Introduction
Decision Trees
Algorithm
Summary
Exercices
References

Decision Trees

Houcine Senoussi

April 12, 2016

- Introduction
- 2 Decision Trees
- 3 Algorithm
- 4 Summary
- Exercices
- **6** References

What is it about?

- Supervised learning also called classification
- Several types of SL methods, among them 'Decision Tree'.

Basic concepts

- Given a set *D* of data records, called **examples**.
 - *D* is called **training set** or **training data**.
- Each data record is described using attributes $\{A_1, A_2, ..., A_p\}$.
- Each attribute A_p has n_p possible valeurs $v_1, ..., v_{np}$.
- There is a special attribute *C*, called **class** attribute.
- Attribute C has m possible values $c_1, ..., c_m$.
- Objective : Produce a classification/prediction function using a learning algorithm.
 - Prediction : predict class values of the future data.
- In this chapter this function is in form of a decision tree.
- After this function is built, it is evaluated using a set of test data (unseen instances).

Basic concepts-2

- Test set :
 - The examples in the test data also have class labels.
 - Testing: comparing given class labels with those predicted by the function.
 - Usually available data is split into two disjoint sets: the training set and the test set.
- Accuracy = $\frac{Number-of-correct-classifications}{Total-number-of-test-cases}$.

Introduction
Decision Trees
Algorithm
Summary
Exercices
References

Example

ld	Outlook	Temperature	Humidity	Windy	PlayTennis
1	sunny	hot	high	false	No
2	sunny	hot	high	true	No
3	overcast	hot	high	false	Yes
4	rainy	mild	high	false	yes
5	rainy	cool	normal	false	Yes
6	rainy	cool	normal	true	No
7	overcast	cool	normal	true	Yes
8	sunny	mild	high	false	No
9	sunny	cool	normal	false	Yes
10	rainy	mild	normal	false	Yes
11	sunny	mild	normal	true	Yes
12	overcast	mild	high	true	Yes
13	overcast	hot	normal	false →	¥Yes → • •

Houcine Senoussi

Decision Trees

Example - 2

- Attributes :
 - Outlook: sunny, overcast, rainy.
 - Temperature : hot, mild, cool.
 - Humidity: high, normal.
 - Windy : true, false.
- Class Attribute : PlayTennis. 2 values : Yes, No.
- The following decision tree corresponds to this data.

Introduction
Decision Trees
Algorithm
Summary
Exercices
References

Example-3

What is a Decision Tree?

- A decision tree is a hierarchical decomposition of a data set.
- At each each internal node, a condition is used to divide a subset according to instances' properties.
 - Each (internal) node is labeled by an attribute.
 - Each edge (branch) from such a node corresponds to a value of the attribute.
- Each leaf indicates a class.
- To use the decision tree to classify an instance :
 - We traverse the tree top-down according to the attribute values of the given instance.
 - until we reach a leaf node: The class of the leaf is the predicted class of the instance.

What is a Decision Tree ?-Example

Constructing Decision Trees

- Given a set D of examples described by the attributes A_1 , ..., A_p and belonging the classes C_1 , ..., C_m .
- 2 First, select an attribute to place at the root node.
- Make one branch for each possible value of this attribute.
- Each branch ends with a node corresponding to a subset of D.
- For each node :
 - If all elements of the set corresponding to it belong to the same class C_i , then make it a leaf labeled with C_i .
 - 2 else repeat recursively steps 2-5.

'Purity' and Information gain

- The question is: given a node of the decision tree (and the set of examples corresponding to it):
 - How to determine the attribute to place at this node (i.e. to split on the set of examples) ?
- Let us consider again our example.
 - There are 4 possibilities/attributes to split on the set *D*.
- Which is the best choice ?
- The criterion for the choice is as follows:
 - Since we seek small trees, we would like to reach leaves as soon as possible.
 - Therefore, among these possibilities we will choose the one that produce the 'purest' subsets.

Example-4

'Purity' and Information gain-2

- 'Purity' of a subset depends on the number of yes and no's that it contains:
 - The maximal purity is reached by a set containing only yes or only no's.
 - The maximal impurity is reached by a set containing the same number of yes and no's.
- There is a function that can caracterise purity : the **entropy**.

Entropy

Definition

Given a set D and n classes $(C_1,...,C_n)$. The entropy of D is defined by :

$$\operatorname{Ent}(\mathsf{D}) = -\sum_{i=1}^n (p_i * log p_i)$$

where

• $p_i = \frac{number\ of\ elements\ of\ D\ belonging\ to\ C_i}{total\ number\ of\ elements\ of\ D}$

Entropy-2

Let us take some examples :

- If we have n classes and for each class $p_i = \frac{1}{n}$ (all the classes have the same number of elements). then :
 - Ent(D) = $-n * \frac{1}{n} * log(\frac{1}{n}) = logn$
 - Ent(D) = 1 in the case when n = 2 (two classes {True, False}, {Yes, No}, ...).
- If we have $p_k = 1$ for some value k (all the elements belong to the same class). then :
 - Ent(D) = 0

Entropy-Example

- In our example we have :
 - two classes : Yes and No.
 - The number of examples belonging to the class *Yes* is 9 . Therefore, $p_{Ves} = \frac{9}{14}$.
 - The number of examples belonging to the class *No* is 5 . Therefore, $p_{ves} = \frac{5}{14}$.
 - The entropy E is equal to $-\frac{9}{14}\log\frac{9}{14} \frac{5}{14}\log\frac{5}{14} = 0.940$.

Entropy-Information gain

- Since our aim is to improve purity, we will choose the attribute for which we will have the highest value of
 - IG = Entropy_before_spiliting_on Entropy_after_spiliting_on.
- This number is called Information Gain.

Entropy-Example(2)

- If we use attribute 'outlook' to split on D, we obtain :
 - a subset D_1 : Size = 5, Entropy = 0.97.
 - a subset D_2 : Size = 4, Entropy = 0.
 - a subset D_3 : Size = 5, Entropy = 0.97.
- Therefore, the 'new entropy' is equal to :
 - $E_{outlook} = \frac{5}{14}0.97 + \frac{4}{14}0 + \frac{5}{14}0.97 = 0.69.$
 - Using this attribute would improve purity by $IG_{outlook} = E E_{outlook} = 0.94 0.69 = 0.25$.

Entropy-Example(3)

- If we use attribute 'Temperature' to split on *D*, we obtain :
 - a subset D_1 : Size = 4, Entropy = 1.
 - a subset D_2 : Size = 6, Entropy = 0.92.
 - a subset D_3 : Size = 4, Entropy = 0.81.
- Therefore, the 'new entropy' is equal to :
 - $E_{temperature} = \frac{4}{14}1 + \frac{6}{14}0.92 + \frac{4}{14}0.81 = 0.91.$
 - Using this attribute would improve purity by $IG_{temperature} = E E_{temperature} = 0.94 0.91 = 0.03$.

Entropy-Example(4)

- If we use attribute 'Humidity' to split on D, we obtain :
 - $E_{humidity} = 0.79$.
 - Using this attribute would improve purity by $IG_{humidity} = E E_{humidity} = 0.94 0.79 = 0.15$.
- If we use attribute 'Windy' to split on D, we obtain :
 - $E_{Windy} = 0.89$.
 - Using this attribute would improve purity by $IG_{Windy} = E E_{Windy} = 0.94 0.89 = 0.05$.

Algorithm

- Decision-Tree(Input : D, A; Output T)
 - **1** if D contains only examples of the class c_i then $T = \{$ one leaf labeled with $c_i \}$.
 - **2 elseif** $A = \emptyset$ **then** $T = \{$ one leaf labeled with the most frequent class $c_M \}$.
 - else
 - Decision-Tree-2(D, A, T).
 - endif

Algorithm-2

- Decision-Tree-2(Input : D, A; Output T)
 - **1** Compute $p_0 = \text{Entropy}(D)$.
 - **2 foreach** attribute A_i compute $p_i = \text{Entropy-After-Partition}(D, A_i)$. **endforeach**.
 - **3** Select the attribute A_g that maximizes $p_i p_0$.
 - Make T a decision node on A_g .
 - **3** Partition D into m subsets $D_1, ..., D_m$ based on the m values of A_g .
 - - if $D_j \neq \emptyset$ then

 Create a branch node T_j as a child node of T.

 Decision-Tree $(D_j, A-\{A_g\}, T_j)$
 - endif.
 - endforeach.

Algorithm-2

- Function Entropy-After-Partition : Input D, A_i ; Returns p_i .
 - **1** Let v_1 , ..., v_p the possible values of A_i .
 - ② If we use A_i to partition D, we will divide D into p subsets D_1 , ..., D_p .
 - 3 $p_i = \sum_{j=1}^p \frac{|D_j|}{|D|}.entropy(D_j).$
 - 4 Return p_i .

Summary

- Describing a SL problem.
- Using a decision tree to classify data.
- Constructing a decision tree.
 - Entropy and Information Gain.

Exercices

- Use Weka to define a decision tree for :
 - 1 the weather problem.
 - 2 the loan problem.

References

- Liu B. Web Data Mining. Springer. 2007, 532 pages.
- Witten I. H., Frank E., Hall M. A. Data Mining. Morgan Kaufmann Publishers. 2011, 628 pages.