PROJET 5

Segmentez des clients d'un site e-commerce

SOMMAIRE

PARTIE 1 – REQUÊTES SQL

PARTIE 2 – ANALYSE EXPLORATOIRE

PARTIE 3 – CONSTRUCTION DU MODÈLE DE CLASSIFICATION

PARTIE 4 – MAINTENANCE DU MODÈLE

Partie 1

SQL

En excluant les commandes annulées, quelles sont les commandes récentes de moins de 3 mois que les clients ont reçues avec au moins 3 jours de retard ?

```
WITH

Cote_latest AS(
SELECT MAX(order_purchase_timestamp) AS latest_order
FROM orders
),

cte_age AS(
SELECT *,
ROUND(JULIANDAY(latest_order) - JULIANDAY(order_purchase_timestamp)-1) AS order_age,
ROUND(JULIANDAY(order_delivered_customer_date) - JULIANDAY(order_estimated_delivery_date)-1) AS delay
FROM orders, cte_latest
)

SELECT *
FROM cte_age a
WHERE

a.order_status <> "cancelled"
AND(a.order_age <90)
AND(a.delay >3);
```

Г		order_status	order_purchase_timestamp	order_approved_at	order_delivered_carrier_date	order_delivered_customer_date	order_estimated_delivery_date	latest_order	order_age	delay
232	df8d4ab3	delivered	2018-08-05 14:39:32	2018-08-05 14:50:14	2018-08-15 05:41:00	2018-08-28 21:33:02	2018-08-14 00:00:00	2018-10-17 17:30:18	72.0	14.0
233	d2c9a00ee	delivered	2018-07-25 01:25:29	2018-07-25 01:35:12	2018-08-21 12:14:00	2018-08-22 17:51:41	2018-08-10 00:00:00	2018-10-17 17:30:18	84.0	12.0
234	952dee75e	delivered	2018-08-07 14:07:40	2018-08-07 14:15:21	2018-08-20 12:25:00	2018-08-21 18:07:43	2018-08-14 00:00:00	2018-10-17 17:30:18	70.0	7.0
235	7320036	delivered	2018-08-02 12:06:47	2018-08-02 13:05:56	2018-08-10 14:42:00	2018-08-13 15:50:48	2018-08-08 00:00:00	2018-10-17 17:30:18	75.0	5.0
236	8275807b	delivered	2018-08-10 11:46:09	2018-08-11 02:50:25	2018-08-14 10:09:00	2018-09-03 09:32:31	2018-08-28 00:00:00	2018-10-17 17:30:18	67.0	5.0
237	fe4b45f0	delivered	2018-08-14 23:29:21	2018-08-16 03:05:11	2018-08-16 13:28:00	2018-08-28 18:02:52	2018-08-24 00:00:00	2018-10-17 17:30:18	63.0	4.0
238	dba77d8	delivered	2018-07-19 08:37:26	2018-07-21 03:25:17	2018-07-23 15:31:00	2018-08-21 01:12:45	2018-08-10 00:00:00	2018-10-17 17:30:18	89.0	10.0
239	130fe9b5	delivered	2018-08-02 22:46:54	2018-08-02 23:04:06	2018-08-15 17:42:00	2018-08-21 00:03:26	2018-08-16 00:00:00	2018-10-17 17:30:18	75.0	4.0

Qui sont les vendeurs ayant généré un chiffre d'affaires de plus de 100 000 Real sur des commandes livrées via Olist?

```
SELECT
Seller_id,
ROUND (SUM(price)) AS seller_revenue
FROM
The seller_id
Order_items
GROUP BY
Seller_id
Seller_id
Seller_id
Seller_id
WHERE
Seller_revenue > 100000
GROER by
Seller_Revenue DESC;
```

	seller_id	seller_revenue
1	4869f7a5dfa277a7dca6462dcf3b52b2	229473.0
2	53243585a1d6dc2643021fd1853d8905	222776.0
3	4a3ca9315b744ce9f8e9374361493884	200473.0
4	fa1c13f2614d7b5c4749cbc52fecda94	194042.0
5	7c67e1448b00f6e969d365cea6b010ab	187924.0
5	7e93a43ef30c4f03f38b393420bc753a	176432.0
7	da8622b14eb17ae2831f4ac5b9dab84a	160237.0
3	7a67c85e85bb2ce8582c35f2203ad736	141746.0
þ	1025f0e2d44d7041d6cf58b6550e0bfa	138969.0
10	955fee9216a65b617aa5c0531780ce60	135172.0
11	46dc3b2cc0980fb8ec44634e21d2718e	128111.0
12	6560211a19b47992c3666cc44a7e94c0	123305.0
13	620c87c171fb2a6dd6e8bb4dec959fc6	114774.0
14	7d13fca15225358621be4086e1eb0964	113629.0
15	5dceca129747e92ff8ef7a997dc4f8ca	112156.0
16	1f50f920176fa81dab994f9023523100	106939.0
17	cc419e0650a3c5ba77189a1882b7556a	104288.0
18	a1043bafd471dff536d0c462352beb48	101901.0

Qui sont les nouveaux vendeurs (moins de 3 mois d'ancienneté) qui sont déjà très engagés avec la plateforme (ayant déjà vendu plus de 30 produits) ?

```
SELECT *

FROM (

SELECT

seller_id,
COUNT(product_id) AS item_count,
MIN(order_purchase_timestamp) AS min_date_order

FROM
order_items oi

JOIN orders o
ON o.order_id = oi.order_id

GROUP BY
seller_id
ORDER BY
item_count desc
)

WHERE
min_date_order < (SELECT DATE(MAX(order_purchase_timestamp),'-3 month') FROM orders)
AND (item_count >30);
```

_			
	seller_id	item_count	min_date_order
1	6560211a19b47992c3666cc44a7e94c0	2033	2017-02-17 07:39:19
2	4a3ca9315b744ce9f8e9374361493884	1987	2017-01-08 09:35:14
3	1f50f920176fa81dab994f9023523100	1931	2017-04-03 22:00:31
4	cc419e0650a3c5ba77189a1882b7556a	1775	2017-01-31 17:15:33
5	da8622b14eb17ae2831f4ac5b9dab84a	1551	2017-02-05 21:46:05
6	955fee9216a65b617aa5c0531780ce60	1499	2017-07-24 11:33:53
7	1025f0e2d44d7041d6cf58b6550e0bfa	1428	2017-07-09 11:15:16
8	7c67e1448b00f6e969d365cea6b010ab	1364	2017-01-26 22:44:11
9	ea8482cd71df3c1969d7b9473ff13abc	1203	2017-08-15 12:54:48
10	7a67c85e85bb2ce8582c35f2203ad736	1171	2017-01-27 12:15:07
11	4869f7a5dfa277a7dca6462dcf3b52b2	1156	2017-03-07 12:43:03
12	3d871de0142ce09b7081e2b9d1733cb1	1147	2017-03-05 12:29:19
13	8b321bb669392f5163d04c59e235e066	1018	2017-10-27 15:34:03
14	cca3071e3e9bb7d12640c9fbe2301306	830	2016-10-03 22:06:03
15	620c87c171fb2a6dd6e8bb4dec959fc6	798	2016-10-04 13:15:46
16	a1043bafd471dff536d0c462352beb48	770	2017-02-14 10:44:33
17	e9779976487b77c6d4ac45f75ec7afe9	750	2017-03-01 09:25:31
18	f8db351d8c4c4c22c6835c19a46f01b0	724	2017-01-25 22:46:24
19	d2374cbcbb3ca4ab1086534108cc3ab7	631	2017-02-10 15:36:37
20	391fc6631aebcf3004804e51b40bcf1e	613	2016-10-06 00:06:17
21	fa1c13f2614d7b5c4749cbc52fecda94	586	2017-01-07 20:45:31

Quels sont les 5 codes postaux, enregistrant plus de 30 commandes, avec le pire review score moyen sur les 12 derniers mois ?

```
SELECT
           s.seller_zip_code_prefix,
            COUNT (DISTINCT oi.order_id) AS order_count,
           ROUND (AVG(ro.review_score)) AS avg_score,
           ro.review_creation_date
          sellers s
        LEFT JOIN
           order_items oi ON s.seller_id = oi.seller_id
            order_reviews ro ON ro.order_id = oi.order_id
       GROUP BY
           s.seller_zip_code_prefix
SELECT *
FROM
   review
WHERE
   AND review_creation_date BETWEEN
       (SELECT DATE (MAX (review_creation_date), '-12 month') FROM order_reviews
       (SELECT MAX(review_creation_date) FROM order_reviews)
   avg_score LIMIT 5
```

	seller_zip_code_prefix	order_count	avg_score	review_creation_date
1	6506	115	2.0	2017-09-19 00:00:00
2	1512	69	3.0	2017-11-02 00:00:00
3	3017	98	3.0	2017-10-18 00:00:00
4	3273	45	3.0	2018-05-12 00:00:00
5	3476	36	3.0	2017-10-25 00:00:00

Partie 2

ANALYSE EXPLORATOIRE

Nouvelles variables calculées

Répartition du nombre de commandes par client

Comme annoncé, la part de clients ayant passé plusieurs commande est assez faible.

L'ancienneté des commandes est répartie uniformément avec un pic d'activité notable environ 1 an avant l'édition des données.

La distribution des retards de livraison semble suivre une loi normale avec un retard médian aux alentours de 10 jours.

L'analyse bivariée vis-à-vis des notations clients nous montre clairement que le délai de livraison et le retard sont impactant dans l'évaluation. Les fortes dépenses sont plus présentes dans les mauvaises notes.

Normalisation des données

customer_unique_i d	avg_pro d_vol	avg_prod _weight	-	recency	monetary	frequenc y	delivery_time	delay				
861eff4711a542e4b 93843c6dd7febb0	107136.0	8683.0	4.0	519	146.87	1	8.0	-11.0				
290c77bc529b7ac93 5b93aa66c333dc3	53400.0	10150.				avg_prod_vo	median_revie		recency	monetary	frequency	delay
060e732b5b29e8181 a18229c7b0b2b5e	45968.0	8267.	customer_unique_id		d		w_score					
259dac757896d24d 7702b9acbbff3f3c	79968.0	12160.	861eff4711a542	2e4b93843c6 d7febb		3.956612	2 -0.068053	1	1.507536	-0.104498	-0.163518	0.085023
345ecd01c38d18a90 36ed96c73b8d066	23625.0	5200.	290c77bc529b7		6	1.644373	3 0.677346	-0	0.069863	0.187999	-0.163518	0.385157
			060e732b5b29e	e8181a18229 7b0b2b5	_	1.324577	0.677346	-0).891153	-0.087657	-0.163518	1.285561
			259dac757896d	124d7702b9a bbff3f3		2.787584	0.677346	-0).454435	-0.063511	-0.163518	-0.115067
			345ecd01c38d1	18a9036ed96 73b8d06		0.363166	0.677346	-1	.353944	0.058925	-0.163518	0.585247

Encodage des variables catégorielles

product_category_name	customer_unique_id
moveis_escritorio	861eff4711a542e4b93843c6dd7febb0
utilidades_domesticas	290c77bc529b7ac935b93aa66c333dc3
moveis_escritorio	060e732b5b29e8181a18229c7b0b2b5e
moveis_escritorio	259dac757896d24d7702b9acbbff3f3c
casa_conforto	345ecd01c38d18a9036ed96c73b8d066

Partie 3

CONSTRUCTION DU MODELE

Nous avons mis 2 modèles en concurrence :

- K-Means
- Classification ascendante hiérarchique

Evaluations des modèles

	KMeans	CAH	Kprototype
Silhouette	0.168859	0.115833	0.16804

On constate que le Kmeans (ou Kmeans assimilé avec K-Prototype) retourne le meilleur score

Nous projetons nos 51 variables retenues dans un espace 3D grâce au **T-SNE**

cat 0

cat 2

Clients à fidéliser:

Achats récents Faibles dépenses Faibles fréquences Scores positifs

cat 3

Clients occasionnels / nouveaux:

Partie 4

MAINTENANCE DU MODELE

Maintenance du modèle

Nous avons entraîné notre modèle sur une période de 18 mois.

Nous avons ensuite simulé l'ajout de nouveaux clients

Maintenance du modèle

Les nouveaux clients ajoutés, nous avons évalué notre modèle à une fréquence de 2 semaines.

Il en ressort qu'un réentraînement de notre algorithme sera nécessaire à raison d'une fois toutes les 6 semaines.

CONCLUSION

Nous avons élaboré notre modèle sur la base d'attributs existants et d'autres calculés.

Les attributs du type catégorie (encodés) n'ont pas apporté d'informations significatives face aux variables RFM notamment. Nous pouvons donc nous limiter au plus à 8-10 variables numériques.

En nous limitant à 4 classes (voire 3), nous pouvons définir des actions adaptées à chaque profil de client.