Návrh analogových integrovaných obvodů Ústav mikroelektroniky	Jméno Tomáš Vavrinec		ID 240893	
FEKT VUT v Brně	Ročník	Obor MET	Skupina	
Název zadání 4. Dvoustupňový zesilovač				

ZADÁNÍ ÚLOHY

Navrhněte dvoustupňový operační zesilovač se vstupními tranzistory typu NMOS podle obr. 1, který bude navržen pro tyto vstupní parametry s CL = 10 pF.

Tabulka 1: Požadované parametry

parametr	hodnota	Vypočítané	Simulace
zesílení (A_{u0})	≥ 60 dB		
šířka pásma (GBW)	$\geq 10 \text{ MHz}$		
fázová rezerva (PM)	≥ 60°	60°	
amplitudová rezerva (AM)	- dB	Nepočítá se	
rychlost přeběhu $(SR)^*$	$\geq 10 \text{ V/}\mu\text{s}$		
systematický ofset (U_{OFF})	$\leq 500 \; \mu V$	0	
spotřeba $(P_{\rm diss})$	$-\mathrm{mW}$		
vstupní napěťový rozsah (ICMR)	- V		
výstupní napěťový rozsah (OVS)	- V		

^{*} pro nástupnou i sestupnou hranu

Vypočítejte a následně simulací zjistěte dosažené parametry z tab. 1. Zobrazte SPICE Output log s parametry všech tranzistorů a vložte jej do protokolu. Zkontrolujte především gm vstupních tranzistorů a gm7, zda odpovídá výpočtu. Dále vložte do protokolu simulační schémata a výstupy simulací ukazující odsimulované hodnoty. orovnejte výsledky s ručními výpočty - vytvořte tabulku odsimulovaných a vypočítaných parametrů (viz. Tab. 1 - stejná bude v závěru).

Obr. 1: Schéma zesilovače

1 Vypracování

1.1 Zesilovač s odporovou zátěží

Jako první určíme proud I_d , to uděláme dvěma způsoby, podle požadovaného SR a podle požadovaného GBW a vybereme ten větší.

Pro oba výpočty budeme potřebovat určit kompenzační kapacitu C_c , kterou určíme ze zadané kapacity na výstupu jako $C_C = 0.3 \cdot C_L = 3[pF]$.

Podle SR

$$I_d = SR \cdot C_L = 10\mu \cdot 3p = 30[\mu A]$$

Podle GBW

$$I_d = GBW \cdot U_{OV} \cdot \pi \cdot C_L = 10\mu \cdot 0.2 \cdot \pi \cdot 3p = 18.84[\mu A]$$

Proud tedy bude $I_{d1} = 30[\mu A]$.

Dále můžeme určit rozměry tranzistorů M_1 až M_5 , s tím že $I_{dM3}=2\cdot I_{d1}$. Také budeme muset zvolit napětí U_{OV} , která jsme s ohledem na pracovní rozsah už v minulém kroku zvolili jako $U_{OV}=0.2[V]$. Délku tranzistoru L zvolím s ohledem na parametr λ $L=2[\mu m]$.

$$W_{M1} = W_{M2} = L \cdot \frac{2 \cdot I_{d1}}{K P_N \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 30\mu}{200\mu 0.2^2} = 15[\mu m]$$

$$W_{M3} = L \cdot \frac{2 \cdot I_{d1}}{K P_N \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 60\mu}{200\mu 0.2^2} = 30[\mu m]$$

$$W_{M4} = W_{M5} = L \cdot \frac{2 \cdot I_d}{K P_P \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 30\mu}{50\mu 0.2^2} = 60[\mu m]$$

Dále můžeme určit proud výstupním stupněm jako desetinásobek proudu diferenčním stupněm, tedy $I_{dM7} = 300[\mu A]$, z čehož můžeme určit rozměry tranzistorů M6 až M_7 .

$$W_{M6} = L \cdot \frac{2 \cdot I_d}{K P_N \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 300\mu}{200\mu 0.2^2} = 150[\mu m]$$

$$W_{M7} = L \cdot \frac{2 \cdot I_d}{K P_P \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 300\mu}{50\mu 0.2^2} = 600[\mu m]$$

Tranzistor M_8 zvolíme třetinový oproti tranzistoru M_3 , abychom šetřili proudem, tedy $L = 2[\mu m]W = 10[\mu m]$ a zbývá určit jen rezistor R_1 jako:

$$R_1 = \frac{U_{CC} - (U_{OV} + U_{TH})}{I_{dM3}} = \frac{1.8 - (0.2 + 0.4)}{20\mu} = 60[k\Omega]$$

Zesílení bychom mohli určit jako:

$$\frac{A_{U0} = A_1 \cdot A_2 = g_{m1} \cdot R_{01} \cdot g_{m6} \cdot R_{02} =}{\frac{2 \cdot I_{D1}}{U_{OV}} \frac{\lambda_{M1,2} \cdot I_{M1,2} \cdot \lambda_{M4,5} \cdot I_{M4,5}}{\lambda_{M1,2} \cdot I_{M1,2}} + \frac{2 \cdot I_{D6}}{\lambda_{M4,5} \cdot I_{M4,5}} \frac{\lambda_{M1,2} \cdot I_{M1,2} \cdot \lambda_{M7} \cdot I_{M6}}{U_{OV}} =}{\frac{1}{\lambda_{M7} \cdot I_{M6}}} =$$

$$\frac{2 \cdot 30\mu}{0.2} \frac{\frac{1}{0.0441692 \cdot 30\mu} \cdot \frac{1}{0.0787698 \cdot 30\mu}}{\frac{1}{0.0441692 \cdot 30\mu} + \frac{1}{0.0787698 \cdot 30\mu}} \frac{2 \cdot 30\mu}{0.2} \frac{\frac{1}{0.0441692 \cdot 30\mu} \cdot \frac{1}{0.0441692 \cdot 30\mu}}{\frac{1}{0.0441692 \cdot 30\mu}} = 10326.438$$

V decibelech tedy:

$$A_{U0-dB} = 20 \cdot log_{10}(10326.438) = 80.3[dB]$$

Výsledné SR bychom mohli odhadnout jako:

$$SR = \frac{I_{D-M7}}{C_L} = \frac{300\mu}{10p} = 30[V/\mu s]$$

Obr. 2: Výslední schéma

Spotřebu zesilovače jako:

$$P = I_{IN} \cdot U_{CC} = (I_{D-M3} + I_{D-M6} + I_{D-M8}) \cdot U_{CC} = (300\mu + 60\mu + 20\mu) \cdot 1.8 = 684[\mu W]$$

GBW odhadneme jako:

$$GBW = \frac{I_d}{U_{OV} \cdot \pi \cdot C_L} = \frac{300\mu}{0.2 \cdot \pi \cdot 10p} = 47.8[MHz]$$

rozsah pak odhadneme následovně:

$$U_{OUT-min} = U_{OU7} = 0.2[V] \ U_{OUT-max} = U_{CC} - U_{OV6} = 1.8 - 0.2 = 1.6[V]$$

$$U_{IN-min} = U_{GS5} + U_{OV1} - U_{GS1} = 0.6 + 0.2 - 0.6 = 0.2[V]$$

$$U_{IN-max} = U_{CC} - U_{GS1} - U_{OV3} = 1.8 - 0.6 - 0.2 = 1[V]$$

Z charakteristiky 4 je vidět, že stejnosměrné zesílení víc než splňuje, zesílení přes 78[dB] oproti požadovanému minimu 60[dB].

Obdobně vychází i $GBW \approx 10.2[MHz]$. Přestože GBW splňuje zadání, dalo by se čekat, že bude splněno s větší rezervou vzhledem k odstupu proudu určenému splnění GBW a SR. To je pravděpodobně způsobeno zanedbáním kapacity tranzistoru M_7 , která tak prodlužuje časovou konstantu obvodu a tedy zmenšuje propustné pásmo.

Fázová rezerva vychází $PM=31^{\circ}$, což zadání poměrně výrazně nesplňuje. Jak je ale vidět na časovém průběhu $\frac{5}{2}$ výstup je i přesto téměř úplně stabilní.

Amplitudová rezerva pak vychází na AM = -9.12[dB].

Z provedené **.OP** analýzy plyne hodnota offsetu $U_{OFF} = 12[\mu V]$, což splňuje zadání s řadovou rezervou. Na stejném místě můžeme zjistit i spotřebu obvodu $P_{\text{diss}} = 388.8\mu \cdot 1.8 = 700[\mu W]$.

Obr. 3: .OP analýza obvodu

Name:	m1	m2	m3	m6	m8	m4	m5	m7
Model:	nch	nch	nch	nch	nch	pch	pch	pch
Id	$2.97 \cdot 10^{-5}$	$2.97 \cdot 10^{-5}$	$5.94 \cdot 10^{-5}$	$3.09 \cdot 10^{-4}$	$2.03 \cdot 10^{-5}$	$-2.97 \cdot 10^{-5}$	$-2.97 \cdot 10^{-5}$	$-3.09 \cdot 10^{-4}$
Vgs	$6.48 \cdot 10^{-1}$	$6.48 \cdot 10^{-1}$	$5.82 \cdot 10^{-1}$	$5.82 \cdot 10^{-1}$	$5.82 \cdot 10^{-1}$	$-5.88 \cdot 10^{-1}$	$-5.88 \cdot 10^{-1}$	$-5.90 \cdot 10^{-1}$
Vds	$9.59 \cdot 10^{-1}$	$9.58 \cdot 10^{-1}$	$2.52 \cdot 10^{-1}$	$9.00 \cdot 10^{-1}$	$5.82 \cdot 10^{-1}$	$-5.90 \cdot 10^{-1}$	$-5.90 \cdot 10^{-1}$	$-9.00 \cdot 10^{-1}$
Vbs	$-2.52 \cdot 10^{-1}$	$-2.52 \cdot 10^{-1}$	$0.00 \cdot 10^{0}$					
Vth	$4.59 \cdot 10^{-1}$	$4.59 \cdot 10^{-1}$	$3.83 \cdot 10^{-1}$	$3.82 \cdot 10^{-1}$	$3.83 \cdot 10^{-1}$	$-4.04 \cdot 10^{-1}$	$-4.04 \cdot 10^{-1}$	$-4.04 \cdot 10^{-1}$
Vdsat	$1.56 \cdot 10^{-1}$	$1.56 \cdot 10^{-1}$	$1.54 \cdot 10^{-1}$	$1.56 \cdot 10^{-1}$	$1.56 \cdot 10^{-1}$	$-1.57 \cdot 10^{-1}$	$-1.57 \cdot 10^{-1}$	$-1.57 \cdot 10^{-1}$
Gm	$3.17 \cdot 10^{-4}$	$3.17 \cdot 10^{-4}$	$6.16 \cdot 10^{-4}$	$3.42 \cdot 10^{-3}$	$2.15 \cdot 10^{-4}$	$3.01 \cdot 10^{-4}$	$3.01 \cdot 10^{-4}$	$2.49 \cdot 10^{-3}$
Gds	$5.32 \cdot 10^{-7}$	$5.32 \cdot 10^{-7}$	$1.06 \cdot 10^{-6}$	$1.19 \cdot 10^{-5}$	$3.12 \cdot 10^{-7}$	$2.48 \cdot 10^{-7}$	$2.48 \cdot 10^{-7}$	$2.49 \cdot 10^{-6}$
Gmb	$8.02 \cdot 10^{-5}$	$8.02 \cdot 10^{-5}$	$3.09 \cdot 10^{-4}$	$3.43 \cdot 10^{-3}$	$1.67 \cdot 10^{-4}$	$9.56 \cdot 10^{-5}$	$9.56 \cdot 10^{-5}$	$9.84 \cdot 10^{-4}$
Cbd	$0.00 \cdot 10^{0}$							
Cbs	$0.00 \cdot 10^{0}$							
Cgsov	$1.05 \cdot 10^{-14}$	$1.05 \cdot 10^{-14}$	$1.12 \cdot 10^{-14}$	$1.05 \cdot 10^{-14}$	$7.02 \cdot 10^{-15}$	$4.11 \cdot 10^{-14}$	$4.11 \cdot 10^{-14}$	$4.13 \cdot 10^{-14}$
Cgdov	$1.05 \cdot 10^{-14}$	$1.05 \cdot 10^{-14}$	$2.09 \cdot 10^{-14}$	$1.05 \cdot 10^{-14}$	$1.05 \cdot 10^{-14}$	$4.13 \cdot 10^{-14}$	$4.13 \cdot 10^{-14}$	$4.12 \cdot 10^{-14}$
Cgbov	$9.18 \cdot 10^{-18}$	$9.18 \cdot 10^{-18}$	$9.18 \cdot 10^{-18}$	$9.18 \cdot 10^{-18}$	$1.98 \cdot 10^{-18}$	$1.99 \cdot 10^{-18}$	$1.99 \cdot 10^{-18}$	$1.98 \cdot 10^{-18}$
qgDqVgb	$-2.23 \cdot 10^{-13}$	$-2.23 \cdot 10^{-13}$	$4.56 \cdot 10^{-13}$	$2.12 \cdot 10^{-12}$	$-6.77 \cdot 10^{-13}$	$8.83 \cdot 10^{-13}$	$8.83 \cdot 10^{-13}$	$8.82 \cdot 10^{-12}$
qgDqVdb	$-2.10 \cdot 10^{-13}$	$-2.10 \cdot 10^{-13}$	$-4.24 \cdot 10^{-13}$	$-1.56 \cdot 10^{-12}$	$-1.85 \cdot 10^{-12}$	$-8.01 \cdot 10^{-13}$	$-8.01 \cdot 10^{-13}$	$-8.00 \cdot 10^{-12}$
qgDqVsb	$-2.03 \cdot 10^{-13}$	$-2.03 \cdot 10^{-13}$	$-4.73 \cdot 10^{-13}$	$-1.96 \cdot 10^{-12}$	$-1.56 \cdot 10^{-12}$	$-8.05 \cdot 10^{-13}$	$-8.05 \cdot 10^{-13}$	$-8.01 \cdot 10^{-12}$
qdDqVgb	$-3.92 \cdot 10^{-14}$	$-3.92 \cdot 10^{-14}$	$-1.93 \cdot 10^{-13}$	$-9.56 \cdot 10^{-13}$	$-6.23 \cdot 10^{-14}$	$-7.04 \cdot 10^{-13}$	$-7.04 \cdot 10^{-13}$	$-6.99 \cdot 10^{-12}$
qdDqVdb	$1.01 \cdot 10^{-13}$	$1.01 \cdot 10^{-13}$	$2.59 \cdot 10^{-13}$	$3.77 \cdot 10^{-12}$	$2.01 \cdot 10^{-13}$	$3.98 \cdot 10^{-13}$	$3.98 \cdot 10^{-13}$	$4.02 \cdot 10^{-12}$
qdDqVsb	$-6.16 \cdot 10^{-14}$	$-6.16 \cdot 10^{-14}$	$-6.59 \cdot 10^{-13}$	$-1.77 \cdot 10^{-12}$	$-1.38 \cdot 10^{-13}$	$-1.07 \cdot 10^{-13}$	$-1.07 \cdot 10^{-13}$	$-1.07 \cdot 10^{-12}$

Tabulka 2: Pracovní parametry tranzistorů

Z průběhu na obrázku 5 můžeme odečíst časy bodu deset devadesát pro sestupnou i vzestupnou hranu a spočítat tak SR jako:

$$SR_{rise} = \frac{\Delta_U}{\Delta_t} = \frac{1.617 - 0.175}{354.5n - 183.2n} = 8.42[V/\mu s]$$

$$SR_{fell} = \frac{\Delta_U}{\Delta_t} = \frac{1.584 - 0.161}{1.340\mu - 1.237\mu} = 13.8[V/\mu s]$$

Požadované SR je tedy splněné jen u sestupné hrany, kde je tranzistor M_7 zavřený a celý proud I_{D-M6} je využit na vypití výstupní kapacity.

Obr. 4: .AC analýza výsledného zesilovače

Obr. 5: . \mathbf{TRAN} analýza výsledného zesilovače

Pro určení vstupního a výstupního rozsahu budeme potřebovat dvě různá zapojení. Zapojení pro simulaci vstupního rozsahu najdete na obrázku 6 a pro simulaci vstupního rozsahu 9

Obr. 6: Zapojení pro .DC analýzu vstupního rozsahu

Obr. 7: .DC analýza vstupního rozsahu

Z .DC charakteristiky 7 můžeme odečíst výstupní rozsah ICMR= 0->1.749[V]. Obdobně pak z .DC charakteristiky 10 můžeme odečíst vstupní rozsah OVS= 0.01->1.78[V]

Obr. 8: Odchylka výstupního napětí od vstupního $(U_{IN}-U_{OUT}),$ z průběhu 7

Obr. 9: Zapojení pro .DC analýzu výstupního rozsahu

Obr. 10: .DC analýza výstupního rozsahu s upraveným zobrazením vstupního napětí

Obr. 11: Odchylka výstupního napětí od vstupního $(U_{IN}+U_{OUT}),$ z průběhu ${\color{blue}10}$

2 Závěr

Tabulka 3: Požadované parametry

parametr	hodnota	Vypočítané	Simulace
zesílení (A_{u0})	≥ 60 dB	80.3[dB]	78[dB]
šířka pásma (GBW)	$\geq 10 \text{ MHz}$	47.8[MHz]	10.2[MHz]
fázová rezerva (PM)	≥ 60°	60°	31°
amplitudová rezerva (AM)	- dB	Nepočítá se	-9.12[dB]
rychlost přeběhu $(SR)^*$	$\geq 10 \text{ V/}\mu\text{s}$	$30[V/\mu s]$	$8.42[V/\mu s]$ resp. $13.8[V/\mu s]$
systematický ofset (U_{OFF})	$\leq 500 \; \mu V$	0	$12[\mu V]$
spotřeba $(P_{\rm diss})$	$- \mathrm{mW}$	$684[\mu W]$	$700[\mu W]$
vstupní napěťový rozsah (ICMR)	- V	0.2 - > 1[V]	0 - > 1.749[V]
výstupní napěťový rozsah (OVS)	- V	0.2 - > 1.6[V]	0.01 - > 1.78[V]