Topics of the week Compute with matrices:

- 1. explain the concept of a vector space;
- 2. give examples that are not \mathbb{R}^m ;
- 3. define and identify subspaces;
- 4. explain when vectors span a subspace / form a basis of it;
- 5. prove that every basis has the same number of vectors;
- 6. define the dimension of a vector space;
- 7. find a basis for a given vector space / subspace;

Real vector space is a set V with $+: V \times V \to V$ and $\cdot: \mathbb{R} \times V \to V$, such that

- 1. V is a commutative group over +;
- 2. Compatibility of scalar multiplication: $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$;
- 3. Scalar identity: $1\mathbf{x} = \mathbf{x}$;
- 4. Distributivities: $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$ and $(\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}$.

Examples: Polynomials, functions, matrices, linear recurrences, linear ODE solutions.

Hamel basis of a vector space is a maximal set of linearly independent vectors. **Equivalent definition**: $\mathbf{e}_1, \dots, \mathbf{e}_n$ s.t. any $\mathbf{v} \in V$ can be uniquely represented as

$$\mathbf{v} = v_1 \mathbf{e}_1 + \dots + v_n \mathbf{e}_n.$$

The numbers (v_1, \ldots, v_n) are called **coordinates** of **v** in $\mathbf{e}_1, \ldots, \mathbf{e}_n$.

Equivalent definition: A minimal $\mathbf{e}_1, \dots, \mathbf{e}_n$ s.t. any $\mathbf{v} \in V$ has unique coordinates. **Note**: In the case of infinite bases, only finite linear combinations are considered.

Dimension of a vector space is the size of its basis. All bases have the same size.

Subspace is a non-empty subset of V, closed under linear operations.

In-class exercises

- 1. Prove that $H = \{ \mathbf{v} \cdot \mathbf{d} = 0 : \mathbf{v} \in \mathbb{R}^m \}$ is a subspace of \mathbb{R}^m .
- 2. Prove that dimension of H is m-1.
- 3. Consider the vector space V of real-valued functions on [0,1]. Prove that $U = \{ f \in V : f(x) = f(1-x) \}$ is a subspace of V.