Solving Large-Scale Dynamic Vehicle Routing Problems with Stochastic Requests

Alexandre Florio

VeRoLog Webinar, March 31, 2022

Solving Large-Scale Dynamic Vehicle Routing with Stochastic Requests in Real-Time

Joint work with Jian Zhang, Kelin Luo and Tom Van Woensel

https://arxiv.org/abs/2202.12983

https://github.com/amflorio/dvrp-stochastic-requests

https://youtu.be/D57xNfU73as

General Setting & Motivation

- Dynamic VRP with stochastic requests (DVRPSR)
 - Static (planned) and dynamic (on-demand) requests
 - Applications: technician routing, package collection (first-mile, courier or marketplace sellers)
- Request: pickup (or service) location and service time
 - Requests may be rejected
- Multiple drivers/vehicles
- Vehicles must return to the depot by the given deadline
- Goal: serve as many requests as possible

General Setting & Motivation

Related Literature

Literature	Problem setting				Initial plan		Online policy	
Differentie		Req.	Veh.	Graph	Method	Ant.	Method	Ant.
Bent & Van Hentenryck (2004)	×	100	n/a	Synth.	MSA	✓	MSA	✓
Chen & Xu (2006)		100	n/a	Synth.	CGBH	×	CGBH	×
Hvattum et al. (2006)		130	n/a	Synth.	DSHH	✓	DSHH	✓
Ichoua et al. (2006)	✓	240	6	Synth.	TS	✓	TS	✓
Thomas (2007)	×	50	1	Synth.	GRASP	×	Heuristics	✓
Azi et al. (2012)	✓	144	5	Synth.	n/a	ı	ALNS	✓
Ferrucci & Bock (2015, 2016)	×	150	12	SSSN	TS	✓	TS	✓
Klapp et al. (2018a)	×	40	1	Synth.	B&C	✓	Rollout	✓
Ulmer et al. (2018a)	×	100	1	Synth.	CI	×	VFA	✓
Ulmer et al. (2018b)	×	100	1	Synth.	$_{ m CI}$	×	VFA	✓
Ulmer et al. (2019)	×	100	1	Synth.	CI	×	VFA+rollout	✓
van Heeswijk et al. (2019)	×	400	n/a	Synth., SSSN	$\mathbf{C}\mathbf{W}$	×	VFA, rollout	✓
Voccia et al. (2019)	×	192	13	Synth.	n/a	ı	MSA	✓
Ulmer (2020)	✓	180	3	Synth.	n/a	ı	VFA	✓
Ulmer & Thomas (2020)	✓	50	1	Synth.	n/a	ı	VFA	✓
This paper	✓	947	20	LSSN	PbCGBH	✓	\mathbf{PbPs}	✓

(For a review: Soeffker, Ulmer, Mattfeld (2021, EJOR): 10.1016/j.ejor.2021.07.014)

Methodology

- Problem formulation: sequential stochastic optimization model
 - Decisions must be taken "real-time", each time a request arrives
- Key contribution: approximation of the reward-to-go (potential) by relaxed knapsack models
 - Stochastic lookahead policy with **zero** tunable parameters
- First decision: initial plan: column generation-based petal heuristic
- Remaining decisions: potential-based scheduling policy

Notation

 $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ Street network graph

 ${\cal V}$ Road junctions or intersections

 \mathcal{A} Road segments

 $0\in \mathcal{V} \qquad \quad \mathsf{Depot}$

t(i,j) Duration of the fastest path from node i to node j

[0, U] Service period

K Fleet size

Notation

$$\mathcal{D}(u) \qquad \qquad \text{(Ordered) set of dynamic requests up to instant } u \in [0,U] \\ (u,i,d) \qquad \qquad \text{Request, where } u \in [0,U] \text{ is the arrival/release time,} \\ i \in \mathcal{V} \text{ is the location and } d \in \mathbb{R}_{>0} \text{ is the service duration} \\ T \equiv |\mathcal{D}(U)| \qquad \qquad \text{R.v. indicating the total number of dynamic requests}$$

We assume the spatiotemporal probability distribution of dynamic requests can be sampled from (e.g., data is available)

$$\omega = \{r_1^\omega, \dots, r_{T_\omega}^\omega\}$$
 Sample path of the request arrival process

MDP Model: Decision Epochs and States

- Decision epoch: moment when a decision must be made
- In our setting, we have:
 - Initial decision: setup initial routes to serve static/planned requests
 - Following decisions: each time a dynamic request arrives, decide whether to accept or reject the request and, if accept, how to serve it
- Hence, 1 + T decision epochs, where T is unknown

8 / 35

MDP Model: Decision Epochs and States

Definition (Route)

A route consists of a sequence of nodes θ that starts and ends at the depot, where each node is associated with a (possibly empty) set of scheduled requests

Definition (Budget of a route θ that started at instant τ)

The budget of a route θ that started at instant τ , $b(\tau, \theta)$, is the slack time relative to the end of the service period (given by U)

MDP Model: Decision Epochs and States

Definition (Vehicle state)

State of vehicle $k \in \{1, \dots, K\}$ is given by

$$V_k = \begin{cases} \emptyset & \text{if } k \text{ is idle (stationed at the depot)} \\ (\tau_k, \theta_k) & \text{if } k \text{ started to travel along route } \theta_k \text{ at instant } \tau_k \end{cases}$$

Definition (State)

State S_0 (initial state) represents all parameters of the problem

State S_t , $t \in \{1, \ldots, T\}$, is a (K+1)-tuple $S_t = (V_1, \ldots, V_K, r_t)$, where V_k are vehicle states, and $r_t = (u_t, i_t, d_t)$ is the t-th element of $\mathcal{D}(U)$

Online Decisions: Scheduling Policies

At each state S_t , $t \in \{1, ..., T\}$, a scheduling policy prescribes:

- **1** Acceptance decision: accept or reject request r_t
- **2** Assignment decision: if r_t is accepted, assign r_t to a vehicle k
- **Routing** decision: when r_t is assigned to vehicle k, define how route θ_k is adjusted (in case $V_k = (\tau_k, \theta_k)$) or initialized (in case $V_k = \emptyset$) to accommodate r_t

Online Decisions: Routing Policies

Consider a request r=(u,i,d) and a vehicle state V=(au, heta)

Definition (Cheapest Insertion (CI) Routing Policy $\rho_{\rm CI})$

Routing policy $\rho_{\rm Cl}$ inserts r into θ by cheapest insertion, creating a new route $\rho_{\rm Cl}(\theta,r)$

 $\rightarrow \ \mathsf{Polynomial} \ \mathsf{time}$

Definition (Reoptimization Routing Policy ρ_{R})

Routing policy $\rho_{\rm R}$ inserts r into θ , creating a new route $\theta'=\rho_{\rm R}(\theta,r)$ such that the budget $b(\tau,\theta')$ is maximized

 \rightarrow NP-hard

Online Decisions: State Transitions

- Let \mathcal{X}_t be the set of possible decisions when at state S_t
- lacksquare A policy π maps each possible state S_t to a decision $X^\pi(S_t) \in \mathcal{X}_t$
- State transition:

$$S_{t+1} = S^M(S_t, x_t, r_{t+1})$$

 Decisions must be taken in "real-time" (i.e., in seconds, not minutes)

MDP Model: Rewards and Objective

Rewards:

$$R(S_t, x) = \begin{cases} 1 & \text{if } x \in \mathcal{X}_t \text{ is an 'accept' decision} \\ 0 & \text{otherwise} \end{cases}$$

Objective:

$$\max_{\pi \in \Pi, \mathbf{y} \in \mathcal{F}} \mathbb{E}\left[\mathbb{E}\left[\sum_{t=1}^{T} R(S_t, X^{\pi}(S_t)) \middle| S_1\right]\right]$$

where Π is the set of feasible policies and ${\mathcal F}$ is the set of feasible initial plans

Methodology

Online decisions:

- Potential-based policy (PbP)
- Simplified PbP (S-PbP)

Offline decisions:

- Myopic plan
- Potential-based plan

Potential of a State

Given a policy π , the potential of a state S_t is the expected reward-to-go:

$$\Phi_{\pi}(S_t) = \mathbb{E}\left[\sum_{t'=t}^T R(S_{t'}, X^{\pi}(S_{t'})) \middle| S_t\right] \qquad t \neq 0$$

Given an approximation $\hat{\Phi}_{\pi^*}(S_t) \approx \Phi_{\pi}(S_t)$ and a set of candidate decisions $\tilde{\mathcal{X}}_t$, we prescribe decisions by evaluating potentials:

$$X^{\pi}(S_t) = \underset{x \in \tilde{\mathcal{X}}_{\star}}{\operatorname{arg \, max}} \ R(S_t, x) + \mathbb{E}\left[\hat{\Phi}_{\pi^*}(S_{t+1}) \middle| x\right]$$

•

Towards an Approximation Model: Challenges

Goal:

■ Estimate the potential $\Phi_{\pi^*}(S_t)$ of the optimal policy π^* for any given state S_t

What we have available:

• We can sample trajectories $\Omega = \{\omega_1, \dots, \omega_H\}$ from the spatiotemporal request distribution

Two main challenges must be overcome:

- How to estimate the minimum budget required for serving a (stochastic) future request?
- How to handle the "competition" of vehicles to serve requests?

Towards an Approximation Model: Challenges

Towards an Approximation Model: Two Remarks

Remark 1 (Late Depot Arrival)

Since the goal is to maximize the number of accepted requests, drivers return to the depot at an instant near the end of the service period

Remark 2 (Request Order Preservation)

The relative order of scheduled requests does not change (CI policy), or changes only slightly (reopt. policy), when a new request is assigned to a route

Modeling Insight: Effective Vehicle Speed

Remarks 1 and 2 suggest the concept of **effective speed**:

Definition (Effective Vehicle Speed)

At instant u, the effective speed of a vehicle k with state $V_k = (\tau_k, \theta_k)$ is the speed such that k arrives at the depot exactly at instant U, provided that V_k never changes

To predict the location of vehicle k at a future instant u' > u, we simulate route θ_k under the effective speed for an amount of time u' - u

Modeling Insight: Assignment Costs

We now have a good prediction of where vehicle k will be at any future instant u'. Next, we determine:

$$\mathcal{V}_{u_t}(V_k, u')$$
 (Predicted) set of nodes along θ_k not yet traversed by vehicle $V_k = (\tau_k, \theta_k)$ at a future instant u'

Finally: the min cost (or budget consumption) when assigning a future request r' = (u', i', d') to vehicle k is approximated by:

$$c_{u_t}(V_k, r') = \min_{j \in \mathcal{V}_{u_t}(V_k, u')} t(j, i') + t(i', j) + d'$$

Multiple-Knapsack Approximation of the Potential

Given H sample paths $\Omega = \{\omega_1, \dots, \omega_H\}$ for the remaining horizon:

$$\mathbb{E}[\Phi_{\pi^*}(S_{t+1})|x_t] \approx \hat{\Phi}_{\pi^*}(S_{t+1}|x_t) = \frac{1}{H} \sum_{\omega \in \Omega} \phi_{\pi^*}^{\omega}(S_{t+1}|x_t)$$

where

$$\phi^{\omega}_{\pi^*}(S_{t+1}|x_t) = \max \qquad \sum_{k \in \overline{K}} \sum_{r \in \omega} z_{kr}$$
 s.t.
$$\sum_{r \in \omega} c_{u_t}(V_k, r) z_{kr} \le b(\tau_k, \theta_k) \qquad k \in \overline{K}$$

$$\sum_{k \in \overline{K}} z_{kr} \le 1 \qquad r \in \omega$$

$$0 \le z_{kr} \le 1 \qquad k \in \overline{K}, r \in \omega$$

Potential-based Policy

Given routing policy $\rho \in {\{\rho_{\text{CI}}, \rho_{\text{R}}\}}$. Upon arrival of $r_t = (u_t, i_t, d_t)$:

- Initialize a set of candidate decisions $\tilde{\mathcal{X}}_t = \{\tilde{\mathbf{x}}_t^-\}$ with the 'reject' decision $\tilde{\mathbf{x}}_t^-$ related to request r_t
- 2 If it is feasible to serve r_t with vehicle k under a given routing policy ρ , add the corresponding decision \tilde{x}_t^k to set $\tilde{\mathcal{X}}_t$
- 3 Compute $\hat{\Phi}_{\pi^*}(S_{t+1}|\tilde{x}_t)$ for each $\tilde{x}_t \in \tilde{\mathcal{X}}_t$, and select the decision with highest expected reward

Potential-based Policy: Discussion

Pros:

- Accuracy: MPE of $\pm 2.5\%$ on most instances, from u=0
- Fast: requires the solution of H(K+1) linear programs (LPs)
- Zero tunable parameters

Cons:

- Not so fast: for very large K and very high request rate, it takes a while to solve all LPs
- The simplified PbP (S-PbP) trades-off accuracy by efficiency

What sort of policy is that?

- http://tinyurl.com/Powelllookaheadpolicies
- Stochastic lookahead policy with <u>sampling</u>, <u>stage aggregation</u>, latent variables and policy approximation

Benchmark Policies

- Greedy policies: GP_{CI} and GP_R
 - Accept all feasible requests; with and without reoptimization
- Rollout: R_{CI} - $GP_{CI}(H)$ and R_{R} - $GP_{CI}(H)$
 - lacktriangle H sample paths, $\mathsf{GP}_{\mathsf{CI}}$ as base policy
- \blacksquare Policy function approximation: $\mathsf{PFA}_{\mathsf{CI}}$ and $\mathsf{PFA}_{\mathsf{R}}$
 - Single parameter (trained offline) trades off immediate reward and reward-to-go
- Rollout: R_{CI} -PFA $_{CI}(H)$ and R_{R} -PFA $_{CI}(H)$
 - \blacksquare *H* sample paths, PFA_{CI} as base policy

Computational Study

- Real street network of Vienna (16,080 nodes and 36,424 arcs)
- Service period: 10 hours
- Number of vehicles: $K \in \{2, 3, 5, 6, 10, 12, 20\}$
- Request rate (per minute): $\Lambda \in \{0.2, 0.4, 0.8, 1.5\}$
 - Smallest instances larger than most instances from previous works
- Degree of dynamism: $\eta \in \{75\%, 85\%, 90\%, 95\%\}$
- Three spatiotemporal request distributions:
 - Uniform, time-independent (UTI)
 - Clustered, time-independent (CTI)
 - Clustered, time-dependent (CTD)

Instances, Policies and Offline Planners Simulated

Instance parameters				3		Algorithms		
Λ	η	K	Dist.	Scen.	Offline	Online	Simulations	
0.2	0.75	2, 3	UTI CTI CTD	5	MY PB	$\begin{aligned} & GP_{_{CI}}, GP_{_{R}}, R_{_{CI}}\text{-}GP_{_{CI}}(10, 25, 50, 100), \\ & R_{_{R}}GP_{_{CI}}(10, 25, 50, 100), PFA_{_{CI}}, PFA_{_{R}}, \\ & R_{_{R}}\text{-}PFA_{_{CI}}(25, 50, 100)^*, S\text{-}PbP, PbP \end{aligned}$	12,270	
0.4	0.85	3, 5	UTI CTI CTD	5	MY PB	$\begin{split} & \text{GP}_{\text{\tiny Cl}}, \text{GP}_{\text{\tiny R}}, \text{R}_{\text{\tiny Cl}}\text{-GP}_{\text{\tiny Cl}}(10, 25, 50, 100), \\ & \text{R}_{\text{\tiny R}}\text{-GP}_{\text{\tiny Cl}}(10, 25, 50, 100), \text{PFA}_{\text{\tiny Cl}}, \text{PFA}_{\text{\tiny R}}, \\ & \text{R}_{\text{\tiny R}}\text{-PFA}_{\text{\tiny Cl}}(25, 50, 100)^*, \text{S-PbP}, \text{PbP} \end{split}$	12,270	
0.8	0.90	6, 12	UTI CTI CTD	5	PB	$\begin{aligned} & \operatorname{GP}_{\operatorname{cl}}, \operatorname{GP}_{\operatorname{R}}, \operatorname{PFA}_{\operatorname{cl}}, \operatorname{PFA}_{\operatorname{R}}, \\ & \operatorname{R}_{\operatorname{cl}}\text{-}\operatorname{GP}_{\operatorname{cl}}(10), \operatorname{R}_{\operatorname{R}}\text{-}\operatorname{GP}_{\operatorname{cl}}(10), \\ & \operatorname{R}_{\operatorname{R}}\text{-}\operatorname{PFA}_{\operatorname{cl}}(10), \operatorname{S-PbP}, \operatorname{PbP} \end{aligned}$	3,210	
1.5	0.95	10, 20	UTI	1**	РВ	$\begin{aligned} & \text{GP}_{\text{Cl}}, \text{GP}_{\text{R}}, \text{PFA}_{\text{Cl}}, \text{PFA}_{\text{R}}, \\ & \text{R}_{\text{Cl}}\text{-GP}_{\text{Cl}}(10), \text{R}_{\text{R}}\text{-GP}_{\text{Cl}}(10), \\ & \text{R}_{\text{R}}\text{-PFA}_{\text{Cl}}(10), \text{S-PbP}, \text{PbP} \end{aligned}$	214	

Potential-based vs Myopic Plans

Average number of accepted requests:

Policy	Myopic Plan	Potential-based Plan	Diff
GP _{CI}	54.1	61.2	13.0%
GP _R	54.9	62.7	14.1%
R_{cl} - $GP_{cl}(10)$	63.0	66.2	5.1%
R_{cl} - $GP_{cl}(25)$	65.8	69.4	5.4%
R_{cl} - GP_{cl} (50)	67.3	71.1	5.6%
$R_{CI} - GP_{CI}(100)$	68.2	72.1	5.8%
R_R - $GP_{CI}(10)$	63.4	67.2	6.1%
R_R - $GP_{CI}(25)$	66.2	70.7	6.7%
R_R - $GP_{CI}(50)$	67.7	72.2	6.8%
R_R - $GP_{CI}(100)$	68.5	73.3	7.0%
S-PbP(50)	72.0	75.2	4.4%
PbP (50)	72.9	77.2	5.9%
PFA _{CI}	61.3	71.8	17.1%
PFA _R	62.1	72.6	16.9%
Avg	66.4	72.4	9.0%

Policy Comparison ($\Lambda \in \{0.2, 0.4\}$)

Policy Comparison ($\Lambda \in \{0.8, 1.5\}$)

Acceptance Profiles

M

Multiple-Knapsack Potential Approximations

Conclusions

- Main contributions and takeaways:
 - Expected reward-to-go can be accurately and efficiently approximated by knapsack models
 - Accurate potential approximations enable high-performing scheduling policies, which outperform classical ADP methods traditionally used for DVRPs such as rollout algorithms and PFA
 - Coverage of the service area is more important than budget alone
- Possible extensions and future research:
 - Vehicle capacity, time windows, (self-imposed) time window assignments
 - Pickup and delivery
 - Reassignment of requests among vehicles (more complex)

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754462

Computational experiments were performed on the Dutch national e-infrastructure with the support of SURF Cooperative

Geographical data for Vienna are copyrighted to OpenStreetMap contributors and available at http://openstreetmap.org

34 / 35

Questions & Discussions