STAT 248: Time Series

Feynman Liang* Department of Statistics, UC Berkeley

Last updated: January 23, 2020

Contents

1 Lecture 1 1 2 Lecture 2 1

1 Lecture 1

Didn't attend.

2 Lecture 2

Last time:

- Want to model $y_i \in \mathbb{R}^K$ for $i \in \mathbb{N}$
- Introduced Vector autoregressive model (VAR)

VAR(p)

$$\boldsymbol{y}_{t} = \boldsymbol{\nu} + \boldsymbol{A} \boldsymbol{y}_{t-1} + \boldsymbol{A}_{2} \boldsymbol{y}_{t-1} + \dots + \boldsymbol{A}_{p} \boldsymbol{y}_{t-p} + \underbrace{\boldsymbol{z}_{t}}_{\text{white noise}}$$
 (1)

AR(p)

$$y_t = \nu + \alpha_1 y_{t-1} + \alpha_2 y_{t-1} + \dots + \alpha_p y_{t-p} + z_t$$
 (2)

Definition 1

 $\{y_t\}_{t\in\mathbb{Z}}$ is (weak, wide-sense, second-order) **stationary** if $(y_{t_i})_{i=1}^k$ and $(y_{t_i-h})_{i=1}^k$ have the same mean and covariances for any $\{t_i\}_{i=1}^k$ and h.

Equivalently:

- $\mathbb{E}y_t$ is independent of t
- $Cov(y_t)$ doese not depend on t
- $Cov(\boldsymbol{y}_t, \boldsymbol{y}_{t-h})$ only depends on h

Definition 2

Strong stationarity means $(y_{t_i})_{i=1}^k$ and $(y_{t_i-h})_{i=1}^k$ are equal in distribution.

Definition 3 (Cross-covariance/correlation function)

Suppose $\{y_t, t \in \mathbb{Z}\}$ is stationary. The *cross-covariance function*

$$\Gamma_{\boldsymbol{y}}(h) = \operatorname{Cov}(\boldsymbol{y}_t, \boldsymbol{y}_{t-h}) \tag{3}$$

^{*}feynman@berkeley.edu

It is a $K \times K$ matrix, not generally symmetric since $\Gamma_y(h)^\top = \Gamma_y(-h)$. The *cross-correlation function*

$$(R_y(h))_{i,j} = \operatorname{Corr}(y_{i,t}, y_{j,t-h}) = \frac{\Gamma_y(h)_{ij}}{\sqrt{\Gamma_y(0)_{ii}\Gamma_y(0)_{jj}}}$$
(4)

As matrices, let $D = \operatorname{diag}(\sqrt{\operatorname{var} y_{1t}}, \sqrt{\operatorname{var} y_{2t}}, \ldots)$. Then $R_y(h) = D^{-1}\Gamma_y(h)D^{-1}$.

Question: For what ν , A_i is the VAR(p) model stationary?

Let us first look at the AR(1) case:

$$y_t = \nu + \alpha y_{t-1} + z_t$$

It turns out: stationary solution exists iff $|\alpha| = 1$.