Aufgabenblatt 10

Operations Research – Wirtschaftsinformatik – Online

Sommersemester 2023

Prof. Dr. Tim Downie

Sensitivitätsanalyse II: Änderung zu einem Zielfunktionskoeffizienten

Aufgabe 1

Die Simplex-Algorithmus-Tableaus der LP von 1. Aufgabe 9. Blatt sind unten gegeben.

Maximiere
$$z = c_1x_1 + c_2x_2 + c_3x_3$$

$$= 2x_1 - 3x_2 + 4x_3$$
 unter
$$4x_1 - 3x_2 + x_3 \leqslant 3 = b_1$$

$$x_1 + x_2 + x_3 \leqslant 10 = b_2$$

$$2x_2 + x_2 - x_3 \leqslant 10 = b_3$$

$$x_1, x_2, x_3 \geqslant 0.$$

Tab. 0		x_1	x_2	x_3
z	0	-2	3	-4
y_1	3	4	-3	1
y_2	10	1	1	1
y_3	10	2	1	-1

Tab. 1		x_1	x_2	y_1
z	12	14	-9	4
x_3	3	4	-3	1
y_2	7	-3	4	-1
y_3	13	6	-2	1

Tab. 2		x_1	y_2	y_1
z	27.75	7.25	2.25	1.75
x_3	8.25	1.75	0.75	0.25
x_2	1.75	-0.75	0.25	-0.25
y_3	16.5	4.5	0.5	0.5

(a) Wiederholen Sie den Simplex-Algorithmus mit der neuen Zielfunktion $z^{(\text{neu})} = 2x_1 - 3x_2 + 4.1x_3$.

Hinweis, nur die Z-Zeile umfasst änderungen wegen des neuen Koeffizienten.

- (b) x_3 ist eine Basis-Variable der optimale Lösung. Verwenden Sie das Verfahren auf Skriptseiten 67–68, um $z_{\rm (neu)}$ zu bestimmen. Vergleichen Sie Ihre Lösung mit der aus Teil (a).
- (c) Bestimmen Sie den Wertbereich für c_3 , damit die gleiche optimale Basislösung erreicht wird. Geben Sie die entsprechende optimale Lösung $x_{1(\text{neu})}^*$, $x_{2(\text{neu})}^*$, $x_{3(\text{neu})}^*$ und $z_{(\text{neu})}^*$, wenn die Zielfunktion $z_{(\text{neu})}^* = 2x_1 3x_2 + 5x_3$ wäre.
- (d) Bestimmen Sie den Wertbereich für c_2 , damit die gleiche optimale Basislösung erreicht wird. Geben Sie die optimale Lösung, wenn die Zielfunktion $z_{(\text{neu})}^* = 2x_1 2x_2 + 4x_3$ wäre.
- (e) Bestimmen Sie den Wertbereich für c_1 , damit die gleiche optimale Basislösung erreicht wird. Geben Sie die optimale Lösung, wenn die Zielfunktion $z_{\text{(neu)}}^* = 3x_1 3x_2 + 4x_3$ wäre.

1