

.E. UNIVERSITA

# Solving a real application of the Time-Constraint Open Vehicle Routing Problem

Helena R. Lourenço Àlex Grasas Luciana Pessoa Mauricio Resende

Universitat Pompeu Fabra Barcelona, Spain AT&T Labs Research Florham Park, NJ, USA





1

UNIVERSITA

# **Outline of the Presentation**

- Introduction
  - Motivation: The Blood Sample Collection at a Clinical Laboratory
  - Problem description
  - Literature review
- ▶ Bias Random Key Genetic Algorithm
- ► Real application
- ► Conclusions and directions of future work.



UNIVERSITA
POMPEU FABR

# **Introduction- Motivation**

► The Blood Sample Collection at a Clinical Laboratory





3

UNIVERSITAT

# **Introduction- Motivation**

- ► The Blood Sample Collection at a Clinical Laboratory
  - \* Health Care Management Problem
  - Redesign collection routes
    - \* Daily Routes (5 days/week)
    - \* Application Lab 1: 43 collection points
    - \* Application Lab 2: 74 collection points
    - \* The transport is subcontracted
    - \* Constraints on travel time (2 hours) & capacity
    - \* Minimize transportation costs





# Introduction- The Problem

- ► Time-Constraint Capacity Open VRP (1/2)
  - A direct graph G = (V, A) is given, where V = {0, 1, ..., n} is the set of n + 1 nodes and A is the set of arcs.
  - Node 0 represents the depot (laboratory), while the remaining nodes V' = V \ {0} corresponds to the n collecting points.
  - Each collection point i  $\in V'$  has  $q_i$  boxes to be transported to the depot (assume  $q_0 = 0$ ).
  - Distance and travel times between each node.

5

UNIVERSITA POMPEU FABR

# Introduction- The Problem

- ► Time-Constraint Capacity Open VRP (2/2)
  - Open routes (start at the first collecting point and finish at the laboratory)
  - The vehicle fleet is composed M = {1,..., m} identical vehicles with capacity Q<sub>k</sub>.
  - The travel maximum time between the first collecting point to the laboratory is 2 hours.
  - Minimize the total distance (or transportation costs)



# Introduction- The Problem

- Applications of the Time-Constraint Capacity Open VRP
  - Blood Collection Sample at a Clinical Laboratory
  - Patients transportation to medical exams (1 hour)
  - School Bus (1 hour time constraint)
  - Retailing with subcontracted distribution transportation (8 hours working time)
  - Etc.

7

UNIVERSITA POMPEU FABRA

# Introduction- Review

### Main References

- Guder, W. G., Narayanan, S., Wisser, H., & Zawta, B. (2003).
   Samples: from the patient to the laboratory. The Impact of Preanalytical Variables on the Quality of Laboratory Results, 3rd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KgaA.
- Letchford, A. N., Lysgaard, J., & Eglese, R. W. (2007). A branchand-cut algorithm for the capacitated open vehicle routing. *Journal* of the Operational Research Society, 58(12), 1642-1651.
- Salari, M., Toth, P., & Tramontani, A. (2010). An ILP improvement procedure for the Open Vehicle Routing Problem. *Computers & Operations Research*, 37(12), 2106-2120.
- Gonçalves, J. F., & Resende, M. G. C. (2011). Biased random-key genetic algorithms for combinatorial optimization. *Journal of Heuristics*, 17, 487–525.



# Bias Random Key Genetic Algorithm

- ► GAs and random keys
  - Introduced by Bean (1994) for sequencing problems.
  - Individuals are strings of real-valued numbers (random keys) in the interval [0,1].

$$S = (0.25, 0.19, 0.67, 0.05, 0.89)$$
  
 $s(1) s(2) s(3) s(4) s(5)$ 

Sorting random keys results in a sequencing order.
 S' = (0.05, 0.19, 0.25, 0.67, 0.89)

s(4) s(2) s(1) s(3) s(5)

Sequence: 4 - 2 - 1 - 3 - 5

9

UNIVERSITAT POMPEU FABRA

# Bias Random Key Genetic Algorithm

- ▶ Random-keys vs biased random-keys
  - How do random-key GAs (Bean, 1994) and biased random-key GAs differ?
    - \* A random-key GA selects both parents at random from the entire population for crossover: some pairs may not have any elite solution
    - \* A biased random-key GA always has an elite parent during crossover
    - \* Parametrized uniform crossover makes it more likely that child inherits characteristics of elite parent in biased random-key GA while it does not in random key GA (survival of the fittest)









# Bias Random Key Genetic Algorithm Framework for biased random-key genetic algorithms \* Gonçalves, J. F., & Resende, M. G. C. (2011)







# Bias Random Key Genetic Algorithm

### Decoders

- A decoder is a deterministic algorithm that takes as input a random-key vector and returns a feasible solution of the optimization problem and its cost.
- Bean (1994) proposed decoders based on sorting the random-key vector to produce a sequence.
- A random-key GA searches the solution space indirectly by searching the space of random keys and using the decoder to evaluate fitness of the random key.



UNIVERSITA POMPEU FABR,

# Bias Random Key Genetic Algorithm

- Decoder for the Time-Constraint Capacity Open VRP
  - Suppose each collection points has one bag and the capacity of the vehicles is 2.
  - A solution: S=(0.05, 0.19, 0.25, 0.67, 0.89) s(4) s(2) s(1) s(3) s(5)Sequence: 4-2-1-3-5
  - Means that 3 routes are obtained:
    - \* 4-2-lab
    - \* 1-3-lab
    - \* 5-lab

17

J N I V E R S I T A T

# **Real Application**

- ► The Blood Sample Collection at a Clinical Laboratory
  - Application Lab 1: 43 collection points
  - Actually 10 routes
  - Data:
    - \* Laboratory
    - \* Distances and time matrix by google maps
      - vrp.upf.edu
  - Two scenarios & two different truck capacities







# **Real Application**

- ► The Blood Sample Collection at a Clinical Laboratory
  - Application Lab 2: 74 collection points
  - Actually 12 routes
  - Data:
    - \* Laboratory
    - \* Distances and time matrix by google maps
      - vrp.upf.edu
  - Three different truck capacities



# **Real Application**

► The Blood Sample Collection at a Clinical Laboratory

### Number of Routes using BRKGA for Lab 2

### **Number of Routes**

| Vehicle Capacity = | Vehicle Capacity = | Vehicle Capacity = |
|--------------------|--------------------|--------------------|
| 10                 | 16                 | 25                 |
| 10                 | 9                  | 9                  |

21

UNIVERSITA POMPEU FABR

# **Real Application**

- ► The Blood Sample Collection at a Clinical Laboratory
  - Lab 1: saving 30% of total annual routing costs (around 45.000€)
  - Lab 2: saving around 20% of total annual routing costs.
  - Better management if there are new collection points or changes in the address.
  - Better service quality (2 hours transportation).
  - Better planning in the case of laboratory merging strategy.



# **Conclusions**

- Research should focus on solving real problems, with a great impact on Public Health Care System.
- ► The Bias Random Key Genetic Algorithm is easily adapted to new constraints or management issues.
- ► Also, it can be adapted to other routing problems.
- ► Companies require no fine-tunning or parameters to be set.

23

D NIVERSITAT

# **Future Research**

- ► Application to well-known instances in COVRP and compare results.
- ► Application of the CTCOVRP
  - School Bus at Barcelona
- ► More VRP real applications (fashion industry)
  - MANGO
  - DESIGUAL
- ► Improve the **vrp.upf.edu** web so the user can optimize the routes via internet.





