D0011E - Assignment 2

Peter Panduro

August 2018

1 Part 1 - MIPS instructions

```
\begin{array}{l} \$r1 <= 1 \\ \mathrm{addi} \ \$r1, \ \$r0, \ 0x1 \\ 0010 \ 0000 \ 0000 \ 0001 \ 0000 \ 0000 \ 0001 \end{array}
```

 $\begin{array}{l} \$r3 <= \$r1 + \$r2 \\ \mathrm{add} \ \$r3, \ \$r1, \ \$r2 \\ 0000 \ 0000 \ 0010 \ 0010 \ 0001 \ 1000 \ 0010 \ 0000 \end{array}$

r4 <= 1 if r3 < 4 else 0 slti r4, r3, 0x4 0010 1000 0110 0100 0000 0000 0000 0100

r5 <= 1 if r3 < r2 else 0 slt r5, r3, r2 0000 0000 0110 0010 0010 1000 0010 1010

 $r6 <= r3 \ll 1 \label{eq:r6}$ s
ll \$r6, \$r3, 1 0000 00
– 0 0011 0011 0000 0100 0000

 $\begin{array}{l} \$r8 <= \$r0 - \$r2 \\ \text{sub } \$r8, \$r0, \$r2 \\ 0000 \ 0000 \ 0000 \ 0010 \ 0100 \ 0000 \ 0010 \ 0010 \end{array}$

 $r9 <= r8 \ \mbox{\ensuremath{\$}} 10 \\ sll \ \mbox{\ensuremath{\$}} r9, \ \mbox{\ensuremath{\$}} r8, \ 0xA \\ 0000 \ 00-\ -0 \ 1000 \ 0101 \ 0010 \ 0100 \ 0000 \\$

 $r9 <= r9 \ 4$ sra r9, r9, 0x4 0000 00– —0 1001 0100 1001 0000 001a

r10 <= -10-10 = 10110 (2's complement) addi \$r10, \$r0, 0x15 0010 0000 0000 1010 1111 1111 1111 0110

r11 <= 0x12340000lui \$r11, 0x1234 0011 11
- —0 1011 0001 0010 0011 0100

 $\begin{array}{l} \$r12 <= 0x1234 \\ \text{addi } \$r12, \,\$0, \, 0x1234 \\ 0010 \,\, 0001 \,\, 1000 \,\, 0000 \,\, 0001 \,\, 0010 \,\, 0011 \,\, 0100 \end{array}$

 $\begin{array}{l} \$r12 <= \$r12 \ \text{\ensuremath{$\otimes$}} \ 16 \\ \$r12, \ \$r12, \ 0x10 \\ 0000 \ 00- \ --0 \ 1100 \ 0110 \ 0100 \ 0000 \ 0000 \end{array}$

 $r12 <= r12 \mid 0x5678$ ori r12, r12, 0x56780011 0101 1000 1100 0101 0110 0111 1000

 $\begin{array}{l} \$r13 <= \$r11 - \$r12 \\ \text{sub } \$r13, \$r11, \$r12 \\ 0000 \ 0001 \ 0110 \ 1100 \ 0110 \ 1000 \ 0010 \ 0011 \end{array}$

 $\begin{array}{l} \$r14 <= \$r11 \ and \ 0xFFFF \\ and \ \$r14, \ \$r11, \ 0xFFFF \\ 0011 \ 0001 \ 0110 \ 1110 \ 1111 \ 1111 \ 1111 \ 1111 \end{array}$

```
r15 <= r14 \ll r2 srlv r15, r14, r2 0000 0001 1100 0010 0111 1000 0000 0110
```

1.1 Contents of registers r1 - r15

```
= 0x00000001
$r1
r2 = 0x00000002
r3 = 0x00000003
    = 0x0000001
r5 = 0x00000000
r6 = 0x00000006
r7 = 0x00000006
r8 = 0xFFFFFFE
r9 = 0xFFFFFFE
$r10 = 0xFFFFFF6
r11 = 0x12345678
r12 = 0x12345678
r13 = 0x00000000
r14 = 0x00005678
r15 = 0x000159D0
```

2 Part 2 - MIPS Processor

Figure 1: RTL schematic

3 Part 3 - Truth table of control signals

Instruction	opcode	funct	WE	ALUC	RegD	ALUS
ADD	0x0	0x20	1	010	1	0
ADDI	0x8	-	1	010	0	1
SUB	0x0	0x22	1	110	1	0
SLT	0x0	0x2A	1	111	1	0
SLTI	0xA	-	1	111	0	1
AND	0x0	0x24	1	000	1	0
OR	0x0	0x25	1	001	1	0

Table 1: Truth table of control signals and instructions