Aula do dia 15 de dezembro de 2023

Autor: Rodrigo Bissacot Proença

Transcrito para LaTeXpor: Lucas Amaral Taylor

16 de dezembro de 2023

Relembrando

Se $(x_n)_n$ é uma sequência limitada de números reais, temos que o conjunto de **valores de** aderência de $(x_n)_n$ é não vazio. Ou seja, existe $c \in \mathbb{R}$ tal que ao menos uma subsequência $(x_{n_k})_k$ é convergente e $\lim_{k\to+\infty} x_{n_k} = c$. Sabemos que existem **o maior valor de aderência** e o **menor valor de aderência** denotados por:

$$b = \limsup_{n} x_n \in \mathbb{R}$$

$$a = \liminf_{n} x_n \in \mathbb{R}$$

Respectivamente. Ou seja, todo valor de aderência c de $(x_n)_n$ satisfaz:

$$a \le c \le b$$

Ainda provamos que se:

$$a = \liminf_{n} x_n = \limsup_{n} x_n = b$$

Então, $(x_n)_n$ converge e:

$$\lim_{n \to +\infty} x_n = a = b$$

Conclusão: Se uma sequência limitada $(x_n)_n$ possui um único valor de aderência c, então ela é convergente e o limite é $\lim_{n\to\infty}x_n=c$.

Teorema

Seja K compacto e $f: K \to \mathbb{R}$ contínua e injetora. Então f é um homeomorfismo sobre o conjunto imagem f(K). Ou seja, a função $g: f(K) \to K$ e $f(x) = y \mapsto g(y) = x$ é contínua.

Observação: x está bem definida, pois f é injetora.

Prova

Dado $y_0 \in f(K)$, como $y_0 \in f(K)$, existe um $x_0 \in K$ tal que $f(x_0) = y_0$.

A mostrar: g é contínua em y_0 , como y_0 é um ponto arbitrário. Usaremos a caracterização de continuidade via sequências. Seja $(y_n)_n$ uma sequência em f(K) tal que $\lim_{n\to+\infty}=y_0y_n=y_0$. Temos que provar que:

$$F\lim_{n\to\infty}g(y_n)=g(y_0)$$

Pela revisão que fizemos, basta mostrar que $(g(y_n))_n$ tem um único valor de aderência. Observe que podemos fazer isso, pois $g(y_n) \in K$, $\forall n \in K$ é compacto (limitado e fechado). Logo, $(g(y_n))_n$ é uma sequência limitada.

Seja $(g(y_{n_k}))_k$ subsequência convergente de $(g(y_n))_n$. Se $(g(y_{n_k}))_k$ é convergente, existe $c \in \mathbb{R}$ tal que $\lim_{k \to \infty} g(y_{n_k}) = c$, mas $g(y_{n_k}) := x_{n_k} \in k$, $\forall k \in \mathbb{N}$.

Ou seja, $(x_{n_k})_k$ é uma sequência em $K \to K$ é compacto. Logo, K é fechado e, portanto, $K = \overline{K}$. Como:

$$\lim_{k \to +\infty} g(y_{n_k}) = \lim_{k \to \infty} x_{n_k} = c \implies c \in K$$

Assim,

$$\lim_{n \to \infty} y_n = y_0 = f(x_0) \in f(K) \tag{1}$$

Para a sequência $g(y_n)_n$ temos que, para cada subsequência convergente $(g(y_{n_k}))$ vale $\lim_{k\to\infty}g(y_{n_k})=c\in K$

Ou seja, denotando $g(y_{n_k}) := x_{n_k}, \forall k \in \mathbb{N}$

$$\lim_{k \to \infty} x_{n_k} = c$$

Sabendo que f é contínua, temos:

$$\lim_{k \to +\infty} f(x_{n_k} = f(c))$$

Observação: Dado $y_n \in f(K)$, temos que:

$$\exists ! x_n \in K \text{ tal que } y_n = f(x_n)$$

Continuando...

$$\lim_{y_{n_k}} = f(c)$$

Pela equação 1, temos:

$$f(c) = \lim_{n \to \infty} y_n = y_0 = f(x_0)$$
$$\implies f(c) = f(x_0)$$

Por ser injetora, vem:

$$\therefore c = x_0$$

Observação: novamente, pela equação 1, temos que:

$$x_0 = g(y_0)$$
, pois $f(x_0) = y_0$

Conclusão $y_0 \in f(K) \iff x_o \in K \text{ tal que } f(x_0) = y_0$

Ou seja, $g(y_0) = x_0$.

Se $\lim_{n\to+\infty} y_n = y_0 = f(x_0)$, então toda subsequência convergente $(g(y_n))_n$, converge para $g(y_0)$.

Isso implica que $\liminf_{n} g(y_n) = \limsup_{n} g(y_n) = g(y_0)$

$$\implies \lim_{n \to \infty} g(y_n) = g(y_0)$$

g é contínua em y_0

Exercícios

1. Seja $I\subseteq\mathbb{R}$ um intervalo, e $f:I\to\mathbb{R}$ injetora e contínua. Então ou f é estritamente crescente ou f é estritamente decrescente.

2. Mostre que se $I\subseteq\mathbb{R}$ é um intervalo e $f:I\to\mathbb{R}$ é injetora e contínua. Então f é um homeo sobre a imagem. Ou seja, $g\to I$ e $f(x)=y\mapsto g(y)=x$ é contínua.

Observação: mesmo processo do que foi feito em aula, mas deito para intervalo.

Continuidade uniforme

Definição

 $X\subseteq \mathbb{R}$ e $f:X\to \mathbb{R}$ dizemos que é uniformemente contínua em X quando:

$$\forall \epsilon > 0 , \exists \delta := \delta(\epsilon) > 0$$

Tal que:

$$(x \in X, y \in X \text{ e } |x - y| < \delta) \implies |f(x) - f(x_0)| < \epsilon$$

Exemplo

 $X = \mathbb{R}$, $f : \mathbb{R} \to \mathbb{R}$. Temos que f(x) = ax + b, $a, b \in \mathbb{R}$. Considerando $y, x \in \mathbb{R}$.

$$|f(x) - f(y)| = |ax + b - (ay + b)| = |a| \cdot |x - y|$$

Tomando $a \neq 0$. Dado $\varepsilon > 0$, tomo $\delta = \frac{\epsilon}{a}$; 0. Daí,

$$|f(x) - f(y)| = |a||x - y| < |a| \cdot \delta = |a| \cdot \frac{\delta}{|a|} = \epsilon$$

Logo, f(x) = ax + b é uniformemente contínua

Definição

 $X\subseteq\mathbb{R}$ e $f:X\to\mathbb{R}$. Dizemos f é **Lipschitz** quando existe k>0 tal que:

$$|f(x) - f(y)| \le k \cdot |x - y|, \forall x, y \in X$$

Exercício Mostre que toda função de Lipzchitz é uniformemente contínua.

Observação