Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1.- 3. (CANCELED)

4. (Withdrawn) A method for reducing distortion of a signal applied to an input of a circuit operating at high frequency and having a parasitic capacitance, comprising the steps of:

detecting a change in voltage of said input signal; and

changing an impedance of a parallel termination circuit that is in parallel with said parasitic capacitance to reduce distortion of said input signal.

5.-10. (CANCELED)

11. (Withdrawn) Apparatus for reducing distortion of a signal applied to an input of a circuit operating at high frequency and having a parasitic capacitance, comprising:

a detecting circuit for detecting a change in voltage of said input signal; and

a correction circuit for changing an impedance of a parallel termination circuit that is in parallel with said parasitic capacitance to reduce distortion of said input signal.

12. (CANCELED)

13. (CANCELED)

14. (Withdrawn) Apparatus for reducing distortion of an input signal applied to an input of a circuit operating at high frequency and having a parasitic capacitance at said input, comprising:

a first circuit element for selectively providing current to said parasitic capacitance;

a second circuit element for selectively preventing discharge of said parasitic capacitance; and

a control circuit monitoring said input signal for respectively turning on said first circuit element and turning off said second circuit element when a positive going edge of said input signal is detected and for turning off said first circuit element and turning on said second circuit element when a negative going edge of said input signal is detected.

Applicants: Drapkin et al.

Application No.: 09/651,944

(Withdrawn) The apparatus of claim 14 wherein said first and second 15.

circuit elements have a common terminal coupled to said parasitic capacitance.

(Withdrawn) Apparatus for reducing distortion of an input signal 16.

applied to an input of a circuit operating at high frequency and having a parasitic

capacitance at said input, comprising:

a first circuit element for selectively providing current to said parasitic

capacitance;

a second circuit element for selectively preventing discharge of said parasitic

capacitance; and

a control circuit monitoring said input signal for respectively turning on said

first circuit element and turning off said second circuit element when a positive

going edge of second circuit element when a negative going edge of said input signal

is detected;

said first and second circuit elements have a common terminal coupled to

said parasitic capacitance;

said first and second circuit elements being transistors.

- 4 -

17. (Withdrawn) The apparatus of claim 16 wherein one of said transistors is a PMOS transistor and another one of said transistors is an NMOS transistor.

18.-20. (CANCELED)

- 21. (Withdrawn) The apparatus of claim 11 wherein said parasitic capacitance appears between said input and ground.
 - 22. (CANCELED)
 - 23. (CANCELED)
- 24. (Withdrawn) The apparatus of claim 14 wherein said parasitic capacitance appears between said input and ground.

25. – 31. (CANCELED)

32. (currently amended) A method for reducing distortion of a signal applied to an input of a high frequency circuit having a parasitic capacitance between said input and ground, comprising the steps of:

employing a device responsive to a rate of change of voltage for detecting at

said input a direction of change in voltage of said input signal;

activating a charge pump for introducing a current to said parasitic

capacitance to prevent said parasitic capacitance from drawing current from said

input signal responsive to detection of a rate of change of a positive edge of said

input signal by said device; and

said charge pump having a first transistor which is activated for preventing

discharge of said parasitic capacitance into the input of the circuit by preventing a

change of voltage at said input responsive to detection of a rate of change of a

negative edge of said input signal.

33. (CANCELED)

34. (currently amended) Apparatus An apparatus for reducing distortion of

a signal applied to an input of a circuit operating at a high frequency and having a

parasitic capacitance between said input and ground, comprising:

a rate of change of voltage detection circuit coupled to said input for detecting

a change in voltage of said input signal coupled to said input;

a correction circuit comprising a charge pump circuit coupled between said

detection circuit and said input to generate a current for compensating for current

- 6 -

from said input signal diverted to said parasitic capacitance responsive to a rate of change of voltage of a positive edge of said input signal detected by said detection circuit;

said detection circuit comprises a capacitor coupled between a common terminal and said input; and

said charge pump having a first transistor which is activated for preventing discharge of said parasitic capacitance into the input of said circuit operating at a high frequency by preventing a change of voltage at said input responsive to detection of a rate of change of a negative edge of said input signal;

furtherer comprising:

the first transistor is connected to a first node, a second node, and a third node;

a second transistor is connected to the first node and the second node; a third transistor is connected to the second node, the common terminal, and ground;

a fourth transistor is connected to the common terminal and ground; and

a current source is connected to the first node and the common terminal.

- 35. (CANCELED)
- 36. (CANCELED)
- 37. (CANCELED)
- 38. (currently amended) The apparatus of claim 34 wherein said detection circuit being isolated from said an output of the circuit operating at a high frequency.
 - 39. (CANCELED)
- 40. (NEW) The method of claim 32, wherein the high frequency circuit comprises:

the first transistor connected to a first node, a second node, and a third node;

- a second transistor connected to the first node and the second node;
- a third transistor connected to the second node, a fourth node, and ground;
- a fourth transistor connected to the fourth node and ground;
- a current source connected to the first node and the fourth node; and
- a capacitor connected to a fifth node and the fourth node.

- 41. (NEW) The method of claim 40, wherein: the first transistor is a PMOS transistor; the second transistor is a PMOS transistor; the third transistor is an NMOS transistor; and the fourth transistor is an NMOS transistor.
- 42. (NEW) The apparatus of claim 34, wherein: the first transistor is a PMOS transistor; the second transistor is a PMOS transistor; the third transistor is a NMOS transistor; and the fourth transistor is a NMOS transistor.
- 43. (NEW) An apparatus for reducing distortion of a signal applied to an input of a circuit operating at a high frequency and having a parasitic capacitance between said input and ground, comprising:

a rate of change of voltage detection circuit coupled to said input for detecting a change in voltage of said input signal;

a correction circuit comprising a charge pump circuit coupled between said detection circuit and said input wherein the correction circuit compensates for variations of said input signal caused by said parasitic capacitance;

said detection circuit comprises a capacitor coupled between a common terminal and said input; and

wherein the high frequency circuit comprises:

- a first transistor coupled to a first node, a second node, and a third node;
- a second transistor coupled to the first node and the second node;
- a third transistor coupled to the second node, the common terminal, and ground;
- a fourth transistor coupled to the common terminal and ground; and a current source coupled to the first node and the common terminal.
- 44. (NEW) The apparatus of claim 43, wherein:

the first transistor is a PMOS transistor;

the second transistor is a PMOS transistor;

the third transistor is a NMOS transistor; and

the fourth transistor is a NMOS transistor.