Homework 2

By Buchnev Arseniy

1.

Consider a finite-difference formula

$$u'(x_i) \approx \frac{1}{h} \left(\frac{1}{36} u_{i-2} - \frac{2}{9} u_{i-1} - \frac{11}{9} u_i + \frac{20}{9} u_{i+1} - \frac{37}{36} u_{i+2} + \frac{2}{9} u_{i+3} \right), \tag{1}$$

where u_{i+s} denotes the value of a function u(x) evaluated at a point $x_i + sh$, with $h \ll 1$ and s being an integer number.

- 1. (max. 1 point) Is (1) a consistent approximation to the first derivative of u(x)?
- (max. 1 point) Use the Taylor series expansion to find the order of this approximation.

Solution:

$$u_{x+2} = u_{x} + 3hu_{x} + \frac{9h^{2}}{2}u_{x}^{-1} + 0(h^{2}) - \frac{32}{6}h^{3}u_{x}^{-1}(\frac{5}{2})$$

$$u_{x+2} = u_{x} + 2hu_{x}^{-1} + 2hu_{x}^{-1} + 0(h^{2}) - \frac{2}{6}h^{3}u_{x}^{-1}(\frac{5}{2})$$

$$u_{x+2} = u_{x} + hu_{x}^{-1} + \frac{1}{2}u_{x}^{-1} + 0(h^{2}) - \frac{2}{6}h^{3}u_{x}^{-1}(\frac{5}{2})$$

$$u_{x+2} = u_{x} + hu_{x}^{-1} + \frac{1}{2}u_{x}^{-1} - 0(h^{2}) - \frac{2}{6}h^{3}u_{x}^{-1}(\frac{5}{2})$$

$$u_{x+2} = u_{x} - hu_{x}^{-1} + \frac{1}{2}h^{2}u_{x}^{-1} - \frac{6}{6}h^{2}u_{x}^{-1}(\frac{5}{2})$$

$$u_{x+2} = u_{x} - 2hu_{x}^{-1} + 2hu_{x}^{-1} - 2hu_$$

Consider the following ordinary differential equation:

$$u' + \frac{\cos x}{2 + \sin x}u = \frac{\cos 2x - 2\sin x}{2 + \sin x} \tag{2}$$

Let u(x) be defined over the interval of x from 0 to 2π , and let us supplement (2) with periodic boundary conditions.

- 3. (max. 1 point) Find the exact analytical solution of this problem.
- 4. (max. 1 point) Use the finite-difference approximation (1) to solve this problem numerically. Plot the exact and the approximate u(x) calculated on a uniform grid with step $h = \pi/10$ over the interval from 0 to 2π .
- 5. (max. 1 point) Vary h from a suitably small to a suitable large value to plot the convergence error norms (pointwise maximum and r.m.s.) as functions of h. Comment on the rate of convergence: compare your numerical observation with your theoretical result.

Solution:

cosx cosx - 2shx
$u + \frac{\cos x}{x + y \cos x} = \frac{\cos 2x - 2\sin x}{2 + \sin x}$
We zerny w = 2 con x - 20 mx
a stomate of Catomix
$2) 2i + \frac{\cos x}{2 + \sin x} 2i = 0$
TO ORDINAL OR HELDER HELDE
$\frac{21}{2\epsilon} = \frac{\cos \times}{2 + \sin \times}$
는 보고하다면 연구들은 다른 사람들은 하게 되는 사람들은 사람들이 되었다. 그 사람들은 사람들은 사람들이 되었다.
$\frac{du}{u} = \frac{\cos x dx}{2 + \sin x} = \frac{d(\sin x + 2)}{2 + \sin x}$
(d) (d (smx+2), 6
$\int \frac{du}{u} = -\int \frac{d(smx+2)}{smx+2} + \hat{c}$
lu/ul = - lu smx + 2 + C
7/2 e
$u = \frac{G}{Smx+2}$
2) $C = C(x) \rightarrow 2t = C$ $(mx + 2) + C \cdot \left(\frac{-4}{(5mx + 2)^2} \cdot cosx\right).$
$\frac{c}{8mx+2} \frac{c\cos x}{(smx+2)^2} \frac{c\cos x}{(x+smx)^2} = \frac{c\cos 2x - 2smx}{2+smx}$
$C = col2x - 2smx = \frac{dC}{dx}$
$dC = cos 2 \times dx - 2mn \times dx = \frac{1}{2} cos 2 \times d2 \times - 2s n \times dx$
(1e + f - 12 + d 2 y 2 (- 20 + d y 4 + \$\frac{1}{2}\$)
JC = \frac{1}{2}\cos 2x d2x - 2\con x dx + \frac{1}{2}
C = \frac{1}{2} \text{sm 2} \times + 2 \cos \times + \D
u= 1 8m2x + 2cosx + 2
smx+2
PBC: 2(0) = 2(257): 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
action actions at
u(0 = 1 : 2+2 = 1 => 2 = 0
14(x) = 25/h2x + 2(a) x = cos x
3ax + 2

The graph of Approximation & Analytical solution with h = 2*pi/10 looks like this:

However, if we lower h to, say, 2*pi/1000, it starts to make more sense:

Let's plot the RMS and pointwise maximum errors of Numerical solutions vs h:

It shows an interesting behavior.

Sorry I'm failing to send it on time, so I will add comments in the comment section on Canvas.