2013-2014 学年第一学期《医科数学 A I 》试卷

2014年1月2日

					201		<u> </u>
_	=	三	四	五	六	总	分

得 分 一、填空题(共 6 道小题,每小题 3 分,满分 18 分)

1. 设
$$f(x) = \begin{cases} (1-x)^{\frac{k}{x}}, & x > 0, \\ e^{x-1}, & x \le 0, \end{cases}$$
 在 $x = 0$ 点处连续,则常数 $k =$ ______.

- 2. 若 $f(x_0 + \Delta x) f(x_0)$ 与 $\sin 2\Delta x$ 为 $\Delta x \to 0$ 时的等价无穷小,则 $f'(x_0) =$
- 3. 函数 $y = 3x^4 4x^3 + 1$ 的凸区间为______.
- 4. 曲线 $y = x + \frac{4}{r^2}$ 的斜渐近线为______.
- 5. $\int_{-1}^{1} \frac{1+x^3}{1+x^2} dx = \underline{\hspace{1cm}}.$
- 6. 微分方程 y'' + 4y = 0 的通解为 ______

得 分

二、选择题(共6 道小题,每小题3 分,满分18分)

- 1. 曲线 $y^3 3xy + x^3 1 = 0$ 在点 (0,1) 处的切线方程为 ().

- (A). y = x+1; (B). y = -x+1; (C). y = x-1; (D). y = -x-1.
- 2. 若点 $x = x_0$ 是函数 y = f(x) 的极值点,则().
- (A). 必有 $f'(x_0)$ 存在且等于零; (B). 必有 $f'(x_0)$ 存在但不等于零;
- (C). 如果 $f'(x_0)$ 存在则必等于零; (D). 如果 $f'(x_0)$ 存在则必不等于零.

(共 6 页 第 1 页)

- 3. 如果 f(x) 的导数为 $\cos x$,则 f(x) 的一个原函数为 ().

- (A). $1 + \sin x$; (B). $1 \sin x$; (C). $1 + \cos x$; (D). $1 \cos x$.

4. 下列反常积分发散的是(

(A).
$$\int_{1}^{+\infty} \frac{1}{1+x^2} dx$$
; (B). $\int_{1}^{+\infty} \frac{1}{x^3} dx$; (C). $\int_{0}^{1} \frac{1}{\sqrt{x}} dx$; (D). $\int_{-1}^{1} \frac{1}{x^2} dx$.

(C).
$$\int_0^1 \frac{1}{\sqrt{x}} dx$$

(D).
$$\int_{-1}^{1} \frac{1}{x^2} dx$$

5. 求方程 $yy'' - (y')^2 = 0$ 的通解时,可令().

(A).
$$y' = P$$
, $y'' = \frac{dP}{dx}$;

(A).
$$y' = P$$
, M $y'' = \frac{dP}{dx}$; (B). $y' = P$, M $y'' = P \frac{dP}{dy}$;

(C).
$$y' = P$$
, M $y'' = P \frac{dP}{dx}$; (D). $y' = P$, M $y'' = P' \frac{dP}{dy}$.

(D).
$$y' = P$$
, $y'' = P' \frac{dP}{dv}$.

- 6. 函数 f(x,y) 在点 P(x,y) 的某一邻域内具有一阶连续的偏导数是函数 f(x,y) 在该点可微 的().
- (A). 必要条件,但不是充分条件; (B). 充分必要条件;
- (C). 充分条件,但不是必要条件; (D). 既不是充分条件,也不是必要条件.

三、计算下列各题 (共 5 道小题,每小题各 6 分,满分 30 分)

1. 极限 $\lim_{x\to 0} \frac{x^2 - \int_0^{x^2} \cos t^2 dt}{r^{10}}$.

2. 求积分
$$\int \frac{x + \ln(1-x)}{x^2} dx$$
.

3. 求积分
$$\int_0^2 \frac{1}{(x^2+4)^{\frac{3}{2}}} dx$$
.

4. 求累次积分
$$\int_0^{\frac{\pi}{2}} dy \int_y^{\sqrt{\frac{\pi y}{2}}} \frac{\sin x}{x} dx$$
.

5. 求积分 $\iint_D e^{\sqrt{x^2+y^2}} dxdy$, 其中 D 是由曲线 $x^2+y^2=1$, x=0, y=0 围成的第一象限部分区域.

得 分

四、 (共 2 道小题,每小题 6 分,满分 12 分)

1. 设 $z = f(xe^y, x)$, 其中f 具有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

2. 由方程 $\cos^2 x + \cos^2 y + \cos^2 z = 1$ 确定函数z = f(x, y), 求 d z.

(共 6 页 第 4 页)

得 分

五、(共1 道小题,满分8 分)

设可导函数 f(x) 满足 $f'(x) - \frac{f(x)}{x} = \int_1^x \frac{f(t)}{t^2} dt - 3x^2$,且 f(1) = 2,求 f(x).

(共6页 第5页)

六、 应用题 (共 2 道小题, 第 1 小题 6 分, 第 2 小题 8 分, 满分 14 分)

1. 求函数 $f(x) = \frac{4(x+1)}{x^2} - 2$ 的极值, 并求曲线 y = f(x) 的拐点.

- 2. 设由曲线 $y = e^{-2x}$, 与其在 $(-\frac{1}{2}, e)$ 点处的切线及 y 轴围成的平面图形.
- (1) 求该平面图形的面积; (2) 求由该平面图形绕 x 轴旋转所生成的旋转体的体积.