NOTES ON RANDOM MATRICES

LEONID PETROV

(notes by Stephen Hardy; Bryce Terwilliger; ...)

ABSTRACT. These are notes for the MATH 8380 "Random Matrices" course at the University of Virginia in Spring 2016. The notes are constantly updated, and the latest version can be found at the git repository https://github.com/lenis2000/RMT_Spring_2016

(BEFORE TEXING, PLEASE FAMILIARIZE YOURSELF WITH STYLE SUGGESTIONS AT HTTPS://GITHUB.COM/LENIS2000/RMT_SPRING_2016/BLOB/MASTER/TEXING.MD)

Contents

1. Introduction		1
2. Wigner's Semicircle Law and its	combinatorial proof	4
3. Elements of free probability		15
References		16

Lecture #1 on 1/20/2016 _____

1. Introduction

fields. The main object we study is a probability distribution on a certain subset of the set of matrices $\operatorname{Mat}(N \times N, \mathbb{R} \text{ or } \mathbb{C})$, thus giving us a random matrix A.

Definition 1.1. An eigenvalue λ of the matrix A is a root of the polynomial $f(\lambda) = \det(A - \lambda I)$, where I is the identity matrix (we use this notation throughout the notes). Equivalently, λ is an eigenvalue if A if the matrix $A - \lambda I$ is not invertible. This second way of defining eigenvalues in fact works even when A is not a finite size matrix, but an operator in some infinite-dimensional space.

We will largely be only concerned with real eigenvalues. That is the eigenvalues of a real symmetric matrix over \mathbb{R} or Hermitian over \mathbb{C} that is where $A^* = A$ (here and everywhere below A^* means $\overline{A^T}$, i.e., transposition and complex conjugation).

-eigenvalues Remark 1.2. The case when eigenvalues can be complex is also studied in the theory of random matrices, sometimes under the keyword complex random matrices. This area is more modern and is actively developing now. See, for example, [GT10] for a discussion of the law of large numbers.

Proposition 1.3. Every eigenvalue of a Hermitian matrix is real.

Date: February 1, 2016.

Proof. Let A be a Hermitian matrix, so that $A^* = A$. Let λ be an eigenvalue of A. Let v be a non-zero vector in the null space of $A - \lambda I$. Let $a = \overline{v^T}v = |v|^2$, so that a is a positive real number. Let $b = \overline{v^T}Av$. Then $\overline{b} = \overline{b^T} = \overline{\overline{v^T}Av}^T = \overline{v^T}\overline{A}^Tv = \overline{v^T}Av = b$, so b is real. Since $b = \lambda a$, λ must be real.

Let \mathcal{H}_N be the set of $N \times N$ Hermitian matrices. For each N, let μ_N be a probability measure on \mathcal{H}_N (it can be supported not by the whole \mathcal{H}_N , but by a subset of it, too). Then for each matrix $A \in \mathcal{H}_N$ we may order the real eigenvalues $\lambda_1 \geq \cdots \geq \lambda_N$ of A (the collection of eigenvalues is called the *spectrum* of A).

A collection of probability measures μ_N on \mathcal{H}_N for each $N \geq 1$ is said to be a random matrix ensemble. For such an ensemble, the eigenvalues $\lambda_1^{(N)} \geq \cdots \geq \lambda_N^{(N)}$ of matrices N form random point configurations on \mathbb{R} with growing numbers of points. Our main goal is to study the asymptotic properties of these collections of points on \mathbb{R} , as $N \to \infty$.

- "_matrices_)? 1.2. Why study random matrices? Let us briefly discuss five possible motivations to study random matrices and asymptotic distributions of random matrix spectra.
 - 1.2.1. Matrices are a natural generalization of real numbers, so studying them would seem natural from a pure probability point of view. However, the development of the theory of Random Matrices was much application driven.
 - 1.2.2. Hurwitz and theory of invariants. A. Hurwitz in the 1890s [Hur97] computed the volume of orthogonal and unitary groups of matrices. For example, U(1), the set of unitary 1×1 unitary matrices the unit circle has volume 2π . For general N, the volume of U(N) is the normalization constant $Z_N = \int_{U(N)} 1 \cdot d(\text{Haar}_N)$ in probabilistic integrals over the Haar measure on the unitary group,

$$Z_N = 2^{N(N+1)/2} \prod_{k=1}^N \frac{\pi^k}{\Gamma(k)} = 2^{N(N+1)/2} \prod_{k=1}^N \frac{\pi^k}{(k-1)!}.$$

See [DF15] for a recent survey.

1.2.3. Statistics. J. Wishart in 1928 [Wis28] considered random covariance matrices of vector-valued data. For testing the hypothesis of independence of components of the vector, it is natural to study the distribution of the random covariance matrix of the uncorrelated vector (the null-hypothesis distribution). Let us assume that the components of the vector are identically distributed.

This latter matrix ensemble (called the Wishart ensemble) can be constructed by taking a rectangular matrix Y with independent (or uncorrelated) identically distributed entries, and taking $A = Y^T Y$. Then A is a square matrix which is said to have the (real) Wishart distribution.

For the purposes of statistics, the distribution of the Wishart matrix A should be compared with the distribution under the alternate hypothesis that the entries of the vector are correlated. For certain assumed nature of the correlation structure, this leads to considering *spiked random matrices* of the form A+R, where A is Wishart and R is a finite-rank perturbation. It turns out that sometimes the presence of a nonzero matrix R may be detected by looking at the spectrum of A+R, which again leads to considering spectra of random matrices. One reference (among many others which are not mentioned) relevant for the current research on spiked random matrices is [BBAP05].

¹The group O(N) of orthogonal $N \times N$ matrices consists of matrices O with real entries, for which $O^TO = OO^T = I$. The group U(N) of unitary $N \times N$ matrices consists of matrices U with complex entries, for which $UU^T = U^TU = I$. Both groups are *compact*, and so possess finite Haar measures, i.e., measures μ which are invariant under left and right shifts on the group.

1.2.4. Nuclear physics. Active development of the theory of random matrices begins in the 1950s when Wigner, Dyson, Mehta, and their collaborators explored nuclear physics applications. In nuclear quantum physics a state of a system is an operator on an L^2 space of functions; its eigenvalues are the energy levels of the system. For large nuclei it is difficult to analyze the operator in L^2 directly, but Wigner postulated that differences in energy levels could be modeled by differences in eigenvalues of certain classes of matrices under appropriate probability measures. That is, the collections $\{\Delta E_i\}$ and $\{\lambda_i - \lambda_{i+1}\}$ should be statistically close. Moreover, the random matrix ensemble should have the same symmetry as that quantum system. The symmetry classes of random matrices are discussed in detail in a recent survey [Zir10]. Dyson proposed a model of stochastic dynamics of energies (eigenvalues of random matrices). We will study the Dyson's Brownian motion later.

Section 1.1 of the book [Meh04] contains a nice outline of physical applications of random matrices.

1.2.5. Number theory. Dyson and Montgomery uncovered number theoretic applications of random matrices in the 1970's [Mon73], with Odlyzko in the 1980's [Odl87] providing powerful numerical simulations. Consider the Riemann Zeta Function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 for $s \in \mathbb{C}$ with the real part of $s > 1$

Riemann showed that $\zeta(s)$ can be analytically continued to a function on \mathbb{C} with a pole at s=1. The famous Riemann hypothesis is that all the zeroes of the Zeta function with real part greater than 0 lie on the *critical line* $\frac{1}{2} + it$. It turns out that the distribution of the zeroes on the critical line can be linked to the distribution of eigenvalues of random matrices. Consider the zeros $\frac{1}{2} + it_n$ of the zeta function with $t_n \in \mathbb{R}$. Let us define

$$w_n = \frac{t_n}{2\pi} \log \left(\frac{|t_n|}{2\pi} \right),$$

then $\lim_{L\to\infty}\frac{1}{L}\#\{w_n\in[0,L]\}=1$, i.e., the average density of the w_n 's is 1. The theorem/conjecture of Montgomery² states that the pair correlations of the zeroes of the zeta function have the form

$$\lim_{L \to \infty} \frac{1}{L} \# \left\{ \begin{array}{c} w_n \in [0, L] \\ \alpha \le w_n - w_m \le \beta \end{array} \right\} \sim \int_{\alpha}^{\beta} \left(\delta(x) + 1 - \frac{\sin^2(\pi x)}{\pi^2 x^2} \right) dx, \tag{1.1}$$

where $\delta(x)$ is the Dirac delta. Further details on this and other connections between number theory and random matrices can be found in [KS00], [Kea06].

Remark 1.4. There are accounts of Montgomery meeting Dyson at teatime at the IAS; the latter pointed out the connection between Montgomery's formula and the eigenvalue distributions of random matrices. A quick Internet search lead to the following links containing details: https://www.ias.edu/articles/hugh-montgomery and http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/dyson.htm.

-the_course)? 1.3. Course outline. The course will consist of five main parts, with the last part being optional:

- 1. Limit shape results for random matrices (such as Wigner's Semicircle Law). Connections to Free Probability.
- 2. Concrete ensembles of random matrices (GUE, circular, and Beta ensembles). Bulk and edge asymptotics via exact computations. Connection to determinantal point processes.
- 3. Dyson's Brownian Motion and related stochastic calculus.
- 4. Universality of random matrix asymptotics.
- **5.** (optional, depending on time available) Discrete analogues of random matrix models: random permutations, random tilings, interacting particle systems.

²Depending in part on the Riemann hypothesis and in part on how strong is the assumed convergence in (1.1).

2. Wigner's Semicircle Law and its combinatorial proof

- $\mathtt{icircle_law}
 angle ?$ After discussing the object and motivations for studying random matrices, let us proceed to the first part of the course — the laws of large numbers for the eigenvalue distributions of random matrices. The first of these laws of large numbers is the Wigner's Semicircle Law. It dates back to [Wig55].
- er_matrices)? 2.1. Real Wigner matrices. A particular ensemble of random matrices is the real Wigner matrices. Let $A \in \operatorname{Mat}(N \times N, \mathbb{R})$ with $A = (a_{ij})_{i,j=1}^N$ such that $a_{ij} = a_{ji}$. To describe the distribution of the random matrix A we only need to describe the upper triangular portion of A.
- real_Wigner)? Definition 2.1. The law of the real Wigner $N \times N$ matrix is described as follows:
 - $\{a_{ij}\}_{i\leq j}$ is an independent collection of random variables

 - $\{a_{ii}\}_{i=1}^{N}$ is iid³, and $\{a_{ij}\}_{i< j}$ is iid. $\mathbb{E} a_{ij} = 0$ for all i, j; $\mathbb{E} a_{ij}^2 = 2$ for i = j; and $\mathbb{E} a_{ij}^2 = 1$ for $i \neq j$.
 - all moments of a_{ij} are finite.

The last condition greatly simplifies technicalities of the proofs, but most results on real Wigner matrices hold under weaker assumptions.

Example 2.2. A large class of Wigner random matrices (which helps justify why in A the variances on the diagonal must be twice the off-diagonal variances) can be constructed as follows. Suppose the collection of random variables x_{ij} for $1 \le i, j \le N$ is iid with $\mathbb{E} x_{ij} = 0$ and $\mathbb{E} x_{ij}^2 = 1$. Let $X = (x_{ij})$ be an $N \times N$ matrix. Define

$$A := \frac{X + X^T}{\sqrt{2}}.$$

One readily sees that A is real Wigner. Namely, for example, $a_{11} = \frac{x_{11} + x_{11}}{\sqrt{2}} = \sqrt{2}x_{11}$, so $\mathbb{E} a_{11} = 0$ and $\mathbb{E} a_{11}^2 = 2 \mathbb{E} x_{11}^2 = 2$. If $N \geq 2$ then $a_{12} = a_{21}$ with $a_{12} = \frac{x_{12} + x_{21}}{\sqrt{2}}$, and we have $\mathbb{E} a_{12} = 0$ and $\operatorname{Var} a_{12} = \frac{1}{2} \operatorname{Var} (x_{12} + x_{21}) = 1$ because x_{12} and x_{21} are independent.

al_ensemble)? 2.2. Gaussian Orthogonal Ensemble. A special case of real Wigner matrices is when each a_{ij} is Gaussian. This case is called the Gaussian Orthogonal Ensemble (GOE).

> **Lemma 2.3.** The distribution of the GOE is orthogonally invariant, that is, if A has the GOE distribution and $O \in O(N)$ is a fixed orthogonal matrix, then OAO^T has the same probability distribution as A.

> *Proof.* It is not hard to check that the probability density of A with respect to the Lebesgue measure on $Mat(N \times N, \mathbb{R})$ (this space is isomorphic to $\mathbb{R}^{N(N+1)/2}$ by considering the upper triangular part) has the form

$$f(A) = c \exp(-\operatorname{tr}(A^2)),$$

where c is a normalization constant. Since the matrix trace is invariant under cyclical permutations,

$$\operatorname{tr}(OA^2O^T) = \operatorname{tr}(A^2O^TO) = \operatorname{tr}(A^2).$$

Thus,
$$OA^2O^T \stackrel{\mathcal{D}}{=} A$$
.

We will discuss the GOE (and its close relative GUE, Gaussian Unitary Ensemble) in detail in the course later, but for now we will focus on properties of real Wigner matrices with general entry distribution.

³Independent identically distributed.

⁴Here and below $tr(A) = a_{11} + a_{22} + ... + a_{NN}$ is the trace of a matrix.

icircle_law)? 2.3. Formulation of the Wigner Semicircle Law. For a real Wigner matrix $A_N \in \operatorname{Mat}(N \times N)$ let $\lambda_1^{(N)} \geq \cdots \geq \lambda_N^{(N)}$ be the eigenvalues of A_N . The empirical distribution of the eigenvalues is

$$L_N = \frac{1}{N} \sum_{i=1}^{N} \delta_{N^{-1/2} \lambda_i^{(N)}}. \tag{2.1}$$
 Empirical Dis

That is, we put delta masses of size 1/N into the N positions of rescaled eigenvalues $\lambda_i^{(N)}/\sqrt{N}$. This rescaling will turn out to be appropriate for the law of large numbers. Note that L_N is a probability measure on \mathbb{R} .

Remark 2.4. For the purposes of asymptotic statements, we will always assume that the off-diagonal entries of real Wigner matrices $A = A_N$ have the same fixed distribution independent of N, and similarly the diagonal entries have the same fixed (but different) distribution.

FIGURE 1. Semicircle density SC(x).

g:semicircle

Figure 2. Histogram of the empirical distribution L_N for N=5000.

\fig:Wigner\?

Definition 2.5. The semicircle distribution SC is a fixed probability distribution on \mathbb{R} supported on [-2, 2] which is absolutely continuous with respect to the Lebesgue measure and has the density

$$\mathsf{SC}(x) := \frac{1}{2\pi} \sqrt{4 - x^2}, \qquad -2 \le x \le 2. \tag{2.2} \label{eq:2.2}$$

See Fig. 1.

Note that slightly abusing the notation, by SC we will denote both the semicircle distribution and its probability density (2.2).

micircleLaw)? Theorem 2.6 (Wigner's Semicircle Law). As $N \to \infty$, the empirical distributions L_N converge weakly, in probability to the semicircle distribution SC.

Let us explain what we mean by convergence "weakly in probability". Formally this means that for any bounded continuous function f on \mathbb{R} $(f \in C_B(\mathbb{R}))$ and each $\epsilon > 0$ we have

$$\lim_{N \to \infty} \mathbb{P}\left(\left| \int_{\mathbb{R}} f \, dL_N - \int_{\mathbb{R}} f \, d\mathsf{SC} \right| > \epsilon\right) = 0. \tag{2.3} \quad \text{WignerSemici}$$

That is, "in probability" means the usual convergence in probability of random elements L_N to a (non-random) element SC. On the other hand, "weakly" specifies the metric on the space of probability measures on \mathbb{R} (to which all L_N and SC belong). Convergence of probability measures in this metric simply means weak convergence of probability measures on \mathbb{R} .

In other words, let us use a convenient notation for the pairing $\langle f, \mu \rangle = \int_{\mathbb{R}} f \, d\mu = \int_{\mathbb{R}} f(x) \, \mu(dx)$ for a given function f and measure μ . If μ is a random measure (such as L_N , since L_N depends on A_N which is random), then $\langle f, \mu \rangle$ is a random element of \mathbb{R} (usually we say random variable). Since SC is not random, the pairing $\langle f, SC \rangle$ is a fixed number for a given function f. The Semicircle Law thus states that for any given $f \in C_B(\mathbb{R})$ the random variable $\langle f, L_N \rangle$ converges in probability to the constant $\langle f, SC \rangle$ which may be written as

$$\forall \epsilon > 0, \qquad \lim_{N \to \infty} \mathbb{P}\left(|\langle f, L_N \rangle - \langle f, \mathsf{SC} \rangle| > \epsilon \right) = 0, \tag{2.4} \quad \text{WignerSemici}$$

which is the same as (2.3).

Remark 2.7. This type of convergence is reminiscent of the classical weak law of large numbers: for $\{X_i\}_{i=1}^{\infty}$ iid random variables with $\mathbb{E}|X_1| < \infty$, the random variables $\frac{1}{N} \sum_{i=1}^{N} X_i$ converge to the constant $\mathbb{E} X_1$ in probability as $N \to \infty$.

Lecture #2 on 1/25/2016

f_the_proof)? 2.4. Strategy of the proof. We will employ the following strategy in our proof of the Wigner's semicircle law. This is only the first of the proofs we will consider, and it is based on the computation of moments and on the related combinatorics. Recall that for a probability measure μ the quantities $\langle x^k, \mu \rangle$, k = 0, 1, 2, ..., are called the *moments* of μ .

First, in §2.5 we will compute the moments $m_k := \langle x^k, \mathsf{SC} \rangle$ of the limiting semicircle distribution, and identify the answer in terms of the Catalan numbers. Our second step in the proof is to show the convergence $\lim_{N\to\infty} \mathbb{E}\langle x^k, L_N \rangle = m_k$ for each k. We do this in §2.7 below. The third step (in §2.9) is to show that the variance of $\langle x^k, L_N \rangle$ goes to zero as $N \to \infty$ for each k. Finally, to complete the proof we will need to justify that the convergence (2.4) for any function f(x) follows from the case of $f(x) = x^k$, $k = 0, 1, 2, \ldots$ This is done in §2.10.

distribution 2.5. Moments of the semicircle distribution. Here we will compute the moments of the semicircle distribution:

$$m_k = \langle x^k, \mathsf{SC} \rangle = \int_{-2}^2 x^k \, \mathsf{SC}(x) \, dx = \int_{-2}^2 x^k \left(\frac{\sqrt{4 - x^2}}{2\pi} \right) \, dx.$$

Clearly, by symmetry we have $m_k = 0$ for k odd. If k is even, let us perform a trigonometric substitution $x = 2\sin\theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, in the above integral:

$$m_{2k} = \frac{2^{2k+1}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{2k}\theta \cos^{2}\theta \, d\theta. \tag{2.5}$$

Lemma 2.8. We have

$$\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{2k} \theta \, d\theta = \frac{(2k-1)!!}{2^k k!},$$

where recall that $(2k-1)!! = 1 \cdot 3 \cdot 5 \cdots (2k-3)(2k-1)$.

Proof. Denote the integral in the right-hand side by α_k . Observe that $\alpha_0 = 1$. Integrating by parts for $k \geq 1$, we have

$$\alpha_k = -\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{2k-1}\theta \, d(\cos\theta) = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2k-1) \sin^{2k-2}\theta \cos^2\theta \, d\theta = (2k-1)\alpha_{k-1} - (2k-1)\alpha_k.$$

Therefore, the quantities α_k satisfy

$$\frac{\alpha_k}{\alpha_{k-1}} = \frac{2k-1}{2k},$$

which is the same relation as for the quantities $\frac{(2k-1)!!}{2^k k!}$. This completes the proof.

By relating m_{2k} (2.5) and α_k in the above lemma, we see that the even moments of the semicircle distribution are given by

$$m_{2k} = \frac{1}{k+1} \binom{2k}{k}, \qquad k = 0, 1, 2, \dots$$
 (2.6) ?m_2k_Catalar

These quantities are called the Catalan numbers.

2.6. Catalan numbers. The Catalan numbers C_k are defined as

$$C_k := \frac{1}{k+1} \binom{2k}{k}, \qquad k = 0, 1, 2, \dots$$
 (2.7) Catalan_def

The first twenty one of them are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420.

They are ubiquitous in combinatorics: for example, there are more than 200 families of objects enumerated by the Catalan numbers [Sta15]. A list of references and properties of Catalan numbers may be found at [Cat].

Here we will list a number of properties of the Catalan numbers which will be important for our proof of the semicircle law.

:dyck_paths? 2.6.1

 $\mathtt{lan_numbers}
angle ?$

2.6.1. Dyck paths.

Definition 2.9. A *Dyck path* of length 2n is a sequence d_0, d_1, \ldots, d_{2n} such that $d_0 = d_{2n} = 0$, $d_{i+1} - d_i = \pm 1$ for all i, and that $d_i \geq 0$ for all i. Graphically Dyck paths can be represented as on Fig. 3.

FIGURE 3. A Dyck path of length 2n = 10.

⟨fig:Dyck⟩

FIGURE 4. All five Dyck paths of length 2n = 6. The first two paths first return to zero at time 2j = 2, the third path first returns to zero at time 2j = 4, and the last two paths first return to zero at time 2j = 6.

⟨fig:Dyck3⟩

 $^{\text{yck_Catalan}}$? Exercise 2.10. The number of Dyck paths of length 2n is equal to the Catalan number C_n .

Idea. Use the reflection principle — a tool used in the study of random walks and Brownian motion. See https://en.wikipedia.org/wiki/Catalan_number#Second_proof for details.

Another way to count the Dyck paths is to first establish the recurrence (2.8), and then use generating functions to solve the recurrence (see Remark 2.12 below).

:recurrence)? 2.6.2. Recurrence.

 $^{ ext{d_recurrence}}$ Lemma 2.11. The Catalan numbers satisfy the recurrence relation

$$C_0 = 1,$$
 $C_n = \sum_{j=0}^{n} C_{j-1} C_{n-j}.$ (2.8) Catalan_recu

Proof. The easiest way to see this is by counting the Dyck paths: let the first time a Dyck path reaches 0 be 2j, then j can be any number from 1 to n (see Fig. 4). The part of the Dyck path after time 2j is independent from the part before 2j. The number of paths from 2j to 2n is exactly C_{n-j} . The number of paths from 0 to 2j (with the condition that they do not get to 0 in the meantime) can be seen to be C_{j-1} by cutting out the first up and the last down steps. This implies the recurrence.

Remark 2.12. The recurrence (2.8) provides a way to get the explicit formula (2.7). Namely, considering the generating function $G(z) = \sum_{n=0}^{\infty} C_n z^n$, we see that (2.8) implies

$$G(z) = zG(z)^2 + 1.$$

This equation on G(z) has two solutions $\frac{1\pm\sqrt{1-4z}}{2z}$, of which we should pick $\frac{1-\sqrt{1-4z}}{2z}$ because the other solution diverges as $z\to 0$. The Taylor expansion of this function is

$$\frac{1 - \sqrt{1 - 4z}}{2z} = \sum_{n=0}^{\infty} \frac{1}{n+1} {2n \choose n} z^n = 1 + z + 2z^2 + 5z^3 + 14z^4 + 42z^5 + 132z^6 + \dots,$$

which converges for $|z| < \frac{1}{4}$. This shows that the Dyck paths are enumerated by the Catalan numbers.

beled_trees)? 2.6.3. Trees. As was mentioned before, the Catalan numbers enumerate numerous families of combinatorial objects. We will need one more family of such objects — rooted ordered trees. An ordered tree is a rooted tree (i.e., a tree with a distinguished vertex R called the root) in which children of every vertex are linearly ordered. On pictures this ordering will be represented from left to right (see Fig. 5).

-are_Catalan Lemma 2.13. The number of rooted ordered trees with n+1 vertices (including the root) is equal to the Catalan number C_n .

FIGURE 5. These trees are isomorphic as rooted trees, but are different as rooted ordered trees. A beginning of the walk of Exercise 2.14 is displayed for the second tree.

 $\mathtt{ordered_tree}
angle$

FIGURE 6. Dyck paths corresponding to the rooted ordered trees on Fig. 5 (see Exercise 2.14).

 $\mathtt{ed_tree_Dyck}
angle$

Proof. Assume that the leftmost subtree contains j vertices (without the root), then the rest of the tree including the root contains n-j+1 vertices. This readily implies the recurrence (2.8), which establishes the claim.

 ${ t _{are_Catalan}}
angle$

Exercise 2.14. By comparing the proof of Lemma 2.11 and Lemma 2.13, come up with a bijection between Dyck paths and ordered rooted trees.

Idea. Consider the walk around the tree (such that the tree is always to the left of the walker), which starts to the left of the root. Let d_k be the distance of the walker from the root. The Dyck paths corresponding to trees on Fig. 5 are given on Fig. 6.

**xpectations_ \rangle 2.7. Convergence of expectations $\mathbb{E}\langle x^k, L_N \rangle \to m_k$. With the Catalan preparations in place, let us return to the semicircle law. We would like to show that

$$\lim_{N \to \infty} \mathbb{E}\langle x^k, L_N \rangle = m_k = \begin{cases} 0, & k \text{ odd;} \\ C_{k/2}, & k \text{ even.} \end{cases}$$
 (2.9) desired_conv

First, observe that the left-hand side has the form

$$\mathbb{E}\langle x^k, L_N \rangle = \mathbb{E} \int_{\mathbb{R}} x^k L_N(dx)$$

$$= \mathbb{E} \int_{\mathbb{R}} x^k \frac{1}{N} \sum_{i=1}^N \delta_{N^{-1/2}\lambda_i}(dx)$$

$$= \mathbb{E} \frac{1}{N} \sum_{i=1}^N \int_{\mathbb{R}} x^k \delta_{N^{-1/2}\lambda_i}(dx)$$

$$= \mathbb{E} \frac{1}{N} \sum_{i=1}^N (N^{-1/2}\lambda_i)^k$$

$$= N^{-1-k/2} \mathbb{E} \sum_{i=1}^N \lambda_i^k.$$

Since A is diagonalizable (as an $N \times N$ real symmetric matrix), we have $\sum_{i=1}^{N} \lambda_i^k = \operatorname{tr}(A^k)$. We may express the trace of the kth power of a matrix by a k-fold sum of cyclic products

$$\operatorname{tr}(A^k) = \sum_{i_1, i_2, \dots, i_k = 1}^{N} a_{i_1 i_2} a_{i_2 i_3} \cdots a_{i_{k-1} i_k} a_{i_k i_1}.$$

So we have

$$\mathbb{E}\langle x^k, L_N \rangle = N^{-1-k/2} \sum_{i_1, i_2, \dots, i_k = 1}^{N} \mathbb{E}(a_{i_1 i_2} a_{i_2 i_3} \cdots a_{i_{k-1} i_k} a_{i_k i_1}). \tag{2.10} \quad \text{WSCL_proof_O}$$

Our goal now is to understand the combinatorial structure of the above big sum.

Definition 2.15. Each term of the sum can be encoded by a *closed word* $i_1 \dots i_k i_1$ of length k+1 ("closed" in the sense that the word starts and ends with the same letter). For example, 123241 is a closed word of length 6. The *support* of a closed word is the set of all letters participating in this word. The support of 123241 is $\{1, 2, 3, 4\}$.

To each closed word w we associate an undirected graph G_w with vertices labeled by the support of the word, edges $(i_1, i_2), (i_2, i_3), \ldots, (i_k, i_1)$ connecting each consecutive pair of letters in the word. For example, if w = 123241, then G_w has four vertices $\{1, 2, 3, 4\}$ and five edges $\{(1, 2), (2, 3), (3, 2), (2, 4), (4, 1)\}$ (see Fig. 7). Notice each graph G_w is connected. These (and similar) graphs are sometimes referred to as Feynman diagrams.

FIGURE 7. Graph G_w corresponding to the word w = 123241.

 $nman_diag_ex$

Let $N_{i_1i_2}^w$ be the number of distinct edges connecting i_1 to i_2 in G_w . In our running example we have $N_{12}^w = 1$ and $N_{23}^w = 2$. Each edge may be a *self* edge such as (1,1), or it can be an edge *connecting* distinct vertices such as (2,3).

With this notation we have

$$\mathbb{E} \, a_{i_1 i_2} a_{i_2 i_3} \cdots a_{i_{k-1} i_k} a_{i_k i_1} = \prod_{\substack{\text{self } e \\ e \in G_{i_1 \cdots i_k i_1}}} \mathbb{E} \, a_{11}^{N_e} \prod_{\substack{\text{connecting } e \\ e \in G_{i_1 \cdots i_k i_1}}} \mathbb{E} \, a_{12}^{N_e}, \tag{2.11} \quad \text{WSCL_proof_1}$$

since all diagonal elements are iid, and all the elements above the diagonal are iid. Here the product runs over all possible distinct edges in the graph of the word.

In order for the expectation (2.11) to be nonzero, we must have the following properties:

- Since $\mathbb{E} a_{ij} = 0$, each edge in $G_{i_1 \cdots i_k i_1}$ must have $N_e \geq 2$..
- The graph $G_{i_1\cdots i_k i_1}$ has k+1 edges, and so it can have at most 1+k/2 vertices.

Now let us look at the sum (2.10) as a whole. Call two graphs equivalent if they differ only by relabeling the vertices. Note that the expectations of the form (2.11) coming from equivalent graphs are the same. If a graph has t vertices, then there are $N^{\downarrow t} := N(N-1)...(N-t+1)$ ways to relabel the

vertices to get an equivalent graph. This implies that the sum (2.10) can be rewritten as

$$\mathbb{E}\langle x^k, L_N \rangle = \sum_{t=0}^{1+\lfloor k/2 \rfloor} \frac{N^{\downarrow t}}{N^{1+k/2}} \underbrace{\sum_{G_w \in \text{EqClass}_t} \prod_{\substack{\text{self } e \\ e \in G_w}} \mathbb{E} \, a_{11}^{N_e} \prod_{\substack{\text{connecting } e \\ e \in G_w}} \mathbb{E} \, a_{12}^{N_e}, \tag{2.12} \left[\text{WSCL_proof_2} \right]}_{(*)}$$

where by EqClass_t we have denoted the set of equivalence classes of graphs G_w corresponding to closed word, having t vertices and k+1 edges, and also having $N_e \geq 2$ for each edge.

Clearly, for fixed t and k, the expression (*) above does not depend on N and is finite. Also, since $N^{\downarrow t} = O(N^t)$, the sum (2.12) vanishes as $N \to \infty$ unless t = 1 + k/2. Because $t \le \lfloor k/2 \rfloor$, this is possible only for k even. Therefore, $\mathbb{E}\langle x^k, L_N \rangle$ converges to zero if k is odd.

Now consider the case when k is even and t = 1 + k/2. Then the graph corresponding to each word $i_1 \dots i_k i_1$ has k + 1 edges, 1 + k/2 vertices, and $N_e \ge 2$ for each edge. Hence, gluing together pairs of edges connecting the same vertices, we see that the graph $G_{i_1 \dots i_k i_1}$ must be a tree (see Fig. 8).⁵ In particular, there are no self edges and $N_e = 2$ for each connecting edge. This implies that

$$\lim_{N \to \infty} \mathbb{E}\langle x^k, L_N \rangle = \left| \text{EqClass}_{1+k/2} \right|.$$

FIGURE 8. A graph G_w corresponding to a Wigner word $w = i_1 i_3 i_4 i_5 i_4 i_6 i_4 i_3 i_1 i_2 i_1$ which nontrivially contributes to the expansion (2.12). Here k = 10.

FIGURE 9. A representative graph $G_w \in \text{EqClass}_{1+k/2}$ corresponding to the graph as on Fig. 8 (left), and its representation as a rooted ordered tree (right).

 $exttt{presentative}
angle$

To count the number of trees $G_w \in \text{EqClass}_{1+k/2}$, let us choose representatives $w = v_1 \dots v_{k+1}$, such that for each $i = 1, \dots, k+1$, the set $\{1, 2, \dots, v_i\}$ is an interval in $\{1, 2, \dots, N\}$ beginning at 1 (thus, $v_1 = v_{k+1} = 1$).

Exercise 2.16. There is a unique way of choosing such representatives.

⁵The words which correspond to such trees contributing to (2.12) are sometimes referred to as Wigner words.

Let the vertex 1 be the root R, and clearly the order coming from the word defines an order on this rooted tree (see Fig. 9). This implies that $|\text{EqClass}_{1+k/2}| = C_k$, and finally proves the desired convergence (2.9).

Lecture #3 on 1/27/2016 ___

-WSCL_proof)? 2.8. An example of counting terms in the expansion (2.10). Before proceeding to finish the proof, let us consider one example how expansion (2.10) works for k = 6.

Exercise 2.17. How go get $C_3 = 5$ when calculating $\mathbb{E}(\operatorname{tr}(A^6))$.

Solution. We want to show how

$$\mathbb{E}(\operatorname{Tr}(A^{6})) = N^{-1-3} \sum_{i_{1},\dots,i_{6}=1}^{N} \mathbb{E}(a_{i_{1},i_{2}} \cdot a_{i_{2},i_{3}} \cdots a_{i_{5},i_{6}} \cdot a_{i_{6},i_{1}}) \xrightarrow[N \to \infty]{} 5.$$

We need to determine which terms are non-zero and how many such terms there are. If there are 5 or 6 independent indices, we get a product of expected values of independent random variables with expected value zero, so these terms do not contribute. If there are 3 or fewer independent indices, there are not enough terms to overcome the factor of N^{-4} , so these terms do not contribute in the limit. Thus we are interested in non-zero terms with 4 independent indices. One can check that there are 5 types of such terms:

(1)
$$(i_1, i_2), (i_2, i_1), (i_1, i_3), (i_3, i_1), (i_1, i_4), (i_4, i_1)$$

(2)
$$(i_1, i_2), \quad \underbrace{(i_2, i_3), (i_3, i_2)}_{}, \quad (i_2, i_1), \quad \underbrace{(i_1, i_4), (i_4, i_1)}_{}$$

(3)
$$(i_1, i_2), \quad (i_2, i_3), (i_3, i_2), \quad (i_2, i_4), (i_4, i_2), \quad (i_2, i_1)$$

(4)
$$(i_1, i_2), \quad (i_2, i_3), \quad \underbrace{(i_3, i_4), (i_4, i_3)}_{}, \quad (i_3, i_2), \quad (i_2, i_1)$$

(5)
$$(i_1, i_2), (i_2, i_1), (i_1, i_3), (i_3, i_4), (i_4, i_3), (i_3, i_1)$$

These sequences bijectively correspond to non-crossing pair partitions of 6 elements. These partitions are in bijection with Dyck paths of length 6 (shown on Fig. 4), and are enumerated by the Catalan number $C_3 = 5$.

For each of these patterns, there are $N(N-1)(N-2)(N-3) \sim N^4$ terms in the sum, and each term is a product of the expected value of the squares of three independent off-diagonal random variables with expected value 0 and variance 1, like

$$\mathbb{E}(a_{i_1,i_2} \cdot a_{i_2,i_1} \cdot a_{i_1,i_3} \cdot a_{i_3,i_1} \cdot a_{i_1,i_4} \cdot a_{i_4,i_1}) = \mathbb{E}(a_{i_1,i_2}^2) \cdot \mathbb{E}(a_{i_1,i_3}^2) \cdot \mathbb{E}(a_{i_1,i_4}^2) = 1.$$

So in the limit we get the Catalan number $C_3 = 5$.

-nrangleto0_ \rangle 2.9. Variances of $\langle x^k, L_N \rangle$. Let us now show that the variances vanish in the limit:

$$\mathbb{E}(\langle x^k, L_N \rangle^2) - \left(\mathbb{E}(\langle x^k, L_N \rangle)\right)^2 \xrightarrow[N \to \infty]{} 0. \tag{2.13} \quad \text{Variance_to_}$$

Recall that

$$\langle x^k, L_N \rangle = N^{-1-k/2} \sum_{\vec{i}=i_1,\dots,i_k=1}^n a_{i_1,i_2} \cdots a_{i_k,i_1}.$$

Now, writing $a_{\vec{i}}$ for $a_{i_1,i_2} \cdots a_{i_k,i_1}$, we have

$$\mathbb{E}(\langle x^k, L_N \rangle^2) - \left(\mathbb{E}(\langle x^k, L_N \rangle)\right)^2 = N^{-2-k} \sum_{\vec{i}, \vec{j}} \left(\mathbb{E}\left(a_{\vec{i}} \cdot a_{\vec{j}}\right) - \mathbb{E}(a_{\vec{i}}) \cdot \mathbb{E}(a_{\vec{j}})\right).$$

If the graphs $G_{\vec{i}}$ and $G_{\vec{j}}$ (corresponding to the words $i_1 \dots i_k i_1$ and $j_1 \dots j_k j_1$, respectively) do not share common edges, then the corresponding random variables $a_{\vec{i}}$ and $a_{\vec{j}}$ are independent, and so $\mathbb{E}(a_{\vec{i}} \cdot a_{\vec{j}}) = \mathbb{E}(a_{\vec{i}}) \cdot \mathbb{E}(a_{\vec{j}})$. Thus we are only interested in the terms for which edges of the graphs $G_{\vec{i}}$ and $G_{\vec{j}}$ overlap.

ance_in_WSCL Example 2.18. For instance, if $\vec{i} = (1, 2, 3, 2, 1)$ and $\vec{j} = (1, 2, 1, 1, 1)$, then

$$\mathbb{E}(a_{\vec{i}}) = \mathbb{E}(a_{i_1,i_2} \cdot a_{i_2,i_3} \cdot a_{i_3,i_2} \cdot a_{i_2,i_1}) = \mathbb{E}(a_{1,2}^2)^2 = 1;$$

$$\mathbb{E}(a_{\vec{i}}) = \mathbb{E}(a_{i_1,i_2} \cdot a_{i_2,i_1} \cdot a_{i_1,i_1} \cdot a_{i_1,i_1}) = \mathbb{E}(a_{1,2}^2) \cdot \mathbb{E}(a_{1,1}) = 2;$$

 $\mathbb{E}(a_{i_1,i_2} \cdot a_{i_2,i_3} \cdot a_{i_3,i_2} \cdot a_{i_2,i_1} \cdot a_{i_1,i_2} \cdot a_{i_2,i_1} \cdot a_{i_1,i_1} \cdot a_{i_1,i_1}) = \mathbb{E}(a_{i_1,i_2}^4) \cdot \mathbb{E}(a_{i_2,i_3}^2) \cdot \mathbb{E}(a_{i_1,i_1}^2) = 2 \, \mathbb{E}(a_{1,2}^4).$

The corresponding graphs are given on Fig. 10.

Figure 10. Graphs $G_{\vec{i}}$ (solid lines) and $G_{\vec{i}}$ (dashed lines) in Example 2.18.

ance_in_WSCL>

We now argue similarly to the proof given in §2.7 (for the convergence of the first moments). Namely, in order for $\mathbb{E}(a_{\vec{i}} \cdot a_{\vec{j}}) - \mathbb{E}(a_{\vec{i}}) \mathbb{E}(a_{\vec{i}})$ to be non-zero we must have the following:

- Since $\mathbb{E}(a_{ij}) = 0$, the graphs need to have $N_e \geq 2$;
- The graphs $G_{\vec{i}}$ and $G_{\vec{j}}$ need to share some edges.

If the combined graph has t vertices, there are $N^{\downarrow t} = N(N-1)\cdots(N-t+1)$ equivalent classes of graphs. Thus, the variance takes the form

$$\mathbb{E}(\langle x^k, L_N \rangle^2) - \left(\mathbb{E}(\langle x^k, L_N \rangle)\right)^2 = N^{-2-k} \sum_{t=1}^{2k} N^{\downarrow t} \left[\sum_{\substack{\text{equiv. classes} \\ \text{of graphs with} \\ 2k \text{ vertices}}} (\text{finite products of finite moments}) \right]$$

finite and independent of N

Thus, we must have $t \geq k+2$ in order to have a nonzero contribution as $N \to \infty$. The associated graphs have $N_e \geq 2$ and are connected (since $G_{\vec{i}}$ and $G_{\vec{j}}$ are connected and overlap). There are totally 2k edges with multiplicities, thus $\leq k$ double edges. We conclude that there are no such graphs, and so there are no nonzero contributions to the variance in the limit as $N \to \infty$. This completes the proof of (2.13).

Remark 2.19. Remark: by a similar argument, t = k + 1 also cannot contribute. Indeed, the combined graph of $G_{\vec{i}}$ and $G_{\vec{j}}$ has $\leq k$ double edges and k+1 vertices so it must be a tree (in the same sense of gluing edges as in §2.7 above). However, as $G_{\vec{i}}$ and $G_{\vec{j}}$ must also overlap (i.e., share common edges), there are no such trees. This implies a better estimate on the variance:

$$\mathbb{E}\left(\langle x^k, L_N \rangle^2\right) - \mathbb{E}\left(\langle x^k, L_N \rangle\right)^2 = O(N^{-2}), \qquad N \to \infty.$$

This estimate can in fact be used to show almost-sure convergence to the semi-circular law.

- e_proof_WSCL \rangle 2.10. Estimates and completing the proof. We want to show that for any continuous bounded function $f \in C_B(\mathbb{R})$, the random variables $\langle f, L_N \rangle$ converge in probability to $\langle f, SC \rangle$ (this is further detailed in (2.4)). We have already shown that
 - The averages converge: $\mathbb{E}\langle x^k, L_N \rangle \to \langle x^k, SC \rangle$.
 - The variances vanish: $\mathbb{E}(\langle x^k, L_N \rangle^2) (\mathbb{E}\langle x^k, L_N \rangle)^2 \to 0$.

We will also need the following a priori estimate that the empirical distributions L_N are concentrated around zero:

Lemma 2.20. For all $\varepsilon > 0$ there exists B > 0 so that

$$\mathbb{P}\left(\left\langle |x|^k 1_{|x|>B}, L_N \right\rangle > \varepsilon \right) \xrightarrow[N \to \infty]{} 0.$$

Proof. We will use the Markov (sometimes also called Chebyshev) inequality:

$$\mathbb{P}(|X| > a) < \frac{\mathbb{E}|X|}{a}$$
 for any $a > 0$.

Note that for $|x| \ge B \ge 1$, $x^{2k} = |x|^k |x|^k \ge B^k |x|^k$, hence $|x|^k \le x^{2k}/B^k$. Now we have by the Markov inequality:

$$\mathbb{P}\left(\left\langle |x|^k 1_{|x|>B}, L_N \right\rangle > \varepsilon\right) < \frac{1}{\varepsilon} \mathbb{E}\left(\left\langle |x|^k 1_{|x|>B}, L_N \right\rangle\right) \le \frac{\mathbb{E}\left(\left\langle x^{2k}, L_N \right\rangle\right)}{\varepsilon B^k}.$$

We know that

$$\mathbb{E}\left(\langle x^{2k}, L_N\rangle\right) \to \mathbb{E}\left(\left.\langle x^{2k}, \mathsf{SC}\rangle\right.\right) = C_k.$$

An easy (and in fact exact in the exponential order) estimate for the Catalan numbers is

$$C_k = \frac{1}{k+1} {2k \choose k} \le \sum_{j=0}^{2k} {2k \choose j} = 2^{2k} = 4^k.$$

Thus

$$\limsup_{N \to \infty} \mathbb{P}\left(\left\langle |x|^k 1_{|x| > B}, L_N \right\rangle > \varepsilon\right) \le \frac{C_k}{\varepsilon B^k} \le \frac{4^k}{\varepsilon B^k}.$$

As k grows, the left hand side grows. However, for B>4 the right hand side decays to zero. Thus if we set

$$\alpha_k = \limsup_{N \to \infty} \mathbb{P}\left(\left\langle |x|^k 1_{|x| > B}, L_N \right\rangle > \varepsilon\right),$$

then

$$0 \le \alpha_1 \le \alpha_2 \le \dots \le \frac{4^k}{\varepsilon B^k} \to 0.$$

Thus, all the α_k are zero. Since the probabilities are non-negative, the desired result follows.

er_matrices)? 2.11. Related laws of large numbers for random matrix spectra. Let us mention two relatives of the Wigner semicircle law which can be proven by similar methods of moments and trees counting.

er_matrices)? 2.11.1. Complex Wigner matrices. The first is the law of large numbers for complex (Hermitian) random Wigner matrices $A = (a_{ij})_{i,j=1}^{N}$, in which

- $\overline{a_{ij}} = a_{ii}$, $i \leq j$, are complex-valued independent random variables.
- The diagonal elements a_{ii} are iid real valued with mean 0 and variance 2.
- a_{ij} with i < j are iid complex random variables with expected value 0 and (complex) variance 1. On other words, $a_{ij} = x_{ij} + y_{ij}$, where x_{ij} and y_{ij} are independent real random variables with mean 0 and variance $\frac{1}{2}$. This implies that $\mathbb{E} a_{ij}^2 = 0$ and $\mathbb{E} |a_{ij}|^2 = 1$.
- All moments $\mathbb{E} |a_{ij}|^k$ are finite.

Defining L_N in in the same way by (2.1) (note that the eigenvalues of A are real because it is Hermitian), we still have the semicircle law: $L_N \to SC$ weakly in probability.

There also exist laws of large numbers for complex eigenvalues of random matrices, and typical is the *circular law* stating that the eigenvalues of a random matrix with iid entries are distributed uniformly inside a unit disc on the complex plane (cf. Remark 1.2).

-pastur_law)? 2.11.2. Marchenko-Pastur law. The second relative is the Marchenko-Pastur law [MP67] for Wishart matrices (random sample covariance matrices). The Wishart ensemble is defined as follows. Let Y be an $N \times M$ matrix of iid real-valued random variables with mean 0 and variance 1. Then, by definition, $W = YY^{\mathrm{T}}$ is called a Wishart $N \times N$ random matrix. It is a symmetric random matrix which is, moreover, positive definite. Therefore, all its eigenvalues are real and nonnegative.

Remark 2.21. If the entries of Y are Gaussian, then the entries of W are sums of squares of Gaussians, so they have chi square distributions — a type of distribution arising when studying sample covariance matrices of Gaussian random vectors.

Suppose $M/N \to \alpha \in [1, \infty)$. The Marchenko-Pastur law states that

$$L_N = \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i/\sqrt{N}} \to S_{\alpha}$$

weakly in probability. Here S_{α} , $\alpha \in [1, \infty)$ are the Marchenko-Pastur distributions defined as follows. Set

$$b_{\pm} = (1 \pm \sqrt{\alpha})^2.$$

Then the density function of S_{α} is

$$f_{\alpha}(x) = \frac{\sqrt{(x-b_{-})(b_{+}-x)}}{2\pi x}, \quad b_{-} \le x \le b_{+},$$

which looks as on Fig. 11.

Note that if $M \gg N$, then the random matrices W are likely to be non-degenerate, so the distribution does not hit zero. In fact, the distribution S_1 corresponding to $\alpha = 1$ is the image of the semicircle law SC under the squaring map $x \mapsto x^2$.

Lecture #4 on 2/1/2016 ____

3. Elements of free probability

probability>?

Lecture #5 on 2/3/2016 ____

FIGURE 11. The Marchenko–Pastur density $f_{\alpha}(x)$ for $\alpha=3$.

$\langle \texttt{fig:MP_law} \rangle$		
	References	
BBR2005phase [BI	P05] J. Baik, G. Ben Arous, and S. Péché, Phase transition of the largest eigenvalue for nonnull complex sample	?
CatalanOETC Ca	covariance matrices, Annals of Probability (2005), 1643–1697, arXiv:math/0403022 [math.PR].	
CatalanOEIS [Case 2015hurwitz]DI	OEIS (The On-Line Encyclopedia of Integer Sequences), http://oeis.org, sequence A000108. P. Diaconis and P.J. Forrester, A. Hurwitz and the origins of random matrix theory in mathematics,	
	arXiv:1512.09229 [math-ph].	1
2010circular [G	1 4 1	,
Hurwitz1897 [Hu	A. Hurwitz, Über die Erzeugung der Invarianten durch Integration, Nachr. Ges. Wiss. Göttingen (1897), 71–90.	
${\tt ng2006random}$ [Ke	[5] J. Keating, Random matrices and number theory, Applications of random matrices in physics, Springer, 2006,	,
	pp. 1–32.	
ng2000random [KS		}
	214 (2000), no. 1, 57–89.	
ta2004random [Me	1 , , , , , , , , , , , , , , , , , , ,	
mery1973pair [Mo	 H. Montgomery, The pair correlation of zeros of the zeta function, Proc. Symp. Pure Math, vol. 24, 1973, pp. 181–193. 	,
chenkoPastur [M]	V. Marchenko and L. Pastur, Distribution of eigenvalues in certain sets of random matrices, Math. USSR Sb.	
	1 (1967), 457–483.	
distribution [Od		Ĺ
	48 (1987), no. 177, 273–308.	
y2015catalan St	R. Stanley, Catalan numbers, Cambridge University Press, 2015.	
aracteristic [W		,
	548–564.	
8 generalised $[\mathrm{W}]$,
	Biometrika 20A (1928), 32–43.	
irnbauer2010 [Zi	Martin R. Zirnbauer, Symmetry classes, arXiv:1001.0722 [math-ph].	