차례

- 01. 반복문의 필요성과 특성을 이해합니다.
- 02. for문을 사용하여 정해진 횟수만큼 반복하는 방법을 학습합니다.
- 03. while문을 사용하여 조건으로 반복하는 방법을 학습합니다.
- 04. 반복문의 흐름을 제어하는 방법에 대해 이해합니다.

LAB

01. 코드를 줄여보아요

02. 도돌이표

03. n각형 그리기

04. 랜덤 워크 시뮬레이션

05. 범인 찾기 게임

06. 몬드리안 터틀

07. 모든 약수 구하기

08. 최대공약수 구하기

09. 별 그리는 터틀

10. 숫자 맞추기 게임

01. 왜 반복이 중요할까요?

- 루프<u>(loop)</u>
- 동일한 작업을 여러 번 수행할 때 무엇이 더 간결할까?

<u>똑같</u>은 문장 여러 번 쓰기 vs 반복 구조

01. 왜 반복이 중요할까요?

반복 구조를 이용하면 프로그램이 더 간결해집니다.

같은 작업을 여러 번 나열하여 작성

print("방문을 환영합니다!") print("방문을 환영합니다!") print("방문을 환영합니다!") print("방문을 환영합니다!") print("방문을 환영합니다!") 반복 구조를 이용하여 작성한 코드

for i in range(5):
print("방문을 환영합니다!")

02. 횟수 제어 반복-for

• 횟수 제어 반복: 반복의 횟수를 미리 아는 경우에 사용, for 루프

많은 언어에서 횟수 제어 반복 에 for를 키워드로 사용합니다..

02. 횟수 제어 반복-for

예를 들어서 "방문을 환영합니다!" 문장을 5번 반복하여 출력해보겠습니다.

코드

for i in range(5): # 끝에 콜론(:)이 있음 print("방문을 환영합니다.") # 들여쓰기하세요.

실행 결과

방문을 환영합니다. 방문을 환영합니다. 방문을 환영합니다. 방문을 환영합니다. 방문을 환영합니다.

03. range()함수

- range() 함수: 숫자들을 생산하는 공장
- range(5)

03. range()함수

03. range()함수

만약 1부터 시작하여서 5까지 반복하고 싶다면 어떻게 하면 될까요?

실행 결과

12345

03. range()함수

만약 10부터 시작하여서 1까지 반복하고 싶다면 어떻게 하면 될까요?

코드

for i in range(10.0, -1):
 print(i, end=" ")

실행 결과

10987654321

04. 횟수 제어 반복을 좀 더 이해시켜 줄 예제.

1부터 100까지의 합을 구하는 프로그램

1에서 100까지의 자연수의 합을 구하여 출력하는 프로그램을 작성해 봅시다.

실행 결과

1부터 100까지의 합은 5050 입니다.

Sum = Sum + 7

04. 횟수 제어 반복을 좀 더 이해시켜 줄 예제

팩토리얼 계산 프로그램

팩토리얼 n!은 1부터 n까지의 정수를 모두 곱한 것을 의미합니다. 즉, 다음과 같습니다.

n 값을 입력하면 n!를 계산하는 프로그램을 작성해 보세요.

코드

n = int(input("정수를 입력하시오: ")) fact = 1

for a in range(1, n + 1):
 fact = fact * a

print(n, "!은", fact, "이다.")

실행 결과

정수를 입력하시오: 10 10 !은 3628800 이다.

05. 조건 제어 반복-while

- 어떤 조건이 만족되는 동안 반복
- 반복의 횟수는 모르지만, 반복의 조건은 알고 있는 경우에 주로 사용하는 반복

05. 조건 제어 반복-while

05. 조건 제어 반복-while

위의 상황을 프로그램으로 작성해 보면 다음과 같습니다.

```
TE
response = "아니"
while response == "아니":
response = input("엄마, 다됐어? ");
print("먹자")
```

06. 조건 제어 반복을 좀 더 이해시켜 줄 예제

1부터 100까지의 합을 구하는 프로그램

1에서 100까지의 자연수의 합을 구하여 출력하는 프로그램을 작성해 봅시다.

3

코드

```
count = 1
sum = 0
while count <= 100:
    sum = sum + count
    count = count + 1
print("1부터 100까지의 합은",sum,"입니다.")
```

실행 결과

1부터 100까지의 합은 5050 입니다.

06. 조건 제어 반복을 좀 더 이해시켜 줄 예제

코드

password = ""
while password != "pythonisfun":
password = input("암호를 입력하시오: ")
print("로그인 성공")

실행 결과

암호를 입력하시오: idontknow 암호를 입력하시오: 12345678

암호를 입력하시오: pythonisfun

로그인 성공

07. 중첩 반복문

다음과 같이 *'을 이용하여 사각형을 출력하는 프로그램을 작성해 봅시다.

한 줄에 '*'이 10개씩 총 5줄을 출력하여 사각형을 만들겠습니다.

07. 중첩 반복문

다음과 같이 ♥을 이용하여 직각삼각형을 출력하는 프로그램을 작성해 봅시다.

08. 무한 반복

- 반복이 무한히 발생하는 것 = 무한 루프(infinite loop)
- 특정 조건에서 그 무한 반복을 멈추는 것을 생각해줘야 함.

무한 반복을 이용하여 신호등 프로그램을 작성해 느꼈습니다.

코드

sign = True

while sign:

light = input('신호등 색상을 입력하시오: ')
if light == 'blue':
sign = False

print('전진!!')

실행 결과

신호등 색상을 입력하시오: red 신호등 색상을 입력하시오: red 신호등 색상을 입력하시오: blue

전진!!

09. break와 continue

• break : 강제로 반복 중지

실행 결과

신호등 색상을 입력하시오: red 신호등 색상을 입력하시오: red 신호등 색상을 입력하시오: blue 전진!!

09. break와 continue

• continue: 해당 차례를 건너뛰고 새롭게 다음 차례의 반복을 수행

Lab. 코드를 줄여보아요.

Lab. 도돌이표

- 악보에서 반복을 표현할 때 사용하는 기호가 도돌이표입니다.
- 다음 악보를 연주하는 순서를 출력하는 프로그램을 반복문을 이용하여 작성해 봅시다.

연주 순서: A - B - C - D - C - D

Lab. n각형 그리기

• 사용자로부터 정수 n을 입력받아서 한 변의 길이가 100인 정 n각형을 그리는 프로그램을 작성해 보세요.

Lab. 랜덤 워크 시뮬레이션

- 랜덤 워크(random walk) : 수학, 컴퓨터 과학, 물리학 분야에서 임의 방향으로 향하는 연속적인 걸음을 나타내는 수학적 개념
- 랜덤 워크의 성질을 시뮬레이션하는 프로그램을 작성해 봅시다.

생각 1: 프로그램의 순서를 생각해 봅니다.

터틀 그래픽을 사용할 준비 작업

반복할 부분 구조화(터틀이 이동할 위치를 랜덤 값 받기, 터틀 이동)

Lab. 범인 찾기 게임

- 3개의 방 중 한 곳에 숨어 버린 범인을 찾아라!
- 범인이 숨은 방을 맞추면 100점 추가 후 게임 종료.
- 하지만 틀리면 범인은 다른 방에 숨고 10점 감점 후 다시 맞추기.

- 몬드리안 : 현대 추상 미술의 거장, 구성주의 회화의 거장 순수한 점, 선, 면 색채를 이용하여 그림을 그린 것으로 유명
- 터틀 그래픽을 이용하여 선과 면을 사용하여 추상화를 그려보세요.

생각 1: 프로그램의 순서를 생각해봅니다.

터틀 그래픽을 사용할 준비 작업

반복문을 이용하여 사각형의 길이, 위치, 색상 정보를 무작위로 생성

→ 생성된 정보를 이용하여 추상화 그리기 반복

생각 2 : 터틀 그래픽과 랜덤 모듈을 사용하기 위해 import를 한 번에 해 줄 수 있습니다.

import turtle, random

생각 3 : 사각형은 t.forward()와 t.right(90)를 반복하여 그립니다.

생각 4: 사각형의 위칫값은 (-300, 300) 사이의 무작위 정수로 생성합니다. 사각형 한 변의 길이는 10 ~ 300 사이의 무작위 정수로 생성합니다. 그리고 penup()과 pendwon()을 적절히 이용하여 터틀이 깔끔하게 작품활동을 할 수 있도록 도와줍니다.

x = random.randint(-300,300)

y = random.randint(-300,300)

length = random.randint(10,300)

생각 5 : 터틀 그래픽에서 RGB 값을 random()으로 무작위로 생성하여 색을 칠합니다. 색을 칠할 때는 color(), begin_fill(), end_fill()을 이용합니다.

```
r = random.random()
g = random.random()
b = random.random()

t.color(r, g, b)
t.begin_fill()
# 사각형 그리기
t.end_fill()
```

Lab. 모든 약수 구하기

- 약수: 어떤 수를 나누어 떨어지게 하는 수를 그 수의 약수라고 함. 나머지를 '0'으로 하는 수
- 사용자로부터 어떤 자연수를 입력 받아 약수를 모두 출력하는 프로그램을 작성해 보세요.

실행 결과

자연수 입력: 6

1236

Lab. 최대공약수 구하기

- 유클리드 호제법
 - ① x와 y의 최대공약수를 (x. y)라고 나타내기로 함
 - ② a와 b를 자연수라고 하고 a를 b로 나눈 나머지를 r이라고 하면 → (a, b) = (b, r)

• 예: 722와 190의 최대공약수

$$722 \div 190 = 3$$

나머지 152

$$190 \div 152 = 1$$

나머지 38

따라서 722와 190의 최대공약수는 나머지가 0이 될 때의 나눈 수인 38입니다.

Lab. 최대공약수 구하기

math

실행 결과 1

정수1 입력: 190

정수2 입력: 722

두 수의 최대공약수: 38

실행 결과 2

정수1 입력: 3

정수2 입력: 5

두 수는 서로소이다

Lab. 별 그리는 터틀

• 거북이가 별을 그리는 프로그램을 작성해 보겠습니다.

Lab. 숫자 맞추기 게임

• 1에서 100사이의 숫자를 무작위로 컴퓨터가 추출하면 사용자가 그 숫자를 맞추는 게임을 작성해 보겠습니다.

실행 결과

1부터 100 사이의 숫자를 맞추시오

숫자를 입력하시오: 50

낮음!

숫자를 입력하시오: 86

낮음!

:

숫자를 입력하시오: 87

축하합니다. 시도횟수= 3