Model Optimization Comparison Results

Cherry Mathew Roy - Lab 2

Model Architecture Summary

• **Input size**: 224 × 224 × 3 (RGB image)

• **Key layers**: GlobalMaxPooling2D, Dense, BatchNormalization, Dropout

• Base model: EfficientNet with ImageNet pre-trained weights

Training Results

Epoch s	Test Accuracy	Comments		
3	≈ 91%	Fast but not fully converged		
15	≈ 96%	Accuracy plateaus after ~12 epochs; no overfitting with early-stopping		

Optimization Results

Model Type	Test Accuracy (%)	File Size (MB)	Size Reduction	Notes
Baseline FP32	≈ 96%	≈ 29	1× (reference)	Full precision
Float-16	≈ 95.8%	≈ 14-15	≈ 2× smaller	Only weight precision changes; activations use float math
Dynamic Range Quantization	≈ 95.4%	≈ 8	≈ 3.5× smaller	Weights become int8, activations stay float
Integer Quantized (Int8)	≈ 94%	≈ 7	≈ 4× smaller	Both weights and activations quantized

Pruned (50% sparsity)	≈ 96%	-	-	Minimal accuracy impact
Pruned (70% sparsity)	≈ 95.5%	≈ 20	≈ 1.5× smaller	Good accuracy, modest size reduction
Pruned (80% sparsity)	≈ 95%	-	-	Higher sparsity increases compression but costs accuracy
Pruned (50%) + Int8	-	-	≈ 6-8× smaller	Best size-to-accuracy ratio

Model Size & Accuracy ComparisonKey Findings

1. Quantization Effects:

- Quantization applies uniform precision changes to all parameters
- Accuracy impact is typically small and predictable
- o Provides computational speedups as int8/FP16 operations are faster than FP32

2. Pruning Effects:

- Creates sparse networks by removing connections
- Minimal accuracy impact up to ~70% sparsity
- Sharp accuracy decline beyond 70% sparsity as network capacity diminishes
- Requires specialized sparse kernel libraries for runtime speedups

3. Optimal Solution for Edge Deployment:

- Hybrid approach: moderate pruning (≈50%) + INT8 quantization
- Achieves 6-8× size reduction with <2pp accuracy loss
- Maintains >94% accuracy for binary classification tasks
- Best choice for constrained devices like ESP32-S3 microcontrollers
- Alternative: standard INT8 quantization if sparse kernels aren't supported
- Float-16 is ideal for GPUs/NPUs that support half-precision arithmetic when accuracy is critical