Physics Notes #3: Collisions

CSCI 321

WWU

February 5, 2013

Advanced collision techniques

Reading:

- http://www.gamasutra.com/view/feature/3429/crashing_into_the_new_year_.php
- http://www.gamasutra.com/view/feature/3426/when_two_hearts_collide_.php
- http://www.gamasutra.com/view/feature/3427/collision_response_bouncy_.php
- http://www.gamasutra.com/view/feature/3190/advanced_collision_detection_.php

Dot vector to point with inward pointing normal

Does not work with concave polygons

Sum of all the angles = 360?

Quadrant crossing = 4?

Or check even/odd intercepts.

Keeping at arm's length

$$n = p_1 + (p_2 - p_1) \frac{B \cdot A}{(B \cdot A) + (C \cdot A)}$$

Bounding spheres

Find a separating plane

Axis-aligned bounding box (AABB)

Oriented bounding box (OBB)

Fast and slow AABB calculation

Two objects that might be colliding

Find a separating plane: first try faces

In 3D may not be a separating face

Need to check point-edge combinations as well.

Other points

- Cache separating planes.
- Separating plane only works for convex objects.

Collision may happen between frames

- Smaller Δt in the physics.
- Don't make really thin walls.

Create convex hull from object in two different frames

Bounding spheres

Create tree of bounding spheres

AABB

AABBs for rotating objects

Recursive OBB

- Check for collision at top level, if exists, recurse on both.
- Note: Require artists to specify OBBs, convex hulls, etc. in advance.

Check boxes for separating planes

Curved objects

Minkowski sums

Complexity with many objects

$$\left(\begin{array}{c}N\\2\end{array}\right)=O(N^2)$$

Partitioning: O(N)

Sweep and prune: $O(N \log N)$

Use a Library

- http://code.google.com/p/pymunk/
- http://bulletphysics.org/