Theoretische Informatik und Logik Übungsblatt 1 (2021W)

Anmerkung: Zeichen mit reinem Symbolcharakter sind im Folgenden unterstrichen. Sie können, müssen das aber nicht in Ihrer Ausarbeitung beibehalten.

Aufgabe 1.1 Gegeben sei folgende (deterministische) Turingmaschine M:

$$M = (\{q_i \mid 0 \le i \le 4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$$

wobei

δ	<u>0</u>	<u>1</u>	X	Y	B
q_0	(q_1, X, R)	(q_2, X, R)		(q_0, Y, R)	(q_4, B, S)
q_1	(q_1, X, R) $(q_1, \underline{0}, R)$ (q_3, Y, L)	(q_3, Y, L)		(q_1, Y, R)	
q_2	(q_3, Y, L)	$(q_2, \underline{1}, R)$		(q_2, Y, R)	
q_3	(q_3, \underline{O}, L)	$(q_3, \underline{1}, L)$	(q_0, X, R)	(q_3, Y, L)	
q_4					

- a) Geben Sie L(M) (also die Sprache, die von M akzeptiert wird) an .
- b) Geben Sie eine Turingmaschine M' nach der Definition von Folie 72 an, welche dieselbe Sprache akzeptiert (L(M') = L(M)). Ihre Maschine M' sollte dabei die Kellerautomatenbedingung erfüllen. Erläutern Sie auch kurz verbal die Arbeitsweise Ihrer Maschine.

Aufgabe 1.2 Sind die folgenden Instanzen des PCP (Post'schen Korrespondenzproblems, s. Folie 65 f.) lösbar? Falls ja, so geben Sie eine Lösung an, falls nein, begründen Sie deren Nichtlösbarkeit:

- a) $K_1 = ((10111, 10), (1, 111), (10, 1))$
- d) $K_2 = ((10,1), (11,01), (01,0))$
- c) $K_3 = ((1,0), (0000,0), (0,01))$
- b) $K_4 = ((10, 1), (11, 01), (01, 0), (0, 0100))$
- e) $K_5 = ((10, 101), (011, 11), (101, 011))$

Aufgabe 1.3 Geben Sie an, ob folgende Probleme (un)entscheidbar sind, und begründen Sie jeweils Ihre Antwort. Sofern möglich, verwenden Sie dafür den $Satz\ von\ Rice$ (und geben Sie, im Falle einer nicht trivialen Eigenschaft, auch immer ein Beispiel und ein Gegenbeispiel an. Das Alphabet ist dabei jeweils $\Sigma = \{\underline{0},\underline{1}\}.$)

- a) Enthält die von einer Turingmaschine akzeptierte Sprache ein Wort mit gerader Länge?
- b) Gilt für die von einer Turingmaschine akzeptierte Sprache L über Σ , dass $L = \overline{L}$?
- c) Hält eine Turingmaschine auf der leeren Eingabe in höchstens 100 Schritten?
- d) Kann die von einer Turingmaschine akzeptierte Sprache L auch als regulärer Ausdruck dargestellt werden?
- e) Gilt für die von einer Turingmaschine akzeptierte Sprache L über Σ , dass $L \cup \overline{L} = \Sigma^*$?

Aufgabe 1.4 Sind folgende Aussagen korrekt? Begründen Sie jeweils Ihre Antwort.

- a) Sei $L_1 \subset \{\underline{0},\underline{1}\}^*$ eine Sprache, die nicht entscheidbar ist. Dann ist auch $L_2 = \{\underline{1}w \mid w \in L_1\}$ nicht entscheidbar.
- b) Seien A und B entscheidbar. Dann ist auch A-B entscheidbar. (*Hinweis:* A-B bezeichnet die Mengendifferenz, auch geschrieben als $A \setminus B$)
- c) Seien C und D rekursiv aufzählbar. Dann ist auch C-D rekursiv aufzählbar.
- d) Sei $A \subseteq B$ und B entscheidbar, so ist auch A entscheidbar.
- e) Sei $A \leq B$ und B rekursiv, so ist auch das Komplement von A rekursiv.
- f) Sei $A \leq B, \ B \leq C$ und C rekursiv aufzählbar, so gibt es eine Turingmaschine, die das Komplement von A akzeptiert.

Aufgabe 1.5 Beweisen Sie mit Hilfe des Pumping Lemmas für reguläre Sprachen, dass die folgenden Sprachen nicht regulär sind.

- a) $\{yy^r \mid y \in \{\underline{\mathtt{a}},\underline{\mathtt{b}},\underline{\mathtt{c}}\}^*\}$ (*Hinweis*: y^r bezeichnet das Spiegelbild von y.)
- b) $\{(\underline{\mathtt{a}}\underline{\mathtt{b}})^n\mid n\geq 0\}\cup\{(\underline{\mathtt{b}}^n\underline{\mathtt{c}}^n)^m\mid n\geq 0\}$ (wobei m für Ihre Matrikelnummer ohne etwaige führende Nullen steht)
- c) $\{(\underline{\mathbf{a}}\underline{\mathbf{b}})^n\underline{\mathbf{a}}^k \mid n > k, k \ge 0\}$