Regelungstechnik

Fachsemester 3

Prof. Dr.-Ing. habil. Klaus-Peter Döge

15.10.2024

- x) Regelgröße: die physikalische Größe, die geregelt werden soll. Das bedeutet ein physikalischer Wert in einem gewünschten Maß gehalten wird.
 - w) Führungsgröße: -
- y) Stellgröße: physikalische Größe, welche die Regelgröße auf eine gewünschte Weise beeinflusst. (Bsp. Volumen Strom)
 - e) Regelabweichung: Differenz = Führungsgröße Regelgröße
- z) Störgröße: Einflüsse die selbst nicht beeinflusst werden können Größen, die eine eingestellte Regelung aus dem Gleichgewicht bringt.

Regelstrecke: - ist das zugrunde liegende System

Systemarten: (Eingang/Ursache - Ausgang/Wirkung) - Intigrator: bsp. Volumenstrom wird in Volumen aufintigriert - Verstärker: bsp. Hebel

- 17.10.2024 (Semesteranfang muss noch nachgetragen werden)
- 22.10.2024 (Semesteranfang muss noch nachgetragen werden)
- 24.10.2024 (Semesteranfang muss noch nachgetragen werden)
- 29.10.2024 (Semesteranfang muss noch nachgetragen werden)
- 05.11.2024 (Semesteranfang muss noch nachgetragen werden)
- 07.11.2024 (Semesteranfang muss noch nachgetragen werden)

- 12.11.2024 (muss wegen Krankheit noch nachgetragen werden)
- 14.11.2024 (muss wegen Krankheit noch nachgetragen werden)

19.11.2024

Wiederholung

Merken:

- Impuls
funktion $\delta(t) \to \text{Gewichtsfunktion } g(t)$
- Sprungfunktion $\alpha(t)_{falschevariable kannaberinden Foliennach geschautwerden} \rightarrow \ddot{\mathbf{U}}$ bergangsfunktion h(t)
- (für die Rücktransformation sollte Partialbruchzerlegung sitzten)

Operationsverstärker

(siehe Folien)

Bode-Diagram

(siehe Folien) \rightarrow Selbststudium

Übergangs- und Gewichtfunkiton

(siehe Folien) \rightarrow Selbststudium

Übergangs- und Gewichtfunkiton

(siehe Folien) \rightarrow Selbststudium

Teil 2 - Der Regler

Der PID-Regler: der linearer Regler

 $PID \rightarrow besteht aus den drei basis Übertragungsgliedern$ Warum PID und nicht PT1 etc.?: PT1/ PT2 sind langsamer als der P-Anteil des PID

Nomenklatur lernen:

- Sprungantwort \rightarrow Übergangsfunktion
- Eingangssignal $x_e(t) \to \text{Regel-Abweichung}$
- $\bullet\,$ Ausgangssignal $x_a(t)\to$ Stellgröße

$$G(s) = V(1 + \frac{1}{sT_N} + sT_V)$$

V = Verstärkung

Typische Anwendung der Glieder:

P-Regler nehmen
weil?

PI-Regler
falls P nicht möglich
weil?

PID-Regler
falls PI nicht möglich
weil?

21.11.2024

Standardregelkreis

Regelkreis nach DIN 19226 (Grafik im Script zu finden und bereits angefangen)

Führungs und Störverhalten (Thema 11)

Führungsverhalten: Wie reagiert der Regelkreis auf eine Änderung der Führungsgröße (w(t))? Störverhalten: Wie reagiert der Regelkreis auf eine Änderung der Störgröße (z(t))? (Grafik im Script zu finden und bereits nachgebastelt)

Berechnung der Regelgröße in Abhängigkeit der Führungsgröße

$$w(s) \to x(s)$$

$$X(s) = (W(s) - X(s)) * G_0(s)$$

$$G_0(s) = \frac{X(s)}{E(s)} = \frac{X(s)}{W(s) - X(s)}$$

$$X_W(s) = \frac{G_0(s)}{1 + G_0(s)} * W(s)$$

$$G_{WX}(s) = \frac{X(s)}{W(s)} = \frac{G_0(s)}{1 + G_0(s)}$$

Berechnung der Regelgröße in Abhängigkeit der Führungsgröße

$$w(s) \to \epsilon(s)$$
 (oder auch E(s))

$$E(s) = W(s) - X(s); X(s) = E(s) * G_0(s)$$

$$E(s) = W(s) - (E(s) * G_0(s))$$

$$E_W(s) = \frac{1}{1 + G_0(s)} * W(s)$$

$$G_{WE}(s) = \frac{E(s)}{W(s)} = \frac{1}{1 + G_0(s)}$$

Berechnung der Regelgröße in Abhängigkeit der Störgröße

$$z(s) \to x(s)$$

$$X(s) = -X(s) * G_0(s) + Z(s)$$

$$X_Z(s) = \frac{1}{1 + G_0(s)} * Z(s)$$

$$G_{ZX}(s) = \frac{X_Z(s)}{Z(s)} = \frac{1}{1 + G_0(s)}$$

Berechnung der Regelabweichung in Abhängigkeit der Störgröße

$$z(s) \to \epsilon(s)$$
 (oder auch E(s))

$$E(s) = -X(s); X(s) = E(s) * G_0(s) + Z(s)$$

$$E(s) = -(E(s) * G_0(s) + Z(s))$$

$$E_Z(s) = -\frac{1}{1 + G_0(s)} * Z(s)$$

$$G_{ZE}(s) = \frac{E_Z(s)}{Z(s)} = -\frac{1}{1 + G_0(s)}$$

Kombination von Störungs- und Führungsverhalten

Führ die Formelsamlung: (Graftk/Zusammenfassung im Script zu finden) Addition/Überlagerung von Signalen dürfen in linearen Systemen vollzogen werden.

Einstellregel (Thema 15)

Wie stellt man einen Reglner ein?

(weitere Grafik im Script)

- T_U ist eine Erstatz tot-Zeit
- T_G ist eine Ersatz-Zeit-Konstante

Zwei Varianten weil eine Regelstrecke mit I-Anteil (ohne Ausgleich) ist nicht begrentzt (rest ist im Script zu finden)

26.11.2024

Regelabweichung (Thema 12)

(für weitere Grafiken oder Unklarheiten durch fehlende Grafiken bitte in das Script der Vorlesung schauen)

$$(W(s) = \frac{W_0}{s})$$

Der Standardregelkreis fasst kein Messglied. (Es wird trotzdem gemessen. Es wird nur nicht abgebildet)

$$e = w - x$$

Die Berechnung der Regelabweichung erfolgt im stationären Zustand. \rightarrow Bleibende Regelabweichung

(Berechnung des Vorlesungs / Script Bsp.)

• P-Regler

$$\lim_{t\to\infty} e(t) = \lim_{s\to 0} E(s) \cdot \frac{s}{s}$$

$$E_w(s) = \frac{1}{1+G_0(s)} \cdot W(s) \text{ mit } G_0(s) = G_R(S) \cdot G_S(s); G_R(s) = K$$

$$E_W(s) = \frac{1}{1+a \cdot K} \cdot \frac{W_0}{s}$$

$$\lim_{t\to\infty} e(t) = \lim_{s\to 0} \frac{1}{1+a \cdot K} * \frac{W_0}{s} \cdot \frac{s}{s} = \frac{W_0}{1+a \cdot K}$$

a - Verstärkung des Öldruckpresse

(Vorlesungs/Script Bsp. würde vermutlich ein I-Anteil beinhalten, um mehr Genauigkeit zu erhalten.)

• I-Regler

$$G_R(s) = \frac{1}{sT_N}$$

$$E_W(s) = \frac{1}{1+G_0(s)} \cdot W(s) = \frac{1}{1+a \cdot \frac{1}{T_N s}} \cdot \frac{W_0}{s}$$

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} \frac{1}{1+a \cdot \frac{1}{T_N s}} \cdot \frac{W_0}{s} \cdot s$$

$$\lim_{s \to 0} \frac{1W_0}{1+\frac{a}{T_N s}} = 0$$

$$\lim_{s \to 0} \frac{s \cdot W_0}{s + \frac{a}{T_N}} = 0$$

(I-Regler ist für die meisten Fälle zu langsam)

 \bullet PI-Regler

Dieser Regler ist schnell und genau genug.

Ein weiters Beispiel für das Selbststudium (im Script)

PT2-Glied \rightarrow Nicht Schwinungsfähig

$$E(s) = W(s) - [uebertragungsfunktionen] E(s) \\$$

Das Nyquist-Verfahren (Thema 14)

 $\underline{\text{Hurwitz}}$

Prüfung: an geschlossener Kette

Nyquist

Prüfung: an offener Kette Vorteil: Experimentelle Herangehensweise

Erklärung

Abbildung 1: Offene Regelkette

$$G_0(j\omega) = \frac{X_a(j\omega)}{X_e(j\omega)} = -1$$

Der geschlossene Regelkreis ist stabil, wenn die ortskurve des Frequenzgangs der offenen Kette den kritischen Punkt nicht umschließt. Bzw. links davon sind.

Abbildung 2: Niquist Ortskurven

Randnotiz: I_1 -Glied = $\frac{1}{s} = \frac{1}{j\omega}$ Hausaufgabe: Berechnen sie die Übertragungsfunktion einer Rückgekoppelten I-Gliedes

$$G_0(s) = G_R(s) \cdot G_S(s) = \frac{1}{sT_N(1+2s)(1+4s)}$$
$$s = \delta + j\omega, \ \delta = 0$$
$$G_0(j\omega) = \frac{1}{j\omega T_N(1+2j\omega)(1+4j\omega)} = \frac{-j\omega T_N(1-2j\omega)(1-4j\omega)}{-j\omega T_N(1-2j\omega)(1-4j\omega)}$$

Zähler \rightarrow ausmultipliziert; Nenner \rightarrow 3. Binomische Formel

$$G_0(j\omega) = \frac{-6\omega^2}{\omega^2 T_N (1 + 4\omega^2)(1 + 16\omega^2)} + j \frac{-\omega + 8\omega^3}{\omega^2 T_N (1 + 4\omega^2)(1 + 16\omega^2)}$$
$$G_0(j\omega) = \frac{-6}{T_N (1 + 4\omega^2)(1 + 16\omega^2)} + j \frac{8\omega^2 - 1}{\omega T_N (1 + 4\omega^2)(1 + 16\omega^2)}$$
$$G_0(j\omega) = -1 + 0$$

Grafische Variante des Niquist-Kriterikums

ω	Re	Re	Re	Im
	$T_N=2$	$T_N = \frac{4}{3}$	$T_N = 1$	
0	-3	-4.5	-6	$-\infty$
$\sqrt{\frac{1}{8}}$	$-\frac{2}{3}$	-1	$-\frac{4}{3}$	0
∞	0	0	0	0
	stabil	instabil	instabil	

Tabelle 1: Grafik Fehlt

Analytische Variante des Niquist-Kriterikums

1.
$$Im\{G_0(j\omega)\} = 0$$

 $8\omega^2 - 1 = 0; \ \omega_{kritisch} = \pm \sqrt{\frac{1}{8}}$

2.
$$Re\{G_0(j\omega_{kritisch})\} = -1$$

 $T_{N_{kritisch}} = \frac{4}{3}$