



# Nilearn Tutorial

Alexandre Abraham and João Loula Brainhack 2016 Vienna

http://nilearn.github.io

#### What is Nilearn?

Nilearn is a Python module for **statistical** and **machine learning** analysis on brain data.

It leverages Python's **simplicity** and Scikit-learn's **versatility** into an easy-to-use integrated pipeline.

**Better reproducibility:** run a whole analysis in a single script!





Free and open source

**41 contributors** and growing: peer reviewed codebase Ease collaboration between computer scientists and neuroscientists

### A typical Nilearn analysis





#### Analysis









Any scikit-learn model



Functional Connectivity Shrunk covariance Group Sparse Cov.





### A wide range of plotting capabilities



### Data pre-treatment

#### Easy data manipulation in Python

Concatenating images

Smoothing

Resampling r

Filtering

Averaging

Cropping

Easy indexing / browsing

Thresholding

Applying any math operation!

Easy, automatic masking Automatic region extraction

concat img

smooth img

resample img

clean\_img

mean\_img
crop img

index img / iter img

threshold img

math img

NiftiMasker

RegionExtractor



### Why make the switch?



#### Scalable and efficient

Online implementations
Out-of-core computing
Parallel computing and efficient caching
(joblib powered)



#### Learn and work by example

58 examples covering a wide spectrum of use cases

Tutorials as interactive Jupyter notebooks Your results are just 1 copy/paste away!



#### High quality code and doc

90% code coverage
Commented and readable code
Algorithms contributed by domain experts
Extensive documentation



#### Nilearn is spreading fast

Part of nipy ecosystem

Among KDnuggets' top 20 Python

Machine Learning Projects

### All the cool kids are using it



[Rubin et al. 2016]

### Some use cases



"I'LL SHOW YOU HOW TO TURN THIS SWISS ARMY KNIFE INTO A NUCLEAR BOMB!"



## SearchLight: Multi-Variate Pattern Analysis

Efficient implementation Custor

Customizable Only one line of code

```
searchlight = SearchLight(
    mask_img,
    process_mask_img,
    radius=5.6,
    n_jobs=n_jobs,
    cv=cv)
searchlight.fit(fmri_img, y)
```





#### Application: Brain connectivity estimation

ADHD dataset, 20 subjects







#### SpaceNet decoder, multi-variate priors: Total-Variation + L1 and GraphNet

Classification: Brain stimuli when showing face vs. houses

Haxby dataset Download 1 subject

Sample selection Face vs. house

SpaceNet Classifier
Automatic masking
Multiple penalties

Result extraction
Prediction accuracy
Model coefficients



108 seconds



237 seconds

Classification: Brain stimuli when showing face vs. houses

Poldrack mixed-gamble Download 16 z-maps and brain mask



Automatic masking Multiple penalties

Result extraction





426 seconds

#### Interactive tutorial

Creating an atlas using the ABIDE resting-state time-series and then building a functional connectome





## Thanks!

For installing or seeing more tutorials, go to nilearn.github.io