α) Είναι γνωστό οτι $\varepsilon \varphi(\kappa \cdot 360^{\circ} + \omega) = \varepsilon \varphi \omega$ για κάθε ακέραιο κ.

Επομένως $\varepsilon \varphi 500^\circ = \varepsilon \varphi (360^\circ + 140^\circ) = \varepsilon \varphi 140^\circ$.

β)

i. Το πρόσημο του τριγωνομετρικού αριθμού $\varepsilon \varphi 500^\circ$ είναι το ίδιο με το πρόσημο του τριγωνομετρικού αριθμού $\varepsilon \varphi 140^\circ$.

Αφού $90^\circ < 140^\circ < 180^\circ$, τότε η τελική πλευρά της γωνίας 140° βρίσκεται στο 2° τεταρτημόριο του τριγωνομετρικού κύκλου. Άρα $\varepsilon \varphi 140^\circ < 0$.

ii. Είναι λοιπόν $A=\varepsilon \varphi 140^\circ \cdot \eta \mu 250^\circ \cdot \sigma v \nu 300^\circ.$

Από το προηγούμενο ερώτημα έχουμε ότι $\varepsilon \varphi 140^{\circ} < 0$.

Αφού $180^\circ < 250^\circ < 270^\circ$, τότε η τελική πλευρά της γωνίας 250° βρίσκεται στο 3° τεταρτημόριο του τριγωνομετρικού κύκλου. Άρα $\eta\mu250^\circ < 0$.

Αφού $270^\circ < 300^\circ < 360^\circ$, τότε η τελική πλευρά της γωνίας 300° βρίσκεται στο 4° τεταρτημόριο του τριγωνομετρικού κύκλου. Άρα $\sigma v \sim 300^\circ > 0$.

Επομένως A > 0.