Modern Portfolio Theory with Particle Swarm Optimizer

Daniel Carpenter

Overview of Modeling

Model Formulation: Modern Portfolio Theory

Modern Portfolio Theory (MPT) Overview

Pull Stock Data from Yahoo Finance (yfinance)

Prepare data for portfolio choice modeling, including Nominal / Expected / Excess Returns, Variance-Covariance Matrix

Model framework is structurally similar to tribal-liquidity funds, and can easily transition calculation components

Model Formulation: Particle Swarm Optimizer

Minimize the Risk of Portfolio

Feb-23

- Decision Variable: Weights to invest into each stock
- Risk Defined as

$$risk = \sqrt{Weights.VarCov.Weights^T}$$

Optimization Problem:

Minimize: risk

Subject to:

 $\sum_{stock \in StockList} Weights_{stock} = 1$

 $\sum_{stock \in StockList} (Weights_{stock} \times ExpectedReturns_{stock}) \ge minDesiredReturn$

This calculation is for annual returns *

PSO Overcomes Non-Linear Objectives

- 1. Metaheuristic algorithm that emulates organisms, or "particles" moving in swarms
- 2. Helps overcome local minima for non-linear modeling
- 3. Basic idea:
 - Swarm of particles starting random locations
 - Each particle has no understanding of where the overall swarm is headed
 - Each particle only knows where their immediate surrounding environment is headed
 - Collectively will arrive at final set of weights
 - Repeat process n times to better overcome local minima

Above model animation adapted from <u>Machine Learning Mastery</u>

PSO Used to Minimize Risk of Portfolio

- 1. Minimizing Risk involves non-linear objective
- 2. Use PSO algorithm to randomly adjust swarm of stock weights to find the minimum risk portfolio*
- 3. Repeat process **n** times to better overcome local minima

PSO Velocity and Position update equation used for modeling *

PSO Conceptual Process Overview

Individual Simulation Repeated

PSO Velocity Update Equation

 Answer the question: how to determine the "movement" of the portfolios, or particles, upon each iteration

$$V_i^{t+1} = V_i^t + \varphi_1 . r_1(P_i - X_i^t) + \varphi_2 . r_2(P_g - X_i^t)$$
Inertia Cognitive Component Social Component

where
$$r_1, r_2 \sim U(0,1)$$
 and acceleration constants φ_1, φ_2

• Position Update:
$$X_i^{t+1} = X_i^t + V_i^{t+1}$$

PSO Velocity Update Equation

• Answer the question: how to determine the "movement" of the portfolios, or particles, upon each iteration

PSO Velocity Update Parameters

- Parameters that adjust size of movement
 - Acceleration constants: φ_1, φ_2
 - small values limit the movement of the particles
 - large values : tendency to explode toward infinity
 - In general,

$$\varphi_1 + \varphi_2 \le 4$$

Maximum velocity

If
$$v_{ij} > v_{\text{max}}$$
 then $v_{ij} = v_{\text{max}}$ else if $v_{ij} < -v_{\text{max}}$ then $v_{ij} = -v_{\text{max}}$

PSO Velocity Update Parameters

- Parameters that adjust size of movement
 - Inertia weight:

$$V_i^{t+1} = w V_i^t + \varphi_1 . r_1 (P_i - X_i^t) + \varphi_2 . r_2 (P_g - X_i^t)$$

- Scales the previous velocity
- Control search behavior
 - High values → exploration
 - Low values → exploitation

Summary

PSO SWOT Analysis

1

STRENGTHS

Time complexity while increasing investable assets

Highly flexible in portfolio choice modeling Tends to expose in many assets

WEAKNESSES

Stochastic yields differing results each time

_

3

OPPORTUNITIES

Easily can enhance or change modeling approach

Easily integrate machine learning into portfolio choice evaluation

4

THREAT

Could be seen as "black-box" modeling without proper communication

Summary

