Perth, run 2 \rightarrow delay = 73

gtu_time 1571512400 cpu_time 1571512403 entry_time 1571512327

Dar el Salaam, run 4, dubious point → delay = 103

gtu_time 1573067022 cpu_time 1573067024 entry_time 1573066919

Donieck, run $5 \rightarrow \text{delay} = 118$

gtu_time 1574187823 cpu_time 1574187825 entry_time 1574187705 → 118

Shanghai run 5

gtu_time 1574188876 cpu_time 1574189898 entry_time 1574188759 -> 117

Saskatoon run 5

gtu_time 1574227092 cpu_time 1574227591 entry_time 1574226973 → 119

Kalkata run 6 \rightarrow delay = 128

gtu_time 1574879800 cpu_time 1574879804 entry_time 1574879672 ->128

Cape Coral, Florida run 6

gtu_time 1574918745 cpu_time 1574918751 entry_time 1574918615 → 130

Alexandria run $7 \rightarrow \text{delay} = 139$

gtu_time 1575570364 cpu_time 1575570366 entry_time 1575570225

```
From fit:
```

entry_time=(gtu_time-1571512327)*0.999983972078-74.8958791547+1571512327

Summarizing:

entry_time=gtu_time*time_cor_a+time_cor_b

delay=entry_time-gtu_time=gtu_time*time_cor_a + time_cor_b - gtu_time= gtu_time* 0.999983972078+25113.18039870262-gtu_time

where

 $time_cor_a = 0.999983972078$

 $time_cor_b = 25113.18039870262$

Run 1: Mon, 07 Oct 2019 23:59:00 \rightarrow 1570492740 \rightarrow delay = 58.6 \rightarrow 59

Run 3: Fri, 25 Oct 2019 23:59:00 \rightarrow 1572047940 \rightarrow delay = 83.5 \rightarrow 84

Run 8: Mon, 30 Dec 2019 23:59:00 \rightarrow 1577750340 \rightarrow delay = 174.9 \rightarrow 175