Bare Demo of IEEEtran.cls for Conferences

Michael Shell School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia 30332–0250 Email: mshell@ece.gatech.edu Homer Simpson
Twentieth Century Fox
Springfield, USA
Email: homer@thesimpsons.com

James Kirk and Montgomery Scott Starfleet Academy San Francisco, California 96678-2391 Telephone: (800) 555–1212 Fax: (888) 555–1212

Abstract—The abstract goes here.

I. INTRODUCÃO

This demo file is intended to serve as a "starter file" for IEEE conference papers produced under LATEX using IEEEtran.cls version 1.6b and later.

May all your publication endeavors be successful.

mds November 18, 2002

II. METODOLOGIA

A. Modelagem do Problema

Inicialmente podemos ver o trabalho como sendo dois problemas mono-objetivo distintos:

- Problema 1: minimização do custo de manutenção total $f_1(\cdot)$
- Problema 2: minimização do custo esperado de falha total $f_2(\cdot)$
- 1) Problema 1: Temos essencialmente um problema de designação simples. Seja N o número de equipamentos e J o número de políticas de manutenção, definimos a variável de decisão x_{ij} por

 x_{ij} : se o equipamento i executa a manutenção j (1) onde

$$x_{ij} \in \{0,1\}$$
 , $i = \{1,2,...,N\}$, $j = \{1,2,...,J\}$

Para a função objetivo, seja c_j o custo de executar a manutenção j. Note que esse custo independe do equipamento i que estamos executando a manutenção. Temos a função objetivo

$$\min f_1 = \sum_{i=1}^{N} \sum_{j=1}^{J} c_j x_{ij}$$
 (2)

sujeito a

$$\sum_{i=1}^{J} x_{ij} = 1 \quad , \quad \forall i = 1, 2, ..., N$$
 (3)

A 3 indica que todo equipamento executa exatamente uma política de manutenção. Além disso, note que solução da 2 é trivial: basta escolher o plano de manutenção com o menor custo para todos os equipamentos.

2) Problema 2: O custo da falha de cada equipamento é dado pelo produto da probabilidade de falha p_{ij} pelo custo da falha do equipamento, dada por d_i . Assim, temos

$$\min f_2 = \sum_{i=1}^{N} \sum_{j=1}^{J} p_{ij} d_i x_{ij}$$
 (4)

onde

$$x_{ij} \in \{0,1\} \quad , \quad i = \{1,2,...,N\} \quad , \quad j = \{1,2,...,J\}$$

$$p_{ij} = \frac{F_i (t_0 + k_j \Delta t) - F_i (t_0)}{1 - F_i (t_0)}$$
 (5)

$$F_i(t) = 1 - \exp\left[-\left(\frac{t}{\eta_i}\right)^{\beta_i}\right] \tag{6}$$

sujeito a

$$\sum_{i=1}^{J} x_{ij} = 1 \quad , \quad \forall i = 1, 2, ..., N$$
 (7)

Note que na Equation 4 temos essencialmente um problema de programação linear inteira. Assim, é possível usar o método Simplex visto em Pesquisa Operacional para resolver esse problema com garantia de otimalidade. Usando o Simplex, a solução encontrada foi

$$\mathbf{x}^* = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 1 \end{bmatrix} , \quad f_2(\mathbf{x}^*) = 1048.17$$

Assim, antes mesmo de começar a implementar o BVNS para resolver os problemas isoladamente, já sabemos as soluções ótimas para eles.

3) Modelagem Multiobjetivo: Juntando as modelagens dos problemas mono-objetivos acima, temos a modelagem multi-objetivo do problema.

$$\min f_1 = \sum_{i=1}^{N} \sum_{j=1}^{J} c_j x_{ij}$$

$$\min f_2 = \sum_{i=1}^{N} \sum_{j=1}^{J} p_{ij} d_i x_{ij}$$

 x_{ij} : se o equipamento i executa a manutenção j sujeito a

$$\sum_{i=1}^{J} x_{ij} = 1 \quad , \quad \forall i = 1, 2, ..., N$$

$$x_{ij} \in \{0,1\}$$
 , $i = \{1,2,...,N\}$, $j = \{1,2,...,J\}$

onde

- N = 500: número de equipamentos
- J=3: número de planos de manutenção
- c_j : custo de executar a manutenção j
- p_{ij}: probabilidade de falha do equipamento i executando a manutenção j
- d_i : custo de falha do equipamento i

e

$$p_{ij} = \frac{F_i (t_0 + k_j \Delta t) - F_i (t_0)}{1 - F_i (t_0)}$$
(8)

$$F_i(t) = 1 - \exp\left[-\left(\frac{t}{\eta_i}\right)^{\beta_i}\right] \tag{9}$$

A partir dessa modelagem, temos o nosso problema multiobjetivo

$$\min \mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}), f_2(\mathbf{x})] \tag{10}$$

Considerando o problema de (10), podemos aplicar duas abordagens escalares para obter a fronteira Pareto-ótima no espaço de objetivos, descritas a seguir.

- B. Formulações para resolução do problema multiobjetivo
- 1) Formulação Soma Ponderada P_w : Seja $0 \le w \le 1$ um peso qualquer gerado aleatóriamente de uma distribução uniforme no intervalo [0,1]. Usando a abordagem da soma ponderada, podemos reescrever (10) na forma de mono-objetivo de

$$\min f_{\mathbf{w}} = \min \mathbf{w} f_1 + (1 - \mathbf{w}) f_2 \tag{11}$$

onde (11) está sujeito às mesmas restrições do problema original. Como (11) é escalar, podemos minimizar $f_{\rm w}$ através de métodos já conhecidos como o Simplex e o BVNS.

2) Formulação ϵ -Restrito P_{ϵ} : Com a abordagem do ϵ -Restrito, vamos minimizar apenas f_1 usando f_2 como restrição. Seja ϵ_2 um real qualquer tal que min $f_2 \le \epsilon_2 \le \max f_2$. Temos

$$\min f_1 \tag{12}$$

sujeito a

$$\begin{cases} f_2 \le \epsilon_2 \\ \sum_{j=1}^{J} x_{ij} = 1 \end{cases}, \quad \forall i = 1, 2, ..., N$$
 (13)

em que (12) possui as mesmas restrições do problema original mais a restrição de $f_2 \le \epsilon_2$.

Contudo, como o BVNS é usado para resolver problemas de otimização irrestritos, precisamos converter (12) em um problema irrestrito. Para isso, adicionamos o termo um termo de penalidade p(x,u) da seguinte forma:

$$p(x, u) = u \max [0, g(x)]^2$$

onde g(x) é a nossa restrição de desigualdade, dada por

$$q(x) < 0 \implies f_2 - \epsilon_2 < 0 \implies q(x) = f_2 - \epsilon_2$$

de modo que o nosso problema irrestrito se torna:

$$\min f_1 + u \, \max \left[0, f_2 - \epsilon_2 \right]^2$$
 (14)

Note que as demais restrições já estão naturalmente incluídas no BVNS devido à maneira como nós fizemos a representação computacional das variáveis de decisão, de modo que só precisamos fazer a correção para a restrição do ϵ em (14).

3) Normalização: Para garantir que as abordagens escalares sejam condizentes, precisamos normalizar f_1 e f_2 através de

$$f_1(\mathbf{x}) = \frac{f_1(\mathbf{x}) - \min f_1}{\max f_1 - \min f_1}$$
, $f_2(\mathbf{x}) = \frac{f_2(\mathbf{x}) - \min f_2}{\max f_2 - \min f_2}$ (15)

A partir do trabalho realizado no TC01, já sabemos que

$$\min f_1 = 0 \tag{16}$$

$$\max f_1 = 1000 \tag{17}$$

$$\min f_2 = 1048.17 \tag{18}$$

$$\max f_2 = 1745.49 \tag{19}$$

de modo que a formulação da soma ponderada de (11) pode ser reescrita como

$$\min\left(\mathbf{w}\frac{f_1(\mathbf{x}) - \min f_1}{\max f_1 - \min f_1} + (1 - \mathbf{w})\frac{f_2(\mathbf{x}) - \min f_2}{\max f_2 - \min f_2}\right)$$

que será usado como função objetivo no código do BVNS.

III. CONCLUSION

The conclusion goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] H. Kopka and P. W. Daly, *A Guide to LTEX*, 3rd ed. Harlow, England: Addison-Wesley, 1999.