

Percona XtraDB Cluster powered by Galera

Vadim Tkachenko
Percona Inc, co-founder, CTO
www.percona.com
www.MySQLPerformanceBlog.com

This talk online

- PowerPoint
 - http://bit.ly/PXC-2012
- PDF
 - http://bit.ly/PXC-2012-pdf
- Contacts
 - vadim@percona.com
 - Twitter @VadimTk

This talk

High Availability

Replication

Cluster

What is HA

Availability

Avail ~ Ability

Ability to Avail

Availability by redundancy

Duplicate resources

Failover

Probability of failure

Single server: P

Two servers: P/2

X servers: P/X

Probability of failure

Easy?

Not if we deal with databases

Database

Redundancy?

Database availability is hard

Service availability

Data availability

Replication

MySQL Replication

If your HA is based on MySQL Replication – You are doing it wrong

What is wrong with MySQL replication?

What is wrong with MySQL replication?

"a" in async

What is wrong with MySQL replication?

Async

Async

sync

Didn't we just reinvent DRBD?

DRBD

Clustering

Percona XtraDB Cluster

Free and Open Source

Percona XtraDB Cluster

Virtually synchronous

http://en.wikipedia.org/wiki/Virtual_synchrony

Virtually synchronous

synchronous replication

multi-master replication

parallel applying on slaves

data consistency

automatic node provisioning synchronous replication

multi-master replication

parallel applying on slaves

data consistency

automatic node provisioning

Multi-master: MySQL

Multi-master: XtraDB Cluster

synchronous replication

multi-master replication

parallel applying on slaves

data consistency

automatic node provisioning

Parallel apply: MySQL

Parallel apply: XtraDB Cluster

synchronous replication

multi-master replication

parallel applying on slaves

data consistency

automatic node provisioning

XtraDB Cluster data consistency

synchronous replication

multi-master replication

parallel applying on slaves

data consistency

automatic node provisioning

Node provisioning

CAP theorem

http://en.wikipedia.org/wiki/CAP_theorem

Pick only TWO

Consistency

Node availability

Partition Tolerance

Network failure

MySQL Replication

Access to all systems - YES

Data consistency - NO

XtraDB Cluster

Access to all systems - NO

Data consistency - YES

3 nodes is the minimal recommended configuration

Split brain

Which system to make available?

Split brain

You still can have this setup

But you deal with consequences

Choice

MySQL Replication: Access to all systems

XtraDB Cluster: Data consistency

Percona XtraDB Cluster details

Percona Server

Percona

XtraDB Cluster

WSREP patches

Galera library

Partnership

Full compatibility with existing systems

Minimal efforts to migrate

Minimal efforts to return back to MySQL

So, is this a perfect solution?

Limitations

some will be solved later

Only InnoDB tables are supported

MyISAM support in next release

OPTIMISTIC locking for transactions on different servers

http://en.wikipedia.org/wiki/Optimistic_concurrency_control

Traditional locking

Optimistic locking

The write performance is limited by weakest node

Write performance

For write intensive applications there could be datasize limit per node

Not physical but logical

Join process. Step 1

Join process. Step 2

Join process: step 3

This is software + hardware solution

InnoDB write performance

InnoDB performance + ACID

Cluster performance

Network

I0 GigEInfiniband

Storage

- •SSD
- •PCI-e Flash

Join process

State Transfer

Full data SST

New node

Node long time disconnected

Incremental IST

Node disconnected short time

Snapshot State Transfer

Mysqldump XtraBackup Rsync Donor Donor Small disconnected disconnected databases for copy time for short time faster slower

Incremental State Transfer

Node was in cluster

Disconnected for maintenance

Node Crashed (work in progress)
In next release

Scaleability

Scaleability

Scale ~ Ability

Ability to Scale

Scaleability is similar to availability

XtraDB Cluster: Reads scalability is easy

Write scalability is complicated

N servers scale to:

100% reads • N factor N/2 factor 50/50 100% writes • or const

10 servers scale to:

100% reads

- I server: I00 q/s
- 10 servers: 1000 q/s

50/50

- I server: I00 q/s
- 10 servers: 500 q/s

100% writes

- I server: I00 q/s
- 10 servers: 100 q/s (can be more)

Questions I am asked

- What happens if one node temporary unreachable?
- How ALTER tables are handled
- What happens if someone runs update of 1000000 rows?
- Show numbers on latency and throughput
- How connect node to a cluster? Just show an example
- How cluster decides what nodes to keep in cluster and what to throw away
- Can I select a specific node as DONOR
- Load balancing?
- XtraBackup SST locking for short period
- How auto_increment is handled?
- What is use case for XtraDB Cluster?

It looks so easy. Why did not you implement it earlier?

It is not easy.

Computer science of group communication and distributed transactions.

Credits to Codership Oy

How fast is it?

Reasonably fast.

Can I replicate XtraDB Cluster to MySQL Replication?

Yes

Would I install it on a production system?

Yes. I am going to upgrade MySQLPerformanceBlog.com to use XtraDB Cluster

How it is compared to MySQL Cluster?

It is different

	XtraDB Cluster	MySQL Cluster
Easy to migrate		
Easy to use		
Cloud / EC2		
Changes in an application		
Write scaling		
99.999%		

More questions

- What happens if one node temporary unreachable?
- How ALTER tables are handled
- What happens if someone runs update of 1000000 rows?
- How cluster decides what nodes to keep in cluster and what to throw away
- Can I select a specific node as DONOR
- Load balancing?
- How auto_increment is handled?

Resources

- http://www.percona.com/software/percona-xtradb-cluster/
- http://www.codership.com/wiki/doku.php
- Virtual synchrony
 - http://en.wikipedia.org/wiki/Virtual_synchrony
- CAP Theorem
 - http://en.wikipedia.org/wiki/CAP_theorem
- Optimistic locking
 - http://en.wikipedia.org/wiki/Optimistic_concurrency_control

Credits

WSREP patches and Galera library is developed by Codership
 Oy

Thank you!

Questions?

You can try Percona XtraDB Cluster today!