НИУ ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа №2

по дисциплине «Моделирование». Вариант 54/15

Выполнили: студенты группы Р34101 Крюков Андрей Патутин Владимир Митрофанов Егор

Преподаватель: Алиев Тауфик Измайлович

Санкт-Петербург 2022 г.

Цель работы	3
Порядок выполнения работы	3
Исходные данные	3
Содержание отчета	3
Исходные данные	4
Выполнение	4
Система 1	4
Описание системы	4
Перечень состояний	5
Граф переходов системы	6
Характеристики системы	9
Система 2	10
Описание системы	10
Перечень состояний	11
Граф переходом системы	12
Характеристики системы	13
Сравнение	15
Сравнительная диаграмма рассчитанных характеристик систем	15
Сравнение характеристик	15
Вывол	16

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей - систем массового обслуживания (СМО) с однородным потоком заявок.

Порядок выполнения работы

- Получить вариант работы.
- Построить графы переходов для заданных СИСТЕМЫ 1 и СИСТЕМЫ 2
- С использованием программы MARK рассчитать характеристики марковского процесса для СИСТЕМЫ 1 и СИСТЕМЫ 2
- Проанализировать характеристики функционирования системы
- Выбрать и обосновать наилучший способ организации системы в соответствии с заданным критерием эффективности.

Исходные данные

- СИСТЕМА_1: 2 прибора, длительность обслуживания в одном из них распределена по закону Эрланга 2 порядка. Вероятности попадания заявки в 1 и 2 прибор равны 0.5. Очередь объемом 2 перед первым прибором, перед вторым накопителей нет.
- СИСТЕМА_2: 3 прибора. Вероятности попадания заявки в 1, 2 и 3 прибор: 0.5, 0.4 и 0.1 соотв. Очередь объемом 2 перед первым прибором, перед вторым и третьим накопителей нет
- Критерий эффективности: минимальное время пребывания в системе заявок
- Интенсивность входного потока: $0.6c^{-1}$
- Средняя длительность обслуживания: 10 сек

Содержание отчета

- 1. Постановка задачи и исходные данные
- 2. Описание исследуемой системы
- 3. Перечень состояний марковского процесса для исследуемой системы
- 4. Результаты работы:
 - а. размеченный граф переходов марковского процесса;
 - b. матрица интенсивностей переходов;
 - с. значения стационарных вероятностей, сведенные в таблицу (форма 1);
 - d. формулы, используемые для расчета характеристик системы и значения характеристик системы, сведенные в таблицы (форма 2);
 - е. результаты (графики и выводы) сравнительного анализа характеристик функционирования исследуемых систем;
 - f. обоснование выбора наилучшего варианта организации системы в соответствии с заданным критерием эффективности

Исходные данные

Таблица 1

Вариант	CUCTEMA_1 CUCTEMA_2					
	П	ЕН	П	ЕН	эффект.	
4	2 (E ₂)	2/0	3	2/0/0	(L)	

Таблица 2

Номер варианта	Интенс. потока	Ср. длит. обслуж.	Вероятно	ости занятия пр	рибора
	λ, 1/c	<i>b</i> , c	П1	П2	П3
8	0,5	10	0,5	0,4	0,1

Выполнение

Система 1

Описание системы

Интенсивность обслуживания прибора: $\mu = \frac{1}{10c} = 0.1 \ c^{-1}$

Интенсивность входного потока: $\lambda = 0.6 \, c^{-1}$

Прибор 1, среднее время обслуживания в котором равно µ и распределено по закону Эрланга 2 порядка, представим в виде двух последовательных приборов с временем обслуживания 2µ. Граф переходов составим с учетом того, что в прибор 1.1 из очереди заявка не поступает, пока не закончится обработка предыдущей заявки на приборе 1.2

Классификация каждого из приборов по Кендаллу:

- 1. $M/E_2/1/2$
- 2. M/M/1/0

Обозначим состояние системы как n1/n2/q/m, где n1 - число заявок на первом этапе первого прибора, где n2 - число заявок на втором этапе первого прибора, q - число заявок в очереди первого прибора, а m - число заявок на втором приборе.

Перечень состояний

Номер состояния	Обозначение	Описание
S0	0/0/0/0	В системе нет заявок
S1	0/0/0/1	В системе только одна заявка, обрабатывается прибором 2
S2	1/0/0/0	В системе только одна заявка, идет первый этап обработки на приборе 1
S3	1/0/0/1	В системе две заявки, идет первый этап обработки на приборе 1, а также идет обработка на приборе 2
S4	0/1/0/0	В системе только одна заявка, идет второй этап обработки на приборе 1
S5	0/1/0/1	В системе две заявки, идет второй этап обработки на приборе 1, а также идет обработка на приборе 2
S6	1/0/1/1	В системе три заявки, идет первый этап обработки на приборе 1, идет обработка на приборе 2, а также одна заявка в очереди прибора 1
S7	0/1/1/1	В системе три заявки, идет второй этап обработки на приборе 1, идет обработка на приборе 2, а также одна заявка в очереди прибора 1
S8	1/0/2/1	В системе четыре заявки, идет первый этап обработки на приборе 1, идет обработка на приборе 2, а также две заявки в очереди прибора 1
S9	0/1/2/1	В системе четыре заявки, идет второй этап обработки на приборе 1, идет обработка на приборе 2, а также две заявки в очереди прибора 1
S10	1/0/1/0	В системе две заявки, идет первый этап обработки на приборе 1, а также одна заявка в очереди прибора 1
S11	0/1/1/0	В системе две заявки, идет второй этап обработки на приборе 1, а также одна заявка в очереди прибора 1
S12	1/0/2/0	В системе три заявки, идет первый этап обработки на приборе 1, а также две заявки в очереди прибора 1
S13	0/1/2/0	В системе три заявки, идет второй этап обработки на приборе 1, а также две заявки в очереди прибора 1

Граф переходов системы

Построим систему уравнений Колмогорова:

$$\begin{aligned} 2p_0\lambda &= \mu(2p_4+p_1) \\ p_1(\mu+\lambda) &= p_0\lambda + 2p_5\mu \\ 2p_2(\lambda+\mu) &= \lambda p_0 + 2\mu p_{11} + \mu p_3 \\ p_3(3\mu+\lambda) &= (p_1+p_2)\lambda + 2\mu p_7 \\ p_4(2\mu+2\lambda) &= \mu(2p_2+p_5) \\ p_5(3\mu+\lambda) &= 2\mu p_3 + p_4\lambda \\ p_6(3\mu+\lambda) &= p_3\lambda + p_{10}\lambda + 2\mu p_8 \\ p_7(3\mu+\lambda) &= p_62\mu + (p_5+p_{11})\lambda \\ p_8(3\mu) &= \lambda(p_7+p_{13}) + p_92\mu \\ p_9(3\mu) &= (p_6+p_{12})\lambda \\ 2p_{10}(\mu+\lambda) &= p_6\mu + (p_2+p_{13})\lambda \\ 2p_{11}(\mu+\lambda) &= p_4\lambda + \mu(p_7+2p_{10}) \\ p_{12}(2\mu+\lambda) &= p_9\mu + p_{10}\lambda \\ p_{13}(2\mu+\lambda) &= \mu(2p_{12}+p_8) + p_{11}\lambda \\ p_0+p_1+p_2+p_3+p_4+p_5+p_6+p_7+p_8+p_9+p_{10}+p_{11}+p_{12}+p_{13}=1 \end{aligned}$$

Матрица интенсивностей переходов системы 1

0,3	λ
0,1	μ
0,2	2μ

System	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13
_1				33	34	33	30	3/	36	39	310	311	312	313
S0	0	λ	λ											
S1	μ	1		λ										
S2			2	λ	2μ						λ			
S3			μ	3		2μ	λ							
S4	2μ				4	λ						λ		
S5		2μ			μ	5		λ						
S6							6	2μ		λ	μ			
S7				2μ				7	λ			μ		
S8							2μ		8					μ
S9									2μ	9			μ	
S10							λ				10	2μ	λ	
S11			2μ					λ				11		λ
S12										λ			12	2μ
S13									λ		2μ			13

Значения стационарных вероятностей системы 1

Вероятность
0,0026
0,0078
0,0098
0,0294
0,0039
0,0118
0,1367
0,0617
0,2976
0,205

S10	0,0456
S11	0,0206
S12	0,0683
S13	0,0992

Характеристики системы

Хар-ка	Прибор	Расчетная формула	СИСТ.1
	П1	y1=λ1*b1	3
Нагрузка	П2	y2=λ2*b2	3
	Сумм.	Y=y1+y2	6
	П1	$\rho 1 = 1 - (p0 + p1)$	0,9896
Загрузка	П2	ρ2 = 1 - (p0 +p2+p4+s10+s11+s12+s 13)	0,75
	Сумм.	R = 1-p0	0,9974
	П1	π1 = (p8+p9 +p12+p13) *0,5	0,33505
Вероятность потери	П2	π2 = (1 - (p0 +p2+p4+s10+s11+s12+s 13))*0.5	0,375
	Сумм.	π = π1 + π2	0,71005
_	П1	11 = (p6+p7+p10+p11)*1 + (p8+p9+p12+p13)*2	1,6048
Длина очереди	П2	12 = 0	0
	Сумм.	1 = (11 + 12)/2	0,8024
	П1	m1 = (p2+p3+p4+p5)*1+(p6+p 7+p10+p11)*2+(p8+p9+p 12+p13)*3	2,5944
Число заявок находящихся в системе	Π2	m2 = p3 + p5 + p6 + p7 + p8 + p9	0,7422
	Сумм.	m = (p1+p2+p4)*1+(p3+p5+p 10+p11)*2+(p6+p7+p12+ p13)*3+(p8+p9)*4	3,3444
	П1	λ1' = (1-π1)*λ1	0,199485
Производительнос ть	П2	λ2' = (1-π2)*λ2	0,1875
-	Сумм.	λ' = λ1' + λ2'	0,386985
Коэффициент	П1	η =1 – ρ1	0,0104

простоя системы	П2	η =1 – ρ2	0,25
	Сумм.	η =1 – ρ	0,0026
	П1	$\mathbf{w1} = 11 / \lambda \mathbf{1'}$	8,044715141
Время ожидания	П2	$w2 = 12 / \lambda 2'$	0
	Сумм.	$w = 1 / \lambda'$	2,07346538
_	П1	u1 = w1 + b1	18,04471514
Время пребывания	П2	u2 = w2 + b2	10
	Сумм.	u=w+b	12,07346538

Система 2

Описание системы

Интенсивность обслуживания прибора: $\mu = \frac{1}{10c} = 0.1 \, c^{-1}$

Интенсивность входного потока: $\lambda = 0.6 \, c^{-1}$

Прибор 1, среднее время обслуживания в котором равно µ и распределено по закону Эрланга 2 порядка, представим в виде двух последовательных приборов с временем обслуживания 2µ. Граф переходов составим с учетом того, что в прибор 1.1 из очереди заявка не поступает, пока не закончится обработка предыдущей заявки на приборе 1.2

Классификация каждого из приборов по Кендаллу:

- 1. M/M/1/2
- 2. M/M/1/0
- 3. M/M/1/0

Обозначим состояние системы как n2/n3/n1/q, где n1 - число заявок на первом приборе, q - число заявок в очереди первого прибора, n2 - число заявок на втором приборе, а n3 - число заявок на третьем приборе.

Перечень состояний

Номер состояния	Обозначение	Описание
S0	0/0/0/0	В системе нет заявок
S1	1/0/0/0	В системе 1 заявка. Она обрабатывается вторым прибором
S2	0/1/0/0	В системе 1 заявка. Она обрабатывается третьим прибором
S3	1/1/0/0	В системе 2 заявки. Они обрабатываются вторым и третьим приборами
S4	0/1/1/0	В системе 2 заявки. Они обрабатываются вторым и первым приборами
S5	0/0/1/0	В системе 1 заявка. Она обрабатывается третьим прибором
S6	1/0/1/0	В системе 2 заявки. Они обрабатываются первым и третьим приборами
S7	1/1/1/0	В системе 3 заявки. Они обрабатываются первым, вторым и третьим приборами
S8	0/0/1/1	В системе 2 заявки. Одна обрабатывается первым прибором, вторая стоит в очереди первого прибора
S9	0/1/1/1	В системе 3 заявки. Одна обрабатывается первым прибором, вторая стоит в очереди первого прибора, а третья обрабатывается третьим прибором
S10	0/0/1/2	В системе 3 заявки. Одна обрабатывается первым прибором, а еще две стоят в очереди первого прибора
S11	1/1/1/1	В системе 4 заявки. Одна обрабатывается первым прибором, вторая стоит в очереди первого прибора, третья обрабатывается вторым прибором, а четвертая обрабатывается третьим прибором
S12	1/0/1/1	В системе 3 заявки. Одна обрабатывается первым прибором, вторая стоит в очереди первого прибора, а третья обрабатывается вторым прибором
S13	1/0/1/2	В системе 4 заявки. Одна обрабатывается первым прибором, две стоят в очереди первого прибора, и еще одна обрабатывается вторым прибором
S14	1/1/1/2	В системе 5 заявок. Одна обрабатывается первым прибором, две стоят в очереди первого прибора, четвертая обрабатывается вторым прибором, а пятая обрабатывается третьим прибором
S15	0/1/1/2	В системе 4 заявки. Одна обрабатывается первым прибором, две стоят в очереди первого прибора, и еще одна обрабатывается третьим прибором

Граф переходом системы

Матрица интенсивностей переходов системы 2

0,;	λ1
0,24	λ2
0,00	λ3
J. 0,	μ

Syste m_2	S0	S1	S2	S 3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15
S0	0	λ2	λ3			λ1										
S1	μ	1		λ3			λ1									
S2	μ		2	λ2	λ1											
S3		μ	μ	3				λ1								
S4			μ		4	μ		λ2		λ1						
S5	μ				μ	5	μ		λ1							

S6	μ			μ	6	λ3					λ1			
S7		μ	μ		μ	7				λ1				
S8				μ			8	μ	λ1		λ2			
S9			μ				μ	9		λ2				λ1
S10							μ		10			λ2		λ3
S11						μ		μ		11	μ		λ1	
S12					μ		μ			λ3	12	λ1		
S13									μ		μ	13	λ3	
S14										μ		μ	14	μ
S15								μ	μ				λ2	15

Значения стационарных вероятностей системы 2

Обозначение	Вероятность
S0	0,0048
S1	0,0103
S2	0,0031
S3	0,0068
S4	0,0099
S5	0,0155
S6	0,0291
S7	0,0205
S8	0,0396
S9	0,0281
S10	0,1224
S11	0,0614
S12	0,0959
S13	0,2936
S14	0,1818
S15	0,0772

Характеристики системы

Хар-ка	Прибор	Расчетная формула	СИСТ.2
	П1	y1=λ1*b1	3
Нагрузка	П2	y2=λ2*b2	2,4

	П3	y3=λ3*b3	0,6
	Сумм.	Y=y1 + y2 + y3	6
	П1	$\rho 1 = 1 - (p0 + p1 + p2 + p3 + p4 + p5)$	0,9496
Загрузка	П2	ρ2 = p1 + p3 + p4 + p7 + p11 + p12 + p13 + p14	0,6802
	ПЗ	ρ3 = 1 - (p0 + p1 +p4 +p8 + p10 + p12 + p13)	0,4235
	Сумм.	R = 1 - p0	0,9952
	П1	π1 = (p10 + p13 + p14 + p15) * 0,5	0,3375
Вероятность потери	П2	$\pi 2 = (p1 + p3 + p6 + p7 + p11 + p12 + p13 + p14) * 0,4$	0,27976
Потори	ПЗ	π3 = (p2 +p3 +p4 +p7 + p9+ p11 + p14+ p15)* 0,1	0,03888
	Сумм.	π = π1 + π2 + π3	0,65614
	П1	11 = (p8 + p9 + p11 + p12)*1 + (p10+p13 + p14 + p15)*2	1,575
Длина очереди	П2	12 = 0	0
	П3	13 = 0	0
	Сумм.	1 = 11 + 12 + 13	1,575
	П1	m1 = (p4+p6+p7)*1 + (p8+p9+p11+p12)*2 + (p10+p13+p14+p15)*3	2,5345
, Число заяво к	П2	m2 = p1+p3+p4+p7+p11+p12+ p13+p14	0,6802
находящихся в системе	ПЗ	m3 = p2+p3+p5+p6+p7+p9+p 11+p14+p15	0,4235
	Сумм.	m = (p1+p2+p5)*1 + (p3+p4+p6+p8)*2 + (p7+p9+p10+p12)*3 + (p11+p13+p15)*4 + p14*5	3,6382
	П1	λ1' = (1-π1)*λ1	0,19875
Производительнос	П2	λ2' = (1-π2)*λ2	0,1728576
ТЬ	П3	λ3' = (1-π3)*λ3	0,0576672
	Сумм.	$\lambda' = \lambda 1' + \lambda 2' + \lambda 3'$	0,4292748

	П1	η =1 – ρ1	0,0504		
Коэффициент простоя системы	П2	η =1 – ρ2	0,3198		
inpositori site i similari	П3	η =1 – ρ3	0,5765		

Сравнение

Сравнительная диаграмма рассчитанных характеристик систем

Сравнение характеристик

Хар-ка	СИСТ.1	СИСТ.2	Разница, %
Нагрузка	6	6	0
Загрузка	0,9974	0,9952	-0,2205734911
Вероятность потери	0,71005	0,65614	-7,592423069
Длина очереди	0,8024	1,575	96,28614158
Число находящихся в системе заявок	3,3444	3,6382	8,78483435
Производительность	0,386985	0,4292748	10,92802047
Коэффициент простоя системы	0,0026	0,0048	84,61538462

Время ожидания	2,07346538	3,668978473	76,94910696
Время пребывания	12,0735	13,66897847	13,21471379

При сравнительном анализе двух систем можно сказать, что система 1 немного превосходит систему 2, в том числе и по критерию эффективности - времени пребывания в системе заявок. Кроме того, стоит отметить существенную разницу в длине очереди, что можно объяснить разным количеством приборов в системах.

Вывод

В процессе выполнения данной работы мы изучили метод марковских процессов для случайных процессов, разработали и рассчитали марковские модели одно- и многоканальных СМО с однородным потоком заявок, а также сравнили полученные результаты. По итогам сравнения пришли к выводу, что первая система превосходит вторую по всем показателям, при том что является более простой в построении.