The "Finkelstein" Particle Filter: A tool for the high-dimensional filtering problem

Jameson Quinn

1/25/2017

Structure of talk (if there's not a fire alarm)

- ► Basic filtering problem
- Curse of dimensions for particle filters
- Existing state of the art (Rebeschini and van Handel, 2015): "Frankenstein"
- Proposed algorithm ("Finkelstein") and justification
- Numerical results
- Future work

Basic filtering problem

What is $\pi_t \equiv (x_t|y_0,...,y_t)$?

Particle filter algorithm

Algorithm:

- Assume we have M particles $x_{t-1}^{1...M}$, taken to be "representative" samples from $(x_{t-1}|y_0,...,y_{t-1})$.
- ▶ For each x_{t-1}^i , "progress" it to get $x_t^{i*} \sim (x_t|x_{t-1})$.
- Find weights $w^{i*} \equiv f(y_t|x_t^{i*})$
- Sample (with replacement) M new x_t^i from $\{x_t^{i*}\}$ using probabilities $\{w^{i*}\}$.

Characteristics:

- ► Clearly not iid, but $\frac{1}{M} \sum_{i=1}^{M} g(x_t^i)$ estimates $E_{\mathcal{F}}(g(x_t))$.
- Frror falls like $\frac{1}{\sqrt{M}}$ and does *not* grow with t (under weak assumptions).

High-dimensional filtration

What is $\pi_t \equiv (x_t | y_0, ..., y_t)$?

Curse of dimensionality

Each particle x_t^i encompasses $x_t^i, ..., x_t^i$?

- ▶ Particle filter still "works" in that estimation error falls like $\frac{1}{\sqrt{M}}$ and doesn't grow with t.
- ▶ ... but error is exponential in *D*.

Separate particles for each x_i^i ?

 $\blacktriangleright \text{ Works if } \left(x_t^l | y_0^..., y_t^..\right) \perp \!\!\! \perp \left(x_t^k | y_0^..., ..., y_t^..\right)$

Existing state of the art (Rebeschini and van Handel, 2015)

- Assume we have M particles x = 1...M, taken to be "representative" samples from $(x_{t-1} | y_0, ..., y_{t-1})$.
- ▶ For each $x_{\overset{i}{\cdots}-1}^{i}$, "progress" it to get $x_{\overset{i*}{\cdots}}^{i*} \sim (x_{\overset{i}{\cdots}}|x_{\overset{i}{\cdots}-1})$.
- ► Split each $x_{:::}^{i*}$ into neigborhoods $\{x_{t}^{i*}: 0 < t < L < D\}$
- Find weights $w_{N_l}^{i*} = f_{x_{N_l}|y_{N_l}}(x_t^{i*})$
- Sample (independently, with replacement) each neighborhood N_I of $x_I^{i_I}$ from $\{x_I^{i_I^*}\}$ using probabilities $\{w_I^{i_I^*}\}$.

Characteristics

- Rebeschini and van Handel show that the error using their method is bounded by $||\pi_I \hat{\pi}_I^M||_{MC} \leq \alpha \big(\frac{e^{\beta |N_I|}}{\sqrt{M}} + e^{-\gamma \inf |I b \in N_I^C|}\big), \text{ where the constants } \alpha, \beta, \gamma \text{ do not depend on } t.$
- ► Thus there is a tradeoff: using smaller neighborhoods and/or more particles will control the term $\frac{e^{\beta |N_I|}}{\sqrt{M}}$, while using larger neighborhoods will control the term $e^{-\gamma \inf |m-b \in N_I^C|}$.

"Finkelstein"_solution 1/3

- Assume we have M particles x = 1...M taken to be "representative" samples from $(x_{t-1} | y_0, ..., y_{t-1})$.
- Find weights for each subparticle locus, denoted $w^i \equiv f(y_l|x_t^i)$; and probabilities conditional on x_{t-1}^i , denoted $f_i(x_t^k) \equiv f(x_t^k|x_{t-1}^i)$.
- For each full particle $x_{:::}^{i,0}$, run an MCMC chain targeting the filtration distribution up to convergence at $x_{::::}^{i,C}$

2/3: Metropolis-Hastings MCMC (Starting at $x_{...}^{P,s}$)

- ▶ Choose a spatial locus $I \in 1...D$ and draw, with probability weighted by w^i , a proposed replacement subparticle for that locus x^k_i .
- ▶ Accept this replacement as x = x + 1 = 0 with probability: $1 \land 1 = 0$

$$\frac{\sum_{i\in\{k,h^{P,s}(l)\}}f_i(x_l^k)\prod_{l\in n(l)\setminus l}f_i(x_l^{P,s})}{\sum_{i\in\{k,h^{P,s}(l)\}}\prod_{l\in n(l)}f_i(x_l^{P,s})} \quad (1)$$

- Sum of probabilities contributions from neighborhood *history*: $h^{i,j}(I) \equiv \{m : \exists k \in n(I) : x_k^{i,j} = x_k^{m,0} \}$
- ► Each contribution a product of locus probabilities over neighborhood: $n(l \in 1...D) \equiv \{k\} : (x_l | x_{k \in n(l)}) \perp x_{n(l)^C}$.

3/3: Why does this work?

Imagine $M \to \infty$ so $\frac{1}{M} \Sigma_i \delta(x_{t-1}) \to \pi_{t-1}$.

$$f(x_{t}^{...}|y_{0}^{...},...,y_{t}^{...}) = f(x_{t}^{...}|\pi_{t-1}^{....},y_{t}^{...}) \propto f(y_{t}^{...}|x_{t}^{...})f(x_{t}^{...}|\pi_{t-1}^{....})$$

$$= [\Pi_{l}f(y_{l}|x_{l})] \int_{\pi_{t-1}} \Pi_{l}f(x_{l}|x_{t-1}^{...})dx_{t-1}^{...}$$

Converting the integral to a sum, the appropriate M-H acceptance for switching from x_{i}^{0} to x_{i}^{1} would be:

$$\frac{w^{1} \prod_{l} w^{-l}}{w^{1} \prod_{l} w^{-l}} \frac{\sum_{i} \left[f_{i}\left(x_{t}^{1}\right) \prod_{l} f_{i}\left(x_{-l}\right)\right]}{\sum_{i} \left[f_{i}\left(x_{t}^{1}\right) \prod_{l} f_{i}\left(x_{-l}\right)\right]} \frac{w^{1}}{w^{1}} \qquad (2)$$

Exp. (1) above ignores "far away" and/or "unrelated" terms for computational simplicity, but unbiased estimator of exp. (2).

Computational complexity:

- ▶ Progressing the particles and calculating weights: O(MD)
- ▶ Calculating conditional probabilities: $O(M^2D)$
- ▶ Running MCMC: O(MDBC) where block size $B = |n(\dot{)}| << D$ and C is convergence time.
- ▶ Overall worst-case: $O(M^2DC) = O(\frac{D}{\epsilon^4}) << O(\frac{e^{\alpha D}}{\epsilon^2})$

Assumptions involved; strong but probably unnecessary

We found the ratio $f(x_t^i)/f(x_l^j)$ using the expression $f(x_t^i|x_{t-1}^i) = \prod_l f(x_l^i|x_{t-1}^i)$. This assumes:

- ► Can obtain density $f(x_i|x_{i-1}^{...})$ (up to a constant).
- ► Conditional independence: $(x_l | x_{t-1}) \perp (x_j | x_{t-1})$ for $l \neq j$.

Both are unrealistic in most interesting problems. But often we can still *estimate* that ratio feasibly.

Error behavior: reasons for hope

Is the error $\propto \frac{1}{\sqrt{M}}$ and not dependent on t? Consider as density operators:

$$\pi_t = K_t P \pi_{t-1} = Q F_P K_t L P^* \pi_{t-1} \approx Q F_P K_t L S^N P^* \hat{\pi}_{t-1}^N$$

From right to left, in order of application, this last is:

- 1. Begin with $\hat{\pi}_{t-1}^N$, the set of weighted particles at time t-1.
- 2. Progress with P^* , labeling each x_t with its origin x_{t-1} .
- 3. Resample with S^N , for N new equally-weighted particles.
- 4. Localize with L, breaking the density over $\mathcal{W}_t \times \mathcal{W}_{t-1}$ into D separate densities over each $\mathcal{L}_l \times \mathcal{W}_{t-1}$.
- 5. Reweight with K_t , based on y_t .
- 6. Rejoin with F_P , Finkelstein operator based on progression P.
- 7. Quash with Q, integrating over the history W_{t-1} .

Results

Fully Normal example, d dimensions arranged linearly (2 neighbors), 5 random time steps from "tightish" prior, this computer, average of 16 runs with same model, non-optimized code (Julia)

Finkelstein: 50 particles, 35s; Frankenstein, 10K particles, 13s; Standard particle filter, 10K particles, 7.7s.

I guess there wasn't a fire alarm

Further work:

- Loosen assumptions
 - Present states not independent conditional on past? Relatively easy.
 - Can's obtain density for present conditional on past? Less clear, but likely some of these ideas (MCMC chain targeting best-guess conditional distribution) still "help".
- Find applications/test data sets
 - ► Ideas?
- Finish proof of error behavior
 - Assuming perfect convergence (not unreasonable)
- Explore convergence issues
 - Effect of connectivity; conditions for phase change?

Thank you!

Thanks to my advisor Luke Miratrix, and to Pierre Jacob for helping me refine these ideas and notation. All mistakes of course are my own.