

Both proportional to $\frac{1}{2}$ Both have a constant factor: G / C Both involve 2 objects.

Differences

Constants are different: $G = 6.67 * 10^{-11} N m^2 kg^{-2}$ $= 9.00 * 10^9 N m^2 C^{-2}$ $4\pi\epsilon_0$ Objects are different:

masses (m_1m_2) / charges (q_1q_2)

Gravitation

$$\vec{F} = G \frac{m_1 m_2}{r^2}$$

force on each other, dependent on the distance apart.

Principle of Superposition

The force on a charge is the sum of the forces due to all other point charges present.

Electric Field Lines

Leave the source perpendicular

to the surface in the direction of

force a positive charge would

experience. The field is stronger

the closer the lines are together.

$$=G\frac{m_1m_2}{r^2}$$

Compare

Two masses exert a

Electric Fields

Coulomb's Law

Two point charges exert a

force on each other,

dependent on the distance

apart.

$$\vec{E} = \frac{\vec{F}}{q} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

Charges produce electric fields. Charges in an electric field experience a force.

Proportionality

$$\vec{F} \propto \frac{1}{r^2}$$

 $\vec{F} \propto q_1$

Larger chargers lead to a larger force A larger radius leads to a smaller force.

2 x Radius 1/2 x Radius

Change Radius

1/2 x Charge 1/2 x Force

Change Charge

2 x Charge 2 x Force

Newton's 3rd Law

1/4 x Force

Opposite charges attract. Like charges repel.

Charges are closer together near a sharper point in a conductor, resulting in a stronger electric field.

Conductors

Static charges in the conductor move so the net force on all charges is zero.

Hollow conductors have no electric field inside (if there is no charge in side).

Corona Effect

Large electric field near sharp points can ionize polar and nonpolar molecules in the air, allowing charge to leave the conductor.

Finite Charged Plates