Wydział	Imię i nazwisko		Rok	Grupa	Zespół
	1. Michał Rogo	owski			
WFiIS	2. Ihnatsi Yern	nakovich	II	10	02
PRACOWNIA	Temat	Temat			Nr ćwiczenia
ELEKTRONICZNA					
WFiIS AGH	Filtry bierne i aktywne			03	
Data wykonania	Data oddania	Zwrot do poprawy	Data oddania	Data zaliczenia	OCENA
28.04.2022	12.05.2022				

Filtry bierne i aktywne

Ćwiczenie nr 03

Michał Rogowski

Ihnatsi Yermakovich

1	Cel	ćwiczenia	2
2	Prz	zebieg ćwiczenia	2
3	$\mathbf{W}\mathbf{y}$	vniki	2
	3.1	Filtr dolnoprzepustowy bierny I-rzędu (RC)	2
		3.1.1 Wyznaczenie charakterystyki amplitudowej $K_u = f(f)$	3
		3.1.2 Odpowiedź układu na skok jednostkowy	4
	3.2	Filtr górnoprzepustowy bierny I-rzędu (CR)	6
		3.2.1 Wyznaczenie charakterystyki amplitudowej $K_u = f(f)$	6
		3.2.2 Odpowiedź układu na skok jednostkowy	8
	3.3	Filtr pasmowo-przepustowy	10
		3.3.1 Wyznaczenie charakterystyki amplitudowej $K_u = f(f)$	10
		3.3.2 Odpowiedź układu na skok jednostkowy	12
	3.4	Filtr dolnoprzepustowy aktywny II rzędu (Krytyczny)	14
		3.4.1 Wyznaczenie charakterystyki amplitudowej $K_u = f(f)$	15
		3.4.2 Odpowiedź układu na skok jednostkowy	17
	3.5	Filtr dolnoprzepustowy aktywny II rzędu (Butterwortha)	18
		3.5.1 Wyznaczenie charakterystyki amplitudowej $K_u = f(f)$	19
		3.5.2 Odpowiedź układu na skok jednostkowy	21

1 Cel ćwiczenia

Celem ćwiczenia było zbadanie charakterystyk i odpowiedzi na skok jednostkowy filtrów pracujących w różnych konfiguracjach układowych. Wyznaczyliśmy doświadczalnie amplitudowe charakterystyki częstotliwościowe oraz obserwowaliśmy odpowiedzi układów na sygnał napięciowy skoku jednostkowego.

2 Przebieg ćwiczenia

Naszym zadaniem było wyznaczenie charakterystyki amplitudowej dla sygnału sinusoidalnego o małej amplitudzie oraz dokonanie pomiarów odpowiedzi układu dla sygnału prostokątnego o małej amplitudzie. Wszystkie zastosowane konfiguracje były zasilane napięciem symetrycznym +/-15V. Rozpatrzyliśmy następujące filtry:

- Filtr dolnoprzepustowy bierny I-rzędu (RC)
- Filtr górnoprzepustowy bierny I-rzędu (CR)
- Filtr pasmowo-przepustowy o tej samej czestotliwości granicznej
- Filtry dolnoprzepustowe aktywne II-rzędu (Krytyczny i Butterwortha)

Do ćwiczenia wykorzystaliśmy płytkę PCB schemat której jest widoczny na poniższym rysunku:

Rysunek 1: Schemat zestawu do ćwiczenia

3 Wyniki

3.1 Filtr dolnoprzepustowy bierny I-rzędu (RC)

Rysunek 2: Schemat filtru dolnoprzepustowego I rzędu

Układ skonfigurowaliśmy korzystając z filtru dolnoprzepustowego I rzędu tak jak na powyższym schemacie (rys.2), skorzystaliśmy również z płytki PCB (rys.1). Filtr wykorzystany w doświadczeniu miał następujące parametry: $R=20\,k\Omega,\,C=2.2\,nF,\,$ a stała czasowa $\tau=44\,\mu s.$ Amplituda sygnału na wejściu filtru wynosiła 97.5 mV.

3.1.1 Wyznaczenie charakterystyki amplitudowej $K_u = f(f)$

Wyznaczyliśmy charakterystykę amplitudową K_u =f(f) o przebiegu sinusoidalnym. Dokonaliśmy serii pomiarów amplitud sygnału wyjściowego dla częstotliwości z przedziału od 300 Hz do 200 kHz. Pomiary wzmocnienia znajdują się w tabeli poniżej:

Tabela 1: Amplituda sygnału w zależności od częstotliwości

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
0,3	96,800	-0,0626
1,0	94,200	-0,2991
2,0	85,400	-1,1509
3,0	76,200	-2,1410
3,6	70,680	-2,7942
5,0	59,000	-4,3631

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
7,0	46,225	-6,4826
10,0	34,875	-8,9298
20,0	19,000	-14,2050
50,0	7,500	-22,2789
100,0	4,050	-27,6310
200,0	2,150	-33,1313

Wartości wzmocnienia w trzeciej kolumnie są obliczone według poniższego wzoru:

$$G = 20 \cdot \log \left(\frac{U_{out}}{U_{in}} \right) \tag{1}$$

Na podstawie powyższych danych sporządzimy wykres zależności wzmocnienia od częstotliwości:

Rysunek 3: Charakterystyka amplitudowa $K_u = f(f)$ filtru dolnoprzepustowego I rzędu

Wzmocnienie filtru w pasmie przepustowym wynosi -0,0626 dB, co jest ekwiwalentne 0,993 V/V. Otrzymana wartość jest bardzo bliska wartości teoretycznej 0 dB = 1 V/V. Różnica pomiędzy tymi wartościami jest rzędu 0,7%.

W celu uproszczenia analizy zebranych wyników wykonaliśmy symulację filtru dolnoprzepustowego I rzędu w tej samej konfiguracji, co filtr powyżej:

Rysunek 4: Symulacja filtru dolnoprzepustowego I rzędu

Zauważmy podobieństwo charakterystyki teoretycznej do rzeczywistej. Częstotliwość graniczna została obliczona z następnego wzoru:

$$f_g = \frac{1}{2\pi RC} = \frac{1}{2 \cdot \pi \cdot 20 \times 10^3 \cdot 2, 2 \times 10^{-9}} = 3617, 16 \ (Hz) \approx 3.6 \ (kHz)$$
 (2)

Teraz możemy przeanalizować otzymane wartości wzmocnienia dla częstotliwości granicznej. Teoretyczna wartość wynosi -3 dB, natomiast podczas eksperymentu otrzymaliśmy -2,79 dB. Zatem różnica pomiędzy tymi wartościami jest równa 7%.

Następnie rozpatrzymy nachylenie asymptotyczne charakterystyki w pasmie zaporowym. Wartość teoretyczna odczytana z (rys. 4) wynosi -20 dB na dekadę, natomiast otrzymaliśmy -18.73 db na dekadę. Zatem różnica pomiędzy tymi wartościami wynosi 6,35%.

Różnicy w otrzymanych wartościach mogą między innymi być spowodowane zastosowaniem rzeczywistego wzmacniacza (np. rzeczywisty wzmacniacz ma rezystancje skończone) oraz zaszumieniem wyjściowego sygnału, o czym wspominaliśmy podczas ćwiczenia.

3.1.2 Odpowiedź układu na skok jednostkowy

Dokonaliśmy pomiaru odpowiedzi układu podając sygnał na wejściu o małej amplitudzie, okresie $1\,ms$ oraz o przebiegu prostokątnym. Odczytaliśmy kilkanaście punktów (napięcie oraz czas) na narastającym odcinku odpowiedzi filtru. Zebrane pomiary znajdują się w tabeli poniżej:

Tabela 2: Amplituda sygnału na wyjściu w zależności od czasu narastania

$\Delta x \ [\mu s]$	$\Delta y \text{ [mV]}$
5,0	9,1
10,0	19,2
12,6	24,0
15,0	28,2
17,6	32,3
20,2	36,4
23,6	41,1
26,8	45,3

$\Delta x \ [\mu s]$	$\Delta y \; [\text{mV}]$
30,8	50,2
35,0	54,4
39,8	59,3
44,4	63,4
51,0	68,3
61,4	74,5
78,8	82,6

Na podstawie zebrancych wyników sporządzimy wykres oraz dopasujemy zależność eksponencjalną:

Rysunek 5: Wyznacznie stałej czasowej dopasowując krzywą $A\left(1-e^{-\frac{t}{\tau}}\right)$

Z wykresu odczytamy wartość stałej czasowej. Wyniosła ona 42,5 μs . Wartość teoretyczna dla filtra o takich parametrach podana w opisie ćwiczenia wynosi 44 μs . Zatem wyniki te różnią się o 3,4%, co świadczy o prawidłowo wykonanym ćwiczeniu.

3.2 Filtr górnoprzepustowy bierny I-rzędu (CR)

Rysunek 6: Schemat filtru górnoprzepustowego I rzędu

Układ skonfigurowaliśmy korzystając z filtru górnoprzepustowego I rzędu tak jak na powyższym schemacie (rys. 6), skorzystaliśmy również z płytki PCB (rys. 1). Filtr wykorzystany w doświadczeniu miał następujące parametry: $C=2.2\,nF,\ R=20\,k\Omega,$ a stała czasowa $\tau=44\,\mu s.$ Amplituda sygnału na wejściu filtru wyniosła 97.5 mV.

3.2.1 Wyznaczenie charakterystyki amplitudowej $K_u = f(f)$

Wyznaczyliśmy charakterystykę amplitudową K_u =f(f) o przebiegu sinusoidalnym. Dokonaliśmy serii pomiarów amplitud sygnału wyjściowego dla częstotliwości z przedziału od 100 Hz do 300 kHz. Pomiary wzmocnienia znajdują się w tabeli poniżej:

Tabela 3: Amplituda sygnału w zależności od częstotliwości

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
0,1	2,675	-31,2336
0,3	6,475	-23,5553
0,5	13,000	-17,5012
1,0	24,950	-11,8387
2,0	45,225	-6,6725
3,6	66,925	-3,2683

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
5,0	77,350	-2,0109
10,0	90,325	-0,6639
20,0	95,425	-0,1868
50,0	97,550	0,0045
100,0	97,550	0,0045
300,0	98,400	0,0798

Wartości wzmocnienia w trzeciej kolumnie są obliczone według poniższego wzoru:

$$G = 20 \cdot \log \left(\frac{U_{out}}{U_{in}} \right) \tag{3}$$

Na podstawie powyższych danych sporządzimy wykres zależności wzmocnienia od częstotliwości:

Rysunek 7: Charakterystyka amplitudowa $K_u=\mathbf{f}(\mathbf{f})$ filtru górnoprzepustowego I rzędu

Wzmocnienie filtru w pasmie przepustowym wynosi 0,079 dB, co jest ekwiwalentne 1,009 V/V. Otrzymana wartość jest bardzo bliska wartości teoretycznej 0 dB = 1 V/V. Różnica pomiędzy tymi wartościami jest rzędu 0,9%.

W celu uproszczenia analizy zebranych wyników wykonaliśmy symulację filtru górnoprzepustowego I rzędu w tej samej konfiguracji, co filtr powyżej:

Rysunek 8: Symulacja filtru górnoprzepustowego I rzędu

Zauważmy podobieństwo charakterystyki teoretycznej do rzeczywistej. Częstotliwość graniczna została obliczona z następującego wzoru:

$$f_g = \frac{1}{2\pi RC} = \frac{1}{2 \cdot \pi \cdot 20 \times 10^3 \cdot 2, 2 \times 10^{-9}} = 3617, 16 \ (Hz) \approx 3.6 \ (kHz)$$
 (4)

Teraz możemy przeanalizować otzymane wartości wzmocnienia dla częstotliwości granicznej. Teoretyczna wartość wynosi -3,03 dB, natomiast podczas eksperymentu otrzymaliśmy -3,268 dB. Zatem różnica pomiędzy tymi wartościami jest równa 7,85%.

Następnie rozpatrzymy nachylenie asymptotyczne charakterystyki w pasmie zaporowym. Wartość teoretyczna odczytana z (rys. 8) wynosi 19,9 dB na dekadę, natomiast otrzymaliśmy 19,153 db na dekadę. Zatem różnica pomiędzy tymi wartościami wynosi 3,75%.

Różnicy w otrzymanych wartościach mogą między innym być spowodowane zastosowaniem rzeczywistego wzmacniacza (np. rzeczywisty wzmacniacz ma rezystancje skończone) oraz zaszumieniem wyjściowego sygnału, o czym wspominaliśmy podczas ćwiczenia.

3.2.2 Odpowiedź układu na skok jednostkowy

Dokonaliśmy pomiaru odpowiedzi układu podając sygnał na wejściu o małej amplitudzie, okresie $1\,ms$ oraz o przebiegu prostokątnym. Odczytaliśmy kilkanaście punktów (napięcie oraz czas) na opadającym odcinku odpowiedzi filtru. Zebrane pomiary znajdują się w tabeli poniżej:

Tabela 4: Amplituda sygnału na wyjściu w zależności od czasu narastania

$\Delta x \ [\mu s]$	$\Delta y \text{ [mV]}$
2,2	92,4
4,6	87,5
6,4	84,0
10,0	77,2
14,8	69,1
18,4	63,5
24,2	55,5
31,2	47,1

$\Delta x \ [\mu s]$	$\Delta y \; [\text{mV}]$
41,2	37,3
45,8	33,5
51,8	29,2
64,4	21,8
72,4	18,2
82,4	14,4
101,8	9,3
113,8	7,1

Na podstawie zebrancych wyników sporządzimy wykres oraz dopasujemy zależność eksponencjalną:

Rysunek 9: Wyznacznie stałej czasowej dopasowując krzywą $Ae^{-\frac{t}{\tau}}$

Z wykresu odczytamy wartość stałej czasowej. Wyniosła ona 43 μs . Wartość teoretyczna dla filtra o takich parametrach podana w opisie ćwiczenia wynosi 44 μs . Zatem wyniki te różnią się o 2,27%, co świadczy o prawidłowo wykonanym ćwiczeniu.

3.3 Filtr pasmowo-przepustowy

Rysunek 10: Schemat filtru pasmowo-przepustowego

Układ skonfigurowaliśmy jako filtr pasmowo-przepustowy tak jak na powyższym schemacie (rys. 10) przy użyciu filtra dolnoprzepustowego I rzędu oraz filtra górnoprzepustowego I rzędu, skorzystaliśmy również z płytki PCB (rys. 1). Filtry wykorzystanr w doświadczeniu miały następujące parametry: $C_1 = 2.2\,nF,\ R_1 = 20\,k\Omega,\ R_2 = 20\,k\Omega,\ C_2 = 2.2\,nF,\ a$ obie stałe czasowe były równe $\tau = 44\,\mu s$. Amplituda sygnału na wejściu filtru wyniosła 97.5 mV.

3.3.1 Wyznaczenie charakterystyki amplitudowej $K_u = f(f)$

Wyznaczyliśmy charakterystykę amplitudową K_u =f(f) o przebiegu sinusoidalnym. Dokonaliśmy serii pomiarów amplitud sygnału wyjściowego dla częstotliwości z przedziału od 100 Hz do 300 kHz. Pomiary wzmocnienia znajdują się w tabeli poniżej:

Tabela 5: Amplituda sygnału w zależności od częstotliwości

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
0,1	2,716	-31,1002
0,5	12,375	-17,9292
1,0	23,875	-12,2212
2,0	40,375	-7,6578
3,6	48,250	-6,1102
4,0	48,250	-6,1102

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
10,0	33,425	-9,2987
30,0	12,700	-17,7040
50,0	7,850	-21,8827
100,0	4,050	-27,6310
200,0	1,950	-33,9794
300,0	1,200	-38,1965

Wartości wzmocnienia w trzeciej kolumnie są obliczone według poniższego wzoru:

$$G = 20 \cdot \log \left(\frac{U_{out}}{U_{in}} \right) \tag{5}$$

Na podstawie powyższych danych sporządzimy wykres zależności wzmocnienia od częstotliwości:

Rysunek 11: Charakterystyka amplitudowa $K_u = f(f)$ filtru pasmowoprzepustowego

Wzmocnienie filtru w pasmie przepustowym wynosi -6,11 dB, co jest ekwiwalentne 0,495 V/V. Otrzymana wartość jest bardzo bliska wartości teoretycznej -6,02 dB = 0.5 V/V. Różnica pomiędzy tymi wartościami jest rzędu 1%.

W celu uproszczenia analizy zebranych wyników wykonaliśmy symulację filtru pasmowoprzepustowego w tej samej konfiguracji, co filtr powyżej:

Rysunek 12: Symulacja filtru dolnoprzepustowego I rzędu

Zauważmy podobieństwo charakterystyki teoretycznej do rzeczywistej. Częstotliwość graniczna została obliczona z następującego wzoru:

$$f_g = \frac{1}{2\pi R_1 C_1} = \frac{1}{2\pi R_2 C_2} = \frac{1}{2 \cdot \pi \cdot 10 \times 10^3 \cdot 2, 2 \times 10^{-9}} = 3617, 16 \ (Hz) \approx 3.6 \ (kHz)$$
 (6)

Następnie rozpatrzymy nachylenie asymptotyczne charakterystyki w pasmie zaporowym. Wartość teoretyczna w tym szczególnym przypadku odczytana z (rys. 12) jest równa co do wartości bezwzględnej po lewej i po prawej stronie i wynosi na moduł 20 dB na dekadę, natomiast w rzeczywistym przypadku musimy rozpatrzeć wkład od filtrów dolnoprzepustowego i górnoprzepustowego osobno. Dla lewej części otrzymanej charakterystyki widzimy, że nachylenie wynosi 19 dB na dekadę, co stanowi różnicę z wartością teoretyczną 5%. Dla prawej strony nachylenie wynosi 19.21 dB na dekadę, a różnica z wartością teoretyczną około 3.95%.

Różnice w otrzymanych wartościach mogą między innym być spowodowane zastosowaniem rzeczywistego wzmacniacza (np. rzeczywisty wzmacniacz ma rezystancje skończone) oraz zaszumieniem wyjściowego sygnału, o czym wspominaliśmy podczas ćwiczenia.

3.3.2 Odpowiedź układu na skok jednostkowy

Dokonaliśmy pomiaru odpowiedzi układu podając sygnał na wejściu o małej amplitudzie, okresie $1\,ms$ oraz o przebiegu prostokątnym. Odczytaliśmy kilkanaście punktów (napięcie oraz czas) na narastającym odcinku odpowiedzi filtru. Zebrane pomiary znajdują się w tabeli poniżej:

Tabela 6: Amplituda sygnału na wyjściu w zależności od czasu narastania

$\Delta x \ [\mu s]$	$\Delta y [\text{mV}]$
2,6	3,350
5,2	8,850
8,0	13,850
12,4	20,575
14,8	23,775
18,4	26,600
28,2	33,400
35,2	35,450
40,0	35,850
50,2	35,480
61,2	33,025

$\Delta x [\mu s]$	$\Delta y \text{ [mV]}$
72,8	29,800
81,2	27,000
87,4	24,775
100,8	21,150
114,1	16,875
128,4	13,325
149,6	9,300
157,0	9,100
168,6	7,325
192,2	3,400
233,0	1,775

Na podstawie zebrancych wyników sporządzimy wykres w celu określenia stałej czasowej:

Rysunek 13: Wyznacznie stałej czasowej

W celu uproszczenia analizy zebranych wyników wykonaliśmy symulację odpowiedzi na skok jednostkowy filtru pasmowoprzepustowego w tej samej konfiguracji, co filtr powyżej:

Rysunek 14: Symulacja odpowiedzi na skok jednostkowy filtru pasmowoprzepustowego

Zauważmy podobieństwo charakterystyki teoretycznej do rzeczywistej. Rzeczywistą wartość czasu dla którego sygnał osiąga maksimum odczytamy z obrazku (rys. 13). Jest ona równa 40 μs . Teoretyczną wartość odczytamy z obrazku (rys. 14). Jest ona równa 44 μs . Zatem różnica pomiędzy tymi wartościami wynosi 9%.

Różnica w otrzymanych wartościach może być spowodowana zaszumieniem wyjściowego sygnału, o czym wspominaliśmy podczas ćwiczenia.

3.4 Filtr dolnoprzepustowy aktywny II rzędu (Krytyczny)

Rysunek 15: Schemat filtru ktytycznego

Układ skonfigurowaliśmy jako filtr dolnoprzepustowy aktywny II rzędu tak jak na powyższym schemacie (rys. 15) przy użyciu filtra o tłumieniu krytycznym, skorzystaliśmy również z płytki PCB (rys. 1). Filtr wykorzystany w doświadczeniu miał następujące parametry: $R_1 = R_2 = 10 \, k\Omega$, $C_1 = C_2 = 1,5 \, nF$. Amplituda sygnału na wejściu filtru wyniosła 66 mV.

3.4.1 Wyznaczenie charakterystyki amplitudowej $K_u = f(f)$

Wyznaczyliśmy charakterystykę amplitudową K_u =f(f) o przebiegu sinusoidalnym. Dokonaliśmy serii pomiarów amplitud sygnału wyjściowego dla częstotliwości z przedziału od 100 Hz do 200 kHz. Pomiary wzmocnienia znajdują się w tabeli poniżej:

Tabela 7: Amplituda sygnału w zależności od częstotliwości

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
0,1	64,800	-0,1594
0,2	65,100	-0,1193
0,3	65,550	-0,0594
0,5	65,550	-0,0594
1,0	64,800	-0,1594
2,0	62,250	-0,5081
3,6	58,050	-1,1148

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
5,0	52,350	-2,0125
10,0	32,950	-6,0338
20,0	14,000	-13,4683
30,0	6,750	-19,8048
40,0	3,700	-25,0268
100,0	0,645	-40,1997
200,0	0,160	-52,3085

Wartości wzmocnienia w trzeciej kolumnie są obliczone według poniższego wzoru:

$$G = 20 \cdot \log \left(\frac{U_{out}}{U_{in}} \right) \tag{7}$$

Na podstawie powyższych danych sporządzimy wykres zależności wzmocnienia od częstotliwości:

Rysunek 16: Charakterystyka amplitudowa $K_u = f(f)$ filtru o tłumieniu krytycznym

Wzmocnienie filtru w pasmie przepustowym wynosi -0,119 dB, co jest ekwiwalentne 0.986 V/V. Otrzymana wartość jest bardzo bliska wartości teoretycznej 0 dB = 1 V/V. Różnica pomiędzy tymi wartościami jest rzędu 1,4%.

W celu uproszczenia analizy zebranych wyników wykonaliśmy symulację filtru o tłumieniu krtytycznym w tej samej konfiguracji, co filtr powyżej:

Rysunek 17: Symulacja filtru krytycznego

Zauważmy podobieństwo charakterystyki teoretycznej do rzeczywistej. Częstotliwość graniczna została obliczona z następnego wzoru:

$$f_g = \frac{1}{2\pi R_1 C_1} = \frac{1}{2\pi R_2 C_2} = \frac{1}{2 \cdot \pi \cdot 10 \times 10^3 \cdot 1, 6 \times 10^{-9}} = 9947, 18 \ (Hz) \approx 9,95 \ (kHz)$$
 (8)

Teraz możemy przeanalizować otzymane wartości wzmocnienia dla częstotliwości granicznej. Teoretyczna wartość wynosi -6,01 dB, natomiast podczas eksperymentu otrzymaliśmy -6,0126 dB. Zatem różnica pomiędzy tymi wartościami jest równa 0,043%.

Następnie rozpatrzymy nachylenie asymptotyczne charakterystyki w pasmie zaporowym. Wartość teoretyczna odczytana z (rys. 17) wynosi -38,5 dB na dekadę, natomiast otrzymaliśmy 38,6317 db na dekadę. Zatem różnica pomiędzy tymi wartościami wynosi 0,34%.

Zauważmy, że w tym ekperymencie otrzymaliśmy bardzo dokładny wynik.

3.4.2 Odpowiedź układu na skok jednostkowy

Dokonaliśmy pomiaru odpowiedzi układu podając sygnał na wejściu o małej amplitudzie, okresie $1\,ms$ oraz o przebiegu prostokątnym. Odczytaliśmy kilkanaście punktów (napięcie oraz czas) na narastającym odcinku odpowiedzi filtru. Zebrane pomiary znajdują się w tabeli poniżej:

Tabela 8: Amplituda sygnału na wyjściu w zależności od czasu narastania

$\Delta x \ [\mu s]$	$\Delta y \; [\text{mV}]$
6,0	5,80
11,0	12,00
16,4	20,50
21,6	28,50
31,0	40,00
37,2	45,50
49,2	53,40
53,8	56,50
57,4	56,80

$\Delta x \ [\mu s]$	$\Delta y \text{ [mV]}$
64,8	59,80
74,8	61,40
93,4	63,50
100,0	64,40
120,0	65,00
140,0	65,50
165,0	65,91
180,0	65,93

Na podstawie zebrancych wyników sporządzimy wykres zależności amplitudy od czasu narastania:

Rysunek 18: Zmierzona odpowiedź na skok jednostokowy

W celu uproszczenia analizy zebranych wyników wykonaliśmy symulację odpowiedzi na skok jednostkowy filtru o wzmocnieniu krytycznym w tej samej konfiguracji, co filtr powyżej:

Rysunek 19: Symulacja odpowiedzi na skok jednostkowy filtru o wzmocnieniu krytycznym

Z wykresów powyżej widzimy podobny kształt oraz podobny czas narastania sygnału. Podczas eksperymentu otrzymaliśmy wartość 172 μs . natomiast wysymulowaliśmy wartość 153 μs . Różnica stanowi około 12%.

3.5 Filtr dolnoprzepustowy aktywny II rzędu (Butterwortha)

Rysunek 20: Schemat filtru ktytycznego

Układ skonfigurowaliśmy jako filtr dolnoprzepustowy aktywny II rzędu tak jak na powyższym schemacie (rys. 20) przy użyciu filtra Butterwortha, skorzystaliśmy również z płytki PCB (rys. 1). Filtr wykorzystany w doświadczeniu miał następujące parametry: $R_1 = R_2 = 10 \, k\Omega$, $C_1 = 2.2 \, nF$, $C_2 = 1.1 \, nF$. Amplituda sygnału na wejściu filtru wyniosła 66 mV.

3.5.1 Wyznaczenie charakterystyki amplitudowej $K_u = f(f)$

Wyznaczyliśmy charakterystykę amplitudową K_u =f(f) o przebiegu sinusoidalnym. Dokonaliśmy serii pomiarów amplitud sygnału wyjściowego dla częstotliwości z przedziału od 100 Hz do 200 kHz. Pomiary wzmocnienia znajdują się w tabeli poniżej:

Tabela 9: Amplituda sygnału w zależności od częstotliwoś	ści
--	-----

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
0,1	64,250	-0,2334
0,2	65,100	-0,1193
0,3	65,550	-0,0594
0,5	65,550	-0,0594
1,0	64,800	-0,1594
2,0	64,800	-0,1594
3,6	63,600	-0,3217
5,0	63,300	-0,3628

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
10,0	45,750	-3,1831
20,0	16,375	-12,1073
30,0	6,975	-19,5200
40,0	4,000	-24,3497
50,0	2,750	-27,6042
100,0	0,670	-39,8694
200,0	0,177	-51,4314

Wartości wzmocnienia w trzeciej kolumnie są obliczone według poniższego wzoru:

$$G = 20 \cdot \log \left(\frac{U_{out}}{U_{in}} \right) \tag{9}$$

Na podstawie powyższych danych sporządzimy wykres zależności wzmocnienia od częstotliwości:

Rysunek 21: Charakterystyka amplitudowa $K_u = f(f)$ filtru Butterwortha

Wzmocnienie filtru w pasmie przepustowym wynosi -0,119 dB, co jest ekwiwalentne 0.986 V/V. Otrzymana wartość jest bardzo bliska wartości teoretycznej 0 dB = 1 V/V. Różnica pomiędzy tymi wartościami jest rzędu 1,4%.

W celu uproszczenia analizy zebranych wyników wykonaliśmy symulację filtru Butterwortha w tej samej konfiguracji, co filtr powyżej:

Rysunek 22: Symulacja filtru Butterwortha

Zauważmy podobieństwo charakterystyki teoretycznej do rzeczywistej. Częstotliwość graniczna została obliczona z następnego wzoru:

$$f_g = \frac{1}{2\pi R\sqrt{C_1C_2}} = \frac{1}{2 \cdot \pi \cdot 10 \times 10^3 \cdot \sqrt{1.1 \times 10^{-9} \cdot 2.2 \times 10^{-9}}} = 10230, 86 \ (Hz) \approx 10, 2 \ (kHz)$$
 (10)

Teraz możemy przeanalizować otzymane wartości wzmocnienia dla częstotliwości granicznej. Teoretyczna wartość wynosi -3 dB, natomiast podczas eksperymentu otrzymaliśmy -3.44 dB. Zatem różnica pomiędzy tymi wartościami jest równa 14%.

Następnie rozpatrzymy nachylenie asymptotyczne charakterystyki w pasmie zaporowym. Wartość teoretyczna odczytana z (rys. 17) wynosi -39,8 dB na dekadę, natomiast otrzymaliśmy 39,26 db na dekadę. Zatem różnica pomiędzy tymi wartościami wynosi 1,35%.

Różnica w otrzymanych wartościach może być spowodowana zaszumieniem wyjściowego sygnału, o czym wspominaliśmy podczas ćwiczenia, lub sposobem opracowania wyników. Analizując wzmocnienie dla częstotliwości granicznej zaokrąglamy wartość wzmocnienia w pasmie przenoszenia do 0, gdyż wynosi ono -0,119 dB. Gdybyśmy dążyli do maksymalnie dokładnego wyniku moglibyśmy stwierdzić, że wzmocnienie w tym punkcie wynosi -3.44 + 0.12 = 3.32 (dB). Wtedy różnica stanowiłaby 10.5%.

3.5.2 Odpowiedź układu na skok jednostkowy

Dokonaliśmy pomiaru odpowiedzi układu podając sygnał na wejściu o małej amplitudzie, okresie $1\,ms$ oraz o przebiegu prostokątnym. Odczytaliśmy kilkanaście punktów (napięcie oraz czas) na narastającym odcinku odpowiedzi filtru. Zebrane pomiary znajdują się w tabeli poniżej:

Tabela 10: Amplituda sygnału na wyjściu w zależności od czasu narastania

$\Delta x \ [\mu s]$	$\Delta y \; [\text{mV}]$
4,4	2,90
7,8	7,20
12,2	15,30
17,6	25,00
20,8	31,30
25,4	39,00
29,4	45,00

$\Delta x \ [\mu s]$	$\Delta y \; [\text{mV}]$
34,8	51,50
39,4	56,50
44,4	60,70
55,0	64,50
64,6	66,20
68,0	67,00
150,0	65,91

Na podstawie zebrancych wyników sporządzimy wykres zależności amplitudy od czasu narastania:

Rysunek 23: Zmierzona odpowiedź filtru Butterwortha na skok jednostokowy

W celu uproszczenia analizy zebranych wyników wykonaliśmy symulację odpowiedzi na skok jednostkowy filtru Butterwortha w tej samej konfiguracji, co filtr powyżej:

Rysunek 24: Symulacja odpowiedzi na skok jednostkowy filtru Butterwortha

Z wykresów powyżej widzimy podobny kształt oraz podobny czas narastania sygnału. Podczas eksperymentu otrzymaliśmy wartość 67 mV jako maksymalną amplitudę, natomiast wysymulowaliśmy wartość 68.9 mV. Różnica stanowi około 2,76%.