Exam: Thursday, March 7th, 6 pm

- (!) Read each problem carefully. It will pay off. (!)
- > When studying for the midterm, don't read posted solutions. Consult them only to check your answers, or to have a hint on what to do if you are stuck.
- > Study with someone, or explain your work to an imaginary partner. "When one teaches, two learn"
- Office hours:
 - Cancelled tomorrow (conflict with PHYS 158 midterm)
 - Replacement: Monday, March 4th, 5:00-6:00 pm

Last Time:

Curvilinear motion in Cartesian coordinates

Acceleration always points inwards (into the trajectory)

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$$

Velocity & Acceleration in Rectangular Components

• These pictures are nice, but it is difficult to work with them. Let us come up with something else.

• If
$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$
, what is $\frac{d\vec{r}}{dt} = \vec{v}$?

• Product rule:
$$\frac{d(ab)}{dt} = a\frac{db}{dt} + b\frac{da}{dt}$$

• Then:
$$\frac{d(x\vec{i})}{dt} = x \frac{d\vec{i}}{dt} + \vec{i} \left(\frac{dx}{dt}\right)$$

• Note that: $\frac{d\vec{i}}{dt} = 0$ (\vec{i} does not change with t)

$$\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$$

where

$$v_x = \frac{dx}{dt} = \dot{x}, \qquad v_y = \frac{dy}{dt} = \dot{y}, \qquad v_z = \frac{dz}{dt} = \dot{z}$$

Velocity & Acceleration in Rectangular Components

• If
$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$
:

$$\begin{matrix}
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow
\end{matrix}$$

$$\chi(4) \quad \chi(4) \quad \chi(4) \quad \chi(4)$$

• If
$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$
:
$$\vec{l} \qquad \vec{l} \qquad \vec{l}$$

$$v_{x} = \frac{dx}{dt} = \dot{x}$$

where:
$$v_x = \frac{dx}{dt} = \dot{x}$$
, $v_y = \frac{dy}{dt} = \dot{y}$, $v_z = \frac{dz}{dt} = \dot{z}$

$$v_z = \frac{dz}{dt} = \dot{z}$$

$$a_x = \frac{dv_x}{dt} = \ddot{x}$$

$$a_x = \frac{dv_x}{dt} = \ddot{x}, \qquad a_y = \frac{dv_y}{dt} = \ddot{y}, \qquad a_z = \frac{dv_z}{dt} = \ddot{z}$$

$$a_z = \frac{dv_z}{dt} = \ddot{z}$$

- Note: we now have three one-dimensional problems (which we already know how to work with!)
- We can use these algebraic equations to find the components of $\vec{r}(t)$, $\vec{v}(t)$ and $\vec{a}(t)$
 - Q: These quasi-1D-problems are not completely independent. What connects them?

• Q: Assume that the object's acceleration is expressed as:

$$\vec{a}(t) = \left(t \, \vec{i} + t^2 \, \vec{j} + t^3 \, \vec{k}\right) \, m/s^2 \, .$$
 What is its acceleration at $t=1$?

$$a(t) = \sqrt{a_x^2(t) + a_y^2(t)^2 + a_z^2(t)}$$

- A. 1 m/s^2
- B. 2 m/s^2
- C. 3 m/s^2
- D. $\sqrt{2}$ m/s²

Velocity & Acceleration in 3D Cartesian coordinates (summary)

 Algebraic expressions for duck's position, velocity and acceleration:

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$$

$$\vec{v}(t) = v_x(t)\vec{i} + v_y(t)\vec{j} + v_z(t)\vec{k}$$

$$\vec{a}(t) = a_x(t)\vec{i} + a_y(t)\vec{j} + a_z(t)\vec{k}$$

$$v_x = \frac{dx}{dt}$$
, $a_y = \frac{dv_y}{dt} = \frac{d^2y}{dt^2}$, etc.

- Graphical representation of duck's motion. Note:
 - $ightharpoonup \vec{v}$ is tangent to the trajectory
 - \rightarrow \vec{a} points "inwards" (concave side of the path)

Projectile Motion

Text: 12.6

Content:

- This is a 2D motion with a constant y-acceleration
- Independence of motion along different axes
- Trajectory equation

Our first example: Motion in the gravitational field of the Earth

- "Free fall": No other forces but gravity act on the object
- Motion unfolds in a plane => 2D problem (curvilinear, in general)
- Motion with constant acceleration => equations from Problem W7-2 apply!
 - $\Rightarrow a = -g$ (if the positive y-direction is upwards)

$$g = 9.81 \text{ m/s}^2 = 32.2 \text{ ft/s}^2$$
(SI) (FPS)

Q: Two balls are released from the gun at the same moment of time. The blue ball just drops on the ground. The red ball is shoot with a horizontal velocity $v_{x,0}$. Which of them will reach the ground first?

- A. The blue ball
- B. The red ball
- C. Simultaneously
- D. Not sure

Q: Two balls are released from the gun at the same moment of time. The blue ball just drops on the ground. The red ball is shoot with a horizontal velocity $v_{x,0}$. Which of them will reach the ground first?

https://www.youtube.com/watch?v=HGslBnCJVQg&ab_channe l=NiteshBatra

PROJECTILE MOTION

 Motion along each cartesian axis is described by its "own" equation => they are independent motions (though coupled through the same time, t) For each component:

•
$$s(t) = s_0 + v(t)t + \frac{at^2}{2}$$
;

•
$$v(t) = v_0 + a t$$
;

•
$$v^2(t) = v_0^2 + 2a(s - s_0)$$

Along x:

- $\rightarrow a_x = 0$: motion with constant velocity!
- $> v_x(t) = v_{0,x} + 0$
- $\rightarrow x(t) = x_0 + v_{0,x}t + 0$

- $\Rightarrow a_y = -g$: motion with constant (negative) acceleration!

>
$$v_y(t) = v_{0,y} - gt$$

> $y(t) = y_0 + v_{0,y}t - \frac{gt^2}{2}$ (**)

From equation (*), we can find t as a function of x and plug it into equation (**). This will give us equation for y(x) = trajectoryequation!

- Exercise: Do it!
- Check that y(x) is a parabola (a well-known result)

PROJECTILE MOTION: Trajectory equation (on your own)

• Along x:

 \rightarrow $a_x = 0$: motion with constant velocity!

$$\triangleright v_{x}(t) = v_{0,x}$$

$$\rightarrow x(t) = x_0 + v_{0,x} t$$
 (*)

Along y:

 $\rightarrow a_y = -g$: motion with constant (negative) acceleration!

$$\triangleright v_y(t) = v_{0,y} - g t$$

$$> y(t) = y_0 + v_{0,y}t - \frac{gt^2}{2}$$
 (**)

W7-3. Water is discharged from the hose with a speed of 40 ft/s. Determine the two possible angles θ the firefighter can hold the hose so that the water strikes the building at B. Take s=20 ft.

• Motion along
$$x: X_0 = 0$$
 $V_{0x} = V_{A} \cos \Theta$ $Q_x = 0$

$$x(t) = x_o + v_{ox}t = v_{A}cos\theta \cdot t \longrightarrow t = \frac{\lambda}{v_{A}cos\theta}$$

• Motion along y:
$$y_0 = 4 ft$$
 $v_{0,y} = v_A \sin \theta$ $v_0 = -g$

$$3(t) = y_0 + y_0 + \frac{a_y t^2}{2} = \frac{4}{2} + y_0 + y_0 + \frac{a_y t^2}{2} = \frac{4}{2} + y_0 +$$

$$8 = 4 + (20) \tan \theta - \frac{32.2}{2} \frac{(20)^2}{(40)^2 (\cos \theta)^2}$$

•
$$s(t) = s_0 + v_0 t + \frac{a t^2}{2}$$
;

Curvilinear (2D, 3D) motion: Normal & Tangential components

Text: 12.7

Content:

Normal and tangential components

• Velocity: v_t

• Acceleration: a_t , a_n and a

Intro remarks

- Cartesian components: unit vectors \vec{i} , \vec{j} , \vec{k} are static (do not move)
- Let us try something new: allow the coordinate system to move as the time goes.
- Will consider two such coordinate systems:
 - Normal & Tangential components (this week)
 - Unit vectors \vec{u}_n , \vec{u}_t (will depend on time)
 - Convenient when you know the path along which the object moves (e.g. car moving along a curved road)
 - Polar & cylindrical coordinates (next week)
 - Unit vectors \vec{u}_{θ} , \vec{u}_{r} , \vec{u}_{z} (will depend on time)
 - Convenient when you want to describe motion in terms of radial distance from an origin and an angular position relative to some axis.

NORMAL & TANGENTIAL COMPONENTS

- Location of a particle on the trajectory defines two timedependent unit vectors:
 - \overrightarrow{u}_t : tangent to the trajectory, pointing in the direction of motion
 - \overrightarrow{u}_n : normal to \overrightarrow{u}_t , pointing inwards, perpendicular to \overrightarrow{u}_t (towards the *center of curvature*, O, along radius of curvature, ρ)
 - ρ : Center and radius of an imaginary circle which would match your ds at that particular point
- We will also define the particle's position along the curve:

$$s = s(t)$$

 Note that this coordinate system is carried by the particle, similarly to the shell carried by a turtle

Q: What is the particle position vector in this coordinate system?

VELOCITY

- Particle's velocity vector is always tangent to its trajectory (take two points on the trajectory, let the second tend to the first when $dt \rightarrow 0$, and you will get a tangent line)
- That means that the normal component of the velocity is equal to zero:

$$\vec{v} = \mathbf{v}_t \, \vec{u}_t + \mathbf{0} \, \vec{u}_n$$

• The t-component of the velocity is

$$v_t = \frac{ds}{dt} = \dot{s}$$

(as if the particle travels along a 1D s-trajectory and "does not know" that the trajectory is curved)

• We get:

$$\vec{v} = \frac{ds}{dt} \; \vec{u}_t$$

ACCELERATION

Q: What can you say about acceleration in normal & tangential components? Consider a general situation.

- I remember that acceleration always points inwards => it only has a normal component and no tangential component.
- B. It only has a tangential component, since $\vec{a} = \frac{d\vec{v}}{dt}$, and \vec{v} only has a tangential component.
- 41 % C. Acceleration has both normal and tangential components
 - D. One cannot define acceleration in this coordinate system
 - E. Not sure

$$\vec{v} = \frac{ds}{dt} \; \vec{u}_t$$