Week 3

SA (n: sequence length, dk: Q,K,V channels, d_model: embeddings)

SA

- Input
 - \circ Wi (Q, K, V) = d_model x dk = 512 x 64 (dv = dk)
 - X = n x d_model = 25000 x 512 (n: batch size)
- Output
 - \circ Q, K, V = n x dk = 25000 x 64
 - \circ Q * K^T = n x n = 25000 x 25000
 - o sa(Q, K, V) = n x dk = 25000 x 64

MHSA

MHSA

- Input
 - \circ SA i = n x dk = 25000 x 64, h = 8
 - \sim Wo = h*dk x d_model = 512 x 512
- Output
 - SA_1 SA_2 ... SA_h] * Wo = (n x h*dk) x (h*dk x d_model) = n x d_model = 25000 x 512

FFN

FFN

- Input
 - W_1 = d_model x d_ff = 512 x 2048, W_2 = d_ff x d_model = 2048 x 512
 - X (from MHSA) = n x d_model = 25000 x 512
- Output
 - X * W_1 = (n x d_model) x (d_model x d_ff) = n x d_ff = 25000 x 2048
 - _ * W_2 = (n x d_ff) x (d_ff x d_model) = n x d_model = 25000 x 512

Apply Nvidia's softmax to Ara

mi: local maximum, xi: current element, di: sum

- Loop 1:
 - o mi (max)
 - di (sub, shift, add)
- Loop 2:
 - reciprocal (1/dv)
 - o sub, shift, mult

 $M \times N$

Transformer in CV (ViT)

- 2D images to 1D Input
 - Image H x W x C
 - Patches N x (P² * C)
 - Prepend class token Xclass, transformed as class prediction at the output (not necessary)
 - Positional encoding, similar accuracy in 1D and 2D

MLP

Norm

Norm

$$\mathbf{z}_0 = [\mathbf{x}_{\text{class}}; \ \mathbf{x}_p^1 \mathbf{E}; \ \mathbf{x}_p^2 \mathbf{E}; \cdots; \ \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}, \ \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby

Transformer in CV (ViT)

- Transformer pre-trained on JFT-300M outperforms ResNet, and requires less expenses
- Better to extract long-range information
- Hybrid Architecture
 - Input could be feature map from CNN

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base 12 768		3072	12	86M	
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	-
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Pose Estimation (ViTPose)

- Plain ViT (no CNN)
- MIM pretraining as backbones
- Simple structure:
 - No cross-attention in decoder
 - Deconvolution or bilinear interpolation
- Window-based attention
 - Relative position embedding
 - Shift-window (broadcast info between windows)
 - Pooling window
 - Swin-Transformer

ViTPose

8 8	75 62	Params	Speed	Input	Feature	COC	O val	COCC	test-dev
Model	Backbone	(M)	(fps)	Resolution	Resolution	AP	AR	AP	AR
SimpleBaseline [44]	ResNet-152	60	829	256x192	1/32	73.5	79.0	-	-
HRNet [38]	HRNet-W32	29	916	256x192	1/4	74.4	78.9		<u>~</u>
HRNet [38]	HRNet-W32	29	428	384x288	1/4	75.8	81.0	74.9	80.1
HRNet [38]	HRNet-W48	64	649	256x192	1/4	75.1	80.4	-	-
HRNet [38]	HRNet-W48	64	309	384x288	1/4	76.3	81.2	75.5	80.5
UDP [19]	HRNet-W48	64	309	384x288	1/4	77.2	82.0	-	_
TokenPose-L/D24 [28]	HRNet-W48	28	602	256x192	1/4	75.8	80.9	75.1	80.2
TransPose-H/A6 [46]	HRNet-W48	18	309	256x192	1/4	75.8	80.8	75.0	_
HRFormer-B [48]	HRFormer-B	43	158	256x192	1/4	75.6	80.8	-	-
HRFormer-B [48]	HRFormer-B	43	78	384x288	1/4	77.2	82.0	76.2	81.2
ViTPose-B	ViT-B	86	944	256x192	1/16	75.8	81.1	75.1	80.3
ViTPose-B*	ViT-B	86	944	256x192	1/16	77.5	82.6	76.4	81.5
ViTPose-L	ViT-L	307	411	256x192	1/16	78.3	83.5	77.3	82.4
ViTPose-L*	ViT-L	307	411	256x192	1/16	79.1	84.1	77.8	82.8
ViTPose-H	ViT-H	632	241	256x192	1/16	79.1	84.1	78.1	83.1
ViTPose-H*	ViT-H	632	241	256x192	1/16	79.8	84.8	78.4	83.4

Light-Weight ViT (MobileViT)

- CNNs: local feature extraction and less sensitivity to data augmentation
- Transformers: input-adaptive weighting and global processing

- Standard CNN: 1. Unfolding 2. Local Processing 3. Folding
- This work: replace local processing with transformer

Light-Weight ViT (MobileViT)

Model	# Params. U	Top-1 ↑
MobileNetv1	2.6 M	68.4
MobileNetv2	2.6 M	69.8
MobileNetv3	2.5 M	67.4
ShuffleNetv2	2.3 M	69.4
ESPNetv2	2.3 M	69.2
MobileViT-XS (Ours)	2.3 M	74.8

Model	# Params. 🎚	Top-1 ↑		
DenseNet-169	14 M	76.2		
EfficientNet-B0	5.3 M	76.3		
ResNet-101	44.5 M	77.4		
ResNet-101-SE	49.3 M	77.6		
MobileViT-S (Ours)	5.6 M	78.4		

(a) Classification @ 256×256

(c) Segmentation @ 512×512

(b) Detection @ 320×320

Model	# Params.	Top-1
MobileViT-XXS	1.3 M	69.0
MobileViT-XS	2.3 M	74.8
MobileViT-S	5.6 M	78.4

Nvidia's Transformer Accelerator

- Per-vector scaled quantization (VSQ)
- softmax: base 2 instead of e
- Replace GELU with ReLU

Nvidia's Transformer Accelerator

Dataset, Task		SQuAD v1.1, Reading Comprehension											ImageNet, Image Classification					
Network		BERT-Base						BERT-Large					DelT-Small			DelT-Base		
Sequence Length		128		384		128		384		197		197						
Baseline FP32 Accuracy (%)		87.5		87.5		90.3		90.9		79.8			81.8					
Data Bitwidth (4V = 4b VSQ)	4b	4V	8b	4b	4V	8b	4b	4V	8b	4b	4V	8b	4b	4V	8b	4b	4V	8b
Accuracy Loss (%)	80	0.7	0.7	81	0.5	0	88	1.1	1.1	89	0.8	0.1	29	3.6	0.7	25	1.3	0.4
MAC Utilization (%)	-	98	99	•	98	99	-	98	99	¥	98	99	-	94	96	-	97	98
Throughput (inferences/s)	-	88	45	-	28	14		25	13	-	8.1	4.1	-	210	108	-	56	28
Energy Eff. (inferences/s/W)	-	1.7k	745	-	539	235	-	502	216	-	160	69	-	3.5k	1.5k		1.0k	406