Course Code	21CSE429T	Course Name	DATA SCIENCE FOR INTERNET OF THING	GS Course Category	Е	PROFESSIONAL ELECTIVE	L 2	T 1	P 0	C 3
	_						•			

Pre-requisite Courses	Nil	Co- requisite Courses	Nil	Progressive	Nil
Courses		Courses		Courses	
Course Offering Department		School of Computing	Data Book / Codes / Standards		Nil

Course Le	Course Learning Rationale (CLR): The purpose of learning this course is to:			Program Outcomes (PO)									Program Specific					
CLR-1:	learn the basics of IoT analytics and the challenges involved in design of IoT				3	4	5	6	7	8	9	10	11	12		itcom		
CLR-2:	understand the devices, p	rotocols and standards involved in IoT systems	Ф			of		ciety			~							
CLR-3:	-3: learn various real-world systems involving IoT sensor				nt of	ions	υ	Socie			Work		ance	_				
CLR-4:	explore the smart applicati	ions development using IoT sensors and systems	sis pment tigatio		Knowledge lysis opment of sitigations of lems Usage r and societ % %				_	on k Finance rning								
CLR-5:	identify the possible appli domain	cations in healthcare using IoT sensors and the IoT data analytics in this	ering K	n Analysis	ı Φ .= Ω			Tool	ineer	Environment & Sustainability		~ ∠	Communication	Mgt. &	Lea			
			a a	roblem	sign/c	Conduct	dern		iron	છ)jg	l E	roject	ife Long	7)-2	5.	
Course O	utcomes (CO):	At the end of this course, learners will be able to:	Engin	Prof	Des	Son	Мос	The	Env	Ethics	Individual	Son	Proj	Life	PS0-1	PSO-2	PSO-3	
CO-1:	identify the challenges involved in the design of IoT Analytics systems		-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	
CO-2:	understand the internals of IoT devices and the sensor networks		-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	
CO-3:	design IoT Sensor networks for various real-world applications		-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	
CO-4:	develop smart applications using IoT sensors and analyse the data received from them			-	-	-	-	-	-	-	-	-	-	-	2	-	-	
CO-5:	implement IoT healthcare systems and IoT Healthcare data analytical systems			-	-	-	-	-	-	-	-	-	-	-	-	-	2	

Unit-1 - Defining IoT Analytics and Challenges

9 Hour

The situation - Defining IoT analytics - Defining analytics - Defining the Internet of Things - The concept of constrained - IoT analytics challenges - The data volume - Problems with time - Problems with space - Data quality - Analytics challenges - Business value concerns

Unit-2 - IoT Devices, Networking Protocols and Standards for Internet of Things

9 Hour

IoT Devices-Healthcare-Manufacturing-Transportation and logistics-Retail-Oil and gas- - Home automation or monitoring - Wearables - Sensor types-IoT Data Link Protocols-Network Layer Routing Protocols - Network Layer-Encapsulation Protocols -Session Layer Protocols-IoT Management Protocols-Security in IoT Protocols-IoT Challenges

Unit-3 - IoT Sensing, Mobile and Cognitive Systems

9 Hour

Sensing Technologies for Internet of Things - IoT Interactions with GPS, Clouds and Smart Machines - Radio Frequency Identification (RFID) - Sensors, Wireless Sensor Networks and GPS Systems - Cognitive Computing Technologies and Prototype Systems - Problems

Unit-4 - Smart Applications IoT with Data Analytics

9 Hour

Defragmenting Intelligent Transportation: A Practical Case Study -Connected and Autonomous Vehicles-Transit Hub: A Smart Decision Support System for Public Transit Operations – Smart Home Services Using the Internet of Things

Unit-5 - Case Studies in IoT Healthcare

9 Hour

Big Data Analytics for Healthcare and Cognitive Learning - Machine Learning for Big Data in Healthcare Applications - Healthcare Problems and Machine Learning Tools - IoT-based Healthcare Systems and Applications, Emotional Insights via Wearables- Structural Health Monitoring-Home Healthcare and Remote Patient Monitoring

	1.	Analytics for the Internet of Things (IoT) by Andrew Minteer, Released July 2017,						
		Publisher(s): Packt Publishing, ISBN: 9781787120730.						
Learning	2.	Big-Data Analytics for Cloud, IoT and Cognitive Computing, Kai Hwang, Min Chen, ISBN:						
Resources		978-1-119-24729-6 March 2017.						
	3.	Internet of Things and Data Analytics Handbook, Hwaiyu Geng (Editor) - ISBN: 978-1-119-						

17364-9 January 2017

- 4. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press, 2017
- 5. Arshdeep Bahga, Vijay Madisetti, Internet of Things A hands-on approach, Universities Press, 2015

Learning Assessm	ent								
			Continuous Learning	g Assessment (CLA)		Summativa			
	Bloom's Level of Thinking	Formative CLA-1 Average of unit test (50%)		CL	n Learning A-2 0%)	Summative Final Examination (40% weightage)			
		Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	40%	-	20%	-	40%	-		
Level 2	Understand	40%	-	20%	-	40%	-		
Level 3	Apply	10%	-	20%	-	10%	-		
Level 4	Analyze	10%	-	20%	-	10%	-		
Level 5	Evaluate	-	-	10%	-	-	-		
Level 6	Create	-	-	10%	-	-	-		
	Total	100	0 %	10	0 %	100	0 %		

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
	1. Dr.I.Joe Louis Paul, Associate Professor, SSN College of	Engineering 1. Dr K.Shantha Kumari, SRMIST