

Decision Tree, K-Nearest Neighbor, SVM

Machine Learning (PM chap 3)

Decision Trees

The Model

- Representing the model as a tree not a parameterized function
- $x:(x_1, x_2, ..., x_n), y = C_1 \text{ or } C_2 \text{ or } ... C_m$
 - Internal nodes: a feature (x_i)
 - Edges: different feature values
 - Leaves: class label y (C_k)

			wo.g				
	(class label	low / high				
	X	У					
size	weight	class	N size? large small				
large	high	Υ	Y				
small	low	N					
large	high	Υ					
large	low	N	$(input x) \rightarrow rules \rightarrow output y$				
small	high	N	(size, weight) (cancer)				
			If (weight=low) then class=N				

weight?

Decision Trees

Example

Training data:

,	у	
185	65	0
162	80	1
175	70	0

- The model:
- Prediction:

Learning: Build tree by recursively partition the training data

Learning Decision Trees

Learning

- 1. At start, all the training examples are at the root
- 2. A feature is selected based on a statistical measure (e.g., information gain)
- 3. Examples are partitioned recursively based on selected features

Conditions for stop partitioning

- All samples belong to the same class
- No samples left → majority class
- No attributes left → majority sample

Learning Decision Trees

Learning example

No.	age	income	student	credit	BUY?
1	20	high	no	fair	N
2	20	high	no	good	N
3	30	high	no	fair	Y
4	40	med	no	fair	Υ
5	40	low	yes	fair	Υ
6	40	low	yes	good	N
7	30	low	yes	good	Υ
8	20	med	no	fair	N
9	20	low	yes	fair	Υ
10	40	med	yes	fair	Υ
11	20	med	yes	good	Υ
12	30	med	no	good	Υ
13	30	high	yes	fair	Υ
14	40	med	no	good	N

Learning Decision Trees

Learning example

Entropy

- Amount of Information
 - There are $C_1, C_2, ..., C_n$ classes, each of which has $s_1, s_2, ..., s_n$ samples

$$C_1$$
 C_2 S_2 $p_1 = \frac{S_1}{S}$ $p_2 = \frac{S_2}{S}$

- Information required to classify a sample to C_i
 - High prob. \rightarrow low info.
 - Prob. = $1 \rightarrow zero info$.

$$\longrightarrow Info. = \log_2 \frac{1}{p_i} = -\log_2 p_i = -\log_2 \frac{s_i}{s}$$

Entropy

- Entropy of a set S
 - Measure of uncertainty, or mixedupness
 - Expected information to classify a sample in S

$$I(S) = I(s_1, s_2,..., s_m) = \sum_{i=1}^{m} p_i(-\log_2 p_i) = -\sum_{i=1}^{m} \frac{s_i}{s} \log_2 \frac{s_i}{s}$$

$$I = \left(-\frac{1}{2} \cdot \log \frac{1}{2}\right) + \left(-\frac{1}{2} \cdot \log \frac{1}{2}\right) = 1.0$$

$$I = \left(-\frac{3}{4} \cdot \log \frac{3}{4}\right) + \left(-\frac{1}{4} \cdot \log \frac{1}{4}\right) = 0.81$$

$$I = \left(-\frac{4}{4} \cdot \log \frac{4}{4}\right) + \left(-\frac{0}{4} \cdot \log \frac{0}{4}\right) = 0.0$$

Entropy

H, H, H, H
L, L, L, L
$$I = -\frac{1}{2}log_2\frac{1}{2} - \frac{1}{2}log_2\frac{1}{2} = 1.0$$

- \Rightarrow x1 < x2 < x3 reduces more entropy
- \Rightarrow x1 < x2 < x3 has more information for H / L decision

Gini

- Gini Index
 - A measure of how often a randomly chosen element from the set would be incorrectly labeled if it was randomly labeled according to the distribution
 - Summing the probability p_i of an item i being chosen * the probability of a mistake

$$I(S) = \sum_{i=1}^{m} p_i (1 - p_i) = \sum_{i=1}^{m} (p_i - p_i^2) = 1 - \sum_{i=1}^{m} p_i^2$$

H, H, L, L
$$I_G = 1 - \left(\frac{1^2}{2} + \frac{1^2}{2}\right) = 0.5$$
H, H, H, H, L
$$I_G = 1 - \left(\frac{3^2}{4} + \frac{1^2}{4}\right) = 0.375$$
H, H, H, H, H
$$I_G = 1 - \left(\frac{4^2}{4} + \frac{0^2}{4}\right) = 0.0$$

Entropy and Gini Impurity

Entropy and Gini graph

Selecting Features

- Maximizing Information Gain (IG)
 - Objective function

$$IG(D_p, f) = I(D_p) - \sum_{j=1}^{m} \frac{N_j}{N_p} I(D_j)$$

f: features for classification

 D_p : Parent node

 D_i : jth child node

 N_p : Number of samples in parent node

 N_i : Number of samples in jth child node

Example - Entropy

Maximizing information gain

$$I(D_P) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$$

$$I(D_{left}) = -\frac{3}{4}log_2\frac{3}{4} - \frac{1}{4}log_2\frac{1}{4} = 0.81 \qquad I(D_{left}) = -\frac{2}{6}log_2\frac{2}{6} - \frac{4}{6}log_2\frac{4}{6} = 0.92$$

$$I(D_{right}) = -\frac{1}{4}log_2\frac{1}{4} - \frac{3}{4}log_2\frac{3}{4} = 0.81$$
 $I(D_{right}) = -\frac{2}{2}log_2\frac{2}{2} - \frac{0}{2}log_2\frac{0}{2} = 0$

$$IG(D_P, A) = 1 - \frac{4}{8} \cdot 0.81 - \frac{4}{8} \cdot 0.8 = 0.19$$

$$I(D_{left}) = -\frac{2}{6}log_2\frac{2}{6} - \frac{4}{6}log_2\frac{4}{6} = 0.92$$

$$I(D_{right}) = -\frac{2}{2}log_2\frac{2}{2} - \frac{0}{2}log_2\frac{0}{2} = 0$$

$$IG(D_P, A) = 1 - \frac{4}{8} \cdot 0.81 - \frac{4}{8} \cdot 0.8 = 0.19$$
 $IG(D_P, B) = 1 - \frac{6}{8} \cdot 0.92 - \frac{2}{8} \cdot 0 = 0.31$

Continuous Feature Values

- Find the binary split points
 - Sort the values of x in increasing order
 - The midpoints between adjacent values are possible split points
 - Example : $[1, 2, 4, 6.5] \rightarrow [1.5, 3, 5.25]$
- Select best split point → binarize the feature
 - For each possible split points, compute the information gain
 - The point with the *maximum information gain* is selected as the split-point for x

Pruning

- The generated tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
- Prepruning
 - Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
- Postpruning
 - Remove branches from a "fully grown" tree
 - If pruning a node lead to a smaller error rate (with test set), prune it

Pruning

Advantages

Advantage

- The model is interpretable (understand why the prediction is made)
 - Ex> x is classified as 'yes' because (Age > 40 and Credit = fair)

Disadvantage

- It is unstable
 - a small change in the data can \rightarrow a large change in the structure of the tree
- Data including categorical variables with different number of levels
 - information gain in decision trees is biased in favor of attributes with more levels
 - Example

Iris dataset

```
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
```

DT learning on Iris dataset

```
from sklearn.tree import DecisionTreeClassifier

tree = DecisionTreeClassifier(criterion='gini', random_state=1)
tree.fit(X_train, y_train)
```

The model

```
plot_tree(tree, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, fontsize=11)
plt.show()
```


Decision boundary

```
plot_decision_regions(X_train, y_train, classifier=tree)
```


Model accuracy

```
print("Train Accuracy : ", tree.score(X_train, y_train))
print("Test Accuracy : ", tree.score(X_test, y_test)
```

Train Accuracy: 0.9904761904761905 Test Accuracy: 0.97777777777777

DT on Iris dataset – reduced depth

```
tree = DecisionTreeClassifier(criterion='gini', max_depth=2, random_state=1)
tree.fit(X_train, y_train)
```



```
print("Train Accuracy : ", tree.score(X_train, y_train))
print("Test Accuracy : ", tree.score(X_test, y_test))
```

Train Accuracy: 0.9523809523809523 Test Accuracy: 0.95555555555556

Random Forest

- The model
 - A set of K decision trees \rightarrow y(class label) is determined by majority voting

- Learning
 - Each tree is built from N sample data randomly drawn with replacement
 - Each tree is built using D features randomly selected from n features ($D=\sqrt{n}$)
 - better generalization (reduce overfitting)

Random Forest with Scikit-learn

- DT on Iris dataset
 - No. of trees = 100, depth = 2
 - No. of features = sqrt(n)

Model accuracy

```
2.5 | 2.0 | 4 | 2.0 | 1.5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.
```

```
print("Train Accuracy : ", forest.score(X_train, y_train))
print("Test Accuracy : ", forest.score(X_test, y_test))
```

Train Accuracy: 0.9523809523809523 Test Accuracy: 0.977777777777777

K-Nearest Neighbors

Non-parametric method

- The K-Nearest Neighbors algorithm(K-NN) is non-parametric method used for classification and regression
- No explicit model lazy learning

Method

- 1. Choose K and distance metric
- 2. Find K nearest neighbors of x from the training data $x^{(i)}$
- 3. Assign label y by majority vote

K-Nearest Neighbors

- Minkowski distance
 - Distance between $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$ is

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

P = 1 : Manhattan distance

$$d(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2| + \cdots$$

P = 2 : Euclidean distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \cdots}$$

K-Nearest Neighbors

- For discrete-valued target y
 - The k-NN returns the most common value among the k training examples nearest to x
 - Ex> y is Yes or No : 9-NN, 5 Yes, 4 No → Yes
- For continuous-valued target y
 - Calculate the mean values of the k nearest neighbors
- Distance-weighted method
 - Weight k neighbors according to their distance to $\mathbf{x}^{(i)}$, $\mathbf{d}(\mathbf{x}, \mathbf{x}^{(i)})$
 - Larger weight to closer neighbor
 - Calculate the weighted average of y⁽ⁱ⁾

$$w_i = \frac{1}{d(\mathbf{x}, \mathbf{x}^{(i)})} \quad W = \sum w_i \qquad \hat{y} = \sum_{i=1}^k \frac{w_i}{W} y^{(i)}$$

Example

Learning example

No.	age	income	student	credit	BUY?
1	0	1.0	0	0	0
2	0	1.0	0	1.0	0
3	0.5	1.0	0	0	1.0
4	1.0	0.5	0	0	1.0
5	1.0	0	1.0	0	1.0
6	1.0	0	1.0	1.0	0
7	0.5	0	1.0	1.0	1.0
8	0	0.5	0	0	0
9	0	0	1.0	0	1.0
10	1.0	0.5	1.0	0	1.0
11	0	0.5	1.0	1.0	1.0
12	0.5	0.5	0	1.0	1.0
13	0.5	1.0	1.0	0	1.0
14	1.0	0.5	0	1.0	0

- Training data → map to 4-D space
 - d(x, x(i)): manhattan distance
 - K = 3
- Classify new data

```
x: (age="20", income="med", student="yes", credit="fair")

→ (0, 0.5, 1, 0)
```

- 3-NN: 9. (0, 0, 1, 0), d = 0.5, $w = 1/0.5 \rightarrow 1$ (yes), 8. (0, 0.5, 0, 0), d = 1.0, $w = 1/1.0 \rightarrow 0$ (no) 11. (0, 0.5, 1, 1), d = 1.0, $w = 1/1.0 \rightarrow 1$ (yes)
- $\mathbf{W} = 4$
- $y = 2/4 \times 1(yes) + 1/4 \times 0(no) + 1/4 \times 1(yes) = 0.75$

Curse of Dimensionality

- For high dimensional data (large number of features)
 - Neighbors can be far away → k-NN is not appropriate
 - Distance between neighbors can be dominated by irrelevant features
 - Number of data: N, dimension: d, all values are in [0, 1] → total volume: 1^d
 - All neighborhood distance is less than b ($0 \le b \le 1$) → total volume: b^d
 - To contain k data, the neighbors should occupy k/N fraction, i.e. b^d = (k/N)*1

$$\rightarrow$$
 b = $(k/N)^{1/d}$

- N=1000, d=2, k=10 \rightarrow b = 0.1
- N=1000, d=100, k=10 \rightarrow b = 0.95

For
$$k/N = 1/100$$
:

K-Nearest Neighbors Using Scikit-learn

K-NN on Iris dataset (binary classification)

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3, p=2)
knn.fit(X_train_std, y_train)

K = 5

Model accuracy

Train Accuracy: 0.9904761904761905 Test Accuracy: 0.97777777777777 K = 9

Train Accuracy: 0.9523809523809523 Test Accuracy: 0.977777777777777

- SVM is a linear classifier
 - Given dataset $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n), y_i = +1$ or -1, decision boundary is $\mathbf{w}^T \mathbf{x} + \mathbf{b} = \mathbf{0}$
 - Margin width that the boundary can be increased before hitting a data point
 - SVM tries to find a hyperplane that maximize the margin
 - The maximum-margin separator is determined by a subset of the data points
 support vectors

- Decision boundary
 - Positive hyperplane = $\mathbf{w}^T \mathbf{x} + b = +1$
 - Negative hyperplane = $\mathbf{w}^T \mathbf{x} + b = -1$
- Classification of data x
 - $y = +1 \quad if \quad \mathbf{w}^T \mathbf{x} + b \ge 1$
 - $y = -1 \quad if \quad \mathbf{w}^T \mathbf{x} + b \le -1$

- Finding maximum margin M
 - w is perpendicular to the hyperplane
 - Let \mathbf{x}_1 and \mathbf{x}_2 be two vectors on the same hyperplane Then $\mathbf{w}^T \mathbf{x}_1 + b = \mathbf{w}^T \mathbf{x}_2 + b = 0$. $\mathbf{w}^T (\mathbf{x}_1 - \mathbf{x}_2) = 0$
 - Let x^- : any point on the negative hyperplane x^+ : closest point on the positive hyperplane

$$\rightarrow x^+ = x^- + \lambda w \rightarrow x^+ - x^- = \lambda w$$

Subtract $\mathbf{w}^T \mathbf{x}^+ + b = +1$ $\mathbf{w}^T \mathbf{x}^- + b = -1$

$$\Rightarrow \mathbf{w}^{T}(\mathbf{x}^{+} - \mathbf{x}^{+}) = 2$$

$$\mathbf{w}^{T} \lambda \mathbf{w} = 2$$

$$\lambda = \frac{2}{\|\mathbf{w}\|^{2}}$$

• Margin
$$M = ||\mathbf{x}^+ - \mathbf{x}^+|| = \lambda ||\mathbf{w}|| = \frac{2}{||\mathbf{w}||^2} ||\mathbf{w}|| = \frac{2}{||\mathbf{w}||}$$

So, maximize $M = \text{minimize } \frac{\|\mathbf{w}\|}{2}$

- The optimization problem
 - Minimize $\|\mathbf{w}\|^2$

Constraints:
$$\mathbf{w}^T \mathbf{x}_i + b \ge 1$$
 if $y_i = 1$

$$\mathbf{w}^T \mathbf{x}_i + b \le -1 \quad if \ y_i = -1$$

- Dealing with noise points (soft margin)
 - Minimize $\|\mathbf{w}\|^2 + C \sum \epsilon_i$

Constraints:
$$\mathbf{w}^T \mathbf{x}_i + b \ge 1 - \epsilon_i$$
 if $y_i = 1$

$$\mathbf{w}^T \mathbf{x}_i + b \le -1 + \epsilon_i$$
 if $y_i = -1$

$$\epsilon_i \geq 0$$

- Solve by Quadratic Programming methodon its dual form (* can be very expensive for big datasets)
- $\mathbf{w} = \sum c_i y_i \mathbf{x}_i$, \mathbf{x}_i are support vectors

Kernel trick

- For non-linear decision boundary, transform data x into high-dimensional space of feature vectors $\rightarrow \phi(x)$
- Then we can get a linear boundary in the high-dimensional space
- Example:

for
$$\mathbf{x} = (x_1, x_2)$$
 (2D) $\rightarrow \phi(\mathbf{x}) = (x_1, x_2, x_3 = x_1^2 + x_2^2)$ (3D)

- Kernel function
 - The kernel function is a function that has property:

$$K(\mathbf{x}_i, \mathbf{x}_i) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_i)$$

- Example
 - $x \to \phi(x) = (x^4, 2x^3, \sqrt{6x^2}, 2x, 1)$

$$\phi(x) \cdot \phi(y) = (x^4, 2x^3, \sqrt{6x^2}, 2x, 1) \cdot (y^4, 2y^3, \sqrt{6y^2}, 2y, 1)$$

$$= x^4 y^4 + 4x^3 y^3 + 6x^2 y^2 + 4xy + 1$$

$$= (xy + 1)^4$$

$$= K(x, y)$$

Using kernel function

- $K(\mathbf{x}_i, \mathbf{x}_i) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_i)$
- Solving the optimization problem, \mathbf{w} can be obtained by using transformed support vectors $\phi(\mathbf{x}_i)$ in a form like:

$$\mathbf{w} = \sum c_i y_i \phi(\mathbf{x}_i)$$

The prediction for x can be done by computing

$$\mathbf{w}^{T} \phi(\mathbf{x}) + b$$

$$= \sum c_{i} y_{i} \phi(\mathbf{x}_{i}) \cdot \phi(\mathbf{x}) + b$$

$$= \sum c_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b \quad \Rightarrow \text{ much less computation}$$

- Example kernel functions:
 - Polynomial Function

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}.\mathbf{y} + 1)^p$$

• Gaussian Radial Basis Function $K(\mathbf{x}, \mathbf{y}) = e^{-\|\mathbf{x} - \mathbf{y}\|^2/2\sigma^2}$

SVM Using Scikit-learn

SVM on a sample dataset (binary classification, non-linear boundary)

```
X, y = make_circles(n_samples=500, noise=0.2, factor=0.5, random_state=0)
```

```
from sklearn.svm import SVC

svm = SVC kernel='rbf', random_state=1, gamma=0.2, C=1.0)
svm.fit(X_train, y_train)
```

C: Regularization parameter gamma: Kernel coefficient

Controls shape of boundary and overfitting

Comparison

Non-linear decision boundaries for different models

