СПРАВОЧНЫЕ МАТЕРИАЛЫ

1	$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$	
2	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$	
3	$(\sqrt{a})^2 = a$	

- **4** $\sqrt{a^2} = |a|$
- $\int_{0}^{\infty} \sqrt[n]{a^m} = a^{\frac{m}{n}}$

ЛОГАРИФМЫ ОПРЕДЕЛЕНИЕ **ЛОГАРИФМА**

Если $\log_a b = c$, то $a^c = b$ ОСНОВНОЕ ЛОГАРИФМИЧЕСКОЕ тождество $a^{\log_a b} = b$

ОДЗ ЛОГАРИФМА

 $\begin{cases}
a > 0 \\
a \neq 1 \\
b > 0
\end{cases}$ Для $\log_a b$

СВОЙСТВА **ЛОГАРИФМОВ**

1	$\log_a b + \log_a c = \log_a b \cdot c$		
2	$\log_a b - \log_a c = \log_a \frac{b}{c}$		
3	$\log_a b^m = m \cdot \log_a b$		
	1		

- $4 \log_{a^n} b = \frac{1}{n} \cdot \log_a b$ 1 5 $\log_a b =$
- log_b a $\log_a b = \frac{\log_c}{\log_c a}$ $\log_c b$

ФСУ

РАЗНОСТЬ КВАДРАТОВ

 $a^2 - b^2 = (a - b)(a + b)$

КВАДРАТ РАЗНОСТИ

 $(a-b)^2 = a^2 - 2ab + b^2$

КВАДРАТ СУММЫ

 $= a^2 + 2ab + 1$

РАЗНОСТЬ КУБОВ

СУММА КУБОВ

 $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

производные

1 C' = 0

2	x' = 1	
3	(Cx)' = C	
4	$(x^n)' = n \cdot x^{n-1}$ $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$	
5		
6	$(U\cdot V)'=U'V+UV'$	
7	$\left(\frac{U}{V}\right)' = \frac{U'V - UV'}{V^2}$	
8	$\left(U(V)\right)' = \left(U(V)\right)' \cdot V'$	
9	$(\sin x)' = \cos x$	
10	$(\cos x)' = -\sin x$	
11	$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$	
12	$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$	
13	$(e^x)' = e^x$	

 $14 \quad (a^x)' = a^x \cdot \ln a$

 $(\log_a b)' = \frac{1}{b \cdot \ln a}$

 $(\ln x)' =$

ТРИГОНОМЕТРИЯ

ФОРМУЛЫ ПРИВЕДЕНИЯ

1 Если в аргументе есть $\frac{\pi}{2}$ или $\frac{3\pi}{2}$ или $\frac{5\pi}{2}$ и т.д., то функция меняется на

Если в аргументе есть π или 2π или 3π и т.д., то функция не меняется на кофункцию

$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ $tg(\pi + \alpha) = tg \alpha$

Чтобы определить знак, необходим понять в какой четверти находится аргумент и смотреть на изначальную функцию, а не на изменившуюся

 $\sin\left(\frac{3\pi}{2} + \alpha\right)$

Это IV четверть, в ней синус имеет нак минус, поэтому $\sin\left(\frac{3\pi}{2} + \alpha\right) = -\cos\alpha$

ТРИГОНОМЕТРИЧЕСКИЕ ФОРМУЛЫ

1	$\sin^2 \alpha + \cos^2 \alpha = 1$		
2	$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$		

 $3 1 + ctg^2 \alpha = \frac{1}{\sin^2 \alpha}$ 4 $\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha = 1$

ФОРМУЛЫ

ДВОЙНОГО УГЛА

- $2 \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$
- $3 \cos 2\alpha = 2\cos^2\alpha 1$
- 4 $\cos 2\alpha = 1 - 2\sin^2 \alpha$

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ

 $a_n = a_1 + d \cdot (n-1)$ $S_n = \frac{(a_1 + a_n)}{1 - a_n} \cdot n$

 $d = \frac{a_n - a_m}{d}$ 3 n-m

РАЦИОНАЛИЗАЦИЯ

- 1			
	Было	Стало	
	$\log_a f - \log_a g$	(a-1)(f-g)	
	$a^f - a^g$	(a-1)(f-g)	
	f - g	(f-g)(f+g)	
\exists	$\sqrt{f} - \sqrt{g}$	(f-g)	

модуль РАСКРЫТИЕ МОДУЛЯ

1 Если внутримодульное выражение положительное, то просто опускаем модуль Пример:

y = |2 - 1| = 2 - 1

Если внутримодульное выражение отрицательное, т раскрываем модуль, меняя все знаки внутри модуля на противоположные

Пример:

y = |1 - 2| = -1 + 2

СВОЙСТВА МОДУЛЕЙ

1
$$|a \cdot b| = |a| \cdot |b|$$

2 $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$

СИНУС

sin α = πротиволежащий катет

гипотенуза

косинус cos α = прилежащий катет

ТАНГЕНС

1 $tg \alpha = \frac{противолежащий катет}{-}$ прилежащий катет

КОТАНГЕНС

1 ctg α = прилежащий катет противолежащий кате

 $2 \ \ \, \cot \alpha = \frac{\cos \alpha}{\cdot}$ sin a

ЧЁТНОСТЬ **ТРИГОНОМЕТРИЧЕСКИХ** ФУНКЦИЙ

- $1 | \sin(-x) = -\sin x$
- 2 $\cos(-x) = \cos x$
- $3 | \operatorname{tg}(-x) = -\operatorname{tg} x$ 4 $\operatorname{ctg}(-x) = -\operatorname{ctg} x$

ФОРМУЛЫ СУММЫ и разности

- $1 \quad \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $2 \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$
- $\cos(\alpha + \beta) = \cos\alpha\cos\beta \sin\alpha\sin\beta$ 4 $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$

СВОЙСТВО ОСТРЫХ УГЛОВ

 $\sin B = \cos A$ tg A = ctg Btg B = ctg A

УРАВНЕНИЯ РАЗЛОЖЕНИЕ НА **МНОЖИТЕЛИ**

ТЕОРЕМА ВИЕТА

 $ax^2 + bx + c = 0$ $(x_1 + x_2 =$ $x_1 \cdot x_2 = \frac{c}{-}$

ЗАДАНИЕ 11 УРАВНЕНИЕ ПУТИ

 $S = v \cdot t$

расстояние = скорость · время

СРЕДНЯЯ СКОРОСТЬ $V_{\text{средняя}} = rac{S_{ ext{суммарноe}}}{t_{ ext{суммарноe}}}$

СХЕМА ЗАДАЧ НА СПЛАВЫ И СМЕСИ

ГЕОМЕТРИЧЕСКИЙ УСЛОВИЕ КАСАНИЯ СМЫСЛ ПРОИЗВОДНОЙ ФУНКЦИИ И ПРЯМОЙ

 $f'(x_0) = k = \operatorname{tg} a$ ФИЗИЧЕСКИЙ СМЫСЛ

ГРАФИК ОБЫЧНОЙ ФУНКЦИИ

ПРОИЗВОДНОЙ S'(t) = V(t)

V'(t) = a(t)ПЕРВООБРАЗНАЯ

F'(x) = f(x)

УГЛЫ СМЕЖНЫЕ УГЛЫ

ВЕРТИКАЛЬНЫЕ УГЛЫ

HAKPECT

Равны при параллельных прямых (первый признак параллельности прямых)

СООТВЕТСТВЕННЫЕ **УГЛЫ**

прямых (второй признак параллельности прямых)

ОДНОСТОРОННИЕ УГЛЫ

В сумме 180° при параллельных прямых (третий признак параллельности прямых)

СУММА УГЛОВ

У треугольника 180° У четырёхугольника 360° У пятиугольника 540° У шестиугольника 720° У n —угольника 180°(n-2)

СИНУС, КОСИНУС, ТАНГЕНС И КОТАНГЕНС ТУПЫХ УГЛОВ

ЗАДАНИЕ 7

 $\begin{cases} y' = f'(x_0) \\ y = f(x_0) \end{cases}$

ФОРМУЛА НЬЮТОНА-ЛЕЙБНИЦА

ТРЕУГОЛЬНИК

ПЛОЩАДЬ ТРЕУГОЛЬНИКА (ЧЕРЕЗ ВЫСОТУ)

(ЧЕРЕЗ УГОЛ)

ПЛОЩАДЬ ТРЕУГОЛЬНИКА (ФОРМУЛА ГЕРОНА)

 $S = \sqrt{p(p-a)(p-b)(p-c)}$ ПЛОЩАДЬ ТРЕУГОЛЬНИКА (ЧЕРЕЗ РАДИУС)

ПЛОЩАДЬ ТРЕУГОЛЬНИКА

4R

ТЕОРЕМА СИНУСОВ

$\frac{1}{\sin \beta} =$ sin γ TEOPEMA косинусов

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ двух прямых

 $y = k_1 x + b_1$ $y = k_2 x + b_2$

ГРАФИК ПРОИЗВОДНОЙ

- Если $k_1=k_2$ и $b_1=b_2$, то прямые совпадают Пример:
- y = 2x + 7 u y = 2x + 7**2** Если $k_1 = k_2$ и $b_1 \neq b_2$, то
- прямые параллельны Пример: y = 2x + 7 u y = 2x - 5
- **3** Если $k_1 \neq k_2$, то прямые пересекаются

Пример: y = 2x + 7 и y = 3x + 7СРЕДНЯЯ ЛИНИЯ

- Лежит на серединах сторон
- Параллельна основанию
- Равна половине основания

СВОЙСТВО **ТРЕУГОЛЬНИКА**

В любом треугольнике:

- против большей стороны лежит больший угол
- против средней стороны лежит средний угол
- против меньшей стороны лежит меньший угол

НЕРАВЕНСТВО ТРЕУГОЛЬНИКА

В любом треугольнике сумма длин двух сторон больше длины третьей стороны

ТЕОРЕМА МЕНЕЛАЯ

Лан А АВС Пусть прямая DE пересекает две стороны этого треугольника и продолжения третьей стороны в точке K,

тогда $\frac{AD}{DB} \cdot \frac{BE}{EC} \cdot \frac{CK}{KA} = 1$ 1) вершина А 2) точка D 3) вершина В 4) точка Е 5) вершина С

6) точка К 7) вершина А

Отрезки касательных к

одной точки, равны, и составляют равные углы с

 $A + C = 180^{\circ}$

 $/B + /D = 180^{\circ}$

Если два равных угла

опираются на один отрезок,

то около четырёхугольника

можно описать окружность

ПРИЗНАК ОПИСАННОГО

ЧЕТЫРЁХУГОЛЬНИКА

СВОЙСТВО КАСАТЕЛЬНОЙ

И СЕКУЩЕЙ

УГОЛ МЕЖДУ

КАСАТЕЛЬНОЙ И ХОРДОЙ

СВОЙСТВО СЕКУЩИХ

СВОЙСТВО ХОРД

СВОЙСТВО ХОРД

дуги, равны

 $AD \cdot AF = AB \cdot AC$

 $AD^2 = AB \cdot AC$

окружности, проведённые из

прямой, проходящей через

эту точку и центр окружности ПРИЗНАК ВПИСАННОГО

ЧЕТЫРЁХУГОЛЬНИКА

ПРИЗНАК ВПИСАННОГО

ЧЕТЫРЁХУГОЛЬНИКА

 $AC \cdot BD = AB \cdot CD + AD \cdot BC$ (работает только для вписанного четырёхугольника)

ТЕОРЕМА ПТОЛЕМЕЯ

многоугольник

р — полупериметр

СВОЙСТВО КАСАЮЩИХСЯ **ОКРУЖНОСТЕЙ**

Линия центров двух касающихся окружностей проходит через точку касания

ВНЕВПИСАННАЯ **ОКРУЖНОСТЬ**

Вневписанная окружность треугольника – это окружность, касающаяся одной из сторон треугольника и продолжений двух других его сторон. У любого треугольника существует три вневписанных окружности

КУБ ОБЪЁМ КУБА

ПЛОЩАДЬ ПОВЕРХНОСТИ КУБА

ДИАГОНАЛЬ КУБА

ПАРАЛЛЕЛЕПИПЕД ОБЪЁМ ПРЯМОУГОЛЬНОГО

ПЛОЩАДЬ ПОВЕРХНОСТИ прямоугольного ПАРАЛЛЕЛЕПИПЕДА

= 2ah + 2ah + 2hh**ДИАГОНАЛЬ ПРЯМОУГОЛЬНОГО** ПАРАЛЛЕЛЕПИПЕДА

ПЛОЩАДЬ поверхности призмы

ПРИЗМА

ОБЪЁМ ПРИЗМЫ

ПЛОЩАДЬ БОКОВОЙ поверхности призмы

ЦИЛИНДР ОБЪЁМ ЦИЛИНДРА

ПЛОЩАДЬ ПОВЕРХНОСТИ ЦИЛИНДРА

 $S_{\text{поверхности}} = 2\pi \kappa$ 7 2.... ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ ЦИЛИНДРА

КОНУС ОБЪЁМ КОНУСА

ПЛОЩАДЬ ПОВЕРХНОСТИ КОНУСА

ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ КОНУСА

ПИРАМИДА ОБЪЁМ ПИРАМИДЫ

ПЛОЩАДЬ ПОВЕРХНОСТИ ПИРАМИДЫ

ШАР ОБЪЁМ ШАРА

ПЛОЩАДЬ ПОВЕРХНОСТИ ШАРА

ЗАДАНИЕ 14 TEOPEMA O TPËX ПЕРПЕНДИКУЛЯРАХ

Прямая, проведённая в плоскости и перпендикулярная проекции наклонной на эту плоскость, перпендикулярна и самой наклонной (ТТП)

Прямая, проведённая в плоскости и перпендикулярная наклонной, перпендикулярна и проекции наклонной на эту плоскость (Теорема, обратная

ПРАВИЛА ПОСТРОЕНИЯ СЕЧЕНИЙ

1 Проводим прямые через две точки, лежащие в одной плоскости

2 Плоскость сечения пересекает параллельные грани по параллельным прямым

Метод следов (если в некоторой грани известна одна точка сечения, а в соседней грани – отрезок, то продлеваем общее ребро, а затем продлеваем отрезок до пересечения с продолжением общего ребра)

РАССТОЯНИЕ **МЕЖДУ ПРЯМЫМИ**

Расстояние между скрещивающимися прямыми – это длина общего перпендикуляра, проведённого к этим прямым

МЕТОД ОБЪЁМОВ

Расстояние от точки до плоскости можно найти как высоту пирамиды, выразив объём двумя

ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ прямой и плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости

Если $egin{cases} m \perp b \\ m \perp c \text{, то } m \perp \alpha \\ b \cap c \end{cases}$

ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ **ДВУХ ПЛОСКОСТЕЙ**

Плоскости перпендикулярны, если одна из плоскостей содержит прямую. перпендикулярную другой плоскости $\text{Если} \left\{ \begin{matrix} m \in \alpha \\ m \perp \beta \end{matrix} \right. \text{ то } \alpha \perp \beta$

ПРИЗНАК ПАРАЛЛЕЛЬНОСТИ прямой и плоскости

Прямая параллельна плоскости, если она параллельна какой-либо прямой, лежащей в этой

двух плоскостей

Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости Если $\left\{ egin{array}{ll} c & \parallel c_1 \\ d & \parallel d_1 \end{array},$ то $\alpha \parallel \beta$

УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ (СПОСОБ #1)

Угол между прямой и плоскостью – это угол между прямой и её проекцией на плоскость

УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ (СПОСОБ #2)

Находим угол В с помощью скалярного произведения векторов: $\cos\beta = \frac{|x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2|}{|\vec{a}| \cdot |\vec{n}|}$ 1) Вводим начало системы координат

2) Находим координаты вектора \overrightarrow{SC} {3; 4; $-\sqrt{11}$ } 3) Находим координаты вектора

3) паходим координаты вектори нормали \vec{n} (берём отрезок, перпендикулярный плоскости) 4) Находим $\cos \beta$ 5) $\angle \alpha = 90^{\circ} - \angle \beta$

УГОЛ МЕЖДУ ПРЯМЫМИ (СПОСОБ #1)

Найдите угол между *SC* и *BD*

Сделаем параллельный перенос SC на OM и найдём угол между OM и BD (т.к. OM — ср. линия ΔSAC , т.е.

УГОЛ МЕЖДУ ПРЯМЫМИ (СПОСОБ #2)

Найдите угол между прямыми SC и

Находим угол с помощью скалярного произведения векторов:

 $\cos\alpha = \frac{|x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2|}{\left|\overrightarrow{SC}\right| \cdot \left|\overrightarrow{BD}\right|}$

 Вводим начало системы координат
 Находим координаты вектора для прямой *SC*

 $S(0; 0; \sqrt{21})$ C(6; 8; 0)

 $\overrightarrow{SC}\{6; 8; -\sqrt{21}\}$

3) Находим координаты вектора для прямой *BD B* (0; 8; 0) D(6:0:0)

 \overrightarrow{BD} {6; -8; 0} 4) Находим $\cos \alpha$

угол между плоскостями (СПОСОБ #1)

Угол между плоскостями – это угол между перпендикулярами к линии их пересечения, проведёнными в этих плоскостях

УГОЛ МЕЖДУ ПЛОСКОСТЯМИ (СПОСОБ #2)

Находим угол между плоскостью сечения и плоскостью проекции

 $\cos \alpha = \frac{S_{\text{проекции}}}{S_{\text{сечения}}}$

(СПОСОБ #3)

Находим угол между перпендикулярами к каждой из плоскостей

угол между плоскостями (СПОСОБ #4)

Найдите угол наклона плоскости α к плоскости грани $BB_{1}C_{1}C$.

Находим угол α с помощью скалярного произведения векторов

 $\cos \alpha = \frac{|x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2|}{}$ 1) вводим начало системы координат 2) Находим координаты вектора

нормали $\overrightarrow{n_1}$ $\overrightarrow{n_1}\{x;y;z\}$ должен быть

перпендикулярен к плоскости lpha=>Прямая n_1 должна быть

перпендикулярна сразу двум пересекающимся прямым в плоскости α (например, прямым PK и

 $C_1K)$ $\begin{cases} \overrightarrow{n_1} \cdot \overrightarrow{PK} = 0 \\ \overrightarrow{n_1} \cdot \overrightarrow{C_1K} = 0 \end{cases}$

3) Находим координаты вектора нормали $\overrightarrow{n_2}$ $\overrightarrow{n_2}\{x;y;z\}$ должен быть

перпендикулярен к пл. грани BB_1C_1C 4) Находим $\cos \alpha$