Practice - Backward Propagation

Assume there is the multi-layer neural network in Fig. 1 is trained with a backward propagation algorithm and the current values of the weights are shown in the followed table. A vector $x = [0.2, 0.5, 0.1]^T$ serves as the input of the network and the result y is expected to be $[1.,0.]^T$.

The learning rate $\eta = 0.5$.

The loss function $E = \frac{1}{2} (y_{pred} - y_{real})^2$.

The activation function $\varphi(v) = \frac{1}{1 + \exp(-10v)}$.

Note that some values of the activation function are shown in Fig. 2.

	w_1	w_2	w_3	w_4		
1	0.2	0.5	0.1	0.6		
2	0.2	-0.5	-0.9	0.3		
3	0.2	0.5	0.9	-0.3		
4	0.2	-0.5	-0.1	-0.9		
5	0.2	0.5		0.1		
6	0.2	-0.5		-0.1		
7	0.2	0.5				

Figure 1.

v	-0.53	-0.37	-0.38	0.1	0.11	0.12	0.13	0.14	0.15	0.16	0.37	0.38	0.39	0.40	0.53
$\varphi(v)$	0	0.02	0.02	0.73	0.75	0.77	0.79	0.8	0.82	0.83	0.98	0.98	0.98	0.98	1
<i>φ</i> ′(<i>v</i>)	0	0.2	0.2	1.97	1.88	1.77	1.66	1.6	1.48	1.41	0.2	0.2	0.2	0.2	0

Figure 2.

Questions:

- (a) Please compute the value of each hidden node and y_{pred} .
- (b) Please compute the value of the updated weights of w_3 after one iteration.
- (c) Please compute the value of the next updated weights of w_2 after one iteration.

(Deriving the equations first is recommended for the last two questions.)