

Contents

- O. Global fibre optic network
- 1. Structure of an optical fibre
- 2. Principle of working
- 3. Numerical aperture
- 4. Types of fibres
- 5. Modes of propagation
- 6. Attenuation and Dispersion
- 7. Fibre parameters

Global Fibre Optic Network

A Historic Note

- Alexander Graham Bell's "Photo phone" in 1880
- Voice is fed over a beam of light using light as a "carrier wave"

Structure of an Optical Fibre

- Main two parts: core and cladding
- Core has slightly higher refractive index
- Light is fed into the core region

Principle of Working – Total Internal Reflection

Total Internal Reflection and Acceptance Angle

Optical Fibre – Cross Sections and Acceptance

Numerical Aperture of an Optical Fibre

Types of Fibres

Refractive Index Profile

Ray Propagation in Different Types of Fibres

Cladding $RI = n_2$

Core $RI = n_1$

Multi mode (Step index)

Single mode (only Step index)

Core $RI = n_1(r)$

Multi mode (Graded index)

Mode of Propagation - Concept

- Defined as "allowed" directions for light entering optical fibre
- Fibre does not guide all light even though it is launched within acceptance cone
- Due to restricted space, light undergoes diffraction
- Light waves are in phase only along certain paths
- These paths are the "allowed" directions and called "modes of propagation"

V-number and Number of Modes

 An optical fibre is characterized by another important parameter called as the V-number or normalized frequency. It is given by,

$$V = \frac{2\pi a}{\lambda} \times NA$$

a: radius of core, λ : wavelength of light, NA: numerical aperture

The maximum number of modes supported by the fibre is given by,

$$N_{\rm m} = \frac{V^2}{2}; \qquad SI$$

$$= \frac{V^2}{4}; \qquad GI$$

From electromagnetic theory, it is deduced that

Various Modes of Propagation Non-axial/Chord

Figure of Merits for an Optical Fibres

Fibre Losses

Attenuation

Dis

- Loss of amplitude
- Signal becomes weaker
- Measured in dB/km
- Typical: 0.2-0.3 dB/km

Dispersion

- Loss of synchronization
- Signal is distorted
- Measured in ps/km
- Typical: 100 ps/km

Causes of Attenuation in Fibres

Absorption

- By fibre itself (intrinsic absorption)
- By impurities in fibre (Na, Fe, OH-, Cr)

Scattering

Due to non-uniform density of glass (Rayleigh scattering)

Geometric

- Bending of fibre into tighter loops
- Micro-kinks inside fibre

Attenuation coefficient:
$$\alpha = \frac{1}{L} 10 \log \left(\frac{P_{in}}{P_{out}} \right) m^{-1}$$

"Communication" Wavelengths of the Internet

Causes of Dispersion in Fibres

Chromatic Dispersion

- When light has broad spectrum
- Can be eliminated using laser source

Intermodal Dispersion

- When time-synchronization between light waves is lost
- Can be eliminated using graded index fibre

Waveguide Dispersion

When fibre diameter is extremely small (SM fibre)

Pulse Dispersion and Bit Rate

Intermodal dispersion for SI:
$$\tau_i = \frac{n_1 L}{c} \Delta$$

Intermodal dispersion for GI:
$$= \frac{n_2 L}{2c} \Delta^2$$

Total dispersion (intermodal + material):
$$\tau = \sqrt{\tau_i^2 + \tau_m^2}$$

Bit Rate:
$$B \approx \frac{0.7}{\tau}$$
 usually

usually expressed in "MBPS"

Fibre Optic Communication System

