Analysis 2 - Thomas Mountford

Alp Ozen

Spring 2019

Analysis 2 EPFL/Alp Ozen

Contents

L	Notions on \mathbb{R}^n	2
	1.1 Introducing topological properties on \mathbb{R}^n	6

Analysis 2 EPFL/Alp Ozen

1 Notions on \mathbb{R}^n

Let's recall that \mathbb{R}^n is a Euclidean vector space. We define a scalar product on \mathbb{R}^n as follows:

Definition 1.

$$\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

- 1. $\langle x, x \rangle \ge 0$
- 2. < x, y > = < y, x >
- 3. < ax + by, z >= a < x, z > +b < y, z >

1.1 Introducing topological properties on \mathbb{R}^n

A norm is defined as function that maps some real vector space E to \mathbb{R} and satisfies:

1)
$$|x| \ge 0 \ \forall x \in E$$
, $|x| = 0 \iff x = 0$
2) $|\lambda \cdot x| = |\lambda| \cdot |x|$
3) $|x + y| \le |x| + |y|$

In our intuitive understanding of \mathbb{R}^n we are actually thinking about the Euclidian space \mathbb{R}^n equipped with the Euclidian norm.

Definition 2. Euclidian norm

$$|x|_2 = \sqrt{\langle x, x \rangle} = (\sum_{i=1}^{n} x_k^2)^{\frac{1}{2}}$$

And from this naturally follows the definition of Euclidian distance:

Definition 3.

$$d(x,y) = |x - y|$$

We note that d satisfies the same 3 properties as the norm. Thus, the couple (E, d) is called a metric space.

And now more definitions:

Definition 4. Open sets

- 1. **Open ball** $B(a,r) := \{x \in \mathbb{R}^n : d(x,a) < r\}$
- 2. Open subset Some subset $S \subset \mathbb{R}^n$ is open if $\forall x \in \mathbb{R}^n$, $\exists \epsilon > 0 \ B(x, \epsilon) \subset S$
- 3. Closed subset Some S is closed if $\mathbb{R}^n S$ is open, note that the empty set and \mathbb{R}^n are both open and closed.
- 4. The interior and boundary of a set a is in the interior of S if $\exists \epsilon > 0$ $B(a, \epsilon) \subset S$ and b is in the boundary of a set S if any $B(a, \epsilon)$ contains points from both S and $\mathbb{R}^n S$. The set of all interior points is denoted $({}^{\circ}S)$ and set of all boundary points is denoted ∂S
- 5. Closure of a set a is a closure of S if for any $B(a,\epsilon)$ we have $B(a,\epsilon) \cap S \neq \emptyset$

Definition 5. Topology

A Topology exists whenever the following are satisfied:

For a given
$$M \subset \mathbb{R}^n$$
 we define $O \subset P(M)$

Analysis 2 EPFL/Alp Ozen

- 1. $\emptyset \in O$, $M \in O$
- 2. $U \in O, V \in O \rightarrow U \cap V \in O$
- 3. $U_{\alpha} \in O \to \bigcup_{\alpha} U_{\alpha} \in O$

Definition 6. Closure of a set A point $a \in \mathbb{R}^n$ is a closure point of S if for any $B(a, \epsilon)$ we have:

$$B(a,\epsilon) \cap S \neq \emptyset$$

The set of all closure points called the closure of S is denoted \bar{S}

Theorem 1.1. Important results on closures and boundaries

$$S^{\circ} \subset S \subset \bar{S}$$
 $\bar{S} = S^{\circ} \cup \partial S$ S is open iff $S = S^{\circ}$ S is closed iff $S = \bar{S}$