

Second-order mixing in networks

Shi Zhou

University College London

Dr. Shi Zhou ('Shee Joe')

- □ Lecturer of Department of Computer Science, University College London (UCL)
- ☐ Holder of The Royal Academy of Engineering/EPSRC Research Fellowship
- □s.zhou@cs.ucl.ac.uk

Outline

- □Part 1.
 - Power-law degree distribution
 - > (1st-order) assortative coefficient
 - Rich-club coefficient
 - ❖Collaborated with Dr. Raul Mondràgon, Queen Mary University of London (QMUL).
- ☐Part 2. Second-order mixing in networks
 - Ongoing work collaborated with
 - ❖ Prof. Ingemar Cox, University College London (UCL)
 - ❖ Prof. Lars K. Hansen, Danish Technical University (DTU).

Part 1

□Power-law degree distribution, assortative mixing and rich-club

Complex networks

☐ Heterogeneous, irregular, evolving structure

Degree

- \Box Degree, k
 - Number of links a node has
- Average degree
 - > <k> = 2L / N
- \square Degree distribution, P(k)
 - Probability of a node having degree k

Poisson vs Power-law distributions

□Power law (or scale-free) networks are everywhere

Yeast protein network

Food web

Trading networks

Business networks

Here we study two typical networks

- ☐Scientific collaborations network in the research area of condense matter physics
 - ➤ Nodes: 12,722 scientists
 - Links: 39,967 coauthor relationships

- ☐ The Internet at autonomous systems (AS) level
 - Nodes: 11,174 Internet service providers (ISP)
 - Links: 23,409 BGP peering relationship

Degree properties

- ☐ Average degree is about 6
- Sparsely connected
 - $> L/_{N(N-1)/2} < 0.04\%$
- Degree distribution
 - Non-strict power-law
- Maximal degree
 - > 97 for scientist network
 - > 2389 for Internet

Mixing pattern: who connects with whom?

☐Correlation between degrees of the two end nodes of a link

- > Assortative coefficient r
- ➤ Neigbhours average degree vs degree

☐ Assortative mixing

- ➤ Scientific collaboration
- r = 0.161

□ Disassortative mixing

- **≻Internet**
- r = -0.236

Rich-club

Connections between the top 20 best-connected nodes themselves

Rich-club coefficient

$$\phi(k) = \frac{E_{>k}}{N_{>k}(N_{>k} - 1)/2}$$

 $N_{>k}$ is the number of nodes with degrees > k.

 $E_{>k}$ is the number of links among the $N_{>k}$ nodes.

Summary

	Scientist network	Internet	
Degree distribution	Power-law	Power-law, extra long tail	
Mixing pattern	Assortative,	Disassortative	
Rich nodes	Sparsely connected, no rich-club	Tightly interconnected, rich-club	

Discussion 1

- ☐ Mixing pattern and rich-club are not trivially related
 - Mixing pattern is between TWO nodes
 - Rich-club is among a GROUP of nodes.
 - Each rich node has a large number of links, a small number of which are sufficient to provide the connectivity to other rich nodes whose number is small anyway.

☐ These two properties together provide a much fuller picture than degree distribution alone.

Discussion 2

- □Why is the Internet so 'small' in terms of routing efficiency?
 - > Average shortest path between two nodes is only 3.12

☐This is because

- Disassortative mixing: poorly-connected, peripheral nodes connect with well-connected rich nodes.
- Rich-club: rich nodes are tightly interconnected with each other forming a core club.
 - shortcuts
 - redundancy

Jellyfish model

Discussion 3 (optional)

- ☐ How are the three properties related?
 - Degree distribution
 - Mixing pattern
 - > Rich-club

☐ We use the link rewiring algorithms to probe the inherent structural constraints in complex networks.

Link-rewiring algorithm

- ☐ Each node's degree is preserved
- ☐ Therefore, surrogate networks is generated with exactly the same degree distribution.
 - Random case, maximal assortative case and maximal disassortative

Mixing pattern vs degree distribution

Rich-club vs degree distribution

- ➤P(k) does not constrain rich-club.
- For the Internet, a minor change of the value of *r* is associated with a huge change of rich-club coef.

Observations

- □Networks having the same degree distribution can be vastly different in other properties.
- ☐ Mixing pattern and rich-club phenomenon are not trivially related.
 - They are two different statistical projections of the joint degree distribution P(k, k').
 - Together they provide a fuller picture.

Part 2

Second-order mixing in networks

Neighbour's degrees

- □Considering the link between nodes *a* and *b*
- \Box 1st order mixing: correlation between degrees of the two end nodes **a** and **b**.
- \square 2nd order mixing: correlation between degrees of neighbours of nodes \boldsymbol{a} and \boldsymbol{b}

1st and 2nd order assortative coefficients

	1 st order	2 nd order	2 nd order
Assortative coefficient	(degree)	(Neighbours average degree)	(Neighbours max degree)
	r	Ravg	Rmax
Scientist Collaborations	0.161	0.680	0.647
Internet	-0.195	-0.097	0.036

Assortative coefficients of networks

Statistic significance of the coefficients

- ☐ The Jackknife method
 - > For all networks under study, the expected standard deviation of the coefficients are very small.
- ☐ Null hypothesis test
 - The coefficients obtained after random permutation (of one of the two value sequences) are close to zero with minor deviations.

Mixing properties of the scientist network

- Frequency distribution of links as a function of
 - 1. degrees, **k** and **k'**
 - 2. neighbours average degrees, Kavg and K'avg

of the two end nodes of a link.

Mixing properties of the scientist network

- 1. Link distribution as a function of neighbours max degrees, *Kmax* and *K'max*
- 2. That when the network is randomly rewired preserving the degree distribution.

Discussion (1)

- ☐ Is the 2nd order assortative mixing due to increased neighbourhood?
 - ➤ No. In all cases, the 3rd order coefficient is smaller.
- ☐ Is it due to a few hub nodes?
 - ➤ No. Removing the best connected nodes does not result in smaller values of Rmax or Ravg.
- ☐ Is it due to power-law degree distribution?
 - ➤No. As link rewiring result shows, degree distribution has little constraint on 2nd order mixing.

Discussion (2)

☐ Is it due to clustering?

>No.

Discussion (3)

- ☐ How about triangles?
 - There are many links where the best-connected neighbours of the two end nodes are one and the same, forming a triangle.
 - ➤ But there is no correlation between the amount of such links and the coefficient *Rmax*.
 - There are also many links where the best-connected neighbours are not the same.
 - > And there are many links ...

Discussion (4)

- ☐ Is it due to the nature of bipartite networks?
 - > No.
 - The secure email network is not a bipartite network, but it shows very strong 2nd order assortative mixing.
 - The metabolism network is a bipartite network, but it shows weaker 2nd order assortative mixing.

Discussion - summary

- ☐ Each of the above may play a certain role
- ☐ But none of them provides an adequate explanation.

- ☐ A new property?
 - New clue for networks modelling?

Implication of 2nd order assortative mixing

- ☐ It is not just *how many* people you know,
 - Degree
 - > 1st order mixing
- ☐ But also **who** you know.
 - Neighbours average or max degrees
 - ➤ 2nd order mixing
- ☐ Collaboration is influenced less by our own prominence, but more by the prominence of who we know?

Reference

- ☐ The rich-club phenomenon in the Internet topology
 - > IEEE Comm. Lett. 8(3), p180-182, 2004.
- ☐ Structural constraints in complex networks
 - ➤ New J. of Physics, 9(173), p1-11, 2007
- ☐ Second-order mixing in networks
 - http://arxiv.org/abs/0903.0687
 - > An updated version to appear soon.

Thank You!

