DATABASE SYSTEMS

Classroom Log - 8

Harsha Raj IMT2014023

FUNCTIONAL DEPENDENCIES

Background

- Functional dependencies: a formal mechanism to evaluate the "goodness" of a relation schema
- Goodness of a physical schema is a measure of search and update complexities

Measures of Goodness

- Semantics of attributes
- Redundant values in tuples
- Null values in tuples
- Possibility of generating spurious tuples

Semantics of a Relation

Emp IDNameDep IDDep NameNo of hours worked

Work done by an employee in a department

Emp ID Name

Dep IDDep Name

Emp ID Dep ID No of hours worked

Here the above schema has simpler semantics

Redundant information

Emp ID	Name	Department
2	А	L
3	В	L
4	С	M
3	В	M
1	С	N

- Wastes space
- Creates update and insertion and deletion anomalies.

If B changes their name, then 2 tuples have to be modified.

If the employee with employee id 1 decides to work on another department, their name has to be entered into the database again.

If employee id 1 is deleted, then the department name "N" is lost.

Null Values

RollNo	Core I	Core II	Elective I	Elective II	Elective III
	Marks	Marks	Marks	Marks	Marks

If a student has taken only two electives, then the third elective will contain a *null* value.

Null values are different from missing values and 0.

Spurious Tuples

Project

Proj_id	Proj_Name	Faculty	RA
21	Distributed File System	Prof. Arindam Roy	Sameer
22	Intelligent WiFi	Prof. Anupam Joshi	Swati Reddy
25	Autonomic databses	Prof. Dwarakish	Vivekanad Pai

Course

Course_id	Course_N ame	Faculty	TA
IT800	Wireless Ad Hoc Systems	Prof. Anupam Joshi	Swati Reddy
IT803	File System	Prof. Arindam	Sushma
	Design	Roy	Sharma
IT805	Adaptive	Prof.	Vivekanad
	Systems	Dwarakish	Pai

 $\pi_{\text{ Course_Name,RA}} (Project \triangleright \lhd \text{ Course})$

Course_Name	RA
Wireless Ad Hoc System	Swati Reddy
File System Design	Sameer

Second tuple in the result relation is a spurious tuple. Sameer does not work as TA for File System Design course.

The source for Spurious tuple is the common *non-key* field called Faculty between the two relations.

Informal Design Principles

- Should not have confounding semantics
- Minimize insertion, update and delete anomalies
- Avoid table design that may result in null values
- Bad design whenever two or more tables which can be joined have a non-key attribute in common

Functional Dependency

Let $R(A_1, A_2,, A_n)$ be a relation and let X and Y be any subset of attributes of R. The set of attributes X is said to *functionally determine* the set of attributes Y, (denoted as $X \rightarrow Y$) if for any tuples $t_1, t_2 \in R$

$$t_1[X] = t_2[X] => t_1[Y] = t_2[Y].$$

- *X* and *Y* need not be disjoint
- If Y is the set of all attributes of R, then X is a candidate key of R

Example:

Let Student (RollNo, Name, Course id, CourseName, Grade) denote a student record. Some of the FDs in this relation are:

```
\{RollNo\} \rightarrow \{Name\}

\{Course id\} \rightarrow \{CourseName\}

\{RollNo,Course id\} \rightarrow \{Grade\}

\{RollNo,Course id\} \rightarrow \{Name\}

\{RollNo,Course id\} \rightarrow \{CourseName\}

\{RollNo,Name,Course id\} \rightarrow \{Grade\}
```

'good minimal superkey' → {RollNo,Course id}

- FD is a property of the semantics of the relation schema (intention)
- Not a particular legal relation state (extension)
- FD cannot be inferred by an algorithm that looks at a relation schema
- Has to be specified by someone who knows the semantics of the relation.

Properties of FDs

While FDs are intentional, they are also deductive.

Given a relation R and an initial set of FDs F, it is possible to *infer* more FDs from the elements of F. The set F along with the set of all inferred FDs is called the *closure* of F denoted by F⁺.

Two sets of FDs F and G are given. How to determine if F and G are the same set of FDs? If F⁺ and G⁺ are equal then F and G are the same set of FDs.

Rules of FD inference:

- 1. Reflexive rule: $Y \subseteq X \Rightarrow X \rightarrow Y$, $X \rightarrow X$
- 2. Augmentation rule: $X \rightarrow Y => XZ \rightarrow Y Z$;

$$X \rightarrow Y => XZ \rightarrow Y$$

- 3. Transitivity rule: $X \rightarrow Y$; $Y \rightarrow Z \Rightarrow X \rightarrow Z$
- 4. Decomposition or projective rule: $X \rightarrow Y Z => X \rightarrow Y$
- 5. Union or additive rule: $X \rightarrow Y; X \rightarrow Z => X \rightarrow Y Z$
- 6. Pseudotransitive rule: $X \rightarrow Y;WY \rightarrow Z => WX \rightarrow Z$

THANK YOU