Week 11 – DCSE 7th Semester

In Class Exercise

Find the closed loop transfer function or C(s)/R(s) – and is it a stable transfer function

$$T(s) = \frac{10(s+2)}{s(s+4)(s+6)(s+8)(s+10) + 10(s+2)}$$

$$T(s) = \frac{10(s+2)}{s^5 + 28s^4 + 284s^3 + 1232s^2 + 1930s + 20}$$

Stability Checking techniques

If you recall, there are 3 main techniques of checking stability

- 1 Poles of transfer function (all poles must be negative for stable tf)
- 2 Eigen values of matrix A in State-space Domain

(all eigenvalues must be negative for stable ss model)

3 – Step Response (should be <u>bounded</u> response for stability)

Who will compute poles of 5th Order Transfer function by hand?

Routh Hurwitz Stability Criteria

• In today's lecture, we will study a technique to check stability of higher order systems

- If you CAN compute poles of high order systems, that's perfect
- For example

$$\frac{10(s+2)}{s(s+4)(s+6)(s+8)(s+10)}$$

Routh Hurwitz Stability Criteria

• But if you can NOT easily compute poles, then what to do?

• How to check stability of high order systems?

- Routh Hurwitz is a technique to check stability of high order systems
 - (Remember: Its is a technique to check stability NOT to compute poles)
- Let us study this technique in next slide

Steps of Routh Hurwitz Stability Criteria

Step 1: Compute Closed Loop tf

$$\begin{array}{c|c}
R(s) & N(s) & C(s) \\
\hline
a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0
\end{array}$$

Step 2: Develop Routh-Hurwitz Table

$$P(s) = a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0$$

s^4	a_4	a_2	a_0
s^3	a_3	a_1	0
s^2	$b_1 = rac{-egin{array}{c c} a_4 & a_2 \ a_3 & a_1 \ \end{array}}{a_3}$	$b_2 = \frac{-\begin{vmatrix} a_4 & a_0 \\ a_3 & 0 \end{vmatrix}}{a_3}$	$b_3 = \frac{-\begin{vmatrix} a_4 & 0 \\ a_3 & 0 \end{vmatrix}}{a_3}$
s ¹	$c_1 = \frac{-\begin{vmatrix} a_3 & a_1 \\ b_1 & b_2 \end{vmatrix}}{b_1}$	$c_2 = \frac{-\begin{vmatrix} a_3 & 0 \\ b_1 & 0 \end{vmatrix}}{b_1} = 0$	$c_3 = \frac{-\begin{vmatrix} a_3 & 0 \\ b_1 & 0 \end{vmatrix}}{b_1} = 0$
S	$d_1 = \frac{-\begin{vmatrix} b_1 & b_2 \\ c_1 & 0 \end{vmatrix}}{c_1}$	$d_2 = \frac{-\begin{vmatrix} b_1 & 0 \\ c_1 & 0 \end{vmatrix}}{c_1} = 0$	$d_3 = \frac{-\begin{vmatrix} b_1 & 0 \\ c_1 & 0 \end{vmatrix}}{c_1} = 0$

Step 3: Interpretation: The number of RHP poles = The number of SIGN CHANGES of COL 1

Example: Determine whether the close-loop system is stable.

Step 1: Find the closed-loop transfer function

$$T(s) = \frac{G(s)}{1 + G(s)}$$

Step 2: Develop Routh Table

$$P(s) = s^3 + 10s^2 + 31s + 1030$$

s^3	1	31	0
s^2	10	1030	0
s^1	_ 1 31	_ 1 0	_ 1 0
	$b_1 = \frac{ 1 \ 103 }{1} = -72$	$b_2 = \frac{ 1 0 }{1} = 0$	$b_3 = \frac{ 1 0 }{1} = 0$
s^0	$c_1 = \frac{-\begin{vmatrix} 1 & 103 \\ -72 & 0 \end{vmatrix}}{-72} = 103$	$c_2 = \frac{-\begin{vmatrix} 1 & 0 \\ -72 & 0 \end{vmatrix}}{-72} = 0$	$c_3 = \frac{-\begin{vmatrix} 1 & 0 \\ -72 & 0 \end{vmatrix}}{-72} = 0$

Step 3: Interpret Routh Table

TWO sign changes: Thus 2 RHP Poles

Therefore, system is **UNSTABLE**

$$T(s) = \frac{200}{s^4 + 6s^3 + 11s^2 + 6s + 200}$$

s ⁴	1	11	200
<i>s</i> ³	6 1	6 1	0
ς ²	10 1	200 20	0
s^1	-19	0	0
s 0	20	0	0

2 sign changes: 2 RHP (UNSTABLE)

Poles: 2 LHP and 2 LHP

Example 3: Zero only in the first column

$$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}$$

s ⁵	1	3	5
٠	1	,	,
s ⁴	2	6	3
s ³	0 ε	7/2	0
2	$\frac{6\varepsilon-7}{\varepsilon}$	3	0
s1	$\frac{42\varepsilon - 49 - 6\varepsilon^2}{12\varepsilon - 14}$	0	0
s ⁰	3	0	0

Assume ϵ is small POSITIVE (follow the previous signage) :

TWO sign changes at first column

Poles: 2 RHP, 3 LHP

System in unstable

Example 4:

$$T(s) = \frac{1}{2s^5 + 3s^4 + 2s^3 + 3s^2 + 2s + 1}$$

s^5	2	2	2
s^4	3	3	1
s^3	0 ε	4/3	0
s^2	$\frac{3\varepsilon-4}{\varepsilon}$	1	0
s^1	$\frac{12\varepsilon - 16 - 3\varepsilon^2}{9\varepsilon - 12}$	0	0
s^0	1	0	0

$$T(s) = \frac{1}{2s^5 + 3s^4 + 2s^3 + 3s^2 + 2s + 1}$$

Assume $\boldsymbol{\epsilon}$ is small POSITIVE : TWO sign changes

Poles: 2 RHP, 3 LHP

Example 5: Entire Row is Zero
$$T(s) = \frac{10}{s^5 + 7s^4 + 6s^3 + 42s^2 + 8s + 56}$$

s^5	1	6	8
s^4	7 1	42 6	56 8
s^3	0 4 1	0 12 3	0 0
s^2	3	8	0
s^1	1/3	0	0
s^0	8	0	0

Polynomial above the row of zeros

1on LHP + 4 on jw axis = 5 poles

Example 6: Stability Design via Routh-Hurwitz

Find range of K that will cause the system to be stable / unstable / marginally stable for the

given diagram.

Step 1: Find closed-loop transfer function:

$$T(s) = \frac{K}{s^3 + 18s^2 + 77s + K}$$

Step 2: Develop Routh-Hurwitz table

s^3	1	77
s^2	18	K
s^1	1386 – <i>K</i> 18	0
s^0	K	0

Step 3: Analyze table

STABLE: 0 < K < 1386

UNSTABLE: K > 1386

MARGINALLY STABLE: K = 1386

Example 7: Stability in State-Space

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \underbrace{\mathbf{A}\mathbf{x} = \lambda\mathbf{x}}_{\det(\lambda\mathbf{I} - \mathbf{A}) = 0}$$

Values of the system's poles are equal to the eigenvalues of matrix A

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 3 & 1 \\ 2 & 8 & 1 \\ -10 & -5 & -2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix} u \qquad |s\mathbf{I} - \mathbf{A}| = \begin{vmatrix} s - 0 & -3 & -1 \\ -2 & s - 8 & -1 \\ 10 & 5 & s + 2 \end{vmatrix}$$
$$|s\mathbf{I} - \mathbf{A}| = s^3 - 6s^2 - 7s - 52$$

$$|s\mathbf{I} - \mathbf{A}| = \begin{vmatrix} s - 0 & -3 & -1 \\ -2 & s - 8 & -1 \\ 10 & 5 & s + 2 \end{vmatrix}$$

$$|s\mathbf{I} - \mathbf{A}| = s^3 - 6s^2 - 7s - 52$$

s^3	1	-7
s^2	-3	-26
s^1	-1	0
s^0	-26	0

1 sign change: 1 RHP

Poles: 1 RHP, 2 LHP

∴ System is UNSTABLE