7. Floating Point Arithmetic

EECS 370 – Introduction to Computer Organization – Winter 2015

Robert Dick, Andrew Lukefahr, and Satish Narayanasamy

EECS Department University of Michigan in Ann Arbor, USA

© Dick-Lukefahr-Narayanasamy, 2015

The material in this presentation cannot be copied in any form without our written permission

Robert Dick

- Born in Upstate New York
 - Father blew up ships and gives investment advice
 - Mother was music teacher
- Bachelor's degree from Clarkson University
- Ph.D. from Princeton University
- Taught at Tsinghua University, Northwestern University
- Came to Michigan Jan. 2009
- Recently co-founded a wearable electronics company http://stryd.com/

Robert Dick

3/11

Embedded system design

- Censorship and surveillance resistant communication
- Distributed sensing systems
- Data compression
- Integrated circuit design automation
- Wearable electronics

Robert Dick Contact Info

- To reach me
 - Robert Dick
 - 2417-E EECS
 - Cellphone: 847-530-1824
 - dickrp@umich.edu

1

Why floating point

- Have to represent them somehow
- Rational numbers
 - Ok, but can be cumbersome to work with
 - Falls apart for sqrt(2) and other irrational numbers
- Fixed point
 - Do everything in thousandths (or millions, etc.)
 - Not always easy to pick the right units
 - Different scaling factors for different stages of computation
- Scientific notation: this is good!
 - Exponential notation allows HUGE dynamic range
 - Constant (approximately) relative precision across the whole range

Lots of ways to do floating point

- Decimal: 2.99792458 x 108
- Hexadecimal: 1.1de784a x 16⁷
- □ Binary: 1.0001110111100111100001001010 x 2²⁸
- Wilder alternatives
 - Arbitrary precision arithmetic
 - Software support for arbitrary number of digits (or bits)
 - Powerful, but almost always slow
 - Represent numbers by their logarithms
 - Used for centuries in slide rules
 - Makes multiplication and division really fast and easy
 - But addition and subtraction become quite painful

Floating point before IEEE-754 standard

- Late 1970s formats
 - About two dozen different, incompatible floating point number formats
 - Decimal, binary, octal, hexadecimal all in use
 - Precisions from about 4 to about 17 decimal digits
 - Ranges from about 10¹⁹ to 10³²²
- Sloppy arithmetic
 - Last few bits were often wrong, and in different ways
 - Overflow sometimes detected, sometimes ignored
 - Arbitrary, almost random rounding modes
 - Truncate, round up, round to nearest
 - Addition and multiplication not necessarily commutative
 - Small differences due to roundoff errors

IEEE floating point

- Standard set by IEEE
 - John Palmer at Intel took the lead in 1976 for a good standard
 - First working implementation: Intel 8087 floating point coprocessor, 1980
 - Full formal adoption: 1985
 - Updated in 2008
- Rigorous specification for high accuracy computation
 - Made every bit count
 - Dependable accuracy even in the lowest bits
 - Predictable, reasonable behavior for exceptional conditions
 - (divide by zero, overflow, etc.)

IEEE Floating point format (single precision)

- Sign bit: (0 is positive, 1 is negative)
- □ Significand: (also called the *mantissa*; stores the 23 most significant bits after the decimal point)
- Exponent: used biased base 127 encoding
 - Add 127 to the value of the exponent to encode:
 - $-127 \rightarrow 00000000$ $1 \rightarrow 10000000$
 - $-126 \rightarrow 00000001$ $2 \rightarrow 10000001$
 -
 - $0 \rightarrow 011111111 128 \rightarrow 111111111$
- How do you represent zero ? Special convention:
 - Exponent: -127 (all zeroes), Significand 0 (all zeroes), Sign + or -

Floating Point Representation

Floating Point Representation

Class Problem

What is the value (in decimal) of the following IEEE 754 floating point encoded number?

1 10000101 010110010000000000000000

Floating point multiplication

- Add exponents (don't forget to account for the bias)
- Multiply significands (don't forget the implicit 1 bits)
- Renormalize if necessary
- Compute sign bit (simple exclusive-or)

Floating point multiply

$$\begin{array}{c}
1010101\\
\times & 101\\
\hline
1010101\\
101010100
\\
\hline
110101001$$

0 10000101 101010010000000000000000

$$1101010.01_2 \\ = 106.25_{10}$$

Floating point addition

- More complicated than floating point multiplication!
- If exponents are unequal, must shift the significand of the smaller number to the right to align the corresponding place values
- Once numbers are aligned, simple addition (could be subtraction, if one of the numbers is negative)
- Renormalize (which could be messy if the numbers had opposite signs; for example, consider addition of +1.5000 and – 1.4999)
- Added complication: rounding to the correct number of bits to store could denormalize the number, and require one more step

Floating point Addition

- Shift smaller exponent right to match larger.
- 2. Add significands
- 3. Normalize and update exponent
- Check for "out of range"

Class Problem

Show how to add the following 2 numbers using IEEE floating point addition: 100.125 + 13.75

More precision and range

- We have described IEEE-754 binary32 floating point format, commonly known as "single precision" ("float" in C/C++)
 - 24 bits precision; equivalent to about 7 decimal digits
 - 3.4 * 10³⁸ maximum value
 - Good enough for most but not all calculations
- □ IEEE-754 also defines a larger binary64 format, "double precision" ("double" in C/C++)
 - 53 bits precision, equivalent to about 16 decimal digits
 - 1.8 * 10³⁰⁸ maximum value
 - Most accurate physical values currently known only to about 47 bits precision, about 14 decimal digits

Extreme floating point

- binary128, "quad precision"; recent addition to standard:
 - 113 bits precision, about 34 decimal digits
 - 1.2*10⁴⁹³² maximum value
 - Very rarely used, but some computations require extreme accuracy to limit cumulative roundoff error
- Another recent addition was binary16, "half precision"
 - 11 bits precision, about 3.3 decimal digits
 - 65504 maximum value
 - Used in graphics processors for accurate rendering of scenes with a large dynamic range in lighting levels.
 - Minimizes storage per pixel

More or less precision and range

Table 3.5—Binary interchange format parameters

Parameter	binary16	binary32	binary64	binary128	binary $\{k\}$ $(k \ge 128)$
k, storage width in bits	16	32	64	128	multiple of 32
p, precision in bits	11	24	53	113	$k - \text{round}(4 \times \log 2(k)) + 13$
emax, maximum exponent e	15	127	1023	16383	$2^{(k-p-1)}-1$
Encoding parameters					
bias, E – e	15	127	1023	16383	emax
sign bit	1	1	1	1	1
w, exponent field width in bits	5	8	11	15	$round(4 \times log2(k)) - 13$
t, trailing significand field width in bits	10	23	52	112	k-w-1
k, storage width in bits	16	32	64	128	1 + w + t

The function round() in Table 3.5 rounds to the nearest integer.

For example, binary256 would have p = 237 and emax = 262143.