# Pipeline

Definitione

Il pipeline e una teenologia utilizzata nel datapath singolo ciclo che permene di claborare più passi di diverse istruzioni in un ciclo di clock contemporaneamente.

| Step                  | Name | Description                                         |  |  |
|-----------------------|------|-----------------------------------------------------|--|--|
| Instruction Fetch     | IF   | Read an instruction from memory.                    |  |  |
| Instruction<br>Decode | ID   | Read source registers and generate control signals. |  |  |
| Execute               | EX   | Compute an R-type result or a branch outcome.       |  |  |
| Memory                | MEM  | Read or write the data memory.                      |  |  |
| Writeback             | WB   | Store a result in the destination register.         |  |  |

| Instruction | Steps required |    |    |     |    |  |  |
|-------------|----------------|----|----|-----|----|--|--|
| beq         | IF             | ID | EX |     |    |  |  |
| R-type      | IF             | ID | EX |     | WB |  |  |
| sw          | IF             | ID | EX | MEM |    |  |  |
| lw          | IF             | ID | EX | MEM | WB |  |  |

— un istruzione MIPS può avere al massimo 5 passi

Caratteristiche

Il processore pipeline sfrutta dei registri nei quali vengono salvati tutti i risultati ottenuti dopo un cielo di clock. In questo modo i cicli successivi hanno a disposizione gli input necessari per l'output.



Per controllare un pipelined datapath, l'automa dei segnali fluisce passo con l'istruzione. Quindi trattando più istruzioni contemporaneamente, e' necessario utilizzare i registri per salvare i risultati in ogni ciclo di clock.



#### Osservazione

La durata di ogni ciclo e' indicata dalla durata dell' operazione più lenta l'solitamente HEH oppure ALU).

la scrittura su memorialregistro viene svotta nella prima metà del ciclo mentre la lettura nella seconda metà del ciclo.

Vantaggio - Più istruzioni in esecutione nello stesso momento.

Svant aggio - Hazard

### esempio



# Pipeline hazards

#### Structural Hazard

Definizione

Viene utilizzata un'unità funzionale per due passi diversi contemporaneamente.

ES: memoria per Istruzione e dati / register file

## Soluzioni

#### memoria

- 1 Delay del secondo accesso in un altro ciclo di clock
- 🎹 Memorie separate per istruzione e per dati.





# Control Hazard

Definitione

Passare all'elaborazione della prossima istruzione prima della valutazione della condizione.

Es: l'istruzione subito dopo un branch | salti incondizionati

Soluzioni

- 1 Aspenare
- III Controllare la decisione prima
- Tare una predizione
- M Rimandare il controllo

#### Data Hazard

Definitione

Utilizzare un dato prima che sia pronto.

ES: utilizzo di registri non pronti/10ad

## Solutione

- Aspettare
- Forwarding → Aggiungere componenti al datapath per utilizzare il dato (appena e pronto) nella ALU.



# esempio

