Algoritmi Numerici (Parte III) [Lezione 4 e 5] Metodi Approssimati

Alessandro Antonucci alessandro.antonucci@supsi.ch

- Equazione Lineare $5 \cdot x = 7$
- Decomposizione per differenza
 5 = 8 3
- riscrivo $8 \cdot x = 3 \cdot x + 7$
- Divido per il coefficiente $x = \frac{3}{9} \cdot x + \frac{7}{9}$
- Ricorsione $x_{j+1} = \frac{3}{8} \cdot x_j + \frac{7}{8}$

k	x_k
0	0
1	0,875
2	1,203125
3	1,32617188
4	1,37231445
5	1,38961792
6	1,39610672
7	1,39854002
8	1,39945251
5 6 7	1,38961792 1,39610672 1,39854002

- Equazione Lineare $5 \cdot x = 7$
- Decomposizione per differenza
 5 = 8 3
- riscrivo $8 \cdot x = 3 \cdot x + 7$
- Divido per il coefficiente $x = \frac{3}{9} \cdot x + \frac{7}{9}$
- Ricorsione $x_{j+1} = \frac{3}{8} \cdot x_j + \frac{7}{8}$

k	x_k
0	0
1	0,875
2	1,203125
3	1,32617188
4	1,37231445
5	1,38961792
6	1,39610672
7	1,39854002
8	1,39945251

- Equazione Lineare $5 \cdot x = 7$
- Decomposizione per differenza
 5 = 8 3
- riscrivo $8 \cdot x = 3 \cdot x + 7$
- Divido per il coefficiente $x = \frac{3}{9} \cdot x + \frac{7}{9}$
- Ricorsione $x_{j+1} = \frac{3}{8} \cdot x_j + \frac{7}{8}$

k	x_k
0	0
1	0,875
2	1,203125
3	1,32617188
4	1,37231445
5	1,38961792
6	1,39610672
7	1,39854002
8	1,39945251

- Equazione Lineare $5 \cdot x = 7$
- Decomposizione per differenza
 5 = 8 3
- riscrivo $8 \cdot x = 3 \cdot x + 7$
- Divido per il coefficiente $x = \frac{3}{9} \cdot x + \frac{7}{9}$
- Ricorsione $x_{j+1} = \frac{3}{8} \cdot x_j + \frac{7}{8}$

k	x_k
0	0
1	0,875
2	1,203125
3	1,32617188
4	1,37231445
5	1,38961792
6	1,39610672
7	1,39854002
8	1,39945251

- Equazione Lineare $5 \cdot x = 7$
- Decomposizione per differenza
 5 = 8 3
- riscrivo $8 \cdot x = 3 \cdot x + 7$
- Divido per il coefficiente $x = \frac{3}{9} \cdot x + \frac{7}{9}$
- Ricorsione $x_{j+1} = \frac{3}{8} \cdot x_j + \frac{7}{8}$

k	x_k
0	0
1	0,875
2	1,203125
3	1,32617188
4	1,37231445
5	1,38961792
6	1,39610672
7	1,39854002
8	1,39945251

- Equazione Lineare $5 \cdot x = 7$
- Decomposizione per differenza
 5 = 8 3
- riscrivo $8 \cdot x = 3 \cdot x + 7$
- Divido per il coefficiente $x = \frac{3}{9} \cdot x + \frac{7}{9}$
- Ricorsione $x_{j+1} = \frac{3}{8} \cdot x_j + \frac{7}{8}$

k	x_k
0	0
1	0,875
2	1,203125
3	1,32617188
4	1,37231445
5	1,38961792
6	1,39610672
7	1,39854002
8	1,39945251

Metodi Iterativi (Approssimati)

- Sistema lineare $\hat{A} \cdot \vec{x} = \vec{b}$
- Scompongo matrice coefficienti per differenza

$$\hat{A} = \hat{M} - \hat{N}$$

- Il sistema diventa $\hat{M} \cdot \vec{x} = \hat{N} \cdot \vec{x} + \vec{b}$
- Assumo \hat{M} sia facilmente invertibile, \hat{M}^{-1} nota
- Il sistema diventa $\vec{x} = \hat{M}^{-1} \cdot \hat{N} \cdot \vec{x} + \hat{M}^{-1} \cdot \vec{b}$
- Questa relazione può essere vista ricorsivamente:

$$\vec{x}_{n+1} = \hat{P} \cdot \vec{x}_n + \vec{q}$$

$$\operatorname{\mathsf{con}} \hat{P} := \hat{M}^{-1} \cdot \hat{N}, \, \vec{q} := \hat{M}^{-1} \cdot \vec{b}$$

Il metodo di Jacobi

- \hat{M} facile da invertire? Prendiamo \hat{M} diagonale!
- Matrici diagonali sono banalmente invertibili
 - L'inversa di una matrice diagonale è diagonale e sulla diagonale ci sono i reciproci
- Jacobi? \hat{M} diagonale e sulla diagonale elementi di
- L'algoritmo di Jacobi ha complessità quadratica
- Prodotto $\hat{P} := \hat{M}^{-1} \cdot \hat{N}$ veloce perché \hat{M}^{-1} è diagonale
 - il prodotto di una matrice diagonale per una matrice qualunque si ottiene moltiplicando le righe della seconda per gli elementi corrispondenti della diagonale della prima

Il metodo di Gauss-Seidel

- Dato un sistema lineare $\hat{A} \cdot \vec{x} = \vec{b}$
- Scompongo la matrice dei coefficienti per differenza

$$\hat{A} = \hat{M} - \hat{N}$$

- Il sistema diventa quindi $\hat{M} \cdot \vec{x} = \hat{N} \cdot \vec{x} + \vec{b}$
- Questa relazione può essere vista ricorsivamente

$$\hat{\mathbf{M}} \cdot \vec{\mathbf{x}}_{n+1} = \hat{\mathbf{N}} \cdot \vec{\mathbf{x}}_n + \vec{\mathbf{b}}$$

- Dato \vec{x}_n posso calcolare il secondo membro (ovvero i termini noti di un sistema)
- Se \hat{M} è triangolare il sistema si risolve per sostituzione (complessità quadratica)

Un esempio dimostrativo

• Risolvere il sistema $\hat{\mathbf{A}} \cdot \vec{\mathbf{x}} = \vec{\mathbf{b}}$ con:

$$\hat{\mathsf{A}} = \left[egin{array}{cc} \mathsf{3} & -\mathsf{1} \ \mathsf{1} & -\mathsf{2} \end{array}
ight], \quad \vec{b} = \left[egin{array}{cc} \mathsf{1} \ \mathsf{1} \end{array}
ight]$$

usando:

- due iterazioni dell'algoritmo di Jacobi
- due iterazioni di Gauss-Seidel
- In entrambi i casi usare l'inizializzazione:

$$\vec{x}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Un esempio dimostrativo (Jacobi)

$$\bullet \hat{A} = \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix} = \hat{M} - \hat{N} = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$\bullet \hat{M}^{-1} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & -\frac{1}{2} \end{bmatrix}$$

$$\bullet \ \hat{P} := \hat{M}^{-1} \cdot \hat{N} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & -\frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{2} & 0 \end{bmatrix}$$

•
$$\vec{q} := \hat{M}^{-1} \cdot \vec{b} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & -\frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{2} \end{bmatrix}$$

•
$$\vec{x}_1 = \hat{P}\vec{x}_0 + \vec{q} = \vec{q} = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{2} \end{bmatrix} (\vec{x}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix})$$

•
$$\vec{x}_2 = \hat{P}\vec{x}_1 + \vec{q} = \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{2} \end{bmatrix} + \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{6} \\ -\frac{1}{3} \end{bmatrix}$$

Un esempio dimostrativo (Gauss-Seidel)

$$\bullet \hat{A} = \begin{bmatrix} 3 & -1 \\ 1 & -2 \end{bmatrix} = \hat{M} - \hat{N} = \begin{bmatrix} 3 & -1 \\ 0 & -2 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$$

•
$$\hat{M} \cdot \vec{x_1} = \hat{N} \cdot \vec{x_0} + \vec{b} = \vec{b}$$
 ($\vec{x_0}$ è il vettore nullo)

$$\left[\begin{array}{cc} \mathbf{3} & -\mathbf{1} \\ \mathbf{0} & -\mathbf{2} \end{array}\right] \cdot \vec{\mathbf{x}}_{\mathbf{1}} = \left[\begin{array}{c} \mathbf{1} \\ \mathbf{1} \end{array}\right] \Rightarrow \vec{\mathbf{x}}_{\mathbf{1}} = \left[\begin{array}{c} \frac{1}{6} \\ -\frac{1}{2} \end{array}\right]$$

•
$$\hat{M} \cdot \vec{x_2} = \hat{N} \cdot \vec{x_1} + \vec{b} = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{6} \\ -\frac{1}{2} \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{6} \end{bmatrix}$$

$$\begin{bmatrix} 3 & -1 \\ 0 & -2 \end{bmatrix} \cdot \vec{X}_2 = \begin{bmatrix} 1 \\ \frac{5}{6} \end{bmatrix} \Rightarrow \vec{X}_2 = \begin{bmatrix} \frac{7}{36} \\ -\frac{1}{12} \end{bmatrix}$$

Rilassamento Gauss-Seidel

- Data la soluzione di Gauss-Seidel $ec{x}_1^{ ext{GS}}$
- Posso combinarla con la soluzione precedente \vec{x}_0 per favorire la convergenza
- L'algoritmo diventa quindi
 - \vec{x}_1^{GS} tale che $M\vec{x}_1^{\text{GS}} = N\vec{x}_0 + \vec{b}$
 - $\vec{\mathbf{x}}_{1} = \omega \vec{\mathbf{x}}_{1}^{\mathrm{GS}} + (\mathbf{1} \omega) \vec{\mathbf{x}}_{0}$