CS 240: Reasoning Under Uncertainty (Fall 21)

Oct 20

Lecture 12

Instructor: Profs Peter J. Hass and Jie Xiong

SI Worksheet: Juelin Liu

1 Introduction

In this lecture, we discussed several specific continuous random variables. They are uniform continuous random variables, exponential random variables, normal (Gaussian) random variables, and the standard normal random variable.

2 Continuous Random Variables

2.1 Uniform Continuous Random Variable

A uniform continuous random variable has a uniform probability density in [a, b]. Its expected value:

$$E(X) = \frac{b+a}{2}$$

Its variance:

$$Var(X) = \frac{1}{12}(b-a)^2$$

Its PDF is:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & otherwise \end{cases}$$

Its CDF:

$$F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

2.2 Exponential Random Variable

An exponential random variable characterizes the (time/space) interval between events in a Poisson point process. Suppose we have a Poisson random variable X. We know that $E(X) = \lambda$ which is the expected number of times an event occurs internally with a unit length is λ . Now the question is what is the expected interval between two events? Let's use the random variable Y to represent the size of the interval between the two events.

Its expected value should be:

$$E(Y) = \frac{1}{\lambda}$$

Its variance:

$$Var(Y) = \frac{1}{\lambda^2}$$

Its PDF is:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & 0 < x \\ 0 & otherwise \end{cases}$$

Its CDF:

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & otherwise \end{cases}$$

2.3 Normal Random Variable

Let X be a normal random variable with $E(X) = \mu$ and $Var(X) = \sigma^2$. Its probability density function is:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Its cumulative distribution function is:

$$F_X(x) = \frac{1}{2}(1 + erf(\frac{x - \mu}{\sigma\sqrt{2}}))$$

where $erf(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2} dt$

The **probability mass** of an interval [a, b] is the definite integral:

$$P(a < X < b) = \int_{a}^{b} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} = F_{X}(b) - F_{X}(a)$$

2.4 Standard Normal Random Variable

Let X be a normal random variable with E(X) = 0 and $Var(X) = \sigma^2 = 1$.

Its probability density function is:

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Its cumulative distribution function is:

$$F_X(x) = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$$

2.5 Standardizing a Normal Variable

For a given normal random variable X with mean μ and variance σ^2 , you can standardize it by defining a new random variable Y given by

$$Y = \frac{X - \mu}{\sigma}$$

Where Y is a standard normal variable with mean 0 and variance 1.

This is because Y is a linear function of X (Y = aX + b), we know Y perceives the normality.

2.6 Practice Problems

- 1. Suppose that Y has a uniform distribution over the interval (0, 1).
 - a) Find F(y).
 - b) Show that $P(a \le Y \le a + b)$ (for $a \ge 0$, $b \ge 0$, and $a + b \le 1$) depends only upon the value of b.
- 2. A random variable Y has a uniform distribution over the interval (a, b). Derive the variance of Y.
- 3. Let X be a continuous random variable with PDF $f_X(x) = \frac{\lambda}{2} e^{-\lambda |x|}$.
 - a) Verify that f_X is a valid PDF.
 - b) Evaluate E(X) and Var(X)
- 4. Let Z denote a normal random variable with mean 0 and standard deviation 1.
 - a) Find P(Z > 1)
 - b) Find P(-1 < Z < 1)
 - c) Find P(0.3 < Z < 1.5)
- 5. If Z is a standard normal random variable, find the value z_0 such that
 - a) $P(Z > z_0) = 0.5$
 - b) $P(Z < z_0) = 0.8643$
 - c) $P(-z_0 < Z < z_0) = 0.90$
 - d) $P(-z_0 < Z < z_0) = 0.99$
- 6. A soft-drink machine can be regulated so that it discharges an average of μ ounces per cup. If the ounces of fill are normally distributed with a standard deviation of 0, compute the setting for μ so that 8-ounce cups will overflow only 1 percent of the time.

3 Answer

1. a)

$$f_X(x) = \begin{cases} 0 & x < 0 \\ 1 & 0 \le x \le 1 \\ 0 & x > 1 \end{cases}$$

$$F_X(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$

b)
$$P(a < X < a + b) = F_X(a + b) - F_X(a) = b$$

2.

$$f_X(x) = \begin{cases} 0 & x < a \\ \frac{1}{b-a} & a \le x \le b \\ 0 & x > b \end{cases}$$

$$\begin{split} E(X) &= \int_a^b x \frac{1}{b-a} dx = \frac{b^2 - a^2}{2(b-a)} = \frac{a+b}{2} \\ Var(X) &= E(X^2) - (E(X))^2 = \int_a^b x^2 \frac{1}{b-a} dx - (\frac{a+b}{2})^2 = \frac{b^3 - a^3}{3(b-a)} - \frac{(a+b)^2}{4} = \frac{(b-a)^2}{12} \end{split}$$

3. a)
$$P(-\infty < X < \infty) = \int_{-\infty}^{\infty} \frac{\lambda}{2} e^{-\lambda |x|} dx = \int_{0}^{\infty} \lambda e^{-\lambda x} dx = 1$$

b) $E(X) = \int_{-\infty}^{\infty} \frac{\lambda}{2} x e^{-\lambda |x|} dx = 0$ (symmetry)

Or you can use integration by parts:

$$\begin{split} E(X) &= \int_{-\infty}^{\infty} \frac{\lambda}{2} x e^{-\lambda |x|} dx \\ &= \int_{-\infty}^{0} \frac{\lambda}{2} x e^{\lambda x} dx + \int_{0}^{\infty} \frac{\lambda}{2} x e^{-\lambda x} dx \end{split}$$

Let
$$A = \int_{-\infty}^{0} \frac{\lambda}{2} x e^{\lambda x} dx$$
, $B = \int_{0}^{\infty} \frac{\lambda}{2} x e^{-\lambda x}$

We now show that A=-B using integration by parts ($\int uv'=uv-\int u'v$) To compute A let $u=x,\ u'=1,\ v'=\frac{\lambda}{2}e^{\lambda x},\ v=\frac{1}{2}e^{\lambda x}$

$$A = \int_{-\infty}^{0} \frac{\lambda}{2} x e^{\lambda x} dx$$

$$= \left[\frac{1}{2} x e^{\lambda x} \right]_{-\infty}^{0} - \int_{-\infty}^{0} \frac{1}{2} e^{\lambda x} dx$$

$$= -\int_{-\infty}^{0} \frac{1}{2} e^{\lambda x} dx$$

$$= -\left[\frac{1}{2\lambda} e^{\lambda x} \right]_{-\infty}^{0}$$

$$= -\frac{1}{2\lambda}$$

To compute B let $u=x,\,u'=1,\,v'=\frac{\lambda}{2}e^{-\lambda x},\,v=-\frac{1}{2}e^{-\lambda x}$

$$\begin{split} B &= \int_0^\infty \frac{\lambda}{2} x e^{-\lambda x} dx \\ &= [-\frac{1}{2} x e^{-\lambda x}]_0^\infty - \int_0^\infty -\frac{1}{2} e^{-\lambda x} dx \\ &= \int_0^\infty \frac{1}{2} e^{-\lambda x} dx \\ &= [-\frac{1}{2\lambda} e^{-\lambda x}]_0^\infty \\ &= \frac{1}{2\lambda} \end{split}$$

Thus,
$$E(X) = A + B = 0$$

$$Var(X)=E(X^2)-E(X)^2=\int_{-\infty}^{\infty}\frac{\lambda}{2}x^2e^{-\lambda|x|}dx=\int_{0}^{\infty}\lambda x^2e^{-\lambda|x|}dx=\frac{2}{\lambda^2}$$
 (use integrate by parts twice)

- 4. a) P(Z > 1) = 0.15866
 - b) P(-1 < Z < 1) = (0.5 P(Z > 1)) + (0.5 P(Z < -1)) = 1 2 * 0.15866 = 0.68268
 - c) P(0.3 < Z < 1.5) = (0.5 P(Z > 1.5)) (0.5 P(Z > 0.3)) = 0.38209 0.06681 = 0.31528
- 5. a) $z_0 = 0$
 - b) $z_0 = 1.1$
 - c) $P(Z < z_0) = 0.9 + (1 0.9)/2 = 0.95, z_0 = 1.64$
 - d) $P(Z < z_0) = 0.995, z_0 = 2.58$
- 6. $P(Z < \frac{8-\mu}{0.3}) = 0.99, \, \mu = 7.301$