Tarea 3 - Análisis de datos Giovanni Gamaliel López Padilla

Problema 3

Sea X una v.a. con la siguiente distribución. Calcula $Var(X^2)$ y $E(X^2 \mid X>1)$

Se tiene que:

$$Var(X^{2}) = E(X^{4}) - (E(X^{2}))^{2}$$
(1)

Calculando $E(X^2)$, se tiene que:

$$E(X^{2}) = \sum_{i} x_{i}^{2} P(x_{i})$$

$$= 1^{2}(0.2) + 2^{2}(0.1) + 3^{2}(0.4) + 4^{2}(0.3)$$

$$= 9$$

Calculando $E(X^4)$, se tiene que:

$$E(X^{4}) = \sum_{i} x_{i}^{2} P(x_{i})$$

$$= 1^{4}(0.2) + 2^{4}(0.1) + 3^{4}(0.4) + 4^{4}(0.3)$$

$$= 111$$

Entonces:

$$Var(X^2) = 111 - 9^2$$

= 111 - 81
= 30

por lo tanto, para la distribución dada se tiene:

$$Var(X^2) = 30$$

Definimos al conjunto A como el siguiente:

$$A = \{x : x > 1\} \tag{2}$$

Usando la distribución dada, entonces el conjunto A esta constituido de la siguiente manera:

$$A = \{2, 3, 4\}$$

Calculando $E(X^2|X>1)$, se obtiene lo siguiente:

$$E(X^{2}|X>1) = \sum_{i} x_{i}^{2} P(X=x_{i}|X>1)$$
(3)

Si $x_i \in A$, entonces se obtiene lo siguiente:

$$P(X = x_i | X > 1) = \frac{P(x_i, X > 1)}{P(X > 1)}$$
$$= \frac{P(x_i)}{P(X > 1)}$$

Esto es porque la interseccion de x_i con A es el mismo x_i . En el caso contrario $x_i \notin A$, entonces $P(X = x_i | X > 1) = 0$, ya que no existira intersección entre x_i y A. Por lo tanto:

$$P(X = x_i | X > 1) = \begin{cases} 0 & \text{para } x_i \notin A \\ \frac{P(X = x_i)}{P(A)} & \text{para } x_i \in A \end{cases}$$
 (4)

Calculando P(X > 1), se obtiene lo siguiente:

$$P(X > 1) = P(X = 2) + P(X = 3) + P(X = 4)$$

$$= 0.1 + 0.4 + 0.3$$

$$P(X > 1) = 0.8$$
(5)

Usando las ecuaciones 4 y 5 en la expansión de la ecuación 3 se obtiene lo siguiente:

$$E(X^{2}|X > 1) = \sum_{i} x_{i}^{2} P(X = x_{i}|X > 1)$$

$$= 1^{2} P(X = 1|X > 1) + 2^{2} P(X = 2|X > 1) + 3^{2} P(X = 3|X > 1) + 4^{2} P(X = 1|X > 1)$$

$$= 4 \left(\frac{P(X = 2)}{P(A)}\right) + 9 \left(\frac{P(X = 3)}{P(A)}\right) + \left(16\frac{P(X = 4)}{P(A)}\right)$$

$$= \frac{1}{P(A)} \left(4P(X = 2) + 9P(X = 3) + 16P(X = 4)\right)$$

$$= \frac{1}{0.8} \left(4(0.1) + 9(0.4) + 16(0.3)\right)$$

$$= \frac{1}{0.8} \left(8.8\right)$$

$$E(Y^{2}|X > 1) = 11$$

 $E(X^2|X>1)=11$

Por lo tanto:

$$E(X^2|X > 1) = 11$$

Problema 4

Verifica que si X y Y son independientes:

$$H(X,Y) = H(X) + H(Y)$$

Partiendo de la definición de entropia se tiene que:

$$H(X,Y) = -\sum_{i} \sum_{j} P(x_{i}, y_{j}) \log_{2} (P(x_{i}, y_{j}))$$
(6)

Calculando $P(x_i, y_j)$, se tiene que:

$$P(x_i, y_j) = P(y_j)P(x_i)$$

Entonces, la ecuación 6 se puede escribir como:

$$H(X,Y) = -\sum_{i} \sum_{j} P(x_{i}, y_{j}) \log_{2} (P(x_{i}, y_{j}))$$

$$= -\sum_{i} \sum_{j} P(x_{i}) P(y_{j}) \log_{2} (P(y_{j}) P(x_{i}))$$

$$= -\sum_{i} \sum_{j} P(x_{i}) P(y_{j}) [\log_{2} P(x_{i}) + \log_{2} P(y_{j})]$$

$$= -\sum_{i} \sum_{j} P(x_{i}) P(y_{j}) \log_{2} P(x_{i}) - \sum_{i} \sum_{j} P(x_{i}) P(y_{j}) \log_{2} P(y_{j})$$

Como X y Y son independientes, entonces los contadores i, j puedes intercambiarse, entonces:

$$H(X,Y) = -\sum_{i} \sum_{j} P(x_{i})P(y_{j}) \log_{2} P(x_{i}) - \sum_{i} \sum_{j} P(x_{i})P(y_{j}) \log_{2} P(y_{j})$$

$$= -\sum_{i} \sum_{j} P(x_{i})P(y_{j}) \log_{2} P(x_{i}) - \sum_{j} \sum_{i} P(x_{i})P(y_{j}) \log_{2} P(y_{j})$$

$$= -\sum_{i} P(x_{i}) \log_{2} P(x_{i}) \sum_{j} P(y_{j}) - \sum_{j} P(y_{j}) \log_{2} P(y_{j}) \sum_{i} P(x_{i})$$

donde

$$\sum_{i} P(x_i) = 1 \qquad \sum_{j} P(y_j) = 1$$

por lo tanto

$$H(X,Y) = -\sum_{i} P(x_i) \log_2 P(x_i) \sum_{j} P(y_j) - \sum_{j} P(y_j) \log_2 P(y_j) \sum_{i} P(x_i)$$

$$= -\sum_{i} P(x_i) \log_2 P(x_i) - \sum_{j} P(y_j) \log_2 P(y_j)$$

$$= H(X) + H(Y)$$

Problema 5

Considera una secuencia de lanzamientos independientes de una moneda. Calcula la probabilidad que en el veintésimo lanzamiento se obtiene por cuarta vez aguila. En promedio ¿cuántas veces se va a tener que lanzar la moneda para obtener por cuarta vez aguila?

Problema 6

Verifica que para cualquier v.a. X y Y con una misma distribución:

$$E(X - Y|X + Y) = 0$$

Problema 7

Se debe sujetar N personas a una prueba de sangre para detectar la posible presencia de una cierta enfermedad. Con ese fin se dividen las personas al azar en subgrupos de tamaño k (puedes suponer que N es un múltiple de k). Se toma una muestra de sangre de cada persona y se mezclan las que pertenecen a personas de un mismo subgrupo; se aplica la prueba a estas k mezclas. Si el resultado es positivo, se sujeta cada persona del subgrupo correspondiente a una prueba separada. Suponiendo que la probabilidad de tener la enfermedad es 0.01, y que la presencia de la enfermedad entre las personas ocurre de manera independiente: calcula el promedio del número de pruebas que se va a tener que aplicar.

Problema 8

Problema 8a

Elige al azar sin remplazo n números de $\{1, ..., n\}$. Da un argumento porque la probabilidad que el último obtenido sea el k-ésimo mayor es igual a $\frac{1}{n}(1 \le k \le n)$.

Problema 8b

Considera el siguiente código para encontrar el máximo en un arreglo de n números enteros positivos (todos diferentes).

Supongamos que el orden de los elementos es totalmente al azar. Define X el número de veces que se actualiza la variable max. Calcula EX (usa el inciso anterior).

Problema 9

Se eligen al azar m números sin reemplazo del conjunto $\{0, 1, 2, \dots, n\}$. Calcula el promedio de la suma de los m números elegidos.

Problema 10

Considera el siguiente grafo:

Cada calle (arista) entre dos nodos esté bloqueda por una manifestación con probabilidad p. Supongamos que todos son eventos independientes.

Problema 10a

Calcula la probalidad de poder caminar desde la puerta trasera del Teatro Juarez (nodo más abajo) al café conquistador (nodo más hacia arriba).

Problema 10b

Decimos que un nodo del grafo está aislado si todas las aristas que llegan (o salen) están bloqueadas. Calcula el promedio del número de nodos aislados.