RD Designs with Discrete Running Variables Northwestern Causal Inference Workshop

Gonzalo Vazquez-Bare

Department of Economics, UC Santa Barbara

August 1, 2024

Overview

- Discrete random variables take on a finite number of values
 - $lacksquare X \in \{x_0, x_1, \dots, x_K\} \text{ with } \mathbb{P}[X = x_k] > 0, \ \forall k$
 - $ightharpoonup x_k$ usually called mass points
- RD designs with discrete running variables:
 - Same value of the score shared by multiple units
 - ▶ Units may be seen exactly at the cutoff: $\mathbb{P}[X_i = c] > 0$
- Continuity-based methods may not be directly applicable
- But they can still be used in some cases

When can we expect mass points?

- Case 1: heaping
 - Continuous running variable but with mass points
 - Examples: test scores, birth weight
- Case 2: rounding
 - Underlying continuous variable that is discretized when measured
 - Examples: age in years, income categories
- Case 3: discrete running variable
 - ► Variable is inherently discrete (e.g. counts)
 - Examples: seats in state Senate, employees in a firm

Case 2: rounding

Case 3: discrete RV

- Continuity-based methods may provide a good approximation
 - Many observations close to the cutoff
- Presence of mass points can reduce the effective sample size
 - ► Local polynomial methods require variation in *X* to approximate regression functions
 - Adding more observations with the same value of X does not add "useful" variation
- So local polynomials behave as if the total sample size was the number of mass points

- In practice, we can collapse the data at the mass point level
 - Average all observations with the same value of X
 - Avoids this artificial "sample size inflation"
- Can be used as a preferred specification or a robustness check
- See Cattaneo, Idrobo and Titiunik (2024), Section 3

Case 2: rounding

- ullet Underlying latent (unobserved) continuous running variable X^*
- ullet We observe a discrete transformation $X=\phi(X^*)\in\mathcal{S}\subset\mathbb{Z}$
 - ► E.g. rounding to nearest integer, truncation
- \bullet RD effect $\mathbb{E}[Y(1)-Y(0)|X^*=c]$ unidentified (nonparametrically)
 - ► X* is unobserved
 - Cannot get arbitrarily close to c using X

Case 2: rounding

- Identification and estimation rely on parametric assumptions
- ullet Even knowing the true model, estimation based on X is inconsistent
 - ▶ An example of non-classical measurement error in the regressor
- \bullet Dong (2015): bias correction based on parametric assumptions on regression functions and distributional assumptions on X^{\ast}

Case 3: discrete RV

- RV (and hence regression functions) inherently discrete
- Continuity-based approach conceptually invalid
 - ▶ 3.1 Senate seats? 49.9 employees?
- Comparing units with X=c and X=c-1 can still be a reasonable idea (under further assumptions)
- Can be justified under a local randomization approach (Cattaneo, Frandsen and Titiunik, 2015; Cattaneo, Titiunik and Vazquez-Bare, 2017)

RD with a discrete running variable: summary

- With "many" mass points:
 - Continuity-based methods may provide a reasonable approximation
 - Effective sample size is the number of mass points
 - Consider collapsing the data at the mass point level
- With "few" mass points:
 - Continuity-based methods do not work
 - Local randomization approach may be more appropriate

Digression: RD with time series data

- A policy is introduced at time t=0
- We may want to think of this as an RD:
 - ▶ Running variable is time: $t = \dots, -2, -1, 0, 1, 2, \dots, T$
 - ▶ Treatment indicator $D_t = 1(t \ge 0)$
 - ightharpoonup Outcome of interest Y_t
- RD: compare outcomes just before and after policy introduction

Digression: RD with time series data

- This approach has many potential issues
- Running variable is discrete (typically measured in years, months...)
- But local randomization assumptions may be hard to justify
 - ► Time trends, cycles, seasonality
- All the problems of a before-after estimator
- Diff-in-diff methods may be more credible in this setting

Digression: RD with time series data

- Many issues remain even if t is measured continuously
- Identified effect is the instantaneous effect of the policy
 - Unclear policy relevance
- Asymptotics with $T \to \infty$ do not help
 - Information does not accumulate around the cutoff
 - Large-sample methods (inference, bw selection) not appropriate
- Data most likely not iid (non-stationarity, serial correlation)
- Not a very credible setting for an RD

RD with discrete running variable: empirical example

- Lindo, Sanders and Oreopoulos (2010)
 - Impact of academic probation on future performance in Canada
- Students placed on probation when GPA is below a threshold
 - $ightharpoonup X_i = \mathsf{GPA}$
 - $ightharpoonup D_i = 1$ if placed on academic probation
 - ▶ Slightly different cutoffs across campuses (1.5 and 1.6)
 - Authors normalize running variable in their original analysis