Лекция 9.

 $ec{F} = \sum_{j} \overrightarrow{F_{j}}$ – главный вектор внешних сил, $\overrightarrow{F'} = \sum_{j} \overrightarrow{F_{j'}}$ - главный вектор внутренних сил, $\overrightarrow{Q} = \sum_{j} m_{j} \overrightarrow{v_{j}}$ – главный вектор количества движения механической системы ($\overrightarrow{v_{j}} = \dot{\overrightarrow{r_{j}}}$ – скорость точки M_{j} механической системы). По третьему закону Ньютона: для \forall внутренней силы механической системы \exists другая внутренняя сила, уравновешивающая её: $\overrightarrow{F'} = \overrightarrow{0}$.

Теорема: в ведённых выше обозначениях справедливы формулы: $\frac{d\vec{Q}}{dt} = \vec{F}$, $d\vec{Q} = \vec{F}dt$, $\vec{Q} - \vec{Q}_0 = \int_{t_0}^t \vec{F}dt$.

 $\vec{F}dt$ — элементарный импульс силы, $\int_{t_0}^t \vec{F}dt$ — импульс силы. Теорему можно сформулировать иначе, например так: производная главного вектора количества движения механической системы равна главному вектору сил.

Центр масс – точка C, радиус $\overrightarrow{r_C}$ ($\overrightarrow{r_C} = \overrightarrow{OC}$) которой относительно точки O, определяется следующим образом: $m\overrightarrow{r_C} = \sum_j m_j, \, m = \sum_j m_j$, а $\overrightarrow{r_j}$ – радиус вектор $\overrightarrow{OM_j}$. Дифференцируя данные формулы по t, получаем уравнения: $m\overrightarrow{r_C} = \overrightarrow{Q}, \, m\overrightarrow{r_C} = \overrightarrow{F}$. Далее получаем $m\overrightarrow{r_C} = \overrightarrow{Q}$.

Теорема: Центр масс механической системы движется так, как двигалась бы материальная точка с массой m, равной сумме масс всех точек системы, под действием силы, равной сумме сил, действующих на эти точки.

В силу последней формулы, приходим к выводу о том, что данная теорема и теорема о том, что вектор $\overrightarrow{\omega_{O'}}$ не зависит от выбора полюса (точки O') - разные формы одного и того же утверждения.

Следствие: при равенстве нулю суммы всех сил, действующих на точку механической системы, центр масс движется прямолинейно и равномерно.

Рассмотрим точки аффинного пространства M, O и вектор $\vec{r} = \overrightarrow{OM}$. Момент закреплённого вектора (M, \vec{G}) относительно точки O — вектор $\mu_O(M, \vec{G}) = (O, \vec{r} \times \vec{G})$.

Главный момент внутренних сил: $\overrightarrow{\mathcal{M}}' = \sum_j \overrightarrow{r_j} \times \overrightarrow{F_j}'$

Главный момент внешних сил: $\overrightarrow{\mathcal{M}} = \sum_j \overrightarrow{r_j} \times \overrightarrow{F_j}$

Главный момент количества движения механической системы (кинематический момент механической системы): $\vec{\mathcal{K}} = \sum_j \vec{r_j} \times m_j \vec{v_j}$

Теорема: $\overrightarrow{\mathcal{M}}' = \overrightarrow{0}$

Теорема об изменении кинематического момента: производная кинетического момента механической системы относительно неподвижной точки равна главному моменту внешних сил относительно той же точки: $\frac{d}{dt} \overrightarrow{\mathcal{K}} = \overrightarrow{\mathcal{M}}$. Таким образом получаем: $\frac{d}{dt} (\sum_j \overrightarrow{r_j} \times m_j \overrightarrow{v_j}) = \sum_j \overrightarrow{r_j} \times \overrightarrow{F_j}$.