Deskriptive Statistik Eindimensionale Daten

Peter Büchel

HSLU TA

Stat: SW01

Ziele der Deskriptiven Statistik

- Daten zusammenfassen durch numerische Kennwerte
- Graphische Darstellung der Daten

Daten

- In diesem Modul \rightarrow meist *reale Daten*
- Datensatz Wiederholte Messungen: Freigesetzte Wärme beim Übergang von Eis bei $-0.7\,^{\circ}\text{C}$ zu Wasser bei $0\,^{\circ}\text{C}$
 - ightarrow 13 Werte (siehe Skript) (in cal/g) ightarrow Methode A

79.98; 80.04; 80.02; ... 80.02; 80.00; 80.02

- Basierend auf den Daten: Diverse Kennwerte berechnen bzw. Daten graphisch darstellen
- Warnung: Wann immer wir einen Datensatz "reduzieren" (durch Kennzahlen oder Graphiken), geht *Information verloren*!

/0082956	0.25383530	0.30581324	0.83154829	0.03214020	0.03052/10	0.30/19205	0.10095418	0.30900000	0.8541950	0.49614412	0.76273099	0.4305
25980996	0.37021603	0.07884733	0.71977404	0.07237495	0.68020504	0.48657579	0.53165132	0.59685485	0.78909487	0.93854889	0.95425422	0.5002
74579848	0.30692408	0.05351679	0.2853162	0.39888676	0.39349628	0.61886139	0.73188697	0.42457447	0.31000296	0.156226	0.50062453	0.4875
82994033	0.83220426	0.9372354	0.73133803	0.96199504	0.55862717	0.32692428	0.61868638	0.56245289	0.71896155	0.34543829	0.75111871	0.1583
92944405	0.64783158	0.60979875	0.52364734	0.26584028	0.40918689	0.16443477	0.25090652	0.04425809	0.06631721	0.45026614	0.96015307	0.5999
0.3322061	0.87182226	0.22334968	0.45692102	0.38131123	0.91921094	0.56080453	0.42412237	0.79812259	0.12081416	0.18896155	0.2448978	0.4241
97712468	0.50452793	0.57458309	0.02272522	0.12008212	0.68844427	0.93512611	0.35232595	0.54222107	0.74300188	0.1006917	0.22498337	0.6473
57467084	0.16038595	0.20683896	0.58934436	0.55401355	0.78000419	0.67956489	0.09056988	0.68952151	0.00707904	0.26790229	0.42494747	0.6355
72574951	0.60798922	0.00653834	0.80803689	0.88663097	0.14771898	0.75301527	0.48470291	0.54921568	0.04009414	0.8453546	0.67167616	0.8958
12893952	0.7431223	0.42022151	0.53911787	0.24420123	0.78464218	0.78235327	0.30197733	0.38276003	0.63617851	0.72978276	0.90730678	0.5484
50684686	0.14058675	0.07426667	0.6377913	0.44437689	0.32789424	0.38075527	0.28287319	0.55515924	0.17444947	0.44069165	0.35637294	0.2464
72021194	0.52889677	0.51331006	0.20434876	0.5249763	0.71545814	0.61285279	0.87822767	0.53536095	0.28884442	0.69949788	0.84420515	0.7418
47268391	0.3610854	0.310148								399793	0.71514861	0.55
04257944	0.09101231	0.10635								782089	0.04599336	0.9347
33114474	0.80847503	0.589571				- 1				339522	0.613164	0.0035
17245673	0.67983345	0.231912	\sim	_		_ /		-		171166	0.25283066	0.3387
40573334	0.59170081	0.718914	′ ′ ′			_		•		488086	0.64948237	0.2252
00561757	0.02425735	0.973367		, -		- 1				089384	0.00563944	0.3122
82481867	0.18901555	0.627044					V	• 📞		409241	0.29417144	0.4912
42911629	0.89390795	0.82025402	0.45552065	0.93009002	0.53071100	0.30402930	U:13320442	0.90391077	0:00194427	0.4370891	0.15453231	0.8502
15493105	0.51554705	0.81666845	0.33193235	0.110345	0.35500368	0.75014733	0.50944245	0.60935806	0.62794021	0.58346955	0.47319041	0.6518
18653266	0.37671214	0.09282944	0.734327	0.79912816	0.67877946	0.22687246	0.40043241	0.61701288	0.49018961	0.03681597	0.2230552	0.9720
38415242	0.04575544	0.18294704	0.07535783	0.49763891	0.15634616	0.47553336	0.39954434	0.49785766	0.19208229	0.03939701	0.50543817	0.1786
07747484	0.7417904	0.48776921	0.34229175	0.65785054	0.77978943	0.20129577	0.62714576	0.46987345	0.69996167	0.48786104	0.99177657	0.6729
71427139	0.83346645	0.50236863	0.59062007	0.29268677	0.67964115	0.09614286	0.14222698	0.66263698	0.42537685	0.64928539	0.5648649	0.2613
96293853	0.6974188	0.85632265	0.45947964	0.00242453	0.68051404	0.20703925	0.87558209	0.679752	0.45999782	0.8722821	0.04547348	0.8243
04080904	0.5989028	0.87059205	0.12444579	0.26178908	0.8533065	0.20800837	0.90760418	0.06746495	0.61181415	0.37402957	0.36137753	0.8349
0.5616472	0.78210485	0.26718637	0.74856241	0.93690527	0.51338037	0.94582627	0.60380999	0.19747357	0.34424067	0.05237252	0.91349594	0.8796
71333452	0.28822987	0.65203382	0.49709346	0.70379359	0.27200958	0.85341908	0.15968767	0.34960955	0.6796046	0.34255204	0.62727145	0.9353
33192659	0.72932196	0.07036634	0.31364757	0.31615678	0.62072333	0.68964657	0.47503972	0.80823875	0.9708966	0.32082118	0.11199293	0.2306
91696324	0.46608963	0.38554788	0.09440939	0.18995497	0.19254922	0.8299711	0.63238203	0.87524562	0.38170458	0.40120436	0.12882023	0.0850
).8707509	0.06485663	0.22943682	0.41974316	0.9098332	0.86713599	0.88315761	0.31558244	0.63788522	0.48528904	0.17606219	0.17009773	0.4134
06291977	0.05277628	0.48101212	0.1043349	0.30497809	0.0559275	0.64358846	0.19723847	0.74347764	0.6704249	0.26325428	0.04458277	0.4040
	0.30987268		0.94174692									

Überblick

• Bekannt: *n* beobachtete Datenpunkte (Messungen)

$$x_1, x_2, \ldots, x_n$$

- (z.B. Verkehrsaufkommen an *n* verschiedenen Tagen)
- Unterscheidung zwischen Lage- und Streuungsparametern
- Lageparameter ("'Wo liegen die Beobachtungen auf der Mess-Skala?"')
 - Arithmetisches Mittel ("'Durchschnitt"')
 - Median
 - Quantile
- Streuungsparameter ("'Wie streuen die Daten um ihre mittlere Lage?"')
 - Empirische Varianz / Standardabweichung
 - Quartilsdifferenz

Arithmetisches Mittel

Definition:

Arithmetisches Mittel

$$\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Umgangsprachlich: Durchschnitt
- ullet Beispiel Schmelzwärme: Arithmetische Mittel der n=13 Messungen

$$\overline{x} = \frac{79.98 + 80.04 + \ldots + 80.03 + 80.02 + 80.00 + 80.02}{13} = 80.02077$$

Arithmetisches Mittel

Python-Befehl

```
from pandas import Series
import pandas as pd

methodeA = Series([79.98, 80.04, 80.02, 80.04, 80.03,
80.03, 80.04, 79.97, 80.05, 80.03, 80.02, 80.00, 80.02])

methodeA.mean()
## 80.02076923076923
```

Arithmetische Mittel: Anschaulich

Streuung

- Arithmetisches Mittel: "Wo ist die "Mitte" der Daten?"
- Aber: Beispiel von (fiktiven) Schulnoten:
 - 2; 6; 3; 5 und 4; 4; 4; 4
- Beide Mittelwert 4, aber Verteilung der Daten um Mittelwert ziemlich unterschiedlich
 - 1. Fall: Zwei gute und zwei schlechte Schüler
 - 2. Fall: Alle Schüler gleich gut
- Datensätze haben eine verschiedene Streuung um den Mittelwert

Streuung numerisch

- 1. Idee: Durchschnitt der *Unterschiede zum Mittelwert*
 - 1. Fall:

$$\frac{(2-4)+(6-4)+(3-4)+(5-4)}{4}=\frac{-2+2-1+1}{4}=0$$

Zweiter Fall auch $0 \rightarrow \text{Keine Aussage}$

ullet Problem: Unterschiede können *negativ* werden ullet Können sich aufheben

Streuung

Nächste Idee: Unterschiede durch die Absolutwerte ersetzen
 1. Fall:

$$\frac{|(2-4)|+|(6-4)|+|(3-4)|+|(5-4)|}{4} = \frac{2+2+1+1}{4} = 1.5$$

- D.h.: Noten weichen im Schnitt 1.5 vom Mittelwert ab
- 2. Fall: Dieser Wert natürlich auch 0
- Je grösser dieser Wert (immer grösser gleich 0), desto mehr unterscheiden sich die Daten bei gleichem Mittelwert untereinander
- Dieser Wert für die Streuung: mittlere absolute Abweichung
- Aber: Theoretische Nachteile

Empirische Varianz und Standardabweichung

 Besser: Empirische Varianz und empirische Standardabweichung für das Mass der Variabilität oder Streuung der Messwerte verwendet

Definition:

Empirische Varianz Var(x) und Standardabweichung s_X

$$Var(x) = \frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \ldots + (x_n - \overline{x})^2}{n - 1} = \frac{1}{n - 1} \sum_{i=1}^n (x_i - \overline{x})^2$$

und

$$s_{x} = \sqrt{\operatorname{Var}(x)} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

Eigenschaften der Varianz

- Bei Varianz: Abweichungen $x_i \overline{x}$ quadrieren , damit sich Abweichungen nicht gegenseitig aufheben können
- Nenner n-1, anstelle von $n \rightarrow mathematisch begründet$
- Standardabweichung ist die Wurzel der Varianz
- Durch Wurzelziehen wieder dieselbe Einheit wie bei Daten selbst
- Ist empirische Varianz (und damit die Standardabweichung) gross, so ist die Streuung der Messwerte um das arithmetische Mittel gross
- Wert der empirische Varianz hat keine physikalische Bedeutung
 - ightarrow Man weiss nur, je grösser der Wert umso grösser die Streuung

Beispiele: Schmelzwärme

- Arith. Mittel der n = 13 Messungen ist $\overline{x} = 80.02$ (siehe oben)
- Empirische Varianz:

$$Var(x) = \frac{(79.98 - 80.02)^2 + (80.04 - 80.02)^2 + \dots + (80.00 - 80.02)^2 + (80.02 - 80.02)^2}{13 - 1}$$
= 0.000 574

• Empirische Standardabweichung:

$$s_x = \sqrt{0.000574} = 0.024$$

 D.h.: "mittlere" Abweichung vom Mittelwert 80.02 cal/g ist 0.024 cal/g

Beispiele: Schmelzwärme

 Von Hand sehr mühsam. Mit pandas-Methoden: Varianz:

```
methodeA.var()
## 0.0005743589743590099
```

Standardabweichung:

```
methodeA.std()
## 0.023965787580611863
```

- ullet Ein weiteres Lagemass für die "Mitte" ullet Median
- Sehr vereinfacht gesagt: Wert, bei dem die Hälfte der Messwerte unter diesem Wert liegen
- Beispiel: Prüfung in der Schule ist Median 4.6
- D.h.: Hälfte der Klasse liegt unter dieser Note
- Umgekehrt liegen die Noten der anderen Hälfte über dieser Note
- Obige Interpretation des Medians ist sehr vereinfacht dargestellt. Die exakte Definition folgt nun.

Geordnete Strichprobe

- Datensatz in aufsteigender Reihenfolge ordnen
- Bezeichnung der geordneten Daten mit $x_{(i)}$:

$$x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$$

• Beispiel: $x_1 = 3, x_2 = 7, x_3 = 2$:

$$x_{(1)} = x_3 = 2,$$
 $x_{(2)} = x_1 = 3,$ $x_{(3)} = x_2 = 7$

Bestimmung Median: Daten zuerst der Grösse nach ordnen:

$$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$$

• Für die Daten der Methode A heisst dies

79.97: 79.98: 80.00: 80.02: 80.02: 80.02: 80.03: 80.03: 80.03: 80.04: 80.04: 80.04: 80.05

- Median ist nun sehr einfach zu bestimmen
- Unter diesen 13 Messungen: Wert der mittleren Beobachtung
- Dies ist in diesem Fall der Wert der 7. Beobachtung:

79.97; 79.98; 80.00; 80.02; 80.02; 80.02; 80.03); 80.03; 80.03; 80.04; 80.04; 80.04; 80.05

- Median des Datensatzes der Methode A ist 80.03
- D.h.: Knapp die Hälfte der Messwerte, nämlich 6 Beobachtungen sind kleiner oder gleich 80.03
- Ebenso sind 6 Messwerte grösser oder gleich dem Median
- ullet Ungerade Anzahl Messungen ightarrow Genau eine mittlere Messung

- Vorher: Anzahl der Daten ungerade und damit ist die mittlere Beobachtung eindeutig bestimmt
- ullet Anzahl Daten gerade ullet Keine mittlere Beobachtung
- Definition Median: Mittelwert der beiden mittleren Beobachtungen
- Beispiel: Datensatz der Methode B hat 8 Beobachtungen
- Ordnen den Datensatz: Median Durchschnitt von der 4. und 5. Beobachtung

79.94; 79.95; 79.97; 79.97; 79.97; 79.94; 80.02; 80.03
$$\frac{79.97 + 79.97}{2} = 79.97$$

Mit pandas erhalten wir für die Methode A

```
methodeA.median()
## 80.03
und für die Methode B
methodeB = Series([80.02, 79.94, 79.98, 79.97, 79.97, 80.03, 79.95, 79.97])
methodeB.median()
## 79.97
```

- Als Median kann Wert auftreten, der in Messreihe nicht vorkommt
- Annahme: Mittlere Beobachtungen der Methode *B* sind Werte 79.97 und 79.98:

$$\frac{79.97 + 79.98}{2} = 79.975$$

Median vs. arithmetisches Mittel

- Zwei Lagemasse für die Mitte eines Datensatzes
- Welches ist nun "besser"?
- Dies kann man so nicht sagen, das kommt auf die jeweilige Problemstellung an. Am besten werden beide Masse gleichzeitig verwendet.
- Eigenschaft des Medians: Robustheit
- Das heisst: Wird viel weniger stark durch extreme Beobachtungen beeinflusst als das arithmetisches Mittel

Median vs. arithmetisches Mittel

- Beispiel: Bei der grössten Beobachtung ($x_9 = 80.05$) ist ein Tippfehler passiert und $x_9 = 800.5$ eingegeben worden
- Das arithmetische Mittel ist dann

$$\bar{x} = 135.44$$

Der Median ist aber nach wie vor

$$x_{(7)} = 80.03$$

- Arithmetisches Mittel: Durch Veränderung einer Beobachtung sehr stark beeinflusst
- ullet Median hier gleich bleibt o robust

Arith. Mittel vs. Median: Einkommen [k CHF]

"Sollen wir das arithmetische Mittel als durchschnittliche Körpergröße nehmen und den Gegner erschrecken, oder wollen wir ihn einlullen und nehmen den Median?"

Quartile

- Median: Wert, wo die Hälfte der Beobachtungen kleiner (oder gleich) wie dieser Wert sind
- Analoge Überlegung: Unteres und oberes Quartil
- Unteres Quartil: Wert, wo 25 % aller Beobachtungen kleiner oder gleich und 75 % grösser oder gleich sind wie dieser Wert
- Oberes Quartil: Wert, wo 75 % aller Beobachtungen kleiner oder gleich und 25 % grösser oder gleich wie dieser Wert sind
- Achtung: Meist gibt es nicht exakt 25 % der Beobachtungen
- Man definiert Wert für das untere Quartil bzw. obere Quartil

Beispiel: Schmelzwärme

- Methode A hat n = 13 Messpunkte \rightarrow 25 % davon ist 3.25
- Man wählt nächstgrösseren Wert $x_{(4)}$ als unteres Quartil:

```
79.97; 79.98; 80.00; 80.02; 80.02; 80.02; 80.03; 80.03; 80.03; 80.04; 80.04; 80.04; 80.05
```

- Unteres Quartil ist 80.02
- Knapp ein Viertel der Messwerte ist gleich oder kleiner 80.02
- Oberes Quartil: Wählen $x_{(10)}$, da für $0.75 \cdot 13 = 9.75$ die Zahl 10 der nächsthöhere Wert ist

```
79.97; 79.98; 80.00; 80.02; 80.02; 80.02; 80.03; 80.03; 80.03; 80.04; 80.04; 80.04; 80.05
```

Knapp drei Viertel der Messwerte sind kleiner oder gleich 80.04

- Methode B: 25% der Werte $2 \rightarrow \text{ganze Zahl}$
- Wählen dann nächste Beobachtung $x_{(3)}$ als unteres Quartil

• Unteres Quartil der Methode B ist also 79.97

Bemerkungen

- Hier jeweils aufgerundet, falls 25 % bzw. 75 % der Anzahl Beobachtungen nicht ganz ist
- ullet Hätten auch abrunden können ullet Andere Werte für die Quartile
- Für grosse Datensätze: Spielt praktisch keine Rolle, ob auf- oder abgerundet oder gerundet wird
- Aber: Es gibt keine einheitliche Definition für die Quartile

pandas

- pandas kennt keine eigenen Befehle für die Quartile
- Allgemeinerer Befehl quantile (Quantile kommen gleich)
- Python: Quartile nach unserer Definition Option interpolation="lower"
- Für das untere Quartil der Methode A lautet der Befehl

```
methodeA.quantile(q=.25, interpolation="lower")
## 80.02
und für das obere
methodeA.quantile(q=.75, interpolation="lower")
## 80.04
```

pandas

Methode B:

```
methodeB.quantile(q=.25, interpolation="lower")
## 79.95
```

- Dies entspricht nicht unserem oben bestimmten Wert 79.97
- Python führt noch Korrekturfaktor zur Berechnung der Quantile ein
- Dieser ist aber f
 ür grosse Datensätze irrelevant

Quartilsdifferenz

- Quartilsdifferenz ist ein Streuungsmass für die Daten oberes Quartil – unteres Quartil
- Es misst die Länge des Intervalls, das etwa die Hälfte der "mittleren"
 Beobachtungen enthält
- Je kleiner dieses Mass, umso näher liegt die Hälfte aller Werte um den Median und umso kleiner ist die Streuung
- Dieses Streuungsmass ist robust
- Quartilsdifferenz der Methode A

$$80.04 - 80.02 = 0.02$$

pandas

Mit pandas

```
q75, q25 = methodeA.quantile(q = [.75, .25],
interpolation="lower")

iqr = q75 - q25
iqr
## 0.020000000000010232
```

• Die (oder ungefähr die) Hälfte der Messwerte liegt also in einem Bereich der Länge 0.02

Quantile

- Quartile auf jede andere Prozentzahl verallgemeinern: Quantile
- 10 %-Quantil: Wert, wo 10 % der Werte kleiner oder gleich und 90 % der Werte grösser oder gleich diesem Wert sind
- Empirische α -Quantil: Wert, wo $\alpha \times 100\%$ der Datenpunkte kleiner oder gleich und $(1-\alpha) \times 100$ % der Punkte grösser oder gleich sind
- Definition

Empirische α -Quantile (0 < α < 1)

 $x_{(\alpha n+1)}$, falls $\alpha \cdot n$ eine natürliche Zahl ist $x_{(k)}$, wobei k die Zahl $\alpha \cdot n$ aufgerundet ist, falls $\alpha \cdot n \notin \mathbb{N}$

- Wie bei den Quartilen:
 - Aufgerunden, falls die entsprechende Prozentzahl der Beobachtungen nicht ganz;
 - sonst nächsthöheren Wert.
- Empirischer Median ist empirisches 50 %-Quantil
- Empirisches 25 %-Quantil ist unteres Quartil
- Empirisches 75 %-Quantil ist oberes Quartil

• pandas: 10 %— und 70 %—Quantil der Methode A:

```
methodeA.quantile(q=.1, interpolation="lower")
methodeA.quantile(q=.7, interpolation="lower")
## 79.98
## 80.03
```

- Knapp 10 % der Messwerte sind kleiner oder gleich 79.98
- Entsprechend: Knapp 70 % der Messwerte kleiner oder gleich 80.03

Beispiel

• Noten an Prüfung in Schulklasse mit 24 SchülerInnen:

```
4.2, 2.3, 5.6, 4.5, 4.8, 3.9, 5.9, 2.4, 5.9, 6, 4, 3.7, 5, 5.2, 4.5, 3.6, 5, 6, 2.8, 3.3, 5.5, 4.2, 4.9, 5.1
```

Verschiedene Quantile mit pandas:

- D.h.: Knapp 20 % der SuS sind schlechter als 3.6
- 20 % SchülerInnen nicht möglich, da dies 4.8 SuS wären
- 60 %—Quantil: (Knapp) diese Anzahl Prozent der SuS waren schlechter oder gleich einer 4.9

Stat: SW01

Graphische Darstellungen

Eindimensionales Streudiagramm

- Guter Überblick, falls nicht zu viele Daten vorhanden sind
- Achtung bei diskret verteilten Daten (Punkte liegen aufeinander!)

Histogramm

- Histogramm: Graphischer Überblick über die auftretenden Werte
- Aufteilung des Wertebereichs in k Klassen (Intervalle)
- Faustregel:
 - bei weniger als 50 Messungen ist die Klassenzahl 5 bis 7
 - ▶ bei mehr als 250 Messungen wählt man 10 bis 20 Klassen
- Zeichne für jede Klasse einen Balken, dessen Höhe proportional zur Anzahl Beobachtungen in dieser Klasse ist

Beispiel: IQ-Test

- Histogramm von IQ-Test Ergebnis von 200 Personen
- Breite der Klassen: 10 IQ-Punkte; für jede Klasse gleich
- Höhe der Balken: Anzahl Personen, die in diese Klasse fallen
- Beispiel: ca. 14 Personen fallen in die Klasse zwischen 120 130 IQ-Punkten

Python

Für die Methode A sieht das Histogramm wie folgt aus:

Python

Es wurde mit folgendem Code erzeugt:

```
import pandas as pd
from pandas import DataFrame, Series
import matplotlib.pyplot as plt
methodeA = Series([79.98, 80.04, 80.02, 80.04, 80.03, 80.03,
80.04, 79.97, 80.05, 80.03, 80.02, 80.00, 80.02])
methodeB = Series([80.02, 79.94, 79.98, 79.97, 79.97, 80.03,
79.95, 79.97])
methodeA.plot(kind="hist", edgecolor="black")
plt.title("Histogramm von Methode A")
plt.xlabel("methodeA")
plt.ylabel("Haeufigkeit")
plt.show()
```

Bemerkungen

- Methode A 13 Messungen \rightarrow 10 Balken (pandas-default)
- Bedeutung der Anzahlen (Frequency):
 - ▶ 10 Klassen mit Werten im Bereich [79.97, 80.05] \rightarrow Balkenbreite

$$\frac{80.05 - 79.97}{10} = 0.008$$

- ▶ 1. Klasse 79.97-79.978: Anzahl Beobachtungen 79.97 berücksichtigt
- ▶ 2. Klasse Werte 79.98; usw.
- ullet pandas selbst keine Graphiken ullet Bibliothek matplotlib
- Pandas-Attribut plot f
 ür Plots → Option kind="hist"
- Mit dem Python -Befehl lassen sich auch die Anzahl Klassen festlegen, Überschriften ändern, usw. (siehe Übungen)

Histogramm: Dichte

- Histogramm oben: Höhe der Balken entspricht Anzahl Beobachtungen in Klasse
- Andere Form des Histogramms

```
methodeA.plot(kind="hist", normed=True,
edgecolor="black")
```


- Gesamtfläche der Balken ist 1
- Auf der vertikalen Achse sind nun die Dichten angegeben
- Herauslesen: über

$$(80.018 - 80.026) \cdot 28.846 = 0.23$$

also etwa 23 % der Daten zwischen 80.018 und 80.026 befinden

- Balkenhöhe: Anzahl Beobachtungen in einem Balken mit $\frac{1}{n}$ multiplizieren, diese Zahl durch die Balkenbreite dividiert
- Unser Beispiel: 3 Beobachtungen im Intervall [80.018, 80.026]
- Balkenhöhe:

$$\frac{\frac{1}{13} \cdot 3}{0.008} = 28.8462$$

 Vorteil: Messungen mit unterschiedlichen Umfängen besser miteinander vergleichbar

Old Faithful Geysir (Yellowstone NP): Daten

- Zeitspanne [min] zwischen Ausbrüchen
- Eruptionsdauer [min]
- Daten finden Sie auf ILIAS

Δ	Α	В	С	D
1	Tag	Zeitspanne	Eruptionsdauer	
2	1	78	4.4	
3	1	74	3.9	
4	1	68	4	
5	1	76	4	
6	1	80	3.5	
7	1	84	4.1	
8	1	50	2.3	
9	1	93	4.7	
10	1	55	1.7	
11	1	76	4.9	
12	1	58	1.7	
13	1	74	4.6	
14	1	75	3.4	
15	2	80	4.3	
16	2	56	1.7	
17	2	80	3.9	
18	2	69	3.7	
19	2	57	3.1	
20	2	90	4	
21	2	42	1.8	
22	2	91	4.1	
22	2	E1	10	

Histogramme der Zeitspanne (verschiedene Anzahl Klassen)

Interaktiv Klassen verändern (bei anderen Daten):

http://www.amstat.org/publications/jse/v6n3/applets/Histogram.html

Histogramm der Zeitspanne mit unterschiedlicher Intervallbreite

