Ejercicios Topología

Hugo Del Castillo Mola

27 de octubre de 2022

Índice general

1.	Espacios Topológicos	2
	1.1. Funciones Continuas	2

Capítulo 1

Espacios Topológicos

1.1. Funciones Continuas

Ejercicio 1.1 (27). Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ aplicación. Entonces, $\mathcal{T} = \mathcal{T}_d \Leftrightarrow f$ es continua.

Solución.

$$(\Rightarrow) \ \mathcal{T} = \mathcal{T}_d \Rightarrow \forall A \subset X, A \in \mathcal{T}_d \Rightarrow \forall A' \in \mathcal{T}', f^{-1}(A') \in \mathcal{T} = \mathcal{T}_d.$$

(⇐) ejercicio 26

Ejercicio 1.2 (28). Probar que existen aplicaciones abiertas y cerradas simultaneamente, pero que no son continuas.

Solución (28). Sea (X,\mathcal{T}) , (X,\mathcal{T}') , e.t. tal que $\mathcal{T}=\{\emptyset,X\}$ topología trivial, $\mathcal{T}'=\mathcal{P}(X')$, $\mathbbm{1}:(X,\mathcal{T})\to (X',\mathcal{T}')$ aplicación identidad. Entonces, $\forall A\in\mathcal{T},\mathbbm{1}(A)\in\mathcal{T}'$ y $\forall C$ cerrado de $(X,\mathcal{T}),\mathbbm{1}(C)$ cerrado de (X',\mathcal{T}') . Pero, $\forall A'\in\mathcal{T}':A'\subset X,f^{-1}(A')\not\in\mathcal{T}$.

Ejercicio 1.3 (29). Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ continua, abierta y suprayectiva, \mathcal{B} base de \mathcal{T} . Entonces, $\mathcal{G} = \{f(B) : B \in \mathcal{B}\}$ es base de \mathcal{T}' .

Solución. $\forall A' \in \mathcal{T}' \xrightarrow{f.cont} f^{-1}(A') \in \mathcal{T} \xrightarrow{\mathcal{B} \text{ base de } \mathcal{T}} \exists \mathcal{B}' \subset \mathcal{B} : f^{-1}(A') = \bigcup_{B \in \mathcal{B}'} B \xrightarrow{f \text{ supra.}} f(f^{-1}(A')) = f\left(\bigcup_{B \in \mathcal{B}'} B\right) = \bigcup_{B \in \mathcal{B}'} f(B) \text{ donde } f^{-1}(A') \in \mathcal{T} \xrightarrow{f \text{ ab.}} f(f^{-1}(A')) = A' \in \mathcal{T}' \Rightarrow \mathcal{G} \text{ base de } \mathcal{T}'.$

Ejercicio 1.4 (30). Sean $(X, \mathcal{T}), (X', \mathcal{T}'), (X'', \mathcal{T}'')$ aplicaciones continuas tales que $g \circ f$ es homeomorfismo y g es inyectiva (suprayectiva). Entonces, f y g son homeomorfismos.

Solución. Trivial.

Ejercicio 1.5 (31). Sea
$$(X, \mathcal{T}), (X', \mathcal{T}')$$
 espacios topológicos, $f: (X, \mathcal{T}) \to (X', \mathcal{T}')$ homeomorfismo y $A \subset X: A \cap A' = \emptyset$. Entonces, $f(A) \cap f(A') = \emptyset$.

Solución. Supongamos que $A \cap A' = \emptyset$ y $f(A) \cap f(A') \neq \emptyset$. Entonces, f homeomorfismo \Rightarrow f inyectiva \Rightarrow $f(A \cap A') = f(A) \cap f(A') \neq \emptyset$ pero $f(A \cap A') = f(\emptyset) = \emptyset \Rightarrow f(A \cap A') \neq f(A) \cap f(A')$ contradicción.

Ejercicio 1.6 (32). Sea $(X,\mathcal{T}),(X',\mathcal{T}')$ e.t., $f:(X,\mathcal{T})\to (X',\mathcal{T}')$ aplicación inyectiva y abierta, y $A\subset X$. Entonces, $f|_A:(A,\mathcal{T}|_A)\to (f(A),\mathcal{T}'|_{f(A)})$ es inyectiva y abierta.

Solución. Sea $G \in \mathcal{T}|_A \Rightarrow \exists U \in \mathcal{T} : G = U \cap A \Rightarrow f|_A(G) = f(G) = f(U \cap A) \xrightarrow{f \text{ iny.}} f(U \cap A) = f(U) \cap f(A) \in \mathcal{T}'|_{f(A)}.$

Ejercicio 1.7 (33). Sea
$$\{(X_j, \mathcal{T}_j)\}_{j \in J}$$
 familia no vacía de espacios topoógicos, $A_j \subset X_j, \forall i \in J$. Entonces, $\prod_{j \in J} (\mathcal{T}_j|_{A_j}) = (\prod_{j \in J} \mathcal{T}_j)|_{\prod_{j \in J} A_j}$

Solución.

 $(\Rightarrow) \ \forall B \in \mathcal{B} \ \textit{base de} \ \prod_{j \in J} (\mathcal{T}_j|_{A_j}), \ B = \prod_{j \in J} G_j \ \textit{tal que} \ G_j \in \mathcal{T}_j|_{A_j}, \forall j \in J \ \textit{donde} \ A_j = X_j, \forall j \in J \setminus F, \ \textit{con} \ F \ \textit{finito de manera que}$

$$\forall j \in F, \exists U_j \in \mathcal{T}_j : G_j = U_j \cap A_j$$

$$\forall j \in J \setminus F, \exists U_j = X_j : G_j = U_j \cap A_j = X_j \cap A_j = A_j$$

Como $\prod_{j\in J} U_j \in \prod_{j\in J} \mathcal{T}_j$ (para ver esto escribir la base de $\prod_{j\in J} \mathcal{T}_j$). Entonces,

$$B = \prod_{j \in J} (U_j \cap A_j) = \left(\prod_{j \in J} U_j\right) \cap \left(\prod_{j \in J} A_j\right) \in \left(\prod_{j \in J} \mathcal{T}_j\right)|_{\prod_{j \in J} A_j}$$

 $(\Leftarrow) \ \textit{Sea} \ \mathcal{B}' \ \textit{base} \ \textit{de} \ \big(\prod_{j \in J} \mathcal{T}_j \big) |_{\prod_{j \in J} A_j}, \ \textit{entonces} \ \forall G \in \mathcal{B}', G = B \cap \prod_{j \in J} A_j, B \in \mathcal{B} \ \textit{base} \ \textit{de} \ \prod_{i \in J} \mathcal{T}_j, \ \textit{donde} \ B = \prod_{j \in J} B_j \ \textit{tal que}$

$$B_{j} = \begin{cases} X_{j}, \text{ si } j \in J \setminus F \\ B_{j}, \text{ si } j \in F \end{cases}$$

Ahora,

$$\mathcal{B}' = \{x : J \to \bigcup_{j \in J} X_j : \forall j \in F, x_j \in B_j \cap A_j, B_j \in \mathcal{T}_j \ y$$

$$\forall j \in J \setminus F, x_j \in X_j \cap A_j\}$$

$$= \{\bigcap_{j \in J} p_j^{-1}(B_j') : B_j' \in \mathcal{T}_j|_{A_j}, \forall j \in J\}$$

$$= \{\prod_{j \in J} B_j' : B_j' \in \mathcal{T}_j|_{A_j}\}$$

Por tanto,

$$G = \prod_{j \in J} B'_j \in \prod_{j \in J} (\mathcal{T}_j|_{A_j}).$$

Ejercicio 1.8 (34). *Si* X,Y son e.t. y $A\subset X$, $B\subset Y$, probar que en el espacio $X\times Y$ se verifica

(1)
$$A \overset{\circ}{\times} B = \mathring{A} \times \mathring{B}$$

(II)
$$\overline{A \times B} = \overline{A} \times \overline{B}$$

(III)
$$\operatorname{Fr}(A \times B) = (\overline{A} \times \operatorname{Fr}(B)) \cup (\operatorname{Fr}(A) \times \overline{B})$$

Solución. Sea $(X, \mathcal{T}), (X', \mathcal{T}')$ e.t., $A \subset X, A' \subset X'$. Entonces, $(X \times X', \mathcal{T} \times \mathcal{T}')$ es e.t..

(I)

- $(\Rightarrow) \ \mathring{A} \in \mathcal{T}, \mathring{A}' \in \mathcal{T}'. \ \textit{Como} \ \mathring{A} \times \mathring{A}' \subset A \times A' \in \mathcal{T} \times \mathcal{T}' \ \textit{es abierto,} \\ \textit{tenemos que} \ \mathring{A} \times \mathring{A}' \subset A \overset{\circ}{\times} A' \ \textit{por ser} \ A \overset{\circ}{\times} A' \ \textit{el mayor abierto de} \\ A \times A'.$
- (\Leftarrow) Por la definición de abierto, $A \overset{\circ}{\times} A' = \bigcup \{S \subset X \times X' : S \in \mathcal{T} \times \mathcal{T}', S \subset A \times A'\}$. Por tanto,

$$A \stackrel{\circ}{\times} A' = \bigcup_{j \in J} (U_j \times U'_j)$$

donde $U_j \in \mathcal{T}$, $U_j' \in \mathcal{T}'$ y $U_j \subset A$, $U_j' \subset A', \forall j \in J$. Como $U_j \subset \mathring{A}$ y $U_j' \subset \mathring{A}, \forall j \in J$, entonces

$$\bigcup_{j\in J} (U_j \times U_j') \subset \mathring{A} \times \mathring{A}',$$

es decir, $A \overset{\circ}{\times} A' \subset \mathring{A} \times \mathring{A}'$.

(II)

- $(\Rightarrow) \ \ A \subset \overline{A} \ \ y \ \ A' \subset \overline{A}' \Rightarrow A \times A \subset \overline{A} \times \overline{A}'. \ \ \textit{Como} \ \overline{A \times A'} \ \ \textit{es el menor cerrado que contine a} \ \ A \times A' \ \ \textit{entonces}, \ \overline{A \times A'} \subset \overline{A} \times \overline{A}' \not \in \mathcal{T} \times \mathcal{T}'?.$
- (⇐) A partir de la definición de clausura,

$$\overline{A \times A'} = \bigcap \{C \times C' \subset A \times A' : C \times C' \text{ es cerrado en }, A \times A' \subset C \times C'\}$$

Entonces,

$$\overline{A \times A'} = \bigcap_{j \in J} (G_j \times G'_j)$$

donde G_j cerrado en (X,\mathcal{T}) y G'_j es cerrado en (X',\mathcal{T}') , y $A\subset G_j$ y $A'\subset G'_j, \forall j\in J\Rightarrow \overline{A}\subset G_j$ y $\overline{A}'\subset G'_j, \forall j\in J$. Por tanto,

$$\overline{A} \times \overline{A}' \subset \bigcap_{j \in J} (G_j \times G_j') = \overline{A \times A'}$$

(III)

Ejercicio 1.9 (35). Sea $\{(X_j, \mathcal{T}_j)\}_{j\in J}$ familia no vacía de e.t., $A_j \subset X_j, \forall j \in J$. Entonces, $\prod_{j\in J} A_j$ es denso en $\prod_{j\in J} X_j$ si y solo si A_j es denso en X_j , $\forall j\in J$.

Solución.

 (\Rightarrow) Por ser $\prod_{j\in J}A_j$ denso en $_{j\in J}X_j$, tenemos que

$$\overline{\prod_{j \in J} A_j} =_{j \in J} X_j$$

entonces,

$$X_{j_0} = p_{j_0}(\prod_{j \in J} X_j) = p_{j_0}(\overline{\prod_{j \in J} A_j}) \subset \overline{p_{j_0}(\prod_{j \in J} A_j)} = \overline{A_{j_0}}$$

por tanto, $X_{j_0} = \overline{A_{j_0}} \Rightarrow A_j$ es denso en $X_j, \forall j \in J$.

(\Leftarrow) Sea A_j denso en $X_j, \forall j \in J$. Ahora, $\forall U \in \prod_{j \in J} \mathcal{T}_j \setminus \{\emptyset\}, \exists B \in \mathcal{B}$ base de $\prod_{j \in J} \mathcal{T}_j : B \subset U$, entonces

$$B = \prod_{j \in J} U_j : U_j \in \mathcal{T}_j \quad \text{ y } \quad U_j = X_j, \forall j \in J \setminus F, F \text{ finito}$$

Como A_j es denso en X_j , tenemos que $U_j \cap A_j \neq \emptyset, \forall j \in J$. Por tanto,

$$\emptyset \neq (\prod_{j} U_{j}) \cap (\prod_{j \in J} A_{j}) \subset U \cap (\prod_{j \in J} A_{j})$$

Es decir, $\prod_{j\in J} A_j$ es denso en $\prod_{j\in J} X_j$.

Ejercicio 1.10 (36). Seas $\{(X_j, \mathcal{T}_j)\}_{j \in J}$, $\{(X_j', \mathcal{T}_j')\}_{j \in J}$ familias no vacías de e.t., (X_j, \mathcal{T}_j) es homeomorfo a (X_j', \mathcal{T}_j') , $\forall j \in J$. Entonces, $(\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j)$ es homeomorfo a $(\prod_{j \in J} X_j', \prod_{j \in J} \mathcal{T}_j')$.

Solución. Como $(X_j, \mathcal{T}_j) \simeq (X_j', \mathcal{T}_j')$, entonces $\exists f_j : (X_j, \mathcal{T}_j) \to (X_j', \mathcal{T}_j')$ homeomorfismo. Sea

$$f: (\prod_{j \in J} X_j, \prod_{j \in J} \mathcal{T}_j) \to (\prod_{j \in J} X'_j, \prod_{j \in J} \mathcal{T'}_j)$$
$$f = \prod_{j \in J} f_j = f_1 \times f_2 \times \cdots$$

donde

$$(x_1, x_2, \cdots) \mapsto (f_1(x_1), f_2(x_2), \cdots)$$

Entonces, f_j continua $\forall j \in J \Rightarrow f$ continua y f_j^{-1} continua $\forall j \in J \Rightarrow f^{-1}$ continua, ya que

$$\prod_{j \in J} (f_j^{-1}) = (\prod_{j \in J} f_j)^{-1}$$

Ejercicio 1.11 (37). Sea $\{(X_j, \mathcal{T}_j)\}_{j \in J}$. Probar que los subconjuntos de un espacio producto finito $X = X_1 \times \cdots \times X_n$ de la forma $G_1 \times \cdots \times G_n$ donde cada $G_j \in \mathcal{T}_j$ forman una base de $X = \prod_{j \in J} X_j$.

Solución. A partir de la base para un espacio producto arbitario.

$$\mathcal{B} = \{ \prod_{j \in J} G_j : G_j \in \mathcal{T}_j, \forall j \in J \text{ y } G_j = X_{j \in J}, \forall j \in J \setminus F, F \text{ finito } \}$$

donde J es finito, $J = \{1, \dots, n\}$. Entoces,

$$\mathcal{B} = \{ \prod_{j \in J} G_j : G_j \in \mathcal{T}_j \}$$

es base de X.

Ejercicio 1.12 (38). En la circunferencia $\mathbb{S}^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$, con la topología usual restringida, se identifican los puntos diametralmente opuestos. Probar que el espacio cociente resultante es homeomorfo al obtenido a partir del intervalo [0,1] identificando los extremos.

Solución. https://math.stackexchange.com/questions/311196/homeomorphism-between-the-real-projective-line-and-a-circle

El obtenido a partir del intervalo [0,1] identificando los extremos es homeomorfo a \mathbb{S}^1 .