Week #2: Data Properties with Plots

Amir Fawwaz

June 8, 2023

1 Overview

In week #1, you have learnt on how to read and inspect basic properties of your data. Now, let's explore about data distribution using matplotlib and seaborn package.

1.1 Sample

Image you have data tabulated like table below.

	work_year	experience_le	vel employment	_type		job_title \	
0	2023		SE	FT	Principal Dat	a Scientist	
1	2023		MI	CT		ML Engineer	
2	2023		MI	CT	ML Engineer		
3	2023		SE	FT Da ⁻		a Scientist	
4	2023		SE	FT	T Data Scientist		
	salary sal	lary_currency	salary_in_usd	emplo	yee_residence	remote_ratio	\
0	80000	EUR	85847	•	ES	100	
1	30000	USD	30000)	US	100	
2	25500	USD	25500)	US	100	
3	175000	USD	175000)	CA	100	
4	120000	USD	120000)	CA	100	
company_location company_size							
0		ES	L				
1		US	S				
2		US	S				
3		CA	M				
4		CA	M				

Now let's investigate salary distribution with histogram and density plot

Note: What is density plot? What does it show us?

How about average salaries according to company size, experience level and others.

How many people working remotely compare on on-site?

Percentage of Remote Workers

1.2 Task 1

Library package to use:

- matplotlib
- seaborn
- plotly (optional, but you can try to explore)

Plot to explore:

- pie chart
- histogram
- density plot
- multiple plot

Data to use:

- Coffee Quality Data
- Bank Customer Churn
- Mushrooms images classification 215
- 5 Flower Types
- Headgear 20 classes-Image
- Chest CT-Scan
- Store Sales
- IceCube Experiment
- Cervical Spine Fracture
- Great Barrier Reef

Note: Some of the dataset are very big (> 1 GB). Please download accordingly

1.3 Task 2

From Task of week #1 using the this data, do the following:

- seperate the image according to type
- plot suitable plot to describe the dataset (e.g. is the total number of image the same for both type? are all the image same size?
- \bullet add external images to the dataset & re-plot. Observed the data distribution.