# Python code for Artificial Intelligence Foundations of Computational Agents

David L. Poole and Alan K. Mackworth

Version 0.9.13 of June 13, 2024.

https://aipython.org https://artint.info

©David L Poole and Alan K Mackworth 2017-2024.

All code is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. See: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

This document and all the code can be downloaded from https://artint.info/AIPython/ or from https://aipython.org

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research and testing of the theories and programs to determine their effectiveness. The authors and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

https://aipython.org Version 0.9.13 June 13, 2024

| C | onten | its     |                                                      | 3  |
|---|-------|---------|------------------------------------------------------|----|
| 1 | Pytl  | hon for | Artificial Intelligence                              | 9  |
|   | 1.1   | Wh      | y Python?                                            | 9  |
|   | 1.2   |         | ting Python                                          | 10 |
|   | 1.3   |         | nning Python                                         | 10 |
|   | 1.4   |         | alls                                                 | 11 |
|   | 1.5   |         | tures of Python                                      | 11 |
|   |       | 1.5.1   | f-strings                                            | 11 |
|   |       | 1.5.2   | Lists, Tuples, Sets, Dictionaries and Comprehensions | 12 |
|   |       | 1.5.3   |                                                      | 13 |
|   |       | 1.5.4   | •                                                    | 14 |
|   | 1.6   | Use     | ful Libraries                                        | 16 |
|   |       | 1.6.1   | Timing Code                                          | 16 |
|   |       | 1.6.2   | Plotting: Matplotlib                                 | 16 |
|   | 1.7   | Util    | ities                                                | 18 |
|   |       | 1.7.1   | Display                                              | 18 |
|   |       | 1.7.2   | Argmax                                               | 19 |
|   |       | 1.7.3   |                                                      | 20 |
|   | 1.8   | Test    | ing Code                                             | 21 |
| 2 | Age   | nt Arcl | hitectures and Hierarchical Control                  | 25 |
|   | 2.1   | Rep     | resenting Agents and Environments                    | 25 |
|   | 2.2   | _       | er buying agent and environment                      | 27 |
|   |       | 2.2.1   | The Environment                                      | 27 |
|   |       | 2.2.2   | The Agent                                            | 29 |

| 4 | 4 | Content | t, |
|---|---|---------|----|
|   |   |         |    |

|   |      | 2.2.3 | Plotting                                            | 29        |
|---|------|-------|-----------------------------------------------------|-----------|
|   | 2.3  | Hie   | rarchical Controller                                | 31        |
|   |      | 2.3.1 | Environment                                         | 31        |
|   |      | 2.3.2 | Body                                                | 32        |
|   |      | 2.3.3 | Middle Layer                                        | 34        |
|   |      | 2.3.4 | Top Layer                                           | 35        |
|   |      | 2.3.5 | Plotting                                            | 36        |
| 3 | Sear | ching | for Solutions                                       | 41        |
| _ | 3.1  | _     | resenting Search Problems                           | 41        |
|   |      | 3.1.1 | Explicit Representation of Search Graph             | 43        |
|   |      | 3.1.2 | Paths                                               | 45        |
|   |      | 3.1.3 | Example Search Problems                             | 47        |
|   | 3.2  |       | eric Searcher and Variants                          | 53        |
|   | J    | 3.2.1 | Searcher                                            | 53        |
|   |      | 3.2.2 |                                                     | 55        |
|   |      | 3.2.3 | Frontier as a Priority Queue                        | 59        |
|   |      | 3.2.4 | $A^*$ Search                                        | 60        |
|   |      | 3.2.5 | Multiple Path Pruning                               | 62        |
|   | 3.3  |       | nch-and-bound Search                                | 64        |
| 4 | D    | •     | mills Constraints                                   | (0        |
| 4 | 4.1  |       | with Constraints straint Satisfaction Problems      | <b>69</b> |
|   | 4.1  | 4.1.1 | Variables                                           | 69        |
|   |      | 4.1.1 | Constraints                                         | 70        |
|   |      | 4.1.3 | CSPs                                                | 71        |
|   |      | 4.1.3 | Examples                                            | 7 1<br>74 |
|   | 4.2  |       | mple Depth-first Solver                             | 83        |
|   | 4.2  |       | verting CSPs to Search Problems                     | 84        |
|   | 4.4  |       |                                                     | 86        |
|   | 4.4  | 4.4.1 | sistency Algorithms                                 | 89        |
|   |      | 4.4.2 | Consistency GUI                                     | 91        |
|   |      | 4.4.3 | Domain Splitting as an interface to graph searching | 93        |
|   | 4.5  |       | ring CSPs using Stochastic Local Search             | 95        |
|   | 4.5  | 4.5.1 | Any-conflict                                        | 97        |
|   |      | 4.5.1 | Two-Stage Choice                                    | 98        |
|   |      | 4.5.3 | <u> </u>                                            | 101       |
|   |      | 4.5.4 | Updatable Priority Queues                           | 101       |
|   |      | 4.5.5 | <u> </u>                                            | 102       |
|   | 4.6  |       | Testing                                             | 105       |
|   | 4.0  | 4.6.1 | Branch-and-bound Search                             | 106       |
| _ | _    |       |                                                     |           |
| 5 | _    |       | ns and Inference                                    | 109       |
|   | 5.1  |       | resenting Knowledge Bases                           | 109       |
|   | 5.2  | Bott  | om-up Proofs (with askables)                        | 112       |

|   | 5.3 | Top-down Proofs (with askables)                 | 114 |
|---|-----|-------------------------------------------------|-----|
|   | 5.4 | Debugging and Explanation                       | 115 |
|   | 5.5 | Assumables                                      | 119 |
|   | 5.6 | Negation-as-failure                             | 122 |
| 6 | Det | erministic Planning                             | 125 |
| Ū | 6.1 | Representing Actions and Planning Problems      | 125 |
|   | 0.1 | 6.1.1 Robot Delivery Domain                     | 126 |
|   |     | 6.1.2 Blocks World                              | 128 |
|   | 6.2 | Forward Planning                                | 130 |
|   | 0.2 | 6.2.1 Defining Heuristics for a Planner         | 132 |
|   | 6.3 | Regression Planning                             | 135 |
|   | 0.5 |                                                 | 137 |
|   | ( 1 | e e                                             |     |
|   | 6.4 | Planning as a CSP                               | 138 |
|   | 6.5 | Partial-Order Planning                          | 142 |
| 7 | Sup | ervised Machine Learning                        | 149 |
|   | 7.1 | Representations of Data and Predictions         | 150 |
|   |     | 7.1.1 Creating Boolean Conditions from Features | 153 |
|   |     | 7.1.2 Evaluating Predictions                    | 155 |
|   |     | 7.1.3 Creating Test and Training Sets           | 157 |
|   |     | 7.1.4 Importing Data From File                  | 157 |
|   |     | 7.1.5 Augmented Features                        | 160 |
|   | 7.2 | Generic Learner Interface                       | 163 |
|   | 7.3 | Learning With No Input Features                 | 163 |
|   |     | 7.3.1 Evaluation                                | 166 |
|   | 7.4 | Decision Tree Learning                          | 167 |
|   | 7.5 | Cross Validation and Parameter Tuning           | 172 |
|   | 7.6 | Linear Regression and Classification            | 174 |
|   | 7.7 | Boosting                                        | 181 |
|   |     | 7.7.1 Gradient Tree Boosting                    | 184 |
| 8 | Neu | ral Networks and Deep Learning                  | 187 |
| _ | 8.1 | Layers                                          | 187 |
|   | 0.1 | 8.1.1 Linear Layer                              | 188 |
|   |     | 8.1.2 ReLU Layer                                | 190 |
|   |     | 8.1.3 Sigmoid Layer                             | 190 |
|   | 8.2 | Feedforward Networks                            | 191 |
|   | 8.3 |                                                 | 193 |
|   | 0.5 | Improved Optimization                           |     |
|   |     | 8.3.1 Momentum                                  | 193 |
|   | 0.4 | 8.3.2 RMS-Prop                                  | 193 |
|   | 8.4 | Dropout                                         | 194 |
|   |     | 8.4.1 Examples                                  | 195 |
| 9 | Rea | soning with Uncertainty                         | 201 |

|    |      | _      |                                               |             |
|----|------|--------|-----------------------------------------------|-------------|
|    | 9.1  | -      | resenting Probabilistic Models                |             |
|    | 9.2  |        |                                               | 201         |
|    | 9.3  | y      |                                               | 203         |
|    |      | 9.3.1  | Logistic Regression                           | 204         |
|    |      | 9.3.2  | Noisy-or                                      | 204         |
|    |      | 9.3.3  | Tabular Factors and Prob                      | 205         |
|    |      | 9.3.4  | Decision Tree Representations of Factors      | 206         |
|    | 9.4  | Grap   | phical Models                                 | 208         |
|    |      | 9.4.1  | Showing Belief Networks                       | 210         |
|    |      | 9.4.2  | Example Belief Networks                       | 210         |
|    | 9.5  | Infe   | rence Methods                                 | 216         |
|    |      | 9.5.1  | Showing Posterior Distributions               | 217         |
|    | 9.6  | Naix   | ve Search                                     | 218         |
|    | 9.7  | Recu   | rrsive Conditioning                           | 220         |
|    | 9.8  | Varia  | able Elimination                              | 224         |
|    | 9.9  | Stoc   | hastic Simulation                             | 228         |
|    |      | 9.9.1  | Sampling from a discrete distribution         | 228         |
|    |      | 9.9.2  | Sampling Methods for Belief Network Inference | 229         |
|    |      | 9.9.3  | Rejection Sampling                            | 230         |
|    |      | 9.9.4  | Likelihood Weighting                          | 231         |
|    |      | 9.9.5  | Particle Filtering                            | 232         |
|    |      | 9.9.6  | Examples                                      | 233         |
|    |      | 9.9.7  | Gibbs Sampling                                | 235         |
|    |      | 9.9.8  | Plotting Behavior of Stochastic Simulators    | 236         |
|    | 9.10 | Hido   | den Markov Models                             | 239         |
|    |      | 9.10.1 | Exact Filtering for HMMs                      | 241         |
|    |      | 9.10.2 | Localization                                  | 242         |
|    |      | 9.10.3 | Particle Filtering for HMMs                   | 245         |
|    |      | 9.10.4 | Generating Examples                           | 247         |
|    | 9.11 | Dyn    | amic Belief Networks                          | 248         |
|    |      |        | Representing Dynamic Belief Networks          | 249         |
|    |      | 9.11.2 | Unrolling DBNs                                | 253         |
|    |      | 9.11.3 | DBN Filtering                                 | 255         |
| 10 | Lear | ning w | rith Uncertainty                              | 257         |
|    | 10.1 | Ваує   | esian Learning                                | 257         |
|    | 10.2 | K-m    | eans                                          | 261         |
|    | 10.3 | EM     |                                               | 266         |
| 11 | Caus | sality |                                               | <b>27</b> 1 |
|    | 11.1 | Do Ç   | Questions                                     | 271         |
|    | 11.2 | Cou    | nterfactual Reasoning                         | 274         |
|    |      | 11.2.1 | Choosing Deterministic System                 | 274         |
|    |      | 11.2.2 | Firing Squad Example                          | 277         |
|    |      |        |                                               |             |

| 12 | Plan         | ning w             | rith Uncertainty                                      | 281        |
|----|--------------|--------------------|-------------------------------------------------------|------------|
|    | 12.1         | Deci               | sion Networks                                         | 282        |
|    |              | 12.1.1             | Example Decision Networks                             | 283        |
|    |              | 12.1.2             | Decision Functions                                    | 289        |
|    |              | 12.1.3             | Recursive Conditioning for decision networks          | 290        |
|    |              |                    | Variable elimination for decision networks            | 293        |
|    | 12.2         | Marl               | kov Decision Processes                                | 296        |
|    |              | 12.2.1             | Problem Domains                                       | 297        |
|    |              |                    | Value Iteration                                       | 305        |
|    |              | 12.2.3             | Value Iteration GUI for Grid Domains                  | 306        |
|    |              | 12.2.4             | Asynchronous Value Iteration                          | 311        |
| 13 | Reir         | oforcem            | nent Learning                                         | 313        |
| 10 | 13.1         |                    | resenting Agents and Environments                     | 313        |
|    | 10.1         | -                  | Environments                                          | 313        |
|    |              |                    | Agents                                                | 314        |
|    |              |                    | Simulating an Environment-Agent Interaction           | 315        |
|    |              |                    | Party Environment                                     | 316        |
|    |              |                    | Environment from a Problem Domain                     | 317        |
|    |              |                    | Monster Game Environment                              | 318        |
|    | 13.2         |                    | earning                                               | 321        |
|    |              |                    | Exploration Strategies                                | 323        |
|    |              |                    | Testing Q-learning                                    | 324        |
|    | 13.3         | Q-lea              | aning with Experience Replay                          | 326        |
|    | 13.4         |                    | hastic Policy Learning Agent                          | 328        |
|    | 13.5         |                    | lel-based Reinforcement Learner                       | 330        |
|    | 13.6         | Rein               | forcement Learning with Features                      | 333        |
|    |              | 13.6.1             | Representing Features                                 | 334        |
|    |              | 13.6.2             | Feature-based RL learner                              | 337        |
|    | 13.7         | GUI                | for RL                                                | 340        |
| 14 | Mul          | tiagent            | Systems                                               | 345        |
|    | 14.1         |                    | imax                                                  | 345        |
|    |              |                    | Creating a two-player game                            | 345        |
|    |              |                    | Minimax and $\alpha$ - $\beta$ Pruning                | 348        |
|    | 14.2         |                    | tiagent Learning                                      | 350        |
|    |              |                    | Simulating Multiagent Interaction with an Environment | 350        |
|    |              |                    | Example Games                                         | 352        |
|    |              |                    | Testing Games and Environments                        | 353        |
| 15 | T., 1:       | والمراجعة المراجعة | and Delations                                         | 251        |
| 15 |              |                    | s and Relations                                       | 355        |
|    | 15.1         |                    | resenting Datalog and Logic Programs                  | 355        |
|    | 15.2<br>15.3 |                    | ication                                               | 357<br>358 |
|    | 15.3         |                    | wledge Bases                                          | 360        |
|    | 13.4         | 10p-               | uowii i iooi i ioceuuie                               | 300        |

|     | 15.5 Logic Program Example                         | 362 |
|-----|----------------------------------------------------|-----|
| 16  | Knowledge Graphs and Ontologies                    | 365 |
|     | 16.1 Triple Store                                  | 365 |
|     | 16.2 Integrating Datalog and Triple Store          | 368 |
| 17  | Relational Learning                                | 371 |
|     | 17.1 Collaborative Filtering                       | 371 |
|     | 17.1.1 Plotting                                    | 375 |
|     | 17.1.2 Loading Rating Sets from Files and Websites | 378 |
|     | 17.1.3 Ratings of top items and users              | 379 |
|     | 17.2 Relational Probabilistic Models               | 381 |
| 18  | Version History                                    | 387 |
| Bil | bliography                                         | 389 |
| Inc | dex                                                | 391 |

# Python for Artificial Intelligence

AIPython contains runnable code for the book *Artificial Intelligence, foundations of computational agents, 3rd Edition* [Poole and Mackworth, 2023]. It has the following design goals:

- Readability is more important than efficiency, although the asymptotic
  complexity is not compromised. AIPython is not a replacement for welldesigned libraries, or optimized tools. Think of it like a model of an engine made of glass, so you can see the inner workings; don't expect it to
  power a big truck, but it lets you see how a metal engine can power a
  truck.
- It uses as few libraries as possible. A reader only needs to understand Python. Libraries hide details that we make explicit. The only library used is matplotlib for plotting and drawing.

#### 1.1 Why Python?

We use Python because Python programs can be close to pseudo-code. It is designed for humans to read.

Python is reasonably efficient. Efficiency is usually not a problem for small examples. If your Python code is not efficient enough, a general procedure to improve it is to find out what is taking most of the time, and implement just that part more efficiently in some lower-level language. Most of these lower-level languages interoperate with Python nicely. This will result in much less programming and more efficient code (because you will have more time to optimize) than writing everything in a low-level language. You will not have to do that for the code here if you are using it for larger projects.

## 1.2 Getting Python

You need Python 3.9 or later (https://python.org/) and a compatible version of matplotlib (https://matplotlib.org/). This code is *not* compatible with Python 2 (e.g., with Python 2.7).

Download and install the latest Python 3 release from https://python.org/orhttps://www.anaconda.com/download. This should also install pip3. You can install matplotlib using

```
pip3 install matplotlib
```

in a terminal shell (not in Python). That should "just work". If not, try using pip instead of pip3.

The command python or python3 should then start the interactive Python shell. You can quit Python with a control-D or with quit().

To upgrade matplotlib to the latest version (which you should do if you install a new version of Python) do:

```
pip3 install --upgrade matplotlib
```

We recommend using the enhanced interactive python **ipython** (https://ipython.org/) [Pérez and Granger, 2007]. To install ipython after you have installed python do:

```
pip3 install ipython
```

#### 1.3 Running Python

We assume that everything is done with an interactive Python shell. You can either do this with an IDE, such as IDLE that comes with standard Python distributions, or just running ipython3 or python3 (or perhaps just ipython or python) from a shell.

Here we describe the most simple version that uses no IDE. If you download the zip file, and cd to the "aipython" folder where the .py files are, you should be able to do the following, with user input in bold. The first python command is in the operating system shell; the -i is important to enter interactive mode.

```
python -i searchGeneric.py
Testing problem 1:
7 paths have been expanded and 4 paths remain in the frontier
Path found: A --> C --> B --> D --> G
Passed unit test
>>> searcher2 = AStarSearcher(searchProblem.acyclic_delivery_problem) #A*
>>> searcher2.search() # find first path
16 paths have been expanded and 5 paths remain in the frontier
o103 --> o109 --> o119 --> o123 --> r123
>>> searcher2.search() # find next path
```

1.4. Pitfalls

```
21 paths have been expanded and 6 paths remain in the frontier o103 --> b3 --> b4 --> o109 --> o119 --> o123 --> r123 >>> searcher2.search() # find next path

28 paths have been expanded and 5 paths remain in the frontier o103 --> b3 --> b1 --> b2 --> b4 --> o109 --> o119 --> o123 --> r123 >>> searcher2.search() # find next path

No (more) solutions. Total of 33 paths expanded.
```

You can then interact at the last prompt.

There are many textbooks for Python. The best source of information about python is https://www.python.org/. The documentation is at https://docs.python.org/3/.

The rest of this chapter is about what is special about the code for AI tools. We will only use the standard Python library and matplotlib. All of the exercises can be done (and should be done) without using other libraries; the aim is for you to spend your time thinking about how to solve the problem rather than searching for pre-existing solutions.

#### 1.4 Pitfalls

It is important to know when side effects occur. Often AI programs consider what would/might happen given certain conditions. In many such cases, we don't want side effects. When an agent acts in the world, side effects are appropriate.

In Python, you need to be careful to understand side effects. For example, the inexpensive function to add an element to a list, namely append, changes the list. In a functional language like Haskell or Lisp, adding a new element to a list, without changing the original list, is a cheap operation. For example if x is a list containing n elements, adding an extra element to the list in Python (using append) is fast, but it has the side effect of changing the list x. To construct a new list that contains the elements of x plus a new element, without changing the value of x, entails copying the list, or using a different representation for lists. In the searching code, we will use a different representation for lists for this reason.

## 1.5 Features of Python

#### 1.5.1 f-strings

Python can use matching ', ", ''' or """, the latter two respecting line breaks in the string. We use the convention that when the string denotes a unique symbol, we use single quotes, and when it is designed to be for printing, we use double quotes.

We make extensive use of f-strings https://docs.python.org/3/tutorial/inputoutput.html. In its simplest form

```
f"str1{e1}str2{e2}str3"
```

where e1 and e2 are expressions, is an abbreviation for

```
"str1"+str(e2)+"str2"+str(e2)+"str3"
```

where + is string concatenation, and str is the function that returns a string representation of its expression argument.

#### 1.5.2 Lists, Tuples, Sets, Dictionaries and Comprehensions

We make extensive uses of lists, tuples, sets and dictionaries (dicts). See https://docs.python.org/3/library/stdtypes.html

One of the nice features of Python is the use of **comprehensions**<sup>1</sup> (and also list, tuple, set and dictionary comprehensions). A generator expression is of the form

```
(fe for e in iter if cond)
```

enumerates the values fe for each e in iter for which cond is true. The "if cond" part is optional, but the "for" and "in" are not optional. Here e is a variable (or a pattern that can be on the left side of =), iter is an iterator, which can generate a stream of data, such as a list, a set, a range object (to enumerate integers between ranges) or a file. cond is an expression that evaluates to either True or False for each e, and fe is an expression that will be evaluated for each value of e for which cond returns True.

The result can go in a list or used in another iteration, or can be called directly using next. The procedure next takes an iterator and returns the next element (advancing the iterator); it raises a StopIteration exception if there is no next element. The following shows a simple example, where user input is prepended with >>>

```
>>> [e*e for e in range(20) if e%2==0]
[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]
>>> a = (e*e for e in range(20) if e%2==0)
>>> next(a)
0
>>> next(a)
4
>>> next(a)
16
>>> list(a)
[36, 64, 100, 144, 196, 256, 324]
```

 $<sup>^{1}</sup> https://docs.python.org/3/reference/expressions.html \# displays-for-lists-sets-and-dictionaries$ 

```
>>> next(a)
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
StopIteration
```

Notice how list(a) continued on the enumeration, and got to the end of it.

Comprehensions can also be used for dictionaries. The following code creates an index for list a:

```
>>> a = ["a","f","bar","b","a","aaaaa"]
>>> ind = {a[i]:i for i in range(len(a))}
>>> ind
{'a': 4, 'f': 1, 'bar': 2, 'b': 3, 'aaaaa': 5}
>>> ind['b']
3
```

which means that 'b' is the 3rd element of the list.

The assignment of ind could have also be written as:

```
>>> ind = {val:i for (i,val) in enumerate(a)}
```

where enumerate is a built-in function that, given a dictionary, returns an iterator of (*index*, *value*) pairs.

#### 1.5.3 Functions as first-class objects

Python can create lists and other data structures that contain functions. There is an issue that tricks many newcomers to Python. For a local variable in a function, the function uses the last value of the variable when the function is *called*, not the value of the variable when the function was defined (this is called "late binding"). This means if you want to use the value a variable has when the function is created, you need to save the current value of that variable. Whereas Python uses "late binding" by default, the alternative that newcomers often expect is "early binding", where a function uses the value a variable had when the function was defined. The following examples show how early binding can be implemented.

Consider the following programs designed to create a list of 5 functions, where the ith function in the list is meant to add i to its argument:<sup>2</sup>

<sup>&</sup>lt;sup>2</sup>Numbered lines are Python code available in the code-directory, aipython. The name of the file is given in the gray text above the listing. The numbers correspond to the line numbers in that file.

```
16
17
   fun_list2 = []
   for i in range(5):
18
       def fun2(e,iv=i):
19
           return e+iv
20
       fun_list2.append(fun2)
21
22
   fun_list3 = [lambda e: e+i for i in range(5)]
23
24
   fun_list4 = [lambda e,iv=i: e+iv for i in range(5)]
25
26
   i=56
27
```

Try to predict, and then test to see the output, of the output of the following calls, remembering that the function uses the latest value of any variable that is not bound in the function call:

```
pythonDemo.py — (continued)

# in Shell do

## ipython -i pythonDemo.py

# Try these (copy text after the comment symbol and paste in the Python prompt):

# print([f(10) for f in fun_list1])

# print([f(10) for f in fun_list2])

# print([f(10) for f in fun_list3])

# print([f(10) for f in fun_list4])
```

In the first for-loop, the function fun1 uses i, whose value is the last value it was assigned. In the second loop, the function fun2 uses iv. There is a separate iv variable for each function, and its value is the value of i when the function was defined. Thus fun1 uses late binding, and fun2 uses early binding. fun\_list3 and fun\_list4 are equivalent to the first two (except fun\_list4 uses a different i variable).

One of the advantages of using the embedded definitions (as in fun1 and fun2 above) over the lambda is that is it possible to add a \_\_doc\_\_ string, which is the standard for documenting functions in Python, to the embedded definitions.

#### 1.5.4 Generators

Python has generators which can be used for a form of lazy evaluation – only computing values when needed.

The yield command returns a value that is obtained with next. It is typically used to enumerate the values for a for loop or in generators. (The yield command can also be used for coroutines, but AIPython only uses it for generators.)

A version of the built-in range, with 2 or 3 arguments (and positive steps) can be implemented as:

```
_{\rm pythonDemo.py} — (continued)
   def myrange(start, stop, step=1):
37
        """enumerates the values from start in steps of size step that are
38
39
       less than stop.
40
41
       assert step>0, f"only positive steps implemented in myrange: {step}"
       i = start
42
       while i<stop:</pre>
43
44
           yield i
45
           i += step
46
   print("list(myrange(2,30,3)):",list(myrange(2,30,3)))
```

Note that the built-in range is unconventional in how it handles a single argument, as the single argument acts as the second argument of the function. Note also that the built-in range also allows for indexing (e.g., range(2,30,3)[2] returns 8), but the above implementation does not. However myrange also works for floats, whereas the built-in range does not.

**Exercise 1.1** Implement a version of myrange that acts like the built-in version when there is a single argument. (Hint: make the second argument have a default value that can be recognized in the function.) There is no need to make it with indexing.

Yield can be used to generate the same sequence of values as in the example of Section 1.5.2:

```
pythonDemo.py — (continued)

def ga(n):
    """generates square of even nonnegative integers less than n"""

for e in range(n):
    if e%2==0:
        yield e*e

49

def ga(n):
    """generates square of even nonnegative integers less than n"""

50

for e in range(n):
    if e%2==0:
        yield e*e
```

The sequence of next(a), and list(a) gives exactly the same results as the comprehension in Section 1.5.2.

It is straightforward to write a version of the built-in enumerate called myenumerate:

**Exercise 1.2** Write a version of enumerate where the only iteration is "for val in enum". Hint: keep track of the index.

#### 1.6 Useful Libraries

#### 1.6.1 Timing Code

In order to compare algorithms, we often want to compute how long a program takes; this is called the **run time** of the program. The most straightforward way to compute run time is to use time.perf\_counter(), as in:

```
import time
start_time = time.perf_counter()
compute_for_a_while()
end_time = time.perf_counter()
print("Time:", end_time - start_time, "seconds")
```

Note that time.perf\_counter() measures clock time; so this should be done without user interaction between the calls. On the interactive python shell, you should do:

```
start_time = time.perf_counter(); compute_for_a_while(); end_time = time.perf_counter()
```

If this time is very small (say less than 0.2 second), it is probably very inaccurate, and it may be better to run your code many times to get a more accurate count. For this you can use timeit (https://docs.python.org/3/library/timeit.html). To use timeit to time the call to foo.bar(aaa) use:

The setup is needed so that Python can find the meaning of the names in the string that is called. This returns the number of seconds to execute foo.bar(aaa) 100 times. The variable number should be set so that the run time is at least 0.2 seconds.

You should not trust a single measurement as that can be confounded by interference from other processes. timeit.repeat can be used for running timit a few (say 3) times. When reporting the time of any computation, you should be explicit and explain what you are reporting. Usually the minimum time is the one to report.

#### 1.6.2 Plotting: Matplotlib

The standard plotting for Python is matplotlib (https://matplotlib.org/). We will use the most basic plotting using the pyplot interface.

Here is a simple example that uses everything we will use. The output is shown in Figure 1.1.

```
_____pythonDemo.py — (continued) ______
60 | import matplotlib.pyplot as plt
61
```



Figure 1.1: Result of pythonDemo code

```
def myplot(minv,maxv,step,fun1,fun2):
63
       plt.ion() # make it interactive
       plt.xlabel("The x axis")
64
       plt.ylabel("The y axis")
65
       plt.xscale('linear') # Makes a 'log' or 'linear' scale
66
       xvalues = range(minv,maxv,step)
67
       plt.plot(xvalues,[fun1(x) for x in xvalues],
68
                  label="The first fun")
69
70
       plt.plot(xvalues,[fun2(x) for x in xvalues], linestyle='--',color='k',
                  label=fun2.__doc__) # use the doc string of the function
71
       plt.legend(loc="upper right") # display the legend
72
73
   def slin(x):
74
       """y=2x+7"""
75
       return 2*x+7
76
   def sqfun(x):
77
       """y=(x-40)^2/10-20"""
78
       return (x-40)**2/10-20
79
80
   # Try the following:
81
  |# from pythonDemo import myplot, slin, sqfun
82
   # import matplotlib.pyplot as plt
   # myplot(0,100,1,slin,sqfun)
84
   # plt.legend(loc="best")
   # import math
86
87
   # plt.plot([41+40*math.cos(th/10) for th in range(50)],
              [100+100*math.sin(th/10) for th in range(50)])
88
```

```
89  # plt.text(40,100,"ellipse?")
90  # plt.xscale('log')
```

At the end of the code are some commented-out commands you should try in interactive mode. Cut from the file and paste into Python (and remember to remove the comments symbol and leading space).

#### 1.7 Utilities

#### 1.7.1 Display

In this distribution, to keep things simple, using only standard Python, we use a text-oriented tracing of the code. A graphical depiction of the code can override the definition of display (e.g., see SearcherGUI in Section 3.2.2 and ConsistencyGUI in Section 4.4.2).

The method self.display is used to trace the program. Any call

```
self.display(level, to_print...)
```

where the *level* is less than or equal to the value for max\_display\_level will be printed. The *to\_print*... can be anything that is accepted by the built-in print (including any keyword arguments).

The definition of display is:

```
display.py — A simple way to trace the intermediate steps of algorithms.
   class Displayable(object):
11
       """Class that uses 'display'.
12
       The amount of detail is controlled by max_display_level
13
14
       max_display_level = 1 # can be overridden in subclasses or instances
15
16
       def display(self,level,*args,**nargs):
17
           """print the arguments if level is less than or equal to the
18
           current max_display_level.
19
           level is an integer.
20
           the other arguments are whatever arguments print can take.
21
22
           if level <= self.max_display_level:</pre>
23
24
               print(*args, **nargs) ##if error you are using Python2 not
                   Python3
```

(Note that args gets a tuple of the positional arguments, and nargs gets a dictionary of the keyword arguments). This will not work in Python 2, and will give an error.

Any class that wants to use display can be made a subclass of Displayable. To change the maximum display level to 3 for a class do:

```
Classname.max\_display\_level = 3
```

1.7. Utilities

which will make calls to display in that class print when the value of level is less-than-or-equal to 3. The default display level is 1. It can also be changed for individual objects (the object value overrides the class value).

The value of max\_display\_level by convention is:

- 0 display nothing
- 1 display solutions (nothing that happens repeatedly)
- 2 also display the values as they change (little detail through a loop)
- 3 also display more details
- 4 and above even more detail

#### 1.7.2 Argmax

Python has a built-in max function that takes a generator (or a list or set) and returns the maximum value. The argmax method returns the index of an element that has the maximum value. If there are multiple elements with the maximum value, one of the indexes to that value is returned at random. argmaxe assumes an enumeration; a generator of (*element*, *value*) pairs, as for example is generated by the built-in enumerate(*list*) for lists or *dict*.items() for dictionaries.

```
_utilities.py — AIPython useful utilities
   import random
   import math
12
13
   def argmaxall(gen):
14
       """gen is a generator of (element, value) pairs, where value is a real.
15
       argmaxall returns a list of all of the elements with maximal value.
16
17
       maxv = -math.inf
                             # negative infinity
18
                      # list of maximal elements
       maxvals = []
19
       for (e,v) in gen:
20
           if v>maxv:
21
22
               maxvals, maxv = [e], v
           elif v==maxv:
23
              maxvals.append(e)
24
       return maxvals
25
26
   def argmaxe(gen):
27
       """gen is a generator of (element, value) pairs, where value is a real.
28
       argmaxe returns an element with maximal value.
29
       If there are multiple elements with the max value, one is returned at
30
           random.
31
       return random.choice(argmaxall(gen))
32
33
  def argmax(lst):
```

```
"""returns maximum index in a list"""
35
       return argmaxe(enumerate(lst))
36
37
   # Try:
   \# argmax([1,6,3,77,3,55,23])
38
39
   def argmaxd(dct):
40
      """returns the arg max of a dictionary dct"""
41
42
      return argmaxe(dct.items())
   # Try:
43
  # arxmaxd({2:5,5:9,7:7})
```

**Exercise 1.3** Change argmaxall to have an optional argument that specifies whether you want the "first", "last" or a "random" index of the maximum value returned. If you want the first or the last, you don't need to keep a list of the maximum elements. Enable the other methods to have this optional argument.

#### 1.7.3 Probability

For many of the simulations, we want to make a variable True with some probability. flip(p) returns True with probability p, and otherwise returns False.

```
def flip(prob):
"""return true with probability prob"""
return random.random() < prob
```

The select\_from\_dist method takes in a *item*: *probability* dictionary, and returns one of the items in proportion to its probability. The probabilities should sum to 1 or more. If they sum to more than one, the excess is ignored.

```
__utilities.py — (continued) _
   def select_from_dist(item_prob_dist):
49
       """ returns a value from a distribution.
50
       item_prob_dist is an item:probability dictionary, where the
51
52
           probabilities sum to 1.
       returns an item chosen in proportion to its probability
53
54
       ranreal = random.random()
55
       for (it,prob) in item_prob_dist.items():
56
           if ranreal < prob:</pre>
57
               return it
58
           else:
59
               ranreal -= prob
60
       raise RuntimeError(f"{item_prob_dist} is not a probability
61
           distribution")
```

## 1.8 Testing Code

It is important to test code early and test it often. We include a simple form of **unit test**. The value of the current module is in \_\_name\_\_ and if the module is run at the top-level, its value is "\_\_main\_\_". See https://docs.python.org/3/library/\_main\_\_.html.

The following code tests argmax and dict\_union, but only when if utilities is loaded in the top-level. If it is loaded in a module the test code is not run.

In your code, you should do more substantial testing than done here. In particular, you should also test boundary cases.

```
_utilities.py — (continued)
   def test():
63
       """Test part of utilities"""
64
       assert argmax([1,6,55,3,55,23]) in [2,4]
65
       print("Passed unit test in utilities")
66
67
       print("run test_aipython() to test (almost) everything")
68
   if __name__ == "__main__":
69
       test()
70
```

The following does a simple check of all of AIPython that has automatic checks. If you develop new algorithms or tests, add them here!

```
_utilities.py — (continued)
   def test_aipython():
       # Agents: currently no tests
73
       # Search:
74
       print("***** testing Search *****")
75
       import searchGeneric, searchBranchAndBound, searchExample, searchTest
76
       searchGeneric.test(searchGeneric.AStarSearcher)
77
       searchBranchAndBound.test(searchBranchAndBound.DF_branch_and_bound)
78
       searchTest.run(searchExample.problem1,"Problem 1")
79
       # CSP
80
       print("\n**** testing CSP *****")
81
       import cspExamples, cspDFS, cspSearch, cspConsistency, cspSLS
82
       cspExamples.test_csp(cspDFS.dfs_solve1)
83
       cspExamples.test_csp(cspSearch.solver_from_searcher)
84
       cspExamples.test_csp(cspConsistency.ac_solver)
85
       cspExamples.test_csp(cspConsistency.ac_search_solver)
86
       cspExamples.test_csp(cspSLS.sls_solver)
87
       cspExamples.test_csp(cspSLS.any_conflict_solver)
88
       # Propositions
89
       print("\n***** testing Propositional Logic *****")
90
       import logicBottomUp, logicTopDown, logicExplain, logicNegation
92
       logicBottomUp.test()
       logicTopDown.test()
93
       logicExplain.test()
94
       logicNegation.test()
95
       # Planning
96
```

```
print("\n***** testing Planning *****")
97
98
        import stripsHeuristic
        stripsHeuristic.test_forward_heuristic()
99
        stripsHeuristic.test_regression_heuristic()
100
        # Learning
101
        print("\n**** testing Learning *****")
102
103
        import learnProblem, learnNoInputs, learnDT, learnLinear
        learnNoInputs.test_no_inputs(training_sizes=[4])
104
        data = learnProblem.Data_from_file('data/carbool.csv', target_index=-1,
105
            seed=123)
        learnDT.testDT(data, print_tree=False)
106
        learnLinear.test()
107
        # Deep Learning: currently no tests
108
        # Uncertainty
109
        print("\n**** testing Uncertainty *****")
110
        import probGraphicalModels, probRC, probVE, probStochSim
111
        probGraphicalModels.InferenceMethod.testIM(probRC.ProbSearch)
112
        probGraphicalModels.InferenceMethod.testIM(probRC.ProbRC)
113
        probGraphicalModels.InferenceMethod.testIM(probVE.VE)
114
        probGraphicalModels.InferenceMethod.testIM(probStochSim.RejectionSampling,
115
            threshold=0.1)
        probGraphicalModels.InferenceMethod.testIM(probStochSim.LikelihoodWeighting,
116
            threshold=0.1)
        probGraphicalModels.InferenceMethod.testIM(probStochSim.ParticleFiltering,
117
            threshold=0.1)
        probGraphicalModels.InferenceMethod.testIM(probStochSim.GibbsSampling,
118
            threshold=0.1)
        # Learning under uncertainty: currently no tests
119
        # Causality: currently no tests
120
        # Planning under uncertainty
121
        print("\n**** testing Planning under Uncertainty *****")
122
        import decnNetworks
123
        decnNetworks.test(decnNetworks.fire_dn)
124
125
        import mdpExamples
        mdpExamples.test_MDP(mdpExamples.partyMDP)
126
127
        # Reinforement Learning:
        print("\n**** testing Reinforcement Learning *****")
128
        import rlQLearner
129
        rlQLearner.test_RL(rlQLearner.Q_learner, alpha_fun=lambda k:10/(9+k))
130
        import rlQExperienceReplay
131
        rlQLearner.test_RL(rlQExperienceReplay.Q_ER_learner, alpha_fun=lambda
132
            k:10/(9+k))
        import rlStochasticPolicy
133
        rlQLearner.test_RL(rlStochasticPolicy.StochasticPIAgent,
134
            alpha_fun=lambda k:10/(9+k))
        import rlModelLearner
135
        rlQLearner.test_RL(rlModelLearner.Model_based_reinforcement_learner)
136
        import rlFeatures
137
        rlQLearner.test_RL(rlFeatures.SARSA_LFA_learner,
138
            es_kwargs={'epsilon':1}, eps=4)
```

```
# Multiagent systems: currently no tests
139
       # Individuals and Relations
140
       print("\n**** testing Datalog and Logic Programming ****")
141
       import relnExamples
142
       relnExamples.test_ask_all()
143
       # Knowledge Graphs and Onologies
144
       print("\n**** testing Knowledge Graphs and Onologies ****")
145
146
       import knowledgeGraph
       knowledgeGraph.test_kg()
147
       # Relational Learning: currently no tests
148
```

# Agent Architectures and Hierarchical Control

This implements the controllers described in Chapter 2 of Poole and Mackworth [2023].

These provide sequential implementations of the control. More sophisticated version may have them run concurrently (either as coroutines or in parallel).

In this version the higher-levels call the lower-levels. The higher-levels calling the lower-level works in simulated environments when there is a single agent, and where the lower-level are written to make sure they return (and don't go on forever), and the higher level doesn't take too long (as the lower-levels will wait until called again).

# 2.1 Representing Agents and Environments

In the initial implementation, both agents and the environment are treated as objects in the send of object-oriented programs: they can have an internal state they maintain, and can evaluate methods that can provide answers. This is the same representation used for the reinforcement learning algorithms (Chapter 13).

An **environment** takes in actions of the agents, updates its internal state and returns the next percept, using the method do.

An **agent** takes the precept, updates its internal state, and output it next action. An agent implements the method select\_action that takes percept and returns its next action.

The methods do and select\_action are chained together to build a simulator. In order to start this, we need either an action or a percept. There are two variants used:

- An agent implements the initial\_action() method which is used initially. This is the method used in the reinforcement learning chapter (page 313).
- The environment implements the initial\_percept() method which gives the initial percept. This is the method used in this chapter.

In this implementation, the state of the agent and the state of the environment are represented using standard Python variables, which are updated as the state changes. The percept and the actions are represented as variable-value dictionaries. When agent has only a limited number of actions, the action can be a single value.

In the following code raise NotImplementedError() is a way to specify an abstract method that needs to be overridden in any implemented agent or environment.

```
_agents.py — Agent and Controllers
11
   from display import Displayable
12
   class Agent(Displayable):
13
14
       def initial_action(self, percept):
15
           """return the initial action."""
16
17
           return self.select_action(percept) # same as select_action
18
       def select_action(self, percept):
19
           """return the next action (and update internal state) given percept
20
           percept is variable: value dictionary
21
           raise NotImplementedError("go") # abstract method
23
```

The environment implements a do(action) method where action is a variable-value dictionary. This returns a percept, which is also a variable-value dictionary. The use of dictionaries allows for structured actions and percepts.

Note that Environment is a subclass of Displayable so that it can use the display method described in Section 1.7.1.

```
class Environment(Displayable):
    def initial_percept(self):
        """returns the initial percept for the agent"""
        raise NotImplementedError("initial_percept") # abstract method

def do(self, action):
    """does the action in the environment
```

```
returns the next percept """
raise NotImplementedError("Environment.do") # abstract method
```

The simulator lets the agent and the environment take turns in updating their states and returning the action and the percept.

The first implementation is a simple procedure to carry out n steps of the simulation and return the agent state and the environment state at the end.

```
_agents.py — (continued)
   class Simulate(Displayable):
35
       """simulate the interaction between the agent and the environment
36
       for n time steps.
37
       Returns a pair of the agent state and the environment state.
38
39
       def __init__(self,agent, environment):
40
           self.agent = agent
           self.env = environment
42
           self.percept = self.env.initial_percept()
43
           self.percept_history = [self.percept]
44
           self.action_history = []
45
46
       def go(self, n):
47
           for i in range(n):
48
49
               action = self.agent.select_action(self.percept)
               self.display(2,f"i={i} action={action}")
50
               self.percept = self.env.do(action)
51
               self.display(2,f"
                                    percept={self.percept}")
52
```

## 2.2 Paper buying agent and environment

To run the demo, in folder "aipython", load "agents.py", using e.g., ipython -i agentBuying.py, and copy and paste the commented-out commands at the bottom of that file.

This is an implementation of Example 2.1 of Poole and Mackworth [2023]. You might get different plots to Figures 2.2 and 2.3 as there is randomness in the environment.

#### 2.2.1 The Environment

The environment state is given in terms of the time and the amount of paper in stock. It also remembers the in-stock history and the price history. The percept consists of the price and the amount of paper in stock. The action of the agent is the number to buy.

Here we assume that the prices are obtained from the prices list (which cycles) plus a random integer in range [0, max\_price\_addon) plus a linear "in-

flation". The agent cannot access the price model; it just observes the prices and the amount in stock.

```
_agentBuying.py — Paper-buying agent ___
   import random
11
   from agents import Agent, Environment, Simulate
   from utilities import select_from_dist
13
14
   class TP_env(Environment):
15
       price_delta = [0, 0, 0, 21, 0, 20, 0, -64, 0, 0, 23, 0, 0, -35,
16
           0, 76, 0, -41, 0, 0, 0, 21, 0, 5, 0, 5, 0, 0, 0, 5, 0, -15, 0, 5,
17
          0, 5, 0, -115, 0, 115, 0, 5, 0, -15, 0, 5, 0, 5, 0, 0, 5, 0, 0
18
          -59, 0, 44, 0, 5, 0, 5, 0, 0, 0, 5, 0, -65, 50, 0, 5, 0, 5, 0, 0,
19
          0. 5. 07
20
       sd = 5 # noise standard deviation
21
22
23
       def __init__(self):
           """paper buying agent"""
24
           self.time=0
25
           self.stock=20
26
           self.stock_history = [] # memory of the stock history
27
           self.price_history = [] # memory of the price history
28
29
       def initial_percept(self):
30
           """return initial percept"""
31
           self.stock_history.append(self.stock)
32
33
           self.price = round(234+self.sd*random.gauss(0,1))
           self.price_history.append(self.price)
34
           return {'price': self.price,
35
                   'instock': self.stock}
36
37
       def do(self, action):
38
           """does action (buy) and returns percept consisting of price and
39
               instock"""
           used = select_from_dist({6:0.1, 5:0.1, 4:0.1, 3:0.3, 2:0.2, 1:0.2})
40
           \# used = select_from_dist({7:0.1, 6:0.2, 5:0.2, 4:0.3, 3:0.1,
41
               2:0.1}) # uses more paper
           bought = action['buy']
42
           self.stock = self.stock+bought-used
43
           self.stock_history.append(self.stock)
44
           self.time += 1
45
           self.price = round(self.price
46
                          + self.price_delta[self.time%len(self.price_delta)] #
47
                              repeating pattern
                          + self.sd*random.gauss(0,1)) # plus randomness
48
           self.price_history.append(self.price)
49
           return {'price': self.price,
50
                   'instock': self.stock}
51
```

#### 2.2.2 The Agent

The agent does not have access to the price model but can only observe the current price and the amount in stock. It has to decide how much to buy.

The belief state of the agent is an estimate of the average price of the paper, and the total amount of money the agent has spent.

```
\_agentBuying.py — (continued)
   class TP_agent(Agent):
53
       def __init__(self):
54
           self.spent = 0
55
56
           percept = env.initial_percept()
           self.ave = self.last_price = percept['price']
57
           self.instock = percept['instock']
58
           self.buy_history = []
59
60
       def select_action(self, percept):
61
           """return next action to carry out
62
63
           self.last_price = percept['price']
64
           self.ave = self.ave+(self.last_price-self.ave)*0.05
65
           self.instock = percept['instock']
66
           if self.last_price < 0.9*self.ave and self.instock < 60:</pre>
67
               tobuy = 48
68
           elif self.instock < 12:</pre>
69
               tobuy = 12
70
71
           else:
               tobuy = 0
72
           self.spent += tobuy*self.last_price
73
           self.buy_history.append(tobuy)
74
           return {'buy': tobuy}
75
```

Set up an environment and an agent. Uncomment the last lines to run the agent for 90 steps, and determine the average amount spent.

#### 2.2.3 Plotting

The following plots the price and number in stock history:

```
agentBuying.py — (continued)

import matplotlib.pyplot as plt

class Plot_history(object):
```



Figure 2.1: Percept and command traces for the paper-buying agent

```
"""Set up the plot for history of price and number in stock"""
86
        def __init__(self, ag, env):
87
            self.ag = ag
88
            self.env = env
89
90
            plt.ion()
           plt.xlabel("Time")
91
           plt.ylabel("Value")
92
93
94
        def plot_env_hist(self):
95
            """plot history of price and instock"""
96
           num = len(env.stock_history)
97
           plt.plot(range(num),env.price_history,label="Price")
98
           plt.plot(range(num),env.stock_history,label="In stock")
99
            plt.legend()
100
            #plt.draw()
101
102
        def plot_agent_hist(self):
103
            """plot history of buying"""
104
            num = len(ag.buy_history)
105
            plt.bar(range(1,num+1), ag.buy_history, label="Bought")
106
            plt.legend()
107
            #plt.draw()
108
109
    # sim.go(100); print(f"agent spent ${ag.spent/100}")
110
    # pl = Plot_history(ag,env); pl.plot_env_hist(); pl.plot_agent_hist()
```

Figure 2.1 shows the result of the plotting in the previous code.

#### **Exercise 2.1** Design a better controller for a paper-buying agent.

- Justify a performance measure that is a fair comparison. Note that minimizing the total amount of money spent may be unfair to agents who have built up a stockpile, and favors agents that end up with no paper.
- Give a controller that can work for many different price histories. An agent can use other local state variables, but does not have access to the environment model.
- Is it worthwhile trying to infer the amount of paper that the home uses?
   (Try your controller with the different paper consumption commented out in TP\_env.do.)

#### 2.3 Hierarchical Controller

To run the hierarchical controller, in folder "aipython", load "agentTop.py", using e.g., ipython -i agentTop.py, and copy and paste the commands near the bottom of that file.

In this implementation, each layer, including the top layer, implements the environment class, because each layer is seen as an environment from the layer above.

We arbitrarily divide the environment and the body, so that the environment just defines the walls, and the body includes everything to do with the agent. Note that the named locations are part of the (top-level of the) agent, not part of the environment, although they could have been.

#### 2.3.1 Environment

The environment defines the walls.

```
_agentEnv.py — Agent environment _
   import math
   from display import Displayable
   from agents import Environment
13
14
   class Rob_env(Environment):
15
       def __init__(self,walls = {}):
16
           """walls is a set of line segments
17
                  where each line segment is of the form ((x0,y0),(x1,y1))
18
19
           self.walls = walls
20
```

#### 2.3.2 Body

The body defines everything about the agent body.

```
_agentEnv.py — (continued) _____
   import math
22
   from agents import Environment
23
   import matplotlib.pyplot as plt
24
25
   import time
26
   class Rob_body(Environment):
27
       def __init__(self, env, init_pos=(0,0,90)):
28
           """ env is the current environment
29
           init_pos is a triple of (x-position, y-position, direction)
30
              direction is in degrees; 0 is to right, 90 is straight-up, etc
31
32
           self.env = env
33
           self.rob_x, self.rob_y, self.rob_dir = init_pos
34
           self.turning_angle = 18 # degrees that a left makes
35
           self.whisker_length = 6 # length of the whisker
36
           self.whisker_angle = 30 # angle of whisker relative to robot
37
           self.crashed = False
38
           # The following control how it is plotted
39
           self.plotting = True
                                 # whether the trace is being plotted
40
           self.sleep_time = 0.05 # time between actions (for real-time
41
               plotting)
           # The following are data structures maintained:
42
           self.history = [(self.rob_x, self.rob_y)] # history of (x,y)
43
           self.wall_history = [] # history of hitting the wall
44
       def percept(self):
46
           return {'rob_x_pos':self.rob_x, 'rob_y_pos':self.rob_y,
47
                  'rob_dir':self.rob_dir, 'whisker':self.whisker(),
48
                       'crashed':self.crashed}
       initial_percept = percept # use percept function for initial percept too
49
50
51
       def do(self,action):
           """ action is {'steer':direction}
52
           direction is 'left', 'right' or 'straight'
53
54
           if self.crashed:
55
               return self.percept()
56
57
           direction = action['steer']
           compass_deriv =
58
               {'left':1, 'straight':0, 'right':-1}[direction]*self.turning_angle
           self.rob_dir = (self.rob_dir + compass_deriv +360)%360 # make in
59
               range [0,360)
           rob_x_new = self.rob_x + math.cos(self.rob_dir*math.pi/180)
60
           rob_y_new = self.rob_y + math.sin(self.rob_dir*math.pi/180)
61
           path = ((self.rob_x,self.rob_y),(rob_x_new,rob_y_new))
62
```

```
if any(line_segments_intersect(path,wall) for wall in
63
               self.env.walls):
               self.crashed = True
               if self.plotting:
65
                  plt.plot([self.rob_x],[self.rob_y],"r*",markersize=20.0)
66
                  plt.draw()
67
68
           self.rob_x, self.rob_y = rob_x_new, rob_y_new
           self.history.append((self.rob_x, self.rob_y))
69
           if self.plotting and not self.crashed:
70
              plt.plot([self.rob_x],[self.rob_y],"go")
71
               plt.draw()
72
              plt.pause(self.sleep_time)
73
           return self.percept()
74
```

The Boolean whisker method returns True when the whisker and the wall intersect.

```
_agentEnv.py — (continued) _
       def whisker(self):
76
           """returns true whenever the whisker sensor intersects with a wall
77
78
           whisk_ang_world = (self.rob_dir-self.whisker_angle)*math.pi/180
79
               # angle in radians in world coordinates
80
           wx = self.rob_x + self.whisker_length * math.cos(whisk_ang_world)
81
           wy = self.rob_y + self.whisker_length * math.sin(whisk_ang_world)
82
           whisker_line = ((self.rob_x,self.rob_y),(wx,wy))
83
           hit = any(line_segments_intersect(whisker_line,wall)
                       for wall in self.env.walls)
85
           if hit:
86
               self.wall_history.append((self.rob_x, self.rob_y))
87
               if self.plotting:
88
                   plt.plot([self.rob_x],[self.rob_y],"ro")
89
                   plt.draw()
90
           return hit
91
92
    def line_segments_intersect(linea,lineb):
93
        """returns true if the line segments, linea and lineb intersect.
94
       A line segment is represented as a pair of points.
95
       A point is represented as a (x,y) pair.
96
97
98
        ((x0a,y0a),(x1a,y1a)) = linea
        ((x0b,y0b),(x1b,y1b)) = lineb
99
       da, db = x1a-x0a, x1b-x0b
100
101
       ea, eb = y1a-y0a, y1b-y0b
       denom = db*ea-eb*da
102
        if denom==0: # line segments are parallel
103
           return False
104
       cb = (da*(y0b-y0a)-ea*(x0b-x0a))/denom # position along line b
105
       if cb<0 or cb>1:
106
           return False
107
       ca = (db*(y0b-y0a)-eb*(x0b-x0a))/denom # position along line a
108
```

```
return 0<=ca<=1

110

111  # Test cases:

112  # assert line_segments_intersect(((0,0),(1,1)),((1,0),(0,1)))

113  # assert not line_segments_intersect(((0,0),(1,1)),((1,0),(0.6,0.4)))

114  # assert line_segments_intersect(((0,0),(1,1)),((1,0),(0.4,0.6)))
```

#### 2.3.3 Middle Layer

The middle layer acts like both a controller (for the environment layer) and an environment for the upper layer. It has to tell the environment how to steer. Thus it calls  $env.do(\cdot)$ . It also is told the position to go to and the timeout. Thus it also has to implement  $do(\cdot)$ .

```
_agentMiddle.py — Middle Layer _
   from agents import Environment
11
   import math
12
13
   class Rob_middle_layer(Environment):
14
       def __init__(self,env):
15
           self.env=env
16
           self.percept = env.initial_percept()
17
           self.straight_angle = 11 # angle that is close enough to straight
18
           self.close_threshold = 2 # distance that is close enough to arrived
19
           self.close_threshold_squared = self.close_threshold**2 # just
20
               compute it once
21
       def initial_percept(self):
22
           return {}
23
24
       def do(self, action):
25
           """action is {'go_to':target_pos,'timeout':timeout}
26
           target_pos is (x,y) pair
27
           timeout is the number of steps to try
28
29
           returns {'arrived':True} when arrived is true
               or {'arrived':False} if it reached the timeout
30
31
           if 'timeout' in action:
32
               remaining = action['timeout']
33
           else:
34
               remaining = −1 # will never reach 0
35
           target_pos = action['go_to']
36
           arrived = self.close_enough(target_pos)
           while not arrived and remaining != 0:
38
               self.percept = self.env.do({"steer":self.steer(target_pos)})
               remaining -= 1
40
               arrived = self.close_enough(target_pos)
41
           return {'arrived':arrived}
42
```

The following method determines how to steer depending on whether the goal is to the right or the left of where the robot is facing.

```
_agentMiddle.py — (continued) _
       def steer(self, target_pos):
44
           if self.percept['whisker']:
45
               self.display(3,'whisker on', self.percept)
46
               return "left"
47
           else:
48
               return self.head_towards(target_pos)
49
50
       def head_towards(self,target_pos):
51
               """ given a target position, return the action that heads
52
                   towards that position
53
               gx,gy = target_pos
54
               rx,ry = self.percept['rob_x_pos'],self.percept['rob_y_pos']
55
               goal_dir = math.acos((gx-rx)/math.sqrt((gx-rx)*(gx-rx)
56
                                                     +(gy-ry)*(gy-ry)))*180/math.pi
57
               if ry>gy:
58
                   goal_dir = -goal_dir
59
               goal_from_rob = (goal_dir - self.percept['rob_dir']+540)%360-180
60
               assert -180 < goal_from_rob <= 180</pre>
61
               if goal_from_rob > self.straight_angle:
62
                   return "left"
63
               elif goal_from_rob < -self.straight_angle:</pre>
                   return "right"
65
66
               else:
                   return "straight"
67
68
       def close_enough(self,target_pos):
69
           gx,gy = target_pos
70
           rx,ry = self.percept['rob_x_pos'],self.percept['rob_y_pos']
71
72
           return (gx-rx)**2 + (gy-ry)**2 <= self.close_threshold_squared</pre>
```

#### 2.3.4 Top Layer

The top layer treats the middle layer as its environment. Note that the top layer is an environment for us to tell it what to visit.

```
timeout is the number of steps the middle layer goes before giving
19
           locations is a loc:pos dictionary
20
              where loc is a named location, and pos is an (x,y) position.
21
22
           self.middle = middle
23
24
           self.timeout = timeout # number of steps before the middle layer
               should give up
           self.locations = locations
25
26
       def do(self,plan):
27
           """carry out actions.
28
           actions is of the form {'visit':list_of_locations}
29
           It visits the locations in turn.
30
31
           to_do = plan['visit']
32
           for loc in to_do:
33
              position = self.locations[loc]
              arrived = self.middle.do({'go_to':position,
35
                   'timeout':self.timeout})
              self.display(1,"Arrived at",loc,arrived)
36
```

#### 2.3.5 Plotting

The following is used to plot the locations, the walls and (eventually) the movement of the robot. It can either plot the movement if the robot as it is going (with the default env.plotting = True), or not plot it as it is going (setting env.plotting = False; in this case the trace can be plotted using  $pl.plot\_run()$ ).

```
_agentTop.py — (continued) _____
   import matplotlib.pyplot as plt
38
39
   class Plot_env(Displayable):
40
       def __init__(self, body,top):
41
           """sets up the plot
42
43
           self.body = body
44
           self.top = top
45
           plt.ion()
46
           plt.axes().set_aspect('equal')
47
           self.redraw()
48
49
       def redraw(self):
50
51
           plt.clf()
           for wall in body.env.walls:
52
               ((x0,y0),(x1,y1)) = wall
               plt.plot([x0,x1],[y0,y1],"-k",linewidth=3)
54
           for loc in top.locations:
55
               (x,y) = top.locations[loc]
56
```



Figure 2.2: A trace of the trajectory of the agent. Red dots correspond to the whisker sensor being on; the green dot to the whisker sensor being off. The agent starts at position (0,0) facing up.

```
57
               plt.plot([x],[y],"k<")
               plt.text(x+1.0,y+0.5,loc) # print the label above and to the
58
           plt.plot([body.rob_x],[body.rob_y],"go")
59
           plt.gca().figure.canvas.draw()
60
           if self.body.history or self.body.wall_history:
61
               self.plot_run()
62
63
       def plot_run(self):
64
           """plots the history after the agent has finished.
65
           This is typically only used if body.plotting==False
66
67
           if self.body.history:
68
              xs,ys = zip(*self.body.history)
               plt.plot(xs,ys,"go")
70
           if self.body.wall_history:
71
              wxs,wys = zip(*self.body.wall_history)
72
               plt.plot(wxs,wys,"ro")
73
```

The following code plots the agent as it acts in the world. Figure 2.2 shows the result of the top.do



Figure 2.3: Robot trap

```
# pl=Plot_env(body,top)
# top.do({'visit':['o109','storage','o109','o103']})
# You can directly control the middle layer:
# middle.do({'go_to':(30,-10), 'timeout':200})
# Can you make it crash?
```

**Exercise 2.2** The following code implements a robot trap (Figure 2.3). Write a controller that can escape the "trap" and get to the goal. See Exercise 2.4 in the textbook for hints.

```
__agentTop.py — (continued) _
   # Robot Trap for which the current controller cannot escape:
89
   trap_env = Rob_env(\{((10,-21),(10,0)),((10,10),(10,31)),
       ((30,-10),(30,0)),
                      ((30,10),(30,20)),((50,-21),(50,31)),
91
                          ((10,-21),(50,-21)),
                      ((10,0),(30,0)),((10,10),(30,10)),((10,31),(50,31)))
92
   trap_body = Rob_body(trap_env,init_pos=(-1,0,90))
93
94
   trap_middle = Rob_middle_layer(trap_body)
   trap_top = Rob_top_layer(trap_middle,locations={'goal':(71,0)})
95
96
   # Robot trap exercise:
97
   # pl=Plot_env(trap_body,trap_top)
  # trap_top.do({'visit':['goal']})
```

#### Plotting for Moving Targets

Exercise 2.5 refers to targets that can move. The following implements targets than can be moved by the user (using the mouse).

https://aipython.org

Version 0.9.13

June 13, 2024

```
13
14
   class Plot_follow(Plot_env):
       def __init__(self, body, top, epsilon=2.5):
15
           """plot the agent in the environment.
16
           epsilon is the threshold how how close someone needs to click to
17
               select a location.
18
           Plot_env.__init__(self, body, top)
19
           self.epsilon = epsilon
20
           self.canvas = plt.gca().figure.canvas
21
           self.canvas.mpl_connect('button_press_event', self.on_press)
22
           self.canvas.mpl_connect('button_release_event', self.on_release)
23
           self.canvas.mpl_connect('motion_notify_event', self.on_move)
24
           self.pressloc = None
25
           self.pressevent = None
26
           for loc in self.top.locations:
27
               self.display(2,f" loc {loc} at {self.top.locations[loc]}")
28
29
       def on_press(self, event):
30
           self.display(2,'v',end="")
31
           self.display(2,f"Press at ({event.xdata},{event.ydata}")
32
           for loc in self.top.locations:
33
               lx,lv = self.top.locations[loc]
34
               if abs(event.xdata- lx) <= self.epsilon and abs(event.ydata-</pre>
35
                   ly) <= self.epsilon :</pre>
                   self.pressloc = loc
36
                   self.pressevent = event
37
38
                   self.display(2, "moving", loc)
39
       def on_release(self, event):
40
           self.display(2,'^',end="")
41
           if self.pressloc is not None: #and event.inaxes ==
42
               self.pressevent.inaxes:
               self.top.locations[self.pressloc] = (event.xdata, event.ydata)
43
               self.display(1,f"Placing {self.pressloc} at {(event.xdata,
44
                   event.ydata)}")
           self.pressloc = None
45
           self.pressevent = None
46
47
       def on_move(self, event):
48
           if self.pressloc is not None: # and event.inaxes ==
49
               self.pressevent.inaxes:
               self.display(2,'-',end="")
50
               self.top.locations[self.pressloc] = (event.xdata, event.ydata)
51
               self.redraw()
52
           else:
53
               self.display(2,'.',end="")
54
55
   # try:
56
57 | # pl=Plot_follow(body,top)
```

```
58 | # top.do({'visit':['o109','storage','o109','o103']})
```

**Exercise 2.3** Change the code to also allow walls to move.

# Searching for Solutions

# 3.1 Representing Search Problems

A search problem consists of:

- a start node
- a *neighbors* function that given a node, returns an enumeration of the arcs from the node
- a specification of a goal in terms of a Boolean function that takes a node and returns true if the node is a goal
- a (optional) heuristic function that, given a node, returns a non-negative real number. The heuristic function defaults to zero.

As far as the searcher is concerned a node can be anything. If multiple-path pruning is used, a node must be hashable. In the simple examples, it is a string, but in more complicated examples (in later chapters) it can be a tuple, a frozen set, or a Python object.

In the following code, "raise NotImplementedError()" is a way to specify that this is an abstract method that needs to be overridden to define an actual search problem.

```
searchProblem.py — representations of search problems

from display import Displayable
import matplotlib.pyplot as plt
import random

class Search_problem(Displayable):
"""A search problem consists of:
```

```
17
       * a start node
18
       * a neighbors function that gives the neighbors of a node
       * a specification of a goal
19
       * a (optional) heuristic function.
20
       The methods must be overridden to define a search problem."""
21
22
23
       def start_node(self):
           """returns start node"""
24
           raise NotImplementedError("start_node") # abstract method
25
26
27
       def is_goal(self,node):
           """is True if node is a goal"""
28
           raise NotImplementedError("is_goal") # abstract method
29
30
       def neighbors(self,node):
31
           """returns a list (or enumeration) of the arcs for the neighbors of
32
               node"""
           raise NotImplementedError("neighbors") # abstract method
33
34
       def heuristic(self,n):
35
           """Gives the heuristic value of node n.
36
           Returns 0 if not overridden."""
37
           return 0
38
```

The neighbors is a list of arcs. A (directed) arc consists of a from\_node node and a to\\_node node. The arc is the pair (from\_node, to\_node), but can also contain a non-negative cost (which defaults to 1) and can be labeled with an action.

```
__searchProblem.py — (continued) .
   class Arc(object):
40
       """An arc has a from_node and a to_node node and a (non-negative)
41
       def __init__(self, from_node, to_node, cost=1, action=None):
42
           self.from_node = from_node
43
           self.to_node = to_node
           self.action = action
45
           self.cost = cost
46
           assert cost >= 0, (f"Cost cannot be negative: {self}, cost={cost}")
47
48
       def __repr__(self):
49
           """string representation of an arc"""
50
           if self.action:
51
               return f"{self.from_node} --{self.action}--> {self.to_node}"
52
53
           else:
               return f"{self.from_node} --> {self.to_node}"
54
```

## 3.1.1 Explicit Representation of Search Graph

The first representation of a search problem is from an explicit graph (as opposed to one that is generated as needed).

An explicit graph consists of

- a list or set of nodes
- a list or set of arcs
- a start node
- a list or set of goal nodes
- (optionally) a dictionary that maps a node to a heuristic value for that node

To define a search problem, we need to define the start node, the goal predicate, the neighbors function and the heuristic function.

```
_searchProblem.py — (continued)
   class Search_problem_from_explicit_graph(Search_problem):
56
       """A search problem from an explicit graph.
57
58
59
       def __init__(self, title, nodes, arcs, start=None, goals=set(), hmap={},
60
                       positions=None, show_costs = True):
61
           """ A search problem consists of:
62
           * list or set of nodes
63
           * list or set of arcs
64
           * start node
65
           * list or set of goal nodes
66
           * hmap: dictionary that maps each node into its heuristic value.
67
           \star positions: dictionary that maps each node into its (x,y) position
68
           * show_costs is used for show()
69
70
           self.title = title
71
           self.neighs = {}
72
           self.nodes = nodes
73
           for node in nodes:
74
               self.neighs[node]=[]
75
           self.arcs = arcs
76
           for arc in arcs:
77
78
               self.neighs[arc.from_node].append(arc)
           self.start = start
79
           self.goals = goals
           self.hmap = hmap
81
           if positions is None:
               self.positions = {node:(random.random(),random.random()) for
83
                   node in nodes}
           else:
84
```

```
self.positions = positions
85
            self.show_costs = show_costs
86
88
        def start_node(self):
89
            """returns start node"""
90
91
            return self.start
92
93
        def is_goal(self,node):
            """is True if node is a goal"""
94
            return node in self.goals
96
        def neighbors(self, node):
97
            """returns the neighbors of node (a list of arcs)"""
98
            return self.neighs[node]
99
100
        def heuristic(self, node):
101
            """Gives the heuristic value of node n.
102
            Returns 0 if not overridden in the hmap."""
103
            if node in self.hmap:
104
                return self.hmap[node]
105
106
            else:
                return 0
107
108
109
        def __repr__(self):
            """returns a string representation of the search problem"""
110
111
112
            for arc in self.arcs:
                res += f"{arc}. "
113
            return res
114
```

## Graphical Display of a Search Graph

```
\_searchProblem.py - (continued) \_
        def show(self, fontsize=10, node_color='orange', show_costs = None):
116
            """Show the graph as a figure
117
118
            self.fontsize = fontsize
119
            if show_costs is not None: # override default definition
120
                self.show_costs = show_costs
121
            plt.ion() # interactive
122
123
            ax = plt.figure().gca()
            ax.set_axis_off()
124
            plt.title(self.title, fontsize=fontsize)
125
            self.show_graph(ax, node_color)
126
127
        def show_graph(self, ax, node_color='orange'):
128
            bbox =
129
                dict(boxstyle="round4,pad=1.0,rounding_size=0.5",facecolor=node_color)
```

```
130
            for arc in self.arcs:
131
                self.show_arc(ax, arc)
            for node in self.nodes:
132
                self.show_node(ax, node, node_color = node_color)
133
134
        def show_node(self, ax, node, node_color):
135
136
                x,y = self.positions[node]
                ax.text(x,y,node,bbox=dict(boxstyle="round4,pad=1.0,rounding_size=0.5",
137
                                                    facecolor=node_color),
138
                                                         ha='center', va='center',
                            fontsize=self.fontsize)
139
140
        def show_arc(self, ax, arc, arc_color='black', node_color='white'):
141
                from_pos = self.positions[arc.from_node]
142
                to_pos = self.positions[arc.to_node]
143
                ax.annotate(arc.to_node, from_pos, xytext=to_pos,
144
                                   # arrowprops=dict(facecolor='black',
145
                                       shrink=0.1, width=2),
                                   arrowprops={'arrowstyle':'<|-', 'linewidth':</pre>
146
                                       2, 'color':arc_color},
                                   bbox=dict(boxstyle="round4,pad=1.0,rounding_size=0.5",
147
148
                                                   facecolor=node_color),
                                   ha='center', va='center',
149
                                   fontsize=self.fontsize)
150
                # Add costs to middle of arcs:
151
                if self.show_costs:
152
                    ax.text((from_pos[0]+to_pos[0])/2, (from_pos[1]+to_pos[1])/2,
153
154
                            arc.cost, bbox=dict(pad=1,fc='w',ec='w'),
                            ha='center', va='center', fontsize=self.fontsize)
155
```

#### 3.1.2 Paths

A searcher will return a path from the start node to a goal node. A Python list is not a suitable representation for a path, as many search algorithms consider multiple paths at once, and these paths should share initial parts of the path. If we wanted to do this with Python lists, we would need to keep copying the list, which can be expensive if the list is long. An alternative representation is used here in terms of a recursive data structure that can share subparts.

A path is either:

- a node (representing a path of length 0) or
- a path, initial and an arc, where the from\_node of the arc is the node at the end of initial.

These cases are distinguished in the following code by having arc=None if the path has length 0, in which case initial is the node of the path. Note that we only use the most basic form of Python's yield for enumerations (Section 1.5.4).

```
_searchProblem.py — (continued)
    class Path(object):
157
        """A path is either a node or a path followed by an arc"""
158
159
        def __init__(self,initial,arc=None):
160
            """initial is either a node (in which case arc is None) or
161
            a path (in which case arc is an object of type Arc)"""
162
            self.initial = initial
163
            self.arc=arc
164
            if arc is None:
165
                self.cost=0
166
            else:
167
                self.cost = initial.cost+arc.cost
168
169
170
        def end(self):
            """returns the node at the end of the path"""
171
            if self.arc is None:
172
                return self.initial
173
            else:
174
                return self.arc.to_node
175
176
        def nodes(self):
177
            """enumerates the nodes for the path.
178
            This enumerates the nodes in the path from the last elements
179
                backwards.
            ,, ,, ,,
180
            current = self
181
            while current.arc is not None:
                yield current.arc.to_node
183
                current = current.initial
184
            yield current.initial
185
186
        def initial_nodes(self):
187
            """enumerates the nodes for the path before the end node.
188
            This calls nodes() for the initial part of the path.
189
190
            if self.arc is not None:
191
                yield from self.initial.nodes()
192
193
194
        def __repr__(self):
            """returns a string representation of a path"""
195
            if self.arc is None:
196
                return str(self.initial)
197
            elif self.arc.action:
198
                return f"{self.initial}\n --{self.arc.action}-->
199
                    {self.arc.to_node}"
200
            else:
                return f"{self.initial} --> {self.arc.to_node}"
201
```



Figure 3.1: problem1

## 3.1.3 Example Search Problems

The first search problem is one with 5 nodes where the least-cost path is one with many arcs. See Figure 3.1. Note that this example is used for the unit tests, so the test (in searchGeneric) will need to be changed if this is changed.

```
_searchExample.py — Search Examples _
   from searchProblem import Arc, Search_problem_from_explicit_graph,
11
       Search_problem
12
   problem1 = Search_problem_from_explicit_graph('Problem 1',
13
       {'A','B','C','D','G'},
14
       [Arc('A','B',3), Arc('A','C',1), Arc('B','D',1), Arc('B','G',3),
15
            Arc('C','B',1), Arc('C','D',3), Arc('D','G',1)],
16
       start = 'A'
17
       goals = {'G'},
18
       positions={'A': (0, 1), 'B': (0.5, 0.5), 'C': (0,0.5), 'D': (0.5,0),
19
            'G': (1,0)})
```

The second search problem is one with 8 nodes where many paths do not lead to the goal. See Figure 3.2.

```
\_searchExample.py - (continued) \_
   problem2 = Search_problem_from_explicit_graph('Problem 2',
21
       {'A','B','C','D','E','G','H','J'},
22
       [Arc('A', 'B',1), Arc('B', 'C',3), Arc('B', 'D',1), Arc('D', 'E',3),
23
           Arc('D','G',1), Arc('A','H',3), Arc('H','J',1)],
24
       start = 'A'
25
       goals = {'G'},
26
       positions={'A': (0, 1), 'B': (0, 3/4), 'C': (0,0), 'D': (1/4,3/4), 'E':
27
           (1/4,0),
                      'G': (2/4,3/4), 'H': (3/4,1), 'J': (3/4,3/4)})
28
```

The third search problem is a disconnected graph (contains no arcs), where the start node is a goal node. This is a boundary case to make sure that weird cases work.



Figure 3.2: problem2



Figure 3.3: simp\_delivery\_graph with arc costs and h values of nodes

The simp\_delivery\_graph is the graph shown Figure 3.3. This is Figure 3.3 with the heuristics of Figure 3.1 as shown in Figure 3.13 of Poole and Mackworth [2023],

https://aipython.org



Figure 3.4: cyclic\_simp\_delivery\_graph with arc costs

```
Arc('B', 'F', 3),
42
             Arc('C', 'J', 7),
43
             Arc('D', 'H', 4),
44
             Arc('F', 'D', 2),
45
             Arc('H', 'G', 3),
46
             Arc('J', 'G', 4)],
47
       start = 'A'
48
       goals = {'G'},
49
       hmap = {
50
            'A': 7,
51
            'B': 5,
52
            'C': 9,
53
            'D': 6,
54
            'E': 3,
55
            'F': 5,
56
            'G': 0,
57
58
            'H': 3,
            'J': 4,
59
        },
60
        positions = {
61
            'A': (0.4,0.1),
62
            'B': (0.4,0.4),
63
            'C': (0.1,0.1),
64
            'D': (0.7,0.1),
65
            'E': (0.6,0.7),
66
            'F': (0.7,0.4),
67
            'G': (0.7,0.9),
68
69
            'H': (0.9,0.6),
70
            'J': (0.3,0.9)
            }
71
72
        )
```

cyclic\_simp\_delivery\_graph is the graph shown Figure 3.4. This is the graph of Figure 3.10 of [Poole and Mackworth, 2023]. The heuristic values are the same as in simp\_delivery\_graph.

```
_searchExample.py — (continued) _
    cyclic_simp_delivery_graph = Search_problem_from_explicit_graph("Cyclic
 73
         Delivery Graph",
         {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J'},
74
              Arc('A', 'B', 2),
 75
              Arc('A', 'C', 3),
 76
              Arc('A', 'D', 4),
 77
              Arc('B', 'E', 2),
 78
              Arc('B', 'F', 3),
 79
              Arc('C', 'A', 3),
 80
              Arc('C', 'J', 6),
 81
              Arc('D', 'A', 4),
 82
              Arc('D', 'H', 4),
 83
              Arc('F', 'B', 3),
 84
              Arc('F', 'D', 2),
 85
              Arc('G', 'H', 3),
 86
              Arc('G', 'J', 4),
 87
              Arc('H', 'D', 4),
 88
              Arc('H', 'G', 3),
 89
              Arc('J', 'C', 6),
Arc('J', 'G', 4)],
 90
 91
        start = 'A'
 92
 93
        goals = {'G'},
        hmap = {
 94
             'A': 7,
 95
             'B': 5,
 96
             'C': 9,
 97
             'D': 6,
             'E': 3,
 99
             'F': 5,
100
             'G': 0,
101
             'H': 3,
102
             'J': 4,
103
104
         },
         positions = {
105
106
             'A': (0.4,0.1),
             'B': (0.4,0.4),
107
             'C': (0.1,0.1),
108
             'D': (0.7,0.1),
109
110
             'E': (0.6,0.7),
             'F': (0.7,0.4),
111
112
             'G': (0.7,0.9),
             'H': (0.9,0.6),
113
             'J': (0.3,0.9)
114
115
             })
```

The next problem is the tree graph shown in Figure 3.6, and is Figure 3.15 in Poole and Mackworth [2023].

```
_____searchExample.py — (continued) ______

117 | tree_graph = Search_problem_from_explicit_graph("Tree Graph",
```



Figure 3.5: tree\_graph.show(show\_costs = False)

```
{'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
118
             '0',
             'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'AA', 'BB',
119
                  'CC'.
             'DD', 'EE', 'FF', 'GG', 'HH', 'II', 'JJ', 'KK'},
120
             Arc('A', 'B', 1),
121
             Arc('A', 'C', 1),
122
             Arc('B', 'D', 1),
123
             Arc('B', 'E', 1),
124
             Arc('C', 'F', 1),
125
             Arc('C', 'G', 1),
126
             Arc('D', 'H', 1),
127
             Arc('D', 'I', 1),
Arc('E', 'J', 1),
128
129
             Arc('E', 'K', 1),
130
             Arc('F', 'L', 1),
131
             Arc('G', 'M', 1),
132
             Arc('G', 'N', 1),
133
```

```
Arc('H', '0', 1),
134
              Arc('H', 'P', 1),
135
             Arc('J', 'Q', 1),
136
             Arc('J', 'R', 1),
137
              Arc('L', 'S', 1),
138
              Arc('L', 'T', 1),
139
             Arc('N', 'U', 1),
140
              Arc('N', 'V', 1),
141
              Arc('0', 'W', 1),
142
              Arc('P', 'X', 1),
143
             Arc('P', 'Y', 1),
144
              Arc('R', 'Z', 1),
145
              Arc('R', 'AA', 1),
146
             Arc('T', 'BB', 1),
Arc('T', 'CC', 1),
147
148
              Arc('V', 'DD', 1),
149
              Arc('V', 'EE', 1),
150
              Arc('W', 'FF', 1),
151
              Arc('X', 'GG', 1),
152
              Arc('Y', 'HH', 1),
153
              Arc('AA', 'II', 1),
154
              Arc('CC', 'JJ', 1),
155
             Arc('CC', 'KK', 1)
156
        ],
157
158
       start = 'A',
       goals = {'K', 'M', 'T', 'X', 'Z', 'HH'},
159
        positions = {
160
161
             'A': (0.5,0.95),
             'B': (0.3,0.8),
162
             'C': (0.7,0.8),
163
             'D': (0.2,0.65),
164
             'E': (0.4,0.65),
165
             'F': (0.6,0.65),
166
167
             'G': (0.8,0.65),
             'H': (0.2,0.5),
168
             'I': (0.3,0.5),
169
             'J': (0.4,0.5),
170
             'K': (0.5,0.5),
171
172
             'L': (0.6,0.5),
             'M': (0.7,0.5),
173
             'N': (0.8,0.5),
174
             '0': (0.1,0.35),
175
             'P': (0.2,0.35),
176
             'Q': (0.3,0.35),
177
178
             'R': (0.4,0.35),
             'S': (0.5,0.35),
179
             'T': (0.6,0.35),
180
             'U': (0.7,0.35),
181
             'V': (0.8,0.35),
182
             'W': (0.1,0.2),
183
```

```
'X': (0.2,0.2),
184
185
             'Y': (0.3,0.2),
             'Z': (0.4,0.2),
186
             'AA': (0.5,0.2),
187
             'BB': (0.6,0.2),
188
             'CC': (0.7,0.2),
189
             'DD': (0.8,0.2),
190
             'EE': (0.9,0.2),
191
             'FF': (0.1,0.05),
192
             'GG': (0.2,0.05),
193
             'HH': (0.3,0.05),
194
             'II': (0.5,0.05),
195
             'JJ': (0.7,0.05),
196
             'KK': (0.8,0.05)
197
198
             show_costs = False
199
200
201
    # tree_graph.show(show_costs = False)
202
```

# 3.2 Generic Searcher and Variants

To run the search demos, in folder "aipython", load "searchGeneric.py", using e.g., ipython -i searchGeneric.py, and copy and paste the example queries at the bottom of that file.

## 3.2.1 Searcher

A *Searcher* for a problem can be asked repeatedly for the next path. To solve a problem, you can construct a *Searcher* object for the problem and then repeatedly ask for the next path using *search*. If there are no more paths, *None* is returned.

```
__searchGeneric.py — Generic Searcher, including depth-first and A* _
   from display import Displayable
11
12
   class Searcher(Displayable):
13
        """returns a searcher for a problem.
14
       Paths can be found by repeatedly calling search().
15
       This does depth-first search unless overridden
16
17
       def __init__(self, problem):
18
            """creates a searcher from a problem
19
           self.problem = problem
21
           self.initialize_frontier()
22
           self.num\_expanded = 0
23
```

```
self.add_to_frontier(Path(problem.start_node()))
24
25
           super().__init__()
26
       def initialize_frontier(self):
27
           self.frontier = []
28
29
30
       def empty_frontier(self):
           return self.frontier == []
31
32
       def add_to_frontier(self,path):
33
           self.frontier.append(path)
34
35
       def search(self):
36
           """returns (next) path from the problem's start node
37
           to a goal node.
38
           Returns None if no path exists.
39
40
           while not self.empty_frontier():
41
               self.path = self.frontier.pop()
42
               self.num\_expanded += 1
43
              if self.problem.is_goal(self.path.end()): # solution found
44
                  self.solution = self.path # store the solution found
                  self.display(1, f"Solution: {self.path} (cost:
46
                      {self.path.cost})\n",
                      self.num_expanded, "paths have been expanded and",
47
                              len(self.frontier), "paths remain in the
                                  frontier")
49
                  return self.path
              else:
50
                  self.display(4,f"Expanding: {self.path} (cost:
51
                      {self.path.cost})")
                  neighs = self.problem.neighbors(self.path.end())
52
                  self.display(2,f"Expanding: {self.path} with neighbors
53
                       {neighs}")
                  for arc in reversed(list(neighs)):
54
                      self.add_to_frontier(Path(self.path,arc))
55
                  self.display(3, f"New frontier: {[p.end() for p in
                      self.frontier]}")
57
           self.display(0, "No (more) solutions. Total of",
58
                       self.num_expanded, "paths expanded.")
59
```

Note that this reverses the neighbors so that it implements depth-first search in an intuitive manner (expanding the first neighbor first). The call to *list* is for the case when the neighbors are generated (and not already in a list). Reversing the neighbors might not be required for other methods. The calls to *reversed* and *list* can be removed, and the algorithm still implements depth-first search.

To use depth-first search to find multiple paths for problem1 and simp\_delivery\_graph, copy and paste the following into Python's read-evaluate-print loop; keep finding next solutions until there are no more:



Figure 3.6: SearcherGUI(Searcher, simp\_delivery\_graph).go()

```
searchGeneric.py — (continued)

# Depth-first search for problem1; do the following:

# searcher1 = Searcher(searchExample.problem1)

# searcher1.search() # find first solution

# searcher1.search() # find next solution (repeat until no solutions)

# searcher_sdg = Searcher(searchExample.simp_delivery_graph)

# searcher_sdg.search() # find first or next solution
```

**Exercise 3.1** Implement breadth-first search. Only *add\_to\_frontier* and/or *pop* need to be modified to implement a first-in first-out queue.

# 3.2.2 GUI for Tracing Search

This GUI implements most of the functionality of the AISpace.org search app. Figure 3.6 shows the GUI to step through various algorithms. Here the path

 $A \rightarrow B$  is being expanded, and the neighbors are E and F. The other nodes at the end of paths of the frontier are E and E. Thus the frontier contains paths to E and E0, used to also contain E1, and now will contain E2 and E3. A E4 and E5 and E6 and E7.

SearcherGUI takes a search class and a problem, and lets one explore the search space after calling go(). A GUI can only be used for one search; at the end of the search the loop ends and the buttons no longer work.

This is implemented by redefining display. The search algorithms don't need to be modified. If you modify them (or create your own), you just have to be careful to use the appropriate number for the display. The first argument to display has the following meanings:

- 1. a solution has been found
- 2. what is shown for a "step" on a GUI; here it is assumed to be the path, the neighbors of the end of the path, and the other nodes at the end of paths on the frontier
- 3. (shown with "fine step" but not with "step") the frontier and the path selected
- 4. (shown with "fine step" but not with "step") the frontier.

It is also useful to look at the Python console, as the display information is printed there.

```
_searchGUI.py — GUI for search _
   import matplotlib.pyplot as plt
   from matplotlib.widgets import Button
   import time
13
14
   class SearcherGUI(object):
15
       def __init__(self, SearchClass, problem, fontsize=10,
16
                       colors = {'selected':'red', 'neighbors':'blue',
17
                            'frontier': 'green', 'goal': 'yellow'}):
           self.problem = problem
18
           self.searcher = SearchClass(problem)
19
           self.problem.fontsize = fontsize
20
           self.colors = colors
21
           #self.go()
22
23
       def go(self):
24
           fig, self.ax = plt.subplots()
25
26
           plt.ion() # interactive
27
           self.ax.set_axis_off()
           plt.subplots_adjust(bottom=0.15)
28
           step_butt = Button(plt.axes([0.05,0.02,0.15,0.05]), "step")
29
           step_butt.on_clicked(self.step)
30
           fine_butt = Button(plt.axes([0.25, 0.02, 0.15, 0.05]), "fine step")
31
           fine_butt.on_clicked(self.finestep)
32
           auto_butt = Button(plt.axes([0.45,0.02,0.15,0.05]), "auto search")
33
           auto_butt.on_clicked(self.auto)
           quit_butt = Button(plt.axes([0.65,0.02,0.15,0.05]), "quit")
35
           quit_butt.on_clicked(self.quit)
           self.ax.text(0.85,0, '\n'.join(self.colors[a]+": "+a for a in
37
               self.colors))
           self.problem.show_graph(self.ax, node_color='white')
38
```

```
self.problem.show_node(self.ax, self.problem.start,
39
               self.colors['frontier'])
           for node in self.problem.nodes:
40
               if self.problem.is_goal(node):
41
                  self.problem.show_node(self.ax, node,self.colors['goal'])
42
           plt.show()
43
           self.click = 7 # bigger than any display!
           #while self.click == 0:
45
               plt.pause(0.1)
           self.searcher.display = self.display
47
48
               while self.searcher.frontier:
49
                  path = self.searcher.search()
50
           except ExitToPython:
51
               print("Exited")
52
           else:
53
               print("No more solutions")
54
55
       def display(self, level,*args,**nargs):
56
           if level <= self.click: #step</pre>
57
               print(*args, **nargs)
58
               self.ax.set_title(f"Expanding:
                   {self.searcher.path}",fontsize=self.problem.fontsize)
               if level == 1:
60
                  self.show_frontier(self.colors['frontier'])
61
                  self.show_path(self.colors['selected'])
                  self.ax.set_title(f"Solution Found:
63
                       {self.searcher.path}",fontsize=self.problem.fontsize)
               elif level == 2: # what should be shown if a node is in all
64
                   three?
                  self.show_frontier(self.colors['frontier'])
65
                  self.show_path(self.colors['selected'])
66
                  self.show_neighbors(self.colors['neighbors'])
               elif level == 3:
68
                  self.show_frontier(self.colors['frontier'])
69
                  self.show_path(self.colors['selected'])
70
               elif level == 4:
71
                  self.show_frontier(self.colors['frontier'])
72
73
74
               # wait for a button click
75
               self.click = 0
76
               plt.draw()
77
               while self.click == 0:
78
                  plt.pause(0.1)
               # undo coloring:
80
               self.ax.set_title("")
81
               self.show_frontier('white')
82
               self.show_neighbors('white')
83
               path_show = self.searcher.path
84
```

```
while path_show.arc:
85
                   self.problem.show_arc(self.ax, path_show.arc, 'black')
86
                   self.problem.show_node(self.ax, path_show.end(), 'white')
                   path_show = path_show.initial
88
                self.problem.show_node(self.ax, path_show.end(), 'white')
89
                if self.problem.is_goal(self.searcher.path.end()):
90
91
                   self.problem.show_node(self.ax, self.searcher.path.end(),
                       self.colors['goal'])
92
               plt.draw()
93
        def show_frontier(self, color):
            for path in self.searcher.frontier:
95
                self.problem.show_node(self.ax, path.end(), color)
96
97
        def show_path(self, color):
98
            """color selected path"""
99
            path_show = self.searcher.path
100
            while path_show.arc:
101
                   self.problem.show_arc(self.ax, path_show.arc, color)
102
                   self.problem.show_node(self.ax, path_show.end(), color)
103
                   path_show = path_show.initial
104
105
            self.problem.show_node(self.ax, path_show.end(), color)
106
        def show_neighbors(self, color):
107
108
            for neigh in self.problem.neighbors(self.searcher.path.end()):
                self.problem.show_node(self.ax, neigh.to_node, color)
109
110
        def auto(self, event):
111
            self.click = 1
112
        def step(self,event):
113
            self.click = 2
114
        def finestep(self,event):
115
            self.click = 3
116
117
        def quit(self, event):
            quit()
118
119
    class ExitToPython(Exception):
120
        pass
121
```

```
\_searchGUI.py — (continued)
    from searchGeneric import Searcher, AStarSearcher
123
    from searchMPP import SearcherMPP
124
    import searchExample
125
    from searchBranchAndBound import DF_branch_and_bound
126
127
    # to demonstrate depth-first search:
128
    # sdfs = SearcherGUI(Searcher, searchExample.tree_graph); sdfs.go()
129
130
    # delivery graph examples:
131
   | # sh = SearcherGUI(Searcher, searchExample.simp_delivery_graph); sh.go()
```

```
# sha = SearcherGUI(AStarSearcher, searchExample.simp_delivery_graph);
133
    # shac = SearcherGUI(AStarSearcher,
134
        searchExample.cyclic_simp_delivery_graph); shac.go()
    # shm = SearcherGUI(SearcherMPP,
135
        searchExample.cyclic_simp_delivery_graph); shm.go()
136
    # shb = SearcherGUI(DF_branch_and_bound,
        searchExample.simp_delivery_graph); shb.go()
137
   # The following is AI:FCA figure 3.15, and is useful to show branch&bound:
138
   # shbt = SearcherGUI(DF_branch_and_bound, searchExample.tree_graph);
        shbt.go()
```

## 3.2.3 Frontier as a Priority Queue

In many of the search algorithms, such as  $A^*$  and other best-first searchers, the frontier is implemented as a priority queue. The following code uses the Python's built-in priority queue implementations, heapq.

Following the lead of the Python documentation, https://docs.python.org/3/library/heapq.html, a frontier is a list of triples. The first element of each triple is the value to be minimized. The second element is a unique index which specifies the order that the elements were added to the queue, and the third element is the path that is on the queue. The use of the unique index ensures that the priority queue implementation does not compare paths; whether one path is less than another is not defined. It also lets us control what sort of search (e.g., depth-first or breadth-first) occurs when the value to be minimized does not give a unique next path.

The variable *frontier index* is the total number of elements of the frontier that have been created. As well as being used as the unique index, it is useful for statistics, particularly in conjunction with the current size of the frontier.

```
_searchGeneric.py — (continued)
   import heapq
                      # part of the Python standard library
   from searchProblem import Path
69
70
   class FrontierPQ(object):
71
       """A frontier consists of a priority queue (heap), frontierpq, of
72
           (value, index, path) triples, where
73
       * value is the value we want to minimize (e.g., path cost + h).
74
       * index is a unique index for each element
75
       * path is the path on the queue
76
       Note that the priority queue always returns the smallest element.
77
78
79
       def __init__(self):
           """constructs the frontier, initially an empty priority queue
81
82
           self.frontier_index = 0 # the number of items added to the frontier
83
```

```
self.frontierpq = [] # the frontier priority queue
84
85
        def empty(self):
86
           """is True if the priority queue is empty"""
87
           return self.frontierpq == []
88
89
90
        def add(self, path, value):
            """add a path to the priority queue
91
           value is the value to be minimized"""
92
           self.frontier_index += 1 # get a new unique index
93
           heapq.heappush(self.frontierpq,(value, -self.frontier_index, path))
94
95
        def pop(self):
96
            """returns and removes the path of the frontier with minimum value.
97
98
            (_,_,path) = heapq.heappop(self.frontierpq)
99
            return path
100
```

The following methods are used for finding and printing information about the frontier.

```
_searchGeneric.py — (continued) _
        def count(self,val):
102
            """returns the number of elements of the frontier with value=val"""
103
            return sum(1 for e in self.frontierpq if e[0]==val)
104
105
        def __repr__(self):
106
            """string representation of the frontier"""
107
            return str([(n,c,str(p)) for (n,c,p) in self.frontierpq])
108
109
        def __len__(self):
110
            """length of the frontier"""
111
            return len(self.frontierpq)
112
113
        def __iter__(self):
114
            """iterate through the paths in the frontier"""
115
            for (_,_,path) in self.frontierpq:
116
117
                yield path
```

## 3.2.4 $A^*$ Search

For an  $A^*$  **Search** the frontier is implemented using the FrontierPQ class.

```
class AStarSearcher(Searcher):
"""returns a searcher for a problem.
Paths can be found by repeatedly calling search().
"""

def __init__(self, problem):
```

```
125
            super().__init__(problem)
126
        def initialize_frontier(self):
127
            self.frontier = FrontierPQ()
128
129
        def empty_frontier(self):
130
131
            return self.frontier.empty()
132
        def add_to_frontier(self,path):
133
            """add path to the frontier with the appropriate cost"""
134
            value = path.cost+self.problem.heuristic(path.end())
135
            self.frontier.add(path, value)
136
```

Code should always be tested. The following provides a simple **unit test**, using problem1 as the default problem.

```
_searchGeneric.py — (continued) _
    import searchExample
138
139
    def test(SearchClass, problem=searchExample.problem1,
140
        solutions=[['G','D','B','C','A']] ):
        """Unit test for aipython searching algorithms.
141
       SearchClass is a class that takes a problem and implements search()
142
       problem is a search problem
143
       solutions is a list of optimal solutions
144
145
       print("Testing problem 1:")
146
       schr1 = SearchClass(problem)
147
       path1 = schr1.search()
148
       print("Path found:",path1)
149
        assert path1 is not None, "No path is found in problem1"
150
        assert list(path1.nodes()) in solutions, "Shortest path not found in
151
            problem1"
       print("Passed unit test")
152
153
    if __name__ == "__main__":
154
       #test(Searcher)
                           # what needs to be changed to make this succeed?
155
156
       test(AStarSearcher)
157
    # example queries:
158
   # searcher1 = Searcher(searchExample.simp_delivery_graph) # DFS
159
   # searcher1.search() # find first path
    # searcher1.search() # find next path
161
   # searcher2 = AStarSearcher(searchExample.simp_delivery_graph) # A*
   # searcher2.search() # find first path
163
   # searcher2.search() # find next path
164
    # searcher3 = Searcher(searchExample.cyclic_simp_delivery_graph) # DFS
165
   # searcher3.search() # find first path with DFS. What do you expect to
166
        happen?
    # searcher4 = AStarSearcher(searchExample.cyclic_simp_delivery_graph) # A*
167
   # searcher4.search() # find first path
```

**Exercise 3.2** Change the code so that it implements (i) best-first search and (ii) lowest-cost-first search. For each of these methods compare it to  $A^*$  in terms of the number of paths expanded, and the path found.

**Exercise 3.3** The searcher acts like a Python iterator, in that it returns one value (here a path) and then returns other values (paths) on demand, but does not implement the iterator interface. Change the code so it implements the iterator interface. What does this enable us to do?

## 3.2.5 Multiple Path Pruning

To run the multiple-path pruning demo, in folder "aipython", load "searchMPP.py", using e.g., ipython -i searchMPP.py, and copy and paste the example queries at the bottom of that file.

The following implements  $A^*$  with multiple-path pruning. It overrides search() in Searcher.

```
searchMPP.py — Searcher with multiple-path pruning
   from searchGeneric import AStarSearcher
11
   from searchProblem import Path
12
13
   class SearcherMPP(AStarSearcher):
14
       """returns a searcher for a problem.
15
       Paths can be found by repeatedly calling search().
16
       11 11 11
17
       def __init__(self, problem):
18
           super().__init__(problem)
19
           self.explored = set()
20
21
       def search(self):
22
           """returns next path from an element of problem's start nodes
23
           to a goal node.
24
           Returns None if no path exists.
25
26
27
           while not self.empty_frontier():
               self.path = self.frontier.pop()
28
               if self.path.end() not in self.explored:
29
                   self.explored.add(self.path.end())
30
                   self.num\_expanded += 1
31
                   if self.problem.is_goal(self.path.end()):
32
                       self.solution = self.path # store the solution found
33
                       self.display(1, f"Solution: {self.path} (cost:
34
                           {self.path.cost})\n",
                       self.num_expanded, "paths have been expanded and",
35
                              len(self.frontier), "paths remain in the
                                   frontier")
                       return self.path
37
                   else:
38
```

```
self.display(4,f"Expanding: {self.path} (cost:
39
                          {self.path.cost})")
                      neighs = self.problem.neighbors(self.path.end())
40
                      self.display(2,f"Expanding: {self.path} with neighbors
41
                          {neighs}")
                      for arc in neighs:
42
43
                          self.add_to_frontier(Path(self.path,arc))
                      self.display(3, f"New frontier: {[p.end() for p in
44
                          self.frontier]}")
           self.display(0,"No (more) solutions. Total of",
45
                       self.num_expanded,"paths expanded.")
46
47
   from searchGeneric import test
48
   if __name__ == "__main__":
49
       test(SearcherMPP)
50
51
   import searchExample
52
   # searcherMPPcdp = SearcherMPP(searchExample.cyclic_simp_delivery_graph)
53
   # searcherMPPcdp.search() # find first path
```

**Exercise 3.4** Chris was very puzzled as to why there was a minus ("-") in the second element of the tuple added to the heap in the add method in FrontierPQ in searchGeneric.py.

Sam suggested the following example would demonstrate the importance of the minus. Consider an infinite integer grid, where the states are pairs of integers, the start is (0,0), and the goal is (10,10). The neighbors of (i,j) are (i+1,j) and (i,j+1). Consider the heuristic function h((i,j)) = |10-i| + |10-j|. Sam suggested you compare how many paths are expanded with the minus and without the minus. searchGrid is a representation of Sam's graph. If something takes too long, you might consider changing the size.

```
_searchGrid.py — A grid problem to demonstrate A*
   from searchProblem import Search_problem, Arc
11
12
   class GridProblem(Search_problem):
13
       """a node is a pair (x,y)"""
14
       def __init__(self, size=10):
15
           self.size = size
16
17
       def start_node(self):
18
           """returns the start node"""
19
           return (0,0)
20
21
       def is_goal(self,node):
22
           """returns True when node is a goal node"""
23
           return node == (self.size,self.size)
24
25
       def neighbors(self, node):
26
           """returns a list of the neighbors of node"""
27
           (x,y) = node
28
```

```
29
           return [Arc(node, (x+1,y)), Arc(node, (x,y+1))]
30
       def heuristic(self, node):
31
           (x,y) = node
32
           return abs(x-self.size)+abs(y-self.size)
33
34
35
   class GridProblemNH(GridProblem):
       """Grid problem with a heuristic of 0"""
36
       def heuristic(self, node):
37
           return 0
38
39
   from searchGeneric import Searcher, AStarSearcher
40
   from searchMPP import SearcherMPP
41
   from searchBranchAndBound import DF_branch_and_bound
42
43
   def testGrid(size = 10):
44
       print("\nWith MPP")
45
       gridsearchermpp = SearcherMPP(GridProblem(size))
46
       print(gridsearchermpp.search())
47
       print("\nWithout MPP")
48
       gridsearchera = AStarSearcher(GridProblem(size))
49
       print(gridsearchera.search())
       print("\nWith MPP and a heuristic = 0 (Dijkstra's algorithm)")
51
       gridsearchermppnh = SearcherMPP(GridProblemNH(size))
52
53
       print(gridsearchermppnh.search())
```

Explain to Chris what the minus does and why it is there. Give evidence for your claims. It might be useful to refer to other search strategies in your explanation. As part of your explanation, explain what is special about Sam's example.

**Exercise 3.5** Implement a searcher that implements cycle pruning instead of multiple-path pruning. You need to decide whether to check for cycles when paths are added to the frontier or when they are removed. (Hint: either method can be implemented by only changing one or two lines in SearcherMPP. Hint: there is a cycle if path.end() in path.initial\_nodes()) Compare no pruning, multiple path pruning and cycle pruning for the cyclic delivery problem. Which works better in terms of number of paths expanded, computational time or space?

# 3.3 Branch-and-bound Search

```
To run the demo, in folder "aipython", load "searchBranchAndBound.py", and copy and paste the example queries at the bottom of that file.
```

Depth-first search methods do not need a priority queue, but can use a list as a stack. In this implementation of branch-and-bound search, we call *search* to find an optimal solution with cost less than bound. This uses depth-first search to find a path to a goal that extends *path* with cost less than the bound.

Once a path to a goal has been found, that path is remembered as the *best\_path*, the bound is reduced, and the search continues.

```
__searchBranchAndBound.py — Branch and Bound Search __
   from searchProblem import Path
   from searchGeneric import Searcher
12
   from display import Displayable
13
14
   class DF_branch_and_bound(Searcher):
15
       """returns a branch and bound searcher for a problem.
16
       An optimal path with cost less than bound can be found by calling
17
           search()
18
       def __init__(self, problem, bound=float("inf")):
19
20
           """creates a searcher than can be used with search() to find an
               optimal path.
           bound gives the initial bound. By default this is infinite -
21
               meaning there
           is no initial pruning due to depth bound
22
23
           super().__init__(problem)
24
           self.best_path = None
25
           self.bound = bound
26
27
28
       def search(self):
           """returns an optimal solution to a problem with cost less than
29
           returns None if there is no solution with cost less than bound."""
30
           self.frontier = [Path(self.problem.start_node())]
31
           self.num\_expanded = 0
32
           while self.frontier:
33
               self.path = self.frontier.pop()
34
               if self.path.cost+self.problem.heuristic(self.path.end()) <</pre>
35
                   self.bound:
                  # if self.path.end() not in self.path.initial_nodes(): # for
36
                       cycle pruning
                  self.display(2,"Expanding:",self.path,"cost:",self.path.cost)
37
                  self.num\_expanded += 1
38
                  if self.problem.is_goal(self.path.end()):
39
                      self.best_path = self.path
40
                      self.bound = self.path.cost
41
                      self.display(1,"New best path:",self.path,"
42
                          cost:",self.path.cost)
                  else:
43
                      neighs = self.problem.neighbors(self.path.end())
44
                      self.display(4,"Neighbors are", neighs)
                      for arc in reversed(list(neighs)):
46
                          self.add_to_frontier(Path(self.path, arc))
47
                      self.display(3, f"New frontier: {[p.end() for p in
48
                          self.frontier]}")
           self.path = self.best_path
49
```

```
self.solution = self.best_path
self.display(1,f"Optimal solution is {self.best_path}." if
self.best_path

else "No solution found.",
f"Number of paths expanded: {self.num_expanded}.")
return self.best_path
```

Note that this code used *reversed* in order to expand the neighbors of a node in the left-to-right order one might expect. It does this because *pop()* removes the rightmost element of the list. The call to *list* is there because *reversed* only works on lists and tuples, but the neighbors can be generated.

Here is a unit test and some queries:

```
\_searchBranchAndBound.py — (continued) .
   from searchGeneric import test
56
   if __name__ == "__main__":
57
       test(DF_branch_and_bound)
58
59
   # Example queries:
  import searchExample
61
   # searcherb1 = DF_branch_and_bound(searchExample.simp_delivery_graph)
   # searcherb1.search()
                               # find optimal path
   | # searcherb2 =
       DF_branch_and_bound(searchExample.cyclic_simp_delivery_graph,
       bound=100)
  # searcherb2.search()
                               # find optimal path
```

**Exercise 3.6** In searcherb2, in the code above, what happens if the bound is smaller, say 10? What if it is larger, say 1000?

**Exercise 3.7** Implement a branch-and-bound search using recursion. Hint: you don't need an explicit frontier, but can do a recursive call for the children.

**Exercise 3.8** After the branch-and-bound search found a solution, Sam ran search again, and noticed a different count. Sam hypothesized that this count was related to the number of nodes that an A\* search would use (either expand or be added to the frontier). Or maybe, Sam thought, the count for a number of nodes when the bound is slightly above the optimal path case is related to how A\* would work. Is there a relationship between these counts? Are there different things that it could count so they are related? Try to find the most specific statement that is true, and explain why it is true.

To test the hypothesis, Sam wrote the following code, but isn't sure it is helpful:

```
17
18
   def run(problem,name):
       print("\n\n******",name)
19
20
       print("\nA*:")
21
       asearcher = AStarSearcher(problem)
22
23
       print("Path found:",asearcher.search()," cost=",asearcher.solution.cost)
       print("there are", asearcher.frontier.count(asearcher.solution.cost),
24
             "elements remaining on the queue with
25
                 f-value=",asearcher.solution.cost)
26
       print("\nA* with MPP:"),
27
       msearcher = SearcherMPP(problem)
28
       print("Path found:",msearcher.search()," cost=",msearcher.solution.cost)
29
       print("there are", msearcher.frontier.count(msearcher.solution.cost),
30
             "elements remaining on the queue with
31
                 f-value=",msearcher.solution.cost)
32
       bound = asearcher.solution.cost+0.01
33
       print("\nBranch and bound (with too-good initial bound of", bound,")")
34
       tbb = DF_branch_and_bound(problem,bound) # cheating!!!!
35
       print("Path found:",tbb.search()," cost=",tbb.solution.cost)
36
       print("Rerunning B&B")
37
       print("Path found:",tbb.search())
38
39
       bbound = asearcher.solution.cost*2+10
40
       print("\nBranch and bound (with not-very-good initial bound of",
41
           bbound, ")")
       tbb2 = DF_branch_and_bound(problem,bbound)
42
       print("Path found:",tbb2.search()," cost=",tbb2.solution.cost)
43
       print("Rerunning B&B")
44
       print("Path found:",tbb2.search())
45
46
47
       print("\nDepth-first search: (Use ^C if it goes on forever)")
       tsearcher = Searcher(problem)
48
       print("Path found:",tsearcher.search()," cost=",tsearcher.solution.cost)
49
50
51
   import searchExample
   from searchTest import run
53
   if __name__ == "__main__":
54
       run(searchExample.problem1,"Problem 1")
55
   # run(searchExample.simp_delivery_graph, "Acyclic Delivery")
   # run(searchExample.cyclic_simp_delivery_graph,"Cyclic Delivery")
57
   # also test some graphs with cycles, and some with multiple least-cost
       paths
```

# Reasoning with Constraints

# 4.1 Constraint Satisfaction Problems

## 4.1.1 Variables

A **variable** consists of a name, a domain and an optional (x,y) position (for displaying). The domain of a variable is a list or a tuple, as the ordering will matter in the representation of constraints.

```
_variable.py — Representations of a variable in CSPs and probabilistic models _
   import random
11
   class Variable(object):
13
       """A random variable.
14
       name (string) - name of the variable
15
       domain (list) - a list of the values for the variable.
16
       Variables are ordered according to their name.
17
18
19
       def __init__(self, name, domain, position=None):
20
           """Variable
21
22
           name a string
           domain a list of printable values
23
           position of form (x,y)
24
25
           self.name = name # string
26
           self.domain = domain # list of values
27
           self.position = position if position else (random.random(),
28
                random.random())
           self.size = len(domain)
29
30
       def __str__(self):
31
```

```
return self.name

def __repr__(self):
    return self.name # f"Variable({self.name})"
```

#### 4.1.2 Constraints

#### A **constraint** consists of:

- A tuple (or list) of variables called the **scope**.
- A condition, a Boolean function that takes the same number of arguments as there are variables in the scope. The condition must have a \_\_name\_\_ property that gives a printable name of the function; built-in functions and functions that are defined using *def* have such a property; for other functions you may need to define this property.
- An optional name
- An optional (*x*, *y*) position

```
_cspProblem.py — Representations of a Constraint Satisfaction Problem _
   from variable import Variable
11
   # for showing csps:
13
   import matplotlib.pyplot as plt
14
   import matplotlib.lines as lines
15
16
   class Constraint(object):
17
       """A Constraint consists of
18
       * scope: a tuple of variables
19
       * condition: a Boolean function that can applied to a tuple of values
20
            for variables in scope
       * string: a string for printing the constraints. All of the strings
21
           must be unique.
       for the variables
22
23
       def __init__(self, scope, condition, string=None, position=None):
24
           self.scope = scope
25
           self.condition = condition
26
27
           if string is None:
               self.string = f"{self.condition.__name__}({self.scope})"
28
29
           else:
               self.string = string
30
           self.position = position
31
32
       def __repr__(self):
33
           return self.string
34
```

An **assignment** is a *variable:value* dictionary.

If con is a constraint, con.holds(assignment) returns True or False depending on whether the condition is true or false for that assignment. The assignment assignment must assign a value to every variable in the scope of the constraint con (and could also assign values to other variables); con.holds gives an error if not all variables in the scope of con are assigned in the assignment. It ignores variables in assignment that are not in the scope of the constraint.

In Python, the \* notation is used for unpacking a tuple. For example, F(\*(1,2,3)) is the same as F(1,2,3). So if t has value (1,2,3), then F(\*t) is the same as F(1,2,3).

```
__cspProblem.py — (continued) .
       def can_evaluate(self, assignment):
36
37
           assignment is a variable:value dictionary
38
           returns True if the constraint can be evaluated given assignment
39
40
           return all(v in assignment for v in self.scope)
41
42
       def holds(self,assignment):
43
           """returns the value of Constraint con evaluated in assignment.
44
45
           precondition: all variables are assigned in assignment, ie
46
               self.can_evaluate(assignment) is true
47
           return self.condition(*tuple(assignment[v] for v in self.scope))
48
```

#### 4.1.3 CSPs

A constraint satisfaction problem (CSP) requires:

- variables: a list or set of variables
- constraints: a set or list of constraints.

Other properties are inferred from these:

• *var\_to\_const* is a mapping from variables to set of constraints, such that *var\_to\_const*[*var*] is the set of constraints with *var* in the scope.

```
class CSP(object):

"""A CSP consists of

* a title (a string)

* variables, a set of variables

* constraints, a list of constraints

* var_to_const, a variable to set of constraints dictionary

"""
```

```
def __init__(self, title, variables, constraints):
57
58
           """title is a string
           variables is set of variables
59
           constraints is a list of constraints
60
61
           self.title = title
62
63
           self.variables = variables
           self.constraints = constraints
64
           self.var_to_const = {var:set() for var in self.variables}
           for con in constraints:
               for var in con.scope:
                  self.var_to_const[var].add(con)
68
69
       def __str__(self):
70
           """string representation of CSP"""
71
           return str(self.title)
72
73
       def __repr__(self):
74
           """more detailed string representation of CSP"""
75
           return f"CSP({self.title}, {self.variables}, {([str(c) for c in
76
               self.constraints])})"
```

*csp.consistent*(*assignment*) returns true if the assignment is consistent with each of the constraints in *csp* (i.e., all of the constraints that can be evaluated evaluate to true). Note that this is a local consistency with each constraint; it does *not* imply the CSP is consistent or has a solution.

```
\_cspProblem.py — (continued)
       def consistent(self,assignment):
78
           """assignment is a variable:value dictionary
79
           returns True if all of the constraints that can be evaluated
80
                          evaluate to True given assignment.
81
82
83
           return all(con.holds(assignment)
                       for con in self.constraints
84
                       if con.can_evaluate(assignment))
85
```

The **show** method uses matplotlib to show the graphical structure of a constraint network. If the node positions are not specified, this gives different positions each time it is run; if you don't like the graph, try again.

```
_cspProblem.py — (continued) _
       def show(self, linewidth=3, showDomains=False, showAutoAC = False):
87
88
           self.linewidth = linewidth
           self.picked = None
89
           plt.ion() # interactive
           self.arcs = {} # arc: (con,var) dictionary
91
           self.thelines = {} # (con,var):arc dictionary
           self.nodes = {} # node: variable dictionary
93
           self.fig, self.ax= plt.subplots(1, 1)
94
           self.ax.set_axis_off()
95
```

```
for var in self.variables:
96
97
                if var.position is None:
                   var.position = (random.random(), random.random())
98
            self.showAutoAC = showAutoAC # used for consistency GUI
99
            self.autoAC = False
100
            domains = {var:var.domain for var in self.variables} if showDomains
101
                else {}
            self.draw_graph(domains=domains)
102
103
        def draw_graph(self, domains={}, to_do = {}, title=None, fontsize=10):
104
            self.ax.clear()
105
            self.ax.set_axis_off()
106
            if title:
107
                plt.title(title, fontsize=fontsize)
108
            else:
109
               plt.title(self.title, fontsize=fontsize)
110
            var_bbox = dict(boxstyle="round4,pad=1.0,rounding_size=0.5")
111
            con_bbox = dict(boxstyle="square,pad=1.0",color="green")
112
            self.autoACtext = plt.text(0,0,"Auto AC" if self.showAutoAC else "",
113
                                         bbox={'boxstyle':'square','color':'yellow'},
114
                                          picker=True, fontsize=fontsize)
115
            for con in self.constraints:
116
                if con.position is None:
117
                   con.position = tuple(sum(var.position[i] for var in
118
                        con.scope)/len(con.scope)
                                           for i in range(2))
119
                cx,cy = con.position
120
                bbox = dict(boxstyle="square,pad=1.0",color="green")
121
                for var in con.scope:
122
                   vx, vy = var.position
123
                   if (var,con) in to_do:
124
                       color = 'blue'
125
                   else:
126
127
                       color = 'limegreen'
                   line = lines.Line2D([cx,vx], [cy,vy], axes=self.ax,
128
                        color=color,
                                      picker=True, pickradius=10,
129
                                           linewidth=self.linewidth)
                   self.arcs[line]= (var,con)
130
                   self.thelines[(var,con)] = line
131
                   self.ax.add_line(line)
132
                plt.text(cx,cy,con.string,
133
                                      bbox=con_bbox,
134
                                      ha='center', va='center', fontsize=fontsize)
135
            for var in self.variables:
136
               x,y = var.position
137
                if domains:
138
                   node_label = f"{var.name}\n{domains[var]}"
139
                else:
140
                   node_label = var.name
141
```

```
node = plt.text(x, y, node_label, bbox=var_bbox, ha='center',
142
                    va='center',
                            picker=True, fontsize=fontsize)
143
                self.nodes[node] = var
144
            self.fig.canvas.mpl_connect('pick_event', self.pick_handler)
145
146
        def pick_handler(self, event):
147
            mouseevent = event.mouseevent
148
            self.last_artist = artist = event.artist
149
            #print('***picker handler:',artist, 'mouseevent:', mouseevent)
150
            if artist in self.arcs:
151
               #print('### selected arc',self.arcs[artist])
152
                self.picked = self.arcs[artist]
153
            elif artist in self.nodes:
154
               #print('### selected node',self.nodes[artist])
155
                self.picked = self.nodes[artist]
156
            elif artist==self.autoACtext:
157
               self.autoAC = True
158
               #print("*** autoAC")
159
160
            else:
               print("### unknown click")
161
```

#### 4.1.4 Examples

In the following code  $ne_-$ , when given a number, returns a function that is true when its argument is not that number. For example, if  $f = ne_-(3)$ , then f(2) is True and f(3) is False. That is,  $ne_-(x)(y)$  is true when  $x \neq y$ . Allowing a function of multiple arguments to use its arguments one at a time is called **currying**, after the logician Haskell Curry. Functions used as conditions in constraints require names (so they can be printed).

```
___cspExamples.py — Example CSPs
   from cspProblem import Variable, CSP, Constraint
11
   from operator import lt,ne,eq,gt
12
13
14
   def ne_(val):
15
       """not equal value"""
       \# nev = lambda x: x != val \# alternative definition
16
       # nev = partial(neq,val) # another alternative definition
17
       def nev(x):
18
19
           return val != x
       nev.__name__ = f"{val} != "
                                       # name of the function
20
       return nev
21
   Similarly is_{-}(x)(y) is true when x = y.
```

```
cspExamples.py — (continued) _______

23 | def is_(val):
    """is a value"""
    # isv = lambda x: x == val # alternative definition
```



Figure 4.1: csp1.show()

```
# isv = partial(eq,val) # another alternative definition

def isv(x):
    return val == x

isv.__name__ = f"{val} == "

return isv
```

The CSP, csp0 has variables X, Y and Z, each with domain  $\{1,2,3\}$ . The constraints are X < Y and Y < Z.

The CSP, csp1 has variables A, B and C, each with domain  $\{1,2,3,4\}$ . The constraints are A < B,  $B \neq 2$ , and B < C. This is slightly more interesting than csp0 as it has more solutions. This example is used in the unit tests, and so if it is changed, the unit tests need to be changed. The CSP csp1s is the same, but with only the constraints A < B and B < C



Figure 4.2: csp2.show()

```
45 | csp1 = CSP("csp1", {A, B, C},

46 | [C0, C1, C2])

47 | 48 | csp1s = CSP("csp1s", {A, B, C},

49 | [C0, C2]) # A<B, B<C
```

The next CSP, *csp*2 is Example 4.9 of Poole and Mackworth [2023]; the domain consistent network (after applying the unary constraints) is shown in Figure 4.2. Note that we use the same variables as the previous example and add two more.

```
___cspExamples.py — (continued)
   D = Variable('D', \{1,2,3,4\}, position=(0,0.4))
51
   E = Variable('E', \{1,2,3,4\}, position=(0.5,0))
52
   csp2 = CSP("csp2", {A,B,C,D,E},
53
              [ Constraint([B], ne_(3), "B != 3", position=(1,0.9)),
54
               Constraint([C], ne_(2), "C != 2", position=(1,0.2)),
55
               Constraint([A,B], ne, "A != B"),
56
               Constraint([B,C], ne, "A != C"),
57
               Constraint([C,D], lt, "C < D"),</pre>
58
               Constraint([A,D], eq, "A = D"),
59
               Constraint([E,A], lt, "E < A"),
               Constraint([E,B], lt, "E < B"),
61
               Constraint([E,C], lt, "E < C"),
62
               Constraint([E,D], lt, "E < D"),
63
```



Figure 4.3: csp3.show()

```
64 | Constraint([B,D], ne, "B != D")])
```

The following example is another scheduling problem (but with multiple answers). This is the same as "scheduling 2" in the original Alspace.org consistency app.

```
_cspExamples.py — (continued) .
   csp3 = CSP("csp3", {A,B,C,D,E},
66
              [Constraint([A,B], ne, "A != B"),
67
               Constraint([A,D], lt, "A < D"),
68
               Constraint([A,E], lambda a,e: (a-e)\%2 == 1, "A-E is odd"),
               Constraint([B,E], lt, "B < E"),
70
               Constraint([D,C], lt, "D < C"),
71
               Constraint([C,E], ne, "C != E"),
72
               Constraint([D,E], ne, "D != E")])
73
```

The following example is another abstract scheduling problem. What are the solutions?

```
cspExamples.py — (continued)

def adjacent(x,y):
    """True when x and y are adjacent numbers"""
    return abs(x-y) == 1
```

https://aipython.org

Version 0.9.13

June 13, 2024



Figure 4.4: csp4.show()

The following examples represent the crossword shown in Figure 4.5.

In the first representation, the variables represent words. The constraint imposed by the crossword is that where two words intersect, the letter at the intersection must be the same. The method meet\_at is used to test whether two words intersect with the same letter. For example, the constraint meet\_at(2,0) means that the third letter (at position 2) of the first argument is the same as the first letter of the second argument. This is shown in Figure 4.6.

```
_cspExamples.py — (continued)
   def meet_at(p1,p2):
86
       """returns a function of two words that is true
87
                   when the words intersect at positions p1, p2.
88
       The positions are relative to the words; starting at position 0.
89
       meet_at(p1,p2)(w1,w2) is true if the same letter is at position p1 of
90
           word w1
            and at position p2 of word w2.
91
92
       def meets(w1,w2):
93
           return w1[p1] == w2[p2]
94
```



Figure 4.5: crossword1: a crossword puzzle to be solved



Figure 4.6: crossword1.show()

```
95
        meets.__name__ = f"meet_at({p1},{p2})"
96
        return meets
97
    one_across = Variable('one_across', {'ant', 'big', 'bus', 'car', 'has'},
98
        position=(0.3,0.9))
    one_down = Variable('one_down', {'book', 'buys', 'hold', 'lane', 'year'},
99
        position=(0.1,0.7)
    two_down = Variable('two_down', {'ginger', 'search', 'symbol', 'syntax'},
100
        position=(0.9, 0.8))
    three_across = Variable('three_across', {'book', 'buys', 'hold', 'land',
101
        'year'}, position=(0.1,0.3))
    four_across = Variable('four_across',{'ant', 'big', 'bus', 'car', 'has'},
102
        position=(0.7,0.0)
    crossword1 = CSP("crossword1",
103
                     {one_across, one_down, two_down, three_across,
104
                         four_across},
                     [Constraint([one_across,one_down], meet_at(0,0)),
105
                      Constraint([one_across,two_down], meet_at(2,0)),
106
                      Constraint([three_across,two_down], meet_at(2,2)),
107
                      Constraint([three_across,one_down], meet_at(0,2)),
108
                      Constraint([four_across,two_down], meet_at(0,4))])
109
```

In an alternative representation of a crossword (the "dual" representation), the variables represent letters, and the constraints are that adjacent sequences of letters form words. This is shown in Figure 4.7.

```
___cspExamples.py — (continued) _
    words = {'ant', 'big', 'bus', 'car', 'has', 'book', 'buys', 'hold',
111
            'lane', 'year', 'ginger', 'search', 'symbol', 'syntax'}
112
113
    def is_word(*letters, words=words):
114
        """is true if the letters concatenated form a word in words"""
115
        return "".join(letters) in words
116
117
    letters = {"a", "b", "c", "d", "e", "f", "g", "h", "i", "j",
118
      "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x",
119
      "z"}
120
121
    # pij is the variable representing the letter i from the left and j down
122
        (starting from 0)
    p00 = Variable('p00', letters, position=(0.1,0.85))
123
    p10 = Variable('p10', letters, position=(0.3,0.85))
    p20 = Variable('p20', letters, position=(0.5,0.85))
125
    p01 = Variable('p01', letters, position=(0.1,0.7))
    p21 = Variable('p21', letters, position=(0.5,0.7))
127
    p02 = Variable('p02', letters, position=(0.1,0.55))
128
    p12 = Variable('p12', letters, position=(0.3,0.55))
129
    p22 = Variable('p22', letters, position=(0.5,0.55))
130
    p32 = Variable('p32', letters, position=(0.7,0.55))
131
    p03 = Variable('p03', letters, position=(0.1,0.4))
   p23 = Variable('p23', letters, position=(0.5,0.4))
```



Figure 4.7: crossword1d.show()

```
p24 = Variable('p24', letters, position=(0.5,0.25))
   p34 = Variable('p34', letters, position=(0.7,0.25))
135
    p44 = Variable('p44', letters, position=(0.9,0.25))
136
    p25 = Variable('p25', letters, position=(0.5,0.1))
137
138
    crossword1d = CSP("crossword1d",
139
                     {p00, p10, p20, # first row
140
                      p01, p21, # second row
141
                      p02, p12, p22, p32, # third row
142
                      p03, p23, #fourth row
143
                      p24, p34, p44, # fifth row
144
                      p25 # sixth row
145
146
                      },
                     [Constraint([p00, p10, p20], is_word,
147
                         position=(0.3, 0.95)), #1-across
                      Constraint([p00, p01, p02, p03], is_word,
148
                          position=(0,0.625)), # 1-down
                      Constraint([p02, p12, p22, p32], is_word,
149
                          position=(0.3, 0.625)), # 3-across
                      Constraint([p20, p21, p22, p23, p24, p25], is_word,
150
                          position=(0.45,0.475)), # 2-down
                      Constraint([p24, p34, p44], is_word,
151
                          position=(0.7,0.325)) # 4-across
```

https://aipython.org

Version 0.9.13

152 ])

**Exercise 4.1** How many assignments of a value to each variable are there for each of the representations of the above crossword? Do you think an exhaustive enumeration will work for either one?

The queens problem is a puzzle on a chess board, where the idea is to place a queen on each column so the queens cannot take each other: there are no two queens on the same row, column or diagonal. The **n-queens problem** is a generalization where the size of the board is an  $n \times n$ , and n queens have to be placed.

Here is a representation of the n-queens problem, where the variables are the columns and the values are the rows in which the queen is placed. The original queens problem on a standard  $(8 \times 8)$  chess board is n\_queens(8)

```
_cspExamples.py — (continued)
154
    def queens(ri,rj):
        """ri and rj are different rows, return the condition that the queens
155
            cannot take each other"""
        def no_take(ci,cj):
156
            """is true if queen at (ri,ci) cannot take a queen at (rj,cj)"""
157
            return ci != cj and abs(ri-ci) != abs(rj-cj)
158
159
        return no_take
160
    def n_queens(n):
161
        """returns a CSP for n-queens"""
162
        columns = list(range(n))
163
        variables = [Variable(f"R{i}",columns) for i in range(n)]
164
        return CSP("n-queens",
165
                  variables,
166
                   [Constraint([variables[i], variables[j]], queens(i,j))
167
                        for i in range(n) for j in range(n) if i != j])
168
169
170
    # try the CSP n_queens(8) in one of the solvers.
   # What is the smallest n for which there is a solution?
171
```

**Exercise 4.2** How many constraints does this representation of the n-queens problem produce? Can it be done with fewer constraints? Either explain why it can't be done with fewer constraints, or give a solution using fewer constraints.

Unit tests

The following defines a unit test for csp solvers, by default using example csp1.

```
This tests whether the solution returned by CSP_solver is a solution.

"""

print("Testing csp with",CSP_solver.__doc__)

sol0 = CSP_solver(csp)

print("Solution found:",sol0)

assert sol0 in solutions, f"Solution not correct for {csp}"

print("Passed unit test")
```

**Exercise 4.3** Modify *test* so that instead of taking in a list of solutions, it checks whether the returned solution actually is a solution.

**Exercise 4.4** Propose a test that is appropriate for CSPs with no solutions. Assume that the test designer knows there are no solutions. Consider what a CSP solver should return if there are no solutions to the CSP.

**Exercise 4.5** Write a unit test that checks whether all solutions (e.g., for the search algorithms that can return multiple solutions) are correct, and whether all solutions can be found.

## 4.2 A Simple Depth-first Solver

The first solver carries out a depth-first search through the space of partial assignments. This takes in a CSP problem and an optional variable ordering (a list of the variables in the CSP). It returns a generator of the solutions (see Section 1.5.4 on yield for enumerations).

```
_cspDFS.py — Solving a CSP using depth-first search. _
   import cspExamples
11
12
   def dfs_solver(constraints, context, var_order):
13
       """generator for all solutions to csp.
14
       context is an assignment of values to some of the variables.
15
       var_order is a list of the variables in csp that are not in context.
16
17
       to_eval = {c for c in constraints if c.can_evaluate(context)}
18
       if all(c.holds(context) for c in to_eval):
19
           if var_order == []:
20
               yield context
21
           else:
22
               rem_cons = [c for c in constraints if c not in to_eval]
23
               var = var_order[0]
24
25
               for val in var.domain:
26
                   yield from dfs_solver(rem_cons, context|{var:val},
                       var_order[1:])
27
   def dfs_solve_all(csp, var_order=None):
28
       """depth-first CSP solver to return a list of all solutions to csp.
29
30
       if var_order == None: # use an arbitrary variable order
31
           var_order = list(csp.variables)
32
```

```
return list( dfs_solver(csp.constraints, {}, var_order))
33
34
   def dfs_solve1(csp, var_order=None):
35
       """depth-first CSP solver"""
36
       if var_order == None: # use an arbitrary variable order
37
           var_order = list(csp.variables)
38
39
       for sol in dfs_solver(csp.constraints, {}, var_order):
           return sol #return first one
40
41
   if __name__ == "__main__":
42
       cspExamples.test_csp(dfs_solve1)
43
44
45
   # dfs_solve_all(cspExamples.csp1)
46
   # dfs_solve_all(cspExamples.csp2)
47
   # dfs_solve_all(cspExamples.crossword1)
   # dfs_solve_all(cspExamples.crossword1d) # warning: may take a *very* long
       time!
```

**Exercise 4.6** Instead of testing all constraints at every node, change it so each constraint is only tested when all of its variables are assigned. Given an elimination ordering, it is possible to determine when each constraint needs to be tested. Implement this. Hint: create a parallel list of sets of constraints, where at each position i in the list, the constraints at position i can be evaluated when the variable at position i has been assigned.

**Exercise 4.7** Estimate how long dfs\_solve\_all(crossword1d) will take on your computer. To do this, reduce the number of variables that need to be assigned, so that the simplified problem can be solved in a reasonable time (between 0.1 second and 10 seconds). This can be done by reducing the number of variables in var\_order, as the program only splits on these. How much more time will it take if the number of variables is increased by 1? (Try it!) Then extrapolate to all of the variables. See Section 1.6.1 for how to time your code. Would making the code 100 times faster or using a computer 100 times faster help?

# 4.3 Converting CSPs to Search Problems

To run the demo, in folder "aipython", load "cspSearch.py", and copy and paste the example queries at the bottom of that file.

The next solver constructs a search space that can be solved using the search methods of the previous chapter. This takes in a CSP problem and an optional variable ordering, which is a list of the variables in the CSP. In this search space:

• A node is a *variable*: *value* dictionary which does not violate any constraints (so that dictionaries that violate any conmtratints are not added).

An arc corresponds to an assignment of a value to the next variable. This
assumes a static ordering; the next variable chosen to split does not depend on the context. If no variable ordering is given, this makes no attempt to choose a good ordering.

```
_cspSearch.py — Representations of a Search Problem from a CSP. ___
   from cspProblem import CSP, Constraint
11
   from searchProblem import Arc, Search_problem
12
13
   class Search_from_CSP(Search_problem):
14
       """A search problem directly from the CSP.
15
16
       A node is a variable:value dictionary"""
17
       def __init__(self, csp, variable_order=None):
18
           self.csp=csp
19
           if variable_order:
20
               assert set(variable_order) == set(csp.variables)
21
               assert len(variable_order) == len(csp.variables)
22
               self.variables = variable_order
23
           else:
24
               self.variables = list(csp.variables)
25
26
       def is_goal(self, node):
27
           """returns whether the current node is a goal for the search
28
29
           return len(node) == len(self.csp.variables)
30
31
       def start_node(self):
32
           """returns the start node for the search
33
34
35
           return {}
```

The *neighbors*(*node*) method uses the fact that the length of the node, which is the number of variables already assigned, is the index of the next variable to split on. Note that we do not need to check whether there are no more variables to split on, as the nodes are all consistent, by construction, and so when there are no more variables we have a solution, and so don't need the neighbors.

```
cspSearch.py — (continued)
       def neighbors(self, node):
37
           """returns a list of the neighboring nodes of node.
38
39
           var = self.variables[len(node)] # the next variable
40
41
           for val in var.domain:
42
               new_env = node|{var:val} #dictionary union
               if self.csp.consistent(new_env):
44
                   res.append(Arc(node,new_env))
45
           return res
46
```

The unit tests relies on a solver. The following procedure creates a solver using search that can be tested.

```
_cspSearch.py — (continued) _
   import cspExamples
48
   from searchGeneric import Searcher
49
50
   def solver_from_searcher(csp):
51
       """depth-first search solver"""
52
       path = Searcher(Search_from_CSP(csp)).search()
53
       if path is not None:
54
           return path.end()
       else:
56
           return None
57
58
   if __name__ == "__main__":
       test_csp(solver_from_searcher)
60
61
   ## Test Solving CSPs with Search:
62
   searcher1 = Searcher(Search_from_CSP(cspExamples.csp1))
63
   #print(searcher1.search()) # get next solution
   searcher2 = Searcher(Search_from_CSP(cspExamples.csp2))
   #print(searcher2.search()) # get next solution
   searcher3 = Searcher(Search_from_CSP(cspExamples.crossword1))
   #print(searcher3.search()) # get next solution
   searcher4 = Searcher(Search_from_CSP(cspExamples.crossword1d))
70 | #print(searcher4.search()) # get next solution (warning: slow)
```

**Exercise 4.8** What would happen if we constructed the new assignment by assigning node[var] = val (with side effects) instead of using dictionary union? Give an example of where this could give a wrong answer. How could the algorithm be changed to work with side effects? (Hint: think about what information needs to be in a node).

**Exercise 4.9** Change neighbors so that it returns an iterator of values rather than a list. (Hint: use *yield*.)

## 4.4 Consistency Algorithms

To run the demo, in folder "aipython", load "cspConsistency.py", and copy and paste the commented-out example queries at the bottom of that file.

A Con\_solver is used to simplify a CSP using arc consistency.

```
_____cspConsistency.py — Arc Consistency and Domain splitting for solving a CSP ______

from display import Displayable

class Con_solver(Displayable):
```

```
"""Solves a CSP with arc consistency and domain splitting
"""

def __init__(self, csp):
    """a CSP solver that uses arc consistency
    * csp is the CSP to be solved
    """

self.csp = csp
super().__init__() # Or Displayable.__init__(self)
```

The following implementation of arc consistency maintains the set *to\_do* of (variable, constraint) pairs that are to be checked. It takes in a domain dictionary and returns a new domain dictionary. It needs to be careful to avoid side effects (by copying the *domains* dictionary and the *to\_do* set).

```
_cspConsistency.py — (continued) _
       def make_arc_consistent(self, domains=None, to_do=None):
23
           """Makes this CSP arc-consistent using generalized arc consistency
24
           domains is a variable:domain dictionary
25
           to_do is a set of (variable, constraint) pairs
26
           returns the reduced domains (an arc-consistent variable:domain
27
               dictionary)
28
           if domains is None:
29
              self.domains = {var:var.domain for var in self.csp.variables}
30
           else:
31
               self.domains = domains.copy() # use a copy of domains
32
           if to_do is None:
33
               to_do = {(var, const) for const in self.csp.constraints
34
                       for var in const.scope}
35
           else:
36
               to_do = to_do.copy() # use a copy of to_do
37
           self.display(5,"Performing AC with domains", self.domains)
38
           while to_do:
39
               self.arc_selected = (var, const) = self.select_arc(to_do)
40
               self.display(5, "Processing arc (", var, ",", const, ")")
41
               other_vars = [ov for ov in const.scope if ov != var]
42
               new_domain = {val for val in self.domains[var]
43
                              if self.any_holds(self.domains, const, {var:
                                  val}, other_vars)}
              if new_domain != self.domains[var]:
45
                  self.add_to_do = self.new_to_do(var, const) - to_do
46
                  self.display(3, f"Arc: ({var}, {const}) is inconsistent\n"
47
                               f"Domain pruned, dom({var}) ={new_domain} due to
48
                                   {const}")
                  self.domains[var] = new_domain
49
                  {\tt self.display(4, "adding", self.add\_to\_do \ if \ self.add\_to\_do}
50
                                   else "nothing", "to to_do.")
51
                  to_do |= self.add_to_do
                                            # set union
               self.display(5, f"Arc: ({var},{const}) now consistent")
53
           self.display(5, "AC done. Reduced domains", self.domains)
54
           return self.domains
55
```

```
56
57
       def new_to_do(self, var, const):
           """returns new elements to be added to to_do after assigning
58
           variable var in constraint const.
59
60
           return {(nvar, nconst) for nconst in self.csp.var_to_const[var]
61
62
                  if nconst != const
63
                  for nvar in nconst.scope
                  if nvar != var}
64
```

The following selects an arc. Any element of *to\_do* can be selected. The selected element needs to be removed from *to\_do*. The default implementation just selects which ever element *pop* method for sets returns. The graphical user interface below allows the user to select an arc. Alternatively, a more sophisticated selection could be employed.

The value of new\_domain is the subset of the domain of var that is consistent with the assignment to the other variables. To make it easier to understand, the following treats unary (with no other variables in the constraint) and binary (with one other variables in the constraint) constraints as special cases. These cases are not strictly necessary; the last case covers the first two cases, but is more difficult to understand without seeing the first two cases. Note that this case analysis is not in the code distribution, but can replace the assignment to new\_domain above.

any\_holds is a recursive function that tries to finds an assignment of values to the other variables (other\_vars) that satisfies constraint const given the assignment in env. The integer variable ind specifies which index to other\_vars needs to be

checked next. As soon as one assignment returns *True*, the algorithm returns *True*.

```
_cspConsistency.py — (continued) _
       def any_holds(self, domains, const, env, other_vars, ind=0):
73
           """returns True if Constraint const holds for an assignment
74
           that extends env with the variables in other_vars[ind:]
75
           env is a dictionary
76
77
           if ind == len(other_vars):
78
               return const.holds(env)
79
           else:
80
               var = other_vars[ind]
               for val in domains[var]:
82
                   if self.any_holds(domains, const, env|{var:val}, other_vars,
                       ind + 1):
                       return True
84
85
               return False
```

#### 4.4.1 Direct Implementation of Domain Splitting

The following is a direct implementation of domain splitting with arc consistency. It implements the generator interface of Python (see Section 1.5.4). When it has found a solution it yields the result; otherwise it recursively splits a domain (using yield from).

```
_cspConsistency.py — (continued) _
        def generate_sols(self, domains=None, to_do=None, context=dict()):
87
            """return list of all solution to the current CSP
88
            to_do is the list of arcs to check
89
            context is a dictionary of splits made (used for display)
90
91
            new_domains = self.make_arc_consistent(domains, to_do)
92
            if any(len(new_domains[var]) == 0 for var in new_domains):
93
               self.display(1,f"No solutions for context {context}")
94
            elif all(len(new_domains[var]) == 1 for var in new_domains):
95
               self.display(1, "solution:", str({var: select(
96
                   new_domains[var]) for var in new_domains}))
97
               yield {var: select(new_domains[var]) for var in new_domains}
98
            else:
99
               var = self.select_var(x for x in self.csp.variables if
100
                    len(new\_domains[x]) > 1)
               dom1, dom2 = partition_domain(new_domains[var])
101
               self.display(5, "...splitting", var, "into", dom1, "and", dom2)
102
               new_doms1 = new_domains | {var:dom1}
103
               new_doms2 = new_domains | {var:dom2}
104
               to_do = self.new_to_do(var, None)
105
               self.display(4, "adding", to_do if to_do else "nothing", "to
106
                    to_do.")
```

```
yield from self.generate_sols(new_doms1, to_do,
107
                    context|{var:dom1})
               yield from self.generate_sols(new_doms2, to_do,
108
                    context|{var:dom1})
109
        def solve_all(self, domains=None, to_do=None):
110
111
            return list(self.generate_sols())
112
        def solve_one(self, domains=None, to_do=None):
113
            return select(self.generate_sols())
114
115
        def select_var(self, iter_vars):
116
            """return the next variable to split"""
117
            return select(iter_vars)
118
119
    def partition_domain(dom):
120
        """partitions domain dom into two.
121
122
        split = len(dom) // 2
123
        dom1 = set(list(dom)[:split])
124
        dom2 = dom - dom1
125
        return dom1, dom2
126
                                 \_cspConsistency.py — (continued)
    def select(iterable):
128
        """select an element of iterable. Returns None if there is no such
129
            element.
130
        This implementation just picks the first element.
131
        For many of the uses, which element is selected does not affect
132
            correctness,
133
        but may affect efficiency.
134
        for e in iterable:
135
            return e # returns first element found
136
```

**Exercise 4.10** Implement *solve\_all* that returns the set of all solutions without using yield. Hint: it can be like generate\_sols but returns a set of solutions; the recursive calls can be unioned; | is Python's union.

**Exercise 4.11** Implement *solve\_one* that returns one solution if one exists, or False otherwise, without using yield. Hint: Python's "or" has the behaviour A or B will return the value of A unless it is None or False, in which case the value of B is returned.

Unit test:

```
cspConsistency.py — (continued)

import cspExamples

def ac_solver(csp):
    "arc consistency (ac_solver)"
```



Figure 4.8: ConsistencyGUI(cspExamples.csp3).go()

```
for sol in Con_solver(csp).generate_sols():
return sol

if __name__ == "__main__":
cspExamples.test_csp(ac_solver)
```

### 4.4.2 Consistency GUI

The consistency GUI allows students to step through the algorithm, choosing which arc to process next, and which variable to split.

Figure 4.8 shows the state of the GUI after two arcs have been made arc consistent. The arcs on the to\_do list arc colored blue. The green arcs are those have been made arc consistent. The user can click on a blue arc to process that arc. If the arc selected is not arc consistent, it is made red, the domain is reduced, and then the arc becomes green. If the arc was already arc consistent it turns green.

This is implemented by overriding select\_arc and select\_var to allow the user to pick the arcs and the variables, and overriding display to allow for the animation. Note that the first argument of display (the number) in the code above is interpreted with a special meaning by the GUI and should only be changed with care.

Clicking AutoAC automates arc selection until the network is arc consistent.

```
class ConsistencyGUI(Con_solver):
14
15
       def __init__(self, csp, fontsize=10, speed=1, **kwargs):
           csp is the csp to show
17
           fontsize is the size of the text
18
           speed is the number of animations per second (controls delay_time)
19
20
                1 (slow) and 4 (fast) seem like good values
21
           self.fontsize = fontsize
22
           self.delay_time = 1/speed
23
           Con_solver.__init__(self, csp, **kwargs)
24
           csp.show(showAutoAC = True)
25
26
       def go(self):
27
           res = self.solve_all()
28
           self.csp.draw_graph(domains=self.domains,
29
                                  title="No more solutions. GUI finished.",
30
                                  fontsize=self.fontsize)
31
32
           return res
33
       def select_arc(self, to_do):
34
           while True:
35
               self.csp.draw_graph(domains=self.domains, to_do=to_do,
36
                                     title="click on to_do (blue) arc",
37
                                          fontsize=self.fontsize)
               while self.csp.picked == None and not self.csp.autoAC:
38
                  plt.pause(0.01) # controls reaction time of GUI
39
               if self.csp.autoAC:
                  break
41
               picked = self.csp.picked
42
               self.csp.picked = None
43
               if picked in to_do:
44
                  to_do.remove(picked)
45
                  print(f"{picked} picked")
46
                  return picked
47
48
                  print(f"{picked} not in to_do")
49
           if self.csp.autoAC:
50
51
               self.csp.draw_graph(domains=self.domains, to_do=to_do,
                                     title="Auto AC", fontsize=self.fontsize)
52
               plt.pause(self.delay_time)
53
               return to_do.pop()
54
55
       def select_var(self, iter_vars):
56
           vars = list(iter_vars)
           while True:
58
               self.csp.draw_graph(domains=self.domains,
                                     title="Arc consistent. Click node to
60
                                          split",
                                      fontsize=self.fontsize)
61
```

```
while self.csp.picked == None:
62
63
                   plt.pause(0.01) # controls reaction time of GUI
               picked = self.csp.picked
               self.csp.picked = None
65
               self.csp.autoAC = False
66
               if picked in vars:
67
                   #print("splitting",picked)
68
                   return picked
69
               else:
70
                   print(picked, "not in", vars)
71
72
       def display(self,n,*args,**nargs):
73
           if n <= self.max_display_level: # default display</pre>
74
               print(*args, **nargs)
75
           if n==1: # solution found or no solutions"
76
               self.csp.draw_graph(domains=self.domains, to_do=set(),
77
                                      title=' '.join(args)+": click any node or
78
                                          arc to continue",
                                      fontsize=self.fontsize)
79
               self.csp.autoAC = False
80
               while self.csp.picked == None and not self.csp.autoAC:
81
                   plt.pause(0.01) # controls reaction time of GUI
               self.csp.picked = None
83
           elif n==2: # backtracking
               plt.title("backtracking: click any node or arc to continue")
85
               self.csp.autoAC = False
               while self.csp.picked == None and not self.csp.autoAC:
87
88
                   plt.pause(0.01)
               self.csp.picked = None
89
           elif n==3: # inconsistent arc
90
               line = self.csp.thelines[self.arc_selected]
91
               line.set_color('red')
92
               line.set_linewidth(10)
93
               plt.pause(self.delay_time)
94
               line.set_color('limegreen')
95
               line.set_linewidth(self.csp.linewidth)
96
           #elif n==4 and self.add_to_do: # adding to to_do
97
                print("adding to to_do",self.add_to_do) ## highlight these arc
98
99
    import cspExamples
100
    # Try:
101
    # ConsistencyGUI(cspExamples.csp1).go()
102
   # ConsistencyGUI(cspExamples.csp3).go()
   # ConsistencyGUI(cspExamples.csp3, speed=4, fontsize=15).go()
```

## 4.4.3 Domain Splitting as an interface to graph searching

An alternative implementation is to implement domain splitting in terms of the search abstraction of Chapter 3.

A node is a dictionary that maps the variables to their (pruned) domains...

```
_cspConsistency.py — (continued) .
147
    from searchProblem import Arc, Search_problem
148
    class Search_with_AC_from_CSP(Search_problem, Displayable):
149
        """A search problem with arc consistency and domain splitting
150
151
        A node is a CSP """
152
        def __init__(self, csp):
153
            self.cons = Con_solver(csp) #copy of the CSP
154
            self.domains = self.cons.make_arc_consistent()
155
156
        def is_goal(self, node):
157
            """node is a goal if all domains have 1 element"""
158
            return all(len(node[var])==1 for var in node)
159
160
        def start_node(self):
161
            return self.domains
162
163
        def neighbors(self,node):
164
            """returns the neighboring nodes of node.
165
166
            neighs = []
167
            var = select(x for x in node if len(node[x])>1)
168
            if var:
169
                dom1, dom2 = partition_domain(node[var])
170
                self.display(2, "Splitting", var, "into", dom1, "and", dom2)
171
                to_do = self.cons.new_to_do(var,None)
172
                for dom in [dom1,dom2]:
173
                   newdoms = node | {var:dom}
174
                   cons_doms = self.cons.make_arc_consistent(newdoms, to_do)
175
                    if all(len(cons_doms[v])>0 for v in cons_doms):
176
177
                       # all domains are non-empty
                       neighs.append(Arc(node,cons_doms))
178
179
                       self.display(2,"...",var,"in",dom,"has no solution")
180
            return neighs
181
```

**Exercise 4.12** When splitting a domain, this code splits the domain into half, approximately in half (without any effort to make a sensible choice). Does it work better to split one element from a domain?

Unit test:

```
import cspExamples
from searchGeneric import Searcher

def ac_search_solver(csp):
"""arc consistency (search interface)"""
```

```
sol = Searcher(Search_with_AC_from_CSP(csp)).search()
188
189
           return {v:select(d) for (v,d) in sol.end().items()}
190
191
    if __name__ == "__main__":
        cspExamples.test_csp(ac_search_solver)
193
        Testing:
                                _cspConsistency.py — (continued) _
    ## Test Solving CSPs with Arc consistency and domain splitting:
    #Con_solver.max_display_level = 4 # display details of AC (0 turns off)
196
    #Con_solver(cspExamples.csp1).solve_all()
197
    #searcher1d = Searcher(Search_with_AC_from_CSP(cspExamples.csp1))
198
    #print(searcher1d.search())
199
    #Searcher.max_display_level = 2 # display search trace (0 turns off)
200
    #searcher2c = Searcher(Search_with_AC_from_CSP(cspExamples.csp2))
    #print(searcher2c.search())
202
    #searcher3c = Searcher(Search_with_AC_from_CSP(cspExamples.crossword1))
203
    #print(searcher3c.search())
   #searcher4c = Searcher(Search_with_AC_from_CSP(cspExamples.crossword1d))
205
   #print(searcher4c.search())
```

## 4.5 Solving CSPs using Stochastic Local Search

To run the demo, in folder "aipython", load "cspSLS.py", and copy and paste the commented-out example queries at the bottom of that file. This assumes Python 3. Some of the queries require matplotlib.

The following code implements the two-stage choice (select one of the variables that are involved in the most constraints that are violated, then a value), the any-conflict algorithm (select a variable that participates in a violated constraint) and a random choice of variable, as well as a probabilistic mix of the three.

Given a CSP, the stochastic local searcher (*SLSearcher*) creates the data structures:

- *variables\_to\_select* is the set of all of the variables with domain-size greater than one. For a variable not in this set, we cannot pick another value from that variable.
- *var\_to\_constraints* maps from a variable into the set of constraints it is involved in. Note that the inverse mapping from constraints into variables is part of the definition of a constraint.

```
_____cspSLS.py — Stochastic Local Search for Solving CSPs ______

11 | from cspProblem import CSP, Constraint
```

```
from searchProblem import Arc, Search_problem
13
   from display import Displayable
   import random
   import heapq
15
16
   class SLSearcher(Displayable):
17
18
       """A search problem directly from the CSP...
19
       A node is a variable:value dictionary"""
20
       def __init__(self, csp):
21
           self.csp = csp
           self.variables_to_select = {var for var in self.csp.variables
23
                                     if len(var.domain) > 1}
24
           # Create assignment and conflicts set
25
           self.current_assignment = None # this will trigger a random restart
26
           self.number_of_steps = 0 #number of steps after the initialization
27
```

restart creates a new total assignment, and constructs the set of conflicts (the constraints that are false in this assignment).

```
_cspSLS.py — (continued) .
29
       def restart(self):
           """creates a new total assignment and the conflict set
30
31
           self.current_assignment = {var:random_choice(var.domain) for
32
                                     var in self.csp.variables}
33
           self.display(2,"Initial assignment",self.current_assignment)
34
           self.conflicts = set()
35
           for con in self.csp.constraints:
               if not con.holds(self.current_assignment):
37
                   self.conflicts.add(con)
38
           self.display(2,"Number of conflicts",len(self.conflicts))
39
           self.variable_pq = None
40
```

The *search* method is the top-level searching algorithm. It can either be used to start the search or to continue searching. If there is no current assignment, it must create one. Note that, when counting steps, a restart is counted as one step, which is not appropriate for CSPs with many variables, as it is a relatively expensive operation for these cases.

This method selects one of two implementations. The argument *pob\_best* is the probability of selecting a best variable (one involving the most conflicts). When the value of *prob\_best* is positive, the algorithm needs to maintain a priority queue of variables and the number of conflicts (using *search\_with\_var\_pq*). If the probability of selecting a best variable is zero, it does not need to maintain this priority queue (as implemented in *search\_with\_any\_conflict*).

The argument *prob\_anycon* is the probability that the any-conflict strategy is used (which selects a variable at random that is in a conflict), assuming that it is not picking a best variable. Note that for the probability parameters, any value less that zero acts like probability zero and any value greater than 1 acts

like probability 1. This means that when  $prob\_anycon = 1.0$ , a best variable is chosen with probability  $prob\_best$ , otherwise a variable in any conflict is chosen. A variable is chosen at random with probability  $1 - prob\_anycon - prob\_best$  as long as that is positive.

This returns the number of steps needed to find a solution, or *None* if no solution is found. If there is a solution, it is in *self.current\_assignment*.

```
_cspSLS.py — (continued)
       def search(self,max_steps, prob_best=0, prob_anycon=1.0):
42
43
           returns the number of steps or None if these is no solution.
44
           If there is a solution, it can be found in self.current_assignment
45
           max_steps is the maximum number of steps it will try before giving
47
               up
           prob_best is the probability that a best variable (one in most
48
               conflict) is selected
           prob_anycon is the probability that a variable in any conflict is
49
           (otherwise a variable is chosen at random)
50
51
           if self.current_assignment is None:
52
53
              self.restart()
               self.number_of_steps += 1
54
               if not self.conflicts:
55
                  self.display(1, "Solution found:", self.current_assignment,
56
                       "after restart")
57
                  return self.number_of_steps
           if prob_best > 0: # we need to maintain a variable priority queue
58
               return self.search_with_var_pq(max_steps, prob_best,
59
                   prob_anycon)
           else:
60
              return self.search_with_any_conflict(max_steps, prob_anycon)
61
```

**Exercise 4.13** This does an initial random assignment but does not do any random restarts. Implement a searcher that takes in the maximum number of walk steps (corresponding to existing *max\_steps*) and the maximum number of restarts, and returns the total number of steps for the first solution found. (As in *search*, the solution found can be extracted from the variable *self.current\_assignment*).

## 4.5.1 Any-conflict

In the any-conflict heuristic a variable that participates in a violated constraint is picked at random. The implementation need to keeps track of which variables are in conflicts. This is can avoid the need for a priority queue that is needed when the probability of picking a best variable is greter than zero.

```
_____cspSLS.py — (continued) _____63 | def search_with_any_conflict(self, max_steps, prob_anycon=1.0):
```

```
"""Searches with the any_conflict heuristic.
64
65
           This relies on just maintaining the set of conflicts;
           it does not maintain a priority queue
67
           self.variable_pq = None # we are not maintaining the priority queue.
                                   # This ensures it is regenerated if
69
70
                                       we call search_with_var_pq.
           for i in range(max_steps):
71
               self.number_of_steps +=1
72
               if random.random() < prob_anycon:</pre>
73
                  con = random_choice(self.conflicts) # pick random conflict
74
                  var = random_choice(con.scope) # pick variable in conflict
75
              else:
76
                  var = random_choice(self.variables_to_select)
77
              if len(var.domain) > 1:
78
                  val = random_choice([val for val in var.domain
79
                                     if val is not
80
                                          self.current_assignment[var]])
                  self.display(2,self.number_of_steps,":
81
                      Assigning", var, "=", val)
                  self.current_assignment[var]=val
82
                  for varcon in self.csp.var_to_const[var]:
                      if varcon.holds(self.current_assignment):
84
                          if varcon in self.conflicts:
85
                              self.conflicts.remove(varcon)
86
                      else:
                          if varcon not in self.conflicts:
88
                              self.conflicts.add(varcon)
89
                  self.display(2,"
                                      Number of conflicts",len(self.conflicts))
90
               if not self.conflicts:
91
                  self.display(1, "Solution found:", self.current_assignment,
92
                                   "in", self.number_of_steps, "steps")
93
                  return self.number_of_steps
94
95
           self.display(1,"No solution in",self.number_of_steps,"steps",
                      len(self.conflicts), "conflicts remain")
96
97
           return None
```

**Exercise 4.14** This makes no attempt to find the best value for the variable selected. Modify the code to include an option selects a value for the selected variable that reduces the number of conflicts the most. Have a parameter that specifies the probability that the best value is chosen, and otherwise chooses a value at random.

### 4.5.2 Two-Stage Choice

This is the top-level searching algorithm that maintains a priority queue of variables ordered by the number of conflicts, so that the variable with the most conflicts is selected first. If there is no current priority queue of variables, one is created.

The main complexity here is to maintain the priority queue. When a variable var is assigned a value val, for each constraint that has become satisfied or unsatisfied, each variable involved in the constraint need to have its count updated. The change is recorded in the dictionary *var\_differential*, which is used to update the priority queue (see Section 4.5.3).

```
_cspSLS.py — (continued) _
        def search_with_var_pq(self,max_steps, prob_best=1.0, prob_anycon=1.0):
99
100
            """search with a priority queue of variables.
            This is used to select a variable with the most conflicts.
101
102
            if not self.variable_pq:
103
104
                self.create_pq()
            pick_best_or_con = prob_best + prob_anycon
105
            for i in range(max_steps):
106
                self.number_of_steps +=1
107
                randnum = random.random()
108
                ## Pick a variable
109
                if randnum < prob_best: # pick best variable</pre>
110
                    var,oldval = self.variable_pq.top()
111
                elif randnum < pick_best_or_con: # pick a variable in a conflict</pre>
112
                    con = random_choice(self.conflicts)
113
                    var = random_choice(con.scope)
114
                else: #pick any variable that can be selected
115
                    var = random_choice(self.variables_to_select)
116
                if len(var.domain) > 1: # var has other values
117
                    ## Pick a value
118
                    val = random_choice([val for val in var.domain if val is not
119
                                       self.current_assignment[var]])
120
                    self.display(2, "Assigning", var, val)
121
                    ## Update the priority queue
122
                    var_differential = {}
123
                    self.current_assignment[var]=val
124
                    for varcon in self.csp.var_to_const[var]:
125
                        self.display(3, "Checking", varcon)
126
                       if varcon.holds(self.current_assignment):
127
                            if varcon in self.conflicts: #was incons, now consis
128
                               self.display(3, "Became consistent", varcon)
129
                               self.conflicts.remove(varcon)
130
                               for v in varcon.scope: # v is in one fewer
131
                                    conflicts
                                   var_differential[v] =
132
                                        var_differential.get(v,0)-1
                       else:
133
                           if varcon not in self.conflicts: # was consis, not now
134
                               self.display(3, "Became inconsistent", varcon)
135
                               self.conflicts.add(varcon)
136
                               for v in varcon.scope: # v is in one more
137
                                    conflicts
                                   var_differential[v] =
138
```

```
var_differential.get(v,0)+1
139
                   self.variable_pq.update_each_priority(var_differential)
                   self.display(2,"Number of conflicts",len(self.conflicts))
140
               if not self.conflicts: # no conflicts, so solution found
141
                   self.display(1, "Solution found:",
142
                       self.current_assignment,"in",
143
                                self.number_of_steps, "steps")
                   return self.number_of_steps
144
            self.display(1,"No solution in",self.number_of_steps,"steps",
145
                       len(self.conflicts), "conflicts remain")
146
            return None
147
```

create\_pq creates an updatable priority queue of the variables, ordered by the number of conflicts they participate in. The priority queue only includes variables in conflicts and the value of a variable is the *negative* of the number of conflicts the variable is in. This ensures that the priority queue, which picks the minimum value, picks a variable with the most conflicts.

```
_cspSLS.py — (continued)
149
        def create_pq(self):
            """Create the variable to number-of-conflicts priority queue.
150
            This is needed to select the variable in the most conflicts.
151
152
            The value of a variable in the priority queue is the negative of the
153
            number of conflicts the variable appears in.
154
155
            self.variable_pq = Updatable_priority_queue()
156
            var_to_number_conflicts = {}
157
            for con in self.conflicts:
158
               for var in con.scope:
159
                   var_to_number_conflicts[var] =
160
                        var_to_number_conflicts.get(var,0)+1
            for var,num in var_to_number_conflicts.items():
161
                if num>0:
162
                    self.variable_pq.add(var,-num)
163
                                    _cspSLS.py — (continued)
    def random_choice(st):
165
        """selects a random element from set st.
166
        It would be more efficient to convert to a tuple or list only once
167
        (left as exercise)."""
168
```

**Exercise 4.15** These implementations always select a value for the variable selected that is different from its current value (if that is possible). Change the code so that it does not have this restriction (so it can leave the value the same). Would you expect this code to be faster? Does it work worse (or better)?

169

return random.choice(tuple(st))

#### 4.5.3 Updatable Priority Queues

An **updatable priority queue** is a priority queue, where key-value pairs can be stored, and the pair with the smallest key can be found and removed quickly, and where the values can be updated. This implementation follows the idea of http://docs.python.org/3.9/library/heapq.html, where the updated elements are marked as removed. This means that the priority queue can be used unmodified. However, this might be expensive if changes are more common than popping (as might happen if the probability of choosing the best is close to zero).

In this implementation, the equal values are sorted randomly. This is achieved by having the elements of the heap being [val, rand, elt] triples, where the second element is a random number. Note that Python requires this to be a list, not a tuple, as the tuple cannot be modified.

```
_cspSLS.py — (continued)
171
    class Updatable_priority_queue(object):
        """A priority gueue where the values can be updated.
172
        Elements with the same value are ordered randomly.
173
174
        This code is based on the ideas described in
175
        http://docs.python.org/3.3/library/heapq.html
176
        It could probably be done more efficiently by
177
        shuffling the modified element in the heap.
178
179
        def __init__(self):
180
            self.pq = [] # priority queue of [val,rand,elt] triples
181
            self.elt_map = {} # map from elt to [val,rand,elt] triple in pq
182
            self.REMOVED = "*removed*" # a string that won't be a legal element
183
            self.max_size=0
184
185
        def add(self,elt,val):
186
            """adds elt to the priority queue with priority=val.
187
188
            assert val <= 0, val
189
190
            assert elt not in self.elt_map, elt
            new_triple = [val, random.random(),elt]
191
            heapq.heappush(self.pq, new_triple)
192
            self.elt_map[elt] = new_triple
193
194
        def remove(self,elt):
195
            """remove the element from the priority queue"""
196
            if elt in self.elt_map:
197
                self.elt_map[elt][2] = self.REMOVED
198
                del self.elt_map[elt]
199
200
        def update_each_priority(self,update_dict):
201
            """update values in the priority queue by subtracting the values in
202
            update_dict from the priority of those elements in priority queue.
203
```

```
204
205
            for elt,incr in update_dict.items():
               if incr != 0:
206
                   newval = self.elt_map.get(elt,[0])[0] - incr
207
                   assert newval <= 0, f"{elt}:{newval+incr}-{incr}"</pre>
                   self.remove(elt)
209
210
                   if newval != 0:
                       self.add(elt,newval)
211
212
        def pop(self):
213
            """Removes and returns the (elt,value) pair with minimal value.
214
            If the priority queue is empty, IndexError is raised.
215
216
            self.max_size = max(self.max_size, len(self.pq)) # keep statistics
217
            triple = heapq.heappop(self.pq)
218
           while triple[2] == self.REMOVED:
219
               triple = heapq.heappop(self.pq)
220
            del self.elt_map[triple[2]]
221
222
            return triple[2], triple[0] # elt, value
223
        def top(self):
224
            """Returns the (elt,value) pair with minimal value, without
225
                removing it.
            If the priority queue is empty, IndexError is raised.
226
227
            self.max_size = max(self.max_size, len(self.pq)) # keep statistics
228
            triple = self.pq[0]
229
230
            while triple[2] == self.REMOVED:
               heapq.heappop(self.pq)
231
               triple = self.pq[0]
232
            return triple[2], triple[0] # elt, value
233
234
        def empty(self):
235
            """returns True iff the priority queue is empty"""
236
            return all(triple[2] == self.REMOVED for triple in self.pq)
237
```

### 4.5.4 Plotting Run-Time Distributions

Runtime\_distribution uses matplotlib to plot run time distributions. Here the run time is a misnomer as we are only plotting the number of steps, not the time. Computing the run time is non-trivial as many of the runs have a very short run time. To compute the time accurately would require running the same code, with the same random seed, multiple times to get a good estimate of the run time. This is left as an exercise.

```
cspSLS.py — (continued)

import matplotlib.pyplot as plt

# plt.style.use('grayscale')
```

```
class Runtime_distribution(object):
242
243
        def __init__(self, csp, xscale='log'):
            """Sets up plotting for csp
244
            xscale is either 'linear' or 'log'
245
246
            self.csp = csp
247
248
            plt.ion()
            plt.xlabel("Number of Steps")
249
            plt.ylabel("Cumulative Number of Runs")
250
            plt.xscale(xscale) # Makes a 'log' or 'linear' scale
251
252
        def plot_runs(self,num_runs=100,max_steps=1000, prob_best=1.0,
253
            prob_anycon=1.0):
            """Plots num_runs of SLS for the given settings.
254
255
            stats = []
256
            SLSearcher.max_display_level, temp_mdl = 0,
257
                SLSearcher.max_display_level # no display
            for i in range(num_runs):
258
                searcher = SLSearcher(self.csp)
259
                num_steps = searcher.search(max_steps, prob_best, prob_anycon)
260
261
                if num_steps:
                   stats.append(num_steps)
262
            stats.sort()
263
            if prob_best >= 1.0:
264
               label = "P(best)=1.0"
265
            else:
266
267
                p_ac = min(prob_anycon, 1-prob_best)
                label = "P(best)=%.2f, P(ac)=%.2f" % (prob_best, p_ac)
268
            plt.plot(stats,range(len(stats)),label=label)
269
            plt.legend(loc="upper left")
270
            SLSearcher.max_display_level= temp_mdl #restore display
271
```

Figure 4.9 gives run-time distributions for 3 algorithms. It is also useful to compare the distributions of different runs of the same algorithms and settings.

### 4.5.5 Testing

```
_cspSLS.py — (continued)
    import cspExamples
273
    def sls_solver(csp,prob_best=0.7):
274
        """stochastic local searcher (prob_best=0.7)"""
275
        se0 = SLSearcher(csp)
276
277
        se0.search(1000,prob_best)
        return se0.current_assignment
278
    def any_conflict_solver(csp):
279
        """stochastic local searcher (any-conflict)"""
280
        return sls_solver(csp,0)
281
282
```



Figure 4.9: Run-time distributions for three algorithms on csp2.

```
if __name__ == "__main__":
283
       cspExamples.test_csp(sls_solver)
284
       cspExamples.test_csp(any_conflict_solver)
285
286
    ## Test Solving CSPs with Search:
287
    #se1 = SLSearcher(cspExamples.csp1); print(se1.search(100))
288
    #se2 = SLSearcher(cspExamples.csp2); print(se2.search(1000,1.0)) # greedy
289
    #se2 = SLSearcher(cspExamples.csp2); print(se2.search(1000,0)) #
290
        any_conflict
    #se2 = SLSearcher(cspExamples.csp2); print(se2.search(1000,0.7)) # 70%
291
        greedy; 30% any_conflict
    #SLSearcher.max_display_level=2 #more detailed display
292
    #se3 = SLSearcher(cspExamples.crossword1); print(se3.search(100),0.7)
293
294
    #p = Runtime_distribution(cspExamples.csp2)
    #p.plot_runs(1000,1000,0) # any_conflict
295
    #p.plot_runs(1000,1000,1.0) # greedy
296
   #p.plot_runs(1000,1000,0.7) # 70% greedy; 30% any_conflict
297
```

**Exercise 4.16** Modify this to plot the run time, instead of the number of steps. To measure run time use *timeit* (https://docs.python.org/3.9/library/timeit. html). Small run times are inaccurate, so timeit can run the same code multiple times. Stochastic local algorithms give different run times each time called. To make the timing meaningful, you need to make sure the random seed is the same for each repeated call (see random.getstate and random.setstate in https://docs.python.org/3.9/library/random.html). Because the run time for different seeds can vary a great deal, for each seed, you should start with 1 iteration and multiplying it by, say 10, until the time is greater than 0.2 seconds. Make sure you

plot the average time for each run. Before you start, try to estimate the total run time, so you will be able to tell if there is a problem with the algorithm stopping.

## 4.6 Discrete Optimization

A SoftConstraint is a constraint, but where the condition is a real-valued function. Because the definition of the constraint class did not force the condition to be Boolean, you can use the Constraint class for soft constraints too.

```
__cspSoft.py — Representations of Soft Constraints _
   from cspProblem import Variable, Constraint, CSP
11
   class SoftConstraint(Constraint):
       """A Constraint consists of
13
       * scope: a tuple of variables
14
       * function: a real-valued function that can applied to a tuple of values
15
       * string: a string for printing the constraints. All of the strings
16
           must be unique.
17
       for the variables
18
       def __init__(self, scope, function, string=None, position=None):
19
           Constraint.__init__(self, scope, function, string, position)
20
21
       def value(self,assignment):
22
           return self.holds(assignment)
23
```

```
__cspSoft.py — (continued) _
  |A = Variable('A', \{1,2\}, position=(0.2,0.9))
  B = Variable('B', \{1,2,3\}, position=(0.8,0.9))
   C = Variable('C', {1,2}, position=(0.5,0.5))
   D = Variable('D', {1,2}, position=(0.8,0.1))
28
29
   def c1fun(a,b):
30
       if a==1: return (5 if b==1 else 2)
31
       else: return (0 if b==1 else 4 if b==2 else 3)
32
   c1 = SoftConstraint([A,B],c1fun,"c1")
33
34
   def c2fun(b,c):
       if b==1: return (5 if c==1 else 2)
35
       elif b==2: return (0 if c==1 else 4)
36
       else: return (2 if c==1 else 0)
37
   c2 = SoftConstraint([B,C],c2fun,"c2")
38
   def c3fun(b,d):
39
40
       if b==1: return (3 if d==1 else 0)
       elif b==2: return 2
41
       else: return (2 if d==1 else 4)
   c3 = SoftConstraint([B,D],c3fun,"c3")
43
   def penalty_if_same(pen):
45
       "returns a function that gives a penalty of pen if the arguments are
46
           the same"
```

```
return lambda x,y: (pen if (x==y) else 0)
47
48
   c4 = SoftConstraint([C,A],penalty_if_same(3),"c4")
49
50
   scsp1 = CSP("scsp1", \{A,B,C,D\}, [c1,c2,c3,c4])
51
52
53
   ### The second soft CSP has an extra variable, and 2 constraints
   E = Variable('E', \{1,2\}, position=(0.1,0.1))
54
   c5 = SoftConstraint([C,E],penalty_if_same(3),"c5")
56
   c6 = SoftConstraint([D,E],penalty_if_same(2),"c6")
   scsp2 = CSP("scsp1", {A,B,C,D,E}, [c1,c2,c3,c4,c5,c6])
```

#### 4.6.1 Branch-and-bound Search

Here we specialize the branch-and-bound algorithm (Section 3.3 on page 64) to solve soft CSP problems.

```
_cspSoft.py — (continued)
   from display import Displayable, visualize
   import math
61
62
   class DF_branch_and_bound_opt(Displayable):
63
       """returns a branch and bound searcher for a problem.
64
       An optimal assignment with cost less than bound can be found by calling
65
           search()
66
       def __init__(self, csp, bound=math.inf):
67
           """creates a searcher than can be used with search() to find an
68
               optimal path.
           bound gives the initial bound. By default this is infinite -
69
               meaning there
           is no initial pruning due to depth bound
70
71
72
           super().__init__()
73
           self.csp = csp
           self.best_asst = None
74
           self.bound = bound
75
76
       def optimize(self):
77
           """returns an optimal solution to a problem with cost less than
78
               bound.
           returns None if there is no solution with cost less than bound."""
79
           self.num_expanded=0
           self.cbsearch({}, 0, self.csp.constraints)
81
           self.display(1,"Number of paths expanded:",self.num_expanded)
           return self.best_asst, self.bound
83
84
       def cbsearch(self, asst, cost, constraints):
85
```

```
"""finds the optimal solution that extends path and is less the
86
                bound"""
           self.display(2,"cbsearch:",asst,cost,constraints)
87
           can_eval = [c for c in constraints if c.can_evaluate(asst)]
88
           rem_cons = [c for c in constraints if c not in can_eval]
89
           newcost = cost + sum(c.value(asst) for c in can_eval)
90
           self.display(2,"Evaluaing:",can_eval,"cost:",newcost)
91
           if newcost < self.bound:</pre>
92
               self.num\_expanded += 1
93
               if rem_cons==[]:
94
                   self.best_asst = asst
95
                   self.bound = newcost
96
                   self.display(1,"New best assignment:",asst," cost:",newcost)
97
               else:
98
                   var = next(var for var in self.csp.variables if var not in
99
                       asst)
                   for val in var.domain:
100
                       self.cbsearch({var:val}|asst, newcost, rem_cons)
101
102
   # bnb = DF_branch_and_bound_opt(scsp1)
103
   | # bnb.max_display_level=3 # show more detail
104
   # bnb.optimize()
105
```

**Exercise 4.17** Change the stochastic-local search algorithms to work for soft constraints. Hint: The analog of a conflict is a soft constraint that is not at its lowest value. Instead of the number of constraints violated, consider how much a change in a variable affects the objective function. Instead of returning a solution, return the best assignment found.

## Propositions and Inference

## 5.1 Representing Knowledge Bases

A clause consists of a head (an atom) and a body. A body is represented as a list of atoms. Atoms are represented as strings.

```
_logicProblem.py — Representations Logics _
   class Clause(object):
11
        """A definite clause"""
12
13
       def __init__(self,head,body=[]):
14
            """clause with atom head and lost of atoms body"""
            self.head=head
16
            self.body = body
17
18
19
       def __repr__(self):
            """returns the string representation of a clause.
20
21
            if self.body:
22
                return f"{self.head} <- {' & '.join(str(a) for a in</pre>
                    self.body)}."
24
               return f"{self.head}."
25
```

An askable atom can be asked of the user. The user can respond in English or French or just with a "y".

```
class Askable(object):
    """An askable atom"""

def __init__(self,atom):
```

```
"""clause with atom head and lost of atoms body"""
31
32
           self.atom=atom
33
       def __str__(self):
34
           """returns the string representation of a clause."""
35
           return "askable " + self.atom + "."
36
37
   def yes(ans):
38
       """returns true if the answer is yes in some form"""
39
       return ans.lower() in ['yes', 'oui', 'y'] # bilingual
40
```

A knowledge base is a list of clauses and askables. In order to make top-down inference faster, this creates a dictionary that maps each atom into the set of clauses with that atom in the head.

```
___logicProblem.py — (continued) ___
   from display import Displayable
42
   class KB(Displayable):
44
       """A knowledge base consists of a set of clauses.
45
       This also creates a dictionary to give fast access to the clauses with
46
           an atom in head.
47
       def __init__(self, statements=[]):
48
           self.statements = statements
49
           self.clauses = [c for c in statements if isinstance(c, Clause)]
           self.askables = [c.atom for c in statements if isinstance(c,
51
               Askable)]
           self.atom_to_clauses = {} # dictionary giving clauses with atom as
52
           for c in self.clauses:
53
               self.add_clause(c)
54
55
       def add_clause(self, c):
56
           if c.head in self.atom_to_clauses:
57
               self.atom_to_clauses[c.head].append(c)
58
           else:
59
               self.atom_to_clauses[c.head] = [c]
60
61
       def clauses_for_atom(self,a):
62
           """returns list of clauses with atom a as the head"""
63
           if a in self.atom_to_clauses:
64
               return self.atom_to_clauses[a]
65
           else:
66
               return []
67
68
       def __str__(self):
69
           """returns a string representation of this knowledge base.
70
71
           return '\n'.join([str(c) for c in self.statements])
72
```

Here is a trivial example (I think therefore I am) used in the unit tests:

Here is a representation of the electrical domain of the textbook:

```
_logicProblem.py — (continued)
    elect = KB([
80
        Clause('light_l1'),
81
        Clause('light_12'),
82
        Clause('ok_l1'),
83
        Clause('ok_12'),
84
        Clause('ok_cb1'),
85
86
        Clause('ok_cb2'),
        Clause('live_outside'),
87
        Clause('live_l1', ['live_w0']),
88
        Clause('live_w0', ['up_s2', 'live_w1']),
89
        Clause('live_w0', ['down_s2', 'live_w2']),
90
        Clause('live_w1', ['up_s1', 'live_w3']),
91
        Clause('live_w2', ['down_s1','live_w3']),
92
        Clause('live_l2', ['live_w4']),
93
        Clause('live_w4', ['up_s3', 'live_w3']),
94
        Clause('live_p_1', ['live_w3']),
95
        Clause('live_w3', ['live_w5', 'ok_cb1']),
96
97
        Clause('live_p_2', ['live_w6']),
        Clause('live_w6', ['live_w5', 'ok_cb2']),
98
        Clause('live_w5', ['live_outside']),
        Clause('lit_l1', ['light_l1', 'live_l1', 'ok_l1']),
100
        Clause('lit_12', ['light_12', 'live_12', 'ok_12']),
101
        Askable('up_s1'),
102
        Askable('down_s1'),
103
        Askable('up_s2'),
104
        Askable('down_s2'),
105
        Askable('up_s3'),
106
107
        Askable('down_s2')
        ])
108
109
    # print(kb)
110
```

The following knowledge base is false in the intended interpretation. One of the clauses is wrong; can you see which one? We will show how to debug it.

```
Clause('ok_cb1'),
115
116
        Clause('ok_cb2'),
        Clause('live_outside'),
117
        Clause('live_p_2', ['live_w6']),
118
        Clause('live_w6', ['live_w5', 'ok_cb2']),
119
        Clause('light_l1'),
120
        Clause('live_w5', ['live_outside']),
121
        Clause('lit_l1', ['light_l1', 'live_l1', 'ok_l1']),
122
        Clause('lit_12', ['light_12', 'live_12', 'ok_12']),
123
        Clause('live_l1', ['live_w0']),
124
        Clause('live_w0', ['up_s2', 'live_w1']),
125
        Clause('live_w0', ['down_s2', 'live_w2']),
126
        Clause('live_w1', ['up_s3', 'live_w3']),
127
        Clause('live_w2', ['down_s1','live_w3']),
128
        Clause('live_12', ['live_w4']),
129
        Clause('live_w4', ['up_s3', 'live_w3']),
130
        Clause('live_p_1', ['live_w3']),
131
        Clause('live_w3', ['live_w5', 'ok_cb1']),
132
        Askable('up_s1'),
133
        Askable('down_s1'),
134
        Askable('up_s2'),
135
        Clause('light_12'),
136
        Clause('ok_l1'),
137
138
        Clause('light_12'),
        Clause('ok_l1'),
139
        Clause('ok_12'),
140
        Clause('ok_cb1'),
141
142
        Clause('ok_cb2'),
        Clause('live_outside'),
143
        Clause('live_p_2', ['live_w6']),
144
        Clause('live_w6', ['live_w5', 'ok_cb2']),
145
        Clause('ok_12'),
146
        Clause('ok_cb1'),
147
        Clause('ok_cb2'),
148
        Clause('live_outside'),
149
        Clause('live_p_2', ['live_w6']),
150
        Clause('live_w6', ['live_w5', 'ok_cb2']),
151
        Askable('down_s2'),
152
        Askable('up_s3'),
153
        Askable('down_s2')
154
155
        ])
156
    # print(kb)
```

## 5.2 Bottom-up Proofs (with askables)

*fixed\_point* computes the fixed point of the knowledge base kb.

```
https://aipython.org Version 0.9.13 June 13, 2024
```

```
from logicProblem import yes
11
12
   def fixed_point(kb):
13
       """Returns the fixed point of knowledge base kb.
14
15
       fp = ask_askables(kb)
16
17
       added = True
       while added:
18
           added = False # added is true when an atom was added to fp this
19
               iteration
           for c in kb.clauses:
20
               if c.head not in fp and all(b in fp for b in c.body):
21
                   fp.add(c.head)
22
                   added = True
23
                  kb.display(2,c.head, "added to fp due to clause",c)
24
       return fp
25
26
   def ask_askables(kb):
27
       return {at for at in kb.askables if yes(input("Is "+at+" true? "))}
28
```

The following provides a trivial **unit test**, by default using the knowledge base triv\_KB:

```
_logicBottomUp.py — (continued)
   from logicProblem import triv_KB
30
   def test(kb=triv_KB, fixedpt = {'i_am','i_think'}):
31
       fp = fixed_point(kb)
32
       assert fp == fixedpt, f"kb gave result {fp}"
33
       print("Passed unit test")
34
35
   if __name__ == "__main__":
       test()
36
37
   from logicProblem import elect
   # elect.max_display_level=3 # give detailed trace
  # fixed_point(elect)
```

**Exercise 5.1** It is not very user-friendly to ask all of the askables up-front. Implement ask-the-user so that questions are only asked if useful, and are not re-asked. For example, if there is a clause  $h \leftarrow a \land b \land c \land d \land e$ , where c and e are askable, e and e only need to be asked if e and they have not been asked before. Askable e only needs to be asked if the user says "yes" to e. Askable e doesn't need to be asked if the user previously replied "no" to e.

This form of ask-the-user can ask a different set of questions than the topdown interpreter that asks questions when encountered. Give an example where they ask different questions (neither set of questions asked is a subset of the other).

**Exercise 5.2** This algorithm runs in time  $O(n^2)$ , where n is the number of clauses, for a bounded number of elements in the body; each iteration goes through each of the clauses, and in the worst case, it will do an iteration for each clause. It is possible to implement this in time O(n) time by creating an index that maps an atom to the set of clauses with that atom in the body. Implement this. What is its

complexity as a function of *n* and *b*, the maximum number of atoms in the body of a clause?

**Exercise 5.3** It is possible to be asymptotically more efficient (in terms of the number of elements in a body) than the method in the previous question by noticing that each element of the body of clause only needs to be checked once. For example, the clause  $a \leftarrow b \land c \land d$ , needs only be considered when b is added to fp. Once b is added to fp, if c is already in fp, we know that a can be added as soon as d is added. Implement this. What is its complexity as a function of n and b, the maximum number of atoms in the body of a clause?

## 5.3 Top-down Proofs (with askables)

The following implements the top-down proof procedure for propositional definite clauses, as described in Section 5.3.2 and Figure 5.4 of Poole and Mackworth [2023]. It implements "choose" by looping over the alternatives (using Python's any) and returning true if any choice leads to a proof.

prove(kb, goal) is used to prove goal from a knowledge base, kb, where a goal is a list of atoms. It returns True if  $kb \vdash goal$ . The indent is used when displaying the code (and doesn't need to be called initially with a non-default value).

```
__logicTopDown.py — Top-down Proof Procedure for Definite Clauses .
11
   from logicProblem import yes
12
   def prove(kb, ans_body, indent=""):
13
       """returns True if kb |- ans_body
14
       ans_body is a list of atoms to be proved
15
16
       kb.display(2,indent,'yes <-',' & '.join(ans_body))</pre>
17
       if ans_body:
18
           selected = ans_body[0] # select first atom from ans_body
19
20
           if selected in kb.askables:
               return (yes(input("Is "+selected+" true? "))
21
                       and prove(kb,ans_body[1:],indent+" "))
22
           else:
23
               return any(prove(kb,cl.body+ans_body[1:],indent+" ")
                          for cl in kb.clauses_for_atom(selected))
25
26
       else:
           return True # empty body is true
27
```

The following provides a simple **unit test** that is hard wired for triv\_KB:

```
print("Passed unit tests")
if __name__ == "__main__":
    test()

# try

from logicProblem import elect
# elect.max_display_level=3 # give detailed trace
# prove(elect,['live_w6'])
# prove(elect,['lit_l1'])
```

**Exercise 5.4** This code can re-ask a question multiple times. Implement this code so that it only asks a question once and remembers the answer. Also implement a function to forget the answers.

**Exercise 5.5** What search method is this using? Implement the search interface so that it can use  $A^*$  or other searching methods. Define an admissible heuristic that is not always 0.

## 5.4 Debugging and Explanation

Here we modify the top-down procedure to build a proof tree than can be traversed for explanation and debugging.

prove\_atom(kb, atom) returns a proof for *atom* from a knowledge base *kb*, where a proof is a pair of the atom and the proofs for the elements of the body of the clause used to prove the atom. prove\_body(kb, body) returns a list of proofs for list *body* from a knowledge base, *kb*. The *indent* is used when displaying the code (and doesn't need to have a non-default value).

```
_logicExplain.py — Explaining Proof Procedure for Definite Clauses _
   from logicProblem import yes # for asking the user
11
12
   def prove_atom(kb, atom, indent=""):
13
       """returns a pair (atom, proofs) where proofs is the list of proofs
14
          of the elements of a body of a clause used to prove atom.
15
16
       kb.display(2,indent,'proving',atom)
17
       if atom in kb.askables:
18
           if yes(input("Is "+atom+" true? ")):
19
               return (atom, "answered")
20
21
               return "fail"
22
23
24
           for cl in kb.clauses_for_atom(atom):
               kb.display(2,indent,"trying",atom,'<-',' & '.join(cl.body))</pre>
25
26
               pr_body = prove_body(kb, cl.body, indent)
27
               if pr_body != "fail":
                   return (atom, pr_body)
28
           return "fail"
29
  def prove_body(kb, ans_body, indent=""):
```

```
"""returns proof tree if kb |- ans_body or "fail" if there is no proof
32
33
       ans_body is a list of atoms in a body to be proved
34
       proofs = []
35
       for atom in ans_body:
           proof_at = prove_atom(kb, atom, indent+" ")
37
           if proof_at == "fail":
38
               return "fail" # fail if any proof fails
39
           else:
40
              proofs.append(proof_at)
41
       return proofs
42
```

The following provides a simple **unit test** that is hard wired for triv\_KB:

```
_logicExplain.py — (continued)
   from logicProblem import triv_KB
44
   def test():
45
       a1 = prove_atom(triv_KB, 'i_am')
46
       assert a1, f"triv_KB proving i_am gave {a1}"
47
       a2 = prove_atom(triv_KB, 'i_smell')
48
       assert a2=="fail", "triv_KB proving i_smell gave {a2}"
49
       print("Passed unit tests")
50
51
   if __name__ == "__main__":
52
       test()
53
54
   # try
55
   from logicProblem import elect, elect_bug
56
   # elect.max_display_level=3 # give detailed trace
57
  # prove_atom(elect, 'live_w6')
  # prove_atom(elect, 'lit_l1')
```

The interact(kb) provides an interactive interface to explore proofs for knowledge base kb. The user can ask to prove atoms and can ask how an atom was proved.

To ask how, there must be a current atom for which there is a proof. This starts as the atom asked. When the user asks "how n" the current atom becomes the n-th element of the body of the clause used to prove the (previous) current atom. The command "up" makes the current atom the atom in the head of the rule containing the (previous) current atom. Thus "how n" moves down the proof tree and "up" moves up the proof tree, allowing the user to explore the full proof.

```
logicExplain.py — (continued)

helptext = """Commands are:
ask atom ask is there is a proof for atom (atom should not be in quotes)
how show the clause that was used to prove atom
how n show the clause used to prove the nth element of the body
up go back up proof tree to explore other parts of the proof tree
kb print the knowledge base
```

```
quit
                 quit this interaction (and go back to Python)
67
68
    help
                 print this text
    11 11 11
69
70
    def interact(kb):
71
        going = True
72
73
        ups = [] # stack for going up
74
        proof="fail" # there is no proof to start
75
        while going:
            inp = input("logicExplain: ")
76
            inps = inp.split(" ")
77
            try:
78
                command = inps[0]
79
                if command == "quit":
80
                    going = False
81
                elif command == "ask":
82
                    proof = prove_atom(kb, inps[1])
83
                    if proof == "fail":
                        print("fail")
85
                    else:
86
                        print("yes")
87
                elif command == "how":
88
                    if proof=="fail":
89
                        print("there is no proof")
90
91
                    elif len(inps)==1:
                       print_rule(proof)
92
                    else:
93
94
                        try:
                            ups.append(proof)
95
                            proof = proof[1][int(inps[1])] #nth argument of rule
96
                            print_rule(proof)
97
98
                            print('In "how n", n must be a number between 0
99
                                and', len(proof[1])-1, "inclusive.")
                elif command == "up":
100
                    if ups:
101
                        proof = ups.pop()
102
                    else:
103
                        print("No rule to go up to.")
104
                    print_rule(proof)
105
                elif command == "kb":
106
                     print(kb)
107
                elif command == "help":
108
                    print(helptext)
109
                else:
110
                    print("unknown command:", inp)
111
                    print("use help for help")
112
            except:
113
                print("unknown command:", inp)
114
                print("use help for help")
115
```

```
116
117
    def print_rule(proof):
       (head, body) = proof
118
       if body == "answered":
119
           print(head, "was answered yes")
120
       elif body == []:
121
                print(head,"is a fact")
122
123
       else:
               print(head, "<-")</pre>
124
               for i,a in enumerate(body):
125
                  print(i,":",a[0])
126
127
    # try
128
   # interact(elect)
129
   # Which clause is wrong in elect_bug? Try:
130
# interact(elect_bug)
132 # logicExplain: ask lit_l1
       The following shows an interaction for the knowledge base elect:
    >>> interact(elect)
    logicExplain: ask lit_l1
    Is up_s2 true? no
    Is down_s2 true? yes
    Is down_s1 true? yes
    yes
    logicExplain: how
    lit_l1 <-
    0 : light_l1
    1 : live_l1
    2 : ok_l1
    logicExplain: how 1
    live_l1 <-
    0 : live_w0
    logicExplain: how 0
    live_w0 <-
    0 : down_s2
    1 : live_w2
    logicExplain: how 0
    down_s2 was answered yes
    logicExplain: up
    live_w0 <-
    0 : down_s2
    1 : live_w2
    logicExplain: how 1
    live_w2 <-
    0 : down_s1
    1 : live_w3
```

5.5. Assumables 119

```
logicExplain: quit
>>>
```

**Exercise 5.6** The above code only ever explores one proof – the first proof found. Change the code to enumerate the proof trees (by returning a list of all proof trees, or, preferably, using yield). Add the command "retry" to the user interface to try another proof.

### 5.5 Assumables

Atom a can be made assumable by including Assumable(a) in the knowledge base. A knowledge base that can include assumables is declared with KBA.

```
_logicAssumables.py — Definite clauses with assumables
   from logicProblem import Clause, Askable, KB, yes
11
12
   class Assumable(object):
13
       """An askable atom"""
14
15
       def __init__(self,atom):
16
           """clause with atom head and lost of atoms body"""
17
18
           self.atom = atom
19
       def __str__(self):
20
            """returns the string representation of a clause.
21
22
           return "assumable " + self.atom + "."
23
24
   class KBA(KB):
25
       """A knowledge base that can include assumables"""
26
       def __init__(self, statements):
27
           self.assumables = [c.atom for c in statements if isinstance(c,
28
               Assumable)]
29
           KB.__init__(self, statements)
```

The top-down Horn clause interpreter, *prove\_all\_ass* returns a list of the sets of assumables that imply *ans\_body*. This list will contain all of the minimal sets of assumables, but can also find non-minimal sets, and repeated sets, if they can be generated with separate proofs. The set *assumed* is the set of assumables already assumed.

```
def prove_all_ass(self, ans_body, assumed=set()):

"""returns a list of sets of assumables that extends assumed to imply ans_body from self.

ans_body is a list of atoms (it is the body of the answer clause).

assumed is a set of assumables already assumed

"""

if ans_body:
```

```
selected = ans_body[0] # select first atom from ans_body
38
39
               if selected in self.askables:
                  if yes(input("Is "+selected+" true? ")):
40
                      return self.prove_all_ass(ans_body[1:],assumed)
41
                  else:
42
                      return [] # no answers
43
44
              elif selected in self.assumables:
                  return self.prove_all_ass(ans_body[1:],assumed|{selected})
45
              else:
                  return [ass
47
                          for cl in self.clauses_for_atom(selected)
48
                          for ass in
49
                              self.prove_all_ass(cl.body+ans_body[1:],assumed)
                             ] # union of answers for each clause with
50
                                 head=selected
           else:
                                # empty body
51
               return [assumed] # one answer
52
53
       def conflicts(self):
54
           """returns a list of minimal conflicts"""
55
           return minsets(self.prove_all_ass(['false']))
56
```

Given a list of sets, *minsets* returns a list of the minimal sets in the list. For example,  $minsets([\{2,3,4\},\{2,3\},\{6,2,3\},\{2,4,5\}])$  returns  $[\{2,3\},\{2,4,5\}]$ .

```
__logicAssumables.py — (continued) ___
   def minsets(ls):
       """ls is a list of sets
59
60
       returns a list of minimal sets in ls
61
       ans = []
                    # elements known to be minimal
62
       for c in ls:
63
           if not any(c1<c for c1 in 1s) and not any(c1 <= c for c1 in ans):</pre>
64
               ans.append(c)
65
       return ans
66
  | # minsets([{2, 3, 4}, {2, 3}, {6, 2, 3}, {2, 3}, {2, 4, 5}])
```

Warning: *minsets* works for a list of sets or for a set of (frozen) sets, but it does not work for a generator of sets (because 1s is referenced in the loop). For example, try to predict and then test:

```
minsets(e for e in [{2, 3, 4}, {2, 3}, {6, 2, 3}, {2, 3}, {2, 4, 5}])
```

The diagnoses can be constructed from the (minimal) conflicts as follows. This also works if there are non-minimal conflicts, but is not as efficient.

```
def diagnoses(cons):
    """cons is a list of (minimal) conflicts.
    returns a list of diagnoses."""
    if cons == []:
```

5.5. Assumables 121

Test cases:

```
logicAssumables.py — (continued)
    electa = KBA([
80
        Clause('light_l1'),
81
82
        Clause('light_12'),
        Assumable('ok_l1'),
83
        Assumable('ok_12'),
84
        Assumable('ok_s1'),
85
        Assumable('ok_s2'),
86
        Assumable('ok_s3'),
87
88
        Assumable('ok_cb1'),
        Assumable('ok_cb2'),
89
        Assumable('live_outside'),
90
        Clause('live_l1', ['live_w0']),
91
        Clause('live_w0', ['up_s2', 'ok_s2', 'live_w1']),
92
93
        Clause('live_w0', ['down_s2', 'ok_s2', 'live_w2']),
94
        Clause('live_w1', ['up_s1', 'ok_s1', 'live_w3']),
        Clause('live_w2', ['down_s1', 'ok_s1', 'live_w3']),
95
        Clause('live_l2', ['live_w4']),
96
        Clause('live_w4', ['up_s3', 'ok_s3', 'live_w3']),
97
        Clause('live_p_1', ['live_w3']),
98
        Clause('live_w3', ['live_w5', 'ok_cb1']),
        Clause('live_p_2', ['live_w6']),
100
        Clause('live_w6', ['live_w5', 'ok_cb2']),
101
        Clause('live_w5', ['live_outside']),
102
        Clause('lit_l1', ['light_l1', 'live_l1', 'ok_l1']),
103
        Clause('lit_12', ['light_12', 'live_12', 'ok_12']),
104
        Askable('up_s1'),
105
        Askable('down_s1'),
106
        Askable('up_s2'),
107
        Askable('down_s2'),
108
109
        Askable('up_s3'),
        Askable('down_s2'),
110
        Askable('dark_l1'),
111
        Askable('dark_12'),
112
        Clause('false', ['dark_l1', 'lit_l1']),
113
        Clause('false', ['dark_l2', 'lit_l2'])
114
        ])
115
    # electa.prove_all_ass(['false'])
116
    # cs=electa.conflicts()
117
    # print(cs)
118
   # diagnoses(cs)
                          # diagnoses from conflicts
119
```

**Exercise 5.7** To implement a version of *conflicts* that never generates non-minimal

conflicts, modify *prove\_all\_ass* to implement iterative deepening on the number of assumables used in a proof, and prune any set of assumables that is a superset of a conflict.

**Exercise 5.8** Implement *explanations*(*self*, *body*), where *body* is a list of atoms, that returns a list of the minimal explanations of the body. This does not require modification of *prove\_all\_ass*.

**Exercise 5.9** Implement *explanations*, as in the previous question, so that it never generates non-minimal explanations. Hint: modify *prove\_all\_ass* to implement iterative deepening on the number of assumptions, generating conflicts and explanations together, and pruning as early as possible.

## 5.6 Negation-as-failure

The negation of an atom a is written as Not(a) in a body.

```
_logicNegation.py — Propositional negation-as-failure _
   from logicProblem import KB, Clause, Askable, yes
11
12
   class Not(object):
13
        def __init__(self, atom):
14
            self.theatom = atom
15
16
        def atom(self):
17
            return self.theatom
18
19
        def __repr__(self):
20
            return f"Not({self.theatom})"
21
```

Prove with negation-as-failure (prove\_naf) is like prove, but with the extra case to cover Not:

```
__logicNegation.py — (continued) _
   def prove_naf(kb, ans_body, indent=""):
23
       """ prove with negation-as-failure and askables
24
       returns True if kb |- ans_body
25
       ans_body is a list of atoms to be proved
26
27
       kb.display(2,indent,'yes <-',' & '.join(str(e) for e in ans_body))</pre>
28
29
           selected = ans_body[0] # select first atom from ans_body
30
           if isinstance(selected, Not):
31
               kb.display(2,indent,f"proving {selected.atom()}")
32
               if prove_naf(kb, [selected.atom()], indent):
33
                  kb.display(2,indent,f"{selected.atom()} succeeded so
                       Not({selected.atom()}) fails")
                   return False
35
               else:
36
                  kb.display(2,indent,f"{selected.atom()} fails so
37
                       Not({selected.atom()}) succeeds")
```

```
return prove_naf(kb, ans_body[1:],indent+" ")
38
39
           if selected in kb.askables:
              return (yes(input("Is "+selected+" true? "))
40
                      and prove_naf(kb,ans_body[1:],indent+" "))
41
           else:
42
              return any(prove_naf(kb,cl.body+ans_body[1:],indent+" ")
43
44
                         for cl in kb.clauses_for_atom(selected))
45
       else:
           return True # empty body is true
```

Test cases:

```
__logicNegation.py — (continued) __
   triv_KB_naf = KB([
48
       Clause('i_am', ['i_think']),
49
       Clause('i_think'),
50
       Clause('i_smell', ['i_am', Not('dead')]),
51
52
       Clause('i_bad', ['i_am', Not('i_think')])
       ])
53
54
   triv_KB_naf.max_display_level = 4
55
   def test():
56
       a1 = prove_naf(triv_KB_naf,['i_smell'])
57
       assert a1, f"triv_KB_naf proving i_smell gave {a1}"
58
       a2 = prove_naf(triv_KB_naf,['i_bad'])
59
       assert not a2, f"triv_KB_naf proving i_bad gave {a2}"
60
       print("Passed unit tests")
61
   if __name__ == "__main__":
62
       test()
63
```

Default reasoning about beaches at resorts (Example 5.28 of Poole and Mackworth [2023]):

```
_logicNegation.py — (continued)
   beach_KB = KB([
65
      Clause('away_from_beach', [Not('on_beach')]),
66
      Clause('beach_access', ['on_beach', Not('ab_beach_access')]),
67
      Clause('swim_at_beach', ['beach_access', Not('ab_swim_at_beach')]),
68
      Clause('ab_swim_at_beach', ['enclosed_bay', 'big_city',
69
          Not('ab_no_swimming_near_city')]),
      Clause('ab_no_swimming_near_city', ['in_BC', Not('ab_BC_beaches')])
70
71
       ])
72
   # prove_naf(beach_KB, ['away_from_beach'])
73
  # prove_naf(beach_KB, ['beach_access'])
  | # beach_KB.add_clause(Clause('on_beach',[]))
75
   | # prove_naf(beach_KB, ['away_from_beach'])
76
   # prove_naf(beach_KB, ['swim_at_beach'])
77
  | # beach_KB.add_clause(Clause('enclosed_bay',[]))
  |# prove_naf(beach_KB, ['swim_at_beach'])
  |# beach_KB.add_clause(Clause('big_city',[]))
  # prove_naf(beach_KB, ['swim_at_beach'])
```

# **Deterministic Planning**

# 6.1 Representing Actions and Planning Problems

The STRIPS representation of an action consists of:

- the name of the action
- preconditions: a dictionary of *feature:value* pairs that specifies that the feature must have this value for the action to be possible
- effects: a dictionary of *feature:value* pairs that are made true by this action. In particular, a feature in the dictionary has the corresponding value (and not its previous value) after the action, and a feature not in the dictionary keeps its old value.

```
_stripsProblem.py — STRIPS Representations of Actions .
   class Strips(object):
11
       def __init__(self, name, preconds, effects, cost=1):
12
13
           defines the STRIPS representation for an action:
           * name is the name of the action
15
           * preconds, the preconditions, is feature: value dictionary that
               must hold
           for the action to be carried out
17
           * effects is a feature:value map that this action makes
18
           true. The action changes the value of any feature specified
           here, and leaves other features unchanged.
20
           * cost is the cost of the action
21
22
```

```
self.name = name
self.preconds = preconds
self.effects = effects
self.cost = cost

def __repr__(self):
return self.name
```

A STRIPS domain consists of:

- A dictionary that maps each feature into a set of possible values for the feature.
- A set of actions, each representeded using the Strips class.

```
\_stripsProblem.py — (continued) \_
31
   class STRIPS_domain(object):
       def __init__(self, feature_domain_dict, actions):
32
           """Problem domain
33
           feature_domain_dict is a feature:domain dictionary,
34
                   mapping each feature to its domain
35
36
           actions
37
           self.feature_domain_dict = feature_domain_dict
38
           self.actions = actions
39
```

A planning problem consists of a planning domain, an initial state, and a goal. The goal does not need to fully specify the final state.

```
_stripsProblem.py — (continued)
41
   class Planning_problem(object):
       def __init__(self, prob_domain, initial_state, goal):
42
43
           a planning problem consists of
44
           * a planning domain
45
           * the initial state
46
           * a goal
48
           self.prob_domain = prob_domain
49
           self.initial_state = initial_state
50
           self.goal = goal
51
```

## 6.1.1 Robot Delivery Domain

The following specifies the robot delivery domain of Section 6.1, shown in Figure 6.1.



#### Features to describe states

#### **Actions**

| <i>RLoc</i> – Rob's location | <i>mc</i> – move clockwise         |
|------------------------------|------------------------------------|
| RHC – Rob has coffee         | <i>mcc</i> – move counterclockwise |
| SWC – Sam wants coffee       | <i>puc</i> – pickup coffee         |
| MW - Mail is waiting         | <i>dc</i> – deliver coffee         |
| <i>RHM</i> – Rob has mail    | <i>pum</i> – pickup mail           |
|                              | <i>dm</i> – deliver mail           |

Figure 6.1: Robot Delivery Domain

```
{'RLoc':{'cs', 'off', 'lab', 'mr'}, 'RHC':boolean, 'SWC':boolean,
55
         'MW':boolean, 'RHM':boolean},
                                                #feature:values dictionary
56
        { Strips('mc_cs', {'RLoc':'cs'}, {'RLoc':'off'}),
57
        Strips('mc_off', {'RLoc':'off'}, {'RLoc':'lab'}),
58
        Strips('mc_lab', {'RLoc':'lab'}, {'RLoc':'mr'}),
59
        Strips('mc_mr', {'RLoc':'mr'}, {'RLoc':'cs'}),
60
        Strips('mcc_cs', {'RLoc':'cs'}, {'RLoc':'mr'}),
61
        Strips('mcc_off', {'RLoc':'off'}, {'RLoc':'cs'}),
62
        Strips('mcc_lab', {'RLoc':'lab'}, {'RLoc':'off'}),
63
64
        Strips('mcc_mr', {'RLoc':'mr'}, {'RLoc':'lab'}),
        Strips('puc', {'RLoc':'cs', 'RHC':False}, {'RHC':True}),
65
        Strips('dc', {'RLoc':'off', 'RHC':True}, {'RHC':False, 'SWC':False}),
66
        Strips('pum', {'RLoc':'mr','MW':True}, {'RHM':True,'MW':False}),
Strips('dm', {'RLoc':'off', 'RHM':True}, {'RHM':False})
67
68
       })
69
```

https://aipython.org

Version 0.9.13

June 13, 2024



Figure 6.2: Blocks world with two actions

```
74
                              {'RLoc':'off'})
75
   problem1 = Planning_problem(delivery_domain,
                              {'RLoc':'lab', 'MW':True, 'SWC':True, 'RHC':False,
76
                               'RHM':False},
77
                              {'SWC':False})
78
   problem2 = Planning_problem(delivery_domain,
79
80
                              {'RLoc':'lab', 'MW':True, 'SWC':True, 'RHC':False,
                               'RHM':False},
81
                              {'SWC':False, 'MW':False, 'RHM':False})
82
```

#### 6.1.2 Blocks World

The blocks world consist of blocks and a table. Each block can be on the table or on another block. A block can only have one other block on top of it. Figure 6.2 shows 3 states with some of the actions between them.

A state is defined by the two features:

- *on* where on(x) = y when block x is on block or table y
- *clear* where clear(x) = True when block x has nothing on it.

There is one parameterized action

 move(x, y, z) move block x from y to z, where y and z could be a block or the table.

To handle parameterized actions (which depend on the blocks involved), the actions and the features are all strings, created for all the combinations of the blocks. Note that we treat moving to a block separately from moving to the

table, because the blocks needs to be clear, but the table always has room for another block.

```
stripsProblem.py — (continued)
    ### blocks world
84
85
    def move(x,y,z):
        """string for the 'move' action"""
86
        return 'move_'+x+'_from_'+y+'_to_'+z
87
88
        """string for the 'on' feature"""
89
        return x+'_is_on'
90
91
    def clear(x):
        """string for the 'clear' feature"""
92
        return 'clear_'+x
93
    def create_blocks_world(blocks = {'a','b','c','d'}):
94
95
        blocks_and_table = blocks | {'table'}
        stmap = {Strips(move(x,y,z),{on(x):y, clear(x):True, clear(z):True},
96
                                    {on(x):z, clear(y):True, clear(z):False})
97
                       for x in blocks
98
                       for y in blocks_and_table
99
                       for z in blocks
100
                       if x!=y and y!=z and z!=x}
101
        stmap.update({Strips(move(x,y,'table'), {on(x):y, clear(x):True},
102
                                    {on(x):'table', clear(y):True})
103
                       for x in blocks
104
                       for y in blocks
105
                       if x!=y})
106
        feature_domain_dict = {on(x):blocks_and_table-{x} for x in blocks}
107
108
        feature_domain_dict.update({clear(x):boolean for x in blocks_and_table})
        return STRIPS_domain(feature_domain_dict, stmap)
109
```

The problem *blocks*1 is a classic example, with 3 blocks, and the goal consists of two conditions. See Figure 6.3. This example is challenging because you can't achieve one of the goals and then the other; whichever one you achieve first has to be undone to achieve the second.

The problem *blocks*2 is one to invert a tower of size 4.



Figure 6.3: Blocks problem blocks1

```
clear('d'):False, on('d'):'table'}
blocks2 = Planning_problem(blocks2dom,
tower4, # initial state
{on('d'):'c',on('c'):'b',on('b'):'a'}) #goal
```

The problem *blocks*3 is to move the bottom block to the top of a tower of size 4.

**Exercise 6.1** Represent the problem of given a tower of 4 blocks (a on b on c on d on table), the goal is to have a tower with the previous top block on the bottom (b on c on d on a). Do not include the table in your goal (the goal does not care whether a is on the table). [Before you run the program, estimate how many steps it will take to solve this.] How many steps does an optimal planner take?

**Exercise 6.2** Represent the domain so that on(x, y) is a Boolean feature that is True when x is on y, Does the representation of the state need to include negative on facts? Why or why not? (Note that this may depend on the planner; write your answer with respect to particular planners.)

**Exercise 6.3** It is possible to write the representation of the problem without using clear, where clear(x) means nothing is on x. Change the definition of the blocks world so that it does not use clear but uses on being false instead. Does this work better for any of the planners?

## 6.2 Forward Planning

To run the demo, in folder "aipython", load "stripsForwardPlanner.py", and copy and paste the commented-out example queries at the bottom of that file.

In a forward planner, a node is a state. A state consists of an assignment, which is a variable:value dictionary. In order to be able to do multiple-path pruning, we need to define a hash function, and equality between states.

```
__stripsForwardPlanner.py — Forward Planner with STRIPS actions _
   from searchProblem import Arc, Search_problem
   from stripsProblem import Strips, STRIPS_domain
12
13
   class State(object):
14
15
       def __init__(self,assignment):
           self.assignment = assignment
16
           self.hash_value = None
17
       def __hash__(self):
18
           if self.hash_value is None:
19
               self.hash_value = hash(frozenset(self.assignment.items()))
20
           return self.hash_value
21
       def __eq__(self,st):
22
           return self.assignment == st.assignment
23
24
       def __str__(self):
25
           return str(self.assignment)
```

In order to define a search problem (page 41), we need to define the goal condition, the start nodes, the neighbours, and (optionally) a heuristic function. Here *zero* is the default heuristic function.

```
_stripsForwardPlanner.py — (continued)
   def zero(*args,**nargs):
27
       """always returns 0"""
28
29
       return 0
30
   class Forward_STRIPS(Search_problem):
31
       """A search problem from a planning problem where:
32
       * a node is a state object.
33
       * the dynamics are specified by the STRIPS representation of actions
34
35
       def __init__(self, planning_problem, heur=zero):
36
           """creates a forward search space from a planning problem.
37
           heur(state,goal) is a heuristic function,
38
              an underestimate of the cost from state to goal, where
39
              both state and goals are feature: value dictionaries.
40
41
           self.prob_domain = planning_problem.prob_domain
42
           self.initial_state = State(planning_problem.initial_state)
43
           self.goal = planning_problem.goal
44
           self.heur = heur
45
46
       def is_goal(self, state):
47
           """is True if node is a goal.
48
49
           Every goal feature has the same value in the state and the goal."""
50
           return all(state.assignment[prop]==self.goal[prop]
51
                     for prop in self.goal)
52
53
       def start_node(self):
54
           """returns start node"""
55
```

```
return self.initial_state
56
57
       def neighbors(self,state):
58
           """returns neighbors of state in this problem"""
59
           return [ Arc(state, self.effect(act, state.assignment), act.cost,
               act)
61
                   for act in self.prob_domain.actions
                   if self.possible(act,state.assignment)]
62
63
       def possible(self,act,state_asst):
64
           """True if act is possible in state.
65
           act is possible if all of its preconditions have the same value in
66
               the state"""
           return all(state_asst[pre] == act.preconds[pre]
67
                     for pre in act.preconds)
68
69
       def effect(self,act,state_asst):
70
           """returns the state that is the effect of doing act given
71
               state_asst
          Python 3.9: return state_asst | act.effects"""
72
           new_state_asst = state_asst.copy()
73
           new_state_asst.update(act.effects)
74
           return State(new_state_asst)
75
76
77
       def heuristic(self, state):
           """in the forward planner a node is a state.
78
           the heuristic is an (under)estimate of the cost
79
           of going from the state to the top-level goal.
81
           return self.heur(state.assignment, self.goal)
82
```

Here are some test cases to try.

## 6.2.1 Defining Heuristics for a Planner

Each planning domain requires its own heuristics. If you change the actions, you will need to reconsider the heuristic function, as there might then be a lower-cost path, which might make the heuristic non-admissible.

Here is an example of defining heuristics for the coffee delivery planning domain.

First we define the distance between two locations, which is used for the heuristics.

```
_stripsHeuristic.py — Planner with Heuristic Function _
   def dist(loc1, loc2):
11
        """returns the distance from location loc1 to loc2
12
13
        if loc1==loc2:
14
15
            return 0
        if {loc1,loc2} in [{'cs','lab'},{'mr','off'}]:
16
17
            return 2
        else:
18
            return 1
19
```

Note that the current state is a complete description; there is a value for every feature. However the goal need not be complete; it does not need to define a value for every feature. Before checking the value for a feature in the goal, a heuristic needs to define whether the feature is defined in the goal.

```
___stripsHeuristic.py — (continued) _
   def h1(state,goal):
21
       """ the distance to the goal location, if there is one"""
22
       if 'RLoc' in goal:
23
           return dist(state['RLoc'], goal['RLoc'])
24
25
       else:
26
           return 0
27
   def h2(state,goal):
28
       """ the distance to the coffee shop plus getting coffee and delivering
29
       if the robot needs to get coffee
30
31
       if ('SWC' in goal and goal['SWC']==False
32
               and state['SWC']==True
33
               and state['RHC']==False):
34
           return dist(state['RLoc'], 'cs')+3
35
       else:
36
37
           return 0
```

The maximum of the values of a set of admissible heuristics is also an admissible heuristic. The function maxh takes a number of heuristic functions as arguments, and returns a new heuristic function that takes the maximum of the values of the heuristics. For example, h1 and h2 are heuristic functions and so maxh(h1,h2) is also. maxh can take an arbitrary number of arguments.

```
def maxh(*heuristics):
    """Returns a new heuristic function that is the maximum of the
    functions in heuristics.
```

```
heuristics is the list of arguments which must be heuristic functions.

"""

# return lambda state,goal: max(h(state,goal) for h in heuristics)

def newh(state,goal):

return max(h(state,goal) for h in heuristics)

return newh
```

The following runs the example with and without the heuristic.

```
stripsHeuristic.py — (continued)
   ##### Forward Planner #####
   from searchMPP import SearcherMPP
49
   from stripsForwardPlanner import Forward_STRIPS
   import stripsProblem
51
52
   def test_forward_heuristic(thisproblem=stripsProblem.problem1):
53
       print("\n***** FORWARD NO HEURISTIC")
54
       print(SearcherMPP(Forward_STRIPS(thisproblem)).search())
55
56
       print("\n***** FORWARD WITH HEURISTIC h1")
57
       print(SearcherMPP(Forward_STRIPS(thisproblem,h1)).search())
58
59
       print("\n**** FORWARD WITH HEURISTIC h2")
60
       print(SearcherMPP(Forward_STRIPS(thisproblem, h2)).search())
61
62
       print("\n***** FORWARD WITH HEURISTICs h1 and h2")
63
       print(SearcherMPP(Forward_STRIPS(thisproblem, maxh(h1, h2))).search())
64
65
   if __name__ == "__main__":
66
       test_forward_heuristic()
```

**Exercise 6.4** For more than one start-state/goal combination, test the forward planner with a heuristic function of just h1, with just h2 and with both. Explain why each one prunes or doesn't prune the search space.

**Exercise 6.5** Create a better heuristic than maxh(h1,h2). Try it for a number of different problems. In particular, try and include the following costs:

- i) *h*3 is like *h*2 but also takes into account the case when *Rloc* is in goal.
- ii) *h*4 uses the distance to the mail room plus getting mail and delivering it if the robot needs to get need to deliver mail.
- iii) *h*5 is for getting mail when goal is for the robot to have mail, and then getting to the goal destination (if there is one).

**Exercise 6.6** Create an admissible heuristic for the blocks world.

## 6.3 Regression Planning

To run the demo, in folder "aipython", load "stripsRegressionPlanner.py", and copy and paste the commented-out example queries at the bottom of that file.

In a regression planner a node is a subgoal that need to be achieved.

A *Subgoal* object consists of an assignment, which is a *variable:value* dictionary. We make it hashable so that multiple path pruning can work. The hash is only computed when necessary (and only once).

```
_stripsRegressionPlanner.py — Regression Planner with STRIPS actions _
   from searchProblem import Arc, Search_problem
11
12
   class Subgoal(object):
13
       def __init__(self,assignment):
14
           self.assignment = assignment
15
           self.hash_value = None
16
       def __hash__(self):
17
           if self.hash_value is None:
18
               self.hash_value = hash(frozenset(self.assignment.items()))
19
20
           return self.hash_value
       def __eq__(self,st):
21
           return self.assignment == st.assignment
22
       def __str__(self):
23
           return str(self.assignment)
```

A regression search has subgoals as nodes. The initial node is the top-level goal of the planner. The goal for the search (when the search can stop) is a subgoal that holds in the initial state.

```
_stripsRegressionPlanner.py — (continued)
   from stripsForwardPlanner import zero
26
27
   class Regression_STRIPS(Search_problem):
28
       """A search problem where:
29
       * a node is a goal to be achieved, represented by a set of propositions.
30
       * the dynamics are specified by the STRIPS representation of actions
31
32
33
       def __init__(self, planning_problem, heur=zero):
34
           """creates a regression search space from a planning problem.
35
           heur(state, goal) is a heuristic function;
36
              an underestimate of the cost from state to goal, where
37
38
              both state and goals are feature: value dictionaries
39
           self.prob_domain = planning_problem.prob_domain
           self.top_goal = Subgoal(planning_problem.goal)
41
           self.initial_state = planning_problem.initial_state
42
           self.heur = heur
43
```

```
44
45
       def is_goal(self, subgoal):
           """if subgoal is true in the initial state, a path has been found"""
           goal_asst = subgoal.assignment
47
           return all(self.initial_state[g]==goal_asst[g]
48
                     for g in goal_asst)
49
50
       def start_node(self):
51
           """the start node is the top-level goal"""
52
           return self.top_goal
53
       def neighbors(self, subgoal):
55
           """returns a list of the arcs for the neighbors of subgoal in this
56
               problem"""
           goal_asst = subgoal.assignment
57
           return [ Arc(subgoal, self.weakest_precond(act,goal_asst),
58
               act.cost, act)
                   for act in self.prob_domain.actions
59
                   if self.possible(act,goal_asst)]
60
61
       def possible(self,act,goal_asst):
62
           """True if act is possible to achieve goal_asst.
64
           the action achieves an element of the effects and
65
           the action doesn't delete something that needs to be achieved and
66
           the preconditions are consistent with other subgoals that need to
               be achieved
           ,, ,, ,,
68
           return ( any(goal_asst[prop] == act.effects[prop]
69
                      for prop in act.effects if prop in goal_asst)
70
                  and all(goal_asst[prop] == act.effects[prop]
71
                          for prop in act.effects if prop in goal_asst)
72
                  and all(goal_asst[prop] == act.preconds[prop]
73
74
                          for prop in act.preconds if prop not in act.effects
                              and prop in goal_asst)
                  )
75
76
       def weakest_precond(self,act,goal_asst):
77
           """returns the subgoal that must be true so goal_asst holds after
78
               act
           should be: act.preconds | (goal_asst - act.effects)
79
80
           new_asst = act.preconds.copy()
81
           for g in goal_asst:
82
               if g not in act.effects:
                  new_asst[g] = goal_asst[g]
84
           return Subgoal(new_asst)
85
86
       def heuristic(self, subgoal):
87
           """in the regression planner a node is a subgoal.
88
```

```
the heuristic is an (under)estimate of the cost of going from the initial state to subgoal.

"""
return self.heur(self.initial_state, subgoal.assignment)
```

```
from searchBranchAndBound import DF_branch_and_bound
from searchMPP import SearcherMPP
import stripsProblem

# SearcherMPP(Regression_STRIPS(stripsProblem.problem1)).search() #A* with
MPP

# DF_branch_and_bound(Regression_STRIPS(stripsProblem.problem1),10).search()
#B&R
```

**Exercise 6.7** Multiple path pruning could be used to prune more than the current node. In particular, if the current node contains more conditions than a previously visited node, it can be pruned. For example, if  $\{a : True, b : False\}$  has been visited, then any node that is a superset, e.g.,  $\{a : True, b : False, d : True\}$ , need not be expanded. If the simpler subgoal does not lead to a solution, the more complicated one will not either. Implement this more severe pruning. (Hint: This may require modifications to the searcher.)

**Exercise 6.8** It is possible that, as knowledge of the domain, that some assignment of values to variables can never be achieved. For example, the robot cannot be holding mail when there is mail waiting (assuming it isn't holding mail initially). An assignment of values to (some of the) variables is incompatible if no possible (reachable) state can include that assignment. For example, {'MW' : True,' RHM' : True} is an incompatible assignment. This information may be useful information for a planner; there is no point in trying to achieve these together. Define a subclass of STRIPS\_domain that can accept a list of incompatible assignments. Modify the regression planner code to use such a list of incompatible assignments. Give an example where the search space is smaller.

**Exercise 6.9** After completing the previous exercise, design incompatible assignments for the blocks world. (This should result in dramatic search improvements.)

## 6.3.1 Defining Heuristics for a Regression Planner

The regression planner can use the same heuristic function as the forward planner. However, just because a heuristic is useful for a forward planner does not mean it is useful for a regression planner, and vice versa. you should experiment with whether the same heuristic works well for both a regression planner and a forward planner.

The following runs the same example as the forward planner with and without the heuristic defined for the forward planner:

```
https://aipython.org Version 0.9.13 June 13, 2024
```

```
##### Regression Planner
70
   from stripsRegressionPlanner import Regression_STRIPS
   def test_regression_heuristic(thisproblem=stripsProblem.problem1):
72
       print("\n***** REGRESSION NO HEURISTIC")
73
       print(SearcherMPP(Regression_STRIPS(thisproblem)).search())
74
75
       print("\n**** REGRESSION WITH HEURISTICs h1 and h2")
76
       print(SearcherMPP(Regression_STRIPS(thisproblem, maxh(h1,h2))).search())
77
78
   if __name__ == "__main__":
       test_regression_heuristic()
80
```

**Exercise 6.10** Try the regression planner with a heuristic function of just h1 and with just h2 (defined in Section 6.2.1). Explain how each one prunes or doesn't prune the search space.

**Exercise 6.11** Create a better heuristic than *heuristic\_fun* defined in Section 6.2.1.

## 6.4 Planning as a CSP

To run the demo, in folder "aipython", load "stripsCSPPlanner.py", and copy and paste the commented-out example queries at the bottom of that file. This assumes Python 3.

Here we implement the CSP planner assuming there is a single action at each step. This creates a CSP that can use any of the CSP algorithms to solve (e.g., stochastic local search or arc consistency with domain splitting).

This assumes the same action representation as before; we do not consider factored actions (action features), nor do we implement state constraints.

```
_stripsCSPPlanner.py — CSP planner where actions are represented using STRIPS
   from cspProblem import Variable, CSP, Constraint
11
12
   class CSP_from_STRIPS(CSP):
13
       """A CSP where:
14
       * CSP variables are constructed for each feature and time, and each
15
           action and time
       * the dynamics are specified by the STRIPS representation of actions
16
17
18
       def __init__(self, planning_problem, number_stages=2):
19
           prob_domain = planning_problem.prob_domain
20
21
           initial_state = planning_problem.initial_state
           goal = planning_problem.goal
22
           # self.action_vars[t] is the action variable for time t
           self.action_vars = [Variable(f"Action{t}", prob_domain.actions)
24
                                  for t in range(number_stages)]
25
           # feat_time_var[f][t] is the variable for feature f at time t
26
```

```
feat_time_var = {feat: [Variable(f"{feat}_{t}",dom)
27
28
                                          for t in range(number_stages+1)]
                             for (feat,dom) in
29
                                 prob_domain.feature_domain_dict.items()}
30
           # initial state constraints:
31
32
           constraints = [Constraint((feat_time_var[feat][0],), is_(val))
                             for (feat,val) in initial_state.items()]
33
           # goal constraints on the final state:
35
           constraints += [Constraint((feat_time_var[feat][number_stages],),
36
                                         is_(val))
37
                             for (feat,val) in goal.items()]
38
39
           # precondition constraints:
40
           constraints += [Constraint((feat_time_var[feat][t],
41
               self.action_vars[t]),
                                    if_(val,act)) # feat@t==val if action@t==act
42
                             for act in prob_domain.actions
43
                             for (feat,val) in act.preconds.items()
44
                             for t in range(number_stages)]
45
           # effect constraints:
47
           constraints += [Constraint((feat_time_var[feat][t+1],
               self.action_vars[t]),
                                    if_(val,act)) # feat@t+1==val if
49
                                        action@t==act
50
                             for act in prob_domain.actions
                             for feat,val in act.effects.items()
51
                             for t in range(number_stages)]
52
           # frame constraints:
53
54
           constraints += [Constraint((feat_time_var[feat][t],
55
               self.action_vars[t], feat_time_var[feat][t+1]),
                                    eq_if_not_in_({act for act in
56
                                        prob_domain.actions
                                                  if feat in act.effects}))
57
                             for feat in prob_domain.feature_domain_dict
58
                             for t in range(number_stages) ]
           variables = set(self.action_vars) | {feat_time_var[feat][t]
60
                                             for feat in
                                                 prob_domain.feature_domain_dict
                                             for t in range(number_stages+1)}
62
           CSP.__init__(self, "CSP_from_Strips", variables, constraints)
63
       def extract_plan(self, soln):
65
           return [soln[a] for a in self.action_vars]
66
```

The following methods return methods which can be applied to the particular environment.

For example, *is*<sub>-</sub>(3) returns a function that when applied to 3, returns True

and when applied to any other value returns False. So  $is_{-}(3)(3)$  returns *True* and  $is_{-}(3)(7)$  returns *False*.

Note that the underscore ( $'\_$ ') is part of the name; here we use it as the convention that it is a function that returns a function. This uses two different styles to define  $is\_$  and  $if\_$ ; returning a function defined by lambda is equivalent to returning the embedded function, except that the embedded function has a name. The embedded function can also be given a docstring.

```
_stripsCSPPlanner.py — (continued) .
   def is_(val):
68
       """returns a function that is true when it is it applied to val.
69
70
       #return lambda x: x == val
71
       def is_fun(x):
72
           return x == val
73
       is_fun.__name__ = f"value_is_{val}"
74
75
       return is_fun
76
   def if_(v1, v2):
77
       """if the second argument is v2, the first argument must be v1"""
78
       #return lambda x1,x2: x1==v1 if x2==v2 else True
79
       def if_fun(x1,x2):
80
           return x1==v1 if x2==v2 else True
81
       if_fun.__name__ = f"if x2 is \{v2\} then x1 is \{v1\}"
82
       return if_fun
83
84
   def eq_if_not_in_(actset):
85
       """first and third arguments are equal if action is not in actset"""
86
       # return lambda x1, a, x2: x1==x2 if a not in actset else True
87
       def eq_if_not_fun(x1, a, x2):
88
           return x1==x2 if a not in actset else True
89
       eq_if_not_fun.__name__ = f"first and third arguments are equal if
90
           action is not in {actset}"
91
       return eq_if_not_fun
```

Putting it together, this returns a list of actions that solves the problem *prob* for a given horizon. If you want to do more than just return the list of actions, you might want to get it to return the solution. Or even enumerate the solutions (by using *Search\_with\_AC\_from\_CSP*).

```
_____stripsCSPPlanner.py — (continued)

93 | def con_plan(prob,horizon):

94    """finds a plan for problem prob given horizon.

95    """

96    csp = CSP_from_STRIPS(prob, horizon)

97    sol = Con_solver(csp).solve_one()

98    return csp.extract_plan(sol) if sol else sol
```

The following are some example queries.

```
_____stripsCSPPlanner.py — (continued) _____
```

141

```
from searchGeneric import Searcher
100
101
    from cspConsistency import Search_with_AC_from_CSP, Con_solver
    from stripsProblem import Planning_problem
102
    import stripsProblem
103
104
   # Problem 0
105
106
   # con_plan(stripsProblem.problem0,1) # should it succeed?
   # con_plan(stripsProblem.problem0,2) # should it succeed?
107
   |# con_plan(stripsProblem.problem0,3) # should it succeed?
   # To use search to enumerate solutions
109
   #searcher0a =
        Searcher(Search_with_AC_from_CSP(CSP_from_STRIPS(stripsProblem.problem0,
    #print(searcher0a.search()) # returns path to solution
111
112
    ## Problem 1
113
   | # con_plan(stripsProblem.problem1,5) # should it succeed?
114
   | # con_plan(stripsProblem.problem1,4) # should it succeed?
115
    ## To use search to enumerate solutions:
116
    #searcher15a =
117
        Searcher(Search_with_AC_from_CSP(CSP_from_STRIPS(stripsProblem.problem1,
    #print(searcher15a.search()) # returns path to solution
118
119
    ## Problem 2
120
    #con_plan(stripsProblem.problem2, 6) # should fail??
121
    #con_plan(stripsProblem.problem2, 7) # should succeed???
122
123
    ## Example 6.13
124
    problem3 = Planning_problem(stripsProblem.delivery_domain,
125
                              {'SWC':True, 'RHC':False}, {'SWC':False})
126
    #con_plan(problem3,2) # Horizon of 2
127
    #con_plan(problem3,3) # Horizon of 3
128
129
    problem4 = Planning_problem(stripsProblem.delivery_domain,{'SWC':True},
130
                                 {'SWC':False, 'MW':False, 'RHM':False})
131
132
    # For the stochastic local search:
133
   #from cspSLS import SLSearcher, Runtime_distribution
   # cspplanning15 = CSP_from_STRIPS(stripsProblem.problem1, 5) # should
135
    #se0 = SLSearcher(cspplanning15); print(se0.search(100000,0.5))
136
   #p = Runtime_distribution(cspplanning15)
| #p.plot_runs(1000,1000,0.7) # warning will take a few minutes
```

## 6.5 Partial-Order Planning

To run the demo, in folder "aipython", load "stripsPOP.py", and copy and paste the commented-out example queries at the bottom of that file.

A partial order planner maintains a partial order of action instances. An action instance consists of a name and an index. We need action instances because the same action could be carried out at different times.

```
.stripsPOP.py — Partial-order Planner using STRIPS representation _
   from searchProblem import Arc, Search_problem
   import random
12
13
   class Action_instance(object):
14
       next_index = 0
15
       def __init__(self,action,index=None):
16
           if index is None:
17
               index = Action_instance.next_index
18
               Action_instance.next_index += 1
19
           self.action = action
20
           self.index = index
21
22
23
       def __str__(self):
           return f"{self.action}#{self.index}"
24
25
       __repr__ = __str__ # __repr__ function is the same as the __str__
            function
```

A node (as in the abstraction of search space) in a partial-order planner consists of:

- *actions*: a set of action instances.
- constraints: a set of  $(a_1, a_2)$  pairs, where  $a_1$  and  $a_2$  are action instances, which represents that  $a_1$  must come before  $a_2$  in the partial order. There are a number of ways that this could be represented. Here we represent the set of pairs that are in transitive closure of the *before* relation. This lets us quickly determine whether some *before* relation is consistent with the current constraints.
- *agenda*: a list of (*s*, *a*) pairs, where *s* is a (*var*, *val*) pair and *a* is an action instance. This means that variable *var* must have value *val* before *a* can occur.
- *causal\_links*: a set of (a0, g, a1) triples, where  $a_1$  and  $a_2$  are action instances and g is a (var, val) pair. This holds when action  $a_0$  makes g true for action  $a_1$ .

```
_stripsPOP.py — (continued)
   class POP_node(object):
28
       """a (partial) partial-order plan. This is a node in the search
29
           space."""
       def __init__(self, actions, constraints, agenda, causal_links):
30
31
           * actions is a set of action instances
32
           * constraints a set of (a0,a1) pairs, representing a0<a1,
33
             closed under transitivity
34
           * agenda list of (subgoal,action) pairs to be achieved, where
35
             subgoal is a (variable, value) pair
36
           * causal_links is a set of (a0,g,a1) triples,
37
             where ai are action instances, and g is a (variable, value) pair
38
39
           self.actions = actions # a set of action instances
40
           self.constraints = constraints # a set of (a0,a1) pairs
41
42
           self.agenda = agenda # list of (subgoal,action) pairs to be
               achieved
           self.causal_links = causal_links # set of (a0,g,a1) triples
43
44
       def __str__(self):
45
           return ("actions: "+str({str(a) for a in self.actions})+
46
47
                   "\nconstraints: "+
                   str({(str(a1),str(a2)) for (a1,a2) in self.constraints})+
48
                   "\nagenda: "+
49
                  str([(str(s),str(a)) for (s,a) in self.agenda])+
50
                   "\ncausal links:"+
51
                  str({(str(a0), str(g), str(a2))}) for (a0, g, a2) in
52
                       self.causal_links}) )
```

*extract\_plan* constructs a total order of action instances that is consistent with the partial order.

```
_stripsPOP.py — (continued)
       def extract_plan(self):
54
           """returns a total ordering of the action instances consistent
55
           with the constraints.
56
           raises IndexError if there is no choice.
57
           sorted_acts = []
59
           other_acts = set(self.actions)
60
           while other_acts:
61
               a = random.choice([a for a in other_acts if
62
                        all(((a1,a) not in self.constraints) for a1 in
63
                            other_acts)])
               sorted_acts.append(a)
64
65
               other_acts.remove(a)
           return sorted_acts
66
```

*POP\_search\_from\_STRIPS* is an instance of a search problem. As such, we need to define the start nodes, the goal, and the neighbors of a node.

```
_stripsPOP.py — (continued)
   from display import Displayable
68
69
70
   class POP_search_from_STRIPS(Search_problem, Displayable):
       def __init__(self,planning_problem):
71
72
           Search_problem.__init__(self)
           self.planning_problem = planning_problem
73
           self.start = Action_instance("start")
74
           self.finish = Action_instance("finish")
75
76
77
       def is_goal(self, node):
           return node.agenda == []
78
       def start_node(self):
80
           constraints = {(self.start, self.finish)}
81
           agenda = [(g, self.finish) for g in
82
               self.planning_problem.goal.items()]
           return POP_node([self.start,self.finish], constraints, agenda, [] )
83
```

The *neighbors* method is a coroutine that enumerates the neighbors of a given node.

```
_stripsPOP.py — (continued)
85
        def neighbors(self, node):
            """enumerates the neighbors of node"""
86
            self.display(3,"finding neighbors of\n",node)
            if node.agenda:
88
                subgoal,act1 = node.agenda[0]
                self.display(2, "selecting", subgoal, "for", act1)
90
               new_agenda = node.agenda[1:]
               for act0 in node.actions:
92
                   if (self.achieves(act0, subgoal) and
                      self.possible((act0,act1),node.constraints)):
94
                       self.display(2," reusing",act0)
95
                       consts1 =
96
                            self.add_constraint((act0,act1),node.constraints)
97
                       new_clink = (act0, subgoal, act1)
                       new_cls = node.causal_links + [new_clink]
98
                       for consts2 in
99
                            self.protect_cl_for_actions(node.actions,consts1,new_clink):
                           yield Arc(node,
100
                                     POP_node(node.actions,consts2,new_agenda,new_cls),
101
102
                                     cost=0)
               for a0 in self.planning_problem.prob_domain.actions: #a0 is an
103
                    action
                   if self.achieves(a0, subgoal):
104
                       #a0 acheieves subgoal
105
                       new_a = Action_instance(a0)
106
                       self.display(2," using new action",new_a)
107
                       new_actions = node.actions + [new_a]
108
```

```
109
                       consts1 =
                           self.add_constraint((self.start,new_a),node.constraints)
                       consts2 = self.add_constraint((new_a,act1),consts1)
110
                       new_agenda1 = new_agenda + [(pre,new_a) for pre in
111
                           a0.preconds.items()]
                       new_clink = (new_a, subgoal, act1)
112
113
                       new_cls = node.causal_links + [new_clink]
                       for consts3 in
114
                           self.protect_all_cls(node.causal_links,new_a,consts2):
                           for consts4 in
115
                               self.protect_cl_for_actions(node.actions,consts3,new_clink):
                              yield Arc(node,
116
                                        POP_node(new_actions,consts4,new_agenda1,new_cls),
117
                                        cost=1)
118
```

Given a causal link (a0, subgoal, a1), the following method protects the causal link from each action in actions. Whenever an action deletes subgoal, the action needs to be before a0 or after a1. This method enumerates all constraints that result from protecting the causal link from all actions.

```
\_stripsPOP.py — (continued) \_\_
120
        def protect_cl_for_actions(self, actions, constrs, clink):
            """yields constraints that extend constrs and
121
            protect causal link (a0, subgoal, a1)
122
            for each action in actions
123
124
            if actions:
125
                a = actions[0]
126
                rem_actions = actions[1:]
127
                a0, subgoal, a1 = clink
128
                if a != a0 and a != a1 and self.deletes(a, subgoal):
129
                    if self.possible((a,a0),constrs):
130
                       new_const = self.add_constraint((a,a0),constrs)
131
                       for e in
132
                            self.protect_cl_for_actions(rem_actions,new_const,clink):
                            yield e # could be "yield from"
133
                   if self.possible((a1,a),constrs):
                       new_const = self.add_constraint((a1,a),constrs)
134
135
                        for e in
                            self.protect_cl_for_actions(rem_actions,new_const,clink):
                            yield e
                else:
136
137
                    for e in
                        self.protect_cl_for_actions(rem_actions,constrs,clink):
                        vield e
            else:
138
                yield constrs
139
```

Given an action *act*, the following method protects all the causal links in *clinks* from *act*. Whenever *act* deletes *subgoal* from some causal link (*a*0, *subgoal*, *a*1),

the action *act* needs to be before *a*0 or after *a*1. This method enumerates all constraints that result from protecting the causal links from *act*.

```
__stripsPOP.py — (continued) _
141
        def protect_all_cls(self, clinks, act, constrs):
            """yields constraints that protect all causal links from act"""
142
            if clinks:
143
                (a0,cond,a1) = clinks[0] # select a causal link
144
145
                rem_clinks = clinks[1:] # remaining causal links
                if act != a0 and act != a1 and self.deletes(act,cond):
                   if self.possible((act,a0),constrs):
147
                       new_const = self.add_constraint((act,a0),constrs)
148
                       for e in self.protect_all_cls(rem_clinks,act,new_const):
149
                           yield e
                   if self.possible((a1,act),constrs):
150
                       new_const = self.add_constraint((a1,act),constrs)
151
                       for e in self.protect_all_cls(rem_clinks,act,new_const):
152
                           yield e
               else:
153
                   for e in self.protect_all_cls(rem_clinks,act,constrs): yield
154
            else:
155
               yield constrs
156
```

The following methods check whether an action (or action instance) achieves or deletes some subgoal.

```
_stripsPOP.py — (continued) _
158
        def achieves(self,action,subgoal):
            var, val = subgoal
159
160
            return var in self.effects(action) and self.effects(action)[var] ==
                val
161
        def deletes(self,action,subgoal):
162
            var,val = subgoal
163
            return var in self.effects(action) and self.effects(action)[var] !=
164
                val
165
        def effects(self,action):
166
            """returns the variable:value dictionary of the effects of action.
167
            works for both actions and action instances"""
168
            if isinstance(action, Action_instance):
169
                action = action.action
170
            if action == "start":
171
                return self.planning_problem.initial_state
172
            elif action == "finish":
173
                return {}
174
            else:
175
                return action.effects
176
```

The constraints are represented as a set of pairs closed under transitivity. Thus if (a, b) and (b, c) are the list, then (a, c) must also be in the list. This means

that adding a new constraint means adding the implied pairs, but querying whether some order is consistent is quick.

```
_stripsPOP.py — (continued) ____
        def add_constraint(self, pair, const):
178
            if pair in const:
179
180
                return const
            todo = [pair]
181
            newconst = const.copy()
182
            while todo:
183
                x0, x1 = todo.pop()
184
                newconst.add((x0,x1))
185
                for x,y in newconst:
186
                     if x==x1 and (x0,y) not in newconst:
187
                         todo.append((x0,y))
188
                     if y==x0 and (x,x1) not in newconst:
189
                         todo.append((x,x1))
190
191
            return newconst
192
        def possible(self,pair,constraint):
193
            (x,y) = pair
194
195
            return (y,x) not in constraint
```

Some code for testing:

```
_stripsPOP.py — (continued)
    from searchBranchAndBound import DF_branch_and_bound
197
    from searchMPP import SearcherMPP
198
199
    import stripsProblem
200
    rplanning0 = POP_search_from_STRIPS(stripsProblem.problem0)
201
    rplanning1 = POP_search_from_STRIPS(stripsProblem.problem1)
202
    rplanning2 = POP_search_from_STRIPS(stripsProblem.problem2)
203
    searcher0 = DF_branch_and_bound(rplanning0,5)
204
    searcher0a = SearcherMPP(rplanning0)
    searcher1 = DF_branch_and_bound(rplanning1,10)
206
    searcher1a = SearcherMPP(rplanning1)
207
    searcher2 = DF_branch_and_bound(rplanning2,10)
208
    searcher2a = SearcherMPP(rplanning2)
209
   # Try one of the following searchers
210
   |# a = searcher0.search()
211
212 | # a = searcher0a.search()
   |# a.end().extract_plan() # print a plan found
213
   |# a.end().constraints  # print the constraints
214
    # SearcherMPP.max_display_level = 0 # less detailed display
215
   # DF_branch_and_bound.max_display_level = 0 # less detailed display
216
217
   |# a = searcher1.search()
   | # a = searcher1a.search()
    # a = searcher2.search()
219
220 | # a = searcher2a.search()
```

# Supervised Machine Learning

This chapter is the first on machine learning. It covers the following topics:

- Data: how to load it, training and test sets
- Features: many of the features come directly from the data. Sometimes it is useful to construct features, e.g. *height* > 1.9*m* might be a Boolean feature constructed from the real-values feature *height*. The next chapter is about neural networks and how to learn features; in this chapter we construct them explicitly in what is often known as **feature engineering**.
- Learning with no input features: this is the base case of many methods. What should we predict if we have no input features? This provides the base cases for many algorithms (e.g., decision tree algorithm) and baselines that more sophisticated algorithms need to beat. It also provides ways to test various predictors.
- Decision tree learning: one of the classic and simplest learning algorithms, which is the basis of many other algorithms.
- Cross validation and parameter tuning: methods to prevent overfitting.
- Linear regression and classification: other classic and simple techniques that often work well (particularly combined with feature learning or engineering).
- Boosting: combining simpler learning methods to make even better learners.

A good source of classic datasets is the UCI Machine Learning Repository [Lichman, 2013] [Dua and Graff, 2017]. The SPECT, IRIS, and car datasets (carbool is a Boolean version of the car dataset) are from this repository.

| Dataset      | # Examples | #Columns | Input Types         | Target Type |
|--------------|------------|----------|---------------------|-------------|
| SPECT        | 267        | 23       | Boolean             | Boolean     |
| IRIS         | 150        | 5        | numeric             | categorical |
| carbool      | 1728       | 7        | categorical/numeric | numeric     |
| holiday      | 32         | 6        | Boolean             | Boolean     |
| mail_reading | 28         | 5        | Boolean             | Boolean     |
| tv_likes     | 12         | 5        | Boolean             | Boolean     |
| simp_regr    | 7          | 2        | numeric             | numeric     |

Figure 7.1: Some of the datasets used here.

## 7.1 Representations of Data and Predictions

The code uses the following definitions and conventions:

- A **dataset** is an enumeration of examples.
- An example is a list (or tuple) of values. The values can be numbers or strings.
- A **feature** is a function from examples into the range of the feature. Each feature f also has the following attributes:
  - f.ftype, the type of f, one of: "boolean", "categorical", "numeric"
  - f.frange, the set of values of f seen in the dataset, represented as a list. The ftype is inferred from the frange if not given explicitly.
  - f.\_\_doc\_\_, the docstring, a string description of f (for printing).

Thus for example, a **Boolean feature** is a function from the examples into  $\{False, True\}$ . So, if f is a Boolean feature, f frange == [False, True], and if e is an example, f(e) is either True or False.

```
import math, random, statistics
import csv
from display import Displayable
from utilities import argmax

boolean = [False, True]
```

When creating a dataset, we partition the data into a training set (*train*) and a test set (*test*). The target feature is the feature that we are making a prediction of. A dataset ds has the following attributes

- ds. train a list of the training examples
- ds. test a list of the test examples

- ds.target\_index the index of the target
- ds.target the feature corresponding to the target (a function as described above)
- ds.input\_features a list of the input features

```
_learnProblem.py — (continued)
   class Data_set(Displayable):
       """ A dataset consists of a list of training data and a list of test
19
           data.
20
21
       def __init__(self, train, test=None, prob_test=0.20, target_index=0,
22
                       header=None, target_type= None, one_hot=False,
23
                           seed=None): #12345):
           """A dataset for learning.
24
           train is a list of tuples representing the training examples
25
           test is the list of tuples representing the test examples
26
           if test is None, a test set is created by selecting each
27
               example with probability prob_test
28
           target_index is the index of the target.
29
               If negative, it counts from right.
30
               If target_index is larger than the number of properties,
31
               there is no target (for unsupervised learning)
32
           header is a list of names for the features
33
           target_type is either None for automatic detection of target type
34
               or one of "numeric", "boolean", "categorical"
35
           one_hot is True gives a one-hot encoding of categorical features
36
           seed is for random number; None gives a different test set each time
37
38
           if seed: # given seed makes partition consistent from run-to-run
39
              random.seed(seed)
40
           if test is None:
41
               train,test = partition_data(train, prob_test)
42
43
           self.train = train
           self.test = test
45
           self.display(1, "Training set has", len(train), "examples. Number of
46
               columns: ",{len(e) for e in train})
           self.display(1, "Test set has", len(test), "examples. Number of
47
               columns: ",{len(e) for e in test})
           self.prob_test = prob_test
48
           self.num_properties = len(self.train[0])
49
           if target_index < 0: #allows for -1, -2, etc.</pre>
50
               self.target_index = self.num_properties + target_index
51
           else:
               self.target_index = target_index
53
           self.header = header
54
           self.domains = [set() for i in range(self.num_properties)]
55
```

```
for example in self.train:
56
57
              for ind,val in enumerate(example):
                  self.domains[ind].add(val)
           self.conditions_cache = {} # cache for computed conditions
59
           self.create_features(one_hot)
           if target_type:
61
               self.target.ftype = target_type
           self.display(1,"There are",len(self.input_features),"input
63
               features")
64
       def __str__(self):
65
           if self.train and len(self.train)>0:
66
               return ("Data: "+str(len(self.train))+" training examples, "
67
                      +str(len(self.test))+" test examples, "
                      +str(len(self.train[0]))+" features.")
69
           else:
70
               return ("Data: "+str(len(self.train))+" training examples, "
71
                      +str(len(self.test))+" test examples.")
72
```

A **feature** is a function that takes an example and returns a value in the range of the feature. Each feature has a **frange**, which gives the range of the feature, and an **ftype** that gives the type, one of "boolean", "numeric" or "categorical".

```
_learnProblem.py — (continued)
74
       def create_features(self, one_hot=False):
           """create the set of features.
75
           if one_hot==True then make categorical features into booleans for
76
               each value
77
           self.target = None
78
           self.input_features = []
79
           for i in range(self.num_properties):
80
               frange = list(self.domains[i])
81
               ftype = self.infer_type(frange)
82
               if one_hot and ftype == "categorical" and i !=
83
                   self.target_index:
                   for val in frange:
84
                       def feat(e,index=i,val=val):
85
                           return e[index]==val
86
                       if self.header:
87
                           feat.__doc__ = self.header[i]+"="+val
                       else:
89
                           feat.\__doc\__ = f''e[{i}]={val}''
90
                       feat.frange = boolean
91
                       feat.type = "boolean"
                       self.input_features.append(feat)
93
               else:
                   def feat(e,index=i):
95
                     return e[index]
96
                   if self.header:
97
```

```
98
                        feat.__doc__ = self.header[i]
99
                        feat.__doc__ = "e["+str(i)+"]"
100
                    feat.frange = frange
101
                    feat.ftype = ftype
102
                    if i == self.target_index:
103
104
                        self.target = feat
105
                    else:
                        self.input_features.append(feat)
106
```

We try to infer the type of each feature. Sometimes this can be wrong, (e.g., when the numbers are really categorical) and may need to be set explicitly.

```
_learnProblem.py — (continued)
108
        def infer_type(self,domain):
            """Infers the type of a feature with domain
109
110
            if all(v in {True,False} for v in domain) or all(v in {0,1} for v
111
                 in domain):
                return "boolean"
112
113
            if all(isinstance(v,(float,int)) for v in domain):
                return "numeric"
114
115
            else:
                return "categorical"
116
```

### 7.1.1 Creating Boolean Conditions from Features

Some of the algorithms require Boolean input features or features with range  $\{0,1\}$ . In order to be able to use these algorithms on datasets that allow for arbitrary domains of input variables, we construct Boolean conditions from the attributes.

There are 3 cases:

- When the range only has two values, we designate one to be the "true" value.
- When the values are all numeric, we assume they are ordered (as opposed to just being some classes that happen to be labelled with numbers) and construct Boolean features for splits of the data. That is, the feature is e[ind] < cut for some value cut. We choose a number of cut values, up to a maximum number of cuts, given by  $max\_num\_cuts$ .
- When the values are not all numeric, we create an indicator function for each value. An indicator function for a value returns true when that value is given and false otherwise. Note that we can't create an indicator function for values that appear in the test set but not in the training set because we haven't seen the test set. For the examples in the test set with a value that doesn't appear in the training set for that feature, the indicator functions all return false.

There is also an option categorical\_only to create only Boolean features for categorical input features, and not to make cuts for numerical values.

```
__learnProblem.py — (continued) _
118
        def conditions(self, max_num_cuts=8, categorical_only = False):
            """returns a list of boolean conditions from the input features
119
            max_num_cuts is the maximum number of cute for numeric features
120
            categorical_only is true if only categorical features are made
121
                binary
122
            if (max_num_cuts, categorical_only) in self.conditions_cache:
123
                return self.conditions_cache[(max_num_cuts, categorical_only)]
124
125
            for ind,frange in enumerate(self.domains):
126
                if ind != self.target_index and len(frange)>1:
127
                    if len(frange) == 2:
128
                        # two values, the feature is equality to one of them.
129
                        true_val = list(frange)[1] # choose one as true
130
                        def feat(e, i=ind, tv=true_val):
131
                            return e[i]==tv
132
                        if self.header:
133
                            feat.__doc__ = f"{self.header[ind]}=={true_val}"
134
                        else:
135
                            feat.__doc__ = f"e[{ind}]=={true_val}"
136
137
                        feat.frange = boolean
                        feat.ftype = "boolean"
138
                        conds.append(feat)
139
                   elif all(isinstance(val,(int,float)) for val in frange):
140
                        if categorical_only: # numeric, don't make cuts
141
                            def feat(e, i=ind):
142
                               return e[i]
143
                            feat.\__doc\__ = f"e[\{ind\}]"
144
                            conds.append(feat)
145
                        else:
146
                            # all numeric, create cuts of the data
147
                            sorted_frange = sorted(frange)
148
                            num_cuts = min(max_num_cuts,len(frange))
149
                            cut_positions = [len(frange)*i//num_cuts for i in
150
                                range(1,num_cuts)]
                           for cut in cut_positions:
151
                               cutat = sorted_frange[cut]
152
                               def feat(e, ind_=ind, cutat=cutat):
153
                                   return e[ind_] < cutat</pre>
154
155
                               if self.header:
156
157
                                   feat.__doc__ = self.header[ind]+"<"+str(cutat)</pre>
                               else:
158
                                   feat.__doc__ = "e["+str(ind)+"]<"+str(cutat)</pre>
159
                               feat.frange = boolean
160
                                feat.ftype = "boolean"
161
                               conds.append(feat)
162
```

```
else:
163
                        # create an indicator function for every value
164
                        for val in frange:
165
                           def feat(e, ind_=ind, val_=val):
166
                               return e[ind_] == val_
167
                           if self.header:
168
169
                               feat.__doc__ = self.header[ind]+"=="+str(val)
                           else:
170
                               feat.__doc__= "e["+str(ind)+"]=="+str(val)
171
                           feat.frange = boolean
172
                            feat.ftype = "boolean"
173
174
                           conds.append(feat)
            self.conditions_cache[(max_num_cuts, categorical_only)] = conds
175
            return conds
176
```

**Exercise 7.1** Change the code so that it splits using  $e[ind] \le cut$  instead of e[ind] < cut. Check boundary cases, such as 3 elements with 2 cuts. As a test case, make sure that when the range is the 30 integers from 100 to 129, and you want 2 cuts, the resulting Boolean features should be  $e[ind] \le 109$  and  $e[ind] \le 119$  to make sure that each of the resulting domains is of equal size.

**Exercise 7.2** This splits on whether the feature is less than one of the values in the training set. Sam suggested it might be better to split between the values in the training set, and suggested using

```
cutat = (sorted\_frange[cut] + sorted\_frange[cut - 1])/2
```

Why might Sam have suggested this? Does this work better? (Try it on a few datasets).

## 7.1.2 Evaluating Predictions

A **predictor** is a function that takes an example and makes a prediction on the values of the target features.

A **loss** takes a prediction and the actual value and returns a non-negative real number; lower is better. The **error** for a dataset is either the mean loss, or sometimes the sum of the losses. When reporting results the mean is usually used. When it is the sum, this will be made explicit.

The function *evaluate\_dataset* returns the average error for each example, where the error for each example depends on the evaluation criteria. Here we consider three evaluation criteria, the squared error (average of the square of the difference between the actual and predicted values), absolute errors (average of the absolute difference between the actual and predicted values) and the log loss (the average negative log-likelihood, which can be interpreted as the number of bits to describe an example using a code based on the prediction treated as a probability).

```
_____learnProblem.py — (continued) ______

def evaluate_dataset(self, data, predictor, error_measure):
```

```
"""Evaluates predictor on data according to the error_measure
179
180
            predictor is a function that takes an example and returns a
                   prediction for the target features.
181
            error_measure(prediction,actual) -> non-negative real
182
183
            if data:
184
185
               try:
                   value = statistics.mean(error_measure(predictor(e),
186
                       self.target(e))
                               for e in data)
187
               except ValueError: # if error_measure gives an error
188
                   return float("inf") # infinity
189
               return value
190
            else:
191
                return math.nan # not a number
192
```

The following evaluation criteria are defined. This is defined using a class, Evaluate but no instances will be created. Just use Evaluate.squared\_loss etc. (Please keep the \_\_doc\_\_ strings a consistent length as they are used in tables.) The prediction is either a real value or a {value : probability} dictionary or a list. The actual is either a real number or a key of the prediction.

```
_learnProblem.py — (continued) _
    class Evaluate(object):
194
        """A container for the evaluation measures"""
195
196
        def squared_loss(prediction, actual):
197
            "squared loss "
198
            if isinstance(prediction, (list, dict)):
199
                 return (1-prediction[actual])**2 # the correct value is 1
200
            else:
201
                 return (prediction-actual)**2
202
203
        def absolute_loss(prediction, actual):
204
            "absolute loss "
205
            if isinstance(prediction, (list, dict)):
206
                 return abs(1-prediction[actual]) # the correct value is 1
207
208
            else:
                return abs(prediction-actual)
209
210
        def log_loss(prediction, actual):
211
            "log loss (bits)"
212
            try:
213
                if isinstance(prediction, (list, dict)):
214
                     return -math.log2(prediction[actual])
215
216
                else:
                    return -math.log2(prediction) if actual==1 else
217
                        -math.log2(1-prediction)
            except ValueError:
218
                return float("inf") # infinity
219
220
```

```
221
        def accuracy(prediction, actual):
222
            "accuracy
            if isinstance(prediction, dict):
223
               prev_val = prediction[actual]
224
               return 1 if all(prev_val >= v for v in prediction.values())
225
                    else 0
226
            if isinstance(prediction, list):
               prev_val = prediction[actual]
227
               return 1 if all(prev_val >= v for v in prediction) else 0
228
            else:
229
               return 1 if abs(actual-prediction) <= 0.5 else 0
230
231
        all_criteria = [accuracy, absolute_loss, squared_loss, log_loss]
232
```

#### 7.1.3 Creating Test and Training Sets

The following method partitions the data into a training set and a test set. Note that this does not guarantee that the test set will contain exactly a proportion of the data equal to *prob\_test*.

[An alternative is to use *random.sample()* which can guarantee that the test set will contain exactly a particular proportion of the data. However this would require knowing how many elements are in the dataset, which we may not know, as *data* may just be a generator of the data (e.g., when reading the data from a file).]

```
\mathsf{LlearnProblem.py} - (\mathsf{continued})
    def partition_data(data, prob_test=0.30):
234
         """partitions the data into a training set and a test set, where
235
         prob_test is the probability of each example being in the test set.
236
237
         train = []
238
         test = []
239
         for example in data:
240
             if random.random() < prob_test:</pre>
241
                 test.append(example)
242
             else:
243
                 train.append(example)
244
         return train, test
245
```

## 7.1.4 Importing Data From File

A dataset is typically loaded from a file. The default here is that it loaded from a CSV (comma separated values) file, although the separator can be changed. This assumes that all lines that contain the separator are valid data (so we only include those data items that contain more than one element). This allows for blank lines and comment lines that do not contain the separator. However, it means that this method is not suitable for cases where there is only one feature.

Note that <code>data\_all</code> and <code>data\_tuples</code> are generators. <code>data\_all</code> is a generator of a list of list of strings. This version assumes that CSV files are simple. The standard <code>csv</code> package, that allows quoted arguments, can be used by uncommenting the line for <code>data\_all</code> and commenting out the following line. <code>data\_tuples</code> contains only those lines that contain the delimiter (others lines are assumed to be empty or comments), and tries to convert the elements to numbers whenever possible.

This allows for some of the columns to be included; specified by *include\_only*. Note that if *include\_only* is specified, the target index is the index for the included columns, not the original columns.

```
\_learnProblem.py — (continued)
    class Data_from_file(Data_set):
247
        def __init__(self, file_name, separator=',', num_train=None,
248
            prob_test=0.3,
                    has_header=False, target_index=0, one_hot=False,
249
                    categorical=[], target_type= None, include_only=None,
250
                        seed=None): #seed=12345):
            """create a dataset from a file
251
            separator is the character that separates the attributes
252
           num_train is a number specifying the first num_train tuples are
253
                training, or None
254
           prob_test is the probability an example should in the test set (if
                num train is None)
           has_header is True if the first line of file is a header
255
            target_index specifies which feature is the target
256
           one_hot specifies whether categorical features should be encoded as
257
                one_hot.
            categorical is a set (or list) of features that should be treated
258
                as categorical
            target_type is either None for automatic detection of target type
259
                or one of "numeric", "boolean", "categorical"
260
            include_only is a list or set of indexes of columns to include
261
262
           with open(file_name, 'r', newline='') as csvfile:
263
               self.display(1,"Loading",file_name)
264
               # data_all = csv.reader(csvfile,delimiter=separator) # for more
265
                    complicated CSV files
               data_all = (line.strip().split(separator) for line in csvfile)
266
               if include_only is not None:
267
                   data_all = ([v for (i,v) in enumerate(line) if i in
268
                       include_only]
                                  for line in data_all)
269
270
               if has_header:
                   header = next(data_all)
271
               else:
272
                   header = None
273
               data_tuples = (interpret_elements(d) for d in data_all if
274
                   len(d)>1)
```

```
if num_train is not None:
275
276
                   # training set is divided into training then text examples
                   # the file is only read once, and the data is placed in
277
                       appropriate list
                   train = []
278
                   for i in range(num_train): # will give an error if
279
                       insufficient examples
                       train.append(next(data_tuples))
280
                   test = list(data_tuples)
281
                   Data_set.__init__(self,train, test=test,
282
                       target_index=target_index,header=header)
                         # randomly assign training and test examples
               else:
283
                   Data_set.__init__(self,data_tuples, test=None,
284
                       prob_test=prob_test,
                                    target_index=target_index, header=header,
285
                                        seed=seed, target_type=target_type,
                                        one_hot=one_hot)
```

The following class is used for datasets where the training and test are in different files

```
_learnProblem.py — (continued)
    class Data_from_files(Data_set):
287
        def __init__(self, train_file_name, test_file_name, separator=',',
288
                    has_header=False, target_index=0, one_hot=False,
289
                    categorical=[], target_type= None, include_only=None):
290
            """create a dataset from separate training and file
291
            separator is the character that separates the attributes
292
            num_train is a number specifying the first num_train tuples are
293
                training, or None
            prob_test is the probability an example should in the test set (if
294
                num_train is None)
            has_header is True if the first line of file is a header
295
            target_index specifies which feature is the target
296
            one_hot specifies whether categorical features should be encoded as
297
                one-hot
            categorical is a set (or list) of features that should be treated
298
                as categorical
            target_type is either None for automatic detection of target type
299
                or one of "numeric", "boolean", "categorical"
300
            include_only is a list or set of indexes of columns to include
301
302
            with open(train_file_name,'r',newline='') as train_file:
303
             with open(test_file_name, 'r', newline='') as test_file:
304
               # data_all = csv.reader(csvfile,delimiter=separator) # for more
305
                    complicated CSV files
               train_data = (line.strip().split(separator) for line in
306
                    train_file)
               test_data = (line.strip().split(separator) for line in
307
                    test_file)
               if include_only is not None:
308
```

```
train_data = ([v for (i,v) in enumerate(line) if i in
309
                       include_only]
                                  for line in train_data)
310
                   test_data = ([v for (i,v) in enumerate(line) if i in
311
                       include_only]
                                  for line in test_data)
312
313
               if has_header: # this assumes the training file has a header
                   and the test file doesn't
                   header = next(train_data)
314
               else:
315
                   header = None
316
               train_tuples = [interpret_elements(d) for d in train_data if
317
                   len(d)>1]
               test_tuples = [interpret_elements(d) for d in test_data if
318
                   len(d)>1]
               Data_set.__init__(self,train_tuples, test_tuples,
319
                                    target_index=target_index, header=header,
320
                                        one_hot=one_hot)
```

When reading from a file all of the values are strings. This next method tries to convert each value into a number (an int or a float) or Boolean, if it is possible.

```
_learnProblem.py — (continued)
    def interpret_elements(str_list):
322
        """make the elements of string list str_list numeric if possible.
323
        Otherwise remove initial and trailing spaces.
324
325
326
        res = []
        for e in str_list:
327
            try:
328
                res.append(int(e))
329
            except ValueError:
330
331
                try:
                    res.append(float(e))
332
                except ValueError:
333
                    se = e.strip()
334
                    if se in ["True","true","TRUE"]:
335
                        res.append(True)
336
                    elif se in ["False", "false", "FALSE"]:
337
                        res.append(False)
338
                    else:
339
                        res.append(e.strip())
340
341
        return res
```

## 7.1.5 Augmented Features

Sometimes we want to augment the features with new features computed from the old features (e.g., the product of features). Here we allow the creation of a new dataset from an old dataset but with new features. Note that special cases of these are **kernel**s; mapping the original feature space into a new space, which allow a neat way to do learning in the augmented space for many mappings (the "kernel trick"). This is beyond the scope of AIPython; those interested should read about support vector machines.

A feature is a function of examples. A unary feature constructor takes a feature and returns a new feature. A binary feature combiner takes two features and returns a new feature.

```
_learnProblem.py — (continued)
    class Data_set_augmented(Data_set):
343
        def __init__(self, dataset, unary_functions=[], binary_functions=[],
344
            include_orig=True):
345
            """creates a dataset like dataset but with new features
            unary_function is a list of unary feature constructors
            binary_functions is a list of binary feature combiners.
347
            include_orig specifies whether the original features should be
348
                included
349
            self.orig_dataset = dataset
350
            self.unary_functions = unary_functions
351
            self.binary_functions = binary_functions
352
            self.include_orig = include_orig
353
            self.target = dataset.target
354
            Data_set.__init__(self,dataset.train, test=dataset.test,
355
                             target_index = dataset.target_index)
356
357
        def create_features(self):
358
            if self.include_orig:
359
               self.input_features = self.orig_dataset.input_features.copy()
360
            else:
361
                self.input_features = []
362
            for u in self.unary_functions:
363
                for f in self.orig_dataset.input_features:
                    self.input_features.append(u(f))
365
            for b in self.binary_functions:
366
                for f1 in self.orig_dataset.input_features:
367
                   for f2 in self.orig_dataset.input_features:
368
                       if f1 != f2:
369
                           self.input_features.append(b(f1,f2))
370
```

The following are useful unary feature constructors and binary feature combiner.

```
| def square(f):
| """a unary feature constructor to construct the square of a feature
| def sq(e):
| return f(e)**2
| sq.__doc__ = f.__doc__+"**2"
```

```
378
        return sq
379
    def power_feat(n):
380
        """given n returns a unary feature constructor to construct the nth
381
            power of a feature.
        e.g., power_feat(2) is the same as square, defined above
382
383
        def fn(f,n=n):
384
            def pow(e,n=n):
385
                return f(e)**n
386
            pow.__doc__ = f.__doc__+"**"+str(n)
387
            return pow
388
        return fn
389
390
    def prod_feat(f1,f2):
391
        """a new feature that is the product of features f1 and f2
392
393
        def feat(e):
394
            return f1(e)*f2(e)
395
        feat.__doc__ = f1.__doc__+"*"+f2.__doc__
396
        return feat
397
398
    def eq_feat(f1,f2):
399
        """a new feature that is 1 if f1 and f2 give same value
400
401
        def feat(e):
402
            return 1 if f1(e)==f2(e) else 0
403
404
        feat.__doc__ = f1.__doc__+"=="+f2.__doc__
        return feat
405
406
    def neq_feat(f1,f2):
407
        """a new feature that is 1 if f1 and f2 give different values
408
        ,, ,, ,,
409
        def feat(e):
410
            return 1 if f1(e)!=f2(e) else 0
411
        feat.__doc__ = f1.__doc__+"!="+f2.__doc__
412
        return feat
413
```

Example:

**Exercise 7.3** For symmetric properties, such as product, we don't need both f1 \* f2 as well as f2 \* f1 as extra properties. Allow the user to be able to declare

feature constructors as symmetric (by associating a Boolean feature with them). Change *construct\_features* so that it does not create both versions for symmetric combiners.

#### 7.2 Generic Learner Interface

A **learner** takes a dataset (and possibly other arguments specific to the method). To get it to learn, we call the learn() method. This implements Displayable so that we can display traces at multiple levels of detail (perhaps with a GUI).

```
\_learnProblem.py — (continued) \_
421
    from display import Displayable
422
    class Learner(Displayable):
423
        def __init__(self, dataset):
424
            raise NotImplementedError("Learner.__init__") # abstract method
425
426
        def learn(self):
427
            """returns a predictor, a function from a tuple to a value for the
428
                 target feature
429
            raise NotImplementedError("learn") # abstract method
430
```

# 7.3 Learning With No Input Features

If we make the same prediction for each example, what prediction should we make? This can be used as a naive baseline; if a more sophisticated method does not do better than this, it is not useful. This also provides the base case for some methods, such as decision-tree learning.

To run demo to compare different prediction methods on various evaluation criteria, in folder "aipython", load "learnNoInputs.py", using e.g., ipython -i learnNoInputs.py, and it prints some test results.

There are a few alternatives as to what could be allowed in a prediction:

- a point prediction, where we are only allowed to predict one of the values of the feature. For example, if the values of the feature are {0,1} we are only allowed to predict 0 or 1 or of the values are ratings in {1,2,3,4,5}, we can only predict one of these integers.
- a point prediction, where we are allowed to predict any value. For example, if the values of the feature are {0,1} we may be allowed to predict 0.3, 1, or even 1.7. For all of the criteria we can imagine, there is no point in predicting a value greater than 1 or less that zero (but that doesn't mean

we can't), but it is often useful to predict a value between 0 and 1. If the values are ratings in  $\{1, 2, 3, 4, 5\}$ , we may want to predict 3.4.

• a probability distribution over the values of the feature. For each value v, we predict a non-negative number  $p_v$ , such that the sum over all predictions is 1.

For regression, we do the first of these. For classification, we do the second. The third can be implemented by having multiple indicator functions for the target.

Here are some prediction functions that take in an enumeration of values, a domain, and returns a value or dictionary of {value : prediction}. Note that cmedian returns one of the middle values when there are an even number of examples, whereas median gives the average of them (and so cmedian is applicable for ordinals that cannot be considered cardinal values). Similarly, cmode picks one of the values when more than one value has the maximum number of elements.

```
_learnNoInputs.py — Learning ignoring all input features _
   from learnProblem import Evaluate
   import math, random, collections, statistics
   import utilities # argmax for (element, value) pairs
13
14
   class Predict(object):
15
       """The class of prediction methods for a list of values.
       Please make the doc strings the same length, because they are used in
17
       Note that we don't need self argument, as we are creating Predict
18
           objects.
       To use call Predict.laplace(data) etc."""
19
20
       ### The following return a distribution over values (for classification)
21
       def empirical(data, domain=[0,1], icount=0):
22
           "empirical dist "
23
           # returns a distribution over values
24
           counts = {v:icount for v in domain}
25
           for e in data:
26
              counts[e] += 1
27
           s = sum(counts.values())
28
           return {k:v/s for (k,v) in counts.items()}
29
30
31
       def bounded_empirical(data, domain=[0,1], bound=0.01):
           "bounded empirical"
32
           return {k:min(max(v,bound),1-bound) for (k,v) in
               Predict.empirical(data, domain).items()}
34
       def laplace(data, domain=[0,1]):
35
                           " # for categorical data
36
           return Predict.empirical(data, domain, icount=1)
37
```

```
38
39
       def cmode(data, domain=[0,1]):
                           " # for categorical data
           "mode
40
           md = statistics.mode(data)
41
           return {v: 1 if v==md else 0 for v in domain}
42
43
44
       def cmedian(data, domain=[0,1]):
45
           "median
                           " # for categorical data
           md = statistics.median_low(data) # always return one of the values
46
           return {v: 1 if v==md else 0 for v in domain}
47
48
       ### The following return a single prediction (for regression). domain
49
           is ignored.
50
       def mean(data, domain=[0,1]):
51
           "mean
52
           # returns a real number
53
           return statistics.mean(data)
54
55
       def rmean(data, domain=[0,1], mean0=0, pseudo_count=1):
56
           "regularized mean"
57
           # returns a real number.
58
           # mean0 is the mean to be used for 0 data points
59
           # With mean0=0.5, pseudo_count=2, same as laplace for [0,1] data
60
           # this works for enumerations as well as lists
61
           sum = mean0 * pseudo_count
62
           count = pseudo_count
63
64
           for e in data:
               sum += e
65
               count += 1
66
           return sum/count
67
68
       def mode(data, domain=[0,1]):
69
           "mode
70
           return statistics.mode(data)
71
72
       def median(data, domain=[0,1]):
73
           "median
74
75
           return statistics.median(data)
76
       all = [empirical, mean, rmean, bounded_empirical, laplace, cmode, mode,
77
           median, cmedian]
78
       # The following suggests appropriate predictions as a function of the
79
           target type
       select = {"boolean": [empirical, bounded_empirical, laplace, cmode,
80
                 "categorical": [empirical, bounded_empirical, laplace, cmode,
81
                     cmedian],
                 "numeric": [mean, rmean, mode, median]}
82
```

#### 7.3.1 Evaluation

To evaluate a point prediction, we first generate some data from a simple (Bernoulli) distribution, where there are two possible values, 0 and 1 for the target feature. Given prob, a number in the range [0,1], this generate some training and test data where prob is the probability of each example being 1. To generate a 1 with probability prob, we generate a random number in range [0,1] and return 1 if that number is less than prob. A prediction is computed by applying the predictor to the training data, which is evaluated on the test set. This is repeated num\_samples times.

Let's evaluate the predictions of the possible selections according to the different evaluation criteria, for various training sizes.

```
___learnNoInputs.py — (continued) ___
    def test_no_inputs(error_measures = Evaluate.all_criteria,
83
        num_samples=10000,
                          test_size=10, training_sizes=
84
                              [1,2,3,4,5,10,20,100,1000]):
        for train_size in training_sizes:
85
            results = {predictor: {error_measure: 0 for error_measure in
86
                error_measures}
                           for predictor in Predict.all}
87
           for sample in range(num_samples):
88
                prob = random.random()
89
                training = [1 if random.random()prob else 0 for i in
                    range(train_size)]
                test = [1 if random.random()prob else 0 for i in
91
                    range(test_size)]
                for predictor in Predict.all:
                    prediction = predictor(training)
93
                    for error_measure in error_measures:
94
                        results[predictor][error_measure] += sum(
95
                            error_measure(prediction,actual) for actual in
                            test)/test_size
           print(f"For training size {train_size}:")
96
           print(" Predictor\t","\t".join(error_measure.__doc__ for
97
                                             error_measure in
98
                                                 error_measures), sep="\t")
99
            for predictor in Predict.all:
               print(f"
                         {predictor.__doc__}",
100
                         "\t".join("{:.7f}".format(results[predictor][error_measure]/num_samples)
101
                                      for error_measure in
102
                                          error_measures), sep="\t")
103
    if __name__ == "__main__":
104
       test_no_inputs()
105
```

**Exercise 7.4** Which predictor works best for low counts when the error is

(a) Squared error

- (b) Absolute error
- (c) Log loss

You may need to try this a few times to make sure your answer is supported by the evidence. Does the difference from the other methods get more or less as the number of examples grow?

**Exercise 7.5** Suggest some other predictions that only take the training data. Does your method do better than the given methods? A simple way to get other predictors is to vary the threshold of bounded average, or to change the pseodocounts of the Laplace method (use other numbers instead of 1 and 2).

## 7.4 Decision Tree Learning

To run the decision tree learning demo, in folder "aipython", load "learnDT.py", using e.g., ipython -i learnDT.py, and it prints some test results. To try more examples, copy and paste the commented-out commands at the bottom of that file. This requires Python 3 with matplotlib.

The decision tree algorithm does binary splits, and assumes that all input features are binary functions of the examples. It stops splitting if there are no input features, the number of examples is less than a specified number of examples or all of the examples agree on the target feature.

```
_learnDT.py — Learning a binary decision tree _
   from learnProblem import Learner, Evaluate
   from learnNoInputs import Predict
12
   import math
13
14
   class DT_learner(Learner):
15
       def __init__(self,
16
                   dataset,
17
                   split_to_optimize=Evaluate.log_loss, # to minimize for at
18
                        each split
                    leaf_prediction=Predict.empirical, # what to use for value
19
                        at leaves
                                                  # used for cross validation
                   train=None,
20
                   max_num_cuts=8, # maximum number of conditions to split a
21
                        numeric feature into
                   gamma=1e-7, # minimum improvement needed to expand a node
22
23
                   min_child_weight=10):
           self.dataset = dataset
24
25
           self.target = dataset.target
           self.split_to_optimize = split_to_optimize
26
           self.leaf_prediction = leaf_prediction
27
           self.max_num_cuts = max_num_cuts
28
           self.gamma = gamma
29
           self.min_child_weight = min_child_weight
30
```

```
if train is None:
31
32
               self.train = self.dataset.train
           else:
33
               self.train = train
34
35
       def learn(self, max_num_cuts=8):
36
           """learn a decision tree"""
37
           return self.learn_tree(self.dataset.conditions(self.max_num_cuts),
38
               self.train)
```

The main recursive algorithm, takes in a set of input features and a set of training data. It first decides whether to split. If it doesn't split, it makes a point prediction, ignoring the input features.

It only splits if the best split increases the error by at least gamma. This implies it does not split when:

- there are no more input features
- there are fewer examples than min\_number\_examples,
- all the examples agree on the value of the target, or
- the best split puts all examples in the same partition.

If it splits, it selects the best split according to the evaluation criterion (assuming that is the only split it gets to do), and returns the condition to split on (in the variable *split*) and the corresponding partition of the examples.

```
_learnDT.py — (continued)
       def learn_tree(self, conditions, data_subset):
40
           """returns a decision tree
41
           conditions is a set of possible conditions
42
           data_subset is a subset of the data used to build this (sub)tree
43
           where a decision tree is a function that takes an example and
45
           makes a prediction on the target feature
46
47
           self.display(2,f"learn_tree with {len(conditions)} features and
48
               {len(data_subset)} examples")
           split, partn = self.select_split(conditions, data_subset)
49
           if split is None: # no split; return a point prediction
50
              prediction = self.leaf_value(data_subset, self.target.frange)
51
              self.display(2,f"leaf prediction for {len(data_subset)}
52
                  examples is {prediction}")
              def leaf_fun(e):
53
                  return prediction
              leaf_fun.__doc__ = str(prediction)
55
              leaf_fun.num_leaves = 1
              return leaf_fun
57
           else: # a split succeeded
58
              false_examples, true_examples = partn
59
```

```
rem_features = [fe for fe in conditions if fe != split]
60
61
               self.display(2, "Splitting on", split.__doc__, "with examples
                   split",
                             len(true_examples),":",len(false_examples))
62
               true_tree = self.learn_tree(rem_features,true_examples)
63
               false_tree = self.learn_tree(rem_features, false_examples)
64
65
               def fun(e):
                  if split(e):
66
                      return true_tree(e)
67
                  else:
68
                      return false_tree(e)
69
               #fun = lambda e: true_tree(e) if split(e) else false_tree(e)
70
               fun.__doc__ = (f"(if {split.__doc__}) then {true_tree.__doc___}"
71
                             f" else {false_tree.__doc__})")
72
               fun.num_leaves = true_tree.num_leaves + false_tree.num_leaves
73
               return fun
74
```

```
___learnDT.py — (continued) _
       def leaf_value(self, egs, domain):
76
           return self.leaf_prediction((self.target(e) for e in egs), domain)
77
78
       def select_split(self, conditions, data_subset):
79
           """finds best feature to split on.
80
81
           conditions is a non-empty list of features.
82
           returns feature, partition
83
           where feature is an input feature with the smallest error as
84
                 judged by split_to_optimize or
85
                 feature==None if there are no splits that improve the error
86
           partition is a pair (false_examples, true_examples) if feature is
87
                not None
88
           best_feat = None # best feature
89
           # best_error = float("inf") # infinity - more than any error
90
           best_error = self.sum_losses(data_subset) - self.gamma
91
           self.display(3," no split has
92
                error=",best_error,"with",len(conditions),"conditions")
           best_partition = None
93
           for feat in conditions:
94
               false_examples, true_examples = partition(data_subset, feat)
95
               if
96
                   min(len(false_examples),len(true_examples))>=self.min_child_weight:
97
                   err = (self.sum_losses(false_examples)
                          + self.sum_losses(true_examples))
98
                   self.display(3," split on",feat.__doc__,"has error=",err,
                             "splits
100
                                 into",len(true_examples),":",len(false_examples),"gamma=",self.gamma)
                   if err < best_error:</pre>
101
                       best_feat = feat
102
                       best_error=err
103
```

```
best_partition = false_examples, true_examples
104
105
            self.display(2,"best split is on",best_feat.__doc__,
                                  "with err=",best_error)
106
            return best_feat, best_partition
107
108
        def sum_losses(self, data_subset):
109
            """returns sum of losses for dataset (with no more splits)
110
            There a single prediction for all leaves using leaf_prediction
111
            It is evaluated using split_to_optimize
112
113
            prediction = self.leaf_value(data_subset, self.target.frange)
114
            error = sum(self.split_to_optimize(prediction, self.target(e))
115
                        for e in data_subset)
116
            return error
117
118
    def partition(data_subset, feature):
119
        """partitions the data_subset by the feature"""
120
        true_examples = []
121
        false_examples = []
122
        for example in data_subset:
123
            if feature(example):
124
                true_examples.append(example)
125
            else:
126
               false_examples.append(example)
127
128
        return false_examples, true_examples
```

Test cases:

```
_learnDT.py — (continued)
    from learnProblem import Data_set, Data_from_file
131
132
    def testDT(data, print_tree=True, selections = None, **tree_args):
133
        """Prints errors and the trees for various evaluation criteria and ways
134
            to select leaves.
135
        if selections == None: # use selections suitable for target type
136
           selections = Predict.select[data.target.ftype]
137
138
        evaluation_criteria = Evaluate.all_criteria
        print("Split Choice","Leaf Choice\t","#leaves",'\t'.join(ecrit.__doc__
139
                                                   for ecrit in
140
                                                       evaluation_criteria), sep="\t")
        for crit in evaluation_criteria:
141
            for leaf in selections:
142
               tree = DT_learner(data, split_to_optimize=crit,
143
                   leaf_prediction=leaf,
144
                                     **tree_args).learn()
               print(crit.__doc__, leaf.__doc__, tree.num_leaves,
145
                       "\t".join("{:.7f}".format(data.evaluate_dataset(data.test,
146
                           tree, ecrit))
                                    for ecrit in evaluation_criteria), sep="\t")
147
               if print_tree:
148
```

```
149
                   print(tree.__doc__)
150
    #DT_learner.max_display_level = 4
151
    if __name__ == "__main__":
152
        # Choose one of the data files
153
        #data=Data_from_file('data/SPECT.csv', target_index=0);
154
            print("SPECT.csv")
        #data=Data_from_file('data/iris.data', target_index=-1);
155
            print("iris.data")
        data = Data_from_file('data/carbool.csv', target_index=-1, seed=123)
156
        #data = Data_from_file('data/mail_reading.csv', target_index=-1);
157
            print("mail_reading.csv")
        #data = Data_from_file('data/holiday.csv', has_header=True,
158
            num_train=19, target_index=-1); print("holiday.csv")
        testDT(data, print_tree=False)
159
```

Note that different runs may provide different values as they split the training and test sets differently. So if you have a hypothesis about what works better, make sure it is true for different runs.

**Exercise 7.6** The current algorithm does not have a very sophisticated stopping criterion. What is the current stopping criterion? (Hint: you need to look at both *learn\_tree* and *select\_split*.)

#### **Exercise 7.7** Extend the current algorithm to include in the stopping criterion

- (a) A minimum child size; don't use a split if one of the children has fewer elements that this.
- (b) A depth-bound on the depth of the tree.
- (c) An improvement bound such that a split is only carried out if error with the split is better than the error without the split by at least the improvement bound.

Which values for these parameters make the prediction errors on the test set the smallest? Try it on more than one dataset.

**Exercise 7.8** Without any input features, it is often better to include a pseudocount that is added to the counts from the training data. Modify the code so that it includes a pseudo-count for the predictions. When evaluating a split, including pseudo counts can make the split worse than no split. Does pruning with an improvement bound and pseudo-counts make the algorithm work better than with an improvement bound by itself?

**Exercise 7.9** Some people have suggested using information gain (which is equivalent to greedy optimization of log loss) as the measure of improvement when building the tree, even in they want to have non-probabilistic predictions in the final tree. Does this work better than myopically choosing the split that is best for the evaluation criteria we will use to judge the final prediction?

## 7.5 Cross Validation and Parameter Tuning

the cross validation folder To run demo, in "aipython" "learnCrossValidation.py", e.g., -i load using ipython learnCrossValidation.py. Run the examples at the end to produce a graph like Figure 7.15. Note that different runs will produce different graphs, so your graph will not look like the one in the textbook. To try more examples, copy and paste the commented-out commands at the bottom of that file. This requires Python 3 with matplotlib.

The above decision tree overfits the data. One way to determine whether the prediction is overfitting is by cross validation. The code below implements k-fold cross validation, which can be used to choose the value of parameters to best fit the training data. If we want to use parameter tuning to improve predictions on a particular dataset, we can only use the training data (and not the test data) to tune the parameter.

In k-fold cross validation, we partition the training set into k approximately equal-sized folds (each fold is an enumeration of examples). For each fold, we train on the other examples, and determine the error of the prediction on that fold. For example, if there are 10 folds, we train on 90% of the data, and then test on remaining 10% of the data. We do this 10 times, so that each example gets used as a test set once, and in the training set 9 times.

The code below creates one copy of the data, and multiple views of the data. For each fold, *fold* enumerates the examples in the fold, and *fold\_complement* enumerates the examples not in the fold.

```
learnCrossValidation.py — Cross Validation for Parameter Tuning
   from learnProblem import Data_set, Data_from_file, Evaluate
   from learnNoInputs import Predict
12
   from learnDT import DT_learner
13
   import matplotlib.pyplot as plt
14
   import random
15
16
   class K_fold_dataset(object):
17
       def __init__(self, training_set, num_folds):
18
           self.data = training_set.train.copy()
19
           self.target = training_set.target
20
           self.input_features = training_set.input_features
21
22
           self.num_folds = num_folds
           self.conditions = training_set.conditions
23
           random.shuffle(self.data)
25
           self.fold_boundaries = [(len(self.data)*i)//num_folds
                                  for i in range(0,num_folds+1)]
27
28
       def fold(self, fold_num):
29
```

```
for i in range(self.fold_boundaries[fold_num],
30
31
                         self.fold_boundaries[fold_num+1]):
               yield self.data[i]
32
33
       def fold_complement(self, fold_num):
34
           for i in range(0, self.fold_boundaries[fold_num]):
35
36
               yield self.data[i]
37
           for i in range(self.fold_boundaries[fold_num+1],len(self.data)):
              yield self.data[i]
38
```

The validation error is the average error for each example, where we test on each fold, and learn on the other folds.

```
___learnCrossValidation.py — (continued) __
       def validation_error(self, learner, error_measure, **other_params):
40
           error = 0
41
42
           try:
               for i in range(self.num_folds):
43
                   predictor = learner(self,
44
                       train=list(self.fold_complement(i)),
                                       **other_params).learn()
45
                   error += sum( error_measure(predictor(e), self.target(e))
46
                                 for e in self.fold(i))
47
48
           except ValueError:
               return float("inf") #infinity
49
           return error/len(self.data)
50
```

The *plot\_error* method plots the average error as a function of the minimum number of examples in decision-tree search, both for the validation set and for the test set. The error on the validation set can be used to tune the parameter — choose the value of the parameter that minimizes the error. The error on the test set cannot be used to tune the parameters; if it were to be used this way it could not be used to test how well the method works on unseen examples.

```
__learnCrossValidation.py — (continued) _
   def plot_error(data, criterion=Evaluate.squared_loss,
52
       leaf_prediction=Predict.empirical,
                      num_folds=5, maxx=None, xscale='linear'):
53
       """Plots the error on the validation set and the test set
54
       with respect to settings of the minimum number of examples.
55
       xscale should be 'log' or 'linear'
56
       ,, ,, ,,
57
       plt.ion()
58
       plt.xscale(xscale) # change between log and linear scale
59
       plt.xlabel("min_child_weight")
60
       plt.ylabel("average "+criterion.__doc__)
61
       folded_data = K_fold_dataset(data, num_folds)
62
       if maxx == None:
63
           maxx = len(data.train)//2+1
64
       verrors = [] # validation errors
65
       terrors = [] # test set errors
66
```

```
67
       for mcw in range(1,maxx):
68
          verrors.append(folded_data.validation_error(DT_learner,criterion,leaf_prediction=leaf_predicti
                                                    min_child_weight=mcw))
          tree = DT_learner(data, criterion, leaf_prediction=leaf_prediction,
70
               min_child_weight=mcw).learn()
           terrors.append(data.evaluate_dataset(data.test,tree,criterion))
71
       plt.plot(range(1, maxx), verrors, ls='-',color='k',
73
                   label="validation for "+criterion.__doc__)
       plt.plot(range(1, maxx), terrors, ls='--', color='k',
74
                   label="test set for "+criterion.__doc__)
75
       plt.legend()
76
       plt.draw()
77
78
   # The following produces the graphs of Figure 7.18 of Poole and Mackworth
   # data = Data_from_file('data/SPECT.csv',target_index=0, seed=123)
80
   # plot_error(data, criterion=Evaluate.log_loss,
81
       leaf_prediction=Predict.laplace)
82
   #also try:
83
  # plot_error(data)
84
85 | # data = Data_from_file('data/carbool.csv', target_index=-1, seed=123)
```

Figure 7.2 shows the average squared loss in the validation and test sets as a function of the min\_child\_weight in the decision-tree learning algorithm. (SPECT data with seed 12345 followed by plot\_error(data)). Different seeds will produce different graphs. The assumption behind cross validation is that the parameter that minimizes the loss on the validation set, will be a good parameter for the test set.

Note that different runs for the same data will have the same test error, but different validation error. If you rerun the Data\_from\_file, with a different seed, you will get the new test and training sets, and so the graph will change.

**Exercise 7.10** Change the error plot so that it can evaluate the stopping criteria of the exercise of Section 7.6. Which criteria makes the most difference?

## 7.6 Linear Regression and Classification

Here is a stochastic gradient descent searcher for linear regression and classification.



Figure 7.2: plot\_error for SPECT dataset

```
18
           """Creates a gradient descent searcher for a linear classifier.
           The main learning is carried out by learn()
19
20
           dataset provides the target and the input features
21
           train provides a subset of the training data to use
22
           number_iterations is the default number of steps of gradient descent
23
           learning_rate is the gradient descent step size
24
           max_init is the maximum absolute value of the initial weights
25
           squashed specifies whether the output is a squashed linear function
26
           ,, ,, ,,
27
28
           self.dataset = dataset
           self.target = dataset.target
29
30
           if train==None:
               self.train = self.dataset.train
31
           else:
32
               self.train = train
33
           self.learning_rate = learning_rate
34
           self.squashed = squashed
35
           self.batch_size = batch_size
36
           self.input_features = [one]+dataset.input_features # one is defined
37
           self.weights = {feat:random.uniform(-max_init,max_init)
38
                          for feat in self.input_features}
39
```

*predictor* predicts the value of an example from the current parameter settings. *predictor\_string* gives a string representation of the predictor.

```
_learnLinear.py — (continued)
41
42
       def predictor(self,e):
           """returns the prediction of the learner on example e"""
43
           linpred = sum(w*f(e) for f,w in self.weights.items())
44
           if self.squashed:
45
               return sigmoid(linpred)
46
47
           else:
               return linpred
48
49
       def predictor_string(self, sig_dig=3):
50
           """returns the doc string for the current prediction function
51
           sig_dig is the number of significant digits in the numbers"""
52
           doc = "+".join(str(round(val,sig_dig))+"*"+feat.__doc__
53
                           for feat,val in self.weights.items())
54
           if self.squashed:
55
               return "sigmoid("+ doc+")"
56
           else:
57
               return doc
58
```

*learn* is the main algorithm of the learner. It does *num\_iter* steps of stochastic gradient descent. Only the number of iterations is specified; the other parameters it gets from the class.

```
__learnLinear.py — (continued) _
       def learn(self,num_iter=100):
60
           batch_size = min(self.batch_size, len(self.train))
61
           d = {feat:0 for feat in self.weights}
62
           for it in range(num_iter):
               self.display(2, "prediction=", self.predictor_string())
64
               for e in random.sample(self.train, batch_size):
                   error = self.predictor(e) - self.target(e)
66
                  update = self.learning_rate*error
                   for feat in self.weights:
68
                       d[feat] += update*feat(e)
               for feat in self.weights:
70
                   self.weights[feat] -= d[feat]
71
                  d[feat]=0
72
73
           return self.predictor
```

*one* is a function that always returns 1. This is used for one of the input properties.

```
______learnLinear.py — (continued) _______

75 | def one(e):
76 | "1"
77 | return 1
```

sigmoid(x) is the function

$$\frac{1}{1+e^{-x}}$$

The inverse of *sigmoid* is the *logit* function

```
| def sigmoid(x):
| return 1/(1+math.exp(-x)) |
| def logit(x):
| return -math.log(1/x-1) |
| sigmoid([x<sub>0</sub>, v<sub>2</sub>,...]) returns [v<sub>0</sub>, v<sub>2</sub>,...] where
| v_i = \frac{exp(x_i)}{\sum_j exp(x_j)}
```

The inverse of *sigmoid* is the *logit* function

```
_learnLinear.py — (continued)
85
   def softmax(xs,domain=None):
       """xs is a list of values, and
86
       domain is the domain (a list) or None if the list should be returned
87
       returns a distribution over the domain (a dict)
88
       m = max(xs) # use of m prevents overflow (and all values underflowing)
90
91
       exps = [math.exp(x-m)  for x in xs]
       s = sum(exps)
92
93
       if domain:
           return {d:v/s for (d,v) in zip(domain,exps)}
94
95
           return [v/s for v in exps]
96
97
   def indicator(v, domain):
98
       return [1 if v==dv else 0 for dv in domain]
99
```

The following tests the learner on a datasets. Uncomment the other datasets for different examples.

```
_learnLinear.py — (continued)
    from learnProblem import Data_set, Data_from_file, Evaluate
    from learnProblem import Evaluate
102
103
    import matplotlib.pyplot as plt
104
105
    def test(**args):
        data = Data_from_file('data/SPECT.csv', target_index=0)
106
        # data = Data_from_file('data/mail_reading.csv', target_index=-1)
107
        # data = Data_from_file('data/carbool.csv', target_index=-1)
108
        learner = Linear_learner(data,**args)
109
        learner.learn()
110
```

The following plots the errors on the training and test sets as a function of the number of steps of gradient descent.

```
_learnLinear.py — (continued) .
    def plot_steps(learner=None,
116
                  data = None,
117
                  criterion=Evaluate.squared_loss,
118
119
                  num_steps=1000,
120
                  log_scale=True,
121
                  legend_label=""):
122
123
        plots the training and test error for a learner.
124
        data is the
125
        learner_class is the class of the learning algorithm
126
        criterion gives the evaluation criterion plotted on the y-axis
127
        step specifies how many steps are run for each point on the plot
128
        num_steps is the number of points to plot
129
130
131
        if legend_label != "": legend_label+=" "
132
        plt.ion()
133
        plt.xlabel("step")
134
        plt.ylabel("Average "+criterion.__doc__)
135
        if log_scale:
136
            plt.xscale('log') #plt.semilogx() #Makes a log scale
137
        else:
138
            plt.xscale('linear')
139
        if data is None:
140
            data = Data_from_file('data/holiday.csv', has_header=True,
141
                num_train=19, target_index=-1)
            #data = Data_from_file('data/SPECT.csv', target_index=0)
142
            # data = Data_from_file('data/mail_reading.csv', target_index=-1)
143
            # data = Data_from_file('data/carbool.csv', target_index=-1)
144
        #random.seed(None) # reset seed
145
        if learner is None:
146
            learner = Linear_learner(data)
147
        train_errors = []
148
        test_errors = []
149
        for i in range(1,num_steps+1,step):
150
            test_errors.append(data.evaluate_dataset(data.test,
151
                learner.predictor, criterion))
            train_errors.append(data.evaluate_dataset(data.train,
152
                learner.predictor, criterion))
            learner.display(2, "Train error:",train_errors[-1],
153
```



Figure 7.3: plot\_steps for SPECT dataset

```
"Test error:",test_errors[-1])
154
            learner.learn(num_iter=step)
155
        plt.plot(range(1,num_steps+1,step),train_errors,ls='-',label=legend_label+"training")
156
        plt.plot(range(1,num_steps+1,step),test_errors,ls='--',label=legend_label+"test")
157
        plt.legend()
158
159
        plt.draw()
        learner.display(1, "Train error:",train_errors[-1],
160
                             "Test error:",test_errors[-1])
161
162
    if __name__ == "__main__":
163
164
        test()
165
    # This generates the figure
    # from learnProblem import Data_set_augmented, prod_feat
167
    # data = Data_from_file('data/SPECT.csv', prob_test=0.5, target_index=0,
168
        seed=123)
    # dataplus = Data_set_augmented(data, [], [prod_feat])
169
    # plot_steps(data=data, num_steps=1000)
170
    # plot_steps(data=dataplus, num_steps=1000) # warning very slow
```

Figure 7.3 shows the result of plot\_steps(data=data, num\_steps=1000) in the code above. What would you expect to happen with the augmented data (with extra features)? Hint: think about underfitting and overfitting.

**Exercise 7.11** The squashed learner only makes predictions in the range (0,1).

If the output values are  $\{1,2,3,4\}$  there is no use predicting less than 1 or greater than 4. Change the squashed learner so that it can learn values in the range (1,4). Test it on the file 'data/car.csv'.

The following plots the prediction as a function of the number of steps of gradient descent. We first define a version of *range* that allows for real numbers (integers and floats).

```
_learnLinear.py — (continued) .
    def arange(start, stop, step):
172
        """returns enumeration of values in the range [start, stop) separated by
173
        like the built-in range(start, stop, step) but allows for integers and
174
            floats.
        Note that rounding errors are expected with real numbers. (or use
175
            numpy.arange)
176
        while start<stop:
177
            yield start
178
            start += step
179
180
    def plot_prediction(data,
181
                   learner = None,
182
                   minx = 0,
183
                   maxx = 5,
184
185
                   step_size = 0.01, # for plotting
                   label = "function"):
186
        plt.ion()
187
        plt.xlabel("x")
188
        plt.ylabel("y")
189
        if learner is None:
190
            learner = Linear_learner(data, squashed=False)
191
192
        learner.learning_rate=0.001
        learner.learn(100)
193
        learner.learning_rate=0.0001
194
        learner.learn(1000)
195
        learner.learning_rate=0.00001
196
        learner.learn(10000)
197
        learner.display(1, "function learned is", learner.predictor_string(),
198
                  "error=",data.evaluate_dataset(data.train, learner.predictor,
199
                      Evaluate.squared_loss))
        plt.plot([e[0] for e in data.train],[e[-1] for e in
200
            data.train], "bo", label="data")
        plt.plot(list(arange(minx, maxx, step_size)), [learner.predictor([x])
201
202
                                                  arange(minx,maxx,step_size)],
                                           label=label)
203
        plt.legend()
204
        plt.draw()
205
```

7.7. Boosting 181

```
from learnProblem import Data_set_augmented, power_feat
207
208
    def plot_polynomials(data,
                   learner_class = Linear_learner,
209
                   max_degree = 5,
210
                   minx = 0,
211
                   maxx = 5,
212
213
                   num_iter = 1000000
                   learning_rate = 0.00001,
214
                   step_size = 0.01, # for plotting
215
216
        plt.ion()
217
        plt.xlabel("x")
218
        plt.ylabel("y")
219
        plt.plot([e[0] for e in data.train],[e[-1] for e in
220
            data.train], "ko", label="data")
        x_values = list(arange(minx, maxx, step_size))
221
        line_styles = ['-','--','-.',':']
222
        colors = ['0.5','k','k','k','k']
223
224
        for degree in range(max_degree):
            data_aug = Data_set_augmented(data,[power_feat(n) for n in
225
                range(1,degree+1)],
                                            include_orig=False)
226
            learner = learner_class(data_aug,squashed=False)
227
            learner.learning_rate = learning_rate
228
            learner.learn(num_iter)
229
            learner.display(1, "For degree", degree,
230
                        "function learned is", learner.predictor_string(),
231
                        "error=",data.evaluate_dataset(data.train,
232
                            learner.predictor, Evaluate.squared_loss))
            ls = line_styles[degree % len(line_styles)]
233
            col = colors[degree % len(colors)]
234
            plt.plot(x_values,[learner.predictor([x]) for x in x_values],
235
                linestyle=ls, color=col,
                             label="degree="+str(degree))
236
            plt.legend(loc='upper left')
237
            plt.draw()
238
239
    # Try:
240
    # data0 = Data_from_file('data/simp_regr.csv', prob_test=0,
        boolean_features=False, target_index=-1)
    # plot_prediction(data0)
242
    # plot_polynomials(data0)
243
   # What if the step size was bigger?
   #datam = Data_from_file('data/mail_reading.csv', target_index=-1)
   | #plot_prediction(datam)
```

# 7.7 Boosting

The following code implements functional gradient boosting for regression.

A Boosted dataset is created from a base dataset by subtracting the prediction of the offset function from each example. This does not save the new dataset, but generates it as needed. The amount of space used is constant, independent on the size of the dataset.

```
_learnBoosting.py — Functional Gradient Boosting .
   from learnProblem import Data_set, Learner, Evaluate
   from learnNoInputs import Predict
   from learnLinear import sigmoid
   import statistics
14
   import random
15
16
   class Boosted_dataset(Data_set):
17
       def __init__(self, base_dataset, offset_fun, subsample=1.0):
18
           """new dataset which is like base_dataset,
19
             but offset_fun(e) is subtracted from the target of each example e
20
21
           self.base_dataset = base_dataset
22
           self.offset_fun = offset_fun
23
           self.train =
24
               random.sample(base_dataset.train,int(subsample*len(base_dataset.train)))
           self.test = base_dataset.test
25
           #Data_set.__init__(self, base_dataset.train, base_dataset.test,
26
                             base_dataset.prob_test, base_dataset.target_index)
27
28
           #def create_features(self):
29
           """creates new features - called at end of Data_set.init()
30
           defines a new target
31
32
           self.input_features = self.base_dataset.input_features
33
           def newout(e):
34
               return self.base_dataset.target(e) - self.offset_fun(e)
35
           newout.frange = self.base_dataset.target.frange
36
           newout.ftype = self.infer_type(newout.frange)
37
           self.target = newout
38
39
       def conditions(self, *args, colsample_bytree=0.5, **nargs):
40
           conds = self.base_dataset.conditions(*args, **nargs)
41
           return random.sample(conds, int(colsample_bytree*len(conds)))
```

A boosting learner takes in a dataset and a base learner, and returns a new predictor. The base learner, takes a dataset, and returns a Learner object.

```
dearnBoosting.py — (continued)

class Boosting_learner(Learner):

def __init__(self, dataset, base_learner_class, subsample=0.8):
    self.dataset = dataset

self.base_learner_class = base_learner_class
self.subsample = subsample
mean = sum(self.dataset.target(e)
for e in self.dataset.train)/len(self.dataset.train)
```

7.7. Boosting 183

```
self.predictor = lambda e:mean # function that returns mean for
51
               each example
           self.predictor.__doc__ = "lambda e:"+str(mean)
52
           self.offsets = [self.predictor] # list of base learners
53
           self.predictors = [self.predictor] # list of predictors
           self.errors = [data.evaluate_dataset(data.test, self.predictor,
55
               Evaluate.squared_loss)]
           self.display(1,"Predict mean test set mean squared loss=",
56
               self.errors[0] )
57
58
       def learn(self, num_ensembles=10):
59
           """adds num_ensemble learners to the ensemble.
60
           returns a new predictor.
61
62
           for i in range(num_ensembles):
63
              train_subset = Boosted_dataset(self.dataset, self.predictor,
64
                   subsample=self.subsample)
              learner = self.base_learner_class(train_subset)
65
              new_offset = learner.learn()
66
              self.offsets.append(new_offset)
67
              def new_pred(e, old_pred=self.predictor, off=new_offset):
                  return old_pred(e)+off(e)
69
              self.predictor = new_pred
70
              self.predictors.append(new_pred)
71
              self.errors.append(data.evaluate_dataset(data.test,
                   self.predictor, Evaluate.squared_loss))
              self.display(1,f"Iteration {len(self.offsets)-1},treesize =
                   {new_offset.num_leaves}. mean squared
                   loss={self.errors[-1]}")
           return self.predictor
74
```

For testing, *sp\_DT\_learner* returns a learner that predicts the mean at the leaves and is evaluated using squared loss. It can also take arguments to change the default arguments for the trees.

```
_learnBoosting.py — (continued)
76
   # Testing
77
   from learnDT import DT_learner
78
   from learnProblem import Data_set, Data_from_file
79
80
   def sp_DT_learner(split_to_optimize=Evaluate.squared_loss,
81
                               leaf_prediction=Predict.mean,**nargs):
82
       """Creates a learner with different default arguments replaced by
83
           **nargs
84
       def new_learner(dataset):
85
           return DT_learner(dataset,split_to_optimize=split_to_optimize,
86
                                  leaf_prediction=leaf_prediction, **nargs)
87
       return new_learner
88
```

```
89
90
    #data = Data_from_file('data/car.csv', target_index=-1) regression
    data = Data_from_file('data/student/student-mat-nq.csv',
        separator=';',has_header=True,target_index=-1,seed=13,include_only=list(range(30))+[32])
        #2.0537973790924946
    #data = Data_from_file('data/SPECT.csv', target_index=0, seed=62) #123)
92
    #data = Data_from_file('data/mail_reading.csv', target_index=-1)
    #data = Data_from_file('data/holiday.csv', has_header=True, num_train=19,
        target_index=-1)
    #learner10 = Boosting_learner(data,
        sp_DT_learner(split_to_optimize=Evaluate.squared_loss,
        leaf_prediction=Predict.mean, min_child_weight=10))
96
    #learner7 = Boosting_learner(data, sp_DT_learner(0.7))
    #learner5 = Boosting_learner(data, sp_DT_learner(0.5))
97
    #predictor9 =learner9.learn(10)
98
    #for i in learner9.offsets: print(i.__doc__)
99
    import matplotlib.pyplot as plt
100
101
    def plot_boosting_trees(data, steps=10, mcws=[30,20,20,10], gammas=
102
        [100,200,300,500]):
        # to reduce clutter uncomment one of following two lines
103
        #mcws=[10]
104
        #gammas=[200]
105
        learners = [(mcw, gamma, Boosting_learner(data,
106
            sp_DT_learner(min_child_weight=mcw, gamma=gamma)))
                       for gamma in gammas for mcw in mcws
107
108
109
        plt.ion()
        plt.xscale('linear') # change between log and linear scale
110
        plt.xlabel("number of trees")
111
        plt.ylabel("mean squared loss")
112
        markers = (m+c for c in ['k', 'g', 'r', 'b', 'm', 'c', 'y'] for m in
113
            ['-','--','-.',':'])
        for (mcw,gamma,learner) in learners:
114
           data.display(1,f"min_child_weight={mcw}, gamma={gamma}")
115
116
           learner.learn(steps)
           plt.plot(range(steps+1), learner.errors, next(markers),
117
                        label=f"min_child_weight={mcw}, gamma={gamma}")
118
        plt.legend()
119
        plt.draw()
120
121
    # plot_boosting_trees(data)
```

# 7.7.1 Gradient Tree Boosting

The following implements gradient Boosted trees for classification. If you want to use this gradient tree boosting for a real problem, we recommend using **XGBoost** [Chen and Guestrin, 2016] or **LightGBM** [Ke, Meng, Finley, Wang, Chen, Ma, Ye, and Liu, 2017].

7.7. Boosting 185

GTB\_learner subclasses DT\_learner. The method learn\_tree is used unchanged. DT\_learner assumes that the value at the leaf is the prediction of the leaf, thus leaf\_value needs to be overridden. It also assumes that all nodes at a leaf have the same prediction, but in GBT the elements of a leaf can have different values, depending on the previous trees. Thus sum\_losses also needs to be overridden.

```
_learnBoosting.py — (continued)
124
          class GTB_learner(DT_learner):
                   def __init__(self, dataset, number_trees, lambda_reg=1, gamma=0,
125
                             **dtargs):
                            DT_learner.__init__(self, dataset,
126
                                      split_to_optimize=Evaluate.log_loss, **dtargs)
                            self.number_trees = number_trees
127
                            self.lambda_reg = lambda_reg
128
                            self.gamma = gamma
129
                            self.trees = []
130
131
                   def learn(self):
132
                            for i in range(self.number_trees):
133
                                     tree =
134
                                               self.learn_tree(self.dataset.conditions(self.max_num_cuts),
                                               self.train)
                                     self.trees.append(tree)
135
                                     self.display(1,f"""Iteration {i} treesize = {tree.num_leaves}
136
                                               train logloss={
                                              self.dataset.evaluate_dataset(self.dataset.train,
137
                                                        self.gtb_predictor, Evaluate.log_loss)
                                                      } test logloss={
138
                                              self.dataset.evaluate_dataset(self.dataset.test,
139
                                                        self.gtb_predictor, Evaluate.log_loss)}""")
                            return self.gtb_predictor
140
141
                   def gtb_predictor(self, example, extra=0):
142
                            """prediction for example,
143
                            extras is an extra contribution for this example being considered
144
145
                            return sigmoid(sum(t(example) for t in self.trees)+extra)
146
147
                   def leaf_value(self, egs, domain=[0,1]):
148
                            """value at the leaves for examples egs
149
                            domain argument is ignored"""
150
                            pred_acts = [(self.gtb_predictor(e),self.target(e)) for e in egs]
151
                            return sum(a-p for (p,a) in pred_acts) / (sum(p*(1-p) f
152
                                      pred_acts)+self.lambda_reg)
153
154
                   def sum_losses(self, data_subset):
155
                            """returns sum of losses for dataset (assuming a leaf is formed
156
                                     with no more splits)
```

## Testing

# Neural Networks and Deep Learning

Warning: this is not meant to be an efficient implementation of deep learning. If you want to do serious machine learning on meduim-sized or large data, we recommend Keras (https://keras.io) [Chollet, 2021] or PyTorch (https://pytorch.org), which are very efficient, particularly on GPUs. They are, however, black boxes. The AIPython neural network code should be seen like a car engine made of glass; you can see exactly how it works, even if it is not fast.

We have followed the naming conventions of Keras for the parameters: any parameters that are the same as in Keras have the same names.

# 8.1 Layers

A neural network is built from layers. In AIPython, unlike Keras and PyTorch, actication functions are treated as separate layers, which makes them more modular and the code more readable.

This provides a modular implementation of layers. Layers can easily be stacked in many configurations. A layer needs to implement a function to compute the output values from the inputs, a way to back-propagate the error, and perhaps update its parameters.

```
def __init__(self, nn, num_outputs=None):
16
17
           """Given a list of inputs, outputs will produce a list of length
               num_outputs.
           nn is the neural network this layer is part of
18
           num outputs is the number of outputs for this layer.
19
20
21
           self.nn = nn
           self.num_inputs = nn.num_outputs # output of nn is the input to
22
               this layer
           if num_outputs:
23
               self.num_outputs = num_outputs
24
25
           else:
               self.num_outputs = nn.num_outputs # same as the inputs
26
27
       def output_values(self,input_values, training=False):
28
           """Return the outputs for this layer for the given input values.
29
           input_values is a list of the inputs to this layer (of length
30
               num_inputs)
           returns a list of length self.num_outputs.
31
           It can act differently when training and when predicting.
32
33
           raise NotImplementedError("output_values") # abstract method
34
35
       def backprop(self,errors):
36
           """Backpropagate the errors on the outputs
37
           errors is a list of errors for the outputs (of length
38
               self.num_outputs).
39
           Returns the errors for the inputs to this layer (of length
               self.num_inputs).
40
           You can assume that this is only called after corresponding
41
               output_values,
             which can remember information information required for the
42
                  back-propagation.
           ,, ,, ,,
43
           raise NotImplementedError("backprop") # abstract method
44
45
       def update(self):
46
           """updates parameters after a batch.
47
           overridden by layers that have parameters
48
49
50
           pass
```

# 8.1.1 Linear Layer

A linear layer maintains an array of weights. self.weights[o][i] is the weight between input i and output o. A 1 is added to the end of the inputs. The default initialization is the Glorot uniform initializer [Glorot and Bengio, 2010], which is the default in Keras. An alternative is to provide a limit, in which case the

8.1. Layers 189

values are selected uniformly in the range [-limit, limit]. Keras treats the bias separately, and by default initialzes to zero.

```
__learnNN.py — (continued) _
52
   class Linear_complete_layer(Layer):
       """a completely connected layer"""
53
       def __init__(self, nn, num_outputs, limit=None):
54
           """A completely connected linear layer.
55
           nn is a neural network that the inputs come from
56
           num_outputs is the number of outputs
57
           the random initialization of parameters is in range [-limit,limit]
58
           Layer.__init__(self, nn, num_outputs)
60
61
           if limit is None:
               limit =math.sqrt(6/(self.num_inputs+self.num_outputs))
62
           # self.weights[o][i] is the weight between input i and output o
63
           self.weights = [[random.uniform(-limit, limit) if inf <</pre>
               self.num_inputs else 0
                            for inf in range(self.num_inputs+1)]
65
                          for outf in range(self.num_outputs)]
66
           self.delta = [[0 for inf in range(self.num_inputs+1)]
67
                          for outf in range(self.num_outputs)]
68
69
       def output_values(self,input_values, training=False):
70
           """Returns the outputs for the input values.
71
           It remembers the values for the backprop.
72
73
           Note in self.weights there is a weight list for every output,
74
           so wts in self.weights loops over the outputs.
75
           The bias is the *last* value of each list in self.weights.
76
77
           self.inputs = input_values + [1]
78
           return [sum(w*val for (w,val) in zip(wts,self.inputs))
79
                      for wts in self.weights]
80
81
       def backprop(self,errors):
82
           """Backpropagate the errors, updating the weights and returning the
83
               error in its inputs.
84
           input_errors = [0]*(self.num_inputs+1)
85
           for out in range(self.num_outputs):
86
               for inp in range(self.num_inputs+1):
87
                  input_errors[inp] += self.weights[out][inp] * errors[out]
88
                  self.delta[out][inp] += self.inputs[inp] * errors[out]
89
           return input_errors[:-1] # remove the error for the "1"
90
91
92
       def update(self):
           """updates parameters after a batch"""
93
           batch_step_size = self.nn.learning_rate / self.nn.batch_size
94
           for out in range(self.num_outputs):
95
               for inp in range(self.num_inputs+1):
96
```

```
self.weights[out][inp] -= batch_step_size *
self.delta[out][inp]
self.delta[out][inp] = 0
```

## 8.1.2 ReLU Layer

The standard activation function for hidden nodes is the **ReLU**.

```
_learnNN.py — (continued)
    class ReLU_layer(Layer):
100
        """Rectified linear unit (ReLU) f(z) = max(0, z).
101
        The number of outputs is equal to the number of inputs.
102
103
        def __init__(self, nn):
104
            Layer.__init__(self, nn)
105
106
        def output_values(self, input_values, training=False):
107
            """Returns the outputs for the input values.
108
            It remembers the input values for the backprop.
109
            ,, ,, ,,
110
            self.input_values = input_values
111
            self.outputs= [max(0,inp) for inp in input_values]
112
            return self.outputs
113
114
        def backprop(self,errors):
115
            """Returns the derivative of the errors"""
116
            return [e if inp>0 else 0 for e,inp in zip(errors,
117
                self.input_values)]
```

# 8.1.3 Sigmoid Layer

One of the old standards for the activation function for hidden layers is the sigmoid. It is included here to experiment with.

```
_learnNN.py — (continued)
    class Sigmoid_layer(Layer):
119
        """sigmoids of the inputs.
120
        The number of outputs is equal to the number of inputs.
121
        Each output is the sigmoid of its corresponding input.
122
        11 11 11
123
        def __init__(self, nn):
124
125
            Layer.__init__(self, nn)
126
        def output_values(self, input_values, training=False):
127
            """Returns the outputs for the input values.
128
            It remembers the output values for the backprop.
129
130
            self.outputs= [sigmoid(inp) for inp in input_values]
131
            return self.outputs
132
```

```
def backprop(self,errors):
    """Returns the derivative of the errors"""
return [e*out*(1-out) for e,out in zip(errors, self.outputs)]
```

## 8.2 Feedforward Networks

```
_learnNN.py — (continued)
    class NN(Learner):
138
        def __init__(self, dataset, validation_proportion = 0.1,
139
            learning_rate=0.001):
            """Creates a neural network for a dataset,
140
            layers is the list of layers
141
142
            self.dataset = dataset
143
            self.output_type = dataset.target.ftype
144
            self.learning_rate = learning_rate
145
            self.input_features = dataset.input_features
146
            self.num_outputs = len(self.input_features)
147
            validation_num = int(len(self.dataset.train)*validation_proportion)
148
            if validation_num > 0:
149
150
               random.shuffle(self.dataset.train)
                self.validation_set = self.dataset.train[-validation_num:]
151
                self.training_set = self.dataset.train[:-validation_num]
152
            else:
153
                self.validation_set = []
154
                self.training_set = self.dataset.train
155
            self.layers = []
156
            self.bn = 0 # number of batches run
157
158
        def add_layer(self,layer):
159
            """add a layer to the network.
160
            Each layer gets number of inputs from the previous layers outputs.
161
162
163
            self.layers.append(layer)
            self.num_outputs = layer.num_outputs
164
165
        def predictor(self,ex):
166
            """Predicts the value of the first output for example ex.
167
168
            values = [f(ex) for f in self.input_features]
169
            for layer in self.layers:
170
                values = layer.output_values(values)
            return sigmoid(values[0]) if self.output_type =="boolean" \
172
                  else softmax(values, self.dataset.target.frange) if
173
                       self.output_type == "categorical" \
                   else values[0]
174
175
```

```
def predictor_string(self):
    return "not implemented"
```

The *learn* method learns the paremeters of a network.

```
_learnNN.py — (continued)
        def learn(self, epochs=5, batch_size=32, num_iter = None,
179
            report_each=10):
            """Learns parameters for a neural network using stochastic gradient
180
                decent.
           epochs is the number of times through the data (on average)
181
           batch_size is the maximum size of each batch
182
           num_iter is the number of iterations over the batches
183
                - overrides epochs if provided (allows for fractions of epochs)
184
            report_each means give the errors after each multiple of that
185
                iterations
186
            self.batch_size = min(batch_size, len(self.training_set)) # don't
187
                have batches bigger than training size
            if num_iter is None:
188
                num_iter = (epochs * len(self.training_set)) // self.batch_size
189
            #self.display(0,"Batch\t","\t".join(criterion.__doc__ for criterion
190
                in Evaluate.all_criteria))
            for i in range(num_iter):
191
               batch = random.sample(self.training_set, self.batch_size)
192
               for e in batch:
193
                   # compute all outputs
                   values = [f(e) for f in self.input_features]
195
                   for layer in self.layers:
196
                       values = layer.output_values(values, training=True)
197
                   # backpropagate
198
                   predicted = [sigmoid(v) for v in values] if self.output_type
199
                       == "boolean"\
                               else softmax(values) if self.output_type ==
200
                                    "categorical"
                               else values
201
                   actuals = indicator(self.dataset.target(e),
202
                       self.dataset.target.frange) \
                               if self.output_type == "categorical"\
203
                               else [self.dataset.target(e)]
204
                   errors = [pred-obsd for (obsd,pred) in
205
                       zip(actuals, predicted)]
                   for layer in reversed(self.layers):
206
                       errors = layer.backprop(errors)
207
               # Update all parameters in batch
208
               for layer in self.layers:
209
                   layer.update()
210
               self.bn+=1
211
               if (i+1)%report_each==0:
212
                   self.display(0,self.bn,"\t",
213
                               "\t\t".join("{:.4f}".format(
214
```

```
self.dataset.evaluate_dataset(self.validation_set, self.predictor, criterion))

for criterion in Evaluate.all_criteria), sep="")
```

# 8.3 Improved Optimization

### 8.3.1 Momentum

```
__learnNN.py — (continued) _
    class Linear_complete_layer_momentum(Linear_complete_layer):
218
        """a completely connected layer"""
219
        def __init__(self, nn, num_outputs, limit=None, alpha=0.9, epsilon =
220
            1e-07, vel0=0):
            """A completely connected linear layer.
221
            nn is a neural network that the inputs come from
222
            num_outputs is the number of outputs
223
224
            max_init is the maximum value for random initialization of
                parameters
            vel0 is the initial velocity for each parameter
225
226
            Linear_complete_layer.__init__(self, nn, num_outputs, limit=limit)
227
            # self.weights[o][i] is the weight between input i and output o
228
            self.velocity = [[vel0 for inf in range(self.num_inputs+1)]
229
                           for outf in range(self.num_outputs)]
230
            self.alpha = alpha
231
            self.epsilon = epsilon
232
233
        def update(self):
234
            """updates parameters after a batch"""
235
            batch_step_size = self.nn.learning_rate / self.nn.batch_size
236
            for out in range(self.num_outputs):
237
               for inp in range(self.num_inputs+1):
238
                   self.velocity[out][inp] = self.alpha*self.velocity[out][inp]
239
                        - batch_step_size * self.delta[out][inp]
                   self.weights[out][inp] += self.velocity[out][inp]
240
                   self.delta[out][inp] = 0
241
```

## 8.3.2 RMS-Prop

```
class Linear_complete_layer_RMS_Prop(Linear_complete_layer):
    """a completely connected layer"""

def __init__(self, nn, num_outputs, limit=None, rho=0.9, epsilon = 1e-07):
    """A completely connected linear layer.
    nn is a neural network that the inputs come from num_outputs is the number of outputs
```

```
max_init is the maximum value for random initialization of
249
                parameters
250
           Linear_complete_layer.__init__(self, nn, num_outputs, limit=limit)
251
           # self.weights[o][i] is the weight between input i and output o
252
           self.ms = [[0 for inf in range(self.num_inputs+1)]
253
254
                           for outf in range(self.num_outputs)]
           self.rho = rho
255
           self.epsilon = epsilon
256
257
        def update(self):
258
            """updates parameters after a batch"""
259
           for out in range(self.num_outputs):
260
               for inp in range(self.num_inputs+1):
261
                   gradient = self.delta[out][inp] / self.nn.batch_size
262
                   self.ms[out][inp] = self.rho*self.ms[out][inp]+ (1-self.rho)
263
                       * gradient**2
                   self.weights[out][inp] -=
264
                       self.nn.learning_rate/(self.ms[out][inp]+self.epsilon)**0.5
                       * gradient
                   self.delta[out][inp] = 0
265
```

# 8.4 Dropout

**Dropout** is implemented as a layer.

```
_learnNN.py — (continued) ___
    from utilities import flip
267
    class Dropout_layer(Layer):
268
        """Dropout layer
269
270
271
        def __init__(self, nn, rate=0):
272
273
            rate is fraction of the input units to drop. 0 =< rate < 1
274
275
276
            self.rate = rate
277
            Layer.__init__(self, nn)
278
        def output_values(self, input_values, training=False):
279
            """Returns the outputs for the input values.
280
            It remembers the input values for the backprop.
281
            ,, ,, ,,
282
            if training:
283
284
                scaling = 1/(1-self.rate)
                self.mask = [0 if flip(self.rate) else 1
285
                               for _ in input_values]
286
                return [x*y*scaling for (x,y) in zip(input_values, self.mask)]
287
            else:
288
                return input_values
289
```

8.4. Dropout 195

```
290
291
        def backprop(self,errors):
            """Returns the derivative of the errors"""
292
            return [x*y for (x,y) in zip(errors, self.mask)]
293
294
    class Dropout_layer_0(Layer):
295
        """Dropout layer
296
297
298
        def __init__(self, nn, rate=0):
299
300
            rate is fraction of the input units to drop. 0 =< rate < 1
301
302
            self.rate = rate
303
            Layer.__init__(self, nn)
304
305
        def output_values(self, input_values, training=False):
306
            """Returns the outputs for the input values.
307
            It remembers the input values for the backprop.
308
309
            if training:
310
                scaling = 1/(1-self.rate)
311
                self.outputs= [0 if flip(self.rate) else inp*scaling # make 0
312
                    with probability rate
                              for inp in input_values]
313
                return self.outputs
314
            else:
315
316
                return input_values
317
        def backprop(self,errors):
318
            """Returns the derivative of the errors"""
319
320
            return errors
```

## 8.4.1 Examples

The following constructs a neural network with one hidden layer. The output is assumed to be Boolean or Real. If it is categorical, the final layer should have the same number of outputs as the number of cetegories (so it can use a softmax).

```
#data = Data_from_file('data/mail_reading.csv', target_index=-1)
#data = Data_from_file('data/mail_reading_consis.csv', target_index=-1)
#data = Data_from_file('data/SPECT.csv', prob_test=0.3, target_index=0, seed=12345)
#data = Data_from_file('data/iris.data', prob_test=0.2, target_index=-1) #
#data = Data_from_fi
```

```
#data = Data_from_file('data/holiday.csv', target_index=-1) #,
327
        num_train=19)
    #data = Data_from_file('data/processed.cleveland.data', target_index=-1)
328
    #random.seed(None)
329
330
    # nn3 is has a single hidden layer of width 3
331
332
    nn3 = NN(data, validation_proportion = 0)
    nn3.add_layer(Linear_complete_layer(nn3,3))
333
    #nn3.add_layer(Sigmoid_layer(nn3))
    nn3.add_layer(ReLU_layer(nn3))
335
    nn3.add_layer(Linear_complete_layer(nn3,1)) # when using
336
        output_type="boolean"
    #nn3.learn(epochs = 100)
337
338
    # nn3do is like nn3 but with dropout on the hidden layer
339
    nn3do = NN(data, validation_proportion = 0)
340
    nn3do.add_layer(Linear_complete_layer(nn3do,3))
341
    #nn3.add_layer(Sigmoid_layer(nn3)) # comment this or the next
342
    nn3do.add_layer(ReLU_layer(nn3do))
343
    nn3do.add_layer(Dropout_layer(nn3do, rate=0.5))
344
    nn3do.add_layer(Linear_complete_layer(nn3do,1))
345
    #nn3do.learn(epochs = 100)
346
347
    # nn3_rmsp is like nn3 but uses RMS prop
348
    nn3_rmsp = NN(data, validation_proportion = 0)
349
    nn3_rmsp.add_layer(Linear_complete_layer_RMS_Prop(nn3_rmsp,3))
    #nn3_rmsp.add_layer(Sigmoid_layer(nn3_rmsp)) # comment this or the next
351
    nn3_rmsp.add_layer(ReLU_layer(nn3_rmsp))
    nn3_rmsp.add_layer(Linear_complete_layer_RMS_Prop(nn3_rmsp,1))
353
    #nn3_rmsp.learn(epochs = 100)
354
355
    # nn3_m is like nn3 but uses momentum
356
    mm1_m = NN(data, validation_proportion = 0)
357
358
    mm1_m.add_layer(Linear_complete_layer_momentum(mm1_m,3))
    #mm1_m.add_layer(Sigmoid_layer(mm1_m)) # comment this or the next
359
    mm1_m.add_layer(ReLU_layer(mm1_m))
360
    mm1_m.add_layer(Linear_complete_layer_momentum(mm1_m,1))
361
    #mm1_m.learn(epochs = 100)
362
    # nn2 has a single a hidden layer of width 2
364
    nn2 = NN(data, validation_proportion = 0)
365
    nn2.add_layer(Linear_complete_layer_RMS_Prop(nn2,2))
366
    nn2.add_layer(ReLU_layer(nn2))
    nn2.add_layer(Linear_complete_layer_RMS_Prop(nn2,1))
368
369
    # nn5 is has a single hidden layer of width 5
370
    nn5 = NN(data, validation_proportion = 0)
371
    nn5.add_layer(Linear_complete_layer_RMS_Prop(nn5,5))
372
    nn5.add_layer(ReLU_layer(nn5))
373
   nn5.add_layer(Linear_complete_layer_RMS_Prop(nn5,1))
```

8.4. Dropout 197



Figure 8.1: Plotting train and test log loss for various algorithms on SPECT dataset

```
# nn0 has no hidden layers, and so is just logistic regression:
nn0 = NN(data, validation_proportion = 0) #learning_rate=0.05)
nn0.add_layer(Linear_complete_layer(nn0,1))
# Or try this for RMS-Prop:
#nn0.add_layer(Linear_complete_layer_RMS_Prop(nn0,1))
```

Figure 8.1 shows the training and test performance on the SPECT dataset for the architectures above. Note the nn5 test has infinite log loss on the test set after about 45,000 steps. The noisiness of the predictions might indicate that the step size is too big. This was produced by the code below:

```
| from learnLinear import plot_steps | from learnProblem import Evaluate | # To show plots first choose a criterion to use | # crit = Evaluate.log_loss | # crit = Evaluate.accuracy | # plot_steps(learner = nn0, data = data, criterion=crit, num_steps=10000, log_scale=False, legend_label="nn0")
```

```
# plot_steps(learner = nn2, data = data, criterion=crit, num_steps=10000,
389
        log_scale=False, legend_label="nn2")
    # plot_steps(learner = nn3, data = data, criterion=crit, num_steps=10000,
390
        log_scale=False, legend_label="nn3")
    # plot_steps(learner = nn5, data = data, criterion=crit, num_steps=10000,
391
        log_scale=False, legend_label="nn5")
392
    # for (nn,nname) in [(nn0,"nn0"),(nn2,"nn2"),(nn3,"nn3"),(nn5,"nn5")]:
393
        plot_steps(learner = nn, data = data, criterion=crit,
        num_steps=100000, log_scale=False, legend_label=nname)
394
    # Print some training examples
395
    #for eg in random.sample(data.train,10): print(eg,nn3.predictor(eg))
396
397
    # Print some test examples
398
    #for eg in random.sample(data.test,10): print(eg,nn3.predictor(eg))
399
400
    # To see the weights learned in linear layers
401
    # nn3.layers[0].weights
402
    # nn3.layers[2].weights
403
404
405
    # Print test:
    # for e in data.train: print(e,nn0.predictor(e))
406
407
    def test(data, hidden_widths = [5], epochs=100,
408
                optimizers = [Linear_complete_layer,
409
                          Linear_complete_layer_momentum,
410
                               Linear_complete_layer_RMS_Prop]):
        data.display(0, "Batch\t", "\t".join(criterion.__doc__ for criterion in
411
            Evaluate.all_criteria))
        for optimizer in optimizers:
412
           nn = NN(data)
413
           for width in hidden_widths:
414
               nn.add_layer(optimizer(nn,width))
415
               nn.add_layer(ReLU_layer(nn))
416
           if data.target.ftype == "boolean":
417
               nn.add_layer(optimizer(nn,1))
418
           else:
419
               error(f"Not implemented: {data.output_type}")
420
           nn.learn(epochs)
421
```

The following tests are on the MNIST digit dataset. The original files are from http://yann.lecun.com/exdb/mnist/. This code assumes you use the csv files from https://pjreddie.com/projects/mnist-in-csv/, and put them in the directory ../MNIST/. Note that this is **very** inefficient; you would be better to use Keras or Pytorch. There are 28 \* 28 = 784 input units and 512 hidden units, which makes 401,408 parameters for the lowest linear layer. So don't be surprised if it takes many hours in AIPython (even if it only takes a few seconds in Keras).

8.4. Dropout 199

```
_learnNN.py — (continued)
    # Simplified version: (6000 training instances)
423
    # data_mnist = Data_from_file('../MNIST/mnist_train.csv', prob_test=0.9,
424
        target_index=0, boolean_features=False, target_type="categorical")
425
    # Full version:
426
    # data_mnist = Data_from_files('../MNIST/mnist_train.csv',
427
        '../MNIST/mnist_test.csv', target_index=0, boolean_features=False,
        target_type="categorical")
428
    # nn_mnist = NN(data_mnist, validation_proportion = 0.02,
429
        learning_rate=0.001) #validation set = 1200
    # nn_mnist.add_layer(Linear_complete_layer_RMS_Prop(nn_mnist,512));
430
        nn_mnist.add_layer(ReLU_layer(nn_mnist));
        nn_mnist.add_layer(Linear_complete_layer_RMS_Prop(nn_mnist,10))
    # start_time = time.perf_counter();nn_mnist.learn(epochs=1,
431
        batch_size=128);end_time = time.perf_counter();print("Time:", end_time
        - start_time,"seconds") #1 epoch
    # determine test error:
432
    # data_mnist.evaluate_dataset(data_mnist.test, nn_mnist.predictor,
433
        Evaluate.accuracy)
    # Print some random predictions:
434
435
    # for eg in random.sample(data_mnist.test,10):
        print(data_mnist.target(eg), nn_mnist.predictor(eg),
        nn_mnist.predictor(eg)[data_mnist.target(eg)])
```

**Exercise 8.1** In the definition of *nn*3 above, for each of the following, first hypothesize what will happen, then test your hypothesis, then explain whether you testing confirms your hypothesis or not. Test it for more than one data set, and use more than one run for each data set.

- (a) Which fits the data better, having a sigmoid layer or a ReLU layer after the first linear layer?
- (b) Which is faster, having a sigmoid layer or a ReLU layer after the first linear layer?
- (c) What happens if you have both the sigmoid layer and then a ReLU layer after the first linear layer and before the second linear layer?
- (d) What happens if you have a ReLU layer then a sigmoid layer after the first linear layer and before the second linear layer?
- (e) What happens if you have neither the sigmoid layer nor a ReLU layer after the first linear layer?

#### Exercise 8.2 Do some

# Reasoning with Uncertainty

# 9.1 Representing Probabilistic Models

A probabilistic model uses the same definition of a variable as a CSP (Section 4.1.1, page 69). A variable consists of a name, a domain and an optional (x,y) position (for displaying). The domain of a variable is a list or a tuple, as the ordering matters for some representation of factors.

# 9.2 Representing Factors

A factor is, mathematically, a function from variables into a number; that is, given a value for each of its variable, it gives a number. Factors are used for conditional probabilities, utilities in the next chapter, and are explicitly constructed by some algorithms (in particular, variable elimination).

A variable assignment, or just an **assignment**, is represented as a {variable : value} dictionary. A factor can be evaluated when all of its variables are assigned. This is implemented in the can\_evaluate method which can be overridden for representations that don't require all variable be assigned (such as decision trees). The method get\_value evaluates the factor for an assignment. The assignment can include extra variables not in the factor. This method needs to be defined for every subclass.

```
probFactors.py — Factors for graphical models

from display import Displayable
import math

class Factor(Displayable):
    nextid=0 # each factor has a unique identifier; for printing
```

```
def __init__(self, variables, name=None):
17
18
           self.variables = variables # list of variables
           if name:
19
               self.name = name
20
           else:
21
               self.name = f"f{Factor.nextid}"
22
23
               Factor.nextid += 1
24
       def can_evaluate(self,assignment):
25
           """True when the factor can be evaluated in the assignment
26
           assignment is a {variable:value} dict
27
28
           return all(v in assignment for v in self.variables)
29
30
       def get_value(self,assignment):
31
           """Returns the value of the factor given the assignment of values
32
               to variables.
           Needs to be defined for each subclass.
33
34
           assert self.can_evaluate(assignment)
35
           raise NotImplementedError("get_value") # abstract method
36
```

The method \_\_str\_\_ returns a brief definition (like "f7(X,Y,Z)"). The method to\_table returns string representations of a table showing all of the assignments of values to variables, and the corresponding value.

```
__probFactors.py — (continued) _
       def __str__(self):
38
           """returns a string representing a summary of the factor"""
39
           return f"{self.name}({','.join(str(var) for var in
40
               self.variables)})"
41
       def to_table(self, variables=None, given={}):
42
           """returns a string representation of the factor.
43
           Allows for an arbitrary variable ordering.
44
           variables is a list of the variables in the factor
45
           (can contain other variables)"""
46
           if variables==None:
47
               variables = [v for v in self.variables if v not in given]
48
           else: #enforce ordering and allow for extra variables in ordering
49
              variables = [v for v in variables if v in self.variables and v
50
                   not in given]
           head = "\t".join(str(v) for v in variables)+"\t"+self.name
51
           return head+"\n"+self.ass_to_str(variables, given, variables)
52
53
       def ass_to_str(self, vars, asst, allvars):
           #print(f"ass_to_str({vars}, {asst}, {allvars})")
55
           if vars:
              return "\n".join(self.ass_to_str(vars[1:], {**asst,
57
                   vars[0]:val}, allvars)
                              for val in vars[0].domain)
58
```

# 9.3 Conditional Probability Distributions

A **conditional probability distribution (CPD)** is a factor that represents a conditional probability. A CPD representing  $P(X \mid Y_1 ... Y_k)$  is a factor, which given values for X and each  $Y_i$  returns a number.

```
_probFactors.py — (continued)
   class CPD(Factor):
67
       def __init__(self, child, parents):
68
           """represents P(variable | parents)
69
70
           self.parents = parents
           self.child = child
72
           Factor.__init__(self, parents+[child], name=f"Probability")
73
74
75
       def __str__(self):
           """A brief description of a factor using in tracing"""
76
           if self.parents:
77
               return f"P({self.child}|{','.join(str(p) for p in
78
                    self.parents)})"
           else:
79
80
               return f"P({self.child})"
81
       __repr__ = __str__
82
```

A constant CPD has no parents, and has probability 1 when the variable has the value specified, and 0 when the variable has a different value.

## 9.3.1 Logistic Regression

A **logistic regression** CPD, for Boolean variable *X* represents  $P(X=True \mid Y_1 ... Y_k)$ , using k+1 real-valued weights so

$$P(X=True \mid Y_1 \dots Y_k) = sigmoid(w_0 + \sum_i w_i Y_i)$$

where for Boolean  $Y_i$ , True is represented as 1 and False as 0.

```
probFactors.py — (continued)
    from learnLinear import sigmoid, logit
91
92
    class LogisticRegression(CPD):
93
        def __init__(self, child, parents, weights):
94
            """A logistic regression representation of a conditional
95
                probability.
            child is the Boolean (or 0/1) variable whose CPD is being defined
96
            parents is the list of parents
97
            weights is list of parameters, such that weights[i+1] is the weight
98
                for parents[i]
              weights[0] is the bias.
99
100
            assert len(weights) == 1+len(parents)
101
102
            CPD.__init__(self, child, parents)
            self.weights = weights
103
104
        def get_value(self,assignment):
105
            assert self.can_evaluate(assignment)
106
            prob = sigmoid(self.weights[0]
107
                           + sum(self.weights[i+1]*assignment[self.parents[i]]
108
                                     for i in range(len(self.parents))))
109
            if assignment[self.child]: #child is true
110
                return prob
111
            else:
112
113
                return (1-prob)
```

# 9.3.2 Noisy-or

A **noisy-or**, for Boolean variable X with Boolean parents  $Y_1 \dots Y_k$  is parametrized by k+1 parameters  $p_0, p_1, \dots, p_k$ , where each  $0 \le p_i \le 1$ . The semantics is defined as though there are k+1 hidden variables  $Z_0, Z_1 \dots Z_k$ , where  $P(Z_0) = p_0$  and  $P(Z_i \mid Y_i) = p_i$  for  $i \ge 1$ , and where X is true if and only if  $Z_0 \vee Z_1 \vee \dots \vee Z_k$  (where  $\vee$  is "or"). Thus X is false if all of the  $Z_i$  are false. Intuitively,  $Z_0$  is the probability of X when all  $Y_i$  are false and each  $Z_i$  is a noisy (probabilistic) measure that  $Y_i$  makes X true, and X only needs one to make it true.

```
probFactors.py — (continued)

class NoisyOR(CPD):

def __init__(self, child, parents, weights):
```

```
"""A noisy representation of a conditional probability.
117
118
            variable is the Boolean (or 0/1) child variable whose CPD is being
                defined
            parents is the list of Boolean (or 0/1) parents
119
            weights is list of parameters, such that weights[i+1] is the weight
120
                for parents[i]
121
            assert len(weights) == 1+len(parents)
122
            CPD.__init__(self, child, parents)
123
            self.weights = weights
124
125
        def get_value(self,assignment):
126
            assert self.can_evaluate(assignment)
127
            probfalse = (1-self.weights[0])*math.prod(1-self.weights[i+1]
128
                                               for i in range(len(self.parents))
129
                                                  if assignment[self.parents[i]])
130
            if assignment[self.child]: # child is assigned True in assignment
131
               return 1-probfalse
132
133
            else:
               return probfalse
134
```

#### 9.3.3 Tabular Factors and Prob

A **tabular factor** is a factor that represents each assignment of values to variables separately. It is represented by a Python array (or Python dict). If the variables are  $V_1, V_2, \ldots, V_k$ , the value of  $f(V_1 = v_1, V_2 = v_1, \ldots, V_k = v_k)$  is stored in  $f[v_1][v_2] \ldots [v_k]$ .

If the domain of  $V_i$  is  $[0, ..., n_i - 1]$  it can be represented as an array. Otherwise it can use a dictionary. Python is nice in that it doesn't care, whether an array or dict is used **except when enumerating the values**; enumerating a dict gives the keys (the variables) but enumerating an array gives the values. So we had to be careful not to enumerate the values.

```
\_probFactors.py — (continued) \_
    class TabFactor(Factor):
136
137
        def __init__(self, variables, values, name=None):
138
            Factor.__init__(self, variables, name=name)
139
            self.values = values
140
141
        def get_value(self, assignment):
142
            return self.get_val_rec(self.values, self.variables, assignment)
143
144
        def get_val_rec(self, value, variables, assignment):
145
            if variables == []:
146
               return value
147
            else:
148
                return self.get_val_rec(value[assignment[variables[0]]],
149
                                            variables[1:],assignment)
150
```

*Prob* is a factor that represents a conditional probability by enumerating all of the values.

```
\_probFactors.py — (continued) \_
    class Prob(CPD, TabFactor):
152
        """A factor defined by a conditional probability table"""
153
154
        def __init__(self, var, pars, cpt, name=None):
            """Creates a factor from a conditional probability table, cpt
155
            The cpt values are assumed to be for the ordering par+[var]
156
157
            TabFactor.__init__(self, pars+[var], cpt, name)
158
            self.child = var
159
            self.parents = pars
160
```

## 9.3.4 Decision Tree Representations of Factors

A decision tree representation of a conditional probability of a child variable is either:

- IFeq(var, val, true\_cond, false\_cond) where true\_cond and false\_cond are decision trees. true\_cond is used if variable var has value val in an assignment; false\_cond is used if var has a different value
- a deterministic functions that has probability 1 if a parent has the same value as the child (using SameAs(parent))
- a distribution over the child variable (using Dist(dict)).

Note that not all parents need to be assigned to evaluate the decision tree; it only needs a branch down the tree that gives the distribution.

```
\_probFactors.py — (continued) \_
162
    class ProbDT(CPD):
        def __init__(self, child, parents, dt):
163
            CPD.__init__(self, child, parents)
164
            self.dt = dt
165
166
        def get_value(self, assignment):
167
            return self.dt.get_value(assignment, self.child)
168
169
170
        def can_evaluate(self, assignment):
            return self.child in assignment and self.dt.can_evaluate(assignment)
171
```

Decison trees are made up of conditons; here equality of a value and a variable:

```
probFactors.py — (continued)

class IFeq:

def __init__(self, var, val, true_cond, false_cond):

self.var = var
```

https://aipython.org

```
self.val = val
176
177
            self.true_cond = true_cond
            self.false_cond = false_cond
178
179
        def get_value(self, assignment, child):
180
            """ IFeq(var, val, true_cond, false_cond)
181
182
            value of true_cond is used if var has value val in assignment,
            value of false_cond is used if var has a different value
183
184
            if assignment[self.var] == self.val:
185
                return self.true_cond.get_value(assignment, child)
186
            else:
187
                return self.false_cond.get_value(assignment,child)
188
189
        def can_evaluate(self, assignment):
190
            if self.var not in assignment:
191
                return False
192
            elif assignment[self.var] == self.val:
193
                return self.true_cond.can_evaluate(assignment)
194
195
            else:
                return self.false_cond.can_evaluate(assignment)
196
```

The following is a deterministic fuction that is true if the parent has the same value as the child. This is used for deterministic conditional probabilities (as is common for causal models, as described in Chapter 11).

```
\_probFactors.py - (continued) \_
    class SameAs:
198
        def __init__(self, parent):
199
            """1 when child has same value as parent, otherwise 0"""
200
            self.parent = parent
201
202
        def get_value(self, assignment, child):
203
            return 1 if assignment[child]==assignment[self.parent] else 0
204
205
        def can_evaluate(self, assignment):
206
            return self.parent in assignment
207
```

At the leaves are distribitions over the child variable.

```
_probFactors.py — (continued)
209
    class Dist:
        def __init__(self, dist):
210
            """Dist is an array or dictionary indexed by value of current
211
                 child"""
            self.dist = dist
212
213
        def get_value(self, assignment, child):
214
            return self.dist[assignment[child]]
215
216
        def can_evaluate(self, assignment):
217
            return True
218
```

The following shows a decision representation of the Example 9.18 of Poole and Mackworth [2023]. When the Action is to go out, the probability is a function of rain; otherwise it is a function of full.

```
____probFactors.py — (continued) _
    ##### A decision tree representation Example 9.18 of AIFCA 3e
    from variable import Variable
221
222
    boolean = [False, True]
223
224
    action = Variable('Action', ['go_out', 'get_coffee'], position=(0.5,0.8))
225
    rain = Variable('Rain', boolean, position=(0.2,0.8))
226
    full = Variable('Cup Full', boolean, position=(0.8,0.8))
227
228
    wet = Variable('Wet', boolean, position=(0.5,0.2))
229
    p_wet = ProbDT(wet,[action,rain,full],
230
                      IFeq(action, 'go_out',
231
                           IFeq(rain, True, Dist([0.2,0.8]), Dist([0.9,0.1])),
232
                           IFeq(full, True, Dist([0.4,0.6]), Dist([0.7,0.3]))))
233
234
   # See probRC for wetBN which expands this example to a complete network
```

# 9.4 Graphical Models

A graphical model consists of a set of variables and a set of factors.

```
.probGraphicalModels.py — Graphical Models and Belief Networks _
   from display import Displayable
11
   from variable import Variable
   from probFactors import CPD, Prob
   import matplotlib.pyplot as plt
14
15
   class GraphicalModel(Displayable):
16
       """The class of graphical models.
17
       A graphical model consists of a title, a set of variables and a set of
18
            factors.
19
       vars is a set of variables
20
       factors is a set of factors
21
22
       def __init__(self, title, variables=None, factors=None):
23
24
           self.title = title
           self.variables = variables
25
           self.factors = factors
26
```

A **belief network** (also known as a **Bayesian network**) is a graphical model where all of the factors are conditional probabilities, and every variable has a conditional probability of it given its parents. This checks the first condi-

tion (that all factors are conditional probabilities), and builds some useful data structures.

```
_probGraphicalModels.py — (continued)
28
   class BeliefNetwork(GraphicalModel):
       """The class of belief networks."""
29
30
       def __init__(self, title, variables, factors):
31
           """vars is a set of variables
32
           factors is a set of factors. All of the factors are instances of
33
               CPD (e.g., Prob).
34
           GraphicalModel.__init__(self, title, variables, factors)
35
           assert all(isinstance(f,CPD) for f in factors), factors
36
           self.var2cpt = {f.child:f for f in factors}
37
           self.var2parents = {f.child:f.parents for f in factors}
38
           self.children = {n:[] for n in self.variables}
39
           for v in self.var2parents:
40
               for par in self.var2parents[v]:
41
                   self.children[par].append(v)
42
43
           self.topological_sort_saved = None
```

The following creates a topological sort of the nodes, where the parents of a node come before the node in the resulting order. This is based on Kahn's algorithm from 1962.

```
\_probGraphicalModels.py — (continued)
       def topological_sort(self):
45
           """creates a topological ordering of variables such that the
46
               parents of
47
           a node are before the node.
48
           if self.topological_sort_saved:
49
               return self.topological_sort_saved
50
           next_vars = {n for n in self.var2parents if not self.var2parents[n]
51
           self.display(3,'topological_sort: next_vars',next_vars)
52
           top_order=[]
53
           while next_vars:
54
               var = next_vars.pop()
55
               self.display(3,'select variable',var)
56
               top_order.append(var)
57
               next_vars |= {ch for ch in self.children[var]
58
                                if all(p in top_order for p in
59
                                    self.var2parents[ch])}
60
               self.display(3, 'var_with_no_parents_left', next_vars)
           self.display(3,"top_order",top_order)
61
           assert
62
               set(top_order) == set(self.var2parents),(top_order,self.var2parents)
           self.topologicalsort_saved=top_order
63
64
           return top_order
```



4-chain

Figure 9.1: bn\_4ch.show()

## 9.4.1 Showing Belief Networks

The **show** method uses matplotlib to show the graphical structure of a belief network.

```
_probGraphicalModels.py — (continued)
       def show(self, fontsize=10, facecolor='orange'):
66
           plt.ion() # interactive
67
           ax = plt.figure().gca()
68
69
           ax.set_axis_off()
70
           plt.title(self.title, fontsize=fontsize)
           bbox =
71
               dict(boxstyle="round4,pad=1.0,rounding_size=0.5",facecolor=facecolor)
           for var in self.variables: #reversed(self.topological_sort()):
72
               for par in self.var2parents[var]:
73
74
                      ax.annotate(var.name, par.position, xytext=var.position,
                                      arrowprops={'arrowstyle':'<-'},bbox=bbox,</pre>
75
                                      ha='center', va='center',
                                          fontsize=fontsize)
           for var in self.variables:
77
78
                  x,y = var.position
79
                  plt.text(x,y,var.name,bbox=bbox,ha='center', va='center',
                       fontsize=fontsize)
```

# 9.4.2 Example Belief Networks

#### A Chain of 4 Variables

The first example belief network is a simple chain  $A \longrightarrow B \longrightarrow C \longrightarrow D$ , shown in Figure 9.1.

Please do not change this, as it is the example used for testing.

https://aipython.org

Version 0.9.13

June 13, 2024

#### Report-of-leaving



Figure 9.2: The report-of-leaving belief network

```
|boolean = [False, True]
  A = Variable("A", boolean, position=(0,0.8))
  B = Variable("B", boolean, position=(0.333,0.7))
   C = Variable("C", boolean, position=(0.666,0.6))
   D = Variable("D", boolean, position=(1,0.5))
86
87
   f_a = Prob(A,[],[0.4,0.6])
88
89
   f_b = Prob(B, [A], [[0.9, 0.1], [0.2, 0.8]])
   f_c = Prob(C, [B], [[0.6, 0.4], [0.3, 0.7]])
90
   f_d = Prob(D,[C],[[0.1,0.9],[0.75,0.25]])
91
92
  bn_4ch = BeliefNetwork("4-chain", {A,B,C,D}, {f_a,f_b,f_c,f_d})
```

## Report-of-Leaving Example

The second belief network, bn\_report, is Example 9.13 of Poole and Mackworth [2023] (http://artint.info). The output of bn\_report.show() is shown in Figure 9.2 of this document.

https://aipython.org

#### Simple Diagnosis



Figure 9.3: Simple diagnosis example; simple\_diagnosis.show()

```
# Belief network report-of-leaving example (Example 9.13 shown in Figure
15
   # Poole and Mackworth, Artificial Intelligence, 2023 http://artint.info
16
   boolean = [False, True]
17
   Alarm = Variable("Alarm", boolean, position=(0.366,0.5))
19
            Variable("Fire", boolean, position=(0.633,0.75))
20
   Leaving = Variable("Leaving", boolean, position=(0.366,0.25))
21
   Report = Variable("Report", boolean, position=(0.366,0.0))
   Smoke = Variable("Smoke", boolean, position=(0.9,0.5))
23
   Tamper = Variable("Tamper", boolean, position=(0.1,0.75))
24
25
   f_{ta} = Prob(Tamper, [], [0.98, 0.02])
   f_fi = Prob(Fire,[],[0.99,0.01])
27
   f_{sm} = Prob(Smoke, [Fire], [[0.99, 0.01], [0.1, 0.9]])
28
   f_{al} = Prob(Alarm, [Fire, Tamper], [[[0.9999, 0.0001], [0.15, 0.85]], [[0.01, 0.001]]
29
        0.99], [0.5, 0.5]]])
   f_{1v} = Prob(Leaving, [Alarm], [[0.999, 0.001], [0.12, 0.88]])
30
   f_re = Prob(Report, [Leaving], [[0.99, 0.01], [0.25, 0.75]])
31
32
   bn_report = BeliefNetwork("Report-of-leaving",
33
        {Tamper, Fire, Smoke, Alarm, Leaving, Report},
                                \{f_{ta}, f_{fi}, f_{sm}, f_{al}, f_{lv}, f_{re}\}
34
```

## Simple Diagnostic Example

This is the "simple diagnostic example" of Exercise 9.1 of Poole and Mackworth [2023], reproduced here as Figure 9.3

```
https://aipython.org Version 0.9.13 June 13, 2024
```

```
# Belief network simple-diagnostic example (Exercise 9.3 shown in Figure
   # Poole and Mackworth, Artificial Intelligence, 2023 http://artint.info
37
38
   Influenza = Variable("Influenza", boolean, position=(0.4,0.8))
39
                Variable("Smokes", boolean, position=(0.8,0.8))
40
   SoreThroat = Variable("Sore Throat", boolean, position=(0.2,0.5))
   HasFever =
                   Variable("Fever", boolean, position=(0.4,0.5))
   Bronchitis = Variable("Bronchitis", boolean, position=(0.6,0.5))
   Coughing = Variable("Coughing", boolean, position=(0.4,0.2))
44
   Wheezing = Variable("Wheezing", boolean, position=(0.8,0.2))
45
46
   |p_infl = Prob(Influenza,[],[0.95,0.05])
  p_{smokes} = Prob(Smokes,[],[0.8,0.2])
48
              Prob(SoreThroat,[Influenza],[[0.999,0.001],[0.7,0.3]])
49
   p_fever = Prob(HasFever,[Influenza],[[0.99,0.05],[0.9,0.1]])
   p_bronc = Prob(Bronchitis,[Influenza,Smokes],[[[0.9999, 0.0001], [0.3,
       0.7]], [[0.1, 0.9], [0.01, 0.99]]])
   p_cough = Prob(Coughing,[Bronchitis],[[0.93,0.07],[0.2,0.8]])
52
   p_wheeze = Prob(Wheezing,[Bronchitis],[[0.999,0.001],[0.4,0.6]])
53
54
   simple_diagnosis = BeliefNetwork("Simple Diagnosis",
55
                     {Influenza, Smokes, SoreThroat, HasFever, Bronchitis,
56
                         Coughing, Wheezing},
57
                     {p_infl, p_smokes, p_sth, p_fever, p_bronc, p_cough,
                         p_wheeze})
```

### Sprinkler Example

The third belief network is the sprinkler example from Pearl [2009]. The output of bn\_sprinkler.show() is shown in Figure 9.4 of this document.

```
___probExamples.py — (continued) ____
   Season = Variable("Season", ["dry_season", "wet_season"],
       position=(0.5, 0.9))
   Sprinkler = Variable("Sprinkler", ["on", "off"], position=(0.9,0.6))
60
   Rained = Variable("Rained", boolean, position=(0.1,0.6))
   Grass_wet = Variable("Grass wet", boolean, position=(0.5,0.3))
   Grass_shiny = Variable("Grass shiny", boolean, position=(0.1,0))
   Shoes_wet = Variable("Shoes wet", boolean, position=(0.9,0))
64
65
   f_season = Prob(Season,[],{'dry_season':0.5, 'wet_season':0.5})
66
   f_sprinkler = Prob(Sprinkler,[Season],{'dry_season':{'on':0.4,'off':0.6},
67
                                        'wet_season':{'on':0.01,'off':0.99}})
68
   f_rained = Prob(Rained,[Season],{'dry_season':[0.9,0.1], 'wet_season':
       [0.2, 0.8]
   f_wet = Prob(Grass_wet,[Sprinkler,Rained], {'on': [[0.1,0.9],[0.01,0.99]],
70
                                             'off':[[0.99,0.01],[0.3,0.7]]})
71
   f_shiny = Prob(Grass_shiny, [Grass_wet], [[0.95,0.05], [0.3,0.7]])
73 | f_shoes = Prob(Shoes_wet, [Grass_wet], [[0.98,0.02], [0.35,0.65]])
```



Figure 9.4: The sprinkler belief network

#### Bipartite Diagnostic Model with Noisy-or

The belief network bn\_no1 is a bipartite diagnostic model, with independent diseases, and the symptoms depend on the diseases, where the CPDs are defined using noisy-or. Bipartite means it is in two parts; the diseases are only connected to the symptoms and the symptoms are only connected to the diseases. The output of bn\_no1.show() is shown in Figure 9.5 of this document.

```
_____probExamples.py — (continued)

79  #### Bipartite Diagnostic Network ###

80  Cough = Variable("Cough", boolean, (0.1,0.1))

81  Fever = Variable("Fever", boolean, (0.5,0.1))

82  Sneeze = Variable("Sneeze", boolean, (0.9,0.1))

83  Cold = Variable("Cold",boolean, (0.1,0.9))

84  Flu = Variable("Flu",boolean, (0.5,0.9))
```

https://aipython.org Version 0.9.13 June 13, 2024



#### Bipartite Diagnostic Network (noisy-or)

Figure 9.5: A bipartite diagnostic network

```
Covid = Variable("Covid", boolean, (0.9,0.9))
85
86
    p_{cold_{no}} = Prob(Cold, [], [0.9, 0.1])
87
    p_{flu} = Prob(Flu, [], [0.95, 0.05])
88
89
    p_{covid_{no}} = Prob(Covid,[],[0.99,0.01])
90
    p_cough_no = NoisyOR(Cough, [Cold,Flu,Covid], [0.1, 0.3, 0.2, 0.7])
91
    p_fever_no = NoisyOR(Fever, [ Flu,Covid], [0.01, 0.6, 0.7])
92
93
    p_sneeze_no = NoisyOR(Sneeze, [Cold,Flu ], [0.05, 0.5, 0.2
94
    bn_no1 = BeliefNetwork("Bipartite Diagnostic Network (noisy-or)",
95
                           {Cough, Fever, Sneeze, Cold, Flu, Covid},
96
97
                            {p_cold_no, p_flu_no, p_covid_no, p_cough_no,
                                p_fever_no, p_sneeze_no})
98
    # to see the conditional probability of Noisy-or do:
99
    # print(p_cough_no.to_table())
100
101
    # example from box "Noisy-or compared to logistic regression"
102
   | # X = Variable("X",boolean)
103
104
   | # w0 = 0.01 |
   # print(NoisyOR(X,[A,B,C,D],[w0, 1-(1-0.05)/(1-w0), 1-(1-0.1)/(1-w0),
105
        1-(1-0.2)/(1-w0), 1-(1-0.2)/(1-w0), ]).to_table(given={X:True}))
```

Bipartite Diagnostic Model with Logistic Regression

The belief network bn\_1r1 is a bipartite diagnostic model, with independent diseases, and the symptoms depend on the diseases, where the CPDs are defined using logistic regression. It has the same graphical structure as the previous example (see Figure 9.5). This has the (approximately) the same conditional probabilities as the previous example when zero or one diseases are present. Note that  $sigmoid(-2.2) \approx 0.1$ 

```
_probExamples.py — (continued)
107
    p_{cold_1r} = Prob(Cold,[],[0.9,0.1])
108
    p_{flu_lr} = Prob(Flu,[],[0.95,0.05])
109
    p_{covid_1} = Prob(Covid,[],[0.99,0.01])
110
111
    p_cough_lr = LogisticRegression(Cough, [Cold,Flu,Covid], [-2.2, 1.67,
112
        1.26, 3.19
    p_fever_lr = LogisticRegression(Fever, [ Flu,Covid], [-4.6,
                                                                          5.02,
113
    p_sneeze_lr = LogisticRegression(Sneeze, [Cold,Flu ], [-2.94, 3.04, 1.79
115
    bn_lr1 = BeliefNetwork("Bipartite Diagnostic Network - logistic
116
        regression",
117
                            {Cough, Fever, Sneeze, Cold, Flu, Covid},
                             {p_cold_lr, p_flu_lr, p_covid_lr, p_cough_lr,
118
                                 p_fever_lr, p_sneeze_lr})
119
    # to see the conditional probability of Noisy-or do:
120
    #print(p_cough_lr.to_table())
121
122
    # example from box "Noisy-or compared to logistic regression"
123
    # from learnLinear import sigmoid, logit
    # w0=logit(0.01)
125
    # X = Variable("X",boolean)
126
127
    # print(LogisticRegression(X,[A,B,C,D],[w0, logit(0.05)-w0, logit(0.1)-w0,
        logit(0.2)-w0, logit(0.2)-w0]).to_table(given={X:True}))
    # try to predict what would happen (and then test) if we had
128
   | # w0=logit(0.01)
129
```

# 9.5 Inference Methods

Each of the inference methods implements the query method that computes the posterior probability of a variable given a dictionary of {variable : value} observations. The methods are Displayable because they implement the display method which is text-based unless overridden.

```
from display import Displayable
95
96
    class InferenceMethod(Displayable):
97
        """The abstract class of graphical model inference methods"""
98
        method_name = "unnamed" # each method should have a method name
99
100
101
        def __init__(self,gm=None):
           self.gm = gm
102
103
       def query(self, qvar, obs={}):
104
           """returns a {value:prob} dictionary for the query variable"""
105
           raise NotImplementedError("InferenceMethod query") # abstract method
106
```

We use bn\_4ch as the test case, in particular  $P(B \mid D = true)$ . This needs an error threshold, particularly for the approximate methods, where the default threshold is much too accurate.

```
_probGraphicalModels.py — (continued)
        def testIM(self, threshold=0.0000000001):
108
            solver = self(bn_4ch)
109
            res = solver.query(B,{D:True})
110
111
            correct_answer = 0.429632380245
            assert correct_answer-threshold < res[True] <</pre>
112
                 correct_answer+threshold, \
                    f"value {res[True]} not in desired range for
113
                        {self.method_name}"
114
            print(f"Unit test passed for {self.method_name}.")
```

## 9.5.1 Showing Posterior Distributions

The show\_post method draws the posterior distribution of all variables. Figure 9.6 shows the result of bn\_reportRC.show\_post({Report:True}) when run after loading probRC.py (see below).

```
\_probGraphicalModels.py — (continued) .
        def show_post(self, obs={}, num_format="{:.3f}", fontsize=10,
116
            facecolor='orange'):
            """draws the graphical model conditioned on observations obs
117
               num_format is number format (allows for more or less precision)
118
               fontsize gives size of the text
119
               facecolor gives the color of the nodes
120
121
            plt.ion() # interactive
122
            ax = plt.figure().gca()
123
124
            ax.set_axis_off()
            plt.title(self.gm.title+" observed: "+str(obs), fontsize=fontsize)
125
            bbox = dict(boxstyle="round4,pad=1.0,rounding_size=0.5",
126
                facecolor=facecolor)
            vartext = {} # variable:text dictionary
127
            for var in self.gm.variables: #reversed(self.gm.topological_sort()):
128
```



Report-of-leaving observed: {Report: True}

Figure 9.6: The report-of-leaving belief network with posterior distributions

```
if var in obs:
129
                   text = var.name + "=" + str(obs[var])
130
               else:
131
                   distn = self.query(var, obs=obs)
132
133
                   text = var.name + "\n" + "\n".join(str(d)+":
134
                        "+num_format.format(v) for (d,v) in distn.items())
135
                vartext[var] = text
               # Draw arcs
136
                for par in self.gm.var2parents[var]:
137
                       ax.annotate(text, par.position, xytext=var.position,
138
                                       arrowprops={'arrowstyle':'<-'},bbox=bbox,</pre>
139
                                       ha='center', va='center',
140
                                           fontsize=fontsize)
            for var in self.gm.variables:
141
               x,y = var.position
142
               plt.text(x,y,vartext[var], bbox=bbox, ha='center', va='center',
143
                    fontsize=fontsize)
```

# 9.6 Naive Search

An instance of a *ProbSearch* object takes in a graphical model. The query method uses naive search to compute the probability of a query variable given obser-

9.6. Naive Search 219

vations on other variables. See Figure 9.9 of Poole and Mackworth [2023].

```
_probRC.py — Recursive Conditioning for Graphical Models
   import math
11
   from probGraphicalModels import GraphicalModel, InferenceMethod
12
   from probFactors import Factor
13
14
15
   class ProbSearch(InferenceMethod):
       """The class that queries graphical models using recursive conditioning
16
17
       gm is graphical model to query
18
19
       method_name = "naive search"
20
21
       def __init__(self,gm=None):
22
           InferenceMethod.__init__(self, gm)
23
           ## self.max_display_level = 3
24
25
       def query(self, qvar, obs={}, split_order=None):
26
           """computes P(qvar | obs) where
27
           qvar is the query variable
28
           obs is a variable:value dictionary
29
           split_order is a list of the non-observed non-query variables in gm
30
31
           if gvar in obs:
32
               return {val:(1 if val == obs[qvar] else 0)
33
                          for val in qvar.domain}
34
           else:
35
              if split_order == None:
36
                   split_order = [v for v in self.gm.variables
37
                                   if (v not in obs) and v != qvar]
38
              unnorm = [self.prob_search({qvar:val}|obs, self.gm.factors,
39
                  split_order)
                           for val in qvar.domain]
40
              p_obs = sum(unnorm)
41
              return {val:pr/p_obs for val,pr in zip(qvar.domain, unnorm)}
42
```

The following is the naive search-based algorithm. It is exponential in the number of variables, so is not very useful. However, it is simple, and helpful to understand before looking at the more complicated algorithm used in the subclass.

```
def prob_search(self, context, factors, split_order):

"""simple search algorithm

context: a variable:value dictionary

factors: a set of factors

split_order: list of variables not assigned in context

returns sum over variable assignments to variables in split order

of product of factors """

self.display(2, "calling prob_search,",(context,factors,split_order))
```

```
if not factors:
51
52
               return 1
           elif to_eval := {fac for fac in factors
53
                               if fac.can_evaluate(context)}:
54
               # evaluate factors when all variables are assigned
               self.display(3,"prob_search evaluating factors",to_eval)
56
57
              val = math.prod(fac.get_value(context) for fac in to_eval)
               return val * self.prob_search(context, factors-to_eval,
58
                   split_order)
           else:
59
               total = 0
60
              var = split_order[0]
61
              self.display(3, "prob_search branching on", var)
62
               for val in var.domain:
                  total += self.prob_search({var:val}|context, factors,
64
                       split_order[1:])
               self.display(3, "prob_search branching on", var, "returning",
65
                   total)
               return total
66
```

# 9.7 Recursive Conditioning

The **recursive conditioning (RC)** algorithm adds forgetting and caching and recognizing disconnected components to the naive search. We do this by adding a cache and redefining the recursive search algorithm. It inherits the query method. See Figure 9.12 of Poole and Mackworth [2023].

The cache is initialized with the empty context and empty factors has probability 1. This means that checking the cache can act as the base case when the context is empty.

```
_probRC.py — (continued)
   class ProbRC(ProbSearch):
68
       method_name = "recursive conditioning"
69
70
71
       def __init__(self,gm=None):
           self.cache = {(frozenset(), frozenset()):1}
72
           ProbSearch.__init__(self,gm)
73
74
       def prob_search(self, context, factors, split_order):
75
           """ returns \sum_{split_order} \prod_{factors} given assignment in
76
               context
           context is a variable: value dictionary
77
           factors is a set of factors
78
           split_order: list of variables in factors that are not in context
79
           self.display(3,"calling rc,",(context,factors))
81
           ce = (frozenset(context.items()), frozenset(factors)) # key for the
82
               cache entry
```

```
if ce in self.cache:
83
84
                self.display(3,"rc cache lookup",(context,factors))
                return self.cache[ce]
85
            elif vars_not_in_factors := {var for var in context
86
                                           if not any(var in fac.variables
87
                                                          for fac in factors)}:
88
                # forget variables not in any factor
                self.display(3,"rc forgetting variables", vars_not_in_factors)
90
                return self.prob_search({key:val for (key,val) in
91
                    context.items()
                                   if key not in vars_not_in_factors},
92
                               factors, split_order)
93
            elif to_eval := {fac for fac in factors
94
                                if fac.can_evaluate(context)}:
95
                # evaluate factors when all variables are assigned
96
                self.display(3,"rc evaluating factors",to_eval)
97
                val = math.prod(fac.get_value(context) for fac in to_eval)
98
                if val == 0:
99
                   return 0
100
                else:
101
                return val * self.prob_search(context,
102
103
                                            {fac for fac in factors
                                                       if fac not in to_eval},
104
                                            split_order)
105
            elif len(comp := connected_components(context, factors,
106
                split_order)) > 1:
                # there are disconnected components
107
108
                self.display(3, "splitting into connected components", comp, "in
                    context",context)
                return(math.prod(self.prob_search(context,f,eo) for (f,eo) in
109
                    comp))
            else:
110
                assert split_order, "split_order should not be empty to get
111
                    here"
                total = 0
112
                var = split_order[0]
113
                self.display(3, "rc branching on", var)
114
                for val in var.domain:
115
                   total += self.prob_search({var:val}|context, factors,
116
                        split_order[1:])
                self.cache[ce] = total
117
                self.display(2, "rc branching on", var, "returning", total)
118
119
                return total
```

connected\_components returns a list of connected components, where a connected component is a set of factors and a set of variables, where the graph that connects variables and factors that involve them is connected. The connected components are built one at a time; with a current connected component. At all times factors is partitioned into 3 disjoint sets:

• component\_factors containing factors in the current connected compo-

nent where all factors that share a variable are already in the component

- factors\_to\_check containing factors in the current connected component where potentially some factors that share a variable are not in the component; these need to be checked
- other\_factors the other factors that are not (yet) in the connected component

```
_probRC.py — (continued)
    def connected_components(context, factors, split_order):
121
        """returns a list of (f,e) where f is a subset of factors and e is a
122
            subset of split_order
        such that each element shares the same variables that are disjoint from
123
            other elements.
124
        other_factors = set(factors) #copies factors
125
        factors_to_check = {other_factors.pop()} # factors in connected
126
            component still to be checked
        component_factors = set() # factors in first connected component
127
            already checked
        component_variables = set() # variables in first connected component
128
        while factors_to_check:
129
           next_fac = factors_to_check.pop()
130
           component_factors.add(next_fac)
131
           new_vars = set(next_fac.variables) - component_variables -
132
                context.keys()
           component_variables |= new_vars
133
134
           for var in new_vars:
               factors_to_check |= {f for f in other_factors
135
                                     if var in f.variables}
136
               other_factors -= factors_to_check # set difference
137
138
        if other_factors:
            return ( [(component_factors,[e for e in split_order
139
                                          if e in component_variables])]
140
                   + connected_components(context, other_factors,
141
                                         [e for e in split_order
142
                                            if e not in component_variables]) )
143
        else:
144
            return [(component_factors, split_order)]
145
```

Testing:

```
from probGraphicalModels import bn_4ch, A,B,C,D,f_a,f_b,f_c,f_d
bn_4chv = ProbRC(bn_4ch)
## bn_4chv.query(A,{})
## bn_4chv.query(D,{})
## InferenceMethod.max_display_level = 3 # show more detail in displaying
## InferenceMethod.max_display_level = 1 # show less detail in displaying
```

```
## bn_4chv.query(A,{D:True},[C,B])
153
154
    ## bn_4chv.query(B,{A:True,D:False})
155
    from probExamples import bn_report,Alarm,Fire,Leaving,Report,Smoke,Tamper
156
    bn_reportRC = ProbRC(bn_report) # answers queries using recursive
157
        conditioning
158
    ## bn_reportRC.query(Tamper,{})
    ## InferenceMethod.max_display_level = 0 # show no detail in displaying
159
    ## bn_reportRC.query(Leaving,{})
160
    ## bn_reportRC.query(Tamper,{},
161
        split_order=[Smoke,Fire,Alarm,Leaving,Report])
    ## bn_reportRC.query(Tamper,{Report:True})
162
    ## bn_reportRC.query(Tamper,{Report:True,Smoke:False})
163
164
    ## To display resulting posteriors try:
165
    # bn_reportRC.show_post({})
166
    # bn_reportRC.show_post({Smoke:False})
167
    # bn_reportRC.show_post({Report:True})
168
    # bn_reportRC.show_post({Report:True, Smoke:False})
169
170
    ## Note what happens to the cache when these are called in turn:
171
    ## bn_reportRC.query(Tamper, {Report:True},
172
        split_order=[Smoke,Fire,Alarm,Leaving])
    ## bn_reportRC.query(Smoke,{Report:True},
173
        split_order=[Tamper,Fire,Alarm,Leaving])
174
    from probExamples import bn_sprinkler, Season, Sprinkler, Rained,
175
        Grass_wet, Grass_shiny, Shoes_wet
    bn_sprinklerv = ProbRC(bn_sprinkler)
176
    ## bn_sprinklerv.query(Shoes_wet,{})
177
    ## bn_sprinklerv.query(Shoes_wet,{Rained:True})
178
    ## bn_sprinklerv.query(Shoes_wet,{Grass_shiny:True})
179
    ## bn_sprinklerv.query(Shoes_wet,{Grass_shiny:False,Rained:True})
180
181
    from probExamples import bn_no1, bn_lr1, Cough, Fever, Sneeze, Cold, Flu,
182
        Covid
    bn_no1v = ProbRC(bn_no1)
183
    bn_1r1v = ProbRC(bn_1r1)
184
    ## bn_no1v.query(Flu, {Fever:1, Sneeze:1})
185
    ## bn_lr1v.query(Flu, {Fever:1, Sneeze:1})
186
    ## bn_lr1v.query(Cough,{})
187
    ## bn_lr1v.query(Cold, {Cough:1, Sneeze:0, Fever:1})
188
    ## bn_lr1v.query(Flu,{Cough:0,Sneeze:1,Fever:1})
    ## bn_lr1v.query(Covid,{Cough:1,Sneeze:0,Fever:1})
190
    ## bn_lr1v.query(Covid,{Cough:1,Sneeze:0,Fever:1,Flu:0})
191
    ## bn_lr1v.guery(Covid,{Cough:1,Sneeze:0,Fever:1,Flu:1})
192
193
    if __name__ == "__main__":
194
        InferenceMethod.testIM(ProbSearch)
195
        InferenceMethod.testIM(ProbRC)
196
```

The following example uses the decision tree representation of Section 9.3.4 (page 208). Does recursive conditioning split on variable full for the query commented out below? What can be done to guarantee that it does?

```
_probRC.py — (continued) _
    from probFactors import Prob, action, rain, full, wet, p_wet
198
    from probGraphicalModels import BeliefNetwork
199
    p_action = Prob(action,[],{'go_out':0.3, 'get_coffee':0.7})
    p_{rain} = Prob(rain, [], [0.4, 0.6])
201
202
    p_{full} = Prob(full, [], [0.1, 0.9])
203
204
    wetBN = BeliefNetwork("Wet (decision tree CPD)", {action, rain, full, wet},
                             {p_action, p_rain, p_full, p_wet})
205
    wetRC = ProbRC(wetBN)
206
    # wetRC.query(wet, {action:'go_out', rain:True})
207
    # wetRC.show_post({action:'go_out', rain:True})
208
   | # wetRC.show_post({action:'go_out', wet:True})
209
```

## 9.8 Variable Elimination

An instance of a *VE* object takes in a graphical model. The query method uses variable elimination to compute the probability of a variable given observations on some other variables.

```
___probVE.py — Variable Elimination for Graphical Models _
   from probFactors import Factor, FactorObserved, FactorSum, factor_times
11
   from probGraphicalModels import GraphicalModel, InferenceMethod
13
   class VE(InferenceMethod):
14
       """The class that queries Graphical Models using variable elimination.
15
16
       gm is graphical model to query
17
18
       method_name = "variable elimination"
19
20
21
       def __init__(self,gm=None):
           InferenceMethod.__init__(self, gm)
22
23
       def query(self,var,obs={},elim_order=None):
24
           """computes P(var|obs) where
25
           var is a variable
26
           obs is a {variable:value} dictionary"""
27
           if var in obs:
28
               return {var:1 if val == obs[var] else 0 for val in var.domain}
           else:
30
               if elim_order == None:
                   elim_order = self.gm.variables
32
               projFactors = [self.project_observations(fact,obs)
33
                             for fact in self.gm.factors]
34
```

```
for v in elim_order:
    if v != var and v not in obs:
        projFactors = self.eliminate_var(projFactors,v)
    unnorm = factor_times(var,projFactors)
    p_obs=sum(unnorm)
    self.display(1,"Unnormalized probs:",unnorm,"Prob obs:",p_obs)
    return {val:pr/p_obs for val,pr in zip(var.domain, unnorm)}
```

A *FactorObserved* is a factor that is the result of some observations on another factor. We don't store the values in a list; we just look them up as needed. The observations can include variables that are not in the list, but should have some intersection with the variables in the factor.

```
_probFactors.py — (continued)
    class FactorObserved(Factor):
237
        def __init__(self, factor, obs):
238
            Factor.__init__(self, [v for v in factor.variables if v not in obs])
239
            self.observed = obs
240
            self.orig_factor = factor
241
242
        def get_value(self,assignment):
243
            return self.orig_factor.get_value(assignment|self.observed)
244
```

A *FactorSum* is a factor that is the result of summing out a variable from the product of other factors. I.e., it constructs a representation of:

$$\sum_{var} \prod_{f \in factors} f.$$

We store the values in a list in a lazy manner; if they are already computed, we used the stored values. If they are not already computed we can compute and store them.

```
_probFactors.py — (continued) _
    class FactorSum(Factor):
246
        def __init__(self, var, factors):
247
            self.var_summed_out = var
248
            self.factors = factors
249
            vars = list({v for fac in factors
250
                           for v in fac.variables if v is not var})
251
            #for fac in factors:
252
                 for v in fac.variables:
253
                     if v is not var and v not in vars:
254
255
                         vars.append(v)
            Factor.__init__(self, vars)
256
257
            self.values = {}
258
        def get_value(self,assignment):
259
            """lazy implementation: if not saved, compute it. Return saved
260
                value"""
            asst = frozenset(assignment.items())
261
```

```
if asst in self.values:
262
263
                return self.values[asst]
            else:
264
                total = 0
265
                new_asst = assignment.copy()
266
                for val in self.var_summed_out.domain:
267
                    new_asst[self.var_summed_out] = val
268
                    total += math.prod(fac.get_value(new_asst) for fac in
269
                        self.factors)
                self.values[asst] = total
270
                return total
271
```

The method *factor\_times* multiplies a set of factors that are all factors on the same variable (or on no variables). This is the last step in variable elimination before normalizing. It returns an array giving the product for each value of *variable*.

```
_probFactors.py — (continued) _
    def factor_times(variable, factors):
273
        """when factors are factors just on variable (or on no variables)"""
274
        prods = []
275
        facs = [f for f in factors if variable in f.variables]
276
        for val in variable.domain:
            ast = {variable:val}
278
            prods.append(math.prod(f.get_value(ast) for f in facs))
279
        return prods
280
```

To project observations onto a factor, for each variable that is observed in the factor, we construct a new factor that is the factor projected onto that variable. *Factor\_observed* creates a new factor that is the result is assigning a value to a single variable.

```
_probVE.py — (continued)
       def project_observations(self,factor,obs):
43
           """Returns the resulting factor after observing obs
44
45
           obs is a dictionary of {variable:value} pairs.
46
47
           if any((var in obs) for var in factor.variables):
48
               # a variable in factor is observed
49
               return FactorObserved(factor,obs)
50
51
           else:
               return factor
52
53
       def eliminate_var(self, factors, var):
54
           """Eliminate a variable var from a list of factors.
55
           Returns a new set of factors that has var summed out.
56
57
           self.display(2,"eliminating ",str(var))
58
           contains_var = []
           not_contains_var = []
60
```

```
for fac in factors:
61
62
               if var in fac.variables:
                   contains_var.append(fac)
63
               else:
64
                   not_contains_var.append(fac)
           if contains_var == []:
66
67
               return factors
           else:
68
               newFactor = FactorSum(var,contains_var)
               self.display(2,"Multiplying:",[str(f) for f in contains_var])
70
               self.display(2,"Creating factor:", newFactor)
71
               self.display(3, newFactor.to_table()) # factor in detail
72
               not_contains_var.append(newFactor)
73
               return not_contains_var
74
75
    from probGraphicalModels import bn_4ch, A,B,C,D
76
   bn_4chv = VE(bn_4ch)
77
   | ## bn_4chv.query(A,{})
78
   ## bn_4chv.query(D,{})
79
   | ## InferenceMethod.max_display_level = 3 # show more detail in displaying
   | ## InferenceMethod.max_display_level = 1 # show less detail in displaying
81
   | ## bn_4chv.query(A,{D:True})
   ## bn_4chv.query(B,{A:True,D:False})
83
    from probExamples import bn_report,Alarm,Fire,Leaving,Report,Smoke,Tamper
85
    bn_reportv = VE(bn_report) # answers queries using variable elimination
86
    ## bn_reportv.query(Tamper,{})
87
   | ## InferenceMethod.max_display_level = 0 # show no detail in displaying
   | ## bn_reportv.query(Leaving, {})
89
   ## bn_reportv.query(Tamper,{},elim_order=[Smoke,Report,Leaving,Alarm,Fire])
    ## bn_reportv.query(Tamper, {Report:True})
91
   ## bn_reportv.query(Tamper, {Report:True, Smoke:False})
92
93
94
    from probExamples import bn_sprinkler, Season, Sprinkler, Rained,
        Grass_wet, Grass_shiny, Shoes_wet
    bn_sprinklerv = VE(bn_sprinkler)
95
   ## bn_sprinklerv.query(Shoes_wet,{})
96
    ## bn_sprinklerv.query(Shoes_wet,{Rained:True})
97
   ## bn_sprinklerv.query(Shoes_wet,{Grass_shiny:True})
   ## bn_sprinklerv.query(Shoes_wet,{Grass_shiny:False,Rained:True})
99
100
    from probExamples import bn_lr1, Cough, Fever, Sneeze, Cold, Flu, Covid
101
    vediag = VE(bn_lr1)
102
   ## vediag.query(Cough,{})
103
   | ## vediag.query(Cold,{Cough:1,Sneeze:0,Fever:1})
104
   ## vediag.query(Flu,{Cough:0,Sneeze:1,Fever:1})
105
   ## vediag.query(Covid, {Cough:1, Sneeze:0, Fever:1})
106
   | ## vediag.query(Covid,{Cough:1,Sneeze:0,Fever:1,Flu:0})
107
   ## vediag.query(Covid,{Cough:1,Sneeze:0,Fever:1,Flu:1})
108
109
```

```
if __name__ == "__main__":
    InferenceMethod.testIM(VE)
```

## 9.9 Stochastic Simulation

## 9.9.1 Sampling from a discrete distribution

The method *sample\_one* generates a single sample from a (possibly unnormalized) distribution. *dist* is a {*value* : weight} dictionary, where  $weight \ge 0$ . This returns a value with probability in proportion to its weight.

```
_probStochSim.py — Probabilistic inference using stochastic simulation _
   import random
11
   from probGraphicalModels import InferenceMethod
13
14
   def sample_one(dist):
       """returns the index of a single sample from normalized distribution
15
            dist."""
       rand = random.random()*sum(dist.values())
16
17
       cum = 0
                   # cumulative weights
       for v in dist:
18
           cum += dist[v]
19
           if cum > rand:
20
                return v
21
```

If we want to generate multiple samples, repeatedly calling  $sample\_one$  may not be efficient. If we want to generate n samples, and the distribution is over m values,  $sample\_one$  takes time O(mn). If m and n are of the same order of magnitude, we can do better.

The method *sample\_multiple* generates multiple samples from a distribution defined by *dist*, where *dist* is a  $\{value : weight\}$  dictionary, where  $weight \ge 0$  and the weights are not all zero. This returns a list of values, of length  $num\_samples$ , where each sample is selected with a probability proportional to its weight.

The method generates all of the random numbers, sorts them, and then goes through the distribution once, saving the selected samples.

```
_probStochSim.py — (continued)
   def sample_multiple(dist, num_samples):
23
       """returns a list of num_samples values selected using distribution
24
       dist is a {value:weight} dictionary that does not need to be normalized
25
26
27
       total = sum(dist.values())
       rands = sorted(random.random()*total for i in range(num_samples))
28
       result = []
       dist_items = list(dist.items())
30
       cum = dist_items[0][1] # cumulative sum
31
       index = 0
32
```

```
for r in rands:
    while r>cum:
    index += 1
    cum += dist_items[index][1]
    result.append(dist_items[index][0])
return result
```

#### Exercise 9.1

What is the time and space complexity of the following 4 methods to generate *n* samples, where *m* is the length of *dist*:

- (a) *n* calls to *sample\_one*
- (b) *sample\_multiple*
- (c) Create the cumulative distribution (choose how this is represented) and, for each random number, do a binary search to determine the sample associated with the random number.
- (d) Choose a random number in the range [i/n, (i+1)/n) for each  $i \in range(n)$ , where n is the number of samples. Use these as the random numbers to select the particles. (Does this give random samples?)

For each method suggest when it might be the best method.

The *test\_sampling* method can be used to generate the statistics from a number of samples. It is useful to see the variability as a function of the number of samples. Try it for a few samples and also for many samples.

```
_probStochSim.py — (continued)
   def test_sampling(dist, num_samples):
40
       """Given a distribution, dist, draw num_samples samples
41
42
       and return the resulting counts
43
       result = {v:0 for v in dist}
44
       for v in sample_multiple(dist, num_samples):
45
           result[v] += 1
46
47
       return result
48
   # try the following queries a number of times each:
49
   # test_sampling({1:1,2:2,3:3,4:4}, 100)
50
  | # test_sampling({1:1,2:2,3:3,4:4}, 100000)
```

## 9.9.2 Sampling Methods for Belief Network Inference

A *SamplingInferenceMethod* is an *InferenceMethod*, but the query method also takes arguments for the number of samples and the sample-order (which is an ordering of factors). The first methods assume a belief network (and not an undirected graphical model).

```
_____probStochSim.py — (continued) ______

53 | class SamplingInferenceMethod(InferenceMethod):
```

https://aipython.org

```
"""The abstract class of sampling-based belief network inference
    methods"""

def __init__(self,gm=None):
    InferenceMethod.__init__(self, gm)

def query(self,qvar,obs={},number_samples=1000,sample_order=None):
    raise NotImplementedError("SamplingInferenceMethod query") #
    abstract
```

## 9.9.3 Rejection Sampling

```
__probStochSim.py — (continued)
   class RejectionSampling(SamplingInferenceMethod):
62
       """The class that queries Graphical Models using Rejection Sampling.
63
64
       gm is a belief network to query
65
66
       method_name = "rejection sampling"
67
68
       def __init__(self, gm=None):
69
           SamplingInferenceMethod.__init__(self, gm)
70
71
       def query(self, qvar, obs={}, number_samples=1000, sample_order=None):
72
           """computes P(qvar | obs) where
73
           qvar is a variable.
74
           obs is a {variable:value} dictionary.
75
           sample_order is a list of variables where the parents
76
            come before the variable.
78
           if sample_order is None:
               sample_order = self.gm.topological_sort()
80
           self.display(2,*sample_order,sep="\t")
81
           counts = {val:0 for val in qvar.domain}
82
           for i in range(number_samples):
83
               rejected = False
               sample = {}
85
              for nvar in sample_order:
86
                  fac = self.gm.var2cpt[nvar] #factor with nvar as child
87
                  val = sample_one({v:fac.get_value({**sample, nvar:v}) for v
                       in nvar.domain})
                  self.display(2,val,end="\t")
89
                  if nvar in obs and obs[nvar] != val:
90
                      rejected = True
                      self.display(2,"Rejected")
92
                      break
93
                  sample[nvar] = val
94
               if not rejected:
95
                  counts[sample[qvar]] += 1
96
```

## 9.9.4 Likelihood Weighting

Likelihood weighting includes a weight for each sample. Instead of rejecting samples based on observations, likelihood weighting changes the weights of the sample in proportion with the probability of the observation. The weight then becomes the probability that the variable would have been rejected.

```
__probStochSim.py — (continued) _
    class LikelihoodWeighting(SamplingInferenceMethod):
104
        """The class that queries Graphical Models using Likelihood weighting.
105
106
        gm is a belief network to query
107
108
        method_name = "likelihood weighting"
109
110
        def __init__(self, gm=None):
111
            SamplingInferenceMethod.__init__(self, gm)
112
113
        def query(self,qvar,obs={},number_samples=1000,sample_order=None):
114
            """computes P(qvar | obs) where
115
            qvar is a variable.
116
            obs is a {variable:value} dictionary.
117
            sample_order is a list of factors where factors defining the parents
118
              come before the factors for the child.
119
120
            if sample_order is None:
121
                sample_order = self.gm.topological_sort()
122
            self.display(2,*[v for v in sample_order
123
                               if v not in obs],sep="\t")
124
            counts = {val:0 for val in qvar.domain}
125
            for i in range(number_samples):
126
                sample = {}
127
                weight = 1.0
128
                for nvar in sample_order:
129
                    fac = self.gm.var2cpt[nvar]
130
                    if nvar in obs:
131
                       sample[nvar] = obs[nvar]
132
133
                       weight *= fac.get_value(sample)
                    else:
134
                       val = sample_one({v:fac.get_value({**sample,nvar:v}) for
135
                            v in nvar.domain})
                        self.display(2,val,end="\t")
136
                       sample[nvar] = val
137
```

```
counts[sample[qvar]] += weight
self.display(2,weight)

tot = sum(counts.values())

# as well as the distribution we also include the raw counts
dist = {c:v/tot for (c,v) in counts.items()}
dist["raw_counts"] = counts

return dist
```

**Exercise 9.2** Change this algorithm so that it does **importance sampling** using a proposal distribution. It needs *sample\_one* using a different distribution and then update the weight of the current sample. For testing, use a proposal distribution that only specifies probabilities for some of the variables (and the algorithm uses the probabilities for the network in other cases).

#### 9.9.5 Particle Filtering

In this implementation, a particle is a {variable : value} dictionary. Because adding a new value to dictionary involves a side effect, the dictionaries need to be copied during resampling.

```
_probStochSim.py — (continued)
    class ParticleFiltering(SamplingInferenceMethod):
146
        """The class that queries Graphical Models using Particle Filtering.
147
148
        gm is a belief network to query
149
        11 11 11
150
        method_name = "particle filtering"
151
152
        def __init__(self, gm=None):
153
            SamplingInferenceMethod.__init__(self, gm)
154
155
        def query(self, qvar, obs={}, number_samples=1000, sample_order=None):
156
            """computes P(qvar | obs) where
157
            qvar is a variable.
158
            obs is a {variable:value} dictionary.
159
            sample_order is a list of factors where factors defining the parents
160
             come before the factors for the child.
161
162
            if sample_order is None:
163
                sample_order = self.gm.topological_sort()
            self.display(2,*[v for v in sample_order
165
                               if v not in obs], sep="\t")
166
            particles = [{} for i in range(number_samples)]
167
168
            for nvar in sample_order:
               fac = self.gm.var2cpt[nvar]
169
                if nvar in obs:
170
                   weights = [fac.get_value({**part, nvar:obs[nvar]})
171
                                  for part in particles]
172
                   particles = [{**p, nvar:obs[nvar]}
173
```

```
for p in resample(particles, weights,
174
                                         number_samples)]
                else:
175
                    for part in particles:
176
                        part[nvar] = sample_one({v:fac.get_value({**part,} }))
177
                            nvar:v})
178
                                                    for v in nvar.domain})
                    self.display(2,part[nvar],end="\t")
179
            counts = {val:0 for val in qvar.domain}
180
            for part in particles:
181
                counts[part[qvar]] += 1
182
            tot = sum(counts.values())
183
            # as well as the distribution we also include the raw counts
184
            dist = {c:v/tot for (c,v) in counts.items()}
185
            dist["raw_counts"] = counts
186
            return dist
187
```

#### Resampling

Resample is based on *sample\_multiple* but works with an array of particles. (Aside: Python doesn't let us use *sample\_multiple* directly as it uses a dictionary and particles, represented as dictionaries can't be the key of dictionaries).

```
_probStochSim.py — (continued) _
    def resample(particles, weights, num_samples):
189
        """returns num_samples copies of particles resampled according to
190
            weights.
        particles is a list of particles
191
        weights is a list of positive numbers, of same length as particles
192
        num_samples is n integer
193
194
        total = sum(weights)
195
        rands = sorted(random.random()*total for i in range(num_samples))
196
        result = []
197
        cum = weights[0]
                            # cumulative sum
198
        index = 0
199
        for r in rands:
200
            while r>cum:
201
                index += 1
202
                cum += weights[index]
203
            result.append(particles[index])
204
        return result
205
```

## 9.9.6 Examples

https://aipython.org

Version 0.9.13

```
bn_4chL = LikelihoodWeighting(bn_4ch)
209
210
    ## InferenceMethod.max_display_level = 2 # detailed tracing for all
        inference methods
    ## bn_4chr.query(A,{})
211
    ## bn_4chr.query(C,{})
    ## bn_4chr.query(A,{C:True})
213
214
    ## bn_4chr.query(B,{A:True,C:False})
215
    from probExamples import bn_report,Alarm,Fire,Leaving,Report,Smoke,Tamper
216
    bn_reportr = RejectionSampling(bn_report) # answers queries using
217
        rejection sampling
    bn_reportL = LikelihoodWeighting(bn_report) # answers queries using
218
        likelihood weighting
    bn_reportp = ParticleFiltering(bn_report) # answers queries using particle
219
        filtering
    ## bn_reportr.query(Tamper,{})
220
    ## bn_reportr.query(Tamper,{})
221
    ## bn_reportr.query(Tamper,{Report:True})
222
    ## InferenceMethod.max_display_level = 0 # no detailed tracing for all
223
        inference methods
    ## bn_reportr.query(Tamper,{Report:True},number_samples=100000)
224
    ## bn_reportr.query(Tamper,{Report:True,Smoke:False})
225
    ## bn_reportr.query(Tamper,{Report:True,Smoke:False},number_samples=100)
226
227
    ## bn_reportL.guery(Tamper,{Report:True,Smoke:False},number_samples=100)
228
    ## bn_reportL.query(Tamper,{Report:True,Smoke:False},number_samples=100)
229
230
    from probExamples import bn_sprinkler, Season, Sprinkler
231
    from probExamples import Rained, Grass_wet, Grass_shiny, Shoes_wet
232
    bn_sprinklerr = RejectionSampling(bn_sprinkler) # answers queries using
        rejection sampling
    bn_sprinklerL = LikelihoodWeighting(bn_sprinkler) # answers queries using
234
        rejection sampling
235
    bn_sprinklerp = ParticleFiltering(bn_sprinkler) # answers queries using
        particle filtering
    #bn_sprinklerr.query(Shoes_wet,{Grass_shiny:True,Rained:True})
236
    #bn_sprinklerL.query(Shoes_wet,{Grass_shiny:True,Rained:True})
237
    #bn_sprinklerp.query(Shoes_wet,{Grass_shiny:True,Rained:True})
238
239
    if __name__ == "__main__":
240
       InferenceMethod.testIM(RejectionSampling, threshold=0.1)
241
       InferenceMethod.testIM(LikelihoodWeighting, threshold=0.1)
242
       InferenceMethod.testIM(ParticleFiltering, threshold=0.1)
243
```

**Exercise 9.3** This code keeps regenerating the distribution of a variable given its parents. Implement one or both of the following, and compare them to the original. Make *cond\_dist* return a slice that corresponds to the distribution, and then use the slice instead of the dictionary (a list slice does not generate new data structures). Make *cond\_dist* remember values it has already computed, and only return these.

## 9.9.7 Gibbs Sampling

The following implements **Gibbs sampling**, a form of **Markov Chain Monte Carlo** MCMC.

```
_probStochSim.py — (continued)
    #import random
245
    #from probGraphicalModels import InferenceMethod
246
247
    #from probStochSim import sample_one, SamplingInferenceMethod
248
249
    class GibbsSampling(SamplingInferenceMethod):
250
        """The class that queries Graphical Models using Gibbs Sampling.
251
252
        bn is a graphical model (e.g., a belief network) to query
253
254
        method_name = "Gibbs sampling"
255
256
        def __init__(self, gm=None):
257
            SamplingInferenceMethod.__init__(self, gm)
258
            self.gm = gm
259
260
        def query(self, qvar, obs={}, number_samples=1000, burn_in=100,
261
            sample_order=None):
            """computes P(qvar | obs) where
262
            qvar is a variable.
263
            obs is a {variable:value} dictionary.
264
            sample_order is a list of non-observed variables in order, or
265
            if sample_order None, an arbitrary ordering is used
266
267
            counts = {val:0 for val in qvar.domain}
268
            if sample_order is not None:
269
               variables = sample_order
270
            else:
271
                variables = [v for v in self.gm.variables if v not in obs]
272
                random.shuffle(variables)
273
            var_to_factors = {v:set() for v in self.gm.variables}
274
            for fac in self.gm.factors:
275
                for var in fac.variables:
276
                   var_to_factors[var].add(fac)
277
            sample = {var:random.choice(var.domain) for var in variables}
278
            self.display(3,"Sample:",sample)
279
            sample.update(obs)
280
            for i in range(burn_in + number_samples):
281
                for var in variables:
282
                   # get unnormalized probability distribution of var given its
283
                        neighbors
                   vardist = {val:1 for val in var.domain}
                   for val in var.domain:
285
                       sample[var] = val
286
                       for fac in var_to_factors[var]: # Markov blanket
287
```

```
288
                           vardist[val] *= fac.get_value(sample)
                   sample[var] = sample_one(vardist)
289
               if i >= burn_in:
290
                   counts[sample[qvar]] +=1
291
                                         ",sample)
                   self.display(3,"
292
            tot = sum(counts.values())
293
294
           # as well as the computed distribution, we also include raw counts
           dist = {c:v/tot for (c,v) in counts.items()}
295
           dist["raw_counts"] = counts
296
            self.display(2, f"Gibbs sampling P({qvar}|{obs}) = {dist}")
297
            return dist
298
299
    #from probGraphicalModels import bn_4ch, A,B,C,D
300
    bn_4chg = GibbsSampling(bn_4ch)
301
    ## InferenceMethod.max_display_level = 2 # detailed tracing for all
302
        inference methods
303
    bn_4chg.query(A,{})
    ## bn_4chg.query(D,{})
304
    ## bn_4chg.query(B,{D:True})
305
    ## bn_4chg.query(B,{A:True,C:False})
306
307
308
    from probExamples import bn_report,Alarm,Fire,Leaving,Report,Smoke,Tamper
    bn_reportg = GibbsSampling(bn_report)
309
    ## bn_reportg.query(Tamper,{Report:True},number_samples=1000)
310
311
    if __name__ == "__main__":
312
        InferenceMethod.testIM(GibbsSampling, threshold=0.1)
313
```

**Exercise 9.4** Change the code so that it can have multiple query variables. Make the list of query variable be an input to the algorithm, so that the default value is the list of all non-observed variables.

**Exercise 9.5** In this algorithm, explain where it computes the probability of a variable given its Markov blanket. Instead of returning the average of the samples for the query variable, it is possible to return the average estimate of the probability of the query variable given its Markov blanket. Does this converge to the same answer as the given code? Does it converge faster, slower, or the same?

# 9.9.8 Plotting Behavior of Stochastic Simulators

The stochastic simulation runs can give different answers each time they are run. For the algorithms that give the same answer in the limit as the number of samples approaches infinity (as do all of these algorithms), the algorithms can be compared by comparing the accuracy for multiple runs. Summary statistics like the variance may provide some information, but the assumptions behind the variance being appropriate (namely that the distribution is approximately Gaussian) may not hold for cases where the predictions are bounded and often skewed.



Figure 9.7: Cumulative distribution of the prediction of various models for  $P(Tamper = True \mid report \land \neg smoke)$ 

It is more appropriate to plot the distribution of predictions over multiple runs. The *plot\_stats* method plots the prediction of a particular variable (or for the partition function) for a number of runs of the same algorithm. On the *x*-axis, is the prediction of the algorithm. On the *y*-axis is the number of runs with prediction less than or equal to the *x* value. Thus this is like a cumulative distribution over the predictions, but with counts on the *y*-axis.

Note that for runs where there are no samples that are consistent with the observations (as can happen with rejection sampling), the prediction of probability is 1.0 (as a convention for 0/0).

That variable *what* contains the query variable, or if *what* is "*prob\_ev*", the probability of evidence.

Figure 9.7 shows the distribution of various models. Recursive conditioning gives the exact answer. The others provide the cumulative prediction for 1000 runs for each method. This graph shows that for this graph and query, rejection sampling has the lowest variance. This is not always the best. (This is the first plot\_mult example below.)

```
_probStochSim.py — (continued)
    import matplotlib.pyplot as plt
315
316
    def plot_stats(method, qvar, qval, obs, number_runs=1000, **queryargs):
317
        """Plots a cumulative distribution of the prediction of the model.
318
        method is a InferenceMethod (that implements appropriate query(.))
319
        plots P(qvar=qval | obs)
320
        qvar is the query variable, qval is corresponding value
321
        obs is the {variable:value} dictionary representing the observations
322
        number_iterations is the number of runs that are plotted
323
```

```
**queryargs is the arguments to query (often number_samples for
324
            sampling methods)
325
        plt.ion()
326
        plt.xlabel("value")
327
        plt.ylabel("Cumulative Number")
328
329
        method.max_display_level, prev_mdl = 0, method.max_display_level #no
            display
        answers = [method.query(qvar,obs,**queryargs)
330
                  for i in range(number_runs)]
331
        values = [ans[qval] for ans in answers]
332
        label = f"""{method.method_name}
333
            P({qvar}={qval}|{','.join(f'{var}={val}'
                                                            for (var, val) in
334
                                                                obs.items())})"""
        values.sort()
335
        plt.plot(values, range(number_runs), label=label)
336
        plt.legend() #loc="upper left")
337
        plt.draw()
338
        method.max_display_level = prev_mdl # restore display level
339
340
341
    # Try:
    # plot_stats(bn_reportr, Tamper, True, {Report: True, Smoke: True},
342
        number_samples=1000, number_runs=1000)
    # plot_stats(bn_reportL, Tamper, True, {Report: True, Smoke: True},
343
        number_samples=1000, number_runs=1000)
    # plot_stats(bn_reportp, Tamper, True, {Report: True, Smoke: True},
344
        number_samples=1000, number_runs=1000)
    # plot_stats(bn_reportr, Tamper, True, {Report: True, Smoke: True},
345
        number_samples=100, number_runs=1000)
    # plot_stats(bn_reportL, Tamper, True, {Report: True, Smoke: True},
346
        number_samples=100, number_runs=1000)
    # plot_stats(bn_reportg, Tamper, True, {Report: True, Smoke: True},
347
        number_samples=1000, number_runs=1000)
348
    def plot_mult(methods, example, qvar, qval, obs, number_samples=1000,
349
        number_runs=1000):
        for method in methods:
350
            solver = method(example)
351
            if isinstance(method, SamplingInferenceMethod):
352
               plot_stats(solver, qvar, qval, obs,
353
                    number_samples=number_samples, number_runs=number_runs)
            else:
354
               plot_stats(solver, qvar, qval, obs, number_runs=number_runs)
355
356
    from probRC import ProbRC
357
    # Try following (but it takes a while..)
358
    methods = [ProbRC, RejectionSampling, LikelihoodWeighting,
359
        ParticleFiltering, GibbsSampling]
    #plot_mult(methods,bn_report,Tamper,True,{Report:True,Smoke:False},
360
```

## 9.10 Hidden Markov Models

This code for hidden Markov models is independent of the graphical models code, to keep it simple. Section 9.11 gives code that models hidden Markov models, and more generally, dynamic belief networks, using the graphical models code.

This HMM code assumes there are multiple Boolean observation variables that depend on the current state and are independent of each other given the state.

```
_probHMM.py — Hidden Markov Model
   import random
11
   from probStochSim import sample_one, sample_multiple
13
   class HMM(object):
14
       def __init__(self, states, obsvars, pobs, trans, indist):
15
           """A hidden Markov model.
16
           states - set of states
17
           obsvars - set of observation variables
18
           pobs - probability of observations, pobs[i][s] is P(Obs_i=True |
19
           trans - transition probability - trans[i][j] gives P(State=j |
20
               State=i)
           indist - initial distribution - indist[s] is P(State_0 = s)
21
22
23
           self.states = states
           self.obsvars = obsvars
24
25
           self.pobs = pobs
           self.trans = trans
26
27
           self.indist = indist
```

Consider the following example. Suppose you want to unobtrusively keep track of an animal in a triangular enclosure using sound. Suppose you have 3 microphones that provide unreliable (noisy) binary information at each time step. The animal is either close to one of the 3 points of the triangle or in the middle of the triangle.

https://aipython.org Version 0.9.13 June 13, 2024

```
29  # state
30  #   0=middle, 1,2,3 are corners
31  states1 = {'middle', 'c1', 'c2', 'c3'} # states
32  obs1 = {'m1','m2','m3'} # microphones
```

The observation model is as follows. If the animal is in a corner, it will be detected by the microphone at that corner with probability 0.6, and will be independently detected by each of the other microphones with a probability of 0.1. If the animal is in the middle, it will be detected by each microphone with a probability of 0.4.

The transition model is as follows: If the animal is in a corner it stays in the same corner with probability 0.80, goes to the middle with probability 0.1 or goes to one of the other corners with probability 0.05 each. If it is in the middle, it stays in the middle with probability 0.7, otherwise it moves to one the corners, each with probability 0.1.

```
_probHMM.py — (continued)
   # trans specifies the dynamics
41
42
   # trans[i] is the distribution over states resulting from state i
43
   # trans[i][j] gives P(S=j | S=i)
   sm=0.7; mmc=0.1
                                # transition probabilities when in middle
44
   sc=0.8; mcm=0.1; mcc=0.05 # transition probabilities when in a corner
   trans1 = {'middle':{'middle':sm, 'c1':mmc, 'c2':mmc, 'c3':mmc}, # was in
46
       middle
             'c1':{'middle':mcm, 'c1':sc, 'c2':mcc, 'c3':mcc}, # was in corner
47
             'c2':{'middle':mcm, 'c1':mcc, 'c2':sc, 'c3':mcc}, # was in corner
48
             'c3':{'middle':mcm, 'c1':mcc, 'c2':mcc, 'c3':sc}} # was in corner
49
```

Initially the animal is in one of the four states, with equal probability.

```
probHMM.py — (continued)

# initially we have a uniform distribution over the animal's state
indist1 = {st:1.0/len(states1) for st in states1}

hmm1 = HMM(states1, obs1, pobs1, trans1, indist1)
```

## 9.10.1 Exact Filtering for HMMs

A *HMMVEfilter* has a current state distribution which can be updated by observing or by advancing to the next time.

```
_probHMM.py — (continued)
   from display import Displayable
56
57
   class HMMVEfilter(Displayable):
58
       def __init__(self,hmm):
59
           self.hmm = hmm
60
           self.state_dist = hmm.indist
61
62
       def filter(self, obsseq):
63
           """updates and returns the state distribution following the
64
               sequence of
           observations in obsseq using variable elimination.
65
66
           Note that it first advances time.
           This is what is required if it is called sequentially.
68
           If that is not what is wanted initially, do an observe first.
69
70
           for obs in obsseq:
71
               self.advance()
                                  # advance time
72
               self.observe(obs) # observe
73
           return self.state dist
74
75
       def observe(self, obs):
76
           """updates state conditioned on observations.
77
           obs is a list of values for each observation variable"""
78
           for i in self.hmm.obsvars:
               self.state_dist = {st:self.state_dist[st]*(self.hmm.pobs[i][st]
80
                                                   if obs[i] else
81
                                                       (1-self.hmm.pobs[i][st]))
                                 for st in self.hmm.states}
82
           norm = sum(self.state_dist.values()) # normalizing constant
83
           self.state_dist = {st:self.state_dist[st]/norm for st in
84
               self.hmm.states}
           self.display(2, "After observing", obs, "state
85
               distribution:",self.state_dist)
86
       def advance(self):
87
           """advance to the next time"""
88
           nextstate = {st:0.0 for st in self.hmm.states} # distribution over
89
               next states
           for j in self.hmm.states:
                                          # j ranges over next states
90
               for i in self.hmm.states: # i ranges over previous states
91
                   nextstate[j] += self.hmm.trans[i][j]*self.state_dist[i]
92
           self.state_dist = nextstate
93
           self.display(2, "After advancing state
               distribution: ", self. state_dist)
```

The following are some queries for *hmm*1.

```
_probHMM.py — (continued)
    hmm1f1 = HMMVEfilter(hmm1)
96
    # hmm1f1.filter([{'m1':0, 'm2':1, 'm3':1}, {'m1':1, 'm2':0, 'm3':1}])
97
    ## HMMVEfilter.max_display_level = 2 # show more detail in displaying
    # hmm1f2 = HMMVEfilter(hmm1)
    # hmm1f2.filter([{'m1':1, 'm2':0, 'm3':0}, {'m1':0, 'm2':1, 'm3':0},
100
        {'m1':1, 'm2':0, 'm3':0},
                    {'m1':0, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':0},
101
        {'m1':0, 'm2':0, 'm3':0},
                    {'m1':0, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':1},
102
        {'m1':0, 'm2':0, 'm3':1},
103
                    {'m1':0, 'm2':0, 'm3':1}])
    # hmm1f3 = HMMVEfilter(hmm1)
    # hmm1f3.filter([{'m1':1, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':0},
105
        {'m1':1, 'm2':0, 'm3':0}, {'m1':1, 'm2':0, 'm3':1}])
106
    # How do the following differ in the resulting state distribution?
107
    # Note they start the same, but have different initial observations.
108
    ## HMMVEfilter.max_display_level = 1 # show less detail in displaying
109
    # for i in range(100): hmm1f1.advance()
110
    # hmm1f1.state_dist
111
   |# for i in range(100): hmm1f3.advance()
112
113 | # hmm1f3.state_dist
```

**Exercise 9.6** The representation assumes that there are a list of Boolean observations. Extend the representation so that the each observation variable can have multiple discrete values. You need to choose a representation for the model, and change the algorithm.

#### 9.10.2 Localization

The localization example in the book is a controlled HMM, where there is a given action at each time and the transition depends on the action.

```
__probLocalization.py — Controlled HMM and Localization example _
   from probHMM import HMMVEfilter, HMM
11
   from display import Displayable
   import matplotlib.pyplot as plt
13
   from matplotlib.widgets import Button, CheckButtons
14
15
   class HMM_Controlled(HMM):
16
       """A controlled HMM, where the transition probability depends on the
17
          Instead of the transition probability, it has a function act2trans
18
          from action to transition probability.
          Any algorithms need to select the transition probability according
20
              to the action.
       ,, ,, ,,
21
```

```
def __init__(self, states, obsvars, pobs, act2trans, indist):
22
23
           self.act2trans = act2trans
           HMM.__init__(self, states, obsvars, pobs, None, indist)
24
25
26
   local_states = list(range(16))
27
28
   door_positions = \{2,4,7,11\}
   def prob_door(loc): return 0.8 if loc in door_positions else 0.1
29
   local_obs = {'door':[prob_door(i) for i in range(16)]}
   act2trans = {'right': [[0.1 if next == current
31
                          else 0.8 if next == (current+1)%16
32
                          else 0.074 if next == (current+2)%16
33
                          else 0.002 for next in range(16)]
34
                             for current in range(16)],
35
                'left': [[0.1 if next == current
36
                          else 0.8 if next == (current-1)%16
37
                          else 0.074 if next == (current-2)%16
38
                          else 0.002 for next in range(16)]
39
                            for current in range(16)]}
40
   hmm_16pos = HMM_Controlled(local_states, {'door'}, local_obs,
41
                                act2trans, [1/16 for i in range(16)])
42
```

To change the VE localization code to allow for controlled HMMs, notice that the action selects which transition probability to us.

```
_probLocalization.py — (continued)
   class HMM_Local(HMMVEfilter):
43
       """VE filter for controlled HMMs
44
45
       def __init__(self, hmm):
46
           HMMVEfilter.__init__(self, hmm)
47
48
       def go(self, action):
49
           self.hmm.trans = self.hmm.act2trans[action]
50
           self.advance()
51
52
   loc_filt = HMM_Local(hmm_16pos)
53
   # loc_filt.observe({'door':True}); loc_filt.go("right");
       loc_filt.observe({'door':False}); loc_filt.go("right");
       loc_filt.observe({'door':True})
   # loc_filt.state_dist
```

The following lets us interactively move the agent and provide observations. It shows the distribution over locations. Figure 9.8 shows the GUI obtained by Show\_Localization(hmm\_16pos) after some interaction.

```
probLocalization.py — (continued)

57 | class Show_Localization(Displayable):

58 | def __init__(self, hmm, fontsize=10):

59 | self.hmm = hmm

60 | self.fontsize = fontsize
```



Figure 9.8: Localization GUI after observing a door, moving right, observing no door, moving right, and observing a door.

```
self.loc_filt = HMM_Local(hmm)
61
62
           fig,(self.ax) = plt.subplots()
63
           plt.subplots_adjust(bottom=0.2)
           ## Set up buttons:
64
           left_butt = Button(plt.axes([0.05,0.02,0.1,0.05]), "left")
65
           left_butt.label.set_fontsize(self.fontsize)
66
           left_butt.on_clicked(self.left)
67
           right_butt = Button(plt.axes([0.25,0.02,0.1,0.05]), "right")
68
           right_butt.label.set_fontsize(self.fontsize)
69
           right_butt.on_clicked(self.right)
70
           door_butt = Button(plt.axes([0.45,0.02,0.1,0.05]), "door")
71
           door_butt.label.set_fontsize(self.fontsize)
72
           door_butt.on_clicked(self.door)
73
           nodoor_butt = Button(plt.axes([0.65,0.02,0.1,0.05]), "no door")
74
75
           nodoor_butt.label.set_fontsize(self.fontsize)
           nodoor_butt.on_clicked(self.nodoor)
76
           reset_butt = Button(plt.axes([0.85,0.02,0.1,0.05]), "reset")
77
           reset_butt.label.set_fontsize(self.fontsize)
78
           reset_butt.on_clicked(self.reset)
79
           ## draw the distribution
80
           plt.subplot(1, 1, 1)
81
           self.draw_dist()
82
```

```
plt.show()
83
84
        def draw_dist(self):
85
            self.ax.clear()
86
            plt.ylim(0,1)
87
            plt.ylabel("Probability", fontsize=self.fontsize)
88
            plt.xlabel("Location", fontsize=self.fontsize)
            plt.title("Location Probability Distribution",
90
                fontsize=self.fontsize)
            plt.xticks(self.hmm.states,fontsize=self.fontsize)
91
            plt.yticks(fontsize=self.fontsize)
92
            vals = [self.loc_filt.state_dist[i] for i in self.hmm.states]
93
            self.bars = self.ax.bar(self.hmm.states, vals, color='black')
94
            self.ax.bar_label(self.bars,["{v:.2f}".format(v=v) for v in vals],
95
                padding = 1, fontsize=self.fontsize)
            plt.draw()
96
97
        def left(self, event):
98
            self.loc_filt.go("left")
99
            self.draw_dist()
100
        def right(self,event):
101
            self.loc_filt.go("right")
102
            self.draw_dist()
103
        def door(self, event):
104
            self.loc_filt.observe({'door':True})
105
            self.draw_dist()
106
        def nodoor(self, event):
107
            self.loc_filt.observe({'door':False})
108
            self.draw_dist()
109
        def reset(self, event):
110
            self.loc_filt.state_dist = {i:1/16 for i in range(16)}
111
            self.draw_dist()
112
113
114
    # Show_Localization(hmm_16pos)
    # Show_Localization(hmm_16pos, fontsize=15) # for demos - enlarge window
```

# 9.10.3 Particle Filtering for HMMs

In this implementation, a particle is just a state. If you want to do some form of smoothing, a particle should probably be a history of states. This maintains, particles, an array of states, weights an array of (non-negative) real numbers, such that weights[i] is the weight of particles[i].

```
probHMM.py — (continued)

from display import Displayable
from probStochSim import resample

class HMMparticleFilter(Displayable):
def __init__(self,hmm,number_particles=1000):
```

https://aipython.org

Version 0.9.13

```
self.hmm = hmm
119
120
            self.particles = [sample_one(hmm.indist)
                             for i in range(number_particles)]
121
            self.weights = [1 for i in range(number_particles)]
122
123
        def filter(self, obsseq):
124
            """returns the state distribution following the sequence of
125
            observations in obsseq using particle filtering.
126
127
           Note that it first advances time.
128
            This is what is required if it is called after previous filtering.
129
            If that is not what is wanted initially, do an observe first.
130
131
            for obs in obsseq:
132
                self.advance()
                                 # advance time
133
                self.observe(obs) # observe
134
               self.resample_particles()
135
                self.display(2,"After observing", str(obs),
136
                              "state distribution:",
137
                                  self.histogram(self.particles))
            self.display(1,"Final state distribution:",
138
                self.histogram(self.particles))
            return self.histogram(self.particles)
139
140
        def advance(self):
141
            """advance to the next time.
142
            This assumes that all of the weights are 1."""
143
144
            self.particles = [sample_one(self.hmm.trans[st])
                             for st in self.particles]
145
146
        def observe(self, obs):
147
            """reweighs the particles to incorporate observations obs"""
148
            for i in range(len(self.particles)):
149
               for obv in obs:
150
                   if obs[obv]:
151
                       self.weights[i] *= self.hmm.pobs[obv][self.particles[i]]
152
153
                   else:
                       self.weights[i] *=
154
                           1-self.hmm.pobs[obv][self.particles[i]]
155
        def histogram(self, particles):
156
            """returns list of the probability of each state as represented by
157
            the particles"""
158
            tot=0
159
            hist = {st: 0.0 for st in self.hmm.states}
160
            for (st,wt) in zip(self.particles,self.weights):
161
               hist[st]+=wt
162
               tot += wt
163
            return {st:hist[st]/tot for st in hist}
164
165
```

```
def resample_particles(self):
    """resamples to give a new set of particles."""
self.particles = resample(self.particles, self.weights,
    len(self.particles))
self.weights = [1] * len(self.particles)
```

The following are some queries for *hmm*1.

```
\_probHMM.py - (continued)
171
    hmm1pf1 = HMMparticleFilter(hmm1)
    # HMMparticleFilter.max_display_level = 2 # show each step
172
    # hmm1pf1.filter([{'m1':0, 'm2':1, 'm3':1}, {'m1':1, 'm2':0, 'm3':1}])
173
174
    # hmm1pf2 = HMMparticleFilter(hmm1)
    # hmm1pf2.filter([{'m1':1, 'm2':0, 'm3':0}, {'m1':0, 'm2':1, 'm3':0},
175
        {'m1':1, 'm2':0, 'm3':0},
                    {'m1':0, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':0},
176
        {'m1':0, 'm2':0, 'm3':0},
                    {'m1':0, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':1},
    #
177
        {'m1':0, 'm2':0, 'm3':1},
                    {'m1':0, 'm2':0, 'm3':1}])
178
179
    # hmm1pf3 = HMMparticleFilter(hmm1)
    # hmm1pf3.filter([{'m1':1, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':0},
180
        {'m1':1, 'm2':0, 'm3':0}, {'m1':1, 'm2':0, 'm3':1}])
```

**Exercise 9.7** A form of importance sampling can be obtained by not resampling. Is it better or worse than particle filtering? Hint: you need to think about how they can be compared. Is the comparison different if there are more states than particles?

**Exercise 9.8** Extend the particle filtering code to continuous variables and observations. In particular, suppose the state transition is a linear function with Gaussian noise of the previous state, and the observations are linear functions with Gaussian noise of the state. You may need to research how to sample from a Gaussian distribution (or use Python's random library).

## 9.10.4 Generating Examples

The following code is useful for generating examples.

```
_probHMM.py — (continued)
182
    def simulate(hmm, horizon):
        """returns a pair of (state sequence, observation sequence) of length
183
            horizon.
        for each time t, the agent is in state_sequence[t] and
184
        observes observation_sequence[t]
185
186
        state = sample_one(hmm.indist)
187
        obsseq=[]
188
        stateseg=[]
189
        for time in range(horizon):
190
            stateseq.append(state)
191
```

```
192
           newobs =
                {obs:sample_one({0:1-hmm.pobs[obs][state],1:hmm.pobs[obs][state]})
                     for obs in hmm.obsvars}
193
            obsseq.append(newobs)
194
            state = sample_one(hmm.trans[state])
195
        return stateseq, obsseq
196
197
    def simobs(hmm, stateseq):
198
        """returns observation sequence for the state sequence"""
199
        obsseq=[]
200
        for state in stateseq:
201
           newobs =
202
                {obs:sample_one({0:1-hmm.pobs[obs][state],1:hmm.pobs[obs][state]})
                     for obs in hmm.obsvars}
203
            obsseq.append(newobs)
204
        return obsseq
205
206
    def create_eg(hmm,n):
207
        """Create an annotated example for horizon n"""
208
        seq,obs = simulate(hmm,n)
209
        print("True state sequence:", seq)
210
        print("Sequence of observations:\n",obs)
211
        hmmfilter = HMMVEfilter(hmm)
212
        dist = hmmfilter.filter(obs)
213
        print("Resulting distribution over states:\n",dist)
214
```

# 9.11 Dynamic Belief Networks

A **dynamic belief network (DBN)** is a belief network that extends in time.

There are a number of ways that reasoning can be carried out in a DBN, including:

- Rolling out the DBN for some time period, and using standard belief network inference. The latest time that needs to be in the rolled out network is the time of the latest observation or the time of a query (whichever is later). This allows us to observe any variables at any time and query any variables at any time. This is covered in Section 9.11.2.
- An unrolled belief network may be very large, and we might only be interested in asking about "now". In this case we can just representing the variables "now". In this approach we can observe and query the current variables. We can them move to the next time. This does not allow for arbitrary historical queries (about the past or the future), but can be much simpler. This is covered in Section 9.11.3.

## 9.11.1 Representing Dynamic Belief Networks

To specify a DBN, cansider an arbitrary point, *now*, which will will be represented as time 1. Each variable will have a corresponding previous variable; the variables and their previous instances will be created together.

A dynamic belief network consists of:

- A set of features. A variable is a feature-time pair.
- An initial distribution over the features "now" (time 1). This is a belief network with all variables being time 1 variables.
- A specification of the dynamics. We define the how the variables *now* (time 1) depend on variables *now* and the previous time (time 0), in such a way that the graph is acyclic.

```
_probDBN.py — Dynamic belief networks
11
   from variable import Variable
12
   from probGraphicalModels import GraphicalModel, BeliefNetwork
   from probFactors import Prob, Factor, CPD
13
   from probVE import VE
14
   from display import Displayable
15
16
17
   class DBNvariable(Variable):
       """A random variable that incorporates the stage (time)
18
19
       A DBN variable has both a name and an index. The index defaults to 1.
20
       position is (x,y) where x>0.3
21
22
       def __init__(self, name, domain=[False,True], index=1, position=None):
23
           Variable.__init__(self, f"{name}_{index}", domain,
24
               position=position)
           self.basename = name
25
           self.domain = domain
26
           self.index = index
27
           self.previous = None
28
29
       def __lt__(self,other):
30
           if self.name == other.name:
31
               return self.index < other.index</pre>
32
           else:
33
               return self.name < other.name</pre>
34
35
   def variable_pair(name, domain=[False,True], position=None):
36
       """returns a variable and its predecessor. This is used to define
37
           2-stage DBNs
38
       If the name is X, it returns the pair of variables X_prev,X_now"""
39
       var_now = DBNvariable(name, domain, index='now', position=position)
40
       if position:
```

A *FactorRename* is a factor that is the result of renaming the variables in the factor. It takes a factor, *fac*, and a {*new* : *old*} dictionary, where *new* is the name of a variable in the resulting factor and *old* is the corresponding name in *fac*. This assumes that all variables are renamed.

```
_probDBN.py — (continued) .
   class FactorRename(Factor):
48
       def __init__(self,fac,renaming):
49
           """A renamed factor.
50
           fac is a factor
51
           renaming is a dictionary of the form {new:old} where old and new
               var variables,
             where the variables in fac appear exactly once in the renaming
53
54
           Factor.__init__(self,[n for (n,o) in renaming.items() if o in
55
               fac.variables])
           self.orig_fac = fac
56
           self.renaming = renaming
57
58
       def get_value(self,assignment):
59
           return self.orig_fac.get_value({self.renaming[var]:val
60
                                         for (var,val) in assignment.items()
61
                                         if var in self.variables})
62
```

The following class renames the variables of a conditional probability distribution. It is used for template models (e.g., dynamic decision networks or relational models)

```
__probDBN.py — (continued) _
   class CPDrename(FactorRename, CPD):
64
       def __init__(self, cpd, renaming):
65
           renaming_inverse = {old:new for (new,old) in renaming.items()}
           CPD.__init__(self,renaming_inverse[cpd.child],[renaming_inverse[p]
67
               for p in cpd.parents])
           self.orig_fac = cpd
68
           self.renaming = renaming
69
                                  \_probDBN.py — (continued) \_
   class DBN(Displayable):
71
       """The class of stationary Dynamic Belief networks.
72
       * name is the DBN name
       * vars_now is a list of current variables (each must have
74
       previous variable).
75
       * transition_factors is a list of factors for P(X|parents) where X
76
```

#### Simple DBN



Figure 9.9: Simple dynamic belief network (dbn1.show())

```
77
       is a current variable and parents is a list of current or previous
           variables.
78
       * init_factors is a list of factors for P(X|parents) where X is a
       current variable and parents can only include current variables
79
       The graph of transition factors + init factors must be acyclic.
80
81
82
       def __init__(self, title, vars_now, transition_factors=None,
83
           init_factors=None):
           self.title = title
85
           self.vars_now = vars_now
           self.vars_prev = [v.previous for v in vars_now]
86
           self.transition_factors = transition_factors
87
           self.init_factors = init_factors
88
                                  # var_index[v] is the index of variable v
           self.var_index = {}
89
           for i,v in enumerate(vars_now):
90
              self.var_index[v]=i
91
92
       def show(self):
93
           BNfromDBN(self,1).show()
```

Here is a 3 variable DBN (shown in Figure 9.9):

https://aipython.org

Version 0.9.13

#### **Animal DBN**



Figure 9.10: Animal dynamic belief network (dbn\_an.show())

```
pa = Prob(A1,[A0,B0],[[[0.1,0.9],[0.65,0.35]],[[0.3,0.7],[0.8,0.2]]])

# initial distribution
pa0 = Prob(A1,[],[0.9,0.1])
pb0 = Prob(B1,[A1],[[0.3,0.7],[0.8,0.2]])
pc0 = Prob(C1,[],[0.2,0.8])

dbn1 = DBN("Simple DBN",[A1,B1,C1],[pa,pb,pc],[pa0,pb0,pc0])
```

#### Here is the animal example

```
___probDBN.py — (continued) _
    from probHMM import closeMic, farMic, midMic, sm, mmc, sc, mcm, mcc
112
113
    Pos_0,Pos_1 = variable_pair("Position", domain=[0,1,2,3],
114
        position=(0.5, 0.8))
    Mic1_0,Mic1_1 = variable_pair("Mic1", position=(0.6,0.6))
115
    Mic2_0,Mic2_1 = variable_pair("Mic2", position=(0.6,0.4))
116
    Mic3_0,Mic3_1 = variable_pair("Mic3", position=(0.6,0.2))
117
118
    # conditional probabilities - see hmm for the values of sm,mmc, etc
119
    ppos = Prob(Pos_1, [Pos_0],
120
               [[sm, mmc, mmc], #was in middle
121
122
                [mcm, sc, mcc, mcc], #was in corner 1
                [mcm, mcc, sc, mcc], #was in corner 2
123
```

https://aipython.org Version 0.9.13

```
[mcm, mcc, mcc, sc]]) #was in corner 3
124
125
    pm1 = Prob(Mic1_1, [Pos_1], [[1-midMic, midMic], [1-closeMic, closeMic],
                              [1-farMic, farMic], [1-farMic, farMic]])
126
    pm2 = Prob(Mic2_1, [Pos_1], [[1-midMic, midMic], [1-farMic, farMic],
127
                              [1-closeMic, closeMic], [1-farMic, farMic]])
128
    pm3 = Prob(Mic3_1, [Pos_1], [[1-midMic, midMic], [1-farMic, farMic],
129
130
                              [1-farMic, farMic], [1-closeMic, closeMic]])
    ipos = Prob(Pos_1,[], [0.25, 0.25, 0.25, 0.25])
131
    dbn_an =DBN("Animal DBN",[Pos_1,Mic1_1,Mic2_1,Mic3_1],
132
               [ppos, pm1, pm2, pm3],
133
               [ipos, pm1, pm2, pm3])
134
```

## 9.11.2 Unrolling DBNs

```
_{	t probDBN.py} — (continued) _{	t }
    class BNfromDBN(BeliefNetwork):
136
        """Belief Network unrolled from a dynamic belief network
137
138
139
        def __init__(self,dbn,horizon):
140
            """dbn is the dynamic belief network being unrolled
141
            horizon>0 is the number of steps (so there will be horizon+1
142
                variables for each DBN variable.
143
            self.dbn = dbn
144
            self.horizon = horizon
145
            self.minx,self.width = None, None # for positions pf variables
146
            self.name2var = {var.basename:
147
                [DBNvariable(var.basename, var.domain, index,
                                                          position=self.pos(var,index))
148
                                               for index in range(horizon+1)]
149
                            for var in dbn.vars_now}
150
            self.display(1,f"name2var={self.name2var}")
151
            variables = {v for vs in self.name2var.values() for v in vs}
152
            self.display(1,f"variables={variables}")
153
            bnfactors = {CPDrename(fac,{self.name2var[var.basename][0]:var
154
                                            for var in fac.variables})
155
                         for fac in dbn.init_factors}
156
            bnfactors |= {CPDrename(fac,{self.name2var[var.basename][i]:var
157
                                            for var in fac.variables if
158
                                                var.index=='prev'}
                                      | {self.name2var[var.basename][i+1]:var
159
                                            for var in fac.variables if
160
                                                var.index=='now'})
                         for fac in dbn.transition_factors
161
                             for i in range(horizon)}
162
            self.display(1,f"bnfactors={bnfactors}")
163
            BeliefNetwork.__init__(self, dbn.title, variables, bnfactors)
164
165
```



#### Simple DBN observed: {B\_0: True, C\_1: False}

Figure 9.11: Simple dynamic belief network (dbn1) horizon 2

```
def pos(self, var, index):
166
167
           minx = min(x for (x,y) in (var.position for var in
                self.dbn.vars_now))-1e-6
           maxx = max(x for (x,y) in (var.position for var in
168
               self.dbn.vars_now))
           width = maxx-minx
169
170
           xo, yo = var.position
           xi = index/(self.horizon+1)+(xo-minx)/width/(self.horizon+1)/2
171
172
           return (xi, yo)
```

Here are two examples. You use bn.name2var['B'][2] to get the variable B2 (B at time 2). Figure 9.11 shows the output of the drc.show\_post below:

```
_probDBN.py — (continued)
174
    from probRC import ProbRC
175
    # bn = BNfromDBN(dbn1,2) # construct belief network
176
177
    # drc = ProbRC(bn)
                                   # initialize recursive conditioning
    # B2 = bn.name2var['B'][2]
178
    # drc.query(B2) #P(B2)
179
180
    #
        drc.query(bn.name2var['B'][1],{bn.name2var['B'][0]:True,bn.name2var['C'][1]:False})
        #P(B1|b0,~c1)
    # drc.show_post({bn.name2var['B'][0]:True,bn.name2var['C'][1]:False})
181
182
```

## 9.11.3 DBN Filtering

If we only wanted to ask questions about the current state, we can save space by forgetting the history variables.

```
____probDBN.py — (continued) _
    class DBNVEfilter(VE):
188
189
        def __init__(self,dbn):
            self.dbn = dbn
190
            self.current_factors = dbn.init_factors
191
            self.current_obs = {}
192
193
        def observe(self, obs):
194
            """updates the current observations with obs.
195
            obs is a variable: value dictionary where variable is a current
196
            variable.
197
            11 11 11
198
            assert all(self.current_obs[var]==obs[var] for var in obs
199
                      if var in self.current_obs), "inconsistent current
200
                           observations"
            self.current_obs.update(obs) # note 'update' is a dict method
201
202
        def query(self,var):
203
            """returns the posterior probability of current variable var"""
204
            return
205
                VE(GraphicalModel(self.dbn.title,self.dbn.vars_now,self.current_factors)
                         ).query(var,self.current_obs)
206
207
        def advance(self):
208
            """advance to the next time"""
209
            prev_factors = [self.make_previous(fac) for fac in
210
                self.current_factors]
            prev_obs = {var.previous:val for var,val in
211
                self.current_obs.items()}
            two_stage_factors = prev_factors + self.dbn.transition_factors
212
            self.current_factors =
213
                self.elim_vars(two_stage_factors,self.dbn.vars_prev,prev_obs)
            self.current_obs = {}
214
215
216
        def make_previous(self,fac):
             """Creates new factor from fac where the current variables in fac
217
             are renamed to previous variables.
218
219
             return FactorRename(fac, {var.previous:var for var in
220
                 fac.variables})
```

```
221
        def elim_vars(self, factors, vars, obs):
222
            for var in vars:
223
               if var in obs:
224
                   factors = [self.project_observations(fac,obs) for fac in
225
                        factors]
226
               else:
227
                   factors = self.eliminate_var(factors, var)
            return factors
228
```

#### Example queries:

```
__probDBN.py — (continued) _
   #df = DBNVEfilter(dbn1)
230
    #df.observe({B1:True}); df.advance(); df.observe({C1:False})
231
   #df.query(B1) #P(B1|B0,C1)
232
   #df.advance(); df.query(B1)
233
   #dfa = DBNVEfilter(dbn_an)
234
   | # dfa.observe({Mic1_1:0, Mic2_1:1, Mic3_1:1})
235
   # dfa.advance()
237 | # dfa.observe({Mic1_1:1, Mic2_1:0, Mic3_1:1})
238 # dfa.query(Pos_1)
```

# Learning with Uncertainty

# 10.1 Bayesian Learning

The section contains two implementations of the (discretized) beta distribution. The first represents Bayesian learning as a belief network. The second is an interactive tool to understand the beta distribution.

The following uses a belief network representation from the previous chapter to learn (discretized) probabilities. Figure 10.1 shows the output after observing *heads*, *heads*, *tails*. Notice the prediction of future tosses.

```
_learnBayesian.py — Bayesian Learning
   from variable import Variable
11
   from probFactors import Prob
   from probGraphicalModels import BeliefNetwork
13
   from probRC import ProbRC
14
15
   #### Coin Toss ###
16
   # multiple coin tosses:
17
   toss = ['tails','heads']
18
   tosses = [ Variable(f"Toss#{i}", toss,
19
                          (0.8, 0.9-i/10) if i<10 else (0.4,0.2))
20
                   for i in range(11)]
21
22
23
   def coinTossBN(num_bins = 10):
       prob_bins = [x/num_bins for x in range(num_bins+1)]
24
       PH = Variable("P_heads", prob_bins, (0.1,0.9))
25
       p_PH = Prob(PH,[],\{x:0.5/num\_bins if x in [0,1] else 1/num\_bins for x
           in prob_bins})
       p_tosses = [ Prob(tosses[i],[PH], {x:{'tails':1-x,'heads':x} for x in
27
           prob_bins})
                  for i in range(11)]
28
```



Figure 10.1: coinTossBN after observing heads, heads, tails



Figure 10.2: Beta distribution after some observations

```
return BeliefNetwork("Coin Tosses",
29
                          [PH]+tosses,
30
                          [p_PH]+p_tosses)
31
32
33
34
   # coinRC = ProbRC(coinTossBN(20))
35
   # coinRC.query(tosses[10],{tosses[0]:'heads'})
36
   # coinRC.show_post({})
37
   | # coinRC.show_post({tosses[0]:'heads'})
38
   # coinRC.show_post({tosses[0]:'heads',tosses[1]:'heads'})
39
  # coinRC.show_post({tosses[0]:'heads',tosses[1]:'heads',tosses[2]:'tails'})
```

Figure 10.2 shows a plot of the Beta distribution (the *P\_head* variable in the previous belief network) given some sets of observations.

This is a plot that is produced by the following interactive tool.

https://aipython.org

```
def __init__(self,num=100, fontsize=10):
47
48
           self.num = num
           self.dist = [1 for i in range(num)]
49
           self.vals = [i/num for i in range(num)]
50
           self.fontsize = fontsize
51
           self.saves = []
52
53
           self.num\_heads = 0
           self.num_tails = 0
54
           plt.ioff()
55
           fig,(self.ax) = plt.subplots()
56
           plt.subplots_adjust(bottom=0.2)
57
           ## Set up buttons:
58
           heads_butt = Button(plt.axes([0.05,0.02,0.1,0.05]), "heads")
59
           heads_butt.label.set_fontsize(self.fontsize)
60
           heads_butt.on_clicked(self.heads)
61
           tails_butt = Button(plt.axes([0.25,0.02,0.1,0.05]), "tails")
62
           tails_butt.label.set_fontsize(self.fontsize)
63
           tails_butt.on_clicked(self.tails)
           save_butt = Button(plt.axes([0.45, 0.02, 0.1, 0.05]), "save")
65
           save_butt.label.set_fontsize(self.fontsize)
           save_butt.on_clicked(self.save)
67
           reset_butt = Button(plt.axes([0.85,0.02,0.1,0.05]), "reset")
           reset_butt.label.set_fontsize(self.fontsize)
69
           reset_butt.on_clicked(self.reset)
70
           ## draw the distribution
71
           plt.subplot(1, 1, 1)
           self.draw_dist()
73
74
           plt.show()
75
       def draw_dist(self):
76
           sv = self.num/sum(self.dist)
77
           self.dist = [v*sv for v in self.dist]
78
           #print(self.dist)
79
           self.ax.clear()
80
           plt.ylabel("Probability", fontsize=self.fontsize)
81
           plt.xlabel("P(Heads)", fontsize=self.fontsize)
82
           plt.title("Beta Distribution", fontsize=self.fontsize)
83
           plt.xticks(fontsize=self.fontsize)
84
           plt.yticks(fontsize=self.fontsize)
           self.ax.plot(self.vals, self.dist, color='black', label =
86
               f"{self.num_heads} heads; {self.num_tails} tails")
           for (nh,nt,d) in self.saves:
87
               self.ax.plot(self.vals, d, label = f"{nh} heads; {nt} tails")
88
           self.ax.legend()
89
           plt.draw()
90
91
       def heads(self,event):
92
           self.num_heads += 1
93
           self.dist = [self.dist[i]*self.vals[i] for i in range(self.num)]
94
95
           self.draw_dist()
```

10.2. K-means 261

```
def tails(self, event):
96
97
            self.num_tails += 1
            self.dist = [self.dist[i]*(1-self.vals[i]) for i in range(self.num)]
98
            self.draw_dist()
99
        def save(self, event):
100
            self.saves.append((self.num_heads,self.num_tails,self.dist))
101
102
            self.draw_dist()
        def reset(self, event):
103
            self.num_tails = 0
104
            self.num_heads = 0
105
            self.dist = [1/self.num for i in range(self.num)]
106
            self.draw_dist()
107
108
   # s1 = Show_Beta(100)
109
   |# sl = Show_Beta(100, fontsize=15) # for demos - enlarge window
```

# 10.2 K-means

The k-means learner takes in a dataset and a numner of classes, and learns a mapping from examples to classes (class\_of\_eg) and a function that makes predictions for classes (class\_predictions).

It maintains two lists that suffice as sufficient statistics to classify examples, and to learn the classification:

- *class\_counts* is a list such that *class\_counts*[c] is the number of examples in the training set with *class* = c.
- feature\_sum is a list such that feature\_sum[f][c] is sum of the values for the feature f for members of class c. The average value of the ith feature in class i is

```
\frac{feature\_sum[i][c]}{class\_counts[c]}
```

when  $class\_counts[c] > 0$  and is 0 otherwise.

The class is initialized by randomly assigning examples to classes, and updating the statistics for *class\_counts* and *feature\_sum*.

```
self.random_initialize()
20
21
           self.max_display_level = 5
22
       def random_initialize(self):
23
           # class_counts[c] is the number of examples with class=c
24
           self.class_counts = [0]*self.num_classes
25
26
           # feature_sum[f][c] is the sum of the values of feature f for class
           self.feature_sum = {feat:[0]*self.num_classes
27
                             for feat in self.dataset.input_features}
28
           for eg in self.dataset.train:
              cl = random.randrange(self.num_classes) # assign eg to random
30
              self.class_counts[cl] += 1
31
              for feat in self.dataset.input_features:
32
                  self.feature_sum[feat][cl] += feat(eg)
33
           self.num_iterations = 0
34
           self.display(1,"Initial class counts: ",self.class_counts)
35
```

The distance from (the mean of) a class to an example is the sum, over all features, of the sum-of-squares differences of the class mean and the example value.

```
_learnKMeans.py — (continued) _
37
       def distance(self,cl,eg):
           """distance of the eg from the mean of the class"""
38
           return sum( (self.class_prediction(feat,cl)-feat(eg))**2
39
                           for feat in self.dataset.input_features)
40
41
       def class_prediction(self,feat,cl):
42
           """prediction of the class cl on the feature with index feat_ind"""
43
           if self.class_counts[cl] == 0:
44
               return 0 # arbitrary prediction
45
           else:
46
               return self.feature_sum[feat][cl]/self.class_counts[cl]
48
       def class_of_eg(self,eg):
49
           """class to which eg is assigned"""
50
           return (min((self.distance(cl,eg),cl)
51
                          for cl in range(self.num_classes)))[1]
52
                  # second element of tuple, which is a class with minimum
                      distance
```

One step of k-means updates the *class\_counts* and *feature\_sum*. It uses the old values to determine the classes, and so the new values for *class\_counts* and *feature\_sum*. At the end it determines whether the values of these have changes, and then replaces the old ones with the new ones. It returns an indicator of whether the values are stable (have not changed).

```
_____learnKMeans.py — (continued) _______

def k_means_step(self):
```

10.2. K-means 263

```
"""Updates the model with one step of k-means.
56
57
           Returns whether the assignment is stable.
58
           new_class_counts = [0]*self.num_classes
59
           # feature_sum[f][c] is the sum of the values of feature f for class
61
           new_feature_sum = {feat: [0]*self.num_classes
                              for feat in self.dataset.input_features}
62
           for eg in self.dataset.train:
63
               cl = self.class_of_eg(eg)
64
               new_class_counts[cl] += 1
65
               for feat in self.dataset.input_features:
66
                  new_feature_sum[feat][cl] += feat(eg)
67
           stable = (new_class_counts == self.class_counts) and
68
               (self.feature_sum == new_feature_sum)
           self.class_counts = new_class_counts
69
           self.feature_sum = new_feature_sum
70
           self.num_iterations += 1
71
           return stable
72
73
74
       def learn(self, n=100):
75
           """do n steps of k-means, or until convergence"""
76
77
           i=0
           stable = False
78
           while i<n and not stable:
79
               stable = self.k_means_step()
80
               i += 1
81
               self.display(1,"Iteration", self.num_iterations,
82
                               "class counts: ",self.class_counts,"
83
                                   Stable=", stable)
           return stable
84
85
       def show_classes(self):
86
           """sorts the data by the class and prints in order.
87
           For visualizing small data sets
88
89
           class_examples = [[] for i in range(self.num_classes)]
90
           for eg in self.dataset.train:
91
               class_examples[self.class_of_eg(eg)].append(eg)
92
           print("Class","Example",sep='\t')
93
           for cl in range(self.num_classes):
94
               for eg in class_examples[cl]:
95
                  print(cl,*eg,sep='\t')
96
```

Figure 10.3 shows multiple runs for Example 10.5 in Section 10.3.1 of Poole and Mackworth [2023]. Note that the *y*-axis is sum of squares of the values, which is the square of the Euclidian distance. K-means can stablize on a different assignment each time it is run. The first run with 2 classes shown in the figure was stable after the first step. The next two runs with 3 classes started



Figure 10.3: k-means plotting error.

with different assignments, but stablized on the same assignment. (You cannot check if it is the same assignment from the graph, but need to check the assignment of examples to classes.) The second run with 3 classes took tow steps to stablize, but the other only took one. Note that the algorithm only determins that it is stable with one more run.

```
_learnKMeans.py — (continued) _
        def plot_error(self, maxstep=20):
97
            """Plots the sum-of-squares error as a function of the number of
98
                steps"""
            plt.ion()
99
            plt.xlabel("step")
100
            plt.ylabel("Ave sum-of-squares error")
101
            train errors = []
102
103
            if self.dataset.test:
                test_errors = []
104
            for i in range(maxstep):
105
                train_errors.append( sum(self.distance(self.class_of_eg(eg),eg)
106
                                            for eg in self.dataset.train)
107
                                    /len(self.dataset.train))
108
                if self.dataset.test:
109
                    test_errors.append(
110
```

https://aipython.org

Version 0.9.13

10.2. K-means 265

```
sum(self.distance(self.class_of_eg(eg),eg)
111
                                              for eg in self.dataset.test)
                                       /len(self.dataset.test))
112
               self.learn(1)
113
           plt.plot(range(maxstep), train_errors,
114
                    label=str(self.num_classes)+" classes. Training set")
115
116
           if self.dataset.test:
               plt.plot(range(maxstep), test_errors,
117
                        label=str(self.num_classes)+" classes. Test set")
118
           plt.legend()
119
           plt.draw()
120
121
    # data = Data_from_file('data/emdata1.csv', num_train=10,
122
        target_index=2000) # trivial example
    data = Data_from_file('data/emdata2.csv', num_train=10, target_index=2000)
123
    # data = Data_from_file('data/emdata0.csv', num_train=14,
124
        target_index=2000) # example from textbook
    kml = K_means_learner(data,2)
125
    num_iter=4
126
    print("Class assignment after",num_iter,"iterations:")
127
    kml.learn(num_iter); kml.show_classes()
128
129
    # Plot the error
130
   # km2=K_means_learner(data,2); km2.plot_error(10) # 2 classes
131
    # km3=K_means_learner(data,3); km3.plot_error(10) # 3 classes
132
    # km13=K_means_learner(data,10); km13.plot_error(10) # 10 classes
133
134
135
   # data = Data_from_file('data/carbool.csv', target_index=2000,
        one_hot=True)
    # kml = K_means_learner(data,3)
136
   | # kml.learn(20); kml.show_classes()
137
   # km3=K_means_learner(data,3); km3.plot_error(10) # 3 classes
138
   | # km3=K_means_learner(data,10); km3.plot_error(10) # 10 classes
139
```

**Exercise 10.1** If there are many classes, some of the classes can become empty (e.g., try 100 classes with carbool.csv). Implement a way to put some examples into a class, if possible. Two ideas are:

- (a) Initialize the classes with actual examples, so that the classes will not start empty. (Do the classes become empty?)
- (b) In *class\_prediction*, we test whether the code is empty, and make a prediction of 0 for an empty class. It is possible to make a different prediction to "steal" an example (but you should make sure that a class has a consistent value for each feature in a loop).

Make your own suggestions, and compare it with the original, and whichever of these you think may work better.

## 10.3 EM

In the following definition, a class, c, is a integer in range  $[0, num\_classes)$ . i is an index of a feature, so feat[i] is the ith feature, and a feature is a function from tuples to values. val is a value of a feature.

A model consists of 2 lists, which form the sufficient statistics:

• *class\_counts* is a list such that *class\_counts*[*c*] is the number of tuples with *class* = *c*, where each tuple is weighted by its probability, i.e.,

$$class\_counts[c] = \sum_{t:class(t)=c} P(t)$$

• feature\_counts is a list such that feature\_counts[i][val][c] is the weighted count of the number of tuples t with feat[i](t) = val and class(t) = c, each tuple is weighted by its probability, i.e.,

```
feature\_counts[i][val][c] = \sum_{t:feat[i](t)=val \text{ and} class(t)=c} P(t)
```

```
_learnEM.py — EM Learning
   from learnProblem import Data_set, Learner, Data_from_file
11
   import random
12
   import math
13
   import matplotlib.pyplot as plt
14
15
   class EM_learner(Learner):
16
       def __init__(self,dataset, num_classes):
17
           self.dataset = dataset
           self.num_classes = num_classes
19
20
           self.class_counts = None
           self.feature_counts = None
21
```

The function *em\_step* goes though the training examples, and updates these counts. The first time it is run, when there is no model, it uses random distributions.

```
_learnEM.py — (continued)
       def em_step(self, orig_class_counts, orig_feature_counts):
23
           """updates the model."""
24
25
           class_counts = [0]*self.num_classes
           feature_counts = [{val:[0]*self.num_classes
26
                                 for val in feat.frange}
                                 for feat in self.dataset.input_features]
28
           for tple in self.dataset.train:
29
               if orig_class_counts: # a model exists
30
                   tpl_class_dist = self.prob(tple, orig_class_counts,
31
                       orig_feature_counts)
```

10.3. EM 267

```
else:
32
                                    # initially, with no model, return a random
                  distribution
                  tpl_class_dist = random_dist(self.num_classes)
33
              for cl in range(self.num_classes):
34
                  class_counts[cl] += tpl_class_dist[cl]
35
                  for (ind, feat) in enumerate(self.dataset.input_features):
36
37
                      feature_counts[ind][feat(tple)][cl] += tpl_class_dist[cl]
38
           return class_counts, feature_counts
```

*prob* computes the probability of a class *c* for a tuple *tpl*, given the current statistics.

$$\begin{split} P(c \mid tple) &\propto P(c) * \prod_{i} P(X_i = tple(i) \mid c) \\ &= \frac{class\_counts[c]}{len(self\_dataset)} * \prod_{i} \frac{feature\_counts[i][feat_i(tple)][c]}{class\_counts[c]} \\ &\propto \frac{\prod_{i} feature\_counts[i][feat_i(tple)][c]}{class\_counts[c]^{|feats|-1}} \end{split}$$

The last step is because len(self.dataset) is a constant (independent of c).  $class\_counts[c]$  can be taken out of the product, but needs to be raised to the power of the number of features, and one of them cancels.

```
_learnEM.py — (continued) _
       def prob(self, tple, class_counts, feature_counts):
40
           """returns a distribution over the classes for tuple tple in the
41
               model defined by the counts
42
           feats = self.dataset.input_features
43
           unnorm = [prod(feature_counts[i][feat(tple)][c]
44
45
                          for (i,feat) in enumerate(feats))
                        /(class_counts[c]**(len(feats)-1))
46
47
                      for c in range(self.num_classes)]
           thesum = sum(unnorm)
48
           return [un/thesum for un in unnorm]
49
```

*learn* does *n* steps of EM:

```
def learn(self,n):
"""do n steps of em"""
for i in range(n):
self.class_counts, self.feature_counts =
self.em_step(self.class_counts,
self.feature_counts)
```

The following is for visualizing the classes. It prints the dataset ordered by the probability of class *c*.

```
_____learnEM.py — (continued) ______

def show_class(self,c):
```

```
"""sorts the data by the class and prints in order.
58
59
           For visualizing small data sets
           sorted_data =
61
               sorted((self.prob(tpl,self.class_counts,self.feature_counts)[c],
                                ind, # preserve ordering for equal
62
                                    probabilities
                                tpl)
63
                               for (ind,tpl) in enumerate(self.dataset.train))
64
           for cc,r,tpl in sorted_data:
65
              print(cc,*tpl,sep='\t')
66
```

The following are for evaluating the classes.

The probability of a tuple can be evaluated by marginalizing over the classes:

$$P(tple) = \sum_{c} P(c) * \prod_{i} P(X_{i} = tple(i) \mid c)$$

$$= \sum_{c} \frac{cc[c]}{len(self.dataset)} * \prod_{i} \frac{fc[i][feat_{i}(tple)][c]}{cc[c]}$$

where cc is the class count and fc is feature count. len(self.dataset) can be distributed out of the sum, and cc[c] can be taken out of the product:

$$= \frac{1}{len(self.dataset)} \sum_{c} \frac{1}{cc[c]^{\#feats-1}} * \prod_{i} fc[i][feat_{i}(tple)][c]$$

Given the probability of each tuple, we can evaluate the logloss, as the negative of the log probability:

```
_learnEM.py — (continued) _
       def logloss(self,tple):
68
           """returns the logloss of the prediction on tple, which is
69
               -log(P(tple))
           based on the current class counts and feature counts
70
71
           feats = self.dataset.input_features
72
           res = 0
73
           cc = self.class_counts
74
           fc = self.feature_counts
75
           for c in range(self.num_classes):
76
               res += prod(fc[i][feat(tple)][c]
77
                           for (i,feat) in
78
                               enumerate(feats))/(cc[c]**(len(feats)-1))
           if res>0:
79
               return -math.log2(res/len(self.dataset.train))
80
81
           else:
               return float("inf") #infinity
82
```

Figure 10.4 shows the training and test error for various numbers of classes for the carbool dataset (calls commented out at the end of the code).

10.3. EM 269



Figure 10.4: EM plotting error.

```
_learnEM.py — (continued)
        def plot_error(self, maxstep=20):
84
            """Plots the logloss error as a function of the number of steps"""
85
            plt.ion()
86
            plt.xlabel("step")
87
            plt.ylabel("Ave Logloss (bits)")
88
            train_errors = []
            if self.dataset.test:
90
91
                test_errors = []
            for i in range(maxstep):
92
                self.learn(1)
93
                train_errors.append( sum(self.logloss(tple) for tple in
94
                    self.dataset.train)
                                    /len(self.dataset.train))
95
                if self.dataset.test:
96
                   test_errors.append( sum(self.logloss(tple) for tple in
97
                        self.dataset.test)
                                        /len(self.dataset.test))
98
            plt.plot(range(1, maxstep+1), train_errors,
99
                    label=str(self.num_classes)+" classes. Training set")
100
            if self.dataset.test:
101
                plt.plot(range(1, maxstep+1), test_errors,
102
                        label=str(self.num_classes)+" classes. Test set")
103
            plt.legend()
104
            plt.draw()
105
106
   def prod(L):
107
```

```
"""returns the product of the elements of L"""
108
109
        for e in L:
110
           res *= e
111
        return res
112
113
114
    def random_dist(k):
        """generate k random numbers that sum to 1"""
115
        res = [random.random() for i in range(k)]
116
        s = sum(res)
117
        return [v/s for v in res]
118
119
    data = Data_from_file('data/emdata2.csv', num_train=10, target_index=2000)
120
    eml = EM_learner(data,2)
121
    num_iter=2
122
    print("Class assignment after", num_iter, "iterations:")
123
    eml.learn(num_iter); eml.show_class(0)
124
125
    # Plot the error
126
    # em2=EM_learner(data,2); em2.plot_error(40) # 2 classes
127
    # em3=EM_learner(data,3); em3.plot_error(40) # 3 classes
128
    # em13=EM_learner(data,13); em13.plot_error(40) # 13 classes
129
130
    # data = Data_from_file('data/carbool.csv', target_index=2000,
131
        one_hot=True)
    # [f.frange for f in data.input_features]
    # eml = EM_learner(data,3)
133
   | # eml.learn(20); eml.show_class(0)
   # em3=EM_learner(data,3); em3.plot_error(30) # 3 classes
135
    # em3=EM_learner(data,20); em3.plot_error(30) # 20 classes
136
    # em3=EM_learner(data,40); em3.plot_error(30) # 40 classes
137
   # em3=EM_learner(data,1); em3.plot_error(30) # 1 classes (predict mean)
```

**Exercise 10.2** For data where there are naturally 2 classes, does EM with 3 classes do better on the training set after a while than 2 classes? Is is better on a test set. Explain why. Hint: look what the 3 classes are. Use "eml.show\_class(i)" for each of the classes  $i \in [0,3)$ .

**Exercise 10.3** Write code to plot the logloss as a function of the number of classes (from 1 to, say, 30) for a fixed number of iterations. (From the experience with the existing code, think about how many iterations are appropriate.

**Exercise 10.4** Repeat the previous exercise, but use cross validation to select the number of iterations as a function of the number of classes and other features of the dataset.

# Causality

# 11.1 Do Questions

A causal model can answer "do" questions.

The intervene function takes a belief network and a variable:value dictionary specifying what to "do", and returns a belief network resulting from intervening to set each variable in the dictionary to its value specified. It replaces the CPD of each intervened variable with an constant CPD.

```
__probDo.py — Probabilistic inference with the do operator _
   from probGraphicalModels import InferenceMethod, BeliefNetwork
11
   from probFactors import CPD, ConstantCPD
12
13
   def intervene(bn, do={}):
       assert isinstance(bn, BeliefNetwork), f"Do only applies to belief
15
           networks ({bn.title})"
       if do=={}:
16
           return bn
17
       else:
18
           newfacs = ({f for (ch,f) in bn.var2cpt.items() if ch not in do} |
19
                          {ConstantCPD(v,c) for (v,c) in do.items()})
20
           return BeliefNetwork(f"{bn.title}(do={do})", bn.variables, newfacs)
```

The following adds the queryDo method to the InferenceMethod class, so it can be used with any inference method. It replaces the graphical model with the modified one, runs the inference algorithm, and restores the initial belief network.

272 11. Causality



Figure 11.1: The sprinkler belief network with do={Sprinkler:"on"}.

```
oldBN, self.gm = self.gm, intervene(self.gm, do)
result = self.query(qvar, obs)
self.gm = oldBN # restore original
return result

# make queryDo available for all inference methods
InferenceMethod.queryDo = queryDo
```

The following example is based on the sprinkler belief network of Section 9.4.2 shown in Figure 9.4. The network with the intervention of putting the sprinkler on is shown in Figure 11.1.

```
_probDo.py — (continued)
   from probRC import ProbRC
34
35
   from probExamples import bn_sprinkler, Season, Sprinkler, Rained,
36
       Grass_wet, Grass_shiny, Shoes_wet
37
   bn_sprinklerv = ProbRC(bn_sprinkler)
   ## bn_sprinklerv.queryDo(Shoes_wet)
38
   ## bn_sprinklerv.queryDo(Shoes_wet,obs={Sprinkler:"on"})
   ## bn_sprinklerv.queryDo(Shoes_wet,do={Sprinkler:"on"})
40
   ## bn_sprinklerv.queryDo(Season, obs={Sprinkler:"on"})
41
   ## bn_sprinklerv.queryDo(Season, do={Sprinkler:"on"})
42
43
   ### Showing posterior distributions:
```

```
45  # bn_sprinklerv.show_post({})
46  # bn_sprinklerv.show_post({Sprinkler:"on"})
47  # spon = intervene(bn_sprinkler, do={Sprinkler:"on"})
48  # ProbRC(spon).show_post({})
```

The following is a representation of a possible model where marijuana is a gateway drug to harder drugs (or not). Try the queries at the end.

```
__probDo.py — (continued) _
   from variable import Variable
   from probFactors import Prob
51
   from probGraphicalModels import BeliefNetwork
   boolean = [False, True]
53
54
55
  Drug_Prone = Variable("Drug_Prone", boolean, position=(0.1,0.5)) #
   Side_Effects = Variable("Side_Effects", boolean, position=(0.1,0.5)) #
56
       (0.5, 0.1)
   Takes_Marijuana = Variable("\nTakes_Marijuana\n", boolean,
57
       position=(0.1, 0.5))
   Takes_Hard_Drugs = Variable("Takes_Hard_Drugs", boolean,
58
       position=(0.9, 0.5))
59
   p_dp = Prob(Drug_Prone, [], [0.8, 0.2])
60
   p_be = Prob(Side_Effects, [Takes_Marijuana], [[1, 0], [0.4, 0.6]])
  |p_tm = Prob(Takes_Marijuana, [Drug_Prone], [[0.98, 0.02], [0.2, 0.8]])
62
   p_thd = Prob(Takes_Hard_Drugs, [Side_Effects, Drug_Prone],
                   # Drug_Prone=False Drug_Prone=True
64
                   [[[0.999, 0.001], [0.6, 0.4]], # Side_Effects=False
65
                    [[0.99999, 0.00001], [0.995, 0.005]]]) # Side_Effects=True
66
67
   drugs = BeliefNetwork("Gateway Drug?",
68
                      [Drug_Prone, Side_Effects, Takes_Marijuana,
69
                          Takes_Hard_Drugs],
                      [p_tm, p_dp, p_be, p_thd])
70
71
72 drugsq = ProbRC(drugs)
73 # drugsq.queryDo(Takes_Hard_Drugs)
  | # drugsq.queryDo(Takes_Hard_Drugs, obs = {Takes_Marijuana: True})
74
  # drugsq.queryDo(Takes_Hard_Drugs, obs = {Takes_Marijuana: False})
75
   # drugsq.queryDo(Takes_Hard_Drugs, do = {Takes_Marijuana: True})
76
   # drugsq.queryDo(Takes_Hard_Drugs, do = {Takes_Marijuana: False})
77
78
79
80 # ProbRC(drugs).show_post({})
  # ProbRC(drugs).show_post({Takes_Marijuana: True})
82 | # ProbRC(drugs).show_post({Takes_Marijuana: False})
  # ProbRC(intervene(drugs, do={Takes_Marijuana: True})).show_post({})
84 # ProbRC(intervene(drugs, do={Takes_Marijuana: False})).show_post({})
  |# Why was that? Try the following then repeat:
86 | # Drug_Prone.position=(0.5,0.9); Side_Effects.position=(0.5,0.1)
```

274 11. Causality

# 11.2 Counterfactual Reasoning

The following provides two examples of counterfactual reasoning. In the following code, the user has to provide the deterministic system with noise; it cannot be derived from the conditional probabilities.

```
from variable import Variable
from probFactors import Prob, ProbDT, IFeq, SameAs, Dist
from probGraphicalModels import BeliefNetwork
from probRC import ProbRC
from probDo import queryDo

boolean = [False, True]
```

## 11.2.1 Choosing Deterministic System

This section presents an example to encourage you to think about what deterministic system to use.

Consider the following example (thanks to Sophie Song). Suppose Bob went on a date with Alice. Bob was either on time or not (variable B is true when Bob is on time). Alice, who is fastidious about punctuality chooses whether to go on a second date (variable A is true when Alice agrees to a second date). Whether Bob is late depends on which cab company he called (variable C). Suppose Bob calls one of the cab companies, he was late, and Alice doesn't ask for a second date. Bob wonders "what if I had called the other cab company". Suppose all variables are Boolean. C causally depends on C, and C0 depends on C1, so the appropriate causal model is  $C \rightarrow B \rightarrow A$ 1.

Assume the following probabilities obtained from observations (where the lower case c represents C = true, and similarly for other variables):

```
P(c) = 0.5

P(b \mid c) = P(b \mid \neg c) = 0.7 (the cab companies are equally reliable)

(a \mid b) = 0.4, (a \mid \neg b) = 0.2.
```

Consider "what if C was True" or "what if C was False". For example, suppose A=false and C=false is observed and you want the probability of A if C were false.

Figure 11.2 shows the paired network for "what if *C*". The primed variables represent the situation where *C* is counterfactually True or False. In this network, Cprime should be conditioned on. Conditioning on Cprime should not affect the non-primed variables. (You should check this).

```
_____probCounterfactual.py — (continued) ______

19 | # as a deterministic system with independent noise
```

https://aipython.org Version 0.9.13 June 13, 2024

#### CBA Counterfactual Example



Figure 11.2:  $C \to B \to A$  belief network for "what if C". Figure generated by by cbaCounter.show()

```
C = Variable("C", boolean, position=(0.1,0.8))

B = Variable("B", boolean, position=(0.1,0.4))

A = Variable("A", boolean, position=(0.1,0.0))

Cprime = Variable("C'", boolean, position=(0.9,0.8))

Bprime = Variable("B'", boolean, position=(0.9,0.4))

Aprime = Variable("A'", boolean, position=(0.9,0.0))

B_b = Variable("B_b", boolean, position=(0.3,0.8))

B_0 = Variable("B_0", boolean, position=(0.5,0.8))

B_1 = Variable("B_1", boolean, position=(0.7,0.8))

A_b = Variable("A_b", boolean, position=(0.3,0.4))

A_0 = Variable("A_0", boolean, position=(0.5,0.4))

A_1 = Variable("A_1", boolean, position=(0.7,0.4))
```

The conditional probability  $P(A \mid B)$  is represented using three noise parameters,  $A_b$ ,  $A_0$  and  $A_1$ , with the equivalence:

$$a \equiv a_b \vee (\neg b \wedge a_0) \vee (b \wedge a_1)$$

Thus  $a_b$  is the background cause of a,  $a_0$  is the cause used when B=false and  $a_1$  is the cause used when B=false. Note that this is over parametrized with re-

https://aipython.org

Version 0.9.13

June 13, 2024

276 11. Causality

spect the belief network, using three parameters whereas arbitrary conditional probability can be represented using two parameters.

The running example where  $(a \mid b) = 0.4$  and  $(a \mid \neg b) = 0.2$  can be represented using

$$P(a_b) = 0, P(a_0) = 0.2, P(a_1) = 0.4$$

or

$$P(a_b) = 0.2, P(a_0) = 0, P(a_1) = 0.25$$

These cannot be distinguished by observations or by interventions. As you can see if you play with the code, these have different counterfactual conclusions.

 $P(B \mid C)$  is represented similarly, using variables  $B_b$ ,  $B_0$ , and  $B_1$ .

The following code uses the decision tree representation of conditional probabilities of Section 9.3.4.

```
__probCounterfactual.py — (continued) __
   p_C = Prob(C, [], [0.5, 0.5])
33
   p_B = ProbDT(B, [C, B_b, B_0, B_1], IFeq(B_b, True, Dist([0,1]),
34
                                             IFeq(C,True,SameAs(B_1),SameAs(B_0))))
35
   p_A = ProbDT(A, [B, A_b, A_0, A_1], IFeq(A_b, True, Dist([0,1]),
36
37
                                             IFeq(B,True,SameAs(A_1),SameAs(A_0))))
   p_{cond} = Prob(Cprime, [], [0.5, 0.5])
38
   p_Bprime = ProbDT(Bprime, [Cprime, B_b, B_0, B_1],
39
        IFeq(B_b,True,Dist([0,1]),
                                             IFeq(Cprime, True, SameAs(B_1), SameAs(B_0))))
40
   p_Aprime = ProbDT(Aprime, [Bprime, A_b, A_0, A_1],
41
        IFeq(A_b, True, Dist([0,1]),
                                            IFeq(Bprime, True, SameAs(A_1), SameAs(A_0))))
42
   p_b = Prob(B_b, [], [1,0])
43
   p_b_0 = Prob(B_0, [], [0.3, 0.7])
44
   p_b_1 = Prob(B_1, [], [0.3, 0.7])
45
46
   p_a_b = Prob(A_b, [], [1,0])
47
   p_a_0 = Prob(A_0, [], [0.8, 0.2])
   p_a_1 = Prob(A_1, [], [0.6,0.4])
49
50
   p_b_n = Prob(B, [], [0.3, 0.7]) # for AB network
51
   p_Brime_np = Prob(B, [], [0.3, 0.7]) # for AB network
52
   ab_Counter = BeliefNetwork("AB Counterfactual Example",
53
                       [A,B,Aprime,Bprime, A_b,A_0,A_1],
54
                       [p_A, p_b_np, p_Aprime, p_Bprime_np, p_a_b, p_a_0,
55
                            p_a_1])
56
   cbaCounter = BeliefNetwork("CBA Counterfactual Example",
57
                       [A,B,C, Aprime,Bprime,Cprime, B_b,B_0,B_1, A_b,A_0,A_1],
58
                       [p_A, p_B, p_C, p_Aprime, p_Bprime, p_Cprime,
59
60
                            p_b_b, p_b_0, p_b_1, p_a_b, p_a_0, p_a_1])
```

Here are some queries you might like to try. The show\_post queries might be most useful if you have the space to show multiple queries.

```
\_probCounterfactual.py — (continued) \_
   cbag = ProbRC(cbaCounter)
  |# cbaq.queryDo(Aprime, obs = {C:True, Cprime:False})
63
   # cbaq.queryDo(Aprime, obs = {C:False, Cprime:True})
  # cbaq.queryDo(Aprime, obs = {A:True, C:True, Cprime:False})
  | # cbaq.queryDo(Aprime, obs = {A:False, C:True, Cprime:False})
66
   # cbaq.queryDo(Aprime, obs = {A:False, C:True, Cprime:False})
67
   # cbaq.queryDo(A_1, obs = {C:True,Aprime:False})
68
   # cbaq.queryDo(A_0, obs = {C:True,Aprime:False})
70
  | # cbaq.show_post(obs = {})
71
  # cbaq.show_post(obs = {C:True, Cprime:False})
72
  | # cbaq.show_post(obs = {A:False, C:True, Cprime:False})
  # cbaq.show_post(obs = {A:True, C:True, Cprime:False})
```

**Exercise 11.1** Consider the scenario "Bob called the first cab (C = true), was late and Alice agrees to a second date". What would you expect from the scenario "what if Bob called the other cab?". What does the network predict? Design probabilities for the noise variables that fits the conditional probability and also fits your expectation.

**Exercise 11.2** How would you expect the counterfactual conclusion to change given the following two scenarios that fit the story:

- The cabs are both very reliable and start at the same location (and so face the same traffic).
- The cabs are each 90% reliable and start from opposite directions.
- (a) How would you expect the predictions to differ in these two cases?
- (b) How can you fit the conditional probabilies above and represent each of these by changing the probabilities of the noise variables?
- (c) How can these be learned from data? (Hint: consider learning a correlation between the taxi arrivals). Is your approach always applicable? If not, for which cases is it applicable or not.

# 11.2.2 Firing Squad Example

The following is the firing squad example of Pearl [2009] as a deterministic system. See Figure 11.3.

278 11. Causality

#### S20 False: 0.010 True: 0.990 False: 0.900 False: 0.010 True: 0.990 True: 0.100 S2n False: 0.990 False: 0.990 True: 0.010 True: 0.010 **S1** False: 0.892 True: 0.108 False: 0.892 True: 0.108 False: 0.882 True: 0.118

#### Firing squad observed: {}

Figure 11.3: Firing squad belief network (figure obtained from fsq.show\_post({})

```
81 | S2o = Variable("S2o", boolean, position=(0.7,0.8))

82 | S2n = Variable("S2n", boolean, position=(0.8,0.6))

83 | Dead = Variable("Dead", boolean, position=(0.4,0.0))
```

Instead of the tabular representation of the if-then-else structure used for the  $A \rightarrow B \rightarrow C$  network above, the following uses the decision tree representation of conditional probabilities of Section 9.3.4.

```
___probCounterfactual.py — (continued) _
   p_S1 = ProbDT(S1, [Order, S1o, S1n],
85
                     IFeq(Order,True, SameAs(S1o), SameAs(S1n)))
86
   p_S2 = ProbDT(S2, [Order, S2o, S2n],
87
                     IFeq(Order,True, SameAs(S2o), SameAs(S2n)))
88
   p_dead = Prob(Dead, [S1,S2], [[[1,0],[0,1]],[[0,1],[0,1]])
89
                    #IFeq(S1,True,True,SameAs(S2)))
90
   p_{order} = Prob(Order, [], [0.9, 0.1])
91
   p_s10 = Prob(S10, [], [0.01, 0.99])
92
93
   p_s1n = Prob(S1n, [], [0.99, 0.01])
   p_s20 = Prob(S20, [], [0.01, 0.99])
94
   p_s2n = Prob(S2n, [], [0.99, 0.01])
95
96
   firing_squad = BeliefNetwork("Firing squad",
97
                             [Order, S1, S1o, S1n, S2, S2o, S2n, Dead],
98
99
                             [p_order, p_dead, p_S1, p_s1o, p_s1n, p_S2, p_s2o,
                                 p_s2n])
```

```
fsq = ProbRC(firing_squad)
fsq = ProbRC(firing_squad)
fsq.queryDo(Dead)

# fsq.queryDo(Order, obs={Dead:True})
fsq.queryDo(Dead, obs={Order:True})
fsq.show_post({})
fsq.show_post({Dead:True})
fsq.show_post({S2:True})
```

**Exercise 11.3** Create the network for "what if shooter 2 did or did not shoot". Give the probabilities of the following counterfactuals:

- (a) The prisoner is dead; what is the probability that the prisoner would be dead if shooter 2 did not shoot?
- (b) Shooter 2 shot; what is the probability that the prisoner would be dead if shooter 2 did not shoot?
- (c) No order was given, but the prisoner is dead; what is the probability that the prisoner would be dead if shooter 2 did not shoot?

**Exercise 11.4** Create the network for "what if the order was or was not given". Give the probabilities of the following counterfactuals:

- (a) The prisoner is dead; what is the probability that the prisoner would be dead if the order was not given?
- (b) The prisoner is not dead; what is the probability that the prisoner would be dead if the order was not given? (Is this different from the prior that the prisoner is dead, or the posterior that the prisoner was dead given the order was not given).
- (c) Shooter 2 shot; what is the probability that the prisoner would be dead if the order was not given?
- (d) Shooter 2 did not shoot; what is the probability that the prisoner would be dead if the order was given? (Is this different from the probability that the the prisoner would be dead if the order was given without the counterfactual observation)?

# Planning with Uncertainty

## 12.1 Decision Networks

The decision network code builds on the representation for belief networks of Chapter 9.

We first allow for factors that define the utility. Here the **utility** is a function of the variables in *vars*. In a **utility table** the utility is defined in terms of a tabular factor – a list that enumerates the values – as in Section 9.3.3.

```
_decnNetworks.py — Representations for Decision Networks _
  from probGraphicalModels import GraphicalModel, BeliefNetwork
   from probFactors import Factor, CPD, TabFactor, factor_times, Prob
   from variable import Variable
   import matplotlib.pyplot as plt
14
   class Utility(Factor):
16
        """A factor defining a utility"""
17
18
19
   class UtilityTable(TabFactor, Utility):
20
       """A factor defining a utility using a table"""
21
       def __init__(self, vars, table, position=None):
22
           """Creates a factor on vars from the table.
23
           The table is ordered according to vars.
24
25
           TabFactor.__init__(self,vars,table, name="Utility")
26
           self.position = position
```

A **decision variable** is like a random variable with a string name, and a domain, which is a list of possible values. The decision variable also includes the parents, a list of the variables whose value will be known when the decision is made. It also includes a position, which is only used for plotting.

```
class DecisionVariable(Variable):
    def __init__(self, name, domain, parents, position=None):
        Variable.__init__(self, name, domain, position)
        self.parents = parents
        self.all_vars = set(parents) | {self}
```

A decision network is a graphical model where the variables can be random variables or decision variables. Among the factors we assume there is one utility factor.

```
_decnNetworks.py — (continued)
   class DecisionNetwork(BeliefNetwork):
35
       def __init__(self, title, vars, factors):
36
           """vars is a list of variables
37
           factors is a list of factors (instances of CPD and Utility)
39
40
           GraphicalModel.__init__(self, title, vars, factors) # don't call
               init for BeliefNetwork
           self.var2parents = ({v : v.parents for v in vars if
41
               isinstance(v,DecisionVariable)}
                       | {f.child:f.parents for f in factors if
42
                           isinstance(f,CPD)})
           self.children = {n:[] for n in self.variables}
43
           for v in self.var2parents:
44
              for par in self.var2parents[v]:
45
                  self.children[par].append(v)
           self.utility_factor = [f for f in factors if
47
               isinstance(f,Utility)][0]
           self.topological_sort_saved = None
48
49
       def __str__(self):
50
51
           return self.title
```

The split order ensures that the parents of a decision node are split before the decision node, and no other variables (if that is possible).

```
_decnNetworks.py — (continued)
       def split_order(self):
53
           so = []
54
           tops = self.topological_sort()
55
            for v in tops:
56
                if isinstance(v,DecisionVariable):
                   so += [p for p in v.parents if p not in so]
58
                   so.append(v)
            so += [v for v in tops if v not in so]
60
            return so
61
                                  _decnNetworks.py — (continued)
       def show(self, fontsize=10,
63
```

```
colors={'utility':'red', 'decision':'lime',
64
                        'random':'orange'} ):
           plt.ion() # interactive
65
           ax = plt.figure().gca()
66
           ax.set_axis_off()
67
           plt.title(self.title, fontsize=fontsize)
68
           for par in self.utility_factor.variables:
70
               ax.annotate("Utility", par.position,
                   xytext=self.utility_factor.position,
                                      arrowprops={'arrowstyle':'<-'},</pre>
71
                                     bbox=dict(boxstyle="sawtooth,pad=1.0",color=colors['utility']),
72
                                     ha='center', va='center',
73
                                          fontsize=fontsize)
           for var in reversed(self.topological_sort()):
74
               if isinstance(var, DecisionVariable):
75
                  bbox =
76
                       dict(boxstyle="square,pad=1.0",color=colors['decision'])
               else:
77
78
                 bbox =
                      dict(boxstyle="round4,pad=1.0,rounding_size=0.5",color=colors['random'])
               if self.var2parents[var]:
79
                  for par in self.var2parents[var]:
                      ax.annotate(var.name, par.position, xytext=var.position,
81
                                     arrowprops={'arrowstyle':'<-'},bbox=bbox,</pre>
82
                                     ha='center', va='center',
83
                                          fontsize=fontsize)
               else:
84
85
                  x,y = var.position
                  plt.text(x,y,var.name,bbox=bbox,ha='center', va='center',
86
                       fontsize=fontsize)
```

## 12.1.1 Example Decision Networks

Umbrella Decision Network

Here is a simple "umbrella" decision network. The output of umbrella\_dn.show() is shown in Figure 12.1.

https://aipython.org

Version 0.9.13

#### **Umbrella Decision Network**



Figure 12.1: The umbrella decision network. Figure generated by umbrella\_dn.show()

```
"Rain":{"Sunny":0.15,
95
                                                  "Cloudy":0.25, "Rainy":0.6}})
    umb_utility = UtilityTable([Weather, Umbrella], {"NoRain":{"Take":20,
96
        "Leave":100},
                                                      "Rain":{"Take":70,
97
                                                          "Leave":0}},
                                                          position=(1,0.4))
98
    umbrella_dn = DecisionNetwork("Umbrella Decision Network",
99
                                     {Weather, Forecast, Umbrella},
100
                                     {p_weather, p_forecast, umb_utility})
101
102
103
    # umbrella_dn.show()
   # umbrella_dn.show(fontsize=15)
104
```

The following is a variant with the umbrella decision having 2 parents; nothing else has changed. This is interesting because one of the parents is not needed; if the agent knows the weather, it can ignore the forecast.

```
______decnNetworks.py — (continued) _______

Umbrella2p = DecisionVariable("Umbrella", ["Take", "Leave"], {Forecast, Weather}, position=(0.5,0))

umb_utility2p = UtilityTable([Weather, Umbrella2p], {"NoRain":{"Take":20, "Leave":100},
```

https://aipython.org



Figure 12.2: Fire Decision Network. Figure generated by fire\_dn.show()

#### Fire Decision Network

The fire decision network of Figure 12.2 (showing the result of fire\_dn.show()) is represented as:

```
decnNetworks.py — (continued)

boolean = [False, True]

Alarm = Variable("Alarm", boolean, position=(0.25,0.633))

Fire = Variable("Fire", boolean, position=(0.5,0.9))

Leaving = Variable("Leaving", boolean, position=(0.25,0.366))

Report = Variable("Report", boolean, position=(0.25,0.1))

Smoke = Variable("Smoke", boolean, position=(0.75,0.633))

Tamper = Variable("Tamper", boolean, position=(0,0.9))
```

```
123
124
    See_Sm = Variable("See_Sm", boolean, position=(0.75,0.366) )
    Chk_Sm = DecisionVariable("Chk_Sm", boolean, {Report}, position=(0.5,
125
        0.366))
    Call = DecisionVariable("Call", boolean,{See_Sm,Chk_Sm,Report},
126
        position=(0.75, 0.1))
127
    f_{ta} = Prob(Tamper, [], [0.98, 0.02])
128
    f_fi = Prob(Fire,[],[0.99,0.01])
    f_sm = Prob(Smoke,[Fire],[[0.99,0.01],[0.1,0.9]])
130
    f_al = Prob(Alarm, [Fire, Tamper], [[[0.9999, 0.0001], [0.15, 0.85]], [[0.01,
131
        0.99], [0.5, 0.5]]])
    f_{lv} = Prob(Leaving, [Alarm], [[0.999, 0.001], [0.12, 0.88]])
132
    f_re = Prob(Report, [Leaving], [[0.99, 0.01], [0.25, 0.75]])
133
    f_ss = Prob(See_Sm,[Chk_Sm,Smoke],[[[1,0],[1,0]],[[1,0],[0,1]]])
134
135
    ut = UtilityTable([Chk_Sm,Fire,Call],
136
                          [[[0,-200],[-5000,-200]],[[-20,-220],[-5020,-220]]],
137
138
                         position=(1,0.633))
139
    fire_dn = DecisionNetwork("Fire Decision Network",
140
                             {Tamper, Fire, Alarm, Leaving, Smoke, Call, See_Sm, Chk_Sm, Report},
141
                             \{f_{ta}, f_{fi}, f_{sm}, f_{al}, f_{lv}, f_{re}, f_{ss}, ut\}
142
143
    # print(ut.to_table())
144
    # fire_dn.show()
145
# fire_dn.show(fontsize=15)
```

#### Cheating Decision Network

The following is the representation of the cheating decision of Figure 12.3. Note that we keep the names of the variables short (less than 8 characters) so that the tables look good when printed.

```
_decnNetworks.py — (continued) _{-}
    grades = ['A', 'B', 'C', 'F']
148
    Watched = Variable("Watched", boolean, position=(0,0.9))
149
    Caught1 = Variable("Caught1", boolean, position=(0.2,0.7))
150
    Caught2 = Variable("Caught2", boolean, position=(0.6,0.7))
151
    Punish = Variable("Punish", ["None", "Suspension", "Recorded"],
152
        position=(0.8,0.9)
    Grade_1 = Variable("Grade_1", grades, position=(0.2,0.3))
153
    Grade_2 = Variable("Grade_2", grades, position=(0.6,0.3))
    Fin_Grd = Variable("Fin_Grd", grades, position=(0.8,0.1))
155
156
    Cheat_1 = DecisionVariable("Cheat_1", boolean, set(), position=(0,0.5))
        #no parents
    Cheat_2 = DecisionVariable("Cheat_2", boolean, {Cheat_1,Caught1},
157
        position=(0.4, 0.5))
158
   p_{wa} = Prob(Watched, [], [0.7, 0.3])
```

# Caught1 Cheat\_1 Cheat\_2 Cheat\_2 Cheat\_2 Fin\_Grd

Cheating Decision Network

#### Figure 12.3: Cheating Decision Network (cheating\_dn.show())

```
p_cc1 = Prob(Caught1,[Watched,Cheat_1],[[[1.0, 0.0], [0.9, 0.1]], [[1.0,
160
        0.0], [0.5, 0.5]]])
    p_cc2 = Prob(Caught2, [Watched, Cheat_2], [[[1.0, 0.0], [0.9, 0.1]], [[1.0,
161
        0.0], [0.5, 0.5]]])
    p_pun = Prob(Punish, [Caught1, Caught2],
162
                    [[{"None":0, "Suspension":0, "Recorded":0},
163
                      {"None":0.5, "Suspension":0.4, "Recorded":0.1}],
164
                     [{"None":0.6, "Suspension":0.2, "Recorded":0.2},
165
                      {"None":0.2, "Suspension":0.3, "Recorded":0.3}]])
166
    p_gr1 = Prob(Grade_1,[Cheat_1], [{'A':0.2, 'B':0.3, 'C':0.3, 'F': 0.2},
167
                                   {'A':0.5, 'B':0.3, 'C':0.2, 'F':0.0}])
168
    p_gr2 = Prob(Grade_2,[Cheat_2], [{'A':0.2, 'B':0.3, 'C':0.3, 'F': 0.2},
169
                                   {'A':0.5, 'B':0.3, 'C':0.2, 'F':0.0}])
170
    p_fg = Prob(Fin_Grd,[Grade_1,Grade_2],
171
            {'A':{'A':{'A':1.0, 'B':0.0, 'C': 0.0, 'F':0.0},
172
                  'B': {'A':0.5, 'B':0.5, 'C': 0.0, 'F':0.0},
173
174
                  'C':{'A':0.25, 'B':0.5, 'C': 0.25, 'F':0.0},
                  'F':{'A':0.25, 'B':0.25, 'C': 0.25, 'F':0.25}},
175
             'B':{'A':{'A':0.5, 'B':0.5, 'C': 0.0, 'F':0.0},
176
                  'B': {'A':0.0, 'B':1, 'C': 0.0, 'F':0.0},
177
                  'C':{'A':0.0, 'B':0.5, 'C': 0.5, 'F':0.0},
178
                  'F':{'A':0.0, 'B':0.25, 'C': 0.5, 'F':0.25}},
179
             'C':{'A':{'A':0.25, 'B':0.5, 'C': 0.25, 'F':0.0},
180
                  'B': {'A':0.0, 'B':0.5, 'C': 0.5, 'F':0.0},
181
```

```
'C':{'A':0.0, 'B':0.0, 'C': 1, 'F':0.0},
182
183
                 'F':{'A':0.0, 'B':0.0, 'C': 0.5, 'F':0.5}},
             'F':{'A':{'A':0.25, 'B':0.25, 'C': 0.25, 'F':0.25},
184
                  'B': {'A':0.0, 'B':0.25, 'C': 0.5, 'F':0.25},
185
                 'C':{'A':0.0, 'B':0.0, 'C': 0.5, 'F':0.5},
186
                 'F':{'A':0.0, 'B':0.0, 'C': 0, 'F':1.0}}})
187
188
    utc = UtilityTable([Punish,Fin_Grd],
189
                          {'None':{'A':100, 'B':90, 'C': 70, 'F':50},
190
                           'Suspension':{'A':40, 'B':20, 'C': 10, 'F':0},
191
                           'Recorded':{'A':70, 'B':60, 'C': 40, 'F':20}},
192
                          position=(1,0.5)
193
194
    cheating_dn = DecisionNetwork("Cheating Decision Network",
195
                   {Punish,Caught2,Watched,Fin_Grd,Grade_2,Grade_1,Cheat_2,Caught1,Cheat_1},
196
                   {p_wa, p_cc1, p_cc2, p_pun, p_gr1, p_gr2,p_fg,utc})
197
198
    # cheating_dn.show()
199
    # cheating_dn.show(fontsize=15)
200
```

#### Chain of 3 decisions

The following example is a finite-stage fully-observable Markov decision process with a single reward (utility) at the end. It is interesting because the parents do not include all the predecessors. The methods we use will work without change on this, even though the agent does not condition on all of its previous observations and actions. The output of ch3.show() is shown in Figure 12.4.

```
_decnNetworks.py — (continued)
    S0 = Variable('S0', boolean, position=(0,0.5))
    D0 = DecisionVariable('D0', boolean, {S0}, position=(1/7,0.1))
203
    S1 = Variable('S1', boolean, position=(2/7,0.5))
204
    D1 = DecisionVariable('D1', boolean, {S1}, position=(3/7,0.1))
205
    S2 = Variable('S2', boolean, position=(4/7,0.5))
206
    D2 = DecisionVariable('D2', boolean, {S2}, position=(5/7,0.1))
207
    S3 = Variable('S3', boolean, position=(6/7,0.5))
208
209
210
    p_s0 = Prob(S0, [], [0.5, 0.5])
    tr = [[[0.1, 0.9], [0.9, 0.1]], [[0.2, 0.8], [0.8, 0.2]]] # 0 is flip, 1
211
        is keep value
    p_s1 = Prob(S1, [D0,S0], tr)
212
    p_s2 = Prob(S2, [D1,S1], tr)
213
214
    p_s3 = Prob(S3, [D2,S2], tr)
215
    ch3U = UtilityTable([S3],[0,1], position=(7/7,0.9))
216
217
    ch3 = DecisionNetwork("3-chain";
218
        {S0,D0,S1,D1,S2,D2,S3},{p_s0,p_s1,p_s2,p_s3,ch3U})
```



Figure 12.4: A decision network that is a chain of 3 decisions (ch3.show())

### 12.1.2 Decision Functions

The output of an optimization function is an optimal policy, a list of decision functions, and the expected value of the optimal policy. A decision function is the action for each decision variable as a function of its parents.

```
_decnNetworks.py — (continued)
    class DictFactor(Factor):
223
        """A factor the represents the values using a dicionary"""
224
        def __init__(self, *pargs, **kwargs):
225
            self.values = {}
226
            Factor.__init__(self, *pargs, **kwargs)
227
228
        def assign(self, assignment, value):
229
            self.values[frozenset(assignment.items())] = value
230
231
        def get_value(self, assignment):
232
            ass = frozenset(assignment.items())
233
            assert ass in self.values, f"assignment {assignment} cannot be
234
                evaluated"
```

```
return self.values[ass]
235
236
    class DecisionFunction(DictFactor):
237
        def __init__(self, decision, parents):
238
            """ A decision function
            decision is a decision variable
240
241
            parents is a set of variables
242
            self.decision = decision
243
            self.parent = parents
244
            DictFactor.__init__(self, parents, name=decision.name)
245
```

# 12.1.3 Recursive Conditioning for decision networks

An instance of a RC\_DN object takes in a decision network. The query method uses recursive conditioning to compute the expected utility of the optimal policy. self.opt\_policy becomes the optimal policy.

```
__decnNetworks.py — (continued) _
    import math
247
    from probGraphicalModels import GraphicalModel, InferenceMethod
248
    from probFactors import Factor
    from probRC import connected_components
250
251
    class RC_DN(InferenceMethod):
252
        """The class that queries graphical models using recursive conditioning
253
254
        gm is graphical model to query
255
256
        def __init__(self,gm=None):
258
            self.gm = gm
259
            self.cache = {(frozenset(), frozenset()):1}
260
            ## self.max_display_level = 3
261
262
        def optimize(self, split_order=None, algorithm=None):
263
            """computes expected utility, and creates optimal decision
264
                functions, where
            elim_order is a list of the non-observed non-query variables in gm
265
            algorithm is the (search algorithm to use). Default is self.rc
266
267
            if algorithm is None:
268
                algorithm = self.rc
            if split_order == None:
270
                split_order = self.gm.split_order()
271
            self.opt_policy = {v:DecisionFunction(v, v.parents)
272
                                  for v in self.gm.variables
273
                                  if isinstance(v,DecisionVariable)}
274
            return algorithm({}, self.gm.factors, split_order)
275
276
```

```
def show_policy(self):
    print('\n'.join(df.to_table() for df in self.opt_policy.values()))
```

The following is the simplest search-based algorithm. It is exponential in the number of variables, so is not very useful. However, it is simple, and helpful to understand before looking at the more complicated algorithm. Note that the above code does not call rc0; you will need to change the self.rc to self.rc0 in above code to use it.

```
_decnNetworks.py — (continued)
        def rc0(self, context, factors, split_order):
280
            """simplest search algorithm
281
            context is a variable: value dictionary
282
283
            factors is a set of factors
            split_order is a list of variables in factors that are not in
                context
285
            self.display(3, "calling rc0,",(context, factors), "with
286
                SO", split_order)
            if not factors:
287
                return 1
288
            elif to_eval := {fac for fac in factors if
289
                fac.can_evaluate(context)}:
                self.display(3,"rc0 evaluating factors",to_eval)
290
                val = math.prod(fac.get_value(context) for fac in to_eval)
291
                return val * self.rc0(context, factors-to_eval, split_order)
292
            else:
293
                var = split_order[0]
294
                self.display(3, "rc0 branching on", var)
295
                if isinstance(var,DecisionVariable):
296
                    assert set(context) <= set(var.parents), f"cannot optimize</pre>
297
                        {var} in context {context}"
                   maxres = -math.inf
298
                    for val in var.domain:
299
                       self.display(3,"In rc0, branching on",var,"=",val)
300
                       newres = self.rc0({var:val}|context, factors,
301
                            split_order[1:])
                       if newres > maxres:
302
                           maxres = newres
303
                           theval = val
304
                    self.opt_policy[var].assign(context,theval)
305
                    return maxres
306
                else:
307
308
                   total = 0
                    for val in var.domain:
309
                        total += self.rc0({var:val}|context, factors,
310
                            split_order[1:])
                   self.display(3, "rc0 branching on", var, "returning", total)
311
312
                    return total
```

We can combine the optimization for decision networks above, with the improvements of recursive conditioning used for graphical models (Section 9.7, page 220).

```
_decnNetworks.py — (continued)
        def rc(self, context, factors, split_order):
314
            """ returns the number \sum_{split_order} \prod_{factors} given
315
                assignments in context
            context is a variable: value dictionary
316
            factors is a set of factors
317
            split_order is a list of variables in factors that are not in
318
                context
            ,, ,, ,,
319
            self.display(3,"calling rc,",(context,factors))
320
            ce = (frozenset(context.items()), frozenset(factors)) # key for the
321
                cache entry
            if ce in self.cache:
322
               self.display(2,"rc cache lookup",(context,factors))
323
                return self.cache[ce]
324
            if not factors: # no factors; needed if you don't have forgetting
325
        and caching
                return 1
    #
326
            elif vars_not_in_factors := {var for var in context
327
                                           if not any(var in fac.variables for
328
                                               fac in factors)}:
                # forget variables not in any factor
                self.display(3,"rc forgetting variables", vars_not_in_factors)
330
                return self.rc({key:val for (key,val) in context.items()
331
                                  if key not in vars_not_in_factors},
332
                               factors, split_order)
333
            elif to_eval := {fac for fac in factors if
334
                fac.can_evaluate(context)}:
               # evaluate factors when all variables are assigned
335
                self.display(3,"rc evaluating factors",to_eval)
336
               val = math.prod(fac.get_value(context) for fac in to_eval)
337
                if val == 0:
338
                   return 0
339
               else:
340
                 return val * self.rc(context, {fac for fac in factors if fac
341
                     not in to_eval}, split_order)
            elif len(comp := connected_components(context, factors,
342
                split_order)) > 1:
               # there are disconnected components
343
               self.display(2, "splitting into connected components", comp)
344
345
                return(math.prod(self.rc(context,f,eo) for (f,eo) in comp))
            else:
346
               assert split_order, f"split_order empty rc({context},{factors})"
347
               var = split_order[0]
348
                self.display(3, "rc branching on", var)
349
                if isinstance(var,DecisionVariable):
350
```

```
assert set(context) <= set(var.parents), f"cannot optimize</pre>
351
                        {var} in context {context}"
                    maxres = -math.inf
352
                    for val in var.domain:
353
                        self.display(3,"In rc, branching on", var, "=", val)
354
                        newres = self.rc({var:val}|context, factors,
355
                            split_order[1:])
                        if newres > maxres:
356
                           maxres = newres
357
                           theval = val
358
                    self.opt_policy[var].assign(context,theval)
359
                    self.cache[ce] = maxres
360
                    return maxres
361
                else:
362
                    total = 0
363
                    for val in var.domain:
364
                        total += self.rc({var:val}|context, factors,
365
                            split_order[1:])
                    self.display(3, "rc branching on", var, "returning", total)
366
                    self.cache[ce] = total
367
                    return total
368
```

Here is how to run the optimizer on the example decision networks:

```
_decnNetworks.py — (continued) _
   # Umbrella decision network
    #urc = RC_DN(umbrella_dn)
371
    #urc.optimize(algorithm=urc.rc0) #RC0
    #urc.optimize() #RC
373
    #urc.show_policy()
374
375
    #rc_fire = RC_DN(fire_dn)
376
    #rc_fire.optimize()
377
378
    #rc_fire.show_policy()
379
    #rc_cheat = RC_DN(cheating_dn)
380
    #rc_cheat.optimize()
381
    #rc_cheat.show_policy()
382
383
   \#rc\_ch3 = RC\_DN(ch3)
384
   | #rc_ch3.optimize()
385
    #rc_ch3.show_policy()
386
   | # rc_ch3.optimize(algorithm=rc_ch3.rc0) # why does that happen?
```

### 12.1.4 Variable elimination for decision networks

VE\_DN is variable elimination for decision networks. The method *optimize* is used to optimize all the decisions. Note that *optimize* requires a legal elimination ordering of the random and decision variables, otherwise it will give an

exception. (A decision node can only be maximized if the variables that are not its parents have already been eliminated.)

```
_decnNetworks.py — (continued) _{-}
    from probVE import VE
389
390
    class VE_DN(VE):
391
        """Variable Elimination for Decision Networks"""
392
        def __init__(self,dn=None):
393
            """dn is a decision network"""
394
            VE.__init__(self,dn)
395
            self.dn = dn
396
397
        def optimize(self,elim_order=None,obs={}):
398
            if elim_order == None:
399
                   elim_order = reversed(self.gm.split_order())
400
            self.opt_policy = {}
401
            proj_factors = [self.project_observations(fact,obs)
402
                              for fact in self.dn.factors]
403
            for v in elim_order:
404
                if isinstance(v,DecisionVariable):
405
                    to_max = [fac for fac in proj_factors
406
                             if v in fac.variables and set(fac.variables) <=</pre>
407
                                  v.all_vars]
                    assert len(to_max)==1, "illegal variable order
408
                        "+str(elim_order)+" at "+str(v)
                   newFac = FactorMax(v, to_max[0])
409
                    self.opt_policy[v]=newFac.decision_fun
410
                   proj_factors = [fac for fac in proj_factors if fac is not
411
                        to_max[0]]+[newFac]
                   self.display(2,"maximizing",v )
412
                    self.display(3,newFac)
413
                else:
414
415
                   proj_factors = self.eliminate_var(proj_factors, v)
            assert len(proj_factors)==1, "Should there be only one element of
416
                proj_factors?"
            return proj_factors[0].get_value({})
417
418
        def show_policy(self):
419
            print('\n'.join(df.to_table() for df in self.opt_policy.values()))
420
                                 _decnNetworks.py — (continued) _{-}
    class FactorMax(TabFactor):
422
        """A factor obtained by maximizing a variable in a factor.
423
        Also builds a decision_function. This is based on FactorSum.
424
425
426
        def __init__(self, dvar, factor):
427
            """dvar is a decision variable.
428
            factor is a factor that contains dvar and only parents of dvar
429
```

```
430
431
            self.dvar = dvar
            self.factor = factor
432
            vars = [v for v in factor.variables if v is not dvar]
433
            Factor.__init__(self, vars)
434
            self.values = {}
435
436
            self.decision_fun = DecisionFunction(dvar, dvar.parents)
437
        def get_value(self,assignment):
438
            """lazy implementation: if saved, return saved value, else compute
439
                 it"""
            new_asst = \{x:v \text{ for } (x,v) \text{ in } assignment.items() if } x \text{ in }
440
                 self.variables}
            asst = frozenset(new_asst.items())
441
            if asst in self.values:
442
                return self.values[asst]
443
            else:
444
                max_val = float("-inf") # -infinity
445
                for elt in self.dvar.domain:
446
                    fac_val = self.factor.get_value(assignment|{self.dvar:elt})
447
                    if fac_val>max_val:
448
                        max_val = fac_val
449
                        best_elt = elt
450
                self.values[asst] = max_val
451
                self.decision_fun.assign(assignment, best_elt)
452
453
                return max_val
```

Here are some example queries:

```
_decnNetworks.py — (continued) _
   # Example queries:
455
    # vf = VE_DN(fire_dn)
456
    # vf.optimize()
457
    # vf.show_policy()
458
459
    # VE_DN.max_display_level = 3 # if you want to show lots of detail
460
    # vc = VE_DN(cheating_dn)
461
    # vc.optimize()
462
    # vc.show_policy()
463
464
465
    def test(dn):
466
        rc0dn = RC_DN(dn)
467
        rc0v = rc0dn.optimize(algorithm=rc0dn.rc0)
468
        rcdn = RC_DN(dn)
469
        rcv = rcdn.optimize()
        assert abs(rc0v-rcv)<1e-10, f"rc0 produces {rc0v}; rc produces {rcv}"</pre>
471
        vedn = VE_DN(dn)
472
        vev = vedn.optimize()
473
        assert abs(vev-rcv)<1e-10, f"VE_DN produces {vev}; RC produces {rcv}"</pre>
474
        print(f"passed unit test. rc0, rc and VE gave same result for {dn}")
475
```

```
476
477 if __name__ == "__main__":
478 test(fire_dn)
```

# 12.2 Markov Decision Processes

The following represent a **Markov decision process** (**MDP**) directly, rather than using the recursive conditioning or variable elimination code, as was done for decision networks.

```
___mdpProblem.py — Representations for Markov Decision Processes _
   import random
11
   from display import Displayable
   from utilities import argmaxd
13
14
   class MDP(Displayable):
15
       """A Markov Decision Process. Must define:
16
       title a string that gives the title of the MDP
17
       states the set (or list) of states
18
       actions the set (or list) of actions
19
       discount a real-valued discount
20
21
22
       def __init__(self, title, states, actions, discount, init=0):
23
           self.title = title
24
           self.states = states
25
           self.actions = actions
26
27
           self.discount = discount
           self.initv = self.V = {s:init for s in self.states}
28
           self.initq = self.Q = {s: {a: init for a in self.actions} for s in
29
               self.states}
30
       def P(self,s,a):
31
           """Transition probability function
32
           returns a dictionary of \{s1:p1\} such that P(s1 \mid s,a)=p1. Other
33
               probabilities are zero.
34
           raise NotImplementedError("P") # abstract method
35
36
       def R(self,s,a):
37
           """Reward function R(s,a)
           returns the expected reward for doing a in state s.
39
40
           raise NotImplementedError("R") # abstract method
41
```

Two state partying example (Example 12.29 in Poole and Mackworth [2023]):

```
from mdpProblem import MDP, ProblemDomain, distribution
11
   from mdpGUI import GridDomain
12
   import matplotlib.pyplot as plt
13
14
   class partyMDP(MDP):
15
       """Simple 2-state, 2-Action Partying MDP Example"""
16
       def __init__(self, discount=0.9):
17
           states = {'healthy','sick'}
18
           actions = {'relax', 'party'}
19
           MDP.__init__(self, "party MDP", states, actions, discount)
20
21
       def R(self,s,a):
22
           "R(s,a)"
23
           return { 'healthy': {'relax': 7, 'party': 10},
24
                    'sick': {'relax': 0, 'party': 2 }}[s][a]
25
26
       def P(self,s,a):
27
           "returns a dictionary of \{s1:p1\} such that P(s1 \mid s,a)=p1. Other
28
               probabilities are zero."
           phealthy = { # P('healthy' | s, a)
29
                        'healthy': {'relax': 0.95, 'party': 0.7},
30
                       'sick': {'relax': 0.5, 'party': 0.1 }}[s][a]
31
           return {'healthy':phealthy, 'sick':1-phealthy}
32
```

The distribution class is used to represent distibutions as they are being created. Probability distributions are represented as item:value dictionaries. When being constructed, adding an item:value to the dictionary has to act differently when the item is already in the dictionary and when it isn't. The add\_prob method works whether the item is in the dictionary or not.

```
\_mdpProblem.py - (continued) \_
   class distribution(dict):
       """A distribution is an item:prob dictionary.
44
       The only new part is when a new item:pr is added, and item is already
45
            there, the values are summed
46
47
       def __init__(self,d):
48
           dict.__init__(self,d)
49
       def add_prob(self, item, pr):
50
           if item in self:
51
               self[item] += pr
52
53
           else:
               self[item] = pr
54
           return self
55
```

### 12.2.1 Problem Domains

An MDP does not contain enough information to simulate a domain, because

- (a) the rewards and resulting state can be correlated (e.g., in the grid domains below, crashing into a wall results in both a negative reward and the agent not moving), and
- (b) it represents the *expected* reward (e.g., a reward of 1 is has the same expected value as a reward of 100 with probability 1/100 and 0 otherwise, but these are different in a simulation).

A problem domain represents a problem as a function result from states and actions into a distribution of (*state, reward*) pairs. This can be a subclass of MDP because it implements R and P. A problem domain also specifies an initial state and coordinate information used by the graphical user interfaces.

```
_{\rm mdpProblem.py} — (continued)
   class ProblemDomain(MDP):
57
       """A ProblemDomain implements
58
       self.result(state, action) -> {(reward, state):probability}.
59
       Other pairs have probability are zero.
60
       The probabilities must sum to 1.
61
62
       def __init__(self, title, states, actions, discount,
63
                       initial_state=None, x_dim=0, y_dim = 0,
64
                       vinit=0, offsets={}):
65
           """A problem domain
66
           * title is list of titles
67
           * states is the list of states
68
           * actions is the list of actions
           * discount is the discount factor
70
           * initial_state is the state the agent starts at (for simulation)
               if known
           * x_dim and y_dim are the dimensions used by the GUI to show the
               states in 2-dimensions
           * vinit is the initial value
73
           * offsets is a {action:(x,y)} map which specifies how actions are
               displayed in GUI
75
           MDP.__init__(self, title, states, actions, discount)
76
           if initial_state is not None:
77
               self.state = initial_state
78
           else:
79
               self.state = random.choice(states)
80
           self.vinit = vinit # value to reset v,q to
81
           # The following are for the GUI:
82
           self.x_dim = x_dim
83
           self.y_dim = y_dim
84
           self.offsets = offsets
86
       def state2pos(self, state):
87
           """When displaying as a grid, this specifies how the state is
88
               mapped to (x,y) position.
           The default is for domains where the (x,y) position is the state
89
```

```
90
91
            return state
92
        def state2goal(self,state):
93
            """When displaying as a grid, this specifies how the state is
94
                mapped to goal position.
95
            The default is for domains where there is no goal
96
97
            return None
98
        def pos2state(self,pos):
            """When displaying as a grid, this specifies how the state is
100
                mapped to (x,y) position.
            The default is for domains where the (x,y) position is the state
101
102
            return pos
103
104
        def P(self, state, action):
105
            """Transition probability function
106
            returns a dictionary of {s1:p1} such that P(s1 | state,action)=p1.
107
            Other probabilities are zero.
108
109
            res = self.result(state, action)
110
            acc = 1e-6 # accuracy for test of equality
111
            assert 1-acc<sum(res.values())<1+acc, f"result({state},{action})</pre>
112
                not a distribution, sum={sum(res.values())}"
            dist = distribution({})
113
114
            for ((r,s),p) in res.items():
                dist.add_prob(s,p)
115
            return dist
116
117
        def R(self, state, action):
118
            """Reward function R(s,a)
119
120
            returns the expected reward for doing a in state s.
121
            return sum(r*p for ((r,s),p) in self.result(state, action).items())
122
```

### Tiny Game

The next example is the tiny game from Example 13.1 and Figure 13.1 of Poole and Mackworth [2023] The state is represented as (x, y) where x counts from zero from the left, and y counts from zero upwards, so the state (0,0) is on the bottom-left. The actions are upC for up-careful, upR for up-risky, left, and left. (Note that GridDomain means that it can be shown with the MDP GUI in Section 12.2.3).

```
x_dim = 2 \# x-dimension
36
37
           y_dim = 3
           ProblemDomain.__init__(self,
38
               "Tiny MDP", # title
39
               [(x,y) for x in range(x_dim) for y in range(y_dim)], #states
40
               ['right', 'upC', 'left', 'upR'], #actions
41
42
              discount,
              x_dim=x_dim, y_dim = y_dim,
43
              offsets = {'right': (0.25,0), 'upC': (0,-0.25), 'left': (-0.25,0),
                   'upR':(0,0.25)}
45
46
       def result(self, state, action):
47
           """return a dictionary of {(r,s):p} where p is the probability of
48
               reward r, state s
           a state is an (x,y) pair
49
50
51
           (x,y) = state
           right = (-x,(1,y)) # reward is -1 if x was 1
52
           left = (0,(0,y)) if x==1 else [(-1,(0,0)), (-100,(0,1)),
53
               (10,(0,0))][y]
           up = (0,(x,y+1)) if y<2 else (-1,(x,y))
54
           if action == 'right':
55
               return {right:1}
56
           elif action == 'upC':
57
               (r,s) = up
               return {(r-1,s):1}
59
60
           elif action == 'left':
             return {left:1}
61
           elif action == 'upR':
62
               return distribution({left:
63
                   0.1}).add_prob(right, 0.1).add_prob(up, 0.8)
              # Exercise: what is wrong with return {left: 0.1, right:0.1,
64
                   up:0.8}
65
   # To show GUI do
67 | # MDPtiny().viGUI()
```

#### Grid World

Here is the domain of Example 12.30 of Poole and Mackworth [2023], shown here in Figure 12.5. A state is represented as (x,y) where x counts from zero from the left, and y counts from zero upwards, so the state (0,0) is on the bottom-left.

```
mdpExamples.py — (continued)

69 | class grid(ProblemDomain, GridDomain):

70 | """ x_dim * y_dim grid with rewarding states"""

71 | def __init__(self, discount=0.9, x_dim=10, y_dim=10):

72 | ProblemDomain.__init__(self,
```



Figure 12.5: Grid world

```
"Grid World",
73
               [(x,y) for x in range(y_dim) for y in range(y_dim)], #states
74
               ['up', 'down', 'right', 'left'], #actions
75
76
               discount,
               x_dim = x_dim, y_dim = y_dim,
77
               offsets = {'right': (0.25,0), 'up': (0,0.25), 'left': (-0.25,0),
                    'down':(0,-0.25)})
           self.rewarding_states = \{(3,2):-10, (3,5):-5, (8,2):10, (7,7):3\}
79
           self.fling_states = \{(8,2), (7,7)\} # assumed a subset of
80
               rewarding_states
81
       def intended_next(self,s,a):
82
           """returns the (reward, state) in the direction a.
83
           This is where the agent will end up if to goes in its
84
               intended_direction
                (which it does with probability 0.7).
85
           ,, ,, ,,
86
           (x,y) = s
87
           if a=='up':
88
               return (0, (x,y+1)) if y+1 < self.y_dim else <math>(-1, (x,y))
89
           if a=='down':
90
               return (0, (x,y-1)) if y > 0 else (-1, (x,y))
91
92
           if a=='right':
               return (0, (x+1,y)) if x+1 < self.x_dim else <math>(-1, (x,y))
93
           if a=='left':
95
               return (0, (x-1,y)) if x > 0 else (-1, (x,y))
       def result(self,s,a):
97
           """return a dictionary of \{(r,s):p\} where p is the probability of
98
               reward r, state s.
```



Figure 12.6: Monster game

```
a state is an (x,y) pair
99
100
101
            r0 = self.rewarding_states[s] if s in self.rewarding_states else 0
            if s in self.fling_states:
102
               return {(r0,(0,0)): 0.25, (r0,(self.x_dim-1,0)):0.25,
103
                           (r0,(0,self.y_dim-1)):0.25,
104
                               (r0,(self.x_dim-1,self.y_dim-1)):0.25}
105
            dist = distribution({})
            for a1 in self.actions:
106
                (r1,s1) = self.intended_next(s,a1)
107
               rs = (r1+r0, s1)
108
               p = 0.7 if a1==a else 0.1
109
               dist.add_prob(rs,p)
110
            return dist
111
```

#### Monster Game

This is for the game depicted in Figure 13.1 (Example 13.2 of Poole and Mackworth [2023]).

```
__mdpExamples.py — (continued)
    class Monster_game(ProblemDomain, GridDomain):
113
114
        vwalls = [(0,3), (0,4), (1,4)] # vertical walls right of these locations
115
116
        crash\_reward = -1
117
        prize_locs = [(0,0), (0,4), (4,0), (4,4)]
118
        prize_apears_prob = 0.3
119
120
        prize\_reward = 10
121
```

```
monster_locs = [(0,1), (1,1), (2,3), (3,1), (4,2)]
122
123
        monster_appears_prob = 0.4
        monster_reward_when_damaged = -10
124
        repair_stations = [(1,4)]
125
126
        def __init__(self, discount=0.9):
127
128
            x_dim = 5
            y_dim = 5
129
                # which damaged and prize to show
130
            ProblemDomain.__init__(self,
131
                "Monster Game",
132
                [(x,y,damaged,prize)
133
                     for x in range(x_dim)
134
                     for y in range(y_dim)
135
                     for damaged in [False,True]
136
                     for prize in [None]+self.prize_locs], #states
137
                ['up', 'down', 'right', 'left'], #actions
138
                discount,
139
                x_{dim} = x_{dim}, y_{dim} = y_{dim},
140
                offsets = {'right':(0.25,0), 'up':(0,0.25), 'left':(-0.25,0),
141
                    'down':(0,-0.25)})
142
            self.state = (2,2,False,None)
143
        def intended_next(self,xy,a):
144
            """returns the (reward, (x,y)) in the direction a.
145
            This is where the agent will end up if to goes in its
146
                intended_direction
147
                 (which it does with probability 0.7).
148
            (x,y) = xy # original x-y position
149
            if a=='up':
150
                return (0, (x,y+1)) if y+1 < self.y_dim else
151
                    (self.crash_reward, (x,y))
152
            if a=='down':
                return (0, (x,y-1)) if y > 0 else (self.crash\_reward, (x,y))
153
154
            if a=='right':
                if (x,y) in self.vwalls or x+1==self.x_dim: # hit wall
155
                    return (self.crash_reward, (x,y))
156
                else:
157
                    return (0, (x+1,y))
158
            if a=='left':
159
                if (x-1,y) in self.vwalls or x==0: # hit wall
160
                               return (self.crash_reward, (x,y))
161
                else:
162
                    return (0, (x-1,y))
163
164
        def result(self,s,a):
165
            """return a dictionary of \{(r,s):p\} where p is the probability of
166
                reward r, state s.
            a state is an (x,y) pair
167
```

```
168
169
            (x,y,damaged,prize) = s
            dist = distribution({})
170
            for a1 in self.actions: # possible results
171
               mp = 0.7 if a1==a else 0.1
172
               mr,(xn,yn) = self.intended_next((x,y),a1)
173
174
               if (xn,yn) in self.monster_locs:
                   if damaged:
175
                       dist.add_prob((mr+self.monster_reward_when_damaged,(xn,yn,True,prize)),
176
                           mp*self.monster_appears_prob)
                       dist.add_prob((mr,(xn,yn,True,prize)),
177
                           mp*(1-self.monster_appears_prob))
                   else:
178
                      dist.add_prob((mr,(xn,yn,True,prize)),
179
                          mp*self.monster_appears_prob)
                      dist.add_prob((mr,(xn,yn,False,prize)),
180
                          mp*(1-self.monster_appears_prob))
               elif (xn,yn) == prize:
181
                   dist.add_prob((mr+self.prize_reward,(xn,yn,damaged,None)),
182
               elif (xn,yn) in self.repair_stations:
183
184
                   dist.add_prob((mr,(xn,yn,False,prize)), mp)
               else:
185
                   dist.add_prob((mr,(xn,yn,damaged,prize)), mp)
186
            if prize is None:
187
               res = distribution({})
188
               for (r,(x2,y2,d,p2)),p in dist.items():
189
190
                   res.add_prob((r,(x2,y2,d,None)),
                       p*(1-self.prize_apears_prob))
                   for pz in self.prize_locs:
191
                       res.add_prob((r,(x2,y2,d,pz)),
192
                            p*self.prize_apears_prob/len(self.prize_locs))
                return res
193
            else:
194
                return dist
195
196
        def state2pos(self, state):
197
            """When displaying as a grid, this specifies how the state is
198
                mapped to (x,y) position.
            The default is for domains where the (x,y) position is the state
199
200
            (x,y,d,p) = state
201
202
            return (x,y)
203
        def pos2state(self, pos):
204
            """When displaying as a grid, this specifies how the state is
205
                mapped to (x,y) position.
            ,, ,, ,,
206
            (x,y) = pos
207
            (xs, ys, damaged, prize) = self.state
208
```

```
209
            return (x, y, damaged, prize)
210
        def state2goal(self,state):
211
            """the (x,y) position for the goal
212
213
            (x, y, damaged, prize) = state
214
215
            return prize
216
217
    # To see value iterations:
    # mg = Monster_game()
218
    # mg.viGUI() # then run vi a few times
    # to see other states, exit the GUI
220
   # mg.state = (2,2,True,(4,4)) # or other damaged/prize states
   # mg.viGUI()
222
```

### 12.2.2 Value Iteration

The following implements value iteration for Markov decision processes.

A Q function is represented as a dictionary so Q[s][a] is the value for doing action a in state s. The value function is represented as a dictionary so V[s] is the value of state s. Policy  $\pi$  is represented as a dictionary where pi[s], where s is a state, returns the action.

Note that the following defines vi to be a method in MDP.

```
_mdpProblem.py — (continued) _
    def vi(self, n):
124
            """carries out n iterations of value iteration, updating value
125
                function self.V
            Returns a Q-function, value function, policy
126
127
128
            self.display(3,f"calling vi({n})")
            for i in range(n):
129
                self.Q = {s: {a: self.R(s,a)}}
130
                                +self.discount*sum(p1*self.V[s1]
131
132
                                                   for (s1,p1) in
                                                        self.P(s,a).items())
                              for a in self.actions}
133
                         for s in self.states}
134
                self.V = {s: max(self.Q[s][a] for a in self.actions)
135
                          for s in self.states}
136
137
            self.pi = {s: argmaxd(self.Q[s])
                          for s in self.states}
138
            return self.Q, self.V, self.pi
139
140
    MDP.vi = vi
```

The following shows how this can be used.

```
_____mdpExamples.py — (continued) ______

224 | ## Testing value iteration
```

https://aipython.org

```
# Try the following:
225
226
    # pt = partyMDP(discount=0.9)
    # pt.vi(1)
227
    # pt.vi(100)
228
    # partyMDP(discount=0.99).vi(100)
    # partyMDP(discount=0.4).vi(100)
230
231
    # gr = grid(discount=0.9)
232
233 # gr.viGUI()
234 | # q, v, pi = gr. vi(100)
235 | # q[(7,2)]
```

### 12.2.3 Value Iteration GUI for Grid Domains

A GridDomain is a domain where the states can be mapped into (x,y) positions, and the actions can be mapped into up-down-left-right. They are special because the viGUI() method to interact with them. It requires the following values/methods be defined:

- self.x\_dim and self.y\_dim define the dimensions of the grid (so the states are (x,y), where  $0 \le x < \text{self.x\_dim}$  and  $0 \le y < \text{self.y\_dim}$ .
- self.state2pos(state)] gives the (x,y) position of state. The default is that that states are already (x,y) positions.
- self.state2goal(state)] gives the (x,y) position of the goal in state. The default is None.
- self.pos2state(pos)] where pos is an (x,y) pair, gives the state that is shown at position (x,y). When the state contain more information than the (x,y) pair, the extra informmation is taken from self.state.
- self.offsets[a] defines where to display action a, as (x,y) offset for action a when displaying Q-values.

```
__mdpGUI.py — GUI for value iteration in MDPs _
   import matplotlib.pyplot as plt
11
   from matplotlib.widgets import Button, CheckButtons, TextBox
12
   from mdpProblem import MDP
13
14
   class GridDomain(object):
15
16
       def viGUI(self):
17
           #plt.ion() # interactive
18
           fig,self.ax = plt.subplots()
           plt.subplots_adjust(bottom=0.2)
20
           stepB = Button(plt.axes([0.8,0.05,0.1,0.075]), "step")
21
           stepB.on_clicked(self.on_step)
```

```
resetB = Button(plt.axes([0.65, 0.05, 0.1, 0.075]), "reset")
23
24
           resetB.on_clicked(self.on_reset)
           self.qcheck = CheckButtons(plt.axes([0.2,0.05,0.35,0.075]),
25
                                        ["show Q-values", "show policy"])
26
           self.qcheck.on_clicked(self.show_vals)
27
           self.font_box = TextBox(plt.axes([0.1,0.05,0.05,0.075]), "Font:",
28
               textalignment="center")
           self.font_box.on_submit(self.set_font_size)
29
           self.font_box.set_val(str(plt.rcParams['font.size']))
30
           self.show_vals(None)
31
           plt.show()
32
33
       def set_font_size(self, s):
34
           plt.rcParams.update({'font.size': eval(s)})
35
           plt.draw()
36
37
       def show_vals(self,event):
38
           self.ax.cla() # clear the axes
39
40
           array = [[self.V[self.pos2state((x,y))] for x in range(self.x_dim)]
41
                                              for y in range(self.y_dim)]
42
           self.ax.pcolormesh([x-0.5 for x in range(self.x_dim+1)],
                                [y-0.5 for y in range(self.y_dim+1)],
44
                                array, edgecolors='black',cmap='summer')
45
               # for cmap see
46
                   https://matplotlib.org/stable/tutorials/colors/colormaps.html
           if self.qcheck.get_status()[1]: # "show policy"
47
48
                  for x in range(self.x_dim):
                     for y in range(self.y_dim):
49
                        state = self.pos2state((x,y))
50
                        maxv = max(self.Q[state][a] for a in self.actions)
51
                        for a in self.actions:
52
                            if self.Q[state][a] == maxv:
53
                                # draw arrow in appropriate direction
54
                               xoff, yoff = self.offsets[a]
55
                                self.ax.arrow(x,y,xoff*2,yoff*2,
56
                                      color='red',width=0.05, head_width=0.2,
57
                                     length_includes_head=True)
58
           if self.qcheck.get_status()[0]: # "show q-values"
59
              self.show_q(event)
60
           else:
              self.show_v(event)
62
           self.ax.set_xticks(range(self.x_dim))
63
           self.ax.set_xticklabels(range(self.x_dim))
64
           self.ax.set_yticks(range(self.y_dim))
65
           self.ax.set_yticklabels(range(self.y_dim))
66
           plt.draw()
67
68
       def on_step(self,event):
69
70
           self.step()
```

```
self.show_vals(event)
71
72
        def step(self):
73
           """The default step is one step of value iteration"""
74
           self.vi(1)
75
76
77
        def show_v(self,event):
            """show values"""
78
79
           for x in range(self.x_dim):
               for y in range(self.y_dim):
80
                   state = self.pos2state((x,y))
81
                   self.ax.text(x,y,"{val:.2f}".format(val=self.V[state]),ha='center')
82
83
        def show_q(self,event):
84
           """show q-values"""
85
           for x in range(self.x_dim):
86
               for y in range(self.y_dim):
87
                   state = self.pos2state((x,y))
88
                   for a in self.actions:
89
                       xoff, yoff = self.offsets[a]
90
                       self.ax.text(x+xoff,y+yoff,
91
                                    "{val:.2f}".format(val=self.Q[state][a]),ha='center')
92
93
        def on_reset(self, event):
94
          self.V = {s:self.vinit for s in self.states}
95
           self.Q = {s: {a: self.vinit for a in self.actions} for s in
               self.states}
          self.show_vals(event)
97
98
    # to use the GUI do some of:
99
    # python -i mdpExamples.py
100
   # MDPtiny(discount=0.9).viGUI()
101
# grid(discount=0.9).viGUI()
103 | # Monster_game(discount=0.9).viGUI()
```

Figure 12.7 shows the user interface for the tiny domain, which can be obtained using

MDPtiny(discount=0.9).viGUI()

resizing it, checking "show q-values" and "show policy", and clicking "step" a few times.

```
To run the demo in class do:
% python -i mdpExamples.py
MDPtiny(discount=0.9).viGUI()
```

Figure 12.8 shows the user interface for the grid domain, which can be obtained using

```
grid(discount=0.9).viGUI()
```

resizing it, checking "show q-values" and "show policy", and clicking "step" a few times.



Figure 12.7: Interface for tiny example, after a number of steps. Each rectangle represents a state. In each rectangle are the 4 Q-values for the state. The leftmost number is for the left action; the rightmost number is for the right action; the uppermost is for the upR (up-risky) action and the lowest number is for the upC action. The arrow points to the action(s) with the maximum Q-value. Use MDPtiny().viGUI() after loading mdpExamples.py



Figure 12.8: Interface for grid example, after a number of steps. Each rectangle represents a state. In each rectangle are the 4 Q-values for the state. The leftmost number is for the left action; the rightmost number is for the right action; the uppermost is for the up action and the lowest number is for the down action. The arrow points to the action(s) with the maximum Q-value. From grid(discount=0.9).viGUI()

**Exercise 12.1** Computing q before v may seem like a waste of space because we don't need to store q in order to compute the value function or the policy. Change the algorithm so that it loops through the states and actions once per iteration, and only stores the value function and the policy. Note that to get the same results as before, you would need to make sure that you use the previous value of v in the computation not the current value of v. Does using the current value of v hurt the algorithm or make it better (in approaching the actual value function)?

### 12.2.4 Asynchronous Value Iteration

This implements asynchronous value iteration, storing *Q*.

A Q function is represented so q[s][a] is the value for doing action with index a state with index s.

Note that the following defines avi to be a method of MDP.

```
_{	extsf{mdpProblem.py}} — (continued) _{	extsf{-}}
143
    def avi(self,n):
               states = list(self.states)
144
               actions = list(self.actions)
145
               for i in range(n):
146
                   s = random.choice(states)
147
                   a = random.choice(actions)
148
                   self.Q[s][a] = (self.R(s,a) + self.discount *
149
                                        sum(p1 * max(self.Q[s1][a1]
150
                                                           for a1 in self.actions)
151
152
                                              for (s1,p1) in self.P(s,a).items()))
               return self.0
153
    MDP.avi = avi
155
```

The following shows how avi can be used.

```
__mdpExamples.py — (continued)
    ## Testing asynchronous value iteration
238
    # Try the following:
239
    # pt = partyMDP(discount=0.9)
240
241
    |# pt.avi(10)
    # pt.vi(1000)
242
243
    # gr = grid(discount=0.9)
244
    # q = gr.avi(100000)
245
    q[(7,2)]
246
247
    def test_MDP(mdp, discount=0.9, eps=0.01):
248
        """tests vi and avi give the same answer for a MDP class mdp
249
250
        mdp1 = mdp(discount=discount)
251
        q1,v1,pi1 = mdp1.vi(100)
252
        mdp2 = mdp(discount=discount)
253
        q2 = mdp2.avi(1000)
254
```

```
same = all(abs(q1[s][a]-q2[s][a]) < eps

for s in mdp1.states

for a in mdp1.actions)

assert same, "vi and avi are different:\n{q1}\n{q2}"

print(f"passed unit test. vi and avi gave same result for {mdp1.title}")

if __name__ == "__main__":
    test_MDP(partyMDP)</pre>
```

**Exercise 12.2** Implement value iteration that stores the *V*-values rather than the *Q*-values. Does it work better than storing *Q*? (What might "better" mean?)

**Exercise 12.3** In asynchronous value iteration, try a number of different ways to choose the states and actions to update (e.g., sweeping through the state-action pairs, choosing them at random). Note that the best way may be to determine which states have had their Q-values changed the most, and then update the previous ones, but that is not so straightforward to implement, because you need to find those previous states.

# Reinforcement Learning

# 13.1 Representing Agents and Environments

The reinforcement learning agents and environments are instances of the general agent architecture of Section 2.1, where the percepts are reward–state pairs. The *state* is the world state; this is the fully observable assumption. In particular:

- An agent implements the method select\_action that takes the reward (and environment state and returns the next action (and updates the state of the agent).
- An environment implements the method do that takes the action and returns a pair of the reward and the resulting environment state.

These are chained together to simulate the system.

This follows the architecture of Section 2.1; here the percept is the state. The simulation starts by calling the agent method initial\_action(state), which typically remembers the state and returns a random action.

### 13.1.1 Environments

The environments have names for the roles of agents participating. In this chapter, where we assume a single agent, this is used as the name of the environment.

```
from agents import Agent, Environment
15
   from utilities import select_from_dist, argmaxe, argmaxd, flip
   class RL_env(Environment):
17
       def __init__(self, name, actions, state):
18
           """creates an environment given name, list of actions, and initial
19
               state"""
          self.name = name
                                  # the role for an agent
20
          self.actions = actions # list of all actions
21
          self.state = state
                                  # initial state
22
          self.reward = None
                                  # last reward
23
24
       # must implement do(action)->(reward, state)
25
```

### 13.1.2 Agents

```
__rlProblem.py — (continued) _
27
   class RL_agent(Agent):
       """An RL_Agent
28
       has percepts (s, r) for some state s and real reward r
29
30
       def __init__(self, actions):
31
          self.actions = actions
32
33
       def initial_action(self, env_state):
34
           """return the initial action, and remember the state and action
35
           Act randomly initially
36
           Could be overridden to initialize data structures (as the agent now
37
               knows about one state)
38
           self.state = env_state
39
           self.action = random.choice(self.actions)
40
           return self.action
41
42
       def select_action(self, reward, state):
43
44
           Select the action given the reward and next state
45
           Remember the action in self.action
46
           This implements "Act randomly" and should be overridden!
47
48
           self.reward = reward
49
           self.action = random.choice(self.actions)
50
           return self.action
51
52
       def v(self, state):
53
           "v needed for GUI; an agent must also implement q()"
54
           return max(self.q(state,a) for a in self.actions)
55
```

## 13.1.3 Simulating an Environment-Agent Interaction

The interaction between the agents and the environment is mediated by a simulator that calls each in turn. Simulate below is similar to Simulate of Section 2.1, except it is initialized by agent.initial\_action(state).

```
_rIProblem.py — (continued) .
57
   import matplotlib.pyplot as plt
58
   class Simulate(Displayable):
59
       """simulate the interaction between the agent and the environment
60
       for n time steps.
61
       Returns a pair of the agent state and the environment state.
62
63
       def __init__(self, agent, environment):
64
           self.agent = agent
65
           self.env = environment
66
           self.reward_history = [] # for plotting
67
           self.step = 0
68
           self.sum\_rewards = 0
69
70
       def start(self):
71
           self.action = self.agent.initial_action(self.env.state)
72
           return self
73
74
       def go(self, n):
75
           for i in range(n):
76
               self.step += 1
77
               (reward, state) = self.env.do(self.action)
78
               self.display(2,f"step={self.step} reward={reward},
                   state={state}")
80
               self.sum_rewards += reward
               self.reward_history.append(reward)
81
               self.action = self.agent.select_action(reward,state)
82
               self.display(2,f"
                                   action={self.action}")
83
           return self
84
```

The following plots the sum of rewards as a function of the step in a simulation.

```
_rlProblem.py — (continued) _
       def plot(self, label=None, step_size=None, xscale='linear'):
86
87
           plots the rewards history in the simulation
88
           label is the label for the plot
           step_size is the number of steps between each point plotted
90
           xscale is 'log' or 'linear'
91
92
           returns sum of rewards
93
           11 11 11
94
```

```
if step_size is None: #for long simulations (> 999), only plot some
95
                step_size = max(1,len(self.reward_history)//500)
            if label is None:
97
               label = self.agent.method
98
            plt.ion()
99
100
            plt.xscale(xscale)
            plt.xlabel("step")
101
            plt.ylabel("Sum of rewards")
102
            sum_history, sum_rewards = acc_rews(self.reward_history, step_size)
103
            plt.plot(range(0,len(self.reward_history),step_size), sum_history,
104
                label=label)
            plt.legend()
105
            plt.draw()
106
            return sum_rewards
107
108
    def acc_rews(rews, step_size):
109
        """returns the rolling sum of the values, sampled each step_size, and
110
            the sum
        ,, ,, ,,
111
        acc = []
112
        sumr = 0; i=0
113
        for e in rews:
114
           sumr += e
115
           i += 1
116
           if (i%step_size == 0): acc.append(sumr)
117
        return acc, sumr
118
```

# 13.1.4 Party Environment

Here is the definition of the simple 2-state, 2-action decision about whether to party or relax (Example 12.29 in Poole and Mackworth [2023]). (Compare to the MDP representation of page 296)

```
_rlExamples.py — Some example reinforcement learning environments _
   from rlProblem import RL_env
11
12
   class Party_env(RL_env):
       def __init__(self):
13
           RL_env.__init__(self, "Party Decision", ["party", "relax"],
14
                "healthy")
15
       def do(self, action):
16
           """updates the state based on the agent doing action.
17
           returns reward, state
18
           if self.state=="healthy":
20
               if action=="party":
21
                   self.state = "healthy" if flip(0.7) else "sick"
22
                   self.reward = 10
23
               else: # action=="relax"
24
```

```
self.state = "healthy" if flip(0.95) else "sick"
25
26
                   self.reward = 7
           else: # self.state=="sick"
27
               if action=="party":
28
                   self.state = "healthy" if flip(0.1) else "sick"
29
                  self.reward = 2
30
31
               else:
                  self.state = "healthy" if flip(0.5) else "sick"
32
                  self.reward = 0
33
           return self.reward, self.state
34
```

### 13.1.5 Environment from a Problem Domain

Env\_fom\_ProblemDomain takes a ProblemDomain (page 297) and constructs an environment that can be used for reinforcement learners.

As explained in Section 12.2.1, the representation of an MDP does not contain enough information to simulate a system, because it loses any dependency between the rewards and the resulting state (e.g., hitting the wall and having a negative reward may be correlated), and only represents the expected value of rewards, not how they are distributed. The ProblemDomain class defines the result method to map states and actions into distributions over (reward, state) pairs.

```
_rlProblem.py — (continued) .
120
    class Env_from_ProblemDomain(RL_env):
121
        def __init__(self, prob_dom):
122
            RL_env.__init__(self, prob_dom.title, prob_dom.actions,
123
                prob_dom.state)
            self.problem_domain = prob_dom
124
            self.state = prob_dom.state
125
            self.x_dim = prob_dom.x_dim
126
            self.y_dim = prob_dom.y_dim
127
            self.offsets = prob_dom.offsets
128
            self.state2pos = self.problem_domain.state2pos
129
            self.state2goal = self.problem_domain.state2goal
130
            self.pos2state = self.problem_domain.pos2state
131
132
        def do(self, action):
133
            """updates the state based on the agent doing action.
134
            returns state, reward
135
136
            (self.reward, self.state) =
137
                select_from_dist(self.problem_domain.result(self.state, action))
            self.problem_domain.state = self.state
138
            self.display(2,f"do({action} -> ({self.reward}, {self.state})")
139
            return (self.reward, self.state)
140
```



Figure 13.1: Monster game

### 13.1.6 Monster Game Environment

This is for the game depicted in Figure 13.1 (Example 13.2 of Poole and Mackworth [2023]). This is an alternative representation to that of Section 12.2.1, which defined the distribution over reward-state pairs. This directly builds a simulator, which might be easier to understand or adapt to new environments.

```
_rlExamples.py — (continued)
   import random
36
   from utilities import flip
37
   from rlProblem import RL_env
38
39
   class Monster_game_env(RL_env):
40
       x_dim = 5
41
       y_dim = 5
42
43
       vwalls = [(0,3), (0,4), (1,4)] # vertical walls right of these locations
44
       hwalls = [] # not implemented
45
       crashed_reward = -1
46
47
       prize_locs = [(0,0), (0,4), (4,0), (4,4)]
48
       prize_apears_prob = 0.3
49
       prize_reward = 10
50
51
       monster_locs = [(0,1), (1,1), (2,3), (3,1), (4,2)]
52
53
       monster\_appears\_prob = 0.4
       monster_reward_when_damaged = -10
54
       repair_stations = [(1,4)]
55
56
       actions = ["up","down","left","right"]
57
```

https://aipython.org

Version 0.9.13

```
58
59
        def __init__(self):
           # State:
60
            self.x = 2
61
            self.y = 2
62
            self.damaged = False
63
64
            self.prize = None
            # Statistics
65
            self.number_steps = 0
66
            self.accumulated_rewards = 0 # sum of rewards received
67
            self.min_accumulated_rewards = 0
68
            self.min_step = 0
69
            self.zero_crossing = 0
70
            RL_env.__init__(self, "Monster Game", self.actions, (self.x,
71
                self.y, self.damaged, self.prize))
            self.display(2,"","Step","Tot Rew","Ave Rew",sep="\t")
72
73
        def do(self,action):
74
            """updates the state based on the agent doing action.
75
            returns reward, state
76
77
            assert action in self.actions, f"Monster game, unknown action:
                {action}"
            self.reward = 0.0
79
            # A prize can appear:
80
            if self.prize is None and flip(self.prize_apears_prob):
                   self.prize = random.choice(self.prize_locs)
82
            # Actions can be noisy
83
            if flip(0.4):
84
               actual_direction = random.choice(self.actions)
85
            else:
86
               actual_direction = action
87
            # Modeling the actions given the actual direction
88
89
            if actual_direction == "right":
               if self.x==self.x_dim-1 or (self.x,self.y) in self.vwalls:
90
                   self.reward += self.crashed_reward
91
               else:
92
                   self.x += 1
93
            elif actual_direction == "left":
               if self.x==0 or (self.x-1,self.y) in self.vwalls:
95
                   self.reward += self.crashed_reward
               else:
97
                   self.x += -1
98
            elif actual_direction == "up":
99
               if self.y==self.y_dim-1:
100
                   self.reward += self.crashed_reward
101
               else:
102
                   self.y += 1
103
            elif actual_direction == "down":
104
               if self.y==0:
105
```

```
self.reward += self.crashed_reward
106
107
               else:
                   self.y += -1
108
            else:
109
                raise RuntimeError(f"unknown_direction: {actual_direction}")
110
111
112
            # Monsters
            if (self.x,self.y) in self.monster_locs and
113
                flip(self.monster_appears_prob):
                if self.damaged:
114
                   self.reward += self.monster_reward_when_damaged
115
               else:
116
                   self.damaged = True
117
            if (self.x,self.y) in self.repair_stations:
118
                self.damaged = False
119
120
            # Prizes
121
            if (self.x,self.y) == self.prize:
122
                self.reward += self.prize_reward
123
                self.prize = None
124
125
            # Statistics
126
            self.number_steps += 1
127
            self.accumulated_rewards += self.reward
128
            if self.accumulated_rewards < self.min_accumulated_rewards:</pre>
129
                self.min_accumulated_rewards = self.accumulated_rewards
130
                self.min_step = self.number_steps
131
132
            if self.accumulated_rewards>0 and
                self.reward>self.accumulated_rewards:
                self.zero_crossing = self.number_steps
133
            self.display(2,"",self.number_steps,self.accumulated_rewards,
134
                         self.accumulated_rewards/self.number_steps,sep="\t")
135
136
137
            return self.reward, (self.x, self.y, self.damaged, self.prize)
```

The following methods are used by the GUI (Section 13.7, page 340) so that the states can be shown.

```
_rlExamples.py — (continued)
        ### For GUI
139
        def state2pos(self, state):
140
            """the (x,y) position for the state
141
142
143
            (x, y, damaged, prize) = state
            return (x,y)
144
145
        def state2goal(self,state):
146
            """the (x,y) position for the goal
147
148
            (x, y, damaged, prize) = state
149
            return prize
150
```

13.2. *Q Learning* 321

```
def pos2state(self,pos):
    """the state corresponding to the (x,y) position.
    The damages and prize are not shown in the GUI
    """
    (x,y) = pos
    return (x, y, self.damaged, self.prize)
```

# 13.2 Q Learning

To run the Q-learning demo, in folder "aipython", load "rlQLearner.py", and copy and paste the example queries at the bottom of that file.

```
_rlQLearner.py — Q Learning .
   import random
   import math
   from display import Displayable
   from utilities import argmaxe, argmaxd, flip
14
   from rlProblem import RL_agent, epsilon_greedy, ucb
15
16
   class Q_learner(RL_agent):
17
       """A Q-learning agent has
18
       belief-state consisting of
19
           state is the previous state (initialized by RL_agent
20
           q is a {(state,action):value} dict
21
           visits is a {(state,action):n} dict. n is how many times action was
22
               done in state
           acc_rewards is the accumulated reward
23
24
```

```
_rlQLearner.py — (continued)
       def __init__(self, role, actions, discount,
26
                   exploration_strategy=epsilon_greedy, es_kwargs={},
27
                   alpha_fun=lambda _:0.2,
28
                   Qinit=0, method="Q_learner"):
29
30
           role is the role of the agent (e.g., in a game)
31
           actions is the set of actions the agent can do
32
33
           discount is the discount factor
           exploration_strategy is the exploration function, default
34
               "epsilon_greedy"
           es_kwargs is extra arguments of exploration_strategy
35
           alpha_fun is a function that computes alpha from the number of
               visits
           Qinit is the initial q-value
37
           method gives the method used to implement the role (for plotting)
38
```

```
39
40
           RL_agent.__init__(self, actions)
           self.role = role
41
           self.discount = discount
42
           self.exploration_strategy = exploration_strategy
43
           self.es_kwargs = es_kwargs
44
45
           self.alpha_fun = alpha_fun
           self.Qinit = Qinit
46
           self.method = method
47
           self.acc_rewards = 0
48
           self.Q = \{\}
49
           self.visits = {}
50
```

The initial action is a random action. It remembers the state, and initializes the data structures.

```
_rlQLearner.py — (continued) _
       def initial_action(self, state):
52
           """ Returns the initial action; selected at random
53
           Initialize Data Structures
54
           ,, ,, ,,
55
           self.state = state
56
           self.Q[state] = {act:self.Qinit for act in self.actions}
57
           self.visits[state] = {act:0 for act in self.actions}
58
59
           self.action = self.exploration_strategy(state, self.Q[state],
                                      self.visits[state],**self.es_kwargs)
60
           self.display(2, f"Initial State: {state} Action {self.action}")
61
           self.display(2,"s\ta\tr\ts'\tQ")
62
           return self.action
63
64
       def select_action(self, reward, next_state):
65
           """give reward and next state, select next action to be carried
66
               out"""
           if next_state not in self.visits: # next state not seen before
67
              self.Q[next_state] = {act:self.Qinit for act in self.actions}
68
               self.visits[next_state] = {act:0 for act in self.actions}
69
           self.visits[self.state][self.action] +=1
70
           alpha = self.alpha_fun(self.visits[self.state][self.action])
71
           self.Q[self.state][self.action] += alpha*(
72
                              reward
73
                              + self.discount * max(self.Q[next_state].values())
74
                              - self.Q[self.state][self.action])
75
           self.display(2,self.state, self.action, reward, next_state,
76
77
                       self.Q[self.state][self.action], sep='\t')
           self.action = self.exploration_strategy(next_state,
78
               self.Q[next_state],
                                      self.visits[next_state],**self.es_kwargs)
79
           self.state = next_state
           self.display(3,f"Agent {self.role} doing {self.action} in state
81
               {self.state}")
           return self.action
82
```

The GUI assumes q(s, a) and v(s) functions:

```
_rlQLearner.py — (continued)
        def q(self,s,a):
            if s in self.Q and a in self.Q[s]:
85
                return self.Q[s][a]
86
            else:
87
                return self.Qinit
88
89
       def v(self,s):
90
            if s in self.Q:
91
92
                return max(self.Q[s].values())
            else:
93
                return self.Qinit
94
```

**SARSA** is the same as Q-learning except in the action selection. SARSA changes 3 lines:

```
_rlQLearner.py — (continued)
    class SARSA(Q_learner):
96
        def __init__(self,*args, **nargs):
97
            Q_learner.__init__(self,*args, **nargs)
98
            self.method = "SARSA"
99
100
        def select_action(self, reward, next_state):
101
            """give reward and next state, select next action to be carried
102
                out"""
            if next_state not in self.visits: # next state not seen before
103
               self.Q[next_state] = {act:self.Qinit for act in self.actions}
104
               self.visits[next_state] = {act:0 for act in self.actions}
105
            self.visits[self.state][self.action] +=1
106
            alpha = self.alpha_fun(self.visits[self.state][self.action])
107
            next_action = self.exploration_strategy(next_state,
108
                self.Q[next_state],
109
                                       self.visits[next_state],**self.es_kwargs)
            self.Q[self.state][self.action] += alpha*(
110
111
                               + self.discount * self.Q[next_state][next_action]
112
                               - self.Q[self.state][self.action])
113
            self.display(2,self.state, self.action, reward, next_state,
114
                        self.Q[self.state][self.action], sep='\t')
115
            self.state = next_state
116
            self.action = next_action
117
            self.display(3,f"Agent {self.role} doing {self.action} in state
118
                {self.state}")
119
            return self.action
```

# 13.2.1 Exploration Strategies

Two explorations strategies are defined: epsilon-greedy and upper confidence bound (UCB).

In general an exploration strategy takes two arguments, and some optional arguments depending on the strategy.

- State is the state that action is chosen for
- *Qs* is a {action : q\_value} dictionary for the state
- *Vs* is a {*action* : *visits*} dictionary for the current state; where *visits* is the number of times that the action has been carried out in the current state.

```
__rlProblem.py — (continued) _
    def epsilon_greedy(state, Qs, Vs={}, epsilon=0.2):
142
143
            """select action given epsilon greedy
            Qs is the {action:Q-value} dictionary for current state
144
            Vs is ignored
145
            epsilon is the probability of acting randomly
146
147
            if flip(epsilon):
148
                return random.choice(list(Qs.keys())) # act randomly
149
            else:
150
                return argmaxd(Qs) # pick an action with max Q
151
152
    def ucb(state, Qs, Vs, c=1.4):
153
            """select action given upper-confidence bound
154
            Qs is the {action:Q-value} dictionary for current state
155
            Vs is the {action:visits} dictionary for current state
156
157
            0.01 is to prevent divide-by zero when Vs[a]==0
158
159
            Ns = sum(Vs.values())
160
            ucb1 = \{a:Qs[a]+c*math.sqrt(Ns/(0.01+Vs[a]))
161
                       for a in Qs.keys()}
162
            action = argmaxd(ucb1)
163
164
            return action
```

**Exercise 13.1** Implement a soft-max action selection. Choose a temperature that works well for the domain. Explain how you picked this temperature. Compare the epsilon-greedy, soft-max and optimism in the face of uncertainty.

# 13.2.2 Testing Q-learning

The first tests are for the 2-action 2-state decision about whether to relax or party (Example 12.29 of Poole and Mackworth [2023].

```
from mdpExamples import MDPtiny, partyMDP
125
126
    def test_RL(learnerClass, mdp=partyMDP, env=Party_env(), discount=0.9,
127
        eps=2, **lkwargs):
        """tests whether RL on env has the same (within eps) Q-values as vi on
128
           mdp"""
129
        mdp1 = mdp(discount=discount)
       q1,v1,pi1 = mdp1.vi(1000)
130
       ag = learnerClass(env.name, env.actions, discount, **lkwargs)
131
       sim = Simulate(ag,env).start()
132
        sim.go(100000)
133
        same = all(abs(ag.q(s,a)-q1[s][a]) < eps
134
                     for s in mdp1.states
135
                     for a in mdp1.actions)
136
        assert same, (f"""Unit test failed for {env.name},
137
           in {ag.method} Q="""+str({(s,a):ag.q(s,a)} for s in mdp1.states for
138
               a in mdp1.actions})+f"""
           in vi Q={q1}""")
139
       print(f"Unit test passed. For {env.name}, {ag.method} has same Q-value
140
            as value iteration")
    if __name__ == "__main__":
141
        test_RL(Q_learner, alpha_fun=lambda k:10/(9+k))
142
       # test_RL(SARSA) # should this pass? Why?
143
144
    #env = Party_env()
145
    env = Env_from_ProblemDomain(MDPtiny())
146
    # Some RL agents with different parameters:
147
    ag = Q_learner(env.name, env.actions, 0.7, method="eps (0.1) greedy")
    ag_ucb = Q_learner(env.name, env.actions, 0.7, exploration_strategy = ucb,
149
        es_kwargs={'c':0.1}, method="ucb")
    ag_opt = Q_learner(env.name, env.actions, 0.7, Qinit=100,
150
        es_kwargs={'epsilon':0}, method="optimistic" )
    ag_exp_m = Q_learner(env.name, env.actions, 0.7,
151
        es_kwargs={'epsilon':0.5}, method="more explore")
    ag_greedy = Q_learner(env.name, env.actions, 0.1, Qinit=100, method="disc
152
        0.1"
    sa = SARSA(env.name, env.actions, 0.9, method="SARSA")
153
    sucb = SARSA(env.name, env.actions, 0.9, exploration_strategy = ucb,
154
        es_kwargs={'c':1}, method="SARSA ucb")
155
    sim_ag = Simulate(ag,env).start()
156
157
   # sim_ag.go(1000)
158
   159
   |# sim_ag.plot()
160
   |# sim_ucb = Simulate(ag_ucb,env).start(); sim_ucb.go(1000); sim_ucb.plot()
161
162 | # Simulate(ag_opt,env).start().go(1000).plot()
163 | # Simulate(ag_exp_m,env).start().go(1000).plot()
   | # Simulate(ag_greedy,env).start().go(1000).plot()
164
165 | # Simulate(sa,env).start().go(1000).plot()
```

```
# Simulate(sucb,env).start().go(1000).plot()
166
167
    from mdpExamples import MDPtiny
168
    envt = Env_from_ProblemDomain(MDPtiny())
169
    agt = Q_learner(envt.name, envt.actions, 0.8)
    #Simulate(agt, envt).start().go(1000).plot()
171
172
    ##### Monster Game ####
173
    mon_env = Monster_game_env()
    mag1 = Q_learner(mon_env.name, mon_env.actions, 0.9,
175
                        method="alpha=0.2")
176
    #Simulate(mag1,mon_env).start().go(100000).plot()
177
    mag_ucb = Q_learner(mon_env.name, mon_env.actions, 0.9,
178
                          exploration_strategy = ucb, es_kwargs={'c':0.1},
179
                               method="UCB(0.1),alpha=0.2")
    #Simulate(mag_ucb,mon_env).start().go(100000).plot()
180
181
    mag2 = Q_learner(mon_env.name, mon_env.actions, 0.9,
182
                        alpha_fun=lambda k:1/k,method="alpha=1/k")
183
    #Simulate(mag2,mon_env).start().go(100000).plot()
184
    mag3 = Q_learner(mon_env.name, mon_env.actions, 0.9,
185
                        alpha_fun=lambda k:10/(9+k), method="alpha=10/(9+k)")
    #Simulate(mag3,mon_env).start().go(100000).plot()
187
188
    mag4 = Q_learner(mon_env.name, mon_env.actions, 0.9,
189
                    alpha_fun=lambda k:10/(9+k),
190
                    exploration_strategy = ucb, es_kwargs={'c':0.1},
191
192
                    method="ucb & alpha=10/(9+k)")
    #Simulate(mag4,mon_env).start().go(100000).plot()
193
```

# 13.3 Q-leaning with Experience Replay

A bounded buffer remembers values up to size buffer\_size. Once it is full, all old experiences have the same chance of being in the buffer.

```
___rlQExperienceReplay.py — Q-Learner with Experience Replay ___
   from rlQLearner import Q_learner
   from utilities import flip
   import random
13
   class BoundedBuffer(object):
15
       def __init__(self, buffer_size=1000):
16
           self.buffer_size = buffer_size
17
           self.buffer = [0]*buffer_size
18
           self.number_added = 0
19
       def add(self,experience):
21
           if self.number_added < self.buffer_size:</pre>
22
                self.buffer[self.number_added] = experience
23
```

```
24
           else:
25
               if flip(self.buffer_size/self.number_added):
                   position = random.randrange(self.buffer_size)
26
                   self.buffer[position] = experience
27
           self.number_added += 1
28
29
30
       def get(self):
           return self.buffer[random.randrange(min(self.number_added,
31
               self.buffer_size))]
```

A Q\_ER\_Learner does *Q*-leaning with experience replay. It only uses action replay after burn\_in number of steps.

```
_{rlQExperienceReplay.py} — (continued)
   class Q_ER_learner(Q_learner):
33
       def __init__(self, role, actions, discount,
34
                   max_buffer_size=10000,
35
                   num_updates_per_action=5, burn_in=1000,
36
                  method="Q_ER_learner", **q_kwargs):
37
           """Q-learner with experience replay
38
           role is the role of the agent (e.g., in a game)
39
           actions is the set of actions the agent can do
40
           discount is the discount factor
41
           max_buffer_size is the maximum number of past experiences that is
42
               remembered
           burn_in is the number of steps before using old experiences
43
           num_updates_per_action is the number of q-updates for past
               experiences per action
           q_kwargs are any extra parameters for Q_learner
45
46
           Q_learner.__init__(self, role, actions, discount, method=method,
47
               **q_kwargs)
           self.experience_buffer = BoundedBuffer(max_buffer_size)
48
           self.num_updates_per_action = num_updates_per_action
49
           self.burn_in = burn_in
50
51
       def select_action(self, reward, next_state):
52
           """give reward and new state, select next action to be carried
53
               out"""
           self.experience_buffer.add((self.state,self.action,reward,next_state))
               #remember experience
           if next_state not in self.Q: # Q and visits are defined on the same
55
               self.Q[next_state] = {act:self.Qinit for act in self.actions}
56
               self.visits[next_state] = {act:0 for act in self.actions}
57
           self.visits[self.state][self.action] +=1
58
           alpha = self.alpha_fun(self.visits[self.state][self.action])
59
           self.Q[self.state][self.action] += alpha*(
60
                              reward
61
                              + self.discount * max(self.Q[next_state].values())
62
                              - self.Q[self.state][self.action])
63
```

```
self.display(2, self.state, self.action, reward, next_state,
64
65
                       self.Q[self.state][self.action], sep='\t')
           self.state = next_state
           # do some updates from experience buffer
67
           if self.experience_buffer.number_added > self.burn_in:
              for i in range(self.num_updates_per_action):
69
70
                  (s,a,r,ns) = self.experience_buffer.get()
                  self.visits[s][a] +=1 # is this correct?
71
                  alpha = self.alpha_fun(self.visits[s][a])
72
                  self.Q[s][a] += alpha * (r +
73
                                     self.discount* max(self.Q[ns][na]
                                             for na in self.actions)
75
                                     -self.Q[s][a] )
76
           ### CHOOSE NEXT ACTION ###
77
           self.action = self.exploration_strategy(next_state,
78
               self.Q[next_state],
                                         self.visits[next_state],**self.es_kwargs)
79
           self.display(3,f"Agent {self.role} doing {self.action} in state
80
               {self.state}")
           return self.action
81
```

```
_rlQExperienceReplay.py — (continued) _
   from rlProblem import Simulate
84
   from rlExamples import Monster_game_env
   from rlQLearner import mag1, mag2, mag3
85
86
   mon_env = Monster_game_env()
   mag1ar = Q_ER_learner(mon_env.name, mon_env.actions,0.9,method="Q_ER")
88
   # Simulate(mag1ar,mon_env).start().go(100000).plot()
89
90
   mag3ar = Q_ER_learner(mon_env.name, mon_env.actions, 0.9, alpha_fun=lambda
91
       k:10/(9+k), method="Q_ER alpha=10/(9+k)")
   # Simulate(mag3ar,mon_env).start().go(100000).plot()
92
93
94
   from rlQLearner import test_RL
   if __name__ == "__main__":
95
       test_RL(Q_ER_learner)
```

#### **Stochastic Policy Learning Agent** 13.4

https://aipython.org

The following agent is like a Q-learning agent but maintains a stochastic policy. The policy is represented as unnormalized counts for each action in a state (like a Dirichlet distribution). This is the code described in Section 14.7.2 and Figure 14.10 of Poole and Mackworth [2023].

```
_rlStochasticPolicy.py — Simulations of agents learning
   from display import Displayable
12 | import utilities # argmaxall for (element, value) pairs
                                        Version 0.9.13
                                                                             June 13, 2024
```

```
import matplotlib.pyplot as plt
14
   import random
   from rlQLearner import Q_learner
15
16
   class StochasticPIAgent(Q_learner):
17
       """This agent maintains the Q-function for each state.
18
19
       Chooses the best action using empirical distribution over actions
20
       def __init__(self, role, actions, discount=0, pi_init=1,
21
           method="Stochastic Q_learner", **nargs):
22
           role is the role of the agent (e.g., in a game)
23
           actions is the set of actions the agent can do.
24
           discount is the discount factor (0 is appropriate if there is a
25
               single state)
           pi_init gives the prior counts (Dirichlet prior) for the policy
26
               (must be >0)
27
           #self.max_display_level = 3
28
           Q_learner.__init__(self, role, actions, discount,
29
                              exploration_strategy=self.action_from_stochastic_policy,
30
                              method=method, **nargs)
31
           self.pi_init = pi_init
32
           self.pi = {}
33
34
       def initial_action(self, state):
35
           """ update policy pi then do initial action from Q_learner
36
37
           self.pi[state] = {act:self.pi_init for act in self.actions}
38
           return Q_learner.initial_action(self, state)
39
40
       def action_from_stochastic_policy(self, next_state, qs, vs):
41
            a_best = utilities.argmaxd(self.Q[self.state])
42
            self.pi[self.state][a_best] +=1
43
            if next_state not in self.pi:
44
               self.pi[next_state] = {act:self.pi_init for act in
45
                    self.actions}
            return select_from_dist(self.pi[next_state])
46
47
   def normalize(dist):
48
       """dict is a {value:number} dictionary, where the numbers are all
49
           non-negative
       returns dict where the numbers sum to one
50
51
       tot = sum(dist.values())
52
       return {var:val/tot for (var,val) in dist.items()}
53
54
   def select_from_dist(dist):
55
       rand = random.random()
56
       for (act,prob) in normalize(dist).items():
57
```

The agent can be tested on the reinforcement learning benchmarks:

```
_rlStochasticPolicy.py — (continued)
   #### Testing on RL benchmarks #####
63
   from rlProblem import Simulate
   import rlExamples
   mon_env = rlExamples.Monster_game_env()
   magspi =StochasticPIAgent(mon_env.name, mon_env.actions,0.9)
   #Simulate(magspi,mon_env).start().go(100000).plot()
67
   magspi10 = StochasticPIAgent(mon_env.name, mon_env.actions,0.9,
       alpha_fun=lambda k:10/(9+k), method="stoch 10/(9+k)")
   #Simulate(magspi10,mon_env).start().go(100000).plot()
69
70
   from rlQLearner import test_RL
71
   if __name__ == "__main__":
72
       test_RL(StochasticPIAgent, alpha_fun=lambda k:10/(9+k))
```

**Exercise 13.2** Test some other ways to determine the probabilities for the stochastic policy in StochasticPIAgent. (It currently can be seen as using a Dirichlet where the probability represents the proportion of times each action is best plus pseudo-counts).

Replace self.pi[self.state][a\_best] +=1 with something like self.pi[self.state][a\_best] \*= c for some c>1. E.g., c=1.1 so it chooses that action 10% more, independently of the number of times tried. (Try to change the code as little as possible; make it so that either the original or different values of c can be run without changing your code. Warning: watch out for overflow.)

- (a) Try for multiple *c*; which one works best for the Monster game?
- (b) Suggest an alternative way to update the probabilities in the policy (e.g., adding  $\delta$  to policy that is then normalized or some other methods). How well does it work?

#### 13.5 Model-based Reinforcement Learner

To run the demo, in folder "aipython", load "rlModelLearner.py", and copy and paste the example queries at the bottom of that file. This assumes Python 3.

A model-based reinforcement learner builds a Markov decision process model of the domain, simultaneously learns the model and plans with that model.

The model-based reinforcement learner used the following data structures:

• Q[s][a] is dictionary that, given state s and action a returns the Q-value, the estimate of the future (discounted) value of being in state s and doing action a.

- R[s][a] is dictionary that, given a (s,a) state s and action a is the average reward received from doing a in state s.
- T[s][a][s'] is dictionary that, given states s and s' and action a returns the number of times a was done in state s and the result was state s'. Note that s' is only a key if it has been the result of doing a in s; there are no 0 counts recorded.
- visits[s][a] is dictionary that, given state s and action a returns the number
  of times action a was carried out in state s. This is the C of Figure 13.6 of
  Poole and Mackworth [2023].

Note that  $visits[s][a] = \sum_{s'} T[s][a][s']$  but is stored separately to keep the code more readable.

The main difference to Figure 13.6 of Poole and Mackworth [2023] is the code below does a fixed number of asynchronous value iteration updates per step.

```
_rlModelLearner.py — Model-based Reinforcement Learner
  import random
12 | from rlProblem import RL_agent, Simulate, epsilon_greedy, ucb
   from display import Displayable
   from utilities import argmaxe, flip
15
   class Model_based_reinforcement_learner(RL_agent):
16
       """A Model-based reinforcement learner
17
       ,, ,, ,,
18
19
       def __init__(self, role, actions, discount,
20
                       exploration_strategy=epsilon_greedy, es_kwargs={},
21
22
                     updates_per_step=10, method="MBR_learner"):
23
           """role is the role of the agent (e.g., in a game)
24
           actions is the list of actions the agent can do
25
           discount is the discount factor
26
           explore is the proportion of time the agent will explore
27
           Qinit is the initial value of the Q's
28
           updates_per_step is the number of AVI updates per action
29
           label is the label for plotting
30
31
           RL_agent.__init__(self, actions)
32
           self.role = role
33
           self.actions = actions
34
35
           self.discount = discount
           self.exploration_strategy = exploration_strategy
36
           self.es_kwargs = es_kwargs
           self.Qinit = Qinit
38
           self.updates_per_step = updates_per_step
39
           self.method = method
40
```

```
___rlModelLearner.py — (continued) _
       def initial_action(self, state):
42
           """ Returns the initial action; selected at random
43
           Initialize Data Structures
44
45
46
           self.action = RL_agent.initial_action(self, state)
47
           self.T = {self.state: {a: {} for a in self.actions}}
48
           self.visits = {self.state: {a: 0 for a in self.actions}}
           self.Q = {self.state: {a: self.Qinit for a in self.actions}}
50
           self.R = {self.state: {a: 0 for a in self.actions}}
51
           self.states_list = [self.state] # list of states encountered
52
           self.display(2, f"Initial State: {state} Action {self.action}")
           self.display(2,"s\ta\tr\ts'\tQ")
54
           return self.action
55
                               \_rlModelLearner.py - (continued) \_
       def select_action(self, reward, next_state):
57
           """do num_steps of interaction with the environment
58
           for each action, do updates_per_step iterations of asynchronous
59
               value iteration
60
           if next_state not in self.visits: # has not been encountered before
61
              self.states_list.append(next_state)
62
               self.visits[next_state] = {a:0 for a in self.actions}
63
               self.T[next_state] = {a:{}} for a in self.actions}
               self.Q[next_state] = {a:self.Qinit for a in self.actions}
65
               self.R[next_state] = {a:0 for a in self.actions}
66
           if next_state in self.T[self.state][self.action]:
              self.T[self.state][self.action][next_state] += 1
           else:
69
               self.T[self.state][self.action][next_state] = 1
70
           self.visits[self.state][self.action] += 1
71
           self.R[self.state][self.action] +=
72
               (reward-self.R[self.state][self.action])/self.visits[self.state][self.action]
           st,act = self.state,self.action #initial state-action pair for AVI
73
           for update in range(self.updates_per_step):
               self.Q[st][act] = self.R[st][act]+self.discount*(
75
                  sum(self.T[st][act][nst]/self.visits[st][act]*self.v(nst)
76
77
                      for nst in self.T[st][act].keys()))
               st = random.choice(self.states_list)
              act = random.choice(self.actions)
79
           self.state = next_state
80
           self.action = self.exploration_strategy(next_state,
81
               self.Q[next_state],
                                  self.visits[next_state],**self.es_kwargs)
82
           return self.action
83
84
       def q(self, state, action):
85
           if state in self.Q and action in self.Q[state]:
```

```
_rlModelLearner.py — (continued)
   from rlExamples import Monster_game_env
91
   mon_env = Monster_game_env()
   mbl1 = Model_based_reinforcement_learner(mon_env.name, mon_env.actions,
        0.9, updates_per_step=1, method="model-based(1)")
   # Simulate(mbl1,mon_env).start().go(100000).plot()
94
   mbl10 = Model_based_reinforcement_learner(mon_env.name, mon_env.actions,
        0.9, updates_per_step=10, method="model-based(10)")
   # Simulate(mbl10,mon_env).start().go(100000).plot()
96
97
    from rlGUI import rlGUI
98
   #gui = rlGUI(mon_env, mbl1)
99
100
    from rlQLearner import test_RL
101
   if __name__ == "__main__":
102
       test_RL(Model_based_reinforcement_learner)
103
```

**Exercise 13.3** If there were only one update per step, the algorithm could be made simpler and use less space. Explain how. Does it make it more efficient? Is it worthwhile having more than one update per step for the games implemented here?

**Exercise 13.4** It is possible to implement the model-based reinforcement learner by replacing *Q*, *R*, *T*, *visits*, *res\_states* with a single dictionary that, given a state and action returns a tuple corresponding to these data structures. Does this make the algorithm easier to understand? Does this make the algorithm more efficient?

**Exercise 13.5** If the states and the actions were mapped into integers, the dictionaries could be implemented perhaps more efficiently as arrays. How would the code need to change? Implement this for the monster game. Is it more efficient?

**Exercise 13.6** In random\_choice in the updates of select\_action, all state-action pairs have the same chance of being chosen. Does selecting state-action pairs proportionally to the number of times visited work better than what is implemented? Provide evidence for your answer.

### 13.6 Reinforcement Learning with Features

To run the demo, in folder "aipython", load "rlFeatures.py", and copy and paste the example queries at the bottom of that file. This assumes Python 3.

#### 13.6.1 Representing Features

A feature is a function from state and action. To construct the features for a domain, we construct a function that takes a state and an action and returns the list of all feature values for that state and action. This feature set is redesigned for each problem.

party\_features3 and party\_features4 return lists of feature values for the party decision. party\_features4 has one extra feature.

```
rlGameFeature.py — Feature-based Reinforcement Learner

from rlExamples import Monster_game_env
from rlProblem import RL_env

def party_features3(state,action):
    return [1, state=="sick", action=="party"]

def party_features4(state,action):
    return [1, state=="sick", action=="party", state=="sick" and action=="party"]
```

**Exercise 13.7** With party\_features3 what policies can be discovered? Suppose one action is optimal for one state; what happens in other states.

The monster\_features defines the vector of feature values for the given state and action.

```
__rlGameFeature.py — (continued) _
   def monster_features(state,action):
20
       """returns the list of feature values for the state-action pair
21
22
       assert action in Monster_game_env.actions, f"Monster game, unknown
23
           action: {action}"
       (x,y,d,p) = state
24
       # f1: would go to a monster
25
       f1 = monster_ahead(x,y,action)
26
       # f2: would crash into wall
27
       f2 = wall_ahead(x,y,action)
28
       # f3: action is towards a prize
29
       f3 = towards_prize(x,y,action,p)
30
       # f4: damaged and action is toward repair station
31
       f4 = towards_repair(x,y,action) if d else 0
32
       # f5: damaged and towards monster
33
       f5 = 1 if d and f1 else 0
34
35
       # f6: damaged
       f6 = 1 if d else 0
36
       # f7: not damaged
       f7 = 1-f6
38
       # f8: damaged and prize ahead
       f8 = 1 if d and f3 else 0
40
       # f9: not damaged and prize ahead
41
       f9 = 1 if not d and f3 else 0
```

```
features = [1,f1,f2,f3,f4,f5,f6,f7,f8,f9]
43
44
       # the next 20 features are for 5 prize locations
       # and 4 distances from outside in all directions
45
       for pr in Monster_game_env.prize_locs+[None]:
46
           if p==pr:
47
               features += [x, 4-x, y, 4-y]
48
49
           else:
               features += [0, 0, 0, 0]
50
       # fp04 feature for y when prize is at 0,4
51
       # this knows about the wall to the right of the prize
52
       if p==(0,4):
53
           if x==0:
54
               fp04 = y
55
           elif y<3:</pre>
56
               fp04 = y
57
           else:
58
               fp04 = 4-y
59
       else:
60
           fp04 = 0
61
       features.append(fp04)
62
       return features
63
65
   def monster_ahead(x,y,action):
       """returns 1 if the location expected to get to by doing
66
67
       action from (x,y) can contain a monster.
68
       if action == "right" and (x+1,y) in Monster_game_env.monster_locs:
69
70
           return 1
       elif action == "left" and (x-1,y) in Monster_game_env.monster_locs:
71
           return 1
72
       elif action == "up" and (x,y+1) in Monster_game_env.monster_locs:
73
74
       elif action == "down" and (x,y-1) in Monster_game_env.monster_locs:
75
76
           return 1
       else:
77
           return 0
78
79
   def wall_ahead(x,y,action):
80
       """returns 1 if there is a wall in the direction of action from (x,y).
81
       This is complicated by the internal walls.
82
83
       if action == "right" and (x==Monster_game_env.x_dim-1 or (x,y) in
84
           Monster_game_env.vwalls):
           return 1
85
       elif action == "left" and (x==0 or (x-1,y) in Monster_game_env.vwalls):
86
           return 1
87
       elif action == "up" and y==Monster_game_env.y_dim-1:
88
           return 1
89
       elif action == "down" and y==0:
90
91
           return 1
```

```
92
        else:
93
            return 0
    def towards_prize(x,y,action,p):
95
        """action goes in the direction of the prize from (x,y)"""
96
        if p is None:
97
98
            return 0
        elif p==(0,4): # take into account the wall near the top-left prize
99
            if action == "left" and (x>1 or x==1 and y<3):
100
                return 1
101
            elif action == "down" and (x>0 \text{ and } y>2):
102
                return 1
103
            elif action == "up" and (x==0 or y<2):
104
                return 1
105
            else:
106
                return 0
107
        else:
108
            px,py = p
109
            if p==(4,4) and x==0:
110
                if (action=="right" and y<3) or (action=="down" and y>2) or
111
                     (action=="up" and y<2):
112
                    return 1
                else:
113
                    return 0
114
            if (action == "up" and y<py) or (action == "down" and py<y):</pre>
115
116
            elif (action == "left" and px<x) or (action == "right" and x<px):</pre>
117
118
                return 1
            else:
119
                return 0
120
121
    def towards_repair(x,y,action):
122
        """returns 1 if action is towards the repair station.
123
124
        if action == "up" and (x>0 and y<4 or x==0 and y<2):
125
126
            return 1
        elif action == "left" and x>1:
127
            return 1
128
        elif action == "right" and x==0 and y<3:</pre>
129
            return 1
130
        elif action == "down" and x==0 and y>2:
131
            return 1
132
133
        else:
            return 0
134
```

The following uses a simpler set of features. In particular, it only considers whether the action will most likely result in a monster position or a wall, and whether the action moves towards the current prize.

```
_____rlGameFeature.py — (continued) ______

136 | def simp_features(state,action):
```

```
"""returns a list of feature values for the state-action pair
137
138
        assert action in Monster_game_env.actions
139
        (x,y,d,p) = state
140
        # f1: would go to a monster
141
        f1 = monster_ahead(x,y,action)
142
143
        # f2: would crash into wall
        f2 = wall_ahead(x,y,action)
144
        # f3: action is towards a prize
145
        f3 = towards_prize(x,y,action,p)
146
        return [1,f1,f2,f3]
147
```

#### 13.6.2 Feature-based RL learner

This learns a linear function approximation of the Q-values. It requires the function *get\_features* that given a state and an action returns a list of values for all of the features. Each environment requires this function to be provided.

```
____rlFeatures.py — Feature-based Reinforcement Learner ___
  import random
11
   from rlProblem import RL_agent, epsilon_greedy, ucb
   from display import Displayable
   from utilities import argmaxe, flip
14
   import rlGameFeature
15
16
   class SARSA_LFA_learner(RL_agent):
17
       """A SARSA with linear function approximation (LFA) learning agent has
18
19
       def __init__(self, role, actions, discount,
20
           get_features=rlGameFeature.party_features4,
                       exploration_strategy=epsilon_greedy, es_kwargs={},
21
                       step_size=0.01, winit=0, method="SARSA_LFA"):
22
           """role is the role of the agent (e.g., in a game)
23
           actions is the set of actions the agent can do
24
           discount is the discount factor
25
           get_features is a function get_features(state,action) -> list of
26
               feature values
           exploration_strategy is the exploration function, default
27
               "epsilon_greedy"
           es_kwargs is extra keyword arguments of the exploration_strategy
28
           step_size is gradient descent step size
29
           winit is the initial value of the weights
30
           method gives the method used to implement the role (for plotting)
31
32
33
           RL_agent.__init__(self, actions)
           self.role = role
34
           self.discount = discount
           self.exploration_strategy = exploration_strategy
36
           self.es_kwargs = es_kwargs
37
           self.get_features = get_features
38
```

```
self.step_size = step_size
self.winit = winit
self.method = method
```

The initial action is a random action. It remembers the state, and initializes the data structures.

```
____rlFeatures.py — (continued) _
       def initial_action(self, state):
43
           """ Returns the initial action; selected at random
44
           Initialize Data Structures
45
46
           self.action = RL_agent.initial_action(self, state)
47
           self.features = self.get_features(state, self.action)
48
           self.weights = [self.winit for f in self.features]
49
50
           self.display(2, f"Initial State: {state} Action {self.action}")
           self.display(2,"s\ta\tr\ts'\tQ")
51
           return self.action
52
```

do takes in the number of steps.

```
_rlFeatures.py — (continued) _
54
       def q(self, state,action):
55
           """returns Q-value of the state and action for current weights
56
57
           return dot_product(self.weights, self.get_features(state,action))
58
59
       def v(self,state):
60
           return max(self.q(state, a) for a in self.actions)
61
62
       def select_action(self, reward, next_state):
63
           """do num_steps of interaction with the environment"""
64
           feature_values = self.get_features(self.state,self.action)
65
           oldQ = self.q(self.state,self.action)
           next_action = self.exploration_strategy(next_state,
67
               {a:self.q(next_state,a)
                                                      for a in self.actions}, {})
68
69
           nextQ = self.q(next_state,next_action)
           delta = reward + self.discount * nextQ - oldQ
70
           for i in range(len(self.weights)):
71
               self.weights[i] += self.step_size * delta * feature_values[i]
72
           self.display(2,self.state, self.action, reward, next_state,
73
                       self.g(self.state,self.action), delta, sep='\t')
74
75
           self.state = next_state
           self.action = next action
76
           return self.action
77
78
       def show_actions(self,state=None):
79
           """prints the value for each action in a state.
80
           This may be useful for debugging.
81
           11 11 11
82
```

```
if state is None:
state = self.state
for next_act in self.actions:
print(next_act,dot_product(self.weights, self.get_features(state,next_act)))

def dot_product(l1,l2):
return sum(e1*e2 for (e1,e2) in zip(l1,l2))
```

Test code:

```
_{rlFeatures.py} — (continued)
    from rlProblem import Simulate
91
    from rlExamples import Party_env, Monster_game_env
92
    import rlGameFeature
93
    from rlGUI import rlGUI
95
    party = Party_env()
96
    pa3 = SARSA_LFA_learner(party.name, party.actions, 0.9,
97
        rlGameFeature.party_features3)
    # Simulate(pa3,party).start().go(300).plot()
98
    pa4 = SARSA_LFA_learner(party.name, party.actions, 0.9,
99
        rlGameFeature.party_features4)
    # Simulate(pa4,party).start().go(300).plot()
100
101
    mon_env = Monster_game_env()
102
    fa1 = SARSA_LFA_learner(mon_env.name, mon_env.actions, 0.9,
103
        rlGameFeature.monster_features)
104
    # Simulate(fa1,mon_env).start().go(100000).plot()
    fas1 = SARSA_LFA_learner(mon_env.name, mon_env.actions, 0.9,
105
        rlGameFeature.simp_features, method="LFA (simp features)")
    #Simulate(fas1,mon_env).start().go(100000).plot()
106
    # rlGUI(mon_env, SARSA_LFA_learner(mon_env.name, mon_env.actions, 0.9,
107
        rlGameFeature.monster_features))
108
    from rlQLearner import test_RL
109
    if __name__ == "__main__":
110
        test_RL(SARSA_LFA_learner, es_kwargs={'epsilon':1}) # random exploration
111
```

**Exercise 13.8** How does the step-size affect performance? Try different step sizes (e.g., 0.1, 0.001, other sizes in-between). Explain the behavior you observe. Which step size works best for this example. Explain what evidence you are basing your prediction on.

**Exercise 13.9** Does having extra features always help? Does it sometime help? Does whether it helps depend on the step size? Give evidence for your claims.

**Exercise 13.10** For each of the following first predict, then plot, then explain the behavior you observed:

(a) SARSA\_LFA, Model-based learning (with 1 update per step) and Q-learning for 10,000 steps 20% exploring followed by 10,000 steps 100% exploiting

- (b) SARSA\_LFA, model-based learning and Q-learning for
  - i) 100,000 steps 20% exploring followed by 100,000 steps 100% exploit
  - ii) 10,000 steps 20% exploring followed by 190,000 steps 100% exploit
- (c) Suppose your goal was to have the best accumulated reward after 200,000 steps. You are allowed to change the exploration rate at a fixed number of steps. For each of the methods, which is the best position to start exploiting more? Which method is better? What if you wanted to have the best reward after 10,000 or 1,000 steps?

Based on this evidence, explain when it is preferable to use SARSA\_LFA, Model-based learner, or Q-learning.

Important: you need to run each algorithm more than once. Your explanation should include the variability as well as the typical behavior.

**Exercise 13.11** In the call to self.exploration\_strategy, what should the counts be? (The code above will fail for ucb, for example.) Think about the case where there are too many states. Suppose we are just learning for a neighborhood of a current state (e.g., a fixed number of steps away the from the current state); how could the algorithm be modifies to make sure it has at least explored the close neighborhood of the current state?

#### 13.7 GUI for RL

This implements an an interactive graphical user interface for reinforcement learners. It lets the uses choose the actions and visualize the value function and/or the q-function.

Warning: Exit is not working, because it is only interrupting one thread.

```
_rlGUI.py — Reinforcement Learning GUI
   import matplotlib.pyplot as plt
11
   from matplotlib.widgets import Button, CheckButtons, TextBox
12
   from rlProblem import Simulate
13
14
   class rlGUI(object):
15
       def __init__(self, env, agent):
16
17
           11 11 11
18
19
           self.env = env
           self.agent = agent
20
           self.state = self.env.state
21
22
           self.x_dim = env.x_dim
           self.y_dim = env.y_dim
23
           if 'offsets' in vars(env): # 'offsets' is defined in environment
24
25
               self.offsets = env.offsets
           else: # should be more general
               self.offsets = {'right': (0.25,0), 'up': (0,0.25),}
27
                    'left':(-0.25,0), 'down':(0,-0.25)}
           # replace the exploration strategy with GUI
28
```

13.7. GUI for RL 341

```
self.orig_exp_strategy = self.agent.exploration_strategy
29
30
           self.agent.exploration_strategy = self.actionFromGUI
           self.do_steps = 0
31
           self.quit = False
32
           self.action = None
33
34
35
       def go(self):
           self.q = self.agent.q
36
           self.v = self.agent.v
37
           try:
38
               self.fig,self.ax = plt.subplots()
39
              plt.subplots_adjust(bottom=0.2)
40
               self.actButtons =
41
                   {self.fig.text(0.8+self.offsets[a][0]*0.4,0.1+self.offsets[a][1]*0.1,a,
                                     bbox={'boxstyle':'square','color':'yellow','ec':'black'},
42
                                     picker=True):a #, fontsize=fontsize):a
43
                   for a in self.env.actions}
44
               self.fig.canvas.mpl_connect('pick_event', self.sel_action)
45
               self.sim = Simulate(self.agent, self.env)
46
               self.show()
47
               self.sim.start()
48
               self.sim.go(100000000000) # go forever
           except ExitGUI:
50
               plt.close()
51
52
53
54
       def show(self):
55
           #plt.ion() # interactive (why doesn't this work?)
56
           self.qcheck = CheckButtons(plt.axes([0.2,0.05,0.25,0.075]),
57
                                        ["show q-values", "show policy", "show
58
                                            visits"])
           self.qcheck.on_clicked(self.show_vals)
59
           self.font_box = TextBox(plt.axes([0.125,0.05,0.05,0.05]),"Font:",
60
               textalignment="center")
           self.font_box.on_submit(self.set_font_size)
61
           self.font_box.set_val(str(plt.rcParams['font.size']))
           self.step_box = TextBox(plt.axes([0.5,0.05,0.1,0.05]),"",
63
               textalignment="center")
           self.step_box.set_val("100")
64
           self.stepsButton = Button(plt.axes([0.6,0.05,0.075,0.05]), "steps",
               color='yellow')
           self.stepsButton.on_clicked(self.steps)
66
           self.exitButton = Button(plt.axes([0.0,0.05,0.05,0.05]), "exit",
67
               color='yellow')
           self.exitButton.on_clicked(self.exit)
68
           self.show_vals(None)
69
70
       def set_font_size(self, s):
71
           plt.rcParams.update({'font.size': eval(s)})
72
```

```
73
           plt.draw()
74
        def exit(self, s):
75
           self.quit = True
76
            raise ExitGUI
77
78
        def show_vals(self,event):
           self.ax.cla()
80
           self.ax.set_title(f"{self.sim.step}: State: {self.state} Reward:
                {self.env.reward} Sum rewards: {self.sim.sum_rewards}")
           array = [[self.v(self.env.pos2state((x,y))) for x in
82
                range(self.x_dim)]
                                               for y in range(self.y_dim)]
83
            self.ax.pcolormesh([x-0.5 for x in range(self.x_dim+1)],
                                 [x-0.5 for x in range(self.y_dim+1)],
85
                                 array, edgecolors='black',cmap='summer')
86
               # for cmap see
87
                   https://matplotlib.org/stable/tutorials/colors/colormaps.html
            if self.qcheck.get_status()[1]: # "show policy"
88
                   for x in range(self.x_dim):
89
                       for y in range(self.y_dim):
90
                          state = self.env.pos2state((x,y))
                          maxv = max(self.agent.q(state,a) for a in
92
                              self.env.actions)
93
                          for a in self.env.actions:
                              xoff, yoff = self.offsets[a]
                              if self.agent.q(state,a) == maxv:
95
96
                                # draw arrow in appropriate direction
                                self.ax.arrow(x,y,xoff*2,yoff*2,
97
                                      color='red', width=0.05, head_width=0.2,
98
                                          length_includes_head=True)
99
           if goal := self.env.state2goal(self.state):
100
               self.ax.add_patch(plt.Circle(goal, 0.1, color='lime'))
101
            self.ax.add_patch(plt.Circle(self.env.state2pos(self.state), 0.1,
102
                color='w'))
           if self.qcheck.get_status()[0]: # "show q-values"
103
              self.show_q(event)
104
            elif self.qcheck.get_status()[2] and 'visits' in vars(self.agent):
105
                # "show visits"
              self.show_visits(event)
106
           else:
107
              self.show_v(event)
108
           self.ax.set_xticks(range(self.x_dim))
109
            self.ax.set_xticklabels(range(self.x_dim))
110
            self.ax.set_yticks(range(self.y_dim))
111
            self.ax.set_yticklabels(range(self.y_dim))
112
           plt.draw()
113
114
115
        def sel_action(self,event):
```

13.7. GUI for RL 343

```
self.action = self.actButtons[event.artist]
116
117
        def show_v(self,event):
118
            """show values"""
119
            for x in range(self.x_dim):
120
                for y in range(self.y_dim):
121
122
                    state = self.env.pos2state((x,y))
                    self.ax.text(x,y,"{val:.2f}".format(val=self.agent.v(state)),ha='center')
123
124
        def show_q(self,event):
125
            """show q-values"""
126
            for x in range(self.x_dim):
127
                for y in range(self.y_dim):
128
                    state = self.env.pos2state((x,y))
129
                    for a in self.env.actions:
130
                       xoff, yoff = self.offsets[a]
131
                       self.ax.text(x+xoff,y+yoff,
132
                                    "{val:.2f}".format(val=self.agent.q(state,a)),ha='center')
133
134
        def show_visits(self,event):
135
            """show q-values"""
136
            for x in range(self.x_dim):
137
                for y in range(self.y_dim):
138
                   state = self.env.pos2state((x,y))
139
                    for a in self.env.actions:
140
                       xoff, yoff = self.offsets[a]
141
                       if state in self.agent.visits and a in
142
                            self.agent.visits[state]:
                           num_visits = self.agent.visits[state][a]
143
                       else:
144
                           num_visits = 0
145
                       self.ax.text(x+xoff,y+yoff,
146
                                    str(num_visits),ha='center')
147
148
        def steps(self, event):
149
150
            "do the steps given in step box"
            num_steps = int(self.step_box.text)
151
            if num_steps > 0:
152
                self.do_steps = num_steps-1
153
                self.action = self.action_from_orig_exp_strategy()
154
155
        def action_from_orig_exp_strategy(self):
156
            """returns the action from the original explorations strategy"""
157
            visits = self.agent.visits[self.state] if 'visits' in
158
                vars(self.agent) else {}
            return
159
                self.orig_exp_strategy(self.state,{a:self.agent.q(self.state,a)
                for a in self.agent.actions},
                                        visits,**self.agent.es_kwargs)
160
161
```

```
def actionFromGUI(self, state, *args, **kwargs):
162
163
            """called as the exploration strategy by the RL agent.
            returns an action, either from the GUI or the original exploration
164
                strategy
            ,, ,, ,,
165
           self.state = state
166
167
           if self.do_steps > 0: # use the original
               self.do_steps -= 1
168
               return self.action_from_orig_exp_strategy()
169
           else: # get action from the user
170
               self.show_vals(None)
171
               while self.action == None and not self.quit: #wait for user
172
                   plt.pause(0.05) \# controls reaction time of GUI
173
               act = self.action
174
               self.action = None
175
               return act
176
177
    class ExitGUI(Exception):
178
179
        pass
180
    from rlExamples import Monster_game_env
181
    from mdpExamples import MDPtiny, Monster_game
182
    from rlQLearner import Q_learner, SARSA
    from rlStochasticPolicy import StochasticPIAgent
184
    from rlProblem import Env_from_ProblemDomain, epsilon_greedy, ucb
185
    env = Env_from_ProblemDomain(MDPtiny())
186
    # env = Env_from_ProblemDomain(Monster_game())
    # env = Monster_game_env()
188
    # gui = rlGUI(env, Q_learner("Q", env.actions, 0.9)); gui.go()
189
    # gui = rlGUI(env, SARSA("Q", env.actions, 0.9)); gui.go()
190
    # gui = rlGUI(env, SARSA("Q", env.actions, 0.9, alpha_fun=lambda
191
        k:10/(9+k))); gui.go()
    # gui = rlGUI(env, SARSA("SARSA-UCB", env.actions, 0.9,
192
        exploration_strategy = ucb, es_kwargs={'c':0.1})); gui.go()
    # gui = rlGUI(env, StochasticPIAgent("Q", env.actions, 0.9,
193
        alpha_fun=lambda k:10/(9+k))); gui.go()
```

# Multiagent Systems

#### 14.1 Minimax

In this section, we consider two-player zero-sum games, where a player only wins when another player loses. This can be modeled with a single utility which one agent (the maximizing agent) is trying maximize and the other agent (the minimizing agent) is trying to minimize.

#### 14.1.1 Creating a two-player game

```
_masProblem.py — A Multiagent Problem
   from display import Displayable
11
12
   class Node(Displayable):
13
       """A node in a search tree. It has a
14
15
       name a string
       isMax is True if it is a maximizing node, otherwise it is minimizing
16
       children is the list of children
17
       value is what it evaluates to if it is a leaf.
18
19
       def __init__(self, name, isMax, value, children):
20
21
           self.name = name
           self.isMax = isMax
22
           self.value = value
23
           self.allchildren = children
24
       def isLeaf(self):
26
           """returns true of this is a leaf node"""
27
           return self.allchildren is None
28
```

```
def children(self):
    """returns the list of all children."""
    return self.allchildren

def evaluate(self):
    """returns the evaluation for this node if it is a leaf"""
    return self.value
```

The following gives the tree from Figure 11.5 of the book. Note how 888 is used as a value here, but never appears in the trace.

```
_masProblem.py — (continued)
   fig10_5 = Node("a", True, None, [
38
                Node("b", False, None, [
39
                    Node("d",True,None, [
40
                        Node("h",False,None, [
41
                            Node("h1", True, 7, None),
42
                            Node("h2", True, 9, None)]),
43
                        Node("i",False,None, [
44
                            Node("i1", True, 6, None),
45
                            Node("i2", True, 888, None)])]),
46
                    Node("e", True, None, [
                        Node("j",False,None, [
48
                            Node("j1", True, 11, None),
49
                            Node("j2", True, 12, None)]),
50
                        Node("k",False,None, [
51
                            Node("k1", True, 888, None),
52
                            Node("k2", True, 888, None)])]),
53
                Node("c",False,None, [
54
                    Node("f",True,None, [
55
                        Node("1", False, None, [
56
                            Node("11", True, 5, None),
57
                            Node("12", True, 888, None)]),
58
                        Node("m",False,None, [
59
                            Node("m1", True, 4, None),
60
                            Node("m2", True, 888, None)])]),
61
                    Node("g", True, None, [
62
                        Node("n",False,None, [
63
                            Node("n1", True, 888, None),
64
                            Node("n2", True, 888, None)]),
65
                        Node("o", False, None, [
66
                            Node("o1", True, 888, None),
67
68
                            Node("o2", True, 888, None)])])])])
```

The following is a representation of a **magic-sum game**, where players take turns picking a number in the range [1,9], and the first player to have 3 numbers that sum to 15 wins. Note that this is a syntactic variant of **tic-tac-toe** or **noughts and crosses**. To see this, consider the numbers on a **magic square** (Figure 14.1); 3 numbers that add to 15 correspond exactly to the winning positions

14.1. Minimax 347

| 6 | 1 | 8 |
|---|---|---|
| 7 | 5 | 3 |
| 2 | 9 | 4 |

Figure 14.1: Magic Square

of tic-tac-toe played on the magic square.

Note that we do not remove symmetries. (What are the symmetries? How do the symmetries of tic-tac-toe translate here?)

```
\_masProblem.py — (continued) \_
70
71
    class Magic_sum(Node):
       def __init__(self, xmove=True, last_move=None,
72
                    available=[1,2,3,4,5,6,7,8,9], x=[], o=[]):
73
           """This is a node in the search for the magic-sum game.
74
           xmove is True if the next move belongs to X.
75
           last_move is the number selected in the last move
76
           available is the list of numbers that are available to be chosen
77
           x is the list of numbers already chosen by x
78
           o is the list of numbers already chosen by o
79
80
           self.isMax = self.xmove = xmove
81
           self.last move = last move
82
           self.available = available
83
           self.x = x
84
           self.o = o
85
           self.allchildren = None #computed on demand
86
           lm = str(last_move)
           self.name = "start" if not last_move else "o="+lm if xmove else
88
                x="+1m
89
       def children(self):
90
           if self.allchildren is None:
91
               if self.xmove:
92
                   self.allchildren = [
93
                       Magic_sum(xmove = not self.xmove,
94
                                last_move = sel,
95
                                available = [e for e in self.available if e is
96
                                     not sel],
                                x = self.x+[sel],
97
                                o = self.o)
98
                               for sel in self.available]
99
               else:
100
                   self.allchildren = [
101
                       Magic_sum(xmove = not self.xmove,
102
                                last_move = sel,
103
104
                                available = [e for e in self.available if e is
                                     not sel],
```

```
x = self.x,
105
106
                                 o = self.o+[sel])
                               for sel in self.available]
107
            return self.allchildren
108
109
        def isLeaf(self):
110
            """A leaf has no numbers available or is a win for one of the
111
                players.
            We only need to check for a win for o if it is currently x's turn,
112
            and only check for a win for x if it is o's turn (otherwise it would
113
            have been a win earlier).
114
115
            return (self.available == [] or
116
                   (sum_to_15(self.last_move, self.o)
117
                    if self.xmove
118
                    else sum_to_15(self.last_move,self.x)))
119
120
        def evaluate(self):
121
            if self.xmove and sum_to_15(self.last_move, self.o):
122
                return -1
123
            elif not self.xmove and sum_to_15(self.last_move, self.x):
124
125
                return 1
            else:
126
                return 0
127
128
    def sum_to_15(last, selected):
129
        """is true if last, together with two other elements of selected sum to
130
            15.
131
        return any(last+a+b == 15
132
                   for a in selected if a != last
133
                   for b in selected if b != last and b != a)
134
```

#### 14.1.2 Minimax and $\alpha$ - $\beta$ Pruning

This is a naive depth-first **minimax algorithm**:

```
_____masMiniMax.py — Minimax search with alpha-beta pruning _
   def minimax(node,depth):
11
       """returns the value of node, and a best path for the agents
12
13
       if node.isLeaf():
14
           return node.evaluate(),None
15
       elif node.isMax:
           max_score = float("-inf")
17
18
           max_path = None
           for C in node.children():
19
               score,path = minimax(C,depth+1)
               if score > max_score:
21
                   max_score = score
22
                   max_path = C.name,path
23
```

14.1. Minimax 349

```
24
           return max_score,max_path
25
       else:
           min_score = float("inf")
26
           min_path = None
27
           for C in node.children():
28
               score,path = minimax(C,depth+1)
29
30
               if score < min_score:</pre>
                   min_score = score
31
                   min_path = C.name,path
32
33
           return min_score,min_path
```

The following is a depth-first minimax with  $\alpha$ - $\beta$  **pruning**. It returns the value for a node as well as a best path for the agents.

```
__masMiniMax.py — (continued)
   def minimax_alpha_beta(node,alpha,beta,depth=0):
35
       """node is a Node, alpha and beta are cutoffs, depth is the depth
36
37
       returns value, path
       where path is a sequence of nodes that results in the value
38
39
       node.display(2," "*depth,"minimax_alpha_beta(",node.name,", ",alpha, ",
40
           ", beta,")")
       best=None
                     # only used if it will be pruned
41
       if node.isLeaf():
42
           node.display(2," "*depth,"returning leaf value",node.evaluate())
43
           return node.evaluate(),None
44
       elif node.isMax:
45
           for C in node.children():
46
               score,path = minimax_alpha_beta(C,alpha,beta,depth+1)
47
               if score >= beta: # beta pruning
48
                   node.display(2," "*depth, "pruned due to
49
                       beta=",beta,"C=",C.name)
50
                   return score, None
               if score > alpha:
51
                   alpha = score
52
                   best = C.name, path
53
           node.display(2," "*depth,"returning max alpha",alpha,"best",best)
           return alpha, best
55
56
       else:
57
           for C in node.children():
               score,path = minimax_alpha_beta(C,alpha,beta,depth+1)
               if score <= alpha: # alpha pruning</pre>
59
                   node.display(2," "*depth, "pruned due to
60
                       alpha=",alpha,"C=",C.name)
                   return score, None
61
               if score < beta:</pre>
62
63
                   beta=score
                   best = C.name, path
64
           node.display(2," "*depth,"returning min beta",beta,"best=",best)
65
66
           return beta, best
```

Testing:

```
_masMiniMax.py — (continued)
   from masProblem import fig10_5, Magic_sum, Node
68
69
   # Node.max_display_level=2 # print detailed trace
70
   # minimax_alpha_beta(fig10_5, -9999, 9999,0)
71
72
   # minimax_alpha_beta(Magic_sum(), -9999, 9999,0)
73
   #To see how much time alpha-beta pruning can save over minimax, uncomment
74
       the following:
   ## import timeit
75
   ## timeit.Timer("minimax(Magic_sum(),0)",setup="from __main__ import
76
       minimax, Magic_sum"
   ##
77
                  ).timeit(number=1)
   ## trace=False
78
   ## timeit.Timer("minimax_alpha_beta(Magic_sum(), -9999, 9999,0)",
                  setup="from __main__ import minimax_alpha_beta, Magic_sum"
80
   ##
81
                  ).timeit(number=1)
```

## 14.2 Multiagent Learning

The next code is for multiple agents that learn when interacting with other agents. The main difference from the simulator of the last chapter is that the games take actions from all the agents and provide a separate reward to each agent. Any of the reinforcement learning agents from the last chapter can be used.

### 14.2.1 Simulating Multiagent Interaction with an Environment

The simulation for a game passes the joint action from all the agents to the environment, which returns a tuple of rewards – one for each agent – and the next state.

```
_masLearn.py — Multiagent learning _
11
   from display import Displayable
12
   import matplotlib.pyplot as plt
   from rlProblem import RL_agent
13
14
   class SimulateGame(Displayable):
15
       def __init__(self, game, agent_types):
16
           #self.max_display_level = 3
17
           self.game = game
18
           self.agents = [agent_types[i](game.players[i], game.actions[i], 0)
19
               for i in range(game.num_agents)] # list of agents
           self.action_dists = [{act:0 for act in game.actions[i]} for i in
20
               range(game.num_agents)]
           self.action_history = []
21
           self.state_history = []
22
           self.reward_history = []
23
```

```
self.dist = {}
24
25
           self.dist_history = []
           self.actions = tuple(ag.initial_action(game.initial_state) for ag
26
               in self.agents)
           self.num\_steps = 0
27
28
29
       def go(self, steps):
           for i in range(steps):
30
              self.num\_steps += 1
31
              (self.rewards, state) = self.game.play(self.actions)
32
              self.display(3, f"In go rewards={self.rewards}, state={state}")
33
              self.reward_history.append(self.rewards)
34
              self.state_history.append(state)
35
              self.actions = tuple(agent.select_action(reward, state)
36
                                      for (agent, reward) in
37
                                          zip(self.agents,self.rewards))
              self.action_history.append(self.actions)
38
              for i in range(self.game.num_agents):
39
                   self.action_dists[i][self.actions[i]] += 1
40
              self.dist_history.append([{a:i for (a,i) in elt.items()} for
41
                   elt in self.action_dists]) # deep copy
           #print("Scores:", ' '.join(f"{self.agents[i].role} average
               reward={ag.total_score/self.num_steps}" for ag in self.agents))
           print("Distributions:", '
43
               '.join(str({a:self.dist_history[-1][i][a]/sum(self.dist_history[-1][i].values())
               for a in self.game.actions[i]})
                                              for i in
44
                                                  range(self.game.num_agents)))
           #return self.reward_history, self.action_history
45
46
       def action_dist(self,which_actions=[1,1]):
47
           """ which actions is [a0,a1]
48
           returns the empirical distribution of actions for agents,
49
50
             where ai specifies the index of the actions for agent i
           remove this???
51
52
           return [sum(1 for a in sim.action_history
53
                          if
54
                              a[i]==gm.actions[i][which_actions[i]])/len(sim.action_history)
                      for i in range(2)]
55
```

The plot shows how the empirical distributions of the first two agents changes as the learning continues.

```
def plot_dynamics(self, x_action=0, y_action=0):
    plt.ion() # make it interactive
    agents = self.agents
    x_act = self.game.actions[0][x_action]
    y_act = self.game.actions[1][y_action]
```

```
plt.xlabel(f"Probability {self.game.players[0]}
62
               {self.agents[0].actions[x_action]}")
          plt.ylabel(f"Probability {self.game.players[1]}
63
               {self.agents[1].actions[y_action]}")
          plt.plot([self.dist_history[i][0][x_act]/sum(self.dist_history[i][0].values())
               for i in range(len(self.dist_history))],
65
                   [self.dist_history[i][1][y_act]/sum(self.dist_history[i][1].values())
                       for i in range(len(self.dist_history))])
           #plt.legend()
66
           #plt.savefig('soccerplot.pdf') # if you want to save plot
67
          plt.show()
```

#### 14.2.2 Example Games

The following are games from Poole and Mackworth [2023].

```
_masLearn.py — (continued) ___
   class ShoppingGame(Displayable):
70
       def __init__(self):
71
           self.num\_agents = 2
72
           self.states = ['s']
73
           self.initial_state = 's'
74
           self.actions = [['shopping', 'football']]*2
75
           self.players = ['football-preferrer goes to', 'shopping-preferrer
76
               goes to']
77
       def play(self, actions):
78
           """Given (action1,action2) returns (resulting_state, (reward1,
               reward2))
           return ({('football', 'football'): (2, 1),
81
                    ('football', 'shopping'): (0, 0),
82
                    ('shopping', 'football'): (0, 0),
83
                    ('shopping', 'shopping'): (1, 2)
84
                       }[actions], 's')
85
86
   class SoccerGame(Displayable):
87
       def __init__(self):
88
           self.num\_agents = 2
89
           self.states = ['s']
90
           self.initial_state = 's'
91
           self.initial_state = 's'
92
93
           self.actions = [['right', 'left']]*2
           self.players = ['goalkeeper', 'kicker']
94
       def play(self, actions):
96
           """Given (action1,action2) returns (resulting_state, (reward1,
97
               reward2))
           resulting state is 's'
98
99
```

```
return ({('left', 'left'): (0.6, 0.4),
100
101
                     ('left', 'right'): (0.3, 0.7),
                     ('right', 'left'): (0.2, 0.8),
102
                     ('right', 'right'): (0.9,0.1)
103
                   }[actions], 's')
104
105
106
    class GameShow(Displayable):
107
        def __init__(self):
            self.num\_agents = 2
108
            self.states = ['s']
109
            self.initial_state = 's'
110
            self.actions = [['takes', 'gives']]*2
111
            self.players = ['Agent 1', 'Agent 2']
112
113
        def play(self, actions):
114
            return ({('takes', 'takes'): (1, 1),
115
                    ('takes', 'gives'): (11, 0),
116
                    ('gives', 'takes'): (0, 11),
117
                    ('gives', 'gives'): (10, 10)
118
                   }[actions], 's')
119
120
121
    class UniqueNEGameExample(Displayable):
122
        def __init__(self):
123
            self.num\_agents = 2
124
            self.states = ['s']
125
            self.initial_state = 's'
126
            self.actions = [['a1', 'b1', 'c1'],['d2', 'e2', 'f2']]
127
            self.players = ['agent 1 does', 'agent 2 does']
128
129
        def play(self, actions):
130
            return ({('a1', 'd2'): (3, 5),
131
                     ('a1', 'e2'): (5, 1),
132
                     ('a1', 'f2'): (1, 2),
133
                     ('b1', 'd2'): (1, 1),
134
                     ('b1', 'e2'): (2, 9),
135
                     ('b1', 'f2'): (6, 4),
136
                     ('c1', 'd2'): (2, 6),
137
                     ('c1', 'e2'): (4, 7),
138
                     ('c1', 'f2'): (0, 8)
139
                         }[actions], 's')
140
```

### 14.2.3 Testing Games and Environments

```
_____masLearn.py — (continued)

# Choose a game:

# gm = ShoppingGame()

# gm = SoccerGame()

# gm = GameShow()
```

```
# gm = UniqueNEGameExample()
146
147
    from rlQLearner import Q_learner
148
    from rlProblem import RL_agent
149
    from rlStochasticPolicy import StochasticPIAgent
150
    # Choose one of the combinations of learners:
151
152
    # sim=SimulateGame(gm,[StochasticPIAgent, StochasticPIAgent]);
        sim.go(10000)
    # sim= SimulateGame(gm,[Q_learner, Q_learner]); sim.go(10000)
153
    # sim=SimulateGame(gm,[Q_learner, StochasticPIAgent]); sim.go(10000)
154
155
156
    # sim.plot_dynamics()
157
158
    # empirical proportion that agents did their action at index 1:
159
    # sim.action_dist([1,1])
160
161
    # (unnormalized) empirical distribution for agent 0
162
    # sim.agents[0].dist
```

**Exercise 14.1** Consider the alternative ways to implement stochastic policy iteration of Exercise 13.2.

- (a) What value(s) of *c* converge for the soccer game? Explain your results.
- (b) Suggest another method that works well for the soccer game, the other games and other RL environments.

**Exercise 14.2** For the soccer game, how can a Q\_learner be regularly beaten? Assume that the random number generator is secret. (Hint: can you predict what it will do?) What happens when it is played against an adversary that knows how it learns? What happens if two of these agents are played against each other? Can a StochasticPIAgent be defeated in the same way?

**Exercise 14.3** Try the game show game (prisoner's dilemma) with two StochasticPIAgent agents and alpha\_fun=lambda k:0.1. Try also k:0.01. Why does this work qualitatively different? Is this better?

# Individuals and Relations

Here we implement top-down proofs for Datalog and logic programming. This is much less efficient than Prolog, which is typically implemented by compiling to an abstract machine. If you want to do serious work, we suggest using Prolog; SWI Prolog (https://www.swi-prolog.org) is good.

# 15.1 Representing Datalog and Logic Programs

The following extends the knowledge bases of Chapter 5 to include logical variables. In that chapter, atoms did not have structure and were represented as strings. Here atoms can have arguments including variables (defined below) and constants (represented by strings).

Function symbols have the same representation as atoms. To make unification simpler and to allow treating clauses as data, Func is defined as an abbreviation for Atom.

```
_logicRelation.py — Datalog and Logic Programs _
   from display import Displayable
   import logicProblem
12
13
   class Var(Displayable):
14
        """A logical variable"""
15
       def __init__(self, name):
16
            """name"""
17
           self.name = name
18
19
       def __str__(self):
           return self.name
21
        __repr__ = __str__
22
23
```

```
def __eq__(self, other):
24
25
           return isinstance(other, Var) and self.name == other.name
       def __hash__(self):
26
           return hash(self.name)
27
28
   class Atom(object):
29
       """An atom"""
30
       def __init__(self, name, args):
31
           self.name = name
32
           self.args = args
33
34
       def __str__(self):
35
           return f"{self.name}({', '.join(str(a) for a in self.args)})"
36
       __repr__ = __str__
37
38
  Func = Atom # same syntax is used for function symbols
```

The following extends Clause of Section 5.1 to include also a set of logical variables in the clause. It also allows for atoms that are strings (as in Chapter 5) and makes them into atoms.

```
___logicRelation.py — (continued) ___
   class Clause(logicProblem.Clause):
41
       next_index=0
42
       def __init__(self, head, *args, **nargs):
43
           if not isinstance(head, Atom):
               head = Atom(head)
45
           logicProblem.Clause.__init__(self, head, *args, **nargs)
46
           self.logical_variables = log_vars([self.head,self.body],set())
47
48
       def rename(self):
49
           """create a unique copy of the clause"""
50
           if self.logical_variables:
51
               sub = {v:Var(f"{v.name}_{Clause.next_index}") for v in
52
                   self.logical_variables}
               Clause.next_index += 1
53
               return Clause(apply(self.head,sub),apply(self.body,sub))
54
           else:
55
              return self
56
57
   def log_vars(exp, vs):
58
       """the union the logical variables in exp and the set vs"""
59
       if isinstance(exp, Var):
60
           return {exp}|vs
61
       elif isinstance(exp,Atom):
62
           return log_vars(exp.name, log_vars(exp.args, vs))
63
       elif isinstance(exp,(list,tuple)):
64
           for e in exp:
65
               vs = log_vars(e, vs)
66
       return vs
```

15.2. Unification 357

#### 15.2 Unification

```
_logicRelation.py — (continued)
    unifdisp = Var(None) # for display
69
70
    def unify(t1,t2):
71
72
        e = [(t1, t2)]
        s = {} # empty dictionary
73
        while e:
74
            (a,b) = e.pop()
75
            unifdisp.display(2,f"unifying{(a,b)}, e={e},s={s}")
76
            if a != b:
77
                if isinstance(a, Var):
78
                    e = apply(e,{a:b})
79
                    s = apply(s,{a:b})
80
                    s[a]=b
81
82
                elif isinstance(b, Var):
                    e = apply(e, \{b:a\})
83
                    s = apply(s,{b:a})
84
85
                    s[b]=a
                elif isinstance(a, Atom) and isinstance(b, Atom) and
86
                    a.name==b.name and len(a.args)==len(b.args):
                    e += zip(a.args,b.args)
87
                elif isinstance(a,(list,tuple)) and isinstance(b,(list,tuple))
88
                    and len(a) == len(b ):
89
                    e += zip(a,b)
                else:
90
                    return False
91
        return s
92
93
    def apply(e,sub):
94
        """e is an expression
95
        sub is a {var:val} dictionary
96
        returns e with all occurrence of var replaces with val"""
97
        if isinstance(e, Var) and e in sub:
98
            return sub[e]
99
        if isinstance(e,Atom):
100
            return Atom(e.name, apply(e.args, sub))
101
        if isinstance(e,list):
102
103
            return [apply(a,sub) for a in e]
        if isinstance(e,tuple):
104
105
            return tuple(apply(a, sub) for a in e)
        if isinstance(e,dict):
106
            return {k:apply(v,sub) for (k,v) in e.items()}
107
        else:
108
            return e
109
```

Test cases:

```
### Test cases:
# unifdisp.max_display_level = 2 # show trace
e1 = Atom('p',[Var('X'),Var('Y'),Var('Y')])
e2 = Atom('p',['a',Var('Z'),'b'])
# apply(e1,{Var('Y'):'b'})
# unify(e1,e2)
e3 = Atom('p',['a',Var('Y'),Var('Y')])
e4 = Atom('p',[Var('Z'),Var('Z'),'b'])
# unify(e3,e4)
```

# 15.3 Knowledge Bases

The following modifies KB of Section 5.1 so that clause indexing is only on the predicate symbol of the head of clauses.

```
\_logicRelation.py - (continued)
    class KB(logicProblem.KB):
121
        """A first-order knowledge base.
122
          only the indexing is changed to index on name of the head."""
123
124
        def add_clause(self, c):
125
            """Add clause c to clause dictionary"""
126
            if c.head.name in self.atom_to_clauses:
127
                self.atom_to_clauses[c.head.name].append(c)
128
129
            else:
                self.atom_to_clauses[c.head.name] = [c]
130
```

simp\_KB is the simple knowledge base of Figure 15.1 of Poole and Mackworth [2023].

```
__relnExamples.py — Relational Knowledge Base Example _
   from logicRelation import Var, Atom, Clause, KB
11
12
   simp_KB = KB([
13
       Clause(Atom('in',['kim','r123'])),
14
       Clause(Atom('part_of',['r123','cs_building'])),
       Clause(Atom('in',[Var('X'),Var('Y')]),
16
                      [Atom('part_of',[Var('Z'),Var('Y')]),
17
                       Atom('in',[Var('X'),Var('Z')])])
18
       ])
19
```

elect\_KB is the relational version of the knowledge base for the electrical system of a house, as described in Example 15.11 of Poole and Mackworth [2023].

```
# define abbreviations to make the clauses more readable:

def lit(x): return Atom('lit',[x])

def light(x): return Atom('light',[x])

def ok(x): return Atom('ok',[x])

def live(x): return Atom('live',[x])

def connected_to(x,y): return Atom('connected_to',[x,y])
```

```
def up(x): return Atom('up',[x])
27
28
   def down(x): return Atom('down',[x])
29
   L = Var('L')
30
   W = Var('W')
31
   |W1 = Var('W1')
32
33
   elect_KB = KB([
34
       # lit(L) is true if light L is lit.
35
       Clause(lit(L),
36
37
                  [light(L),
                   ok(L),
38
                   live(L)]),
39
40
       # live(W) is true if W is live (i.e., current will flow through it)
41
       Clause(live(W),
42
                  [connected_to(W,W1),
43
                   live(W1)]),
44
45
       Clause(live('outside')),
46
47
       # light(L) is true if L is a light
48
       Clause(light('l1')),
49
       Clause(light('12')),
50
51
       # connected_to(W0,W1) is true if W0 is connected to W1 such that
52
       # current will flow from W1 to W0.
53
54
       Clause(connected_to('l1','w0')),
55
       Clause(connected_to('w0','w1'),
56
                  [ up('s2'), ok('s2')]),
57
       Clause(connected_to('w0','w2'),
58
                  [ down('s2'), ok('s2')]),
59
60
       Clause(connected_to('w1','w3'),
                  [ up('s1'), ok('s1')]),
61
       Clause(connected_to('w2','w3'),
62
                  [ down('s1'), ok('s1')]),
63
       Clause(connected_to('12','w4')),
64
       Clause(connected_to('w4','w3'),
65
                  [ up('s3'), ok('s3')]),
66
       Clause(connected_to('p1','w3')),
67
       Clause(connected_to('w3','w5'),
68
                  [ ok('cb1')]),
69
       Clause(connected_to('p2','w6')),
70
       Clause(connected_to('w6','w5'),
71
                  [ ok('cb2')]),
72
       Clause(connected_to('w5','outside'),
73
                  [ ok('outside_connection')]),
74
75
       # up(S) is true if switch S is up
76
```

```
# down(S) is true if switch S is down
Clause(down('s1')),
Clause(up('s2')),
Clause(up('s3')),
# ok(L) is true if K is working. Everything is ok:
Clause(ok(L)),
]
```

# 15.4 Top-down Proof Procedure

The top-down proof procedure is the one defined in Section 15.5.4 of Poole and Mackworth [2023] and shown in Figure 15.5. It is like prove defined in Section 5.3. It implements the iterator interface so that answers can be generated one at a time (or put in a list), and returns answers. To implement "choose" it loops over all alternatives and *yields* (returns one element at a time) the successful proofs.

```
\_logicRelation.py - (continued)
        def ask(self, query):
132
            """self is the current KB
133
            query is a list of atoms to be proved
134
            generates {variable:value} dictionary"""
135
136
            qvars = list(log_vars(query, set()))
137
            for ans in self.prove(qvars, query):
138
                yield {x:v for (x,v) in zip(qvars,ans)}
139
140
        def ask_all(self, query):
141
            """returns a list of all answers to the query given kb"""
142
            return list(self.ask(query))
143
144
        def ask_one(self, query):
145
            """returns an answer to the query given kb or None of there are no
146
                answers"""
            for ans in self.ask(query):
147
                return ans
148
149
        def prove(self, ans, ans_body, indent=""):
150
            """enumerates the proofs for ans_body
151
152
            ans_body is a list of atoms to be proved
            ans is the list of values of the query variables
153
154
            self.display(2,indent,f"(yes({ans}) <-"," & ".join(str(a) for a in</pre>
155
                ans_body))
            if ans_body==[]:
156
                yield ans
157
            else:
158
```

159

```
160
                if self.built_in(selected):
                   yield from self.eval_built_in(ans, selected, remaining,
161
                        indent)
                else:
162
                   for chosen_clause in self.atom_to_clauses[selected.name]:
163
                       clause = chosen_clause.rename() # rename variables
164
                       sub = unify(selected, clause.head)
165
                       if sub is not False:
166
                           self.display(3,indent,"KB.prove: selected=",
167
                               selected, "clause=",clause,"sub=",sub)
                           resans = apply(ans, sub)
168
                           new_ans_body = apply(clause.body+remaining, sub)
169
                           yield from self.prove(resans, new_ans_body, indent+"
170
171
        def select_atom(self,lst):
172
            """given list of atoms, return (selected atom, remaining atoms)
173
174
            return lst[0],lst[1:]
175
176
        def built_in(self,atom):
177
            return atom.name in ['lt','triple']
178
179
        def eval_built_in(self,ans, selected, remaining, indent):
180
            if selected.name == 'lt': # less than
181
               [a1,a2] = selected.args
182
                if a1 < a2:
183
                   yield from self.prove(ans, remaining, indent+" ")
184
            if selected.name == 'triple': # use triple store (AIFCA Ch 16)
185
               yield from self.eval_triple(ans, selected, remaining, indent)
186
                                 \_relnExamples.py — (continued) \_
    # Example Queries:
86
    # simp_KB.max_display_level = 2 # show trace
87
    # ask_all(simp_KB, [Atom('in',[Var('A'),Var('B')])])
88
    def test_ask_all(kb=simp_KB, query=[Atom('in',[Var('A'),Var('B')])],
90
                        res=[{ Var('A'): 'kim', Var('B'): 'r123'},
91
                            {Var('A'): 'kim', Var('B'): 'cs_building'}]):
        ans= kb.ask_all(query)
92
        assert ans == res, f"ask_all({query}) gave answer {ans}"
93
94
        print("ask_all: Passed unit test")
95
    if __name__ == "__main__":
96
97
        test_ask_all()
    # elect_KB.max_display_level = 2 # show trace
99
```

selected, remaining = self.select\_atom(ans\_body)

100

# elect\_KB.ask\_all([light('l1')])

# elect\_KB.ask\_all([light('16')])

```
# elect_KB.ask_all([up(Var('X'))])
# elect_KB.ask_all([connected_to('w0',W)])
# elect_KB.ask_all([connected_to('w1',W)])
# elect_KB.ask_all([connected_to(W,'w3')])
# elect_KB.ask_all([connected_to(W1,W)])
# elect_KB.ask_all([live('w6')])
# elect_KB.ask_all([live('p1')])
# elect_KB.ask_all([Atom('lit',[L])])
# elect_KB.ask_all([Atom('lit',['l2']), live('p1')])
# elect_KB.ask_all([live(L)])
```

**Exercise 15.1** Implement ask-the-user similar to Section 5.3. Augment this by allowing the user to specify which instances satisfy an atom. For example, by asking the user "for what X is w1 connected to X?"; or perhaps in a more user friendly way.

## 15.5 Logic Program Example

The following is an append program and the query of Example 15.30 of Poole and Mackworth [2023].

```
append(nil,W,W).
append(c(A,X),Y,c(A,Z)) <-
          append(X,Y,Z).
The term c(A,X) is represented using Atom
        In Prolog syntax:
append(nil,W,W).
append([A|X],Y,[A|Z]) :-
          append(X,Y,Z).
The value if lst is [l,i,s,t]. The query is
? append(F,[L],[l,i,s,t]).</pre>
```

We first define some constants and functions to make it more readable.

```
\_logicRelation.py — (continued) \_
   A = Var('A')
188
    W = Var('W')
189
    X = Var('X')
    Y = Var('Y')
191
    Z = Var('Z')
    def cons(h,t): return Atom('cons',[h,t])
193
    def append(a,b,c): return Atom('append',[a,b,c])
194
195
    app_KB = KB([
196
        Clause(append('nil',W,W)),
197
        Clause(append(cons(A,X), Y,cons(A,Z)),
198
                    [append(X,Y,Z)])
199
```

```
])
200
201
202
   F = Var('F')
    lst = cons('l',cons('i',cons('s',cons('t','nil'))))
203
   # app_KB.max_display_level = 2 #show derivation
204
   #ask_all(app_KB, [append(F,cons(A,'nil'), lst)])
205
   # Think about the expected answer before trying:
206
   #ask_all(app_KB, [append(X, Y, lst)])
207
208 | #ask_all(app_KB, [append(lst, lst, L), append(X, cons('s',Y), L)])
```

# Knowledge Graphs and Ontologies

## 16.1 Triple Store

A triple store provides efficient indexing for triples. For any combination of the subject-verb-object being provided or not, it can efficiently retrieve the corresponding triples. This should be comparable in speed to commercial triple stores, but would probably handle fewer triples, as it is not optimized for space. It also have fewer bells and whistles (e.g., ways to visualize triples and traverse the graph).

A triple store implements an index that covers all cases of where the subject, verb, or object are provided or not. The unspecified parts are given using Q (with value '?'). Thus, for example, index[(Q,vrb,Q)] is the list of triples with verb vrb. index[(sub,Q,obj) is the list of triples with subject sub and object obj.

```
_knowledgeGraph.py — Knowledge graph triple store _
   from display import Displayable
11
12
   class TripleStore(Displayable):
13
       Q = '?' # query position
14
15
       def __init__(self):
16
17
            self.index = {}
18
       def add(self, triple):
            (sb, vb, ob) = triple
20
            Q = self.Q
                            # make it easier to read
21
            add_to_index(self.index, (Q,Q,Q), triple)
22
```

```
add_to_index(self.index, (Q,Q,ob), triple)
23
           add_to_index(self.index, (Q,vb,Q), triple)
24
           add_to_index(self.index, (Q,vb,ob), triple)
25
           add_to_index(self.index, (sb,Q,Q), triple)
26
           add_to_index(self.index, (sb,Q,ob), triple)
27
           add_to_index(self.index, (sb,vb,Q), triple)
28
29
           add_to_index(self.index, triple, triple)
30
       def __len__(self):
31
           """number of triples in the triple store"""
32
           return len(self.index[(0,0,0)])
```

The lookup method returns a list of triples that match a pattern. The pattern is a triple of the form (i,j,k) where each of i, j, and k is either "Q" or a given value; specifying whether the subject, verb, and object are provided in the query or not. lookup((Q,Q,Q)) returns all triples. lookup((s,v,o)) can be used to check whether the triple (s,v,o) is in the triple store; it returns [] if the triple is not in the knowledge graph, and [(s,v,o)] if it is.

```
_knowledgeGraph.py — (continued)
35
       def lookup(self, query):
           """pattern is a triple of the form (i,j,k) where
36
37
              each i, j, k is either Q or a value for the
              subject, verb and object respectively.
           returns all triples with the specified non-Q vars in corresponding
39
               position
40
           if query in self.index:
41
42
               return self.index[query]
           else:
43
               return []
44
45
   def add_to_index(dict, key, value):
46
       if key in dict:
47
           dict[key].append(value)
48
       else:
49
50
           dict[key] = [value]
```

Here is a simple test triple store. In Wikidata Q262802 denotes the football (soccer) player Christine Sinclair, P27 is the country of citizenship, and Q16 is Canada.

```
# sts.lookup((Q,'http://schema.org/name',Q))
  | # sts.lookup((Q,'http://schema.org/name',"Canada"))
  | # sts.lookup(('/entity/Q16', 'http://schema.org/name', "Canada"))
   # sts.lookup(('/entity/Q262802', 'http://schema.org/name', "Canada"))
  # sts.lookup((Q,Q,Q))
65
   def test_kg(kg=sts, q=('/entity/Q262802',Q,Q),
66
       res=[('/entity/Q262802','http://schema.org/name',"Christine
       Sinclair"), ('/entity/Q262802', '/prop/direct/P27','/entity/Q16')]):
      """Knowledge graph unit test"""
67
      ans = kg.lookup(q)
68
      assert res==ans, f"test_kg answer {ans}"
69
      print("knowledge graph unit test passed")
70
71
   if __name__ == "__main__":
72
       test_kg()
73
```

To read rdf files, you can use rdflib (https://rdflib.readthedocs.io/en/stable/).

The default in load\_file is to include only English names; multiple languages can be included in the list. If the language restriction is None, all tuples are included. Converting to strings, as done here, loses information, e.g., the language associated with the literals. If you don't want to lose information, you can use rdflib objects, by omitting str in the call to ts.add.

```
___knowledgeGraph.py — (continued) _
   # before using do:
75
   # pip install rdflib
76
77
   def load_file(ts, filename, language_restriction=['en']):
78
       import rdflib
79
       g = rdflib.Graph()
80
       g.parse(filename)
81
       for (s,v,o) in g:
82
           if language_restriction and isinstance(o,rdflib.term.Literal) and
83
               o._language and o._language not in language_restriction:
               pass
           else:
85
               ts.add((str(s),str(v),str(o)))
86
       print(f"{len(g)} triples read. Triple store has {len(ts)} triples.")
87
88
   TripleStore.load_file = load_file
89
90
  | #### Test cases ####
91
  ts = TripleStore()
   #ts.load_file('http://www.wikidata.org/wiki/Special:EntityData/Q262802.nt')
  q262802 = 'http://www.wikidata.org/entity/Q262802'
  | #res=ts.lookup((q262802, 'http://www.wikidata.org/prop/P27',Q)) # country
  # The attributes of the object in the first answer to the above query:
```

## 16.2 Integrating Datalog and Triple Store

The following extends the definite clause reasoner in the previous chapter to include a built-in "triple" predicate (an atom with name "triple" and three arguments). The instances of this predicate are retrieved from the triple store. This is a simplified version of what can be done with the semweb library of SWI Prolog (https://www.swi-prolog.org/pldoc/doc\_for?object=section(%27packages/semweb.html%27). For anything serious, we suggest you use that. Note that the semweb library uses "rdf" as the predicate name, and Poole and Mackworth [2023] uses "prop" in Section 16.1.3 for the same predicate as "triple".

```
_knowledgeReasoning.py — Integrating Datalog and triple store
   from logicRelation import Var, Atom, Clause, KB, unify, apply
11
   from knowledgeGraph import TripleStore, sts
   import random
13
14
   class KBT(KB):
15
       def __init__(self, triplestore, statements=[]):
16
           self.triplestore = triplestore
17
           KB.__init__(self, statements)
18
19
20
       def eval_triple(self, ans, selected, remaining, indent):
           query = selected.args
21
           Q = self.triplestore.Q
22
           pattern = tuple(Q if isinstance(e, Var) else e for e in query)
23
           retrieved = self.triplestore.lookup(pattern)
24
           self.display(3,indent,"eval_triple:
25
               query=",query,"pattern=",pattern,"retrieved=",retrieved)
           for tr in random.sample(retrieved,len(retrieved)):
26
               sub = unify(tr, query)
27
               self.display(3,indent,"KB.prove:
                   selected=", selected, "triple=", tr, "sub=", sub)
              if sub is not False:
29
                  yield from self.prove(apply(ans, sub), apply(remaining, sub),
30
                       indent+" ")
31
   # simple test case:
  kbt = KBT(sts) # sts is simple triplestore from knowledgeGraph.py
   # kbt.ask_all([Atom('triple',('http://www.wikidata.org/entity/Q262802',
       Var('P'), Var('0')))])
```

The following are some larger examples from Wikidata. You must run load\_file to load the triples related to Christine Sinclair (Q262802). Otherwise the queries won't work.

The first query is how Christine Sinclair (Q262802) is related to Portland Thorns (Q1446672) with two hops in the knowledge graph. It is asking for a *P*, *O* and *P*1 such that

```
(Q262802, P, O)&(0, P1, Q1446672)
```

```
_knowledgeReasoning.py — (continued)
   0 = Var('0'); 01 = Var('01')
   P = Var('P')
37
   P1 = Var('P1')
38
   T = Var('T')
39
   N = Var('N')
40
   def triple(s,v,o): return Atom('triple',[s,v,o])
   def lt(a,b): return Atom('lt',[a,b])
42
43
   ts = TripleStore()
44
   kbts = KBT(ts)
45
   #ts.load_file('http://www.wikidata.org/wiki/Special:EntityData/Q262802.nt')
46
   q262802 ='http://www.wikidata.org/entity/Q262802'
   # How is Christine Sinclair (Q262802) related to Portland Thorns
        (Q1446672) with 2 hops:
   # kbts.ask_all([triple(q262802, P, 0), triple(0, P1,
        'http://www.wikidata.org/entity/Q1446672') ])
```

The second is asking for the name of a team that Christine Sinclair (Q262802) played for. It is asking for a O, T and N, where O is the reified object that gives the relationship, T is the team and N is the name of the team. Informally (with variables staring with uppercase and constants in lower case) this is

```
(q262802, p54, O) & (O, p54, T) & (T, name, N)
```

Notice how the reified relation 'P54' (member of sports team) is represented:

The third asks for the name of a team that Christine Sinclair (Q262802) played for at two different start times. It is asking for a *N*, *D*1 and *D*2, *N* is the name of the team and *D*1 and *D*2 are the start dates. In Wikidata, P54 is "member of sports team" and P580 is "start time".

```
knowledgeReasoning.py — (continued)

# The name of a team that Christine Sinclair played for at two different times, and the dates

def playedtwice(s,n,d0,d1): return Atom('playedtwice',[s,n,d0,d1])

S = Var('S')

N = Var('N')
```

```
D0 = Var('D0')
58
   D1 = Var('D2')
59
   kbts.add_clause(Clause(playedtwice(S,N,D0,D1), [
61
       triple(S, 'http://www.wikidata.org/prop/P54', 0),
62
       triple(0, 'http://www.wikidata.org/prop/statement/P54', T),
63
       triple(S, 'http://www.wikidata.org/prop/P54', 01),
64
       triple(01, 'http://www.wikidata.org/prop/statement/P54', T),
65
       lt(0,01), # ensure different and only generated once
66
       triple(T, 'http://schema.org/name', N),
67
       triple(0, 'http://www.wikidata.org/prop/qualifier/P580', D0),
68
       triple(01, 'http://www.wikidata.org/prop/qualifier/P580', D1)
69
70
       ]))
71
72 | # kbts.ask_all([playedtwice(q262802,N,D0,D1)])
```

## Relational Learning

### 17.1 Collaborative Filtering

The code here is based on the gradient descent algorithm for matrix factorization of Koren, Bell, and Volinsky [2009].

A rating set consists of training and test data, each a list of (*user*, *item*, *rating*) tuples.

```
relnCollFilt.py — Latent Property-based Collaborative Filtering
  import random
   import matplotlib.pyplot as plt
   import urllib.request
   from learnProblem import Learner
   from display import Displayable
15
16
   class Rating_set(Displayable):
17
       """A rating contains:
18
       training_data: list of (user, item, rating) triples
19
       test_data: list of (user, item, rating) triples
20
21
       def __init__(self, training_data, test_data):
22
           self.training_data = training_data
23
           self.test_data = test_data
```

The following is a representation of Examples 17.5-17.7 of Poole and Mackworth [2023]. This is a much smaller dataset than one would expect to work well.

```
29 ('s1','c2',2),

30 ('s2','c3',2),

31 ('s3','c2',2),

32 ('s4','c3',2)],

33 [('s3','c4',3), # test data

('s4','c4',1)])
```

A CF\_learner does stochastic gradient descent to make a predictor of ratings for user-item pairs.

```
_reInCollFilt.py — (continued) _
   class CF_learner(Learner):
36
       def __init__(self,
37
                                         # a Rating_set
38
                   rating_set,
                   step\_size = 0.01,
                                         # gradient descent step size
39
                   regularization = 1.0, # L2 regularization for full dataset
40
                   num_properties = 10, # number of hidden properties
41
                   property_range = 0.02 # properties are initialized to be
42
                       between
                                         # -property_range and property_range
43
                   ):
44
           self.rating_set = rating_set
45
           self.training_data = rating_set.training_data
46
           self.test_data = self.rating_set.test_data
47
           self.step_size = step_size
48
           self.regularization = regularization
49
           self.num_properties = num_properties
50
           self.num_ratings = len(self.training_data)
51
           self.ave_rating = (sum(r for (u,i,r) in self.training_data)
52
                             /self.num_ratings)
53
           self.users = {u for (u,i,r) in self.training_data}
           self.items = {i for (u,i,r) in self.training_data}
55
           self.user_bias = {u:0 for u in self.users}
56
           self.item_bias = {i:0 for i in self.items}
57
           self.user_prop = {u:[random.uniform(-property_range,property_range)
58
                                for p in range(num_properties)]
59
                               for u in self.users}
60
           self.item_prop = {i:[random.uniform(-property_range,property_range)
                                for p in range(num_properties)]
62
                               for i in self.items}
63
           # the _delta variables are the changes internal to a batch:
64
           self.user_bias_delta = {u:0 for u in self.users}
           self.item_bias_delta = {i:0 for i in self.items}
66
           self.user_prop_delta = {u:[0 for p in range(num_properties)]
67
                                     for u in self.users}
68
           self.item_prop_delta = {i:[0 for p in range(num_properties)]
                                     for i in self.items}
70
           # zeros is used for users and items not in the training set
71
           self.zeros = [0 for p in range(num_properties)]
72
           self.epoch = 0
73
           self.display(1, "Predict mean:" "(Ave Abs,AveSumSq)",
74
```

prediction returns the current prediction of a user on an item.

```
_reInCollFilt.py — (continued)
78
       def prediction(self,user,item):
           """Returns prediction for this user on this item.
79
           The use of .get() is to handle users or items in test set but not
80
               in the training set.
81
           if user in self.user_bias: # user in training set
82
               if item in self.item_bias: # item in training set
83
                   return (self.ave_rating
84
                         + self.user_bias[user]
85
                         + self.item_bias[item]
86
87
                         + sum([self.user_prop[user][p]*self.item_prop[item][p]
                         for p in range(self.num_properties)]))
88
               else: # training set contains user but not item
89
                   return (self.ave_rating + self.user_bias[user])
90
           elif item in self.item_bias: # training set contains item but not
91
               user
92
               return self.ave_rating + self.item_bias[item]
           else:
93
               return self.ave_rating
94
```

learn carries out num\_epochs epochs of stochastic gradient descent with batch\_size giving the number of training examples in a batch. The number of epochs is approximately the average number of times each training data point is used. It is approximate because it processes the integral number of the batch size.

```
_reInCollFilt.py — (continued) _
        def learn(self, num_epochs = 50, batch_size=1000):
96
            """ do (approximately) num_epochs iterations through the dataset
97
            batch_size is the size of each batch of stochastic gradient
98
                gradient descent.
99
            batch_size = min(batch_size, len(self.training_data))
100
            batch_per_epoch = len(self.training_data) // batch_size #
101
                approximate
            num_iter = batch_per_epoch*num_epochs
102
103
            reglz =
                self.step_size*self.regularization*batch_size/len(self.training_data)
                #regularization per batch
104
            for i in range(num_iter):
105
               if i % batch_per_epoch == 0:
106
                   self.epoch += 1
107
                   self.display(1,"Epoch", self.epoch, "(Ave Abs,AveSumSq)",
108
```

```
"training =", self.eval2string(self.training_data),
109
110
                               "test =",self.eval2string(self.test_data))
               # determine errors for a batch
111
               for (user,item,rating) in random.sample(self.training_data,
112
                   batch_size):
                   error = self.prediction(user,item) - rating
113
114
                   self.user_bias_delta[user] += error
                   self.item_bias_delta[item] += error
115
                   for p in range(self.num_properties):
116
                       self.user_prop_delta[user][p] +=
117
                           error*self.item_prop[item][p]
                       self.item_prop_delta[item][p] +=
118
                           error*self.user_prop[user][p]
               # Update all parameters
119
               for user in self.users:
120
                   self.user_bias[user] -=
121
                       (self.step_size*self.user_bias_delta[user]
                                           +reglz*self.user_bias[user])
122
                   self.user_bias_delta[user] = 0
123
                   for p in range(self.num_properties):
124
                       self.user_prop[user][p] -=
125
                           (self.step_size*self.user_prop_delta[user][p]
                                                 + reglz*self.user_prop[user][p])
126
                       self.user_prop_delta[user][p] = 0
127
               for item in self.items:
128
                   self.item_bias[item] -=
129
                        (self.step_size*self.item_bias_delta[item]
                                          + reglz*self.item_bias[item])
130
                   self.item_bias_delta[item] = 0
131
                   for p in range(self.num_properties):
132
                       self.item_prop[item][p] -=
133
                           (self.step_size*self.item_prop_delta[item][p]
                                                + reglz*self.item_prop[item][p])
134
135
                       self.item_prop_delta[item][p] = 0
```

The evaluate method evaluates current predictions on the rating set:

```
____relnCollFilt.py — (continued)
        def evaluate(self, ratings, useMean=False):
137
            """returns (average_absolute_error, average_sum_squares_error) for
138
                ratings
            ,, ,, ,,
139
            abs error = 0
140
            sumsq_error = 0
141
            if not ratings: return (0,0)
142
            for (user,item,rating) in ratings:
143
                prediction = self.ave_rating if useMean else
144
                    self.prediction(user,item)
                error = prediction - rating
145
                abs_error += abs(error)
146
                sumsq_error += error * error
147
```

```
return abs_error/len(ratings), sumsq_error/len(ratings)

def eval2string(self, *args, **nargs):
    """returns a string form of evaluate, with fewer digits
    """

(abs,ssq) = self.evaluate(*args, **nargs)
    return f"({abs:.4f}, {ssq:.4f})"
```

Let's test the code on the grades rating set:

**Exercise 17.1** In using CF\_learner with grades\_rs, does it work better with 0 properties? Is it overfitting to the data? How can overfitting be adjusted?

**Exercise 17.2** Modify the code so that self.ave\_rating is also learned. It should start as the average rating. Should it be regularized? Does it change from the initialized value? Does it work better or worse?

**Exercise 17.3** With the Movielens 100K dataset and the batch size being the whole training set, what happens to the error? How can this be fixed?

**Exercise 17.4** Can the regularization avoid iterating through the parameters for all users and items after a batch? Consider items that are in many batches versus those in a few or even no batches. (Warning: This is challenging to get right.)

#### 17.1.1 Plotting

The plot\_predictions method plots the cumulative distributions for each ground truth. Figure 17.1 shows a plot for the Movielens 100K dataset. Consider the rating = 1 line. The value for x is the proportion of the predictions with predicted value  $\leq x$  when the ground truth has a rating of 1. Similarly for the other lines.

Figure 17.1 is for one run on the training data. What would you expected the test data to look like?

```
def plot_predictions(self, examples="test"):
    """

def plot_predictions(self, examples="test"):
    """

examples is either "test" or "training" or the actual examples
    """

if examples == "test":
    examples = self.test_data

elif examples == "training":
    examples = self.training_data
```



Figure 17.1: learner1.plot\_predictions(examples = "training")

```
plt.ion()
170
171
           plt.xlabel("prediction")
           plt.ylabel("cumulative proportion")
172
            self.actuals = [[] for r in range(0,6)]
173
            for (user,item,rating) in examples:
174
               self.actuals[rating].append(self.prediction(user,item))
175
            for rating in range(1,6):
176
               self.actuals[rating].sort()
177
               numrat=len(self.actuals[rating])
178
               yvals = [i/numrat for i in range(numrat)]
179
               plt.plot(self.actuals[rating], yvals,
180
                    label="rating="+str(rating))
            plt.legend()
181
            plt.draw()
182
```

The plot\_property method plots a single latent property; see Figure 17.2. Each (user, item, rating) is plotted where the x-value is the value of the property for the user, the y-value is the value of the property for the item, and the rating is plotted at this (x, y) position. That is, rating is plotted at the (x, y) position (p(user), p(item)).

Because there are too many ratings to show, plot\_property selects a random number of points. It is difficult to see what is going on; the create\_top\_subset method was created to show the most rated items and the users who rated the most of these. This should help visualize how the latent property helps.



Figure 17.2: learner1.plot\_property(0) with 200 random ratings plotted. Rating (u,i,r) has r plotted a position (p(u),p(i)) where p is the selected latent property.

```
reInCollFilt.py — (continued)
184
        def plot_property(self,
                                         # property
185
                        plot_all=False, # true if all points should be plotted
186
                        num_points=200 # number of random points plotted if not
187
                             all
                        ):
188
            """plot some of the user-movie ratings,
189
            if plot_all is true
190
            num_points is the number of points selected at random plotted.
191
192
            the plot has the users on the x-axis sorted by their value on
193
                property p and
            with the items on the y-axis sorted by their value on property p and
194
            the ratings plotted at the corresponding x-y position.
195
196
            plt.ion()
197
            plt.xlabel("users")
198
            plt.ylabel("items")
199
            user_vals = [self.user_prop[u][p]
200
201
                         for u in self.users]
            item_vals = [self.item_prop[i][p]
202
```

```
for i in self.items]
203
204
            plt.axis([min(user_vals)-0.02,
                      max(user_vals)+0.05,
205
                      min(item_vals)-0.02,
206
                      max(item_vals)+0.05])
207
            if plot_all:
208
209
                for (u,i,r) in self.training_data:
                    plt.text(self.user_prop[u][p],
210
                             self.item_prop[i][p],
211
                             str(r))
212
            else:
213
                for i in range(num_points):
214
                    (u,i,r) = random.choice(self.training_data)
215
                    plt.text(self.user_prop[u][p],
216
                             self.item_prop[i][p],
217
                             str(r))
218
            plt.show()
219
```

#### 17.1.2 Loading Rating Sets from Files and Websites

This assumes the form of the Movielens datasets Harper and Konstan [2015], available from http://grouplens.org/datasets/movielens/.

The Movielens datasets consist of (*user*, *movie*, *rating*, *timestamp*) tuples. The aim here is to predict the future from the past. Tuples with a timestamp before data\_split form the training set, and those with a timestamp after form the test set.

A rating set can be read from the Internet or read from a local file. The default is to read the Movielens 100K dataset from the Internet. It would be more efficient to save the dataset as a local file, and then set *local\_file* = *True*, as then it will not need to download the dataset every time the program is run.

```
_reInCollFilt.py — (continued) _
    class Rating_set_from_file(Rating_set):
221
        def __init__(self,
222
                     date_split=892000000,
223
224
                     local_file=False,
                     url="http://files.grouplens.org/datasets/movielens/ml-100k/u.data",
225
                     file_name="u.data"):
226
            self.display(1, "reading...")
227
            if local_file:
228
                lines = open(file_name, 'r')
229
230
            else:
                lines = (line.decode('utf-8') for line in
231
                    urllib.request.urlopen(url))
            all_ratings = (tuple(int(e) for e in line.strip().split('\t'))
232
                            for line in lines)
233
            self.training_data = []
234
            self.training\_stats = \{1:0, 2:0, 3:0, 4:0, 5:0\}
235
            self.test_data = []
236
```

```
self.test\_stats = \{1:0, 2:0, 3:0, 4:0, 5:0\}
237
            for (user,item,rating,timestamp) in all_ratings:
238
                if timestamp < date_split: # rate[3] is timestamp</pre>
239
                   self.training_data.append((user,item,rating))
240
                   self.training_stats[rating] += 1
241
                else:
242
243
                    self.test_data.append((user,item,rating))
                   self.test_stats[rating] += 1
244
            self.display(1,"...read:", len(self.training_data),"training
245
                ratings and",
                   len(self.test_data), "test ratings")
246
            tr_users = {user for (user,item,rating) in self.training_data}
247
            test_users = {user for (user,item,rating) in self.test_data}
248
            self.display(1, "users:", len(tr_users), "training,", len(test_users), "test,",
249
                        len(tr_users & test_users), "in common")
250
            tr_items = {item for (user,item,rating) in self.training_data}
251
            test_items = {item for (user,item,rating) in self.test_data}
252
            self.display(1,"items:",len(tr_items),"training,",len(test_items),"test,",
253
                        len(tr_items & test_items), "in common")
254
            self.display(1,"Rating statistics for training set:
255
                ", self.training_stats)
            self.display(1,"Rating statistics for test set: ",self.test_stats)
256
```

#### 17.1.3 Ratings of top items and users

Sometimes it is useful to plot a property for all (user, item, rating) triples. There are too many such triples in the data set. The method create\_top\_subset creates a much smaller dataset where this makes sense. It picks the most rated items, then picks the users who have the most ratings on these items. It is designed for depicting the meaning of properties, and may not be useful for other purposes. The resulting plot is shown in Figure 17.3

```
_reInCollFilt.py — (continued)
    class Rating_set_top_subset(Rating_set):
258
259
        def __init__(self, rating_set, num_items = (20,40), num_users =
260
            (20,24)):
            """Returns a subset of the ratings by picking the most rated items,
261
            and then the users that have most ratings on these, and then all of
262
                the
            ratings that involve these users and items.
263
            num_items is (ni,si) which selects ni users at random from the top
264
                si users
265
            num_users is (nu,su) which selects nu items at random from the top
                su items
266
            (ni, si) = num_items
267
            (nu, su) = num\_users
268
            items = {item for (user,item,rating) in rating_set.training_data}
269
```



Figure 17.3: learner1.plot\_property(0) for 20 most rated items and 20 users with most ratings on these. Users and items with similar property values overwrite each other.

```
item_counts = {i:0 for i in items}
270
271
            for (user,item,rating) in rating_set.training_data:
               item_counts[item] += 1
272
273
            items_sorted = sorted((item_counts[i],i) for i in items)
274
            top_items = random.sample([item for (count, item) in
275
                items_sorted[-si:]], ni)
            set_top_items = set(top_items)
276
277
           users = {user for (user,item,rating) in rating_set.training_data}
278
           user_counts = {u:0 for u in users}
279
            for (user,item,rating) in rating_set.training_data:
280
               if item in set_top_items:
281
                   user_counts[user] += 1
282
283
           users_sorted = sorted((user_counts[u],u) for u in users)
284
            top_users = random.sample([user for (count, user) in
285
                users_sorted[-su:]], nu)
286
            set_top_users = set(top_users)
287
            self.training_data = [ (user,item,rating)
288
                            for (user,item,rating) in rating_set.training_data
289
```

```
if user in set_top_users and item in set_top_items]
290
291
           self.test_data = []
292
    movielens = Rating_set_from_file()
293
    learner1 = CF_learner(movielens, num_properties = 1)
   | # learner10 = CF_learner(movielens, num_properties = 10)
295
296
    # learner1.learn(50)
    # learner1.plot_predictions(examples = "training")
297
   # learner1.plot_predictions(examples = "test")
   # learner1.plot_property(0)
299
    # movielens_subset = Rating_set_top_subset(movielens,num_items = (20,40),
        num\_users = (20,40))
   |# learner_s = CF_learner(movielens_subset, num_properties=1)
301
   # learner_s.learn(1000)
302
   # learner_s.plot_property(0,plot_all=True)
```

#### 17.2 Relational Probabilistic Models

The following implements relational belief networks – belief networks with plates. Plates correspond to logical variables.

```
relnProbModels.py — Relational Probabilistic Models: belief networks with plates

from display import Displayable
from probGraphicalModels import BeliefNetwork
from variable import Variable
from probRC import ProbRC
from probFactors import Prob
import random

boolean = [False, True]
```

A ParVar is a parametrized random variable, which consists of the name, a list of logical variables (plates), a domain, and a position. For each assignment of an entity to each logical variable, there is a random variable in a grounding.

```
__reInProbModels.py — (continued) .
   class ParVar(object):
20
       """Parametrized random variable"""
21
       def __init__(self, name, log_vars, domain, position=None):
22
           self.name = name # string
23
24
           self.log_vars = log_vars
           self.domain = domain # list of values
25
           self.position = position if position else (random.random(),
26
                random.random())
           self.size = len(domain)
27
```

The class RBN is of relational belief networks. A relational belief network consists of a title, a set of parvariables, and a set of parfactors.

```
____reInProbModels.py — (continued) _____
```

```
class RBN(Displayable):
    def __init__(self, title, parvars, parfactors):
        self.title = title
        self.parvars = parvars
        self.parfactors = parfactors
        self.log_vars = {V for PV in parvars for V in PV.log_vars}
```

The grounding of a belief network with a population for each logical variable is a belief network, for which any of the belief network inference algorithms work.

```
__reInProbModels.py — (continued) _
       def ground(self, populations, offsets=None):
36
           """Ground the belief network with the populations of the logical
37
               variables
           populations is a dictionary that maps each logical variable to the
38
               list of individuals.
           Returns a belief network representation of the grounding.
39
           assert all(lv in populations for lv in self.log_vars), f"{[lv for
41
               lv in self.log_vars if lv not in populations]} have no
               population"
           self.cps = []
                           # conditional probabilities in the grounding
42
           self.var_dict = {} # ground variables created
43
           for pp in self.parfactors:
44
               self.ground_parfactor(pp, list(self.log_vars), populations, {},
45
                   offsets)
           return BeliefNetwork(self.title+"_grounded",
46
               self.var_dict.values(), self.cps)
47
       def ground_parfactor(self, parfactor, lvs, populations, context,
           offsets):
49
           parfactor is the parfactor to get instances of
50
           lvs is a list of the logical variables in parfactor not assigned in
51
           populations is {logical_variable: population} dictionary
52
           context is a {logical_variable:value} dictionary for
53
               logical_variable in parfactor
           offsets a {loc_var:(x_offset,y_offset)} dictionary or None
54
55
           if lvs == []:
              if isinstance(parfactor, Prob):
57
                  self.cps.append(Prob(self.ground_pvr(parfactor.child,context,offsets),
58
                                          [self.ground_pvr(p,context,offsets)
59
                                              for p in parfactor.parents],
                                          parfactor.values))
60
              else:
61
                  print("Parfactor not implemented for",parfactor,"of
62
                       type", type(parfactor))
           else:
63
```

```
for val in populations[lvs[0]]:
64
65
                  self.ground_parfactor(parfactor, lvs[1:], populations,
                      {lvs[0]:val}|context, offsets)
66
       def ground_pvr(self, prv, context, offsets):
67
           """grounds a parametrized random variable with respect to a context
68
           prv is a parametrized random variable
70
           context is a logical_variable:value dictionary that assigns all
               logical variables in prv
           offsets a {loc_var:(x_offset,y_offset)} dictionary or None
71
72
           if isinstance(prv,ParVar):
73
              args = tuple(context[lv] for lv in prv.log_vars)
74
              if (prv,args) in self.var_dict:
75
                  return self.var_dict[(prv,args)]
76
              else:
77
                  new_gv = GrVar(prv, args, offsets)
78
                  self.var_dict[(prv,args)] = new_gv
79
80
                  return new_gv
           else: # allows for non-parametrized random variables
81
              return prv
82
```

A GrVar is a variable constructed by grounding a parametrized random variable with respect to a tuple of values for the logical variables.

```
_reInProbModels.py — (continued)
    class GrVar(Variable):
        """Grounded Variable"""
85
       def __init__(self, parvar, args, offsets = None):
86
            """A grounded variable
87
           parvar is the parametrized variable
88
           args is a tuple of a value for each random variable
89
           offsets is a map between the value and the (x,y) offsets
91
           if offsets:
92
               pos = sum_positions([parvar.position]+[offsets[a] for a in
93
94
           else:
              pos = sum_positions([parvar.position,
95
                   (random.uniform(-0.2,0.2),random.uniform(-0.2,0.2))])
           Variable.__init__(self,parvar.name+"("+",".join(args)+")",
96
                parvar.domain, pos)
           self.parvar= parvar
97
98
           self.args = tuple(args)
           self.hash_value = None
99
100
       def __hash__(self):
101
           if self.hash_value is None: # only hash once
102
               self.hash_value = hash((self.parvar, self.args))
103
           return self.hash_value
104
105
```

```
106
        def __eq__(self, other):
107
            return isinstance(other, GrVar) and self.parvar == other.parvar and
                self.args == other.args
108
    def sum_positions(poslist):
109
        (x,y) = (0,0)
110
111
        for (xo,yo) in poslist:
            x += xo
112
            y += yo
        return (x,y)
114
```

The following is a representation of Examples 17.5-17.7 of Poole and Mackworth [2023]. The plate model – represented here using grades – is shown in Figure 17.4. The observation in obs corresponds to the dataset of Figure 17.3. The grounding in grades\_gr corresponds to Figure 17.5, but also includes the Grade variables not needed to answer the query (see exercise below).

Try the commented out queries to the Python shell:

```
__reInProbModels.py — (continued) _
    Int = ParVar("Intelligent", ["St"], boolean, position=(0.0,0.7))
116
    Grade = ParVar("Grade", ["St", "Co"], ["A", "B", "C"], position=(0.2,0.6))
117
    Diff = ParVar("Difficult", ["Co"], boolean, position=(0.3,0.9))
118
119
    pg = Prob(Grade, [Int, Diff],
120
                   [[{"A": 0.1, "B": 0.4, "C": 0.5},
121
                         {"A": 0.01, "B":0.09, "C":0.9}],
122
                    [{"A": 0.9, "B":0.09, "C":0.01},
123
                          {"A": 0.5, "B":0.4, "C":0.1}]])
124
    pi = Prob(Int, [], [0.5, 0.5])
125
    pd = Prob(Diff, [], [0.5, 0.5])
126
    grades = RBN("Grades RBN", {Int, Grade, Diff}, {pg,pi,pd})
127
128
    students = ["s1", "s2", "s3", "s4"]
129
    st\_offsets = {st:(0,-0.2*i) for (i,st) in enumerate(students)}
130
    courses = ["c1", "c2", "c3", "c4"]
131
    co\_offsets = \{co: (0.2*i,0) \text{ for } (i,co) \text{ in enumerate}(courses)\}
132
    grades_gr = grades.ground({"St": students, "Co": courses},
133
                               offsets = st_offsets | co_offsets)
134
135
    obs = {GrVar(Grade,["s1","c1"]):"A", GrVar(Grade,["s2","c1"]):"C",
136
        GrVar(Grade,["s1","c2"]):"B",
               GrVar(Grade,["s2","c3"]):"B", GrVar(Grade,["s3","c2"]):"B",
137
                   GrVar(Grade, ["s4", "c3"]): "B"}
138
    # grades_rc = ProbRC(grades_gr)
139
    # grades_rc.show_post({GrVar(Grade,["s1","c1"]):"A"},fontsize=10)
140
141
        grades_rc.show_post({GrVar(Grade,["s1","c1"]):"A",GrVar(Grade,["s2","c1"]):"C"})
    #
142
        grades_rc.show_post({GrVar(Grade,["s1","c1"]):"A",GrVar(Grade,["s2","c1"]):"C",
        GrVar(Grade,["s1","c2"]):"B"})
```



Figure 17.4: Grounded network with three observations

```
# grades_rc.show_post(obs,fontsize=10)
# grades_rc.query(GrVar(Grade,["s3","c4"]), obs)
# grades_rc.query(GrVar(Grade,["s4","c4"]), obs)
# grades_rc.query(GrVar(Int,["s3"]), obs)
# grades_rc.query(GrVar(Int,["s4"]), obs)
```

Figure 17.4 shows the distribution over ground variables after the 3rd show\_post in the code above (with 3 grades observed).

**Exercise 17.5** What are advantages and disadvantages of using this formulation over using CF\_learner with grades\_rs? Think about overfitting, and where the parameters come from.

**Exercise 17.6** The grounding above creates a random variable for each element for each possible combination of individuals in the populations. Change it so that it only creates as many random variables as needed to answer a query. For example, for the observations and queries above, only the variables in Figure 17.5 in Poole and Mackworth [2023] need to be created.

# **Version History**

- 2024-04-30 Version 0.9.13: Minor changes uncluding counterfactual reasoning.
- 2023-12-06 Version 0.9.12: Top-down proof for Datalog (ch 15) and triple store (ch 16)
- 2023-11-21 Version 0.9.11 updated and simplified relational learning, show relational belief networks
- 2023-11-07 Version 0.9.10 Improved GUIs and test cases for decision-theoretic planning (MDPs) and reinforcement learning.
- 2023-10-6 Version 0.9.8 GUIS for search, Bayesian learning, causality and many smaller changes.
- 2023-07-31 Version 0.9.7 includes relational probabilistic models and smaller changes
- 2023-06-06 Version 0.9.6 controllers are more consistent. Many smaller changes.
- 2022-08-13 Version 0.9.5 major revisions including extra code for causality and deep learning
- 2021-07-08 Version 0.9.1 updated the CSP code to have the same representation of variables as used by the probability code
- 2021-05-13 Version 0.9.0 Major revisions to chapters 8 and 9. Introduced recursive conditioning, simplified much code. New section on multiagent reinforcement learning.
- 2020-11-04 Version 0.8.6 simplified value iteration for MDPs.

- 2020-10-20 Version 0.8.4 planning simplified and fixed arc costs.
- 2020-07-21 Version 0.8.2 added positions and string to constraints
- 2019-09-17 Version 0.8.0 rerepresented blocks world (Section 6.1.2) due to bug found by Donato Meoli.

# Bibliography

- Chen, T. and Guestrin, C. (2016), Xgboost: A scalable tree boosting system. In KDD '16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794, URL https://doi.org/10.1145/2939672. 2939785. 184
- Chollet, F. (2021), Deeep Learning with Python. Manning. 187
- Dua, D. and Graff, C. (2017), UCI machine learning repository. URL http://archive.ics.uci.edu/ml. 149
- Glorot, X. and Bengio, Y. (2010), Understanding the difficulty of training deep feedforward neural networks. In *Thirteenth International Conference on Artificial Intelligence and Statistics*, pages 249–256, URL https://proceedings.mlr.press/v9/glorot10a.html. 188
- Harper, F. M. and Konstan, J. A. (2015), The MovieLens datasets: History and context. *ACM Transactions on Interactive Intelligent Systems*, 5(4). 378
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017), LightGBM: A highly efficient gradient boosting decision tree. In *Advances in Neural Information Processing Systems* 30. 184
- Koren, Y., Bell, R., and Volinsky, C. (2009), Matrix factorization techniques for recommender systems. *IEEE Computer*, 42(8):30–37. 371
- Lichman, M. (2013), UCI machine learning repository. URL http://archive.ics.uci.edu/ml. 149
- Pearl, J. (2009), *Causality: Models, Reasoning and Inference*. Cambridge University Press, 2nd edition. 213, 277

390 Bibliography

Pérez, F. and Granger, B. E. (2007), IPython: a system for interactive scientific computing. *Computing in Science and Engineering*, 9(3):21–29, URL https://ipython.org. 10

Poole, D. L. and Mackworth, A. K. (2023), Artificial Intelligence: foundations of computational agents. Cambridge University Press, 3rd edition, URL https://artint.info. 9, 25, 27, 48, 49, 50, 76, 114, 123, 208, 211, 212, 219, 220, 263, 296, 299, 300, 302, 316, 318, 324, 328, 331, 352, 358, 360, 362, 368, 371, 384, 385

| $\alpha$ - $\beta$ pruning, 349   | Boosted_dataset, 182                        |
|-----------------------------------|---------------------------------------------|
| A* search, 53                     | Boosting_learner, 182 Branch_and_bound, 106 |
| <i>A</i> * Search, 60             | CF_learner, 371                             |
| action, 125                       | CPD, 203                                    |
| agent, 25, 313                    | CPDrename, 250                              |
| argmax, 19                        | ,                                           |
| assignment, 71, 201               | CSP, 71                                     |
| assumable, 119                    | CSP_from_STRIPS, 138                        |
| asynchronous value iteration, 311 | Clause, 109, 356                            |
| augmented feature, 160            | Con_solver, 86                              |
| <i>g</i>                          | ConstantCPD, 203                            |
| Bayesian network, 208             | Constraint, 70                              |
| belief network, 208               | DBN, 250                                    |
| blocks world, 128                 | DBNVEfilter, 255                            |
| Boolean feature, 150              | DBNvariable, 249                            |
| botton-up proof, 112              | DF_Branch_and_bound, 65                     |
| branch-and-bound search, 64       | DT_learner, 167                             |
| ,                                 | Data_from_file, 158                         |
| class                             | Data_from_files, 159                        |
| Action_instance, 142              | Data_set, 151                               |
| Agent, 26                         | Data_set_augmented, 161                     |
| Arc, 42                           | DecisionFunction, 289                       |
| Askable, 109                      | DecisionNetwork, 282                        |
| Assumable, 119                    | DecisionVariable, 281                       |
| BNfromDBN, 253                    | Displayable, 18                             |
| BeliefNetwork, 209                | Dist, 207                                   |
| •                                 |                                             |

| Dropout_layer, 194                 | NN, 191                             |
|------------------------------------|-------------------------------------|
| EM_learner, 266                    | Node, 345                           |
| Env_from_MDP, 317                  | NoisyOR, 204                        |
| Environment, 26                    | <i>POP_node</i> , 142               |
| Evaluate, 156                      | POP_search_from_STRIPS, 143         |
| Factor, 201                        | ParVar, 381                         |
| FactorMax, 294                     | ParticleFiltering, 232              |
| FactorObserved, 225                | Party <sub>e</sub> nv, 316          |
| FactorRename, 250                  | Path, 45                            |
| FactorSum, 225                     | Planning_problem, 126               |
| Forward_STRIPS, 131                | Plot_env, 36                        |
| FrontierPQ, 59                     | Plot_prices, 29                     |
| GTB learner, 185                   | Predict, 164                        |
| GibbsSampling, 235                 | Prob, 206                           |
| GrVar, 383                         | ProbDT, 206                         |
| GraphicalModel, 208                | ProbRC, 220                         |
| GridDomain, 306                    | ProbSearch, 219                     |
| HMM, 239                           | Q_learner, 321                      |
| HMMVEfilter, 241                   | RBN, 381                            |
| HMM_Controlled, 242                | RC_DN, 290                          |
| HMM_Local, 243                     | RL_agent, 314                       |
| HMMparticleFilter, 245             | RL_env, 313                         |
| IFeq, 206                          | Rating_set, 378                     |
| InferenceMethod, 216, 271          | ReLU_layer, 190                     |
| KB, 110, 358                       | Regression_STRIPS, 135              |
| KBA, 119                           | RejectionSampling, 230              |
| KBT, 368                           | Rob_body, 32                        |
| K_fold_dataset, 172                | Rob_env, 31                         |
| K <sub>_means_learner</sub> , 261  | Rob_middle_layer, 34                |
| Layer, 187                         | Rob_top_layer, 35                   |
| Learner, 163                       | Runtime_distribution, 102           |
| LikelihoodWeighting, 231           | <i>SARSA</i> , 323                  |
| Linear_complete_layer, 189         | SARSA_LFA_learner, 337              |
| Linear_complete_layer_RMS_Prop,    | SLSearcher, 95                      |
| 193                                | STRIPS_domain, 126                  |
| Linear_complete_layer_momentum,    | SameAs, 207                         |
| 193                                | SamplingInferenceMethod, 229        |
| Linear_learner, 174                | Search_from_CSP, 83, 85             |
| LogisticRegression, 204            | Search_problem, 41                  |
| MDP, 296                           | Search_problem_from_explicit_graph, |
| MDPtiny, 299                       | 43                                  |
| Magic_sum, 347                     | Search_with_AC_from_CSP, 94         |
| Model_based_reinforcement_learner, | Searcher, 53                        |
| 331                                | SearcherGUI, 56                     |
| Monster_game_env, 302, 318         | SearcherMPP, 62                     |
| υ , , -                            | ,                                   |

| Show Localization, 243               | decision variable, 281            |
|--------------------------------------|-----------------------------------|
| Sigmoid_layer, 190                   | deep learning, 187                |
| SoftConstraint, 105                  | display, 19                       |
| <i>State</i> , 130                   | Displayable, 18                   |
| Strips, 125                          | domain splitting, 89, 93          |
| Subgoal, 135                         | Dropout, 194                      |
| TP_agent, 29                         | dynamic belief network (DBN), 248 |
| TP_env, 28                           | •                                 |
|                                      | representation, 249               |
| TabFactor, 205                       | EM, 266                           |
| TripleStore, 365                     |                                   |
| Updatable_priority_queue, 101        | environment, 25, 26, 313          |
| Utility, 281                         | error, 155                        |
| UtilityTable, 281                    | example, 150                      |
| VE, 224                              | explanation, 115                  |
| <i>VE_DN</i> , 294                   | explicit graph, 43                |
| Variable, 69                         |                                   |
| clause, 109                          | factor, 201, 205                  |
| collaborative filtering, 371         | factor_times, 226                 |
| comprehensions, 12                   | feature, 150, 152                 |
| condition, 70                        | feature engineering, 149          |
| conditional probability distribution | file                              |
| (CPD), 203                           | agentBuying.py, 28                |
| consistency algorithms, 86           | agentEnv.py, 31                   |
| constraint, 70                       | agentFollowTarget.py, 38          |
|                                      | agentMiddle.py, 34                |
| constraint satisfaction problem, 69  | agentTop.py, 35                   |
| CPD (conditional probability distri- | agents.py, 26                     |
| bution), 203                         | cspConsistency.py, 86             |
| cross validation, 172                | , , , ,                           |
| CSP, 69                              | cspConsistencyGUI.py, 91          |
| consistency, 86                      | cspDFS.py, 83                     |
| domain splitting, 89, 93             | cspExamples.py, 74                |
| search, 84                           | cspProblem.py, 70                 |
| stochastic local search, 95          | cspSLS.py, 95                     |
| currying, 74                         | cspSearch.py, 85                  |
| , 0                                  | cspSoft.py, 105                   |
| datalog, 355                         | decnNetworks.py, 281              |
| dataset, 150                         | display.py, 18                    |
| DBN                                  | knowledgeGraph.py, 365            |
| filtering, 255                       | knowledgeReasoning.py, 368        |
| unrolling, 253                       | learnBayesian.py, 257             |
| DBN (dynamic belief network), 248    | learnBoosting.py, 182             |
| debugging, 115                       | learnCrossValidation.py, 172      |
| decision network, 281                | learnDT.py, 167                   |
|                                      |                                   |
| decision tree learning, 167          | learnEM.py, 266                   |
| decision tree factors, 206           | learnKMeans.py, 261               |

| learnLinear.py, 174                               | searchGrid.py, 63                    |
|---------------------------------------------------|--------------------------------------|
| learnNN.py, 187                                   | searchMPP.py, 62                     |
| learnNoInputs.py, 164                             | searchProblem.py, 41                 |
| learnProblem.py, 150                              | searchTest.py, 41                    |
| , 6                                               | stripsCSPPlanner.py, 138             |
| logicAssumables.py, 119                           | , , , ,                              |
| logicBottomUp.py, 112                             | stripsForwardPlanner.py, 130         |
| logicExplain.py, 115                              | stripsHeuristic.py, 133              |
| logicNegation.py, 122                             | stripsPOP.py, 142                    |
| logicProblem.py, 109                              | stripsProblem.py, 125                |
| logicRelation.py, 355                             | stripsRegressionPlanner.py, 135      |
| logicTopDown.py, 114                              | utilities.py, 19                     |
| masLearn.py, 350                                  | variable.py, 69                      |
| masMiniMax.py, 348                                | filtering, 241, 245                  |
| masProblem.py, 345                                | DBN, 255                             |
| mdpExamples.py, 296                               | flip, 20                             |
| mdpGUI.py, 306                                    | forward planning, 130                |
| mdpProblem.py, 296                                | frange, 152                          |
| probCounterfactual.py, 274                        | ftype, 152                           |
| probDBN.py, 249                                   |                                      |
| probDo.py, 271                                    | game, 345                            |
| probExamples.py, 211                              | Gibbs sampling, 235                  |
| probFactors.py, 201                               | graphical model, 208                 |
| probGraphicalModels.py, 208                       | 1 1 1 1 1 100 100                    |
| probHMM.py, 239                                   | heuristic planning, 132, 137         |
| probLocalization.py, 242                          | hidden Markov model, 239             |
| probRC.py, 219                                    | hierarchical controller, 31          |
| probStochSim.py, 228                              | HMM                                  |
| probVE.py, 224                                    | exact filtering, 241                 |
| pythonDemo.py, 13                                 | particle filtering, 245              |
| relnCollFilt.py, 371                              | HMM (hidden Markov models), 239      |
| relnExamples.py, 358                              | 1, 222                               |
| relnProbModels.py, 381                            | importance sampling, 232             |
| rlExamples.py, 316                                | interact                             |
| rlFeatures.py, 337                                | proofs, 116                          |
| rlGUI.py, 340                                     | ipython, 10                          |
| rlGameFeature.py, 334                             | 1 0(1                                |
| rlModelLearner.py, 334                            | k-means, 261                         |
| rlProblem.py, 313                                 | kernel, 161                          |
| rlQExperienceReplay.py, 326                       | knowledge base, 110                  |
| rlQLaperienceRepluy.py, 320<br>rlQLearner.py, 321 | knowledge graph, 365                 |
| - , , ,                                           | laarnar 162                          |
| rlStochasticPolicy.py, 328                        | learner, 163                         |
| searchBranchAndBound.py, 65                       | learning, 149–199, 257–270, 313–344, |
| searchExample.py, 47                              | 371–381                              |
| searchGUI.py, 56                                  | cross validation, 172                |
| searchGeneric.py, 53                              | decision tree, 167                   |
|                                                   |                                      |

https://aipython.org Version 0.9.13 June 13, 2024

| deep, 187–199                      | naive search probabilistic inference,             |
|------------------------------------|---------------------------------------------------|
| deep learning, 187                 | 218                                               |
| EM, 266                            | neural network, 187                               |
| k-means, 261                       | noisy-or, 204                                     |
| linear regression, 174             | NotImplementedError, 26                           |
| linear classification, 174         | noughts and crosses, 346                          |
| neural network, 187                |                                                   |
| no inputs, 163                     | partial-order planner, 142                        |
| reinforcement, 313–344             | particle filtering, 232                           |
| relational, 371                    | HMMs, 245                                         |
| supervised, 149–186                | planning, 125–147, 281–312                        |
| with uncertainty, 257–270          | CSP, 138                                          |
| LightGBM, 184                      | decision network, 281                             |
| likelihood weighting, 231          | forward, 130                                      |
| linear regression, 174             | MDP, 296                                          |
| linear classification, 174         | partial order, 142                                |
| localization, 242                  | regression, 135                                   |
|                                    | with certainty, 125–147                           |
| logic program, 355                 | with learning, 330                                |
| logistic regression, 204           | with uncertainty, 281–312                         |
| logit, 177                         | plotting                                          |
| loss, 155                          | agents in time, 29                                |
|                                    | reinforcement learning, 315                       |
| magic square, 346                  | robot environment, 36                             |
| magic-sum game, 346                | run-time distribution, 102                        |
| Markov Chain Monte Carlo, 235      | stochastic simulation, 236                        |
| Markov decision process, 296       | predictor, 155                                    |
| max_display_level, 19              | Prob, 206                                         |
| MCMC, 235                          | probabilistic inference methods, 216              |
| MDP, 296, 317                      | probability, 201                                  |
| GUI, 306                           | proof                                             |
| method                             | bottom-up, 112                                    |
| consistent, 72                     | explanation, 115                                  |
| holds, 71                          | top-down, 114, 360                                |
| maxh, 133                          | proposition, 109                                  |
| zero, 131                          | Python, 9                                         |
| minimax, 345                       |                                                   |
| minimax algorithm, 348             | Q learning, 321                                   |
| minsets, 120                       | query, 216                                        |
| model-based reinforcement learner, | queryD0, 271                                      |
| 330                                | RC, 220, 290                                      |
| multiagent system, 345             |                                                   |
| multiple path pruning, 62          | recursive conditioning (RC), 220                  |
| marapie paur praimig, 02           | recursive conditioning for decision networks, 290 |
| n-queens problem, 82               | regression planning, 135                          |
| ii queens provient, 02             | regression planning, 155                          |
|                                    |                                                   |

Version 0.9.13

https://aipython.org

June 13, 2024

| tic-tac-toe, 346                       |
|----------------------------------------|
| top-down proof, 114, 360               |
| triple store, 365, 368                 |
|                                        |
| uncertainty, 201                       |
| unification, 357, 358                  |
| unit test, 21, 61, 82, 113, 114, 116   |
| unrolling                              |
| DBN, 253                               |
| updatable priority queue, 101          |
| utility, 281                           |
| utility table, 281                     |
| 1 205                                  |
| value iteration, 305                   |
| variable, 69                           |
| variable elimination (VE), 224         |
| variable elimination for decision net- |
| works, 293                             |
| VE, 224                                |
| XGBoost, 184                           |
| Adduosi, 101                           |
| yield, 14                              |
| ,                                      |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |
|                                        |