Mid-term exam, Machine Learning (MDS), April 20th, 2023

Your Name:

Instructions:

- You have **1h** to solve the exam
- Please return this paper with your answers, make sure to write your name clearly
- Mark whether the following statements are **true** or **false**, or leave blank
- Correct answers count +1 point, incorrect answers count -1, non-answered answers count 0
- At least half of the questions must be answered
- The mid-term grade is given by the formula $10 \exp\left(\frac{\text{nr. of correct-nr. of incorrect questions}}{35} 1\right)$

General

	Regression and clustering are types of supervised learning	
	Clustering and dimensionality reduction are types of unsupervised learning	
	Machine learning is particularly useful when we try to solve a problem that is easy to program however data is scarce	
	Preprocessing is a task that can often be automated	
	In supervised learning, we attempt to predict a target value from feature values describing an object	
	In supervised learning, we always generate models with minimum training error	
	Empirical risk, the opposite of training error, serves as an approximation to the true risk	
Bayes and probabilities		
	Bayes theorem can be derived from the product rule of probability theory	
	Bayes theorem transforms prior distributions into posterior distributions	
	$P(Y) = \sum_{x} P(Y X=x)P(X=x)$ for X, Y discrete random variables	
	$P(Y) = \sum_{x} P(X = x Y) P(X = x)$ for X, Y discrete random variables	
	Expert information on the domain is encoded into the model through the posterior distribution	
	The posterior distribution contains both expert information on the domain and information gathered through observation (data)	
	The likelihood function is a probability distribution over the possible values of the parameters for a model	

Regr	ression
	Least squares linear regression is obtained by assuming Gaussianity on the input variables
	Linear regression can produce non-linear predictions if we apply linear transformations on the input variables
	The best choice in linear regression is to minimize square error
	High bias models will tend to underfit
	Low variance models will tend to overfit
	Lasso regression uses a form of regularization that is useful in the presence of outliers
	The GCV for ridge regression computes the LOOCV error exactly
Mod	el selection, resampling and errors
	Resampling methods are useful to learn a model's parameters
	Resampling methods are useful to learn a model's hyper-parameters
	Cross-validation is used to estimate generalization error
	Cross-validation is used for model selection
	LOOCV is a type of resampling method that can be used as an alternative to cross-validation
	In the presence of scarce data, k -fold cross-validation with high values of k is preferable to low values of k for estimating generalization if possible
	Minimizing validation error is a good methodology to ensure good generalization
	Minimizing training error is a good methodology to ensure good generalization
Clus	tering
	K-means and EM are both methods for learning Mixture of Gaussian models
	The EM algorithm refines a suboptimal solution obtained by k-means until a global optimum is found
	K-means is a particular case of EM for Gaussian Mixtures when covariance matrices are assumed diagonal
	Mixing coefficients for the Gaussian mixture are estimated in EM directly from the best soft assignments obtained so far
	In EM, the log-likelihood cannot decrease after each iteration
	In k-means it is possible to get stuck on a local optimum however EM solves this problem