Glossary of Network Analytical Terms

1-mode network	'1-mode networks' have only one type of 'nodes', e.g.
	representing 'persons'.
2-mode network	'2-mode networks' have two type of 'nodes', e.g. representing
	'persons' and 'texts'. In them, all 'edges' link one node of each
	type. See also 'affiliation network'.
actor	See 'node'.
adjacent matrix	In an 'adjacent matrix', 'networks' are represented in tabular
uajucent muti ix	format. Rows and columns represent a single 'node' types (here:
	persons), and the numeric values of the cells connecting them
	reveal whether they are connected or not.
affiliation network	'Affiliation networks' are 'networks' with two 'modes'. In them,
ијушиноп пескот к	the affiliation of one 'node' type to another node type is modelled.
	Here, 'persons' are linked to the 'texts' in which they are
	mentioned. See also '2-mode network'.
agent	See 'node'.
agent alter	In 'ego networks', and 'alter' is a 'node' that stands in a direct
uiter	relationship to the 'ego'.
aggovtativity	1 0
assortativity	See 'homophily'.
average degree	'Average degree' is measured on the 'network' level, and equals
	the sum of the 'degree' of each 'node' in it divided by the total
	number of nodes. See also 'degree'.
average path length	'Average path length' is measured on the 'network' level, and
	equals the average of all 'shortest paths' in it.
betweenness	See 'betweenness centrality'.
betweenness centrality	'Betweenness centrality' is measured on the 'node' level, and
	reveals how central nodes are in comparison to other nodes in a
	'network' by means of calculating the frequency by which they
	appear on the 'shortest path' between any pair of nodes.
bimodal network	See '2-mode network'.
bipartite network	
bridge	See '2-mode network'.
	A 'bridge' is here defined as an 'edge' connecting otherwise
	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'.
broker	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'. A 'broker' is a 'node' without which the 'paths' between its
broker	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'. A 'broker' is a 'node' without which the 'paths' between its neighbours would become significantly longer. Cf. 'structural
	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'. A 'broker' is a 'node' without which the 'paths' between its neighbours would become significantly longer. Cf. 'structural hole'.
broker case-by-variable matrix	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'. A 'broker' is a 'node' without which the 'paths' between its neighbours would become significantly longer. Cf. 'structural
	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'. A 'broker' is a 'node' without which the 'paths' between its neighbours would become significantly longer. Cf. 'structural hole'. In rectangular 'case-by-variable matrices', information is represented in tabular format. Rows represent cases and
	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'. A 'broker' is a 'node' without which the 'paths' between its neighbours would become significantly longer. Cf. 'structural hole'. In rectangular 'case-by-variable matrices', information is represented in tabular format. Rows represent cases and columns the variables.
	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'. A 'broker' is a 'node' without which the 'paths' between its neighbours would become significantly longer. Cf. 'structural hole'. In rectangular 'case-by-variable matrices', information is represented in tabular format. Rows represent cases and
case-by-variable matrix	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'. A 'broker' is a 'node' without which the 'paths' between its neighbours would become significantly longer. Cf. 'structural hole'. In rectangular 'case-by-variable matrices', information is represented in tabular format. Rows represent cases and columns the variables. Various types of 'centrality' are measured on the 'node' level to reveal how central nodes are relative to one another, and rank
case-by-variable matrix	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'. A 'broker' is a 'node' without which the 'paths' between its neighbours would become significantly longer. Cf. 'structural hole'. In rectangular 'case-by-variable matrices', information is represented in tabular format. Rows represent cases and columns the variables. Various types of 'centrality' are measured on the 'node' level to
case-by-variable matrix	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'. A 'broker' is a 'node' without which the 'paths' between its neighbours would become significantly longer. Cf. 'structural hole'. In rectangular 'case-by-variable matrices', information is represented in tabular format. Rows represent cases and columns the variables. Various types of 'centrality' are measured on the 'node' level to reveal how central nodes are relative to one another, and rank
case-by-variable matrix	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'. A 'broker' is a 'node' without which the 'paths' between its neighbours would become significantly longer. Cf. 'structural hole'. In rectangular 'case-by-variable matrices', information is represented in tabular format. Rows represent cases and columns the variables. Various types of 'centrality' are measured on the 'node' level to reveal how central nodes are relative to one another, and rank them accordingly. See also 'betweenness centrality', 'closeness'
case-by-variable matrix centrality	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'. A 'broker' is a 'node' without which the 'paths' between its neighbours would become significantly longer. Cf. 'structural hole'. In rectangular 'case-by-variable matrices', information is represented in tabular format. Rows represent cases and columns the variables. Various types of 'centrality' are measured on the 'node' level to reveal how central nodes are relative to one another, and rank them accordingly. See also 'betweenness centrality', 'closeness centrality' and 'degree centrality'.
case-by-variable matrix centrality clique	A 'bridge' is here defined as an 'edge' connecting otherwise weakly connected subsets of a 'network'. Cf. 'weak tie'. A 'broker' is a 'node' without which the 'paths' between its neighbours would become significantly longer. Cf. 'structural hole'. In rectangular 'case-by-variable matrices', information is represented in tabular format. Rows represent cases and columns the variables. Various types of 'centrality' are measured on the 'node' level to reveal how central nodes are relative to one another, and rank them accordingly. See also 'betweenness centrality', 'closeness centrality' and 'degree centrality'. A 'clique' is a maximally dense section of a 'network'.

cluster	A 'cluster' is here defined as a set of densely connected 'nodes'
	that are more sparsely connected to other nodes or clusters in a
	'network'.
community	A 'community' is a well-connected section of a 'network'.
component	See 'connected component'.
connected component	A 'connected component' is a subset of a 'network' model, in
F	which all 'nodes' are directly tied to at least one other node in it
	and not to any nodes which are not part of it.
core	See 'core component'.
core component	The 'core component' of a 'network' is its largest 'connected
Core component	component', i.e. the component with the most 'nodes' and 'edges'.
degree	'Degree' is measured on the 'node' level, and a node's degree
uegree	equals the number of edges it is involved in. See also 'average
	degree', 'in-degree', 'out-degree' and 'degree centrality'.
degree centrality	'Degree centrality' is measured on the 'node' level, and ranks
degree centrality	nodes according to the number of 'edges' they are involved in.
degree distribution	'Degree distribution' is measured on the 'network' level, and
degree distribution	reveals how the individual degrees of its nodes are distributed.
danaitu	-
density	'Density' is measured on the 'network' level, and reveals how
donth	many of the potential 'edges' are materialised in the model.
depth	In 'ego networks', depth refers to the maximum 'path length'
	modelled 'nodes' may have from the 'ego'. With a depth of 1, the
	'network' is restricted to the ego and its 'alters'; with a depth of 2,
1'	also nodes with direct ties to one or more alters are included.
diameter	The 'diameter' is measured on the 'network' level, and equals the
1' t . 1 . 1	length of its longest 'geodesic'.
directed edge	'Edges' are directed when they represent asymmetric or ordered
	relationships. Here, examples of directed relationships are
	payment, land sale and service, i.e. relations in which one of the
	involved parties is on the giving and the other on the receiving
	end. In 'network' models, directed edges are visualised as arrows
	pointing from the giving to the receiving 'node'. See also
dina ata danumuh	'undirected edge'.
directed graph	A 'directed graph' is a 'network' model with only 'directed edges'.
d., ., d	See also 'undirected graph' and 'mixed graph'.
dyad	A 'dyad' is a pair of 'nodes', which may be connected or
	unconnected to other nodes. Here, the term was predominantly
	used to refer to connected pairs of nodes that are not connected
adaa	to any other nodes in the 'network'. Cf. 'string'.
edge	'Edges' represent the relationships of the 'network' under
	examination. What they represent therefore depends on the
	network characteristics. Here, the edges of 2-mode networks
	signal that a given person is mentioned in a given text; the edges
	of 1-mode networks connect persons that had a 'social' or
	'economic' relationship. In the models, edges are visualised as
	lines drawn between 'nodes'. See also 'directed edge', 'undirected
adaa attiilaita	edge', 'weighted edge' and 'unweighted edge'.
edge attribute	An 'edge attribute' is an attribute qualifying a relationship
	between two 'nodes'.

edge colour	In 'network visualisations', 'edges' can be coloured so as to
	visually distinguish 'ties' with different 'edge attributes', e.g.
	signalling whether a relation was informed by a Greek (colour 1),
	Demotic (colour 2), or bilingual (colour 3) text.
edge list	An 'edge list' contains information about the edges of a 'network'.
ego	In 'ego networks', the 'ego' is the focal 'node'.
ego network	'Ego networks' are egocentric in that they place a particular node
	(the 'ego') at the centre of attention, and only nodes with direct
	(or indirect) 'edges' to the ego (and each other) are modelled.
geodesic	See 'shortest path'.
giant component	See 'core component'.
global clustering	'Global clustering coefficient' is measured on the 'network' level,
coefficient	and corresponds to the average of the 'local cluster coefficient'
	measured for all nodes.
graph	Here, 'graph' is used synonymously with 'network visualisation'.
Historical Network	'Historical Network Research' (HNR) is a subfield of network
Research	science that is concerned with relational data and (social)
Mescar en	network analysis in historical and related disciplines.
homophily	'Homophily' concerns the tendency for similar nodes to be
поторицу	connected.
hub	See 'broker'.
hyperedge	A 'hyperedge' is a single 'edge' connecting multiple 'nodes'. Cf.
пуретецуе	'hypergraph'.
hypergraph	A 'hypergraph' is a network model with 'hyperedges'.
in-degree	'In-degree' is measured on the 'node' level in 'directed networks'.
in-degree	A node's in-degree equals the number of 'directed edges' that
	point towards it. Cf. 'out-degree'. See also 'degree'.
incidence matrix	In an 'incidence matrix', 'networks' are represented in tabular
metaence matrix	format. The rows and columns represent two different 'node'
	types (here: texts and persons), and the numeric values of the
	cells connecting them reveal whether they are connected or not.
isolate	An 'isolate' is a 'node' that is not involved in any 'edges' and are
isolute	therefore not connected to any other 'nodes' in the 'network'.
k-partite network	See 'multimodal network'.
link	See 'edge'.
local cluster coefficient	The 'LCC' metric measures the degree to which a given nodes'
locui ciustei coejjicient	
	neighbours are also neighbours of one another. See also 'global
	clustering coefficient'.
main component	See 'core component'.
mixed graph	A 'mixed graph' is a 'network' model with 'undirected edges' as
	well as 'directed edges'. See also 'directed graph' and 'undirected
monomodaltl-	graph'.
monomodal network	See '1-mode network'.
monopartite network	See '1-mode network'.
monoplex network	A 'monoplex network' is a 'network' with only one 'edge' type.
multigraph	A 'multigraph' is a network model with 'parallel edges'.
multilayer network	See 'multimodal network'.

multimodal network	'multimodal networks' have several type of 'nodes', e.g.
	representing 'persons', 'texts' and 'places'. In them, 'edges' link
	nodes of different types.
multilayer network	See 'multiplex network'.
multiplex edge	An 'edge' is monoplex when more than one type of relationship
	link the same pair of 'nodes'. Cf. 'parallel edge'.
multiplex network	A 'multiplex network' is a network model with more than one
	'edge' type.
network	A 'network' consist of a set of 'nodes' and the 'edges' that
	represent their interconnectivity.
network analysis	'Network analysis' is an umbrella-term covering a number of
	specialised methods for structurally examining and analysing
	'networks'.
network boundaries	'Network boundaries' define the limits of a given 'network'.
network density	See 'density'.
network diameter	See 'diameter'.
network mode	See '1-mode network' and '2-mode network'.
network scale	See 'whole network' and 'ego network'.
network thinking	'Network thinking' refers to the act of thinking in terms of
	'networks', be it with or without applying formal network
	theories to the task.
network type	See 'monoplex network' and 'multiplex network'.
network visualisation	'Network visualisations' (here also called 'graphs') are graphic
	representations of 'networks' as sets of 'nodes' and 'edges'.
node	'Nodes' represent the units/agents/actors of a given 'network'.
	What they represent depends on the network characteristics.
	Here, the nodes of the '2-mode networks' represent texts and
	persons; those of the 1-mode networks persons only. In the
	network models, nodes are visualised as dots, between which
	'edges' can be drawn.
node attribute	A 'node attribute' is an attribute qualifying a 'node'.
node colour	In 'network visualisations', 'nodes' can be coloured so as to
	visually distinguish various 'node attributes', e.g. signalling
	whether a node represents a text (colour 1) or a person (colour
	2), or whether a person was male (colour 1), female (colour 2) or
	of unknown sex (colour 3).
node size	In 'network visualisations', the size of the 'nodes' can be modified
	so as to visually distinguish various characteristics, e.g. making
	female nodes larger, or making size proportionate to nodes'
	'betweenness centrality' scores.
node list	A 'node list' contains information about the 'nodes' of a 'network'.
out-degree	'Out-degree' is measured on the 'node' level in 'directed
	networks'. A node's out-degree equals the number of 'directed
	edges' that point away from it. Cf. 'in-degree'. See also 'degree'.
PageRank	The 'PageRank' metric measures nodes' centrality, taking edges
	leading to and from it into account.
L	<u> </u>

parallel edgeAn 'edge' is 'parallel' when more than one relationship of the same type link the same pair of nodes. Cf. 'multigraph' and 'multiplex edge'.pathA 'path' between two 'nodes' exist, if the given nodes can be reached through an unbroken chain of 'edges'. See also 'path length' and 'shortest path'.path lengthThe length of a 'path' refers to the number of 'edges' that separate two 'nodes'.personal networkSee 'ego network'.pointSee 'node'.positional roleHere, 'positional role' refers to the structural position of a 'node'.	
'multiplex edge'. Path A 'path' between two 'nodes' exist, if the given nodes can be reached through an unbroken chain of 'edges'. See also 'path length' and 'shortest path'. Path length The length of a 'path' refers to the number of 'edges' that separate two 'nodes'. Personal network See 'ego network'. See 'node'.	
pathA 'path' between two 'nodes' exist, if the given nodes can be reached through an unbroken chain of 'edges'. See also 'path length' and 'shortest path'.path lengthThe length of a 'path' refers to the number of 'edges' that separate two 'nodes'.personal networkSee 'ego network'.pointSee 'node'.	
reached through an unbroken chain of 'edges'. See also 'path length' and 'shortest path'. path length The length of a 'path' refers to the number of 'edges' that separate two 'nodes'. personal network See 'ego network'. point See 'node'.	
length' and 'shortest path'. path length The length of a 'path' refers to the number of 'edges' that separate two 'nodes'. personal network See 'ego network'. point See 'node'.	
path lengthThe length of a 'path' refers to the number of 'edges' that separate two 'nodes'.personal networkSee 'ego network'.pointSee 'node'.	
separate two 'nodes'. personal network See 'ego network'. point See 'node'.	
personal networkSee 'ego network'.pointSee 'node'.	
point See 'node'.	
nositional role Here 'nositional role' refers to the structural position of a 'noc	
positional role refers to the structural position of a not	e'
in a 'network'. Cf. 'social role'.	
reciprocity 'Reciprocity' is reached when directed edges run in both	
directions. On the level of the network, measuring reciprocity	
reveals the degree to which dyads form reciprocal relationship	os.
relation See 'edge'.	
relational tie See 'edge'.	
self-loop An 'edge' that goes to and from the same 'node'.	
single-layer network See 'monoplex network'.	
<i>shortest path</i> The 'shortest path' is the shortest 'path length' measured	
between two 'nodes' in a 'network'.	
Small world network A 'small world network' is a network in which the 'shortest pa	th'
between any two random nodes grows proportionately to the	
logarithm of the number of nodes in the network.	
social network A 'social network' is a 'network' consisting of sets of social 'no	des'
and 'edges'.	
Social Network Analysis 'Social Network Analysis' (SNA) is a collective term referring t	0
available conceptual, methodological and digital tools for	
analysing patterns of social relations through the employment	of
network theories.	
social role Here, 'social role' refers to the norms and behaviours associated	ed
with various positions in social structures. Cf. 'positional role'.	
string Here, 'string' was predominantly used to refer to strings of thr	ee
or more 'nodes'. Cf. 'dyad' and 'triad'.	
structural equivalence 'Nodes' or groups of nodes are in 'structural equivalence' when	1
they uphold the same 'positional roles' in a 'network'.	
structural hole A 'structural hole' is the negative space that is filled by a 'broke	er'.
Cf. 'broker'.	
subgraph A 'subgraph' is a part of a 'network', consisting of a selection o	f its
'nodes' and 'edges'.	
subnetwork See 'subgraph'.	
subset See 'subgraph'.	
subsetSee 'subgraph'.tieSee 'edge'.	
<u> </u>	
tie See 'edge'.	
tie See 'edge'. transitivity 'Transitivity' concerns the tendency for similar nodes with	

triad	A 'triad' is a set of three 'nodes', which may be connected or
	unconnected to other nodes. Here, the term was predominantly
	used to refer to closed triads of which no node is connected to
	any other nodes in the 'network'. Cf. 'string'.
triadic closure	'Triadic closure' is achieved when two nodes with a shared
	connection become connected. See also 'transitivity'.
undirected edge	'Edges' are undirected when they represent symmetric or
	unordered relationships. Here, examples of undirected
	relationships are neighbour, close-kin or collaboration. Either the
	'tie' is there, or it is not. In 'network' models, undirected edges
	are visualised as lines drawn between sets of 'nodes'. See also
	'directed edge'.
undirected graph	An 'undirected graph' is a network model with only 'undirected
	edges'. See also 'directed graph' and 'mixed graph'.
unweighted edge	'Unweighted edges' are 'edges' without values attached to them.
	Here, all edges are conceived as unweighted, since all relations
	were given a default weight of 1. See also 'weighted edge'.
unweighted network	'Unweighted networks' consist of 'nodes' connected by
	'unweighted edges'. See also 'weighted network'.
valued edge	See 'weighted edge'.
valued network	See 'weighted network'.
vertex (vertices)	See 'node'.
weak tie	A 'weak tie' is a single 'edge' connecting two otherwise insular or
	disconnected sections of a 'network'. Cf. 'bridge'.
weighted edge	'Weighted edges' are 'edges' with values attached to them. What
	the value (or weight) represents depend on the characteristics of
	the 'network'. For example, numbers from 1 to 5 could be
	assigned to signal the closeness or strength of a relationship. See
	also 'unweighted edge'.
weighted network	'Weighted networks' consist of 'nodes' connected by 'weighted
	edges'. See also 'unweighted network'.
whole network	The 'whole network' is the full network including all 'nodes' and
	'edges', i.e. consisting of all 'isolates', 'dyads', 'triads' 'strings' and
	larger 'connected components'.