Surname	Other nam	es
Edexcel International GCSE	Centre Number	Candidate Number
Further Pu	ire Mathe	ematics
Wednesday 22 May 2013 - Time: 2 hours	– Afternoon	Paper Reference 4PM0/01

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

P 4 2 0 6 6 A 0 1 2 8

Turn over ▶

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

	Tou must write down an stages in your working.		
1	A circle has centre O and radius 12 cm. The sector AOB of the circle has area 126 cm ² . Find the length of the arc AB .		
		(4)	
••••			
	(Total for Question 1 is 4 ma	rks)	

$3(x+1)^2 < 9-x$		(4)		
			(4)	

3

Figure 1

Figure 1 shows a sketch of the curve with equation $y = 1 + \frac{c}{x+a}$, where a and c are integers.

The equations of the asymptotes to the curve are x = 3 and y = b.

(a) Find the value of a and the value of b.

(2)

The curve crosses the x-axis at (1, 0) and the y-axis at (0, d).

(b) Find the value of c and the value of d.

(4)

Question 3 continued	
(Total for Question 3 is 6 marks)

4 Solve, for $-90 < x \le 90$, the equation		
	$6\sin^2 x^\circ - \cos x^\circ - 4 = 0$	(6)
		(6)
	(Total for Question 4 is 0	6 marks)

5	The volume of liquid in a container is $V \text{cm}^3$ when the depth of the liquid is $h \text{cm}$. I is added to the container at a rate of 36 cm ³ /s. Given that $V = 4h^3$, find the rate at w the depth of the liquid is increasing when $V = 500$	iquid is <i>h</i> cm. Liquid ind the rate at which	
	the deput of the figure is increasing when $v = 500$	(7)	
	(Total for Question 5 is 7	marks)	

6	The equation $x^2 + px + 1 = 0$ has roots α and β	
	(a) Find, in terms of p , an expression for	
	(i) $\alpha + \beta$	
	(ii) $\alpha^2 + \beta^2$	
	(iii) $\alpha^3 + \beta^3$	
		(6)
	(b) Find a quadratic equation, with coefficients expressed in terms of p , which has roots α^3 and β^3	
		(2)

Question 6 continued	
	(Total for Question 6 is 8 marks)

7	An arithmetic series has first term a and common difference d . The n th term of the serie is t_n and the sum of the first n terms of the series is S_n	S
	(a) Write down an expression in terms of a and d for	
	(i) t ₅₈	
	(ii) S_{13}	
		(2)
	Given that $t_{58} = S_{13}$	
	(b) show that $d = -\frac{4}{7}a$	
		(2)
	(c) show that $t_{176} = S_{21}$	(4)
	(1) 6 1 1 1 6 1 4 6	(4)
	(d) find the value of r when $t_r = 5t_9$	(3)

Question 7 continued	

Question 7 continued	

Question 7 continued	
	(Total for Question 7 is 11 marks)

Figure 2

Figure 2 shows the curve C with equation $y = 15 + 2x - x^2$

The curve crosses the x-axis at the points A and B.

(a) Find the x-coordinate of A and the x-coordinate of B.

(3)

(b) Use calculus to find the area of the finite region bounded by C and the x-axis.

(4)

The line *l* with equation y = x + 9 intersects *C* at the points *R* and *S*.

(c) Find the *x*-coordinate of *R* and the *x*-coordinate of *S*.

(3)

(d) Use calculus to find the area of the region bounded by C, the line l and the x-axis, shown shaded in Figure 2.

(4)

Question 8 continued		

Question 8 continued	

Question 8 continued	
	(Total for Question 8 is 14 marks)

Figure 3

Figure 3 shows a triangular prism ABCDEF.

ACDE is a rectangle. In triangle ABC, AC = 12 cm, $\angle BAC = 60^{\circ}$ and $\angle BCA = 30^{\circ}$

(a) Find the exact length of BC.

(3)

The point *P* lies on the line *AC* and $\angle BPC = 90^{\circ}$

(b) Show that $BP = 3\sqrt{3}$ cm.

(2)

The angle between the plane AFC and the plane ACDE is 25°

(c) Find, to 3 significant figures, the length of BF.

(3)

(d) Find the size of the angle between the line *BD* and the plane *ACDE*, giving your answer in degrees to 1 decimal place.

(4)

(e) Find, to 3 significant figures, the volume of the prism ABCDEF.

(2)

Question 9 continued	

Question 9 continued	

Question 9 continued	
	(Total for Question 9 is 14 marks)

10	The curve C has equation $y = x^4 - 4x^3 - 2x^2 + 13x + 5$ and the line l_1 is the tangent to C at the point $R(1, 13)$.	
	(a) Find an equation for l_1	(4)
	The points P and Q lie on C . The x -coordinates of P and Q are p and q respectively, where $p < q$. The tangent to C at P is parallel to l_1 and the tangent to C at Q is parallel to l_1	
	(b) Find the coordinates of P and the coordinates of Q .	(4)
	The line l_2 passes through P and Q .	
	(c) Find an equation for l_2	(2)
	(d) Show that l_2 is a tangent to C at P and a tangent to C at Q .	(1)
	The normal to C at $R(1, 13)$ intersects l_2 at the point S .	
	(e) Find the exact length of RS.	(5)
	(f) Find the area of the triangle PQR .	(2)

Question 10 continued	

Question 10 continued	

Question 10 continued	
	(Total for Question 10 is 18 marks)

11	$O, A, B \text{ and } C \text{ are fixed points such that}$ $\overrightarrow{OA} = \mathbf{p} + \mathbf{q} \overrightarrow{OB} = 3\mathbf{p} - \mathbf{q} \overrightarrow{OC} = 6\mathbf{p} - 4\mathbf{q}$	
	(a) Find \overrightarrow{AB} in terms of p and q .	(1)
	(b) Show that the points A , B and C are collinear.	(2)
	(c) Find the ratio AB: BC	
	The point D lies on AC produced such that $AC = 2CD$	(1)
	(d) Find \overrightarrow{OD} in terms of p and q , simplifying your answer.	
		(4)

Question 11 continued			

Question 11 continued		
	(Total for Question 11 is 8 marks)	
	TOTAL FOR PAPER IS 100 MARKS	

