

Разделяне

За пермутация $p=p[0]\ p[1]\ p[2]\ \dots\ p[n-1]$ на числата $1,2,3,\dots,n$ определяме разделяне като пермутация q, която може да бъде получена по следния начин:

- 1. Избираме две множества от числа $A=\{\ i_1,i_2,...,i_k\ \}$ и $B=\{\ j_1,j_2,...,j_l\ \}$, за които имаме $A\cap B=\emptyset$, $A\cup B=\{\ 0,1,2,...,n-1\ \}$, $i_1< i_2<...< i_k$ и $j_1< j_2<...< j_l$
- 2. Пермутацията q се представя като $q=p[i_1]p[i_2]\dots p[i_k]p[j_1]p[j_2]\dots p[j_l]$

Нека определим S(p) като множеството от всички разделяния на пермутацията p.

Дадени са Ви числото n и множеството T на m пермутации с дължина n. Намерете броя на пермутациите p с дължина n, за които $T\subseteq S(p)$. Понеже този брой може да е много голям, то трябва да го намерите по модул $998\,244\,353$.

Детайли по имплементацията

Трябва да имплементирате следната функция:

```
int solve(int n, int m, std::vector<std::vector<int>>& splits);
```

- n: размерът на пермутацията
- m: броят на разделянията
- splits: вектор, съдържащ m **различни** пермутации, елементите на множеството T, което трябва да е подмножество на S(p)
- Тази функция трябва да върне броя на възможните пермутации по модул $998\ 244\ 353$.
- Тази функция се извиква точно веднъж за всеки тест.

Ограничения

- 1 < n < 300
- $1 \le m \le 300$

Подзадачи

- 1. (6 точки) m=1
- 2. (7 точки) $1 \le n, m \le 10$
- 3. (17 точки) $1 \le n, m \le 18$

```
4. (17 точки) 1 \le n \le 30, 1 \le m \le 15
```

- 5. (16 точки) $1 \le n, m \le 90$
- 6. (16 точки) $1 \le n \le 300$, $1 \le m \le 15$
- 7. (21 точки) Няма допълнителни ограничения.

Пример

Нека разгледаме следното извикване:

```
solve(3, 2, {{1, 2, 3}, {2, 1, 3}})
```

За този пример размерът на пермутацията $p \in 3$ и имаме следните 2 разделяния:

- 123
- 213

Тази функция трябва да върне 4, защото има само четири пермутации p, от които могат да се получат тези разделяния:

- 123
- 132
- 213
- 231

Локален грейдър

Локалният грейдър чете входа в следния формат:

- ред 1: *n m*
- ullet ред 2+i: s[i][0] s[i][1] \dots s[i][n-1] за всяко $0 \leq i < m$

и извежда резултата от извикването на функцията solve със съответните параметри.