Correlations & Bivariate Distribution

Monday. 28 February 2022 11:43

Correlations:

$$C_{or}(x, Y) = P = \frac{Cov(x, Y)}{\overline{o}_{x} \overline{o}_{y}}$$

$$Cov(X,Y) = OxY$$

of: variance of Y

Properties:

P is the cavariance of the Standardization

of Y and Y.

$$X \rightarrow (X - \mu_X)/\sigma_X$$
 $Y \rightarrow (Y - \mu_Y)/\sigma_Y$

P is dimension less.

 $Y \rightarrow (Y - \mu_Y)/\sigma_Y$
 $Y \rightarrow (Y - \mu_Y)/\sigma_Y$

2. Pis dimensionlem.

$$Cov(\tilde{x_i}\tilde{Y}) = Corr(\tilde{x_i}\tilde{Y})$$

3.
$$-1 \le P \le +1$$

 $P = +1$ if and only if $Y = aX + b$ with $a > 0$
 $P = -1$ if and only if $Y = aX + b$ with $a < 0$

Example:

We flip a fair ain 3times.

Y: * of heads in the last 2 flips.

(b)(x)(y)					P(×, Υ)
1	x/Y	б	1	2	P(x;)
-	0	V8	1/8	0	<i>Y</i> 4
	ı	1/g	2/8	18	1 1/2
	2	0	1/8	Va	74
P	(4;)	Yq	1/2	1/4	1 1 = Potal Prof.

Cov
$$(x,y) = 1/4$$
.
 $Vav(x) = 1/2$ $\Rightarrow 5x = 1/2$.
 $Vav(y) = 1/2$ $\Rightarrow 6y = 1/2$.
 $Cov(x,y) = 1/2$.
 $Cov(x,y) = 1/2$.
 $Cov(x,y) = 1/2$.

Two-Dineusional (Birariate) Distributions 2-dim dist: f(x, y) a:, y: > drawn from f'(x1y) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) = 1$ $5_x = \sqrt{v_x}$ $< \sqrt{v_x} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x - y_x)^2 f(x, y) dx dy$ σy= IV4 2 Vy= j= s= s= (y-ky)2f(x,y)dxly. 42= 1 = 5 = x.f(x,y) dxdy-(1y = 100 / 100 y . f(x,y)dx,dy. Cov (K, Y) = Vny = stoo stoo (n- 1/x) (y-/y) of (n, y) drdy. Z=x+y -> Var(Z)= 1/2 (or oz)= 6x + 6y + 26x4 7 = x-y -> Var (7) = 82 - Bxt8, - 25xy

Bivariate Gaussian Distorbution

 $p(x,y|1/x,hy|6|x,6|y|7|xy) = \frac{1}{2\pi\sqrt{6}\sqrt{1-e^2}} \left(\frac{-2^2}{2(1-e^2)}\right)$ Parameters 2\pi\sigma_6\sqrt{1-e^2}

of the Mankian

 $F^{2} = \frac{(x - \mu_{x})^{2}}{\sigma_{x}^{2}} + \frac{(y - \mu_{y})^{2}}{\sigma_{y}^{2}} - 2e^{\frac{(x - \mu_{x})(y - \mu_{y})}{\sigma_{x}^{2}}} \frac{1}{\sigma_{x}^{2}} = \frac{(x - \mu_{x})(y - \mu_{y})}{\sigma_{x}^{2}}$

P = 5xy

Contours in the (x,y) Plane.

_ [2(x,y | hx, hy, ob, oby, oxy) = Constant

- ellipses centered on (x=yx, y=yy)

 $-\text{augle}' \propto \left(-\pi/2 \leq \alpha \leq \pi/2\right)$

 $\tan(2x) = 2P 6x84 = 2 6x4$ $6x^2 - 64^2$ $6x^2 - 64^2$

 $P_1 = (x - \mu_x) \cos x + (y - \mu_y) \sin x$ $P_2 = (x - \mu_x) \cos x + (y - \mu_y) \sin x$

there will be No correlation by P_1 ($\frac{1}{5} = \frac{1}{2} = \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = \frac{1}{5} + \frac{1}{5} = \frac{1}{5} + \frac{1}{5} = \frac{1}$