

NULL SPACES OF LINEAR TRANSFORMATIONS

Why

When is a linear transformation between V and W one-to-one? In other words, when does

$$Tx = Ty \Rightarrow x = y$$

Well, if Tx = Ty, then Tx - Ty = 0 and so by additivity

$$Tx = Ty \longleftrightarrow T(x - y) = 0$$

Likewise, $x = y \longleftrightarrow x - y = 0$. So we can ask, when does

$$T(x-y) = 0 \Rightarrow x - y = 0$$

Clearly we are interested in vectors z for which Tz = 0.

Definition

Suppose $T \in \mathcal{L}(V, W)$. The *null space* (or *kernel*) of T is the set of vectors in V which are mapped to 0 under T. In symbols, the null space of T is the set

$$\{v \in V \mid Tv = 0\}$$

The word "null" means zero in German, and so is meant to remind of the connection to zero.

Notation

We denote the nullspace of T by T.

Terminology of space

Why do we use the term space? Well, observe that T is a subspace of V.

Proposition 1. Suppose $T \in \mathcal{L}(V, W)$. Then (T) is a subspace of V.

Proof. We verify that (T) contains 0 and is closed under vector addition and scalar multiplication. First, $0 \in T$ since T0 = 0 by homogeneity.

Second, by additivity, if $x, y \in T$, then

$$T(x+y) = Tx + Ty = 0 + 0 = 0$$

Third, if $u \in T$ and $\alpha \in \mathbf{F}$, then

$$T(\lambda u) = \lambda(Tu) = \lambda 0 = 0$$

Examples

Zero map. Suppose T is the zero map from V to W. In other words,

$$Tv = 0$$
 for all $v \in V$

Then T = V. I.e., the null space is the whole space.

Simple function on \mathbb{C}^3 . Define $\phi \in \mathcal{L}(\mathbb{C}^3, \mathbb{C})$ by

$$\phi(z_1, z_2, z_3) = z_1 + 2z_2 + 3z_3$$

Then ϕ is

$$\{(z_1, z_2, z_3) \in \mathbf{C}^3 \mid z_1 + 2z_2 + 3z_3 = 0\}$$

This is the solution set of a linear equation.

Polynomial differentiation. Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbf{R}), \mathcal{P}(\mathbf{R}))$ is the linear map defined by

$$Dp = p'$$
 for all $p \in \mathcal{P}(\mathbf{R})$

In other words, Dp is the derivative of the polynomial p. Then (D) is the set of constant functions.

Multiplication by x^2 . Define $T \in \mathcal{L}(\mathcal{P}(\mathbf{R}), \mathcal{P}(\mathbf{R}))$ by

$$(Tp)(x) = x^2 p(x)$$
 for all $x \in \mathbf{R}$ and $p \in \mathcal{P}(\mathbf{R})$

Then $(T) = \{0\}$, since no other polynomial satisfies $x^2 p(x) = 0$ for all $x \in \mathbf{R}$.

Backward shift. Define $T \in \mathcal{L}(\mathbf{F^N}, \mathbf{F^N})$ by

$$T(x_1, x_2, x_3, \dots,) = (x_2, x_3, \dots,)$$

so that T is the backward shift Then $T(x_1, x_2, x_3, ...) = 0$ if and only $x_2 = x_3 = \cdots = 0$. So

$$T = \{(\alpha, 0, 0, \dots,) \mid \alpha \in \mathbf{F}\}\$$

