Quantum Money from Abelian Group Actions

Mark Zhandry

NTT Research

The Double Spend Problem

The Double Spend Problem

Classical Solutions

Physical currency

Digital currency

or at least too expensive to convincingly copy

All need trusted third party to make sure the money is yours to spend

Enter Quantum...

No-cloning Theorem

[Park'70, Wooters-Zurek'82, Dieks'82]

"Secret key" quantum money [Wiesner'70]

$$\in \{|0\rangle, |1\rangle, |+\rangle, |-\rangle\}^n$$

Problem with SK quantum money

Because state is unknown to public, only mint can verify

"Public key" quantum money [Aaronson'09]

Mint only involved in making new notes, not verification

Numerous other advantages, for free

Merely conjectured

[Aaronson'09]: random stabilizer states

[Lutomirski-Aaronson-Farhi-Gosset-Hassidim-Kelner-Shor'10]

[Aaronson-Christiano'12]: polynomials hiding subspaces

X [Pena-Faugère-Perret'14, Christiano-Sattath'16]

[Farhi-Gosset-Hassidim-Lutomirski-Shor'10]: knots

[Z'19]: quadratic systems of equations

X [Roberts'21]

[Kane'18, Kane-Sharif-Silverberg'21]: quaternion algebras

[Khesin-Lu-Shor'22]: lattices

X [Liu-Montgomery-**Z**'23]

Proof in black box model

(Heuristic oracle-free instantiation? How realistic is the black box "assumption"?) (How believable is the assumption?)

[Aaronson'09]: quantum oracle

[Aaronson-Christiano'12]: classical hidden subspaces oracle

[Kane'18, Kane-Sharif-Silverberg'21]: Commuting unitaries

Proof under widely studied computational assumption

[Z'19]: Assuming

"indistinguishability obfuscation"

[Liu-Montgomery-Z'23]: Walkable invariants

New Result:

Quantum Money from Abelian Group Actions

(Abelian) Group Actions

abelian

$$\mathbb{G}$$
 acts on \mathcal{X} via $*:\mathbb{G}\times\mathcal{X}\to\mathcal{X}$
$$g*(h*x)=(g+h)*x$$

Assume: $(g,x)\mapsto (g*x,x)$ a bijection, $\mathcal X$ sparse, $\mathit{recognizable}$

Explicit known starting element $x \in \mathcal{X}$

 $(g*x,x)\mapsto (g,x)$ should be computationally infeasible ("Discrete log" problem)

$$\sum_{g \in \mathbb{G}} |g\rangle$$

$$\sum_{g,h \in \mathbb{G}} |g,g*x\rangle$$

$$\sum_{g,h \in \mathbb{G}} |g,g*x\rangle$$

$$\sum_{g,h \in \mathbb{G}} e^{i2\pi gh/N} |h,g*x\rangle$$

$$h = \text{Serial \#} \qquad \$ \propto \sum_{g} e^{i2\pi gh/N} |g*x\rangle$$

First check that support of \$ contained in $\mathcal X$

$$\begin{array}{c}
\$ \propto \sum_{g} e^{i2\pi gh/N} |g * x\rangle \\
\sum_{u} |u\rangle \otimes \sum_{g} e^{i2\pi gh/N} |g * x\rangle \\
\downarrow * \\
\sum_{u} |u\rangle \sum_{g} e^{i2\pi gh/N} |u * (g * x)\rangle
\end{array}$$

$$\begin{split} \sum_{u} |u\rangle \sum_{g} e^{i2\pi gh/N} |u*(g*x)\rangle \\ &= \sum_{u,g} e^{i2\pi gh/N} |u\rangle |(u+g)*x\rangle \\ &= \sum_{u,g'} e^{i2\pi (g'-u)h/N} |u\rangle |g'*x\rangle \\ &= \sum_{u} e^{-i2\pi uh/N} |u\rangle \otimes \$ \\ &\downarrow \mathsf{QFT} \\ &\downarrow h\rangle \otimes \$ \end{split}$$

Intuition for Security

Suppose discrete logs were easy:

$$\sum_{g \in \mathbb{G}} |g\rangle \longrightarrow \sum_{g \in \mathbb{G}} |g, g * x\rangle$$

$$\sum_{g} e^{i2\pi gh/N} |g, g * x\rangle$$

$$\sum_{g} e^{i2\pi gh/N} |g * x\rangle = \$$$

Security Justification

Thm: Assumption 1 → protocol is secure for *black box* group actions

Assumption 1 \approx Hard to distinguish (x, u * x, (2u) * r) from (x, u * x, v * r)

Analogous to Diffie-Hellman exponent assumptions in plain groups

$$(g,g^u,g^{u^2})$$
 vs (g,g^u,g^r)

r chosen by adversary adaptively based on $x, u \ast x$ potentially in superposition

First (post-)quantum security proof using black box group actions

Remark: DLog query complexity is polynomial [Ettinger-Høyer'00] -> unconditional black box lower-bounds impossible for generic group actions

Typical proofs in crypto:

"standard model" → proof via reduction to underlying assumption

"black box model" → direct proof via query complexity

Any quantum proof using black box group actions must use both

Suppose Assumption 1 is true for some group action $(\mathbb{G},*,\mathcal{X})$

Construct new group action $(\mathbb{G},\star,\mathcal{X}')$

$$\mathcal{X}'=\{(g*x,g*y)\} \qquad y=u*x$$

$$g\star(z_1,z_2)=(g*z_1,g*z_2) \qquad \text{from Assumption 1}$$
 Starting element $x'=(x,y)$

Any black box adversary should also work*** for $(\mathbb{G},\star,\mathcal{X}')$

*** Some technicalities here. We will revisit later

Suppose (toward contradiction) black box adversary produces two banknotes with same serial #

$$\$_1 \propto \sum_g e^{i2\pi gh/N} |g*x,g*y\rangle \qquad \$_2 \propto \sum_g e^{i2\pi gh/N} |g*x,g*y\rangle$$

- 1) Set $\ r=g*x$. Assumption maps to $\ v*r=(v+g)*x$ where $\ v=2u$ or $\ v\neq 2u$
- 2) Swap (v+g)*x and g*y

$$\begin{split} \$_1 \mapsto & \sum_g e^{i2\pi gh/N} |g*y, (v+g)*x\rangle \\ & = \sum_g e^{i2\pi gh/N} |(g+u)*x, (v+g)*x\rangle \\ & = e^{-i2\pi uh/N} \sum_{g'} e^{i2\pi g'h/N} |g'*x, (g'+v-u)*x\rangle \\ & = e^{-i2\pi uh/N} \sum_{g'} e^{i2\pi g'h/N} |g'*x, (g'+v-2u)*y\rangle \end{split}$$

$$\$_1\mapsto \$_1':=e^{-i2\pi uh/N}\sum_g e^{i2\pi gh/N}|g*x,(g+v-2u)*y\rangle$$

$$v=2u:\$_1'=\$_1 \text{ up to phase} \qquad v\neq 2u:\$_1'\perp\$_1$$

Distinguish using swap test with $\$_2$ \rightarrow Break Assumption 1, a contradiction

Lingering issue: can't recognize $\mathcal{X}'=\{(g*x,g*y)\}\subseteq\mathcal{X}^2$ does not fit our criteria for group action

Solution: $\mathcal{X}' = \{\Pi(g*x, g*y)\}$ for random injection Π

"Bad" strings $\Pi(g*x,g'*y),g\neq g'$ are sparse

Can show bad set hidden using standard quantum query complexity techniques

Conclusion

This talk: Public key quantum money from abelian group actions, with plausible security justification

Also in paper:

- Extension to isogenies over elliptic curves (REGAs)
- Comparison of various idealized models for group actions
- Cryptanalysis of certain ``knowledge assumption" on group actions
 - → similar to "knowledge of path" assumption used in [Liu-Montgomery-**Z**'23]