Algorithms

2.2 Mergesort

- mergesort
- bottom-up mergesort
- sorting complexity
- comparators
- stability

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world's computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of 20th century in science and engineering.

Mergesort. [this lecture]

Quicksort. [next lecture]

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.2 Mergesort

- mergesort
 - boltom-up mergesort
 - sorting complexity
 - comperators
 - stability

Mergesort

Basic plan.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves.

John von Neumann

Abstract in-place merge demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Abstract in-place merge demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi], replace with sorted subarray a[lo] to a[hi].

Merging: Java implementation

```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
 for (int k = lo; k \le hi; k++)
   aux[k] = a[k];
                                                                                                    copy
 int i = lo, j = mid+1;
 for (int k = lo; k \le hi; k++)
   if
        (i > mid) 	 a[k] = aux[j++];
                                                                                                   merge
   else if (j > hi) a[k] = aux[i++];
   else if (less(aux[j], aux[i])) a[k] = aux[j++];
                         a[k] = aux[i++];
   else
```


Mergesort: Java implementation

```
public class Merge
  private static void merge(...)
 { /* as before */ }
  private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
    if (hi <= lo) return;
    int mid = lo + (hi - lo) / 2;
    sort(a, aux, lo, mid);
    sort(a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
  public static void sort(Comparable[] a)
    Comparable[] aux = new Comparable[a.length];
    sort(a, aux, 0, a.length - 1);
```

Mergesort: trace

```
a[]
     merge(a, aux,
     merge(a, aux,
                  0, 1,
   merge(a, aux,
     merge(a, aux, 4, ...)
                        4, 5
     merge(a, aux,
   merge(a, aux,
  menge(a, aux, 0, 3, 7)
     merge(a, aux, 8, ...)
     merge(a, aux, 10, 10, 11)
   merge(a, aux,
                  8,
     merge(a, aux, 12, 12, 13)
     merge(a, aux, 14, 14, 15)
   merge(a, aux, 12, 13, 15)
  merge(a, aux, 8, 11, 15)
merge(a, aux, 0, 7, 15)
```

result after recursive call

Mergesort: animation

50 random items

algorithm position in order current subarray not in order

http://www.sorting-algorithms.com/merge-sort

Mergesort: animation

50 reverse-sorted items

algorithm position in order current subarray not in order

http://www.sorting-algorithms.com/merge-sort

Mergesort: empirical analysis

Running time estimates:

Laptop executes 10⁸ compares/second.
 Supercomputer executes 10¹² compares/second.

	ins	sertion sort (N ²)	mergesort (N log N)			
computer	thousand	million	billion	thousand	million	billion	
home	instant	2.8 hours	317 years	instant	1 second	18 min	
super	instant	1 second	1 week	instant	instant	instant	

Bottom line. Good algorithms are better than supercomputers.

Mergesort: number of compares

Proposition. Mergesort uses $\leq N \lg N$ compares to sort an array of length N.

Pf sketch. The number of compares C(N) to mergesort an array of length N satisfies the recurrence:

$$C(N) \le C(\lceil N/2 \rceil) + C(\lceil N/2 \rceil) + N \text{ for } N > 1, \text{ with } C(1) = 0.$$

left half right half merge

We solve the recurrence when *N* is a power of 2:

result holds for all N
(analysis cleaner in this case)

$$D(N) = 2 D(N/2) + N$$
, for $N > 1$, with $D(1) = 0$.

Divide-and-conquer recurrence: proof by picture

Proposition. If D(N) satisfies D(N) = 2D(N/2) + N for N > 1, with D(1) = 0, then $D(N) = N \lg N$.

Pf 1. [assuming *N* is a power of 2]

Divide-and-conquer recurrence: proof by induction

Proposition. If D(N) satisfies D(N) = 2D(N/2) + N for N > 1, with D(1) = 0, then $D(N) = N \lg N$.

Pf 2. [assuming *N* is a power of 2]

- Base case: N = 1.
- Inductive hypothesis: $D(N) = N \lg N$.
- Goal: show that $D(2N) = (2N) \lg (2N)$.

$$D(2N) = 2 D(N) + 2N$$

$$= 2 N \lg N + 2N$$

$$= 2 N (\lg (2N) - 1) + 2N$$

$$= 2 N \lg (2N)$$

given

inductive hypothesis

algebra

QED

Mergesort: number of array accesses

Proposition. Mergesort uses $\leq 6 N \lg N$ array accesses to sort an array of length N.

Pf sketch. The number of array accesses A(N) satisfies the recurrence:

$$A(N) \le A([N/2]) + A([N/2]) + 6N \text{ for } N > 1, \text{ with } A(1) = 0.$$

Key point. Any algorithm with the following structure takes $N \log N$ time:

```
public static void linearithmic(int N)
{
    if (N == 0) return;
    linearithmic(N/2);
    linearithmic(N/2);
    linear(N);
}

solve two problems
    of half the size
    do a linear amount of work

linear(N);
}
```

Notable examples. FFT, hidden-line removal, Kendall-tau distance, ...

Mergesort analysis: memory

Proposition. Mergesort uses extra space proportional to *N*.

Pf. The array aux[] needs to be of length N for the last merge.

Def. A sorting algorithm is in-place if it uses $\leq c \log N$ extra memory. Ex. Insertion sort, selection sort, shellsort.

Challenge 1 (not hard). Use aux[] array of length $\sim \frac{1}{2} N$ instead of N. Challenge 2 (very hard). In-place merge. [Kronrod 1969]

Mergesort: practical improvements

Use insertion sort for small subarrays.

- Mergesort has too much overhead for tiny subarrays.
- \square Cutoff to insertion sort for \approx 10 items.

```
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
 if (hi <= lo + CUTOFF - 1)
    Insertion.sort(a, lo, hi);
    return;
 int mid = lo + (hi - lo) / 2;
 sort (a, aux, lo, mid);
 sort (a, aux, mid+1, hi);
  merge(a, aux, lo, mid, hi);
```

Mergesort with cutoff to insertion sort: visualization

Mergesort: practical improvements

Stop if already sorted.

```
Is largest item in first half \leq smallest item in second half? Helps for partially-ordered arrays.
```

```
ABCDEFGHIJ MNOPQRSTUV
ABCDEFGHIJMNOPQRSTUV
```

```
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
   if (hi <= lo) return;
   int mid = lo + (hi - lo) / 2;
   sort (a, aux, lo, mid);
   sort (a, aux, mid+1, hi);
   if (!less(a[mid+1], a[mid])) return;
   merge(a, aux, lo, mid, hi);
}</pre>
```

Mergesort: practical improvements

Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call.

```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
 int i = lo, j = mid+1;
 for (int k = lo; k \le hi; k++)
         (i > mid) \qquad aux[k] = a[j++];
                                                                                           merge from a[] to aux[]
    else if (i > hi) aux[k] = a[i++];
    else if (less(a[j], a[i])) aux[k] = a[j++];
    else
                 aux[k] = a[i++];
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
                                                                     assumes aux[] is initialize to a[] once,
                                                                              before recursive calls
 if (hi <= lo) return;
 int mid = lo \uparrow (hi - lo) / 2;
 sort (aux, a, lo, mid);
 sort (aux, a, mid+1, hi);
  merge(a, aux, lo, mid, hi); and a[]
```

Java 6 system sort

Basic algorithm for sorting objects = mergesort.

Cutoff to insertion sort = 7.

Stop-if-already-sorted test.

Eliminate-the-copy-to-the-auxiliary-array trick.

http://www.java2s.com/Open-Source/Java/6.0-JDK-Modules/j2me/java/util/Arrays.java.html

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.2 Mergesort

- mergeson
- bottom-up mergesort
 - sorting complexity
 - comparators
 - stability

Bottom-up mergesort

Basic plan.

```
Pass through array, merging subarrays of size 1.
Repeat for subarrays of size 2, 4, 8, ....
```

```
a[i]
     52 - 1
     merge(a, aux, 0, 0, 1)
     merge(a, aux, 2, 2, 3)
     merge(a, aux, 4, 4, 5) [
     merge(a, aux, 6, 6, 7) [
     merge(a, aux, 8, 8,
                           9) E
     merge(a, aux, 10, 10, 11)
     merge(a, aux, 12, 12, 13)
     merge(a, aux, 14, 14, 15)
   52 - 2
   merge(a, aux, 0, 1, 3)
   merge(a, aux, 4, 5, 7)
   merge(a, aux, 8, 9, 11)
   merge(a, aux, 12, 13, 15)
 52 - 4
 merge(a, aux, 0, 3, 7)
 merge(a, aux, 8, 11, 15)
sz = 8
merge(a, aux, <mark>0</mark>, 7, 15)
```

Bottom-up mergesort: Java implementation

```
public class MergeBU
 private static void merge(...)
 { /* as before */ }
 public static void sort(Comparable[] a)
   int N = a.length;
   Comparable[] aux = new Comparable[N];
   for (int sz = 1; sz < N; sz = sz+sz)
     for (int lo = 0; lo < N-sz; lo += sz+sz)
       merge(a, aux, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
                                               but about 10% slower than recursive,
```

top-down mergesort on typical systems

Bottom line. Simple and non-recursive version of mergesort.

Mergesort: visualizations

Natural mergesort

Idea. Exploit pre-existing order by identifying naturally-occurring runs.

in	put													
	1	5	10	16	3	4	23	9	13	2	7	8	12	14
fir	st run													
	1	5	10	16	3	4	23	9	13	2	7	8	12	14
se	cond i	run												
	1	5	10	16	3	4	23	9	13	2	7	8	12	14
m	orgo t	MO KII	36											
m	erge t	wo rur	15											
	1	3	4	5	10	16	23	9	13	2	7	8	12	14

Tradeoff. Fewer passes vs. extra compares per pass to identify runs.

Timsort

Natural mergesort.
Use binary insertion sort to make initial runs (if needed).
A few more clever optimizations.

Tim Peters

Intro

This describes an adaptive, stable, natural mergesort, modestly called timsort (hey, I earned it <wink>). It has supernatural performance on many kinds of partially ordered arrays (less than Ig(N!) comparisons needed, and as few as N-1), yet as fast as Python's previous highly tuned samplesort hybrid on random arrays.

In a nutshell, the main routine marches over the array once, left to right, alternately identifying the next run, then merging it into the previous runs "intelligently". Everything else is complication for speed, and some hard-won measure of memory efficiency.

- -

Consequence. Linear time on many arrays with pre-existing order. Now widely used. Python, Java 7, GNU Octave, Android,

The Zen of Python

Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although **practicality** beats purity. *Errors* should never pass silently. Unless explicitly silenced. In the face of more of those! ambiguity, refuse the temptation to guess. There should be one ob s'fel — sebi - and preferably only one - obvious way to do it. Although that, one honking great way may not be obvious at first unless you're Dutch. Now is Namespaces are better than never. Although never is **often** better than *right* reapt pool e aq few now. If the implementation is hard to explain, it's a bad g cash to explain, it idea. If the implementation, idea. If the implementation now. If the implementation is hard to explain, it's a bad is easy to explain, it may be a good idea. better than never. Although never is often better than right way may not be obvious at first unless you're Dutch. Now is Namespaces are one honking great — and preferably only one — obvious way to do it. Although that ambiguity, retuse the temptation to guess, i here should be one idea — let's do bass silently. Unless exhibitly silenced, in the face of more of those! Although practicality beats purity. Errors should never preak the rules. of Aguona laipage Keadability counts, Special cases aren't nested. Sparse is better than dense. than complicated. Flat is better than is petrer than complex. Complex is better Explicit is detter than implicit. Simple

Beautiful is better than ugly.

http://www.python.org/dev/peps/pep-0020/ http://westmarch.sjsoft.com/2012/11/zen-of-python-poster/

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.2 Mergesort

- mergeson
- boltom-up mergesort
- sorting complexity
 - comparators
 - stability

Complexity of sorting

Computational complexity. Framework to study efficiency of algorithms for solving a particular problem *X*.

Model of computation. Allowable operations.

Cost model. Operation count(s).

Upper bound. Cost guarantee provided by some algorithm for *X*.

Lower bound. Proven limit on cost guarantee of all algorithms for *X*.

Optimal algorithm. Algorithm with best possible cost guarantee for *X*.

lower bound ~ upper bound

Example: sorting. \square Model of computation: decision tree. \square Cost model: # compares. \square Upper bound: $\sim N \lg N$ from mergesort. \square Lower bound: \square Optimal algorithm:

Decision tree (for 3 distinct keys a, b, and c)

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least $lg(N!) \sim N lg N$ compares in the worst-case.

Pf.

- Assume array consists of N distinct values a_1 through a_N .
- Worst case dictated by height h of decision tree.
- Binary tree of height h has at most 2^h leaves.
- N! different orderings \Rightarrow at least N! leaves.

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least $\lg(N!) \sim N \lg N$ compares in the worst-case.

Pf.

Assume array consists of N distinct values a_1 through a_N .

Worst case dictated by height h of decision tree.

Binary tree of height h has at most 2^h leaves. N! different orderings \Rightarrow at least N! leaves.

$$2^{h} \ge \# \text{ leaves } \ge N!$$

$$\Rightarrow h \ge \lg(N!) \nearrow N \lg N$$

Stirling's formula

Complexity of sorting

Model of computation. Allowable operations.

Cost model. Operation count(s).

Upper bound. Cost guarantee provided by some algorithm for *X*.

Lower bound. Proven limit on cost guarantee of all algorithms for *X*.

Optimal algorithm. Algorithm with best possible cost guarantee for X.

Example: sorting.

Model of computation: decision tree.

Cost model: # compares.

Upper bound: $\sim N \lg N$ from mergesort.

Lower bound: $\sim N \lg N$.

Optimal algorithm = mergesort.

First goal of algorithm design: optimal algorithms.

Complexity results in context

Compares? Mergesort is optimal with respect to number compares.

Space? Mergesort is not optimal with respect to space usage.

Lessons. Use theory as a guide.

- Ex. Design sorting algorithm that guarantees $\frac{1}{2} N \lg N$ compares?
- Ex. Design sorting algorithm that is both time- and space-optimal?

Complexity results in context (continued)

Lower bound	may not	hold if the	algorithm	can take	advantage	of:
	<i>J</i>					

The initial order of the input.

Ex: insert sort requires only a linear number of compares on partiallysorted arrays.

The distribution of key values.

Ex: 3-way quicksort requires only a linear number of compares on arrays with a constant number of distinct keys. [stay tuned]

The representation of the keys.

Ex: radix sort requires no key compares — it accesses the data via character/digit compares.

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.2 Mergesort

- mergeson
- boltom-up mergesort
- sorting complexity
- comparators
 - stability

Sort countries by gold medals

NOC \$	Gold	\$	Silver	\$	Bronze \$	Total ≑
United States (USA)	46		29		29	104
China (CHN)§	38		28		22	88
Great Britain (GBR)*	29		17		19	65
Russia (RUS)§	24		25		32	81
South Korea (KOR)	13		8		7	28
Germany (GER)	11		19		14	44
France (FRA)	11		11		12	34
Italy (ITA)	8		9		11	28
Hungary (HUN)§	8		4		6	18
Australia (AUS)	7		16		12	35

Sort countries by total medals

NOC \$	Gold 4	Silver +	Bronze \$	Total ▼
United States (USA)	46	29	29	104
China (CHN)§	38	28	22	88
Russia (RUS)§	24	25	32	81
Great Britain (GBR)*	29	17	19	65
Germany (GER)	11	19	14	44
Japan (JPN)	7	14	17	38
Australia (AUS)	7	16	12	35
France (FRA)	11	11	12	34
South Korea (KOR)	13	8	7	28
Italy (ITA)	8	9	11	28

Sort music library by artist

Sort music library by song name

Comparable interface: review

Comparable interface: sort using a type's natural order.

```
public class Date implements Comparable<Date>
  private final int month, day, year;
  public Date(int m, int d, int y)
    month = m;
    day = d;
    year = y;
                                                                                  natural order
  public int compareTo(Date that)
    if (this.year < that.year ) return -1;</pre>
    if (this.year > that.year ) return +1;
    if (this.month < that.month) return -1;</pre>
    if (this.month > that.month) return +1;
    if (this.day < that.day ) return -1;
    if (this.day > that.day ) return +1;
    return 0;
```

Comparator interface

Comparator interface: sort using an alternate order.

```
public interface Comparator<Key>
int compare(Key v, Key w) compare keys v and w
```

Required property. Must be a total order.

string order	example			
natural order	Now is the time			
case insensitive	is Now the time	pre-1994 order for digraphs ch and ll and rr		
Spanish language	café cafetero cuarto churro nube ñoño			
British phone book	McKinley Mackintosh			

Comparator interface: system sort

To use with Java system sort:

Create Comparator object.

Pass as second argument to Arrays.sort().

Bottom line. Decouples the definition of the data type from the definition of what it means to compare two objects of that type.

Comparator interface: using with our sorting libraries

To support comparators in our sort implementations:

- Use Object instead of Comparable.
- Pass Comparator to sort() and less() and use it in less().

insertion sort using a Comparator

```
public static void sort(Object[] a, Comparator comparator)
  int N = a.length;
  for (int i = 0; i < N; i++)
    for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
      exch(a, j, j-1);
}
private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v, w) < 0; }
private static void exch(Object[] a, int i, int j)
{ Object swap = a[i]; a[i] = a[j]; a[j] = swap; }
```

Comparator interface: implementing

To implement a comparator:

Define a (nested) class that implements the Comparator interface.

Implement the compare() method.

```
public class Student
 private final String name;
 private final int section;
 public static class ByName implements Comparator<Student>
   public int compare(Student v, Student w)
   { return v.name.compareTo(w.name); }
 public static class BySection implements Comparator<Student>
                                           this trick works here
   public int compare(Student v, Student w)
                                       since no danger of overflow
   { return v.section - w.section; }
```

Comparator interface: implementing

To implement a comparator:

Define a (nested) class that implements the Comparator interface.

Implement the compare() method.

Arrays.sort(a, new Student.ByName());

Andrews	3	Α	664-480-0023	097 Little
Battle	4	С	874-088-1212	121 Whitman
Chen	3	Α	991-878-4944	308 Blair
Fox	3	Α	884-232-5341	11 Dickinson
Furia	1	Α	766-093-9873	101 Brown
Gazsi	4	В	766-093-9873	101 Brown
Kanaga	3	В	898-122-9643	22 Brown
Rohde	2	Α	232-343-5555	343 Forbes

Arrays.sort(a, new Student.BySection());

Furia	1	А	766-093-9873	101 Brown
Rohde	2	А	232-343-5555	343 Forbes
Andrews	3	Α	664-480-0023	097 Little
Chen	3	А	991-878-4944	308 Blair
Fox	3	А	884-232-5341	11 Dickinson
Kanaga	3	В	898-122-9643	22 Brown
Battle	4	С	874-088-1212	121 Whitman
Gazsi	4	В	766-093-9873	101 Brown

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.2 Mergesort

- mergeson
- boltom-up mergesort
- sorting complexity
- comparators
- stability

Stability

A typical application. First, sort by name; then sort by section.

Selection.sort(a, new Student.ByName());

Andrews	3	Α	664-480-0023	097 Little
Battle	4	С	874-088-1212	121 Whitman
Chen	3	Α	991-878-4944	308 Blair
Fox	3	Α	884-232-5341	11 Dickinson
Furia	1	Α	766-093-9873	101 Brown
Gazsi	4	В	766-093-9873	101 Brown
Kanaga	3	В	898-122-9643	22 Brown
Rohde	2	Α	232-343-5555	343 Forbes

Selection.sort(a, new Student.BySection());

Furia	1	A 766-093-9873		101 Brown
Rohde	2	Α	232-343-5555	343 Forbes
Chen	3	Α	991-878-4944	308 Blair
Fox	3	А	884-232-5341	11 Dickinson
Andrews	3	А	664-480-0023	097 Little
Kanaga	3	В	898-122-9643	22 Brown
Gazsi	4	В	766-093-9873	101 Brown
Battle	4	С	874-088-1212	121 Whitman

@#%&@! Students in section 3 no longer sorted by name.

A stable sort preserves the relative order of items with equal keys.

Stability

- Q. Which sorts are stable?
- A. Need to check algorithm (and implementation).

Stability: insertion sort

Proposition. Insertion sort is stable.

```
public class Insertion
  public static void sort(Comparable[] a)
    int N = a.length;
    for (int i = 0; i < N; i++)
      for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
         exch(a, j, j-1);
                                             0
                                             0 \qquad A_1 \quad B_1 \quad A_2 \quad A_3 \quad B_2
                                             1 \qquad A_1 \quad A_2 \quad B_1 \quad A_3 \quad B_2
                                      3
                                             2 \qquad A_1 \quad A_2 \quad A_3 \quad B_1 \quad B_2
                                      4
                                                    A_1 A_2 A_3 B_1 B_2
                                                    A_1 \quad A_2 \quad A_3 \quad B_1 \quad B_2
```

Pf. Equal items never move past each other.

Stability: selection sort

Proposition. Selection sort is not stable.

```
public class Selection
  public static void sort(Comparable[] a)
    int N = a.length;
   for (int i = 0; i < N; i++)
      int min = i;
      for (int j = i+1; j < N; j++)
        if (less(a[j], a[min]))
          min = j;
      exch(a, i, min);
```

Pf by counterexample. Long-distance exchange can move one equal item past another one.

Stability: shellsort

Proposition. Shellsort sort is not stable.

```
public class Shell
  public static void sort(Comparable[] a)
    int N = a.length;
    int h = 1;
    while (h < N/3) h = 3*h + 1;
    while (h >= 1)
      for (int i = h; i < N; i++)
         for (int j = i; j > h && less(a[j], a[j-h]); j -= h)
                                                                                                 h
           exch(a, j, j-h);
                                                                                                        B_1 \quad B_2 \quad B_3 \quad B_4 \quad A_1
       h = h/3;
                                                                                                       A_1 B_2 B_3 B_4 B_1
                                                                                                        A_1 \quad B_2 \quad B_3 \quad B_4 \quad B_1
                                                                                                        A_1 \quad B_2 \quad B_3 \quad B_4 \quad B_1
```

Stability: mergesort

Proposition. Mergesort is stable.

```
public class Merge
  private static void merge(...)
 { /* as before */ }
  private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
    if (hi <= lo) return;
    int mid = lo + (hi - lo) / 2;
    sort(a, aux, lo, mid);
    sort(a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
  public static void sort(Comparable[] a)
 { /* as before */ }
```

Fr. Surnces to verify that merge operation is stable.

Stability: mergesort

Proposition. Merge operation is stable.

```
private static void merge(...)
 for (int k = lo; k \le hi; k++)
   aux[k] = a[k];
 int i = lo, j = mid+1;
 for (int k = lo; k \le hi; k++)
       (i > mid) 	 a[k] = aux[j++];
   if
   else if (j > hi) a[k] = aux[i++];
   else if (less(aux[j], aux[i])) a[k] = aux[j++];
   else
                       a[k] = aux[i++];
                                           6 7 8 9 10
                 2 3
        0
                          4
                                      A_4 A_5 C E F
                                                              G
            A_2 A_3 B
```

Pf. Takes from left subarray if equal keys.

Sorting summary

	inplace?	stable?	best	average	worst	remarks
selection	\checkmark		$^{1}/_{2}N^{2}$	$^{1}/_{2}N^{2}$	$^{1}\!/_{2} N^{2}$	N exchanges
insertion	\checkmark	\checkmark	N	$^{1}/_{4}N^{2}$	$^{1}\!/_{2}$ N^{2}	use for small ${\cal N}$ or partially ordered
shell	\checkmark		$N \log_3 N$?	$c N^{3/2}$	tight code; subquadratic
merge		\checkmark	½ N lg N	$N \lg N$	$N \lg N$	$N\log N$ guarantee; stable
timsort		\checkmark	N	$N \lg N$	$N \lg N$	improves mergesort when preexisting order
?	\checkmark	\checkmark	N	$N \lg N$	$N \lg N$	holy sorting grail