Drugi međuispit

13. svibnja 2011.

Ime i Prezime: Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (9 bodova)

Nelinearan je sustav prikazan slikom 1 gdje je C=0.5 a opisna funkcija dvopoložajnog releja $G_N(A)=\frac{4C}{\pi A}$.

Slika 1: Nelinearni sustav upravljanja uz Zadatak 1.

- a) (3.5 boda) Odredite parametre sustava K i T ako se uz otvorenu sklopku S javljaju vlastite oscilacije $u_2(t) = 0.2 \sin(0.2t)$.
- b) (5.5 bodova) Uz određene K i T pod a), odredite nepoznate parametre vlastitih oscilacija, tj. $u_1(t) = A\sin(\omega t)$ i $u_2(t) = B\sin(\omega t + \varphi)$ uz zatvorenu sklopku **S**.

2. zadatak (8 bodova)

Nelinearan je sustav prikazan slikom 2.

Slika 2: Nelinearni sustav upravljanja uz Zadatak 2.

- a) (4.5 bodova) Korištenjem kriterija Popova, odredite klasu nelinearnosti za koju je sustav prikazan slikom 2 stabilan. Odredite područje stabilnosti zatvorenog kruga upravljanja ako se na mjestu nelinearnog elementa nalazi proporcionalni regulator.
- b) (3.5 boda) Korištenjem Goldfarbovog principa, odredite kolika mora biti vremenska konstanta T da ne dođe do pojave vlastitih oscilacija u sustavu prikazanom slikom 2 ako je nelinearni element F(x) kvantizator s kvantizacijskom razinom D. Opisna funkcija kvantizatora je

$$G_N(X_m) = \begin{cases} 0, & X_m < \frac{D}{2} \\ \frac{4D}{\pi X_m} \sum_{k=1}^n \sqrt{1 - \left(\frac{2k-1}{2} \frac{D}{X_m}\right)^2}, & \frac{2n-1}{2}D < X_m < \frac{2n+1}{2}D \end{cases}.$$

3. zadatak (4 boda)

Objasnite princip zamjene ekstremalnog upravljanja formiranjem povratne veze po signalima modela. Pretpostavite da je nelinearna karakteristika procesa simetrična.

4. zadatak (5 bodova)

Nelinearan je krug upravljanja prikazan slikom 3 gdje je opisna funkcija dvopoložajnog releja $G_N(A) = \frac{4C}{\pi A}$. Na ulaz u sustav je doveden harmonički signal oblika

$$f(t) = F_v \sin\left(\frac{t}{T}\right).$$

Odredite za koju minimalnu vrijednost amplitude pobudnog signala F_v dolazi do pojave prinudnih oscilacija ako je K=2 i C=0.7.

Slika 3: Zatvoreni nelinearni krug upravljanja s pobudnim harmoničkim signalom.

RJEŠENJA:

ZADATAK 1

Nelinearan je sustav prikazan slikom 4 gdje je C=0.5 a opisna funkcija dvopoložajnog releja $G_N(A)=\frac{4C}{\pi A}$.

Slika 4: Nelinearni sustav upravljanja uz Zadatak 1.

a) (3.5 boda) Odredite parametre sustava K i T ako se uz otvorenu sklopku \mathbf{S} javljaju vlastite oscilacije $u_2(t) = 0.2\sin{(0.2t)}$.

Za nelinearni sustav (s otvorenom sklopkom) možemo pisati:

$$1 + G_{N1}(A) \frac{K}{(Ts+1)^2} G_{N2}(B) \frac{1}{s} = 0$$

i iz toga slijedi karakteristična jednadžba sustava

$$T^{2}s^{3} + 2Ts^{2} + s + KG_{N1}(A)G_{N2}(B) = 0$$
$$-jT^{2}\omega^{3} - 2T\omega^{2} + j\omega + KG_{N1}(A)G_{N2}(B) = 0$$

Iz imaginarnog dijela se odmah dobije

$$-jT^2\omega^3 + \omega = 0$$

iz čega slijedi

$$T = \frac{1}{\omega} = 5$$

Iz realnog dijela slijedi:

$$-2T\omega^{2} + KG_{N1}(A)G_{N2}(B) = 0$$

$$K = \frac{2T\omega^2}{G_{N1}\left(A\right)G_{N2}\left(B\right)} = 2\omega\left(\frac{\pi}{4C}\right)^2 AB$$

Za izračun nam je potrebna i amplituda vlastitih oscilacija A. Veza između A i B se može dobiti iz veze preko integratora:

$$|u_1| = \left| \frac{1}{s} G_{N2}(B) \right| |u_2|$$

$$A = \frac{1}{\omega} G_{N2}(B) B$$

$$A = \frac{1}{\omega} \frac{4C}{\pi}$$

$$(1)$$

Sada se može odrediti traženo pojačanje K:

$$K = \frac{\pi B}{2C} = 0.6283$$

b) (5.5 bodova) Uz određene K i T pod a), odredite nepoznate parametre vlastitih oscilacija, tj. $u_1(t) = A \sin(\omega t)$ i $u_2(t) = B \sin(\omega t + \varphi)$ uz zatvorenu sklopku **S**.

Kada je sklopka zatvorena, vrijedi sljedeća karakteristična jednadžba nelinearnog sustava:

$$\begin{aligned} u_{1} &= -\frac{1}{s}G_{N2}\left(B\right)u_{2} \\ u_{2} &= \frac{K}{(Ts+1)^{2}}\left[G_{N1}\left(A\right)u_{1} - G_{N2}\left(B\right)u_{2}\right] \\ 1 &= \frac{K}{(Ts+1)^{2}}\left[-\frac{1}{s}G_{N1}\left(A\right)G_{N2}\left(B\right) - G_{N2}\left(B\right)\right] \\ T^{2}s^{3} &+ 2Ts^{2} + s + KG_{N2}\left(B\right)s + KG_{N1}\left(A\right)G_{N2}\left(B\right) = 0 \\ -jT^{2}\omega^{3} - 2T\omega^{2} + j\omega\left[1 + KG_{N2}\left(B\right)\right] + KG_{N1}\left(A\right)G_{N2}\left(B\right) = 0 \end{aligned}$$

Imaginarni dio:

$$T^{2}\omega^{2} = 1 + KG_{N2}(B)$$
$$G_{N2}(B) = \frac{T^{2}\omega^{2} - 1}{K}$$

Realni dio:

$$2T\omega^{2} = K\omega G_{N2}(B)$$
$$G_{N2}(B) = \frac{2T\omega}{K}$$

Kombinacijom imaginarnog i realnog dijela dobije se frekvencija vlastitih oscilacija:

$$T^{2}\omega^{2} - 2T\omega - 1 = 0$$
$$\omega = \frac{1 \pm \sqrt{2}}{T}$$
$$\omega = \frac{1 + \sqrt{2}}{T} = 0.4828$$

Uvrštavanjem u realni dio dobije se:

$$\frac{4C}{\pi B} = \frac{2T\omega}{K}$$

$$B = \frac{2CK}{\pi T\omega}$$

$$B = \frac{2CK}{\pi(1+\sqrt{2})} = 0.0828$$

Amplituda A se jednostavno izračuna iz (1):

$$A = \frac{1}{\omega} \frac{4C}{\pi} = \frac{4CT}{\pi (1 + \sqrt{2})} = 1.3186$$

Kut φ koji se javlja između u_1 i u_2 se odredi kao

$$\angle u_1 = \left(\pi - \frac{\pi}{2}\right) + \angle u_2$$

$$\angle u_2 = \angle u_1 - \frac{\pi}{2}$$

$$\varphi = -\frac{\pi}{2},$$

što je logično budući da su ta dva signala vezana samo preko integratora (i negativnog predznaka).

ZADATAK 2

Nelinearan je sustav prikazan slikom 5.

Slika 5: Nelinearni sustav upravljanja uz Zadatak 2.

a) (4.5 bodova) Korištenjem kriterija Popova, odredite klasu nelinearnosti za koju je sustav prikazan slikom 5 stabilan. Odredite područje stabilnosti zatvorenog kruga upravljanja ako se na mjestu nelinearnog elementa nalazi proporcionalni regulator.

Odredimo imaginarni i realni dio procesa:

$$G(j\omega) = \frac{-jT\omega+1}{-T_2\omega^2+j\omega} = \frac{1}{\omega} \frac{1-jT\omega}{-T_2\omega+j} \frac{-T_2\omega-j}{-T_2\omega-j} = \frac{1}{\omega} \frac{(-T_2-T)\omega+j(TT_2\omega^2-1)}{(T_2\omega)^2+1}$$

Realni dio:

$$U\left(\omega\right) = -\frac{T_2 + T}{\left(T_2\omega\right)^2 + 1}$$

Imaginarni dio:

$$V(\omega) = \frac{TT_2\omega^2 - 1}{\omega\left[\left(T_2\omega\right)^2 + 1\right]}$$

Sada treba nacrtati krivulju $U(\omega) + j\omega V(\omega)$:

$$\omega = 0 \Rightarrow \omega V(\omega) = -1, U(\omega) = -(T_2 + T)$$

$$\omega = \infty \Rightarrow \omega V(\omega) = \frac{T}{T_2}, U(\omega) = 0$$

$$\omega V(\omega) = 0 \Rightarrow \omega = \frac{1}{\sqrt{TT_2}} \Rightarrow U(\omega) = -T$$

Imajući u vidu ove podatke, vidimo da se radi o hodogramu koji počinje u $(-(T_2+T),-1)$, završava u $\left(0,\frac{T}{T_2}\right)$ i siječe realnu os u (-T,0). Da se naslutiti da bi Popov pravac mogao prolaziti kroz točku gdje hodogram siječe ralnu os i da je hodogram uvijek na desno od tog pravca. No, moramo provjeriti da je krivulja konveksna, tj. da se uvijek nalazi s desna od Popovog pravca.

Jednostavnom eliminacijom ω dobije se:

$$\omega V(\omega) = \frac{T}{T_2} + \frac{1}{T_2}U(\omega)$$

što znači da je hodogram zapravo pravac. Po kriteriju Popova može se reći da će zatvoreni krug upravljanja biti stabilan za sve nelinearnosti klase

$$\frac{1}{T}$$

Ako provjerimo što se događa kada je umjesto nelinearnog elementa proporcionalni regulator K, dobije se sljedeća karakteristična jednadžba linearnog zatvorenog kruga upravljanja:

$$T_2s^2 + (1 - KT)s + K = 0$$

Hurwitzov uvjet stabilnosti kaže da je zatvoreni krug stabilan ako su članovi uz potencije od s istog predznaka, tj.:

 $K < \frac{1}{T} \cup K > 0$

što je podskup od rješenja koje je dobiveno kriterijem Popova.

b) (3.5 boda) Korištenjem Goldfarbovog principa, odredite kolika mora biti vremenska konstanta T da ne dođe do pojave vlastitih oscilacija u sustavu prikazanom slikom 5 ako je nelinearni element F(x) kvantizator s kvantizacijskom razinom D. Opisna funkcija kvantizatora je

$$G_N(X_m) = \begin{cases} 0, & X_m < \frac{D}{2} \\ \frac{4D}{\pi X_m} \sum_{k=1}^n \sqrt{1 - \left(\frac{2k-1}{2} \frac{D}{X_m}\right)^2}, & \frac{2n-1}{2} D < X_m < \frac{2n+1}{2} D \end{cases}$$

Potrebno je naći za koju ulaznu amplitudu postoji ekstrem opisne funkcije kvantizatora. Poznato je iz laboratorijskih vježbi, a i jednostavno se pokaže, da će se maksimum postići kada je aktivan samo jedna kvantizacijska razina.

$$G_N(X_m) = \frac{4D}{\pi X_m} \sqrt{1 - \frac{1}{4} \left(\frac{D}{X_m}\right)^2}$$
$$\frac{\partial G_N(X_m)}{\partial \frac{D}{X_m}} = 0 \Rightarrow \frac{D}{X_m} = \sqrt{2}$$
$$G_N(X_m)_{\text{max}} = G_N\left(\frac{D}{\sqrt{2}}\right) = \frac{4}{\pi}$$

Iz imaginarnog $V(\omega)$ i realnog $U(\omega)$ dijela frekvencijske karakteristike procesa (koji su već određeni u a) dijelu zadatka) možemo odrediti gdje Nyquistova krivulja siječe realnu os:

$$\operatorname{Im} \{G(j\omega)\} = V(\omega) = 0 \Rightarrow TT_2\omega^2 - 1 = 0$$

$$\omega = \frac{1}{\sqrt{TT_2}}$$

Pri toj frekvenciji je realni dio:

$$U\left(\omega\right) = -\frac{T_2 + T}{\frac{T_2}{T} + 1} = -T$$

Po Goldfarbu, ne smije dođi do presijecanja negativnog inverza opisne funkcije nelinearnog elementa i Nyquistove karakteristike sustava, tj.

$$U\left(\frac{1}{\sqrt{TT_2}}\right) < G_{N,\max}^{-1}$$

iz čega slijedi rješenje:

$$T < \frac{\pi}{4}$$

ZADATAK 3

Objasnite princip zamjene ekstremalnog upravljanja formiranjem povratne veze po signalima modela. Pretpostavite da je nelinearna karakteristika procesa simetrična.

Vidi predavanja.

ZADATAK 4

Nelinearan je krug upravljanja prikazan slikom 6 gdje je opisna funkcija dvopoložajnog releja $G_N(A) = \frac{4C}{\pi A}$. Na ulaz u sustav je doveden harmonički signal oblika

$$f(t) = F_v \sin\left(\frac{t}{T}\right).$$

Odredite za koju minimalnu vrijednost amplitude pobudnog signala F_v dolazi do pojave prinudnih oscilacija ako je K=2 i C=0.7.

Slika 6: Zatvoreni nelinearni krug upravljanja s pobudnim harmoničkim signalom.

Za strukturu nelinearnog sustava zadanog slikom, vrijedi sljedeća relacija za određivanje prinudnih oscilacija:

$$\underbrace{X_{m} \left[1 + \frac{B(j\omega_{v})}{A(j\omega_{v})} (P_{N} + jQ_{N}) \right]}_{Z_{m}} = F_{v}e^{-j\varphi}$$

$$Z_{m} = X_{m} \left[1 + \frac{K}{Ts+1}P_{N} \right] = X_{m} \frac{1 + KP_{N} + jT\omega}{1 + jT\omega}$$

$$|Z_{m}| = X_{m} \frac{\sqrt{(1 + KP_{N})^{2} + (T\omega)^{2}}}{\sqrt{1 + (T\omega)^{2}}} = F_{v}$$

$$X_{m}^{2} \frac{1 + 2KP_{N} + (KP_{N})^{2} + (T\omega)^{2}}{1 + (T\omega)^{2}} = F_{v}^{2}$$

$$X_{m}^{2} \frac{1 + 2KP_{N} + (KP_{N})^{2} + (T\omega)^{2}}{1 + (T\omega)^{2}} = F_{v}^{2}$$

$$X_{m}^{2} \frac{1 + 2KP_{N} + (KP_{N})^{2} + (T\omega)^{2}}{1 + (T\omega)^{2}} = F_{v}^{2}$$

Uz $\omega_v = \frac{1}{T}$, kao što je zadano u zadatku, vrijedi:

$$X_m^2 + \frac{4KC}{\pi} X_m + 8\left(\frac{KC}{\pi}\right)^2 - F_v^2 = 0$$

Da bi postojale prinudne oscilacije, treba biti

$$X_m = \frac{-\frac{4KC}{\pi} \pm \sqrt{16\left(\frac{KC}{\pi}\right)^2 - 32\left(\frac{KC}{\pi}\right)^2 + 4F_v^2}}{2} > 0$$

odnosno

$$-\frac{4KC}{\pi} \pm \sqrt{-16 \left(\frac{KC}{\pi}\right)^2 + 4F_v^2} > 0$$

$$-16\left(\frac{KC}{\pi}\right)^{2} + 4F_{v}^{2} > 16\left(\frac{KC}{\pi}\right)^{2}$$
$$F_{v}^{2} > 8\left(\frac{KC}{\pi}\right)^{2}$$
$$F_{v} > \frac{2\sqrt{2}}{\pi}KC = 1.2604$$