Measuring and Analyzing DoS Flooding Attacks

Amir Farhat Sam DeLaughter Karen Sollins

Setup

- Flooding DoS experiments
- 144 experiments (5 trials each), 354GB of data
- → Difficult to collect data, unwieldy to manage
- ⇒ We developed a <u>toolkit</u> for this

Design Goals

- → Low-overhead instrumentation via packet captures
 - ◆ Get 3% CPU and 0.5% memory utilization in the worst case
- → High performance and automated where possible
 - Decoding and transforming packet captures
 - Grouping experiments for analysis

Toolkit Design

Next

Capture Decoding Times

Experiment Group Storage Sizes

Read Query Times

Next

Capture Decoding Times

Experiment Group Storage Sizes

Read Query Times

	Storage Space (% of Total Storage)		
<u>Table</u> <u>Name</u>	<u>PostgreSQL</u>		<u>ClickHouse</u>
Table A	1,39	4 MB (99.7%)	207 MB (99.9%)
Table B	4	MB (< 0.5%)	135 KB (< 0.01%)
Table C	32	KB (< 0.01%)	945 B (< 0.01%)
Table D	32	KB (< 0.01%)	3 KB (< 0.01%)
Table E	32	KB (< 0.01%)	357 B (< 0.01%)
Table F	32	KB (< 0.01%)	382 B (< 0.01%)
Table G	32	KB (< 0.01%)	569 B (< 0.01%)
Table H	24	KB (< 0.01%)	1 KB (< 0.01%)

Reduction in Storage (%)

Next

Capture Decoding Times

Experiment Group Storage Sizes

Read Query Times

Conclusion

- Packet capture works
 - Low overhead: 3% CPU and 0.5% memory utilization
 - Minimally affects experiment results
- But it introduces complexity in processing
 - Introduces decoding and transformation stages
 - Decoding stage is a bottleneck, 6+ mins for 1.5 min attack
 - We need faster but still flexible packet capture decoders
- ClickHouse is a fantastic choice for grouping experiments
 - Fast writes and reads
 - Saves 85%+ in storage
- Code and analysis are <u>publically available</u>