inorganic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Redetermination of Dy₃Ni from singlecrystal X-ray data

Volodymyr Levytskyy, a* Volodymyr Babizhetskyy, Bohdan Kotur and Volodymyr Smetana b

^aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla & Mefodiya Street 6, 79005 Lviv, Ukraine, and ^b344 Spedding Hall, Ames Laboratory, Ames, IA 50011-3020, USA Correspondence e-mail: v.levyckyy@gmail.com

Received 10 October 2013; accepted 18 October 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(Dy-Ni) = 0.003$ Å; R factor = 0.042; wR factor = 0.052; data-to-parameter ratio = 25.3.

The classification of the title compound, tridysprosium nickel, into the Fe₃C (or Al₃Ni) structure type has been deduced from powder X-ray diffraction data with lattice parameters reported in a previous study [Lemaire & Paccard (1967). Bull. Soc. Fr. Mineral. Cristallogr. 40, 311–315]. The current re-investigation of Dy₃Ni based on single-crystal X-ray data revealed atomic positional parameters and anisotropic displacement parameters with high precision. The asymmetric unit consists of two Dy and one Ni atoms. One Dy atom has site symmetry .m. (Wyckoff position 4c) and is surrounded by twelve Dy and three Ni atoms. The other Dy atom (site symmetry 1, 8d) has eleven Dy and three Ni atoms as neighbours, forming a distorted Frank–Kasper polyhedron. The coordination polyhedron of the Ni atom (.m., 4c) is a tricapped trigonal prism formed by nine Dy atoms.

Related literature

For a previous crystallographic investigation of the title compound, see: Lemaire & Paccard (1967). For the Fe₃C structure, see: Hendricks (1930), and for the Al₃Ni structure, see: Bradley & Taylor (1937). For the Dy–Ni phase diagram, see: Zheng & Wang (1982). For magnetic properties of Dy₃Ni, see: Talik *et al.* (1996), and for magnetic properties of Dy₃Co, see: Baranov *et al.* (1995). For isotypic compounds, see: Tsvyashchenko (1986); Romaka *et al.* (2011); Buschow & van der Goot (1969); Givord & Lemaire (1971). For structure refinements of other compounds in the Dy–Ni system, see: Levytskyy *et al.* (2012*a,b*).

Experimental

Crystal data

Dy₃Ni V = 413.2 (3) Å³ Z = 4 Orthorhombic, *Pnma* Mo $K\alpha$ radiation $\alpha = 6.863$ (3) Å $\mu = 57.86$ mm⁻¹ $\mu = 57.86$

Data collection

 $\begin{array}{lll} \text{Stoe IPDS II diffractometer} & 973 \text{ measured reflections} \\ \text{Absorption correction: numerical} & 582 \text{ independent reflections} \\ \text{(X-RED$; Stoe & Cie, 2009)} & 447 \text{ reflections with } I > 2\sigma(I) \\ T_{\min} = 0.007, T_{\max} = 0.026 & R_{\text{int}} = 0.042 \\ \end{array}$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.042 & 23 \text{ parameters} \\ wR(F^2) = 0.052 & \Delta\rho_{\max} = 2.82 \text{ e Å}^{-3} \\ S = 1.12 & \Delta\rho_{\min} = -2.65 \text{ e Å}^{-3} \\ 582 \text{ reflections} & \end{array}$

Data collection: *X-AREA* (Stoe & Cie, 2009); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SIR2011* (Burla *et al.*, 2012); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008) and *WinGX* (Farrugia, 2012); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2777).

References

Baranov, N. V., Pirogov, A. N. & Teplykh, A. E. (1995). *J. Alloys Compd*, **226**, 70–74

Bradley, A. J. & Taylor, A. (1937). Philos. Mag. 23, 1049-1067.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L.,
Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R.
(2012). J. Appl. Cryst. 45, 357–361.

Buschow, K. H. J. & van der Goot, A. S. (1969). *J. Less-Common Met.* **18**, 309–311.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Givord, F. & Lemaire, R. (1971). Solid State Commun. 9, 341-346.

Hendricks, S. B. (1930). Z. Kristallogr. 74, 534-545.

Lemaire, R. & Paccard, D. (1967). Bull. Soc. Fr. Mineral. Cristallogr. 40, 311–315.

Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012a). Acta Cryst. E68, i20.

Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012b). Acta Cryst. E68, i83.

Romaka, L., Romaka, V. & Stadnyk, Yu. (2011). *Chem. Met. Alloys*, **4**, 89–93. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Talik, E., Mydlarz, T. & Gilewski, A. (1996). J. Alloys Compd, 233, 136–139. Tsvyashchenko, A. V. (1986). J. Less-Common Met. 118, 103–107.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Zheng, J.-X. & Wang, C.-Z. (1982). Acta Phys. Sin. 31, 668-673.

supplementary materials

Acta Cryst. (2013). E69, i80 [doi:10.1107/S1600536813028717]

Redetermination of Dy₃Ni from single-crystal X-ray data

Volodymyr Levytskyy, Volodymyr Babizhetskyy, Bohdan Kotur and Volodymyr Smetana

1. Comment

Lattice parameters for RE_3Ni compounds with RE = Y, La, Pr, Nd, Sm, Gd–Tm, have been determined and their crystal structures reported to be isotypic with the Fe₃C (or Al₃Ni) type structure which includes also Dy₃Ni (Lemaire & Paccard, 1967). According to the phase diagram of the Dy–Ni system (Zheng & Wang, 1982), Dy₃Ni is stable below 1035 K and is formed by the peritectic reaction: Dy + $L \rightarrow$ Dy₃Ni.

Similar isotypic RE_3 Co compounds were also reported (Buschow & van der Goot, 1969) for RE = Y, La, Pr, Nd, Sm, Gd–Er. Lu₃Co has been prepared by Givord & Lemaire (1971), Lu₃Ni by Romaka *et al.* (2011). Tsvyashchenko (1986) synthesized Yb₃Co and Yb₃Ni at high pressure. According to Tsvyashchenko (1986), Yb₃Co adopts the Fe₃C type structure and Yb₃Ni the Al₃Ni structure type. On the other hand, Lemaire & Paccard (1967) claimed the RE_3 Ni compounds to have the same structure as the RE_3 Co compounds. To clarify the confusion with the assigned structure types, we have studied literature data for the Fe₃C (Hendricks, 1930) and the Al₃Ni (Bradley & Taylor, 1937) prototype structures, concluding that Al₃Ni and Fe₃C are isotypic. In accordance with the majority in literature, we will use the Fe₃C structure type for classification as it has been reported earlier.

Recently, two binary compounds of the Dy–Ni system have been redetermined using single-crystal X-ray data (Levytskyy *et al.*, 2012*a,b*). Here we present the results of the single-crystal X-ray analysis of Dy₃Ni. Details of the crystal structure have not been investigated before, and only isotypism with the Fe₃C was reported together with lattice parameters (Lemaire & Paccard, 1967).

The structure of Dy₃Ni is characterized by formation of trigonal prisms of Dy atoms with Ni atom enclosed in the centre. A view of the crystal structure of Dy₃Ni is shown in Fig. 1. The value of the displacement parameter U_{22} for the Ni atom displays a high anisotropy in the b direction which may have an influence on some physical properties of the compound. Magnetic properties of Dy₃Ni were reported by Talik *et al.* (1996) and generally confirm this assumption which is also valid for the isotypic Dy₃Co (Baranov *et al.*, 1995).

In Fig. 2 the ac projection of the unit cell and the coordination polyhedra for all atom types in Dy₃Ni are shown. The coordination number for Dy1 (site symmetry .m., Wyckoff site 4 c) is 15 with bonding to 12 Dy and 3 Ni atoms. The coordination number for Dy2 (site symmetry 1, Wyckoff site 8 d) is 14, resulting in a distorted Frank–Kasper polyhedron defined by 11 Dy and 3 Ni atoms. The coordination number for Ni (site symmetry .m., Wyckoff site 4 c) is 9, resulting in a slightly distorted tricapped trigonal prism made up of 9 Dy atoms.

The analysis of interatomic distances shows a slight decrease of some Dy–Ni distances. This feature is in good agreement with the observed Ho–Co distances for previously reported Ho₃Co (Buschow & van der Goot, 1969). The explanation of this fact may be deduced from an electronic band structure calculation.

2. Experimental

The sample was prepared from powdered commercially available pure elements: sublimed bulk pieces of dysprosium metal with a claimed purity of 99.99 at.% (Alfa Aesar, Johnson Matthey) and electrolytic nickel (99.99% pure) pieces (Aldrich). A mixture of the powders was compacted into a pellet. It was arc-melted under an argon atmosphere on a water-cooled copper hearth. The alloy button (~1 g) was turned over and remelted three times to improve homogeneity. Subsequently, the sample was annealed in an evacuated silica tube under an argon atmosphere for four weeks at 870 K. Shiny metallic gray plate-like crystals were isolated mechanically with a help of microscope by crushing the sample.

3. Refinement

The atomic positions found from the direct methods structure solution were in good agreement with those from the Fe₃C structure type (Hendricks, 1930) and were used as starting point for the structure refinement. The highest Fourier difference peak of 2.82 e Å^{-3} is at $(0.0340 \ 0.75 \ 0.1598)$ and $1.36 \ \text{Å}$ away from the Dy2 atom. The deepest hole of $-2.65 \ \text{e}$ Å⁻³ is at $(0.0358 \ 0.25 \ 0.0220)$ and $1.01 \ \text{Å}$ away from the Ni atom.

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2009); cell refinement: *X-AREA* (Stoe & Cie, 2009); data reduction: *X-AREA* (Stoe & Cie, 2009); program(s) used to solve structure: *SIR2011* (Burla *et al.*, 2012); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008) and *WinGX* (Farrugia, 2012); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1
Perspective view of the crystal structure of Dy₃Ni. The unit cell and coordination trigonal prisms for Ni atoms are emphasized. The stacking edge of these prisms is marked by red colour. Atoms are represented by their anisotropic displacement ellipsoids at the 99.9% probability level.

Figure 2 The ac projection of the unit cell and coordination polyhedra for all types of atoms in the Dy₃Ni structure.

Tridysprosium nickel

Crystal de	ata
------------	-----

Dy₃Ni $M_r = 546.21$ Orthorhombic, Pnma a = 6.863 (3) Å b = 9.553 (3) Å c = 6.302 (2) Å $V = 413.2 (3) \text{ Å}^3$ Z = 4F(000) = 904

Data collection

Stoe IPDS II diffractometer Radiation source: fine-focus sealed tube

Absorption correction: numerical

(X-RED; Stoe & Cie, 2009) $T_{\min} = 0.007, T_{\max} = 0.026$

973 measured reflections

 $D_{\rm x} = 8.781 \; {\rm Mg \; m^{-3}}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2575 reflections $\theta = 3.7 - 29.5^{\circ}$ $\mu = 57.86 \text{ mm}^{-1}$ T = 293 KBlock, metallic gray $0.14 \times 0.11 \times 0.10 \text{ mm}$

582 independent reflections 447 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.042$ $\theta_{\text{max}} = 29.6^{\circ}, \ \theta_{\text{min}} = 3.9^{\circ}$ $h = 0 \rightarrow 9$ $k = 0 \rightarrow 12$ $l = -8 \rightarrow 8$

sup-3 Acta Cryst. (2013). E69, i80

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.052$ S = 1.12582 reflections 23 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $w = 1/[\sigma^2(F_o^2) + (0.0141P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 2.82 \text{ e Å}^{-3}$ $\Delta\rho_{\rm min} = -2.65 \text{ e Å}^{-3}$ Extinction correction: *SHELXL2013* (Sheldrick,

Extinction correction: *SHELXL2013* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.00030 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	X	y	z	$U_{ m iso}$ */ $U_{ m eq}$	
Dy1	0.17975 (10)	0.06439 (6)	0.17745 (9)	0.01479 (17)	
Dy2	0.03218 (14)	0.2500	0.63694 (13)	0.0147 (2)	
Ni	0.3917 (4)	0.2500	0.4477 (4)	0.0197 (5)	

Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Dy1	0.0150(3)	0.0151 (3)	0.0143 (2)	0.0001(3)	0.0003 (3)	-0.0004 (2)
Dy2	0.0158 (5)	0.0144 (4)	0.0138 (4)	0.000	0.0014(3)	0.000
Ni	0.0131 (12)	0.0268 (14)	0.0192 (11)	0.000	0.0003 (10)	0.000

Geometric parameters (Å, °)

Dy1—Ni ⁱ	2.770 (2)	Dy2—Dy1 ^{xii}	3.5361 (12)
Dy1—Ni	2.856 (2)	Dy2—Dy1 ^{vi}	3.5433 (12)
Dy1—Ni ⁱⁱ	3.3700 (15)	Dy2—Dy1 ^{viii}	3.5944 (14)
Dy1—Dy1 ⁱⁱⁱ	3.5174 (11)	Dy2—Dy1 ⁱ	3.5944 (14)
Dy1—Dy1 ^{iv}	3.5174 (11)	Dy2—Dy1 ^{xiii}	3.6047 (12)
Dy1—Dy2 ^v	3.5361 (12)	Dy2—Dy1 ⁱⁱⁱ	3.6047 (12)
Dy1—Dy2	3.5433 (12)	Dy2—Dy2 ^{xiv}	3.7156 (15)
Dy1—Dy1 ^{vi}	3.5462 (16)	Dy2—Dy2 ^{xi}	3.7156 (15)
Dy1—Dy1 ^{vii}	3.5502 (15)	Ni—Dy1×	2.770 (2)
Dy1—Dy1 ^{viii}	3.5512 (15)	Ni—Dy1 ^{ix}	2.770 (2)
Dy1—Dy1 ^{ix}	3.5512 (15)	Ni—Dy2xiv	2.790 (3)
Dy1—Dy2 ^x	3.5944 (14)	Ni—Dy1 ^{vi}	2.856 (2)
Dy2—Ni	2.740 (3)	Ni—Dy1 ^{xiii}	3.3700 (15)
Dy2—Ni ^{xi}	2.790(3)	Ni—Dy1 ⁱⁱⁱ	3.3700 (15)
Dy2—Dy1 ^v	3.5361 (12)		
Ni ⁱ —Dy1—Ni	97.80 (5)	$Dy1$ — $Dy2$ — $Dy1^{vi}$	60.06 (3)

supplementary materials

Ni ⁱ —Dy1—Ni ⁱⁱ	110.14 (3)	Ni—Dy2—Dy1 ^{viii}	111.46 (6)
Ni—Dy1—Ni ⁱⁱ	152.06 (4)	Ni ^{xi} —Dy2—Dy1 ^{viii}	106.54 (6)
Ni ⁱ —Dy1—Dy1 ⁱⁱⁱ	132.42 (6)	Dy1 ^v —Dy2—Dy1 ^{viii}	59.11 (2)
Ni—Dy1—Dy1 ⁱⁱⁱ	62.83 (4)	$Dy1^{xii}$ — $Dy2$ — $Dy1^{viii}$	108.94 (3)
Ni ⁱⁱ —Dy1—Dy1 ⁱⁱⁱ	96.49 (5)	Dy1—Dy2—Dy1 ^{viii}	59.67 (3)
Ni^{i} — $Dy1$ — $Dy1^{iv}$	99.46 (5)	Dy1 ^{vi} —Dy2—Dy1 ^{viii}	89.35 (3)
Ni—Dy1—Dy1 ^{iv}	127.71 (7)	Ni—Dy2—Dy1 ⁱ	111.46 (6)
Ni^{ii} — $Dy1$ — $Dy1^{iv}$	48.95 (4)	Ni ^{xi} —Dy2—Dy1 ⁱ	106.54 (6)
Dy1 ⁱⁱⁱ —Dy1—Dy1 ^{iv}	127.23 (4)	$Dy1^v$ — $Dy2$ — $Dy1^i$	108.94 (3)
Ni ⁱ —Dy1—Dy2 ^v	110.13 (6)	$Dy1^{xii}$ — $Dy2$ — $Dy1^i$	59.11 (2)
Ni—Dy1—Dy2 ^v	122.64 (5)	Dy1—Dy2—Dy1 ⁱ	89.35 (3)
Ni ⁱⁱ —Dy1—Dy2 ^v	47.57 (5)	Dy1 ^{vi} —Dy2—Dy1 ⁱ	59.67 (3)
Dy1 ⁱⁱⁱ —Dy1—Dy2 ^v	61.27 (3)	Dy1 ^{viii} —Dy2—Dy1 ⁱ	59.12 (3)
Dy1 ^{iv} —Dy1—Dy2 ^v	96.43 (3)	Ni—Dy2—Dy1xiii	62.42 (3)
Ni ⁱ —Dy1—Dy2	73.05 (5)	Ni ^{xi} —Dy2—Dy1 ^{xiii}	97.07 (4)
Ni—Dy1—Dy2	49.28 (6)	Dy1 ^v —Dy2—Dy1 ^{xiii}	155.48 (3)
Ni ⁱⁱ —Dy1—Dy2	139.07 (5)	Dy1 ^{xii} —Dy2—Dy1 ^{xiii}	59.64 (3)
Dy1 ⁱⁱⁱ —Dy1—Dy2	61.40 (2)	Dy1—Dy2—Dy1 ^{xiii}	108.55 (3)
Dy1 ^{iv} —Dy1—Dy2	170.23 (3)	Dy1 ^{vi} —Dy2—Dy1 ^{xiii}	58.947 (18)
Dy2 ^v —Dy1—Dy2	92.13 (2)	Dy1 ^{viii} —Dy2—Dy1 ^{xiii}	144.99 (2)
Ni ⁱ —Dy1—Dy1 ^{vi}	50.21 (4)	Dy1 ⁱ —Dy2—Dy1 ^{xiii}	89.83 (3)
Ni—Dy1—Dy1 ^{vi}	51.63 (4)	Ni—Dy2—Dy1 ⁱⁱⁱ	62.42 (3)
Ni ⁱⁱ —Dy1—Dy1 ^{vi}	153.03 (4)	Ni ^{xi} —Dy2—Dy1 ⁱⁱⁱ	97.07 (4)
Dy1 ⁱⁱⁱ —Dy1—Dy1 ^{vi}	110.47 (2)	Dy1 ^v —Dy2—Dy1 ⁱⁱⁱ	59.64 (3)
Dy1 ^{iv} —Dy1—Dy1 ^{vi}	110.47 (2)	Dy1 ^{xii} —Dy2—Dy1 ⁱⁱⁱ	155.48 (3)
Dy2v—Dy1—Dy1vi	148.141 (19)	Dy1—Dy2—Dy1 ⁱⁱⁱ	58.947 (18)
Dy2—Dy1—Dy1 ^{vi}	59.972 (15)	Dy1 ^{vi} —Dy2—Dy1 ⁱⁱⁱ	108.55 (3)
Ni ⁱ —Dy1—Dy1 ^{vii}	63.03 (5)	Dy1 ^{viii} —Dy2—Dy1 ⁱⁱⁱ	89.83 (3)
Ni—Dy1—Dy1 ^{vii}	160.83 (5)	Dy1 ⁱ —Dy2—Dy1 ⁱⁱⁱ	144.99 (2)
Ni ⁱⁱ —Dy1—Dy1 ^{vii}	47.11 (5)	Dy1 ^{xiii} —Dy2—Dy1 ⁱⁱⁱ	112.85 (4)
Dy1 ⁱⁱⁱ —Dy1—Dy1 ^{vii}	129.32 (4)	Ni—Dy2—Dy2 ^{xiv}	48.35 (6)
Dy1 ^{iv} —Dy1—Dy1 ^{vii}	60.32 (3)	Ni ^{xi} —Dy2—Dy2 ^{xiv}	87.67 (7)
Dy2v—Dy1—Dy1vii	68.17 (3)	Dy1v—Dy2—Dy2xiv	104.66 (3)
Dy2—Dy1—Dy1 ^{vii}	119.32 (4)	Dy1 ^{xii} —Dy2—Dy2 ^{xiv}	104.66 (3)
Dy1 ^{vi} —Dy1—Dy1 ^{vii}	110.28 (2)	Dy1—Dy2—Dy2 ^{xiv}	92.83 (3)
Ni ⁱ —Dy1—Dy1 ^{viii}	51.95 (5)	Dy1 ^{vi} —Dy2—Dy2 ^{xiv}	92.83 (3)
Ni—Dy1—Dy1 ^{viii}	109.78 (6)	Dy1 ^{viii} —Dy2—Dy2 ^{xiv}	146.39 (2)
Ni ⁱⁱ —Dy1—Dy1 ^{viii}	88.29 (5)	Dy1 ⁱ —Dy2—Dy2 ^{xiv}	146.39 (2)
Dy1 ⁱⁱⁱ —Dy1—Dy1 ^{viii}	91.96 (3)	Dy1xiii—Dy2—Dy2xiv	57.75 (2)
Dy1 ^{iv} —Dy1—Dy1 ^{viii}	119.71 (3)	Dy1 ⁱⁱⁱ —Dy2—Dy2 ^{xiv}	57.75 (2)
Dy2 ^v —Dy1—Dy1 ^{viii}	61.14 (2)	Ni—Dy2—Dy2 ^{xi}	176.75 (7)
Dy2—Dy1—Dy1 ^{viii}	60.88 (2)	Ni ^{xi} —Dy2—Dy2 ^{xi}	47.22 (6)
Dy1 ^{vi} —Dy1—Dy1 ^{viii}	90.0	Dy1'—Dy2—Dy2xi	59.55 (2)
Dy1 ^{vii} —Dy1—Dy1 ^{viii}	59.38 (3)	Dy1 ^{xii} —Dy2—Dy2 ^{xi}	59.55 (2)
Ni—Dy1—Dy1 ^{ix}	139.72 (4)	Dy1—Dy2—Dy2 ^{xi}	125.27 (3)
Ni—Dy1—Dy1 Ni—Dy1—Dy1 ^{ix}	49.80 (5)	Dy1 ^{vi} —Dy2—Dy2 ^{xi}	125.27 (3)
Ni ⁱⁱ —Dy1—Dy1 ^{ix}	104.55 (5)	Dy1 — Dy2 — Dy2 Dy1 viii — Dy2 — Dy2xi	65.79 (3)
Dy1 ⁱⁱⁱ —Dy1—Dy1 ^{ix}	60.29 (3)	$Dy1^{i} - Dy2 - Dy2^{xi}$ $Dy1^{i} - Dy2 - Dy2^{xi}$	65.79 (3)
Dy1 —Dy1—Dy1 Dy1iv—Dy1—Dy1ix	88.04 (3)	Dy1—Dy2—Dy2 Dy1 ^{xiii} —Dy2—Dy2 ^{xi}	118.64 (2)
Dy1 Dy1 Dy1	00.0T (<i>3)</i>	Dy1 Dy2 Dy2	110.07 (2)

supplementary materials

$Dy2^v$ — $Dy1$ — $Dy1^{ix}$	108.20 (2)	Dy1 ⁱⁱⁱ —Dy2—Dy2 ^{xi}	118.64 (2)
Dy2—Dy1—Dy1 ^{ix}	93.77 (3)	Dy2 ^{xiv} —Dy2—Dy2 ^{xi}	134.90 (5)
$Dy1^{vi}$ — $Dy1$ — $Dy1^{ix}$	90.0	Dy2—Ni—Dy1 ^x	140.04 (4)
Dy1 ^{vii} —Dy1—Dy1 ^{ix}	146.49 (3)	Dy2—Ni—Dy1 ^{ix}	140.04 (4)
Dy1 ^{viii} —Dy1—Dy1 ^{ix}	150.16 (4)	Dy1 ^x —Ni—Dy1 ^{ix}	79.59 (8)
Ni ⁱ —Dy1—Dy2 ^x	90.43 (6)	Dy2—Ni—Dy2 ^{xiv}	84.43 (7)
Ni—Dy1—Dy2 ^x	71.33 (6)	Dy1 ^x —Ni—Dy2 ^{xiv}	91.17 (8)
Ni ⁱⁱ —Dy1—Dy2 ^x	107.50 (5)	Dy1 ^{ix} —Ni—Dy2 ^{xiv}	91.17 (8)
Dy1 ⁱⁱⁱ —Dy1—Dy2 ^x	118.81 (4)	Dy2—Ni—Dy1	78.53 (7)
$Dy1^{iv}$ — $Dy1$ — $Dy2^x$	59.62 (2)	Dy1x—Ni—Dy1	126.22 (9)
Dy2 ^v —Dy1—Dy2 ^x	151.42 (2)	Dy1 ^{ix} —Ni—Dy1	78.25 (5)
Dy2—Dy1—Dy2 ^x	113.33 (3)	Dy2xiv—Ni—Dy1	137.35 (5)
Dy1 ^{vi} —Dy1—Dy2 ^x	60.442 (16)	Dy2—Ni—Dy1 ^{vi}	78.53 (7)
Dy1 ^{vii} —Dy1—Dy2 ^x	106.94 (4)	Dy1 ^x —Ni—Dy1 ^{vi}	78.25 (5)
Dy1 ^{viii} —Dy1—Dy2 ^x	142.39 (2)	Dy1 ^{ix} —Ni—Dy1 ^{vi}	126.22 (9)
$Dy1^{ix}$ — $Dy1$ — $Dy2^{x}$	59.45 (3)	Dy2 ^{xiv} —Ni—Dy1 ^{vi}	137.35 (5)
Ni—Dy2—Ni3 ^{xi}	136.02 (9)	Dy1—Ni—Dy1 ^{vi}	76.74 (7)
Ni—Dy2—Dy1 ^v	120.95 (2)	Dy2—Ni—Dy1xiii	71.46 (5)
Ni ^{xi} —Dy2—Dy1 ^v	63.09 (3)	Dy1 ^x —Ni—Dy1 ^{xiii}	69.86 (3)
Ni—Dy2—Dy1 ^{xii}	120.95 (2)	Dy1 ^{ix} —Ni—Dy1 ^{xiii}	142.80 (9)
Ni^{xi} — $Dy2$ — $Dy1^{xii}$	63.09 (3)	Dy2xiv—Ni—Dy1xiii	69.34 (4)
Dy1 ^v —Dy2—Dy1 ^{xii}	116.28 (4)	Dy1—Ni—Dy1 ^{xiii}	137.33 (9)
Ni—Dy2—Dy1	52.19 (4)	Dy1 ^{vi} —Ni—Dy1 ^{xiii}	68.22 (3)
Ni ^{xi} —Dy2—Dy1	149.959 (16)	Dy2—Ni—Dy1 ⁱⁱⁱ	71.46 (5)
Dy1 ^v —Dy2—Dy1	87.87 (3)	Dy1 ^x —Ni—Dy1 ⁱⁱⁱ	142.80 (9)
Dy1 ^{xii} —Dy2—Dy1	144.38 (2)	Dy1 ^{ix} —Ni—Dy1 ⁱⁱⁱ	69.86 (3)
Ni—Dy2—Dy1 ^{vi}	52.19 (4)	Dy2 ^{xiv} —Ni—Dy1 ⁱⁱⁱ	69.34 (4)
Ni ^{xi} —Dy2—Dy1 ^{vi}	149.959 (16)	Dy1—Ni—Dy1 ⁱⁱⁱ	68.22 (3)
Dy1 ^v —Dy2—Dy1 ^{vi}	144.38 (2)	Dy1 ^{vi} —Ni—Dy1 ⁱⁱⁱ	137.33 (9)
Dy1 ^{xii} —Dy2—Dy1 ^{vi}	87.87 (2)	Dy1 ^{xiii} —Ni—Dy1 ⁱⁱⁱ	126.05 (8)