CS 581 – ADVANCED ARTIFICIAL INTELLIGENCE

TOPIC: NEURAL NETWORKS

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

NEURON

By Quasar Jarosz at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7616130

NEURON

- Neurons can have multiple dendrites and at most one axon
- Typical connections are from an axon of a neuron to dendrites of other neurons
- Synaptic signals are received through dendrites and somas; signals are transmitted through axons
- Signals can excite or inhibit the receiving neuron
- A neuron fires when the excitement is above a threshold

ARTIFICIAL NEURAL NETWORKS

- Artificial neural networks are inspired by real neurons
- 1943 One of the first neural computational models was proposed by McCulloch and Pits
- 1958 Rosenblatt proposed perceptron
- 1969 A paper by Minsky and Papert almost killed the entire field
 - Perceptrons are incapable of representing XOR
 - Computational resources are too great
- 1975 Backpropagation algorithm renewed interest in neural networks
- 1980s parallel architectures were popular
- Late 1990s and 2000s other methods, such as support vector machines, became more popular
- 2010s neural networks of several hidden layers are back with the new name "deep learning"

PERCEPTRON

$$y = sign(w_0 + \sum w_i x_i)$$

5

WHAT AN ARTIFICIAL NEURON DOES

- Takes a weighted sum of its inputs
 - $w_0 + \sum_{i=1}^k w_i x_i$
 - Assume that there is always a constant input 1, that is, $x_0 = 1$. Then,
 - $\sum_{i=0}^k w_i x_i$
- Passes this sum through its activation function
 - $f(\sum_{i=0}^k w_i x_i)$

EXAMPLES

- Logical AND
- Logical OR
- Logical XOR
- See OneNote and Notebook

SIMPLE MULTILAYER NETWORK FOR XOR

- $\bullet XOR(A,B) = (A \land \neg B) \lor (\neg A \land B)$
- One perceptron for $(A \land \neg B)$
- One perceptron for $(\neg A \land B)$
- One perceptron for combining the outputs, through OR, of the two previous perceptrons
- See Notebook

VARIOUS ACTIVATION FUNCTIONS

- Identity function
- Bipolar step function
- Binary sigmoid
- Bipolar sigmoid
- Hyperbolic tangent

IDENTITY FUNCTION

- $of(\sum_{i=0}^k w_i x_i) = \sum_{i=0}^k w_i x_i$
- Typically used for the output neurons, when the task is regression
- The identity function should not be used in the hidden layers
 - Linear combination of linear functions is another linear function, and hence using the identity function in the hidden layers do not increase representative power of the neural network

BIPOLAR STEP FUNCTION

- $of(\sum_{i=0}^k w_i x_i) = sign(\sum_{i=0}^k w_i x_i)$
- Returns either +1 or -1 (except right on the decision boundary)
- Useful for both hidden layers and output layer
- However, its discontinuous and it is problematic for learning algorithms that require taking its derivative

BINARY SIGMOID

- This is the logistic function that we used
 - Except, notice the minus sign in front of the sum
 - This is only a convention and does not change much
- The output of the binary sigmoid is between 0 and 1
 - Useful for output layer when the task is classification
 - The output can be interpreted as a probability

BIPOLAR SIGMOID

$$f(\sum_{i=0}^{k} w_i x_i) = \frac{2}{1 + e^{-\sum_{i=0}^{k} w_i x_i}} - 1$$

- This is a rescaled version of the binary sigmoid
- The output of the bipolar sigmoid is between -1 and +1
 - Useful for output layer when the task is classification
 - Useful for both hidden and output layers

HYPERBOLIC TANGENT

$$f\left(\sum_{i=0}^{k} w_i x_i\right) = \frac{e^{\sum_{i=0}^{k} w_i x_i} - e^{-\sum_{i=0}^{k} w_i x_i}}{e^{\sum_{i=0}^{k} w_i x_i} + e^{-\sum_{i=0}^{k} w_i x_i}}$$

- The output of tanh is between -1 and +1
 - Useful for output layer when the task is classification
 - Useful for both hidden and output layers

ACTIVATION FUNCTION PLOTS

LEARNING THE WEIGHTS

- Define an error (loss) function
- Take its derivative with respect to the weights
- Perform gradient descent

LEARNING THE STRUCTURE

• Thoughts?

SOME ERROR/LOSS FUNCTIONS

- Regression squared error
 - $\frac{1}{2}(t-y)^2$
 - *t*: the true target value
 - *y*: the predicted value
- Classification log-loss, negative CLL
 - $-(1-t) \times ln(1-y) t \times ln(y)$
 - *t*: the true target value (0/1)
 - y: probability of class 1

DERIVATIVES OF THE ACTIVATION FUNCTIONS

- \circ f is the activation function, h is the weighted sum of the incoming signals
- \circ $f(h(x)) \equiv \text{binary sigmoid}$

•
$$\frac{\partial f(h(x))}{\partial x} = f(h(x)) \times (1 - f(h(x))) \times \frac{\partial h(x)}{\partial x}$$

 \circ $f(h(x)) \equiv \tanh$

•
$$\frac{\partial f(h(x))}{\partial x} = (1 + f(h(x))) \times (1 - f(h(x))) \times \frac{\partial h(x)}{\partial x}$$

See OneNote

MULTILAYER NEURAL NETWORKS

- Typically consists of
 - An input layer
 - One or more hidden layers
 - An output layer
- The hidden layers' activation function should not be the identity function
 - Why?

SIMPLE MULTILAYER NETWORK EXAMPLES

- A simple two-layer regression network
 - Hidden layer tanh
 - Output layer identity
- A simple two-layer classification network
 - Hidden layer tanh
 - Output layer binary sigmoid

BACKPROPAGATION ALGORITHM

• See OneNote

VARIOUS NETWORK ARCHITECTURES

- Autoencoder
 - Input and Output are the same
 - Hidden layer has fewer neurons
 - Input->Hidden Layer: encoding, Hidden Layer -> Output: decoding
- Convolutional neural networks (CNNs)
 - Captures local features
 - Deep neural networks often use multiple layers of CNNs coupled with pooling (see OneNote)
- Recurrent neural networks
 - Backward connections
 - Serves as memory
 - Especially useful sequence data (e.g., time-series, text, etc.)
 - Example: Long Short-Term Memory (LSTM) networks

OVERFITTING

- Neural networks are pretty powerful tools
- Even with a single hidden layer, they are "universal approximators", i.e., they can approximate arbitrary functions arbitrarily close
- Therefore, it is very easy to overfit them
- To prevent overfitting, utilize
 - Domain knowledge
 - Shared parameters
 - Validation data
 - Regularization

DEEP LEARNING

- Several hidden layers
 - Millions of parameters
- Big data, big computation
- Strongly-recommended reading
 - "Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review" https://arxiv.org/abs/1611.00740

LIBRARIES

- Scikit-learn
 - https://scikit-learn.org/stable/modules/neural_networks_supervised.html
- Keras
 - https://keras.io/
- Tensorflow
 - https://github.com/tensorflow/tensorflow
- CNTK
 - https://github.com/Microsoft/cntk
- Theano
 - https://github.com/Theano/Theano
- PyTorch
 - https://github.com/pytorch/pytorch
- Fast.ai
 - https://www.fast.ai/
- Others
 - Use your favorite search engine