INSA Toulouse, Applied Mathematics department Supplementary material to J. Monnier's course

Symmetric case: connection between energy minimisation and model equation

Exercice 0.1 Let $f \in L^2(\Omega)$, we consider the functional $j : V = H_0^1(\Omega) \to \mathbb{R}$ defined as follows:

$$j(v) = \frac{1}{2} \int_{\Omega} \|\nabla v\|^2 dx - \int_{\Omega} f v dx$$

We seek to solve the following minimization problem:

$$\inf_{u \in V} j(u)$$

Comments. It will be shown that this functional represents the energy of a system at equilibrium.

In practice, the system may correspond to the modeling of an elastic membrane under the external force f, or the modeling of purely diffusive phenomena such as a temperature or a chemical specie and so on.

1) a) Show that the 1st order necessary optimality condition (the Euler equation) of the optimization problem above reads as:

$$\int_{\Omega} \nabla u \nabla v dx = \int_{\Omega} f v dx \quad \forall v \in H_0^1(\Omega)$$

- b) Note that the Sobolev space $H^1(\Omega)$ is the natural energy space for this linear second order elliptic model.
- c) Deduce that this functional j(u) represents the energy at equilibrium of a system modeled by the equation above.
 - 2) Write the classical form of the weak form equation above.
 - 3) Prove that the energy functional is strictly convex in V.

Correction.

1) The necessary optimality condition (Euler's equation) reads: j'(u).v = 0

for all $v \in V$, hence the result.

- 2) The classical form of the model is: $-\Delta u = f$ in Ω + homogeneous Dirichlet condition on $\partial\Omega$.
 - 3) We have: $\forall (u, v) \in V \times V, u \neq v$,

$$(j'(u) - j'(v), u - v) = \|\nabla(u - v)\|_{L^2}^2 > 0$$

hence the result.

Exercice 0.2 Connection with the numerical solver.

Let us consider the same BVP as in the previous exercise.

- 1) After discretization using a FEM, what numerical solver (what algorithm) would you use to solve this minimization problem?
- 2) What algorithm would you use to solve the linear system corresponding to the variational formulation?

Correction.

- 1) The functional $j(\cdot)$ is strictly convex hence the adequate algorithm to minimize it, is the conjugated gradient algorithm, preferably with preconditioning.
- 2) The variational formulation of the problem leads to a bilinear form V-coercitive, symmetrical. The corresponding FE matrix (the rigidity matrix) is sparse, symmetric positive define.

The right numerical solver to employ may be the same as in the previous question: it is the conjugated gradient algorithm with preconditioning.

Indeed, in large dimension, it is the most performant method in the present context: sparse, symmetric positive define linear system. Recall that this solver consists to minimize the corresponding energy j...