

Electric Cars: 1900-Today

Evolution and Outlook

A century-long journey from early urban electrics to today's EV revolution

Why Electric Cars Matter

Climate & Air Quality

Zero tailpipe emissions, lower lifecycle CO2 with clean grids

Energy Security

Reduce oil dependence, lower fuel and maintenance costs

Urban Health

Cleaner, quieter streets improve livability and public health

Early 1900s: The First Electric Era

Market Dominance

Around 1/3 of US cars were electric circa 1900

Technology

- Lead-acid batteries
- Simple direct-drive motors
- No hand-crank needed

Appeal

Quiet, easy to drive, favored by urban affluent buyers

The Decline: ICE Takes Over

Mid-Century: The Quiet Years

1930s-1970s

EV tech stagnated while ICE improved dramatically

Niche Applications

Milk floats, industrial trucks, limited conversions

Postwar Era

Fuel patterns and infrastructure reinforced ICE dominance

Oil Shocks Spark Revival

1973 & 1979 Crises

Oil shocks triggered alternative-energy research

Government Response

R&D programs funded EV prototypes and battery development

Early Learning

Prototypes showed potential but battery limits remained

1990s Renaissance: Policy Drives Innovation

California ZEV Mandate

Forced automakers to produce zero-emission vehicles

GM EV1 Launch

First modern OEM BEV program, leased late 1990s

Lasting Legacy

Strong public interest, lessons for future policy and tech

2000s: Hybrids Pave the Way

Hybrids Go Mainstream

Toyota Prius normalized electrified drivetrains for millions

Technology Spillover

Hybrid success accelerated battery and power-electronics advances

First Mass BEVs

Nissan Leaf (2010) proved everyday BEV practicality

The Tesla Effect: Battery Revolution

80-90%

300+

Cost Reduction

Lithium-ion battery pack costs plunged since 2010

Range Miles

Competitive ranges enabled by energy density improvements

Tesla commercialization and gigafactories created economies of scale, driving consumer demand and performance expectations

2020s: Scaling Up Rapidly

01

Rapid Adoption

EV sales and fleet shares surged globally

02

Infrastructure Expansion

Charging networks (Level 2 & DC fast) deployed substantially

03

Policy & Incentives

Subsidies, CO2 standards, ZEV targets steer markets

04

Industrial Transformation

OEM electrification commitments reshape supply chains

Key Technologies & Challenges

Batteries & Materials

Energy density, costs, lithium supply, recycling needs

Ϋ́ 2

Charging & Grids

Standards, deployment, grid impacts, smart charging

End-of-Life

Second-life applications and battery management

Consumer Barriers

Upfront cost, range anxiety, charging access

Future Outlook

Trajectory

Majority EV new-car shares projected by 2035–2040

Key Priorities

- Expand charging infrastructure
- Secure sustainable material supply
- Develop recycling systems
- Align policy for equitable rollout

Key Takeaways

Technology + Policy

Combined forces determine adoption speed and scale

Battery Costs Decisive

Continued cost declines unlock mass-market potential

Infrastructure Critical

Charging networks and grid readiness enable growth

From 1900s urban electrics to today's revolution: a century of innovation driven by technology, policy, and infrastructure working together