Bayesian Statistics and Machine Learning Workshop 2023

Introuction to Classification Methods Martín Onetto

1. Questions

- 1. Cómo es el proceso de clasificación?
- 2. Decribir el proceso que se definen las fronteras de decisión para la regresión lineal, logistica, LDA y QDA
- 3. ¿Cómo se podría bayesianizar los métodos vistos?
- 4. ¿Qué cambiaría en los resultados obtenidos?
- 5. ¿Cómo afectaría el número de datos de cada clase a las fronteras de las etiquetas?

1.1. Problems

Gaussians

Simular datos de 3 Gaussianas multivariabdas con $\Sigma = diag(1,1)$ y $\mu_1 = (0,0), \mu_2 = (1,1)$ y $\mu_3 = (-1,-1)$. Cada guassiana ahora representa una clase Y = k con $k \in \{1,2,3\}$

- 1. Armar las fronteras de decisión con cada uno de los métodos vistos.
- 2. Para cada método evalular el Error rate de la clasificación.
- 3. Encontrar la dirección de máxima varianza según el método de Fisher y hacer un plot de las gaussianas sobre esa dirección.

Vowel recognition

Cargar la base de datos vowel.csv que contiene una variable target $y = k \in \{1, ..., 11\}$. Cada y_k corresponde a una vocal estas son:

vowel				vowel		word	
i I E A a: Y	 	heed hid head had hard		0	 	hod hoard hood who'd heard	

Para determinar estas vocales tenemos datos X con dimensión p=10 que corresponden a procesamientos auditivos de diferentes frecuencias de mediciones de voz. Para este conjunto de datos:

- 1. Armar las fronteras de decisión con regresión logistica, LDA y QDA.
- 2. Para cada método evalular el Error rate de la clasificación.
- 3. Encontrar las dos direcciones de máxima varianza según el método de Fisher y hacer un scatter plot de los datos con sus respectivas clases en esas direcciones.
- 4. Para el caso de la regresión logistica, calcular la posterior de los parámetros y su varianza. Con al información de la posterior queremos ver cómo se ve afectada la linea de decisión respeto a usar el máximun likelihoo. Para esto elegir dos clases g_i y g_j y calcular su frontera marginalizando sobre la posterior de β es decir:

$$\log \frac{P(G=i|X)}{P(G=j|X)} = \frac{\int P(G=i|X,\beta)P(\beta|X)d\beta}{\int P(G=j|X,\beta)P(\beta|X)d\beta}$$
(1)

tomar como posterior de β su aproxmiación gaussiana por el método de Laplace.

- 5. Trazar las curvas fronteras entre las dos clases elegidas que resultan de samplear 1000 β^s de la posterior inferida.
- 6. Discutir la diferencia entre considerar la incerteza en los parámetros y no hacerlo.
- 7. Repetir el procedimiento anterior para QDA pero sólo hacer inferencia bayesiana sobre los μ s, es decir seguir estimando cada matriz de covarianza como $\Sigma_k = \frac{1}{N_k p 1} \sum_{i=1}^{N_k} (y_i^k \bar{y}^k) (y_i^k \bar{y}^k)^T.$