Bài 1: BIẾN CỐ VÀ XÁC SUẤT

- 1.1. Qui tắc cộng, qui tắc nhân.
 - ✓ Qui tắc cộng: $n = n_1 + n_2 + ... + n_k$
 - ✓ Qui tắc nhân: $n = n_1 \times n_2 \times ... \times n_k$
- 1.2. Hoán vị, chỉnh hợp, tổ hợp.
- 1.3. Xác suất $P(A) = \frac{n(A)}{n(\Omega)}$.

Bài 2: CÔNG THỨC TÍNH XÁC SUẤT

2.1. Công thức cộng xác suất: $P(A+B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Hai biến cố A, B xung khắc:

$$\checkmark P(A \cap B) = 0$$

$$\checkmark$$
 $P(A+B)=P(A\cup B)=P(A)+P(B)$

Chú ý: Trên đây là công thức cho 2 biến cố, ngoài ra còn có công thức cho 3 biến cố, 4 biến cố,.....

- 2.2. Xác suất có điều kiện: $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{n(A \cap B)}{n(B)}$
- 2.3. Công thức nhân xác suất:

Công thức nhân xác suất: $P(A.B) = P(A \cap B) = P(A \mid B).P(B) = P(B \mid A).P(A)$

Hai biến cố A, B độc lập: $P(A.B) = P(A \cap B) = P(A).P(B)$

2.4. Công thức xác suất đầy đủ (toàn phần), công thức Bayes.

Hệ $\{A_1, A_2\}$ đầy đủ. Khi đó:

 \checkmark Công thức xác suất đầy đủ: $P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2)$

Phan Thị Ngọc Hân

Tóm tắt lý thuyết

✓ Công thức Bayes: $P(A_i | B) = \frac{P(B | A_i).P(A_i)}{P(B)}$, i = 1, 2.

Chú ý: Trên đây là công thức cho hệ 2 biến cố, ngoài ra còn có hệ 3 biến cố, 4 biến cố,.....

2.5. Công thức Bernulli.

 $p_k = C_n^k p^k \cdot (1-p)^{n-k}$: Xác suất biến cố A xảy ra k lần trong n lần thực hiện phép thử.

Trong đó: P(A) = p: xác suất xảy ra biến cố A.

Bài 3: BIẾN NGẪU NHIÊN.

STT		Biến ngẫu nhiên rời rạc					Biến ngẫu nhiên liên tục
1	Hàm	Hàm mật độ xác suất					Hàm mật độ xác suất
	✓ Dạng công thức: $f(x_i) \ge 0$; $\sum_{i=1}^n f(x_i) = 1$; $f(x_i) = P(X = x_i)$ ✓ Dạng bảng:			$(x_i) = P($	$X = x_i$	$f(x) \ge 0; \int_{-\infty}^{+\infty} f(x) dx = 1; P(a \le X \le b) = \int_{a}^{b} f(x) dx$ $P(X = a) = 0$ $P(a \le X \le b) = P(a < X < b) = P(a \le X \le b) = P(a < X \le b)$	
	X	x_1	x_2	••••	X_{n-1}	X_n	
	p	p_1	p_2	••••	p_{n-1}	p_n	
	$p_i \ge 0$	$; \sum_{i=1}^n p_i$	$=1; p_i$	=P(X=	$=x_i$)		

Hàm phân phối xác suất

$$F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i)$$

$$0 \le F(x) \le 1$$
; Nếu $x \le y$ thì $F(x) \le F(y)$

Tính chất của hàm phân phối xác suất:

$$a/0 \le F(x) \le 1$$

b/ F(x) không giảm.

c/
$$P(a < X \le b) = F(b) - F(a)$$

Hàm phân phối xác suất

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du, -\infty < x < \infty$$

$$f(x) = F'(x)$$

Tính chất của hàm phân phối xác suất:

$$a/0 \le F(x) \le 1$$

b/F(x) không giảm.

$$c/P(a \le X \le b) = F(b) - F(a)$$

Trung bình và phương sai 3

$$\mu = E(X) = \sum_{x_i} x_i f(x_i)$$

$$\mu = E(X) = \sum_{x_i} x_i f(x_i)$$

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$\sigma^2 = V(X) = E(X - \mu)^2 = \sum_{x_i} (x_i - \mu)^2 f(x_i)$$

$$\sigma^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

$$= \sum_{x_i} x_i^2 f(x_i) - \mu^2$$

Trung bình và phương sai

$$\mu = E(X) = \int_{-\infty}^{\infty} xf(x)dx$$

$$\sigma^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

✓ Tính chất của trung bình:

a/
$$E(C) = C$$
, C là hằng số.

b/
$$E(aX) = aE(X)$$
, a là hằng số.

	c/E(aX+bY+c) = aE(X)+bE(Y), a,b là hằng số.				
	d/ Nếu X, Y độc lập thì $E(XY) = E(X).E(Y)$.				
	✓ Tính chất của phương sai:				
	a/Var(C) = 0, C là hằng số.				
	b/ $Var(aX) = a^2 Var(X)$, a là hằng số.				
	$c/Var(aX+bY+c) = a^2Var(X)+b^2Var(Y), a,b$ là hằng số.				
	d/ Nếu X, Y độc lập thì $Var(X \pm Y) = Var(X) \pm Var(Y)$.				
4	Mode (Yếu vị)	Mode (Yếu vị)			
	Mode(X) là giá trị của X có khả năng nhận được lớn nhất (giá trị có xác suất xảy ra lớn nhất)	Mode(X) là giá trị của X làm hàm mật độ xác suất đạt giá trị lớn nhất.			
5	Median (Trung vị)	Median (Trung vị)			
	Median(X) là giá trị của X chia tập dữ liệu ra làm 2 phần bằng nhau.	Median(X) là giá trị của X chia tập dữ liệu ra làm 2 phần bằng nhau.			
	$Med(X) = x_i \Leftrightarrow F(x_{i-1}) \le 0.5 \le F(x_i)$	Med(X)			
		$= x_0 \Leftrightarrow P(X \le x_0) = P(X \ge x_0) = 0.5 \Leftrightarrow F(x_0) = \int_{-\infty}^{x_0} f(x) dx = 0.5$			

Bài 4: CÁC PHÂN PHỐI XÁC SUẤT THÔNG DUNG

4.1. Phân phối Nhị thức $X \sim B(n, p)$: $P(X = k) = C_n^k p^k (1-p)^{n-k}, k = 0, 1, ..., n$

Kỳ vọng và phương sai: $\mu = E(X) = np$; $\sigma^2 = V(X) = np(1-p)$

4.2. Phân phối Poisson $X \sim P(\lambda)$: Hàm mật độ xác suất $f(x) = P(X = x) = \frac{e^{-\lambda} \times \lambda^x}{x!}$, $x = 0, 1, 2,; \lambda > 0$

 λ là số biến cố trung bình xảy ra trên một đơn vị (chiều dài, diện tích, thể tích,...)

Kỳ vọng và phương sai: $E(X) = \lambda$; $\sigma^2 = V(X) = \lambda$

4.3. Phân phối chuẩn $X \sim N(\mu, \sigma^2)$: Hàm mật độ xác suất: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty$

Kỳ vọng và phương sai: $\mu = E(X)$, $-\infty < \mu < \infty$; $\sigma^2 = V(X)$, $\sigma > 0$.

Phân phối chuẩn tắc: Đặt $z = \frac{x - \mu}{\sigma}$. Ta có : $Z \sim N(0,1)$. Hàm mật độ xác suất: $f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$, $-\infty < z < +\infty$

Kỳ vọng và phương sai: $\mu = 0$, ; $\sigma^2 = 1$.

4.4. Xấp xỉ phân phối nhị thức bởi phân phối Poission:

Nếu $X \sim B(n,p)$ với n khá lớn; p khá b
é (n>50; p<0,1) thì $X \sim P(\lambda), \lambda = np$.

4.5. Xấp xỉ phân phối nhị thức bởi phân phối Poission:

Nếu $X \sim B(n,p)$ với n khá lớn; p không quá lớn, cũng không quá bé $(np \ge 5; n(1-p) \ge 5)$ thì $X \sim N(np,npq), q = 1-p$.

a/
$$P(X = k) \approx \frac{1}{\sigma\sqrt{2\pi}} f(x_k), x_k = \frac{k - \mu}{\sigma}, \mu = np, \sigma = \sqrt{npq}$$
.

$$\text{b/ } P \Big(k_{\scriptscriptstyle 1} \leq X < k_{\scriptscriptstyle 2} \Big) \approx \varphi \bigg(\frac{k_{\scriptscriptstyle 2} - \mu}{\sigma} \bigg) - \varphi \bigg(\frac{k_{\scriptscriptstyle 1} - \mu}{\sigma} \bigg), \mu = np, \sigma = \sqrt{npq} \; .$$

Bài 6: LÝ THUYẾT MẪU.

- 6.1. Trung bình mẫu.
- 6.2. Phương sai mẫu.
- 6.3. Tỉ lệ mẫu.

Bài 7:ƯỚC LƯỢNG THAM SỐ

Bài 8: KIỂM ĐỊNH GIẢ THUYẾT THỐNG KỂ CHO THAM SỐ MỘT TỔNG THỂ

Ước lượng khoảng cho trung bình

Kiểm định giả thuyết thống kê cho trung bình

Trường họp 1: Phương sai σ đã biết

Khoảng ước lượng:
$$\left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}; \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right)$$

Độ chính xác của ước lượng:
$$E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Cỡ mẫu:
$$n = \left(\frac{z_{\alpha/2} \times \sigma}{E}\right)^2$$

<mark>Trường hợp 2:</mark> Phương sai $\,\sigma\,$ chưa biết.

$$\bullet n \ge 30: \left(\overline{x} - z_{\alpha/2} \frac{s}{\sqrt{n}}; \overline{x} + z_{\alpha/2} \frac{s}{\sqrt{n}} \right)$$

$$\bullet n < 30: \quad \left(\overline{x} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}; \overline{x} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \right)$$

Giả thuyết H_0 : $\mu = \mu_0$

<mark>Trường hợp 1:</mark> Phương sai $\,\sigma$ đã biết

Giá trị kiểm định:
$$z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

Đối giả thuyết H_1	Điều kiện bác bỏ giả thuyết H_0
$H_1: \mu \neq \mu_0$	$z_0 > z_{\alpha/2} \text{ or } z_0 < -z_{\alpha/2}$
$H_1: \mu > \mu_0$	$z_0 > z_{\alpha}$
$H_1: \mu < \mu_0$	$z_0 < -z_\alpha$

Trường hợp 2: Phương sai σ chưa biết.

Giá trị kiểm định:
$$z_0 = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

Đối giả thuyết H_1	Điều kiện bác bỏ giả thuyết H_0
$H_1: \mu \neq \mu_0$	$z_0 > t_{\alpha/2, n-1} \text{ or } z_0 < -t_{\alpha/2, n-1}$
$H_1: \mu > \mu_0$	$z_0 > t_{\alpha,n-1}$
$H_1: \mu < \mu_0$	$z_0 < -t_{\alpha,n-1}$

Ước lượng khoảng cho tỉ lệ

Kiểm định giả thuyết thống kê cho tỉ lệ

Khoảng ước lượng:

$$\left(f - z_{\alpha/2} \sqrt{\frac{f(1-f)}{n}}; f + z_{\alpha/2} \sqrt{\frac{f(1-f)}{n}}\right)$$

Giả thuyết: $H_0: p = p_0$

Giá trị kiểm định:
$$z_0 = \frac{f - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}, \quad f = \frac{m}{n}$$

Đối giả thuyết H_1	Điều kiện bác bỏ giả thuyết H_0
$H_1: p \neq p_0$	$z_0 > z_{\alpha/2}$ or $z_0 < -z_{\alpha/2}$
$H_1: p > p_0$	$z_0 > z_{\alpha}$
$H_1: p < p_0$	$z_0 < -z_\alpha$

Kiểm định giả thuyết thống kê cho trung bình

Giả thuyết: H_0 : $\mu_1 = \mu_2 = \Delta_0$

 $\overline{ ext{Trường hợp 1:}}$ Phương sai σ đã biết

Giá trị kiểm định:
$$z_0 = \frac{\overline{x_1} - \overline{x_2} - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Đối giả thuyết H_1	Điều kiện bác bỏ giả thuyết H_0
$H_0: \mu_1 = \mu_2 \neq \Delta_0$	$z_0 > z_{\alpha/2} \text{ or } z_0 < -z_{\alpha/2}$
$H_0: \mu_1 = \mu_2 > \Delta_0$	$z_0 > z_{\alpha}$
$H_0: \mu_1 = \mu_2 < \Delta_0$	$z_0 < -z_\alpha$

Trường hợp 2: Phương sai σ chưa biết.

Giá trị kiểm định:
$$t_0 = \frac{\overline{x_1} - \overline{x_2} - \Delta_0}{s_p \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Đối giả thuyết H_1	Điều kiện bác bỏ giả thuyết H_0
$H_0: \mu_1 = \mu_2 \neq \Delta_0$	$t_0 > t_{\alpha/2, n_1 + n_2 - 2}$ or $t_0 < -t_{\alpha/2, n_1 + n_2 - 2}$
$H_0: \mu_1 = \mu_2 > \Delta_0$	$t_0 > t_{\alpha, n_1 + n_2 - 2}$
$H_0: \mu_1 = \mu_2 < \Delta_0$	$t_0 < -t_{\alpha, n_1 + n_2 - 2}$

Giá trị kiểm định:
$$t_0 = \frac{\overline{x_1} - \overline{x_2} - \Delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}, v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{s_2^2}{n_2}\right)^2}$$

Đối giả thuyết H_1	Điều kiện bác bỏ giả thuyết H_0
$H_0: \mu_1 = \mu_2 \neq \Delta_0$	$t_0 > t_{lpha/2, \nu} $ or $t_0 < -t_{lpha/2, u}$
$H_0: \mu_1 = \mu_2 > \Delta_0$	$t_0 > t_{\alpha,\nu}$
$H_0: \mu_1 = \mu_2 < \Delta_0$	$t_0 < -t_{\alpha,\nu}$

Kiểm định giả thuyết thống kê cho tỉ lệ

Giả thuyết : H_0 : $p_1 = p_2$

Giá trị kiểm định:
$$z_0 = \frac{p_1 - p_2}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}, p = \frac{X_1 + X_2}{n_1 + n_2}$$

Đối giả thuyết H_1	Điều kiện bác bỏ giả thuyết H_0
$H_1: p_1 \neq p_2$	$z_0 > z_{\alpha/2} \text{ or } z_0 < -z_{\alpha/2}$
$H_1: p_1 > p_2$	$z_0 > z_{\alpha}$
$H_1: p_1 < p_2$	$z_0 < -z_\alpha$