Samarth Sharma Bhardwaj

Third Year Undergraduate

Samarthsb23@iitk.ac.in | → +91-8791757203 | InSamarth Sharma B.| Samarthsb23

Academic Qualifications

Year	Degree/Certificate	Institute	CPI/%
2023-Present	B.Tech-Electrical Engineering	Indian Institute of Technology Kanpur	8.5 /10
2023	CBSE(XII)	Hope Hall Foundation School (HHFS), Delhi	96.8%
2021	CBSE(X)	Delhi Public School, Prayagraj	96.5 %

Scholastic Achievements

- Secured All India Rank 1082 in JEE Advanced 2023 among 200,000 shortlisted candidates.
- Secured All India Rank 954 (top 0.074%) in JEE Mains 2023 out of 1.2 Million candidates.
- Awarded 'Outstanding Achievement in Academics' for placing second overall in school in CBSE XII Boards. (2022-23)

Internship Experience

FPGA based Radar Signal Processing on a Zynq SoC 🖸 | Prof. Sumit J. Darak | IIIT Delhi (Apr'25 - Present)

Objective	• To accelerate classical and deep-learning-aided direction-of-arrival (DoA) estimation algorithms to evaluate performance–efficiency trade-offs in real-time radar systems on Zynq-SoCs (Pynq-Z2 and ZCU111).
Approach	 Developed custom HLS IPs and integrated PYNQ drivers via Vivado block design using AXI4 interfaces. Implemented MUSIC and ESPRIT as Vitis HLS IPs with optimizations like word-length tuning. Benchmarked HLS design pragmas (pipeline, unroll, array partitioning, etc.) using synthesis reports. Evaluated the performance of single vs double-precision float for Doppler-separated targets. Integrated deep neural networks to boost DoA accuracy under coherent sources and array miscalibration. Used Integrated Logic Analyzers (ILAs) to debug AXI transactions and verify correct dataflow on hardware.
Impact	 Achieved up to 4x acceleration over NumPy in FPGA-accelerated matrix multiplication. Created a 4-part YouTube tutorial on HLS-to-PYNQ design flow and benchmarking. Attained a 30x acceleration over NumPy for reliable DoA estimation using MUSIC and ESPRIT.

Key Projects

Transistor-Level Duty Cycle Correction Circuit on Cadence Virtuoso | Prof. Chithra | IIT Kanpur (May'25 - Jun'25)

Objective	• To design a transistor-level CMOS duty cycle correction circuit for high-frequency clock signals.	
Approach	h • Designed using gpdk180 , with a XOR-delay-DFF loop and a bidirectional shift-register-based duty detector.	
Impact ◆ Achieved 48–52% corrected duty cycle for 0.5–1GHz inputs with initial duty distortion between 30–70%.		

Simulation of High-Efficiency Photodetectors in DEVSIM TCAD 🖓 | Prof. Rituraj | IIT Kanpur (Dec'24-Mar'25)

Objective	• To simulate and analyze single-photon avalanche diodes (SPADs) targeting high EQE and low DCR at RT.	
Approach	 Studied quantum photonics and nanophotonics literature to evaluate material/design strategies. Implemented SPAD models in DEVSIM TCAD and analyzed IV behavior across configurations. 	
Impact	• Initiated integration of avalanche modeling into DEVSIM to support open source SPAD modeling.	

Audio Classification and Signal Processing using Deep Learning () | Electrical Engineers' Association (Dec'24-Feb'25)

- Built a CNN based model for deepfake audio detection using MFCC and chroma features, achieving 85% accuracy.
- Tuned architectures and hyperparameters for robust classification under noise and speech variation.

$\mathbf{DIGIWARE\text{-}\ Digital\ Design\ using\ Verilog\ HDL}\ |\ \mathrm{Electrical\ Engineers'\ Association}$

(Dec'23-Jan'24)

- Designed and simulated digital systems in Verilog HDL, including a car parking system, alarm clock, and traffic controller.
- Learned digital design fundamentals and Verilog syntax through structured assignments and practical projects.

Technical Skills

Programming Languages	Libraries	Software	
C, C++, Python, Verilog HDL, LATEX	Numpy, Pandas, Matplotlib,	Xilinx Vitis, Vivado, Cadence Virtuoso,	
	PyTorch, Scikit Learn	MATLAB, Devsim TCAD	

Relevant Courses

* -A (10/10) or equivalent #-PG level elective

Electronics & EE	Computer Science	Mathematics
Analog Electronics	Data Structures and Algorithms	Probability & Statistics
Chip-Based VLSI Design	Fundamentals of Computing	Complex Variables*
Spin-Electronic Devices [#] *	Harvard's CS50x	Partial Differential Eqns
Control Systems	Machine Learning*	Ordinary Differential Equations*
Introduction to Electronics		Linear Algebra

Positions of Responsibility (PoRs) & Volunteering

- Academic Mentor Quantum Physics Institute Counselling Service (ICS), IITK (2024-25 tenure).
- Secretary, Debating Society, IIT Kanpur (2024-25 tenure).
- Volunteer- National Service Scheme (NSS), IIT Kanpur Vertical: Education (2023-24)