

2.4.1 Proposition: Let C be the collection of all intervals of the form $(-\infty, a]$ in \mathbb{R} . Then T(C) = Bor(R).

PROOF! We will prove this by showing Bor(R) & Bor(R) and Bor'(R) = Bor(R); and Flux Bor'(R) = Bor(R); Bor'(R) is $\sigma(e)$ where $\sigma(e)$ is the collection of all luternals of the form $(-\infty, a]$

1) Bor $(R) \subseteq Bor'(R)$ (

given $(a, b) \in Bor(R)$ we construct $(a, b) = (-\infty, b) \cap ((-\infty, a)) = (-\infty, b) \cap (a, \infty) = \lim_{R \to \infty} Bor'(R)$ because Blosedium under complement $= (a, b) \in Bor'(R)$ We can now construct $(a, b) \notin Bor'(R)$

We can now construct (a,b) for as $(a,b) = \bigcup_{n \in \mathbb{N}} (a,b^{-\frac{1}{n}}] \quad \text{where each } (a,r^{-\frac{1}{n}}] \in Bor'(R)$

2)
$$\underline{Bor'(R)} \subseteq \underline{Bor(R)}$$
,

given $\underline{a}(-s,a]$ we can countract:

 $(a,b) \in \underline{Bor(R)} \Rightarrow (a,b)' = (-s,a) \cup [b,b) \in \underline{Bor(R)}$
 $\Rightarrow (-s,a) \in \underline{Bor(R)}$
 $1) + 2) \Rightarrow \underline{Bor'(R)} = \underline{Bor(R)}$