Система контролю пасіки Блок контролю вулика

Технічні властивості та інженерні налаштування Україна 2023

Зміст

Базовий напрямок	2
Опис роботи	2
Топологія системи	2
Опис налаштувань	3
Основні налаштування пристрою	3
Мережеві налаштування <net_settings></net_settings>	3
Налаштування наявності вуликів <apairy_set></apairy_set>	3
Налаштування параметрів відправки sms <gsm></gsm>	3
Налаштування параметрів часу <ntp></ntp>	3
Налаштування додаткових параметрів <options></options>	3
Налапп ування вулика	4
Налаштування параметрів вулику <hive></hive>	4
Налаштування вімірювання ваги <scales></scales>	4
Налаштування термометрів <thermometer></thermometer>	4
Налаштування розкладу відправки <schedule></schedule>	4
Рекомендації	4
Відновлення налаштувань	5
Логування	5
Логування зібраних даних	5
Логування роботи пристрою	6
Логування через Web інтерфейс	6
Оновлення ПЗ пристрою	6
Оновлення ПЗ Andriod	6

Базовий напрямок

Створити захищений (вуличний) вимірювальний пристрій для пасіки. В який би не будо потреби втручатися фізично тобто відкрити тільки раз для встановлення Sim картки. Виміри та налаштування пристрою доступні за допомогою Web інтерфейсу, не потрібуючи його підключення до інтернету. За необхідності забрати з пристрою файли логування та файли з вимірами можливо використовуючи Wi-Fi та стандартний FTP клієнт, що теж легко зробити не втручаючись у пристрій, що зменшує ризик пошкодження пристрою за погодних умов та збільшує термін використання.

Виміри автоматично потрапляють до Android пристрою безпосередньо без зберігання на сервері чи в хмарі. За необхідності синхронізації пристрій може використовувати доступ до інтернету, але тільки за власним бажанням користувача. Це виключає збір інформації навіть технічного характеру на користь третіх осіб. Питання синхронізації на даному етапі розглядаються як додаткові та не впливають на основні функції пристрою.

Опис роботи

Основні функції: Збір, передача та накопичення вимірів.

Збір даних: відбувається на початку кожної години, залежить від налаштувань окремого пристрою. **Передача даних:** відбувається на початку години разом з виміром, дані надсилаються не кожну годину а за налаштуванням(див «Налаштування розкладу відправки»), таким чином в одне повідомлення може мати дані за кілька годин (це економія трафіку та заряду батареї).

Накопичення даних: пристрій збирає та зберігає дані на встановленому накопичувачі тісто SD за весь термін експлуатації.

Потрібно підкреслити, що не залежно від наявності тісто SD всі налаштування зберігаються у внутрішньому носії, тобто відсутність доступу до флеш не впливає на працездатність та виконання основних задач пристрою (збір та передача даних для користувача). Відсутність флеш буде впливати на зберігання даних про виміри та файли логування на пристрої.

Чому використовується термін «виміри» або «дані»: система може мати багато варіантів вимірювальних пристроїв, які встановлюються за потреби або бажанням користувача. На цей час доступні (вага, 2 вимірювача температури, вологість с додатковою температурою, тиск також с температурою, датчик руху). Такім чином доступно до 7 джерел вимірювання та їх комбінації.

Надано багато уваги **тривалості автономної роботи** пристрою, яка сягає **3-6 місяців** в зимових умовах до (-20 °C). А також мінімізації трафіку та витрат на комунікацію з урахуванням того, що пасіки, зазвичай, розташовані в зонах з низьким покриттям GSM мереж. Підхід до зменшення тривалості комунікацій позитивно впливає на тривалість автономної роботи та витрати на послуги GSM операторів.

Топологія системи

Система складається з пристрою виміру та мобільного пристрою, на який надходять дані телефон або планшет.

За основною метою пристрої виміру можуть бути двох типів (на зараз існує перший тип - головний):

- 1) Головний, який збирає дані з пасіки або групи вуликів та надає користувачеві (в наявності GSM та Wi-Fi)
- 2) Підлеглий пристрій збору даних з вулика, який надає ці дані головному через внугрішню мережу, GSM немає у наявності. Функцію збору та передачі вимірів користувачу виконує головний пристрій. Такій підхід може значно зменшити витрати на зв'язок та надати можливість доглядати за всією пасікою за допомогою лише однієї Sim, мати догляд за декількома вуликами (в розробці, за сумлівною потребою такої системи поки призупинено). Зазвичай користувачі не встановлюють більш одного приладу виміру на однин точок. Тому немає потреби мати внугрішні мережі пристроїв в однієї локації (точку).

Опис налаштувань

Файли налаштувань знаходяться на micro SD встановленій у пристрій в папці /setting

Основні налаштування пристрою

Налаштування розташовані (/setting/mset.xml)

Мережеві налаштування <net_settings>

SSID ="apiary_net" — назва мережи, яку буде формувати пристрій після перезавантаження, не має бути довша за 32 символи

PASSWORD ="apiary_wifi" – пароль до цієї мережі, не має бути довшим за 32 символи

Важливо! Пароль входу до wifi мережі краще змінити одразу після перевірки пристрою.

FTP_USER ="myftp" – ім'я користувача ftp, не має бути довше за 32 символи

FTP_PASSWORD ="**ftpmy**" – пароль користувача ftp, не має бути довшим за 32 символи

Налаштування наявності вуликів <apairy_set>

hive_count ="1" – кількість вуликів під контролем, за наявності підлеглих має бути більша за 1 hive1 ="hive1" – ім'я файлу конфігурації вулика, не має бути довше за 8 символів

Налаштування параметрів відправки sms <GSM>

sms_format1 ="2" — формат даних sms для number1 «1» - звичайний, не стислий, можна використовувати при відсутності Android аплікації. «2» - стислий формат повідомлень, дозволяє передавати багато вимірив в одному повідомлені, такий формат передбачає використаня Android додатку

sms format2 ="2" – формат даних sms для number2

number1="+3808888888" – номер користувача, на який будуть надходити повідомлення про виміри з форматом sms_format1. Якщо не заданий то залишити number1="" – порожні лапки

number2 ="+3807777777" – додатковий номер користувача, на який будуть надходити повідомлення про виміри з форматом sms_format2. Якщо не заданий то залишити number2="" – порожні лапки

sms_wait_to_send_sec = "50" — очикувати відправки sms 50 секунд перед повтором

alarm_call_wait_sec ="80" - при появі тривогі декілко разів не дзвонити частіше за 80 секунд

Налаштування параметрів часу <NTP>

synchronize ="false" – автоматична синхронізація часу «true» - включена, "false" – вимкнена

time_zone ="2" часовий пояс

ntp1 ="0.europe.pool.ntp.org"

ntp2 ="1.europe.pool.ntp.org"

ntp3 ="**2.europe.pool.ntp.org**" - сервери синхронізації часу наявні у мережі інтернет цього регіону (ntp1 - ntp3) обробляє до 3 серверів, звертається по черзі, якщо немає відповіді. Якщо не заданий, то залишити ntp1="" – порожні лапки. Це налаштування не має значення у випадку (synhronize="**false**")

Налаштування додаткових параметрів <options>

meteo = "false" — наявність датчику вимірювання тиску та вологості за допомоги

oled ="false" – наявність oled екрану для беспосереднього відображення вимірів

pir_sensor ="false" – наявність датчику руху в комплекті та включення функцій тривоги за його вимірів sefe_start_interval="60000" – захисний інтервал часу в тв для під'єднання до мережі пристрою після перезапуску пристрою магнітним ключем. Також час очікування повторного під'єднання та максимальний час очікування готовності мережі GSM. Не може бути меншим за 20000, по замовченню 120000. Не рекомендується встановлювати більшим за еквівалент однієї хвилини(60000тв)

alarm_sms_sec_interval ="30" – не надсилати sms про тривогу частіше за 30 секунд

alarm_by_changes_count ="3" — кількисть спрацювань датчику яку рахувати не випадковою 3 рази = тривога. 1 або 2 спрацювання можуть бути випадковими за погодних умов або коливань самого пристрою. Параметр треба зясовувати за певних увмов розташування. Випадкові спрацювання можуть бути через наявнісь рухомих предметів поруч або високої трави тощо

alarm_by_long_state ="10" – тривалисть секунд активного стану дачику. Якщо датчик вказує на наявність предмету довше ніж 10 секунд = тривога

time_ms_compensate="12000" – компенсация добового уходу годинника в ms, вираховується для кожного приладу окремо відносно еталону (в поточній версії задається користувачем при необхідності).

Компенсація часу відбувається кожну добу у 1:00AM налаштоване значення (time_ms_compensate) додається з від'ємним знаком до поточного часу (за умови вимкненої автосінхронізації synhronize="false").

Налаштування вулика

Налаштування розташовані (/setting/hive1.xml) або за іменем вказаним у полях hive1- hiveXX у mset.xml

Налаштування параметрів вулику <hive>

```
hive_name="hive1" – назва вулика, не більше за 8 символів bus_number="0" – (service) комунікаційний номер «0» для окремого вулика main_device="true" – (service) "true" - головний пристрій має GSM та зв'язок з власником, "false" підлеглий пристрій має зв'язок з головним, не має виходу до мережевих комунікацій
```

Налаштування вімірювання ваги <scales>

```
pin_hc711_data="27" - (service) змінювати категорично не рекомендується, можлива не коректна робота пристрою
або вихід пристрою з ладу
pin_hc711_clk="26" - (service)
gain="0" - (service)
zero calibrate measurement="1079657" – калібрувальне значення «0» ваги
weight_calibrate_measurement="1208175" - калібрувальне значення еталонної ваги
calibrate_weight="1000" - вага в грамах, за якою було зроблено калібрування, еталонна ваги
start_weight="-920" - значення в грамах, яке слід ураховувати як тару. Може мати значення від -100000 до 100000.
Іншими словами, тара може мати вагу від -100 до 100 кг. Від'ємне значення корисне тоді, коли калібрування було
зроблено на платформі, вагу якої слід ігнорувати в даному випадку 920 грам
source_weight = "1" - (service)
normal pecision ="0.5" – (service)
normal_desired_deviation ="10" – (service)
stable_pecision ="0.35" - (service)
stable_desired_deviation ="5" - (service)
calibrate_pecision ="0.25" - (service)
calibrate_desired_deviation ="3" - (service)
```

Налаштування термометрів <thermometer>

```
pin_onewire ="4" – (service) sensors_count ="2" – кількість сенсорів типу DS18B20 під'єднано
```

Налаштування розкладу відправки <schedule>

```
TimeSlot0= "2" TimeSlot1="1" TimeSlot2="1" TimeSlot3="1" TimeSlot4="1" TimeSlot5="1" TimeSlot6="1" TimeSlot6="1" TimeSlot10="1" TimeSlot10="1" TimeSlot11="1" TimeSlot12="2" TimeSlot13="1" TimeSlot13="1" TimeSlot16="1" TimeSlot16="1" TimeSlot18="1" TimeSlot19="1" TimeSlot20="2" TimeSlot21="1" TimeSlot22="1" TimeSlot23="1"/>
```

Це налаштування має за мету опис поведінки на межі кожної години 0-23 відповідно. Значення:

«1» - зробити вимірювання та заснути,

«2» - зробити вимірювання передати власнику та заснути

Важливо! Цю группу параметрів зручніше та надійніше налаштовувати через Web интерфейс

Рекомендації

Переважна більшість налаштувань доступна через **Web інтерфейс пристрою** більш надійно використовувати його для налаштування параметрів запобігаючи не коректних комбінацій параметрів. Параметри з позначкою (service) змінювати категорично не рекомендується, можлива не коректна робота пристрою або вихід з ладу.

Відновлення налаштувань

У разі повної відсугності налаштувань немає на флеш та не зберіглися у внутрішнім сховище (не можу уявити, що могло статися щоб так було), в такому разі будуть застосовані налаштування по замовченню, які ϵ в програмі пристрою.

У випадку, коли пристрій хоч раз був успішно конфігурований, налаштування зберігаються во внутрішньому сховищі. У разі пошкодження флеш або використання нової(FAT32 формату не більшу за 32Gb) вони будуть відновленні з внутрішнього носія на тісто SD. Такий підхід дає можливість працювати незалежно від наявності та працездатності носія.

Аварійні або тривожні (охорона) повідомлення можуть буди видані навіть у випадку пошкодження всіх наявних налаштувань, номери телефонів користувача після налаштувань зберігаються додатково на Sim.

Логування

Пристрій має деклілько типив логування різних за призначенням:

- Логування зібраних даних має метою сберігати архів вимирів та мати доступ з мобільного застосунку в випадку втрати даних або бажання аналізу беспосередньо.
- Логування роботи пристрою створено для севісних функцій на випадок винекнення ускладнень роботи або виходу пристрою з ладу з метою зменьшення витрат на аналіз проблеми.
- Логування реального часу виконнання теж присутне в web фломаті виключно сервісне.

Логування зібраних даних

Мета - зберігання даних вимірів про вулик в зручному для користувача вигляді, незалежно від наявності зв'язку та його використання в цілому. Іншими словами, пристрій може використовуватися без зв'язку загалом як регістратор даних, для подальшої їх обробки з боку власника за будь-якої дослідницької або комерційної мети.

Для цього на mcro SD кожного року автоматично створюється папка з ім'ям YEARxx — де xx останні 2 цифри поточного року. Кожен місяць в папці з роком автоматично створюються файли з назвою поточного місяця, де зберігаються дані з поточною датою та часом їх вимірювання. Формат(.csv) файлу підтримують більшість застосунків обробки таблиць. Наявність даних в тих чи інших стовпчиках залежить від комплектації пристрою, деякі з них мають сервісну функцію.

Можуть буги таки стовпчики:

Date – Дата початку роботи над виміром

Time — Час початку роботи над виміром

Weight[Kg] – Вимір ваги Кг. Формат (0.000) фактична роздільна здатність виміру 1г

T1 [°C] – Вимір температури з першого датчика в градусах Цельсія. Формат (0.0°C) роздільна здатність 0.1°C

T2 [°C] – Вимір температури з другого датчика в градусах Цельсія. Формат (0.0°C) роздільна здатність 0.1°C

Battery G[%] – Дані про заряд батареї отримані з GSM модуля в %

Battery A[%] – Дані про заряд батареї отримані за допомогою ЦП модуля в %

Presure[mm Hg] – Тиск в мм р.с. Формат 000.0 роздільна здатність 0.1 мм р.с.

Т3 [C] – Додаткова температура з датчика тиску. Формат (0.0°C) роздільна здатність 0.1°C

Humidity[%] — Вологість повітря у відсотках. Формат 000.0 роздільна здатність 0.1%

Т4 [C] – Додаткова температура з датчика вологості. Формат (0.0°C) роздільна здатність 0.1°C

Signal rssi[dBm] - Рівень сігналу в GSM dBm

rssi[%] – Відносний рівень сігналу GSM в %

Work Time(ms) – Час роботи пристрою від моменту просинання (для збору даних) до моменту засинання у ms

Build Hash – service параметри оновлення

Build date time – service час створення оновлення

Наявність параметрів та формат можуть змінюватись залежно від версії ПЗ та кофігурації пристрою.

Важливо! Щоб дані відповідали часу їх збору та були належним чином збережені на флеш, важливо, щоб синхронізація часу відбувалася хоча б д**вічі на рік**, та обов'язково після зміни або повного розряду елементу живлення.

Увага! При критично низькому заряді батарея автоматично буде відключена задля збереження її працездатності та цілісності. Такий випадок теж буде потребувати синхронізації часу.

Логування роботи пристрою

Покрокове логування работи пристрою для користувача при нормальній роботі не потрібн зовсім, він носіть виключно сервісний характер. Пристрій здійснює логування роботи на тісто SD з метою спрощення пошуку верогідних пошкоджень або ускладнюючих факторів у роботі. Пристрій спроектовано таким чином що всі файли логування будут сбережені за весь термін використання пристрою. Середні витрати на логування близько **50Мб на рік**, звичайної флеш 4-32Gb вистачить на тривалий термін.

Логування через Web інтерфейс

Інженерне логування з попереднього пункту також доступно в реальному часі через Web інтерфейс, можливо робити налаштування глибини логування для кожного функціонального модуля окремо в реальному часі.

Логування: /log

Керування глибиною логування: /tracecontrol

Оновлення ПЗ пристрою

Оновлення за допомогою флеш micro SD:

- 1. Зняти флеш с пристрою
- 2. В корені флеш повинна бути папку /fm, якщо її нема створить
- 3. Покладіть файл оновлення Apiary.bin в папку /fm
- 4. Поверніть флеш до пристрою та перезавантажте його
- 5. По закінченні оновлення пристрій надішле звичайне SMS з вимірами. Зазвичай це займає не більше 2 хв

Як перевірити версію?

На головній сторінці пристрою в нижній її частині розташовані версія та дата, які повинна відповідати оновленню.

V:2.1bcbbb6(Dec 1 2023 12:14:24) bdf1b57e5e84dd36

Оновлення ПЗ пристрою: https://github.com/Ivan-Bdgilko/Hive_Controller

Також можливі оновлення за застосуванням FTP або за допомогою серверу оновлень ця функція не розглядається в цієї інструкції за умов не стабільного зв'язку на місцях встановлення пристрою також як більш складні та меньш надійні варіанти.

Оновлення ПЗ Andriod

Встановіть арк з флеш пристрою або за посиланням.

Оновлення Android застосунку: https://github.com/Ivan-Bdgilko/Android_Apk

