UNIT 7: Infectious disease

1 Introduction

Infectious disease

- Extremely common
- Huge impacts on ecological interactions
- A form of exploitation, but doesn't fit well into our previous modeling framework
 - How many people are there?
 - How many influenza viruses are there?
 - How do they find each other?

Disease agents

- Can you name an infectious agent that causes disease in humans?
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies

*

Bacteria are independent, free-living cells with hundreds or thousands of chemical pathways

*

- **Eukaryotic** pathogens are nucleated cells who are more closely related to you than they are to bacteria

*

Microparasites

- For infections with small pathogens (viruses and bacteria), we don't attempt to count pathogens, but instead divide disease into stages
 - Latently infected
 - Productively infected
 - Recovered

Microparasite models

- We model microparasites by counting the number of hosts in various states:
 - Susceptible individuals can become infected
 - **Infectious** individuals are infected and can infect others
 - Resistant individuals are not infected and cannot become infected
- More complicated models might included other states, such as latently infected hosts who are infected with the pathogen but cannot yet infect others

Models as tools

- Models are the tools that we use to connect scales:
 - individuals to populations
 - single actions to trends through time

2 Rate of spread

- \bullet For many diseases, especially new diseases, we can observe and estimate r
- \bullet Want to know what factors contribute to that, and how it relates to ${\mathcal R}$

Basic reproductive number

- People in the disease field love to talk specifically about \mathcal{R}_0
- But they don't always mean the same thing:
 - Maximum value of \mathcal{R} in a population
 - Theoretical value in a naive population without control efforts
 - Actual value before an epidemic

Example: the West African Ebola epidemic

Generation intervals

- Researchers try to estimate the *proportion* of transmission that happens for different **ages of infection**
- How long from the time you are *infected* to the time you *infect someone* else?
- Analogous to a life table
- The effective generation time \hat{G} has units of time

Generation intervals

Approximate generation intervals

Approximate generation intervals

Speed and risk

- Which is more dangerous, a fast disease, or a slow disease?
 - How are we measuring speed?
 - How are we measuring danger?
 - What do we already know?

Generation time and risk

- If we know \mathcal{R} , what does the generation time tell us about r?
- If we know r, what does the generation time tell us about \mathcal{R} ?
- $\mathcal{R} = \exp(r\hat{G})$

Generation time and risk

3 Single-epidemic model

- \bullet Susceptible \to Infectious \to Recovered
- ullet We also use N to mean the total population

Transition rates

- What factors govern movement through the boxes?
 - People get better independently
 - People get infected by infectious people

Conceptual modeling

- What happens in the long term if we introduce an infectious individual?
 - _
 - _
- -

Interpreting

- Why might there not be an epidemic?
 - _
- Why doesn't everyone get infected?
 - _

Implementing the model

• The simplest way to implement this conceptual model is with differential equations:

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

$$-\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I$$

$$-\frac{dR}{dt} = \gamma I$$

Units

- S, I, R, N: [people] or [people/ha]
- β, γ : [1/time]

Simulating the model

Parameters

- Infectious people recover at per capita rate γ
 - Total recovery rate is γI
 - Mean time infectious is $D = 1/\gamma$
- Susceptible people have "potentially effective" contacts at rate β
 - These are contacts that would lead to infection if the person contacted is infectious
 - Total infection rate is $\beta I/N$, because I/N is the proportion of the population infectious

Basic reproductive number

• What *unitless* parameter can you make from the model above?

_

*

Basic reproductive number implications

- What happens early in the epidemic if $\mathcal{R}_0 > 1$?
 - _
- What happens early in the epidemic if $\mathcal{R}_0 < 1$?

_

Effective reproductive number

• The effective reproductive number gives the number of new infections per infectious individual in a partially susceptible population:

_

• What do we expect \mathcal{R}_e to be at equilibrium?

• Why doesn't everyone get infected?

3.1 Epidemic size

- In this model, the epidemic always burns out
 - No source of new susceptibles
- Epidemic size is determined by:

- *

Ebola example

- In September, the US CDC predicted "as many as" 1.5 million Ebola cases in Liberia
- What happened?

What limits epidemics?

- \bullet What limits epidemics in our simple models?
- What else limits epidemics in real life?
 - _

4 Recurrent epidemic models

• If epidemics tend to burn out, why do we often see repeated epidemics?

Recurrent epidemics

Measles reports from England and Wales

Closing the circle

Births and deaths

Tendency to oscillate

Tendency to oscillate

- "Closed-loop" SIR models (ie., with births or loss of immunity):
 - Tend to oscillate
 - Oscillations tend to be damped
 - * System reaches an **endemic** equilibrium disease persists

Source of oscillations

• Similar to predator-prey systems

•	What	happens	if we	start	with	too	many	susce	ptibles?
	_								
	_								
	_								

Persistent oscillations

• If oscillations tend to be damped in simple models, why do they persist in real life?

5 Reproductive numbers and risk

- At equilibrium, the proportion of people who are susceptible to disease should be approximately $S/N = 1/\mathcal{R}_0$
- Proportion "affected" (infectious or immune) should be approximately $V/N=1-1/\mathcal{R}_0$
- If you have a single, fast epidemic, the size is also predicted by \mathcal{R}_0 .

Reproductive numbers and risk

Examples

- Ronald Ross predicted 100 years ago that reducing mosquito densities by a factor of 5 or so would *eliminate* malaria
- Gradual disappearance of polio, typhoid, etc., without risk factors going to zero
- Eradication of smallpox!

Threshold for elimination

• What proportion of the population should be vaccinated to eliminate a disease?

Examples:

- Polio has an \mathcal{R}_0 of about 5. What proportion of the population should be vaccinated to eliminate polio?
- Measles has an \mathcal{R}_0 of about 20. What proportion of the population should be vaccinated to eliminate measles?

Persistence of infectious disease

- Why have infectious diseases persisted?
 - The pathogens evolve
 - Human populations are **heterogeneous**
 - * People differ in: nutrition, exposure, access to care

Heterogeneity and persistence

- Heterogeneity increases \mathcal{R}_0
 - When disease is rare, it is concentrated in the most vulnerable populations
 - * Cases per case is high
 - * Elimination is harder
- Marginal populations
 - Heterogeneity could make it easier to concentrate on the most vulnerable populations and eliminate disease
 - Humans rarely do this, however: the populations that need the most support typically have the least access

^{© 2010–2016,} Jonathan Dushoff and the 3SS teaching team. May be reproduced and distributed, with this notice, for non-commercial purposes only.