Symmetric Key Algorithms.

- ➤ Shift Cipher
- ➤ Substitution Cipher
- ➤ Affine Cipher
- ➤ Hill Cipher
- ➤ Vigenere Cipher
- >DES Data Encryption Standard
- ➤ AES Advanced Encryption Standard ...

Shift Cipher (Caesar Cipher)

- \triangleright Message x; cipher text y
- \triangleright Key k, where 0<=k<=25
- **Encryption**: $y = E_k(x) = (x+k)\%26$
- \triangleright **Decryption:** $x=D_k(y)=(y-k)\%26$
- **Example.** Encrypt: wewillmeetatmidnight using shift cipher with key 11.
 - ➤ Ans: HPHTWWXPPELEXTOYTRSE
- ➤ **Note1.** Julius Caesar used k=3, so it is also called Caser cipher.
- Note2. (-r)% m= m-r when r<=m. (If s=-r, then (s+r)% m=0, so s+r=m, since m% m=0. i.e., s=m-r.
- \rightarrow In general, a%n=a-(floor(a/n)*n). Eg. -11%7=3, -7%9=2

Cryptanalysis of Caesar Cipher

- ➤ Brute force attack on key (i.e, exhaustive key search). Try for k=1, k=2, ... k=25. Find the value of k for which you get meaningful form.
- ➤ Example. Perform cryptanalysis on the following cipher text: JBCRCLQRWCRVNBJENBWRWN
- ➤ Ans: Try for $k=1 \rightarrow$ iabqbkp... for $k=2 \rightarrow$ hzapaj... for k=3...for $k=9 \rightarrow$ astitchintimesavesnine

Substitution Cipher

- \triangleright Plain text x, Cipher text y.
- \triangleright Key k = permutation of 0,1,2,...25.
- > Encryption.
- > Decryption.
- ➤ Example. Let key k=(3,10,21,...,25,13) abcdefghijklmnopqrstuvwxyz DKVQFIBJWPESCXHTMYAUOLRGZN (Key) Plaintext: ifwewishtoreplaceletters Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA
- ➤ Cryptanalysis. Brute force attack- no of possible keys = 26! takes time. Use frequency analysis

Affine Cipher

- \triangleright Key k=(a,b), where a,b are integers %26 and gcd(a,26)=1
- \triangleright Encryption: $y = E_k(x) = (ax+b)\%26$
- \triangleright Decryption: $x=D_k(y)=a^{-1}(y-b)\%26$
- \triangleright Example. Let k=(7,3). Then

$$y = E_k(x) = (7x+3)\% 26$$
 and

$$x=D_k(y)=7^{-1}(y-3)\%26$$
, where $7^{-1}=15$.

Eg., hot→AXG

Cryptanalysis of mono-alphabetic substitution algorithms

- ➤ Generate tables of single, double & triple letter frequencies for various languages
- Eg. Single letter frequency for English is:
- > Frequently used letters are: E,T,R,N,I,O,A,S
- Rarely used letters are: Z,J,K,Q,X.

Frequency cryptanalysis. Example.

> given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMO

- ➤ count relative letter frequencies P has the highest frequency and then Z has next higher frequency...
- > guess P & Z are e and t
- > guess ZW is 'th' and hence ZWP is 'the'
- > proceeding with trial and error finally get:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Poly-alphabetic Substitution algorithms- Playfair cipher

- ➤ Instead of encrypting character by character, playfair encrypts pair by pair.
- > Algorithm:
- ➤ Generate a 5X5 matrix of letters based on a keyword

fill in letters of keyword (remove duplicates)

fill rest of matrix with other letters

eg. using the keyword MONARCHY

Playfair...

M	О	N	A	R
С	Н	Y	В	D
Е	F	G	I/J	K
L	P	Q	S	Т
U	V	W	X	Z

Playfair...

- > plaintext is encrypted two letters at a time
 - 1. if a pair is a repeated letter, insert filler like 'X'
 - 2. if both letters fall in the same row, replace each with letter to right (i.e., row successor) (wrapping back to start from end)
 - 3. if both letters fall in the same column, replace each with the letter below it (i.e., column successor) (again wrapping to top from bottom)
 - 4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

Playfair...

- > Decrypting works exactly in reverse
- Example. Encrypt balloon and verify the process by decrypting it.

Hill Cipher

- ➤ Key K= m x m matrix invertible over integer mod 26
- Encrypts m letters at a time.
- Encryption. $y = E_k(x) = xK$ (here x is of length m)
- \triangleright Decryption. $x = D_k(y) = yK^{-1}$

Example.

> Key K= 11 8 So K⁻¹ = 7 18
$$3 7$$
 23 11

- ➤ Plain text: july
- \rightarrow ju \rightarrow (9 20) \rightarrow (9 20) K = (3 4) \rightarrow DE
- ➤ Cipher text: DELW
- \triangleright Example 2. Let k=10512

Vigenere Cipher

- > key is multiple letters long
- > use each alphabet in turn
- repeat from start after d letters in message
- > decryption works in reverse

Example of Vigenère Cipher

- > write the plaintext
- > write the keyword repeated above it
- > use each key letter as a caesar cipher key (Refer Vigenere table)
- > encrypt the corresponding plaintext letter
- eg using keyword deceptive
 - key: deceptivedeceptive
 - plaintext: wearediscoveredsaveyourself
 - ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Autokey Cipher

- ideally want a key as long as the message
- > keyword is prefixed to message as key
- > knowing keyword can recover the first few letters
- > use these in turn on the rest of the message
- > but still have frequency characteristics to attack
- eg. given key deceptive
 key: deceptivewearediscoveredsav
 plaintext: wearediscoveredsaveyourself
 ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA

One-Time Pad

- if a truly random key as long as the message is used, the cipher will be secure
- > called a One-Time pad
- is unbreakable since ciphertext bears no statistical relationship to the plaintext
- >can only use the key once though
- problems in generation & safe distribution of key

Permutation Cipher Algorithms Rail Fence cipher

- > write message letters out diagonally over a number of rows
- > then read off cipher row by row
- > eg. write message out as:

```
mematrhtgpry
etefeteoaat
```

> giving ciphertext

MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

- > write letters of message in rows over a specified number of columns
- then reorder the columns according to some key before reading off the rows

```
Key: 3421567
Plaintext: attackp
ostpone
duntilt
woamxyz
```

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Feistel Cipher Structure

Feistel Cipher Design Elements

- > block size
- >key size
- > number of rounds
- > subkey generation algorithm
- > round function
- ➤ fast software en/decryption
- > ease of analysis

DES Encryption Overview

Drawback of Secret Key Crypt

- ➤ **Key Distribution** Safe and authenticated distribution of keys very difficult condition worsens when keys are changed frequently
- ➤ **Key Management**: N nodes in a n/w => N-1 keys with each node.
- ➤ **Difficult** to provide Digital Signature schemes that provide **non-repudiation** services.
- ➤ **Solution:** Public Key Cryptography (PKC)