

인터넷과 정보사회

데이터(Data)

- ■현실 세계에서 관찰이나 조사를 통해 수집, 생산되는 사실이나 측정값
- •어떤 현상이나 사실에 대한 설명 또는 설명의 집합

5

데이터의 정의

데이터 (data)

명사

- ① 이론을 세우는데 기초가 되는 사실. 또는 바탕이 되는 자료
- ② 관찰이나 실험, 조사로 얻은 사실이나 정보

국립국어원 표준국어 대사전 참조

● 관찰이나 측정의 통해 얻은 수치, 문자와 같은 변할 수 있는 질적 또는 양적 값

6

데이터의 종류

- ■전통적으로 데이터 표현에 문자, 숫자 등 사용
- ■최근 새로운 유형의 데이터가 보편화

음성

동영상

■3차원 동영상, 향기 등의 데이터를 표현하기 위한 많은 연구가 진행

정보(Information)

- ■문제 또는 질문을 해결하기 위한 이용되는 데이터와 데이터의 집합
- ■현실 세계에서 발생한 여러 데이터를 가공・처리하여 만든 것으로, 약속이나 관습에 따라 의미를 부여한 것

정보의 정의

정보 (information)

명사

- ① 관찰이나 측정을 통하여 수집한 자료를 실제 문제에 도움이 될 수 있도록 정리한 지식. 또 는 그 자료
- ② 어떤 데이터나 소식을 통하여 얻은 지식이나 상태의 총량

국립국어원 표준국어 대사전 참조

관찰이나 측정을 통하여 얻은 데이터를 처리 (정렬, 합산, 군집화 등)하여 실제 문제 해결에 도움이 되는 결과물

10

관찰과 측정

데이터의 가공

- ■데이터는 기록할 만한 대상이나 직접적으로 문제를 해결하는데 도움을 주지는 않음
- •데이터로부터 처리와 가공을 통해 정보로 변환이 가능

관찰과 측정

■절대적인 기준에 맞춰 현상(사실)을 수치로 나타내는 과정

관찰과 측정

■절대적인 기준에 맞춰 현상(사실)을 수치로 나타내는 과정

14

관찰과 측정

학업 성취도 파악

처리와 가공

15

처리와 가공

●수집된 데이터의 집합을 정렬, 군집화, 계산 또는표현방법 변경 등의 데이터에 변환을 하는 과정

종이 또는 목재

기름 또는 가스

19

지혜 (Wisdom) 지식 (Knowledge) 정보 (Information) 데이터 (Data)

컴퓨터

•사전에 정의된 방법에 따라 입력된 데이터를 자동으로 처리하여 정보를 생산하는 기계

컴퓨터의 발전

진공관

- 1세대 컴퓨터
 - 수백~수천개 단위의 진공 관으로 2진 연산높은 발열, 잦은 고장으로 인한 진공관 교체로 불편

ABC

컴퓨터의 발전

진공관

트랜지스터

• 2세대 컴퓨터

- 트랜지스터가 진공관을 대 체하여 컴퓨터의 소형화가 가능
- TR을 이용한 연산소자로 컴퓨터의 신뢰도와 성능이 비약적으로 향상

TRADIC

컴퓨터의 발전

진공관

트랜지스터

집적회로(IC)

• 3세대 컴퓨터

- 수백개의 트랜지스터를 하나의 칩으로 집적하여 소형화, PC의 등장
- 운영체제(OS)의 개념이 도 입

애플 매킨토시

26

컴퓨터의 발전

트랜지스터

집적회로(IC)

고밀도 IC

• 4세대 컴퓨터

- 하나의 실리콘 조각에 수 만개의 회로를 집적
- 집적 기술의 향상으로 마이크로프로세서 개념이 도입

PC

컴퓨터의 종류

■개인용 컴퓨터

- 기업이나 가정에서 개인이 사용하는 컴퓨터
- 여러 종류의 디지털 정보의 저장, 관리, 통신 작업을 수행

27

컴퓨터의 종류

•메인프레임 컴퓨터

- 통계나 금융관련 전산업무와 같은 복잡한 작업을 요구하는 분야에 사용
- 출력기능만 존재하는 터미널을 사용하여 다수의 사용자에 게 서비스를 제공하는 형태로 사용

컴퓨터의 종류

•슈퍼컴퓨터

- 특정 사용자나 기업에서 복잡한 연산을 처리하는데 사용
- 날씨 예보나 물리학 시뮬레이션과 같은 대용량 계산이 필 요한 분야에 사용
- 주로 페타 플롭스(1초에 3경 3,860조)의 연산을 수행

텐허 2 (중국)

2

디지털과 아날로그

■현재 우리가 사용하고 있는 대다수의 컴퓨터는 디지털 (digital) 방식으로 구동되는 디지털 컴퓨터

컴퓨터와 디지털데이터

디지털과 아날로그

- •아날로그(analog)
 - 현상 또는 사물에 대한 데이터를 있는 그대로 표현 또는 전달하는 방식
 - 사물이나 개념을 연속적인 물리량 값으로 표현
 - 질적 데이터 또는 양적 데이터로 표현
- ■디지털(digital)
 - 현상 또는 사물에 대한 데이터를 특정 기준에 의거하여 단순화하여 표현
 - 사물이나 개념을 이산적인 값으로 표현
 - 양적 데이터로 표현

35

컴퓨터와 2진법

•대다수의 컴퓨터는 2진법을 사용하여 디지털화된 데이터를 저장 및 처리

2진법을 이용한 데이터 표현

• 숫자

- 10진법과 2진법을 상호 변환
- 음수의 경우 1의 보수, 2의 보수 등을 사용

2진법을 이용한 데이터 표현

■ 문자

- 문자를 2진법의 특정 숫자로 암호화
- 사전에 약속한 인코딩 체계(encoding system)를 사용
- ASCII. 유니코드 등

2진법을 이용한 데이터 표현

■ASCII 코드표

2진법	십진법	문자	2진법	십진법	문자	2진법	십진법	문자
010 0000	32	SP	100 0000	64	@	110 0000	96	,
010 0001	33	!	100 0001	65	А	110 0001	97	а
010 0010	34	٠.	100 0001	66	В	110 0010	98	b
010 0011	35	#	100 0011	67	С	110 0011	99	С
010 0100	36	\$	100 0100	68	D	110 0100	100	d
010 0101	37	%	100 0101	69	E	110 0101	101	е
010 0110	38	&	100 0110	70	F	110 0110	102	f
010 0111	39	'	100 0111	71	G	110 0111	103	g
010 1000	40	(100 1000	72	Н	110 1000	104	h
010 1001	41)	100 1001	73	I	110 1001	105	i
010 1010	42	*	100 1010	74	J	110 1010	106	j
010 1011	43	+	100 1011	75	K	110 1011	107	k

37

- ① 홍수피해가 예상되는 지역의 주민은 라디오나 TV, 인터넷을 통해 기상변화를 알아 둡시다.
- ② 홍수 우려 때 피난 가능한 장소와 길을 사전에 숙지합시다.
- ③ 갑작스러운 홍수가 발생하였으면 높은 곳으로 빨리 대피합시다.
- ④ 비탈면이나 산사태가 일어날 수 있는 지역에 가까이 가지 맙 시다.
- ⑤ 바위나 자갈 등이 흘러내리기 쉬운 비탈면 지역의 도로 통행을 삼가고, 만약 도로를 지날 때 주위를 잘 살핀 후 이동합시다.
- ⑥ 홍수 예상 시 전기차단기를 내리고 가스 밸브를 잠급시다.

소방방재청 홍수 예·경보 대응 매뉴얼

프로그램의 개념

- ■컴퓨터는 어떠한 데이터 처리를 위한 처리 방법과 과정을 자의적으로 결정하는 것이 불가능
- •사전에 정의된 프로그램을 사용하여 데이터 처리
- 프로그램이란 컴퓨터가 어떠한 작업을 자동으로 처리할 수 있도록 처리 방법 및 순서를 컴퓨터 언어 형태로 기술해 놓은 것
- 개별적인 유사한 문제를 추상화시킨 알고리즘(algorithm)을 구현

알고리즘

- ■문제를 풀기 위한 단계별 절차를 수학적으로 기술한 것
- ■주어진 명령어를 처리하는 컴퓨터에게 문제를 해결하는 정형화된 절차를 설명

41

프로그래밍 언어

■프로그램을 작성하고 정상적으로 실행하기 위하여, 프로 그램이 실제 실행되는 컴퓨터와 이러한 프로그램을 작성 하는 프로그래머와의 의사소통 도구

42

프로그래밍 언어의 종류

- ■1세대 언어
- 기계어
- 0과 1만으로 이루어져 기계가 곧바로 해석 가능

프로그래밍 언어의 종류

- ■2세대 언어
- 어셈블리어
- 간단한 몇몇 명령어만 영단어로 대체
- 기계어 보다 향상된 가독성

프로그래밍 언어의 종류

■3세대 언어

- C, C++, Java 등의 언어
- 자연어와 유사한 문법을 갖는 순차형 언어 및 객체지향형 언어
- 범용적인 환경에서 실행 가능

45

프로그래밍 언어의 종류

■4세대 언어

- Visual Basic 등의 언어, SQL 등의 비절차적 언어
- 자동화 기능이 포함되어 마우스 등 간단한 장치를 사용하여 대화 형식으로 프로그래밍이 가능

46

프로그램의 실행

■진화된 세대의 언어로 작성된 소스 코드는 기계어 밖에 인식할 수 없는 컴퓨터에 의해 실행될 수 없음

프로그램의 실행

■컴파일러 또는 인터프리터를 사용

제3강 컴퓨터의 구성 ^{출석수업 : 은 인 기}

하드웨어

- •컴퓨터를 구성하고 있는 물리적 부품
- ■소프트웨어와 달리 물리적으로 존재

하드웨어의 종류

■컴퓨터의 하드웨어는 역할에 따라 입력장치, 연산장치, 제어장치, 기억장치, 출력장치로 구분됨

입력장치

- ■컴퓨터로 문자나 숫자 등을 전달할 때 필요한 장치
- ■컴퓨터가 처리할 수 있도록 2진 데이터 형태로 변환

■종류 키보드, 마우스, 마이크, 스캐너 등

56

키보드

- ■문자나 숫자를 입력할 때 사용되는 대표적 입력장치
- ■이동 환경에서도 컴퓨터를 사용하기 위해 휴대성을 향상 시킨 특수한 키보드가 출시 Air Keyboard

Mechanical Keyboard

57

마우스

- ■그래픽 인터페이스를 위해 사용되기 시작한 입력장치
- ■모니터 상의 커서를 이동시키며, 다양한 버튼 조작 가능

볼 마우스

58

에어(air) 마우스

- ■그래픽 인터페이스를 위해 사용되기 시작한 입력장치
- ■모니터 상의 커서를 이동시키며, 다양한 버튼 조작 가능

에어 마우스

닌텐도 Wii

스캐너와 터치스크린

- •스캐너: 문서나 그림 등의 아날로그 데이터를 디지털화
- ■터치스크린: 사용자가 만진 위치를 찾아내는 모니터로, 입력/출력 기능을 모두 탑재한 하드웨어

터치스크린

동작인식

- •인간과 컴퓨터의 상호작용을 위한 차세대 인터페이스
- ■컴퓨터가 사용자의 신체 움직임을 인지

Myo

Leap Motion

Fin

61

출력장치

- •처리 결과를 인간이 해석 가능한 형태로 출력하는 장치
- ■문자, 숫자, 도형, 음성, 영상 등의 형태로 출력

■종류 모니터, 프린터, 스피커 등

모니터와 프린터

•처리 결과를 화면 또는 종이에 가시화해주는 출력장치

출력장치

■문자, 이미지 등을 출력

레이저 프린터

3D 프린터

- •2차원(종이) 출력 방식이 아닌 3차원 물체를 출력
- ■3D 프린터의 종류

절삭형 : 하나의 큰 덩어리를 조각하듯 깎는 방식

적층형 : 원자재를 한 층씩 쌓아 올리는 방식

적층형

절삭형

65

스피커

- ■공기를 진동시켜 전기 신호를 소리로 바꾸는 장치
- ■자석과 인접한 코일의 왕복운동으로 진동판을 진동시키고, 이 진동판이 공기를 밀고 당김으로써 소리를 출력

스피커의 내부구조

66

HUD(Head Up Display)

■사용자의 시야에서 벗어나지 않는 범위에서 정보를 제공 해주는 시스템

MODE CAL SETTINGS
전투기 HUD

자동차 HUD

초지향성 스피커

■특정 방향으로만 소리를 전달 할 수 있는 스피커

HMD(Head Mounted Display)

●안경 또는 헬맷과 같은 장치를 머리에 착용하여 사용자의 눈 앞에 정보를 제공하는 시스템

최초의 HMD

HMD(Head Mounted Display)

●안경 또는 헬맷과 같은 장치를 머리에 착용하여 사용자의 눈 앞에 정보를 제공하는 시스템

70

69

Smart Lens 71

기억장치

- •기억을 담당하는 하드웨어
- •역할에 따라 주기억장치와 보조기억장치로 구분됨

	주기억장치	보조기억장치	
접근속도	빠름	느림	
제조단가	높음	낮음	
기억용량	작음	큼	
전원을 차단할 시	ROM: 기억내용 보존	기억내용 보존	
	RAM: 모든 내용 초기화	기탁대용 모존	

74

주기억장치

- •데이터와 프로그램 및 처리 결과를 기억하는 장치
- ■특징: 빠른 접근속도, 높은 제조단가, 작은 기억용량

출처: AMIGA.

출처: 삼성.

- •ROM: 읽기만 가능하며, 전원차단 시도 기억내용 보존
- ■RAM: 읽기/쓰기가 모두 가능하며, 전원차단 시 초기화됨

보조기억장치의 출현 배경

- ■RAM의 단점: 용량이 작고, 전원차단 시 초기화됨
- ■ROM의 단점: 용량이 작고, 쓰기작업 불가

데이터나 프로그램의 영구적 저장이 어려움

보조기억장치

- •데이터를 읽어 들이거나, 영구적으로 저장하는 역할
- •큰 용량, 읽기/쓰기 가능, 전원차단 시 내용보존

플로피디스크

하드디스크

■종류: 플로피디스크, 하드디스크, CD-ROM 등

SSD (Solid State Drive)

- ■메모리 반도체를 이용하는 보조기억장치
- ■빠른 속도, 외부 충격에 강함, 적은 전력소모가 강점
- ■최근 하드디스크를 대체할 기억장치로 각광

78

77

제4강

컴퓨터의 동작

출석수업 : 은 인 기

강의내용

- 1 소프트웨어란
- 2 운영체제의 역할과 기능
- 3 운영체제의 종류와 특징

소프트웨어

- ■컴퓨터에 포함된 다양한 장치들이 서로 유기적으로 연관하여 동작시켜 특정 작업을 해결하는 프로그램
- •시스템 소프트웨어와 응용 소프트웨어
- 용도와 목적에 따라 구분

82

시스템 소프트웨어

- ●응용 소프트웨어를 실행하기 위한 환경을 제공하고 하드웨어를 제어 · 관리할 수 있도록 설계된 소프트웨어
- •하드웨어 장치를 목적에 맞게 사용할 수 있도록 운영
- •시스템 소프트웨어의 종류
- 운영체제
- 컴파일러
- 유틸리티 프로그램

운영체제(Operating System)

- ■사용자가 컴퓨터를 효율적으로 운영·관리·사용할 수 있도록 하드웨어를 제어하는 소프트웨어
- ■컴퓨터의 하드웨어와 소프트웨어를 효율적으로 운영관리
- ■컴퓨터와 사용자 사이에서 중계하는 역할을 수행
- ■대표적인 운영체제
- 윈도우(Windows)
- 유닉스(Unix)
- 리눅스(Linux)
- 맥 OS(Mac OS)

컴파일러(Compiler)

- ■프로그래밍 언어로 작성된 프로그램을 컴퓨터가 실행할 수 있는 기계어 코드로 변환하는 프로그램
- ■원시 프로그램 전체를 기계어 명령으로 구성된 목적 프로그램으로 번역

Visual C++

85

유틸리티(Utility)

- ■프로그램을 작성하거나 컴퓨터를 운영하는데 도움이 될 수 있도록 제공되는 프로그램
- ●운영체제에서 제공되는 것 외에 추가적인 기능을 제공 하여 사용자가 컴퓨터를 효율적으로 관리하게 사용할 수 있도록 지원해 주는 프로그램
- •유틸리티 프로그램
- 디스크 조각모음, 화면 보호기, 압축 프로그램, 백신 프로그램, 디버거, 텍스트 에디터, 백업 도구 등

86

응용 소프트웨어

- ■컴퓨터 사용자들이 특정 분야의 응용을 목적으로 사용할 수 있도록 개발된 프로그램
- 응용 프로그램
- 문서작성
- 수치계산
- 이미지 제작
- 게임

호≣

운영체제의 역할

■자원의 효율적 운영 및 관리

운영체제의 성능

- ■운영체제의 목적
- 응용 소프트웨어가 효과적으로 작동할 수 있는 환경을 조성

구분	내용				
처리능력 향상	단위시간 내에 처리할 수 있는 작업량 향상				
응답시간 단축	사용자가 처리를 요구한 시점부터 결과를 얻을 때 까지 소요되는 시간을 단축				
사용 가능도 향상	원하는 시간 내에 시스템을 얼마나 빨리 사용할 수 있는지 그 정도				
신뢰도 향상	컴퓨터 시스템이 주어진 환경하에서 원하는 기능을 얼마나 정확하게 수행하는가의 척도				

운영체제의 기능

- ■컴퓨터의 자원을 효율적으로 관리하고 프로그램에 자원 을 할당
- ■컴퓨터 시스템의 기능을 사용할 수 있도록 지원
- 사용자 인터페이스
- 프로세스 관리
- 네트워크 관리
- 기억장치 관리
- 입출력장치 관리

91

사용자 인터페이스

- ■사용자 인터페이스는 컴퓨터와 사람을 연결해주는 매개체
- ■사용자와 컴퓨터가 상호작용하는 방법을 의미
- CLI(Command Line Interface)
- 텍스트와 터미널을 통해 사용자와 컴퓨터가 상호작용하는 방식
- 사용자가 컴퓨터에 명령을 전달하기 위해 키보드 등을 통해 문자열 형태의 명령어를 입력하며, 출력 또한 문자열 형태로 표시
- GUI(Graphical User Interface)
- 모니터 화면 안에 그림, 도형, 물체, 색상과 같은 그래픽적인 요소들을 통해 명령어를 실행하는 방식

93

프로세스 관리

- ■프로세스는 실행되고 있는 상태의 프로그램
- •여러 프로그램 실행이 요청되면 한정된 자원(기억장치 등)을 효과적으로 사용하도록 조율

94

네트워크 관리

- ■컴퓨터는 네트워크를 통해 상호 데이터 교환
- ■통신 프로그램(소프트웨어) 제공 및 통신장치(하드웨어) 과리

기억장치 관리

- ■보조기억장치(하드디스크)에 저장된 컴퓨터의 프로그램은 실행되기 위해서 주기억장치(메인메모리)에 적재
- ■보조기억장치의 크기가 주기억장치보다 매우 크기 때문 에 주기억장치의 관리가 요구

입출력장치 관리

■입력장치를 통해 사용자로부터 입력받고 출력장치를 사용하여 처리 결과(데이터)를 출력

운영체제의 종류

- •사용자들의 작업 목적에 따라 여러 형태의 운영체제
- 데스크탑 또는 서버 환경
 DOS, OS2, 윈도우, Mac OS,
 유닉스 계열, 리눅스 계열, 크롬 OS
- 모바일 환경 윈도우 모바일, iOS, 안드로이드, 심비안, 블랙베리, 타이젠, 우분투 터치 등

DOS(Disk Operating System)

- ■디스크에서 구동되는 시스템(MS-DOS, DR-DOS, PC-DOS)
- ■단일 사용자 단일 태스크의 운영체제
- ■텍스트 기반의 사용자 환경: CLI

```
Noting plane in drive C is MS-DOS 6_0 plane Serial Number is 446B-2781 plane Serial Number is 446B
```

OS/2

- ■마이크로소프트사와 IBM이 초기에 제작
- ■단일 사용자 멀티 태스크의 운영체제
- •사용자 인터페이스 방식: GUI

OS/2 화면

101

103

윈도우

- ■MS사의 그래픽 사용자 인터페이스 운영체제
- ■단일 사용자 멀티 태스크의 운영체제

Windows 3.0

Windows 95

102

윈도우

- •MS사의 그래픽 사용자 인터페이스 운영체제
- ■단일 사용자 멀티 태스크의 운영체제

Windows 98

웹 서핑, DVD 디스크 및 USB 장치 읽기

Windows XP

시작 메뉴, 작업 표시줄 및 제어판 탐색 2014년 4월 8일 서비스 종료

윈도우

- •MS사의 그래픽 사용자 인터페이스 운영체제
- ■단일 사용자 멀티 태스크의 운영체제

Windows 7

무선 인터넷 연결기능 강화

Windows 8

윈도우즈 10

- ■윈도우 운영체제 제품간 연동이 용이
- 스마트폰, 엑스박스, 태블릿, PC
- •창 모드로 애플리케이션 실행
- ■멀티데스크탑 기능, 컨티넘(contium) 기능

Windows 10

105

유닉스(UNIX)

- ■1969년 AT&T의 벨 연구소에서 개발
- •다수 사용자 다중 작업

솔라리스(Solaris)

106

리눅스(Linux)

- •1991년 핀란드 헬싱키대학의 리누스 토발즈가 개발
- ■배포판: 데비안, 레드햇, 우분투, 페도라, 센트 OS 등

센트 OS

맥 OS(Mac os)

- ■1997년 애플이 매킨토시용으로 개발한 GUI 운영체제
- ■1984년 매킨토시(맥 OS가 탑재된 컴퓨터 시스템)
- GUI 방식을 최초로 도입한 개인용

맥 OS

모바일 운영체제

- •휴대폰, 스마트폰과 같은 모바일 기기에 설치되는 OS
- 무선 인터넷 사용과 사용자가 쉽게 입력할 수 있는 인터페이스에 적합하도록 설계
- 윈도우 모바일, iOS, 안드로이드, 심비안, 블랙베리, 타이젠 등

안드로이드

109

구글 크롬 OS

- •웹 브라우저인 구글 크롬을 활용한 오픈소스 OS
- ■리눅스를 기반으로 한 후, 디스플레이 서버를 올리고 그 위에 구글 크롬을 실행하는 구조

구글 크롬 OS

110

Thank You !