CB n°5 - Espaces préhilbertiens - Sujet 1

Soit $n \in \mathbb{N}^*$. Pour $(P,Q) \in \mathbb{R}_n[X]$, on pose :

$$\varphi(P,Q) = \int_{-1}^{1} P(t)Q(t)(1+t^2)dt$$

- **1.** Montrer que φ est un produit scalaire sur $\mathbb{R}_n[X]$.
 - $ightharpoonup Pour tout <math>(P,Q) \in \mathbb{R}_n[X]$, la fonction $t \mapsto P(t)Q(t)(1+t^2)$ est continue sur [-1,1], donc $\varphi(P,Q) \in \mathbb{R}$.
 - $\leadsto \varphi$ est clairement symétrique et, par linéarité de l'intégrale, linéaire par rapport à sa deuxième variable, donc bilinéaire.
 - $ightharpoonup ext{Soit } P \in \mathbb{R}_n[X]$. La fonction $t \mapsto P(t)^2(1+t^2)$ est continue et positive sur [-1,1] donc par positivité de l'intégrale, $\varphi(P,P) \geq 0$; de plus, on a :

 $(\varphi(P, P) = 0) \Leftrightarrow (\forall t \in [-1, 1], P(t)^2 (1 + t^2) = 0) \Leftrightarrow (\forall t \in [-1, 1], P(t) = 0).$

Ainsi, si $\varphi(P,P)=0$, alors le polynôme P admet une infinité de racines, c'est donc le polynôme nul.

Finalement, φ est une forme bilinéaire, symétrique, définie positive, c'est un produit scalaire. On notera par la suite $\varphi(P,Q)=(P|Q)$.

2. Déterminer une base orthonormée de $\mathbb{R}_2[X]$ pour ce produit scalaire.

Remarquons tout d'abord que pour tout $(n, m) \in \mathbb{N}$:

$$(X^{n}|X^{m}) = \int_{-1}^{1} t^{n+m} + t^{2+n+m} dt = \begin{cases} 0 & \text{si } n+m \text{ est impair} \\ \frac{2}{n+m+1} + \frac{2}{n+m+3} & \text{si } n+m \text{ est pair} \end{cases}$$

On notera (P_0, P_1, P_2) la base orthonormée

*
$$(X^0|X^0) = \frac{8}{3}$$
; on prend donc $P_0 = \sqrt{\frac{3}{8}}X^0$.

*
$$X - \underbrace{(X|P_0)}_{0} P_0 = X$$
 et $(X|X) = \frac{16}{15}$; on prend $P_1 = \frac{\sqrt{15}}{4} X$.

*
$$X^2 - (X^2|P_0)P_0 - \underbrace{(X^2|P_1)}_{0}P_1 = X^2 - \frac{2}{5} \text{ et } \left(X^2 - \frac{2}{5}|X^2 - \frac{2}{5}\right) = \frac{136}{525}.$$
On prend $P_2 = \sqrt{\frac{525}{136}} \left(X^2 - \frac{2}{5}\right).$

3. Calculer la distance de X^2 à $\mathbb{R}_1[X]$.

 $\mathbb{R}_1[X]$ est un sous-espace vectoriel de $\mathbb{R}_2[X]$, admettant pour base orthonormée (P_0, P_1) pour le produit scalaire φ . On en déduit que, dans $\mathbb{R}_2[X]$, $\mathbb{R}_1[X]^{\perp} = \text{Vect}\{P_2\}$.

Pour déterminer la distance de X^2 à $\mathbb{R}_1[\overline{X}]$, deux méthodes :

* En utilisant la formule : $d\left(X^2, \mathbb{R}_1[X]\right) = \|X^2 - p_{\mathbb{R}_1[X]}(X^2)\|$.

On a :
$$p_{\mathbb{R}_1[X]}(X^2) = (X^2|P_0)P_0 + (X^2|P_1)P_1 = \frac{2}{5}$$
, donc $d(X^2, \mathbb{R}_1[X]) = ||X^2 - \frac{2}{5}|| = \sqrt{\frac{136}{525}}$ (qui a déjà été calculé!).

* En utilisant la formule $d(X^2, \mathbb{R}_1[X]) = ||p_{\mathbb{R}_1[X]^{\perp}}(X^2)||$.

On a :
$$d(X^2, \mathbb{R}_1[X]) = ||(X^2|P_2)P_2)|| = |(X^2|P_2)|| = \sqrt{\frac{136}{525}}$$

 $\operatorname{Sp\acute{e}}\operatorname{PT}\operatorname{B}$

${\rm CB}\ { m N}^{\circ}5$ - Espaces préhilbertiens - Sujet 2

Soit $n \in \mathbb{N}^*$. Pour $(P,Q) \in \mathbb{R}_n[X]$, on pose :

$$\varphi(P,Q) = \int_{-1}^{1} P(t)Q(t)(1-t^2)dt$$

- 1. Montrer que φ est un produit scalaire sur $\mathbb{R}_n[X]$.
 - $ightharpoonup \text{Pour tout } (P,Q) \in \mathbb{R}_n[X]$, la fonction $t \mapsto P(t)Q(t)(1-t^2)$ est continue sur [-1,1], donc $\varphi(P,Q) \in \mathbb{R}$.
 - $\leadsto \varphi$ est clairement symétrique et, par linéarité de l'intégrale, linéaire par rapport à sa deuxième variable, donc bilinéaire.
 - $ightharpoonup ext{Soit } P \in \mathbb{R}_n[X]$. La fonction $t \mapsto P(t)^2(1-t^2)$ est continue et positive sur [-1,1] donc par positivité de l'intégrale, $\varphi(P,P) \geq 0$; de plus, on a :

 $(\varphi(P, P) = 0) \Leftrightarrow (\forall t \in [-1, 1], P(t)^2 (1 - t^2) = 0) \Leftrightarrow (\forall t \in]-1, 1[, P(t) = 0).$

Ainsi, si $\varphi(P,P)=0$, alors le polynôme P admet une infinité de racines, c'est donc le polynôme nul.

Finalement, φ est une forme bilinéaire, symétrique, définie positive, c'est un produit scalaire. On notera par la suite $\varphi(P,Q) = (P|Q)$.

2. Déterminer une base orthonormée de $\mathbb{R}_2[X]$ pour ce produit scalaire.

Remarquons tout d'abord que pour tout $(n, m) \in \mathbb{N}$:

$$(X^{n}|X^{m}) = \int_{-1}^{1} t^{n+m} - t^{2+n+m} dt = \begin{cases} 2 & \text{si } n+m \text{ est impair} \\ \frac{2}{n+m+1} - \frac{2}{n+m+3} & \text{si } n+m \text{ est pair} \end{cases}$$

On notera (P_0, P_1, P_2) la base orthonormée.

*
$$(X^0|X^0) = \frac{4}{3}$$
, on prend donc $P_0 = \sqrt{\frac{3}{4}}X^0$.

*
$$X - \underbrace{(X|P_0)}_{0} P_0 = X$$
 et $(X|X) = \frac{4}{15}$; on prend $P_1 = \frac{\sqrt{15}}{2} X$.

*
$$X^2 - (X^2|P_0)P_0 - \underbrace{(X^2|P_1)}_{0}P_1 = X^2 - \frac{1}{5} \text{ et } \left(X^2 - \frac{1}{5}|X^2 - \frac{1}{5}\right) = \frac{32}{525}.$$

On prend
$$P_2 = \sqrt{\frac{525}{32}} \left(X^2 - \frac{1}{5} \right)$$
.

3. Calculer la distance de X^2 à $\mathbb{R}_1[X]$.

 $\mathbb{R}_1[X]$ est un sous-espace vectoriel de $\mathbb{R}_2[X]$, admettant pour base orthonormée (P_0, P_1) pour le produit scalaire φ . On en déduit que, dans $\mathbb{R}_2[X]$, $\mathbb{R}_1[X]^{\perp} = \text{Vect}\{P_2\}$.

Pour déterminer la distance de X^2 à $\mathbb{R}_1[\overline{X}]$, deux méthodes :

* En utilisant la formule : $d\left(X^2, \mathbb{R}_1[X]\right) = \|X^2 - p_{\mathbb{R}_1[X]}(X^2)\|$.

On a : $p_{\mathbb{R}_1[X]}(X^2) = (X^2|P_0)P_0 + (X^2|P_1)P_1 = \frac{1}{5}$, donc $d(X^2, \mathbb{R}_1[X]) = ||X^2 - \frac{1}{5}|| = \sqrt{\frac{32}{525}}$ (qui a déjà été calculé).

* En utilisant la formule $d(X^2, \mathbb{R}_1[X]) = ||p_{\mathbb{R}_1[X]^{\perp}}(X^2)||$.

On a :
$$d(X^2, \mathbb{R}_1[X]) = ||(X^2|P_2)P_2)|| = |(X^2|P_2)|| = \sqrt{\frac{32}{525}}$$

 $\operatorname{Sp\acute{e}}\operatorname{PT}\operatorname{B}$