CL Tutorial 4

Exercise 1

Assuming $c \vDash \neg b$, $c \vDash \neg a$

By contraposition, $a \models \neg c$, $b \models \neg c$

$$\frac{a \vDash \neg c \quad b \vDash \neg c}{a \land b \vDash \neg c}$$

$$\frac{a \land b \vDash \neg c}{c \vDash \neg (a \land b)}$$

Also,

$$\frac{c \vDash \neg a \quad c \vDash \neg b}{c \vDash \neg a \lor \neg b}$$

Both of these proofs involve only equivalences, and both of them start from the same two premises. It follows that they can be combined to give the equivalence

$$\frac{c \vDash \neg (a \land b)}{c \vDash \neg a \lor \neg b}$$

Now, we can use this equivalence in the following proofs:

$$\frac{\neg a \lor \neg b \vDash \neg a \lor \neg b}{\neg a \lor \neg b \vDash \neg (a \land b)}$$

$$\frac{\neg(a \land b) \vDash \neg(a \land b)}{\neg(a \land b) \vDash \neg a \lor \neg b}$$

Interpreting \vDash as set inclusion, this means that $\neg a \lor \neg b \subseteq \neg (a \land b)$ and $\neg (a \land b) \subseteq \neg a \lor \neg b$, that is,

$$\neg(a \land b) = \neg a \lor \neg b$$

which is the second of De Morgan's laws.

Exercise 2

Write a proof which reduces the conclusion $(x \land y) \lor (x \land z) \models x \land (y \lor z)$ to premises that can't be reduced further.

1. (the intersection of x and y) conjoined with (the intersection of x and z) looks like

where x = A, y = B, z = C.

2. The intersection of x and (the conjunction of y and z) looks like

where x = A, y = B, z = C.

A set of reduced premises would be $z \models x, y \models x$.

The set is not universally valid, as a universe with no y would not fill the intersection of x and y, so the existential assumption is required.

Exercise 3

Write a proof which reduces the conclusion $\vDash (x \land \neg y) \lor (\neg (x \lor z) \lor (y \lor z))$ to premises that can't be reduced further.

- 1. (X and not Y) or (not (X or Z) or (Y or Z))
- 2. If X or Z are false, truth propagates from $\neg(x \lor z)$ all the way out.
- 3. For the other two cases (X & Z are true, Y is true or false),
 - a. if Y is false, $(x \land \neg y)$ makes the statement true.
 - b. if Y is true, $(y \lor z)$ makes the statement true.
- 4. The statement is always true.

The statement is a tautology as it is true by necessity.

Exercise 4

The second cannot be reduced as it is invalid, $\neg(a \land b)$ is a superset of $\neg a \land \neg b$.

Neither one is universally valid, and the counterexample for the first is a universe with no examples of $\neg a$ and $\neg b$ and $\neg c$.

The counterexample for the second is an example within a but not within the intersection of a and b.