## МІНІСТЕРСТВО ОСВІТИ І НАУКИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА» Інститут комп'ютерних наук та інформаційних технологій

Кафедра систем штучного інтелекту



Лабораторна робота №2 з курсу "Дискретна математика"

Моделювання основних операцій для числових множин

Виконав: ст. гр. КН-110 Помірко Олег

Викладач: Мельникова Н.І.

#### Тема:

# Моделювання основних операцій для числових множин

**Мета роботи:** Ознайомитись на практиці із основними поняттями теорії множин, навчитись будувати діаграми Ейлера-Венна операцій над множинами, використовувати закони алгебри множин, освоїти принцип включень-виключень для двох і трьох множин та комп'ютерне подання множин.

## 2.1. Основні поняття теорії множин. Операції над множинами

Множина – це сукупність об'єктів, які називають елементами.

Кажуть, що множина  $A \in \mathbf{підмножиною}$  множини S (цей факт позначають  $A \subseteq S$ , де  $\subseteq -$  знак нестрогого включення), якщо кожен її елемент автоматично  $\epsilon$  елементом множини S. Досить часто при цьому кажуть, що множина A міститься в множині S.

Якщо  $A \subseteq S$  і  $S \neq A$ , то A називають власною (строгою, істинною) підмножиною S (позначають  $A \subseteq S$ , де  $\subseteq -$  знак строгого включення).

Дві множини A та S називаються **рівними**, якщо вони складаються з однакових елементів. У цьому випадку пишуть A = S.

Якщо розглядувані множини є підмножинами деякої множини, то її називають універсумом або універсальною множиною і позначають літерою U (зауважимо, що універсальна множина існує не у всіх випадках). Множини як об'єкти можуть бути елементами інших множин, Множину, елементами якої є множини, інколи називають сімейством.

Множину, елементами якої є всі підмножини множини A і тільки вони (включно з порожньою множиною та самою множиною A), називають булеаном або множиною-степенем множини A і позначають P(A). Потужністю скінченної множини A називають число її елементів, позначають |A|.

Множина, яка не має жодного елемента, називається *порожньою* і позначається  $\emptyset$ .

Вважається, що порожня множина є підмножиною будь-якої множини, а також  $A \subset A$ .

Множина всіх підмножин множини A називається булеаном і позначається P(A). Потужність скінченної множини дорівнює кількості її елементів, позначається |A|. Потужність порожньої множини дорівнює 0.

Якщо |A| = n, то  $|P(A)| = 2^n$ .

Приклад. 
$$\{1, 4, 5\} \subset \{-1, 0, 1, 2, 3, 4, 5, 7\}$$
, але  $\{1, 4, 5\} \notin \{-1, 0, 1, 2, 3, 4, 5, 7\}$ 

<u>Приклад.</u> Знайти булеан множини  $A = \{a, ,b c\}$ .

Розв'язання.

Потужності множин |A| = 3, |P(A)| = 8. Булеан має вигляд

$$P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c,\}, \{b,c,\}, \{a,b,c\}\}\}.$$

Дві множини A і B рівні між собою, якщо  $A \subset B$  і  $B \subset A$ .

Над множинами можна виконувати дії: об'єднання, переріз, доповнення, різницю, симетричну різницю, декартів добуток.

Об'єднанням двох множин A і B (рис. 2.1, a) називають множину

$$A \cup B = \{x : (x \in A) \lor (x \in B)\}.$$

**Перетином** (перерізом) двох множин A і B (рис. 2.1,  $\delta$ ) називають множину

$$A \cap B = \{x : (x \in A) \land (x \in B)\}$$





Рис. 2.1. Діаграми Ейлера-Венна об'єднання та перетину двох множин

**Різницею** множин A та B (рис. 2.2, a) називають множину

$$A \setminus B = \{x : (x \in A) \land (x \notin B)\}.$$

Зазначимо, що  $A \setminus B = A \cap \overline{B}$ .

Симетричною різницею множин A та B (рис. 2.2, a) називають множину

$$A\Delta B = \{x : ((x \in A) \land (x \notin B)) \lor ((x \in B) \land (x \notin A))\}.$$



Рис. 2.2. Діаграма Ейлера-Венна різниці та симетричної різниці двох множин

В означенні різниці не розглядають випадок  $B \subset A$ . Якщо  $B \subset A$ , то різницю  $A \setminus B$  називають доповненням множини B до множини A і позначають  $B_A$ . Для підмножини A універсальної множини U можна розглядати доповнення A до U, тобто  $U \setminus A$ , її позначають  $\overline{A} = \{x \colon \neg (x \in A)\} \Leftrightarrow \overline{A} = \{x \colon x \notin A\}$  і називають доповненням множини A (рис. 2.3).



Рис. 2.3. Діаграма Ейлера-Венна доповнення множини Пріоритет виконання операцій у спадному порядку — доповнення, переріз, об'єднання, різниця, симетрична різниця.

# Варіант № 7

- 1. Для даних скінчених множин  $A = \{1,2,3,4,5,6,7\}$ ,  $B = \{4,5,6,7,8,9,10\}$ ,  $C = \{2,4,6,8,10\}$  та універсума  $U = \{1,2,3,4,5,6,7,8,9,10\}$  знайти множину, яку задано за допомогою операцій: а)  $A\Delta B$ ; б)  $B \cap C \cap A$ . Розв'язати, використовуючи комп'ютерне подання множин.
- a)  $A\Delta B$ ;

| <i>u)</i> 1 |   |   |   |   |   |   |   |   |    |
|-------------|---|---|---|---|---|---|---|---|----|
| 1           | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1           | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1  |
| 6) B ∩C ∩ A |   |   |   |   |   |   |   |   |    |
| 1           | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 0           | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0  |

2. На множинах задачі 1 побудувати булеан множини  $\overline{A \Delta C} \cap B$ . Знайти його потужність.

$$(\overline{A \triangle C} \cap B) = \{4,6,9\}$$

$$|\overline{A \triangle C} \cap B| = 3$$

$$|P(\overline{A \triangle C} \cap B)| = 2^3 = 8$$

 $P(\overline{A \Delta C} \cap B) = \{ \emptyset, \{4\}, \{6\}, \{9\}, \{4,6\}, \{4,9\}, \{6,9\}, \{4,6,9\} \} \}$ 

- 3. Нехай маємо множини: N множина натуральних чисел, Z множина цілих чисел, Q множина раціональних чисел, R множина дійсних чисел; A, B, C будь-які множини. Перевірити які твердження  $\epsilon$  вірними (в останній задачі у випадку невірного твердження достатньо навести контрприклад, якщо твердження вірне навести доведення):
- a)  $\{1, 2\} \in \{\{1, 2, 3\}, \{2, 3\}, 1, 2\}$ ;-True
- б) N ∩ R  $\subset$  Z; -True
- в)  $Z \cup N \subset N$  ;-False
- $\Gamma$ ) R \ (N  $\cap$  Z)  $\subset$  Q;-True
- д) якщо  $A \cup C \subset B \cup C$ , то  $A \subset B$ .-False. Оскільки: С-може бути довільною множиною,як і множини A і B. Нехай  $A = \{1,2,3\}; B = \{1,2,4,5,6,9\}; C = \{3,6,9\},$  тоді  $A \cup C = \{1,2,3,6,9\}$  і  $B \cup C = \{1,2,3,4,5,6,9\},$  тоді  $A \cup C \subset B \cup C$ , але  $A \not\subset B$ .
- 4. Логічним методом довести тотожність:

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C).$$

Перетворимо ліву частину:

1.А \ (В \ С)=А\ (В 
$$\cap \bar{\mathcal{C}}$$
) за озн. «\»

2.А\ (В
$$\cap \bar{C}$$
)=А $\cap \overline{(B \cap \bar{C})}$  за озн. «\»

3.А
$$\cap \overline{(B \cap \overline{C})}$$
= А $\cap (\overline{B} \cup C)$  з. де Моргана

Перетворимо праву частину:

$$1.(A \setminus B) \cup (A \cap C) = (A \cap \overline{B}) \cup (A \cap C)$$
 за озн. «\»

2) (A 
$$\cap$$
  $\bar{B}$ )  $\cup$  (A  $\cap$  C)= A  $\cap$  ( $\bar{B}$   $\cup$  C) з. Дистрибутивності

Бачимо, що ліва частина правій, а отже вони тотожні.

5. Зобразити на діаграмі Ейлера-Венна множину:  $((A \setminus B) \cap (C \setminus B))\Delta B$ .



6. Множину зображено на діаграмі. Записати її за допомогою операцій



 $(A \cup B \cup C \cup D) \setminus ((A \Delta C) \cup (C \Delta D) \cup (B \Delta D)) \cup ((A \cap D) \setminus B) \cup ((C \cap B) \setminus A)$ 

7. Спростити вигляд множини, яка задана за допомогою операцій, застосовуючи закони алгебри множин (у відповідь множини можуть входити не більше одного разу):  $((A \cup B)\Delta C) \cup (B \cap C) \cup (A \cap C)$ .

3 правої частини: (B∩C)U(A∩C)=((AU B) ∩C) з.дистрибутивності

3 лівої частини(( $A \cup B$ ) $\Delta C$ )=(( $A \cup B$ )  $\cup$  C)  $\cap$   $\overline{((A \cup B) \cap C)}$  з означення  $\Delta$ 

Тоді отримуємо:  $((A \cup B) \cup C) \cap \overline{((A \cup B) \cap C)} \cup ((A \cup B) \cap C)$ 

Звідси:  $\overline{((A \cup B) \cap C)} \cup ((A \cup B) \cap C) = \overline{U}$ 

Отже:  $((A \cup B) \cup C) \cap \mathcal{U} = ((A \cup B) \cup C)$ , оскільки будь-яка множина у перетині з  $\mathcal{U} =$  сама собі.

8. Скільки чисел серед 1, 2, 3,..., 999, 1000 таких, що не діляться на жодне з чисел 2, 3, 7? Кількість таких чисел=286;

1000-(500+333+142-166-71-47+23)=286

- 1.Спочатку знаходимо кількість чисел, які діляться на 2 = 500-А
- 2.Потім знаходимо кількість чисел, які діляться на 3 = 333-В
- 3. Далі знаходимо кількість чисел, які діляться на 7 = 142-С
- 4. Включаємо кількість чисел, які діляться на 2i3=166-D
- 5. Включаємо кількість чисел, які діляться на 2i7=71-Е
- 6. Включаємо кількість чисел, які діляться на 7і3=47-F
- 7. Виключаємо кількість чисел, які діляться на 7,3i2=23-R

U/((AUBUCUR)/(DUEUF))

#### Додаток 2

Ввести з клавіатури множину символьних даних. Реалізувати операцію доповнення до цієї множини. Вивести на екран новоутворену множину. Знайти її булеан.

### Код програми:

```
1 #include<stdio.h>
2 #include<cs50.h>
3 #include<ctype.h>
4 #include<math.h>
5 int main(void)
6 {
7 int n,i,j=0;
8 bool b=true;
9 printf("Input number of elements array A\n");
10
11 scanf("%d", &n);
12 int r=n*2;
13 printf("enter elements of array A\n");
14 char A[r];
15 for (i=0; i<r;i++){
16 scanf("%c", &A[i]);
17 }
18
19 printf("{");
20 for(i=0;i<r;i++)
21 {
22 printf("%c ", A[i]);
23 }
24 printf("}\n");
25 char U[26]={'q','w','e','r','t','y','u','i','o','p','l','k','j','h','g','f','d','s','a','z','x','c','v','b'
26 printf("addition to array A:\n");
27 printf("{");
28 for (int k=0; k<26; k++)
29 {
30 b=true;
31 for(i=0;i<r;i++)
32 {
33 if(U[k]==A[i])
34 {
35 b=false;
36 j++;
37
38 }
```

```
30 b=true;
31 for(i=0;i<r;i++)
32 {
33 if(U[k]==A[i])
34 {
35 b=false;
36 j++;
37 }
38 }
39 if(b)
40 {
41 | printf("%c ",U[k]);
42 }
43 }
44 printf("}\n");
45 int o = 26-j;
46 double p= pow(2,o);
47 printf("power=");
48 printf("%f",p);
49 return 0;
50 }
```

```
/ WOINSPACO
auuicion co array A.
{rtyuioplkjhgfdsazxcvbnm}
power=8388608.000000~/workspace/ $ make dmmm
clang -fsanitize=signed-integer-overflow -fsanitize=undefined -ggdb3 -00 -std=c11 -Wall -Werror -Wextra -Wno-s
~/workspace/ $ ./dmmm
Input number of elements array A
enter elements of array A
W
e
{
q
e }
addition to array A:
{rtyuioplkjhgfdsazxcvbnm}
power=8388608.000000~/workspace/ $
```

Висновок: На лабараторній роботі я ознайомився з основними поняттями множин, навчився будувати діаграми Ейлера-Вена, освоїв комп'ютерне подання множин.