Algebra Linear Computacional COC473 - Lista $3\,$

Bruno Dantas de Paiva DRE: 118048097

September 24, 2020

1 Questão 1

Figure 1: Obtenção do polinômio de interpolação para a matriz $1\,$

2- 1 1 1 1 1 1 1 2 4 8 2 1 3 9 27 9	7 14 + 24 - 2, 0		13 + 13 /2 13 + 13 - 12 14 + 14 - 3 L2
00 1 6 3	1 24 + 24/2 : 3 44 + 24 - 323 6	0 1 3 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$Y = 8 - 35 \times + 5x^{2} - x^{3}$ $3 = 24 - 8$ $3 = 3 - 45$ $3 = 24 - 8$			

Figure 2: Obtenção do polinômio de interpolação para a matriz $2\,$

3 Questão 3

Figure 3: Ajuste para a função da questão $3\,$

Figure 4: Solução da função interpoladora utilizando o método de lagrange

Figure 5: Obtenção de um polinômio quadrático para a matriz 2

6 Questão 6

6.1 Usando a função da questão 1

$$y = 6 - 8x + 3x^2 \tag{1}$$

Substituindo os valores desejados à função, obtem-se que:

$$y = 6 - 8 * 3.5 + 3 * 3.5^{2} \tag{2}$$

$$y = 6 - 28 + 3 * 12.25 \tag{3}$$

$$y = 14.75 \tag{4}$$

6.2 Usando a função da questão 2

$$y = 8 - \frac{35}{3}x + 5x^2 - \frac{1}{3}x^3 \tag{5}$$

Substituindo os valores desejados à função, obtem-se que:

$$y = 8 - \frac{35}{3} * 3.5 + 5 * 3.5^{2} - \frac{1}{3} * 3.5^{3}$$
 (6)

$$y = 8 - 40.833 + 5 * 12.25 - 14.291 \tag{7}$$

$$y = 14.126$$
 (8)

6.3 Usando a função da questão 3

$$y = e^{-0.2658} + x^{2.1865} (9)$$

Substituindo os valores desejados à função, obtem-se que:

$$y = 0.766 + 3.5^{2.1865} \tag{10}$$

$$y = 16.24 (11)$$

6.4 Usando a função da questão 4

$$y = 8 - \frac{35}{3}x + 5x^2 - \frac{1}{3}x^3 \tag{12}$$

Substituindo os valores desejados à função, obtem-se que:

$$y = 8 - \frac{35}{3} * 3.5 + 5 * 3.5^{2} - \frac{1}{3} * 3.5^{3}$$
(13)

$$y = 8 - 40.833 + 5 * 12.25 - 14.291 \tag{14}$$

$$y = 14.126 (15)$$

6.5 Usando a função da questão 5

$$y = 6 - 8x + 3x^2 (16)$$

Substituindo os valores desejados à função, obtem-se que:

$$y = 6 - 8 * 3.5 + 3 * 3.5^{2} \tag{17}$$

$$y = 6 - 28 + 3 * 12.25 \tag{18}$$

$$y = 14.75$$
 (19)

Figure 6: Utilização de MMQ para obter os parâmetros a e b

8 Questão 8

Essa funçao utiliza algumas funçoes que foram colocadas nas listas anteriores além da funçao que constrói a matriz P para ser utilizada no MMQ, conforme é observada abaixo:

```
def build_mmq_p_matrix(vector_x):
    number_of_rows = len(vector_x);
    result_matrix = [[1 for x in range(2)] for y in range(number_of_rows)]
    for i in range(number_of_rows):
        result_matrix[i][1] = vector_x[i];

return result_matrix
```

Resolução:

bdantas@Oracle:~/Área de Trabalho/ALC_Lists/List_3\$ python3 main.py [0.099999999999876, 1.090000000000005]

Figure 7: Obtenção do MMQ, utilizando uma função AX=B para os dados da questão 7