### PEPS - Variational perspective & algos



## The many-body problem

Many-body electron problem ...

$$\hat{H} = \sum_{I=1}^{N_a} \frac{\hat{P}_I}{2M_I} + \sum_{i=1}^{N_e} \frac{\hat{p}_I}{2m_e} - \sum_{I,i} \frac{Z_I e^2}{|\hat{r}_i - \hat{R}_I|} + \sum_{i>j} \frac{e^2}{|\hat{r}_i - \hat{r}_j|} + \sum_{I>J} \frac{Z_I Z_J e^2}{|\hat{R}_i - \hat{R}_j|}$$

Ground states – phases & transitions, excitations – dynamics

Classically – state of the system given by O(N) data Quantum mechanics – instead O(exp(N)) is required

"The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations that are too complex to be solved. ..."

Paul A. M. Dirac 'Quantum Mechanics of Many-Electron Systems',
 Proceedings of the Royal Society (1929), A, 123, 714-733.

### The many-body problem

"(cont.) It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation."

Paul A. M. Dirac 'Quantum Mechanics of Many-Electron Systems',
 Proceedings of the Royal Society (1929), A, 123, 714-733.

**Simplify the problem**: Electrons moving in an effective potential generated by static nuclei. [Adiabatic approx.]

$$\hat{H}_{eff} = \sum_{i=1}^{N_e} \frac{\hat{p}_I}{2m_e} + \sum_{i>j} \frac{e^2}{|\hat{r}_i - \hat{r}_j|} + \sum_{i=1}^{N_e} V(\hat{r}_i)$$

Nuclei in plethora of materials arrange in a **lattice** ⇒ periodic potential.

# The many-body problem

Still O(**exp(N)**) problem – Hilbert space of  $\Psi(r_1,...,r_N)$  is  $\mathbb{C}^{3N}$ . How to proceed?

Ignore interactions: band theory



That's too drastic. **Antiferromagnetism**, **superconductivity**, **FQHE**, ... ?

- Truncate both interactions and Hilbert space
  - Consider only few electrons and few atomic orbitals \( \phi \)
     per lattice site
  - Interactions decay fast with distance

$$\langle \phi_m(i)|V_{ee}|\phi_n(j)\rangle \approx \exp(-|i-j|)$$

## Motivations: High-T<sub>c</sub> superconductivity

Believed to be driven by **2D physics** of copper-populated layers



### Motivations: High-T<sub>c</sub> superconductivity

# Motivation for the Resonating Valence Bond (**RVB**) theory (Anderson)



Physicsworld.org

Single-band **Hubbard model** 

$$H = -t \sum_{\langle i,j\rangle,\sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + h.c.) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

(Some of the) puzzles: Pseudogap, T-linear resistivity

#### Consider large-U limit (and t' ...)

$$H = J \sum_{\langle i,j \rangle} S_i . S_j + J' \sum_{\langle \langle i,j \rangle \rangle} S_i . S_j + \dots$$

## Motivations: High-T<sub>c</sub> superconductivity

Motivation for the Resonating Valence Bond (**RVB**) theory (Anderson): hole **frustrates** AFM state





Valence bond (spin singlet) is favourable

$$\frac{1}{i} \frac{1}{\sqrt{2}} (|\uparrow_i \downarrow_j\rangle - |\downarrow_i \uparrow_j\rangle) \qquad e(VB) = -\frac{3}{4}J$$

**RVB** - macroscopic superposition



$$+\ldots = \sum_{c} \phi_c |c\rangle$$

• coherence T<sub>coh</sub>

VB formation T\*

P. Lee (2007)

• Spin liquid: lattice symmetries, SU(2), topo-order



### **Motivations: FQHE**

#### Quantum matter beyond Landau-Ginzburg paradigm

Discovery: D. C. Tsui, H. L. Stormer, & A. C. Gossard, PRL (1982)

First theory: R. B. Laughlin PRL (1983)

#### **Topological order**

 Fractionally charged quasiparticles

Goldman, Su, Science (1995) Saminadayar, Glattli, Jin, and Etienne, PRL (1997) de-Picciotto et al, Nature (1997) Martin et al, Science (2004)

Anyonic exchange statistics

#### **Nobel Prize 1998**

Laughlin, Störmer, Tsui



R. Willett, J. P. Eisenstein, H. L. Stormer, D. C. Tsui, A. C. Gossard and H. English, PRL (1987)

### **Motivations: FQHE**

Fractional statistics ⇔violation of P and T symmetry

Chiral spin states: (spontaneously) violate **P** and **T** but preserve **PT** 

$$\langle \mathbf{S_i} \cdot (\mathbf{S_j} \times \mathbf{S_k}) \rangle \neq 0$$

$$\Leftrightarrow P_{ijk} - P_{ijk}^{-1} \neq 0$$



$$P|ijk\rangle = |jki\rangle$$

#### Chiral spin liquids (CSL) -

lattice analogues of FQH states

Wen, Wilczek, Zee, PRL (1989)

Occurence in (2D) materials in Nature?

### **Motivations: FQHE**

### Prime candidate: Triangular lattice Hubbard model

A. Szasz, J. Motruk, M. P. Zaletel, and J. E. Moore, PRX (2020); Chen et al, arXiv:2102.05560 (2021)

T. Cookmeyer, J, Motruk, J. E. Moore, PRL (2021); L. Tocchio, A. Montorsi, F. Becca, PRR (2021)

\*SU(3) Boos et al, Phys. Rev. Research 2, 023098 (2020)

- transition metal dichalcogenide 1T-TaS<sub>2</sub> Ruan et al, Nature Physics 17, 1154 (2021)
- Organic salts K-(BEDT-TTF)<sub>2</sub>Cu<sub>2</sub>(CN)<sub>3</sub> Miksch et al, Science 372, 276 (2021)







### **iPEPS**

# Variational approach with tensor networks

- 1) Parametrize: cleverly parametrize many-body wavefunction
  - 2) Optimize: find parameter values which minimize the energy
    - 3) **Analyze**: read off physics from the optimal *ansatz*

### iPEPS as variational ansatz

#### Variational states targeting GS of lattice models

F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066, (2004) Jordan et al., Phys. Rev. Lett. 101, 250602, (2008)



- Obey area law of entanglement entropy virtue (and an issue)
- · Observables have to be approximated
- Systematically improved through bond dimension D = dim(H<sup>aux</sup>)

### iPEPS as variational ansatz



#### **Entanglement entropy**

Exact diagonalization studies, Sandvik; Seman et al., arXiv:1508.01523; Montangero, Rico, Silvi, Phil. Trans. R. Soc. A. (2014); TN.org, APS.org

# **IPEPS - Observables**

**Evaluating observables** 

### iPEPS Observables: MPS recap

#### Recall (infinite) Matrix Product states in 1D

finite

• Infinite translationary invariant state

$$\langle \psi | \mathcal{O} | \psi \rangle \propto \cdot \cdot \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{R_i} \int_{R_i}^{\infty} E_R := \begin{bmatrix} L \\ L \end{bmatrix}$$

### iPEPS Observables: CTMRG

Consider **reduced environments** (E<sub>R</sub>) of region R ...



**Approximate** infinite parts of TNs by finite tensors C,T of dimensions  $\chi \times \chi$  and  $\chi \times \chi \times D^2$ 

### iPEPS Observables: CTMRG

How to find C, T? Use corner transfer matrix renormalization group (CTMRG) - Complexity  $O(\chi^3D^6)$ 

T. Nishino and K. Okunishi, JPSJ 65, 891 (1996), R. Orús and G. Vidal, Phys. Rev. B 78, 155117 (2008)

Corboz et al., Phys. Rev. Lett. 113, 046402, (2014)







... iterate until **fixed point** C,T

### iPEPS Observables: Environments

From **reduced environments** (E<sub>R</sub>) of region R ...

... build **reduced density matrices** ( $\rho_R$ ) of region R



#### Construct environments

corners C, half-row/-columns T

Baxter, J. Stat. Phys. 17, 1 (1977); Nishino, Okanishi (90's)

• Alternative: Channels

Vanderstraeten et al. (2015, 2016)



New control parameter:

env. dimension  $\chi$ 

Any observable inside the region R is:

$$\langle \mathcal{O} \rangle_{\chi} \approx \text{Tr}(\rho_R(\chi)\mathcal{O})$$

# IPEPS - Optimization

Optimizing tensors

# iPEPS Optimization

### Warning: Optimization is hard!

(I) Find the **fixed point** of **imag. time evolution** ...

$$U(\tau) = exp(-\tau H)$$





#### ... use Trotter decomposition



Simple and Full Update contract layer by layer

Jordan et al., Phys. Rev. Lett. 101, 250602, (2008); Phien et al., Phys. Rev. B 92, 035142 (2015)

### iPEPS Optimization: Simple update

#### 2-site Simple update (SU)

Direct generalization of iTEBD from 1D to 2D

 Due to the absence of canonical form for PEPS, does not minimize the energy



- Ansatz for NN Hamiltonian: breaks spatial symmetries and requires CTM for generic unit cells to contract
- Useful to find viable symmetry sectors!

## iPEPS Optimization: Simple update

### 2-site Simple update (SU)

• Single gate application. Repeat for  $\lambda_2$ ,  $\lambda_3$ , and  $\lambda_4$ 







$$III. = Q_a R_a$$

# iPEPS Optimization: gradient descent

### Direct energy minimization

$$min\langle\psi|H|\psi
angle$$

1. get gradient

$$\partial_a \langle \psi | H | \psi \rangle$$

2. steepest descent, CG, L-BFGS, ...



### How to evaluate the gradient for iPEPS?

- Finite-Difference: simple, but only for few parameters D. Poilblanc and M. Mambrini, Phys. Rev. B 96, 014414 (2017)
- Summation schemes: harder with increasing range of *H*-terms P. Corboz, Phys. Rev. B 94, 035133 (2016); Vanderstraeten et al., Phys. Rev. B 94, 155123 (2016)
- Algorithmic/Automatic differentiation (AD) Liao et al., Phys. Rev. X 9, 031041 (2019)

### Algorithmic differentiation: Core

#### Central question:



# How to evaluate the gradient of a complicated scalar function of many variables?

Simple model of a variational energy:

$$E: \mathbb{R}^N \xrightarrow{F^1} \mathbb{R}^{M_2} \xrightarrow{F^2} \mathbb{R}^{M_3} \xrightarrow{F^3} \mathbb{R}^{M_4} \xrightarrow{F^4} \mathbb{R}$$
$$F^4(F^3(F^2(F^1(\mathbf{x})))) = F^4(F^3(F^2(\mathbf{v}^2))) = F^4(F^3(\mathbf{v}^3)) = F^4(\mathbf{v}^4) =: E$$

#### Option 1: Finite difference

pick a direction  $\mathbf{e}_i$  in the space of parameters and a small h

$$(\mathbf{g}_0)_i \approx \frac{E(\mathbf{x}_0 + h\mathbf{e}_i) - E(\mathbf{x}_0)}{h},$$

• finite precision error, complexity O(N) x O(E)

# Primer: Algorithmic differentiation

Core premise of Algorithmic differentiation:



### Functions are ultimately composed of (many) simple operations as +, -, /, \*, exp, log, sin, ...

Assume that **Jacobians** are known: 
$$J^n(\mathbf{v}_0^n) = \left. \left( \frac{\partial F^n}{\partial \mathbf{v}^n} \right) \right|_{\mathbf{v}^n = \mathbf{v}_0^n}$$
.

#### The forward mode AD

$$\mathbf{x}_{0} \equiv \mathbf{v}_{0}^{1} \rightarrow \mathbf{v}_{0}^{2} = F^{1}(\mathbf{v}_{0}^{1}) \rightarrow \mathbf{v}_{0}^{3} = F^{2}(\mathbf{v}_{0}^{2}) \rightarrow \mathbf{v}_{0}^{4} = F^{3}(\mathbf{v}_{0}^{3})$$

$$\rightarrow E = F^{4}(\mathbf{v}_{0}^{4}),$$

$$\mathbf{e}_{i} \equiv \mathbf{g}_{0,i}^{1} \rightarrow \mathbf{g}_{0,i}^{2} = J^{1}(\mathbf{v}_{0}^{1}) \cdot \mathbf{g}_{0,i}^{1} \rightarrow \mathbf{g}_{0,i}^{3} = J^{2}(\mathbf{v}_{0}^{2}) \cdot \mathbf{g}_{0,i}^{2} \rightarrow \mathbf{g}_{0,i}^{4} = J^{3}(\mathbf{v}_{0}^{3}) \cdot \mathbf{g}_{0,i}^{3}$$

$$\rightarrow (\mathbf{g}_{0})_{i} = J^{4}(\mathbf{v}_{0}^{4}) \cdot \mathbf{g}_{0,i}^{4}.$$

In short:  $(\mathbf{g}_0)_i = J^4(\mathbf{v}_0^4) \cdot (J^3(\mathbf{v}_0^3) \cdot (J^2(\mathbf{v}_0^2) \cdot (J^1(\mathbf{x}_0) \cdot \mathbf{e}_i)))$  Cost: **O(N) x O(E)** 

### Primer: Algorithmic differentiation

#### The reverse mode AD

I. Evaluate E(x<sub>n</sub>) and store all the intermediate variables

$$\mathbf{x}_0 \equiv \mathbf{v}_0^1 \to \mathbf{v}_0^2 = F^1(\mathbf{v}_0^1) \to \mathbf{v}_0^3 = F^2(\mathbf{v}_0^2) \to \mathbf{v}_0^4 = F^3(\mathbf{v}_0^3) \to E = F^4(\mathbf{v}_0^4)$$

II. Accumulate the gradient in the reverse order

$$1 \cdot J^4(\mathbf{v}_0^4) = \bar{\mathbf{v}}_0^4 \to \bar{\mathbf{v}}_0^4 \cdot J^3(\mathbf{v}_0^3) = \bar{\mathbf{v}}_0^3 \to \bar{\mathbf{v}}_0^3 \cdot J^2(\mathbf{v}_0^2) = \bar{\mathbf{v}}_0^2 \to \bar{\mathbf{v}}_0^2 \cdot J^1(\mathbf{x}_0) = \bar{\mathbf{x}}_0$$

Observe:  $\overline{\mathbf{x}}_0$  holds all components of the gradient

$$\bar{\mathbf{x}}_0 \cdot \mathbf{e}_i = (((J^4(\mathbf{v}_0^4) \cdot J^3(\mathbf{v}_0^3)) \cdot J^2(\mathbf{v}_0^2)) \cdot J^1(\mathbf{x}_0)) \cdot \mathbf{e}_i = (\mathbf{g}_0)_i$$

Define vector-matrix products - Adjoint functions

$$\frac{\bar{F}^n : \mathbb{R}^{M_n} \times \mathbb{R}^{M_{n+1}} \xrightarrow{\bar{F}^n} \mathbb{R}^{M_n}}{\bar{F}^n(\mathbf{v}^n, \bar{\mathbf{v}}^{n+1}) := \bar{\mathbf{v}}^{n+1} \cdot J^n(\mathbf{v}^n) = \bar{\mathbf{v}}^n} \Rightarrow \frac{F^4(F^3(F^2(F^1(\mathbf{x}_0))))}{\bar{F}^1(\mathbf{x}_0, \bar{F}^2(\mathbf{v}_0^2, \bar{F}^3(\mathbf{v}_0^3, \bar{F}^4(\mathbf{v}_0^4, 1)))) = \bar{\mathbf{x}}_0}$$

# Primer: Algorithmic differentiation

#### A (central) example of the adjoint function

$$C = f(A, B) \longrightarrow dC = \frac{\partial f}{\partial A} dA + \frac{\partial f}{\partial B} dB \qquad E = E(C) \longrightarrow dE =: Tr(\overline{C}^T dC)$$

$$dE = Tr\left(\overline{C}^T \frac{\partial f}{\partial A} dA\right) + Tr\left(\overline{C}^T \frac{\partial f}{\partial B} dB\right) \longrightarrow \begin{cases} \overline{A} = \left(\frac{\partial f}{\partial A}\right)^T \overline{C} \\ \overline{B} = \left(\frac{\partial f}{\partial B}\right)^T \overline{C} \end{cases}$$

### Take matrix multiplication (= tensor contraction)

$$C = AB \longrightarrow dC = dAB + AdB \longrightarrow \begin{cases} \overline{A} = \overline{C}B^T \\ \overline{B} = A^T\overline{C} \end{cases}$$

Many other matrix functions (ED, SVD, Inverse, ...)

M. Giles, https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf

Recent developments: Complex SVD, Lanczos, ...

Z.Q. Wan, S.X. Zhang arXiv:1909.02659; H. Xie, J.G. Liu, L. Wang, Phys. Rev. B 101, 245139 (2020)

## **Algorithmic Differentiation**

 Both Forward mode and Reverse mode evaluate derivatives with machine precision



Forward mode has complexity O(N) \* O(E)



Reverse mode has complexity O(1) \* O(E)

- Caveat: Memory requirements are not bounded!
- Implemented in major machine-learning frameworks: TensorFlow,
   PyTorch, JAX, ...
  - ... or in one of the libraries for your favorite language Fortran, C++, Julia, etc. (see http://www.autodiff.org)

## IPEPS - Thermodynamic limit

Addressing thermodynamic limit

# Q: Adressing thermodynamic limit?

iPEPS lack physical size ...



How to use **finite bond** and **environment** dimension  $(D,\chi)$  data to provide thermodynamic estimates ?

#### A: Finite correlation length scaling (FCLS)

- use ξ as the length scale

Rader and Lauchli, Phys. Rev. X, (2018) Corboz, Czarnik, Kapteijns, and Tagliacozzo, Phys. Rev. X (2018)

$$e(L) = e(\infty) + \frac{b}{L^3} + O\left(\frac{1}{L^4}\right) \Leftrightarrow e(\xi) = e(\infty) + \frac{\beta}{\xi^3} + O\left(\frac{1}{\xi^4}\right)$$
$$m^2(L) = m^2(\infty) + \frac{a}{L} + O\left(\frac{1}{L^2}\right) \Leftrightarrow m^2(\xi) = m^2(\infty) + \frac{\alpha}{\xi} + O\left(\frac{1}{\xi^2}\right)$$

# Q: Adressing thermodynamic limit?

iPEPS lack physical size ...



How to use **finite bond** and **environment** dimension  $(D,\chi)$  data to provide thermodynamic estimates?

A: Finite correlation length scaling (FCLS)

- use ξ as the length scale

$$\langle O_1(0)O_2(r)\rangle - \langle O_1(0)\rangle \langle O_2(r)\rangle = \sum_{i>0} \lambda_i^{r-1} \langle L|O_1|l_i\rangle \langle r_i|O_2|R\rangle \Leftrightarrow$$

$$\Leftrightarrow \begin{array}{c} C - T - \cdots - T - C \\ 1 - T - \cdots - T - C \\ - T - \cdots - T - C \end{array}$$

$$\Leftrightarrow \begin{array}{c} C - T - \cdots - T - C \\ 1 - T - \cdots - T - C \\ - T - \cdots - T - C \end{array}$$

$$\Leftrightarrow \begin{array}{c} C - T - T - C \\ - T - \cdots - T - C \\ - T - \cdots - T - C \end{array}$$

Nishino, Phys. Lett. A, (1996); M. M. Rams, P. Czarnik, and L. Cincio Phys. Rev. X 8, (2018)

### iPEPS in action

Application to J1-J2 model on square lattice

# Intro: Square Lattice J1-J2 Model

Paradigmatic example of a frustrated magnet  $(J_1, J_2>0)$ 

$$H = J_1 \sum_{\langle i,j \rangle} S_i \cdot S_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} S_i \cdot S_j \qquad J_1$$

• Classically: transition at  $J_2/J_1 = 0.5$ , where macroscopic degeneracy appears



# Intro: Square Lattice J1-J2 Model

Paradigmatic example of a frustrated magnet  $(J_1, J_2>0)$ 

$$H = J_1 \sum_{\langle i,j \rangle} S_i . S_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} S_i . S_j \qquad J_1$$

#### Spin waves:

P. Chandra and B. Doucot, Phys. Rev. B 38, 9335 (1988)

- Transition from Néel to paramagnetic phase near maximally frustrated point J₂/J₁ ≈ 0.5
- For J₂/J₁ ≥ 0.6 system orders again in stripes



### **Protocol**

Single-site iPEPS with **real C<sub>4v</sub> symmetric** on-site tensor a + AF structure by sub-lattice rotation

### 1. Optimize iPEPS tensors with increasing D

- i. Given a, compute environments E and reduced density matrices  $\varrho$
- ii. Evaluate energy <=> few unique Hamiltonian terms
- iii. Compute gradient (AD) and update a

### 2. With optimal iPEPS for set of D

- i. Extrapolate observables to  $\chi \to \infty$  (infinite system size): energies, order params ( $m^2$ ), and correlation lengths  $\xi$
- ii. Apply finite correlation-length scaling to get thermodynamic estimates for  $\xi \to \infty$

### Evaluating energy of J1-J2 model

#### How to evaluate the energy?

Perform CTMRG to build following RDMs:

$$\rho_{\chi}^{(NN)} = \begin{array}{c} C & T & T & C \\ T & T & T & C \\ T & T & T & C \\ \end{array}$$

$$\rho_{\chi}^{(NNN)} = \begin{array}{c} C & T & T & C \\ T & T & T & C \\ \end{array}$$

$$C - T - T - C$$

Evaluate the spin-spin interactions and invoke AD

# Single-site iPEPS: Energy as DAG







# Single-site iPEPS: Energy as DAG

#### **Enlarged corner**

#### **Forward**



#### **Backward**



Analogy?

S.P.G. Crone and P. Corboz, Phys. Rev. B 101, 115143 (2020)

### J2=0.5 Point - Energetics

### Strict upper bound for thermodynamic limit

• Point-group + U(1) sym D=7 iPEPS: 167 parameters



# Néel phase of J1-J2 Model

Extrapolate (staggered) magnetization\*  $m^2$  to thermodynamic limit as:

$$m^{2}(\xi) = m^{2}(\infty) + \frac{B}{\xi} + O\left(\frac{1}{\xi^{2}}\right)$$

#### \* Resolve U(1)!

(Rader and Lauchli, Corboz et al. 2018)



# Néel phase of J1-J2 Model

Magnetization curve vanishing around  $J_{2c} = 0.46(1)$ 



# Néel phase of J1-J2 Model

# Spin-resolved 2-point corr. F

Short-range Power law decay

$$\begin{array}{ll} {\rm T} & \propto r^{-1.02(1)} \\ {\rm L} & \propto r^{-1.90(5)} \end{array}$$



### Inferring the U(1) structure

**Proposition:** Resolve minima by imposing U(1) symmetry on the on-site tensor

$$a(\vec{\lambda}) = \sum_{i} \lambda_{i} t_{i} \quad \Longleftrightarrow \quad a_{uldr}^{s} = l \underbrace{ \int_{d}^{u} t_{i}}^{u} r$$

- $\{t_{\sigma}t_{\gamma}...\}$  are elementary representatives of  $A_{\tau}$  irrep and chosen U(1) class
- *U(1)* class  $\Leftrightarrow$  charges  $\vec{u}=(u^\uparrow,u^\downarrow)$  and  $\vec{v}=(v_0,\ldots,v_{D-1})$  assigned to indices s and u,l,d,r

**Conservation law:** 

$$u^{s} + v_{u} + v_{l} + v_{d} + v_{r} = N$$

**Q:** How to choose charge sector, that is,  $\vec{u}, \vec{v}$  ?

### Inferring the U(1) structure

**Observation:** unrestricted optimization for small  $J_2$  leads to an almost U(1)-symmetric states (s.s(r), Transfer matrix spectrum)

- Solve the system of constraints given by **the largest elements** of tensor *a* from unrestricted optimization (pre-process by HOSVD)
- Example for D=3:  $(\vec{u}, \vec{v}) = (1, -1, 0, 2, 0)$  with N=1

Solve within integer domain by Smith normal form

### Inferring the U(1) structure

#### Competition between different U(1) classes appears

Example for D=3 (also D=4)



# Application to J1-J2 Model

#### Complication: Presence of distinct local minima



#### Corr. Length:

$$f^{C}(r)_{O_{1}O_{2}} = \sum_{i>0} \lambda_{i}^{r-1} \langle L|l_{i}\rangle\langle r_{i}|R\rangle \iff$$



Nishino, Phys. Lett. A, (1996); M. M. Rams, P. Czarnik, and L. Cincio Phys. Rev. X 8, (2018)