année scolaire 2022-2023 Professeur : Zakaria Haouzan

Établissement : Lycée SKHOR qualifiant

Devoir Surveillé N°3 - S2 2ème année baccalauréat Sciences physiques Durée 2h00

Chimie 7pts - 45min _____

Partie 1: Hydrolyse d'un Ester(7pts)-45min

L'éthanoate de benzyle $CH_3 - CO_2 - CH_2 - C_6H_5$ est un ester très parfumé extrait du jasmin. On recueille un échantillon presque pur.

Données:

- formule semi-développée de l'alcool benzylique :
- masse molaire de l'éthanoate de benzyle : $150g.mol^{-1}$

L'échantillon précédent est introduit dans un ballon avec une quantité de matière égale d'eau et quelques gouttes d'acide sulfurique concentré. Ce ballon, équipé d'un chauffage à reflux, est placé au bain marie. La constante d'équilibre K de la réaction d'hydrolyse qui se produit est égale à 0,25.

- 1. Étude de la réaction d'hydrolyse.....
 - 1 | 1.1. Écrire, en utilisant les formules semi-développées, l'équation de la réaction. Nommer les produits formés.
 - 0,5 | **1.2.** Donner deux caractéristiques de cette réaction.
- 2. Étude du montage.....
 - 1 2.1. Schématiser le montage utilisé. Quel est l'intérêt de ce montage?
 - 0,5 **2.2.** Quel est le rôle de l'acide sulfurique ?
- 3.On note n_0 les quantités de matière initiales des réactifs et x_f l'avancement de la réaction dans l'état final.....
 - 1 | 3.1. Dresser le tableau d'avancement de la réaction.
 - $0.5 \mid 3.2$. Définir le taux d'avancement τ de la réaction.
 - 1 | 3.3. Donner l'expression de la constante d'équilibre K. Montrer que $K = \frac{\tau^2}{(1-\tau^2)}$
 - 0,5 | **3.4.** Vérifier que le rendement de la réaction est pratiquement égal à 33%.
 - $0.5 \mid 3.5$. Déterminer la masse del'ester extrait pour $n_0 = 0.1 mol$.
 - 0,5 | 4. Comment évolue le rendement de la réaction lorsqu'on extrait l'alcool du milieu réactionnel.

Physique 13pts - 75min ${ ext{-}}$

Les parties sont indépendantes

Partie 1 : Pendule de Torsion(6,00pts)

Un Pendule de torsion est constitué d'un fil d'acier de constante de torsion C et une barre homogène AB de Longueur L, suspendue à ce fil en son centre O (figure 1).

Son moment d'inertie par rapport à l'axe (Δ) confondu avec le fil est

 J_0 .

A la même distance x de l'axe, on fixe sur la tige deux masselottes (S_1) de masses $m_1=m_2=m=100g$.

- Le moment d'inertie du système ainsi constitué AB + $(S_1)(S_2)$. a pour expression $J_{\Delta} = J_0 + 2.m.x^2$.
- Figure 1
- On écarte la barre de sa position d'équilibre, dans le plan horizontal ,jusqu'à l'angle $\theta = \frac{\pi}{6} rad$ et on l'abandonne sans vitesse à une date $t_0 = 0s$

- On néglige les frottement et on prend $\pi^2 = 10$.
- 1. à l'aide d'une étude dynamique, établir que $\ddot{\theta} + \frac{C}{I_0} \cdot \theta$
- 2. Ecrire l'équation horaire du mouvement du pendule. 1
- 1,5 | 3. Montrer que : $T_0^2 = \frac{4 \cdot \pi^2 \cdot J_0}{C} + \frac{8 \cdot \pi^2 \cdot m}{C} \cdot x^2$ On fait varier la distance x et on mesure à l'aide d'un
- chronométre la période T_0 . Les résultats obtenus ont abouti à la courbe de la figure (2) En exploitant cette figure.
 - 1 **4.1** Déterminer la valeur de la constante de torsion C.
 - **4.2** Déterminer la valeur du moment d'inertie J_0 de la barre AB.

Partie 2 : Oscillateur mécanique simple. .. (4pts)

Le but de cette étude est de trouver la condition à satisfaire pour qu'un pendule simple puisse être considéré comme un oscillateur harmonique. Rappel : L'équation différentielle vérifiée par un oscillateur harmonique est de la forme : $\ddot{y} + \omega_0^2 \cdot y = 0$

Epp=0

Un pendule simple (P) est formé d'une petite boule, de masse m = 200g, suspendue à un fil de masse négligeable et de longueur l=1m. (P) est écarté d'un angle α_m par rapport à la position d'équilibre, est lâché sans vitesse initiale à la date $t_0 = 0$. À un

- instant t, (P) est repéré par l'angle α et se déplace à la vitesse V. On prend $g=10m/s^2$ et on néglige toutes les forces de frottement.
- 1. Etude théorique..... 1. La position la plus basse de la boule est prise comme niveau zéro de l'énergie potentielle de pesanteur. À la date t, établir l'expression suivante de l'énergie mécanique E_m du système 1,5 ((P), Terre): $E_m = \frac{1}{2} .m. l^2 .\dot{\alpha}^2 + mgl(1 - cos\alpha)$
 - **2.** En appliquant la conservation de Em, montrer que: $\dot{\alpha}^2 = \frac{2 \cdot g}{l} \cdot (\cos \alpha \cos \alpha_m)$ 1,75
 - 3. Déduire alors l'expression de la période propre T_0 de ce pendule harmonique et calculer sa valeur. 0,75 $(sin(\alpha) \approx \alpha)$

La figure ci-contre montre le diagramme énergétique de quelques niveaux d'énergie En d'un atome d'hydrogène.

Données: $c = 2,998.10^8 m/s$; $h = 6,626.10^{-34} J.s$; $1eV = 1,60.10^{-19} J$

- Dans quel état se trouve l'atome lorsque son énergie est null? 0,5
- 0,5Dans ce cas, l'électron de cet atome est-il lié ou libre?
- 3. Déterminer l'énergie d'ionisation de l'atome d'hydrogène pris 0,75 dans l'état fondamental.
 - 4. Montrer que l'absorption d'une radiation de longueur d'onde
- 0,75 $\lambda = 91,20nm$ fait passer l'atome du niveau fondamental à l'état ionisé.

