

Project:G2M Insight for Cab Investment

Data Glacier Virtual Internship

By: Riwaj Neupane

13th August 2023

Agenda

Problem Statement

Dataset information

EDA

Hypothesis Testings

Findings

Problem Statement

XYZ is a private firm in US. Due to remarkable growth in the Cab Industry in last few years and multiple key players in the market, it is planning for an investment in Cab industry and as per their Go-to-Market(G2M) strategy they want to understand the market

Objective: Provide insight to help XYZ in identifying the right company to invest in.

Analysis done:

- Problem Understanding
 Finding users in companies
 Finding profit for both companies
 Finding cheaper company
 Multiple hypothesis Testing

DataSet Information

The dataset contains 4 individual dataset

- Cab_data: Contains 7 columns 359392 and observations, containing company type, price,km travelled.
- 2. City: This file contains 3 columns and 20 observations, containing city and their respective users.
- 3. customer data: This file contains 4 columns and 49171 observations. containing users and their respective age, gender and income
- 4. Transaction_data: This file contains 3 columns and 440098 observations containing mode of payment for a particular customer.

Combining Dataset to form a complete merged dataset:

- Combining transaction and customer data on column 'Customer ID'.
- Then combine it with cab data on column 'Transaction
- Then combine it with city data on column 'City' In combined dataset created a new column users per meaning dividing the users by total population.

DataSet Information (contd...)

Combined dataset Details:

Contains 20 columns and 359392 observations.

Data columns (total 19 columns):

Column Non-Null Count Dtype

0 Transaction ID 359392 non-null int64

1 Customer ID 359392 non-null int64

2 Payment_Mode 359392 non-null object

3 Gender 359392 non-null object

4 Age 359392 non-null int64

5 Income (USD/Month) 359392 non-null int64

6 Date of Travel 359392 non-null object

7 Company 359392 non-null object

8 City 359392 non-null object

9 KM Travelled 359392 non-null float64

10 Price Charged 359392 non-null float64

11 Cost of Trip 359392 non-null float64

12 Population 359392 non-null int64

13 Users 359392 non-null int64

14 Year 359392 non-null int64

15 Month 359392 non-null int64

16 Day 359392 non-null int64

17 Profit 359392 non-null float64

18 users per 359392 non-null float64

dtypes: float64(5), int64(9), object(5)

EDA

Which company has more cabs?

Yellow Cab

distribution of pink and yellow cabs

Which company has more users?

Yellow Cab has more users

Which company has more users w.r.t Gender?

There are more male than female users for both company

Checking Correlation

- 1. Population vs Users.
- 2. Price charged vs Cost of trip vs Profit
- Km travelled vs Price Charged

Which company has more profit

Yellow cab has more profit than pink cab

Seeing the profit year wise for both the companies

2018 has least profit for both companies

Seeing the profit month wise for both the companies

Yellow cab has highest profit for month of May, Pink cab has highest profit from month December

Profit w.r.t Year

We can see that profit is decreasing for both company year wise

Profit w.r.t Month

Payment mode for both companies

Equal users using both modes of payment

Travel frequency per year

2017 has highest tavel

Travel frequency per month

December has highest tavel

Distribution of income of users

Both companies users have a average income of around 15k

Is there a relation between price charged and profit

clearly we can see that there is a linear relation between price charged and profit earned

relationship between km travelled and price charged

There is a linear relationship between KM travelled and price charged

distribution of ages of users in dataset

Most users lie between age of 20 and 40

Users Per city

NY has more users than others

see cabs in cities

NY has highest number of cabs

see profit of cabs in cities

NY has highest profit for both cabs

Does profit vary with gender

Male users result in higher profit

KM travelled distribution

KM Travelled Distribution of Users ΚM

Hypothesis Testing

"Is there any seasonality in number of customers using the cab service?"

H0: There is seasonality

H1: There is no seasonality

For Pink cab:

P value for Pink Cab: 0.3753760105985561

Pink Cab: The time series is not stationary. Seasonality might not be present.

For yellow cab:

P value is 0.28017298125790135

Yellow Cab: The time series is not stationary. Seasonality might not be present.

Is there any difference regarding profit and gender

H0: there is no difference in profit regarding gender

H1: there is a difference in profit regarding gender

For Pink cab:

p value is: 0.11515305900425798

For Pink Cab: We accept null hypothesis (H0) that there is no difference in profit regarding gender.

For yellow cab:

p value is: 6.060473042494144e-25

For Yellow Cab: We accept alternative hypothesis (H1) that there is a difference in profit

Is there any difference regarding city and profit

H0: there is no difference in profit regarding city

H1: there is difference in profit regarding city

For Pink cab:

p value is: 0.0

For Pink Cab: We reject the null hypothesis (H0) that there is no difference in profit regarding city.

For yellow cab:

p value is: 0.0

For Yellow Cab: We reject the null hypothesis (H0) that there is no difference in profit regarding city.

Is there any difference in payment mode and profit

H0: there is no difference in profit regarding payment mode

H1: there is difference in profit regarding payment mode

For Pink cab:

p value is: 0.7900465828758374

For Pink Cab: We accept the null hypothesis (H0) that there is no difference in profit regarding payment mode.

For yellow cab:

p value is: 0.293306063875188

For Yellow Cab: We accept the null hypothesis (H0) that there is no difference in profit regarding payment mode.

is there any difference in income and profit

H0: there is no correlation between income and profit.

H1: there is correlation between income and profit

For Pink cab:

p value is: 0.21074604704768066

For Pink Cab: We accept the null hypothesis (H0) that there is no correlation between income and profit.

For yellow cab:

p value is: 0.00018411176745302524

For Yellow Cab: We reject the null hypothesis (H0) that there is no correlation between income and profit.

Is there any difference between KM Travelled and Profit

H0: there is no correlation between KM Travelled and profit

H1: there is correlation between KM Travelled and profit

For Pink cab:

p value is: 0.0

For Pink Cab: We reject the null hypothesis (H0) that there is no correlation between KM Travelled and profit.

For yellow cab:

p value is: 0.0

For Yellow Cab: We reject the null hypothesis (HØ) that there is no correlation between KM Travelled and profit.

Is there any difference between Cost of Trip and Profit

H0: there is no correlation between Cost of Trip and profit

H1: there is correlation between Cost of Trip and profit

For Pink cab:

p value is: 0.0

For Pink Cab: We reject the null hypothesis (H0) that there is no correlation between Cost of Trip and profit.

For yellow cab:

p value is: 0.0

For Yellow Cab: We reject the null hypothesis (H0) that there is no correlation between Cost of Trip and profit.

Is there any difference between Profit and Year

H0: there is no difference in profit based on the year

H1: there is difference in profit based on the year.

For Pink cab:

p value is: 1.3845866439321786e-145

For Pink Cab: We reject the null hypothesis (H0) that there is no difference in profit based on the year.

For yellow cab:

p value is: 5.3455921384708516e-301

For Yellow Cab: We reject the null hypothesis (H0) that there is no difference in profit based on the year.

Findings

- Yellow cab has more users
- 2. There are more yellow cabs than pink cabs
- 3. There are more male users than female users for both the companies
- 4. Yellow cab has more profit than pink cabs
- 5. Profit for both companies is decreasing year by year
- 6. 2017 has highest travel
- 7. December month has the highest travel
- 8. Both companies users have a average income of around 15k
- 9. Most users lie between age of 20 and 40
- NY has more users than others
- 11. NY has highest profit for both cabs

www.thebodytransformation.com

