Эконометрика

с Монте-Карло и эконометрессами

в задачах и упражнениях

Дмитрий Борзых, Борис Демешев 18 ноября 2013 г.

Содержание

1	МНК без матриц и вероятностей	2
2	Парный МНК без матриц	4
3	Многомерный МНК без матриц	9
4	МНК с матрицами и вероятностями	24
5	Метод максимального правдоподобия — общая теория	32
6	Логит и пробит	36
7	Мультиколлинеарность	38
8	Гетероскедастичность	41
9	Ошибки спецификации	44
10	Временные ряды	45
11	SVM	49
12	Деревья и Random Forest	50
13	Линейная алгебра	50
14	Случайные вектора	52
15	Многомерное нормальное и квадратичные формы	55
16	Задачи по программированию	58
17	Устав проверки гипотез	58
\mathbf{T}	odo list	
Ko	осяк. Почему-то книтр внутри solution ругается на доллар	23

1 МНК без матриц и вероятностей

- 1. Верно ли, что для любых векторов $a=(a_1,\ldots,a_n)$ и $b=(b_1,\ldots,b_n)$ справедливы следующие равенства?
 - (a) $\sum_{i=1}^{n} (a_i \bar{a}) = 0$
 - (b) $\sum_{i=1}^{n} (a_i \bar{a})^2 = \sum_{i=1}^{n} (a_i \bar{a})a_i$
 - (c) $\sum_{i=1}^{n} (a_i \bar{a})(b_i \bar{b}) = \sum_{i=1}^{n} (a_i \bar{a})b_i$
 - (d) $\sum_{i=1}^{n} (a_i \bar{a})(b_i \bar{b}) = \sum_{i=1}^{n} a_i b_i$

да, да, да, нет

- 2. При помощи метода наименьших квадратов найдите оценку неизвестного параметра θ в следующих моделях:
 - (a) $y_i = \theta + \theta x_i + \varepsilon_i$
 - (b) $y_i = \theta \theta x_i + \varepsilon_i$
 - (c) $\ln y_i = \theta + \ln x_i + \varepsilon_i$
 - (d) $y_i = \theta + x_i + \varepsilon_i$
 - (e) $y_i = 1 + \theta x_i + \varepsilon_i$
 - (f) $y_i = \theta/x_i + \varepsilon_i$
 - (g) $y_i = \theta x_{i1} + (1 \theta) x_{i2} + \varepsilon_i$
- 3. Покажите, что для моделей $y_i = \alpha + \beta x_i + \varepsilon_i$, $z_i = \gamma + \delta x_i + v_i$ и $y_i + z_i = \mu + \lambda x_i + \xi_i$ МНК-оценки связаны соотношениями $\hat{\mu} = \hat{\alpha} + \hat{\gamma}$ и $\hat{\lambda} = \hat{\beta} + \hat{\delta}$.
- 4. Найдите МНК-оценки параметров α и β в модели $y_i = \alpha + \beta y_i + \varepsilon_i$.
- 5. Рассмотрите модели $y_i = \alpha + \beta(y_i + z_i) + \varepsilon_i$, $z_i = \gamma + \delta(y_i + z_i) + \varepsilon_i$.
 - (a) Как связаны между собой alpha и gamma?
 - (b) Как связаны между собой beta и delta?

 $\hat{\alpha}+\hat{\gamma}=0$ и $\hat{\beta}+\hat{\delta}=1$

- 6. Как связаны МНК-оценки параметров α, β и γ, δ в моделях $y_i = \alpha + \beta x_i + \varepsilon_i$ и $z_i = \gamma + \delta x_i + v_i$, если $z_i = 2y_i$.
- 7. Для модели $y_i=\beta_1x_{i1}+\beta_2x_{i2}+\varepsilon_i$ решите условную задачу о наименьших квадратах: $Q(\beta_1,\beta_2):=\sum_{i=1}^n(y_i-\beta_1x_{i1}-\beta_2x_{i2})^2\to\min_{\beta_1+\beta_2=1}$
- 8. Даны n пар чисел: $(x_1, y_1), \ldots, (x_n, y_n)$. Мы прогнозируем y_i по формуле $\hat{y}_i = \hat{\beta} x_i$. Найдите $\hat{\beta}$ методом наименьших квадратов. $\hat{\beta} = \sum_{x_i y_i / \sum x_i^2} x_i^2$
- 9. Даны n чисел: y_1, \ldots, y_n . Мы прогнозируем y_i по формуле $\hat{y}_i = \hat{\beta}$. Найдите $\hat{\beta}$ методом наименьших квадратов. $\hat{\beta} = \bar{y}$
- 10. Даны n пар чисел: $(x_1, y_1), \ldots, (x_n, y_n)$. Мы прогнозируем y_i по формуле $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$. Найдите $\hat{\beta}_1$ и $\hat{\beta}_2$ методом наименьших квадратов. $\hat{\beta}_2 = \sum_{(x_i \bar{x})(y_i \bar{y})/\sum (x_i \bar{x})^2, \; \hat{\beta}_1 = \bar{y} \hat{\beta}_2 \bar{x}}$
- 11. Даны n пар чисел: $(x_1, y_1), \ldots, (x_n, y_n)$. Мы прогнозируем y_i по формуле $\hat{y}_i = 1 + \beta x_i$. Найдите $\hat{\beta}$ методом наименьших квадратов. $\hat{\beta} = \sum x_i (y_i 1) / \sum x_i^2$
- 12. Перед нами два золотых слитка и весы, производящие взвешивания с ошибками. Взвесив первый слиток, мы получили результат 300 грамм, взвесив второй слиток 200 грамм, взвесив оба слитка 400 грамм. Оцените вес каждого слитка методом наименьших квадратов. $(300 \hat{\beta}_1)^2 + (200 \hat{\beta}_2)^2 + (400 \hat{\beta}_1 \hat{\beta}_2)^2 \rightarrow \min$
- 13. Аня и Настя утверждают, что лектор опоздал на 10 минут. Таня считает, что лектор опоздал на 3 минуты. С помощью мнк оцените на сколько опоздал лектор. $2 \cdot (10 \hat{\beta})^2 + (3 \hat{\beta})^2 \rightarrow \min$

14. Функция f(x) дифференциируема на отрезке [0;1]. Найдите аналог МНК-оценок для регрессии без свободного члена в непрерывном случае. Более подробно: найдите минимум по $\hat{\beta}$ для функции

$$Q(\hat{\beta}) = \int_0^1 (f(x) - \hat{\beta}x)^2 dx$$
 (1)

- 15. Есть двести наблюдений. Вовочка оценил модель $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x$ по первой сотне наблюдений. Петечка оценил модель $\hat{y} = \hat{\gamma}_1 + \hat{\gamma}_2 x$ по второй сотне наблюдений. Машенька оценила модель $\hat{y} = \hat{m}_1 + \hat{m}_2 x$ по всем наблюдениям.
 - (a) Возможно ли, что $\hat{\beta}_2 > 0$, $\hat{\gamma}_2 > 0$, но $\hat{m}_2 < 0$?
 - (b) Возможно ли, что $\hat{\beta}_1 > 0$, $\hat{\gamma}_1 > 0$, но $\hat{m}_1 < 0$?
 - (с) Возможно ли одновременное выполнение всех упомянутых условий?

да, возможно. Два вытянутых облачка точек. Первое облачко даёт первую регрессию, второе — вторую. Прямая, соединяющая центры облачков, — общую.

- 16. Вася оценил модель $y=\beta_1+\beta_2d+\beta_3x+\varepsilon$. Дамми-переменная d обозначает пол, 1 для мужчин и 0 для женщин. Оказалось, что $\hat{\beta}_2>0$. Означает ли это, что для мужчин \bar{y} больше, чем \bar{y} для женщин? Нет. Коэффициенты можно интерпретировать только «при прочих равных», т.е. при равных x. Из-за разных x может оказаться, что у мужчин \bar{y} меньше, чем \bar{y} для женщин.
- 17. Какие из указанные моделей можно представить в линейном виде?
 - (a) $y_i = \beta_1 + \frac{\beta_2}{x_i} + \varepsilon_i$
 - (b) $y_i = \exp(\beta_1 + \beta_2 x_i + \varepsilon_i)$
 - (c) $y_i = 1 + \frac{1}{\exp(\beta_1 + \beta_2 x_i + \epsilon_i)}$
 - (d) $y_i = \frac{1}{1 + \exp(\beta_1 + \beta_2 x_i + \varepsilon_i)}$
 - (e) $y_i = x_i^{\beta_2} e^{\beta_1 + \varepsilon_i}$
- 18. У эконометриста Вовочки есть переменная 1_f , которая равна 1, если i-ый человек в выборке женщина, и 0, если мужчина. Есть переменная 1_m , которая равна 1, если i-ый человек в выборке мужчина, и 0, если женщина. Какие \hat{y} получатся, если Вовочка попытается построить регрессии:
 - (a) y на константу и 1_f
 - (b) y на константу и 1_m
 - (c) y на 1_f и 1_m без константы
 - (d) y на константу, 1_f и 1_m
- 19. У эконометриста Вовочки есть три переменных: r_i доход i-го человека в выборке, m_i пол (1 мальчик, 0 девочка) и f_i пол (1 девочка, 0 мальчик). Вовочка оценил две модели

Модель А $m_i = \beta_1 + \beta_2 r_i + \varepsilon_i$

Модель В $f_i = \gamma_1 + \gamma_2 r_i + u_i$

- (а) Как связаны между собой оценки $\hat{\beta}_1$ и $\hat{\gamma}_1$?
- (b) Как связаны между собой оценки $\hat{\beta}_2$ и $\hat{\gamma}_2$?

Оценки МНК линейны по объясняемой переменной. Если сложить объясняемые переменные в этих двух моделях, то получится вектор из единичек. Если строить регрессию вектора из единичек на константу и r, то получатся оценки коэффициентов 1 и 0. Значит, $\hat{\beta}_1 + \hat{\gamma}_1 = 1$, $\hat{\beta}_2 + \hat{\gamma}_2 = 0$

- 20. Эконометрист Вовочка оценил линейную регрессионную модель, где y измерялся в тугриках. Затем он оценил ту же модель, но измерял y в мунгу (1 тугрик = 100 мунгу). Как изменятся оценки коэффициентов? Увеличатся в 100 раз
- 21. Возможно ли, что при оценке парной регрессии $y = \beta_1 + \beta_2 x + \varepsilon$ оказывается, что $\hat{\beta}_2 > 0$, а при оценке регрессии без константы, $y = \gamma x + \varepsilon$, оказывается, что $\hat{\gamma} < 0$? да
- 22. Эконометрист Вовочка оценил регрессию y только на константу. Какой коэффициент R^2 он получит? $R^2 = 0$
- 23. Эконометрист Вовочка оценил методом наименьших квадратов модель 1, $y = \beta_1 + \beta_2 x + \beta_3 z + \varepsilon$, а затем модель 2, $y = \beta_1 + \beta_2 x + \beta_3 z + \beta_4 w + \varepsilon$. Сравните полученные ESS, RSS, TSS и R^2 . $TSS_1 = TSS_2$, $R^2 \geqslant R^2$, $RSS_2 \geqslant ESS_1$, $RSS_2 \leqslant RSS_1$
- 24. Создайте набор данных с тремя переменными y, x и z со следующими свойствами. При оценке модели $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x$ получается $\hat{\beta}_2 > 0$. При оценке модели $\hat{y} = \hat{\gamma}_1 + \hat{\gamma}_2 x + \hat{\gamma}_3 z$ получается $\hat{\gamma}_2 < 0$. Объясните принцип, руководствуясь которым легко создать такой набор данных.
- 25. У меня есть набор данных с выборочным средним \bar{y} и выборочной дисперсией s_y^2 . Как нужно преобразовать данные, чтобы выборочное среднее равнялось 7, а выборочная дисперсия 9? $y_i^* = 7 + 3(y_i \bar{y})/s_y$

2 Парный МНК без матриц

- 1. Рассмотрим модель $y_t = \beta_1 + \beta_2 \cdot t + \varepsilon_t$, где ошибки ε_t независимы и равномерны на [-1;1]. С помощью симуляций на компьютере оцените и постройте график функции плотности для $\hat{\beta}_1$, $\hat{\beta}_2$, \hat{s}^2 , $\widehat{\text{Var}}(\hat{\beta}_1)$, $\widehat{\text{Var}}(\hat{\beta}_2)$ и $\widehat{\text{Cov}}(\hat{\beta}_1,\hat{\beta}_2)$.
- 2. Пусть $y_i = \mu + \varepsilon_i$, где $\mathbb{E}(\varepsilon_i) = 0$, $\mathrm{Var}(\varepsilon_i) = \sigma^2$, $\mathrm{Cov}(\varepsilon_i, \varepsilon_j) = 0$ при $i \neq j$. Найдите:
 - (a) $\mathbb{E}(\overline{y})$
 - (b) $Var(\overline{y})$
 - (c) $\mathbb{E}(\frac{1}{n}\sum_{i=1}^{n}(y_i-\overline{y})^2)$
 - (d) $\operatorname{Var}(\frac{1}{n}\sum_{i=1}^{n}(y_i-\overline{y})^2)$, если дополнительно известно, что ε_i нормально распределены
- 3. Рассматривается модель $y_i = \beta x_i + \varepsilon_i$, $\mathbb{E}(\varepsilon_i) = 0$, $\mathrm{Var}(\varepsilon_i) = \sigma^2$, $\mathrm{Cov}(\varepsilon_i, \varepsilon_j) = 0$ при $i \neq j$. При каких значениях параметров c_i несмещённая оценка $\hat{\beta} = \frac{\sum_{i=1}^n c_i y_i}{\sum_{i=1}^n c_i x_i}$ имеет наименьшую дисперсию?

$$c_i = c \cdot x_i$$
, где $c \neq 0$

- 4. Пусть $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ и $i = 1, \dots, 5$ классическая регрессионная модель. Также имеются следующие данные: $\sum_{i=1}^5 y_i^2 = 55, \sum_{i=1}^5 x_i^2 = 3, \sum_{i=1}^5 x_i y_i = 12, \sum_{i=1}^5 y_i = 15, \sum_{i=1}^5 x_i = 3$. Используя их, найдите:
 - (a) $\hat{\beta}_1$ и $\hat{\beta}_2$
 - (b) $\operatorname{Corr}(\hat{\beta}_1, \hat{\beta}_2)$
 - (c) TSS
 - (d) ESS
 - (e) RSS
 - (f) R^2
 - (g) $\hat{\sigma}^2$

Проверьте следующие гипотезы:

(a)
$$\begin{cases} H_0: \beta_2 = 2\\ H_a: \beta_2 \neq 2 \end{cases}$$

(b)
$$\begin{cases} H_0: \beta_1 + \beta_2 = 1 \\ H_a: \beta_1 + \beta_2 \neq 1 \end{cases}$$

- 5. Пусть $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ и $i = 1, \dots, 5$ классическая регрессионная модель. Также имеются следующие данные: $\sum_{i=1}^5 y_i^2 = 55, \sum_{i=1}^5 x_i^2 = 2, \sum_{i=1}^5 x_i y_i = 9, \sum_{i=1}^5 y_i = 15, \sum_{i=1}^5 x_i = 2.$ Используя их, найдите:
 - (a) $\hat{\beta}_1$ и $\hat{\beta}_2$
 - (b) $Corr(\hat{\beta}_1, \hat{\beta}_2)$
 - (c) *TSS*
 - (d) ESS
 - (e) RSS
 - (f) R^2
 - (g) $\hat{\sigma}^2$

Проверьте следующие гипотезы:

(a)
$$\begin{cases} H_0: \beta_2 = 2\\ H_a: \beta_2 \neq 2 \end{cases}$$

(b)
$$\begin{cases} H_0: \beta_1 + \beta_2 = 1 \\ H_a: \beta_1 + \beta_2 \neq 1 \end{cases}$$

- 6. Рассмотрите классическую линейную регрессионную модель $y_i = \beta x_i + \varepsilon_i$. Найдите $\mathbb{E}\hat{\beta}$. Какие из следующих оценок параметра β являются несмещенными:
 - (a) $\hat{\beta} = \frac{y_1}{r_1}$
 - (b) $\hat{\beta} = \frac{1}{2} \frac{y_1}{x_1} + \frac{1}{2} \frac{y_n}{x_n}$
 - (c) $\hat{\beta} = \frac{1}{n} \frac{y_1}{x_1} + \ldots + \frac{y_n}{x_n}$
 - (d) $\hat{\beta} = \frac{\overline{y}}{\overline{z}}$
 - (e) $\hat{\beta} = \frac{y_n y_1}{x_n x_1}$

 - $(f) \hat{\beta} = \frac{1}{2} \frac{y_2 y_1}{x_2 x_1} + \frac{1}{2} \frac{y_n y_{n-1}}{x_n x_{n-1}}$ $(g) \hat{\beta} = \frac{1}{n} \frac{y_2 y_1}{x_2 x_1} + \frac{1}{n} \frac{y_3 y_2}{x_3 x_2} + \dots + \frac{1}{n} \frac{y_n y_{n-1}}{x_n x_{n-1}}$ $(h) \hat{\beta} = \frac{1}{n 1} \frac{y_2 y_1}{x_2 x_1} + \frac{y_3 y_2}{x_3 x_2} + \dots + \frac{y_n y_{n-1}}{x_n x_{n-1}}$

 - (i) $\hat{\beta} = \frac{x_1 y_1 + \dots + x_n y_n}{x_1^2 + \dots + x_n^2}$
 - (j) $\hat{\beta} = \frac{1}{2} \frac{y_n y_1}{x_n x_1} + \frac{1}{2n} \frac{y_1}{x_1} + \dots + \frac{y_n}{x_n}$
 - (k) $\hat{\beta} = \frac{1}{2} \frac{y_n y_1}{x_n x_1} + \frac{1}{2} \frac{x_1 y_1 + \dots + x_n y_n}{x_1^2 + \dots + x_n^2}$

 - (l) $\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i \overline{x})(y_i \overline{y})}{\sum_{i=1}^{n} (x_i \overline{x}^2)^2}$ (m) $\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i \overline{x})(\overline{y} y_i)}{\sum_{i=1}^{n} (x_i \overline{x}^2)^2}$
 - (n) $\hat{\beta} = \frac{y_1 + 2y_2 + \dots + ny_n}{x_1 + 2x_2 + \dots + nx_n}$
 - (o) $\hat{\beta} = \frac{\sum_{i=1}^{n} i(y_i \overline{y})}{\sum_{i=1}^{n} i(x_i \overline{x})}$
 - (p) $\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i}$

(q)
$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i - \overline{y}}{x_i - \overline{x}}$$

- 7. Рассмотрите классическую линейную регрессионную модель $y_i = \beta x_i + \varepsilon_i$. Найдите $Var(\beta)$.
 - (a) $\hat{\beta} = \frac{y_1}{r_1}$
 - (b) $\hat{\beta} = \frac{1}{2} \frac{y_1}{x_1} + \frac{1}{2} \frac{y_n}{x_n}$
 - (c) $\hat{\beta} = \frac{1}{n} \frac{y_1}{x_1} + \ldots + \frac{y_n}{x_n}$
 - (d) $\hat{\beta} = \frac{\overline{y}}{\overline{z}}$
 - (e) $\hat{\beta} = \frac{y_n y_1}{x_n x_1}$
 - (f) $\hat{\beta} = \frac{1}{2} \frac{y_2 y_1}{x_2 x_1} + \frac{1}{2} \frac{y_n y_{n-1}}{x_n x_{n-1}}$

 - (g) $\hat{\beta} = \frac{x_1 y_1 + \dots + x_n y_n}{x_1^2 + \dots + x_n^2}$ (h) $\hat{\beta} = \frac{\sum_{i=1}^n (x_i \overline{x})(y_i \overline{y})}{\sum_{i=1}^n (x_i \overline{x}^2)^2}$
 - (i) $\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i \overline{x})(\overline{y} y_i)}{\sum_{i=1}^{n} (x_i \overline{x}^2)^2}$
 - (j) $\hat{\beta} = \frac{y_1 + 2y_2 + \dots + ny_n}{x_1 + 2x_2 + \dots + nx_n}$ (k) $\hat{\beta} = \frac{\sum_{i=1}^n i(y_i \overline{y})}{\sum_{i=1}^n i(x_i \overline{x})}$

 - (l) $\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{r}$
 - (m) $\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i \overline{y}}{r \overline{x}}$
- 8. Рассмотрите классическую линейную регрессионную модель $y_i = \beta \cdot i + \varepsilon_i, i = 1, \dots, n$. Какая из оценок $\hat{\beta}$ и $\tilde{\beta}$ является более эффективной?
 - (a) $\hat{\beta} = y_1$ и $\tilde{\beta} = y_2/2$
 - (b) $\hat{\beta} = y_1 \text{ M } \tilde{\beta} = \frac{1}{2}y_1 + \frac{1}{2}\frac{y_2}{2}$
 - (c) $\hat{\beta} = \frac{1}{n} \frac{y_1}{1} + \ldots + \frac{y_n}{n} \text{ M } \tilde{\beta} = \frac{1 \cdot y_1 + \ldots + n \cdot y_n}{1^2 + \ldots + n^2}$
- 9. На основе 100 наблюдений была оценена функция спроса:

$$\widehat{\ln Q} = 0.87 - 1.23 \ln P$$
(s.e.) (0.04) (0.02)

Значимо ли коэффициент эластичности спроса по цене отличается от -1? Рассмотрите уровень значимости 5%.

10. На основе 100 наблюдений была оценена функция спроса:

$$\widehat{\ln Q} = 2.87 - 1.12 \ln P$$
(s.e.) (0.04)

На уровне значимости 5% проверьте гипотезу $H_0: \beta_{\ln P} = -1$ против альтернативной $H_a:$ $\beta_{\ln P} < -1$. Дайте экономическую интерпретацию проверяемой гипотезе и альтернативе.

11. Используя годовые данные с 1960 по 2005 г., была построена кривая Филлипса, связывающая уровень инфляции Inf и уровень безработицы Unem:

$$\widehat{Inf} = 2.34 - 0.23Unem$$

$$\sqrt{\widehat{Var}(\hat{\beta}_{Unem})} = 0.04, R^2 = 0.12$$

На уровне значимости 1% проверьте гипотезу $H_0: \beta_{Unem} = 0$ против альтернативной $H_a: \beta_{Unem} \neq 0.$

- 12. Пусть $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ и $i = 1, \dots, 18$ классическая регрессионная модель, где $\mathbb{E}(\varepsilon_i) = 0$, $Var(\varepsilon_i) = \sigma^2$. Также имеются следующие данные: $\sum_{i=1}^{18} y_i^2 = 4256$, $\sum_{i=1}^{18} x_i^2 = 185$, $\sum_{i=1}^{18} x_i y_i = 814.25$, $\sum_{i=1}^{18} y_i = 225$, $\sum_{i=1}^{18} x_i = 49.5$. Используя эти данные, оцените эту регрессию и на уровне значимости 5% проверьте гипотезу $H_0: \beta_1 = 3.5$ против альтернативной $H_a: \beta_1 > 3.5$:
 - (а) Приведите формулу для тестовой статистики
 - (b) Укажите распределение тестовой статистики
 - (с) Вычислите наблюдаемое значение тестовой статистики
 - (d) Укажите границы области, где основная гипотеза не отвергается
 - (е) Сделайте статистический вывод
- 13. Рассматривается модель $y_i = \mu + \varepsilon_i$, где $\mathbb{E}(\varepsilon_i) = 0$, $\mathrm{Var}(\varepsilon_i) = \sigma^2$ и $\mathrm{Cov}(\varepsilon_i, \varepsilon_j) = 0$ при $i \neq j$. При каких c_i несмещенная оцека

$$\hat{\mu} = \sum_{i=1}^{n} c_i y_i$$

ИМЕЕТ НАИМЕНЬШУЮ ДИСПЕРСИЮ? Через теорему Гаусса-Маркова или через условную минимизацию, $c_i = 1/n$

- 14. Рассмотрим классическую линейную регрессионную модель, $y_t = \beta \cdot t + \varepsilon_t$. Какая из оценок, $\hat{\beta}$ или $\hat{\beta}'$ является более эффективной?
 - (a) $\hat{\beta} = y_1, \, \hat{\beta}' = y_2/2$
 - (b) $\hat{\beta} = y_1, \, \hat{\beta}' = 0.5y_1 + 0.5\frac{y_2}{2}$
 - (c) $\hat{\beta} = \frac{1}{n} \left(y_1 + \frac{y_2}{2} + \frac{y_3}{3} + \ldots + \frac{y_n}{n} \right), \ \hat{\beta}' = \frac{y_1 + 2y_2 + \ldots + ny_n}{1^2 + 2^2 + \ldots + n^2}$
- 15. Ошибки регрессии ε_i независимы и равновероятно принимают значения +1 и -1. Также известно, что $y_i = \beta \cdot i + \varepsilon_i$. Модель оценивается всего по двум наблюдениям.
 - (a) Найдите закон распределения $\hat{\beta}, RSS, ESS, TSS, R^2$
 - (b) Найдите $\mathbb{E}(\hat{\beta})$, $Var(\hat{\beta})$, $\mathbb{E}(RSS)$, $\mathbb{E}(ESS)$, $\mathbb{E}(R^2)$
 - (c) При каком β величина $\mathbb{E}(R^2)$ достигает максимума?
- 16. Рассмотрим модель с линейным трендом без свободного члена, $y_t = \beta t + \varepsilon_t$.
 - (а) Найдите МНК оценку коэффициента β
 - (b) Рассчитайте $\mathbb{E}(\hat{\beta})$ и $\mathrm{Var}(\hat{\beta})$ в предположениях теоремы Гаусса-Маркова
 - (c) Верно ли, что оценка $\hat{\beta}$ состоятельна?
 - (a) $\hat{\beta} = \frac{\sum y_t t}{\sum t^2}$
 - (b) $\mathbb{E}(\hat{\beta}) = \beta$ и $\operatorname{Var}(\hat{\beta}) = \frac{\sigma^2}{\sum_{t=1}^T t^2}$
 - (с) Да, состоятельна
- 17. В модели $y_t = \beta_1 + \beta_2 x_t$, где $x_t = \left\{ \begin{array}{l} 2, \ t=1 \\ 1, \ t>1 \end{array} \right.$:
 - (a) Найдите мнк-оценку $\hat{\beta}_2$
 - (b) Рассчитайте $\mathbb{E}(\hat{\beta}_2)$ и $\mathrm{Var}(\hat{\beta}_2)$ в предположениях теоремы Гаусса-Маркова
 - (c) Верно ли, что оценка $\hat{\beta}_2$ состоятельна?

несостоятельна

- 18. В модели $y_t = \beta_1 + \beta_2 x_t$, где $x_t = \begin{cases} 1, t = 2k+1 \\ 0, t = 2k \end{cases}$:
 - (a) Найдите мнк-оценку $\hat{\beta}_2$

- (b) Рассчитайте $\mathbb{E}(\hat{\beta}_2)$ и $\mathrm{Var}(\hat{\beta}_2)$ в предположениях теоремы Гаусса-Маркова
- (c) Верно ли, что оценка $\hat{\beta}_2$ состоятельна?
- 19. Априори известно, что парная регрессия должна проходить через точку (x_0, y_0) .
 - (а) Выведите формулы МНК оценок;
 - (b) В предположениях теоремы Гаусса-Маркова найдите дисперсии и средние оценок

Вроде бы равносильно переносу начала координат и применению результата для регрессии без свободного члена. Должна остаться несмещенность.

- 20. Мы предполагаем, что y_t растёт с линейным трендом, т.е. $y_t = \beta_1 + \beta_2 t + \varepsilon_t$. Все предпосылки теоремы Гаусса-Маркова выполнены. В качестве оценки $\hat{\beta}_2$ предлагается $\hat{\beta}_2 = \frac{Y_T 1}{T 1}$, где T общее количество наблюдений.
 - (a) Найдите $\mathbb{E}(\hat{\beta}_2)$ и $\mathrm{Var}(\hat{\beta}_2)$
 - (b) Совпадает ли оценка $\hat{\beta}_2$ с классической мнк-оценкой?
 - (c) У какой оценки дисперсия выше, у $\hat{\beta}_2$ или классической мнк-оценки?
- 21. Вася считает, что выборочная ковариация $\mathrm{SCov}(y,\hat{y}) = \frac{\sum (y_i \bar{y})(\hat{y}_i \bar{y})}{n-1}$ это неплохая оценка для $\mathrm{Cov}(y_i,\hat{y}_i)$. Прав ли он? не прав. Ковариация $\mathrm{Cov}(y_i,\hat{y}_i)$ зависит от i, это не одно неизвестное число, для которого можно предложить одну оценку.
- 22. В классической линейной регрессионной модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, дисперсия зависимой переменной не зависит от номера наблюдения, $\mathrm{Var}(y_i) = \sigma^2$. Почему для оценки σ^2 вместо известной из курса математической статистики формулы $\sum (y_i \bar{y})^2/(n-1)$ используют $\sum \hat{\varepsilon}_i^2/(n-2)$? формула $\sum (y_i \bar{y})^2/(n-1)$ неприменима так как $\mathbb{E}(y_i)$ не является константой
- 23. Оценка регрессии имеет вид $\hat{y}_i = 3 2x_i$. Выборочная дисперсия x равна 9, выборочная дисперсия y равна 40. Найдите R^2 и выборочные корреляции $\mathrm{sCorr}(x,y)$, $\mathrm{sCorr}(y,\hat{y})$. R^2 это отношение выборочных дисперсий \hat{y} и y.
- 24. Слитки-вариант. Перед нами два золотых слитка и весы, производящие взвешивания с ошибками. Взвесив первый слиток, мы получили результат 300 грамм, взвесив второй слиток 200 грамм, взвесив оба слитка 400 грамм. Предположим, что ошибки взвешивания независимые одинаково распределенные случайные величины с нулевым средним.
 - (а) Найдите несмещеную оценку веса первого слитка, обладающую наименьшей дисперсией.
 - (b) Как можно проинтерпретировать нулевое математическое ожидание ошибки взвешивания?

Как отсутствие систематической ошибки.

- 25. Рассмотрим линейную модель $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, где ошибки ε_i нормальны $N(0; \sigma^2)$ и независимы.
 - (a) Верно ли, что y_i одинаково распределены?
 - (b) Верно ли, что \bar{y} это несмещенная оценка для $\mathbb{E}(y_i)$?
 - (c) Верно ли, что $\sum (y_i \bar{y})^2/(n-1)$ несмещенная оценка для σ^2 ? Если да, то докажите, если нет, то определите величину смещения

нет, нет, нет

26. Рассмотрим модель регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, в которой ошибки ε_i независимы и нормальны $N(0;\sigma^2)$, оценивается по 22 наблюдениям. Найдите $\mathbb{E}(RSS)$, $\mathrm{Var}(RSS)$, $\mathbb{P}(10\sigma^2 < RSS < 30\sigma^2)$, $\mathbb{P}(10\hat{\sigma}^2 < RSS < 30\hat{\sigma}^2)$

$$RSS/\sigma^2 \sim \chi^2_{n-k}, \ \mathbb{E}(RSS) = (n-k)\sigma^2, \ \mathrm{Var}(RSS) = 2(n-k)\sigma^4, \ \mathbb{P}(10\sigma^2 < RSS < 30\sigma^2) \approx 0.898$$

3 Многомерный МНК без матриц

1. Эконометрэсса Ширли зашла в пустую аудиторию, где царил приятный полумрак, и увидела на доске до боли знакомую надпись:

$$\hat{y} = 1.1_{(2.37)} - 0.7_{(-0.4)} \cdot x_2 + 0.9_{(3.15)} \cdot x_3 - 19_{(-0.67)} \cdot x_4$$

Помогите эконометрэссе Ширли определить, что находится в скобках

- (а) Р-значения
- (b) t-статистики
- (с) стандартные ошибки коэффициентов
- (d) R^2 скорректированный на номер коэффициента
- (e) показатели VIF для каждого коэффициента

t-статистики

- 2. Для нормальной регрессии с 5-ю факторами (включая свободный член) известны границы симметричного по вероятности 80% доверительного интервала для дисперсии σ_{ε}^2 : A=45, B=87.942.
 - (а) Определите количество наблюдений в выборке
 - (b) Вычислите $\hat{\sigma}_{\varepsilon}^2$
 - (а) Поскольку $\frac{\hat{\sigma}_{\varepsilon}^2(n-k)}{\sigma_{\varepsilon}^2} \sim \chi^2(n-k)$, где $\hat{\sigma}_{\varepsilon}^2 = \frac{RSS}{n-k}$, k=5. $P(\chi_l^2 < \frac{\hat{\sigma}_{\varepsilon}^2}{\sigma_{\varepsilon}^2} < \chi_u^2) = 0.8$. Преобразовав, получим $P(\frac{\hat{\sigma}_{\varepsilon}^2(n-5)}{\chi_u^2} < \sigma_{\varepsilon}^2 < \frac{\hat{\sigma}_{\varepsilon}^2(n-5)}{\chi_u^2}) = 0.8$, где $\chi_u^2 = \chi_{n-5;0.1}^2$, $\chi_l^2 = \chi_{n-5;0.9}^2$ соответствующие квантили. По условию $\frac{\hat{\sigma}_{\varepsilon}^2(n-5)}{\chi_l^2} = A = 45$, $\frac{\hat{\sigma}_{\varepsilon}^2(n-5)}{\chi_u^2} = B = 87.942$. Поделим B на A, отсюда следует $\frac{\chi_u^2}{\chi_l^2} = 1.95426$. Перебором квантилей в таблице для хи-квадрат распределения мы находим, что $\frac{\chi_{30;0.1}^2}{\chi_{30,0.9}^2} = \frac{40.256}{20.599} = 1.95426$. Значит, n-5=30, отсюда следует, что n=35.
 - (b) $\hat{\sigma}_{\varepsilon}^2 = 45 \frac{\chi_u^2}{n-5} = 45 \frac{40.256}{30} = 60.384$
- 3. Рассмотрим следующую регрессионную модель зависимости логарифма заработной платы $\ln W$ от уровня образования Edu, опыта работы Exp, Exp^2 и уровня образования родителей Fedu, Medu:

$$\widehat{\ln W} = \hat{\beta}_1 + \hat{\beta}_2 E du + \hat{\beta}_3 E x p + \hat{\beta}_4 E x p^2 + \hat{\beta}_5 F e du + \hat{\beta}_6 M e du$$

Модель регрессии была отдельно оценена по выборкам из 35 мужчин и 23 женщин, и были получены остаточные суммы квадратов $RSS_1 = 34.4$ и $RSS_2 = 23.4$ соответственно. Остаточная сумма квадратов в регрессии, оценённой по объединённой выборке, равна 70.3. На уровне значимости 5% проверьте гипотезу об отсутствии дискриминации в оплате труда между мужчинами и женщинами.

- г дором поставу выборку таким образом, чтобы наблюдения с номерами с 1 по 35 относились к мужчинам, а наблюдения с номерами с 36 по 58 относились к женщинам. Тогда уравнение

$$\ln W_i = \beta_1 + \beta_2 E du_i + \beta_3 E x p_i + \beta_4 E x p_i^2 + \beta_5 F e du_i + \beta_6 M e du_i + \varepsilon_i, i = 1, ..., 35$$

соответствует регрессии, построенной для подвыборки из мужчин, а уравнение

$$\ln W_i = \gamma_1 + \gamma_2 E du_i + \gamma_3 Exp_i + \gamma_4 Exp_i^2 + \gamma_5 Fedu_i + \gamma_6 Medu_i + \varepsilon_i, i = 36, ..., 58$$

соответствует регрессии, построенной для подвыборки из женщин. Введем следующие переменные:

$$d_i = egin{cases} 1, & \text{если i--0е наблюдение соответствует мужчине,} \\ 0, & \text{в противном случае;} \end{cases}$$

$$dum_i = egin{cases} 1, & \text{если i- ое наблюдение соответствует женщине,} \\ 0, & \text{в противном случае.} \end{cases}$$

Рассмотрим следующее уравнение регрессии

$$\ln W_i = \beta_1 d_i + \gamma_1 dum_i + \beta_2 E du_i d_i + \gamma_2 E du_i dum_i + \beta_3 Exp_i d_i + \gamma_3 Exp_i dum_i + \beta_4 Exp_i^2 d_i +$$

 $+\gamma_4 Exp_i^2 dum_i + \beta_5 Fedu_id_i + \gamma_5 Fedu_idum_i + \beta_6 Medu_id_i + \gamma_6 Medu_idum_i + \varepsilon_i, i = 1, ..., 58$

Гипотеза, которую требуется проверить в данной задаче, имеет вид

$$H_0: \begin{cases} \beta_1 = \gamma_1, \\ \beta_2 = \gamma_2, \\ \dots \\ \beta_6 = \gamma_6 \end{cases} H_1: |\beta_1 - \gamma_1| + |\beta_2 - \gamma_2| + \dots + |\beta_6 - \gamma_6| > 0.$$

Тогда регрессия

 $\ln W_i = \beta_1 d_i + \gamma_1 dum_i + \beta_2 E du_i d_i + \gamma_2 E du_i dum_i + \beta_3 Exp_i d_i + \gamma_3 Exp_i dum_i + \beta_4 Exp_i^2 d_i + \gamma_4 Exp_i^2 d_i + \gamma_5 Exp_i dum_i + \beta_5 Exp_i dum_i +$ $+\gamma_4 Exp_i^2 dum_i + \beta_5 Fedu_i d_i + \gamma_5 Fedu_i dum_i + \beta_6 Medu_i d_i + \gamma_6 Medu_i dum_i + \varepsilon_i, i=1,...,58$

по отношению к основной гипотезе H_0 является регрессией без ограничений, а регрессия

$$\ln W_{i} = \beta_{1} + \beta_{2}Edu_{i} + \beta_{3}Exp_{i} + \beta_{4}Exp_{i}^{2} + \beta_{5}Fedu_{i} + \beta_{6}Medu_{i} + \varepsilon_{i}, i = 1, ..., 58$$

является регрессией с ограничениями.

Кроме того, для решения задачи должен быть известен следующий факт: $RSS_{UR}=RSS_1+RSS_2$, где $RSS_{UR}-$ это сумма квадратов остатков в модели:

$$\ln W_i = \beta_1 d_i + \gamma_1 dum_i + \beta_2 E du_i d_i + \gamma_2 E du_i dum_i + \beta_3 Exp_i d_i + \gamma_3 Exp_i dum_i + \beta_4 Exp_i^2 d_i +$$

$$+\gamma_4 Exp_i^2 dum_i + \beta_5 Fedu_i d_i + \gamma_5 Fedu_i dum_i + \beta_6 Medu_i d_i + \gamma_6 Medu_i dum_i + \varepsilon_i, i=1,...,58$$

 RSS_1 — это сумма квадратов остатков в модели:

$$\ln W_{i} = \beta_{1} + \beta_{2}Edu_{i} + \beta_{3}Exp_{i} + \beta_{4}Exp_{i}^{2} + \beta_{5}Fedu_{i} + \beta_{6}Medu_{i} + \varepsilon_{i}, i = 1, ..., 35$$

 RSS_2 — это сумма квадратов остатков в модели:

$$\ln W_i = \gamma_1 + \gamma_2 E du_i + \gamma_3 Exp_i + \gamma_4 Exp_i^2 + \gamma_5 Fedu_i + \gamma_6 Medu_i + \varepsilon_i, i = 36, ..., 58$$

(а) Тестовая статистика:

$$T = \frac{(RSS_R - RSS_{UR})/q}{RSS_{UR}/(n-m)},$$

 RSS_{UR} – сумма квадратов остатков в модели без ограничений:

q — число линейно независимых уравнений в основной гипотезе H_0

n — общее число наблюдений;

m – число коэффициентов в модели без ограничений

(b) Распределение тестовой статистики:

$$T \sim F(q, n-m)$$

$$T_{obs} = \frac{(70.3 - (34.4 + 23.4))/6}{(34.4 + 23.4)/(58 - 12)} = 1.66$$

(d) Область, в которой H_0 не отвергается:

$$[0; T_{cr}] = [0; 2.3]$$

(е) Статистический вывод:

Поскольку $T_{obs} \in [0; T_{cr}]$, то на основе имеющихся данных мы не можем отвергнуть гипотезу H_0 в пользу альтернативной H_1 . Следовательно, имеющиеся данные не противоречат гипотезе об отсутствии дискриминации на рынке труда между мужчинами и женщинами.

4. Рассмотрим следующую регрессионную модель зависимости логарифма заработной платы $\ln W$ от уровня образования Edu, опыта работы Exp, Exp^2 :

$$\widehat{\ln W} = \hat{\beta}_1 + \hat{\beta}_2 E du + \hat{\beta}_3 E x p + \hat{\beta}_4 E x p^2$$

Модель регрессии была отдельно оценена по выборкам из 20 мужчин и 20 женщин, и были получены остаточные суммы квадратов $RSS_1 = 49.4$ и $RSS_2 = 44.1$ соответственно. Остаточная сумма квадратов в регрессии, оценённой по объединённой выборке, равна 105.5. На уровне 5% проверьте гипотезу об отсутствии дискриминации в оплате труда между мужчинами и женщинами.

5. Ниже приведены результаты оценивания спроса на молоко для модели $y_i = \beta_1 + \beta_2 I_i +$ $\beta_3 P_i + \varepsilon_i$, где y_i – стоимость молока, купленного i–ой семьёй за последние 7 дней (в руб.), I_i – месячный доход i-ой семьи (в руб.), P_i – цена 1 литра молока (в руб.). Вычисления для общей выборки, состоящей из 2127 семей, дали RSS = 8841601. Для двух подвыборок, состоящих из 348 городских и 1779 сельских семей, соответствующие суммы квадратов

остатков оказались следующими: $RSS_1 = 1720236$ и $RSS_2 = 7099423$. Можно ли считать зависимость спроса на молоко от его цены и дохода единой для городской и сельской местности? Ответ обоснуйте подходящим тестом.

6. По 52 наблюдениям была оценена следующая зависимость цены квадратного метра квартиры Price (в долларах) от площади кухни K (в квадратных метрах), времени в пути пешком до ближайшего метро M (в минутах), расстояния до центра города C (в км) и наличия рядом с домом лесопарковой зоны P (1 — есть, 0 — нет).

$$\widehat{Price}_{(s.e.)} = \underset{(3.73)}{16.12} + \underset{(0.14)}{1.7}K - \underset{(0.03)}{0.35}M - \underset{(0.12)}{0.46}C + \underset{(0.98)}{2.22}P$$

$$R^{2} = 0.78, \sum_{i=1}^{52} (Price_{i} - \overline{Price})^{2} = 278$$

Предположим, что все квартиры в выборке можно отнести к двум категориям: квартиры на севере города (28 наблюдений) и квартиры на юге города (24 наблюдения). Модель регрессии была оценена отдельно только по квартирам на юге. Ниже приведены результаты оценивания.

Для квартир на севере:

$$\widehat{Price}_{(s.e.)} = \underset{(3.3)}{14} + \underset{(0.23)}{1.6}K - \underset{(0.04)}{0.33}M - \underset{(0.22)}{0.4}C + \underset{(0.78)}{2.1}P, RSS = 21.8$$

Для квартир на юге:

$$\widehat{Price}_{(s.e.)} = \underset{(3.9)}{16.8} + \underset{(0.4)}{1.62}K - \underset{(0.12)}{0.29}M - \underset{(0.23)}{0.51}C + \underset{(1.28)}{1.98}P, RSS = 19.2$$

На уровне значимости 5% проверьте гипотезу о различии в ценообразовании квартир на севере и на юге.

7. По 52 наблюдениям была оценена следующая зависимость цены квадратного метра квартиры Price (в долларах) от площади кухни K (в квадратных метрах), времени в пути пешком до ближайшего метро M (в минутах), расстояния до центра города C (в км) и наличия рядом с домом лесопарковой зоны P (1 — есть, 0 — нет).

$$\widehat{Price}_{(s.e.)} = 16.12 + 1.7 K - 0.35 M - 0.46 C + 2.22 P$$

$$_{(0.14)} = (0.03) M - 0.46 C + 0.008$$

$$R^{2} = 0.78, \sum_{i=1}^{52} (Price_{i} - \overline{Price})^{2} = 278$$

Предположим, что все квартиры в выборке можно отнести к двум категориям: квартиры на севере города (28 наблюдений) и квартиры на юге города (24 наблюдения). Пусть S — это фиктивная переменная, равная 1 для домов в южной части города и 0 для домов в северной части города. Используя эту переменную, была оценена следующая регрессия:

$$\widehat{Price}_{(s.e.)} = \underbrace{14.12 + 0.25S + 1.65K + 0.17K \cdot S - 0.37M + 0.05M \cdot S - 0.44C - 0.06C \cdot S + 2.27P - 0.23P \cdot S}_{(0.13)} + \underbrace{0.13}_{(0.11)} + \underbrace{0.13}_{(0.14)} + \underbrace{0.13}_{(0.14)} + \underbrace{0.05}_{(0.039)} + \underbrace{0.0012}_{(0.0012)} + \underbrace{0.03}_{(0.13)} + \underbrace{0.013}_{(0.13)} + \underbrace{0.013}_{(0.13)}$$

$$R^2 = 0.85$$

На уровне значимости 5% проверьте гипотезу о различии в ценообразовании квартир на севере и на юге.

8. На основе квартальных данных с 2003 по 2008 год было получено следующее уравнение

регрессии, описывающее зависимость цены на товар Р от нескольких факторов:

$$P = 3.5 + 0.4X + 1.1W$$
, $ESS = 70.4$, $RSS = 40.5$

Когда в уравнение были добавлены фиктивные переменные, соответствующие первым трем кварталам года Q_1, Q_2, Q_3 , оцениваемая модель приобрела вид:

$$P_{t} = \beta + \beta_{X} X_{t} + \beta_{W} W_{t} + \beta_{Q_{1t}} Q_{1t} + \beta_{Q_{2t}} Q_{2t} + \beta_{Q_{3t}} Q_{3t} + \varepsilon_{t}$$

При этом величина ESS выросла до 86.4. Сформулируйте и на уровне значимости 5% проверьте гипотезу о наличии сезонности.

9. Рассмотрим следующую функцию спроса с сезонными переменными SPRING (весна), SUMMER (лето), FALL (осень):

$$\widehat{\ln Q} = \hat{\beta}_1 + \hat{\beta}_2 \cdot \ln P + \hat{\beta}_3 \cdot SPRING + \hat{\beta}_4 \cdot SUMMER + \hat{\beta}_5 \cdot FALL$$

$$R^2 = 0.37, n = 20$$

Напишите спецификацию регрессии с ограничениями для проверки статистической гипотезы $H_0: \beta_3 = \beta_5$. Дайте интерпретацию проверяемой гипотезе. Пусть для регрессии с ограничениями был вычислен коэффициент $R_R^2 = 0.23$. На уровне значимости 5% проверьте нулевую гипотезу.

10. Рассмотрим следующую функцию спроса с сезонными переменными SPRING (весна), SUMMER (лето), FALL (осень):

$$\widehat{\ln Q} = \hat{\beta}_1 + \hat{\beta}_2 \cdot \ln P + \hat{\beta}_3 \cdot SPRING + \hat{\beta}_4 \cdot SUMMER + \hat{\beta}_5 \cdot FALL$$

$$R^2 = 0.24, n = 24$$

Напишите спецификацию регрессии с ограничениями для проверки статистической гипотезы $H_0: \begin{cases} \beta_3 = 0, \\ \beta_4 = \beta_5 \end{cases}$. Дайте интерпретацию проверяемой гипотезе. Пусть для регрессии с ограничениями был вычислен коэффициент $R_R^2 = 0.13$. На уровне значимости 5% проверьте нулевую гипотезу.

- 11. Исследователь собирается по выборке, содержащей данные за 2 года, построить модель линейной регрессии с константой и 3-мя объясняющими переменными. В модель предполагается ввести 3 фиктивные сезонные переменные SPRING (весна), SUMMER (лето) и FALL (осень) на все коэффициенты регрессии. Однако в процессе оценивания статистический пакет вывел на экран компьютера следующее сообщение "insufficient number of observations". Объясните, почему имеющегося числа наблюдений не хватило для оценивания параметров модели.
- 12. По данным для 57 индивидов оценили зависимость длительности обучения индивида S от способностей индивида, описываемых обобщённой переменной IQ, и пола индивида, описываемого с помощью фиктивной переменной MALE (равной 1 для мужчин и 0 для женщин), с помощью двух регрессий (в скобках под коэффициентами указаны оценки стандартных отклонений):

$$\hat{S}_{(s.e.)} = 6.12 + 0.147 \cdot IQ, RSS = 2758.6$$

$$\hat{S}_{(s.e.)} = 6.12 + 0.147 \cdot IQ - 1.035 \cdot MALE + 0.0166 \cdot (MALE \cdot IQ), RSS = 2090.98$$

Зависит ли длительность обучения от пола индивида и почему?

13. По данным, содержащим 30 наблюдений, построена регрессия:

$$\hat{y} = 1.3870 + 5.2587 \cdot x + 2.6259 \cdot d + 2.5955 \cdot x \cdot d,$$

где фиктивная переменная d определяется следующим образом:

$$d_i = \begin{cases} 1 & \text{при } i \in \{1, \dots, 20\}, \\ 0 & \text{при } i \in \{21, \dots, 30\}. \end{cases}$$

Найдите оценки коэффициентов в модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, построенной по первым 20-ти наблюдениям, т.е. при $i \in \{1, \dots, 20\}$.

14. Выборка содержит 30 наблюдений зависимой переменной y и независимой переменной x. Ниже приведены результаты оценивания уравнения регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ по первым 20-ти и последним 10-ти наблюдениям соответственно:

$$\hat{y} = 4.0039 + 2.6632 \cdot x$$

$$\hat{y} = 1.3780 + 5.2587 \cdot x$$

По имеющимся данным найдите оценки коэффициентов модели, рассчитанной по 30-ти наблюдениям $y_i = \beta_1 + \beta_2 x_i + \Delta \beta_1 \cdot d_i + \Delta \beta_2 \cdot x_i \cdot d_i + \varepsilon_i$, где фиктивная переменная d определяется следующим образом:

$$d_i = \begin{cases} 1 & \text{при } i \in \{1, \dots, 20\}, \\ 0 & \text{при } i \in \{21, \dots, 30\}. \end{cases}$$

- 15. Пусть регрессионная модель имеет вид $y_i = \beta_1 + \beta_2 x_{i1} + \beta_3 x_{i2} + \beta_4 x_{i3} + \varepsilon_i, i = 1, \dots, n$. Тестируемая гипотеза $H_0: \beta_2 = \beta_3 = \beta_4$. Запишите, какой вид имеет модель «с ограничением» для тестирования указанной гипотезы.
- 16. Пусть регрессионная модель имеет вид $y_i = \beta_1 + \beta_2 x_{i1} + \beta_3 x_{i2} + \beta_4 x_{i3} + \varepsilon_i, i = 1, \dots, n$. Тестируемая гипотеза $H_0: \beta_3 = \beta_4 = 1$. Какая модель из приведённых ниже может выступать в качестве модели «с ограничением» для тестирования указанной гипотезы? Если ни одна из них, то запишите свою.
 - (a) $y_i (x_{i2} + x_{i3}) = \beta_1 + \beta_2 x_{i1} + \varepsilon_i$
 - (b) $y_i + (x_{i2} x_{i3}) = \beta_1 + \beta_2 x_{i1} + \varepsilon_i$
 - (c) $y_i + x_{i2} + x_{i3} = \beta_1 + \beta_2 x_{i1} + \varepsilon_i$
 - (d) $y_i = \beta_1 + \beta_2 x_{i1} + \beta_3 + \beta_4 + \varepsilon_i$
- 17. Пусть регрессионная модель имеет вид $y_i = \beta_1 + \beta_2 x_{i1} + \beta_3 x_{i2} + \beta_4 x_{i3} + \varepsilon_i, i = 1, \dots, n.$ Тестируемая гипотеза $H_0: \begin{cases} \beta_2 + \beta_3 + \beta_4 = 1, \\ \beta_3 + \beta_4 = 0. \end{cases}$ Какая модель из приведённых ниже может

выступать в качестве модели «с ограничением» для тестирования указанной гипотезы? Если ни одна из них, то запишите свою.

- (a) $y_i x_{i1} = \beta_1 + \beta_3(x_{i2} x_{i3}) + \varepsilon_i$
- (b) $y_i x_{i1} = \beta_1 + \beta_4(x_{i3} x_{i2}) + \varepsilon_i$
- (c) $y_i + x_{i1} = \beta_1 + \beta_3(x_{i2} + x_{i3}) + \varepsilon_i$
- (d) $y_i + x_{i1} = \beta_1 + \beta_3(x_{i2} x_{i3}) + \varepsilon_i$
- 18. Пусть регрессионная модель имеет вид $y_i = \beta_1 + \beta_2 x_{i1} + \beta_3 x_{i2} + \beta_4 x_{i3} + \varepsilon_i, i = 1, \dots, n.$ Тестируемая гипотеза $H_0: \begin{cases} \beta_2 \beta_3 = 0, \\ \beta_3 + \beta_4 = 0. \end{cases}$ Какая модель из приведённых ниже может

выступать в качестве модели «с ограничением» для тестирования указанной гипотезы? Если ни одна из них, то запишите свою.

(a)
$$y_i = \beta_1 + \beta_3(x_{i2} - x_{i1} - x_{i3}) + \varepsilon_i$$

(b)
$$y_i - x_{i1} = \beta_1 + \beta_4(x_{i3} - x_{i2}) + \varepsilon_i$$

(c)
$$y_i = \beta_1 + \beta_3(x_{i1} + x_{i2} + x_{i3}) + \varepsilon_i$$

(d)
$$y_i = \beta_1 + \beta_3(x_{i1} + x_{i2} - x_{i3}) + \varepsilon_i$$

- 19. Известно, что P-значение для коэффициента регрессии равно 0.087, а уровень значимости 0.1. Является ли значимым данный коэффициент в регрессии?
- 20. Известно, что P-значение для коэффициента регрессии равно 0.078, а уровень значимости 0.05. Является ли значимым данный коэффициент в регрессии?
- 21. Известно, что P-значение для коэффициента регрессии равно 0.09. На каком уровне значимости данный коэффициент в регрессии будет признан значимым?
- 22. Ниже приведены результаты оценивания уравнения линейной регрессии зависимости количества смертей в автомобильных катастрофах от различных характеристик:

$$deaths_i = \beta_1 + \beta_2 drivers_i + \beta_3 popden_i + \beta_4 temp + \beta_5 fuel + \varepsilon_i$$

$$\widehat{deaths}_i = -\underbrace{27.1}_{(222.8803)} + \underbrace{4.64}_{(0.3767)} \cdot drivers_i - \underbrace{0.0228}_{(0.0239)} \cdot popden_i + \underbrace{5.3}_{(4.6016)} \cdot temp_i - \underbrace{0.663}_{(0.8679)} \cdot fuel_i$$

	Estimate	St.Error	t value	P-value
Intercept	-27.10	222.88	-0.12	0.90
Drivers	4.64	0.38	12.30	0.00
Popden	-0.02	0.02	-0.95	0.35
Temp	5.30	4.60	1.15	0.26
Fuel	-0.66	0.87	-0.76	0.45

Перечислите, какие из переменных в регрессии являются значимыми и на каком уровне значимости.

23. Была оценена функция Кобба-Дугласа с учётом человеческого капитала H (K — физический капитал, L — труд):

$$\widehat{\ln Q} = 1.4 + 0.46 \ln L + 0.27 \ln H + 0.23 \ln K$$

$$ESS = 170.4, RSS = 80.3, n = 21$$

- (a) Чему равен коэффициент R^2 ?
- (b) На уровне значимости 1% проверьте гипотезу о значимости регрессии «в целом»
- 24. На основе опроса 25 человек была оценена следующая модель зависимости логарифма зарплаты $\ln W$ от уровня образования Edu (в годах) и возраста Age:

$$\widehat{\ln W} = 1.7 + 0.5Edu + 0.06Age - 0.0004Age^2$$

$$ESS = 90.3, RSS = 60.4$$

Когда в модель были введены переменные Fedu и Medu, учитывающие уровень образования родителей, величина ESS уведичилась до 110.3.

- (а) Напишите спецификацию уравнения регрессии с учётом образования родителей
- (b) Сформулируйте и на уровне значимости 5% проверьте гипотезу о значимом влиянии уровня образования родителей на заработную плату:

- і. Сформулируйте гипотезу
- іі. Приведите формулу для тестовой статистики
- ііі. Укажите распределение тестовой статистики
- iv. Вычислите наблюдаемое значение тестовой статистики
- v. Укажите границы области, где основная гипотеза не отвергается
- vi. Сделайте статистический вывод

Ограниченная модель (Restricted model):

$$\ln W_i = \beta + \beta_{Edu}Edu_i + \beta_{Age}Age_i + \beta_{Age}^2Age_i^2 + \varepsilon_i$$

Неограниченная модель (Unrestricted model)

$$\ln W_i = \beta + \beta_{Edu}Edu_i + \beta_{Age}Age_i + \beta_{Age^2}Age_i^2 + \beta_{Fedu}Fedu_i + \beta_{Medu}Medu_i + \varepsilon_i$$

По условию $ESS_R=90.3,\ RSS_R=60.4,\ TSS=ESS_R+RSS_R=90.3+60.4=150.7.$ Также сказано, что $ESS_{UR}=110.3.$ Значит, $RSS_{UR}=TSS-ESS_{UR}=150.7-110.3=40.4$

(а) Спецификация:

$$\ln W_i = \beta + \beta_{Edu}Edu_i + \beta_{Age}Age_i + \beta_{Age^2}Age_i^2 + \beta_{Fedu}Fedu_i + \beta_{Medu}Medu_i + \varepsilon_i$$

(b) Проверка гипотезы

i.
$$H_0: \begin{cases} \beta_{Fedu} = 0 \\ \beta_{Medu} = 0 \end{cases}$$
 $H_a: |\beta_{Fedu}| + |\beta_{Medu}| > 0$

- іі. $T=rac{(RSS_R-RSS_{UR})/q}{RSS_{UR}/(n-k)}$, где q=2 число линейно независимых уравнений в основной гипотезе H_0 , n=25 число наблюдений, k=6 число коэффициентов в модели без ограничения
- iii. $T \sim F(q; n-k)$
- iv. $T_{obs} = \frac{(RSS_R RSS_{UR})/q}{RSS_{UR}/(n-k)} = \frac{(60.4 40.4)/2}{40.4/(25-6)} = 4.70$
- v. Нижняя граница = 0, верхняя граница = 3.52
- vi. Поскольку $T_{obs} = 4.70$, что не принадлежит промежутку от 0 до 3.52, то на основе имеющихся данных можно отвергнуть основную гипотезу на уровне значимости 5%. Таким образом, образование родителей существенно влияет на заработную плату.
- 25. Рассмотрим следующую модель зависимости цены дома Price (в тысячах долларов) от его площади Hsize (в квадратных метрах), площади участка Lsize (в квадратных метрах), числа ванных комнат Bath и числа спален BDR:

$$\widehat{Price} = \hat{\beta}_1 + \hat{\beta}_2 H size + \hat{\beta}_3 L size + \hat{\beta}_4 Bath + \hat{\beta}_5 BDR$$

$$R^2 = 0.218, n = 23$$

Напишите спецификацию регрессии с ограничениями для проверки статистической гипотезы $H_0: \beta_3 = 20\beta_4$. Дайте интерпретацию проверяемой гипотезе. Для регрессии с ограничением был вычислен коэффициент $R_R^2 = 0.136$. На уровне значимости 5% проверьте нулевую гипотезу.

26. Рассмотрим следующую модель зависимости почасовой оплаты труда W от уровня образования Educ, возраста Age, уровня образования родителей Fathedu и Mothedu:

$$\widehat{\ln W} = \hat{\beta}_1 + \hat{\beta}_2 E duc + \hat{\beta}_3 A g e + \hat{\beta}_4 A g e^2 + \hat{\beta}_5 F a t h e du + \hat{\beta}_6 M o t h e du$$

$$R^2 = 0.341, n = 27$$

Напишите спецификацию регрессии с ограничениями для проверки статистической гипотезы $H_0: \beta_5 = 2\beta_4$. Дайте интерпретацию проверяемой гипотезе. Для регрессии с ограничением был вычислен коэффициент $R_R^2 = 0.296$. На уровне значимости 5% проверьте нулевую гипотезу.

27. По данным для 27 фирм исследователь оценил зависимость объёма выпуска y от труда l и капитала k с помощью двух моделей:

15

$$\ln y_i = \beta_1 + \beta_2 \ln l_i + \beta_3 \ln k_i + \varepsilon_i$$
$$\ln y_i = \beta_1 + \beta_2 \ln(l_i \cdot k_i) + \varepsilon_i$$

Он получил для этих двух моделей суммы квадратов остатков $RSS_1 = 0.851$ и $RSS_2 = 0.894$ соответственно. Сформулируйте гипотезу, которую хотел проверить исследователь. На уровне значимости 5% проверьте эту гипотезу и дайте экономическую интерпретацию.

28. Пусть задана линейная регрессионная модель:

$$y_i = \beta_1 + \beta_2 x_{1i} + \beta_3 x_{2i} + \beta_4 x_{3i} + \beta_5 x_{4i} + \varepsilon_i, i = 1, \dots, 20$$

По имеющимся данным оценены следующие регрессии:

$$\hat{y}_{i} = 10.01 + 1.05x_{1} + 2.06x_{2} + 0.49x_{3} - 1.31x_{4}, RSS = 6.85$$

$$y_{i} - \widehat{x_{1}} - 2x_{2} = 10.00 + 0.50x_{3} - 1.32x_{4}, RSS = 8.31$$

$$y_{i} + \widehat{x_{1}} + 2x_{2} = 9.93 + 0.56x_{3} - 1.50x_{4}, RSS = 4310.62$$

$$y_{i} - \widehat{x_{1}} + 2x_{2} = 10.71 + 0.09x_{3} - 1.28x_{4}, RSS = 3496.85$$

$$y_{i} + \widehat{x_{1}} - 2x_{2} = 9.22 + 0.97x_{3} - 1.54x_{4}, RSS = 516.23$$

$$y_{i} + \widehat{x_{1}} - 2x_{2} = 9.22 + 0.97x_{3} - 1.54x_{4}, RSS = 516.23$$

На уровне значимости 5% проверьте гипотезу $H_0: \begin{cases} \beta_2=1\\ \beta_3=2 \end{cases}$ против альтернативной гипотезы $H_a: |\beta_2-1|+|\beta_3-2| \neq 0.$

29. Рассмотрим следующую модель зависимости расходов на образование на душу населения от дохода на душу населения, доли населения в возрасте до 18 лет, а также доли городского населения:

$$education_i = \beta_1 + \beta_2 income_i + \beta_3 young_i + \beta_4 urban_i + \varepsilon_i$$

Ниже приведены результаты оценивания уравнения этой линейной регрессии:

$$\widehat{education_i} = -\underbrace{287}_{(64.9199)} + \underbrace{0.0807 \cdot income_i}_{(0.0093)} + \underbrace{0.817 \cdot young_i}_{(0.1598)} - \underbrace{0.106 \cdot urban_i}_{(0.0343)}$$

	Estimate	St.Error	t value	P-value
Intercept	-286.84	64.92	-4.42	0.00
Income	0.08	0.01	8.67	0.00
Young	0.82	0.16	5.12	0.00
Urban	-0.11	0.03	-3.09	0.00

- (a) Сформулируйте основную и альтернативую гипотезы, которые соответствуют тесту на значимость коэффициента при переменной доход на душу населения в уравнении регрессии
- (b) На уровне значимости 10% проверьте гипотезу о значимости коэффициента при переменной доход на душу населения в уравнении регрессии:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод

- (c) На уровне значимости 5% проверьте гипотезу $H_0: \beta_1 = 1$ против альтернативной $H_a: \beta_1 > 1:$
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (d) Сформулируйте основную гипотезу, которая соответствует тесту на значимость регрессии «в целом»
- (e) На уровне значимости 1% проверьте гипотезу о значимости регрессии «в целом», если известно, что F-статистика равна 34.81 со степенями свободы 3 и 47, P-значение равно $5.337e^{-12}$:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (f) Далее приведены результаты оценивания уравнения регрессии без переменной, отражающей долю городского населения:

$$\widehat{education_i} = -\underset{(70.27134)}{301} + \underset{(0.00741)}{0.0612} \cdot income_i + \underset{(0.17327)}{0.836} \cdot young_i$$

	Estimate	St.Error	t value	P-value
Intercept	-301.09	70.27	-4.28	0.00
Income	0.06	0.01	8.25	0.00
Young	0.84	0.17	4.83	0.00

Также известно, что RSS для первой модели равен 33489.35, а для второй модели — 40276.61. На уровне значимости 5% проверьте гипотезу $H_0: \beta_4 = 0$ против альтернативной $H_0: \beta_4 \neq 0$:

- і. Приведите формулу для тестовой статистики
- іі. Укажите распределение тестовой статистики
- ііі. Вычислите наблюдаемое значение тестовой статистики
- iv. Укажите границы области, где основная гипотеза не отвергается
- v. Сделайте статистический вывод
- 30. Рассмотрим следующую модель зависимости расходов на образование на душу населения от дохода на душу населения, доли населения в возрасте до 18 лет, а также доли городского населения:

$$education_i = \beta_1 + \beta_2 income_i + \beta_3 young_i + \beta_4 urban_i + \varepsilon_i$$

Ниже приведены результаты оценивания уравнения этой линейной регрессии:

$$\widehat{education_i} = -\underbrace{287}_{(64.9199)} + \underbrace{0.0807 \cdot income_i}_{(0.0093)} + \underbrace{0.817 \cdot young_i}_{(0.1598)} - \underbrace{0.106 \cdot urban_i}_{(0.0343)}$$

(a) Сформулируйте основную и альтернативую гипотезы, которые соответствуют тесту на значимость коэффициента при переменной доля населения в возрасте до 18 лет в уравнении регрессии

	Estimate	St.Error	t value	P-value
Intercept	-286.84	64.92	-4.42	0.00
Income	0.08	0.01	8.67	0.00
Young	0.82	0.16	5.12	0.00
Urban	-0.11	0.03	-3.09	0.00

- (b) На уровне значимости 10% проверьте гипотезу о значимости коэффициента при переменной доля населения в возрасте до 18 лет в уравнении регрессии:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (с) Далее приведены результаты оценивания уравнения регрессии без переменной, отражающей долю населения в возрасте до 18 лет:

$$\widehat{education_i} = \underset{(27.3827)}{25.3} + \underset{(0.0114)}{0.0762} \cdot income_i - \underset{(0.0423)}{0.112} \cdot urban_i$$

	Estimate	St.Error	t value	P-value
Intercept	25.25	27.38	0.92	0.36
Income	0.08	0.01	6.67	0.00
Urban	-0.11	0.04	-2.66	0.01

Также известно, что RSS для первой модели равен 33489.35, а для второй модели — 52132.29. На уровне значимости 5% проверьте гипотезу $H_0: \beta_3 = 0$ против альтернативной $H_0: \beta_3 \neq 0$:

- і. Приведите формулу для тестовой статистики
- іі. Укажите распределение тестовой статистики
- ііі. Вычислите наблюдаемое значение тестовой статистики
- iv. Укажите границы области, где основная гипотеза не отвергается
- v. Сделайте статистический вывод
- 31. Вася построил регрессию оценки за первую контрольную работу на константу, рост и вес студента, $\widehat{kr1}_i = \hat{\beta}_1 + \hat{\beta}_2 height_i + \hat{\beta}_3 weight_i$. Затем построил регрессию оценки за вторую контрольную работу на те же объясняющие переменные, $\widehat{kr2}_i = \hat{\beta}_1' + \hat{\beta}_2' height_i + \hat{\beta}_3' weight_i$. Накопленная оценка считается по формуле $nak_i = 0.25 \cdot kr1_i + 0.75 \cdot kr2_i$. Чему равны оценки коэффициентов в регрессии накопленной оценки на те же объясняющие переменные? Ответ обоснуйте.
 - $0.25\hat{eta}_1+0.75\hat{eta}_1',\,0.25\hat{eta}_2+0.75\hat{eta}_2'$ и $0.25\hat{eta}_3+0.75\hat{eta}_3'$
- 32. Истинная модель имеет вид $y_i = \beta x_i + \varepsilon_i$. Вася оценивает модель $\hat{y}_i = \hat{\beta} x_i$ по первой части выборки, получает $\hat{\beta}_a$, по второй части выборки получает $\hat{\beta}_b$ и по всей выборке $\hat{\beta}_{tot}$. Как связаны между собой $\hat{\beta}_a$, $\hat{\beta}_b$, $\hat{\beta}_{tot}$? Как связаны между собой дисперсии $\mathrm{Var}(\hat{\beta}_a)$, $\mathrm{Var}(\hat{\beta}_b)$ и $\mathrm{Var}(\hat{\beta}_{tot})$? Сами оценки коэффициентов никак детерминистически не связаны, но при большом размере подвыборок примерно равны. А дисперсии связаны соотношением $\mathrm{Var}(\hat{\beta}_a)^{-1} + \mathrm{Var}(\hat{\beta}_b)^{-1} = \mathrm{Var}(\hat{\beta}_{tot})^{-1}$
- 33. Сгенерируйте вектор y из 300 независимых нормальных N(10,1) случайных величин. Сгенерируйте 40 «объясняющих» переменных, по 300 наблюдений в каждой, каждое наблюдение независимая нормальная N(5,1) случайная величина. Постройте регрессию y на все 40 регрессоров и константу.

- (а) Сколько регрессоров оказалось значимо на 5% уровне?
- (b) Сколько регрессоров в среднем значимо на 5% уровне?
- (c) Эконометрист Вовочка всегда использует следующий подход: строит регрессию зависимой переменной на все имеющиеся регрессоры, а затем выкидывает из модели те регрессоры, которые оказались незначимы. Прокомментируйте Вовочкин эконометрический подход.
- 34. Мы попытаемся понять, как введение в регрессию лишнего регрессора влияет на оценки уже имеющихся. В регрессии будет 100 наблюдений. Возьмем $\rho = 0.5$. Сгенерим выборку совместных нормальных x_i и z_i с корреляцией ρ . Настоящий y_i задаётся формулой $y_i = 5 + 6x_i + \varepsilon_i$. Однако мы будем оценивать модель $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i + \hat{\beta}_3 z_i$.
 - (a) Повторите указанный эксперимент 500 раз и постройте оценку для функции плотности $\hat{\beta}_1$.
 - (b) Повторите указанный эксперимент 500 раз для каждого ρ от -1 до 1 с шагом в 0.05. Каждый раз сохраняйте полученные 500 значений $\hat{\beta}_1$. В осях $(\rho, \hat{\beta}_1)$ постройте 95%-ый предиктивный интервал для $\hat{\beta}_1$. Прокомментируйте.
- 35. Цель задачи оценить модель САРМ несколькими способами.
 - (а) Соберите подходящие данные для модели САРМ. Нужно найти три временных ряда: ряд цен любой акции, любой рыночный индекс, безрисковый актив. Переведите цены в доходности.
 - (b) Постройте графики
 - (с) Оцените модель САРМ без свободного члена по всем наборам данных. Прокомментируйте смысл оцененного коэффициента
 - (d) Разбейте временной период на два участка и проверьте устойчивость коэффициента бета
 - (е) Добавьте в классическую модель САРМ свободный член и оцените по всему набору данных. Какие выводы можно сделать?
 - (f) Методом максимального правдоподобия оцените модель с ошибкой измерения $R^m R^0$, т.е.

истинная зависимость имеет вид

$$(R^s - R^0) = \beta_1 + \beta_2 (R_m^* - R_0^*) + \varepsilon$$
 (2)

величины R_m^* и R_0^* не наблюдаемы, но

$$R_m - R_0 = R_m^* - R_0^* + u (3)$$

36. По 47 наблюдениям оценивается зависимость доли мужчин занятых в сельском хозяйстве от уровня образованности и доли католического населения по Швейцарским кантонам в 1888 году.

$$Agriculture_i = \beta_1 + \beta_2 Examination_i + \beta_3 Catholic_i + \varepsilon_i$$

```
h <- swiss
model1 <- glm(Agriculture~Examination+Catholic,data=h)
coef.t <- coeftest(model1)
dimnames(coef.t)[[2]] <-
c("Оценка","Ст. ошибка", "t-статистика", "P-значение")
```

```
coef.t <- coef.t[,-4]
coef.t[1,1] <- NA
coef.t[2,2] <- NA
coef.t[3,3] <- NA</pre>
```

xtable(coef.t)

	Оценка	Ст. ошибка	t-статистика
(Intercept)		8.72	9.44
Examination	-1.94		-5.08
Catholic	0.01	0.07	

- (а) Заполните пропуски в таблице
- (b) Укажите коэффициенты, значимые на 10% уровне значимости.
- (c) Постройте 99%-ый доверительный интервал для коэффициента при переменной Catholic

Набор данных доступен в пакете R:

h <- swiss

37. Оценивается зависимость уровня фертильности всё тех же швейцарских кантонов в 1888 году от ряда показателей. В таблице представлены результаты оценивания двух моделей. Модель 1: $Fertility_i = \beta_1 + \beta_2 Agriculture_i + \beta_3 Education_i + \beta_4 Examination_i + \beta_5 Catholic_i + \varepsilon_i$ Модель 2: $Fertility_i = \gamma_1 + \gamma_2 (Education_i + Examination_i) + \gamma_3 Catholic_i + u_i$

```
m1 <- lm(Fertility~Agriculture+Education+Examination+Catholic,data=h)
m2 <- lm(Fertility~I(Education+Examination)+Catholic,data=h)</pre>
```

apsrtable(m1,m2)

Таблина 1:

		таолица
	Model 1	Model 2
(Intercept)	91.06*	80.52*
	(6.95)	(3.31)
Agriculture	-0.22^*	
	(0.07)	
Education	-0.96^*	
	(0.19)	
Examination	-0.26	
	(0.27)	
Catholic	0.12^{*}	0.07^{*}
	(0.04)	(0.03)
I(Education + Examination)		-0.48^*
		(0.08)
N	47	47
R^2	0.65	0.55
adj. R^2	0.62	0.53
Resid. sd	7.74	8.56

Standard errors in parentheses

^{*} indicates significance at p < 0.05

Набор данных доступен в пакете R:

h <- swiss

- (a) Проверьте гипотезу о том, что коэффициент при Education в модели 1 равен -0.5.
- (b) На 5% уровне значимости проверьте гипотезу о том, что переменные Education и Examination оказывают одинаковое влияние на Fertility.
- 38. По 2040 наблюдениям оценена модель зависимости стоимости квартиры в Москве (в 1000\$) от общего метража и метража жилой площади.

```
model1 <- lm(price~totsp+livesp,data=flats)
report <- summary(model1)
coef.table <- report$coefficients
rownames(coef.table) <- c("Константа","Общая площадь", "Жилая площадь")
xtable(coef.table)
```

	Estimate	Std. Error	t value	$\Pr(> t)$
Константа	-88.81	4.37	-20.34	0.00
Общая площадь	1.70	0.10	17.78	0.00
Жилая площадь	1.99	0.18	10.89	0.00

Оценка ковариационной матрицы $\widehat{Var}(\hat{\beta})$ имеет вид

```
var.hat <- vcov(model1)
xtable(var.hat)</pre>
```

	(Intercept)	totsp	livesp
(Intercept)	19.07	0.03	-0.45
totsp	0.03	0.01	-0.02
livesp	-0.45	-0.02	0.03

- (a) Проверьте H_0 : $\beta_{totsp} = \beta_{livesp}$. В чём содержательный смысл этой гипотезы?
- (b) Постройте доверительный интервал дли $\beta_{totsp} \beta_{livesp}$. В чём содержательный смысл этого доверительного интервала?

Из оценки ковариационной матрицы находим, что $se(\hat{\beta}_{totsp}=\hat{\beta}_{livesp})=0.2696.$ Исходя из $Z_{crit}=1.96$ получаем доверительный интервал, [-0.8221;0.2348].

Вывод: при уровне значимости 5% гипотеза о равенстве коэффициентов не отвергается.

39. По 2040 наблюдениям оценена модель зависимости стоимости квартиры в Москве (в 1000\$) от общего метража и метража жилой площади.

```
model1 <- lm(price~totsp+livesp,data=flats)
report <- summary(model1)
coef.table <- report$coefficients
rownames(coef.table) <- c("Константа","Общая площадь", "Жилая площадь")
xtable(coef.table)
```

	Estimate	Std. Error	t value	$\Pr(> t)$
Константа	-88.81	4.37	-20.34	0.00
Общая площадь	1.70	0.10	17.78	0.00
Жилая площадь	1.99	0.18	10.89	0.00

Оценка ковариационной матрицы $\widehat{Var}(\hat{\beta})$ имеет вид

	(Intercept)	totsp	livesp
(Intercept)	19.07	0.03	-0.45
totsp	0.03	0.01	-0.02
livesp	-0.45	-0.02	0.03

- (a) Постройте 95%-ый доверительный интервал для ожидаемой стоимости квартиры с жилой площадью 30 m^2 и общей площадью 60 m^2 .
- (b) Постройте 95%-ый прогнозный интервал для фактической стоимости квартиры с жилой площадью 30 $\rm m^2$ и общей площадью 60 $\rm m^2.$
- 40. По 2040 наблюдениям оценена модель зависимости стоимости квартиры в Москве (в 1000\$) от общего метража, метража жилой площади и дамми-переменной, равной 1 для кирпичных домов.

```
model1 <- lm(price~totsp+livesp+brick+brick:totsp+brick:livesp,data=flats)
report <- summary(model1)
coef.table <- report$coefficients
# rownames(coef.table) <- c("Константа","Общая площадь", "Жилая площадь")
xtable(coef.table)
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-66.03	6.07	-10.89	0.00
totsp	1.77	0.12	14.98	0.00
livesp	1.27	0.25	5.05	0.00
brick	-19.59	9.01	-2.17	0.03
totsp:brick	0.42	0.20	2.10	0.04
livesp:brick	0.09	0.38	0.23	0.82

- (а) Выпишите отдельно уравнения регрессии для кирпичных домов и для некирпичных домов
- (b) Проинтерпретируйте коэффициент при $brick_i \cdot totsp_i$
- 41. По 20 наблюдениям оценивается линейная регрессия $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$, причём истинная зависимость имеет вид $y = \beta_1 + \beta_2 x + \varepsilon$. Случайная ошибка ε_i имеет нормальное распределение N(0,1).
 - (a) Найдите вероятность $\mathbb{P}(\hat{\beta}_3 > se(\hat{\beta}_3))$
 - (b) Найдите вероятность $\mathbb{P}(\hat{\beta}_3 > \sigma_{\hat{\beta}_3})$
 - (a) $\mathbb{P}(\hat{\beta}_3 > se(\hat{\beta}_3)) = \mathbb{P}(t_{17} > 1) = 0.1657$
 - (b) $\mathbb{P}(\hat{\beta}_3 > \sigma_{\hat{\beta}_2}) = \mathbb{P}(N(0,1) > 1) = 0.1587$
- 42. К эконометристу Вовочке в распоряжение попали данные с результатами контрольной работы студентов по эконометрике. В данных есть результаты по каждой задаче, переменные p_1 , p_2 , p_3 , p_4 и p_5 , и суммарный результат за контрольную, переменная kr. Чему будут равны оценки коэффициентов, их стандартные ошибки, t-статистики, P-значения, R^2 , RSS, если
 - (a) Вовочка построит регрессию kr на константу, p_1 , p_2 , p_3 , p_4 и p_5
 - (b) Вовочка построит регрессию kr на p_1, p_2, p_3, p_4 и p_5 без константы

43. Сгенерируйте данные так, чтобы при оценке линейной регрессионной модели оказалось, что скорректированный коэффициент детерминации, R_{adi}^2 , отрицательный.

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-k}$$

Следовательно, при R^2 близком к 0 и большом количестве регрессоров k может оказаться, что $R^2_{adj} < 0$.

Например,

```
set.seed(42)
y <- rnorm(200,sd=15)
X <- matrix(rnorm(2000),nrow=200)
model <- lm(y~X)
report <- summary(model)
report$adj.r.squared
## [1] -0.02745</pre>
```

Косяк. Почему-то книтр внутри solution ругается на доллар.

- 44. Для коэффициентов регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \beta_4 w_i + \varepsilon_i$ даны 95%-ые доверительные интервалы: $\beta_2 \in (0.16; 0.66), \beta_3 \in (-0.33; 0.93)$ и $\beta_4 \in (-1.01; 0.54)$.
 - (a) Найдите $\hat{\beta}_2$, $\hat{\beta}_3$, $\hat{\beta}_4$
 - (b) Определите, какие из переменных в регрессии значимы на уровне значимости 5%.

 $\hat{\beta}_2 = 0.41, \, \hat{\beta}_3 = 0.3, \, \hat{\beta}_4 = -0.235,$ переменная x значима

- 45. Для коэффициентов регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \beta_4 w_i + \varepsilon_i$ даны 95%-ые доверительные интервалы: $\beta_2 \in (-0.15; 1.65), \beta_3 \in (0.32; 0.93)$ и $\beta_4 \in (0.14; 1.55)$.
 - (a) Найдите $\hat{\beta}_2$, $\hat{\beta}_3$, $\hat{\beta}_4$
 - (b) Определите, какие из переменных в регрессии значимы на уровне значимости 5%.

 $\hat{eta}_2 = 0.75,\,\hat{eta}_3 = 0.625,\,\hat{eta}_4 = 0.845,$ переменные z и w значимы

46. Эконометрэсса Мырли очень суеверна и поэтому оценила три модели:

M1 $y_i = \beta_1 + \beta_2 x_i + \beta_3 w_i + \varepsilon_i$ по всем наблюдениям.

М2 $y_i = \beta_1 + \beta_2 x_i + \beta_3 w_i + \beta_4 d_i + \varepsilon_i$ по всем наблюдениям, где d_i — дамми-переменная равная 1 для 13-го наблюдения и нулю иначе.

МЗ $y_i = \beta_1 + \beta_2 x_i + \beta_3 w_i + \varepsilon_i$ по всем наблюдениям, кроме 13-го.

- (а) Сравните между собой RSS во всех трёх моделях
- (b) Есть ли совпадающие оценки коэффициентов в этих трёх моделях? Если есть, то какие?
- (с) Может ли Мырли не выполняя вычислений узнать ошибку прогноза для 13-го наблюдения при использовании третьей модели? Если да, то как?

 $RSS_1 > RSS_2 = RSS_3$, в моделях два и три, ошибка прогноза равна \hat{eta}_4

47. Рассмотрим модель $y_i = \beta_1 + \beta_2 x_i + \beta_3 w_i + \beta_4 z_i + \varepsilon_i$. При оценке модели по 24 наблюдениям оказалось, что RSS = 15, $\sum (y_i - \bar{y} - w_i + \bar{w})^2 = 20$. На уровне значимости 1% протестируйте гипотезу

$$H_0: \begin{cases} \beta_2 + \beta_3 + \beta_4 = 1\\ \beta_2 = 0\\ \beta_3 = 1\\ \beta_4 = 0 \end{cases}$$

- 48. Модель регрессии $y_i=\beta_1+\beta_2x_i+\beta_3z_i+\varepsilon_i$, в которой ошибки ε_i независимы и нормальны $N(0; \sigma^2)$, оценивается по 13 наблюдениям. Найдите $\mathbb{E}(RSS)$, Var(RSS), $\mathbb{P}(5\sigma^2 < RSS <$ $10\sigma^2$), $\mathbb{P}(5\hat{\sigma}^2 < RSS < 10\hat{\sigma}^2)$
 - $RSS/\sigma^2 \sim \chi^2_{n-k}$, $\mathbb{E}(RSS) = (n-k)\sigma^2$, $Var(RSS) = 2(n-k)\sigma^4$, $\mathbb{P}(5\sigma^2 < RSS < 10\sigma^2) \approx 0.451$

МНК с матрицами и вероятностями 4

- 1. Пусть $y = X\beta + \varepsilon$ регрессионная модель.
 - (а) Сформулируйте теорему Гаусса-Маркова
 - (b) Верно ли, что оценка $\hat{\beta} = (X'X)^{-1}X'y$ несмещённая?
 - (c) В условиях теоремы Гаусса-Маркова найдите ковариационную матрицу $\hat{\beta}$
- 2. Пусть $y = X\beta + \varepsilon$ регрессионная модель и $\tilde{\beta} = ((X'X)^{-1}X' + A)y$ несмещённая оценка вектора неизвестных параметров β . Верно ли, что AX=0?
- 3. Пусть $y = X\beta + \varepsilon$ регрессионная модель, $X = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$, $y = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$, $\varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix}$,

 $\mathbb{E}(\varepsilon)=0,\,\mathrm{Var}(\varepsilon)=\sigma^2I.$ Найдите коэффициент корреляции $\mathrm{Corr}(\hat{eta}_1,\hat{eta}_2).$

- 4. Пусть $y=X\beta+\varepsilon$ регрессионная модель, где $\beta=\begin{pmatrix}\beta_1\\\beta_2\\\beta_3\end{pmatrix}$. Пусть Z=XD, где $D=\begin{pmatrix}1&1&0\\0&2&1&0\\0&1&1&0&0\\0&1&1&0&0\\0&1&1&0&0\\0&1&1&0&0\\0&1&1&0&0\\0&1&1&0&0\\0&1&0&0&0\\0&1&0&0&0\\0&1&0&0&0\\0&1&0$
 - $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Рассмотрите «новую» регрессионную модель $y = Z\alpha + u$, где $\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$.

Определите, как выражаются «новые» МНК-коэффициенты через «старые».

- 5. Пусть $y = X\beta + \varepsilon$ регрессионная модель, где $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$. Пусть Z = XD, где $D = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Рассмотрите «новую» регрессионную модель $y = Z\alpha + u$, где $\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$.

Определите, как выражаются «новые» МНК-коэффициенты через «старые».

- 6. Пусть $y = X\beta + \varepsilon$ регрессионная модель, где $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$. Пусть Z = XD, где $D = \zeta$
 - $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Рассмотрите «новую» регрессионную модель $y = Z\alpha + u$, где $\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{pmatrix}$.

Определите, как выражаются «новые» МНК-коэффициенты через «старые».

- 7. Пусть $y = X\beta + \varepsilon$ регрессионная модель. Верно ли, что $\hat{\varepsilon}'\hat{y} = 0$ и $\hat{y}'\hat{\varepsilon} = 0$? да, да
- 8. Пусть $y = X\beta + \varepsilon$ регрессионная модель, где $\mathbb{E}(\varepsilon) = 0$, $\mathrm{Var}(\varepsilon) = \sigma_{\varepsilon}^2 I$. Пусть A неслучайная матрица размера $k \times k$, $\det(A) \neq 0$. Совершается преобразование регрессоров по правилу Z = XA. В преобразованных регрессорах уравнение выглядит так: $y = Z\gamma + u$, где $\mathbb{E}(u) = 0$, $Var(u) = \sigma_u^2 I$.
 - (a) Как связаны между собой МНК-оценки $\hat{\beta}$ и $\hat{\gamma}$?
 - (b) Как связаны между собой векторы остатков регрессий?
 - (с) Как связаны между собой прогнозные значения, полученные по двум регрессиям?
 - (a) $\hat{\gamma} = (Z'Z)^{-1}Z'y = A^{-1}(X'X)^{-1}(A')^{-1}A'X'y = A^{-1}(X'X)^{-1}X'y = A^{-1}\hat{\beta}$
 - (b) $\hat{u} = y Z\hat{\gamma} = y XAA^{-1}\hat{\beta} = y X\hat{\beta} = \hat{\varepsilon}$

- (c) Пусть $z^0 = \begin{pmatrix} 1 & z_1^0 & \dots & z_{k-1}^0 \end{pmatrix}$ вектор размера $1 \times k$ и $x^0 = \begin{pmatrix} 1 & x_1^0 & \dots & x_{k-1}^0 \end{pmatrix}$ вектор размера $1 \times k$. Оба эти вектора представляют собой значения факторов. Тогда $z^0 = x^0 A$ и прогнозное значение для регрессии с преобразованными факторами равно $z^0 \hat{\gamma} = x^0 A A^{-1} \hat{\beta} = x^0 \hat{\beta}$ прогнозному значению для регрессии с исходными факторами.
- 9. Рассмотрим оценку вида $\tilde{\beta} = ((X'X)^{-1} + \gamma I)X'y$ для вектора коэффициентов регрессионного уравнения $y = X\beta + \varepsilon$, удовлетворяющего условиям классической регрессионной модели. Найдите $\mathbb{E}(\tilde{\beta})$ и $\mathrm{Var}(\tilde{\beta})$.
 - (a) $\mathbb{E}(\tilde{\beta}) = ((X'X)^{-1} + \gamma I)X'\mathbb{E}(y) = ((X'X)^{-1} + \gamma I)X'X\beta = \beta + \gamma X'X\beta$
 - $$\begin{split} & (\mathrm{b}) \quad \mathrm{Var}(\tilde{\beta}) = \mathrm{Var}(((X'X)^{-1} + \gamma I)X'y) = \mathrm{Var}(((X'X)^{-1} + \gamma I)X'\varepsilon) = \\ & = (((X'X)^{-1} + \gamma I)X') \, \mathrm{Var}(\varepsilon)(((X'X)^{-1} + \gamma I)X')' = \\ & = (((X'X)^{-1} + \gamma I)X')\sigma_{\varepsilon}^2 I(((X'X)^{-1} + \gamma I)X')' = \sigma_{\varepsilon}^2 ((X'X)^{-1} + \gamma I)X'X((X'X)^{-1} + \gamma I) = \\ & = \sigma_{\varepsilon}^2 ((X'X)^{-1} + \gamma I)(I + \gamma X'X) = \sigma_{\varepsilon}^2 ((X'X)^{-1} + 2\gamma I + \gamma^2 X'X) \end{split}$$
- 10. Верно ли, что при невырожденном преобразовании факторов R^2 не меняется? А именно, пусть заданы две регрессионные модели: $y = X\beta + \varepsilon$ и $y = Z\alpha + u$, где y вектор размера $n \times 1$, X и Z матрицы размера $n \times k$, β и α вектора рамзера $k \times 1$, ε и u вектора размера $n \times 1$, а также Z = XD, $\det(D) \neq 0$. Верно ли, что коэффициенты детерминации представленных выше моделей равны между собой?
- 11. Верно ли, что при невырожденном преобразовании факторов RSS не меняется. А именно, пусть заданы две регрессиионные модели: $y = X\beta + \varepsilon$ и $y = Z\alpha + u$, где y вектор размера $n \times 1$, X и Z матрицы размера $n \times k$, β и α вектора размера $k \times 1$, ε и u вектора размера $n \times 1$, а также Z = XD, $\det(D) \neq 0$. Верно ли, что сумма квадратов остатков в представленных выше моделях равны между собой?
- 12. Пусть регрессионная модель $y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i, i = 1, \dots, n$, задана в матричном виде при помощи уравнения $y = X\beta + \varepsilon$, где $\beta = \begin{pmatrix} \beta_1 & \beta_2 & \beta_3 \end{pmatrix}^T$. Известно, что $\mathbb{E}\varepsilon = 0$ и $\mathrm{Var}(\varepsilon) = 4 \cdot I$. Известно также, что:

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Для удобства расчётов ниже приведены матрицы:

$$X^T X = \begin{pmatrix} 5 & 3 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ if } (X^T X)^{-1} = \begin{pmatrix} 0.5 & -0.5 & 0 \\ -0.5 & 1 & -0.5 \\ 0 & -0.5 & 1.5 \end{pmatrix}.$$

Найдите:

- (a) $Var(\varepsilon_1)$
- (b) $Var(\beta_1)$
- (c) $\operatorname{Var}(\hat{\beta}_1)$
- (d) $\widehat{\operatorname{Var}}(\hat{\beta}_1)$
- (e) $\mathbb{E}(\hat{\beta}_1^2) \beta_1^2$
- (f) $\operatorname{Cov}(\hat{\beta}_2, \hat{\beta}_3)$
- (g) $\widehat{\text{Cov}}(\hat{\beta}_2, \hat{\beta}_3)$
- (h) $\operatorname{Var}(\hat{\beta}_2 \hat{\beta}_3)$
- (i) $\widehat{\text{Var}}(\hat{\beta}_2 \hat{\beta}_3)$
- (j) $Var(\beta_2 \beta_3)$
- (k) $Corr(\hat{\beta}_2, \hat{\beta}_3)$
- (l) $\widehat{\mathrm{Corr}}(\hat{\beta}_2,\hat{\beta}_3)$
- (m) $\mathbb{E}(\hat{\sigma}^2)$

(n)
$$\hat{\sigma}^2$$

13. Пусть
$$y_i = \beta_1 + \beta_2 x_{1i} + \beta_3 x_{2i} + \varepsilon_i$$
 — регрессионная модель, где $X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, $y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$,

$$eta=egin{pmatrix} eta_1 \ eta_2 \ eta_3 \end{pmatrix}$$
, $arepsilon=egin{pmatrix} arepsilon_1 \ arepsilon_2 \ eta_3 \ arepsilon_4 \ arepsilon_5 \end{pmatrix}$, ошибки $arepsilon_i$ независимы и нормально распределены с $\mathbb{E}(arepsilon)=0$,

$$Var(arepsilon)=\sigma^2I$$
. Для удобства расчётов даны матрицы: $X'X=\begin{pmatrix}5&2&1\\2&2&1\\1&1&1\end{pmatrix}$ и $(X'X)'=$

$$\begin{pmatrix}
0.3333 & -0.3333 & 0.0000 \\
-0.3333 & 1.3333 & -1.0000 \\
0.0000 & -1.0000 & 2.0000
\end{pmatrix}$$

- (а) Укажите число наблюдений
- (b) Укажите число регрессоров в модели, учитывая свободный член
- (c) Найдите $TSS = \sum_{i=1}^{n} (y_i \bar{y})^2$
- (d) Найдите $RSS = \sum_{i=1}^{n} (y_i \hat{y_i})^2$
- (е) Методом МНК найдите оценку для вектора неизвестных коэффициентов
- (f) Чему равен R^2 в модели? Прокомментируйте полученное значение с точки зрения качества оценённого уравнения регрессии
- (g) Сформулируйте основную и альтернативную гипотезы, которые соответствуют тесту на значимость переменной x_1 в уравнении регрессии
- (h) Протестируйте на значимость переменную x_1 в уравнении регрессии на уровне значимости 10%:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод о значимости переменной x_1
- (i) Найдите P—значение, соответствующее наблюдаемому значению тестовой статистики (T_{obs}) из предыдущего пункта. На основе полученного P—значения сделайте вывод о значимости переменной x_1
- (j) На уровне значимости 10% проверьте гипотезу $H_0: \beta_1 = 1$ против альтернативной $H_a: \beta_1 \neq 1$:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (k) На уровне значимости 10% проверьте гипотезу $H_0: \beta_1 = 1$ против альтернативной $H_a: \beta_1 > 1$:

- і. Приведите формулу для тестовой статистики
- іі. Укажите распределение тестовой статистики
- ііі. Вычислите наблюдаемое значение тестовой статистики
- iv. Укажите границы области, где основная гипотеза не отвергается
- v. Сделайте статистический вывод
- (l) На уровне значимости 10% проверьте гипотезу $H_0: \beta_1 = 1$ против альтернативной $H_a: \beta_1 < 1$:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (m) Сформулируйте основную гипотезу, которая соответствует тесту на значимость регрессии «в целом»
- (n) На уровне значимости 5% проверьте гипотезу о значимости регрессии «в целом»:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (о) Найдите P—значение, соответствующее наблюдаемому значению тестовой статистики (T_{obs}) из предыдущего пункта. На основе полученного P—значения сделайте вывод о значимости регрессии «в целом»
- (р) На уровне значимости 5% проверьте гипотезу $H_0: \beta_1 + \beta_2 = 2$ против альтернативной $H_a: \beta_1 + \beta_2 \neq 2$:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (q) На уровне значимости 5% проверьте гипотезу $H_0: \beta_1 + \beta_2 = 2$ против альтернативной $H_a: \beta_1 + \beta_2 > 2$:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (r) На уровне значимости 5% проверьте гипотезу $H_0: \beta_1+\beta_2=2$ против альтернативной $H_a: \beta_1+\beta_2<2$:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается

v. Сделайте статистический вывод

- (a) n = 5
- (b) k = 3
- (c) TSS = 10
- (d) RSS = 2

(e)
$$\hat{\beta} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{\beta}_3 \end{pmatrix} = (X'X)^{-1}X'y = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

- (f) $R^2 = 1 \frac{RSS}{TSS} = 0.8$. R^2 высокий, построенная эконометрическая модель «хорошо» описывает данные
- (g) Основная гипотеза $H_0: \beta_1=0$, альтернативная гипотеза $H_a: \beta_1\neq 0$
- (h) Проверка гипотезы

i.
$$T = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}}; n = 5; k = 3$$

- iv. Нижняя граница = -2.920, верхняя граница = 2.920
- v. Поскольку $T_{obs}=1.7321$, что принадлежит промежутку от -2.920 до 2.920, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- (i) $p-value(T_{obs}) = \mathbb{P}(|T|>|T_{obs}|) = 2F_T(|T_{obs}|)$, где $F_T(|T_{obs}|) ф$ ункция распределения t-распределения c n-k=5-3=2 степенями свободы в точке $|T_{obs}|$. $p-value(T_{obs}) = 2tcdf(-|T_{obs}|, n-k) = 2tcdf(-1.7321, 2) = 0.2253$. Поскольку P-значение превосходит уровень значимости 10%, то основная гипотеза $-H_0: \beta_1=0$ не может быть отвергнута
- (j) Проверка гипотезы

i.
$$T = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{RSS}{n-k}[(X'X)^{-1}]_{22}}}; n = 5; k = 3$$

- $$\begin{split} &\text{i.} \quad T = \frac{\hat{\beta}_1 \beta_1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 \beta_1}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}}; n = 5; k = 3 \\ &\text{ii.} \quad T \sim t(n-k); n = 5; k = 3 \\ &\text{iii.} \quad T_{obs} = \frac{\hat{\beta}_1 1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 1}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}} = \frac{2 1}{\sqrt{\frac{2}{5-3}1.3333}} = 0.8660 \end{split}$$
- iv. Нижняя граница = -2.920, верхняя граница = 2.920
- v. Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от -2.920 до 2.920, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- (k) Проверка гипотезы

i.
$$T = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}}; n = 5; k = 3$$

- ii. $T \sim t(n-k); n=5; k=3$ iii. $T_{obs} = \frac{\hat{\beta}_1 1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 1}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}} = \frac{2-1}{\sqrt{\frac{2}{5} 3} \cdot 1.3333}} = 0.8660$
- iv. Нижняя граница $= -\infty$, верхняя граница = 1.8856
- v. Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от $-\infty$ до 1.8856, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- (l) Проверка гипотезы

i.
$$T = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}}; n = 5; k = 3$$

- $\begin{array}{ll} \text{ii.} & T \sim t(n-k); n=5; k=3 \\ \text{iii.} & T_{obs} = \frac{\hat{\beta}_1 1}{\sqrt{Var}(\hat{\beta}_1)} = \frac{\hat{\beta}_1 1}{\sqrt{\frac{RSS}{n-k}}[(X'X)^{-1}]_{22}} = \frac{2 1}{\sqrt{\frac{2}{5-3}1.3333}} = 0.8660 \\ \end{array}$
- iv. Нижняя граница -1.8856, верхняя граница $+\infty$
- v. Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от -1.8856 до $+\infty$, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- (m) Основная гипотеза $H_0: \beta_1=\beta_2=0$, альтернативная гипотеза $H_a: |\beta_1|+|\beta_2|>0$
- (n) Проверка гипотезы

i.
$$T=\frac{R^2}{1-R^2}\cdot\frac{n-k}{k}; n=5; k=3$$
 ii. $T\sim F(n-k); n=5; k=3$

ii.
$$T \sim F(n-k)$$
: $n = 5$: $k = 3$

iii.
$$T_{obs} = \frac{R^2}{1 - R^2} \cdot \frac{n - k}{k} = \frac{0.8}{1 - 0.8} \cdot \frac{5 - 3}{2} = 4$$

- iv. Нижняя граница = 0, верхняя граница = 19
- v. Поскольку $T_{obs}=4$, что принадлежит промежутку от 0 до 19, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%. Следовательно, регрессия в целом незначима. Напомним, что $R^2=0.8$, то есть он высокий. Но при этом регрессия «в целом» незначима. Такой эффект может возникать при малом объёме выборки, например, таком, как в данной задаче
- (о) $p-value(T_{obs})=\mathbb{P}(|T|>|T_{obs}|)=2F_T(|T_{obs}|)$, где $F_T(|T_{obs}|)$ функция распределения F —распределения с k=3 и n-k=5-3=2 степенями свободы в точке T_{obs} , $p-value(T_{obs})=1-fcdf(-|T_{obs}|,n-k)=1-fcdf(4,2)=0.2$. Поскольку P—значение превосходит уровень значимости 10%, то основная гипотеза $H_0:\beta_1=\beta_2=0$ не может быть отвергнута. Таким образом, регрессия «в целом» незначима
- (р) Проверка гипотезы

i.
$$T = \frac{\hat{\beta}_1 + \hat{\beta}_2 - (\beta_1 + \beta_2)}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_1 + \hat{\beta}_2)}}, \text{ rge } \widehat{\operatorname{Var}}(\hat{\beta}_1 + \hat{\beta}_2) = \widehat{\operatorname{Var}}(\hat{\beta}_1) + \widehat{\operatorname{Var}}(\hat{\beta}_2) + 2\widehat{\operatorname{Cov}}(\hat{\beta}_1; \hat{\beta}_2) = \hat{\sigma}^2[(X'X)^{-1}]_{22} + 2\hat{\sigma}^2[(X'X)^{-1}]_{23} + \hat{\sigma}^2[(X'X)^{-1}]_{33} = \frac{RSS}{n-k}([(X'X)^{-1}]_{22} + 2[(X'X)^{-1}]_{23} + [(X'X)^{-1}]_{33})$$

ii.
$$T \sim t(n-k); n=5; k=3$$

ііі.
$$\widehat{\mathrm{Var}}(\widehat{\beta}_1+\widehat{\beta}_2) = \frac{RSS}{n-k}([(X'X)^{-1}]_{22} + 2[(X'X)^{-1}]_{23} + [(X'X)^{-1}]_{33}) = \frac{2}{5-3}(1.3333 + 2(-1.0000) + 2.0000) = 1.3333.$$
 Тогда $T_{obs} = \frac{\widehat{\beta}_1+\widehat{\beta}_2-2}{\sqrt{\widehat{\mathrm{Var}}}(\widehat{\beta}_1+\widehat{\beta}_2)} = \frac{2+1-2}{\sqrt{1.3333}} = 0.8660$

- iv. Нижняя граница = -4.3027, верхняя граница = 4.3027
- v. Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от -4.3027 до 4.3027, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%
- (q) Проверка гипотезы

i.
$$T = \frac{\hat{\beta}_1 + \hat{\beta}_2 - (\beta_1 + \beta_2)}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_1 + \hat{\beta}_2)}}, \text{ rge } \widehat{\operatorname{Var}}(\hat{\beta}_1 + \hat{\beta}_2) = \widehat{\operatorname{Var}}(\hat{\beta}_1) + \widehat{\operatorname{Var}}(\hat{\beta}_2) + 2\widehat{\operatorname{Cov}}(\hat{\beta}_1; \hat{\beta}_2) = \hat{\sigma}^2[(X'X)^{-1}]_{22} + 2\hat{\sigma}^2[(X'X)^{-1}]_{23} + \hat{\sigma}^2[(X'X)^{-1}]_{33} = \frac{RSS}{n-k}([(X'X)^{-1}]_{22} + 2[(X'X)^{-1}]_{23} + [(X'X)^{-1}]_{33})$$

- ii. $T \sim t(n-k); n = 5; k = 3$
- ііі. $\widehat{\mathrm{Var}}(\widehat{\beta}_1+\widehat{\beta}_2) = \frac{RSS}{n-k}([(X'X)^{-1}]_{22} + 2[(X'X)^{-1}]_{23} + [(X'X)^{-1}]_{33}) = \frac{2}{5-3}(1.3333 + 2(-1.0000) + 2.0000) = 1.3333.$ Тогда $T_{obs} = \frac{\widehat{\beta}_1+\widehat{\beta}_2-2}{\sqrt{\widehat{\mathrm{Var}}}(\widehat{\beta}_1+\widehat{\beta}_2)} = \frac{2+1-2}{\sqrt{1.3333}} = 0.8660$
- iv. Нижняя граница $= -\infty$, верхняя граница = 2.9200
- v. Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от $-\infty$ до 2.9200, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%
- (r) Проверка гипотезы
 - i. $T = \frac{\hat{\beta}_1 + \hat{\beta}_2 (\beta_1 + \beta_2)}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_1 + \hat{\beta}_2)}}, \text{ rge } \widehat{\operatorname{Var}}(\hat{\beta}_1 + \hat{\beta}_2) = \widehat{\operatorname{Var}}(\hat{\beta}_1) + \widehat{\operatorname{Var}}(\hat{\beta}_2) + 2\widehat{\operatorname{Cov}}(\hat{\beta}_1; \hat{\beta}_2) = \hat{\sigma}^2[(X'X)^{-1}]_{22} + 2\hat{\sigma}^2[(X'X)^{-1}]_{23} + \hat{\sigma}^2[(X'X)^{-1}]_{33} = \frac{RSS}{n-k}([(X'X)^{-1}]_{22} + 2[(X'X)^{-1}]_{23} + [(X'X)^{-1}]_{33})$
 - ii. $T \sim t(n-k); n = 5; k = 3$
 - ііі. $\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2)=\frac{RSS}{n-k}([(X'X)^{-1}]_{22}+2[(X'X)^{-1}]_{23}+[(X'X)^{-1}]_{33})=\frac{2}{5-3}(1.3333+2(-1.0000)+2.0000)=1.3333.$ Тогда $T_{obs}=\frac{\hat{\beta}_1+\hat{\beta}_2-2}{\sqrt{\widehat{\mathrm{Var}}}(\hat{\beta}_1+\hat{\beta}_2)}=\frac{2+1-2}{\sqrt{1.3333}}=0.8660$
 - iv. Нижняя граница -2.9200, верхняя граница $+\infty$
 - v. Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от -2.9200 до $+\infty$, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%

14. Пусть
$$y = X\beta + \varepsilon$$
 — регрессионная модель, где $X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 \end{pmatrix}, y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$

$$arepsilon = egin{pmatrix} arepsilon_1 \ arepsilon_2 \ arepsilon_3 \ arepsilon_4 \ arepsilon_5 \end{pmatrix}, \ \mathbb{E}(arepsilon) = 0, \ Var(arepsilon) = \sigma^2 I.$$

На уровне значимости 5% проверьте гипотезу $H_0: \beta_1 + \beta_2 = 2$ против альтернативной $H_a: \beta_1 + \beta_2 \neq 2$:

- (а) Приведите формулу для тестовой статистики
- (b) Укажите распределение тестовой статистики
- (с) Вычислите наблюдаемое значение тестовой статистики
- (d) Укажите границы области, где основная гипотеза не отвергается
- (е) Сделайте статистический вывод
- 15. По 13 наблюдениям Вася оценил модель со свободным членом, пятью количественными регрессорами и двумя качественными. Качественные регрессоры Вася правильно закодировал с помощью дамми-переменных. Одна качественная переменная принимала четыре значения, другая пять.
 - (a) Найдите SSR, R^2
 - (b) Как выглядит матрица $X(X'X)^{-1}X'$?
 - (c) Почему 13 несчастливое число?
- 16. В рамках классической линейной модели найдите все математические ожидания и все ковариационные матрицы всех пар случайных векторов: ε , y, \hat{y} , $\hat{\varepsilon}$, $\hat{\beta}$. Т.е. найдите $\mathbb{E}(\varepsilon)$, $\mathbb{E}(y)$, . . . и $\mathrm{Cov}(\varepsilon,y)$, $\mathrm{Cov}(\varepsilon,\hat{y})$, . . . $\mathrm{Var}(\hat{\beta}) = \sigma^2(X'X)^{-1}$
- 17. Найдите $\mathbb{E}(\sum (\varepsilon_i \bar{\varepsilon})^2), \mathbb{E}(RSS)$ $(n-1)\sigma^2, (n-k)\sigma^2$
- 18. Используя матрицы $P = X(X'X)^{-1}X'$ и $\pi = \vec{1}(\vec{1}'\vec{1})^{-1}\vec{1}'$ запишите RSS, TSS и ESS в матричной форме $TSS = y'(I-\pi)y$, RSS = y'(I-P)y, $ESS = y'(P-\pi)y$

- 19. $\mathbb{E}(TSS)$, $\mathbb{E}(ESS)$ громоздкие $\mathbb{E}(TSS) = (n-1)\sigma^2 + \beta'X'(I-\pi)X\beta$
- 20. Вася строит регрессию y на некий набор объясняющих переменных и константу. А на самом деле $y_i = \beta_1 + \varepsilon_i$. Чему равно $\mathbb{E}(TSS)$, $\mathbb{E}(RSS)$, $\mathbb{E}(ESS)$ в этом случае? $(n-1)\sigma^2$, $(n-k)\sigma^2$, $(k-1)\sigma^2$
- 21. Рассмотрим классическую линейную модель. Являются ли векторы $\hat{\varepsilon}$ и \hat{y} перпендикулярными? Найдите $\mathrm{Cov}(\hat{\varepsilon},\hat{y})$
- 22. Чему в классической модели регрессии равны $\mathbb{E}(\varepsilon)$, $\mathbb{E}(\hat{\varepsilon})$? Верно ли что $\sum \varepsilon_i$ равна 0? Верно ли что $\sum \hat{\varepsilon}_i$ равна 0?
- 23. Найдите на Картинке все перпендикулярные векторы. Найдите на Картинке все прямоугольные треугольники. Сформулируйте для них теоремы Пифагора. $\sum y_i^2 = \sum \hat{y}_i^2 + \sum \hat{\varepsilon}_i^2$, TSS = ESS + RSS,
- 24. Покажите на Картинке TSS, ESS, RSS, R^2 , sCov (\hat{y}, y)
- 25. Предложите аналог R^2 для случая, когда константа среди регрессоров отсутствует. Аналог должен быть всегда в диапазоне [0;1], совпадать с обычным R^2 , когда среди регрессоров есть константа, равняться единице в случае нулевого $\hat{\varepsilon}$. Спроецируем единичный столбец на «плоскость», обозначим его 1'. Делаем проекцию y на «плоскость» и на 1'. Далее аналогично.
- 26. Вася оценил регрессию y на константу, x и z. А затем, делать ему нечего, регрессию y на константу и полученный \hat{y} . Какие оценки коэффициентов у него получатся? Чему будет равна оценка дисперсии коэффицента при \hat{y} ? Почему оценка коэффициента неслучайна, а оценка её дисперсии положительна? проекция y на \hat{y} это \hat{y} , поэтому оценки коэффициентов будут 0 и 1. Оценка дисперсии $\frac{RSS}{(n-2)ESS}$. Нарушены предпосылки теоремы Гаусса-Маркова, например, ошибки новой модели в сумме дают 0, значит коррелированы.
- 27. При каких условиях TSS = ESS + RSS? либо в регрессию включена константа, либо единичный столбец (тут была опечатка, столбей) можно получить как линейную комбинацию регрессоров, например, включены дамми-переменные для каждого возможного значения качественной переменной.
- 28. Истинная модель имеет вид $y = X\beta + \varepsilon$. Вася оценивает модель $\hat{y} = X\hat{\beta}$ по первой части выборки, получает $\hat{\beta}_a$, по второй части выборки получает $\hat{\beta}_b$ и по всей выборке $\hat{\beta}_{tot}$. Как связаны между собой $\hat{\beta}_a$, $\hat{\beta}_b$, $\hat{\beta}_{tot}$? Как связаны между собой ковариационные матрицы $\operatorname{Var}(\hat{\beta}_a)$, $\operatorname{Var}(\hat{\beta}_b)$ и $\operatorname{Var}(\hat{\beta}_{tot})$? Сами оценки коэффициентов никак детерминистически не связаны, но при большом размере подвыборок примерно равны. А ковариационные матрицы связаны соотношением $\operatorname{Var}(\hat{\beta}_a)^{-1} + \operatorname{Var}(\hat{\beta}_b)^{-1} = \operatorname{Var}(\hat{\beta}_{tot})^{-1}$
- 29. Модель линейной регрессии имеет вид $y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + u_i$. Сумма квадратов остатков имеет вид $Q\left(\hat{\beta}_1, \hat{\beta}_2\right) = \sum_{i=1}^n (y_1 \hat{\beta}_1 x_{i,1} \hat{\beta}_2 x_{i,2})^2$.
 - (а) Выпишите необходимые условия минимума суммы квадратов остатков
 - (b) Найдите матрицу X'X и вектор X'y если матрица X имеет вид $X=\begin{pmatrix}x_{1,1}&x_{1,2}\\ \vdots&\vdots\\x_{n,1}&x_{n,2}\end{pmatrix}$, а вектор y имеет вид $y=\begin{pmatrix}y_1\\ \vdots\\y_n\end{pmatrix}$
 - (c) Докажите, что необходимые условия равносильны матричному уравнению $X'X\hat{\beta}=X'y$, где $\hat{\beta}=\begin{pmatrix}\hat{\beta}_1\\\hat{\beta}_2\end{pmatrix}$
 - (d) Предполагая, что матрица X'X обратима, найдите $\hat{\beta}$
- 30. Вася оценил исходную модель:

$$y_i = \beta_1 + \beta_2 x_i + u_i$$

Для надежности Вася стандартизировал переменные, т.е. перешёл к $y_i^* = (y_i - \bar{y})/s_y$ и $x_i^* = (x_i - \bar{x})/s_x$. Затем Вася оценил ещё две модели:

$$y_i^* = \beta_1' + \beta_2' x_i^* + u_i'$$

И

$$y_i^* = \beta_2'' x_i^* + u_i''$$

В решении можно считать s_x и s_y известными.

- (a) Найдите $\hat{\beta}'_1$
- (b) Как связаны между собой $\hat{\beta}_2$, $\hat{\beta}_2'$ и $\hat{\beta}_2''$?
- (c) Как связаны между собой \hat{u}_i , \hat{u}'_i и \hat{u}''_i ?
- (d) Как связаны между собой $\widehat{\mathrm{Var}}\left(\hat{\beta}_{2}\right),\,\widehat{\mathrm{Var}}\left(\hat{\beta}_{2}'\right)$ и $\widehat{\mathrm{Var}}\left(\hat{\beta}_{2}''\right)$?
- (e) Как выглядит матрица $\widehat{\operatorname{Var}}\left(\hat{\beta}'\right)$?
- (f) Как связаны между собой t-статистики $t_{\hat{\beta}_2},\,t_{\hat{\beta}_2'}$ и $t_{\hat{\beta}_2''}$?
- (g) Как связаны между собой R^2 , $R^{2\prime}$ и $R^{2\prime\prime}$?
- (h) В нескольких предложениях прокомментируйте последствия перехода к стандартизированным переменным
- 31. Регрессионная модель задана в матричном виде при помощи уравнения $y = X\beta + \varepsilon$, где $\beta = (\beta_1, \beta_2, \beta_3)'$. Известно, что $\mathbb{E}(\varepsilon) = 0$ и $\mathrm{Var}(\varepsilon) = \sigma^2 \cdot I$. Известно также, что

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

Для удобства расчетов приведены матрицы

$$X'X = \begin{pmatrix} 5 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ if } (X'X)^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 4 & -3 \\ 0 & -3 & 6 \end{pmatrix}.$$

- (а) Укажите число наблюдений.
- (b) Укажите число регрессоров с учетом свободного члена.
- (с) Запишите модель в скалярном виде
- (d) Рассчитайте $TSS = \sum (y_i \bar{y})^2$, $RSS = \sum (y_i \hat{y}_i)^2$ и $ESS = \sum (\hat{y}_i \bar{y})^2$.
- (e) Рассчитайте при помощи метода наименьших квадратов $\hat{\beta}$, оценку для вектора неизвестных коэффициентов.
- (f) Чему равен $\hat{\varepsilon}_5$, МНК-остаток регрессии, соответствующий 5-ому наблюдению?
- (g) Чему равен R^2 в модели? Прокомментируйте полученное значение с точки зрения качества оцененного уравнения регрессии.
- (h) Используя приведенные выше данные, рассчитайте несмещенную оценку для неизвестного параметра σ^2 регрессионной модели.
- (i) Рассчитайте $\widehat{\mathrm{Var}}(\hat{\beta})$, оценку для ковариационной матрицы вектора МНК-коэффициентов $\hat{\beta}$
- (j) Найдите $\widehat{\mathrm{Var}}(\hat{\beta}_1)$, несмещенную оценку дисперсии МНК-коэффициента $\hat{\beta}_1$.
- (k) Найдите $\widehat{\mathrm{Var}}(\hat{\beta}_2)$, несмещенную оценку дисперсии МНК-коэффициента $\hat{\beta}_2$.
- (l) Найдите $\widehat{\mathrm{Cov}}(\hat{\beta}_1,\hat{\beta}_2)$, несмещенную оценку ковариации МНК-коэффициентов $\hat{\beta}_1$ и $\hat{\beta}_2$.

- (m) Найдите $\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2)$, $\widehat{\mathrm{Var}}(\hat{\beta}_1-\hat{\beta}_2)$, $\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2+\hat{\beta}_3)$, $\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2-2\hat{\beta}_3)$
- (n) Найдите $\widehat{\mathrm{Corr}}(\hat{\beta}_1,\hat{\beta}_2)$, оценку коэффициента корреляции МНК-коэффициентов $\hat{\beta}_1$ и
- (о) Найдите $s_{\hat{\beta}_1}$, стандартную ошибку МНК-коэффициента $\hat{\beta}_1$.
- (р) Рассчитайте выборочную ковариацию y и \hat{y} .
- (q) Найдите выборочную дисперсию y, выборочную дисперсию \hat{y} .

Метод максимального правдоподобия — общая теория 5

Пусть

 $X = (X_1, \ldots, X_n)$ — случайная выборка

 $x = (x_1, \dots, x_n)$ — реализация данной случайной выборки

 $f_{X_i}(x_i,\theta)$ — плотность распределения случайной величины $X_i, i=1,\ldots,n$

 $\theta = (\theta_1, \dots, \theta_k)$ — вектор неизвестных параметров

 $\Theta \subseteq \mathbb{R}^k$ — множество допустимых значений вектора неизвестных параметров

 $L(\theta) = \prod_{i=1}^n f_{X_i}(x_i, \theta)$ — функция правдоподобия

 $l(\theta) := \ln \mathrm{L}(\theta)$ — логарифмическая функция правдоподобия

Пусть требуется протестировать систему (нелинейных) ограничений относительно вектора неизвестных параметров

$$H_0: \begin{cases} g_1(\theta) = 0 \\ g_2(\theta) = 0 \\ \dots \\ g_r(\theta) = 0 \end{cases}$$

где $g_i(\theta)$ — функция, которая задаёт *i*-ое ограничение на вектор параметров θ , $i = 1, \ldots, r$.

где
$$g_i(\theta)$$
 — функция, которая задаёт i -ое ограничение на вектор параметров θ , $i=1,\ldots,$
$$\frac{\partial g}{\partial \theta^j} = \begin{bmatrix} \frac{\partial g_1}{\partial \theta_1} & \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_1}{\partial \theta_k} \\ \frac{\partial g_2}{\partial \theta_1} & \frac{\partial g_2}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_k} \\ \vdots \\ \frac{\partial g_r}{\partial \theta} & \frac{\partial g_r}{\partial \theta} & \frac{\partial g_2}{\partial \theta} & \dots & \frac{\partial g_r}{\partial \theta} \end{bmatrix} = \begin{bmatrix} \frac{\partial g_1}{\partial \theta_1} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_r}{\partial \theta_k} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_r}{\partial \theta_k} \\ \frac{\partial g_2}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_r}{\partial \theta_2} \\ \frac{\partial g_2}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_r}{\partial \theta_2} \\ \frac{\partial g_2}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_r}{\partial \theta_2} \\ \frac{\partial g_2}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_r}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_r}{\partial \theta_k} \\ \frac{\partial g_1}{\partial \theta_1} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_r}{\partial \theta_k} \\ \frac{\partial g_1}{\partial \theta_1} & \frac{\partial g_2}{\partial \theta_1} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_k} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_k} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_2}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_2}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_2}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_2}{\partial \theta_2} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_2}{\partial \theta_2} \\ \frac{\partial g_2}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_2}{\partial \theta_2} \\ \frac{\partial g_2}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_2}{\partial \theta_2} \\ \frac{\partial g_2}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_2}{\partial \theta_2} \\ \frac{\partial g_2}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta$$

$$\frac{\partial l}{\partial \theta} = \begin{bmatrix} \frac{\partial l}{\partial \theta_1} \\ \frac{\partial l}{\partial \theta_2} \\ \vdots \\ \frac{\partial l}{\partial \theta_k} \end{bmatrix}$$

 $\dot{\theta} = \Theta$ — множество допустимых значений вектора неизвестных параметров без учёта

 $\Theta_R := \{\theta \in \Theta : g(\theta) = 0\}$ — множество допустимых значений вектора неизвестных параметров с учётом ограничений

 $\hat{ heta}_{UR} \in \Theta_{UR}$ — точка максимума функции l на множестве Θ_{UR}

 $\hat{\theta}_R \in \Theta_R$ — точка максимума функции l на множестве Θ_R

Тогда для тестирования гипотезы H_0 можно воспользоваться одной из следующих ниже статистик.

$$LR:=-2(l(\hat{ heta}_R)-l)\stackrel{a}{\sim}\chi^2_r$$
 — статистика отношения правдоподобия

$$W:=g'(\hat{\theta}_{UR})\cdot\left[\frac{\partial g}{\partial \theta'}(\hat{\theta}_{UR})\cdot I^{-1}(\hat{\theta}_{UR})\cdot \frac{\partial g'}{\partial \theta}(\hat{\theta}_{UR})\right]^{-1}g(\hat{\theta}_{UR})\overset{a}{\sim}\chi_r^2$$
— статистика Вальда

$$LM:=\left[\frac{\partial l}{\partial \theta}(\hat{\theta}_R)\right]'\cdot I^{-1}(\hat{\theta}_R)\cdot \left[\frac{\partial l}{\partial \theta}(\hat{\theta}_R)\right]\overset{a}{\sim}\chi_r^2$$
— статистика множителей Лагранжа

- 1. Пусть p неизвестная вероятность выпадения орла при бросании монеты. Из 100 испытаний 42 раза выпал «Орел» и 58 «Решка».
 - (a) Найдите оценку \hat{p} методом максимального правдоподобия
 - (b) Постройте 95% доверительный интервал для p
 - (c) Протестируйте на 5%-ом уровне значимости гипотезу о том, что монетка «правильная» с помощью теста Вальда, теста множителей Лагранжа, теста отношения правдоподобия
- 2. Дядя Вова (Владимир Николаевич) и Скрипач (Гедеван) зарабатывают на Плюке чатлы, чтобы купить гравицапу. Число заработанных за i-ый день чатлов имеет пуассоновское распределение, заработки за разные дни независимы. За прошедшие 100 дней они заработали 250 чатлов.
 - (a) Оцените параметр λ пуассоновского распределения методом максимального правдоподобия
 - (b) Сколько дней им нужно давать концерты, чтобы оценка вероятности купить гравицапу составила 0.99? Гравицапа стоит пол кц или 2200 чатлов.
 - (c) Постройте 95% доверительный интервал для λ
 - (d) Проверьте гипотезу о том, что средний дневной заработок равен 2 чатла с помощью теста отношения правдоподобия, теста Вальда, теста множителей Лагранжа
- 3. Инопланетянин Капп совершил вынужденную посадку на Землю. Каждый день он выходит на связь со своей далёкой планетой. Продолжительность каждого сеанса связи имеет экспоненциальное распределение с параметром λ . Прошедшие 100 сеансов связи в сумме длились 11 часов.
 - (a) Оцените параметр λ экспоненциального распределения методом максимального правдоподобия
 - (b) Постройте 95% доверительный интервал для λ
 - (c) Проверьте гипотезу о том, что средняя продолжительность сеанса связи равна 5 минутам с помощью теста отношения правдоподобия, теста Вальда, теста множителей Лагранжа
- 4. [R] По ссылке http://people.reed.edu/~jones/141/Coal.html скачайте данные о количестве крупных аварий на английских угольных шахтах.
 - (а) Методом максимального правдоподобия оцените две модели:
 - і. Пуассоновская модель: количества аварий независимы и имеют Пуассоновское распределение с параметром λ .
 - іі. Модель с раздутым нулём «zero inflated poisson model»: количества аварий независимы, с вероятностью p аварий не происходит вообще, с вероятностью (1-p) количество аварий имеет Пуассоновское распределение с параметром λ . Смысл этой модели в том, что по сравнению с Пуассоновским распределением у события $\{X_i=0\}$ вероятность выше, а пропорции вероятностей положительных количеств

аварий сохраняются. В модели с раздутым нулём дисперсия и среднее количества аварий отличаются. Чему в модели с раздутым нулём равна $\mathbb{P}(X_i=0)$?

- (b) С помощью тестов множителей Лагранжа, Вальда и отношения правдоподобия проверьте гипотезу H_0 : верна пуассоновская модель против H_a : верна модель с раздутым нулём
- (с) Постройте доверительные интервалы для оценённых параметров в обоих моделях
- (d) Постройте доверительный интервал для вероятности полного отсутствия аварий по обеим моделям
- 5. Совместное распределение величин X и Y задано функцией

$$f(x,y) = \frac{\theta(\beta y)^x e^{-(\theta+\beta)y}}{x!}$$

Величина X принимает целые неотрицательные значения, а величина Y — действительные неотрицательные. Имеется случайная выборка $(X_1, Y_1), \ldots (X_n, Y_n)$.

- (a) С помощью метода максимального правдоподобия оцените θ и β
- (b) С помощью метода максимального правдоподобия оцените $a = \theta/(\beta + \theta)$

$$\hat{\theta}=1/\bar{Y},\,\hat{\beta}=\bar{X}/\bar{Y},\,\hat{a}=1/(1+\bar{X})$$

6. Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из нормального распределения с математическим ожиданием μ и дисперсией ν ; $\mu \in \mathbb{R}$ и $\nu > 0$ — неизвестные параметры. Реализация случайной выборки $x = (x_1, \dots, x_n)$ приведена ниже:

При помощи теста отношения правдоподобия, теста Вальда и теста множителей Лагранжа протестируйте гипотезу:

$$H_0: \begin{cases} \mu = 0 \\ \nu = 1 \end{cases}$$

на уровне значимости 5%.

В данном примере мы имеем $\theta = [\mu \quad \nu]^T$ — вектор неизвестных параметров $\theta = [\mathbb{R} \times (0; +\infty)]$ — множество допустимых значений вектора неизвестных параметров Функция правдоподобия имеет вид:

$$\mathcal{L}(\theta) = \prod_{i=1}^n f_{X_i}(x_i, \theta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\nu}} \cdot \exp\left\{-\frac{(x_i - \mu)^2}{2\nu}\right\} = (2\pi)^{-n/2} \cdot \nu^{-n/2} \cdot \exp\left\{-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\nu}\right\}$$

Логарифмическая функция правдоподобия

$$l(\theta) := \ln L(\theta) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \nu - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\nu}$$

 $\Theta_{UR}=\Theta$ $\Theta_{R}=\{(0,1)\}$ Из системы уравнений

$$\begin{cases} \frac{\partial l}{\partial \mu} = \frac{\sum_{i=1}^{n} (x_i - \mu)}{\nu} = 0\\ \frac{\partial l}{\partial \nu} = -\frac{n}{2\nu} + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\nu^2} = 0 \end{cases}$$

находим

 $\hat{\theta}_{UR} = (\hat{\mu}_{UR}, \hat{\nu}_{UR}),$ где $\hat{\mu}_{UR} = \overline{x} = -1.5290,$ $\hat{\nu}_{UR} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 1.0603$

 $\hat{\theta}_R = (\hat{\mu}_R, \hat{\nu}_R) = (0, 1)$ По имеющимся данным находим

$$l(\hat{\theta}_R) = -\frac{10}{2}\ln(2\pi) - \frac{10}{2}\ln 1 - \frac{\sum_{i=1}^n (x_i - 0)^2}{2\cdot 1} = -26.1804$$

$$l = -\frac{10}{2}\ln(2\pi) - \frac{10}{2}\ln(1.0603) - \frac{\sum_{i=1}^{n}(x_i+1.5290)^2}{2\cdot 1.0603} = -14.4824$$

$$LR_{\text{Ha6}} = -2(l(\hat{\theta}_R) - l) = -2 \cdot (-26.1804 + 14.4824) = 23.3959$$

 $l = -\frac{10}{2}\ln(2\pi) - \frac{10}{2}\ln(1.0603) - \frac{2i\pm 1}{2\cdot 1.0603} = -14.4824$ $LR_{\text{на}6\pi} = -2(l(\hat{\theta}_R) - l) = -2 \cdot (-26.1804 + 14.4824) = 23.3959$ Критическое значение χ^2 распределения с двумя степенями свободы, отвечающее уровню значимости 5%, равно 5.9915. Следовательно, тест отношения правдоподобия говорит о том, что гипотеза H_0 должна быть отвергнута. Для выполнения тестов Вальда и множителей Лагранжа нам понадобится информационная матрица Фишера $\frac{\partial^2 l}{\partial \mu^2} = -\frac{n}{v}, \ \frac{\partial^2 l}{\partial \nu \partial \mu} = -\frac{\sum_{i=1}^n (x_i - \mu)}{\nu^2}, \ \frac{\partial^2 l}{\partial \nu^2} = \frac{n}{2\nu^2} - \frac{\sum_{i=1}^n (x_i - \mu)^2}{\nu^3}$ $\mathbb{E} \frac{\partial^2 l}{\partial \nu \partial \mu} = -\frac{\sum_{i=1}^n \mathbb{E}(x_i - \mu)}{\nu^2} = 0, \ \mathbb{E} \frac{\partial^2 l}{\partial \nu^2} = \frac{n}{2\nu^2} - \frac{\sum_{i=1}^n \mathbb{E}(x_i - \mu)^2}{\nu^3} = \frac{n}{2\nu^2} - \frac{n\nu}{nu^3} = -\frac{n}{2\nu^2}$

$$\frac{\partial^{2} l}{\partial \mu^{2}} = -\frac{n}{v}, \ \frac{\partial^{2} l}{\partial \nu \partial \mu} = -\frac{\sum_{i=1}^{n} (x_{i} - \mu)}{\nu^{2}}, \ \frac{\partial^{2} l}{\partial \nu^{2}} = \frac{n}{2\nu^{2}} - \frac{\sum_{i=1}^{n} (x_{i} - \mu)^{2}}{\nu^{3}}$$

$$\mathbb{E}\frac{\partial^{2}l}{\partial\nu\partial\mu} = -\frac{\sum_{i=1}^{n} \mathbb{E}(x_{i}-\mu)}{\nu^{2}} = 0, \ \mathbb{E}\frac{\partial^{2}l}{\partial\nu^{2}} = \frac{n}{2\nu^{2}} - \frac{\sum_{i=1}^{n} \mathbb{E}(x_{i}-\mu)^{2}}{\nu^{3}} = \frac{n}{2\nu^{2}} - \frac{n\nu}{n\nu^{3}} = -\frac{n}{2\nu^{2}}$$

$$I(\theta) = -\mathbb{E}\begin{bmatrix} \frac{\partial^2 l}{\partial \mu^2} & \frac{\partial^2 l}{\partial \nu \partial \mu} \\ \frac{\partial^2 l}{\partial \nu^2} & \frac{\partial^2 l}{\partial \nu^2} \end{bmatrix} = \begin{bmatrix} \frac{n}{\nu} & 0 \\ 0 & \frac{n}{2\nu^2} \end{bmatrix}$$

$$I(\hat{\theta}_{UR}) = \begin{bmatrix} \frac{n}{\nu} & 0 \\ 0 & \frac{n}{2 \cdot \hat{\nu}_{UR}^2} \end{bmatrix} = \begin{bmatrix} \frac{10}{1.0603} & 0 \\ 0 & \frac{10}{2 \cdot 1.0603^2} \end{bmatrix} = \begin{bmatrix} 9.4307 & 0 \\ 0 & 4.4469 \end{bmatrix}$$

$$g(\hat{\theta}_{UR}) = \begin{bmatrix} \hat{\mu}_{UR} & 0 \\ \hat{\nu}_{UR} & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1.5290 - 0 \\ 1.0603 - 1 \end{bmatrix} = \begin{bmatrix} -1.5290 \\ 1.0603 \end{bmatrix}$$

$$\frac{\partial g}{\partial \theta'} = \begin{bmatrix} \frac{\partial c_1}{\partial \mu} & \frac{\partial c_1}{\partial \nu} \\ \frac{\partial c_2}{\partial \mu} & \frac{\partial c_2}{\partial \nu} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \frac{\partial g'}{\partial \theta} = \begin{bmatrix} \frac{\partial c_1}{\partial \mu} & \frac{\partial c_2}{\partial \nu} \\ \frac{\partial c_1}{\partial \nu} & \frac{\partial c_2}{\partial \nu} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$W_{\text{Ha6},n} = g'(\hat{\theta}_{UR}) \cdot \begin{bmatrix} \frac{\partial g}{\partial \theta'}(\hat{\theta}_{UR}) \cdot I^{-1}(\hat{\theta}_{UR}) \cdot \frac{\partial g'}{\partial \theta'}(\hat{\theta}_{UR}) \end{bmatrix}^{-1} g(\hat{\theta}_{UR}) = \begin{bmatrix} -1.5290 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 9.4307 & 0 \\ 0 & 4.4469 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -1.5290 \\ 0.0603 \end{bmatrix} = 22.0635$$
Тест Вальда также говорит о том, что на основании имеющихся наблюдений гипотеза H_0 должна быть отвергнута.
$$I(\hat{\theta}_R) = \begin{bmatrix} \frac{n}{\nu} & 0 \\ 0 & \frac{n}{2 \cdot \nu^2_R} \end{bmatrix} = \begin{bmatrix} \frac{10}{10} & 0 \\ 0 & \frac{10}{2 \cdot 1^2} \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 0 & 5 \end{bmatrix}$$

$$\frac{\partial l}{\partial \theta}(\hat{\theta}_R) = \begin{bmatrix} \frac{\sum_{i=1}^n (x_i - \hat{\mu}_R)}{2 \cdot \nu_R} + \frac{\sum_{i=1}^n (x_i - \hat{\mu}_R)^2}{2 \cdot \nu^2_R} \end{bmatrix} = \begin{bmatrix} \frac{\sum_{i=1}^n (x_i - 0)}{2 \cdot 1^2} \\ -\frac{10}{2 \cdot 1^2} + \frac{\sum_{i=1}^n (x_i - \hat{\mu}_R)^2}{2 \cdot \nu^2_R} \end{bmatrix} = \begin{bmatrix} 1 & 15.29 \\ -\frac{10}{2 \cdot 1} + \frac{\sum_{i=1}^n (x_i - 0)^2}{2 \cdot 1^2} \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ -\frac{10}{2 \cdot 1} + \frac{\sum_{i=1}^n (x_i - 0)^2}{2 \cdot 1^2} \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ -\frac{10}{2 \cdot 1} + \frac{\sum_{i=1}^n (x_i - 0)^2}{2 \cdot 1^2} \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ -\frac{10}{2 \cdot 1} + \frac{\sum_{i=1}^n (x_i - 0)^2}{2 \cdot 1^2} \end{bmatrix} = \begin{bmatrix} -15.29 \\ 11.9910 \end{bmatrix}$$

 $LM_{\text{Ha}6\pi} = \begin{bmatrix} \frac{\partial l}{\partial \theta} (\hat{\theta}_R) \end{bmatrix}' \cdot I^{-1} (\hat{\theta}_R) \cdot \begin{bmatrix} \frac{\partial l}{\partial \theta} (\hat{\theta}_R) \end{bmatrix} = \begin{bmatrix} -15.29 & 11.9910 \end{bmatrix} = \cdot \begin{bmatrix} 10 & 0 \\ 0 & 5 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -15.29 \\ 11.9910 \end{bmatrix} = 52.1354$ Тест множителей Лагранжа также указывает на то, что гипотеза H_0 должна быть отвергнута.

- 7. Пусть p неизвестная вероятность выпадения орла при бросании монеты. Из 100 испытаний 42 раза выпал «Орел» и 58 — «Решка». Протестируйте на 5%-ом уровне значимости гипотезу о том, что монетка — «правильная» с помощью:
 - (а) теста отношения правдоподобия
 - (b) теста Вальда
 - (с) теста множителей Лагранжа

 $\theta = p$ — вектор неизвестных параметров $\Theta = (0,1)$ — множество допустимых значений вектора неизвестных параметров

Функция правдоподобия имеет вид:

$$\mathbf{L}(\theta) = \prod_{i=1}^{n} \mathbb{P}_{\theta}(X_i = x_i) = \prod_{i=1}^{n} p^{x_i} \cdot (1-p)^{1-x_i} = p^{\sum_{i=1}^{n} x_i} \cdot (1-p)^{n-\sum_{i=1}^{n} x_i}$$

Логарифмическая функция правдоподобия

$$l(\theta) := ln \mathbf{L}(\theta) = \left(\sum_{i=1}^n x_i\right) \cdot \ln p + \left(n - \sum_{i=1}^n x_i\right) \cdot \ln(1-p)$$

 $\Theta_{UR} = \Theta$ $\Theta_{R} = \{0.5\}$

 $\Theta_R = \{0.5\}$ Решая уравнение правдоподобия

$$\frac{\partial l}{\partial p} = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{n - \sum_{i=1}^{n} x_i}{1 - p} = 0$$

получаем

 $\hat{ heta}_{UR}=\hat{p}_{UR},$ где $\hat{p}_{UR}=\overline{x}=0.42$

 $\hat{\theta}_R = \hat{p}_R = 0.5$ По имеющимся данным находим $l(\hat{\theta}_R) = 42 \cdot \ln(0.5) + (100 - 42) \cdot \ln(1 - 0.5) = -69.3147$

 $l(\hat{\theta}_{UR} = 42 \cdot \ln(0.42) + (100 - 42) \cdot \ln(1 - 0.42) = -68.0292$

 $R_{\rm Ha65} = -2(l(\theta_R) - l) = -2 \cdot (-69.3147 + 68.0292) = 2.5710$ Критическое значение χ^2 распределения с одной степенью свободы, отвечающее за 5% уровень значимости, равно 3.8414. Следовательно, тест

$$II_{\text{набл}} = -2(I(Q_R) - t) = -2 \cdot (-0.9.3141 + 0.8.0222) - 2.3110$$
 Критическое значимости, равно 3.8414. Следовательно, отношения правдоподобия говорит о том, что на основании имеющихся данных, основная гипотеза $H_0: p = 0.5$ не может быть отвергнута. Для выполнения тестов Вальда и множителей Лагранжа нам понадобится информационная матрица Фишера
$$\frac{\partial^2 t}{\partial p^2} = -\frac{\sum_{i=1}^n x_i}{p^2} - \frac{n - \sum_{i=1}^n x_i}{(1-p)^2}$$

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2 t}{\partial p^2}\right] = -\mathbb{E}\left[-\frac{\sum_{i=1}^n x_i}{p^2} - \frac{n - \sum_{i=1}^n x_i}{(1-p)^2}\right] = -\left(-\frac{np}{p^2} - \frac{n-np}{(1-p)^2}\right) = \frac{n}{p(1-p)}$$

$$I(\hat{\theta}_{UR}) = \frac{n}{p_U R} \frac{1-p_{UR}}{(1-p_{UR})} = \frac{100}{0.42 \times (1-0.42)} = 172.4138$$

$$g(\hat{\theta}_{UR}) = \hat{\theta}_{UR} - 0.5 = 0.42 - 0.5 = -0.08$$

$$\frac{\partial g}{\partial \theta'} = 1', \frac{\partial g'}{\partial \theta} = 1$$

 $W_{\text{Ha6}\pi} = g'(\hat{\theta}_{UR}) \cdot \left[\frac{\partial g}{\partial \theta'}(\hat{\theta}_{UR}) \cdot I^{-1}(\hat{\theta}_{UR}) \cdot \frac{\partial g'}{\partial \theta}(\hat{\theta}_{UR}) \right]^{-1} g(\hat{\theta}_{UR}) = [-0.08]' \cdot [1' \cdot 172.4138^{-1} \cdot 1]^{-1} \cdot [-0.08] = 2.6272$

Таст Вальда также говорит о том, что гипотеза
$$H_0$$
 не отвергается. $I(\hat{\theta}_R) = \frac{n}{\hat{p}_R} \frac{n}{(1-\hat{p}_R)} = \frac{100}{0.5 \times (1-0.5)} = 400$
$$\frac{\partial l}{\partial \hat{\theta}} (\hat{\theta}_R) = \frac{\sum_{i=1}^n x_i}{\hat{p}_R} - \frac{n - \sum_{i=1}^n x_i}{1-\hat{p}_R} = \frac{42}{0.5} - \frac{100 - 42}{1-0.5} = -32$$

$$LM_{\text{Ha6}\pi} = \left[\frac{\partial l}{\partial \theta}(\hat{\theta}_R)\right]' \cdot I^{-1}(\hat{\theta}_R) \cdot \left[\frac{\partial l}{\partial \theta}(\hat{\theta}_R)\right] = [-32]' \cdot [400]^{-1} \cdot [-32] = 2.56$$

Согласно тесту множителей Лагранжа, основная гипотеза H_0 не может быть отвергнута.

- 8. Пусть $x = (x_1, \dots, x_n)$ реализация случайной выборки из распределения Пуассона с неизвестным параметром $\lambda > 0$. Известно, что выборочное среднее \overline{x} по 80 наблюдениям равно 1.7. Протестируйте на 5%-ом уровне значимости гипотезу $H_0: \lambda = 2$ с помощью
 - (а) теста отношения правдоподобия

- (b) теста Вальда
- (с) теста множителей Лагранжа

 $\theta=\lambda$ — вектор неизвестных параметров $\Theta=(0,+\infty)$ — множество допустимых значений вектора неизвестных параметров

Функция правдоподобия имеет вид:

$$\mathbf{L}(\theta) = \prod_{i=1}^n \mathbb{P}_{\theta}(X_i = x_i) = \prod_{i=1}^n \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} = \frac{\lambda^{\sum_{i=1}^n x_i}}{x_1! \dots x_n!} e^{-\lambda n}$$

Логарифмическая функция правдоподобия:

$$l(\theta) := \ln \mathbf{L}(\theta) = \left(\sum_{i=1}^{n} x_i\right) \cdot \ln \lambda - \sum_{i=1}^{n} \ln(x_i!) - \lambda n$$

 $\Theta_{UR} = \Theta$ $\Theta_{R} = \{2\}$

Решая уравнение правдоподобия

$$\frac{\partial l}{\partial p} = \frac{\sum_{i=1}^{n} x_i}{\lambda} - n = 0$$

получаем $\hat{\theta}_{UR}=\hat{\lambda}_{UR},$ где $\hat{\lambda}_{UR}=\overline{x}=1.7$

 $\hat{\theta}_R = \hat{p}_R = 2$ По имеющимся данным находим

но меющимся данным находим $(l(\hat{\theta}_R) = (80 \cdot 1.7) \cdot \ln(2) - \sum_{i=1}^n \ln(x_i!) - 2 \cdot 80 = -65.7319 \\ l(\hat{\theta}_{UR} = (80 \cdot 1.7) \cdot \ln(1.7) - \sum_{i=1}^n \ln(x_i!) - 1.7 \cdot 80 = -63.8345 \\ LR_{\text{набл}} = -2(l(\hat{\theta}_R) - l) = -2 \cdot (-65.7319 + 63.8345) = 3.7948 \\ \text{Критическое значение } \chi^2 \text{ распределения c одной степенью свободы, отвечающее за 5% уровень значимости, равно 3.8414. Следовательно, тест отношения правдоподобия говорит о том, что на основании имеющихся данных, основная гипотеза <math>H_0: \lambda = 2$ не может быть отвергнута. Для выполнения тестов Вальда и множителей Лагранжа нам понадобится информационная матрица Фишера $\frac{\partial^2 l}{\partial p^2} = -\frac{\sum_{i=1}^n x_i}{\lambda^2}$

$$\begin{aligned} & \frac{\partial p^2}{\partial p} & \frac{\lambda^2}{\lambda^2} \\ & I(\theta) = -\mathbb{E}\left[\frac{\partial^2 l}{\partial p^2}\right] = -\mathbb{E}\left[-\frac{\sum_{i=1}^n x_i}{\lambda^2}\right] = -\left(-\frac{n\lambda}{\lambda^2}\right) = \frac{n}{\lambda} \\ & I(\hat{\theta}_{UR}) = \frac{n}{\lambda U_R} = \frac{80}{1.7} = 47.0588 \\ & g(\hat{\theta}_{UR}) = \hat{\theta}_{UR} - 2 = 1.7 - 2 = -0.3 \\ & \frac{\partial q}{\partial q} & \frac{1}{\lambda} \frac{\partial q'}{\partial q'} \end{aligned}$$

 $W_{\mathrm{Ha6}\pi} = g'(\hat{\theta}_{UR}) \cdot \left[\frac{\partial g}{\partial \theta'}(\hat{\theta}_{UR}) \cdot I^{-1}(\hat{\theta}_{UR}) \cdot \frac{\partial g'}{\partial \theta}(\hat{\theta}_{UR}) \right]^{-1} g(\hat{\theta}_{UR}) = [-0.3]' \cdot [1' \cdot 47.0588^{-1} \cdot 1]^{-1} \cdot [-0.3] = 4.2352$ Поскольку наблюдаемое значение статистики Вальда превосходит критическое значение 3.8414, то гипотеза H_0 должна быть отвергнута. $I(\hat{\theta}_R) = \frac{n}{\hat{\lambda}_R} = \frac{80}{\hat{\lambda}_R} = 40$ $\frac{\partial l}{\partial \theta}(\hat{\theta}_R) = \frac{\sum_{i=1}^n x_i}{\hat{\lambda}_R} - n = \frac{80 \cdot 1.7}{2} - 80 = -12$

 $LM_{\text{\tiny Ha6}\Pi} = \left[\frac{\partial I}{\partial \theta}(\hat{\theta}_R)\right]' \cdot I^{-1}(\hat{\theta}_R) \cdot \left[\frac{\partial I}{\partial \theta}(\hat{\theta}_R)\right] = [-12]' \cdot [40]^{-1} \cdot [-12] = 3.6$

Согласно тесту множителей Лагранжа, основная гипотеза H_0 не может быть отвергнута.

6 Логит и пробит

- 1. Случайная величина X имеет логистическое распределение, если е \ddot{e} функция плотности имеет вид $f(x) = e^{-x}/(1 + e^{-x})^2$.
 - (a) Является ли f(x) чётной?
 - (b) Постройте график f(x)
 - (c) Найдите функцию распределения, F(x)
 - (d) Найдите $\mathbb{E}(X)$, Var(X)
 - (е) На какое известный закон распределения похож логистический?

f(x) чётная, $\mathbb{E}(X) = 0$, $\mathrm{Var}(X) = \pi^2/3$, логистическое похоже на $N(0, \pi^2/3)$

2. Логит модель часто формулируют в таком виде:

$$y_i^* = \beta_1 + \beta_2 x_i + \varepsilon_i$$

где ε_i имеет логистическое распределение, и

$$y_i = \begin{cases} 1, \ y_i^* \geqslant 0 \\ 0, \ y_i^* < 0 \end{cases}$$

(a) Выразите $\mathbb{P}(y_i = 1)$ с помощью логистической функции распределения

(b) Найдите $\ln \left(\frac{\mathbb{P}(y_i=1)}{\mathbb{P}(y_i=0)} \right)$

$$\ln\left(\frac{\mathbb{P}(y_i=1)}{\mathbb{P}(y_i=0)}\right) = \beta_1 + \beta_2 x_i.$$

- 3. [R] Сравните на одном графике
 - (a) Функции плотности логистической и нормальной $N(0,\pi^2/3)$ случайных величин
 - (b) Функции распределения логистической и нормальной $N(0,\pi^2/3)$ случайных величин
- 4. Как известно, Фрекен Бок любит пить коньяк по утрам. За прошедшие 4 дня она записала, сколько рюмочек коньяка выпила утром, x_i , и видела ли она в этот день привидение, y_i ,

Зависимость между y_i и x_i описывается логит-моделью,

$$\ln\left(\frac{\mathbb{P}(y_i=1)}{\mathbb{P}(y_i=0)}\right) = \beta_1 + \beta_2 x_i$$

- (а) Выпишите в явном виде логарифмическую функцию максимального правдоподобия
- (b) [R] Найдите оценки параметров β_1 и β_2
- 5. При оценке логит модели

$$\mathbb{P}(y_i = 1) = \Lambda(\beta_1 + \beta_2 x_i)$$

оказалось, что $\hat{\beta}_1 = 0.7$ и $\hat{\beta}_2 = 3$. Найдите максимальный предельный эффект роста x_i на вероятность $\mathbb{P}(y_i = 1)$.

6. Винни-Пух знает, что мёд бывает правильный, $honey_i = 1$, и неправильный, $honey_i = 0$. Пчёлы также бывают правильные, $bee_i = 1$, и неправильные, $bee_i = 0$. По 100 своим попыткам добыть мёд Винни-Пух составил таблицу сопряженности:

Используя метод максимального правдоподобия Винни-Пух хочет оценить логит-модель для прогнозирования правильности мёда с помощью правильности пчёл:

$$\ln\left(\frac{\mathbb{P}(honey_i=1)}{\mathbb{P}(honey_i=0)}\right) = \beta_1 + \beta_2 bee_i$$

- (a) Выпишите функцию правдоподобия для оценки параметров β_1 и β_2
- (b) Оцените неизвестные параметры
- (с) С помощью теста отношения правдоподобия проверьте гипотезу о том, правильность пчёл не связана с правильностью мёда на уровне значимости 5%.
- (d) Держась в небе за воздушный шарик, Винни-Пух неожиданно понял, что перед ним неправильные пчёлы. Помогите ему оценить вероятность того, что они делают неправильный мёд.

Для краткости введем следующие обозначения: $y_i = honey_i, d_i = bee_i^{-1}$.

(а) Функция правдоподобия имеет следующий вид:

$$\begin{split} \mathbf{L}(\beta_1,\beta_2) &= \prod_{i=1}^n \mathbb{P}_{\beta_1,\beta_2} \left(\{Y_i = y_i\} \right) = \prod_{i:y_i = 0} \mathbb{P}_{\beta_1,\beta_2} \left(\{Y_i = 1\} \right) \cdot \prod_{i:y_i = 1} \mathbb{P}_{\beta_1,\beta_2} \left(\{Y_i = 0\} \right) = \\ &\prod_{i:y_i = 1} \Lambda(\beta_1 + \beta_2 d_i) \cdot \prod_{i:y_i = 0} \left[1 - \Lambda(\beta_1 + \beta_2 d_i) \right] = \\ &\prod_{i:y_i = 1,d_i = 1} \Lambda(\beta_1 + \beta_2) \cdot \prod_{i:y_i = 1,d_i = 0} \Lambda(\beta_1) \cdot \prod_{i:y_i = 0,d_i = 1} \left[1 - \Lambda(\beta_1 + \beta_2) \right] \cdot \prod_{i:y_i = 0,d_i = 0} \left[1 - \Lambda(\beta_1) \right] = \\ &\Lambda(\beta_1 + \beta_2)^{\#\{i:y_i = 1,d_i = 1\}} \cdot \Lambda(\beta_1)^{\#\{i:y_i = 1,d_i = 0\}} \cdot \left[1 - \Lambda(\beta_1 + \beta_2) \right]^{\#\{i:y_i = 0,d_i = 1\}} \cdot \left[1 - \Lambda(\beta_1) \right]^{\#\{i:y_i = 0,d_i = 0\}} \end{split}$$

 $^{^{1}}Y_{i}$ — случайный Мёд, y_{i} — реализация случайного Мёда (наблюдаемый Мёд)

где

$$\Lambda(x) = \frac{e^x}{1 + e^x} \tag{4}$$

логистическая функция распределения, #A означает число элементов множества A.

(b) Введём следующие обозначения:

$$a := \Lambda(\beta_1) \tag{5}$$

$$b := \Lambda(\beta_1 + \beta_2) \tag{6}$$

Тогда с учетом имеющихся наблюдений функция правдоподобия принимает вид:

$$L(a,b) = b^{12} \cdot a^{32} \cdot [1-b]^{36} \cdot [1-a]^{20}$$

Логарифмическая функция правдоподобия:

$$l(a,b) = \ln L(a,b) = 12 \ln b + 32 \ln a + 36 \ln[1-b] + 20 \ln[1-a]$$

Решая систему уравнений правдоподобия

$$\begin{cases} \frac{\partial l}{\partial a} = \frac{32}{a} - \frac{20}{1-a} = 0\\ \frac{\partial l}{\partial b} = \frac{12}{b} - \frac{36}{1-b} = 0 \end{cases}$$

получаем $\hat{a} = \frac{8}{13}$, $\hat{b} = \frac{1}{4}$. Из формул (4) и (5), находим $\hat{\beta}_{1,UR} = \ln\left(\frac{\hat{a}}{1-\hat{a}}\right) = \ln\left(\frac{\$}{5}\right) = 0.47$. Далее, из (4) и (6) имеем $\hat{\beta}_{1,UR} + \hat{\beta}_{2,UR} = \ln\left(\frac{\hat{b}}{1-\hat{b}}\right)$. Следовательно, $\hat{\beta}_{2,UR} = \ln\left(\frac{\hat{b}}{1-\hat{b}}\right) - \hat{\beta}_{1,UR} = \ln\left(\frac{1}{3}\right) - \ln\left(\frac{\$}{5}\right) = -1.57$.

(c) Гипотеза, состоящая в том, что «правильность Мёда не связана с правильностью пчёл» формализуется как $H_0: \beta_2 = 0$. Протестируем данную гипотезу при помощи теста отношения правдоподобия. Положим в функции правдоподобия $L(\beta_1, \beta_2)$ $\beta_2 = 0$. Тогда с учетом (5) и (6) получим

$$L(a, b = a) = a^{32+12} \cdot [1 - a]^{20+36}$$

В этом случае логарифмическая функция правдоподобия имеет вид:

$$l(a, b = a) := L(a, b = a) = 44 \ln a + 56 \ln[1 - a]$$

Решаем уравнение правдоподобия

$$\frac{\partial l}{\partial a} = \frac{44}{a} - \frac{56}{1-a} = 0$$

и получаем $\hat{a}=\frac{11}{25}$. Следовательно, согласно (4) и (5), $\hat{\beta}_{1,R}=-0.24$ и $\hat{\beta}_{2,R}=0.$ Статистика отношения правлополобия имеет вид:

$$LR = -2(l(\hat{\beta}_{1,R}, \hat{\beta}_{2,R}) - l(\hat{\beta}_{1,UR}, \hat{\beta}_{2,UR}))$$

и имеет асимптотическое χ^2 распределение с числом степеней свободы, равным числу ограничений, составляющих гипотезу H_0 , т.е. в данном случае $LR \stackrel{a}{\sim} \chi_1^2$.

Находим наблюдаемое значение статистики отношения правдоподобия:

$$l(\hat{\beta}_{1,R},\hat{\beta}_{2,R}) = l(\hat{a}_R,\hat{b}_R = \hat{a}_R) = 44 \ln \hat{a}_R + 56 \ln[1-\hat{a}_R] = 44 \ln \left\lceil \frac{11}{25} \right\rceil + 56 \ln \left\lceil 1 - \frac{11}{25} \right\rceil = -68.59$$

$$l(\hat{\beta}_{1,UR},\hat{\beta}_{2,UR}) = l(\hat{a}_{UR},\hat{b}_{UR}) = 12\ln\hat{b}_{UR} + 32\ln\hat{a}_{UR} + 36\ln[1-\hat{b}_{UR}] + 20\ln[1-\hat{a}_{UR}] = 12\ln\hat{b}_{UR} + 32\ln\hat{a}_{UR} + 36\ln[1-\hat{b}_{UR}] + 36\ln[1-\hat{a}_{UR}] = 12\ln\hat{b}_{UR} + 32\ln\hat{a}_{UR} + 36\ln[1-\hat{b}_{UR}] + 36\ln[1-\hat$$

$$12 \ln \left[\frac{1}{4} \right] + 32 \ln \left[\frac{8}{13} \right] + 36 \ln \left[1 - \frac{1}{4} \right] + 20 \ln \left[1 - \frac{8}{13} \right] = -61.63$$

Следовательно, $LR_{\rm HaG,1} = -2(-68.59 + 61.63) = 13.92$, при этом критическое значение χ^2 распределения с одной степенью свободы для 5% уровня значимости равна 3.84. Значит, на основании теста отношения правдоподобия гипотеза $H_0: \beta_2 = 0$ должна быть отвергнута. Таким образом, данные показывают, что, в действительности, правильность мёда связана с правильностью пчёл.

(d) $\hat{\mathbb{P}}\{honey = 0|bee = 0\} = 1 - \hat{\mathbb{P}}\{honey = 1|bee = 0\} = 1 - \frac{\exp\{\hat{\beta}_{1,UR} + \hat{\beta}_{2,UR} \cdot 0\}}{1 + \exp\{\hat{\beta}_{1,UR} + \hat{\beta}_{2,UR} \cdot 0\}} = 1 - \frac{\exp\{\ln\left(\frac{8}{5}\right)\}}{1 + \exp\{\ln\left(\frac{8}{5}\right)\}} = 1 - 0.62 = 0.38$

7 Мультиколлинеарность

- 1. Сгенерируйте данные так, чтобы при оценке модели $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$ оказывалось, что по отдельности оценки коэффициентов $\hat{\beta}_2$ и $\hat{\beta}_3$ незначимы, но модель в целом значима.
- 2. В этом задании нужно сгенерировать зависимую переменную y и два регрессора x и z.
 - (a) Сгенерируйте данные так, чтобы корреляция между регрессорами x и z была больше 0.9, и проблема мультиколлинеарности есть, т.е. по отдельности регрессоры не значимы, но регрессия в целом значима.
 - (b) А теперь сгенерируйте данные так, чтобы корреляция между регрессорами была по-прежнему больше 0.9, но проблемы мультиколлинеарности бы не было, т.е. все коэффициенты были бы значимы.

(c) Есть несколько способов, как изменить генерации случайных величин, чтобы перейти от ситуации «а» к ситуации «b». Назовите хотя бы два.

увеличить количество наблюдений, уменьшить дисперсию случайной ошибки

3. Исследуем зависимость длины тормозного пути автомобиля от скорости по историческим данным 1920-х годов.

```
h <- cars
ggplot(h,aes(x=speed,y=dist))+geom_point()+
labs(title="Зависимость длины тормозного пути",
x="Скорость, миль в час",y="Длина пути, футов")
```



```
speed.mean <- mean(h$speed)</pre>
```

Построим результаты оценивания нецентрированной регрессии:

```
cars.model <- lm(dist~speed+I(speed^2)+I(speed^3),data=h)
cars.table <- as.table(coeftest(cars.model))
rownames(cars.table) <-c("Kohctahta","speed","speed^2","speed^3")</pre>
```

с тремя переменными руками громоздко делать, а с двумя вроде не видно мультик.

xtable(cars.table)

	Estimate	Std. Error	t value	$\Pr(> t)$
Константа	-19.51	28.41	-0.69	0.50
speed	6.80	6.80	1.00	0.32
speed^2	-0.35	0.50	-0.70	0.49
$speed^3$	0.01	0.01	0.91	0.37

Ковариационная матрица коэффициентов имеет вид:

```
cars.vcov <- vcov(cars.model)
rownames(cars.vcov) <-c("Kohctahta", "speed", "speed^2", "speed^3")
colnames(cars.vcov) <-c("Kohctahta", "speed", "speed^2", "speed^3")
xtable(cars.vcov)</pre>
```

- (а) Проверьте значимость всех коэффициентов и регрессии в целом
- (b) Постройте 95%-ый доверительный интервал для $\mathbb{E}(dist)$ при speed=10
- (c) Постройте 95%-ый доверительный интервал для $\mathbb{E}(ddist/dspeed)$ при speed=10

	Константа	speed	speed^2	speed^3
Константа	806.86	-186.20	12.88	-0.27
speed	-186.20	46.26	-3.35	0.07
speed^2	12.88	-3.35	0.25	-0.01
$speed^3$	-0.27	0.07	-0.01	0.00

- (d) Как выглядит уравнение регрессии, если вместо speed использовать центрированную скорость? Известно, что средняя скорость равна 15.4
- (е) С помощью регрессии с центрированной скоростью ответьте на предыдущие вопросы.
- 4. Пионеры, Крокодил Гена и Чебурашка собирали металлолом несколько дней подряд. В распоряжение иностранной шпионки, гражданки Шапокляк, попали ежедневные данные по количеству собранного металлолома: вектор g для Крокодила Гены, вектор h для Чебурашки и вектор x для Пионеров. Гена и Чебурашка собирали вместе, поэтому выборочная корреляция $\mathrm{sCorr}(g,h) = -0.9$. Гена и Чебурашка собирали независимо от Пионеров, поэтому выборочные корреляции $\mathrm{sCorr}(g,x) = 0$, $\mathrm{sCorr}(h,x) = 0$. Если регрессоры g,h и x центрировать и нормировать, то получится матрица \hat{X} .
 - (а) Найдите параметр обусловленности матрицы $(\tilde{X}'\tilde{X})$
 - (b) Вычислите одну или две главные компоненты (выразите их через вектор-столбцы матрицы \tilde{X}), объясняющие не менее 70% общей выборочной дисперсии регрессоров
 - (c) Шпионка Шапокляк пытается смоделировать ежедневный выпуск танков, y. Выразите коэффициенты регрессии $y = \beta_1 + \beta_2 g + \beta_3 h + \beta_4 x + \varepsilon$ через коэффициенты регрессии на главные компоненты, объясняющие не менее 70% общей выборочной дисперсии.
- 5. Для модели $y_i = \beta x_i + \varepsilon$ рассмотрите модель Ridge regression с коэффициентом λ .
 - (a) Выведите формулу для $\hat{\beta}_{RR}$
 - (b) Найдите $\mathbb{E}(\hat{\beta}_{RR})$, смещение оценки $\hat{\beta}_{RR}$,
 - (c) Найдите $Var(\hat{\beta}_{RR})$, $MSE(\hat{\beta}_{RR})$
 - (d) Всегда ли оценка $\hat{\beta}_{RR}$ смещена?
 - (е) Всегда ли оценка $\hat{\beta}_{RR}$ имеет меньшую дисперсию, чем $\hat{\beta}_{ols}$?
 - (f) Найдите такое λ , что $MSE(\hat{\beta}_{RR}) < MSE(\hat{\beta}_{ols})$
- 6. Известно, что в модели $y = X\beta + \varepsilon$ все регрессоры ортогональны.
 - (a) Как выглядит матрица X'X в случае ортогональных регрессоров?
 - (b) Выведите $\hat{\beta}_{rr}$ в явном виде
 - (c) Как связаны между собой $\hat{\beta}_{rr}$ и $\hat{\beta}_{ols}$?
- 7. Для модели $y_i = \beta x_i + \varepsilon_i$ выведите в явном виде $\hat{\beta}_{lasso}$.
- 8. Предположим, что для модели $y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \varepsilon_i$ выборочная корреляционная матрица регрессоров x_2, x_3, x_4 имеет вид

$$C = \begin{pmatrix} 1 & r & r \\ r & 1 & r \\ r & r & 1 \end{pmatrix}$$

- (a) Найдите такое значение $r^* \in (-1;1)$ коэффициента корреляции, при котором $\det C = 0$.
- (b) Найдите собственные значения и собственные векторы матрицы C при корреляции равной найденному r^* .
- (c) Найдите число обусловленности матрицы C при корреляции равной найденному r^* .

(d) Сделайте вывод о наличии мультиколлинеарности в модели при корреляции равной найденному r^* .

$$r^* = -1/2$$

9. Предположим, что для модели $y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5} + \varepsilon_i$ выборочная корреляционная матрица регрессоров x_2 , x_3 , x_4 и x_5 имеет вид

$$C = \begin{pmatrix} 1 & r & r & r \\ r & 1 & r & r \\ r & r & 1 & r \\ r & r & r & 1 \end{pmatrix}$$

- (a) Найдите такое значение $r^* \in (-1; 1)$ коэффициента корреляции, при котором $\det C = 0$.
- (b) Найдите собственные значения и собственные векторы матрицы C при корреляции равной найденному r^* .
- (c) Найдите число обусловленности матрицы C при корреляции равной найденному r^* .
- (d) Сделайте вывод о наличии мультиколлинеарности в модели при корреляции равной найденному r^* .

$$r^* = -1/3$$

8 Гетероскедастичность

- 1. Что такое гетероскедастичность? Гомоскедастичность?
- 2. Диаграмма рассеяния стоимости квартиры в Москве (в 1000\$) и общей площади квартиры имеет вид:

Какие подходы к оцениванию зависимости имеет смысл посоветовать исходя из данного графика?

графику видно, что с увеличением общей площади увеличивается разброс цены. Поэтому разумно, например, рассмотреть следующие подходы:

- (a) Перейти к логарифмам, т.е. оценивать модель $\ln price_i = \beta_1 + \beta_2 \ln totsp_i + \varepsilon_i$
- (b) Оценивать квантильную регрессию. В ней угловые коэффициенты линейной зависимости будут отличаться для разных квантилей переменной price.
- (c) Обычную модель линейной регрессии с гетероскеда
стичностью вида $Var(\varepsilon_i) = \sigma^2 totsp_i^2$
- 3. По наблюдениям x = (1, 2, 3)', y = (2, -1, 3)' оценивается модель $y = \beta_1 + \beta_2 x + \varepsilon$. Ошибки ε гетероскедастичны и известно, что $Var(\varepsilon_i) = \sigma^2 \cdot x_i^2$.

- (a) Найдите оценки $\hat{\beta}_{ols}$ с помощью МНК и их ковариационную матрицу
- (b) Найдите оценки $\hat{\beta}_{gls}$ с помощью обобщенного МНК и их ковариационную матрицу
- 4. В модели $y = \hat{\beta}_1 + \hat{\beta}_2 x + \varepsilon$ присутствует гетероскедастичность вида $\mathrm{Var}(\varepsilon_i) = \sigma^2 x_i^2$. Как надо преобразовать исходные регрессоры и зависимую переменную, чтобы устранить гетероскедастичность? Поделить зависимую переменную и каждый регрессор, включая единичный столбец, на $|x_i|$.
- 5. В модели $y = \hat{\beta}_1 + \hat{\beta}_2 x + \varepsilon$ присутствует гетероскедастичность вида $\mathrm{Var}(\varepsilon_i) = \lambda |x_i|$. Как надо преобразовать исходные регрессоры и зависимую переменную, чтобы устранить гетероскедастичность? Поделить зависимую переменную и каждый регрессор, включая единичный столбец, на $\sqrt{|x_i|}$.
- 6. Известно, что после деления каждого уравнения регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ на x_i^2 гетероскедастичность ошибок была устранена. Какой вид имела дисперсия ошибок, $Var(\varepsilon_i)$? $Var(\varepsilon_i) = cx_i^4$
- 7. Известно, что после деления каждого уравнения регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ на $\sqrt{x_i}$ гетероскедастичность ошибок была устранена. Какой вид имела дисперсия ошибок, $\text{Var}(\varepsilon_i)$? $\text{Var}(\varepsilon_i) = cx_i$
- 8. Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка				
$i=1,\ldots,30$	1.21	1.89	2.74	48.69
$i = 1, \dots, 30$ $i = 1, \dots, 11$ $i = 12, \dots, 19$	1.39	2.27	2.36	10.28
$i = 12, \dots, 19$	0.75	2.23	3.19	5.31
$i=20,\ldots,30$	1.56	1.06	2.29	14.51

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта. $H_0: \mathrm{Var}(\varepsilon_i) = \sigma^2, \ H_a: \mathrm{Var}(\varepsilon_i) = f(x_i)$

- (a) Тестовая статистика $GQ = \frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$, где $n_1 = 11$ число наблюдений в первой подгруппе, $n_3 = 11$ число наблюдений в последней подгруппе, k = 3 число факторов в модели, считая единичный столбец.
- (b) Распределение тестовой статистики при верной $H_0\colon GQ \sim F_{n_3-k,\,n_1-k}$
- (c) Наблюдаемое значение $GQ_{obs}=1.41$
- (d) Область в которой H_0 не отвергается: $GQ \in [0; 3.44]$
- (e) Статистический вывод: поскольку $GQ_{obs} \in [0; 3.44]$, то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза H_0 не может быть отвергнута. Таким образом, тест Голдфельда-Квандта не выявил гетероскедастичность.
- 9. Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	RSS
$i=1,\ldots,50$	1.16	1.99	2.97	174.69
$i=1,\ldots,21$	0.76	2.25	3.18	20.41
$i = 22, \dots, 29$	0.85	1.81	3.32	3.95
$i = 30, \dots, 50$	1.72	1.41	2.49	130.74

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 1%.

Протестируем гетероске
дастичность ошибок при помощи теста Голдфельда- Квандта.
 $H_0: \mathrm{Var}(\varepsilon_i) = \sigma^2, \ H_a: \mathrm{Var}(\varepsilon_i) = f(x_i)$

- (a) Тестовая статистика $GQ = \frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$, где $n_1=21$ число наблюдений в первой подгруппе, $n_3=21$ число наблюдений в последней подгруппе, k=3 число факторов в модели, считая единичный столбец.
- (b) Распределение тестовой статистики при верной H_0 : $GQ \sim F_{n_3-k,\,n_1-k}$
- (c) Наблюдаемое значение $GQ_{obs}=6.49$
- (d) Область в которой H_0 не отвергается: $GQ \in [0; 3.12]$
- (e) Статистический вывод: поскольку $GQ_{obs} \notin [0; 3.12]$, то на основании имеющихся наблюдений на уровне значимости 1% основная гипотеза H_0 отвергается. Таким образом, тест Голдфельда-Квандта выявил гетероскедастичность.
- 10. Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка				
i = 1,, 30 i = 1,, 11 i = 12,, 19 i = 20,, 30	0.96	2.25	3.44	52.70
$i=1,\ldots,11$	1.07	2.46	2.40	5.55
$i = 12, \dots, 19$	1.32	1.01	2.88	11.69
$i = 20, \dots, 30$	1.04	2.56	4.12	16.00

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

Протестируем гетероске
дастичность ошибок при помощи теста Голдфельда- Квандта.
 $H_0: \mathrm{Var}(\varepsilon_i) = \sigma^2, \ H_a: \mathrm{Var}(\varepsilon_i) = f(x_i)$

- (a) Тестовая статистика $GQ = \frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$, где $n_1=11$ число наблюдений в первой подгруппе, $n_3=11$ число наблюдений в последней подгруппе, k=3 число факторов в модели, считая единичный столбец.
- (b) Распределение тестовой статистики при верной H_0 : $GQ \sim F_{n_3-k,\,n_1-k}$
- (c) Наблюдаемое значение $GQ_{obs}=2.88$
- (d) Область в которой H_0 не отвергается: $GQ \in [0; 3.44]$
- (e) Статистический вывод: поскольку $GQ_{obs} \in [0; 3.44]$, то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза H_0 не может быть отвергнута. Таким образом, тест Голдфельда-Квандта не выявил гетероскедастичность.
- 11. Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка				
$i = 1, \dots, 50$ $i = 1, \dots, 21$ $i = 22, \dots, 29$	0.93	2.02	3.38	145.85
$i=1,\ldots,21$	1.12	2.01	3.32	19.88
$i = 22, \dots, 29$	0.29	2.07	2.24	1.94
$i = 30, \dots, 50$	0.87	1.84	3.66	117.46

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

Протестируем гетероскедастичность ошибок при помощи теста Голдфельда- Квандта. $H_0: Var(\varepsilon_i) = \sigma^2, H_a: Var(\varepsilon_i) = f(x_i)$

- (a) Тестовая статистика $GQ = \frac{RSS_3/(n_3-k)}{RSS_1/(n_1-k)}$, где $n_1 = 21$ число наблюдений в первой подгруппе, $n_3 = 21$ число наблюдений в последней подгруппе, k = 3 число факторов в модели, считая единичный столбец.
- (b) Распределение тестовой статистики при верной H_0 : $GQ \sim F_{n_3-k,\,n_1-k}$
- (c) Наблюдаемое значение $GQ_{obs}=5.91$
- (d) Область в которой H_0 не отвергается: $GQ \in [0; 2.21]$
- (e) Статистический вывод: поскольку $GQ_{obs} \notin [0; 2.21]$, то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза H_0 отвергается. Таким образом, тест Голдфельда-Квандта выявил гетероскедастичность.
- 12. Рассмотрим линейную регрессию $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$. При оценивании с помощью МНК были получены результаты: $\hat{\beta}_1 = 1.21, \ \hat{\beta}_2 = 1.11, \ \hat{\beta}_3 = 3.15, \ R^2 = 0.72$.

Оценена также вспомогательная регрессия: $\hat{\varepsilon}_i = \delta_1 + \delta_2 x_i + \delta_3 z_i + \delta_4 x_i^2 + \delta_5 z_i^2 + \delta_6 x_i z_i + u_i$. Результаты оценивания следующие: $\hat{\delta}_1 = 1.50$, $\hat{\delta}_2 = -2.18$, $\hat{\delta}_3 = 0.23$, $\hat{\delta}_4 = 1.87$, $\hat{\delta}_5 = -0.56$, $\hat{\delta}_6 = -0.09$, $R_{aux}^2 = 0.36$

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

Протестируем гетероск
дастичность ошибок при помощи теста Уайта. $H_0: \text{Var}(\varepsilon_i) = \sigma^2, H_a: \text{Var}(\varepsilon_i) = \delta_1 + \delta_2 x_i + \delta_3 z_i + \delta_4 x_i^2 + \delta_5 z_i^2 + \delta_6 x_i z_i.$

- (a) Тестовая статистика $W=n\cdot R_{aux}^2$, где n- число наблюдений, R_{aux}^2- коэффициент детерминации для вспомогательной регрессии.
- (b) Распределение тестовой статистики при верной H_0 : $W \sim \chi^2_{kaux-1}$, где $k_{aux} = 6$ число регрессоров во вспомогательной регрессии, считая константу.
- (c) Наблюдаемое значение тестовой статистики: $W_{obs} = 18$
- (d) Область в которой H_0 не отвергается: $W \in [0; W_{crit}] = [0; 11.07]$
- (e) Статистический вывод: поскольку $W_{obs} \notin [0; 11.07]$, то на основании имеющихся наблюдений на уровне значимости 5% основная гипотеза H_0 отвергается. Таким образом, тест Уайта выявил гетероскедастичность.
- 13. Объясните, с какой целью используются стандартные ошибки в форме Уайта. Приведите развернутый ответ. Верно ли, что стандартные ошибки в форме Уайта позволяют
 - (а) устранить гетероскедастичность?
 - (b) корректно тестировать гипотезы относительно коэффициентов регрессии в условиях гетероскедастичности?

- 14. Объясните, с какой целью используются стандартные ошибки в форме Невье–Веста. Приведите развернутый ответ. Верно ли, что стандартные ошибки в форме Невье–Веста позволяют
 - (а) устранить гетероскедастичность?
 - (b) корректно тестировать гипотезы относительно коэффициентов регрессии в условиях гетероскедастичности?
- 15. Рассматривается модель $y_t = \beta_1 + \varepsilon_t$, где ошибки ε_t независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещенных оценок.
- 16. Рассматривается модель $y_t = \beta_1 + \varepsilon_t$, где ошибки ε_t независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t^2$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещенных оценок.
- 17. Рассматривается модель $y_t = \beta_1 x_t + \varepsilon_t$, где ошибки ε_t независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещенных оценок.
- 18. Рассматривается модель $y_t = \beta_1 x_t + \varepsilon_t$, где ошибки ε_t независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t^2$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещенных оценок.

9 Ошибки спецификации

- 1. По 25 наблюдениям при помощи метода наименьших квадратов оценена модель $\hat{y}=\hat{\beta}_1+\hat{\beta}_2x+\hat{\beta}_3z$, для которой RSS=73. При помощи вспомогательной регрессии $\hat{y}=\hat{\gamma}_1+\hat{\gamma}_2x+\hat{\gamma}_3z+\hat{\gamma}_4\hat{y}^2$, для которой RSS=70, выполните тест Рамсея на уровне значимости 5%.
- 2. По 20 наблюдениям при помощи метода наименьших квадратов оценена модель $\hat{y}=\hat{\beta}_1+\hat{\beta}_2x+\hat{\beta}_3z$, для которой $R^2=0.7$. При помощи вспомогательной регрессии $\hat{y}=\hat{\gamma}_1+\hat{\gamma}_2x+\hat{\gamma}_3z+\hat{\gamma}_4\hat{y}^2$, для которой $R^2=0.75$, выполните тест Рамсея на уровне значимости 5%.
- 3. По 30 наблюдениям при помощи метода наименьших квадратов оценена модель $\hat{y}=\hat{\beta}_1+\hat{\beta}_2x+\hat{\beta}_3z$, для которой RSS=150. При помощи вспомогательной регрессии $\hat{\hat{y}}=\hat{\gamma}_1+\hat{\gamma}_2x+\hat{\gamma}_3z+\hat{\gamma}_4\hat{y}^2+\hat{\gamma}_5\hat{y}^3$, для которой RSS=120, выполните тест Рамсея на уровне значимости 5%.
- 4. По 35 наблюдениям при помощи метода наименьших квадратов оценена модель $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$, для которой $R^2 = 0.7$. При помощи вспомогательной регрессии $\hat{y} = \hat{\gamma}_1 + \hat{\gamma}_2 x + \hat{\gamma}_3 z + \hat{\gamma}_4 \hat{y}^2 + \hat{\gamma}_5 \hat{y}^3$, для которой $R^2 = 0.8$, выполните тест Рамсея на уровне значимости 5%.
- 5. Используя 80 наблюдений, исследователь оценил две конкурирующие модели: $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$, в которой $RSS_1 = 36875$ и $\widehat{\ln y} = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$, в которой $RSS_2 = 122$. Выполнив преобразование $y_i^* = y_i / \sqrt[n]{\prod y_i}$, исследователь также оценил две вспомогательные регрессии: $\hat{y}^* = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$, в которой $RSS_1^* = 239$ и $\widehat{\ln y^*} = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$, в которой $RSS_2^* = 121$.
 - Завершите тест Бокса-Кокса на уровне значимости 5%.
- 6. Используя 40 наблюдений, исследователь оценил две конкурирующие модели: $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$, в которой $RSS_1 = 250$ и $\ln \hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$, в которой $RSS_2 = 12$. Выполнив преобразование $y_i^* = y_i / \sqrt[n]{\prod y_i}$, исследователь также оценил две вспомогательные регрессии: $\hat{y}^* = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$, в которой $RSS_1^* = 20$ и $\ln \hat{y}^* = \hat{\beta}_1 + \hat{\beta}_2 x + \hat{\beta}_3 z$, в которой $RSS_2^* = 25$.

Завершите тест Бокса-Кокса на уровне значимости 5%.

7. Почему при реализации теста Бокса-Кокса на компьютере предпочтительнее использовать формулу $y_i^* = \exp(\ln y_i - \sum \ln y_i/n)$, а не формулу $y_i^* = y_i/\sqrt[n]{\prod y_i}$? чтобы избежать переполнения при подсчете произведения всех y_i

10 Временные ряды

- 1. Что такое автокорреляция?
- 2. На графике представлены данные по уровню озера Гуро́н в футах в 1875-1972 годах:

```
ggplot(df,aes(x=obs,y=level))+geom_line()+
labs(x="Год",ylab="Уровень озера (футы)")
```


График автокорреляционной и частной автокорреляционной функций:

```
ggplot(acfs.df,aes(x=lag,y=acf,fill=acf.type))+
geom_histogram(position="dodge",stat="identity")+
xlab("Лаг")+ylab("Корреляция") +
guides(fill=guide_legend(title=NULL))+
geom_hline(yintercept=1.96/sqrt(nrow(df)))+
geom_hline(yintercept=-1.96/sqrt(nrow(df)))
```


- (a) Судя по графикам, какие модели класса ARMA или ARIMA имеет смысл оценить?
- (b) По результатам оценки некоей модели ARMA с двумя параметрами, исследователь посчитал оценки автокорреляционной функции для остатков модели. Известно, что для остатков модели первые три выборочные автокорреляции равны соответственно 0.0047, -0.0129 и -0.063. С помощью подходящей статистики проверьте гипотезу о том, что первые три корреляции ошибок модели равны нулю.

3. Винни-Пух пытается выявить закономерность в количестве придумываемых им каждый день ворчалок. Винни-Пух решил разобраться, является ли оно стационарным процессом, для этого он оценил регрессию

$$\Delta \hat{y}_t = 4.5 - 0.4 y_{t-1} + 0.7 \Delta y_{t-1}$$

Из-за опилок в голове Винни-Пух забыл, какой тест ему нужно провести, то ли Доктора Ватсона, то ли Дикого Фуллера.

- (а) Аккуратно сформулируйте основную и альтернативную гипотезы
- (b) Проведите подходящий тест на уровне значимости 5%
- (с) Сделайте вывод о стационарности ряда
- (d) Почему Сова не советовала Винни-Пуху пользоваться широко применяемым в Лесу *t*-распределением?
- 4. Рассматривается модель $y_t = \beta_1 + \beta_2 x_{t1} + \ldots + \beta_k x_{tk} + \varepsilon_t$. Ошибки ε_t гомоскедастичны, но в них возможно присутствует автокорреляция первого порядка, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$. При известном числе наблюдений T на уровне значимости 5% сделайте статистический вывод о наличии автокорреляции.
 - (a) T = 25, k = 2, DW = 0.8
 - (b) T = 30, k = 3, DW = 1.6
 - (c) T = 50, k = 4, DW = 1.8
 - (d) T = 100, k = 5, DW = 1.1
- 5. По 100 наблюдениям была оценена модель линейной регрессии $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$. Оказалось, что $RSS = 120, \ \hat{\varepsilon}_1 = -1, \ \hat{\varepsilon}_{100} = 2, \ \sum_{t=2}^{100} \hat{\varepsilon}_t \hat{\varepsilon}_{t-1} = -50$. Найдите DW и ρ .
- 6. Применяется ли статистика Дарбина-Уотсона для выявления автокорреляции в следующих моделях
 - (a) $y_t = \beta_1 x_t + \varepsilon_t$
 - (b) $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$
 - (c) $y_t = \beta_1 + \beta_2 y_{t-1} + \varepsilon_t$
 - (d) $y_t = \beta_1 + \beta_2 t + \beta_3 y_{t-1} + \varepsilon_t$
 - (e) $y_t = \beta_1 t + \beta_2 x_t + \varepsilon_t$
 - (f) $y_t = \beta_1 + \beta_2 t + \beta_3 x_t + \beta_4 x_{t-1} + \varepsilon_t$
- 7. По 21 наблюдению была оценена модель линейной регрессии $\hat{y}_{(se)} = 1.2 + 0.9 \cdot y_{t-1} + 0.1 \cdot t$, $R^2 = 0.6$, DW = 1.21. Протестируйте гипотезу об отсутствии автокорреляции ошибок на
- уровне значимости 5%. 8. По 24 наблюдениям была оценена модель линейной регрессии $\hat{y} = 0.5 + 2 \atop (0.01) + (0.02) \cdot t$, $R^2 = 0.9$,
 - DW=1.3. Протестируйте гипотезу об отсутствии автокорреляции ошибок на уровне значимости 5%.
- 9. По 32 наблюдениям была оценена модель линейной регрессии $\hat{y}=10+2.5\cdot t-0.1\cdot t^2,$ (se)
 - $R^2=0.75,\, DW=1.75.$ Протестируйте гипотезу об отсутствии автокорреляции ошибок на уровне значимости 5%.
- 10. Рассмотрим модель $y_t = \beta_1 + \beta_2 x_{t1} + \ldots + \beta_k x_{tk} + \varepsilon_t$, где ε_t подчиняются автокорреляционной схеме первого порядка, т.е.

(a)
$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t, -1 < \rho < 1$$

- (b) $Var(\varepsilon_t) = const$, $\mathbb{E}(\varepsilon_t) = const$
- (c) $Var(u_t) = \sigma^2$, $\mathbb{E}(u_t) = 0$
- (d) Величины u_t независимы между собой
- (e) Величины u_t и ε_s независимы, если $t \geqslant s$

Найдите:

- (a) $\mathbb{E}(\varepsilon_t)$, $\operatorname{Var}(\varepsilon_t)$
- (b) $Cov(\varepsilon_t, \varepsilon_{t+h})$
- (c) $Corr(\varepsilon_t, \varepsilon_{t+h})$
- (a) $\mathbb{E}(\varepsilon_t) = 0$, $\operatorname{Var}(\varepsilon_t) = \sigma^2/(1 \rho^2)$
- (b) $Cov(\varepsilon_t, \varepsilon_{t+h}) = \rho^h \cdot \sigma^2/(1-\rho^2)$
- (c) $Corr(\varepsilon_t, \varepsilon_{t+h}) = \rho^h$
- 11. Ошибки в модели $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$ являются автокоррелированными первого порядка, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$. Шаман-эконометрист Ойуун выполняет два камлания-преобразования. Поясните смысл камланий:
 - (а) Камлание A, при $t \ge 2$, Ойуун преобразует уравнение к виду $y_t \rho y_{t-1} = \beta_1 (1 \rho) + \beta_2 (x_t \rho x_{t-1}) + \varepsilon_t \rho \varepsilon_{t-1}$
 - (b) Камлание Б, при t=1, Ойуун преобразует уравнение к виду $\sqrt{1-\rho^2}y_1=\sqrt{1-\rho^2}\beta_1+\sqrt{1-\rho^2}\beta_2x_1+\sqrt{1-\rho^2}\varepsilon_1$.
- 12. Пусть y_t стационарный процесс. Верно ли, что стационарны:
 - (a) $z_t = 2y_t$
 - (b) $z_t = y_t + 1$
 - (c) $z_t = \Delta y_t$
 - (d) $z_t = 2y_t + 3y_{t-1}$

все линейные комбинации стационарны

- 13. Известно, что временной ряд y_t порожден стационарным процессом, задаваемым соотношением $y_t = 1 + 0.5y_{t-1} + \varepsilon_t$. Имеется 1000 наблюдений. Вася построил регрессию y_t на константу и y_{t-1} . Петя построил регрессию на константу и y_{t+1} . Какие примерно оценки коэффициентов они получат? Они будут примерно одинаковы. Оценка наклона определяется автоковариационной функцией.
- 14. Рассмотрим следующий AR(1)-ARCH(1) процесс, $y_t = 1 + 0.5y_{t-1} + \varepsilon_t$, $\varepsilon_t = \nu_t \cdot \sigma_t$ ν_t независимые N(0;1) величины.

$$\sigma_t^2 = 1 + 0.8\varepsilon_{t-1}^2$$

Также известно, что $y_{100} = 2$, $y_{99} = 1.7$

- (a) Найдите $\mathbb{E}_{100}(\varepsilon_{101}^2)$, $\mathbb{E}_{100}(\varepsilon_{102}^2)$, $\mathbb{E}_{100}(\varepsilon_{103}^2)$, $\mathbb{E}(\varepsilon_t^2)$
- (b) $Var(y_t)$, $Var(y_t|\mathcal{F}_{t-1})$
- (c) Постройте доверительный интервал для y_{101} :
 - і. проигнорировав условную гетероскедастичность
 - іі. учтя условную гетерескедастичность
- 15. Пусть x_t , t=0,1,2,... случайный процесс и $y_t=(1+\mathrm{L})^tx_t$. Выразите x_t с помощью y_t и оператора лага L . $x_t=(1-\mathrm{L})^ty_t$
- 16. Пусть F_n последовательность чисел Фибоначчи. Упростите величину

$$F_1 + C_5^1 F_2 + C_5^2 F_3 + C_5^3 F_4 + C_5^4 F_5 + C_5^5 F_6$$

 $F_n=\mathrm{L}(1+\mathrm{L})F_n$, значит $F_n=\mathrm{L}^k(1+\mathrm{L})^kF_n$ или $F_{n+k}=(1+\mathrm{L})^kF_n$

- 17. Пусть $y_t, t = \dots -2, -1, 0, 1, 2, \dots$ случайный процесс. И $y_t = x_{-t}$. Являются ли верными рассуждения?
 - (a) $Ly_t = Lx_{-t} = x_{-t-1}$
 - (b) $Ly_t = y_{t-1} = x_{-t+1}$

а - неверно, б - верно.

- 18. Представьте процесс AR(1), $y_t = 0.9y_{t-1} 0.2y_{t-2} + \varepsilon_t$, $\varepsilon \sim WN(0;1)$ в виде модели состояние
 - а) Выбрав в качестве состояний вектор $\begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix}$ б) Выбрав в качестве состояний вектор $\begin{pmatrix} y_t \\ \hat{y}_{t,1} \end{pmatrix}$

Найдите дисперсии ошибок состояний

- 19. Представьте процесс MA(1), $y_t = \varepsilon_t + 0.5\varepsilon_{t-1}$, $\varepsilon \sim WN(0;1)$ в виде модели состояние-
- 20. Представьте процесс ARMA(1,1), $y_t = 0.5y_{t-1} + \varepsilon_t + \varepsilon_{t-1}$, $\varepsilon \sim WN(0;1)$ в виде модели состояние-наблюдение.

Вектор состояний имеет вид x_t, x_{t-1} , где $x_t = \frac{1}{1-0.5L} \varepsilon_t$

- 21. Рекурсивные коэффициенты
 - (a) Оцените модель вида $y_t = a + b_t x_t + \varepsilon_t$, где $b_t = b_{t-1}$.
 - (b) Сравните графики filtered state и smoothed state.
 - (c) Сравните финальное состояние b_T с коэффициентом в обычной модели линейной регрессии, $y_t = a + bx_t + \varepsilon_t$.
- 22. Пусть u_t независимые нормальные случайные величины с математическим ожиданием 0 и дисперсией σ^2 . Известно, что $\varepsilon_1=u_1,\, \varepsilon_t=u_1+u_2+\ldots+u_t$. Рассмотрим модель $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t.$
 - (a) Найдите $Var(\varepsilon_t)$, $Cov(\varepsilon_t, \varepsilon_s)$, $Var(\varepsilon)$
 - (b) Являются ли ошибки ε_t гетероскедастичными?
 - (c) Являются ли ошибки ε_t автокоррелированными?
 - (d) Предложите более эффективную оценку вектора коэффициентов регрессии по сравнению МНК-оценкой.
 - (е) Результаты предыдущего пункта подтвердите симуляциями Монте-Карло на компью-
- 23. Найдите безусловная дисперсия GARCH-процессов
 - (a) $\varepsilon_t = \sigma_t \cdot z_t, \ \sigma_t^2 = 0.1 + 0.8\sigma_{t-1}^2 + 0.1\varepsilon_{t-1}^2$
 - (b) $\varepsilon_t = \sigma_t \cdot z_t, \ \sigma_t^2 = 0.4 + 0.7\sigma_{t-1}^2 + 0.1\varepsilon_{t-1}^2$
 - (c) $\varepsilon_t = \sigma_t \cdot z_t, \ \sigma_t^2 = 0.2 + 0.8\sigma_{t-1}^2 + 0.1\varepsilon_{t-1}^2$

1, 2, 2

- 24. Являются ли верными следующие утверждения?
 - (а) GARCH-процесс является процессом белого шума, условная дисперсия которого изменяется во времени

- (b) Модель GARCH(1,1) предназначена для прогнозирования меры изменчивости цены финансового инструмента, а не для прогнозирования самой цены инструмента
- (c) При помощи GARCH-процесса можно устранять гетероскедастичность
- (d) Безусловная дисперсия GARCH-процесса изменяется во времени
- (e) Модель GARCH(1,1) может быть использована для прогнозирования волатильности финансовых инструментов на несколько торговых недель вперёд
- 25. Рассмотрим GARCH-процесс $\varepsilon_t = \sigma_t \cdot z_t, \ \sigma_t^2 = k + g_1 \sigma_{t-1}^2 + a_1 \varepsilon_{t-1}^2$. Найдите
 - (a) $\mathbb{E}(z_t)$, $\mathbb{E}(z_t^2)$, $\mathbb{E}(\varepsilon_t)$, $\mathbb{E}(\varepsilon_t^2)$
 - (b) $Var(z_t)$, $Var(\varepsilon_t)$, $Var(\varepsilon_t \mid \mathcal{F}_{t-1})$
 - (c) $\mathbb{E}(\varepsilon_t \mid \mathcal{F}_{t-1})$, $\mathbb{E}(\varepsilon_t^2 \mid \mathcal{F}_{t-1})$, $\mathbb{E}(\sigma_t^2 \mid \mathcal{F}_{t-1})$
 - (d) $\mathbb{E}(z_t z_{t-1})$, $\mathbb{E}(z_t^2 z_{t-1}^2)$, $\operatorname{Cov}(\varepsilon_t, \varepsilon_{t-1})$, $\operatorname{Cov}(\varepsilon_t^2, \varepsilon_{t-1}^2)$
 - (e) $\lim_{h\to\infty} \mathbb{E}(\sigma_{t+h}^2 \mid \mathcal{F}_t)$
- 26. Используя 500 наблюдений дневных логарифмических доходностей y_t , была оценена GARCH(1,1)-модель: $\hat{y}_t = -0.000708 + \hat{\varepsilon}_t$, $\varepsilon_t = \sigma_t \cdot z_t$, $\sigma_t^2 = 0.000455 + 0.6424\sigma_{t-1}^2 + 0.2509\varepsilon_{t-1}^2$. Также известно, что $\hat{\sigma}_{499}^2 = 0.002568$, $\hat{\varepsilon}_{499}^2 = 0.000014$, $\hat{\varepsilon}_{500}^2 = 0.002178$. Найдите
 - (a) $\hat{\sigma}_{500}^2$, $\hat{\sigma}_{501}^2$, $\hat{\sigma}_{502}^2$
 - (b) Волатильность в годовом выражении в процентах, соответствующую наблюдению с номером t=500

11 SVM

1. Имеются три наблюдения A, B и C:

	\boldsymbol{x}	y
A	1	-2
B	2	1
\mathcal{C}	9	Ω

- (a) Найдите расстояние AB и косинус угла ABC
- (b) Найдите расстояние AB и косинус угла ABC в расширенном пространстве с помощью гауссовского ядра с $\sigma=1.$
- (c) Найдите расстояние AB и косинус угла ABC в расширенном пространстве с помощью полиномиального ядра второй степени
- 2. Переход из двумерного пространства в расширяющее задан функцией

$$f:(x_1,x_2)\to (1,x_1,x_2,3x_1x_2,2x_1^2,4x_2^2)$$

Найдите соответствующую ядерную функцию

3. Ядерная функция имеет вид

$$K(x,y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$$

Как может выглядеть функция $f: \mathbb{R}^2 \to \mathbb{R}^3$ переводящие исходные векторы в расширенное пространство? $f(x_1,x_2)=(x_1^2,x_2^2,\sqrt{2}x_1x_2)$

4. Дана плоскость. На ней точки. Симметрично ох. Найдите разделяющую гиперплоскость при разных C.

12 Деревья и Random Forest

1. Для случайных величин X и Y найдите индекс Джини и энтропию

- 2. Случайная величина X принимает значение 1 с вероятностью p и значение 0 с вероятностью 1-p.
 - (a) Постройте график зависимости индекса Джини и энтропии от p
 - (b) При каком р энтропия и индекс Джини будут максимальны?
- 3. табличка с тремя признаками...
 - (a) Какой фактор нужно использовать при прогнозировании y, чтобы минимизировать энтропию?
 - (b) Какой фактор нужно использовать при прогнозировании y, чтобы минимизировать индекс Джини?

13 Линейная алгебра

- 1. Найдите каждую из следующих матриц в каждой из следующих степеней $\frac{1}{2}$, $\frac{1}{3}$, $-\frac{1}{2}$, $-\frac{1}{3}$, -1, 100.
 - (a) $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$
 - (b) $\begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$
- 2. Найдите ортогональную проекцию и ортогональную составляющую (перпендикуляр) вектора u_1 на линейное подпространство $L = \mathcal{L}(u_2)$, порождённое вектором u_2 , если
 - (a) $u_1 = (1 \ 1 \ 1 \ 1), u_2 = (1 \ 0 \ 0 \ 1)$
 - (b) $u_1 = (2 \ 2 \ 2 \ 2), u_2 = (1 \ 0 \ 0 \ 1)$
 - (c) $u_1 = (1 \ 1 \ 1 \ 1), u_2 = (7 \ 0 \ 0 \ 7)$
- 3. Найдите обратные матрицы ко всем матрицам, представленным ниже.
 - (a) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 - (b) $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$
 - $\text{(c)} \quad \begin{pmatrix}
 0 & 0 & 1 \\
 1 & 0 & 0 \\
 0 & 1 & 0
 \end{pmatrix}$
 - (d) $\begin{pmatrix} 0 & 0 & a \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
- 4. Найдите ранг следующих матриц в зависимости от значений параметра λ .
 - (a) $\begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{pmatrix}$

(b)
$$\begin{pmatrix} 1 - \lambda & 1 - 2\lambda \\ 1 + \lambda & 1 + 3\lambda \end{pmatrix}$$

(c)
$$\begin{pmatrix} 1 & \lambda & -1 & 2 \\ 2 & -1 & \lambda & 5 \\ 1 & 10 & -6 & 1 \end{pmatrix}$$

(d)
$$\begin{pmatrix} \lambda & 1 & -1 & -1 \\ 1 & \lambda & -1 & -1 \\ 1 & 1 & -\lambda & -1 \\ 1 & 1 & -1 & -\lambda \end{pmatrix}$$

- 5. Пусть $i=(1,\ldots,1)'$ вектор из n единиц и $\pi=i(i'i)^{-1}i'$. Найдите:
 - (a) $tr(\pi)$ и $rk(\pi)$
 - (b) $\operatorname{tr}(I-\pi)$ и $\operatorname{rk}(I-\pi)$
- 6. Пусть X матрица размера $n \times k$, где n > k, и пусть $\mathrm{rk}(X) = k$. Верно ли, что матрица $P = X(X'X)^{-1}X'$ симметрична и идемпотентна?
- 7. Пусть X матрица размера $n \times k$, где n > k, и пусть $\mathrm{rk}(X) = k$. Верно ли, что каждый столбец матрицы $P = X(X'X)^{-1}X'$ является собственным вектором матрицы P, отвечающим собственному значению 1?
- 8. Пусть X матрица размера $n \times k$, где n > k, пусть $\mathrm{rk}(X) = k$ и $P = X(X'X)^{-1}X'$. Верно ли, что каждый вектор-столбец u, такой что X'u = 0, является собственным вектором матрицы P, отвечающим собственному значению 0?
- 9. Верно ли, что для любых матриц A размера $m \times n$ и матриц B размера $n \times m$ выполняется равенство $\operatorname{tr}(AB) = \operatorname{tr}(BA)$?
- 10. Верно ли, что собственные значения симметричной и идемпотентной матрицы могут быть только нулями и единицами?
- 11. Пусть P матрица размера $n \times n$, P' = P, $P^2 = P$. Верно ли, что $\mathrm{rk}(P) = \mathrm{tr}(P)$?
- 12. Верно ли, что для симметричной матрицы собственные векторы, отвечающие различным собственным значениям, ортогональны?
- 13. Найдите собственные значения и собственные векторы матрицы $P = X(X'X)^{-1}X'$, если

(a)
$$X = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$

(b)
$$X = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}$$

(c)
$$X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

(d)
$$X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

- 14. Приведите пример таких A и B, что $\det(AB) \neq \det(BA)$. Например, A = (1, 2, 3), B = (1, 0, 1)'
- 15. Для матриц-проекторов $\pi = \vec{1}(\vec{1}'\vec{1})^{-1}\vec{1}'$ и $P = X(X'X)^{-1}X'$ найдите $\operatorname{tr}(\pi)$, $\operatorname{tr}(P)$, $\operatorname{tr}(I-\pi)$, $\operatorname{tr}(I-P)$. $\operatorname{tr}(I) = n$, $\operatorname{tr}(\pi) = 1$, $\operatorname{tr}(P) = k$

16. Выпишите в явном виде матрицы X'X, $(X'X)^{-1}$ и X'y, если

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
и $X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$

- 17. Выпишите в явном виде матрицы π , πy , $\pi \varepsilon$, $I \pi$, если $\pi = \vec{1}(\vec{1}'\vec{1})^{-1}\vec{1}'$.
- 18. Формула Фробениуса. Матрицу A размера $(n+m)\times (n+m)$ разрезали на 4 части: $A=\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$. Кусок A_{11} имеет размер $n\times n$, кусок A_{22} имеет размер $m\times m$. Известно, что A обратима и $A^{-1}=B$. На аналогичные по размеру и расположению части разрезали матрицу $B=\begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$.
 - (a) Каковы размеры кусков A_{12} и A_{21} ?
 - (b) Может ли кусок A_{11} быть необратимой матрицей?
 - (c) Чему равно $B_{22}(A_{22} A_{21}A_{11}^{-1}A_{12})$?

 $n \times m, \ m \times n, \ A_{11}$ обратима, I

- 19. Спектральное разложение. Симметричная матрица A размера $n \times n$ имеет n собственных чисел $\lambda_1, \ldots, \lambda_n$ с собственными векторами u_1, \ldots, u_n . Докажите, что A можно представить в виде $A = \sum \lambda_i u_i u_i'$.
- 20. Найдите определитель, собственные значения, собственные векторы и число обусловленности матрицы A. Также найдите A^{-1} , $A^{-1/2}$ и $A^{1/2}$.

(a)
$$A = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.1 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}$$

(d)
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

(e)
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$

(f)
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

(g)
$$A = \begin{pmatrix} 4 & -1 & 1 \\ -1 & 4 & -1 \\ 1 & -1 & 4 \end{pmatrix}$$

(h)
$$A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}$$

14 Случайные вектора

1. Пусть $y = (y_1, y_2, y_3, y_4, y_5)'$ — случайный вектор доходностей пяти ценных бумаг. Известно, что $\mathbb{E}(y') = (5, 10, 20, 30, 40)$, $\operatorname{Var}(y_1) = 0$, $\operatorname{Var}(y_2) = 10$, $\operatorname{Var}(y_3) = 20$, $\operatorname{Var}(y_4) = 40$, $\operatorname{Var}(y_5) = 10$

40 и

$$Corr(y) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0.3 & -0.2 & 0.1 \\ 0 & 0.3 & 1 & 0.3 & -0.2 \\ 0 & -0.2 & 0.3 & 1 & 0.3 \\ 0 & 0.1 & -0.2 & 0.3 & 1 \end{pmatrix}$$

С помощью компьютера найдите ответы на вопросы:

- (а) Какая ценная бумага является безрисковой?
- (b) Найдите ковариационную матрицу $\operatorname{Var}(y)$
- (c) Найдите ожидаемую доходность и дисперсию доходности портфеля, доли ценных бумаг в котором равны соответственно:

i.
$$\alpha = (0.2, 0.2, 0.2, 0.2, 0.2)'$$

ii.
$$\alpha = (0.0, 0.1, 0.2, 0.3, 0.4)'$$

iii.
$$\alpha = (0.0, 0.4, 0.3, 0.2, 0.1)'$$

- (d) Составьте из данных бумаг пять некоррелированных портфелей
- 2. Пусть $i=(1,\dots,1)'$ вектор из n единиц, $\pi=i(i'i)^{-1}i'$ и $\varepsilon=(\varepsilon_1,\dots,\varepsilon_n)'\sim N(0,I).$
 - (a) Найдите $\mathbb{E}(\varepsilon'\pi\varepsilon)$, $\mathbb{E}(\varepsilon'(I-\pi)\varepsilon)$ и $\mathbb{E}(\varepsilon\varepsilon')$
 - (b) Как распределены случайные величины $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$?
 - (c) Запишите выражения $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$, используя знак суммы
- 3. Пусть $X=\begin{pmatrix}1\\2\\3\\4\end{pmatrix},\,P=X(X'X)^{-1}X',$ случайные величины $\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4$ независимы и одина-

ково распределены $\sim N(0,1)$.

- (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \end{pmatrix}'$
- (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
- (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$
- 4. Пусть $X=\begin{pmatrix} 1 & 1\\ 1 & 2\\ 1 & 3\\ 1 & 4 \end{pmatrix},\ P=X(X'X)^{-1}X',$ случайные величины $\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4$ независимы и

одинаково распределены $\sim N(0,1)$.

- (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \end{pmatrix}'$
- (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
- (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$
- 5. Пусть $X=\begin{pmatrix}1&0&0\\1&0&0\\1&1&0\\1&1&1\end{pmatrix},\ P=X(X'X)^{-1}X',$ случайные величины $\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4$ независимы и

одинаково распределены $\sim N(0,1)$

- (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = (\varepsilon_1 \quad \varepsilon_2 \quad \varepsilon_3 \quad \varepsilon_4)'$.
- (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$.
- (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1.$

6. Пусть
$$x=\begin{pmatrix}x_1\\x_2\end{pmatrix},\,\mathbb{E}(x)=\begin{pmatrix}1\\2\end{pmatrix},\,\mathrm{Var}(x)=\begin{pmatrix}2&1\\1&2\end{pmatrix}$$
. Найдите $\mathbb{E}(y),\,\mathrm{Var}(y)$ и $\mathbb{E}(z),\,\mathrm{если}$

(a)
$$y = x - \mathbb{E}(x)$$

(b)
$$y = Var(x)x$$

(c)
$$y = Var(x)(x - \mathbb{E}(x))$$

(d)
$$y = \operatorname{Var}(x)^{-1}(x - \mathbb{E}(x))$$

(e)
$$y = Var(x)^{-1/2}(x - \mathbb{E}(x))$$

(f)
$$z = (x - \mathbb{E}(x))' \operatorname{Var}(x) (x - \mathbb{E}(x))$$

(g)
$$z = (x - \mathbb{E}(x))' \operatorname{Var}(x)^{-1} (x - \mathbb{E}(x))$$

(h)
$$z = x' \operatorname{Var}(x) x$$

(i)
$$z = x' Var(x)^{-1} x$$

7. Пусть
$$x=\begin{pmatrix}x_1\\x_2\end{pmatrix},\,\mathbb{E}(x)=\begin{pmatrix}1\\4\end{pmatrix},\,\mathrm{Var}(x)=\begin{pmatrix}4&1\\1&4\end{pmatrix}.$$
 Найдите $\mathbb{E}(y),\,\mathrm{Var}(y)$ и $\mathbb{E}(z),\,\mathrm{если}$

(a)
$$y = x - \mathbb{E}(x)$$

(b)
$$y = Var(x)x$$

(c)
$$y = Var(x)(x - \mathbb{E}(x))$$

(d)
$$y = Var(x)^{-1}(x - \mathbb{E}(x))$$

(e)
$$y = Var(x)^{-1/2}(x - \mathbb{E}(x))$$

(f)
$$z = (x - \mathbb{E}(x))' \operatorname{Var}(x) (x - \mathbb{E}(x))$$

(g)
$$z = (x - \mathbb{E}(x))' \operatorname{Var}(x)^{-1} (x - \mathbb{E}(x))$$

(h)
$$z = x' \operatorname{Var}(x) x$$

(i)
$$z = x' Var(x)^{-1} x$$

8. Известно, что случайные величины $x_1,\,x_2$ и x_3 имеют следующие характеристики:

(a)
$$\mathbb{E}(x_1) = 5$$
, $\mathbb{E}(x_2) = 10$, $\mathbb{E}(x_3) = 8$

(b)
$$Var(x_1) = 6$$
, $Var(x_2) = 14$, $Var(x_3) = 1$

(c)
$$Cov(x_1, x_2) = 3$$
, $Cov(x_1, x_3) = 1$, $Cov(x_2, x_3) = 0$

Пусть случайные величины y_1, y_2 и y_3 , представляют собой линейные комбинации случайных величин X_1, X_2 и X_3 :

$$y_1 = x_1 + 3x_2 - 2x_3$$

$$y_2 = 7x_1 - 4x_2 + x_3$$

$$y_3 = -2x_1 - x_2 + 4x_3$$

(a) Выпишите математическое ожидание и ковариационную матрицу случайного вектора $x = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix}^T$

(b) Напишите матрицу A, которая позволяет перейти от случайного вектора $x = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix}^T$ к случайному вектору $y = \begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix}^T$

(c) С помощью матрицы A найдите математическое ожидание и ковариационную матрицу случайного вектора $y=\begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix}^T$

9. Пусть ξ_1, ξ_2, ξ_3 — случайные величины, такие что $\mathrm{Var}(\xi_1) = 2$, $\mathrm{Var}(\xi_2) = 3$, $\mathrm{Var}(\xi_3) = 4$, $\mathrm{Cov}(\xi_1, \xi_2) = 1$, $\mathrm{Cov}(\xi_1, \xi_3) = -1$, $\mathrm{Cov}(\xi_2, \xi_3) = 0$. Пусть $\xi = \begin{pmatrix} \xi_1 & \xi_2 & \xi_3 \end{pmatrix}^T$. Найдите $\mathrm{Var}(\xi)$ и $\mathrm{Var}(\xi_1 + \xi_2 + \xi_3)$. По определению ковариационной матрицы:

54

$$\begin{aligned} & \mathrm{Var}(\xi) = \begin{pmatrix} \mathrm{Var}(\xi_1) & \mathrm{Cov}(\xi_1, \xi_2) & \mathrm{Cov}(\xi_1, \xi_3) \\ \mathrm{Cov}(\xi_2, \xi_1) & \mathrm{Var}(\xi_2) & \mathrm{Cov}(\xi_2, \xi_3) \\ \mathrm{Cov}(\xi_3, \xi_1) & \mathrm{Cov}(\xi_3, \xi_2) & \mathrm{Var}(\xi_3) \end{pmatrix} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 0 \\ -1 & 0 & 4 \end{pmatrix} \\ & \mathrm{Var}(\xi_1 + \xi_2 + \xi_3) = \mathrm{Var} \begin{pmatrix} \xi_1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \mathrm{Var} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 0 \\ -1 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 9 \end{aligned}$$

10. Пусть $h = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$; $\mathbb{E}(h) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $\mathrm{Var}(h) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$; $z_1 = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$. Найдите $\mathbb{E}(z_1)$ и $Var(z_1)$

 $\mathbb{E}(z_1) = \mathbb{E}\begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$ $\operatorname{Var}(z_1) = \operatorname{Var}\begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \operatorname{Var}\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}^T = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}^T = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$

11. Пусть $h = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$; $\mathbb{E}(h) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $\mathrm{Var}(h) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$; $z_2 = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Найдите

 $\mathbb{E}(z_2) = \mathbb{E}\left(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \right. \\ + \quad \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{E}\left(\frac{\xi_1}{\xi_2}\right) + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ Поскольку $z_2 = z_1 + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, где z_1 — случайный вектор из предыдущей задачи, то $\mathrm{Var}(z_2) = \mathrm{Var}(z_1)$. Сдвиг случайного вектора на вектор-

12. Пусть $h = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$; $\mathbb{E}(h) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $\mathrm{Var}(h) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$; $z_3 = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}$. Найдите $\mathbb{E}(z_3)$ W $\operatorname{Var}(z_3)$ В данном примере произлюстрирована процедура центрирования случайного вектора — процедура вычитания из случайного вектора его математического ожидания. $\mathbb{E}(z_3) = \mathbb{E}\left(\begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} - \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} - \mathbb{E}\left(\frac{\mathbb{E}\xi_1}{\mathbb{E}\xi_2} \right) - \mathbb{E}\left(\frac{\mathbb{E}\xi_1}{\mathbb{E}\xi_2} \right) - \mathbb{E}\left(\frac{\mathbb{E}\xi_1}{\mathbb{E}\xi_2} \right) - \mathbb{E}\left(\frac{\mathbb{E}\xi_1}{\mathbb{E}\xi_2} \right) = \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Заметим, что вектор z_3 отличается от вектора z_1 (из задачи 15) сдвигом на вектор-константу $\begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}$, поэтому $\operatorname{Var}(z_3) = \operatorname{Var}(z_1)$.

- 13. Пусть r_1, r_2 и r_3 годовые доходности трёх рисковых финансовых инструментов. Пусть $\alpha_1,$ α_2 и α_3 — доли, с которыми данные инструменты входят в портфель инвестора. Считаем, что $\sum_{i=1}^3 \alpha_i = 1$ и $\alpha_i \geqslant 0$ для всех i=1,2,3. Пусть $r=\begin{pmatrix} r_1 & r_2 & r_3 \end{pmatrix}^T$, $\mathbb{E}(r)=\begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}^T$, $\operatorname{Var}(r) = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{21} & c_{22} & c_{22} \end{pmatrix}$. Параметры $\{a_i\}$ и $\{c_i\}$ известны.
 - (а) Найдите годовую доходность портфеля П инвестора
 - (b) Докажите, что дисперсия доходности портфеля Π равна $\sum_{i=1}^{3} \sum_{j=1}^{3} \alpha_i c_{ij} \alpha_j$
 - (c) Для случая $\alpha_1 = 0.1$, $\alpha_2 = 0.5$, $\alpha_3 = 0.4$, $\mathbb{E}(r) = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}^T = \begin{pmatrix} 0.10 & 0.06 & 0.05 \end{pmatrix}^T$, $\operatorname{Var}(r) = \begin{pmatrix} 0.04 & 0 & -0.005 \\ 0 & 0.01 & 0 \\ -0.005 & 0 & 0.0025 \end{pmatrix}$ найдите $\mathbb{E}(\Pi)$ и $\operatorname{Var}(\Pi)$
- 14. Пусть $h = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$; $\mathbb{E}(h) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $Var(h) = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$; $z_3 = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}$; $z_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\operatorname{Var}(h)^{-1/2}z_3$. Найдите $\mathbb{E}(z_4)$ и $\operatorname{Var}(z_4)$
- 15. Пусть $h = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$; $\mathbb{E}(h) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $Var(h) = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$; $z_3 = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} \begin{pmatrix} \mathbb{E}\xi_1 \\ \mathbb{E}\xi_2 \end{pmatrix}$; $z_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\operatorname{Var}(h)^{-1/2}z_3$. Найдите $\mathbb{E}(z_4)$ и $\operatorname{Var}(z_4)$
- 16. Случайные величины w_1 и w_2 независимы с нулевым ожиданием и единичной дисперсией. Из них составлено два вектора, $w=\left(\begin{array}{c}w_1\\w_2\end{array}\right)$ и $z=\left(\begin{array}{c}-w_2\\w_1\end{array}\right)$
 - (a) Являются ли векторы w и z перпендикулярными?
 - (b) Найдите $\mathbb{E}(w)$, $\mathbb{E}(z)$
 - (c) Найдите Var(w), Var(z), Cov(w, z)
- 17. Есть случайный вектор $w = (w_1, w_2, \dots, w_n)'$.
 - (a) Возможно ли, что E(w) = 0 и $\sum w_i = 0$?

- (b) Возможно ли, что $E(w) \neq 0$ и $\sum w_i = 0$?
- (c) Возможно ли, что E(w) = 0 и $\sum w_i \neq 0$?
- (d) Возможно ли, что $E(w) = \neq \text{ и } \sum w_i \neq 0$?

Каждый из вариантов возможен

18. Известна ковариационная матрица вектора $\varepsilon = (\varepsilon_1, \varepsilon_2),$

$$Var(\varepsilon) = \begin{pmatrix} 9 & -1 \\ -1 & 9 \end{pmatrix}$$

Найдите четыре различных матрицы A, таких что вектор $v=A\varepsilon$ имеет некоррелированные компоненты с единичной дисперсией, то есть $\mathrm{Var}(A\varepsilon)=I$.

15 Многомерное нормальное и квадратичные формы

- 1. Пусть $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3)' \sim N(0, I)$ и матрица A представлена ниже. Найдите $\mathbb{E}(\varepsilon' A \varepsilon)$ и распределение случайной величины $\varepsilon' A \varepsilon$.
 - (a) $\begin{pmatrix} 2/3 & -1/3 & 1/3 \\ -1/3 & 2/3 & 1/3 \\ 1/3 & 1/3 & 2/3 \end{pmatrix}$
 - (b) $\begin{pmatrix} 2/3 & -1/3 & -1/3 \\ -1/3 & 2/3 & -1/3 \\ -1/3 & -1/3 & 2/3 \end{pmatrix}$
 - (c) $\begin{pmatrix} 1/3 & 1/3 & -1/3 \\ 1/3 & 1/3 & -1/3 \\ -1/3 & -1/3 & 1/3 \end{pmatrix}$
 - (d) $\begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$
 - (e) $\begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{pmatrix}$
 - (f) $\begin{pmatrix} 1/2 & 0 & -1/2 \\ 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \end{pmatrix}$
 - (g) $\begin{pmatrix} 1/2 & -1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 - (h) $\begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 - (i) $\begin{pmatrix}
 0.8 & 0.4 & 0 \\
 0.4 & 0.2 & 0 \\
 0 & 0 & 1
 \end{pmatrix}$
 - $\begin{pmatrix}
 0.2 & -0.4 & 0 \\
 -0.4 & 0.8 & 0 \\
 0 & 0 & 0
 \end{pmatrix}$

- 2. Пусть $i=(1,\ldots,1)'$ вектор из n единиц, $\pi=i(i'i)^{-1}i'$ и $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_n)'\sim N(0,I).$
 - (a) Найдите $\mathbb{E}(\varepsilon'\pi\varepsilon)$, $\mathbb{E}(\varepsilon'(I-\pi)\varepsilon)$ и $\mathbb{E}(\varepsilon\varepsilon')$
 - (b) Как распределены случайные величины $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$?
 - (c) Запишите выражения $\varepsilon'\pi\varepsilon$ и $\varepsilon'(I-\pi)\varepsilon$, используя знак суммы
- 3. Пусть $X=\begin{pmatrix}1\\2\\3\\4\end{pmatrix},\,P=X(X'X)^{-1}X',$ случайные величины $\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4$ независимы и одина-

ково распределены $\sim N(0,1)$.

- (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \end{pmatrix}'$
- (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
- (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$
- 4. Пусть $X = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}$, $P = X(X'X)^{-1}X'$, случайные величины $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ независимы и одинаково распределены $\sim N(0,1)$.
 - (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \begin{pmatrix} \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 \end{pmatrix}'$
 - (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$
 - (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$
- 5. Пусть $X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, $P = X(X'X)^{-1}X'$, случайные величины $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ независимы и

одинаково распределены $\sim N(0,1)$.

- (a) Найдите распределение случайной величины $\varepsilon' P \varepsilon$, где $\varepsilon = \left(\varepsilon_1 \quad \varepsilon_2 \quad \varepsilon_3 \quad \varepsilon_4\right)'$.
- (b) Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$.
- (c) При помощи таблиц найдите такое число q, что $\mathbb{P}(\varepsilon' P \varepsilon > q) = 0.1$.
- 6. Пусть $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3)' \sim N(0, I)$. Найдите $\mathbb{E}(\varepsilon' P \varepsilon)$ и распределение случайной величины $\varepsilon' P \varepsilon$, если $P = X(X'X)^{-1} X'$ и матрица X' представлена ниже.
 - (a) $(1 \ 1 \ 1)$
 - (b) $(1 \ 2 \ 3)$
 - (c) $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 - $(d) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}$
 - (e) $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
- 7. Пусть $\varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix} \sim N(0, \sigma^2 I), \ i = (1, \dots, 1)'$ вектор из n единиц, $\pi = i(i'i)^{-1}i', \ X$ матрица размера $n \times k, \ P = X(X'X)^{-1}X'$. Найдите:

- (a) $\mathbb{E}(\varepsilon'(P-\pi)\varepsilon)$
- (b) $\mathbb{E}(\varepsilon'(I-\pi)\varepsilon)$
- (c) $\mathbb{E}(\varepsilon' P \varepsilon)$
- (d) $\mathbb{E}(\sum_{i=1}^{n} (\varepsilon_i \bar{\varepsilon})^2)$
- 8. Пусть $\varepsilon=(\varepsilon_1,\varepsilon_2,\varepsilon_3)'\sim N(0,4I),\ A=\begin{pmatrix} 4&1&1\\1&3&1\\1&1&2 \end{pmatrix}$. Найдите:
 - (a) $\mathbb{E}(\varepsilon' A \varepsilon)$
 - (b) $\mathbb{E}(\varepsilon'(I-A)\varepsilon)$
- 9. Пусть $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ случайный вектор, имеющий двумерное нормальное распределение с математическим ожиданием $\mu = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$ и ковариационной матрицей $\Sigma = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.
 - (a) Найдите Σ^{-1}
 - (b) Найдите $\Sigma^{-1/2}$
 - (c) Найдите математическое ожидание и ковариационную матрицу случайного вектора $y = \Sigma^{-1/2} \cdot (x \mu)$
 - (d) Какое распределение имеет вектор y из предыдущего пункта?
 - (e) Найдите распределение случайной величины $q = (x-\mu)^T \cdot \Sigma^{-1} \cdot (x-\mu)$
- 10. Пусть $z = \begin{bmatrix} z_1 & z_2 & z_3 \end{bmatrix}^T \sim N(0, I_{3x3}), b = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T,$ $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 \end{bmatrix}.$
 - (а) Найдите $\mathbb{E} x$ и $\mathrm{Var}(x)$ случайного вектора $x = A \cdot z + b$
 - (b) Найдите распределение случайного вектора x
 - (c) Найдите $\mathbb{E} q$ случайной величины $q = z^T \cdot K \cdot z$
 - (d) Найдите распределение случайной величины q
- 11. Известно, что $\varepsilon \sim N(0, I)$, $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3)'$. Матрица $A = \begin{pmatrix} 2/3 & -1/3 & -1/3 \\ -1/3 & 2/3 & -1/3 \\ -1/3 & -1/3 & 2/3 \end{pmatrix}$.
 - (a) Найдите $\mathbb{E}(\varepsilon' A \varepsilon)$
 - (b) Как распределена случайная величина $\varepsilon' A \varepsilon$?

по χ^2 -распределению

- 12. Известно, что $\varepsilon \sim N(0,A)$, $\varepsilon = (\varepsilon_1, \varepsilon_2)'$. Матрица $A = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}$, матрица $B = \begin{pmatrix} -1 & 3 \\ 2 & 1 \end{pmatrix}$
 - (a) Как распределен вектор $h = B\varepsilon$?
 - (b) Найдите $A^{-1/2}$
 - (c) Как распределен вектор $u = A^{-1/2} \varepsilon$?

 $u \sim N(0, I)$

16 Задачи по программированию

Все наборы данных доступны по ссылке https://github.com/bdemeshev/em301/wiki/Datasets.

- 1. Начиная с какого знака в числе $\pi = 3.1415...$ можно обнаружить твой номер телефона? Первый 10 миллионов знаков числа π можно найти на сайте http://code.google.com/p/pc2012-grupo-18-turma-b/downloads/list. Если не хватает, то миллиард знаков, файл размера примерно в 1 гигабайт, доступен по ссылке http://stuff.mit.edu/afs/sipb/contrib/pi/. Настоящие челябинцы рассчитывают π самостоятельно. Краткая история о том, как маньяки считали π до 10 миллиардов знаков и потеряли полгода из-за сбоев компьютерного железа, http://www.numberworld.org/misc_runs/pi-10t/details.html.
- 2. Отряд Иосифа Флавия из 40 воинов, защищающий город Йодфат, блокирован в пещере превосходящими силам римлян. Чтобы не сдаться врагу, воины стали по кругу и договорились, что сами будут убивать каждого третьего, пока не погибнут все. При этом двое воинов, оставшихся последними в живых, должны были убить друг друга. Хитренький Иосиф Флавий, командующий этим отрядом, хочет определить, где нужно встать ему и его товарищу, чтобы остаться последними. Не для того, чтобы убить друг друга, а чтобы сдать крепость римлянам. Напишите программу, которая для *п* воинов вставших в круг определяет, какие двое останутся последними, если будут убивать каждого *k*-го.
- 3. Напишите программу, которая печатает сама себя.
- 4. Задача Макар-Лиманова. У торговца 55 пустых стаканчиков, разложенных в несколько стопок. Пока нет покупателей он развлекается: берет верхний стаканчик из каждой стопки и формирует из них новую стопку. Потом снова берет верхний стаканчик из каждой стопки и формирует из них новую стопку и т.д.
 - (a) Напишите функцию 'makar_step'. На вход функции подаётся вектор количества стаканчиков в каждой стопке до перекладывания. На выходе функция возвращает количества стаканчиков в каждой стопке после одного перекладывания.
 - (b) Изначально стаканчики были разложены в две стопки, из 25 и 30 стаканчиков. Как разложатся стаканчики если покупателей не будет достаточно долго?
- 5. Напишите программу, которая находит сумму элементов побочной диагонали квадратной матрицы.

17 Устав проверки гипотез

- 1. Условия применимости теста
- 2. Формулировка H_0 , H_a и уровня значимости α
- 3. Формула расчета и наблюдаемое значения статистики, S_{obs}
- 4. Закон распределения S_{obs} при верной H_0
- 5. Область в которой H_0 не отвергается
- 6. Точное Р-значение
- 7. Статистический вывод о том, отвергается ли H_0 или нет.

В качестве статистического вывода допускается только одна из двух фраз:

- Гипотеза H_0 отвергается
- Гипотеза H_0 не отвергается

Остальные фразы считаются неуставными