General Analysis

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

data_path = "aerofit_treadmill.csv"
df = pd.read_csv(data_path)
df

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	-
0	KP281	18	Male	14	Single	3	4	29562	112	ılı
1	KP281	19	Male	15	Single	2	3	31836	75	+/
2	KP281	19	Female	14	Partnered	4	3	30699	66	
3	KP281	19	Male	12	Single	3	3	32973	85	
4	KP281	20	Male	13	Partnered	4	2	35247	47	
175	KP781	40	Male	21	Single	6	5	83416	200	
176	KP781	42	Male	18	Single	5	4	89641	200	
177	KP781	45	Male	16	Single	5	5	90886	160	
178	KP781	47	Male	18	Partnered	4	5	104581	120	
179	KP781	48	Male	18	Partnered	4	5	95508	180	
180 rows × 9 columns										

Next steps: Generate code with df

View recommended plots

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):
                  Non-Null Count Dtype
# Column
 0
    Product
                  180 non-null
 1 Age
                  180 non-null
 2 Gender
                  180 non-null
                                 object
 3 Education
                  180 non-null
                                 int64
 4 MaritalStatus 180 non-null
                                 object
 5 Usage
                  180 non-null
                                 int64
 6 Fitness
                  180 non-null
                                 int64
 7 Income
                  180 non-null
 8 Miles
                  180 non-null
                                 int64
```

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

 $print(f"Number of rows: \{df.shape[0]\} \\ \ \ of columns: \{df.shape[1]\}")$

Number of rows: 180 Number of columns: 9

df.describe(include= "all")

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles	\blacksquare
count	180	180.000000	180	180.000000	180	180.000000	180.000000	180.000000	180.000000	ıl.
unique	3	NaN	2	NaN	2	NaN	NaN	NaN	NaN	
top	KP281	NaN	Male	NaN	Partnered	NaN	NaN	NaN	NaN	
freq	80	NaN	104	NaN	107	NaN	NaN	NaN	NaN	
mean	NaN	28.788889	NaN	15.572222	NaN	3.455556	3.311111	53719.577778	103.194444	
std	NaN	6.943498	NaN	1.617055	NaN	1.084797	0.958869	16506.684226	51.863605	
min	NaN	18.000000	NaN	12.000000	NaN	2.000000	1.000000	29562.000000	21.000000	
25%	NaN	24.000000	NaN	14.000000	NaN	3.000000	3.000000	44058.750000	66.000000	
50%	NaN	26.000000	NaN	16.000000	NaN	3.000000	3.000000	50596.500000	94.000000	
75%	NaN	33.000000	NaN	16.000000	NaN	4.000000	4.000000	58668.000000	114.750000	
max	NaN	50.000000	NaN	21.000000	NaN	7.000000	5.000000	104581.000000	360.000000	

df.isna().sum()

Product Age Gender 0 Education 0 MaritalStatus 0 Usage Fitness 0 Income 0 Miles 0 dtype: int64

There are no missing values in the data. There are 3 unique products in the dataset. KP281 is the most frequent product.

Detecting Outliers

```
fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(12, 10))
fig.subplots_adjust(top=1.2)

sns.boxplot(data=df, x="Age", orient='h', ax=axis[0,0])
sns.boxplot(data=df, x="Education", orient='h', ax=axis[0,1])
sns.boxplot(data=df, x="Usage", orient='h', ax=axis[1,0])
sns.boxplot(data=df, x="Fitness", orient='h', ax=axis[1,1])
sns.boxplot(data=df, x="Income", orient='h', ax=axis[2,0])
sns.boxplot(data=df, x="Miles", orient='h', ax=axis[2,1])
plt.show()
```


Observation

From the boxplot it is observed that:

- Age, Education and Usage have few outliers.
- Income and Miles have more outliers

Understanding the Distribution of Data

```
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(20, 6))
sns.countplot(data=df, x='Product', ax=axs[0])
sns.countplot(data=df, x='Gender', ax=axs[1])
sns.countplot(data=df, x='MaritalStatus', ax=axs[2])

axs[0].set_title("Product - counts", pad=10, fontsize=14)
axs[1].set_title("Gender - counts", pad=10, fontsize=14)
axs[2].set_title("MaritalStatus - counts", pad=10, fontsize=14)
plt.show()
```


Observation:

- 1. KP281 is the most frequent treadmill product.
- 2. There are more Males in the data than Females.
- 3. Partnered customers are more as compared to single customers.

```
plt.figure(figsize=(10, 8))
sns.countplot(data=df, x="Age")
plt.xticks(rotation = 45)
plt.show()
```


- Most customers belong to the range of 23-26 years of age.
- Highest number of customers belong to 25 years range.

```
plt.figure(figsize=(6, 6))
sns.countplot(data=df, x="Fitness")
plt.show()
```


1. Most customer rate themselves as level 3 fitness.

2. There are significant number of users for level 4 & 5 as well.

```
plt.figure(figsize=(6, 6))
sns.countplot(data=df, x="Usage")
plt.show()
```


- $1. \ For most of the customers the weekly average usage of treadmill tends to be between 2-4 times.\\$
- 2. There is high probability of using treadmill thrice a week.

```
fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(12, 12))
sns.histplot(data=df, x="Age", ax=axis[0,0])
sns.histplot(data=df, x="Education", ax=axis[0,1])
sns.histplot(data=df, x="Usage", ax=axis[1,0])
sns.histplot(data=df, x="Fitness", ax=axis[1,1])
sns.histplot(data=df, x="Income", ax=axis[2,0])
sns.histplot(data=df, x="Miles", ax=axis[2,1])
plt.show()
```



```
fig = plt.figure(figsize=(20,8))

plt.subplot(1, 2, 1)
sns.boxplot(data=df, y="Age", x = "Product", hue = "Gender")
plt.title("Age with Gender")
plt.grid()

plt.subplot(1, 2, 2)
sns.boxplot(data=df, y="Age", x = "Product", hue = "MaritalStatus")
plt.title("Age with MaritalStatus")
plt.grid()

plt.show()
```


Observations:-

- 1. 75 % of customers below the age of 34 tend to buy the products.
- $2. \ The \ age \ of \ married \ customers \ buying \ products \ is \ more \ than \ the \ age \ of \ single \ customers.$
- 3. Single male customers above the age of 40 are more likely to buy the KP781 model of treadmil.
- 4. Partnered customers below the age of 32 have shown more interest in buying the KP481 product.

```
sns.set_style(style='ticks')
fig = plt.figure(figsize=(5, 7))
sns.countplot(data=df, x='Product', hue='Gender',edgecolor="0.15", palette='Set1')
plt.title("Product vs Gender")
plt.show()
```



```
sns.set_style(style='ticks')
fig = plt.figure(figsize=(5, 7))
sns.countplot(data=df, x='Product', hue='MaritalStatus', edgecolor="0.15", palette='Set2')
plt.title("Product vs MaritalStatus")
plt.show()
```


Observations

- 1. Product Vs Gender
 - $\,\circ\,$ An equal number of males and females have purchased the KP281 product.
 - Most of the Male customers have purchased the KP781 product.
- 2. Product Vs MaritalStatus
 - o Customers with the marital status as partnered are more likely to purchase the product.

```
fig = plt.figure(figsize=(15, 6)).suptitle('Relationship between Age, Income and Product', fontsize=18)

plt.subplot(1, 3, 1)
sns.scatterplot(data=df, x='Age', y='Income')
plt.subplot(1, 3, 2)
sns.scatterplot(data=df, x='Product', y='Income')
plt.title("Product Vs Income")

plt.subplot(1, 3, 3)
sns.scatterplot(data=df, x='Product', y='Age')
plt.title("Product Vs Income")

plt.show()
```

Relationship between Age, Income and Product


```
fig = plt.figure(figsize=(15, 12)).suptitle('Relationship between Age, Usage and Product', fontsize=18)

plt.subplot(2, 2, 1)
sns.scatterplot(data=df, x='Age', y='Fitness')
plt.subplot(2,2,2)
sns.scatterplot(data=df, x='Age', y='Usage')
plt.title("Age Vs Usage")

plt.subplot(2,2,3)
sns.scatterplot(data=df, x='Fitness', y='Product')
plt.title("Fitness Vs Product")

plt.subplot(2,2,4)
sns.scatterplot(data=df, x='Usage', y='Product')
plt.subplot(2,2,4)
sns.scatterplot(data=df, x='Usage', y='Product')
plt.title("Usage Vs Product")
```

Relationship between Age, Usage and Product

Observations:

KP281:

- 1. This is a most purchased product among customers.
- $2. \ This is a desirable product for customers whose income ranges between 45 K- 50 K. \\$

KP481:

- 1. This product is popular among users of age 28-31.
- 2. Customers with income of 50K 60K are more likely to purchase it.

KP781:

- 1. Higher the age, higher is the income of the customers.
- 2. Higher the income range of customer more are the chances of buying this model which is most advanced model.

df['Product'].value_counts(normalize=True)

KP281 0.444444
KP481 0.333333
KP781 0.222222
Name: Product, dtype: float64

		value
variable	value	
Gender	Female	0.422222
	Male	0.577778
MaritalStatus	Partnered	0.594444
	Single	0.405556
Product	KP281	0.444444
	KP481	0.333333
	KP781	0.222222

Representing the Probability

Observations

- 1. Product
- 44.44% of the customers have purchased KP281 product.
- 33.33% of the customers have purchased KP481 product.
- 22.22% of the customers have purchased KP781 product.

- 2. Gender
- 57.78% of the customers are Male.
- 43.22% of the customers are Female.
- 3. MaritalStatus
- 59.44% of the customers are Partnered.
- 40.55% of customers are Single.

```
df1 = pd.crosstab(index=df['Gender'], columns=[df['Product']])
df1
```

```
def p_prod_given_gender(gender, print_marginal=False):
    df1 = pd.crosstab(index=df['Gender'], columns=[df['Product']])
    p_781 = df1['KP781'][gender] / df1.loc[gender].sum()
    p_481 = df1['KP481'][gender] / df1.loc[gender].sum()
    p_281 = df1['KP281'][gender] / df1.loc[gender].sum()
    if print_marginal:
        print(f"P(Male): {df1.loc['Male'].sum()/len(df):.2f}")
        print(f"P(Female): {df1.loc['Female'].sum()/len(df):.2f}\n")
    print(f"P(KP781/{gender}): {p_781:.2f}")
    print(f"P(KP281/{gender}): {p_481:.2f}")
    print(f"P(KP281/{gender}): {p_281:.2f}\n")
    p_prod_given_gender('Male', True)
    p_prod_given_gender('Female')
```

```
P(Female): 0.42

P(KP781/Male): 0.32

P(KP481/Male): 0.30

P(KP281/Male): 0.38

P(KP781/Female): 0.09

P(KP481/Female): 0.38

P(KP281/Female): 0.53
```

P(Male): 0.58

Probability of male buying a treadmill is:

• P(Male): 0.58

Probability of female buying a treadmill is:

• P(Female): 0.42

Probability of customer buying a treadmill given the customer is male:

KP781: 0.32KP481: 0.30KP281: 0.38

Probability of customer buying a treadmill given the customer is female:

KP781: 0.09KP481: 0.38

• KP281: 0.53

df2 = pd.crosstab(index=df['MaritalStatus'], columns=[df['Product']])
df2

Product KP281 KP481 KP781 MaritalStatus 48 36 23 Single 32 24 17

```
def p_prod_given_ms(maristatus, print_marginal=False):
    df2 = pd.crosstab(index=df['MaritalStatus'], columns=[df['Product']])
    p_781 = df2['KP781'][maristatus] / df2.loc[maristatus].sum()
    p_481 = df2['KP281'][maristatus] / df2.loc[maristatus].sum()
    p_281 = df2['KP281'][maristatus] / df2.loc[maristatus].sum()
    if print_marginal:
        print(f**P(Partnered): {df2.loc['Partnered'].sum()/len(df):.2f}")
        print(f**P(Single): {df2.loc['Single'].sum()/len(df):.2f}\n")
        print(f**P(KP781/{maristatus})): {p_781:.2f}")
        print(f**P(KP781/{maristatus})): {p_781:.2f}")
        print(f**P(KP281/{maristatus})): {p_481:.2f}")
        print(f**P(KP281/{maristatus})): {p_281:.2f}\n")
        p_prod_given_ms('Partnered', True)
        p_Prod_given_ms('Single')
        P(Partnered): 0.59
        P(Sistatu) 0.444
```

```
P(Partnered): 0.59
P(Single): 0.41
P(KP781/Partnered): 0.21
P(KP481/Partnered): 0.34
P(KP281/Partnered): 0.45
P(KP781/Single): 0.23
P(KP481/Single): 0.33
P(KP281/Single): 0.44
```

Probability of partnered customer buying a treadmill is:

P(Partnered): 0.59

Probability of single customer buying a treadmill is:

• P(Single): 0.41

Probability of customer buying a treadmill given marital status is partnered:

- KP781: 0.21
- KP481: 0.34

• KP281: 0.45

Probability of customer buying a treadmill given marital status is single : -

- KP781: 0.23
- KP481: 0.33
- KP281: 0.44

 $p_781 = df2['KP781']["Partnered"] / df2.loc["Partnered"].sum() \\ p_781$

0.21495327102803738

Checking the Correlation among different factors

df.corr(numeric_only = True)

	Age	Education	Usage	Fitness	Income	Miles
Age	1.000000	0.280496	0.015064	0.061105	0.513414	0.036618
Education	0.280496	1.000000	0.395155	0.410581	0.625827	0.307284
Usage	0.015064	0.395155	1.000000	0.668606	0.519537	0.759130
Fitness	0.061105	0.410581	0.668606	1.000000	0.535005	0.785702
Income	0.513414	0.625827	0.519537	0.535005	1.000000	0.543473
Miles	0.036618	0.307284	0.759130	0.785702	0.543473	1.000000

sns.heatmap(df.corr(numeric_only = True), cmap='inferno', annot=True)
plt.show()

Observations:

We see a strong correlation between the following attributes:

- Fitness and miles.
- Usage and miles.
- Usage and fitness.