

Equações trigonométricas

Resumo

Equação trigonométrica

As equações trigonométricas são equações contendo uma ou mais funções trigonométricas da variável trigonométrica. Resolver a equação significa encontrar os valores dos arcos cujas funções trigonométricas tornam a equação verdadeira.

Exemplo:
$$sen(x) = \frac{\sqrt{3}}{2}$$

Sabemos que o seno de 60° é justamente $\frac{\sqrt{3}}{2}$, sendo, assim, uma das soluções. Porém o seno de 120° também

vale $\frac{\sqrt{3}}{2}$. Repare que existem infinitos valores de x que satisfazem a equação, visto que podemos dar infinitas voltas no ciclo trigonométrico. Por isso, que, geralmente, restringimos o intervalo das respostas em uma única volta, ou seja $0 < x < 2\pi$.

Não existe um método único para resolver todas as equações trigonométricas. No entanto, a maioria delas pode ser transformada em outras mais simples, porém equivalentes, ou seja, de mesma solução.

Quer ver este material pelo Dex? Clique aqui

Exercícios

- **1.** Se p e q são duas soluções da equação $2sen^2x-3senx+1=0$ tais que $sen(p) \neq sen(q)$, então o valor da expressão $sen^2p-\cos^2q$ é igual a:
 - **a)** 0.
 - **b)** 0,25.
 - **c)** 0,50.
 - **d)** 1.
- **2.** Seja x real tal que $\cos x = tg x$. O valor de sen x é:
 - a) $\frac{\sqrt{3}-1}{2}$
 - **b)** $\frac{1-\sqrt{3}}{2}$
 - **c)** $\frac{\sqrt{5}-1}{2}$
 - **d)** $\frac{1-\sqrt{5}}{2}$
- **3.** Quantas soluções a equação $\cos(2x-1)=0$ tem no intervalo [0,5]? (Lembre-se que π = 3,14).
 - **a)** 1
 - **b)** 2
 - **c)** 3
 - **d)** 4
 - **e)** 0

- **4.** Sendo $senx + cos x = \frac{1}{5}$, determine os possíveis valores de senx.
 - a) $\frac{3}{5}$ ou $\frac{4}{5}$
 - **b)** $-\frac{3}{5}$ ou $\frac{4}{5}$
 - c) $-\frac{3}{5}$ ou $-\frac{4}{5}$
 - **d)** $\frac{3}{5}$ ou $-\frac{4}{5}$
 - **e)** $-\frac{3}{5}$ ou $\frac{5}{4}$
- **5.** Resolva em \mathbb{R} a equação $\cos \sec(x) \cot g(x) = 2sen(x)$.
 - **a)** $S = \left\{ x \in \mathbb{R} / x = \pm \frac{2\pi}{3} + 2k\pi \right\}$
 - $\mathbf{b)} \quad S = \left\{ x \in \mathbb{R} \ / \ x = \pm \frac{2\pi}{3} \right\}$
 - c) $S = \{x \in \mathbb{R} / x = \pm 2\pi + 2k\pi \}$
 - **d)** $S = \left\{ x \in \mathbb{R} \ / \ x = \pm \frac{\pi}{6} + 2k\pi \right\}$
 - **e)** $S = \left\{ x \in \mathbb{R} \ / \ x = \pm \frac{\pi}{3} + 2k\pi \right\}$
- **6.** Seja x tal que sen $x + \cos x = 1$. Determine todos os valores possíveis para sen $2x + \cos 2x$.
 - **a)** 0
 - **b)** 1
 - c) -
 - **d)** 1 e 1
 - **e)** 0 e -1

- 7. Resolva a equação $sen(x) sen^3(x) = 0$.
 - a) $x = k\pi, k \in \mathbb{Z}$
 - **b)** $x = \frac{\pi}{2} + k\pi, \ \mathbf{k} \in \mathbb{Z}$
 - c) $x = k\pi$ ou $x = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$
 - **d)** $x = k\pi$ ou $x = \frac{\pi}{4} + k\pi$, $k \in \mathbb{Z}$
 - **e)** $x = k\pi$ ou $x = \frac{\pi}{6} + k\pi$, $k \in \mathbb{Z}$
- **8.** A quantidade de soluções que a equação trigonométrica $sen^4x cos^4x = \frac{1}{2}$ admite no intervalo $[0,3\pi]$ é
 - **a)** 0
 - **b)** 2
 - **c)** 4
 - **d)** 6
 - **e)** 8
- **9.** A soma das soluções da equação trigonométricas $\cos 2x + 3\cos x = -2$, no intervalo $[0, 2\pi]$ é
 - a) π
 - b) 2π
 - c) 3π
 - 5π
 - d) $\overline{3}$
 - 10π
 - e) 3

- **10.** Sabendo-se que $sen^2x 3senx\cos x + 2\cos^2 x = 0$ e que $\cos x \neq 0$, temos que os possíveis valores para tg(x) são:
 - **a)** 0 e -1
 - **b)** 0 e 1
 - **c)** 1 e 2
 - **d)** -1 e -2
 - **e)** -2 e 0

Gabarito

1. B

Observe:

$$2 \sin^2 x - 3 \sin x + 1 = 0$$

$$\Delta = (-3)^2 - 4 \cdot 2 \cdot 1$$

$$\Lambda = 1$$

$$senx = \frac{-(-3) \pm 1}{2 \cdot 2} \begin{cases} senx = 1 \\ senx = 1/2 \end{cases}$$

$$sen^2p - cos^2q = sen^2p - (1 - sen^2q) = sen^2p + sen^2q - 1 = 1^2 + (1/2)^2 - 1 = 1/4 = 0,25.$$

2. C

Observe:

Sabendo que
$$tgx = \frac{sen x}{cos x}$$
, $com x \neq \frac{\pi}{2} + k\pi$ e $cos^2 x = 1 - sen^2 x$, vem

$$\cos x = \operatorname{tg} x \Rightarrow \cos x = \frac{\operatorname{sen} x}{\cos x}$$

$$\Rightarrow \cos^2 x = \sin x$$

$$\Leftrightarrow$$
 sen² x + sen x = 1

$$\Leftrightarrow \left(\operatorname{sen} x + \frac{1}{2}\right)^2 - \frac{1}{4} = 1$$

$$\Leftrightarrow$$
 sen x + $\frac{1}{2}$ = $\pm \frac{\sqrt{5}}{2}$

$$\Rightarrow$$
 sen x = $\frac{\sqrt{5}-1}{2}$.

3. C

Observe:

- A função tem período π .
- o primeiro zero é em π /4+1/2 = 1,29

Assim:

$$1,29+\pi/2=2,86$$

$$2,86+\pi/2=4,43$$

$$4,43+\pi/2=6$$

3 soluções.

4. B

Observe:

$$\begin{cases} \operatorname{senx} + \cos x = \frac{1}{5} \Rightarrow \cos x = \frac{1}{5} - \operatorname{senx} \\ \operatorname{sen^2x} + \cos^2 x = 1 \end{cases} \Rightarrow \operatorname{sen^2x} + \left(\frac{1}{5} - \operatorname{senx}\right)^2 = 1 \Rightarrow$$

$$\Rightarrow \operatorname{sen^2x} + \frac{1}{25} - \frac{2}{5} \operatorname{senx} + \operatorname{sen^2x} - 1 = 0 \Rightarrow 2\operatorname{sen^2x} - \frac{2}{5} \operatorname{senx} - \frac{24}{25} = 0 \Rightarrow$$

$$\Rightarrow 50\operatorname{sen^2x} - 10\operatorname{senx} - 24 = 0 \Rightarrow \operatorname{senx} = \frac{10 \pm \sqrt{100 - 4(50)(-24)}}{100} = \frac{10 \pm \sqrt{100 + 4800}}{100} \Rightarrow$$

$$\Rightarrow \operatorname{senx} = \frac{10 \pm \sqrt{4900}}{100} = \frac{10 \pm 70}{100} \Rightarrow \begin{cases} \operatorname{senx} = \frac{10 - 70}{100} = \frac{-60}{100} = \frac{-6}{10} = \frac{-3}{5} \\ \operatorname{senx} = \frac{10 + 70}{100} = \frac{80}{100} = \frac{8}{10} = \frac{4}{5} \end{cases}$$

5. A

Observe:

$$\begin{aligned} & cossec\ x - cot\ gx = 2senx \Rightarrow \frac{1}{senx} - \frac{cosx}{senx} = 2senx \Rightarrow 2sen^2x + cosx - 1 = 0 \Rightarrow \\ & \Rightarrow 2(1 - cos^2x) + cosx - 1 = 0 \Rightarrow 2cos^2x - cosx - 1 = 0 \Rightarrow cosx = \frac{1 \pm \sqrt{1 - 4(2)(-1)}}{2(2)} \Rightarrow \\ & \Rightarrow cosx = \frac{1 \pm \sqrt{9}}{4} \Rightarrow cosx = \frac{1 \pm 3}{4} \Rightarrow \begin{cases} cosx = \frac{1 - 3}{4} = -\frac{1}{2} \Rightarrow \begin{cases} x = \frac{2\pi}{3} + 2k\pi \\ x = \frac{4\pi}{3} + 2k\pi = -\frac{2\pi}{3} + 2k\pi \end{cases} \\ cosx = \frac{1 + 3}{4} = 1 \Rightarrow x = 2k\pi \notin Dornánio (cossec x) \end{cases}$$

$$\Rightarrow S = \left\{ x \in \mathbb{R} / x = \pm \frac{2\pi}{3} + 2k\pi \right\}$$

6. D

Observe:

$$(\text{sen } x + \cos x)^2 = (1)^2$$

 $\text{sen}^2 x + \cos^2 x + 2\text{sen } x \cos x = 1$
 $\text{sen } 2x = 2\text{sen } x \cos x = 0 \rightarrow \text{sen } x = 0 \text{ ou } \cos x = 0$
 $\text{sen } x = 0 \rightarrow \cos x = 1 \rightarrow \cos 2x = 1 \rightarrow \sin 2x + \cos 2x = 1$
 $\cos x = 0 \rightarrow \sin x = 1 \rightarrow \cos 2x = -1 \rightarrow \sin 2x + \cos 2x = -1$

7. C

Observe:

Solução:
$$\operatorname{sen} x (1 - \operatorname{sen}^2 x) = 0 \implies \operatorname{sen} x \cdot \cos^2 x = 0$$

 $\operatorname{sen} x = 0 \implies x = k\pi$
 $\cos^2 x = 0 \implies \cos x = 0 \implies x = \frac{\pi}{2} + k\pi, k \in Z$

8. D

Sabendo que $sen^2 y + cos^2 y = 1$, para todo y real, vem

$$sen^{4} x - cos^{4} x = \frac{1}{2} \Leftrightarrow (sen^{2} x - cos^{2} x)(sen^{2} x + cos^{2} x) = \frac{1}{2}$$
$$\Leftrightarrow 2sen^{2} x - 1 = \frac{1}{2}$$
$$\Leftrightarrow sen^{2} x = \frac{3}{4}$$
$$\Leftrightarrow sen x = \pm \frac{\sqrt{3}}{2}.$$

Para $x \in [0, 3\pi]$, a equação sen $x = \frac{\sqrt{3}}{2}$ possul as raízes $\frac{\pi}{3}, \frac{2\pi}{3}, \frac{7\pi}{3}$ e $\frac{8\pi}{3}$, enquanto que a equação sen $x = -\frac{\sqrt{3}}{2}$ possul as raízes $\frac{4\pi}{3}$ e $\frac{5\pi}{3}$. Desse modo, a resposta é 6.

9. C

$$\cos 2x + 3\cos x = -2 \Rightarrow$$

$$\Rightarrow \cos^2 x - \sin^2 x + 3 \cdot \cos x + 2 = 0 \Rightarrow$$

$$\Rightarrow \cos^2 x - (1 - \cos^2 x) + 3 \cdot \cos x + 2 = 0 \Rightarrow$$

$$\Rightarrow 2\cos^2 x + 3 \cdot \cos x + 1 = 0$$

Temos, então uma equação do segundo grau na incógnita cos x.

Resolvendo esta equação, temos:

Resolvendo esta equação, temos:
$$\cos x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \begin{cases} \cos x = -1 \Rightarrow x = \pi \\ \cos x = -\frac{1}{2} \Rightarrow x = \frac{2\pi}{3} \text{ ou } x = \frac{4\pi}{3} \end{cases}$$

Logo, a soma de suas raízes será dada por:

$$\pi + \frac{2\pi}{3} + \frac{4\pi}{3} = 3\pi$$

10. C

Dividindo toda a equação por cos²x, temos:

$$\frac{sen^2x}{\cos^2x} - \frac{3sen(x)\cos(x)}{\cos^2x} + \frac{2\cos^2x}{\cos^2x} = 0 \Leftrightarrow tg^2x - tgx + 2 = 0$$

Ou seja, caímos em uma equação de segundo grau cujas raízes são 1 e 2.