Московский Физико-Технический Институт (государственный университет)

Работа 3.2.3 Резонанс токов в параллельном конутре

Содержание

1	Цель работы	2
2	В работе используются:	2
3	Теоретические сведения	2
4	Ход работы	2
5	Вывол	7

Работа 3.2.3 4 Ход работы

1 Цель работы

Исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

2 В работе используются:

Генератор сигналов, источник напряжения, нагрузкой которого является параллельный колебательный контур с переменной емкостью, двухканальный осциллограф, цифровые вольтметры.

3 Теоретические сведения

Схема экспериментального стенда для изучения резонанса токов в параллельном колебательном контуре показана на рис. 1. Синусоидальный сигнал от генератора GFG-8255A поступает на вход источника тока, собранного на операционном усилителе ОУ с полевым транзистором ПТ, питание которых осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 вольт. Цепи питания на схеме не показаны, представлен только резистор, переменное напряжение, на котором в используемой схеме равно напряжению на входе «+» операционного усилителя.

Рис. 1: Схема экспериментального стенда

Напряжение $E = E_0 cos(\omega t + \phi_0)$ поступает на вход «+» операционного усилителя от генератора через согласующую RC-цепочку. Это же напряжение через разъём «U1» подаётся одновременно на канал 1 осциллографа GOS-620 и вход 1-го цифрового вольтметра GDM-8245. Как видно из схемы,

$$I = \frac{E}{R_1} = I_0 cos(\omega t + \phi_0), \quad I_0 = \frac{E_0}{R_1}$$

4 Ход работы

1. Данные установки номер 2: $R = 3,50 \text{ Ом}, R_1 = 1008 \text{ Ом}.$

Работа 3.2.3 4 Ход работы

2. Проведём измерения характеристик контура при разных значениях ёмкости конденсатора. Будем фиксировать резонансные частоты f и напряжения U в контуре при разных C, так же регистрируя входное напряжение E. Результаты измерений занесём в таблицу 1. При расчётах импеданса при резонансе Z_{res} , добротности контура Q, суммарного сопротивления R_{Σ} , реактивного сопротивления ρ , эквивалентного последовательного сопротивления конденсатора R_{smax} были использованы формулы:

$$L = \frac{1}{(2\pi f)^2 C}, \ \rho = \sqrt{\frac{L}{C}}, \ Z_{rez} = \frac{UR_1}{E}, \ Q = \frac{Z_{rez}}{\rho}, \ R_{sum} = \frac{\rho}{Z_{rez}}, \ R_{Smax} = 10^{-3} \rho, \ R_L = R_{sum} - R_{Smax} - R_{sum}$$

Таблица 1: Измерения характеристик контура при разных ёмкостях

Cn,	f , к Γ ц	E, B	U, B	L,	ρ , Om	Z_{res} , Om	Q	$R_{\Sigma}, O_{\mathrm{M}}$	R_{Smax} , O	м R_L ,
нФ				мкГн						Ом
25.100	32.13	0.202	1.151	978.599	197.45	5743.6	29.08	6.78	0.197	3.09
33.200	27.87	0.202	0.938	981.137	172.1	4680.71	27.19	6.33	0.172	2.65
47.300	23.1	0.202	0.627	996.156	145.73	3128/79	21.47	6.79	0.146	3.14
57.400	21.18	0.202	0.567	977.445	130.9	2829.38	21.6	6.06	0.131	2.43
67.500	19.54	0.202	0.489	989.727	120.7	2440.15	20.21	5.97	0.121	2.35
82.700	17.67	0.202	0.401	977.661	108.97	2001.03	18.36	5.93	0.109	2.32
101.600	16.02	0.202	0.342	965.417	97.83	2155.72	22.03	4.44	0.098	0.84
Ср.знач				984,2						2.4
Ср.кв.по	ргр.			3,8						0.3
Случайн	ая			5,9						0.3
погр.										

3. Снимем амплитудно-частотную характеристику контура при ёмкостях C_2 и C_5 . Для этого будем снимать зависимость напряжения в контуре от частоты колебаний. Результаты измерений занесём в табл. (рис.2)

Работа 3.2.3 4 Ход работы

C2, E = 0,2	202 B	C5, E = 0,202 B				
U, B f, I	ц	U, B f, F	ц			
0,049	19,72	0,186	18,36			
0,056	20,51	0,204	18,47			
0,555	27,15	0,235	18,63			
0,612	27,24	0,253	18,7			
0,643	27,3	0,307	18,9			
0,633	27,28	0,33	18,96			
0,821	27,55	0,394	19,13			
0,751	27,45	0,4	19,15			
0,935	27,8	0,46	19,3			
0,56	27,159	0,47	19,6			
0,708	27,39	0,45	19,68			
0,901	27,68	0,356	19,94			
0,802	27,52	0,349	19,96			
0,88	28	0,324	20,03			
0,8	28,13	0,28	20,16			
0,63	28,39	0,234	20,38			
0,758	28,2	0,227	20,42			
0,868	28	0,217	20,47			
0,81	28,116	0,205	20,55			
0,808	28,121	0,199	20,58			
0,725	28,25					
0,63	28,396					
0,609	28,43					
0,52	28,6					
0,58	28,48					
0,66	28,34					

4. Построим графики AЧX в координатах $U/U_0(f/f_0)$. По этим графикам (ширина резонансной кривой на уровне $\frac{1}{\sqrt{2}}$) определим добротность контуров. $Q=\frac{1}{\delta w}$, где δw - ширина резонансной кривой на пересечении с уровнем.

Для С2:

Работа 3.2.3 4 Ход работы

$$Q = \frac{1}{0,037} \approx 27,03$$

Для C5:
$$Q = \frac{1}{0,0495} \approx 20, 2$$

Полученные результаты неплохо сходятся теоретическими, вычисленными в первой таблице.

5. Построим ФЧХ для контура с C_2 в координатах $x = f/f_0$ $y = \varphi/\pi$.

По графику определим добротность контура через расстояние между частотами при разности фаз $\frac{3\pi}{4}$ и $\frac{5\pi}{4}$ $Q_2 \approx 33,7$

1,029

6,6

5,4 1,222222222

$$Q_2 \approx 33, 7$$

 $Q_5 \approx 20$

 $\overline{\mathrm{Bидим}},$ что результат для Q_2 получился несколько завышенным.

6. Построим зависимость $R_L(f)$.

7. Построим векторную диаграмму для токов и напряжений в контуре с наименьшей добротностью, то есть в контуре 6.

Посчитаем ток $I=\frac{E}{R_1}=\frac{0,202}{1008}\approx 0,1$ мА. Его вектор равен сумме: $\vec{I}=\vec{I_L}+\vec{I_C}$, причем сам \vec{I} расположен на оси абсцисс, а его компоненты расположены к нему под углами

$$\phi_C = \frac{\pi}{2} - \frac{R + R_L}{\rho}, \quad \phi_L = -\frac{\pi}{2} + \delta \tag{1}$$

Здесь $\delta \simeq 10^{-3}$ — очень малый параметр установки, которым допустимо пренебречь при расчёте, однако можно изобразить для наглядности. Подсчитаем угол $\phi_C' = \frac{R+R_l}{\rho} \approx 0,0534$.

Аналогичный угол у напряжения $\vec{U}:\phi_U=-\frac{R+R_l}{\rho}.$ Т.е. оно незначительно отклоняется от оси абсцисс на отрицательный угол. Изобразим это на рисунке.

 Работа 3.2.3
 5
 Вывод

5 Вывод

В ходе работы мы ознакомились с явлением резонанса токов, изучили метод комплексных амплитуд, изучили амплитудно-частотные и фазово-частотную характеристику колебательного контура, составленного из элементов, используемых в современной радиотехнике.

Разными методами была рассчитана добротность колебательного контура при двух различных значениях ёмкости конденсатора в цепи. Полученные результаты с хорошей точностью сходятся между собой:

$$Q_2 = 27, 19, Q_2 = 27, 03, Q_2 = 33, 7$$

$$Q_5 = 20, 21, Q_5 = 20, 2, Q_5 = 20.$$