ОЦЕНКИ НА КОММУНИКАЦИОННУЮ СЛОЖНОСТЬ БУЛЕВЫХ ФУНКЦИЙ И ИГР КАРЧМЕРА — ВИГДЕРСОНА В РАЗНЫХ МОДЕЛЯХ

АРТУР ИГНАТЬЕВ

КОММУНИКАЦИОННАЯ СЛОЖНОСТЬ

Придумана Эндрю Яо в 1979 году.

Алиса и Боб хотят вычислить f(x, y).

ИГРЫ КАРЧМЕРА — ВИГДЕРСОНА

- Теорема 1 (Карчмер Вигдерсон)
 Любой формуле Де Моргана соответствует коммуникационный протокол с той же структурой.
 Обратное тоже верно.
- Определение 1 Игра Карчмера – Вигдерсона для функции $f:\{0,1\}^n o \{0,1\}$:
 - Алиса получает $x \in f^{-1}(0)$
 - Боб получает $y \in f^{-1}(1)$
 - ullet Хотят найти $i \in [n]$, что $x_i \neq y_i$

ИГРЫ КАРЧМЕРА — ВИГДЕРСОНА

- ▶ Определение 2
 - Обобщенная игра Карчмера Вигдерсона для функции $f: \{0,1\}^n \to \{0,1\}^r$:
 - Алиса получает $x \in \{0,1\}^n$
 - Боб получает $y \in \{0,1\}^n$
 - $f(x) \neq f(y)$
 - ullet Хотят найти $i \in [n]$, что $x_i \neq y_i$

ЦЕЛИ И ЗАДАЧИ

- Целью данной работы является доказательство оценок на коммуникационную сложность булевых функций.
 И игр Карчмера – Вигдерсона.
 Мы рассмотрим три мотива:
- 1. Полудуплексная коммуникационная сложность
- 2. Случайные ограничения
- 3. Коммуникационная сложность с оракулом

ПОЛУДУПЛЕКСНАЯ МОДЕЛЬ

Игроки общаются по полудуплексному каналу (рации).

Алиса и Боб хотят вычислить f(x, y).

ТИПЫ РАУНДОВ

- В этой модели есть три типа раундов.
 - 1. Обычный раунд: один посылает, другой принимает.
 - 2. Утраченный раунд: оба игрока посылают.
 - 3. Тихий раунд: оба игрока принимают.
- ► В [HIMS18] предложены три способа определить тихие раунды.
 - Полудуплексная модель с тишиной: игроки получают специальный символ (тишину), не 0 и не 1.
 - Полудуплексная модель с нулем: игроки получают 0 (неотличимо от обычного раунда).
 - Полудуплексная модель с противником: игроки получают биты, выбранные противником (или шум).

• $D_s^{hd}(R), D_0^{hd}(R)$ и $D_a^{hd}(R)$ – полудуплексная коммуникационная сложность R в модели с тишиной, нулем и противником, соответственно.

	GT_n	\mathbf{DISJ}_n	KW_{MOD2_n}
$\mathbf{D}^{hd}_{\scriptscriptstyle{S}}$	$\geq n/\log 5 \star \\ \leq n/\log 5 + o(n) \star$		$\geq 2\log_5 n \star \\ \leq 2\log_3 n$
${ m D}_0^{hd}$	$\geq n/\log 3 \star$ $\leq n/\log 3 + o(n) \star$	$ \ge n/\log 3 \star $ $ \le 5n/6 + O(1) \star $	
\mathbf{D}_a^{hd}	$\geq n/\log 2.5$ *	$\geq n/\log 2.5 \star$	$=2\log n$

- $D_s^{hd}(KW_{\text{MOD3}}) \le 1.89 \log n, \quad D_s^{hd}(KW_{\text{MOD3}}) \le 2.46 \log n,$ $D_s^{hd}(KW_{\text{MOD11}}) \le 3.48 \log n.$
- Для произвольного $p \ge 2$,

$$D_s^{hd}(KW_{\text{MOD}p}) \le \frac{1 + \left\lceil \log_3 \frac{p}{2} \right\rceil}{\log \frac{2}{\sqrt{5} - 1}} \cdot \log n$$

- $ullet N_s^{hd}(f), N_0^{hd}(f)$ и $N_a^{hd}(f)$ недетерминированная полудуплексная сложность f в модели с тишиной, нулем и противником, соответственно.
- $egin{aligned} \mathsf{A}$ ля любой $f\colon\{0,1\}^n imes\{0,1\}^n o\{0,1\},\ &\mathrm{N}_s^{hd}(f)=\mathrm{N}(f)/\log 5+\Theta(\log\mathrm{N}(f)),\ &\mathrm{N}_0^{hd}(f)=\mathrm{N}(f)/\log 3+\Theta(\log\mathrm{N}(f)),\ &\mathrm{N}_a^{hd}(f)\geq\mathrm{N}(f)/\log 3, \end{aligned}$

N(f) – классическая недетерминированная коммуникационная сложность f.

МЕТОД СЛУЧАЙНЫХ ОГРАНИЧЕНИЙ

- Ограничение формулы элемент $\{0,1,\star\}^n$. Случайное ограничение ρ :
 - $\rho(x_i) = \star$ с вероятностью p.
 - $\rho(x_i) = 0$, $\rho(x_i) = 1$ с вероятностью $\frac{1-p}{2}$.
- Данная техника впервые была рассмотрена Субботовской.
- lacktriangle Для формул Де Моргана Хостадом было доказано, что ожидаемый размер формулы после случайного ограничения равняется $O(p^2L)$.
- Данная техника позволяет доказать кубическую оценку на размер формулы явной булевой функции.

- Результат Хостада получается перенести на случай обобщенных игр Карчмера Вигдерсона.
- Этот результат полезен для доказательства суперкубической оценки на размер протокола обобщенной игры Карчмера – Вигдерсона для явной функции.

КОММУНИКАЦИЯ С ОРАКУЛОМ

Игроки общаются с помощью оракула.

Чарли вычисляет некоторую функцию $A(a_i,b_i)$

КОММУНИКАЦИЯ С ОРАКУЛОМ

- Наиболее изученным оракулом является задача равенства EQ. Обозначим за $P^{EQ}(f)$ коммуникационную сложность с оракулом EQ.
- ho Интересно установить связь между $\mathrm{P}^{\mathrm{EQ}}(f)$ и вероятностной коммуникационной сложностью с общими случайными битами (R(f)).
- ^ Существуют f и g: $P^{EQ}(f) = \Omega(n)$ и $R(f) = O(\log n)$, а также $P^{EQ}(g) = \Omega(\log n)$ и R(g) = O(1).
- Остается вопрос о существовании симуляции вида $P^{EQ}(f) = 2^{R(f)} + \log n$.

- ullet Коммуникационная сложность EHD_k с оракулом EHD_ℓ не менее $\Omega(k/\ell)$.
- Коммуникационная сложность ${\rm EHD}_1$ равна n/2 + O(1).
- Сложность случайной функции с оракулом EQ^1 равна n-o(n).
- Сложность случайной функции в полудуплексной модели с нулем и противником равна n-o(n).

ЗАКЛЮЧЕНИЕ

- Доказана серия оценок на коммуникационную сложность булевых функций и игр Карчмера – Вигдерсона.
 - 1. Доказано несколько оценок в полудуплексной модели на $\mathrm{DISJ}, \mathrm{GT}, \mathit{KW}_{\mathrm{MOD}p}$
 - Связь между полудуплексной недетерминированной сложностью и классической недетерминированной сложностью
 - 3. Адаптация метода случайных ограничений для обобщенных игр Карчмера – Вигдерсона
 - 4. Оценка на коммуникационную сложность EHD_k с оракулом EHD_ℓ
 - 5. Случайная функция с оракулом EQ^1 имеет сложность n-o(n)

ПУБЛИКАЦИИ

- Dementiev, Y., Ignatiev, A., Sidelnik, V., Smal, A., Ushakov, M. New Bounds on the Half-Duplex Communication Complexity. // SOFSEM 2021. 2021.
- 2. Ignatiev, A., Mihajlin, I., Smal, A. Super-cubic lower bound for generalized Karchmer-Wigderson games. // ECCC (preprint)