TimeSeries Walmart Project

Kenya Roy and Lani Lewis

2024-12-08

We invite you to watch our powerpoint presentation on our predictive modeling work online: https://youtu.be/eyyFiHjTxng

EDA & CLEAN DATA

Merge Data

Validation Dataset

Clean up merge duplicate columns

Clean up date types

Training Dataset

Validation Dataset

NA Values

```
##
     Store
                     Dept Weekly Sales IsHoliday Temperature
             Date
##
                      0.00000
    0.00000
             0.00000
                               0.00000
                                        0.00000
                                                 0.00000
## Fuel Price MarkDown1 MarkDown2 MarkDown3 MarkDown4 MarkDown5
##
    0.00000 64.25718 73.61103 67.48085 67.98468 64.07904
##
      CPI Unemployment
                         Type
                                  Size
             0.00000 0.00000 0.00000
##
    0.00000
```

Remove NA >50%

SPLIT

Filtered Training Dataset

Aggregate Weekly_Sales and retain other columns

80/20 Train Test Split

```
## Training set dimensions: 114 8

## Test set dimensions: 29 8

## Training set percentage: 79.72%

## Test set percentage: 20.28%
```

TEST SPLIT OF DATA

Aggregated Date

```
## ## 2010 2011 2012
## 48 52 43
```


Train Test Set

Test Set - This is different then the validation set

SCALE VARIABLES

AGGREGATED

TRAINED

TEST

LOG VARIABLES

AGGREGATED

TRAINED

TEST

COVERT DATASETS TS DIFFERENCE DATA

PLOTS

Variables that are highly skewed often benefit from a log transformation.

Histogram of weekly_sales Histogram of IsHoliday A property of the second of the sec

Histogram of CPI

Frequency 8 2 -1 CPI

Histogram of Unemploymen

Histogram of Store

Histogram of Temperature_L

Histogram of weekly_sales_l

17.4

weekly sales L

17.8

Histogram of Fuel_Price_L

Look for non-linear relationships where a log transformation could help linearize the data. - Possibly log variables

tter Plot: weekly_sales vs Weektatter Plot: IsHoliday vs Weekly_

tter Plot: Temperature vs Weeklatter Plot: Fuel_Price vs Weekly

Scatter Plot: CPI vs Weekly_Saer Plot: Unemployment vs Weel

Scatter Plot: Store vs Weekly_Ser Plot: Temperature_L vs Week

tter Plot: Fuel_Price_L vs Weekler Plot: weekly_sales_L vs Weel

May not need to use Highly correlated data - Keep all variables

##Correlation Matrix of Numeric Variables Unemployment has high correlation with Fuel Price and CPI variables.

```
numeric vars <- train set %>%
 select if(is.numeric) # Select all numeric columns
# drop weekly sales
numeric vars <- numeric vars[, !colnames(numeric vars) %in% "weekly sales"]
numeric vars <- numeric vars[, !colnames(numeric vars) %in% "Store"]
numeric vars <- numeric vars[, !colnames(numeric vars) %in% "Dept"]
numeric vars <- numeric vars[, !colnames(numeric vars) %in% "Size"]
# Compute the correlation matrix
cor matrix <- cor(numeric vars, use = "complete.obs") # Use only complete cases
# Print the correlation matrix
print(cor matrix)
           IsHoliday Temperature Fuel Price
                                                 CPI Unemployment
              1.000000000 -0.20963274 -0.002213931 0.03250266 0.01133062
## Temperature -0.209632737 1.00000000 -0.071108692 -0.10476660 0.02227830
## Fuel Price -0.002213931 -0.07110869 1.000000000 0.83926661 -0.86517633
## CPI
            0.032502658 - 0.10476660 \ 0.839266607 \ 1.000000000 \ -0.97189949
## Unemployment 0.011330622 0.02227830 -0.865176331 -0.97189949 1.00000000
```

```
# Adjust margins to create space for the title

par(mar = c(5, 5, 7, 5)) # Increase the top margin (3rd value)

corrplot(cor_matrix,
    method = "color",
    type = "upper",
    tl.col = "black",
    tl.srt = 45)

title("Correlation Matrix of Numeric Variables", line = 5) # Add title with proper spacing
```


TS Plots

- Realization: The sharp spikes and upward or downward trends suggest that the series is non-stationary (mean and variance are not constant over time).
- ACF: Strong correlations at lag 1 and lag 2, gradually decreasing, also indicating non-stationarity.
- Spectral Density: looks like we have three high peaks the first is the strongest and we see high peaks around period 12 (13/14)
- The next import periods are around 3 then 2...

• The overall behavior indicates that differencing might be required to stabilize the

ACF | MA(q) Review

• Maybe MA(4)

Series scaled\$weekly_sales

PACF | AR(p) Review

- maybe a AR(4)
- scaled it looks like an AR(2)

Series scaled\$weekly_sales

Plot for Trend

• It looks like there are spike around 13(11 - Nov) and 14(12 - Dec) period.

Maybe a frequency peak at around .071 - .077

Weekly Sales Over Time

Decompose Time Series

Summary of Insights - Trend: A clear upward trend is present between time 2 and 3, indicating long-term growth. **- Seasonality**: The data has a strong seasonal component, which should be explicitly modeled. **- Stationarity**: The presence of both trend and seasonality suggests the series is non-stationary. First-order differencing (d=1) and/or seasonal differencing (D=1) may be required to stabilize the series for ARIMA modeling. **- Outliers**: The sharp spikes in the residuals suggest potential outliers or irregular

events that may require further investigation or adjustments. —

Dickey-Fuller Test for Stationarity

- Reject the null hypothesis of Non-Stationarity
- This test was not as helpful as I had hopped cause we know that we need to difference the model from the plots above.
- This is actually a non-stationary model based off Kaggle as well. On the site they already mention this is a non-stationary model

ARMA MODEL

AIC Model Determination

- I will test the following three models
 - o ARMA(5,1) increase the values for more options since we are at the max
 - ARMA(5,1) is still in the top 5 so I will try this option
 - ARMA(5,3) and ARMA(6,1) will be the next I play with.
- After testing I found that ARMA(5,3) performs the best

```
## -------WORKING... PLEASE WAIT...
##
## Five Smallest Values of aic
## p q aic
## 5 3 -0.2302411
## 5 0 -0.2106635
```

```
## 6 1 -0.1933963
## 6 0 -0.1932953
## 5 1 -0.1932337
```

BIC Model Determination

- Not going to use this model cause we know this is not white noise. So I increased the model
- Still not valid options

```
## -----WORKING... PLEASE WAIT...
## Error in aic calculation at 0 0
## Error in aic calculation at 0.1
## Error in aic calculation at 0 2
## Error in aic calculation at 0 3
## Error in aic calculation at 1 0
## Error in aic calculation at 1 1
## Error in aic calculation at 1 2
## Error in aic calculation at 1 3
## Error in aic calculation at 2 0
## Error in aic calculation at 2 1
## Error in aic calculation at 2 2
## Error in aic calculation at 2 3
## Error in aic calculation at 3 0
## Error in aic calculation at 3 1
## Error in aic calculation at 3 2
## Error in aic calculation at 3 3
## Error in aic calculation at 4 0
## Error in aic calculation at 4 1
## Error in aic calculation at 4.2
## Error in aic calculation at 4 3
## Error in aic calculation at 5 0
## Error in aic calculation at 5 1
```

```
## Error in aic calculation at 5 2
## Error in aic calculation at 5 3
## Error in aic calculation at 6 0
## Error in aic calculation at 6 1
## Error in aic calculation at 6.2
## Error in aic calculation at 6 3
## Error in aic calculation at 7 0
## Error in aic calculation at 7 1
## Error in aic calculation at 7 2
## Error in aic calculation at 7.3
## Five Smallest Values of bic
##
               bic
     p q
              999999
         0
##
     0
              999999
##
     0 1
##
     0 2
              999999
              999999
##
     0 3
             999999
         0
```

ARMA(5,3) Factor Table Check | Model Estimates

- Here the 1-B is very apparent. This might be the best model to use since I know I need to difference my model
- The frequency also seems to match up almost exactly with what I am seeing in the original realization

```
##
##
## Coefficients of AR polynomial:
## 0.1845 0.5098 0.3896 0.0227 -0.3018
##
##
                 AR Factor Table
## Factor
                 Roots
                               Abs Recip System Freq
## 1-1.6012B+0.6501B^2 1.2315+-0.1471i
                                          0.8063
                                                    0.0189
## 1+0.6551B+0.6095B^2 -0.5374+-1.1627i
                                           0.7807
                                                    0.3189
## 1+0.7616B -1.3131
                                 0.7616
                                           0.5000
##
##
##
##
## Coefficients of MA polynomial:
## -0.1845 0.4290 0.7555
##
##
                   MA FACTOR TABLE
## Factor
                 Roots Abs Recip System Freq
```

RESIDUAL CHECKS ARMA(5,3)

ACF Residual Check

Passed the ACF White Noise Residual Check

Series arma53\$res

Ljung Residual Check

- Fail to reject the Null Hypothesis of White Noise as the p-value is greater then .05 for both tests
- This is another pass for this model

p-value 0.8608067

p-value 0.9770861

Forecast ARMA Model

ASE

[1] 1.014748

WMAE | Kaggle

[1] 0.8192932

Compare Multiple Spectral Densities

• This model appears to perform well with generating the spectral densities

Compare Multiple ACFs

• Does fairly well modeling the ACFs

FINAL ARMA(5,3) MODEL

$$(1 - 0.1845B - 0.5098B^{2} - 0.3896B^{3} - 0.0227B^{4} + 0.3018B^{5})(X_{t} + 4.470451e - 16)$$

= $(1 + 0.1845B - 0.4290B^{2} - 0.7555B^{3})a_{t}$, $\hat{\sigma}_{a}^{2} = 0.6783202$

ARIMA (5,1,3)

Dickey-Fuller Test for Stationarity

• Reject the null hypothesis of Non-Stationarity

AIC Model Determineation

We don't see ARMA(5,3) in the top options but decided to move forward with this
option do the results from the first model

```
## -------WORKING... PLEASE WAIT...
##
## Five Smallest Values of aic
## p q aic
## 5 2 -0.1757346
## 5 1 -0.1632874
## 6 3 -0.1589239
```

```
## 6 2 -0.1587582
## 7 2 -0.1518339
```

BIC Model Determination

```
## -------WORKING... PLEASE WAIT...
##
## Five Smallest Values of bic
## p q bic
## 1 3 -0.003345037
## 5 1 0.005665782
## 5 2 0.017354819
## 6 2 0.058467360
## 5 3 0.077225616
```

ARIMA (5,1,3) Factor Table Check | Model Estimates

- Frequencies don't match exactly with the original model as the dominance has change
- We still see the 1-B in the Moving Average Model

```
##
##
## Coefficients of AR polynomial:
## 0.2202 -0.0766 0.0163 0.2829 -0.3569
##
                 AR Factor Table
## Factor
                 Roots
                                Abs Recip System Freq
## 1+0.2570B+0.7446B^2 -0.1726+-1.1459i
                                            0.8629
                                                      0.2738
                   -1.1858
                                             0.5000
## 1+0.8433B
                                   0.8433
## 1-1.3206B+0.5683B^2 1.1619+-0.6401i
                                           0.7539
                                                     0.0801
##
##
##
##
## Coefficients of MA polynomial:
## 0.8525 -0.0815 0.2290
##
##
                   MA FACTOR TABLE
## Factor
                 Roots
                                Abs Recip
                                           System Freq
## 1-1.0000B
                    1.0000
                                  1.0000
                                            0.0000
## 1+0.1475B+0.2290B^2 -0.3221+-2.0647i
                                            0.4786
                                                      0.2746
##
##
```

RESIDUAL CHECKS ARIMA (5,1,3)

ACF Residual Check

• Passed the ACF White Noise Residual Check

Series diff_est\$res

Ljung Residual Check

- Fail to reject the Null Hypothesis of White Noise as the p-value is greater then .05 for both tests
- This is another pass for this model

p-value 0.7744939

p-value 0.9933498

Forecast ARIMA (5,1,3) Model

Forecast ARIMA (5,1,3) Model

WMAE | Kaggle

[1] 0.8133012

Compare Multiple Spectral Densities

• This model appears to perform well with generating the spectral densities

ARIMA(5,1,3) Multiple Spectral Densities Comparis

Compare Multiple ACFs

Does fairly well modeling the ACFs

ARIMA(5,1,3) ACF Comparison

FINAL ARIMA (5,1,3) MODEL

 $(1 - 0.2202B + 0.0766B^2 - 0.0163B^3 - 0.2829B^4 + 0.3569B^5)(1 - B)(X_t - 0.006105923)$ = $(1 - 0.8525B + 0.0815B^2 - 0.2290B^3)a_t$, $\hat{\sigma}_a^2 = 0.7413429$

ARUMA(3,1,0) w/ s=52

Dickey-Fuller Test for Stationarity

• Reject the null hypothesis of Non-Stationarity

AIC Model Determineation

```
## -------WORKING... PLEASE WAIT...
##
## Five Smallest Values of aic
## p q aic
## 3 0 -1.984716
## 7 0 -1.972271
## 4 0 -1.963414
## 6 0 -1.943017
## 5 0 -1.941745
```

BIC Model Determineation

```
## -------WORKING... PLEASE WAIT...
##
## Five Smallest Values of bic
## p q bic
## 3 0 -1.846299
## 1 0 -1.831823
## 2 0 -1.819269
## 4 0 -1.790391
## 0 0 -1.737236
```

ARUMA(3,1,0) w/ s = 52 Factor Table Check | Model Estimates

```
##
## Coefficients of AR polynomial:
## -0.5804 -0.4008 -0.3096
##
##
                 AR Factor Table
## Factor
                 Roots
                                Abs Recip System Freq
## 1-0.0904B+0.4615B^2 0.0980+-1.4688i
                                           0.6793
                                                     0.2394
## 1+0.6708B
                   -1.4907
                                   0.6708
                                             0.5000
##
##
```

RESIDUAL CHECKS ARUMA(3,1,0) w/ s=52

ACF Residual Check

• Passed the ACF White Noise Residual Check

Series season_est\$res

Ljung Residual Check

- Fail to reject the Null Hypothesis of White Noise as the p-value is greater then .05 for both tests
- This is another pass for this model

p-value 0.9764235

p-value 0.7185762

Forecast ARUMA(3,1,0) w/ s=52 Model

Forecast ARUMA (3,1,0) Model

WMAE | Kaggle

[1] 0.8255756

Compare Multiple Spectral Densities

• This model does not appear to perform very well with generating the spectral

densities

Compare Multiple ACFs

• Doesn't do very well modeling the ACFs

FINAL ARUMA (3,1,0) MODEL with s=52

 $(1 + 0.5804B + 0.4008B^2 + 0.3096B^3)(1-B)(X_t - 0.1205291) = a_t, \, \hat{\sigma}_a^2 = 0.1205291$

Signal Plus Noise

Forecast Scaled Signal Plus Noise as Best Model

ASE

[1] 1.139449

WMAE | Kaggle

[1] 0.8257315

FINAL SIGNAL PLUS NOISE REGRESSION EQUATION

Sales tend to decrease overtime

sales = -0.1896494 + .003298251(time)

ARUMA MULTIVARIATE MODEL

Cross-Correlation Plots

- In this case we are looking for the longest lag to determine how to lag multivariate models
- Since we know Holiday is important and our lags are across the board, we decided to keep it simple and lag everything by 1

scaled\$weekly_sales & scaled\$CPI

scaled\$weekly_sales & scaled\$Date

scaled\$weekly_sales & scaled\$Temperature

scaled\$weekly_sales & scaled\$Temperature_L

scaled\$weekly_sales & scaled\$Fuel_Price

scaled\$weekly_sales & scaled\$Fuel_Price_L

scaled\$weekly_sales & scaled\$lsHoliday

scaled\$weekly_sales & scaled\$Unemployment

Lag Variables

Fit Regression Model

• will use this as the base line for the multivariate model

Check Regression Residual

Ensure the residuals have been whitened

Difference Regression Residuals

Model Regression Residual

AIC

BIC

Forecast ARUMA (1,0,0) w/ s=52

ACF Residual Check

• Passed the ACF White Noise Residual Check

Series fit_lag\$res

Ljung Residual Check

- Fail to reject the Null Hypothesis of White Noise as the p-value is greater then .05 for both tests
- This is another pass for this model

p-value 0.8664807

p-value 0.7185762

MULTIVARIATE ARUMA(1,0,0) w/ s=52 Predictions

ARUMA(1,0,0) s=52 Forecasts

ASE

[1] 0.2549112

WMAE | Kaggle

[1] 1.032607

Compare Multiple Spectral Densities

• This model does not appear to perform well with generating the spectral densities

Compare Multiple ACFs

• Does not do fairly well modeling the ACFs

FINAL ARUMA(1,0,0) w/ s=52 MODEL

sales

= (1-0.1780B)-0.0665(lag.fuel) + 0.2753(lag.cpi) + 0.0083(lag.temp) + 0.1352(lag.unemployment)

VAR Model

```
## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
##
     5
         5
              5
##
## $criteria
                        3
                                      5
## AIC(n) 0.01839696 0.03018348 0.04156068 0.04194668 -0.11716576 -0.103400516
## HQ(n) 0.07915561 0.10106857 0.12257221 0.13308466 -0.01590134 0.007990343
## SC(n) 0.16827521 0.20504144 0.24139835 0.26676406 0.13263133 0.171376280
## FPE(n) 1.01868719 1.03083651 1.04272788 1.04325444 0.88992446 0.902423317
## AIC(n) -0.08809677
## HQ(n) 0.03342053
## SC(n) 0.21165973
## FPE(n) 0.91654031
```

VAR Model Lag Predictions | Model Estimates

Forecast VAR(5)

```
## $sales
##
         fcst
                lower
                         upper
                                   CI
## [1,] -0.12380363 -0.6669861 0.41937884 0.5431825
## [2,] -0.01439203 -0.5728558 0.54407177 0.5584638
## [3,] -0.50304489 -1.0868796 0.08078984 0.5838347
## [4,] 0.59568648 -0.0220197 1.21339266 0.6177062
## [5,] -0.10644980 -0.7358594 0.52295979 0.6294096
## [6,] -0.22854624 -0.8617120 0.40461947 0.6331657
## [7,] 0.13757977 -0.5019809 0.77714042 0.6395606
## [8,] 0.86199150 0.2186140 1.50536898 0.6433775
##
## $fuel price
        fcst lower upper
                               CI
## [1,] 1.279460 0.9309083 1.628012 0.3485518
## [2,] 1.681930 1.2779630 2.085898 0.4039673
## [3,] 1.375231 0.9124183 1.838044 0.4628129
## [4,] 1.765363 1.2446244 2.286102 0.5207388
## [5,] 1.970237 1.4171891 2.523285 0.5530480
## [6,] 1.753844 1.1712203 2.336468 0.5826241
## [7,] 1.562466 0.9323247 2.192607 0.6301411
## [8,] 1.508749 0.8604623 2.157036 0.6482867
```

```
## $temperature
                                 CI
        fcst
                lower upper
## [1,] 0.36813877 0.105098082 0.6311795 0.2630407
## [2,] 0.29718752 -0.005453702 0.5998287 0.3026412
## [3,] 0.40027297 0.058712640 0.7418333 0.3415603
## [4,] 0.01047876 -0.336517815 0.3574753 0.3469966
## [5,] 0.75614722 0.380766084 1.1315283 0.3753811
## [6,] 0.63783620 0.236035469 1.0396369 0.4018007
## [7,] 1.04179366 0.625331224 1.4582561 0.4164624
## [8,] 1.21872416 0.791937895 1.6455104 0.4267863
##
## $week
##
        fcst
              lower upper
                               CI
## [1,] 106.149323 62.28988 150.00876 43.85944
## [2,] 31.038505 -17.80365 79.88065 48.84215
## [3,] 122.074539 69.04754 175.10154 53.02700
## [4,] -42.110152 -100.60384 16.38353 58.49368
## [6,] 79.944321 14.37431 145.51434 65.57002
## [7,] 118.466261 51.56387 185.36865 66.90239
## [8,] 8.495785 -59.65769 76.64926 68.15348
##
## $cpi
##
       fcst lower upper
                             CI
## [1,] 2.134539 1.955909 2.313170 0.1786308
## [2,] 2.143376 1.928143 2.358609 0.2152329
## [3,] 2.088582 1.839356 2.337807 0.2492256
## [4,] 2.377224 2.089825 2.664622 0.2873984
## [5,] 2.387693 2.056794 2.718592 0.3308989
## [6,] 2.403513 2.040551 2.766475 0.3629617
## [7,] 2.462531 2.080257 2.844805 0.3822738
## [8,] 2.537409 2.138100 2.936717 0.3993084
```

VAR Forecasts

Confidence Interval

Average Lower CI: -0.4550076

Average Upper CI: 0.8153881

ASE

[1] 0.1653816

WMAE | Kaggle

[1] 0.3707223

FINAL VAR Regression Model

Sales Equation:

 $$$ sales_t = -0.6228 + 0.1681 \cdot sales_{t-1} + 0.1818 \cdot fuel_price_{t-1} - 0.1168 \cdot temperature_{t-1} + 0.0020 \cdot temperature_{t-1} + 0.4253 \cdot temperature_{t-1} \cdot temperature_{t-1} \cdot temperature_{t-1} \cdot temperature_{t-2} - 0.1340 \cdot temperature_{t-2} - 0.1005 \cdot temperature_{t-2} + 0.0028 \cdot temperature_{t-2} - 0.7972 \cdot temperature_{t-2} + \cdot temperatu$

Fuel Price Equation:

 $\$ fuel_price_t = -0.9297 + 0.4673 \cdot fuel_price_{t-1} - 0.0971 \cdot sales_{t-1} - 0.4713 \cdot cpi_{t-1} - 0.5961 \cdot temperature_{t-2} \\ \quad + 0.2138 \cdot fuel_price_{t-2} + \ldots + \epsilon_t \$\$

Temperature Equation:

 $temperature_t$

= -0.3104 + 0.3282 · temperatur
$$e_{t-1}$$
 + 0.6624 · cp i_{t-1} -0.5386 · fuel_pric e_{t-2} -0.7805 · cp i_{t-2} + ... + ϵ_t

Week Equation:

$$\mathsf{wee}k_t = 153.9 - 0.236 \cdot \mathsf{wee}k_{t-1} - 0.3757 \cdot \mathsf{wee}k_{t-2} - 43.67 \cdot \mathsf{sale}_{S_{t-4}} - 0.6056 \cdot \mathsf{wee}k_{t-3} + \ldots + \epsilon_t$$

CPI Equation:

 cpi_t

=
$$-0.2888 + 0.6613 \cdot \text{cp}i_{t-1} + 0.0073 \cdot \text{trend} - 0.0313 \cdot \text{fuel_pric}e_{t-4} - 0.1419 \cdot \text{temp}$$
 eratur $e_{t-4} + \ldots + \epsilon_t$

Covariance Matrix of Residuals:

$$\begin{bmatrix} 0.0768 & -0.0054 & -0.0035 & -2.3978 & -0.0004 \\ -0.0054 & 0.0316 & 0.0029 & -0.6382 & -0.0010 \\ -0.0035 & 0.0029 & 0.0180 & 0.6042 & -0.0010 \\ -2.3978 & -0.6382 & 0.6042 & 500.7604 & 0.1007 \\ -0.0004 & -0.0010 & -0.0010 & 0.1007 & 0.0083 \end{bmatrix}$$

Correlation Matrix of Residuals:

$$\begin{bmatrix} 1.0000 & -0.1097 & -0.0933 & -0.3866 & -0.0153 \\ -0.1097 & 1.0000 & 0.1207 & -0.1604 & -0.0600 \\ -0.0933 & 0.1207 & 1.0000 & 0.2012 & -0.0814 \\ -0.3866 & -0.1604 & 0.2012 & 1.0000 & 0.0494 \\ -0.0153 & -0.0600 & -0.0814 & 0.0494 & 1.0000 \end{bmatrix}$$

MLP Model

- ## MLP fit with 2 hidden nodes and 10 repetitions.
- ## Series modelled in differences: D1D12.
- ## Univariate lags: (11,15,40,47,48,51,52)
- ## Deterministic seasonal dummies included.
- ## Forecast combined using the median operator.
- ## MSE: 0.1938.

PLOT MLP Model

Inputs Hidden (9) (2) Output

MLP Forecast

Forecasts from MLP

[1] 0.1026821

WMAE | Kaggle

[1] 0.2916268

Ensemble - MLP and VAR

Ensemble Forecasts

ASE Ensemble

[1] 0.2080437

Model Decision - ASE

Model Decision - WMAE

Model Comparison Barchart

