Outline

- Introduction
- Background
- Distributed Database Design
- Database Integration
- Semantic Data Control
- Distributed Query Processing
 - → Overview
 - Query decomposition and localization
 - Distributed query optimization
- Multidatabase Query Processing
- Distributed Transaction Management
- Data Replication
- Parallel Database Systems
- Distributed Object DBMS
- Peer-to-Peer Data Management
- Web Data Management
- Current Issues

Step 3 – Global Query Optimization

Input: Fragment query

- Find the best (not necessarily optimal) global schedule
 - → Minimize a cost function
 - Distributed join processing
 - Bushy vs. linear trees
 - Which relation to ship where?
 - Ship-whole vs ship-as-needed
 - → Decide on the use of semijoins
 - ◆ Semijoin saves on communication at the expense of more local processing.
 - → Join methods
 - nested loop vs ordered joins (merge join or hash join)

Cost-Based Optimization

- Solution space
 - → The set of equivalent algebra expressions (query trees).
- Cost function (in terms of time)
 - → I/O cost + CPU cost + communication cost
 - → These might have different weights in different distributed environments (LAN vs WAN).
 - Can also maximize throughput
- Search algorithm
 - → How do we move inside the solution space?
 - → Exhaustive search, heuristic algorithms (iterative improvement, simulated annealing, genetic,...)

Query Optimization Process

Search Space

- Search space characterized by alternative execution
- Focus on join trees
- For *N* relations, there are O(*N*!) equivalent join trees that can be obtained by applying commutativity and associativity rules

SELECT ENAME, RESP

FROM EMP, ASG, PROJ

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=PROJ.PNO

Search Space

- Restrict by means of heuristics
 - Perform unary operations before binary operations
 - → ...
- Restrict the shape of the join tree
 - → Consider only linear trees, ignore bushy ones

Linear Join Tree

R_1 R_2 R_3

Bushy Join Tree

Search Strategy

- ■How to "move" in the search space.
- Deterministic
 - -Start from base relations and build plans by adding one relation at each step
 - Dynamic programming: breadth-first
 - → Greedy: depth-first
- Randomized
 - → Search for optimalities around a particular starting point
 - → Trade optimization time for execution time
 - → Better when > 10 relations
 - -Simulated annealing
 - → Iterative improvement

Search Strategies

Deterministic

Randomized

Cost Functions

- Total Time (or Total Cost)
 - → Reduce each cost (in terms of time) component individually
 - → Do as little of each cost component as possible
 - → Optimizes the utilization of the resources

Increases system throughput

- Response Time
 - → Do as many things as possible in parallel
 - → May increase total time because of increased total activity

Total Cost

Summation of all cost factors

```
Total cost = CPU \cos t + I/O \cos t + communication \cos t
```

CPU cost = unit instruction cost *no.of instructions

I/O cost = unit disk I/O cost * no. of disk I/Os

communication cost = message initiation + transmission

Total Cost Factors

- Wide area network
 - → Message initiation and transmission costs high
 - →Local processing cost is low (fast mainframes or minicomputers)
 - \rightarrow Ratio of communication to I/O costs = 20:1
- Local area networks
 - →Communication and local processing costs are more or less equal
 - →Ratio = 1:1.6

Response Time

Elapsed time between the initiation and the completion of a query

```
Response time = CPU time + I/O time + communication time
```

CPU time = unit instruction time * no. of sequential instructions

```
I/O time = unit I/O time * no. of sequential I/Os
```

communication time = unit msg initiation time * no. of sequential msg + unit transmission time * no. of sequential bytes

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/12

Example

Assume that only the communication cost is considered

Total time = $2 \cdot \text{message}$ initialization time + unit transmission time * (x+y)

Response time = \max {time to send x from 1 to 3, time to send y from 2 to 3}

time to send x from 1 to 3 = \max initialization time + unit transmission time * xtime to send y from 2 to 3 = \max initialization time + unit transmission time * y

Optimization Statistics

- Primary cost factor: size of intermediate relations
 - → Need to estimate their sizes
- Make them precise \Rightarrow more costly to maintain
- Simplifying assumption: uniform distribution of attribute values in a relation

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/14

Statistics

- For each relation $R[A_1, A_2, ..., A_n]$ fragmented as $R_1, ..., R_r$
 - \rightarrow length of each attribute: $length(A_i)$
 - \rightarrow The cardinalities of each fragment: $card(R_i)$
 - \rightarrow the cardinalities of each domain: $card(dom[A_i])$
 - \rightarrow the number of distinct values for A_i in fragment R_j : $card(\Pi_{A_i}R_j)$
 - maximum and minimum values in the domain of each attribute: $min(A_i)$, $max(A_i)$
- Cardinality of each operation for relations

 $size(R) = card(R) \cdot length(R)$

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/15

Intermediate Relation Sizes

Selection

$$card(\sigma_P(R)) = SF_{\sigma}(P) \cdot card(R)$$
 where

$$SF_{\sigma}(A = value) = \frac{1}{card(\prod_{A}(R))}$$

$$SF_{\sigma}(A > value) = \frac{max(A) - value}{max(A) - min(A)}$$

$$SF_{\sigma}(A < value) = \frac{value - min(A)}{max(A) - min(A)}$$

$$SF_{\sigma}(p(A_{i}) \land p(A_{j})) = SF_{\sigma}(p(A_{i})) \cdot SF_{\sigma}(p(A_{j}))$$

$$SF_{\sigma}(p(A_{i}) \lor p(A_{j})) = SF_{\sigma}(p(A_{i})) + SF_{\sigma}(p(A_{j})) - (SF_{\sigma}(p(A_{i})) \cdot SF_{\sigma}(p(A_{j})))$$

$$SF_{\sigma}(A \in \{value\}) = SF_{\sigma}(A = value) * card(\{values\})$$

Intermediate Relation Sizes

Projection

```
card(\Pi_A(R)) = card(R)
```

Cartesian Product

```
card(R \times S) = card(R) * card(S)
```

Union

upper bound: $card(R \cup S) = card(R) + card(S)$

lower bound: $card(R \cup S) = max\{card(R), card(S)\}$

Set Difference

upper bound: card(R-S) = card(R)

lower bound: 0

Intermediate Relation Size

Join

Special case: A is a key of R and B is a foreign key of S

$$card(R \bowtie_{A=B} S) = card(S)$$

Other cases:

$$card(R \bowtie S) = SF_{\bowtie} * card(R) \cdot card(S)$$

Semi-join

$$card(R \bowtie_A S) = SF_{\bowtie}(R \bowtie_A S)^* card(R)$$

where

$$SF_{\bowtie}(R \bowtie_{A} S) = \frac{card(\prod_{A}(S))}{card(dom[A])}$$

Histograms for Selectivity Estimation

- For skewed data, the uniform distribution assumption of attribute values yields inaccurate estimations
- Use an histogram for each skewed attribute A
 - → Histogram = set of buckets
 - ◆ Each bucket describes a range of values of A, with its average frequency *f* (number of tuples with A in that range) and number of distinct values *d*
 - → Buckets can be adjusted to different ranges
- Examples
 - → Equality predicate
 - With (value in Range_i), we have: $SF_{\sigma}(A = value) = 1/d_i$
 - → Range predicate
 - ❖ Requires identifying relevant buckets and summing up their frequencies

Histogram Example

For ASG.DUR=18: we have SF=1/12 and card(b_3)=50, so the card of selection is $50/12 \sim 4$ tuples

For ASG.DUR≤18: we have min(range₃)=12 and max(range₃)=24 so the card. of selection is 100+75+(((18-12)/(24-12))*50) = 200 tuples

Centralized Query Optimization

- Dynamic (Ingres project at UCB)
- Static (System R project at IBM)
- Hybrid (Volcano project at OGI)

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/21

Dynamic Algorithm

- Decompose each multi-relation query into a sequence of mono-relation queries
- Process each by a one relation query processor
 - → Choose an initial execution plan (heuristics)
 - Order the rest by considering intermediate relation sizes

No statistical information is maintained

Dynamic Algorithm— Decomposition

• Replace an *n* relation query *q* by a series of queries

$$q_1 \rightarrow q_2 \rightarrow \dots \rightarrow q_n$$

where q_i uses the result of q_{i-1} .

- Detachment
 - → Query q decomposed into $q' \rightarrow q''$ where q' and q'' have a common relation which is the result of q'
- Tuple substitution
 - → Replace the value of each tuple with actual values and simplify the query

$$q(V_1, V_2, ..., V_n) \rightarrow (q'(t_1, V_2, V_2, ..., V_n), t_1 \in R)$$

Detachment

```
SELECT
q:
                    R_2 \cdot A_2, R_3 \cdot A_3, ..., R_n \cdot A_n
     FROM
                    R_1, R_2, \ldots, R_n
     WHERE
                    P_1(R_1.A_1') AND P_2(R_1.A_1, R_2.A_2, ..., R_n.A_n)
                R_1 \cdot A_1 INTO R_1'
     SELECT
     FROM
     WHERE
                    P_1(R_1.A_1')
     SELECT
                R_2 \cdot A_2, ..., R_n \cdot A_n
                    R_1', R_2, \ldots, R_n
     FROM
                    P_2(R_1'.A_1,R_2.A_2,...,R_n.A_n)
     WHERE
```

Detachment Example

Names of employees working on CAD/CAM project

 q_1 : SELECT EMP.ENAME

FROM EMP, ASG, PROJ

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=PROJ.PNO

AND PROJ. PNAME="CAD/CAM"

 \bigcup

 q_{11} : SELECT PROJ.PNO INTO JVAR

FROM PROJ

WHERE PROJ. PNAME="CAD/CAM"

q': **SELECT** EMP.ENAME

FROM EMP, ASG, JVAR

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=JVAR.PNO

Detachment Example (cont'd)

q': **SELECT** EMP.ENAME

FROM EMP, ASG, JVAR

WHERE EMP.ENO=ASG.ENO

AND ASG.PNO=JVAR.PNO

 $\downarrow \downarrow$

 q_{12} : **SELECT** ASG.ENO **INTO** GVAR

FROM ASG, JVAR

WHERE ASG.PNO=JVAR.PNO

 q_{13} : **SELECT** EMP.ENAME

FROM EMP, GVAR

WHERE EMP.ENO=GVAR.ENO

Tuple Substitution

 q_{11} is a mono-relation query

 q_{12} and q_{13} are subject to tuple substitution

Assume GVAR has two tuples only: (E1) and (E2)

Then q_{13} becomes

 q_{131} :

SELECT

EMP. ENAME

FROM

EMP

WHERE

EMP.ENO="E1"

 a_{13} :

SELECT EMP.ENAME

FROM EMP, GVAR

WHERE EMP.ENO=GVAR.ENO

 q_{132} :

SELECT

EMP.ENAME

FROM

EMP

WHERE

EMP.ENO="E2"

Static Algorithm

- Simple (i.e., mono-relation) queries are executed according to the best access path
- 2 Execute joins
 - → Determine the possible ordering of joins
 - Determine the cost of each ordering
 - → Choose the join ordering with minimal cost

Static Algorithm

For joins, two alternative algorithms:

Nested loops

```
for each tuple of external relation (cardinality n_1)
for each tuple of internal relation (cardinality n_2)
join two tuples if the join predicate is true
end
end
```

- Merge join
 - sort relations merge relations

 \rightarrow Complexity: $n_1^* n_2$

 \rightarrow Complexity: n_1 + n_2 if relations are previously sorted and equijoin

Static Algorithm – Example

"Names of employees working on the CAD/CAM project"

Assume

- → EMP has an index on ENO,
- ASG has an index on PNO,
- PROJ has an index on PNO and an index on PNAME

Example (cont'd)

- Choose the best access paths to each relation
 - sequential scan (no predicate on EMP) → EMP:
 - → ASG: sequential scan (no predicate on ASG)
 - index on PNAME (there is a predicate on PROJ based on PNAME)
- 2 Determine the best join ordering
 - → EMP ⋈ ASG ⋈ PROJ
 - → ASG ⋈PROJ ⋈EMP
 - → PROJ ⋈ASG ⋈EMP
 - → ASG ▷</br>
 EMP ▷
 - → EMP × PROJ ⋈ ASG
 - → PRO × JEMP ▷</br>

Distributed DBMS

→ Select the best ordering based on the join costs evaluated according to the

EMP.ENO=ASG.ENO

ASG. PNO=PROJ. PNO

Ch.8/31

two methods

© M. T. Özsu & P. Valduriez

Static Algorithm

Best total join order is one of

$$((ASG \bowtie EMP) \bowtie PROJ)$$

 $((PROJ \bowtie ASG) \bowtie EMP)$

→ Index: EMP.ENO, ASG.PNO, PROJ.PNO,

PROJ. PNAME

→ Join: EMP.ENO=ASG.ENO ASG.PNO=PROJ.PNO

Static Algorithm

- ((PROJ ⋈ ASG) ⋈ EMP) has a useful index on the select attribute and direct access to the join attributes of ASG and EMP
- Therefore, chose it with the following access methods:
 - select PROJ using index on PNAME
 - then join with ASG using index on PNO
 - then join with EMP using index on ENO

SELECT EMP.ENAME

FROM EMP, ASG, PROJ

WHERE ASG. PNO=PROJ. PNO

AND EMP.ENO=ASG.ENO

AND PROJ. PNAME="CAD/CAM"

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/33

Hybrid optimization

- In general, static optimization is more efficient than dynamic optimization
 - Adopted by all commercial DBMS
- But even with a sophisticated cost model (with histograms), accurate cost prediction is difficult
- Example: Consider a parametric query with predicate

```
WHERE R.A = \$a //* \$a is a parameter \sigma_{R.A=\$a}(R_1) \bowtie R_2 \bowtie R_3
```

- → The only possible assumption at compile time is uniform distribution of values
- Solution: Hybrid optimization
 - Choose-plan done at runtime, based on the actual parameter binding

Hybrid Optimization Example

Join Ordering in Fragment Queries

- Ordering joins
 - → Distributed INGRES
 - → System R*
 - → Two-step
- Semijoin ordering
 - → SDD-1

Join Ordering

Consider two relations only

- Multiple relations more difficult because too many alternatives.
 - Compute the cost of all alternatives and select the best one.
 - ◆ Necessary to compute the size of intermediate relations which is difficult.
 - → Use heuristics

Join Ordering - Example

Consider

$$PROJ \bowtie_{PNO} ASG \bowtie_{ENO} EMP$$

Join Ordering - Example

Execution alternatives:

1. EMP \rightarrow Site 2

Site 2 computes EMP'=EMP™ ASG

 $EMP' \rightarrow Site 3$

Site 3 computes EMP' ™ PROJ

3. ASG \rightarrow Site 3

Site 3 computes ASG'=ASG ⋈ PROJ

 $ASG' \rightarrow Site 1$

Site 1 computes ASG' ⋈EMP

5. EMP \rightarrow Site 2

 $PROJ \rightarrow Site 2$

Site 2 computes EMP ™ PROJ ™ ASG

2. ASG \rightarrow Site 1

Site 1 computes EMP'=EMP™ ASG

 $EMP' \rightarrow Site 3$

Site 3 computes EMP' ™ PROJ

4. PROJ \rightarrow Site 2

Site 2 computes PROJ'=PROJ ⋈ ASG

 $PROJ' \rightarrow Site 1$

Site 1 computes PROJ' ⋈ EMP

Semijoin Algorithms

- Consider the join of two relations:
 - ightharpoonup R[A] (located at site 1)
 - \rightarrow S[A] (located at site 2)
- Perform one of the semi-join equivalents :

$$\Leftrightarrow (R \ltimes_{A} S) \bowtie_{A} S$$

$$R \bowtie_{A} S \iff R \bowtie_{A} (S \ltimes_{A} R)$$

$$\Leftrightarrow (R \ltimes_{A} S) \bowtie_{A} (S \ltimes_{A} R)$$

Semijoin Algorithms

- Consider semijoin $(R \ltimes_A S) \bowtie_A S$
 - $\rightarrow S' = \Pi_A(S)$
 - $\rightarrow S' \rightarrow \text{Site } 1$
 - ⇒Site 1 computes $R' = R \ltimes_A S'$
 - $\rightarrow R' \rightarrow Site 2$
 - ightharpoonupSite 2 computes $R' \bowtie_A S$
- Perform the join by sending R to site 2
 - ⇒send R to Site 2
 - ightharpoonupSite 2 computes $R \bowtie_A S$

Semijoin is better if

$$size(\Pi_A(S)) + size(R \ltimes_A S)) < size(R)$$

Distributed Dynamic Algorithm

- 1. Execute all monorelation queries (e.g., selection, projection)
- 2. Reduce the multirelation query to produce irreducible subqueries $q_1 \rightarrow q_2 \rightarrow ... \rightarrow q_n$ such that there is only one relation between q_i and q_{i+1}
- 3. Choose q_i involving the smallest fragments to execute (call MRQ')
- 4. Find the best execution strategy for MRQ'
 - a) Determine processing site
 - b) Determine fragments to move
- 5. Repeat 3 and 4

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/42

Static Approach

- Cost function includes local processing as well as transmission
- Considers only joins
- "Exhaustive" search
- Compilation
- Published papers provide solutions to handling horizontal and vertical fragmentations but the implemented prototype does not

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/43

Static Approach – Performing Joins

- Ship whole
 - →Larger data transfer
 - →Smaller number of messages
 - →Better if relations are small
- Fetch as needed
 - \rightarrow Number of messages = O(cardinality of external relation)
 - →Data transfer per message is minimal
 - →Better if relations are large and the selectivity is good

Static Approach — Vertical Partitioning & Joins

- 1. Move outer relation tuples to the site of the inner relation
 - (a) Retrieve outer tuples
 - (b) Send them to the inner relation site
 - (c) Join them as they arrive
 - Total Cost = cost(retrieving qualified outer tuples)
 - + no. of outer tuples fetched * cost(retrieving qualified inner tuples)
 - + msg. cost * (no. outer tuples fetched * avg. outer tuple size)/msg. size

Static Approach – Vertical Partitioning & Joins

- 2. Move inner relation to the site of outer relation
 - Cannot join as they arrive; they need to be stored
 - Total cost = cost(retrieving qualified outer tuples)
 - + no. of outer tuples fetched * cost(retrieving matching inner tuples from temporary storage)
 - + cost(retrieving qualified inner tuples)
 - + cost(storing all qualified inner tuples in temporary storage)
 - + msg. cost * no. of inner tuples fetched * avg. inner tuple size/msg. size

Static Approach – Vertical Partitioning & Joins

- 3. Move both inner and outer relations to another site
 - Total cost = cost(retrieving qualified outer tuples)
 - + cost(retrieving qualified inner tuples)
 - + cost(storing inner tuples in storage)
 - + msg. cost · (no. of outer tuples fetched * avg. outer tuple size)/msg. size
 - + msg. cost * (no. of inner tuples fetched * avg. inner tuple size)/msg. size
 - + no. of outer tuples fetched * cost(retrieving inner tuples from temporary storage)

Static Approach – Vertical Partitioning & Joins

- 4. Fetch inner tuples as needed
 - (a) Retrieve qualified tuples at outer relation site
 - (b) Send request containing join column value(s) for outer tuples to inner relation site
 - (c) Retrieve matching inner tuples at inner relation site
 - (d) Send the matching inner tuples to outer relation site
 - (e) Join as they arrive
 - Total Cost = cost(retrieving qualified outer tuples)
 - + msg. cost * (no. of outer tuples fetched)
 - + no. of outer tuples fetched * no. of inner tuples fetched * avg. inner tuple size * msg. cost / msg. size)
 - + no. of outer tuples fetched * cost(retrieving matching inner tuples for one outer value)

Dynamic vs. Static vs Semijoin

- Dynamic and static approaches have the same advantages and drawbacks as in centralized case
 - → But the problems of accurate cost estimation at compile-time are more severe
 - More variations at runtime
 - ❖ Relations may be replicated, making site and copy selection important
- Semijoin
 - → SDD1 selects only locally optimal schedules
- Hybrid optimization
 - → Choose-plan approach can be used
 - 2-step approach simpler

Hybrid: 2-Step Optimization

- 1. At compile time, generate a static plan with operation ordering and access methods only
- 2. At startup time, carry out site and copy selection and allocate operations to sites

$$\sigma(R_1) \bowtie R_2 \bowtie R_3$$

2-Step - Problem Definition

Given

- \rightarrow A set of sites $S = \{s_1, s_2, ..., s_n\}$ with the load of each site
- → A query $Q = \{q_1, q_2, ..., q_m\}$ such that each subquery q_i is the maximum processing unit that accesses one relation and communicates with its neighboring queries
- →For each q_i in Q, a feasible allocation set of sites $S_q = \{s_1, s_2, ..., s_k\}$ where each site stores a copy of the relation in q_i
- $lue{}$ The objective is to find an optimal allocation of Q to S such that
 - the load unbalance of S is minimized load(s_i): number of q_i submitted to s_i Ave_load(S)= $(1/n)\Sigma_{1 \le i \le n}$ load(s_i)

 UF(S)= $(1/n)\Sigma_{1 \le i \le n}$ (load(s_i)-Ave_load(S))²
 - → The total communication cost is minimized

2-Step Algorithm

- For each q in Q compute load (S_q)
- While Q not empty do
 - 1. Select subquery *a* with least allocation flexibility
 - 2. Select best site *b* for *a* (with least load and best benefit)
 - 3. Remove *a* from *Q* and recompute loads if needed
 - **allocation flexibility**: number of feasible allocation sites holding a copy of the relation involved in q.
 - load: total number of subqueries in the site (existing + allocation)
 - benefit: number of subqueries allocated to the site

Distributed DBMS © M. T. Özsu & P. Valduriez Ch.8/52

2-Step Algorithm Example

- Let $Q = \{q_1, q_2, q_3, q_4\}$ where q_1 is associated with R_1 , q_2 is associated with R_2 joined with the result of q_1 , etc.
- Iteration 1: select q_4 , allocate to s_1 , set load(s_1)=2
- Iteration 2: select q_2 , allocate to s_2 , set load(s_2)=3
- Iteration 3: select q_3 , allocate to s_1 , set load(s_1) =3
- Iteration 4: select q_1 , allocate to s_3 or s_4

sites	load	R_1	R_2	R_3	R_4
s ₁	1	R ₁₁		R ₃₁	R ₄₁
s ₂	2		R_{22}		
s_3	2	R ₁₃		R_{33}	
s ₄	2	R ₁₄	R ₂₄		

Note: if in iteration 2, q_2 , were allocated to s_4 , this would have produced a better plan. So hybrid optimization can still miss optimal plans