_1-feedback-principles

[AMV2 Ch 2]

goal: introduce fundamental uses and properties of feedback

topics:
1°. mathematical models of systems

1! differential equations (DE)

12. transfer functions

13. block diagrams

2° effects of feedback

2! disturbance attenuation

22 unmodeled dynamics

23 reference tracking

* read [AMV2 ch 2.2.5] to learn how positive feedback used in digital systems * Hwo assigned - Live midnight Fri kne will answer questions thru * we will post HW on Fri -> conrect: won't be solved until Man * create video of ipynb -> poly

1º. mathematical models of systems

· we will work with multiple representations of livear carbol systems each has unique, ~ \mmHages & provides

narel insight

1! differential equations

12. transfer functions

13. block diagrams

* what is a control system?

ex: consider on RLC circuit

-> determine the roots of the characteristic polynomial a(s)= Ls2+Rs+/c
- are they in left-or right-

x land into the holders of relate to a tout charact y

* have does input voltage re relate to output charge y? halt place?
1! differential emination 1' differential equation KVL => u = Ri + Lati + -y | * WARMUP PROBLEM | $= R \frac{1}{4}y + L \frac{1}{4} \frac{1}{2}y + \frac{1}{6}y$ 12. transfer function / EC; called the transfer function $u=e^{st}=y=g(s)u=\left(\frac{1}{Ls^2+Rs+c}\right)u$ 2 G(s) 13. block diagram 21 > [9(5) u=R=u+...] Y

time time

no matter what time t you pick

Foct: every solution to (DE) is a linear combination (i.e. sum) of:

- the homogeneous solution (u = 0)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particular solution ($u \neq 0$)

- a particula

Petrousfer function:

(Fam a different perspective, a susten transforms input u to artivity:

(LIT)

lec-fa19 Page

$$\frac{d}{dt}y = s(q(s)e^{st}) \dots \frac{d}{dt}y = s^{n} G(s)e^{st}$$

$$-sobstituting into (DE): (s^{n} + a_{1}s^{n-1} + \dots + a_{n})G(s)e^{st}$$

$$= (b_{1}s^{n-1} + \dots + b_{n})e^{st}$$
so $G(s) = \frac{b_{1}s^{n-1} + \dots + b_{n}}{s^{n} + a_{1}s^{n-1} + \dots + a_{n}} = \frac{b(s)}{a(s)}$ is the transfer function

ex: compute the roots of characteristic polynamial $L s^2 + Rs + 1/c$ $s = -R \pm \sqrt{R^2 - 41/c}$ • are those in left-balf (complex) plane $\{3 \in C \mid Re \ 3 < 0\}$?

-> yee, assuming: R,L,C>0: $R^2 - 41/c < R^2$ so $Re \ s < 0$, i.e. $s \in left-balf$ plane $\{s \in C : Re \ s < 0\}$ $\{s \in C : Re \ s < 0\}$ $\{s \in C : Re \ s < 0\}$ $\{s \in C : Re \ s < 0\}$ $\{s \in C : Re \ s < 0\}$ $\{s \in C : Re \ s < 0\}$ $\{s \in C : Re \ s < 0\}$

summary & synthesis of 1! & 1?:

• exponential input $2(t) = e^{st}$ to linear time-involvant (LTI) system

yields exp. adopt $y(t) = \sum_{k=1}^{\infty} c_k e^{skt} + G(s)e^{st} = u(t)$ $(s_k)^{\infty} = c_k e^{skt}$ $(s_k)^{\infty} = c_k e^{skt}$ (

of characteristic [recall: 5k = 5k + juk then e = k = j]

Advanced particular response to input signal

The case that $lim y(t) \rightarrow g(s)e^{st}$ (when $u(t) = e^{st}$) $lim y(t) \rightarrow g(s)e^{st}$ The what must be true of $\{sk\}_{k=1}^n$?

The Resk of $\{sk\}_{k=1}^n$?

· terminology: -static gain: $u(t) = e^{0 \cdot t} = 1 \Rightarrow y(t) = G(0) = \frac{b_n}{a_n}$ - giver camplex number 3 e C: 13/ is magnitude, 23 is phase $x = re^{y\theta}$ where r=|3|, $\theta=23$ - writing $3 = 8 + j\omega$: 5 = Re3 is the <u>real part</u> $\omega = Re3$ is the <u>imaginary part</u> $ex: given u(t) = \sin \omega t = lmei \omega t$ $ei \omega t = \cos \omega t + j \sin \omega t$ $g(t) = lm([q(j\omega)]e^{i\omega t})$ $= lm([q(j\omega)]e^{i\omega t})$ $= |z| e^{j^2 3}$ $= |G(j\omega)| \sin(\omega t + \angle G(j\omega))$ rult) = ejut = cosut + joinut ~ y(t) = Cq(ju)ejut lmult) = lmejut = ciaut ~ lmylt) = lm(G(ju)ejut) , \rightarrow what happens when $2e(t) = e^{skt}$, $a(s_k) = 0$?

-> what happens when $2(t) = e^{skt}$, $a(s_k) = 0$?

- what does the transfer function tell us?

- " (DE) tell us?

-> same Qis for $2(t) = e^{slt}$, $b(s_l) = 0$ >> sk termed a pole, se termed a zero

 \rightarrow when is it the case that $\lim_{t\to\infty} y(t) \to G(s)e^{st}$ (when $u(t)=e^{st}$)? $t\to\infty$ * what must be true of {sk}k=1? def: say Lt | system is stable if all roots of char. poly.
one in the left-bulf plane, i.e. * Routh (1831-1907) & Hurwitz (1859-1919)

found criteria for stability using only coefficients
(i.e. not the roots) of characteristic polynomial a(s) (roots of a(s) have (if and) (algebraic conditions) ungature real part) (enly if) (algebraic conditions) $\stackrel{\circ}{\Leftrightarrow}$ $\underline{a_1},\underline{a_2}>0$ $\alpha_{1}^{2} + \alpha_{1}^{3} + \alpha_{2}^{2}$ 53+0,52+025+03 $Q_{11}Q_{2}Q_{3}>0$ and $Q_{1}Q_{2}>Q_{3}$ Q1,Q2,Q3,Q4>01 54+ a, 53+ a, 52+ a, 5+ a4 $Q_1 a_2 7 a_3, a_1 a_2 a_3 7 a_1^2 a_4 + a_3^2$

13. block diagrams

(a)
$$G_{yu}(s) = G_2(s)G_1(s)$$

(b)
$$G_{yu}(s) = G_1(s) + G_2(s)$$

(c)
$$G_{yu}(s) = \frac{G_1(s)}{1 + G_1(s)G_2(s)}$$

2: effects of feedback

- o there are many uses & types of feedback; we'll focus on these important cases:
 - 2! disturbance attenuation
 - 22 unmodeled dynamics
 - 23 reference tracking

* read [AMV2 ch 2] to learn about other uses & types of feedback

2! disturbance attenuation [AMV2 Ch 2.3]

o cansider the block diagram: (standard "negative feed back" form)

reference controller disturbance

process, i.e. physical system or plant

process, i.e. physical system or plant

* this diagram is a precise mathematical statement about law signals (->'s) are transformed (II's) ex how does output y relate to external imputs (, v; i.e. find an equation of the form y = Gyr + Gyr v

0 50 M hamm $q_{yv}(s) = \frac{1}{1 + P(s)C(s)}$ 2 notation means "transfer function from vioy" ex: consider first-order prooss $P(s) = \frac{b}{s+a} \iff y+ay=ba$ a cir resistant, wheel friction - lumped einent elements b conversion from force to acceleration capacitor $c = \frac{d}{dt}$ c road slope, head tailwind capacitor $c = \frac{d}{dt}$ -> determine transfer function (gyn when c(s) = kp $Gyy = \frac{P}{1+PC} = \frac{b/sta}{1+bkp/sta}$ * I wanted Gyv as a rational function (i.e. ratio of polynomials)

* Rath-Hurmitz stability criterian (R-H) this system is stable if all roots of charactistic polynomial a(s) = s + (a + bkp) are regative i.e. if - (a +bkp) <0 * R-H constrains values for Kp: • assuming $kp > \frac{-a}{b}$, constant slope N_0 yields $u(t) = u(0)e^{-(a+b)kp}t + Gun(0)N$ $v = N_0 e^{-a}$ y(t) = y(0) e (a+bkp)t + Gyv(0) N $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{5}{\sqrt{2}} = \frac{5$ o'incampaisar, without feel back (kp=0), y= ans -> including proportional control C(s) = kp attenuates distorbance $\left(\frac{b}{a+b}\right)$

$$\left(\frac{b}{a+bkp}<\frac{b}{a}\right)$$

otry proportional -integral control: $v(t) = kpe(t) + k_{I} \int_{0}^{t} e(\tau) d\tau$ $v(t) = kpe(t) + k_{I} e(\tau) d\tau$ v(t) = kpe(t) +

* note: $v = v_0$ constant $\Rightarrow y_0 = G_{yv}(0)v_0 = 0$ \Rightarrow constant disturbance yelds zero steady-state error