2 namų darbas (2 užd.). Atsiskaityti iki kovo 17 d.

Uždavinys 1 (0.2 balo). (a) Duotos funkcijos $f: \mathbb{N} \to \mathbb{R}$ ir $g: \mathbb{N} \to \mathbb{R}$. Užpildykite lentelę pliusais bei minusais, kur pliusas (atitinkamai minusas) reiškia, kad funkciją A galima (atitinkamai negalima) užrašyti pavidalu A = C(B), kur B yra kita funkcija, o C yra vienas iš žymėjimų $O, o, \Omega, \omega, \Theta$.

\overline{A}	B	O	0	Ω	ω	Θ
f(n)	g(n)					
g(n)	f(n)					

Sprendžiant gali prireikti Lopitalio taisyklės bei formulių

$$(a^{x})' = a^{x} \ln a$$
 bei $(\log_{a} x)' = \frac{1}{x \ln a}$.

Formaliai norėdami pritaikyti Lopitalio taisyklę funkcijų santykio ribos $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$ įrodymui, turėtume funkcijas f ir g pratęsti iki funkcijų $\tilde{f}:\mathbb{R}^+\to\mathbb{R}$ ir $\tilde{g}:\mathbb{R}^+\to\mathbb{R}$, panaudoję išvestines gauti, kad $\lim_{x\to\infty}\frac{\tilde{f}(x)}{\tilde{g}(x)}=c$, o tada grįžti prie funkcijų f ir g. Kad įrodymai būtų paprastesni, vietoje to mes neformaliai tiesiogiai skaičiuosime funkcijų "išvestinę pagal natūralų argumentą n", turėdami galvoje, kad įrodymą visada galima pagrįsti griežtai, pereinant prie realaus kintamojo x, o paskui vėl grįžtant prie natūralaus argumento.

(b) Raskite didžiausias n reikšmes, su kuriomis funkcijos $f: \mathbb{N} \to \mathbb{R}$ ir $g: \mathbb{N} \to \mathbb{R}$ tenkina nelygybes $f(n) \leq 1000000$ ir $g(n) \leq 1000000$, t.y., skaičius N_f ir N_g tokius, kad $f(N_f) \leq 1000000$ bei $g(N_g) \leq 1000000$, tačiau $f(N_f+1) > 1000000$ bei $g(N_g+1) > 1000000$.

Variantai

1.
$$f(n) = 100 \log_2 \log_2 n$$
, $g(n) = \sqrt{2 \log_2 n}$.

2.
$$f(n) = 10 \log_2(2^{\sqrt{n}}), \quad g(n) = 100 \sqrt[3]{n}.$$

3.
$$f(n) = \log_2^2 n$$
, $g(n) = 2^{\log_2 \log_2 n^2}$.

4.
$$f(n) = 100n \log_2 n$$
, $g(n) = \frac{n^2}{\log_2^2 n}$.

5.
$$f(n) = 100n \log_2 n$$
, $g(n) = 2^{1.2 \log_2 n}$.

6.
$$f(n) = 10n \log_2 n + 0.5n^2$$
, $g(n) = 100n\sqrt{n}$.

7.
$$f(n) = 4^{\sqrt{n}}, \quad g(n) = 2^{n/\log_2 n}.$$

8.
$$f(n) = 10n^2 + 100n \log_2^2 n$$
, $g(n) = n^2 \log_2 n$.

9.
$$f(n) = \frac{n}{100 \log_2^2 n}$$
, $g(n) = n^{1/2}$.

10.
$$f(n) = \frac{n}{100 \log_2 n}$$
, $g(n) = 10n^{2/3}$.

11.
$$f(n) = 10n\sqrt{n}$$
, $g(n) = n \cdot (2^{\log_2 \sqrt{n}} + 128)$.

12.
$$f(n) = 10n$$
, $g(n) = n + \log_2^2 n^4$.

13.
$$f(n) = 10n$$
, $g(n) = n + 100n^{2/3}$.

14.
$$f(n) = 10n \log_2 n$$
, $g(n) = n^2 \cdot 2^{-\log_2 \log_2 n}$.

15.
$$f(n) = \sqrt{n^3 \log_2 n}$$
, $g(n) = 10n\sqrt{n} + 100n$.

16.
$$f(n) = 2^{\log_2^2 n}$$
, $g(n) = 10n^{10}$.

17.
$$f(n) = (\sqrt{2})^{\log_2 n}, \quad g(n) = \frac{1}{2}\sqrt{n} + \sqrt[3]{n}.$$

18.
$$f(n) = 10n^2 \log_2^2 n$$
, $g(n) = n^2 \cdot (\sqrt{2})^{\log_2 n}$.

19.
$$f(n) = 10n^{\log_2 3}$$
, $g(n) = n\sqrt{n} + 100n$.

20.
$$f(n) = 10n^{\log_2 7}$$
, $g(n) = n^2 \cdot 2^{0.5 \log_2 n}$.

21.
$$f(n) = 2\sqrt{2^n}$$
, $g(n) = 4^{n/4} + n^2$.

22.
$$f(n) = \frac{2^n}{n^2}$$
, $g(n) = 10n^2\sqrt{2^n}$.

23.
$$f(n) = 10n^2 \cdot 2^{\sqrt{n}}, \quad g(n) = \sqrt{2^n}.$$

24.
$$f(n) = 2^n$$
, $g(n) = n^2 \sqrt{3^n}$.

25.
$$f(n) = 10n \log_2 n + 100n$$
, $g(n) = n \cdot 4^{\log_2 \log_2 n}$.

26.
$$f(n) = n \log_2 n$$
, $g(n) = 100n^{1.1}$.

27.
$$f(n) = n^2 + n \cdot 2^{0.5 \log_2 n}, \quad g(n) = 10n^2 + \frac{n^2}{\sqrt[3]{n}}.$$

28.
$$f(n) = \sqrt[3]{n} \log_2 n$$
, $g(n) = n \cdot 2^{-0.5 \log_2 n}$.

29.
$$f(n) = \sqrt{n^3 \log_2 n}, \quad g(n) = 4^{\log_2 n}.$$

30.
$$f(n) = 10n \log_2^2 n$$
, $g(n) = \frac{n^2}{\log_2 n}$.

Uždavinys 2 (0.3 balo). (a) Duotas 5 funkcijas $f_1, f_2, f_3, f_4, f_5 : \mathbb{N} \to \mathbb{R}$ išdėstykite jų augimo greičio didėjimo tvarka (kiekviena funkcija yra O(kitos funkcijos)). Taip pat nurodykite, kurios funkcijos turi vienodą augimo greitį (yra Θ viena nuo kitos). Tos pačios augimo eilės funkcijas dėstykite didėjimo tvarka atsižvelgiant ir į konstantas.

- (b) Išdėstykite didėjimo tvarka funkcijų reikšmes $f_1(n), f_2(n), f_3(n), f_4(n), f_5(n)$, kai n=16.
- (c) Išdėstykite didėjimo tvarka funkcijų reikšmes $f_1(n), f_2(n), f_3(n), f_4(n), f_5(n)$, kai $n=2^{16}=65536$.

Variantai

- 1. $f_1(n) = (\sqrt{2})^{\log_2 n}$, $f_2(n) = \frac{2^n}{100n}$, $f_3(n) = n^2 + 10n$, $f_4(n) = 10n^{1/2}$ ir $f_5(n) = 100 \log_2^2 n$.
- 2. $f_1(n) = \sqrt[4]{2^n}$, $f_2(n) = 2^{\log_2 \log_2 n}$, $f_3(n) = \frac{n}{\log_2 n}$, $f_4(n) = \sqrt{10n}$ ir $f_5(n) = n^{\log_4 3}$.
- 3. $f_1(n) = 10n + \log_2^2(4^n)$, $f_2(n) = 10n \log_2 n$, $f_3(n) = \sqrt{2^n}$, $f_4(n) = n^{\log_2 5}$ ir $f_5(n) = \frac{n^3}{10 \log_2 n}$.
- 4. $f_1(n) = 100n$, $f_2(n) = 2^{\log_2 \log_2 n}$, $f_3(n) = n^{4/3}$, $f_4(n) = n \log_2 n + 10n$ ir $f_5(n) = 2^{\sqrt[4]{n}}$.
- 5. $f_1(n) = 4^{\sqrt{n}}$, $f_2(n) = 100n^2 \log_2 n$, $f_3(n) = n^2 \cdot 2^{n/2}$, $f_4(n) = n^{5/2}$ ir $f_5(n) = n^2 (\log_2 n + \sqrt{n})$.
- 6. $f_1(n) = \sqrt{n^3 \log_2 n}$, $f_2(n) = 2^{\log_2^2 n}$, $f_3(n) = 100n\sqrt{n}$, $f_4(n) = \frac{n^2}{\log_2 n}$ ir $f_5(n) = \log_2^2 n$.
- 7. $f_1(n) = \frac{n^2}{\log_2^2 n}$, $f_2(n) = 10n\sqrt{n}$, $f_3(n) = 2^{n/\log_2 n}$, $f_4(n) = n^{\log_2 3}$ ir $f_5(n) = n + 10\sqrt{n}$.
- 8. $f_1(n) = 10n^2$, $f_2(n) = 2\sqrt{2^n}$, $f_3(n) = 100n \log_2^2 n$, $f_4(n) = \frac{n^3}{10 \log_2 n}$ ir $f_5(n) = 4^{n/4}$.
- 9. $f_1(n) = 10n^{\log_2 3}$, $f_2(n) = n\sqrt{n}$, $f_3(n) = 2^{2\log_2 n}$, $f_4(n) = n^{\sqrt{2}}$ ir $f_5(n) = 1.1^n$.
- 10. $f_1(n) = 10n^{3/2}$, $f_2(n) = n \log_2 n + \frac{n^2}{2}$, $f_3(n) = \frac{n^2}{\log_2 n}$, $f_4(n) = 2^{\sqrt{n}}$ ir $f_5(n) = \sqrt{2^n}$.
- 11. $f_1(n) = n \cdot 2^{n/2}$, $f_2(n) = 4^{\log_2 \log_2 n}$, $f_3(n) = \sqrt{2^n \log_2^2 n}$, $f_4(n) = 2 \log_2^2 n$ ir $f_5(n) = 10n$.
- 12. $f_1(n) = 10n$, $f_2(n) = \sqrt{2^{n/2}}$, $f_3(n) = \sqrt{n} \cdot 2^{\log_2 \sqrt{n}}$, $f_4(n) = \sqrt[3]{n^4}$ ir $f_5(n) = \log_2 2^{n \log_2 n}$.

- 13. $f_1(n) = \frac{n^3}{\sqrt{n}}$, $f_2(n) = 2^{n \log_2 n}$, $f_3(n) = n^2 \sqrt{n} + 100n^2$, $f_4(n) = \frac{n^3}{\log_2 n}$ ir $f_5(n) = n^{\log_2 7}$.
- 14. $f_1(n) = 2^{1.2 \log_2 n}$, $f_2(n) = 2^{\sqrt{n}}$, $f_3(n) = 100n\sqrt{n}$, $f_4(n) = n \log_2 n$ ir $f_5(n) = \frac{n^2}{\log_2 n}$.
- 15. $f_1(n) = 4^{\log_2 n}$, $f_2(n) = 4^{\sqrt{n}}$, $f_3(n) = \frac{n^3}{\log_2 n}$, $f_4(n) = 100n^2$ ir $f_5(n) = n\log_2^2 n$.
- 16. $f_1(n) = (n + \sqrt{n})^2$, $f_2(n) = \sqrt{2^n}$, $f_3(n) = 10n \log_2^2 n$, $f_4(n) = \frac{n^3}{10 \log_2 n}$ ir $f_5(n) = n^{\log_2 5}$.
- 17. $f_1(n) = \frac{n}{\log_2 n}$, $f_2(n) = 10 \log_2^2 n$, $f_3(n) = \frac{n}{10}$, $f_4(n) = 1.1^n$ ir $f_5(n) = 10\sqrt{n} \log_2 n$.
- 18. $f_1(n) = n + \log_2 n^4$, $f_2(n) = 2^{n/\log_2 n}$, $f_3(n) = \sqrt{n} + \sqrt[3]{n}$, $f_4(n) = 10n + \log_2 n$ ir $f_5(n) = \frac{n^2}{\log_2 n}$.
- 19. $f_1(n) = 4^{\log_2 n}$, $f_2(n) = 10n \log_2 n$, $f_3(n) = 2^{\sqrt[4]{n}}$, $f_4(n) = 10n^2 + \log_2^2 n$ ir $f_5(n) = n^{\log_2 3}$.
- 20. $f_1(n) = \sqrt{n \log_2 n}$, $f_2(n) = (\sqrt{2})^{\log_2 n}$, $f_3(n) = \frac{n}{\log_2 n}$, $f_4(n) = 2^{n/4}$ ir $f_5(n) = 10\sqrt{n}$.
- 21. $f_1(n) = \sqrt{2^n}$, $f_2(n) = 10n^2 + 100n \log_2^2 n$, $f_3(n) = n^2 \sqrt{n}$, $f_4(n) = n^2 \log_2 n$ in $f_5(n) = n^{\log_2 7}$.
- 22. $f_1(n) = n + \log_2^2 n^4$, $f_2(n) = 10n \log_2 n$, $f_3(n) = 10n 5$, $f_4(n) = \sqrt{2^n}$ ir $f_5(n) = n\sqrt{n}$.
- 23. $f_1(n) = 2^{\log_2^2 n}$, $f_2(n) = n^2 + 10n$, $f_3(n) = 10n^{10}$, $f_4(n) = 4^{\log_2 n}$ ir $f_5(n) = \frac{n^2}{\log_2 n}$.
- 24. $f_1(n) = n + 10 \log_2 n$, $f_2(n) = n \log_2 n$, $f_3(n) = 2^{1.2 \log_2 n}$, $f_4(n) = \sqrt{n} \log_2 n$ ir $f_5(n) = (1.2)^n$.
- 25. $f_1(n) = 10n^{\log_2 3}$, $f_2(n) = 10n\sqrt{n}$, $f_3(n) = \frac{n^2}{\log_2 n}$, $f_4(n) = n \cdot (\sqrt{2})^{\log_2 n}$ ir $f_5(n) = 2^{\sqrt{n}}$.
- 26. $f_1(n) = 2^{\sqrt[4]{n}}, f_2(n) = n\sqrt[4]{n}, f_3(n) = 10n\log_2 n, f_4(n) = \frac{n^2}{10\log_2 n}$ ir $f_5(n) = n^{5/4} + 10n$.
- 27. $f_1(n) = n^2 + n\sqrt{n}$, $f_2(n) = 2^{\sqrt{n}}$, $f_3(n) = \frac{n^2}{\log_2 n}$, $f_4(n) = 100n^{\log_2 3}$ ir $f_5(n) = 4^{\log_2 n}$.
- 28. $f_1(n) = 2^{n/2}$, $f_2(n) = 10n + (\frac{n}{2})^2$, $f_3(n) = n \log_2^2 n$, $f_4(n) = 4^{\log_2 n}$ ir $f_5(n) = \frac{n^3}{\log_2 n}$.

- 29. $f_1(n) = 2\log_2^2 n$, $f_2(n) = n\log_2 n$, $f_3(n) = 2\sqrt{n}$, $f_4(n) = \sqrt{n} + \log_2^2 n$ ir $f_5(n) = 2\log_2 \sqrt{n}$.
- 30. $f_1(n) = \log_2 4^n$, $f_2(n) = n + 2\sqrt{n}$, $f_3(n) = n \log_2 n$, $f_4(n) = 2^{\sqrt{n}}$ ir $f_5(n) = \frac{n^2}{\log_2 n}$.