BIASING

- To find the *DC operating point* (bias point,
 Q-point)
- Has to precede ac analysis, since smallsignal parameters depend on the bias point
- For *diodes*: (I_D, V_D)
- For BJTs: (I_C, V_{CE})
- For MOSFETs: (I_D, V_{DS})
- Also, $P_D = V_D \times I_D$ (*Diodes*), $V_{CE} \times I_C$ (*BJTs*), and $V_{DS} \times I_D$ (*MOSFETs*)

- DC power dissipated in a circuit = (Supply Voltage) × (Supply Current)
- Circuits may be biased by single supply (positive/negative and ground) or dual supply (positive and negative)
- Devices should be *properly biased* and *ideally* should be under the *best biasing* (BB)
- Also, need voltage references to provide fixed DC voltages at some circuit nodes

• Two types:

- ➤ Discrete Stage Biasing:
 - Uses power supplies and resistors along with the active devices
 - Used for discrete circuits assembled in breadboards
 - Also known as passive biasing
- > IC (Integrated Circuit) Stage Biasing:
 - Avoids resistors as much as possible and uses transistors as biasing elements
 - Used for *IC stages*
 - Also known as active biasing

Discrete Stage Biasing: BJT

- Will be using *quick estimate* $(V_{BE} = 0.7 \text{ V})$
- *FA mode of operation* with $V_{CE} \ge 0.2 \text{ V}$
- Error of ±5-10% perfectly acceptable
- Common Schemes:
 - > Fixed Resistor Bias
 - > Emitter Feedback Bias
 - > Collector Feedback Bias
 - ➤ Voltage Divider (or 4-Resistor) Bias

• Fixed Resistor Bias:

$$ightharpoonup I_{\rm B} = (V_{\rm CC} - V_{\rm BE})/R_{\rm B}$$

$$> I_C = \beta I_B$$

$$> I_E = (\beta + 1)I_B \approx I_C$$

$$\triangleright V_{CE} = V_{CC} - I_C R_C$$

• For BB,
$$V_{CE} = V_{CC}/2$$

$$\triangleright P_D(circuit) = V_{CC} \times I_E$$

The simplest biasing circuit, but has severe β dependence

