Prova di Comunicazioni Numeriche

23 Aprile 2013

Es. 1 - Si consideri lo schema a blocchi in Fig.1 e sia $x(t) = A \operatorname{sinc}^2(Bt)$. Sapendo inoltre che $p(t) = \operatorname{sinc}(Bt)$, calcolare: 1) La espressione analitica del segnale z(t), 2) la sua potenza media e 3) la sua energia.

Fig. 1

Es. 2 - Si consideri il sistema di comunicazione per segnali PAM illustrato in Figura 2 dove P(f) è la trasformata di Fourier dell'impulso sagomatore p(t), e R(f) è la trasformata di Fourier del filtro in ricezione. I simboli trasmessi a_i appartengono all'alfbeto $\{\pm 1\}$ e sono indipendenti ed equiprobabili. Il decisore ha soglia di decisione pari a $\lambda=0$. Il rumore w(t) è additivo e gaussiano bianco con densità spettrale di potenza $S_w(f)=\frac{N_0}{2}$. Il segnale all'uscita del filtro in ricezione è campionato con tempo di campionamento $t_k=kT$.

Calcolare:

1) E_s , energia media trasmessa, e $P_E(b)$ nel caso in cui P(f) è un filtro passa basso ideale di banda B=1/T e $R(f)=(1-|fT|)\,rect\left(\frac{fT}{2}\right)$

2)
$$E_s$$
 e $P_E(b)$ nel caso in cui $P(f) = \sqrt{2\left(1 - |fT|\right)rect\left(\frac{fT}{2}\right)}$ e $R(f) = \sqrt{\left(1 - |fT|\right)rect\left(\frac{fT}{2}\right)}$

3) Dire quale è la $P_E(b)$ minima tra le due calcolate e spiegare perchè.

Fig. 2