Спецкурс «Дополнительные главы геометрии и топологии» лектор — Ф. Ю. Попеленский 2005-2006

Замечания наборщика. Через $\mathcal{N}_X x$ и $\mathbb I$ в тексте обозначаются, соответственно, окрестность точки x в топологическом пространстве X и отрезок действительной прямой. Замыкание множества Y в топологическом пространстве X обозначается так: $[Y]_X$, при этом, индекс X, чаще всего, опускается. Кроме того, там где это не допускает путаницы, мы иногда будем опускать скобки: так, например, fx и f(x) — это одно и то же. Под (пара)компактами понимаются (пара)компактные хаусдорфовы пространства, впрочем, нехаусдорфовы пространства здесь вообще не рассматриваются.

17 сентября 2006 г.

1. Риманова геометрия

Напомним, что если M гладкое многообразие, и U — карта с координатами (x), содержащая точку P, то в касательном пространстве T_PM есть стандартный базис $\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}$, обозначаемый также $\partial_1, \ldots, \partial_n$. Через $\mathrm{Vect}(M)$ обозначается множество всех гладких екторных полей на M. Если $v \in \mathrm{Vect}(M)$, то $v = v^i \partial_i$ для некоторых $v_i(x) \in C^\infty(U)$. Если $f \in C^\infty(M)$ и $v \in \mathrm{Vect}(M)$, то $\partial_v f = v f := v^i \frac{\partial}{\partial x^i} f = v^i \partial_i f$. Коммутатор векторных полей $v, w \in \mathrm{Vect}(M)$ это $[\partial_v, \partial_w] = \partial_v \partial_w - \partial_w \partial_v$.

1.1. Утверждение. Коммутатор векторных полей является дифференциальным оператором первого порядка.

Доказательство. Распишем формулу для коммутатора.

$$\partial_v \partial_w f = \partial_v \left(w^i \frac{\partial}{\partial x^i} f \right) = v^j \frac{\partial}{\partial x^j} \left(w^i \frac{\partial}{\partial x^i} f \right) = v^j \frac{\partial}{\partial x^j} w^i \frac{\partial}{\partial x^i} f + v^i w^j \frac{\partial^2}{\partial x^j \partial x^i} f.$$

Отсюда

$$[\partial_v, \partial_w] f = \left(v^j \frac{\partial}{\partial x^j} w^i - w^j \frac{\partial}{\partial x^j} v^i \right) \frac{\partial}{\partial x^i} f = \partial_{[v,w]} f,$$

ибо в скобках последнего выражения стоит i-ая компонента векторного поля [v,w]. \square

1.1. Аффинная связность

Будем говорить, что на многообразии M задана аффинная связность, если для всяких векторных полей $v, w \in \text{Vect}(M)$ задано $\nabla_v w \in \text{Vect}(M)$, удовлетворяющее следующим свойствам:

- 1) билинейность по обоим аргументам;
- 2) если $f \in C^{\infty}(M)$, то $\nabla_{fv} w = f \nabla_v w$;
- 3) если $f \in C^{\infty}(M)$, то $\nabla_v(fw) = (\partial_v f)w + f\nabla_v w$.

Пусть в карте U фиксированы координаты (x). Тогда определены $\nabla_{\partial_i}\partial_j \in \mathrm{Vect}(U)$. Это векторное поле можно разложить по базису: $\nabla_{\partial_i}\partial_j = \Gamma^k_{ij}\partial_k$. Функции Γ^k_{ij} называются *символами Кри*стоффеля или коэффициентами связности.

1.2. Замечание. Чтобы задать аффинную связность в области U с координатами (x), достаточно задать гладкие функции Γ^k_{ij} . Тогда связность задаётся формулой

$$\nabla_v w = v^i \left(\frac{\partial}{\partial x^i} w^k + w^j \Gamma_{ij}^k \right) \partial_k.$$

Параметризованная кривая в M это гладкое отображение $\gamma:(a,b)\to M$.

Векторное поле вдоль кривой γ это функция, сопоставляющее каждому значению параметра $t \in (a, b)$ вектор $v_t \in T_{\gamma(t)}M$.

Пусть v — векторное поле вдоль γ . Определим векторное поле $\frac{D}{dt}v$, следующими условиями:

- 1) линейность: $\frac{D}{dt}(v_1+v_2)=\frac{D}{dt}(v_1)+\frac{D}{dt}(v_2);$ 2) если $f\in C^\infty(M)$, то $\frac{D}{dt}(fv)=\frac{df}{dt}v+f\frac{D}{dt}v;$
- 3) если векторное поле v на γ есть ограничение векторного поля \tilde{v} на M, то $\frac{D}{dt}v = \nabla_{\frac{d\gamma}{dt}}\tilde{v}$.
- **1.3. Теорема.** Пусть на многообразии M задана аффинная связность, и $\gamma(t)$ параметризованная кривая. Тогда существует единственный оператор $\frac{D}{dt}v$, удовлетворяющий условиям 1)-3).

Доказательство. Выберем локальную систему координат $(x^1, ..., x^n)$, и пусть кривая $\gamma(t)$ в соответствующей карте записывается в виде $(x^1(t), \dots, x^n(t))$. Если v — векторное поле вдоль γ , то $v(t)=v^i(t)\partial_i|_{x(t)}$. Применяя условия 1)-3) напишем выражение, с которым должно совпадать $\frac{D}{\partial t}v$:

$$\frac{D}{dt}v = \frac{D}{dt}\left(v^i(t)\partial_i|_{x(t)}\right) = \frac{dv^i(t)}{dt}\partial_i|_{x(t)} + v^i\frac{D}{dt}(\partial_i|_{x(t)}) = \frac{dv^i(t)}{dt}\partial_i|_{x(t)} + v^i\nabla_{\frac{d\gamma}{dt}}\partial_i = \frac{dv^i(t)}{dt}\partial_i + v^k\frac{dx^j}{dt}\Gamma^i_{jk}\partial_i,$$

— отсюда сразу следует, что если оператор $\frac{D}{dt}$ существует, то он единствен. Наоборот, если задать $\frac{D}{dt}$ полученной формулой, то легко проверить выполнение условий 1)-3), что и требуется. \Box

1.2. Параллельные векторные поля

Пусть на многообразии M задана аффинная связность, и $\gamma(t)$ — параметризованная кривая на M. Векторное поле v, заданное вдоль γ называется napaллeльным, если $\frac{D}{dt}v\equiv 0$ («постоянность вдоль γ »).

1.4. Теорема. Пусть на многообразии M задана аффинная связность ∇ , а $\gamma:(a,b)\to M$ — параметризованная кривая на M, и $t_0 \in (a,b)$. Тогда для каждого $v_0 \in T_{\gamma(t_0)}M$ существует единственное параллельное векторное поле v вдоль γ , для которого $v_{t_0} = v_0$.

Доказательство. Будем для простоты считать, что $\gamma(a,b)\subset U$ и (x^1,\ldots,x^n) локальные координаты в U. Пусть начальные условия записываются в виде $v_0 = v_0^k \partial_k$. Для параллельности поля v нужно выполнение равенства $\frac{Dv}{dt} \equiv 0$, т. е. чтобы проверить условия теоремы необходимо и достаточно показать существование и единственность решения системы

$$\begin{cases} \frac{dv^{i}(t)}{dt} + v^{k} \frac{dx^{j}}{dt} \Gamma^{i}_{jk} = 0, & i = 1, \dots, k; \\ v^{i}(t_{0}) = v^{i}_{0}, & i = 1, \dots, k. \end{cases}$$

По теореме существования и единственности в окрестности точки t_0 существует единственное решение этой системы. Поскольку система линейна, то решение распространяется на всю область изменения параметра.

В условиях последней теоремы если $t \in (a,b)$, то говорят, что вектор v(t) получен парамельным nереносом вектора v_0 вдоль γ . Связность называется cогласованной с римановой метрикой на многообразии, если параллельный перенос вдоль каждой кривой сохраняет скалярное произведение.

1.5. Теорема. Если связность на многообразии M согласована c метрикой, а v и w — векторные поля вдоль кривой γ , то $\frac{d}{dt}\langle v,w\rangle = \langle \frac{D}{dt}v,w\rangle + \langle v,\frac{D}{dt}w\rangle$.

Доказательство. Рассмотрим произвольную точку $\gamma(t_0)$ кривой $\gamma,$ и в касательном пространстве $T_{\gamma(t_0)}M$ выберем ортонормированный базис $P_i^0, i \in n$. По предыдущей теореме определено параллельное вдоль γ векторное поле P_i , для которого $P_i|_{t=t_0}=P_i^0$. Поскольку связность согласована с метрикой, то P_i в каждой точке кривой образует ортонормированный базис.

Пусть $v = v^i P_i$ и $w = w^i P_i$. Тогда

$$\frac{Dv}{dt} = \frac{D}{dt}(v^i P_i) = \frac{dv^i}{dt} P_i + \frac{DP_i}{dt} v^i = \frac{dv^i}{dt} P_i.$$

Поэтому имеем:

$$\sum_{i \in n} \left(\frac{dv^i}{dt} w^i + \frac{dw^i}{dt} v^i \right) = \frac{d}{dt} \Big(\sum_{i \in n} v^i w^i \Big) = \frac{d}{dt} \langle v, w \rangle,$$

что и требовалось. 🗆

Риманова связность

Топологическое пространство называется паракомпактным, если в каждое его открытое покрытие можно вписать локально конечное открытое покрытие, или, что в хаусдорфовом случае эквивалентно, если для любого открытого покрытия существует подчинённое ему локально конечное разбиение единицы. При этом, в случае хаусдорфова гладкого многообразия это разбиение единицы можно считать гладким.

1.6. Теорема. На каждом хаусдорфовом паракомпактном гладком многообразии существует риманова метрика.

 \mathcal{L} оказательство. Пусть $\{U_i\}$ — открытое покрытие данного многообразия, у которого все элементы гомеоморфны \mathbb{R}^n и $\langle\cdot,\cdot\rangle_i$ — какое-нибудь скалярное произведение в U_i при всех i. Если $U_i\cap U_j\neq\varnothing$, то для всех $\alpha,\beta\geqslant 0$ формула $\alpha\langle\cdot,\cdot\rangle_i+\beta\langle\cdot,\cdot\rangle_j$ задаёт скалярное произведение в $U_i\cap U_j$. Пусть φ_i — гладкое локально конечное разбиение единицы, подчинённое покрытию U_i . Тогда формула $\langle\cdot,\cdot\rangle_i=\sum\varphi_i\langle\cdot,\cdot\rangle_i$ задаёт скалярное произведение на всём многообразии. \square

Связность называется симметричной, если выполнено равенство $\Gamma_{ij}^k = \Gamma_{ii}^k$.

1.7. Лемма. Связность является симметричной тогда и только тогда, когда для всяких векторных полей $v, w \in \text{Vect}(M)$ выполняется условие $\nabla_v w - \nabla_w v = [v, w]$.

Доказательство. Пусть для любых $v, w \in \text{Vect}(M)$ выполнено $\nabla_v w - \nabla_w v = [v, w]$. Подставим в это выражение поля $v = \partial_i$ и $w = \partial_j$. Тогда

$$0 = [\partial_i, \partial_j] = \nabla_{\partial_i} \partial_j - \nabla_{\partial_j} \partial_i = \Gamma_{ij}^k \partial_k - \Gamma_{ji}^k \partial_k,$$

а значит для всех k выполнено $\Gamma_{ij}^k - \Gamma_{ji}^k = 0$, что и означает симметричность связности.

Наоборот, пусть связность симметрична, и в некоторых локальных координатах поля записываются так: $v = v^i \partial_i$ и $w = w^i \partial_i$. Тогда

$$\nabla_v w = \nabla_{v^i \partial_i} (w^j \partial_j) = v^i \nabla_{\partial_i} (w^j \partial_j) = v^i ((\partial_i w^j) \partial_j + w^j \Gamma_{ij}^k \partial_k),$$

И

$$\nabla_v w - \nabla_w v = \left(v^i (\partial_i w^j) - w^i (\partial_i v^j) \right) \partial_j + \left(v^i w^j - w^i v^j \right) \Gamma_{ij}^k \partial_k,$$

— в этом равенстве последнее слагаемое равно нулю ввиду симметричности связности, а первое — как раз коммутатор. \square

1.8. Теорема. Если *М* риманово многообразие, то существует единственная симметричная аффинная связность, согласованная с метрикой. Она называется связностью Леви–Чивита.

Доказательство. Пусть $g_{ij} = \langle \partial_i, \partial_j \rangle$ — риманова метрика многообразия M. Посмотрим, какие ограничения на Γ^k_{ij} можно получить из условий симметричности и согласованности.

$$\partial_k g_{ij} = \partial_k \langle \partial_i, \partial_j \rangle = \langle \nabla_{\partial_k} \partial_i, \partial_j \rangle + \langle \partial_i, \nabla_{\partial_k} \partial_j \rangle = \langle \nabla_{\partial_k} \partial_i, \partial_j \rangle + \langle \nabla_{\partial_j} \partial_k, \partial_i \rangle.$$

Для чётных перестановок индексов i, j, k сложим полученные равенства со следующими знаками:

$$\begin{split} \partial_k g_{ij} &= \langle \nabla_{\partial_k} \partial_i, \partial_j \rangle + \langle \nabla_{\partial_j} \partial_k, \partial_i \rangle \text{ со знаком } «-», \\ \partial_i g_{jk} &= \langle \nabla_{\partial_i} \partial_j, \partial_k \rangle + \langle \nabla_{\partial_k} \partial_i, \partial_j \rangle \text{ со знаком } «+», \\ \partial_j g_{ki} &= \langle \nabla_{\partial_i} \partial_k, \partial_i \rangle + \langle \nabla_{\partial_i} \partial_j, \partial_k \rangle \text{ со знаком } «+». \end{split}$$

Получится выражение

$$\frac{1}{2}(\partial_i g_{jk} + \partial_j g_{ki} - \partial_k g_{ij}) = \langle \nabla_{\partial_i} \partial_j, \partial_k \rangle = \langle \Gamma_{ij}^l \partial_l, \partial_k \rangle = \Gamma_{ij}^l g_{lk}.$$

Итак, если связность, удовлетворяющая условиям теоремы существует, то задаётся формулой

$$\Gamma_{ij}^{k} = \frac{1}{2}g^{kl}(\partial_{i}g_{jl} + \partial_{j}g_{li} - \partial_{l}g_{ij}).$$

Симметричность такой связности сразу следует из последней формулы. Для доказательства согласованности достаточно проверить равенство $\partial_k \langle \partial_i, \partial_j \rangle = \langle \nabla_{\partial_k} \partial_i, \partial_j \rangle + \langle \nabla_{\partial_k} \partial_j, \partial_i \rangle$ — это предоставляется сделать читателю. \square

1.9. Упражнение. Пусть M — риманово многообразие, и $s: \mathbb{R}^2 \to M$ — гладкая параметризованная поверхность. Образуем векторы скорости координатных линий: $\frac{\partial s}{\partial x}$ и $\frac{\partial s}{\partial y}$. Проверить, что $\frac{D}{\partial u}\frac{\partial s}{\partial x}=\frac{D}{\partial x}\frac{\partial s}{\partial y}$.

Указание. В равенстве $\frac{D}{\partial x}\frac{\partial s}{\partial y}=\frac{\partial^2 s^i}{\partial x\partial y}\partial_i+\frac{\partial s^k}{\partial y}\frac{\partial s^j}{\partial x}\Gamma^i_{jk}\partial_i$ воспользоваться симметричностью связности.

1.4. Тензор кривизны Римана

Пусть на многообразии M задана аффинная связность ∇ , и $X,Y,Z \in \mathrm{Vect}(M)$. Тензор кривизны R определяется равенством $\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z = R(X,Y)Z$.

1.10. Теорема. Отображение $(X,Y,Z) \mapsto R(X,Y)Z$ линейно по каждому аргументу над $C^{\infty}(M)$. Значение R(X,Y)Z в точке $P \in M$ зависит только от значений X,Y,Z в точке P.

Доказательство. Свойство аддитивности для R(X,Y)Z тривиально. Покажем, для примера, как получить равенство R(fX,Y)Z = fR(X,Y)Z, — для второго и третьего аргументов аналогичные свойства доказываются по тому же принципу. Заметим, что если $f \in C^{\infty}(M)$, то

$$\begin{split} \nabla_{fX}\nabla_{Y}Z &= f\nabla_{X}\nabla_{Y}Z,\\ \nabla_{Y}\nabla_{fX}Z &= \nabla_{Y}(f\nabla_{X}Z) = (\partial_{Y}f)\nabla_{X}Z + f\nabla_{Y}\nabla_{X}Z,\\ [fX,Y] &= f[X,Y] - (\partial_{Y}f)X,\\ \nabla_{[fX,Y]}Z &= \nabla_{f[X,Y]-X\partial_{Y}f}Z = f\nabla_{[X,Y]}Z - (\partial_{Y}f)\nabla_{X}Z, \end{split}$$

откуда, с учётом определения R(X,Y)Z, и следует требуемое равенство.

Пусть в окрестности точки P поля записываются в виде $X=x^i\partial_i,\,Y=y^j\partial_i$ и $Z=z^k\partial_k.$ Тогда

$$R(X,Y)Z = R(x^{i}\partial_{i}, y^{i}\partial_{i})z^{k}\partial_{k} = x^{i}y^{j}z^{k}R(\partial_{i}, \partial_{j})\partial_{k},$$

— тем самым доказано второе утверждение теоремы. \square

- **1.11. Теорема.** Пусть на многообразии M задана риманова связность ∇ . Тогда выполнены следующие соотношения
 - 1) R(X,Y)Z = -R(Y,X)Z;
 - 2) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0;
 - 3) $\langle R(X,Y)Z,W\rangle + \langle R(X,Y)W,Z\rangle = 0;$
 - 4) $\langle R(X,Y)Z,W\rangle = \langle R(Z,W)X,Y\rangle$.

Доказательство. Первое свойство следует сразу из определения. В силу линейности остальные свойства достаточно проверить для базисных векторов. Для доказательства 2) сложим равенства

$$R(\partial_i, \partial_j)\partial_k = \nabla_{\partial_i}\nabla_{\partial_j}\partial_k - \nabla_{\partial_i}\nabla_{\partial_i}\partial_k - \nabla_{[\partial_i, \partial_i]}\partial_k = \nabla_{\partial_i}\nabla_{\partial_i}\partial_k - \nabla_{\partial_j}\nabla_{\partial_i}\partial_k$$

по всем чётным перестановкам набора индексов i, j, k.

Ввиду билинейности $\langle R(X,Y)Z,W\rangle$ по двум последним аргументам, для доказательства 3) достаточно проверить равенство $\langle R(X,Y)Z,Z\rangle=0$, причём только на базисе: $X=\partial_i,\,Y=\partial_j$. Имеем

$$\langle \nabla_{\partial_j} \nabla_{\partial_i} Z, Z \rangle + \langle \nabla_{\partial_i} Z, \nabla_{\partial_j} Z \rangle = \partial_j \langle \nabla_{\partial_i} Z, Z \rangle = \frac{1}{2} \partial_j \partial_i \langle Z, Z \rangle$$
$$\langle \nabla_{\partial_i} \nabla_{\partial_j} Z, Z \rangle + \langle \nabla_{\partial_j} Z, \nabla_{\partial_i} Z \rangle = \partial_i \langle \nabla_{\partial_j} Z, Z \rangle = \frac{1}{2} \partial_i \partial_j \langle Z, Z \rangle.$$

Откуда получается

$$\langle R(\partial_i, \partial_j) Z, Z \rangle = \langle (\nabla_{\partial_i} \nabla_{\partial_j} - \nabla_{\partial_j} \nabla_{\partial_i}) Z, Z \rangle = 0.$$

Для доказательства 4) рассмотрим следующую картинку.

В вершинах каждой из заштрихованных граней октаэдра написаны числа, которые в сумме, как

следует из 2) дают нуль. Поэтому если приравнять сумму, в которую входят числа из нижних заштрихованных граней, к сумме из чисел верхних заштрихованных граней, то сокращая на числа, лежащие в вершинах среднего квадрата, получим равенство чисел на верхней и нижней вершинах — это и требуется.

□

1.5. Геодезические

Параметризованная кривая $\gamma:(a,b)\to M$ называется seodesureckoŭ, если $\frac{D}{dt}\frac{d\gamma}{dt}\equiv 0$. Пусть (x) такие локальные координаты, что γ записывается в виде $\gamma(t)=\left(x^1(t),\ldots,x^n(t)\right)$. Тогда ypashenue seodesureckoŭ запишется в виде

$$\frac{d^2x^k}{dt^2} + \Gamma^k_{ij}\frac{dx^i}{dt}\frac{dx^j}{dt} = 0.$$

- **1.12. Теорема.** Пусть задана система дифференциальных уравнений $\frac{dx^k}{dt} = F^k(x)$ с гладкой правой частью у начальными условиями $x^k(0) = x_0^k$. Тогда существуют такие окрестность U точки (x_0^1,\ldots,x_0^m) и число $\varepsilon>0$, что для каждой точки (y^1,\ldots,y^k) имеется единственное (гладкое) решение $x^k(t,y^1,\ldots,y^k)$ данной системы, определённое в $(-\varepsilon,\varepsilon)\times U$ и удовлетворяющее начальным условиям $x^k(0)=y^k$. \square
- 1.13. Пример. Полезно отметить, что всякая изометрия риманова многообразия сохраняет его геодезические. Поэтому если найти геодезическую, семейство образов при всевозможных изометриях которой обладает тем свойством, что через всякую точку многообразия в каждом направлении проходит кривая из данного семейства, то это семейство и будет образовывать все геодезические. Учитывая это замечание легко описать геодезические, например, на плоскости, сфере и плоскости Лобачевского. Чтобы найти геодезические на конусе (или цилиндре), достаточно (изометрично) развернуть их на некоторую область плоскости, найти все геодезические (прямые) там, и свернуть обратно образы прямых и будут геодезическими на конусе (или цилиндре).
- **1.14. Теорема.** Для всякой точки P многообразия M существует окрестность $U \in \mathcal{N}_M P$ и число $\varepsilon > 0$ такие, что по всяким точке $Q \in U$ и вектору $v \in T_Q M$ с $\|v\| < \varepsilon$ можно построить единственную геодезическую $\gamma_{Q,v}: (-2,2) \to M$, для которой выполнены $\gamma_{Q,v}(0) = Q$ и $\frac{d\gamma_{Q,v}}{dt}(0) = v$, так, чтобы функция $\gamma(Q,v,t) = \gamma_{Q,v}(t)$ гладко зависела от всех 2n+1 параметров.

 \mathcal{A} оказательство. Пусть U' — окрестность точки (P,0) в пространстве $M \times T_P M$, и $\varepsilon_1 > 0$ таковы, что для всякой точки $(Q,v) \in U'$ существует геодезическая $\gamma'_{Q,v}(t): (-\varepsilon_1,\varepsilon_1) \to M$, для которой $\gamma'_{Q,v}(0) = Q$ и $\frac{d\gamma'_{Q,v}}{dt}(0) = v$. Найдём окрестность U точки P и число $\varepsilon_2 > 0$, для которых $U \times \left\{v \in T_P M: \|v\| < \varepsilon_2\right\} \subset U'$.

Заметим, что если $\gamma(t)$ является геодезической, то $\gamma(ct)$ тоже таково для любой константы c. Нам известно, что геодезическая $\gamma'_{Q,v}(t)$ при $\|v\|<\varepsilon_2$ определена на интервале $(-\varepsilon_1,\varepsilon_1)$. Значит отображение

$$\gamma_{Q,v}(t) = \gamma'_{Q,\frac{2v}{\varepsilon_1}} \left(\frac{t\varepsilon_1}{2}\right)$$

определено при $\|v\|<arepsilon=rac{arepsilon_1arepsilon_2}{2}$ и $t\in(-2,2)$ и задаёт геодезическую. \square

1.6. Геодезическая экспонента

Пусть $Q \in M$ и W такая окрестность точки 0 в T_QM , что для всех $v \in W$ определена геодезическая $\gamma_{Q,v}: (-2,2) \to M$. Геодезической экспонентой называется отображение $\exp_Q: W \to M$, заданное по правилу $\exp_Q(v):=\gamma_{Q,v}(1)$.

Риманово многообразие называется zeodesuvecku полным, если для всех Q отображение \exp_Q определено при всех $v \in T_QM$.

- **1.15. Теорема.** Для любой точки $P \in M$ существуют такие окрестность $U \in \mathcal{N}_M P$ и число $\varepsilon > 0$, что
- 1) всякая пара точек из U соединяется единственной геодезической, лежащей в U, и длины меньшей ε ;
 - 2) эта геодезическая гладко зависит от выбора концов;
- 3) для всех $Q\in U$ отображение \exp_Q диффеоморфно ε -окрестность точки $0\in T_QM$ в некоторую окрестность W точки Q.

Доказательство. Пусть V — окрестность точки P с локальными координатами (x^1,\ldots,x^n) , $(\partial_1,\ldots,\partial_n)$ — базис в касательных пространствах и (v^1,\ldots,v^n) — координаты касательных векторов. Пусть D — шар радиуса $\frac{\varepsilon_1\varepsilon_2}{2}$ с центром в точке 0 касательного пространства, где ε_1 и ε_2 выбраны как в доказательстве предыдущей теоремы. Тогда корректно определено отображение $F:V\times D\to V\times V$, заданное формулой $F(Q,v)=(Q,\exp_Q(v))$.

Вычислим матрицу Якоби отображения F в точке $(P,0) \in V \times D$, относительно координат $(x^1,\ldots,x^n,v^1,\ldots,v^n)$ в области $V \times D$ и $(x^1_1,\ldots,x^n_1,x^1_2,\ldots,x^n_2)$ в области $V \times V$. Поскольку $dF\left(\frac{\partial}{\partial x^i}\right) = \frac{\partial}{\partial x^1_1} + \frac{\partial}{\partial x^2_2}$ и $dF\left(\frac{\partial}{\partial v^i}\right) = \frac{\partial}{\partial x^2_2}$, то

$$dF = \left(\begin{array}{cc} E & E \\ 0 & E \end{array}\right).$$

Из теоремы о неявной функции следует, что существует окрестность $V_1 \times D_1 \subset V \times D$ точки (P,0), где D_1 — шар некоторого радиуса ε , которая диффеоморфно отображается посредством F на некоторую окрестность W точки (P,P). Выберем окрестность $U \subset M$ точки P так, чтобы $U \times U \subset W$.

Если $Q_1,Q_2\in U$, то $(Q_1,Q_2)\in W$ и $F^{-1}(Q_1,Q_2)=(Q_1,v)$, где $\|v\|<\varepsilon$ и $Q_2=\exp_{Q_1}(v)$. Геодезическая, соединяющая Q_1 и Q_2 гладко зависит от Q_1 и Q_2 , т. е. координаты точки Q_1 и вектора v, задающих геодезическую, гладко зависят от Q_1 и Q_2 . \square

1.16. Лемма. Пусть Q точка на многообразии M. Тогда геодезические, начинающиеся в точке Q ортогональны геодезической сфере: $S = \{ \exp_Q(v) : v \in T_Q M \ u \ \|v\| = const \}$.

Доказательство. Произвольная кривая на геодезической сфере представима в виде $\exp_Q\left(r_0v(t)\right)$, где v(t) — кривая в T_QM , для которой $\|v(t)\|=1$. Отображение $r\mapsto \exp_Q\left(rv(t_0)\right)$ задаёт геодезическую, выходящую из точки Q в направлении вектора $v(t_0)$. Рассмотрим поверхность

$$f(r,t) = \exp_O(rv(t)).$$

Условие ортогональности описанной геодезической к геодезической сфере эквивалентно условию $\left\langle \frac{\partial f}{\partial r}, \frac{\partial f}{\partial t} \right\rangle = 0$. Продифференцируем это скалярное произведение:

S

Первое слагаемое равно 0 по определению геодезической, а второе равно

$$\frac{1}{2}\frac{\partial}{\partial t} \Big\langle \frac{\partial f}{\partial r}, \frac{\partial f}{\partial r} \Big\rangle = \frac{1}{2}\frac{\partial}{\partial t} \sqrt{\|v(t)\|} = 0.$$

Таким образом, выражение $\langle \frac{\partial f}{\partial r}, \frac{\partial f}{\partial t} \rangle$ не зависит от r. Вычислим его при r=0. Поскольку $f(0,t)=\exp_Q(0)=Q$ и $\frac{\partial f}{\partial t}(0,t)=0$, то $\langle \frac{\partial f}{\partial r}, \frac{\partial f}{\partial t} \rangle=0$, что и требовалось. \square

1.7. Минимальные геодезические

1.17. Лемма. Пусть U_{ε} такая окрестность точки $Q \in M$, что отображение $\exp_Q : D_{\varepsilon}(0) \to U_{\varepsilon}$ — диффеоморфизм. Тогда любая кривая $\omega : [a,b] \to \operatorname{int} U_{\varepsilon} \setminus \{Q\}$ однозначно записывается в виде $\exp_Q(w(t))$, где $w(t) \in T_QM$ и $\|w(t)\| \neq 0$.

 $\exp_Q(w(t))$, где $w(t) \in T_Q M$ и $\|w(t)\| \neq 0$. Пусть w(t) = r(t)v(t), где $v(t) \in T_Q M$ и $\|v(t)\| = 1$ (т. е. $\omega(t)$ однозначно представляется в виде $\exp_Q\left(r(t)v(t)\right)$). Тогда $\int\limits_a^b \left\|\frac{d\omega(t)}{dt}\right\|dt \geqslant \left|r(b)-r(a)\right|$, причём равенство достигается тогда и только тогда, когда r(t) монотонна и $v(t) \equiv const$.

Доказательство. Первое утверждение леммы тривиально. Для доказательства второго, как и в предыдущей лемме, рассмотрим поверхность $f(r,t) = \exp_O\left(rv(t)\right)$, и пусть $\omega(t) = f\left(r(t),t\right)$. Тогда

$$\begin{split} \frac{\partial \omega}{\partial t} &= \frac{\partial f}{\partial r} r' + \frac{\partial f}{\partial t} \text{ и} \\ \left\| \frac{\partial \omega}{\partial t} \right\| \geqslant \left\| \frac{\partial f}{\partial r} \right\| |r'|, \end{split}$$

причём равенство достигается тогда и только тогда, когда $\frac{\partial v}{\partial t}=0$. Отображение $f:r\mapsto \exp_Q(rv)$ при $\|v\|=1$ задаёт геодезическую. Значит $\|\frac{\partial f}{\partial r}\|=1$, $\|\frac{\partial \omega}{\partial t}\|\geqslant |r'(t)|$, и равенство достигается тогда и только тогда, когда v'=0. Тем самым,

$$\int_{a}^{b} \left\| \frac{d\omega(t)}{dt} \right\| dt \geqslant \int_{a}^{b} \left| r'(t) \right| dt \geqslant \left| r(b) - r(a) \right|,$$

и равенство будет в том и только том случае, когда r монотонна. \square

Геодезическая, соединяющая точки Q_1 и Q_2 называется минимальной, если она не длиннее всякой кривой, соединяющей Q_1 и Q_2 .

1.18. Теорема. Пусть $W \in \mathcal{N}_M P$ и $\varepsilon > 0$ удовлетворяют условиям теоремы 1.15. Пусть $Q_1, Q_2 \in W$ и вектор $v \in T_{Q_1}(M)$ таков, что $\|v\| < \varepsilon$ и $\exp_{Q_1}(v) = Q_2$. Тогда всякая кусочно гладкая кривая, соединяющая Q_1 и Q_2 имеет длину не меньше $\|v\|$.

Доказательство. Пусть $\omega(t)$ данная кривая, соединяющая Q_1 и Q_2 . Рассмотрим геодезическую сферу с центром Q_1 и радиусом $\delta \in (0,\|v\|)$. По лемме 1.17 длина кривой ω от её точки пересечения с данной геодезической

сферой до точки Q_2 не меньше $||v|| - \delta$. Устремляя δ к 0 получим, что длина кривой ω не меньше ||v||, причём равенство имеется тогда и только тогда, когда ω является геодезическим радиусом. \square

1.19. Теорема. Пусть Q_1 и Q_2 точки риманова многообразия и γ — кусочно гладкая натурально параметризованная кривая, соединяющая Q_1 и Q_2 . Если длина всякой кривой, соединяющей Q_1 и Q_2 , не превосходит длины γ , то γ — геодезическая.

Доказательство. Возьмём произвольную точку $P \in \gamma$ и выберем $W \in \mathcal{N}_M P$ и $\varepsilon > 0$ удовлетворяющими условиям теоремы 1.15. Геодезическая, соединяющая точки $Q_1', Q_2' \in W \cap \gamma$, по предыдущей теореме совпадает с отрезком γ , соединяющим точки Q_1' и Q_2' . Поэтому γ — геодезическая. \square

Со всяким гладким многообразием связана метрика

$$\rho(P,Q) = \inf_{\gamma} \{ \gamma - \text{геодезическая, соединяющая } P \text{ и } Q \}.$$

1.20. Теорема (Хопф, Ринов). *Если свя*зное многообразие геодезически полно, то две любые точки на нём можно соединить минимальной геодезической.

Доказательство. Пусть $P,Q\in M$ и $\rho(P,Q)=r$. Рассмотрим геодезическую сферу S радиуса δ и центром P. Ввиду компактности сферы, величина $\rho(Q,T)$ при $T\in S$ достигает своего минимума в некоторой точке $T_0\in S$. При этом $T_0=\exp_P(\delta,v)$, где v — некоторый единичный вектор из T_PM .

Покажем, что $\rho(Q, \exp_P(tv)) = r - t$ для всех $t \in [\delta, r]$. Во-первых эта формула справедлива при $t = \delta$:

$$\rho(Q, P) = \min_{T \in S} \left(\rho(Q, T) + \rho(T, P) \right) = \rho(Q, \exp_P(\delta v)) + \delta. \tag{1.1}$$

Пусть $t_0=\sup\Big\{t\in [\delta,r]: \rho\big(Q,\exp_P(tr)\big)=r-t\Big\}$. По непрерывности $\rho\big(Q,\exp_P(t_0r)\big)=r-t_0$. Предположим, что $t_0< r$. Рассмотрим геодезическую сферу S' радиуса δ' и центром $P'=\exp_P(t_0v)$. В некоторой точке T'_0 величина $\rho(Q,T')$ при $T'\in S'$ достигает минимума. Тогда аналогично формуле (1.1) $\rho(P',Q)=\delta'+\rho(T',Q)$, и $\rho(Q,T')=r-t_0-\delta'$ по выбору T'. По неравенству треугольника $\rho(T',P)+\rho(T',Q)\geqslant \rho(P,Q)$, а значит, и $\rho(P,T')\geqslant t_0+\delta$. Кусочно гладкая кривая, на промежутке от P до P' совпадающая с геодезической $t\mapsto \exp_P(tv)$, и на промежутке от P' до T'-c геодезическим радиусом сферы S', реализует кратчайшее расстояние между P и T', т. е. по предыдущей теореме является геодезической. Но $T'=\exp_P\big((t_0+\delta')v\big)$, что противоречит предположению.

Тем самым, $Q = \exp_P(rv)$, и отрезок соответствующей геодезической реализует минимальное расстояние между P и Q. \square

1.21. Теорема. Геодезическая полнота, полнота в смысле метрики ρ и условие, что любое замкнутое ограниченное множество компактно, эквивалентны.

Доказательство. Покажем, что из полноты в смысле метрики ρ следует геодезическая полнота. Пусть P точка нашего многообразия $M, v \in T_PM$, и $r_0 = \sup \{r : \text{ определено } \exp_P(rv)\}$. Тогда из полноты легко следует существование отображения \exp_P в некоторой окрестности r_0v .

Обратное утверждение следует из того, что компактность сохраняется непрерывными отображениями. \square

2. Вариационная теория геодезических

Пусть M — полное риманово многообразие. Рассмотрим множество $\Omega(M,P,Q)$ всех кусочно гладких кривых, с началом в точке P и концом в точке Q.

Пусть кривые из $\Omega(M,P,Q)$ параметризованы отрезком [a,b]. Определим $E_a^b:\Omega(M,P,Q)\to\mathbb{R}$ — функционал действия или энергии — формулой $E_a^b(w)=\int\limits_a^b\left\|\frac{dw}{dt}\right\|^2\!dt$. И функционал длины дуги $L_a^b(w)=\int\limits_a^b\frac{dw}{dt}dt$. Для краткости положим $E=E_0^1$ и $L=L_0^1$.

2.1. Лемма. Функционал $E:\Omega(M,P,Q)\to \mathbb{R}$ достигает минимума в точности на минимальных геодезических M, соединяющих P и Q.

Доказательство. Рассмотрим связь функционалов E и L. Из хорошо известного неравенства $\langle f,g\rangle^2\leqslant\langle f,f\rangle\langle g,g\rangle$ для всякой кривой ω имеем

$$\left(\int_{a}^{b} \left\| \frac{d\omega}{dt} \right\| dt \right)^{2} \leqslant \int_{a}^{b} \left\| \frac{d\omega}{dt} \right\|^{2} dt.$$

Поэтому $\|L_a^b(\omega)\|^2 \leqslant E_a^b(\omega)(b-a)$, причём равенство имеется только, если параметр t натуральный. Если γ — минимальная геодезическая, соединяющая точки P и Q (такая всегда есть по предположению полноты), то

$$E(\gamma) = L(\gamma)^2 \leqslant L(\omega)^2 \leqslant E(\omega).$$

Равенство $L(\omega)^2 = E(\omega)$ достигается тогда и только тогда, когда $\|\frac{dw}{dt}\| = const$, а равенство $L(\gamma) = L(\omega)$ возможно тогда и только тогда, когда множество точек ω совпадает с множеством точек γ , т. е. ω получается из γ заменой параметра. \square

Вариация кривой $w: \mathbb{I} \to M$ — это такое отображение $\overline{\alpha}_u: (-\varepsilon, \varepsilon) \to \Omega(M, P, Q)$ $(u \in (-\varepsilon, \varepsilon))$, что $\overline{\alpha}_0 = w$. Эквивалентным образом можно записать $\alpha(u,t): (-\varepsilon, \varepsilon) \times \mathbb{I} \to M$. Всегда предполагается непрерывность отображения α , кроме того, рассматриваются кусочно гладкие вариации: должно существовать разби-

ение $0 = t_0 < \dots < t_n = 1$ отрезка \mathbb{I} , для которого ограничения $\alpha|_{(-\varepsilon,\varepsilon)\times[t_i,t_{i+1}]}$ являются гладкими при всех i.

Касательное пространство $T_{\omega}\Omega$ к $\Omega(M,P,Q)$ определяется как множество кусочно гладких векторных полей вдоль ω , принимающие значение 0 на концах ω . Кусочная гладкость поля $w_t \in T_{\omega(t)}M$ означает, что в локальных координатах оно записывается в виде $w_t = w^k \big(\omega(t)\big)\partial_k$, где w^k — кусочно гладкие.

По всякой вариации α кривой ω можно построить элемент $T_{\omega}\Omega$, положив $w_t = \frac{\partial \alpha(u,t)}{\partial u}\big|_{u=0}$. Наоборот, если $w_t \in T_{\omega}\Omega$, то вариация определяется правилом $\alpha(u,t) = \exp_{\omega(t)}(uw_t)$.

Изучить самостоятельно следующий материал. По книжке [1]:

Теорема 12.2, следствие 12.3, теорема 13.1, следствие 13.4, лемма 13.6, теорема 14.1, замечание 14.2, леммы 14.3 и 14.4, замечания 14.5 и 14.6, теорема 15.1 (без доказательства), теорема 18.1, следствие 18.2.

Текст, приведённый далее, скопирован почти дословно из [1] (ну не бегать же всякий раз в читалку).

Для сокращения дальнейших выкладок введём следующие обозначения. Пусть $\overline{\alpha}: (-\varepsilon, \varepsilon) \to \Omega$ — вариация кривой ω и $w_t = \frac{\partial \alpha}{\partial u}\big|_{u=0}$ — векторное поле этой вариации. Тогда положим $v_t = \frac{\partial \omega}{\partial t}$, $A_t = \frac{D}{\partial t} \frac{d\omega}{dt}$ и для точки $t \in (0,1)$ — $\Delta_t v = v_{t^+} - v_{t^-}$.

2.2. Теорема (формула первой вариации). Имеет место следующая формула

$$\frac{1}{2}\frac{dE(\overline{\alpha}_u)}{du}\Big|_{u=0} = -\sum_{t\in(0,1)}\langle w_t, \Delta_t v\rangle - \int\limits_0^1\langle w_t, A_t\rangle dt.$$

Доказательство. По определению E, теореме 1.5 и упражнению 1.9 имеем

$$\frac{1}{2}\frac{dE(\overline{\alpha}_u)}{du} = \frac{1}{2}\frac{d}{du}\int_{0}^{1} \left\langle \frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial t} \right\rangle dt = \int_{0}^{1} \left\langle \frac{D}{\partial u}\frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial t} \right\rangle dt = \int_{0}^{1} \left\langle \frac{D}{\partial t}\frac{\partial \alpha}{\partial u}, \frac{\partial \alpha}{\partial t} \right\rangle dt.$$

Пусть $0=t_0<\cdots< t_k=1$ — разбиение из определения кусочной гладкости. Тогда по формуле интегрирования по частям имеем

$$\int_{t_{i-1}}^{t_{i}} \left\langle \frac{D}{\partial t} \frac{\partial \alpha}{\partial u}, \frac{\partial \alpha}{\partial t} \right\rangle dt = \left\langle \frac{\partial \alpha}{\partial u}, \frac{\partial \alpha}{\partial t} \right\rangle \Big|_{t_{i-1}}^{t_{i}} - \int_{t_{i-1}}^{t_{i}} \left\langle \frac{\partial \alpha}{\partial u}, \frac{D}{\partial t} \frac{\partial \alpha}{\partial t} \right\rangle dt.$$

Сложим такие равенства по всем i, и учтём, что $\frac{\partial \alpha}{\partial u} = 0$ при $t \in \{0,1\}$:

$$\frac{1}{2}\frac{dE(\overline{\alpha}_u)}{du} = -\sum_{i=1}^{k-1} \left\langle \frac{\partial \alpha}{\partial u}, \Delta_{t_i} \frac{\partial \alpha}{\partial t} \right\rangle - \int_{0}^{1} \left\langle \frac{\partial \alpha}{\partial t}, \frac{D}{\partial t} \frac{\partial \alpha}{\partial t} \right\rangle dt.$$

Тогда в точке u=0 эта формула примет искомый вид. \square

Путь ω называется $\mathit{критическим}$ для функции $F:\Omega\to\mathbb{R},$ если для всякой вариации $\overline{\alpha}$ кривой ω выполнено условие $\frac{dF(\overline{\alpha}_u)}{du}\big|_{u=0}=0.$

2.3. Следствие. Путь ω является критическим для функционала E тогда и только тогда, когда ω — геодезическая.

Доказательство. Рассматривая формулу первой вариации для геодезической, сразу видно, что она является критической для E. Наоборот, пусть ω — критическая точка для E. Возьмём такую вариацию α кривой ω , что соответствующее ей поле имеет вид w(t) = f(t)A(t), где $f(t) \geqslant 0$, причём равенство происходит только в точках t_i . Тогда

$$0 = \frac{1}{2} \frac{dE(\alpha)}{du} \Big|_{u=0} = -\int_{0}^{1} f(t) \langle A(t), A(t) \rangle dt.$$

Правая часть обращается в 0 тогда и только тогда, когда $A(t) \equiv 0$, т. е. $\omega|_{[t_i,t_{i+1}]}$ — геодезическая.

Теперь выберем вариацию α так, чтобы для соответствующего ей поля выполнялось $w(t_i) = \Delta_{t_i} v$. Тогда, поскольку $A(t) \equiv 0$,

$$0 = \frac{1}{2} \frac{dE(\alpha)}{du} \Big|_{u=0} = -\sum_{i} \langle \Delta_{t_i} v, \Delta_{t_i} v \rangle,$$

поэтому все $\Delta_{t_i}v$ — нули, и $\omega \in C^1[0,1]$, а значит ω гладкая и является геодезической. \square

2.1 Гессиан

Пусть ω — критический путь для E и $w_1,w_2\in T_\omega\Omega$. Рассмотрим двупараметрическую вариацию $\alpha:(-\varepsilon,\varepsilon)^2\times\mathbb{I}\to M$ (или, эквивалентная запись $\overline{\alpha}(u_1,u_2)(t)=\alpha(u_1,u_2,t)$), удовлетворяющую соотношениям

$$\left. \frac{\partial \alpha}{\partial u_1}(u_1,u_2,t) \right|_{(u_1,u_2)=(0,0)} = w_1(t) \text{ if } \left. \frac{\partial \alpha}{\partial u_2}(u_1,u_2,t) \right|_{(u_1,u_2)=(0,0)} = w_2(t).$$

Гессианом $E_{**}(w_1, w_2)$ функции E на критическом пути ω называется производная

$$\frac{\partial^2 E(\overline{\alpha}(u_1, u_2))}{\partial u_1 \partial u_2} \Big|_{(u_1, u_2) = (0, 0)}.$$

Покажем, что определение гессиана корректно, т.е. не зависит от выбора вариации.

2.4. Теорема (формула второй вариации). Если $\overline{\alpha}:(-\varepsilon,\varepsilon)^2\to\Omega$ — двупараметрическая вариация геодезической ω , и $w_i=\frac{\partial\overline{\alpha}}{\partial u_i}\big|_{(u_1,u_2)=(0,0)}$ — соответствующее ей векторное поле, а $v=\frac{d\omega}{dt}$, то выполнено соотношение

$$\frac{1}{2} \frac{\partial^2 E(\overline{\alpha}(u_1, u_2))}{\partial u_1 \partial u_2} \Big|_{(u_1, u_2) = (0, 0)} = -\sum_{t \in (0, 1)} \left\langle w_2(t), \Delta_t \frac{Dw_1}{dt} \right\rangle - \int_0^1 \left\langle w_2, \frac{D^2 w_1}{dt^2} + R(v, w_1)v \right\rangle dt.$$

Доказательство. Из доказательства формулы первой вариации

$$\frac{1}{2}\frac{dE}{du_2} = -\sum_{t \in (0,1)} \left\langle \frac{\partial \alpha}{\partial u_2}, \Delta_t \frac{\partial \alpha}{\partial t} \right\rangle - \int_0^1 \left\langle \frac{\partial \alpha}{\partial u_2}, \frac{D}{\partial t} \frac{\partial \alpha}{\partial t} \right\rangle dt.$$

Дифференцируя по u_1 :

$$\frac{1}{2} \frac{\partial^2 E}{\partial u_1 \partial u_2} = -\sum_{t \in (0,1)} \left\langle \frac{D}{\partial u_1} \frac{\partial \alpha}{\partial u_2}, \Delta_t \frac{\partial \alpha}{\partial t} \right\rangle - \sum_{t \in (0,1)} \left\langle \frac{\partial \alpha}{\partial u_2}, \frac{D}{\partial u_1} \Delta_t \frac{\partial \alpha}{\partial t} \right\rangle - \\
- \int_{0}^{1} \left\langle \frac{D}{\partial u_1} \frac{\partial \alpha}{\partial u_2}, \frac{D}{\partial t} \frac{\partial \alpha}{\partial t} \right\rangle dt - \int_{0}^{1} \left\langle \frac{\partial \alpha}{\partial u_2}, \frac{D}{\partial u_1} \frac{\partial \alpha}{\partial t} \right\rangle dt.$$

И, наконец, вычислим это в точке $(u_1,u_2)=(0,0)$. Поскольку $\overline{\alpha}(0,0)=\omega$, то $\Delta_t \frac{\partial \alpha}{\partial t}=0$ и $\frac{D}{\partial t} \frac{\partial \alpha}{\partial t}=0$. Значит последнее выражение преобразуется к виду

$$\frac{1}{2} \frac{\partial^2 E}{\partial u_1 \partial u_2} \Big|_{(u_1, u_2) = (0, 0)} = -\sum_{t \in (0, 1)} \left\langle w_2, \Delta_t \frac{D}{\partial t} w_1 \right\rangle - \int_0^1 \left\langle w_2, \frac{D}{\partial u_1} \frac{D}{\partial t} v \right\rangle dt. \tag{2.1}$$

Поскольку

$$\begin{split} \frac{D}{\partial u_1} \frac{D}{\partial t} v - \frac{D}{\partial t} \frac{D}{\partial u_1} v &= R \Big(\frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial u_1} \Big) v = R(v, w_1) v, \ \ \mathbf{H} \\ \frac{D}{\partial u_1} v &= \frac{D}{\partial t} \frac{\partial \alpha}{\partial u_1} = \frac{D}{\partial t} w_1, \ \ \mathbf{TO} \\ \frac{D}{\partial u_1} \frac{D}{\partial t} v &= \frac{D^2 w_1}{\partial t^2} + R(v, w_1) v. \end{split}$$

Подставляя последнее выражение в формулу (2.1) получаем искомое равенство. \square

2.5. Следствие. Гессиан $E_{**}(w_1, w_2)$ определён корректно и является билинейной симметрической функцией от w_1 и w_2 .

Доказательство. Корректность и билинейность следуют из формулы второй вариации. Симметричность есть тривиальное следствие равенства $\frac{\partial^2 E}{\partial u_1 \partial u_2} = \frac{\partial^2 E}{\partial u_2 \partial u_1}$. \square

2.6. Замечание. Диагональные члены квадратичной формы, соответствующей E_{**} , можно описать в терминах однопараметрической вариации кривой. Действительно, если w — поле однопараметрической вариации $\overline{\alpha}: (-\varepsilon, \varepsilon) \to \Omega$ кривой ω , то положив $\overline{\beta}(u_1, u_2) = \overline{\alpha}(u_1 + u_2)$, будем иметь

$$\frac{\partial \overline{\beta}}{\partial u_i} = \frac{\partial \overline{\alpha}}{\partial u} \quad \text{if} \quad \frac{\partial^2 E(\overline{\beta})}{\partial u_1 \partial u_2} = \frac{\partial^2 E(\overline{\alpha})}{\partial u^2},$$

поэтому $E_{**}(w,w) = \frac{\partial^2 E(\overline{\alpha})}{\partial u^2}(0)$.

2.7. Лемма. Если γ — минимальная геодезическая, соединяющая точки p и q, то соответствующая квадратичная форма E_{**} положительно полуопределена.

Доказательство. Поскольку γ — минимальная геодезическая, то $E(\overline{\alpha}(u))\geqslant E(\gamma)=E(\overline{\alpha}(0))$. Значит, $\frac{\partial^2 E\left(\overline{\alpha}(u)\right)}{\partial u^2}\big|_{u=0}\geqslant 0$, а тогда для всех полей w выполнено $E_{**}(w,w)\geqslant 0$. \square

Векторное поле J вдоль геодезической γ называется *якобиевым полем*, если выполняется ypas-нение Якоби

$$\frac{D^2J}{dt^2} + R(V,J)V = 0,$$

где $V=\frac{d\gamma}{dt}$. Якобиево поле однозначно определяется начальными условиями J(0) и $\frac{DJ}{dt}(0)\in T_{\gamma(0)}M$. Если P_1,\ldots,P_n — параллельные векторные поля, в каждой точке образующие ортонормированный базис касательного пространства, а $J(t)=f^i(t)P_i(t)$, то уравнение Якоби записывается в виде системы

$$\frac{d^2 f^i}{dt^2} + \sum_{j=1}^n a^i_j(t) f^j(t) = 0, \text{ при } i \in \{1, \dots, n\},$$
 (2.2)

где $a_j^i = \langle R(V, P_j)V, P_i \rangle$. Таким образом, уравнение Якоби имеет 2n линейно независимых гладких решений вдоль геодезической γ .

Пусть γ — геодезическая. Геодезической вариацией γ назовём гладкое отображение $\alpha: (-\varepsilon, \varepsilon) \times \mathbb{I} \to M$, для которого $\alpha|_{u=0} = \gamma$ и кривая $\alpha|_{\{u\} \times \mathbb{I}}$ — геодезическая.

2.8. Лемма. Если α — геодезическая вариация геодезической γ , то векторное поле $\frac{\partial \alpha}{\partial u}(0,t)$ вариации является якобиевым полем вдоль γ .

Доказательство. Поскольку α — геодезическая вариация γ , то $\frac{D}{\partial t} \frac{\partial \alpha}{\partial t} \equiv 0$, поэтому

$$0 = \frac{D}{\partial u} \frac{D}{\partial t} \frac{\partial \alpha}{\partial t} = \frac{D}{\partial t} \frac{D}{\partial u} \frac{\partial \alpha}{\partial t} + R \left(\frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial u} \right) \frac{\partial \alpha}{\partial t} = \frac{D^2}{\partial t^2} \frac{\partial \alpha}{\partial u} + R \left(\frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial u} \right) \frac{\partial \alpha}{\partial t}.$$

А это и есть уравнение Якоби для поля $\frac{\partial \alpha}{\partial u}(0,t)$. \square

2.9. Теорема. Всякое якобиево поле вдоль геодезической $\gamma: \mathbb{I} \to M$ есть векторное поле некоторой геодезической вариации γ .

Доказательство. По теореме 1.14 можно выбрать такую окрестность U точки $\gamma(0)$, что любые её две точки соединяются единственной минимальной геодезической, гладко зависящей от концов. Пусть δ выбрана так, чтобы $\gamma[0,\delta]\subset U$, и пусть $v_0\in T_{\gamma(0)}M$ и $v_\delta\in T_{\gamma(\delta)}M$ — произвольные векторы. Выберем кривые $a,b:(-\varepsilon,\varepsilon)\to U$ таким образом, чтобы $a(0)=\gamma(0),\,b(0)=\gamma(\delta),\,\frac{da}{du}(0)=v_0$ и $\frac{db}{du}(0)=v_\delta$. Вариация $\alpha:(-\varepsilon,\varepsilon)\times[0,\delta]\to M$ определяется как минимальная геодезическая

 $\overline{\alpha}(u)$: $[0,\delta] \to M$, соединяющая a(u) и b(u). Тогда по предыдущей лемме поле $W(t) = \frac{\partial \alpha}{\partial u}(0,t)$ будет якобиевым и $W(0) = v_0$, $W(\delta) = v_\delta$.

Почему любое якобиево поле вдоль $\gamma|_{[0,\delta]}$ получается описанным способом? Действительно, фактически построено линейное отображение из пространства всех якобиевых полей в пространство $T_{\gamma(0)}M \times T_{\gamma(\delta)}M$, которое является отображением «на», поэтому ввиду совпадения размерностей данных пространств, является изоморфизмом.

Далее, в силу компактности отрезка, можно построить геодезическую вариацию $\alpha': (-\varepsilon', \varepsilon') \times \mathbb{I} \to M$, соответствующую данному якобиеву полю. \square

2.10. Следствие. Пусть окрестность U такова, что любая пара точек соединяется единственной минимальной геодезической, гладко зависящей от концов. Тогда якобиево поле вдоль геодезической, лежащей в U определяется значениями в концах этой геодезической. \square

2.3. Сопряжённые точки

Точки $p = \gamma(a)$ и $q = \gamma(b)$ называются сопряжёнными вдоль геодезической γ , если существует ненулевое якобиево поле вдоль γ , в точках a и b обращающееся в 0. Размерность пространства таких якобиевых полей называется $\kappa pamhocmbo$ сопряжённых точек.

 $\mathit{Hyлевым}$ пространством гессиана $E_{**}: T_\gamma\Omega \times T_\gamma\Omega \to \mathbb{R}$ называется векторное пространство

$$A_E = \{W_1 \in T_\gamma \Omega : E_{**}(W_1, W_2) = 0 \text{ для всех } W_2\}.$$

Число dim A_E называется степенью вырождения формы E_{**} .

2.11. Теорема. Векторное поле $W_1 \in T_\gamma \Omega$ принадлежит нулевому пространству формы E_{**} тогда и только тогда, когда W_1 является якобиевым полем.

11

Доказательство. Пусть p и q — концы геодезической γ . Всякое якобиево поле J, обращающееся в 0 в точках p и q, является элементом $T_{\gamma}\Omega$. По формуле второй вариации для всех W_2 имеем

$$-\frac{1}{2}E_{**}(J, W_2) = \sum_{t} \langle W_2, 0 \rangle + \int_{0}^{1} \langle W_2, 0 \rangle dt = 0,$$

поэтому $J \in A_E$.

Обратно, пусть $W_1 \in A_E$ и пусть разбиение $0=t_0<\dots< t_k=1$ выбрано в соответствии с определением кусочной гладкости, а гладкая неотрицательная функция $f:\mathbb{I}\to\mathbb{I}$ выбрана так, что f(x)=0 тогда и только тогда, когда x есть одна из точек разбиения. Напишем формулу второй вариации для полей W_1 и $W_2(t)=f(t)\big(\frac{D^2W_1}{dt^2}+R(V,W_1)V\big)_t$. Имеем

$$0 = -\frac{1}{2}E_{**}(W_1, W_2) = \int_0^1 f(t) \left\| \frac{D^2 W_1}{dt^2} + R(V, W_1)V \right\| dt = 0,$$

поэтому $W_1|_{[t_{i-1},t_i]}$ при всех i является якобиевым полем.

Поскольку решение уравнения Якоби определяется векторами $W_1(t_i)$ и $\frac{DW_1}{dt}(t_i)$, то для того, чтобы склеить из полей $W_1|_{[t_{i-1},t_i]}$ якобиево поле, достаточно проверить, что у $\frac{DW_1}{dt}$ нет разрывов. Взяв в качестве W_2 поле с $W_2(t_i) = \Delta_{t_i} \frac{DW_1}{dt}$ при всех i, по формуле второй вариации имеем

$$0 = -\frac{1}{2}E_{**}(W_1, W_2) = \sum_{i} \left\| \Delta_{t_i} \frac{DW_1}{dt} \right\|^2,$$

что и влечёт гладкость W_1 . \square

- **2.12.** Следствие. Гессиан E_{**} вырожден тогда и только тогда, когда концы соответствующей геодезической сопряжены вдоль неё, причём степень вырождения E_{**} равна их кратности. \square
- **2.13.** Замечание. Пространство якобиевых полей, в точке $\gamma(0)$ равных нулю, имеет размерность $n=\dim M$. Однако, можно построить якобиево поле, обращающееся в 0 при t=0, но не в t=1. Пусть $V=\frac{d\gamma}{dt}$ и $J_t=tV_t$. Тогда поскольку γ геодезическая, то $\frac{DJ}{dt}=V+t\frac{DV}{dt}=V$. Значит, $\frac{D^2J}{dt^2}=0$. Также R(V,J)V=tR(V,V)V=0, поэтому J удовлетворяет уравнению Якоби, и в то же время, $J_0=0$ и $J_1\neq 0$. Отсюда следует, что степень вырождения E_{**} строго меньше n.
- **2.14.** Замечание. Если тензор кривизны Римана многообразия равен 0, то уравнения Якоби принимают вид $\frac{D^2J}{dt^2}=0$. Переписывая уравнение Якоби в координатном виде (2.2) получим $\frac{d^2f^i}{dt^2}=0$. Поэтому якобиево поле вдоль γ не может иметь более одного нуля, а значит сопряжённых точек нет, и гессиан E_{**} невырожден.
- **2.15. Пример.** Если p и q противоположные полюса сферы S^n и γ геодезическая, их соединяющая, то кратность p и q относительно γ равна n-1. Действительно, применяя теорему 2.9, получаем, что вращения сферы, оставляющие неподвижными точки p и q, определяют векторные поля вариаций, которые являются якобиевыми полями вдоль γ , и обращающиеся в нуль на точках p и q. Но вращать можно по (n-1) независимым направлениям, поэтому имеется (n-1) линейно независимых якобиевых полей.

 $\mathit{Индексом}$ гессиана $E_{**}: T_{\gamma}\Omega \times T_{\gamma}\Omega \to \mathbb{R}$ называется максимальная размерность подпространств $T_{\gamma}\Omega$, на которых форма E_{**} отрицательно определена.

2.16. Теорема (Морс). Индекс формы E_{**} равен количеству точек $t \in (0,1)$, для которых $\gamma(t)$ сопряжена $c \gamma(0)$ вдоль γ c учётом кратности.

Без доказательства.

- **2.17.** Следствие. Отрезок геодезической $\gamma: \mathbb{I} \to M$ может содержать лишь конечное число точек, сопряжённых $c \ \gamma(0)$ вдоль γ . \square
- **2.18.** Теорема. Точка $\exp_p v$ сопряжена c точкой p вдоль геодезической $\gamma_v : t \mapsto \exp_p(tv)$ тогда u только тогда, когда отображение \exp_p является критическим в точке v.

Доказательство. Пусть отображение \exp_p является критическим в точке v. Тогда $d\exp_p(X)=0$ при некотором ненулевом векторе $X\in T_v(T_pM)$. Пусть v(u) — такой путь в T_pM , что v(0)=v и

 $\frac{dv}{du}(0) = X$. Тогда отображение α , определяемое формулой $\alpha(u,t) = \exp_p tv(u)$ — геодезическая вариация геодезической γ_v . Поэтому векторное поле $W(t) = \frac{\partial \left(\exp_p tv(u)\right)}{\partial u}\Big|_{u=0}$ по лемме 2.8 является якобиевым полем вдоль γ_v . При этом W(0) = 0 и

$$W(1) = \frac{d(\exp_p v(u))}{du}\Big|_{u=0} = d\exp_p \frac{dv(u)}{du}(0) = d\exp_p X = 0,$$

но поскольку

$$\frac{DW}{dt}(0) = \frac{D}{\partial u} \frac{\partial \left(\exp_p tv(u)\right)}{\partial t} \Big|_{(u,t)=(0,0)} = \frac{D}{\partial u} v(u) \Big|_{u=0} \neq 0,$$

то поле W не равно нулю тождественно. Это и есть нетривиальное якобиево поле вдоль γ_v , обращающееся в нуль в точках p и $\exp_n v$.

Наоборот, пусть отображение $d\exp_p$ невырождено в точке v. Возьмём n независимых векторов X_1,\ldots,X_n в касательном пространстве $T_v(T_pM)$. Тогда векторы $d\exp_p X_1,\ldots,d\exp_p X_n$ также линейно независимы. В T_pM возьмём пути $v_1(u),\ldots,v_n(u)$, для которых $v_i(0)=v$ и $\frac{dv_i(u)}{du}(0)=X_i$.

Тогда поля $W_i(t) = \frac{\partial \left(\exp_p t v_i(u)\right)}{\partial u}\big|_{u=0}$ являются якобиевыми вдоль γ_v и обращаются в нуль в точке p. Но $W_i(1) = d \exp_p X_i$ — линейно независимы, т. е. никакая нетривиальная комбинация векторов W_i не обращается в нуль в точке $\exp_p v$. Поскольку размерность пространства якобиевых полей вдоль γ_v , обращающихся в нуль в точке p, равна n, то не существует нетривиального якобиевого поля вдоль γ_v , равного нулю в точках p и $\exp_p v$. \square

2.19. Теорема (Сард). Если M — гладкое хаусдорфово многообразие, удовлетворяющее второй аксиоме счётности, и $f: M \to \mathbb{R}^n$ — гладкое отображение, то образ множества критических точек имеет меру 0 в \mathbb{R}^n .

Без доказательства.

Из теоремы Сарда и 2.18 сразу следует

2.20. Следствие. Каждая точка p многообразия M не сопряжена почти со всеми точками $q \in M$ ни вдоль какой геодезической. \square

3. Когомологии де Рама

Пусть M гладкое конечномерное многообразие. Через $\Lambda^k(M)$ будем обозначать пространство гладких k-форм на M.

(Ко) цепным комплексом называется последовательность абелевых групп следующего вида

$$C^*: \cdots \stackrel{\partial}{\longleftarrow} C_{-2} \stackrel{\partial}{\longleftarrow} C_{-1} \stackrel{\partial}{\longleftarrow} C_0 \stackrel{\partial}{\longleftarrow} C_1 \stackrel{\partial}{\longleftarrow} C_2 \stackrel{\partial}{\longleftarrow} \cdots$$
$$(C^*: \cdots \stackrel{d}{\longrightarrow} C_{-2} \stackrel{d}{\longrightarrow} C_{-1} \stackrel{d}{\longrightarrow} C_0 \stackrel{d}{\longrightarrow} C_1 \stackrel{d}{\longrightarrow} C_2 \stackrel{d}{\longrightarrow} \cdots),$$

где гомоморфизмы ∂ (d) удовлетворяют соотношению $\partial^2 = 0$ ($d^2 = 0$). Вместо абелевых групп в этом определении вполне можно рассматривать векторные пространства, модули и т. д. $Mop \phi u s M$ $f: A^* \to B^*$ коцепных комплексов A^* и B^* — это семейство гомоморфизмов $f_i: A_i \to B_i$ (каждый из которых иногда для простоты обозначается f), коммутирующих с $d: f_{i+1} d = df_i$.

из которых иногда для простоты обозначается f), коммутирующих с d: $f_{i+1}d = df_i$. Оператор дифференцирования $d: \Lambda^k \to \Lambda^{k+1}$ определяется следующим образом. Если $\omega \in \Lambda^k$, то $d(\omega_I dx^I) := d\omega_I \wedge dx^I = \frac{\partial \omega_I}{\partial x^k} dx^k \wedge dx^I \in \Lambda^{k+1}$.

Легко проверяются следующие свойства оператора d:

- 1°. $d^2=0$;
- 2° . $d(\theta \wedge \omega) = d\theta \wedge \omega + (-1)^{\deg \theta} \theta \wedge d\omega$;
- 3° . d аддитивен;
- 4° . на формах степени 0 это обычный дифференциал.

Тем самым определён комплекс

$$\Lambda^*(M): \ 0 \stackrel{d}{\longrightarrow} \Lambda^0(M) \stackrel{d}{\longrightarrow} \Lambda^1(M) \stackrel{d}{\longrightarrow} \cdots \stackrel{d}{\longrightarrow} \Lambda^{\dim M}(M) \stackrel{d}{\longrightarrow} 0$$

Всякое гладкое отображение $f:M\to N$ индуцирует отображение комплексов $f^*:\Lambda^*N\to\Lambda^*M$ по следующему правилу. Пусть (x) — локальные координаты на M, а (y) — на N, и f имеет вид

y=y(x). Тогда образом формы $\omega=\omega_I(y)dy^I\in\Lambda^k(N)$ является форма $f^*(w)=\omega_I\big(y(x)\big)\frac{\partial y^I}{\partial x^J}dx^J\in\Lambda^k(M)$.

3.1. Утверждение. $f^*d = df^*$.

Форма $\omega \in \Lambda^k$ называется замкнутой (точной), если dw = 0 (существует форма $\omega' \in \Lambda^{k-1}$, для которой $d\omega' = \omega$). Положим $Z^k = \ker(d:\Lambda^k \to \Lambda^{k+1})$ и $B^k = \operatorname{im}(d:\Lambda^{k-1} \to \Lambda^k)$. k-мерные когомологии де Рама многообразия M это $H^k_{DR}(M) = \frac{Z^k(M)}{B^k(M)}$. Отметим, что поскольку мы рассматриваем категорию абелевых групп (векторных пространств или модулей), то всегда можно факторизовать по подобъектам.

- **3.2.** Замечание. Пространства Z^k, B^k, Λ^k бесконечномерны, но $\dim_{\mathbb{R}} H^k_{DR} < \infty$.
- **3.3. Теорема.** Пусть (A^*,d) и $(B^*,d)-(\kappa o)$ цепной комплекс и $f:(A^*,d_A)\to (B^*,d_B)-$ морфизм комплексов. Тогда по f можно построить естественное отображение $H(f):H^*(A)\to H^*(B)$.
- **3.4. Замечание.** Естественность означает, что $H- \kappa o \epsilon a p u a \mu m \mu u u \psi \psi \mu \kappa m o p$: $H(\mathrm{id}_{A^*})=\mathrm{id}_{H^*(A)},$ и если $f:A^*\to B^*$ и $g:B^*\to C^*,$ то H(gf)=H(g)H(f).

Доказательство теоремы. Пусть $[a] \in H^k(A)$, положим H(f)[a] = [f(a)]. Такое определение корректно: d[f(a)] = [df(a)] = 0, и если $[a_1] = [a_2]$, то для некоторого $b \in A^{k-1}$ выполнено $[f(a_2)] = [f(a_1 + db)] = [f(a_1)] + 0$. И наконец, H действительно функтор: $H(\mathrm{id}) = \mathrm{id}$ и H(gf)[a] = [gf(a)] = Hg[fa] = HgHf[a]. \square

Морфизмы комплексов $f,g:(A^*,d)\to (B^*,d)$ называются цепно гомотопными если существует последовательность морфизмов $S:A^{k+1}\to B^k$, для которых f-g=dS+Sd:

$$A^{k-1} \xrightarrow{d} A^k \xrightarrow{d} A^{k+1}$$

$$f \parallel g \qquad S \qquad f \parallel g \qquad S \qquad f \parallel g$$

$$B^{k-1} \xrightarrow{d} B^k \xrightarrow{d} B^{k+1}$$

- **3.5.** Замечание. Морфизмы S не обязательно перестановочны с d!
- **3.6. Теорема.** Если морфизмы $f,g:(A^*,d)\to (B^*,d)$ цепно гомотопны, то им соответствуют одинаковые отображения в когомологиях: H(f)=H(g).

Доказательство. Рассмотрим некоторый $[a] \in H^k$, проверим, что Hf[a] = Hg[a]. Действительно, по определению цепной гомотопии f(a) = g(a) + dS(a) + Sd(a), и т. к. da = 0, то f(a) = g(a) + dS(a), поэтому Hf[a] = [f(a)] = [g(a) + dS(a)] = [g(a)] = Hg[a]. \square

3.7. Лемма (Пуанкаре). Пусть M — гладкое многообразие и отображения $f: M \to M \times \mathbb{R}$ и $g: M \times \mathbb{R} \to M$ заданы по правилу $f: x \mapsto (x,0)$ и $g: (x,t) \mapsto x$. Тогда индуцированные ими морфизмы $f^*: H^*(M \times \mathbb{R}) \to H^*(M)$ и $g^*: H^*(M) \to H^*(M \times \mathbb{R})$ являются взаимно обратными изоморфизмами.

Доказательство. Надо проверить условия $f^*g^*=\mathrm{id}$ и $g^*f^*=\mathrm{id}$. Первое из них тривиально: $f^*g^*=(gf)^*=\mathrm{id}^*=\mathrm{id}$. Проверим второе. Пусть $\omega\in\Omega^k(M\times\mathbb{R})$ представлена в виде

$$\omega = \omega_I(x,t)dx^I + \omega_J(x,t)dt \wedge dx^J$$
, где $|I| = k = |J| + 1$.

Тогда $f^*w = \omega_I(x,0)dx^I$ и композиция $g^*f^*: \Lambda(M\times\mathbb{R}) \leq$ действует по правилу

$$q^* f^* : \omega_I(x,t) dx^I + \omega_J(x,t) dt \wedge dx^J \mapsto \omega_I(x,0) dx^I$$
.

Построим цепную гомотопию $S:\Lambda^k \to \Lambda^{k-1}$: для ω , указанного выше вида положим

$$S\omega = \Big(\int\limits_0^t \omega_J(x,t)dt\Big)dx^J.$$

Проверим, что $\mathrm{id} - g^* f^* = Sd - dS$. Запишем формулы для $d\omega$, $dS\omega$ и $Sd\omega$:

$$d\omega = \frac{\partial \omega_I}{\partial x} dx \wedge dx^I + \frac{\partial \omega_I}{\partial t} dt \wedge dx^I + \frac{\partial \omega_J}{\partial x} dx \wedge dt \wedge dx^J + 0;$$

$$dS\omega = \frac{\partial}{\partial x} \Big(\int_0^t \omega_J(x, t) dt \Big) dx \wedge dx^J + \frac{\partial}{\partial t} \Big(\int_0^t \omega_J(x, t) dt \Big) dt \wedge dx^J;$$

$$Sd\omega = \left(\int_{0}^{t} \frac{\partial \omega_{I}}{\partial t} dt\right) \wedge dx^{I} - \left(\int_{0}^{t} \frac{\partial \omega_{J}}{\partial x} dt\right) \wedge dx \wedge dx^{J}.$$

Теперь рассмотрим разность $Sd\omega - dS\omega$:

$$Sd\omega - dS\omega = \omega_I(x,t)dx^I - \omega_I(x,0)dx^I - \left(\int_0^t \frac{\partial \omega_J}{\partial x}dt\right) \wedge dx \wedge dx^J + \frac{\partial}{\partial x}\left(\int_0^t \omega_J(x,t)dt\right)dx \wedge dx^J + \frac{\partial}{\partial t}\left(\int_0^t \omega_J(x,t)dt\right)dt \wedge dx^J.$$

Третье и четвёртое слагаемые сокращаются, а в пятом сокращаются интегрирование с дифференцированием, — остаётся $\mathrm{id} - g^* f^*$. Отсюда сразу следует совпадение в когомологиях отображений $g^* f^*$ и id . \square

3.1. Последовательность Майера-Вьеториса

Последовательность

$$\cdots \xrightarrow{f_{i-1}} C_{i-1} \xrightarrow{f_i} C_i \xrightarrow{f_{i+1}} C_{i+1} \xrightarrow{f_{i+2}} \dots$$

называется точной в i-ом члене, если im $f_i = \ker f_{i+1}$.

Короткая точная последовательность это точная последовательность вида

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0.$$

3.8. Теорема. Если $0 \to A^* \xrightarrow{i} B^* \xrightarrow{j} C^* \to 0$ — короткая точная последовательность, то существует такое отображение $\delta: H^k(C) \to H^{k+1}(A)$, что следующая последовательность точна.

$$\underbrace{\overset{}{\nearrow} H^{k+1}(A) \overset{H(i)}{\longrightarrow} H^{k+1}(B) \overset{H(j)}{\longrightarrow} H^{k+1}(C)}_{\delta} \xrightarrow{} H^{k}(A) \overset{H(i)}{\longrightarrow} H^{k}(B) \overset{H(j)}{\longrightarrow} H^{k}(C)}$$

Она называется последовательностью Майера-Вьеториса.

Доказательство. Пусть $[x] \in H^k(C)$. Из точности короткой последовательности следует, что существует $x' \in B^k$, для которого jx' = x. По определению отображения комплексов выполнено djx' = jdx' = 0. Поэтому $dx' \in \ker j$, и пользуясь точностью короткой последовательности, находим такой $y \in A^{k+1}$, что i(y) = dx'. Положим $\delta[x] = [y]$.

3.9. Упражнение. Закончить доказательство теоремы. Точнее, надо проверить корректность δ (dy = 0 и независимость y от выбора $x \in [x]$) и точность последовательности Майера—Вьеториса.

3.10. Теорема. Если $f,g:M\to N$ гладкие гомотопные отображения, то они индуцируют одинаковые отображения в когомологиях: $f^*=g^*:H^*_{DR}(N)\to H^*_{DR}(M)$.

Доказательство. Пусть $F: M \times \mathbb{R} \to N$ —гомотопия, для которой F(x,0) = f(x) и F(x,1) = g(x). Рассмотрим отображения $\pi: M \times \mathbb{R} \to M$ и $s_a: M \to M \times \mathbb{R}$, заданные, соответственно, формулами $\pi: (x,t) \mapsto x$ и $s_a: x \mapsto (x,a)$. Если в доказательстве леммы Пуанкаре положить в определении цепной гомотопии S нижний предел интегрирования равным a, то получится, что $\pi^* s_a^* = \operatorname{id}$ и $s_a^* \pi^* = \operatorname{id}$. Отсюда следует, что $s_{a_1}^* = s_{a_2}^*$ при всех a_1, a_2 . Поэтому $f^* = F^* s_0^* = F^* s_1^* = g^*$. \square

- **3.11. Следствие.** Если многообразия M и N гомотопически эквивалентны, то они имеют одинаковые когомологии: $H^*_{DR}(N) \cong H^*_{DR}(M)$. \square
- **3.12. Лемма.** Пусть A и B открытые подмножества гладкого многообразия M и $A \cup B = M$. Определим $i: \Lambda^*(M) \to \Lambda^*(A) \oplus \Lambda^*(B)$ и $j: \Lambda^*(A) \oplus \Lambda^*(B) \to \Lambda^*(A \cap B)$ формулами $i: \omega \mapsto (\omega|_A, \omega|_B)$ и $j: (\omega, \theta) \mapsto \omega|_{A \cap B} \theta|_{A \cap B}$, соответственно. Тогда следующая последовательность точна:

$$0 \longrightarrow \Lambda^*(M) \stackrel{i}{\longrightarrow} \Lambda^*(A) \oplus \Lambda^*(B) \stackrel{j}{\longrightarrow} \Lambda^*(A \cap B) \longrightarrow 0.$$

Доказательство. Пусть $\omega \in \Lambda^*(M)$. Если $\omega|_A = 0$ и $\omega|_B = 0$, то $\omega = 0$, поэтому $\ker i = 0$. Справедливы соотношения $i(\omega) = (\omega|_A, \omega|_B)$ и $ji(\omega) = \omega|_{A \cap B} - \omega|_{A \cap B} = 0$, поэтому $\operatorname{im} i \subset \ker j$.

Пусть $\omega \in \Lambda^*(A)$ и $\theta \in \Lambda^*(B)$. Условие $j(\omega, \theta) = 0$ означает, что $\omega|_{A \cap B} = \theta|_{A \cap B}$. Поэтому ω и θ можно склеить в одну дифференциальную форму на M. Отсюда $\ker j \subset \operatorname{im} i$.

Пусть $\{\rho_A, \rho_B\}$ — разбиение единицы на M, подчинённое покрытию $\{A, B\}$. Если $\omega \in \Lambda^*(A \cap B)$, то $\rho_A \omega \in \Lambda^*(B)$ и $\rho_B \omega \in \Lambda^*(A)$. Осталось заметить, что $j(\rho_B, -\rho_A) = \omega$, откуда im $j = \Lambda^*(A \cap B)$. \square

3.13. Следствие. Если выполнены условия предыдущей леммы, то следующая последовательность точна.

$$\stackrel{H^{n+1}(M) \longrightarrow i^*}{\longrightarrow} H^{n+1}(A) \oplus H^{n+1}(B) \stackrel{j^*}{\longrightarrow} H^{n+1}(A \cap B) \xrightarrow{\delta^*}$$

$$\stackrel{\to}{\longrightarrow} H^n(M) \stackrel{i^*}{\longrightarrow} H^n(A) \oplus H^n(B) \stackrel{j^*}{\longrightarrow} H^n(A \cap B) \xrightarrow{}$$

3.14. Пример. Когомологии де Рама n-мерной сферы. В случае $n \geqslant 1$ при $k \in \{0, n\}$ выполнено $H^k(S^n) = \mathbb{R}$, при других k группа $H^k(S^n)$ тривиальна.

Это легко доказать по индукции. База: посчитаем $H^1(S^1)$. Поскольку $H^0(D^1)=H^0(S^1)=\mathbb{R},\,H^1(D^1)=H^1(S^0)=0$ и $H^0(S^0)=\mathbb{R}^2$, то последовательность Майера-Вьеториса для разбиения одномерной сферы на нижний и верхний полудиски выглядит следующим образом:

$$0 \longrightarrow \mathbb{R} \xrightarrow{i_0^*} \mathbb{R}^2 \xrightarrow{j^*} \mathbb{R}^2 \xrightarrow{\delta^*} H^1(S^1) \xrightarrow{i_1^*} 0.$$

Из неё выводится последовательность соотношений:

$$0 = \ker i_1^*,$$

$$1 = \dim \operatorname{im} i_1^* = \dim \ker j^*,$$

$$1 = \dim \operatorname{im} j^* = \dim \ker \delta^*,$$

$$1 = \dim \operatorname{im} \delta^* = \dim \ker i^* = \dim H^1(S^1).$$

Поэтому $H^1(S^1) = \mathbb{R}$.

Пусть нужное выражение для когомологий справедливо для (n-1)-мерной сферы, при n>1. Представим тогда S^n в виде объединения верхней и нижней полусфер, пересекающихся по экватору, т. е. (n-1)-мерной сфере. Для этого разбиения последовательность Майера—Вьеториса состоит из следующих кусков:

$$0 \longrightarrow \mathbb{R} \xrightarrow{i_0^*} \mathbb{R}^2 \xrightarrow{j^*} \mathbb{R} \xrightarrow{\delta^*} H^1(S^n) \xrightarrow{i_1^*} 0,$$

отсюда рассуждениями, аналогичными одномерному случаю получается $H^1(S^n) = 0$;

$$0 \longrightarrow H^k(S^n) \longrightarrow 0$$
, при $k = 2, \dots, n-1$,

поэтому $H^k(S^n) = 0$ при $k = 2, \dots, n-1$; и из

$$0 \longrightarrow \mathbb{R} \longrightarrow H^n(S^n) \longrightarrow 0,$$

следует, что $H^n(S^n) = \mathbb{R}$. Тем самым, утверждение доказано.

3.15. Пример. Одномерная группа когомологий де Рама плоскости с n дырками равна \mathbb{R}^n .

 $\it Указание.$ Представить плоскость с $\it n$ дырками в виде объединения двух дисков, в пересечении дающих $\it (n+1)$ диск.

3.16. Упражнение. Посчитать $H^*(\mathbb{T})$ и $H^*(Kl)$.

4. Локально тривиальные расслоения

Локально тривиальным расслоением называется четвёрка (E,B,F,p), где E,B,F — топологические пространства, а $p:E\to B$ такое непрерывное отображение, что для каждого $x\in B$ существует окрестность $U\in \mathcal{N}_B x$ и по-

слойный гомеоморфизм $\varphi: U \times F \to p^{-1}U$, для которого коммутативна диаграмма справа. Пространства E, B и F называются томальным пространством, базой и слоем расслоения, соответственно.

Отображения перехода или функции склейки $\varphi_{\beta\alpha}:(U_{\alpha}\cap U_{\beta})\times F$ сле U_{α},U_{β} — тривиализующие окрестности и $U_{\alpha}\cap U_{\beta}\neq\varnothing$, определяются формулой $\varphi_{\beta\alpha}=\varphi_{\beta}^{-1}\varphi_{\alpha}$.

 $arphi_1(x,t)=(x,t),\ arphi_2(x,t)=(x,t)$ при $x<\frac{1}{2}$ и $arphi_2(x,t)=(x,-t)$ при $x>\frac{1}{2}$. Тогда функция склейки $arphi_{21}:(U_1\cap U_2)\times[-1,1]$ выглядит следующим образом: $arphi_2(x,t)=(x,t)$ при $x\in(0,\frac{1}{2})$ и $arphi_2(x,t)=(x,-t)$ при $x\in(\frac{1}{2},1)$.

Напомним, что отображение топологических пространств $f: X \to Y$ называется факторотображением, если множество U открыто в Y тогда и только тогда, когда множество $f^{-1}U$ открыто в X.

- **4.2. Теорема.** Пусть заданы топологические пространства B и F, и $\{U_{\alpha}\}_{\alpha \in A}$ открытое покрытие B. Пусть также для каждых $\alpha, \beta \in A$ с $U_{\alpha} \cap U_{\beta} \neq \emptyset$ задан послойный гомеоморфизм $\varphi_{\beta\alpha}: (U_{\alpha} \cap U_{\beta}) \times F \Rightarrow$. Тогда существует расслоение (E, B, F, p) с функциями склейки $\varphi_{\beta\alpha}$ тогда и только тогда, когда выполнены следующие условия:
 - 1) $\varphi_{\alpha\alpha} = \mathrm{id} \ u$
 - 2) $\varphi_{\alpha\beta}\varphi_{\beta\gamma}\varphi_{\gamma\alpha} = \mathrm{id} \ \mathrm{пр} \ U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset \ (ycnosue \ \kappaouu\kappa na).$

Доказательство. По заданному расслоению условия 1) и 2) легко проверяются. Наоборот, покажем как по функциям склейки построить расслоение.

На пространстве $E' = \coprod_{\alpha} U_{\alpha} \times F$ рассмотрим следующее отношение. Положим $(x,f) \sim (x',f')$, если x = x' и $\varphi_{\beta\alpha}(x,f) = (x,f')$. Из условия коциклов легко выводится, что полученное отношение является отношением эквивалентности. Рассмотрим факторотображение $\pi: E' \to E = E'/_{\sim}$. Определим расслоение $p: E \to B$ формулой $p: [(x,f)] \mapsto x$. Отображение p определено корректно, ибо из $(x,f) \sim (x',f')$ следует x=x'. Непрерывность отображения p сразу следует из определения фактортопологии.

Вообще говоря, $p^{-1}(U_{\alpha}) = U_{\alpha} \times F/_{\sim}$, но внутри множества $U_{\alpha} \times F$ склеек не происходит, поэтому имеется послойный гомеоморфизм $\pi|_{U_{\alpha} \times F} : U_{\alpha} \times F \to p^{-1}(U_{\alpha})$. Положим $\varphi_{\alpha} = \pi|_{U_{\alpha} \times F}$ тогда функции склейки построенного расслоения будут совпадать с $\varphi_{\alpha\beta}$: если $\varphi_{\alpha\beta}(x,f) = (x,f')$, то $\varphi_{\beta}^{-1}(x,f) = [(x,f')] = [(x,f')]$ и $\varphi_{\alpha}[(x,f')] = (x,f')$. \square

Расслоения $p: E \to B$ и $p': E' \to B$ изоморфиы, если существует послойный гомеоморфизм $\psi: E \to E'$, для которого $p'\psi = p$. Слои изоморфных расслоений, очевидно, гомеоморфны.

4.3. Замечание. От покрытия иногда удобно переходить к его измельчению. (Если $\mathcal U$ и $\mathcal V$ два покрытия одного пространства, то $\mathcal U$ называется измельчением $\mathcal V$, если для любого $U \in \mathcal U$ найдётся $V \in \mathcal V$, для которого $U \subset V$.) Координатные функции и функции склейки на мелком атласе получаются ограничением их с исходного.

Пусть $\{U_i\}_{i\in I}$ — покрытие пространства X, и $\{f_i:U_i\to Y\}_{i\in I}$ — семейство отображений, согласованных на пересечениях. Тогда комбинацией этого семейства отображений называется такое отображение $\underset{i\in I}{\nabla} f_i$, что для каждого $j\in I$ и $x\in U_j$ выполнено $\underset{i\in I}{\nabla} f_i(x)=f_j(x)$. Понятно, что не всегда такое согласованное семейство непрерывных отображений склеивается в одно непрерывное отображение, поэтому сформулируем условия, в которых такая операция работает.

- **4.4. Утверждение.** Пусть $\mathcal{U} = \{U_i\}_{i \in I}$ покрытие пространства X, и $\{f_i : U_i \to Y\}_{i \in I}$ семейство непрерывных отображений, согласованных на пересечениях. Если покрытие \mathcal{U} является замкнутым локально конечным, или открытым, то отображение $\sum\limits_{i \in I} f_i$ является непрерывным. \square
- **4.5. Теорема.** Если $p: E \to B$ и $p': E' \to B$ расслоения, и $\{U_{\alpha}\}_{{\alpha} \in A}$ тривиализующий атлас для обоих расслоений, то существование послойного гомеоморфизма $\psi: E \to E'$ эквивалентно наличию для любого $\alpha \in A$ послойного гомеоморфизма $h_{\alpha}: U_{\alpha} \times F \Longrightarrow$, для которых выполнено $\varphi_{\beta\alpha} = h_{\beta}^{-1} \varphi'_{\beta\alpha} h_{\alpha}$.

 \mathcal{A} оказательство. Пусть имеется послойный изоморфизм $\psi: E \to E'$. Положим $h_{\alpha} = \varphi_{\alpha}^{\prime - 1} \psi \varphi_{\alpha}$. Тогда $h_{\beta}^{-1} \varphi_{\beta \alpha}' h_{\alpha} = \varphi_{\beta}^{-1} \psi \varphi_{\beta}' \varphi_{\beta}' \varphi_{\alpha}' - \psi_{\alpha}^{\prime - 1} \psi^{-1} \varphi_{\alpha} = \varphi_{\beta}^{-1} \varphi_{\alpha} = \varphi_{\beta \alpha}$.

Обратно, если заданы отображения h_{α} , то положим $\psi_{\alpha} = \varphi_{\alpha} h_{\alpha}^{-1} \varphi_{\alpha}'^{-1} : p'^{-1}(U_{\alpha}) \to p^{-1}(U_{\alpha})$ — это послойный гомеоморфизм, как композиция таковых. Покажем согласованность этих отображений на пересечениях карт. Пусть $U_{\alpha} \cap U_{\beta} \neq \varnothing$. Тогда по условию $\varphi_{\beta\alpha} = h_{\beta}^{-1} \varphi_{\beta\alpha}' h_{\alpha}$, что можно переписать в виде $\varphi_{\alpha} h_{\alpha}^{-1} \varphi_{\alpha}'^{-1} = \varphi_{\beta} h_{\beta}^{-1} \varphi_{\beta}'^{-1}$ — это и есть независимость от карты. Теперь можем положить $\psi = \nabla \psi_{\alpha}$. \square

4.6. Упражнение. С помощью предыдущей теоремы проверить, что лист Мёбиуса — нетривиальное расслоение.

4.1. Локально тривиальные расслоения со структурной группой

Напомним, что левым *действием* α группы G на множестве X называется отображение α : $G \times X \to X$, обладающее следующими свойствами:

- 1) $\alpha(e, x) = x$ для всех $x \in X$,
- 2) $\alpha(f, \alpha(g, x)) = \alpha(fg, x)$.

Отличие правого действия от левого только в том, что в свойстве 2) следует заменить fg на gf.

В случае топологических G и X отображение α предполагается непрерывным. Тройка $\langle X, G, \alpha \rangle$ именуется G-пространств называется эквивариантным, если оно коммутирует с действием группы.

- 4.7. Пример. Некоторые примеры действия групп на множествах.
 - 1) Группа S_n перестановок действует на множестве $\{1,\ldots,n\}$.
 - 2) Группа невырожденных матриц \mathbf{GL}_n действует на \mathbb{R}^n .
 - 3) Группа \mathbf{SO}_n действует на S^{n-1} .

Локально тривиальным расслоением со структурной группой G называется локально тривиальное расслоение (E,B,F,p), слой которого является G-пространством, при этом функции склейки расслоения (E,B,F,p) имеют вид $\varphi_{\beta\alpha}(x,f)=(x,\overline{\varphi}_{\beta\alpha}(x)\cdot f)$, где $\overline{\varphi}_{\beta\alpha}:U_{\alpha}\cap U_{\beta}\to G$ такие, что $\overline{\varphi}_{\alpha\alpha}=\operatorname{id}$ и $\overline{\varphi}_{\alpha\beta}\overline{\varphi}_{\beta\gamma}\overline{\varphi}_{\gamma\alpha}=\operatorname{id}$.

Расслоения $p: E \to B$ и $p': E' \to B$ со структурной группой G и общим тривиализующим атласом $\{U_{\alpha}\}_{\alpha \in A}$ изоморфны или эквивалентны, если существуют семейство непрерывных отображений $h_{\alpha}: U_{\alpha} \to G$ и послойный гомеоморфизм $\psi: E \to E'$, для которых выполняются соотношения

$$\varphi_\alpha^{-1}\psi\varphi_\alpha'(x,f)=\left(x,h_\alpha(x)f\right)\ \text{и}\ \overline{\varphi}_{\beta\alpha}(x)=h_\beta(x)^{-1}\overline{\varphi}_{\beta\alpha}'(x)h_\alpha(x).$$

4.2. Главные G-расслоения

Главным G-расслоением называется локально тривиальное расслоение со структурной группой G, у которого слой F совпадает с группой G, действующей на себе левыми сдвигами (отметим, что слой рассматривается не как топологическая группа, а как левое G-пространство).

4.8. Теорема. Пусть $p: E \to B$ главное G-расслоение, и $\{U_{\alpha}\}_{{\alpha}\in A}$ тривиализующий атлас на B. Тогда существует единственное правое действие G на E, сохраняющее слои, и для которого $\varphi_{\alpha}(x,g)\cdot g_1=\varphi_{\alpha}(x,gg_1)$ при всех $x\in U_{\alpha}$ и $g,g_1\in G$.

Доказательство. Определим действие группы G на пространстве E. Пусть $w \in E$, тогда для некоторых α и g выполнено $w = \varphi_{\alpha}(x,g)$. В соответствии с условием теоремы, нам хотелось бы, чтобы было выполнено $w \cdot g_1 = \varphi_{\alpha}(x,g) \cdot g_1 = \varphi_{\alpha}(x,gg_1)$. Поэтому положим $w \cdot g_1 := \varphi_{\alpha}(x,gg_1)$. Чтобы проверить корректность, надо показать, что $w \cdot g_1$ не зависит от выбора α и g.

Пусть $w = \varphi_{\alpha}(x,g) = \varphi_{\alpha'}(x,g')$. Функции склейки для главного G-расслоения имеют вид

$$\varphi_{\alpha'\alpha}(x,g) = (x, \overline{\varphi}_{\alpha'\alpha}g).$$

Тогда

$$(x, g') = \varphi_{\alpha'}^{-1} \varphi_{\alpha}(x, g) = \varphi_{\alpha'\alpha}(x, g) = (x, \overline{\varphi}_{\alpha'\alpha}(x)g),$$

откуда $g' = \overline{\varphi}_{\alpha'\alpha}(x)g$. Значит

$$w \cdot g_1 = \varphi_{\alpha'}(x, g'g_1) = \varphi_{\alpha'}(x, \overline{\varphi}_{\alpha'\alpha}(x)gg_1) = \varphi_{\alpha}(x, gg_1).$$

Единственность построенного тривиальна.

Действие группы G на множестве X называется csobodhum, если для всех $x \in X$ и нетривиальных $g \in G$ выполнено $g \cdot x \neq x$.

- **4.9. Пример.** Пусть непрерывное правое действие группы G на пространстве E свободно. Тогда можно рассмотреть пространство орбит B=E/G и естественную проекцию p. Для того чтобы такой формально построенный объект (E,B,p) был главным G-расслоением, необходимо, чтобы для каждой точки $x\in E$ орбита xG была гомеоморфна G и замкнута в пространстве E, а также хаусдорфовость пространства B. Легко проверить, что эти условия выполнены в случае, если группа G компактна. G
- **4.10. Пример.** Расслоение Хопфа: тотальное пространство $-E=S^3=\left\{(w,z):|w|^2+|z|^2=1\right\}$, слой $G=S^1=\{e^{i\varphi}: \varphi\in\mathbb{R}\}$, действие структурной группы $(w,z)\cdot e^{i\varphi}=(e^{i\varphi}w,e^{i\varphi}z)$. Базой расслоения будет $\mathbb{C}\mathrm{P}^1$.
- **4.11. Пример.** Если H замкнутая подгруппа G, то G можно рассматривать как главное расслоение над G/H со структурной группой $H.^2$
- **4.12. Упражнение.** Установить, чему гомеоморфны следующие факторпространства (см. упражнение 4.44):
 - 1) SO_{n+1}/SO_n , O_{n+1}/O_n , O_{n+1}/SO_n ;
 - 2) SO_{p+q}/SO_p , O_{p+q}/SO_p , O_{p+q}/SO_p ;
 - 3) $\mathbf{SO}_{p+q}/(\mathbf{SO}_p \times \mathbf{SO}_q)$, $\mathbf{O}_{p+q}/(\mathbf{O}_p \times \mathbf{O}_q)$.
- Пусть (E,B,p) главное G-расслоение, $\{U_{\alpha}\}_{\alpha\in A}$ тривиализующий атлас на B, и $\chi:B'\to B$ непрерывное отображение. Прообразом этого расслоения называется расслоение (χ^*E,B',p) , для которого тривиализующим атласом является семейство $\{\chi^{-1}U_{\alpha}\}_{\alpha\in A}$, а функции склейки определены формулой $\overline{\varphi}'_{\beta\alpha}=\overline{\varphi}_{\beta\alpha}\chi|_{\chi^{-1}U_{\alpha}\cap\chi^{-1}U_{\beta}}$.
- **4.13. Теорема.** Пусть (E,B,p) главное G-расслоение, и $\chi: B' \to B$ непрерывное отображение, и (χ^*E,B',p') прообраз расслоения E. Тогда существует эквивариантное отображение $\psi: E' \to E$, для которого $p\psi = \chi p'$.

Доказательство. По определению расслоения (χ^*E, B', p') эквивалентность элементов $(x_1, g_1) \in U'_{\alpha} \times G$ и $(x_2, g_2) \in U'_{\beta} \times G$ равносильна паре условий $x_1 = x_2$ и $(x_2, g_2) = (x_1, \overline{\varphi}'_{\alpha\beta}g_1)$. Положим $\psi: (x, g) \mapsto (\chi(x), g)$. Это определение уважает отношение эквивалентности \sim : если $(x, g) \sim (x, \overline{\varphi}'_{\beta\alpha}(x)g)$, то

$$\psi(x,g) = \left(\chi(x),g\right) \sim \left(\chi(x),\overline{\varphi}_{\beta\alpha}\big(\chi(x)\big)g\right) = \left(\chi(x),\overline{\varphi}'_{\beta\alpha}(x)g\right) = \psi\big(x,\overline{\varphi}'_{\beta\alpha}(x)g\big).$$

Построенное ψ является эквивариантным:

$$\psi(x,f) = \left(\chi(x),f\right) \stackrel{g}{\mapsto} \left(\chi(x),f\right) \cdot g = \left(\chi(x),fg\right) = \psi(x,fg) = (x,f) \cdot g,$$

поэтому $\psi g = g \psi$. \square

4.14. Упражнение. Пусть (E,B,p) и (E',B',p') — главные G-расслоения и $\psi:E'\to E$ — непрерывное эквивариантное послойное отображение. Установить, что существует единственное отображение $\chi:B'\to B$ для которого $p\psi=\chi p'$. Проверить, что расслоение (E',B',p') эквивалентно расслоению χ^*E .

Из этого упражнения сразу следует³

 $^{^{-1}}$ Насколько я понимаю, компактности группы ещё не достаточно для получения главного G-расслоения — может не оказаться локальной тривиальности. Этот пример просто иллюстрирует, как в достаточно хороших предположениях можно строить главные G-расслоения.

²Не знаю, справедливо ли это утверждение, однако, от него нам нужен будет только частный случай (см. упражнение 4.40).

³На лекции это доказывалось как-то по-другому, но в тетради этого нету...

4.15. Утверждение. $(f \circ g)^*(E) = g^*(f^*E)$.

Приведём без доказательства два факта из общей топологии, которые нам понадобятся при доказательстве следующей теоремы.

4.16. Утверждение (Титце, Урысон). Всякая непрерывная функция $f: F \to \mathbb{I}$, определённая на замкнутом подмножестве F нормального пространства X, непрерывно продолжается на X.

Без доказательства.

- **4.17.** Следствие. Всякое непрерывное отображение $f: F \to D^n$, замкнутого подмножества F нормального пространства X в замкнутый шар D^n , непрерывно продолжается на X. \square
- **4.18. Теорема.** Пусть топологическое пространство B является компактом, а G группой Ли. Если E_0 и E_1 расслоения, являющиеся ограничениями главного G-расслоения $(E, B \times \mathbb{I}, p)$ на множества $B \times \{0\}$ и $B \times \{1\}$, соответственно, то E_0 эквивалентно E_1 .

 \mathcal{A} оказательство. Чтобы упростить доказательство, подправим тривиализующий атлас $\{V_{\alpha}\}_{\alpha\in A}$ на $B\times\mathbb{I}$. Путём измельчения атласа можно добиться того, что функции склейки определены на замыканиях элементов этого атласа. Кроме того можно считать, что $\{V_{\alpha}\}_{\alpha\in A}$ имеет вид $\{U_{\alpha}\times(\varepsilon_{\alpha,1},\varepsilon_{\alpha,2})\}_{\alpha\in A}$, где U_{α} — открытые подмножества B. Опять, переходя к измельчённому атласу, учитывая, что функции склейки $\overline{\varphi}_{\beta\alpha}:[V_{\alpha}]\cap[V_{\beta}]\to G$ непрерывны, находим такую шаровую окрестность $O'\in\mathcal{N}_G(e)$, что для всех точек $v_1,v_2\in[V_{\alpha}]\cap[V_{\beta}]$ выполнено $\overline{\varphi}_{\beta\alpha}(v_1)\overline{\varphi}_{\beta\alpha}^{-1}(v_2)\in O'$. Ввиду компактности пространства $B\times\mathbb{I}$, из $\{V_{\alpha}\}_{\alpha}\in A$ можно выделить конечное подсемейство, покрывающее $B\times\mathbb{I}$. Наконец, заметим, что можно считать (ввиду конечности атласа), что $V_{\alpha}=U_{\alpha}\times(\varepsilon_{1},\varepsilon_{2})$, а поскольку \mathbb{I} покрывается некоторым конечным поднабором данного семейства интервалов, то достаточно доказать эквивалентность расслоений $E|_{B\times\{\varepsilon_{1}\}}$ и $E|_{B\times\{\varepsilon_{2}\}}$.

Пусть N — мощность уже «хорошего» тривиализующего атласа, и $O \in \mathcal{N}_G(e)$ — такая окрестность единицы, что $O^N \subset O'$ и для всех $i \in \{1,\ldots,N\}$ окрестность O^i является шаровой. Функциями склейки для расслоений $E|_{B \times \{\varepsilon_1\}}$ являются функции $\overline{\varphi}_{\alpha\beta}(x,\varepsilon_i)$, где i=1,2 и $x \in B$. Чтобы доказать эквивалентность расслоений $E|_{B \times \{\varepsilon_1\}}$ и $E|_{B \times \{\varepsilon_2\}}$ для $k=1,\ldots,N$ надо определить непрерывные отображения $h_k:[U_k] \to G$, такие, что $\overline{\varphi}_{\beta\alpha}(x,\varepsilon_2) = h_{\beta}^{-1}(x)\overline{\varphi}_{\beta\alpha}(x,\varepsilon_1)h_{\alpha}(x)$.

рывные отображения $h_k: [U_k] \to G$, такие, что $\overline{\varphi}_{\beta\alpha}(x,\varepsilon_2) = h_{\beta}^{-1}(x)\overline{\varphi}_{\beta\alpha}(x,\varepsilon_1)h_{\alpha}(x)$. Строим h_{α} по индукции. Для всех $x \in [U_1]$ положим $h_1(x) = e$. Пусть до h_{k-1} включительно все h_i построены. Тогда на множестве $[U_k] \cap [U_l]$ определим h_k по формуле $h_k = \overline{\varphi}_{kl}(x,\varepsilon_1)h_l(x)\overline{\varphi}_{kl}^{-1}(x,\varepsilon_2)$. Заметим, что образ h_k лежит в $O^{k.5}$ Корректность такого определения следует из равенства

$$\overline{\varphi}_{kl}(x,\varepsilon_1)h_l(x)\overline{\varphi}_{kl}^{-1}(x,\varepsilon_2) =$$

$$= \overline{\varphi}_{kl}(x,\varepsilon_1)\overline{\varphi}_{ln}(x,\varepsilon_1)h_n(x)\overline{\varphi}_{ln}^{-1}(x,\varepsilon_2)\overline{\varphi}_{kl}^{-1}(x,\varepsilon_2) =$$

$$= \overline{\varphi}_{kn}(x,\varepsilon_1)h_n(x)\overline{\varphi}_{kn}^{-1}(x,\varepsilon_2)$$

для всех n < l < k. Тем самым h_k определён на множестве $\bigcup_{i=1}^{k-1} [U_i] \cap [U_k]$. Это множество замкнуто

- в $\bigcup_{i=1}^{k} [U_i]$, а значит по следствию 4.17 h_k может быть непрерывно продолжено на последнее. \square
- **4.19.** Замечание. На самом деле, справедливо более общее утверждение. А именно, теорема 4.18 останется верной, если пространство B предполагать не компактом, а паракомпактом, и в качестве группы G брать произвольную (естественно, отделимую) топологическую группу (см., например, [2, 3]).
- **4.20.** Следствие. Пусть (E, B, p) главное G-расслоение, где G группа Ли. Пусть f_1 и f_2 непрерывные отображения компакта B' в пространство B. Если f_1 и f_2 гомотопны, то расслоения f_1^*E и f_2^*E эквивалентны. \square

4.3. Классификация главных G-расслоений

Рассмотрим возрастающую последовательность топологических пространств $B_0\subset B_1\subset B_2\subset B_3\subset \dots$ На множестве $\varinjlim B_i=\bigcup_{i\in\omega}B_i$ рассматривается топология *прямого предела*: подмножество

⁴Почему такая существует?

⁵Почему если для всех i выполнено $g_ig_i'\in O$, то $g_n\dots g_1g_1'\dots g_n'\in O^n$? Это так, если, например, O^i инвариантно относительно сопряжений — но такая окрестность, вроде как, не всегда существует. Имея такое условие, включение $\overline{\varphi}_{ij}(x,\varepsilon_1)O^{k-1}\overline{\varphi}_{ij}^{-1}(x,\varepsilon_2)\subset O^k$ эквивалентно включению $O^{k-1}\overline{\varphi}_{ij}^{-1}(x,\varepsilon_1)\overline{\varphi}_{ij}(x,\varepsilon_2)\subset O^k$, а элементы $\overline{\varphi}_{ij}^{-1}(x,\varepsilon_1)\overline{\varphi}_{ij}(x,\varepsilon_2)$ лежат в O, если её считать симметричной, что можно всегда.

из $\varinjlim B_i$ считается открытым тогда и только тогда, когда открыто его пересечение с любым B_i (в топологии B_i).

Если M замкнутое подмножество X и $f: M \to Y$ непрерывное отображение, то пространство $X \cup_f Y$ полученное *приклеиванием* X к Y по отображению f — факторпространство пространства $X \sqcup Y$ по отношению $x \sim f(x)$.

Рассмотрим следующую ситуацию. Пусть B_0 — конечный набор точек. Пространство B_n получается из B_{n-1} приклеиванием конечного числа клеток. Формально приклеивание клетки означает, что имеется непрерывное отображение $\gamma: S^{n-1} \to B_{n-1}$, и диск D^n приклеивается к B_{n-1} по отображению γ (учитывается отождествление $S^{n-1} = \partial D^n$). Пространство $\varinjlim B_i$ будем называть клеточным пространством. У нас будут встречаться клеточные пространства, у которых клеток каждой размерности конечное число. Такие пространства называются клеточными пространствами конечного типа.

4.21. Утверждение. Всякое компактное многообразие является клеточным пространством конечного типа.

Без доказательства.

Символ $\pi_n(X,x)$ обозначает множество отображений $(S^n,\mathrm{pt}) \to (X,x)$ с точностью до гомотопической эквивалентности, или, что то же самое, множество гомотопических классов отображений $(D^n,S^{n-1})\to (X,x)$ или $(\mathbb{I}^n,\partial\mathbb{I})\to (X,x)$. Очевидно следующее

4.22. Утверждение. Множество $\pi_0(X,x)$ находится во взаимно однозначном соответствии c компонентами линейной связности пространства X. \square

Пусть при $i\in 2$ и $n\geqslant 1$ даны отображения $f_i:(S_i^n,\operatorname{pt})\to (X,x)$. Наша задача — построить отображение $f_0\circ f_1:(S^n,\operatorname{pt})\to (X,x)$, чтобы соответствие $(f_0,f_1)\mapsto f_0\circ f_1$ было групповой операцией. Пусть S^{n-1} — экватор сферы S^n , содержащий точку pt , зафиксируем непрерыв-

ное отображение ξ из $(S^n,i(S^{n-1}))$ в $(S^n_0,\operatorname{pt})\vee(S^n_1,\operatorname{pt})$, переводящее S^{n-1} в pt. Чтобы получить «композицию» $f_0\circ f_1$, надо применить к (S^n,pt) отображение ξ , а затем отобразить $(S^n_0,\operatorname{pt})\subset (S^n_0,\operatorname{pt})\vee(S^n_1,\operatorname{pt})$ в пространство (X,x) по правилу f_0 , и $(S^n_1,\operatorname{pt})\subset (S^n_0,\operatorname{pt})\vee(S^n_1,\operatorname{pt})$ — по f_1 . Более формально, пусть фиксированы вложение $i:(S^{n-1},\operatorname{pt})\to (S^n,\operatorname{pt})$ и непрерывное отображение $\xi:(S^n,i(S^{n-1}))\to (S^n_0,\operatorname{pt})\vee(S^n_1,\operatorname{pt})$. Отображение $f_0\circ f_1:(S^n,\operatorname{pt})\to (X,x)$ заданное формулой $f_0\circ f_1=(f_0\nabla f_1)\xi$, очевидно является непрерывным.

Дадим то же самое определение на языке отображений кубов. Пусть при $i\in 2$ и $n\geqslant 1$ даны отображения $f_i:(\mathbb{I}^n,\partial\mathbb{I}^n)\to (X,x),$ а ξ_i — некоторые монотонные непрерывные отображения из $\left[\frac{i}{2},\frac{i+1}{2}\right]$ на $\mathbb{I}.$ Рассмотрим гиперплоскость $\left\{\frac{1}{2}\right\}\times\mathbb{I}^{n-1}$ — она делит кубик \mathbb{I}^n на две половинки. Отображение $f_0\circ f_1$ определяется как f_0

на первой половинке, и как f_1 — на второй. Формально это можно записать в виде $f_0 \circ f_1 := \mathop{\bigtriangledown}_{i \in 2} f_i \xi_i$.

Непосредственно из определения следует

- **4.23.** Утверждение. Если $f_0, f_0', f_1, f_1' \in \pi_n(X, x)$ при $n \geqslant 1$ таковы, что $f_0 \sim f_0'$ и $f_1 \sim f_1'$, то $f_0 \circ f_1 \sim f_0' \circ f_1'$. \square
- **4.24.** Утверждение. Для $n\geqslant 1$ на множествах $\pi_n(X,x_0)$ имеется структура группы относительно построенной операции.

Доказательство. Перечислим свойства, которые необходимо проверить. Ассоциативность: для любых $f_0, f_1, f_2 \in \pi_n(X, x_0)$ выполнено $f_0 \circ (f_1 \circ f_2) \sim (f_0 \circ f_1) \circ f_2$. Существование единицы $e \in \pi_n(X, x_0)$, такой, что для каждого $f \in \pi_n(X, x_0)$ выполнено $f \circ e \sim f \sim e \circ f$. Обратимость элементов $\pi_n(X, x_0)$: для каждого $f \in \pi_n(X, x_0)$ существует $f^{-1} \in \pi_n(X, x_0)$, для которого выполнено $f \circ f^{-1} \sim e \sim f^{-1} \circ f$. Покажем, как эти свойства получить геометрически. На прилагающейся картинке изображены некоторые искомые гомотопии (для остальных всё аналогично), причём вертикальное направление соответствует гомотопии, горизонтальное — отображаемому кубу ($\mathbb{I}^n, \partial \mathbb{I}^n$).

- **4.25.** Замечание. Группа $\pi_1(X,x)$ может быть неабелевой. Например, $\pi_1(S^1 \vee S^1) \cong \mathbb{Z} \times \mathbb{Z}$.
- **4.26.** Утверждение. При $n \ge 2$ группа $\pi_n(X, x)$ абелева.

Доказательство. Аналогично доказательству предыдущего утверждения изобразим картинку, устанавливающую гомотопию между $f \circ g$ и $g \circ f$.

g	pt
pt	f

4.27. Пример. Пространство, у которого все гомотопические группы тривиальны: $S^{\infty} = \varinjlim S^i$. Оно стягиваемо

4.28. Замечание. Существует не стягиваемое пространство, все гомотопические группы которого тривиальны. 6

4.29. Упражнение. Всякое локально тривиальное главное G-расслоение над стягиваемой базой тривиально. Всякое локально тривиальное G-расслоение над стягиваемой базой тривиально.

4.30. Замечание. Всякое локально тривиальное над стягиваемой базой тривиально.

4.31. Теорема. Пусть (EG, BG, G, p_G) — главное G-расслоение, причём у EG все гомотопические группы тривиальны. Пусть B — клеточное пространство конечного типа. Тогда любое G-расслоение над B является прообразом расслоения (EG, BG, G, p_G) для некоторого отображения $f: B \to BG$.

Доказательство. Пусть (E,B,p) — данное расслоение. По теореме 4.13 оно является прообразом расслоения (EG,BG,G,p_G) при отображении $f:B\to BG$ тогда и только тогда, когда существует эквивариантное отображение $\psi:E\to EG$, для которого $p_G\psi=fp$. Отображение ψ будем строить индукцией по приклеиванию клетки.

Пусть B_0 — клеточное подпространство B, $E_0 = p^{-1}B_0$, $f_0 = f|_{B_0}$, и на E_0 определено эквивариантное отображение ψ_0 , для которого $p_G\psi_0 = fp$. Случай $B_0 = E_0 = \varnothing$ соответствует базе индукции. Пусть B получено из B_0 приклеиванием ровно одной n-мерной клетки: $B = D^n \cup_{\gamma} B_0$, где $\gamma: S^{n-1} \to B_0$, а соответствующее этой клетке отображение обозначим $i: D^n \to B$. Продолжим отображение ψ_0 до $\psi: E \to EG$. Поскольку ψ_0 построено на E_0 , то в частности, оно определено на $p^{-1}\gamma S^{n-1} \subset E_0$. Ограничение расслоения p на D^n (i^*E) тривиально по упражнению 4.29. Значит по отображению γ естественным образом определяется отображение $S^{n-1} \times G \to E$, поэтому можно определить индуцированное с E_0 отобра-

П

жение $\psi_0': S^{n-1} \times G \to EG$, для которого $\psi_0'(s,gg_1) = \psi_0\big(\gamma(s),g\big) \cdot g_1$. Рассмотрим отображение $\psi_0'(\cdot,e): S^{n-1} \to EG$. Т. к. гомотопические группы пространства EG тривиальны, то существует отображение $\hat{\psi}: D^n \to EG$, продолжающее $\psi_0':$ для $x \in \partial D^n = S^{n-1}$ положим $\hat{\psi}(x) = \psi_0'(x,e)$. Осталось продолжить ψ_0 до эквивариантного отображения $\psi: i^*E \to EG$. Это делается по формуле $\psi(x,g) = \hat{\psi}(x) \cdot g$. \square

4.32. Следствие. Пусть в условиях предыдущей теоремы B — компакт, G — группа Ли, и заданы отображения $f_1, f_2 : B \to BG$. Тогда расслоения $f_1^*(EG)$ и $f_2^*(EG)$ эквивалентны тогда и только тогда, когда отображения f_1 и f_2 гомотопны.

Доказательство. Это сразу следует из предыдущей теоремы, применённой к базе $B \times \mathbb{I}$ и теоремы 4.18. \square

4.33. Замечание. Последнее следствие означает, что множество классов эквивалентности главных G-расслоений над B находится во взаимно однозначном соответствии с гомотопическими классами отображений [B, BG].

4.34. Замечание. Расслоение (EG, BG, G, p) называется универсальным, а $BG - \kappa$ лассифицирующее пространство.

4.35. Следствие. Классифицирующие пространства, являющиеся клеточными пространствами конечного типа, гомотопически эквивалентны.

Доказательство. Пусть (EG_1, BG_1, G, p_1) и (EG_2, BG_2, G, p_2) — два универсальных расслоения. По теореме 4.31 есть такие отображения $f: BG_1 \to BG_2$ и $g: BG_2 \to BG_1$, что $f^*(EG_2) = EG_1$ и $g^*(EG_1) = EG_2$. Тогда $(gf)^*EG_1 = f^*g^*(EG_1) = f^*(EG_2) = \mathrm{id}_{EG_1}$, и аналогично $(fg)^* = \mathrm{id}$, что и требуется. \square

⁶Вроде, длинная прямая подходит...

4.4. Точная гомотопическая последовательность расслоения

4.36. Теорема. Если (E, B, F, p) — локально тривиальные расслоения, а топологическое пространство B — «хорошее», то гомотопическая последовательность расслоения точна.

$$\rightarrow \pi^{k+1}(F) \longrightarrow \pi^{k+1}(E) \longrightarrow \pi^{k+1}(B)$$

$$\rightarrow \pi^{k}(F) \longrightarrow \pi^{k}(E) \longrightarrow \pi^{k}(B) \rightarrow$$

$$\cdots \cdots \cdots \cdots$$

$$\rightarrow \pi^{0}(F) \longrightarrow \pi^{0}(E) \longrightarrow \pi^{0}(B) \longrightarrow 0$$

Без доказательства.

4.37. Замечание. Под «хорошим» расслоением в формулировке теоремы понимается расслоение в смысле Серра. Существуют такие локально тривиальные расслоения, для которых последняя теорема не верна. Для нас это не важно, ибо всякое локально тривиальное расслоение над паракомпактом является расслоением в смысле Гуревича (а значит, и расслоением в смысле Серра), и стало быть, точная гомотопическая последовательность расслоения имеет место.

4.5. Конструкция классифицирующего пространства

4.38. Пример. Классифицирующее пространство для унитарной группы (*бесконечномерный ком- плексный грассманиан*).

Рассмотрим отображение $p_{n+1}: \mathbf{U}_{n+1} \to S^{2n+1}$, определяющееся следующим образом: если $A = (a_{ij}) \in \mathbf{U}_{n+1}$, то образом матрицы A при отображении p_{n+1} является вектор $(a_{1,n+1}, \ldots, a_{n+1,n+1})$, который, очевидно, лежит в S^{2n+1} .

4.39. Упражнение. Проверить, что $\mathbf{U}_{n+1} \stackrel{p_{n+1}}{\longrightarrow} S^{2n+1}$ является главным \mathbf{U}_n -расслоением.

Указание. Заметить, что имеется вложение $i: \mathbf{U}_n \to \mathbf{U}_{n+1}$, которое матрице $A \in \mathbf{U}_n$ сопоставляет матрицу $\binom{A0}{0} \in \mathbf{U}_{n+1}$. Затем воспользоваться следующим фактом.

- **4.40.** Упражнение. Если H замкнутая подгруппа Ли группы Ли G, то естественная проекция $G \to G/H$ является главным H-расслоением.
- **4.41. Упражнение.** Показать, что при k < m выполнено $\pi_k(S^m) = 0$.

 $\it Указание.$ Воспользоваться аппроксимацией непрерывных отображений гладкими и применить теорему Сарда. Можно доказать это иначе, используя следующее утверждение.

4.42. Утверждение. При k < m всякое непрерывное отображение $f: S^k \to S^n$ непрерывно продолжается до отображения $\tilde{f}: D^{k+1} \to S^n$.

Без доказательства.

4.43. Упражнение. Проверить, что $\pi_1(\mathbf{U}_n) = \mathbb{Z}, \, \pi_2(\mathbf{U}_n) = 0$ при $n \geqslant 1, \, \pi_3(\mathbf{U}_n) = \mathbb{Z}$ при $n \geqslant 2$.

Для расслоения $(\mathbf{U}_{n+1}, S^{2n+1}, \mathbf{U}_n, p)$ построим точную гомотопическую последовательность. По упражнению 4.41, кусок этой последовательности выглядит следующим образом:

$$0 \longrightarrow \pi_k(\mathbf{U}_n) \xrightarrow{i_*} \pi_k(\mathbf{U}_{n+1}) \longrightarrow 0.$$

Ввиду точности этой последовательности отображение, i_{*} является изоморфизмом.

Многообразие Грассмана $Gr_{n+N,n}^{\mathbb{C}}$ определяется как множество n-мерных линейных подпространств в \mathbb{C}^{n+N} . *Многообразие Штифеля* $V_{n+N,n}^{\mathbb{C}}$ — это множество ортонормированных систем из n векторов в \mathbb{C}^{n+N} . Имеется каноническое отображение $\gamma: V_{n+N,n}^{\mathbb{C}} \to Gr_{n+N,n}^{\mathbb{C}}$, которое всякому набору векторов из $V_{n+N,n}^{\mathbb{C}}$ сопоставляет плоскость, на него натянутую.

4.44. Упражнение. Доказать, что $V_{n+N,n}^{\mathbb{C}} \xrightarrow{\gamma} Gr_{n+N,n}^{\mathbb{C}}$ является главным \mathbf{U}_n -расслоением.

Yказание. Рассмотрим вложения $i_n^{\uparrow}: \mathbf{U}_n \to \mathbf{U}_{n+N}$ и $i_N^{\downarrow}: \mathbf{U}_N \to \mathbf{U}_{n+N}$, заданные по следующему правилу: если $A \in \mathbf{U}_n$ ($A \in \mathbf{U}_N$), то образ A при данном вложении есть $A \in \mathbf{U}_n$ ($A \in \mathbf{U}_N$), то образ $A \in \mathbf{U}_n$ при данном вложении есть $A \in \mathbf{U}_n$ ($A \in \mathbf{U}_n$). Тогда можно образовать факторпространства $\mathbf{U}_{n+N}/\mathbf{U}_n$ и $\mathbf{U}_{n+N}/\mathbf{U}_n \times \mathbf{U}_N$). Первое из них — многообразие Штифеля, а второе — многообразие Грассмана.

Рассмотрим вложения

$$\begin{array}{c|c} \mathbf{U}_{N} & \longrightarrow i_{N}^{\uparrow} & \mathbf{U}_{n+1} \\ \downarrow & & \downarrow \\ i_{N}^{\downarrow} & i_{N+1}^{\downarrow} \\ \downarrow & & \downarrow \\ \mathbf{U}_{n+N} \longrightarrow i_{n+N}^{\uparrow} & \mathbf{U}_{n+N+1} \end{array}$$

определённые в указании к предыдущему упражнению. Легко видеть, что $i_{N+1}^{\downarrow}i_{N}^{\uparrow}=i_{n+N}^{\uparrow}i_{N}^{\downarrow}$. Поэтому имеется индуцированное отображение $\mathbf{U}_{n+N}/\mathbf{U}_{N}\to\mathbf{U}_{n+N+1}/\mathbf{U}_{N+1}$. Отсюда, получается цепочка вложений:

$$\dots \longrightarrow V_{n+N,n}^{\mathbb{C}} \longrightarrow V_{n+N+1,n}^{\mathbb{C}} \longrightarrow \dots$$

Аналогично строится цепочка вложений

$$\dots \longrightarrow Gr_{n+N,n}^{\mathbb{C}} \longrightarrow Gr_{n+N+1,n}^{\mathbb{C}} \longrightarrow \dots$$

Учитывая канонические отображения γ , из этих цепочек можно сделать коммутативную диаграмму:

Положим $V_{\infty,n}^{\mathbb{C}} = \varinjlim V_{n+N,n}^{\mathbb{C}}$ и $Gr_{\infty,n}^{\mathbb{C}} = \varinjlim Gr_{n+N,n}^{\mathbb{C}}$.

Покажем, что $Gr_{\infty,n}^{\mathbb{C}}$ — классифицирующее пространство для \mathbf{U}_n . Для этого надо установить равенство $\pi_k(V_{\infty,n}^{\mathbb{C}}) = 0$ для всех k. Рассмотрим точную гомотопическую последовательность расслоения $(\mathbf{U}_{n+N}, V_{n+N,n}^{\mathbb{C}}, \mathbf{U}_N, p)$. Выделим из неё следующий кусок:

$$\pi_k(\mathbf{U}_N) \xrightarrow{i_*} \pi_k(\mathbf{U}_{n+N}) \xrightarrow{p_*} \pi_k(V_{n+N,n}^{\mathbb{C}}) \xrightarrow{\delta_*} \pi_{k-1}(\mathbf{U}_n) \xrightarrow{i_*} \pi_{k-1}(\mathbf{U}_{n+N}).$$

При k < 2N, как мы выяснили раньше, отображения i_* являются изоморфизмами. Воспользуемся точностью этой последовательности. Из того, что $\operatorname{im} i_* = \pi_k(\mathbf{U}_{n+N})$, следует $\ker p_* = \pi_k(\mathbf{U}_{n+N})$, а значит $\operatorname{im} p_* = 0$, и $\ker \delta_* = 0$. Но $\ker i_* = 0$, откуда $\operatorname{im} \delta_* = 0$. Окончательно получаем, что $\pi_k(V_{n+N,n}^{\mathbb{C}}) = 0$.

Итак, в цепочке вложений

$$V_{\infty,n}^{\mathbb{C}} \supset \cdots \supset V_{n+N,n}^{\mathbb{C}} \supset \cdots \supset V_{n+1,n}^{\mathbb{C}}$$

Начиная с некоторого N для всех $i \in \mathbb{N}$ выполнено $\pi_k(V_{n+N+i,n}^{\mathbb{C}}) = 0$. Рассмотрим отображение $f: S^k \to V_{\infty,n}^{\mathbb{C}}$. Поскольку S^k — компакт, то найдётся $i \in \mathbb{N}$, для которого $f(S^k) \subset V_{n+N+i,n}^{\mathbb{C}}$, а значит f можно прогомотопировать в точку даже внутри $V_{n+N+i,n}^{\mathbb{C}} \subset V_{\infty,n}^{\mathbb{C}}$.

4.45. Замечание. Классифицирующее пространство для \mathbf{O}_n это $Gr_{\infty,n}^{\mathbb{R}}$, для \mathbf{SO}_n — множество n-мерных ориентированных линейных подпространств в \mathbb{C}^{n+N} .

5. ВЕКТОРНЫЕ РАССЛОЕНИЯ

Векторные расслоения лежат в классе тех локально тривиальных расслоений, у которых слой гомеоморфен некоторому векторному пространству. При этом, поскольку в объекте появилась дополнительная структура, то естественно потребовать, чтобы объект эту структуру уважал. Для определения понятия векторного расслоения мы опишем два подхода.

5.1. Ассоциированное расслоение

Пусть (E,G,B,p) — главное G-расслоение, и F — левое G-пространство. Положим

$$E \times_G F := E \times F/_{(e \cdot g, f) \sim (e, g \cdot f)}$$

и зададим отображение $p_F: E \times_G F \to B$ по правилу $p_F: (e,f) \mapsto p(e)$. Корректность определения отображения p_F легко проверяется:

$$p_F(e \cdot g, f) = p(e \cdot g) = p(e) = p_F(e, g \cdot f).$$

Проверим, что $p_F: E \times_G F \to B$ — локально тривиальное раслоение со слоем F и структурной группой G. Пусть $\{U_\alpha\}$ — тривиализующий атлас для (E,G,B,p) и $\{\varphi_\alpha: U_\alpha \times G \to p^{-1}(U_\alpha)\}$ — соответствующие координатные функции. Для класса $[(b,g),f] \in (U_\alpha \times G) \times F$ существует единственный представитель вида ((b,e),f). Поэтому имеется взаимно-однозначное отображение

$$\varphi_{\alpha} \times_G \operatorname{id}_F : U_{\alpha} \times F \to (U_{\alpha} \times G) \times_G F = p_F^{-1}(U_{\alpha}) \subset E \times_G F.$$

Из определений действия и фактортопологии легко вывести, что $\varphi_{\alpha} \times_G \mathrm{id}_F$ является гомеоморфизмом.

Пусть теперь F является топологической группой G, рассматриваемой как левое G-пространство. По функциям склейки $\varphi_{\beta\alpha}$: $(U_{\alpha} \cap U_{\beta}) \times G =$ для расслоения (E, G, B, p) корректно определяются отображения

$$\varphi_{\beta\alpha} \times_G \operatorname{id}_F : ((U_{\alpha} \cap U_{\beta}) \times_G F \leq$$

по формуле

$$\varphi_{\beta\alpha} \times_G \mathrm{id}_F : [(x,e),f] \mapsto [(x,\overline{\varphi}_{\beta\alpha}(x)),f]$$

— они являются функциями склейки расслоения $(E \times_G F, G, B, p_F)$.

Если \mathbb{F} — поле, G — подгруппа группы $\mathbf{GL}_n(\mathbb{F})$ и (E,G,B,p) — главное G-расслоение, то расслоение $(E\times_G\mathbb{F}^n,\mathbb{F}^n,B,p_{\mathbb{F}^n})$ называется векторным. Далее рассматриваются только векторные пространства над полями \mathbb{R} или \mathbb{C} .

5.2. Векторные расслоения

Если V — векторное пространство, то локально тривиальное расслоение (E,V,B,p) называется векторным, если существует такой тривиализующий атлас $\{U_{\alpha}\}$ на B и координатные функции φ_{α} удовлетворяющие следующему условию. Если $v_1,v_2\in V,\,x\in U_{\alpha}$ и $\varphi_{\alpha}(x,v_i)=w_i\in p^{-1}x$, то $\varphi_{\alpha}(x,v_1+v_2)=w_1+w_2$ и $\varphi_{\alpha}(x,\lambda v_1)=\lambda w_1$.

Изучим устройство функций склеек. Пусть (e_1,\ldots,e_n) — базис в V и $w=w^ke_k$. Тогда

$$\varphi_{\beta\alpha}(x,w) = \varphi_{\beta\alpha}(x,w^k e_k) = \varphi_{\beta}^{-1} \varphi_{\alpha}(x,w^k e_k) = (x,\overline{\varphi}_{\beta\alpha}(x)_k^i w^k e_j),$$

откуда следует, что $\overline{\varphi}_{\beta\alpha}(x)$ — линейный оператор, т. е. структурная группа должна быть подгруппой в $\mathbf{GL}(V)$.

5.1. Пример. Касательное расслоение TM. Пусть $\{U_{\alpha}\}$ — атлас на M и (x^1, \dots, x^n) — локальные координаты в карте U_{α} . Тогда $\left(\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^n}\right)$ — базис в $p^{-1}x$. Если U_{α} и U_{β} — карты с локальными координатами (x) и (x'), соответственно, то функции склейки выглядят так:

$$\varphi_{\beta\alpha}: (x, (v^1, \dots, v^n)) \mapsto (x'(x), (v^{1'} = \frac{\partial x^{1'}}{\partial x^i} v^i, \dots, v^{n'} = \frac{\partial x^{n'}}{\partial x^i} v^i)).$$

Гладкое отображение $f: M \to N$ называется погружением, если для всех точек $x \in M$ отображение $d_x f: T_x M \to T_{f(x)} N$ является вложением. Обозначение: $f: M \hookrightarrow N$.

- 5.2. Замечание. Погружение локально является вложением.
- **5.3. Пример.** Нормальное расслоение. Пусть задано погружение $f: M \hookrightarrow N$, причём на N имеется риманова метрика. Тогда для всякой точки $x \in M$ к подпространству im d_x в пространстве $T_{f(x)}N$ есть ортогональное дополнение $\nu(f)_x$.
- **5.4. Упражнение.** Доказать, что $\nu(f)$ является векторным расслоением.
- **5.5. Пример.** Каноническое линейное (т. е. слои прямые) расслоение над $\mathbb{R}P^n$ ($\mathbb{C}P^n$). Точки пространства $\mathbb{R}P^n$ задаются однородными координатами $[x_0:\dots:x_n]$ ($x_i\in\mathbb{R}$ для всех i, и должен существовать номер i, для которого $x_i\neq 0$). Атлас на $\mathbb{R}P^n$ состоит из карт

$$U_k = \{ [x_0, \dots, x_n] : x_k \neq 0 \};$$

 $^{^{7}}$ Здесь и далее лектор поменял местами, по отношению к предыдущему изложению, домен и кодомен стрелок φ_{α} , а мы для единообразности этого делать не будем.

тривиализация для U_k :

$$[x_0,\ldots,x_n]\mapsto \left(\frac{x_0}{x_k},\ldots,\frac{\widehat{x_k}}{x_k},\ldots,\frac{x_n}{x_k}\right).$$

Слой канонического расслоения γ_n над точкой $x = [x_0, \dots, x_n]$ определяется как прямая, натянутая на вектор (x_0, \dots, x_n) . Тривиализация канонического расслоения также $\{U_i\}$, причём

$$p^{-1}(U_k) = \left\{ \left(\left(\frac{x_0}{x_k}, \dots, \frac{\widehat{x_k}}{x_k}, \dots, \frac{x_n}{x_k} \right), \lambda \right) : \lambda \in \mathbb{R} \right\},\,$$

где λ задаёт вектор на прямой, проходящей в направлении вектора $\left(\frac{x_1}{x_k},\ldots,\frac{1}{x_k},\ldots,\frac{x_n}{x_k}\right)$. Функция склейки $\varphi_{10}:(y_1,\ldots,y_n,\lambda)\mapsto(z_1,\ldots,z_n,\mu)$ описывается соотношениями

$$z_1 = \frac{1}{y_1}, \ z_2 = \frac{y_2}{y_1}, \ \dots, \ z_n = \frac{y_n}{y_1}, \ \mu = \lambda y_1.$$

 $Mop \phi uз M$ векторных расслоений это морфизм их как G-расслоений, ограничение которого на каждый слой является линейным отображением.

5.6. Теорема. Пусть (E',B,p') и (E'',B,p'') — векторные расслоения и $f:E'\to E''$ — непрерывный послойный изоморфизм. Тогда расслоения E' и E'' эквивалентны.

Доказательство. Достаточно показать, что отображение f^{-1} непрерывно. Выберем общий тривиализующий атлас для E' и E''. Пусть U карта этого атласа; докажем непрерывность ограничения на U отображения f^{-1} . Рассмотрим действие композиции отображений $\varphi''^{-1}f\varphi': U \times \mathbb{R}^n \to U \times \mathbb{R}^n$.

$$\varphi''^{-1}f\varphi': (x, (\lambda^1, \dots, \lambda^n)) \mapsto (x, (a_k^1(x)\lambda^k, \dots, a_k^n(x)\lambda^k)),$$

где $a^i_j(x)$ — матрица соответствующего линейного оператора. Если $b^j_i(x)$ — матрица обратного к $a^i_j(x)$ оператора, то отображение $\xi = {\varphi'}^{-1} f^{-1} {\varphi''}$ действует по правилу $\xi: (x, \overline{v}) \mapsto (x, b(x) \overline{v})$. Но отображение

$$b_j^i(x) = \frac{A_i^j(x)}{\det \|a_i^j\|}$$

является непрерывным, поскольку определитель a_i^j не обращается в нуль. Тогда отображение $f^{-1} = \varphi' \xi \varphi''^{-1}$ непрерывно как композиция непрерывных. \square

5.3. Сечения векторных расслоений

Пусть (E,B,p) — локально тривиальное расслоение. Сечением s расслоения (E,B,p) называется такое непрерывное отображение $s:B\to E$, что $ps=\mathrm{id}_B$. Сечение векторного расслоения называется непулевым, если для любых $x\in B$ выполнено $0\neq s(x)\in p^{-1}(x)$.

- **5.7.** Замечание. Если линейное расслоение допускает ненулевое сечение, то оно тривиально. Достаточно рассмотреть отображение $\psi: B \times \mathbb{R} \to E$, заданное по правилу $\psi(x, \lambda) = \lambda s(x)$. Оно является изоморфизмом это сразу следует из теоремы 5.6.
- **5.8. Упражнение.** Доказать, что расслоение $\gamma_n^{\mathbb{R}}$ при $n\geqslant 2$ не является тривиальным. ⁸ Проверить, тривиально ли $\gamma_1^{\mathbb{C}}$.
- **5.9.** Замечание. Если n-мерное векторное расслоение допускает n ненулевых сечений, линейно независимых в каждой точке, то оно тривиально. Достаточно рассмотреть отображение $\psi: B \times \mathbb{R}^n \to E$, заданное правилом $\psi(x, \lambda_1, \dots, \lambda_n) = \lambda_1 s_1(x) + \dots + \lambda_n s_n(x)$ и применить теорему 5.6.

5.4. Операции над векторными расслоениями

Пусть заданы расслоения $p_1: E_1 \to B_1$ и $p_2: E_2 \to B_2$. Тогда естественным образом возникает расслоение $p_1 \times p_2: E_1 \times E_2 \to B_1 \times B_2$, называемое *произведением* данных расслоений. (Пояснение на всякий случай: $(p_1 \times p_2)(e_1, e_2) = (p_1(e_1), p_2(e_2))$.) Легко видеть, что слой произведения расслоений равен произведению их слоёв.

 $^{^8}$ Разве $\gamma_1^\mathbb{R}$ не является нетривиальным?

5.10. Упражнение. Выразить функции склейки произведения расслоений через функции склейки сомножителей.

Далее в этом параграфе все рассматриваемые расслоения являются векторными и локально тривиальными.

Пусть заданы расслоения $p_1:E_1\to B$ и $p_2:E_2\to B$ и пусть $\Delta:B\to B\times B$ — диагональное вложение. Тогда cymmoù Yumnu расслоений p_1 и p_2 называется расслоение $\Delta^*(E_1\times E_2)$, обозначаемое $p:E_1\oplus E_2\to B$. Легко видеть, что $p^{-1}(b)=p_1^{-1}(b)\oplus p_2^{-1}(b)$ для любой точки базы b. Если на B выбран тривиализующий атлас для расслоений p_1 и p_2 , и $\overline{\varphi}_{\alpha\beta}^1, \overline{\varphi}_{\alpha\beta}^2$ — соответствующие им функции склейки, то функции склейки расслоения $E_1\oplus E_2$ задаются правилом $\overline{\varphi}_{\alpha\beta}=\overline{\varphi}_{\alpha\beta}^1\oplus \overline{\varphi}_{\alpha\beta}^2$. В матричной форме это записывается в виде

$$\overline{\varphi}_{\alpha\beta} = \begin{pmatrix} \overline{\varphi}_{\alpha\beta}^1 & 0 \\ 0 & \overline{\varphi}_{\alpha\beta}^2 \end{pmatrix}.$$

Если пара расслоений $p_1: E_1 \to B$ и $p: E \to B$ такова, что $E_1 \subset E$ и $p|_{E_1} = p_1$, то p_1 называется подрасслоением p.

Для расслоения $p:E\to B$ и точки $x\in B$ через $(E)_x$ будем обозначать слой, отображающийся в точку x.

5.11. Упражнение. Если E, E_1, E_2 — расслоения над B и E_1, E_2 являются подрасслоениями расслоения E, причём для всех $x \in B$ выполнено $(E)_x = (E_1)_x \oplus (E_2)_x$, то $E = E_1 \oplus E_2$.

Сопряжённым расслоением E^* к расслоению (E,B,F,p) называется расслоение над B, у которого слои — пространство линейных функционалов на F, а функциями склейки являются функции $\overline{\varphi}_{\alpha\beta}^*$.

Напомним, что если заданы линейные операторы $A:V\to V$ и $B:W\to W$ векторных пространств с $\dim V=n, \dim W=m,$ то их тензорное произведение $A\otimes B:V\otimes W\to V\otimes W$ задаётся в матричной форме следующим образом:

$$A \otimes B = \left(\begin{array}{ccc} b_{11}A & & b_{1m}A \\ & \ddots & \\ b_{m1}A & & b_{mm}A \end{array}\right).$$

Тензорным произведением расслоений (E_1,B,p_1) и (E_2,B,p_2) называется такое расслоение над B, что его функции склейки задаются формулой $\overline{\varphi}_{\alpha\beta}=\overline{\varphi}_{\alpha\beta}^1\otimes\overline{\varphi}_{\alpha\beta}^2$, где $\overline{\varphi}_{\alpha\beta}^1$ и $\overline{\varphi}_{\alpha\beta}^2$ — функции склейки расслоений p_1 и p_2 , соответственно, относительно общего для них тривиализующего атласа на B.

Расслоение ${\rm Hom}(E_1,E_2)$ можно определить с помощью уже построенных операций, учитывая, что ${\rm Hom}(V,W)\cong V^*\otimes W$. Также полезно расслоение $\Lambda^k(E)$ — его функции склейки определяются формулой $\Lambda^k\overline{\varphi}_{\alpha\beta}$.

В общем случае пусть имеется функтор F из категории \mathfrak{Vect}^n наборов векторных пространств длины n в категорию векторных пространств \mathfrak{Vect} . Тогда в «хороших предположениях» можно по n векторным расслоениям над одной базой организовать новое векторное расслоение над той же базой, в соответствии с функтором F, выбрав в качестве функций склейки $F(\overline{\varphi}^1_{\alpha\beta},\dots,\overline{\varphi}^n_{\alpha\beta})$, где $\overline{\varphi}^i_{\alpha\beta}$ — функции склейки i-го расслоения относительно тривиализующего данные n расслоений атласа. «Хорошие предположения» означают, что функтор должен быть n пепрерывным, т. е. $F(f_1,\dots,f_n)$ непрерывно зависит от f_1,\dots,f_n .

5.5. Комплексные и вещественные расслоения

Комплексной структурой на расслоении E называется такой линейный автоморфизм $J: E \to E$, то $J^2 = -1$. Класс комплексных векторных расслоений совпадает с классом вещественных векторных расслоений, на которых задана комплексная структура.

Пусть задано n-мерное комплексное расслоение E. Его можно рассматривать как 2n-мерное вещественное расслоение $E_{\mathbb{R}}$: для этого надо рассмотреть представление $\mathbf{GL}_n(\mathbb{C}) \hookrightarrow \mathbf{GL}_{2n}(\mathbb{R})$, заданное правилом

$$A \mapsto \left(\begin{array}{cc} \operatorname{re} A & \operatorname{im} A \\ -\operatorname{im} A & \operatorname{re} A \end{array} \right).$$

Операция перехода от E к $E_{\mathbb{R}}$ называется овеществлением.

⁹Какая топология на пространстве отображений?

Наоборот, если E-n-мерное вещественное расслоение, то положив $E_{\mathbb{C}}=E\oplus E$ и задав комплексную структуру формулой J(x,y)=(-y,x), получим операцию комплексификации. Эквивалентно можно определить $E_{\mathbb{C}}=E\otimes \mathbb{C}$.

5.12. Упражнение. Для вещественного расслоения E выполнено $(E_{\mathbb{C}})_{\mathbb{R}}=E\oplus E$. Для комплексного расслоения E выполнено $(E_{\mathbb{R}})_{\mathbb{C}}=E\oplus \overline{E}$, где \overline{E} обозначает расслоение E с противоположной комплексной структурой: $x\mapsto -J(x)$.

5.6. Связности общего вида

Пусть задано гладкое локально тривиальное расслоение (E, B, p).

Гладким распределением или *связностью общего вида* на расслоении p называется семейство $\{hor_x\}_{x\in E}$ таких линейных подпространств T_xE гладко зависящих от x, что $\ker d_x p \oplus hor_x = T_xE$. Неформально это означает, что для каждой точки x из E в пространстве T_xE выбран базис подпространства, дополняющего касательное к слою подпространство T_xF (обозначающееся также $vert_x$) до T_xE , причём это семейство базисов, а также $vert_x$, гладко зависят от точки x.

5.13. Утверждение. Если E — гладкий паракомпакт, и (E, B, p) — гладкое локально тривиальное расслоение, то на расслоении p существует связность общего вида.

Доказательство. В силу теоремы 1.6 можно выбрать на E риманову метрику. Далее достаточно положить $hor_x := (\ker d_x p)^{\perp}$. \square

Если на расслоении p задана связность общего вида, то назовём кривую $\gamma \subset E$ горизонтальной, если для каждого значения параметра t выполнено $\frac{d}{dt}\gamma(t) \in hor_{\gamma(t)}$. Напомним, что кривая $\tilde{\gamma}$ в тотальном пространстве называется поднятием кривой γ из базы, если для каждого значения параметра t выполнено $p\gamma(\tilde{t}) = \gamma(t)$.

5.14. Упражнение. Если в гладком расслоении 10 p слой является компактом, то для любой гладкой кривой γ в базе и точки x тотального пространства, для которой $p(x)=\gamma(0)$, существует горизонтальное поднятие кривой γ , с началом в точке x.

Пространство гладких петель в X с началом x обозначается $\Omega_x(X)$. Рассмотрим множество $\Omega_b(B)$ и фиксированную точку $x \in (E)_b$. Тогда если слой компактен, то по предыдущему упражнению для $\gamma \in \Omega_b(B)$ можно найти горизонтальное поличение $\tilde{\alpha}$ с изураном в точко x с проделения отображение $\tilde{\alpha}$ $\tilde{\alpha}$ $\tilde{\beta}$ $\tilde{\beta}$

поднятие $\tilde{\gamma}$ с началом в точке x. определим отображение $\varphi_{\gamma}:(E)_b \to (E)_b$ формулой $\varphi_{\gamma}(x):=\tilde{\gamma}(1)$. Легко видеть, что $\varphi_{\gamma_1\gamma_2}=\varphi_{\gamma_1}\varphi_{\gamma_2}$ и $\varphi_{\gamma^{-1}}=\varphi_{\gamma}^{-1}$ для всех $\gamma,\gamma_1,\gamma_2\in\Omega_b(B)$. Тем самым определён гомоморфизм $\varphi:\Omega_b(B)\to \operatorname{Aut} F$. Группой голономии называется множество іт φ .

5.7. Связность в главном расслоении

Если X — правое (левое) G-пространство (в частности, X — сама топологическая группа G), то определено отображение правого (левого) сдвига $R_g: X \to X$ ($L_g: X \to X$), задающееся формулой $R_g(x) = xg$ ($L_g(x) = gx$).

Пусть E — главное G-расслоение. Будем говорить, что hor_x является G-инвариантным, если $d_xR_g:T_xE\to T_{xg}E$ изоморфно отображает $hor_x\subset T_xE$ на $hor_{xg}\subset T_{xg}E$.

Пусть G — группа Ли, с заданным на ней векторным полем Y. Оно называется левоинвариантным, если при всех $g,h \in G$ для отображения $(dL_q)_h: T_hG \to T_{qh}G$ выполнено

$$(dL_g)_h(Y(h)) = Y(gh).$$

Легко видеть, что всякое левоинвариантное векторное поле Y на группе Ли однозначно определяется своим значением $Y(e) \in T_eG$ в единице:

$$Y(h) = (dL_h)_e Y(e).$$

Обратно, по вектору $Y(e) \in T_eG$ однозначно (с помощью той же формулы) можно построить левоинвариантное векторное поле на группе Ли. Отсюда сразу следует, что левоинвариантные векторные поля на группе Ли образуют векторное пространство, обозначаемое далее через \mathfrak{g} , размерность которого совпадает с размерностью самой группы. Если на группе Ли заданы левоинвариантные векторные поля Y_1 и Y_2 , то векторное поле $[Y_1,Y_2]$ тоже является левоинвариантным, ибо $(dL_g)[Y_1,Y_2]=[(dL_g)Y_1,(dL_g)Y_2]=[Y_1,Y_2].$

 $^{^{10}\,\}Pi$ редполагается ли тут наличие связности?

Через $a(g): G \to G$, где $g \in G$, обозначим сопряжение $a(g)(h) = ghg^{-1}$. Тогда определено отображение $da(g): T_hG \to T_{ghg^{-1}}G$, которое обозначается $\mathrm{Ad}(g)$.

5.15. Упражнение. Если Y левоинвариантное векторное поле на G, то для всех $g \in G$ поле $\mathrm{Ad}(g)(Y)$ тоже левоинвариантно, причём выполнено $\mathrm{Ad}(g)Y = (dR_{g^{-1}})Y$.

Тем самым Ad(g) определяет отображение из \mathfrak{g} в себя.

На правом G-пространстве E (в частности главном G-расслоении) рассмотрим отображение $\sigma_x: G \to E$, заданное формулой $\sigma_x: g \mapsto xg$. Пусть также G — группа Ли.

Фундаментальным векторным полем на E, соответствующим $Y \in \mathfrak{g}$ называется поле

$$Y^*(x) := (d\sigma_x)_e(Y(e)) \in \mathfrak{g}.$$

5.16. Утверждение. Образом фундаментального векторного поля Y^* при правом сдвиге на E является также фундаментальное векторное поле, причём выполнено

$$dR_q(Y^*) = \left(\operatorname{Ad}(g^{-1})Y\right)^*.$$

Доказательство. Действительно, надо проверить, что $dR_g d\sigma_x = d\sigma_x dR_g$, что следует из равенства $R_g \sigma_x = \sigma_x R_g$ (здесь символ R_g в правой части равенства обозначает правый сдвиг в группе, в левой — в пространстве E). \square

Пусть задано гладкое расслоение со связностью. 1-форма ω на E со значениями в \mathfrak{g} — это линейное для каждого x отображение $\omega: T_x E \to \mathfrak{g}$, определяющееся следующей формулой

$$\omega(Y) = \omega \big(hor(Y) + vert(Y) \big) = \omega \big(vert(Y) \big) := \xi^{-1} \big(vert(Y) \big),$$

где ξ — сквозное отображение $\xi:\mathfrak{g}\to T_eG\overset{(d\sigma_x)_e}{\longrightarrow}T_xE$.

5.17. Теорема. Построенная форма ω обладает следующими свойствами:

- 1) $\omega(Y^*) = Y$;
- 2) $(R_q^*\omega)(Y) = \operatorname{Ad}(g^{-1})(\omega(Y)).$

Наоборот, если задана 1-форма ω на E со значениями в \mathfrak{g} , удовлетворяющая свойствам 1) и 2), то $\ker \omega|_x = hor_x - c$ вязность на E.

Доказательство. Пункт 1) сразу следует из определения. Для доказательства 2) достаточно проверить равенство отдельно на горизонтальных и вертикальных векторных полях. Пусть Y = hor(Y). Тогда $\mathrm{Ad}(g^{-1}) = 0$, и по определению G-инвариантности $R_g Y$ — горизонтально. Поэтому $(R_g^*\omega)(Y) = \omega \big(dR_g(Y)\big) = 0$. Если же Y вертикально, то существует $W \in \mathfrak{g}$, для которого $Y = W^*$. Тогда

$$(R_g^*\omega)(Y) = (R_g^*\omega)(W^*) = \omega(dR_g(W^*)) = \omega((\operatorname{Ad}(g^{-1})W)^*) = \operatorname{Ad}(g^{-1})(W) = \operatorname{Ad}(g^{-1})(\omega(W^*)) = \operatorname{Ad}(g^{-1})(Y).$$

Вторая часть теоремы предоставляется читателю, отметим, 11 только, что условие 2) определяет связность, а 1) отвечает за то, что 1-форма, построенная по определённой связности совпадала с исходной. \square

6. Список вопросов к экзамену

- 1. Аффинная связность на многообразии. Дифференцирование векторного поля, заданного вдоль кривой.
- 2. Риманова связность: существование и единственность.
- 3. Тензор кривизны Римана, его свойства.
- 4. Геодезические, геодезическая экспонента.
- 5. Существование геодезической, соединяющей две близкие точки.
- 6. Ортогональность «геодезической сферы» и «геодезического радиуса».
- 7. Теорема Хопфа—Ринова.
- 8. Связь геодезической полноты и полноты в смысле метрического пространства.
- 9. Функционал действия и функционал длины.

¹¹ Если не ошибаюсь.

- 10. Формула первой вариации.
- 11. Формула второй вариации.
- 12. Гессиан функционала действия. Положительная полуопределённость гессиана функционала действия на кратчайшей геодезической.
- 13. Поля Якоби, сопряжённые точки, связь с гессианом функционала действия.
- 14. Поля Якоби и геодезические вариации.
- 15. Индекс гессиана функционала действия и сопряжённые точки (без доказательства).
- 16. Сопряжённые точки и геодезическая экспонента, существование несопряжённых точек.
- 17. Коцепные комплексы, их отображения, коцепная гомотопия.
- 18. Лемма Пуанкаре и её следствия.
- 19. Точная последовательность Майера—Вьеториса, её применения.
- 20. Локально тривиальные расслоения, склеивающий коцикл. Изоморфизм расслоений. Нетривиальность листа Мёбиуса как расслоения над окружностью.
- 21. Расслоения со структурной группой. Изоморфизм (эквивалентность) расслоений со структурной группой.
- 22. Главное G-расслоение, правое действие G на тотальном пространстве. Тривиальность главного G-расслоения, допускающего глобальное сечение.
- 23. Индуцированные расслоения.
- 24. Эквивалентность главных расслоений, индуцированных гомотопными отображениями.
- 25. Классификация главных G-расслоений.
- 26. Конструкция классифицирующего пространства. Грассманиан.
- 27. Векторные расслоения и операции над ними.
- 28. Связность общего вида.
- 29. Форма связности в расслоении со структурной группой.

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

G-пространство, 18	Нулевое пространство гессиана, 11
Аффинная связность, 1	Овеществление, 27
База расслоения, 17 Бесконечномерный комплексный грассманиан, 23	Оператор дифференцирования, 13 Отображения перехода, 17
Вариация	Параллельный перенос, 2
геодезическая, 11	Параметризованная кривая, 1
двупараметрическая, 9	Погружение, 25 Поднятие кривой, 28
кривой, 8	Подрасслоение, 27
Векторное поле вдоль кривой, 1	Последовательность
левоинвариантное, 28	Майера—Вьеториса, 15, 16
параллельное, 2	короткая точная, 15
якобиево, 11	точная, 15
Геодезическая, 5	Приклеивание по отображению, 21
вариация, 11	Произведение расслоений, 26 тензорное, 27
минимальная, 7	Прообраз расслоения, 19
сфера, 6	Пространство
экспонента, 5	нулевое гессиана, 11
Гессиан, 9	паракомпактное, 2
Гладкое распределение, 28 Горизонтальная кривая, 28	Прямой предел, 20
Группа голономии, 28	Распределение
Двупараметрическая вариация, 9	G-инвариантное, 28
Действие	гладкое, 28
группы, 18	Расслоение векторное, 25
свободное, 19	касательное, 25
Измельчение, 17	локально тривиальное, 17
Изоморфизм расслоений, 17	локально тривиальное со структурной группой,
со структурной группой, 18	18
Индекс гессиана, 12	нормальное, 25
Касательное пространство к $\Omega(M,P,Q)$, 8	универсальное, 22
Классифицирующее пространство, 22	Связность
Клеточное пространство, 21	аффинная, 1
конечного типа, 21 Ковариантный функтор, 14	общего вида, 28 симметричная, 3
Когомологии де Рама, 14	согласованная с римановой метрикой, 2
Комбинация отображений, 17	Сечение
Коммутатор, 1	ненулевое, 26
Комплекс	расслоения, 26
коцепной, 13	Символы Кристоффеля, 1
цепной, 13	Слой, 17 Сопряжённое расслоение, 27
Комплексификация, 28 Комплексная структура, 27	Сопряженное расслоение, 21 Сопряжённые точки, 11
Координатные функции, 17	Степень вырождения формы, 11
Коэффициент связности, 1	Сумма Уитни, 27
Кратность сопряжённых точек, 11	Тензор кривизны Римана, 4
Кривая горизонтальная, 28	Тензорное произведение расслоений, 27
Критический путь, 9	Теорема
Левоинвариантное векторное поле, 28	Mopca, 12
Лемма Пуанкаре, 14	Сарда, 13
Лист Мёбиуса, 17	Хопфа—Ринова, 7
Многообразие	о классификации главных <i>G</i> -расслоений, 22 Тотальное пространство, 17
Грассмана, 23	Точная
Штифеля, 23 геодезически полное, 5	гомотопическая последовательность расслоения,
Морфизм	23
векторных расслоений, 26	последовательность, 15
коцепных комплексов, 13	форма, 14

```
Тривиализующие окрестности, 17
Тривиализующий атлас, 17
Уравнение
  Якоби, 11
  геодезической, 5
Условие коцикла, 17
Форма
  замкнутая, 14
  связности, 29
  точная, 14
Формула
  второй вариации, 10
  первойвариации, 9
Функтор
  ковариантный, 14
  непрерывный, 27
Функции склейки, 17
Функционал
  действия, 8
  длины дуги, 8
  энергии, 8
Цепная гомотопия, 14
Эквивалентность расслоений, 18
Эквивариантное отображение, 18
Якобиево поле, 11
```

Литература

[1] Милнор Дж., Теория Морса. М.: Мир, 1965.

Литература

[3] Warner G., Topics in topology and homotopy theory.

[2] Хьюзмоллер Д., Расслоенные пространства. М.: Мир, 1970.

	Содержание	
1.	Риманова геометрия	1
	1.1. Аффинная связность	1
	1.2. Параллельные векторные поля	2
	1.3. Риманова связность	2
	1.4. Тензор кривизны Римана	4
	1.5. Геодезические	5
	1.6. Геодезическая экспонента	5
	1.7. Минимальные геодезические	6
2.	Вариационная теория геодезических	8
	2.1. Гессиан	9
	2.2. Якобиевы поля	11
	2.3. Сопряжённые точки	11
3.	Когомологии де Рама	13
٠.	3.1. Последовательность Майера-Вьеториса	15
4.	Локально тривиальные расслоения	17
	4.1. Локально тривиальные расслоения со структурной группой	18
	4.2. Главные <i>G</i> -расслоения	18
	4.3. Классификация главных G-расслоений	20
	4.4. Точная гомотопическая последовательность расслоения	$\frac{23}{23}$
	4.5. Конструкция классифицирующего пространства	23
ĸ	Векторные расслоения	24
υ.	5.1. Ассоциированное расслоение	24
	5.2. Векторные расслоения	$\frac{24}{25}$
	• •	$\frac{25}{26}$
	r r	$\frac{20}{26}$
	5.4. Операции над векторными расслоениями	$\frac{20}{27}$
	5.5. Комплексные и вещественные расслоения	
	5.6. Связности общего вида	28
	5.7. Связность в главном расслоении	28
6.	Список вопросов к экзамену	29
П	редметный указатель	31

33