Theory and Practice of Data Cleaning

Introduction to Regular Expressions: From Theory to Practice

Introduction to Regular Expressions (Regex) Theory & Practice

- Theory of regular expressions:
 - Brief introduction where regular expressions come from ...
- Practice of regular expressions:
 - What you need to know to get started with regex in practice!
- Demonstration of regular expressions

Why study regular expressions?

- Widely used in practice:
 - A bit like wildcards (e.g. find all csv file: *.csv)
 - ... but much more powerful ("wildcards on steroids")!
- Used to match, extract, find-and-replace data, e.g.,
 - ... in text editors
 - ... scripting and programming (Bash, Python, Perl, R, ..., Java, ...)
 - ... screen scraping and other data extraction applications

Why study regular expressions for data cleaning?

- Useful to match (assess) and transform (clean) data:
 - OpenRefine Expression Language (GREL)
 - Use in scripting languages for data cleaning
 - ... workflow automation
- Example: ISO 8601 date format:
 - YYYY-MM-DD
- ... vs other (common) date formats:
 - MM/DD/YY
 - DD.MM.YYYY
 - ...

PUBLIC SERVICE ANNOUNCEMENT:

OUR DIFFERENT WAYS OF WRITING DATES AS NUMBERS CAN LEAD TO ONLINE CONFUSION. THAT'S WHY IN 1988 ISO SET A GLOBAL STANDARD NUMERIC DATE FORMAT.

THIS IS THE CORRECT WAY TO WRITE NUMERIC DATES:

2013-02-27

THE FOLLOWING FORMATS ARE THEREFORE DISCOURAGED:

Introduction to Regular Expressions (Regex) Theory & Practice

- Theory of regular expressions:
 - Brief introduction where regular expressions come from ...
- Practice of regular expressions:
 - What you need to know to get started with regex in practice!
- Demonstration of regular expressions

Theory of Regular Expressions

- Regular expression (regex): in theoretical computer science (esp. formal language theory):
 - A formal expression that defines a search pattern
 - ... used to match (or recognize) a strings

Theory of Regular Expressions

- Formal definition:
- Base elements:
 - \varnothing empty set, ε empty string, and Σ alphabet of characters
- Given regular expressions *R* and *S*, the following are also regular expressions:
 - R | S alternation
 - RS concatenation
 - R* Kleene star
 - (R) parentheses (can be omitted with precedence rules)

Regular Languages in the Chomsky Hierarchy

V-T-E Automata theory: formal languages and formal grammars						
Chomsky hierarchy	Grammars	Languages	Abstract machines			
Type-0	Unrestricted	Recursively enumerable	Turing machine			
_	(no common name)	Decidable	Decider			
Type-1	Context-sensitive	Context-sensitive	Linear-bounded			
_	Positive range concatenation	Positive range concatenation*	PTIME Turing Machine			
_	Indexed	Indexed*	Nested stack			
_	_	_	Thread automaton			
_	Linear context-free rewriting syste	ms Linear context-free rewriting langu	age restricted Tree stack automaton			
_	Tree-adjoining	Tree-adjoining	Embedded pushdown			
Type-2	Context-free	Context-free	Nondeterministic pushdown			
_	Deterministic context-free	Deterministic context-free	Deterministic pushdown			
_	Visibly pushdown	Visibly pushdown	Visibly pushdown			
Type-3	Regular	Regular	Finite			
_	_	Star-free	Counter-free (with aperiodic finite monoid			
_	Non-recursive	Finite	Acyclic finite			
Each	category of languages, except those	e marked by a *, is a proper subset of t	the category directly above it.			
		by a grammar and by an automaton i				
Categories: Formal I	anguages Finite automata	The "regular" in regular expression				

https://en.wikipedia.org/wiki/Regular_language

Regular Grammars

Example: floating point numbers such as **-0.314159265e+1** ... can be **generated** by a *right regular grammar G* with $N = \{S, A, B, C, D, E, F\}, \Sigma = \{0,1,2,3,4,5,6,7,8,9,+,-,.,e\},$

Production rules P =

$S \rightarrow +A$	$A \rightarrow 0A$	$B \rightarrow 0C$	$C \rightarrow 0C$	$D \rightarrow +E$	$E \rightarrow 0F$	$F \rightarrow 0F$
$S \rightarrow -A$	$A \rightarrow 1A$	B → 1C	C → 1C	$D \rightarrow -E$	E → 1F	F → 1F
$S \rightarrow A$	$A \rightarrow 2A$	$B \rightarrow 2C$	C → 2C	$D \rightarrow E$	E → 2F	F → 2F
	$A \rightarrow 3A$	B → 3C	C → 3C		E → 3F	F → 3F
	$A \rightarrow 4A$	$B \rightarrow 4C$	C → 4C		E → 4F	F → 4F
	$A \rightarrow 5A$	$B \rightarrow 5C$	C → 5C		E → 5F	F → 5F
	$A \rightarrow 6A$	$B \rightarrow 6C$	C → 6C		E → 6F	F → 6F
	$A \rightarrow 7A$	$B \rightarrow 7C$	C → 7C		E → 7F	F → 7F
	A → 8A	B → 8C	C → 8C		E → 8F	F → 8F
	$A \rightarrow 9A$	$B \rightarrow 9C$	C → 9C		E → 9F	F → 9F
	$A \rightarrow .B$		$C \rightarrow eD$			$F \to \epsilon$
	$A \rightarrow B$		$C \rightarrow \epsilon$			

Regular Grammars

Example: floating point numbers such as -0.314159265e+1 ... can be generated by a *right regular grammar G* with $N = \{S, A, B, C, D, E, F\}, \Sigma = \{0,1,2,3,4,5,6,7,8,9,+,-,.,e\},$

Production rules P =

 $A \rightarrow B$

$$S \rightarrow +A$$
 $A \rightarrow 0A$ $B \rightarrow 0C$ $C \rightarrow 0C$ $D \rightarrow +E$ $E \rightarrow 0F$ $F \rightarrow 0F$ $S \rightarrow -A$ $A \rightarrow 1A$ $B \rightarrow 1C$ $C \rightarrow 1C$ $D \rightarrow -E$ $E \rightarrow 1F$ $F \rightarrow 1F$ $S \rightarrow A$ $A \rightarrow 2A$ $B \rightarrow 2C$ $C \rightarrow 2C$ $D \rightarrow E$ $E \rightarrow 2F$ $F \rightarrow 2F$ $A \rightarrow 3A$ $B \rightarrow 3C$ $C \rightarrow 3C$ $E \rightarrow 3F$ $F \rightarrow 3F$ $A \rightarrow 4A$ $B \rightarrow 4C$ $C \rightarrow 4C$ $E \rightarrow 4F$ $F \rightarrow 4F$ $A \rightarrow 5A$ $B \rightarrow 5C$ $C \rightarrow 5C$ $E \rightarrow 5F$ $F \rightarrow 5F$ $A \rightarrow 6A$ $B \rightarrow 6C$ $C \rightarrow 6C$ $E \rightarrow 6F$ $F \rightarrow 6F$ $A \rightarrow 7A$ $A \rightarrow 7A$

 $C \rightarrow \epsilon$

Regular expressions to the

Not very handy in practice ...

rescue!

[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?