Contents

1	Electromagnetic waves				
	1.1	Electromagnetic theory			
		1.1.1	Macroscopic Maxwell equations		
		1.1.2	Boundary conditions		
			Lorentz force		
		1.1.4	Material response		
		1.1.5	Energetic relations		
1	1.2	Wave	equation in dielectric media		
2	Extra				
	2.1	Physic	cal constants		

2 CONTENTS

Chapter 1

Electromagnetic waves

1.1 Electromagnetic theory

1.1.1 Macroscopic Maxwell equations

Theorem 1.1.1 (Gauss' law). Let ω be a solid and $\rho(\mathbf{r}) : \Omega \longrightarrow \mathbb{R}$ its charge density distribution. Then,

$$\oint_{\partial\Omega} \langle \mathbf{E}, d\mathbf{s} \rangle_I = \frac{1}{\epsilon} \int_{\Omega} \rho(\mathbf{r}) dv, \qquad \text{div } \mathbf{E} = \frac{\rho(\mathbf{r})}{\epsilon}.$$
(1.1)

Definition 1.1.1.

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}.\tag{1.2}$$

Theorem 1.1.2 (Gauss' law in media). Let Ω be a dipolar solid and $\rho_f(\mathbf{r}): \Omega \longrightarrow \mathbb{R}$ its free charge density distribution. Then,

$$\oint_{\partial\Omega} \langle \mathbf{D}, d\mathbf{s} \rangle_I = \int_{\Omega} \rho_f(\mathbf{r}) dv, \quad \text{div } \mathbf{D} = \rho_f(\mathbf{r}).$$
(1.3)

Theorem 1.1.3 (Gauss' law for magnetism). Let Ω be a solid. Then,

$$\oint_{\partial \Omega} \langle \mathbf{B}, d\mathbf{s} \rangle_I = 0, \qquad \text{div } \mathbf{B} = 0.$$
(1.4)

Theorem 1.1.4 (Faraday's law for magnetism). Let Σ be a surface formed by a circuit $\Gamma = \partial \Sigma$. Then,

$$\oint_{\Gamma} \langle \mathbf{E}, d\mathbf{r} \rangle_{I} = -\frac{d}{dt} \oint_{\Gamma} \langle \mathbf{B}, d\mathbf{s} \rangle_{I}, \quad \text{curl } \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}. \tag{1.5}$$

Theorem 1.1.5 (Ampère's law). Let Σ be a surface formed by a circuit $\Gamma = \partial \Sigma$. Then,

$$\oint_{\Gamma} \langle \mathbf{B}, d\mathbf{r} \rangle_{I} = \mu_{0} \oint_{\Sigma} \langle \mathbf{J}, d\mathbf{s} \rangle_{I}, \quad \text{curl } \mathbf{B} = \mu_{0} \mathbf{J}. \tag{1.6}$$

Theorem 1.1.6 (Ampère's law for variables fields). Let Σ be a surface formed by a circuit $\Gamma = \partial \Sigma$. Then,

$$\operatorname{curl} \mathbf{B} = \mu_0 \left[\mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right]$$
 (1.7)

Definition 1.1.2.

$$\mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}. \tag{1.8}$$

Theorem 1.1.7 (Ampère's law in media). Let Σ be a surface formed by a circuit $\Gamma = \partial \Sigma$ and $\mathbf{J}_f : \Sigma \longrightarrow \mathbb{R}^3$ its free current distribution. Then,

$$\operatorname{curl} \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}.$$
 (1.9)

Proposition 1.1.8. If P, M ad J_f are linear, then the equations are linear and superposition principle holds.

1.1.2 Boundary conditions

1.1.3 Lorentz force

1.1.4 Material response

Proposition 1.1.9. Let Ω be an homogeneous, isotropus and linear solid with $\rho_f(\mathbf{r}), \sigma_f(\mathbf{r}) = 0$. Then,

$$\operatorname{div} \mathbf{E} = 0, \quad \operatorname{div} \mathbf{B} = 0, \quad \operatorname{curl} \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t}, \quad \operatorname{curl} \mathbf{B} = \mu \epsilon \frac{\partial \mathbf{E}}{\partial t}.$$
 (1.10)

1.1.5 Energetic relations

Proposition 1.1.10. Magnetic energy density distribution

$$\eta_m = \frac{\mu}{2} \|\mathbf{H}\|^2 \approx \frac{\mu_0}{2} \|\mathbf{H}\|^2.$$
(1.11)

Proposition 1.1.11. Electric energy density distribution for non-absorving media

$$\eta_e = \frac{1}{2} \langle \mathbf{E}, \epsilon_0 \mathbf{E} + \mathbf{P} \rangle_I = \frac{\epsilon}{2} ||\mathbf{E}||^2.$$
(1.12)

Definition 1.1.3. Poynying vector

$$\mathbf{S} := \mathbf{E} \times \mathbf{H} = \frac{1}{\mu} \mathbf{E} \times \mathbf{B}. \tag{1.13}$$

1.2 Wave equation in dielectric media

Proposition 1.2.1. Let Ω be an homogeneous, isotropus and linear solid with $\rho_f(\mathbf{r}) = 0$. Then,

$$\operatorname{div} \mathbf{E} = 0, \qquad \operatorname{div} \mathbf{B} = 0, \qquad \operatorname{curl} \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t}, \qquad \operatorname{curl} \mathbf{B} = \mu \sigma \mathbf{E} + \mu \epsilon \frac{\partial \mathbf{E}}{\partial t}. \tag{1.14}$$

Proposition 1.2.2. Let Ω be an homogeneous, isotropus and linear solid with $\rho_f(\mathbf{r}) = 0$. Then,

$$\nabla^2 \mathbf{E} = \mu \sigma \frac{\partial \mathbf{E}}{\partial t} + \mu \epsilon \frac{\partial^2 \mathbf{E}}{\partial t^2},\tag{1.15}$$

and if $\sigma(\mathbf{r}) = 0$, then

$$\nabla^2 \mathbf{E} = \mu \epsilon \frac{\partial^2 \mathbf{E}}{\partial t^2}.$$
 (1.16)

Proposition 1.2.3. Let

Chapter 2

Extra

2.1 Physical constants

8

Definition 2.1.1. Physical constants

$$q_e = 1,602 \times 10^{-19} \,\mathrm{C},$$

$$h = 6,62 \times 10^{-34} \,\mathrm{kg},$$

$$\epsilon_0 = 8,8542 \times 10^{-12} \,\mathrm{C^2 \,N \,m^2},$$

$$\mu_0 = 4\pi \times 10^{-7} \mathrm{N^2 \,s^2 \,C^{-2}}$$