Computer Graphics (COMP0027) 2022/23

Overview

- From a single object to a scene
- Scene graph
- Local coordinates (LC) vs World coordinates
- Local transformation matrix (LCM) and current transformation matrix (CTM)

Representing Scenes

- List of objects
- Transform for each object
 - can use minimal primitives: ellipse is transformed circle
 - transform applies to points/vertices of object

Representing Scenes

- Can represent drawing with flat list
 - but editing operations require updating many transforms

Groups of Objects

- Treat a set of objects as one
- Introduce new object type: group
 - contains list of references to member objects
- This makes the model into a tree
 - interior nodes = groups
 - leaf nodes = objects
 - edges = membership of object in group (and possibly transformations too)

Groups of Objects

- Add group as a new object type
 - lets the data structure reflect the drawing structure
 - enables high-level editing by changing just one node

Scene Graph

- Tree-like Scene Structure

 - TraversalInstancing and Re-Use
 - More Transformations

Concept of Scene Graph

- Objects placed relative to one another (LC)
- Objects might be made of similar components
- Directed acyclic graph
- Internal nodes hold grouping and other information
- Links are transformations
- Leaf nodes contain geometry
- The root of the graph corresponds to "world

Use for Animation/Modelling

Robot as a Graph

- Each node other than root contains a piece of geometry
- Each link is a transformation matrix, M_B,
 M_{S.} etc.
- Main concept is that robot can be posed by changing rotation in Shoulder and Elbow

Local Coordinates

- Each part of the robot is modelled in its own local coordinate (LC) system
- Local coordinates are defined by the person modelling the system
- Choice is determined by convenience
- Common choices:
 - The centre of the object
 - A corner of the object

Base 6x1 Diam = 2Shoulder H = 2Hand

World Coordinates

- Everything is eventually positioned relative to the world coordinates (WC) or room coordinates
- We know how to convert WC to viewing coordinates (VC) it's the general camera model
- Eventually we need to convert points in an object's LC into WC

Local Transform

- An object's local transformation maps LC to the parent's LC
 - shoulder is translation (0 1 0) from base (M_S)
 - upper arm is translation (0 3 0) from shoulder (M_U)
 - elbow is translation (0 3 0) from upper arm (M_F)
 - fore arm is rotation Z by 90 then translation (0 2 0) (M_F)
 - Etc.
- Note that directions such as "up" depend on what transformations have been defined by ancestors in the tree

Local Transform

- An object's local transformation maps LC to the parent's LC
 - shoulder is translation (0 1 0) from base (M_S)
 - upper arm is translation (0 3 0) from shoulder (M_U)
 - elbow is translation (0 3 0) from upper arm (M_E)
 - fore arm is rotation Z by 45 then translation (0 2 0) (M_F)
 - Etc.
- Note that directions such as "up" depend on what transformations have been defined by ancestors in the tree

Example Scene

Sharing Nodes

- E.g. A chair or table in many locations
- In practice

```
struct Node {
        Shape Object;
        Matrix CTM,
LTM;
        int
        numChildren;
        Node child[];
```


Sharing Nodes

- A common "pattern" found in a scene graph is a multiple instanced geometry
- One table, many places
- Node Table1 has CTM $\mathbf{T}_{1}\mathbf{T}_{0}$
- Node Table2 has CTM T_2T_0
- $T_3 = T_4 = I$
- So TableGeom appears in two different positions
 Academic Year 2022/23 Computer Graphics (COMP0027), Tobias Ritschel

Rendering Traverse

- Must get object definitions in WC before passing to camera
- For a vertex in the base object
 - p. \mathbf{M}_{B} is in WC
- Matrices are inherited down stack
- So for object under shoulder
 - p.M_SM_B is in WC
 - (Note that p.M_S is in the local coordinates of the base!)

Implementation

 Generally implemented by a straightforward recursive descent

- "push" on graph descend
- "pop" on graph ascend
- The concatenation of all LT matrices above a node is called the current transformation matrix (CTM)

Rendering Traverse root room obj child **Table** T1 obj . LCT child T3 obj T2 obj child child chair T4 obj 、 child obj child book

Recap

- Use of **scene graph** to model environments
- Local coordinates (LC) vs World coordinates
- Notion of render traversal and the current transformation matrix
- Instancing and sharing of nodes