TABLE 2-156 Heat Capacity at Constant Pressure of Inorganic and Organic Compounds in the Ideal Gas State Fit to Hyperbolic Functions C_p [J/(kmol·K)]

											P		
Cmpd. no.	Name	Formula	CAS no.	Mol. wt.	C1 ×1E-05	C2 × 1E-05	C3 ×1E-03	C4 × 1E-05	C5	T_{\min} , K	C_p at T_{\min} × 1E-05	$T_{ m max}$, K	C_p at T_{max} × 1E-05
-													
1	Acetaldehyde	C_2H_4O	75-07-0	44.053	0.4451	1.0687	1.6141	0.6135	737.8	200	0.4660	1500	1.2994
2	Acetamide	C_2H_5NO	60-35-5	59.067	0.342	1.294	1.075	0.64	502	100	0.3448	1500	1.4997
3	Acetic acid	$C_2H_4O_2$	64-19-7	60.052	0.402	1.3675	1.262	0.7003	569.7	50	0.4020	1500	1.5756
4	Acetic anhydride	$C_4H_6O_3$	108-24-7	102.089	0.713	2.222	1.6203	1.676	746.5	200	0.7665	1500	2.5675
5	Acetone	C ₃ H ₆ O	67-64-1	58.079	0.5704	1.632	1.607	0.968	731.5	200	0.6049	1500	1.8820
6	Acetonitrile	C_2H_3N	75-05-8	41.052	0.41914	0.8876	1.5818	0.5032	699.8	100	0.4192	1500	1.1285
7	Acetylene	C ₂ H ₂	74-86-2	26.037	0.3199	0.5424	1.594	0.4325	607.1	200	0.3566	1500	0.7575
8	Acrolein	C ₃ H ₄ O	107-02-8	56.063	0.48449	1.2546	1.3979	0.87243	633.26	200	0.5467	1500	1.5620
9	Aerylie aeid	C ₃ H ₄ O ₂	79-10-7	72.063	0.6059	1.3703	1.6475	1.0446	751.49	250	0.6984	1500	1.7424
10	Acrylonitrile	C ₃ H ₄ O ₂ C ₃ H ₃ N	107-13-1	53.063	0.4678	1.0366	1.3998	0.6536	629.35	200	0.5156	1500	1.3464
11	Air	Mixture	132259-10-0	28.960	0.28958	0.0939	3.012	0.0758	1484	50	0.2896	1500	0.3496
12	Ammonia	H ₃ N	7664-41-7	17.031	0.33427	0.4898	2.036	0.2256	882	100	0.3343	1500	0.6647
13	Anisole	C_7H_8O	100-66-3	108.138	0.7637	2.9377	1.6051	2.17	751.2	300	1.1302	1200	3.0226
15	Benzamide	C ₇ H ₈ O C ₇ H ₇ NO	55-21-0	121.137	1.9581	1.7019	1.3257	-37.417	41.232	298.15	1.2745	1500	3.2501
16			71-43-2	78.112	0.44767	2.3085	1.3257	1.6836	677.66	200	0.5358	1500	
	Benzene	C_6H_6											2.4157
17	Benzenethiol	C ₆ H ₆ S	108-98-5	110.177	0.6895	2.3275	1.512	1.7516	697.9	200	0.7689	1500	2.6739
18	Benzoic acid	$C_7H_6O_2$	65-85-0	122.121	0.77594	2.6455	1.7925	2.2382	835.9	200	0.8126	1500	2.9712
19	Benzonitrile	C ₇ H ₅ N	100-47-0	103.121	0.7186	2.27	1.4669	1.693	680.77	200	0.8053	1500	2.6706
20	Benzophenone	$C_{13}H_{10}O$	119-61-9	182.218	1.0099	4.4898	1.311	2.8395	627.4	300	1.8001	1500	4.9311
21	Benzyl alcohol	C_9H_8O	100-51-6	108.138	0.84115	3.1428	1.9539	2.5743	850.06	298.15	1.1198	1500	3.2880
22	Benzyl ethyl ether	$C_9H_{12}O$	539-30-0	136.191	0.9521	2.8868	0.70207	1.6385	2002.6	300	1.5501	1500	4.3445
23	Benzyl mercaptan	C_7H_8S	100-53-8	124.203	0.99192	2.9633	1.5583	2.2116	719.16	300	1.4156	1200	3.2957
24	Biphenyl	$C_{12}H_{10}$	92-52-4	154.208	1.0759	4.2105	1.9041	4.1785	828.81	200	1.1481	1500	4.5557
25	Bromine	Br_2	7726-95-6	159.808	0.30113	0.08009	0.7514	0.1078	314.6	100	0.3090	1500	0.3794
26	Bromobenzene	C_6H_5Br	108-86-1	157.008	0.721	2.064	1.6504	1.687	765.3	200	0.7679	1500	2.4628
27	Bromoethane	C ₂ H ₅ Br	74-96-4	108.965	0.47191	1.2787	1.5957	0.85166	703.87	200	0.5089	1500	1.5121
28	Bromomethane	CH ₃ Br	74-83-9	94.939	0.3377	0.715	1.578	0.4175	691.4	100	0.3378	1500	0.9107
29	1,2-Butadiene	C_4H_6	590-19-2	54.090	0.575	1.6476	1.527	0.99	677.3	200	0.6269	1500	1.9202
30	1,3-Butadiene	C_4H_6	106-99-0	54.090	0.5095	1.705	1.5324	1.337	685.6	200	0.5756	1500	1.9555
31	Butane	C_4H_{10}	106-97-8	58.122	0.7134	2.43	1.63	1.5033	730.42	200	0.7673	1500	2.6602
32	1,2-Butanediol	$C_4H_{10}O_2$	584-03-2	90.121	1.0478	2.549	1.8776	1.875	833	298.15	1.2667	1500.1	3.0289
33	1,3-Butanediol	$C_4H_{10}O_2$ $C_4H_{10}O_2$	107-88-0	90.121	1.066	2.575	1.967	1.951	860.5	298.15	1.2679	1500.15	3.0311
34	1-Butanol	$C_4H_{10}O_2$ $C_4H_{10}O$	71-36-3	74.122	0.7454	2.5907	1.6073	1.732	712.4	200.10	0.8162	1500.15	2.8509
35	2-Butanol	$C_4H_{10}O$	78-92-2	74.122	0.90878	2.5508	1.893	1.852	832.13	298.15	1.1257	1500	2.8730
36	1-Butene	C ₄ H ₁₀ O	106-98-9	56.106	0.64257	2.0618	1.6768	1.3324	757.06	250.15	0.7571	1500	2.2898
37	cis-2-Butene	C ₄ H ₈	590-18-1	56.106	0.5765	2.115	1.6299	1.2872	739.1	200	0.6199	1500	2.2715
38	trans-2-Butene	C ₄ H ₈	624-64-6	56.106	0.6592	2.113	1.6733	1.251	742.2	200	0.7004	1500	2.2904
39			123-86-4	116.158	1.1684	3.769	1.956	2.818	811.2	300	1.5358	1200	3.6724
40	Butyl acetate	$C_6H_{12}O_2$	104-51-8	134.218		4.454		3.0497	708.86	200	1.2659	1500	4.8435
	Butylbenzene	$C_{10}H_{14}$	104-51-8		1.138	2.7795	1.5507				0.9714		
41	Butyl mercaptan	C ₄ H ₁₀ S		90.187	0.92478		1.6837	1.5974	758.68	200		1500	3.1008
42	sec-Butyl mercaptan	C ₄ H ₁₀ S	513-53-1	90.187	0.92367	2.5166	1.6109	1.5641	739.2	200	0.9763	1500	2.9615
43	1-Butyne	C ₄ H ₆	107-00-6	54.090	0.5587	1.6694	1.5328	1.07	656	200	0.6238	1500	1.9209
44	Butyraldehyde	C_4H_8O	123-72-8	72.106	0.89657	2.3731	1.9754	1.5866	904.13	200	0.9119	1500	2.6775
45	Butyric acid	$C_4H_8O_2$	107-92-6	88.105	1.488	1.3522	1.146	-678	6.98	298.15	1.1533	1500	2.5905
46	Butyronitrile	C_4H_7N	109-74-0	69.105	0.6906	1.9996	1.5494	1.3146	675	200	0.7607	1500	2.3273
47	Carbon dioxide	CO_2	124-38-9	44.010	0.2937	0.3454	1.428	0.264	588	50	0.2937	5000	0.6335
48	Carbon disulfide	CS_2	75-15-0	76.141	0.301	0.3338	0.896	0.2893	374.7	100	0.3100	1500	0.6148
49	Carbon monoxide	CO	630-08-0	28.010	0.29108	0.08773	3.0851	0.084553	1538.2	60	0.2911	1500	0.3521
50	Carbon tetrachloride	CCl_4	56-23-5	153.823	0.37582	0.7054	0.5121	0.485	236.1	100	0.4730	1500	1.0662
51	Carbon tetrafluoride	CF_4	75-73-0	88.004	0.92004	0.16446	1.0764	-5083.8	2.3486	298	0.6106	1500	1.0465
52	Chlorine	Cl ₂	7782-50-5	70.906	0.29142	0.09176	0.949	0.1003	425	50	0.2914	1500	0.3793
53	Chlorobenzene	C ₆ H ₅ Cl	108-90-7	112.557	0.8011	2.31	2.157	2.046	897.6	200	0.8219	1500	2.5327
54	Chloroethane	C ₂ H ₅ Cl	75-00-3	64.514	0.4568	1.2967	1.5992	0.859	708.8	100	0.4569	1500	1.5112
55	Chloroform	CHCl ₃	67-66-3	119.378	0.3942	0.6573	0.928	0.493	399.6	100	0.4048	1500	1.0063
56	Chloromethane	CH ₃ Cl	74-87-3	50.488	0.3409	0.7246	1.723	0.448	780.5	150	0.3424	1500	0.9097
57	1-Chloropropane	C ₃ H ₇ Cl	540-54-5	78.541	0.621	1.843	1.629	1.2337	724	200	0.6674	1500	2.1126
58	2-Chloropropane	C ₃ H ₇ Cl	75-29-6	78.541	0.61809	1.8023	1.5438	1.1893	685.93	200	0.6768	1500	2.1023
59	m-Cresol	C ₇ H ₈ O	108-39-4	108.138	0.7515	2.09	0.6666	1.212	2214	200	0.8701	1500	3.2075
60	o-Cresol	C_7H_8O	95-48-7	108.138	0.7988	2.853	1.4765	2.042	664.7	200	0.9158	1500	3.2163
00	0 0.0001	771180	00 10-1	100.100	3.1000	2.555	1.1100	2.012	001.1	200	0.0100	1000	0.2100

Purpose														
Gardinate G.N. 469-19-5 52.033 0.546 0.0016 1.057 0.452 396 100 0.0365 1500 0.8100	61	p-Cresol	C_7H_8O	106-44-5	108.138	0.7384	2.908	1.4559	2.091	650.42	200	0.8707	1500	3.2102
64 Cyclobintane									3.0027					4.1808
56 Cycloberane	63	Cyanogen	C_2N_2	460-19-5	52.035	0.3545	0.5015	1.057	0.452	396	100	0.3648	1500	0.8100
56 Cycloberane	64		C_4H_8	287-23-0	56.106	0.44004	2.3074	1.6283	1.5571	744.9	200	0.4903	1500	2.3234
66 Cyclohecanol	65	Cyclohexane			84.159	0.432	3.735	1.192	1.635	530.1	100	0.4366	1500	3.6516
Cyclobramone														
Section Cyclohecume														
Cyclopenture														
Cyclopentene														
71 Cyclopropane Cyll. 75-91-4 42,050 0.338 1,6394 1,6135 1,1768 72.285 100 0.3381 1500 1,7213 1,7225 1,000 0.3381 1,000 1,7213 1,000														
Cyclobes meruspan Calls 569-68-3 116.224 0.55305 3.9962 1.3575 2.5623 3.000 1.2644 1.200 3.7236		Cyclopentene	C_5H_8											
Decama		Cyclopropane	C_3H_6	75-19-4	42.080	0.338	1.6894	1.6135	1.1768	722.8	100	0.3381	1500	1.7213
Decama	72	Cyclohexyl mercaptan	C ₆ H ₁₂ S	1569-69-3	116.224	0.54305	3.9962	1.3575	2.5623	618.54	300	1.2644	1200	3.7236
Decembe											200		1500	
Decamoic card														
1-Decamol														
1-Deceme														
Decymercaptan														
1-Dicyspe														
Deterium														
State														
Section Company Comp	80	Deuterium	D_2	7782-39-0	4.032	0.3029	0.0975	2.515	-0.0275	368	100	0.3020	1500	0.3425
12-Dibromethane C4H _B T ₂ 106-93-4 187-861 0.74906 1.2725 1.981 0.9437 845.2 200 0.7635 1500 1.7041	81	1,1-Dibromoethane	$C_2H_4Br_2$	557-91-5	187.861	0.5927	1.158	1.4931	0.8428	655.5	200	0.6442	1500	1.5673
Sage	82									845.2	200		1500	
Dibutylether														
Section Probest Probest Section Sect														
Section Problem Prob														
P-Dichlorobenzene														
Section Chemical														
Section 1.2-Dichlorocethame														
Dichloromethane														
1.1.Dickloropropane		1,2-Dichloroethane	$C_2H_4Cl_2$					1.7376	0.878	795.45				1.5743
22 1.2-Dichloropropane	90	Dichloromethane	CH_2Cl_2	75-09-2	84.933	0.3628	0.6804	1.256	0.4275	548	100	0.3637	1500	0.9543
22 1.2-Dichloropropane	91	1.1-Dichloropropane	C ₃ H ₆ Cl ₂	78-99-9	112.986	0.7145	1.7344	1.524	1.223	674.2	150	0.7268	1500	2.1609
93 Diethand amine C.Hi, NO 111-42-2 105,136 1,208 3,066 2,089 2,343 891 298,15 1,4197 1500,1 3,4674 94 Diethyl amine C.Hi, NO 109-89-7 73,137 0,9102 2,674 1,719 1,7926 794,94 200 0,9592 1500 3,0519 95 Diethyl ether C.Hi, O 60-29-7 74,122 0,8621 2,551 1,5413 1,437 688,9 200 0,9567 1500 2,9244 96 Diethyl sulfide C.Hi, S 352,93-2 90,187 0,91273 2,41 1,6686 1,652 77,108 200 0,9567 1500 2,9244 97 1,1-Difluoroethane C.Hi, F 75-37-6 66,050 0,40653 1,2546 1,5394 0,78761 694,17 200 0,5536 1500 1,5424 98 1,2-Difluoroethane C.Hi, F 75-10-5 5,2023 0,33489 0,71002 1,5396 0,4622 762 200 0,3581 1500 1,5510 99 Difluoromethane C.Hi, S 10,100 1,1384 2,5747 0,7384 1,62 2,143 300 1,5995 1500 4,1931 101 Di-isopropyl amine C.Hi, O 10,200 10,1148 1,1156 1,8069 4,054 1,7802 2,9786 79,16 300 1,5102 1,3003 4,0535 102 Di-isopropyl ketone C.Hi, O 565-800 11,185 1,0869 4,054 1,7802 2,9786 79,16 300 1,5102 1,300 4,0535 104 1,2-Dimethoxyropane C.Hi, O 565-800 10,418 1,0113 3,2393 1,5611 2,1501 689,3 298,15 1,2678 1,500 3,0678 105 Dimethyl acetylene C.Hi, O 567-800 0,6334 1,6179 1,7877 1,024 2,14 200 0,6721 1,500 3,0678 106 Dimethyl amine C.Hi, O 7,778-85-0 0,6534 1,6179 1,7877 1,024 2,14 2,00 0,6721 1,500 1,9148 107 2,-Dimethyleyclohexane C.Hi, O 567-6,299 1,2131 1,0394 1,6179 1,7877 1,024 2,14 2,00 0,6721 1,500 1,9148 107 2,-Dimethyleyclohexane C.Hi, O 567-6,299 1,2131 1,0394 1,6179 1,7873 1,024 2,14 2,00 0,6721 1,500 1,9531 109 100 100 100 100 100 100 1,000	92								1 2627					
94 Diethyl amine $C_{c,H_{10}}$ O $60:29-7$ 74.1322 O $80:21$ 2.575 1.5413 1.437 $68:9.9$ 200 0.9502 1500 3.0519 95 Diethyl sulfide $C_{c,H_{10}}$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			CH N											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c} 98 \\ 99 \\ Difluoromethane \\ CH_1F_2 \\ ODE \\ Diribuoromethane \\ CH_1F_2 \\ ODE \\ To 10-5 \\ ODE \\ To 10-5 \\ ODE \\ To 10-5 \\ ODE \\ ODE$														
$ \begin{array}{c} 99 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1,2-Difluoroethane												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	99	Difluoromethane	CH_2F_2	75-10-5	52.023	0.35489	0.71002	1.5936	0.4622	762	200	0.3681	1500	0.9419
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	Di-isopropyl amine	$C_6H_{15}N$	108-18-9	101.190	1.1384	2.5747	0.7384	1.62	2143	300	1.5995	1500	4.1941
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101			108-20-3	102.175	1.093		1.6057	2.342	699	298.15	1.5669	1500	4.0535
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	108	1,1-Dimethylcyclohexane	C_8H_{16}	590-66-9	112.213	1.0776	4.6718	1.654	3.3397	792.5	200	1.1535	1500	4.9543
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	109	cis-1,2-Dimethylcyclohexane	C_8H_{16}	2207-01-4	112.213	1.1039	4.6445	1.6943	3.3949	798.35	200	1.1777	1500	4.9243
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110	trans-1.2-Dimethylcyclohexane		6876-23-9	112.213	1.0991	4.6401	1.6679	3.3736	781.97	200	1.1820	1500	4.9275
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111				94 199	0.7843	1 4364	1.5836	0.871	730.65	200	0.8155	1500	1 9523
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117	Dimethyl sulfide	C_2H_6S	75-18-3	62.134	0.6037	1.3747	1.641	0.7988				1500	1.6949
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	118	Dimethyl sulfoxide	C ₂ H ₆ OS	67-68-5	78.133	0.6949	1.524	1.6514	1.0658	722.2	200	0.7355	1500	1.9255
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										818	298.15			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
123 Douecame $C_{12}H_{26}$ 112-40-3 170.335 2.1295 0.033 1.7155 4.5161 777.5 200 2.2442 1500 7.4325														
	123	Dodecane	$\cup_{12}H_{26}$	112-40-3	170.335	2.1295	0.033	1.7100	4.5101	6.111	200	2.2442	1900	7.4525

TABLE 2-156 Heat Capacity at Constant Pressure of Inorganic and Organic Compounds in the Ideal Gas State Fit to Hyperbolic Functions C_p [J/(kmol·K)] (Continued)

	' '										P	72 '	
Cmpd. no.	Name	Formula	CAS no.	Mol. wt.	C1 ×1E-05	C2 × 1E-05	C3 ×1E-03	C4 ×1E-05	C5	T_{\min} ,	C_p at T_{\min} \times 1E-05	$T_{ m max}, \ m K$	C_p at $T_{ m max} \times 1 ext{E-05}$
124	Eicosane	$C_{20}H_{42}$	112-95-8	282.547	3.2481	11.09	1.636	7.45	726.27	200	3.5235	1500	12.2110
125	Ethane	C_2H_6	74-84-0	30.069	0.40326	1.3422	1.6555	0.73223	752.87	200	0.4256	1500	1.4562
126	Ethanol	C_2H_6O	64-17-5	46.068	0.492	1.4577	1.6628	0.939	744.7	200	0.5224	1500	1.6576
127	Ethyl acetate	$C_4H_8O_2$	141-78-6	88.105	0.9981	2.0931	2.0226	1.803	928.05	200	1.0126	1500	2.6594
128	Ethyl amine	C ₂ H ₇ N	75-04-7	45.084	0.594	1.618	1.812	1.078	820	200	0.6139	1500	1.8528
129	Ethylbenzene	C_8H_{10}	100-41-4	106.165	0.7844	3.399	1.559	2.426	702	200	0.8912	1500	3.6147
130	Ethyl benzoate	$C_9H_{10}O_2$	93-89-0	150.175	1.0944	4.1794	0.88375	-1.609	1183.1	300	1.4598	1500	4.2540
131	2-Ethyl butanoic acid	$C_6H_{12}O_2$	88-09-5	116.158	1.0455	2.3148	0.71	1.471	2061.6	300	1.5102	1200.15	3.6330
132	Ethyl butyrate	$C_6H_{12}O_2$	105-54-4	116.158	1.115	3.391	1.6705	2.518	733.6	298	1.5583	1200	3.6213
133	Ethylcyclohexane	C_8H_{16}	1678-91-7	112.213	1.1059	4.6306	1.6628	3.299	781.1	200	1.1875	1500	4.9184
134	Ethylcyclopentane	C_7H_{14}	1640-89-7	98.186	0.82052	4.0342	1.567	2.6697	715.52	200	0.9272	1500	4.1472
135	Ethylene	C_2H_4	74-85-1	28.053	0.3338	0.9479	1.596	0.551	740.8	60	0.3338	1500	1.0987
136	Ethylenediamine	$C_2H_8N_2$	107-15-3	60.098	0.7286	1.8436	1.688	1.199	767.3	300	0.9178	1500	2.2016
137	Ethylene glycol	$C_2H_6O_2$	107-21-1	62.068	0.63012	1.4584	1.673	0.97296	773.65	300	0.7800	1500	1.8095
138	Ethyleneimine	C_2H_5N	151-56-4	43.068	0.343	1.427	1.638	1.037	744.7	150	0.3480	1500	1.5178
139	Ethylene oxide	C_2H_4O	75-21-8	44.053	0.3346	1.2116	1.6084	0.8241	737.3	50	0.3346	1500	1.3297
140	Ethyl formate	$C_3H_6O_2$	109-94-4	74.079	0.537	1.886	1.207	0.864	496	100	0.5412	1500	2.1485
141	2-Ethyl hexanoic acid	$C_8H_{16}O_2$	149-57-5	144.211	1.5777	4.4017	1.7494	3.2378	792.34	298.15	2.0279	1500	5.1201
142	Ethylhexyl ether	$C_8H_{18}O$	5756-43-4	130.228	1.634	4.5119	1.7532	3.1032	809.75	298.15	2.0360	1200	4.8744
143	Ethylisopropyl ether	C ₅ H ₁₂ O	625-54-7	88.148	1.0953	3.0032	1.7988	2.1311	817.35	298.15	1.3620	1200	3.2289
144	Ethylisopropyl ketone	C ₆ H ₁₂ O	565-69-5	100.159	1.24	3.2	1.967	2.346	896	298.15	1.4479	1200	3.4234
145	Ethyl mercaptan	C ₂ H ₆ S	75-08-1	62.134	0.5576	1.3617	1.5221	0.8073	687.5	200	0.5970	1500	1.6729
146	Ethyl propionate	C ₅ H ₁₀ O ₂	105-37-3	102.132	0.937	2.829	1.648	2.155	724.7	300	1.3377	1200	3.0569
147	Ethylpropyl ether	C ₅ H ₁₂ O	628-32-0	88.148	1.132	2.94	1.827	2.055	852	298.15	1.3538	1500	3.4535
148	Ethyltrichlorosilane	C ₂ H ₅ Cl ₃ Si	115-21-9	163.506	0.85105	1.0378	0.59737	0.94745	2122.7	167	0.8926	1500	2.2349
149 150	Fluorine	F ₂	7782-41-4 462-06-6	37.997 96.102	0.29122	0.10132	1.453	0.094101	662.91 724.29	50 200	0.2912 0.6914	1500 1500	0.3812 2.4736
150 151	Fluorobenzene Fluoroethane	C_6H_5F C_2H_5F	353-36-6	48.060	0.62653 0.44373	2.1646 1.3119	1.564 1.6422	1.7278 0.85441	724.29 738.77	200	0.6914	1500	1.5008
151	Fluoroethane	$C_2\Pi_5F$ CH_3F	593-53-3	34.033	0.33289	0.73989	1.8639	0.46079	891.16	50	0.4726	1500	0.9024
153	Formaldehyde	CH ₂ O	50-00-0	30.026	0.33239	0.49542	1.8666	0.48079	934.9	50	0.3329	1500	0.9024
154	Formamide	CH ₃ NO	75-12-7	45.041	0.3822	0.49342	1.845	0.28073	850	150	0.3833	1500	1.1203
155	Formic acid	CH ₂ O ₂	64-18-6	46.026	0.3381	0.7593	1.1925	0.318	550 550	50	0.3381	1500	0.9933
156	Furan	C_4H_4O	110-00-9	68.074	0.3727	1.6606	1.5112	1.3145	686	200	0.4376	1500	1.7940
158	Heptadecane	C ₁₇ H ₃₆	629-78-7	240.468	2.7878	9.5247	1.6935	6.6651	744.57	200	3.0034	1500	10.4160
159	Heptanal	$C_{17}H_{14}O$	111-71-7	114.185	1.404	2.5907	0.8315	1.312	2201	200	1.4479	1500	4.2863
160	Heptane	C ₇ H ₁₄ O	142-82-5	100.202	1.2015	4.001	1.6766	2.74	756.4	200	1.2828	1500	4.4283
161	Heptanoic acid	$C_7H_{14}O_2$	111-14-8	130.185	1.3135	2.3317	0.67567	1.824	1846	300	1.8497	1500	4.2941
162	1-Heptanol	C ₇ H ₁₆ O	111-70-6	116.201	1.2215	3.991	1.58	2.835	717.7	200	1.3330	1500	4.5346
163	2-Heptanol	C ₇ H ₁₆ O	543-49-7	116.201	1.4569	2.8252	0.81695	1.766	2537.2	298.15	1.8136	1500	4.6604
164	3-Heptanone	C ₇ H ₁₄ O	106-35-4	114.185	1.2768	3.381	1.3831	1.888	650.3	200	1.3968	1500	4.1386
165	2-Heptanone	$C_7H_{14}O$	110-43-0	114.185	1.2507	2.148	0.6912	1.619	1759.3	150	1.2688	1200	3.8446
166	1-Heptene	C_7H_{14}	592-76-7	98.186	1.1851	3.6362	1.7359	2.5048	785.73	298.15	1.5434	1500	4.0836
167	Heptyl mercaptan	$C_7H_{16}S$	1639-09-4	132.267	1.442	4.1603	1.6603	2.6572	759.39	200	1.5191	1500	4.7831
168	1-Ĥeptyne	C_7H_{12}	628-71-7	96.170	1.0712	3.0258	1.5273	2.0975	689.62	200	1.1721	1500	3.5985
169	Hexadecane	$C_{16}H_{34}$	544-76-3	226.441	2.6283	8.9733	1.6912	6.264	744.41	200	2.8312	1500	9.8182
170	Hexanal	$C_6H_{12}O$	66-25-1	100.159	1.232	2.2146	0.84	1.219	2205	200	1.2672	1500	3.7314
171	Hexane	C_6H_{14}	110-54-3	86.175	1.044	3.523	1.6946	2.369	761.6	200	1.1117	1500	3.8620
172	Hexanoic acid	$C_6H_{12}O_2$	142-62-1	116.158	1.1622	2.0708	0.68661	1.5355	1932.5	298.15	1.6107	1500	3.7636
173	1-Hexanol	$C_6H_{14}O$	111-27-3	102.175	1.0625	3.521	1.5835	2.462	715.75	200	1.1607	1500	3.9726
174	2-Hexanol	C ₆ H ₁₄ O	626-93-7	102.175	1.2615	3.5964	1.8445	2.594	819.17	298.15	1.5829	1500	4.0672
175	2-Hexanone	C ₆ H ₁₂ O	591-78-6	100.159	1.094	1.807	0.689	1.474	1772	200	1.1815	1200	3.3207
176	3-Hexanone	$C_6H_{12}O$	589-38-8	100.159	1.1237	2.936	1.401	1.601	650.5	150	1.1443	1500	3.5874
177	1-Hexene	C_6H_{12}	592-41-6	84.159	1.0434	3.0749	1.7459	2.0728	793.53	298	1.3301	1500	3.4819
178	3-Hexyne	C_6H_{10}	928-49-4	82.144	0.9376	3.015	1.9057	1.986	817	300	1.1909	1500	3.1889
179 180	Hexyl mercaptan	C ₆ H ₁₄ S	111-31-9	118.240 82.144	1.2662	3.7294	1.6574 1.529	2.308 1.737	757.8	200 200	1.3340 1.0004	1500 1500	4.2483
180 181	1-Hexyne	C ₆ H ₁₀	693-02-7 764-35-2	82.144 82.144	0.9129	2.5577			683	300	1.0004	1500	3.0371
181	2-Hexyne Hydrazine	C_6H_{10} H_4N_2	302-01-2	32.045	1.036 0.38711	3.009 0.8576	2.116 1.7228	2.106 0.56635	902.4 733.53	200	0.4070	1500	3.1894 1.0571
183	Hydrogen	H_2	1333-74-0	2.016	0.35711	0.0956	2.466	0.0376	567.6	250	0.4070	1500	0.3225
100	11yarogen	112	1000-14-0	2.010	0.21011	0.0000	2.400	0.0570	307.0	200	0.2040	1000	0.0220

184	Hydrogen bromide	HBr	10035-10-6	80.912	0.2912	0.0953	2.142	0.0157	1400	50	0.2912	1500	0.3479
185	Hydrogen chloride	HCl	7647-01-0	36.461	0.29157	0.09048	2.0938	-0.00107	120	50	0.2914	1500	0.3406
186	Hydrogen cyanide	CHN	74-90-8	27.025	0.30125	0.3171	1.6102	0.2179	626	100	0.3014	1500	0.5522
187	Hydrogen fluoride	HF	7664-39-3	20.006	0.29134	0.093252	2.905	1.95E-03	1.33E+03	50	0.2913	1500	0.3224
188	Hydrogen sulfide	H_2S	7783-06-4	34.081	0.33288	0.26086	0.9134	-0.17979	949.4	100	0.3329	1500	0.5143
189	Isobutyric acid	$C_4H_8O_2$	79-31-2	88.105	0.74694	2.4356	1.715	1.8484	757.75	298.15	1.0427	1200	2.5383
190	Isopropyl amine	C_3H_9N	75-31-0	59.110	0.68545	2.1876	1.5831	1.3855	691.76	200	0.7510	1500	2.4540
191	Malonic acid	C ₃ H ₄ O ₄	141-82-2	104.061	0.49522	1.8718	1.2958	1.4852	569.96	300	0.9790	1200	2.0517
192	Methacrylic acid	$C_4H_6O_2$	79-41-4	86.089	0.7251	2.089	1.8516	1.6483	798.43	298.15	0.9475	1200.1	2.2057
193	Methane	CH_4	74-82-8	16.042	0.33298	0.79933	2.0869	0.41602	991.96	50	0.3330	1500	0.8890
194	Methanol	CH ₄ O	67-56-1	32.042	0.39252	0.879	1.9165	0.53654	896.7	200	0.3980	1500	1.0533
195	N-Methyl acetamide	C ₃ H ₇ NO	79-16-3	73.094	0.6116	2.029	1.7683	1.3302	835.5	300	0.7698	1500	2.2209
196	Methyl acetate	$C_3H_6O_2$	79-20-9	74.079	0.555	1.782	1.26	0.853	562	298	0.8489	1500	2.0754
197	Methyl acetylene	C_3H_4	74-99-7	40.064	0.4478	1.0917	1.5508	0.675	658.2	200	0.4882	1500	1.3293
198	Methyl acrylate	$C_4H_6O_2$	96-33-3	86.089	0.1206	2.3766	1.0543	1.8186	418.8	298.15	0.9908	1200.1	2.1663
199	Methyl amine	CH ₅ N	74-89-5	31.057	0.41	1.0578	1.708	0.6836	735	150	0.4136	1500	1.2388
200	Methyl benzoate	$C_8H_8O_2$	93-58-3	136.148	0.9396	2.559	0.825	1.36	3000	300	1.2586	1200	3.3569
201	3-Methyl-1,2-butadiene	C_5H_8	598-25-4	68.117	0.671	2.222	1.421	1.194	614.7	150	0.6931	1500	2.5028
202	2-Methylbutane	C_5H_{12}	78-78-4	72.149	0.746	3.265	1.545	1.923	666.7	200	0.8546	1500	3.3792
203	2-Methylbutanoic acid	$C_5H_{10}O_2$	116-53-0	102.132	1.8458	1.743	1.22	-56.11	31.2	300	1.2793	1500	3.2262
204	3-Methyl-1-butanol	$C_5H_{12}O$	123-51-3	88.148	0.92165	3.3371	1.8365	2.4645	757.99	298.15	1.3135	1500	3.4856
205									807.82	200.10	0.9060	1500	2.8923
	2-Methyl-1-butene	C_5H_{10}	563-46-2	70.133	0.87026	2.5556	1.7757	1.7636					
206	2-Methyl-2-butene	C_5H_{10}	513-35-9	70.133	0.81924	2.6038	1.7593	1.7195	800.93	200	0.8559	1500	2.8709
207	2-Methyl -1-butene-3-yne	C_5H_6	78-80-8	66.101	0.7906	1.656	1.6926	1.2167	788.4	298.15	0.9632	1500.15	2.1502
208	Methylbutyl ether	$C_5H_{12}O$	628-28-4	88.148	0.82051	3.0869	1.3864	1.7886	613.87	300	1.3300	1200	3.1994
209	Methylbutyl sulfide	$C_5H_{12}S$	628-29-5	104.214	1.0785	2.7388	1.5885	1.9067	749.6	273.15	1.3173	1200	3.1687
										200			
210	3-Methyl-1-butyne	C_5H_8	598-23-2	68.117	0.8274	2.1377	1.755	1.5149	782		0.8646	1500	2.5255
211	Methyl butyrate	$C_5H_{10}O_2$	623-42-7	102.132	0.894	2.91	1.57	2.073	678.3	298	1.3461	1200	3.0766
212	Methylchlorosilane	CH ₅ ClSi	993-00-0	80.589	0.59895	1.1636	1.565	0.81581	690.39	200	0.6380	1500	1.5593
213	Methylcyclohexane	C_7H_{14}	108-87-2	98.186	0.9227	4.115	1.6504	2.9006	779.48	200	0.9953	1500	4.3180
214	1-Methylcyclohexanol	C ₇ H ₁₄ O	590-67-0	114.185	0.7959	2.596	0.6213	2.288	1698.6	300	1.5302	1200	4.1359
215	cis-2-Methylcyclohexanol	$C_7H_{14}O$	7443-70-1	114.185	0.92279	2.6709	0.68784	1.9847	1732.4	300	1.5099	1200	4.1467
216	trans-2-Methylcyclohexanol	$C_7H_{14}O$	7443-52-9	114.185	0.92279	2.6709	0.68784	1.9847	1732.4	300	1.5099	1200	4.1467
217	Methylcyclopentane	C_6H_{12}	96-37-7	84.159	0.66456	3.507	1.5892	2.3526	727.13	200	0.7510	1500	3.5495
218	1-Methylcyclopentene	C_6H_{10}	693-89-0	82.144	0.69411	3.0209	1.6903	2.1209	781.56	200	0.7464	1500	3.1496
219	2 Mark lands and a second			82.144						200			
	3-Methylcyclopentene	C_6H_{10}	1120-62-3		0.6422	3.0711	1.6387	2.1298	750.25		0.7083	1500	3.1549
220	Methyldichlorosilane	CH ₄ Cl ₂ Si	75-54-7	115.034	0.7283	1.0307	1.5429	0.7811	668.94	200	0.7717	1500	1.5893
221	Methylethyl ether	C_3H_8O	540-67-0	60.095	0.68681	1.9959	1.5534	1.1168	692.04	200	0.7396	1500	2.2931
222	Methylethyl ketone	C_4H_8O	78-93-3	72.106	0.784	2.1032	1.5488	1.1855	693	200	0.8397	1500	2.4816
223	Methylethyl sulfide	C ₃ H ₈ S	624-89-5	76.161	0.75083	1.9577	1.6424	1.1949	749.19	273.16	0.9004	1500	2.3178
224	Methyl formate	$C_2H_4O_2$	107-31-3	60.052	0.506	1.219	1.637	0.894	743	250	0.5888	1500	1.5109
225	Methylisobutyl ether	$C_2H_{12}O$	625-44-5	88.148	0.7284	3.1713	1.352	1.8948	585.14	300	1.3200	1200	3.1987
226	Methylisobutyl ketone	$C_6H_{12}O$	108-10-1	100.159	1.227	2.195	0.842	1.191	2460	298.15	1.4755	1500.15	3.6532
227	Methyl Isocyanate	C ₂ H ₃ NO	624-83-9	57.051	0.474	1.226	2.188	0.85983	1008.2	298.15	0.5195	1500	1.3595
228	Methylisopropyl ether	$C_{2}H_{3}NO$ $C_{4}H_{10}O$	598-53-8	74.122	0.89232	2.4765	1.696	1.5598	791.4	200	0.9280	1500	2.8696
	Methylisopropyrether												
229	Methylisopropyl ketone	$C_5H_{10}O$	563-80-4	86.132	1.5914	1.764	1.2076	-407.4	10.503	300	1.1291	1500	2.9991
230	Methylisopropyl sulfide	$C_4H_{10}S$	1551-21-9	90.187	0.99247	2.7275	2.003	1.8974	849.64	273	1.1377	1500	2.9952
231	Methyl mercaptan	CH ₄ S	74-93-1	48.107	0.4146	0.8307	1.589	0.4612	716.7	200	0.4329	1500	1.0781
232	Methyl methacrylate	C ₅ H ₈ O ₂	80-62-6	100.116	0.864	1.811	0.7543	0.8	2160	298.15	1.1621	1500	2.8637
233	2-Methyloctanoic acid	$C_9H_{18}O_2$	3004-93-1	158.238	1.7483	4.9288	1.7384	3.5897	788.01	298.15	2.2567	1500	5.7177
234	2-Methylpentane	C_6H_{14}	107-83-5	86.175	0.903	3.801	1.602	2.453	691.6	200	1.0192	1500	3.9617
235	Methyl pentyl ether	$C_6H_{14}O$	628-80-8	102.175	0.94326	3.5965	1.3533	2.0569	599.92	300	1.5600	1200	3.7409
236	2-Methylpropane	C_4H_{10}	75-28-5	58.122	0.6549	2.4776	1.587	1.575	706.99	200	0.7218	1500	2.6656
237	2-Methyl-2-propanol	C ₄ H ₁₀ O	75-65-0	74.122	0.7704	2.539	1.5502	1.669	679.3	200	0.8567	1500	2.8508
	2-Mad 1												
238	2-Methyl propene	C_4H_8	115-11-7	56.106	0.6125	2.066	1.545	1.2057	676	200	0.6763	1500	2.2814
239	Methyl propionate	$C_4H_8O_2$	554-12-1	88.105	0.7765	2.442	1.714	1.818	716	300	1.1242	1200	2.5276
240	Methylpropyl ether	$C_4H_{10}O$	557-17-5	74.122	0.92151	2.3943	1.6936	1.4896	797.79	298	1.1251	1200	2.6391
241	Methylpropyl sulfide	$C_4H_{10}S$	3877-15-4	90.187	0.93775	2.6178	1.7291	1.6236	783.23	298.15	1.1728	1500	2.9904
242	Methylsilane		992-94-9						643.23	200	0.5141	1500	
		CH ₆ Si		46.144	0.46149	1.2781	1.4565	0.79115					1.5253
243	alpha-Methyl styrene	C_9H_{10}	98-83-9	118.176	0.78548	3.5969	1.4342	2.5336	651.69	200	0.9445	1500	3.8592
244	Methyl tert-butyl ether	$C_5H_{12}O$	1634-04-4	88.148	0.9779	3.091	1.643	2.099	731.191	298	1.3522	1500	3.4779
245	Methyl vinyl ether	C ₃ H ₆ O	107-25-5	58.079	0.60865	1.5965	1.619	0.93783	739.55	300	0.7748	1500	1.8871
246	Naphthalene	C ₁₀ H ₈	91-20-3	128.171	0.6805	3.5494	1.4262	2.5984	650.1	200	0.8454	1500	3.7359
	- raprimiene	O10118	01 20 0	120.111	5.0000	3.0101	1.1202	2.5051	550.1	200	0.0101	1000	0.1000

TABLE 2-156 Heat Capacity at Constant Pressure of Inorganic and Organic Compounds in the Ideal Gas State Fit to Hyperbolic Functions C_p [J/(kmol·K)] (Concluded)

Cmpd.					C1	C2	C3	C4			C_p at T_{\min}		C_v at $T_{\rm max}$
no.	Name	Formula	CAS no.	Mol. wt.	$\times 1E-05$	×1E-05	\times 1E-03	\times 1E-05	C5	T_{\min} , K	×1E-05	$T_{\rm max}$, K	×1E-05
248	Nitroethane	C ₂ H ₅ NO ₂	79-24-3	75.067	0.54619	1.6492	1.4803	1.0635	666.94	200	0.6062	1500	1.9237
249	Nitrogen	N_2	7727-37-9	28.013	0.29105	0.086149	1.7016	0.0010347	909.79	50	0.2911	1500	0.3484
250	Nitrogen trifluoride	F ₃ N	7783-54-2	71.002	0.33284	0.49837	0.7093	0.23264	372.91	100	0.3404	1500	0.8092
251	Nitromethane	CH ₃ NO ₂	75-52-5	61.040	0.42267	1.0842	1.4885	0.68603	683.57	200	0.4571	1500	1.3280
252	Nitrous oxide	N ₂ O	10024-97-2	44.013	0.29338	0.3236	1.1238	0.2177	479.4	100	0.2948	1500	0.5828
254	Nonadecane	$C_{19}H_{40}$	629-92-5	268.521	3.1062	10.575	0.76791	-4.5661	912.03	200	3.3533	1500	11.6130
255	Nonanal	C ₉ H ₁₈ O	124-19-6	142.239	1.7347	4.5115	1.712	3.3256	810.96	200	1.8005	1500	5.4439
256	Nonane	C_9H_{20}	111-84-2	128.255	1.5175	4.915	1.6448	3.47	749.6	200	1.6257	1500	5.5407
257	Nonanoic acid	$C_9H_{18}O_2$	112-05-0	158.238	0.1266	6.011	1.0815	4.5946	418.2	298.15	2.2953	1500	5.5267
258	1-Nonanol	$C_9H_{18}O_2$ $C_9H_{20}O$	143-08-8	144.255	1.54	4.936	1.578	3.588	721.11	200	1.6777	1500	5.6606
259	2-Nonanol	C ₉ H ₂₀ O	628-99-9	144.255	1.8197	3.5542	0.81514	2.1974	2508.8	298.15	2.2720	1500	5.8526
					1.5352		1.7288		783.67				5.2776
260	1-Nonene	C_9H_{18}	124-11-8	126.239		4.6844		3.2304		298.15	2.0014	1500	
261	Nonyl mercaptan	$C_9H_{20}S$	1455-21-6	160.320	1.7646	5.044	1.6182	3.3857	755.48	200	1.8658	1500	5.9082
262	1-Nonyne	C_9H_{16}	3452-09-3	124.223	1.6289	3.9708	1.8928	3.2136	855.52	298.15	1.9693	1500	4.7924
263	Octadecane	$C_{18}H_{38}$	593-45-3	254.494	2.9502	10.034	0.77107	-4.3012	916.73	200	3.1800	1500	11.0160
264	Octanal	$C_8H_{16}O$	124-13-0	128.212	1.6088	4.218	1.9126	3.278	869	200	1.6504	1500	4.9286
265	Octane	C_8H_{18}	111-65-9	114.229	1.3554	4.431	1.6356	3.054	746.4	200	1.4529	1500	4.9764
266	Octanoic acid	$C_8H_{16}O_2$	124-07-2	144.211	1.4082	4.3436	1.4662	2.7687	659.38	298.15	2.0652	1500	5.0411
267	1-Octanol	$C_8H_{18}O$	111-87-5	130.228	1.3805	4.459	1.5751	3.2016	718.8	200	1.5055	1500	5.0965
268	2-Octanol	$C_8H_{18}O$	123-96-6	130.228	1.6383	3.1897	0.81595	1.9814	2521.3	298.15	2.0428	1500	5.2565
269	2-Octanone	$C_8H_{16}O$	111-13-7	128.212	1.3901	3.806	1.3717	2.2573	660.96	150	1.4162	1500	4.6547
270	3-Octanone	$C_8H_{16}O$	106-68-3	128.212	1.4952	4.4103	0.80211	-2.0958	981.95	200	1.5775	1500	4.9067
271	1-Octene	C_8H_{16}	111-66-0	112.213	1.3599	4.1605	1.7317	2.8675	784.47	298.15	1.7723	1500	4.6807
272	Octyl mercaptan	$C_8H_{18}S$	111-88-6	146.294	1.5981	4.6063	1.6295	3.0301	756.28	200	1.6881	1500	5.3549
273	1-Octyne	C_8H_{14}	629-05-0	110.197	1.2307	3.4942	1.528	2.4617	694.81	200	1.3448	1500	4.1604
274	Oxalic acid	$C_2H_2O_4$	144-62-7	90.035	0.25751	1.1734	2.7969	0.65788	878.91	298.15	0.3201	1000.1	0.6502
275	Oxygen	O ₂	7782-44-7	31.999	0.29103	0.1004	2.5265	0.09356	1153.8	50	0.2910	1500	0.3653
276	Ozone	O_3	10028-15-6	47.998	0.33483	0.29577	1.5217	0.27151	680.35	100	0.3349	1500	0.5928
277	Pentadecane	$C_{15}H_{32}$	629-62-9	212.415	2.4679	8.4212	1.6865	5.8537	743.6	200	2.6586	1500	9.2209
278	Pentanal	C ₅ H ₁₀ O	110-62-3	86.132	1.0743	2.8363	1.9549	2.0146	890.44	200	1.0960	1500	3.2404
279	Pentane	C_5H_{12}	109-66-0	72.149	0.8805	3.011	1.6502	1.892	747.6	200	0.9404	1500	3.2927
280	Pentanoic acid	$C_5H_{10}O_2$	109-52-4	102.132	2.836	1.08	2.107	-3.56	283	298.15	1.3824	1500	3.2952
281	1-Pentanol	$C_5H_{12}O$	71-41-0	88.148	0.906	3.062	1.6054	2.115	717.97	200.10	0.9890	1500	3.4133
282	2-Pentanol	$C_5H_{12}O$ $C_5H_{12}O$	6032-29-7	88.148	1.0853	3.0747	1.8672	2.2271	825.4	298.15	1.3539	1500	3.4701
283	2-Pentanone	C ₅ H ₁₀ O	107-87-9	86.132	0.90053	2.7085	1.6592	1.8012	743.96	200	0.9591	1500	3.0797
284	3-Pentanone		96-22-0	86.132	0.96896	2.4907	1.6592	1.3012		200	1.0536	1500	3.0358
285		$C_5H_{10}O$		70.133					646.7	298.15			
	1-Pentene	C_5H_{10}	109-67-1		0.82523	2.5943	1.7291	1.768	778.7		1.0856	1500	2.8897
286	2-Pentyl mercaptan	$C_5H_{12}S$	2084-19-7	104.214	1.1327	2.947	1.7418	2.0987	795.78	298	1.4202	1500	3.4994
287	Pentyl mercaptan	$C_5H_{12}S$	110-66-7	104.214	1.0974	3.2959	1.6761	1.9486	757.67	200	1.1547	1500	3.6956
288	1-Pentyne	C ₅ H ₈	627-19-0	68.117	0.753	2.0905	1.5307	1.378	672.8	200	0.8276	1500	2.4754
289	2-Pentyne	C_5H_8	627-21-4	68.117	0.70737	2.2229	1.557	1.3125	690.78	200	0.7700	1500	2.5052
290	Phenanthrene	$C_{14}H_{10}$	85-01-8	178.229	0.9374	4.758	1.382	3.485	627.4	200	1.1959	1500	5.0645
291	Phenol	C_6H_6O	108-95-2	94.111	0.434	2.445	1.152	1.512	507	100	0.4401	1500	2.6045
292	Phenyl isocyanate	C_7H_5NO	103-71-9	119.121	0.59683	2.5533	1.2397	1.5519	576.78	298.15	1.1054	1500	2.8390
293	Phthalic anhydride	$C_8H_4O_3$	85-44-9	148.116	0.7364	2.544	1.0852	0.808	573	298.15	1.0745	1000.15	2.6737
294	Propadiene	C_3H_4	463-49-0	40.064	0.426	1.1194	1.5772	0.7546	680.8	200	0.4646	1500	1.3376
295	Propane	C_3H_8	74-98-6	44.096	0.5192	1.9245	1.6265	1.168	723.6	200	0.5632	1500	2.0556
296	1-Propanol	C_3H_8O	71-23-8	60.095	0.619	2.0213	1.6293	1.2956	727.4	200	0.6665	1500	2.2458
297	2-Propanol	C_3H_8O	67-63-0	60.095	0.73145	2.0313	1.9375	1.4815	843.37	298.15	0.8966	1500	2.2760
298	Propenylcyclohexene	C_9H_{14}	13511-13-2	122.207	1.0563	4.3397	1.6098	3.181	729.66	300	1.6392	1500	4.6527
299	Propionaldehyde	C_3H_6O	123-38-6	58.079	0.7174	1.914	2.0144	1.1708	930.6	200	0.7266	1500	2.1149
300	Propionic acid	$C_3H_6O_2$	79-09-4	74.079	0.6959	1.7778	1.7098	1.2654	763.78	298.15	0.8938	1500	2.1248
301	Propionitrile	C ₃ H ₅ N	107-12-0	55.079	0.5357	1.4617	1.553	0.91197	678.2	200	0.5832	1500	1.7235
302	Propyl acetate	$C_5H_{10}O_2$	109-60-4	102.132	1.7994	1.753	1.196	-4.12	108.2	298.15	1.3594	1500	3.2024
303	Propyl amine	C ₃ H ₉ N	107-10-8	59.110	0.76078	2.1049	1.7256	1.3936	789.03	200	0.7933	1500	2.4353
											0.1000		

304	Propylbenzene	C_9H_{12}	103-65-1	120.192	0.96885	3.7954	1.5168	2.6618	694.3	200	1.0927	1500	4.1613
305	Propylene	C_3H_6	115-07-1	42.080	0.43852	1.506	1.3988	0.74754	616.46	130	0.4436	1500	1.6817
306	Propyl formate	$C_4H_8O_2$	110-74-7	88.105	0.871	2.447	1.9254	1.888	821.3	298.15	1.1022	1500	2.7484
307	2-Propyl mercaptan	C ₃ H ₈ S	75-33-2	76.161	0.73815	1.9529	1.5954	1.2356	730.5	200	0.7825	1500	2.3287
308	Propyl mercaptan	C_3H_8S	107-03-9	76.161	0.7474	1.9523	1.631	1.2112	750.92	200	0.7848	1500	2.3216
309	1,2-Propylene glycol	$C_3H_8O_2$	57-55-6	76.094	2.0114	0.8082	1.8656	-2.4404	279.98	298.15	1.0218	1000.15	2.1175
310	Quinone	$C_6H_4O_2$	106-51-4	108.095	0.6487	2.1227	1.3491	1.514	614.8	200	0.7711	1500	2.4969
311	Silicon tetrafluoride	F ₄ Si	7783-61-1	104.079	0.3681	0.71245	0.65201	0.46721	286.03	100	0.4182	1500	1.0537
312	Styrene	C_8H_8	100-42-5	104.149	0.893	2.1503	0.772	0.999	2442	100	0.8931	1500	3.2416
313	Succinic acid	$C_4H_6O_4$	110-15-6	118.088	0.71806	2.2669	1.2739	1.7342	537.65	300	1.3370	1200	2.5823
314	Sulfur dioxide	O ₂ S	7446-09-5	64.064	0.33375	0.25864	0.9328	0.1088	423.7	100	0.3354	1500	0.5695
315	Sulfur hexafluoride	F ₆ S	2551-62-4	146.055	0.35256	1.227	0.67938	0.78407	351.27	100	0.3872	1500	1.5397
316	Sulfur trioxide	O ₃ S	7446-11-9	80.063	0.33408	0.49677	0.87322	0.28563	393.74	100	0.3408	1500	0.7967
317	Terephthalic acid	$C_8H_6O_4$	100-21-0	166.131	0.945	2.526	0.829	0.5	2010	298.15	1.2478	1500	3.4444
318	o-Terphenyl	$C_{18}H_{14}$	84-15-1	230.304	2.0719	6.2668	2.4044	6.345	967.71	298.15	2.4763	1500	6.6947
319	Tetradecane	$C_{14}H_{30}$	629-59-4	198.388	2.3082	7.8678	1.6823	5.4486	743.1	200	2.4864	1500	8.6225
320	Tetrahydrofuran	C ₄ H ₈ O	109-99-9	72.106	0.46905	2.5314	1.5998	1.7051	740.64	200	0.5259	1500	2.5538
321	1,2,3,4-Tetrahydronaphthalene	$C_{10}H_{12}$	119-64-2	132.202	0.8145	4.395	1.471	3.065	666.4	200	0.9881	1500	4.5348
322	Tetrahydrothiophene	C_4H_8S	110-01-0	88.171	0.51848	2.4535	1.5018	1.6871	665.31	200	0.6147	1500	2.5679
323	2,2,3,3-Tetramethylbutane	C_8H_{18}	594-82-1	114.229	1.1352	5.6331	1.6211	3.3829	681.9	200	1.3069	1500	5.5784
324	Thiophene	C_4H_4S	110-02-1	84.140	0.40399	1.627	1.4562	1.322	648.81	200	0.4886	1500	1.8098
325	Toluene	C_7H_8	108-88-3	92.138	0.5814	2.863	1.4406	1.898	650.43	200	0.7016	1500	3.0029
326	1,1,2-Trichloroethane	$C_2H_3Cl_3$	79-00-5	133.404	0.66554	1.1257	1.5454	0.97196	717.04	298.15	0.8496	1500	1.6433
327	Tridecane	$C_{13}H_{28}$	629-50-5	184.361	2.1496	7.3045	1.6695	4.9998	741.02	200	2.3156	1500	8.0251
328	Triethyl amine	$C_6H_{15}N$	121-44-8	101.190	1.2766	2.5559	0.80937	1.4829	2231.7	200	1.3278	1500	4.2046
329	Trimethyl amine	C_3H_9N	75-50-3	59.110	0.7107	1.5051	0.79662	0.84537	2187.6	200	0.7439	1500	2.4322
330	1,2,3-Trimethylbenzene	C_9H_{12}	526-73-8	120.192	1.052	3.79	1.4814	2.331	667.3	200	1.1832	1500	4.1983
331	1,2,4-Trimethylbenzene	C_9H_{12}	95-63-6	120.192	1.0106	3.8314	1.501	2.395	678.3	200	1.1354	1500	4.1854
332	2,2,4-Trimethylpentane	C_8H_{18}	540-84-1	114.229	1.139	5.286	1.594	3.351	677.94	200	1.3139	1500	5.3769
333	2,3,3-Trimethylpentane	C_8H_{18}	560-21-4	114.229	0.982	5.402	1.531	3.493	639.9	200	1.2194	1500	5.3754
334	1,3,5-Trinitrobenzene	$C_6H_3N_3O_6$	99-35-4	213.105	2.0367	1.8181	1.2089	0.79777	1060.8	298.15	2.1054	1500	3.7585
335	2,4,6-Trinitrotoluene	$C_7H_5N_3O_6$	118-96-7	227.131	2.154	2.4432	1.1126	0.58651	950.59	298.15	2.2726	1500	4.3560
336	Undecane	$C_{11}H_{24}$	1120-21-4	156.308	1.9529	6.0998	1.7087	4.1302	775.4	200	2.0594	1500	6.8342
337	1-Undecanol	$C_{11}H_{24}O$	112-42-5	172.308	1.859	5.869	1.5718	4.326	722.7	200	2.0232	1500	6.7834
338	Vinyl acetate	$C_4H_6O_2$	108-05-4	86.089	0.536	2.119	1.198	1.147	510	100	0.5404	1500	2.3750
339	Vinyl acetylene	C_4H_4	689-97-4	52.075	0.55978	1.2141	1.6102	0.89079	710.4	200	0.5967	1500	1.5590
340	Vinyl chloride	C_2H_3Cl	75-01-4	62.498	0.42364	0.8735	1.6492	0.6556	739.07	200	0.4457	1500	1.1423
341	Vinyl trichlorosilane	C ₂ H ₃ Cl ₃ Si	75-94-5	161.490	0.84894	1.1471	1.38	0.9	644.61	298.15	1.0788	1500	1.8595
342	Water	H_2O	7732-18-5	18.015	0.33363	0.2679	2.6105	0.08896	1169	100	0.3336	2273.15	0.5276
343	m-Xylene	C_8H_{10}	108-38-3	106.165	0.7568	3.3924	1.496	2.247	675.9	200	0.8759	1500	3.5920
344	o-Xylene	C_8H_{10}	95-47-6	106.165	0.8521	3.2954	1.4944	2.115	675.8	200	0.9643	1500	3.5965
345	p-Xylene	C_8H_{10}	106-42-3	106.165	0.7512	3.397	1.4928	2.247	675.1	200	0.8710	1500	3.5923

Constants in this table can be used in the following equation to calculate the ideal gas heat capacity C_p^0 .

$$C_p^0 = \text{C1} + \text{C2} \left[\frac{\text{C3/T}}{\sinh(\text{C3/T})} \right]^2 + \text{C4} \left[\frac{\text{C5/T}}{\cosh(\text{C5/T})} \right]^2$$

where C_p^0 is in I/(kmol·K) and T is in K. All substances are listed by chemical family in Table 2-6 and by formula in Table 2-7.

Values in this table were taken from the Design Institute for Physical Properties (DIPPR) of the American Institute of Chemical Engineers (AIChE), copyright 2007 AIChE and reproduced with permission of AICHE and of the DIPPR Evaluated Process Design Data Project Steering Committee. Their source should be cited as R. L. Rowley, W. V. Wilding, J. L. Oscarson, Y. Yang, N. A. Zundel, T. E. Daubert, R. P. Danner, DIPPR® Data Compilation of Pure Chemical Properties, Design Institute for Physical Properties, AIChE, New York (2007).

The number of digits provided for values at T_{\min} and T_{\max} was chosen for uniformity of appearance and formatting; these do not represent the uncertainties of the physical quantities, but are the result of calculations from the standard thermophysical property formulations within a fixed format.