Chapter 4

Homogeneous Functions and Euler's Theorem

4.1 Homogeneous Functions

Definition of Homogeneous Functions

A function f(x,y) is called **homogeneous of degree** n if for any $t \neq 0$:

$$f(tx, ty) = t^n f(x, y) \tag{4.1}$$

In other words, when all variables are multiplied by the same factor t, the function's value is multiplied by t^n .

Standard Form of Homogeneous Function

An expression of the form:

$$f(x,y) = a_0 x^n + a_1 x^{n-1} y + a_2 x^{n-2} y^2 + \dots + a_n y^n$$
(4.2)

where all terms have the same total degree n, is a homogeneous function of degree n.

Alternative Forms of Homogeneous Functions

A homogeneous function f(x, y) of degree n can always be written in the following equivalent forms:

Form 1: Using x as a factor

$$f(x,y) = x^n \phi\left(\frac{y}{x}\right) \tag{4.3}$$

where $\phi(u) = f(1, u)$ with $u = \frac{y}{x}$.

Form 2: Using y as a factor

$$f(x,y) = y^n \psi\left(\frac{x}{y}\right) \tag{4.4}$$

where $\psi(v) = f(v, 1)$ with $v = \frac{x}{y}$.

Verification: Setting $t = \frac{1}{x}$ in the homogeneity condition $f(tx, ty) = t^n f(x, y)$:

$$f(1, \frac{y}{x}) = \left(\frac{1}{x}\right)^n f(x, y) \tag{4.5}$$

$$\Rightarrow f(x,y) = x^n f\left(1, \frac{y}{x}\right) = x^n \phi\left(\frac{y}{x}\right) \tag{4.6}$$

Similarly, setting $t = \frac{1}{y}$ gives the second form.

Testing for Homogeneity Using Substitution

For any homogeneous function f(x, y) of degree n, replacing x with tx and y with ty yields:

$$f(tx, ty) = a_0(tx)^n + a_1(tx)^{n-1}(ty) + \dots + a_n(ty)^n$$
(4.7)

$$= t^{n}[a_{0}x^{n} + a_{1}x^{n-1}y + \ldots + a_{n}y^{n}]$$
(4.8)

$$=t^n f(x,y) \tag{4.9}$$

This property provides a quick test for checking if a function is homogeneous.

Examples of Homogeneous Functions

Let's examine some functions to understand homogeneity:

Example 1: $f(x,y) = x^3y^2 + 2xy^4$

If we substitute tx for x and ty for y:

$$f(tx, ty) = (tx)^{3}(ty)^{2} + 2(tx)(ty)^{4}$$
(4.10)

$$= t^3 x^3 \cdot t^2 y^2 + 2tx \cdot t^4 y^4 \tag{4.11}$$

$$=t^5(x^3y^2+2xy^4) (4.12)$$

$$=t^5 f(x,y) \tag{4.13}$$

Therefore, f(x,y) is homogeneous of degree 5. **Example 2:** $f(x,y) = \frac{x^2+y^2}{xy}$

Substituting tx for x and ty for y:

$$f(tx, ty) = \frac{(tx)^2 + (ty)^2}{(tx)(ty)}$$
(4.14)

$$=\frac{t^2x^2+t^2y^2}{t^2xy}\tag{4.15}$$

$$=\frac{t^2(x^2+y^2)}{t^2(xy)}\tag{4.16}$$

$$=\frac{x^2+y^2}{xy}$$
 (4.17)

$$= f(x,y) \tag{4.18}$$

Therefore, f(x, y) is homogeneous of degree 0.

Example 3: $f(x,y) = x^2 + y$ is not homogeneous as the terms have different degrees.

Functions of Homogeneous Expressions

Not all functions containing homogeneous expressions are themselves homogeneous:

Example 1: Consider $f(x,y) = \sin\left(\frac{x^2+y^2}{x+y}\right)$

The expression $\frac{x^2+y^2}{x+y}$ is homogeneous of degree 1, since:

$$\frac{(tx)^2 + (ty)^2}{(tx) + (ty)} = \frac{t^2(x^2 + y^2)}{t(x+y)} = t\frac{x^2 + y^2}{x+y}$$
(4.19)

However, f(x,y) itself is not homogeneous because the sine function disrupts the scaling property.

Example 2: The function $g(x,y) = \log(\frac{y}{x})$ is homogeneous of degree 0:

$$g(tx, ty) = \log\left(\frac{ty}{tx}\right) \tag{4.20}$$

$$= \log\left(\frac{y}{r}\right) \tag{4.21}$$

$$=g(x,y) \tag{4.22}$$

4.2 Euler's Theorem on Homogeneous Functions

Euler's Theorem for Two Variables

If f(x,y) is a homogeneous function of degree n, then:

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf(x, y) \tag{4.23}$$

Proof of Euler's Theorem

Let f(x,y) be a homogeneous function of degree n. Then by definition:

$$f(tx, ty) = t^n f(x, y) \tag{4.24}$$

Differentiating both sides with respect to t:

$$\frac{\partial f}{\partial x} \cdot x + \frac{\partial f}{\partial y} \cdot y = n \cdot t^{n-1} \cdot f(x, y) \tag{4.25}$$

Setting t = 1:

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = n \cdot f(x, y) \tag{4.26}$$

This proves Euler's theorem.

Application: Verifying Homogeneity

Euler's theorem provides an alternative method to verify whether a function is homogeneous.

For example, given $f(x,y) = x^2y + xy^2$:

1. Calculate the partial derivatives:

$$\frac{\partial f}{\partial x} = 2xy + y^2 \tag{4.27}$$

$$\frac{\partial f}{\partial y} = x^2 + 2xy \tag{4.28}$$

2. Compute $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$:

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = x(2xy + y^2) + y(x^2 + 2xy)$$
(4.29)

$$=2x^2y + xy^2 + x^2y + 2xy^2 (4.30)$$

$$=3x^2y + 3xy^2 (4.31)$$

$$=3(x^2y + xy^2) (4.32)$$

$$=3f(x,y) \tag{4.33}$$

Since $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 3f(x, y)$, we confirm that f(x, y) is homogeneous of degree 3.

Euler's Theorem for n Variables

If $f(x_1, x_2, ..., x_n)$ is homogeneous of degree k, then:

$$x_1 \frac{\partial f}{\partial x_1} + x_2 \frac{\partial f}{\partial x_2} + \ldots + x_n \frac{\partial f}{\partial x_n} = k \cdot f(x_1, x_2, \ldots, x_n)$$

$$(4.34)$$

4.3 Applications and Extensions of Euler's Theorem

Deduction 1: Second-Order Homogeneous Functions

If z = f(x, y) is a homogeneous function of degree n, then:

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n(n-1)z$$

$$(4.35)$$

Proof of Deduction 1

From Euler's theorem, we have:

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = nz\tag{1}$$

Differentiating equation (1) with respect to x:

$$\frac{\partial z}{\partial x} + x \frac{\partial^2 z}{\partial x^2} + y \frac{\partial^2 z}{\partial y \partial x} = n \frac{\partial z}{\partial x}$$
(4.36)

Rearranging:

$$x\frac{\partial^2 z}{\partial x^2} + y\frac{\partial^2 z}{\partial y \partial x} = (n-1)\frac{\partial z}{\partial x}$$
 (2)

Similarly, differentiating equation (1) with respect to y:

$$x\frac{\partial^2 z}{\partial x \partial y} + y\frac{\partial^2 z}{\partial y^2} = (n-1)\frac{\partial z}{\partial y}$$
(3)

Multiplying equation (2) by x and equation (3) by y, and adding them:

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + xy \frac{\partial^{2} z}{\partial y \partial x} + xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = (n-1) \left(x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} \right)$$
(4.37)

Using the equality of mixed partial derivatives $\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial x \partial y}$ and substituting from equation (1):

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = (n-1)(nz)$$

$$(4.39)$$

$$= n(n-1)z \tag{4.40}$$

Thus, the result is proved.

Deduction 2: Homogeneous Functions and Transformations

If z = f(u) where u = g(x, y) is a homogeneous function of degree n, then:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = n\frac{g(u)}{f'(u)} \tag{4.41}$$

Further, if we define $h(u) = n \frac{g(u)}{f'(u)}$, then:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = h(u)[h'(u) - 1]$$

$$(4.42)$$

Applying Euler's Theorem

Consider the function $f(x,y) = \frac{x^3y^2}{x^2+y^2}$.

To determine if it's homogeneous and find its degree:

1. Test for homogeneity:

$$f(tx,ty) = \frac{(tx)^3(ty)^2}{(tx)^2 + (ty)^2}$$
(4.43)

$$=\frac{t^3x^3 \cdot t^2y^2}{t^2(x^2+y^2)} \tag{4.44}$$

$$=\frac{t^5x^3y^2}{t^2(x^2+y^2)}\tag{4.45}$$

$$=t^3 \frac{x^3 y^2}{x^2 + y^2} \tag{4.46}$$

$$=t^3f(x,y) (4.47)$$

So f(x, y) is homogeneous of degree 3.

2. Verify using Euler's theorem:

$$\frac{\partial f}{\partial x} = \frac{3x^2y^2(x^2 + y^2) - x^3y^2 \cdot 2x}{(x^2 + y^2)^2} \tag{4.48}$$

$$=\frac{3x^2y^2(x^2+y^2)-2x^4y^2}{(x^2+y^2)^2}$$
(4.49)

$$\frac{\partial f}{\partial y} = \frac{x^3 \cdot 2y(x^2 + y^2) - x^3y^2 \cdot 2y}{(x^2 + y^2)^2} \tag{4.50}$$

$$=\frac{2x^3y(x^2+y^2)-2x^3y^3}{(x^2+y^2)^2}$$
(4.51)

(4.52)

Computing $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$ and simplifying (steps omitted for brevity) should yield 3f(x,y), confirming that the function is homogeneous of degree 3.

Exercise

Determine whether the following functions are homogeneous. If so, find their degree and verify using Euler's theorem:

1.
$$f(x,y) = x^4 - 2x^2y^2 + y^4$$
 2. $g(x,y) = \frac{x-y}{x+y}$ 3. $h(x,y) = x^3 + y^2$ 4. $k(x,y) = e^{x/y}$ 5. $m(x,y,z) = \frac{xyz}{x+y+z}$

Answers to Exercise

1. $f(x,y) = x^4 - 2x^2y^2 + y^4$

Testing for homogeneity:

$$f(tx, ty) = (tx)^4 - 2(tx)^2(ty)^2 + (ty)^4$$
(4.53)

$$= t^4 x^4 - 2t^4 x^2 y^2 + t^4 y^4 \tag{4.54}$$

$$= t^4(x^4 - 2x^2y^2 + y^4) (4.55)$$

$$=t^4 f(x,y) \tag{4.56}$$

Therefore, f(x,y) is homogeneous of degree 4.

2. $g(x,y) = \frac{x-y}{x+y}$ Testing for homogeneity:

$$g(tx, ty) = \frac{tx - ty}{tx + ty} \tag{4.57}$$

$$=\frac{t(x-y)}{t(x+y)}\tag{4.58}$$

$$=\frac{x-y}{x+y}\tag{4.59}$$

$$=g(x,y) \tag{4.60}$$

Therefore, g(x, y) is homogeneous of degree 0.

3. $h(x,y) = x^3 + y^2$

The terms have different degrees (3 and 2), so h(x, y) is not homogeneous.

4. $k(x,y) = e^{x/y}$

Testing for homogeneity:

$$k(tx, ty) = e^{tx/ty} (4.61)$$

$$=e^{x/y} (4.62)$$

$$=k(x,y) \tag{4.63}$$

Therefore, k(x, y) is homogeneous of degree 0.

5. $m(x, y, z) = \frac{xyz}{x+y+z}$ Testing for homogeneity:

$$m(tx, ty, tz) = \frac{(tx)(ty)(tz)}{tx + ty + tz}$$

$$(4.64)$$

$$= \frac{t^3 xyz}{t(x+y+z)}$$

$$= t^2 \frac{xyz}{x+y+z}$$
(4.65)

$$=t^2 \frac{xyz}{x+y+z} \tag{4.66}$$

$$= t^2 m(x, y, z) (4.67)$$

Therefore, m(x, y, z) is homogeneous of degree 2.

4.4 Solved Examples

Example: Homogeneous Function and Euler's Theorem

If
$$u = \frac{\sqrt{x^7 + y^7}}{4\sqrt{x^4 + y^4}} + \cos\left[\frac{xy + y^2}{4xy}\right] + \log\left(\frac{x}{y}\right)$$

Then find the value of: $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$

Detailed Solution

Step 1: Let's analyze the function u term by term to identify whether it's homogeneous and its degree.

We have $u = u_1 + u_2 + u_3$, where:

$$u_1 = \frac{\sqrt{x^7 + y^7}}{4\sqrt{x^4 + y^4}} \tag{4.68}$$

$$u_2 = \cos\left[\frac{xy + y^2}{4xy}\right] \tag{4.69}$$

$$u_3 = \log\left(\frac{x}{y}\right) \tag{4.70}$$

For u_1 , let's check if it's homogeneous by substituting (tx, ty) for (x, y):

$$u_1(tx, ty) = \frac{\sqrt{(tx)^7 + (ty)^7}}{4\sqrt{(tx)^4 + (ty)^4}}$$
(4.71)

$$=\frac{\sqrt{t^7x^7+t^7y^7}}{4\sqrt{t^4x^4+t^4y^4}}\tag{4.72}$$

$$=\frac{\sqrt{t^7(x^7+y^7)}}{4\sqrt{t^4(x^4+y^4)}}\tag{4.73}$$

$$=\frac{t^{7/2}\sqrt{x^7+y^7}}{4\cdot t^{4/2}\sqrt{x^4+y^4}}\tag{4.74}$$

$$=\frac{t^{3.5}}{t^2} \cdot \frac{\sqrt{x^7 + y^7}}{4\sqrt{x^4 + y^4}} \tag{4.75}$$

$$= t^{1.5} \cdot u_1(x, y) \tag{4.76}$$

So u_1 is homogeneous of degree $\frac{3}{2}$.

For u_2 , let's examine the argument inside the cosine:

$$\frac{(tx)(ty) + (ty)^2}{4(tx)(ty)} = \frac{t^2xy + t^2y^2}{4t^2xy}$$
(4.77)

$$=\frac{t^2(xy+y^2)}{4t^2xy}\tag{4.78}$$

$$=\frac{xy+y^2}{4xy}\tag{4.79}$$

Since the argument doesn't change with t, and cosine is a function of this argument, we have:

$$u_2(tx, ty) = u_2(x, y) (4.80)$$

This means u_2 is homogeneous of degree 0. For u_3 :

$$u_3(tx, ty) = \log\left(\frac{tx}{ty}\right) \tag{4.81}$$

$$= \log\left(\frac{x}{y}\right) \tag{4.82}$$

$$= u_3(x, y) \tag{4.83}$$

So u_3 is also homogeneous of degree 0.

Step 2: Let's identify the expression we need to evaluate.

The given expression is:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$$

$$(4.84)$$

Notice that the first three terms constitute the left side of the extension of Euler's theorem for second derivatives:

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n(n-1)z$$

$$(4.85)$$

where z is a homogeneous function of degree n.

The last two terms constitute the left side of Euler's theorem:

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = nz \tag{4.86}$$

Step 3: Apply Euler's theorem to each component of u. For u_1 (homogeneous of degree $\frac{3}{2}$):

$$x^{2} \frac{\partial^{2} u_{1}}{\partial x^{2}} + 2xy \frac{\partial^{2} u_{1}}{\partial x \partial y} + y^{2} \frac{\partial^{2} u_{1}}{\partial y^{2}} = \frac{3}{2} \left(\frac{3}{2} - 1 \right) u_{1}$$
 (4.87)

$$= \frac{3}{2} \cdot \frac{1}{2} \cdot u_1 \tag{4.88}$$

$$= \frac{3}{4}u_1 \tag{4.89}$$

And:

$$x\frac{\partial u_1}{\partial x} + y\frac{\partial u_1}{\partial y} = \frac{3}{2}u_1 \tag{4.90}$$

For u_2 (homogeneous of degree 0):

$$x^{2} \frac{\partial^{2} u_{2}}{\partial x^{2}} + 2xy \frac{\partial^{2} u_{2}}{\partial x \partial y} + y^{2} \frac{\partial^{2} u_{2}}{\partial y^{2}} = 0 \cdot (0 - 1) \cdot u_{2}$$

$$(4.91)$$

$$= 0 \tag{4.92}$$

And:

$$x\frac{\partial u_2}{\partial x} + y\frac{\partial u_2}{\partial y} = 0 \cdot u_2 \tag{4.93}$$

$$=0 (4.94)$$

For u_3 (homogeneous of degree 0):

$$x^{2} \frac{\partial^{2} u_{3}}{\partial x^{2}} + 2xy \frac{\partial^{2} u_{3}}{\partial x \partial y} + y^{2} \frac{\partial^{2} u_{3}}{\partial y^{2}} = 0 \cdot (0 - 1) \cdot u_{3}$$

$$(4.95)$$

$$=0 (4.96)$$

And:

$$x\frac{\partial u_3}{\partial x} + y\frac{\partial u_3}{\partial y} = 0 \cdot u_3 \tag{4.97}$$

$$=0 (4.98)$$

Step 4: Combine the results for the complete function u. Since $u = u_1 + u_2 + u_3$, and the differential operators are linear:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \frac{3}{4} u_{1} + 0 + 0$$

$$(4.99)$$

$$= \frac{3}{4}u_1 \tag{4.100}$$

And:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{3}{2}u_1 + 0 + 0 \tag{4.101}$$

$$= \frac{3}{2}u_1 \tag{4.102}$$

Therefore, the value of the given expression is:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{3}{4} u_{1} + \frac{3}{2} u_{1}$$

$$(4.103)$$

$$= \left(\frac{3}{4} + \frac{3}{2}\right) u_1 \tag{4.104}$$

$$=\frac{3}{4} + \frac{6}{4}u_1\tag{4.105}$$

$$= \frac{9}{4}u_1 \tag{4.106}$$

$$= \frac{9}{4} \cdot \frac{\sqrt{x^7 + y^7}}{4\sqrt{x^4 + y^4}} \tag{4.107}$$

$$=\frac{9\sqrt{x^7+y^7}}{16\sqrt{x^4+y^4}}\tag{4.108}$$

Final Answer: The value of the given expression is

$$\frac{9\sqrt{x^7 + y^7}}{16\sqrt{x^4 + y^4}}$$

Example 2: Euler's Theorem Application

If
$$T = \sin\left(\frac{xy}{x^2+y^2}\right) + \sqrt{x^2+y^2} + \frac{x^2y}{x+y}$$
, find the value of $x\frac{\partial T}{\partial x} + y\frac{\partial T}{\partial y}$.

Detailed Solution

Step 1: Let's analyze each term of T to check if it's homogeneous and determine its degree.

We have $T = T_1 + T_2 + T_3$, where:

$$T_1 = \sin\left(\frac{xy}{x^2 + y^2}\right) \tag{4.109}$$

$$T_2 = \sqrt{x^2 + y^2} \tag{4.110}$$

$$T_3 = \frac{x^2 y}{x + y} \tag{4.111}$$

For T_1 , let's examine the argument of the sine function:

$$\frac{(tx)(ty)}{(tx)^2 + (ty)^2} = \frac{t^2xy}{t^2(x^2 + y^2)}$$
(4.112)

$$=\frac{xy}{x^2+y^2} (4.113)$$

Since the argument doesn't change when we substitute (tx, ty) for (x, y), and sine is a

function of this argument, we have:

$$T_1(tx, ty) = T_1(x, y)$$
 (4.114)

So T_1 is homogeneous of degree 0. For T_2 :

$$T_2(tx, ty) = \sqrt{(tx)^2 + (ty)^2}$$
 (4.115)

$$=\sqrt{t^2(x^2+y^2)}\tag{4.116}$$

$$= |t|\sqrt{x^2 + y^2} \tag{4.117}$$

Since t > 0 in our context (scaling factor), T_2 is homogeneous of degree 1. For T_3 :

$$T_3(tx, ty) = \frac{(tx)^2(ty)}{(tx) + (ty)}$$
(4.118)

$$=\frac{t^3x^2y}{t(x+y)}$$
 (4.119)

$$=t^2 \frac{x^2 y}{x+y} {(4.120)}$$

$$= t^2 T_3(x, y) (4.121)$$

So T_3 is homogeneous of degree 2.

Step 2: Apply Euler's theorem to each component.

Recall Euler's theorem: If f(x,y) is homogeneous of degree n, then $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf(x,y)$. For T_1 (homogeneous of degree 0):

$$x\frac{\partial T_1}{\partial x} + y\frac{\partial T_1}{\partial y} = 0 \cdot T_1 = 0 \tag{4.122}$$

For T_2 (homogeneous of degree 1):

$$x\frac{\partial T_2}{\partial x} + y\frac{\partial T_2}{\partial y} = 1 \cdot T_2 = \sqrt{x^2 + y^2}$$

$$(4.123)$$

For T_3 (homogeneous of degree 2):

$$x\frac{\partial T_3}{\partial x} + y\frac{\partial T_3}{\partial y} = 2 \cdot T_3 = 2 \cdot \frac{x^2 y}{x + y} \tag{4.124}$$

Step 3: Combine the results for the complete function T.

Since $T = T_1 + T_2 + T_3$, and the differential operator is linear:

$$x\frac{\partial T}{\partial x} + y\frac{\partial T}{\partial y} = x\frac{\partial T_1}{\partial x} + y\frac{\partial T_1}{\partial y} + x\frac{\partial T_2}{\partial x} + y\frac{\partial T_2}{\partial y} + x\frac{\partial T_3}{\partial x} + y\frac{\partial T_3}{\partial y}$$
(4.125)

$$= 0 + \sqrt{x^2 + y^2} + 2\frac{x^2y}{x+y} \tag{4.126}$$

$$=\sqrt{x^2+y^2}+2\frac{x^2y}{x+y}\tag{4.127}$$

Final Answer: The value of
$$x \frac{\partial T}{\partial x} + y \frac{\partial T}{\partial y}$$
 is $\sqrt{x^2 + y^2} + 2 \frac{x^2 y}{x + y}$

Example 3: Euler's Theorem for Three Variables

If
$$u = \frac{xyz}{2x+y+z} + \log\left(\frac{x^2+y^2+z^2}{xy+yz}\right)$$
, find $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$.

Detailed Solution

Step 1: Let's analyze each term of u to determine if it's homogeneous and its degree. We have $u = u_1 + u_2$, where:

$$u_1 = \frac{xyz}{2x + y + z} \tag{4.128}$$

$$u_2 = \log\left(\frac{x^2 + y^2 + z^2}{xy + yz}\right) \tag{4.129}$$

For u_1 , let's substitute (tx, ty, tz) for (x, y, z):

$$u_1(tx, ty, tz) = \frac{(tx)(ty)(tz)}{2(tx) + (ty) + (tz)}$$
(4.130)

$$=\frac{t^3xyz}{t(2x+y+z)}$$
 (4.131)

$$=t^2 \frac{xyz}{2x+y+z} \tag{4.132}$$

$$= t^2 u_1(x, y, z) (4.133)$$

So u_1 is homogeneous of degree 2.

For u_2 , let's examine the argument of the logarithm:

$$\frac{(tx)^2 + (ty)^2 + (tz)^2}{(tx)(ty) + (ty)(tz)} = \frac{t^2(x^2 + y^2 + z^2)}{t^2(xy + yz)}$$
(4.134)

$$=\frac{x^2+y^2+z^2}{xy+yz}\tag{4.135}$$

Since the argument doesn't change when we substitute (tx, ty, tz) for (x, y, z), and logarithm is a function of this argument, we have:

$$u_2(tx, ty, tz) = u_2(x, y, z)$$
 (4.136)

So u_2 is homogeneous of degree 0.

Step 2: Apply Euler's theorem for three variables to each component.

Recall Euler's theorem for three variables: If f(x, y, z) is homogeneous of degree n, then:

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = nf(x, y, z) \tag{4.137}$$

For u_1 (homogeneous of degree 2):

$$x\frac{\partial u_1}{\partial x} + y\frac{\partial u_1}{\partial y} + z\frac{\partial u_1}{\partial z} = 2u_1 = 2\frac{xyz}{2x + y + z}$$

$$(4.138)$$

For u_2 (homogeneous of degree 0):

$$x\frac{\partial u_2}{\partial x} + y\frac{\partial u_2}{\partial y} + z\frac{\partial u_2}{\partial z} = 0u_2 = 0 \tag{4.139}$$

Step 3: Combine the results for the complete function u.

Since $u = u_1 + u_2$, and the differential operator is linear:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = \left(x\frac{\partial u_1}{\partial x} + y\frac{\partial u_1}{\partial y} + z\frac{\partial u_1}{\partial z}\right) + \left(x\frac{\partial u_2}{\partial x} + y\frac{\partial u_2}{\partial y} + z\frac{\partial u_2}{\partial z}\right)$$
(4.140)

$$=2\frac{xyz}{2x+y+z}+0\tag{4.141}$$

$$=2\frac{xyz}{2x+y+z}$$
 (4.142)

Final Answer: The value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$ is $2\frac{xyz}{2x+y+z}$

Example 4: Verifying a Relation with Euler's Theorem

If $f(x,y) = \frac{1}{x^2} + \frac{1}{xy} + \frac{\log x - \log y}{x^2 + y^2}$, then prove that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + 2f = 0$.

Detailed Solution

Step 1: Let's first determine if the function f(x, y) is homogeneous and its degree. We have $f = f_1 + f_2 + f_3$, where:

$$f_1 = \frac{1}{r^2} \tag{4.143}$$

$$f_2 = \frac{1}{xy} {(4.144)}$$

$$f_3 = \frac{\log x - \log y}{x^2 + y^2} \tag{4.145}$$

Let's check each term for homogeneity:

For f_1 :

$$f_1(tx, ty) = \frac{1}{(tx)^2} \tag{4.146}$$

$$=\frac{1}{t^2x^2} \tag{4.147}$$

$$=t^{-2}f_1(x,y) (4.148)$$

So f_1 is homogeneous of degree -2.

For f_2 :

$$f_2(tx, ty) = \frac{1}{(tx)(ty)}$$
 (4.149)

$$=\frac{1}{t^2xy} (4.150)$$

$$=t^{-2}f_2(x,y) (4.151)$$

So f_2 is also homogeneous of degree -2.

For f_3 , let's examine the numerator and denominator separately:

Numerator: $\log(tx) - \log(ty) = \log x + \log t - (\log y + \log t) = \log x - \log y$

Denominator: $(tx)^2 + (ty)^2 = t^2(x^2 + y^2)$

Therefore:

$$f_3(tx, ty) = \frac{\log(tx) - \log(ty)}{(tx)^2 + (ty)^2}$$
(4.152)

$$= \frac{\log x - \log y}{t^2(x^2 + y^2)} \tag{4.153}$$

$$= t^{-2} f_3(x, y) (4.154)$$

So f_3 is also homogeneous of degree -2.

Since all terms are homogeneous of the same degree -2, the entire function f(x,y) is homogeneous of degree -2.

Step 2: Apply Euler's theorem to a homogeneous function of degree -2.

According to Euler's theorem, if g(x,y) is homogeneous of degree n, then:

$$x\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial y} = ng(x, y) \tag{4.155}$$

In our case, f(x, y) is homogeneous of degree -2, so:

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = -2f(x,y) \tag{4.156}$$

Step 3: Rearrange to match the required form.

From the above equation, we get:

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = -2f(x,y) \tag{4.157}$$

$$\Rightarrow x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + 2f(x,y) = 0 \tag{4.158}$$

Thus, we have proven that $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + 2f = 0$.

Example 5: Euler's Theorem for Three Variables

If $u = \frac{xyz}{2x+y+z} + \log\left(\frac{x^2+y^2+z^2}{xy+yz}\right)$ then find the value of $xu_x + yu_y + zu_z$.

Detailed Solution

Step 1: Let's analyze each term of u to determine if it's homogeneous and its degree. We have $u = u_1 + u_2$, where:

$$u_1 = \frac{xyz}{2x + y + z} \tag{4.159}$$

$$u_2 = \log\left(\frac{x^2 + y^2 + z^2}{xy + yz}\right) \tag{4.160}$$

For u_1 , let's substitute (tx, ty, tz) for (x, y, z):

$$u_1(tx, ty, tz) = \frac{(tx)(ty)(tz)}{2(tx) + (ty) + (tz)}$$
(4.161)

$$=\frac{t^3xyz}{t(2x+y+z)}$$
 (4.162)

$$=t^2 \frac{xyz}{2x+y+z} {(4.163)}$$

$$= t^2 u_1(x, y, z) (4.164)$$

So u_1 is homogeneous of degree 2.

For u_2 , let's examine the argument of the logarithm:

$$\frac{(tx)^2 + (ty)^2 + (tz)^2}{(tx)(ty) + (ty)(tz)} = \frac{t^2(x^2 + y^2 + z^2)}{t^2(xy + yz)}$$
(4.165)

$$=\frac{x^2+y^2+z^2}{xy+yz}\tag{4.166}$$

Since the argument doesn't change when we substitute (tx, ty, tz) for (x, y, z), and logarithm is a function of this argument, we have:

$$u_2(tx, ty, tz) = u_2(x, y, z)$$
 (4.167)

So u_2 is homogeneous of degree 0.

Step 2: Apply Euler's theorem for three variables to each component.

According to Euler's theorem for three variables, if f(x, y, z) is homogeneous of degree n, then:

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = nf(x, y, z)$$
(4.168)

For u_1 (homogeneous of degree 2):

$$x\frac{\partial u_1}{\partial x} + y\frac{\partial u_1}{\partial y} + z\frac{\partial u_1}{\partial z} = 2u_1 = 2\frac{xyz}{2x + y + z}$$

$$(4.169)$$

For u_2 (homogeneous of degree 0):

$$x\frac{\partial u_2}{\partial x} + y\frac{\partial u_2}{\partial y} + z\frac{\partial u_2}{\partial z} = 0u_2 = 0 \tag{4.170}$$

Step 3: Combine the results for the complete function u.

Since $u = u_1 + u_2$, and the differential operator is linear:

$$xu_x + yu_y + zu_z = \left(x\frac{\partial u_1}{\partial x} + y\frac{\partial u_1}{\partial y} + z\frac{\partial u_1}{\partial z}\right) + \left(x\frac{\partial u_2}{\partial x} + y\frac{\partial u_2}{\partial y} + z\frac{\partial u_2}{\partial z}\right)$$
(4.171)

$$=2\frac{xyz}{2x+y+z}+0$$
 (4.172)

$$=2\frac{xyz}{2x+y+z} (4.173)$$

Final Answer: The value of $xu_x + yu_y + zu_z$ is $2\frac{xyz}{2x + y + z}$

Example 6: Verifying a Specific Relation Using Euler's Theorem

If $u = \sin^{-1}\left(\frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}\right)$ then show that $\frac{\partial u}{\partial x} + \frac{y}{x}\frac{\partial u}{\partial y} = 0$.

Detailed Solution

Step 1: First, let's check if the given function is homogeneous and determine its degree. Consider $u = \sin^{-1}\left(\frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}\right)$.

Let's substitute (tx, ty) for (x, y) and examine the argument of \sin^{-1} :

$$\frac{\sqrt{tx} - \sqrt{ty}}{\sqrt{tx} + \sqrt{ty}} = \frac{\sqrt{t}\sqrt{x} - \sqrt{t}\sqrt{y}}{\sqrt{t}\sqrt{x} + \sqrt{t}\sqrt{y}}$$
(4.174)

$$=\frac{\sqrt{t}(\sqrt{x}-\sqrt{y})}{\sqrt{t}(\sqrt{x}+\sqrt{y})}\tag{4.175}$$

$$=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\tag{4.176}$$

Since the argument remains unchanged when we replace (x, y) with (tx, ty), and \sin^{-1} is a function of this argument, we have:

$$u(tx, ty) = u(x, y) \tag{4.177}$$

This means u is homogeneous of degree 0.

Step 2: Apply Euler's theorem for homogeneous functions.

For a homogeneous function f(x,y) of degree n, Euler's theorem states:

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf(x, y) \tag{4.178}$$

Since u is homogeneous of degree 0, we have:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0 \cdot u = 0 \tag{4.179}$$

Step 3: Rearrange to match the required form.

From the equation above:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0 (4.180)$$

$$\Rightarrow \frac{\partial u}{\partial x} + \frac{y}{x} \frac{\partial u}{\partial y} = 0 \tag{4.181}$$

Final Answer: We have shown that $\frac{\partial u}{\partial x} + \frac{y}{x} \frac{\partial u}{\partial y} = 0$ using Euler's theorem for homogeneous functions of degree 0.

Example 7: Second-Order Extension of Euler's Theorem

If
$$z = x^n f\left(\frac{y}{x}\right) + y^{-n} \phi\left(\frac{x}{y}\right)$$
 then, prove that $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = n^2 z$

Detailed Solution

Step 1: Let's first determine if z is homogeneous and find its degree.

The function z consists of two terms:

$$z_1 = x^n f\left(\frac{y}{x}\right) \tag{4.182}$$

$$z_2 = y^{-n}\phi\left(\frac{x}{y}\right) \tag{4.183}$$

Let's check if z_1 is homogeneous by substituting (tx, ty) for (x, y):

$$z_1(tx, ty) = (tx)^n f\left(\frac{ty}{tx}\right) \tag{4.184}$$

$$=t^n x^n f\left(\frac{y}{x}\right) \tag{4.185}$$

$$= t^n z_1(x, y) (4.186)$$

So z_1 is homogeneous of degree n.

For z_2 :

$$z_2(tx, ty) = (ty)^{-n} \phi\left(\frac{tx}{ty}\right) \tag{4.187}$$

$$=t^{-n}y^{-n}\phi\left(\frac{x}{y}\right)\tag{4.188}$$

$$= t^{-n} z_2(x, y) (4.189)$$

So z_2 is homogeneous of degree -n.

Since the two terms have different degrees (n and -n), the function z is not homogeneous in the traditional sense. However, we can still apply Euler's theorem to each homogeneous component separately.

Step 2: Apply Euler's theorem to each component.

For a homogeneous function g(x,y) of degree m, Euler's theorem states:

$$x\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial y} = mg(x, y) \tag{4.190}$$

For z_1 (homogeneous of degree n):

$$x\frac{\partial z_1}{\partial x} + y\frac{\partial z_1}{\partial y} = nz_1 \tag{4.191}$$

For z_2 (homogeneous of degree -n):

$$x\frac{\partial z_2}{\partial x} + y\frac{\partial z_2}{\partial y} = -nz_2 \tag{4.192}$$

Therefore, for the complete function $z = z_1 + z_2$:

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = x\frac{\partial z_1}{\partial x} + y\frac{\partial z_1}{\partial y} + x\frac{\partial z_2}{\partial x} + y\frac{\partial z_2}{\partial y}$$
(4.193)

$$= nz_1 + (-n)z_2 (4.194)$$

$$= n(z_1 - z_2) (4.195)$$

Step 3: Apply the extension of Euler's theorem for second derivatives.

For a homogeneous function g(x,y) of degree m, the second-order extension of Euler's theorem states:

$$x^{2} \frac{\partial^{2} g}{\partial x^{2}} + 2xy \frac{\partial^{2} g}{\partial x \partial y} + y^{2} \frac{\partial^{2} g}{\partial y^{2}} = m(m-1)g$$

$$(4.196)$$

For z_1 (homogeneous of degree n):

$$x^{2} \frac{\partial^{2} z_{1}}{\partial x^{2}} + 2xy \frac{\partial^{2} z_{1}}{\partial x \partial y} + y^{2} \frac{\partial^{2} z_{1}}{\partial y^{2}} = n(n-1)z_{1}$$

$$(4.197)$$

For z_2 (homogeneous of degree -n):

$$x^{2} \frac{\partial^{2} z_{2}}{\partial x^{2}} + 2xy \frac{\partial^{2} z_{2}}{\partial x \partial y} + y^{2} \frac{\partial^{2} z_{2}}{\partial y^{2}} = (-n)(-n-1)z_{2} = n(n+1)z_{2}$$
(4.198)

Therefore, for the complete function $z = z_1 + z_2$:

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = x^{2} \frac{\partial^{2} z_{1}}{\partial x^{2}} + 2xy \frac{\partial^{2} z_{1}}{\partial x \partial y} + y^{2} \frac{\partial^{2} z_{1}}{\partial y^{2}} + x^{2} \frac{\partial^{2} z_{2}}{\partial x^{2}} + 2xy \frac{\partial^{2} z_{2}}{\partial x \partial y} + y^{2} \frac{\partial^{2} z_{2}}{\partial y^{2}}$$

$$(4.199)$$

$$= n(n-1)z_1 + n(n+1)z_2 (4.200)$$

$$= n^2 z_1 - n z_1 + n^2 z_2 + n z_2 (4.201)$$

$$= n^2(z_1 + z_2) + n(z_2 - z_1) (4.202)$$

$$= n^2 z - n(z_1 - z_2) (4.203)$$

Step 4: Combine the results to prove the required relation.

Now we need to evaluate:

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$$

$$(4.204)$$

From steps 2 and 3, we have:

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = n(z_1 - z_2) \tag{4.205}$$

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n^{2} z - n(z_{1} - z_{2})$$

$$(4.206)$$

Combining these:

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = n^{2} z - n(z_{1} - z_{2}) + n(z_{1} - z_{2})$$
(4.207)

$$= n^2 z - n(z_1 - z_2) + n(z_1 - z_2)$$
 (4.208)

$$= n^2 z \tag{4.209}$$

Final Answer: We have proven that $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = n^2 z$

Example 8: Second-Order Derivatives and Euler's Theorem

Find $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy}$ if $u = \log(x^3 + y^3 - x^2 y - xy^2)$.

Simplified Solution Using Euler's Deduction

Step 1: Let's introduce a substitution to simplify the problem.

Let
$$z = e^u = x^3 + y^3 - x^2y - xy^2$$

First, we verify that z is homogeneous:

$$z(tx, ty) = (tx)^{3} + (ty)^{3} - (tx)^{2}(ty) - (tx)(ty)^{2}$$
(4.210)

$$= t^3x^3 + t^3y^3 - t^3x^2y - t^3xy^2 (4.211)$$

$$= t^3(x^3 + y^3 - x^2y - xy^2) (4.212)$$

$$=t^3z(x,y) (4.213)$$

So z is homogeneous of degree 3.

Step 2: Apply the deduction from Euler's theorem for homogeneous functions.

If z = f(u) is a homogeneous function of degree n, then:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = g(u)[g'(u) - 1]$$

$$(4.214)$$

where $g(u) = n \frac{f(u)}{f'(u)}$. In our case, $z = e^u$ is homogeneous of degree 3, so:

$$g(u) = 3\frac{e^u}{e^u} \tag{4.215}$$

$$=3\tag{4.216}$$

Therefore:

$$x^{2}u_{xx} + 2xyu_{xy} + y^{2}u_{yy} = g(u)[g'(u) - 1]$$
(4.217)

$$= 3[0-1] \tag{4.218}$$

$$=-3$$
 (4.219)

Final Answer: The value of $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy}$ is -3.

Example 9: Application of Euler's Theorem Deduction

If
$$u = \csc^{-1} \sqrt{\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}}}$$
 then, show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{\tan u}{12} \left(\frac{13}{12} + \frac{\tan^2 u}{12} \right)$

Smart Solution Using Euler's Theorem Deduction

Step 1: Let
$$z = \csc(u) = \sqrt{\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}}}$$

First, verify that z is homogeneous:

$$z(tx,ty) = \sqrt{\frac{(tx)^{1/2} + (ty)^{1/2}}{(tx)^{1/3} + (ty)^{1/3}}}$$
(4.220)

$$= \sqrt{\frac{t^{1/2}(x^{1/2} + y^{1/2})}{t^{1/3}(x^{1/3} + y^{1/3})}}$$
(4.221)

$$= t^{(1/2 - 1/3)/2} \cdot z(x, y) \tag{4.222}$$

$$= t^{1/12} \cdot z(x, y) \tag{4.223}$$

So z is homogeneous of degree $\frac{1}{12}$.

Step 2: Apply the deduction from Euler's theorem.

From the deduction of Euler's theorem, if z = f(u) is homogeneous of degree n, then:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = g(u)[g'(u) - 1]$$

$$(4.224)$$

where $g(u) = n \frac{f(u)}{f'(u)}$

Since $z = \csc(u)$, we have $f(u) = \csc(u)$ and $f'(u) = -\csc(u)\cot(u)$

Therefore:

$$g(u) = \frac{1}{12} \cdot \frac{\operatorname{cosec}(u)}{-\operatorname{cosec}(u)\operatorname{cot}(u)}$$
(4.225)

$$=\frac{1}{12}\cdot\frac{1}{-\cot(u)}\tag{4.226}$$

$$= -\frac{1}{12} \cdot \frac{1}{\frac{\cos(u)}{\sin(u)}} \tag{4.227}$$

$$= -\frac{1}{12} \cdot \frac{\sin(u)}{\cos(u)} \tag{4.228}$$

$$= -\frac{\tan(u)}{12} \tag{4.229}$$

Now, calculate g'(u):

$$g'(u) = -\frac{1}{12} \cdot \sec^2(u) \tag{4.230}$$

$$= -\frac{1}{12}(1 + \tan^2(u)) \tag{4.231}$$

$$= -\frac{1}{12} - \frac{\tan^2(u)}{12} \tag{4.232}$$

Step 3: Calculate the required expression.

$$g(u)[g'(u) - 1] = -\frac{\tan(u)}{12} \left[-\frac{1}{12} - \frac{\tan^2(u)}{12} - 1 \right]$$
(4.233)

$$= -\frac{\tan(u)}{12} \left[-\frac{1 + \tan^2(u) + 12}{12} \right] \tag{4.234}$$

$$= -\frac{\tan(u)}{12} \left[-\frac{13 + \tan^2(u)}{12} \right] \tag{4.235}$$

$$= \frac{\tan(u)}{12} \cdot \frac{13 + \tan^2(u)}{12} \tag{4.236}$$

$$= \frac{\tan(u)}{12} \left(\frac{13}{12} + \frac{\tan^2(u)}{12} \right) \tag{4.237}$$

Final Answer: We have shown that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{\tan u}{12} \left(\frac{13}{12} + \frac{\tan^2 u}{12} \right)$

Example 10: Deduction of Euler's Theorem

If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ then prove that $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = \frac{-\sin u\cos 2u}{4\cos^3 u}$.

Solution Using Euler's Theorem Deduction

Step 1: Let $z = \sin(u) = \frac{x+y}{\sqrt{x}+\sqrt{y}}$

First, let's verify that z is homogeneous by substituting (tx, ty) for (x, y):

$$z(tx, ty) = \frac{tx + ty}{\sqrt{tx} + \sqrt{ty}} \tag{4.238}$$

$$=\frac{t(x+y)}{t^{1/2}(\sqrt{x}+\sqrt{y})}$$
(4.239)

$$=t^{1/2}\frac{x+y}{\sqrt{x}+\sqrt{y}}\tag{4.240}$$

$$=t^{1/2}z(x,y) (4.241)$$

So z is homogeneous of degree $\frac{1}{2}$.

Step 2: Apply the deduction from Euler's theorem.

From the deduction of Euler's theorem, if z = f(u) is homogeneous of degree n, then:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = g(u)[g'(u) - 1]$$

$$(4.242)$$

where $g(u) = n \frac{f(u)}{f'(u)}$

Since $z = \sin(u)$, we have $f(u) = \sin(u)$ and $f'(u) = \cos(u)$

Therefore:

$$g(u) = \frac{1}{2} \cdot \frac{\sin(u)}{\cos(u)} \tag{4.243}$$

$$=\frac{\sin(u)}{2\cos(u)}\tag{4.244}$$

$$=\frac{\tan(u)}{2}\tag{4.245}$$

Now, calculate g'(u):

$$g'(u) = \frac{1}{2} \cdot \sec^2(u) \tag{4.246}$$

$$= \frac{1}{2} \cdot \frac{1}{\cos^2(u)} \tag{4.247}$$

$$= \frac{1}{2\cos^2(u)} \tag{4.248}$$

Step 3: Calculate the required expression.

$$g(u)[g'(u) - 1] = \frac{\tan(u)}{2} \left[\frac{1}{2\cos^2(u)} - 1 \right]$$
 (4.249)

$$= \frac{\sin(u)}{2\cos(u)} \left[\frac{1}{2\cos^2(u)} - 1 \right] \tag{4.250}$$

$$= \frac{\sin(u)}{2\cos(u)} \left[\frac{1 - 2\cos^2(u)}{2\cos^2(u)} \right] \tag{4.251}$$

$$= \frac{\sin(u)}{2\cos(u)} \cdot \frac{1 - 2\cos^2(u)}{2\cos^2(u)} \tag{4.252}$$

$$= \frac{\sin(u)}{4\cos^3(u)} (1 - 2\cos^2(u)) \tag{4.253}$$

Now, we need to convert this to the required form. Note that $1 - 2\cos^2(u) = -\cos(2u)$ since $\cos(2u) = 2\cos^2(u) - 1$

Therefore:

$$g(u)[g'(u) - 1] = \frac{\sin(u)}{4\cos^3(u)}(-\cos(2u)) \tag{4.254}$$

$$= \frac{-\sin(u)\cos(2u)}{4\cos^3(u)}$$
 (4.255)

Final Answer: We have proven that $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = \frac{-\sin u\cos 2u}{4\cos^3 u}$

Example 11: Deduction of Euler's Theorem

If $u = \sin^{-1} \sqrt{x^2 + y^2}$, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \tan^3 u$.

Solution Using Euler's Theorem Deduction

Step 1: Let $z = \sin(u) = \sqrt{x^2 + y^2}$

First, verify that z is homogeneous by substituting (tx, ty) for (x, y):

$$z(tx, ty) = \sqrt{(tx)^2 + (ty)^2}$$
(4.256)

$$=\sqrt{t^2(x^2+y^2)}\tag{4.257}$$

$$= |t|\sqrt{x^2 + y^2} \tag{4.258}$$

Since t > 0 in our context (scaling factor), z is homogeneous of degree 1.

Step 2: Apply the deduction from Euler's theorem.

From the deduction of Euler's theorem, if z = f(u) is homogeneous of degree n, then:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = g(u)[g'(u) - 1]$$

$$(4.259)$$

where $g(u) = n \frac{f(u)}{f'(u)}$

Since $z = \sin(u)$, we have $f(u) = \sin(u)$ and $f'(u) = \cos(u)$

Therefore:

$$g(u) = 1 \cdot \frac{\sin(u)}{\cos(u)} \tag{4.260}$$

$$= \tan(u) \tag{4.261}$$

Now, calculate g'(u):

$$g'(u) = \sec^2(u) \tag{4.262}$$

$$=\frac{1}{\cos^2(u)}\tag{4.263}$$

Step 3: Calculate the required expression.

$$g(u)[g'(u) - 1] = \tan(u) \left[\frac{1}{\cos^2(u)} - 1 \right]$$
 (4.264)

$$= \tan(u) \left\lceil \frac{1 - \cos^2(u)}{\cos^2(u)} \right\rceil \tag{4.265}$$

$$= \tan(u) \left[\frac{\sin^2(u)}{\cos^2(u)} \right] \tag{4.266}$$

$$= \tan(u) \cdot \tan^2(u) \tag{4.267}$$

$$= \tan^3(u) \tag{4.268}$$

Final Answer: We have proven that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \tan^3 u$

Example 12: Deduction of Euler's Theorem

If $u = \sin^{-1}(x^2 + y^2)^{1/5}$, then prove that: $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = \frac{2}{5} \tan u \left[\frac{2}{5} \tan^2 u - \frac{3}{5} \right]$.

Solution Using Euler's Theorem Deduction

Step 1: Let $z = \sin(u) = (x^2 + y^2)^{1/5}$

First, verify that z is homogeneous by substituting (tx, ty) for (x, y):

$$z(tx, ty) = ((tx)^{2} + (ty)^{2})^{1/5}$$
(4.269)

$$= (t^2(x^2 + y^2))^{1/5} (4.270)$$

$$=t^{2/5}(x^2+y^2)^{1/5} (4.271)$$

$$=t^{2/5}z(x,y) (4.272)$$

So z is homogeneous of degree $\frac{2}{5}$.

Step 2: Apply the deduction from Euler's theorem.

From the deduction of Euler's theorem, if z = f(u) is homogeneous of degree n, then:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = g(u)[g'(u) - 1]$$

$$(4.273)$$

where $g(u) = n \frac{f(u)}{f'(u)}$

Since $z = \sin(u)$, we have $f(u) = \sin(u)$ and $f'(u) = \cos(u)$

Therefore:

$$g(u) = \frac{2}{5} \cdot \frac{\sin(u)}{\cos(u)} \tag{4.274}$$

$$=\frac{2}{5}\tan(u)\tag{4.275}$$

Now, calculate g'(u):

$$g'(u) = \frac{2}{5} \cdot \sec^2(u) \tag{4.276}$$

$$= \frac{2}{5} \cdot \frac{1}{\cos^2(u)} \tag{4.277}$$

$$= \frac{2}{5\cos^2(u)} \tag{4.278}$$

Step 3: Calculate the required expression.

$$g(u)[g'(u) - 1] = \frac{2}{5}\tan(u)\left[\frac{2}{5\cos^2(u)} - 1\right]$$
(4.279)

$$= \frac{2}{5}\tan(u)\left[\frac{2}{5\cos^2(u)} - \frac{5}{5}\right] \tag{4.280}$$

$$= \frac{2}{5}\tan(u) \left[\frac{2 - 5\cos^2(u)}{5\cos^2(u)} \right] \tag{4.281}$$

(4.282)

Let's expand the numerator:

$$2 - 5\cos^2(u) = 2 - 5(1 - \sin^2(u)) \tag{4.283}$$

$$=2-5+5\sin^2(u)\tag{4.284}$$

$$= -3 + 5\sin^2(u) \tag{4.285}$$

Continuing with our calculation:

$$g(u)[g'(u) - 1] = \frac{2}{5}\tan(u)\left[\frac{-3 + 5\sin^2(u)}{5\cos^2(u)}\right]$$
(4.286)

$$= \frac{2}{5}\tan(u)\left[\frac{-3}{5\cos^2(u)} + \frac{5\sin^2(u)}{5\cos^2(u)}\right]$$
(4.287)

$$= \frac{2}{5}\tan(u)\left[-\frac{3}{5\cos^2(u)} + \frac{\sin^2(u)}{\cos^2(u)}\right]$$
(4.288)

$$= \frac{2}{5}\tan(u)\left[-\frac{3}{5\cos^2(u)} + \tan^2(u)\right]$$
 (4.289)

(4.290)

Since $\frac{1}{\cos^2(u)} = 1 + \tan^2(u)$, we can write:

$$\frac{-3}{5\cos^2(u)} = \frac{-3}{5}(1 + \tan^2(u)) \tag{4.291}$$

$$= -\frac{3}{5} - \frac{3}{5} \tan^2(u) \tag{4.292}$$

Finally:

$$g(u)[g'(u) - 1] = \frac{2}{5}\tan(u)\left[-\frac{3}{5} - \frac{3}{5}\tan^2(u) + \tan^2(u)\right]$$
(4.293)

$$= \frac{2}{5}\tan(u)\left[-\frac{3}{5} + \tan^2(u) - \frac{3}{5}\tan^2(u)\right]$$
 (4.294)

$$= \frac{2}{5}\tan(u)\left[-\frac{3}{5} + \tan^2(u)(1 - \frac{3}{5})\right] \tag{4.295}$$

$$= \frac{2}{5}\tan(u)\left[-\frac{3}{5} + \tan^2(u) \cdot \frac{2}{5}\right]$$
 (4.296)

$$= \frac{2}{5}\tan(u)\left[\frac{2}{5}\tan^2(u) - \frac{3}{5}\right] \tag{4.297}$$

(4.298)

Final Answer: We have proven that $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = \frac{2}{5}\tan u\left[\frac{2}{5}\tan^2 u - \frac{3}{5}\right]$

Example 13: Deduction of Euler's Theorem

If $u = \sin^{-1} \left[\frac{x^2 + y^2}{x + y} \right]^{\frac{1}{2}}$ then show that $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = \frac{1}{4} \tan u \times [\tan^2 u - 1]$.

Solution Using Euler's Theorem Deduction

Step 1: Let $z = \sin(u) = \left[\frac{x^2 + y^2}{x + y}\right]^{\frac{1}{2}}$

First, verify that z is homogeneous by substituting (tx, ty) for (x, y):

$$z(tx, ty) = \left[\frac{(tx)^2 + (ty)^2}{(tx) + (ty)}\right]^{\frac{1}{2}}$$
(4.299)

$$= \left[\frac{t^2(x^2 + y^2)}{t(x+y)} \right]^{\frac{1}{2}} \tag{4.300}$$

$$= \left[t \cdot \frac{x^2 + y^2}{x + y} \right]^{\frac{1}{2}} \tag{4.301}$$

$$=t^{\frac{1}{2}} \cdot \left[\frac{x^2 + y^2}{x + y}\right]^{\frac{1}{2}} \tag{4.302}$$

$$= t^{\frac{1}{2}} \cdot z(x, y) \tag{4.303}$$

So z is homogeneous of degree $\frac{1}{2}$.

Step 2: Apply the deduction from Euler's theorem.

From the deduction of Euler's theorem, if z = f(u) is homogeneous of degree n, then:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = g(u)[g'(u) - 1]$$

$$(4.304)$$

where $g(u) = n \frac{f(u)}{f'(u)}$ Since $z = \sin(u)$, we have $f(u) = \sin(u)$ and $f'(u) = \cos(u)$

Therefore:

$$g(u) = \frac{1}{2} \cdot \frac{\sin(u)}{\cos(u)} \tag{4.305}$$

$$= \frac{1}{2}\tan(u) \tag{4.306}$$

Now, calculate g'(u):

$$g'(u) = \frac{1}{2} \cdot \sec^2(u) \tag{4.307}$$

$$= \frac{1}{2} \cdot \frac{1}{\cos^2(u)} \tag{4.308}$$

$$=\frac{1}{2\cos^2(u)}\tag{4.309}$$

Step 3: Calculate the required expression.

$$g(u)[g'(u) - 1] = \frac{1}{2}\tan(u)\left[\frac{1}{2\cos^2(u)} - 1\right]$$
(4.310)

$$= \frac{1}{2}\tan(u) \left[\frac{1 - 2\cos^2(u)}{2\cos^2(u)} \right] \tag{4.311}$$

(4.312)

We can simplify the numerator:

$$1 - 2\cos^2(u) = 1 - 2(1 - \sin^2(u)) \tag{4.313}$$

$$= 1 - 2 + 2\sin^2(u) \tag{4.314}$$

$$= -1 + 2\sin^2(u) \tag{4.315}$$

Continuing with our calculation:

$$g(u)[g'(u) - 1] = \frac{1}{2}\tan(u)\left[\frac{-1 + 2\sin^2(u)}{2\cos^2(u)}\right]$$
(4.316)

$$= \frac{1}{2}\tan(u)\left[\frac{-1}{2\cos^2(u)} + \frac{2\sin^2(u)}{2\cos^2(u)}\right]$$
(4.317)

$$= \frac{1}{2}\tan(u)\left[\frac{-1}{2\cos^2(u)} + \frac{\sin^2(u)}{\cos^2(u)}\right]$$
(4.318)

$$= \frac{1}{2}\tan(u)\left[\frac{-1}{2\cos^2(u)} + \tan^2(u)\right]$$
(4.319)

(4.320)

Since $\frac{1}{\cos^2(u)} = 1 + \tan^2(u)$, we have:

$$\frac{-1}{2\cos^2(u)} = \frac{-1}{2}(1 + \tan^2(u)) \tag{4.321}$$

$$= -\frac{1}{2} - \frac{1}{2} \tan^2(u) \tag{4.322}$$

Substituting back:

$$g(u)[g'(u) - 1] = \frac{1}{2}\tan(u)\left[-\frac{1}{2} - \frac{1}{2}\tan^2(u) + \tan^2(u)\right]$$
(4.323)

$$= \frac{1}{2}\tan(u)\left[-\frac{1}{2} + \tan^2(u) - \frac{1}{2}\tan^2(u)\right]$$
 (4.324)

$$= \frac{1}{2}\tan(u)\left[-\frac{1}{2} + \frac{1}{2}\tan^2(u)\right]$$
 (4.325)

$$= \frac{1}{2}\tan(u) \cdot \frac{1}{2}[\tan^2(u) - 1] \tag{4.326}$$

$$= \frac{1}{4}\tan(u)[\tan^2(u) - 1] \tag{4.327}$$

Final Answer: We have shown that $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = \frac{1}{4}\tan u \times [\tan^2 u - 1]$

Example 14: Deduction of Euler's Theorem

If $u = \tan^{-1} \left[\frac{x^3 + y^3}{x + y} \right]$ then prove that $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = \sin 2u [1 - 4\sin^2 u]$.

Solution Using Euler's Theorem Deduction

Step 1: Let $z = \tan(u) = \frac{x^3 + y^3}{x + y}$

First, verify that z is homogeneous by substituting (tx, ty) for (x, y):

$$z(tx, ty) = \frac{(tx)^3 + (ty)^3}{(tx) + (ty)}$$
(4.328)

$$=\frac{t^3(x^3+y^3)}{t(x+y)}\tag{4.329}$$

$$= t^2 \cdot \frac{x^3 + y^3}{x + y} \tag{4.330}$$

$$= t^2 \cdot z(x, y) \tag{4.331}$$

So z is homogeneous of degree 2.

Step 2: Apply the deduction from Euler's theorem.

From the deduction of Euler's theorem, if z = f(u) is homogeneous of degree n, then:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = g(u)[g'(u) - 1]$$

$$(4.332)$$

where $g(u) = n \frac{f(u)}{f'(u)}$

Since $z = \tan(u)$, we have $f(u) = \tan(u)$ and $f'(u) = \sec^2(u)$

Therefore:

$$g(u) = 2 \cdot \frac{\tan(u)}{\sec^2(u)} \tag{4.333}$$

$$= 2 \cdot \frac{\tan(u)}{1 + \tan^2(u)} \tag{4.334}$$

$$= 2 \cdot \frac{\sin(u)/\cos(u)}{1/\cos^2(u)}$$
 (4.335)

$$=2 \cdot \frac{\sin(u)/\cos(u) \cdot \cos^2(u)}{1} \tag{4.336}$$

$$= 2 \cdot \sin(u)\cos(u) \tag{4.337}$$

$$=\sin(2u)\tag{4.338}$$

Now, calculate g'(u):

$$g'(u) = \frac{d}{du}[\sin(2u)] \tag{4.339}$$

$$=2\cos(2u)\tag{4.340}$$

Step 3: Calculate the required expression.

$$g(u)[g'(u) - 1] = \sin(2u)[2\cos(2u) - 1] \tag{4.341}$$

(4.342)

We need to express cos(2u) in terms of sin(u):

$$\cos(2u) = \cos^2(u) - \sin^2(u) \tag{4.343}$$

$$=1-\sin^2(u)-\sin^2(u) \tag{4.344}$$

$$=1-2\sin^2(u) (4.345)$$

Substituting back:

$$g(u)[g'(u) - 1] = \sin(2u)[2(1 - 2\sin^2(u)) - 1]$$
(4.346)

$$= \sin(2u)[2 - 4\sin^2(u) - 1] \tag{4.347}$$

$$= \sin(2u)[1 - 4\sin^2(u)] \tag{4.348}$$

Final Answer: We have proven that $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = \sin 2u[1 - 4\sin^2 u]$

Example 15: Deduction of Euler's Theorem

If
$$u = \tan^{-1} \left[\frac{\sqrt{x^3 + y^3}}{\sqrt{x} + \sqrt{y}} \right]$$
, then prove that: $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\sin 2u \sin^2 u$.

Solution Using Euler's Theorem Deduction

Step 1: Let
$$z = \tan(u) = \frac{\sqrt{x^3 + y^3}}{\sqrt{x} + \sqrt{y}}$$

First, verify that z is homogeneous by substituting (tx, ty) for (x, y):

$$z(tx, ty) = \frac{\sqrt{(tx)^3 + (ty)^3}}{\sqrt{tx} + \sqrt{ty}}$$
(4.349)

$$= \frac{\sqrt{t^3(x^3 + y^3)}}{t^{1/2}(\sqrt{x} + \sqrt{y})} \tag{4.350}$$

$$=\frac{t^{3/2}\sqrt{x^3+y^3}}{t^{1/2}(\sqrt{x}+\sqrt{y})}\tag{4.351}$$

$$=t^1 \cdot \frac{\sqrt{x^3 + y^3}}{\sqrt{x} + \sqrt{y}} \tag{4.352}$$

$$= t \cdot z(x, y) \tag{4.353}$$

So z is homogeneous of degree 1.

Step 2: Apply the deduction from Euler's theorem.

From the deduction of Euler's theorem, if z = f(u) is homogeneous of degree n, then:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = g(u)[g'(u) - 1]$$

$$(4.354)$$

where $g(u) = n \frac{f(u)}{f'(u)}$

Since $z = \tan(u)$, we have $f(u) = \tan(u)$ and $f'(u) = \sec^2(u)$

Therefore:

$$g(u) = 1 \cdot \frac{\tan(u)}{\sec^2(u)} \tag{4.355}$$

$$= \frac{\tan(u)}{1 + \tan^2(u)} \tag{4.356}$$

$$= \frac{\sin(u)/\cos(u)}{1/\cos^2(u)}$$
 (4.357)

$$=\frac{\sin(u)/\cos(u)\cdot\cos^2(u)}{1}\tag{4.358}$$

$$=\sin(u)\cos(u)\tag{4.359}$$

$$=\frac{\sin(2u)}{2}\tag{4.360}$$

Now, calculate g'(u):

$$g'(u) = \frac{d}{du} \left[\frac{\sin(2u)}{2} \right] \tag{4.361}$$

$$=\frac{2\cos(2u)}{2}\tag{4.362}$$

$$=\cos(2u)\tag{4.363}$$

Step 3: Calculate the required expression.

$$g(u)[g'(u) - 1] = \frac{\sin(2u)}{2}[\cos(2u) - 1]$$
(4.364)

(4.365)

Using the identity $\cos(2u) - 1 = -2\sin^2(u)$:

$$g(u)[g'(u) - 1] = \frac{\sin(2u)}{2}[-2\sin^2(u)]$$
(4.366)

$$= \frac{\sin(2u)}{2} \cdot (-2\sin^2(u)) \tag{4.367}$$

$$= -\sin(2u)\sin^2(u) \tag{4.368}$$

Final Answer: We have proven that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\sin 2u \sin^2 u$

Example 16: Deduction of Euler's Theorem

If $u = \sec^{-1} \left[\frac{x+y}{\sqrt{x} + \sqrt{y}} \right]$ then prove that $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = -\frac{1}{4} \cot u [3 + \cot^2 u]$.

Solution Using Euler's Theorem Deduction

Step 1: Let $z = \sec(u) = \frac{x+y}{\sqrt{x}+\sqrt{y}}$

First, verify that z is homogeneous by substituting (tx, ty) for (x, y):

$$z(tx, ty) = \frac{tx + ty}{\sqrt{tx} + \sqrt{ty}} \tag{4.369}$$

$$=\frac{t(x+y)}{t^{1/2}(\sqrt{x}+\sqrt{y})}\tag{4.370}$$

$$=t^{1/2}\cdot\frac{x+y}{\sqrt{x}+\sqrt{y}}\tag{4.371}$$

$$= t^{1/2} \cdot z(x, y) \tag{4.372}$$

So z is homogeneous of degree $\frac{1}{2}$.

Step 2: Apply the deduction from Euler's theorem.

From the deduction of Euler's theorem, if z = f(u) is homogeneous of degree n, then:

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = g(u)[g'(u) - 1]$$

$$(4.373)$$

where $g(u) = n \frac{f(u)}{f'(u)}$

Since $z = \sec(u)$, we have $f(u) = \sec(u)$ and $f'(u) = \sec(u)\tan(u)$

Therefore:

$$g(u) = \frac{1}{2} \cdot \frac{\sec(u)}{\sec(u)\tan(u)} \tag{4.374}$$

$$=\frac{1}{2} \cdot \frac{1}{\tan(u)} \tag{4.375}$$

$$= \frac{1}{2} \cdot \cot(u) \tag{4.376}$$

Now, calculate g'(u):

$$g'(u) = \frac{1}{2} \cdot \frac{d}{du} [\cot(u)] \tag{4.377}$$

$$= \frac{1}{2} \cdot (-\csc^2(u)) \tag{4.378}$$

$$= -\frac{1}{2\sin^2(u)} \tag{4.379}$$

Step 3: Calculate the required expression.

$$g(u)[g'(u) - 1] = \frac{\cot(u)}{2} \left[-\frac{1}{2\sin^2(u)} - 1 \right]$$
 (4.380)

$$= \frac{\cot(u)}{2} \left[-\frac{1}{2\sin^2(u)} - \frac{2\sin^2(u)}{2\sin^2(u)} \right] \tag{4.381}$$

$$= \frac{\cot(u)}{2} \left[-\frac{1 + 2\sin^2(u)}{2\sin^2(u)} \right] \tag{4.382}$$

$$= -\frac{\cot(u)}{4} \cdot \frac{1 + 2\sin^2(u)}{\sin^2(u)} \tag{4.383}$$

(4.384)

Let's simplify the fraction:

$$\frac{1+2\sin^2(u)}{\sin^2(u)} = \frac{1}{\sin^2(u)} + \frac{2\sin^2(u)}{\sin^2(u)}$$
(4.385)

$$=\csc^2(u) + 2\tag{4.386}$$

$$= 1 + \cot^2(u) + 2 \tag{4.387}$$

$$= 3 + \cot^2(u) \tag{4.388}$$

Therefore:

$$g(u)[g'(u) - 1] = -\frac{\cot(u)}{4} \cdot (3 + \cot^2(u))$$
(4.389)

$$= -\frac{1}{4}\cot(u)[3 + \cot^2(u)] \tag{4.390}$$

Final Answer: We have proven that $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = -\frac{1}{4}\cot u[3 + \cot^2 u]$

Example 17: Application of Euler's Theorem

If $u = \cos\left(\frac{xy}{x^2+y^2}\right) + \sqrt{x^2+y^2} + \frac{xy^2}{x+y}$, find the value of $xu_x + yu_y$ at the point (3,4).

Solution Using Euler's Theorem

Step 1: Let's analyze each term of u to determine if it's homogeneous and its degree. We have $u = u_1 + u_2 + u_3$, where:

$$u_1 = \cos\left(\frac{xy}{x^2 + y^2}\right) \tag{4.391}$$

$$u_2 = \sqrt{x^2 + y^2} \tag{4.392}$$

$$u_3 = \frac{xy^2}{x+y} {(4.393)}$$

For u_1 , let's examine the argument of cosine:

$$\frac{(tx)(ty)}{(tx)^2 + (ty)^2} = \frac{t^2xy}{t^2(x^2 + y^2)}$$
(4.394)

$$=\frac{xy}{x^2+y^2} \tag{4.395}$$

Since the argument remains unchanged when we substitute (tx, ty) for (x, y), and cosine is a function of this argument, we have:

$$u_1(tx, ty) = u_1(x, y) (4.396)$$

So u_1 is homogeneous of degree 0.

For u_2 :

$$u_2(tx, ty) = \sqrt{(tx)^2 + (ty)^2}$$
(4.397)

$$=\sqrt{t^2(x^2+y^2)}\tag{4.398}$$

$$=|t|\sqrt{x^2+y^2} (4.399)$$

Since t > 0 in our context (scaling factor), u_2 is homogeneous of degree 1. For u_3 :

$$u_3(tx, ty) = \frac{(tx)(ty)^2}{(tx) + (ty)}$$
(4.400)

$$=\frac{t^3xy^2}{t(x+y)}$$
 (4.401)

$$=t^2 \frac{xy^2}{x+y} (4.402)$$

$$= t^2 u_3(x, y) (4.403)$$

So u_3 is homogeneous of degree 2.

Step 2: Apply Euler's theorem to each component.

According to Euler's theorem, if f(x,y) is homogeneous of degree n, then:

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf(x,y) \tag{4.404}$$

For u_1 (homogeneous of degree 0):

$$x\frac{\partial u_1}{\partial x} + y\frac{\partial u_1}{\partial y} = 0 \cdot u_1 = 0 \tag{4.405}$$

For u_2 (homogeneous of degree 1):

$$x\frac{\partial u_2}{\partial x} + y\frac{\partial u_2}{\partial y} = 1 \cdot u_2 = \sqrt{x^2 + y^2}$$

$$(4.406)$$

For u_3 (homogeneous of degree 2):

$$x\frac{\partial u_3}{\partial x} + y\frac{\partial u_3}{\partial y} = 2 \cdot u_3 = 2 \cdot \frac{xy^2}{x+y} \tag{4.407}$$

Step 3: Combine the results and evaluate at the point (3,4). Since $u = u_1 + u_2 + u_3$, and the differential operator is linear:

$$xu_x + yu_y = x\frac{\partial u_1}{\partial x} + y\frac{\partial u_1}{\partial y} + x\frac{\partial u_2}{\partial x} + y\frac{\partial u_2}{\partial y} + x\frac{\partial u_3}{\partial x} + y\frac{\partial u_3}{\partial y}$$
(4.408)

$$= 0 + \sqrt{x^2 + y^2} + 2\frac{xy^2}{x + y} \tag{4.409}$$

Now, evaluate at the point (3,4):

$$(xu_x + yu_y)|_{(3,4)} = \sqrt{x^2 + y^2}\Big|_{(3,4)} + 2\frac{xy^2}{x+y}\Big|_{(3,4)}$$
(4.410)

$$=\sqrt{3^2+4^2}+2\frac{3\cdot 4^2}{3+4}\tag{4.411}$$

$$=\sqrt{9+16}+2\frac{3\cdot 16}{7}\tag{4.412}$$

$$=\sqrt{25} + 2\frac{48}{7} \tag{4.413}$$

$$= 5 + \frac{96}{7} \tag{4.414}$$

$$=5+\frac{96}{7} \tag{4.415}$$

$$=\frac{35}{7} + \frac{96}{7} \tag{4.416}$$

$$=\frac{131}{7} \tag{4.417}$$

Final Answer: The value of $xu_x + yu_y$ at the point (3,4) is $\boxed{\frac{131}{7}}$

Example 18: Application of Euler's Theorem to Second Derivatives

If $u = \frac{x^3 + y^3}{y\sqrt{x}} + \frac{1}{x}\sin^{-1}\left(\frac{x^2 + y^2}{2xy}\right)$, find the value of $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy}$ at the point (1, 1).

Solution Using Euler's Theorem

Step 1: Let's analyze each term of u to determine if it's homogeneous and its degree. We have $u = u_1 + u_2$, where:

$$u_1 = \frac{x^3 + y^3}{y\sqrt{x}} \tag{4.418}$$

$$u_2 = \frac{1}{x}\sin^{-1}\left(\frac{x^2 + y^2}{2xy}\right) \tag{4.419}$$

For u_1 , let's check if it's homogeneous by substituting (tx, ty) for (x, y):

$$u_1(tx, ty) = \frac{(tx)^3 + (ty)^3}{(ty)\sqrt{tx}}$$
(4.420)

$$=\frac{t^3x^3+t^3y^3}{ty\cdot t^{1/2}\sqrt{x}}\tag{4.421}$$

$$=\frac{t^3(x^3+y^3)}{t^{3/2}y\sqrt{x}}\tag{4.422}$$

$$=t^{3/2}\frac{x^3+y^3}{y\sqrt{x}}\tag{4.423}$$

$$=t^{3/2}u_1(x,y) (4.424)$$

So u_1 is homogeneous of degree $\frac{3}{2}$.

For u_2 , let's first examine the argument of \sin^{-1} :

$$\frac{(tx)^2 + (ty)^2}{2(tx)(ty)} = \frac{t^2(x^2 + y^2)}{2t^2xy}$$
(4.425)

$$=\frac{x^2+y^2}{2xy} \tag{4.426}$$

The argument doesn't change with t. Now for the entire term u_2 :

$$u_2(tx, ty) = \frac{1}{tx} \sin^{-1} \left(\frac{(tx)^2 + (ty)^2}{2(tx)(ty)} \right)$$
 (4.427)

$$= \frac{1}{tx}\sin^{-1}\left(\frac{x^2 + y^2}{2xy}\right)$$
 (4.428)

$$= t^{-1} \cdot \frac{1}{x} \sin^{-1} \left(\frac{x^2 + y^2}{2xy} \right) \tag{4.429}$$

$$= t^{-1}u_2(x,y) (4.430)$$

So u_2 is homogeneous of degree -1.

Step 2: Apply the extension of Euler's theorem for second derivatives.

For a homogeneous function f(x,y) of degree n, the second-order extension states:

$$x^{2} \frac{\partial^{2} f}{\partial x^{2}} + 2xy \frac{\partial^{2} f}{\partial x \partial y} + y^{2} \frac{\partial^{2} f}{\partial y^{2}} = n(n-1)f(x,y)$$

$$(4.431)$$

For u_1 (homogeneous of degree $\frac{3}{2}$):

$$x^{2} \frac{\partial^{2} u_{1}}{\partial x^{2}} + 2xy \frac{\partial^{2} u_{1}}{\partial x \partial y} + y^{2} \frac{\partial^{2} u_{1}}{\partial y^{2}} = \frac{3}{2} \left(\frac{3}{2} - 1 \right) u_{1}$$

$$(4.432)$$

$$= \frac{3}{2} \cdot \frac{1}{2} \cdot u_1 \tag{4.433}$$

$$= \frac{3}{2} \cdot \frac{1}{2} \cdot u_1 \tag{4.433}$$

$$= \frac{3}{4}u_1 \tag{4.434}$$

$$= \frac{3}{4} \cdot \frac{x^3 + y^3}{y\sqrt{x}} \tag{4.435}$$

For u_2 (homogeneous of degree -1):

$$x^{2} \frac{\partial^{2} u_{2}}{\partial x^{2}} + 2xy \frac{\partial^{2} u_{2}}{\partial x \partial y} + y^{2} \frac{\partial^{2} u_{2}}{\partial y^{2}} = (-1)(-1 - 1)u_{2}$$
(4.436)

$$= (-1)(-2)u_2 \tag{4.437}$$

$$=2u_2\tag{4.438}$$

$$= 2 \cdot \frac{1}{x} \sin^{-1} \left(\frac{x^2 + y^2}{2xy} \right) \tag{4.439}$$

Step 3: Combine the results and evaluate at the point (1,1). Since $u = u_1 + u_2$, and the differential operator is linear:

$$x^{2}u_{xx} + 2xyu_{xy} + y^{2}u_{yy} = \frac{3}{4} \cdot \frac{x^{3} + y^{3}}{y\sqrt{x}} + 2 \cdot \frac{1}{x}\sin^{-1}\left(\frac{x^{2} + y^{2}}{2xy}\right)$$
(4.440)

At the point (1,1):

$$(x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy})\Big|_{(1,1)} = \frac{3}{4} \cdot \frac{x^3 + y^3}{y\sqrt{x}}\Big|_{(1,1)} + 2 \cdot \frac{1}{x} \sin^{-1} \left(\frac{x^2 + y^2}{2xy}\right)\Big|_{(1,1)}$$
 (4.441)

$$= \frac{3}{4} \cdot \frac{1^3 + 1^3}{1\sqrt{1}} + 2 \cdot \frac{1}{1} \sin^{-1} \left(\frac{1^2 + 1^2}{2 \cdot 1 \cdot 1} \right) \tag{4.442}$$

$$= \frac{3}{4} \cdot \frac{2}{1} + 2 \cdot \sin^{-1}\left(\frac{2}{2}\right) \tag{4.443}$$

$$= \frac{3}{4} \cdot 2 + 2 \cdot \sin^{-1}(1) \tag{4.444}$$

$$= \frac{6}{4} + 2 \cdot \frac{\pi}{2} \tag{4.445}$$

$$= \frac{3}{2} + \pi \tag{4.446}$$

$$=1.5+\pi$$

Final Answer: The value of $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy}$ at the point (1,1) is $\boxed{1.5+\pi}$ or

$$\frac{3}{2} + \pi$$

READ TO PRACTICE

IZZYMATHS

READ TO PRACTICE