Caches

1 Étiquettes Et Index De Cache

Un processeur a 2 Gio de mémoire principale. Pour les différents caches ci-dessous :

- 1. cache de 2 Mio à correspondance directe et écriture simultanée avec des blocs de 16 octects
- 2. cache de 4 Mio à correspondance directe, réécriture et blocs de 32 octects
- 3. cache de 4 Mio associatif 4 voies (4 blocs par ensemble), réécriture et blocs de 32 octects

			\ 1	//
Adresse mémoire :	Étiquette	e Index	Adresse dans bloc	
Ligne de cache :	Étiquette	Contrôle	Instructions ou Do	onnées

1.1	Quelle est la décomposition d'une adresse mémoire (nombre de bits des différentes parties)?

différe rappor	rt à la partie	e « données	» du cache)	•		
n considère un nsidère deux	cas: correspond	dance directe et	associativité par	r ensembles de 2	2 blocs, avec le	cs de 32 octects. LRU (<i>Least Rece</i> Les tableaux suiva
n considère un nsidère deux ed) comme a	ne architecture p cas : correspond lgorithme de ren	dance directe et	associativité par remplace la ligne	r ensembles de 2 e la moins récem	2 blocs, avec le ment utilisée). I	
considère un sidère deux ed) comme a 4096 floats	ne architecture p cas : correspond lgorithme de ren (la taille d'un f	dance directe et nplacement (on 1 loat est de 32 b	associativité par remplace la ligne pits) sont aux ad X1	r ensembles de 2 e la moins récem resses suivantes Y1	2 blocs, avec le ment utilisée). I: X2	LRU (Least Rece Les tableaux suiva
n considère un nsidère deux red) comme a 4096 floats	ne architecture p cas : correspond lgorithme de rer (la taille d'un f	lance directe et nplacement (on 1 loat est de 32 b	associativité par remplace la ligne sits) sont aux ad	r ensembles de 2 e la moins récem resses suivantes	2 blocs, avec le ment utilisée). I :	LRU (Least Rece Les tableaux suiva
a considère un nsidère deux ed) comme a 4096 floats x0001 0000	ne architecture p cas : correspond lgorithme de rer (la taille d'un f Y 0x0001 4000	dance directe et inplacement (on i loat est de 32 b Z 0x0001 8000 ments des ta	associativité par remplace la ligne pits) sont aux ad X1 0x0001 C000	r ensembles de 2 e la moins récem resses suivantes Y1 0x0002 0000	2 blocs, avec le ment utilisée). I: X2 0x0002 4000	LRU (Least Rece Les tableaux suiva
considère un sidère deux ed) comme a 4096 floats	ne architecture p cas : correspond lgorithme de rer (la taille d'un f Y 0x0001 4000 sont les élén	dance directe et inplacement (on i loat est de 32 b Z 0x0001 8000 ments des ta	associativité par remplace la ligne pits) sont aux ad X1 0x0001 C000	r ensembles de 2 e la moins récem resses suivantes Y1 0x0002 0000	2 blocs, avec le ment utilisée). I: X2 0x0002 4000	LRU (Least Rece Les tableaux suiva Y2 0x0002 8000
considère un nsidère deux ed) comme a 4096 floats	ne architecture p cas : correspond lgorithme de rer (la taille d'un f Y 0x0001 4000 sont les élén	dance directe et inplacement (on i loat est de 32 b Z 0x0001 8000 ments des ta	associativité par remplace la ligne pits) sont aux ad X1 0x0001 C000	r ensembles de 2 e la moins récem resses suivantes Y1 0x0002 0000	2 blocs, avec le ment utilisée). I: X2 0x0002 4000	LRU (Least Rece Les tableaux suiva Y2 0x0002 8000
considère un nsidère deux ed) comme a 4096 floats	ne architecture p cas : correspond lgorithme de rer (la taille d'un f Y 0x0001 4000 sont les élén	dance directe et inplacement (on i loat est de 32 b Z 0x0001 8000 ments des ta	associativité par remplace la ligne pits) sont aux ad X1 0x0001 C000	r ensembles de 2 e la moins récem resses suivantes Y1 0x0002 0000	2 blocs, avec le ment utilisée). I: X2 0x0002 4000	LRU (Least Rece Les tableaux suiva Y2 0x0002 8000
a considère un nsidère deux ed) comme a 4096 floats	ne architecture p cas : correspond lgorithme de rer (la taille d'un f Y 0x0001 4000 sont les élén	dance directe et inplacement (on i loat est de 32 b Z 0x0001 8000 ments des ta	associativité par remplace la ligne pits) sont aux ad X1 0x0001 C000	r ensembles de 2 e la moins récem resses suivantes Y1 0x0002 0000	2 blocs, avec le ment utilisée). I: X2 0x0002 4000	LRU (Least Rece Les tableaux suiva Y2 0x0002 8000
a considère un nsidère deux ed) comme a 4096 floats x0001 0000 1 Quels du pre	ne architecture p cas : correspond lgorithme de rer (la taille d'un f Y 0x0001 4000 sont les élér emier bloc d kernels de calcul	dance directe et implacement (on instance directe et implacement (on instance de set de 32 by 2	associativité par remplace la lignorits) sont aux ad X1 0x0001 C000 ableaux X et	r ensembles de 2 e la moins récem resses suivantes Y1 0x0002 0000 Y qui peuve	2 blocs, avec le ment utilisée). I: X2	LRU (Least Rece Les tableaux suiva Y2 0x0002 8000 le premier m
a considère un nsidère deux ed) comme a 4096 floats x0001 0000 1 Quels du pre it les quatre lor (i = 0; i	ne architecture p cas : correspond lgorithme de ren (la taille d'un f Y 0x0001 4000 sont les élén emier bloc d kernels de calcul < N; ++i) for	dance directe et implacement (on instance directe et implacement (on instance de set de 32 by 2	associativité par remplace la ligno remplace la	r ensembles de 2 e la moins récem resses suivantes Y1 0x0002 0000	2 blocs, avec le ment utilisée). I: X2	LRU (Least Rece Les tableaux suiva Y2 0x0002 8000
it les quatre lor (i = 0; i	ne architecture p cas : correspond lgorithme de ren (la taille d'un f Y 0x0001 4000 sont les éléi emier bloc d kernels de calcul	dance directe et nplacement (on n loat est de 32 b Z 0x0001 8000 ments des ta u cache? suivants: r (i = 0; i < N;	associativité par remplace la ligno remplace la	r ensembles de 2 e la moins récem resses suivantes Y1 0x0002 0000 Y qui peuve = 0; i < N; ++i	2 blocs, avec le ment utilisée). I: X2	LRU (Least Rece Les tableaux suiva Y2 0x0002 8000 le premier m
it les quatre lor (i = 0; i	ne architecture p cas : correspond lgorithme de ren (la taille d'un f Y 0x0001 4000 sont les éléi emier bloc d kernels de calcul	dance directe et implacement (on instance directe et implacement (on instance de set de 32 by 2	associativité par remplace la ligno remplace la	r ensembles de 2 e la moins récem resses suivantes Y1 0x0002 0000 Y qui peuve	2 blocs, avec le ment utilisée). I X2 0x0002 4000 ent occuper i) for (i = 0; { s1 += X	LRU (Least Rece Les tableaux suiva Y2 0x0002 8000 le premier m
it les quatre lor (i = 0; i	ne architecture p cas : correspond lgorithme de ren (la taille d'un f Y 0x0001 4000 sont les éléi emier bloc d kernels de calcul	dance directe et nplacement (on n loat est de 32 b Z 0x0001 8000 ments des ta u cache? suivants: r (i = 0; i < N;	associativité paremplace la lignorits) sont aux ad X1 0x0001 C000 ableaux X et ; ++i) for (i { Y1[i] s1 } for (i	r ensembles de 2 e la moins récem resses suivantes Y1 0x0002 0000 Y qui peuve = 0; i < N; ++i	2 blocs, avec le ment utilisée). I X2	LRU (Least Rece Les tableaux suiva Y2 0x0002 8000 le premier m i < N; ++i) E[i] + Y[i]
it les quatre lor (i = 0; i	ne architecture p cas : correspond lgorithme de ren (la taille d'un f Y 0x0001 4000 sont les éléi emier bloc d kernels de calcul	dance directe et nplacement (on n loat est de 32 b Z 0x0001 8000 ments des ta u cache? suivants: r (i = 0; i < N;	associativité paremplace la lignorits) sont aux ad X1	r ensembles de 2 e la moins récem resses suivantes Y1 0x0002 0000 Y qui peuve = 0; i < N; ++i += X1[i] + Y1[i]	2 blocs, avec le ment utilisée). I X2	LRU (Least Rece Les tableaux suiva Y2 0x0002 8000 le premier m i < N; ++i) E[i] + Y[i]

2.2 Pour chaque boucle, quel est le nombre de défauts de cache données par itération (on suppose que les variables scalaires sont toujours en registre)?

3	Cache Données Et Algorithme De Remplacement
	rdinateur a une mémoire principale constituée de 1 Mio. Il a aussi un cache de 4 Kio associatif par ensemble, avec par ensemble et 64 octects par bloc.
3.1	Calculer le nombre de bits pour l'étiquette, l'index et l'adresse dans le bloc de l'adresse d'un mot de la mémoire principale.
3.2	Le cache est initialement vide. Le processeur lit 4352 octects à partir des adresses 0, 1, 2,, 4351 (dans cet ordre) 10 fois de suite. L'accès à un bloc dans le cache est de 1 unité de temps auquel on ajoute 10 si le bloc n'est pas dans le cache (doit être chargé); estimer l'accélération résultant de l'utilisation du cache en supposant que l'algorithme LRU est utilisé pour le remplacement du bloc.

4 Cache Données (Bonus)

Soit le programme suivant, qui effectue la normalisation des colonnes d'une matrice X[8][8] : chaque élément de la colonne est divisé par la moyenne des valeurs de cette colonne.

```
float X[8][8]; float sum = 0.f;
for (size_t j = 0; j < 8; ++j)
{
    for (size_t i = 0; i < 8; ++i)
    {
        sum += X[i][j];
    }
    float average = sum / 8.f;
    for (size_t k = 8; k >= 1; -k)
    {
        X[k - 1][j] /= average;
    }
}
```

On suppose que l'on a un cache de 128 octects avec des blocs de 16 octects (soit 8 blocs pour le cache). L'adresse de X[0][0] est 0xF000 (sur 16 bits).

- 4.1 En supposant la correspondance directe, définir dans quelles lignes du cache vont chaque élément de la matrice. En déduire le nombre de défauts de cache pour l'exécution du programme. Quel serait le nombre de défauts de cache en écrivant la seconde boucle interne sous la forme : for (size_t k = 0; k < 8; ++k)?
- 4.2 Avec un cache totalement associatif, quel est le nombre de défauts de cache pour le programme initial en utilisant le LRU comme algorithme de remplacement?
- 4.3 Pour un cache associatif par ensemble 2 voies, définir dans quels ensembles vont les éléments de la matrice. Quel est le nombre de défauts de cache pour le programme initial en utilisant le LRU comme algorithme de remplacement?