Package 'HaDeX'

October 12, 2022

Title Analysis and Visualisation of Hydrogen/Deuterium Exchange Mass Spectrometry Data

Version 1.2.2

Description Functions for processing, analysis and visualization of Hydrogen Deuterium eXchange monitored by

Mass Spectrometry experiments (HDX-

MS) (10.1093/bioinformatics/btaa587). 'HaDeX' introduces a new standardized and reproducible workflow for the analysis of the HDX-MS data, including novel uncertainty intervals. Additionally, it covers data exploration, quality control and generation of publication-quality figures. All functionalities are also available in the in-built 'Shiny' app.

Depends R (>= 3.0)

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.1

Imports data.table, dplyr, DT, ggplot2, gsubfn, latex2exp, reshape2, readr, readxl, shiny, stringr, tidyr

Suggests spelling, covr, digest, gridExtra, knitr, pander, renv, rmarkdown, shinycssloaders, shinyhelper, shinyjs, testthat, vdiffr

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Weronika Puchala [cre, aut] (https://orcid.org/0000-0003-2163-1429), Michal Burdukiewicz [aut] (https://orcid.org/0000-0003-0925-1909), Dominik Rafacz [ctb] (https://orcid.org/0000-0003-0925-1909)

Maintainer Weronika Puchala <puchala.weronika@gmail.com>

Repository CRAN

Date/Publication 2021-08-12 14:00:02 UTC

R topics documented:

HaDeX-package	. 2
add_stat_dependency	. 2
calculate_confidence_limit_values	. 4
calculate_kinetics	
calculate_state_deuteration	. 7
comparison_plot	. 8
HaDeX_gui	
plot_coverage	
plot_kinetics	
plot_position_frequency	. 13
prepare_dataset	. 14
quality_control	. 15
read_hdx	. 16
reconstruct_sequence	. 17
woods_plot	. 18
	21
	21

HaDeX-package

HaDeX

Description

Index

The HaDeX package is a toolbox for the analysis of HDX-MS data.

Author(s)

Weronika Puchala, Michal Burdukiewicz.

add_stat_dependency

Calculates confidence limits

Description

Returns relation with confidence limits for each peptide.

Usage

```
add_stat_dependency(
  calc_dat,
  confidence_limit = 0.98,
  theoretical = FALSE,
  relative = TRUE
)
```

add_stat_dependency 3

Arguments

Details

•••

Value

calc_dat extended by column specifying if given peptide is relevant in given confidence limit. The value of the confidence limit is added as an attribute - as well as parameters used to calculate (theoretical/relative)

See Also

```
read_hdx prepare_dataset
```

```
#load example data
dat <- read_hdx(system.file(package = "HaDeX",</pre>
                             "HaDeX/data/KD_180110_CD160_HVEM.csv"))
# prepate dataset for states `CD160` and `CD160_HVEM` in given time parameters
calc_dat <- prepare_dataset(dat,</pre>
                             in_state_first = "CD160_0.001",
                             chosen_state_first = "CD160_1",
                             out_state_first = "CD160_1440",
                             in_state_second = "CD160_HVEM_0.001",
                             chosen_state_second = "CD160_HVEM_1",
                             out_state_second = "CD160_HVEM_1440")
# add calculated confidence limits for prepared data
add_stat_dependency(calc_dat,
                    confidence_limit = 0.98,
                    theoretical = FALSE,
                    relative = TRUE)
```

```
{\it calculate\_confidence\_limit\_values} \\ {\it Calculate~the~value~of~confidence~limit}
```

Description

Calculates confidence limit values for prepared dataset, based on chosen parameters.

Usage

```
calculate_confidence_limit_values(
  calc_dat,
  confidence_limit = 0.98,
  theoretical = FALSE,
  relative = TRUE
)
```

Arguments

Details

•••

Value

range of confidence limit interval

References

Houde, D., Berkowitz, S.A., and Engen, J.R. (2011). The Utility of Hydrogen/Deuterium Exchange Mass Spectrometry in Biopharmaceutical Comparability Studies. J Pharm Sci 100, 2071–2086.

See Also

```
read_hdx prepare_dataset
```

calculate_kinetics 5

Examples

calculate_kinetics

Calculate kinetic data

Description

Calculate kinetics of the hydrogen-deuteration exchange for given peptide.

Usage

```
calculate_kinetics(
  dat,
  protein = dat[["Protein"]][1],
  sequence,
  state,
  start,
  end,
  time_in,
  time_out,
  deut_part = 1
)
```

Arguments

dat dat data read by read_hdx
protein protein value for chosen peptide

sequence sequence of the peptide for which the kinetics is calculated

state state of given sequence

6 calculate_kinetics

start	end of given sequence
end	end of given sequence
time_in	time in for experimental calculations
time_out	time out for experimental calculations
deut_part	percentage of deuterium the protein was exposed to, value in range [0, 1]

Details

The function calculates deuteration data for all available data points for given peptide. All four variants (relative & theoretical combinations) of deuteration computations are supported. Manual correction of percentage of deuterium the protein was exposed to during the exchange in theoretical calculations is provided. To visualize obtained data we recommend using plot_kinetics function. The first version doesn't support filled Modification and Fragment columns.

Value

data frame with deuteration calculated for all the data points between time_in and time_out. The chosen time point for which deuteration in all four variants is calculated is available in column 'time_chosen'. The rest of the returned structure is equivalent to structure returned by calculate_state_deuteration.

See Also

```
read_hdx calculate_state_deuteration plot_kinetics
```

```
# load example data
dat <- read_hdx(system.file(package = "HaDeX",</pre>
                             "HaDeX/data/KD_180110_CD160_HVEM.csv"))
# calculate data for sequence INITSSASQEGTRLN in state CD160
(kin1 <- calculate_kinetics(dat,</pre>
                   protein = "db_CD160",
                   sequence = "INITSSASQEGTRLN",
                   state = "CD160",
                   start = 1,
                   end = 15,
                   time_in = 0.001,
                   time_out = 1440)
# calculate data for sequence INITSSASQEGTRLN in state CD160_HVEM
(kin2 <- calculate_kinetics(dat,</pre>
                   protein = "db_CD160",
                   sequence = "INITSSASQEGTRLN",
                   state = "CD160_HVEM",
                   start = 1,
                   end = 15,
                   time_in = 0.001,
                   time_out = 1440)
```

calculate_state_deuteration

Calculate deuteration

Description

Calculates deuteration uptake based on supplied parameters.

Usage

```
calculate_state_deuteration(
  dat,
  protein,
  state,
  time_in,
  time_chosen,
  time_out,
  deut_part = 1
)
```

Arguments

dat data as imported by the read_hdx function

protein protein included in calculations

state state included in calculations

time_in experimental 'time_in'

time_chosen chosen time point

time_out experimental 'time_out'

deut_part percentage of deuterium the protein was exposed to, value in range [0, 1]

8 comparison_plot

Details

The function calculate_state_deuteration calculates deuteration for peptides in given protein in given state based on supplied parameters: 'time_in', 'time_out' and 'time_chosen'. All four variants (combinations of theoretical & relative) are supplied (mean values and uncertainty). Manual correction of percentage of deuterium the protein was exposed to during the exchange in theoretical calculations is provided.

Methods of calculation and uncertainty are profoundly discussed in the vignette.

Value

```
a data.frame object
```

See Also

```
read_hdx calculate_confidence_limit_values add_stat_dependency
```

Examples

comparison_plot

Plot comparison plot

Description

Produces comparison_plot based on previously processed data - theoretical or experimental. User can change labels if needed.

Usage

```
comparison_plot(
  calc_dat,
  theoretical = FALSE,
  relative = TRUE,
  state_first = "state_first",
  state_second = "state_second"
)
```

comparison_plot 9

Arguments

calc_dat processed data from DynamX file - using prepare_dataset
theoretical logical value to determine if plot is theoretical or not. default : false
relative logical value to determine if values are relative or absolute. default : true
state_first first state name
state_second state name

Details

...

This is the first version - multi-state calculations are not supported.

Value

```
a ggplot object.
```

See Also

```
read_hdx prepare_dataset
```

```
# load example data
dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv"))</pre>
# prepare dataset for states `CD160` and `CD160_HVEM` in given time parameters
calc_dat <- prepare_dataset(dat,</pre>
                            in_state_first = "CD160_0.001",
                            chosen_state_first = "CD160_1",
                            out_state_first = "CD160_1440",
                            in_state_second = "CD160_HVEM_0.001",
                            chosen_state_second = "CD160_HVEM_1",
                            out_state_second = "CD160_HVEM_1440")
# plot comparison plot - theoretical & relative
comparison_plot(calc_dat = calc_dat,
                theoretical = TRUE,
                relative = TRUE,
                state_first = "CD160",
                state_second = "CD160_HVEM")
# plot comparison plot - experimental & relative
comparison_plot(calc_dat = calc_dat,
                theoretical = FALSE,
                relative = TRUE,
                state_first = "CD160",
                state_second = "CD160_HVEM")
# plot comparison plot - theoretical & absolute
comparison_plot(calc_dat = calc_dat,
```

10 plot_coverage

HaDeX_gui

HaDeX Graphical User Interface

Description

Launches graphical user interface.

Usage

```
HaDeX_gui(port = getOption("shiny.port"))
```

Arguments

port

The TCP port. See runApp.

Warning

Any ad-blocking software may cause malfunctions.

plot_coverage

Plot peptide coverage

Description

Plots the peptide coverage of the protein sequence.

Usage

```
plot_coverage(
  dat,
  protein = dat[["Protein"]][1],
  chosen_state = dat[["State"]][1]
)
```

plot_kinetics 11

Arguments

data as imported by the read_hdx function

protein protein to be included in plot

chosen_state sequence states to be included in plot

Details

The function plot_coverage plots sequence coverage based on experimental data for chosen protein in chosen state. Only non-duplicated peptides are shown on the plot, next to each other.

The aim of this plot is to see the dependence between positions of the peptides on the protein sequence. Their position in y-axis does not contain any information.

Value

```
a ggplot object.
```

See Also

```
read_hdx plot_position_frequency
```

Examples

plot_kinetics

Plot kinetics data

Description

Plots kinetics of the hydrogen-deuterium exchange for specific peptides.

Usage

```
plot_kinetics(kin_dat, theoretical = FALSE, relative = TRUE)
```

plot_kinetics

Arguments

```
kin_dat calculated kinetic data by calculate_kinetics function
theoretical logical, determines if plot shows theoretical values
relative logical, determines if values are relative or absolute
```

Details

This function visualises the output of the calculate_kinetics function. Based on supplied parameters appropriate columns are chosen for the plot. The uncertainty associated with each peptide is shown as a ribbon. Axis are labeled according to the supplied parameters but no title is provided.

If you want to plot data for more then one peptide in one state, join calculated data by using bind_rows from dplyr package and pass the result as kin_dat.

Value

```
a ggplot object.
```

See Also

```
calculate_kinetics
```

```
# load example data
dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv"))</pre>
# calculate data for the sequence INITSSASQEGTRLN in the CD160 state
(kin1 <- calculate_kinetics(dat,</pre>
                            protein = "db_CD160",
                            sequence = "INITSSASQEGTRLN",
                            state = "CD160",
                            start = 1,
                            end = 15,
                            time_in = 0.001,
                            time_out = 1440))
# calculate data for the sequence INITSSASQEGTRLN in the CD160_HVEM state
(kin2 <- calculate_kinetics(dat,</pre>
                            protein = "db_CD160",
                            sequence = "INITSSASQEGTRLN",
                            state = "CD160_HVEM",
                            start = 1,
                            end = 15,
                            time_in = 0.001,
                            time_out = 1440)
# load extra packages
library(dplyr)
# plot a single peptide - theoretical and relative
```

```
{\tt plot\_position\_frequency}
```

Plot position frequency

Description

Plots the frequency of coverage of protein sequence.

Usage

```
plot_position_frequency(
  dat,
  protein = dat[["Protein"]][1],
  chosen_state = dat[["State"]][1]
)
```

Arguments

data as imported by the read_hdx function

protein protein to be included in plot

chosen_state sequence states to be included in plot

Details

The function plot_position_frequency plots a histogram of the coverage frequency based on experimental data. The aim of this plot is to see how many times each position of the sequence was covered (by different peptides).

Value

```
a ggplot object.
```

See Also

```
read_hdx plot_coverage
```

14 prepare_dataset

Examples

prepare_dataset

Calculate data

Description

Calculates values for visualization from input data file - both experimental and theoretical. All parameters are needed.

Usage

```
prepare_dataset(
   dat,
   in_state_first,
   chosen_state_first,
   out_state_first,
   in_state_second,
   chosen_state_second,
   out_state_second
)
```

Arguments

quality_control 15

Details

• • •

This is the first version - multi-state calculations are not supported.

Value

data frame with calculated values

See Also

read hdx

Examples

quality_control

Experiment quality control

Description

Checks how the uncertainty changes in a function of 'out_time'.

Usage

```
quality_control(dat, state_first, state_second, chosen_time, in_time)
```

Arguments

```
dat data read by read_hdx
state_first state of the first peptide
state_second state of the second peptide
chosen_time chosen time point
```

in_time 'in' time

16 read_hdx

Details

The function calculates mean uncertainty of all peptides and its uncertainty (standard error) based on given 'in_time' and 'chosen_time' as a function of 'out_time'. Both theoretical and experimental results for each state and their difference are supplied for comparison but only experimental calculations depends on 'out_time' variable. The results are either in form of relative or absolute values depending on the 'relative' parameter supplied by the user. This data can be useful for general overview of the experiment and analyse of the chosen time parameters.

Value

data.frame with mean uncertainty per different 'out_time' value

See Also

read hdx

Examples

```
# load example data
dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv"))</pre>
# calculate mean uncertainty
(result <- quality_control(dat = dat,</pre>
                            state_first = "CD160",
                            state_second = "CD160_HVEM",
                            chosen_time = 1,
                            in_{time} = 0.001)
# load extra libraries
library(ggplot2)
library(tidyr)
library(dplyr)
# example of data visualization
gather(result, 2:7, key = 'type', value = 'value') %>%
filter(startsWith(type, "avg")) %>%
  ggplot(aes(x = factor(out_time), y = value, group = type)) +
  geom_line(aes(color = type)) +
  labs(x = "Out time",
       y = "Mean uncertainty")
```

read_hdx

Read HDX-MS data file

Description

Imports data from a HDX-MS file and validates its content.

reconstruct_sequence 17

Usage

```
read_hdx(filename)
```

Arguments

filename a file supplied by the user. Formats allowed: .csv, .xlsx and .xls.

Details

First version accepts files produced by DynamX 3.0 and 2.0 in 'cluster data' format. The function checks if all necessary columns are provided in correct format. The file must include at least two repetitions of the measurement for the uncertainty to be calculated.

Value

```
dat - a data. frame with validated content.
```

See Also

calculate_kinetics calculate_state_deuteration plot_coverage plot_position_frequency
prepare_dataset quality_control reconstruct_sequence

Examples

reconstruct_sequence Reconstruct protein sequence

Description

Reconstructs protein sequence from supplied file.

Usage

```
reconstruct_sequence(dat, protein = dat[["Protein"]][1])
```

Arguments

data read by read_hdx

protein the protein of which the structure is to be reconstructed

Details

The function reconstructs protein sequence from supplied experimental data. If a position is not covered, x is shown. First version doesn't support manual sequence length correction.

18 woods_plot

Value

reconstructed sequence - character object.

See Also

```
read_hdx
```

Examples

```
dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv"))
reconstruct_sequence(dat)</pre>
```

woods_plot

Plot Woods' plot

Description

Produces Woods' plot based on theoretical or experimental HDX-MS data.

Usage

```
woods_plot(
  calc_dat,
  theoretical = FALSE,
  relative = TRUE,
  confidence_limit = 0.98,
  confidence_limit_2 = 0.99
)
```

Arguments

Details

•••

This is the first version - multi-state calculations are not supported.

woods_plot

Value

```
a ggplot object.
```

References

Woods, V.L., and Hamuro, Y. (2001). High resolution, high-throughput amide deuterium exchange-mass spectrometry (DXMS) determination of protein binding site structure and dynamics: utility in pharmaceutical design. J. Cell. Biochem. Suppl. Suppl 37, 89–98.

See Also

```
read_hdx prepare_dataset
```

```
# load example data
dat <- read_hdx(system.file(package = "HaDeX",</pre>
                            "HaDeX/data/KD_180110_CD160_HVEM.csv"))
# prepare dataset for states `CD160` and `CD160_HVEM`
# in given time parameters
calc_dat <- prepare_dataset(dat,</pre>
                            in_state_first = "CD160_0.001",
                            chosen_state_first = "CD160_1",
                            out_state_first = "CD160_1440",
                            in_state_second = "CD160_HVEM_0.001",
                            chosen_state_second = "CD160_HVEM_1",
                            out_state_second = "CD160_HVEM_1440")
# plot Woods plot - theoretical & relative
woods_plot(calc_dat = calc_dat,
           theoretical = TRUE,
           relative = TRUE,
           confidence_limit = 0.98,
           confidence_limit_2 = 0.99)
# plot Woods plot - experimental & relative
woods_plot(calc_dat = calc_dat,
           theoretical = FALSE,
           relative = TRUE,
           confidence_limit = 0.98,
           confidence_limit_2 = 0.99)
# plot Woods plot - theoretical & absolute
woods_plot(calc_dat = calc_dat,
           theoretical = TRUE,
           relative = FALSE,
           confidence_limit = 0.98,
           confidence_limit_2 = 0.99)
# plot Woods plot - experimental & absolute
woods_plot(calc_dat = calc_dat,
```

20 woods_plot

theoretical = FALSE,
relative = FALSE,
confidence_limit = 0.98,
confidence_limit_2 = 0.99)

Index

```
add\_stat\_dependency, 2, 8
bind_rows, 12
calculate_confidence_limit_values, 4, 8
calculate_kinetics, 5, 12, 17
{\tt calculate\_state\_deuteration}, \, 6, \, 7, \, 17
\verb|comparison_plot|, 8
data.frame, 8, 17
ggplot, 9, 11–13, 19
HaDeX (HaDeX-package), 2
HaDeX-package, 2
HaDeX_gui, 10
plot_coverage, 10, 13, 17
plot\_kinetics, 6, 11
plot_position_frequency, 11, 13, 17
prepare_dataset, 3, 4, 9, 14, 17–19
quality_control, 15, 17
read_hdx, 3-9, 11, 13, 15, 16, 16, 17-19
reconstruct_sequence, 17, 17
runApp, 10
woods_plot, 18
```