BTS OPTICIEN LUNETIER

MATHÉMATIQUES

Session 2009

Durée: 2 heures Coefficient: 2

Matériel autorisé :

Toutes les calculatrices de poche, y compris les calculatrices programmables, alphanumériques ou à écran graphique, à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante. (Circulaire n° 99 – 186 du 16/11/1999.)

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet comporte 5 pages numérotées de 1/5 à 5/5.

Un formulaire de 3 pages est joint au sujet.

BTS OPTI	CIEN LUNETIER	SESSION 2009
CODE : OLMAT	DUREE : 2H	Coefficient: 2
EPREUVE DE MATHEMATIQU	E	Page 1/5

EXERCICE 1 (10 points)

La direction de la chaîne des magasins OPTITAN, qui commercialise des lunettes solaires, se propose de déterminer le prix de vente unitaire d'un de ses modèles pour réaliser la meilleure recette possible.

La direction raisonne à partir des deux hypothèses suivantes :

- pour un prix de base de 50 euros, il y a 10 000 clients acheteurs en une année ;

- toute augmentation de 20 euros entraîne une diminution de 20 % du nombre de clients.

A. Modèle discret

1° La suite (p_n) , avec n entier naturel compris entre 0 et 4, des différents prix testés, en euros, par l'entreprise est une suite arithmétique de premier terme $p_0 = 50$ et de raison r = 20. Déterminer p_1 , p_2 , p_3 et p_4 .

2° Pour n entier naturel compris entre 0 et 4, on désigne par c_n le nombre de clients acheteurs potentiels, lorsque le prix unitaire est égal à p_n .

a) Montrer que (c_n) est une suite géométrique dont on précisera la raison et le premier

terme.

b) Exprimer, pour tout n entier naturel compris entre 0 et 4, c_n en fonction de n.

3º Pour n entier naturel compris entre 0 et 4, on désigne par r_n la recette correspondant au prix unitaire p_n .

a) Reproduire et compléter le tableau suivant.

n	0	1	2	3	4
p_n	50	70			130
C_n	10 000				
r_n	500 000				

b) D'après le tableau précédent, quel prix p_n permet à OPTITAN de réaliser la meilleure recette?

B. Modèle continu

I. On considère l'équation différentielle (E): $y' = -\frac{20}{100}y$,

où y est une fonction de la variable réelle x, définie et dérivable sur l'intervalle [0, 4], et y' sa fonction dérivée.

1° a) Déterminer les solutions de l'équation différentielle (E).

b) Déterminer la solution C de l'équation différentielle (E) qui vérifie $C(0) = 10\,000$.

BTS OPTI	CIEN LUNETIER	SESSION 2009
CODE : OLMAT	DUREE : 2H	Coefficient: 2
EPREUVE DE MATHEMATIQU	E	Page 2/5

2° a) Reproduire et compléter le tableau de valeurs suivant, dans lequel les valeurs c_n ont été obtenues à la question A. 3° et les valeurs C(n) sont à calculer avec la fonction C obtenue au B. I. 1° b). Arrondir les valeurs C(n) à l'unité.

n	0	1	2	3	4
Nombre de clients potentiels obtenu avec le premier modèle : c_n		8 000	-		
Nombre de clients potentiels obtenu avec le deuxième modèle : $C(n)$		8 187			
$C(n)-c_n$		187			

- b) Pour quelle valeur de *n* l'écart entre le nombre de clients acheteurs potentiels obtenu avec le deuxième modèle et le nombre de clients acheteurs potentiels obtenu avec le premier modèle est-il le plus important ? Quel est alors cet écart ?
- II. On considère la fonction R de la variable réelle x définie sur l'intervalle [0, 4] par :

$$R(x) = (5 + 2x) e^{-0.2x}$$
.

- 1° a) Calculer R'(x), pour tout réel x de l'intervalle [0, 4].
 - b) Étudier le signe de R'(x) sur l'intervalle [0, 4].

En déduire le tableau de variation de R, dans lequel on fera figurer les valeurs exactes de R(0), de R(4) et de $R(x_0)$, où x_0 est la valeur de x pour laquelle la fonction R admet un maximum.

c) Donner les valeurs approchées arrondies à 10^{-2} de R(2,5) et R(4).

En utilisant le tableau de variation précédent, donner le nombre de solutions de l'équation R(x) = 6 dans l'intervalle [0, 4]. On ne demande pas de justification.

2° On admet que, lorsque le prix de vente unitaire du modèle de lunettes solaires considéré au début de l'exercice est (50 + 20x) euros, avec $0 \le x \le 4$, la recette correspondante est R(x), en centaines de milliers d'euros.

Répondre aux questions suivantes en utilisant les résultats de la question B. II. 1°.

- a) Déterminer le prix unitaire, en euros, du modèle de lunettes permettant d'obtenir la meilleure recette. Quelle est alors cette recette, arrondie à l'euro?
- b) Deux prix permettent une recette égale à 600 000 euros. Expliquer pourquoi l'un est favorable à l'acheteur et l'autre au vendeur.

BTS OPTICIEN LUNETIER		SESSION 2009
CODE : OLMAT	DUREE : 2H	Coefficient: 2
EPREUVE DE MATHEMATIQUE	3	Page 3/5

EXERCICE 2 (10 points)

Les quatre parties de cet exercice peuvent être traitées de façon indépendante.

Dans le service d'ophtalmologie d'un centre hospitalier, on dispose de deux fichiers, concernant un grand nombre de patients. Le fichier 1 contient les fiches cartonnées de patients atteints d'un glaucome. Le fichier 2 concerne des patients non atteints de glaucome.

A. Événements indépendants

Dans cette partie, on demande les valeurs exactes des probabilités.

On s'intéresse aux allergies déclenchées chez les patients du fichier 1 par deux collyres C_1 et C_2 . L'examen du fichier montre que 5 % des patients sont allergiques à C_1 et 10 % des patients allergiques à C_2 .

On prélève une fiche au hasard dans le fichier 1.

On note A l'événement : « la fiche prélevée est celle d'un patient allergique à C₁ ».

On note B l'événement : « la fiche prélevée est celle d'un patient allergique à C₂ ».

On suppose que les événements A et B sont indépendants.

- 1º Donner les probabilités P(A) et P(B).
- 2° Calculer la probabilité de l'événement : « la fiche prélevée est celle d'un patient allergique aux deux collyres ».
- 3° Calculer la probabilité de l'événement : « la fiche prélevée est celle d'un patient allergique à l'un au moins des deux collyres ».

Dans les parties B, C et D, les valeurs approchées sont à arrondir à 10^{-2} .

B. Loi binomiale et loi de Poisson

Dans le fichier 1, seulement 10 % des fiches indiquent une « pression intraoculaire » normale (la pression intraoculaire est la pression de l'humeur aqueuse à l'intérieur de l'œil).

On prélève au hasard et avec remise n fiches dans le fichier 1.

On désigne par X la variable aléatoire qui à tout prélèvement de n fiches associe le nombre de fiches indiquant une pression intraoculaire normale.

- 1° Justifier que la variable aléatoire X suit une loi binomiale dont on précisera les paramètres.
- 2° Dans cette question, on prend n = 10.

Calculer la probabilité que, dans un tel prélèvement, aucune fiche ne présente une pression intraoculaire normale.

3° Dans cette question, on prend n = 100.

On considère que la loi suivie par la variable aléatoire X peut être approchée par une loi de Poisson.

- a) Donner le paramètre λ de cette loi de Poisson.
- b) On désigne par Y une variable aléatoire suivant la loi de Poisson de paramètre λ , où λ est la valeur obtenue au a).

Calculer, à l'aide de la table du formulaire, $P(Y \le 3)$.

BTS OPTICIEN LUNETIER		SESSION 2009	
CODE : OLMAT	DUREE : 2H	Coefficient: 2	
EPREUVE DE MATHEMATIQUE		Page 4/5	

C. Loi normale

Dans cette question, on considère la variable aléatoire Z qui, à toute fiche prélevée au hasard dans le fichier 1, associe la pression intraoculaire du patient, exprimée en millimètres de mercure.

On admet que Z suit la loi normale de moyenne 19 et d'écart type 2.

Calculer, à l'aide de la table du formulaire, la probabilité $P(15 \le Z \le 23)$.

D. Test d'hypothèse

Dans cette partie, on cherche à déterminer s'il existe une différence significative entre la moyenne des « pressions systoliques » (la pression systolique est la pression artérielle au moment de la contraction du cœur) des patients du fichier 1, atteints de glaucome, et celle des patients du fichier 2, non atteints de glaucome. Ne pouvant consulter toutes les fiches, on décide de procéder à un test d'hypothèse.

On note X_1 la variable aléatoire qui à chaque fiche prélevée au hasard dans le fichier 1 associe la pression systolique du patient, exprimée en millimètres de mercure.

On note X_2 la variable aléatoire qui à chaque fiche prélevée au hasard dans le fichier 2 associe la pression systolique du patient, exprimée en millimètres de mercure.

On admet que X_1 suit la loi normale \mathcal{N} (μ_1 , 25) et que X_2 suit la loi normale \mathcal{N} (μ_2 , 20), où μ_1 et μ_2 sont les moyennes inconnues des pressions systoliques des patients des fichiers 1 et 2.

On désigne par $\overline{X_1}$ la variable aléatoire qui à chaque échantillon aléatoire de 200 fiches prélevées avec remise dans le fichier 1 associe la moyenne des pressions systoliques.

On désigne par \overline{X}_2 la variable aléatoire qui à chaque échantillon aléatoire de 200 fiches prélevées avec remise dans le fichier 2 associe la moyenne des pressions systoliques.

On note D la variable aléatoire telle que : $D = \overline{X_1} - \overline{X_2}$.

L'hypothèse nulle est H_0 : $\mu_1 = \mu_2$.

L'hypothèse alternative est $H_1: \mu_1 \neq \mu_2$.

Le seuil de signification est fixé à 5 %.

On admet que sous l'hypothèse nulle H_0 , la variable aléatoire D suit la loi normale $\mathcal{N}(0, \sqrt{\frac{25^2 + 20^2}{200}})$.

1° Sous l'hypothèse nulle H_0 , déterminer le nombre réel positif h tel que :

$$P(-h \le D \le h) = 0.95.$$

2° Énoncer la règle de décision du test.

3° On prélève un échantillon aléatoire de 200 fiches dans chacun des fichiers. La moyenne observée sur l'échantillon du fichier 1 est $\overline{x_1} = 133$. Celle observée sur l'échantillon du fichier 2 est $\overline{x_2} = 130$.

Peut-on, au seuil de signification de 5 %, accepter l'hypothèse H_0 ?

BTS OPTICIEN LUNETIER		SESSION 2009
CODE : OLMAT	DUREE : 2H	Coefficient: 2
EPREUVE DE MATHEMATIQUE		Page 5/5