Øving 2

Oppgave 1

En stuper hopper fra en klippe som har et horisontalt utspring som vist i figuren ovenfor. Utspringet har bredde $d=1,75~\mathrm{m}$ og befinner seg en høyde $h=9,00~\mathrm{m}$ nedenfor toppen av klippen.

Hvor høy horisontal hastighet v_0 må stuperen minst ha på toppen av klippen for å akkurat unngå utspringet?

Oppgave 2

To kanoner med munninger i samme punkt avfyres samtidig. De skyter kuler med samme startfart, men i hver sin vinkel, som illustrert i figuren under. Begge kanoner har munning på bakkenivå, samme som blinkene A og B. Den grønne kanonen skyter mer vertikalt mot blink A, mens den blå skyter mer horisontalt mot blink B. Vi ser bort i fra luftmotstand.

Hvilke av følgende påstander er riktige?

- A. Den grønne kanonen treffer blink A først.
- B. Den blå kanonen treffer blink B først.
- C. Blinkene treffes samtidig.
- D. Den blå kula treffer blink med større fart enn den grønne.
- E. Kulene treffer blinkene med samme fart.

Oppgave 3

En fjærkanon skyter en kule med startfart v_0 mot en blink som ligger i en horisontal avstand x og vertikal avstand y fra munningen, som illustrert i figuren under.

a) Utskytingsvinkelen α skal bestemmes slik at kula treffer midt i blinken. Dette kan vi gjøre ved å sette opp en trigonometrisk likning for α , uttrykt ved v_0 , x og y.

Vi skal løse likninga for α numerisk i Python med funksjonen fsolve fra pakken scipy.optimize. Denne forutsetter at likninga som skal løses, skrives på formen $f(\alpha)=0$, dvs. $f(\alpha)$ er venstresiden i likninga når alle ledd er flyttet over slik at høyresiden er null.

Dersom vi velger positiv y-retning **oppover** (slik at y < 0 på bakkenivå), bestem funksjonen $f(\alpha)$ for å kunne løse likninga ved hjelp av fsolve.

A.
$$f(lpha)=y+rac{1}{2}rac{gx^2}{v_0^2\cos^2lpha}$$

B.
$$f(lpha)=y+rac{1}{2}rac{gx^2}{v_0^2\cos^2lpha}-x anlpha$$

C.
$$f(lpha) = y - rac{1}{2} rac{gx^2}{v_0^2\cos^2lpha} + x anlpha$$

D.
$$f(lpha) = -y + rac{1}{2} rac{gx^2}{v_0^2\cos^2lpha} - x anlpha$$

E.
$$f(lpha) = -y + rac{1}{2} rac{gx^2}{v_0^2\cos^2lpha}$$

b) Hva må utskytingsvinkelen lpha være for at kula skal treffe midt i blinken dersom startfarten $v_0=4,0~\mathrm{m/s}$, $x=1,5~\mathrm{m}$ og blinken ligger en vertikal avstand $0,40~\mathrm{m}$ under utskytingspunktet? NB! Pass på valget av positiv vertikalretning! Det kan finnes flere gyldige vinkler. Bakest i øvinga finnes eksempelkode som viser et eksempel på bruken av fsolve.

Oppgave 4

a) En bil starter med null startfart og kjører med jevnt økende banefart i en sirkelformet rundkjøring. En passasjer i bilen bruker akselerometrene i mobiltelefonen til å måle baneakselerasjonen a_{\parallel} og sentripetalakselerasjonen a_{\perp} til bilen som funksjon av tiden.

b) Hvor stor er baneakselerasjonen a_\parallel , sentripetalakselerasjonen a_\perp og den totale akselerasjonen $a=|\vec{a}|=|\vec{a}_\parallel+\vec{a}_\perp|$ idet banefarten er $60~\mathrm{km/h}$ dersom sirkelradien er $60~\mathrm{m}$ og bilens banefart øker jevnt fra null til $60~\mathrm{km/h}$ i løpet av $6,0~\mathrm{s}$?

Oppgave 5

En kasse med masse m henger i to identiske tau som danner en vinkel θ med horisontalplanet, som vist på figuren under.

- a) Vinkelen θ kan justeres ved å gjøre tauene kortere/lengre, dvs. strammere/slakkere. Finn snordraget som funksjon av vinkelen θ .
- b) Hva skjer med snordraget når heta o 0?
- c) Bestem draget i hvert tau dersom $m=50~{
 m kg}$ og $\theta=30^{\circ}$.

Eksempelkode: Løse likninger i Python (Demo)

Funksjonen fsolve fra Python-pakken scipy.optimize løser likninger ved å finne nullpunkter til en funksjon. Likninga må skrives som f(x)=0, der venstresiden i likninga utgjør f(x). Ettersom fsolve bruker Newtons metode, må vi oppgi et startpunkt som 'gjetning' på hvor nullpunktet er. Dersom funksjonen har flere nullpunkter, må vi angi forskjellige startpunkter i nærheten av de ulike nullpunktene for å beregne disse.

```
In [ ]:
        #Importerer nødvendige pakker
        from scipy.optimize import fsolve
        import numpy as np
        import matplotlib.pyplot as plt
        #Definerer funksjonen som angir venstresiden i likninga f(x)=0
        #som skal løses; her 5\cos(x)+x=0
        def f(x):
            return 5*np.cos(x) + x
        #Tegner funksjonen for å få et bilde av løsningene:
        t=np.linspace(-5,5)
        plt.axis([-5,5,-10,10])
        plt.grid()
        plt.axhline(color='black', lw=0.5)
        plt.plot(t,f(t))
        plt.show()
```



```
In [ ]: #Ser løsninger i nærheten av x=-1; x=2
start = -1
sol = fsolve(f, start)
print("Løsning i nærheten av x=-1: ",sol[0])

start = 2
sol = fsolve(f, start)
print("Løsning i nærheten av x=2: ",sol[0])
```

Løsning i nærheten av x=-1: -1.306440008369511 Løsning i nærheten av x=2: 1.977383029328841

Oppgave 6 Refleksjonsoppgave

- a) Hvilke oppgaver opplevde du som vanskelig?
- b) Hva bør faglærer ta opp i neste time?