Maths-1

Week-1

- → Natural numbers (N),
 - \rightarrow N = {0, 1, 2, 3, - }
- → Integers (Z),
 - \rightarrow Z = {- -, -2, -1, 0, 1, 2, 3, - -}
 - → Integers are discrete
- \rightarrow a divides b if b mod a = 0
 - \rightarrow a|b => 4|20, 7|63
 - \rightarrow a is a factor of b if a|b
- → Rational numbers (Q),
 - \rightarrow p/q are rationals, p & q are integers
 - \rightarrow Reduced form of ρ/q is if $gcd(\rho,q) = 1$
 - → Rationals are dense
- → Irrational numbers
 - → Square root of any number is irrational
 - $\rightarrow \sqrt{2}$, $\sqrt{3}$, ----
 - $\rightarrow \pi$, e are also irrational
- → Real numbers (R),
 - → All rational and irrational numbers are Real
 - → Real numbers are also dense
- → Complex numbers
 - → Square root of any negative number is complex
 - $\rightarrow \sqrt{-1}, \sqrt{-2}$ ----
- → Cardinality
 - → No. of items in a set
 - → Items in a set are called elements
- → Subset
 - **→** X⊆Y

- → Proper subset
 - \rightarrow $X \subseteq Y$ but $X \neq Y$, hence $X \subseteq Y$ or $X \subseteq Y$
- \rightarrow Empty set (ϕ),
 - $\rightarrow \phi = \{\}$
- → Power set
 - → A set of subsets of a set
 - \rightarrow X = {a, b}
 - \rightarrow Power set of X = { ϕ , {a}, {b}, {a, b}}
 - \rightarrow Set with n elements has 2^n subsets
- \rightarrow Cartesian product $(A \times B)$
 - \rightarrow $A = \{0, 1\}, B = \{2, 3\}$
 - \rightarrow $A \times B = \{(0, 2), (0, 3), (1, 2), (1, 3)\}$
 - → Order is important
- → Identity relation
 - \rightarrow (a, b) if a = b
- → Reflexive relation,
 - \rightarrow (a, b) if and only if $a \le b$ and a, b > 0
- → Symmetric relation
 - \rightarrow $(a,b) \in R$ if and only if $(b,a) \in R$
- → Transitive relation
 - \rightarrow If $(a,b)\in R$ and $(b,c)\in R$ then $(a,c)\in R$
- → Antisymmetric relation
 - \rightarrow If $(a,b) \in R$ and $a \neq b$, then $(b,a) \notin R$
- → Equivalence relation
 - → Combination of Reflexive, Symmetric and Transitive
- → Types of functions
 - → Injective (one-to-one)
 - \rightarrow If $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$
 - → Surjective (onto)
 - → Range is the codomain

- → Bijective
 - → If a function is both injective and surjective, then it is bijective

Week-2

 \rightarrow Distance between two points $(x_1, y_1) \& (x_2, y_2)$ is

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

→ Section formula,

$$x = \frac{mx_2 + nx_1}{m + n}$$
, $y = \frac{my_2 + ny_1}{m + n}$

→ Area of triangle using coordinates,

Area =
$$\frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

→ Slope of a line,

$$m = \frac{y_2 - y_1}{x_2 - x_1} = tan\theta$$

- \rightarrow Slope of lines parallel to x-axis is always '0' as tan(0) = 0
- → Inclination of vertical line is 90°, slope is undefined

$$m = tan(180 - \theta) = -tan\theta = -\left[\frac{y_2 - y_1}{x_2 - x_1}\right] = \left[\frac{y_1 - y_2}{x_2 - x_1}\right]$$

- \rightarrow For parallel lines, m_1 = m_2
- \rightarrow For perpendicular lines, $m_1 \times m_2 = -1$
- → For two intersecting lines,

$$\theta = \alpha_2 - \alpha_1$$

$$tan\theta = tan(\alpha_2 - \alpha_1)$$

$$tan\theta = \frac{tan\alpha_2 - tan\alpha_1}{1 + tan\alpha_1 \cdot tan\alpha_2} = \frac{m_2 - m_1}{1 + m_1 \cdot m_2}$$

$$tan\phi = tan(180 - \theta) = -tan\theta = \frac{m_1 - m_2}{1 + m_1 \cdot m_2}$$

$$y = a$$

→ Vertical line (parallel to y-axis)

$$x = a$$

→ Point-slope form,

$$y - y_1 = m(x - x_1)$$

→ Two-point form,

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

→ Slope-intercept form,

$$y = mx + c$$
 for $(0, c)$ (c = y-intercept)

$$y = m(x - d)$$
 for $(d, 0)$ (d = x-intercept)

→ Intercept form,

$$\frac{x}{a} + \frac{y}{b} = 1$$

 \rightarrow For general form, Ax + By + C = 0

$$slope = \frac{-A}{B}$$
, $x - intercept = \frac{-C}{A}$, $y - intercept = \frac{-C}{B}$

Week-3

→ If two lines are parallel, $a_1x + b_1y + c_1 = 0 & a_2x + b_2y + c_2 = 0$

$$m_1 = \frac{-a_1}{b_1}, \ m_2 = \frac{-a_2}{b_2}$$

$$m_1 = m_2 \implies a_1 b_2 = a_2 b_1$$

 \rightarrow If two lines are perpendicular, $a_1x+b_1y+c_1=0$ & $a_2x+b_2y+c_2=0$

$$m_1.m_2 = -1$$

$$\frac{-a_1}{b_1} \cdot \frac{-a_2}{b_2} = -1$$

$$a_1 a_2 + b_1 b_2 = 0$$

→ Distance of a point from line,

Point
$$(x_1, y_1)$$
, line $Ax + By + C = 0$

$$Distance = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$

→ Distance between two parallel lines,

$$d = \frac{|C_1 - C_2|}{\sqrt{A^2 + B^2}}$$

 \rightarrow Sum of Squared Errors (SSE),

$$SSE = \sum_{i=1}^{n} (y_i - mx_i - c)^2$$

Week-4

 \rightarrow