Tutorium 07: Prolog, Typinferenz

Paul Brinkmeier

15. Dezember 2020

Tutorium Programmierparadigmen am KIT

Heutiges Programm

Programm

- Typinferenz
- Aufgaben zu Prolog

Typinferenz

Unifikation (Robinson, [Rob65])

Unifikationsalgorithmus: unify(C) =

```
if C == \emptyset then [] else let \{\theta_l = \theta_r\} \cup C' = C in if \theta_l == \theta_r then unify(C') else if \theta_l == Y and Y \notin FV(\theta_r) then unify([Y \circ \theta_r] C') \circ [Y \circ \theta_r] else if \theta_r == Y and Y \notin FV(\theta_l) then unify([Y \circ \theta_l] C') \circ [Y \circ \theta_l] else if \theta_l == f(\theta_1^1, \ldots, \theta_l^n) and \theta_r == f(\theta_1^1, \ldots, \theta_r^n) then unify(C' \cup \{\theta_l^1 = \theta_r^1, \ldots, \theta_l^n = \theta_r^n\}) else fail
```

 $Y \in FV(\theta)$ occur check, verhindert zyklische Substitutionen

Korrektheitstheorem

unify(C) terminiert und gibt mgu für C zurück, falls C unifizierbar, ansonsten fail.

Beweis: Siehe [Pie02]

Prolog-Unifikation

Unifiziert:

- \bullet A = x
- \bullet B = f(x)
- \bullet C = g(C)
- f(x, A, z) = f(x, y, B)
- func(A, B, z) = func(x, y, A)
- g(x, A, z) = f(x, A, A)
- f(g(z)) = f(D)

Ergebnis: Entweder fail oder ein Unifikator.

Cheatsheet: Lambda-Kalkül/Basics

- Terme t: Variable (x), Funktion $(\lambda x.t)$, Anwendung $(t\ t)$
- α-Äquivalenz: Gleiche Struktur
- η -Äquivalenz: Unterversorgung
- Freie Variablen, Substitution, RedEx
- β -Reduktion:

$$(\lambda p.b) t \Rightarrow b[p \rightarrow t]$$

Cheatsheet: Typisierter Lambda-Kalkül

$$\frac{\Gamma(t) = \tau}{\Gamma \vdash t : \tau} \text{VAR} \qquad \frac{\Gamma \vdash f : \phi \to \alpha \qquad \Gamma \vdash x : \phi}{\Gamma \vdash f : x : \alpha} \text{APP}$$

$$\frac{\Gamma, \rho : \pi \vdash b : \rho}{\Gamma \vdash \lambda \rho. b : \pi \to \rho} \text{Abs}$$

- Typvariablen: τ , α , π , ρ
- Funktionstypen: $\tau_1 \rightarrow \tau_2$, rechtsassoziativ
- (Weitere Typen: Listen, Tupel, etc.)
- Typisierungsregeln sind eindeutig: Eine Regel pro Termform

(Allgemeine) Typisierungsregel für Variablen

"Der Typkontext Γ enthält einen Typ τ für t." $\Gamma \vdash t : \tau$ • Daraus folgt: "Variable t hat im Kontext Γ den Typ τ ."

Typisierungsregel für Funktionsanwendungen

- $\$ "f ist im Kontext Γ eine Funktion, die ϕ s auf α s abbildet."
- "x ist im Kontext $\sqrt{\text{ein Term des Typs}} \phi$."

- Daraus folgt:
- "x eingesetzt in f ergibt einen Term des Typs α ."

Typisierungsregel für Lambdas

- "Unter Einfügung des Typs π von p in den Kontext…"
- Daraus folgt:
- " $\lambda p.~b$ ist eine Funktion, die π s auf ρ s abbildet"

Typinferenz

Vorgehensweise zur Typinferenz:

- Stelle Typherleitungsbaum auf
 - In jedem Schritt werden neue Typvariablen α_i angelegt
 - Statt die Typen direkt im Baum einzutragen, werden Gleichungen in einem Constraint-System eingetragen
- Unifiziere Constraint-System zu einem Unifikator
 - Robinson-Algorithmus, im Grunde wie bei Prolog
 - I.d.R.: Allgemeinster Unifikator (findet man per Robinson)

Unifikation (Robinson, [Rob65])

Unifikationsalgorithmus: unify(C) =

```
if C == \emptyset then [] else let \{\theta_l = \theta_r\} \cup C' = C in if \theta_l == \theta_r then unify(C') else if \theta_l == Y and Y \notin FV(\theta_r) then unify([Y \circ \theta_r] C') \circ [Y \circ \theta_r] else if \theta_r == Y and Y \notin FV(\theta_l) then unify([Y \circ \theta_l] C') \circ [Y \circ \theta_l] else if \theta_l == f(\theta_1^1, \ldots, \theta_l^n) and \theta_r == f(\theta_1^1, \ldots, \theta_r^n) then unify(C' \cup \{\theta_l^1 = \theta_l^1, \ldots, \theta_l^n = \theta_r^n\}) else fail
```

 $Y \in FV(\theta)$ occur check, verhindert zyklische Substitutionen

Korrektheitstheorem

unify(C) terminiert und gibt mgu für C zurück, falls C unifizierbar, ansonsten fail.

Beweis: Siehe [Pie02]

Unifikation

Unifikationsalgorithmus: unify(C) =

```
if C = \emptyset then [] else let \{\tau_1 = \tau_2\} \cup C' = C in if \tau_1 == \tau_2 then unify(C') else if \tau_1 == \alpha and \alpha \notin FV(\tau_2) then unify([\alpha \diamond \tau_2] C') \circ [\alpha \diamond \tau_2] else if \tau_2 == \alpha and \alpha \notin FV(\tau_1) then unify([\alpha \diamond \tau_1] C') \circ [\alpha \diamond \tau_1] else if \tau_1 == (\tau_1' \to \tau_1'') and \tau_2 == (\tau_2' \to \tau_2'') then unify(C' \cup \{\tau_1' = \tau_2', \tau_1'' = \tau_2''\}) else fail
```

 $\alpha \in FV(\tau)$ occur check, verhindert zyklische Substitutionen

Korrektheitstheorem

unify(C) terminiert und gibt mgu für C zurück, falls C unifizierbar, ansonsten fail.

Beweis: Siehe Literatur

Unifikation für Typinferenz

Typen kann man auch als Funktoren darstellen:

$$au_1
ightarrow au_2 \qquad \equiv \qquad \qquad ext{func}(au_1, au_2) \ \equiv \qquad \qquad \qquad ext{list}(au) \
ightarrow ext{etc.}$$

Typinferenz: Übungsaufgaben

$$\frac{\dots}{f: \text{int} \to \beta \vdash \lambda x. f \ x: \alpha_1} \text{Abs}$$

ullet "Finde den allgemeinsten Typen $lpha_1$ von $\lambda x. f$ x"

Erinnerung:

- Baum mit durchnummerierten α_i aufstellen
- Constraints sammeln:

$$\begin{array}{lll} \Gamma(t) = \alpha_{j} & & & \\ \Gamma \vdash t : \alpha_{i} & & & \\ \hline \Gamma \vdash t : \alpha_{i} & & & \\ \hline \end{array} & \begin{array}{ll} \Gamma \vdash f : \alpha_{j} & \Gamma \vdash x : \alpha_{k} \\ \hline \Gamma \vdash \lambda p. \ b : \alpha_{i} & \\ \hline \end{array} & \begin{array}{ll} \Gamma, p : \alpha_{j} \vdash b : \alpha_{k} \\ \hline \Gamma \vdash \lambda p. \ b : \alpha_{i} & \\ \hline \end{array} & \begin{array}{ll} Constraint: & Constraint: \\ \{\alpha_{i} = \alpha_{i}\} & \{\alpha_{i} = \alpha_{k} \rightarrow \alpha_{i}\} & \{\alpha_{i} = \alpha_{i} \rightarrow \alpha_{k}\} \end{array}$$

Constraint-System auflösen

Typinferenz: Übungsaufgaben

$$\frac{\dots}{\vdash \lambda f. \, \lambda x. \, (f \, x) \, x : \alpha_1} \mathbf{A} \mathbf{B} \mathbf{S}$$

• "Finde den allgemeinsten Typen α_1 von $\lambda f. \lambda x. (f x) x$ "

Erinnerung:

- Baum mit durchnummerierten α_i aufstellen
- Constraints sammeln:

$$\frac{\Gamma(t) = \alpha_j}{\Gamma \vdash t : \alpha_i} \text{VAR} \qquad \frac{\Gamma \vdash f : \alpha_j}{\Gamma \vdash f : \alpha_i} \frac{\Gamma \vdash x : \alpha_k}{\Gamma \vdash \lambda p. b : \alpha_i} \text{APP} \qquad \frac{\Gamma, p : \alpha_j \vdash b : \alpha_k}{\Gamma \vdash \lambda p. b : \alpha_i} \text{ABS}$$

$$\frac{\text{Constraint:}}{\{\alpha_i = \alpha_i\}} \qquad \frac{\text{Constraint:}}{\{\alpha_i = \alpha_k \to \alpha_i\}} \qquad \frac{\{\alpha_i = \alpha_i \to \alpha_k\}}{\{\alpha_i = \alpha_i \to \alpha_k\}}$$

Constraint-System auflösen

Prolog

Cheatsheet: Prolog

- Terme:
 - Variablen: Var, X, X2
 - Funktoren/Atome: f(a, b, c), app(f, x), main
 - Arithmetische Ausdrücke: 17 + 25, 6 * 7
- Regeln: rule(P1, ..., PN) :- Goal1, ..., GoalM.
- Ziele:
 - Funktor: member(X, [1,2,3])
 - Unifikation: X = Y
 - Arithmetik: N is M + 1
 - Verneinung: not(G)
 - Arithmetischer Vergleich: X =:= Y, X =\= Y, etc.
 - Cut: !
- Konzepte: Unifikation, Resolution

Prolog — Regelsysteme als Programmiersprache

```
grandparent(X, Y) :- parent(X, Z), parent(Z, Y).
parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).

mother(inge, emil).
mother(inge, petra).
father(emil, kunibert).
```

```
?- grandparent(inge, kunibert). → yes.
```

Prolog — Regelsysteme als Programmiersprache

```
grandparent(X, Y) :- parent(X, Z), parent(Z, Y).
parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y).

mother(inge, emil).
mother(inge, petra).
father(emil, kunibert).
```

```
mother(inge, emil) father(emil, kunibert)

parent(inge, emil) parent(emil, kunibert)
```

grandparent(inge, kunibert)

Schlafplätze im Gefängnis

Dinesman's multiple-dwelling problem

Bob kommt nun ins Gefängnis. Aaron, Bob, Connor, David und Edison müssen sich zu fünft ein sehr breites Bett teilen.

- Aaron will nicht am rechten Ende liegen
- Bob will nicht am linken Ende liegen
- Connor will an keinem der beiden Enden liegen
- David will weiter rechts liegen als Bob
- Connor schnarcht sehr laut;
 Bob und Edison sind sehr geräuschempfindlich
 - → Bob will nicht direkt neben Connor liegen
 - → Edison will nicht direkt neben Connor liegen

Wie können die 5 Schlafplätze verteilt werden?

Schlafplätze im Gefängnis

```
% schlafplaetze.pl
bett(X) :- member(X, [1, 2, 3, 4, 5]).

schlafplaetze(A, B, C, D, E) :-
  bett(A), bett(B), bett(C), bett(D), bett(E),
  distinct([A, B, C, D, E]),
  % weitere Tests
```

- Fügt weitere benötigte Tests ein
- Implementiert:
 - distinct/1 prüft Listenelemente auf paarweise Ungleichheit
 - adjacent/2 prüft, ob |A B| = 1

- Aaron, Bob, Connor, David und Edison sollen 4 Einheiten Putzdienst übernehmen
- Da sie sich nicht einigen können, wer aussetzen darf, wendet ein Wärter folgendes Vorgehen an:
 - Die fünf werden im Kreis aufgestellt
 - Der Wärter stellt sich in die Mitte
 - Beginnend bei 12 Uhr dreht er sich im Uhrzeigersinn und teilt jeden k-ten (bspw. k = 2) Insassen zum Putzdienst ein
 - ullet D.h. es werden immer k-1 Insassen übersprungen

An welcher Stelle muss Bob stehen, um nicht putzen zu müssen?

- Aaron, Bob, Connor, David und Edison sollen 4 Einheiten Putzdienst übernehmen
- Da sie sich nicht einigen können, wer aussetzen darf, wendet ein Wärter folgendes Vorgehen an:
 - Die fünf werden im Kreis aufgestellt
 - Der Wärter stellt sich in die Mitte
 - Beginnend bei 12 Uhr dreht er sich im Uhrzeigersinn und teilt jeden k-ten (bspw. k = 2) Insassen zum Putzdienst ein
 - D.h. es werden immer k-1 Insassen übersprungen

An welcher Stelle muss Bob stehen, um nicht putzen zu müssen? An welcher Stelle muss Bob bei 41 Insassen und k = 3 stehen?

```
% putzdienst.pl
% Bspw.
% ?- keinPutzdienstFuer([a, b, c, d, e], 2, X)
keinPutzdienstFuer(L, K, X) :-
  Countdown is K - 1,
  helper(L, Countdown, K, X).
helper([X], _C, _K, X) :- !.
```

- Weitere Fälle für helper/4:
 - C = 0 → Element entfernen
 - Ansonsten: Element hinten wieder anhängen

Quellen der Aufgaben

Zum Nachlesen und Vergleichen mit Lösungen in anderen Programmiersprachen:

- WG Rosetta Code: Department Numbers
- Detektiv github.com/Anniepoo/prolog-examples
- Schlafplätze SICP, S. 418
- Putzdienst Rosetta Code: Josephus problem

Schöne Ferien!

Schöne Ferien!

- Nach dem Ferien: Mehr Typinferenz, Reussner-Teil
- Aktueller Klausurtermin: 09.04.2021, 17:00, Zelt auf dem Forum

Bleibt gesund, feiert schön und einen guten Rutsch!