Lecture 1 Intro sigma algebra Tuesday, September 5, 2017 7:52 PM
Alex Tsodikov Sodicoff Silent
Silent
Foundations
lutro prob & stat 601/602
Real Analysis (almost all) Measure Theory (a few)
Measure Theory (a few)
Complex Analysis
History
Has did probability become mathematics?
Gambling Huygens 1657 " dice games"
Huygens 1657 dice games
Termat, Pascal, Bernoulli, Laplace, Gaus:
Laplace, Gouss.
De la favorable outcome?
Prob = frequency = # favorable outcomes total # of outcomes
limits of frequencies, infinite series of trials
von Mises
Von Misse, Borel, Bernstein, Kolmogorov,
1933 Kolmogorov "Foundations of Prob. Theory"
01.11 1. 10.00

Hilbert 1900 problems 6th Hilbert Problem Il a set elementary events (arbitrary) $\omega \in \Omega$ Events are subsets of & Algebra (Field, Ring) is a set of subsets of R such that (1) 92 € X (2) Closed over operations of U, n, that is: ABCA => ANB, AUBEA (3) closed over operation of complement 1 notation A = a Complement of A Note Because AnB = AUB Can read I in any direction e or -> and drop either ANB or AUB from (2) Ø = REA o-Algebra & Lef is similar to Algebra A except that (2) is replaced by closed with respect to Countable Us, Os This means (2) -> (2') Sequence of events {An};

	(2) -> (2) sequence of evocus ling.
	60 00
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
· ·	B/c of the relationship
	An = U An can only use one of
	DF Pair (S., F) is called measurable space * consists of subsets of SI
	Consists of subsets of SI