Learning from examples [Decision Trees] (Chapter 19)

- Introduction to Machine Learning
- Learning Agents
- Inductive Learning
- Decision Tree Learning
- Performance Measurement

Machine Learning

- Studies how to use past observations to automatically learn to make accurate predictions
- Learning is NOT learning by heart
- Any computer could do this, the difficulty is to generalise a behaviour to a novel situation

Types of Problem

Applications

Computer Vision

- Face Detection / verification
- Handwriting recognition

Speech Processing

Word/Sentence/Person/Emotion Recognition

Others

- Finance: asset prediction
- Telecom: Traffic prediction
- Data Mining
- Games
- Control

Applications

GoogleNet object classifier

Learning In Agents

- Learning is essential for unknown environments
- Learning is useful as a system construction method
 - Expose agent to reality rather than trying to write it down

• Learning modifies the agent's decision mechanism to improve performance

Learning agents

Forms of Learning

- Design of the learning element is affected by three major issues:
 - Components of performance element to be learnt
 - Feedback available
 - Representation used
- Supervised learning
 - correct answers for each instance
- Unsupervised learning
 - no specific output values are supplied
- Reinforcement learning: occasional rewards

Training a Mario-playing RL Agent

https://pytorch.org/tutorials/intermediate/mario_rl_tutorial.html

Inductive Learning

- Simplest form: Learn a function from examples
- Problem:

For target function f

Find a hypothesis h such that h≈f

Given a training set of examples

COMP2611 - Machine Learning - Decision Trees

Test your intuition!

Student ID	Study Hours/Day	Sleep Hours/Day	Exam Result	
1	8	6	Pass	
2	7	7	Pass	
3	6	8	Pass	
4	3	4	Fail	
5	4	5	Fail	
6	2	3	Fail	
7	7	5	Pass	
8	4	7	Fail	
9	5.5	5	?	

Will the 9th student pass or fail?

Test your intuition!

Good versus Evil

	Gender	mask	cape	tie	ears	smokes	class
batman	M	Y	Y	N	Y	N	G
robin	M	Y	Y	N	N	N	G
alfred	M	N	N	Y	N	N	G
penguin	M	N	N	Y	N	Y	В
catwoman	F	Y	N	N	Y	N	В
joker	M	N	N	N	N	N	В
batgirl	F	Y	Y	N	Y	N	??
riddler	M	Y	N	N	N	N	??

www.cs.princeton.edu/~schapire

An example classifier

Overly complex classifier

Too Simple

Decision Trees

- Input: set of attributes of object or situation
- Output: Decision predicted output value for the input
- Inputs and outputs may have discrete or continuous values

Classification learning

- Learning a Discrete valued function
- Regression learning
 - Learning a Continuous valued function

Learning decision trees

Problem: decide whether to wait for a table at a restaurant, based on the following attributes:

- 1. Alternate: is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. Price: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Attribute-based representations

- Examples described by attribute values (Boolean, discrete, continuous)
- E.g., situations where I will/won't wait for a table:

Example	Attributes								Target		
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

• Classification of examples is positive (T) or negative (F)

Example

Splitting examples based on attributes

Which tree is more useful?

Information Gain

- We want to determine which attribute in a given set of training feature vectors is most useful for discriminating between the classes to be learned.
- Information gain tells us how important a given attribute of the feature vectors is.
- We will use it to decide the ordering of attributes in the nodes of a decision tree.

Information Gain

- **Entropy**: Entropy is a measure of impurity or disorder in a set of data.
- **Information Gain**: Information gain measures the effectiveness of an attribute in classifying the data. It quantifies the reduction in entropy.

Which group has the highest entropy?

Which group has the highest entropy?

Entropy

Binary Entropy Function

- Maximum entropy (1 bit) occurs at P = 0.5
- Entropy approaches 0 as P approaches 0 or 1
- $H(P) = -P \log_2(P) (1-P) \log_2(1-P)$

Entropy

- Choose attributes based on the expected amount of **information** they provide (Shannon & Weaver (1949))
- Entropy in an answer when prior is $\langle P(v_1), P(v_n) \rangle$ is

$$H(P(v_1), ..., P(v_n)) = \sum_{i=1}^{n} -P(v_i) \log_2 P(v_i)$$

- Scale: 1 bit = entropy of a Boolean distribution with probability <0.5, 0.5>
- Maximum entropy occurs with uniform distribution (equal probabilities)
- Minimum entropy occurs when one probability is 1 (complete certainty)

Information Gain

• For p positive and n negative examples at a node, the entropy is: $H\left(\frac{p}{p+n}, \frac{n}{p+n}\right)$ bits

For 12 restaurant examples p=n=6, therefore 1 bit.

Each attribute splits the examples into subsets E_i , each of which needs less information to complete the classification, or in other words have less entropy.

Information Gain

• The information gain from the attribute A is given by

Gain
$$(A) = H\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$
-Remainder (A)

• Remainder(A) is the expected number of bits per example over all branches of A (Average Entropy of children)

Remainder(A) =
$$\sum_{i} \frac{p_i + n_i}{p + n} H\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$

Calculating Information Gain

Information Gain = entropy(parent) – [average entropy(children)]

Entire population (30 instances)

$$\frac{\text{child}}{\text{entropy}} - \left(\frac{13}{17} \cdot \log_2 \frac{13}{17}\right) - \left(\frac{4}{17} \cdot \log_2 \frac{4}{17}\right) = 0.787$$

$$\frac{\text{child}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log_2 \frac{1}{13}\right) - \left(\frac{12}{13} \cdot \log_2 \frac{12}{13}\right) = 0.391$$

$$\frac{\text{parent}}{\text{entropy}} - \left(\frac{14}{30} \cdot \log_2 \frac{14}{30}\right) - \left(\frac{16}{30} \cdot \log_2 \frac{16}{30}\right) = 0.996$$

$$13 \text{ instances}$$

(Weighted) Average Entropy of Children = $\left(\frac{17}{30} \cdot 0.787\right) + \left(\frac{13}{30} \cdot 0.391\right) = 0.615$

Performance Measurement

How do we know that we have an accurate classifier?

- 1. Collect large set of training data
- 2. Divide into two disjoint sets: training and test sets
- 3. Apply the learning algorithm to the training set, generating a hypothesis (h)
- 4. Measure the percentage of examples in the test set that are correctly classified by h.
- 5. Repeat steps 1-4 for different sizes of training set

Performance Measurement

Training set size

Good Performance

- Need:
 - Enough training examples
 - Good performance on the training / test set
 - Classifier/Model that is not too complex
 - Complexity is measured by:
 - Number of bits needed to write it down
 - Number of parameters

Ockham's Razor (principle of parsimony)

- Principle stated by William of Ockham (1285-1347)
- Idea: The simplest consistent explanation is the best
- Therefore, the smallest decision tree that correctly classifies all of the training examples is best
- Finding the provably smallest decision tree is NP-hard
 - So instead of constructing the absolute smallest tree consistent with the training examples, construct one that is pretty small

Overfitting in Decision Trees

• Many kinds of "noise" can occur in the examples:

Two examples have same attribute/value pairs, but different classifications

Some values of attributes are incorrect because of errors in the data acquisition process or the preprocessing phase

The instance was labeled incorrectly (+ instead of -)

• Also, some attributes are irrelevant to the decision-making process

e.g., color of a dice is irrelevant to its outcome

Overfitting in Decision Trees

Based on Slide by Pedro Domingos

COMP2611 - Machine Learning - Decision Trees

Avoiding Overfitting in Decision Trees

How can we avoid overfitting?

- Stop growing when data split is not statistically significant
- Acquire more training data
- Remove irrelevant attributes (manual process not always possible)
- Grow full tree, then post-prune

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- Add complexity penalty to performance measure (heuristic: simpler is better)

Growing a full tree and then pruning it

Method 1: Reduced-Error Pruning

- Split training data further into training and validation sets
 Grow tree based on training set
- Prune the tree until further pruning is harmful:
 - Evaluate impact on validation set if pruning each possible node (plus those below it).
 - Greedily remove the node that as the result the accuracy on validation set improves the most.

Reduced-Error Pruning

- Pruning of the decision tree is done by replacing a whole subtree by a leaf node.
- The replacement takes place if a decision rule establishes that the expected error rate in the subtree is greater than in the single leaf.
- Consider a classification problem where we're trying to predict if an object belongs to the positive (+ve) or negative (-ve) class. Our goal is to minimize classification errors.
- If we had simply predicted the majority class (-ve), we make 5 errors instead of 9 in the worst case.

Effect of Reduced-Error Pruning

Method 2: Chi-Squared Pruning

- Chi-squared (χ^2) test helps us determine if a split in our decision tree is meaningful or just due to random chance.
- It does that by comparing the observations and expectations
- It also considers the degree of freedom incorporating number of tree branches and number of classes

$$\chi^2 = \frac{(O-E)^2}{E}$$

O: Observation E: Expectation

Chi-squared: separation criterion

(also called Δ)

Method 2: Chi-Squared Pruning

Full form:

$$\Delta = \chi^2 = \sum_{i=1}^c \sum_{j=1}^r rac{(N_{ij} - N'_{ij})^2}{N'_{ij}}$$

Where:

- c = number of classes
- r = number of child branches (children nodes)
- N_{ij} = Observed number of instances of class i in child node j
- N_{ij}^{\prime} = Expected number of instances of class i in child node j assuming random distribution
- N'_{ij} is calculated as: $N'_{ij} = N_i imes P_j$ where:
 - N_i = total number of instances of class i in the parent node
 - P_i = proportion of instances going to child j (N_i/N_{total})

$$\chi^2 = \frac{(O-E)^2}{E}$$

O: Observation

E: Expectation

Chi-squared: separation criterion (also called Δ)

$$df = (r-1) \times (c-1)$$

r: is the number of branches c: is the number of classes df or k: is the degree of freedom

Chart from Wikipedia

- The number of class A in the root node is $N_A = 2$
- The number of class B in the root node is $N_B = 7$
- The number of class A in the left node is $N_{AL}=1$
- The number of class B in the left node is N_{BL} =4

The proportion of the data going to the left node is

$$p_L = (N_{AL} + N_{BL})/(N_A + N_B) = 5/9$$

Suppose now that the data is *completely randomly* distributed

The expected number of class A in the left node given random splitting:

$$N'_{AL} = N_A \cdot p_L = 2x5/9 \approx 1$$

The expected number of class B in the left node given random splitting:

$$N'_{RL} = N_{R} \cdot p_{L} = 35/9 \approx 3.5$$

Measure of statistical significance:

$$\Delta = (N'_{AL} - N_{AL})^2 / N'_{AL} + (N'_{BL} - N_{BL})^2 / N'_{BL} + (N'_{AR} - N_{AR})^2 / N'_{AR} + (N'_{BR} - N_{BR})^2 / N'_{BR}$$

△ measures how much the split deviates from what we would get if the data where random

 Δ small: The increase in IG of the split is not significant In this example

$$\Delta = (10/9 - 1)^2/(10/9) + (35/9 - 4)^2/(35/9) + ... = 0.0321$$

- Construct the entire tree as before
- Starting at the leaves, recursively eliminate splits:
 - At a leaf N:
 - Compute the Δ value for Node and its parent P.
 - If the obtained p value based on the calculated Δ is low (<0.05)
 - Split is likely to be significant
 - Otherwise
 - Eliminate all of the children of P
 - P becomes a leaf
 - Repeat until no more splits can be eliminated

- Delta (Δ) is also called chi-squared (χ²) statistic, calculated as the sum of squared differences between observed and expected frequencies, divided by expected frequencies. This statistic measures whether the split's distribution significantly differs from random chance
- The resulting p-value is obtained from the chi-squared distribution table or charts like the following.
- If p is small the information gain due to the split is significant.
 - Reduces overfitting
 - Eliminates irrelevant attributes

Method 3: Cost Complexity Pruning

- Also known as "weakest link pruning"
- Introduced by Breiman et al. (1984)
- Controls tree size using a complexity parameter α
- Larger α = More pruning
- Smaller α = Less pruning
- Mathematical Form:
 - ✓ Cost = Training Error + α × Tree Size
 - \checkmark a balances accuracy vs complexity
 - \checkmark $\alpha = 0$ gives unpruned tree
 - \checkmark As α increases, subtrees are removed
 - \checkmark Training Error = R(T) = Number of incorrect predictions / Total number

```
Root

Node1 (leaf)

Node2

Node3 (leaf)

Node4 (leaf)

Node5 (leaf)
```

This tree has 4 leaves, so |T| = 4

Pruning approaches comparison

Chi-squared Pruning

- Local approach using statistical testing
- Calculates Δ for each split
- Compares observed vs expected distributions
- Uses p-value to determine significance
- Makes decisions node by node
- More traditional statistical approach
- Focused on split significance

• Cost Complexity Pruning

- Global approach using parameter α
- Minimizes: $R(T) + \alpha \times |T|$
- R(T): Training error
- |T|: Number of leaves
- α: Complexity parameter
- Used in Python package scikit-learn (ccp_alpha)
- Makes trade-off decisions across entire tree
- Featured in coursework #2 tasks 8-12

Reduced Error Pruning

- Global approach using validation set
- Uses separate validation dataset
- Makes pruning decisions based on validation accuracy
- Greedily removes subtrees that improve validation accuracy
- Simple but requires extra data for validation
- Makes decisions based on actual performance
- Focused on error reduction