

Exercise 5 Prep

Output Compare, PWM and Servo Motors

Purpose

- Generate an approximate analog signal output with a digital signal.
 - Apply variable voltage (and current) to a load.

Exercise Overview

- Hardware
 - Microstick II kit
 - Positional and Continuous Servo Motor
 - 6V (4 AA batteries) pack
 - Logic Analyzer (Intronix or Kingst)
- Software
 - Generate constant PWM signal on OC1
 - Generate changing PWM signal on OC1

Review – Pulse Width Modulation

What is a PWM Signal?

What is a servo motor?

What are two kinds of servo motors?

How do we control them?

PIC24 Output Compare Overview

- Four Output Compare channels (pins) (OC1-OC4) or OCx, where x = 1,2,3 or 4
- Timer2 or Timer3 used with OCx modules
- Output Compare registers: OCxRS, OCxR
- Output Compare control registers: OCxCON

Output Compare Peripheral Basics

Provides a way to output waveforms on an output pin.

PIC24 Output Compare Peripheral

How it Works – The Basics

Output Compare Control Registers

REGISTER 15-1: OCxCON: OUTPUT COMPAREX CONTROL REGISTER (x = 1, 2, 3 OR 4)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
_	-	OCSIDL	_		_	_	_	
bit 15 bit 8								

U-0	U-0	U-0	R-0 HC	R/W-0	R/W-0	R/W-0	R/W-0		
_		_	OCFLT	OCTSEL		OCM<2:0>			
bit 7 bit 0									

bit 13 OCSIDL: Stop Output Compare in Idle Mode Control bit

1 = Output Compare x halts in CPU Idle mode

0 = Output Compare x continues to operate in CPU Idle mode

bit 4 OCFLT: PWM Fault Condition Status bit

1 = PWM Fault condition has occurred (cleared in hardware only)

0 = No PWM Fault condition has occurred (This bit is only used when OCM<2:0> = 111)

bit 3 OCTSEL: Output Compare Timer Select bit

1 = Timer3 is the clock source for Compare x

0 = Timer2 is the clock source for Compare x

bit 2-0 OCM<2:0>: Output Compare Mode Select bits

111 = PWM mode on OCx, Fault pin enabled

110 = PWM mode on OCx, Fault pin disabled

101 = Initialize OCx pin low, generate continuous output pulses on OCx pin

100 = Initialize OCx pin low, generate single output pulse on OCx pin

011 = Compare event toggles OCx pin

010 = Initialize OCx pin high, compare event forces OCx pin low

001 = Initialize OCx pin low, compare event forces OCx pin high

000 = Output compare channel is disabled

Using Output Compare for PWM

 Configuring OC1 to be connected to remappable Pin, RP1 (note RP1 same pin as RB1)

Use library macros to configure remappable pins: CONFIG OC1 TO RP(RB1 RP);

Variable "duty cycle"

PWM Signal

Output Compare and PWM

- Using OC1 as the PWM signal
- Using Timer 2 as the time base for OC1
- Use OC1RS to define the pulse width
- Use PR2 to define the period

Tasks for Exercise 5

- Set up hardware Logic Analyzer and Positional Servo Motor on pin 5 (RP1)
- Battery pack powers servo
- Common GND between PIC24 and Servo and Battery pack.
- Do NOT connect PIC24 Vdd (3.3V) to battery (6V)!
- Logic Analyzer pin assignments available in the Help – Contents – Appendix – Connector Pins

Tasks for Exercise 5

- 2. Calculate p_min, p_max. PWM_PERIOD in number of Timer 2 clock cycles (Tck)
- (what are these?)
 - Timer 2 Prescale set to 1:256
 - Timer 2 clock cycle: Tcy = $6.4 \mu s$

3. Compose code

Code Steps – Program for Constant PWM

- Constant definitions (PWM_PERIOD, etc)
- Global variable for pulse_width
- Function configOC1() (steps given)
- Function configTimer2() (similar to EX4)
- ISR function for Timer 2 (similar to Ex4)
- Main program
 - Configurations
 - Enable Timer 2 interrupt and clear flag
 - Turn Timer 2 on
 - Set constant pulse_width
 - Infinite loop

Other Programs

 Program to continuously sweep pulse-width from p_min to p_max and back.

- Program to control Continuous Motion servo
 - Calibration program (1.5ms pulse)
 - Sweep from p_min to p_max and back.

References for Output Compare

P24HJ128GP502 Datasheet

- Available on Nexus
- Section 15 describes Output Compare

Output Compare Reference Manual

Available on Nexus