Definition of a Graph

- A graph G consists of a pair of sets V, E denoted by G = (V, E).
- ▶ V: vertex set.
 - Each vertex v ∈ V may represent some records, objects or a piece of information.
- ▶ E: edge set.
 - Each edge $e \in E$ links (relates) one pair of distinct vertices $u \neq v \in V$.
 - There is at most one edge which relates two distinct vertices.

R. K. Ghosh

Definition of a Graph

- ▶ G is undirected if each edge represents an unordered pair, i.e., e = (u, v) = (v, u).
- ▶ In an undirected graph, E may define upto $\binom{|V|}{2}$ relations among vertices.
- ▶ If $(u, v) \neq (v, u)$, then the edges are said to be directed:
 - The edge (u, v) is oriented from u to v.
 - The edge (v, u) is oriented from v to u.
- ▶ When edges in a graph G are directed, G is known as directed.
- ▶ A directed graph may have upto |V|(|V|-1) edges.

Graph Terminology

- ▶ A graph $H = (V_H, E_H)$ is a subgraph of $G = (V_G, E_G)$, if $V_H \subseteq V_G$ and $E_H \subseteq E_G$.
- ▶ A simple path in a graph is a sequence of distinct vertices v_1, v_2, \ldots, v_k where $(v_i, v_i + 1) \in E$, for $1 \le i \le k 1$.
- A cycle is a simple path in which the start and end vertices are same, i.e., $v_1 = v_k$.
- ▶ G is connected if there is a path between any two pair of distinct vertices in G.
- ▶ A connected component of a graph G is a maximally connected subgraph of G
- ▶ A graph which does not have any cycle is called acyclic.
- ► An acyclic undirected graph is a tree.

R. K. Ghosh Graphs

Adjacency Matrix Representation

Adjancy matrix is a $|V| \times |V|$ matrix in which each row and each column represents a vertex. For a undirected graph A[i,j] = A[j,i].

$$A[i,j] = \begin{cases} 1, & \text{if } (i,j) \in E \\ 0, & \text{otherwise} \end{cases}$$

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ ≡ √)⟨○

R. K. Ghosh Graphs

Adjacency List Representation

Each list represents adjacency relations corresponding to a vertex.

Examples of Graphs

- $\blacktriangleright V = \{a, b, c, d, e\}$
- $E = \{(a,b), (a,b), (a,d), (b,e), \\ (c,d), (c,e), (d,e)\}$
- Degree of a vertex v: # edges incident on v.
- ► deg(a) = 3, deg(b) = 2, deg(c) = 3, deg(d) = 3, deg(e) = 3,
- # of odd degree vertices is even.

R. K. Ghosh

Examples of Graphs

- Connected graphs: ∃ a path between any two vertices.
- Disconnected graphs: Having more than one connected subgraphs.

Applications of Graph

- Tremaux was obsessed with problem of finding path out of a maze.
- He came up with technique as follows:
 - Unroll a ball of thread to trace of path that is already traversed.
 - Mark each intersection by putting a mark (color).
 - Retrace back to recent most intersection when no new visit options are present.

Maze to Graph

From Chapter 4 of Robert Sedgewick and Kevin Wayne's Algorithm book.