TAM 212

Recall: for point masses (mass m)

linear momentum: $\vec{p} = \vec{m} \vec{v}$ angular momentum: $\vec{H}_0 = \vec{r}_0 \times \vec{m} \vec{v}$ = rop m VI

= Top m V sint

(1) Externally applied forces
$$\vec{F_1}$$
, $\vec{F_2}$ change the linear momentum of particle

$$\sum \vec{F} = \vec{F_1} + \vec{F_2} = \vec{P} = \vec{mV} = \vec{ma} \quad (constant mass)$$

$$\sum \vec{F} = \vec{F}_1 + \vec{F}_2 = \vec{P} = \vec{MV} = \vec{Ma}$$
 (constant mass)

(2) Externally applied moments M change the angular momentum

properties linear angular	of system: momentum p momentum Ho	ext $$ exte	ernally applied	noments M
Example	particle of mass m	At this instant (1) Is the linear (A) yes	: mamentum p B) NO	changing?
Pop 0	P	(2) Is the argular charging? A) YES	momentum (about U

Formulation of Laws for Rigid Bodies

CENTER OF MASS of a rigid body - unique point of a rigid body where the weighted relative position of the distributed mass sums to zero.

total mass
$$M = \sum m_i$$

center of mass: $\vec{F}_c = \frac{1}{M} \sum m_i \vec{F}_i$

$$M = \int e(\vec{r}) dV$$

$$V \vec{r}_c = \frac{1}{M} \int e(\vec{r}) \vec{r} dV$$

$$\sum \vec{f_i} = M \vec{\alpha}_c = M \vec{\nabla}_c$$

Example
$$\vec{F}_{i} = (\vec{F}_{i} - \vec{F}_{c}) + \vec{F}_{c}$$

$$\vec{V}_{i} = \frac{d\vec{F}_{i}}{dt}$$

$$= \frac{d}{dt}(\vec{F}_{i} - \vec{F}_{c}) + \frac{d\vec{F}_{c}}{dt}$$

linear momentum:

mismentum:
$$\vec{P} = \sum_{i=1}^{n} \vec{v}_{i} \left[\frac{1}{2} (\vec{r}_{i} - \vec{r}_{c}) + \vec{v}_{c} \right] = \frac{1}{2} (\vec{r}_{i} - \vec{r}_{c}) + \vec{v}_{c}$$

$$= \frac{1}{2} (\vec{r}_{i} - \vec{r}_{c}) + \vec{v}_{c}$$

Angulan Momenton Law for Rigid Bodies

MOMENT OF INERTIA Ic

$$\vec{F} = m\vec{a}$$
 $\vec{a} = \vec{F}/m$ $m = resistance to linear acceleration by analogy $I_c = resistance$ to angular acceleration$

Formally, the moment of inertia is