116

Part-III

CHEMISTRY

Maximum: 60 Scores

Time: 2 Hours

Cool off time: 15 Minutes

General Instructions to Candidates:

- There is a 'Cool off time' of 15 minutes in addition to the writing time of 2 hours.
- You are neither allowed to write your answers nor to discuss anything with others during the 'cool off time'.
- Use the 'cool off time' to get familiar with questions and to plan your answers.
- Read the questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- @ Give equations wherever necessary.
- © Electronic devices except nonprogrammable calculators are not allowed in the Examination Hall.

Mõceocobo:

- നിർദ്ദിഷ്ട സമയ്ത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുള്ളവരുമായി ആശയ വിനിമയം നടത്താനോ പാടില്ല.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോല്യങ്ങൾ ശ്രദ്ധാപുർവും വായിക്കണം.
- തെനുവദിക്കുകയുള്ളു.
- കരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരഞ്ഞെടുത്തു കഴിഞ്ഞാൽ ഉപ ചോദ്യങ്ങളും അതേ ചോദ്യ നമ്പരിൽ നിന്ന് തന്നെ തെരഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തര പേപ്പറിൽത്തന്നെ ഉണ്ടായിരിക്കണം.
- യ അവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം.
- ചോദ്യങ്ങൾ തലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൻക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു
 ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

- 1. 'A given compound always contains exactly the same proportion of elements by weight'.
 - a) i) Name the above law.

(1)

- ii) Write the name of the scientist who proposed this law.
- b) Calculate the number of molecules in each of the following:
 - i) $1g N_2$
 - ii) 1g CO₂

(Given that N_A is 6.02×10^{23} , molecular mass of N_2 is 28 and CO_2 is 44). (2)

- 2. a) The number of protons, electrons and neutrons in a species are equal to 17, 18 and 18 respectively. Which of the following will be the proper symbol of this species?
 - i) $\frac{35}{17}Cl$ ii) $\frac{35}{17}Cl^{-}$
 - iii) ${}_{17}^{36}Cl$ iv) ${}_{17}^{36}Cl^{-}$ (1)
 - b) i) Give any two postulates of Rutherford's nuclear model of an atom.
 - ii) Write the two main drawbacks of Rutherford's atomic model. (2)

OR

- 1. ഒരു സംയുക്തത്തിൽ അടങ്ങിയിരിക്കുന്ന മൂലകങ്ങളുടെ ഭാരങ്ങൾ തമ്മിലുള്ള അനുപാതം എല്ലായ്പ്പോഴും ഒരു പോലെ ആയിരിക്കും:
 - a) i) മുകളിൽ കൊടുത്തിരിക്കുന്ന നിയമത്തിന്റെ പേരെഴുതുക. (1
 - ii) ഈ നിയമം മുൻപോട്ടുവച്ചശാസ്ത്രജ്ഞന്റെ പേരെഴുതുക. (1)
 - b) താഴെ കൊടുത്തിരിക്കുന്നവയിൽ ഓരോന്നിലും അടങ്ങിയിരിക്കുന്ന തന്മാത്രകളുടെ എണ്ണം കണ്ടുപിടിക്കുക.
 - i) $1gN_2$
 - $ii)\ 1g\ CO_2$ (N_A യുടെ വില 6.02×10^{23} ആണ്. N_2 -ന്റെ തന്മാത്രാഭാരം 28 ഉം CO_2 ന്റെ തന്മാത്രാഭാരം 44 ഉം ആണ്.)

മ) ഒരു സ്പീഷീസിൽ അടങ്ങിയിരിക്കുന്ന പ്രോട്ടോണുകൾ, ഇലക്ട്രോണുകൾ, ന്യൂട്രോണുകൾ ഇവയുടെ എണ്ണം യഥാക്രമം 17, 18, 18 ഇവയാണ്. താഴെ കൊടുത്തിരിക്കുന്നവയിൽ ഏതായിരിക്കും ഈ സ്പീഷീസിന് യോജിച്ച സിംബൽ?

- i) $\frac{35}{17}Cl$ ii) $\frac{35}{17}Cl^{-}$
- iii) ${}_{17}^{36}Cl$ iv) ${}_{17}^{36}Cl^-$ (1)
- b) i) റൂഥർഫോർഡിന്റെ ന്യൂക്ലിയാർ ആറ്റം മാതൃകയുടെ ഏതെങ്കി ലും രണ്ട് പോസ്റ്റുലേറ്റുകൾ എഴുതുക.
 - ii) റൂഥർഫോർഡ് ആറ്റം മാതൃകയുടെ രണ്ട് പ്രധാനപ്പെട്ട കുറവു കൾ എഴുതുക?

അല്ലെങ്കിൽ

(2)

- a) Representation of the orbital with quantum numbers n = 3, l = 1 is
 - 3 s
- ii) 3 d
- iii) 3 p
- iv) 1 s
- Which of the following sets of quantum numbers are NOT possible?

1)
$$n = 2$$
, $l = 2$, $m_l = 0$, $m_s = +\frac{1}{2}$

2)
$$n = 1$$
, $l = 0$, $m_l = 0$, $m_s = -\frac{1}{2}$

3)
$$n = 3$$
, $l = 2$, $m_l = -3$, $m_s = +\frac{1}{2}$

4)
$$n = 2$$
, $l = 1$, $m_l = 1$, $m_s = +\frac{1}{2}$

- ii) Justify your answer.
- Names of elements with atomic numbers greater than 100 are given by IUPAC.
 - a) The atomic number of the element with IUPAC name 'Ununbium' is
 - i) 112
- ii) 110
- iii) 111
- iv) 114
- b) Why is potassium considered as an s-block element? (1)
- ionization The first enthalpies of second period elements generally increase from left to right along the period. Give reasons for this general trend.

- a) n=3, l=1 എന്നീ ക്വാണ്ടം സാഖ്യകളിലൂടെ പ്രതിനിധീകരി ക്കുന്ന ഓർബിറ്റൽ ആണ്
 - 3 s
- ii) 3 d
- iii) 3p
- iv) 1 s
- താഴെ തന്നിരിക്കുന്നവയിൽ ഏതൊക്കെ സെറ്റ് ക്വാണ്ടാ സംഖ്യകളാണ് സാധ്യമല്ലാത്തത്?

1)
$$n = 2$$
, $l = 2$, $m_l = 0$, $m_s = +\frac{1}{2}$

2)
$$n = 1$$
, $l = 0$, $m_l = 0$, $m_s = -\frac{1}{2}$

3)
$$n = 3$$
, $l = 2$, $m_l = -3$, $m_s = +\frac{1}{2}$

4)
$$n = 2$$
, $l = 1$, $m_l = 1$, $m_s = \pm \frac{1}{2}$
(2)

- ii) നിങ്ങളുടെ ഉത്തരം ന്യായീകരി (2)ക്കുക.
- അറ്റോമിക സംഖ്യ 100 ൽ കൂടുതലുള്ള മൂലകങ്ങളുടെ പേരുകൾ കൊടുക്കുന്നത് IUPAC ആണ്
 - a) 'Ununbium' an mi IUPAC modo ഉള്ള മൂലകത്തിന്റെ അറ്റോമിക സംഖ്യ ആണ്
 - i) 112
- ii) 110
- iii) 111
- iv) 114
- b) പൊട്ടാസ്യത്തെ *ട-* ബ്ലോക്ക് കരുതുന്നത് മൂലകമായി എന്തുകൊണ്ട്?
- പിരീയഡിലുള്ള രണ്ടാമത്തെ മൂലകങ്ങളുടെ ഒന്നാം അയൊണൈസേഷൻ എൻഥാൽപി കൾ പൊതുവെ പീരിയഡിൽ ഇടത്തുനിന്നും വലത്തോട്ടു പോകുന്തോറും കൂടികൂടി വരുന്നു. ഈ സാമാന്യ പ്രവണതയ്ക്ക് ഉള്ള കാരണങ്ങൾ എഴുതുക.

- 4. Molecular orbital theory was developed by F. Hund and R. S. Mulliken.
 - a) One-half of the difference between the number of electrons in the bonding and antibonding molecular orbitals is called
 - b) i) Write the molecular electronic configuration of the N, molecule.
 - ii) Predict stability and magnetic property of N_2 with reasons.

(3)

(1)

OR

In order to explain the geometrical shapes of molecules, the concept of hybridization was introduced.

- a) The geometry of SF_6 molecule is
 - i) tetrahedral
 - ii) planar
 - iii) octahedral
 - iv) triagonal bipyramidal (1)
- b) i) Define the term, hybridization.
 - ii) Explain sp^3 hybridization taking methane (CH_4) as an example. (3)

- 4. എഫ്. ഹണ്ട്, ആർ. എസ്. മുല്ലിക്കൻ എന്നിവരാണ് മോളികുുലാർ ഓർബിറ്റൽ തത്വം രൂപികരിച്ചത്.
 - a) ബോണ്ടിങ് മോളിക്യുലാർ ഓർബിറ്റലുകളിലേയും ആന്റി ബോണ്ടിങ് മോളിക്യുലാർ ഓർബിറ്റ ലുകളിലേയും ഇലക്ട്രോണുകളുടെ എണ്ണങ്ങളുടെ വ്യത്യാസത്തിന്റെ പകുതിയെ പറയുന്ന പേര്
 - b) i) N_2 തന്മാത്രയുടെ മോളിക്യുലാർ ഓർബിറ്റൽ ഇലക്ട്രോൺ വിന്യാസം എഴുതുക.
 - ii) അതിന്റെ N_2 സ്ഥിതേയും കാന്തിക സ്വഭാവവും കാരണങ്ങൾ സഹിതം പ്രവചിക്കുക.

ത്തപ്പെങ്കിൽ

തന്മാത്രകളുടെ ജ്യാമിതീയ ആകൃതി വിശദീകരിക്കുന്നതിന് വേണ്ടിയാണ് ഹൈബ്രിഡൈസേഷൻ തത്വാ കൊണ്ടുവന്നത്.

- a) SF_6 തന്മാത്രയുടെ ജ്യാമിതീയ ആകൃതിത്തണ്
 - i) ട്രൊഹിഡ്രൽ
 - ii) പ്രാധാർ
 - iii) ഒക്റ്റാഹിഡ്രൽ
 - iv) ട്രയഗണൽ ബൈപിതമിഡൽ (1)
- b) i) 'ഹൈബ്രിഡെസേഷൻ' എന്താണെന്ന് നിർവ്വചിക്കുക. (1)
 - ii) മീഥേയ്ൻ (CH_4) തന്മാത്രയെ ഉദാഹരണമായി എടുത്തു കൊണ്ട് sp^3 ഹൈബ്രിഡൈ- സേഷൻ വിശദീകരിക്കുക. (sp^3

- 5. The gases which obey Gas Laws at all temperatures and pressures are called ideal gases.
 - a) Give reasons for the deviation of real gases from the ideal gas behavior.
 - b) Calculate the minimum pressure required to compress 500 ml of air at 1 atm to 300 ml at the same temperature.
- 6. a) Classify the following into intensive and extensive properties.
 - i) Internal energy
 - ii) Density
 - iii) Heat capacity
 - iv) Temperature
 - b) Calculate the standard free energy change (ΔG^{θ}) for the conversion of oxygen to ozone $\frac{3}{2}O_{2(g)} \longrightarrow O_{3(g)} \text{ at 298 K}$ if the equilibrium constant for the conversion is 2.47×10^{-29} .

(Given $R = 8.314 JK^{-1} \text{ mol}^{-1}$). (2)

- മ. വാതക നിയമങ്ങളെ എല്ലാ താപനിലക ളിലും മർദ്ദങ്ങളിലും അനുസരിക്കുന്ന വാതകങ്ങൾ ആണ് ആദർശ വാതകങ്ങൾ:
 - മ) വാസ്തവിക വാതകങ്ങൾ ആദർശ വാതക സ്വഭാവത്തിൽ നിന്നും വ്യതിചലിക്കുന്നതിനുള്ള കാരണ ങ്ങൾ എഴുതുക.
 - b) 1 atm മർദ്ദത്തിൽ സ്ഥിതിചെയ്യുന്ന 500 ml അന്തരീക്ഷ വാതകത്തെ അതേ ഊഷ്മാവിൽ 300 ml വ്യാപ്തത്തിലേക്ക് കുറയ്ക്കുവാൻ ആവശ്യമായ ഏറ്റവും കുറഞ്ഞ മർദ്ദം കണ്ടുപിടിക്കുക.
- 6. a) താഴെ കൊടുത്തിരിക്കുന്നവയെ ഇന്റൻസീവ് പ്രോപ്പർട്ടീസ് എന്നും എക്സ്റ്റൻസീവ് പ്രോപ്പർട്ടീസ് എന്നും തരം തിരിക്കുക.
 - 1) ആന്തരികോർജ്ജ
 - വ്) സാന്ദ്രത
 - iii) ഹീറ്റ് കാപ്പാസിറ്റി ...
 - iv) ഇനഷ്മാവ്
 - b) ഓക്സിജൻ ഓസോണായി മാറുന്ന $\frac{3}{2}O_{2_{(g)}}\longrightarrow O_{3_{(g)}}$ എന്ന പ്രവർത്തനത്തിന്റെ സ്റ്റാൻഡേർഡ് ഫ്രീ എനർജി മാറ്റാ (ΔG^{θ}) കണ്ടുപിടിക്കുക.
 - $298~{
 m K}$ -60 mongem mediasaso $2.47~{
 m \times}~10^{-29}$ mons.
 - $(R = 8.314 JK^{-1} \text{ mol}^{-1}).$ (2)

(2)

(2)

(2)

- 7. a) i) Give the Arrhenius concept about acids and bases.
 - ii) Give one example each for Arrhenius acid and base. (1)
 - b) i) Write the expression for equilibrium constant K_p for the following equilibrium

$$2NOCl_{(g)} \Longrightarrow 2NO_{(g)} + Cl_{2(g)} \qquad (1)$$

- ii) Find the value of K_c for above equilibrium if the value of K_p is 1.8×10^{-2} atm at 600 K. $R = 0.0821 \, \text{L}$ atm $K^{-1} \, \text{mol}^{-1}$. (2)
- 8. a) Given the redox reaction: $CuO_{(s)} + H_{2(g)} \longrightarrow Cu_{(s)} + H_2O_{(g)}$
 - i) Identify the species which undergo reduction and which undergo oxidation.
 - ii) Identify the reductant and oxidant in the above reaction. (2)
 - b) Among the following reactions, identify the one which is NOT a redox reaction. (1)

- 7. a) i) ആസിഡുകളേയും ബേസുക ളേയും പറ്റിയുള്ള അരീനിയസ് കൺസെപ്റ്റ് എന്താണ്?
 - ii) അരീനിയസ് അസിഡിനും ബേസിനും ഓരോ ഉദാഹരണം വീതം എഴുതുക.
 - \mathbf{b}) \mathbf{i}) താഴെ കൊടുത്തിരിക്കുന്ന സംതുലനാവസ്ഥയുടെ സംതു ലന സ്ഥിരാങ്കം, K_p യുടെ എക്സ്പ്രഷൻ എഴുതുക. $2NOCl_{(g)} \rightleftharpoons 2NO_{(g)} + Cl_{2(g)}$ (1)
 - K_p യുടെ വില $600~{
 m K}$ -ൽ $1.8 \times 10^{-2}~{
 m atm}$ ആണെങ്കിൽ മുകളിൽ കൊടുത്തിരിക്കുന്ന സംതുലനാവസ്ഥയുടെ K_c യുടെ വില കണ്ടുപിടിക്കുക. $R=0.0821~{
 m L}~{
 m atm}~{
 m K}^{-1}~{
 m mol}^{-1}$. (2)
- 8. a) റിഡോക്സ് റിയാക്ഷൻ:

$$CuO_{(s)} + H_{2(g)} \longrightarrow Cu_{(s)} + H_2O_{(g)}$$

- i) ഏത് സ്പീഷീസിനാണ് റിഡക്ഷൻ നടക്കുന്നതെന്നും ഏത് സ്പീഷിസിനാണ് ഓക്സിഡേഷൻ നടക്കുന്ന തെന്നും കണ്ടെത്തുക.
- ii) മുകളിൽ പറഞ്ഞിരിക്കുന്ന റിയാക്ഷനിൽ ഏതാണ് ഓക്സിഡന്റ് എന്നും ഏതാണ് റിഡക്റ്റന്റ് എന്നും കണ്ടെത്തുക.
- b) താഴെ തന്നിരിക്കുന്ന റിയാക്ഷനു കളിൽ ഏതാണ് റിഡോക്സ് റിയാക്ഷൻ **അല്ലാത്തത്** എന്ന് തിരിച്ചറിയുക.

- i) $3Mg_{(s)} + N_{2(g)} \xrightarrow{\Delta} Mg_3N_{2(s)}$
- ii) $Fe_{(s)} + 2HCl_{(aq)} \longrightarrow FeCl_{2(aq)} + H_{2(g)}$
- iii) $CaCO_{3(s)} \xrightarrow{\Delta} CaO_{(s)} + CO_{2(g)}$
- iv) $2NaH_{(s)} \xrightarrow{\Delta} 2Na_{(s)} + H_{2(g)}$

	4	i) CO and H_2O		യുന്നതിൽ ഏതിന്റെ യൊക്കെ	
		ii) CO and H_2		മിശ്രിതം ആണ്?	•
		iii) CO_2 and H_2		${ m i)}\ CO$ യും H_2O യും ${ m ii)}\ CO$ യും H_2 ഉം	·
1	h	iv) CH_4 and CO (1) i) A sample of river water		$iii)$ CO_2 യും H_2 ഉം	
	<i>U)</i>	does not give lather with	-	$\mathrm{iv})\ CH_4$ ഉം CO യും	(1)
		soap easily when it is cold, but on heating gives ready lather with soap.	b)	i) സോപ്പ് തണുത്ത നദീജല സാമ്പിളിൽ പതയുണ്ടാക്കു	
	- ·	Why? (2)		ന്നില്ല. പക്ഷേ ജലം ചൂടാക്കു മ്പോൾ പതയുണ്ടാകുന്നു. എന്തുകൊണ്ട്?	(2)
		ii) Draw the structure of a hydrogen peroxide molecule. (1)		ii) ഹൈഡ്രജൻ പെറോക്സൈഡ്	(1)
10.	a)	The metal present in the chlorophyll of plants is (1)	10. a)	സസ്യങ്ങളിലെ ക്ലോറോഫില്ലിൽ അടങ്ങിയിരിക്കുന്ന ലോഹം ആണ്.	(1)
	b)	Give any two uses of caustic soda. (1)	b)	കാസ്റ്റിക് സോഡയുടെ ഏതെങ്കിലും രണ്ട് ഉപയോഗങ്ങൾ എഴുതുക.	(1)
	,	When sodium metal dissolves in liquid ammonia, it gives a deep blue coloured solution. Explain the reason. (2)	c)	സോഡിയം ലോഹം ദ്രാവക അമോണിയയിൽ ലയിക്കുമ്പോൾ കടും നീല നിറം കാണിക്കുന്നു. കാരണം വിശദമാക്കുക.	(2)
	r	Thermodynamically, the most stable allotrope of carbon is (1)	11. a)	തെർമോഡൈനാമിക്കലായി കാർബ ണിന്റെ ഏറ്റവും സ്ഥിരതയുള്ള അലോട്രോപ്പ് ആണ്	(1)
	b)	Carbon is the first member of group 14 in the periodic table.	b)	പിരിയോഡിക് ടേബിളിലെ 14-ാം ഗ്രൂപ്പിലെ ഒന്നാമത്തെ അംഗമാണ് കാർബൺ.	
•		 i) Why does carbon differ from the rest of the members of its group? (1) 		i) കാർബൺ അതിന്റെ ഗ്രൂപ്പിലെ മറ്റ് അംഗങ്ങളിൽ നിന്നും വൃത്യാസപ്പെട്ടിരിക്കുന്നത് എന്തുകൊണ്ടാണ്?	(1)
		ii) Write any two anomalous properties of carbon. (2)	1.	ii) കാർബണിന്റെ ഏതെങ്കിലും രണ്ട് അസ്വാഭാവിക പ്രത്യേകത കൾ എഴുതുക.	(2)

- 12. What do you mean by the following terms?
 - a) Homolytic fission
 - b) Heterolytic fission
 - c) Nucleophiles
 - d) Electrophiles

(4)

OR

Various methods for the purification of organic compounds are based on the nature of the compound and impurity present in it. Explain the principle involved in the following methods for the purification:

- a) Distillation
- b) Steam distillation
- 13. Write the IUPAC names of the following compounds:

a)
$$CH_2 = CH - CH_2 - CH - CH_3$$

14. a) Complete the following chemical equations:

- 12. താഴെപ്പറയുന്ന പദങ്ങൾ കൊണ്ട് നിങ്ങൾ അർത്ഥമാക്കുന്നതെന്ത്?
 - a) ഹോമോളിറ്റിക് ഫിഷൻ
 - b) ഹെറ്റെറോളിറ്റിക് ഫിഷൻ
 - c) ന്യൂക്ലിയോഫൈൽസ്
 - d) ഇലക്ട്രോഫെൻസ്

-(4)

അല്ലെങ്കിൽ

ഓർഗാനിക് സായുക്തത്തിന്റേയും മാലിനൃത്തിന്റേയും സ്വഭാവത്തിന്റെ അടിസ്ഥാനത്തിൽ ഓർഗാനിക സായുക്തങ്ങളുടെ ശുദ്ധീകരണത്തി നായി പലതരം രീതികൾ ഉപയോഗിക്കുന്നു. ശുദ്ധീകരണത്തിനു വേണ്ടി യുള്ള താഴെ പറയുന്ന രീതികളുടെ തത്വം വിശദീകരിക്കുക.

- a) സ്വേദനം
- b) നീരാവി സ്വേദനം
- 13. താഴെപ്പറയുന്ന സംയുക്തങ്ങളുടെ IUPAC നാമം എഴുതുക.

a)
$$CH_2 = CH - CH_2 - CH - CH_3$$

$$OH$$

(2)

- 14. a) താഴെ കൊടുത്തിരിക്കുന്ന രാസ സമവാകൃങ്ങൾ പൂർത്തികരിക്കുക.
- i) $CH_3 CH_2 Br + 2N\alpha + BrCH_2 CH_3 \xrightarrow{dry \, ether} \dots$ (1)

ii)
$$CH_3CH_2I \xrightarrow{\text{alc. }KOH} \dots$$
 (1)

iii)
$$+CH_3Cl$$
 anhydrous $AlCl_3$ $+HCl$ (1)

b) Explain geometrical isomerism taking 2-Butene as an example.

(2)

(2)

- 15. The Taj Mahal in India has been affected by 'acid rain'. Explain the causes and harmful effects of acid rain.
- b) 2-ബ്യൂട്ടീൻ ഉദാഹരണമായി എടുത്തുകൊണ്ട് ജ്യോമെട്രിക്കൽ ഐസോമെറിസം വിശദികരിക്കുക.
- 15. ഇന്ത്യയിലെ താജ്മഹലിനെ 'അമ്ല മഴ' ബാധിച്ചിരിക്കുന്നു. അമ്ല മഴ യുടെ കാരണങ്ങളും ദോഷഫലങ്ങളും വിശദമാക്കുക.

(3)