DR. FRANCESCO GALLINARO TUTORAT: MAX HERWIG

Modelltheorie

Blatt 2 Abgabe: 07.11.2022, 12 Uhr

Aufgabe 1 (13 Punkte).

Die Sprache \mathcal{L} bestehe lediglich aus einem zweistelligen Relationszeichen E. Betrachte nun die Theorie T, welche besagt, dass die Interpretation der Relation E eine Äquivalenzrelation derart ist, dass es für jedes $n \geq 1$ aus \mathbb{N} genau eine Äquivalenzklasse der Größe n gibt.

- a) Gib eine Axiomatisierung von T an. Zeige, dass T konsistent ist.
- b) Zeige, dass T keine Quantorenelimination hat (sogar wenn wir ein neues Konstantenzeichen zu der Sprache hinzufügen).
- c) Sei $\mathcal{A} \models T$ ein abzählbares Modell. Zeige mit Löwenheim-Skolem, dass eine elementare Erweiterung \mathcal{A}' von \mathcal{A} der Mächtigkeit Kontinuum (2^{\aleph_0}) existiert, die genau 2^{\aleph_0} viele Äquivalenzklassen der Mächtigkeit 2^{\aleph_0} hat.
 - Sind alle Modelle von T der Mächtigkeit 2^{\aleph_0} isomorph zu \mathcal{A}' ?
- d) Wähle neue Konstantenzeichen $(c_n)_{1 \leq n \in \mathbb{N}}$ und betrachte die Erweiterung T_1 von T in der Sprache $\mathcal{L} \cup \{c_n\}_{1 \leq n \in \mathbb{N}}$, welche besagt, dass die Äquivalenzklasse (der Interpretation) von c_n genau Größe n hat. Zeige, dass T_1 vollständig mit Quantorenelimination ist.
 - Ferner besitzen die Theorien T und T_1 dieselbe Modelle (bis auf Einschränkung der Sprache).
- e) Es folgt nun aus der Aufgabe 2 a) vom Blatt 1, dass T_1 modellvollständig ist. Ist T modellvollständig?

Hinweis Gegeben $\mathcal{B} \models T$, nimm zwei Elemente aus der Klasse mit drei Elementen usw.

Aufgabe 2 (7 Punkte).

In der Ringsprache $\mathcal{L} = \{0, 1, +, -, \cdot\}$ betrachte den Körper \mathbb{R} als \mathcal{L} -Struktur \mathcal{R} sowie die Formel $\varphi[x_1, x_2] = \exists y(y^2 + x_1 \cdot y + x_2 = 0).$

- a) Zeige, dass φ nicht äquivalent zu einer quantorenfreien Formel modulo Th(\mathcal{R}) ist.
 - **Hinweis**: Nach dem Satz von Lindemann gibt es Isomorphismen $\mathbb{Q}[\pi] \cong \mathbb{Q}[T] \cong \mathbb{Q}[-\pi]$, welche \mathbb{Q} punktweise fixieren.
- b) Zeige, dass das abgeschlossene Intervall $[0, \sqrt{2}]$ in \mathcal{R} definierbar ist. Welche Parameter werden dafür benötigt?
 - **Hinweis:** Finde zunächst eine Formel $\psi[x_1, x_2]$, welche die Ordnung < definiert.
- c) Nun betrachte \mathbb{R} als Struktur \mathcal{R}' in der Sprache $\mathcal{L}' = \mathcal{L} \cup \{<\}$. Finde eine quantorenfreie Formel $\theta[x_1, x_2]$ mit $\mathcal{R}' \models \forall \bar{x}(\varphi[\bar{x}] \leftrightarrow \theta[\bar{x}])$.

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.33 IM KELLER DES MATHEMATISCHEN INSTITUTS.