Projekt nr 7.

Temat: Kwaterniony

Kwaternionami nazywamy elementy 4-wymiarowej przestrzeni wektorowej $((H, +), \mathbb{R}, \bullet)$ nad ciałem liczb rzeczywistych \mathbb{R} o bazie złożonej z wektorów, które oznaczymy przez: $\mathbf{1}$, \mathbf{i} , \mathbf{j} , \mathbf{k} .

W zbiorze H określamy strukturę pierścienia w następujący sposób. Dodawanie jest dodawaniem wektorów przestrzeni wektorowej $((H,+),\mathbb{R},\bullet)$, natomiast mnożenie $\cdot: H\times H\to H$ jest dwuliniowym przekształceniem przestrzeni wektorowej jednoznacznie wyznaczonym przez podane niżej wartości na wektorach bazy:

$$1 \cdot 1 = 1, \ 1 \cdot i = i = i \cdot 1, \ 1 \cdot j = j = j \cdot 1, \ 1 \cdot k = k = k \cdot 1$$
 $i \cdot i = j \cdot j = k \cdot k = -1$
 $i \cdot j = -j \cdot i = k$
 $j \cdot k = -k \cdot j = i$
 $k \cdot i = -i \cdot k = j$.

Zerem pierścienia $(H, +, \cdot)$ jest wektor zerowy $\mathbf{0} = [0, 0, 0, 0]$, natomiast jedynką pierścienia jest wektor bazowy $\mathbf{1}$.

Dla kwaternionu $q = [x_0, x_1, x_2, x_3]$ określmy kwaternion sprzężony jako $q^* = [x_0, -x_1, -x_2, -x_3]$. Normę N(q) kwaternionu q definiujemy jako jego iloczyn z jego sprzężeniem, czyli $N(q) = q \cdot q^* \in R$. Pierścień $(H, +, \cdot)$ jest nieprzemiennym pierścieniem z dzieleniem. Elementem odwrotnym do elementu $\mathbf{0} \neq q = x_0 \bullet \mathbf{1} + x_1 \bullet \mathbf{i} + x_2 \bullet \mathbf{j} + x_3 \bullet \mathbf{k}$ jest element $q^{-1} = \frac{q^*}{N(q)}$.

Każdy kwaternion $q = x_0 \bullet \mathbf{1} + x_1 \bullet \mathbf{i} + x_2 \bullet \mathbf{j} + x_3 \bullet \mathbf{k}$ można zapisać w postaci q = a + u, gdzie $a = x_0 \bullet \mathbf{1}$ jest wektorem jednowymiarowej przestrzeni wektorowej $R(\mathbb{R})$ oraz $u = [x_1, x_2, x_3] = x_1 \bullet \mathbf{i} + x_2 \bullet \mathbf{j} + x_3 \bullet \mathbf{k}$. Oznaczmy przez $Im(H) = \mathcal{L}(\mathbf{i}, \mathbf{j}, \mathbf{k})$ przestrzeń wektorową generowaną przez wektory $\mathbf{i}, \mathbf{j}, \mathbf{k}$. Przestrzeń $((H, +), \mathbb{R}, \bullet)$ można przedstawić w postaci sumy prostej dwóch podprzestrzeni: $R(\mathbb{R})$ oraz Im(H).

Każdy kwaternion $q = 0 \bullet \mathbf{1} + x_1 \bullet \mathbf{i} + x_2 \bullet \mathbf{j} + x_3 \bullet \mathbf{k}$ można utożsamić z wektorem $u = [x_1, x_2, x_3] \in R^3$ oraz każdemu wektorowi $u = [x_1, x_2, x_3] \in R^3$ odpowiada kwaternion "czysty" $q = [0, x_1, x_2, x_3] = x_1 \bullet \mathbf{i} + x_2 \bullet \mathbf{j} + x_3 \bullet \mathbf{k}$.

Każdy kwaternion $q \in H$ można przedstawić w tzw. postaci trygonometrycznej:

$$q = \sqrt{N(q)}(\cos(\varphi) + \sin(\varphi)n),$$

gdzie $\varphi \in R$, $n = [n_1, n_2, n_3] \in Im(H)$ oraz $n_1^2 + n_2^2 + n_3^2 = 1$.

Kwaterniony wykorzystywane są w grafice komputerowej do przedstawienia obrotów w przestrzeni trójwymiarowej. Niech $[p_1, p_2, p_3] \in R^3$, któremu odpowiada kwaternion "czysty" $p = [0, p_1, p_2, p_3]$ oraz $q = [q_0, q_1, q_2, p_3] \in R^4$. Określamy przekształcenie

$$O_q \colon Im(H) \to Im(H); \quad O_q(p) = q \cdot p \cdot q^{-1}.$$

Elementy $c \in R$ jednowymiarowej przestrzeni $R(\mathbb{R})$ możemy traktować jako kwaterniony [c, 0, 0, 0].

Zadania do wykonania:

Część teoretyczna.

- (a) Niech $c \in R$ oraz $q \in H$. Pokazać, że $O_q = O_{c \cdot q}$.
- (b) Niech $n = [n_1, n_2, n_3] \in \mathbb{R}^3$ będzie wektorem takim, że $n_1^2 + n_2^2 + n_3^2 = 1$, który opisuje oś, wokół której obrót jest wykonywany i niech $q = \cos(\varphi) + \sin(\varphi)n \in H$. Pokazać, że wtedy przekształcenie O_q określa obrót przestrzeni trójwymiarowej $\mathbb{R}^3(\mathbb{R})$ wokół osi $\mathcal{L}(n)$ o kąt 2φ .
- (c) Pokazać, że obroty przestrzeni $R^3(\mathbb{R})$ tworzą grupę ze względu na składanie przekształceń.

Część praktyczna (z wykorzystaniem komputera).

- (d) Zobrazować obrót wektora [1, 1, 1] wokół osi określonej przez wektor [1, -1, 1] o kąt φ .
- (e) Zobrazować obrót wektora [0,1,1] wokół osi określonej przez wektor [0,1,0] o kąt φ , a następnie wokół osi określonej przez wektor [1,0,0] o ten sam kąt φ .

Literatura.

- 1. W. J. Gilbert, W. K. Nicholson, *Algebra współczesna z zastosowaniami*, WNT, Warszawa 2008.
- 2. N. Gubareni, Algebra współczesna i jej zastosowania, Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2018.