Schwimmbad (2) * (B_602)

wasser zwischen 500 µg/L und 1200 µg/L betragen.

wasser zwischen 500 µg/L und 1200 µg/L betragen.

Ein quaderförmiges Becken mit den Abmessungen 25 m \times 10 m \times 1,8 m ist bis zum Rand mit Wasser gefüllt. In diesem Wasser befinden sich 0,5 kg freies Chlor.

1) Überprüfen Sie nachweislich, ob die obige Verordnung eingehalten wird.

[0/1 P.]

In dieser Verordnung wird die Menge an Wasser, die pro Stunde ausgetauscht werden muss, als sogenannter Förderstrom Q bezeichnet.

Für eine bestimmte Bauart von Schwimmbecken gilt:

$$Q = \frac{A}{f \cdot b} + 3 \cdot n$$

A ... Wasserfläche

 $n \dots$ Anzahl der Benutzerplätze ($n \ge 1$)

Q ... Förderstrom

f, b ... positive Parameter

2) Kreuzen Sie die zutreffende Aussage an. [1 aus 5]

[0/1 P.]

Der Förderstrom Q ist direkt proportional zu n.	
Der Förderstrom Q verdoppelt sich, wenn A verdoppelt wird.	
Der Förderstrom Q wird kleiner, wenn b größer wird.	
Der Förderstrom Q ist indirekt proportional zu f.	
Der Förderstrom Q verdoppelt sich, wenn b halbiert wird.	

- c) Die Aufenthaltsdauer der Gäste im Saunabereich eines Thermalbads kann als annähernd normalverteilt angenommen werden. In der nachstehenden Abbildung 1 ist die zugehörige Verteilungsfunktion *F* dargestellt.
 - 1) Zeichnen Sie in Abbildung 2 den Graphen der zugehörigen Dichtefunktion f ein. [0/1 P.]

Abbildung 2:

Die Aufenthaltsdauer der Gäste in einem Erlebnisbad ist annähernd normalverteilt mit dem Erwartungswert μ = 5,8 h und der Standardabweichung σ = 1,2 h. Für eine Stichprobe von 9 Gästen wird der Stichprobenmittelwert der Aufenthaltsdauer untersucht.

2) Berechnen Sie die Wahrscheinlichkeit, dass dieser Stichprobenmittelwert im Zeitintervall [5; 6] liegt. [0/1 P.]

Alle Lösungen

Lösung: Schwimmbad (2) * (B_602)

a1)
$$A = \int_{1}^{8} w(x) dx + \int_{8}^{16} f(x) dx - \int_{4}^{12} p(x) dx$$

- a2) Steigung der Funktion w im Punkt T: w'(8) = 0.25Steigung der Funktion f: $\frac{8-6}{16-8} = 0.25$ Die beiden Steigungen sind gleich.
- a3) $\int_{1}^{8} \sqrt{(1 + (w'(x))^{2})} dx + \sqrt{8^{2} + 2^{2}} = 15,938...$ Die Länge beträgt rund 15,94 m.

- a1) Ein Punkt für das richtige Aufstellen der Formel.
- a2) Ein Punkt für das richtige Zeigen.
- a3) Ein Punkt für das richtige Berechnen der Länge.
- a4) Ein Punkt für das richtige Einzeichnen des Graphen der Funktion q.

b1)
$$\frac{5\cdot 10^8}{25\cdot 10\cdot 1,8\cdot 1000}\,\mu\text{g/L} = 1\,111,1...\,\mu\text{g/L}$$
 Die Verordnung wird eingehalten.

b2)

Der Förderstrom Q wird kleiner, wenn b größer wird.	\times

c1)

Im Hinblick auf die Punktevergabe ist es erforderlich, dass das Maximum an der Stelle 4 liegt und die Kurve die Form einer Gauß'schen Glockenkurve hat.

c2)
$$\overline{X}$$
 ... Aufenthaltsdauer in Stunden Normalverteilung mit $\mu=5,8$ und $\frac{\sigma}{\sqrt{n}}=\frac{1,2}{\sqrt{9}}=0,4$ $P(5 \le \overline{X} \le 6)=0,6687...$

Die Wahrscheinlichkeit beträgt rund 66,9 %.