Übung 5 – Regler

1. a) Ordnen Sie den Übertragungsfunktionen die untenstehenden Polkonfigurationen zu. Sind die Systeme stabil? Kreuzen Sie die richtigen Zugehörigkeiten in der Tabelle an.

b) Simulation Übertragungsfunktionen mit SIMULINK: Sprungantwort

Übertragungsfunktion	Polkonfiguration?							sta	stabil?	
	a	b	с	d	e	f		ja	nein	
$\frac{3 s - 1}{s^2 + 4 s + 3}$										
$\frac{7}{(s-2)s}$										
$\frac{1}{s^2-4}$										
$\frac{2s}{s^3 + 2s^2 - 3s - 10}$							-			
$\frac{1}{s^2}$										
$\frac{9}{s^2+4}$										
a) ↑ ©		b)	†	©	С)	†	0		
× ×			* *	→		××		→		
d)		e)	†	©	f)		†	©		
			*		-	×	ļ.,	\longleftrightarrow		

2. Plot Nyquist-Ortskurve für folgende Übertragungsfunktionen:

a) 10	b) $3s - 1$	c) 2s
$\overline{s+1}$	$s^2 + 4s + 3$	$s^3 + 2s^2 - 3s - 10$

3. Der Wirkungsplan einer Regelstrecke als Parallelschaltung ist unten gezeigt. Die Parameter der Teilstrecke (PT1-Glied) sind gegeben: K = 3 und $T_1 = 8$ s.

- a) Bestimmen Sie die Übertragungsfunktion der Gesamtstrecke, deren Stellgröße *u* und Regelgröße y ist.
- b) Die Sprungantwort y wird bei dem Sprung der Stellgröße u = 0.5 simuliert und im *Command Window* mit dem Befehl plot(t, y) abgerufen.
- 4. Eine instabile Regelstrecke G(s) soll mit dem P-Regler $G_R(s) = K_{PR}$ geregelt werden, wobei u(t) Eingangs und y(t) Ausgangsgrößen sind.

Der Regelkreis, bestehend aus einer instabilen Regelstrecke:

$$G_1(s) = \frac{K_{PS}}{(1 + T_1 s)(sT_2 - 1)};$$
 $K_{PS} = 4,$ $T_1 = 1 \text{ s},$ $T_2 = 1.5 \text{ s}$

und dem P-Regler $G_R(s) = K_{PR}$

bei $K_{PR} > 0.25 \rightarrow \text{der Kreis wird stabil.}$

bei $K_{PR} \le 0.25 \rightarrow \text{der Kreis wird instabil}$

Die Sprungantwort y wird bei dem Sprung der Stellgröße u = 1 simuliert

5. Das Blockschaltbild einer Regelung der Sendeleistung eines Handy ist mit folgenden Parametern gegeben: $K_{\rm IS} = 0.1 \text{ s}^{-1}$, $K_{\rm PS} = 50 \text{ und } T_{\rm t} = 0.1 \text{ s}$. Prüfen Sie die Stabilität des geschlossenen Kreises, wenn $K_{\rm PR} = 1$ ist.

Die Simulation erfolgt mit folgenden Werten von K_{PR} :

bei $K_{PR} = 1 \rightarrow \text{der Kreis ist stabil.}$

bei $K_{PR} = 3.16 \rightarrow \text{der Kreis ist instabil}$

b)

Musterlösungen Übung 5 – Regler

1. a)

	Polkonfiguration?						stabil?		
Übertragungsfunktionen	а	b	С	d	е	f	ja	nein	
$\frac{3s-1}{s^2+4s+3}$			x				x		
$\frac{7}{(s-2)s}$		x						x	
$\frac{1}{s^2-4}$						x		x	
$\frac{2s}{s^3 + 2s^2 - 3s - 10}$	x							x	
1 s 2					x			x	
$\frac{9}{s^2+4}$				x				x	

- 2. Plot Nyquist-Ortskurve für folgende Übertragungsfunktionen:
- a)

b)

$$\frac{3s-1}{s^2+4s+3}$$

$$\frac{2s}{a^3 + 2a^2}$$

- 3. Die Übertragungsfunktion der Parallelschaltung von zwei Gliedern
- a) $G_1(s) = \frac{K}{1 + T_1 s}$, $G_2(s) = 1$

$$G(s) = G_1(s) + G_2(s) = \frac{K}{1 + sT_1} + 1 = \frac{K + 1 + sT_1}{1 + sT_1}$$

b)

4.

5.

