Predicting the Primary Cause of Car Crashes.

Phase 4 Project by Alexandra Yakovleva.

Business Problem.

Stakeholder: City of Chicago.

The business goal: develop a data-driven Driver Awareness Campaign to reduce accidents in business and residential areas.

Proposed Solution.

Use publicly-available Chicago Crashes Dataset.

Develop a predictive model using ML tools.

Analyze the key features contributing to the accidents.

Car Crashes Datasets.

CAR CRASHES – CRASHES.

CAR CRASHES – VEHICLES.

CAR CRASHES – PEOPLE.

Traffic Crashes - People

- Dataset size: 1877321 rows x 29 columns.
- Age, sex, physical condition.
- Passengers, Pedestrians, Cyclists.
- vehicle_id, crash_record_id.

Traffic Crashes - Vehicles

- Dataset size: 1743922 rows x 71 columns.
- Vehicle Type, Make, Model.
- Vehicle Use.
- vehicle_id, crash_record_id.

Traffic Crashes - Crashes

- Dataset Size: 854910 rows x 48 columns.
- Crash scene related information: weather, roadway, signals, etc..
- Primary and Secondary Crash Causes.
- crash_record_id.

Data Transformation Strategy.

Identify features, relevant to Primary Contributory Cause.

Explore and clean subset with the features.

Merge Datasets.

Perform EDA.

Dataset Transformation Overwiew.

People:1877321 rows, 29 columns.

Vehicles: 1743922 rows, 71 columns.

Crashes: 854910 rows, 48 columns.

Combined Dataset: 1541625 rows, 60 columns.

Dataset Key Limitations.

Inconsistent Data Logging.

Imbalanced

Data Representation.

Hight Dimensionality.

Preparing Dataset for ML.

- Reducing both features and primary contributory causes: 619627 samples x 22 features, with target containing 7 classes.
- Use 15% of the data as a holdout set.
- Use 45% of the data for training and testing (70%-30%).

Using F1 Score as a Model Performance Metric.

F1 score balances precision and recall, making it ideal for our imbalanced dataset.

Modelling Results.

Model	Accuracy	F1 Score
KNN	0.63	0.61
Random Forest	0.71	0.68
Extreme Gradient Boosting	0.71	0.7
Deep Neural Network	0.71	0.69

Accuracy and F1 scores computed on test set.

Optimized XGB Model.

- Accuracy score 0.72.
- F1 Score 0.7.
- The optimized XGB model achieves a balanced trade-off between precision and recall, effectively handling class imbalances.
- The model captures most but not all of the patterns.

Optimized XGB Model: Confusion Matrix.

Optimized XGB Model: False Discovery Ratio.

Primary Contributory Cause	FDR
Disregarding Traffic Control	0.34
Distracted Driving	0.47
Driver Experience	0.51
Failure to Yield	0.32
Following Too Closely	0.16
Improper Driving	0.30
Reckless Driving	0.56

A lower FDR indicates fewer incorrect predictions for the cause.

Optimized XGB Model: Interpretability.

Feature	Value	Importance (relative units)
First Crash Type	Rear End	280.237396
Driver Action	Improper Maneuver	89.850182
First Crash Type	Angle	73.313103
Driver Action	Distance	62.447044
Driver Action	Disregarding Controls/Signs	56.923775
Driver Action	Distraction	41.656368
First Contact Point	Rear	22.867151
First Crash Type	Turning	21.865906
First Crash Type	Sideswipe Same	20.575909
Driver Action	Other	17.656883

Recommendations.

Target Rear-End collisions.

Focus on campaigns that promote safe following distances, especially in high-traffic areas.

Address Improper Maneuvers.

Educate drivers about common improper maneuvers, such as unsafe lane changes, abrupt stops, and risky turns.

Mitigate Distracted Driving.

Stress the dangers of texting, phone use, and other distractions while driving.

Future Work (Improving Performance).

- The combined dataset serves as a robust foundation for further analysis and modeling.
- Consider using Deep Neural Network (similar performance, better model interpretability).
- Reduce features based on DNN's weights.
- Re-evaluate using DNN or XGB.