Método dos Fótons Equivalentes Revisão e Aplicações

Alfredo Achterberg S. Pacheco Orientado por: Prof. Dr. Werner Krambeck Sauter

Instituto de Física e Matemática - Universidade Federal de Pelotas

25 de Setembro, 2023

Estrutura da Apresentação

- 1 Introdução e Contextualização
- Objetivos do Trabalho
- 3 Seção de Choque Diferencial e Total
- 4 Demonstração do Método para Partícula Incidente Pontual

Figura: Foto do detector ATLAS do LHC. Créditos: [https://home.web.cern.ch/science/experiments/atlas]

Colisões de partículas constituem o método experimental mais utilizado atualmente para o entendimento da estrutura fundamental da matéria e de teste para novos modelos físicos.

Estudos desse tipo de processo tem longa história na física.

- Como exemplo o trabalho de decréscimo de velocidade de partículas α e β em meios materiais por N. Bohr;
- nesse trabalho, o físico propôs que a interação de partículas carregadas pode ser entendida pelo fenômeno eletromagnético de dispersão (uma analogia);
- em 1924, E. Fermi propôs que os campos de uma partícula carregada podem ser aproximados como pulsos de onda ou fluxos de fótons virtuais.

Disso, E. J. Williams, em 1933, propôs a generalização relativística do que seria o método dos fótons equivalentes.

- O método consiste, de forma introdutória, em obter o número de fótons virtuais do campo eletromagnético de uma partícula a partir da transformada de Fourier dos mesmos campos;
- este consiste de uma aproximação semi-clássica para o cálculo desses fótons virtuais.

Figura: Esquema representando os campos relativísticos de dois íons Z_1 e Z_2

Desde tais desenvolvimentos, este método aproximativo teve maior aplicação e desenvolvimentos na área de interação nuclear e de partículas fundamentais.

- Em especial, focaremos nas colisões ultraperiféricas de íons;
- são colisões com maior distância (parâmetro de impacto) e com interação dominantemente eletromagnética;
- pela interação ser eletromagnética também há menos multiplicidade nos estados finais e os resultados experimentais são mais facilmente tratados;
- fenômenos de interesse nesses processos incluem a produção de pares de partículas a partir de colisões de fótons.

Objetivos do Trabalho

Para a realização do trabalho propomos uma revisão bibliográfica com cálculo analítico e computacional de quantidades de interesse dos processos de colisão. Para isso, temos os seguintes objetivos específicos:

- 1 realizar a revisão bibliográfica do método;
- realizar o cálculo do fator de forma para o fator de forma para diferentes distribuições de carga;
- **3** deduzir o número de fótons equivalentes para diferentes distribuições de carga;
- 4 realizar um estudo mais aprofundado sobre o fenômeno de fotoprodução de pares de partícula-antipartícula;
- 5 obter as curvas teóricas para as seções de choque de diferentes processos de colisão e compará-las com as curvas experimentais.

O problema de interesse do método é o de colisão de partículas carregadas. A quantidade de interesse em colisões é a seção de choque.

Figura: Partícula adentrando a região de espalhamento por uma seção de área $d\sigma$ e sendo espalhada em um ângulo sólido $d\Omega$.

Da figura temos as diferenciais,

$$d\sigma = |b\,db\,d\phi|,\tag{1}$$

$$d\Omega = | \operatorname{sen} \theta \, d\theta \, d\phi |.$$

(2) A seção de choque total vem pela integral sobre Ω ,

A razão entre as duas é,

$$\frac{d\sigma}{d\Omega} = \left| \frac{b}{\operatorname{sen}\theta} \frac{db}{d\theta} \right|. \tag{3}$$

$$\sigma = \int \frac{d\sigma}{d\Omega} \operatorname{sen} \theta \, d\theta \, d\phi. \tag{4}$$

Que é a seção de choque diferencial.

Isto para uma partícula incidente individual!

Estamos levando em conta uma partícula individual. Se quisermos tratar um feixe de partículas, vamos precisar definir a *luminosidade*.

Luminosidade

Para um feixe de N partículas com mesma energia atravessando a área $d\sigma$, a luminosidade $\mathcal L$ é definida como a quantidade de partículas que atravessam a região de espalhamento por unidade de área por unidade de tempo.

Disso, reescrevemos a seção de choque para um feixe de múltiplas partículas,

$$dN = \mathcal{L}d\sigma, \tag{5}$$

$$\Rightarrow \frac{d\sigma}{d\Omega} = \frac{1}{\mathcal{L}} \frac{dN}{d\Omega}.$$
 (6)

A dedução do método segue os seguintes passos:

- obter os campos de uma carga pontual em movimento pela transformada de Lorentz;
- calcular a transformada de Fourier para a frequência dos campos, obtendo assim o espectro de frequência;
- a quantização do espectro de frequência nos fornece o número de fótons equivalentes dos campos da partícula.

Inicialmente consideramos uma carga em movimento como abaixo.¹

Figura: Carga q em movimento com velocidade v passando por um ponto de observação P com parâmetro de impacto b e distância r. Referencial Σ é solidário ao ponto P e Σ' é solidário à carga pontual q.

¹A partir daqui usaremos unidades naturais ($\hbar = c = 1$).

Sendo os campos elétrico e magnético escritos em termos dos potenciais,

$$\mathsf{E} = -\nabla \Phi - \frac{\partial \mathsf{A}}{\partial t},\tag{7}$$

$$B = \nabla \times A, \tag{8}$$

estes são escritos em forma explicitamente covariante usando o tensor eletromagnético,

$$F^{\mu\nu} = \begin{bmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & -B_3 & B_2 \\ E_2 & B_3 & 0 & -B_1 \\ E_3 & -B_2 & B_1 & 0 \end{bmatrix}. \tag{9}$$

Este se transforma como,

$$F^{\prime\mu\nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} F^{\alpha\beta} \tag{10}$$

onde $\Lambda^{\rm v}_{\mu}$ são os componentes da matriz de transformação de Lorentz,

$$\Lambda_{\nu}^{\mu} = \begin{bmatrix}
\gamma & -\gamma\beta & 0 & 0 \\
-\gamma\beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},$$
(11)

sendo $\gamma=(1-\beta^2)^{-1/2}$ e $\beta=v/c$ os parâmetros relativísticos da partícula.

A transformação dos campos é assim obtida como,

$$\begin{cases}
E'_{1} = E_{1} \\
E'_{2} = \gamma(E_{2} - \beta B_{3}) \\
E'_{3} = \gamma(E_{3} + \beta B_{2})
\end{cases}
\begin{cases}
B'_{1} = B_{1} \\
B'_{2} = \gamma(B_{2} + \beta E_{3}) \\
B'_{3} = \gamma(B_{3} - \beta E_{2})
\end{cases}$$
(12)

Os campos como percebidos em P, no referencial Σ' tem a forma

$$E'_1 = -\frac{qvt'}{r'^3}, \qquad E'_2 = \frac{qb}{r'^3}.$$
 (13)

Escrevemos nas coordenadas de Σ usando,

$$t' = \gamma t,$$

$$r' = \sqrt{b^2 + (vt')^2}$$

$$= \sqrt{b^2 + v^2 \gamma^2 t^2}.$$

Assim

$$E_1' = -\frac{q\gamma vt}{(b^2 + v^2v^2t^2)^{3/2}},$$
 (16)

$$E_2' = \frac{qb}{(b^2 + \gamma^2 v^2 t^2)^{3/2}},$$
 (17)

para os quais devemos aplicar a transformação de Lorentz.

(15)

Aplicando a transformada de Lorentz, temos os campos no referencial Σ' ,

$$E_1(t) = -\frac{q\gamma vt}{(b^2 + \gamma^2 v^2 t^2)^{3/2}},$$
(18)

$$E_2(t) = \frac{q\gamma b}{(b^2 + \gamma^2 v^2 t^2)^{3/2}},\tag{19}$$

$$B_3(t) = \beta E_2(t). \tag{20}$$

Aproximamos estes campos como pulsos de onda.

Analisando esses campos podemos notar que E_2 e B_3 formam um pulso de onda na direção x_1 . Ainda assim, a interação do campo E_1 pode ser analisada como um pulso de onda pela inserção de um campo magnético artificial como aproximação.

(a) Campos observados no referencial do ponto P.

(b) Pulsos aproximados P_1 e P_2 atingindo P.

Figura: Aproximação chave do método dos fótons virtuais é a de substituir os campos elétrico e magnético por pulsos de radiação equivalentes.

Com isso, iremos calcular agora os espectros de frequência², para ambos os pulsos. Estes o são

$$I_1(\omega, b) = \frac{1}{2\pi} |E_2(\omega)|^2,$$
 (21)

$$I_2(\omega, b) = \frac{1}{2\pi} |E_1(\omega)|^2.$$
 (22)

em que

$$E_{1,2}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dt \ E_{1,2}(t) e^{i\omega t}$$
 (23)

é a transformada de Fourier da parte elétrica dos pulsos.

²A energia por unidade de frequência e área de um pulso