Helmholtz Theorems: (1) If $\nabla \cdot \vec{c} = 0$, then there exsists \vec{D} such that: C= ¬√× D. 2) If $\nabla x \hat{c} = 0$, then there exsists a scalar field C=-VS. I wont prove it (but see homework) but I will show the converse, i.e. $\frac{P_{rf}}{}$ $(\nabla \times C)^{i}$ (D) 3, C' = 3, E'8k 3-Dk = C,8k 3-3-Dk = 0 Because Eight = - Eight is antisymmetric

while 2:2:=2:2: is symmetric, 2,2y-2y2x=0. 2) Similarly, we show $\nabla \times \vec{\nabla} S = 0$ Eigk 2; Ck = Eigk 2; 3 & = 0 These are statements of differential forms odd D = 0

Maxwell Equations & The Helmholtz Theorems
The maxwell equations + Helmholtz theorems lead to two very important results:
I. Current Conservation II. Gauge Potentials
First we write the MEqs. again
with $\nabla \cdot E = \rho$ Source (currents) $\nabla \times B = j/c + 1/c \partial_{+} \dot{E}$
without $\nabla \cdot B = 0$ source $\nabla \cdot B = 0$ $\nabla \times E = 1 \partial_1 B$
I. Current Conservation.
Take the time derivative of the first equation $\partial_t \nabla \cdot E = \partial_t \rho$, and the divergence (times () of the second
$c\nabla \cdot (\nabla \times B) = 0 = \nabla \cdot j + \nabla \cdot \partial_t E$
Adding these two results
$\partial_{t} \rho + \nabla \cdot \vec{j} = 0 \iff \text{Conservation law}$

