FAST JACOBIANS AND HESSIANS BY LEVERAGING SPARSITY

An Illustrated Guide to Automatic Sparse Differentiation

Adrian Hill^{1,2}, Guillaume Dalle³ and Alexis Montoison⁴

¹BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany, ²Machine Learning Group, Technical University of Berlin, Berlin, Germany,

³LVMT, ENPC, Institut Polytechnique de Paris, Univ Gustave Eiffel, Marne-la-Vallée, France, ⁴Argonne National Laboratory

Recap: Automatic Differentiation (AD)

The chain rule tells us that the Jacobian of a composed function $f = h \circ g$ is obtained by multiplying the **Jacobian matrices** (solid) of h and g.

However, AD doesn't use Jacobian matrices, instead opting for matrix-free Jacobian operators (dashed). The chain rule now corresponds to a composition of operators.

To turn such (composed) Jacobian operators into Jacobian matrices, they are evaluated with all standard basis vectors.

This either constructs Jacobian matrices column-by-column (forward mode, computing as many JVPs as there are inputs) or row-by-row (reverse mode, computing as many VJPs as there are outputs).

Idea: Automatic Sparse Differentiation (ASD)

Since Jacobian operators are linear maps, we can:

- simultaneously compute the values of orthogonal columns/rows
- 2. decompress the resulting vectors into the Jacobian matrix.

Unfortunately, contrary to our illustrations, Jacobian operators (dashed) are black-box functions with unknown structure. Two preliminary steps are therefore required to determine orthogonal columns/rows.

Step 1: Sparsity Pattern Detection

To find orthogonal colomns, the pattern of non-zero values in the Jacobian matrix has to be detected. This requires a fast binary AD system [1].

Step 2: Coloring

Graph coloring algorithms are applied to the sparsity pattern to detect orthogonal columns/rows [2].

Bicoloring

ASD can be accelerated even further by coloring both rows and columns and combining forward and reverse modes.

0.52	0.67	-1.26	-0.48	1.29
0.91	0.0	0.0	0.0	0.0
1.48	0.0	0.0	0.0	0.0
-1.29	0.0	0.0	0.0	0.0

Benchmark

- performance of AD vs. ASD depends on sparsity and number of colors
- plotted: k iterations of difference operator over input of length n

References

- [1] A. Walther, "Computing sparse Hessians with automatic differentiation," ACM Transactions on Mathematical Software, vol. 34, no. 1, pp. 1-15, Jan. 2008, doi: 10.1145/1322436.1322439.
- [2] A. H. Gebremedhin, F. Manne, and A. Pothen, "What Color Is Your Jacobian? Graph Coloring for Computing Derivatives," SIAM Review, vol. 47, no. 4, pp. 629-705, Jan. 2005, doi: 10/cmwds4.

Check out our ICLR blog post for more information!

