Ecuaciones Diferenciales Ordinarias

Introducción y Estabilidad

(S)cientific (C)omputing (T)eam II-2014
ILI-286 DI-UTFSM Chile

8 de septiembre de 2014

Contenido

- Introducción
- Notación y más
- 3 Sistema de ODE
- Métodos avanzados para ODE

Introducción

Definición

Ecuación Diferencial Ordinaria:a:

Es una ecuación diferencial en donde la incognita es una función de una variable, generalmente y(t) o y(x).

^aOrdinary Differential Equation, ODE

- S ¿Por qué queremos hacer esto?
- P Porque queremos ver o reconstruir la función incognita
- S Ahh, ¿Y de que sirve eso?
- P Sirve para responder preguntas formuladas en la forma de un modelo Matemático
- S ¿Pero eso es complicado y tiene pocas aplicaciones?
- P No es simple, pero lo entenderemos en este curso! Y sí, tiene muchas aplicaciones! Pero tendremos tiempo de ver sólo algunas.

Problema de Valor Inicial

Initial Value Problem, IVP

$$\frac{dy(t)}{dt} = f(t, y(t))$$
$$y(0) = y_0$$
$$t \in [0, T]$$

Problema de Valor de Frontera

Boundary value Problem, BVP

$$ay''(x) + by'(x) + cy(x) = 0$$

 $y(0) = y_0$
 $y(1) = y_1$
 $0 \le x \le 1$

Initial Boundary Value Problem, IBVP

IVP

$$\frac{d y(t)}{dt} = f(t, y(t)), \quad y(0) = y_0, \quad t \in [0, T]$$

BVP

IBVP, la incognita en este caso es: u(x, t)

ay''(x) + by'(x) + cy(x) = 0, $y(0) = y_0$, $y(1) = y_1$, $0 \le x \le 1$

- $u_t(x,t) = u_{xx}(x,t) + f(x,t)$

- $u(0, t) = g_1(t)$

 $0 \le x \le 1, \quad t \in [0, T]$

- $u(1, t) = g_2(t)$
 - u(x,0)=w(x)

(1)(2)

(3)

(4)

Introducción

Notación

$$\frac{dy(t)}{dt} = \frac{dy}{dt} = \dot{y}$$

Sistemas No-Autonomos versus Autonomos

- Sistema No-Autonomo: $\dot{y} = f(t, y)$
- Sistema Autonomo: $\dot{y} = f(y)$

Introducción

Ejemplo de Sistema No-Autonomo

- $\dot{y} = t y + t^3, \quad y(0) = 1$
- Solución: $y(t) = 3 \exp(t^2/2) t^2 2$

Ejemplo de Sistema Autonomo

- $\dot{y} = c y (1 y), \quad y(0) = y_0$
- Solución: $y(t) = 1 \frac{1}{1 + \frac{y_0}{1 y_0} \exp(c t)}$

- S ¿Y siempre podemos encontrar la solución exacta?
- P No
- S ||||||||¿Y que podemos hacer entonces?!!!!!!!
- P Bueno, lo que podemos hacer es reconstruir la funcioón y(t) numéricamente
- S Pero no se como hacer eso...
- P ¿Estás seguro?
- S veamos la siguiente diapositiva mejor...
- P OK

- P Recuerde que tenemos $\dot{y}(t) = f(t, y(t))$ y $y(0) = y_0$, donde y_0 es conocido.
- S OK
- P Entonces, dado que conocemos y(0), alguna idea de como encontrar $y(t_1)$, i.e. y(t) en el tiempo t_1 .
- S No
- P ¿Y que tal si integramos ambos lados de la ecuación entre 0 y t_1 ?
- S OK, ¿Cómo se hace eso?

P

$$\int_{0}^{t_{1}} \dot{y}(s)ds = \int_{0}^{t_{1}} f(s, y(s))ds$$

$$y(t_{1}) - y(0) = \int_{0}^{t_{1}} f(s, y(s))ds$$

$$y(t_{1}) = y(0) + \int_{0}^{t_{1}} f(s, y(s))ds$$

P

$$\int_{0}^{t_{1}} \dot{y}(s)ds = \int_{0}^{t_{1}} f(s, y(s))ds$$

$$y(t_{1}) - y(0) = \int_{0}^{t_{1}} f(s, y(s))ds$$

$$y(t_{1}) = y(0) + \int_{0}^{t_{1}} f(s, y(s))ds$$

$$y(t_{1}) = y_{0} + \int_{0}^{t_{1}} f(s, y(s))ds$$

- S OK, ahora veo que se despejo lo que se quiere encontrar en el lado derecho y conocemos el primer término del lado derecho.
- P ¡Excelente! Nótese que hasta este punto no se ha realizado ninguna aproximación. ¿Que paso puede venir ahora?
- S Me imagino que una aproximación de la integral.
- P Se imagina bien. ¿Qué tipo de aproximación sugeriría?
- S Creo que algo me hablaron de Cuadratura Gaussiana, sugiero esa.

- P ¿Está seguro?
- S Ahora no se.
- P Veamos que ocurre si utilizamos Cuadratura Gaussiana:

$$y(t_1) = y_0 + \int_0^{t_1} f(s, y(s)) ds$$

 $y(t_1) \approx y_0 + \sum_{i=1}^n w_i f(s_i, y(s_i))$

- ¿Detecta algún problema?
- S A ver, los w_i son conocidos, los s_i son los ceros del polinomio de Legendre de orden n (después de aplicar el cambio de variable respectivo) y también conozco f(t,y) dado que la descrición del problema lo entrega. No veo ningún problem. ¡Sigamos adelante!
- P Wait wait. Casi todo lo que usted menciona está correcto, sin embargo hay algo que usted no conoce.
- S Profesor, creo que usted esta equivocado.
- P Puede ser, veamos. Por simplicidad, usemos la Cuadratura Gaussiana más pequeña, i.e. midpoint rule.

P Entonces la integral se aproxima de la siguiente forma:

$$\begin{aligned} y(t_1) &= y_0 + \int_0^{t_1} f(s, y(s)) ds \\ y(t_1) &\approx y_0 + (t_1 - 0) f\left(\frac{t_1 + 0}{2}, y\left(\frac{t_1 + 0}{2}\right)\right) \\ y(t_1) &\approx y_0 + t_1 f\left(\frac{t_1}{2}, y\left(\frac{t_1}{2}\right)\right) \end{aligned}$$

- S Pero, ¿Cuál es el problema?
- P El problema es que sólo conocemos y(0), t_1 y f(t, y) y no conocemos $y(t_1/2)$.
- S Ah, ahora entiendo.
- P ¿Que sugiere ahora?
- S Lo único que conocemos es y(0), usemos eso entonces.
- P ¡Excelente!, veamos que ocurre.

P Reemplazando, obtenemos:

$$y(t_1) = y_0 + \int_0^{t_1} f(s, y(s)) ds$$

 $y(t_1) \approx y_0 + t_1 f\left(\frac{t_1}{2}, y\left(\frac{t_1}{2}\right)\right)$
 $y(t_1) \approx y_0 + t_1 f(0, y(0))$

- S ¿Y qué significa eso? Dado que nosotros realizamos la derivación con el punto medio.
- P Buen punto, en realidad al hacer esa modificanción lo que realmente estamos haciendo es utilizar el punto *izquierdo* de la integral para aproximar la integral y no el punto medio.
- S Ah, ahora si.
- P En resumen y considerando que estamos *avanzando* en forma general desde el tiempo t_i al tiempo t_{i+1} :

$$y(t_{i+1}) = y(t_i) + (t_{i+1} - t_i)f(t_i, y(t_i))$$

P En resumen y considerando que estamos *avanzando* en forma general desde el tiempo t_i al tiempo t_{i+1} :

$$y(t_{i+1}) = y(t_i) + (t_{i+1} - t_i)f(t_i, y(t_i))$$

- S ¿Eso significa que obtenemos el valor exacto en el tiempo $y(t_{i+1})$?
- P Buen punto, la respuesta es no.
- S Entonces, ¿Qué es lo que obtenemos?
- P Lo que se obtiene es lo que llamamos una aporximación numérica. La notación que usaremos es la siguiente:

Método de Euler

- $y_{i+1} = y_i + h f(t_i, y_i)$
- Donde: $h = t_{i+1} t_i$ y $y_0 = Dato Inicial$.

Ejemplo usando el método de Euler

Utilizando la ODE No-Autonoma

- $\dot{y} = t y + t^3, \quad y(0) = 1$
- Solución: $y(t) = 3 \exp(t^2/2) t^2 2$

Solución numérica obtenida:

i	t _i	$y(t_i)$	y i	$e_i = y(t_i) - y_i $
0	0	1	1	0
1	0.2000	1.0206	1.0000	0.0206
2	0.4000	1.0899	1.0416	0.0483
3	0.6000	1.2317	1.1377	0.0939
4	0.8000	1.4914	1.3175	0.1739
5	1.0000	1.9462	1.6306	0.3155

Orden del método

El método de Euler es de primer orden, i.e. $\mathcal{O}(h)$.

Un poco de teoría

Definición

Una función f(t, y) es Lipschitz continua en la variable y en el rectángulo $[a, b] \times [\alpha, \beta]$ si existe una constante L (llamada la constante de Lipschitz) que satisface:

$$|f(t,y_1)-f(t,y_2)| \leq L|y_1-y_2|$$

para cada (t, y_1) y (t, y_2) en S.

Orden de un método

Asuma que f(t,y) tiene una constante de Lipschitz L para la variable y y el valor $y(t_1)$ de la solución del problema de valor inicial $\dot{y}=f(t,y), y(0)=y_0$ en t=[0,T], en el tiempo t_1 y es aproximada por y_1 por un paso de un ODE solver con error local de truncamiento $e_1 \leq C \, h^{k+1}$, para una constante C y $k \geq 1$. Entonces, para cada $a < t_i < b$, el solver tiene error de truncamiento:

$$|y(t_i)-y_i|\leq \frac{C\,h^k}{I}\left(\exp(L(t_i-a))-1)\right)$$

Finalmente si un ODE solver satisface la ecuación previa, se le llama de orden k.

Convergencia del método de Euler - un paso

- Considere que se aplica un paso del método de Euler para $\dot{y} = f(t, y)$, $y(t_i) = y_i$.
- Esto significa $y_{i+1} = y_i + h f(t_i, y_i)$.
- Ahora considere el valor exacto en el tiempo $y(t_{i+1})$.
- ¿Cómo se obtiene eso?
- ¡Fácil!, $y(t_{i+1}) = y(t_i + h) = y(t_i) + \dot{y}(t_i) h + \ddot{y}(c) \frac{h^2}{2}$.
- Ahora utilizando la ecuación original en el tiempo t_i obtenemos $\dot{y}(t_i) = f(t_i, y(t_i))$. Reemplazando en la expansión anterior:

$$y(t_{i+1}) = y(t_i + h) = y(t_i) + f(t_i, y(t_i)) h + \ddot{y}(c) \frac{h^2}{2}$$

• Considerando que este es un análisis de un paso, i.e. $y(t_i) = y_i$, finalmente obtenemos:

$$y(t_{i+1}) - y_{i+1} = y(t_i) + f(t_i, y(t_i)) h + \ddot{y}(c) \frac{h^2}{2} - y_i - h f(t_i, y_i)$$

$$= y(t_i) - y_i + f(t_i, y(t_i)) h - f(t_i, y_i) h + \ddot{y}(c) \frac{h^2}{2}$$

$$= \ddot{y}(c) \frac{h^2}{2}$$

Por lo tanto, el método es de primer orden.

Convergencia del método de Euler - general

- Considere que se aplica un paso del método de Euler para $\dot{y} = f(t, y)$, $y(t_i) = y_i$.
- Esto significa: $y_{i+1} = y_i + h f(t_i, y_i)$.
- Omitindo pasos repetidos: $y(t_{i+1}) = y(t_i + h) = y(t_i) + \dot{y}(t_i) h + \ddot{y}(c) \frac{h^2}{2}$.
- Ahora utilizando la ecuación original en el tiempo t_i obtenemos $\dot{y}(t_i) = f(t_i, y(t_i))$. Reemplazando en la expansión anterior:

$$y(t_{i+1}) = y(t_i + h) = y(t_i) + f(t_i, y(t_i)) h + \ddot{y}(c) \frac{h^2}{2}$$

Calculando la diferencia, obtenemos:

$$y(t_{i+1}) - y_{i+1} = y(t_i) + f(t_i, y(t_i)) h + \ddot{y}(c) \frac{h^2}{2} - y_i - h f(t_i, y_i)$$

$$= y(t_i) - y_i + (f(t_i, y(t_i)) - f(t_i, y_i)) h + \ddot{y}(c) \frac{h^2}{2}$$

• En este caso utilizamos la propiedad que f(t, y) es Lipschitz: $|f(t_i, y(t_i)) - f(t_i, y_i)| \le L|y(t_i) - y_i|$. Reemplazando,

$$|y(t_{i+1})-y_{i+1}| \leq |y(t_i)-y_i| + L|y(t_i)-y_i| h + \ddot{y}(c) \frac{h^2}{2}$$

Convergencia del método de Euler - general

• En este caso utilizamos la propiedad que f(t, y) es Lipschitz: $|f(t_i, y(t_i)) - f(t_i, y_i)| \le L|y(t_i) - y_i|$. Reemplazando,

$$|y(t_{i+1}) - y_{i+1}| \le |y(t_i) - y_i| + L|y(t_i) - y_i| h + \ddot{y}(c) \frac{h^2}{2}$$

$$|y(t_{i+1}) - y_{i+1}| \le (1 + Lh)|y(t_i) - y_i| + \ddot{y}(c) \frac{h^2}{2}$$

(Omitiendo pasos) Obtenemos:

$$|y(t_{i+1}) - y_{i+1}| \le \frac{Ch}{L} (\exp(Lt_i) - 1) = \mathcal{O}(h)$$

• Por lo tanto, nuevamente concluimos que el método es de **primer** orden.

Un poco más de teoría

Linear Stability Analysis

Considere el siguiente problema: $\dot{y} = \lambda y$, y(0) = 1. Donde la solución viene dada por: $y(t) = \exp(\lambda t)$.

P Apliquemos el método de Euler a este problema:

$$y_{i+1} = y_i + \lambda h y_i$$

 $y_{i+1} = (1 + \lambda h) y_i$
 $y_{i+1} = (1 + \lambda h)^{i+1} y_0$

Considerando que $\Re(\lambda)$ < 0 y h > 0, ¿Que condición debe ocurrir para que la aproximación numérica reproduzca el comportamiento original de la solución exacta del problema?

- S Analicemos, $\lim_{t\to\infty} y(t) = 0$, entonces la solución numérica debe decaer a medida que i aumenta. Por lo tanto necesitamos $|1 + \lambda h| < 1$.
- P ¡Excelente!
- S ¿Qué significa esto?
- P Dado que $\lambda \in \mathcal{C}$, considere $\lambda h = x + i y$, donde $i = \sqrt{-1}$.

Un poco más de teoría

P Dado que $\lambda \in \mathcal{C}$, considere $\lambda h = x + i y$, donde $i = \sqrt{-1}$. Reemplazando, obtenemos:

$$|1 + \lambda h| = |1 + x + i y|$$

$$= |(1 + x) + i y|$$

$$= \sqrt{(1 + x)^2 + y^2} < 1$$

Realizando un sketch...el sketch es un círculo unitario centrado en (-1,0) del plano complejo y su región de estabilidad esta dentro del círculo.

- S Ah, ¿Y que significa eso?
- P Para $\lambda \in \mathcal{R}$ y $\lambda < 1$, significa que tenemos solo un conjunto de h que podemos usar y que cumplan con $|1 + \lambda h| < 1$.
- S ¿Cuales son?
- P En este caso se necesita que $-2 < \lambda h < 0$, o $0 < h < \frac{-2}{\lambda}$.
- S Interesante, esto quiere decir que λ restringe el h que uno puede utilizar y que uno no puede definir h a priori.
- P ¡Correcto!

Ahora empieza algo incluso más interesante

P Considere el problema:

$$\dot{y_1} = 2 y_1 + y_2
\dot{y_2} = y_1 + 3 y_2$$

- S Uff, ¿Y que hacemos ahora?
- P Lo mismo..., considere la siguiente representación matricial.

$$\begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

- o mejor $\dot{\vec{y}}(t) = \vec{F}(t, \vec{y})$
- S ¿Qué significa eso?
- P Significa que ahora la función y(t) se convierte en el vector $\vec{y}(t)$ que cambia en el tiempo.
- S ¿Y cómo se usaría el método de Euler en ese caso?
- P Igual que antes, pero se hace el algebra con vectores: $\vec{y}_{i+1} = \vec{y}_i + h \vec{F}(t_i, \vec{y}_i)$. Donde h sigue significando que el paso en el tiempo y sigue siendo un escalar.

Métodos avanzados para ODE

Para todos los métodos indicados, se considera una condición inicial $\vec{y}(0) = \vec{y}_0$ dada.

Backward Euler

$$\vec{y}_{i+1} = \vec{y}_i + h \vec{F}(t_i, \vec{y}_{i+1})$$

¡Donde tenemos que resolver para \vec{y}_{i+1} en cada iteración!

Midpoint rule — Runge-Kutta de segundo orden

$$\vec{k}_1 = \vec{y}_i + \frac{h}{2} \vec{F}(t_i, \vec{y}_i)$$

$$\vec{y}_{i+1} = \vec{y}_i + h \vec{F}(t_i + \frac{h}{2}, \vec{k}_1)$$

¡Esto es lo que dijimos anteriormente que no se podia hacer!, i.e. $y(t_1) \approx y_0 + t_1 f\left(\frac{t_1}{2}, y\left(\frac{t_1}{2}\right)\right)$. La aproximación utilizada en este caso fue estimar $y\left(\frac{t_1}{2}\right)$ con el método de Euler tradicional (también conocido como Fordward Euler).

Métodos avanzados para ODE

Para todos los métodos indicados, se considera una condición inicial $\vec{y}(0) = \vec{y}_0$ dada.

¡Runge-Kutta de cuarto orden!, más conocido como RK4

$$\begin{split} \vec{k}_1 &= \vec{F}(t_i, \vec{y}_i) \\ \vec{k}_2 &= \vec{F}(t_i + \frac{h}{2}, \vec{y}_i + \frac{h}{2}\vec{k}_1) \\ \vec{k}_3 &= \vec{F}(t_i + \frac{h}{2}, \vec{y}_i + \frac{h}{2}\vec{k}_2) \\ \vec{k}_4 &= \vec{F}(t_i + h, \vec{y}_i + h\vec{k}_3) \\ \vec{y}_{i+1} &= \vec{y}_i + \frac{h}{6} \left(\vec{k}_1 + 2\vec{k}_2 + 2\vec{k}_3 + \vec{k}_4 \right) \end{split}$$

RK4 es uno de los métodos más populares existentes. Recuerde que cuarto orden significa $e_i = \mathcal{O}(h^4)$, i.e. si el h disminuye a la mitad el error disminuye 16 veces!!

Algunas preguntas para discutir en clases

- ¿Que es un estado estacionario de un sistema dinámico?
- ¿Podemos usar h dinámico el resolver numéricamente?
- ¿Cójo encuentro aproximaciones numé ricas de los sistemas dinámicos de la diapositiva 8?
- ¿Cómo se aplica la teoría de estabilidad lineal a systemas de ODE?
 ¿Que es λ es ese caso?
- ¿Cuál es la región de estabilidad de Backward Euler?
- ¿Cuál es la región de estabilidad de RK4?
- ¿Como utilizo Backward Euler?
- ¿Como utilizo RK4?
- ...