МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Вычислительной техники

ОТЧЕТ

Тема: «ГРАФЫ»

по курсовой работе по дисциплине «Алгоритмы и структуры данных»

Студенты гр. 3312	Поляков А.И Половникова А.С.
Преподаватель	Колинько П.Г.

Санкт-Петербург 2024

Цель работы

Целью выполнения курсовой работы «Графы» является исследование алгоритмов на графах.

Задание (Вариант 9)

Отыскание клики наибольшей мощности в неориентированном графе

Математическая формулировка задачи в терминах теории множеств

Дан неориентированный граф G=(V,E), где V — множество вершин, а E — множество рёбер. Граф задан с помощью матрицы смежности A, где $aij \in E$ для $i,j \in V$. Необходимо найти максимально большое подмножество вершин $C\subseteq V$ такое, что для любых двух вершин $u,v \in C$ существует ребро $e\in E$ соединяющее u v. Формально: $\forall u,v \in C$: $(u,v) \in E$.

Обоснование выбора матрицы смежности для представления графа

Использование матрицы смежности как структуры данных для хранения графа удобно и эффективно, особенно в задаче нахождения максимальной клики. Основные причины этого выбора следующие:

1. Простота и наглядность

- Матрица смежности является понятным способом описания связей между вершинами.
- В ней сразу видно, есть ли ребро между двумя вершинами (через значения элементов матрицы).

2. Удобство поиска смежных вершин

- о Матрица позволяет легко определить, с какими вершинами связана каждая отдельная вершина графа.
- Это важно при поиске клики, где необходимо проверять наличие рёбер между всеми вершинами множества.

3. Быстрая проверка наличия ребра

- Проверить, соединены ли две вершины, можно за O(1), обращаясь к соответствующему элементу матрицы.
- Это сокращает время на выполнение базовых операций при обработке графа.

4. Поддержка алгоритмов

о Алгоритмы для поиска клик и других задач на графах часто используют матрицу смежности благодаря её удобству для выполнения массовых операций, например, умножения матриц.

о Это делает реализацию более универсальной и эффективной.

5. Проверка свойств клики

- о Матрица позволяет легко проверять, образуют ли вершины подмножества клику.
- Все необходимые данные для проверки связности вершин находятся прямо в матрице.

Таким образом, использование матрицы смежности обусловлено её простотой, скоростью доступа к информации о рёбрах и возможностью эффективной работы алгоритмов, что делает её оптимальным выбором для задачи поиска максимальной клики.

Описание алгоритма и оценка его временной сложности Алгоритм:

1. Инициализация:

- Создается граф, представленный матрицей смежности.
- Вводится количество вершин графа.
- Генерируется случайный граф с ребрами на основе матрицы смежности.

2. DFS для поиска клик:

- Реализован рекурсивный метод BruteForce, который использует алгоритм обхода в глубину (DFS) для перебора возможных клик.
- Используется массив 'U' для отслеживания посещенных вершин.
- При обнаружении клики, информация о ней выводится на экран.

3. Вывод результата:

• После завершения поиска выводится информация о найденной клике максимальной мощности.

Временная сложность:

1. Создание графа

В методах CreateRandGraph() и CreateGraph() происходит заполнение матрицы смежности для графа. Давайте оценим временную сложность этих операций:

- В методе CreateRandGraph():
 - Цикл с переменными і и ј проходит по всем возможным парам вершин, то есть два вложенных цикла, каждый из которых имеет длину N, где N количество вершин.
 - Время выполнения для каждого элемента в матрице O(1), так как присваивание значения в матрице и проверка условия генерации случайного числа — операции с постоянной сложностью.

- В общем, сложность этого метода будет O(N2), так как мы проходим по всем парам вершин.
- В методе CreateGraph():
 - В этом методе используется заранее заданная матрица 5×5. Процесс её копирования — это фиксированное количество операций.
 - \circ Время выполнения будет O(1), так как мы просто копируем небольшую матрицу размером 5×5 в матрицу графа.

Время выполнения:

- CreateRandGraph(): O(N2)
- CreateGraph(): O(1)

2. DFS (BruteForce)

Метод BruteForce() использует рекурсию для поиска клики максимального размера. Важный момент здесь — рекурсивный вызов и количество итераций для каждой вершины.

- Для каждого уровня рекурсии мы выбираем вершину из множества вершин V, и для каждой вершины мы проверяем её смежность с уже выбранными вершинами.
- В худшем случае, при поиске самой большой клики, будет N уровней рекурсии, так как максимальный размер клики равен N.
- На каждом уровне рекурсии, для каждой вершины, нам нужно проверить её смежность с предыдущими вершинами. Это можно сделать за O(N), так как для каждой вершины мы смотрим на её связи с уже выбранными вершинами.

Таким образом, на каждом уровне рекурсии выполняется O(N) операций, и поскольку в худшем случае рекурсия может быть глубиной N, сложность будет примерно $O(N^2)$.

Время выполнения: $O(N^2)$ для одного уровня рекурсии, но так как максимальная глубина рекурсии может быть N, общая сложность будет $O(N^3)$.

3. Итоговая сложность

Теперь, объединим все этапы:

- Создание графа максимальная сложность для этого этапа будет $O(N^2)$ (для метода CreateRandGraph()).
- **DFS** (**BruteForce**) сложность этого метода будет $O(N^3)$.

Итоговая временная сложность: Наиболее затратной операцией является рекурсивный метод BruteForce(), который выполняется за $O(N^3)$, и это определяет итоговую временную сложность всей программы.

Таким образом, программу можно оценить как квадратичную относительно количества вершин графа.

Результаты работы программы

Результаты контрольных тестов представлены на рисунках 1, 2, 3.

Рисунок 1. Результат с заготовленными данными

```
Enter the number of vertices (max 20): 8
Adjacency matrix:
     1 2 3 4 5 6 7 8
1
     0
       1
           0
             1
                1
                   1
                      1 1
2
     1
        0
           1
              1
                1
                   1
                      1
                         0
 3
     0
       1
          0
             1
                0 1
                      1
                         0
     1
       1
          1
                1 1
                        1
4
             0
                      1
5
     1 1
          0 1 0 0 1 1
          1 1 0 0 1 1
       1
 6
     1
7
     1 1
          1 1 1 1
                      0 1
     1
        0
             1 1 1
                      1
                         0
          Θ
\max=1:1
max=2 : 1 2
max=3 : 1 2 4
max=4 : 1 2 4 5
max=5 : 1 2 4 5 7
max=5 : 1 2 4 6 7
max=5 : 1 4 5 7 8
max=5 : 1 4 6 7 8
max=5 : 2 3 4 6 7
BOTTOM LINE: Power 5, verse: 1 2 4 5 7
```

Рисунок 2. Результат 1 с автогенерацией

```
Enter the number of vertices (max 20): 18
Adjacency matrix:
      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
                                   1
                                         1
 1 l
      0
         1
            Θ
                1
                   1
                      1
                         1
                            1
                                1
                                      1
                                             1
                                                0
                                                   1
                                                      Θ
                                                         1
 2
            Θ
                            Θ
                                      1
                                         1
                                             1
                                                1
                                                   1
                                                      Θ
                                                         1
      1
         Θ
                1
                   1
                      1
                         1
                                1
                                   1
                                                             1
 3
                1
                   1
                      1
                            1
                                1
                                   1
                                      1
                                                   1
      0
         Θ
            Θ
                         Θ
                                         1
                                            Θ
                                               1
                                                      1
                                                          1
                                                             Θ
 4
                   1
                                1
                                      1
                                                   1
      1
         1
            1
                Θ
                      1
                         Θ
                            1
                                   1
                                         1
                                             1
                                                1
                                                      1
                                                         Θ
                                                             1
            1
 5
      1
         1
                1
                   Θ
                      1
                         1
                            1
                                0
                                   1
                                      0
                                         1
                                             1
                                                1
                                                   0
                                                      1
                                                             1
            1
 6
      1
         1
                1
                   1
                      Θ
                         1
                            1
                                1
                                   1
                                      1
                                         1
                                            1
                                               1
                                                   1
                                                      1
                                                          1
                                                             Θ
 7
      1
         1
            Θ
                Θ
                   1
                      1
                         Θ
                            1
                                1
                                   1
                                      1
                                         1
                                            1
                                               1
                                                   Θ
                                                      1
                                                         1
                                                             1
      1
         Θ
                1
                   1
                      1
                         1
                            Θ
                                1
                                   1
                                      1
                                         1
                                             1
                                                   1
                                                      Θ
                                                         1
                                                             1
 8
            1
                                               1
                1
                                                   1
                   Θ
                         1
                            1
                                Θ
                                      1
                                         1
 9
      1
            1
                      1
                                   1
                                             1
                                               1
                                                      Θ
         1
 10 l
      1
         1
            1
                1
                   1
                      1
                         1
                            1
                                1
                                   Θ
                                      1
                                         1
                                            1
                                                Θ
                                                   0
                                                      1
                                                          1
                                                             1
                1
                   Θ
                            1
 11
      1
         1
            1
                      1
                         1
                                1
                                   1
                                      0
                                         Θ
                                            0
                                               1
                                                   1
                                                      1
                                                          1
                                                             1
                1
 12
      1
         1
            1
                   1
                      1
                         1
                            1
                                1
                                   1
                                      0
                                         0
                                            1
                                                1
                                                   0
                                                      1
                                                          1
                                                             1
 13
      1
         1
            Θ
                1
                   1
                      1
                         1
                            1
                                1
                                   1
                                      0
                                         1
                                            Θ
                                                1
                                                   1
                                                      1
                                                         Θ
                                                             1
                1
                   1
 14
      0
         1
                      1
                         1
                            1
                                1
                                      1
                                         1
                                                   1
                                                      1
            1
                                   Θ
                                            1
                                                Θ
                                                         1
                                                             1
            1
                                               1
 15 l
      1
         1
                1
                   Θ
                      1
                         Θ
                            1
                                1
                                   0
                                      1
                                         0
                                            1
                                                   Θ
                                                      1
                                                         1
                                                             1
      Θ
                1
                      1
                            0
                               Θ
                                      1
                                            1 1
                                                   1
                                                      0
                                                            Θ
 16
         0 1
                   1
                         1
                                   1
                                         1
                                                         Θ
      1
            1
                0
                      1
                            1
                                      1
                                         1
                                                   1
 17
         1
                   1
                         1
                                1
                                   1
                                            0 1
                                                      0
                                                         0
                                                            1
                1
                      Θ
                            1
                                Θ
                                      1
                                         1
 18|
      1
         1
            Θ
                   1
                                   1
                                            1
                                                1
                                                      Θ
                                                          1
                                                             Θ
 max=1 : 1
 max=2 : 1 2
 max=3 : 1 2 4
 max=4 : 1 2 4 5
 max=5 : 1 2 4 5 6
 max=6 : 1 2 4 5 6 10
 max=7 : 1 2 4 5 6 10 12
 max=8 : 1 2 4 5 6 10 12 13
 max=8 : 1 2 4 5 10 12 13 18
 max=8 : 1 2 4 6 9 10 12 13
 max=8 : 1 2 5 6 7 10 12 13
 max=8 : 1 2 5 6 7 10 12 17
 max=8 : 1 2 5 7 10 12 13 18
 max=8 : 1 2 5 7 10 12 17 18
 max=8 : 1 2 6 7 9 10 11 17
 max=8 : 1 2 6 7 9 10 12 13
 max=8 : 1 2 6 7 9 10 12 17
 max=8 : 1 4 5 6 8 10 12 13
 max=8 : 1 4 5 8 10 12 13 18
 max=8 : 1 4 6 8 9 10 12 13
 max=8 : 1 5 6 7 8 10 12 13
 max=8 : 1 5 6 7 8 10 12 17
 max=8 : 1 5 7 8 10 12 13 18
 max=8 : 1 5 7 8 10 12 17 18
 max=8 : 1 6 7 8 9 10 11 17
 max=8 : 1 6 7 8 9 10 12 13
 max=8 : 1 6 7 8 9 10 12 17
 max=8 : 3 4 6 8 9 11 14 15
 max=8 : 3 6 8 9 11 14 15 17
BOTTOM LINE: Power 8, verse: 1 2 4 5 6 10 12 13
```

Рисунок 3. Результат 2 с автогенерацией

Выводы

В рамках курсовой работы "Графы" были исследованы алгоритмы, направленные на решение задачи поиска клик наибольшей мощности в неориентированных графах. Основным алгоритмом, примененным в работе, является алгоритм "перебор с возвратом". Этот метод позволяет систематически проверить все возможные комбинации вершин с целью обнаружения клик наибольшей мощности.

Список использованных источников

Колинько П. Г. Пользовательские структуры данных: Методические указания по дисциплине "Алгоритмы и структуры данных, часть 1". - СПб.: СПбГЭТУ "ЛЭТИ", 2024. - 64 с. (вып.2309).

Приложение. Исходные тексты программ.

Основная программа

```
#include <iostream>
#include "Graph.h"
int main()
    char choose;
    int N;
   Graph A(0);
    std::cout << "#=======#" << std::endl;
    std::cout << "1 - autogeneration" << std::endl;</pre>
    std::cout << "2 - ready asset" << std::endl;
    std::cout << "#=======#" << std::endl;
    std::cin >> choose;
    switch (choose)
    case '1':
       system("cls");
        std::cout << "Enter the number of vertices (max 20): ";</pre>
        std::cin >> N;
        if (N > 0 && N <= 20)
            A = Graph(N);
            A.CreateRandGraph();
```

```
A.PrintGraph();
            A.BruteForce(1, A);
            std::cout << "\nBOTTOM LINE: Power " << A.maxv << ", verse: ";</pre>
            for (auto i = 0; i < A.maxv; ++i)</pre>
                 std::cout << A.ans[i] << " ";
        }
        else
            std::cerr << "Error: Number of vertices must be between 1 and 20." <<</pre>
std::endl;
        break;
    case '2':
        system("cls");
        A = Graph(5);
        A.CreateGraph();
        A.PrintGraph();
        A.BruteForce(1, A);
        std::cout << "\nBOTTOM LINE: Power " << A.maxv << ", verse: ";</pre>
        for (auto i = 0; i < A.maxv; ++i)</pre>
            std::cout << A.ans[i] << " ";
        break;
    default:
        std::cerr << "Error: Incorrect selection." << std::endl;</pre>
        break;
    }
    std::cout << std::endl;</pre>
    return 0;
}
                                       "Graph.h"
#pragma once
#include <iostream>
#include <vector>
#include <map>
#include <set>
class Graph
private:
    int N;
    std::vector<std::vector<int>> matrix;
    std::vector<int> K;
    std::vector<int> U;
public:
    int maxv = 0;
    std::vector<int> ans;
    Graph(int N);
    Graph();
    Graph(const Graph&) = delete;
    Graph(Graph&&) = delete;
```

```
void addEdge(int v1, int v2);
    void PrintGraph();
    void BruteForce(int currentDepth, Graph& parentGraph);
    void CreateRandGraph();
    void CreateGraph();
    Graph& operator=(const Graph& other);
    ~Graph();
};
                                    "Graph.cpp"
#include "Graph.h"
Graph::Graph(int N) : N(N), matrix(N, std::vector<int>(N, 0)), U(N, 1), K(N), ans(N)
{}
Graph::Graph() : N(1), matrix(1, std::vector<int>(1, 0)), U(1, 1), K(1), ans(1) {}
void Graph::addEdge(int v1, int v2)
    matrix[v1][v2] = 1;
    matrix[v2][v1] = 1;
}
void Graph::PrintGraph()
    if (N < 21)
        std::cout << "\nAdjacency matrix:";</pre>
        std::cout << "\n</pre>
        for (int i = 0; i < N; ++i)
            std::cout << i + 1 << " ";
        std::cout << "\n-----";
        for (int i = 0; i < N; ++i)</pre>
            if (i + 1 >= 10)
                std::cout << "\n " << i + 1 << " | ";
                std::cout << "\n " << i + 1 << " | ";
            for (int j = 0; j < N; ++j)
   std::cout << " " << matrix[i][j] << " ";</pre>
        std::cout << "\n";
    }
}
void Graph::BruteForce(int currentDepth, Graph& parentGraph)
    int vertex, startIndex, neighbor;
    if (currentDepth == 1)
        startIndex = 0;
    else
        startIndex = K[currentDepth - 2] + 1;
```

```
for (vertex = startIndex; vertex < N; vertex++)</pre>
        if (U[vertex])
        {
            K[currentDepth - 1] = vertex;
            neighbor = 0;
            while ((neighbor < currentDepth) && (K[neighbor] < N) && (vertex < N) &&</pre>
matrix[K[neighbor]][vertex])
                 neighbor++;
             if (neighbor + 1 == currentDepth)
                 if (currentDepth > maxv)
                     maxv = currentDepth;
                     for (int i = 0; i < currentDepth; ++i)</pre>
                         ans[i] = K[i] + 1;
                 if (currentDepth == maxv)
                     std::cout << '\n' << " max=" << maxv << " : ";
                     for (int i = 0; i < maxv; ++i)</pre>
                         std::cout << (K[i] + 1) << " ";
                 }
                 U[vertex] = 0;
                 parentGraph.BruteForce(currentDepth + 1, *this);
                 U[vertex] = 1;
            }
        }
}
void Graph::CreateRandGraph()
    for (auto i = 0; i < N; ++i)</pre>
    {
        U[i] = 1;
        for (auto j = i; j < N; ++j)</pre>
             if (j == i)
                 matrix[i][j] = 0;
             else
                 matrix[i][j] = matrix[j][i] = rand() % 15 > 2;
        }
    }
}
void Graph::CreateGraph()
    int tempmatrix[5][5] = {
        {0, 1, 0, 1, 0},
        {1, 0, 1, 0, 1},
        {0, 1, 0, 1, 1},
        {1, 0, 1, 0, 1},
        {0, 1, 1, 1, 0}
    };
    for (auto i = 0; i < N; ++i)</pre>
        U[i] = 1;
        for (auto j = 0; j < N; ++j)
            matrix[i][j] = tempmatrix[i][j];
        }
    }
```

```
Graph& Graph::operator=(const Graph& other)
{
    if (this == &other)
        return *this;

    N = other.N;
    maxv = other.maxv;

    matrix = other.matrix;
    K = other.K;
    U = other.U;
    ans = other.ans;

    return *this;
}
Graph::~Graph() {}
```