GR5260 Programming for Quantitative & Computational Finance

Instructor: Ka Yi Ng April 28, 2023

Neural networks

- Estimate the input-output mapping $f: \mathbb{R}^n \to \mathbb{R}^k$ using a parametrized function $\hat{f}: \mathbb{R}^n \to \mathbb{R}^k$ of the following form:
- $\hat{f} = f_D \circ f_{D-1} \circ \cdots \circ f_2 \circ f_1$ where $f_1: \mathbb{R}^n \to \mathbb{R}^{n_1}$, $f_2: \mathbb{R}^{n_1} \to \mathbb{R}^{n_2}$, ..., $f_{D-1}: \mathbb{R}^{n_{D-2}} \to \mathbb{R}^{n_{D-1}}, f_D: \mathbb{R}^{n_{D-1}} \to \mathbb{R}^k$
- $(f_i(x)) = (g_i(W_{i1}x + b_{i1}), g_i(W_{i2}x + b_{i2}), ..., g_i(W_{in_i}x + b_{in_i}))$
- W_{ii} is a weight vector of same dimension as x
- $b_{i,i}$ is a scalar, called bias
- $g_i: \mathbb{R} \to \mathbb{R}$ is an activation function (eg. max(0,z), tanh(z))

$$\mathbb{R}^{n} \xrightarrow{f_{1}} \mathbb{R}^{n_{1}} \xrightarrow{f_{2}} \mathbb{R}^{n_{2}} \dots \mathbb{R}^{n_{D-1}} \xrightarrow{f_{D}} \mathbb{R}^{k}$$
for the factor $h_{1}^{n_{1}}$ $h_{1}^{n_{2}}$ $h_{2}^{n_{2}}$ $h_{$

Input layer

hidden layers

Output layer

$$f_i(\mathbf{x}) = (g_i(W_{i1}\mathbf{x} + b_{i1}), g_i(W_{i2}\mathbf{x} + b_{i2}), \dots, g_i(W_{in_i}\mathbf{x} + b_{in_i}))$$

Activation functions

- Rectified linear unit (ReLU): g(z) = max(0, z) -
- Hyperbolic tangent $g(z) = tanh(z) = \frac{\exp(z) \exp(-z)}{\exp(z) + \exp(-z)}$
- Logistic sigmoid $g(z) = \frac{1}{1 + \exp(-z)}$

More examples in https://en.wikipedia.org/wiki/Activation_function

- Hyper-parameters:
 - L: depth of neural network
 - n_1 , ..., n_{L-1} : width of the hidden layers
 - g_1, \dots, g_L : activation functions
- Model parameters of $\hat{f}(x; \{W_{ij}, b_{ij}\}_{i,j}) : W_{ij}$'s, b_i 's
- Training set: $(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})$

Goal: solve for W_{ij} 's and b_{ij} 's that minimize the average cost function J(w) over the training set

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{f}(x^{(i)}), y^{(i)})$$

- Stochastic Gradient Descent or Adam is used
- Weight initialization: Glorot uniform $w_{ij} \sim Unif(-a, a)$
- Back propagation to compute gradients

Universal Approximation

- Let \mathcal{N} be a feedforward network with one hidden layer and linear output units (ie. $\hat{f} = f_2 \circ f_1$ and f_2 is linear)
- (Hornik 1991) If the activation function is continuous, bounded and non-constant, \mathcal{N} can approximate \underline{any} $\underline{continuous}$ function on a compact subset $\mathbf{X} \subset \mathbb{R}^n$ to any degree of accuracy provided that sufficiently many hidden units are available.
- Activation function example: tanh(z)
- (Leshno 1993) **N** with a locally bounded piecewise continuous activation can approximate <u>any continuous</u> function to any degree of accuracy if and only if the activation function is not a polynomial.
- Activation function example: max(0,z)

FNN: Regression

- Input layer: feature vector $x \in \mathbb{R}^n$
- Output layer: label value y, g_D = identity
- Hyper-parameters:
 - D: depth of neural network
 - n_1, \dots, n_{D-1} : width of the hidden layers
 - g_1, \dots, g_{D-1} : activation functions
- Cost function: $L(y, \hat{y}) = ||y \hat{y}||^2$
- Training set: $(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})$
- Goal: solve for W_{ij} 's and b_i 's that minimize the average cost function J(w) over the training set

$$J(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (\hat{f}(x^{(i)}) - y^{(i)})^{2}$$

FNN: Binary classification

- Feature space: $X \subset \mathbb{R}^n$, output: $Y = \{0, 1\}$
- Training set: $(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})$
- Cost function: take a probabilistic viewpoint
- What is this likelihood $P(y^{(1)}, ..., y^{(m)} | x^{(1)}, ..., x^{(m)})$?
- Consider P(y|x) conditional probability of y given x
- Assume that it follows a Bernoulli distribution with parameter p(x)
- P(y = 1|x) = p(x), P(y = 0|x) = 1 p(x)
- $P(y^{(1)}, ..., y^{(m)}|x^{(1)}, ..., x^{(m)})$ can be expressed as:
- $\prod_{i=1}^{m} P(y = y^{(i)} | x^{(i)}) = \prod_{i=1}^{m} p(x)^{y^{(i)}} (1 p(x))^{1 y^{(i)}}$
- Find p(x) that maximizes the likelihood of observing the training dataset

FNN: Binary classification

- Write p(x) as a parametrized function $p(x; \theta)$
- Likelihood function $h(\boldsymbol{\theta}) = \prod_{i=1}^{m} p(\boldsymbol{x}; \boldsymbol{\theta})^{\boldsymbol{y}^{(i)}} (1 p(\boldsymbol{x}; \boldsymbol{\theta}))^{1 \boldsymbol{y}^{(i)}}$
- Goal: Find $\widehat{\boldsymbol{\theta}}$ that maximizes the likelihood function
- Equivalently: Find $\hat{\theta}$ that minimizes the negative log-likelihood function $J(\theta) = -\log(h(\theta))$

•
$$J(\boldsymbol{\theta}) = -\frac{1}{m} \sum_{i=1}^{m} \mathbf{y}^{(i)} \log(p(\mathbf{x}; \boldsymbol{\theta})) + (1 - \mathbf{y}^{(i)}) \log(1 - p(\mathbf{x}; \boldsymbol{\theta}))$$

Cost function

• Use feedforward neural network $\hat{f}(x; \theta)$ to approximate $p(x; \theta)$ where θ is the set of W_{ij} 's and b_{ij} 's in the network

FNN: Binary classification

$$\hat{f}: \mathbb{R}^n \to \mathbb{R} \text{ with } \hat{f} = f_2 \circ f_1$$

FNN: K-class classification

$$\hat{f}: \mathbb{R}^n \to \mathbb{R}^K$$
, $\hat{f} = f_2 \circ f_1$

 $\hat{f}: \mathbb{R}^n \to \mathbb{R}^K$, $\hat{f} = f_2 \circ f_1 \mid f_1: \mathbb{R}^n \to \mathbb{R}^N$ with $f_1(\mathbf{x}) = (h_1, \dots, h_N)$ and $h_i = g(W_{1i}x + b_1)$ g is an activation function (eg. ReLU)

> $f_2: \mathbb{R}^N \to \mathbb{R}^3$ with $f_2(\boldsymbol{h}) = s(W_2\boldsymbol{h} + b_2)$ $s: \mathbb{R}^3 \to \mathbb{R}^3$ softmax function $s(z_1, z_2, z_3) = (s_1, s_2, s_3)$ where $s_i = s_i(\mathbf{z}) = \frac{\exp(\mathbf{z}_i)}{\sum_{i=1}^3 \exp(\mathbf{z}_i)}$

 $\hat{f}(\mathbf{x}; \boldsymbol{\theta})$: estimate of $p_i(\mathbf{x}; \boldsymbol{\theta})'s$ ie. estimate of P(y = i | x)

Cost function:

- negative log-likelihood **Prediction:**
- class with highest predicted probability

MLP: width & depth

Relu

Time series forecasting

- Classical linear time series models AR(p)
- $X(t) = \phi_0 + \phi_1 X(t-1) + \dots + \phi_p X(t-p) + \varepsilon$
- Classical ML models and ensembles
 - Features: lagged returns
- Recurrent neural networks (RNN)
 - Hidden state h(t): information up to time t
 - h(t) = f(X(t), h(t-1))
 - Recurrent layer as a parametrization of function f
 - $h(t) = g(X(t)W_{xh} + h(t-1)W_{hh} + b_h)$
 - W_{xh} and W_{hh} are weight matrices, b_h bias vector
 - *g*: an activation function
 - Output layer: y = s(h(t)W + b)
- LSTM networks
 logistic function
 - Different parametrization of f