когда $\mathcal{G} \cong W_2$ или $\mathcal{G} \cong J_2$, где J_n — полный ориентированный граф на n вершинах, то есть $E(J_n) = V^2$.

9 CSR-декомпозиция и слабое CSR-расширение

9.1 Необходимые определения

Определение 9.1. Назовем матрицу $A \in M_d(\mathbb{R}_{max})$ (или соответствующий ей граф) неприводимой, если граф $\mathcal{G}(A)$ сильно связен, иначе приводимой. Назовем матрицу $A \in M_d(\mathbb{R}_{max})$ (или соответствующий ей граф) полностью приводимой, если граф $\mathcal{G}(A)$ состоит из нескольких сильно связных компонент, никак не соединенных между собой.

Рассмотрим тропическую матрицу $A \in M_d(\mathbb{R}_{max})$. Обозначим максимальный средний вес цикла в $\mathcal{G}(A)$ через $\lambda(A)$, т.е.

$$\lambda(A) = \bigoplus_{k=1}^{d} \bigoplus_{i_1, \dots, i_k} (a_{i_1 i_2} \odot \dots \odot a_{i_{k-1} i_k})^{\odot 1/k} =$$

$$= \max_{k=1}^{d} \max_{i_1, \dots, i_k} \frac{(a_{i_1 i_2} + \dots + a_{i_{k-1} i_k})}{k}$$
(8)

Необходимо сказать, что критический подграф $\mathcal{G}^c(A)$ является полностью приводимым и средний вес любого цикла в нём равен $\lambda(A)$. Для $A \in M_d(\mathbb{R}_{\max})$ с $\lambda(A) \leq 0$ определим звезду Клини:

$$A^* = \bigoplus_{i=0}^{\infty} A^i = \bigoplus_{i=0}^{d-1} A^i$$

В матрице A^* в ячейке под номером i и j лежит длина оптимального пути от вершины i к вершине j по всему графу, без ограничения на длину пути. Условие $\lambda(A) \leq 0$ необходимо, так как иначе этот ряд расходится: можно идти по циклу с положительным средним весом и улучшать ответ. Так как дважды проходить через одну и ту же вершину не имеет смысла, можно ограничиться первыми d матрицами.

9.2 Матрицы CSR

Рассмотрим $A \in M_d(\mathbb{R})$ и некоторый подграф \mathcal{G} критического подграфа $\mathcal{G}^c(A)$ без тривиальных компонент сильной связности. Введем обозначение: $M = ((\lambda(A)^- \odot A^\sigma)^*)$. Определим матрицы $C, S, R \in M_r(\mathbb{R}_{\max})$ следующим образом:

$$c_{ij} = \begin{cases} m_{ij}, \text{ если } j \in V(\mathcal{G}) \\ -\infty, \text{ иначе}, \end{cases}$$

$$r_{ij} = \begin{cases} m_{ij}, \text{ если } i \in V(\mathcal{G}) \\ -\infty, \text{ иначе}, \end{cases}$$

$$s_{ij} = \begin{cases} \lambda(A)^- \odot a_{ij}, \text{ если } (i,j) \in E(\mathcal{G}) \\ -\infty, \text{ иначе}. \end{cases}$$

Здесь и далее для $A \in M_d(\mathbb{R}_{\max})$ через A^- будем обозначать обратную тропическую матрицу для A, т.е. такую A^- , что $AA^- = A^-A = I$. В этом случае $\lambda(A)^- = -\lambda(A)$ в вещественном понимании.

Если матрицы C, S, R определены через матрицу A, будем писать $CS^tR[A]$ для произвольного t.

Теорема 9.2 ([7], [8]). Пусть $A \in M_d(\mathbb{R}_{max})$ неприводима и CSR-матрицы определены через некоторый подграф \mathcal{G} графа $\mathcal{G}(A)$. Тогда $\exists T(A) \hookrightarrow \forall t \geq T(A)$:

$$A^{t} = \lambda(A)^{\odot t} \odot CS^{t}R[A]. \tag{9}$$

Заметим, что если $\lambda(A) = 0$, то (9) записывается в виде:

$$A^t = CS^t R[A]. (10)$$

В добавок к T(A), введем ещё 2 функции: $T_1(A,B)$ и $T_2(A,B)$. Для этого зафиксируем тот же подграф \mathcal{G} и введем новую матрицу $B \in M_r(\mathbb{R}_{max})$:

$$b_{ij} = egin{cases} -\infty, \ ext{если} \ i \ ext{или} \ j \ ext{лежат в } \mathcal{G}, \\ a_{ij}, \ ext{ иначе}. \end{cases}$$

Теорема 9.3 ([7], [8]). Пусть $A \in M_d(\mathbb{R}_{max})$ неприводима и CSR-матрицы определены через некоторый подграф \mathcal{G} графа $\mathcal{G}(A)$.

(Определение $T_1(A, B)$:) $\exists T_1(A, B) \hookrightarrow \forall t \geq T_1(A, B)$:

$$A^{t} = (\lambda(A)^{\odot t} \odot CS^{t}R[A]) \oplus B^{t}. \tag{11}$$

(Определение $T_2(A, B)$:) $\exists T_2(A, B) \hookrightarrow \forall t \geq T_2(A, B)$:

$$\lambda(A)^{\odot t} \odot CS^t R[A] \ge B^t. \tag{12}$$

Заметим, что если $\lambda(A)=0$, то (11) записывается в виде:

$$A^t = CS^t R[A] \oplus B^t, \tag{13}$$

а 12 записывается в виде

$$CS^t R[A] \ge B^t. \tag{14}$$

Есть несколько способов выбрать подграф \mathcal{G} , но в этой работе мы будем работать со способом Нахтигалля, в котором этот подграф совпадает с критическим подграфом исходного графа: $\mathcal{G}=\mathcal{G}^c(A)$. В дальнейшем, чтобы подчеркнуть, что матрица была выбрана с помощью способа Нахтигалля, будем писать B_N вместо B и $T_{1,N}(A)$ вместо $T_1(A,B_N)$. Для лучшего понимания введем несколько новых обозначений:

- 1. Через $W^{t,l}(i \to j)$ обозначим множество путей от вершины i к вершине j, имеющих длину t по модулю l;
- 2. Через $\mathcal{W}(i \xrightarrow{\mathcal{G}} j)$ обозначим множество путей от вершины i к вершине j, проходящих хотя бы через одну вершину из \mathcal{G} . Аналогично определяются $\mathcal{W}^t(i \xrightarrow{\mathcal{G}} j)$, $\mathcal{W}^{t,l}(i \xrightarrow{\mathcal{G}} j)$ граф над стрелкой добавляет ограничение на пути в множестве.
- 3. Для множества $\mathcal W$ через $p(\mathcal W)$ обозначим максимальный вес пути из множества $\mathcal W$.

Заметим, что при тропическом умножении матрицы на скаляр $A' = A \odot \mu$, где $\mu \in \mathbb{R}$, мы имеем $\lambda(A') = \lambda(A)$, $B_N[A'] = B_N[A]$, а матрицы C, S, R, определенные через A' совпадают с матрицами, определенными через A. Значит, $T_1(A,B), T_2(A,B)$ инвариантны относительно умножении матрицы на скаляр, что позволяет нам без разграничения общности сказать, что $\lambda(A) = 0$.

Утверждение 9.4. $T(A) \leq \max(T_1(A, B), T_2(A, B))$.

Доказательство. Возьмем $t \ge \max(T_1(A,B),T_2(A,B))$, для него выполняются условия (11) и (12). Из (12) следует, что операция тропического сложения с B^t в (11) бессмысленна, откуда для данного t следует (9).

Утверждение 9.5 ([8]). Если $\lambda(A) = 0$, то верно следующее тождество:

$$(CS^{t}R[A])_{ij} = p(\mathcal{W}^{t,\sigma}(i \xrightarrow{\mathcal{G}^{c}(A)} j)), \tag{15}$$

где σ обозначает цикличность $\mathcal{G}^c(A)$.

Теорема 9.6 (Некоторые оценки для $T_{1,N}(A)$, [8]). Для любой $A \in M_n(\mathbb{R}_{max})$ имеем:

- 1. $T_{1,N}(A) \leq Wi(n)$;
- 2. $T_{1,N}(A) < DM(\hat{q},n) = \hat{q}(n-2) + n$, $\epsilon \partial e \hat{q} = \hat{q}(\mathcal{G}^c(A))$.

Здесь и далее, $DM(\hat{g}, n)$ — число Далмаджа-Мендельсона, которое, как и число Виландта, оценивает сверху $T_{1,N}(A)$.

10 Обозначения

- 1. $\mathbb{R}_{>0}$ множество неотрицательных вещественных чисел.
- 2. $\mathbb{R}_{\min}, \mathbb{R}_{\max}$ тропические полукольца.
- 3. A^- обратная тропическая матрица для тропической матрицы A.
- 4. $\mathbb{B} = \{0,1\}$ множество с сложением, аналогичным дизъюнкции, и умножением, аналогичным конъюнкции.
- 5. G(V, E) граф со множеством вершин V и множеством ребер E.
- 6. $Wi(n) = (n-1)^2 + 1$ число Виландта.
- 7. \mathbb{PT} множество прямоугольных тропических матриц без бесконечных строк и столбцов.
- 8. $\sigma_{\mathcal{G}}$ индекс цикличности графа G.
- 9. k(G) скрамблинг индекс графа G.
- 10. $g(\mathcal{G})$ обхват графа \mathcal{G} , т.е. длина наименьшего цикла в \mathcal{G} .
- 11. $\hat{g}(\mathcal{G})$ максимальный обхват среди всех компонент сильной связности графа \mathcal{G} .
- 12. $exp(\mathcal{G})$ экспонента графа (а значит, и его матрицы смежности).
- 13. $\lambda(A)$ максимальный средний вес цикла в графе $\mathcal{G}(A)$.
- 14. \mathcal{G}^c критический подграф графа \mathcal{G} .
- 15. A^* звезда Клини матрицы A.
- 16. $\mathcal{W}(i \to j)$ множество путей из вершины i в вершину j. $\mathcal{W}^t(i \to j)$ множество путей из вершины i в вершину j длины t. $\mathcal{W}^{t,l}(i \to j)$ множество путей из вершины i в вершину j длины t по модулю l.
- 17. $W(i \xrightarrow{\mathcal{G}} j)$, $W^t(i \xrightarrow{\mathcal{G}} j)$, $W^{t,l}(i \xrightarrow{\mathcal{G}} j)$ аналогично предыдущему пункту, но с дополнительным условием на путь: он должен проходить хотя бы через одну вершину из \mathcal{G} .
- 18. $T_1(A,B), T_2(A,B)$ границы, определенные в подразделе 9.2.

References

- [1] Semere Tsehaye Tesfay. A Glance at Tropical Operations and Tropical Linear Algebra Eastern Illinois University, 2015.
- [2] David Speyer, Bernd Sturmfels. *Tropical Mathematics* Mathematics Magazine, vol. 82, №3, June 2009.
- [3] Hans Schneider. Wielandt's proof of the exponent inequality for primitive nonnegative matrices Department of Mathematics, University of Wisconsin at Madison, 2002.
- [4] Ю.А. Альпин, И.В. Башкин. *Неотрицательные цепные матрицы* Казанский федеральный университет, 2020.
- [5] Alexander Guterman, Elena Kreines, and Carsten Thomassen. Linear transformations of tropical matrices preserving the cyclicity index Special Matrices Volume 9, 2021.
- [6] A. E. Guterman, A. M. Maksaev *Upper bounds on scrambling index for non-primitive digraphs* Linear and Multilinear Algebra, 2019
- [7] Arthur Kennedy-Cochran-Patrick, Glenn Merlet, Thomas Nowak, Sergei Sergeev. New bounds on the periodicity transient of the powers of a tropical matrix: Using cyclicity and factor rank Linear Algebra and its Applications, 2020
- [8] Glenn Merlet, Thomas Nowak, Sergei Sergeev. https://www.sciencedirect.com/science/article/pii/S0024379514004777