

LIMITED ENERGY STUDY COLD STORAGE FACILITY FT. CAMPBELL, KENTUCKY

Ogden Project No. 0-4627-0070-0000

Prepared for:
U.S. Army Corps of Engineers, Louisville District
600 Martin Luther King Place
Louisville, KY 40201-0059

19971023 112

Prepared by:

Ogden Environmental and Energy Services 11003 Bluegrass Parkway # 690 Louisville, KY 40299

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005

CHAMPAIGN, ILLINOIS 61826-9005

REPLY TO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakef

Librarian Engineering

LIMITED ENERGY STUDY COLD STORAGE FACILITY FT. CAMPBELL, KENTUCKY

Ogden Project No. 0-4627-0070-0000

Prepared for:
U.S. Army Corps of Engineers, Louisville District
600 Martin Luther King Place
Louisville, KY 40201-0059

Prepared by:

Ogden Environmental and Energy Services 11003 Bluegrass Parkway # 690 Louisville, KY 40299

January, 1993

EXECUTIVE SUMMARY

Introduction. An energy audit was performed at the Cold Storage Facility (Building #5202) at Ft. Campbell, Kentucky, on September 10-11, 1992 by Ogden Environmental and Energy Services. Electrical energy demand and consumption were measured by Tennessee Valley Authority (TVA) personnel between September 18 - October 19, 1992. This draft report presents findings from the survey and results of an analysis of energy conservation opportunities (ECOs) listed in the scope of work or identified during the survey.

<u>Building Data.</u> The Cold Storage Facility (CSF) was designed and built in 1964 as a cold storage and meat cutting plant and encompasses 29,300 square feet. The CSF is presently used as a storage and distribution facility. The meat-cutting area is no longer used as such, because meat is received pre-cut. The facility serves 29 dining facilities, Reserve and Guard Units, schools, and hospitals on post.

Present Energy Consumption. Electricity and natural gas are used at the CSF. Neither is metered. The CSF consumes an average of 2900 kilowatt-hours (KWH) of electrical energy daily. Major electrical loads include refrigeration systems (about 65%), lights (about 28%), and forklift battery charging (about 5%). Demand is generally highest in the early afternoon, and runs about 20% higher during the week than on weekends (167 Kw). Projected CSF annual electricity consumption is 1.1 million kWH, or 3,626 MBTU. CSF electrical consumption is about 0.5% of the total Ft. Campbell electrical consumption. Projected annual CSF electricity cost is approximately \$47,500. Natural gas is used to power a boiler and water heaters at the facility. Operating cost is estimated at between \$3,000 and \$4,000 per year.

<u>Energy Conservation Analysis.</u> Recommended projects for energy conservation include water heater replacement, additional insulation (above ceiling), plastic strip curtains, replacing door seals, heat reclaim, HVAC replacement, shutting down excess capacity, high efficiency motors, and fluorescent lighting.

Projects evaluated and rejected as not feasible or economical include replacement of doors, roof replacement, occupancy sensors on incandescent lights, and power factor improvement.

A major reorganization of operations is recommended which includes putting some refrigeration compartments on standby and revamping the Mini-Mart.

<u>Energy and Cost Savings.</u> Eight projects have been identified to date with technical and economic feasibility. Each project has been analyzed alone, and synergistic effects of 15% have been estimated. The projects have energy or non-energy savings totalling approximately \$22,300 per year (1,763 MBTU/yr), nearly half of present CSF energy consumption. Combined investment cost is approximately \$317,107.

Recommended energy saving projects are summarized in Table ES-1.

Table ES-1.

Ft. Campbell Cold Storage Facility

Recommended Energy Conservation Opportunities

	Recomme	Recommended Energy Conservation Opportunities	gy cons	ervallori	Opportur	liles		
	Estimated	Estimated	Est	Estimated	Omer	Other Savings (+)	Daybook	lavoetmont
Energy Conservation Opportunity	Construction	Total	<u></u>	Energy		or Costs (-)	FayDack	IIIVestilieitt
	Cost	Investment	Sa	Savings	One-Time	Annual	Period	Hatio
	(\$)	(\$)	(MBTU/yr)	(\$/yr)	(\$)	(\$/yr)	(yrs)	
Replace old water heaters with instantaneous heaters in restrooms and VET office	\$1,040	\$1,165	133	\$148	t	ı	7.9	3.3
Replace existing lighting which is mostly incandescent with fluorescent fixtures and lamps.	\$26,210	\$29,225	425	\$5,518		(\$373)	5.3	2.1
Add insulation between compartment ceilings and roof	\$15,000	\$16,725	145	\$2,016	ı		8.3	1.7
Replace main meat freezer evaporators with updated electric defrost models	\$48,000	\$53,760	122	\$1,700	ı	\$4,500	9.6	1.5
Install plastic curtains on doors without them and reseal all cooler doors	\$6,250	696'9\$	54	\$752	1	1	9.3	1.5
Install High-Efficiency Compressor Motors on Central Medium and Low Temperature Systems	\$7,800	\$8,697	64	798 \$ 1	1	ı	9.7	1.4
Replace boiler, install HVAC systems, enclose docks, move forklifts, shut down oleo room, north freezer, free-standing freezer, repipe Mini-Mart Egg and Mini-Mart Produce to make freezers, remove unused	\$127,063	\$142,311	742	\$9,151	\$58,605	ı	11.7	1.3
Computerized Control System for HVAC and refrigeration systems	\$52,140	\$58,397	389	\$5,419		\$3,288	6.7	1.2
TOTAL	\$283,503	\$317,107	2,074	\$26,274	\$58,605	\$7,415	8.6	1.6
TOTAL ASSUMING 15% REDUCTION IN SAVINGS DUE TO SYNERGISTIC EFFECTS	\$283,503	\$317,107	1,763		\$58,605	\$7,415	9.7	1.5
				J.				

7. 25 THE 190K

TABLE OF CONTENTS

1.	Introduction	1
2.	Building Data	1
3.	Present Energy Consumption	5
4.	Energy Conservation Analysis	1
	4.1 Energy Conservation Opportunities Investigated	13 29 31 34
5.	Energy and Cost Savings	38
TABL	LES	
1. 2. 3. 4. 5. 6. 7.	Cold Storage Facility Rooms Surveyed Fort Campbell Energy Consumption Energy Conservation Opportunities Evaluated High Energy Compressor Motor Replacement Dock Enclosure, HVAC, and Operational Modifications Evaporator Units Scheduled for Replacement Recommended Energy Conservation Opportunities	5 12 21 22 30
FIGU	Cold Storage Facility Plan	. 3
2.	Fort Campbell Electrical Demand Profile	6
3.	Cold Storage Facility Electrical Energy Usage	8
4.	Cold Storage Facility Electrical Energy Demand	
5.	Instantaneous Water Heaters	
6.	Fluorescent Fixture	
7.	Fluorescent Lamps	
8.	Dock Enclosure, HVAC, and Operational Modifications	
9.	Pallet Racks	J

APPENDICES

- 1. Photographs
- 2. Cold Storage Facility Energy Cost and Usage Development and Backup Data
- 3. Energy Conservation Opportunities Supporting Calculations and Cost Estimates
- 4. Economic Analysis of Alternatives
- 5. Scope of Work
- 6. Field Notes
- 7. Energy Conservation Opportunities Rejected

1.0 Background

This energy study at Fort Campbell, Kentucky, is part of a larger Energy Engineering Analysis Program (EEAP). The study was performed using the Energy Conservation Investment Program (ECIP) Guidance and a Scope of Work based on EEAP guidance.

The study subject is the Cold Storage Facility (CSF), located in Building #5202, on Kansas Avenue between 8th and 11th Streets, Fort Campbell, KY. Fort Campbell is located approximately 200 miles south of Louisville, on the Kentucky-Tennessee border.

An energy audit was performed at the facility on September 10-11, 1992 by Rebecca Corry, Bill Rosen, and Woody Wicker of Ogden Environmental and Energy Services. The audit included a room-by-room survey, personnel interviews, and photographs. Electrical energy demand and consumption were measured by Tennessee Valley Authority (TVA) personnel between September 18 - October 19, 1992. Mechanical engineering support was provided by Richard Kelso, Kelso-Regen Associates.

2.0 Building Data

The Cold Storage Facility (CSF) was designed and built in 1964 as a cold storage and meat cutting plant. Some equipment is original. The facility encompasses 29,300 square feet. The building is concrete block painted tan (top) and brown (bottom). The black built-up roof is flat insulated board with ballast. Photographs of the CSF are included as Appendix 1.

The CSF is presently used as a storage and distribution facility. The meat-cutting area is no longer used as such, because meat is received pre-cut. The facility serves 29 dining facilities, Reserve and Guard Units, schools, and hospitals on post. The facility operates from 07:30 to 16:30, Monday through Friday, although arrangements can be made for emergency opening for food pickups. CSF personnel estimate that a pickup is made on weekends once per month.

Building #5202 contains five custom-built, walk-in refrigerators, three walk-in freezers, a reachin, glass-fronted freezer, an ice storage room, and an open- top, coffin case freezer (Figure 1). Twenty-two rooms were surveyed (Table 1).

Some rooms presently used as refrigerators were designed as freezers. Sinks, meat conveyors, and some air handling units remain from the original use. The majority of lights are incandescent and left on at all times. Freezer doors are hand-operated, the majority without automatic or magnetic closures. Some freezer doors have plastic strip curtains. Hand-operated electric forklifts are used to move food.

The administrative area (Mini-Mart) has single-unit, exterior windows typical for concrete block structures. This area is heated in winter by a boiler.

Table 1. Cold Storage Facility Rooms Surveyed

Room	Size (ft2)	Usage	Approxi mate Loading (%)	Recorded Temp.* (F)	Design Temp. (F)
Egg Room (EC-3)	1,306	Eggs, Cheese, Canned Ham	50%	56	35 - 42
Crushed Ice	270	Bagged Ice	40%	32 - 36	32
Fresh Produce (PC-2)	1,008	Fruits and Vegetables	30%	39	35 - 40
Meat Freezer (MF)	3,034	Frozen Meat, Poultry, Seafood	50%	6	0 to -10
Issue Room (IR)	1,737	Bread, Milk	-	-	-
Cold Storage Office	339	Office and Break Room	-	71	-
VET Office	286	Office and Lab	-	70	-
Locker Room	326	Locker Room	-	70	-
Mini-Mart Hallway (MM-HW)	882	Potatoes, Onions, Packs of Ketchup	-	52	-
Mini-Mart Egg Room (MM- ER)	244	Butter, Margarine, Cheese	25%	44	35 - 42
Mini-Mart Checkout (MM-CO)	960	Customer Checkout, Inventory, Office	-	Ambient	-
North Storage Staging (NSS)	1,921	Stable Milk, Extra Pallets, Forklifts, Carts, Dry Goods	-	Ambient	-
Boiler Room (BLRM)	232	Boiler, Water Heaters, Electrical Panels, Transformer	-	80	-
Vegetable Freezer (VF2)	1,176	Processed Frozen Foods	50%	3	0 to -10
Mini-Mart (MM)	2,952	Frozen Food in Free-Standing Unit and in Coffin Case. produce on floor	40%	49 - 58 in room, 10 in freezer	0 in freezers
South Freezer (non-operable) (SFRE) **	817	Not in use	0%	Ambient	0 to -10
Oleo Room (C-1) ***	466	Shortening, Oleo, Packaged Foods	50%	53	35 - 42
North Freezer (VF1) ***	921	Frozen Vegetables	50%	6	0 to -10
Mechanical Room (MECHRM)	634	Compressors, Evaporators, Electrical Panels, Refrigerant Storage, Water Heater, Transformer	-	84	-
Mini-Mart Produce	745	Fruits, Vegetables, Canned Ham, Potatoes	50%	48	30 - 35
Mini-Mart Locker Room	190	Locker Room	-	75	-
Mini-Mart Latrine	190	Latrine	640	75	-
Total	20,636				
* Sentember 10-11	1992				

September 10-11, 1992 unoccupied or unused candidate for shutdown

3.0 Present Energy Profile

3.1 Ft. Campbell

Energy Usage. Electricity and natural gas are the main forms of energy supplied to Ft. Campbell. Natural gas is provided to Ft. Campbell by Clarksville Gas, and electricity is provided by Pennyrile Electric and the Tennessee Valley Authority (TVA). Billing components from TVA include customer and facility (fixed) charges, an energy charge (\$0.02154/kWH), a demand charge (\$12.01/kW), and a power factor penalty (\$0.78/kVAR). The TVA direct service power rate and the October 1992 electricity bill for Ft. Campbell are included in Appendix 2.

Of the 2.1 million BTUs (MBTU) of energy consumed in Fiscal Year 1991, approximately 35% was electricity and 61% was natural gas. Ft. Campbell's energy bill in FY 1991 was \$15.1 million. Of this cost, 68% was electricity and 27% was natural gas. Energy consumption and usage are presented in Table 2.

Table 2. Ft. Campbell Energy Consumption

Energy Source	Usa (MB'	_		ost ion \$)	Pri- (\$/Ml	
	1991	1992	1991	1992	1991	1992
Electricity	744,087	795,239	10.3	11.3	13.86	13.93
Natural Gas	1,296,837	1,491,789	4.1	4.9	3.16	3.28
Other	85,038	-	0.8	-	6.91	-
Total	2,125,962	-	15.2	-	-	-

Source: Army Energy Awareness Program, Ft. Campbell DEH

(-) not available

<u>Electrical Demand.</u> More than half of the Ft. Campbell electric bill from TVA in FY 1992 was due to demand charges. Peak demand was recorded in the early afternoon in warmer months and in the morning during colder months (Figure 2).

Fort Campbell, Kentucky Electrical Demand Peaks Figure 2

<u>Power Factor.</u> Reactive power charge from TVA to Fort Campbell in FY 1992 was \$10,590, or 0.1 percent of the total electricity billing from TVA. Fort Campbell has facility-wide power factor correction that results in a small power factor penalty.

3.2 Cold Storage Facility

Energy Usage. Both electricity and natural gas are used at the CSF, but neither is metered. To estimate electrical energy consumption, the TVA measured electrical input to the building between September 18 and October 19, 1992. Electrical metering for the facility was installed for an approximate two-week period on each of three meters: panels in the boiler room, the mechanical room, and the battery charger room. The metering was intended to identify KWH consumption, power factor, and electrical demand peaks over the metering period. Peak demand in kilowatts (kW) and kilovolt-amperes (kVA) was measured on a 30-minute basis. Results of the study are discussed below. The TVA study and related calculations are provided as Appendix 2.

The CSF consumes an average of 2900 kilowatt-hours (kWH) of electrical energy daily (Figure 3). Major electrical loads include refrigeration systems (about 65%), lights (about 28%), and forklift battery charging (about 5%).

Projected CSF annual electricity consumption is 1.1 million kWH, or 3,626 MBTU. CSF electrical consumption is about 0.5% of total Ft. Campbell electrical consumption. Projected annual CSF electricity cost is approximately \$47,500.

Natural gas is used to power a boiler (cold weather only) and water heaters at the facility. CSF usage of natural gas was not metered for this study. Operating cost is estimated at between \$3,000 and \$4,000 per year.

FORT CAMPBELL COLD STORAGE FACILITY DAILY AVERAGE ENERGY USAGE

Figure 3

Mechanical Room

Boiler Room

Battery Charger Rm.

<u>Electrical Demand.</u> Demand is generally highest in the early afternoon, and runs about 20% higher during the week than on weekends (Figure 4). Peak demand occurred on Friday afternoons (167 kW).

<u>Power Factor</u>. Power factor measured on the circuits at the CSF ranged from 69 to 99 percent; the average for the mechanical room circuit, however, was in the mid-70 percent range. As mentioned above, Ft. Campbell has an installation-wide power factor correction that compensates for this lagging power factor.

FORT CAMPBELL COLD STORAGE FACILITY DAILY PEAK DEMAND (KW)

Figure 4

Battery Charger Rm.

Boiler Room

Mechanical Room

4.0 Energy Conservation Analysis

This section describes the energy conservation opportunities evaluated at the Fort Campbell Cold Storage Facility. The study analyzed the existing use of electricity and natural gas. Alternative energy sources --such as solar, wind, and geothermal,-- were not included. The study considered various potential energy conservation opportunities (ECOs) as well as new designs for energy trends that could make the cold storage facility more cost effective and energy efficient. Section 4.1 summarizes the ECOs evaluated and their status, i.e., whether recommended or rejected. Section 4.2 discusses recommended ECOs. Section 4.3 discusses recommended maintenance and repair actions, whether or not energy savings potential exist. Section 4.4 discusses operational recommendations. Section 4.5 gives justification for rejected ECOs.

ECOs were evaluated on the basis of potential energy savings and cost. Justification for recommending or rejecting an ECO can be for technical, economic, or operational considerations. Consideration was given to facility upgrade when possible to justify the upgrade economically.

Economic analysis uses the Army's Life Cycle Cost in Design (LCCID) software. Inputs to the analysis include project ID, location, projected energy savings, and cost. Output includes first-year dollar savings, discounted savings/investment ratio (SIR), and simple payback period. In order to qualify as an ECIP project, the SIR must be greater than one and payback must be less than ten years. The LCCID software used is version 1.062 (October 1991).

4.1 ECOs investigated for energy savings potential.

ECOs evaluated are presented in Table 3. Other ECOs discovered by the contractor during the site visit were also investigated. ECOs were evaluated for feasibility and energy savings potential. The analysis includes a system description, justification for rejection for ECOs not recommended, and estimated investment cost and estimated annual energy savings for recommended ECOs.

Table 3. Energy Conservation Opportunities Evaluated

Aspect	Item	Recommended	Rejected
Structural	Change roof color		х
	Dock Enclosure	x	
	Additional insulation under floors		x
	Additional panel insulation		х
	Insulation between compartments and roof	х	
	Plastic strip curtains inside refrigerated doors	х	
Maintenance and Repair	Replace Seals on refrigeration compartment doors	х	
	Repair refrigeration compartment doors	х	
	Distribution piping insulation	х	
	Repair or replace leaking ceilings	х	
	Repair or replace failed compartment panels	x .	
	Clean refrigerant coils regularly	x	
Mechanical	Heat reclaim from compressors	х	
	Replace HVAC system/boiler	х	-
	Evaporator size and location	x	
	High efficiency motors	x	
	Replace water heaters	х	
	Water heater controls		х
	Refrigerants		х
	Equipment location		х
	Modernized control system	х	
Lighting	Occupancy sensors for incandescent lights		х
	Replace incandescent lights with fluorescent	х	
	Replace incandescent lights with Metal Halide		х

Table 3, Continued

Aspect	Item	Recommended	Rejected
	Replace incandescent lights with High Pressure Sodium		х
Electrical Demand	Peak-shaving generators		х
	Improve power factor		
Operational	Reorganize food storage	x	
	Place North Freezer on Standby Status	x	
	Place Oleo Room on Standby Status	x	
	Remove New South Freezer	x	
	Relocate forklift storage and charging activities	x	
	Revamp customer service at the Mini-Mart	x	
	Remove Free-standing Freezer in Mini-Mart	x	
	Convert Mini-Mart Egg Room and Produce Room to Freezer	X	
	Remove unused equipment in Mini-Mart	х	
	Remove unused/obsolete equipment in Boiler Room	x	
	Remove unused/obsolete equipment in Mechanical Room	х	
	Remove meat hangers	х	
	Relocate cold storage office	х	
	Prepare Operating, Health, Safety Training Manual	х	
	Reroute traffic pattern now through Egg Room	x	

4.2 Recommended Energy Conservation Opportunities

This section discusses concepts, changes required, costs, and economic analysis for energy conservation opportunities (ECOs) recommended for implementation. Recommended ECOs are prioritized by Savings to Investment Ratio (SIR) rather than by investment cost or direct energy savings. Figures given are estimates based on manufacturers literature and experience, and it

is strongly recommended that metering of CSF energy consumption be initiated before, during, and after ECOs are implemented.

4.2.1. Water Heater Replacement

Currently, three gas water heaters provide CSF hot water needs. All of the units are old: two were produced by Jackson Manufacturing, which has been out of business for some years, and the third has no nameplate remaining. Two heaters are in the boiler room and one is in the mechanical room. Estimated energy consumption for the three units is approximately \$500 per year (158 MBTU/yr).

In office occupancy, each person uses an average of one-half gallon of hot water per day. Due to the nature of the work and the VET office, CSF staff usage is higher, perhaps two gallons per person per day. This estimated 20 gallons per day hot water demand is divided among three latrines and the VET office.

The recommended replacement is four instantaneous electric water heaters. This demand-type system uses electricity only when the tap is turned on. Because water is heated only as it is used, the instantaneous water heater is much more efficient that bulk water heaters. The units can be installed under the sinks in the latrines and the VET office. A typical unit is illustrated in Figure 5. With an estimated investment cost of \$1,165, annual energy savings are projected to be \$148 per year (133 MBTU/yr). Payback is approximately 8 years, and the SIR is approximately 3.3.

4.2.2. Fluorescent Lighting Retrofit and Upgrade

The majority of the lights at the CSF are incandescent (100 watt bulbs). Considerable energy savings potential exists to retrofit the CSF with a more energy efficient lighting system. Other benefits to upgrading the lighting system include better lighting levels and a more sanitary and safe lighting system. Present lighting does not comply with new OSHA requirements.

The recommended replacement lighting system uses fluorescent lamps in vapor-resistant fixtures.

Representative types of fixtures and lamps are presented in Figures 6 and 7. These fixtures are recommended for kitchens and food processing plants, and are UL listed for damp locations. Cold weather ballasts suitable for -20F temperatures are available. Guidelines from the Illuminating Engineering Society were used to evaluate the number of fixtures needed in CSF rooms, resulting in an overall lighting upgrade (more lumens) as well as energy savings. The total wattage using fluorescent lamps is estimated to decrease by 36 percent while average lumens per room increases 134 percent. In addition, fluorescent lamps have average life spans of 12,000 hours, compared to 750 hours for incandescent. Due to the improvement in lighting level, however, there is a net annual increase in lamp replacement cost.

The fluorescent luminaries can be installed on the junction boxes of the incandescent luminaries, so rewiring is unnecessary. The fluorescent luminaries are estimated to cost about \$ 26,200 installed. Note that each watt of electricity saved in the lighting system also saves an additional one-half watt in refrigeration load. Annual electricity savings are estimated at \$5,520 (425 MBTU/yr), a 41 percent decrease. Payback for this investment is approximately 5.3 years, and the SIR is 2.1.

Figure 5 Instantaneous Water Heaters

POWERSTREAM INSTANTANEOUS ELECTRIC WATER HEATERS

Copper-sheathed heating element heats water as it flows through the Powerstream. No tank to limit volume.

Installs close to faucet or tap to eliminate long pipe runs

			TEC	HNIC	:AL	DAT	A				
Stack No.	Powerstream Model	Wire Size	Volt-	Amps	High kW	Low	Tem 0.5 GPM	0.75 GPM	GPM	1.5	2.0
4E186	RP1	8 GA	240	40	9.5	_	_	84	64	42	32
4E186	KI-1	8 GA	240	20	-	4.75	64	42	32	21	16
4E186	RPI	8 GA	208	35	7.1	_		64	48	32	24
4E186	RF1	8 GA	208	18		3.5	48	32	24	16	12
4F4801	RP2	10 GA	277	22	6	_	-	56	40	30	20
414811	R12	10 GA	277	11		3	41	28	20	50	20
4P602	RI3	10 GA	110	28	3	_	41	28	20	_	_

(*) 'F at GPM Gallons per minute minimum water pressure 15 PSI maximum water pressure 150 PSI Specifications subject to change without notice.

Complies with National Appliance Energy Conservation Act effective January 1, 1990.

Powerstream is used in applications where a low-flow, continuous supply of hot water is needed; homes, offices, warehouses, service stations, and stores.

Demand-type system uses electricity only when tap is turned on. Because water is heated only as it is used. Powerstream is much more efficient than conventional water heating methods.

High Low heat settings allow user to select degree of heating required

Mounts in any direction. Space saving design mounts flush to wall or cabinet. 3.8" NPT inlet and outlet. In line flow controls and faucet aerators should be used with all models for optimum performance.

Features include solid copper heat exchanger, lead free construction, dual heat settings, and durable plastic housing. Measures just 12141, x 3W x 6½*H. UL Listed. Powerstream brand.

No. 4P001, 277 Volt model is designed for facilities (factories, office buildings,

warehouses) that have 440 volt service.

No. 4P002 is recommended where ground water temperatures exceed 60°F and flow rates are less than 1 GPM.

	ORD	ERING	DATA	
Stock No.	Mfr. Model	List	Each	Shpg Wt.
4E186 4P001 4P002	RP1 RP2 RP3	\$239.00 239.00 239.00	\$207.83 207.83 207.83	5.8 5.8 5.8

SEE WARRANTY INFORMATION ON PAGE OPPOSITE INSIDE BACK COVER

2171

Source: WW Graingers

4.2.3. Add Insulation Above Refrigeration Units

There is an existing layer of batting on top of the refrigeration units and a dead air space between the insulation and the underside of the roof. Adding additional insulation will reduce heat gain from solar irradiation on the roof, and from outside higher temperatures. Three options to add insulation include:

- Spray insulation on the underside of the roof
- Suspend a layer of insulation between the roof and the ceilings
- Lay more batting on top of existing insulation

The third option is recommended because of its lower cost compared with small differences in energy savings. The estimated investment is \$ 16,725. Projected energy savings are \$2,0126 per year (145 MBTU/yr). Payback is estimated at 8.3 years, with a SIR of 1.7.

Before this upgrade can be made, it will be necessary to replace or repair leaking ceilings, and any damaged insulation above (see section 4.3).

4.2.4. Upgrade Main Meat Freezer Evaporators

The main meat freezer room is presently served by two Krack BL42512 vertical floor mounted evaporators with water defrost connected to the central low temperature system. This defrost

DUST/VAPOR RESISTANT FLUORESCENT FIXTURES

Applications: Use in kitchens, food processing plants or where sanitation is important.

Housing: Noncorrosive fiberglass body for indoor use only. Completely sealed, fully gasketed to resist dust and moisture. Ballast: 120V, 60 Hz, UL Listed as suitable for damp locations; IBEW Label.

Lens: Clear acrylic diffuser.

Installation: No. 4V378 for suspension mounting only.

Lamp not included: For better lighting results use energysaving, high color rendering lamps such as Advantage X. Specline, or Ultralume lamps from Philips. See fluorescent lamps listed on pages 700-707.

FLUORESCENT FIXTURES SPECIFICATIONS AND ORDERING DATA

									CAA	1.00	s Lamps	· Shpg.
Lamp City.	s Require Watts	d (Not included) Type	Ambient	Tomp 'F	Line Amps	Din	W.	, Im. H	Stock Metalux Model No.	List	Each	Wt.
2 2 2	40 75 110	F40 F96T12 F96T12HO	50 50 -20	122 122 122	0.73 1.35 2.05	52 100 100	8 8 8	154 154 154	VT240DRDL120VLE3 3V44 VT296DRDL120VLE3 4V37 VT296H0DRDL120LE3-20 4V37	9 160.72	\$77.20 136.63 198.39	14.0 38.0 38.0

VT!Industrial/Vaportite

- Equipped with Energy Saving Ballasts/Complies with Federal Energy Efficiency Standards(E)
- Reinforced Fiberglass Housing/ Waterproof and Chemical Resistant
- Low Brightness Acrylic or Polycarbonate Lens
- Completely Gasketed/Suitable For Damp Locations
- UL Listed/Optional Wet Location
- Listing Available
- Heavy Duty Cam Latching
- Baked White Enamel Finish Liner/ High Reflectance
- Vandal Resistant Feature Available
- · Also Available in Tandem 8' Lengths

METALUX

Design Features

Construction

Fiberglass is reinforced polyester and self-extinguishing (ASTM D635-74) plastic of a permanent pearl gray color. Top of housing has eleven embossments, (4' units), 22 embossments (8' units), providing a range of mounting locations. A 7/8' hole is normally provided at each end of housing for conduit entry for continuous fed. PVC plugs and nuts are provided for sealing holes. Closed cell neoprene gasketing is bonded to the housing to form continuous seal for the diffuser. Six cam latches (4' unit), 12 cam latches (8' unit) clamp diffuser tightly to housing.

4' or 8' - 1 or 2 Lamp 8S

Electrica

Unit has internal full metal liner for positive grounding and maximum protection and rigidity. Ballast, Class P CBW ETL certified suitable to plus 50°F. (Cold temperature ballasts are available suitable to 0°F. on special order.) Pressure lock lampholders. UL listed and IBEW labeled. System input Watts: (Energy Saving Ballast and Energy Saving Lamps) (Energy Saving Ballast and Standard Lamps) (Standard Ballast and Standard Lamps) 140 (42) (47) (54), 240 (72) (82), (92), 148 (N/A) (N/A) (59), 196 (N/A) (N/A) (96), 248 (N/A) (N/A) (94), 296 (120) (152) (166), 148HO (N/A) (82), 248HO (N/A) (N/A) (138), 196HO (N/A) (N/A) (137), 296HO (203) (233) (250).

"DR" - Clear low brightness pattern acrylic with high impact additive. 15%
"DR-100" - Clear low brightness pattern acrylic with high impact additive. 100%.
"LEX"- High impact clear low brightness pattern polycarbonate. LEXAN

4' or 8' - 1 or 2 Lamp SL

Catalog Number	Lamps	Ballast	Nominal Size (ft.)	Wt.		nsions Width	(in.) Height	Channel Diagram
VT-140 DR	1F40	Rapid Start	4	15	52	8	4-5/8	17
8TVT-140 DR	1F40	Rapid Start	8	30	102	7-7/8	5-5/8	17
VT-240 DR	2F40	Rapid Start	4	15	52	8	4-5/8	17
8TVT-240 DR	2F40	Rapid Start	8	30	102	7-7/8	5-5/8	17
VT-148 DR1	1F48	Slimtine	4	15 .	52	7-7/8	4-5/8	17
VT-196 DR'	1F96	Slimline	8	34	102	7-7/8	5-5/8	17
VT-248 DR1	2F48	Slimtine	4	15	52	7-7/8	4-5/8	17
VT-296 DR	2F96	Slimtine	8	34	102	7-7/8	5-5/8	17
VT-148HQ DR1	1F48	800MA	4	19	52	7-7/8	5-5/8	17
VT-248HO DR'	1F48	AMO08	4	19	52	7-7/8	5-5/8	17
VT-196HO DR'	1F96	800MA	8	35	102	7-7/8	5-5/8	17
VT-296HO DR	2F96	800MA	8	35	102	7-7/8	5-5/8	17

4" or 8" - 1 or 2 Lamp HO

Figure 7

Fluorescent Lamps

	ES	NON-ES	NATIONAL STOCK NUMBER	LUMENS	BASE	COLOR SPECIAL FEATURES	MAX. OVERALL LENGTH	ESTIMATE AVG. LIFE
								AVG. CIF
	HIGH (OUTPUT 800	ma T-12 RAPID STAR	TLAMPS				
1	55	60	6240-01-344-9517	3850	REC. D.C.	3000K, 800ma	48	12000
}	55	60	6240-01-344-9518	3850	REC. D.C.	3500K, 800ma	48	12000
	55	60	6240-01-344-9519	3850	REC. D.C.	4100K, 800ma	48	12000
	55	_	6240-01-344-9520	3900	REC. D.C.	LITE WHITE, 800ma	48	12000
	95	110	6240-01-344-9526	8500	REC. D.C.	3000K, 800ma	96	12000
/ / /	95	110	6240-01-344-9527	8500	REC. D.C.	3500K, 800ma	95	12000
	95	110	6240-01-344-9528	8800	REC. D.C.	3000K, 800ma	96	12000
	95	110	6240-01-344-9529	8800	REC, D.C.	3500K, 800ma	96	12000
	95	110	6240-01-344-9530	8800	REC. D.C.	4100K, 800ma	96	12000
/ _>	95	110	6240-01-073-4487	8000	REC. D.C.	COOL WHITE, 800ma	96	12000
۲	95	110	6240-01-344-9539	8275	REC. D.C.	WARM WHITE, 800ma	96	12000
	95	110	6240-01-344-9957	5800	REC. D.C.	DELUXE WARM WHITE, 800ma	96	12000
	95	110	6240-01-345-2253	8375	REC. D.C.	WHITE, 800ma	96	12000
l Double	95	110	6240-01-344-9540	5800	REC. D.C.	DELUXE COOL WHITE, 800ma	96	12000
tact	95	_	6240-01-344-9538	8675	REC. D.C.	LITE WHITE, 800ma	96	12000
, maci	95	110	6240-01-344-9522	6750	REC. D.C.	DAYLIGHT, 800ma	96	12000
	95	110	6240-01-344-9521	8630	REC. D.C.	4100K, 800ma	95	12000

PHILIPS HIGH OUTPUT AND VERY HIGH OUTPUT FLUORESCENT LAMPS

High Output (HO) fluorescent lamps are designed to work with and 800ma ballast. HO lamps are available in a series of color choices. See SPEC and Ultralume listings on nearby page for colors not listed below.

Very High Output (VHO) fluorescent lamps operate at 1.5 amperes (1500ma) for the highest lumen output per length of any flourescent lamp. Philips 1500ma lamps are made in several types, each designed for maximum light output under specific operating conditions. VHO type are for indoor applications, VHO-O jacketed type are for very cold-subzero applications.

T-12 Recessed Double Contact Base

For a more complete listing of HO, VHO and VHO-O lamps see pages 741 and 742.

Watts	Ordering Code	NAED Number	Description	Buib	Base	Rated Avg Life (Hrs)		Nominel Length	Kelvin Color Temp	Rend	Stock	List	Each	Case Each	Per Ship Case	
			· (HO) HI	GH (OUTPU	JT FLU	ORES	CENT	LA	MPS .					
40 50	F24T12/CW/HO F30T12/CW/HO F36T12/CW/HO F42T12/CW/HO	226464 262865	Cool White Cool White Cool White Cool White	T12	RDC RDC RDC RDC	9000 9000 9000 9000	1700 2290 2900 3500	24 30 36 42	4100 4100 4100 4100	67 67	4V528 4V480 4V529 4V530	\$12.05 14.35 12.79 13.52	\$10.85 12.92 11.51 12.17	\$10.30 12.27 10.94 11.56	24 24 24 24	0.4 0.5 0.6 0.6
75 85 85 95	F48T12/CW/HO F60T12/CW/HO F72T12/D/HO F72T12/CW/HO F74T12/CW/HO F84T12/CW/HO	222851 212001 211995 212050	Cool White Cool White Daylight Cool White Cool White Daylight	T12 T12 T12 T12	RDC RDC RDC RDC RDC RDC RDC	12000 12000 12000 12000 12000 12000	4300 5400 5600 6650 7800 6900	48 60 72 72 84 84	4100 4100 6500 4100 4100 6500	67 79 67 67	3V443 4V476 4V444 3V438 4V445 4V446	8.96 9.96 12.14 9.21 9.88 12.33	8.06 8.96 10.93 8.29 8.89 11.10	7.66 8.52 10.38 7.87 8.45 10.54	30 30 15 15 15	0.7 0.9 1.2 1.4 1.4
110	F96T12/WW/HO F96T12/D/HO F96T12/CW/HO F96T12/C50/HO	342238 342204	Warm White Daylight Cool White Colortone 50	T12	RDC RDC		9200 7800 9200 6300	96 96 96 96	3000 6500 4100 5000	79 67	3V541 4V600 3V181 3V540	11.04 9.71 7.83 13.98	9.94 8.74 6.26 11.18	9.44 8.30 5.95 10.62	15 15 15 15	1.5 1.5 1.5
	- 4.	EC	ON-O-WA	TT E	NERC	SY-SA	VING	(HO)	HIGH	100	JTPUT LA	MPS				
95	F96T12/LW/HO/EW F96T12/WW/HO/EW F96T12/CW/HO/EW	342196	Lite White Warm White Cool White	T12	RDC	12000 12000 12000	9100 8500 8300	96 96 96	4100 3000 4100	53	~3V363 ~3V536 ~3V351	9.96 11.68 9.21	8.96 10.51 8.29	8.52 9.99 7.87	15 15 15	1.5 1.5 1.5
				(VH	0) V	ERY H	IIGH (OUTPU	T LA	MPS						
	F96T12/WW/VHO F96T12/CW/VHO	342428 342345	Warm White Cool White			12000 12000	16000 15500	96 96	3000 4100		4V602 3V256	21.25 16.60	19.13 14.94	18.17 14.19	15 15	1.5
			(VHO-	0) V	ERY	HIGH	OUT	OT JA	CKET	ED	LAMPS					
212	FJ96T12/CW/VHO-O	283978	Cool White	T12	RDC	12000	15500	96	4100	67	4V543	28.06	25.25	23.99	8	4.3
		ECON	-O-WATT E	NER	GY-S	AVIN	IG (VI	10) VE	RY H	IIGH	OUTPU	T LAM	PS			
185 185	F96T12/CW/VHO/EW F96T12/LW/VHO/EW	342329 342337	Cool White Lite White		RDC RDC		14000 14900	96 96	4100 4100		~3V374 ~4V601	17.10 20.50	15.39 18.45	14.62 17.53	15 15	1.5
706				WHO	OLES	ALE	PRICE	S-GI	RAIN	GER						

system, as well as the units themselves, have become obsolete in the industry. Defrosting requires the time and attention of a serviceman for about two half-days per week and uses copious quantities of water. The two existing units cannot feasibly be converted to other types of defrost, but they can be replaced with current versions of the same model with automated electric defrost.

Investment cost for two new units is estimated at \$53,760. Energy savings due to decreased humidity and increased efficiency were estimated at \$1,700 per year (122 MBTU/yr). An estimated additional \$4,500 per year is saved in personnel costs for manual water defrost. This investment gives an estimated SIR of 1.5, and a payback of 8.6 years. Suitable replacement models are presented in Appendix 4.

4.2.5. Reseal and Repair Existing Doors and Install Plastic Curtains

These low-cost measures will reduce infiltration around the doors to refrigerated chambers. Existing seals are badly worn, leakage is extensive when doors are closed. In addition, doors are heavy and tend to not open easily (scrape the floor). The doors should be repaired and new seals installed. Materials cost for seals is about \$ 620. Some refrigerators and freezers already have plastic strip curtains. Adding curtains to the remaining rooms (11 doors) is an inexpensive way to reduce infiltration when doors are opened. Estimated materials cost is \$5,630.

This project could easily be a "self-help" project to minimize initial investment cost. With an investment of \$6,970 an energy savings of \$752 per year (54 MBTU/yr) could be realized. This represents a SIR of 1.5 and a payback of 9.3 years.

4.2.6. Upgrade Main Compressor Motors to High Efficiency Models

The 40 and 50 horsepower (hp) motors which drive the low and medium temperature systems, respectively, use a significant portion of total CSF electricity. These motors have nominal efficiencies of 90.2%. Motors are available with efficiencies of up to 94%. Estimated energy savings, motor replacement costs, and paybacks are summarized in Table 4. Assumptions include 20 hour/day operation for one compressor, with a shaft load of 80% of full load. If

only one compressor is actually required for each system, since the others are labeled "backup," then only one motor for each system could be purchased. The backups would continue to operate with their existing motors. Projected savings, however, could justify purchase of two high-efficiency motors for each system. Initial investment is \$4349 for one motor per system, and \$8697 for two motors per system. Payback times are about 5 years with the purchase of one motor per system (SIR > 2.5), and about 9.7 years (SIR = 1.41) for two motors per system. Energy savings would be the same.

Table 4. High Efficiency Motor Energy Saving Opportunities

Motor	Investment Cost (\$)	Energy Savings		Payback	SIR
		(MBTU/yr)	(\$/yr)	(yrs)	
One 50 HP	\$2,342	34	475	4.9	2.8
Two 50 HP	\$4,683	34	475	9.9	1.4
One 40 HP	\$2,007	27	380	5.3	2.6
Two 40 HP	\$4,014	27	380	10.6	1.3
Combined	\$8,697	64	897	9.7	1.4

4.2.7. Dock Enclosure, HVAC, and Operational Modifications

This ECO combines several measures to upgrade the facility and conserve energy. The individual changes comprising this ECO and the rationale for making them are listed in Table 5. Energy savings is only one of the justifications for making changes. As energy saving opportunities are explored, operational improvements, facility upgrades, and investment recouping were also investigated. By combining the items in Table 5, the ECO has an estimated

savings to investment ratio greater than one. Together, the package has an estimated investment of \$142,311 and annual energy savings of \$9,151 (742 MBTU/yr). An estimated initial salvage value of \$58,000 helps to make this ECO feasible. Payback is estimated at 11.7 years, with an SIR of 1.3. Individual components of this package are discussed below.

Table 5. Dock Enclosure, HVAC, and Operational Modifications

ECO Component	Justification				
	Energy Savings	Operational Improvements	Facility Upgrade	Recoup Salvage Value	
Enclose West Dock	x	xx	xx		
Enclose Part of East Dock	x	xx	xx		
Remove Boiler, Replace with two HVAC Systems Supplemented by Heat Reclaim from Refrigeration	x	х	xx	х	
Repair Roll-Down Doors on Passageway	x	х			
Move Forklifts to East Dock Enclosure	x	xx	xx		
Dismantle and Sell South Freezer				х	
Place North Freezer on Standby	x	x			
Place Oleo Room on Standby	x	х			
Remove Free-Standing Freezer in Mini-Mart	х	xx		х	
Reconnect Mini-Mart Egg and Produce Rooms to Low Temperature System	x	xx	х		
Refrigerate Mini-Mart		xx	х		

<u>Dock enclosure</u>. Enclosing the west dock and part of the east dock improves energy and operational efficiency. The dock enclosure concept is shown in Figure 8. The west dock from the Ice Storage area to the Vegetable Cooler (PC-2) would be enclosed and used for delivery only, and involves the following changes:

- Insulated enclosure
- Insulated overhang roof
- Two unloading ports with rubber seals and doors
- Personnel exit door at steps near ice cooler
- Access door at south end of enclosure for employees only, with motion- activated sliding door (lockable)
- Overhead lighting (possible modifications needed)

An airlock chamber completes the south end of the west dock enclosure. This chamber is formed by continuing the west dock enclosure to the wall of the Mini-Mart area and involves the following changes:

- Insulated enclosure
- Insulated overhang roof
- Access door facing west, with motion-activated sliding doors (lockable)
- Relocation of vegetable freezer condensing unit
- Overhead lighting (possible modifications needed)

An overhang on the west dock from the vegetable cooler to the Mini-Mart entrance provides protection from the sun to the west wall of the Mini-Mart refrigerated storage area. Side benefits include weather protection for pickups. This dock area would be for pickups only.

Repair or replacement of the roll-down door at the east end of the breezeway closes the breezeway (in conjunction with the west dock enclosure) and provides more dead-air space insulation. The following changes are involved:

- Repair or replace roll down metal door at east end of breezeway (lockable)
- Provide additional ventilation to mechanical room to outside if needed

Enclosing the east dock from the Mini-Mart hallway to the end of the large meat freezer provides protection for the east side of the meat freezer by adding a dead air space between it and the outside. Other benefits include a new area for forklift storage (adjacent to meat freezer) and revised traffic pattern to eliminate the pathway through the Egg Room. Changes involved in this dock enclosure include:

- Insulated wall
- Insulated overhang roof
- Add electrical panel to provide for forklift charging
- Ventilate forklift storage as required
- Unblock one east door (1 of 2) of Issue Room and replace existing door with pressure plate sliding doors
- Unblock north door (1) of Mini-Mart hallway and replace existing door with pressure plate sliding door
- Block east door to Egg Room and seal to minimize infiltration
- Overhead lighting (modification may be required)

Rerouting traffic to allow blockage of the east door in the Egg Room (Figure 8) will improve both energy and operational efficiency. The room presently has two doors, often left open, and refrigeration losses from the cross ventilation. Traffic would instead pass between the Mini-Mart hallway and the issue room via the dock enclosure (with pressure plate sliding doors) providing an airlock between them. The door could be simply blocked and sealed for minimal cost, or removed and the opening bricked up for about \$335.

Revise or Repair Building HVAC Controls. The original steam heating system is no longer used for meat processing, so the boiler is very oversized for space heating. Steam is fairly inefficient, and an oversized system is even more so. Abandonment of the steam system and installation of a rooftop heating and cooling unit with overhead ductwork should result in

considerable energy savings and increased comfort.

The boiler has a capacity of about 1,000,00 BTU/hr. Originally the boiler served a meat-processing facility and heated about 8,000 square feet. It is estimated that the space heating requirement was about 300,000 BTU/hr and the remainder was for the meat-processing. Now that the boiler serves only as a heater, the standby and other losses continue but the boiler is very oversized. Under these circumstances, the boiler operates at an efficiency of about 40%. If the boiler were replaced with a modern, induced-draft gas furnace or rooftop heating coil unit, the efficiency could be greatly improved - to about 75-80%.

If the boiler operates at about \$3000 per year, a gas furnace or rooftop unit could warm the same space for about \$1560 per year. Cooling could be provided by the same system for improved warm weather comfort. In addition, cooling and dehumidification of the interior spaces near the freezers and coolers would reduce heat gains from hot adjacent spaces and from infiltration.

The existing approximately 2,555 square foot checkout and office spaces will require about eight tons of air conditioning at a cost of \$1,500 per ton, or \$12,800. A second area to condition includes the CSF office, VET office, Staging Area, Issue Room, Covered Passage, and enclosed docks. If this area of about 11,300 square feet is conditioned, then the total cooling system (comprised of two units) would have a capacity of about 45 tons and would cost about \$68,000. Figure 8 reflects the expanded conditioned areas. Note that the more efficient lighting recommended in Section 4.2.2 would reduce both the initial and operating costs for cooling.

Heat Reclaim from Hot Refrigerant Gas. Both the medium and low temperature systems have a large supply of heat to be rejected. Heat recovery from desuperheating the hot gas provides a simple way to salvage and use part of this heat. Desuperheaters could be used to heat domestic water or space heating. Since water use is low, the more efficient use is for space heating. Approximately 50,000 BTU/hr each are available from desuperheating the central low temperature and medium temperature systems.

Space heating will use larger quantities of heat than water heating, but only for part of the year. Refrigerant heat reclaim coils are commonly used in supermarket systems. Two reclaim coils, one for each system, can be installed in the duct system serving the office, passage, and enclosed dock areas adjacent to the equipment room. The cost of these coils, controls and piping is estimated at \$2,000, and the annual savings in natural gas heat would be about 158 MBTU, or \$500. Payback is estimated at 4.5 years.

Remove old, unused equipment. A partial list of unused equipment that should be removed and salvaged to allow more efficient use of space:

- Unused water heaters (note: there are two water heaters in the mechanical room, one in the boiler room. None appeared to be in use during the visit. All are gas-fired, all are old. These three could probably be replaced with two small new efficient heaters.) Assume no salvage value.
- Meat hanging and transport system in the checkout area, Mini-Mart hallway, issue room and egg room. These steel trolley racks help to transfer heat between rooms and to the outside. Salvage value is estimated at between \$2,000 and \$5,000.
- Butchering and rendering equipment in the Mini-Mart checkout area. This space could be more efficiently used for managing operations. Assume no salvage value.
- The old, oversized air handling units in the Mini-Mart area should be removed and replaced with the central HVAC system described in this section.

Relocate forklift storage and charging. As mentioned in Section 4.2.1, the enclosure of the east dock from the Mini-Mart hallway to the end of the meat freezer could provide a convenient yet safe place for the forklifts.

<u>Reorganize Food Storage</u>. The Cold Storage Facility is presently not used to capacity. More efficient organization and higher loading in some refrigerators and freezers could allow others to be turned off and maintained in back-up status.

The new, inoperable freezer is not needed at present operating levels. Information received from Ft. Campbell personnel indicate that present levels are representative of future levels. We

recommend either using the compartment for storage of irradiated milk or dismantling and selling it. Salvage value could be \$25,000.

Food items now in the North Freezer (VF1) can be consolidated into the Meat Freezer (MF), the Vegetable Freezer (VF2), and the proposed Mini-Mart Freezer. Savings are estimated to be 264 MBTU/year, or \$3,684. Similarly, the Oleo Room could be shut down and food items consolidated into the Produce Room (PC-2), the Egg Room (EC-3), and the Mini-Mart. Savings in shutting down the Oleo Room are estimated at 118 MBTU/year, or \$1,646. These units could be maintained in standby status to be activated if needed.

Revamp Refrigeration Systems in the Mini-Mart. The free-standing freezer in the Mini-Mart, while only a few years old, has not performed to expectations. Leaks, broken door closers, and general inconvenience are some of the complaints. This unit could be dismantled and sold for an approximate salvage value of \$35,000. To compensate for this loss of freezer space, as well as the shutdown of the north freezer, the present Mini-Mart Egg and Produce Rooms could be reconnected to the central low temperature system. The Produce Room was initially designed as a freezer according to original drawings. The cost to reconnect these two room is about \$4,000.

Finally, the Mini-Market itself can be converted to a medium temperature (50 F) room so that products can be stacked directly on the floor or shelves for selection by customers. The existing air handling units must be removed and new refrigeration-type evaporators installed. Low-air type units are recommended to minimize customer discomfort. These units will be installed overhead. Two units are recommended to provide even distribution, each with a capacity of about 24,000 BTU/hr with Fans, drain pans, and enclosures. The evaporator could be connected to the existing medium temperature R-22 system. The system has adequate capacity to include this area, especially with projected energy savings. Controls would be local thermostats, and the central system would continue to operate as presently. The budget cost for evaporators, installed, is about \$8,750.

4.2.8. Facility Control System.

Direct digital control systems are available to perform a multitude of functions. These systems can optimize refrigeration system performance, initiate defrost, turn off lights, water heaters and air conditioning after hours, monitor transformer loading, sound alarms, log trends, etc. Several of these functions can be done in no other way. Such a system for the CSF would consist of 116 total computer points (34 analog input points and 82 binary output points). The system would include a personal computer, software, and control system hardware. A budget figure for the basic package is \$47,400. Wiring is estimated to cost another 10%, or 4,740, for a construction cost of about \$52,140. The total estimated initial investment cost of \$58,400 is predicted to save about eight percent of CSF electrical energy annually (289 MBTU/yr) plus additional savings if lights are switched off by the system (100 MBTU/yr). These two energy savings total approximately \$5,000 per year. Other probable non-energy savings are in service/monitoring time (save 1/2 day per week, or about \$2,200 per year), and in fewer breakdowns of equipment (save about \$1,000/year). When combined, energy and non-energy savings result in an estimated annual savings of \$8,707 (389 MBTU/yr), a payback period of 6.7 years, and a SIR of 1.2.

4.3 Maintenance and Repair Recommendations

Repair Leaking Ceilings. Several cold storage units have leaking ceilings, apparently caused by condensation in the unit. These rooms need to be analyzed to eliminate or minimize sources of condensation. Ceilings need to be repaired and damaged insulation replaced, especially before new insulation is installed as recommended in 4.2.3.

- Vegetable Cooler PC-2
- Main Meat Freezer one problem is the water defrost see 4.2.4.
- Mini-Mart Hallway
- Crushed Ice Storage

Repair Refrigeration Compartment Doors and Reseal. See 4.2.5.

Repair Refrigeration Compartment Panels. Panels should be periodically checked for signs of failed insulation. Panels should be repaired or replaced as needed.

Refrigerant Cooling Methods. The system presently has evaporative condensers, which are more efficient than air-cooled condensers according to Army Design Manual 3.4. Proper maintenance has a major effect on the performance of these condensers. We recommend a complete cleaning of the coils, sumps and spray nozzles and a thorough checkout of the head pressure control and freeze protection systems.

Evaporator Size and Location. Table 6 presents an initial list of evaporator units that are scheduled to be replaced under a different maintenance project at Fort Campbell. While some energy savings can be realized by replacing these units, the major benefit is the savings in repair time and unexpected downtime. It is recommended that these units be replaced. Note that the Main Meat Freezer evaporators are included as an ECO in Section 4.2.4 with significant savings due to the elimination of water defrost.

Table 6. Evaporator Units Scheduled for Replacement

Table 0. Evaporator Chies Beneduled for Areplace								
ROOM	UNIT	Design Temp (F)	Refrigerant					
Meat Freezer	Krack (2 units)	0 to -10	R502					
Vegetable Cooler (PC2)	Krack CP 1326-6 (2 units)	35-40	R22					
Egg Room (EC3)	Krack BUC2700 ED	30-35	R22					
Issue Room	Krack CP 1326-6 (2 units)	-	R22					
Mini-Mart Produce (C4)	Krack SS-244-170 -EDL-DXF (2 units)	-	R22					
Mini-Mart Egg Room	Krack BUC 950 (1 unit)	-	R22					

Distribution Piping Insulation. Regular inspection and repair as needed is recommended.

4.4 Operational or Policy Change Recommendations

Changes recommended include a computerized inventory system, staff filling orders instead of customers, space organization, and development of an operating, health, and safety manual. An additional staff person may be required on pickup days.

A checklist of available items could be computerized and provided to customers either in advance or upon arrival. These customers would then complete the checklist as to what they wanted and give it to Cold Storage personnel for assembly. If the completed shopping list were FAXed into the Cold Storage Facility in advance of arrival, the order could be prepared and ready for pickup at a given time. Customers would have access to the Mini-Mart office area only. At present, customers tend to leave the Mini-Mart and look for items in the main (storage) areas. The customer would enter the checkout area, present a completed checklist, and wait for it to be filled. A computerized inventory software program for a personal computer should cost less than \$5,000.

The Mini-Mart (proposed to be kept at 50 F in Section 4.2.7) could be organized and used as a staging area for prepared orders, or stocked in advance on pickup days to provide quick filling of customer orders. The free-standing unit can be sold for an estimated salvage value of \$35,000 (see Section 4.2.7).

Storage/staging of items in the Mini-Mart hallway, the Mini-Mart, and the Mini-Mart west refrigerated storage area should be organized, labeled, and maintained. There is a lot of room to stock items in preparation for heavy customer pickup days, especially if unused equipment is removed.

In conjunction with the Mini-Mart operational changes, a manual is recommended to provide operation practices, safety and health requirements, and training of staff. This is especially important since military personnel now serve six-month tours at the CSF. Organization, efficiency, and safety are keys to energy savings through operational changes. Development and

implementation of a manual is estimated at \$20,000 if prepared under contract. If this manual is prepared by Ft. Campbell personnel, costs would be much lower.

With the enclosure of the west dock, the existing cold storage office would no longer have a view of incoming and outgoing traffic. The cold storage office operations could be moved to the Mini-Mart area, preferably in the small unused office by the outside entrance. The majority of space in the existing office is used as a break room, and could continue to be used as such.

Shelving units can be installed as appropriate to allow food to be stacked two pallets high. Appropriate shelving is illustrated in Figure 9.

STORAGE EQUIPMENT

PALLET STORAGE RACKS

Designed to store palletized and heavy bulk loads handled by mechanical equipment

Rack Shown Consists of Two Frames and Six Beams

Questions? See Selection Guide on Page 1518.

Accessories are Available See Following Page for Listing

FREIGHT PREPAID ON ORDERS OF **S900 OR MORE**

See Freight Policy On Page Opposite Inside Back Cover

- Frames available in 18,000-lb and 24,000-lb capacity
- Completely prefabricated upright frames with 14-gauge posts, welded braces and foot plates
- Beams are 14-gauge steel, roll formed in one piece with overlapping seam
- Beam end connector is 3 x 8½" oversize reinforced 3-prong connection to give tight fit and increase lateral
- Frames are gray enamel finish; beams are safety yellow enamel finish

Easily assembled Penco pallet racks are designed to store palletized and other heavy bulk loads handled by mechanical equipment. These racks provide safe, flexible storage to suit all your pallet storage needs. Not to be used as scaffolding. your pallet storage needs. Not to be used as scanfolding.

Upright frames are furnished completely prefabricated: two posts are securely joined by horizontal and diagonal full-channel braces MIG welded into precise alignment. Posts are 14-gauge steel, 3W x 1% TO (18,000 lb) and 3W x 2½ TO (24,000 lb). Heavy-gauge steel foot plates welded to the bottom of each post distribute the load and provide for anchoring racks to the floor. M-design recessed post gives added strength to the columns.

HOW TO ORDER Construct starter unit with two upright frames and two beams per shelf. Construct add-on units with one frame and two beams per shelf. Minimum of two shelf levels, or four beams, required per bay for safety.

Height: Calculate total height of loads to be stored. Allow 4-6" minimum clearance between top of load and beam above it.

Depth: Allow 3" pallet overhang at both front and back of

Beam support slots accurately punched full length on 3" centers offer convenience of space adjustment at any time. Posts come in 96, 120, 144 and 192" heights; 36 and 42" depths. Gray enamel

Penco beams are 14-gauge steel, roll formed in one piece with overlapping seam and beam end connector securely MIG welded for strength. M-design recessed configuration provides strength and protects locking key. Beam end connector is a 3 x 8½" oversize reinforced three-prong connection which gives a tight fit and increases lateral stability. Beams are 96, 108 and 120" long, 2¾" wide with 1½" step. Safety yellow enamel finish.

Total Weight: Total weight stored per bay must not exceed the load capacity given in the tables below.

-To calculate beam length allow 3-4" clearance between pallet and upright, 4" clearance between two pallets. Capacity limit given in the tables are based on evenly distributed loads. Add 11% to capacity requirement for 3 pallets wide. Add 25% of one pallet load to required capacity for shock leads if proceded. loads if needed.

PALLET STORAGE RACK SPECIFICATIONS AND ORDERING DATA

	Dimens	ions		Maximum Load	Penco	Stock			Shpg.
Description	Н	D	Panels	Capacity per Bay	Model	No.	List	Each	Wt.
Frame	96"	36"	2	18,000 lbs	5FE096C	3W346	\$72.60	\$57.26	47.0
Frame	96	42	2	18,000	5FH096C	4W128	75.50	59.75	50.0 56.0
Frame	120	36	2	18,000	5FE120C	3W345	83.95	66.51	56.0
Frame	120	42	2	18,000	5FH120C	3W344	87.33	69.32	59.0
Frame	144	36	3	18.000	5FE144C	3W343	107.12	84.25	68.0
Frame	144	42	3	18,000	5FH144C	3W342	110.90	87.69	73.0
Frame	120	42	2	24,000	5GH120C	4W129	92.86	73.93	64.0
Frame	144	42	3	24,000	5GH144C	4W130	119.00	94.22	79.0
Frame	192	42	3	24.000	5GH192C	4W131	144.31	114.99	100.0
]	Dimensions		Load Capacity	Penco	Stock			Shpg.
Description	н	Cie	ar Span	Per Pair	Model	No.	List	Each	Wt.
Beam	33/8"		96"	4261 lbs	5BD096	3W347	\$42.94	\$34.26	30.0
Beam	43/16		96	6225	5BJ096	3W348	46.40	37.13	33.0
Beam	53/8		96	8282	5BS096	4W132	51.80	41.47	37.0
Beam	33/4		108	4233	5BH108	3W349	49.41	39.50	35.0
Beam	411/16		108	6266	5BN 108	3W350	54.20	43.45	39.0
Beam	43/16		120	4344	5BJ120	4W133	56.50	45.35	41.0
Beam	53/8		120	6595	5BS120	4W134	63.23	50.78	46.0

4.5 Energy Conservation Opportunities Rejected

Water Heater Controls. An electronic time clock with battery back-up to shut down water heaters during unoccupied periods costs approximately \$100/unit. This ECO was rejected in favor of the instantaneous water heaters described in Section 4.2.1.

Lighting Upgrade Using Metal Halide or High Pressure Sodium Lighting Systems. Both metal halide and high pressure sodium (HPS) lights were evaluated to upgrade the CSF lighting system. Both type of lighting are more energy efficient than incandescent or fluorescent lights and can handle the low temperatures needed in freezers. In addition, average bulb life is higher for each type than for fluorescent bulbs.

Metal halide and HPS systems were rejected for two reasons. First, CSF ceilings are relatively low (10-11 feet in most areas), and both types of lighting normally utilize deep fixtures more designed for high bays. A resultant decrease in light distribution and maneuverability in work areas was not attractive. Second, although metal halide lamps produce white light, HPS light is yellow. A yellow light would not be acceptable in office areas. In addition, workers have reported headaches from changing between yellow and white light during the work day, so a combination of the two was unacceptable.

Peak-shaving generators. Observation of the electrical demand records shows that the building has a relatively constant electrical load of about 120 kW, and during business hours, and increased load of about 170 kW. An engine-driven generator could be installed to offset the 50 kW business hours increase. The result would probably be a decrease of a similar amount in the overall Ft. Campbell demand, since peak demands coincide reasonably well. If the peak demand is reduced by 50 kW, the demand charge of \$12.01/month/kW would be avoided. Thus an annual saving of about \$7200 would be achieved. Operating costs, however, total about \$10,000 per year, so this ECO was rejected.

A 50 kW diesel generator, with controls, wiring, above ground fuel tank, concrete pad, and installation would cost about \$22,000. Payback is under 3.5 years. Note that other

recommendations herein may act to reduce both the continuous electrical load and the business hours increase. Note also that a diesel generator would probably require an air emission permit with associated fees.

<u>Light-colored roof.</u> The existing roof is black. A light-colored roof would reduce heat gain through the roof. A polyurethane roof surface is available, but can not be applied over the existing roof, i.e., the roof must be replaced. The cost of a new roof (approximately \$68,000) compared to the energy savings (approximately 98 MBTU/year) does not make this economical as a project. The differential cost of a white roof and a black roof is estimated to be approximately \$25,000. When the roof is scheduled to be replaced, more detailed cost estimates and analysis should be performed to evaluate the attractiveness of a light-colored roof.

Replace existing doors with automatic sliding doors. The following doors were investigated for replacement.

• West end of Issue Room: pressure plate sliding doors (2), lockable

• Mini-Mart east (1) and west (1) doors: pressure plate sliding doors, lockable

Doors (2) from old breezeway to north storage staging area: pressure plate sliding doors, lockable

• Pressure plate sliding doors with interior emergency exit provision for the following refrigerated storage rooms: North Freezer (VF1), Oleo Room, Meat Freezer, Egg Room, Vegetable Freezer (VF2), Vegetable Cooler (PC2), Mini-Mart Storage area (C4)

This ECO was rejected due to the high cost of the doors (approximately \$6900 each) compared with modest energy savings. While automatic doors would increase operational efficiency, they are not economical at this time. Automatic doors should, however, be considered during the course of routine door replacement.

Add Panel Insulation to Refrigerators and Freezers. Adding two inches of insulation to the inside of each compartment would reduce heat gain and save energy. Estimated cost (11 rooms) is \$33,600. The modest energy savings, however, could not justify this expenditure.

Motion-sensors to control incandescent lights in refrigerated and ambient areas. The source of lighting in the Cold Storage Facility is almost entirely composed of incandescent lamps. These lamps have shorter liver (750 hr) and lower efficiencies (17 lumens/watt) than fluorescent or HID lamps. However, they are not affected adversely by frequent starts. Therefore one option evaluated for energy reduction was to install occupancy sensors to switch the lights off when the room is unoccupied. Review of the Daily Load Profiles taken by TVA personnel show very constant loads which could indicate that lights are not being switched off at night. If the 33,850W of lights now burn constantly, switching 80% of them off after business hours (128 hours/week) would save approximately 740 MBTU/year. Sensors to activate the lights would cost about \$100/each, or \$2,200. Economically this is an attractive proposal, with a payback of approximately 2 months.

This ECO is not recommended because the option of installing fluorescent lamps discussed in Section 4.2.2 is better from a safety standpoint and can have comparable savings if some of the lights are manually turned off after business hours.

Compressor Size, Type, and Efficiency. The compressors at the CSF are acceptable for continued use, barring any maintenance problems we're not aware of. The efficiency is similar to what could be purchased today new, and aside from increasing the area of the evaporator or condenser coils to lower the pressure differential, little further improvement in efficiency would be expected. With the addition of high efficiency motors (see Section 4.2.6), they should be very satisfactory.

Refrigerants. The summary of refrigeration systems (Appendix 3) shows that the Central Low Temperature (0F) and four of the packaged systems use R-502 and two packaged systems use R-22. These refrigerants are CFCs and are going out of production under the Montreal Protocol and the Clean Air Act. Army Technical Note 420-54-01 (26 June 1991) states that existing equipment must remain in operation until it can be economically replaced.

Manufacturers are developing replacement refrigerants such as R-134a for R-12 and new systems are using R-22 in lieu of R-502. However, these are not "drop-in" refrigerants. Mixtures of refrigerants now becoming available may offer a way of continuing the use of existing equipment. Among these are Dupont's SUVA MP39, MP66, HP80 and HP81.

Because this is a rapidly developing technology, and R-502 will be available in declining quantities but increasing cost for several years, it seems most prudent to delay any decisions on this subject for a few months. The best course of action - replace or continue to use, should become clearer in the near future.

Equipment location. The present location of equipment is satisfactory from a distribution standpoint. Some equipment may have to be moved because of other recommendations herein.

Improve power factor. The October 1992 electric bill from the TVA shows a 1656 kVAR lagging power factor for the entire Ft. Campbell installation. The penalty charge was \$1292, which is a small percentage of the total bill of more than \$800,000. Although the power factor for the CSF Mechanical Room circuit is low (70% range), it is probably not justifiable to try to improve the power factor in this one building. There may be some compensatory effect elsewhere in the installation. The addition of arc-type lamps may further decrease the power factor, but at this time, improvement is not justified.

5.0 Energy and Cost Savings

Investment costs, energy savings, and energy cost savings for recommended energy conservation opportunities are summarized in Table 7. Potential savings including estimated decreases for synergistic effects total approximately \$22,329 per year (1,763 MBTU/yr). Potential savings thus account for nearly half of present energy consumption. Total investment cost is estimated at \$317,107. Note that investment cost used in LCCID modeling include design and SIOH costs and are thus higher than purchase, installation, or construction costs. There are eight projects identified with energy savings. Each project has been analyzed alone, and true energy savings will be dependent on the combination of options chosen. Synergistic effects were estimated at 15%. For example, savings from additional ceiling insulation would be lower if some of the refrigerators and freezers are shut down.

Table 7.

Ft. Campbell Cold Storage Facility

Recommended Energy Conservation Opportunities

-				_			1						(5)	
	Savings to	investinent	Hatio		3.3	2.1	1.7	1.5	1.5	1.4	1.3	1.2	1.6	 5:
	Simple	Payback	Period	(yrs)	7.9	5.3	8.3	8.6	9.3	9.7	11.7	6.7	8.6	9.7
Illes	Other Savings (+)	or Costs (-)	Annual	(\$/yr)	1	(\$373)	l	\$4,500	1	ı	l	\$3,288	\$7,415	\$7.415
Opporturi	Other S		One-Time	(\$)	1		ı	ī	1	i	\$58,605		\$58,605	\$58 605
ervation	Estimated	Energy	Savings	(\$/yr)	\$148	\$5,518	\$2,016	\$1,700	\$752	768 8 1	\$9,151	\$5,419	\$26,274	\$22 320
yy Cons	Esti	Enc	Sav	(MBTU/yr)	133	425	145	122	54	64	742	389	2,074	4 762
Recommended Energy Conservation Opportunities	Estimated	Total	Investment	(\$)	\$1,165	\$29,225	\$16,725	\$53,760	\$6,969	\$8,697	\$142,311	\$58,397	\$317,107	1,004
Recommer	Estimated	Construction	Cost	(\$)	\$1,040	\$26,210	\$15,000	\$48,000	\$6,250	\$7,800	\$127,063	\$52,140	\$283,503	
		Energy Conservation Opportunity			Replace old water heaters with instantaneous heaters in restrooms and VET office	Replace existing lighting which is mostly incandescent with fluorescent fixtures and lamps.	Add insulation between compartment ceilings and roof	Replace main meat freezer evaporators with updated electric defrost models	Install plastic curtains on doors without them and reseal all cooler doors	Install High-Efficiency Compressor Motors on Central Medium and Low Temperature Systems	Replace boiler, install HVAC systems, enclose docks, move forklifts, shut down oleo room, north freezer, free-standing freezer, repipe Mini-Mart Egg and Mini-Mart Produce to make freezers, remove unused equipment from CSF	Computerized Control System for HVAC and refrigeration systems	TOTAL	TOTAL ASSUMING 15% REDUCTION IN SAVINGS

Ft. Campbell Cold Storage Facility Energy Study

APPENDIX 1 PHOTOGRAPHS

January 1993

Photo 1: Mini Market Entrance

Photo 2: South View

Photo 3: South View

Photo 4: South-East Corner

Photo 5: West Dock

Photo 6: Showing Cold Storage Office

Photo 7: West Dock

Photo 8: Loading Dock on West side of Building 5202 showing North Freezer

Photo 9: North Dock

Photo 10: North Dock showing North Freezer, Oleo Room and New Freezer

Photo 11: North Dock

Photo 12: Outside (Blocked) Door to Oleo Room

Photo 13: North Dock

Photo 14: Condensate Drains West side under North Freezer

Photo 15: Northeast Corner Showing New Freezer (inoperable)

Photo 16: New Freezer showing degraded seal

Photo 17: Above North Freezer

Photo 18: Above Oleo Room

Photo 19: East Dock

Photo 20: Transformers

Photo 21: East Dock showing neat racks

Photo 22: Condenser Fans from Mechanical Room

Photo 23: Doors to Mini Market Hallway and Issue Room

Photo 24: Condensate Drains for Meat Freezer

Photo 25: Roof

Photo 26: Roof

Photo 27: Breezeway Showing Vet's office

Photo 28: Breezeway

Photo 30: Boiler

Photo 29: Ice Storage Room Door

Photo 31: Boiler Room

Photo 32: Boiler Room

Photo 33: Compressor Banks in Mechanical Room

Photo 34: Compressor Banks in Mechanical Room

Photo 35: Water-cooled Condenser

Photo 36: Water-cooled Condenser and Refrigerant Storage

Ft. Campbell Cold Storage Facility Energy Study

APPENDIX 2

COLD STORAGE FACILITYENERGY COST AND USAGE DEVELOPMENT AND BACKUP DATA

January 1993

FORT CAMPBELL COLD STORAGE FACILITY DAILY AVERAGE ENERGY USAGE

(Sept./Oct. 1992)

		Average Daily	/ Energy Use (S	ept/Oct 1992)	(KWH)			Average	Average Projected	Projected
Room	Saturday	Sunday	Sunday Monday Tuesday Wedne	Tuesday	Wednesday Thursday	Thursday	Friday	Daily		Yearly
Mechanical Room Circuit	2,020.0	1,990.5	2,068.5	2,070.5	1,892.5	2,140.0	2,095.0	2,039.6	62,038	744,454
Battery Charger Room Circuit	218.0	195.5	216.5	186.0	215.0	228.5	182.0	205.9	6,263	75,154
TOTAL	2,829.7	2,782.7	2,976.5	2,975.5	2,824.0	3,076.0	2,922.0	2,912.3	88,583	1,062,990
		Highest Daily	Hickast Daily Demand (Sent/Oct 1992) (KW	Oct 1992) (KW				Average		
Room	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Daily		
Mechanical Room Circuit	90.0	89.0	118.0	100.0	111.0	108.0	119.0	105.0		
Boiler Room Circuit Battery Charger Room Circuit	33.0	33.0	37.0	37.0 11.0	37.0	36.0 15.0	37.0	35.7		
TOTAL	133.0	132.0	166.0	148.0	160.0	159.0	167.0	152.1		
Room	Projected Monthly Energy (KWH)	Peak Demand (KW)	Time of Peak							
Mechanical Room Circuit Boiler Room Circuit	62,038	119	13:00							
Battery Charger Room Circuit	6,263	15	14:30							
TOTAL COLD STORAGE	88,583	171								
TOTAL INSTALLATION (Sept/Oct 94 one month)	17,047,800	39,425 48384	15:00	9/21/92 8/08/91						
Cold Storage Percent	0.52%	0.43%								
	Eneray	Demand	Power Factor Customer	Customer	Facilities	Total	Yearly	_		
CSF Charges (assume all at peak)	\$1,908	\$2,054				62	\$47,541			
Installation Charges	\$367,209	\$473,494	\$1,292	\$1,500	\$18,360	\$861,855	\$10,342,260	•		
CSF Percent	0.52%	0.43%					0.46%			

			Mecha	nical Room	Во	iler Room	Battery C	harger Room
Month	Date	Day	Energy Use	Peak Demand	Energy Use	Peak Demand		Peak Demand
			(KWH)	(KW)	(KWH)	(KW)	(KWH)	(KW)
9	19	Saturday	1960	87				
9	26	Saturday	2080	90			222	10
10	3	Saturday	2000	90	660	33	214	10
10	10	Saturday			664	33	214	10
10	17	Saturday			451	25		
10	17	AVG	2020	88.5	591.7	30.3	218	40
		AVG	2020	66.5	591.7	30.3	210	10
9	20	Sunday	1954	85				
9	27	Sunday	2027	89			219	10
10	4	Sunday			664	33	172	10
10	11	Sunday			661	33		ŀ
10	18	Sunday			464	25		
		AVG	1990.5	87	596.3	30.3	195.5	10
9	21	Monday	2106	111				
9	28	Monday	2031	118			223	4.4
10	5	Monday	2031	110	719	37	210	11
10	12	Monday			664	i e	210	10
10	12	AVG	2068.5	114.5	691.5	33 35	216.5	10.5
		AVG	2000.5	114.5	091.5	35	210.5	10.5
9	22	Tuesday	2010	100				
9	29	Tuesday	2131	98			217	11
10	6	Tuesday			723	37	155	11
10	13	Tuesday			715	36		
		AVG	2070.5	99	719	36.5	186	11
9	23	Wednesday	1874	111				
9	30	Wednesday	1911	94			217	10
10	7	Wednesday	1311	34	722	36	213	12
2	14	Wednesday			711	37	213	12
	17	AVG	1892.5	102.5	716.5	36.5	215	11
_								
9	24	Thursday	2157	100				
10	1	Thursday	2123	108			234	14
10	8	Thursday			707	36	223	12
10	15	Thursday			708	35		
		AVG	2140	104	707.5	35.5	228.5	13
9	18	Friday	2099	106				
9	25	Friday	2091	119				
10	2	Friday					182	11
10	9	Friday			706	36		''
10	16	Friday			584	37		
		AVG	2095	112.5	645	36.5	182	11
				1				l ''

TENNESSEE VALLEY AUTHORITY

DIRECT SERVICE POWER RATE—SCHEDULE DSD (May 1992)

Availability

This rate shall apply to the firm electric power requirements of a customer that takes service directly from TVA and that has a contract demand of greater than 25,000 kW.

Base Charges

Customer Charge:

\$1,500 per delivery point per month

Demand Charge:

\$12.01 per kW of billing demand per month, plus an additional

\$12.01 per kW per month for each kW, if any, of the amount by which the customer's billing demand exceeds its contract demand

Energy Charge:

2.154¢ per kWh per month

Adjustment

The base demand and energy charges shall be increased or decreased in accordance with the current Adjustment Addendum published by TVA. (In addition, such charges shall be increased or decreased to correspond to increases or decreases determined by TVA in the value of the hydrogeneration benefit allocated to residential consumers.) Facilities rental charges and reactive demand charges may also be increased or decreased by TVA, effective with the effective date of any such Adjustment Addendum, to reflect changes in the cost of providing for delivery at voltage levels below 161 kV and of providing reactive power, respectively.

Facilities Rental Charge

There shall be no facilities rental charge under this rate schedule for delivery at bulk transmission voltage levels of 161 kV or higher. For delivery at less than 161 kV, there shall be added to the customer's bill a facilities rental charge. This charge shall be 36¢ per kW per month except for delivery at voltages below 46 kV, in which case the charge shall be 93¢ per kW per month for the first 10,000 kW and 73¢ per kW per month for the excess over 10,000 kW. Such charge shall be applied to the higher of (1) the highest billing demand established during the latest 12-consecutive-month period and (2) the customer's currently effective contract demand and shall be in addition to all other charges under this rate schedule, including minimum bill charges.

TO

Reactive Demand Charges

If the reactive demand (in kVAR) is lagging during the 30-consecutive-minute period beginning or ending on a clock hour of the month in which the customer's highest metered demand occurs, there shall be added to the customer's bill a reactive charge of 78¢ per kVAR of the amount, if any, by which the reactive demand exceeds 33 percent of such metered demand. If the reactive demand (in kVAR) is leading during the 30-consecutive-minute period beginning or ending on a clock hour of the month in which the customer's lowest metered demand (excluding any metered demands which are less than 25 percent of the highest metered demand) occurs, there shall be added to the customer's bill a reactive charge of 33¢ per kVAR of the amount of reactive demand. Such charges shall be in addition to all other charges under this rate schedule, including minimum bill charges.

Determination of Demand

The metered demand for any month shall be the highest average during any 30-consecutive-minute period beginning or ending on a clock hour of the month of the load metered in kW, and such amount shall be used as the billing demand, except that the billing demand for any month shall in no case be less than the sum of (1) 30 percent of the first 5,000 kW, (2) 40 percent of the next 20,000 kW, (3) 50 percent of the next 25,000 kW, (4) 60 percent of the next 50,000 kW, (5) 70 percent of the next 100,000 kW, (6) 80 percent of the next 150,000 kW, and (7) 85 percent of all kW in excess of 350,000 kW of the higher of the currently effective contract demand and the highest billing demand established during the preceding 12 months.

Minimum Bill

The monthly bill under this rate schedule, excluding any facilities rental charges and any reactive charges, shall not be less than the sum of (1) the base customer charge, (2) the base demand charge, as adjusted (but excluding the additional portion thereof applicable to excess of billing demand over contract demand) applied to the customer's billing demand, and (3) the base energy charge, as adjusted, applied to the customer's energy takings.

Single-Point Delivery

The charges under this rate schedule are based upon the supply of service through a single delivery and metering point, and at a single voltage. If service is supplied to the same customer through more than one point of delivery or at different voltages, the supply of service at each delivery and metering point and at each different voltage shall be separately metered and billed.

E05:921016 005

TO

(5)

: F. Gregory Daniels Jr., Senior Industrial Representative, SP 5D-C TO : J. William Brooks III, Manager of Power Billing Analysis, MR 5A-C FROM DATE : October 13, 1992 SUBJECT: BILLING - DEPT. OF THE ARMY, FT. CAMPBELL, KY (EDGOTEN, KY SUB) FOR SERVICE TO 24:00 CST, October 10, 1992 Contract Demands Firm Power 51.000 kW Contract Voltage 69 kV Highest established 12 month demand: (08/08/91 15:00) 48.384 kW Total Energy: Total metered energy: $(6,495.40-6,089.50) \times 42000 = 17,047,800 \text{ kWh}$ M-8740 Maximum Measured Demand: (09/21/92 15:00 39,425 kW 14,666 kVAR 0.33 x Maximum kW demand (including losses) 13.010 kW Excess lagging reactive at maximum kW 1,656 kVAR Minimum measured Demand (including losses) in excess of 0.25 x Maximum demand (including losses): 10/10/92 04:30 14,629 kW 2,873 kVAR 0.25 x Maximum kW demand (including losses) 9,856 kW Leading reactive at minimum kW D KVAR 51,000 kW) 0.30 x 5,000 kW = 1,500 kW 20,000 0.40 xkW = 0.50 x25,000 kW =

Ratchet Demand Provision: (basis =

8,000 kW 12,500 kW 0.60 x1,000 kW =600 kW Total: 22,600 kW

Recommended billing demand 39,425 kW 39,425 kW Firm demand Excess billing demand 0 kW

\$861,855.54

2

F. Gregory Daniels Jr.

Billing - DEPT. OF THE ARMY, FT. CAMPBELL, KY (EDGOTEN, KY SUB) FOR SERVICE TO 24:00 CST, October 10, 1992

Summary of Billing

TO

Monthly Minimum Bill:

Demand: Energy: Customer Charge: Monthly Minimum Total: 39,425 kW x \$12.01 = \$473,494.25 \$367,209.61 \$1,500.00 \$842,203.86

Normal Power Charges:

Firm Demand:	39,425	kW	x	\$12.01	=	\$473,494.25
Excess Demand:	0	kW	x	\$12.01	=	•
Excess Lagging Reactive: Leading Reactive:	1,656	kvar kvar	X X	\$0.78 \$0.33	=	
Energy:	17,047,800	kWh	x	\$0.02154	=	\$367,209.61
Customer Charge:						\$1,500.00
Total Power Charges:						\$843,495.54
Facilities Charges:	51,000	kW	x	\$0.36	=	\$18,360.00

Prepared by-

Certified by:

epared by

CG:CP:RP:PBA

TOTAL BILLING:

cc: RIMS, MR 2F-C

Fort Campbell Energy Demand and Cost

Month	Billing Demand	Time	Billing	TVA	Demand	Total	Demand
	Date		Demand	Total KWH	Cost	Cost	(% of Billing)
Oct 91	9/12	1600	46,381	18,397,680	\$557,036	\$974,187	57.2%
Nov	11/5	830	33,491	16,205,700	\$402,227	\$771,158	52.2%
Dec	12/4	830	35,570	16,527,420	\$427,196	\$803,056	53.2%
Jan	12/19	830	35,494	17,603,040	\$426,283	\$825,312	51.7%
Feb	1/16	830	38,254	19,409,460	\$458,628	\$896,568	51.2%
Mar	2/26	1100	33,831	15,884,400	\$406,310	\$768,320	52.9%
Apr	3/11	830	34,700	17,707,200	\$416,747	\$818,020	50.9%
Мау	4/24	1130	30,278	15,708,000	\$363,639	\$721,849	50.4%
Jun	6/9	1300	36,326	17,938,200	\$436,275	\$842,726	51.8%
Jul	6/2	1500	45,171	21,096,600	\$542,504	\$1,020,077	53.2%
Aug	7/13	1500	45,927	23,818,200	\$551,583	\$1,087,909	50.7%
Sep	8/26	1600	43,697	21,319,200	\$524,801	\$1,006,546	52.1%
Oct 92	9/21	1500	39,425	17,047,800	\$473,494	\$864,856	54.7%
CSF		1300	167	(est.) 88,853			

FY 92 tota 221,615,100 \$5,513,229 \$10,535,728 52.3% Cost/KWH \$0.0475 Cost/MBTU \$13.929

source: Ft. Campbell DEH

	TVA													\$0.00
AVT .	TOTAL TVA CHARGE	1974, 185, 49	\$7/11,15/.69	4603,036,03	74.710,0784	60°/90'948\$	\$168,520.2V	4618,020.09	\$721,849.10	\$842,726.11	#1 ,020,076.85	\$1,087,909.16	\$1,005,545.70	\$10,535,727.74
TVA	PONER CHARGE	\$1,004.64	#0.00 #0.00	30.04	3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03	00.03	€0°0\$	\$0.00	#0.00	\$202.02	\$3,292.38	\$3,421.86	12,669.16	\$10,590.06
TVA	FACILITIES REATAL CHARGE	\$18,360.00	\$18,360.00	\$18,550,00	\$18,560,00	\$18,340.00	\$18,350,00	\$18,360.00	\$18,360.00	\$18,360.00	\$18,360.00	\$1B,360.00	\$18,360,00	\$220,320.00
	CUSTOVER	\$1,500,00	#1,500.00	00'00'11	\$1,500.60	\$1,500.00	\$1,500.00 \$1	11,500.00	\$1,500.00	\$1,500.00	\$1,500.00	\$1,500.00	\$1,500.00	\$1B,000.00
TVA	TOTAL. Defend COST	\$557,035.B1	\$402,226.91	£427,195.70	\$426,282.94	£458,627.77	\$406,310.31	\$416,747.00	\$363,638.78	\$436,275.26	\$542,503.71	\$551,583.27	\$524,800.97	45,513,228.43
	TVA (GU)	\$12,01	\$12.01	‡12.01	\$12.01	\$12.01	\$12.01	\$12.01	\$12.01	\$12.01	\$12.01	\$12.01	\$12,01	1
TVA	TOTAL DENAND (K.W.)	18291	13481	35570	35494	38254	33831	34700	30278	34326	45171	45927	43697	459120
TVA	TOTAL COST (KIRR)	\$396,285.03	\$349,070,78	\$356,000.63	\$379,169.48	\$41B,079.77	\$342,149.9B	\$381,413.09	\$378.350,32	£3FA, 369, 83	\$454,420,76	\$513,044,63	\$459,215.57	14,773,389.25
	TVA RATE (KWII)	0.02154	0,02154	0.02154	0,02154	0.02154	0.02154	0.02154	0.07154	0.02154	0.02154	0.07154	0.02154	
TVA AND PENYTRILE CONSUMPTION AND COST (FY92):	TVA TOTAL	18,397,680	16,205,700	16,527,420	17,603,040	19,405,460	15,884,400	17,707,200			21 095 5(3)	27 818 200	21,319,200	£722,913,62 Z21,615,100
NSUPTION AND	FENNYRILE Total Cost	\$59,997.47	166,717.51	\$59,381.32	\$67,246.02	\$63,140,48	157, 339, 69	\$57, R55, 34	454 259 57	71 700 174	16 077 154 454 770 77	450 727 73	\$59,945,10	\$722,913.62
D PENYRILE CL	PERNTILE Total Kiri	964.289	1,083,906	953,877	1.091,659	1.020.092	918.077	062 165	077, 171	010,013	747, VOZ	100 JOE	913,064	11,387,550
TVA AN		£	200	H	NA!	Œ	200	OQV	1 2	H.	Sign and	45 A	£ 13	

TOTAL FY92 KAH 233,003,050 TOTAL FY92 COST \$11,258,641.36

CLARKSVIL	LE GAS	
FY92	KCF	COST
OCT	83,695	\$284,302.95
NOV	162,705	#530,671.93
DEC	205,340	\$663,616.39
JAN	232,434	#748,100.90
FEB	179,711	#583,700.04
MAR	162,929	\$531,370.41
APR	95,506	#321,132.01
MAY	68,337	£236,413.63
JUN	72,678	\$249,949.74
JUL	77,701	\$265,612.45
AUG	69,605	\$263,736.25
SEP	54,771	\$217,480.87
	1,465,412	#4,896,087.57
X	10.18	
	14,917,894	THERMS

DEC 11 100 15 01

Industrial Energy Services

Energy Services for Business and Industry

Tennessee Valley Authority and Distributors of TVA Electric Power

DEMAND STUDY FOR COLD STORAGE FACILITY

CHERYL M. LEMON OCTOBER 23, 1992

TVA/HOPKINSVILLE OFFICE FORT CAMPBELL. KENTUCKY

Tennessee Valley Authority, 700 Hammond Plaza, Hopkinsville, Kentucky 42240

October 23, 1992

Ms. Rebecca Corry, Project Manager Ogden Environment and Energy Services 690 Commonwealth Center 11003 Bluegrass Parkway Louisville, Kentucky 40299

Dear Ms. Corry:

RE: COLD STORAGE FACILITY, FORT CAMPBELL OGDEN PROJECT NUMBER 0-4627-0070-0000

At your request, William Peacher and I installed demand recording meter from September 18, 1992 to October 19, 1992. This is a summary of the data recorded during this period.

*The Mechanical Room was metered from September 18, 1992 to October 1, 1992. The highest recorded data was on September 25, 1992 at 1300.

119-kW 149-kVA 80%-Power Factor

The lowest recorded data was on September 28, 1992.

47-kW 51-kVA 92%-Power Factor

*The Battery Charger Room was metered from September 25, 1992 to October 8, 1992. The highest recorded data was on October 1, 1992 at 1530.

14-kW 17-kVA 84%-Power Factor

The lowest recorded demand was 7-kW, 7-kVA with 99% Power Factor. This was recorded on several different times during the metering period.

Ms. Rebecca Corry October 23, 1992

*The Boiler Room was metered from October 2, 1992 to October 19, 1992. The highest recorded demand was on October 2, 1992.

37-kW 40-kVA 92%-Power Factor

92%-Fower Factor

The lowest recorded demand was 18-kW and 21-kVA with a 84 percent power factor. This was recorded on several different times..

Enclosed are copies of the daily load profiles. If you have any questions, please contact me at 502-886-6400.

Sincerely,

Cheryl M. Lemon

Energy Services Technician

Enclosures

cc: Arlin E. Wright, Supervisor Industrial Engineer

DEH Systems & Projects

16th & Ohio

Fort Campbell, Kentucky 42223-5060

1992 YEAR Sept. MONTH 18 DAY

DAILY LOAD PROFILE Ft. Campbell Mechanical Room Ft. Campbell, Kentucky

500

```
TIME
 INT
         KW KVA POWER
                        FACTOR
ENDING DEMAND
         80
              114
0:30
1:00
         81
              116
1:30
         80
              114
2:00
         83
              117
2:30
         81
77
82
78
82
              116
                     70
              112
3:00
                    69
              117
3:30
                     70
4:00
              111
4:30
              114
5:00
         85
              118
         80
5:30
              114
         80
6:00
              113
6:30
         86
              118
         83
 7:00
              117
 7:30
         85
              118
              124
129
         93
8:00
         99
8:30
              123
122
         95
9:00
9:30
         90
               128
         100
10:00
10:30
         94
               124
11:00
         100
               130
11:30
         95
               125
         100
               130
12:00
               134
12:30
         106
         102
               132
13:00
         93
               124
13:30
              129
125
127
         98
94
14:00
14:30
         95
15:00
         99
               130
15:30
16:00
         90
               123
         86
79
               119
16:30
17:00
              113
         86
82
               121
17:30
               117
18:00
              118
18:30
         84
         82
19:00
              117
         80
19:30
              114
20:00
         87
               121
         81
20:30
               114
         85
82
21:00
              118
21:30
              115
22:00
         86
              118
22:30
         87
              116
                     72
                                         ++++++++++++
23:00
         81
              113
23:30
         85
               120
                     71
                            ++++++++++++++
24:00
          79
               114
                        +++++++++++++++++++
                     69
```

2099 KWH = ENERGY USE THIS DAY

<×

1992 YEAR Sept. MONTH 19 DAY

				Ft. Campbell, Kentucky
	TIME	יודע	7277.4	DOUTED
	INT ENDING			POWER FACTOR
	ENDINC	DE	MAND	PACION
	0:30	81	116	70 ++++++++++++++++++
١	1:00	<i>7</i> 8	113	69 ++++++++++++++++++
	1:30	81	116	70 ++++++++++++++++++++++++++++++++++++
	2:00	<i>79</i>	114	69 ++++++++++++++++++++++++++++++++++++
ı	2:30	<i>79</i>	113	70 ++++++++++++++++++++++++++++++++++++
	3:00	79	114	69 ++++++++++++++++++++++++++++++++++++
•	3:30	81	116	70 ++++++++++++++++++
	4:00 4:30	81 87	116 119	70 ++++++++++++++++++++++++++++++++++++
ı	5:00	80	119	70 ++++++++++++++++++++
	5:30	<i>79</i>	114	69 +++++++++++++++++
	6:00	80	114	70 +++++++++++++++++
ı	6:30	80	114	70 +++++++++++++++++++
	7:00	83	119	70 +++++++++++++++++++++
	7:30	78	113	69 ++++++++++++++++++
	8:00	82	115	71 ++++++++++++++++++
	<i>8:30</i>	<i>7</i> 8	111	70 ++++++++++++++++++
ı	9:00	80	111	72 ++++++++++++++++++++++++++++++++++++
	9:30	<i>7</i> 8	111	70 ++++++++++++++++++
ì	10:00	84	117	72 ++++++++++++++++++++++++++++++++++++
ı	10:30	82	114	72 ++++++++++++++++++++++++++++++++++++
	11:00 11:30	82 81	114 116	72 ++++++++++++++++++++++++++++++++++++
	12:00	81	116	70 ++++++++++++++++++++++++++++++++++++
ı	12:30	83	115	72 ++++++++++++++++++
•	13:00	80	114	70 ++++++++++++++++++
	13:30	81	116	70 ++++++++++++++++++
ı	14:00	80	114	70 ++++++++++++++++++
	14:30	86	119	72 ++++++++++++++++++++++
	<i>15:00</i>	82	115	71 +++++++++++++++++++++
1	15:30	86	119	72 ++++++++++++++++++++++++++++++++++++
l	16:00	80	114	70 ++++++++++++++++++++++++++++++++++++
•	16:30	81	114	71 ++++++++++++++++++++++++++++++++++++
	17:00 17:30	81 82	113 115	72 ++++++++++++++++++++++++++++++++++++
l	18:00	83	119	70 ++++++++++++++++++++++++++++++++++++
J	18:30	83	119	70 ++++++++++++++++++++++++++++++++++++
	19:00	81	116	70 +++++++++++++++++++
ı	19:30	84	118	71 ++++++++++++++++++++
ı	20:00	83	117	71 +++++++++++++++++++++
-	20:30	83	117	71 ++++++++++++++++++++++++++++++++++++
	21:00	87	121	72 ++++++++++++++++++++++++++++++++++++
	21:30	82	117	70 +++++++++++++++++++++
•	22:00	86	119	72 ++++++++++++++++++++++++++++++++++++
	22:30	85	116	73 ++++++++++++++++++++++++++++++++++++
ĺ	23:00 23:30	83	115 115	72 ++++++++++++++++++++++++++++++++++++
	23:30 24:00	82 82	115 115	71 ++++++++++++++++++++++++++++++++++++
	4.UU	02	117	<i>/1</i> + + + + + + + + + + + + + + + + + + +

1992 YEAR Sept. MONTH 20 DAY

DAILY LOAD PROFILE Ft. Campbell Mechanical Room Ft. Campbell, Kentucky

TIME INT KW KVA ENDING DEMAND	POWER FACTOR
0:30 81 116 1:00 79 114 1:30 82 117 2:00 77 112 2:30 82 117 3:00 79 113 3:30 82 117 4:00 83 117 4:30 81 114 5:00 85 118 5:30 78 113 6:00 82 115 6:30 81 116 7:00 83 117 7:30 79 113 8:00 79 113 8:00 79 113 8:30 81 114 9:00 75 107 9:30 82 115 10:00 84 115 11:30 82 115 11:00 83 117 13:30 78 111 14:00 83 117 14:30 82 115 15:00 84	70 ++++++++++++++++++++++++++++++++++++

1954 KWH = ENERGY USE THIS DAY

1992 YEAR Sept. MONTH 21 DAY

TIME INT ENDING			POWER FACTOR
23:30 24:00	85 81	120 116	71 ++++++++++++++++++++++++++++++++++++

1992 YEAR Sept. MONTH 22 DAY

TIME INT KW KVA ENDING DEMAND	POWER FACTOR
24:00 69 87 69 2010 KWH =	79 ++++++++++++++++++++++++++++++++++++

1992 YEAR Sept. MONTH 23 DAY

DAILY LOAD PROFILE Ft. Campbell Mechanical Room Ft. Campbell, Kentucky

1992 YEAR Sept. MONTH 24 DAY

THE			Fi. Сатроен, Кениску
TIME INT	VIII	W374	POWER
ENDING			FACTOR
ENDING	JUE	MAND	FACION
0:30	89	122	73 ++++++++++++++++++++++++++++++++++++
1:00	84	118	71 ++++++++++++++++++
1:30	85	118	72 ++++++++++++++++++++
2:00	86	119	72 +++++++++++++++++++
2:30	82	115	71 +++++++++++++++++
3:00	85	118	72 ++++++++++++++++++++++++++++++++++++
3:30	85	118	72 ++++++++++++++++++++++++++++++++++++
4:00	82	115	71 +++++++++++++++++
4:30	89	120	74 ++++++++++++++++++++++++++++++++++++
5:00	85	116	73 ++++++++++++++++++++++++++++++++++++
5:30	86	118	73 ++++++++++++++++++++++++++++++++++++
6:00	84	117	72 ++++++++++++++++++++++++++++++++++++
6:30	86	119	72 ++++++++++++++++++++++++++++++++++++
7:00	89	122	73 ++++++++++++++++++++++
7:30	89	122	73 ++++++++++++++++++++++++++++++++++++
8:00	92	124	74 +++++++++++++++++++++
8:30	96	126	76 ++++++++++++++++++++++++++++++++++++
9:00	94	124	76 ++++++++++++++++++++++++++++++++++++
9:30	97	128	76 ++++++++++++++++++++++++++++++++++++
10:00	100	128	78 ++++++++++++++++++++++++++++++++++++
10:30	100	128	78 ++++++++++++++++++++++++++++++++++++
11:00	100	130	77 ++++++++++++++++++++++++++++++++++++
11:30	98	129	76 ++++++++++++++++++++++++++++++++++++
12:00	97	128	76 ++++++++++++++++++++++++++++++++++++
12:30	99	129	77 ++++++++++++++++++++++++++++++++++++
13:00	99	129	77 +++++++++++++++++++++++++++++++++++
13:30	96	126 128	76 ++++++++++++++++++++++++++++++++++++
14:00 14:30	97 100	130	77 ++++++++++++++++++++++++++++++++++++
15:00	97	128	76 +++++++++++++++++++++
15:30	89	122	73 ++++++++++++++++++++
16:00	89	122	73 ++++++++++++++++++++
16:30	87	119	73 ++++++++++++++++++++
17:00	85	118	72 +++++++++++++++++++
17:30	87	121	72 +++++++++++++++++++++
18:00	85	118	72 +++++++++++++++++++++
18:30	85	118	72 +++++++++++++++++++++
19:00	86	119	72 ++++++++++++++++++++
19:30	85	116	73 +++++++++++++++++++++
20:00	86	118	73 +++++++++++++++++++++
20:30	88	121	73 ++++++++++++++++++++++
21:00	90	122	74 ++++++++++++++++++++++
21:30	87	121	72 ++++++++++++++++++++++++
22:00	86	119	72 +++++++++++++++++++++
22:30	91	121	75 ++++++++++++++++++++++++++++++++++++
23:00	87	118	74 ++++++++++++++++++++++++++++++++++++
23:30	87	121	72 ++++++++++++++++++++++++++++++++++++
24:00	85	118	/2

1992 YEAR Sept. MONTH 25 DAY

DAILY LOAD PROFILE Ft. Campbell Mechanical Room Ft. Campbell, Kentucky

48

1992 YEAR Sept. MONTH 26 DAY

TIME	21. Gumpoon, Izoninon,
INT KW KVA ENDING DEMAND	POWER FACTOR
0:30 87 121 1:00 86 119 1:30 85 118 2:00 86 119 2:30 85 118 3:00 86 119 3:30 85 118 4:00 88 121 4:30 93 124 5:00 89 122 5:30 86 119 6:00 86 119 7:30 86 119 7:30 86 119 8:30 85 118 8:30 85 118 8:30 85 118 8:30 85 118 8:00 85 115 9:30 85 118 10:00 85 118 10:30 90 122 11:30 87 119 13:30 87 119 13:30 87 119	72 ++++++++++++++++++++++++++++++++++++

1992 YEAR Sept. MONTH 27 DAY

			Ft. Campbell, Kentucky
TIME INT	עווע	W374	POWER
ENDING			FACTOR
ENDING	DEA	MAIND	FACIOR
0:30	84	117	72 ++++++++++++++++++
1:00	84	117	72 +++++++++++++++++++++++
1:30	85	118	72 +++++++++++++++++++++
2:00	84	118	71 +++++++++++++++++++++
2:30	84	118	71 +++++++++++++++++++++
3:00	83	117	71 ++++++++++++++++++++++++++++++++++++
3:30	83	117	71 ++++++++++++++++++++++++++++++++++++
<i>4:00</i>	82	115	71 ++++++++++++++++++++++++++++++++++++
4:30	87	119	73 ++++++++++++++++++++++++++++++++++++
5:00	86	119	72 ++++++++++++++++++++++++++++++++++++
5:30	86	119	72 ++++++++++++++++++++++++++++++++++++
6:00	83	115	72 ++++++++++++++++++++++++++++++++++++
6:30	84	117	72 ++++++++++++++++++++++++++++++++++++
7:00	84	117	72 ++++++++++++++++++++++++++++++++++++
7:30 8:00	84 82	117 114	72 ++++++++++++++++++++++++++++++++++++
8:30	82 82	114 114	72 ++++++++++++++++++++++++++++++++++++
9:00	83	112	74 ++++++++++++++++++++++++++++++++++++
9:30	83	115	72 ++++++++++++++++++++++++++++++++++++
■ 10:00	86	116	74 ++++++++++++++++++++++
10:30	87	118	74 ++++++++++++++++++++++
11:00	87	118	74 +++++++++++++++++++++
11:30	86	118	73 +++++++++++++++++++++
12:00	83	115	72 ++++++++++++++++++++++++++++++++++++
12:30	87	119	73 ++++++++++++++++++++++
13:00	88	121	73 ++++++++++++++++++++++
13:30	83	117	71 ++++++++++++++++++++++++++++++++++++
14:00	84	117	72 ++++++++++++++++++++++++++++++++++++
14:30	8 <i>5</i>	118	72 ++++++++++++++++++++++++++++++++++++
15:00	8 <i>5</i>	118	72 ++++++++++++++++++++++++++++++++++++
15:30	85	121	70 ++++++++++++++++++++++++++++++++++++
16:00	84	117	72 ++++++++++++++++++++++++++++++++++++
16:30 17:00	87 83	118 114	74 ++++++++++++++++++++++++++++++++++++
17:00 ■ 17:30	84	117	
18:00	82	115	72 ++++++++++++++++++++++++++++++++++++
18:30	81	114	71 ++++++++++++++++++++++++++++++++++++
19:00	82	114	72 ++++++++++++++++++++++++++++++++++++
19:30	85	118	72 ++++++++++++++++++++++++++++++++++++
20:00	87	119	73 +++++++++++++++++++++
20:30	86	119	72 +++++++++++++++++++++
21:00	83	115	72 +++++++++++++++++++++
21:30	84	117	72 +++++++++++++++++++
22:00	83	115	72 ++++++++++++++++++++++++++++++++++++
22:30	89	119	75 ++++++++++++++++++++++++++++++++++++
23:00	87	118	74 ++++++++++++++++++++++++++++++++++++
23:30	86	119	72 ++++++++++++++++++++++++++++++++++++
24:00	82	115	71 ++++++++++++++++++

1992 YEAR Sept. MONTH 28 DAY

DAILY LOAD PROFILE Ft. Campbell Mechanical Room Ft. Campbell, Kentucky

```
TIME
 INT
          KW KVA POWER
ENDING DEMAND
                           FACTOR
                       71 ++++++++++++++++++++
0:30
          82
               115
1:00
          81
               114
                      71
1:30
          82
               115
                       71
2:00
          83
               117
                       71
          82
2:30
               115
                       71
          80
81
3:00
               114
3:30
               114
          81
4:00
               114
                      71
          85
4:30
               116
          85
               118
5:00
          83
5:30
               115
                       72
6:00
          81
               113
          84
6:30
               115
          83
               115
 7:00
         86
92
53
47
50
55
56
55
               118
 7:30
               121
8:00
                62
51
56
8:30
                      86
9:00
                      92
                      90
9:30
10:00
                60
10:30
                61
                60
11:00
          89
11:30
                107
                148
12:00
          118
                134
12:30
          106
                139
13:00
          110
                131
13:30
          101
14:00
          108
                138
                        78
14:30
          108
                138
          97
                129
15:00
          97
                129
15:30
          95
                128
16:00
          89
                120
16:30
                       74 + +
          90
                122
17:00
          85
90
                118
17:30
                123
117
18:00
          83
85
18:30
                118
19:00
                       72
19:30
          87
                119
20:00
          87
                119
          87
                119
                       73
20:30
21:00
21:30
22:00
          89
85
                120
118
                       72
          86
                119
                       72
22:30
          89
                119
                       75
                       73 +
23:00
          84
                115
          88
                122
23:30
                115
24:00
```

2031 KWH = ENERGY USE THIS DAY

1992 YEAR Sept. MONTH 29 DAY

DAILY LOAD PROFILE Ft. Campbell Mechanical Room Ft. Campbell, Kentucky

10

			Ft. Campbell, Kentucky
TIME			
INT			POWER
ENDIN	G DEN	MAND	FACTOR
0:30	<i>83</i>	<i>117</i>	71 ++++++++++++++++++++
1:00	<i>85</i>	118	72 ++++++++++++++++++++++++++++++++++++
1:30	81	114	71 ++++++++++++++++++
2:00	83	117	71 +++++++++++++++++++++
2:30	82	115	71 ++++++++++++++++++
3:00	81	114	71 ++++++++++++++++++
3:30	84	118	71 ++++++++++++++++++++++++++++++++++++
4:00	82	115	71 ++++++++++++++++
4:30	85	116	73 ++++++++++++++++++
5:00	87	119	73 +++++++++++++++++++++
5:30	83	115	72 ++++++++++++++++++++++++++++++++++++
6:00	84	117	72 ++++++++++++++++++++++++++++++++++++
6:30	89	120	74 ++++++++++++++++++++++++++++++++++++
7:00	88	121	73 ++++++++++++++++++++++
7:30	92	123	75 +++++++++++++++++++
8:00	98 98	127	77 ++++++++++++++++++++++++++++++++++++
8: <i>30</i>	93	122	76 ++++++++++++++++++++++++++++++++++++
9:00	93 91	120	76 ++++++++++++++++++++++
9:00 9:30		120 124	76 ++++++++++++++++++++++++++++++++++++
	94		
10:00	96	125	77 ++++++++++++++++++++++++++++++++++++
10:30	97	126 124	77 +++++++++++++++++++++++++++++++++++
11:00 11:30	97	125	75 ++++++++++++++++++++++++++++++++++++
12:00	94 94	125	75 ++++++++++++++++++++++++++++++++++++
12:30	94 97	123	76 ++++++++++++++++++++++++++++++++++++
13:00	97 92	123	75 ++++++++++++++++++++++++++++++++++++
13:30	95 95	125	76 ++++++++++++++++++++++++++++++++++++
14:00	92	123	75 ++++++++++++++++++++++
14:30	98	129	76 ++++++++++++++++++++++++++++++++++++
15:00	93	124	75 ++++++++++++++++++++++
15:30	91	123	74 ++++++++++++++++++++++
16:00	89	122	73 ++++++++++++++++++++++
16:30	88	121	73 +++++++++++++++++++++
17:00	81	114	71 +++++++++++++++++
17:30	90	123	73 ++++++++++++++++++++++++++++++++++++
18:00	83	115	72 ++++++++++++++++++
18:30	87	119	73 +++++++++++++++++++++
19:00	8 <i>3</i>	115	72 ++++++++++++++++++
19:30	89	120	74 ++++++++++++++++++
20:00	86	118	73 +++++++++++++++++++
20:30	90	122	74 ++++++++++++++++++++++++++++++++++++
21:00	88	119	74 +++++++++++++++++++
21:30	86	118	73 ++++++++++++++++++
22:00	90	122	74 ++++++++++++++++++++++++++++++++++++
22:30	89	119	75 ++++++++++++++++++++++++++++++++++++
23:00	92	123	75 ++++++++++++++++++++++++++++++++++++
23:30	86	118	73 ++++++++++++++++++++++++++++++++++++
24:00	83	115	72 ++++++++++++++++++++++++++++++++++++

1992 YEAR Sept. MONTH 30 DAY

DAILY LOAD PROFILE Ft. Campbell Mechanical Room Ft. Campbell, Kentucky

			Ft. Campbell, Kentucky
TIME INT	ינדע	W174	POWER
ENDING			FACTOR
ENDINC	וטבוו	IAND	Metok
0:30	89	122	73 ++++++++++++++++++++++
1:00	84	118	71 +++++++++++++++++++++
1:30	86	119	72 ++++++++++++++++++++
2:00	81	114	71 ++++++++++++++++++
2:30	87	119	73 ++++++++++++++++++++++++++++++++++++
3:00	83	115	72 +++++++++++++++++++++
3:30	84	117	72 ++++++++++++++++++++++++++++++++++++
4:00 4:30	83 86	115 116	72 ++++++++++++++++++++++++++++++++++++
5:00	88	119	74 ++++++++++++++++++++++
5:30	83	115	72 ++++++++++++++++++
6:00	90	122	74 +++++++++++++++++++++
6:30	86	118	73 ++++++++++++++++++++++++++++++++++++
7:00	87	119	73 ++++++++++++++++++++++++++++++++++++
7:30	91	121	75 ++++++++++++++++++++++++++++++++++++
8:00	73	94 79	78 ++++++++++++++++++++++++++++++++++++
8:30 9:00	62 62	78 75	83 ++++++++++++++
9:30	65	81	80 ++++++++++++++
10:00	70	<i>83</i>	84 +++++++++++++++
10:30	69	81	85 +++++++++++++++
11:00	69	82	84 +++++++++++++++
11:30 12:00	59 50	72 56	82 +++++++++++++ 89 +++++++++++
12:30	<i>51</i>	<i>57</i>	90 ++++++++++
13:00	68	80	85 +++++++++++++++
13:30	70	84	83 +++++++++++++++
14:00	70	8 <i>5</i>	82 +++++++++++++++
14:30 15:00	66 74	80 87	83 +++++++++++++++ 85 +++++++++++++++
15:30 15:30	64	83	77 ++++++++++++++
16:00	92	124	74 ++++++++++++++++++++++
16:30	94	125	75 ++++++++++++++++++++++++++++++++++++
17:00	88	119	74 +++++++++++++++++++++++
17:30	87	121	72 ++++++++++++++++++++++++++++++++++++
18:00 18:30	92 83	124 117	74 ++++++++++++++++++++++++++++++++++++
19:00	84	117	72 +++++++++++++++++++
19:30	90	122	74 ++++++++++++++++++++++++
20:00	85	116	73 +++++++++++++++++++++
20:30	88	119	74 ++++++++++++++++++++++++++++++++++++
21:00	87	118 122	74 ++++++++++++++++++++++++++++++++++++
21:30 22:00	90 83	115	72 ++++++++++++++++++++++
22:30	89	117	76 ++++++++++++++++++++
23:00	89	119	75 +++++++++++++++++++++
23:30	86	118	73 ++++++++++++++++++++++
24:00	84	117	72 +++++++++++++++++++++

1911 KWH = ENERGY USE THIS DAY

1992 YEAR Oct. MONTH 1 DAY

	Ft. Câmpbell, Kentucky
TIME	D OWIED
INT KW KVA	
ENDING DEMAND	FACTOR
0:30	72 ++++++++++++++++++
1:00 84 115	73 ++++++++++++++++++++++++++++++++++++
1:30 82 115	71 +++++++++++++++++
2:00 80 113	71 ++++++++++++++++
2:30 80 113	71 +++++++++++++++
3:00 80 114	70 ++++++++++++++++
3:30 84 117	72 +++++++++++++++++
4:00 81 114	71 +++++++++++++++
4 :30 84 115	73 ++++++++++++++++++
5:00 82 114	72 ++++++++++++++++++
5:30 82 115	71 ++++++++++++++++
6:00 86 118	73 ++++++++++++++++++++++
6:30 83 115	72 ++++++++++++++++++
7:00 86 119	72 +++++++++++++++++++++
7:30 90 122	74 ++++++++++++++++++++++++++++++++++++
8:00 93 124 8:30 91 120	75 ++++++++++++++++++++++++++++++++++++
9:00 91 120	76 ++++++++++++++++++++++++++++++++++++
9:30 92 123	75 ++++++++++++++++++++++++++++++++++++
■ 10:00 97 126	77 +++++++++++++++++++++++
10:30 101 129	
11:00 93 122	76 ++++++++++++++++
11:30 95 127	75 ++++++++++++++++++++++++++++++++++++
12:00 93 124	75 +++++++++++++++++++++++
12:30 102 131	78 ++++++++++++++++++++++++++++++++++++
13:00 95 125	76 ++++++++++++++++++++++++++++++++++++
13:30 92 123	75 ++++++++++++++++++++++++++++++++++++
14:00 102 132	77 + + + + + + + + + + + + + + + + + +
■ 14:30 108 137	
15:00 103 132 15:30 90 122	78 ++++++++++++++++++++++++++++++++++++
16:00 89 122	74 ++++++++++++++++++++++++++++++++++++
16:30 86 118	73 +++++++++++++++++++++
17:00 87 119	73 +++++++++++++++++++
17:30 84 118	71 ++++++++++++++++++
18:00 87 119	73 +++++++++++++++++++++++
1 8:30 84 117	72 +++++++++++++++++++++
19:00 83 115	72 ++++++++++++++++++
19:30 87 119	73 +++++++++++++++++++++++
20:00 87 119	73 ++++++++++++++++++++++++++++++++++++
20:30 87 119	73 ++++++++++++++++++++++++++++++++++++
21:00 84 117	72 ++++++++++++++++++++++++++++++++++++
21:30 90 122 22:00 81 113	74 + + + + + + + + + + + + + + + + + + +
22:30 87 116	75 ++++++++++++++++++++++
■ 23:00 90 120	75 ++++++++++++++++++++++++++++++++++++
23:30 82 115	71 +++++++++++++++++
24:00 84 118	71 +++++++++++++++++++++

1992 YEAR Oct. MONTH 3 DAY

TIME INT KW KVA	POWER
ENDING DEMAND	FACTOR
0:30 26 31 1:00 26 31 1:30 26 31 2:00 27 32 2:30 27 32 3:00 26 31 3:30 26 31 4:00 28 33 4:30 30 34 5:00 29 34 5:30 27 32 6:00 26 31 6:30 31 35 7:00 28 32 7:30 26 31 8:00 27 32 8:30 26 30 9:00 24 27 9:30 27 32 10:00 27 31 10:30 29 33 11:00 29 34 11:30 28 33 12:00 27 31 13:30 28 33 14:00 27 31 15:30 26 31	85 + + + + + + + + + + + + + + + + + + +
27.00 21 32	

1992 YEAR Oct. MONTH 4 DAY

DAILY LOAD PROFILE Ft. Campbell Boiler Room Ft. Campbell, Kentucky

5,97

TUAT		ғі. Сатроен, кениску
TIME INT ENDING	KW KVA DEMAND	
0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 6:30 7:00 7:30 8:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:30 14:00 14:30 15:30 16:00 16:30 17:00 17:30 18:00 17:00 17:30 18:00 19:30 20:	27 32 26 31 27 32 27 32 28 33 28 33 39 28 33 29 27 26 26 25 26 28 29 28 29 28 27 29 28 27 29 28 28 27 29 28 28 27 29 28 28 27 29 28 28 29 28 28 27 28 28 29 28 28 29 28 28 28 28 28 28 28 28 28 28 28 28 28	85 ++++++++++++++++++++++++++++++++++++

1992 YEAR Oct. MONTH 5 DAY

TILL ATT			Ti. Cumpoett, Remucky
TIME INT ENDING			POWER FACTOR
0:30 1:00 1:30 2:00 2:30 3:30 4:00 4:30 5:00 5:30 6:30 7:00 7:30 8:00 9:30 10:00 11:30 12:30 13:30 14:00 13:30 14:00 15:30 16:00 17:30 16:00 17:30 16:00 17:30 16:00 17:30 16:00 17:30 16:00 17:30 16:00 17:30 16:00 17:30 16:00 17:30 16:00 16:30 17:00 17:30 16:00 16:00 16:	28 26 27 26 27 27 29 28 29 30 29 31 31 33 34 33 33 33 33 33 33 33 33 33 33 33	31331331333333333333333333333333333333	85 + + + + + + + + + + + + + + + + + + +

1992 YEAR Oct. MONTH 6 DAY

	TIME			ri. Campoett, Kentucky
	TIME INT	שוע	V374	POWER
	ENDING	DEM	AND	FACTOR
	0.20	20	22	05
	0:30	28	33	85 ++++++++++++++++++++++++++++++++++++
	1:00	28	33	85 ++++++++++++++++++++++++++++++++++++
	1:30	27	32	85 ++++++++++++++++++++++++++++++++++++
	2:00	27	32	85 ++++++++++++++++++
	2:30	27	32	85 +++++++++++++++++
ı	3:00	28	33	85 ++++++++++++++++++
	3:30	28	33	85 +++++++++++++++++++++
	4:00	28	33	86 ++++++++++++++++++
	4:30	30	33	90 +++++++++++++++++++++++
l	5:00	29	33	87 ++++++++++++++++++++++
	5:30	28	33	85 ++++++++++++++++++++++++++++++++++++
	6:00	28	33	86 ++++++++++++++++++
	6:30	31	35	88 ++++++++++++++++++++++++++++++++++++
ı	7:00	28	32	87 +++++++++++++++++++
	7:30	30	34	87 ++++++++++++++++++++++++++++++++++++
	8:00	33	<i>37</i>	89 ++++++++++++++++++++++
ī	8: <i>30</i>	<i>32</i>	35 35	91 ++++++++++++++++++++++++++++++++++++
ı				
ı	9:00	31	33	93 ++++++++++++++++++++++++++++++++++++
	9:30	33	37	89 ++++++++++++++++++++++++++++++++++++
ı	10:00	34	38	90 ++++++++++++++++++++++++++++++++++++
ł	10:30	34	<i>37</i>	91 ++++++++++++++++++++++++++++++++++++
	11:00	34	38	89 ++++++++++++++++++++++++++++++++++++
	11:30	34	38	89 ++++++++++++++++++++++++++++++++++++
ı	12:00	33	37	89 ++++++++++++++++++++++++++++++++++++
ı	12:30	35	38	91 ++++++++++++++++++++++++++++++++++++
•	13:00	34	38	90 ++++++++++++++++++++++++++++++++++++
_	<i>13:30</i>	33	<i>37</i>	89 ++++++++++++++++++++++++++++++++++++
ı	<i>14:00</i>	34	38	90 ++++++++++++++++++++++++++++++++++++
ł	<i>14:30</i>	37	40	92 ++++++++++++++++++++++++++++++++++++
	15:00	35	38	91 ++++++++++++++++++++++++++++++++++++
	15:30	29	33	87 ++++++++++++++++++++
ı	16:00	29	33	88 +++++++++++++++++++++
	16:30	29	32	90 +++++++++++++++++++++
	17:00	27	30	90 ++++++++++++++++++
	17:30	29	34	86 +++++++++++++++++++
ı	18:00	26	30	86 ++++++++++++++++
	18:30	28	33	86 +++++++++++++++++++++
	19:00	28	33	86 +++++++++++++++++
ı	19:30	28	33	86 ++++++++++++++++
ı	20:00	28	33	86 +++++++++++++++++
•	20:30	28	33	86 ++++++++++++++++
	21:00	28	33	86 +++++++++++++++++
	21:30	28	<i>33</i>	86 ++++++++++++++++
	22:00	29	<i>33</i>	88 +++++++++++++++++++
-	22:30	34	36	94 ++++++++++++++++++++++++++++++++++++
	23:00	34 30		
			33	92 ++++++++++++++++++++++
	23:30	28	33	86 ++++++++++++++++++
_	24:00	28	33	86 +++++++++++++++++++

1992 YEAR Oct. MONTH 7 DAY

			Ft. Campoett, Кепtиску
TIME	עדע	מזדע	POWER
INT ENDING			FACTOR
ENDING	DENI	1110	PACION
0:30	28	33	86 ++++++++++++++++++++++++++++++++++++
1:00		33	86 ++++++++++++++++++++++++++++++++++++
1:30		33	86 +++++++++++++++++
2:00	28	33	86 +++++++++++++++++++
2:30		33	86 ++++++++++++++++++++++++++++++++++++
3:00		33	86 ++++++++++++++++++++++++++++++++++++
3:30		33	86 ++++++++++++++++++++++++++++++++++++
4:00	28	32	87+++++++++++++++++
4:30	31	34	90 ++++++++++++++++++++++++++++++++++++
5:00	29	33	87+++++++++++++++++++++++++++++++++++++
5:30		33	86 ++++++++++++++++++++++++++++++++++++
6:00 6:30	28 32	33 36	89 ++++++++++++++++++++++
7:00	31	35 35	88 +++++++++++++++++++++
7:30	33	<i>37</i>	89 ++++++++++++++++++++++
8:00	33	37	89 ++++++++++++++++++++++
8:30		36	90 ++++++++++++++++++++++++++++++++++++
9:00	29	31	93 ++++++++++++++++++++++++++++++++++++
9:30	33	37	89 ++++++++++++++++++++++++++++++++++++
10:00	32	36	90 ++++++++++++++++++++++++++++++++++++
10:30	35	38	91 ++++++++++++++++++++++++++++++++++++
11:00 11:30	34 34	<i>3</i> 8 <i>3</i> 8	89 ++++++++++++++++++++++++++++++++++++
12:00	34 34	38	89 ++++++++++++++++++++++++++++++++++++
12:30	<i>36</i>	40	91 ++++++++++++++++++++++++++++++++++++
13:00	35	39	90 ++++++++++++++++++++++++++++++++++++
13:30	31	34	90 ++++++++++++++++++++++++++++++++++++
14:00	33	<i>37</i>	90 ++++++++++++++++++++++++++++++++++++
14:30	36	40	91 ++++++++++++++++++++++++++++++++++++
15:00	34	37	91 ++++++++++++++++++++++++++++++++++++
15:30	33	37	89 ++++++++++++++++++++++++++++++++++++
16:00 16:30	27 28	31 31	89 ++++++++++++++++++++
10:30 17:00	27	<i>30</i>	89 +++++++++++++++
17:30	28	33	85 ++++++++++++++++
18:00	27	32	85 +++++++++++++++++
18:30	28	33	85 ++++++++++++++++++++++++++++++++++++
19:00	26	31	85 ++++++++++++++++++
19:30	28	33	85 ++++++++++++++++++++++++++++++++++++
20:00	26	31	85 +++++++++++++++++
20:30	27	32	85 ++++++++++++++++++++++++++++++++++++
21:00 21:30	27 27	<i>32</i> <i>32</i>	85 +++++++++++++++++
22:00	28	32 32	87 ++++++++++++++++
22:30	34	37	93 ++++++++++++++++++++++++++++++++++++
23:00	30	33	92 +++++++++++++++++++++++
23:30	28	33	85 ++++++++++++++++++++++++++++++++++++
24:00	28	33	85 ++++++++++++++++++++++++++++++++++++

1992 YEAR Oct. MONTH 8 DAY

			Ft. Campbell, Kentucky
TIME INT ENDING			POWER FACTOR
	DEMA 26 28 26 28 26 28 26 28 29 28 31 29 28 32 32 32 32 33 33 33 33 33 33 33 33 33		85 ++++++++++++++++++++++++++++++++++++
18:30 19:00	27 25	31 29	87 ++++++++++++++++++++++++++++++++++++
19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30 24:00	28 27 26 26 27 28 33 29 27 27	32 31 30 30 31 32 35 31 31 31	87 ++++++++++++++++++++++++++++++++++++

1992 YEAR Oct. MONTH 9 DAY

DAILY LOAD PROFILE Ft. Campbell Boiler Room Ft. Campbell, Kentucky

W11 475			rt. Сатроен, Кептиску
TIME INT ENDING			POWER FACTOR
0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 7:30 8:30 9:00 9:30 10:30 11:30 12:30 13:30 14:00 14:30 13:30 14:00 14:30 15:30 16:00 17:30 16:00 17:30 16:30 17:00 17:30	34 33 33 33 33 33 33 33 33 33	191111103332243367411	87 + + + + + + + + + + + + + + + + + + +

706 KWH = ENERGY USE THIS DAY

1992 YEAR Oct. MONTH 10 DAY

		Ft. Campbell, Kentucky
TIME INT ENDING	KW KV DEMAN	A POWER D FACTOR
0:30 1:00 1:30 2:00 2:30 3:00 3:30	27 31 27 31 27 31 26 30 26 30 27 31 27 31	86 ++++++++++++++++++++++++++++++++++++
4:00 4:30 5:00 5:30 6:00 6:30	28 32 30 33 29 33 27 31 28 32 31 35	88 +++++++++++++++++++++++++++++++++++
7:00 7:30 8:00	30 34 27 31 27 31	88 + + + + + + + + + + + + + + + + + +
8:30 9:00 9:30	26 30 23 25 28 32	88 +++++++++++++++++++++++++++++++++++
10:00 10:30 11:00 11:30	28 32 28 31 28 32 28 32	89 ++++++++++++++++++++++++++++++++++++
12:00 12:30 13:00 13:30	28 32 29 33 29 33 27 31	89 ++++++++++++++++++++++++++++++++++++
14:00 14:30 15:00	28 32 31 35 30 34	87 ++++++++++++++++++++++++++++++++++++
15:30 16:00 16:30 17:00	27 31 28 32 28 31 26 29	88 +++++++++++++++++++++++++++++++++++
17:30 18:00 18:30 19:00	28 32 27 31 27 31 27 31	87 ++++++++++++++++++++++++++++++++++++
19:30 20:00 20:30	27 31 27 31 26 30	86 ++++++++++++++++++++++++++++++++++++
21:00 21:30 22:00 22:30	24 28 27 31 28 32 33 35	86 ++++++++++++++++++++++++++++++++++++
23:00 23:30 24:00	29 31 27 31 27 31	87 ++++++++++++++++++

1992 YEAR Oct. MONTH 11 DAY

DAILY LOAD PROFILE Ft. Campbell Boiler Room Ft Campbell, Kentucky

150

mu (F	Ft Campbell, Кепtиску
TIME INT KW KVA ENDING DEMAND	
0:30 27 31 1:00 27 31 1:30 27 31 2:00 27 31 2:30 26 30 3:00 25 29 3:30 27 31 4:00 27 31 4:30 30 33 5:00 28 32 5:30 27 31 6:30 31 35 7:00 29 33 7:30 27 31 8:30 26 30 9:00 25 28 9:30 27 31 10:30 28 32 11:00 28 32 11:30 27 31 12:00 27 31 12:30 29 33 13:00 28 32 14:30 31 34 15:30 27 31 16:00 28 32 16:30 27 31	86 ++++++++++++++++++++++++++++++++++++

661 KWH = ENERGY USE THIS DAY

1992 YEAR Oct. MONTH 12 DAY

	Ft Campbell, Кепtиску
TIME INT KW KVA ENDING DEMAND	POWER FACTOR
0:30 27 31 1:00 27 31 1:30 27 31 2:00 27 31 2:30 27 31 3:00 26 30 4:00 27 31 4:30 29 32 5:00 28 32 5:30 27 31 6:00 27 31 6:30 30 34 7:00 29 33 7:30 27 31 8:00 28 33 8:30 26 30 9:00 26 29	86 ++++++++++++++++++++++++++++++++++++
22:00 28 32	88 ++++++++++++++++++++++++++++++++++++
22:30 33 35	94 ++++++++++++++++++++++++++++++++++++
23:00 29 31 23:30 27 31	86 ++++++++++++++++++++++
24:00 27 31	86 ++++++++++++++++++++++++++++++++++++

1992 YEAR Oct. MONTH 13 DAY

DAILY LOAD PROFILE Ft. Campbell Boiler Room Ft Campbell, Kentucky

19 20

			Ft Campoett, Ке пійску
TIME INT	VIII	VIIA	POWER
ENDING			FACTOR
LIVDING	DLM	1111	171010K
0:30	27	31	86 ++++++++++++++++++
1:00		31	86 +++++++++++++++++
1:30		31	86 ++++++++++++++++++++++++++++++++++++
2:00		31	86 ++++++++++++++++++
2:30		31	86 ++++++++++++++++++
3:00		31	86 ++++++++++++++++++++++++++++++++++++
3:30		31 31	86 ++++++++++++++++++++++++++++++++++++
4:00 4:30		31 33	91 ++++++++++++++++++++++++++++++++++++
5:00		32	88 ++++++++++++++++++
5:30		31	86 ++++++++++++++++++
6:00		31	87 +++++++++++++++++
6:30		34	89 ++++++++++++++++++++++++++++++++++++
7:00	32	36	90 ++++++++++++++++++++++++++++++++++++
7:30		36	90 ++++++++++++++++++++++++++++++++++++
8:00		36	90 ++++++++++++++++++++++++++++++++++++
8:30		34	91 ++++++++++++++++++++++++++++++++++++
9:00 9:30	<i>31</i> <i>32</i>	33 36	90 ++++++++++++++++++++++++++++++++++++
10:00	32	35	92 ++++++++++++++++++++++
10:30	33	36	92 ++++++++++++++++++++++++++++++++++++
11:00	33	37	90 ++++++++++++++++++++++++++++++++++++
11:30	33	37	90 ++++++++++++++++++++++++++++++++++++
12:00 12:30	33 35	<i>37</i> <i>38</i>	92 ++++++++++++++++++++++++++++++++++++
13:00	3 <i>3</i>	<i>37</i>	91 +++++++++++++++++++++
13:30	33	37	90 ++++++++++++++++++++++++++++++++++++
14:00	33	36	91 ++++++++++++++++++++++++++++++++++++
<i>14:30</i>	36	39	92 ++++++++++++++++++++++++++++++++++++
15:00	35	38	92 ++++++++++++++++++++++++++++++++++++
15:30	33	37 34	90 ++++++++++++++++++++++++++++++++++++
16:00 16:30	<i>30</i> 28	31	91 ++++++++++++++++
17:00	26	29	91 +++++++++++++++
17:30	28	32	87 ++++++++++++++++++++
18:00	28	32	87 ++++++++++++++++++++
18:30	28	32	87++++++++++++++++++
19:00	28	32	87 ++++++++++++++++++++++++++++++++++++
19:30	27 27	31 31	87 +++++++++++++++++++
20:00 20:30	27	31 31	87 +++++++++++++++++
21:00	27	31	87++++++++++++++++
21:30	27	31	87 ++++++++++++++++++
22:00	28	31	89 ++++++++++++++++++++++++++++++++++++
22:30	33	35	95 ++++++++++++++++++++++++++++++++++++
23:00 23:30	<i>30</i> 28	32 32	93 ++++++++++++++++++++++++++++++++++++
23:30 24:00	28 28	32 32	87 +++++++++++++++++
24.00	20	52	0/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1992 YEAR Oct. MONTH 14 DAY

DAILY LOAD PROFILE Ft. Campbell Boiler Room Ft Campbell, Kentucky

TIME KW KVA POWER INT ENDING DEMAND **FACTOR** 28 28 28 32 32 32 0:30 87 +++++++++++++++++++++ 1:00 87 +++++++++++++++++++++ 1:30 87 ++++++++++++++++++++ 28 28 28 28 28 31 29 28 31 32 2:00 32 2:30 3:00 32 32 3:30 31 89 4:00 4:30 34 5:00 33 32 5:30 32 6:00 34 90 +++++++++++++++++++++++ 6:30 33 32 33 32 28 29 30 31 34 36 *7:00* 36 7:30 37 8:00 35 8:30 29 31 9:00 95 ++++++++++++++++++++++ 9:30 95 ++++++++++++++++++++++ 31 32 37 37 38 96 +++++++++++++++++++++ 10:00 96 10:30 11:00 34 34 35 11:30 12:00 38 12:30 34 37 13:00 33 37 13:30 34 37 14:00 37 40 14:30 33 28 28 36 32 32 15:00 15:30 16:00 29 26 25 25 27 27 27 27 27 28 33 16:30 29 27 27 26 17:00 17:30 +++++++++++++++++ ++++++++++++++++ 18:00 92 18:30 ++++++++++++++ 30 89 19:00 32 31 19:30 20:00 +++++++++++++++++++ 31 ++++++++++++++++ 20:30 21:00 31 31 21:30 32 88 +++++++++++++++++++++ 22:00 34 37 34 93 +++++++++++++++++++++++++++++ 22:30 31 23:00 90 ++++++++++++++++++++++ 27 27 23:30 31 87 +++++++++++++++++++ 24:00 31 86 ++++++++++++++++++

1992 YEAR Oct. MONTH 15 DAY

DAILY LOAD PROFILE Ft. Campbell Boiler Room Ft Campbell, Kentucky

		Ft Campoett, Кептиску	
TIME INT ENDING	KW KY DEMAN	POWER FACTOR	
0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 7:00 7:30 8:30 9:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:30 15:30 16:30 17:00 17:30	27 31 27 31 27 31 27 31 27 31 27 31 27 31 32 32 32 32 32 32 32 33 33 33 33 33 33 33 33 33 33 33 33 33	86 ++++++++++++++++++++++++++++++++++++	-+-

708 KWH = ENERGY USE THIS DAY

1992 YEAR Oct. MONTH 16 DAY

	Ft Campbell, Kentucky
TIME	
INT KW KVA	
ENDING DEMAND	FACTOR
0:30 27 31	86 +++++++++++++++++
1:00 27 31	86 +++++++++++++++++
1:30 27 31	86+++++++++++++++++
2:00 27 31	86 ++++++++++++++++++
2:30 26 30	86 +++++++++++++++++
3:00 26 30	86 +++++++++++++++++
3:30 27 31	86 ++++++++++++++++++
	88 ++++++++++++++++++
4:30 29 32	91 ++++++++++++++++++++++++++++++++++++
5:00 28 32	88 +++++++++++++++++++++
5:30 27 31	86 +++++++++++++++++++
6:00 27 31	87 +++++++++++++++++
6:30 30 34	89 ++++++++++++++++++++++++++++++++++++
7:00 31 34	90 ++++++++++++++++++++++
7:30 31 34	90 ++++++++++++++++++++++
8:00 32 36	90 ++++++++++++++++++++++
8:30 32 36	90 ++++++++++++++++++++++++++++++++++++
9:00 37 40	92 ++++++++++++++++++++++++++++++++++++
9:30 23 25	91 +++++++++++++++
1 0:00 23 25	93 +++++++++++++++
10:30 23 24	94 +++++++++++++++
11:00 23 25	91 + + + + + + + + + + + + + + + + + + +
11:30 23 25	91 +++++++++++++++
12:00 23 25	91 +++++++++++++++
12:30 25 27	93 +++++++++++++++++
1 13:00 23 25	93 +++++++++++++++
13:30 22 24	91 ++++++++++++++
■ 14:00 23 25	91 +++++++++++++++
14:30 27 29	92 ++++++++++++++++++
15:00 26 28	92 ++++++++++++++++
_ 15:30 23 26	90 ++++++++++++++
16:00 24 26	91 +++++++++++++++
16:30 24 26	92 ++++++++++++++++
17:00 23 26	89 ++++++++++++++
17:30 18 21	84 +++++++++++
18:00 18 21	84 +++++++++++
18:30 18 21	84 +++++++++++
19:00 18 21	84 +++++++++++
19:30 18 21	84 ++++++++++++
20:00 18 21	84 ++++++++++++
20:30 18 21	84 +++++++++++++
21:00 18 21	84 +++++++++++++
21:30 18 21	87 ++++++++++++++
22:00 24 26	93 ++++++++++++++++
22:30 24 26	89 +++++++++++++++
	84 +++++++++++++
23:30 18 21	84 +++++++++++++
24:00 27 31	86 ++++++++++++++++++

1992 YEAR Oct. MONTH 17 DAY

DAILY LOAD PROFILE Ft. Campbell Boiler Room Ft Campbell, Kentucky

TIME INT ENDING			POWER FACTOR
0:30 1:30 2:00 2:30 3:30 4:00 4:30 5:30 6:30 7:30 8:30 9:30 10:30 11:30 12:30 13:30 14:30 13:30 14:30 14:30 15:30 16:30 17:30 16:30 17:30 16:30 17:30	18 18 18 18 18 18 18 18 18 18 18 18 18 1	21 21 21 21 21 21 21 21 22 21 21 21 21 2	84 ++++++++++++++++++++++++++++++++++++

451 KWH = ENERGY USE THIS DAY

1992 YEAR Oct. MONTH 18 DAY

DAILY LOAD PROFILE Ft. Campbell Boiler Room Ft Campbell, Kentucky

NT				Ft Campbell, Kentucky
1:00				
3:00 18 20 88 ++++++++++++++++++++++++++++++++	1:00 1:30	18 18 18	20 20	88 +++++++++++ 88 +++++++++++
4:00	3:00	18	20	88 +++++++++++
5:30	4:00 4:30	19 21	21 22	90 ++++++++++++ 94 +++++++++++++
6:30 22 24 91 +++++++++++++++++++++++++++++++++++	5:30	18	20	88 ++++++++++++
8:00	6:30 7:00	22 21	24 23	91 ++++++++++++++++++++++++++++++++++++
9:30	8: <i>00</i> 8: <i>30</i>	18 20	20 22	88 ++++++++++++++++++++++++++++++++++++
11:00 19 22 86 ++++++++++++++++++++++++++++++++++++	9:30 10:00	18 19	20 21	88 ++++++++++++++++++++++++++++++++++++
12:00 19 22 86 ++++++++++++++++++++++++++++++++++++	11:00	19	22	86 +++++++++++++
13:30 18 21 86 ++++++++++++++++++++++++++++++++++++	12:00 12:30	19 21	22 24	86 +++++++++++++ 89 +++++++++++++
15:00 21 24 88 +++++++++++++++++++++++++++++++++++	13:30 14:00	18 19	21 22	86++++++++++++
16:00 19 22 $88 + + + + + + + + + + + + + + + + + +$	<i>15:00</i>	21	24	88 ++++++++++++++
17:30 19 22 $86 + + + + + + + + + + + + + + + + + + +$	16:00 16:30	19 20	22 22	88 ++++++++++++++++++++++++++++++++++++
19:00 19 22 86 ++++++++++++++++++++++++++++++++++++	17:30 18:00	19 19	22 22	86 +++++++++++++ 86 ++++++++++++
20:30	19:00 19:30	19 19	22 22	86 +++++++++++++ 85 ++++++++++++
21:30	20:30	19	22	86 +++++++++++++
23:30 19 22 86 +++++++++++++	21:30 22:00	19 20	22 23	88 ++++++++++++++
24:00 19 22 86 +++++++++++++	23:00	22 19 19	24	90 +++++++++++++++

18.

```
1992 YEAR
Sept. MONTH
26 DAY
```

DAILY LOAD PROFILE Ft. Campbell Battery Charger Room Ft. Campbell, Kentucky

```
TIME
 INT
       KW KVA POWER
ENDING DEMAND
                   FACTOR
0:30
           11
               81 + + + + + + +
           12
1:00
       10
               81 +++++++
           7
1:30
               99 +++++
       9
           11
               83 ++++++
2:00
2:30
           11
               81 ++++++
       10
3:00
           12
               82 +++++++
       9
           11
               81 ++++++
3:30
       10
           12
4:00
               82 +++++++
4:30
       9
           11
               81 ++++++
       10
5:00
           12
               82 +++++++
       ò
           	ilde{1}	ilde{1}
               81 + + + + + + +
5:30
       10
           12
               81 +++++++
6:00
       9
           11
               81 ++++++
6:30
       10
               88 +++++++
7:00
           11
7:30
       7
           7
               99 +++++
       9
           11
8:00
               83 ++++++
       9
8:30
           11
               81 ++++++
       10
           12
               82 +++++++
9:00
9:30
       ġ
           11
               81 ++++++
       10
10:00
           12
               81 ++++++
       9
           11
               81 ++++++
10:30
                82 +++++++
11:00
       10
           12
       9
11:30
           11
               81 ++++++
       10
           12
12:00
                82 +++++++
12:30
       9
           11
               81 ++++++
           11
7
13:00
       10
                87+++++++
        7
               99 +++++
13:30
       9
           11
               83 ++++++
14:00
       9
           11
14:30
               81 + + + + + + +
       10
           12
                82
15:00
                  ++++++++
       9
15:30
           11
               81 ++++++
       10
            12
                82
                  +++++++
16:00
       9
           11
               81 ++++++
16:30
       10
17:00
            12
                82 +++++++
       9
           11
17:30
               81 ++++++
       10
            12
                82 +++++++
18:00
       9
           11
               81 ++++++
18:30
       10
           12
                82 +++++++
19:00
       9
19:30
           11
               81 ++++++
       10
           12
20:00
                82 +++++++
       9
           11
               81 ++++++
20:30
       10
            11
7
21:00
                88 +++++++
        7
               99 +++++
21:30
        9
22:00
           11
               83 ++++++
        9
22:30
           11
               81 ++++++
23:00
       10
            12
                82
                  +++++++
       9
           11
               81 ++++++
23:30
       10
24:00
                81 +++++++
```

222 KWH = ENERGY USE THIS DAY

600

```
1992 YEAR
Sept. MONTH
27 DAY
```

TIME

```
KW KVA POWER
INT
ENDING DEMAND
                FACTOR
0:30
      10
          12
             81 ++++++++++++++++++
      9
1:00
         11
             81 ++++++++++++++++
             99 +++++++++++++
1:30
          7
2:00
          11
             83 +++++++++++++++
2:30
      9
          11
3:00
      10
          12
             81 +++++++++++++++++
3:30
      9
          11
4:00
      10
          12
             81 +
4:30
      9
          11
5:00
      10
          12
             81 +
5:30
      9
          11
      9
6:00
          11
      9
6:30
          11
      9
7:00
         10
                  8
7:30
          8
             99 +++++++++++++++
      8
8:00
          10
             82 ++++++++++++++
8:30
      10
          12
             82 +++++++++++++++++++++
9:00
      9
          11
9:30
          11
             81 ++++++++++++++++
       9
10:00
          11
       9
10:30
          11
             81 +
                 +++++++++++++++++
      10
11:00
          12
              82 ++++
                       +++++++++++++++
       9
          11
             81 ++++++++++++++++
11:30
      10
12:00
          12
              82 + +
                    ++++++++++++++++
       9
12:30
          11
             81 ++++++++++++++++
      10
13:00
          11
              87 +++++++++++++++++
       6
13:30
          6
       ۆ
          11
14:00
       9
14:30
          11
             81 +++++++++++++++++
      10
15:00
          12
              82 ++++++++++++++++++
      9
10
15:30
          11
16:00
          12
              82 +++++++++++++++++
       9
          11
16:30
       9
17:00
          11
17:30
      10
          12
18:00
       9
          11
      10
          12
18:30
              82
19:00
       9
          11
19:30
      10
          12
              81 ++++++++++++++++
20:00
       9
          11
             80 ++++++++++++++++
20:30
      10
          12
       9
21:00
          10
             87 ++++++++++++++++
       88
21:30
          8
             99 +++++++++++++++
22:00
          10
             82 +++++++++++++++
22:30
23:00
      10
          12
              81 +++++++++++++++
       9
          11
             81 ++++++++++++++++
23:30
          11
             81 ++++++++++++++++
24:00
          11
             81 ++++++++++++++++
```

1992 YEAR Sept. MONTH 28 DAY

```
TIME
     KW KVA POWER
INT
               FACTOR
ENDING DEMAND
            81 +++++++++++++++++
0:30
         11
1:00
     10
            87 +++++++++++++++++
         11
         7
            99 ++++++++++++
1:30
      7
2:00
         11
            81 +++++++++++++++
      9
2:30
         11
      9
            81 ++++++++++++++++
3:00
         11
            81 ++++++++++++++++
3:30
         11
      9
            81 +++++++++++++++++
4:00
         11
     10
         12
            81 +++++++++++++++++++
4:30
         11
            81 +++++++++++++++++
      9
5:00
            85 ++++++++++++++++++
     10
5:30
         12
         12
            81 ++++++++++++++++++
     10
6:00
            81 ++++++++++++++++
      9
         \overline{11}
6:30
            87 +++++++++++++++++
     10
7:00
         11
      7
            99 +++++++++++++
7:30
         7
         10
            82 ++++++++++++++
8:00
            82 +++++++++++++++++
         12
8:30
     10
      9
         11
            81 ++++++++++++++++
9:00
            81 ++++++++++++++++++
9:30
     10
         12
            81 ++++++++++++++++
      9999
         11
10:00
            81 +++++++++++++++
         11
10:30
            81 +++++++++++++++
         11
11:00
            81 +++++++++++++++
11:30
         11
             82 ++++++++++++++++++
12:00
      10
         12
            81 +++++++++++++++
12:30
      9
         11
13:00
      10
         11
             87 +++++++++++++++++
          7
      7
            99 ++++++++++++
13:30
      9
            82 ++++++++++++++++
14:00
         11
             84 ++++++++++++++++++++
14:30
      11
         13
             83 ++++++++++++++++++
         12
15:00
      10
             83 ++++++++++++++++++++
      11
         13
15:30
      9
         11
16:00
      10
         12
16:30
17:00
      9
         11
      10
         12
12
17:30
             82 +++++++++++++++++
18:00
      10
      9
         11
18:30
      10
         12
             82 +++++++++++++++++
19:00
         11
            81 +++++++++++++++++
19:30
      9
      10
             82 +++++++++++++++++++
         12
20:00
            81 ++++++++++++++++
20:30
      9
         11
      10
             87 +++++++++++++++++
         11
21:00
            99 ++++++++++++
21:30
      ģ
         11
              +++++++++++++++
22:00
      9
              ++++++++++++++++
22:30
         11
23:00
      10
             81 +++++++++++++++++
         12
            81 +++++++++++++++
23:30
      9
         11
      10
             81 ++++++++++++++++++
24:00
```

DAILY LOAD PROFILE Ft. Campbell Battery Charger Room Ft. Campbell, Kentucky

" "

TIME KW KVA POWER INTENDING DEMAND **FACTOR** 0:30 81 ++++++++++++++++ 11 11 7 10 1:00 7 1:30 99 +++++++++++++ 8 10 2:00 82 +++++++++++++++ 2:30 10 12 81 ++++++++++++++++ 9 10 3:00 11 81 ++++++++++++++++ 3:30 12 81 ++++++++++++++++++ 4:00 999 11 80 ++++++++++++++++ 4:30 11 81 ++++++++++++++++ 5:00 11 81 ++++++++++++++++ 5:30 11 81 ++++++++++++++++ 11 13 6:00 6:30 0 **ERR** 0 0 **ERR** 7:00 0 8 7:30 8 8 10 8:00 10 9 9 12 8:30 9:00 11 9:30 11 10 10:00 12 81 ++++++++++++++++ 10:30 9 11 82 +++++++++++++++++ 10 82 +++++++++++++++++ 11:00 12 11:30 9 11 81 +++++++++++++++ 12:00 10 12 81 +++++++++++++++++ 12:30 11 13 13:00 11 13 88 +++++++++++++++++++++ 13:30 9 99 ++++++++++++++++ 9 11 14:00 11 14:30 13 +++++++++++++++++ 13 *15:00* 11 15:30 10 12 13 16:00 11 9 16:30 11 10 12 *17:00* 9 *17:30* 11 ++++++++++++++++ *10* 12 18:00 81 +++++++++++++++++ 9 18:30 11 80 +++++++++++++++++ 10 19:00 12 81 ++++++++++++++++ 19:30 9 11 9 20:00 11 80 +13 10 20:30 10 +++++++++++++++ 9 21:00 ++++++++++++ 89 21:30 8 22:00 11 22:30 10 12 23:00 9 11 80 ++++++++++++++++++ 23:30 10 81 +++++++++++++++++ 24:00 9

81 ++++++++++++++++

1992 YEAR Sept. MONTH 30 DAY

TIME

DAILY LOAD PROFILE Ft. Campbell Battery Charger Room Ft. Campbell, Kentucky

KW KVA POWER INT **FACTOR** ENDING DEMAND 81 +++++++++++++++++ 0:30 11 9 80 +++++++++++++++++ 1:00 11 87 ++++++++++++++++++ 1:30 10 11 79 2:00 7 99 +++++++++++++ 2:30 3:00 +++++++++++++++ 11 81 +++++++++++++++ 99999 11 11 3:30 11 4:00 81 4:30 11 80 +++++++++++ 5:00 11 99997910 5:30 11 6:00 11 6:30 11 7:00 10 7 99 +++++++++++++ 7:30 82 ++++++++++++++++ 11 8:00 12 ++++++++++++++++++ 8:30 9 9 10 $ilde{1}ar{1}$ +++++++++++++ 9:00 +++++++++++ 11 9:30 80 + +++++++++++++++++ 12 11 10:00 81 + +19 10 ++++++++++++++ 10:30 12 11 ++++++++++++++ 11:00 9999 11:30 12:00 12:30 11 11 13:00 10 88 8 ++++++++++++++ 13:30 10 14:00 10 12 +++++++++++++ 14:30 9 11 15:00 *10* 15:30 12 16:00 9 11 10 81 +++++++++++++++++ 16:30 12 17:00 ğ $ar{1}ar{1}$ 81 ++++++++++++++++ 9 11 *17:30* 9 11 18:00 9 11 18:30 10 81 ++++++++++++++++++ 12 19:00 $ar{1}ar{1}$ 999988 19:30 11 20:00 20:30 11 +++++++++++++++ 21:00 10 21:30 22:00 8 82 + +++++++++ 10 ++++++++++++++++ 22:30 10 12 81 +9 81 ++++++++++++++++ 23:00 11 12 81 +++++++++++++++++ 10 23:30 80 +++++++++++++++++ 24:00

217 KWH = ENERGY USE THIS DAY

1992 YEAR Oct. MONTH 1 DAY

TIME

```
KW KVA POWER
 INT
ENDING DEMAND
                  FACTOR
0:30
               81 ++++++++++++++++
           11
1:00
       10
           11
               87 +++++++++++++++++
1:30
           7
              99 +++++++++++++
       9
           11
2:00
                 ++++++++++++++++
2:30
       999
           11
3:00
           11
3:30
           11
       9
           11
4:00
       9
4:30
           11
       9
9
5:00
           11
5:30
           11
6:00
       11
           13
6:30
       9988
           11
7:00
           10
7:30
           8
8:00
           10
               82 +++++++++++++++
8:30
       10
           12
               81 ++++++++++++++++
       9
           11
9:00
9:30
           11
               81
       99
10:00
           11
               81
           11
10:30
       10
            12
                81 + +
                         +++++++++++++++
11:00
       9
           11
11:30
       10
            12
12:00
       ğ
12:30
           11
       11
            13
13:00
       8
12
13
            8
13:30
14:00
            14
            16
14:30
       12
15:00
            14
       14
15:30
            17
                    12
16:00
            14
       11
            13
16:30
       \bar{12}
            14
17:00
17:30
       11
            13
18:00
       11
            13
18:30
       12
            14
       10
            12
19:00
            13
19:30
       11
20:00
       12
            14
20:30
       10
            12
                             ++++++++++++
       12
21:00
            14
                88 ++++++++++++++++++++++
21:30
        8
            8
22:00
       10
            12
22:30
            12
                81 +++++++++++++++++
       10
23:00
        9
            11
               80 ++++++++++++++++
23:30
24:00
       10
            13
                80 +++++++++++++++++
           ERR
        0
                 0.
```

```
TIME
     KW KVA POWER
INT
               FACTOR
ENDING DEMAND
             0.
0:30
      0
        ERR
1:00
      0
        ERR
             0.
      8
            98 ++++++++++++++
1:30
         8
        ERR
             0
2:00
      0
      0
2:30
        ERR
             0
      8
3:00
            80 +++++++++++++++
         10
3:30
            81 +++++++++++++++++++
     10
         12
            80 +++++++++++++++++
4:00
      9
         11
     10
            81 ++++++++++++++++
4:30
         12
5:00
        ERR
      0
             0
5:30
      0
        ERR
             0
      0
             0
6:00
        ERR
      0
6:30
        ERR
             0
     10
7
             87 ++++++++++++++++++
7:00
         11
         7
            99 +++++++++++++
7:30
      9
         11
            82 ++++++++++++++++
8:00
      9
            81 ++++++++++++++++
8:30
         11
     10
            81 ++++++++++++++++++
9:00
         12
9:30
      0
        ERR
             0
             81 +++++++++++++++++
10:00
      10
         12
             81 +++++++++++++++
      9
10:30
         11
      Í0
         12
               ++++++++++++++++
11:00
      9
         11
             80 ++++++++++++++++
11:30
12:00
      10
         12
             82 ++++++++++++++++++
12:30
             81 ++++++++++++++++
      9
         11
         13
7
13:00
      11
             88 +++++++++++++++++++++
      7
            99 +++++++++++++
13:30
      9
11
         11
             84 ++++++++++++++++
14:00
               +++++++++++++++++++++
14:30
         13
             82
15:00
      9
         11
      11
               15:30
         13
      9
         11
16:00
         12
      10
16:30
          12
             82 ++++++++++++++++++
17:00
      10
      9
10
17:30
         11
18:00
         12
      9
         11
18:30
19:00
      10
         12
             82 +++++++++++++++++
19:30
      9
         11
             81 +++++++++++++++++
      10
          12
20:00
         11
20:30
      9
      10
             21:00
         11
      8
            99 ++++++++++++++
21:30
          8
22:00
         10
22:30
             81 +++++++++++++++++
      10
         12
23:00
      9
               +++++++++++++++
         11
23:30
      10
         12
             81 +++++++++++++++++
24:00
             81 +++++++++++++++
```

1992 YEAR Oct. MONTH 3 DAY

DAILY LOAD PROFILE Ft. Campbell Battery Charger Room Ft. Campbell, Kentucky

TIME INT KW KVA POWER ENDING DEMAND **FACTOR** 0:30 10 11 87 +++++++++++++++++++++ 1:00 0 **ERR** 0. 1:30 0 **ERR** 0. 99 2:00 2:30 82 +++++++++++++++++ 11 11 81 ++++++++++++++++ 10 3:00 12 +++++++++++++ 9 10 3:30 11 +++++++++++++ 12 4:00 9 4:30 11 11 5:00 81 9 5:30 11 81 9 10 6:00 11 80 6:30 12 81 ++++++ 7:00 9889 10 7:30 8 8:00 10 11 81 + 8:30 Ĭ0 9:00 12 9 9:30 11 10 10:00 12 9 10:30 11 *10* 11:00 12 9 10 11:30 11 12:00 12 82 +++++++++++++++++ 12:30 9 11 81 +++++++++++++++ 13:00 11 13 87 +++++++++++++++++++++ 13:30 6 6 *12* 10 83 +++++++++++++++++ 14:00 14:30 9 11 ++++++ 15:00 11 13 15:30 9 11 16:00 10 12 16:30 9 11 17:00 10 12 9 11 17:30 10 12 18:00 ğ 18:30 11 99 19:00 11 81 + +19:30 11 81 +20:00 10 12 9 11 20:30 21:00 10 11 21:30 899 8 99 22:00 11 83 22:30 11 23:00 10 12 82 + +23:30 9 11 81 ++++++++++++++++ 9 24:00 11 81 ++++++++++++++++

SIP

1992 YEAR Oct. MONTH 4 DAY

```
TIME
      KW KVA POWER
INT
                 FACTOR
ENDING DEMAND
              81 ++++++++++++++++
0:30
          11
       9
8
              87 ++++++++++++++++
1:00
          10
1:30
          8
             99 ++++++++++++++
2:00
       8
          10
              82 +++++++++++++++
              82 ++++++++++++++++++++++
2:30
      10
          12
3:00
       9
          11
       9
3:30
          11
       9
4:00
          11
                   +++++++++++++
4:30
       9
          11
              81
              81 ++++++++++++++
5:00
      10
          12
       9
5:30
          11
       9998
6:00
          11
              80 ++++++++++++++++
6:30
          11
7:00
          10
             99 +++++++++++++++
7:30
          8
       8
          10
              82 ++++++++++++++
8:00
              82 +++++++++++++++++++
      10
          12
8:30
          \bar{1}\bar{1}
       9
              9:00
       9
          11
9:30
       0
               0
10:00
          ERR
10:30
       0
          ERR
               0
       0
          ERR
               0
11:00
11:30
       0
          ERR
               0
       0
12:00
          ERR
               0
       0
12:30
          ERR
               0
       0
          ERR
               0
13:00
       0
          ERR
               0
13:30
               0
14:00
       0
          ERR
14:30
       10
           12
               82 +++++++++++++++++++
       9999
          11
              81 +++++++++++++++
15:00
15:30
          11
16:00
          11
16:30
          11
       10
17:00
           12
17:30
       9
           11
       10
              82 ++++++++++++++++
18:00
           12
       ğ
           11
18:30
       10
           12
11
              81 +++++++++++++++++
19:00
       9
19:30
20:00
           11
                  +++++++++++++++++
           12
20:30
               81 +
21:00
21:30
22:00
                  +++++++++++++++
       9889
           10
              99 ++++++++++++++
           8
              82 +++++++++++++++
           10
              81 ++++++++++++++++
22:30
           11
              81 ++++++++++++++++
       9
23:00
           11
       8
              81 ++++++++++++++
23:30
          10
          ERR
               0
24:00
```

1992 YEAR Oct. MONTH 5 DAY

DAILY LOAD PROFILE Ft. Campbell Battery Charger Room Ft. Campbell, Kentucky

TIME KW KVA POWER INTENDING DEMAND **FACTOR** 0:30 81 +++++++++++++++++ 11 0. 0 1:00 **ERR** 1:30 0 **ERR** 0. 2:00 2:30 8 10 82 ++++++++++++++ 12 10 82 ++++++++++++++++++ 3:00 9 11 3:30 10 12 9 11 4:00 9 4:30 11 5:00 10 12 13 5:30 11 86 ++++++++++++++ 13 6:00 11 ++++++++++++++++ 10 12 6:30 7:00 9 ++++++++++++++++ 10 889 7:30 8 8:00 10 8:30 11 10 9:00 12 ++++++++++++ 9:30 9 11 9 10:00 11 9 10:30 11 9 11:00 11 10 0 10 12 11:30 81 ++++++++++++++++ **ERR** 12:00 0. 81 ++++++++++++++++++ 12:30 12 13:00 9899 10 13:30 8 11 14:00 82 ++++++++++++++++ 14:30 11 12 11 10 15:00 ğ 15:30 i113 83 16:00 13 16:30 11 17:00 14 12 17:30 10 12 11 13 18:00 18:30 10 12 19:00 11 13 19:30 9 11 80 + 9 20:00 11 81 + +20:30 10 12 10 11 21:00 21:30 999 98 ++++++++++++++++ 11 22:00 82 ++++++++++++++++ 22:30 11 80 ++++++++++++++++ 23:00 23:30 13 11 10 80 ++++++++++++++++ 9 80 ++++++++++++++++++ 24:00 **ERR** 0.

1992 YEAR Oct. MONTH 6 DAY

```
TIME
INT
      KW KVA POWER
ENDING DEMAND
                 FACTOR
0:30
          11
             79 +++++++++++++++++
              0.
      0
         ERR
1:00
1:30
      0
         ERR
              0.
      89
2:00
             81 ++++++++++++++
          10
2:30
         11
      10
          13
             80 +++++++++++
3:00
      9
3:30
          11
          11
4:00
             80 ++++++++++
             81 ++++++++++++++++++
      10
          12
4:30
          \tilde{1}\tilde{1}
5:00
      9
             80 +++++++++++++++++
      10
          12
              85 ++++++++++++++
5:30
          12
              83 +++++
                          ++++
                                     +++++
6:00
      10
          12
             81 +++++++++++++++++
6:30
      10
             87 +++++++++++++++
7:00
      9
          10
      0
         ERR
              0.
7:30
8:00
      0
         ERR
              0.
      Ŏ
8:30
         ERR
              0.
      000
              0.
9:00
         ERR
9:30
         ERR
              0.
               0.
10:00
       0
         ERR
       0
         ERR
10:30
               0.
      10
              81 +++++++++++++++++++
11:00
          12
11:30
       9
          11
              80 +++++++++++++++++
          12
12:00
      10
              82 ++++++++++++++++++
12:30
       8
          10
              80 +++++++++++++++
13:00
      10
          11
              87 ++++++++++++++++
         ERR
13:30
               0.
       0
       8
              82 +++++++++++++++
14:00
          10
      11
14:30
          13
              82
                +++++++++++++++++++++++++
                       ++++++++++++
15:00
       9
          11
              82 ++++++++++++++++++++
      10
15:30
          12
       9
          11
              81 +++++++++++++++++
16:00
      10
              82 +++++++++++++++++
16:30
          12
       9
          11
              81 ++++++++++++++++
17:00
              82 +++++++++++++++++++
      10
          12
17:30
18:00
       0
         ERR
               0.
       0
18:30
         ERR
               0.
       0
         ERR
19:00
19:30
      10
          12
              81 ++++++++++++++++++
         ERR
20:00
       0
               0
       0
          ERR
20:30
               0
21:00
      10
          11
              87 +++++++++++++++++
       Ž
21:30
           7
             99 +++++++++++++
          11
              82 ++++++++++++++++
22:00
22:30
       9
          11
              81 +++++
       9
                 ++++++++++++++++
23:00
          11
              81 +
      10
          12
23:30
              81 +
                  ++++++++++++++++
           12
              81 ++++++++++++++++
24:00
      10
    155 KWH = ENERGY USE THIS DAY
```

1992 YEAR Oct. MONTH 7 DAY

TIME

DAILY LOAD PROFILE Ft. Campbell Battery Charger Room Ft. Campbell, Kentucky

INTKW KVA **POWER** ENDING DEMAND **FACTOR** 0:30 0 **ERR** 1:00 9 87 +++++++++++++++ 10 0 0 1:30 **ERR** 2:00 2:30 0 **ERR** 0 9 11 9 3:00 11 10 9 3:30 12 81 +++++++++++++++++++++ 4:00 11 81 ++++++++++++++++ 9 4:30 11 81 ++++++++++++++++ 10 5:00 12 81 ++++++++++++++++++ 9 9 10 5:30 11 6:00 11 80 +6:30 12 10 7 7:00 97999 ++++++++++++++ 7:30 99 +++++++++++++ 82 + 8:00 11 8:30 11 81 9:00 11 10 9 9 9:30 12 10:00 11 10:30 11 81 ++++++++++++++++ 10 9 11 11:00 12 81 + + ++++++++++++++ 11:30 11 80 +++++++++++++++ 12:00 13 82 ++++++++++++++++++++++ 9 10 12:30 11 80 +++++++++++++++ 13:00 11 7 87 +++++++++++++++++ 79 13:30 82 14:00 11 14 12 13 12 12 14:30 +++++++++++++++ 15:00 15:30 10 82 11 82 16:00 10 13 16:30 11 12 17:00 10 81 13 17:30 11 9 11 18:00 80 +++++++++++++++++ *10* 12 18:30 ++++++++++++++++ 9 9 11 19:00 11 80 19:30 11 80 ++++++++++++++++ 20:00 14 81 + +++++++++++++ 9 $\tilde{I} \tilde{I}$ 20:30 80 11 7 9 13 7 11 21:00 21:30 86 + +22:00 81 +22:30 10 12 81 + +23:00 23:30 $\bar{1}\bar{1}$ 9 80 +++++++++++++++ 10 12 81 +++++++++++++++++ 24:00 9 11 80 +++++++++++++++++ 213 KWH = ENERGY USE THIS DAY

Aus

1992 YEAR Oct. MONTH 8 DAY

TIME

```
INT
     KW KVA POWER
ENDING DEMAND
              FACTOR
        10
0:30
     8
           80 +++++++++++++++
        13
7
1:00
     11
           99 +++++++++++++
1:30
     7
        12
           82 ++++++++++++++++++
2:00
     10
2:30
     9
        11
     9
3:00
        11
           81 +++++++++++++++++
     10
3:30
        12
           81 ++++++++++++++++
     9
4:00
        11
     0
4:30
       ERR
            0
     9
           81 ++++++++++++++++
5:00
        11
     9
           81 +++++++++++++++
5:30
        11
           12
6:00
        14
           80 +++++++++++++++
     9
6:30
        11
     10
           87 ++++++++++++++++++
7:00
        11
           99 ++++++++++
7:30
     6
        6
     8
           82 ++++++++++++++
        10
8:00
8:30
     0
       ERR
            0.
     9
9:00
           81 ++++++++++++++++
        11
     10
           81 +++++++++++++++++
9:30
        12
     9
10:00
        11
     99
           81 +++++++++++++++
10:30
        11
           81 +++++++++++++++
11:00
        11
     10
           82 +++++++++++++++++
11:30
        12
12:00
     9
        11
           81 ++++++++++++++++
12:30
     9
        11
           80 ++++++++++++++++
13:00
     11
        13
           87 ++++++++++++++++++++
13:30
     6
           99 +++++++++++
        6
14:00
     14
        17
            14:30
     15
        18
           83 +++++++++++++++++++++
15:00
     11
        13
           83 +++++++++++++++++++++
     12
15:30
        14
     10
        12
16:00
     12
        15
16:30
17:00
     9
        11
     10
        12
           81 ++++++++++++++++++
17:30
        13
18:00
     11
           81 ++++++++++++++++
18:30
     9
        11
19:00
     11
        13
           82 ++++++++++++++++++
     9
        11
           80 +++++++++++++++++
19:30
     9
           80 ++++++++++++++++
20:00
        11
     \tilde{1}1
           81 +++++++++++++++++++++
20:30
        14
           86 +++++++++++++++++++
21:00
     10
        12
           99 ++++++++++++
21:30
     7
         7
           82 +++++++++++++++++
     10
        12
22:00
           80 +++++++++++++++
22:30
     9
        11
     9
           80 +++++++++++++++
23:00
        11
     11
           81 +++++++++++++++++++
23:30
        14
           80 ++++++++++++++
24:00
```

Ft. Campbell Cold Storage Facility Energy Study

APPENDIX 3

ENERGY CONSERVATION OPPORTUNITY SUPPORTING CALCULATIONS AND COST ESTIMATES

January 1993

Ft. Campbell KY Hourly Temperatures

Ft. Campbell KY Hourly Temperatures

• DEPARTMENT OF THE AIR FORCE MANUAL

DEPARTMENT OF THE ARMY TECHNICAL MANUAL

DEPARTMENT OF THE NAVY MANUAL

AFM 88-29

TM 5-785

NAVFAC P-89

Facility Design and Planning

ENGINEERING WEATHER DATA

DEPARTMENTS OF THE AIR FORCE, THE ARMY, AND THE NAVY

1 JULY 1978

State Station	Annual Cooling Degree Days	State Station	Annual Cooling Degree Days
continued) P AFB/Bunker AAP	859 837 1268	Olathe NAS Parsons/Tri City Salina MAP Schilling Manor Smoky Hill AF Range	1370 1677 1627 1627 1627
Indianapolis/Weir Cook MAP Jefferson Proving Ground Newport AAP South Bend/St Joseph Aprt	974 1191 1094 695	Sunflower Ordnance Works Topeka/Philip Billard Wichita	1370 1361 1673
Terre Haute/Hulman Fld	1110	KENTUCKY Ashland Blue Grass Army Depot	1173
Burlington MAP Cedar Rapids MAP Des Moines MAP	994 812 928	Covington Fort Campbell/Campbell AAF Fort Knox/Godman AAF	1080 1472 1360
Dubuque MAP Fort Dodge MAP Towa Army Ammunition Plant	606 779 994	Lexington/Blue Grass Field Louisville/Standiford Field Owensboro	11 12 12
lowa Army Ammunition Flant Iowa City MAF Mason City MAP Sioux City MAP Waterloo MAP	999 886 580 932 675	a/Esler F AFB/Shre	6 66
KANSAS Chanute Dodge City	640	Baton Rouge/Ryan Aprt Claibourne England AFB/Alexandria	2585 2606 2606
Forbes ANGB/Topeka Fort Leavenworth/Sherman AA Fort Riley/Marshall AAF	1430 AF 1292 1503	Fort Polk/Polk AAF Hammond ANG Comm Sta Lafayette	2666 2575 2632
Goodland/Renner Fld Hutchinson MAP	925	Lake Charles AFS Lake Charles MAP	73
Kansas City/Fairiax MAF Kansas Ordnance Plant McConnell AFB/Wichita	1420 1808 1687	Louisiana Ordnance Plant Monroe MAP	2451 2367

A STATE OF THE PARTY OF THE PAR

to the state of th

FORT CAMPBELL/CAMPBELL AAF KENTUCKY LAT 36 40N LONG 87 29W ELEV 571 FT

MEAN FREQUENCY OF OCCURRENCE OF DRY BULB TEMPERATURE (DEGREES F) WITH MEAN COINCIDENT WET BULB TEMPERATURE (DEGREES F) FOR EACH DRY BULB TEMPERATURE RANGE

	x U :	= co	73 68 66	64 62 59 56 52	47 43 39 31	22
	Total Obsn		0 24	46 66 102 122 113	98 73 53 29 12	N
OCTOBER		2 2 2	-	20 37 47	39 28 18 7	•
0CT	Obsn Hour Gp	16 to 99	0 5 23	37 42 45 40 27	19 2 0	
	운	2 5 8		1 20 20 4 45 45 45	40 33 33 10	
	E U	3 a	74 72 00	2 C C 2 2 Z	45 41 37	
~	Total Obsn		2 10 44 71	98 157 130 92 60	35 13 5	
SEPTEMBER		12 10 24	0 1 5 15	38 50 21 21 21	6 m m 0	
SEPT	Obsn Hour Gp	80 os 31	2 39 55	52 43 10 4		
	¥	5 ° 8	-	5.22 5.66 3.58 3.53 3.53	25 9 4	
	£υ	3 50	77 75 75 74	07 68 64 59	44	
_	Tota] Obsn		1 7 37 89 1111	145 184 102 45	40	
AUGUST		7: 0 %	36 36	67 73 31 111	•	
AL	Obsn Hour Gp	& 3 75	1 6 32 69 69	22 4 4		
	-	10 0 80	9	34 67 33 14	40	
	×υ	34 SS	79 76 74 72	71 69 64 59 55	48	
_	Tota) Obsn		1 10 35 113 129	153 182 80 30 10	0.0	
JULY		71 54 54	1 6 27 27 48	07 64 8 8		
	Obsn Hour Gp	8 2 2	1 29 84 88	36 17 4		
		2 3 8		101 21 21 8	0 0	
		> 0	76 76 75 73	69 67 68 59 55	51 45 41	
	Total Obsn		0 26 68 112	133 159 127 59 59	000	·
JUNE		2 2 2	1 5 16 38	52 65 17 4	-0	
,	Obsn Hour Gp	26 5 31	212 51 68	30 30 3	•	
		2 2 8		29 64 76 39	900	^
	z 0	3 m	73 73 69 69 68	64 61 57 52	84 39 35	
	Total Obsn		0.883	89 118 152 123 75	25 11 4	
ΜΑΥ	9	z 5 ₹	4	30 24 23 23 24 23	2 8 6 0	
	Mour Gp	8 2 3	4	24 4 4 3 1 1 1 2 4 4 3 1		
		2 2 8		52 25 57 41	31 15 9	
	Tempera- ture	Range	100/104 95/99 90/94 85/89	75/79 70/74 65/69 60/64 55/59	50/54 45/49 40/44 35/39 30/34	25/29

FORT CAMPBELL/CAMPBELL AAF KENTUCKY

z 0		77 75 75 73	68 66 61 56 52	47 42 38 34 29	25 20 16 11	.3 .8 .12 .18		
Total		25 111 352 540	724 980 886 763 668	628 583 608 564 538	358 212 109 50 50 29	13 8 1 0		
	17 10 24	3 17 72 158	282 367 305 255 221	210 205 206 191 181	121 68 29 11	4 0000		
Obsn Hour Cp	09 16	22 22 94 277 355	317 266 213 209 186	187 174 181 160 132	72 38 17 10 5	000		
Ī	00 to	3 27	125 347 368 299 261	231 204 221 213 225	165 106 63 29 16	0 0		
Eυ) 3 as	99	62 61 58 54 50	46 338 34 30	27			
Total		4 25	46 72 96 115 98	90 78 57 29 8	-			
- 5	17 10 24	0 50	14 25 36 40 36	33 27 15 7				
Obsn Hour Gp	00 to 31	4 20	31 36 37 38 28	22 16 7	0			
₹ 0	10 to 80		1 11 23 37 34	35 35 35 20	-			
E U) 3x 00	62	5.9 5.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	46 41 38 33 29	25 20 20 16 11	~		
Total	,	3 -	8 119 33 52 69	90 96 113 109 83	47 16 5 1 0	0		
_ 5	7: 0 4 20 42	0	2 12 19 24	32 34 39 39	12 3 0 0			
Obsn Hour Cp	09 16	- 6	6 113 17 25 28	34 36 37 28 14	9-000			
Hou	2 5 8		1 4 8 8 17	24 26 37 42	29 12 4 1	0		
E () JE 809	19	61 50 54 50	46 41 38 33 29	25 20 15 11	N 4		
Total		0	0 3 10 21 34	45 65 90 104 109	84 51 27 14	m		
n Tota	2 0 2		0 1 1 1 1 1	16 23 31 37	28 18 7 3	-	-	
Obsn Hour Gp	60 09	0	0 2 7 12 16	20 27 35 37	17 10 5 2 2	0		
9 10	0 to 80		00 6 7	9 15 24 30 41	39 23 15 9	- 5		
Ε.) je 00		62 59 56	46 42 33 33 29	25 20 16 11	-3		
Total		 	1 8 21 30	43 57 77 91 139	104 71 46 22 19	89-00		
6p To	2 0 2		2 7 10	13 19 25 33 50	36 26 12 5	0 0 0 7 7		
Obsn Hour Gp	8 2 8		1 5 10	20 25 32 35 45	26 15 9 6	0 0		
10 5	2 0 80		0 - 4 8	10 13 20 23 44	42 30 25 11 10	44-00		
s (3 80		62 59 55 52	47 42 38 33	25 20 16 11	در ش هو		
<u></u>			1 11 28 50	59 73 98 112	85 58 25 12	0 1 5		
GP Tota	C 0 42] 	0 2 7	16 26 34 38 44	34	-00		
Obsn Hour Gp	60 99		1 7 17 20	27 28 40 40 33	10 10 2 2 0	00		
2 5	2 2 8		2 4 13	16 19 24 34	33 31 15 2	0 - 1		
) 3r ac	89	64 60 58 55	47 43 38 30	25 21 16 12			
= 6		-	6 118 35 55 88	104 103 104 85 64	35° 16 6			
2 6	1 0 2		1 2 9 17	36 1 37 1 41 1 21	11 4 4			
Obsn Tota	6 3 3	-	5 16 20 28 39	33 32 28 18 8	9 0 0 0			
9 5	01 09 to to 31	į	0 0 70 70 70 70 70 70 70 70 70 70 70 70	29 34 37 37	100			
- -	1020		9 4 6 6 6 6		29 24 19 9	-11 -11 -16		
Tempera-	Range	100/104 95/99 90/94 85/89 80/84	75/79 70/74 65/69 60/64 55/59	50/54 45/49 40/44 35/39 30/34	25/29 20/24 15/19 10/14	0/4 -5/-1 -10/-6 -15/-11 -20/-16		

** OGDEN **
ENVIRONMENTAL ENG. DIV.
KNOXVILLE, TN 37933

PROJECT NAME: FORT CAMPBELL CLIENT NAME: US ARMY CORPS OF ENG. DATE: 12-28-92

REFRIGERATION BOX LOADS PROGRAM

DESIGNER:

ROSEN/WICKER

GENERAL PROJECT INFORMATION:

PROJECT NAME:
PROJECT FILE NAME:
PROJECT LOCATION:
BOX NAME:
GENERAL COMMENTS:
BOX DIMENSIONS (LxWxH):

FORT CAMPBELL K:4-4MM1 CLARKSVILLE, TENNESSEE C-4 MINI MART PRODUCE EXISTING FACILITY 38 x 19.5 x 10.3 FEET

CLIENT NAME: STREET ADDRESS: CITY, STATE, ZIP: CLIENT PHONE:

US ARMY CORPS OF ENG. LOUISVILLE, DISTRICT CLARKSVILLE, TN. 502-798-8895, A. WRIGHT

OUTDOOR DESIGN CONDITIONS:

ALTITUDE: 590 FEET
OUTDOOR DESIGN DRY BULB: 55 DEG.F
OUTDOOR DESIGN WET BULB: 55 DEG.F
INFILTRATION AIR DRY BULB TEMP: 50 DEG.F
INFILTRATION AIR WET BULB TEMP: 44 DEG.F

INDOOR DESIGN CONDITIONS:

REFRIGERATED BOX DRY BULB TEMP: 45 DEG.F REFRIGERATED BOX REL. HUMIDITY: 60 % SAFETY FACTOR: 10 %

***** REFRIGERATION LOAD			SOFTW		PMENT INC. ***** KVILLE, TN 37933
FORT CAMPBELL ***********************************		-28-92 X LOADS R	EPORT	*****	PAGE 2
LOAD DESCRIPTION			TEMP DIFF	HOUI BTU LO	
NORTH WALL - MED EAST WALL - LT SOUTH WALL - LT WEST WALL - MED ROOF - DK FLOOR	391 0.04 201 0.04 391 0.04 201 0.04 741 0.05 741 0.05	0 10 + 0 10 + 0 10 + 0 10 +	0 6	156.4 80.4 156.4 128.6 1,111.5 370.5	1,930 4 3,754 5 3,086 5 26,676
TOTAL TRANSMISSION LOADS				2,004.0	48,096
LOAD UNIT DESCRIPTION QUAN	LOA FACTO			OPERATING HOURS	
PEOPLE 2.0 PEO MOTORS 0.7 HP DEFROST 5,600.0 WAT' LIGHTS 800.0 WAT' EQUIPMENT 10,430.0 WAT'	2000. TS 100. TS 3.	O BTUH/PE O BTUH/HP O PERCENT 4 BTUH/WA 4 BTUH/WA	TT	4.0 12.0 1.0 24.0 6.0	16,800 19,113 0 65,530
TOTAL INTERNAL LOADS					321,268
PRODUCT COOLING DESCRIPTION BTU	+ FREEZE + BTU	SUB-COOL BTU	+ RE	SPIR + CON	NTAIN = 24 HR BTU LOAD
Apples 8,561	0	0		0	121 8,681
PRODUCT AND CONT. TOTALS 8,561	0	0		0	121 8,681
INFILTRATION METHOD:				DOOR AREA	A
INFILTRATION AIR FLOW: HOURS OF INFILTRATION PER INFILTRATION AIR DRY BULB INFILTRATION AIR WET BULB REFRIGERATED BOX AIR TEMP	TEMPERATURE TEMPERATURE			1.00 50 44	O CFM O HR O DEG.F DEG.F DEG.F
HEIGHT OF DOORWAY: WIDTH OF DOORWAY: ENTHALPY OF INFILTRATION A ENTHALPY OF REFRIGERATED A DENSITY OF REFRIGERATED A DENSITY OF REFRIGERATED A PERCENT OF FULL FLOW THROUGH	AIR: IR: IR: UGH DOOR:			5.0 13.818 12.839 0.076 0.077	FEET FEET FEET BTU/LB BTU/LB LB/CUBIC FT LB/CUBIC FT F

TOTAL INFILTRATION LOAD:

37 BTU/24 HR

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ***** ** OGDEN ** KNOXVILLE, TN 37933

12-28-92 FORT CAMPBELL

BOX LOAD DESCRIPTIONS	AREA QUAN	OPER HOURS	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
NORTH WALL EAST WALL SOUTH WALL WEST WALL ROOF FLOOR PEOPLE MOTORS DEFROST WATTS LIGHTS EQUIPMENT Apples INFILTRATION COMPRESSOR RUN-TIME	391 201 391 201 741 741 2 1 5,600 800 10,430 10,020 7	24 24 24 24 24 24 12 1 24 6 48 1	156 80 156 129 1,112 371 260 700 796 2,730 8,899 362 2	3,754 1,930 3,754 3,087 26,676 8,892 6,240 16,800 19,113 65,530 213,586 8,681 37	0.8 0.4 0.8 0.6 5.3 1.8 1.3 3.4 3.8 13.1 42.8 1.7 0.0
SAFETY LOAD	10	20 24	3,151 1,890	45,370	15.2 9.1
TOTAL BOX LOADS			20,795	499,069	100.0

BOX LOAD DESCRIPTIONS	AREA QUAN	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
TRANSMISSION INTERNAL PRODUCT AND CONTAINER INFILTRATION COMPRESSOR RUN-TIME SAFETY LOAD	2,666 10,020 7 20 10	2,004 13,386 362 2 3,151 1,890	48,096 321,268 8,681 37 75,617 45,370	9.6 64.4 1.7 0.0 15.2 9.1
TOTAL BOX LOADS		20,795	499,069	100.0

TOTAL	REFR	IGEF	RATEL) ARE	CA:	
TOTAL	REFR	IGEF	RATE	O VOI	LUME	E :
TOTAL	ENVE	LOPE	ARE	EA:		
TOTAL	WEIG	HT C	F PF	RODUC	T:	
TOTAL	WEIG	HT C	F CC	CATIC	NEF	RS:
WEIGHT	OF	PROD	UCT	PER	SQ	FT:

REFRIGERATED AREA PER TON:

REQUIRED 24 HR LOAD:

REQUIRED 24 HR LOAD.

REQUIRED TONNAGE (20 HR RUNTIME): 1.7 TONS

REOUIRED CAPACITY (20 HR RUNTIME): 20,794.5 BTUH

741 SQUARE FEET 7,632 CUBIC FEET

2,666 SQUARE FEET

9,840 POUNDS 180 POUNDS

13.5 POUNDS PER SQ.FT 427.6 SQ FOOT PER TON

499,069.2 BTU

***** REFRIGERATION LOADS ** OGDEN ** FORT CAMPBELL	10-13	3-92	KNO	XVILLE,	TN 37933 PAGE 1
****** REFR	IGERATION SY	STEM QUOTATION	*****	*****	*****
PROJECT NAME: FORT CAMPBEL CLIENT NAME: US ARMY CORP STREET ADDRESS: LOUISVILLE, CLIENT CITY: CLARKSVILLE, CLIENT PHONE: UNK	S OF ENG.	BOX NAME:	NORTH S	TORAGE S	TAGING
REFRIGERATED LOAD SUMMARY:					
TOTAL REFRIGERATED AREA: TOTAL REFRIGERATED VOLUME: TOTAL ENVELOPE AREA: TOTAL WEIGHT OF PRODUCT: TOTAL WEIGHT OF CONTAINERS:		2,014 21,550 4,028 0	SQUARE CUBIC SQUARE POUNDS POUNDS	FEET FEET FEET	
REQUIRED 24 HR LOAD: REQUIRED TONNAGE (1 HR RUN REQUIRED CAPACITY (1 HR RUN	TIME):	29,072,506.8 100.9 1,211,354.4	BTU TONS BTU		
EQUIPMENT SUMMARY:					
CONDENSING UNIT		EVAPORATOR COII			
COND MANUF: KRACK MODEL: NO.OF CONDS.UNITS: 1 PER UNIT NET PRICE: \$0				BOHN	
NO.OF CONDS.UNITS: 1		NUMBER OF COILS	:	1	
REFRIGERANT TYPE:	ļ	RATED FLOW:	(ICE:	\$0 0	CEM
COMP MANUF: -	•	COIL AIR THROW:		. 0	FT
COMP MODEL: -		FINS PER INCH:		Ō	
HORSEPOWER: 0) HP	COIL ROWS:		0	
COMP COOLING:		DEFROST WATTS:		0	WATTS
SUCTION TEMPERATURE ACTUAL COIL TD:			DEG F		
BOX TEMPERATURE:			DEG F		
AMBIENT TEMP:			DEG F		
HOURS OF OPERATION:			HOURS		
ACTUAT CUCTEM CADACTOV.			DULLITI		

O BTUH

\$0

\$0

ACTUAL SYSTEM CAPACITY:

COMPLETE SYSTEM PRICE:

TOTAL COND. UNIT + UNIT COOLER PRICE:

** OGDEN **
ENVIRONMENTAL ENG. DIV.
KNOXVILLE, TN 37933

PROJECT NAME: FORT CAMPBELL CLIENT NAME: US ARMY CORPS OF ENG. DATE: 12-28-92

Corry

REFRIGERATION BOX LOADS PROGRAM

DESIGNER:

GENERAL PROJECT INFORMATION:

PROJECT NAME:
PROJECT FILE NAME:
PROJECT LOCATION:
BOX NAME:
GENERAL COMMENTS:
BOX DIMENSIONS (LxWxH):

FORT CAMPBELL K:MMER9 COLD STORAGE FACILITY MINI MART EGG ROOM EXISTING FACILITY 19.5 x 12.5 x 10.5 FEET

CLIENT NAME: STREET ADDRESS: CITY, STATE, ZIP: CLIENT PHONE: US ARMY CORPS OF ENG. LOUISVILLE, DISTRICT CLARKSVILLE, TN. UNK

OUTDOOR DESIGN CONDITIONS:

ALTITUDE: 590 FEET
OUTDOOR DESIGN DRY BULB: 55 DEG.F
OUTDOOR DESIGN WET BULB: 55 DEG.F
INFILTRATION AIR DRY BULB TEMP: 50 DEG.F
INFILTRATION AIR WET BULB TEMP: 44 DEG.F

INDOOR DESIGN CONDITIONS:

REFRIGERATED BOX DRY BULB TEMP: 44 DEG.F REFRIGERATED BOX REL. HUMIDITY: 60 % SAFETY FACTOR: 10 %

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. *****

** OGDEN ** FORT CAMPBELL ****************	12-28 DETAILED BOX I	3-92 LOADS REPORT **		PAGE 2
LOAD DESCRIPTION	AREAU (SF) FACTOF	TEMP R DIFF	HOURLY BTU LOAD	
NORTH WALL - LT EAST WALL - LT SOUTH WALL - MED WEST WALL - MED ROOF - DK FLOOR	131 0.040 205 0.040 131 0.040	11 + 0 11 + 0 11 + 4 11 + 6 11 + 20		1,382 2,165 1,886
TOTAL TRANSMISSION LOADS			742.1	17,810
LOAD UNIT DESCRIPTION QUAN	LOAD FACTOR		OPERATING HOURS	24 HR BTU LOAD
PEOPLE 3.0 PEO MOTORS 0.2 HP LIGHTS 243.8 WAT EQUIPMENT 1,380.0 WAT	2000.0 F TS 3.4 F	BTUH/PERSON BTUH/HP BTUH/WATT BTUH/WATT	14.0 24.0	18,720 5,600 19,966 28,260
TOTAL INTERNAL LOADS			-	72,546
INFILTRATION METHOD:			DOOR AREA	
INFILTRATION AIR FLOW: HOURS OF INFILTRATION PER INFILTRATION AIR DRY BULB			6.3 CFM 1.00 HR 50 DEG	. F

INFILTRATION METHOD:	DOOR	AREA	
INFILTRATION AIR FLOW:		6.3	CFM
HOURS OF INFILTRATION PER DAY:		1.00	HR
INFILTRATION AIR DRY BULB TEMPERATURE:		50	DEG.F
INFILTRATION AIR WET BULB TEMPERATURE:		44	DEG.F
REFRIGERATED BOX AIR TEMPERATURE:		44	DEG.F
HEIGHT OF DOORWAY:		8.0	FEET
WIDTH OF DOORWAY:		5.0	FEET
ENTHALPY OF INFILTRATION AIR:	13	3.818	BTU/LB
ENTHALPY OF REFRIGERATED AIR:	13	2.521	BTU/LB
DENSITY OF INFILTRATION AIR:		0.076	LB/CUBIC FT
DENSITY OF REFRIGERATED AIR:	(0.077	LB/CUBIC FT
PERCENT OF FULL FLOW THROUGH DOOR:		5	ક
EFFICIENCY OF PROTECTIVE DEVICE:		85	8
MOMENT TWEET MENTON TOLD		4.1	DMII /O A IVD
TOTAL INFILTRATION LOAD:		41	BTU/24 HR

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ***** ** OGDEN ** KNOXVILLE, TN 37933

FORT CAMPBELL

12-28-92

PAGE 3

BOX LOAD DESCRIPTIONS	AREA QUAN	OPER HOURS	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
NORTH WALL	131	24	58	1,383	1.2
EAST WALL	205	24	90	2,165	1.8
SOUTH WALL	131	24	79	1,886	1.6
_ WEST WALL	205	24	139	3,346	2.8
DOOF	156	2.4	2/2	E 903	1 Q

DESCRIPTIONS	QUAN	HOURS	BTUH CAP	BTU LOAD	LOAD
NORTH WALL	131	24	58	1,383	1.2
EAST WALL	205	24	90	2,165	1.8
SOUTH WALL	131	24	79	1,886	1.6
WEST WALL	205	24	139	3,346	2.8
ROOF	156	24	242	5,803	4.9
FLOOR	244	24	134	3,221	2.7
PEOPLE	3	8	780	18,720	15.7
MOTORS	0	14	233	5,600	4.7
LIGHTS	244	24	832	19,966	16.7
EQUIPMENT	1,380	6	1,177	28,260	23.7
Butter	4,920	48	0	0	0.0
INFILTRATION	6	1	2	41	0.0
COMPRESSOR RUN-TIME	0	20	753	18,079	15.2
SAFETY LOAD	10	24	452	10,848	9.1
TOTAL BOX LOADS			4,972	119,323	100.0

BOX LOAD DESCRIPTIONS	AREA QUAN	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
TRANSMISSION INTERNAL	1,072	742 3,023	17,810 72,546	14.9
PRODUCT AND CONTAINER	0	0	. 0	0.0
INFILTRATION	6	2	41	0.0
COMPRESSOR RUN-TIME	20	753	18,079	15.2
SAFETY LOAD	10	452	10,848	9.1
TOTAL BOX LOADS		4,972	119,323	100.0

TOTAL REFRIGERATED AREA:
TOTAL REFRIGERATED VOLUME:
TOTAL ENVELOPE AREA:
TOTAL WEIGHT OF PRODUCT:
TOTAL WEIGHT OF CONTAINERS:
WEIGHT OF PRODUCT PER SQ FT:

REFRIGERA	ATED	AI	REA	PER	TON:	
REOUIRED	24	HR	LOZ	AD:		

REQUIRED TONNAGE (20 HR RUNTIME):
REQUIRED CAPACITY (20 HR RUNTIME):

244 SQUARE FEET 2,562 CUBIC FEET 1,072 SQUARE FEET 4,800 POUNDS 120 POUNDS 20.2 POUNDS PER SQ.FT

588.9 SQ FOOT PER TON

119,323.1 BTU 0.4 TONS 4,971.8 BTUH ** OGDEN **
ENVIRONMENTAL ENG. DIV.
KNOXVILLE, TN 37933

PROJECT NAME: FORT CAMPBELL CLIENT NAME: US ARMY CORPS OF ENG. DATE: 12-28-92

REFRIGERATION BOX LOADS PROGRAM

DESIGNER:

Corry

GENERAL PROJECT INFORMATION:

PROJECT NAME:
PROJECT FILE NAME:
PROJECT LOCATION:
BOX NAME:
GENERAL COMMENTS:
BOX DIMENSIONS (LxWxH):

FORT CAMPBELL
K:SFRE11
COLD STORAGE FACILITY
Mini Mart Freezer
EXISTING FACILITY
39.5 x 20.7 x 9.5 FEET

CLIENT NAME: STREET ADDRESS: CITY, STATE, ZIP: CLIENT PHONE: US ARMY CORPS OF ENG. LOUISVILLE, DISTRICT CLARKSVILLE, TN. UNK

OUTDOOR DESIGN CONDITIONS:

ALTITUDE: 590 FEET
OUTDOOR DESIGN DRY BULB: 55 DEG.F
OUTDOOR DESIGN WET BULB: 55 DEG.F
INFILTRATION AIR DRY BULB TEMP: 55 DEG.F
INFILTRATION AIR WET BULB TEMP: 55 DEG.F

INDOOR DESIGN CONDITIONS:

REFRIGERATED BOX DRY BULB TEMP: 0 DEG.F REFRIGERATED BOX REL. HUMIDITY: 60 % SAFETY FACTOR: 10 %

	***** REFRIGERATION LOAD ** OGDEN ** FORT CAMPBELL	12-28	3-92	KNOXV	VILLE, TN 37933 PAGE 2
	*******	DETAILED BOX I	JOADS REPORT	****	*****
	LOAD DESCRIPTION	AREAU (SF) FACTOR		HOURI BTU LOA	
	EAST WALL - MED SOUTH WALL - LT WEST WALL - LT	375 0.040 197 0.040 375 0.040 197 0.040 779 0.120	55 + 0 55 + 0 55 + 0 55 + 0	825.0	19,800 10,402 19,800 10,402
	TOTAL TRANSMISSION LOADS			9,522.9	228,549
	LOAD UNIT DESCRIPTION QUAN	LOAD FACTOR		OPERATING HOURS	24 HR BTU LOAD
	PEOPLE 2.0 PEOF MOTORS 2.0 HP DEFROST 5,200.0 WATT LIGHTS 1,400.0 WATT	PLE 1300.0 F 2000.0 F TS 100.0 F		2.0 20.0 1.0 24.0	5,200 80,000 17,748 114,677
ı	TOTAL INTERNAL LOADS				217,624
	PRODUCT COOLING + DESCRIPTION BTU	FREEZE + SUI	BTU	SPIR + CONT	TAIN = 24 HR BTU LOAD
	Beef Sirloin 8	192	25	0 2,	,693 2,918
	PRODUCT AND CONT. TOTALS 8	192	25	0 2,	,693 2,918
	INFILTRATION METHOD:			DOOR AREA	
	INFILTRATION AIR FLOW: HOURS OF INFILTRATION PER INFILTRATION AIR DRY BULB INFILTRATION AIR WET BULB REFRIGERATED BOX AIR TEMPE	TEMPERATURE: TEMPERATURE:	·	55	
	HEIGHT OF DOORWAY: WIDTH OF DOORWAY: ENTHALPY OF INFILTRATION A ENTHALPY OF REFRIGERATED A DENSITY OF INFILTRATION A DENSITY OF REFRIGERATED A PERCENT OF FULL FLOW THROU EFFICIENCY OF PROTECTIVE I	AIR: IR: IR: JGH DOOR:		10.0 18.172 0.250 0.075 0.084	FEET FEET BTU/LB BTU/LB LB/CUBIC FT LB/CUBIC FT %

TOTAL INFILTRATION LOAD: 2,491 BTU/24 HR

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ***** ** OGDEN ** KNOXVILLE, TN 37933

12-28-92 FORT CAMPBELL ********************* BOX LOADS SUMMARY REPORT *****************

	BOX LOAD	AREA	OPER	REQUIRED	24 HR	% TOT
	DESCRIPTIONS	QUAN	HOURS	BTUH CAP	BTU LOAD	LOAD
1	NORTH WALL	375	24	825	19,800	3.3
	EAST WALL	197	24	433	10,402	1.7
	SOUTH WALL	375	24	825	19,800	3.3
ı	WEST WALL	197	24	433	10,402	1.7
	ROOF	779	24	7,011	168,264	28.2
•	PEOPLE	2	2	217	5,200	0.9
	MOTORS	2	20	3,333	80,000	13.4
	DEFROST WATTS	5,200	1	739	17,748	3.0
ļ	LIGHTS	1,400	24	4,778	114,677	19.2
	Beef Sirloin Cut, c	101	10	122	2,918	0.5
1	INFILTRATION	31	1	104	2,491	0.4
	COMPRESSOR RUN-TIME	0	20	3,763	90,316	15.2
	SAFETY LOAD	10	24	2,258	54,190	9.1
	TOTAL BOX LOADS			24,837	596,088	100.0

BOX LOAD DESCRIPTIONS	AREA QUAN	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
TRANSMISSION INTERNAL PRODUCT AND CONTAINER INFILTRATION COMPRESSOR RUN-TIME SAFETY LOAD	2,741 101 31 20 10	9,523 9,068 122 104 3,763 2,258	228,549 217,624 2,918 2,491 90,316 54,190	38.3 36.5 0.5 0.4 15.2 9.1
TOTAL BOX LOADS		24,837	596,088	100.0

TOTAL REFRIGERATED AREA: TOTAL REFRIGERATED VOLUME:

TOTAL ENVELOPE AREA:

TOTAL WEIGHT OF PRODUCT:

TOTAL WEIGHT OF CONTAINERS:

WEIGHT OF PRODUCT PER SQ FT:

REFRIGERATED AREA PER TON:

REQUIRED 24 HR LOAD:

REQUIRED TONNAGE (20 HR RUNTIME):

REQUIRED CAPACITY (20 HR RUNTIME):

818 SQUARE FEET

7,771 CUBIC FEET

2,741 SQUARE FEET

1 POUNDS

100 POUNDS

0.1 POUNDS PER SQ.FT

395.2 SQ FOOT PER TON

596,088.2 BTU

2.1 TONS

24,837.0 BTUH

***** REFRIGERATION LOADS PROGRAM BY ** OGDEN ** FORT CAMPBELL 10-1 ***********************************	.3-92	KNOXVILLE, TN 37933 PAGE 1
PROJECT NAME: FORT CAMPBELL CLIENT NAME: US ARMY CORPS OF ENG. STREET ADDRESS: LOUISVILLE, DISTRICT CLIENT CITY: CLARKSVILLE, TN. CLIENT PHONE: UNK	COMMENT: BOX NAME: BOX DIMENSION: PROJ LOCATION: DATE:	EXISTING FACILITY NORTH STORAGE STAGING 83.9 x 24 x 10.7 FEET NASHVILLE, TENNESSEE 10-13-92
REFRIGERATED LOAD SUMMARY:		
TOTAL REFRIGERATED AREA: TOTAL REFRIGERATED VOLUME: TOTAL ENVELOPE AREA: TOTAL WEIGHT OF PRODUCT: TOTAL WEIGHT OF CONTAINERS:	21,550 4,028 0	SQUARE FEET CUBIC FEET SQUARE FEET POUNDS POUNDS
REQUIRED 24 HR LOAD: REQUIRED TONNAGE (1 HR RUNTIME): REQUIRED CAPACITY (1 HR RUNTIME):	29,072,506.8 100.9 1,211,354.4	TONS
EQUIPMENT SUMMARY:		
CONDENSING UNIT	EVAPORATOR COI	L .
	COIL MANUF: MODEL:	BOHN
NO.OF CONDS.UNITS: 1 PER UNIT NET PRICE: \$0 REFRIGERANT TYPE: COMP MANUF: - COMP MODEL: - HORSEPOWER: 0 HP COMP COOLING:	NUMBER OF COIL PER UNIT NET P RATED FLOW: COIL AIR THROW FINS PER INCH: COIL ROWS: DEFROST WATTS:	RICE: \$0 0 CFM : 0 FT 0 0
SUCTION TEMPERATURE ACTUAL COIL TD: BOX TEMPERATURE: AMBIENT TEMP: HOURS OF OPERATION: ACTUAL SYSTEM CAPACITY:	0.0 60.0 97.0 1	DEG F DEG F DEG F HOURS BTUH

\$0

\$0

TOTAL COND. UNIT + UNIT COOLER PRICE:

COMPLETE SYSTEM PRICE:

OGDEN ** ENVIRONMENTAL ENG. DIV. KNOXVILLE, TN 37933

PROJECT NAME: FORT CAMPBELL CLIENT NAME: US ARMY CORPS OF ENG. DATE: 12-28-92

REFRIGERATION BOX LOADS PROGRAM

DESIGNER: Corry

GENERAL PROJECT INFORMATION:

PROJECT NAME: PROJECT FILE NAME: PROJECT LOCATION: BOX NAME: GENERAL COMMENTS:

COLD STORAGE FACILITY MINI MART EXISTING FACILITY 72 x 41 x 10.5 FEET BOX DIMENSIONS (LxWxH):

CLIENT NAME: STREET ADDRESS: CITY, STATE, ZIP: CLIENT PHONE:

US ARMY CORPS OF ENG. LOUISVILLE, DISTRICT CLARKSVILLE, TN. UNK

FORT CAMPBELL

K:MM-7

OUTDOOR DESIGN CONDITIONS:

ALTITUDE: 590 FEET OUTDOOR DESIGN DRY BULB: 55 DEG.F OUTDOOR DESIGN WET BULB: 55 DEG.F INFILTRATION AIR DRY BULB TEMP: 55 DEG.F INFILTRATION AIR WET BULB TEMP: 55 DEG.F

INDOOR DESIGN CONDITIONS:

REFRIGERATED BOX DRY BULB TEMP: 50 DEG.F REFRIGERATED BOX REL. HUMIDITY: 60 % SAFETY FACTOR: 10 %

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. *****

** OGDEN **

KNOXVILLE, TN 37933

FORT CAMPBELL ***********************************		12-28-92 BOX LOADS I	⊋₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽		PAGE 2
LOAD DESCRIPTION	AREA -		TEMP	HOURL	Y 24 D BTU LO
NORTH WALL - LT EAST WALL - LT SOUTH WALL - LT WEST WALL - LT ROOF - DK FLOOR	756 0.0 431 0.0 756 0.0	040 5 + 040 5 + 040 5 + 050 5 +	0 0 20	151.2 86.2 151.2 86.2	3,629 2,069 3,629 2,069
TOTAL TRANSMISSION LOAD		DAD		7,116.6	170,798 24 HR
DESCRIPTION QUAN	FACT			HOURS	BTU LOAD
LIGHTS 2,200.0 W	PEOPLE 720 NATTS 3			8.0 24.0	180,206
TOTAL INTERNAL LOADS					197,486
INFILTRATION METHOD:				DOOR AREA	
INFILTRATION AIR FLOW: HOURS OF INFILTRATION F	PER DAY:			42.0 (6.00 I	

HOURS OF INFILTRATION PER DAY:

INFILTRATION AIR DRY BULB TEMPERATURE:

INFILTRATION AIR WET BULB TEMPERATURE:

S5 DEG.F

REFRIGERATED BOX AIR TEMPERATURE:

50 DEG.F

HEIGHT OF DOORWAY: 7.0 FEET WIDTH OF DOORWAY: 5.0 FEET ENTHALPY OF INFILTRATION AIR: 18.172 BTU/LB 14.467 BTU/LB ENTHALPY OF REFRIGERATED AIR: DENSITY OF INFILTRATION AIR: 0.075 LB/CUBIC FT DENSITY OF REFRIGERATED AIR: 0.076 LB/CUBIC FT PERCENT OF FULL FLOW THROUGH DOOR: 25 % EFFICIENCY OF PROTECTIVE DEVICE: 80 %

TOTAL INFILTRATION LOAD: 4,061 BTU/24 HR

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. **** ** OGDEN ** KNOXVILLE, TN 37933

FORT CAMPBELL 12-28-92

PAGE 3

BOX LOAD DESCRIPTIONS	AREA QUAN	OPER HOURS	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
NORTH WALL EAST WALL SOUTH WALL WEST WALL ROOF FLOOR PEOPLE LIGHTS INFILTRATION COMPRESSOR RUN-TIME SAFETY LOAD	756 431 756 431 2,952 2,952 3 2,200 42 0	24 24 24 24 24 24 24 20 24	151 86 151 86 3,690 2,952 720 7,509 169 3,103 1,862	3,629 2,069 3,629 2,069 88,560 70,848 17,280 180,206 4,061 74,469 44,681	0.7 0.4 0.7 0.4 18.0 14.4 3.5 36.7 0.8 15.2 9.1
TOTAL BOX LOADS			20,479	491,496	100.0

BOX LOAD DESCRIPTIONS	AREA QUAN	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
TRANSMISSION INTERNAL PRODUCT AND CONTAINER INFILTRATION COMPRESSOR RUN-TIME SAFETY LOAD	8,278 0 42 20 10	7,117 8,229 0 169 3,103 1,862	170,798 197,486 0 4,061 74,469 44,681	34.8 40.2 0.0 0.8 15.2 9.1
TOTAL BOX LOADS		20,479	491,496	100.0

TOTAL	REFRIGERATED	AREA:
moma r		

TOTAL REFRIGERATED VOLUME:

TOTAL ENVELOPE AREA:

TOTAL WEIGHT OF PRODUCT:

TOTAL WEIGHT OF CONTAINERS:

WEIGHT OF PRODUCT PER SQ FT:

REFRIGERATED AREA PER TON:

REQUIRED 24 HR LOAD:

REQUIRED TONNAGE (20 HR RUNTIME):

REQUIRED CAPACITY (20 HR RUNTIME):

2,952 SQUARE FEET

30,996 CUBIC FEET

8,278 SQUARE FEET

0 POUNDS

0 POUNDS

0.0 POUNDS PER SQ.FT

1,729.8 SQ FOOT PER TON

491,495.8 BTU

1.7 TONS

20,479.0 BTUH

OGDEN ENVIRONMENTAL ENG. DIV. TN KNOXVILLE, 37933

DATE:

PROJECT NAME: FORT CAMPBELL CLIENT NAME: US ARMY CORPS OF ENG. 12-28-92

REFRIGERATION BOX LOADS PROGRAM

DESIGNER:

Corry

GENERAL PROJECT INFORMATION:

PROJECT NAME: PROJECT FILE NAME: PROJECT LOCATION: BOX NAME: GENERAL COMMENTS: BOX DIMENSIONS (LxWxH):

FORT CAMPBELL K:MMHW8 COLD STORAGE FACILITY MINI MART HALLWAY EXISTING FACILITY 84 x 10.5 x 10.6 FEET

CLIENT NAME: STREET ADDRESS: CITY, STATE, ZIP: CLIENT PHONE:

US ARMY CORPS OF ENG. LOUISVILLE, DISTRICT CLARKSVILLE, TN. UNK

OUTDOOR DESIGN CONDITIONS:

ALTITUDE: OUTDOOR DESIGN DRY BULB: OUTDOOR DESIGN WET BULB: INFILTRATION AIR DRY BULB TEMP: INFILTRATION AIR WET BULB TEMP:

590 FEET 55 DEG.F 55 DEG.F 55 DEG.F 55 DEG.F

INDOOR DESIGN CONDITIONS:

REFRIGERATED BOX DRY BULB TEMP: REFRIGERATED BOX REL. HUMIDITY: SAFETY FACTOR:

52 DEG.F 60 %

10 %

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ****

** OGDEN **

KNOXVILLE. TN 37933

and the second of the second o

** OGDEN ** FORT CAMPBELL		28-92		VILLE, TN 37933 PAGE 2
*******	DETAILED BOX	LOADS REPORT	*****	******
LOAD DESCRIPTION	AREAU- (SF) FACTO	OR DIFF		AD BTU LO
NORTH WALL - MED	111 0.040 890 0.040 111 0.040	3 + 0 3 + 6 3 + 0 3 + 0 3 + 9	13.3	319 7,690 319 2,563 7,620
TOTAL TRANSMISSION LOADS			1,300.8	31,220
LOAD UNIT DESCRIPTION QUAN	LOAD FACTOR		OPERATING HOURS	BTU LOAD
	PLE 720.0	BTUH/PERSON BTUH/HP BTUH/WATT BTUH/WATT	2.0 12.0 24.0 12.0	2,880
TOTAL INTERNAL LOADS				272,329
PRODUCT COOLING HOLD BTU	BTU	BTU	BTU	TAIN = 24 HR BTU LOAD
Potatoes, mai 66,010	0	0	0	27 66,037
PRODUCT AND CONT. TOTALS 66,010	0	0	0	27 66,037
INFILTRATION METHOD:	•		DOOR AREA	
INFILTRATION AIR FLOW: HOURS OF INFILTRATION PER INFILTRATION AIR DRY BULB INFILTRATION AIR WET BULB	TEMPERATURE: TEMPERATURE:		55	

THITTIMITON	AIK LIO	v •		12.0	CFM
HOURS OF INFI	LTRATION	1 PER	DAY:	3.00	HR
INFILTRATION	AIR DRY	BULB	TEMPERATURE:	55	DEG.F
INFILTRATION	AIR WET	BULB	TEMPERATURE:	55	DEG.F
REFRIGERATED	BOX AIR	TEMPI	ERATURE:	52	DEG.F

TOTAL INFILTRATION LOAD: 495 BTU/24 HR

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ***** ** OGDEN ** KNOXVILLE, TN 37933

FORT CAMPBELL 12-28-92

BOX LOAD DESCRIPTIONS	AREA QUAN	OPER HOURS	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
NORTH WALL	111	24	13	320	0.1
EAST WALL	890	24	320	7,690	1.6
SOUTH WALL	111	24	13	320	0.1
WEST WALL	890	24	107	2,563	0.5
ROOF	882	24	318	7,620	1.6
FLOOR	882	24	529	12,701	2.6
PEOPLE	2	2	120	2,880	0.6
MOTORS	2	12	1,500	36,000	7.4
LIGHTS	1,200	24	4,096	98,294	20.1
EQUIPMENT	3,300	12	5,631	135,155	27.7
Potatoes, main crop	7,007	48	2,752	66,037	13.5
INFILTRATION	13	3	21	495	0.1
COMPRESSOR RUN-TIME	0	20	3,084	74,016	15.2
SAFETY LOAD	10	24	1,850	44,410	9.1
TOTAL BOX LOADS			20,354	488,507	100.0

BOX LOAD DESCRIPTIONS	AREA QUAN	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
TRANSMISSION INTERNAL PRODUCT AND CONTAINER INFILTRATION COMPRESSOR RUN-TIME SAFETY LOAD	3,766 7,007 13 20 10	1,301 11,347 2,752 21 3,084 1,850	31,220 272,329 66,037 495 74,016 44,410	6.4 55.7 13.5 0.1 15.2 9.1
TOTAL BOX LOADS		20,354	488,507	100.0

TOTAL REFRIGERATED AREA:

TOTAL REFRIGERATED VOLUME:

TOTAL ENVELOPE AREA:

TOTAL WEIGHT OF PRODUCT:

TOTAL WEIGHT OF CONTAINERS:

WEIGHT OF PRODUCT PER SQ FT:

REFRIGERATED AREA PER TON:

REQUIRED TONNAGE (20 HR RUNTIME):
REQUIRED CAPACITY (20 HR RUNTIME):

882 SQUARE FEET

9,349 CUBIC FEET

3,766 SQUARE FEET

7,000 POUNDS.

7 POUNDS

7.9 POUNDS PER SQ.FT

520.0 SQ FOOT PER TON

512 581 488,507.4 BTU

1.7 TONS 20,354.5 BTUH

** OGDEN **
ENVIRONMENTAL ENG. DIV.
KNOXVILLE, TN 37933

PROJECT NAME: FORT CAMPBELL CLIENT NAME: US ARMY CORPS OF ENG. DATE: 12-28-92

REFRIGERATION BOX LOADS PROGRAM

DESIGNER: Corry

GENERAL PROJECT INFORMATION:

PROJECT NAME:
PROJECT FILE NAME:
PROJECT LOCATION:
BOX NAME:
GENERAL COMMENTS:
BOX DIMENSIONS (LxWxH):

15

CLIENT NAME: STREET ADDRESS: CITY, STATE, ZIP: CLIENT PHONE: FORT CAMPBELL
K:C-1-2
COLD STORAGE FACILITY
SHORTENING AND OLEO ROOM
EXISTING FACILITY
23 x 19.7 x 10.3 FEET

US ARMY CORPS OF ENG. LOUISVILLE, DISTRICT CLARKSVILLE, TN. UNK

OUTDOOR DESIGN CONDITIONS:

ALTITUDE: 590 FEET
OUTDOOR DESIGN DRY BULB: 55 DEG.F
OUTDOOR DESIGN WET BULB: 55 DEG.F
INFILTRATION AIR DRY BULB TEMP: 55 DEG.F
INFILTRATION AIR WET BULB TEMP: 55 DEG.F

INDOOR DESIGN CONDITIONS:

REFRIGERATED BOX DRY BULB TEMP: 42 DEG.F REFRIGERATED BOX REL. HUMIDITY: 60 % SAFETY FACTOR: 10 %

	***** REFRIGERATION LO. ** OGDEN ** FORT CAMPBELL *********	:	12-28-92		KNOXV	/ILLE,	TN 37933 PAGE 2
	LOAD DESCRIPTION	AREA (SF) FA		TEMP DIFF	HOURI BTU LOA	AD AY	24 BTU LO
	NORTH WALL - MED EAST WALL - MED SOUTH WALL - MED WEST WALL - LT ROOF - DK FLOOR		040 13 - 050 13 -	+ 6 + 0 + 0 + 20	123.2 154.3 123.2 105.6 747.5 294.5		2,957 3,703 2,957 2,534 17,940 7,068
	TOTAL TRANSMISSION LOADS				1,548.2		37,158
	LOAD UNIT DESCRIPTION QUAN	FAC	OAD TOR		OPERATING HOURS		24 HR BTU LOAD
	PEOPLE 2.0 PE MOTORS 1.2 HP LIGHTS 600.0 WA EQUIPMENT 4,080.0 WA	OPLE 720 2000 TTS	0.0 BTUH/1 0.0 BTUH/1 3.4 BTUH/1 3.4 BTUH/1	HP WATT	4.0 4.0 24.0 6.0		5,760 9,600 49,147 83,550
	TOTAL INTERNAL LOADS						148,057
•	PRODUCT COOLING DESCRIPTION BTU	+ FREEZE BTU	+ SUB-COO		TU	TAIN = BTU	24 HR LOAD
	Butter 93,312	0		0	0	0	93,312
	PRODUCT AND CONT. TOTALS 93,312	0	1	o	0	0	93,312
	INFILTRATION METHOD:				DOOR AREA		
	INFILTRATION AIR FLOW: HOURS OF INFILTRATION PE INFILTRATION AIR DRY BUL INFILTRATION AIR WET BUL REFRIGERATED BOX AIR TEM	B TEMPERATURE TEMPERATURE			55		
	HEIGHT OF DOORWAY:				7.0	FEET	

HEIGHT OF DOORWAY:	7.0	FEET
WIDTH OF DOORWAY:	5.0	FEET
ENTHALPY OF INFILTRATION AIR:	8.172	BTU/LB
	1.894	BTU/LB
DENSITY OF INFILTRATION AIR:	0.075	LB/CUBIC FT
DENSITY OF REFRIGERATED AIR:	0.077	LB/CUBIC FT
PERCENT OF FULL FLOW THROUGH DOOR:	5	૪
EFFICIENCY OF PROTECTIVE DEVICE:	80	8

TOTAL INFILTRATION LOAD: 347 BTU/24 HR

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ***** ** OGDEN ** KNOXVILLE, TN 37933

12-28-92 FORT CAMPBELL

BOX LOAD DESCRIPTIONS	AREA QUAN	OPER HOURS	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
NORTH WALL EAST WALL SOUTH WALL WEST WALL ROOF FLOOR PEOPLE MOTORS LIGHTS EQUIPMENT Butter INFILTRATION COMPRESSOR RUN-TIME SAFETY LOAD	237 203 237 203 453 453 453 2 1 600 4,080 28,800 13 0	24 24 24 24 24 24 4 24 6 48 1 20 24	123 154 123 106 747 294 240 400 2,048 3,481 3,888 14 2,324 1,394	2,958 3,703 2,958 2,533 17,939 7,067 5,760 9,600 49,147 83,550 93,312 347 55,775 33,465	0.8 1.0 0.8 0.7 4.9 1.6 2.6 13.4 22.7 25.3 0.1 15.2 9.1
TOTAL BOX LOADS			15,338	368,113	100.0

BOX LOAD DESCRIPTIONS	AREA QUAN	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
TRANSMISSION INTERNAL PRODUCT AND CONTAINER INFILTRATION COMPRESSOR RUN-TIME	1,786 28,800 13 20	1,548 6,169 3,888 14 2,324	37,158 148,057 93,312 347 55,775	10.1 40.2 25.3 0.1 15.2
SAFETY LOAD TOTAL BOX LOADS	10	1,394 15,338	33,465 368,113	9.1

TOTAL REFRIGERATED AREA: TOTAL REFRIGERATED VOLUME:

TOTAL ENVELOPE AREA:

TOTAL WEIGHT OF PRODUCT:

TOTAL WEIGHT OF CONTAINERS:

WEIGHT OF PRODUCT PER SQ FT:

REFRIGERATED AREA PER TON:

REQUIRED 24 HR LOAD:

REQUIRED 74 HR LOAD.
REQUIRED TONNAGE (20 HR RUNTIME):
PEOUTRED CAPACITY (20 HR RUNTIME): REQUIRED CAPACITY (20 HR RUNTIME):

453 SQUARE FEET

4,666 CUBIC FEET

1,786 SQUARE FEET

28,800 POUNDS

0 POUNDS

63.6 POUNDS PER SQ.FT

354.4 SQ FOOT PER TON

368,113.5 BTU

1.3 TONS

15,338.1 BTUH

OGDEN DIV. ENVIRONMENTAL ENG. KNOXVILLE, TN 37933 PROJECT NAME: FORT CAMPBELL CLIENT NAME: US ARMY CORPS OF ENG. DATE: 12-28-92

REFRIGERATION BOX LOADS PROGRAM

DESIGNER:

Corry

GENERAL PROJECT INFORMATION:

PROJECT NAME: PROJECT FILE NAME: PROJECT LOCATION: BOX NAME: GENERAL COMMENTS: BOX DIMENSIONS (LxWxH):

CLIENT NAME: STREET ADDRESS: CITY, STATE, ZIP:

CLIENT PHONE:

FORT CAMPBELL K:EC-33 COLD STORAGE FACILITY EGG ROOM EC-3 EXISTING FACILITY 44 x 30 x 10.5 FEET

US ARMY CORPS OF ENG. LOUISVILLE, DISTRICT CLARKSVILLE, TN. UNK

OUTDOOR DESIGN CONDITIONS:

ALTITUDE: OUTDOOR DESIGN DRY BULB: OUTDOOR DESIGN WET BULB:

INFILTRATION AIR DRY BULB TEMP: INFILTRATION AIR WET BULB TEMP:

590 FEET 56 DEG.F 55 DEG.F 56 DEG.F 56 DEG.F

INDOOR DESIGN CONDITIONS:

REFRIGERATED BOX DRY BULB TEMP: REFRIGERATED BOX REL. HUMIDITY: SAFETY FACTOR:

56 DEG.F 60 % 10 %

** OGDEN ** FORT CAMPBEL	L		12-2	8-92	ARE DEVELOPMENT KNOXVILL	E, TN 37933 PAGE 2
LOAD DESCRIPTIO	N	AREA (SF)	U- FACTO		HOURLY BTU LOAD	24 BTU LO
NORTH WALL - EAST WALL - SOUTH WALL - WEST WALL - ROOF - DK	MED LT LT	462 1,320	0.040 0.040 0.040 0.040 0.050	0 + 0	0.0 0.0 0.0 0.0 1,320.0	0 0 0 0 31,680 31,680
LOAD DESCRIPTION	UNIT QUAN		LOAD FACTOR		OPERATING HOURS	24 HR BTU LOAD
PEOPLE MOTORS LIGHTS EQUIPMENT TOTAL INTERN	0.5 F 2,000.0 W 2,200.0 W	VATTS	2100.0	BTUH/PERSON BTUH/HP BTUH/WATT BTUH/WATT	2.0 4.0 24.0 6.0	1,440 4,200 163,824 45,052 214,516

INFILTRATION	METHOD:	DOOR	AREA
T111 T T T T T T T T T T T T T T T T T	11011100		* ** / ** *

INFILTRATION AIR FLOW: HOURS OF INFILTRATION PER DAY: INFILTRATION AIR DRY BULB TEMPERATURE: INFILTRATION AIR WET BULB TEMPERATURE: REFRIGERATED BOX AIR TEMPERATURE:	3.00 56 56	CFM HR DEG.F DEG.F DEG.F
HEIGHT OF DOORWAY: WIDTH OF DOORWAY: ENTHALPY OF INFILTRATION AIR: ENTHALPY OF REFRIGERATED AIR: DENSITY OF INFILTRATION AIR: DENSITY OF REFRIGERATED AIR: PERCENT OF FULL FLOW THROUGH DOOR: EFFICIENCY OF PROTECTIVE DEVICE:	5.0 18.599 16.526 0.075	

TOTAL INFILTRATION LOAD:

0 BTU/24 HR

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. *****

** OGDEN **

KNOXVILLE, TN 37933

BOX LOAD DESCRIPTIONS	AREA QUAN	OPER HOURS	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
ROOF PEOPLE MOTORS LIGHTS EQUIPMENT Eggs, shell COMPRESSOR RUN-TIME SAFETY LOAD	1,320 1 1 2,000 2,200 23,660 0	24 2 4 24 6 48 20 24	1,320 60 175 6,826 1,877 0 2,052 1,231	31,680 1,440 4,200 163,824 45,052 0 49,239 29,543	9.7 0.4 1.3 50.4 13.9 0.0 15.2 9.1
TOTAL BOX LOADS			13,541	324,978	100.0

BOX LOAD DESCRIPTIONS	AREA QUAN	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
TRANSMISSION INTERNAL PRODUCT AND CONTAINER INFILTRATION COMPRESSOR RUN-TIME SAFETY LOAD	2,640 0 0 20 10	1,320 8,938 0 0 2,052 1,231	31,680 214,516 0 0 49,239 29,543	9.7 66.0 0.0 0.0 15.2 9.1
TOTAL BOX LOADS		13,541	324,978	100.0

TOTAL REFRIGERATED AREA:
TOTAL REFRIGERATED VOLUME:
TOTAL ENVELOPE AREA:
TOTAL WEIGHT OF PRODUCT:
TOTAL WEIGHT OF CONTAINERS:
WEIGHT OF PRODUCT PER SQ FT:
REFRIGERATED AREA PER TON:

REQUIRED 24 HR LOAD:

REQUIRED 24 HK LOAD.
REQUIRED TONNAGE (20 HR RUNTIME):
REQUIRED CAPACITY (20 HR RUNTIME):

1,320 SQUARE FEET
13,860 CUBIC FEET
2,640 SQUARE FEET
23,400 POUNDS
260 POUNDS

17.9 POUNDS PER SQ.FT 1,169.8 SQ FOOT PER TON

324,978.2 BTU 1.1 TONS 13,540.8 BTUH ** OGDEN **
ENVIRONMENTAL ENG. DIV.
KNOXVILLE, TN 37933

PROJECT NAME: FORT CAMPBELL CLIENT NAME: US ARMY CORPS OF ENG. DATE: 12-28-92

REFRIGERATION BOX LOADS PROGRAM

DESIGNER:

Corry

GENERAL PROJECT INFORMATION:

PROJECT NAME:
PROJECT FILE NAME:
PROJECT LOCATION:
BOX NAME:
GENERAL COMMENTS:
BOX DIMENSIONS (LxWxH):

FORT CAMPBELL K:ISSRM5 COLD STORAGE FACILITY ISSUE ROOM EXISTING FACILITY 82 x 21 x 10.5 FEET

CLIENT NAME: STREET ADDRESS: CITY, STATE, ZIP: CLIENT PHONE: US ARMY CORPS OF ENG. LOUISVILLE, DISTRICT CLARKSVILLE, TN. UNK

OUTDOOR DESIGN CONDITIONS:

ALTITUDE: 590 FEET
OUTDOOR DESIGN DRY BULB: 55 DEG.F
OUTDOOR DESIGN WET BULB: 55 DEG.F
INFILTRATION AIR DRY BULB TEMP: 55 DEG.F
INFILTRATION AIR WET BULB TEMP: 55 DEG.F

INDOOR DESIGN CONDITIONS:

REFRIGERATED BOX DRY BULB TEMP: 45 DEG.F REFRIGERATED BOX REL. HUMIDITY: 60 % SAFETY FACTOR: 10 %

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ***** KNOXVILLE, TN 37933 ** OGDEN ** 12-28-92 FORT CAMPBELL ******************** DETAILED BOX LOADS REPORT **************** --!!--TEMP LOAD AREA HOURLY FACTOR DIFF BTU LOAD BTU LO DESCRIPTION (SF) -----NORTH WALL - LT 861 0.040 10 + 0 344.4

EAST WALL - MED 221 0.040 10 + 6 141.4

SOUTH WALL - LT 861 0.040 10 + 0 344.4

WEST WALL - MED 221 0.040 10 + 6 141.4

ROOF - DK 1,722 0.050 10 + 20 2,583.0

FLOOR 1,722 0.050 10 + 0 861.0 8,266 3,394 8,266 3,394 61,992 20,664 4,415.0 TOTAL TRANSMISSION LOADS 105,961 LOAD UNIT LOAD
DESCRIPTION QUAN FACTOR
PEOPLE 3.0 PEOPLE 600.0 BTUH/PERSON
MOTORS 12.0 HP 2000.0 BTUH/HP
LIGHTS 1,722.0 WATTS 3.4 BTUH/WATT
EQUIPMENT 9,240.0 WATTS 3.4 BTUH/WATT OPERATING 24 HR
HOURS BTU LOAD 8.0 12.0 24.0 6.0 14,400 288,000 141,052 189,217 TOTAL INTERNAL LOADS 632,669 PRODUCT DESCRIPTION COOLING + FREEZE + SUB-COOL + RESPIR + CONTAIN = 24 HR BTU BTU BTU BTU BTU LOAD Bread 4,200 465 0 0 0 4,200 0 Milk, whole p 0 0 0 465 PRODUCT AND CONT. 0 4,665 0 0 TOTALS 4,665 0 INFILTRATION METHOD: DOOR AREA INFILTRATION AIR FLOW: 24.6 CFM

HOURS OF INFILTRATION PER DAY:	3.00	HR
INFILTRATION AIR DRY BULB TEMPERATURE:	55	DEG.F
INFILTRATION AIR WET BULB TEMPERATURE:	55	DEG.F
REFRIGERATED BOX AIR TEMPERATURE:	45	DEG.F
HEIGHT OF DOORWAY:	8.0	FEET
WIDTH OF DOORWAY:	5.0	FEET
ENTHALPY OF INFILTRATION AIR:	18.172	BTU/LB
ENTHALPY OF REFRIGERATED AIR:	12.839	BTU/LB
DENSITY OF INFILTRATION AIR:	0.075	LB/CUBIC FT
DENSITY OF REFRIGERATED AIR:	0.077	LB/CUBIC FT
PERCENT OF FULL FLOW THROUGH DOOR:	12	8
EFFICIENCY OF PROTECTIVE DEVICE:	85	૪

1,724 BTU/24 HR

TOTAL INFILTRATION LOAD:

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ***** ** OGDEN ** KNOXVILLE, TN 37933

FORT CAMPBELL

12-28-92

DESCRIPTIONS QUAN HOURS BTUH CAP BTU LOAD LOAD NORTH WALL 861 24 344 8,266 0. EAST WALL 221 24 141 3,395 0. SOUTH WALL 861 24 344 8,266 0. WEST WALL 221 24 141 3,395 0. ROOF 1,722 24 2,583 61,992 6. FLOOR 1,722 24 861 20,664 2. PEOPLE 3 8 600 14,400 1. MOTORS 12 12 12,000 288,000 29. LIGHTS 1,722 24 5,877 141,052 14. EQUIPMENT 9,240 6 7,884 189,217 19. Bread 400 48 175 4,200 0. Milk, whole past. G 100 48 19 465 0. <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
EAST WALL 221 24 141 3,395 0. SOUTH WALL 861 24 344 8,266 0. WEST WALL 221 24 141 3,395 0. ROOF 1,722 24 2,583 61,992 6. FLOOR 1,722 24 861 20,664 2. PEOPLE 3 8 600 14,400 1. MOTORS 12 12 12,000 288,000 29. LIGHTS 1,722 24 5,877 141,052 14. EQUIPMENT 9,240 6 7,884 189,217 19. Bread 400 48 175 4,200 0. Milk, whole past. G 100 48 19 465 0. INFILTRATION 25 3 72 1,724 0. COMPRESSOR RUN-TIME 0 20 6,208 149,004 15.						% TOT LOAD
	EAST WALL SOUTH WALL WEST WALL ROOF FLOOR PEOPLE MOTORS LIGHTS EQUIPMENT Bread Milk, whole past. G	221 861 221 1,722 1,722 3 12 1,722 9,240 400 100	24 24 24 24 24 8 12 24 6 48 48	141 344 141 2,583 861 600 12,000 5,877 7,884 175	3,395 8,266 3,395 61,992 20,664 14,400 288,000 141,052 189,217 4,200 465	0.8 0.3 0.8 0.3 6.3 2.1 1.5 29.3 14.3 19.2 0.4 0.0
	COMPRESSOR RUN-TIME SAFETY LOAD	0 10	20 24	6,208 3,725	149,004 89,402	15.2 9.1

BOX LOAD DESCRIPTIONS	AREA QUAN	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
TRANSMISSION INTERNAL PRODUCT AND CONTAINER INFILTRATION COMPRESSOR RUN-TIME SAFETY LOAD	5,608 500 25 20 10	4,415 26,361 194 72 6,208 3,725	105,961 632,669 4,665 1,724 149,004 89,402	10.8 64.3 0.5 0.2 15.2 9.1
TOTAL BOX LOADS	<u>·</u>	40,976	983,426	100.0

TOTAL REFRIGERATED AREA: TOTAL REFRIGERATED VOLUME:

TOTAL ENVELOPE AREA:

TOTAL BOX LOADS

TOTAL WEIGHT OF PRODUCT:

TOTAL WEIGHT OF CONTAINERS:

WEIGHT OF PRODUCT PER SQ FT:

REFRIGERATED AREA PER TON:

REQUIRED 24 HR LOAD:

REQUIRED TONNAGE (20 HR RUNTIME): 3.4 TONS
REQUIRED CAPACITY (20 HR RUNTIME): 40,976.1 BTUH

1,722 SQUARE FEET

18,081 CUBIC FEET

5,608 SQUARE FEET

500 POUNDS

0 POUNDS

0.3 POUNDS PER SQ.FT

40,976 983,426 100.0

504.3 SQ FOOT PER TON

983,425.8 BTU

** OGDEN **
ENVIRONMENTAL ENG. DIV.
KNOXVILLE, TN 37933

PROJECT NAME: FORT CAMPBELL CLIENT NAME: US ARMY CORPS OF ENG. DATE: 10-13-92

REFRIGERATION BOX LOADS PROGRAM

DESIGNER: WICKER/ROSEN

GENERAL PROJECT INFORMATION:

PROJECT NAME:
PROJECT FILE NAME:
PROJECT LOCATION:
BOX NAME:
GENERAL COMMENTS:
BOX DIMENSIONS (LxWxH):

CLIENT NAME:
STREET ADDRESS:
CITY, STATE, ZIP:

CLIENT PHONE:

FORT CAMPBELL K:VF213 COLD STORAGE FACILITY VEGETABLE FREEZER 2 EXISTING FACILITY 44 x 27 x 10.5 FEET

US ARMY CORPS OF ENG. LOUISVILLE, DISTRICT CLARKSVILLE, TN. UNK

OUTDOOR DESIGN CONDITIONS:

ALTITUDE: 590 FEET
OUTDOOR DESIGN DRY BULB: 55 DEG.F
OUTDOOR DESIGN WET BULB: 55 DEG.F
INFILTRATION AIR DRY BULB TEMP: 55 DEG.F
INFILTRATION AIR WET BULB TEMP: 55 DEG.F

INDOOR DESIGN CONDITIONS:

REFRIGERATED BOX DRY BULB TEMP: 3 DEG.F REFRIGERATED BOX REL. HUMIDITY: 50 % SAFETY FACTOR: 10 %

***** REI	FRIGERATION :	LOADS PROG	RAM BY	ELITE	SOFTWAR		MENT INC	
FORT CAMPBI			10-13					PAGE 2
******	*****	*** DETAIL	LED BOX 1	LOADS R	EPORT **	*****	*****	*****
LOAD		AREA	U	_	TEMP	HOURI	ĽΥ	24
DESCRIPT	ION	(SF)	FACTO	R	DIFF	BTU LOA	AD.	BTU LO
NORTH WALL	- I/T	284	0.040	 52 +	0	590.7	•	14,177
FACT WALL	- LT	462	0.040		-	961.0		23,064
SOUTH WALL			0.040			590.7		14,177
WEST WALL	- LT		0.040			961.0		23,064
ROOF - DK		1,188				2,822.7		67,745
FLOOR		1,188	0.033	52 +	0	2,038.6		48,926
TOTAL TRANS	SMISSION LOA	DS				7,962.6	:	191,102
LOAD	UNIT		LOAD			OPERATING		24 HR
DESCRIPTION			FACTOR			HOURS	B	TU LOAD
PEOPLE	2.0	PEOPLE	1250.0	втин/ре	RSON	2.0		5,000
MOTORS	0.3		3000.0			12.0		10,800
DEFROST			100.0			1.0		17,748
LIGHTS	5,200.0 1,200.0	WATTS		BTUH/WA		24.0		98,294
EQUIPMENT	5,890.0			BTUH/WA		1.0		20,103
TOTAL INTE	RNAL LOADS							151,945
						•		
■ INFILTRATI	ON METHOD:					DOOR AREA		
■ INFILTRATIO	ON AIR FLOW:					55.4	CFM	
HOURS OF I	NFILTRATION	PER DAY:				3.00	HR	
INFILTRATI	ON AIR DRY B	ULB TEMPE	RATURE:			55	DEG.F	
	ON AIR WET B						DEG.F	
REFRIGERAT	ED BOX AIR T	EMPERATUR	E:			3	DEG.F	

HOURD OF THE THE HOUR THE DITE.	0.00	****
INFILTRATION AIR DRY BULB TEMPERATURE:	55	DEG.F
INFILTRATION AIR WET BULB TEMPERATURE:	55	DEG.F
REFRIGERATED BOX AIR TEMPERATURE:	3	DEG.F
HEIGHT OF DOORWAY:	8.0	FEET
WIDTH OF DOORWAY:	5.0	FEET
ENTHALPY OF INFILTRATION AIR:	18.172	BTU/LB
ENTHALPY OF REFRIGERATED AIR:	0.964	BTU/LB
DENSITY OF INFILTRATION AIR:	0.075	LB/CUBIC FT
DENSITY OF REFRIGERATED AIR:	0.084	LB/CUBIC FT
PERCENT OF FULL FLOW THROUGH DOOR:	12	8
EFFICIENCY OF PROTECTIVE DEVICE:	85	8
TOTAL INFILTRATION LOAD:	12,672	BTU/24 HR

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ***** KNOXVILLE, TN 37933

** OGDEN ** FORT CAMPBELL

10-13-92

PAGE 3

*******	BOX	LOADS	SUMMARY	REPORT	*******

BOX LOAD DESCRIPTIONS	AREA QUAN	OPER HOURS	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
NORTH WALL	284	24	591	14,177	3.0
EAST WALL	462	24	961	23,063	4.9
SOUTH WALL	284	24	591	14,177	3.0
WEST WALL	462	24	961	23,063	4.9
ROOF	1,188	24	2,823	67,745	14.4
FLOOR	1,188	24	2,039	48,927	10.4
PEOPLE	2	2	208	5,000	1.1
MOTORS	0	12	450	10,800	2.3
DEFROST WATTS	5,200	1	739	17,748	3.8
LIGHTS	1,200	24	4,096	98,294	20.9
EQUIPMENT	5,890	1	838	20,103	4.3
Butter	500	48	0	0	0.0
INFILTRATION	55	3	528	12,672	2.7
COMPRESSOR RUN-TIME	0	20	2,964	71,144	15.2
SAFETY LOAD	10	24	1,779	42,686	9.1
TOTAL BOX LOADS			19,564	469,548	100.0

BOX LOAD DESCRIPTIONS	AREA QUAN	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
TRANSMISSION INTERNAL	3,868	7,963 6,331	191,102 151,945	40.7
PRODUCT AND CONTAINER	0 .	.0	, 0	0.0
INFILTRATION	55	528	12,672	2.7
COMPRESSOR RUN-TIME	20	2,964	71,144	15.2
SAFETY LOAD	10	1,779	42,686	9.1
TOTAL BOX LOADS		19,564	469,548	100.0

TOTAL REFRIGERATED AREA:

TOTAL REFRIGERATED VOLUME:

TOTAL ENVELOPE AREA:

TOTAL WEIGHT OF PRODUCT:

TOTAL WEIGHT OF CONTAINERS:

WEIGHT OF PRODUCT PER SQ FT:

REFRIGERATED AREA PER TON:

REQUIRED 24 HR LOAD:

REQUIRED TONNAGE (20 HR RUNTIME):
REQUIRED CAPACITY (20 HR RUNTIME):

REQUIRED CAPACITY (20 HR RUNTIME):

1,188 SQUARE FEET

12,474 CUBIC FEET

3,868 SQUARE FEET

500 POUNDS

0 POUNDS

0.4 POUNDS PER SQ.FT

728.7 SQ FOOT PER TON

469,547.8 BTU 1.6 TONS 19,564.5 BTUH 19,564.5 BTUH ** OGDEN **
ENVIRONMENTAL ENG. DIV.
KNOXVILLE, TN 37933

PROJECT NAME: FORT CAMPBELL CLIENT NAME: US ARMY CORPS OF ENG. DATE: 12-28-92

REFRIGERATION BOX LOADS PROGRAM

DESIGNER: Corry

GENERAL PROJECT INFORMATION:

PROJECT NAME:
PROJECT FILE NAME:
PROJECT LOCATION:
BOX NAME:
GENERAL COMMENTS:
BOX DIMENSIONS (LxWxH):

CLIENT NAME: STREET ADDRESS: CITY, STATE, ZIP: CLIENT PHONE: FORT CAMPBELL K:VF112 COLD STORAGE FACILITY VF-1,NORTH FREEZER EXISTING FACILITY 40 x 23 x 10.2 FEET

US ARMY CORPS OF ENG. LOUISVILLE, DISTRICT CLARKSVILLE, TN. UNK

OUTDOOR DESIGN CONDITIONS:

ALTITUDE: 590 FEET
OUTDOOR DESIGN DRY BULB: 55 DEG.F
OUTDOOR DESIGN WET BULB: 55 DEG.F
INFILTRATION AIR DRY BULB TEMP: 55 DEG.F
INFILTRATION AIR WET BULB TEMP: 55 DEG.F

INDOOR DESIGN CONDITIONS:

REFRIGERATED BOX DRY BULB TEMP: 6 DEG.F REFRIGERATED BOX REL. HUMIDITY: 50 % SAFETY FACTOR: 10 %

***** REFRIGERATION LOAD				IENT INC. ***** VILLE, TN 37933 PAGE 2
FORT CAMPBELL ***********************************		-28-92 K LOADS REPOR	T ******	
LOAD DESCRIPTION	AREAU			
NORTH WALL - MED EAST WALL - LT SOUTH WALL - MED WEST WALL - MED ROOF - DK FLOOR	408 0.040 235 0.040 408 0.040 235 0.040 920 0.033 920 0.033	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	799.7 460.6 799.7 517.0 2,094.8 1,487.6	19,193 11,054 19,193 12,408 50,275 35,702
TOTAL TRANSMISSION LOADS			6,157.8	147,787
LOAD UNIT DESCRIPTION QUAN	LOA! FACTO!		OPERATING HOURS	24 HR BTU LOAD
PEOPLE 2.0 PEO MOTORS 3.0 HP DEFROST 4,000.0 WAT LIGHTS 800.0 WAT EQUIPMENT 9,792.0 WAT	3000. TS 100. TS 3.	O BTUH/PERSON O BTUH/HP O PERCENT 4 BTUH/WATT 4 BTUH/WATT	1.0 12.0 1.0 24.0 1.0	2,500 108,000 13,652 65,530 33,420
TOTAL INTERNAL LOADS				223,102
PRODUCT COOLING DESCRIPTION BTU	+ FREEZE + BTU	SUB-COOL + BTU	RESPIR + CONT	TAIN = 24 HR BTU LOAD
Beans, Lima 3,066	197,400	20,160	0 31,	,095 251,721
PRODUCT AND CONT. TOTALS 3,066	197,400	20,160	0 31	,095 251,721
INFILTRATION METHOD:			DOOR AREA	
INFILTRATION AIR FLOW: HOURS OF INFILTRATION PER INFILTRATION AIR DRY BULB INFILTRATION AIR WET BULB REFRIGERATED BOX AIR TEMP	TEMPERATURE TEMPERATURE	: :	55	
HEIGHT OF DOORWAY: WIDTH OF DOORWAY: ENTHALPY OF INFILTRATION ENTHALPY OF REFRIGERATED DENSITY OF INFILTRATION A DENSITY OF REFRIGERATED A PERCENT OF FULL FLOW THRO EFFICIENCY OF PROTECTIVE	AIR: IR: IR: UGH DOOR:	•	5.0 18.172 1.725 0.075 0.083	FEET FEET BTU/LB BTU/LB LB/CUBIC FT LB/CUBIC FT

TOTAL INFILTRATION LOAD:

1,776 BTU/24 HR

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ***** KNOXVILLE, TN 37933 ** OGDEN **

12-28-92 FORT CAMPBELL

BOX LOAD	AREA	OPER	REQUIRED	24 HR	% TOT
DESCRIPTIONS	QUAN	HOURS	BTUH CAP	BTU LOAD	LOAD
NORTH WALL	408	24	800	19,192	2.3
EAST WALL	235	24	461	11,054	1.3
SOUTH WALL	408	24	800	19,192	2.3
WEST WALL	235	24	517	12,408	1.5
ROOF	920	24	2,095	50,276	6.1
FLOOR	920	24	1,488	35,703	4.3
PEOPLE	2	1	104	2,500	0.3
MOTORS	3	12	4,500	108,000	13.1
DEFROST WATTS	4,000	1	569	13,652	1.7
LIGHTS	800	24	2,730	65,530	8.0
EQUIPMENT	9,792	1	1,393	33,420	4.1
Beans, Lima	7,770	48	10,488	251,721	
INFILTRATION	24	1	74	1,776	0.2
COMPRESSOR RUN-TIME	0	20	5,203	124,877	
SAFETY LOAD	10	24	3,122	74,926	9.1
TOTAL BOX LOADS			34,341	824,189	100.0

BOX LOAD DESCRIPTIONS	AREA QUAN	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
TRANSMISSION INTERNAL PRODUCT AND CONTAINER INFILTRATION COMPRESSOR RUN-TIME SAFETY LOAD	3,126 7,770 24 20 10	6,158 9,296 10,488 74 5,203 3,122	147,787 223,102 251,721 1,776 124,877 74,926	17.9 27.1 30.5 0.2 15.2 9.1
TOTAL BOX LOADS		34,341	824,189	100.0

TOTAL	REFRIGERATED AREA:	
TOTAL	REFRIGERATED VOLUME:	
TOTAL	ENVELOPE AREA:	
TOTAL	WEIGHT OF PRODUCT:	

TOTAL WEIGHT OF CONTAINERS: WEIGHT OF PRODUCT PER SQ FT:

REFRIGERATED AREA PER TON:

REQUIRED 24 HR LOAD: REQUIRED 24 HK LOAD.

REQUIRED TONNAGE (20 HR RUNTIME): 2.9 TONS

34,341.2 BTUH

920 SQUARE FEET 9,384 CUBIC FEET 3,126 SQUARE FEET 4,200 POUNDS

3,570 POUNDS 8.4 POUNDS PER SQ.FT 321.5 SQ FOOT PER TON

824,188.8 BTU

OGDEN ** ENVIRONMENTAL ENG. DIV. KNOXVILLE, TN 37933

PROJECT NAME: FORT CAMPBELL CLIENT NAME: US ARMY CORPS OF ENG. FORT CAMPBELL DATE: 12-28-92

REFRIGERATION BOX LOADS PROGRAM

DESIGNER: Corry

GENERAL PROJECT INFORMATION:

PROJECT NAME: PROJECT FILE NAME: PROJECT LOCATION: BOX NAME: GENERAL COMMENTS: BOX DIMENSIONS (LxWxH):

CLIENT NAME: STREET ADDRESS: CITY, STATE, ZIP:

CLIENT PHONE:

FORT CAMPBELL K:PC210 COLD STORAGE FACILITY PC-2 VEGETABLE COOLER EXISTING FACILITY 44 x 23 x 10.5 FEET

US ARMY CORPS OF ENG. LOUISVILLE, DISTRICT CLARKSVILLE, TN. UNK

OUTDOOR DESIGN CONDITIONS:

590 FEET ALTITUDE: OUTDOOR DESIGN DRY BULB: 55 DEG.F OUTDOOR DESIGN WET BULB: 55 DEG.F INFILTRATION AIR DRY BULB TEMP: 55 DEG.F INFILTRATION AIR WET BULB TEMP: 55 DEG.F

INDOOR DESIGN CONDITIONS:

REFRIGERATED BOX DRY BULB TEMP: 39 DEG.F REFRIGERATED BOX REL. HUMIDITY: 60 % SAFETY FACTOR: 10 %

***** REFRIGERATION LOA ** OGDEN ** FORT CAMPBELL	12-2	8-92	KNOXV	VILLE, TN 37933 PAGE 2
*******	DETAILED BOX	LOADS REPORT	*****	******
LOAD DESCRIPTION	AREAU- (SF) FACTO		HOURI BTU LOA	
NORTH WALL - LT EAST WALL - LT	242 0.040 462 0.040	16 + 0	154.9 295.7	
SOUTH WALL - LT	242 0.040		154.9	
WEST WALL - MED	462 0.040		406.6	
	,012 0.050 ,012 0.200		1,821.6 3,238.4	
FLOOR 1	,012 0.200	10 + 0	3,230.4	11,122
TOTAL TRANSMISSION LOADS			6,071.4	145,713
LOAD UNIT DESCRIPTION QUAN	LOAD FACTOR		OPERATING HOURS	24 HR BTU LOAD
PEOPLE 2.0 PEO MOTORS 12.0 HP LIGHTS 1,200.0 WAT EQUIPMENT 10,252.0 WAT	3000.0 3.4	BTUH/PERSON BTUH/HP BTUH/WATT BTUH/WATT	2.0 12.0 24.0 6.0	•
TOTAL INTERNAL LOADS				743,595
PRODUCT COOLING DESCRIPTION BTU	+ FREEZE + SU BTU	JB-COOL + R	ESPIR + CONT	TAIN = 24 HR BTU LOAD
Lettuce, head 169,344	0	0	0 2	,533 171,877
PRODUCT AND CONT. TOTALS 169,344	0	0	0 2,	,533 171,877
INFILTRATION METHOD:			DOOR AREA	
INFILTRATION AIR FLOW: HOURS OF INFILTRATION PER INFILTRATION AIR DRY BULK INFILTRATION AIR WET BULK REFRIGERATED BOX AIR TEME	55			
HEIGHT OF DOORWAY: WIDTH OF DOORWAY: ENTHALPY OF INFILTRATION ENTHALPY OF REFRIGERATED DENSITY OF INFILTRATION A DENSITY OF REFRIGERATED A PERCENT OF FULL FLOW THRO EFFICIENCY OF PROTECTIVE	18.172 10.972 0.075 0.078	FEET BTU/LB BTU/LB LB/CUBIC FT LB/CUBIC FT		

3,158 BTU/24 HR

TOTAL INFILTRATION LOAD:

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ***** ** OGDEN ** KNOXVILLE, TN 37933

FORT CAMPBELL

12-28-92

BOX LOAD	AREA	OPER	REQUIRED	24 HR	% TOT
DESCRIPTIONS	QUAN	HOURS	BTUH CAP	BTU LOAD	LOAD
NORTH WALL EAST WALL SOUTH WALL	242 462 242	24 24 24 24	155 296 155	3,717 7,096 3,717	0.3 0.5 0.3
WEST WALL ROOF FLOOR	462	24	407	9,757	0.7
	1,012	24	1,822	43,718	3.1
	1,012	24	3,238	77,722	5.5
	2	2	140	3,360	0.2
PEOPLE MOTORS LIGHTS EQUIPMENT	12	12	18,000	432,000	30.7
	1,200	24	4,096	98,294	7.0
	10,252	6	8,748	209,940	14.9
Lettuce, head INFILTRATION COMPRESSOR RUN-TIME SAFETY LOAD	17,160	48	7,162	171,877	12.2
	33	3	132	3,158	0.2
	0	20	8,870	212,868	15.2
	10	24	5,322	127,721	9.1
TOTAL BOX LOADS			58,539	1,404,931	100.0

BOX LOAD DESCRIPTIONS	AREA QUAN	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
TRANSMISSION INTERNAL PRODUCT AND CONTAINER INFILTRATION COMPRESSOR RUN-TIME SAFETY LOAD	3,432 17,160 33 20 10	6,071 30,983 7,162 132 8,870 5,322	145,713 743,595 171,877 3,158 212,868 127,721	10.4 52.9 12.2 0.2 15.2 9.1
TOTAL BOX LOADS		58,539	1,404,931	100.0

TOTAL REFRIGERA	TED AREA:
TOTAL REFRIGERA	TED VOLUME:
TOTAL ENVELOPE	AREA:
TOTAL WEIGHT OF	PRODUCT:
TOTAL WEIGHT OF	CONTAINERS:
METCHE OF DOOD!	TOTAL OD CO TOTAL

WEIGHT OF PRODUCT PER SQ FT: REFRIGERATED AREA PER TON:

REQUIRED 24 HR LOAD:

REQUIRED TONNAGE (20 HR RUNTIME): REQUIRED CAPACITY (20 HR RUNTIME): 1,012 SQUARE FEET

10,626 CUBIC FEET

3,432 SQUARE FEET

16,800 POUNDS

360 POUNDS

17.0 POUNDS PER SQ.FT

207.5 SQ FOOT PER TON

1,404,931.4 BTU

4.9 TONS

58,538.8 BTUH

** OGDEN **
ENVIRONMENTAL ENG. DIV.
KNOXVILLE, TN 37933

PROJECT NAME: FORT CAMPBELL
CLIENT NAME: US ARMY CORPS OF ENG.
DATE: 12-28-92

REFRIGERATION BOX LOADS PROGRAM

DESIGNER: Corry

GENERAL PROJECT INFORMATION:

PROJECT NAME:
PROJECT FILE NAME:
PROJECT LOCATION:
BOX NAME:
GENERAL COMMENTS:

GENERAL COMMENTS:
BOX DIMENSIONS (LxWxH):

CLIENT NAME:
STREET ADDRESS:
CITY, STATE, ZIP:
CLIENT PHONE:

FORT CAMPBELL
K:MF-16
COLD STORAGE FACILITY
MAIN MEAT FREEZER
EXISTING FACILITY
82 x 37 x 10.2 FEET

US ARMY CORPS OF ENG. LOUISVILLE, DISTRICT CLARKSVILLE, TN. UNK

OUTDOOR DESIGN CONDITIONS:

ALTITUDE: 590 FEET
OUTDOOR DESIGN DRY BULB: 55 DEG.F
OUTDOOR DESIGN WET BULB: 55 DEG.F
INFILTRATION AIR DRY BULB TEMP: 55 DEG.F
INFILTRATION AIR WET BULB TEMP: 55 DEG.F

INDOOR DESIGN CONDITIONS:

REFRIGERATED BOX DRY BULB TEMP: 6 DEG.F REFRIGERATED BOX REL. HUMIDITY: 60 % SAFETY FACTOR: 10 %

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ****

** OGDEN ** FORT CAMPBELL		12-2	8-92			KNOXVILLI	E, TN 37933 PAGE 2
*******	* DETAILE	D BOX	LOADS F	REPORT	*****	*******	******
LOAD DESCRIPTION	AREA (SF)	FACTO	R		E	HOURLY BTU LOAD	
SOUTH WALL - LT		0.040	49 + 49 + 49 +	6 0	1,	638.6 829.4 638.6 829.4 908.4	39,326 19,906 39,326 19,906
TOTAL TRANSMISSION LOADS					16,	753.6	402,088
LOAD UNIT DESCRIPTION QUAN	F	LOAD ACTOR				RATING HOURS	24 HR BTU LOAD
PEOPLE 2.0 PE MOTORS 8.5 HP DEFROST 6,600.0 WA LIGHTS 3,600.0 WA EQUIPMENT 15,400.0 WA	OPLE 1	050.0	BTUH/PI BTUH/HI PERCENT BTUH/WA BTUH/WA	ERSON P T ATT ATT		4.0	8,400 357,000 45,052 294,883 315,361
TOTAL INTERNAL LOADS							1,020,696
DESCRIPTION BTU	+ FREEZ	טי	B-COOL BTU		ESPIR - BTU	BTU	LOAD
Beef Sirloin 27,720							1,912,428
PRODUCT AND CONT. TOTALS 27,720	1,680,00	0 1	70,940		0	33,768	1,912,428
INFILTRATION METHOD:					D001	R AREA	
INFILTRATION AIR FLOW: HOURS OF INFILTRATION PE INFILTRATION AIR DRY BUL	B TEMPERA					53.6 CFM 3.00 HR 55 DEG	. F

55 DEG.F INFILTRATION AIR WET BULB TEMPERATURE: REFRIGERATED BOX AIR TEMPERATURE: 6 DEG.F

8.0 FEET HEIGHT OF DOORWAY: 5.0 FEET WIDTH OF DOORWAY: ENTHALPY OF INFILTRATION AIR: 18.172 BTU/LB 1.782 BTU/LB ENTHALPY OF REFRIGERATED AIR: DENSITY OF INFILTRATION AIR: 0.075 LB/CUBIC FT 0.083 LB/CUBIC FT DENSITY OF REFRIGERATED AIR: PERCENT OF FULL FLOW THROUGH DOOR: 12 % EFFICIENCY OF PROTECTIVE DEVICE: 85 %

11,674 BTU/24 HR TOTAL INFILTRATION LOAD:

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ***** ** OGDEN **

FORT CAMPBELL 12-28-92 KNOXVILLE, TN 37933 PAGE 3

TORT CHAILDELL	10 00 10	
*******	BOX LOADS SUMMARY REPORT	*******

BOX LOAD DESCRIPTIONS	AREA QUAN	OPER HOURS	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
NORTH WALL EAST WALL SOUTH WALL WEST WALL ROOF FLOOR PEOPLE MOTORS DEFROST WATTS LIGHTS EQUIPMENT Beef Sirloin Cut, c INFILTRATION COMPRESSOR RUN-TIME SAFETY LOAD	836 377 836 377 3,034 3,034 2 9 6,600 3,600 15,400 46,200 54 0	24 24 24 24 24 24 14 2 24 6 48 3 20 24	1,639 829 1,639 829 6,908 4,906 350 14,875 1,877 12,287 13,140 79,685 486 27,891 16,734	39,325 19,906 39,325 19,906 165,802 117,743 8,400 357,000 45,052 294,883 315,361 1,912,428 11,674 669,377 401,626	0.9 0.5 0.9 0.5 3.8 2.7 0.2 8.1 1.0 6.7 7.1 43.3 0.3 15.2 9.1
TOTAL BOX LOADS			184,079	4,417,889	100.0

BOX LOAD DESCRIPTIONS	AREA QUAN	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
TRANSMISSION INTERNAL	8,494	16,754 42,529	402,088 1,020,696	9.1 23.1
PRODUCT AND CONTAINER	46,200	79,685	1,912,428	43.3
INFILTRATION	54	486	11,674	0.3
COMPRESSOR RUN-TIME	20	27,891	669,377	15.2
SAFETY LOAD	10	16,734	401,626	9.1
TOTAL BOX LOADS		184,079	4,417,889	100.0

TOTAL	REFRI	GERA!	red	ARE	:A:		
TOTAL	REFRI	GERA!	ΓED	VOL	UME	::	
TOTAL	ENVEL	OPE A	AREA	:			
TOTAL	WEIGH	r of	PRC	DUC	T:		
TOTAL	WEIGH	r of	CON	TAI	NEF	RS:	
WEIGHT	OF P	RODU	CT P	ER	SQ	FT	•
REFRIC	SERATE) AR	EA P	ER	TON	:	

REQUIRED 24 HR LOAD:

REQUIRED TONNAGE (20 HR RUNTIME): 4,417,888.6 BTU

REQUIRED CAPACITY (20 HR RUNTIME): 15.3 TONS

REQUIRED CAPACITY (20 HR RUNTIME): 184,078.7 BTUH

3,034 SQUARE FEET 30,947 CUBIC FEET 8,494 SQUARE FEET 42,000 POUNDS 4,200 POUNDS 15.2 POUNDS PER SQ.FT 197.8 SQ FOOT PER TON

4,417,888.6 BTU

** OGDEN **
ENVIRONMENTAL ENG. DIV.
KNOXVILLE, TN 37933

PROJECT NAME: FORT CAMPBELL
CLIENT NAME: US ARMY CORPS OF ENG.
DATE: 12-28-92

REFRIGERATION BOX LOADS PROGRAM

DESIGNER: Corry

GENERAL PROJECT INFORMATION:

PROJECT NAME:
PROJECT FILE NAME:
PROJECT LOCATION:
BOX NAME:
GENERAL COMMENTS:

BOX DIMENSIONS (LxWxH):

CLIENT NAME:
STREET ADDRESS:
CITY, STATE, ZIP:
CLIENT PHONE:

FORT CAMPBELL
K:ICERM4
COLD STORAGE FACILITY
CRUSHED ICE ROOM
EXISTING FACILITY
24 x 12.5 x 10.5 FEET

US ARMY CORPS OF ENG. LOUISVILLE DISTRICT CLARKSVILLE, TN. UNK

OUTDOOR DESIGN CONDITIONS:

ALTITUDE: 590 FEET
OUTDOOR DESIGN DRY BULB: 55 DEG.F
OUTDOOR DESIGN WET BULB: 55 DEG.F
INFILTRATION AIR DRY BULB TEMP: 55 DEG.F
INFILTRATION AIR WET BULB TEMP: 55 DEG.F

INDOOR DESIGN CONDITIONS:

REFRIGERATED BOX DRY BULB TEMP: 28 DEG.F REFRIGERATED BOX REL. HUMIDITY: 10 % SAFETY FACTOR: 10 %

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. ***** KNOXVILLE, TN 37933 ** OGDEN ** 12-28-92 PAGE 2 FORT CAMPBELL ************************ DETAILED BOX LOADS REPORT ******************** LOAD
DESCRIPTION
(SF) FACTOR
DIFF
BTU LOAD
BTU LO

NORTH WALL - MED
EAST WALL - MED
SOUTH WALL - MED
SOUTH WALL - MED
WEST WALL - MED
SOUTH WA 2,019.3 48,463 TOTAL TRANSMISSION LOADS
 LOAD
 UNIT
 LOAD
 OPERATING

 DESCRIPTION
 QUAN
 FACTOR
 HOURS

 PEOPLE
 1.0 PEOPLE
 950.0 BTUH/PERSON
 1.0

 MOTORS
 0.5 HP
 1271.0 BTUH/HP
 6.0

 DEFROST
 2,400.0 WATTS
 100.0 PERCENT
 1.0

 LIGHTS
 300.0 WATTS
 3.4 BTUH/WATT
 24.0

 EQUIPMENT
 600.0 WATTS
 3.4 BTUH/WATT
 6.0
 OPERATING 24 HR
HOURS BTU LOAD 950 3,813 8,191 8,191 24,574 12,287

49,815

INFILTRATION METHOD: DOOR AREA

TOTAL INTERNAL LOADS

INFILTRATION AIR FLOW:
HOURS OF INFILTRATION PER DAY:
INFILTRATION AIR DRY BULB TEMPERATURE:
INFILTRATION AIR WET BULB TEMPERATURE:

REFRIGERATED BOX AIR TEMPERATURE:
28 DEG.F

7.7 FEET HEIGHT OF DOORWAY: 5.8 FEET WIDTH OF DOORWAY: 18.172 BTU/LB ENTHALPY OF INFILTRATION AIR: ENTHALPY OF REFRIGERATED AIR: 6.888 BTU/LB 0.075 LB/CUBIC FT DENSITY OF INFILTRATION AIR: DENSITY OF REFRIGERATED AIR: 0.080 LB/CUBIC FT 80 % PERCENT OF FULL FLOW THROUGH DOOR: 80 % EFFICIENCY OF PROTECTIVE DEVICE:

TOTAL INFILTRATION LOAD: 38,509 BTU/24 HR

***** REFRIGERATION LOADS PROGRAM BY ELITE SOFTWARE DEVELOPMENT INC. *****

** OGDEN **

KNOXVILLE, TN 37933

BOX LOAD	AREA	OPER	REQUIRED	24 HR	% TOT
DESCRIPTIONS	QUAN	HOURS	BTUH CAP	BTU LOAD	LOAD
NORTH WALL	131	24	142	3,396	1.9
EAST WALL	252	24	272	6,532	3.6
SOUTH WALL	131	24	162	3,899	2.2
WEST WALL	252	24	333	7,983	4.4
ROOF	300	24	705	16,920	9.4
FLOOR	300	24	405	9,720	5.4
PEOPLE	1	1	40	950	0.5
MOTORS	1	6	159	3,813	2.1
DEFROST WATTS	2,400	1	341	8,191	4.5
LIGHTS	300	24	1,024	24,574	13.6
EQUIPMENT	600	6	512	12,287	6.8
ICE	13,000	48	0	0	0.0
INFILTRATION	388	2	1,605	38,509	21.3
COMPRESSOR RUN-TIME	0	20	1,140	27,357	15.2
SAFETY LOAD	10	24	684	16,414	9.1
TOTAL BOX LOADS			7,523	180,559	100.0

BOX LOAD DESCRIPTIONS	AREA QUAN	REQUIRED BTUH CAP	24 HR BTU LOAD	% TOT LOAD
TRANSMISSION INTERNAL PRODUCT AND CONTAINER INFILTRATION COMPRESSOR RUN-TIME SAFETY LOAD	1,366 0 388 20 10	2,019 2,076 0 1,605 1,140 684	48,463 49,815 0 38,509 27,357 16,414	26.8 27.6 0.0 21.3 15.2 9.1
TOTAL BOX LOADS		7,523	180,559	100.0

TOTAL REFRIGERATED AREA:	
TOTAL REFRIGERATED VOLUM	E:
TOTAL ENVELOPE AREA:	
TOTAL WEIGHT OF PRODUCT:	
TOTAL WEIGHT OF CONTAINE	RS:
WEIGHT OF PRODUCT PER SQ	FT:
REFRIGERATED AREA PER TO	N:

REQUIRED 24 HR LOAD:
REQUIRED TONNAGE (20 HR RUNTIME):
REQUIRED CAPACITY (20 HR RUNTIME):

300 SQUARE FEET
3,150 CUBIC FEET
1,366 SQUARE FEET
13,000 POUNDS
0 POUNDS
43.3 POUNDS PER SQ.FT
478.5 SQ FOOT PER TON

180,559.0 BTU 0.6 TONS 7,523.3 BTUH

Summary of Refrigeration Systems

		Compressors/Condensers	onden	Sers			conce			Evaporators	rs			
Vitability	S S S S S S S S S S S S S S S S S S S	Model	9	Notes	Refrig.	Capacity BTU/HR	Quantity	MFG.	Model	Defrost	롸	Area Served	Capacity BTU/HR	Estimated Heat Gain BTU/HR
≥	Temperatu	ure System						ll .						
-	Carrier	5H60-104	8 8	Compressor #1	R502	165,000	cı -	Krack	BL42512 8VC2100ED	Water	7 1/2 2 @ 1/4	Meat Freezer Ice Storage	2 @ 110,000 21,000	280,000
	Carner Dunham Bush	5H60-104 DDEC-230	3	Condenser #1 (ECL)	R502	350,000								
Central Med	lium Tempe	Central Medium Temperature System	_											
•	Š	SHADSAR	04	Compressor #3	R-22	400,000	N	Krack	BUC2700ED	Electric		Egg Room	27,000	31,850
	Carrier	5H40-548	5 4	Compressor #4	R-22	400,000	п	Krack	BUC2700ED	Electric		Mini-Mart Staging/Hall	27,000	12,700
-	Carrier	5H40-548	9	Compressor #5	R-22	400,000	~	Krack	CPL 1326-6(PC-2)		ဇာ	Fresh Produce/Veg. Cooler	13,000	63,600
							٧.		CP8810R		စ	Issue Room	16,500	67,400
-	Evapco	689-30335E		Condenser #2 (ECH)	R-22	230,000		Krack	SS-244-170EDL-DXF(C-4)	Electric	ରା ଶ	Mini-Mart Produce	13,000	35,800
								Krack	BUC950		•	Mini-Mart Egg Room	9,500	37,000
Packaged Units 1 & 2	Jnits 1 & 2													
ο,	Copeland	MRA2-0500 TFD	1		R-22	19,300	-	Bohn	LB727202A	Electric		North Freezer (WF-1)		57,200
Packaged Unit No. 3	Jnit No. 3) - ((
-	Copeland	3RA1-0310-TAC			R-502	18,800	-	Bohn	ADT2541A	Electric		Oleo Room		24,700
Packaged L	Jnit No. 4 (Packaged Unit No. 4 (Not in Operation)	(uc											
-	Maneurop	CMT160-3M1			R-22	40,250	-	Russell	AE66-280	Electric		New South Freezer	28,000	•
Packaged Unit No. 5	Jnit No. 5													
-	Maneurop	T60-GM1 (?)			R-502		-	Russell	AE66-245	Electric		Mini-Mart Freestanding	24,500	•
Packaged Unit No. 6	Jnit No. 6													
-	Hill Refrig.	NR2LAL5-T3			R-502	13,000	-	₹	N712FK	Electric		Mini-Mart Display Case	336/Ft.	ı
Packaged Unit No. 7	Juit No. 7													
-	Bohn	BelsJP			R-502	37,300	CV	Bohn	2400EL-2	Electric		Veg. Freezer (WF-2)	24,000	/6,200
							8							

Water Heater Replacement Evaluation

Current Equipment: Three gas heaters of indeterminate age. Not all appear to be in use. Estimated energy use is \$500/year. This was estimated by considering two of the three heaters in use part time, with significant losses in efficiency due to the low usage. Approximately equivalent to one more modern heater in use in an average home.

Replacement: 4 instantaneous heaters, capacity 2 gallon/minute.

Base price: \$208. Add 25% for wiring and installation = \$260/ea.

Location: Mini-Mart latrine, VET office, VET office latrine, locker room latrine.

Estimated Energy Savings:

Assume runtime 3 hrs/day total all four heaters @ 9.5 KW

 $3hr \times 9.5KW + 28.5 KWH/day$

28.5 KWH/day x 260 days/year x 3413/1000000 MBTU/KWH = 25.3 MBTU/yr

25.3 MBTU x \$13.93/MBTU = \$352/year energy usage

\$500 - \$352 = \$148/year

158 - 25.3 MBTU/year = 133 MBTU/yr

Corry

Fort Campbell Cold Storage Facility (Building 5202) Lighting Retrofit Analysis

			Exist	Existing Incandescent	scent				Fluorescent Fixtures Requirements	ixtures Requ	uirements				
	Ceiling	Area			Lumens @	Coverage	Basic	Footcandles	Adj. for	Adj. 7 ft	No. of	Lamps	Input Watts	Lumens @	Cost @
Room	£	(sq.ft.)	Quantity	Watts	17	Factor	Quantity	Required	Footcandles	to work	Fixtures	Quantity	203	16,600	\$257
Mini-Mart Checkout	10.5	1,125	14	2,800	47,600	09	18.75	02	13.13	12.08	12	24	2,436	199,200	\$3,083
Mini-Mart (assumes no free-standing unit)	10.5	2,750	22	2,200	37,400	09	45.83	30	13.75	12.65	13	56	2,639	215,800	\$3,340
Vegetable Cooler (PC-2)	10.5	1,050	12	1,800	30,600	09	17.50	20	3.50	3.22	3	9	609	49,800	\$771
Vegetable Freezer (VF-2)	10.5	1,275	12	1,800	30,600	09	21.25	20	4.25	3.91	4	8	812	66,400	\$1,028
Egg Room	10.5	1,350	20	2,000	34,000	09	22.50	20	4.50	4.14	4	8	812	66,400	\$1,028
Mini-Mart Hallway	10.5	960	11	1,650	28,050	50	17.20	20	3.44	3.16	3	9	609	49,800	\$771
Issue Room	10.5	1,825	20	3,000	51,000	09	30.42	30	9.13	8.40	8	16	1,624	132,800	\$2,056
Main Meat Freezer	10.2	3,150	36	3,600	61,200	09	52.50	20	10.50	99.6	10	50	2,030	166,000	\$2,570
Passage	=	1,335	20	2,000	34,000	09	22.25	20	4.45	4.09	4	8	812	66,400	\$1,028
Staging Area	10.75	1,950	30	3,000	51,000	09	32.50	30	9.75	8.97	6	18	1,827	149,400	\$2,313
North Freezer (VF-1)	10.2	1,250	80	800	13,600	09	20.83	20	4.17	3.83	4	8	812	66,400	\$1,028
Oleo Room	10.25	200	9	009	10,200	20	14.00	20	2.80	2.58	3	9	609	49,800	\$771
Crushed Ice	10.5	270	8	300	5,100	20	5.40	20	1.08	0.99	1	2	203	16,600	\$257
Mechanical Room	15.25	634	8	800	13,600	20	12.68	30	3.80	3.50	3	9	609	49,800	\$771
Boiler Room	16.3	232	4	100	1,700	20	4.64	30	1.39	1.28	1	2	203	16,600	\$257
Locker Room	8.8	326	14	100	1,700	20	6.52	20	3.26	3.00	3	9	609	49,800	\$771
VET's Office	8.8	286	14 fluorescent	1120	67,200	20	5.72	100	5.72	5.26	5	10	1,015	83,000	\$1,285
Cold Storage Office	8.8	339	36 fluorescent	2880	172,800	20	6.78	02	4.75	4.37	4	8	812	66,400	\$1,028
Mini-Mart Latrine	6	190	2	100	1,700	20	3.80	20	1.90	1.75	2	4	406	33,200	\$514
Mini-Mart Locker Room	6	190	9	009	10,200	20	3.80	20	1.90	1.75	2	4	406	33,200	\$514
Mini-Mart Egg Room	10.5	244	4	400	6,800	20	4.88	20	0.98	0.30	-	2	203	16,600	\$257
Mini-Market Produce (C-4)	10.25	745	8	800	13,600	20	14.90	20	2.98	2.74	3	9	609	49,800	\$771
		22076	Total Inc.	Total Inc.	Average						Total	Total	Total	Average	Total
			263	32,450	32,893						102	204	20,706	76,964	\$26,210
		_													

Assumptions/Sources:

Illuminating Engineering Society recommended minimum light levels Stockroom: 30 Footcandles Medium Warehousing: 20 Footcandles Office, reading/transcribing: 70 Grooming Areas: 50

Assumed Lamp Efficacies:
Existing Incandescent lamps @ 17 LU/W
Existing Fluorescent Lamps @ 60 LU/W
New Fluorescent 16,600 LU/190 W = 87 LU/W
LU = Lumens W = Watts

Lighting operates 8760 hrs/year (interviews, observations)
Energy Co (Loffin, Energy Awareness Program, FY 1991 Data)
Additional Savings from wattage reduction in refrigerated areas = 0.5 watt/watt
Average life span incandescent lamps 750 hrs, cost \$0.26/100 W (Loffin)
Average life span fluorescent lamps 12,000 hours

	-							
ITEM	Watts	Hours		Usage			Savings	
			KWH/yr	MBTU/yr	(\$/year)	MBTU/yr	(\$/year)	(Percent)
Current Energy Usage CSF Lighting	32,450	8,760	284,262	970	\$13,447	•	-	•
Current Usage Refrigerated Areas	14,300	8,760	125,268	428	\$5,926			
Fluorescent Energy Usage	20,706	8,760	181,385	619	\$8,580	351	\$4,867	36.2%
Fluorescent Usage Refrigerated Areas	9,338	8,760	81,801	279	\$3,870			
Refrigeration Load Savings (.5W/W)						74	\$1,028	7.6%
Fewer lamp changes annually							(\$373)	-2.8%
Combined						425	\$5,522	41.1%

Lamp Changes Savings	Period	Period		Lamp Cos	amp Cos No. Lamps R	Replaceme	Cost	Cost/yr
	(yrs)	(hrs)	(hrs)	(\$/өв)		(over life)	(\$)	(\$/yr)
Incandescent	15	131,400	750	\$0.26	263	46,078	\$11,980	\$799
Fluorescent	15	131,400	12,000	\$7.87	204	2,234	\$17,580	\$1,172
Savings								(\$373)

Job Name:

FORT CAMPBELL

Job Number:

Title:

Computed by:

Date: 11/17/92 Sheet: 2

Ot:

7			L CEILLI PERADE DUAPOR T = 22	1 1			OF EN	77.8.5
07	8-08	80/16	05 190 9 57/5F	F16RE	GLASS "WIDE	.5;3.±	<i>5</i> 7/s	£

Low-Silhouette is ideal for 8 to 12 foot high coolers and freezers.

High Efficiency four row deep coils utilize 1/2" OD staggered copper tubes mechanically expanded into corrugated aluminum fins spaced by tube collars.

Wide Fin Spacing reduces air blockage caused by frost. Four and five fin/ inch models are recommended for low temp. Six and seven fin/inch models are ideal for med temp.

Automatic Defrost with air, electricity or hot gas is available for all models.

Housing and Drain Pan are constructed of textured corrosion resistant aluminum. Top and front are one piece with removable end panels. Double pitched removable drain pans allow units to be hung level.

Individually Compartmented fan sections prevent reverse rotation in event of motor failure. Fans are 10 inch diameter and are located a proper distance from the coil to create efficient draw-thru air flow.

TEAO Fan Motors are totally enclosed with internal overheat protection and lifetime lubricated ball bearings. Motors have 16 watt output, 1550 RPM, are suitable for 115 or 208-230/1/50-60, and have plug-in receptacles for quick connection.

Plastic Fan Guards create 40-50 ft air throw. Optional Wire Fan Guards are recommended for 10-20 ft air throw.

Low Sound Levels range from " 57 decibels generated by one fan units to 63 decibels produced by 6 fan units; as measured on the "A" scale, 6 feet in front of unit.

DESIGN STANDARDS

- UL Listed
- ASHRAE Testing Procedure
- · ARI Rating Standard
- National Electric Code
- NSF With Wire Fan Guards

ACCESSORIES

- TEV Thermostatic Expansion Valve
- · LSV Liquid Line Solenoid Valve
- SLHX Suction Liquid Heat Exchanger

The state of the state of the state of

Defrost Time Clocks

FII R1 DE ۴ſ ЖÍ

NL

M

SPECIFICATIONS

CAPACITY DATA

7 FPI	CAPACIT	TY BTUH	AIR	NO		WEIGHT-	281_
MED TEMP	10.10	15°TD	CFM	FANS	A	EO	KGE-HGE
HS-17-50	5000	/500	670)	65	75	70
HS-27-100	10000	15000	1340	2	95	105	100
HS-37-150	15000	22500	2010	3	125	135	130
HS-47-200	20000	30000	2680	4	150	175	165
HS-57-250	25000	37500	3350	5	195	210	200
HS-67-300	30000	45000	4020	6	210	230	215

6 FPI	CAPACIT		AIB	HO		WEIGHT-	
MED TEMP	10-10	15"TD	CFM	FANS	A	ED	KGE-HGE
HS-15-45	4500	6750	680	1	60	70	65
H\$-26-90	9000	13500	1360	2	90	100	95
HS-36-135	13500	20250	2040	3	120	130	125
HS-46-180	18000	27000	2720	4	155	170	160
HS-56-225	22500	33750	3400	5	190	205	195
HS-66-270	27000	40500	4080	8	205	225	210

5 FPI	CAPACITY	BTUH	AIR	NO		WEIGHT.	-LBS
LOW TEMP	10"TO	12"TD	CFM	FANS	À	ED	KOE-HGE
HS-15-40	4000	4800	690	1	55	65	60
HS-25-80	8000	9600	1380	2	85	95	90
HS-35-120	12000	14400	2070	3	115	125	120
HS-45-160	16000	19200	2760	4	150	165	155
HS-55-200	20000	24000	3450	5	185	200	190
HS-65-240	24000	28800	4140	6	200	220	205

4 FPI	CAPACIT	TY BTUH	AIR	NO		WEIGHT	-LBS
LOW TEMP	10°TD	12°T0	CFM	FANS	A	EG	KGE-HGE
HS-14-35	3500	4200	700	1	50	60	55
HS-24-70	7000	8200	1400	2	80	90	85
HS-34-105	10500	12500	2100	3	110	120	115
HS-44-140	14000	16800	2800	4	145	160	150
HS-54-175	17500	21000	3500	5	180	195	185
HS-64-210	21000	25200	4200	ô	195	215	200

ELECTRICAL DATA

ANY	FAN MY	R AMPS	ELECT	RIC DEFRO	ST HEATER	AMPS	WATTS	KGE-HGE	PAN AMPS	WATTS
MODEL	115/1	230/1	208/1	230/1	208/3	230/3	230V	115/1	230/1	115V
HS-1	1.1	0.55	4.7	5.2	2.7	3.0	1200	2.6	1.3	300
HS-2	2.2	1.10	9.4	10.4	5.4	6.0	2400	5.2	2.6	600
HS-3	3.3	1.65	14.1	15.6	8.2	9.1	3600	7.0	3.5	800
H\$-4	4.4	2.20	18.8	20.8	10.9	12.1	4800	8.7	4.4	1000
HS-5	5.5	2.75	23.6	26 1	13.7	15.1	6000	9.6	4.8	1100
HS-6	6.6	3.30	28.3	31.3	16.4	18.1	7200	12.2	6.1	1400

COIL DATA

ANY MODEL	FACE AREA SO FT	COIL VOL CU FT	REFRIG CHARGE LBS	LIQ FLARE	SUCT	CONNECTIONS DRAIN FPT	KG-HG Tee Oos	
H\$-1	1.7	0.08	1.8	1/2	5/8	3/4	1/2	
HS-2	3.4	0.16	3.5	1/2	7/8	3/4	1/2	
HS-3	5.1	0.23	5.2	1/2	7/8	3/4	1/2	
HS-4	6.7	0.31	6.8	1/2	1-1/8	3/4	1/2	
H\$-5	8.4	0.38	8.5	1/2	1-1/8	3/4	1/2	
H\$-6	10.1	0.46	10.2	1/2	1-1/8	3/4	1/2	

Capacity Ratings are based on sensible heat removal with a TEV fed, medium frosted coil when:

- SST (sat suct temp) is above -20°F Derate 10% for -30°F
- TEV superheat does not exceed 10°F above SST
- Med temp selection TD is from 10 to 15°F Low temp selection TD is from 8 to 12°F (TD is the temp difference between room and SST)
- Fan motor heat is not included in rating—add to room load—250 BTUH per fan
- Derate 12% for 50 HERTZ
 (0.88 mult) or increase TD to compensate for lower fan RPM—
 10 to 11.4° TD or 12 to 13.6° TD

DIMENSIONS

MODEL KEY

MS-46-180-A

MS-35-120-ED

MS-54-175-KGE

MO FANS

FINS/INCH

STUH 10"TD (00)

DEFROST

A —AIH

ED —ELECTRIC

KGE —2 PIPE HOT GAS

HGE —3 PIPE HOT GAS

Please Specify:

- Complete Model Number
- Refrigerant—R12, R22, R502
- Room Temp
- Sat Suction Temp
- Electrical Characteristics
 Motors—Heaters—Control Voltage
- Accessories
- Plastic Or Wire Fan Guards

the south of the second with the second of t

We reserve the right to change or revise specifications and product design in connection with any feature of our products. Such changes do not entitle the buyer to corresponding changes, improvements, additions or replacements for equipment previously sold or shipped.

· 连续中华8000年,李公里的"

Application of Hite-Saver unit coolers is recommended in small walk-in coolers and freezers above -20° F with ceiling heights up to 12 feet. Air throw is 40-50 ft. Locate units 9 inches from walls for best results. Support piping adequately with suction line "P" traps at unit. Locate LSV close to TEV. Condensate drain lines must be adequately heat traced in rooms below freezing. Use externally equalized TEV except for HS-1.

Units circuited for water, glycol brines, or recirculated halocarbon systems are available.

ELECTRIC DEFROST

Efficient stainless steel tubular heaters rated for 115 volts, are inserted in fin grooves, two on the face and four on the coil bottom. Heaters are replaceable from the face or by removing the drain pan. Standard electric defrost configuration is with 208-230/1/50-60 fan motors and heaters wired for 230 volt, single or three phase. If 208 voit or lower power abnormally extends defrost cycles, three phase heaters are easily reconnected in star to obtain 230 volt wattage.

Defrost cycles are time clock initiated and temperature terminated by a factory mounted adjustable thermostat which creates a fan re-starting delay preventing warm air and condensate from being discharged into the space. The timer has a fail-safe feature. Its time setting is longer than necessary resulting in a second termination if the termostat should fail.

When defrosting two Hite-Savers at one time with one time clock; temp termination thermostats must be wired in series.

JobName Forz CompBeTC

Job Number

Job Number

Title TAY $\pm 7 \not\in \pm 8$ Computed by WTR Checked by:

Dato: 11/19/12 Sheet: 2×7

TASK #7	- Doors & Carains	
PLASTIC, FLEX	BLE AIR CURTAINS	
# 083-551-020	D Phatic Flex. 385AZe 13.40/fl2 = 5159 se s'x7' = 385AZ	
F 083 - 351-030C	Wouted Costs - 55 lift 848.55/WFA= 471	
(.1\ do	ors e 5' = 551A	
toe Kaplacement	of Existing Wood Doors	
	Bi - perting A" thick galv. (00 200)ers = 100 4 6875/ec= 68,	50
	Gor Freeners = 30 3 7525/02 = 22,5	75
	491,32	5
: : : : : : : : : : : : : : : : : : : :		
	Door SEPRANT	
# 679-20 4-4500	Neoprana Gaskets Adhesine 1/4" +3/4" > #/88 Aft.	
Total Commence Of	= 226/ft @ 1.88/C4 = #8.88	
· · · · · · · · · · · · · · · · · · ·	nes = 30/4 lfe/98lf+ =	
16 FOURS @ 19	ec/dos= 304 67 61.8867+ 571.52	
	9 924.40 \$620.4	D

Fort Campbell Cold Storage Facility, Building 5202 Compressor Motor Replacement

Estimated \$8,793 \$10,991 \$4,587 \$3,822 \$3,822 \$3,822 \$3,664 \$3,664 \$3,664 \$4,397 \$4,397 \$4,587 Cost (\$/yr) (MBTU/yr) 329.6 329.6 274.6 274.6 274.6 315.9 315.9 631.8 263.3 263.3 263.3 659.1 Estimated Energy Use (KWH/yr) 185,117 231,397 92,559 92,559 77,132 77,132 77,132 193,121 80,467 80,467 241,402 96,561 96,561 103,436 103,436 103,436 129,490 129,490 258,980 107,908 107,908 107,908 124,123 124,123 (HPhr/yr) 323,725 310,308 248,247 Run Time Estimated (hrs/yr) 3,650 3,650 2,433 2,433 2,433 2,300 3,650 3,650 7,300 2,433 2,433 2,433 7,300 7,300 Estimated Shaft Load 80% 80% Total 80% 80% 80% **Total** 80% 80% 80% 80% 80% (%) Estimated Run Time (hrs/day) 888 ន ន 888 ನ ನ Efficiency (Nom.%) %06 80% 94% 94% 94% 94% 94% %06 80% Rating (HP) **5 4** 2 2 2 **4 4** 2020 0 to -10 Design Temp. 0 to -10 35-42 35-42 Existing Central Medium Temperature Central Medium Temperature Compressor #4 Motor Compressor #1 Motor Compressor #3 Motor Compressor #4 Motor Compressor #1 Motor Compressor #3 Motor Compressor #2 Motor Compressor #5 Motor Compressor #2 Motor Compressor #5 Motor Central Low Temperature Central Low Temperature System Replacement Replacement Existing

Assumptions

Energy Cost \$0.0475 /KWH \$13.929 /MBTU

Motor	Initial	Cost (\$)	Savings ((MBTU/yr)	Saving	s/Year (\$)	
	One Motor	Two Motors	One Motor	Two Motors	One Motor	Two Motors	
40 HP	\$1,800	\$3,600	27.3	27.3	\$380	\$380	
50 HP	\$2,100	\$4,200	34.1	34.1	\$475	\$475	

1/93

Corry

Fort Campbell Cold Storage Facility Dock Enclosure and HVAC Modifications

Rooms Size ⟨si	(sq.ft.)	Recorded Temp. (F)	Existing Use	Proposed Use	Change Required	Estimated Cost (\$)	Estimated Salvage (5)	Additional Energy Usage (MBTU/yr) (\$/yr)	\dashv	(MBTU/yr) (\$/yr)	Savings (\$/yr)
Mini-Mart main room,	2,750	22	Open to customers,	Same, but remove Free-Standing	Replace air handling unit with new	\$8,750					
Mini-Mart Produce, and	755	45	contains freezers	Freezer and use Produce and	evaporator;						
Mini-Mart Egg Room	244	4		Egg Rooms as Freezers	Remove Free-Standing Freezer;		\$35,105			220	\$3,483
					Maintain at 40-50 F						
					Reconnect Produce and Egg Rooms	\$4,000					
	-				to Central Low Temperature System						
New South Freezer			Not In Use	Кетоvе	Dismantle; sell		20000				
Oleo Room			Butter	Standby	Place Oleo Room on Standby					118	\$1,644
North Freezer			Frozen Food	Standby	Place North Freezer on Standby					264	\$3,678
Subtotal	3,749					\$12,750	\$55,105			632	\$8,804
Mini-Mart Checkout	1,125	Ambient	Open to customers,	same plus office for	Remove air handling, meat processing		0\$				
			checkout and office	cold storage personnel	equipment; connect to HVAC #1						
Minl-Mart Office	190	190 Ambient	Filing	Office/files	Connect to HVAC #1						
Mini-Market Locker	180	75	Locker Room	Same	Connect to HVAC #1						
Mini-Market Latrine	190	75	Latrine	Ѕате	Connect to HVAC #1						
Mini-Mart Hallway	860	25			Remove meat racks; connect to HVAC #1		\$3,000				
Subtotal	2,555					\$12,775	\$3,000	167	\$527	0	\$0
Issue Room	1,825	Ambient	Staging for breads, milk	Ѕате	Repair or replace passage doors;	\$5,000					
North Storage Staging	1,950	Ambient	Irradiated Milk, forklifts,	Same	Enclose Docks;	\$33,233					
			carts, pallets, dry goods		Connect Rooms to HVAC#2	\$56,305				-	
Passage	1,335	Ambient	Passageway	Same	Move Forklifts to Enclosed Area	\$5,000					
OSF Office	338	7	Office	Break Room							
VET's Office	286	2	Office/Lab	Same							
Locker Room	326	02	Locker Room	Same							
East Enclosed Dock	1,400 Ambient	Ambient	Open (Covered) Dock	Enclosed Passage and Storage							
West Enclosed Dock	3,800 Ambient	\mbient	Open (Covered) Dock	Enclosed Delivery Dock							
Subtotal	11,261					\$99,538	\$0	737	\$2,329	0	S.
Boiler			Provide Space Heating	Replace with HVAC Systems	Remove Boller;		\$200			856	\$2,705
Heat Reclaim			•	Provide Space Heating		\$2,000				158	\$488
Subtotal		١				\$2,000	\$500	0	\$0	1,014	\$3,204
TOTAL						6107 003	CER ROF	PO4	40 050	1 848	\$12 OOR

OGDEN

Johnson Fort Campbell

Job Number

Title

TESK # Z

Computed by: WTZ

Checked by:

Date:

11/15

Sheet.

/ OI. /

TASK	# 2	ENC	LOSE D	des III	CLUBNG O	VERHAIS	
			FOR	MINION	ART Da	K	
						1	
	Overhana	Roof fo	~ Mini	- Mart			
					4	85/sq. Ct.	
	Flun	inum, co	rrugated	on Steel	frame = 1,	85/c C1	
						3. 7.	
	14'	x 63'=	2.2882				
	,						
	14 x	151/172 =	259				-
						#	
		1 '	1190,5	9 Ft 1 A	1.95 4=	2,333	(A)
· · · · · · · · · · · · · · · · · · ·						<i>Z,333</i>	
E	Ne losure	Warrs					
	DRIV	it System	1. "S/w	Insulation	= \$5.75	/sg, [+	
1.1 1 5 1	14 - 6			7. 5			
Wast Dock	1624	x 10,5 h	=: 1701	17			
G				7 7			
CASI DOCK	TZ X	x 10.5 h	= 756	42			
TATE 0 11-	10 6/4		- 63	- C. Z		14,430	
EAST COLL	2 X	10.5 h		3_++	·		
·			7-10	-	4	1, 1, 7, 7	
		! :	65.67	, S	5,75 =	14,430	(B)
Doors							
1084- 607	-0020A-Land	5 x7 0		4 113-1	- (, \ - ;	y	
0.07	West Do			7 6463/e	$(\iota) = i$	15820	
K 083-551-	0700 PI	actic Clavil	De Accous	· >~ (12	B /3 do 2-	49	
# 083-551-	0300	Now -	Coste	1 @ N 8 C	13,700-	42.75	
# 081-103-17	60 Ire	Hed Out	29017		112/74	274	
EAST DO	ارد					13636	-
		1 3'X1' Pass	Door			13036	ا ا
		ONE DOOR		1275	= 1275		
#83-720-	1600	3'x7' Door		755	= 755		
		ion, Rigid 3		12 2 46 =	= 246		· ·· ·
:		-111.,	7.00		4.2,276	\bigcirc	
East Pal	- Utilita	ENclose I	2002				
# 081-103-1760 Z	3' 37'	ISULATEO	. <u> </u>		\$548 E		·
			1000		-		
	DUMMA	TION OF	C0313 = A	1+6+C+D+E	= 7 33		

Title: Task #9, Close Egg Room Door Computed by: WTR Checked by:

Date: 11/19/92 Sheet: 1 04

Ta	sr #9 - Close Egg Room Door			
	M			
O	Masonry Block Construction. Pointed		;	
ම	Rande Existing DOR- No Salvage Value		1	
	Man be used as a replacement		1	
	i care Piritalea, i i care i i i care i i care i i care i i care i c			
	for other existing doors, it necessary			
(3)	INSULATON		··	
. 1				\dashv
Ma	sormy Block - 5 x 7' Arec = 35ft2			
	<u> </u>	-	· · · · · · ·	_
Z 042-	-232-4200 8"x16"x8" \$5.05/C+3 x 35= 176.7.	5		
	TOOLED DOWN SIDES	: 1		
# 072-1	16-1660 2" Pare each Side (RX,4)			
	70 ft 2 @ 1.43 ft = 100.0			
	1			
	276.8	2		
	ADD 20% X1.7	-O·		
	for Small wb =		:	
	4332.	22		_
	335			
			 :	
			: :	
			• :	

Job Name Ft. Campbell

Job Number

Title: Task = 10 - Scrap Stand Along Freeze, Computed by: WIR Checked by:

Date: ///a / c - Sheet: / Of: /

	TASK #10	
	TASK # 10 D Scrop Stand alone Creeyer	
	@ Scrap Two Coffin Freezers	
7	prown Stano Alow Freeyer - Mini-Mact	
	New Costs for 17'-4 x 45'-1/2"	
	Cost3 for Stand-alone (No Freezing Units)	
	7-c" x 12 x 20" = # 105/59 C4 Cloor	
	Assume 15% more cost for expanded = (105)(1,15) = #121 ft	
	ceing ht = 105)(1,15) = #121 H	
	Therefore, 17-4" x 45 1/2 = 780 ft	
	77 (0, 1, 2) \$	
	780 GZ (9121/4+2)= 94,380	
	Cost of Freening mits	
	2 @ 6000 = 17,000	
	TOTAL COST = 106,380	
******************	Assume 5alvage @ 330/0= #35,105	
- (B)	COFFIN FREETERS New Costs of UNITS & #32,000	
	+55 me Salvago @ 20% = 6,400	
		=
O TO THE PERSON OF THE PERSON		

FI Compael Job Name

Job Number

Title: Task # // - Ment Kangar Romora'
Computed by: 'DTZ Checked by:
Date: //19/92 Sheet: / Ot: /

Total to 11 Million	
Task = 11 Meat Hanger Removal	
New Overhead Manager	
# 145-500_3700 \$ 21.50 lf. 890 lf	-1
8 21.50 Lt.	•
7	:
419, 135	
The state of the s	
Assume Worst Case: No Salvenz value as a	
overled monorail 5 y dem.	
ONly salvag is scrap metal	
Two Methods	
() #\a = a/ d	
1) # 19, 135 x 10% = 1913,50 (salvage volvo/dollar)	
Value (dollar)	
70010tc)	-
2) 850 ln ft (125/b/QCt)=//x,250/bs	
	-
111,250 163 (#0.05/1b)=#5,562.50	
7,392130	
	_
	1

Johnson Controls, Inc. Systems and Services Division 6101 Industrial Heights Drive Knoxvillo, TN 37009 Tel. 615/588 1197

January 7, 1993

Kelso Regen Associates 6709 B Kingston Pike Knoxville, Tn. 37919

Attn: Mr. Dick Kelso

Subject: Cold Storage Project

Dear Dick,

Per our discussion of this past November and subsequent conversation this morning, I have listed below a summarization of the cold storage project as I understand it.

The project will consist of 116 total computer points, 34 which are analog input points and 82 which are binary output points.

Our budget figure includes a personal computer and necessary Metasys hardware. Wiring is not included.

The budget figure is \$47,400.00.

Enclosed are product data sheets describing the proposed components.

Please call me with questions.

Sincerely,

Steve Cole

Account Executive

SMC:je Enclosure

-METASYS-

Companion

The Metasys Companion™ system is an economical way of monitoring and controlling HVAC equipment. Companion uses many components common to the Metasys family, including: Air Handling Unit, Lab and Central Plant, Unitary, and Variable Air Volume terminal controllers, all connected to a common local communication network.

Companion adds many powerful energy management and monitoring features to the HVAC Application Specific Controllers

(ASCs), which already provide complete digital control for most common HVAC configurations.

Companion offers the capacity and performance to meet the needs of less complex buildings. For the building owner with a limited budget, Companion offers a cost effective means of improving environmental control and information access of HVAC ASCs.

F	eatures	Benefits			
	Multiple configurations Breadth of HVAC ASC line	Application flexibility.			
	Standard built-in energy management programs	Improved environmental control and reduced operating cost.			
1	Network-wide interlocking				
	Standard summaries	Quick and efficient facility analysis.			
	Trending				
•	Menu-driven interface	Easy to use, and allows the user to			
	Color graphics mouse driven interface	become self-sufficient.			
	Fill-in-the-blank templates				
	User configured data base				

UNT Controller in Metasys Network Fig. 1

Ft. Campbell Cold Storage Facility Energy Study

APPENDIX 4 ECONOMIC ANALYSIS OF ALTERNATIVES

January 1993

Ft. Campbell Cold Storage Facility

Esergy Conservation Opportunity Con Replace old water heaters with instantaneous heaters in restrooms and VET office			,					
	Estimated	Estimated	Est	Estimated	Other	Other Savings (+)	Simple	Savings to
Replace old water heaters with instantaneous heaters in restrooms and VET office	Construction	Total	ᇤ	Energy	or	or Costs (-)	Payback	Investment
Replace old water heaters with instantaneous heaters in restrooms and VET office	Cost	Investment	Sa	Savings	One-Time	Annual	Period	Ratio
Replace old water heaters with instantaneous heaters in restrooms and VET office	(\$)	(\$)	(MBTU/yr)	(\$/yr)	(\$)	(\$/yr)	(yrs)	
	\$1,040	\$1,165	133	\$148	ı	ı	7.9	3.3
Replace existing lighting which is mostly incandescent with fluorescent fixtures and lamps.	\$26,210	\$29,225	425	\$5,518		(\$373)	5.3	2.1
Add insulation between compartment ceilings and roof	\$15,000	\$16,725	145	\$2,016	1	ı	8.3	1.7
Replace main meat freezer evaporators with updated electric defrost models	\$48,000	\$53,760	122	\$1,700	\$	\$4,500	8.6	1.5
Install plastic curtains on doors without them and reseal all cooler doors	\$6,250	\$6,969	54	\$752	1	ı	9.3	1.5
Install High-Efficiency Compressor Motors on Central Medium and Low Temperature Systems	\$7,800	\$8,697	64	\$897	ı	ı	9.7	1.4
Replace boiler, install HVAC systems, enclose docks, move forklifts, shut down oleo room, north freezer, free-standing freezer, repipe Mini-Mart Egg and Mini-Mart Produce to make freezers, remove unused equipment from CSF	\$127,063	\$142,311	742	\$9,151	\$58,605	ı	11.7	1.3
Computerized Control System for HVAC and refrigeration systems	\$52,140	\$58,397	389	\$5,419		\$3,288	6.7	1.2
TOTAL	\$283,503	\$317,107	2,074	\$26,274	\$58,605	\$7,415	8.6	1.6
TOTAL ASSUMING 15% REDUCTION IN SAVINGS DUE TO SYNERGISTIC EFFECTS	\$283,503	\$317,107	1,763	\$22,329	\$58,605	\$7,415	9.7	1.5

		/		ST ANALYSIS S	IMM A DA		CTUDY.	TUEN	ITV
				I INVESTMENT		•			000
_				FORT CAMPBE				3	
				627-0070 C					
FI	SCAL YEAR	92	DISCRE	TE PORTION N	AME: 1	MATER HEA	ATER REPLACE	MENT	
AN	ALYSIS DAT	E:	01-18-93	ECONOMIC L	I FE 20	YEARS	PREPARED BY:	COR	RY
1.	INVESTMEN	T							
	A. CONST	RUC	TION COST	r				\$	1040.
	B. SIOH							\$	58.
	C. DESIG	N C	OST					\$	63.
		-	VALUE COS	et ,				-\$	0.
				(1A + 1B + 1	r - 11	0.)		\$	
	E. IOIAL	114	AESHHENI	(IN T ID T I	· 11	,		•	,,,,,,
_	ENERGY OF		00 (.) (000T ()					
۷.	ENERGY SA					ar 0 bio	DOUBLED CANA	NCC	
	ANALYSIS	DA	IE ANNUAL	L SAVINGS, UN	11 00	21 & D12	COUNTED SAVI	NGS	
				SAVINGS	ANIM		DISCOUNT	DIC	COLINTED
	FUEL	\$/	MBIU(1)	MBTU/YR(2)	SAV	INGS(3)	FACTUR(4)	SAV	ING2(3)
			47.07	25		750	13.68		-4821.
				-25.					
	B. DIST			0.		• •	14.64		0.
	C. RESID						16.00		0.
	D. NAT	\$	3.16	158.	\$	499.	17.25		8613.
	E. COAL	\$.00	0.	\$	0.	15.38		0.
	F. TOTAL	•		133.	\$	147.		\$	3791.
3.	NON ENERG	iY S	AVINGS(+) / COST(-)					
	A. ANNUAL	. RE	CURRING	(+/-)				\$	0.
	(1)	ISC	OUNT FAC	TOR (TABLE A)			12.90		
	(2)	ISC	OUNTED S	AVING/COST (3	A X 3	A1) ·		\$	0.
	B. NON RE	CUR	RING SAV	INGS(+) / COS	TS(-)				
				SAVINGS(+)	YR DIS	CNT DISC	COUNT	ED
			ITEM	COST(-)	OC FAC	TR SAV	NGS(+)/
				(1)	. (2) (3) cost	(-)(4)
			,						
				\$ 0				0	
	d. TOTAL								
	d. TOTAL								
		NON	ENERGY I	DISCOUNTED SA	VINGS	(+)/COST	(-)(3A2+3Bd/	()\$	0.
		NON	ENERGY I	DISCOUNTED SA	VINGS	(+)/COST	(-)(3A2+3Bd4	\$)\$	0.
	C. TOTAL		,	DISCOUNTED SA			(-)(3A2+3Bd4	\$)\$	0.
	C. TOTAL	CT N	ON ENERG		ON TE	ST			0.
	C. TOTAL	CT N	ON ENERG MAX NON	Y QUALIFICATI	ON TE 2F5 X	st .33)			0.
	C. TOTAL	CT N 25% A I	ON ENERG MAX NON I	Y QUALIFICATI ENERGY CALC (= OR > 3C G	ON TE 2F5 X O TO	ST .33) ITEM 4	\$ 125	51.	0.
	C. TOTAL	CT N 25% A I B I	ON ENERG MAX NON I F 3D1 IS	Y QUALIFICATI ENERGY CALC (= OR > 3C G < 3C CALC	ON TE 2F5 X O TO SIR	ST .33) ITEM 4 = (2F5+3	\$ 125	51.	0.
	C. TOTAL	25% A I B I C I	ON ENERG MAX NON I F 3D1 IS F 3D1 IS	Y QUALIFICATI ENERGY CALC (= OR > 3C G	ON TE 2F5 X O TO SIR O ITE	ST .33) ITEM 4 = (2F5+3 M 4	\$ 125 D1)/1E)	51.	0.

6. DISCOUNTED SAVINGS RATIO (SIR)=(5 / 1E)= 3.27
(IF < 1 PROJECT DOES NOT QUALIFY)

4. FIRST YEAR DOLLAR SAVINGS 2F3+3A+(3B1D/(YRS ECONOMIC LIFE))\$

5. TOTAL NET DISCOUNTED SAVINGS (2F5+3C) \$

147.

3791.

7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4 7.91

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: FIFTEEN ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.065 INSTALLATION & LOCATION: FORT CAMPBELL REGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 0-4627-0070 COLD STORAGE FACILITY FISCAL YEAR 92 DISCRETE PORTION NAME: LIGHTING ANALYSIS DATE: 01-18-93 ECONOMIC LIFE 15 YEARS PREPARED BY: CORRY 1. INVESTMENT A. CONSTRUCTION COST 26210. 1442. B. SIOH C. DESIGN COST 1573. **-\$** 0. D. SALVAGE VALUE COST E. TOTAL INVESTMENT (1A + 1B + 1C - 1D) 29225. 2. ENERGY SAVINGS (+) / COST (-) ANALYSIS DATE ANNUAL SAVINGS, UNIT COST & DISCOUNTED SAVINGS UNIT COST SAVINGS ANNUAL \$ DISCOUNT DISCOUNTED \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4) SAVINGS(5) FUEL A. ELECT \$ 13.93 425. 5920. 11.14 65952. \$ 0. B. DIST \$.00 **\$** 0. 11.58 0. 0. 12.60 0. C. RESID \$.00 0. \$ D. NAT G \$ 3.16 0. \$ 0. 12.81 0. 0. 0. E. COAL \$.00 0. 12.27 F. TOTAL 425. 5920. 65952. 3. NON ENERGY SAVINGS(+) / COST(-) A. ANNUAL RECURRING (+/-) -373. (1) DISCOUNT FACTOR (TABLE A) 10.67 -3980. (2) DISCOUNTED SAVING/COST (3A X 3A1) B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISCOUNTED COST(-) OC FACTR SAVINGS(+)/ ITEM (1) (2) (3) COST(-)(4) d. TOTAL 0. C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ -3980. D. PROJECT NON ENERGY QUALIFICATION TEST (1) 25% MAX NON ENERGY CALC (2F5 X .33) \$ 21764. A IF 3D1 IS = OR > 3C GO TO ITEM 4 B IF 3D1 IS < 3C CALC SIR = (2F5+3D1)/1E)___ C IF 3D1B IS = > 1 GO TO ITEM 4 D IF 3D1B IS < 1 PROJECT DOES NOT QUALIFY 4. FIRST YEAR DOLLAR SAVINGS 2F3+3A+(3B1D/(YRS ECONOMIC LIFE))\$ 5547. 5. TOTAL NET DISCOUNTED SAVINGS (2F5+3C) 61972.

(SIR)=(5 / 1E)=

2.12

6. DISCOUNTED SAVINGS RATIO

(IF < 1 PROJECT DOES NOT QUALIFY)

7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4 5.27

LIEE CYC	LE COST AN	ALVETE SIE	MMAD	v		STUDY:	טרנו	ISENS
ENERGY CONSER					ECIP)			
INSTALLATION & LOC					-			
PROJECT NO. & TITL	E: 0-4627-	0070 CO	LD S	TORA	GE FAC	ILITY		
FISCAL YEAR 92	DISCRETE P	ORTION NA	ME:	CEIL	ING IN	ISULATION		
ANALYSIS DATE: 01	-18-93 EC	ONOMIC LI	FE 2	20 YE	ARS PR	REPARED BY:	COR	RY
1. INVESTMENT								
A. CONSTRUCTIO	N COST						\$	15000.
B. SIOH							\$	825.
C. DESIGN COST							\$	900.
D. SALVAGE VAL		4- 4-					-\$	0.
E. TOTAL INVES	STMENT (1A	+ 1B + 1C	- 1	10)			\$	16725.
2. ENERGY SAVINGS	(4) / 0007	(*)						
ANALYSIS DATE			T CC	OST &	DISCO	OUNTED SAVI	NGS	
UNIT	COST SAV	INGS	ANN	IUAL :	\$	DISCOUNT	DIS	COUNTED
						FACTOR(4)		
A. ELECT \$ 13.	.93	145.	\$	20	16.	13.68		27580.
B. DIST \$.00	0.	\$		0.	14.64		0.
C. RESID \$.00	0.	\$		0.	16.00		0.
D. NAT G \$ 3.	.16	0.	\$		0.	17.25		0.
E. COAL \$.00	0.	\$		0.	15.38		0.
F. TOTAL		145.	\$	20	16.		\$	27580.
3. NON ENERGY SAV	NGS(+) / 0	COST(-)						
A ANNUAL DECLE	DINC (+/-)						\$	0.
A. ANNUAL RECUI						12.90	3	0.
(2) DISCOUR		•	X X 3	3A1)		12.70	\$	0.
B. NON RECURRIS	G SAVINGS	(+) / COST	S(-))				
		SAVINGS(+	-)	YR	DISC	NT DISC	OUNT	ED
ITE	EM	COST(-)						••
		(1)	((2)	(3)	COST	(-)(4)
d. TOTAL		\$ 0.					0	
C. TOTAL NON ER	NERGY DISCO	SUNTED SAV	/ING	s(+)/	COST (-)(3A2+3Bd4)\$	0.
D. PROJECT NON	ENERGY QUA	LIFICATIO	ON TE	EST				
(1) 25% MA))	\$ 910	1.	
	SD1 IS = OF	•			-			
						1)/1E)	_	
	3D1B IS = >						_	
D IF	3D1B IS < 1	PROJECT	DOES	S NOT	QUAL	IFY		
4. FIRST YEAR DOLI	LAR SAVINGS	S 2F3+3A+((3B10	O/(YR	S ECOI	NOMIC LIFE))\$	2016.
5. TOTAL NET DISC	OUNTED SAV	INGS (2F5+	-3C)				\$	27580.

(SIR)=(5 / 1E)= 1.65

6. DISCOUNTED SAVINGS RATIO

(IF < 1 PROJECT DOES NOT QUALIFY)

7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4 8.30

LIFE CYCLE COST ANALYSIS SUMMARY

STUDY: TWENTY

ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LCCID 1.065

INSTALLATION & LOCATION: FORT CAMPBELL REGION NOS. 4 CENSUS: 3

PROJECT NO. & TITLE: 0-4627-0070 COLD STORAGE FACILITY

FISCAL YEAR 92 DISCRETE PORTION NAME: REPLACE MEAT FREEZER EVAPORATORS

ANALYSIS DATE: 01-18-93 ECONOMIC LIFE 20 YEARS PREPARED BY: CORRY

1. INVESTMENT

A. CONSTRUCTION COST	\$	48000.
B. SIOH	\$	2640.
C. DESIGN COST	\$	2880.
D. SALVAGE VALUE COST	-\$	0.
E. TOTAL INVESTMENT (1A + 1B + 1C - 1D)	\$	53520.

2. ENERGY SAVINGS (+) / COST (-)

ANALYSIS DATE ANNUAL SAVINGS, UNIT COST & DISCOUNTED SAVINGS

AVINGS(5)
23249.
0.
0.
0.
0.
23249.
5

NON ENERGY SAVINGS(+) / COST(-)

A. /	ANNUAL	RECURRING	(+/-)	9	5	4500.
------	--------	-----------	-------	---	---	-------

(1) DISCOUNT FACTOR (TABLE A)

12.90

(2) DISCOUNTED SAVING/COST (3A X 3A1)

58050.

B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	YR	DISCHT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)

d. TOTAL

C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$

D. PROJECT NON ENERGY QUALIFICATION TEST

(1) 25% MAX NON ENERGY CALC (2F5 X .33)

A IF 301 IS = OR > 3C GO TO ITEM 4

B IF 3D1 IS < 3C CALC SIR = (2F5+3D1)/1E) .58

C IF 3D1B IS = > 1 GO TO ITEM 4

D IF 3D1B IS < 1 PROJECT DOES NOT QUALIFY

4. FIRST YEAR DOLLAR SAVINGS 2F3+3A+(3B1D/(YRS ECONOMIC LIFE))\$ 6199.

5. TOTAL NET DISCOUNTED SAVINGS (2F5+3C)

81299.

6. DISCOUNTED SAVINGS RATIO

(SIR)=(5 / 1E)=

(IF < 1 PROJECT DOES NOT QUALIFY)

* Project does not qualify for ECIP funding; 4,5,6 for information only.

7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4

8.63

	155 CAUIE CU	ST ANALYSIS SU	IMMADY		STUDY:	TUE	NTY
		N INVESTMENT F			LCCID		
		FORT CAMPBEL					003
		4627-0070 CC				,	
		ETE PORTION NA				FAIS	
		3 ECONOMIC LI					
ANALTSIS DA	IE: UI-10-93	5 ECONOMIC LI	TE 20 1	EARS PREP	ARED BI.	COKI	K I
1. INVESTME	NT	,					
A. CONS	TRUCTION COST	Т				\$	6250.
B. SIOH						\$	344.
C. DESI	GN COST					\$	375.
D. SALV	AGE VALUE CO	ST				-\$	0.
E. TOTAL	L INVESTMENT	(1A + 1B + 10	- 1D)			\$	6969.
2 ENEDGY 6	AVINGS (+) /	COST (-)					
		L SAVINGS, UNI	T COST	& DISCOUN	ITED SAVI	NGS	
		SAVINGS					
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAVINO	SS(3) FA	CTOR(4)	SAV	INGS(5)
A. ELEC	T \$ 13.93	54.	\$	752.	13.68		10290.
	\$.00	0.	-	0.	14.64		0.
	D \$.00		\$	0.	16.00		0.
	G \$ 3.16	0.	\$	0.	17.25		0.
	\$.00	0.	\$	0.	15.38		0.
F. TOTA	1	. 54.	•	752	•	\$	10290.
r. IOIA	_	. 54.	•	1,72.		•	10270.
3. NON ENER	GY SAVINGS(+) / COST(-)					
A ANNUA	L RECURRING	(+/-)				\$	0.
		TOR (TABLE A)			12.90	•	٠.
• •		AVING/COST (3)		,	12.70	\$	0.
(-,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
B. NON R	ECURRING SAV	INGS(+) / COS	TS(-)				
		SAVINGS (+) YR	DISCNT	DISC	COUNT	ED
	ITEM	COST(-) 00	FACTR	SAVI	NGS(+)/
		(1)	(2)	(3)	COST	(-)(4)
d. TOTA	L	\$ 0				0	
	•	•	•				
C. TOTAL	NON ENERGY	DISCOUNTED SA	VINGS(+)/COST(-)	(3A2+3Bd4)\$	0.
D. PROJE	CT NON ENERG	Y QUALIFICATI	ON TEST				
		ENERGY CALC		33) 5	339	6.	
		= OR > 3C G					
		< 3C CALC			/1E)		
		S = > 1 GO T					
		s < 1 PROJECT			r		
4. FIRST YE	AR DOLLAR SA	VINGS 2F3+3A+	(3B1D/(YRS ECONO	MIC LIFE))\$	752.
		SAVINGS (2F5					10290.
		•					102/01
		OITA)=(5 / 1E)= 1.4	8	
(IF < 1	PROJECT DOE	S NOT QUALIFY)				
7. SIMPLE D	AYBACK PERIO	D (ESTIMATED)	SPR	=1E/4	9.2	26	
Gain ble f		_ (,)	5, 5	, .	,	-	

ENERGY INSTALLATION	CONSERVATION	ST ANALYSIS SUN INVESTMENT F FORT CAMPBEL 4627-0070 CC	PROGRAI LL REG	M (ECIP	LCCIC	1.	
		ETE PORTION NA					
		3 ECONOMIC L				COR	RY
4 11115071151							
1. INVESTMEN	II RUCTION COST	r				•	7900
B. SIOH						\$ \$	7800. 429.
	N COST					\$	468.
	GE VALUE COS	st ·				-\$	0.
		(1A + 1B + 10	- 1D)		\$	8697.
2 505500							
2. ENERGY SA		COST (-) L SAVINGS, UNI	T COC	r 0 h10	COUNTED DAVI	VICO.	
WWY 1:212	DATE ANNUAL	L SAVINGS, UNI	ii cos	& D1S	COUNTED SAVI	NGS	
	UNIT COST	SAVINGS	ANNU	AL \$	DISCOUNT	DIS	COUNTED
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAVI	(S)2DI	FACTOR(4)	SAV	INGS(5)
A P1 P4=	e 17 07	.,		007	45 10		40
B. DIST	\$ 13.93 \$.00	64.	\$	897.	13.68		12272.
	\$.00	0. 0.		0. 0.	14.64 16.00		0.
	\$ 3.16	0. 0.	\$	0.	17.25		0. 0.
	\$.00	0.	\$	0.	15.38		0.
		••	•	٠.	13.30		٠.
F. TOTAL	•	64.	\$	897.		\$	12272.
3. NON ENERG	Y SAVINCS(+)	\					
J. NON ENERG	II SAVINGS(+)) / (051(-)					
A. ANNUAL	RECURRING ((+/-)				\$	0.
(1) D	ISCOUNT FACT	OR (TABLE A)			12.90		
(2) D	ISCOUNTED SA	VING/COST (3A	X 3A1)		\$	0.
R. NON RE	CURRING SAVI	NGS(+) / COST	S(-)				
DI NON KE	OUNKING ONVI	SAVINGS(+		DISC	ONT DISC	ודאונח	En.
	ITEM	COST(-)	•			NGS(
		(1)	(2)	(3)	COST	-	
		•					
d. TOTAL		\$ 0.				0	
C. TOTAL	NON ENERGY D	ISCOUNTED SAV	ings(+)/cost((-)(3A2+3Bd4)\$	0.
D. PROJEC	T NON ENERGY	QUALIFICATIO	N TEST				
		NERGY CALC (2			\$ 405	0.	
		= OR > 3C GO				•	
	B IF 3D1 IS	< 3C CALC	SIR =	(2F5+3D	1)/1E)		
1	C IF 3D1B IS	= > 1 GO TO	ITEM	4		_	
	D IF 3D1B IS	< 1 PROJECT	DOES N	OT QUAL	IFY		
4. FIRST YEAR	R DOLLAR SAV	INGS 2F3+3A+(3B1D/(YRS ECC	NOMIC LIFE))\$	897.
5. TOTAL NET	DISCOUNTED	SAVINGS (2F5+	3C)			\$	12272.
6. DISCOUNTER		TIO NOT QUALIFY))=(5 /	1E)= 1.4	1	
7. SIMPLE PA	YBACK PERIOD	(ESTIMATED)	SPB	=1E/4	9.69	9	

L							
_	IFE CYCLE COS	ST ANALYSIS SU	JMMARY		STUDY:	occ	USENS
ENERGY	CONSERVATION	N INVESTMENT	PROGRAM	(ECIP	LCCID	1.	065
		FORT CAMPBEL					
		4627-0070 CC				7	
		ETE PORTION NA					
		3 ECONOMIC LI				COD	nv
ANALYSIS DA	IE: U1-18-9	5 ECONOMIC L	IFE 20	YEARS I	PREPARED BY:	LUK	KT
1. INVESTME	NT						
A. CONS	TRUCTION COS	T '				\$	1800.
B. SIOH						\$	99.
C. DESI	GN COST					\$	108.
D. SALV	AGE VALUE CO	ST				-\$	0.
		(1A + 1B + 1	C - 1D)			\$	2007.
							;
	AVINGS (+) /						
ANALYSI	S DATE ANNUA	L SAVINGS, UN	II COST	& DIS	COUNTED SAVI	NGS	
		SAVINGS					
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAVIN	GS(3)	FACTOR(4)	SAV	INGS(5)
			_				
	T \$ 13.93				13.68		
B. DIST	\$.00	σ.		0.	14.64		0.
C. RESI	D \$.00	, 0.		0.	16.00		0.
D. NAT	G \$ 3.16	. 0.	\$	0.	17.25		0.
E. COAL	\$.00	0.	\$	0.	15.38		0.
F. TOTA		27.		700		\$	5202.
r. IOIA	iL.	27.	3	300.		Ð	J202.
3. NON ENER	GY SAVINGS (+) / COST(-)					
						•	0
A. ANNUA	L RECURRING	(+/-)				\$	0.
A. ANNUA	L RECURRING	(+/-) TOR (TABLE A)			12.90		
A. ANNUA	L RECURRING	(+/-))	12.90	\$	
A. ANNUA	L RECURRING	(+/-) TOR (TABLE A))	12.90		
A. ANNUA (1) (2)	L RECURRING DISCOUNT FAC DISCOUNTED S	(+/-) TOR (TABLE A)	A X 3A1)	12.90		
A. ANNUA (1) (2)	L RECURRING DISCOUNT FAC DISCOUNTED S	(+/-) TOR (TABLE A) AVING/COST (3	A X 3A1		12.90 CNT DISC	\$	0.
A. ANNUA (1) (2)	L RECURRING DISCOUNT FAC DISCOUNTED S	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(A X 3A1 TS(-) +). YF	DIS		\$ COUNT	0. ED
A. ANNUA (1) (2)	AL RECURRING DISCOUNT FAC DISCOUNTED S RECURRING SAV	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(-	A X 3A1 TS(-) +). YF) OC	DIS	CNT DISC	\$ COUNT	0. ED +)/
A. ANNUA (1) (2)	AL RECURRING DISCOUNT FAC DISCOUNTED S RECURRING SAV	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(-	A X 3A1 TS(-) +). YF) OC	DIS	CNT DISC	\$ COUNT	0. ED +)/
A. ANNUA (1) (2)	AL RECURRING DISCOUNT FAC DISCOUNTED S RECURRING SAV	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(-	A X 3A1 TS(-) +). YR) 00 (2)	DIS	CNT DISC	\$ COUNT NGS(0. ED +)/
A. ANNUA (1) (2) B. NON R	AL RECURRING DISCOUNT FAC DISCOUNTED S RECURRING SAV	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(- (1)	A X 3A1 TS(-) +). YR) 00 (2)	DIS	CNT DISC	\$ COUNT NGS(0. ED +)/ 4)
A. ANNUA (1) (2) B. NON R	AL RECURRING DISCOUNT FAC DISCOUNTED S RECURRING SAV	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(- (1)	A X 3A1 TS(-) +) YF) OC (2)	e DIS FAC	CNT DISC TR SAVI) COST	\$ COUNTINGS(0. ED +)/ 4)
A. ANNUA (1) (2) B. NON R d. TOTAL	AL RECURRING DISCOUNT FAC DISCOUNTED S ECURRING SAV ITEM	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(- (1) \$ 0 DISCOUNTED SA	A X 3A1 TS(-) +) YR) OC (2) .	DIS FAC (3	CNT DISC TR SAVI) COST	\$ COUNTINGS(0. ED +)/ 4)
A. ANNUA (1) (2) B. NON R d. TOTA C. TOTAL D. PROJE	AL RECURRING DISCOUNT FAC DISCOUNTED S RECURRING SAV ITEM AL NON ENERGY	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(- (1) \$ 0 DISCOUNTED SA	A X 3A1 TS(-) +) YR) OC (2) - VINGS(+)	DIS FAC (3	CNT DISC TR SAVI) COST	\$ COUNT NGS((-)(0	0. ED +)/ 4)
A. ANNUA (1) (2) B. NON R d. TOTA C. TOTAL D. PROJE	AL RECURRING DISCOUNT FAC DISCOUNTED S RECURRING SAV ITEM AL NON ENERGY ECT NON ENERG 25% MAX NON	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(- (1) \$ 0 DISCOUNTED SA Y QUALIFICATI ENERGY CALC (A X 3A1 TS(-) +) YR) OC (2) VINGS(+) ON TES1 2F5 X	d DIS C FAC (3 -)/COST	CNT DISC TR SAVI) COST	\$ COUNT NGS((-)(0	0. ED +)/ 4)
A. ANNUA (1) (2) B. NON R d. TOTA C. TOTAL D. PROJE	AL RECURRING DISCOUNT FAC DISCOUNTED S RECURRING SAV ITEM AL NON ENERGY ECT NON ENERGY 25% MAX NON A IF 3D1 IS	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(- (1) \$ 0 DISCOUNTED SA Y QUALIFICATI ENERGY CALC (= OR > 3C G	A X 3A1 TS(-) +) YR) OC (2) VINGS(4 ON TEST 2F5 X . O TO IT	d DIS FAC (3 -)/COST	CNT DISC TR SAVI) COST (-)(3A2+3Bd4 \$ 171	\$ COUNT NGS((-)(0 0 3)\$	0. ED +)/ 4)
A. ANNUA (1) (2) B. NON R d. TOTA C. TOTAL D. PROJE	AL RECURRING DISCOUNT FAC DISCOUNTED S RECURRING SAV ITEM AL NON ENERGY ECT NON ENERGY 25% MAX NON A IF 3D1 IS B IF 3D1 IS	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(- (1)) \$ 0 DISCOUNTED SA Y QUALIFICATI ENERGY CALC (= OR > 3C G < 3C CALC	A X 3A1 TS(-) +) YF) OC (2) VINGS(+) ON TEST 2F5 X . O TO I1 SIR =	33) TEM 4 (2F5+3	CNT DISC TR SAVI) COST (-)(3A2+3Bd4 \$ 171	\$ COUNT NGS((-)(0 0 3)\$	0. ED +)/ 4)
A. ANNUA (1) (2) B. NON R d. TOTA C. TOTAL D. PROJE	AL RECURRING DISCOUNT FAC DISCOUNTED S RECURRING SAV ITEM AL NON ENERGY ECT NON ENERGY 25% MAX NON A IF 3D1 IS B IF 3D1 IS	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(- (1) \$ 0 DISCOUNTED SA Y QUALIFICATI ENERGY CALC (= OR > 3C G	A X 3A1 TS(-) +) YF) OC (2) VINGS(+) ON TEST 2F5 X . O TO I1 SIR =	33) TEM 4 (2F5+3	CNT DISC TR SAVI) COST (-)(3A2+3Bd4 \$ 171	\$ COUNT NGS((-)(0 0 3)\$	0. ED +)/ 4)
A. ANNUA (1) (2) B. NON R d. TOTA C. TOTAL D. PROJE	L RECURRING DISCOUNT FAC DISCOUNTED S ECURRING SAV ITEM NON ENERGY ECT NON ENERGY 25% MAX NON A IF 3D1 IS B IF 3D1 IS C IF 3D1B I	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(- (1)) \$ 0 DISCOUNTED SA Y QUALIFICATI ENERGY CALC (= OR > 3C G < 3C CALC	A X 3A1 TS(-) +) YF) OC (2) VINGS(+) ON TES1 2F5 X . O TO 11 SIR = O ITEM	33) TEM 4 (2F5+3	CNT DISC TR SAVI) COST (-)(3A2+3Bd4 \$ 171	\$ COUNT NGS((-)(0 0 3)\$	0. ED +)/ 4)
A. ANNUA (1) (2) B. NON R d. TOTA C. TOTAL D. PROJE (1)	AL RECURRING DISCOUNTED S RECURRING SAV ITEM AL NON ENERGY ECT NON ENERGY 25% MAX NON A IF 3D1 IS B IF 3D1 IS C IF 3D1B I D IF 3D1B I	(+/-) TOR (TABLE A) AVING/COST (3. INGS(+) / COS SAVINGS(COST(- (1)) \$ 0 DISCOUNTED SA Y QUALIFICATI ENERGY CALC (= OR > 3C G < 3C CALC S = > 1 GO T	A X 3A1 TS(-) +) YR) OC (2) VINGS(+) ON TES1 2F5 X O TO IT SIR = O ITEM DOES N	33) (2F5+3 4 (OT QUA	CNT DISC TR SAVI) COST (-)(3A2+3Bd4 \$ 171 D1)/1E)	\$ COUNT NGS((-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)	0. ED +)/ 4)
A. ANNUA (1) (2) B. NON R d. TOTAL D. PROJE (1) 4. FIRST YE	AL RECURRING DISCOUNT FAC DISCOUNTED S RECURRING SAV ITEM AL NON ENERGY ECT NON ENERGY 25% MAX NON A IF 3D1 IS B IF 3D1 IS C IF 3D1B I D IF 3D1B I	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(- (1)) \$ 0 DISCOUNTED SA Y QUALIFICATI ENERGY CALC (= OR > 3C G < 3C CALC S = > 1 GO T S < 1 PROJECT VINGS 2F3+3A+	A X 3A1 TS(-) +) YR) OC (2) VINGS(-) ON TEST 2F5 X . O TO IT SIR = O ITEM DOES N (3B1D/(33) (2F5+3 4 (OT QUA	CNT DISC TR SAVI) COST (-)(3A2+3Bd4 \$ 171 D1)/1E)	\$ COUNTYNGS((-)(0 0 17.	0. ED +)/ 4)
A. ANNUA (1) (2) B. NON R d. TOTAL D. PROJE (1) 4. FIRST YE	AL RECURRING DISCOUNT FAC DISCOUNTED S RECURRING SAV ITEM AL NON ENERGY ECT NON ENERGY 25% MAX NON A IF 3D1 IS B IF 3D1 IS C IF 3D1B I D IF 3D1B I	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(- (1)) \$ 0 DISCOUNTED SA Y QUALIFICATI ENERGY CALC (= OR > 3C G < 3C CALC S = > 1 GO T S < 1 PROJECT	A X 3A1 TS(-) +) YR) OC (2) VINGS(-) ON TEST 2F5 X . O TO IT SIR = O ITEM DOES N (3B1D/(33) (2F5+3 4 (OT QUA	CNT DISC TR SAVI) COST (-)(3A2+3Bd4 \$ 171 D1)/1E)	\$ COUNT NGS((-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)	0. ED +)/ 4)
A. ANNUA (1) (2) B. NON R d. TOTAL D. PROJE (1) 4. FIRST YE 5. TOTAL NE	AL RECURRING DISCOUNTED S RECURRING SAV ITEM AL NON ENERGY ECT NON ENERGY 25% MAX NON A IF 3D1 IS B IF 3D1B I D IF 3D1B I EAR DOLLAR SA	(+/-) TOR (TABLE A) AVING/COST (3 INGS(+) / COS SAVINGS(COST(- (1)) \$ 0 DISCOUNTED SA Y QUALIFICATI ENERGY CALC (= OR > 3C G < 3C CALC S = > 1 GO T S < 1 PROJECT VINGS 2F3+3A+	A X 3A1 TS(-) +) YF) OC (2) VINGS(+) ON TEST 2F5 X . O TO IT SIR = O ITEM DOES N (3B1D/() +3C)	2 DIS 2 FAC 3 (3 33) EM 4 (2F5+3 4 HOT QUA	CNT DISC TR SAVI) COST (-)(3A2+3Bd4 \$ 171 D1)/1E)	\$ COUNTINGS((-)(0 0 17.	+)/ 4) 0.

7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4 5.28

LIF	E CYCLE COS	T ANALYSIS SU	MMARY		STUDY:	occi	USENS
		INVESTMENT P				1.0	065
		FORT CAMPBEL				3	
		627-0070 CO					
		TE PORTION NA					
		ECONOMIC LI				COR	RY
. INVESTMENT	T RUCTION COST					\$	3600.
B. SIOH	COCTON COST					\$	198.
	LCOCT					\$	216.
C. DESIGN						-\$	0.
	SE VALUE COS					-	4014.
E. TOTAL	INVESTMENT	(1A + 1B + 10	: - 10))		\$	4014.
. ENERGY SAV		COST (-) . SAVINGS, UNI	T CO	ST & DISC	COUNTED SAVI	NGS	
	UNIT COST	SAVINGS	ANNI	JAL \$	DISCOUNT	DIS	COUNTED
		MBTU/YR(2)					
	,	,,	-				
A. ELECT	\$ 13.93	27.	\$	380.	13.68		5202.
B. DIST	\$.00	0.	\$	0.	14.64		0.
C. RESID	\$.00	0.	\$	0.	16.00		0.
D. NAT G		0.	\$	0.	17.25		0.
E. COAL		0.	\$	0.	15.38		0.
F. TOTAL		27.	\$	380.		\$	5202.
. NON ENERGY	Y SAVINGS(+) / COST(-)					
A. ANNUAL	RECURRING	(+/-)				\$	0.
(1) D	ISCOUNT FAC	TOR (TABLE A)			12.90		
(2) D	ISCOUNTED S	AVING/COST (3/	A X 3.	A1)		\$	0.
B. NON RE	CURRING SAV	INGS(+) / COS					
		SAVINGS(+)	YR DIS	CNT DISC	COUNT	ED
	ITEM	COST(-)	OC FAC	TR SAVI	NGS (+)/
		(1)	(2) (3) COST	(-)(4)
d. TOTAL		\$ 0	<i>.</i>			0).
C. TOTAL	NON ENERGY	DISCOUNTED SA	VINGS	(+)/COST	(-)(3A2+3Bd4	\$(0
D. PROJEC	T NON ENERG	Y QUALIFICATI	ON TE	ST			
		ENERGY CALC			\$ 17	17.	
		= OR > 3C G					
		< 3C CALC			D1)/1E)		
		S = > 1 GO T				_	
		S < 1 PROJECT			LIFY		
. FIRST YEA	R DOLLAR SA	VINGS 2F3+3A+	(3B1D	/(YRS EC	ONOMIC LIFE)\$	380
5. TOTAL NET	DISCOUNTED	SAVINGS (2F5	+3C)			\$	5202
6. DISCOUNTE	D SAVINGS R	ATIO	(S	IR)=(5 /	1E)= 1.3	30	

7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4 10.56

	IFE CYCLE CO	ST ANALYSIS SU	UMMARY		STUDY:	occi	JSENS
FNERGY		N INVESTMENT					
		: FORT CAMPBE					
		4627-0070 CC				-	
•							
		ETE PORTION NA					
ANALYSIS DA	TE: 01-18-9	3 ECONOMIC L		YEARS I	PREPARED BY:	COR	RΥ
1. INVESTME	NT						
A. CONS	TRUCTION COS	Т				\$	2100.
B. SIOH	1					\$	116.
C. DESI	GN COST					\$	126
	AGE VALUE CO	ST				-\$	0.
		(1A + 1B + 1	C - 1D))		\$	2342
2 ENEDGY S	SAVINGS (+) /	COST (-)	•				
		L SAVINGS, UN	IT COST	r & DIS	COUNTED SAVI	NGS	

		SAVINGS					
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAVIN	(GS(3)	FACTOR(4)	SAV	INGS(5)
A. ELEC	T \$ 13.93	34.	\$	475.	13.68		6498
B. DIST	\$.00	0.	\$	0.	14.64		0
	D \$.00	0.		0.	16.00		0
D. NAT	G \$ 3.16	0.		0.	17.25		0
E. COAL	\$.00	0.					0
F. TOTA	lL.	34.	\$	475.		\$	6498
3. NON ENER	RGY SAVINGS(+	·) / COST(-)					
A. ANNUA	AL RECURRING	(+/-)				\$	0
(1)	DISCOUNT FAC	TOR (TABLE A)			12.90		
(2)	DISCOUNTED S	SAVING/COST (3	A X 3A1	1)		\$	0
	SECURDANC CAN	/INGS(+) / COS	TS(-)				
B. NON R	KECOKKING SAV						
B. NON R	KECOKKING SAV	SAVINGS(R DIS	CNT DISC	COUNT	ED
	ITEM	•	+) YF				
		COST(-	+) YF	C FAC		NGS(+)/
	ITEM	COST(- (1)	+) YF) 00 (2)	C FAC	TR SAVI	NGS(+)/
		COST(-	+) YF) 00 (2)	C FAC	TR SAVI	NGS(+)/
d. TOTA	ITEM	COST(- (1)	+) YF) 00 (2)	C FAC) (3	TR SAVI	NGS(-)(-)	+)/
d. TOTAL	ITEM AL NON ENERGY	COST(- (1) \$ 0	+) YF) 00 (2)	C FAC) (3 +)/COST	TR SAVI	NGS(-)(-)	+)/
d. TOTA C. TOTAL D. PROJE	ITEM AL NON ENERGY ECT NON ENERG	COST(- (1) \$ 0 DISCOUNTED SA	+) YF) OC (2:	C FAC) (3 +)/COST	TR SAVI) COST (-)(3A2+3Bd4	NGS((-)(0	+)/
d. TOTA C. TOTAL D. PROJE	ITEM AL NON ENERGY ECT NON ENERG 25% MAX NON	COST(- (1) \$ 0 DISCOUNTED SA	+) YF) OC (2) VINGS(+ ON TEST	C FAC) (3 +)/COST	TR SAVI) COST (-)(3A2+3Bd4	NGS((-)(0	+)/
d. TOTA C. TOTAL D. PROJE	ITEM AL NON ENERGY ECT NON ENERG 25% MAX NON A IF 3D1 IS	COST(- (1) \$ 0 DISCOUNTED SAGEY QUALIFICATION	+) YF) OC (2) VINGS(- ON TEST 2F5 X	C FAC) (3 +)/COST T	TR SAVI) COST (-)(3A2+3Bd4 \$ 214	NGS((-)(0 .)\$	+)/
d. TOTA C. TOTAL D. PROJE	ITEM AL NON ENERGY ECT NON ENERG 25% MAX NON A IF 3D1 IS B IF 3D1 IS	COST(- (1) \$ 0 DISCOUNTED SA SY QUALIFICATION ENERGY CALC (C) 6 = OR > 3C G 6 < 3C CALC	+) YF) OC (2) VINGS(- ON TEST 2F5 X O TO IT SIR =	C FAC) (3 +)/COST T .33) TEM 4 (2F5+3	TR SAVI) COST (-)(3A2+3Bd4 \$ 214	NGS((-)(0 .)\$	+)/
d. TOTA C. TOTAL D. PROJE	ITEM AL NON ENERGY ECT NON ENERG 25% MAX NON A IF 3D1 IS B IF 3D1 IS C IF 3D1B I	COST(- (1) \$ 0 DISCOUNTED SA GY QUALIFICATION ENERGY CALC (C) G = OR > 3C G	+) YF) OC (2: VINGS(+ ON TEST 2F5 X O TO IT SIR = O ITEM	C FAC) (3 +)/COST T .33) TEM 4 (2F5+3I	TR SAVI) COST (-)(3A2+3Bd4 \$ 214	NGS((-)(0 .)\$	+)/
d. TOTAL C. TOTAL D. PROJE (1)	ITEM AL NON ENERGY ECT NON ENERGY 25% MAX NON A IF 3D1 IS B IF 3D1 IS C IF 3D1B I D IF 3D1B I	COST(- (1) \$ 0 DISCOUNTED SA' GY QUALIFICATION ENERGY CALC (C) E = OR > 3C G G < 3C CALC (S = > 1 GO TO	+) YF) OC (2: VINGS(+) ON TEST 2F5 X O TO IT SIR = O ITEM DOES F	C FAC) (3 +)/COST T .33) TEM 4 (2F5+3I 4 NOT QUAI	TR SAVI) COST (-)(3A2+3Bd4 \$ 214 D1)/1E)	NGS((-)(0 0))\$	+)/ 4)
d. TOTAL C. TOTAL D. PROJE (1) 4. FIRST YE	ITEM AL NON ENERGY ECT NON ENERG 25% MAX NON A IF 3D1 IS B IF 3D1 IS C IF 3D1B I D IF 3D1B I	COST(- (1) \$ 0 DISCOUNTED SAGE GY QUALIFICATION ENERGY CALC (S = OR > 3C G G < 3C CALC (S = > 1 GO TO (S < 1 PROJECT)	+) YF) OC (2: VINGS(-1 ON TEST 2F5 X . O TO IT SIR = O ITEM DOES F	C FAC) (3 +)/COST T .33) TEM 4 (2F5+3I 4 NOT QUAI	TR SAVI) COST (-)(3A2+3Bd4 \$ 214 D1)/1E)	NGS((-)(0 0))\$	+)/ 4)
d. TOTAL C. TOTAL D. PROJE (1) 4. FIRST YE	ITEM AL NON ENERGY ECT NON ENERG 25% MAX NON A IF 3D1 IS B IF 3D1 IS C IF 3D1B I D IF 3D1B I	COST(- (1) \$ 0 DISCOUNTED SA GY QUALIFICATION ENERGY CALC (COS = OR > 3C GOS < 3C CALC (S = > 1 GO TO	+) YF) OC (2: VINGS(-1 ON TEST 2F5 X . O TO IT SIR = O ITEM DOES F	C FAC) (3 +)/COST T .33) TEM 4 (2F5+3I 4 NOT QUAI	TR SAVI) COST (-)(3A2+3Bd4 \$ 214 D1)/1E)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+)/ 4)
d. TOTAL C. TOTAL D. PROJE (1) 4. FIRST YE	ITEM AL NON ENERGY ECT NON ENERGY 25% MAX NON A IF 3D1 IS B IF 3D1B I C IF 3D1B I D IF 3D1B I EAR DOLLAR SA	COST(- (1) \$ 0 DISCOUNTED SA GY QUALIFICATION ENERGY CALC (COS = OR > 3C GOS < 3C CALC (S = > 1 GO TO	+) YF) OC (2: VINGS(+ ON TEST 2F5 X . O TO IT SIR = O ITEM DOES P (3B1D/()	C FAC) (3 +)/COST T .33) TEM 4 (2F5+3) 4 NOT QUAI	TR SAVI) COST (-)(3A2+3Bd4 \$ 214 D1)/1E)	NGS((-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)(-)	+)/ 4) 0

7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4 4.93

LI	FE CYCLE COS	T ANALYSIS SU	IMMARY		STUDY:	OCCL	JSENS
		INVESTMENT P					
		FORT CAMPBEL					
		627-0070 CC					
		TE PORTION NA				CODE	. V
ANALYSIS DAT	E: 01-18-93	ECONOMIC LI	FE 20	YEARS I	PREPARED BT:	CUR	KT.
1. INVESTMEN	т						
A. CONST	RUCTION COST	r				\$	4200.
B. SIOH						\$	231.
C. DESIG	N COST					\$	252.
D. SALVA	GE VALUE COS	ST.				-\$	0.
		(1A + 1B + 10	: - 1D)	,		\$	4683.
ET TOTAL	2111201112111	(77	,				
2. ENERGY SA	VINGS (+) /	COST (-)					
ANALYSIS	DATE ANNUAL	SAVINGS, UN	T COST	& DIS	COUNTED SAV	NGS	
		041/11/00	A \$13.11.1	u e	DICCOUNT	0.7.0	COLINTER
		SAVINGS					COUNTED
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAVIN	IGS(3)	FACTOR(4)	SAV	INGS(5)
A. FIECT	\$ 13.93	34.	\$	475.	13.68		6498.
	\$.00	0.					0.
	\$.00	0.					0.
	\$ 3.16	0.					0.
	\$.00	0.					0.
E. COAL	\$.00	0.	Þ	٥.	15.30		0.
F. TOTAL		34.	\$	475.		\$	6498.
3. NON ENERG	Y SAVINGS(+) / COST(-)					
A ANNUAL	RECURRING	(+/-)				\$	0.
		TOR (TABLE A)			12.90	•	•
		AVING/COST (3		1.	12.70	\$	0.
(2)	A SCOON LED S	AVING/COST (3	M	''		3	٥.
B. NON RE	CURRING SAV	INGS(+) / COS	TS(-)				
		SAVINGS(+) YI	R DIS	CNT DIS	COUNT	ED
	ITEM	COST(-) 0	C FAC	TR SAV	INGS (+)/
		(1)	(2) (3) cos	T(-)(4)
d. TOTAL		\$ 0				0	
C. TOTAL	NON ENERGY	DISCOUNTED SA	VINGS(-	+)/COST	(-)(3A2+3Bd	4)\$	0.
ם ספרובי	LI NUN ENEDG	Y QUALIFICATI	UN TEG	τ			
		ENERGY CALC (\$ 21	44.	
		= OR > 3C G			÷ • 1	•	
		< 3C CALC			n1)/15)		
					017/16/	_	
		S = > 1 GO T			1 7 FV		
	υ IF 301B I	S < 1 PROJECT	DOES !	AUD IUM	LIFT		
4. FIRST YEA	AR DOLLAR SA	VINGS 2F3+3A+	(3B1D/	(YRS EC	ONOMIC LIFE))\$	475.
5. TOTAL NET	T DISCOUNTED	SAVINGS (2F5	+3C)			\$	6498.

6. DISCOUNTED SAVINGS RATIO (SIR)=(5 / 1E)= 1.39
(IF < 1 PROJECT DOES NOT QUALIFY)

7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4 9.86

STUDY: TWENTY LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.065 INSTALLATION & LOCATION: FORT CAMPBELL REGION NOS. 4 CENSUS: 3 PROJECT NO. & TITLE: 0-4627-0070 COLD STORAGE FACILITY FISCAL YEAR 92 DISCRETE PORTION NAME: COMBINATION HVAC/STANDBY ANALYSIS DATE: 01-18-93 ECONOMIC LIFE 20 YEARS PREPARED BY: CORRY 1. INVESTMENT \$ 127063. A. CONSTRUCTION COST 6989. B. SIOH 7624. C. DESIGN COST D. SALVAGE VALUE COST 0. \$ 141676. E. TOTAL INVESTMENT (1A + 1B + 1C - 1D) 2. ENERGY SAVINGS (+) / COST (-) ANALYSIS DATE ANNUAL SAVINGS, UNIT COST & DISCOUNTED SAVINGS

	UNIT COST	SAVINGS	ANN	UAL \$	DISCOUNT	DIS	COUNTED
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAV	INGS(3)	FACTOR(4)	SAV	INGS(5)
A. ELECT	\$ 13.93	632.	\$	8804.	13.68		120435.
B. DIST	\$.00	0.	\$	0.	14.64		0.
C. RESID	\$.00	0.	\$	0.	16.00		0.
D. NAT G	\$ 3.16	110.	\$	348.	17.25		5996.
E. COAL	\$.00	0.	\$	0.	15.38		0.
F. TOTAL		742.	\$	9151.		\$	126432.

- 3. NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-) 12.90 (1) DISCOUNT FACTOR (TABLE A) (2) DISCOUNTED SAVING/COST (3A X 3A1) 0.
 - B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	YR	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)
1. SALVAGE EQUIPMENT	\$ 58605.	0	1.00	58605.
d. TOTAL	\$ 58605.			58605.

C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 58605.

- D. PROJECT NON ENERGY QUALIFICATION TEST
 - (1) 25% MAX NON ENERGY CALC (2F5 X .33) \$ 41722.

A IF 3D1 IS = OR > 3C GO TO ITEM 4

B IF 3D1 IS < 3C CALC SIR = (2F5+3D1)/1E) 1.19

C IF 3D1B IS = > 1 GO TO ITEM 4

- 4. FIRST YEAR DOLLAR SAVINGS 2F3+3A+(3B1D/(YRS ECONOMIC LIFE))\$ 12082.
- 5. TOTAL NET DISCOUNTED SAVINGS (2F5+3C) \$ 185037.
- (SIR)=(5 / 1E)= 1.31 6. DISCOUNTED SAVINGS RATIO (IF < 1 PROJECT DOES NOT QUALIFY)
- 7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4 11.73

1.1	FE CYCLÉ COS	T ANALYSIS SL	IMMARY		STUDY:	TWF	NTY
		INVESTMENT F					
		FORT CAMPBEL					
		627-0070 C				-	
		TE PORTION NA					
		ECONOMIC LI				COR	RY
. INVESTMEN	T RUCTION COST	,				\$	33233.
B. SIOH	ROCITON COST					\$	1828.
C. DESIG	N COST					\$	1994.
	GE VALUE COS	e r				-\$	0.
		?! (1A + 1B + 10	: - 1D)				37055.
20 .0.,		,	,				
	VINGS (+) /						
ANALYSIS	DATE ANNUAL	. SAVINGS, UN	IT COST 8	k DISC	COUNTED SAVI	NGS	
		SAVINGS					
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAVING	\$(3)	FACTOR(4)	SAV	INGS(5)
A. ELECT	\$ 13.93	181.	\$ 25	521.	13.68		34492.
B. DIST	\$.00	0.	\$	0.	14.64		0.
C. RESID	\$.00	0.	\$	0.	16.00		0.
D. NAT	\$ 3.16	0.	\$	0.	17.25		0.
E. COAL	\$.00	0.	\$	0.	15.38		0.
F. TOTAL		181.	\$ 2	521.		\$	34492.
. NON ENERG	GY SAVINGS(+)) / COST(-)					
						_	
	RECURRING				13.00	\$	0.
*		TOR (TABLE A) AVING/COST (3			12.90	\$	0.
_/ L	, , , , , , , , , , , , , , , , , , , ,	, 5551 (5	•			-	
B. NON RE	CURRING SAV	NGS(+) / COS SAVINGS(Dice	ENT DISC	יווו ורי	ED
	ITEM		+) 1K) OC				
	* I EM	•	(2)				
		(1)	(2)	(3,	, 603	. ,	A-7
d. TOTAL		\$ 0				().
C. TOTAL	NON ENERGY	DISCOUNTED SA	VINGS(+)	/COST	(-)(3A2+3Bd4	\$)\$	0.
ם ספטורי	T NON ENERGY	Y QUALIFICATI	ON TEST				
		ENERGY CALC (\$ 1179	32	
(1)		= OR > 3C G			⊕ 1130	· .	
		< 3C CALC			11/1F)		
		S = > 1 GO T			, , , , , L ,	_	
		S < 1 PROJECT			IFY		
4. FIRST YE	AR DOLLAR SA	VINGS 2F3+3A+	(3B1D/(Y	RS EC	DNOMIC LIFE))\$	2521.
5. TOTAL NET	T DISCOUNTED	SAVINGS (2F5	+3C)			\$	34492.
6. DISCOUNTE	ED SAVINGS R	ATIO	(SIR)	=(5 /	1E)= .9	93	
		S NOT QUALIFY		,- /		 .	
7 CIMPLE D	AVRACE DEDIC	D (ESTIMATED)	CDD-	1E //	17.	70	
SIMPLE PI	TIDALK PEKIU	(COLIMATED)	375=	16/4	14.		

L	IFE CYCLE CO	ST ANALYSIS SU	JMMARY		STUDY:	occi	JSENS
		N INVESTMENT				1.0	065
NSTALLATIO	N & LOCATION	: FORT CAMPBEL	L REGIO	NOS.	4 CENSUS:	3	
ROJECT NO.	& TITLE: 0-	4627-0070 CC	DLD STOR	RAGE FA	CILITY		
FISCAL YEAR	92 DISCR	ETE PORTION NA	ME: SHL	IT DOWN	NORTH FREE	ZER	
ANALYSIS DA	TE: 01-18-9	3 ECONOMIC LI	FE 20 Y	EARS F	PREPARED BY:	COR	RY
I. INVESTME	ŇT						
A. CONS	TRUCTION COS	Т				\$	0
B. SIO	l				•	\$	0
C. DESI	GN COST					\$	0
D. SALV	AGE VALUE CO	ST				-\$	-2000
E. TOTA	L INVESTMENT	(1A + 1B + 10	: - 1D)			\$	2000
	SAVINGS (+) /						
ANALYSI	S DATE ANNUA	L SAVINGS, UN	IT COST	& DIS	COUNTED SAVI	NGS	
	UNIT COST	SAVINGS	ANNUAL	. \$	DISCOUNT	DIS	COUNTED
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAVINO	38(3)	FACTOR(4)	SAV	INGS(5)
A. ELEC	T \$ 13.93	264.	\$ 3				50402
B. DIST	\$.00	0.	\$	0.	14.64		0
C. RES	D \$.00	0.	\$	0.	16.00		0
D. NAT	G \$ 3.16	0.	\$	0.	17.25		0
E. COAL	\$.00	0.	\$	0.	15.38		0
F. TOT/	ıL	264.	\$ 3	3684.		\$	50402
3. NON ENER	RGY SAVINGS(+) / COST(-)					
A. ANNU	AL RECURRING	(+/-)				\$	0
(1)	DISCOUNT FAC	TOR (TABLE A)			12.90		
(2)	DISCOUNTED S	AVING/COST (3	A X 3A1;)		\$. 0
B. NON F	ECURRING SAV	'INGS(+) / COS					
		SAVINGS(
	ITEM	COST(-				NGS(
		(1)	(2)	(3) cosi	(-)(4)
d. TOT/	NL	\$ 0				0	-
C. TOTAL	. NON ENERGY	DISCOUNTED SA	VINGS(+)/COST	(-)(3A2+3Bd4	\$)\$	C
		·	ON TEST				
D. PROJI	ECT NON ENERG	Y QUALIFICATI	ON 1521				
		ENERGY CALC (\$ 1663	33.	
	25% MAX NON		2F5 X .:	33)	\$ 1663	33.	
	25% MAX NON A IF 3D1 IS	ENERGY CALC	2F5 X .:	33) EM 4			
	25% MAX NON A IF 3D1 IS B IF 3D1 IS	ENERGY CALC (2F5 X .: 0 TO IT! SIR =	33) EM 4 (2F5+3			

4. FIRST YEAR DOLLAR SAVINGS 2F3+3A+(3B1D/(YRS ECONOMIC LIFE))\$ 3684.

5. TOTAL NET DISCOUNTED SAVINGS (2F5+3C) \$ 50402.

6. DISCOUNTED SAVINGS RATIO (SIR)=(5 / 1E)= 25.20
(IF < 1 PROJECT DOES NOT QUALIFY)

7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4 .54

ENERGY	CONSERVATION	T ANALYSIS SU	PROGR	AM (ECIP)	LCCID	1.0	
PROJECT NO.	& TITLE: 0-4	FORT CAMPBEL 627-0070 CO	OLD S	TORAGE FA	CILITY	3	
		ECONOMIC L				COR	RY
1. INVESTMEN							
	RUCTION COST					\$	0.
B. SIOH						\$	0.
C. DESIG	N COST					\$	0.
D. SALVA	GE VALUE COS	ST .				-\$	-2000.
E. TOTAL	INVESTMENT	(1A + 1B + 10	C - 1	D)		\$	2000.
2. ENERGY SA	VINGS (+) /	COST (-)					
ANALYSIS	DATE ANNUAL	. SAVINGS, UN	IT CO	ST & DIS	COUNTED SAVI	NGS	
	UNIT COST	SAVINGS	ANN	UAL \$	DISCOUNT	DIS	COUNTED
FUEL	\$/MBTU(1)	MBTU/YR(2)	SAV	INGS(3)	FACTOR(4)	SAV	INGS(5)
A. ELECT	\$ 13.93	118.	\$	1646.	13.68		22511.
B. DIST	\$.00	0.	\$	0.	14.64		0.
C. RESID	\$.00	0.	\$	0.	16.00		0.
D. NAT G	\$ 3.16	0.	\$	0.	17.25		0.
E. COAL	\$.00	0.	\$	0.	15.38		0.

-		FUEDOV			
٥.	NUN	ENERGY	SAVINGS(+)	/	COS1(-)

F. TOTAL

A. ANNUAL RECURRING (+/-)			\$ 0.
(1) DISCOUNT FACTOR (TABL	E A).	12.90	
(2) DISCOUNTED SAVING/COST	T (3A X 3A1)		\$ ٥.

\$ 22511.

\$ 1646.

B. NON RECURRING SAVINGS(+) / COSTS(-)

118.

SAVINGS(+)	YR	DISCNT	DISCOUNTED
COST(-)	OC	FACTR	SAVINGS(+)/
(1)	(2)	(3)	COST(-)(4)
	COST(-)	COST(-) OC	COST(-) OC FACTR

\$ 0. d. TOTAL 0.

- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 0.
- D. PROJECT NON ENERGY QUALIFICATION TEST (1) 25% MAX NON ENERGY CALC (2F5 X .33) \$ 7429. A IF 3D1 IS = OR > 3C GO TO ITEM 4 B IF 3D1 IS < 3C CALC SIR = (2F5+3D1)/1E)____ C IF 3D18 IS = > 1 GO TO ITEM 4 D IF 3D1B IS < 1 PROJECT DOES NOT QUALIFY
- 4. FIRST YEAR DOLLAR SAVINGS 2F3+3A+(3B1D/(YRS ECONOMIC LIFE))\$ 1646.
- 5. TOTAL NET DISCOUNTED SAVINGS (2F5+3C) 22511.
- 6. DISCOUNTED SAVINGS RATIO (SIR)=(5 / 1E)= 11.26 (IF < 1 PROJECT DOES NOT QUALIFY)
- 7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4 1.22

	LIF	E C	YCLE COS	T ANALYSIS SL	JMMAR'	Y	STUDY:	occi	JSENS
EI				INVESTMENT F					
				FORT CAMPBEL					
PROJEC	T NO. 8	TI	TLE: 0-4	627-0070 CC	DLD S	TORAGE FA	CILITY		
FISCAL	YEAR S	2	DISCRE	TE PORTION NA	ME:	CEILING 1	INSULATION		
ANALYS	IS DATE	:	01-18-93	ECONOMIC L	FE 2	O YEARS F	PREPARED BY:	COR	RY
1. INV	ESTMENT	r							
Α.	CONSTR	RUCT	ION COST	г				\$	15000
В.	SIOH							\$	825
C.	DESIG	CC	ST					\$	900
D.	SALVA	GE V	ALUE CO	ST				-\$	0
E. 2. ENE	TOTAL	INV	ESTMENT	(1A + 1B + 10 COST (-)				\$	
E. 2. ENE	TOTAL	INV INC DAT	/ESTMENT GS (+) / TE ANNUA	(1A + 1B + 16	іт со	ST & DIS	COUNTED SAVI	\$ NGS	16725
E. 2. ENE AN	TOTAL RGY SAV ALYSIS	INV JING DAT	VESTMENT GS (+) / TE ANNUAL TT COST	(1A + 1B + 10 COST (-) L SAVINGS, UN	IT CO	ST & DIS	COUNTED SAVI	\$ NGS	16725
E. 2. ENE AN	TOTAL RGY SAV ALYSIS	INV JING DAT UNI \$/N	VESTMENT GS (+) / TE ANNUAL TT COST	(1A + 1B + 10 COST (-) L SAVINGS, UN SAVINGS MBTU/YR(2)	IT CO ANN SAV	ST & DIS UAL \$ INGS(3)	COUNTED SAVI DISCOUNT FACTOR(4)	S DIS	0 16725 COUNTED INGS(5) 27580
E. 2. ENE AN FU	TOTAL RGY SAV ALYSIS	INV INC DAT UNI \$/N	VESTMENT GS (+) / TE ANNUAL IT COST ABTU(1) 13.93	(1A + 1B + 10 COST (-) L SAVINGS, UN SAVINGS MBTU/YR(2)	IT CO ANN SAV	ST & DIS UAL \$ INGS(3)	COUNTED SAVI DISCOUNT FACTOR(4)	S NGS DIS	16725 COUNTED INGS (5) 27580
E. 2. ENE AN FU A. B.	TOTAL RGY SAV ALYSIS	INV INC DAT UNI \$/A	VESTMENT SS (+) / TE ANNUAL IT COST MBTU(1) 13.93 .00	(1A + 1B + 10 COST (-) L SAVINGS, UN SAVINGS MBTU/YR(2) 145.	IT CO ANN SAV	ST & DIS UAL \$ 'INGS(3) 2016.	COUNTED SAVI DISCOUNT FACTOR(4) 13.68	S NGS DIS	16725 COUNTED
E. 2. ENE AN FU A. B.	TOTAL RGY SAY ALYSIS EL ELECT DIST	INVINCEDATE UNITS / F	/ESTMENT GS (+) / TE ANNUAL (T COST MBTU(1) 13.93 .00 .00	(1A + 1B + 10 COST (-) L SAVINGS, UN SAVINGS MBTU/YR(2) 145. 0.	IT CO ANN SAV \$	ST & DIS UAL \$ INGS(3) 2016. 0.	DISCOUNT FACTOR(4) 13.68 14.64 16.00	S DIS	16725 COUNTED INGS (5) 27580
E. 2. ENE AN FU A. B. C.	TOTAL RGY SAY ALYSIS EL ELECT DIST RESID	INVINCEDATE SAME SAME SAME SAME SAME SAME SAME SAM	/ESTMENT GS (+) / TE ANNUAL (IT COST ABTU(1) 13.93 .00 .00 3.16	(1A + 1B + 10 COST (-) L SAVINGS, UN SAVINGS MBTU/YR(2) 145. 0. 0.	ANN SAV \$ \$ \$	ST & DISC UAL \$ (INGS(3)) 2016. 0.	DISCOUNT FACTOR(4) 13.68 14.64 16.00 17.25	S NGS DIS	16725 COUNTED INGS (5) 27580

- A. ANNUAL RECURRING (+/-) \$ 0.

 (1) DISCOUNT FACTOR (TABLE A) 12.90
 - (2) DISCOUNTED SAVING/COST (3A X 3A1) \$ 0.
- B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	YR	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)

- d. TOTAL \$ 0.
- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 0.
- D. PROJECT NON ENERGY QUALIFICATION TEST
 - (1) 25% MAX NON ENERGY CALC (2F5 X .33) \$ 9101.

A IF 3D1 IS = OR > 3C GO TO ITEM 4

B IF 3D1 IS < 3C CALC SIR = (2F5+3D1)/1E)____

C IF 3D1B IS = > 1 GO TO ITEM 4

- 4. FIRST YEAR DOLLAR SAVINGS 2F3+3A+(3B1D/(YRS ECONOMIC LIFE))\$ 2016.
- 5. TOTAL NET DISCOUNTED SAVINGS (2F5+3C) \$ 27580.
- 6. DISCOUNTED SAVINGS RATIO (SIR)=(5 / 1E)= 1.65
 (IF < 1 PROJECT DOES NOT QUALIFY)
- 7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4 8.30

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: TEN ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.065 INSTALLATION & LOCATION: FORT CAMPBELL REGION NOS. 4 CENSUS: 3

PROJECT NO. & TITLE: 0-4627-0070 COLD STORAGE FACILITY

FISCAL YEAR 92 DISCRETE PORTION NAME: CONTROL SYSTEM

ANALYSIS DATE: 01-18-93 ECONOMIC LIFE 10 YEARS PREPARED BY: CORRY

1. INVESTMENT

52140. A. CONSTRUCTION COST 2868. B. SIOH 3129. C. DESIGN COST 0. D. SALVAGE VALUE COST E. TOTAL INVESTMENT (1A + 1B + 1C - 1D) 58137.

2. ENERGY SAVINGS (+) / COST (-)

ANALYSIS DATE ANNUAL SAVINGS, UNIT COST & DISCOUNTED SAVINGS

	U	IT COST	SAVINGS	ANN	UAL \$	DISCOUNT	DIS	COUNTED
FUEL	\$,	MBTU(1)	MBTU/YR(2)	SAV	INGS(3)	FACTOR(4)	SAV	INGS(5)
A. ELECT	\$	13.93	389.	\$	5419.	8.07		43729.
B. DIST	\$.00	0.	\$	0.	8.14		0.
C. RESID	\$.00	0.	\$	0.	8.79		0.
D. NAT G	\$	3.16	0.	\$	0.	8.34		0.
E. COAL	\$.00	0.	\$	0.	8.72		0.
F. TOTAL			389.	\$	5419.		\$	43729.

- NON ENERGY SAVINGS(+) / COST(-)
 - 3288. A. ANNUAL RECURRING (+/-)
 - (1) DISCOUNT FACTOR (TABLE A)
 - 7.87
 - 25877. (2) DISCOUNTED SAVING/COST (3A X 3A1)
 - B. NON RECURRING SAVINGS(+) / COSTS(-)

. SAVINGS(+) YR DISCNT DISCOUNTED OC FACTR SAVINGS(+)/ COST(-) (2) (3) COST(-)(4) (1)

- d. TOTAL

- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 25877.
- D. PROJECT NON-ENERGY QUALIFICATION TEST
 - **\$** 14431. (1) 25% MAX NON ENERGY CALC (2F5 X .33)

A IF 3D1 IS = OR > 3C GO TO ITEM 4

B IF 3D1 IS < 3C CALC SIR = (2F5+3D1)/1E) 1.00

C IF 3D1B IS = > 1 GO TO ITEM 4

- 8707. 4. FIRST YEAR DOLLAR SAVINGS 2F3+3A+(3B1D/(YRS ECONOMIC LIFE))\$
- 5. TOTAL NET DISCOUNTED SAVINGS (2F5+3C) 69606.
- 6. DISCOUNTED SAVINGS RATIO (SIR)=(5 / 1E)=(IF < 1 PROJECT DOES NOT QUALIFY)
- 7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4 6.68

LIFE CYCLE COST ANALYSIS SUMMARY STUDY: TWENTY
ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCID 1.065

INSTALLATION & LOCATION: FORT CAMPBELL REGION NOS. 4 CENSUS: 3

PROJECT NO. & TITLE: 0-4627-0070 COLD STORAGE FACILITY

FISCAL YEAR 92 DISCRETE PORTION NAME: OVERALL ECOS

ANALYSIS DATE: 01-18-93 ECONOMIC LIFE 20 YEARS PREPARED BY: CORRY

1. INVESTMENT

A. CONSTRUCTION COST	\$	283503.
B. SIOH	\$	15593.
C. DESIGN COST	\$	17011.
D. SALVAGE VALUE COST	-\$	0.
E. TOTAL INVESTMENT (1A + 1B + 1C - 1D)	\$	316107.

2. ENERGY SAVINGS (+) / COST (-)

ANALYSIS DATE ANNUAL SAVINGS, UNIT COST & DISCOUNTED SAVINGS

	UN	IT COST	SAVINGS	ANI	NUAL \$	DISCOUNT	DIS	COUNTED
FUEL	\$,	MBTU(1)	MBTU/YR(2)	SA	VINGS(3)	FACTOR(4)	SAV	/INGS(5)
A. ELECT	\$	13.93	1831.	\$	25506.	13.68		348920.
B. DIST	\$.00	0.	\$	0.	14.64		0.
C. RESID	\$.00	0.	\$	0.	16.00		0.
D. NAT	\$	3.16	243.	\$	768.	17.25		13246.
E. COAL	\$.00	0.	\$	0.	15.38		0.
F. TOTAL			2074.	\$	26274.		\$	362166.

- NON ENERGY SAVINGS(+) / COST(-)
 - A. ANNUAL RECURRING (+/-) \$ 7445.

 (1) DISCOUNT FACTOR (TABLE A) 12.90

 (2) DISCOUNTED SAVING/COST (3A X 3A1) \$ 96041.
 - B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	YR	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)
1. SALVAGE	\$ 58065.	0	1.00	58065.
d. TOTAL	\$ 58065.			58065.

- D. PROJECT NON ENERGY QUALIFICATION TEST
 - (1) 25% MAX NON ENERGY CALC (2F5 X .33) \$ 119515.

A IF 3D1 IS = OR > 3C GO TO ITEM 4

B IF 3D1 IS < 3C CALC SIR = (2F5+3D1)/1E) 1.52

C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 154106.

C IF 3D1B IS = > 1 GO TO ITEM 4

- 4. FIRST YEAR DOLLAR SAVINGS 2F3+3A+(3B1D/(YRS ECONOMIC LIFE))\$ 36622.
- 5. TOTAL NET DISCOUNTED SAVINGS (2F5+3C) \$ 516271.
- 6. DISCOUNTED SAVINGS RATIO (SIR)=(5 / 1E)= 1.63
 (IF < 1 PROJECT DOES NOT QUALIFY)
- 7. SIMPLE PAYBACK PERIOD (ESTIMATED) SPB=1E/4 8.63

LIFE CYCLE COST ANALYSIS SUMMARY

ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LCCID 1.065

INSTALLATION & LOCATION: FORT CAMPBELL REGION NOS. 4 CENSUS: 3

PROJECT NO. & TITLE: 0-4627-0070 COLD STORAGE FACILITY

FISCAL YEAR 92 DISCRETE PORTION NAME: SYNERGISTIC COMBINATION ECOS

ANALYSIS DATE: 01-18-93 ECONOMIC LIFE 20 YEARS PREPARED BY: CORRY

1. INVESTMENT

\$	283503.
\$	15593.
\$	17011.
-\$	0.
\$	316107.
	\$ -\$

2. ENERGY SAVINGS (+) / COST (-)

ANALYSIS DATE ANNUAL SAVINGS, UNIT COST & DISCOUNTED SAVINGS

	UN	IIT COST	SAVINGS	ANI	NUAL \$	DISCOUNT	DIS	SCOUNTED
FUEL	\$/	MBTU(1)	MBTU/YR(2)	SA	VINGS(3)	FACTOR(4)	SAV	/INGS(5)
A. ELECT	\$	13.93	1556.	\$	21675.	13.68		296515.
B. DIST	\$.00	0.	\$	0.	14.64		0.
C. RESID	\$.00	0.	\$	0.	16.00		0.
D. NAT G	\$	3.16	207.	\$	654.	17.25		11284.
E. COAL	\$.00	0.	\$	0.	15.38		0.
F. TOTAL			1763.	\$	22329.		\$	307799.

NON ENERGY SAVINGS(+) / COST(-)

- A. ANNUAL RECURRING (+/-) 7445.
 - (1) DISCOUNT FACTOR (TABLE A)

12.90

(2) DISCOUNTED SAVING/COST (3A X 3A1)

96041.

B. NON RECURRING SAVINGS(+) / COSTS(-)

	SAVINGS(+)	YR	DISCNT	DISCOUNTED
ITEM	COST(-)	OC	FACTR	SAVINGS(+)/
	(1)	(2)	(3)	COST(-)(4)
1. SALVAGE	\$ 58065.	0	1.00	58065.
d. TOTAL	\$ 58065.			58065.

- C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4)\$ 154106.
- D. PROJECT NON ENERGY QUALIFICATION TEST
 - (1) 25% MAX NON ENERGY CALC (2F5 X .33) \$ 101574.

A IF 3D1 IS = OR > 3C GO TO ITEM 4

B IF 3D1 IS < 3C CALC SIR = (2F5+3D1)/1E) 1.30

C IF 3D1B IS = > 1 GO TO ITEM 4

D IF 3D1B IS < 1 PROJECT DOES NOT QUALIFY

- 4. FIRST YEAR DOLLAR SAVINGS 2F3+3A+(3B1D/(YRS ECONOMIC LIFE))\$
- 5. TOTAL NET DISCOUNTED SAVINGS (2F5+3C) \$ 461904.
- 6. DISCOUNTED SAVINGS RATIO (SIR)=(5 / 1E)= 1.46 (IF < 1 PROJECT DOES NOT QUALIFY)

9.67

Ft. Campbell Cold Storage Facility Energy Study

APPENDIX 5 SCOPE OF WORK

January 1993

November 1991 June 22, 1992

GENERAL SCOPE OF WORK

FOR A

LIMITED ENERGY STUDY

Cold Storage Facility, Fort Campbell, Ky.

FY92

Performed as part of the ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

SCOPE OF WORK FOR A LIMITED ENERGY STUDY Cold Storage Facility, Fort Campbell, KY (FY 92)

TABLE OF CONTENTS

1.	BRIEF	DESCRIPTION	OF	WORK

- GENERAL
- PROJECT MANAGEMENT
- SERVICES AND MATERIALS
- PROJECT DOCUMENTATION
 - 5.1 ECIP Projects
 - 5.2 Nonfeasible ECO's
- 6. DETAILED SCOPE OF WORK
- 7. WORK TO BE ACCOMPLISHED
 - 7.1 Perform a Limited Site Survey
 - 7.2 Evaluate Selected ECO's
 - 7.3 Combine ECO's into Recommended Projects7.4 Submittals, Presentations and Reviews

ANNEXES

- A DETAILED SCOPE OF WORK
- B EXECUTIVE SUMMARY GUIDELINE
- C REQUIRED DD FORM 1391 DATA

GLOSSARY OF ACRONYMS

- 1. BRIEF DESCRIPTION OF WORK: The Architect-Engineer (A/E) shall:
- 1.1 Perform a limited site survey of specific buildings or areas to collect all data required to evaluate the specific Energy Conservation Opportunities (ECO's) included in this study.
- 1.2 Evaluate specific ECO's to determine their energy savings potential and economic feasibility.
- 1.3 Provide project documentation for recommended ECO's as detailed herein.
- 1.4 Prepare a comprehensive report to document all work performed, the results and all recommendations.

2. GENERAL

- 2.1 This study is to evaluate the specific building, systems, or ECO's listed in Annex A, DETAILED SCOPE OF WORK, and if the A/E discovers new ECOs' during the site visit those will be evaluated.
- 2.2 The information and analysis outlined herein are considered to be minimum requirements for adequate performance of this study.
- 2.3 For the building, systems or ECO's listed in Annex A, all methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures as well as the physical facilities. All energy conservation opportunities listed in Annex A shall be documented in this report. Any energy conservation opportunity considered infeasible shall also be documented in the report with reasons for elimination.
- 2.4 The study will analyze the existing use of electricity and natural gas. The study shall not include evaluation of alternative energy sources.
- 2.5 The "Energy Conservation Investment Program (ECIP) Guidance", described in letter from CEHSC-FU, dated 28 June 1991 and the latest revision from CEHSC-FU establishes criteria for ECIP projects and shall be used for performing the economic analyses of all ECO's and projects. The program, Life Cycle Cost In Design (LCCID), has been developed for performing life cycle cost calculations in accordance with ECIP guidelines and is referenced in the ECIP Guidance. If any program other than LCCID is proposed for life cycle cost analysis, it must use the mode of calculation specified in the ECIP Guidance. The output must be in the format of the ECIP LCCA summary sheet, and it must be submitted for approval to the Contracting Officer. All economic analysis associated with the ECO's can be simple payback period analysis, along with LCCID which is required for this study.

- 2.6 Computer modeling of the Cold Storage Facility will not be required under this study. The energy savings possible based on prior experience; the method of calculations by the A/E using methods based on prior experience; the method of calculation is subject to the approval of the Corps of Engineers and DEH at Ft. Campbell. All calculations submitted by the A/E shall clearly demonstrate the method used to derive energy savings.
- 2.7 Energy conservation opportunities determined to be technically and economically feasible shall be detailed in the report and ranked SIR in order of simple payback.

3. PROJECT MANAGEMENT

- 3.1 Project Managers. The A/E shall designate a project manager to serve as a point of contact and liaison for work required under this contract. Upon award of this contract, the individual shall be immediately designated in writing. The A/E's designated project manager shall be approved by the Contracting Officer prior to commencement of work. This designated individual shall be responsible for coordination of work required under this contract. The Contracting Officer will designate a project manager to serve as the Government's point of contact and liaison for all work required under this contract. This individual will be the Government's representative.
- 3.2 Installation Assistance. The Commanding Officer or authorized representative at the installation will designate an individual to assist the A/E in obtaining information and establishing contacts necessary to accomplish the work required under this contract. This individual will be the installation representative. This individual will be reponsible for providing the A/E with engineering drawings of the facility as requested, and copies of the utility rate structures.
- 3.3 Public Disclosures. The A/E shall make no public announcements or disclosures relative to information contained or developed in this contract, except as authorized by the Contracting Officer.
- 3.4 Meetings. Meetings will be scheduled whenever requested by the A/E or the Contracting Officer for the resolution of questions or problems encountered in the performance of the work. The A/E's project manager and the Government's representative shall be required to attend and participate in all meetings pertinent to the work required under this contract as directed by the Contracting Officer. These meetings, if necessary, are in addition to the presentation and review conferences. Travel costs incurred by the A/E at the Government's request, beyond those identified in the A/E's cost proposal, will be reimbursed by the Government.
- 3.5 Site Visits, Inspections, and Investigations. The A/E shall visit and inspect/investigate the site of the project as necessary and

required during the preparation and accomplishment of the work. Site visits shall be coordinated thru the Government representative prior to any visit to the installation by the A/E.

3.6 Records

- 3.6.1 The A/E shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the A/E and/or designated representative(s) thereof participated. These records shall be dated and shall identify the contract number, and modification number if applicable, participating personnel, subject discussed and conclusions reached. The A/E shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the records.
- 3.6.2 The A/E shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of the work under this contract. The records shall be dated and shall identify the contract number and modification number, if applicable. The A/E shall forward to the Contracting Officer within ten calendar days, a producible copy of the record of request or receipt of material.
- 3.7 Interviews. The A/E and the Government's representative shall conduct entry and exit interviews with the Director of Engineering and Housing before starting field work at the installation and after completion of the field work. The Government's representative shall schedule the interviews at least one week in advance. Entry and exit interviews, for the purposes of this proposal, are presumed to be informal and less than two hours each in duration.
- 3.7.1 Entry. The entry interview shall describe the intended procedures for the survey and shall be conducted prior to commencing work at the facility. As a minimum, the interview shall cover the following points:
 - a. Schedules.
- b. Names of energy analysts who will be conducting the site survey.
 - c. Proposed working hours.
 - d. Support requirements from the Director of Engineering and Housing.
- 3.7.2 Exit. The exit interview shall be at the conclusion of the site visit and shall briefly describe the items surveyed and probable areas of energy conservation. The interview shall also solicit input and advice from the Director of Engineering and Housing.

- 4. SERVICES AND MATERIALS. All services, materials (except those specifically enumerated to be furnished by the Government), plant, labor, supervision and travel necessary to perform the work and render the data required under this contract are included in the lump sum price of the contract.
- 5. PROJECT DOCUMENTATION. All energy conservation opportunities which the A/E has considered shall be included in one of the following categories and presented in the report as such:
- 5.1 ECIP Projects. To qualify as an ECIP project, an ECO, or several ECO's which have been combined, must have a construction cost estimate greater than \$300,000, and a simple payback period of less than eight years. For ECAM projects, the \$300,000 limitation may not apply; in such cases, the A/E shall check with the installation for guidance. The overall project and each discrete part of the project shall have an SIR greater than one.

Programming documentation shall consist of a DD Form 1391, and life cycle cost analysis (LCCA) summary sheet(s) (with necessary backup data to verify the numbers presented), and one such DD Form 1391 can combine a number of projects in order to meet a dollar minimum limitation of a \$300,000 project criteria. A life cycle cost analysis summary sheet shall be developed for each ECO and for the overall project when more than one ECO are combined. The energy savings for projects consisting of multiple ECO's must take into account the synergistic effects of the individual ECO's. The energy savings analysis will address the energy savings of each individual ECO; the study shall not address the synergistic effects of interaction of ECO'S on one another.

- 5.2 Nonfeasible ECO's. All ECO's which the A/E has considered but which are not feasible, shall be documented in the report with reasons or economic justifications showing why they were rejected.
- 6. DETAILED SCOPE OF WORK. The Detailed Scope of Work is contained in Annex A.

7. WORK TO BE ACCOMPLISHED.

- 7.1 Perform a Site Survey. The A/E shall obtain all necessary data to evaluate the ECO's or projects by conducting a site survey. However, the A/E is encouraged to use any data that may have been documented in a previous study. The A/E shall document his site survey on forms developed for the survey, or standard forms, and submit these completed forms as part of the report. All test and/or measurement equipment shall be properly calibrated prior to its use.
- 7.2 Evaluate Selected ECO's. The A/E shall analyze the ECO's listed in Annex A. These ECO's shall be analyzed in detail to determine their feasibility. The analysis will include a system description, an estimated construction cost, the projected annual

energy savings, and the simple payback period calculation. Savings to Investment Ratios (SIRs) shall be determined using current ECIP quidance. The A/E shall provide all data and calculations needed to support the recommended ECO. All assumptions and engineering equations shall be clearly stated. Calculations shall be prepared showing how all numbers in the ECO were figured. Calculations shall be an orderly step-by-step progression from the first assumption to the final number. Descriptions of the products, manufacturers catalog cuts, pertinent manufacturers drawings and sketches shall also be included. The A/E will include simple/single line sketches/drawings that assist in depicting the project directioning for the study, however, they are not intended to be in regards to design liability. A life cycle cost analysis summary sheet shall be prepared for each ECO and included as part of the supporting data, and those other ECOs' recommended by the A/E.

- 7.3 Combine ECO's Into Recommended Projects. During the Interim Review Conference, as outlined in paragraph [7.5.1], the A/E will be advised of the DEH's preferred packaging of recommended ECO's into projects. Some projects may be a combination of several ECO's, and others may contain only one. These projects will be evaluated and arranged as outlined in paragraphs 5.1, and 5.2. The project packages will allow the DEH to further develop their energy management plan for this facility.
- Submittals, Presentations and Reviews. The work accomplished shall be fully documented by a comprehensive report. The report shall have a table of contents and shall be indexed. All pages shall be numbered. Names of the persons primarily responsible for the project The A/E shall give an informal presentation of the shall be included. interim submittal to installation, command, and other Government personnel at the DEH offices during the interim submittal review. During the presentation, the personnel in attendance shall be given ample opportunity to ask questions and discuss any changes deemed necessary to the study. A review conference will be conducted the same day, following the presentation. Each comment presented at the review conference will be discussed and resolved or action items assigned. The Interim 60% presentation and review conference will require no more than one working day. The presentation and 60% interim review conference will be at the installation DEH offices on the date agreeable to the Director of Engineering and Housing, the A/E and the Government's representative. The Contracting Officer may require a resubmittal of any document(s), if such document(s) are not approved because they are determined by the Contracting Officer to be inadequate for the intended purpose.
- 7.5.1 Interim Submittal. An interim 60% report shall be submitted for review after the field survey has been completed and an analysis has been performed on all of the ECO's. The A/E shall submit the interium 60% review report directly to the Installation, MACOM, and COE, and then the reviewers will have a two week period to submit their comments directly back to the A/E along with their submittal of those

comments to the COE. The Interim review meeting at the installation will be scheduled within two-three weeks after the interim report submittal has been received by the A/E by all reviewers. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and contain a plan of the work remaining to complete the study. Calculations showing energy and dollar savings, SIR, and simple payback period of all the ECO's shall be included. The results of the ECO analyses shall be summarized by lists as follows:

- a. All ECO's eliminated from consideration shall be listed with reasons for their elimination as discussed in para. 5.2.
- b. All ECO's which were analyzed shall be grouped into two listings, recommended and non-recommended, each arranged in order of descending SIR and simple payback period.

The A/E shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. At the Interim Submittal and Review Conference, the Government's and A/E's representatives shall coordinate with the Director of Engineering and Housing to provide the A/E with direction for packaging or combining ECO's. The survey forms completed during this audit shall be submitted as part of the interim report.

- 7.5.2 Final Submittal. The A/E shall prepare and submit the final report when all sections of the report are 100% complete and all comments from the interim submittal have been resolved. The A/E shall submit the Scope of Work for the study and any modifications to the Scope of Work as an appendix to the submittal. The report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods used, and sources of information. The report shall integrate all aspects of the study. The recommended projects, as determined in accordance with paragraph 5, shall be presented in order of priority by SIR and simple payback period. The lists of ECO's specified in paragraph [7.5.1] shall also be included for continuity. The final report and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The final report shall be arranged to include:
- a. An Executive Summary to give a brief overview of what was accomplished and the results of this study using graphs, tables and charts as much as possible (See Annex B for minimum requirements).
- b. The narrative report describing the problem to be studied, the approach to be used, and the results of this study.
- c. Documentation for the recommended projects (includes LCCA Summary Sheets).

- d. Appendices to include as a minimum:
 - 1) Energy cost development and backup data
 - 2) Detailed calculations
 - 3) Cost estimates
 - 4) Scope of Work
 - 5) Economic Analysis of Alternatives

The Final Report will be submitted 100% a complete. A review meeting/presentation will not be scheduled. An additional meeting may be scheduled in accordance with paragraph 3.4.

LOUISVILLE DISTRICT CORPS OF ENGINEERS ENGINEERING DIVISION, A/E MANAGEMENT BRANCH (CEORL-ED-M)

ANNEX A

DETAILED SCOPE OF WORK June 22, 1992

- 1. PROJECT NAME & LOCATION: A Limited Energy Study, FY92 EEAP, Cold Storage Facility (Bldg.#5202), Kansas Avenue between 8th & 11th Streets, Fort Campbell, Kentucky, an existing building that consists of 29,300 square feet.
- 2. GENERAL SOW vs. DETAILED SOW: The General Scope of Work(SOW) will apply to contract efforts as modified by the Detailed SOW. Should conflicts occur between the General SOW and Detailed SOW, the Detailed SOW shall govern.

3. RESPECTIVE POC's for this STUDY:

Louisville District COE- Charles (Chuck) Lockman/CEORL-ED-M (502) 582-6041 or FAX 5281

Fort Campbell, Ky. DEH- Arlin E. Wright/Supv. Industrial Engr. DEH-MESB (502) 798-8895 or FAX 9596

Architect/Engineer(A/E)- , A/E Project Manager or FAX

4. SCOPE:

- 4.1. The A/E shall provide all work necessary to complete the Limited Energy Study as defined by the General Scope of Work including the Annexes. Information and instructions contained within the Detailed SOW are provided as a means for the A/E Project Manager to expand or modify the General SOW as may be needed to suit the study for the Cold Storage Facility at Fort Campbell. This Limited Energy Study is much more flexible than the standard EEAP Study and is meant to address specific opportunities, buildings or systems that the installation feels have high potential for energy or dollar savings.
- 4.2. The study will consider the architectural envelope, boilers, alternative refrigerant replacement, industrial equipment, operation of the facility by the Using Agency, material, utilities and other components of the industrial operation, and determine any energy savings methods/recommendations, energy savings operational methods, systems energy savings requirements, loading dock equipment, hardware, existing geri-rigging of systems/equipment, and all operations et.al. that could realize energy savings. This includes interview of DOL personnel to gather data for quantities, and operational data.

Alternate energy sources such as solar, wind, geothermal, will not be included.

- 4.3 The study will consider new designs/etc. for energy trends that make the cold storage facility more cost effective and energy saving.
- 4.4 The A/E shall assist DEH in arranging for the installation of electrical metering of the cold storage facility for a period not to exceed two weeks, for each of the two service entrances. TVA personnel at no cost to the Government or to the A/E will install electrical metering at the facility, however the A/E will notify TVA by letter the request to install metering. The metering is intended to analyze the KWH consumption, power factor, and electrical demand peaks over the period of time that it is installed. Natural gas will not be metered, due to the high cost of metering and the insignificant usage of natural gas within the cold storage warehouse.
- 5. <u>DETAILED REQUIREMENTS:</u> All detail requirements selected at Fort Campbell for the purpose of this study, shall specifically include the special facility and projects identified by the DEH staff. In general the facility and projects, when investigated relative to the ECO's provided in Figure A-5.1, shall comprise the bulk of suggestive items normally investigated for a Cold Storage Facility.

Specific Energy Conservation Opportunities (ECO) Checklist: Each ECO provided in the list in Figure A-5.1 shall be investigated as a minimum, however if others found during the investigation are good candidates they shall also be included and evaluated.

6. PERFORMANCE: The total time required for completion of the study and the performance of all work shall not be more than 120 calendar days from the date of Notice To Proceed (NTP) for the Delivery Order. If the study takes the A/E less time than scheduled to achieve, a shortened schedule for submittal and coordination of review and interium review meeting at the installation may be coordinated by the A/E with all parties involved in the review process. Figure A-6.1 is a schedule of pertinent events and milestone dates for acceptable performance of the study at Fort Campbell, subject to a possible shortened schedule as mentioned previously.

Changes or adjustments made to the SOW during the term of the project study shall be made by the Louisville District.

- 7. <u>SUBMITTALS:</u> The A/E's Project Manager shall provide direct distribution of all required submittals and documents in the numbers as listed in Figure A-7.1.
- 8. GOVERNMENT-FURNISHED INFORMATION: The following list of reference documents will be furnished to the A/E:

- a. Energy Conservation Investment Program (ECIP) Guidance, dated 28 June 1991.
- b. Mechanical Refrigeration and Ventilation in Cold-Storage Facilities, TM 5-810-3, date August 1982, including Change #1, dated 31 Aug.84
- c. One set of 35mm photographs of the existing building exterior and interior, 23 January 1992.
- d. As-built Floor Plan, Q.M. Cold Storage and Meat Cutting Plant, dated Sept. 1964, drawing no. 33-04-02, sheet 7.
- e. Other drawings identifying building modifications are at the EP&S Office, Bldg. #865 on Micro-Fiche.
- f. Existing Conditions Maps, sheet 11, of the Master Plan.
- g. ETL 1110-3-282, Energy Conservation, dated 10 Feb. 1978.
- h. TM 5-785, Engineering Weather Data.
- i. AR 5-4, Change No.1, Department of the Army Productivity Improvement Program.
- j. AR 415-15, 1 Jan 84, Military Construction, Army (MCA) Program Development.
- k. Other engineering drawings of the cold storage warehouse, as requested by the A/E: Current building plans and sections. As a minimum, the wall sections, roof and all interior walls, refrigerated areas of the building. The sections should clearly show insulation, materials of construction, and any revisions to the building completed to date. List of equipment installed in the building relating to current maintenance activities, replacements or new equipment that has been installed.
- 1. Utility rate structures and current prices for natural gas and electricity: Electrical rate structure for post and/or building, current prices paid for electricity, natural gas rate structure for post and/or building, current price paid for natural gas.
- 9. LCCID, A COMPUTER PROGRAM: A computer program titled Life Cycle Costing in Design (LCCID) is available from the BLAST Support Office in Urbana, Illinois, for a nominal fee. This computer program will be used for performing the economic calculations for ECIP and non-ECIP ECO's. LCCID permits the designer to perform an economic study that conforms to the economic criteria all three services. POC is Linda Lawrie. The A/E is encouraged to obtain and use this computer program. The BLAST Support Office can be contacted at 144 Mechanical Engineering Building, 1206 West Green Street, Urbana, Illinois 61801. The

telephone number is (217) 333-3977 or (800) 842-5278. All economic analysis can be performed using simple payback period, however, life cycle cost analysis will be required for the Government information.

10. <u>SIMULATION PROGRAMS:</u> No computer simulation will be required under this project.

12

Figure A-5.1 ECO's- The following list of ECO's represents a minimum list that the A/E shall investigate. Other ECO's which are discovered by the A/E during the site visit shall be fully investigated and documented in accordance with the procedures detailed with this SOW:

Building heat loss/gain investigation:

- O Insulation, thickness, and type.
- O Envelopes for various refrigeration compartments.

Operations Investigation:

- 0 Loading dock procedure.
- 0 Freezer doors, closure, seals, type, size, speed, and location.
- 0 Material handling (fork lift, other) no., size, and type.
- 0 Material storage methods (containers, boxes, and palette).
- O Dock enclosure with cooling and loading dock seals (air curtains, or plastic films).
- O System operational procedures.

Mechanical Investigation:

- O Refrigerant, chlorflouracarbon, and ammonia.
- 0 Equipment location pursuant to efficient distribution.
- 0 Refrigerant cooling methods.
- 0 Evaporators size and location.
- O Distribution piping insulation (thickness and type).
- 0 Modernized control system(s).
- O Compressor, size, type, and efficiency.
- O Refrigerant storage, size, location, and insulation.

Figure A-5.1 continued-<u>GENERAL ENERGY CONSERVATION OPPORTUNITIES</u>, Limited Energy Study, EEAP FY92, Cold Storage Facility, Fort Campbell, Ky to be investigated:

- O Insulation (wall, roof, pipe, duct, etc.).
- 0 Insulated panels.
- O Shutdown energy to hot water heaters or modify controls.
- O Energy conserving lighting, reduction of levels, replacement of incandescent, and more efficient lighting source.
- 0 Improve power factor.
- 0 High efficiency motor replacement.
- O Heat reclaim from hot refrigerant gas.
- 0 Install peak shaving/energency generator
- 0 Transformer loading.
- O Revise or repair building HVAC controls.
- Occupancy sensors to control lighting or HVAC.
- Reduce space requirements and supplies.

Note: If some of the ECO's on pages 1 & 2 can be combined into one ECO, the A/E may work those together as one ECO in the report.

A general, narrative discussion of the office and administration (Rooms 121 and 122 on the building plan) will be included to summarize the condition of the area.

Figure A-6.1. Schedule for the Limited Energy Study, FY 92 EEAP, Fort Campbell:

Ite	<u>m</u>	<u>Calendar Days</u>	Actual <u>Date</u>
1.	RFP(Request for Proposal) to (the initial	1)A/E	14 May 1992
2.	Site (Concept) Survey/Scope Mtg./Entry/ (with the initial A/E)	Exit *	16/17Jun1992
3.	Notice to Proceed Received by A/E	1	
4	60% Submittal-Interim Report for Review	60	
5.	Review period by DEH, MACOM, & COE/ sub	omittal back to	A/E & COE
6.	60% Interium Review Meeting @ Ft.Campbe	*11 *90	
7.	100% Final Submittal	120	

^{*} Denotes meeting to be held at the Installation site.

Figure A-7.1. Distribution of Submittals: The A/E shall make direct submittal and responses to comments as indicated by the following schedule:

(tel. 202-272-0430)

<u>Organization</u>	C <u>orres</u>		ive S R <u>ep</u> or	Summary rts <u>ie</u> ldnotes
Commander, US Army Engineer District, Louisvi ATTN: CEORL-ED-M/Charles Lockman P.O. Box 59 Louisville, Ky. 40201-0059 (tel. 502-582-6041, or FAX 5281)	lle 1	1	1	1*
HQ 101 Abn Div (AASLT)& Ft Campbell ATTN: AFZB-DE-R-M/Arlin E. Wright 16th & Ohio, Bldg. T-865 (DEH) Fort Campbell, Ky. 42223-1291 (tel. 502-798-8895, or FAX 9596)	1	1	1	1*
Headquarters FORSCOM (MACOM) ATTN: FCEN-RDF/Naresh Kapur Fort McPherson, Ga. 30330-6000 (tel. 404-669-6731, or FAX 7751)	1	1	1	1*
COMMANDER, US Army Engineer District, Mobil ATTN: CESAM-EN-CC/Tony Battaglia (EEAP TCX) P.O. Box 2288 Mobile, Al. 36628-0001 (tel. 205-690-2618, or FAX 2424)	e 1		_	only)
COMMANDER, US Army Engineer Division, Ohio Ri ATTN: CEORD-DL-M/Joe Semrad P.O. Box 1159 Cincinnati, Oh. 45201-1159	ver 0	1**	0	0
COMMANDER, US Army Engineer Div., S. Atlantic ATTN: CESAD-EN-TE/John Baggette 77 Forsyth Street, S.W. Atlanta, Ga. 30335-6801	0	1**	0	0
COMMANDER, US Army Corps of Engineers ATTN: CEMP-ET/Dan Gentil (EEAP Program Mgr) 20 Massachusetts Avenue Washington, D.C. 20314-1000	0	1**	0	0

COMMANDER, US Army Logistics Evaluation Agency 0 1** 0 0 ATTN: LOEA-PL/Mr. Keath
New Cumberland Army Depot
New Cumberland, Pa. 17070-5006

* Field Notes submitted in final at Interim submittal.

** Submit copies of the final Executive Summary only.

ANNEX B

EXECUTIVE SUMMARY GUIDELINE

- 1. Introduction.
- 2. Building Data (type, size,, etc.)
- 3. Present Energy Consumption of Buildings or Systems Studied.
 - o Total Annual Energy Used.
 - o Source Energy Consumption.

Electricity - KWH, Dollars, BTU
Natural Gas - THERMS, Dollars, BTU

- Energy Conservation Analysis.
 - o ECO's Investigated.
 - o ECO's Recommended.
 - o ECO's Rejected. (Provide economics or reasons)
 - o Operational or Policy Change Recommendations.
- * Include the following data from the life cycle cost analysis summary sheet: energy analysis: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR, the simple payback period and the analysis date.
- 5. Energy and Cost Savings.
 - o Total Potential Energy and Cost Savings.
 - o Percentage of Energy Conserved.
- o Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented. (Considering the sum total of individual ECO's, and not the interaction between ECO's)

ANNEX C

REQUIRED DD FORM 1391 DATA

To facilitate ECIP project approval, the following supplemental data shall be provided:

- a. In title block clearly identify projects as "ECIP."
- b. Complete description of each item of work to be accomplished including quantity, square footage, etc.
- c. A comprehensive list of buildings, zones, or areas including building numbers, square foot floor area, designated temporary or permanent, and usage (administration, patient treatment, etc.).
- d. List references, and assumptions, and provide calculations to support dollar and energy savings, and indicate any added costs.
- (1) If a specific building, zone, or area is used for sample calculations, identify building, zone or area, category, orientation, square footage, floor area, window and wall area for each exposure.
 - (2) Identify weather data source.
- (3) Identify infiltration assumptions before and after improvements.
- (4) Include source of expertise and demonstrate savings claimed. Identify any special or critical environmental conditions such as pressure relationships, exhaust or outside air quantities, temperatures, humidity, etc.
- e. Claims for boiler efficiency improvements must identify data to support present properly adjusted boiler operation and future expected efficiency. If full replacement of boilers is indicated, explain rejection of alternatives such as replace burners, nonfunctioning controls, etc. Assessment of the complete existing installation is required to make accurate determinations of required retrofit actions.
- f. Lighting retrofit projects must identify number and type of fixtures, and wattage of each fixture being deleted and installed. New lighting shall be only of the level to meet current criteria. Lamp changes in existing fixtures is not considered an ECIP type project.

- g. An ECIP life cycle cost analysis summary sheet as shown in the ECIP Guidance shall be provided for the complete project and for each discrete part included in the project. The SIR is applicable to all segments of the project. Supporting documentation consisting of basic engineering and economic calculations showing how savings were determined shall be included.
- h. The DD Form 1391 front sheet shall include, for the complete project, the annual dollar and MBTU savings, SIR, simple amortization period and a statement attesting the building and retrofit actions will be in active use throughout the amortization period. DD Form 1391 shall be IAW AR 415-15. Provide hardcopy and a computer diskette.
- i. The fiscal year in which the cost was calculated shall be clearly shown on the DD Form 1391.
- j. Nonappropriated funded facilities will not be included in an ECIP project without an accompanying statement certifying that utility costs are not reimbursable.
- k. Any requirements required by ECIP guidance dated 25 April 1988 and any revisions thereto. Note that unescalated costs/savings are to be used in the economic analyses.
- 1. The five digit category number for all ECIP projects except for Family Housing is 80000. The category code number for Family Housing projects is 71100.

GLOSSARY OF ACRONYMS

A/E Architect Engineer

AR Army Regulation

DEH Director of Engineering and Housing

DOD Department of Defense

DSOW Detailed Scope of Work

ECAM Energy Conservation and Management

ECIP Energy Conservation Investment Program

ECO Energy Conservation Opportunity

EEAP Energy Engineering Analysis Program

EHSC Engineering and Housing Support

EMCS Energy Monitoring and Control System

ESOS Energy Savings Opportunity Survey

GSOW General Scope of Work

HQUSACE Headquarters, US Army Corps of Engineers

LCCA Life Cycle Cost Analysis

LCCID Life Cycle Cost In Design

MACOM Major Army Command

MCA Military Construction Army

NECPA National Energy Conservation Policy Act

OSD PIF OSD Productivity Investment Funding

PCIP Productivity Capital Investment Program

PDB Project Development Brochure

PECIP Productivity Enhancing Capital Investment Program

QRIP Quick Return on Investment Program

SIR Savings Investment Ratios

TCX Technical Center of Expertise

RELEASE OF CLAIMS

The undersigned architect-eng	ineer i	firm,	under	Contract	No.
, da	lated			, 1	9,
between the United States of A	merica a	and said	l archi	itect-engi	neer
for					
located at				in accord	ance
with the "Payment" clause of	said co	ntract,	hereby	releases	the
United States, its officers,	agents,	and emp	oloyees	from any	and
all claims arising under or	by virt	ue of sa	aid cont	tract or	any
modification or change there	of exc	ept with	n respe	ect to t	hose
claims, if any, listed below:					
Executed this	_ day of			, 19	•
		(:	signatu	re)	
			(title)	
Witness:					
(address)					
(address)					

Ft. Campbell Cold Storage Facility Energy Study

APPENDIX 6
FIELD NOTES

January 1993

Surveyed by: WJR / RWW

Date: 9/11/92 Time: 1130

STORAGE ROOM DATA SHEET

Storage room name: _	PC2	Fresh Frui	its &	<u>Vegetables</u>	PC2-EX
Products stored: <u>Cab</u>	bage, Letti	ice, Carrots,	Lemo	ns, Apples, To	omato
Room Length (ft):	44	_ Width (ft)):	23	Area (ft ²): ~ 1008
Design Temperature (°F	F): <u>35</u>	- 40	Actı	al Temperature	e (°F):
Location of Temperatur	e measurir	ng device in l	Room		
Ceiling Height (ft):	10' - 6"	Wood	racks	against walls	
Estimated amount of fo	od stored:	12 pallets			
Equipment in Room an	d Type: _	2			
Number of Lights: 12	Hooded		Watta	ge per bulb: _	100
Number of Doors:			Doc	г Туре:	
	es, etc.)	Krack - Fan	mot or	34P, 9,2 Ami	(s), equipment, lights, and ostart, 4.6 Amp Kun, 320V. ler 34P., 3Ph, Tamp. 320V.
0	0	0			Krack
0	0	0		6	ბ——-ბ
0	0	0			
	0	0			Temp Paoise

Ceiling Plan

Floor Plan

Surveyed by: WJR / RWW

Date: 9/11/92 Time: 1115

Storage room name:	M-F	Frozen M	Ieats, Poultry	, Seafood	MF-1-EX
Products stored:	urkeys, Corn Do	gs, Steaks, P	atties, Roasts	, Fish	
Room Length (ft):		idth (ft):	37	Area (ft²):	~ 3034
Design Temperature ((°F): 0 to -1	0 A	ctual Temper	ature (°F):	6
Location of Temperat	ure measuring de	evice in Roon	n:		
Ceiling Height (ft): _	10' - 2"				
Estimated amount of	food stored: 6	9			
Equipment in Room a	and Type:				
Number of Lights:	36 Incan (Shaded	i) 4 rows	Wattage per	bulb:	•
Number of Doors: _	2 w/curtains	_ Door	Туре:		
* Detail Blow	ers and Evaporat	ors on Revers	e*		
Make a sketch here s all openings (pipe end wood Packs Against Include North Arrow	tries, etc.) KRach	K -> 1-30 +m	leavers, 220,	1,391=	start, 10 Amp Run
			metal Rack	metal R	Temp. / Probe
Ceilin	g Plan		5'x7'9"	Floor	

Surveyed by: WJB / RWW

Date: 9/11/92 Time: 1135

Floor Plan

STORAGE ROOM DATA SHEET

Storage room name:	Issue Room	ISSRM-EX
Products stored:	Staging Room - Breads, 1	Milk
Room Length (ft):	<u>~82'</u> Width (ft):	:~21' Area (ft²):1737
Design Temperature	(°F):	Actual Temperature (°F):
Location of Tempera	ture measuring device in Re	oom:
Ceiling Height (ft): _	10' - 6" with mea	t racks
Estimated amount of	food stored:	
Equipment in Room	and Type: 2 units	
Number of Lights: Number of Doors: _	20 2 rows 10 ea. Outside	Wattage per bulb: 100 Door Type:
* Detail Blow	ers and Evaporators on Re	verse*
	tries, etc.) Chillers Same	om, location of door(s), equipment, lights, and us PCQ Room on Fast side NotusED astis used why wio self-closer
Meat	Rack	y

Ceiling Plan

Surveyed by: WJR / RWW

Date: 9/11/92 Time: 1420

STORAGE ROOM DATA SHEET

Storage room name: C-4 Mini Mart Produce (former Meat Mart) G4MM-EX Cabbage
Products stored: Apples, Canned Ham, Carrots, Idaho Potatoes, Celery, Lemons, Oranges
Room Length (ft): 38 Width (ft): 19.5 Area (ft ²): 745
Design Temperature (°F): Actual Temperature (°F):48 / 45.7
Location of Temperature measuring device in Room:
Ceiling Height (ft): 10'-3"
Estimated amount of food stored: 6 pallets
Equipment in Room and Type:
Number of Lights: 8 Incan Wattage per bulb: 100 watt
Number of Doors: Door Type:
* Detail Blowers and Evaporators on Reverse*
Make a sketch here showing dimensions of room, location of door(s), equipment, lights, and all openings (pipe entries, etc.) Krack Mod # 55 - 244-170-EDL- DXF Unit "B" ser# 356 531, 2 Fans 15 Hmp Include North Arrow. In: "A" Heater 5600 watts, 24.3 amps Same as other produce
"A" "B"

Ceiling Plan

Floor Plan

Surveyed by: WJR

Date: 9/11/92 Time: 1015

STORAGE ROOM DATA SHEET

Storage room name: Crushed Ice	
Products stored: C. Ice	
Room Length (ft): Width (ft):	Area (ft²): 270.16
Design Temperature (°F): Ac	etual Temperature (°F): 32/36/36
Location of Temperature measuring device in Room	n:
Ceiling Height (ft): 10.5'	
Estimated amount of food stored: 6.5 2000 lb Pa	llets (Loading app. 40% of capacity)
Equipment in Room and Type: Krack, Chicago S 2 motors ¼ HP 230 Number of Lights: 3	V - 1 Phase 2.5 amp ea.
Number of Doors: 2: Air curtain on large	Door Type: Chase Ind. ser 2428
Make a sketch here showing dimensions of room, all openings (pipe entries, etc.) Ceiling Sweating Include North Arrow.	
	Temp. Probe

Floor Plan

※

*

Surveyed by: WJR / RWW

Date: 9/11/92 Time: 0830

Storage room name: North Storage Staging	NSS-EX				
Products stored: Stable Milk, extra Pallets, Forklifts, carts, misc. dry goods					
Room Length (ft): 113' Width (ft)	:17' Area (ft²): ~ 1921				
Design Temperature (°F):	Actual Temperature (°F): Ambient				
Location of Temperature measuring device in R	oom:				
Ceiling Height (ft): 10'-8"					
Estimated amount of food stored: 58 tons (58	pallets @ 2000) 43.5 ft ³				
Equipment in Room and Type: Heating Units	Only				
Number of Lights: 30 - 12 w/covers, 18 w/hoo	ods Wattage per bulb: 100				
Number of Doors: 2 to Breezeway, 3 to Freezeway	zers Door Type:				
Make a sketch here showing dimensions of room, location of door(s), equipment, lights, and all openings (pipe entries, etc.) 141/2 NaII Thickness Total, 311 of Wall Insul. Insulation - Plaster over wire Latte over ~2" stry of Dam					
Include North Arrow. 2 Heating Units - Feddar mod # 170310	s llov, Fan.				
5er # 631906 3Rows, 10per Row	TO FREEZER				
00000000					
00000000 A F F					
000000000					
	Tem?				
Ceiling Plan	Floor Plan				

Surveyed by: WJR / RWW

Date: 9/11/92 Time: 1145

Storage room name: VF2 Frogen Vegs,	Fruits, Juices VF2-EX			
Products stored: <u>Pizza, Waffles, Butter, Chee</u> French Fries, Pie Crusts	ese, Frozen Juice, Hash Browns,			
Room Length (ft): 44 Width (ft):	27 Area (ft²): ~ 1176			
Design Temperature (°F): 0 to -10	Actual Temperature (°F): 3			
Location of Temperature measuring device in R	oom:			
Ceiling Height (ft): 10'-6" Ceiling repair ne	ear units wood racks against walls			
Estimated amount of food stored: 39 Pallets				
Equipment in Room and Type:				
Number of Lights: 12	Wattage per bulb: 100			
Number of Doors: 1 w/air curtains 5'-8" x 7'-9"	Door Type: <u>Jamison Mod# UCBC</u> 5 amp, 600 watt heater			
Make a sketch here showing dimensions of roo all openings (pipe entries, etc.) Bohn - mod *	\$ 2400 EL-2 230V.			
Include North Arrow. Ser# 864355 805414 Heater - 3 ph, Amp 22.8 Amps				
Fan	1-3 Amp, 1Ph			
	ſ			
Bohn				
Bohn	·			
	Temp. Probe			
Ceiling Plan	Floor Plan			

Fort Campbell Energy Study
Project No: 0-4627-0070-0000
Surveyed by: WJR / RWW

Date: 9/11/92 Time: 1000

Storage room name: South Freezer - Non Operable Lingle Model #400 11-09-277
Products stored:n/a
Room Length (ft): 39'-6" Width (ft): 20'-8" Area (ft ²): ~ 817
Design Temperature (°F): ? Actual Temperature (°F): Ambient
Location of Temperature measuring device in Room:
Ceiling Height (ft): 9'-6"
Estimated amount of food stored:
Equipment in Room and Type:
Number of Lights: 5 Wattage per bulb: 100
Number of Doors: 1:Mod #34 120v, 2,48 amps Door Type: C.M. Lingle/ 5'-7'
Make a sketch here showing dimensions of room, location of door(s), equipment, lights, and all openings (pipe entries, etc.) mfg > Rosell Breages. The delike AE 66-280
Include North Arrow. Blowers: 1 ampper blower, 1 ph. 230 v. model # AE 66-280 Heater: 3 ph. 230 v., 22 b amps Outside Wall thickness 2/2"

Floor Plan

Surveyed by: WJR

Date: 9/11/92 Time: 1020

STORAGE ROOM DATA SHEET

Storage room name: Shortening & Olea, Yeast C-1-EX Hershey Chocolate Chips
Products stored: Shortening, Olea, Yeast, Mustard, Jelly, Syrup, Salad dressing
Room Length (ft): Width (ft): Area (ft ²): 466.01
Design Temperature (°F): 35 - 42 Actual Temperature (°F): 53
Location of Temperature measuring device in Room:
Ceiling Height (ft): 10'-3"
Estimated amount of food stored: 12 Pallets @ 2400 /lbs
Equipment in Room and Type:
Number of Lights: 6 Inc. Unshaded Wattage per bulb: 100
Number of Doors: 2 Door Type: Gloeker, Erie PA

Make a sketch here showing dimensions of room, location of door(s), equipment, lights, and all openings (pipe entries, etc.) $\mathcal{B}_{oh} \cap \mathcal{F}_{cons}$

Include North Arrow.

Ceiling Plan

Wall Thickness 35/811

Floor Plan

Fort Campbell Energy Study
Project No: 0-4627-0070-0000
Surveyed by: WJR / RWW

Date: 9/11/92 Time: 0930

Storage room name: V.F. 1 / North Freezer	VF1-EX	
Products stored: Frozen Vegetables		
Room Length (ft): Width (ft): Area	(ft²): 921	
Design Temperature (°F): 0 to -10 Actual Temperature (°F):	:6	
Location of Temperature measuring device in Room:		
Ceiling Height (ft): 10' - 2"		
Estimated amount of food stored: 17 Pallets @ 2100 lbs ea.		
Equipment in Room and Type:	· .	
Number of Lights: 8 incand. Wattage per bulb: 10	0	
Number of Doors: 2: Gloekler, Erie, PA Door Type: 24 x 60 x	: 10-6 ser#E2631A	
Make a sketch here showing dimensions of room, location of door(s), all openings (pipe entries, etc.) Blower Data: Bohn Model # LB72 6.8 Amp Fan motors, 1 ph 17.4	102 Å	
Include North Arrow. 208, 230 U. Both		

Floor Plan

Surveyed by: <u>R. Corry</u>

Date: <u>9/11/92</u> Time: <u>1500</u>

Ceiling Plan	Floor Plan	
	Supplies + Transfor	
(Burned)	Dontram Congresser	
	Condencee	
(Bugnau)	Eva ₂ 20 #3 #2	
	Which Box	
many pipes hanging from Concrete Ceiling beams Unshaded		
Scar Conquest	Refrigerant Gaswater heckver Heater	
all openings (pipe entries, etc.) Include North Arrow.		
Make a sketch here showing dimensions of room, location of door(s), equipment, lights, and		
* Detail Blowers and Evaporators on Rev	erse*	
Number of Doors: 1 double D	oor Type: Wood & Glass	
Number of Lights: 8 inc. Watt	tage per bulb:	
Equipment in Room and Type:see equipment	t sheets	
Estimated amount of food stored:none		
Ceiling Height (ft): _ ~ 15'3"		
Location of Temperature measuring device in Ro	oom: Center	
Design Temperature (°F):	Actual Temperature (°F): 84.2	
Room Length (ft):33'10" Width (ft):	18'9" Area (ft ²): ~ 634	
Products stored: Refrigeration Equipment		
Storage room name: Mechanical Room	MECRM-EX	

Surveyed by: R. Corry

Date: 9/11/92 Time: 1510

	Storage room name: Boiler Room		BLRM-EX	
	Products stored: Boiler & accessories, water heater	ers		
	Room Length (ft): 19'4" Width (ft):	12'	Area (ft ²): 232	
	Design Temperature (°F):A Actu	al Tempera	ture (°F): 80.4	·
	Location of Temperature measuring device in Room:	Cente	r	
	Ceiling Height (ft): 16' 4"	•		
	Estimated amount of food stored:none	•		
	Equipment in Room and Type:see below			
	Number of Lights: 4 incandescent Watta	ge per bulb	: 100	
	Number of Doors: 1 Double Door	r Type: _v	vood & metal louvered	
	Make a sketch here showing dimensions of room, leall openings (pipe entries, etc.)	ocation of d	loor(s), equipment, ligh	ts, and
	Include North Arrow.			
	Tank			
Co°	STEAM LINES Chimiley Chimiley Done	G H	Gas Stam Boiler Steam Tank Panels	
	Ceiling Plan	R 502 Canisters	Floor Plan	Transformer Gas

Surveyed by: R. Corry

Date: 9/11/92 Time: 1245

Storage room name: Locker Room	LR-EX
Products stored: none	
Room Length (ft): 18' 10" Width	(ft): 17' 4" Area (ft ²): ~ 326
Design Temperature (°F):	Actual Temperature (°F): 69.6
Location of Temperature measuring device	e in Room: Center
Ceiling Height (ft): 8' 10"	
Estimated amount of food stored:none	
Equipment in Room and Type: Bathroo	om
Number of Lights: 14	Wattage per bulb:
Number of Doors:1	Door Type: Office
* Detail Blowers and Evaporators of	on Reverse*
Make a sketch here showing dimensions of all openings (pipe entries, etc.)	f room, location of door(s), equipment, lights, and
Include North Arrow.	
	10'5"
O 2	E Latrine Bathroom
	4
O 2 O 2 O 2	1
	7 Door
O 2 O 2 O 2	Lockers
	8'15"
Ceiling Plan	Floor Plan

Surveyed by: R. Corry

Date: 9/11/92 Time: 1225

STORAGE ROOM DATA SHEET

Storage room name: VET's Office	VT OFF-	EX
Products stored:n/a		
Room Length (ft): 18' 10" Width (ft):	15' 2" Area (ft²):	~ 286
Design Temperature (°F):	Actual Temperature (°F): 69.7 -	70.4
Location of Temperature measuring device in R	oom: Center - thermocouple	
Ceiling Height (ft): 8' 10"		
Estimated amount of food stored:none		
Equipment in Room and Type:none		-
Number of Lights: 14 fluorescent	Vattage per bulb:	
Number of Doors:2	Door Type: <u>office</u>	
Make a sketch here showing dimensions of roo	om, location of door(s), equipment	, lights, and
all openings (pipe entries, etc.)		
Include North Arrow.	·	
18'10"		Latrine
6 6	Storage Sinks	
S C C S C C C C C C C C C C C C C C C C		office
4 a 4	र उठम	
		Door.

Ceiling Plan

Floor Plan

Surveyed by: R. Corry
Date: 9/11/92 Time: 1230

Storage room name: Cold Storage Office	CSOFF-EX		
Products stored: none			
Room Length (ft): 18' 10" Width (ft):	Area (ft²):		
Design Temperature (°F):	Actual Temperature (°F):		
Location of Temperature measuring device in R	coom: Center - thermocouple		
Ceiling Height (ft): 8' 10"			
Estimated amount of food stored: <u>none (person</u>	nal)		
Equipment in Room and Type: 1 household	refrigerator		
Number of Lights: 36 fluorescent W	Vattage per bulb: 100		
Number of Doors: 2 D	oor Type: Office		
* Detail Blowers and Evaporators on Re	everse*		
Make a sketch here showing dimensions of room, location of door(s), equipment, lights, and all openings (pipe entries, etc.)			
Include North Arrow.			
<	Jook. 2 windows		
2 2 2	- window		
2 2 2			
	After		
2 2	Refrig.		
Ceiling Plan	Door to Vets office Floor Plan Duct		

Surveyed by: WJR / RWW

Date: 9/18/92 Time: 1100

STORAGE ROOM DATA SHEET

Storage room name: <u>EC-3</u> Eggs, Fresh Cheese, G	Canned Ham EC-3-EX	
Products stored: Cheese, Eggs		
Room Length (ft): Width (ft):	Area (ft²): 1306.61	
Design Temperature (°F): 30 - 35 Actual Temperature	mperature (°F):56	
Location of Temperature measuring device in Room:		
Ceiling Height (ft): 10'-6" w/meat racks		
Estimated amount of food stored: 26 pallets		
Equipment in Room and Type: 2 - units		
Number of Lights: 20 hooded 5 rows of 4 Watta	ge per bulb: 100	
Number of Doors: 2 5'x7'-8" Door Ty	ype:	
* Detail Blowers and Evaporators on Reverse*		

Make a sketch here showing dimensions of room, location of door(s), equipment, lights, and all openings (pipe entries, etc.)

Include North Arrow.

Ceiling Plan

Floor Plan

Surveyed by: WJR / RWW

Date: 9/11/92 Time: 1335

STORAGE ROOM DATA SHEET

Storage room name: _	Latrine - Mini Mart	LTNMM-EX	-
Products stored:ne	one		_
Room Length (ft): _	19'-0" Width (ft):	10'-0" Area (ft²): 190	
Design Temperature (°	'F):	Actual Temperature (°F): 75	_
Location of Temperatu	re measuring device in F	Room:	_
Ceiling Height (ft):	9' - 0"		
Estimated amount of for	ood stored: n/a		
	nd Type:n/a 3 Over sinks - 1 bulb		
		Wattage per bulb: 100	
Number of Doors:	2'-8" x 7'-0"	Door Type: Wood w/vent	_
* Detail Blowe	ers and Evaporators on Re	everse*	
Make a sketch here sh all openings (pipe entr	•	om, location of door(s), equipment, lights, and	i
Include North Arrow.			
		steom Radiator	
		Window	
		SINKS	

Ceiling Plan

Floor Plan

Surveyed by: WJR / RWW

Date: 9/11/92 Time: 1345

Floor Plan

STORAGE ROOM DATA SHEET

Storage room name: Mini Mart Locker Room MM-LR-EX		
Products stored: Non-Food		
Room Length (ft): 19 Width (ft): 10 Area (ft²): 190		
Design Temperature (°F): Actual Temperature (°F):		
Location of Temperature measuring device in Room:		
Ceiling Height (ft): 9'		
Estimated amount of food stored:		
Equipment in Room and Type:		
Number of Lights: 6 Wattage per bulb: 100		
Number of Doors: 2 Door Type: Wood		
* Detail Blowers and Evaporators on Reverse*		
Make a sketch here showing dimensions of room, location of door(s), equipment, lights, and all openings (pipe entries, etc.) Include North Arrow.		
Lockers		
Ø Ø Ø		
Tockers (
Lockers		

Ceiling Plan

Surveyed by: WJR / RWW

Date: 9/11/92 Time: 1350

Storage room name: Mini Mart Check C	Out MM-CO-EX
Products stored:	
Room Length (ft): 50.5 Width	n (ft): Area (ft²): ~ 960
Design Temperature (°F):	Actual Temperature (°F):
Location of Temperature measuring device in I	Room:
Ceiling Height (ft): 10' - 6"	
Estimated amount of food stored:none	
Equipment in Room and Type:	
Number of Lights: 2-Flourescent, 14-200 watt	t incand. Wattage per bulb:
Number of Doors: 2	Door Type:
	·
Make a sketch here showing dimensions of roall openings (pipe entries, etc.)	om, location of door(s), equipment, lights, and
Include North Arrow.	
51 × 218" Door	
O "stack	with acrive closer
000000	
	Heater Air Handler Heater Air Handler
Siran	
Ceiling Plan	Floor Plan

Fort Campbell Energy Study Project No: 0-4627-0070-0000 Surveyed by: WJR / RWW

Date: 9/11/92 Time: _

Floor Plan

1355

STORAGE ROOM DATA SHEET

Storage room name: Mini-Market	MM-EX
Products stored:	
Room Length (ft): 72' Width (ft)	:41' Area (ft ²): 2952 49.5-58.5 in Room
Design Temperature (°F):0 Actual Temperature	nperature (°F): 10/11.5 Free Standing Unit
Location of Temperature measuring device in I	Room:
Ceiling Height (ft): 10'-6"	
Estimated amount of food stored: 16 pallets	
Equipment in Room and Type: Room: 22 inc:	
Number of Lights: Freezer: 30-Flourescent, 2	
Number of Doors:4 Door Typ	oe: Free Freezer door closers inoperable
* Detail Blowers and Evaporators on R	everse*
	om, location of door(s), equipment, lights, and in Free standing fixerer Evaporal Model # 18x4570 ser # 65996-1 ea. 230v. Free standing Freezer
Include North Arrow. Fans - I Ampi Heales - Iph;	Eq. 230v. Free standing Freezek 22.6 Amp, 230v. 39708 Btu 10° Condens able -10° W.A. Brown + sons, Salisburga
FAN	Free standing Free standing Freezer Freezer Freezer
	5'x7' [w] 5'2"x3'9"
	Locked 2'3"x6'5"

Ceiling Plan

Fort Campbell Energy Study
Project No: 0-4627-0070-0000
Surveyed by: WJR / RWW

Date: 9/11/92 Time: 1430

STORAGE ROOM DATA SHEET

Storage room name: Mini-Mart Egg Room MMER-EX
Products stored: Butter, Margarine, Cheese
Room Length (ft): 12.5 Width (ft): 19.5 Area (ft ²): ~ 244
Design Temperature (°F): Actual Temperature (°F):44.2
Location of Temperature measuring device in Room:
Ceiling Height (ft): 10'-6"
Estimated amount of food stored: 4 Pallets
Equipment in Room and Type:
Number of Lights: 4 Incand. (Shaded) Wattage per bulb: 100
Number of Doors: 2 w/air curtains: 5'-0"x7'-9" Door Type: Chase
* Detail Blowers and Evaporators on Reverse*
Make a sketch here showing dimensions of room, location of door(s), equipment, lights, and all openings (pipe entries, etc.) Krack mod = Bucaso SER = 14954 Include North Arrow. 2 motors 0.1 HP: 115 V., 6 PMPS
window
PRobe *

Ceiling Plan

Floor Plan

Fort Campbell Energy Study Project No: 0-4627-0070-0000

Surveyed by: WJR / RWW

Date: 9/11/92 Time: 1435

STORAGE ROOM DATA SHEET

Storage room name:	Mini-Mart Hallway	MM-HW-EX
Products stored:	Idaho Potatoes, Onions,	Packaged Ketchup
Room Length (ft):	84' Width (ft)	:10.5' Area (ft²):882
Design Temperature	(°F):	Actual Temperature (°F): 52
Location of Tempera	ture measuring device in	Room:
Ceiling Height (ft):	10' - 7"	
Estimated amount of	food stored: 7 pallets	
Equipment in Room	and Type:	
Number of Lights: _	12 incand.	Wattage per bulb: 100
Number of Doors:	4: (5'-0" x 7'-0")	Door Type: Chase
		·

Make a sketch here showing dimensions of room, location of door(s), equipment, lights, and all openings (pipe entries, etc.) Krack-Bunits same as the Room, Brack

Include North Arrow.

Ft. Campbell Cold Storage Facility Energy Study

APPENDIX 7

ENERGY CONSERVATION OPPORTUNITIES PROJECTED

January 1993

VERSAGLOW® 150 and 250 LUMINAIRE LOW BAY ENCLOSED

The state of the s

APPLICATIONS

Low mounting height 8-20 ft. (2-6 meter) applications, classrooms, offices, cafeterias, storage rooms.

SPECIFICATION FEATURES

- L.I. UL1572 Listed SUITABLE FOR DAMP LOCATIONS
- □ UL1572 Listed for metal natide lamps in polymeric lamp containment barriers
- E.1 UV stabilized injection molded prismatic refractor for low brightness
- To Die-cast aluminum ballast housing with electrocoat gray paint finish
- ☐ Primary quick disconnect for easy mounting
- ☐ Uses energy-conserving high intensity discharge lamps
- Mogul base socket
- Safety chain provisions
- 😀 Shipped as components: Bailast, Optical, Mounting Receptacte

ORDERING	NUMBE	R LOGIC	N. A. S.		19 m		44. No. 1	€ [49 USTED]
VIG	05	S	0	H	4	EA	1	Q
PRODUCT ID XXX	WATTAGE XX	LIGHT SOURCE X	VOLTAGE X	BALLAST TYPE X	AMBIENT °C X	OPTICAL XX	MOUNTING RECEPTACLE X	OPTIONS XXX
V1G= Versaglow 150 Luminaire V2G= Versaglow 250 Luminaire	05= 50 07= 70 10=100 15=150 (55V) 17=175 25=250	S=HPS M=MH or Merc NOTE: Lamp is base up. Standard: Lamp not included.	0=120/208/ 240/277 Multivolf 1=120 2=208 3=240 4=277 5=480 D=347 F=120X347	See Ballast and Photometric Selection Table A=Autoreg H=HPF Reactor or Lag K=Hot Restart	4=40 NOTE: 150 watt maximum when used with Versaglow 150 Luminaire (V1G)	EA = Enclosed Acrylic for V2G EL = Enclosed Polycar- bonate IA = Enclosed Acrylic Refractor for V1G	Select from Mounting Receptacle Selection Table. Example: 2=1/4-in. Pendant, Rigid	8 = Time Delay Automatically Switched Quartz F = Fusing (Not available with multivolt or 120X347V) Q = Non-Time Delay Automatically Switched Quartz

Date subject to change without notice

The entalog numbers, options and modifications on this page are ULListed unless otherwise noted.

Registered Tredemark of General Electric Company

Page 2 1140 Dec. 1991

free start and the

VERSAGLOW® 150 and 250 LUMINAIRE LOW BAY ENCLOSED

DIMENSIONS

NOTE: Flexible pendant mounting receptacle must be used if unit is not rigidly mounted.

BALLAST AND PHOTOMETRIC SELECTION TABLE

All light sources are clear unless otherwise indicated.

Wattage	Light Source	Ballast Type Ali Voltages	Spacing Criterion	Photometric Curve Number 35-17
V1G Versaglow	150 Luminaire			
50, 70, 100, 150 (55V)	HPS	¥*, K	1.5	5764
V2G Versagiow	250 Luminaire			
50, 70, 100, 150 (55V)	HPS	н•, к	1.6	5715
250	HPS	A	1.6	5752
175 250	MH (Coated) MH (Coated)	A A	1.6 1.6	5751 5921
175, 250	Merc (Coated)	A	1.6	5753
NOTE: *480 volt '	"H" not available—	use " M " Mag-Re	9	

DATA.

1			
	Approximate Net Welght	22-36 Lbs	10-16 Kgs

MOUNTING RECEPTACLL SELECTION TABLE

NOTE: Flexible pendant mounting receptacle must be used if unit is not rigidly mounted.

- 1 = Ceiting (MPM-C)
- 2= 1/4-in. Pendant, Rigid (MPM-3PR)
- 5= 1/4-in. Pendant. Flexible (MPM-3PF)
- 6= Outlet Box Cover (MPM-OBC)

REFERENCES

See Page 1900 for start of Accessories See Page 1940 for Start of Component Ordering Number Logic

Kelso-Regen Associates, Consulting Engineers 6709-B Kingston Pike KNOXVILLE, TENNESSEE 37919 Phone 588-5348

PROJECT COLD STORAGE FACILITY-FT, CAMPBELL

BY DATE

TITLE ANALYSIS OF ELECTRICAL COST SAVINGS

TOM 9 OF YOUR LETTER, ITOM 13 OF PRELIM ROPOLET	HOW USE OF PERKS-SHIP IND EMPLEATING CON
APPARENT ELECTRICAL PEAK LOI	
720 5	
SPACE MECHANICAL ROOM	BASE LOND PEAK WAD 83 KW 19 KW
BATTERY ROUM	15
BOILER ROOM	28 36
——————————————————————————————————————	121 KW 170 KW
TOTRUS	
PEAL-SHAVING GENETRATOR CAP	PACITY 170-121 = 49 KW
COST OF SO KW DIESEL GE	
100 AMP TRANSPER S	
FUEL TANK	500
CONCRETE PAD, WIRI	ING, MSTRUCKTION 3000
TOTAL	22,092
OPERATING COST	
271/	GAL , L
1 2000 HP/4R * SO KW × 3413 DYKW	
	10,000 CM/4
	OR REOUT \$10,000/4R
<u> </u>	
POSSIBLE SHVINGS 50 KW X "12	2 /KW-MO. × 12 MO. = 7200/4R.
	14,000 CON, ETT 140,000 TO 0.3 ETF (0,000 CM/4) OR NEOUT 10,000/4R 2/KU-MO. × 12 MO. = 7200/4R.

60 QSGCB 60 Hz

50 QSGCB 50 Hz Quiet Site[™] Diesel-Fueled Generator Set

Factory tested under full load at 23 feet (7 meters):

> 60 Hz: 68 dBA 50 Hz: 63 dBA

STANDBY PRIME

60 kW 55 kW 60 Hz 75 kVA 69 kVA

45 kW 50 kW 50 Hz 63 kVA 56 kVA

Standard package for permanently-installed standby or prime power applications.

Optional trailer package and voltage reconnection panel for mobile power applications.

Quiet Site Generator Set

- Single-source design, manufacturing and testing of all set components and accessories by Onan Corporation.
- Accepts 100% of nameplate kW rating in one step, in compliance with NFPA 110. Paragraph 5-13.2.6.
- Engine torquematched excitation system provides quick recovery from transient speed dips.
- Low reactance generator design offers low waveform distortion with non-linear loads and provides excellent motor starting capabilities.

Features

SOUND-ATTENUATED ENCLOSURE

Lockable; reduces noise to levels substantially lower than standard designs; critical grade silencer enclosed in housing.

ENGINE

Cummins direct injection, 4-cycle diesel engine.

ALTERNATOR

Revolving field alternator, brushless, 12 lead, reconnectible, broad range voltage.

VOLTAGE REGULATOR

Electronic voltage regulator provides precise regulation and underfrequency compensation.

COOLING SYSTEM

High ambient 122° F (50° C) system.

FUEL TANK

Integral 40 gallon (151 liters)

PAINT FINISH

Electrodeposition primer treatment for maximum finish durability in harsh environments.

SINGLE POINT LIFTING EYE

Generator Set Testing

The Prototype Test Support (PTS) program is our commitment to verifying the integrity of our designs and products.

Before the generator sets are put into production, prototype models are subjected to demanding tests with typical/atypical loads and transients anticipated in service.

Production models earn the PTS seal only after meeting the performance criteria established by the program.

Single-Source Warranty

All generator set components and systems are covered by a limited one-year warranty. Optional twoand five-year* extended programs are available.

Standard Models are CSA certified.

*Available on emergency/standby applications only.

OT III[™] Automatic Transfer Switch 40 to 3000 Amperes

Application Flexibility

OT III™ Automatic Transfer Switches transfer loads between utility and generator set, utility and utility, or generator set and generator set. Available in 3- or 4pole/switched neutral models.

Power Sentry Electronic Control

Reliable electronic control with system surge voltage isolation, all phase monitoring on each power source; four standard time delays and diagnostic LED's.

- Optical isolation on all logic inputs.
- Relays used on all outputs.
- High isolation transformers for AC power inputs.
- LED lamps verify control status.
- Field adjustable voltage sensors and time delays.

Linear Operator

Provides simple, reliable, positive, fast acting electric transfer during automatic operation.

Positive Interlocking

Mechanical and electrical interlocking to prevent sourceto-source connection through the power or control wiring.

Main Contacts

Heavy duty silver alloy contacts with separate arcing surfaces and multileaf arc chutes. Rated for total system transfer including overload interruption. High pressure contact design withstands high fault currents without interruption.

Assembly Features

UL Listed cabinets. Plug connections between switch and control to facilitate service. UL Listed CU-AL terminals. Door mounted controls provide easy access for adjustments and service. Ample space for field power and control connections. Terminal markings compatible with generator set.

Agency Approvals

Listed to UL 1008. All accessories UL listed for factory or field installation. Complies with NEMA ICS 2-447, and conforms to applicable requirements for NFPA 70, 99 and 110. CSA certified.

Manual Operation

Permanently attached manual operating handles, shielded termination, and over-center type contact mechanisms allow safe, manual operation under load. (40 - 1000A switches).

Military Programs

Engineering Bulletin

No. 92-02 Issuing Office: CEMP-ET

ET

Issue Date: 31 March 1

SUBJECT: Utilization of Generators for Peak Shaving

Applicability: INFORMATION

- 1. Significant cost savings may be realized by utilizing standby generators to reduce a facility's demand charges by peak shaving. Chapter 12 of the Architect Engineer Instruction, Design Criteria (AEI), requires that an economic analysis be performed, to determine if it is cost effective to install a demand controller for peak shaving, if the following conditions are met:
 - a. The facility has at least 200kW of standby generation, or
- b. A central supervisory, monitoring and control system exists or is planned to be installed at the facility.
- 2. The economic analysis should address factors such as system installation costs (i.e., equipment modifications required to support using the standby generators for peak shaving), operation and maintenance costs, and major replacement costs. Software programs are available to assist in performing the economic analysis.
- 3. Other factors which should be considered when investigating the feasibility of using existing generators for peak shaving include:
- a. Is the use of the standby generators for peak shaving consistent with the mission of the facility?
- b. Will personnel be available to operate and maintain the generator plant as required?
- c. How will the generators be interfaced with the facility electrical system to support peak shaving? Will the system parallel with commercial power? Is operation to be manual or automatic?
- 4. The next update of the AEI will include amplifying and clarifying information regarding this application of standby generators.

III IIIN 12 1992

RICHARD C. ARMSTRONG, P.E. Chief, Engineering Division Directorate of Military Programs

OGDEN

Job Name: Fr Charp BEZZ

Job Number:

Title:

Computed by:

43

Checked by:

Date:

11/17/92

Sheet:

/ Of:

Jales 17/7/42 Sneet: 7 Of:
BUILT UP (ROLL ASPHALT)
TASK I - QUERLAY THE EXISTING ROOF WITH A LIGHT COLOR. BUILT UP ROOF NEWD RECOVERY BOARD SAYS RAY—KBIM DIXIE ROOFING
AREA 227.33 × 110.0 = 25,006 SF (AREA ROSSON) EPDM 200F - (938-9880)
ASSUMES ROOF OK & CAN PENETRATE WITH SCREWS
COAT WITH LIGHT REFLECTIVE _ 2.50-3.75/SF
MOPON ASPHALT + ROOF FEZT MUCH CHUMPER, BUT WON'T LAST AS LONG SAYS LARAY
FROM MEANS 1993 (5,5 EDITION) CAT/PASELOCATION 17EM COST/SF
072-203-0300/169 2 FIBELBUARD .66? 075-302-3800/179 ADHERED EPDM 45MILS 133 LIGHT REFLECTIVE .51-1.26?
FOR \$2,75/SF - TOVAL = \$68,776 +
Use controsts only 1,33 x 2500x = 33,258 4 33,7550

Joh Number: FORT CAMPBELL
Joh Number:

Title:

Computed by:

Date: 11/17/92 Sheet: 3

Oft

TASK 3 - INSTALL FLOOR INSULATION BENEATH MEAT
FREEZER ONLY. MONTH MENT
FREEZER FLOOR SLAR STYTEN (TOP SLARS
FREEZER FLOOR SLAB SECTION (TOP SLAB
67 CONCOUNTS
6" INSULATION - RUMINE?
Chicago Contraction of the Contr
CONCARTE
TOP OF 4'4 CRAWL SPACE
"FROZEN FOOS ROOM" 40 X 85 ± = 3400 SF
A.G.Zanis - Dun Prise pulled
BARLUS - DOW BLUE BOARD Z"-R=10
525-5363 FASTENERS/PLATES FASTENERS/PLATES GLUE \$1,400/gal.
520 536) GZUE \$1400/9a/
ATTIME OF \$
MATTERIALS O.66
FROM MEANS 1993 072-116-1900/Auge 168
7" But Rayon we
744,66
04P.Z3
GUESS AT FASTENERS 0,10
1.2.5/SF OR -13 FOR EACH IR
FOR 1.25/SF - TOTAL = \$4250.00
_
THIS IS FOR WETTER ATTILL SO
COST TO MSTALL IN CRAWL SARCES
MIGHT BE DOUBLE LABOR, OR 151 ST
7HEN 707AZ = \$5/3400

Job Name:

FF CHUPBER

Job Number:

Title:

Computed by: \(\mathcal{LB} \)
Date: \(11/18/92 \)

Of:

TASK 4 - INSTALL MINIMUM Z" PANEZ IN EACH ROOM. THOUMAL INDICATION
4 WALLS - MEAT PROCESSING 450A - 224LF - 23LF DOORS = 201
WHUS - FRONT & DEG - 350F + 136 LF - 5CF DOORS = 131
NUMEL, WWILL METT CHILL - 320 F - ZWALLSONLY - B9 LF HOLF DOOR = 79
N, E, W WALLS - RECEIVING # 1550E - 35° F - ONLY 3 WALLS - 104 LF - 56 F DOORS = 99
4 WALLS FROZED FOODS - OF 234LF - 10 LF DOORS = 224
TO CONTILLATED STORAGE SO F 210 4F = 10 LF DOCKS = 200
= 7 WALS - PROCESSED MENT 28°F 1126F + 10 LF DODES = 102
E, ω. ωμις - 1550 E 35° - 3 ωμις ONLY 53LF-10 CF 200RS = 43
METENS 1993 (5,5 FED MON) ANG CETLING HT = 10.5 PEUT
- 1. MEANS 1773 (3) ED 1770N
072-116-1640 ISOCYANURIE 1"THICK- R.T.Z \$89/5F
(FOIL FACED , BOTH 5,10ES)
FOR \$0.89/5F - 1276 X10.5 X 0.89 WALLS = 11924 # #
1632/ × 0.89 CEILINGS = 14,525±
072-16-1660 yange 168 \$ 26449 I
FOR 2" PANET (R14.4)
For 1.43/50 = 29,719 SF @ 1.43/9F = \$42498,#
Fac 1.43/37 = 27, 117 31 C 1.43/36 = 642 498, F
CENUNG ANOTH = (117 X +1) + (95 X 45) + (21 X 83) + (38 X 83) + (98 X 2 4) = 1632/34 ~
1 · · · · · · · · · · · · · · · · · ·
GORDON HONS Z" BLUE BOARD \$ 0.50/5F (\$ 10.8) SAYS GORDON
072 - 1/6 - 1900/ page 168
FOR 1,135F - TOTAL COST = 29719 × 113 = 33,600 ±