

PiCCO Technology

Advanced Hemodynamic Monitoring at the highest level

Simplify hemodynamics

Understand complex conditions with PiCCO

The life of your critically ill patient depends on the right decision for the next therapeutic step. Therapeutic conflicts often arise at the critical care bedside, where you need dependable information you can trust. A set of reliable hemodynamic parameters can help determine the best individual treatment for your patients. 1–4

The PiCCO Technology was introduced in 1997 by the Munich based company Pulsion Medical Systems. With more than 20 years of experience in the hemodynamic monitoring industry, Pulsion has developed PiCCO into the established standard for advanced hemodynamic monitoring, today.

As the evidence, PiCCO has achieved modular integration with world market leaders for patient monitoring devices

including Philips/Dixtal, Dräger, GE, Mindray and Nihon Kohden.

Over the last 15 years, nearly 1,000 publications worldwide have confirmed the accuracy and clinical benefit of the PiCCO Technology.

Today, PiCCO is used more than 140,000 times per year, in over 60 countries globally.

Basics of hemodynamic monitoring

Monitoring cardiocirculatory function is of major importance in all intensive care patients.

Monitoring with standard parameters: ECG non-invasive blood pressure and pulse oximetry provides insufficient information for deciding on the adequacy of treatments. Advanced hemodynamic monitoring with minimally-

invasive measurement of cardiac output and its determinants (preload, afterload, contractility) as well as the quantification of pulmonary edema allows a targeted treatment.⁵

Frank-Starling mechanism

The Frank-Starling law states that the greater the volume of blood entering the ventricle during diastole (end-diastolic volume), the greater the volume of blood ejected during systolic contraction (stroke volume) and vice versa. This is an adaptive mechanism of the organism to compensate for slight changes in the ventricular filling.

The power of the heart muscle depends on its initial load before the start of contraction.

However, it can also be used to increase stroke volume by volume administration for therapeutic reasons. The force that any single cardiac muscle fiber generates is proportional to the initial sarcomere length (known as preload), and the stretch on the individual fibers is related to the end-diastolic volume of the ventricles.

Schematic Frank-Starling curve for verification of the preload status

An increase in preload will, to a certain extent, lead to an increase in stroke volume (SV), based on optimal myocardial muscle fibre pre-stretching. Up to a certain limit, the more the sarcomeres of the muscle cells are stretched, the greater the contraction. On the other hand, contractility may decrease in conditions of volume overload.

A = Optimal preload, B = Volume reponsive, C = Volume overload

Hemodynamic parameters

Get the complete picture

How PiCCO Technology works

Two components of the PiCCO Technology

PiCCO Technology is based on two physical principles, namely, transpulmonary thermodilution and pulse contour analysis. Both principles allow the calculation of hemodynamic parameters and have been clinically tested and established for more than 20 years. ^{6,7}

Arterial pulse contour analysis

The pulse contour analysis provides continuous information while transpulmonary thermodilution provides static measurements. Transpulmonary thermodilution is used to calibrate the continuous pulse contour parameters.

Transpulmonary thermodilution

For the transpulmonary thermodilution measurement, a defined bolus (e.g. 15 ml cold normal saline) is injected via a central venous catheter.

The cold bolus passes through the right heart, the lungs, the left heart and is detected by the PiCCO Catheter, commonly placed in the femoral artery. This procedure should be repeated around three times in under 10 minutes to obtain an accurate average that is used to calibrate the device and to calculate the thermodilution parameters. These thermodilution parameters (i.e. they are updated only when the thermodilution procedure is performed) should be checked whenever there is a significant change in the patient's condition or therapy. It is recommended to calibrate the system at least three times a day.

Arterial pulse contour analysis

The shaded area below the systolic part of the pressure curve is proportional to the stroke volume.

Transpulmonary thermodilution

Pulse contour analysis

The theoretical basis of pulse contour analysis was established for the first time in 1899.8

The basic idea was to use the analysis of the continuous arterial pressure signal to get more information than just the systolic, diastolic, and mean value.

From a physiological perspective, the arterial pressure curve provides information about the opening of the aortic valve (point of the increase of the systolic pressure) and when the aortic valve closes (incision in the pressure curve/the dicrotic notch). The time in between represents the duration of the systole and the area under the systolic

part of the pressure curve directly reflects the stroke volume (SV), the amount of blood in milliliters which is ejected by the left ventricle with every heartbeat.

However, the shape of the arterial pressure curve and the area under the curve is influenced not only by the stroke volume, but also by the individual compliance of the vascular system.

This is especially true of intensive care patients where a potentially rapid change in vascular compliance occurs due to the disease process or medications. The individual calibration factor is determined with the initial calibration and needs to be updated regularly. ^{6,9} In PiCCO Technology, this calculation factor is derived from the transpulmonary thermodilution measurement.

Patient-specific calibration factor (determined with thermodilution)

$$PCCO = cal \times HR \times \int_{systole} \left(\frac{P(t)}{SVR} + \frac{C(p)}{dt} \times \frac{dP}{dt} \right) dt$$

Heart rate

Compliance

Basic formula to calculate pulse contour cardiac output (PCCO)

The PiCCO pulse contour algorithm has been extensively validated and has proved to be very reliable in daily critical care routine: 11-18

Overview of comparative studies on cardiac output measurement using PiCCO pulse contour and pulmonary arterial thermodilution $^{11-18}$

Reference	Accuracy (I/min)	Standard deviation (I/min)	Regression coefficient
Felbinger TW et al., J Clin Anesth 2005	0.220	0.26	0.92
Della Rocca G et al., Can J Anesth 2003	0.080	0.72	-
Mielck F et al., JCVA 2003	-0.400	1.30	-
Felbinger TW et al., J Clin Anesth 2002	-0.140	0.33	0.93
Della Rocca G et al., BJA 2002	0.040	-	0.86
Rauch H et al., Acta Anaesth Scand 2002	0.140	1.16	-
Godje O et al., Med Sci Monit 2001	-0.020	1.20	0.88
Zollner C et al., JCVA 2000	0.310	1.25	0.88
Buhre W et al., JCVA 1999	0.003	0.63	0.93

Transpulmonary thermodilution

The CO is calculated from the area under the thermodilution curve 19,20

^{*}comprises specific weight and specific heat of blood and injectate fluid

The cardiac output (CO) is determined from the transpulmonary thermodilution.

The thermodilution curves are analyzed, and the CO is determined by using a modified Stewart-Hamilton algorithm. ^{19, 20} This method of calculating the cardiac output is used similarly by the right heart (pulmonary artery) catheter.

Overview of comparative studies on cardiac output measurement using transpulmonary and pulmonary arterial thermodilution

Clinical studies confirm the accuracy of the cardiac output values measured with transpulmonary thermodilution. 10, 12, 21-28

Author	Patient group	Age	N	n	r	Bias (%)	Precision (%)
Della Rocca et al., 2002	Liver transplant	24–66	62	186	0.93	+1.90	11.0
Friesecke et al., 2009	Severe heart failure	n.a.	29	325	ni	10.30	27.3 (PE*)
Goedje et al., 1999	Cardiac surgery	41–81	24	216	0.93	+4.90	11.0
Holm et al., 2001	Burns	19–78	23	109	0.97	+8.00	7.3
Kuntscher, 2002	Burns	21–61	14	113	0.81	ni	ni
Mc Luckie et al., 1996	Pediatrics	1–8	10	60	ni	+4.30	4.8
Segal et al., 2002	Intensive care unit	27–79	20	190	0.91	+4.10	10.0
von Spiegel et al., 1996	Cardiology	0.5-25	21	48	0.97	-4.70	12.0
Wiesenack et al., 2001	Cardiac surgery	43–73	18	36	0.96	+7.40	7.6
Zöllner et al., 1999	ARDS	19–75	18	160	0.91	-0.33	12.0

N = number of patients; n = number of measurements; r = regression coefficient; ni = not indicated

Additionally, because the indicator passes through the heart and lungs, this allows the determination of intravascular and extravascular volumes inside the chest area, in particular, the preload volume and lung water.

^{*} PE= percentage error according to Critchley

Physiological principles

Large volume of intravascular and extravascular volumes

Small volume of intravascular and extravascular volumes

Assessment of volumes from transpulmonary thermodilution

The shape of the transpulmonary thermodilution curve is strongly influenced by the amount of intravascular and extravascular volume between the injection point (central venous) and detection point (central arterial). This means that the larger the volume amount in the chest, the longer the passage time of the indicator and vice versa. Determination of specific transit times of the

thermal indicator thus enables quantification of specific volumes in the chest.

This analysis and calculation is based on a publication by Newman et al. 29 and has also been described by other authors. $^{2,30-35}$

Determination of exponential downslope time

Mean transit time (MTt)

Mean transit time represents the time when half of the indicator passes the detection point (central artery). It is determined from the bisector of the area under the curve.

Exponential downslope time (DSt)

The exponential downslope time represents the wash-out function of the indicator. It is calculated from the downslope part of the thermodilution curve.

Both mean transit time and exponential downslope time serve as the basis for the calculation of the following volumes.

Intrathoracic thermal volume

The multiplication of the mean transit time (MTt) with cardiac output (CO) represents the intrathoracic thermal volume (ITTV).

Scheme and calculation of the intrathoracic thermal volume (ITTV)

Pulmonary thermal volume

The exponential downslope time always characterizes the volume of the largest mixing chamber in a row of mixing chambers. In the cardiopulmonary systems this is the lung. Thus the multiplication of the exponential downslope time (DSt) with the cardiac output (CO) represents the pulmonary thermal volume (PTV).

Scheme and calculation of the pulmonary thermal volume (PTV)

Quantification of the preload volume

By simply subtracting the pulmonary thermal volume from the intrathoracic thermal volume, the global end-diastolic volume (GEDV) is derived. GEDV indicates the level of preload volume.

Calculation of global end-diastolic volume (GEDV)

Cardiac output and transit times are derived from the same thermodilution signal. This raises the question of mathematical coupling, which has been investigated several times, ³⁴ concluding that CO increases without a corresponding increase in GEDV.

Quantification of pulmonary edema

Using further calculations, the PiCCO Technology also provides quantification of the amount of pulmonary edema, expressed as extravascular lung water (EVLW). 36-39 The only additional information required for this calculation is the amount of intravascular volume (ITBV). A clinical study using double-indicator dilution technology to measure ITBV and EVLW 36 found that intrathoracic blood volume is consistently 25% higher than the global end-diastolic volume. Thus, the intrathoracic blood volume can simply be calculated by multiplying the global

end-diastolic volume with the factor 1.25. The calculated intrathoracic blood volume (ITBV) is then subtracted from the intrathoracic thermal volume (ITTV) to derive the extravascular lung water (EVLW).

Several validation studies comparing gravimetry and lung weight show that both this method and the introduction of the fixed factor for calculation of extravascular lung water show high accuracy.^{36–38}

Calculation of extravascular lung water (EVLW)

Sham-operated

PiCCO parameters

Cardiac index (CI), stroke volume index (SVI)

Cardiac index is the amount of blood pumped by the heart per minute indexed to 1m² of the body surface area (BSA); the cardiac index represents the global blood flow. The PiCCO Technology provides discontinuous (transpulmonary thermodilution) and continuous (pulse contour analysis) parameters.

A decrease in the cardiac index is a clear alarm signal and requires appropriate measures to manage the situation.

But knowledge about cardiac index alone is not enough to make a therapeutic decision, as the cardiac index is influenced by several factors.^{31,40} First of all, it is the product of stroke volume and heart rate. Stroke volume is dependent on preload, afterload, and contractility.

Thus, in addition to the cardiac index, further information on its determinants is required for appropriate treatment.^{31,40}

Cardiac index and its determinants

Preload

Global end-diastolic volume index (GEDI)

The preload is, along with afterload and contractility, one of the determinants of stroke volume and therefore cardiac output. Theoretically, it can be best described as the initial stretching of a single muscle cell of the heart prior to contraction, which means at the end of diastole. As this cannot be measured in vivo, other measurements have therefore to be substituted as estimates. In the clinical setting, preload is referred to as the end-diastolic pressure or (more precisely) end-diastolic volume.

A higher end-diastolic volume implies higher preload.

A higher central venous pressure (CVP) and/or a higher pulmonary capillary wedge pressure (PCWP) is still often regarded as an indicator of higher preload (CVP for the right heart, PCWP for the left heart). However, many studies have shown that CVP and PCWP are not reliable indicators for this purpose. This is mainly due to the limitation that pressure cannot be directly transferred into volume. So any volumetric parameter assessing the filling of the ventricle at the end of diastole reflects the actual preload more precisely. ^{15, 35, 41–43}

In the clinical setting, preload is referred to as the end-diastolic pressure or (more precisely) end-diastolic volume.

Volume responsiveness

Stroke volume variation (SVV)

Stroke volume variation (SVV) and pulse pressure variation (PPV)

The stroke volume variation (SVV) or pulse pressure variation (PPV) give – provided that there is a continuously ventilated patient with a stable heart rhythm – information as to whether an increase in preload will also lead to an increase in stroke volume.

Mechanical ventilation induces cyclic changes in vena cava blood flow, pulmonary artery blood flow, and aortic blood flow. At the bedside, changes in the aortic blood flow is reflected by swings in the blood pressure curve (and thus variations in stroke volume and blood pressure). The magnitude of these variations is highly dependent on the volume responsiveness of the patient. With controlled ventilation, the rise in intrathoracic pressure during early inspiration leads to a squeezing of the pulmonary blood into the left ventricle. This process, in turn, increases the left ventricular preload. With a volume responsive patient, this results in an increased stroke volume or pulse pressure.

An increase in intrathoracic pressure also results in reduced right ventricular filling. With a volume responsive right heart, this will reduce the volume ejected. Thus, during late inspiration a couple of heartbeats later, the left ventricular preload will decrease, as will the stroke volume or pulse pressure. The variations in stroke volume and pulse pressure can be analyzed over a 30-second time frame by the following formula:

Pulse pressure variation (PPV)

$$SVV = \frac{(SV_{max} - SV_{min})}{SV_{mean}}$$

$$PPV = \frac{(PP_{max} - PP_{min})}{PP_{mean}}$$

The higher the variation the more likely the patient is to be volume responsive. For proper use of the parameters, the following preconditions must be fulfilled:

- Fully controlled mechanical ventilation with a tidal volume ≥ 8 ml/kg PBW (predicted body weight)
- Sinus rhythm
- · Pressure curves free of artifacts

Afterload

Systemic vascular resistance index (SVRI)

The afterload is another determinant of stroke volume/cardiac output. The physiological meaning of SVRI is the tension or pressure that builds up in the wall of the left ventricle during ejection. Following Laplace's law, the tension upon the muscle fibers in the heart wall is the product of the pressure within the ventricle and the ventricle radius, divided by the ventricle wall thickness.

In the clinical context, things are often simplified and so the afterload is seen as the resistance the heart has to pump against; the systemic vascular resistance index (SVRI) is the parameter that represents this.

- If the afterload (SVRI) is increased, the heart must pump with more power to eject the same amount of blood as before.
- The higher the afterload, the less the cardiac output.
- The lower the afterload, the higher the cardiac output.

If the afterload exceeds the performance of the myocardium, the heart may decompensate.

$$SVRI = \left[\frac{(MAP - CVP)}{CI} \right] \times 80$$

Contractility

Contractility influences cardiac output.

Contractility of the myocardium represents the ability of the heart to contract independent of the influence of preload or afterload. Substances that cause an increase in intracellular calcium ions lead to an increase in contractility. Different concentrations of calcium ions in the

cell lead to different degrees of binding between the actin (thin) and myosin (thick) filaments of the heart muscle. Direct determination of cardiac contractility is not possible in the clinical setting. Therefore, surrogate parameters are used to evaluate or estimate the contractility.

Global ejection fraction (GEF)

Ejection fraction represents the percentage of volume in a heart chamber, which is ejected with a single contraction. The measurement of the global ejection fraction offers a complete picture of the overall cardiac contractility.

$$GEF = \frac{4 \times SV}{GEDV}$$

Cardiac function index (CFI)

The cardiac function index can be used to estimate cardiac contractility. It represents the relation of the flow (cardiac output) and the preload volume (GEDV). Thus, cardiac function index is a preload related cardiac performance parameter.

$$CFI = \frac{CI_{TD} \times 1,000}{GEDV}$$

Cardiac power index (CPI)

CPI represents the power of left ventricular cardiac output in watts. It is the product of pressure (MAP) and flow (CO). In clinical studies, it has been found to be the strongest independent predictor of hospital mortality in cardiogenic shock patients.^{44,45}

$$CPI = CI_{PC} \times MAP \times 0.0022$$

Left ventricular contractility (dPmx)

From the arterial pressure curve, the pressure changes during the systolic phase can be analyzed and a measure of the pressure increase over time (analyzed in speed) is calculated. The steeper the upslope of the curve, the higher the contractility of the left ventricle.

As the upslope also depends on the individual compliance of the aorta, the parameter should primarily be viewed and evaluated as part of the overall trend.

Diagram of steep/flat pressure increase with high/low contractility

Assessment of pulmonary edema using PiCCO Technology

Examples of chest X-rays that do not reflect the level of pulmonary edema

ELWI = 21 ml/kg Severe pulmonary edema

ELWI = 14 ml/kg Moderate pulmonary edema

ELWI = 8 ml/kg No pulmonary edema

Extravascular lung water index (ELWI)

Pulmonary edema is characterized by an accumulation of fluid in the interstitium of the lung tissue and/or the alveoli. This leads to impaired gas exchange and may even cause pulmonary failure. The amount of the pulmonary edema can easily be quantified at the bedside by measuring the extravascular lung water index (ELWI). The usual clinical signs of pulmonary edema (white-out on the chest X-ray, low oxygenation index, decreased lung compliance) are non-specific and only indicative when the edema is at an advanced stage. In the critical care routine, the chest X-ray is often used to estimate pulmonary edema in patients at risk. This approach is imperfect as the chest

X-ray provides only a black and white density image of all components in the chest, including gas volume, blood volume, pleural effusion, bones, muscles, lung tissue, fat, skin edema and also pulmonary edema.

A more advanced approach using extravascular lung water provides a systematic route to therapeutic options. Extravascular lung water is indexed to the body weight in kg, written as the extravascular lung water index (ELWI). By indexing to the patient's predicted body weight (PBW), underestimation of lung water, particularly in obese patients, is avoided.

Pulmonary vascular permeability index (PVPI)

When pulmonary edema is present (measured using extravascular lung water), the next important question is:

What is the reason for the pulmonary edema? In general, there are two main sources of pulmonary edema:

Cardiogenic pulmonary edema

Caused by intravascular fluid overload, hydrostatic pressure increases. This causes fluids to leak into the extravascular space.

Permeability pulmonary edema

Vascular permeability is increased by an inflammatory reaction caused, for example, by sepsis. This leads to the increased transfer of fluids, electrolytes and proteins from the intravascular to the extravascular space, even with a normal to low intravascular fluid status and hydrostatic pressure.

Cardiogenic vs. permeability pulmonary edema

A differential diagnosis of pulmonary edema is important because the therapeutic approach is quite different. In cardiogenic pulmonary edema, a negative fluid balance is sought, while in cases of permeability pulmonary edema treating the cause of inflammation has priority. The pulmonary vascular permeability index (PVPI) enables

this differential diagnosis. This parameter is calculated from the relation between extravascular lung water (EVLW) and pulmonary blood volume (PBV). A PVPI value in the range of 1 to 3 points to a cardiogenic pulmonary edema, while a PVPI value greater than 3 suggests a permeability pulmonary edema.

Indications and clinical benefits

PiCCO indications

PiCCO Technology is indicated in patients who present with unstable hemodynamics and unclear volume status and in situations of therapeutic conflicts. These situations are usually present in:

- · Septic shock
- · Cardiogenic shock
- Traumatic shock
- ARDS

- · Severe burn injuries
- Pancreatitis
- High-risk surgical procedures

Medical benefits

Monitoring does not lower patient mortality or morbidity per se. However, it provides valuable information which should be used to set up a treatment plan and apply goal-directed therapy to the patient as early as possible. The success of early goal-directed therapy (EGDT) is documented and clearly shows the following advantages: 5,46

- Reduction in ventilation time 47, 48
- Reduction of ICU stay⁵
- Reduction in complications⁵
- Reduction of recovery time⁵

Goal-directed therapy based on validated information improves outcomes. 49-57

Preload - GEDV (Göpfert et al. 20135)

Preload - GEDV (Göpfert et al. 2007⁴⁷)

Overview of technologies and further parameters

The PulsioFlex Monitoring Platform combines different technologies.

You can easily extend the hemodynamic scope with modules featuring NICCI, ProAQT, PiCCO, CeVOX, and LiMON. This will give you the information you need to help assess the hemodynamic status for a broad range of patients.

The following table lists the parameters available with the current technologies:

Nihon Kohden

	NICCI	ProAQT	PiCCO	CeVOX	LiMON
Invasiveness	Noninvasive	Minimally invasive arterial line	Less invasive arterial catheter	Less invasive	Noninvasive
Pulse contour analysis (d	continuous)				
Chronotropy	PR	HR	HR		
Blood Pressure	AP _{sys} , AP _{dia} , MAP	AP _{sys} , AP _{dia} , MAP	AP _{sys} , AP _{dia} , MAP		
Flow	CI Trend/Cal **, SVI	CI _{Trend/Cal} **, SVI	Cl _{PC} *, SVI		
Contractility	dPmx, CPI	dPmx, CPI	dPmx, CPI		
Afterload	SVRI	SVRI	SVRI		
Volume responsiveness	SVV, PPV	SVV, PPV	SVV, PPV		
Thermodilution (disconti	inuous)				
Flow			CI _{TD} ***		
Preload			GEDI, ITBI		
Contractility			CFI, GEF		
Pulmonary edema			ELWI, PVPI		
Oxymetry					
Oxygen saturation				ScvO ₂	
ICG elimination					
Liver function					PDR, R15
Besides the PulsioFlex, th	ne Advanced Patien	t Monitoring Technolo	gies are integrated i	nto the following OE	M platforms:
		Nihon Kohden	Philips, Mindray, Dräger Medical, General Electric,	Philips, Mindray, Nihon Kohden	

* Cardiac index derived from pulse contour ** Calibrated from internal or external reference value *** Cardiac index derived from thermodilution

Hemodynamic decision model

This decision model is not obligatory. It cannot replace the individual therapeutic decisions of the treating physician.

Targeted values

GEDI (ml/m²) (if ELWI > 10 → 700-800)	> 700	Volume responsiveness?
GEF (%)	> 25	(Passive leg raising/endexpiratory occlusion test/volume challenge/SVV/PPV?)
CFI (1/min)	> 5	Contractility problem?
ELWI (ml/kg) (slow response)	≤ 10	(GEF/CFI/echo?)

V+ = volume loading, V- = volume withdrawal, Cat = catecholamine/cardiovascular agents Please reevaluate your clinical decisions and the set target parameters.

OEM partner modules

Patient centered flexibility

The versatile PiCCO Technology has been developed to match and adapt to different clinical settings.

To allow easy integration into your existing product portfolio, Getinge is partnering with various monitoring companies like GE, Philips, Dräger, Mindray and Nihon Kohden.

Getinge modules can be implemented seamlessly with negligible footprint and maintaining the already familiar

user interface. All while relying on the clinically well proven and documented advantages of the PiCCO Technology.

All OEM partner modules are fully compatible with the original PiCCO disposable products.

PHILIPS

Dräger medical

mindray

Literature

- King D, Price AM. Measuring cardiac output using the PiCCO system. British Journal of Cardiac Nursing. 2008;3(11):512-518. DOI: 10.12968/bjca.2008.3.11.31555
- Oren-Grinberg A. The PiCCO Monitor. International Anesthesiology Clinics. 2010;48(1):57-85. DOI: 10.1097/AIA.0b013e3181c3dc11
- Litton E, Morgan M. The PiCCO Monitor: A Review. Anaesthesia and Intensive Care. 2012;40(3):393-408.DOI: 10.1177/0310057X1204000304
- Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive care medicine. 2014;40(12):1795-1815. DOI: 10.1007/s00134-014-3525-z
- Goepfert MS, Richter HP, Eulenburg CZ, et al. Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology. 2013;119(4):824-836.
 DOI: 10.1097/ALN.0b013e31829bd770
- Wesseling KH, Weber JAP, Smith NT, Wit B. A simple device for the continuous measurement of cardiac output. Adv Cardiovasc Phys. 1983;5:16-52.
- Baudendistel LJ, Kaminski DL, Dahms TE. Evaluation of extravascular lung water by single thermal indicator. Crit Care Med. 1986;14(1):52-56.
 DOI: 10.1097/00003246-198601000-00012
- Frank O. Die Grundform des Arteriellen Pulses. Mathematische Analyse. Erste Abhandlung. Z Biol. 1899:483-526.
- Thomas B. Monitoring of cardiac output by pulse contour method. Acta Anaesthesiol Belg. 1978;29(3):259-270.
- Goedje O, Friedl R, Hannekum A. Accuracy of beat-to-beat cardiac output monitoring by pulse contour analysis in haemodynamical unstable patients. Med Sci Monit. 2001;7(6):1344-1350.
- Felbinger TW, Reuther DA, Eltzschig HK, Bayerlein J, Goetz AE. Cardiac index measurements during rapid preload changes: a comparison of pulmonary artery thermodilution with arterial pulse contour analysis. J Clin Anesth. 2005;17(4):241-248. DOI: 10.1016/j.jclinane.2004.06.013
- Della Rocca G, Costa MG, Coccia C, et al. Cardiac output monitoring: aortic transpulmonary thermodilution and pulse contour analysis agree with standard thermodilution methods in patients undergoing lung transplantation. Canadian Journal of Anaesthesia. 2003;50(7):707-711.DOI: 10.1007/bf03018714
- Mielck F, Buhre W, Hanekop G, Tirilomis T, Hilgers R, Sonntag H. Comparison of continuous cardiac output measurements in patients after cardiac surgery. J Cardiothorac Vasc Anesth. 2003;17(2):211-216.DOI: 10.1053/jcan.2003.49
- Felbinger TW; Reuther DA, Eltzschig HK, Moerstedt K, Goedje O. Comparison of pulmonary arterial thermodilution and arterial pulse contour analysis: evaluation of a new algorithm. J Clin Anesth. 2002;14(4):296-301.
 DOI: 10.1016/s0952-8180(02)00363-x
- Della Rocca G, Costa MG, Pompei L, Coccia C, Pietropaoli P. Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. British Journal of Anaesthesia. 2002;88(3):350-356.
 DOI: 10.1093/bja/88.3.350
- Rauch H, Müller M, Fleischer F, Bauer H, Martin E, Böttiger BW. Pulse contour analysis versus thermodilution in cardiac surgery patients. Acta Anaesthesiol Scand. 2002;46(4):424-429. DOI: 10.1034/j.1399-6576.2002.460416.x
- Zollner C, Haller M, Weis M, et al. Beat-to-beat measurement of cardiac output by intravascular pulse contour analysis: a prospective criterion standard study in patients after cardiac surgery. J Cardiothorac Vasc Anesth. 2000;14(2):125-129. DOI: 10.1016/s1053-0770(00)90003-x
- Buhre W, Weyland A, Kazmaier S, et al. Comparison of cardiac output assessed by pulse-contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 1999;13(4):437-444. DOI: 10.1016/s1053-0770(99)90216-1
- Stewart GN. Researches on the circulation time and on the influences which affect it. J Physiol. 1897;22(3):159-83. DOI: 10.1113/jphysiol.1897.sp000684
- Hamilton WF, Moore JW, Kinsman JM, Spurling RG. Further analysis of the injection method, and of changes in haemodynamics under physiological and pathological conditions. Studies on the Circulation. 1931:534-551
- Goedje O, Hoeke K, Lichtwarck-Aschoff M, Faltchauser A, Lamm P, Reichart B.
 Continuous cardiac output by femoral arterial thermodilution calibrated pulse
 contour analysis: Comparison with pulmonary arterial thermodilution. Critical Care
 Medicine. 1999;27(11):2407-2412. DOI: 10.1097/00003246-199911000-00014
- Wiesenack C, Prasser C, Keyl C, Rödig G. Assessment of intrathoracic blood volume as an indicator of cardiac preload: Single transpulmonary thermodilution technique versus assessment of pressure preload parameters derived from a pulmonary artery catheter. Journal of Cardiothoracic and Vascular Anesthesia. 2001;15(5):584-588.
 DOI: 10.1053/ican.2001.26536
- Della Rocca G, Costa MG, Coccia C, Pompei L, Di Marco P, Pietropaoli P. Preload Index: Pulmonary Artery Occlusion Pressure Versus Intrathoracic Blood Volume Monitoring During Lung Transplantation. Anesthesia & Analgesia. 2002;95(4):835-843. DOI: 10.1097/0000539-200210000-00009

- Gödje O, Höke K, Goetz AE, et al. Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Critical Care Medicine. 2002;30(1):52-58.
 DOI: 10.1097/00003246-200201000-00008
- Segal E, Katzenelson R, Berkenstadt H, Perel A. Transpulmonary thermodilution cardiac output measurement using the axillary artery in critically ill patients. Journal of Clinical Anesthesia. 2002;14(3):210-213.
 DOI: 10.1016/s0952-8180(02)00345-8
- Bein B, Worthmann F, Tonner PH, et al. Comparison of esophageal Doppler, pulse contour analysis, and real-time pulmonary artery thermodilution for the continuous measurement of cardiac output." Journal of Cardiothoracic and Vascular Anesthesia. 2004;18(2):185-189. DOI: 10.1053/j.jvca.2004.01.025
- Friesecke S, Heinrich A, Abel P, Felix SB. Comparison of pulmonary artery and aortic transpulmonary thermodilution for monitoring of cardiac output in patients with severe heart failure: validation of a novel method. Crit Care Med. 2009;37(1):119-123. DOI: 10.1097/CCM.0b013e31819290d5
- Reuter DA, Huang C, Edrich T, Shernan SK, Eltzschig HK. Cardiac Output Monitoring Using Indicator-Dilution Techniques: Basics, Limits, and Perspectives. Anesthesia & Analgesia. 2010;110(3):799-811.DOI: 10.1213/ANE.0b013e3181cc885a
- Newman EV, Merrell M, Genecin A, Monge C, Milnor WR, McKeever WP. The dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circulation. 1951;4(5):735-746.
 DOI: 10.1161/01.cir.4.5.735
- Sakka SG, Meier-Hellmann A. Evaluation of cardiac output and cardiac preload. Yearbook of Intensive Care and Emergency. 2000:671-679. DOI: 10.1007/978-3-662-13455-9_55
- Michard F, Perel A. Management of Circulatory and Respiratory Failure Using Less Invasive Hemodynamic Monitoring. Intensive Care Medicine. 2003:508-552.
 DOI: 10.1007/978-1-4757-5548-0 48
- Genahr A, McLuckie A. Transpulmonary thermodilution in the critically ill. Brit J Int Care 2004;14(1):6-10.
- Sakka SG, Reuter DA, Perel A. The transpulmonary thermodilution technique. J Clin Monit Comput. 2012;26:347-353. DOI: 10.1007/s10877-012-9378-5
- Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest. 2003;124(5):1900-1908. DOI:https://doi.org/10.1378/chest.124.5.1900
- Sakka SG, Rühl CC, Pfeiffer UJ, et al. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med. 2000;26(2):180-187. DOI: 10.1007/s001340050043
- Katzenelson R, Perel A, Berkenstadt H, et al. Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Critical Care Medicine. 2004;32(7):1550-1554. DOI: 10.1097/01.ccm.0000130995.18334.8b
- Kuzkov VV, Suborov EV, Kirov MY, et al. Extravascular lung water after pneumonectomy and one-lung ventilation in sheep. Crit Care Med. 2007;35(6):1550-1559. DOI: 10.1097/01.ccm.0000265739.51887.2b
- Tagami T, Kushimoto S, Yamamoto Y, et al. Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study. Critical care. 2010;14(5):R162-R162. DOI: 10.1186/cc9250
- 39. Kirov M, Kuzkov V, Bjertnaes L. Extravascular Lung Water as a Target for Intensive Care. ICU Management & Practice. 2019;9(1):46-50.
- Kraft R, Herndon DN, Branski LK, Finnerty CC, Leonard KR, Jeschke MG. Optimized fluid management improves outcomes of pediatric burn patients. J Surg Res. 2013;181(1):121-128. DOI: 10.1016/j.jss.2012.05.058
- Huber W, Umgelter A, Reindl W, et al. Volume assessment in patients with necrotizing pancreatitis: a comparison of intrathoracic blood volume index, central venous pressure, and hematocrit, and their correlation to cardiac index and extravascular lung water index. Crit Care Med. 2008;36(8):2348-2354. DOI: doi:10.1097/CCM.0b013e3181809928
- Saugel B, Ringmaier S, Holzapfel K, et al. Physical examination, central venous pressure, and chest radiography for the prediction of transpulmonary thermodilution—derived hemodynamic parameters in critically ill patients: A prospective trial. Journal of Critical Care. 2011;26(4):402-410.
 DOI: 10.1016/j.jcrc.2010.11.001
- Lenkin AI, Kirov MY, Kuzkov VV, et al. Comparison of goal-directed hemodynamic optimization using pulmonary artery catheter and transpulmonary thermodilution in combined valve repair: a randomized clinical trial. Crit Care Res Pract. 2012. DOI: 10.1155/2012/821218
- Mendoza DD, Cooper HA, Panza JA. Cardiac power output predicts mortality across a broad spectrum of patients with acut cardiac disease. Am Heart J. 2007;153(3): 366-370. DOI: 10.1016/j.ahj.2006.11.014
- Fincke R, Hochman JS, Lowe AM, et al. Cardiac power is the strongest haemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol. 2004;44(2):340-348. DOI: 10.1016/j.jacc.2004.03.060

- Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med. 2007;33(1):96-103. DOI: 10.1007/s00134-006-0404-2
- Hu W, Lin CW, Liu BW, Hu WH, Zhu Y. Extravascular lung water and pulmonary arterial wedge pressure for fluid management in patients with acute respiratory distress syndrome. Multidiscip Respir Med. 2014;9(1):3. DOI: 10.1186/2049-6958-9-3
- Yuanbo Z, Jin W, Fei S, et al. ICU management based on PiCCO parameters reduces duration of mechanical ventilation and ICU length of stay in patients with severe thoracic trauma and acute respiratory distress syndrome. Ann Intensive Care. 2016;6(1):113. DOI: 10.1186/s13613-016-0217-6
- Salzwedel C, Puig J, Carsten A, et al. Perioperative goal-directed hemodynamic therapy based on radial arterial pulse pressure variation and continuous cardiac index trending reduces postoperative complications after major abdominal surgery: a multi-center, prospective, randomized study. Crit Care. 2013;17(5):R191. DOI: 10.1186/cc12885
- Shoemaker WC, Appel PL, Kram HB, Waxmann K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94(6):1176-1186. DOI: 10.1378/chest.94.6.1176
- Gurgel ST, do Nascimento P Jr. Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg. 2011;112(6):1384-1391. DOI: 10.1213/ANE.0b013e3182055384

- Cecconi M, Corredor C, Arulkumaran N, et al. Clinical review: Goal-directed therapywhat is the evidence in surgical patients? The effect on different risk groups. Crit Care. 2013;17(2):209. Doi: 10.1186/cc11823
- Hamilton MA, Cecconi M, Rhodes A. A Systematic Review and Meta-Analysis on the Use of Preemptive Hemodynamic Intervention to Improve Postoperative Outcomes in Moderate and High-Risk Surgical Patients. Anesth Analg. 2011;112:1392-1402. DOI: 10.1213/ANE.0b013e3181eeaae5
- Dalfino L, Giglio MT, Puntillo F, Marucci M, Brienza N. Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and metaanalysis. Crit Care. 2011;15(3):R154 DOI: 10.1186/cc10284
- Grocott MP, Dushianthan A, Hamilton MA, et al. Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane Systematic Review. Br J Anaesth. 2013;111:535-548. DOI: 10.1093/bja/aet155
- Pearse RM, Moreno RP, Bauer P, et al. Mortality after surgery in Europe: a 7 day cohort study. Lancet. 2012;380:1059-1065. DOI: 10.1016/S0140-6736(12)61148-9
- Goodney PP, Siewers AE, Stukel TA, Lucas FL, Wennberg DE, Birkmeyer JD. Is Surgery Getting Safer? National Trends in Operative Mortality. J Am Coll Surg. 2002;195: 219-227. DOI: 10.1016/s1072-7515(02)01228-0

Hand in hand for better patient care

Getinge is built on a genuine compassion for people's health, safety, and wellbeing. Founded in 1904 with roots dating back to 1838, Getinge has grown organically and fostered partnerships to become a global market leader.

Getinge's portfolio offers solutions and support throughout the clinical pathway, and features recognizable and reliable brands, such as Maquet and Pulsion.

Ours is a legacy of trust, and an ongoing commitment to advancing medical technology. We maintain close global partnerships with clinical leaders to address real-world clinical needs. We help you protect patients, proactively avoid complications, and prevent common causes of escalating healthcare costs.

As a global leader in medical technology, Getinge has the firsthand experience to improve everyday life for people – today and tomorrow.

PiCCO practical help

Find out how to optimize PiCCO thermodilution measurements in your daily use. Containing comprehensive practical support, the PiCCO Trouble Shooting Guide assists clinicians and technicians when in need for handling information.

GETINGE 🛠

This document is intended to provide a general overview of the products and related information to an international audience outside the US. Indications, contradictions, warnings and instructions for use are listed in the separate instructions for use. This document may be subject to modifications. Any reference values mentioned herein or any other product related information shall solely serve as a general information and are subject to modifications and updates according to the current state of science and do not replace the individual therapeutic decision of the treating physician. Products may be pending regulatory approvals to be marketed in your country. All graphics shown herein are produced by Pulsion Medical Systems SE, unless otherwise noted.

 $\textbf{Pulsion Medical Systems SE} \cdot \text{Hans-Riedl-Str.} \ 17 \cdot 85622 \ \text{Feldkirchen} \cdot \text{Germany} \cdot *4989459914-0 \cdot \text{zentrale.pulsion@getinge.com}$