

Artificial Intelligence Assignment 4

Assignment due by: 23.11.2016, Discussion: 29.11.2016

Question 1 Recursive Best-First Search (RBFS) (6 points)

For this question please draw the trees for recursive best-first search. Please represent each node as a circle with its name inside, write the f_limit in a rectangle above the corresponding node, and express f(n) = g(n) + h(n) under each node. The solution path should be highlighted.

Table 1.					
n	h(n)	$\mid n \mid$	h(n)		
\overline{a}	10	$\mid f \mid$	3		
b	5	g	1		
c	5	$\mid \check{h}\mid$	1		
d	4	$\mid i \mid$	0		
e	5	j	1		

Iable 2.					
n	h(n)	$\mid n \mid$	h(n)		
\overline{a}	6	<i>f</i>	4		
b	5	g	3		
c	3	$\mid h \mid$	5		
d	0	i	4		
e	3	j	2		

Table 2

Table 3.						
n	h(n)	n	h(n)			
a	0	f	2			
b	3	g	7			
c	4	\check{h}	9			
d	6	i	12			
e	4	j	10			

- (a) Using the heuristic function shown in Table 1, find a path between the node a and the target i.
- (b) Using the heuristic function shown in Table 2, find a path between the node ${\bf b}$ and the target ${\bf d}$.
- (c) Using the heuristic function shown in Table 3, find a path between the node i and the target a.

Question 2 Pathfinding (6 points)

We assume each node of the graph above represents a city and we further assume cities can be reached using car, train and/or fast train as indicated on the graph. Using the following inter-city distances ab=bc=cd=ce=eg=fg=200 km, dg=300 km and af=1100 km and using the A* algorithm, please find and specify the fastest way to go from a to g. The mean of transportation from a to g should not change (i.e. either (i) the car from a to g or (ii) the train/fast train from a to g). Detail intermediate steps and indicate the f-values of the different nodes. For this question, you are required to use the heuristic h(n)=0.

Question 3 Programming in LISP (4+2+2=8 points)

When doing these exercises you are **not** allowed to use general looping constructs or built in functions that solve the exercise by themselves. You can use the specific (loop for x in list collect (expression with x)) construct, since this is basically just list comprehension.

Similar to last week, download the file graphsearch-rbfs.lisp, which contains a graph of German cities and the distances between them, as well as the coordinates of each city and some functions to access that information: (expand city) returns a list of all the cities connected to city, (get-distance city1 city2) returns the distance between two adjacent cities in km (or nil if they are not adjacent) and (get-coordinates city) returns the xy position (in km) of city relative to a flat coordinate system. The file also contains a function stub for the exercise. The answers to (b) and (c) can either be put into the lisp file (in comments) or with the answers for Q1 and Q2.

- (a) Implement RBFS in LISP, using the straight line heuristic.
- (b) Run the function to find paths for the following trips: Karlsruhe \rightarrow Aachen, Trier \rightarrow Dresden, Passau \rightarrow Wilhelmshaven. How many cities were visited and what paths were found? *Note:* RBFS can visit quite a large number of cities.
- (c) Compare the routes found and the number of cities visited by A* graph search and RBFS. Explain your observations.