Звіт з виконання лабораторної роботи 3 Варіант 1С (Сліпий цифровий підпис)

 Φ I-42мн Бондар Петро Φ I-42мн Кістаєв Матвій

January 17, 2025

Огляд

Підгрупа: 1С.

Мета: Дослідити можливість реалізації схеми сліпого цифрового підпису.

Завдання (модифіковане):

- 1. Теоретично дослідити тему сліпих цифрових підписів.
- 2. Обрати схеми для аналізу/порівняння/реалізації.
- 3. Детальніше проаналізувати та теоретично порівняти обрані схеми сліпого цифрового підпису.
- 4. Реалізувати релевантні схеми на Python.

Сліпий цифровий підпис

Схема сліпого цифрового підпису надає можливість користувачу поставити свій цифровий підпис на отримане повідомлення, не маючи змоги отримати жодної інформації про це повідомлення.

В загальному випадку схема виглядає наступним чином:

- 1. [S] Підписант S генерує криптосистему підпису $\Sigma = \langle Sign, Verify \rangle$ з публічним ключем pk.
- 2. $[U \leftrightarrow S]$ Якісь дії...
- 3. $[U \to S]$ Користувач U обирає повідомлення m для підпису та використовує до нього алгоритм «засліплення» m' = Blind(m). Потім надсилає m' підписанту.
- 4. $[U \leftrightarrow S]$ Якісь дії...
- 5. $[S \to U]$ Підписант підписує засліплене повідомлення $\sigma' = Sign_{pk}(m')$ та надсилає σ' користувачу.
- 6. [S] Користувач U «знімає» засліплення $Unblind(m', \sigma')$ та отримує валідний підпис (m, σ) .
- 7. Підпис (m,σ) буде проходити перевірку: $Verify_{pk}(m,\sigma) = true$

Або у форматі протоколу:

Сліпий цифровий підпис $\Sigma = \langle Sign, Verify \rangle \qquad \qquad m \\ & \qquad \qquad \cdots \\ & \qquad \qquad m' = Blind(m) \\ & \qquad \qquad \sigma' = Sign(m') \\ & \qquad \qquad \sigma = Unblind(m', \sigma') \\ & \qquad \qquad \Pi$ Підпис (m, σ)

Вимоги до схеми сліпого цифрового підпису

Основними вимогами стійкості для сліпого цифрового підпису є:

• Неможливість підробки (Unforgeability):

За l сесій підпису зловмисник не може $e\phi e\kappa musho$ обчислити l+1 коректний підпис для l+1 обраних повідомлень, для будь-якого натурального l=poly(n)

• Сліпота:

За підписом та повідомленням користувача (m, σ) підписант не здатний статистично ідентифікувати сесію, в якій цей підпис було утворено.

Першим підписом такого типу був сліпий підпис на основі RSA, запропонований Девідом Шаумом в 82 році разом із концепцією електронної готівки.

На практиці зараз переважно використовуються сліпі підписи на основі підпису Шнора (на групах точок еліптичних кривих). Схема сліпого підпису Шнора має наступний вигляд:

Зауваження. В протоколі функція H — це «ідеальна» геш-функція вигляду:

$$H: G \times \mathcal{M} \to \mathbb{Z}_q$$

Схема сліпого підпису на основі підпису Шнора має багато переваг в порівнянні з RSA:

- Дозволяє використовувати групу точок еліптичної кривої швидше та надійніше.
- Частина роботи підписанта є дуже ефективною з точки зору обчислень
- Має доведену стійкість (окрім ROS-атаки на паралельні сесії), не існує відомих практичних атак.

Схему сліпого підпису Шнора реалізовано в файлі **sign.py** із використанням генератора Маурера із попередньої лабораторної.