- 2-1. 二次元流れにおける吹出しで $r=r_o$ の速度を V_o として x 軸上の圧力係数を求めよ.
- 2-2. 吹出し流量が Q で吹出し点が原点にあり、さらに x 軸に平行な速度 U の流れがこれに加わった場合、この組み合わされた流れの岐点を通る流線は $\psi=Q/2$ であることを証明せよ.
- 2-3. 図に示す二次元ディフューザ内を流量 $20cm^3/s$ の空気が流れている。いま空気の密度を $1.204kg/m^3$ として次の値を求めよ。(1) もし流れがポテンシャル流れとすればどういう型の 流れか。(2) ポテンシャル流れとして A 点における速度を求めよ。(3) A 点における圧力勾配 を求めよ。(3) 一次元の流れと仮定したときの A 点の速度を求めよ。
- 2-4. 強さ m の吹き出しが $(-a,\ 0)$ に,同じ強さの吸い込みが $(a,\ 0)$ にあるときの流線の式を求めよ.
- 2-5. 吹き出しの強さ $m=Q/2\pi=60cm^2/s$ の吹き出し点が $x=2cm,\ y=0$ 点にあり,それ と同じ強度の吹き出し点が $x=-2cm,\ y=0$ の点にあるとき,次の値を求めよ.(1) 岐点,(2) 流線と等ポテンシャル線を描け.(3) $x=2cm,\ y=3cm$ 点の合速度の大きさと方向を求めよ.(4) 無限遠点の圧力を $12kgfcm^2$ とすれば $x=2cm,\ y=3cm$ 点の圧力はいくらか.ただし流体の密度を $0.01kgs^2/cm^4$ とする.
- 2-6. (1) 二次元の渦流れにおいて,速度成分が $u=4y,\ v=2x$ なる流れは理論上存在しうるか. (2) その流れの流線を求めよ. (3) 直線 $y=1,\ y=3,\ x=2,\ x=5$ で区切られた長方形のまわりの循環値を求めよ.
- 2-7. 速度成分が $u=x+y,\ v=x^2+y$ で表される流れにおいて $x=\pm 1,\ y=\pm 1$ の直線からなる正方形の回りの循環値を求めよ.

æ