Modelización Numérica – Problemas Unidad 1 y 2

- 1. Sea una M/M/1 tal que $\lambda = 12$ clientes/segundo, y $T_s = 0.05$ segundo/cliente hallar:
 - a) La utilización del sistema.
 - b) La probabilidad que el sistema este ocioso.
 - c) La probabilidad que en el sistema haya al menos 3 clientes y a lo sumo 5.
 - d) La probabilidad que el número de clientes en el sistema sea como mínimo 3.
 - e) La probabilidad que en el sistema haya como mínimo 1 cliente.
- **2.** En una M/M/1 $\pi_1 = 0.24$. Hallar π_3 .
- **3.** En una M/M/1 $\pi_k = 0.008$, $\pi_{k+2} = 0.002$. Hallar π_{k-1} .
- **4.** En una M/M/1 $\pi_{(k+1)}^2_{+2} = 0,003, \pi_{(k+1)}^2 = 0,009$. Hallar $\pi_{(k-2k)}^2$.
- 5. En una M/M/1 tal que π_1 = 0,22, graficar en un mismo par de ejes π_n = $f_{(n)}$.
- **6.** Sea una M/M/1/4 talque $\lambda = 10$ clientes/segundo y $\mu = 16$ clientes/segundo, hallar:
 - a) π_0 .
 - b) P_b (probabilidad de bloqueo).
 - c) γ_I (rendimiento a la entrada).
 - d) γ_0 (rendimiento a la salida).
 - e) % de rechazo.
- 7. Sea una M/M/1/N tal que $\pi_0 = 0.60$ siendo $\rho = 0.5$ hallar la capacidad del sistema (N).
- **8.** Sea una M/M/1 que ha sido observado durante 20 segundos ($T_{obs} = 20$ segundos) hallándose los siguientes valores:

i	Ta _i	Ts _i	In	Out	$\mathbf{W_i}$
1	2	3			
2	4	4			
3	11	2			
4	13	3			
5	15	3			

- a) Todos los tiempos son en segundos. Completar el cuadro y hallar el valor de N (número medio de clientes en el sistema)
- b) Realizar el diagrama de perfiles del sistema y de la cola.
- **9.** Idem anterior con $T_{obs} = 30 \text{ min}$

i	Tai	Ts _i	In	Out	$\mathbf{W_{i}}$
1	6	5			
2	10	4			
3	18	5			
4	23	6			