8-4a Do Now: Applying Algebra to Geometric Situations

- 1. The line l has the equation $y = \frac{3}{2}x + 7$. To each line below, circle whether l is parallel, perpendicular, or neither.
 - (a) parallel perpendicular neither $y = -\frac{2}{3}x 2$
 - (b) parallel perpendicular neither $y = \frac{3}{2}x + 9$
 - (c) parallel perpendicular neither 2x 3y = -5
 - (d) parallel perpendicular neither 3x + 2y = 6
- 2. What is the equation of a line through the point A(-1,3) and parallel to the line $y = \frac{1}{2}x 5$? (hint: use the point-slope formula, $y y_A = m(x x_A)$)
- 3. Simplify each expression. (Leave it in radical form if necessary, not a decimal.)
 - (a) $\sqrt{18}$

- (b) $\sqrt{\frac{1}{9}}$
- 4. Write down the center and radius of each circle.

(a)
$$(x+5)^2 + y^2 = 36$$

(c)
$$(x-3)^2 + (y-3)^2 = 5^2$$

(b)
$$(x-3)^2 + (y+1)^2 = 72$$

(d)
$$(x+4)^2 + (y+8)^2 = 9$$

5. $\triangle ABC$, specified below, undergoes two tranformations. First, it is rotated 90° counterclockwise around B. Then it is translated $x \to x + 3$, $y \to y - 6$. Complete a table showing the coordinates of the translated points and plot the three triangles on the grid.

$$A(-7,3) \rightarrow$$

$$B(-3,3) \rightarrow$$

$$C(-4,-2) \rightarrow$$

8-4a Classwork: Distance formula, line segments

1. A translation maps $A(3,2) \to A'(5,7)$. What is the image of B(-8,5) under the same translation?

2. As shown below, what is the translation that maps the point R(-3,2) onto the point S(6,5)?

If only one third of that translation was performed, what coordinates would R be mapped to?

3. Given A(-2,4) and B(3,-1), find the length of \overline{AB} . Leave the result in simplified radical form (not a decimal).

In the following two problems, solve for the value of x.

4.
$$\frac{1}{5}(2x+3)=1$$

$$5. \ \frac{1}{3}(21 - 3x) = 5$$

6. Given
$$f(x) = \frac{1}{4}x + 4$$
. Solve for x such that for $f(x) = 6$.

7. Given
$$g(x) = 3x^2 - 7x + 5$$
. Simplify $g(0)$.

8. Given
$$f(x) = 5x - 22$$
. Solve for x such that for $f(x) = 3$.

9. Given
$$h(x) = x^2 + 6x + 5$$
. Solve $h(x) = 0$.