

10/575446
IAP9 Rec'd PCT/PTO 12 APR 2006

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Hideki TAKAMATSU et al.

Attn: PCT Branch

Application No. New U.S. National Stage of PCT/JP2004/018225

Filed: April 12, 2006

Docket No.: 127709

For: POWER TRAIN CONTROL DEVICE IN VEHICLE INTEGRATED CONTROL SYSTEM

TRANMITTAL OF THE ANNEXES TO THE
INTERNATIONAL PRELIMINARY REPORT ON PATENTABILITY

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

Attached hereto are the annexes to the International Preliminary Report on Patentability (Form PCT/IPEA/409). The attached translated material replaces the claims in their entirety.

Respectfully submitted,

James A. Oliff
Registration No. 27,075

Jesse O. Collier
Registration No. 53,839

JAO:JOC/nxy

Date: April 12, 2006

OLIFF & BERRIDGE, PLC
P.O. Box 19928
Alexandria, Virginia 22320
Telephone: (703) 836-6400

DEPOSIT ACCOUNT USE
AUTHORIZATION
Please grant any extension
necessary for entry;
Charge any fee due to our
Deposit Account No. 15-0461

CLAIMS

1. (Amended) A driving system control device (2000) in a vehicle integrated control system (100) organized in a hierarchical configuration such that operation is performed in a direction from an upper control hierarchy including a request of a driver to a lower control hierarchy including an actuator, said actuator operating a driving source and a transmission mechanism of a vehicle,

5 said driving system control device (2000) comprising:

10 a requested output calculation unit (2010) calculating a requested output for

 said driving source;

15 a target gear ratio determination unit (2020) calculating a target gear ratio in
 said transmission mechanism;

 a transmission control unit (3100) controlling said transmission mechanism; and

 a generated torque calculation unit (2040) calculating driving torque generated

20 in said vehicle;

 said driving system control device (2000) outputting a signal to said upper
 control hierarchy and a signal to said lower control hierarchy.

25 2. The driving system control device according to claim 1, wherein said

driving system control device (2000) further comprises an availability calculation unit
calculating availability of torque generated in said driving source and outputting the
availability to the upper control hierarchy.

30 3. The driving system control device according to claim 1, wherein said

requested output calculation unit (2010) includes a transfer efficiency compensation unit
compensating transfer efficiency.

35 4. The driving system control device according to claim 1, wherein said

generated torque calculation unit (2040) includes a transfer efficiency compensation unit compensating transfer efficiency.

5 5. The driving system control device according to claim 1, wherein
said transmission mechanism includes a torque converter, and
said requested output calculation unit (2010) performs inverse operation of
torque to be generated in said driving source from the requested driving torque, using a
torque converter inverse model.

10 6. The driving system control device according to claim 5, wherein said
torque converter inverse model compensates response with respect to a motive power
transfer system that is represented by first-order lag and dead time.

15 7. The driving system control device according to claim 1, wherein
said transmission mechanism includes a torque converter, and
said requested output calculation unit (2010) uses a torque converter inverse
model to perform inverse operation of the number of rotations to be caused in said
driving source from a torque converter output rotation number that is calculated from a
vehicle speed or a driving system output rotation number.

20 8. The driving system control device according to claim 7, wherein said
torque converter inverse model compensates response with respect to a motive power
transfer system that is represented by first-order lag and dead time.

25 9. The driving system control device according to claim 1, wherein said
requested output calculation unit (2010) calculates the requested output taking account
of an influence of disturbance due to an auxiliary device of the vehicle that is a load of
said driving source.

10. The driving system control device according to claim 1, wherein said generated torque calculation unit (2040) calculates the generated torque taking account of an influence of disturbance due to an auxiliary device of the vehicle that is a load of
5 said driving source.

11. The driving system control device according to claim 1, wherein said requested output calculation unit (2010) calculates information for controlling at least two manipulation amounts, differing in response, to control said driving source.

10

12. The driving system control device according to any of claims 1-11, wherein said driving source is at least one of an engine and a driving motor.

15

13. (Amended) A driving system control device (2000) in a vehicle integrated control system (100) organized in a hierarchical configuration such that operation is performed in a direction from an upper control hierarchy including a request of a driver to a lower control hierarchy including an actuator, said actuator operating a driving source and a transmission mechanism of a vehicle,

20

said driving system control device (2000) comprising:

requested output calculation means (2010) for calculating a requested output for said driving source;

target gear ratio determination means (2020) for calculating a target gear ratio in said transmission mechanism;

25

transmission control means (3100) for controlling said transmission mechanism;

and

generated torque calculation means (2040) for calculating driving torque generated in said vehicle;

said driving system control device (2000) outputting a signal to said upper

control hierarchy and a signal to said lower control hierarchy.

14. The driving system control device according to claim 13, wherein said driving system control device (2000) further comprises availability calculation means for calculating availability of torque generated in said driving source and outputting the availability to the upper control hierarchy.

15. The driving system control device according to claim 13, wherein said requested output calculation means (2010) includes transfer efficiency compensation means for compensating transfer efficiency.

16. The driving system control device according to claim 13, wherein said generated torque calculation means (2040) includes transfer efficiency compensation means for compensating transfer efficiency.

17. The driving system control device according to claim 13, wherein said transmission mechanism includes a torque converter, and said requested output calculation means (2010) includes means for performing inverse operation of torque to be generated in said driving source from the requested driving torque using a torque converter inverse model.

18. The driving system control device according to claim 17, wherein said torque converter inverse model includes means for compensating response with respect to a motive power transfer system that is represented by first-order lag and dead time.

19. The driving system control device according to claim 13, wherein said transmission mechanism includes a torque converter, and said requested output calculation means (2010) includes means for performing

inverse operation of the number of rotations to be caused in said driving source from a torque converter output rotation number that is calculated from a vehicle speed or a driving system output rotation number, using a torque converter inverse model.

5 20. The driving system control device according to claim 19, wherein said torque converter inverse model includes means for compensating response with respect to a motive power transfer system that is represented by first-order lag and dead time.

10 21. The driving system control device according to claim 13, wherein said requested output calculation means (2010) includes means for calculating the requested output taking account of an influence of disturbance due to an auxiliary device of the vehicle that is a load of said driving source.

15 22. The driving system control device according to claim 13, wherein said generated torque calculation means (2040) includes means for calculating the generated torque taking account of an influence of disturbance due to an auxiliary device of the vehicle that is a load of said driving source.

20 23. The driving system control device according to claim 13, wherein said requested output calculation means (2010) includes means for calculating information for controlling at least two manipulation amounts, differing in response, to control said driving source.

25 24. The driving system control device according to any of claims 13-23, wherein said driving source is at least one of an engine and a driving motor.