- 1.- Una compañía que produce dos tipos de motores. Para cada motor tipo I necesita 2 horas de mano de obra y 6 kg de materiales mientras que para cada motor tipo II invierte 4 horas de mano de obra y 2 kg de materiales. A la semana se dispone de 1000 horas de mano de obra y 1200 kg de materiales. Una vez estudiada la demanda se ha decidido no fabricar más de 200 motores de tipo II a la semana. Los beneficios que se obtienen por la venta de un motor tipo 1 es de 30 u.m y 80 u.m.por la venta de un motor de tipo II.
- (a) ¿Cuál es la mejor combinación productiva? ¿Cuál es el beneficio máximo?

X1=numero de motores del tipo 1, X2= numero de motores del tipo 2

Maximizar 30x1+80x2

 $2x1+4x2 \le 1000$

 $6x1+2x2 \le 1200$

X2 <= 200

X1,x2>=0

Operaciones intermedias (mostrar/ocultar detalles)

Tabla 3			30	80	0	0	0
Base	Cb	\mathbf{P}_0	P 1	\mathbf{P}_2	P 3	P4	P 5
P1	30	100	1	0	0.5	0	-2
P4	0	200	0	0	-3	1	10
P2	80	200	0	1	0	0	1
Z		19000	0	0	15	0	20

☐ Mostrar resultados como fracciones.

La solución óptima es Z = 19000

 $X_1 = 100$

 $X_2 = 200$

El beneficio máximo es producir 100 motores del tipo 1 y 200 del tipo 2 a la semana.

(b) ¿Cuánto se estaría dispuesto a pagar por una hora más de trabajo a la semana?¿y por 1 kg más de materiales disponible a la semana?¿y por ampliar en una unidad la cantidad límite a fabricar de motores tipo II?

Problema de dualidad

Y1=numero de beneficio que se perdería por incrementar en 1 el numero de motores 1 producidos

Y2= número de beneficio que se perdería por incrementar en 1 el número de motores 2 producidos

Minimizar 1000y1+1200y2+200y3

$$2y1+6y2>=30$$

$$4y1+2y2+y3>=80$$

$$Y1,y2,y3>=0$$

Operaciones intermedias (mostrar/ocultar detalles)

Tabla 2			-1000	-1200	-200	0	0
Base	Сь	\mathbf{P}_0	P 1	\mathbf{P}_2	P 3	P4	P5
P 1	-1000	15	1	3	0	-0.5	0
P 3	-200	20	0	-10	1	2	-1
Z		-19000	0	200	0	100	200

☐ Mostrar resultados como fracciones.

La solución óptima es Z = 19000

 $X_1 = 15$

 $X_2 = 0$

 $X_2 = 0$ $X_3 = 20$

Se estaría dispuesto a pagar 15 por una hora mas de trabajo semanal. Se estaría dispuesto a pagar 0 por 1kg mas de materiales y 20 por aumentar el limite de motores tipo 2 en 1.

(c) Para cada recurso, ¿cuál es el rango de tolerancia en el que son válidos los precios sombra?

Tabla 3			30	80	0	0	0
Base	Сь	\mathbf{P}_0	P 1	\mathbf{P}_2	P 3	P ₄	P5
P 1	30	100	1	0	0.5	0	-2
P4	0	200	0	0	-3	1	10
P ₂	80	200	0	1	0	0	1
Z		19000	0	0	15	0	20

$$1.(80+\Delta p)-(80+\Delta p)>=0$$

$$2.(30*(-2)+80+\Delta p)>=0$$

$$20\Delta p >= 0$$
;

$$\Delta p >= 20 -> p >= 60$$

2.-En una empresa se quieren utilizar los recursos 1 y 2 en la producción de los productos A, B y C. La cantidad unitaria necesaria de cada recurso para cada tipo de producto, la cantidad disponible de cada recurso y el beneficio unitario de cada producto vienen dados en la Tabla siguiente

Recursos	Produ	ctos		Disponibilidad de recursos
	A	В	С	
1	4	2	3	40
2	2	2	1	30
Beneficio	3	2	1	

a) Plantear y resolver un modelo lineal que permita maximizar el beneficio obtenido por el uso de los recursos en la producción.

X1=cantidad de productos A generados

X2=cantidad de productos B generados X3=cantidad de productos C generados

Operaciones intermedias (mostrar/ocultar detalles)

Tabla 3			3	2	1	0	0
Base	Сь	\mathbf{P}_0	Pı	\mathbf{P}_2	P 3	P_4	P 5
P1	3	5	1	0	1	0.5	-0.5
P ₂	2	10	0	1	-0.5	-0.5	1
Z		35	0	0	1	0.5	0.5

☐ Mostrar resultados como fracciones.

La solución óptima es Z = 35

 $X_1 = 5$

 $X_2 = 10$

 $X_3 = 0$

La solución más optima será producir 5 unidades del producto A y 10 del producto B.

b) Supongamos que sobre el problema del enunciado decidimos subir los precios y por tanto los beneficios de los Productos A, B y C pasan a ser 4, 3 y 1 respectivamente, encontrar la producción óptima y compara los resultados. Y si decidiéramos bajarlos de forma que los beneficios respectivos serían 1, 1 y 1 respectivamente, ¿qué ocurrirá?

Maximizar 4x1+3x2+x3 4x1+2x2+3x3<=40 2x1+2x2+x3<=30 X1,x2,x3>=0

Operaciones	intermediac	(mactrar/a	cultar detalles	•
Operaciones	IIIICIIIICUIAS	i miosti ai/o	cuitai uetanes	•

Tabla 3			3	2	1	0	0
Base	Сь	\mathbf{P}_0	Pı	\mathbf{P}_2	P 3	P_4	P5
P 1	3	5	1	0	1	0.5	-0.5
P2	2	10	0	1	-0.5	-0.5	1
Z		35	0	0	1	0.5	0.5

☐ Mostrar resultados como fracciones.

La solución óptima es Z = 35

 $X_1 = 5$

 $X_2 = 10$

 $X_3 = 0$

En caso de aumentar los precios la combinación mas rentable seria la misma pero el beneficio seria 15 unidades mayor.

c) ¿Qué ocurriría si para el producto C se decide usar 4 unidades de recurso 1 y 2 unidades de recurso 2? Y si se usaran ½ unidad del recurso 1 y 1 del recurso 2?

Tabla 1			3	2	1	0	0	Tabla 3			3	2	1	0	0
Base	Cb	\mathbf{P}_0	P 1	P ₂	P 3	P4	P5	Base	Cb	Po	P 1	P ₂	P3	P4	P5
P4	0	40	4	2	3	1	0	P1	3	5	1	0	1	0.5	-0.5
P 5	0	30	2	2	1	0	1	P 2	2	10	0	1	-0.5	-0.5	1
Z		0	-3	-2	-1	0	0	Z		35	0	0	1	0.5	0.5

Cuando las recursos con 5,2

$$\begin{pmatrix} 0.0 & -0.0 \\ -0.0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Cumbo lus recursos sen 0's,1

$$\begin{pmatrix} O'S - O'S \\ -O'S & 1 \end{pmatrix} \begin{pmatrix} O'S \\ 1 \end{pmatrix} \ge \begin{pmatrix} -O'IS \\ O'JS \end{pmatrix}$$

_, -=															>
Tabla 3			3	2	1	0	0	Tabla 3			3	2	1	0	0
Base	Cb	P ₀	P1	P 2	P ₃	P4	P5	Base	Cb	P ₀	P 1	P ₂	P 3	P4	P 5
P1	3	5	1	0	-0123	0.5	-0.5	P1	3	25 / 3	1	1/3	0	1/3	-1 / 6
P 2	2	10	0	1	O'15	-0.5	1	P3	1	40 / 3	0	4/3	1	-2/3	4/3
Z		35	0	0	-0'15	0.5	0.5	Z		115 / 3	0	1/3	0	1/3	5/6

Kyin lu neu testes la neu sobardo nos optima es produir 8'3 del tipo B ; 13,3 del tipo B ; producido tradição de 38's

d) Se quiere producir un nuevo producto D, siendo los recursos necesarios 1 para el recurso 1 y 2 para el recurso 2 y el beneficio 1. ¿Es rentable?. Y si se usan 3 y 2 unidades de los recursos correspondientes y el beneficio fuera 3?

Tabla 1			3	2	1	0	0
Base	Cb	P ₀	P 1	P ₂	P 3	P4	P5
P4	0	40	4	2	3	1	0
P 5	0	30	2	2	1	0	1
Z		0	-3	-2	-1	0	0

Tabla 3			3	2	1	0	0
Base	Сь	\mathbf{P}_0	P 1	P ₂	P3	P4	P5
P1	3	5	1	0	1	0.5	-0.5
\mathbf{P}_2	2	10	0	1	-0.5	-0.5	1
Z		35	0	0	1	0.5	0.5

Cuento los recursos 3,2 y un berefica 2

$$\begin{pmatrix} -0, & 1 \\ 0, & -0, \end{cases} \begin{pmatrix} 7 \\ 7 \end{pmatrix} = \begin{pmatrix} 3, 2 \\ -0, 1 \end{pmatrix}$$

Cuado las recoras valen 3'2 y producen 3:

$$\begin{pmatrix} 0_1 & 2 \\ 0_1 & 0_1 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 0_1 \\ 0_1 \end{pmatrix}$$

Tabla 3			3	2	1	3	0	0
Base	Cb	P ₀	P 1	P2	P 3	P ₄	P5	P
P4	3	40 / 3	4/3	2/3	1	1	1/3	0
P ₆	0	10/3	-2/3	2/3	-1	0	-2/3	1
Z		40	1	0	2	0	1	0

d.2) Ahora se decide usar un nuevo tipo de materia prima para la producción de los productos A, B y C de la tabla. De este nuevo recurso se tiene 20 unidades y se requiere 1 unidad para producir cada uno de los productos ¿Mejora la producción?

Maximitar
$$3x_1 + 2x_2 + x_3$$

 $4x_1 + 2x_1 + 3x_2 \le 50$

$$2x_{4} + 2x_{2} + x_{3} \leq 30$$

 $x_{5} + x_{1} + x_{3} \leq 20$

×1, ×2, ×3 ≥0

Tabl	a 3		3	2	1	0	0	0
Ba	se Cb	P ₀	Pı	P ₂	P3	P4	P5	P6
P	. 3	5	1	0	1	0.5	-0.5	0
P	2	10	0	1	-0.5	-0.5	1	0
Pe	0	5	0	0	0.5	0	-0.5	1
Z		35	0	0	1	0.5	0.5	0

Segumen tenendo la misma solución que al principio sindo esta la producción de Sundades del tipo A, SO del tipo By O del tipo C