ARITHMETIC Chapter 17

2023

NÚMEROS RACIONALES I

MOTIVATING STRATEGY

Fragmento de la obra **"El Paraíso en la otra esquina"** del escritor peruano, Premio Nobel de Literatura, **Mario Vargas Llosa** (Editorial Alfaguara, 2003):

"Más grave que el número de oyentes era su composición social. Desde el proscenio, decorado con un jarroncito de flores y una pared llena de símbolos masónicos, mientras monsieur Lagrange la presentaba, Flora descubrió que tres cuartas partes de los asistentes eran patrones y sólo un tercio obreros"

Como se observa 3/4 de los asistentes eran patrones y 1/3 eran obreros, pero si sumamos ambas cantidades nos da 3/4 + 1/3 = 13/12, que es mayor que uno. Lo cual es imposible, puesto que la suma de las partes no puede ser mayor que el total, es decir, que 1.

El conjunto de números Racionales: Q

$$\mathbb{Q} = \left\{ \frac{a}{b} / a \in \mathbb{Z}; b \in \mathbb{Z} - \{0\} \right\}$$

$$\frac{3}{8}; \frac{12}{3}; \frac{-4}{5}; \frac{-15}{5}; \frac{4}{-3}; \frac{21}{7}$$

2

Números Fraccionarios:

$$\frac{3}{8}; \frac{-4}{5}; \frac{4}{-3}$$
Números
fraccionarios
$$\frac{12}{3}; \frac{-15}{5}; \frac{21}{7}$$
No son números
fraccionarios

3 Fracción:

Sea la fracción: $f = \frac{a}{b}$ Numerador Denominador

$$\triangleright \quad a \in \mathbb{Z}^+ \land b \in \mathbb{Z}^+$$

$$\rightarrow a \neq b$$

* Fracciones Equivalentes:

$$\frac{a}{b} = \frac{ak}{bk}, k \in \mathbb{Z}^+$$
, donde $a y b$ son PESI

Ejemplo: Halle las fracciones equivalentes a $\frac{2}{5}$

Resolution

$$f = \frac{2}{5} \rightarrow f_e = \frac{2 k}{5 k}$$
 $k \Rightarrow 1; 2; 3; 4; ...$

Entonces las fracciones equivalentes a $\frac{2}{5}$, serán :

$$\left\{ \frac{2}{5} ; \frac{4}{10} ; \frac{6}{15} ; \frac{8}{20} ; \dots \right\}$$

Clasificación

Por la comparación de su valor con respecto a la unidad

1. Propia

$$f = \frac{N}{D} < 1 \rightarrow N < D \implies f < 1$$

Ejemplo:
$$\frac{15}{25}$$
; $\frac{9}{13}$; $\frac{19}{30}$

2. Impropia

$$f = \frac{N}{D} > 1 \to N > D \implies f > 1$$

Ejemplo:
$$\frac{18}{12}$$
; $\frac{11}{3}$; $\frac{5}{2}$

Por su denominador

1. Decimal

$$f = \frac{a}{b} \to b = 10^{n} \quad \forall \ n \in \mathbb{Z}^+$$

Ejemplo:
$$\frac{7}{10^2}$$
; $\frac{23}{10}$; $\frac{45}{10^3}$

2. Ordinaria

$$f = \frac{a}{b} \to b \neq 10^{n} \quad \forall \ n \in \mathbb{Z}^+$$

Ejemplo:
$$\frac{5}{26}$$
; $\frac{12}{8}$; $\frac{15}{6}$

Por la cantidad de divisores comunes de sus términos:

NO se puede simplificar

Irreductible

Sus términos son números PESI.

$$\frac{a}{b} \rightarrow \stackrel{\triangleright}{b} a \text{ y } b \text{ son PESI.}$$
 $\stackrel{\triangleright}{b} \text{MCD}(a, b) = 1$

Ejemplos

$$\frac{3}{11}$$
; $\frac{13}{5}$; $\frac{32}{21}$

Reductible

Sus términos no son números PESI.

$$\frac{a}{b} \rightarrow \stackrel{\triangleright}{b} a \ y \ b \ \text{no son PESI.}$$

$$\stackrel{\triangleright}{b} \text{MCD}(a, b) \neq 1$$

Ejemplos

$$\frac{27}{72}$$
; $\frac{36}{40}$; $\frac{16}{24}$

Se puede simplificar

Por grupo de fracciones

Homogéneas

Todas las fracciones tienen el mismo denominador.

Ejemplos

$$\frac{83}{3}$$
; $\frac{8}{3}$; $\frac{14}{3}$; $\frac{17}{3}$

Heterogéneas

Al menos una de las fracciones tendrá un denominador diferente de las demás.

Ejemplos

$$\frac{3}{8}$$
; $\frac{17}{7}$; $\frac{18}{8}$; $\frac{13}{8}$

Si la fracción $\frac{a}{24}$ es propia e irreductible. Calcule la suma de todos los valores que puede tomar a.

Resolution:

> F. propia:
$$\frac{a}{24} < 1 \Rightarrow a < 24$$

F. irreductible: a y 24 son (PESI)

•
$$24 = 2^3 \times 3 \implies a \neq 2^{\circ} \wedge 3^{\circ}$$

> Suma:

$$1 + 5 + 7 + 11 + 13 + 17 + 19 + 23 = 96$$

RPTA: **96**

2

Si a los dos términos de una fracción irreductible,se le suma el triple del denominador y al resultado se le resta la fracción,resulta la misma fracción.¿Cuánto suman los términos de la fracción original?

Resolution:

> F. original =
$$\frac{a}{b}$$

Entonces:

$$\frac{a+3b}{b+3b} - \frac{a}{b} = \frac{a}{b}$$

$$\frac{a+3b}{4b} = \frac{2a}{b}$$

$$a + 3b = 8a$$

$$3b = 7a$$

$$a = 3$$

$$b = 7$$

Entonces:

$$a + b = 3 + 7$$

$$a + b = 10$$

RPTA: **10**

¿Cuántas fracciones de denominador 600 están comprendidas entre $\frac{3}{5}$ y $\frac{2}{3}$?

Resolution:

$$\frac{3}{5} \times 600 < \frac{N}{600} \times 600 < \frac{2}{3} \times 600$$

$$360 < N < 400$$

$$N = \{ 361; 362; 363; \dots; 399 \}$$

$$399 - 361 + 1 = 39$$

RPTA: 39 fracciones

Halle una fracción equivalente a $\frac{3}{8}$ sabiendo que el producto de sus términos es 216. Dé como respuesta la suma de cifras del denominador.

Resolution:

$$f = \frac{3}{8}$$

$$f_e = \frac{3k}{8k}$$

Dato: (3k)(8k) = 216

$$24k^2 = 216$$

$$k^2 = 9$$

$$k = 3$$

Entonces el denominador será:

$$8k = 8(3) = 24$$

> Suma de cifras :

$$2 + 4 = 6$$

5

Un granjero ha llevado a la ciudad cierta cantidad de gallinas. Vende primero 5 gallinas, al segundo cliente la mitad de las que le quedaba, al tercer cliente le vende los $\frac{3}{4}$ de las gallinas que restaban y al último cliente la tercera parte de las que aún había. ¿Cuántas gallinas llevó a la ciudad, si le quedaron 12 gallinas?.

Resolution: Sea "N", el número de gallinas:

VENDE	QUEDA
5	N - 5
$\frac{1}{2}(N-5)$	$\frac{1}{2} (N-5)$
$\frac{3}{4}\left(\frac{1}{2}\left(N-5\right)\right)$	$\frac{1}{4}\left(\frac{1}{2}\left(N-5\right)\right)$
$\boxed{\frac{1}{3} \left\{ \frac{1}{4} \left(\frac{1}{2} \left(N - 5 \right) \right) \right\}}$	$\frac{2}{3} \left\{ \frac{1}{4} \left(\frac{1}{2} \left(N - 5 \right) \right) \right\}$

Pero quedaron 12 gallinas, entonces:

$$\frac{2}{3}\left\{\frac{1}{4}\left[\frac{1}{2}(N-5)\right]\right\} = 12$$

$$\frac{N-5}{12} = 12 \longrightarrow N-5 = 144$$

N = 149 gallinas

Una pelota cae al suelo y en cada rebote se eleva los $\frac{2}{3}$ de la altura anterior. Si después del tercer rebote se elevó $32 \ cm$. Determine la altura inicial de donde cayó.

Resolution:

$$\frac{8}{27}h = \frac{4}{32}$$

$$h = 108$$

RPTA: 108 cm.

Jacinto experto comerciante, cierto día decide entrar al negocio de venta de manzanas para lo cual va al mercado mayorista y compra cierto número de manzanas, luego se dirige al mercado central y vende 5/8 de las manzanas que tiene luego vende 1/2 del resto y finalmente 3/4 del nuevo resto; si todavía le quedan 153 manzanas. ¿Cuántas manzanas compró Jacinto en el mercado mayorista?

Resolution:

Sea "N" el número de manzanas

VENDE	QUEDA
5 8	$\frac{3}{8}$ N
$\frac{1}{2}$	$\frac{1}{2}\left(\frac{3}{8}N\right)$
$\frac{3}{4}$	$\frac{1}{4} \left[\frac{1}{2} \left(\frac{3}{8} \mathrm{N} \right) \right]$

$$\frac{1}{4} \left[\frac{1}{2} \left(\frac{3}{8} N \right) \right] = 153$$

$$\frac{N}{64} = 51$$

RPTA: 3264