TASK 2: PREDICTIVE ANALYSIS USING MACHINE LEARNING

Step 1: Import Libraries

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

Step 2: Load Dataset

Load Titanic dataset

df = sns.load_dataset('titanic')

df.head()

OUTPUT:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	${\tt adult_male}$	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	Southampton	yes	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	no	True

Step 3: Data Preprocessing

```
# Drop rows with missing values
df = df.dropna(subset=['age', 'embarked', 'fare'])
# Encode categorical variables
df['sex'] = df['sex'].map({'male': 0, 'female': 1})
df['embarked'] = df['embarked'].map({'S': 0, 'C': 1, 'Q': 2})
# Select features and target
features = ['pclass', 'sex', 'age', 'fare', 'embarked']
X = df[features]
y = df['survived']
OUTPUT:
 (ipython-input-3-4142678790):5: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
 See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy">https://pandas.pydata.org/pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy</a>
   df['sex'] = df['sex'].map({'male': 0, 'female': 1})
 (ipython-input-3-4142678790):6: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
 See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy</a>
   df['embarked'] = df['embarked'].map({'S': 0, 'C': 1, 'Q': 2})
```

Step 4: Split Data

Split into training and testing

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Step 5: Build and Train Model

```
# Initialize and train model
model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)
```

OUTPUT:

```
LogisticRegression
LogisticRegression(max_iter=1000)
```

Step 6: Evaluate Model

```
# Make predictions

y_pred = model.predict(X_test)

# Evaluation metrics

print("Accuracy:", accuracy_score(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred))

# Confusion Matrix

sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt="d", cmap="Blues")
plt.title("Confusion Matrix")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
```

OUTPUT:

Accuracy: 0.7902097902097902

_	Classification	Report: precision	recall	f1-score	support		
	0	0.76	0.91	0.83	80		
	1	0.85	0.63	0.73	63		
	accuracy			0.79	143		

weighted avg 0.80 0.79 0.78

macro avg 0.81 0.77 0.78 143

143

