Cross Entropy Error

```
import warnings
warnings.filterwarnings('ignore')
```

→ I. Cross Entropy

- 서로 다른 사건의 확률을 곱하여 Entropy를 계산
 - ∘ y: 실제값, y_hat: 예측값(can be incorrect)
- y를 Cross-Entropy의 가중치로 적용
 - Binary Cross-Entropy Error = $-y * log(y_hat) (1 y) * log(1 y_hat)$
 - \circ Categorical Cross-Entropy Error = $-y * log(y_hat)$

→ 1) y = 1 vs. y_hat = 1

```
import numpy as np

y = 1
y_hat = 1

-y * np.log(y_hat)
-0.0
```

→ 2) y = 1 vs. y_hat = 0.0001

```
y = 1
y_hat = 0.0001
-y * np.log(y_hat)
```

→ 3) y = 0 vs. y_hat = 0

9.210340371976182

```
y = 0

y_hat = 0

-(1 - y) * np.log(1 - y_hat)

-0.0
```

\rightarrow 4) y = 0 vs. y_hat = 0.9999

```
y = 0

y_{hat} = 0.9999

-(1 - y) * np.log(1 - y_{hat})
```

9.210340371976294

→ II. Information Theory

▼ 1) 발생 확률이 서로 다른 사건 A, B, C - Information Gain

- Information Gain(정보 이득량)
 - 자주 발생하지 않는 사건은 자주 발생하는 사건보다 전달하는 정보량이 많음
 - ∘ Information Gain(정보 이득량)은 정보의 희귀성(발생가능성)에 반비례
 - \circ I(x) = $-\log(P(x))$

```
A = 0.9 \\ B = 0.5 \\ C = 0.1 print('\%.3f' \% -np.log(A), '\%.3f' \% -np.log(B), '\%.3f' \% -np.log(C))
```

0.105 0.693 2.303

▼ 2) AlphaGo와 Apes의 바둑대결 승리 확률 - Degree of Surprise

- Degree of Surprise(놀람의 정도)
 - 예상하기 어려운 정보에 더 높은 가치를 매기는 것

```
Alphago = 0.999
Apes = 0.001
print('%.3f' % -np.log(Alphago), '%.3f' % -np.log(Apes))
```

0.001 6.908

→ III. Entropy

- 불확실성의 정도
 - \circ Entropy = E($-\log(P(x))$)
- 확률변수의 평균 정보량(기댓값)
 - \circ -sum(p(x) * log(p(x)))
- 불확실성(Entropy)이 낮으면 분류정확도가 높아짐

▼ 1) 승률이 비슷한 두팀의 Entropy

```
P1 = 0.5

P2 = 0.5

-P1 * np.log(P1) - P2 * np.log(P2)
```

▼ 2) 승률 차이가 큰 두팀의 Entropy

```
P1 = 0.999

P2 = 0.001

-P1 * np.log(P1) - P2 * np.log(P2)
```

0.007907255112232087

0.6931471805599453

#

#

The End

#

#

#