

GCE AS/A Level – NEW

2420U10-1420U50-1A

PHYSICS – Units 1 – 5 Data Booklet

A clean copy of this booklet should be issued to candidates for their use during each AS/A level Physics examination.

Centres are asked to issue this booklet to candidates at the start of the course to enable them to become familiar with its contents and layout.

© WJEC CBAC Ltd.

Values and Conversions

Avogadro constant
Fundamental electronic charge
Mass of an electron
Molar gas constant
Acceleration due to gravity at sea leve
Gravitational field strength at sea level
Universal constant of gravitation
Planck constant
Boltzmann constant
Speed of light in vacuo
Permittivity of free space
Permeability of free space
Stefan constant
Wien constant
Hubble constant

$$T/K = \theta/^{\circ}C + 273.15$$

1 parsec = 3.09×10^{16} m
1 u = 1.66×10^{-27} kg
1 eV = 1.60×10^{-19} J
 $\frac{1}{4\pi\varepsilon_0} \approx 9.0 \times 10^9$ F⁻¹ m

$$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$$

 $e = 1.60 \times 10^{-19} \text{ C}$
 $m_e = 9.11 \times 10^{-31} \text{ kg}$
 $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
 $g = 9.81 \text{ m s}^{-2}$
 $g = 9.81 \text{ N kg}^{-1}$
 $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
 $h = 6.63 \times 10^{-34} \text{ J s}$
 $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

$$c = 3.00 \times 10^{8} \,\mathrm{m \, s^{-1}}$$

 $c = 8.85 \times 10^{-12} \,\mathrm{F \, m^{-1}}$
 $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H \, m^{-1}}$

$$\sigma = 5.67 \times 10^{-8} \,\mathrm{W \, m^{-2} \, K^{-4}}$$

 $W = 2.90 \times 10^{-3} \,\mathrm{m \, K}$

$$H_0 = 2.20 \times 10^{-18} \,\mathrm{s}^{-1}$$

AS

$\rho = \frac{m}{V}$	$I = \frac{\Delta Q}{\Delta t}$
v = u + at	I = nAve
$x = \frac{1}{2}(u+v)t$	$R = \frac{V}{I}$
$x = ut + \frac{1}{2}at^2$	$P = IV = I^2 R = \frac{V^2}{R}$
$v^2 = u^2 + 2ax$	$R = \frac{\rho l}{A}$
$\sum F = ma$	V = E - Ir
p = mv	$\frac{V}{V_{\text{total}}} \left[\text{or } \frac{V_{\text{OUT}}}{V_{\text{IN}}} \right] = \frac{R}{R_{\text{total}}}$
$W = Fx \cos \theta$	$T = \frac{1}{f}$
$\Delta E = mg\Delta h$	$c = f\lambda$
$E = \frac{1}{2}kx^2$	$\lambda = \frac{a\Delta y}{D}$
$E = \frac{1}{2}mv^2$	$d\sin\theta = n\lambda$
$Fx = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$	$n = \frac{c}{v}$
$P = \frac{W}{t} = \frac{\Delta E}{t}$	$n_1 v_1 = n_2 v_2$
efficiency = $\frac{\text{useful energy transfer}}{\text{total energy input}} \times 100\%$	$n_1 \sin \theta_1 = n_2 \sin \theta_2$
F = kx	$n_1 \sin \theta_C = n_2$
$\sigma = \frac{F}{A}$	$E_{k\max} = hf - \phi$
$\varepsilon = \frac{\Delta l}{l}$	$p = \frac{h}{\lambda}$
$E = \frac{\sigma}{\varepsilon}$	

		leptons		qua	rks
	particle (symbol)	electron (e ⁻)	electron neutrino ($v_{\rm e}$)	up (u)	down (d)
	charge (e)	– 1	0	+ $\frac{2}{3}$	$-\frac{1}{3}$
	lepton number	1	1	0	0

 $P = A\sigma T^4$

2420U101A 03

A2

$\omega = \frac{\theta}{t}$	$C = \frac{\varepsilon_0 A}{d}$
$v = \omega r$	$E = \frac{V}{d}$
$a = \omega^2 r$	$U = \frac{1}{2}QV$
$a = \frac{v^2}{r}$	$Q = Q_0 \left(1 - e^{-\frac{t}{RC}} \right)$
$F = \frac{mv^2}{r}$	$Q = Q_0 e^{-\frac{t}{RC}}$
$F = m\omega^2 r$	$F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2}$
$a = -\omega^2 x$	$F = G \frac{M_1 M_2}{r^2}$
$x = A\cos(\omega t + \varepsilon)$	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
$T = \frac{2\pi}{\omega}$	$g = \frac{GM}{r^2}$
$v = -A\omega\sin(\omega t + \varepsilon)$	$V_E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$
$T = 2\pi \sqrt{\frac{m}{k}}$	$PE = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r}$
$T = 2\pi \sqrt{\frac{l}{g}}$	$V_g = -\frac{GM}{r}$
pV = nRT and $pV = NkT$	$PE = -\frac{GM_1M_2}{r}$
$p = \frac{1}{3}\rho \overline{c^2} = \frac{1}{3} \frac{N}{V} m \overline{c^2}$	$W = q\Delta V_E$
$M/kg = \frac{M_r}{1000}$	$W = m\Delta V_g$
$n = \frac{\text{total mass}}{\text{molar mass}}$	$\frac{\Delta\lambda}{\lambda} = \frac{v}{c}$
$k = \frac{R}{N_A}$	$v = H_0 D$
$U = \frac{3}{2}nRT = \frac{3}{2}NkT$	$\rho_c = \frac{3H_0^2}{8\pi G}$
$W = p\Delta V$	$r_1 = \frac{M_2}{M_1 + M_2} d$
$\Delta U = Q - W$	$T = 2\pi \sqrt{\frac{d^3}{G(M_1 + M_2)}}$
$Q = mc\Delta\theta$	$A = \lambda N$
$C = \frac{Q}{V}$	$N = N_0 e^{-\lambda t}$

$A = A_0 e^{-\lambda t}$	$F = Bqv\sin\theta$
$N = \frac{N_0}{2^x}$	$B = \frac{\mu_0 I}{2\pi a}$
$A = \frac{A_0}{2^x}$	$B = \mu_0 nI$
$\lambda = \frac{\ln 2}{T_{\frac{1}{2}}}$	$\Phi = AB\cos\theta$
$E = mc^2$	flux linkage = $N\Phi$
$F = BIl\sin\theta$	

OPTION A

flux linkage = $BAN \cos \omega t$	$X_L = \omega L$
$V = \omega BAN \sin \omega t$	$X_C = \frac{1}{\omega C}$
$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$	$Z = \sqrt{X^2 + R^2}$
$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$	$Q = \frac{V_L}{V_R} \left(= \frac{V_c}{V_R} \right)$
$V_{\rm rms} = \frac{\omega BAN}{\sqrt{2}}$	$Q = \frac{\omega_0 L}{R}$

OPTION B

$I = I_0 e^{-\mu x}$	$f = 42.6 \times 10^6 B$
$Z = c\rho$	$H = DW_R$
$\frac{\Delta f}{f_0} = \frac{2v}{c}\cos\theta$	$E = HW_T$

OPTION C

Ft = mv - mu	$\tau = I\alpha$
$e = \frac{\text{Relative speed after collision}}{\text{Relative speed before collision}}$	$L = I\omega$
$e = \sqrt{\frac{h}{H}}$	$KE = \frac{1}{2}I\omega^2$
$I = \frac{2}{5}mr^2$	$p = p_0 - \frac{1}{2}\rho v^2$
$I = \frac{2}{3}mr^2$	$F_D = \frac{1}{2}\rho v^2 A C_D$
$\alpha = \frac{\omega_2 - \omega_1}{t}$	

OPTION D

$I = \frac{P}{A}$	$\frac{\Delta Q}{\Delta t} = -AK \frac{\Delta \theta}{\Delta x}$
$E = \frac{1}{2}A\rho v^3$	$P = UA\Delta\theta$

© WJEC CBAC Ltd. (2420U10-1A) Turn over.

Mathematical Information

SI multipliers

Multiple	Prefix	Symbol
10 ⁻¹⁸	atto	а
10 ⁻¹⁵	femto	f
10 ⁻¹²	pico	р
10 ⁻⁹	nano	n
10 ⁻⁶	micro	μ
10 ⁻³	milli	m
10-2	centi	С

Multiple	Prefix	Symbol
10 ³	kilo	k
10 ⁶	mega	М
10 ⁹	giga	G
10 ¹²	tera	Т
10 ¹⁵	peta	Р
10 ¹⁸	exa	E
10 ²¹	zetta	Z

Areas and Volumes

Area of a circle =
$$\pi r^2 = \frac{\pi d^2}{4}$$

Area of a triangle =
$$\frac{1}{2}$$
 base × height

Solid	Surface area	Volume
rectangular block	$2\left(lh+hb+lb\right)$	lbh
cylinder	$2\pi r (r+h)$	$\pi r^2 h$
sphere	$4\pi r^2$	$\frac{4}{3}\pi r^3$

Trigonometry

$$\sin \theta = \frac{PQ}{PR}$$
, $\cos \theta = \frac{QR}{PR}$, $\tan \theta = \frac{PQ}{QR}$, $\frac{\sin \theta}{\cos \theta} = \tan \theta$
 $PR^2 = PQ^2 + QR^2$

Logarithms (A2 only) [Unless otherwise specified 'log' can be $\log_e{\rm (i.e.\ ln)}~{\rm or}~{\rm log_{10}.}]$

$$\log(ab) = \log a + \log b$$

$$\log(ab) = \log a - \log b$$

$$\log x^n = n \log x$$

$$\log_e e^{kx} = \ln e^{kx} = kx$$

$$\log_e 2 = \ln 2 = 0.693$$

© WJEC CBAC Ltd. (2420U10-1A)

BLANK PAGE