

# VISUALIZATION

Amir Vaxman

Department of Information and Computing Sciences
Utrecht University

# **CHALLENGES**

- Visualize directional fields in the most effective way.
- Important visual features:
  - Flow lines
  - Singularities
  - Avoid clutter/noise
  - Optional: distinguish magnitude









### **GLYPH RENDERING**

- "Arrows on tangent spaces"
  - Possibly: subset with importance sampling.
- Cluttered and unrevealing.
- Straightforward for non-symmetric configurations.





## LINE-INTEGRAL CONVOLUTION - VECTOR FIELDS

- "Throwing paint in the river".
- Generate random image.
  - Typically white noise.
- Advect image with vector field.
  - Integrating value along the flow.
- Optional: map magnitude into color-coding.







## LIC - TENSOR & N-ROSY FIELDS

- Blending several single-vector LIC images.
- Optimizing for local contrast to avoid blur.



[Palacios and Zhang 2011]

## STREAMLINE TRACING

- Tracing and integrating flow lines.
- Criteria:
  - Uniform
  - Not too dense/sparse
- Alternatives
  - Replace streamline by meshed brush strokes.



2D [Crane et al. 2010]



3D [Solomon et al. 2017]

### TEXTURE-BASED RENDERING

• Specific for  $2^2$  -vector fields ("frame fields").

• Can visualize anisotropy and scale.

• Two stochastic textures, UV-mapped to the surface.

Thick black & fine blue.

• Grad(UV)  $\sim$  = frame field.

 Seams are hidden by randomness and pattern combination.



[Panozzo et al. 2014]

### SINGULARITY GRAPHS

- The topological skeleton of the field.
- Good for very smooth fields.
  - Or mesh layouts.
- Readily extends to 3D.



2D [Campen et al. 2014]



3D [Huang et al. 2011]