Homework Assignment 3

Due March 25th by midnight.

SDS 384-11 Theoretical Statistics

1. Let $\{X_i\}_{i=1}^n$ be an i.i.d. sequence of Bernoulli variables with parameter $\alpha \in (0, 1/2]$, and consider the binomial random variable $Z_n = \sum_i X_i$. We want to prove for any $\delta \in (0, \alpha)$,

$$P(Z_n \le \delta n) \le \exp(-nKL(\delta||\alpha))$$
 $KL(\delta||\alpha) := \delta \log \frac{\delta}{\alpha} + (1 - \delta) \log \frac{1 - \delta}{1 - \alpha}$

where KL(p,q) is the Kullback-Leibler divergence between two bernoullis with parameters p,q respectively. Show that the above is strictly better than Hoeffding's inequality.

- 2. Now we will prove a lower bound on the binomial tail to show that indeed what you derived in the last question is sharp upto polynomial factors. Define $m = \lfloor n\delta \rfloor$ and $\delta' = \frac{m}{n}$.
 - (a) Prove $\frac{1}{n} \log P(Z_n \le \delta n) \ge \frac{1}{n} \log {n \choose m} + \delta' \log \alpha + (1 \delta') \log (1 \alpha)$.
 - (b) Show that

$$\frac{1}{n}\log\binom{n}{m} \ge -\delta'\log\delta' - (1-\delta')\log(1-\delta') - \frac{\log(n+1)}{n}$$

Hint: Use the fact that for $Y \sim Bin(n, m/n)$ P(Y = k) is maximized at k = m.

(c) Now show that

$$P(Z_n \le \delta n) \ge \frac{1}{n+1} \exp(-nKL(\delta'||\alpha))$$

- 3. We will use the Efron Stein inequality to obtain bounds of variances for separately convex functions whose partial derivatives exist. A separately convex function $f(x_1, \ldots, x_n)$ is a convex function of its i^{th} variable, when all else are held fixed.
 - (a) Let X_1, \ldots, X_n be independent random variables taking values in the interval [0,1] and let $f:[0,1]^n \to R$ be a separately convex function whose partial derivatives exist. Then $f(X) := f(X_1, \ldots, X_n)$ satisfies

$$var(f(X)) \le E[\|\nabla f(X)\|^2]$$

Hint: Recall that $var(Z) \leq \sum_i E(Z - E_i Z)^2 \leq \sum_i E(Z - Z_i)^2$, where $E_i[Z] = E[Z|X_{1:i-1}, X_{i+1:n}]$. Define $Z_i = \inf_x f(X_{1:i-1}, x, X_{i+1:n})$ and then use convexity of f.

1

(b) Let A be a $m \times n$ random matrix with independent entries $A_{ij} \in [0,1]$. Let

$$Z = \sqrt{\lambda_1(A^T A)} = \sqrt{\sup_{u \in R^n : ||u|| = 1} u^T A^T A u} = \sup_{u \in R^n : ||u|| = 1} ||Au||$$

Show that $var(Z) \leq 1$.

- 4. In this question we will look at the Gaussian Lipschitz theorem. Consider $X_1, \ldots, X_n \stackrel{iid}{\sim} N(0,1)$
 - (a) Prove that the order statistics are 1-Lipschitz.
 - (b) Now show that

$$c\sqrt{\log n} \le E[\max_i X_i] \le \sqrt{2\log n}$$

where c is some universal constant.

- i. For the upper bound, let $Y = \max_i X_i$. First show that $\exp(tE[Y]) \le \sum_i E \exp(tX_i)$. Now pick a t to get the right form.
- ii. For the lower bound, do the following steps.
 - A. Show that $E[Y] \ge \delta P(Y \ge \delta) + E[\min(Y, 0)]$
 - B. Now show that $E[\min(Y,0)] \geq E[\min(X_1,0)]$
 - C. Finally, relate $P(Y \ge \delta)$ to $P(X_1 \ge \delta)$ by using independence.
 - D. Now show that $P(X_1 \ge \delta) \ge \exp(-\delta^2/2\sigma^2)/c$, for some universal constant c.
 - E. Choose the parameter δ carefully to have $P(X_1 \geq \delta) \geq 1/n$.
- 5. In class we proved McDiarmid's inequality for bounded random variables. But now we will look at extensions for unbounded R.V's. Take a look at "Concentration in unbounded metric spaces and algorithmic stability" by Aryeh Kontorovich, https://arxiv.org/pdf/1309.1007.pdf. Reproduce the proof of theorem 1. The steps of this proof is very similar to the martingale based inequalities we looked at in class.