Projeto 2 - MS960/MT862

Fernando Ribeiro de Senna — RA 197019 Rodolfo da Silva Santos — RA 228711

13 de novembro de 2020

Foi implementada rede neural regularizada para classificar dígitos manuscritos. Foram utilizados como exemplos de treinamento imagens provenientes da base de imagens MNIST (20 × 20), linearizadas em vetores de 400 entradas. A implementação computacional foi feita em linguagem *python* em três arquivos: *functions.py*, que contém as funções utilizadas; *neural_networks_p2_1.ipynb*, que contém a parte 1 do projeto (mais voltada à implementação do algoritmo) e *Avaliacao_NeuralNet.ipynb* que contém a parte 2 do projeto (voltada à seleção de do modelo).

A Seção 1 apresenta documentação das funções implementadas no arquivo *functions.py*, a Seção 2 apresenta a forma como foi feita a importação e o processamento dos dados (comum aos arquivos *neural_networks_p2_1.ipynb* e *Avaliacao_NeuralNet.ipynb*), a Seção 3 versa sobre a implementação computacional da parte 1 do projeto e a Seção 4 apresenta o que foi feito na parte 2 do projeto.

Foram utilizados funções e objetos das bibliotecas pandas, numpy e matplotlib.

Toda a fundamentação teórica se baseia em conteúdo oferecido em vídeo-aulas e *sli-des* pelo Professor João Batista Florindo em ocasião de oferecimento da disciplina MS960 no segundo semestre de 2020 pelo Instituto de Matemática, Estatística e Computação Científica (IMECC) da Universidade Estadual de Campinas (UNICAMP).

1 Documentação

Essa Seção apresenta as funções utilizadas no projeto, implementadas no arquivo *functions.py*.

1.1 Função backpropagation

Função que realiza o treinamento da rede neural.

Argumentos de entrada:

X Matriz com dados do conjunto de treinamento.

y Vetor com rótulos corretos para o conjunto de treinamento.

num_labels (int) Número de rótulos (números) distintos no conjunto de treinamento.

hidden_layer_size Lista contendo o número de unidades de ativação em cada uma das camadas escondidas da rede neural.

Lambda (int) Valor de λ a ser usado na regularização.

alpha (int) Taxa de aprendizado.

nbr_iter (int) Número de iterações.

regularizada Booleano que indica se deve ser utilizada regularização ou não (opcional, padrão é *True*).

A função retorna:

theta Lista de arrays contendo os valores dos parâmetros Θ obtidos pelo treinamento

J_history Lista com os valores da função de custo para cada iteração

A função cria uma lista de *arrays* inicializados aleatoriamente pela função *randInitia-lizeWeights* com dimensões coerentes com a arquitetura da rede neural fornecida pelo usuário. Em seguida, é realizado o treinamento utilizando a função *gradientDescent*, obtendo, com isso, os argumentos de saída da função.

1.2 Função computeCost

A função ComputeCost calcula o custo e a saída da rede neural. Para isso está função executará o algoritmo de forward e o algoritmo de backpropagation da rede neural. Todas as informações da rede foram armazenadas em vetores, matrizes ou lista, permitindo a escolha do número de entradas na primeira camada, o número de camadas escondidas e o número de saídas na última camada, bem como o número de unidades de ativação em cada camada.

Argumentos de entrada:

X Matriz com dados do conjunto de treinamento.

y Vetor com rótulos corretos para o conjunto de treinamento

theta Lista contendo vetores de pesos de cada camada de ativação da rede neural, inicializados randomicamente pela função randInitializeWeights.

num_labels (int) Número de rótulos (números) distintos no conjunto de treinamento.

hidden_layer_size Lista contendo o número de unidades de ativação em cada uma das camadas escondidas da rede neural.

input_layer_size (int) Número de unidades de ativação da camada de entrada.

Lambda (int) Valor de Lambda a ser usado na regularização.

regularizada Booleano que indica se deve ser utilizada regularização ou não (opcional, padrão é True).

A função retorna:

cost (float) custo médio da rede ou custo regularizado.

grad Lista de vetores contendo os gradientes médios ou gradientes regularizados.

A função computeCost começa inicializando o custo $\mathbf{J} = \mathbf{0}$, o vetor \mathbf{X} (acrescentando o bias) e a matriz $\mathbf{y}\mathbf{10}$ que é inicializado com todos os valores zerados e com dimensão m x num_labels, ou seja, o número de treinamentos x número de classes. Uma vez que cada exemplo de treinamento terá uma saída em $\mathbf{y}\mathbf{10}$. Em seguida a matriz $\mathbf{y}\mathbf{10}$ recebe valores iguais a 1 nas entradas que batem corretamente com as entradas do vetor \mathbf{y} .

No foward foi criada a lista **an** para armazenar todas as saídas das camadas de ativações como matrizes. A matriz **X** foi colocada na primeira posição de **an** para facilitar o cálculo dos demais elementos de **an**. Entre cada uma das camadas de ativação foi feito uma regressão logística (**sigmoid**(**an[i]** @ **thetan[i].T**)) e o resultado armazenado em **an**. Em cada saída de camada de ativação, exceto a primeira (que armazenou o **X**) e a última (camada de saída), foram colocados os **bias**.

Por fim, a função de custo J é calculada por meio da seguinte função:

$$J(\theta) = -1/m\sum_{i=1}^{m}\sum_{k=1}^{k}y_{k}^{(i)}log(h_{\theta}(x^{(i)})_{k}) + (1-y_{k}^{(i)})log(1-(h_{\theta}(x^{(i)})_{k}))$$

Por fim o custo regularizado é calculado.

No backpropagation começamos criando uma lista (**grad**) para armazenar os gradientes de cada camada. Iniciamos a lista **grad** com matrizes no mesmo formato que as matrizes da lista **theta**, só que com todas as entradas com zero. Em seguida é calculada a atualização dos pesos theta através da acumulação das derivadas. Assim sendo o seguinte algoritmo é executado: Para cada entrada/imagem do vetor **X**: **xi** – vetor com a entrada i de **X**. **ani** – que recebe a ativação **an[i,:**] do exemplo i. Para cada entrada de **an**, exceto a primeira que contem **X**. Em seguida calculam-se os deltas (erros da rede) fazendo-se o caminho inverso, ou seja, começa pelo o último, em seguida o penúltimo, até se chegar ao primeiro.

O erro da unidade de saída é calculado fazendo-se $\delta_i^L = a_i^L - y$. Nas demais n-1 camadas aplica-se a formula $\delta_i^n = \theta_{1i}^{(n)} \delta_1^{(n+1)} (1 - a_i^{(n)})$ para se calcular o erro. Sendo n a camada a qual está sendo calculado o erro e i o índice da unidade de ativação da camada.

Em seguida calculamos o gradiente médio (derivada média) com grad[j] = 1/m*grad[j] para cada camada de ativação j. E por fim o gradiente regularizado.

Se a opção regularizada for escolhida o custo e o gradiente regularizados serão retornados no final, caso contrario a função retornara o custo e gradiente médios.

1.3 Função gradientDescent

Calcula o gradiente descendente atualizando os pesos das camadas da rede neural a cada interação. Utiliza para isso os valores da matriz grad retornada pela função computeCost e a taxa de aprendizagem alpha. Ao final de cada iteração o custo é armazenado no vetor J_history.

Argumentos de entrada:

X Matriz com dados do conjunto de treinamento.

y Vetor com rótulos corretos para o conjunto de treinamento

theta Lista contendo vetores de pesos de cada camada de ativação da rede neural inicializados randomicamente.

num_labels (int) Número de rótulos (números) distintos no conjunto de treinamento.

hidden_layer_size Lista contendo o número de unidades de ativação em cada uma das camadas escondidas da rede neural.

input_layer_size (int) Número de unidades de ativação da camada de entrada.

lambda (int) Valor de lambda a ser usado na regularização.

regularizada Booleano que indica se deve ser utilizada regularização ou não (opcional, padrão é True).

alpha (int) Taxa de aprendizado.

nbr_iter (int) Número de iterações.

A função retorna:

theta Lista de vetores contendo os valores dos parâmetros obtidos pelo treinamento

J_history Vetor com os valores da função de custo para cada iteração

1.4 Função prediction

A função prediction faz a predição de novos exemplos após o treinamento da rede neural. Para isso ela calcula a saída da rede, ou seja, faz o forward da rede.

Atributos de entrada:

X – Novos exemplos para receberem a avaliação da rede neural já treinada.

theta – Lista contendo vetores de pesos de cada camada de ativação da rede neural aproximados pela função gradientDescent.

A função retorna:

O índice da major valor da última entrada do vetor an.

1.5 Função checkGradient

Realiza a checagem do gradiente descendente da rede neural. Os detalhes do funcionamento desta função estão na seção 3.2.

Argumentos de entrada:

_X Matriz com dados do conjunto de treinamento.

_y Vetor com rótulos corretos para o conjunto de treinamento

theta Lista contendo vetores de pesos de cada camada de ativação da rede neural inicializados randomicamente.

num_labels (int) Número de rótulos (números) distintos no conjunto de treinamento.

hidden_layer_size Lista contendo o número de unidades de ativação em cada uma das camadas escondidas da rede neural.

input layer size (int) Número de unidades de ativação da camada de entrada.

lambda (float) Valor de λ a ser usado na regularização.

regularizada Booleano que indica se deve ser utilizada regularização ou não (opcional, padrão é True).

eps (Float) Valor de aproximação do gradiente.

nbr_iter (int) Número de iterações.

A função retorna:

grad Lista de vetores com os valores do gradiente calculado pela rede neural.

grad_approx Lista de vetores com os valores do gradiente aproximado calculado pelo algoritmo de checagem da rede neural.

1.6 Função gradientConjugate

Calcula o gradiente conjugado da rede neural regularizada. Os detalhes de implementação do gradiente conjugado estão na seção 3.3.

Argumentos de entrada:

X Matriz com dados do conjunto de treinamento.

y Vetor com rótulos corretos para o conjunto de treinamento

num_labels (int) Número de rótulos (números) distintos no conjunto de treinamento.

hidden_layer_size Lista contendo o número de unidades de ativação em cada uma das camadas escondidas da rede neural.

input_layer_size (int) Número de unidades de ativação da camada de entrada.

lambda (int) Valor de λ a ser usado na regularização.

regularizada Booleano que indica se deve ser utilizada regularização ou não (opcional, padrão é True).

nbr_iter (int) Número de iterações.

A função retorna:

res Objeto com vários atributos. Sendo os mais importantes: vetor da solução, sinalizador booleano indicando sucesso ou fracasso e uma mensagem que descreve a causa do encerramento.

1.7 Função randInitializeWeights

Está função inicializa os pesos da rede neural de forma aleatória e de modo a benificiar a convergencia do gradiente.

Argumentos de entrada:

L_in número de unidades de ativação na camada entrada.

L_out número de unidades de ativação na camada de saída.

A função retorna:

w vetor criado randomicamente com o comprimento igual à quantidade de pesos da camada mais o bias (Pesos que ficam entre as camadas **L_in** e **L_out**)

1.8 Função sigmoid

Função de ativação da rede neural.

 $1/1 + e^{-z}$

Argumentos de entrada:

z produto entre as saídas das camadas de ativação e seus respectivos pesos.

A função retorna:

 $1/1 + e^{-z}$ função sigmoid em -z

1.9 Função sigmoidGradient

Calcula a derivada da função sigmoid

Argumentos de entrada:

z produto entre as saídas das camadas de ativação e seus respectivos pesos.

A função retorna:

sigmoid*(1-sigmoid) derivada da função sigmoid em -z.

1.10 Função reshapeTheta

Recebe theta como um vetor e transforma em uma lista de vetores com tamanhos apropriados para cada camada de ativação da rede neural.

Argumentos de entrada:

theta Vetor de pesos das camadas de ativação da rede neural inicializado randomicamente.

num_labels (int) Número de rótulos (números) distintos no conjunto de treinamento.

hidden_layer_size Lista contendo o número de unidades de ativação em cada uma das camadas escondidas da rede neural.

input_layer_size (int) Número de unidades de ativação da camada de entrada.

A função retorna:

theta Lista contendo vetores de pesos de cada camada de ativação da rede neural inicializados randomicamente.

1.11 Função zero col

Função que remove colunas (de um *dataframe*) em que todas as entradas são nulas. Argumento de entrada:

df Dataframe

Argumentos de saída:

df Matriz contendo os dados do *dataframe*, após serem removidas as colunas em que só haviam zeros.

zero_cols Lista contendo os índices das colunas removidas.

A função percorre o *dataframe* verificando quais colunas são nulas, as remove e armazena seus índices em uma lista. Por fim, retorna o *dataframe* (convertido em matriz e sem as colunas nulas) e a lista dos índices das colunas nulas.

2 Importação e processamento dos dados

Esse processamento de dados é comum a ambas as partes do projeto e está presente nos arquivos *neural_networks_p2_1.ipynb* e *Avaliacao_NeuralNet.ipynb*.

Para importação dos dados, foi utilizada a função *read_csv* da biblioteca *pandas*, para importar as imagens do arquivo *imageMNIST.csv* e os números a que correspondem do arquivo *labelMNIST.csv*. Uma vez importados os dados, foi realizada remoção de dados excessivos.

No conjunto de exemplos de treinamento, havia alguns *pixels* que apresentavam valor nulo para todas as imagens presentes no conjunto de treinamento. Assim, a fim de evitar a presença excessiva de atributos na rede neural, as colunas da base de dados correspondentes a essas imagens foram removidas, já que não interfeririam no resultado. Essa transformação é feita pela função *zero_col*.

Por fim, definem-se as variáveis X e y, que são, respectivamente, uma matriz em que cada linha representa os *pixels* de uma imagem do conjunto de treinamento e um vetor com os rótulos corretos do conjunto de treinamento.

3 Implementação do Algoritmo — Parte I

As operações descritas nessa Seção estão no arquivo *neural_networks_p2_1.ipynb* e são relativas à primeira parte do projeto. A importação e o processamento dos dados foram feitos conforme descrito na Seção 2.

3.1 Rede Neural Regularizada

Foi implementada uma rede neural regularizada com uma camada escondida de 25 neurônios. A rede nural também permite criar testes com um número qualquer de camadas escondidas e neurônios em suas camadas de entrada, saída e escondidas.

Os detalhes da implementação da rede neural regularizada estão demonstrados nas descrições das funções presentes na seção 2. Estas funções estão localizadas no arquivo functions.py.

3.2 Checagem do Gradiente

A função checkGradiente foi criada para checar o gradiente. Amostras aleatórias para a entrada \mathbf{X} , a saída \mathbf{y} e o theta foram criadas com tamanhos adequados e reduzidos para testar a rede em um tempo razoável.

A função checkGradiente utiliza a função computeCost para obter o gradiente aproximado para cada entrada do theta. Dessa forma, para cada entrada i de theta, calculou-se o gradiente aproximado usando a função computeCost e fazendo $\theta_i^{(n)} + \varepsilon$ (custo +) e $\theta_i^{(n)} - \varepsilon$ (custo -). Assim, a entrada correspondente aos theta[i] no gradiente aproximado vai ser calculada por $((custo+)-(custo-))/2*\varepsilon$. Ao se repetir esse processo para cada entrada de theta sempre voltando theta ao valor inicial - obteve-se o gradiente aproximado. Por causa do projeto inicial da função computeCost receber o theta já estruturado de acordo com o número de camadas da rede optou-se por não transformá-lo em um único vetor no processo.

Ao final desse processo utilizou-se, apenas uma vez, a função computeCoste para obter o gradiente gerado pela rede neural. Por causa da forma que são armazenados, tanto o gradiente aproximado como o gradiente foram transformados em um vetores para facilitar a comparação. A comparação entre o gradiente aproximado e o gradiente foi feita por

$$\|grad_approx - grad\|_2/(\|grad_approx\|_2 + \|grad\|_2).$$

Essa fórmula calcula a distância euclidiana normalizada pela soma da norma dos vetores. Usou-se normalização para evitar problemas no caso de um dos vetores serem muito pequeno.. Se o valor retornado por essa formula for menor que o valor do ε escolhido (10^{-4}) o gradiente estará correto, caso contrário o gradiente estará errado.

3.3 Gradiente Conjugado

No cálculo do gradiente conjugado foi utilizada a função minimize da biblioteca scipy.otimize para encontrar valores para theta de forma a minimizar a função computeCost. A função minimize recebe como argumentos de entrada uma função, um vetor com valores reais de entrada (variáveis independentes) a serem manipulados de forma que se encontre o mínimo da função

de entrada, os argumentos da função de entrada e diversos outros argumentos opcionais. Por exemplo: número de interações, método de otimização e restrições.

Dessa forma, a lista theta teve que ser convertida em um vetor para que pudesse ser manipulada pela função minimize e no processo de minimização apenas o valor do custo seria retornado pela função computeCost a função minimize.

Dentre os diversos métodos disponibilizados pela função minimize para encontrar o mínimo da função de entrada escolheu-se utilizar o método padrão BFGS (Broyden – Fletcher – Goldfarb – Shanno). Esse método pertence ao conjunto de técnicas de otimização chamadas de quase-Newton, pois ao medir a mudança no gradiente de uma interação a outra da função fornecida, ele é capaz de criar um modelo que permite convergência para valores mínimos da função. A função minimize recebeu como número máximo de interações o valores entre 200 e 1000.

Os valores de retorno da função minimize são: Um vetor com o resultado, um valor booleano indicando sucesso ou falha no processo de otimização e uma mensagem indicando o motivo da interrupção do processo de otimização.

Lambda	Training Set Accuracy / Success				
Nº Interações	200	400	600	800	1000
0	45.0% (False)	45.0 % (False)	45.0 % (False)	40.0% (False)	60.0% (False)
0.001	45.0% (False)	50.0% (False)	5.0 % (False)	25.0% (False)	20.0% (False)
0.003	25.0% (False)	55.0% (False)	55.0% (False)	15.0% (False)	45.0% (False)
0.01	50.0% (False)	80.0% (False)	45.0% (False)	30.0% (False)	70.0% (True)
0.03	75.0% (False)	70.0% (False)	60.0% (True)	65.0% (True)	55.0% (True)
0.1	80.0% (False)	55.0% (False)	55.0% (True)	70.0% (True)	45.0% (True)
0.3	70.0% (False)	70.0% (True)	75.0% (True)	80.0% (True)	65.0% (True)
1.	55.0% (False)	75.0% (True)	30.0% (True)	60.0% (True)	50.0% (True)
3.	60.0% (True)	60.0% (True)	35.0% (True)	45.0% (True)	40.0% (True)
10.	40.0% (True)	30.0% (True)	30.0% (True)	50.0% (True)	35.0% (True)

Tabela 1 - Testes com o gradiente conjugado.

Na tabela acima são apresentados diversos teste feitos com o gradiente conjugado na rede neural regularizada. A rede foi testada com 3 unidades na camada de entrada, 5 na camada escondida e 3 na camada de saída e com 3 exemplos de treinamento.

Os testes foram feitos variando os números de interações de 200 á 100 e o valor do λ no conjunto 0,0.001,0.003,0.01,0.03,0.1,0.3,1.,3.,10.. Como apresentado na tabela a tendência do gradiente conjugado convergir (Valor True) aumentou com o número de interações e com o valor de λ . Entretanto, a taxa de precisão no conjunto de treinamento sempre apresentou melhores resultados com valores medianos de λ , ou seja, λ muito pequenos ou muito grandes prejudicaram a taxa de acertos.

3.4 Visualização das unidades de ativação escondidas

A fim de ser possível visualizar a contribuição de cada unidade de ativação escondida, foi representado gráficamente o vetor de parâmetros $\Theta^{(1)}$ (após realização do *backpropagation*),

que contém os parâmetros que "transportam" os dados de entrada para cada unidade de ativação da camada escondida.

Para isso, removeu-se o *bias* de cada uma das linhas (cada linha corresponde a uma unidade de ativação) e acrescentaram-se os valores de $\Theta^{(1)}_{i,j}$ que correspondem aos *pixels* que são nulos em todas as imagens e foram retirados dos exemplos de treinamento conforme discutido na Seção 2. O valor desses parâmetros inseridos é zero, pois não contribuem com os resultados obtidos na base de dados utilizados.

Em seguida, os valores dos parâmetros foram normalizados a fim de facilitar a visualização. Para isso, utilizou-se (com relação a cada unidade de ativação) o processo de *scaling*, em que cada valor é substituído pela divisão entre a diferença entre o valor e o valor mínimo e a diferença entre os valores máximo e mínimo, conforme pode ser visto na Equação 1.

$$\Theta_{i,j}^{(1)} := \frac{\Theta_{i,j}^{(1)} - \min_{i} \left\{ \Theta_{i,j}^{(1)} \right\}}{\max_{i} \left\{ \Theta_{i,j}^{(1)} \right\} - \min_{i} \left\{ \Theta_{i,j}^{(1)} \right\}}$$
(1)

Por fim, cada linha de $\Theta_{i,j}^{(1)}$ é rearranjada em imagem de dimensão 20×20 *pixels* e impressa com auxílio de funções da biblioteca *matplotlib*. A Figura 1 apresenta a representação gráfica de cada uma das unidades de ativação escondidas após realizar treinamento com todas as 5 mil imagens do conjunto de treinamento através da função *backpropagation* com uma camada escondida com 25 unidades de ativação, $\lambda = 0.001$, $\alpha = 0.8$ e 800 iterações.

4 Seleção de modelo — Parte II

As operações descritas nessa Seção estão no arquivo *Avaliacao_NeuralNet.ipynb* e são relativas à segunda parte do projeto. A importação e o processamento dos dados foram feitos conforme descrito na Seção 2.

4.1 Treino, validação e teste

Inicialmente, os 5 mil exemplos de treinamento foram separados em 3 conjuntos distintos: treino, validação e teste, com 60%, 20% e 20% do total de exemplos, respectivamente. Essa divisão foi feita de forma aleatória, utilizando a função *random.permutation* da biblioteca *numpy*.

A fim de garantir que não haveria desbalanceamento de classes, isto é, que um conjunto contivesse mais imagens correspondentes a um número do que a outro, essa separação aleatória foi feita classe a classe, de modo que no fim, 60% dos exemplos referentes a cada número estivesse no conjunto de treino, 20% no de validação e 20% no de teste.

Uma vez separados os exemplos de treinamento nesses três conjuntos, realizou-se treinamento utilizando o conjunto de treino e a função *backpropagation* com 800 iterações, $\alpha = 0.8$

Figura 1: Representação gráfica das unidades de ativação da camada escondida.

e λ = 0,001 (valor obtido através dos testes da Seção 4.3). Em seguida, verificou-se o desempenho do resultado para os conjuntos de treino, validação e teste. O algoritmo classificou corretamente 94,57% das imagens do conjunto de treino, com função de custo avaliada em 0,4115. Foram classificadas corretamente 91,8% das imagens do conjunto de validação, obtendo 0,5556 para o valor da função de custo. Já para o conjunto de teste, foram classificadas corretamente 90,7% das imagens, com função de custo 0,5832.

Como os resultados do primeiro treinamento foram satisfatórios ao serem aplicados aos conjuntos de validação e teste, foi feito novo treinamento, dessa vez utilizando tanto o conjunto de treino quanto o de validação. Novamente, foram utilizadas 800 iterações, $\alpha = 0.8$ e $\lambda = 0.001$. Para os conjuntos de treino e validação (conjunto de exemplos de treinamento desse novo treinamento), o algoritmo classificou corretamente 94,77% das imagens, com função de custo avaliada em 0,4173. Já para o conjunto de teste, foram classificadas corretamente 91,6%

Figura 2: Curvas de aprendizado.

das imagens, com 0,5455 como valor para a função de custo.

Conforme esperado, houve pouca variação no desempenho para o conjunto utilizado como treinamento nos dois casos, uma vez que os hiperparâmetros foram os mesmos. Além disso, para o conjunto de teste, o desempenho do algoritmo de classificação foi melhor, pois havia mais exemplos de treinamento quando a rede neural foi treinada, melhorando a precisão.

4.2 Curvas de aprendizado

Curvas de aprendizado são gráficos que servem para comparar o desempenho dos conjuntos de treino e validação para diferentes quantidades de exemplos de treinamento. Para construí-las, é necessário realizar diversos treinamentos, cada um com uma quantidade diferente de exemplos de treinamento e comparar os erros do conjunto utilizado para treinamento e o conjunto utilizado para validação.

Para construir essas curvas, foram utilizados os conjuntos de treino e validação descritos na Seção 4.1. Foram realizados 30 treinamentos, com $100,200,\ldots,3000$ exemplos do conjunto de treino, garantindo que em nenhum treinamento houvesse desbalanceamento de classes. Nesses treinamentos, foram usados $\lambda=0,001,~\alpha=0,8$ e 800 iterações. Em seguida, construiuse o gráfico das curvas de aprendizado, com o valor do erro dos conjuntos de treino (somente as amostras usadas naquele treinamento) e validação em função do tamanho do conjunto usado no treinamento. O resultado está na Figura 2.

Conforme esperado, o erro do conjunto de treinamento se torna cada vez maior, devido à maior quantidade de exemplos, enquanto para o conjunto de validação o erro diminui, de forma a torná-los cada vez mais próximos.

Figura 3: Evolução da função de custo para o conjunto de validação em função de λ .

4.3 Seleção de λ

Nessa Seção, é descrito o procedimento utilizado para encontrar o valor ótimo de λ na regularização. Para isso, foram feitos dez treinamentos com o conjunto de treino, todos com 800 iterações e α = 0,8, variando o valor de λ no conjunto {0;0,001;0,003;0,01;0,03;0,1;0,3;1;3;10}. Para cada treinamento, avaliou-se o erro para o conjunto de validação.

Para analisar o resultado, foram construídos três gráficos: evolução do erro do conjunto de validação em função de λ (Figura 3), evolução do erro do conjunto de validação com relação ao λ para os primeiros 6 treinamentos (Figura 4) e logaritmo do erro em função do logaritmo de λ (Figura 5). Os três gráficos são úteis para visualizar o resultado, pois, devido à grande variação de λ , apenas um deles é insuficiente para perceber os resultados adequadamente.

A partir dos resultados desses treinamentos e da comparação com o desempenho do conjunto de validação, obteve-se 0,001 como valor ótimo para λ . Com base nesse resultado, novo treinamento foi realizado, dessa vez usando tanto o conjunto de treino quanto o de validação como exemplos, utilizando 800 iterações, $\alpha = 0.8$ e $\lambda = 0.001$. Avaliou-se, então, o desempenho do método ao aplicá-lo ao conjunto de teste, obtendo classificação correta para 91,6% das imagens e função de custo avaliada em 0,5319.

5 Referências

Vídeo-aulas e *slides* pelo Professor João Batista Florindo em ocasião de oferecimento da disciplina MS960 no segundo semestre de 2020 pelo Instituto de Matemática, Estatística e Computação Científica (IMECC) da Universidade Estadual de Campinas (UNICAMP).

Figura 4: Evolução da função de custo para o conjunto de validação em função dos seis primeiros valores de λ .

Figura 5: Evolução do logaritmo da função de custo para o conjunto de validação em função do logaritmo de λ .

Artigo sobre checagem do gradiente presente no seguinte endereço:
https://towardsdatascience.com/how-to-debug-a-neural-network-with-gradient-checking-41deec0357a9

Documentação da função minimize presente no seguinte endereço: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html