기초통계

□ 평균: N개의 자료에 대해 산술평균을 구하는 방법

$$\sum_{i=1}^{n} x_i \times \frac{1}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

□ 자주 사용하는 기호

i번째 관찰값 : x_i

모집단의 개수 : N

모집단 평균 : μ

표본의 개수:n

표본평균 : \bar{x}

□ 중앙값: N개의 자료에 대해 정확히 가운데 있는 값을 의미

✓ 전체 자료의 개수(n)가 홀수일 때 $\rightarrow \frac{n+1}{2}$

✓ 전체 자료의 개수(n)가 짝수일 때 $\rightarrow \frac{n}{2}$, $\left(\frac{n}{2}+1\right)$ 번째 값들의 평균

□ 편차

✓ 개별 자료와 평균 간의 개별 거리 측정

"각 자료들이 평균에 대해서 평균적으로 얼마나 떨어져 있을까?"

- □ 편차
 - ✓ 개별 자료와 평균 간의 개별 거리 측정

$$Deviation = X_i - \overline{X}$$

- □ 주요 용어
 - ✓ Deviation : 편차
 - $✓ X_i$: 개별 관찰값
 - ✓ X̄ : 평균

□ 편차의 제곱

✓ 편차들을 양수로 만들기 위해 제곱을 사용함

거리 편차를 제곱하면 면적이 된다

편차 제곱의 합:80

□ 분산 (Variance)

✓ 편차 제곱의 평균

$$Variance = \frac{\sum (x_i - \overline{x})^2}{n}$$

□ 주요 용어

✓ Variance : 분산 (= 편차 제곱의 평균)

✓ X_i : 개별 관찰값

✓ X̄ : 평균

- □ 표준편차 (Variance)
 - ✓ 편차 제곱의 평균

Standard Deviation =
$$\sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$$

- □ 주요 용어
 - ✓ Standard Deviation : 표준편차 (= 분산의 제곱근)
 - $✓ X_i$: 개별 관찰값
 - ✓ X̄ : 평균

□ 모집단과 표본의 분산과 표준편차

구 분	모 집 단	표 본
분 산	$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N}$	$s^2 = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}$
표준편차	$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N}}$	$s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}}$