Calculus Quiz 5: Prof. Kaplan

March 13, 2025

Student name: .

Do what you can in 15 minutes.

Question 5.1: What is $\partial_y (a_0 + a_1 x + a_2 x^2)$?

(i)
$$a_1 + a_2 x$$
 (ii) $a_1 + 2a_2 x$ (iii) $a_1 + 2a_2 y$ (iv) 0

Question 5.2: What is $\partial_t Axe^{kt}$?

(i) 0 (ii)
$$Ake^{kt}$$
 (iii) $Akxe^{kt}$ (iv) Ae^{kt}

Question 5.3: What is

$$\partial_{yx}[a_0 + a_1x + b_1y + cxy + a_2x^2 + b_2y^2]$$
?

(i)
$$c$$
 (ii) $2a_2$ (iii) $2b_2$ (iv) 0

Question 5.4: What is $\partial_{yx}h(x,y)g(y)$?

i.
$$\partial_{yx}h(x,y)$$

ii.
$$g(y)\partial_{yx}h(x,y) + h(x,y) \partial_y g(y)$$

iii.
$$\left(\partial_y g(y)\right) \left(\partial_x h(x,y)\right) + g(y) \left(\partial_{yx} h(x,y)\right)$$

iv.
$$(\partial_x g(y)) \ (\partial_x h(x,y)) + g(y) (\partial_{xx} h(x,y))$$

Question 5.5: What is $\partial_t (7 + 8t^2 + 3t^4)$?

i.
$$16t + 12t^3$$

ii.
$$8t + 4t^3$$

iii.
$$16t^2 + 9t^3$$

iv.
$$4t + 12t^2$$

Question 5.6: What is $\partial_y h(x, y)g(y)$?

i.
$$\partial_u g(y)$$

ii.
$$g(y)\partial_{y}h(x,y)$$

iv.
$$g(y) y h(x,y) + h(x,y) y g(y)$$

Question 5.7: Which of the derivative rules should you use to find

$$\partial_t e^{t^2}$$
?

- i. The constant multiplier rule
- ii. The linear combination rule
- iii. The product rule
- iv. The chain rule
- v. No rule needed, it is so basic.

Question 5.8: Which of the derivative rules should you use to find

$$\partial_t e^t \sin(x)$$
?

- i. The constant multiplier rule
- ii. The linear combination rule
- iii. The product rule
- iv. The chain rule
- v. No rule needed, it is so basic.

Question 5.9: For the function

$$g(P) \equiv \sin\!\left(\frac{2\pi}{P}(t-t_0)\right)$$

is the interior function linear?

(i) Yes (ii) No

Question 5.10: Here are several functions that are related by differentiation and integration:

a.
$$\frac{1}{2}e^{ax+b}$$

b.
$$a^2 e^{ax+b}$$

c.
$$\frac{1}{a^2}e^{ax+b}$$

d.
$$e^{ax+b}$$

e.
$$ae^{ax+b}$$

Put these functions in order that the derivative of each function preceds the anti-derivative.

- i. The order is b-e-d-a-c
- ii. The order is b-d-e-c-a
- iii. The order is b-d-c-e-a
- iv. The order is e-b-d-c-a
- v. The order is e-b-d-a-c

Question 5.11: There are two pattern-book functions whose **second** derivative is proportional to the function itself. Which are they?

- i. Exponential and sinusoid
- ii. Exponential and sigmoid
- iii. Exponential and logarithm
- iv. Sinusoid and gaussian

Question 5.12: Consider the function shown in the following contour plot:

At which of these inputs is the function practically flat?

i.
$$(x = 0, y = 6)$$

ii.
$$(x = 1, y = 2)$$

iii.
$$(x = -2, y = 3)$$

iv.
$$(x = 0, y = 1)$$

Question 5.13: Imagine a second-order polynomial in three inputs: x, y, and z, like this:

$$b_0 + b_x x + b_y y + b_z z + b_{xy} xy + b_{xz} xz + b_{xx} x^2 + b_{yy} y^2 + b_z zz^2 \; .$$

All of the possible second-order (or less) terms are shown, except for one. Which term is missing?

- i. the interaction between y and z
- ii. the quadratic term in z
- iii. the linear term in y
- iv. the constant term

Question 5.14: Suppose you know only this one fact about f(x), that

$$\left[\partial_{xx} f(x)\right]_{x=7.3} = 1.6$$
.

Which of these statements **must** be true?

- i. f(x) is increasing at x = 7.3.
- ii. f(x) is concave up and decreasing at x = 7.3
- iii. f(x) is concave up at x = 7.3
- iv. f(x) is concave up at x = 7.3, but eventually it will become concave down.

Question 5.15: Which of the following is the correct construction for $\partial_t g(t)$?

i.
$$\lim_{h \to 0} \frac{g(t+h) - g(t)}{h}$$

ii.
$$\lim_{h\to 0}\frac{g(t+h)-g(t)}{t}$$

iii.
$$\lim_{h \to 0} \frac{g(t) - g(t+h)}{h}$$

iv.
$$\lim_{x \to 0} \frac{g(t+h) - g(t)}{h}$$

Question 5.16: The derivative

$$\partial_x$$
dnorm $(x)=-x\,\mathrm{dnorm}\ (x)$.

What is

$$\partial_x \text{ dnorm } \left(\frac{x^2}{4}\right)$$
?

$$\begin{array}{ll} \text{i.} & -\frac{x^3}{8} \text{ dnorm } \left(\frac{x^2}{4}\right) \\ \text{ii.} & -\frac{x}{2} \text{ dnorm } \left(\frac{x^2}{4}\right) \\ \text{iii.} & -\frac{x}{8} \text{ dnorm } \left(\frac{x^2}{4}\right) \\ \text{iv.} & -\frac{x^2}{2} \text{ dnorm } \left(\frac{x^2}{4}\right) \end{array}$$