Лабораторная работа № 5.1.3 Эффект Рамзауэра

Илья Прамский

Ноябрь 2024

Теоретическая справка

$$E = \frac{mv^2}{2} = \frac{mv'^2}{2} + U$$

$$n = \frac{\lambda}{V} = \sqrt{1 - \frac{U}{E}} \tag{1}$$

После решения соответствующего уравнения Шрёдингера получается выражение для коэффициента прохождения:

$$D = \frac{16k_1^2k_2^2}{16k_1^2k_2^2 + 4(k_1^2 - k_2^2)^2\sin^2(k_2l)}$$
 (2)

где $k_1^2 = \frac{2mE}{\hbar^2}, k_2^2 = \frac{2m(E+U_0)}{\hbar^2}.$

Это периодическое выражение с максимумами при

$$k_2 l = \pi n = \sqrt{\frac{2m(E + U_0)}{\hbar^2}} l$$
 (3)

Выражения для эффективного размера атома l:

$$2l = \frac{h}{\sqrt{2m(E_1 + U_0)}}\tag{4}$$

$$2l = \frac{3}{2} \frac{h}{\sqrt{2m(E_2 + U_0)}} \tag{5}$$

Где E_1, E_2 — энергии, соответствующие максимуму и минимуму прохождения электронов соответственно. Исключая U_0 можно найти

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}\tag{6}$$

А исключая l можно найти эффективную глубину потенциальной ямы атома:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1 \tag{7}$$

Формула, связывающую зависимость вероятности рассеяния электрона от его энергии:

$$w(V) = -\frac{1}{C} \ln \frac{I_a(V)}{I_0} \tag{8}$$

 ${
m Puc.}\ 1-{
m Cxema}$ экспериментальной установки

Ход работы

Динамический режим

Два графика в динамическом режиме при разном U

Рис. 2 — Вольт-амперная характеристика при $_{\rm U=2.63~B}$ $U{=}2.5~{\rm B}$ $U{=}2.5~{\rm B}$

Получается $(l_1, l_2, l_3$ - по формуле (4), (5), (6) соответственно; $E_n = U_n \cdot e$).

$U_{\text{\tiny Hak}}$, B	U_1 , B	U_2 , B	$l_1, ext{ Å}$	$l_2, \mathrm{\AA}$	l_3 , Å	U_0 , B
2,63	1,4	6.3	3,1	3,1	3,1	2.52
2,50	3.6	9.6	2.48	2.64	2.8	1.20

Статический режим

U=:	2.63 B	U=2.5 B			
U, B			U_a , мВ		
0,30	3,00	U, B 0,3	3,00		
0,60	30,60	0,97	103,00		
0,90	93,00	1,35	160,00		
1,00	114,00	1,49	170,65		
1,07	126,50	1,62	175,50		
1,20	145,00	1,79	176,10		
1,30	158,40	1,89	174,30		
1,40	172,00	2,15	164,80		
1,60	180,00	2,70	140,00		
1,70	181,00	3,27	121,50		
1,69	181,55	3,70	110,40		
2,07	171,00	4,27	100,50		
2,42	155,90	5,00	90,30		
2,65	145,60	5,40	87,55		
3,37	125,00	5,96	86,40		
4,38	111,00	7,20	90,90		
5,13	105,50	8,23	100,84		
4,45	112,80	9,62	131,00		
4,95	109,00	10,83	164,00		
5,45	107,00	11,57	190,00		
6,50	114,70	11,81	215,00		
7,13	121,00				
8,53	145,60				
10,00	197,50				
11,90	376,00				

$U_{\rm max}, B$	U_1 , B	U_2 , B	l_1 , Å	l_2 , Å	l_3 , Å	U_0 , B
2,63	1,69	5,13	3,00	3,33	3,70	1,06
2,50	1,79	5,96	2,96	3,16	3,36	1,55

График зависимости вероятности рассеяния электронов (с точностью до константы) от энергии.

Вывод

В ходе данной работы был исследован эффект Рамзауэра, оценены параметры при разных режимах работы установки. Так, при помощи нескольких формул был оценён размер электронной оболочки атома, причем значения полученных оценок близки к табличному значению удвоенного ковалентного радиуса $(2.8\ \text{Å})$. Также было оценено значение потенциальной ямы, во всех опытах оно совпало по порядку, а в одном из даже оказалось достаточно близко к истинному(U=2.52). Также была получена зависимость вероятности рассеяния электронов от энергии, которая имеет поведения, похожее на график из методического материала.