Deep Learning ProjectSpeech Emotion Recognition

Zhipeng Hong

Kaihang Zhao

Motivation

- Understanding emotion behind audio could be widely used to understand and analyze customer or user needs
- Audio data can be parsed into two ways (CNN, RNN) to capture patterns for different classes
- Creating algorithms that processes audio sounds and understands their inherent meanings

Speech Emotion Recognition

Data Source: Crowd Sourced Emotional Multimodal Actors Dataset

01 = neutral, 02 = calm, 03 = happy, 04 = sad, 05 = angry, 06 = fearful

Around 7k audios in total; Each around 3s

https://www.kaggle.com/datasets/dmitrybabko/speech-emotion-recognition-en

Techniques we consider:

CNN-base, RNN-base, Transformer-base

Data Preprocessing

Reference on Kaggle notebook to sample and extract features as a 1D vector with 848 dimensionalities.

CNN

1D-CNN:

- Used same structure as AlexNet and ResNet. Since we convert audio to array, we need to use 1d convolution layer.
- We follow the same structure as AlexNet and ResNet, then we rebuild the model from scratch and turned the hyperparameters.

Result:

Model	Learning Rate	Weight Decay	Best Test Accuracy
ResNet	1e-4	5e-4	0.9
AlexNet	1e-4	5e-4	0.8

Sequence Model

- We built three sequence deep learning model, Bidirectional GRU, Bidirectional LSTM and Attention Model.
- Because the stack and bidirectional models' training speed is quite slow, we only trained for 25 epochs.

Model	Learning Rate	Final Test Accuracy
GRU	0.005	0.41
LSTM	0.005	0.53
Attention	0.005	0.63

Well & Not Well

Well:

• 1D-CNN model performs quite well on the audio classification. This would be an example to prove that 1D-CNN can also apply into prediction of sequence data.

Not well:

- Dependent on only one kind of feature extraction techniques; can explore more methods
- Can play around more hyper parameters and train more epochs to get better results

Thanks for listening!