This source code created by IndianAlProduction.com team

https://indianaiproduction.com/ml-project-student-mark-prediction/

Project Tutorial: https://youtu.be/U_oJqcyc0el

Anaconda Navigator, Jupyter Notebook, Spyder Installation: https://youtu.be/HlvGIPr4X3Q

For video tutorial visit our youtube channel

www.youtube.com\IndianAlProduction

Business Probelm

```
In [3]: # importing libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

loading the dataset

In [5]: df=pd.read_csv(r"C:\Users\Jan Saida\OneDrive\Documents\Student Marks Predictor\Student mark Predictor Deployment\student_info.csv")
df

Out[5]:		study_hours	student_marks
	0	6.83	78.50
	1	6.56	76.74
	2	NaN	78.68
	3	5.67	71.82
	4	8.67	84.19
	•••		
	195	7.53	81.67
	196	8.56	84.68
	197	8.94	86.75
	198	6.60	78.05

200 rows × 2 columns

In [6]: df.head()

199

Out	[6)]	:		st
				0	

	study_hours	student_marks
0	6.83	78.50
1	6.56	76.74
2	NaN	78.68
3	5.67	71.82
4	8.67	84.19

8.35

83.50

In [7]: df.tail()

ut[7]:		study_hours	student_marks
	195	7.53	81.67
	196	8.56	84.68
	197	8.94	86.75
	198	6.60	78.05
	199	8.35	83.50

In [8]: df.shape

Out[8]: (200, 2)

Discover and Visualize the data to gain Insights

In [10]: df.describe()

Out[10]:

	study_hours	student_marks
count	195.000000	200.00000
mean	6.995949	77.93375
std	1.253060	4.92570
min	5.010000	68.57000
25%	5.775000	73.38500
50%	7.120000	77.71000
75%	8.085000	82.32000
max	8.990000	86.99000

In [11]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 2 columns):
            Column
                           Non-Null Count Dtype
             study hours
                                           float64
                           195 non-null
        1 student_marks 200 non-null
                                           float64
        dtypes: float64(2)
        memory usage: 3.3 KB
In [12]: plt.scatter(x =df.study_hours, y = df.student_marks)
         plt.xlabel("Students Study Hours")
         plt.ylabel("Students marks")
         plt.title("Scatter Plot of Students Study Hours vs Students marks")
         plt.show()
```


Prepare the Data for Machine Learning Algorithms

Data Cleaning

```
In [15]: df.isnull().sum()
Out[15]: study hours
                           5
          student marks
          dtype: int64
In [16]: df.mean()
Out[16]: study_hours
                            6.995949
          student marks
                           77.933750
          dtype: float64
In [17]: df2=df.fillna(df.mean())
         df2
Out[17]:
              study_hours student_marks
            0
                  6.830000
                                   78.50
                                   76.74
                 6.560000
            2
                 6.995949
                                   78.68
            3
                  5.670000
                                   71.82
            4
                  8.670000
                                   84.19
          195
                 7.530000
                                   81.67
                  8.560000
                                   84.68
          196
          197
                 8.940000
                                   86.75
          198
                  6.600000
                                   78.05
          199
                  8.350000
                                   83.50
        200 rows × 2 columns
```

```
In [18]: df2.head()
Out[18]:
            study_hours student_marks
               6.830000
                                 78.50
               6.560000
                                 76.74
               6.995949
                                 78.68
          2
               5.670000
                                 71.82
                                 84.19
               8.670000
In [19]: df2.isnull().sum()
Out[19]: study_hours
          student_marks
                           0
          dtype: int64
```

Splitting the dataset

```
In [21]: X=df2.drop('student_marks',axis='columns')
X
```

'S
0
0
9
0
0
0
0
0
0
0

200 rows × 1 columns

```
In [22]: y=df2.drop('study_hours',axis='columns')
y
```

rt[22]:	student_marks
C	78.50
1	1 76.74
2	78.68
3	3 71.82
2	4 84.19
	•
195	81.67
196	6 84.68
197	7 86.75
198	8 78.05
199	83.50
200	rows × 1 columns
	.nt("shape of X
	.nt("shape of y =
	e of $X = (200,$ e of $y = (200,$
	e of y = (200, om sklearn.model

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=51)

In [25]: **X_train**

Out[25]:		study_hours
	8	5.19
	146	7.99
	63	7.72
	43	8.30
	64	8.88
	•••	
	180	6.97
	149	8.97
	16	6.36
	197	8.94
	57	8.93

160 rows × 1 columns

In [26]: X_test

Out[26]:		study_hours
	148	8.300000
	104	7.230000
	4	8.670000
	7	8.990000
	192	8.710000
	160	7.700000
	118	5.690000
	58	5.390000
	190	5.790000
	174	5.390000
	23	5.850000
	10	6.590000
	115	5.790000
	86	5.880000
	67	8.260000
	68	5.070000
	177	5.790000
	171	7.190000
	128	6.380000
	14	8.190000
	82	6.660000
	50	5.090000

45

31

6.180000

6.995949

	$study_hours$
176	8.930000
21	8.160000
198	6.600000
89	8.790000
35	7.100000
36	7.860000
113	7.950000
121	8.310000
99	8.070000
162	7.790000
79	5.880000
131	5.260000
65	5.450000
13	7.900000
85	5.630000
42	5.460000

In [27]: y_train

	student_marks
8	70.66
146	82.75
63	80.43
43	82.84
64	85.78
•••	
180	77.19
149	86.12
16	76.04
197	86.75
57	86.65
	146 63 43 64 180 149 16

In [28]: **y_test**

160 rows × 1 columns

Out[28]:		student_marks
	148	82.02
	104	77.55
	4	84.19
	7	85.46
	192	84.03
	160	80.81
	118	73.61
	58	70.90
	190	73.14
	174	73.02
	23	75.02
	10	75.37
	115	74.44
	86	73.40
	67	81.70
	68	69.27
	177	73.64
	171	77.63
	128	77.01
	14	83.08
	82	76.63
	50	72.22
	45	72.96
	31	76.14

	student_marks
176	85.96
21	83.36
198	78.05
89	84.60
35	76.76
36	81.24
113	80.86
121	82.69
99	82.30
162	79.17
79	73.34
131	71.86
65	70.06
13	80.76
85	72.87
42	71.10

```
In [29]: print("shape of X_train = ", X_train.shape)
    print("shape of y_train = ", y_train.shape)
    print("shape of X_test = ", X_test.shape)
    print("shape of y_test = ", y_test.shape)

shape of X_train = (160, 1)
    shape of y_train = (160, 1)
    shape of X_test = (40, 1)
    shape of y_test = (40, 1)
```

Select a Model and Train it

```
In [31]: \# y = m * x + c
         from sklearn.linear model import LinearRegression
         lr = LinearRegression()
In [32]: lr.fit(X_train,y_train)
Out[32]:
         LinearRegression
         LinearRegression()
In [33]: lr.coef_
Out[33]: array([[3.93571802]])
In [34]: lr.intercept_
Out[34]: array([50.44735504])
In [35]: m=3.93
         c=50.44
         y=m*4+c
Out[35]: 66.16
In [36]: lr.predict([[4]])[0][0].round(2)
        C:\Users\Jan Saida\anaconda3\Lib\site-packages\sklearn\base.py:493: UserWarning: X does not have valid feature names, but LinearRegression was
        fitted with feature names
         warnings.warn(
Out[36]: 66.19
In [37]: y_pred=lr.predict(X_test)
         y_pred
```

```
Out[37]: array([[83.11381458],
                 [78.9025963],
                 [84.57003024],
                 [85.82946001],
                 [84.72745896],
                 [80.75238377],
                 [72.84159055],
                 [71.66087515],
                 [73.23516235],
                 [71.66087515],
                 [73.47130543],
                 [76.38373677],
                 [73.23516235],
                 [73.58937697],
                 [82.95638585],
                 [70.40144538],
                 [73.23516235],
                 [78.74516758],
                 [75.55723598],
                 [82.68088559],
                 [76.65923703],
                 [70.48015974],
                 [74.77009238],
                 [77.98143645],
                 [85.59331693],
                 [82.56281405],
                 [76.42309395],
                 [85.0423164],
                 [78.39095296],
                 [81.38209865],
                 [81.73631327],
                 [83.15317176],
                 [82.20859943],
                 [81.10659839],
                 [73.58937697],
                 [71.1492318],
                 [71.89701823],
                 [81.53952737],
                 [72.60544747],
                 [71.93637541]])
```

In [38]: pd.DataFrame(np.c_[X_test, y_test, y_pred], columns = ["study_hours", "student_marks_original", "student_marks_predicted"])

Out[38]:

	study_hours	student_marks_original	student_marks_predicted
0	8.300000	82.02	83.113815
1	7.230000	77.55	78.902596
2	8.670000	84.19	84.570030
3	8.990000	85.46	85.829460
4	8.710000	84.03	84.727459
5	7.700000	80.81	80.752384
6	5.690000	73.61	72.841591
7	5.390000	70.90	71.660875
8	5.790000	73.14	73.235162
9	5.390000	73.02	71.660875
10	5.850000	75.02	73.471305
11	6.590000	75.37	76.383737
12	5.790000	74.44	73.235162
13	5.880000	73.40	73.589377
14	8.260000	81.70	82.956386
15	5.070000	69.27	70.401445
16	5.790000	73.64	73.235162
17	7.190000	77.63	78.745168
18	6.380000	77.01	75.557236
19	8.190000	83.08	82.680886
20	6.660000	76.63	76.659237
21	5.090000	72.22	70.480160
22	6.180000	72.96	74.770092
23	6.995949	76.14	77.981436

	study_hours	student_marks_original	student_marks_predicted
24	8.930000	85.96	85.593317
25	8.160000	83.36	82.562814
26	6.600000	78.05	76.423094
27	8.790000	84.60	85.042316
28	7.100000	76.76	78.390953
29	7.860000	81.24	81.382099
30	7.950000	80.86	81.736313
31	8.310000	82.69	83.153172
32	8.070000	82.30	82.208599
33	7.790000	79.17	81.106598
34	5.880000	73.34	73.589377
35	5.260000	71.86	71.149232
36	5.450000	70.06	71.897018
37	7.900000	80.76	81.539527
38	5.630000	72.87	72.605447
39	5.460000	71.10	71.936375

Fine-Tune your model

```
In [40]: lr.score(X_test,y_test)
Out[40]: 0.9514124242154464
In [41]: plt.scatter(X_train,y_train)
```

 ${\tt Out[41]:} \quad \verb|\collections.PathCollection| at 0x1b5177bd3a0>| \\$

In [42]: plt.scatter(X_test, y_test)
plt.plot(X_train, lr.predict(X_train), color = "r")

Out[42]: [<matplotlib.lines.Line2D at 0x1b51a22dac0>]

Present your Model

Save MI Model

In [53]: import os
 os.getcwd()

Out[53]: 'C:\\Users\\Jan Saida'
In []:

Flask\Student_Marks_Prediction_app.py

```
1 import numpy as np
   import pandas as pd
 2
   from flask import Flask, request, render template
   import joblib
 5
   import os
 6
   # Set up the Flask app and template folder
   app = Flask( name , template folder='C:/Users/Jan Saida/OneDrive/Documents/Students Marks Prediction Project/templates')
 8
   # Load the trained model
10
   model = joblib.load(r"C:/Users/Jan Saida/OneDrive/Documents/Students Marks Prediction Project/student mark predictor.pkl")
11
12
   # Create an empty DataFrame for saving prediction data
13
   df = pd.DataFrame()
14
15
   # Define the home route
16
   @app.route('/')
17
   def home():
18
19
        return render template("index.html")
20
   # Define the predict route
21
   @app.route('/predict', methods=['POST'])
22
   def predict():
23
        global df
24
25
26
        # Collect input data from the form
27
        input features = [int(x) for x in request.form.values()]
28
        features value = np.array(input features)
29
30
        # Validate the input hours
31
        if input features[0] < 0 or input features[0] > 24:
            return render template('index.html', prediction text='Please enter valid hours between 1 and 24 if you live on the Earth')
32
33
        # Predict the output based on the input features
34
       output = model.predict([features_value])[0][0].round(2)
35
36
37
        # Save the input data and predicted output into the DataFrame
38
        df = pd.concat([df, pd.DataFrame({'Study Hours': input features, 'Predicted Output': [output]})], ignore index=True)
39
```

```
# Print and save the DataFrame to a CSV file
40
       print(df)
41
       df.to_csv('smp_data_from_app.csv')
42
43
44
       # Render the result back to the user
45
       return render template("index.html", prediction text=f'You will get [{output}%] marks, when you study [{input features[0]}] hours per day')
46
47 # Run the Flask app
48 if name == ' main ':
       app.run(host='127.0.0.1', port=5000)
49
50
```

~\AppData\Roaming\Code\logs\20250205T190658\window1\exthost\output_logging_20250205T190659\13-Code.log

```
1 [Running] python -u "c:\VS Code\Flask\Student Marks Prediction app.py"
 2 C:\Users\Jan Saida\AppData\Local\Programs\Python\Python313\Lib\site-packages\sklearn\base.py:380: InconsistentVersionWarning: Trying to unpickle estimator
   LinearRegression from version 1.4.2 when using version 1.6.0. This might lead to breaking code or invalid results. Use at your own risk. For more info
   please refer to:
   https://scikit-learn.org/stable/model persistence.html#security-maintainability-limitations
     warnings.warn(
     * Serving Flask app 'Student Marks Prediction app'
     * Debug mode: off
   WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.
    * Running on http://127.0.0.1:5000
   Press CTRL+C to quit
   127.0.0.1 - - [05/Feb/2025 19:07:32] "GET / HTTP/1.1" 200 -
   127.0.0.1 - - [05/Feb/2025 19:07:32] "GET /static/images/college banner2.png HTTP/1.1" 404 -
11
   127.0.0.1 - - [05/Feb/2025 19:07:32] "GET /favicon.ico HTTP/1.1" 404 -
12
13 C:\Users\Jan Saida\AppData\Local\Programs\Python\Python313\Lib\site-packages\sklearn\utils\validation.py: 2739: UserWarning: X does not have valid feature
   names, but LinearRegression was fitted with feature names
     warnings.warn(
14
15
      Study Hours Predicted Output
16 0
                5
                               70.13
17 | 127.0.0.1 - - [05/Feb/2025 19:07:40] "POST /predict HTTP/1.1" 200 -
   127.0.0.1 - - [05/Feb/2025 19:07:40] "GET /static/images/college banner2.png HTTP/1.1" 404 -
   C:\Users\Jan Saida\AppData\Local\Programs\Python\Python313\Lib\site-packages\sklearn\utils\validation.py: 2739: UserWarning: X does not have valid feature
   names, but LinearRegression was fitted with feature names
20
     warnings.warn(
21
      Study Hours Predicted Output
22
                 5
                               70.13
                               74.06
23
   127.0.0.1 - - [05/Feb/2025 19:07:59] "POST /predict HTTP/1.1" 200 -
   127.0.0.1 - - [05/Feb/2025 19:07:59] "GET /static/images/college banner2.png HTTP/1.1" 404 -
   C:\Users\Jan Saida\AppData\Local\Programs\Python\Python313\Lib\site-packages\sklearn\utils\validation.py: 2739: UserWarning: X does not have valid feature
   names, but LinearRegression was fitted with feature names
27
     warnings.warn(
28
      Study Hours Predicted Output
                 5
29
                               70.13
30
                6
                               74.06
                7
                               78.00
31
   127.0.0.1 - - [05/Feb/2025 19:08:11] "POST /predict HTTP/1.1" 200 -
   127.0.0.1 - - [05/Feb/2025 19:08:11] "GET /static/images/college banner2.png HTTP/1.1" 404 -
```

```
34 C:\Users\Jan Saida\AppData\Local\Programs\Python\Python313\Lib\site-packages\sklearn\utils\validation.py: 2739: UserWarning: X does not have valid feature
   names, but LinearRegression was fitted with feature names
35
     warnings.warn(
       Study Hours Predicted Output
36
37
                 5
                               70.13
                 6
38
   1
                               74.06
39
   2
                7
                               78.00
                               81.93
40
   127.0.0.1 - - [05/Feb/2025 19:08:26] "POST /predict HTTP/1.1" 200 -
41
   127.0.0.1 - - [05/Feb/2025 19:08:26] "GET /static/images/college banner2.png HTTP/1.1" 404 -
   C:\Users\Jan Saida\AppData\Local\Programs\Python\Python313\Lib\site-packages\sklearn\utils\validation.py: 2739: UserWarning: X does not have valid feature
   names, but LinearRegression was fitted with feature names
     warnings.warn(
44
45
       Study Hours Predicted Output
                 5
46 0
                               70.13
   1
                 6
                               74.06
47
                7
48
                               78.00
49
   3
                 8
                               81.93
                               85.87
50
51
   127.0.0.1 - - [05/Feb/2025 19:08:31] "POST /predict HTTP/1.1" 200 -
   127.0.0.1 - - [05/Feb/2025 19:08:31] "GET /static/images/college banner2.png HTTP/1.1" 404 -
   C:\Users\Jan Saida\AppData\Local\Programs\Python\Python313\Lib\site-packages\sklearn\utils\validation.py: 2739: UserWarning: X does not have valid feature
   names, but LinearRegression was fitted with feature names
     warnings.warn(
54
55
       Study Hours Predicted Output
56 0
                 5
                               70.13
57
                 6
                               74.06
   1
58
   2
                7
                               78.00
                 8
59
                               81.93
                9
                               85.87
60
   4
                10
                               89.80
61
   127.0.0.1 - - [05/Feb/2025 19:08:35] "POST /predict HTTP/1.1" 200 -
   127.0.0.1 - - [05/Feb/2025 19:08:35] "GET /static/images/college banner2.png HTTP/1.1" 404 -
   C:\Users\Jan Saida\AppData\Local\Programs\Python\Python313\Lib\site-packages\sklearn\utils\validation.py:2739: UserWarning: X does not have valid feature
   names, but LinearRegression was fitted with feature names
65
     warnings.warn(
       Study Hours Predicted Output
66
67
   0
                 5
                               70.13
                 6
                               74.06
68
   1
69
   2
                7
                               78.00
                               81.93
70 3
```

```
85.87
71 4
                9
72 5
                              89.80
                10
                               93.74
73 6
                11
74 | 127.0.0.1 - - [05/Feb/2025 19:08:39] "POST /predict HTTP/1.1" 200 -
75 | 127.0.0.1 - - [05/Feb/2025 19:08:39] "GET /static/images/college banner2.png HTTP/1.1" 404 -
76 C:\Users\Jan Saida\AppData\Local\Programs\Python\Python313\Lib\site-packages\sklearn\utils\validation.py: 2739: UserWarning: X does not have valid feature
   names, but LinearRegression was fitted with feature names
     warnings.warn(
77
      Study Hours Predicted Output
78
                5
                              70.13
79 0
80 1
                6
                              74.06
                7
                              78.00
81
82 3
                              81.93
                              85.87
83 4
                9
                              89.80
84 5
                10
               11
                               93.74
85 6
86 7
                12
                              97.68
87 | 127.0.0.1 - - [05/Feb/2025 19:08:43] "POST /predict HTTP/1.1" 200 -
88 | 127.0.0.1 - - [05/Feb/2025 19:08:43] "GET /static/images/college banner2.png HTTP/1.1" 404 -
89
```

This is How My Frontend App will run

This is how the Excel/CSV sheet will be created in the Backend

