In [1]:

```
import os
import joblib
import numpy as np
import pandas as pd
from sklearn.tree import _tree
from sklearn.metrics import roc_auc_score
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
```

In [2]:

sample=pd.read_csv('C:\\Users\\lalit\\Downloads\\sampled_data2.csv')
sample

Out[2]:

	step	customer	age	gender	merchant	category	amount	fraud
0	2021-07- 16	C1326593353	36to45	Male	M1823072687	Transportation	15.78	0
1	2021-08- 22	C483912131	26to35	Female	M1198415165	Beauty&Wellness	608.32	1
2	2021-06- 03	C1681589600	26to35	Female	M348934600	Transportation	43.76	0
3	2021-07- 01	C1251749294	36to45	Female	M1823072687	Transportation	41.57	0
4	2021-03- 06	C1705346216	36to45	Male	M348934600	Transportation	42.97	0
25195	2021-08- 22	C1480193980	46to55	Female	M1823072687	Transportation	32.07	0
25196	2021-08- 14	C207380283	36to45	Female	M480139044	Health	373.27	1
25197	2021-07- 18	C183270065	lt18	Female	M1823072687	Transportation	2.50	0
25198	2021-07- 23	C149698808	26to35	Female	M1823072687	Transportation	5.38	0
25199	2021-07- 16	C684162308	56to65	Female	M840466850	Technology	93.89	1

25200 rows × 8 columns

In [3]:

```
print(sample.shape)
print(sample.size)
```

(25200, 8) 201600

In [4]:

```
entity_column='customer'
target_column='fraud'
datetime_columns='step'
```

In [5]:

```
if entity_column=='':
    sample['entity_column']=sample.index.tolist()
    entity_column='entity_column'
if datetime_columns==" ":
    sample['datetime_columns']=sample.index.tolist()
    datetime_columns='datetime_columns'
numerical_columns=sample._get_numeric_data().values.tolist()
print(numerical_columns)
```

```
[[15.78, 0.0], [608.32, 1.0], [43.76, 0.0], [41.57, 0.0], [42.97, 0.0], [3]
2.61, 0.0], [410.67, 1.0], [16.45, 1.0], [300.62, 1.0], [47.47, 0.0], [39
0.48, 1.0], [30.61, 0.0], [67.28, 0.0], [5.54, 0.0], [760.26, 1.0], [135.0
4, 0.0], [41.46, 0.0], [27.39, 0.0], [5.52, 0.0], [423.02, 1.0], [51.26,
0.0], [45.62, 0.0], [69.37, 0.0], [47.41, 0.0], [119.15, 1.0], [9.27, 0.
0], [33.31, 0.0], [22.6, 0.0], [70.0, 0.0], [1242.08, 1.0], [0.68, 0.0],
[18.34, 0.0], [34.42, 0.0], [33.3, 0.0], [20.41, 0.0], [297.6, 1.0], [12.9]
2, 0.0], [267.3, 1.0], [23.49, 0.0], [68.31, 0.0], [155.95, 1.0], [49.83,
0.0], [3.96, 0.0], [20.62, 0.0], [152.55, 1.0], [21.44, 0.0], [143.62, 0.
0], [49.78, 0.0], [11.58, 0.0], [11.37, 0.0], [249.43, 1.0], [37.9, 0.0],
[512.51, 1.0], [28.27, 0.0], [27.82, 0.0], [204.29, 1.0], [14.84, 0.0], [1
88.92, 1.0], [1.14, 0.0], [166.08, 1.0], [21.18, 0.0], [17.5, 0.0], [15.9
8, 0.0, [26.35, 0.0], [310.76, 1.0], [305.05, 1.0], [362.29, 1.0], [320.7]
5, 1.0], [426.13, 1.0], [205.15, 1.0], [635.36, 1.0], [303.91, 1.0], [17.4
7, 0.0], [27.38, 0.0], [224.41, 1.0], [18.71, 0.0], [59.13, 0.0], [199.75,
1.0], [167.62, 1.0], [475.95, 1.0], [4775.72, 1.0], [25.85, 0.0], [4.52,
0.0], [55.98, 0.0], [487.12, 1.0], [16.19, 0.0], [25.14, 0.0], [427.78, 1.
0], [25.48, 0.0], [24.7, 0.0], [165.11, 1.0], [28.0, 0.0], [13.05, 0.0],
[24.03, 0.0], [26.75, 1.0], [10.2, 0.0], [44.64, 0.0], [35.17, 0.0], [38.9]
```

In [6]:

```
X=sample.drop(columns=[entity_column,target_column,datetime_columns])
y=sample[target_column]
```

In [7]:

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
```

In [8]:

Χ

Out[8]:

	age	gender	merchant	category	amount
0	36to45	Male	M1823072687	Transportation	15.78
1	26to35	Female	M1198415165	Beauty&Wellness	608.32
2	26to35	Female	M348934600	Transportation	43.76
3	36to45	Female	M1823072687	Transportation	41.57
4	36to45	Male	M348934600	Transportation	42.97
25195	46to55	Female	M1823072687	Transportation	32.07
25196	36to45	Female	M480139044	Health	373.27
25197	lt18	Female	M1823072687	Transportation	2.50
25198	26to35	Female	M1823072687	Transportation	5.38
25199	56to65	Female	M840466850	Technology	93.89

25200 rows × 5 columns

In [9]:

```
categorical_names={}
for feature in X.columns:
    X[feature]=X[feature].fillna('')
    le=LabelEncoder()
    le.fit(X[feature])
    X[feature]=le.transform(X[feature])
    categorical_names[feature]=le.classes_
```

In [10]:

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.75,random_state=42,stratify=
rf=RandomForestClassifier(criterion='entropy',class_weight='balanced',random_state=42)
rf.fit(X_train,y_train)
```

Out[10]:

In [11]:

```
predictions=rf.predict_proba(X_test)
predictions_class=rf.predict(X_test)
```

In [12]:

```
if sample[target_column].nunique()>2:
    rules_score=roc_auc_score(y_test,predictions[:,1],multi_class='ovo')
else:
    rules_score=roc_auc_score(y_test,predictions[:,1])
print(rules_score)
```

0.9960853703703704

In [17]:

```
from sklearn.metrics import confusion_matrix
cf_matrix = confusion_matrix(y_test, predictions_class)
print(cf_matrix)

import seaborn as sns
sns.heatmap(cf_matrix, annot=True)
```

```
[[13193 307]
[ 243 5157]]
```

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e1e22c2948>

In [13]:

```
# performing EDA on the given data
import matplotlib.pyplot as plt
```

In [19]:

```
sample.describe(include='all')
```

Out[19]:

	step	customer	age	gender	merchant	category	amount	
count	25200	25200	25200	25200	25200	25200	25200.000000	25200.
unique	180	4061	8	4	48	14	NaN	
top	2021- 06-18	C1350963410	26to35	Female	M1823072687	Transportation	NaN	
freq	177	147	7984	14596	9192	15925	NaN	
mean	NaN	NaN	NaN	NaN	NaN	NaN	174.212506	0.
std	NaN	NaN	NaN	NaN	NaN	NaN	501.116240	0.
min	NaN	NaN	NaN	NaN	NaN	NaN	0.000000	0.
25%	NaN	NaN	NaN	NaN	NaN	NaN	17.720000	0.
50%	NaN	NaN	NaN	NaN	NaN	NaN	36.340000	0.
75%	NaN	NaN	NaN	NaN	NaN	NaN	109.180000	1.
max	NaN	NaN	NaN	NaN	NaN	NaN	8329.960000	1.

In [20]:

sample.isnull().sum()

Out[20]:

0 step customer 0 age gender 0 0 merchant category 0 0 amount fraud 0 dtype: int64

In [21]:

```
plt.subplot(221)
sample['customer'].value_counts().plot(kind='bar', title='customerss', figsize=(16,9))
plt.show()
```


In [19]:

```
plt.figsize=(50,14)
plt.subplot(222)

sample['category'].value_counts().plot(kind='bar', title='category of custmers')
plt.show() #this plot tells us a brief idea of the major number of cistomer involved in th
```


In [20]:

```
plt.subplot(223)
sample['gender'].value_counts().plot(kind='bar', title='gender status of customer')
plt.xticks(rotation=0)# this plot give us a brief identify of the gender of customer and we
```

Out[20]:

(array([0, 1, 2, 3]), <a list of 4 Text xticklabel objects>)

In [14]:

```
plt.subplot(224)
sample['fraud'].value_counts().plot(kind='bar',title='fraud rate of customer')
plt.show() # from this plot we can see that less number of people are involved in the fraud
```


In [24]:

```
sample.boxplot()
```

Out[24]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e1ed1150c8>

In [25]:

```
sns.distplot(sample['fraud'])
```

Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e1eb392e48>

In [26]:

```
corr = sample.corr()
sns.heatmap(corr, annot=True, square=True)
plt.yticks(rotation=0)
plt.show()
```


In [28]:

```
sns.relplot(x='fraud', y='step', hue='customer', data=sample)
```

Out[28]:

<seaborn.axisgrid.FacetGrid at 0x1e1ed115788>

In [29]:

sns.relplot(x='fraud', y='customer', hue='gender', data=sample)

Out[29]:

<seaborn.axisgrid.FacetGrid at 0x1e1eb35ddc8>

In [31]:

```
sns.relplot(x='step', y='fraud', hue='gender', data=sample)
```

Out[31]:

<seaborn.axisgrid.FacetGrid at 0x1e1862b4308>

In [32]:

sample

Out[32]:

	step	customer	age	gender	merchant	category	amount	fraud
0	2021-07- 16	C1326593353	36to45	Male	M1823072687	Transportation	15.78	0
1	2021-08- 22	C483912131	26to35	Female	M1198415165	Beauty&Wellness	608.32	1
2	2021-06- 03	C1681589600	26to35	Female	M348934600	Transportation	43.76	0
3	2021-07- 01	C1251749294	36to45	Female	M1823072687	Transportation	41.57	0
4	2021-03- 06	C1705346216	36to45	Male	M348934600	Transportation	42.97	0
25195	2021-08- 22	C1480193980	46to55	Female	M1823072687	Transportation	32.07	0
25196	2021-08- 14	C207380283	36to45	Female	M480139044	Health	373.27	1
25197	2021-07- 18	C183270065	lt18	Female	M1823072687	Transportation	2.50	0
25198	2021-07- 23	C149698808	26to35	Female	M1823072687	Transportation	5.38	0
25199	2021-07- 16	C684162308	56to65	Female	M840466850	Technology	93.89	1

25200 rows × 8 columns

In [34]:

sample.groupby('category').mean().T.plot(figsize=(12,8)) # we are checking for which all i

Out[34]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e187ebbcc8>

In [35]:

```
sample.groupby('gender').mean().T.plot(figsize=(12,8)) # In this we are checking the gende
```

Out[35]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e187eb8388>

In [22]:

```
out[22]:
Index(['step', 'customer', 'age', 'gender', 'merchant', 'category', 'amoun
t',
```

'fraud'],
dtype='object')

In [23]:

```
sample.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25200 entries, 0 to 25199
Data columns (total 8 columns):
```

```
#
    Column
              Non-Null Count Dtype
              -----
0
    step
              25200 non-null object
1
    customer 25200 non-null object
2
              25200 non-null object
3
              25200 non-null object
    gender
    merchant 25200 non-null object
4
5
    category 25200 non-null object
6
    amount
              25200 non-null float64
              25200 non-null int64
7
    fraud
dtypes: float64(1), int64(1), object(6)
memory usage: 1.5+ MB
```

In [32]:

In [33]:

plot_pie(sample["age"], title="age ratio") # from this we see that majority of the client


```
In [36]:
max(sample['amount'])
Out[36]:
8329.96
In [37]:
min(sample['amount'])
Out[37]:
0.0
In [38]:
sum(sample['amount'])
Out[38]:
4390155.159999998
In [40]:
len(sample['amount'])
Out[40]:
25200
In [41]:
average=sum(sample['amount'])/len(sample['amount'])
average
Out[41]:
174.21250634920628
In [42]:
duplicate_row_sample=sample[sample.duplicated()]
duplicate_row_sample
Out[42]:
  step customer age gender merchant category amount fraud
In [46]:
print('number of duplicate rows:',duplicate_row_sample.shape)
number of duplicate rows: (0, 8)
```

In [47]:

sample

Out[47]:

	step	customer	age	gender	merchant	category	amount	fraud
0	2021-07- 16	C1326593353	36to45	Male	M1823072687	Transportation	15.78	0
1	2021-08- 22	C483912131	26to35	Female	M1198415165	Beauty&Wellness	608.32	1
2	2021-06- 03	C1681589600	26to35	Female	M348934600	Transportation	43.76	0
3	2021-07- 01	C1251749294	36to45	Female	M1823072687	Transportation	41.57	0
4	2021-03- 06	C1705346216	36to45	Male	M348934600	Transportation	42.97	0
25195	2021-08- 22	C1480193980	46to55	Female	M1823072687	Transportation	32.07	0
25196	2021-08- 14	C207380283	36to45	Female	M480139044	Health	373.27	1
25197	2021-07- 18	C183270065	lt18	Female	M1823072687	Transportation	2.50	0
25198	2021-07- 23	C149698808	26to35	Female	M1823072687	Transportation	5.38	0
25199	2021-07- 16	C684162308	56to65	Female	M840466850	Technology	93.89	1

25200 rows × 8 columns

In [48]:

```
print('customer')
print(list(sample.customer.unique()))
```

customer ['C1326593353', 'C483912131', 'C1681589600', 'C1251749294', 'C1705346216', 'C34676686', 'C760368405', 'C1655037147', 'C1789457872', 'C477542874', 'C763681944', 'C413455659', 'C1293579037', 'C1453917071', 'C1499701993', 'C367052603', 'C126603077', 'C1620825260', 'C449179311', 'C33256704', 'C1740393527', 'C480961011', 'C1089848865', 'C1978250683', 'C1825950751', 'C911364935', 'C1059874896', 'C1356412685', 'C140648396', 'C1134994937', 'C1732752834', 'C1232523772', 'C1735920391', 'C731767226', 'C1499241933', 'C1711218892', 'C1994178184', 'C1419235351', 'C1642006830', 'C658175205', 'C662015024', 'C1491844959', 'C10745331', 'C644590864', 'C2029865097', 'C1998442183', 'C1703648667', 'C947010068', 'C1156188729', 'C2025967620', 'C1911281701', 'C1394454342', 'C1729635847', 'C612005121', 'C1188590334', 'C1949984685', 'C2004941826', 'C808977147', 'C806399525', 'C1794686407', 'C1100361227', 'C998987490', 'C1255149927', 'C1125717761', 'C506520283', 'C1849046345', 'C1464489812', 'C1275518867', 'C1803182614', 'C1787537369', 'C37682628', 'C1948728559', 'C332229910', 'C706956926', 'C983659750', 'C197798791', 'C1572610482', 'C1348847019', 'C1345265337', 'C422003518', 'C1282114843', 'C1480064437', 'C1559339990', 'C1886871597', 'C1562537029', 'C396866523', 'C475624028', 'C203163727', 'C1082769360', 'C1093842718', 'C190128751', 'C

In [49]:

```
print('merchant')
print(list(sample.merchant.unique()))
```

merchant

['M1823072687', 'M1198415165', 'M348934600', 'M980657600', 'M480139044', 'M3697346', 'M85975013', 'M2011752106', 'M547558035', 'M855959430', 'M732195782', 'M1888755466', 'M1535107174', 'M349281107', 'M840466850', 'M1353266412', 'M1913465890', 'M151143676', 'M17379832', 'M1649169323', 'M1053599405', 'M2122776122', 'M45060432', 'M1294758098', 'M1873032707', 'M692898500', 'M857378720', 'M1600850729', 'M209847108', 'M1741626453', 'M923029380', 'M1946091778', 'M78078399', 'M2080407379', 'M677738360', 'M50039827', 'M1400236507', 'M1842530320', 'M1748431652', 'M495352832', 'M1872033263', 'M1313686961', 'M97925176', 'M1352454843', 'M1416436880', 'M933210764', 'M1788569036', 'M348875670']

```
In [51]:
```

```
# adding more features
sample['sold']=sample['amount'].apply(lambda x:x[:4]).astype(float)
sample.head()
```

```
TypeError
                                          Traceback (most recent call last)
<ipython-input-51-0221bf241551> in <module>
      1 # adding more features
----> 2 sample['sold']=sample['amount'].apply(lambda x:x[:4]).astype(float)
      3 sample.head()
~\anaconda3\lib\site-packages\pandas\core\series.py in apply(self, func, con
vert_dtype, args, **kwds)
   3846
                    else:
   3847
                        values = self.astype(object).values
-> 3848
                        mapped = lib.map_infer(values, f, convert=convert_dt
ype)
   3849
                if len(mapped) and isinstance(mapped[0], Series):
   3850
pandas\_libs\lib.pyx in pandas._libs.lib.map_infer()
<ipython-input-51-0221bf241551> in <lambda>(x)
      1 # adding more features
----> 2 sample['sold']=sample['amount'].apply(lambda x:x[:4]).astype(float)
      3 sample.head()
TypeError: 'float' object is not subscriptable
```

```
In [7]:
```

```
a=sample.groupby(['category'=='Transportation'])
                                           Traceback (most recent call last)
KevError
<ipython-input-7-2c52fda2efbd> in <module>
----> 1 a=sample.groupby(['category'=='Transportation'])
~\anaconda3\lib\site-packages\pandas\core\frame.py in groupby(self, by, axi
s, level, as_index, sort, group_keys, squeeze, observed)
   5808
                    group keys=group keys,
   5809
                    squeeze=squeeze,
-> 5810
                    observed=observed,
                )
   5811
   5812
~\anaconda3\lib\site-packages\pandas\core\groupby\groupby.py in __init__(sel
f, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort, g
roup_keys, squeeze, observed, mutated)
    407
                        sort=sort,
    408
                        observed=observed,
--> 409
                        mutated=self.mutated,
    410
                    )
    411
~\anaconda3\lib\site-packages\pandas\core\groupby\grouper.py in get_grouper
(obj, key, axis, level, sort, observed, mutated, validate)
    596
                        in_axis, name, level, gpr = False, None, gpr, None
    597
                    else:
--> 598
                        raise KeyError(gpr)
                elif isinstance(gpr, Grouper) and gpr.key is not None:
    599
                    # Add key to exclusions
    600
KeyError: False
In [6]:
print(a)
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000020D7E659B08>
In [ ]:
```