Solutions to Midterm Examination

February 24, 2014

1. Consider a database consisting of the following two tables with obvious meanings

```
course(<u>course_id</u>, course_name, no_credit, capacity), registration(student_id, course_id, grade).
```

Note that the underlined attributes are keys of the tables. Write triggers to impose the constraint that no student can register a course that is not offered by the university (i.e., not recorded in course table). (Assume that no foreign key constraints are enforced in the database.)

One needs to (1) give a list of events that must be monitored for imposing the constraint, and (2) present one trigger for any event in (1). [30]

Solution: To enforce the given constraint, the following events must be monitored:

- INSERT or UPDATE on registration
- DELETE or UPDATE on course

A trigger to monitor the first event is given below.

```
CREASTE TRIGGER foregin_key_on_registration
BEFORE INSERT OR UPDATE ON registration
FOR EACH ROW
DECLARE counter INT
BEGIN
    SELECT COUNT(*) INTO counter
    FROM course
    WHERE course_id = NEW.course_id;

IF (counter < 1 )
    THEN raise_exception('the foreign key constraint violated END;</pre>
```

2. Consider a relation schema R = ABCDE, functional dependencies

```
\begin{array}{c} B \to E \\ E \to A \end{array}
```

 $A \to D$

 $D \to E$

and a decomposition $D = \{AB, BCD, ADE\}$ of R. Is D dependency preserving? Explain. [5]

Solution: Yes, D is dependency preserving. This is because the given set of FDs is equivalent to $F' = \{B \rightarrow A, E \rightarrow A, A \rightarrow D, D \rightarrow E\}$, and F' is dependency preserving with respect to D.

3. Consider the database schema R = ABCDEF, and the following FDs:

$$\begin{array}{l} \mathrm{ABF} \to \mathrm{C} \\ \mathrm{CF} \to \mathrm{B} \\ \mathrm{CD} \to \mathrm{A} \\ \mathrm{BD} \to \mathrm{AE} \\ \mathrm{C} \to \mathrm{F} \\ \mathrm{B} \to \mathrm{F} \end{array}$$

(a) Find a minimal cover of the given set of FDs. Show all steps.

Solution:

i. Right reducing: Replace BD \rightarrow AE with BD \rightarrow A and BD \rightarrow E.

ii. Left reducing: ABF \rightarrow C can be replaced with: AB \rightarrow C while CF \rightarrow B can be replaced with: C \rightarrow B. This is because (1) AB \rightarrow C is entailed by ABF \rightarrow C and B \rightarrow F; and C \rightarrow B is entailed by CF \rightarrow B and C \rightarrow F; (2) AB \rightarrow C entails ABF \rightarrow C and C \rightarrow B entails CF \rightarrow B; and therefore (3) the set AB \rightarrow C, B \rightarrow F is equivalent to ABF \rightarrow C, B \rightarrow F; and C \rightarrow B, C \rightarrow F is equivalent to CF \rightarrow B, C \rightarrow F.

That is, after Left-reducing, we have

$$AB \to C$$

$$C \to B$$

$$CD \rightarrow A$$

$$BD \to A$$

$$BD \to E$$

$$C \to F$$

$$\mathrm{B} \to \mathrm{F}$$

iii. Eliminate redundant FDs: $C \to F$ is entailed by $C \to B$ and $B \to F$, while $CD \to A$ is entailed by $C \to B$ and $BD \to A$. Therefore, a minimal cover is

$$AB \rightarrow C$$

$$\mathrm{C} \to \mathrm{B}$$

$$BD \to A$$

$$BD \to E$$

$$B \to F$$

(b) Construct a join lossless, dependency preserving, and 3NF decomposition of R. [20]

Solution: The 3NF decomposition that corresponds to this minimal cover is $\{ABC, BDAE, BF\}$. Note that BDAE is a super key of R.

4. Consider the database schema R = ABCDE and a set of MVDs $M = \{AB \rightarrow D\}$. Prove or disprove that $D = \{ABE, ABCD\}$ is a join lossless decomposition of R with respect to M. Note that a proof must follow the definitions of the join lossless and MVD while a counter example is sufficient for a disproof. [5]

Solution: D is not a join lossless decomposition of R, as demonstrated in the following counter example. Consider the following table r.

A	В	\mathbf{C}	D	\mathbf{E}
a	b	c1	d	e1
a	b	c2	d	e2

Obviously, r satisfies $M = \{AB \rightarrow D\}$ but $r \neq \pi_{ABE} \bowtie \pi_{ABCD}$ as demonstrated below.

$$\pi_{ABE} \bowtie \pi_{ABCD} = \begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{E} \\ \mathbf{a} & \mathbf{b} & \mathbf{e} 1 \\ \mathbf{a} & \mathbf{b} & \mathbf{e} 2 \end{bmatrix} \bowtie \begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} \\ \mathbf{a} & \mathbf{b} & \mathbf{c} 1 & \mathbf{d} \\ \mathbf{a} & \mathbf{b} & \mathbf{c} 2 & \mathbf{d} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E} \\ \mathbf{a} & \mathbf{b} & \mathbf{c} 1 & \mathbf{d} & \mathbf{e} 1 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} 2 & \mathbf{d} & \mathbf{e} 1 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} 2 & \mathbf{d} & \mathbf{e} 1 \end{bmatrix}$$

5. Consider the following database schema with obvious meanings:

and the following query

(a) Show the unoptimized relational algebra expression that corresponding to the above SQL query. Solution: $\Pi_{course.c_name,prof.p_name}\sigma_{\theta}(prof \bowtie teaching \bowtie course)$

where θ represents $teaching.term = Fall~2007 \land prof.department = cs.$

(b) Draw the optimized query tree (i.e., with all selections and/or projections pushed as far down as possible) for the expression. [20]

Solution:

Where

 θ_1 : term = 'Fall 2007'

 θ_2 : department = 'CS'

 L_1 : p_id, c_code L_2 : p_id, p_name L_3 : c_code, c_name

 L_4 : course.c_name, prof.p_name