Parallel Metropolis-Hastings Algorithm by Prefetching

Boyan Bejanov (bbejanov@bankofcanada.ca)

1. Introduction

Metropolis-Hastings (MH) is a Markov Chain Monte Carlo (MCMC) algorithm which is used to simulate random samples from probability distributions that are difficult to simulate otherwise.

Prefetching is a parallelization technique for the MH algorithm. It is applicable in situations where the target p.d.f., $\pi(\mathbf{x})$, is

- computationally very expensive;
- ▶ impractical to parallelize.

E.g. Bayesian inference for economic models.

2. MH algorithm

Markov chain with accept-reject transition rule:

- ightharpoonup Current state is X_0 .
- ▶ Propose candidate $Y \sim q(X_0, \cdot)$.
- ► Accept the candidate with probability

$$\alpha = \frac{\pi(Y)q(Y,X_0)}{\pi(X_0)q(X_0,Y)}.$$

3. Prefetching tree

- ► At each node the current state is in white.
- ► The proposed candidate is in orange.

4. Implemetation

 step s
 0
 1
 2
 3
 4

 current c
 *
 0
 0
 1
 0
 1
 2
 3
 0
 1
 2
 3
 4
 5
 6
 7

 proposed k
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

- X_k was proposed at step $s = \lfloor \log k \rfloor + 1$.
- X_k was proposed from X_c , $c = k 2^{s-1}$.
- The two children of proposal X_k are X_a and X_r , where $a=k+2^s$ and $r=a-2^{s-1}$.

5. Full prefetching

- ▶ Consider all 2^n possible paths n steps ahead.
- ▶ Compute $2^n 1$ evaluations of $\pi(\cdot)$ in parallel.
- ► Run *n* steps of the Markov chain sequentially.

6. Complexity of full prefetching

Sequential time $T_s = n$ Parallel time $T(n, p) = \frac{2^n - 1}{n}$

Speedup $s(n, p) = \frac{np}{2^n - 1}$

N.B. Speedup is not logarithmic in p.

7. Speedup graph: full prefetching

8. Incomplete prefetching

- ightharpoonup Prefetch only p proposals, not the full tree.
- ▶ By scaling the proposal distribution, q(x, y), we can control the acceptance rate, denoted α^* .
- ► Choose the p candidates to maximize the expected depth to be reached, denoted D(p).

9. Complexity of incomplete prefetching

Parallel time $T(p) = \frac{n}{D(p)}$ Speedup s(p) = D(p)

10. Speedup graph: incomplete

11. Caveat emptor

- ► Full prefetching provides speedup at the cost of exponential number of processors ⇒ inefficient.
- Incomplete prefetching gives improved *expected* efficiency, although not guaranteed.

12. References

- ► A.E. Brockwell, *JCGS*, 2006, 15(1), 246-261.
- ► J. Byrd, S. Jarvis, A.H. Bhalerao, *ISPDP*, 2008, 1-8.
- ► I. Strid, *CSDA*, 2010, 54(11), 2814-2835.