Matematika I

05. január 2020 9:00

Meno a priezvisko: Podpis:		
Ročník:	študijný program:	
1. (11b) Daná je všeobeci Doplňte	ná rovnica kužeľosečky $4x^2 - y^2 - 24x + 4y + 28 = 0$.	
a) (2b) Stredová rovnic	ca kužeľosečky je	
b) (1b) Kužeľosečka je	typu	
c) (3b) Popíšte (ak exid	stujú):	
c_2) dĺžka vedľajšej	oloosi je	
d) (4b) Napíšte súradn	ice (ak existujú):	
d_2) hlavných vrcho d_3) vedľajších vrch	čky lov kužeľosečky olov kužeľosečky ska resp. ohnísk kužeľosečky	
e) (1b) Znázornite kuž	eľosečku a v náčrte popíšte jej významné prvky.	

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \ln(x^2 + y^2 - 1) + \sqrt{4 - x^2 - y^2}$$

b)
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

c)
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d)
$$f(x,y) = \sqrt{x^2 + y^2 - 1} - \ln(4 - x^2 - y^2)$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy \, \mathrm{d}x \mathrm{d}y,$$

kde množina Mje trojuholník s vrcholmi $A=[1,1],\, B=[2,1]$ a C=[2,3].

Výsledok:....

4. (4b) Bod M má v pravouhlej súradnicovej sústave súradnice: $M = [3, \sqrt{3}, 3]$.

a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v cylindrickej súradnicovej sústave sú:

a)
$$M = \left[2\sqrt{3}, \frac{11\pi}{6}, 3\right]$$

c)
$$M = \left[2\sqrt{3}, \frac{\pi}{3}, 3\right]$$

b)
$$M = \left[2\sqrt{3}, \frac{5\pi}{3}, 3\right]$$

d)
$$M = \left[2\sqrt{3}, \frac{\pi}{6}, 3\right]$$

b) (2b) Znázornite tento bod M v cylindrickej súradnicovej sústave.

Náčrt:

5. (8b) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) + 6y'(x) = 1$.
a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
Charakteristická rovnica je:
b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.
Fundamentálny systém riešení je
b) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
Partikulárne riešene je
c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
Všeobecné riešenie danej LODR je
6. (4b) Vypočítajte
$\lim_{[x,y]\to[1,3]} (x^3 - xy + 2y).$
Výsledok:
7. (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y) = \ln\left(x + \frac{y}{2x}\right)$ v bode $T = [1,2,z_0].$
(2b) Nájdite z_0 a uvedte súradnice dotykového bodu :
(4b) Všeobecná rovnica dotykovej roviny τ je:
8. (6b) Daná je funkcia $f(x,y)=\sqrt{4+x^2+y^2}$, bod $A=[1,2]$ a vektor $\vec{l}=(-1,2)$.
a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
Gradient funkcie $f(x, y)$ v bode A je
b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

a)	Načrtnite oblasť M :
	Náčrt:
	Pomocou matematických vzťahov popíšte hranice oblasti M :
	(a) (2b) AB
	(b) $(2b) BC$
	(c) (2b) CD
	(d) (2b) AD
b)	(5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti M . Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".
	Doplňte odpoveď: Funkcia $f(x,y)$ má v bode lokálne
c)	Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciach oblasti M . Ak hľadaný lokálny extrém nejestvuje, napíšte "nie je".
	(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode viazané lokálne
	(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode viazané lokálne
	(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode viazané lokálne
	(d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode $\ldots \ldots$ viazané lokálne $\ldots \ldots$
d)	(2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti $M.$
	Najväčšia hodnota funkcie $f(x,y)$ je:
	Najmenšia hodnota funkcie $f(x,y)$ je:

9. (27b) Daná je funkcia $f(x,y)=x^2+2y^2-xy+3x+2y+1$ a oblasť M. Oblasť M je mnohouholník ABCD s vrcholmi A=[0,-5], B=[1,-5], C=[1,0] a D=[-5,0].