Projeção de resultados no futebol brasileiro com o uso de machine learning

Projeto feito em cima da base de dados do transfermarkt, para ajudar na projeção de resultados nos confrontos do futebol brasileiro.

Equipe: Wesley Da Silva, Rodrigo Alves, Pedro Ryan

Introdução

- O futebol é um esporte globalmente popular, impulsionando uma indústria bilionária.
- Sua imprevisibilidade apresenta desafios, exigindo uma compreensão profunda para maximizar o potencial das equipes.
- A aplicação de técnicas de Machine Learning oferece uma alternativa para prever resultados, utilizando dados do Transfermarkt.
- Objetivo do estudo: prever resultados entre:
 Vitória do mandante, empate ou vitória
 visitante no campeonato brasileiro (Brasileirão
 Série "A") através de simulações de jogos.

Abordagem

- Previsão de desempenho esportivo no futebol era uma tarefa realizada por poucos profissionais, mas com a evolução tecnológica, técnicas de machine learning têm sido implementadas para criar predições de resultados em jogos.
- O estudo aborda a predição de resultados no campeonato brasileiro de futebol (Brasileirão Série A)

Métricas e técnicas

- Grid SearchCV: Técnica para otimizar hiperparâmetros de modelos de machine learning, realizando busca exaustiva e incluindo cross-validation.
- Random forest: Algoritmo de machine learning que cria múltiplas árvores de decisão a partir de subconjuntos aleatórios do conjunto de dados.
- XGBoost: Algoritmo de machine learning que melhora a precisão de modelos de previsão combinando várias árvores de decisão de forma eficiente.
- Matriz de confusão: Ferramenta para avaliar o desempenho de modelos de classificação em machine learning.
- Precision e recall: Métricas para avaliar o desempenho de modelos de classificação, especialmente em desequilíbrios de classes.
- RandomUnderSampler: Técnica de balanceamento de dados em problemas de machine learning.
- F1-score: Métrica de desempenho para avaliar a precisão de modelos de classificação.
- LightGBM: Algoritmo de machine learning baseado em árvores de decisão de gradiente.

Trabalhos relacionados

- Michael Lewis's Book: Em 2003, o livro de Michael Lewis destacou a utilização da análise estatística no beisebol, demonstrando como uma abordagem baseada em dados pode levar a resultados surpreendentes.
- Inteligência Artificial no Futebol Inglês: Clubes como Chelsea e Burnley adotaram a inteligência artificial na análise de desempenho, utilizando métodos quantitativos para identificar padrões e avaliar o desempenho dos jogadores.
- Modelos Estatísticos na English Premier League:
 Um estudo propôs o uso de modelos estatísticos
 baseados em estatística Bayesiana para prever
 resultados na English Premier League,
 demonstrando a aplicação de métodos
 probabilísticos na análise de partidas de futebol.

Metodologia

Metodologia CRISP-DM

Base de dados

- A base de dados foi disponibilizada pelo Transfermarkt e abrange o período de 2003 a 2023 da série A do campeonato brasileiro.
- Composta por 35 colunas e 8079 linhas, os dados são centrados nos confrontos do campeonato brasileiro.
- A base cobre confrontos entre os times, disponibilizando informações como: como gols do time mandante, gols do time visitante, time visitante daquela determinada partida assim como o time mandante, etc...

Base de dados

Ð	ano_campeonato	8079		
	data	8079		
	rodada	8079		
	estadio	8068		
	arbitro	6369		
	publico	6368		
	publico_max	3817		
	time mandante	8079		
	time_visitante	8079		
	tecnico_mandante	5926		
	tecnico_visitante	5926		
	colocacao_mandante	6369		
	colocacao_visitante	6369		
	valor_equipe_titular_mandante	5981		
	valor_equipe_titular_visitante	5981		
	idade_media_titular_mandante	5979		
	idade_media_titular_visitante	5979		
	gols_mandante	8078		
	gols_visitante	8078		
	<pre>gols_1_tempo_mandante</pre>	6359		
	gols_1_tempo_visitante	6359		
	escanteios_mandante	1788		
	escanteios_visitante	1788		
	faltas_mandante	1788		
	faltas_visitante	1788		
	chutes_bola_parada_mandante	1788		
	chutes_bola_parada_visitante	1788		
	defesas_mandante	1788		
	defesas_visitante	1788		
	impedimentos_mandante	1788		
	impedimentos_visitante	1788		
	chutes_mandante	1788		
	chutes_visitante	1788		
	chutes_fora_mandante	1788		
	chutes_fora_visitante	1788		
	dtype: int64			

Pré-processamento

- Após uma raspagem inicial, foi necessário remover os dados anteriores a 2006 devido a mudanças no regulamento do Brasileirão.
- Colunas numéricas com 6% de dados faltantes foram preenchidas utilizando a média dos registros existentes.
- Colunas com menos de 50% de dados preenchidos foram removidas para evitar a perda de capacidade preditiva.
- Novas colunas foram geradas, incluindo média e saldo de gols acumulado dos times ao longo das rodadas.

Construção

- Três modelos baseados em árvores foram testados para definir vitória do visitante, vitória do mandante ou empate.
- Técnicas como RandomUnderSampler para balanceamento da base e Grid SearchCV para otimização dos hiperparâmetros foram aplicadas.
- Os modelos foram treinados utilizando o conjunto de partidas ocorridas durante todos os anos do campeonato, permitindo a predição das partidas do ano posterior.
- Métricas como precisão, sensibilidade, F1score e acurácia foram calculadas para avaliar o desempenho dos modelos.

Construção

Parâmetros e valores usados no Grid Search			
Modelo	Parâmetros	Valores	
RandomForest	n_estimators max_depth min_samples_split min_samples_leaf bootstrap criterion	[100, 200] [10, 20, None] [2, 5] [1, 2] [True, False] [gini, entropy]	
LightGBM	max_depth learning_rate n_estimators	[3, 6, 9] [0.1, 0.01, 0.001] [100, 200, 300]	
Xgboost	max_depth learning_rate n_estimators objective	[3, 6, 9] [0.1, 0.01, 0.001] [100, 200, 300] [multi:softmax]	

Resultados

 O Grid Search foi empregado para a otimização de hiperparâmetros neste projeto, utilizando as configurações listadas na tabela mostrada anteriormente. Três modelos de machine learning foram avaliados após a otimização dos hiperparâmetros: RandomForest, LightGBM e XGBoost.

Resultados

 Foram executados três modelos de machine learning baseados em árvores de decisão: RandomForest, LightGBM e XGBoost. Todos os modelos foram executados utilizando o Random Under Sampler para balanceamento das classes alvo da previsão.

Avaliação dos modelos

 Foi analisado como os três modelos se saiam nas métricas de desempenho pré estabelecidas nas seções anteriores do estudo: precisão, sensibilidade, F1-score e acurácia com e sem a otimização dos hiperparâmetros utilizando o Grid SearchCV.

Modelo XGBoost

• Resultados sem otimização

Classe	Precisão	Sensibilidade	F1-Score
Empate	0.31	0.36	0.33
Vitória mandante	0.69	0.54	0.61
Vitória visitante	0.42	0.53	0.47

• Resultados com otimização

Classe	Precisão	Sensibilidade	F1-Score
Empate	0.35	0.37	0.36
Vitória mandante	0.72	0.58	0.64
Vitória visitante	0.45	0.60	0.52

Modelo Random Forest

Resultados sem otimização

Classe	Precisão	Sensibilidade	F1-Score
Empate	0.30	0.34	0.32
Vitória mandante	0.70	0.56	0.62
Vitória visitante	0.44	0.56	0.50

Resultados com otimização

Classe	Precisão	Sensibilidade	F1-Score
Empate	0.33	0.36	0.35
Vitória mandante	0.71	0.59	0.64
Vitória visitante	0.47	0.59	0.52

Modelo LightGBM

• Resultados sem otimização

Classe	Precisão	Sensibilidade	F1-Score
Empate	0.32	0.36	0.34
Vitória mandante	0.70	0.57	0.63
Vitória visitante	0.44	0.56	0.49

• Resultados com otimização

Classe	Precisão	Sensibilidade	F1-Score
Empate	0.35	0.38	0.37
Vitória mandante	0.70	0.57	0.63
Vitória visitante	0.46	0.60	0.52

Acurácia dos modelos

• Resultados sem otimização

Modelo	Acurácia
XGBoost	0.49
LightGBM	0.50
Random Forest	0.50

Resultados com otimização

Modelo	Acurácia
XGBoost	0.53
LightGBM	0.52
Random Forest	0.52

Discussão dos resultados

- Os resultados demonstram melhorias em quase todas as métricas avaliadas após a otimização dos modelos.
- O XGBoost obteve a maior acurácia 0.53% e se destacou na classe "Vitória Mandante" com precisão de 0.72 e F1-Score de 0.64.
- LightGBM e Random Forest apresentaram resultados próximos, com o Random Forest mostrando ligeiramente melhor desempenho na sensibilidade e F1-Score para a classe "Vitória Mandante".

Random Forest

LGBM

V		D
Λ	U	D

Classe	Precisão	Sensibilidade	F1-Score
Empate	0.33	0.36	0.35
Vitória mandante	0.71	0.59	0.64
Vitória visitante	0.47	0.59	0.52

Classe	Precisão	Sensibilidade	F1-Score
Empate	0.35	0.38	0.37
Vitória mandante	0.70	0.57	0.63
Vitória visitante	0.46	0.60	0.52

Classe	Precisão	Sensibilidade	F1-Score
Empate	0.33	0.36	0.35
Vitória mandante	0.71	0.59	0.64
Vitória visitante	0.47	0.59	0.52

Escolha do modelo

Com base nas análises:

- Optou-se por aprofundar no modelo XGBoost após a otimização.
- Antes da otimização, o XGBoost tinha a pior performance geral, mas após a otimização, apresentou melhorias significativas, especialmente em métricas como precisão e F1-Score para as classes de Vitória Mandante e Vitória Visitante.
- Embora o LightGBM também tenha apresentado resultados próximos, o XGBoost mostrou um balanceamento melhor entre as classes e uma diferença menor entre elas, levando à sua escolha final devido à leve melhoria geral de desempenho.

Conclusão

O estudo apresentou resultados promissores ao utilizar técnicas de machine learning para prever resultados de partidas de futebol no contexto do Campeonato Brasileiro. Ao analisar dados de confrontos entre 2006 e 2023, foi possível observar que esses modelos podem ser ferramentas úteis para entender cenários e obter previsões mais realistas em partidas de futebol.

Passos Futuros

- Simulação Completa do Campeonato: Os modelos podem ser aprimorados para simular não apenas resultados de partidas individuais, mas também a tabela completa do campeonato. Isso permitiria planejamentos mais detalhados para os clubes, envolvendo aspectos financeiros e esportivos desde o início da temporada.
- Melhoria na Qualidade dos Dados: Investir em dados mais completos e atualizados pode melhorar significativamente o desempenho dos modelos. Informações detalhadas sobre táticas e estratégias dos jogos podem proporcionar uma base mais robusta para as previsões.
- Decomposição das Previsões: Dividir as previsões em sub-decisões binárias pode simplificar o processo e potencialmente melhorar o desempenho dos modelos.
- Prototipação Prática: Implementar uma interface prática que permita a simulação de resultados em tempo real, com dados atualizados, pode validar ainda mais a eficácia dos modelos propostos e transformar a teoria em uma ferramenta prática para os clubes de futebol.

Considerações finais

Este estudo destaca o potencial do uso de machine learning no futebol, não apenas para prever resultados, mas também para fornecer estatísticas e dados úteis aos profissionais do setor. A incorporação dessa tecnologia pode contribuir significativamente para uma compreensão mais lógica do jogo, auxiliando na tomada de decisões estratégicas por parte da gestão dos clubes e técnicos.

