Chapter 4:

Deep learning in practice

Outlines

- Convolutional networks
- 2. Recurrent neural networks
- 3. Commonly used deep learning architectures
- How to build working deep learning model from scratch
- Project and lab

1. The convolution operation:

- ConvNet looks like a stack of Conv2D and MaxPooling2D layers.
- Instantiating a small convent:

```
from keras import layers
from keras import models

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
```

1. The convolution operation:

- A convnet takes as input tensors of shape (image_height, image_width, image_channels) (not including the batch dimension).
- In this case, we'll configure the convnet to process inputs of size (28, 28, 1), which is the format of MNIST images.
- We'll do this by passing the argument input_shape=(28, 28, 1) to the first layer.

```
from keras import layers
from keras import models

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
```

1. The convolution operation:

> The architecture of the convnet:

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 26, 26, 32)	320
max_pooling2d (MaxPooling2D)	(None, 13, 13, 32)	0
conv2d_1 (Conv2D)	(None, 11, 11, 64)	18496
max_pooling2d_1 (MaxPooling2	(None, 5, 5, 64)	0
conv2d_2 (Conv2D)	(None, 3, 3, 64)	36928

Total params: 55,744

Trainable params: 55,744
Non-trainable params: 0

1. The convolution operation:

```
# Instantiating a small convnet
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.summary()
```

```
Conv2D(output_depth, (window_height, window_width))
```

```
MaxPooling2D (Tuple[int, int])
```

The convolution operation:

	Output		Param #
conv2d (Conv2D)	(None,	26, 26, 32)	320
max_pooling2d (MaxPooling2D)	(None,	13, 13, 32)	0
conv2d_1 (Conv2D)	(None,	11, 11, 64)	18496
max_pooling2d_1 (MaxPooling2			0
conv2d_2 (Conv2D)			36928
flatten (Flatten)	(None,	576)	0
dense (Dense)	(None,	64)	36928
dense_1 (Dense)	(None,	10)	650
Total params: 93,322			
Trainable params: 93,322			
Non-trainable params: 0			

1. The convolution operation:

Training the convnet on MNIST images:

from tensorflow.keras.utils import to_categorical

```
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5, batch_size=64)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(test_acc)
```

1. The convolution operation:

Training the convnet on MNIST images:

1. The convolution operation:

- The fundamental difference between a densely connected layer and a convolution layer is this:
 - Dense layers learn global patterns in their input feature space (for example, for a MNIST digit, patterns involving all pixels).
 - Whereas convolution layers learn local patterns.
 - In the case of images, patterns are found in small
 2D windows of the inputs.
 - For example: 3×3 .

1. The convolution operation:

Images can be broken into local patterns such as edges, textures, and so on

1. The convolution operation:

- Two properties of convnets:
 - The patterns they learn are translation-invariant:
 - After learning a certain pattern in the lower-right corner of a picture, a convnet can recognize it anywhere.
 - They can learn spatial hierarchies of patterns:
 - A first convolution layer will learn small local patterns such as edges, a second convolution layer will learn larger patterns made of the features of the first layers, and so on.

The convolution operation:

> The visual world forms a spatial hierarchy of visual modules: hyperlocal edges combine into local objects such as eyes or ears, which combine into highlevel concepts such as "cat.".

1. The convolution operation:

- Convolutions operate over 3D tensors, called feature maps, with two spatial axes (height and width) as well as a depth axis (also called the channels axis).
- The dimension of the depth axis is 3 for an RGB image because the image has three color channels: red, green, and blue.
- The black-and-white picture's depth is 1.
 - The MNIST is a set of black-and-white pictures, so we set to 1 when reshape the train data.

```
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28, 28, 1))
```

The convolution operation:

- The first convolution layer takes a feature map of size (28, 28, 1) and outputs a feature map of size (26, 26, 32):
 - Computes 32 filters over its input.

```
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
```

Layer (type)	Output Shape	Param #
	=======================================	=======================================
conv2d (Conv2D)	(None, 26, 26, 32)	320

The convolution operation:

- The first convolution layer takes a feature map of size (28, 28, 1) and outputs a feature map of size (26, 26, 32):
 - \checkmark Each of these 32 output channels contains a 26 \times 26 grid of values, which is a response map of the filter over the input.
 - => the response of that filter pattern atdifferent locations in the input => feature map

- 1. The convolution operation:
 - Convolutions are defined by two key parameters:
 - Size of the patches extracted from the inputs: These are typically 3×3 or 5×5 .
 - Depth of the output feature map: The number of filters computed by the convolution.
 - The above example started with a depth of 32 and ended with a depth of 64

The convolution operation:

- A convolution works by sliding these windows of size 3 × 3 or 5 × 5 over the 3D input feature map and extracting the 3D patch of surrounding features (shape (window_height, window_width, input_depth)).
- Each such 3D patch is then transformed (via a tensor product with the same learned weight matrix, called the convolution kernel) into a 1D vector of shape (output_depth,).
- All of these vectors are then spatially reassembled into a 3D output map of shape (height, width, output_depth).
- Every spatial location in the output feature map corresponds to the same location in the input feature map.

The convolution operation:

2. The pooling operation:

- The role of max pooling is to aggressively downsample feature maps.
- Max pooling consists of extracting windows from the input feature maps and outputting the max value of each channel.
- Max pooling transformed via a hardcoded max tensor operation.
- A big difference from convolution is that max pooling is usually done with 2×2 windows and stride 2, in order to downsample the feature maps by a factor of 2.

2. The pooling operation:

```
# Instantiating a small convnet
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
```

MaxPooling2D (Tuple[int, int])

2. The pooling operation:

```
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
```

Layer (type)	Output Shape	Param #	
conv2d (Conv2D)	(None, 26, 26, 32)	320	
max_pooling2d (MaxPooling2D)	(None, 13, 13, 32)	0	
conv2d_1 (Conv2D)	(None, 11, 11, 64)	18496	
max_pooling2d_1 (MaxPooling2	(None, 5, 5, 64)	0	
conv2d_2 (Conv2D)	(None, 3, 3, 64)	36928	

2. The pooling operation:

- We can use average pooling instead of max pooling:
 - Each local input patch is transformed by taking the average value of each channel over the patch rather than the max value.
- However, max pooling tends to work better than these alternative solutions.

3. The fully connected operation:

- This layer have full connection to all activations in the previous layer
- Fully connected layers act as classifiers.
- This fully connected layer is where the features extracted by convolution and pooling create the final result (classification or regression)

3. The fully connected operation:

- 4. Regularization, dropout operation:
 - Regularization
 - In deep learning, the models learned by neural networks are:
 - Given some training data and a network architecture, multiple sets of weight values (multiple models) could explain the data.
 - Simpler models are less likely to overfit than complex ones.

Regularization, dropout operation:

- Regularization
 - To mitigate overfitting, we put constraints on the complexity of a network by forcing its weights to take only small values, which makes the distribution of weight values more regular.
 - ⇒ We called weight regularization, and it's done by adding to the loss function of the network a cost associated with having large weights.
 - This cost comes in two flavors:
 - L1 regularization: The cost added is proportional to the absolute value of the weight coefficients
 - L2 regularization: The cost added is proportional to the square of the value of the weight coefficients.

- Regularization, dropout operation:
 - Regularization
 - ✓ In Keras, weight regularization is added by passing weight regularizer instances to layers as keyword arguments.

```
# The model definition - regularization
model = models.Sequential()
model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),
activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001),
activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
```

□ I2(0.001) means every coefficient in the weight matrix of the layer will add 0.001 * weight_coefficient_value to the total loss of the network

4. Regularization, dropout operation:

Dropout

- Dropout is a widely used regularization technique for neural networks, developed by Geoff Hinton and his team.
- Dropout involves randomly setting a fraction of a layer's output features to zero during training to prevent overfitting.
- ✓ The dropout rate, typically between 0.2 and 0.5, determines the proportion of features dropped.
- During testing, no units are dropped; instead, the outputs are scaled down to compensate for the increased number of active units.

- 4. Regularization, dropout operation:
 - Dropout
 - ✓ Example:
 - Given a vector [0.2, 0.5, 1.3, 0.8, 1.1] for a given input sample during training.
 - After applying dropout, this vector will have a few zero entries distributed at random:
 - For example, [0, 0.5, 1.3, 0, 1.1].

- 4. Regularization, dropout operation:
 - > Dropout
 - ✓ Example 2:
 - Dropout applied to an activation matrix at training time, with rescaling happening during training. At test time, the activation matrix is unchanged.

0.3	0.2	1.5	0.0	50% dropout	0.0	0.2	1.5	0.0	* 0
0.6	0.1	0.0	0.3		0.6	0.1	0.0	0.3	
0.2	1.9	0.3	1.2	98	0.0	1.9	0.3	0.0	* 2
0.7	0.5	1.0	0.0		0.7	0.0	0.0	0.0	

- 4. Regularization, dropout operation:
 - Dropout
 - ✓ In Keras, we can introduce dropout in a network via the Dropout layer, which is applied to the output of the layer right before it::

model.add(layers.Dropout(0.5))

- 4. Regularization, dropout operation:
 - Dropout
 - ✓ Example 3::

```
# The model definition - dropout
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation='sigmoid'))
```

- 4. Regularization, dropout operation:
 - Dropout
 - To recap, these are the most common ways to prevent overfitting in neural networks:
 - Get more training data.
 - Reduce the capacity of the network.
 - Add weight regularization.
 - Add dropout.