Санкт-Петербургский Государственный Университет Факультет Прикладной математики - процессов управления

Кектеева Ангира Игоревна

СТАТИСТИЧЕСКИЙ АНАЛИЗ КАТЕГОРИАЛЬНЫХ ДАННЫХ ГЕНЕТИЧЕСКИХ ИССЛЕДОВАНИЙ

Выпускная работа бакалавра

Научный руководитель: д.ф.-м.н, профессор Андрианов С.Н.

Рецензент: ст. преп. Севрюков С.Ю.

Saint-Petersburg State University Faculty of Applied Mathematics and Control Processes

Angira Kekteeva

STATISTICAL ANALYSIS OF CATEGORIAL DATA OF GENETIC RESEARCH

Bachelor's Thesis

Научный руководитель: D.Sc., Professor Andrianov Sergey N.

> Reviewer: Senior Lecturer Sevryukov Sergei Yu.

Оглавление

		Стр
Введе	ние	4
Глава	1. Обзор предметной области	7
1.1	Основные понятия	7
1.2	Критерий согласия χ^2 К. Пирсона	10
1.3	Критерий согласия χ^2 для сложной гипотезы	12
1.4	Критерий χ^2 для проверки гипотезы о независимости двух	
	признаков	14
1.5	Точный критерий Фишера	16
1.6	Коэффициент корреляции	17
Глава	2. Детали реализации программы	19
2.1	Описание используемого языка и технологий	
	программирования	19
2.2	Алгоритм работы программы	21
	$2.2.1$ Вычисление статистики χ^2	24
	2.2.2 Точный тест Фишера	24
	2.2.3 p - значение	25
	2.2.4 Коэффициент корреляции	26
2.3	Проведения вычислительного эксперимента и его итоги.	
	Результаты работы программы	26
Глава	3. Заключение	30
Списо	к литературы	32
Прило	ожение А. Словарь терминов	34
Прило	ожение В. Ссылки на исходный код	35

Введение

Одним из крупнейших научных достижений на рубеже XX и XXI веков является разработка метода секвенирования ДНК, предложенного Ф.Сенгером в 1977 году [1]. Позднее с помощью этого метода был прочитан первый геном, основанный на ДНК – геном бактеориофага $\phi X174$ длиной в 5 386 нуклеотидов. В 1986 году лаборатория Лероя Худа улучшила метод Сенгера, что дало возможность разработать первый полу-автоматический секвенатор [2]. Этот способ будет использован для многих проектов секвенирования полных геномов. Первым клеточным организмом, геном которого был полностью прочитан, стала бактерия Haemophilus influenzae или гемофильная палочка [3], вызывающая некоторые формы пневмонии и менингита. Длина генома этой бактерии составляет 1 830 137 нуклеотидов. Затем, в 1998-ом году секвенируется первый геном многоклеточного животного, круглого червяка Caenorhabditis elegans [4] длиной в 98 000 000 нуклеотидов. Геном резуховидки Таля становится первым секвенированным геномом растения в 2000 году [5], его длина составляет уже 157 000 000 нуклеотидов. Скорость и масштабы секвенирования росли все быстрее и быстрее, а базы данных геномов пополнялись все с большей скоростью.

В 1990 году под руководством Джеймса Уотсона был запущен проект «Геном человека» (The Human Genome Project, HGP) - международный научно-исследовательский проект, цель которого заключалась в определении последовательности нуклеотидов, которые составляют ДНК человека и в идентификации 20-25 тысяч генов в геноме. [6]. В результате исследователи смогли секвенировать 99% человеческой ДНК длиной 3,1467 × 10⁶ нуклеотидов. В дальнейшем темпы секвенирования только возрастали.

Рис. 1 — Количество полностью секвенированных геномов в базе данных GenBank.

Несомненные успехи в секвенировании геномов поспособствовали бурному развитию таких областей науки, как молекулярная биология, эволюционная биология, медицина и т.д. Одним из методов исследования данных в перечисленных разделах биологии является полногеномный скрининг ассоциаций (Genome-Wide Association Studies, GWAS), который заключается в исследовании зависимости между геномными вариантами и фенотипическими признаками [7].

Геномы всех людей различны. Это могут быть как однонуклеотидные полиморфизмы ¹, так и более крупные изменения. Любое из этих различий может отвечать за популяционные, этнические или индвивидуальные особенности индивида. Полногеномный скрининг ассоциаций основан на проведении множества статистических тестов, с помощью которых проводится анализ частоты аллелей различных генов среди индивидуумов. Если при сравнении те или иные аллели генов встречаются у людей с определенным фенотипом значимо чаще, чем у других, то есть основания предполагать, что именно эти аллели ответственны за проявление этого фенотипа.

В связи с бурным ростом объема статистических данных, полученных в результате генетических исследований, целесообразно создание программного продукта для их анализа с использованием статистических критериев.

Постановка задачи

Цель данной работы заключается в реализации наиболее востребованных статистических методов множественного тестирования для изучения зависимости фенотипа с каждым из имеющихся генетических маркеров ² на языке, допускающем эффективные вычисления. Для достижения цели были сформулированы следующие задачи:

- 1) Разработка программного продукта, проводящего статистический анализ генетических данных с помощью критерия Хи-квадрат, точного теста Фишера и коэфициента корреляции. Вычисления должны выполняться в модуле, написанном на языке программирования С++, и вызываемом из программы, реализованной на языке R.
- 2) Реализация программы на языке программирования R, выполняющей множество выше описанных статистических тестов, с использованием стандартных методов используемого языка.
- 3) Сравнение полученных результатов вычислений и скорости работы собственного R-пакета и стандартных функций языка R.

Исходные данные

Данные генетических исследований состоят из генетической и клинической части. Генетические данные, с которыми проводится работа, представляют собой набор значений генетических маркеров, измеренных у каждого индивида, каждое из которых представляет собой категориальную величину с определенным числом уровней. Простейшие генетические маркеры представляют собой категориальные величины с тремя уровнями, значения которых определяются парами бинарных величин, характеризующих наличие мутации в соответствующей позиции на одной или обеих хромосомах без учета порядка. Для генетических данных с тремя уровнями проводится четыре теста, соответствующие кодоминантной, доминантной и рецессивной альтернативам, а также, с использованием аллельного подхода.

Глава 1. Обзор предметной области

В данной главе описывается методы статистического анализа, реализованные в программе, а также вводятся основные понятия и общие принципы теории проверки гипотез.

§1.1 Основные понятия

Определение χ^2 (хи-квадрат) с k степенями свободы [8] — это распределение суммы квадратов n независимых стандартных нормальных величин. То есть, пусть X_1, X_2, \ldots, X_k — независимые случайные величины, $X_i \sim N(0,1)$, тогда случайная величина $X = X_1^2 + X_2^2 + \cdots + X_k^2$ имеет распределение χ^2 с k степенями свободы. Является частным случаем гамма-распределения.

Функция плотности распределения имеет вид:

$$f_{\chi^2(k)}(x) \equiv \Gamma(2, \frac{k}{2}) = \frac{(1/2)^{\frac{k}{2}}}{\Gamma(\frac{k}{2})} x^{\frac{k}{2} - 1} e^{-\frac{x}{2}},$$

функция распределения:

$$F_{\chi^2(k)}(x) = \frac{\gamma(\frac{k}{2}, \frac{x}{2})}{\Gamma(\frac{k}{2})} \tag{1}$$

где Γ и γ — полная и нижняя неполная гамма-функции соответственно, имеющие вид:

1) полная:

$$\Gamma(\lambda) = \int_{0}^{\infty} t^{\lambda - 1} e^{-t} dt, \qquad \lambda > 0,$$

2) нижняя неполная:

$$\gamma(\lambda, x) = \int_{0}^{x} t^{\lambda - 1} e^{-t} dt, \qquad \lambda > 0.$$

Рис. 2 — Плотность распределения χ^2

Рис. 3 — Функция распределения \mathbf{v}^2

Определение $M(n, \mathbf{p})$ [9] — совместное распределение вероятностей независимых случайных величин ξ_1, \ldots, ξ_k , принимающих целые неотрицательные значения n_1, \ldots, n_k , удовлетворяющие условиям $n_1 + \cdots + n_k = n$, с вероятностями

$$\mathbf{P}(\xi_1 = n_1, \dots, \xi_k = n_k) = \frac{n!}{n_1! \dots n_k!} p_1^{n_1} \dots p_k^{n_k}, \tag{2}$$

где $p_i \geqslant 0, \sum_{i=1}^n p_i = 1$; является многомерным дискретным распределением случайного вектора (ξ_1, \dots, ξ_k) такого, что $\xi_1 + \dots + \xi_n = n$; естественным образом обобщает биномиальное распределение и совпадает с ним при n=2.

Мультиномиальное распределение появляется в так называемой мультиномиальной схеме случайных экспериментов: результатом каждого эксперимента является одно из взаимоисключающих событий A_1, \cdots, A_k . Проводится n экспериментов и считается число событий каждого типа. Случайная величина ξ_i - это число наступлений события A_i в n экспериментах. Иными словами, результат каждого эксперимента можно представить в виде случайной $\eta \in 1, \cdots, k$. Пусть η_1, \cdots, η_n — выборка из распределения η , тогда

$$\xi_i = \sum_{j=1}^n \mathbb{1}\{\eta_j = i\}$$
 $\mathbb{1}_A = egin{cases} 1, & A- ext{выполнена} \ 0, & A- ext{ не выполнена} \end{cases}$

Если в каждом эксперименте вероятность наступления события A_j равна p_j , то мультиномиальная вероятность (2) равна вероятности того, что в n независимых экспериментах события A_1, \ldots, A_k наступят n_1, \ldots, n_k раз соответственно. Каждая из случайных величин ξ_i имеет биномиальное распределение с математическим ожиданием np_i и дисперсией $np_i(1-p_i)$.

Определение о виде или свойствах распределения наблюдаемых случайных величин:

$$H:\mathcal{F}=\mathcal{F}_{\xi}$$
 или $H:\mathcal{F}\in\mathbb{F}$

где \mathbb{F} — некоторое подмножество в множестве распределений. Гипотеза H называется npocmoй[10], если она фиксирует распределение: $\mathcal{F} = \mathcal{F}_{\xi}$, т.е. $\mathbb{F} = \{\mathcal{F}_{\xi}\}$. Иначе H называется cnonchoй: $\mathcal{F} \in \mathbb{F}$.

Если для исследуемого явления сформулирована та или иная гипотеза (называемая *нулевой или основной гипотезой* и обозначаемая H_0), то задача заключается в том, чтобы сформулировать правило, которое позволило бы по имеющимися статистическим данным принять или отклонить нулевую гипотезу. Правило, согласно которому отклоняется или принимается гипотеза H_0 , называется *статистическим критерием*.

Одним из способов проверки гипотезы является сравнение P - значения, соответствующего статистике критерия, с ранее заданным уровнем значимости.

О пределение 4. Уровень значимости статистического критерия - допустимая для данной задачи вероятность отвергнуть гипотезу H_0 , когда она верна. Наиболее распространенные значения $\alpha = 0.005, 0.01, 0.05, 0.1$.

Определение 5. Р-значение статистического критерия — наименьшее значение уровня значимости при котором основная гипотеза отвергается.

Пусть T(X) - статистика критерия, используемая для проверки нулевой гипотезы H_0 . Статистический критерий построен следующим образом: гипотеза H_0 принимается при уровне значимости α , если $T \leqslant x_{\alpha}$ и отвергается, если $T > x_{\alpha}$. Предполагается, что при справедливости гипотезы H_0

распределение статистики T(X) известно. Обозначим функцию распределения статистики T при справедливости H_0 $F(t) = P(T \leqslant t)$. При проверке альтернативы P - значение определяется как:

$$P(T) = 1 - F(T). \tag{3}$$

 Π одставим (1) в (3)

$$P(x) = P(X > x) = 1 - \frac{\gamma(\frac{k}{2}, \frac{x}{2})}{\Gamma(\frac{k}{2})},\tag{4}$$

где $\Gamma(\frac{k}{2})$ и $\gamma(\frac{k}{2},\frac{x}{2})$ — полная и нижняя неполная гамма-функции соответственно.

Таким образом, P-значение [11] есть случайная величина, зависящая от статистики критерия.

Пусть $\mathbf{X} = (X_1, \dots, X_n)$ - выборка из распределения $\mathcal{L}(\xi)$ с неизвестной функцией распределения $F_{\xi}(x)$, о которой выдвинута простая гипотеза $H_0: F_{\xi}(x) = F(x)$.

$\S 1.2 \ m K$ ритерий согласия $\chi^2 \ m K$. Пирсона

Одним из методов проверки различных статистических гипотез является критерий χ^2 [12]. Он может использоваться для любых распределений, в том числе многомерных. Перед тем, как воспользоваться этим критерием, выборочные данные предварительно группируют, т.е. область значений предполагаемого распределения F(x) делят на множество непересекающихся интервалов $\{\Delta_i\}_{i=1}^k$. Тогда \mathbf{v}_i - число элементов выборки, попавших в интервал $\Delta_i: \mathbf{v}_i = \#\{i: X_i \in \Delta_i\}$ — число X_i , попавших в Δ_i , $(\mathbf{v}_1 + \cdots + \mathbf{v}_k = n)$. Обозначим p_i как вероятность попадания в интервал $\Delta_i: p_i = \mathbf{P}(\xi \in \Delta_i)$. Пусть $\mathbf{v} = (\mathbf{v}_1, \dots, \mathbf{v}_k)$ — вектор частот попадания выборочных точек в соответствующие интервалы группировки и $p^0 = (p_1^0, \dots, p_k^0)$, где $p_i^0 = P(\xi \in \Delta_i | H_0), i = 1, \dots, k$. Тогда $\mathbf{v} = (\mathbf{v}_1, \dots, \mathbf{v}_k)$ имеет мультиномиальное распределение, и при справедливости гипотезы H_0 вероятности мультиномиального распределения построенного вектора частот \mathbf{v} имеют заданные значения $p_i^0, i = 1, \dots, k$. В качестве статистики, характеризующей отклонение выборочных данных (т.е. частот \mathbf{v}_i) от

соответствующих гипотетических значений принимают величину:

$$X_n^2 = X_n^2(\mathbf{v}) = \sum_{i=1}^k \frac{(\mathbf{v}_i - np_i^0)^2}{np_i^0} = \sum_{i=1}^k \frac{\mathbf{v}_i^2}{np_i^0} - n.$$
 (5)

На этой статистике и основывается критерий χ^2 К.Пирсона. В основе этого лежат следующие соображения. Если гипотеза H_0 справедлива, то, поскольку частота $\frac{\mathbf{v}_i}{n}$ события $\{\xi=i\}$ является состоятельной оценкой его вероятности $p_i^0(i=1,\ldots,k)$, то разности $|\mathbf{v}_i/n-p_i^0|$ должны быть малы, следовательно, и значение статистики χ^2 не должно быть слишком большим. Поэтому естественно задать критическую область для гипотезы H_0 в виде $\{\chi_n^2>t_\alpha\}$, где критическая граница t_α при заданном уровне значимости выбрана из условия:

$$P\{X_n^2 > t_{\alpha}|H_0\} = \alpha$$

Такой критической областью и определяется критерий χ^2 . Главная проблема здесь — вычисление границы t_{α} , для чего надо знать распределение статистики X_n^2 при нулевой гипотезе H_0 . Точное распределение $\mathcal{L}(X_n^2|H_0)$, зависящее от набора p_1,\ldots,p_k , неудобно для расчета критерия, но для достаточно больших объемов выборок n при справедливости гипотезы H_0 статистика X_n^2 имеет простое предельное распределение при нулевой гипотезе H_0 . А именно, справедливо следующее утверждение:

Теорема 1. Если $0 < p_i^0 < 1, i = 1, \ldots, k$, то при $n \to \infty$

$$\mathcal{L}(X_n^2|H_0) \to \chi_{k-1}^2$$

Таким образом, критерий согласия χ^2 можно сформулировать следующим образом:

Пусть заданы уровень значимости α и объем выборки n и наблюдавшиеся значения $\mathbf{h}=(h_1,\ldots,h_k)$ вектора частот $\mathbf{v}=(\mathbf{v}_1,\ldots,\mathbf{v}_k)$; тогда если наблюдавшееся значение $T=X_n^2(\mathbf{h})$ статистики (5) удовлетворяет неравенству $T>t_{\alpha}$ такого, что $F_{\chi_{k-1}^2}(t_{\alpha})=1-\alpha$, то гипотезу H_0 отвергают; в противном случае гипотеза H_0 не противоречит результатам испытаний.

$\S 1.3 \ m K$ ритерий согласия χ^2 для сложной гипотезы

Критерий согласия χ^2 применим и для проверки гипотезы о принадлежности неизвестной функции распределения наблюдаемой случайной величины ξ заданному семейству функций распределения [10]. Таким образом, задача формулируется так: пусть $\mathscr{F} = \{F(x,\theta), \theta \in \Theta\}$ - заданное параметрическое семейство функций распределения (параметр θ может быть как скалярным, так и векторным) и $\mathbf{X} = (X_1, \dots, X_n)$ — выборка из распределения $\mathcal{L}(\xi)$ с неизвестной функцией распределения. Проверяется сложная гипотеза

$$H_0: \mathcal{F} \in \{\mathcal{F}_{\theta}; \theta \in \Theta \subseteq \mathbb{R}^d\},$$

где θ — неизвестный параметр, d — его размерность.

Пусть исходные данные сгруппированы и $\mathbf{v} = (\mathbf{v}_1, \dots, \mathbf{v}_k)$ – соответствующий вектор частот попадания наблюдений в интервалы группировки. Составим статистику, аналогичную (5). В данном случае вероятности попадания в интервалы группировки при гипотезе H_0 уже не будут заданы однозначно, а представляют собой некоторые функции от параметра $\boldsymbol{\theta}$:

$$p_i(\theta) = P_{\theta}(X_i \in \Delta_i), \quad \theta \in \Theta$$

Поэтому значение X^2 имеет вид:

$$X_n^2 = X_n^2(\theta) = \sum_{j=1}^k \frac{(\nu_j - np_j(\theta))^2}{np_j(\theta)}$$
 (6)

Оно зависит от неизвестного параметра; следовательно, непосредственно использовать его в качестве статистики для построения критерия нельзя — требуется предварительно исключить в (7) неопределенность, связанную с неизвестным параметром θ . Для этого поступают следующим образом: заменяют θ некоторой оценкой $\hat{\theta}_n = \hat{\theta}_n(\mathbf{X})$ и получают, таким образом, статистику:

$$\hat{X}_n^2 = X_n^2(\hat{\theta}) = \sum_{i=1}^k \frac{(\nu_i - np_i(\hat{\theta}))^2}{np_i(\hat{\theta})}.$$
 (7)

Значение этой статистики можно однозначно вычислить для каждой заданной реализации выборки ${f X}$.

Если бы распределение статистики \hat{X}_n^2 при гипотезе H_0 можно было бы найти и при этом распределение не зависело бы от конкретных функций $F(x;\theta)$, составляющих гипотезу H_0 , то, основываясь на \hat{X}_n^2 , можно было бы построить критерий согласия для гипотезы H_0 .

В данном случае величины $p_i(\hat{\theta})$ уже не постоянные, а представляют собой функции от выборки (случайные величины). Поэтому теорема 1 к статистике X_n^2 будет неприменима. Более того, следует ожидать, что распределение этой статистики (даже если оно существует) будет зависеть от способа построения оценки $\hat{\theta}_n$.

Проблема нахождения предельного распределения для \hat{X}_n^2 при этих усложненных условия впервые была рассмотрена в 1924 г. Р.Фишером, который показал, что существуют методы оценивания параметра θ , при которых предельное распределение имеет простой вид, а точнее, является распределением χ^2 с числом степеней свободы k-1-r, где r — размерность оцениваемого параметра θ . Одним из таких методов оценивания является метод максимального правдоподобия, основанный на частотах ν_1, \ldots, ν_k , т.е. когда в качестве $\hat{\theta}_n$ в формуле (7) используют мультиномиальную оценку максимального правдоподобия.

Т е о р е м а **2.** Пусть функции $p_i(\theta), i = 1, \dots, k$ удовлетворяют условиям:

1)
$$\sum_{i=1}^{k} p_i(\theta) = 1, \forall \theta \in \Theta;$$

2) $p_i^{(\theta)} \geqslant c > 0, \forall i$ и существуют непрерывные производные

$$\frac{\delta p_i(\theta)}{\delta \theta_j}, \frac{\delta^2 p_i(\theta)}{\delta \theta_j \delta \theta_l}, j, l = 1, \dots, r;$$

3) $(k \times r)$ - матрица $\left\| \frac{\delta p_i(\theta)}{\delta \theta_j} \right\|$ имеет ранг r для всех $\theta \in \Theta$. Тогда

$$\mathcal{L}(\hat{X}_n^2|H_0) \to \chi_{k-r-1}^2$$

$\S 1.4 \ m K$ ритерий χ^2 для проверки гипотезы о независимости двух признаков

Пусть данные представляют собой выборку (X_i, Y_i) , $i=1,\ldots,n$, из распределения некоторой двумерной случайной величины $\xi=(\xi_1,\xi_2)$ с неизвестной функцией распределения $F_\xi(x,y)$, для которой требуется проверить основную гипотезу о независимости компонент $H_0: F_\xi(x,y) = F_{\xi_1}(x) \cdot F_{\xi_2}(y)$, где $F_{\xi_i}(x)$, i=1,2 — некоторые одномерные функции распределения.

Разобьем [13] множество значений ξ_1 на s непересекающихся интервалов $\{\Delta_i^x\}_{i=1}^s$ и множество значений ξ_2 — на m сегментов $\{\Delta_j^y\}_{j=1}^m$, таким образом, множество значений двумерной величины $\xi=(\xi_1,\xi_2)$ разбито на N=mk прямоугольников $\{\Delta_i^x\times\Delta_j^y\}_{i,j=1}^{m,k}$. Обозначим через \mathbf{v}_{ij} число элементов выборки, принадлежащих прямоугольнику $\Delta_i^x\times\Delta_j^y$, так что

$$\sum_{i=1}^{s} \sum_{j=1}^{m} \mathbf{v}_{ij} = n.$$

Результаты наблюдений удобно представлять в виде mаблицы conps- женности двух признаков (ξ_1 и ξ_2 обычно означают два признака, по которым производится группировка результатов наблюдений, и тогда H_0 есть гипотеза о независимости этих признаков).

Таблица 1 — Таблица сопряженности

1	1				
ξ_2 ξ_1	Δ_1^y	Δ_2^y		Δ_m^y	$\sum oldsymbol{ u}_{iullet}$
Δ_1^x	\mathbf{v}_{11}	\mathbf{v}_{12}	• • •	\mathbf{v}_{1m}	\mathbf{v}_{1ullet}
Δ_2^x	\mathbf{v}_{21}	\mathbf{v}_{22}	• • •	\mathbf{v}_{2m}	$oldsymbol{ u}_{2ullet}$
:	:	÷	٠٠.	÷	:
Δ_s^x	$ \mathbf{v}_{s1} $	\mathbf{v}_{s2}	• • •	\mathbf{v}_{sm}	γ_{sullet}
$\sum v_{\bullet j}$	$\nu_{\bullet 1}$	$\nu_{ullet 2}$		$\mathbf{v}_{ullet m}$	

Пусть $p_{ij}=P(\xi_1\in\Delta_i^x,\xi_2\in\Delta_j^y), i=\overline{1,s},j=\overline{1,k}$ — теоретические вероятности попадания пары (ξ_1,ξ_2) в любую из областей $\Delta_i^x\times\Delta_j^y$. Имеет смысл заменить исходную гипотезу H_0 на категориальную гипотезу независимости $H_0^\Delta: p_{ij}=p_{i\bullet}\cdot p_{\bullet j}$ $i=1,\cdots,s,j=1,\cdots,m$, где $p_{i\bullet},p_{\bullet j}$ — некоторые значения, удовлетворяющие условию:

14

$$\sum_{i=1}^{s} p_{i\bullet} = \sum_{j=1}^{k} p_{\bullet j} = 1, \quad \begin{cases} p_{i\bullet} \geqslant 0 \\ p_{\bullet j} \geqslant 0 \end{cases}$$

В общем случае,

$$p_{i\bullet} = \sum_{j} p_{ij}, \quad p_{\bullet j} = \sum_{i} p_{ij}$$

При гипотезе H_0 частоты $(v_{ij}, i=1,\ldots,s,j=1,\ldots,m)$ распределены по мультиномиальному закону с вероятностями исходов p_{ij} определяющимися значениями r=m+s-2 неизвестных параметров $p_{i\bullet}, i=1,\ldots,s-1,\quad p_{\bullet j}, j=1,\ldots,m-1.$

Для проверки этой гипотезы, следовательно, можно применить критерий согласия χ^2 для проверки сложных параметрических гипотез с m+s-2 параметрами $p_{i\bullet}, p_{\bullet j}, i=1,\ldots,s-1, j=1,\ldots,m-1$. Найдем мультиномиальные оценки максимального правдоподобия для определяющих рассматриваемую модель параметров при справедливости гипотезы H_0 , то есть максимизируя в данном случае функцию правдоподобия:

$$\frac{n!}{\mathbf{v}_{11}! \dots \mathbf{v}_{sm}!} \prod_{i,j} (p_{i\bullet} p_{\bullet j})^{\mathbf{v}_{ij}} = \frac{n!}{\mathbf{v}_{11}! \dots \mathbf{v}_{sm}!} \prod_{i} p_{i\bullet}^{\mathbf{v}_{i\bullet}} \prod_{j} p_{\bullet j}^{\mathbf{v}_{\bullet j}}$$

по параметрам $p_{i\bullet}, p_{\bullet j},$ получим оценки для них:

$$\hat{p}_{i\bullet} = \frac{\mathbf{v}_{i\bullet}}{n}, \qquad \hat{p}_{\bullet j} = \frac{\mathbf{v}_{\bullet j}}{n}$$
 (8)

т.е. это выборочные оценки параметров $p_{iullet}=P(\xi_1\in\Delta_i^x), p_{ullet j}=P(\xi_2\in\Delta_j^y),$ при этом

$$\mathcal{L}(\mathbf{v}_{1\bullet},\ldots,\mathbf{v}_{s\bullet}) = M(n; p_{1\bullet},\ldots,p_{s\bullet}),$$

$$\mathcal{L}(\mathbf{v}_{\bullet 1},\ldots,\mathbf{v}_{\bullet k}) = M(n; p_{\bullet 1},\ldots,p_{\bullet k}).$$

Тогда статистика критерия χ^2 с числом степеней свободы (s-1)(k-1) принимает вид:

$$\chi_n^2 = \sum_{i,j} \frac{(\mathbf{v}_{ij} - n\hat{p}_{i\bullet}\hat{p}_{\bullet j})^2}{n\hat{p}_{i\bullet}\hat{p}_{\bullet j}} = n \sum_{i=1}^s \sum_{j=1}^k \frac{(\mathbf{v}_{ij} - \mathbf{v}_{i\bullet} \cdot \mathbf{v}_{\bullet j}/n)^2}{\mathbf{v}_{i\bullet} \cdot \mathbf{v}_{\bullet j}}.$$
 (9)

Определение 6. Значение

$$E_{ij} = \frac{\mathbf{v}_{i\bullet} \cdot \mathbf{v}_{\bullet j}}{n} \tag{10}$$

называется $\mathit{оэкudae}$ мым значением, тогда как \mathbf{v}_{ij} — наблюдаемым

Таким образом, гипотезу H_0 отвергают тогда и только тогда, когда вычисленное по наблюдаемым данным значение t статистики (9) удовлетворяет неравенству: $t \geqslant \chi^2_{1-\alpha,(s-1)(k-1)}$, где α - заданный уровень значимости. [10]

Так как для применения критерия производится замена распределения статистики X_n^2 при нулевой гипотезе H_0 на более более простое предельное распределение χ_{k-1}^2 (см. теорему 1), т.е. критерий χ^2 является асимптотическим, то для корректного результата статистического теста необходимо, чтобы в анализируемой таблице сопряженности ожидаемые значения ячеек были больше 5. Если число наблюдений мало, целесообразно применение точного критерия Фишера.

§1.5 Точный критерий Фишера

Критерий Фишера в основном применяется для исследования значимости взаимосвязи между двумя категориальными переменными в таблице сопряженности размерности 2 × 2 [11]. Тест основан на переборе всех возможных вариантов заполнения таблицы и потому является точным (что и отражено в его названии), что позволяет использовать его в исследованиях с небольшим количеством наблюдений.

Вид таблицы сопряженности:

Таблица 2 — Таблица сопряженности T_0

· ·				
ξ_2 ξ_1	Δ_1^y	Δ_2^y	\sum	
Δ_1^x	\mathbf{v}_{11}	\mathbf{v}_{12}	\mathbf{v}_{1ullet}	
Δ_2^x	\mathbf{v}_{21}	$ u_{22} $	\mathbf{v}_{2ullet}	
\sum	$\nu_{ullet 1}$	$\nu_{\bullet 2}$	n	

Требуется проверить категориальную нулевую гипотезу о независимости переменных ξ_1 и ξ_2 .

Как было сказано ранее, точный критерий Фишера основан на переборе всех возможных вариантов таблицы сопряженности T_i при фиксированных значениях сумм $\mathbf{v}_{1\bullet}=n^i_{11}+n^i_{12}, \quad \mathbf{v}_{2\bullet}=n^i_{21}+n^i_{22}, \quad \mathbf{v}_{\bullet 1}=n^i_{11}+n_{21}, \quad \mathbf{v}_{\bullet 2}=n^i_{12}+n^i_{22}.$

Таблица 3 — Всевозможные варианты T_i таблицы сопряженности

ξ_2 ξ_1	Δ_1^y	Δ_2^y	Σ
Δ_1^x	n_{11}^i	n_{12}^i	\mathbf{v}_{1ullet}
Δ_2^x	n_{21}^i	n_{22}^i	\mathbf{v}_{2ullet}
\sum	$\mathbf{v}_{ullet 1}$	$\nu_{ullet 2}$	\overline{n}

Вероятность получения n_{11}^i наблюдений в первой ячейке таблицы T_i подчиняется гипергеометрическому распределению:

$$P_{n_{11}^{i}} = \frac{\binom{\gamma_{1\bullet}}{n_{11}^{i}}\binom{\gamma_{2\bullet}}{n_{21}^{i}}}{\binom{n}{\gamma_{\bullet 1}}} = \frac{\gamma_{1\bullet}! \, \gamma_{2\bullet}! \, \gamma_{\bullet 1}! \, \gamma_{\bullet 2}!}{n! \, n_{11}^{i}! \, n_{12}^{i}! \, n_{21}^{i}! \, n_{22}^{i}!}$$
(11)

Критерий Фишера основан на расчете вероятности:

$$P = \sum_{T_i: P_{n_{11}^i} \leqslant P_{\nu_{11}}, i \neq 0} P_i + P_0, \tag{12}$$

где P_0 - вероятность получения исходной таблицы T_0 , а P_i - таблицы T_i при фиксированных $\mathbf{v_{1\bullet}},\mathbf{v_{2\bullet}},\mathbf{v_{\bullet 1}},\mathbf{v_{\bullet 2}}.$

Вероятность P и есть P - значимость различий сравниваемых групп. Полученное значение необходимо сопоставить с критическим уровнем значимости α . Если P не превосходит α , то нулевая гипотеза о независимости отклоняется. В противном случае отклонять нулевую гипотезу нет оснований.

§1.6 Коэффициент корреляции

В реализованном пакете R производится также вычисление коэффициента корреляции.

Пусть $\mathbf{X}=(X_1,\ldots,X_n)$ и $\mathbf{Y}=(Y_1,\ldots,Y_n)$ - - выборки из распределений некоторых случайных величин ξ_1 и ξ_2 соответственно.

О пределение 7. Коэффициентом корреляции [14] $\rho(\xi_1, \xi_2)$ для любых случайных величин ξ_1 и ξ_2 , дисперсии которых существуют и отличны от нуля, называется функция

$$\rho(X,Y) = \frac{\sum_{ij} (X_i - \overline{X})(Y_j - \overline{Y})}{\sqrt{\sum_i (X_i - \overline{X})^2} \sqrt{\sum_j (Y_j - \overline{Y})^2}},$$

где
$$\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i, \ \overline{Y}=\frac{1}{n}\sum_{i=1}^n Y_i$$
 — выборочные средние.

Коэффициент корреляции позволяет установить характер (направление) зависимости двух величин. Например, влечет ли увеличение величины ξ_1 увеличение ξ_2 .

При анализе таблиц сопряженности вида:

Таблица 4 — Таблица сопряженности

ξ_2 ξ_1	b_1	b_2		b_m	$\sum {f v}_{iullet}$
a_1	\mathbf{v}_{11}	\mathbf{v}_{12}	• • •	\mathbf{v}_{1m}	$ u_{1ullet} $
a_2	\mathbf{v}_{21}	\mathbf{v}_{22}	• • •	\mathbf{v}_{2m}	$oldsymbol{ u}_{2ullet}$
÷	:	÷	٠	:	:
a_s	$ \mathbf{v}_{s1} $	\mathbf{v}_{s2}		\mathbf{v}_{sm}	$ u_{sullet} $
$\sum \nu_{ullet j}$	$\nu_{\bullet 1}$	$\nu_{ullet 2}$	• • •	$\mathbf{v}_{ullet m}$	

имеет смысл считать $ho(\xi_1,\xi_2)$ по группированным данным по формуле:

$$\rho(X,Y) = \frac{\frac{1}{n} \sum_{i,j} (\mathbf{v}_{ij} \cdot a_i \cdot b_j) - \overline{X}^* \cdot \overline{Y}^*}{\sqrt{\frac{1}{n} \sum_{i} \mathbf{v}_{i\bullet} (a_i - \overline{X}^*)^2 \frac{1}{n} \sum_{j} \mathbf{v}_{\bullet j} (j - \overline{Y}^*)^2}}$$
(13)

где

$$\overline{X}^* = \frac{1}{n} \sum_{i} (\mathbf{v}_{i\bullet} \cdot a_i),$$

$$\overline{Y}^* = \frac{1}{n} \sum_{j} (\mathbf{v}_{\bullet j} \cdot b_j).$$

Глава 2. Детали реализации програм-

§2.1 Описание используемого языка и технологий программирования

Выполнение вычислений

Вычисления внутри реализованного в ходе работы пакета R, решающие поставленную задачу, были написаны на языке программирования C++ как на языке, допускающем эффективные вычисления. Для реализации запуска C++ кода из программы, написанной на языке R, были использованы R-пакет Rcpp и одноименная библиотека C++ [15].

Поскольку выполнение статистических тестов предполагает многократное выполнение однотипных операций, для повышения эффективности вычислений была использована технология OpenMP («Open Multi-Processing») - стандарт для создания многопоточных программ, выполняемых на многопроцессорных системах с общей памятью [16].

Для проверки корректности вычислений, а также для сравнения скорости работы была написана программа на языке программирования R, выполняющая вычисления статистических тестов с помощью стандартных функций языка.[17]

Для распараллеливания вычислений, выполняемых программой, написанной на R, были использованы пакеты программной среды R, размещенные в репозитории CRAN («Comprehensive R Archive Network»): foreach - пакет, позволяющий выполнять действия каждой итерации цикла foreach параллельно, doParallel - вспомогательный пакет, позволяющий пакету «foreach» запускать итерации одновременно [18].

Разработка, сборка и компиляция программы велись на операционной системе Debian GNU/Linux, поскольку в качестве среды реализации предполагается использовать ОС Linux.

Обработка входных данных и запись результатов вычислений

Данные представляют собой клинические данные k индивидов. Каждому индивиду сопоставляется целочисленное значение в диапазоне $0, \ldots, k-1$. Таким образом, одно наблюдение содержит:

- 1) идентификационный номер индивида
- 2) фенотип категориальную величину с уровнями $0, \ldots, k-1$
- 3) генотип категориальную величину с уровнями $0, \dots, 3$, где 0, 1, 2 соответствуют различным комбинациям аллелей, а значение 3 означает отсутствие данных о генотипе.

Входные данные предоставляются в виде файлов в формате .gds («Genomic Data Structure») - компактном формате, предназначенном для хранения генотипных данных. В R работа с .gds - файлами реализована в пакете «gdsfmt» [19], с помощью которого в написанном в ходе работы приложении проводится чтение файла и обработка извлеченных данных для дальнейшей их передачи в модуль, реализованный на языке C++.

Результат вычислений записывается файл в формате .csv («Comma-Separated Values») - текстовый формат, предназначенный для хранения и представления табличных данных [20].

§2.2 Алгоритм работы программы

Общая схема работы R-пакета (рис. 4):

Рис. 4 — Общая схема программы

Как было сказано выше, извлечение данных из .gds файла происходит в R-программе с помощью пакета gdsfmt, в дальнейшем они обрабатываются и передаются в модуль для проведения вычислений.

На вход модуля данные подаются в виде (рис. 5):

- 1) вектора длины n, элементы которого являются фенотипами,
- 2) матрицы размером $n \times m$, где каждая i-ая строка соответствует i-му фенотипу из вектора.

Рис. 5 — Представление данных о генотипах и фенотипах

Статистические тесты проводятся для каждого столбца матрицы генотипов отдельно.

Затем, для каждого столбца производится следующий порядок действий:

1) Для вектора фенотипов и одного столбца матрицы генотипов составляются 4 таблицы сопряженности, соответствующие кодоминантной, доминантной, рецессивной альтернативам, а так же аллельному подходу.

Таблица 5 — Таблица сопряженности для кодоминантной альтернативы

Фенотип	Генотип		
Фенотип	0	1	2
0	n_{00}	n_{01}	n_{02}
1	n_{10}	n_{11}	n_{12}
• • •		• • •	
k	n_{k0}	n_{k1}	n_{k2}

Таблица 6 — Остальные таблицы сопряженности: доминантная - (a), рецессивная - (b), аллельная - (c)

Фенотип	Генотип		
Фенотип	0	1	
0	$n_{00} + n_{01}$	n_{02}	
1	$n_{10} + n_{11}$	n_{12}	
	• • •		
k	$n_{k0} + n_{k1}$	n_{k2}	
(\mathbf{a})			

Фенотип	Генотип		
Фенотип	0	1	
0	n_{00}	$n_{01} + n_{02}$	
1	n_{10}	$n_{11} + n_{12}$	
• • •		• • •	
k	n_{k0}	$n_{k1} + n_{k2}$	

Фенотип	Генс	ОТИП
Фенотип	0	1
0	$2n_{00} + n_{01}$	$n_{01} + 2n_{02}$
1	$2n_{10} + n_{11}$	$n_{11} + 2n_{12}$
• • •	• • •	• • •
k	$2n_{k0} + n_{k1}$	$n_{k1} + 2n_{k2}$

(b)

(c)

- 2) Для каждой таблицы сопряженности определяется, какой тест запускать: Хи-квадрат или точный тест Фишера. Решение принимается исходя из наличия в таблице ожидаемых значений меньше 5 и из размеров таблицы. Для таблиц размером 2×2 , которые содержат хоть одно ожидаемое значение (10), не превосходящее 5, запускается точный тест Фишера, в противном случае высчитывается χ^2 статистика.
 - а) В первом случае, то есть если запускается точный тест Фишера, то в результате вычислений сразу получаем p значение.
 - б) Если же в таблице сопряженности не имеются ожидаемые значения меньше 5, то в результате запуска теста χ^2 вычисляются статистика критерия χ^2 и число степеней свободы, затем по полученным значениям высчитывается p значение.
- 3) Наконец, считаем для данных векторов фенотипов и генотипов коэффициент корреляции.

2.2.1 Вычисление статистики χ^2

Перед вычисление статистики проводится проверка применимости критерия χ^2 к рассматриваемой таблице сопряженности.

Находим строки и столбцы таблицы, полностью заполненные нулями. Если таких строк (или столбцов) такое количество, что в таблице остается только одна ненулевая строка (один ненулевой столбец), то вычисление корректного значения статистики χ^2 невозможно, и функция возвращает значение inf для данного столбца матрицы генотипов. Если же ненулевых столбцов и строк больше превышает 1, то выполняется вычисление статистики χ^2 по формуле (9). Вдобавок, вычисляется число степеней свободы = (количество строк таблицы-1)·(количество столбцов таблицы-1).

2.2.2 Точный тест Фишера

Вычисление p - значения с помощью точного теста Фишера производится в соответствии с формулами, описанными в параграфе 1.5 главы 1. Однако алгоритм был реализован с некоторыми особенностями:

1) в формуле (11) требуется считать факториалы чисел, однако, в программе вычисляются не именно факториалы, а их логарифмы. Как известно, диапазон чисел типа long double зависит от платформы и компилятора, поэтому максимальное число этого типа может быть равно как 1.18973 · 10⁴⁹³², так и 1.79769 · 10³⁰⁸ (что соответствует максимально возможному числу типа double). То есть потенциально максимальное число, факториал которого мы можем вычислить, равно 170, что довольно мало. Таким образом, модифицированная формула (11) имеет вид:

$$\log(P_i) = \log(m_1)! + \log(m_2)! + \log(k_1)! + \log(k_2)! - \log(n)! - \log(n_{11}^i)! - \log(n_{12}^i)! - \log(n_{21}^i)! - \log(n_{22}^i)!$$

Тогда итоговая вероятность (12) вычисляется по формуле:

$$\log(P) = \log\left[\sum_{T_i: P_i \leqslant P_0, i \neq 0} P_i\right] = \log\left[\frac{P_0}{P_0} \sum_{T_i: P_i \leqslant P_0, i \neq 0} P_i\right] =$$

$$= \log(P_0) + \log\left[\sum_{T_i: P_i \leqslant P_0, i \neq 0} \frac{P_i}{P_0}\right] =$$

$$= \log(P_0) + \log\left[\sum_{T_i: P_i \leqslant P_0, i \neq 0} \exp\left(\log(P_i) - \log P_0\right)\right]$$

2) большинство вычислений составляют повторяющиеся вычисления факториалов, чтобы каждый раз не считать факториал одного и того же числа, создадим «таблицу логарифмов факториалов», то есть одномерный массив размером *n*, где элемент массива является логарифмом факториала соответствующего индекса. Так как обращение к элементу массива занимает меньше времени, тем самым мы повышаем эффективность программы.

2.2.3 p - значение

Вычисление p - значения производилось так, как показано в формуле (4). В программе использовалась реализация Γ и γ функций из набора библиотек Boost. По полученным в результате проведения теста χ^2 значению χ^2 и числу степеней свободы вычисляется p значение с помощью формулы (4). Вычисление полной и нижней неполной гамма-функций производится с помощью функций из библиотеки Math набора библиотек Boost.

2.2.4 Коэффициент корреляции

Вычисление коэффициента корреляции производится для группированных данных, таблица сопряженности которых имеет вид:

Таблица 7 — Таблица сопряженности

ξ_2 ξ_1	0	1	2	$\sum oldsymbol{ u}_{iullet}$
0	n_{00}	n_{01}	n_{02}	n_1
1	n_{10}	n_{11}	n_{12}	n_2
		• • •		
k	n_{k0}	n_{k1}	n_{k2}	n_k
\sum	m_1	m_2	m_3	n

происходит по модифицированной формуле (13):

$$\rho(X,Y) = \frac{\frac{1}{n} \sum_{i,j} (n_{ij} \cdot i \cdot j) - \overline{X}^* \cdot \overline{Y}^*}{\sqrt{\frac{1}{n} \sum_{i} n_i (i - \overline{X}^*)^2 \frac{1}{n} \sum_{j} m_j (j - \overline{Y}^*)^2}}$$

где

$$\overline{X}^* = \frac{1}{n} \sum_{i} (n_i \cdot i),$$

$$\overline{Y}^* = \frac{1}{n} \sum_{j} (m_j \cdot j).$$

§2.3 Проведения вычислительного эксперимента и его итоги. Результаты работы программы.

Были проведены подсчеты времени работы программ для разных размеров данных и, так как для вычисления использовались библиотека OpenMP и пакет doParallel, то и для разного количества ядер.

Наборы тестовых данных делятся на 2 категории:

- 1) набор данных с двумя уровнями фенотипов для проверки эффективности точного теста Фишера, так как только в этом случае применяется данный тест.
- 2) набор с тремя уровня фенотипов для проверки реализации алгоритма критерия χ^2 .
- 1) **Таблица размера** 190 × 6810380 Набор данных содержит два уровня фенотипов. Вычисления проводились на сервере: Supermicro Intel(R) Xeon(R) CPU E5-2690 0 2.90GHz, 32 cores, 377.82 GB, Linux 3.13.0-36-generic on x86_64, дистрибутив Ubuntu. Время работы:

Таблица 8 — Скорость вычислений для таблицы 190 x 6 810 380

Язык реализации программы	Время выполнения, с	Количество потоков
R	28477.447	10
C++	51.41762	10

2) **Таблица размера** 190 × 50000 Набор данных с двумя уровнями фенотипов.

Таблица 9 — Скорость вычислений для таблицы 190 x 50 000

Количество	Время выполнения, с		
потоков	R	C++	
7	1.465	0.372	
5	1.698	0.432	
3	2.114	0.487	
1	4.633	1.069	

	stat_cd ‡	deg_freedom_cð	p_value_cd [‡]	corr_cd ‡	typetest_cd	elements_less_than5_cd	
1	4.917714453	2	0.085532640	-0.140447484	Chi2	TRUE	
2	4.917714453	2	0.085532640	-0.140447484	Chi2	TRUE	
3	1.364342105	2	0.505518293	0.059873031	Chi2	TRUE	
4	0.359447316	2	0.835501064	0.042657636	Chi2	TRUE	
5	1.395155109	2	0.497789713	-0.061866374	Chi2	TRUE	
6	2.348043523	1	0.125440354	0.111167099	Chi2	TRUE	
7	1.815221182	2	0.403487169	-0.094067164	Chi2	TRUE	
8	5.439467939	2	0.065892281	0.113597126	Chi2	FALSE	
9	1.093668237	1	0.295659873	0.075869286	Chi2	TRUE	
10	0.769820953	2	0.680511555	0.058971161	Chi2	TRUE	
11	0.924055368	1	0.336412413	-0.069738435	Chi2	TRUE	
12	3.314337055	2	0.190678116	-0.131457179	Chi2	FALSE	
13	0.646215685	1	0.421468929	-0.058319252	Chi2	TRUE	
14	1.636004623	2	0.441312379	-0.079675089	Chi2	TRUE	
15	2.541093672	2	0.280678095	-0.110500140	Chi2	FALSE	
16	3.393164986	1	0.065467170	-0.133636683	Chi2	TRUE	
Showing 1 to 17 of 50,000 entries							

Рис. 6 — Часть результатов вычислений C++ программы с двумя уровнями фенотипов

	cd.X-squared ‡	df_cd.df	p_values_cd [‡]	corr_cd ‡			
result.1	4.91771445313838	2	0.0855326395666859	-0.140447484140268			
result.2	4.91771445313838	2	0.0855326395666859	-0.140447484140268			
result.3	1.36434210508285	2	0.505518293354983	0.0598730309946607			
result.4	0.359447315969055	2	0.835501063560563	0.0426576364889276			
result.5	1.39515510944082	2	0.497789712734892	-0.0618663743231549			
result.6	2.34804352274232	1	0.125440354142228	0.111167098567458			
result.7	1.81522118220151	2	0.403487168973165	-0.0940671638355141			
result.8	5.43946793946794	2	0.0658922814361018	0.113597125940554			
result.9	1.09366823652538	1	0.295659873094735	0.0758692863633992			
result.10	0.769820952658268	2	0.680511555370197	0.0589711614597229			
result.11	0.924055368499813	1	0.336412413057923	-0.0697384349400942			
result.12	3.31433705455232	2	0.190678116352012	-0.13145717897273			
result.13	0.646215684975375	1	0.421468929100548	-0.0583192522592747			
result.14	1.63600462348226	2	0.441312379064699	-0.0796750885973695			
result.15	2.54109367150328	2	0.280678094988195	-0.110500140459684			
result.16	3.39316498552167	1	0.0654671702188609	-0.133636683143862			
,							
Showing 1 to 17 of 50,000 entries							

Рис. 7 — Часть результатов вычислений стандартных функций R с двумя уровнями фенотипов

3) **Таблица размера** 286×50000 Набор данных содержит 3 уровня фенотипов.

Таблица 10 — Скорость вычислений для таблицы 286 х 50 000

Количество	Время выполнения, с		
ПОТОКОВ	R	C++	
7	1.804	0.316	
5	1.961	0.360	
3	2.411	0.445	
1	5.175	0.696	

Глава 3. Заключение

Выводы

В данной работе была рассмотрена задача проведения множества статистических тестов для изучения зависимости фенотипа с каждым из имеющихся генетических маркеров. Были рассмотрены наиболее распространенные методы статистического анализа, в частности, критерий χ^2 и точный тест Фишера для проверки гипотезы о независимости двух признаков, а также исследование характера зависимости категориальных данных с помощью вычисления коэффициента корреляции.

Был реализован программный продукт в виде R-пакета, вычисления в котором выполняются в отдельном модуле, написанном на языке программирования C++ как на языке, допускающем эффективные вычисления.

Так же была реализована программа на языке R, в которой статистический анализ данных выполнялся с помощью стандартных функций R.

Было проведено сравнение скорости вычисления и итоговых результатов двух программ. Численные результаты программ совпадают. Однако вычисления, реализованные на языке C++, оказались эффективнее реализации на R. Главная причина такого результата — особенности программной среды R, выполнение вычислений в которой особенно неэффективно при многократном выполнении однотипной операции (цикла).

Перспективы развития

Полученные результаты показывают, что итоговый программный продукт справляется с поставленной целью. Однако имеются некоторые ограничения в области применения написанных мною алгоритмов:

- 1) программная реализация точного критерия Фишера применяется только для таблиц сопряженности размера 2 × 2. Для таблиц,у которых количество столбцов и строк больше двух, существует алгоритм точного критерия Фишера с применением методов Монте-Карло.
- 2) возможность анализа зависимости фенотипа с простейшими генетическими маркерам, представляющими собой категориальные величины с тремя уровнями. В дальнейшем предполагается рассмотреть возможности использования генетических маркеров с большим числом уровней.

Список литературы

- [1] S. Nicklen F. Sanger and A.R. Coulson. Dna sequencing with chain-terminating inhibitors. *Proceedings of the National Academy of Sciences*, 1977.
- [2] Smith L.M. Sanders J.Z. Kaiser R.J. Hughes P. Dodd C. Connell C.R. Heiner C. Kent S.B. Hood L.E. Fluorescence detection in automated dna sequence analysis. *Nature*, 1986.
- [3] Fleischmann R.D. Adams M.D. White O. Clayton R.A. Kirkness E.F. Kerlavage A.R. Bult C.J. Tomb J.F. Dougherty B.A. Merrick J.M. Wholegenome random sequencing and assembly of haemophilus influenzae rd. *Science*, 1995.
- [4] Genome sequence of the nematode c. elegans: a platform for investigating biology. *Science*, 1998.
- [5] Analysis of the genome sequence of the flowering plant arabidopsis thaliana. *Nature*, 2000.
- [6] An overview of the human genome project. https://www.genome.gov/12011238/an-overview-of-the-human-genome-project/, May 2016.
- [7] Jason H. Moore William S. Bush. Chapter 11: Genome-wide association studies. *PLoS Computational Biology*, 2012.
- [8] Гмурман В.Е. *Теория вероятности и математическая статистика*. Издательство «Высшая школа», 1972.
- [9] Прохоров Ю.В. *Вероятность и математическая статистика.* Энииклопедия. Научное издательство «Большая Российская энциклопедия», 1999.

- [10] Медведев Ю.И. Ивченко Г.И. *Математическая статистика*. Издательство «Высшая школа», 1984.
- [11] С. Гланц. *Медико-биологическая статистика*. Издательский дом «Практика», 1998.
- [12] Медведев Ю.И. Ивченко Г.И. Введение в математическую статистику. Издательство ЛКИ, 2010.
- [13] Чернова Н.И. Математическая статистика: Учеб. пособие. Новосиб. гос. ун-т, 2007.
- [14] Чернова Н.И. *Теория вероятностей: Учеб. пособие.* Новосиб. гос. ун-т, 2007.
- [15] Dirk Eddelbuettel. Seamless R and C++ Integration with Rcpp (Use R!). Springer, 2013.
- [16] Guide into openmp: Easy multithreading programming for c++. http://bisqwit.iki.fi/story/howto/openmp/, June 2016.
- [17] Creating R Packages: A Tutorial, 2009.
- [18] Steve Weston and Rich Calaway. Getting started with doparallel and foreach. https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf, October 2015.
- [19] Xiuwen Zheng, Stephanie Gogarten, and Jean loup Gailly. Package 'gdsfmt'. http://bioconductor.org/packages/release/bioc/manuals/gdsfmt/man/gdsfmt.pdf, May 2017.
- [20] R data import/export. https://cran.r-project.org/doc/manuals/r-release/R-data.pdf, April 2017.
- [21] Snp definition. https://www.nature.com/scitable/definition/single-nucleotide-polymorphism-snp-295.
- [22] Лисовенко Л.А. Арефьев В.А. Англо-русский толковый словарь генетических терминов. Изд-во ВНИРО, 1995.

Приложение A. Словарь терминов

Определение 8. Однонуклеотидный полиморфизм (Single nucleotide polymorphism, SNP)[21] — отличия последовательности ДНК, размер которых составляет один нуклеотид, в геноме представителей одной популяции.

Определение 9. Генетический маркер[22] — ген, детерминирующий отчетливо выраженный фенотипический признак, используемый для генетического картирования и индивидуальной идентификации организмов или клеток.

Приложение В.

Ссылки на исходный код

- 1) С++ реализация статистических тестов (Rcpp-package):https://github.com/masterSplinterIO/chi2fishercpp
- 2) R-реализация (R-package): https://github.com/masterSplinterIO/chi2fisher