Classification of Postsynaptic Current Events in Purkinje Cells

Peter Hebden
CoMPLEX, Department of Computer Science

18 July 2019

Introduction

- Purkinje cells are in the cerebellum.
- They receive excitatory and inhibitory inputs.
 - Postsynaptic current is a mixture of events.
 - Fast events.
 - Slow events.
 - Drugs can selectively block receptors.
 - DNQX blocks AMPA receptors (fast events).
 - Bicuculine blocks GABA_A receptors (slow events).
 - But drugs cause artifacts.
 - Blocking one receptor type interferes with normal interactions.
 - Example: where presynaptic receptors mediate retrograde feedback.
- The challenge is to unmix and classify events using computational methods.
 - Fast event trains.
 - Slow event trains.
- But first, some background about Purkinje cells and their connectivity.

Inputs to the Purkinje cell.

Excitatory

- 1) Parallel fibre
- 2) Climbing fibre

Inhibitory

- 1) Stellate cell
- 2) Basket cell

Purkinje cell synapses

- 1) Parallel fiber (PF) (+)
- 2) Molecular layer interneuron (MLI)
 - a. basket cells and stellate cells (-)
 - b. presynaptic NMDARs in basket cell terminals?
- 3) Lugaro cell (LC)
- 4) Granule cell (GrC)
- 5) Unipolar brush cell (UBC)

- 6) Mossy fibre (MF)
- 7) Climbing fibre (CF) (+)

Image: (Gao 2012).

Event Train

File 09921004.abf: DNQX and NMDA at 37.45 seconds.

Event Train Before DNQX

File 09921004.abf: zoom in to see shape of PSCs. Here events to do not overlap, no fast events?

Post Synaptic Waveform Sorting

- Event detection
 - Filter data if necessary.
 - Amplitude threshold to get candidate waveforms.
- Feature extraction and visualisation
 - Principal Components Analysis (PCA).
 - K-means clustering using the squared Euclidean distance metric.

Compute mean waveform for each cluster and the plot event trains.

Mean Waveforms and Event Trains

Build Template Library: fit dual exponential function

$$I(t) = I_{max} \frac{\tau_d \tau_r}{\tau_d - \tau_r} \left(exp \left(-\frac{t - t_s}{\tau_d} \right) - exp \left(-\frac{t - t_s}{\tau_r} \right) \right)$$

Current **I(t)** depends on the rise and decay time constants.

After DNQX: $t_r = 5 \text{ ms}$, $t_d = 24 \text{ ms}$

Next Steps

- Slide templates along old or new data to detect and classify events.
- Use synthetic data for testing.
- Do computational analysis of data sets in context of pharmacological data.

- Additional methods?
 - Bayesian methods
 - Exploit prior knowledge about the data.
 - Machine learning
 - Neural networks for pattern recognition.
 - Learn from labelled examples
 - ?

Sorting: using K=3 and T=1

Event Trains: used K=3 and T=1

Slow templates: used K=3 and T=1

Cluster 1: t_d = 32 ms

X axis in time steps, 10 steps per ms

Cluster 2:
$$t_d$$
 = 22 ms

Cluster 3:
$$t_d$$
 = 11 ms

300 seconds, T=5

File: 09n17004 v2: DNQX and NMDA at 71.85 seconds.

300 seconds, K=3, T=5

CurrentX GUI and Parameters

References

- Duguid, Ian C and Smart, Trevor G,
 Retrograde activation of presynaptic NMDA receptors enhances
 GABA release at cerebellar interneuron-Purkinje cell synapses,
 Nature neuroscience, 2004
- Apps, Richard and Garwicz, Martin,
 Anatomical and physiological foundations of cerebellar information processing, Nature reviews. Neuroscience, 2005.
- Gao, Zhenyu and van Beugen, Boeke J and De Zeeuw, Chris I,
 Distributed synergistic plasticity and cerebellar learning, Nature reviews. Neuroscience, 2012.