

Melhoria de processos e avaliações segundo o CMM

- Para melhoria (ou mudança):
 - 1 Diagnóstico: saber em que situação se encontra
 - 2 Objetivo: saber onde quer chegar
 - 3 Plano de ação
- CMM:
 - 1 Diagnóstico por meio das avaliações CMM
 - 2 Objetivo é referência fornecida pelo modelo
 - 3 Roteiro para melhoria: concepção ordenada das práticas
- Modelo de melhoria: IDEAL
 - variação do PDCA

O Modelo IDEAL

Tipos de avaliação: SW-CMM

- Compatíveis com o CAF: CMM Appraisal Framework
 - Software Capability Evaluation (Avaliação da Capacidade dos Processos de Software):
 - usado na avaliação de sub-contratados ou potenciais fornecedores de software
 - CBA-IPI: CMM Based Appraisal Internal Process Improvement
 - foco principal em melhoria
 - definição dos três contextos de aplicação:
 - contexto organizacional: unidades adm. e projetos
 - contexto do ciclo de vida: quais etapas do ciclo de vida
 - contexto CMM: quais níveis / KPA serão avaliadas

Tipos de avaliação: CMMI

- Compatíveis com o ARC: Appraisal Requirements for CMMI
 - SCAMPI: Standard CMMI Appraisal Method for Process Improvement (principal método de avaliação classe A)
 - Compatível com requisitos da ISO 15504

Características	Classe A	Classe B	Classe C
Quantidade de evidências objetivas	alto	médio	baixo
coletadas			
Geração de "rating"	sim	não	não
Recursos necessários	alto	médio	baixo
Tamanho da equipe de avaliação	grande	médio	pequeno
Requisitos para o líder da avaliação	Lead	Lead appraiser or	Person trained
	appraiser	person trained and	and
		experienced	experienced

Objetivos na concepção do SCAMPI

Melhorias buscadas no método	Descrição e exemplos
Trabalho inicial	Qualidade do planejamento, análise pré on-site
Investigação focalizada	Focar o escopo da investigação com base nas respostas aos questionários e na análise da documentação
Reuso	Validar resultado de avaliações anteriores
Observações	Reduzir o tempo gasto na redação de observações
Adaptação	Deixar mais claro o que é obrigatório, sugerido ou opcional na aplicação do método
Rating (classificação"	Definição de níveis para o "rating"
Ferramentas	Uso de ferramentas é crucial para coleta, análise e consolidação
Treinamento	Treinamento feito "just-in-time". Uso de dados reais para exercício
"Ativos"	templates, checklists

Artefatos no SCAMPI

Tipo de indicador	Descrição	Exemplos
Artefato Direto	implementação de uma prática específica ou genérica.	Produtos de trabalho típicos listados no modelo CMMI. Produtos esperados de práticas tipo "Establish and Maintain"
Artefato Indireto	' ' '	Produtos de trabalho típicos listados no modelo CMMI. Atas de reunião, relatórios de análise, revisão e de acompanhamento. Medições de desempenho
Afirmações	,	Respostas a questionários, entrevistas ou apresentações

Classificações e ratings

Classificação	Significado
FI	Artefato direto é encontrado e é apropriado
(fully implemented)	Existe pelo menos um artefato indireto (evidência ou entrevista)
	Nenhum ponto fraco substancial é encontrado
LI	Artefato direto é encontrado e é apropriado
(largely implemented)	Existe pelo menos um artefato indireto (evidência ou entrevista)
	Um ou mais pontos fracos são notados
PI	Artefato direto não é encontrado ou é considerado não apropriado
(partially	Artefatos ou afirmações sugerem que algum aspecto da prática é
implemented)	implementado
	Pontos fracos são documentados
NI	Qualquer situação não descrita acima
(not implemented)	

- Coerentes com a escala da ISO 15504
- Goal é considerado satisfeito:
 - todas as SP e GP associadas são FI ou LI
 - fraquezas encontradas não impactam o goal

Processo de avaliação: Preparar e planejar

Processo de avaliação: Conduzir a avaliação

Processo de avaliação: Reportar resultados

O contexto de aplicação do CMM

O SW-CMM e a ISO 9001: questões

- Como o modelo CMM se compara à norma ISO 9001 (ISO 90003)?
- A qual nível na escala CMM se equipara uma empresa com certificado ISO 9001?
- Uma empresa com maturidade no nível 2 poderia obter o certificado? Ou seria necessário o nível 3?
- Qual modelo é melhor para servir de base para um programa de melhoria da qualidade em uma empresa de software?

Empresa c/ certificado ISO 9001: atendimento aos requisitos SW-CMM

Comparação ISO 9001 — SW-CMM

- KPAs do nível 2:
 - fortemente relacionadas com a ISO 9001
- Todas KPAs:
 - alguma relação com a ISO 9001
- Uma empresa no nível 1 poderia ter certificado ISO 9001
 - mas teria pontos fortes nas KPAs do nível 2 e alguns pontos fortes no nível 3
 - experiência: algumas empresas no nível 1 CMM conseguiram o certificado ISO 9001; mas tiveram dificuldades em manter a certificação

Comparação ISO 9001 — SW-CMM (cont.)

- Provável que empresa que obtenha e mantenha um certificado ISO 9001 tenha maturidade medida como no nível 2 na escala CMM
- Para uma empresa no nível 3 conseguir o certificado basta atender aos requisitos do elemento 4.15 da ISO 9001 (processo de entrega e instalação de produto)
- Mesmo uma empresa no nível 2 não deve encontrar muitas dificuldades em satisfazer os requisitos da ISO 9001
- (opiniões de Mark Paulk)

Comparação ISO 9001 - SW-CMM (cont.)

Comparação ISO 9001 - CMMI

- Deficiências de cobertura da ISO 9001 pelo CMMI:
 - 4.1, 4.2.3, 5.1, 5.2, 5.3, 5.5.2, 5.5.3, 5.6.1, 6.4, 7.1, 7.2.2,
 7.2.3, 7.3.6, 7.4.1, 7.4.3, 7.5.1, 7.5.4, 7.5.5, 7.6, 8.2.1, 8.2.2, 8.3, 8.4, 8.5.3.
- Deficiências de cobertura do CMMI pela ISO 9001:
 - OPD SG1, OID, PMC SG1, SAM SG2, IPM SG1, RSKM, IT, QPM SG1, VER SG3, DAR, OEI.
- Mapeamento indica:
 - forte intersecção
 - boa área de cobertura exclusiva
 - ISO 9001:2000 → questões e processos organizacionais
 - CMMI → questões técnicas e específicas a software

fonte: [Mutafelija 03a, b]

Experiência de utilização

- SEI
- Relatos positivos (success stories)

[Lawlis 96]: Força Aérea Americana

- Maturidade X Sucesso de projeto
- Sucesso (custo, cronograma)
- 11 org / 31 projetos
- Custo 1 > 2 > 3
- Cronograma 1 > 2 = 3

Ref: SPN, N7; 1996

Raytheon

- LSS 400 pessoas (1~2 full-time)
- 1988 ~ 1992 (nível 1 -> nível 3)
- Projetos 70KLOC ~ 300KLOC
- Melhoria continua (US\$ 1mi / ano)
- Custo re-trabalho (41% -> 11%) (\$16M)
- Produtividade: 130%
- ROI: \$7,7 / \$1
- Benefícios intangíveis (satisfação, bonus)
- Artigo tem plano de treinamento

Ref: IEEE Software, july93, pag 28

CMMI — parte C

Schlumberger

- 100 países/53000 pessoas (SW > 50%)
- Avaliação em 1989 2000 desenv. sw
 - necessidade de melhoria: Gestão de Projeto
- Avaliação:
 - 4 pessoas : 2 SLCS, 1local, 1org similar
 - 5 dias (SEI) -> 3 dias
- Treinamento interno (n\u00e3o contratado)
- Meta: melhora do nível SW-CMM

Ref: IEEE Trans. SW Eng., november94, pag. 833

CMMI — parte C

Schlumberger (cont)

- KPAs Nível 2
 - depois de RM:
 - ciclo (cod/teste/re-cod) 34 -> 15
 - produtividade 2x
 - SPP: diminuiu atraso (49% 1990 6% 1992)
 - SPTO: overrun 1991 13%, 1992 1%
 - SQA: 1989 25% defeitos campo 1991 10%
- Preparados para ISO

Schlumberger (cont)

- Problemas
 - grupos ficam experientes e respondem o que os auditores querem ouvir
 - turn-over grupos de melhoria
- 12 ~ 18 meses resultado
- Ter certificação ISO 9000 ajuda
- Sair do NADA é mais difícil, exige mudança cultural

Space Shuttle

- Um dos poucos relatos de um processo de alta maturidade, no nível 5
- Software embarcado na nave espacial Space Shuttle
- Resultados:
 - o número de falhas por KSLOC baixou de 12 para
 1
 - custos de desenvolvimento baixaram drasticamente
 - a confiabilidade do software, característica das mais importantes para a aplicação, melhorou sensivelmente

Exemplos: Telcordia

- FCC: pedido de alteração no sistema 0800 as 17h
 - prazo para alteração: até as 8 h do dia seguinte
- Existia metodologia n\u00e3o institucionalizada (QMO)
 - decisão: usar (para demonstrar inadequação)
- Metodologia usada: todas etapas e verificações
- Mudanças em 3 KLOC distribuídas em 1 MLOC, (requisitos, design, codificação, teste e implantação)
- Entregue no prazo, instalado em três sites, sem bugs
- Resultado -> Telcordia padronizou o uso de SW-CMM
- Conclusão:
 - o uso de processo bem definido pode e deve ser usado em situações de urgência

SW-CMM em pequenas empresas (1)

- Pesquisa feita em 545 empresas (1994)
- Dificuldades na implementação
 - independência entre grupos
 - responsabilidade dos níveis gerenciais
 - necessidade de documentação (burocracia)
 - criação dos grupos SQA, SCM e SEPG

Ex: SW-CMM em pequenas empresas (2)

- Problemas apontados no modelo
 - difícil de entender e aplicar
 - muito prescritivo
 - feito para grandes organizações

OBS: a ISO sustenta que o modelo SPICE é mais flexível que o CMM e pode ser aplicável a organizações de qualquer porte

OBS: autores são consultores e têm metodologia para tratar o problema

Ref: ICSE'94; Brodman & Johnson, p.331

Beneficios CMMI: Custo

Result	Model
33% decrease in the average cost to fix a defect (Boeing, Australia)	СММІ
20% reduction in unit software costs (Lockheed Martin M&DS)	CMMI
15% decrease in defect find and fix costs (Lockheed Martin M&DS)	СММІ
4.5% decline in overhead rate (Lockheed Martin M&DS)	CMMI
Improved and stabilized Cost Performance Index (Northrop Grumman IT1)	СММІ
Saved \$2 million in first 6 months after reaching CMM ML3 (Sanchez Computer Associates, Inc.)	SW-CMM
20% reduction in average cost variance (Thales Research & Technology)	SW-CMM
60% reduction in cost of customer acceptance (Thales Research & Technology)	SW-CMM
Cost variances decreased as process maturity increased (Thales Training and Simulation)	SW-CMM

Benefícios CMMI: Prazo

Result	Model
Reduced by half the amount of time required to turn around releases (Boeing, Australia)	CMMI
60% reduction in work and fewer outstanding actions following pre-test and post-test audits (Boeing, Australia)	СММІ
Increased the percentage of milestones met from approximately 50% to approximately 95% (General Motors)	СММІ
Decreased the average number of days late from approximately 50 to fewer than 10 (General Motors)	СММІ
Increased through-put resulting in more releases per year (JP Morgan Chase)	CMMI
30% increase in software productivity (Lockheed Martin M&DS)	CMMI
Improved and stabilized Schedule Performance Index (Northrop Grumman IT1)	CMMI
Met every milestone (25 in a row) on time, with high quality and customer satisfaction (Northrop Grumman IT2)	СММІ
10% improvement in first pass yield leading to reduction in rework (Bosch Gasoline Systems)	SW-CMM
15% improvement in internal on-time delivery (Bosch Gasoline Systems)	SW-CMM
Improved predictability of delivery schedule (JP Morgan Chase)	SW-CMM
Schedule variances decreased as process maturity increased (Thales Training and Simulation)	SW-CMM

Beneficios CMMI: Qualidade

Result	Model
Met goal of 20 +/- 5 defects per KLOC (Northrop Grumman IT1)	CMMI
Only 2% of all defects found in the fielded system (Northrop Grumman IT1)	СММІ
Reduction in defects found from 6.6 per KLOC to 2.1 over 5 causal analysis cycles (Northrop Grumman IT2)	СММІ
Increased focus on quality by developers (Northrop Grumman IT2)	СММІ
Reduction in error cases in the factory by one order of magnitude (Bosch Gasoline Systems)	SW-CMM
Reduction in number and severity of post-release defects (JP Morgan Chase)	SW-CMM
Most of \$2 million savings resulted from early detection and removal of defects (Sanchez Computer Associates, Inc.)	SW-CMM
Improved quality of code (Sanchez Computer Associates, Inc.)	SW-CMM

Benefícios CMMI: Satisfação cliente

Result	Model
Increased award fees by 55% compared to an earlier	
SW-CMM baseline at maturity level 2 (Lockheed	CMMI
Martin M&DS)	
Received more than 98% of possible customer award	CMMI
fees (Northrop Grumman IT1)	Civiivii
Earned a rating of "Exceptional" in every applicable	
category on their Contractor Performance Evaluation	CMMI
Survey (Northrop Grumman IT2)	

Beneficios CMMI: ROI

Result	Model
5:1 ROI for quality activities (Accenture)	CMMI
13:1 ROI calculated as defects avoided per hour	
spent in training and defect prevention (Northrop	CMMI
Grumman IT2)	
Processes for earlier defect detection, improved risk	
management, and better project control	CMMI
implemented after showing positive return on	
investment during pilot (Thales TT&S)6	

Ressalvas

- Relatos negativos são pouco frequentes
- SEI e SW- CMM: das empresas que se submetem a assessment e se encontram no nível 1
 - 1/3 não iniciam processo de melhoria
 - 1/3 iniciam e abandonam
 - 1/3 conseguem atingir o nível 2

SPI em pequenas empresas européias

consultar SPIRE:

- Software Process Improvement in Regions of Europe
- http://www.cse.dcu.ie/spire/

CMM no mundo

- Disseminação aumentou muito nos últimos anos
 - (ver relato trimestral do SEI: maturity profile)
- Outros Institutos com papel semelhante ao SEI:
 - ESI (European Software Instutite) em Bilbao, Espanha
 - CRIM (Centre de Recherche Informatique de Montreal) no Canadá

Estrutura de apoio: SPIN

- SPIN: Software Process Improvement Network
- Espécie de grupo de usuários de CMM com o apoio oficial do SEI
- No Brasil:
 - São Paulo, Curitiba, Campinas, Brasília, Recife,
 Lavras, Belo Horizonte, Rio de Janeiro, Fortaleza
- Relação dos SPINs em todo o mundo:
 - http://www.sei.cmu.edu/spin/find/ (old)
- https://sites.google.com/site/spincps/home
 - SPIN Campinas

Informações no site do SEI

- Perfil das empresas avaliadas
 - Published Appraisal Results
 - https://sas.cmmiinstitute.com/pars/pars.aspx
- Maturity profile
 - http://cmmiinstitute.com/resource/processmaturity-profiles/