

DCAI - 2012

Modeling a Mobile Robot using a Grammatical Model.

Authors:

Gabriel López García Javier Gallego Sánchez J.Luis Dalmau Espert Rafael Molina Carmona Patricia Compañ Rosique

Introduction

Growing disparity of available sensors

More complexity, but more accurate

Need integrate
multiple information
sense and complexity

Objectives

Integrate multimodal input and data of different nature

Use a grammatical model

Grammar definition integrate activities, visualization and interaction with user

VWG* Elements

Primitive (P)

Primitives describe objects

Transformation (T)

Transformations change the behaviour of primitives

VWG Elements

Actors (A_{ATTR}^{D}) Actors define system's activities in the virtual world

Events

Events cause the activation of a certain activity

Grammar

- Rule 1. WORLD → OBJECTS
- Rule 2. OBJECTS → OBJECT | OBJECT · OBJECTS
- Rule 3. OBJECT → FIGURE | TRANFORM | ACTOR
- Rule 4. ACTOR $\rightarrow a_{attr}^{H}, a_{attr}^{H} \in A_{ATTR}^{D}$
- Rule 5. **TRANSFORM** \rightarrow t(OBJECTS)
- Rule 6. FIGURE $\rightarrow p^+$

Sequence of primitives

Rule 6 **Figures**

 $\alpha: P \rightarrow G$

Rule 5 **Transformations**

 $\beta: P \rightarrow G$ $\delta: P \rightarrow G$

G:

The scope is limited by '()' symbols

Visualization Function

$$\varphi(w) = \begin{cases} \alpha(w) & \text{if } w \in P \\ \beta(t); \varphi(v); \delta(t) & \text{if } w = t(v) \land v \in L(M) \\ \varphi(s); \varphi(t) & \text{if } w = s \cdot t \land s, t \in L(M) \end{cases}$$

It is the function that draws a set of primitives and transformations to be displayed on a geometry

Rule 4 - Actors

$$\lambda: \mathbf{A}_{\langle ATTR \rangle}^D \times \mathbf{E}^D \rightarrow L(\mathbf{M})$$

$$\lambda(a_{\langle ATTR \rangle}^{H}, e^{h}) = \begin{cases} u_{0} \in L(M) & Sih = h_{o} \\ \dots \\ u_{n} \in L(M) & Sih = h_{n} \\ a_{\langle attr \rangle}^{d}(v) & Sif \neq d \end{cases}$$

The evolution function is responsible for the activity of system

Evolution Function

$$\eta(w,S) = \begin{cases}
w & \text{if } w \in P \\
t(\eta(v,S)) & \text{if } w = t(v) \\
\prod_{\forall e' \in S} (\lambda(a_{\langle attr \rangle}^d, e^i)) & \text{if } w = a_{\langle ATTR \rangle}^H(y) \\
\eta(u,S) \cdot \eta(v,S) & \text{if } w = u \cdot v
\end{cases}$$

It is the function that makes the system evolve

Rule 4 - Actors

$$\lambda: \mathbf{A}_{\langle ATTR \rangle}^{V} \times \mathbf{E}^{V} \rightarrow L(\mathbf{M}')$$

 $V \subseteq D, \mathbf{E}^{V} \subseteq \mathbf{E}^{D}, L(\mathbf{M}') \subset L(\mathbf{M})$

$$\theta(a_{\langle ATTR \rangle}^{H}, e^{v}) = \begin{cases}
z_{0} \in L(M') & Siv = v_{o} \\
... \\
v_{n} \in L(M') & Siv = v_{n} \\
\varepsilon & Siv \notin H \cap V
\end{cases}$$

The visualization function is responsible for translating actors into primitives and transformations

The visualization function of the system

$$\pi(w,S') = \begin{cases} w & \text{if } w \in P^+ \\ t(\pi(v,S')) & \text{if } w = t(v) \\ \prod_{\forall S' \in e^i} \theta(a^v_{\langle attr \rangle}, e^i) & \text{if } w = a^H_{\langle ATTR \rangle} \\ \pi(u,e^v) \cdot \pi(v,e^v) & \text{if } w = u \cdot v \end{cases}$$

It is the function that translates every actors into primitives and transformations

Rule 3,2,1

These rules break
down the strings and
convert them into
substrings

Event Generators

 The event generator is a function to generate events from different devices

Algorithm

This kind of system can be modeled by an hybrid scheme that can be adapted using VWG

We can execute the same string into a simulator environment or a real robot

PRobot

Draw the robot in the GS

No action

TMove <dist>

Move a distance 'dist'

in the GS

Move a distance 'dist'

TRotate <angle>

Rotate an angle 'angle' in GS.

Rotate an angle 'angle'

Events

gCamera

when a marker is detected

gLaser

when the laser detects an obstacle

gObjetive

when the user sets an objective

gDecide

when the robot decides an action

gExecute

when the robot executes an action

Evolution function

$$\lambda(ARobot_{\langle g,r,c,an,o,act\rangle}^{E},e) = \begin{cases} ARobot_{\langle g',r,c,an,o,act\rangle}^{E} & \text{if } e = eLaser_{\langle dist\,,angle\rangle} \\ ARobot_{\langle g,r',c,an,o,act\rangle}^{E} & \text{if } e = eCamera_{\langle marker\rangle} \\ ARobot_{\langle g,r',c,an,o,act\rangle}^{E} & \text{if } e = eDecide} \\ ARobot_{\langle g,r,c,an,o,act\rangle}^{E} & \text{if } e = eExecute} \\ ARobot_{\langle g,r,c,an,o',act\rangle}^{E} & \text{if } e = eObjetive_{\langle marker\rangle} \\ ARobot_{\langle g,r,c,an,o,act\rangle}^{E} & \text{Otherwise} \end{cases}$$

Analysis

Introduce new AI algorithm

Change or increment new devices

Multi-robot system

Conclusion

The new model defines a virtual world, independently from the underlying physical layer

The model allows an abstract representation

It can change, simulate or add new devices

Universitat d'Alacant Universidad de Alicante

DCAI - 2012

Modeling a Mobile Robot using a Grammatical Model.

Authors:

Gabriel López García Javier Gallego Sánchez J.Luis Dalmau Espert Rafael Molina Carmona Patricia Compañ Rosique