

Seminar Fraktale

Fraktale Bildcodierung

Jens Ochsenmeier

9. Mai 2018

Wichtige Werkzeuge

Metrische Räume

Menge X mit reellwertiger Funktion $d: X \times X \to \mathbb{R}$, die

- 1. symmetrisch und
- 2. positiv definit ist und die
- 3. Dreiecksungleichung erfüllt

Metrische Räume

Menge X mit reellwertiger Funktion $d: X \times X \to \mathbb{R}$, die

- 1. symmetrisch und
- 2. positiv definit ist und die
- 3. Dreiecksungleichung erfüllt
- ightarrow vollständige metrische Räume (Cauchy-Folgen konvergieren)

Metrische Räume

Menge X mit reellwertiger Funktion $d: X \times X \to \mathbb{R}$, die

- 1. symmetrisch und
- 2. positiv definit ist und die
- 3. Dreiecksungleichung erfüllt
- → vollständige metrische Räume (Cauchy-Folgen konvergieren)
- ightarrow kompakte metrische Räume (beschränkt und abgeschlossen)

Raum der Fraktale über X:

$$\mathcal{H}(X) := \{ \mathcal{A} \subseteq X : \mathcal{A} \text{ kompakt} \} \setminus \emptyset$$

Raum der Fraktale über X:

$$\mathcal{H}(X) := \{ A \subseteq X : A \text{ kompakt} \} \setminus \emptyset$$

Abstandsbegriffe:

- $d(x,A) := \min \{d(x,a) : a \in A\}$ $(x \in X, A \in \mathcal{H}(X))$
- $d(A,B) := \max\{d(x,B) : x \in A\}$ $(A,B \in \mathcal{H}(X))$

Raum der Fraktale über X:

$$\mathcal{H}(X) := \{ \mathcal{A} \subseteq X : \mathcal{A} \text{ kompakt} \} \setminus \emptyset$$

Abstandsbegriffe:

- $d(x,A) := \min \{d(x,a) : a \in A\}$ $(x \in X, A \in \mathcal{H}(X))$
- $d(A,B) := \max \{d(x,B) : x \in A\}$ $(A,B \in \mathcal{H}(X))$
- $h(A, B) := \max \{d(A, B), d(B, A)\}$ (Hausdorff-Abstand)

Raum der Fraktale über X:

$$\mathcal{H}(X) := \{ A \subseteq X : A \text{ kompakt} \} \setminus \emptyset$$

Abstandsbegriffe:

- $d(x,A) := \min \{d(x,a) : a \in A\}$ $(x \in X, A \in \mathcal{H}(X))$
- $d(A, B) := \max \{d(x, B) : x \in A\}$ $(A, B \in \mathcal{H}(X))$
- $h(A, B) := \max \{d(A, B), d(B, A)\}$ (Hausdorff-Abstand)
- \rightarrow Raum der Fraktale $(\mathcal{H}(X), h)$

Fraktal

Ein Fraktal ist eine Teilmenge von $(\mathcal{H}(X), h)$.

Abbildungen und Transformationen

Kontraktion

Abbildung $\varphi: X \to X$ für die $c \in [0,1)$ existiert, sodass

$$\forall x,y \in X : d(\varphi(x),\varphi(y)) \leq c \cdot d(x,y)$$

Kontraktionsfaktor: c

Ähnlichkeitsabbildung

Abbildung $\varphi: X \to X$ für die $c \in [0,1)$ existiert, sodass

$$\forall x,y \in X : d(\varphi(x),\varphi(y)) = c \cdot d(x,y)$$

Kontraktionsverhältnis: c

Banachscher Fixpunktsatz

- Kontraktion $\varphi: X \to X$
- Iterative Folge $(x_n)_{n\in\mathbb{N}}$, $x_{n+1}=\varphi(x_n)$
- Beliebiger Startwert x_o

Satz (Banach, 1922)

- 1. Es existiert genau ein $\widetilde{x} \in X$, sodass $\varphi(\widetilde{x}) = \widetilde{x}$.
- 2. Es ist $\lim_{n\to\infty} x_n = \widetilde{x}$.

Banachscher Fixpunktsatz

- Kontraktion $\varphi: X \to X$
- Iterative Folge $(x_n)_{n\in\mathbb{N}}$, $x_{n+1} = \varphi(x_n)$
- Beliebiger Startwert x_0

Satz (Banach, 1922)

- 1. Es existiert genau ein $\widetilde{x} \in X$, sodass $\varphi(\widetilde{x}) = \widetilde{x}$.
- 2. Es ist $\lim_{n\to\infty} x_n = \widetilde{x}$.

Lineare Transformation

Lineare Transformation

- · bildet Geraden auf Geraden ab
- · fixiert den Ursprung

Darstellung durch Matrix:

$$t: \mathbb{R}^2 \to \mathbb{R}^2, \qquad t(x,y) := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Konkret: Skalieren, Spiegeln, Strecken, Drehen

Affine Transformation

Affine Transformation: Lineare Transformation + Translation

Darstellung durch Matrix:

$$w: \mathbb{R}^2 \to \mathbb{R}^2, \qquad w(x,y) := A \cdot x + t = \underbrace{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}}_{\text{lineare Transformation}} + \underbrace{\begin{pmatrix} e \\ f \end{pmatrix}}_{\text{Translation}}$$

Affine Transformation — Konstruktion

- 1. Drei Punkte auf Startmenge wählen
- 2. Dazugehörige Punkte in Bildmenge finden
- 3. Ein paar Gleichungssysteme lösen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} \widetilde{x}_1 \\ \widetilde{x}_2 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} \widetilde{y}_1 \\ \widetilde{y}_2 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} \widetilde{z}_1 \\ \widetilde{z}_2 \end{pmatrix}$$

 \rightarrow affine Transformation

Iterierte Funktionensysteme

Iteriertes Funktionensystem (IFS)

IFS: Familie $\{\Phi_1, \ldots, \Phi_n\}$ mit $\Phi_i : X \to X$

Kontraktion

(X, d) vollständiger metrischer Raum

Kontraktionskoeffizient $c = \max\{c_1, \ldots, c_n\}$ $(c_i := \text{Kontraktionsfaktor von } \Phi_i)$

Attraktor des IFS: $C \subset X$ derart, dass

$$\bigcup_{i=0}^n \Phi_i(C) = C$$

10

Modellierung echter Bilder

- \mathcal{R} : Menge aller echten Bilder
- $\mathcal{I} \in \mathcal{R}$: echtes Bild

- \mathcal{R} : Menge aller echten Bilder
- $\mathcal{I} \in \mathcal{R}$: echtes Bild
- → mathematisch nicht wirklich greifbar

- \mathcal{R} : Menge aller echten Bilder
- $\mathcal{I} \in \mathcal{R}$: echtes Bild
- → mathematisch nicht wirklich greifbar
- → Modellierung entlang von Eigenschaften

- \mathcal{R} : Menge aller echten Bilder
- $\mathcal{T} \in \mathcal{R}$: echtes Bild
- → mathematisch nicht wirklich greifbar
- → Modellierung entlang von Eigenschaften

Schloss Neuschwanstein, Unsplash

Eigenschaft 1

Ein Bild besitzt

- 1. Träger $\square = [a,b] \times [c,d] \subset \mathbb{R}^2$
- 2. Maße (b-a) und (c-d)
- ightarrow Einbettung in den euklidischen Raum

Eigenschaft 2

Ein Bild besitzt chromatische Werte

 $c: \square \to \mathbb{R}$

Title formats

Metropolis title formats

METROPOLIS supports 4 different title formats:

- Regular
- SMALL CAPS
- ALL SMALL CAPS
- ALL CAPS

They can either be set at once for every title type or individually.

SMALL CAPS

This frame uses the smallcaps title format.

Potential Problems

Be aware that not every font supports small caps. If for example you typeset your presentation with pdfTeX and the Computer Modern Sans Serif font, every text in small caps will be typeset with the Computer Modern Serif font instead.

ALL SMALL CAPS

This frame uses the allsmallcaps title format.

Potential problems

As this title format also uses small caps you face the same problems as with the smallcaps title format. Additionally this format can cause some other problems. Please refer to the documentation if you consider using it.

As a rule of thumb: just use it for plaintext-only titles.

ALL CAPS

This frame uses the allcaps title format.

Potential Problems

This title format is not as problematic as the allsmallcaps format, but basically suffers from the same deficiencies. So please have a look at the documentation if you want to use it.

Elements

Typography

The theme provides sensible defaults to \emph{emphasize} text, \alert{accent} parts or show \textbf{bold} results.

becomes

The theme provides sensible defaults to *emphasize* text, accent parts or show **bold** results.

Font feature test

- Regular
- Italic
- SMALL CAPS
- Bold
- Bold Italic
- BOLD SMALL CAPS
- Monospace
- Monospace Italic
- · Monospace Bold
- Monospace Bold Italic

Lists

Items

- Milk
- Eggs
- Potatoes

Enumerations

- 1. First,
- 2. Second and
- 3. Last.

Descriptions

PowerPoint Meeh.

Beamer Yeeeha.

• This is important

- · This is important
- · Now this

- · This is important
- · Now this
- · And now this

- This is really important
- · Now this
- · And now this

Figures

Tables

Tabelle 1: Largest cities in the world (source: Wikipedia)

City	Population
Mexico City	20,116,842
Shanghai	19,210,000
Peking	15,796,450
Istanbul	14,160,467

Blocks

Three different block environments are pre-defined and may be styled with an optional background color.

Default	Default
Block content.	Block content.
Alert	Alert
Block content.	Block content.
Example	Example
Block content.	Block content.

Math

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Line plots

Bar charts

Quotes

Veni, Vidi, Vici

Frame footer

METROPOLIS defines a custom beamer template to add a text to the footer. It can be set via

\setbeamertemplate{frame footer}{My custom footer}

My custom footer 29

References

Some references to showcase [allowframebreaks] [?, ?, ?, ?, ?]

Conclusion

Summary

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Questions?

Backup slides

Sometimes, it is useful to add slides at the end of your presentation to refer to during audience questions.

The best way to do this is to include the appendixnumberbeamer package in your preamble and call \appendix before your backup slides.

METROPOLIS will automatically turn off slide numbering and progress bars for slides in the appendix.

References i