Université Paris - Dauphine

Processus Aléatoires Discrets

Examen du 1-9-2007

Aucun document n'est autorisé. Durée 2 heures.

- 1. (Temps d'attente avant l'apparition d'une séquence).
 - Soit $(X_n; n \ge 1)$ une suite de variables aléatoires indépendantes de loi de Bernoulli de paramètre $p \in (0,1)$: $\mathbb{P}(X_n=1)=1-\mathbb{P}(X_n=0)=p$. On désire calculer le temps moyen avant la première apparition d'une séquence de longueur trois donnée. Pour cela, on pose : $\tau_{ijk} = \inf\{n \ge 3; (X_{n-2}, X_{n-1}, X_n) = (i, j, k)\}$ pour $i, j, k \in \{0, 1\}$.
 - (a) Montrer que τ_{ijk} est un temps d'arrêt (par rapport à une filtration que l'on précisera).
 - (b) Montrer que $Z_n = (X_{n-2}, X_{n-1}, X_n)$ est une chaine de Markov irreductible sur $M = \{0, 1\}^3$. En deduire que $\mathbb{E}(\tau_{i,j,k}) < +\infty$.
 - (c) On pose $S_0 = 0$ et $S_n = (S_{n-1} + 1) \frac{X_n}{p}$ pour tout $n \ge 1$. Montrer que $(S_n n; n \ge 0)$ est une martingale.
 - (d) Calculer $E[\tau_{111}]$ (on utilisera le theoreme d'arrêt de Doob).
 - (e) Calculer $P(\tau_{111} > \tau_{110})$.
- 2. Soit $\Omega = [0, 1]$, \mathcal{F} la tribu borelienne de Ω , \mathbb{P} la mesure de Lebesgue sur \mathcal{F} . Soit K un entier positif. Pour tout $n \in \mathbb{N}$, soit \mathcal{F}_n la tribu engendrée par la partition

$$\{(jK^{-n}, (j+1)K^{-n}], j = 0, \dots, K^n - 1\}$$

$$\mathcal{F}_n = \sigma \left\{ (jK^{-n}, (j+1)K^{-n}], \ j = 0, \dots, K^n - 1 \right\}$$

Soit α un nombre réel positif. On pose, pour tout $n \geq 0$

$$X_n(\omega) = \begin{cases} \alpha^n & \text{si } 0 \le \omega \le K^{-n}, \\ 0 & \text{autrement.} \end{cases}$$

- (a) Montrer que $\{\mathcal{F}_n\}_n$ est une filtration croissante.
- (b) Calculer $\mathbb{E}(X_{n+1}|\mathcal{F}_n)$.
- (c) Pour quelle valeur de α on a que X_n est une martingale par rapport a cette filtration?
- (d) Pour quelles valeurs de α on a que X_n est une sous-martingale?
- (e) Calculer la limite presque sure de X_n pour $n \to \infty$.
- 3. Château de cartes. On considère la suite de v.a. definie par

$$X_{n+1} = \left\{ \begin{array}{ll} X_n + 1 & \text{avec probabilité } p \in]0,1[\\ 0 & \text{avec probabilité } 1-p \end{array} \right.$$

indépendamment de ce qui précède.

- (a) Identifier le système dynamique aleatoire correspondant, et donner sa matrice de transition.
- (b) Chercher les probabilités invariantes par la chaîne.
- (c) Montrer que, $\forall y$, $\lim_{t\to\infty} \mathbf{P}_y(X_n=x) = \pi(x)$, où π est la probabilité invariante.
- (d) Soit $\tau_k = \inf\{n \ge 1 : X_n = k\}$ pour $k = 0, 1, 2, \dots$ Calculer $\mathbb{E}(\tau_k)$.
- (e) Calculer, en partant de 0 ($X_0 = 0$) l'espérance du temps passe au-dessus de k avant de tomber sur 0 la première fois

$$\mathbb{E}_0\left(\sum_{n=0}^{\tau_0-1} 1_{[X_n \ge k]}\right)$$