Politechnika Wrocławska	Ćwiczenia laboratoryjne			
	Data wykonania ćwiczenia	Data oddania sprawozdania		
	23.10.2019	05.11.2019		
	Ćwiczenie 1			
Termin: Środa, 9:15	Jednofazowe obwody RLC			
	Autor	Kacper Borucki		
	Nr indeksu	245365		

1. Cel ćwiczenia

Celem ćwiczenia było poznanie zasad symulacji prostych obwodów jednofazowych składających się z elementów RLC, a także zapoznanie ze środowiskiem oraz możliwościami programu ATP EMTP.

2. Zakres ćwiczenia

- Przygotowanie obliczeń analitycznych dla badanych gałęzi szeregowej i równoległej RLC, w tym wyznaczenie częstotliwości rezonansowej i wyznaczenie wartości prądów i napięć przy częstotliwości sieciowej oraz rezonansowej.
- Zamodelowanie układu w programie ATPDraw, wykonanie obliczeń w ATP i analiza przebiegów w programie PlotXY.
- Zestawienie i porównanie otrzymanych wyników obliczeń analitycznych oraz symulacji i wyciągnięcie wniosków na tej podstawie.

3. Parametry obwodów

- $R = liczba\ liter\ imienia\ [\Omega] = 6\Omega$
- $L = 10 * (liczba \ liter \ imienia)[mH] = 60mH$
- $C = 35\mu F = 10 * (liczba \ liter \ nazwiska) \cdot \frac{1}{2} [\mu F] = 35\mu F$
- Częstotliwość rezonansowa gałęzi RLC: $f_{rez}=109,8273Hz$

4. Badane układy

Rys. 1: Gałąź szeregowa RLC

Rys. 2: Gałąź równoległa RLC:

5. Wyniki obliczeń

A) Gałąź szeregowa RLC

Parametr	Jednostka	f = 50Hz		$f = f_{rez} = 109,82Hz$	
		Analitycznie	ATP EMTP	Analitycznie	ATP EMTP
I_{max}	А	4,497	4,4942	54,164	54,201
U_R	V	26,955	26,976	324,986	325,210
U_L	V	84,740	84,730	2242,405	2244,4
U_C	V	409,288	408,890	2242,405	2244,7

B) Gałąź równoległa RLC

Parametr	Jednostka	f = 50Hz		$f = f_{rez} = 109,82Hz$	
		Analitycznie	ATP EMTP	Analitycznie	ATP EMTP
I	А	13,195	13,186	2,23	2,2294
I_L	А	16,647	16,441	7,775	7,7679
I_C	А	3,609	3,5688	7,775	7,7723
U_{R1}	V	99,88	98,654	46,652	46,648
U_L	V	329,394	309,95	321,921	321,89
U_{R2}	V	21,654	21,412	46,652	46,642
U_C	V	329,098	324,56	321,921	321,84
U_{R1-R2}	V	120,297	118,84	92,3397	92,332

6. Charakterystyki

Wykres 1: Gałąź szeregowa RLC przy f=50 Hz – przebiegi prądów i napięć:

Wykres 2: Gałąź szeregowa RLC przy f=109,82Hz – przebiegi prądów i napięć:

Wykres 3: Gałąź równoległa RLC przy f=50Hz – przebiegi napięć:

Wykres 4: Gałąź równoległa RLC przy f=50 Hz – przebiegi prądów:

Wykres 5: Gałąź równoległa RLC przy $f=109{,}8274Hz$ – przebiegi napięć

Wykres 6: Gałąź równoległa RLC przy f=109,8274Hz – przebiegi prądów:

7. Uwagi i wnioski

- We wszystkich przypadkach, wyniki uzyskane w sposób analityczny oraz poprzez symulację były do siebie bardzo zbliżone. Na ogół różnice między nimi były rzędu dziesiętnych lub setnych części. Tak niewielka rozbieżność pozwala założyć, że wyniki otrzymane na podstawie obliczeń w programie ATP EMTP są poprawne, a prawdopodobnie nawet bardziej dokładne niż te uzyskane analitycznie. Wynika to z faktu, że przy liczeniu "od ręki" trzeba było zastosować kilka zaokrągleń, które miały wpływ na końcowe rezultaty.
- Wyznaczanie częstotliwości rezonansowej przy zastosowanych zaokrągleniach spowodowało, że wyniki w programie ATP EMTP nie są idealnym przypadkiem rezonansu, niemniej jednak są na tyle dokładne, że można na podstawie wyników obliczeń obserwować zjawiska występujące w stanie rezonansu.
- W przypadku gałęzi RLC, łatwo zauważyć że w podczas rezonansu obwód zachowuje się tak, jak gdyby był zwarty jedynie przez rezystor, choć napięcia pojawiające się na elementach indukcyjnych i pojemnościowych znacząco przekraczają napięcie sieci. Taka sytuacja może szybko doprowadzić do tych odbiorników. Zjawisko to nazywa się rezonansem napięć.
- W przypadku obwodu równoległego, mamy do czynienia z rezonansem prądów. Prądy na cewce i kondensatorze są do siebie w każdej chwili przeciwne, podczas gdy napięcia na tych elementach niemalże się pokrywają. Pojawiający się na przebiegach prąd obwodu wynika z rezystancji w nim się znajdujących. Gdyby w obwodzie nie było rezystorów, ten przypadek rezonansu zachowywałby się podobnie do przerwy w obwodzie.