1				- "	1 Pt - 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		,			MR 11420							
11 -	_	ATG M	AAC N		ACA T	STG	ATG M		GGC G			AGA R	TCT S	GAG E	cgG	TGC C	45 15
, '									CAG Q						CTC L		90 30
				GTT V					ATC I						GCT A		135 45
									AGC S						ATC I		180 60
									GAC D	L							225 75
									TCA S			_		TGG W	CAG Q	CTC	. 270 90
		AGA R	GCT A	TTT F			CGT R		TCT S		GTG V	ATA I	TTT F	TAT Y		ACC T	315 105
							V		TTA L							AGA R	360 120
	361 121		CTC	AAG K	ATC I	ATC I	III AGA R	CCT P	TTG L	AGA R	AAT N	ATT I	TTT F			AAA K	405 135
and and									TCA S				W				450 150
	451	TTC	TTC	ATC	TCC	CTG	CCA	AAT		ATC	TTG	AGC	IV AAC	AAG		GCA	495 165
	496	ACA	CCA	TCG	TCT	GTG	AAA	AAG	TGT C	GCT				GGG	CCT P		5 4 0 180
									GTA V						TTT F		585 195
									ATG M								630 210
									TAT Y	AGA						GAC D	675 225
[cath		AGA				AAA	AAG	CTG	GAA	GGC	AAA	GTA	TTT	GTT	GTĊ	GTG.	_
	721 241	GCT <u>A</u>	GTC V	TTC F	TTT F	GTG V	TGT C	TTT F	GCT A	CCA P	TTT F	CAT H	TTT F	GCC A	AGA R	GTT V	765 255
	766 256		TAT Y	ACT T	CAC H	AGT S	CAA Q	ACC T	AAC N	AAT N	AAG K	ACT T	GAC D	TGT C	AGA R	CTG L	810 270
	811 271		AAT N	CAA Q	CTG L	TTT F	ATT I	GCT A	AAA K	GAA E	ACA T	ACT T	CTC L	TTT F	TTG L	GCA A	855 285
	856 286		ACT T	AAC N	ATT	TGT C	ATG M	D	P	TTA L	ATA I	TAC Y	ATA I	TTC F	TTA L	TGT C	900 300
	901 301		AAA K	TTC F	ACA T	GAA E	AAG K		VII CCA P	TGT C	ATG M	CAA Q	GGG G	AGA R	AAG K	ACC T	945 315
	946 316		GCA A	TCA S	AGC S	CAA Q	GAA E	AAT N	CAT H	AGC S	AGT S	CAG Q	ACA T	GAC D	AAC N	ATA I	990 330
	991 331	ACC T	TTA L	GGC G	TGA *					-							1002 334

Figure 1

Figure 2

fetal brain adrenal gland ovary fetal aorta PBL cDNA (-)

Lymph node Bone marrow **PBMC PMN PBL** cDNA (-)

spinal cord thymus pancreas small intestine uterus placenta stomach liver

lung spleen testis brain

heart kidney

skeletal muscle

fetal liver

GPR86 (575 bp) (aldolase (443 bp)

GPR86 (575 bp) aldolase (443 bp)

thalamus caudate nucleus substantia nigra hippocampus cerebellum corpus callosum amygdala cDNA (-)

GPR86 (575bp)

aldolase (443 bp)

Figure 4C

Figure 5A

Figure 5B

46 kDa —

31 kDa —

20 SONT 30 S I min 30 S I min 30 S I min 30 S I min 30 M I I h O S I

46 kDa —

31 kDa —

В

46 kDa —

31 kDa —.

10 nM 1 2MeSADP 1 μM 2 min 2 meSADP 1 μM 30 min 2 mesADP 1 μM 30 min 2 min 2 mesADP 1 μM 4 PTx

46 kDa —

31 kDa —

Figure 6

BEST AVAILABLE COPY

BEST AVAILABLE COPY

FIGURE 7