

AD-A105 489 LETTERMAN ARMY INST OF RESEARCH PRESIDIO OF SAN FRANC--ETC F/G 6/20
THE MUTAGENIC POTENTIAL OF: 3-NITROPHENYL DIMETHYLPHOSPHINATE, --ETC(U)
SEP 81 L J SAUERS, F R PULLIAM, J T FRUIN

UNCLASSIFIED LAIR-102

NL

| OF |
AD A
O-JAH

END
DATE
FILED
11-81
OTIC

AD A105489

6 LEVEL II

INSTITUTE REPORT NO. 102

THE MUTAGENIC POTENTIAL OF: 3-nitrophenyl dimethylphosphinate
4-nitrophenyl 4-methoxyphenyl (methyl) phosphinate
4-nitrophenyl 4-methylphenyl (methyl) phosphinate
4-nitrophenyl di-n-butylphosphinothioate

LEONARD J. SAUERS, BA, SP5
FREDDICA R. PULLIAM, BS, SSG
and
JOHN T. FRUIN, DVM, PhD, LTC VC

TOXICOLOGY GROUP,
DIVISION OF RESEARCH SUPPORT

DTIC ELECTED
OCT 8 1981
S D

B

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

SEPTEMBER 1981

Toxicology Series 16

LETTERMAN ARMY INSTITUTE OF RESEARCH PRESIDIO OF SAN FRANCISCO CALIFORNIA 94129

DTIC FILE COPY

81 10 8 023

Toxicology Series 16

Reproduction of this document in whole or in part is prohibited except with the permission of the Commander, Letterman Army Institute of Research, Presidio of San Francisco, California 94129. However, the Defense Technical Information Center is authorized to reproduce the document for United States Government purposes.

Destroy this report when it is no longer needed. Do not return it to the originator.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

This material has been reviewed by Letterman Army Institute of Research and there is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. (AR 360-5)

 1 Sep. 81
(Signature and date)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER LAIR Institute Report No. 102	2. GOVT ACCESSION NO. <i>AD-A105 487</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) The Mutagenic Potential of 3 nitrophenyl dimethylphosphinate; 4-nitrophenyl 4-methoxyphenyl(methyl)phosphinate; 4-nitrophenyl 4-methylphenyl(methyl)phosphinate; 4-nitrophenyl di-n-butyl phosphinothioate.		5. TYPE OF REPORT & PERIOD COVERED Final June 1981-September 81
7. AUTHOR(s) Leonard J. Sauers, BA, SP5; Freddica R. Pulliam, BS, SSG; John T. Fruin DVM, PhD, LTC VC;		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Toxicology Group, Div. of Research Support Letterman Army Institute of Research Presidio of San Francisco, CA 94129		8. CONTRACT OR GRANT NUMBER(s) 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Project #3516772A875 WU 304
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Medical Research and Development Command Fort Detrick Frederick, MD 21701		12. REPORT DATE September 1981
		13. NUMBER OF PAGES 36
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Mutagenicity; Toxicology, Ames Assay, 3 nitrophenyl dimethylphosphinate; 4-nitrophenyl 4-methoxyphenyl(methyl)phosphinate; 4-nitrophenyl 4-methylphenyl(methyl)phosphinate 4-nitrophenyl di-n-butylphosphinothioate;		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The mutagenic potential of 3 nitrophenyl dimethylphosphinate (111*); 4-nitrophenyl 4-methoxyphenyl(methyl)phosphinate (47-A*); 4-nitrophenyl(methyl)phosphinate (73-BM*); 4-nitrophenyl di-n-butylphosphinate (107*) was assessed by using the Ames Salmonella/Mammalian Microsome Mutagenicity Assay. Tester strains TA 98, TA 100, TA 1535, TA 1537, and TA 1538 were exposed to doses ranging from 1 mg/plate to 3.2×10^4 mg/plate. It was determined that none of the tested substances had mutagenic potential. *Code number for compound.		

J
-14-

ABSTRACT

The mutagenic potential of 3-nitrophenyl dimethylphosphinate (111*); 4-nitrophenyl 4-methoxyphenyl(methyl)phosphinate (47-A*); 4-nitrophenyl(methyl)phosphinate (73-BM*); 4-nitrophenyl di-n-butylphosphinate (107*) was assessed by using the Ames Salmonella/Mammalian Microsome Mutagenicity Assay. Tester strains TA 98, TA 100, TA 1535, TA 1537₂₄ and 1538 were exposed to doses ranging from 1 mg/plate to 3.2×10^{14} mg/plate. It was determined that none of the tested substances had mutagenic potential.

* Code number for compound

5-18-77, M.L.W. - th p ver

Accession For	
NTIS GENI	<input checked="" type="checkbox"/>
DTIC TIP	<input type="checkbox"/>
University	<input type="checkbox"/>
JPL	<input type="checkbox"/>
Other	<input type="checkbox"/>
Ref	<input type="checkbox"/>
Date	<input type="checkbox"/>
Acq. Date	<input type="checkbox"/>
Dist	<input type="checkbox"/>
A	

PREFACE

AMES ASSAY REPORT:

SUBSTANCE	CODE NO.
3-nitrophenyl dimethylphosphinate	111
4-nitrophenyl 4-methoxyphenyl(methyl)phosphinate	47-A
4-nitrophenyl 4-methylphenyl(methyl)phosphinate	73-BM
4-nitrophenyl di-n-butylphosphinothioate	107

TESTING FACILITY: Letterman Army Institute of Research
Presidio of San Francisco, CA 94129

SPONSOR: Biomedical Laboratory, Aberdeen Proving Grounds
Aberdeen, MD 21005

PROJECT: Toxicity Testing of Phosphinate Compounds - 35162772A875

GLP STUDY NUMBER: 81012

STUDY DIRECTOR: LTC John T. Fruin D.V.M., PhD.

CO-PRINCIPAL INVESTIGATORS: SSG Freddica R. Pulliam, B.S.
SP5 Leonard J. Sauers, B.A.

RAW DATA: A copy of the final report, study protocol and retired SOPs will be maintained in the LAIR archives. Test substances were provided by sponsor. Chemical, analytical, stability, purity, etc. data are available from the sponsor.

PURPOSE: To determine the mutagenic potential of the above compounds using the Ames Assay. Tester strains TA 98, TA 100, TA 1535, TA 1537, and TA 1538 were used.

ACKNOWLEDGMENTS

The authors wish to thank John Dacey and SP4 Larry Mullen,
BS for their assistance in performing the research and for help
in preparation of this report.

Signatures of Principal Scientists
Involved in the Study

We, the undersigned, believe the study, GLP number 81012, described in this report to be scientifically sound and the results and interpretation to be valid. The study was conducted to comply to the best of our ability with the Good Laboratory Practice Regulations outlined by the Food and Drug Administration.

Freddica R. Pulliam 8 Jul 81
FREDDICA R. PULLIAM, BS Date
SSG
Co-Investigator

John T. Fruin 8 Jul 81
JOHN T. FRUIN, DVM, PhD Date
LTC, VC
Study Director

Leonard J. Savers 9 July 81
LEONARD J. SAVERS, BA Date
SP5
Co-Investigator

DEPARTMENT OF THE ARMY

LETTERMAN ARMY INSTITUTE OF RESEARCH
PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129

REPLY TO
ATTENTION OF:

SGRD-ULZ-QA

21 July 1981

MEMORANDUM FOR RECORD

SUBJECT: Report of GLP Compliance

I hereby certify that in relation to LAIR GLP study 81012 the following inspections were made:

6 June 1981
10 June 1981

Inspection findings were reported to the study director on 5 June and 12 June 1981. These inspections are also included in the July 1981 report to management.

A handwritten signature in black ink, appearing to read "John C. Johnson".
JOHN C. JOHNSON
CPT, MS
Quality Assurance Officer

TABLE OF CONTENTS

Abstract.....	i
Preface.....	iii
Acknowledgments.....	iv
Signatures of Principal Scientists.....	v
Report of Quality Assurance Unit.....	vi
Table of Contents.....	vii
BODY OF REPORT	
INTRODUCTION	
Rationale for using the Ames Assay.....	1
Description of Test, Rationale for strain selection.....	1
Description of Strains, History, Methods, and Data.....	2
METHODS	
Rationale for Dosage Levels and Response Tabulations....	3
Test Format.....	3
Statistical Analysis.....	4
RESULTS AND DISCUSSION.....	4
CONCLUSION.....	5
RECOMMENDATION.....	5
REFERENCES.....	6
APPENDIX (Tables 1 through 6).....	7
DISTRIBUTION LIST.....	28

Rationale for using the Ames Assay

The Ames Salmonella/Mammalian Microsome Mutagenicity Test is one of a standard bank of tests used by our laboratory for the assessment of the mutagenic potential of a test substance. It is a short-term screening assay for the prediction of potential mutagenic agents in mammals. It is inexpensive when compared to in vivo tests, yet is highly predictive and reliable in its ability to detect mutagenic activity and therefore carcinogenic probability (1). It relies on basic genetic principles and allows for the incorporation of a mammalian microsome enzyme system to increase sensitivity through enzymatically altering the test substance into an active metabolite. It has proven highly effective in assessing human risk (1).

Description of Test (Rationale for the selection of strains)

The test was developed by Bruce Ames, Ph.D. from the University of California-Berkeley. The test involves the use of several different genetically altered strains of Salmonella typhimurium, each with a specific mutation in the histidine operon (2). The test substance demonstrates mutagenic potential if it is able to revert the mutation in the bacterial histidine operon back to the wild type and thus reestablish prototrophic growth within the test strain. This reversion also can occur spontaneously due to a random mutational event. If, after adding a test substance, the number of revertants is significantly greater than the spontaneous reversion rate, then the test substance physically altered the locus involved in the operon's mutation and is able to induce point mutations and genetic damage (2).

In order to increase the sensitivity of the test system, two other mutations in the Salmonella are used (2). To insure a higher probability of uptake of test substance, the genome for the lipopolysaccharide layer (LP) is mutated and allows larger molecules to enter the bacteria. Each strain has another induced mutation which causes loss of excision repair mechanisms. Since many chemicals are not by themselves mutagenic but have to be activated by an enzymatic process, a mammalian microsome system is incorporated. These microsomal enzymes are obtained from livers of rats induced with Aroclor 1254; the enzymes allow for the expression of the metabolites in the mammalian system. This activated rat liver microsomal enzyme homogenate is termed S-9.

Description of Strains (History of the strains used, methods to monitor the integrity of the organisms, and data pertaining to current and historical controls and spontaneous reversion rates)

The test consists of using five different strains of Salmonella typhimurium that are unable to grow in absence of histidine because of a specific mutation in the histidine operon. This histidine requirement is verified by attempting to grow the tester strains on minimal glucose agar (MGA) plates, both with and without histidine. The dependence on this amino acid is shown when growth occurs only in its presence. The plasmids in strains TA 98 and TA 100 contain an ampicillin resistant R factor. Strains deficient in this plasmid demonstrate a zone of growth inhibition around an ampicillin impregnated disc. The alteration of the LP layer allows uptake by the Salmonella of larger molecules. If a crystal violet impregnated disc is placed onto a plate containing any one of the bacterial strains, a zone of growth inhibition will occur because the LP layer is altered. The absence of excision repair mechanisms can be determined by using ultraviolet (UV) light. These mechanisms function primarily by repairing photodimers between pyrimidine bases; exposure of bacteria to UV light will activate the formation of these dimers and cause cell lethality, since excision of these photodimers can not be made. The genetic mutation resulting in UV sensitivity also induces a dependence by the Salmonella to biotin. Therefore, this vitamin must be added. In order to prove that the bacteria are responsive to the mutation process, positive controls are run with known mutagens. If after exposure to the positive control substance, a larger number of revertants are obtained, then the bacteria are adequately responsive. Sterility controls are performed to determine the presence of contamination. Sterility of the test compound is also confirmed in each first dilution. Verification of the tester strains occurs spontaneously with the running of each assay. The value of the spontaneous reversion rate is obtained using the same inoculum of bacteria that is used in the assay (3).

Strains were obtained directly from Dr. Ames, University of California, Berkeley, propagated and then maintained at -80 C in our laboratory. Before any substance was tested, quality controls were run on the bacterial strains to establish the validity of their special features and also to determine the spontaneous reversion rate (2). Records are maintained of all the data, to determine if deviations from the set trends have occurred.

We compared the spontaneous reversion values with our own historical values and those cited by Ames et al (2). Our conclusions are based on the spontaneous reversion rate compared to the experimentally induced rate of mutation. When operating effectively, these strains detect substances that cause base pair

mutations (TA 1535, TA 100) and frameshift mutations (TA 1537, TA 1538 and TA 98) (2).

METHODS (3)

Rationale for Dosage Levels and Dose Response Tabulations

To insure readable and reliable results, a sublethal concentration of the test substance had to be determined. This toxicity level was found by using MGA plates, various concentrations of the substance, and approximately 10^8 cells of TA 100 per plate, unless otherwise specified. Top agar containing trace amounts of histidine and biotin were placed on MGA plates. TA 100 is used because it is the most sensitive strain. Strain verification was confirmed on the bacteria, along with a determination of the spontaneous reversion rate. After incubation, the growth was observed on the plates. (The auxotrophic Salmonella will replicate a few times and potentially express a mutation. When the histidine and biotin supplies are exhausted, only those bacteria that reverted to the prototrophic phenotype will continue to reproduce and form macro-colonies; the remainder of the bacteria comprises the background lawn. The minimum toxic level is defined as the lowest serial dilution at which decreased macrocolony formation, below that of the spontaneous revertant rate, and an observable reduction in the density of the background lawn occurs.) A maximum dose of 1 mg/plate is used when no toxicity is observed. The densities were recorded as normal slight, and no growth.

Test Format

After we validated our bacterial strains and determined the optimal dosage of the test substance, we began the Ames Assay. In the actual experiment, 0.1ml of the particular strain of Salmonella (10^8 cells) and the specific dilutions of the test substance were added to 2 ml of molten top agar, which contained trace amounts of histidine and biotin. Since survival is better from cultures which have just passed the log phase, the Salmonella strains were used 16 hours (maximum) after initial inoculation into nutrient broth. The dose of the test substance spanned more than a 1000-fold, decreasing from the minimum toxic level by a dilution factor of 5. All the substances were tested with and without S-9 microsome fraction. The S-9 mixture which was previously titered at an optimal strength was added to the molten top agar. After all the ingredients were added, the top agar was vortexed, then overlaid on minimum glucose agar plates. These plates contained 2% glucose and Vogel Bonner "E" Concentrate (4). The water used in this medium and all reagents came from a polystyrene system. Plates were incubated, upside down in the dark at 37 C for 48 hours. Plates were prepared in triplicate and

the average revertant counts were recorded. The corresponding number of revertants obtained was compared to the number of spontaneous revertants; the conclusions were recorded statistically. A correlated dose response is considered necessary to declare a substance as a mutagen. Commoner (5), in his report, "Reliability of Bacterial Mutagenesis Techniques to Distinguish Carcinogenic and Non-Carcinogenic Chemical," and McCann et al (1) in their paper, "Detection of Carcinogens as Mutagen: Assay of over 300 Chemicals," have concurred on the test's ability to detect mutagenic potential.

Statistical Analysis

Quantitative evaluation was ascertained by two independent methods. Ames et al (2) assumed that a compound which caused twice the spontaneous reversion rate is mutagenic. Commoner (5), developed the MUTAR Ratio, which is stated in the following equation:

$$\text{MUTAR} = (E - C)/C_{AV}$$

Here, C is the number of spontaneous revertant colonies on control plates obtained on the same day and with the same treatment and strains. E is the number of revertants in response to the compound; C_{AV} is the number of spontaneous revertants on control plates calculated from historical records. The explanation of the results of this equation can be determined by the method of Commoner (5). This variation determines the probability of correctly classifying substances as carcinogens on the basis of their mutagenic activity. The E values were recorded by strain, with and without S-9. Values for C and C_{AV} were recorded separately.

We used the formula and logged all values for our permanent records.

RESULTS AND DISCUSSION

Throughout this report, each of the test substances will be referred to by the respective code number:

<u>Substance</u>	<u>Code No.</u>
3-nitrophenyl dimethylphosphinate	111
4-nitrophenyl 4-methoxyphenyl(methyl)phosphinate	47-A
4-nitrophenyl 4-methylphenyl(methyl)phosphinate	73-BM
4-nitrophenyl di-n-butylphosphinothioate	107

On 1 June 1981, the Toxicity Level Determination was performed on the 4 test chemicals. All sterility, positive, and negative controls for this experiment were normal (Table 1). At the highest dose used, 1.0 mg/plate, no toxicity was observed (Tables 2A-2D).

On 10 June 1981, the Ames Assay was performed using the 4 test substances. For this experiment, all sterility and strain verification controls were normal (Table 3). Expected results were observed for all negative controls. The tester strains did not react as expected to control dimethyl benzantracene (DMBA). They reacted as expected to all other positive controls (Table 4).

No evidence of mutagenic potential was observed for compounds 111, 47-A, or 73-BM. One isolated incidence of a doubling of the spontaneous reversion rate occurred for nonactivated TA 1535 at the 0.04 mg/plate dose for test compound 107 (Tables 5A-5D). All the MUTAR values showed normal results, except for nonactivated TA 1535 at the 0.04 mg/plate dose for compound 107 (Tables 6A-6D).

CONCLUSION

On the basis of the Ames Assay, test compounds 111, 47-A, 73-BM, and 107 are not mutagenic at the levels tested.

RECOMMENDATION

We recommend that organophosphinate compounds 111, 47-A, 73-BM, and 107 be tested by using other toxicological testing systems if efficacy tests show these chemicals to be promising antidotes.

REFERENCES

1. McCANN, J., E. CHOI, E. YAMASAKI, and B. N. AMES. Detection of carcinogens as mutagens in the *Salmonella*/microsome test: Assay of 300 chemicals. *Proc Nat Acad Sci, USA* 72:5135-5139, 1975
2. AMES, B. N., J. McCANN and E. YAMASAKI. Methods for detection carcinogens and mutagens with *Salmonella*/mammalian microsome mutagenicity test. *Mutation Res* 31: 347-364, 1975
3. LAIR SOP OP-STX-1, Ames *Salmonella*/mammalian microsome mutagenicity test, 1 March 1981
4. VOGEL, H. J. and D. M. BONNER. Acetylornithinase of *E. coli*: Partial purification and some properties. *J Biol Chem* 218: 97-106, 1956
5. COMMONER, B. Reliability of the bacterial mutagenesis techniques to distinguish carcinogenic and non-carcinogenic chemicals. *EPA 600/1 76-022*, 1976

LIST OF TABLES

	Code	Page
Table 1 Strain Verification for Toxicity Level Determination		9
Table 2A Toxicity Level Determination	111	10
Table 2B Toxicity Level Determination	47-A	11
Table 2C Toxicity Level Determination	73-BM	12
Table 2D Toxicity Level Determination	107	13
Table 3 Strain Verification and Sterility Controls		14
Table 4 Positive and Negative Controls		15
Table 5A Ames Assay Worksheet	111	16
Table 5B Ames Assay Worksheet	47-A	18
Table 5C Ames Assay Worksheet	73-BM	20
Table 5D Ames Assay Worksheet	107	22
Table 6A Mutagenic Activity Ratio	111	24
Table 6B Mutagenic Activity Ratio	47-A	25
Table 6C Mutagenic Activity Ratio	73-BM	26
Table 6D Mutagenic Activity Ratio	107	27

APPENDIX

TABLE 1
STRAIN VERIFICATION FOR TOXICITY LEVEL DETERMINATION
Salmonella/Microsome Assay

Strain No.	Histidine Requirements	Ampicillin Resistance	uvr-B Deletion	rfa Crystal Violet	Sterility Control	Response (a)
TA 100	NG	G	NG	15.46 mm	NG	+
TA 1537	NA	NG	NA	NA	NG	+
WT	G	NA	G	NA	NA	+
Diluent	NA	NA	NA	NA	NG	+
Positive Control = MNNG -	Average - 1612					
Test Compound (s)						
(a) 111	NA	NA	NA	NA	NG	+
(b) 47-A	NA	NA	NA	NA	NG	+
(c) 73-BM	NA	NA	NA	NA	NG	+
(d) 107	NA	NA	NA	NA	NG	+
(e) NA	NA	NA	NA	NA	NA	NA

G = Growth; NG = No Growth; NT = Not Tested; NA = Not Applicable;
 WT = Wild Type; (a) + = Expected Response; - = Unexpected Response

Spontaneous Revertants

Strain	Average	Range				Average
TA 100		Beginning	146	148	155	
TA 100		End	122	118	149	140

Test Inculated By: Sauers, Pulliam, Dacey, Mullen Date 1 June 1981

Test Read By: Sauers, Pulliam Date 3 June 1981

TABLE 2A

TOXICITY LEVEL DETERMINATION Salmonella/Microsome Assay

Substance assayed: (1) Code #111 (2) _____

(3) _____ (4) _____ (5) _____

Date: 3 June 81 Performed by: Pulliam, Sauers, Dacey, Mullen

Substance dissolved in: (1) DMSO (2) _____ (3) _____

(4) _____ (5) _____

Visual estimation of background lawn on
Nutrient Agar Plates: NG = no growth
ST = slight growth
NL = normal growth

TA 100
Revertant Plate Count

TABLE 2B

TOXICITY LEVEL DETERMINATION Salmonella/Microsome Assay

Substance assayed: (1) Code # 47-A (2) _____
(3) _____ (4) _____ (5) _____

Date: 1 June 1981 Performed by: Sauers, Pulliam, Mullen, Dacey

Substance dissolved in: (1) DMSO (2) (3)

(4) _____ (5) _____

Visual estimation of background lawn on Nutrient Agar Plates: NG = no growth
ST = slight growth
NL = normal growth

TABLE 2C

TOXICITY LEVEL DETERMINATION Salmonella/Microsome Assay

Substance assayed: (1) Code #73 BM (2) _____
(3) _____ (4) _____ (5) _____

Date: 1 June 1981 Performed by: Sauers, Pulliam, Dacey, Mullen

Substance dissolved in: (1) DMSO (2) _____ (3) _____
(4) _____ (5) _____

Visual estimation of background lawn on Nutrient Agar Plates: NG = no growth
ST = slight growth
NL = normal growth

TA 100
Revertant Plate Count

TABLE 2D

TOXICITY LEVEL DETERMINATION Salmonella/Microsome Assay

Substance assayed: (1) Code # 107 (2) _____
(3) _____ (4) _____ (5) _____

Date: 1 June 81 Performed by: Pulliam, Sauers, Dacey, Mullen

Substance dissolved in: (1) PMSO (2) (3)

(4) _____ (5) _____

Visual estimation of background lawn on
Nutrient Agar Plates: NG = no growth
ST = slight growth
NL = normal growth

TA 100
Revertant Plate Count

TABLE 3

STRAIN VERIFICATION CONTROL

Strains	Histidine Requirement	<u>STRAIN VERIFICATION CONTROL</u>			Sensitivity to Crystal Violet	Sterility Control	Response (1)
		Ampicillin Resistance	UV	NG			
98	NG	G	NG	NG	18 mm	NG	+
100	NG	G	NG	NG	13 mm	NG	+
1535	NG	NA	NG	NG	12 mm	NG	+
1537	NG	24 mm	NG	NG	13 mm	NG	+
1538	NG	NA	NG	NG	14 mm	NG	+
WT	G	NA	G	G	NA	NA	+

STERILITY CONTROL

His-Bio Mix	Initial: NG	End: G*	Diluent: NG
Top Agar	Initial: NG	End: NG	MGA Plate: NG
S-9 Mix	Initial: NG	End: NG	Nutrient Broth: NG
Test Compound	(a) 73-BM-NG	(b) 111-NG	(c) 47A-NG
			(d) 107-NG
			(e) NA
			(f) NA
G = Growth	NG = No Growth	NT = Not Tested	NA = Not Applicable WT = Wild Type
Study Number:	81012	By: Sauers, Pulliam, Dacey, Mullen	(1) + = expected response - = unexpected response
Date:	10 June 1981		* 3 isolated colonies

TABLE 4

Compd.	Amount of Compd. Added	SPONTANEOUS REVERTANT RATE AND POSITIVE CONTROL REVERTANT RATE			Strain Number 1535 1537	1538 (534, 462; 385) (460)
		S-9 Added	98 (358, 471, 340) (390)	100 (403, 283, 390) (359)		
AF	2 ug/plate	yes	(86, 147, 68) (100)	(397, 254, 329) (327)	(48, 35, 47) (43)	(56, 51, 68) (58)
BF	2 ug/plate	yes	(50, 30, 38) (39)	(170, 214, 188) (191)	(6, 18, 13) (12)	(16, 15, 15) (15)
DMBA	20 ug/plate	yes				
MNNC	2 ug/plate	no		(708, 644, 624) (659)		
	20 ug/plate	no			(348, 438, 389) (392)	

Strain Performance

Spontaneous Revertants		Revertants	
before	no	(18, 12, 8)	(98, 89, 111)
after		(33, 23, 20)	(156, 138, 42)
		(19)	(106)
before	yes	(30, 35, 46)	(114, 113, 121)
after		(30, 48, 23)	(159, 209, 148)
		(35)	(144)

Study Number: 81012Date: 10 June 81 By: Sauers, Bulliam, Dacey, Mullen

TABLE 5A

NUMBER OF REVERTANTS/PLATE

Compd.	Amount of Compd. Added	S-9			Strain Number		
		no	98	100	<u>1535</u>	<u>1537</u>	<u>1538</u>
Code 111 1 mg/plate	no	(22,13,15) (17)	(139,147,129) (138)	(14,10,20) (15)	(4,3,9) (5)	(8,6,14) (9)	
	yes	(15,11,19) (15)	(179,204,195) (193)	(11,6,11) (9)	(5,6,6) (6)	(13,11,29) (18)	
Code 111 0.2 mg/plate	no	(13,17,12) (14)	(155,143,116) (138)	(19,24,18) (20)	(2,8,9) (6)	(12,7,10) (10)	
	yes	(26,28,26) (27)	(166,172,163) (167)	(15,17,18) (17)	(11,10,6) (9)	(23,21,24) (23)	
Code 111 0.04 mg/plate	no	(17,12,13) (14)	(146,125,115) (129)	(14,13,23) (17)	(3,3,6) (4)	(14,11,16) (14)	
	yes	(24,24,27) (25)	(168,168,134) (157)	(9,11,14) (11)	(10,3,7) (7)	(31,10,26) (22)	

-continued

Study Number: 81012 Date: 10 Jun 81 By: Sowers, Pulliam, Dacey, Muller

TABLE 5A, concluded

		<u>NUMBER OF REVERTANTS/PLATE</u>				
<u>Compd.</u>	<u>Amount of Compd. Added</u>	<u>S-9 Added</u>	<u>98</u>	<u>100</u>	<u>Strain 1535</u>	<u>Number 1537</u>
Code 111 0.0008 mg/plate	no	(19,14,16) (16)	(134,123,131) (129)	(23,30,13) (22)	(4,6,6) (5)	(15,7,6) (9)
	yes	(33,34,24) (30)	(120,115,105) (113)	(7,16,15) (13)	(6,5,8) (6)	(20,32,50) (34)
Code 111 0.0016 mg/plate	no	(12,16,18) (15)	(119,116,134) (123)	(5,9,13) (9)	(6,4,7) (6)	(12,14,11) (12)
	yes	(40,24,41) (35)	(149,144,131) (141)	(12,15,11) (13)	(7,7,5) (6)	(9,19,11) (13)
Code 111 0.00032 mg/plate	no	(17,11,Contam.) (14)	(135,120,129) (128)	(20,11,12) (14)	(6,3,8) (6)	(17,8,13) (13)
	yes	(Contam.,33,32) (32)	(138,145,150) (144)	(6,5,8) (6)	(2,4,4) (3)	(20,13,29) (21)

Study Number: 81012 Date: 10 Jun 81 By: Sawers, Pulliam, Dacev, Mullen

TABLE 5B

NUMBER OF REVERTANTS/PLATE

Compd.	Amount of Compd. Added	S-9 Added	98	100	<u>Strain Number</u> <u>1535</u>	<u>Strain Number</u> <u>1537</u>	<u>1538</u>
Code 47-A 1mg/plate	no	(13,11,5) (10)	(139, (127)	(114) (20)	(17, (20)	(19, (3)	(23) (16)
	yes	(10, (14)	(147, (166)	(185, (166)	(12, (17)	(28, (9)	(14, (18)
Code 47-A 0.2 mg/plate	no	(23,17,27) (22)	(130, (138)	(143, (28)	(24, (28)	(34, (4)	(26) (16)
	yes	(37, (33)	(113, (127)	(135, (127)	(115, (12)	(6, (7)	(14, (21)
Code 47-A 0.04 mg/plate	no	(17,11,16) (15)	(152, (130)	(131, (17)	(22, (17)	(11, (5)	(17) (9)
	yes	(41,20,28) (30)	(166, (155)	(131, (14)	(169, (14)	(10, (4)	(21) (20)

-continued

Study Number: 81012 Date: 10 Jun 81 By: Sauers, Pulliam, Dacey, Muller

TABLE 5B, concluded

		NUMBER OF REVERTANTS/PLATE			
Compd.	Amount of Compd. Added	S-9	100	Strain Number	
				<u>1535</u>	<u>1538</u>
Code 47-A 0.0008 mg/plate	no	(12,15,21) (16)	(88,102,111) (100)	(6,18,14) (13)	(6,5,6) (6)
	yes	(33,20,23) (25)	(134,142,158) (145)	(15,3,3) (7)	(11,6,9) (9)
19					
Code 47-A 0.0016 mg/plate	no	(18,16,25) (20)	(132,138,117) (129)	(11,28,23) (21)	(6,8,5) (6)
	yes	(17,18,18) (18)	(131,111,140) (127)	(12,5,5) (7)	(6,6,3) (5)
20					
Code 47-A 0.00032 mg/plate	no	(10,13,14) (12)	(137,120,117) (125)	(13,13,13) (13)	(5,6,6) (6)
	yes	(27,27,24) (26)	(186,123,141) (150)	(8,17,23) (16)	(5,10,2) (6)
21					
Study Number:	81012	Date:	10 Jun 81	By:	<u>Sauers, Pulliam, Dacey, Mullen</u>

TABLE 5C

NUMBER OF REVERTANTS/PLATE

<u>Compd.</u>	<u>Amount of Compd. Added</u>	<u>S-9 Added</u>	<u>98</u>	<u>100</u>	<u>Strain Number</u>	<u>1535</u>	<u>1537</u>	<u>1538</u>
Code 73-BM 1 mg/plate	no	(10,11,8) (10)	(131,108,111) (117)	(9,14,8) (10)	(2,3,5) (3)	(6,11,16) (11)		
	yes	(7,9,5) (7)	(176,148,119) (148)	(4,11,5) (7)	(2,8,5) (5)	(11,9,9) (10)		
Code 73-BM 0.2 mg/plate	no	(15,19,20) (18)	(126,129,122) (126)	(17,29,Contam) (23)	(5,4,4) (4)	(14,17,18) (16)		
	yes	(21,23,28) (24)	(160,165,161) (162)	(7,10,11) (9)	(4,6,7) (6)	(17,27,15) (20)		
Code 73-BM 0.04 mg/plate	no	(15,23,16) (18)	(212,196,132) (180)	(8,16,24) (16)	(5,4,5) (5)	(7,7,8) (7)		
	yes	(34,40,32) (35)	(152,167,176) (165)	(7,9,15) (10)	(6,6,5) (6)	(31,23,27) (27)		

-continued

Study Number: 81012

Date: 10 Jun 81 By: Sauers, Pulliam, Dacey, Mullen

TABLE 5C, concluded

		<u>NUMBER OF REVERTANTS/PLATE</u>				
<u>Amount of Compd.</u>	<u>Compd. Added</u>	<u>S-9</u>	<u>Added</u>	<u>98</u>	<u>100</u>	<u>Strain Number</u>
					<u>1535</u>	<u>1537</u>
Code 73-BM 0.008 mg/plate	no	(23,26,15) (21)	(142,134,129) (135)	(15,14,12) (14)	(8,7,2) (6)	(8,8;10) (9)
yes	(37,31,21) (30)	(144,161,140) (148)	(6,6,7) (6)	(5,3,3) (4)	(10,24,22) (19)	
Code 73-BM 0.0016 mg/plate	no	(11,24,20) (18)	(125,120,134) (126)	(15,8,9) (11)	(4,8,3) (5)	(11,10,12) (11)
yes	(19,30,35) (28)	(138,146,147) (144)	(9,11,9) (10)	(11,8,4) (8)	(22,18,21) (20)	
Code 73-BM 0.00032 mg/plate	no	(20,16,14) (17)	(117,118,99) (111)	(13,15,26) (18)	(5,5,2) (4)	(6,5,11) (7)
yes	(29,22,30) (27)	(129,143,153) (142)	(12,21,11) (15)	(4,0,2) (2)	(23,24,22) (23)	

Study Number: 81012 Date: 10 Jun 81 By: Sawers, Pulliam, Dacey, Mullen

TABLE 5D

NUMBER OF REVERTANTS/PLATE

<u>Compd.</u>	<u>Amount of Compd. Added</u>	<u>S-9 Added</u>	<u>98</u>	<u>100</u>	<u>Strain Number</u>	<u>1537</u>	<u>1538</u>
Code 107 1 mg/plate	no	(12,13,11) (12)	(150,101, 111) (121)	(13,11,2) (9)	(2,4,6) (4)	(15,6,8) (10)	
	yes	(18,20,21) (20)	(132,123,140) (132)	(12,10,3) (8)	(8,3,10) (7)	(7,14,15) (12)	
Code 107 0.2 mg/plate	no	(9,15,19) (14)	(131,100,97) (109)	(15,6,19) (13)	(5,4,10) (6)	(16,12,13) (12)	
	yes	(20,14,22) (19)	(149,151,144) (148)	(8,8,16) (11)	(4,2,3) (3)	(26,16,19) (20)	
Code 107 0.04 mg/plate	no	(10,23,18) (17)	(133,95,104) (111)	(88,92,99) (93)	(9,15,10) (10)	(9,10,16) (12)	
	yes	(11,27,21) (20)	(140,141,145) (142)	(7,15,22) (15)	(5,5,6) (5)	(18,12,10) (13)	

-continued

Study Number: 81012 Date: 10 Jun 81 By: Sauers, Pulliam, Dacey, Mullen

TABLE 5D, concluded
 NUMBER OF REVERTANTS/PLATE

<u>Compd.</u>	<u>Amount of Compd. Added</u>	<u>S-9 Added</u>	<u>100</u>	<u>Strain Number</u>	<u>1537</u>	<u>1538</u>
Code 107 0.008 mg/plate	no	(22,12;11) (15)	(125,132;112) (123)	(12,8,9) (10)	(4,3,2) (3)	(12,2,8) (7)
	yes	(30,21,30) (27)	(121,152,153) (142)	(7,7,9) (8)	(2,6,7) (5)	(22,12,14) (16)
Code 107 0.0016 mg/plate	no	(17,21,15) (18)	(123,112,132) (122)	(13,7,13) (11)	(5,3,6) (5)	(10,7,12) (10)
	yes	(22,28,24) (25)	(136,138,144) (139)	(18,13,12) (14)	(6,8,6) (7)	(19,12,19) (17)
Code 107 0.00032 mg/plate	no	(15,19,20) (18)	(116,98,93) (102)	(17,11,3) (12)	(3,4,2) (3)	(15,8,11) (11)
	yes	(14,24,8) (15)	(147,110,125) (127)	(18,8,6) (11)	(12,7,8) (9)	(31,29,28) (29)

TABLE 6A
MUTAGENIC ACTIVITY RATIO

Substance Assayed: Code #111 Dissolved in: DMSO

Study Number: 81012 Date: 22 July 1981 By: Sauers

Concentration	Strain	MUTAR (act)	MUTAR	Concentration	Strain	MUTAR (act)	MUTAR
1.0 mg/plate	TA 98	*	*	0.008 mg/plate	TA 1535	0.18	*
0.2 mg/plate	TA 98	*	*	0.0016 mg/pl.	TA 1535	0.18	*
0.04 mg/plate	TA 98	*	*	0.00032 mg/pl.	TA 1535	*	*
0.008 mg/plate	TA 98	*	*				
0.0016 mg/pl.	TA 98	*	*	1.0 mg/plate	TA 1537	*	*
0.00032 mg/pl.	TA 98	*	*	0.2 mg/plate	TA 1537	0.31	*
				0.04 mg/plate	TA 1537	*	*
1.0 mg/plate	TA 100	0.45	0.34	0.008 mg/plate	TA 1537	*	*
0.2 mg/plate	TA 100	0.21	0.34	0.0016 mg/pl.	TA 1537	*	*
0.04 mg/plate	TA 100	0.12	0.24	0.00032 mg/pl.	TA 1537	*	*
0.008 mg/plate	TA 100	*	0.24				
0.0016 mg/pl.	TA 100	*	0.18	1.0 mg/plate	TA 1538	*	*
0.00032 mg/pl.	TA 100	*	0.23	0.2 mg/plate	TA 1538	*	*
				0.04 mg/plate	TA 1538	*	*
1.0 mg/plate	TA 1535	*	*	0.008 mg/plate	TA 1538	0.59	*
0.2 mg/plate	TA 1535	0.55	*	0.0016 mg/pl.	TA 1538	*	*
0.04 mg/plate	TA 1535	*	*	0.00032 mg/pl.	TA 1538	*	*

(act): S-9 fraction was added

* : calculated value resulted in a negative MUTAR or zero MUTAR

TABLE 6B
MUTAGENIC ACTIVITY RATIO

Substance Assayed: Code #47-A Dissolved in: DMSO
 Study Number: 81012 Date: 22 July 1981 By: Sauers

Concentration	Strain	MUTAR (act)	MUTAR	Concentration	Strain	MUTAR (act)	MUTAR
1.0 mg/plate	TA 98	*	*	0.008 mg/plate	TA 1535	*	*
0.2 mg/plate	TA 98	*	0.14	0.0016 mg/pl.	TA 1535	*	*
0.04 mg/plate	TA 98	*	*	0.00032 mg/pl.	TA 1535	0.45	*
0.008 mg/plate	TA 98	*	*				
0.0016 mg/pl.	TA 98	*	0.05	1.0 mg/plate	TA 1537	0.31	*
0.00032 mg/pl.	TA 98	*	*	0.2 mg/plate	TA 1537	*	*
				0.04 mg/plate	TA 1537	*	*
1.0 mg/plate	TA 100	0.20	0.22	0.008 mg/plate	TA 1537	0.31	*
0.2 mg/plate	TA 100	*	0.34	0.0016 mg/pl.	TA 1537	*	*
0.04 mg/plate	TA 100	0.1	0.25	0.00032 mg/pl.	TA 1537	*	*
0.008 mg/plate	TA 100	0.01	*				
0.0016 mg/pl.	TA 100	*	0.24	1.0 mg/plate	TA 1538	*	*
0.00032 mg/pl.	TA 100	0.06	0.20	0.2 mg/plate	TA 1538	*	*
				0.04 mg/plate	TA 1538	*	*
1.0 mg/plate	TA 1535	0.55	*	0.008 mg/plate	TA 1538	*	*
0.2 mg/plate	TA 1535	0.09	0.39	0.0016 mg/pl.	TA 1538	*	*
0.04 mg/plate	TA 1535	0.27	*	0.00032 mg/pl.	TA 1538	*	*

(act): S-9 fraction was added

* : calculated value resulted in a negative MUTAR or zero MUTAR

TABLE 6C
MUTAGENIC ACTIVITY RATIO

Substance Assayed: Code # 73-BM Dissolved in: DMSO

Study Number: 81012 Date: 22 July 1981 By: Sauers

Concentration	Strain	MUTAR (act)	MUTAR	Concentration	Strain	MUTAR (act)	MUTAR
1.0 mg/plate	TA 98	*	*	0.008 mg/plate	TA 1535	*	*
0.2 mg/plate	TA 98	*	*	0.0016 mg/pl.	TA 1535	*	*
0.04 mg/plate	TA 98	*	*	0.00032 mg/pl.	TA 1535	0.36	*
0.008 mg/plate	TA 98	0.1	*				
0.0016 mg/pl.	TA 98	*	*	1.0 mg/plate	TA 1537	*	*
0.00032 mg/pl.	TA 98	*	*	0.2 mg/plate	TA 1537	*	*
				0.04 mg/plate	TA 1537	*	*
1.0 mg/plate	TA 100	0.04	0.12	0.008 mg/plate	TA 1537	*	*
0.2 mg/plate	TA 100	0.17	0.21	0.0016 mg/pl.	TA 1537	0.15	*
0.04 mg/plate	TA 100	0.19	0.78	0.00032 mg/pl.	TA 1537	*	*
0.008 mg/plate	TA 100	0.04	0.31				
0.0016 mg/pl.	TA 100	*	0.21	1.0 mg/plate	TA 1538	*	*
0.00032 mg/pl.	TA 100	*	0.05	0.2 mg/plate	TA 1538	*	*
				0.04 mg/plate	TA 1538	0.21	*
1.0 mg/plate	TA 1535	*	*	0.008 mg/plate	TA 1538	*	*
0.2 mg/plate	TA 1535	*	0.06	0.0016 mg/pl.	TA 1538	*	*
0.04 mg/plate	TA 1535	*	*	0.00032 mg/pl.	TA 1538	*	*

(act): S-9 fraction was added

* : calculated value resulted in a negative MUTAR or zero MUTAR

TABLE 6D
MUTAGENIC ACTIVITY RATIO

Substance Assayed: Code #107 Dissolved in: DMSO

Study Number: 81012 Date: 22 July 1981 By: Sauers

Concentration	Strain	MUTAR (act)	MUTAR	Concentration	Strain	MUTAR (act)	MUTAR
1.0 mg/plate	TA 98	*	*	0.008 mg/plate	TA 1535	*	*
0.2 mg/plate	TA 98	*	*	0.0016 mg/pl.	TA 1535	0.27	*
0.04 mg/plate	TA 98	*	*	0.00032 mg/pl.	TA 1535	*	*
0.008 mg/pl.	TA 98	*	*				
0.0016 mg/pl.	TA 98	*	*	1.0 mg/plate	TA 1537	*	*
0.00032 mg/pl.	TA 98	*	*	0.2 mg/plate	TA 1537	*	*
				0.04 mg/plate	TA 1537	*	0.31
1.0 mg/plate	TA 100	*	0.16	0.008 mg/plate	TA 1537	*	*
0.2 mg/plate	TA 100	0.04	0.03	0.0016 mg/pl.	TA 1537	*	*
0.04 mg/plate	TA 100	*	0.05	0.00032 mg/pl.	TA 1537	0.31	*
0.008 mg/pl.	TA 100	*	0.18				
0.0016 mg/pl.	TA 100	*	0.17	1.0 mg/plate	TA 1538	*	*
0.00032 mg/pl.	TA 100	*	*	0.2 mg/plate	TA 1538	*	*
				0.04 mg/plate	TA 1538	*	*
1.0 mg/plate	TA 1535	*	*	0.008 mg/plate	TA 1538	*	*
0.2 mg/plate	TA 1535	*	*	0.0016 mg/pl.	TA 1538	*	*
0.04 mg/plate	TA 1535	0.36	4.58	0.00032 mg/pl.	TA 1538	0.32	*

(act): S-9 fraction was added

* : calculated value resulted in a negative MUTAR or zero MUTAR

OFFICIAL DISTRIBUTION LIST

Commander US Army Medical Research and Development Command ATTN: SGRD-SI/ Mrs. Madigan Fort Detrick, Frederick MD 21701	Director Walter Reed Army Institute of Research Washington DC 20012
Defense Technical Information Center ATTN: DTIC-DDA Cameron Station Alexandria VA 22314	Commander US Army Medical Research Institute of Infectious Diseases Fort Detrick, Frederick MD 21701
Director of Defense Research and Engineering ATTN: Assistant Director, Environmental and Life Sciences Washington DC 20301	Commander US Army Research Institute of Environmental Medicine Natick MA 01760
The Surgeon General ATTN: DASG-TLO Washington DC 20314	Commander US Army Institute of Surgical Research Brooke Army Medical Center Fort Sam Houston TX 78234
HQ DA (DASG-ZXA) WASH DC 20310	Commander US Army Institute of Dental Research Washington DC 20012
Superintendent Academy of Health Sciences ATTN: AHS-COM Fort Sam Houston TX 78234	Commander US Army Medical Bioengineering Research and Development Laboratory Fort Detrick, Frederick MD 21701
Assistant Dean Institute and Research Support Uniformed Services University of Health Sciences 6917 Arlington Road Bethesda MD 20014	Commander US Army Aeromedical Research Laboratory Fort Rucker AL 36362
Commander US Army Environmental Hygiene Agency Aberdeen Proving Ground MD 21070	Commander US Army Biomedical Laboratory Aberdeen Proving Ground Edgewood Arsenal MD 21010
US Army Research Office ATTN: Chemical and Biological Sciences Division P.O. Box 1221 Research Triangle Park NC 27709	Commander Naval Medical Research Institute National Naval Medical Center Bethesda MD 20014
Biological Sciences Division Office of Naval Research Arlington VA 22217	Commander USAF School of Aerospace Medicine Aerospace Medical Division Brooks Air Force Base TX 78235
Director of Life Sciences USAF Office of Scientific Research (AFSC) Bolling AFB Washington DC 20332	