Hidden Markov Models for Time Series

An Introduction Using R

MONOGRAPHS ON STATISTICS AND APPLIED PROBABILITY

General Editors

J. Fan, V. Isham, N. Keiding, T. Louis, R. L. Smith, and H. Tong

1 Stochastic Population Models in Ecology and Epidemiology M.S. Barlett (1960) 2 Queues D.R. Cox and W.L. Smith (1961)

3 Monte Carlo Methods J.M. Hammerslev and D.C. Handscomb (1964)

4 The Statistical Analysis of Series of Events D.R. Cox and P.A.W. Lewis (1966)

5 Population Genetics W.J. Ewens (1969)

6 Probability, Statistics and Time M.S. Barlett (1975)

7 Statistical Inference S.D. Silvey (1975)

8 The Analysis of Contingency Tables B.S. Everitt (1977)

9 Multivariate Analysis in Behavioural Research A.E. Maxwell (1977)

10 Stochastic Abundance Models S. Engen (1978)

11 Some Basic Theory for Statistical Inference E.J.G. Pitman (1979)

12 Point Processes D.R. Cox and V. Isham (1980)

13 Identification of Outliers D.M. Hawkins (1980)

14 Optimal Design S.D. Silvey (1980)

15 Finite Mixture Distributions B.S. Everitt and D.J. Hand (1981)

16 Classification A.D. Gordon (1981)

17 Distribution-Free Statistical Methods, 2nd edition J.S. Maritz (1995)

18 Residuals and Influence in Regression R.D. Cook and S. Weisberg (1982)

19 Applications of Queueing Theory, 2nd edition G.F. Newell (1982)

20 Risk Theory, 3rd edition R.E. Beard, T. Pentikäinen and E. Pesonen (1984)

21 Analysis of Survival Data D.R. Cox and D. Oakes (1984)

22 An Introduction to Latent Variable Models B.S. Everitt (1984)

23 Bandit Problems D.A. Berry and B. Fristedt (1985)

24 Stochastic Modelling and Control M.H.A. Davis and R. Vinter (1985)

25 The Statistical Analysis of Composition Data J. Aitchison (1986)

26 Density Estimation for Statistics and Data Analysis B.W. Silverman (1986)

27 Regression Analysis with Applications G.B. Wetherill (1986)

28 Sequential Methods in Statistics, 3rd edition *G.B. Wetherill and K.D. Glazebrook* (1986)

29 Tensor Methods in Statistics P. McCullagh (1987)

30 Transformation and Weighting in Regression *R.J. Carroll and D. Ruppert* (1988)

31 Asymptotic Techniques for Use in Statistics *O.E. Bandorff-Nielsen and D.R. Cox* (1989)

32 Analysis of Binary Data, 2nd edition D.R. Cox and E.J. Snell (1989)

33 Analysis of Infectious Disease Data N.G. Becker (1989)

34 Design and Analysis of Cross-Over Trials B. Jones and M.G. Kenward (1989)

35 Empirical Bayes Methods, 2nd edition J.S. Maritz and T. Lwin (1989)

36 Symmetric Multivariate and Related Distributions *K.T. Fang, S. Kotz and K.W. Ng* (1990)

37 Generalized Linear Models, 2nd edition *P. McCullagh and J.A. Nelder* (1989)

38 Cyclic and Computer Generated Designs, 2nd edition J.A. John and E.R. Williams (1995)

39 Analog Estimation Methods in Econometrics C.F. Manski (1988)

40 Subset Selection in Regression A.J. Miller (1990)

41 Analysis of Repeated Measures M.J. Crowder and D.J. Hand (1990)

42 Statistical Reasoning with Imprecise Probabilities *P. Walley* (1991)

43 Generalized Additive Models T.J. Hastie and R.J. Tibshirani (1990)

```
44 Inspection Errors for Attributes in Quality Control
                                N.L. Johnson, S. Kotz and X. Wu (1991)
                 45 The Analysis of Contingency Tables, 2nd edition B.S. Everitt (1992)
                    46 The Analysis of Quantal Response Data B.J.T. Morgan (1992)
                 47 Longitudinal Data with Serial Correlation—A State-Space Approach
                                          R.H. Jones (1993)
               48 Differential Geometry and Statistics M.K. Murray and J.W. Rice (1993)
                       49 Markov Models and Optimization M.H.A. Davis (1993)
                     50 Networks and Chaos—Statistical and Probabilistic Aspects
                      O.E. Barndorff-Nielsen, J.L. Jensen and W.S. Kendall (1993)
               51 Number-Theoretic Methods in Statistics K.-T. Fang and Y. Wang (1994)
               52 Inference and Asymptotics O.E. Barndorff-Nielsen and D.R. Cox (1994)
                                 53 Practical Risk Theory for Actuaries
                          C.D. Daykin, T. Pentikäinen and M. Pesonen (1994)
                             54 Biplots J.C. Gower and D.J. Hand (1996)
                      55 Predictive Inference—An Introduction S. Geisser (1993)
                   56 Model-Free Curve Estimation M.E. Tarter and M.D. Lock (1993)
                 57 An Introduction to the Bootstrap B. Efron and R.J. Tibshirani (1993)
                     58 Nonparametric Regression and Generalized Linear Models
                                 P.J. Green and B.W. Silverman (1994)
                     59 Multidimensional Scaling T.F. Cox and M.A.A. Cox (1994)
                        60 Kernel Smoothing M.P. Wand and M.C. Jones (1995)
                       61 Statistics for Long Memory Processes J. Beran (1995)
                         62 Nonlinear Models for Repeated Measurement Data
                                M. Davidian and D.M. Giltinan (1995)
                              63 Measurement Error in Nonlinear Models
                           R.J. Carroll, D. Rupert and L.A. Stefanski (1995)
                       64 Analyzing and Modeling Rank Data J.J. Marden (1995)
                  65 Time Series Models—In Econometrics, Finance and Other Fields
                       D.R. Cox, D.V. Hinkley and O.E. Barndorff-Nielsen (1996)
             66 Local Polynomial Modeling and its Applications J. Fan and I. Gijbels (1996)
                  67 Multivariate Dependencies—Models, Analysis and Interpretation
                                   D.R. Cox and N. Wermuth (1996)
                  68 Statistical Inference—Based on the Likelihood A. Azzalini (1996)
                       69 Bayes and Empirical Bayes Methods for Data Analysis
                                   B.P. Carlin and T.A Louis (1996)
                 70 Hidden Markov and Other Models for Discrete-Valued Time Series
                                I.L. MacDonald and W. Zucchini (1997)
                   71 Statistical Evidence — A Likelihood Paradigm R. Royall (1997)
                    72 Analysis of Incomplete Multivariate Data J.L. Schafer (1997)
                    73 Multivariate Models and Dependence Concepts H. Joe (1997)
                         74 Theory of Sample Surveys M.E. Thompson (1997)
                        75 Retrial Queues G. Falin and J.G.C. Templeton (1997)
                         76 Theory of Dispersion Models B. Jørgensen (1997)
                            77 Mixed Poisson Processes J. Grandell (1997)
78 Variance Components Estimation - Mixed Models, Methodologies and Applications P.S.R.S. Rao (1997)
                         79 Bayesian Methods for Finite Population Sampling
                                   G. Meeden and M. Ghosh (1997)
                         80 Stochastic Geometry—Likelihood and computation
                 O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. van Lieshout (1998)
                     81 Computer-Assisted Analysis of Mixtures and Applications -
                     Meta-analysis, Disease Mapping and Others D. Böhning (1999)
                           82 Classification, 2nd edition A.D. Gordon (1999)
```

```
83 Semimartingales and their Statistical Inference B.L.S. Prakasa Rao (1999)
       84 Statistical Aspects of BSE and vCID—Models for Epidemics
                  C.A. Donnelly and N.M. Ferguson (1999)
       85 Set-Indexed Martingales G. Ivanoff and E. Merzbach (2000)
  86 The Theory of the Design of Experiments D.R. Cox and N. Reid (2000)
                      87 Complex Stochastic Systems
        O.E. Barndorff-Nielsen, D.R. Cox and C. Klüppelberg (2001)
  88 Multidimensional Scaling, 2nd edition T.F. Cox and M.A.A. Cox (2001)
  89 Algebraic Statistics—Computational Commutative Algebra in Statistics
              G. Pistone, E. Riccomagno and H.P. Wynn (2001)
     90 Analysis of Time Series Structure—SSA and Related Techniques
          N. Golyandina, V. Nekrutkin and A.A. Zhigljavsky (2001)
               91 Subjective Probability Models for Lifetimes
                         Fabio Spizzichino (2001)
                92 Empirical Likelihood Art B. Owen (2001)
                      93 Statistics in the 21st Century
       Adrian E. Raftery, Martin A. Tanner, and Martin T. Wells (2001)
        94 Accelerated Life Models: Modeling and Statistical Analysis
            Vilijandas Bagdonavicius and Mikhail Nikulin (2001)
    95 Subset Selection in Regression, Second Edition Alan Miller (2002)
                  96 Topics in Modelling of Clustered Data
  Marc Aerts, Helena Geys, Geert Molenberghs, and Louise M. Ryan (2002)
        97 Components of Variance D.R. Cox and P.J. Solomon (2002)
          98 Design and Analysis of Cross-Over Trials, 2nd Edition
                Byron Jones and Michael G. Kenward (2003)
  99 Extreme Values in Finance, Telecommunications, and the Environment
               Bärbel Finkenstädt and Holger Rootzén (2003)
      100 Statistical Inference and Simulation for Spatial Point Processes
          Jesper Møller and Rasmus Plenge Waagepetersen (2004)
            101 Hierarchical Modeling and Analysis for Spatial Data
      Sudipto Banerjee, Bradley P. Carlin, and Alan E. Gelfand (2004)
          102 Diagnostic Checks in Time Series Wai Keung Li (2004)
103 Stereology for Statisticians Adrian Baddeley and Eva B. Vedel Jensen (2004)
         104 Gaussian Markov Random Fields: Theory and Applications
                   Håvard Rue and Leonhard Held (2005)
```

105 Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition Raymond J. Carroll, David Ruppert, Leonard A. Stefanski, and Ciprian M. Crainiceanu (2006)

106 Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood Youngjo Lee, John A. Nelder, and Yudi Pawitan (2006)

> 107 Statistical Methods for Spatio-Temporal Systems Bärbel Finkenstädt, Leonhard Held, and Valerie Isham (2007)

108 Nonlinear Time Series: Semiparametric and Nonparametric Methods Jiti Gao (2007)

109 Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis Michael J. Daniels and Joseph W. Hogan (2008)

110 Hidden Markov Models for Time Series: An Introduction Using R Walter Zucchini and Iain L. MacDonald (2009)

Monographs on Statistics and Applied Probability 110

Hidden Markov Models for Time Series

An Introduction Using R

Walter Zucchini

Georg-August-Universität Göttingen, Germany

Iain L. MacDonald

University of Cape Town South Africa

CRC Press is an imprint of the Taylor & Francis Group an **informa** business A CHAPMAN & HALL BOOK

Chapman & Hall/CRC Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2009 by Walter Zucchini and Iain MacDonald Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-58488-573-3 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Zucchini, W.

Hidden Markov models for time series : an introduction using R / Walter Zucchini, Iain L. MacDonald.

p. cm. -- (Monographs on statistics and applied probability; 110)

Includes bibliographical references and index.

ISBN 978-1-58488-573-3 (hardcover : alk. paper)

1. Time-series analysis. 2. Markov processes. 3. R (Computer program language) I. MacDonald, Iain L. II. Title. III. Series.

QA280.Z83 2009 519.5'5--dc22

2009007294

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Für Hanne und Werner, mit herzlichem Dank für Eure Unterstützung bei der Suche nach den versteckten Ketten.

Contents

Pref	ace	e		xvii
Nota	atio	on and	abbreviations	xxi
PAR	RT	ONE	Model structure, properties and methods	1
1 P	rel	liminar	ies: mixtures and Markov chains	3
1.	.1	Introd	luction	3
1.	.2	Indep	endent mixture models	6
		1.2.1	Definition and properties	6
		1.2.2	Parameter estimation	9
		1.2.3	Unbounded likelihood in mixtures	10
		1.2.4	Examples of fitted mixture models	11
1.	.3	Marko	ov chains	15
		1.3.1	Definitions and example	16
		1.3.2	Stationary distributions	18
		1.3.3	Reversibility	19
		1.3.4	Autocorrelation function	19
		1.3.5	Estimating transition probabilities	20
		1.3.6	Higher-order Markov chains	22
Е	xer	cises		24
2 H	Iid	den Ma	arkov models: definition and properties	29
2.	.1	A sim	ple hidden Markov model	29
2.	.2	The b	asics	30
		2.2.1	Definition and notation	30
		2.2.2	Marginal distributions	32
		2.2.3	Moments	34
2.	.3	The li	kelihood	35
		2.3.1	The likelihood of a two-state Bernoulli–HMM	35
		2.3.2	The likelihood in general	37
		2.3.3	The likelihood when data are missing at	
			random	39

x CONTENTS

		2.3.4	The likelihood when observations are interval- censored	40
	Exer	cises		41
3			by direct maximization of the likelihood	45
	3.1	Introdu		45
	3.2	_	g the likelihood computation	46
	3.3		ization subject to constraints	47
		3.3.1	Reparametrization to avoid constraints	47
		3.3.2	Embedding in a continuous-time Markov chain	49
	3.4		problems	49
		3.4.1	Multiple maxima in the likelihood	49
		3.4.2	Starting values for the iterations	50
		3.4.3	Unbounded likelihood	50
	3.5	_	ole: earthquakes	50
	3.6	Standa	ard errors and confidence intervals	53
		3.6.1	Standard errors via the Hessian	53
		3.6.2	Bootstrap standard errors and confidence	
			intervals	55
	3.7	Examp	ble: parametric bootstrap	55
	Exer	cises		57
4	Esti	mation	by the EM algorithm	5 9
	4.1	Forwar	d and backward probabilities	59
		4.1.1	Forward probabilities	60
		4.1.2	Backward probabilities	61
		4.1.3	Properties of forward and backward probabili-	
			ties	62
	4.2	The El	M algorithm	63
		4.2.1	EM in general	63
		4.2.2	EM for HMMs	64
		4.2.3	M step for Poisson– and normal–HMMs	66
		4.2.4	Starting from a specified state	67
		4.2.5	EM for the case in which the Markov chain is	
		_	stationary	67
	4.3		oles of EM applied to Poisson–HMMs	68
		4.3.1	Earthquakes	68
		4.3.2	Foetal movement counts	70
	4.4	Discuss	sion	72
	Exer	cises		73
5	Fore	ecasting	, decoding and state prediction	7 5
	5.1	Condit	ional distributions	76

$\mathbf{C}($	ONTE	NTS	xi
	5.2	Forecast distributions	77
	5.3	Decoding	80
		5.3.1 State probabilities and local decoding	80
		5.3.2 Global decoding	82
	5.4	State prediction	86
	Exer	-	87
6	Mod	lel selection and checking	89
	6.1	Model selection by AIC and BIC	89
	6.2	Model checking with pseudo-residuals	92
		6.2.1 Introducing pseudo-residuals	93
		6.2.2 Ordinary pseudo-residuals	96
		6.2.3 Forecast pseudo-residuals	97
	6.3	Examples	98
		6.3.1 Ordinary pseudo-residuals for the earthquakes	98
		6.3.2 Dependent ordinary pseudo-residuals	98
	6.4	Discussion	100
	Exer	cises	101
7	Baye	esian inference for Poisson–HMMs	103
	7.1	Applying the Gibbs sampler to Poisson–HMMs	103
		7.1.1 Generating sample paths of the Markov chain	105
		7.1.2 Decomposing observed counts	106
		7.1.3 Updating the parameters	106
	7.2	Bayesian estimation of the number of states	106
		7.2.1 Use of the integrated likelihood	107
		7.2.2 Model selection by parallel sampling	108
	7.3	Example: earthquakes	108
	7.4	Discussion	110
	Exer	cises	112
8	Exte	ensions of the basic hidden Markov model	115
	8.1	Introduction	115
	8.2	HMMs with general univariate state-dependent distri-	
		bution	116
	8.3	HMMs based on a second-order Markov chain	118
	8.4	HMMs for multivariate series	119
		8.4.1 Series of multinomial-like observations	119
		8.4.2 A model for categorical series	121
		8.4.3 Other multivariate models	122
	8.5	Series that depend on covariates	125
		8.5.1 Covariates in the state-dependent distributions	125
		8.5.2 Covariates in the transition probabilities	126

xii CONTENTS

	8.6	Models	with additional dependencies	128
	Exer	cises		129
PA	ART	TWO	Applications	133
9	Epil	eptic se	izures	135
	9.1	Introdu	ection	135
	9.2	Models	fitted	135
	9.3	Model	checking by pseudo-residuals	138
	Exer	cises		140
10	Eru	ptions o	f the Old Faithful geyser	141
	10.1	_	<u> </u>	141
	10.2	Binary	time series of short and long eruptions	141
		10.2.1	Markov chain models	142
		10.2.2		144
		10.2.3	Comparison of models	147
		10.2.4		148
	10.3	Normal	-HMMs for durations and waiting times	149
	10.4	Bivaria	te model for durations and waiting times	152
	Exer	cises		153
11	Dro	sophila	speed and change of direction	155
	11.1	_	-	155
	11.2	Von Mi	ses distributions	156
	11.3	Von Mi	ses-HMMs for the two subjects	157
	11.4		r autocorrelation functions	158
	11.5	Bivaria	te model	161
	Exer	cises		165
12	Win	ıd direct	ion at Koeberg	167
	12.1	Introdu	9	167
	12.2	Wind d	lirection classified into 16 categories	167
		12.2.1	Three HMMs for hourly averages of wind	
			direction	167
		12.2.2	Model comparisons and other possible models	170
		12.2.3	Conclusion	173
	12.3	Wind d	lirection as a circular variable	174
		12.3.1	Daily at hour 24: von Mises-HMMs	174
		12.3.2	Modelling hourly change of direction	176
		12.3.3	Transition probabilities varying with lagged	
			speed	176

CC)NTE	NTS		xiii
		12.3.4	Concentration parameter varying with lagged speed	177
	Exerc	cises	speed	180
10	Mad	ala fan f	inancial series	181
13	13.1		traded shares	181
	10.1	13.1.1	Univariate models	181
		13.1.2		183
		13.1.3		185
	13.2		riate HMM for returns on four shares	186
	13.3		tic volatility models	190
	10.0	13.3.1	Stochastic volatility models without leverage	190
		13.3.2	Application: FTSE 100 returns	192
		13.3.3		193
		13.3.4		195
		13.3.5		197
11	D: _m +1	ba ot Tri	londolo Hagnital	199
14		Introdu	lendale Hospital	199
			for the proportion Caesarean	199
			for the total number of deliveries	205
		Conclus		208
		Colloras		_00
15	Hom	icides a	nd suicides in Cape Town	209
	15.1	Introdu	ction	209
	15.2		homicides as a proportion of all homicides,	
		suicides	and legal intervention homicides	209
	15.3	The nur	mber of firearm homicides	211
	15.4	Firearm	homicide and suicide proportions	213
	15.5	Proport	ion in each of the five categories	217
16	Anin	nal beha	aviour model with feedback	219
	16.1	Introdu	ction	219
	16.2	The mo	del	220
	16.3	Likeliho	ood evaluation	222
		16.3.1	The likelihood as a multiple sum	223
		16.3.2	Recursive evaluation	223
	16.4	Parame	ter estimation by maximum likelihood	224
	16.5	Model o		224
	16.6		g the underlying state	225
	16.7	Models	for a heterogeneous group of subjects	226
		16.7.1	Models assuming some parameters to be	
			constant across subjects	226

xiv CONTENTS

		16.7.2	Mixed models	227
		16.7.3	Inclusion of covariates	227
	16.8	Other 1	modifications or extensions	228
		16.8.1	Increasing the number of states	228
		16.8.2	Changing the nature of the state-dependent	
			distribution	228
	16.9	Applica	ation to caterpillar feeding behaviour	229
		16.9.1	Data description and preliminary analysis	229
		16.9.2	Parameter estimates and model checking	229
		16.9.3	Runlength distributions	233
		16.9.4	Joint models for seven subjects	235
	16.10	Discuss	ion	236
\mathbf{A}	Exan	nples o	f R code	239
	A.1	Station	ary Poisson–HMM, numerical maximization	239
		A.1.1	Transform natural parameters to working	240
		A.1.2	Transform working parameters to natural	240
		A.1.3	Log-likelihood of a stationary Poisson–HMM	240
		A.1.4	ML estimation of a stationary Poisson–HMM	241
	A.2	More o	n Poisson–HMMs, including EM	242
		A.2.1	Generate a realization of a Poisson–HMM	242
		A.2.2	Forward and backward probabilities	242
		A.2.3	EM estimation of a Poisson–HMM	243
		A.2.4	Viterbi algorithm	244
		A.2.5	Conditional state probabilities	244
		A.2.6	Local decoding	245
		A.2.7	State prediction	245
		A.2.8	Forecast distributions	246
		A.2.9	Conditional distribution of one observation	
			given the rest	246
		A.2.10	Ordinary pseudo-residuals	247
	A.3		te normal state-dependent distributions	248
		A.3.1	Transform natural parameters to working	248
		A.3.2	Transform working parameters to natural	249
		A.3.3	Discrete log-likelihood	249
		A.3.4	MLEs of the parameters	250
	A.4	_	rical HMM, constrained optimization	250
		A.4.1	Log-likelihood	251
		A.4.2	MLEs of the parameters	252
В		proofs		253
	B.1		zation needed for forward probabilities	253
	B.2	Two re	sults for backward probabilities	255

CONTENTS		XV
B.3	Conditional independence of \mathbf{X}_1^t and \mathbf{X}_{t+1}^T	256
Referen	nces	257

Preface

In the eleven years since the publication of our book *Hidden Markov and Other Models for Discrete-valued Time Series* it has become apparent that most of the 'other models', though undoubtedly of theoretical interest, have led to few published applications. This is in marked contrast to hidden Markov models, which are of course applicable to more than just *discrete-valued* time series. These observations have led us to write a book with different objectives.

Firstly, our emphasis is no longer principally on discrete-valued series. We have therefore removed Part One of the original text, which covered the 'other models' for such series. Our focus here is exclusively on hidden Markov models, but applied to a wide range of types of time series: continuous-valued, circular, multivariate, for instance, in addition to the types of data we previously considered, namely binary data, bounded and unbounded counts and categorical observations.

Secondly, we have attempted to make the models more accessible by illustrating how the computing environment **R** can be used to carry out the computations, e.g., for parameter estimation, model selection, model checking, decoding and forecasting. In our previous book we used proprietary software to perform numerical optimization, subject to linear constraints on the variables, for parameter estimation. We now show how one can use standard **R** functions instead. The **R** code that we used to carry out the computations for some of the applications is given, and can be applied directly in similar applications. We do not, however, supply a ready-to-use package; packages that cover 'standard' cases already exist. Rather, it is our intention to show the reader how to go about constructing and fitting application-specific variations of the standard models, variations that may not be covered in the currently available software. The programming exercises are intended to encourage readers to develop expertise in this respect.

The book is intended to illustrate the wonderful plasticity of hidden Markov models as general-purpose models for time series. We hope that readers will find it easy to devise for themselves 'customized' models that will be useful in summarizing and interpreting their data. To this end we offer a range of applications and types of data — Part Two is

xviii PREFACE

entirely devoted to applications. Some of the applications appeared in the original text, but these have been extended or refined.

Our intended readership is applied statisticians, students of statistics, and researchers in fields in which time series arise that are not amenable to analysis by the standard time series models such as Gaussian ARMA models. Such fields include animal behaviour, epidemiology, finance, hydrology and sociology. We have tried to write for readers who wish to acquire a general understanding of the models and their uses, and who wish to apply them. Researchers primarily interested in developing the theory of hidden Markov models are likely to be disappointed by the lack of generality of our treatment, and by the dearth of material on specific issues such as identifiability, hypothesis testing, properties of estimators and reversible jump Markov chain Monte Carlo methods. Such readers would find it more profitable to refer to alternative sources, such as Cappé, Moulines and Rydén (2005) or Ephraim and Merhav (2002). Our strategy has been to present most of the ideas by using a single running example and a simple model, the Poisson-hidden Markov model. In Chapter 8, and in Part Two of the book, we illustrate how this basic model can be progressively and variously extended and generalized.

We assume only a modest level of knowledge of probability and statistics: the reader is assumed to be familiar with the basic probability distributions such as the Poisson, normal and binomial, and with the concepts of dependence, correlation and likelihood. While we would not go as far as Lindsey (2004, p. ix) and state that 'Familiarity with classical introductory statistics courses based on point estimation, hypothesis testing, confidence intervals [...] will be a definite handicap', we hope that extensive knowledge of such matters will not prove necessary. No prior knowledge of Markov chains is assumed, although our coverage is brief enough that readers may wish to supplement our treatment by reading the relevant parts of a book such as Grimmett and Stirzaker (2001). We have also included exercises of a theoretical nature in many of the chapters, both to fill in the details and to illustrate some of the concepts introduced in the text. All the datasets analysed in this book can be accessed at the following address: http://liat.76.173.220/hmm-with-r/data.

This book contains some material which has not previously been published, either by ourselves or (to the best of our knowledge) by others. If we have anywhere failed to make appropriate acknowledgement of the work of others, or misquoted their work in any way, we would be grateful if the reader would draw it to our attention. The applications described in Chapters 14, 15 and 16 contain material which first appeared in (respectively) the *South African Statistical Journal*, the *International Journal of Epidemiology* and *Biometrics*. We are grateful to the editors of these journals for allowing us to reuse such material.

PREFACE xix

We wish to thank the following researchers for giving us access to their data, and in some cases spending much time discussing it with us: David Bowie, Graham Fick, Linda Haines, Len Lerer, Frikkie Potgieter, David Raubenheimer and Max Suster.

We are especially indebted to Andreas Schlegel and Jan Bulla for their important inputs, particularly in the early stages of the project; to Christian Gläser, Oleg Nenadić and Daniel Adler, for contributing their computing expertise; and to Antony Unwin and Ellis Pender for their constructive comments on and criticisms of different aspects of our work. The second author wishes to thank the Institute for Statistics and Econometrics of Georg-August-Universität, Göttingen, for welcoming him on many visits and placing facilities at his disposal. Finally, we are most grateful to our colleague and friend of many years, Linda Haines, whose criticism has been invaluable in improving this book.

Göttingen November 2008

Notation and abbreviations

Since the underlying mathematical ideas are the important quantities, no notation should be adhered to slavishly. It is all a question of who is master.

Bellman (1960, p. 82)

[...] many writers have acted as though they believe that the success of the Box–Jenkins models is largely due to the use of the acronyms.

Granger (1982)

Notation

Although notation is defined as it is introduced, it may also be helpful to list here the most common meanings of symbols, and the pages on which they are introduced. Matrices and vectors are denoted by bold type. Transposition of matrices and vectors is indicated by the prime symbol: '. All vectors are row vectors unless indicated otherwise.

Symbol	Meaning	Page
$\mathbf{A}(,i)$	i th column of any matrix ${\bf A}$	86
$A_n(\kappa)$	$I_n(\kappa)/I_0(\kappa)$	160
\mathbf{B}_t	$\Gamma \mathbf{P}(x_t)$	37
C_t	state occupied by Markov chain at time t	16
$\mathbf{C}^{(t)}$	(C_1, C_2, \ldots, C_t)	16
$\{g_t\}$	parameter process of a stochastic volatility model	190
I_n	modified Bessel function of the first kind of order n	156
l	log-likelihood	21
$L ext{ or } L_T$	likelihood	21, 35
log	logarithm to the base e	
m	number of states in a Markov chain,	17
	or number of components in a mixture	7
\mathbb{N}	the set of all positive integers	
N_t	nutrient level	220
$N(\bullet; \mu, \sigma^2)$	distribution function of general normal distribution	191
$n(\bullet; \mu, \sigma^2)$	density of general normal distribution	191
p_i	probability mass or density function in state i	31
$\mathbf{P}(x)$	diagonal matrix with i th diagonal element $p_i(x)$	32
\mathbb{R}	the set of all real numbers	

T	length of a time series	35
\mathbf{U}	square matrix with all elements equal to 1	19
$\mathbf{u}(t)$	vector $(\Pr(C_t = 1), \dots, \Pr(C_t = m))$	17
$u_i(t)$	$Pr(C_t = i)$, i.e. i th element of $\mathbf{u}(t)$	32
w_t	$\alpha_t 1' = \sum_i \alpha_t(i)$	46
X_t	observation at time t , or just t th observation	30
$\mathbf{X}^{(t)}$	(X_1, X_2, \ldots, X_t)	30
$\mathbf{X}^{(-t)}$	$(X_1,\ldots,X_{t-1},X_{t+1},\ldots X_T)$	76
\mathbf{X}_a^b	$(X_a, X_{a+1}, \ldots, X_b)$	61
$oldsymbol{lpha}_t$	(row) vector of forward probabilities	38
$\alpha_t(i)$	forward probability, i.e. $\Pr(\mathbf{X}^{(t)} = \mathbf{x}^{(t)}, C_t = i)$	59
$oldsymbol{eta}_t$	(row) vector of backward probabilities	60
$\beta_t(i)$	backward probability, i.e. $\Pr(\mathbf{X}_{t+1}^T = \mathbf{x}_{t+1}^T \mid C_t = i)$	60
Γ	transition probability matrix of Markov chain	17
γ_{ij}	(i,j) element of Γ ; probability of transition from	
	state i to state j in a Markov chain	17
δ	stationary or initial distribution of Markov chain,	18
	or vector of mixing probabilities	7
$oldsymbol{\phi}_t$	vector of forward probabilities, normalized to have	
	sum equal to 1, i.e. α_t/w_t	46
Φ	distribution function of standard normal distribution	1
1	(row) vector of ones	19

Abbreviations		
ACF	autocorrelation function	
AIC	Akaike's information criterion	
BIC	Bayesian information criterion	
CDLL	complete-data log-likelihood	
c.o.d.	change of direction	
c.v.	coefficient of variation	
$_{ m HM}$	hidden Markov	
$_{\rm HMM}$	hidden Markov model	
MC	Markov chain	
MCMC	Markov chain Monte Carlo	
ML	maximum likelihood	
MLE	maximum likelihood estimator or estimate	
PACF	partial autocorrelation function	
qq-plot	quantile-quantile plot	
SV	stochastic volatility	
t.p.m.	transition probability matrix	