Intégration et

probabilités Convergence en loi et

théorème central limite

Question 1/19

Caractérisation de la convergence en loi par la fonction de répartition

Réponse 1/19

Si $(X_n)_{n\in\mathbb{N}}$ et X sont des variables aléatoires réelles, alors $X_n \xrightarrow[n \to +\infty]{\text{loi}} X$ si et seulement si pour tout x tel que F_X est continue en x, $F_{X_n}(x) \xrightarrow[n \to +\infty]{} F_X(x)$

Question 2/19

Conséquence du théorème de Helly pour la convergence en probabilités

Réponse 2/19

Si (X_n) est une suite de variables aléatoires à valeurs dans \mathbb{R} (ou \mathbb{R}^d), si $\sup(\mathbb{P}(|X_n| > K)) \xrightarrow[K \to +\infty]{} 0$ alors il existe $(X_{n\iota})$ qui converge en loi vers X

Question 3/19

$$AX$$
 pour $\mathcal{M}_{k,d}(\mathbb{R})$ et $X \sim \mathcal{N}(m, \Sigma)$

Réponse 3/19

$$AX \sim \mathcal{N}(Am, A\Sigma A^{\top})$$

En particulier, si $A \in O_d(\mathbb{R})$ et $X \sim \mathcal{N}(0, I_d)$
alors X et AX ont la même loi

Question 4/19

Convergence étroite

Réponse 4/19

 $(\mu_n)_{n\in[1,+\infty]}$ une suite de mesures de probabilités sur un espace métrique (E,d)converge étroitement vers μ_{∞} si pour toute fcontinue et bornée alors $\int_{E} f(x) \, \mu_{n}(\mathrm{d}x) \xrightarrow[n \to +\infty]{} \int_{E} f(x) \, \mu_{\infty}(\mathrm{d}x)$

Question 5/19

Théorème de sélection de Helly

Réponse 5/19

Si (F_n) est une suite de fonctions de répartition alors il existe (F_{n_k}) qui converge simplement vers F croissante, continue à droite et à valeurs dans [0,1] tel que pour tout x tel que F_X est continue en x, $F_{X_n}(x) \xrightarrow[n \to +\infty]{} F_X(x)$

Question 6/19

Théorème de convergence de Lévy Version forte

Réponse 6/19

Si (X_n) est une suite de variables aléatoires à valeurs dans \mathbb{R}^d telle que $\varphi_{X_n}(\xi) \xrightarrow[n \to +\infty]{} \psi(x)$ continue en 0 alors il existe une variable

aléatoire X telle que $\psi = \varphi_X$ et $X_n \xrightarrow{\text{loi}} X$

Réciproquement, si $X_n \xrightarrow[n \to +\infty]{\text{loi}} X$ alors $\varphi_{X_n}(\xi) \xrightarrow[n \to +\infty]{} \varphi(\xi)$ pour tout $\xi \in \mathbb{R}^d$

Question 7/19

Lemme de Scheffé

Réponse 7/19

Si les $(f_n)_{n \in [1,+\infty]}$ sont des densités de mesures de probabilités et si pour λ presque tout $x \in \mathbb{R}^d$, $f_n(x) \xrightarrow[n \to +\infty]{} f_\infty(x)$ alors, pour (X_n) tel que $\mathbb{P}_{X_n}(\mathrm{d}x) = f_n(x)\mathrm{d}x$, alors

 $X_n \xrightarrow[n \to +\infty]{\text{loi}} X_\infty$

Question 8/19

Théorème de Portemanteau

Réponse 8/19

Si $(X_n)_{n\in\mathbb{N}}$ et X sont des variables à valeurs dans (E,d) métrique,

il y a équivalence entre

$$X_n \xrightarrow[n \to +\infty]{\text{loi}} X$$

$$\forall f: E \to \mathbb{R}, \text{ 1-lipschitzienne bornée, } \mathbb{E}(f(X_n)) \xrightarrow[n \to +\infty]{} \mathbb{E}(f(X))$$

$$\forall O \subset E \text{ ouvert}, \lim_{n \to +\infty} \inf(\mathbb{P}(X_n \in O)) \geqslant \mathbb{P}(X \in O)$$

$$\forall F \subset E \text{ ferm\'e}, \lim \sup(\mathbb{P}(X_n \in F)) \leqslant \mathbb{P}(X \in F)$$

$$\forall A \in \mathcal{B}(E), \ \mathbb{P}(X \in \partial A) = 0 \Rightarrow \lim_{n \to +\infty} (\mathbb{P}(X_n \in A)) = \mathbb{P}(X \in A)$$

$$\forall f: E \to \mathbb{R} \text{ born\'ee, continue } \mathbb{P}_X\text{-pp, } \mathbb{E}(f(X_n)) \xrightarrow[n \to +\infty]{} \mathbb{E}(f(X))$$

Question 9/19

Théorème central limite sur \mathbb{R}

Réponse 9/19

Soit (X_i) une suite de variables aléatoires iid dans L^2 telles que $\mathbb{V}(X_n) > 0$ alors

Soit
$$(X_i)$$
 une suite de variables aleatoires inc

$$\frac{\text{dans } L^2 \text{ telles que } \mathbb{V}(X_n) > 0 \text{ alors}}{X_1 + \dots + X_n - n\mathbb{E}(X_1)} \xrightarrow[n \to +\infty]{\text{loi}} N \text{ où}$$

$$\frac{N}{N} \sim \mathcal{N}(0, 1)$$

$$\frac{N}{N} \sim \mathcal{N}(0, 1)$$

$$\frac{\text{dans } L^2 \text{ telles que } \mathbb{V}(X_n) > 0 \text{ alors}}{X_1 + \dots + X_n - n\mathbb{E}(X_1)} \xrightarrow[n \to +\infty]{\text{loi}} N \text{ où}$$

$$\frac{N \sim \mathcal{N}(0, 1)}{N \sim \mathcal{N}(0, 1)} \xrightarrow[n \to +\infty]{\text{loi}} N \text{ où}$$

$$\frac{X_1 + \dots + X_n - n\mathbb{E}(X_1)}{\sqrt{n}} \xrightarrow[n \to +\infty]{\text{loi}} N \text{ où}$$

$$N \sim \mathcal{N}(0, \mathbb{V}(X_1))$$

Question 10/19

Condition d'indépendance de vecteurs gaussiens

Réponse 10/19

Si
$$Z = (X_1, \dots, X_d, Y_1, \dots, Y_k)$$
 est un vecteur gaussien tel que pour tout $i \in \llbracket 1, d \rrbracket$ et tout $j \in \llbracket 1, k \rrbracket$, $cov(X_i, Y_j) = 0$ alors $X = (X_1, \dots, X_d)$ et $Y = (Y_1, \dots, Y_d)$ sont indépendants

Question 11/19

Théorème de convergence de Lévy Version faible

Réponse 11/19

Si (X_n) est une suite de variables aléatoires à valeurs dans \mathbb{R}^d telle que $\varphi_{X_n}(\xi) \xrightarrow[n \to +\infty]{} \varphi_X(x)$

valeurs dans
$$\mathbb{R}^d$$
 telle que $\varphi_{X_n}(\xi) \xrightarrow[n \to +\infty]{} \varphi_X(x)$
alors $X_n \xrightarrow[n \to +\infty]{} X$

Réciproquement, si $X_n \xrightarrow[n]{\text{loi}} X$ alors $\varphi_{X_n}(\xi) \xrightarrow[n \to +\infty]{} \varphi(\xi)$ pour tout $\xi \in \mathbb{R}^d$

Question 12/19

Densité des lois gaussiennes

Réponse 12/19

Si
$$X \sim \mathcal{N}(m, \Sigma)$$
 et $\operatorname{rg}(\Sigma) = d$ alors X est à densité $g_{m,\Sigma} = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left(-\frac{\Sigma^{-1}(x-m)\cdot(x-m)}{2}\right)$ Si $\operatorname{rg}(\Sigma) < d$, X n'est pas à densité

Question 13/19

Lien entre convergence en probabilités et convergence en loi

Réponse 13/19

Si (X_n) converge en probabilités vers X sur (E,d) alors (X_n) converge en loi vers X Si (X_n) converge en loi vers une constante alors (X_n) converge en probabilités vers cette constante

Question 14/19

Restriction des fonctions test pour la convergence en probabilités sur \mathbb{R}^d

Réponse 14/19

Si H est un ensemble de fonctions mesurables $\mathbb{R}^d \to \mathbb{R}$ dont l'adhérence pour $\|\cdot\|_{\infty}$ contient $\mathcal{C}_c(\mathbb{R}^d,\mathbb{R})$ alors si $(X_n)_{n\in\mathbb{N}}$ et X sont des variables aléatoires dans \mathbb{R}^d , si $\mathbb{E}(f(X_n)) \xrightarrow[n \to +\infty]{} \mathbb{E}(f(X))$ pour tout $f \in H$

$$alors X_n \xrightarrow[n \to +\infty]{loi} X$$

Question 15/19

Convergence en loi

Réponse 15/19

 (X_n) une suite de variables aléatoires dans (E,d) converge en loi vers X si \mathbb{P}_{X_n} converge étroitement vers \mathbb{P}_X

De manière équivalente, si pour toute f continue et bornée, $\mathbb{E}(f(X_n)) \xrightarrow[n \to +\infty]{} \mathbb{E}(f(X))$

Question 16/19

Vecteur gaussien

Réponse 16/19

X est un vecteur gaussien si pour tout $\xi \in \mathbb{R}^d$, $\xi \cdot X$ est une variable gaussienne, ie $\xi \cdot X \sim \mathcal{N}(m_{\xi}, \sigma_{\xi}^2)$ $\mathcal{N}(m, 0) = \delta_m$

Question 17/19

Stabilité de la convergence en loi

Réponse 17/19

Si $X_n \xrightarrow[n \to +\infty]{\text{loi}} X_\infty$ et $f \in \mathcal{C}_b(E, F)$ avec F un espace métrique alors $f(X_n) \xrightarrow[n \to +\infty]{\text{loi}} f(X_\infty)$

Question 18/19

Convergence étroite pour des variables aléatoires à valeurs dans \mathbb{N}

Réponse 18/19

Si $(X_n)_{n \in [1, +\infty]}$ sont des variables aléatoires à valeurs dans \mathbb{N} alors $X_n \xrightarrow[n \to +\infty]{\text{loi}} X_\infty$ si et seulement si, pour tout $x \in \mathbb{N}$, $\mathbb{P}(X_n = k) \xrightarrow[n \to +\infty]{} \mathbb{P}(X_\infty = k)$

Question 19/19

Théorème central limite sur \mathbb{R}^d

Réponse 19/19

Soit (X_i) une suite de vecteurs aléatoires iid dans \mathbb{R}^d à coordonnées dans L^2 alors $\underbrace{X_1 + \cdots + X_n - n\mathbb{E}(X_1)}_{N \to +\infty} \xrightarrow[n \to +\infty]{\text{loi}} N \text{ où}$ $N \sim \mathcal{N}(0, \Sigma_X) \text{ où } \Sigma_X = \mathbb{V}(X)$