Rough Set Theory (RST)

- The notion of rough sets was introduced by Z Pawlak in his seminal paper of 1982 (Pawlak 1982).
- It is a formal theory derived from fundamental research on logical properties of information systems.
- Rough set theory has been a methodology of database mining or knowledge discovery in relational databases.
- In its abstract form, it is a new area of uncertainty mathematics closely related to fuzzy theory.

- Rough sets and fuzzy sets are complementary generalizations of classical sets.
- The approximation spaces of rough set theory are sets with multiple memberships, while fuzzy sets are concerned with partial memberships.
- The rapid development of these two approaches provide a basis for "soft computing," initiated by Lotfi A. Zadeh.
- Soft Computing includes along with rough sets, at least fuzzy logic, neural networks, probabilistic reasoning, belief networks, machine learning, evolutionary computing, and chaos theory.

 In Computer Science, a rough set, first described by a Polish computer scientist Zdzisław I. Pawlak, is a formal approximation of a crisp set (i.e., conventional set) in terms of a pair of sets which give the *lower* and the upper approximation of the original set. In the standard version of rough set theory (Pawlak 1991), the lower- and upper-approximation sets are crisp sets, but in other variations, the approximating sets may be fuzzy sets.

- Basic problems in data analysis solved by Rough Set:
 - Characterization of set of objects in terms of attribute values.
 - Finding dependency between the attributes.
 - Reduction of superflous attributes.
 - Finding the most significant attributes.
 - Decision rule generation.

INFORMATION SYSTEM FRAMEWORK

- In Rough Set data model information is stored in a table.
- Each row (tuples) represents a fact or an object.
- Often the facts are not consistent to each other.
- In Rough Set terminology a data table is called an Information System.

An Information Table

	Attributes					
Case	Temperature	Headache	Nausea	Cough		
1	high	yes	no	yes		
2	very_high	yes	yes	no		
3	high	no	no	no		
4	high	yes	yes	yes		
5	normal	yes	no	no		
6	normal	no	yes	yes		

Information system

➤ Data tables storing real-world objects

Mathematically represented as I = (U, A) where U is a non-empty set of finite objects, A is a non-empty finite set of attributes such that $\forall a \in A$, $a : U \rightarrow V_a$ i.e. V_a is the set of values attribute a may take

An Information Table

	Attributes					
Case	Temperature	Headache	Nausea	Cough		
1	high	yes	no	yes		
2	very_high	yes	yes	no		
3	high	no	no	no		
4	high	yes	yes	yes		
5	normal	yes	no	no		
6	normal	no	yes	yes		

Indiscernibility

- ➤ Tables may contain many objects having the same features
- ➤ A way of reducing table size is to store only one representative object for every set of objects with same features.
- These objects are called indiscernible objects or tuples

Indiscernibility

With any $P \subseteq A$ there is an associated equivalence relation IND(P):

$$IND(P) = \{(x, y) \in \mathbb{U}^2 \mid \forall a \in P, a(x) = a(y)\}$$

Sample Information System

```
      Obje ct
      P_1
      P_2
      P_3
      P_4
      P_5

      O_1
      1
      2
      0
      1
      1

      O_2
      1
      2
      0
      1
      1

      O_3
      2
      0
      0
      1
      0

      O_4
      0
      0
      1
      2
      1

      O_5
      2
      1
      0
      2
      1

      O_6
      0
      0
      1
      2
      2

      O_7
      2
      0
      0
      1
      0

      O_8
      0
      1
      2
      2
      1

      O_9
      2
      1
      0
      2
      2

      O_{10}
      2
      0
      0
      1
      0
```

example

Sample Information System

Object	P_1	P_2	P_3	P_4	P_5
O_1	1	2	0	1	1
O_2	1	2	0	1	1
O_3	2	0	0	1	0
O_4	0	0	1	2	1
O_5	2	1	0	2	1
O_6	0	0	1	2	2
<i>O</i> ₇	2	0	0	1	0
O_8	0	1	2	2	1
09	2	1	0	2	2
O_{10}	2	0	0	1	0

$$P = \{P_1, P_2, P_3, P_4, P_5\}$$

$$[x]_P = \begin{cases} \{O_1, O_2\} \\ \{O_3, O_7, O_{10}\} \\ \{O_4\} \\ \{O_5\} \\ \{O_6\} \\ \{O_8\} \\ \{O_9\} \end{cases}$$

$$P = \{P_1\}$$

$$[x]_P = \begin{cases} \{O_1, O_2\} \\ \{O_3, O_5, O_7, O_9, O_{10}\} \\ \{O_4, O_6, O_8\} \end{cases}$$

- ➤ It is a formal approximation of a crisp set defined by its two approximations upper approximation and lower approximation
- ➤ Upper approximation (PX) is the set of objects which possibly belong to the target set
- ➤ Lower approximation (PX) is the set of objects that positively belong to the target set
- \triangleright The tuple $< \underline{P}X$, $\overline{P}X >$ represents the rough set

RST(contd.)

- Mathematically, lower approximation is denoted as $PX = \{x \mid [x]_p \subseteq X \}$
- ightharpoonup Mathematically, upper approximation is denoted as $PX = {x | [x]_P Ω X ≠ Φ}$
- \triangleright Partition of \mathbb{U} generated by IND(P) is denoted by $\mathbb{U}/IND(P)$ or \mathbb{U}/P

RST(contd.)

- ➤ U PX represents the positive region which contains the objects definitely belonging to the target set X
- ➤ U- U PX represents the negative region which contains the objects that can be definitely ruled out as a member of the target set X
- ➤ U PX U PX represents the boundary region which contains the objects that may or may not belong to the target set X

example

$$X = (\{O_{1}, O_{2}, O_{3}, O_{5}, O_{8}\}, \{O_{4}, O_{6}, O_{7}, O_{9}, O_{10}\}) \xrightarrow{\text{ect}} I_{0_{1}} I_{0$$

Sample Information System

$$\begin{cases}
\{O_1, O_2\} \\
\{O_3, O_7, O_{10}\} \\
\{O_4\} \\
\{O_5\} \\
\{O_6\} \\
\{O_8\} \\
(O_1)
\end{cases}$$

RST(contd.)

➤ Accuracy of the rough set of set X, which measures how closely the rough set approximates target set X, is given as

$$0 \le \alpha_{P}(X) = \frac{|\underline{P}X|}{|\overline{P}X|} \le 1$$

- $\triangleright \alpha_p(X) = 1$, the upper and lower approximations are equal and X becomes a crisp set.
- ➤ Whenever the lower approximation is empty, the accuracy is zero (regardless of the size of the upper approximation).

Attribute dependency

- One of the most important aspects of database analysis or data acquisition is the discovery of attribute dependencies
- It describes which variables are strongly related to which other variables.
- Generally, it is these strong relationships that will warrant further investigation, and that will ultimately be of use in predictive modeling.

Attribute dependency

- In rough set theory, the notion of dependency is defined very simply.
- Let us take two (disjoint) sets of attributes, set P
 and set Q, and inquire what degree of
 dependency obtains between them.
- Each attribute set induces an (indiscernibility) equivalence class structure, the equivalence classes induced by P given by $[x]_P$, and the equivalence classes induced by Q given by $[x]_Q$.

Attribute dependency

- Let, where Q_i is a given equivalence class from the equivalence-class structure induced by attribute set Q.
- The *dependency* of attribute set Q on attribute set P, $\gamma_P(Q)$, is given by

set
$$P$$
, $\gamma_P(Q)$, is given by
$$\gamma_P(Q)=\frac{\sum_{i=1}^N|\underline{P}Q_i|}{|\mathbb{U}|}\leq 1$$

 This approximation (for set X) is the number of objects on attribute set P can be positively identified as belonging to target set Q_i

- ➤ A reduct is a sufficient set of features which by itself can fully characterize the knowledge in the database
- Produce same equivalence class structure as that expressed by the full attribute set $[x]_{RED} = [x]_P$
- > It is minimal $[x]_{(RED-A)} \neq [x]_P \ \forall A \in RED$
- ➤ It is not unique

Core

- ➤ Core is the set of attributes which is common to all reducts $CORE(P) = \cap RED(P)$
- Consists of attributes which cannot be removed without causing collapse of the equivalence class structure
- > It may be empty
- > May be thought of as the set of necessary attributes

Decision System

The information system is given as decision table.

a'	b'	c'	d'	D
M	L	3	M	1
M	L	1	H	1
L	L	1	M	1
L	R	3	M	2
M	R	2	M	2
L	R	3	L	3
H	R	3	L	3
H	N	3	L	3

- A decision table contains attributes and entries.
- The attributes are of two types 1.decision attribute
 2.Condition attribute

Discernibility Matrix

Discernibility matrix is defined as:

$$M_{ij} = \{a \in A : a(x_i) \neq a(x_j)\}$$
 for i, j = 1, 2,, n.

a'	b'	c'	d'	D
M	L	3	M	1
M	L	1	H	1
L	L	1	M	1
L	R	3	M	2
M	R	2	M	2
L	R	3	L	3
H	R	3	L	3
H	N	3	L	3

Discernibility matrix

a'	b'	c'	ď'	D
M	L	3	M	1
M	L	1	H	1
L	L	1	M	1
L	R	3	M	2
M	R	2	M	2
L	R	3	L	3
H	R	3	L	3
H	N	3	L	3

> the discernibility matrix is:

	a'b'	b'c'	a'b'd'	a'b'd'	a'b'd'
	b'c'd'	b'c'd'	a'b'c'd'	a'b'c'd'	a'b'c'd'
	b'c'	a'b'c'	b'c'd'	a'b'c'd'	a'b'c'd'
			d'	a'd'	a'b'd'
			a'c'd'	a'c'd'	a'b'c'd'

- \succ The entry (4,3) contains minimum number of attributes.
- > The attribute in this entry is d', which is called core attribute.

Reduct(NP-Complete)

- Reduct gives the minimal subset of attributes, for which essential properties of the information system are preserved.
- Core attributes are discarded from the attribute set, which gives {a',b',c'}.

Quick Reduct Calculation Algorithm

- Algorithm. QuickReduct
- **Input:** C, the set of all conditional features
- **Input:** D, the set of all decisional features
- Output: R, a feature subset
- 1. $T := \{ \}, \mathbb{R} := \{ \}$
- 2. repeat
- 3. T:= \mathbb{R}
- 4. $\forall x \in (\mathbb{C} \mathbb{R})$
- 5. if $\gamma_{RU}(D) > \gamma_T(D)$
- 6. T : = $\mathbb{R} \cup \{x\}$
- 7. $\Re := \mathbb{T}$
- 8. until $\gamma_R(D) = \gamma_C(D)$
- 9. return R

Core =
$$\{d'\}$$

Non-Core = $\{a', b', c'\}$

Frequency of non-core attributes in discernibility matrix:

a':15 b':17 c':14

According to Order of importance:

Non-Core {b', a', c'}

ď'

M

Н

Μ

M

M

T.

L

L

N

M

L

Η

H

D

1

1

3

3

Applying QuickReduct algorit

$$RED = Core = d'$$

$$[x]D = \{1, 2, 3\}, \{4, 5\}, \{6, 7, 8\}$$

To compute $\gamma_T(D)$

$$T = \{d'\}.$$
 So $[X]T = \{1,3,4,5\}, \{2\},\{6,7,8\}$

When
$$X = \{1,2,3\}, POS(X) = \{2\}$$

When
$$X = \{4,5\}, POS(X) = NIL$$

When
$$X = \{6,7,8\}, POS(X) = \{6,7,8\}$$

So,
$$\gamma_{T}(D) = |\{2,6,7,8\}|/|U| = 4/8 = 0.5$$

a'	b'	c'	d'	D
M	L	3	M	1
M	L	1	H	1
L	L	1	M	1
L	R	3	M	2
M	R	2	M	2
L	R	3	L	3
H	R	3	L	3
H	N	3	L	3

$$[x]D = \{1, 2, 3\}, \{4, 5\}, \{6, 7, 8\}$$

To compute $\gamma_{RU\{X\}}(D)$

So [X]d' U b' =
$$\{1,3\},\{2\},\{4,5\},\{6,7\},\{8\}\}$$

When
$$X = \{1,2,3\}$$
, $POS(X) = \{1,2,3\}$

When
$$X = \{4,5\}$$
, $POS(X) = \{4,5\}$

When
$$X = \{6,7,8\}, POS(X) = \{6,7,8\}$$

So,
$$\gamma_{RU\{X\}}(D) = |\{1,2,3,4,5,6,7,8\}|/|U| = 8/8 = 1.0$$

$$\gamma_{RU\{X\}}(D) > \gamma_T(D)$$
 and $\gamma_{RU\{X\}}(D) = 1.0$

a'	b'	c'	ď'	D
M	L	3	M	1
M	L	1	H	1
L	L	1	M	1
L	R	3	M	2
M	R	2	M	2
L	R	3	L	3
H	R	3	L	3
H	N	3	L	3

After the termination of QuickReduct algorithm:

Non-Core =
$$\{a', c'\}$$

Repeat the algorithm with Core = {d'}

[X]d' U a' =
$$\{1,5\},\{2\},\{3,4\},\{6\},\{7,8\}$$

When
$$X = \{1,2,3\}, POS(X) = \{2\}$$

When
$$X = \{4,5\}$$
, $POS(X) = NIL$

When
$$X = \{6,7,8\}, POS(X) = \{6,7,8\}$$

So,
$$\gamma_{RU\{X\}}(D) = |\{2,6,7,8\}|/|U| = 4/8 = 0.5$$

$$\gamma_{RU\{X\}}(D) >= \gamma_T(D)$$
 so $R = \{d', a'\}$

```
Now, Non-Core = \{c'\}
Next Iteration:
[X]d' U a' U c' = \{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{7,8\}
When X = \{1,2,3\}, POS(X) = \{1,2,3\}
When X = \{4,5\}, POS(X) = \{4,5\}
When X = \{6,7,8\}, POS(X) = \{6,7,8\}
So, \gamma_{RU}(D) = |\{1,2,3,4,5,6,7,8\}|/|U| = 8/8 = 1.0
\gamma_{RU}(X)(D) >= \gamma_T(D) and \gamma_{RU}(X)(D) = 1.0
\Rightarrow{d', a', c'} is a reduct
Also, Non-Core set is empty => terminate the process
```

a'	b'	c'	d'	D
M	L	3	M	1
M	L	1	H	1
L	L	1	M	1
L	R	3	M	2
M	R	2	M	2
L	R	3	L	3
H	R	3	L	3
H	N	3	L	3

```
So, two possible reducts are: {b', d'} and {a',c',d'}
```

CLASSIFICATION

- The category representations discussed above are all extensional in nature; that is, a category or complex class is simply the sum of all its members.
- To represent a category is, then, just to be able to list or identify all the objects belonging to that category.
- However, extensional category representations have very limited practical use, because they provide no insight for deciding whether novel objects are members of the category.

- What is generally desired is an intentional description of the category, a representation of the category based on a set of rules that describe the scope of the category.
- The choice of such rules is not unique. There is a few rule-extraction methods. We will start from a rule-extraction procedure based on Ziarko & Shan (1995).

- Let us say that we wish to find the minimal set of consistent rules called logical implications that characterize our sample system.
- For a set of *condition* attributes $\mathcal{P} = \{P_1, P_2, P_3, \dots, P_n\}$ and a decision attribute $Q, Q \notin \mathcal{P}$, these rules should have the form, $P_i^a P_j^b \dots P_k^c \to Q^d$ or spelled out, $(P_i = a) \land (P_j = b) \land \dots \land (P_k = c) \to (Q = d)$

• where $\{a, b, c, \ldots\}$ are legitimate values from the domains of their respective attributes.

- This is a form typical of association rules, and the number of items in U which match the condition/antecedent is called the support for the rule.
- The method for extracting such rules given in Ziarko & Shan (1995) is to form a decision matrix corresponding to each individual value d of decision attribute Q.

Sample Information System

Obj ect	P_1	P_2	P_3	P_4	P_5
O_1	1	2	0	1	1
O_2	1	2	0	1	1
O_3	2	0	0	1	0
O_4	0	0	1	2	1
O_5	2	1	0	2	1
O_6	0	0	1	2	2
O_7	2	0	0	1	0
O_8	0	1	2	2	1
O_9	2	1	0	2	2
O_{10}	2	0	0	1	0

- Informally, the decision matrix for value d of decision attribute Q lists all attribute—value pairs that differ between objects having Q = d and $Q \neq d$.
- Example Consider the table above, and let P_4 be the decision variable and $\{P_1, P_2, P_3\}$ be the condition variables.
- We note that the decision variable P_4 takes on two different values, namely $\{1,2\}$. We treat each case separately.

- First, we look at the case P_4 = 1, and we divide up into objects that have P_4 = 1 and those that have $P_4 \neq 1$
- The objects having $P_4 = 1$ are $\{O_1, O_2, O_3, O_7, O_{10}\}$ while the objects which have $P_4 \neq 1$ are $\{O_4, O_5, O_6, O_8, O_9\}$.
- The decision matrix for P_4 = 1 lists all the differences between the objects having P_4 = 1 and those having $P_4 \neq 1$
- Thus, the decision matrix lists all the differences between $\{O_1, O_2, O_3, O_7, O_{10}\}$ and $\{O_4, O_5, O_6, O_8, O_9\}$.

Decision matrix

Obj ect	D	D	D	D	D	
ect	1 1	1 2	P_3	P_4	P_5	
O_1	1	2	0	1	1	
O_2	1	2	0	1	1	
O_3	2	0	0	1	0	
O_4	0	0	1	2	1	
O_5	2	1	0	2	1	
O_6	0	0	1	2	2	
O_7	2	0	0	1	0	
O_8	0	1	2	2	1	
O_9	2	1	0	2	2	
0	2	0	Λ	1	0	

Decision matrix for $P_4 = 1$

Object	O_4	<i>O</i> ₅	<i>O</i> ₆	0 8 010 2	ُ وُں
o_1	P_1^1, P_2^2, P_3^0	P_1^1, P_2^2	P_1^1, P_2^2, P_3^0	P_1^1, P_2^2, P_3^0	P_1^1, P_2^2
02	P_1^1, P_2^2, P_3^0	P_1^1, P_2^2	P_1^1, P_2^2, P_3^0	P_1^1, P_2^2, P_3^0	P_1^1, P_2^2
<i>O</i> ₃	P_1^2, P_3^0	P_{2}^{0}	P_1^2, P_3^0	P_1^2, P_2^0, P_3^0	P_2^0
<i>O</i> ₇	P_1^2, P_3^0	P_{2}^{0}	P_1^2, P_3^0	P_1^2, P_2^0, P_3^0	P_2^0
<i>O</i> ₁₀	P_1^2, P_3^0	P_2^0	P_1^2, P_3^0	P_1^2, P_2^0, P_3^0	P_2^0

 Thus, for the above table we have the following five Boolean expressions:

$$\begin{cases} (P_1^1 \vee P_2^2 \vee P_3^0) \wedge (P_1^1 \vee P_2^2) \wedge (P_1^1 \vee P_2^2 \vee P_3^0) \wedge (P_1^1 \vee P_2^2 \vee P_3^0) \wedge (P_1^1 \vee P_2^2) \\ (P_1^1 \vee P_2^2 \vee P_3^0) \wedge (P_1^1 \vee P_2^2) \wedge (P_1^1 \vee P_2^2 \vee P_3^0) \wedge (P_1^1 \vee P_2^2 \vee P_3^0) \wedge (P_1^1 \vee P_2^2) \\ (P_1^2 \vee P_3^0) \wedge (P_2^0) \wedge (P_1^2 \vee P_3^0) \wedge (P_1^2 \vee P_2^0 \vee P_3^0) \wedge (P_2^0) \\ (P_1^2 \vee P_3^0) \wedge (P_2^0) \wedge (P_1^2 \vee P_3^0) \wedge (P_1^2 \vee P_2^0 \vee P_3^0) \wedge (P_2^0) \\ (P_1^2 \vee P_3^0) \wedge (P_2^0) \wedge (P_1^2 \vee P_3^0) \wedge (P_1^2 \vee P_2^0 \vee P_3^0) \wedge (P_2^0) \\ (P_1^2 \vee P_3^0) \wedge (P_2^0) \wedge (P_1^2 \vee P_3^0) \wedge (P_1^2 \vee P_2^0 \vee P_3^0) \wedge (P_2^0) \end{cases}$$

statement, corresponding to object O_{10} , states that all the following must be satisfied:

- 1. Either P_1 must have value 2, or P_3 must have value 0, or both
- 2. P_2 must have value 0.
- 3. Either P_1 must have value 2, or P_3 must have value 0, or both
- 4. Either P_1 must have value 2, or P_2 must have value 0, or P_3 must have value 0, or any combination thereof.
- 5. P_2 must have value 0.

 It is clear that there is a large amount of redundancy here, and the next step is to simplify using traditional Boolean algebra. The statement

$$(P_1^1 \vee P_2^2 \vee P_3^0) \wedge (P_1^1 \vee P_2^2) \wedge (P_1^1 \vee P_2^2 \vee P_3^0) \wedge (P_1^1 \vee P_2^2 \vee P_3^0) \wedge (P_1^1 \vee P_2^2)$$

• Corresponding to objects $\{O_1,O_2\}$ simplifies to $P_1^1 \vee P_2^2$, which yields the implication

$$(P_1 = 1) \lor (P_2 = 2) \to (P_4 = 1)$$

Similarly, the statement

$$(P_1^2 \vee P_3^0) \wedge (P_2^0) \wedge (P_1^2 \vee P_3^0) \wedge (P_1^2 \vee P_2^0 \vee P_3^0) \wedge (P_2^0) \\ \text{corresponding to objects } \{O_3, O_7, O_{10}\} \text{ simplifies to } \\ \text{to } P_1^2 P_2^0 \vee P_3^0 P_2^0$$

This gives the implication

$$(P_1 = 2 \land P_2 = 0) \lor (P_3 = 0 \land P_2 = 0) \to (P_4 = 1)$$