Esame di Progettazione di Sistemi Digitali 21 giugno 2021 - canale AL - prof. Pontarelli

Cognome	Nome	Matricola

Esercizio 1 (6 punti)

Progettare un circuito sequenziale con due ingressi x1 e x0 e due uscite z1 e z0. Si consideri la sequenza *s* costituita dagli ultimi due bit di x1 e gli ultimi due bit di x0. L'uscita z1 deve essere uguale a 1 se *s* considerato come valore in Ca2 (complemento a 2), è un valore negativo dispari, mentre z0 deve essere 1 se *s*, considerato come valore in base 2, è un multiplo di 3.

Esempio x1 0101100100

x0 0010100001

z1 00**1**0**11**0000

z0 000**11**0**1**000

AUTOMA

Tabella delle transizioni

PS	\mathbf{Q}_1	Q_0	x1	x 0	S	NS	Q ₁ '	Q ₀ '	z1	z 0
S00	0	0	0	0	0000	S00	0	0	0	1
S00	0	0	0	1	0001	S01	0	0	0	0
S00	0	0	1	0	0100	S10	0	0	0	0
S00	0	0	1	1	0101	S11	0	0	0	0
S01	0	1	0	0	0010	S00	0	1	0	0
S01	0	1	0	1	0011	S01	0	1	0	1
S01	0	1	1	0	0110	S10	0	1	0	1
S01	0	1	1	1	0111	S11	0	1	0	0
S10	1	0	0	0	1000	S00	1	0	0	0
S10	1	0	0	1	1001	S01	1	0	1	1
S10	1	0	1	0	1100	S10	1	0	0	1
S10	1	0	1	1	1101	S11	1	0	1	0
S11	1	1	0	0	1010	S00	1	1	0	0
S 11	1	1	0	1	1011	S01	1	1	1	0
S 11	1	1	1	0	1110	S10	1	1	0	0
S11	1	1	1	1	1111	S11	1	1	1	1

Equazioni del circuito:

$$\begin{aligned} &Q_1' = x_1 \\ &Q_0' = x_0 \end{aligned}$$

$$z_1 = Q_1 x_0 \\ &z_0 = \bar{Q}_1 \bar{Q}_0 \bar{x}_1 \bar{x}_0 + \bar{Q}_1 Q_0 \bar{x}_1 x_0 + \bar{Q}_1 Q_0 x_1 \bar{x}_0 + Q_1 \bar{Q}_0 \bar{x}_1 x_0 + Q_1 \bar{Q}_0 x_1 \bar{x}_0 + Q_1 \bar{Q}_0 \bar{x}_1 \bar{x}_0$$

NOTE

- Come si vede (anche) dalla soluzione proposta, questo circuito si può realizzare semplicemente memorizzando in 2 flip-flop i valori di ingressi x1 e x0, e calcolare z1 e z0 come circuito combinatorio con ingressi Q₁, Q₀, x1 e x0
- Sebbene non necessario, è possibile aggiungere uno stato iniziale (R), in modo che per la prima coppia di valori x1 e x0, z1 e z0 siano entrambi nulli. In tal caso la codifica **S00=000**, **S01=001**, **S10=010**, **S11=011**, **R =1--** porta ad una soluzione praticamente identica a quella proposta.

Esercizio 2 (4 punti)

Descrivere in SystemVerilog un flip-flop di tipo T con reset sincrono.

Esercizio 3 (3 punti)

Usando gli assiomi dell'algebra di Boole, verificare la seguente identità:

$$(x\bar{y} + \overline{y}z + z(\bar{x} + y)) \oplus xz = xy + \bar{z}$$

$$(x\bar{y} + \overline{y}z + z\bar{x} + zy) \oplus xz = xy + \bar{z}$$

$$(x\bar{y} + \overline{z(\bar{y} + \bar{x} + y)}) \oplus xz = xy + \bar{z}$$

$$(x\bar{y} + \overline{z(1 + \bar{x})}) \oplus xz = xy + \bar{z}$$

$$(x\bar{y} + \bar{z}) \oplus xz = xy + \bar{z}$$

$$(x\bar{y} + \bar{z}) \bar{x}\bar{z} + (x\bar{y} + \bar{z})xz = xy + \bar{z}$$

$$(x\bar{y} + \bar{z})\bar{x}\bar{z} + (x\bar{y} + \bar{z})xz = xy + \bar{z}$$

$$(x\bar{y} + \bar{z})(\bar{x} + \bar{z}) + ((\bar{x} + y)z)xz = xy + \bar{z}$$

$$x\bar{y}\bar{z} + \bar{z} + (\bar{x}z + yz)xz = xy + \bar{z}$$

$$\bar{z} + xyz = xy + \bar{z}$$

$$\bar{z} + xy = xy + \bar{z}$$

Esercizio 4 (3 punti)

Dati i numeri X= C5A00000 e Y= 45100000 espressi nella rappresentazione in virgola mobile IEEE 754:

- Eseguire l'operazione A+B usando la rappresentazione data ed esprimere il risultato secondo lo standard IEEE 754
- Verificare il risultato ottenuto eseguendo la conversione in decimale sia del risultato che degli operandi.

(a) conversione

(b) somma

1. allineo gli esponenti, scrivendo
$$Y=1,001_2 \cdot 2^{11}=0,1001_2 \cdot 2^{12}$$

2. eseguo il complemento a 2 della mantissa

$$m_X = -(01,01) = 10,11$$

3. eseguo la somma,

4. eseguo il complemento a 2 della mantissa di Z

(c) conversione di Z

Esercizio 5 (4 punti)

Analizzare il seguente circuito e ricavare la funzione f in uscita semplificarla ed esprimere f in forma normale POS.

$$\begin{array}{lll} f = (\bar{x}_1\bar{x}_0 \oplus x_2x_1) + \bar{x}_1x_0 & + & x_2x_1(\bar{x}_4x_1\bar{x}_0 + x_4x_1x_0) = \\ \bar{x}_1\bar{x}_0\overline{x_2x_1} + \bar{x}_1\bar{x}_0x_2x_1 + \bar{x}_1x_0 & + & \bar{x}_4x_2x_1\bar{x}_0 + x_4x_2x_1x_0 = \\ \bar{x}_1\bar{x}_0(\bar{x}_2 + \bar{x}_1) + (x_1 + x_0)x_2x_1 + \bar{x}_1x_0 & + & \bar{x}_4x_2x_1\bar{x}_0 + x_4x_2x_1x_0 = \\ & = & \bar{x}_2\bar{x}_1\bar{x}_0 + \bar{x}_1\bar{x}_0 + x_2x_1 + x_2x_1x_0 + \bar{x}_1x_0 + \bar{x}_4x_2x_1\bar{x}_0 + x_4x_2x_1x_0 = \\ & = & \bar{x}_1\bar{x}_0 + x_2x_1 + \bar{x}_1x_0 = \bar{x}_1 + x_2x_1 = \bar{x}_1 + x_2 \end{array}$$

Esercizio 6 (3 punti)

Data l'espressione $f = \bar{z} + xy + \bar{y}\bar{z} + (xy + \bar{x}z)\bar{z}$ semplificarla e portarla in forma POS.

Realizzare *f* con soli operatori NAND e con soli operatori NOR.

$$f = \overline{z} + xy + \overline{y}\overline{z} + (xy + \overline{x}z)\overline{z} = \overline{z} + xy + xy\overline{z} = \overline{z} + xy = (\overline{z} + x)(\overline{z} + y)$$

NOR:

$$f = \overline{(\overline{z} + x)(\overline{z} + y)} = \overline{(\overline{z} + x)} + \overline{(\overline{z} + y)} = \overline{(\overline{z} + x)} \ NOR \ \overline{(\overline{z} + y)} = (\overline{z} \ NOR \ x) \ NOR \ (\overline{z} \ NOR \ y)$$

NAND:

$$f = \overline{\overline{z} + xy} = \overline{z \cdot \overline{x \cdot y}} = z \ NAND \ \overline{x \cdot y} = z \ NAND \ (x \ NAND \ y)$$

Esercizio 7 (3 punti)

Dati i valori X = 3614 e Y = 6275 rappresentati in base 10:

- eseguire la conversione in base 16
 eseguire la somma X+Y usando base 16
- convertire il risultato in base 10 e verificare che sia corretto.

```
X = 3614 = 2048 + 1024 + 512 + 16 + 8 + 4 + 2 = 1110,0001,1110 = E1E
Y = 6275 = 4096 + 2048 + 128 + 2 + 1 = 1'1000'1000'0011 = 1883
X + Y = 26A1 \\ = 2*4096 + 6*256 + 10*16 + 1 \\ = 8192 + 1536 + 160 + 1 \\ = 9889
```

Esercizio 8 (4 punti)

Dati gli ingressi $x_2x_1x_0$ che rappresentano valori in Ca2, vengono prodotti in uscita $y_2y_1y_0$ tali che:

- se $x_2x_1x_0$ è pari allora $y_2y_1y_0$ rappresenta $x_2x_1x_0$ incrementato di 1
- se $x_2x_1x_0$ è dispari allora $y_2y_1y_0$ rappresenta la metà di $(x_2x_1x_0 + 3)$

Stendere la tavola di verità

Realizzare $y_2y_1y_0$ con PLA

Realizzare y₁ con MUX 4-a-1 e con MUX 2-a-1

x2	x1	x0	y2	<i>y1</i>	y0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	0	0	1

$$y_2 = x_2 x_1 \bar{x}_0 + x_2 \bar{x}_1 \bar{x}_0 = x_2 \bar{x}_0$$

$$y_1 = \bar{x}_2 \bar{x}_1 x_0 + \bar{x}_2 x_1 \bar{x}_0 + \bar{x}_2 x_1 x_0 + x_2 x_1 \bar{x}_0 = \bar{x}_2 x_0 + \bar{x}_2 x_1 + x_1 \bar{x}_0$$

$$y_0 = \bar{x}_2 \bar{x}_1 \bar{x}_0 + \bar{x}_2 x_1 \bar{x}_0 + \bar{x}_2 x_1 x_0 + x_2 \bar{x}_1 \bar{x}_0 + x_2 x_1 \bar{x}_0 + x_2 x_1 x_0 = \bar{x}_0 + x_1$$

PLA MUX

