Code with output

Step 1: Importing necessary libraries

```
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
from patsy import dmatrices
import sklearn
import seaborn as sns
import os
print(os.getcwd())
path=os.getcwd()
os.listdir(path)
```

```
•[10]: import numpy as np
       import pandas as pd
       import tensorflow as tf
       import matplotlib.pyplot as plt
       %matplotlib inline
       from patsy import dmatrices
       import sklearn
       import seaborn as sns
       import os
       print(os.getcwd())
       path=os.getcwd()
       os.listdir(path)
       /drive/notebooks
[10]: ['IBM Data.csv',
        'IBM Attrition Data.csv',
        \verb|'IBM_Employee_Attrition_Prediction.ipynb',\\
        'Untitled.ipynb',
        'Untitled1.ipynb'
        'Untitled2.ipynb',
        'Untitled3.ipynb',
        'Untitled4.ipynb',
        'ibm attrition data.csv',
        'ibm data.csv',
        'raj practice (2).ipynb',
        'weather data.csv',
        'Lorenz.ipynb',
        'sqlite.ipynb',
```

Step 2: Importing dataset

Code:

data=pd.read_csv("/drive/notebooks/ibm data.csv")
data.head()

Step 3: showing column names

```
names = dataframe.columns.values
print(names)
```

```
names = dataframe.columns.values
print(names)

['Age' 'Attrition' 'Department' 'DistanceFromHome' 'Education'
    'EducationField' 'EnvironmentSatisfaction' 'JobSatisfaction'
    'MaritalStatus' 'MonthlyIncome' 'NumCompaniesWorked' 'WorkLifeBalance'
    'YearsAtCompany']
```

Step 4 : creating histogram of age for employees

```
# histogram for age
import matplotlib.pyplot as plt
plt.figure(figsize=(8,5))
dataframe['Age'].hist(bins=70)
plt.title("Age distribution of Employees")
plt.xlabel("Age")
plt.ylabel("# of Employees")
plt.show()
```


Step 5: explore data for attrition by age

Code:

```
# explore data for Attrition by Age
plt.figure(figsize=(10,6))
plt.scatter(dataframe.Attrition,dataframe.Age, alpha=.55)
plt.title("Attrition by Age ")
plt.ylabel("Age")
plt.grid(b=True, which='major',axis='y')
plt.show()
```


Step 6 : display bar graph for data of left employess breakdown

```
# explore data for Left employees breakdown
plt.figure(figsize=(7,6))
dataframe.Attrition.value_counts().plot(kind='barh',color='blue',alpha=.65)
plt.title("Attrition breakdown")
plt.show()
```


Step 7 : plotting bargraph for education field distribution Code:

explore data for Education Field distribution
plt.figure(figsize=(12,3))
dataframe.EducationField.value_counts().plot(kind='barh',color='b',alpha=.65)
plt.title("Education Field Distribution")
plt.show()

Step 8 : exploring data for martial status

Code:

```
# explore data for Marital Status
plt.figure(figsize=(3,6))
dataframe.MaritalStatus.value_counts().plot(kind='bar',alpha=.5)
plt.show()
```


Step 9: describing dataframe

Code:

dataframe.describe()

dataframe.describe() □ ↑ ↓ ± ♀ ii											
	Age	DistanceFromHome	Education	EnvironmentSatisfaction	JobSatisfaction	MonthlyIncome	NumCompaniesWorke				
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	1470.00000				
mean	36.923810	9.192517	2.912925	2.721769	2.728571	6502.931293	2.69319				
std	9.135373	8.106864	1.024165	1.093082	1.102846	4707.956783	2.49800				
min	18.000000	1.000000	1.000000	1.000000	1.000000	1009.000000	0.00000				
25%	30.000000	2.000000	2.000000	2.000000	2.000000	2911.000000	1.0000				
50%	36.000000	7.000000	3.000000	3.000000	3.000000	4919.000000	2.0000				
75%	43.000000	14.000000	4.000000	4.000000	4.000000	8379.000000	4.00000				
max	60.000000	29.000000	5.000000	4.000000	4.000000	19999.000000	9.0000				
4											

Step 10: information about dataset

Code:

dataframe.info()

```
45]: dataframe.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1470 entries, 0 to 1469
    Data columns (total 13 columns):
     # Column
                               Non-Null Count Dtype
     0
                                1470 non-null
         Age
     1 Attrition
                               1470 non-null object
      2 Department
                              1470 non-null object
                              1470 non-null int64
     3 DistanceFromHome
      4 Education
                              1470 non-null int64
     5
        EducationField
                               1470 non-null object
      6 EnvironmentSatisfaction 1470 non-null int64
      7 JobSatisfaction 1470 non-null int64
                               1470 non-null object
        MaritalStatus
                              1470 non-null int64
1470 non-null int64
        MonthlyIncome
     10 NumCompaniesWorked
     11 WorkLifeBalance
                              1470 non-null int64
     12 YearsAtCompany
                               1470 non-null int64
    dtypes: int64(9), object(4)
    memory usage: 126.4+ KB
```

Step 11: displaying dataframe columns

Code:

Step 12: showing standard deviation in dataframe

```
dataframe.std()
```

```
[47]: Age
                                   9.135373
      DistanceFromHome
                                   8.106864
      Education
                                   1.024165
      EnvironmentSatisfaction
                                  1.093082
      JobSatisfaction
                                  1.102846
      MonthlyIncome
                               4707.956783
      NumCompaniesWorked
                                  2.498009
      WorkLifeBalance
                                   0.706476
      YearsAtCompany
                                   6.126525
      dtype: float64
```

Showing attrition data

Step 13: building a logistic regression model

```
# building up a logistic regression model
X = dataframe.drop(['Attrition'],axis=1)
X.head()
Y = dataframe['Attrition']
Y.head()
```

```
[53]: 0 1
1 0
2 1
3 0
4 0
Name: Attrition, dtype: int64
```

Step 14: replacing columns names with numeric values

Code:

```
dataframe['EducationField'].replace('Life Sciences',1, inplace=True)
dataframe['EducationField'].replace('Medical',2, inplace=True)
dataframe['EducationField'].replace('Marketing', 3, inplace=True)
dataframe['EducationField'].replace('Other',4, inplace=True)
dataframe['EducationField'].replace('Technical Degree',5, inplace=True)
dataframe['EducationField'].replace('Human Resources', 6, inplace=True)
dataframe['EducationField'].value_counts()
```

```
dataframe['EducationField'].replace('Life Sciences',1, inplace=True)
      dataframe['EducationField'].replace('Medical',2, inplace=True)
      dataframe['EducationField'].replace('Marketing', 3, inplace=True)
dataframe['EducationField'].replace('Other',4, inplace=True)
      dataframe['EducationField'].replace('Technical Degree',5, inplace=True)
      dataframe['EducationField'].replace('Human Resources', 6, inplace=True)
[55]: dataframe['EducationField'].value_counts()
55]: 1
           606
           464
     3
           159
     5
           132
     4
            82
            27
     Name: EducationField, dtype: int64
[56]: dataframe['Department'].value_counts()
56]: Research & Development
     Sales
     Human Resources
     Name: Department, dtype: int64
```

Step 15: showing the values of department column

```
dataframe['Department'].value_counts()
```

```
8]: dataframe['Department'].value_counts()

8]: 1 961
2 446
3 63
Name: Department, dtype: int64
```

Step 16: displaying values of martial status

Code:

```
dataframe['MaritalStatus'].value_counts()
[59]: dataframe['MaritalStatus'].value_counts()
[59]: Married
                  673
      Single
                 470
      Divorced 327
      Name: MaritalStatus, dtype: int64
[60]: dataframe['MaritalStatus'].replace('Married',1, inplace=True)
      dataframe['MaritalStatus'].replace('Single',2, inplace=True)
      dataframe['MaritalStatus'].replace('Divorced',3, inplace=True)
[61]: dataframe['MaritalStatus'].value_counts()
[61]: 1
           673
      2
           470
           327
      Name: MaritalStatus, dtype: int64
```

Step 17: displaying datatypes of various columns

```
x=dataframe.select_dtypes(include=['int64'])
x.dtypes
```

```
[62]: x=dataframe.select_dtypes(include=['int64'])
     x.dtypes
[62]: Age
                              int64
     Attrition
                              int64
     Department
                              int64
     DistanceFromHome
                              int64
     Education
                              int64
     EducationField
                             int64
     EnvironmentSatisfaction int64
     JobSatisfaction
                             int64
     MaritalStatus
                             int64
     MonthlyIncome
                             int64
     NumCompaniesWorked
                             int64
     WorkLifeBalance
                             int64
     YearsAtCompany
                              int64
     dtype: object
```

Step 18: displaying columns in x(dataframe named as x)

Code:

Step 19: displaying showing attrition and data of y

Step 21: testing accuracy of model

Code:

```
y = np.ravel(y)
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
model = model.fit(x, y)

# check the accuracy on the training set
model.score(x, y)
```

```
[32]: y = np.ravel(y)

☐ ↑ ↓ ৳ ♀ ■

[33]: from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
model = model.fit(x, y)

# check the accuracy on the training set
model.score(x, y)

/opt/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver wi
ll be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.

FutureWarning)

[33]: 0.8408163265306122
```

2

Step 22: testing mean of y

```
y.mean()
0.16122448979591836
```

Step 23:

Code:

```
X_train,X_test,y_train,y_test=sklearn.model_selection.train_test_split(x,y, test_size=0.3, random_state=0)
model2=LogisticRegression()
model2.fit(X_train, y_train)
```

Step 24: checking model prediction

```
predicted= model2.predict(X_test)
print (predicted)
```

Step 25 : checking model for x_test

Code:

```
probs = model2.predict_proba(X_test)
print (probs)
     [37]: probs = model2.predict_proba(X_test)
           print (probs)
           [[0.86257761 0.13742239]
            [0.80710189 0.19289811]
            [0.7429987 0.2570013 ]
            [0.83583504 0.16416496]
            [0.73307035 0.26692965]
            [0.78942615 0.21057385]
            [0.85718191 0.14281809]
            [0.85697723 0.14302277]
            [0.96732187 0.03267813]
            [0.93781765 0.06218235]
            [0.95112889 0.04887111]
            [0.83140356 0.16859644]
```

Step 26: displaying metrics of predicted and tested probability

Code:

```
from sklearn import metrics

print (metrics.accuracy_score(y_test, predicted))
print (metrics.roc_auc_score(y_test, probs[:, 1]))

3]: from sklearn import metrics

print (metrics.accuracy_score(y_test, predicted))
print (metrics.roc_auc_score(y_test, probs[:, 1]))

0.8435374149659864

0.6500577589526376
```

Step 27: displaying models2 data

```
print (metrics.confusion_matrix(y_test, predicted))
print (metrics.classification_report(y_test, predicted))
```

[39]:				s.confusion_m s.classificat			
	[[371	0]				
	[69	1]]				
				precision	recall	f1-score	support
			0.0	0.84	1.00	0.91	371
			1.0	1.00	0.01	0.03	70
	mic	ro	avg	0.84	0.84	0.84	441
	mac	ro	avg	0.92	0.51	0.47	441
	weight	ed :	avg	0.87	0.84	0.77	441

Step 28 : display values for x_train

prii	nt (X	train)					
[40]:	print	(X_train)					
		Intercept	Age	Department	DistanceFromHome	Education	\
	338	1.0	30.0	2.0	5.0	3.0	
	363	1.0	33.0	2.0	5.0	3.0	
	759	1.0	45.0	3.0	24.0	4.0	
	793	1.0	28.0	1.0	15.0	2.0	
	581	1.0	30.0	1.0	1.0	3.0	
	320	1.0	27.0	2.0	2.0	3.0	
	452	1.0	45.0	2.0	2.0	3.0	
	195	1.0	37.0	1.0	21.0	3.0	
	776	1.0	20.0	2.0	9.0	3.0	
	1295	1.0	41.0	2.0	4.0	1.0	
	70	1.0	59.0	2.0	1.0	1.0	
	1135	1.0	46.0	2.0	1.0	4.0	
	1011	1.0	36.0	2.0	3.0	4.0	

Step 28 : checking values to according to parameters to check the probability of attrition of employee

Code:

#add random values to according to the parameters mentioned above to check the proabily of attrition of the employee kk=[[1.0, 23.0, 1.0, 500.0, 3.0, 24.0, 1.0]] print(model.predict_proba(kk))

[[7.14139240e-07 9.99999286e-01]]