中国科学技术大学数学科学学院 2024-2025 学年第 1 学期期中考试试卷

课程名称:	代数学基础			课程编号:		001356		
考试时间:	2024年	024年11月17号9:00-11:00			考试形式:		闭卷	
姓名:			学号:	:		学院:		
题	第一题	第二题		第三题	(50 分)		总分	
号	(25分)	(25 分)	3.1(15 分)	3.2(10 分)	3.3(10 分)	3.4(15 分)	(100分)	
得分								
本试卷共 6 单位元。 注意事 一、 填空题 1.1. (5分)设 <i>K</i> 1.2. (5分)方程	项:直接 : 本题 5 为域. 则	在试卷上 小题, 共 多项式环	25 分。 K[x, y] 的全体	写在草稿纸上 本单位构成的	.。 ე集合为			有原环的
1.3. (5 分) 2114	4321(十进	制表示中)的末两位数	码为				·
1.4. (5 分) 设小	于 100 的	正整数 m	满足 9m ≡ ′	75 mod 111	和 3 ^m ≢ 3	mod 10, 则 n	n=	·
1.5. (5 分) 记 m	为整数 2	$2^{10} \times 3^2 \times$	$5^2 imes 17^{12}$ 全	体正因子的。	立方和. 则 2 ^r	ⁿ =		mod 17.
二、判断题 举例) 指出错误,		•	25 分。判断	下面说法是	否正确。若」	E确,请简要	·证明;若·	错误,请
2.1. (5 分) 实数: ℝ ₊ := {r ∈			法群 (\mathbb{R}_+,\cdot) $\{r\in\mathbb{Q}\mid r>$		加法群 (ℚ, -	+) 和乘法群	(\mathbb{Q}_+,\cdot) 也 \mathbb{R}	司构. (注:

2.2.	$(5 eta)$ 设 $\varphi\colon G o H$ 为群同态. 若 G 有限且 φ 为满同态, 则 $ G = \ker(\varphi) \cdot H $.	
2.3.	$(5 eta)$ 对于任意复数 $\alpha\in\mathbb{C}$,考虑赋值映射 $arphi_{\alpha}\colon\mathbb{Q}[x]\to\mathbb{C}, f(x)\mapsto f(\alpha)$. 将 $arphi_{\alpha}$ 的像集记为则 $\mathbb{Q}[\pi]$ 是 \mathbb{C} 的子环,但不是子域。(注: 圆周率 π 有如下事实: π 是一个超越数,即对于任意:理多项式 $f(x)$,都有 $f(\pi)\neq 0$.)	
2.4.	(5分)设 R为环 (不一定交换).则 R关于乘法有左消去律当且仅当它关于乘法有右消去律.	
2.5.	$(5 eta)$ 群 $\mathbb Q$ 仅有平凡自同构. 即, 若 $arphi$: $\mathbb Q o \mathbb Q$ 为群同构, 则 $arphi$ 为 $\mathbb Q$ 上恒等映射.	

三、解答及证明题:本题 4 小题,共 50 分。本题需给出详细步骤,按步骤给分。

3.1. (15分)利用课上中国剩余定理证明方法,求解同余方程组:

$$\begin{cases} 49x \equiv 42 \mod{77} \\ x \equiv 5 \mod{13} \\ x \equiv 8 \mod{19} \end{cases}$$

3.2. (a).(5 分) 证明对任意不全为零的整数 $m_1, m_2 \cdots, m_n$ 和整数 d,

$$d \mid \gcd(m_1, \cdots, m_n) \iff d \mid m_i \ (\forall i = 1, 2, \cdots, n).$$

(b).(5 分) 证明对任意全不为零的整数 $m_1, m_2 \cdots, m_n$ 和整数 m,

$$lcm(m_1, \dots, m_n) \mid m \iff m_i \mid m \ (\forall i = 1, 2, \dots, n).$$

(注: 此题不允许使用最大公因子和最小公倍数理想语言的解释, 也不允许使用关于 $\gcd(m_1, \dots, m_n)$ 的贝祖等式, 除非你给出相应结论的证明.)

3.3. (10 分) 设 G_0,G_1,G_2,\cdots 为一列群. 对于任意 $n\in\mathbb{N},\varphi_n\colon G_{n+1}\to G_n$ 为群同态. 考虑集合

$$\{(g_0,g_1,g_2,\cdots)\mid$$
对于任意 $n\in\mathbb{N},$ 均有 $g_n\in G_n, \varphi_n(g_{n+1})=g_n.\}$

将此集合记为 $\lim_{n \to \infty} G_n$. 证明:

(a).(6 分) 在 $\varprojlim_n^n G_n$ 上可定义如下二元运算:

$$(g_0, g_1, g_2, \cdots) \cdot (g'_0, g'_1, g'_2, \cdots) := (g_0 g'_0, g_1 g'_1, g_2 g'_2, \cdots).$$

并且 ($\underline{\lim} G_n$, ·) 构成群;

- (b) $(2 \, \hat{\gamma})$ 对于任意 $m \in \mathbb{N}$, 映射 ψ_m : $\varprojlim_n G_n \to G_m, (g_0, g_1, g_2, \cdots) \mapsto g_m$ 均为群同态;
- (c).(2 分) 若对任意 $n \in \mathbb{N}$, φ_n 均为满同态, 则对任意 $m \in \mathbb{N}$, ψ_m 也为满同态.

3.4. (15 分) 设 (M, +) 和 (N, +) 为交换群. 记 Hom(M, N) 为全体从 M 到 N 的群同态组成的集合. 即,

$$\operatorname{Hom}(M,N) := \{ \varphi \colon M \to N \mid \varphi \$$
 为群同态\}.

在 Hom(M,N) 上定义加法如下

$$(\varphi + \psi)(m) := \varphi(m) + \psi(m).$$

- (a) (6 分) 验证: (Hom(M, N), +) 构成交换群;
- (b) (6 分) 验证: $(\text{Hom}(M, M), +, \circ)$ 构成环; (注: 此处 \circ 为映射的合成.)
- (c) (3 分) 举例说明: 环 $(Hom(M, M), +, \circ)$ 不一定交换.