Maths Crib Sheets

Contents

ure	
	Binomial Expansion
	Definitions
	Expansions
	Calculus
	Elementary Derivatives
	Composition Laws
	Integral Tricks
	Exponentials and Logarithms
	Exponentials
	Log Laws
	Log Plots
	Trigonometry
	Definitions
	Identities
	Calculus
	Graphs
tats	
	Probability Distributions
	Binomial
	Normal
/Iecha	nies
viecna	inics
`M: C	Core Pure
Decisi	on 1
urthe	er Stats 1
	Probability Distributions
	Poisson
	Geometric
\mathbf{dmis}	sions Tests
	Problem Solving Matters
	C 1 FF:
	General Tips
	General Tips

Binomial Expansion

Definitions

The factorial
$$n! \equiv n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1$$
.

The falling factorial $n^{\underline{k}} \equiv n \times (n-1) \times (n-2) \times \cdots \times (n-(k-2)) \times (n-(k-1))$. It has k terms.

$$0! = n^{\underline{0}} = 1$$

The choose function
$${}^{n}C_{r} \equiv \boxed{\begin{pmatrix} n \\ r \end{pmatrix} \equiv \frac{n!}{r!(n-r)!}}$$

Expansions

For a natural number n, the expansion of $(a+b)^n$ is

$$a^{n} + na^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \cdots + \binom{n}{r}a^{n-r}b^{r} + \cdots + \cdots + \cdots + \cdots$$

In general,
$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r \ (n \in \mathbb{N})$$

That's true if n is a natural number, but there is a version that works for all real numbers. For an expression $(a+bx)^n$, it should first be normalised to $a^n(1+\frac{b}{a}x)^n$. Let $y=\frac{b}{a}x$. Then the expansion of $(1+y)^n$ is given by

$$1 + ny + \frac{n(n-1)}{2!}y^2 + \frac{n(n-1)(n-2)}{3!}y^3 + \dots + \frac{n(n-1)(n-2)\cdots(n-(r-1))}{r!}y^r + \dots$$

In general,
$$(a+bx)^n = a^n \sum_{r=0}^{\infty} \frac{n^r}{r!} \left(\frac{b}{a}x\right)^r \ (n \in \mathbb{R})$$

Calculus

Elementary Derivatives

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

f	C	x^n	$\sin x$	$\cos x$	a^x	$\ln x$
f'	0	nx^{n-1}	$\cos x$	$-\sin x$	$a^x \ln a$	$\frac{1}{x}$

Composition Laws

Let f and g be differentiable functions over x.

The ' mark denotes the derivative with respect to x, so $f' = \frac{df}{dx}$ and $g' = \frac{dg}{dx}$.

The \circ symbol denotes function composition, so $(f \circ g)(x) = f(g(x))$.

$$(f \pm g)' = f' \pm g'$$
 $(fg)' = fg' + f'g$

$$(f \circ g)' = (f' \circ g)g'$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Integral Tricks

For integrals of the form on the left, consider the function on the right.

Exponentials and Logarithms

Exponentials

$$\frac{d}{dx}e^x = e^x$$

$$\frac{d}{dx}e^{kx} = ke^{kx}$$

$$\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}$$

 $\ln x$ is the inverse of e^x , meaning its graph is reflected in the line y = x.

Log Laws

$$\log_a b \equiv \frac{\ln b}{\ln a}$$

$$\log xy \equiv \log x + \log y$$

$$\log \frac{x}{y} \equiv \log x - \log y$$

$$\log x^y \equiv y \log x$$

$$\log_a a \equiv 1$$

$$\log 1 \equiv 0$$

$$\log \frac{1}{x} \equiv -\log x$$

Log Plots

Trigonometry

Definitions

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$

$$\sec \theta \equiv \frac{1}{\cos \theta}$$

$$\csc\theta \equiv \frac{1}{\sin\theta}$$

$$\cot \theta \equiv \frac{1}{\tan \theta} \equiv \frac{\cos \theta}{\sin \theta}$$

<u>Identities</u>

$$\sin^2\theta + \cos^2\theta \equiv 1$$

$$1 + \tan^2 \theta \equiv \sec^2 \theta$$

$$1 + \cot^2 \theta \equiv \csc^2 \theta$$

$$\sin(\alpha \pm \beta) \equiv \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cos(\alpha \pm \beta) \equiv \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) \equiv \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\sin 2\theta \equiv 2\sin\theta\cos\theta$$

$$\tan 2\theta \equiv \frac{2\tan \theta}{1 - \tan^2 \theta}$$

$$\cos 2\theta \equiv \cos^2 \theta - \sin^2 \theta$$
$$\equiv 2\cos^2 \theta - 1$$
$$\equiv 1 - 2\sin^2 \theta$$

<u>Calculus</u>

$$\frac{d}{dx}\sin x = \cos x$$

$$\int \sin x \, dx = -\cos x + C$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \tan x \, dx = \ln|\sec x| + C$$

$$\int \tan x \, dx = \ln|\sec x| + C$$

$$\int \sec x \, dx = \ln|\tan x + \sec x| + C$$

$$\int \csc x \, dx = \ln|\tan x + \sec x| + C$$

$$\int \csc x \, dx = -\ln|\cot x + \csc x| + C$$

$$\int \cot x \, dx = -\ln|\cot x + \csc x| + C$$

$$\int \cot x \, dx = \ln|\sin x| + C$$

$$\int \cot x \, dx = \ln|\sin x| + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x + C$$

$$\int \cot x \, dx = -\cot x$$

 $\int \arctan x \ dx = x \arctan x - \frac{\ln(x^2 + 1)}{2} + C$

 $\frac{d}{dx}\arctan x = \frac{1}{x^2 + 1}$

Graphs

Probability Distributions

Binomial

The binomial distribution is used to model a situation with a fixed number of independent trials each with a constant probability of success.

You can model X as a binomial distribution if:

- There a fixed number of trials, n
- Each trial must succeed or fail
- There is a fixed probability of success, p
- Each trial is independent

If
$$X \sim B(n, p)$$
, then
$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x} (0 \le x \le n)$$

Normal

The normal distribution $X \sim N(\mu, \sigma^2)$ is symmetrical, meaning the mean and median are equal.

Probability Distributions

Poisson

The Poisson distribution is used to model a situation where an event occurs at a fixed rate.

You can model X as a Poisson distribution if:

- The events must occur independently
- They must occur singly in space or time
- The events must occur at a constant average rate

If
$$X \sim \text{Po}(\lambda)$$
, then $P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!} (x \ge 0)$

Geometric

The Geometric distribution is used to model a situation where you try an event several times until a success occurs, and you want to know how many tries it will take.

You can model X as a Geometric distribution if:

- Each attempt is independent
- Each attempt has the same probability

If
$$X \sim \text{Geo}(p)$$
, then $P(X = x) = p(1 - p)^{x-1}$ $(x > 0)$

•
$$P(X \le x) = 1 - (1 - p)^x$$

•
$$P(X \le x) = 1 - (1 - p)^x$$

• $P(X \ge x) = (1 - p)^{x-1}$
• $P(X > x) = (1 - p)^x$

•
$$P(X > x) = (1 - p)^x$$

•
$$P(X < x) = 1 - (1 - p)^{x - 1}$$

Problem Solving Matters

General Tips

- Be lazy; only do necessary work
- Write in sentences to explain (especially in proofs)
- Avoid long and/or complicated calculations
- Draw diagrams and make them big
- In diagrams, label things and add lines
- Look for similar shapes (often triangles)

Tips For Sketching Graphs

- Look for symmetries
- Think about periodicity
- Look for turning points (0 derivative)
- Look for asymptotes
- Try values of x like 0, 1, -1, etc.
- If there's a trig function involved, try multiples of π
- See what happens when x tends to 0 or $\pm \infty$

Things To Remember

- $\log_a b \times \log_b a = 1$
- $\log_{a^c} b^c = \log_a b$
- When graphing $y^2 = f(x)$, draw the positive branch of $y = \sqrt{f(x)}$ and reflect it in the x axis
- $\log x$ is negative when 0 < x < 1