

作業七:BP

2022/05/30

設計規格描述

•請用設計出一個雙模態預測器(bimodal predictor)

雙模態預測器又稱2bit飽和計數器,是一種簡單的動態分支預測器,在現今的處理器內分支預測器是一個不可或缺的功能,主要功能是在分支指令執行結束之前猜測哪一路分支將會被執行,以提高處理器的指令Pipeline的效能。使用分支預測器的目的,在於改善指令Pipeline的流程

- 輸入/輸出腳位

訊號名稱	I/O	Bit數	描述
clk	I	1	本電路同步於時脈正緣之同步設計
rst	I	1	高準位非同步(active high asynchronous)之電路重置訊號
jump	I	1	當為 High 時,表示需要轉跳 當為 Low 時,表示不需轉跳
out	0	4	四位元無號數輸出

· 提供檔案

檔案名稱	描述		
BP.v	Verilog檔案(自行設計),用於RTL模擬。注意:I/O腳位已定義,請勿更改!		
BP_tb.v	Testbench(測試檔),用於RTL模擬、Gate-Level模擬		
pattern1.dat, pattern2.dat	作為電路模擬時,輸入訊號測試資料 一同放入ModelSim專案內		
golden1.dat, golden2.dat	作為電路模擬時,比對輸出結果的資料 一同放入ModelSim專案內		

功能描述

- 資料輸入:當reset訊號送出後,請將狀態設定到初始狀態(強不選擇), 並且依照jump訊號來決定下一個狀態
- 資料輸出:依照不同狀態在out線輸出不同資料

雙模態預測器是一種有4個狀態的狀態機:

電路波形範例

提示:

此題請參考第五章的有限狀態機,來完成此題的設計 Coding Style 可參考第五章的第12頁完成

電路模擬範例

- RTL 、 Gate-Level模擬 -> PASS
 - ▶ Modelsim模擬步驟、Quartus合成步驟請參考tools教學

助教只檢查Gate-Level模擬 是否通過

上傳檔案

- RTL File
 - 1. BP.v (你所有的Verilog RTL Code)
- Gate-Level File
 - 1. BP.vo (Quartus 生成的Gate-Level Netlist)
 - 2. BP.sdo (Quartus 生成的 SDF 時序資訊)
- Document
 - 1. report.pdf (你的設計報告文件 請轉成PDF格式)

▲請包成zip格式,並命名為學號__HW7.zip

本次及補交作業上傳注意事項

- 1.Quartus 請一律使用 Cyclonell 晶片
- 2.請勿將整個專案資料夾包進zip檔上傳,如發現上傳整個專案者一律視同未繳交
- 3.設計未完成的檔案請勿上傳,如果只有gate-level無法通過,可只上傳.v檔
- 4.上傳後請再次檢查上傳是否有誤,如上傳錯誤一律視同未繳交