Corrigé TD1

Exercice 1 1) L'échantillon les 52 jours, la variable statistique : le nombre d'articles vendus par jour, variable quantitative discrète.

x_i	n_i	f_i	n_i^{cum}	f_i^{cum}	$n_i x_i$	$n_i x_i^2$	
5	3	3/52	3	3/52	15	75	
6	1	1/52	4	4/52	6	36	nombre de jours
7	2	2/52	6	6/52	14	98	dmon
8	4	4/52	10	10/52	32	256	
9	7	7/52	17	17/52	63	567	
10	5	5/52	22	22/52	50	500	
11	8	8/52	30	30/52	88	968	
12	8	8/52	38	38/52	96	1152	
13	3	3/52	41	41/52	39	507	
14	6	6/52	47	47/52	84	1176	
15	3	3/52	50	50/52	45	675	
16	2	2/52	52	52/52	32	512	

 $3)Mo = \{11, 12\}$, son interprétation; le nombre d'article vendus le plus souvent est 11 articles ou 12;

$$Me = 11,$$

4)
$$\bar{x} = 564/52 = 10.846$$
, $V(X) = (6522/52) - 10.846^2 = 7.787$, $\sigma = 2.791$.

Exercice 2 1) l'échantillon : 20 patients, V.S : taux de fer sérique, quantitative continue.

la série ordonnée; 78.5 83.0 98.0 100.1 102.0 113.8 119.6 128.5 129.3 131.6 136.2 139.2 147.3 155.7 157.3 157.4 162.6 162.8 172.1 183.3.

l'étendue de la série, e=183.3-78.5=104.8.

 $k: le \ nombre \ de \ classes; \ k = 2.5 * 20^{0.25} = 5.28, \ on \ prend \ k = 5.$

l la longeur de la classe; l > 104.8/5; l = 21

les classes seront alors, [87.5; 99.5], [99.5; 120.5], [120.5; 141.5], [141.5; 162.5], [162.5; 183.5].

Classe	c_i	n_i	f_i	n_i^{cum}	f_i^{cum}	$n_i c_i$	$n_i c_i^2$
[87.5;99.5[89	3	3/20	3	3/20	267	23763
[99.5;120.5[110	4	4/20	7	7/20	440	48400
[120.5;141.5[131	5	5/20	12	12/20	655	85805
[141.5; 162.5[152	4	4/20	16	16/20	608	92416
[162.5; 183.5]	173	4	4/20	20	20/20	692	119716

3)

4) la classes modale [120.5;141.5], $Mo = 120.5 + 21 * \frac{5-4}{(5-4)+(5-4)}$ La mediane $Me \in [120.5; 141.5]$ (Me est l'abcisse de 50% *20 = 10) alors on cherche dans le tableau $ncum \ge 10$, $Me = 120.5 + \frac{0.5 - 7/20}{(12/20) - (7/20)} = 121.5$. 5) $\bar{x} = \frac{2662}{20} = 133.1$, $V(X) = \frac{370100}{20} - 133.1^2 = 789.39$. $\sigma = 789.39^{0.5} = 28.096$

Exercice 3 1) Disposition ordonnée avec répétition de p=7 éléments parmi n=1

$$\tilde{A}_{26}^{7} = 26^{7}$$
;

2) Disposition ordonnée sans répétition de p = 7 éléments parmi n = 26; $A_{26}^{7} = \frac{26!}{(26-7)!} = 3315312000$

Exercice 4 Il s'agit de disposition non ordonnée et sans répétition.

1)
$$N = C_7^3 * C_6^2 = 35 * 15 = 525$$
.

2)
$$N1 = C_6^2 * C_6^2 = 2 * 15 = 30.$$

1)
$$N = C_7^3 * C_6^2 = 35 * 15 = 525$$
.
2) $N1 = C_6^2 * C_6^2 = 2 * 15 = 30$.
3) $N2 = N - C_6^2 * C_5^1 = 15 * 5 = 75$.

(on pense à l'évènement contraire.)

Exercice 5 Il s'agit de disposition non ordonnée avec répétition. 1) $\tilde{C}_2^{12} = \frac{13!}{12!} = 13$, il y a 13 votes possibles.

2) il y a 6 votes possible pour que A soit élu et 6 votes possibles pour que B soit élu.

3) il y a un vote possible pour qu'il y ait ballotage.

Exercice 6 1) $A \cup B$; 2) $A \cap B$.3) $(A - B) \cup (B - A)$. 4) $A \cup B \cup C$.

5) $(A \cup B) \cap \overline{C} \cup (B \cup C) \cap \overline{A} \cup (A \cup C) \cap \overline{B}$.

6) $\bar{A} \cap \bar{B} \cap \bar{C}$.

Exercice 7 les cas possibles sont $C_{21}^3 =$.

1)
$$p1 = \frac{C_7^1 * C_{14}^2 + C_7^2 * C_{14}^1 + C_7^3}{C_{22}^3}$$

1)
$$p1 = \frac{C_7^1 * C_{14}^2 + C_7^2 * C_{14}^1 + C_7^2}{C_{21}^3}$$

2) $p2 = \frac{C_3^1 * C_6^1 * C_{11}^1 + C_{20}^2}{C_{21}^3}$

3)
$$p3 = \frac{2*C_{19}^2}{C_{21}^3}$$

Exercice 8 1) $A = \{F2, F4, F6\}.$

$$B = \{F3, F5, P3, P5\}.$$

$$C = \{P1, P3, P5\} \ \mathbb{P}(A \cup B) = \frac{3}{12} + \frac{4}{12} = \frac{7}{12}.$$

$$\mathbb{P}(A \cap C) = 0.$$

$$\mathbb{P}(\bar{A} \cap \bar{C} \cap B) = \mathbb{P}\{F3, F5\} = \frac{2}{12}$$

```
Exercice 9 Soit les évènements C, B tels que;
```

 $C: infection \ par \ champignon, \ B: infection \ par \ bactérie.$ $1)\ a)\ \mathbb{P}(B\cap C) = \mathbb{P}(B)*\mathbb{P}(C)\ (l'indépendance)\ \mathbb{P}(B\cap C) = 0.08*0.15 = 0.012.$ $b)\ \mathbb{P}(\bar{B}|C) = 0.5;$ $\mathbb{P}(B\cap C) = \mathbb{P}(B|C)*\mathbb{P}(C) = (1-\mathbb{P}(\bar{B}|C))\mathbb{P}(C)$

$$\mathbb{P}(B \cap C) = \mathbb{P}(B|C) * \mathbb{P}(C) = (1 - \mathbb{P}(\bar{B}|C))\mathbb{P}(C)$$

= 0.5 * 0.15 = 0.075.

$$\begin{array}{l} \textbf{Exercice 10} \ \ 1) \ \mathbb{P}(A \cap B \cap C) = \mathbb{P}(A) * \mathbb{P}(B) * \mathbb{P}(C) \\ = 0.15 * 0.05 * 0.08 = 0.0006. \\ 2) \ Soit \ l'évènement \ F \ : \ "l'appareil fonctionne" \\ \mathbb{P}(F) = 1 - \mathbb{P}(A \cap B \cap C) = \mathbb{P}(\bar{A} \cup \bar{B} \cup \bar{C}) \\ = \mathbb{P}(\bar{A}) + \mathbb{P}(\bar{B}) + \mathbb{P}(\bar{C}) - \mathbb{P}(\bar{A} \cap \bar{B}) - \mathbb{P}(\bar{A} \cap \bar{C}) - \mathbb{P}(\bar{B} \cap \bar{C}) + \mathbb{P}(\bar{A} \cap \bar{B} \cap C) \\ = (1 - 0.15) + (1 - 0.05) + (1 - 0.08) - (1 - 0.15) * (1 - 0.05) - (1 - 0.05) * (1 - 0.08) \\ - (1 - 0.15) * (1 - 0.08) + (1 - 0.15) * (1 - 0.05) * (1 - 0.08) = 0.9994. \\ 3) \ \mathbb{P}(C|F) = \frac{\mathbb{P}(C|F)}{\mathbb{P}(F)} = \frac{\mathbb{P}(C \cap (\bar{A} \cup \bar{B} \cup \bar{C}))}{\mathbb{P}(F)} \\ = \frac{\mathbb{P}(C \cap \bar{A}) \cup (C \cap \bar{B})}{\mathbb{P}(F)} = \frac{\mathbb{P}(C \cap \bar{A}) + \mathbb{P}(C \cap \bar{B}) - \mathbb{P}(C \cap \bar{A} \cap \bar{B})}{\mathbb{P}(F)} \\ = \frac{\mathbb{P}(C)(\mathbb{P}(\bar{A}) + \mathbb{P}(\bar{B}) - \mathbb{P}(\bar{A}) * \mathbb{P}(\bar{B}))}{\mathbb{P}(F)} = \frac{0.08 * (0.15 + 0.05 - 0.15 * 0.05)}{0.9994} = 0.0154. \end{array}$$