CubeSat Control Platform + ACTIV 10/24 Meeting

General Updates/Reminders

Student Research Symposium is on **November 15**th in the union

- -If you haven't already, please respond to the poll in Discord regarding session selection
- -The goal is to show up with working demos of the inverted pendulum and ACTIV (1-DoF) as well as the assembled expanded 1U CubeSat
- -As it's the 21st century, we should also make use iPads/monitors to display renders or supplement inverted pendulum demonstration (plot PID controller after demo)

[Justin]: IMU Class

Progress completed this past week

- -IMU class structure is complete and nearly applicable
- -Written in accordance with SOLID principles to allow for straightforward manipulation of the class

Goals for next week

- -Tune IMU class to mitigate incorrect gyro offsets (it currently is calibrating to the incorrect offset and quickly immediately loses accuracy
- -Integrate IMU class and Simple_PID Python package with Dylan's ODrive torque control code to control pendulum
- -Store pendulum arm angles in database to easily plot PID algorithm

Anticipated Challenges

-Working with new bookworm RPi OS update, particularly with installing python packages

Clean Code **Spaghetti**

[Justin]: IMU Class, Application Example

```
import InertialMeasurementUnit
import time

IMU1 = InertialMeasurementUnit()
while True:
angle_x, angle_y, angle_z = IMU1.get_euler_angles()
print(f"Roll: {angle_x:.2f}, Pitch: {angle_y:.2f}, Yaw: {angle_z:.2f}")
time.sleep(0.1)
```


[Justin]: Required Motor Torque Analysis

Progress completed this past week

- -Wrote MatLab script which determines torque required for each of the four motors in ACTIV
- -Idealized ACTIV to three hoops of negligible thickness, homogenous mass distribution, and varying mass and radii along with a central CubeSat
- -Motor numbering scheme is increasing in order from outer rings to inner ring
- -R80 (rated torque of 1.2 Nm) will be sufficient for outermost ring while R60 (rated torque of 0.75 Nm) will suffice, if not be overkill, for motors 2 and 3. An R-series motor may not be necessary for motor 4.

- -Purchase motors pending informal peer review of torque determination script
- -Begin designing ring/CubeSat and ring/ring rotary unions.

Anticipated Challenges

-None

Motor	1	torque	required:	0.636	Nm
Motor	2	torque	required:	0.323	Nm
Motor	3	torque	required:	0.125	Nm
Motor	4	torque	required:	0.010	Nm

[Isaac] 2DOF and 3DOF CubeSats

Progress completed this past week

-Remade cube for 2-piece modular design

-remade pizza table to have diagonal legs

-remade reaction wheel to go onto cubesat

Goals for next week

-print cubesat and parts

Anticipated challenges

[Dylan] + [Embrace Fall]

Progress completed this past week

- I picked a pumpkin
 - Then carved the pumpkin
- I also picked some apples
 - Then made apple Pie

Goals for next week

- Work on ACTIV Motor Torque Calcs w/ Justin
- Get CAN Control
 - Torque Control
 - Controlling multiple motors at once
- Create Database to store
 - IMU data
 - Motor Data
- Implement simple PID on Inverted Pendulum w/ Justin
- Work on Website for live streaming data visualization
 - Maybe get unity sim integrated
- Work with Justin/Ryan on Clean Code

Anticipated challenges

- I have stupid exams this week :(

[Ella] + [Inverted pendulum]

Progress completed this past week

- -Added updates to arm of pendulum
- -Assembled second pendulum together

Goals for next week

-Talk to Justin

Anticipated challenges

-Edited the wrong arm so had to start the process over

[Jacob] + [Gyroscope Rings & Camera Stuff]

Progress completed this past week

- Discussed image processing with a legit engineer. Found some code that may be a useful beginning for an onboard camera.
- Came up with a weak idea for the gyroscope, need to put more time into that.

Goals for next week

- Come to a conclusion on the slip ring/gyroscope layout.
- Research more about how real satellite use their cameras for attitude determination.

Anticipated challenges

-Getting familiar with python.

DESIGNERS

Look, we have similar ideas.

No! You stole my idea.

PROGRAMMERS

Man, I stole your code.

boredpanda.com

[Ryan] + [Software]

Progress completed this past week

-Continued to work on new software structure

Goals for next week

- -Get code to workable level with IMU/tilt
- -Finalize structure with placeholders and post to github

Anticipated challenges

-Time/Complexity

[Relevant]

Visual System Updates

[Assignee] + [Task Title]

Progress completed this past week

-[Discuss progress]

-Highlight based on: Complete, >50%, <50%

Goals for next week

-[Discuss goals]

Anticipated challenges

-[discuss challenges, request assistance if needed]

[Relevant photos if needed]

