Вопрос 56. Непрерывность и точки разрыва функции

Пусть f(x) определена в некоторой окрестности точки x_0

<u>Определение 1:</u> функция называется непрерывной в точке, если:

- 1) Функция определена в самой точке x_0 и в некоторой окрестности этой точки;
- 2) Существует предел $\lim_{x\to x_0} f(x)$;
- 3) Указанный предел равен значению функции в точке x_0 :

$$\lim_{x \to x_0} f(x) = f(x) \tag{1}$$

Замечания:

1) В силу теоремы о существовании предела, равенство (1) можно записать в виде:

$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x) = f(x_0)$$
 (2)

Условие (2) - определение непрерывности функции в точке на языке односторонних пределов

2) Равенство (1) можно записать в виде:

$$\lim_{x \to x_0} f(x) = f(\lim_{x \to x_0} x)$$

 $\underline{\mathit{Говоряm}}$: если функция непрерывно в точке x_0 , то знак предела и функцию можно поменять местами

Определение 2 (на языке $\varepsilon - \delta$):

Функция называется непрерывный в точке x_0 если $\forall \varepsilon>0 \;\; \exists \delta>0 \;\;$ такое, что если $|x-x_0|<\delta$, то $|f(x)-f(x_0)|<\varepsilon$

Пусть $x, x_0 \in D(f)$ (x_0 – фиксированная, x – произвольная)

Обозначим: $\Delta x = x - x_0$ приращение аргумента;

$$\Delta f(x_0) = f(x) - f(x_0)$$
 - приращение функции в точке x_0 .

Определение 3 (геометрическое (на языке приращений))

Функция f(x) называется непрерывный в точке x_0 , если в этой точке бесконечно малому приращению аргумента соответствуют бесконечно малое приращение функции.

$$\lim_{x \to 0} \Delta f(x_0) = 0;$$

Пусть функция f(x) определена на промежутке $[x_0; x_0 + \delta)$ (на промежутке $(x_0 - \delta; x_0]$) <u>Определение</u>: функция называется непрерывной в точке x_0 справа (слева), если справедливо равенство:

$$\lim_{x \to x_0 + 0} f(x) = f(x_0), (\lim_{x \to x_0 - 0} f(x) = f(x_0))$$

Очевидно что f(x) непрерывна в точке $x_0 \Leftrightarrow f(x)$ непрерывна в точке x_0 справа и слева.

Свойства непрерывных функций

Пусть $X = \{x_0\}$ или X = (a;b) или X = [a;b]

- 1) Сумма, разность и произведение конечного числа непрерывных на множестве X функций является функцией непрерывной на X.
- 2) Если функции f(x) и g(x) непрерывны на X и $g(x) \neq 0$, $\forall x \in X$, то частное непрерывная на множестве X функция
- 3) Пусть f: X \to Y, φ : Y \to Z. Если f(x) непрерывна на X, φ (x) непрерывна на Y, то сложная функция непрерывна на φ (f(x))

Свойства 1, 2, 3 следуют из свойств пределов функций

4) Основные элементарные функции непрерывны всюду в своей области определения Если функция непрерывна всюду в области определения, то её называют *непрерывной* 5) Элементарные функции непрерывны (следствие свойств 1-4)

Точки разрыва и их классификация

<u>Определение</u>: если функция определена в некоторой окрестности точки x_0 , но не является непрерывный в этой точке, то f(x) называется разрывной в точке x_0 , а саму точку x_0 называют точкой разрыва функции.

Пусть x_0 точка разрыва функции f(x)

<u>Определение:</u> точка x_0 называется точкой разрыва І рода, если f(x) имеет в этой точке конечные пределы слева и справа.

Если при этом пределы равны, то точка x_0 — точка устранимого разрыва, в противном случае - точка скачка.

<u>Определение</u>: точка x_0 называется точкой разрыва II рода, если хотя бы один из односторонних пределов функции f(x) в этой точке равен ∞ или не существует.

Свойства функций, непрерывных на отрезке

Теорема 1 (Вейерштрасса)

Пусть функция f(x) непрерывна на отрезке [a;b] Тогда

- 1) f(x) ограничена на [a;b]
- 2) f(x) принимает на [a;b] свое наибольшее и наименьшее значения

значение функции m= $f(x_1)$ называется наименьшим, если

 $m \le f(x), \forall x \in D(f)$

значение функции M= $f(x_2)$ называется наибольшим, если

 $M \le f(x), \forall x \in D(f)$

<u>Замечание.</u> Наименьшее (наибольшее) значение функция может принимать в нескольких точках отрезка.

Теорема2 (Больцано-Коши)

Если функция f(x) непрерывна на отрезке [a;b] и на его концах принимает значения разных знаков то на (a;b) существует хотя бы одна точка, в которой функция обращается в 0

Теорема 3 (О промежуточных значениях)

Пусть функция f(x) непрерывна на отрезке [a;b] и γ — число, заключённое между f(a) и f(b). Тогда существует хотя бы одна точка $x_0 \in [a;b]$ такая, что $f(x_0) = \gamma$.