

Elektrotechnische Grundlagen der Informatik (LU 182.692)

Protokoll der 3. Laborübung: "Operationsverstärker" a) LTSPICE-Simulationen

Gruppennr.: 10 Datum der Laborübung: 01.06.2017

Matr. Nr.	Kennzahl	Name
1609418	033 535	GEISELBRECHTINGER Max
1625753	033 535	HAAR Martin

Kontrolle	
Nichtinvertierender OPV	
OPV und Grenzfrequenz	
Invertierender OPV	
Integrierer	
Schmitt-Trigger	

1 Nichtinvertierender Verstärker

2 Invertierender Verstärker

2.1 Simulationsschaltung

Abbildung 1: Simulationsschaltung

Da es sich bei dieser Schlatung um einen invertierenden Verstärker handel, wird die Eingangsspannung am invertierendne Eingang des OPV geschaltet. Der Ausgang wird ebenfalls auf den invertierendne Eingang gegengekoppelt umd eine Brauchbare Verstärkung einstellen zu können. Ein Idealer OPV ohne Gegenkopplung würde die Differenzspannung zwischen invertierenen und nicht-invertierendne Eingang ∞ verstärken. Die Vertärkung wird mit den Beiden Widerständen R_1 und R_2 eingestellt. Die Beiden Spannungspquellen V_2 und V_3 stellen die Symetrische Versorgungsspannung von -15V bis +15V dar.

$$\frac{U_a}{U_e} = \frac{R_1}{R_2} \Rightarrow U_a = U_e * \frac{R_2}{R_1} \Rightarrow V = \frac{R_2}{R_1}$$

Da sich die Verstärkung V laut Angabe zwichen -40 und -60 befinden soll wurden für die Widerstände folgende Werte gewählt:

$$R_1 = 8, 2M\Omega$$

$$R_2 = 1,5k\Omega$$

- 3 Integrierer
- 4 Nichtinvertierender Verstärker

