A PROJECT REPORT ON

ReverseX Cipher

Course Code: CSE 361
Course Tittle: Mathematical Analysis for Computer Science
Department: Computer Science & Engineering
Level: 3 & Semester: II

Prepared by

Shovan Prita Paul Student ID: 2002026

Submitted to

Pankaj Bhowmik

Lecturer

Department of Computer Science & Engineering

HAJEE MOHAMMAD DANESH SCIENCE AND TECHNOLOGY UNIVERSITY, DINAJPUR-5200

ReverseX Cipher

1. Introduction

The "ReverseX Cipher" is a symmetric-key cryptography algorithm employing the XNOR operation for encryption and decryption. It reverses the plaintext before applying XNOR encryption with a designated key. Decryption reverses the process, first applying XNOR decryption and then reversing the ciphertext to recover the original plaintext.

2. Encryption Algorithm

Algorithm Description

- 1. Input: Plaintext and encryption key.
- 2. Reverse the plaintext.
- 3. **Perform XNOR encryption** between the reversed plaintext and the key.
- 4. Output: Encrypted text.

3. Decryption Algorithm

Algorithm Description

- 1. Input: Ciphertext and decryption key.
- 2. **Perform XNOR decryption** between the ciphertext and the key.
- 3. Reverse the decrypted text to obtain the original plaintext.
- 4. Output: Decrypted text.

4. Flowcharts

Decryption Flowchart Start Input: Ciphertext and key Perform X-NOR Decryption Reverse the **Decrypted Text** Original Plaintext End

5. Experimental Example

Test Case

Plain Text	Key	Encrypted Text
MESSI	10	Xcbu

Encryption Process

Step	Operation	Explanation	Result
1	Reverse plaintext	Reverse the characters of the plaintext "MESSI".	ISSEM
2	XNOR with key '10'	Perform XNOR operation between each character and the key '10'.	xcbul

Decryption Process

Step	Operation	Explanation	Result
1	XNOR with key '10'	Perform XNOR operation between each character of "xcbul"	and the key '10'
2	Reverse decrypted text	Reverse the characters of the decrypted text "ISSEM".	MESSI

Explanation:

- Encryption Process:
 - Reverse plaintext: "MESSI" reversed becomes "ISSEM".
 - **XNOR with key '10':** Perform XNOR operation between each character of "ISSEM" and the key '10', resulting in "xcbu|".
- Decryption Process:
 - **XNOR with key '10':** Perform XNOR operation between each character of "xcbu|" and the key '10', reversing the encryption process to retrieve "ISSEM".
 - **Reverse decrypted text:** Reverse "ISSEM" back to "MESSI", recovering the original plaintext.

This table and explanation detail how the encryption and decryption algorithms work step-by-step with the given plaintext "MESSI" and key "10".

6. Source Code

Code for HTML (Index.html)

```
index.html > ...
     !DOCTYPE html>
     <html lang="en">
         <meta charset="UTF-8">
         <meta name="viewport" content="width=device-width, initial-scale=1.0">
         <title>Symmetric-Key Encryption Demo</title>
         <link rel="stylesheet" href="styles.css">
         <div class="container">
             <div class="box" id="encryptBox">
                 <h2>Encrypt</h2>
                 <textarea id="plaintext" placeholder="Enter text to encrypt"></textarea>
                 <input type="password" id="encryptionKey" placeholder="Enter encryption key">
                 <button onclick="encrypt()">Encrypt</button>
                 <textarea id="encrypted" placeholder="Encrypted text will appear here" readonly></textarea>
             <div class="box" id="decryptBox">
                 <h2>Decrypt</h2>
                 <textarea id="ciphertext" placeholder="Enter text to decrypt"></textarea>
                 <input type="password" id="decryptionKey" placeholder="Enter decryption key">
                 <button onclick="decrypt()">Decrypt</button>
                 <textarea id="decrypted" placeholder="Decrypted text will appear here" readonly></textarea>
         <script src="script.js"></script>
```

Figure 6.1 Source Code for Index.html

```
# styles.css > 😭 body
     body {
         font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
         background-color: ■#f9f9f9;
         display: flex;
         justify-content: center;
         align-items: center;
         height: 100vh;
         margin: 0;
     .container {
         display: flex;
         justify-content: center;
         align-items: center;
         width: 100%;
         height: 100%;
     .box {
         background-color: ■#fff;
         border-radius: 10px;
         box-shadow: 0 4px 8px □rgba(0, 0, 0, 0.1);
         padding: 30px;
         width: 350px;
         margin: 20px;
         transition: transform 0.3s ease;
     .box:hover {
         transform: translateY(-5px);
     h2 {
         font-size: 1.5rem;
         color: □#333;
         margin-bottom: 20px;
```

Figure 6.2.1 Source Code for styles.css

```
# styles.css > 😭 textarea
          margin-bottom: 20px;
          text-align: center;
      textarea, input[type="password"] {
          width: 100%;
          padding: 10px;
          margin-bottom: 20px;
          border: 1px solid ■#ccc;
          border-radius: 4px;
          resize: none;
          font-size: 0.9rem;
48
      button {
          background-color: ■#4CAF50;
          color: ■white;
          padding: 10px 20px;
          border: none;
          border-radius: 4px;
          cursor: pointer;
          font-size: 0.9rem;
          transition: background-color 0.3s ease;
      button:hover {
          background-color: ■#45a049;
      button:active {
          background-color: ■#3e8e41;
      textarea[readonly] {
          background-color: ■#f0f0f0;
          cursor: not-allowed;
```

Figure 6.2.2 Source Code for styles.css

```
Js script.js > 🛇 encrypt
      function encrypt() {
 1
          let plaintext = document.getElementById('plaintext').value;
          let key = document.getElementById('encryptionKey').value;
          if (!plaintext || !key) {
              alert("Please enter both text and encryption key.");
              return;
          // Reverse the plaintext
          let reversedPlaintext = reverseString(plaintext);
          // Perform XNOR operation with the reversed plaintext and key
          let encryptedText = performXNOREncryption(reversedPlaintext, key);
          document.getElementById('encrypted').value = encryptedText;
      function decrypt() {
          let ciphertext = document.getElementById('ciphertext').value;
          let key = document.getElementById('decryptionKey').value;
          if (!ciphertext || !key) {
              alert("Please enter both text and decryption key.");
              return;
          // Perform XNOR operation with the ciphertext and key
          let decryptedText = performXNOREncryption(ciphertext, key);
          // Reverse the decrypted text to get the original plaintext
          let originalPlaintext = reverseString(decryptedText);
          document.getElementById('decrypted').value = originalPlaintext;
                                                                       Ln 1, Col 1
```

Figure 6.3.1 Source Code for *script.js*

Figure 6.3.2 Source Code for script.js

7. Visual Representation of "ReverseX Cipher"

EXAMPLE 1:

Plaintext "MESSI" and Key "10"

EXAMPLE 2

Plaintext "shovan " and Key "2002026"

8. Conclusion

The ReverseX Cipher uses a mix of **reversing text** and the **XNOR** operation to encrypt and decrypt data. It's an interesting twist on traditional cryptography, showing potential for secure data handling.

References

[1] W. Stallings, *Cryptography and Network Security: Principles and Practice*, 7th ed. Pearson, 2017.

[2] B. Schneier, *Applied Cryptography: Protocols, Algorithms, and Source Code in C*, 2nd ed. Wiley, 1996.