

Model diody półprzewodnikowej Shockley'a

$$I_{D} = I_{gr0} \left(\exp \left(\frac{U_{D}}{2\varphi_{T}} \right) - 1 \right) + I_{0} \left(\exp \left(\frac{U_{D}}{\varphi_{T}} \right) - 1 \right)$$

I_{qr0} – prąd generacyjno-rekombinacyjny

I₀ – prąd nasycenia

φ_T – potencjał termiczny elektronów =kT/e=26mV dla T=300K

$$I_D = I_S \left(\exp \left(\frac{U_D}{n \varphi_T} \right) - 1 \right)$$

I_S – efektywny prąd nasycenia (10⁻¹⁸ ÷ 10⁻⁹A)

n – współczynnik niedoskonałości (1 ÷ 2)

Dioda półprzewodnikowa U_D>0 model podstawowy

Dioda półprzewodnikowa stałoprądowa charakterystyka rzeczywista

