Sound and Music Computing

Silvan David Peter - Emmanouil Karystinaios

Who are We?

Silvan David Peter:

Researcher in Music Information Research at the Institute of Computational Perception at JKU. Lecturer at JKU, University of Applied Arts Vienna. Sound & media artist.

Emmanouil Karystinaios:

Researcher at the Institute of Computational Perception (JKU). Research Topics: Computational Musicology, Music Analysis, and Graph Neural Networks. Background in Musicology, Composition, and Mathematics.

Organization Details

- 7 lectures between October 23 and January 24;
- Python Programming Language;
- Approximately biweekly soft exercises;
- Comprehension exercises during lectures;
- Final Project A composition based on techniques discussed during lectures.

Contents and Lectures

- Introduction to Music Theory
- Introduction to Machine Learning
- Tonnetz and Negative Harmony
- Deep Generation
- Formal Grammars for Symbolic Music Generation
- Agents and Reinforcement Learning
- Concert

Sound and Music Computing

Silvan David Peter - Emmanouil Karystinaios

Introduction to Music Theory

In this section we will address:

- Notes / Pitch / Temperament
- Chords and Harmony
- Rhythm

From the point of view of musical representations and encoding.

Music Representations

Music Representations - MUSICXML

```
<time>
 1.
          <beats>3</peats>
          <beat-type>4</peat-type>
          </time>
     <clef>
          <sign>G</sign>
 6.
        <line>2</line>
          </clef>
     </attributes>
10.
     <note default-x="110.48" default-y="-45.00">
11.
     <pitch>
12.
          <step>D</step>
13.
          <octave>4</octave>
14.
          </pitch>
15.
     <duration>1</duration>
16. <voice>1</voice>
17. <type>quarter</type>
18.
     <stem>up</stem>
19.
      </note>
20.
```


Music Representations - Pianoroll

Music Representations - MIDI File

```
MidiFile(type=1, ticks_per_beat=480, tracks=[
 1.
 2.
         MidiTrack([
 3.
           MetaMessage('track_name', name='Piano\x00', time=0),
          MetaMessage('time_signature', numerator=3, denominator=4, clocks_per_click=24, notated_32nd_notes_per_beat=8. time=0).
 4.
          MetaMessage('key_signature', key='D', time=0).
 5.
          MetaMessage('set tempo'. tempo=500000. time=0).
          Message('control_change', channel=0, control=121, value=0. time=0).
 7.
           Message('program change', channel=0, program=0, time=0).
 8.
 9.
           Message('control_change', channel=0, control=7, value=100, time=0),
           Message('control_change', channel=0, control=10, value=64, time=0),
10.
           Message('control_change', channel=0, control=91, value=0, time=0),
11.
12.
           Message('control change'. channel=0. control=93. value=0. time=0).
           MetaMessage('midi port'. port=0. time=0).
13.
14.
          Message('note on'. channel=0. note=62. velocity=80. time=0).
           Message('note on', channel=0, note=62, velocity=0, time=455).
15.
          Message('note on', channel=0, note=66, velocity=80, time=25).
16.
17.
           Message('note on'. channel=0. note=66. velocity=0. time=455).
           Message('note_on', channel=0, note=69, velocity=80, time=25),
18.
19.
          Message('note_on', channel=0, note=69, velocity=0, time=455),
           Message('note_on', channel=0, note=69, velocity=80, time=25),
20.
          Message('note on'. channel=0. note=69. velocity=0. time=455).
21.
22.
           Message('note on', channel=0, note=78, velocity=80, time=505).
          Message('note on'. channel=0. note=81. velocity=80. time=0).
23.
           Message('note on', channel=0, note=78, velocity=0, time=455).
24.
25.
           Message('note on'. channel=0. note=81. velocity=0. time=0).
```


Music Representations - Note Array

id	onset_beat	duration_beat	onset_quarter	duration_quar ter		duration_div	pitch	voice	divs_pq
p0n0	0	1	0	1	0	1	62	1	1
p0n1	1	1	1	1	1	1	66	1	1
p0n2	2	1	2	1	2	1	69	1	1
p0n3	3	1	3	1	3	1	69	1	1
p0n5	5	1	5	1	5	1	78	1	1
p0n6	5	1	5	1	5	1	81	1	1
p0n7	6	1	6	1	6	1	78	1	1
p0n8	6	1	6	1	6	1	81	1	1
p0n10	8	1	8	1	8	1	74	1	1
p0n11	8	1	8	1	8	1	78	1	1

Music Representations

Exercise on Music Representation

What would you need to represent a music Element i.e.:

- a Note,
- a Key Signature,
- a Time Signature
- a Dynamics' Element

Musical Encoding

- What is a musical encoding?
 - Encoding is the conversion of Musical information into a specialized format for efficient transmission or storage. More generally from one communication protocol to another.
- Why do we need to encode?
 - To store information (save a score)
 - To communicate (from one musical language to another from score to tablature, pianoroll, etc.)
 - To formalize (create formal systems and prove properties)
 - To use intelligent systems (convert human readable score to numerical function for ML)

Note Naming Conventions

- Accidentals (♯,,, Ⴉ, ♭, ♭ ♭).
 - Sharp (♯): Raise a note by a semitone
 - Double sharp (*): Raise the notes two semitones
 - Flat (b): Lower a note by a semitone
 - Double Flat (♭ ♭): Lower a note by a tone
 - Natural (4, it is usually implicit): resets the previous accidentals
- Pitch Classes: 12 of them:
 - B♯/C, C♯/D ♭ , D, D♯/E ♭ , E/F ♭ , E♯/F, F♯/G ♭ , G, G♯/A ♭ , A, A♯/B ♭ , B/C ♭
- Pitch Spelling: "musical orthography"
 - Pitch class + (alteration) + octave
 - Central C is C4

Intervals

- Intervals: Relation between notes (Pairwise distance)
- **Relative pitch:** We (humans) recognize a musical context (e.g., melody) by the relationships of its notes (i.e., the intervals) rather than the notes themselves
- Names of Intervals

Consonant and Dissonant Intervals

- Consonant vs. Dissonant Intervals
 - Consonant:
 - Unison, Octave, Perfect fifth (Perfect);
 - Fourths, thirds, sixths (Imperfect).
 - Dissonant everything else!

Equal Temperament

Temperament refers to the division of the octave into tones, semitones, microtones, etc.

The most commonly used Since the WTC by J.S. Bach is the **Equal Temperament** dividing the octave in 12 semitones.

Frequency Ratios in Equal Temperament

Interval Requesty ratio Betimal Equivalent god power (to the nearest ten thousandth) of the twelfthnoot of 2									
Unison	(72)	=	1.0000						
Minor Second	(\(\frac{72}{2}\)'	=	1.0595						
Major Second	(72)	=	1.1225						
Minor Third	(72)	=	1.1892						
Major Third	(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>=</u>	1.2599						
Perfect Fourth	(72)	900	1.3348						
Tritone	(VZ)	=	1.4142						
Perfect Fifth	(72)	=	1.4983						
Minor Sixth	(72)	<u>=</u>	1.5874						
Major Sixth	(1)2)	in a series	1.6818						
Minor Seventh		==	1.7818						
Major Seventh	(72)"		1.8897						
Octave	(1)2 Ju	=	2.0000						

Chords

Chord: a collection of notes that are heard as if sounding simultaneously

- In Western tonal music, the most common/important chords are conventional triads, which consist of 3 notes:
 - Root + third and fifth "above" the root
 - The 4 basic triads are Major, Minor, Augmented and Diminished
 - The chords are named after the root (e.g., C major is the major chord with root C)
- Chords with more notes exist, and are extensively used in many genres (e.g., jazz)
 - F9 ♭ 5, Gsus2add6

Chord structure: Major chord

Major chord

Chord structure: Triads

What would you need to encode a chord?

Scales

12 pitches: The Chromatic Scale

- Subsequences: The Major / Minor Scales
- (but there are dozens of others...)
- Why scales? -> Collection of notes that create relatively harmonious sounding intervals/triads
- Why pitch spelling? Scales are defined in intervals relative to a tonic note (no absolute reference!)

Tonality

- Tonality refers to a hierarchy of notes/chords by relations of stability/instability,
 attraction and directionality
 - In tonal music, there is a note/chord (the tonic) that serves as the center of gravity of the other pitches in the scale
- The **key** of a piece/song indicates which chord is the tonal center:
 - Examples: Beethoven's Fifth Symphony in C minor
- Cadences: chord sequences leading towards this center

Key Signature

- The key signature indicates the key (tonality) of a piece of music in the score
- Human Composers are lazy by nature! Imagine having to write all of the alterations by hand!

Scale Degrees

A scale degree is the role that each note "plays" in a key

Scale Degrees and Roman Numeral

Roman Numeral representation: Abstracts the **function** of each chord within a key:

We can express chord progressions independently of the key

Cadences

A cadence is particular combinations of Melodic (Voice Leading) and Harmonic progressions.

Perfect Augmented Cadence

Circle of Fifths

- How close are different keys?
 - How many notes are different between the keys?
- Neighbor tonality:
 - ±1 fifth (1 alteration different)
 - Relative Minor (a minor third descending
- Parallel Minor/Major:
 - Same root but different mode
 - They are not very close

By Just plain Bill - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4463183

Rhythm

Note durations

Notation,
Onset (score position) vs. duration

Articulation: (staccato, legato)

Exercise

- Think of different ways you could encode onset and duration. (Hint MIDI)
- What about articulation?

Examples of onset and duration units.

- Divisions (used in MIDI file encoding)
- Fractions of Beat
- Musical Duration encoding

Some Onset and Duration Encodings

- Divisions (used in MIDI file encoding)
- Fractions of Beat
- Musical Duration encoding

Encoding of a Score (partitura)

Chopin Op.9 No.2

