Statistika deskriptif

Data Tersebar, Data Berkelompok Dan ukuran Gejala Pusat, Relatif, Sebaran

Kompilator Nurjannah Syakrani Jurusan Teknik Komputer dan Informatika

Data Tersebar

- Sejumlah data yang merepresentasikan nilai tertentu, umumnya bertipe integer, real.
- Sebagai contoh:

A. Data Kandungan Sulfur:

15,8	22,7	26,8	19,1	18,5	14,4	8,3	25,9	26,4	9,8
15,2	23,0	29,6	21,9	10,5	17,3	6,2	18,0	22,9	22,7

B. Data Nilai 40 siswa:

95	33	69	35	71	45	61	60
26	78	40	19	51	83	44	100
60	74	95	72	46	46	29	19
67	50	95	86	34	18	46	96
84	62	79	83	39	33	64	97

Ukuran Gejala Pusat

- Mean: atau rata-rata hitung,
 yaitu jumlah semua data tersebar dibagi banyaknya data.
- Median: data yang posisinya membagi dua sebaran data tersusun.
- Modus: data yang paling banyak kemunculannya (paling tinggi frekuensinya),
 - bisa tunggal bisa banyak diantara data tersebar

Tentukan ukuran gejala pusat

A.	15,8	22,7	26,8	19,1	18,5	14,4	8,3	25,9	26,4	9,8
	15,2	23,0	29,6	21,9	10,5	17,3	6,2	18,0	22,9	22,7

Mean =
$$\sum Xi / n = 375/20 = 18,75$$

Tersusun

6,2	8,3	9,8	10,5	14,4	15,2	15,8	17,3	18,0	18,5
19,1	21,9	22,7	22,7	22,9	23,0	25,9	26,4	26,8	29,6

Modus = 22,7;

Median, posisi 21/2 = 10.5; nilai = (18.5+19.1)/2 = 18.8

Tentukan ukuran gejala relatif

Quartil 1,2,3 untuk data nilai 40 mahasiswa

Posisi : Posisi (n mahasiswa +1) i /4 ; I = 1,2,3

Nilai: sesuai posisi di data terurut,

18	19	19	26	29	33	33	34	35	39
40	44	45	46	46	46	50	51	60	60
61	62	64	67	69	71	72	74	78	79
83	83	84	86	95	95	95	96	97	100

Posisi kuartil ke 1,2,3 dan nilai berturut-turut: Q1 = 41/4 = 10,25; Nilai = (39+40)/5;

 $Q2 = 2 \times 41/4 = 21,5$; Nilai = (60+61)/2;

 $Q3 = 3 \times 41/4 = 31.75$; Nilai = (79+83)/2;

Representasikan data mahasiswa di atas dalam diagram:

(a) Batang dan Daun (b) Box Plot

Ukuran Sebaran pada Data Tersebar

Macam-macam ukuran sebaran data adalah

- 1. Jangkauan (range);
- 2. Simpangan rata-rata (mean deviation);
- 3. Variansi dan
- 4. Simpangan baku (standard deviation).
- 5. Lainnya

Formula sebaran

1. Rentang = Nilai Tertinggi – Nilai Terendah = Maksimum – Minimum.

2

$$SR = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$$

Ukuran Sebaran pada Data Tersebar

- 3. Variansi, merupakan akumulasi kuadrat jarak dari masing-masing nilai data terhadap rata-rata dibagi banyak data (jika populasi) atau banyak data minus 1 (jika sampel).
- 4. Standar Deviasi adalah akar kuadrat (positif) dari Variansi.
- 5. Lainnya
 - a. Simpangan antar quartile

$$\frac{(Q_3 - Q_2) + (Q_2 - Q_1)}{2} = \frac{(Q_3 - Q_1)}{2}$$

b. Koefisien variasi (Coefficient of variation)

$$KV = \frac{SimpanganBaku}{rata - rata} x100\%$$

$$CV = \frac{\sigma}{\mu} \times 100\%$$
, untuk populasi.
 $CV = \frac{S}{X} \times 100\%$, untuk sampel.

 $S^{2} = \frac{\sum_{i=1}^{\infty} (X_{i} - \overline{X})^{2}}{n-1}$

Tentukan ukuran sebaran

18	19	19	26	29	33	33	34	35	39
40	44	45	46	46	46	50	51	60	60
61	62	64	67	69	71	72	74	78	79
83	83	84	86	95	95	95	96	97	100

 Rentang = 100 – 18 = 82 ; sebaran data yang lebar dari minimum ke maksimum, Dari data yang merupakan nilai suatu mtk maka sebaran data tersebut akan mencakup nilai E sd A.

$$SR = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$$

SR = 439,6/40 = 20,99; Nilai simpangan rata-rata (Mean Deviation) yang tinggi.

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

Variansi = 23633,6 / 39 = 605,9897

Standar Deviasi = SQRT (Variansi) = 24, 61686

PEMBUATAN TABEL FREKUENSI

Langkah membuat tabel frekuensi, yaitu mendistribusikan data atas beberapa kelas.

- 1. banyaknya kelas ditentukan oleh formula Sturgess k=3,3 log n+1 dgn pembulatan, n adalah banyaknya data, dan $5 \le k \le 20$.
- 2. jangkauan data = R = (data terbesar data terkecil)
- 3. panjang kelas = R/k, jika data integer bulatkan
- 4. frekuensi kelas : banyaknya data yang ternasuk pada batas kelas (batas bawah sd batas atas)

Note => Untuk kelas interval, patokan utamanya data minimum dikelas pertama, data maksimum termasuk dikelas terakhir, dengan menggunakan

- a. nilai minimum untuk batas bawah kelas pertama, batas bawah kelas ke-k adalah batas bawah kelas ke (k-1) + panjang kelas, dst.
- a. nilai maksimum di batas atas kelas terakhir, dicarikan batas atas kelas sebelumnya dengan mengurangi batas atas kelas ke-k terhadap panjang kelas untuk batas atas kelas ke (k-1),

Tabel Frekuensi

• A. Data Kandungan Sulfur

6,2	8,3	9,8	10,5	14,4	15,2	15,8	17,3	18,0	18,5
19,1	21,9	22,7	22,7	22,9	23,0	25,9	26,4	26,8	29,6

- N = 20,
- data terbesar = 29.6, data terkecil = 6.2 maka jangkauan (R) = 23.4
- Formula Sturgess, banyak kelas $k = 3.3 \log N + 1 = 3.3 \log N + 1 = 5.3 \rightarrow k = 5$ (dibulatkan ke bawah); decimal >=0.5 bulatkan ke atas.
- p = panjang atau selang atau interval kelas = $23,4/5 = 4,68 \approx 4,7$;

Tabel Frekuensi

Kelas Interval	Frekuensi (F)	Titik Tengah (T)	FxT
<mark>6,2</mark> – 10,8	4	(6,2+10,8)/2 = 8,5	34
10,9 – 15,5	2	13,2	26,4
15,6 – 20,2	5	17,9	89,5
20,3 – 24,9	5	22,6	113
25,0 29,6	4	27,3	109,2

Mean =
$$\frac{1}{N} * \sum (F * T) = 372,1/20 = 18,605$$

Untuk perhitungan kelas mean, median, modus, kuartil, diperlukan limit kelas yaitu

Lb = limit kelas bawah = batas kelas bawah $-\frac{1}{2}$ satuan terkecil dari data.

La = limit kelas atas = batas kelas atas + $\frac{1}{2}$ satuan terkecil dari data.

Ukuran Gejala Pusat Data Berkelompok (Tabel Frekuensi)

Kelas Modus adalah kelas dengan frekuensi terbanyak. Nilai modus adalah :

$$Mo = Lb + P * F1/(F1+F2)$$
;

Dengan F1 : selisih frekuensi kelas modus dengan kelas sebelumnya. F2 : selisih frekuensi kelas modus dengan kelas sesudahnya.

```
Jika kelas modus diambil 15,6-20,2 maka nilai modus : Mo = Lb + P * F1/(F1+F2) = (15,6-1/2*0.1) + 4,7 * (5-2)/((5-2)+(5-5)) = 15.55 + 4.7*1 = 20.25 

Jika kelas modus diambil 20.3-24.9 maka nilai modus : Mo = Lb + P * F1/(F1+F2) = (20,3-1/2*0.1) + 4,7 * (5-5)/((5-5)+(5-4)) = 20.25 + 4.7*0 = 20.25
```

Ukuran Gejala Pusat Data Berkelompok (Tabel Frekuensi)

Kelas Modus adalah kelas dengan frekuensi terbanyak. Nilai modus adalah :

$$Mo = Lb + P * F1/(F1+F2)$$
;

dimana:

F1 : selisih frekuensi kelas modus dengan kelas sebelumnya. F2 : selisih frekuensi kelas modus dengan kelas sesudahnya.

Jika kelas modus diambil 15,6-20,2 maka nilai modus:

Mo = Lb + P * F1/(F1+F2)
=
$$(15,6-1/2*0.1) + 4,7 * (5-2)/((5-2)+(5-5))$$

= $15.55 + 4.7*1 = 20.25$

Jika kelas modus diambil 20.3-24.9 maka nilai modus:

```
Mo = Lb + P * F1/(F1+F2)
= (20,3-\frac{1}{2}*0.1) + 4,7 * (5-5)/((5-5)+(5-4))
= 20.25 + 4.7*0 = 20.25
```

Ukuran Gejala Pusat Data Berkelompok (Tabel Frekuensi)

Kelas Median adalah kelas dengan frekuensi komulatif yang >= N/2. Nilai median adalah :

$$Me = Lb + P \cdot (N/2 - Fkl) / Fme$$
;

dimana Fkl: frekuensi komulatif sebelum kelas median,

Fme: frekuensi kelas median (bukan komulatif).

Kelas Median adalah kelas 15,6-20,2 karena 11 >= 20/2, maka nilai median : $Me = Lb + P \cdot (N/2 - Fkl) / Fme$

$$= (15,6-1/2*0.1)+4,7*(10-6)/5$$

$$= 15,5+4,7*4/5 = 15,5+3.76 = 19.26$$

Ukuran Sebaran pada Data Berkelompok

$$SR = \frac{\displaystyle\sum_{i=1}^{n} f_i \left| x_i - \overline{x} \right|}{\displaystyle\sum_{i=1}^{n} f_i}$$

$$s = \sqrt{\frac{n\Sigma f_i x_i^2 - (\Sigma f_i x_i)^2}{n(n-1)}}$$

Kelas	S	Frekuensi	F. Komulatif	Titik Tengah	F. (F.	TD V TD	FxT*T	
Interv	al	(F)	(Fk)	(T)	FxT	T*T		
6,2 – 1	10,8	4	4	(6,2+10,8)/2 = 8,5	34,0	72,25	289,00	
10,9 – 1	15,5	2	2+4	13,2	26,4	174,24	348,48	
15,6-2	20,2	5	11	17,9	89,5	320,41	1602,05	
20,3-2	24,9	5	16	22,6	113,0	510,76	2553,80	
25,0-2	29,6	4	20	27,3	109,2	745,29	2981,16	
r	Total	20		81	372,1		7774,49	
		_		Xr =	18,6			

 $\Sigma(FxT) / N$

x_i: nilai tengah, atau T pada table yaitu

(batas bawah kelas + batas atas kelas) / 2.

Formula SR, Variansi

$$SR = 109,51 / 20 = 5,4755$$

 $S^2 = ((20*77774,49)-(372,1)^2)/20*19 =$
 $(615.173,8 - 13.845,841)/380$
 $S^2 = 16179,8205 == S = 127,1999$

Tambahan Referensi (dari RPS)

Daftas Pustaka:

- Suharyadi, & Purwanto. (2009). In Statistika untuk Ekonomi dan Keuangan Modern. Jakarta: Salemba Empat.
- Sudjana. (1991). In Statistika. Bandung: Tarsito.
- <u>RUMUS dari /www.smartstat.info/statistika/statisika-deskriptif/ukuran-penyebaran-measures-of-dispersion.html</u>