

DATA SCIENCE COMPLEXITY AND SOLUTIONS IN REAL INDUSTRIAL PROJECTS

WHO AM I

Artur Miller

Electrical Engineer

@arturmillerblog

amiller@rosen-group.com

Data Scientist

https://github.com/arturmiller

Slides: https://github.com/rosen-group/conferences

INTRODUCING THE ROSEN GROUP

ROSEN develops and manufactures equipment, software, and methods for the inspection, diagnosis, and protection of industrial structures in a wide range of industries.

Because damage can cause serious impacts!

CHALLENGES IN INLINE INSPECTION

- Classification of installations and anomalies and accurate estimation of severity of defects.
- Our tools record a huge amount data, up to multiple terabytes per run.
- Severe defects threaten the integrity of the pipelines, therefore there is a **high risk** for environment and clients.

We address these challenges with **machine** learning and Python!

- Misconception: Most of the time is spend tweaking machine learning models
- A lot of time is spend on data wrangling
- Real data is much more complex than toy datasets
- What is missing?
 - Collecting data
 - Data cleaning
 - Missing and imbalanced data
 - Scaling

MANUFACTURING

- Tool is constructed and manufactured
- Laboratory measurements
- Pull-test or Pump-test
- Pipes with artificial defects

MODELING AND TRAINING

- Estimating the depth and shape of defects with regression models
- Classification of installations and anomalies
- Data from
 - Pull-tests and pump-tests
 - Laboratory measurements

INSPECTION

- Preparing, transporting and launching the tool
- Tool takes measurements of the pipeline
- Processing and analyzing the data
- Reporting

VERIFICATION

- Excavations for reparations
- Only severe defects

Old: Pit Gage

Modern:

- Laser-scans
- X-ray computed tomography

VERIFICATIONS

Laser-scans

- High resolution image of the outer pipeline wall
- Good image of corrosion
 - Depth and shape
- Better than artificial defects (e.g. ellipses)
- Non destructive

X-ray computed tomography

- High resolution 3D image of pipeline
- Good image of cracks (submillimeter resolution)
- Very expensive
- Sample has to be cut out (destructive)
- Shut down pipeline

IMPROVED APPROACH

- Strong potential to improve the quality of our models
- Feeding back verification results into machine learning models
- Real defects are better than artificial defects
- A lot of distributed and non standardized data in-house

- How to get the verifications from the clients to the data scientists?
- We don't define what is verified
- Data is not clean
- Data is not aligned

- How to get the verifications from the clients to the data scientists?
- We don't define what is verified
- Data is not clean
- Data is not aligned

HOW TO GET THE VERIFICATIONS FROM THE CLIENTS TO THE DATA SCIENTISTS?

- Know the delivery chain
 - Client → Project Manager → Data Engineer → Annotator → Data Scientist
- Define structures and processes
- Inform and train contact persons
- Help people who can help you
 - E.g. write small tools (in Python), which help them solve their problems
 - Automate the boring stuff

- How to get the verifications from the clients to the data scientists?
- We don't define what is verified
- Data is not clean
- Data is not aligned

- Clients decide where excavations are done
- Very expensive!
- Fill the gaps:
 - Pull-tests and pump-tests
 - Laboratory measurements
 - Synthetic data (PyCon2017: Synthetic Data for Machine Learning Applications)

- Synthetic defects
 - Distort laser-scans
 - Basic geometric shapes (e.g. ellipsoids)
 - Simulate corrosion growth (3D Cellular automata)
- Tool measurements: FEM Simulations
- How to scale?
 - 15 min for each FEM simulation on one core
 - Distributed computation with a Docker cluster

- How to get the verifications from the clients to the data scientists?
- We don't define what is verified
- Data is not clean
- Data is not aligned

DATA STANDARDIZATION

- Clients use different data formats
- Flexible converter tools
- CSV or HDF5 as data container
- MongoDB for the meta data
- Proper interfaces for data access
- Data storage
- IT-support

DATA NORMALIZATION

- Data is not comparable to other data
 - Wall-thickness
 - Pipeline curvature
- Image processing
 - Filtering
 - Edge detection
 - Hough transformation
- Extraction of important information

- How to get the verifications from the clients to the Data Scientists?
- We don't define what is verified
- Data is not clean
- Data is not aligned

Scan Alignment Tool

- Tool to align laser-scans and ILI-data
- Combines data from different sources
- Manual alignment (tedious and time consuming)

Automated alignment

- Template matching
- Direct comparison of laser-scans and ILI-data is not possible
- FEM simulations bridge this gap

template

SUMMARY

- Data science challenges in ILI
- Misconception in data science
- Our classic and improved approaches
- Feeding back verification data is hard
- Various methods to tackle these challenges

Conclusion

- It is hard to feed-back validation data into our models
- But it is worth it!
 - Strong increase of classification and regression accuracies
 - Completely new approaches became possible

THANK YOU FOR JOINING THIS PRESENTATION.

