

VARIABLES AND DATA TYPES

PYTHON BASICS

prepared by:

Gyro A. Madrona

Electronics Engineer

........

TOPIC OUTLINE

Python

Variables

Data Types

Data Structures

PYTHON

PYTHON

Python is a powerful and versatile programming language widely used in data analytics due to its simplicity, readability, and extensive library support. It enables data analysts to perform various tasks, from data cleaning and manipulation to statistical analysis and visualization.

VARIABLES

FRUIT CONTAINER ANALOGY

A <u>variable</u> is like a <u>storage container</u> that holds a specific type of fruit.

location	quantity	label
1		
2	400	apple
3		
4	200	orange
5		
•		
•		
•		
•		
•		
1000	100	grape

VARIABLE

A <u>variable</u> is a named storage location in memory that <u>holds a value</u> of a specific data type.

- 1. **Data type** Defines what kind of data it can store (e.g., **int**, **double**, **str**).
- 2. Name (identifier) a unique name assigned to the variable.
- 3. **Value** The actual data stored in memory.

address	value	name
0001h		
0002h	400	apple
0003h		
0004h	200	orange
0005h		
•		
•		
•		
•		
•		
FFFFh	100	grape

VARIABLE DECLARATION

Variable Declaration Syntax:

name = value

Example:

apple = 400

pie = 3.14

grade = 'A'

Python dynamically infers variable types based on assigned values without requiring explicit declarations.

address	value	name
0001h		
0002h	400	apple
0003h		
0004h	200	orange
0005h		
•		
•	3.14	pie
•		
•	'A'	grade
•		NIII
FFFFh	100	grape
		July Is all

IDENTIFIERS

A variable is identified by a **unique name**, called an **identifier**.

- It can contain letters, digits, and underscores.
- It cannot have "space".
- It cannot start with a digit.
- It cannot be a reserved keyword (int, return, class).
- It is case-sensitive (e.g., age and Age are different variables)

Valid Identifiers:

```
// contains only letters
age
// starts with an underscore
_salary
// contains letters and a digit
grade1
// uses an underscore instead of space
total_price
```


IDENTIFIERS

A variable is identified by a **unique name**, called an **identifier**.

- It can contain letters, digits, and underscores.
- It cannot have "space".
- It cannot start with a digit.
- It cannot be a reserved keyword (int, return, class).
- It is case-sensitive (e.g., age and Age are different variables)

Invalid Identifiers:

```
// starts with a digit
lstRank;
// uses a reserved keyword
class;
// contains a space
total price;
```


DATA TYPES

DATA TYPES

Python <u>data types</u> are the classification or categorization of data items. It represents the <u>kind of value</u> that tells what operations can be performed on a particular data.

INTEGER

Example:

$$age = 25$$

Integer <u>(int)</u> is used to store <u>integer values</u> (whole numbers).

BOOLEAN

Example:

is_active = True

is_active = False

Boolean (bool) is used to store Boolean values (True or False).

FLOATING POINT

Example:

$$pi = 3.14$$

$$height = 1.7$$

Floating point <u>(float)</u> is used to store floating-point numbers (decimal values).

STRING

Example:

```
message = "Hello, World!"
message = 'Hello, World!'
```

String represent sequences of characters enclosed in **double quotes** or **single quote** .

DATA STRUCTURES

LIST

A <u>list</u> is an ordered and heterogeneous collection of elements, defined using square brackets [] .

Examples:

```
fruits = ["apple", "orange", "grapes"]
my_list = [1,2,3, "Python", 5.5]
```


TUPLE

A <u>tuple</u> is an ordered, <u>immutable</u>, and heterogeneous collection of elements. It is defined using parentheses ().

Examples:

```
fruits = ("apple", "orange", "grapes")
my_list = (1,2,3, "Python", 5.5)
```


DICTIONARY

A <u>dictionary</u> collection of is an unordered and indexed <u>key-value</u> pairs. It is defined using curly braces { } by colons : .

Examples:

LABORATORY

