- Set 31 Let X_1, \ldots, X_n be independent and identically distributed random variables with the same mean μ and variance σ^2 , and let \overline{X} denote the sample mean. Use the Central Limit Theorem (CLT, page 156 in our textbox) to establish the following (asymptotic when $n \to \infty$) statements:
 - (a) The statement

$$|\bar{X} - \mu| > 1.96 \frac{\sigma}{\sqrt{n}}$$

holds with probability 0.05.

Using the CLT, as $n \to \infty$

$$|G| = \frac{|\overline{X} - \mu|}{\frac{\sigma}{\sqrt{n}}}$$

Therefore,

$$\mathbb{P}(|G| > 1.96) = 1 - \mathbb{P}(|G| \le 1.96)$$

But since,

$$\mathbb{P}(|G| \le 1.96) = 0.95$$

Then,

$$1 - \mathbb{P}(|G| \le 1.96) = 1 - 0.95$$

$$\mathbb{P}(|G| > 1.96) = 0.05$$

(b) The statement

$$\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}$$

holds with the probability 0.95. NOTE: The statement about give the following (asymptotic when $n \to \infty$) 95% confidence interval

$$\left[\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right]$$

Then,

$$\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}$$

$$-\overline{X} + 1.96 \frac{\sigma}{\sqrt{n}} \ge -\mu \ge -\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}}$$

$$1.96 \frac{\sigma}{\sqrt{n}} \ge \bar{X} - \mu \ge -1.96 \frac{\sigma}{\sqrt{n}}$$

$$|\bar{X} - \mu| \le 1.96 \frac{\sigma}{\sqrt{n}}$$

Therefore, using the CLT, as $n \to \infty$

$$|G| = \frac{|\overline{X} - \mu|}{\frac{\sigma}{\sqrt{n}}}$$

And,

$$\mathbb{P}(|G| \le 1.96) = 0.95$$

(c) The statement

$$\mu - 1.96 \frac{\sigma}{\sqrt{n}} \le \bar{X} \le \mu + 1.96 \frac{\sigma}{\sqrt{n}}$$

holds with the probability 0.95.

Then,

$$\mu - 1.96 \frac{\sigma}{\sqrt{n}} \le \bar{X} \le \mu + 1.96 \frac{\sigma}{\sqrt{n}}$$
$$-1.96 \frac{\sigma}{\sqrt{n}} \le \bar{X} - \mu \le 1.96 \frac{\sigma}{\sqrt{n}}$$
$$|\bar{X} - \mu| \le 1.96 \frac{\sigma}{\sqrt{n}}$$

Therefore, using the CLT, as $n \to \infty$

$$|G| = \frac{|\bar{X} - \mu|}{\frac{\sigma}{\sqrt{n}}}$$

And,

$$\mathbb{P}(|G| \le 1.96) = 0.95$$

(d) Let $\omega_1{}^{act}$, ..., $\omega_n{}^{act}$ be a sample from a population Ω , and let $X:\Omega\to \mathbb{R}$ be a filter (that is, a random variable in Statistics, or a measurable function in Mathematics) that produces n outputs (called observations in Statistics) $x_1{}^{obs}$, ..., $x_n{}^{obs}$ by the formula $x_i{}^{obs} = X(\omega_i{}^{act})$. Let \bar{x} denote the average of $x_1{}^{obs}$, ..., $x_n{}^{obs}$. Does the 95% confidence interval

$$\left[\bar{x} - 1.96 \, \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \, \frac{\sigma}{\sqrt{n}}\right]$$

cover the (unknown) population mean μ or not?

The confidence interval covers the population mean with a confidence percentage of 95%.