Problem & Solution Chemistry 9 Chap. 1: Inorganic Compound Bài Tập SGK Hóa Học 9 Chương 1: Hợp Chất Vô Cơ & Lời Giải

Nguyễn Quản Bá Hồng*

Ngày 25 tháng 8 năm 2023

Muc luc

1	Tính Chất Hóa Học của Oxide	1
2	1 Số Oxide Quan Trọng 2.1 Calcium Oxide CaO 2.2 Sulfur Dioxide SO2	3
3	Tính Chất Hóa Học của Acid	6
4	1 Số Acid Quan Trọng	6
5	Luyện Tập: Tính Chất Hóa Học của Oxide & Acid	7
6	Base	8
7	Salt – Muối	10
8	Phân Bón Hóa Học	10
9	Mối Quan Hệ Giữa Các Loại Hợp Chất Vô Cơ	10
Tã	ni liêu	10

Lý Thuyết

Phân loại các hợp chất vô cơ. Oxide: oxide base, e.g., CaO, Fe₂O₃, oxide acid, e.g., CO₂, SO₂. Acid: acid có oxygen, e.g., HNO₃, H₂SO₄, acid không có oxygen, e.g., HCl, HBr. Base: base tan, e.g., NaOH, KOH, base không tan Cu(OH)₂, Fe(OH)₃. Muối: muối acid, e.g., KHSO₄, NaHCO₃, muối trung hòa, e.g., NaCl, K₂SO₄.

1 Tính Chất Hóa Học của Oxide

Bài toán 1 ([TTV23], 1., p. 6). Có 3 oxide: CaO, Fe₂O₃, SO₃. Oxide nào có thể tác dụng được với: (a) nước? (b) hydrochloric acid? (c) sodium hydroxide? Viết PTHH.

Giải. (a) Các oxide tác dụng với nước: CaO, SO₃, CaO + H₂O \longrightarrow Ca(OH)₂, SO₃ + H₂O \longrightarrow H₂SO₄. (b) Các oxide tác dụng với hydrochloric acid: CaO, Fe₂O₃, CaO + 2HCl \longrightarrow CaCl₂ + H₂O, Fe₂O₃ + 6HCl \longrightarrow 2FeCl₃ + 3H₂O. (c) Các oxide tác dụng với sodium hydroxide: SO₃, SO₃ + NaOH \longrightarrow NaHSO₄, SO₃ + 2NaOH \longrightarrow Na₂SO₄ + H₂O.

Bài toán 2 ([TTV23], 2., p. 6). Có 4 chất: H₂O, KOH, K₂O, CO₂. Cho biết các cặp chất có thể tác dụng với nhau.

Giải. 4 cặp chất có thể tác dụng với nhau: H_2O & CO_2 , H_2O & K_2O , CO_2 & K_2O , CO_2 & KOH. PTHH: $CO_2 + H_2O \rightleftharpoons H_2CO_3$, $K_2O + H_2O \longrightarrow 2KOH$, $K_2O + CO_2 \longrightarrow K_2CO_3$, $CO_2 + KOH \longrightarrow KHCO_3$, $CO_2 + 2KOH \longrightarrow K_2CO_3 + H_2O$.

Bài toán 3 ([TTV23], 3., p. 6). Từ 5 chất: calcium oxide, sulfur (lưu huỳnh) dioxide, carbon dioxide, sulfur (lưu huỳnh) trioxide, zinc oxide, chọn chất thích hợp điền vào các sơ đồ phản ứng: (a) sulfuric acid + ... \rightarrow zinc sulfate + nước. (b) sodium hydroxide + ... \rightarrow sodium sulfate + nước. (c) nước + ... \rightarrow acid sulfurous. (d) nước + ... \rightarrow calcium hydroxide. (e) calcium oxide + ... \rightarrow calcium carbonate. Dùng các CTHH để viết tất cả các PTHH của các sơ đồ phản ứng trên.

^{*}Independent Researcher, Ben Tre City, Vietnam e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

 $Gi\mathring{a}i.$ (a) sulfuric acid + zinc oxide \rightarrow zinc sulfate + nuớc: $H_2SO_4 + ZnO \longrightarrow ZnSO_4 + H_2O.$ (b) sodium hydroxide + lưu huỳnh trioxide \rightarrow sodium sulfate + nước: $2NaOH + SO_3 \longrightarrow Na_2SO_4 + H_2O.$ (c) nước + lưu huỳnh dioxide \rightarrow acid sulfurous: $H_2O + SO_2 \Longrightarrow H_2SO_3.$ (d) nước + calcium oxide \rightarrow calcium hydroxide: $H_2O + CaO \longrightarrow Ca(OH)_2.$ (e) calcium oxide + carbon dioxide \rightarrow calcium carbonate: $CaO + CO_2 \longrightarrow CaCO_3 \downarrow$.

Bài toán 4 ([TTV23], 4., p. 6). Cho 5 oxide: CO₂, SO₂, Na₂O, CaO, CuO. Chọn các chất tác dụng được với: (a) nước, tạo thành dung dịch acid. (b) nước, tạo thành dung dịch base. (c) dung dịch acid, tạo thành muối & nước. (d) dung dịch base, tạo thành muối & nước. Viết PTHH.

 $\begin{array}{l} \textit{Giải.} \ \, (a) \ \, \text{CO}_2, \text{SO}_2 \ \, \text{tác dụng với nước tạo thành dung dịch acid:} \ \, \text{CO}_2 + \text{H}_2\text{O} \Longrightarrow \text{H}_2\text{CO}_3, \text{SO}_2 + \text{H}_2\text{O} \Longrightarrow \text{H}_2\text{SO}_3.} \ \, \text{(b)} \ \, \text{Na}_2\text{O}, \text{CaO tác dụng với nước tạo thành dung dịch base:} \ \, \text{Na}_2\text{O} + \text{H}_2\text{O} \longrightarrow 2\text{NaOH}, \text{CaO} + \text{H}_2\text{O} \longrightarrow \text{Ca}(\text{OH})_2.} \ \, \text{(c)} \ \, \text{Na}_2\text{O}, \text{CaO}, \text{CuO tác dụng với dung dịch acid tạo thành muối & nước:} \ \, \text{Na}_2\text{O} + 2\text{HCl} \longrightarrow 2\text{HCl} + \text{H}_2\text{O}, \text{CaO} + 2\text{HNO}_3 \longrightarrow \text{Ca}(\text{NO}_3)_2 + \text{H}_2\text{O}, \text{CuO} + \text{H}_2\text{SO}_4 \longrightarrow \text{CuSO}_4 + \text{H}_2\text{O}. \ \, \text{(d)} \ \, \text{CO}_2, \text{SO}_2 \ \, \text{tác dụng với dung dịch base tạo thành muối & nước:} \ \, \text{CO}_2 + \text{Ca}(\text{OH})_2 \longrightarrow \text{CaCO}_3 \downarrow + \text{H}_2\text{O}, \text{SO}_2 + \text{Ca}(\text{OH})_2 \longrightarrow \text{CaSO}_3 \downarrow + \text{H}_2\text{O}. \ \, \Box$

Bài toán 5 ([TTV23], 5., p. 6). Có hỗn hợp khí CO₂, O₂. Làm thế nào để có thể thu được khí O₂ từ hỗn hợp trên? Trình bày cách làm & viết PTHH.

1st giải. [Nin09, p. 7]: Trong số các khí & hơi của hỗn hợp, có 1 oxide acid là CO_2 . Theo tính chất hóa học của oxide acid, chất này phản ứng với kiềm tạo thành muối & nước. Chất khí oxygen không có tính chất này. Do đó ta chọn dung dịch $Ca(OH)_2$ để tách riêng khí oxygen ra khỏi hỗn hợp. Cách làm: Buớc 1: Cho hỗn hợp khí đi qua bình đựng dung dịch $Ca(OH)_2$ dư, toàn bộ khí CO_2 trong hỗn hợp sẽ phản ứng & oxygen đi qua vì không phản ứng. PTHH: $CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 \downarrow + H_2O$. Buớc 2: Khí oxygen có lẫn 1 ít hơi nước vôi trong chưa hấp thụ hết) ta dẫn qua bình đựng dung dịch acid sulfuric đặc. Hơi nước bị acid giữ lại, ta được khí oxygen sạch.

2nd giải. Dẫn hỗn hợp khí CO_2, O_2 đi qua bình đựng dung dịch kiềm lấy dư, e.g., $Ca(OH)_2$, $NaOH, \ldots$, khí CO_2 bị hấp thụ hết do có phản ứng với kiềm: $CO_2 + Ca(OH)_2 \longrightarrow CaCO_2 \downarrow + H_2O$ hoặc $CO_2 + 2NaOH \longrightarrow Na_2CO_3 + H_2O$. Khí thoát ra khỏi bình chỉ có O_2 nên sẽ thu được khí O_2 .

Bài toán 6 ([TTV23], 6., p. 6). Cho 1.6 g copper (II) oxide tác dụng với 100 g dung dịch acid sulfuric có nồng độ 20%. (a) Viết PTHH. (b) Tính nồng độ % của các chất có trong dung dịch sau khi phản ứng kết thúc.

 $1st \ gi\acute{ai}. \ (a) \ n_{\rm CuO} = \frac{1.6}{80} = 0.02 \ {\rm mol}, \ n_{\rm H_2SO_4} = \frac{100 \cdot 20\%}{98} = \frac{10}{49} \approx 0.204 > 0.02 \Rightarrow {\rm H_2SO_4} \ {\rm du}, \ {\rm CuO} \ {\rm phản} \ \acute{\rm ung} \ {\rm h\acute{e}t}. \ {\rm PTHH:} \ {\rm CuO} + {\rm H_2SO_4} \longrightarrow {\rm CuSO_4} + {\rm H_2O} \ {\rm v\'{o}i} \ n_{\rm CuO} = n_{\rm H_2SO_4ptf} = n_{\rm CuSO_4} = 0.02 \ {\rm mol}. \ (b) \ C\%_{\rm CuSO_4} = \frac{0.02 \cdot 160}{1.6 + 100} \cdot 100\% \approx 3.15\%, \ C\%_{\rm H_2SO_4} = \frac{20 - 0.02 \cdot 98}{1.6 + 100} \cdot 100\% \approx 17.756\%.$

 $2nd \ giải. \ m_{\rm H_2SO_4} = m_{\rm ddH_2SO_4}C\% = 100 \cdot 20\% = 20 \ {\rm g}, \ n_{\rm CuO} = \frac{m_{\rm CuO}}{M_{\rm CuO}} = \frac{1.6}{80} = 0.02 \ {\rm mol}, \ n_{\rm H_2SO_4} = \frac{m_{\rm H_2SO_4}}{M_{\rm H_2SO_4}} = \frac{20}{98} = \frac{10}{49} \ {\rm mol}. \ (a)$ PTHH: CuO + H₂SO₄ \longrightarrow CuSO₄ + H₂O. Vì $n_{\rm CuO} < n_{\rm H_2SO_4} \ (0.02 < \frac{10}{49} \approx 0.204)$ nên CuO phản ứng hết, H₂SO₄ dư, suy ra khối lượng CuSO₄ tạo thành & H₂SO₄ phản ứng tính theo số mol CuO. (b) Dung dịch sau phản ứng có 2 chất tan: CuSO₄ & H₂SO₄ còn dư. $C\%_{\rm CuSO_4} = \frac{m_{\rm CuSO_4}}{m_{\rm dd}} \cdot 100\% = \frac{0.02 \cdot 160}{1.6 + 100} \cdot 100\% \approx 3.15\%. \ C\%_{\rm H_2SO_4} = \frac{m_{\rm H_2SO_4}}{m_{\rm dd}} \cdot 100\% = \frac{20 - 0.02 \cdot 98}{1.6 + 100} \cdot 100\% \approx 17.756\%. \ \Box$

Bài toán 7 (Mở rộng [TTV23], 6., p. 6). Cho m_1 g copper (II) oxide tác dụng với m_2 g dung dịch acid sulfuric có nồng độ C%. Tính nồng độ % của các chất có trong dung dịch sau khi phản ứng kết thúc theo $m_1, m_2, C\%$ biết sẽ lọc ra CuO khỏi dung dịch nếu CuO dư.

 $Giải. \ m_{\rm H_2SO_4} = m_{\rm ddH_2SO_4} C\% = m_2 C\% \ g, \ n_{\rm CuO} = \frac{m_{\rm CuO}}{M_{\rm CuO}} = \frac{m_1}{80} \ \text{mol}, \ n_{\rm H_2SO_4} = \frac{m_{\rm H_2SO_4}}{M_{\rm H_2SO_4}} = \frac{m_2 C\%}{98} \ \text{mol}. \ \text{PTHH: CuO} + \text{H}_2 \text{SO}_4 \longrightarrow \text{CuSO}_4 + \text{H}_2 \text{O}. \ \text{Vì nếu CuO dư sẽ bị lọc ra, nên theo định luật bảo toàn khối lượng,} \ m_{\rm dd} = m_{\rm CuOpu} + m_{\rm ddH_2SO_4} \ g. \ \text{X\'et 2 trường hợp:}$

(a) Nếu $n_{\text{CuO}} < n_{\text{H}_2\text{SO}_4}$, i.e., nếu $m_1, m_2, C\%$ thỏa $\frac{m_1}{80} < \frac{m_2 C\%}{98}$ thì CuO phản ứng hết, H_2SO_4 dư, suy ra $n_{\text{CuO}} = n_{\text{H}_2\text{SO}_4\text{ptf}} = n_{\text{CuSO}_4} = \frac{m_1}{80}$ mol, $m_{\text{H}_2\text{SO}_4\text{dtf}} = m_{\text{H}_2\text{SO}_4} - m_{\text{H}_2\text{SO}_4\text{ptf}} = m_2 C\% - 98 \frac{m_1}{80}$. Dung dịch sau phản ứng có 2 chất tan: CuSO₄ & H_2SO_4 còn dư.

$$C\%_{\text{CuSO}_4} = \frac{m_{\text{CuSO}_4}}{m_{\text{dd}}} \cdot 100\% = \frac{\frac{m_1}{80} \cdot 160}{m_1 + m_2} \cdot 100\% = \frac{200m_1}{m_1 + m_2}\%,$$

$$C\%_{\text{H}_2\text{SO}_4} = \frac{m_{\text{H}_2\text{SO}_4\text{dut}}}{m_{\text{dd}}} \cdot 100\% = \frac{100 \left(m_2 C\% - \frac{98m_1}{80}\right)}{m_1 + m_2}\% = \frac{100m_2 C\% - 122.5m_1}{m_1 + m_2}\%.$$

(b) Nếu $n_{\text{CuO}} = n_{\text{H}_2\text{SO}_4}$, i.e., nếu $m_1, m_2, C\%$ thỏa $\frac{m_1}{80} = \frac{m_2 C\%}{98}$ thì cả CuO & H₂SO₄ đều phản ứng hết. Dung dịch sau phản ứng có duy nhất 1 chất tan CuSO₄ & $n_{\text{CuSO}_4} = n_{\text{CuO}} = n_{\text{H}_2\text{SO}_4} = \frac{m_1}{80}$:

$$C\%_{\text{CuSO}_4} = \frac{m_{\text{CuSO}_4}}{m_{\text{dd}}} \cdot 100\% = \frac{\frac{m_1}{80} \cdot 160}{m_1 + m_2} \cdot 100\% = \frac{200m_1}{m_1 + m_2}\%.$$

(c) Nếu $n_{\text{CuO}} > n_{\text{H}_2\text{SO}_4}$, i.e., $\frac{m_1}{80} > \frac{m_2 C\%}{98}$ thì H₂SO₄ phản ứng hết, CuO dư, suy ra $n_{\text{CuOpt}} = n_{\text{H}_2\text{SO}_4} = n_{\text{CuSO}_4} = \frac{m_2 C\%}{98}$. Dung dịch sau phản ứng chỉ có duy nhất 1 chất tan CuSO₄ &

$$C\%_{\text{CuSO}_4} = \frac{m_{\text{CuSO}_4}}{m_{\text{dd}}} \cdot 100\% = \frac{160 \cdot \frac{m_2 C\%}{98}}{\frac{m_2 C\%}{98} \cdot 80 + m_2} = \frac{80C\%}{40C\% + 49},$$

không phụ thuộc vào m_2 .

Vậy nồng độ % của các chất có trong dung dịch sau khi phản ứng kết thúc

$$C\%_{\text{CuSO}_4} = \begin{cases} \frac{200m_1}{m_1 + m_2}\%, & \text{n\'eu } \frac{m_1}{80} \leq \frac{m_2 C\%}{98}, \\ \frac{80C\%}{40C\% + 49}, & \text{n\'eu } \frac{m_1}{80} > \frac{m_2 C\%}{98}, \\ \\ C\%_{\text{H}_2\text{SO}_4} = \begin{cases} \frac{100m_2 C\% - 122.5m_1}{m_1 + m_2}\%, & \text{n\'eu } \frac{m_1}{80} < \frac{m_2 C\%}{98}, \\ \\ 0, & \text{n\'eu } \frac{m_1}{80} \geq \frac{m_2 C\%}{98}, \end{cases} = \frac{100\max\left\{m_2 C\% - \frac{49}{40}m_1, 0\right\}}{m_1 + m_2}\%.$$

2 1 Số Oxide Quan Trọng

2.1 Calcium Oxide CaO

Bài toán 8 ([TTV23], 1., p. 9). Bằng phương pháp hóa học nào có thể nhận biết được từng chất trong mỗi dãy chất sau? (a) 2 chất rắn màu trắng CaO, Na₂O. (b) 2 chất khí không màu CO₂, O₂. Viết PTHH.

Giải. (a) Lấy mỗi chất cho vào mỗi cốc đựng nước, khuấy cho đến khi chất cho vào không tan nữa. Lọc để thu lấy 2 dung dịch. Dẫn khí CO_2 từ từ đi qua từng dung dịch. Dung dịch nào xuất hiện kết tủa trắng thì đó là dung dịch $Ca(OH)_2$, tương ứng với cốc lúc đầu là CaO. Dung dịch nào không thấy kết tủa (hoặc không có hiện tượng gì) thì tương ứng với cốc lúc đầu là CaO. PTHH: CaCO + CaO + Ca

Bài toán 9 ([TTV23], 2., p. 9). Nhận biết từng chất trong mỗi nhóm chất sau bằng phương pháp hóa học. (a) CaO, CaCO₃. (b) CaO, MgO. Viết PTHH.

1st giải. (a) Lấy mỗi chất cho vào ống nghiệm hoặc cốc chứa sẵn nước. Ở ống nào thấy chất rắn tan & nóng lên, chất cho vào là CaO. Ở ống nghiệm nào thấy chất rắn không tan & không nóng lên, chất cho vào là CaCO₃. PTHH: CaO + H₂O \longrightarrow Ca(OH)₂. (b) Lấy mỗi chất cho vào ống nghiệm hoặc cốc chứa sẵn nước. Ở ống nào thấy chất rắn tan & nóng lên, chất cho vào là CaO. Ở ống nghiệm nào thấy chất rắn không tan & không nóng lên, chất cho vào là MgO. PTHH: CaO + H₂O \longrightarrow Ca(OH)₂.

2nd giải. [Nin09, p. 9]: (a) CaO & CaCO $_3$ có thể dùng dung dịch HCl để thử. Nếu xuất hiện bọt khí thì đó là CaCO $_3$, nếu không có khí thoát ra thì đó là CaO. (b) CaO, CuO có thể dùng nước để thử. Nếu có phản ứng với nước thì đó là CaO, CuO không phản ứng.

Bài toán 10 ([TTV23], 3., p. 9). 200 mL dung dịch HCl có nồng độ 3.5M hòa tan vừa hết 20 g hỗn hợp 2 oxide CuO, Fe₂O₃. (a) Viết PTHH. (b) Tính khối lượng của mỗi oxide có trong mỗi hỗn hợp ban đầu.

 $1st\ gi\acute{a}i.\ n_{\rm HCl} = C_{\rm M,HCl}V_{\rm ddHCl} = 3.5\cdot0.2 = 0.7\ {\rm mol}.\ {\rm Dặt}\ x \coloneqq n_{\rm CuO},\ y \coloneqq n_{\rm Fe_2O_3}.\ (a)\ {\rm PTHH:\ CuO} + 2{\rm HCl} \longrightarrow {\rm CuCl_2} + {\rm H_2O}, {\rm Fe_2O_3} + 6{\rm HCl} \longrightarrow 2{\rm FeCl_3} + 3{\rm H_2O}.\ (b)\ n_{\rm HCl} = 2x + 6y = 0.7\ {\rm mol},\ m_{\rm hh} = 80x + 160y = 20\ {\rm g}.$ Giải hệ phương trình bậc nhất 2 ẩn x,y:

$$\begin{cases} 2x + 6y = 0.7, \\ 80x + 160y = 20, \end{cases}$$

được $x = 0.05 \text{ mol} \Rightarrow m_{\text{CuO}} = 0.05 \cdot 80 = 4 \text{ g}, y = 0.1 \text{ mol} \Rightarrow m_{\text{Fe}_2\text{O}_3} = 0.1 \cdot 160 = 16 \text{ g}$ (hoặc $m_{\text{Fe}_2\text{O}_3} = m_{\text{hh}} - m_{\text{CuO}} = 20 - 4 = 16 \text{ g}$).

2nd giải. (a) PTHH: CuO + 2HCl \longrightarrow CuCl₂ + H₂O với $n_{\text{CuO}} = 1$ mol, $n_{\text{HCl}} = 2$ mol. Fe₂O₃ + 6HCl \longrightarrow 2FeCl₃ + 3H₂O với $n_{\text{Fe}_2\text{O}_3} = 1$ mol, $n_{\text{HCl}} = 6$ mol. (b) Đặt $x \coloneqq n_{\text{CuO}}, \ y \coloneqq n_{\text{Fe}_2\text{O}_3}$. Khối lượng hỗn hợp $m_{\text{hh}} = 80x + 160y = 20$ g. Số mol HCl $n_{\text{HCl}} = 2x + 6y = 0.7$ mol. Giải hệ phương trình bậc nhất 2 ẩn được x = 0.05 mol $\Rightarrow m_{\text{CuO}} = 0.05 \cdot 80 = 4$ g, y = 0.1 mol $\Rightarrow m_{\text{Fe}_2\text{O}_3} = 0.1 \cdot 160 = 16$ g (hoặc $m_{\text{Fe}_2\text{O}_3} = m_{\text{hh}} - m_{\text{CuO}} = 20 - 4 = 16$ g).

Bài toán 11 (Mở rộng [TTV23], 3., p. 9). V L dung dịch HCl có nồng độ $C_{\rm M}$ M hòa tan vừa hết m g hỗn hợp 2 oxide CuO, Fe₂O₃. Tính khối lượng của mỗi oxide có trong mỗi hỗn hợp ban đầu.

Giải. $n_{\mathrm{HCl}} = C_{\mathrm{M,HCl}} V_{\mathrm{ddHCl}} = C_{\mathrm{M}} V$ mol. Đặt $x \coloneqq n_{\mathrm{CuO}}, \ y \coloneqq n_{\mathrm{Fe_2O_3}}$. PTHH: CuO + 2HCl \longrightarrow CuCl₂ + H₂O, Fe₂O₃ + 6HCl \longrightarrow 2FeCl₃ + 3H₂O. Có $n_{\mathrm{HCl}} = 2x + 6y = C_{\mathrm{M}} V$ mol, $m_{\mathrm{hh}} = 80x + 160y = m$ g. Giải hệ phương trình:

$$\begin{cases} 2x + 6y = C_{\mathrm{M}}V, \\ 80x + 160y = m, \end{cases} \Leftrightarrow \begin{cases} x + 3y = \frac{C_{\mathrm{M}}V}{2}, \\ x + 2y = \frac{m}{80}. \end{cases} \Leftrightarrow \begin{cases} x = \frac{3m}{80} - C_{\mathrm{M}}V, \\ y = \frac{C_{\mathrm{M}}V}{2} - \frac{m}{80}, \end{cases}$$

được $n_{\text{CuO}} = \frac{3m}{80} - C_{\text{M}}V \text{ mol} \Rightarrow m_{\text{CuO}} = n_{\text{CuO}}M_{\text{CuO}} = 80\left(\frac{3m}{80} - C_{\text{M}}V\right) = 3m - 80C_{\text{M}}V \text{ g, } n_{\text{Fe}_2\text{O}_3} = \frac{C_{\text{M}}V}{2} - \frac{m}{80} \text{ mol}$ $\Rightarrow m_{\text{Fe}_2\text{O}_3} = n_{\text{Fe}_2\text{O}_3}M_{\text{Fe}_2\text{O}_3} = 160\left(\frac{C_{\text{M}}V}{2} - \frac{m}{80}\right) = 80C_{\text{M}}V - 2m \text{ g (hoặc } m_{\text{Fe}_2\text{O}_3} = m_{\text{hh}} - m_{\text{CuO}} = m - (3m - 80C_{\text{M}}V) = 80C_{\text{M}}V - 2m \text{ g)}.$

Bài toán 12 ([TTV23], 4., p. 9). Biết 2.24 L khí CO₂ (đktc) tác dụng vừa hết với 200 mL dung dịch Ba(OH)₂, sản phẩm là BaCO₃, H₂O. (a) Viết PTHH. (b) Tính nồng độ moi của dung dịch Ba(OH)₂ đã dùng. (c) Tính khối lượng chất kết tủa thu được.

 $Gi \mathring{a}i. \ \ n_{\rm CO_2} = \frac{V_{\rm CO_2}}{22.4} = \frac{2.24}{22.4} = 0.1 \ \text{mol. (a)} \ \ \text{CO}_2 + \text{Ba}(\text{OH})_2 \longrightarrow \text{BaCO}_3 \downarrow + \text{H}_2\text{O. (b)} \ \ \text{Vì CO}_2 \ \text{tác dụng vừa hết nên } n_{\rm Ba(OH)_2} = n_{\rm CO_2} = 0.1 \ \text{mol.} \ \ C_{\rm M,Ba(OH)_2} = \frac{n_{\rm Ba(OH)_2}}{V_{\rm ddBa(OH)_2}} = \frac{0.1}{0.2} = 0.5 \ \text{M. (c)} \ \ \text{Chất kết tửa sau phản ứng là BaCO}_3 \ \& \ n_{\rm BaCO_3} = n_{\rm CO_2} = 0.1 \ \text{mol} \Rightarrow m_{\rm BaCO_3} = 0.1 \cdot 197 = 19.7 \ \text{g.} \ \ \Box$

Bài toán 13 (Mở rộng [TTV23], 4., p. 9). Cho V_1 L khí CO_2 (đktc) tác dụng với V_2 L dung dịch $Ba(OH)_2$ nồng độ C_MM . (a) Viết PTHH. (b) Tính khối lượng muối & khối lượng chất kết tủa (nếu có) thu được theo V_1, V_2, C_M .

 $Gi \acute{a}i. \ n_{\mathrm{CO}_2} = \frac{V_1}{22.4} \ \mathrm{mol}, \ n_{\mathrm{Ba(OH)_2}} = C_{\mathrm{M}} V_2 \ \mathrm{mol}. \ \mathrm{X\acute{e}t} \ \mathrm{t\mathring{y}} \ \mathrm{s\^{o}} \ \mathrm{mol} \ a \coloneqq \frac{n_{\mathrm{Ba(OH)_2}}}{n_{\mathrm{CO}_2}} = \frac{22.4 C_{\mathrm{M}} V_2}{V_1}. \ \mathrm{X\acute{e}t} \ 3 \ \mathrm{trường} \ \mathrm{hợp:}$

- Trường hợp $0 < a \le \frac{1}{2}$: CO₂ dư, Ba(OH)₂ phản ứng hết, chỉ tạo muối acid. PTHH: $2\text{CO}_2 + \text{Ba}(\text{OH})_2 \longrightarrow \text{Ba}(\text{HCO}_3)_2$ với $n_{\text{Ba}(\text{OH})_2} = n_{\text{Ba}(\text{HCO}_3)_2} = C_{\text{M}}V_2$ mol $\Rightarrow m_{\text{Ba}(\text{HCO}_3)_2} = 259C_{\text{M}}V_2$ g.
- Trường hợp $\frac{1}{2} < a < 1$: Cả CO₂ & Ba(OH)₂ đều phản ứng hết. PTHH: CO₂ + Ba(OH)₂ \longrightarrow BaCO₃ \downarrow + H₂O (1), 2CO₂ + Ba(OH)₂ \longrightarrow Ba(HCO₃)₂ (2). Đặt $x := n_{\text{Ba(OH)}_2} = n_{\text{Ba(OH)}_2} = n_{\text{Ba(OH)}_2} = n_{\text{Ba(OH)}_2} = n_{\text{Ba(HCO}_3)_2}$ phương trình (2), được hệ phương trình bậc nhất 2 ẩn:

$$\begin{cases} x + y = n_{\text{Ba(OH)}_2} = C_{\text{M}} V_2, \\ x + 2y = n_{\text{CO}_2} = \frac{V_1}{22.4}. \end{cases}$$

Giải hệ phương trình bằng cách trừ phương trình thứ 2 cho phương trình thứ nhất trong hệ, được: $y = (x + 2y) - (x + y) = \frac{V_1}{22.4} - C_{\rm M} V_2$ mol $\Rightarrow x = C_{\rm M} V_2 - y = C_{\rm M} V_2 - \left(\frac{V_1}{22.4} - C_{\rm M} V_2\right) = 2C_{\rm M} V_2 - \frac{V_1}{22.4}$ mol. Suy ra $m_{\rm BaCO_3} = 197x = 197\left(2C_{\rm M} V_2 - \frac{V_1}{22.4}\right) = 394C_{\rm M} V_2 - \frac{985}{112} V_1$ g & $m_{\rm Ba(HCO_3)_2} = 259y = 259\left(\frac{V_1}{22.4} - C_{\rm M} V_2\right) = \frac{185}{16} V_1 - 259C_{\rm M} V_2$ g.

• Trường hợp $a \ge 1$: CO₂ hết, chỉ tạo kết tủa BaCO₃. PTHH: CO₂ + Ba(OH)₂ \longrightarrow BaCO₃ \downarrow + H₂O với $n_{\text{CO}_2} = n_{\text{BaCO}_3} = \frac{V_1}{22.4}$ mol $\Rightarrow m_{\text{BaCO}_3} = 197 \cdot \frac{V_1}{22.4} = \frac{985}{112} V_1$ g.

Vậy khối lượng muối & khối lượng kết tủa có trong dung dịch sau khi phản ứng kết thúc:

$$m_{\mathrm{Ba(HCO_3)_2}} = \begin{cases} 259 C_{\mathrm{M}} V_2, & \text{n\'eu } 22.4 C_{\mathrm{M}} V_2 \leq \frac{V_1}{2}, \\ \frac{185}{16} V_1 - 259 C_{\mathrm{M}} V_2, & \text{n\'eu } \frac{V_1}{2} < 22.4 C_{\mathrm{M}} V_2 < V_1, \\ 0, & \text{n\'eu } V_1 \leq 22.4 C_{\mathrm{M}} V_2, \end{cases} \\ m_{\mathrm{BaCO_3}} = \begin{cases} 0, & \text{n\'eu } 22.4 C_{\mathrm{M}} V_2 \leq \frac{V_1}{2}, \\ 394 C_{\mathrm{M}} V_2 - \frac{985}{112} V_1, & \text{n\'eu } \frac{V_1}{2} < 22.4 C_{\mathrm{M}} V_2 < V_1, \\ \frac{985}{112} V_1, & \text{n\'eu } V_1 \leq 22.4 C_{\mathrm{M}} V_2. \end{cases}$$

với đơn vị g.

2.2 Sulfur Dioxide SO₂

Bài toán 14 ([TTV23], 1., p. 11). Viết PTHH cho mỗi chuyển đổi:

$$S \xrightarrow{(1)} SO_2 \xrightarrow{(2)} H_2SO_3 \xrightarrow{(4)} Na_2SO_3 \xrightarrow{(5)} SO_2$$

$$(6) \stackrel{}{\searrow} Na_2SO_3$$

Bài toán 15 ([TTV23], 2., p. 11). Nhận biết từng chất trong mỗi nhóm chất sau bằng phương pháp hóa học. (a) 2 chất rắn màu trắng CaO, P₂O₅. (b) 2 chất khí không màu SO₂, O₂. Viết PTHH.

1st giải. (a) Cho nước vào 2 ống nghiệm có chứa CaO & P_2O_5 . Sau đó cho quỳ tím vào mỗi dung dịch. Dung dịch nào làm đổi màu quỳ tím thành xanh là dung dịch base, tương ứng với chất ban đầu là CaO. Dung dịch nào làm đổi màu quỳ tím thành đỏ là dung dịch acid, chất ban đầu là P_2O_5 . PTHH: CaO + $H_2O \longrightarrow Ca(OH)_2$, $P_2O_5 + 3H_2O \longrightarrow 2H_3PO_4$. (b) Lấy mẫu thử từng khí. Lấy quỳ tím ẩm cho vào từng mẫu thử. Mẫu nào làm quỳ tím hóa đỏ là SO_2 , còn lại là O_2 . PTHH: $SO_2 + H_2O \Longrightarrow H_2SO_3$.

2nd~giải. (a) Cho nước vào 2 ống nghiệm có chứa CaO & P_2O_5 . Sau đó cho phenolphthalein vào mỗi dung dịch. Dung dịch nào hóa hồng là dung dịch base, tương ứng với chất ban đầu là CaO. Dung dịch nào không đổi màu là dung dịch acid, chất ban đầu là P_2O_5 . (b) Dẫn lần lượt từng khí vào dung dịch nước vôi trong, nếu có kết tủa xuất hiện thì khí dẫn vào là SO_2 : $SO_2 + Ca(OH)_2 \longrightarrow CaSO_3 \downarrow + H_2O$. Nếu không có hiện tượng gì thì khí dẫn vào là khí O_2 . Hoặc có thể đưa que đóm con than hồng vào 2 khí, que đóm sẽ bùng cháy trong khí O_2 .

3rd giải. [Nin09]: (a) CaO & P_2O_5 lần lượt là 1 oxide base & 1 oxide acid. Có thể cho 2 oxide tác dụng với nước ở 2 cốc riêng biệt. Dùng quỳ tím để thử, nếu có màu xanh thì chất ban đầu là CaO. Nếu quỳ chuyển sang màu đỏ thì chất ban đầu là P_2O_5 . PTHH: CaO + H_2O \longrightarrow Ca(OH)₂: dung dịch base (kiềm), $P_2O_5 + 3H_2O$ \longrightarrow $2H_3PO_4$: dung dịch acid. (b) SO_2 , O_2 có thể dùng tàn đóm đỏ để thử & nhận ra oxygen. Khí còn lại thêm nước cất, lắc, & thử dung dịch bằng quỳ tím, quỳ tím chuyển sang màu đỏ thì khí ban đầu là SO_2 . PTHH: $SO_2 + H_2O$ \Longrightarrow H_2SO_3 : dung dịch sulfurous acid.

Bài toán 16 ([TTV23], 3., p. 11). Có các khí ẩm (khí có lẫn hơi nước): carbon dioxide, hydrogen, oxygen, sulfur dioxide. Khí nào có thể được làm khô bằng calcium oxide? Giải thích.

Giải. [Nin09, pp. 10–11]: Nguyên tắc làm khô các chất khí là chất làm khô chỉ giữ lại hơi nước mà không tác dụng với chất được làm khô. CaO là 1 oxide base, chỉ làm khô được: H_2 , O_2 . CaO không thể làm khô 2 oxide acid CO_2 , SO_2 vì vi phạm nguyên tắc này. CaO có thể tác dụng với các oxide acid: $CO_2 - CO_3 -$

Bài toán 17 ([TTV23], 4., p. 11). Có 5 chất khí sau: CO₂, H₂, O₂, SO₂, N₂. Cho biết chất nào có tính chất sau: (a) nặng hơn không khí. (b) nhẹ hơn không khí. (c) cháy được trong không khí. (d) tác dụng với nước tạo thành dung dịch acid. (e) làm đục nước vôi trong. (f) đổi màu giấy quỳ tím ẩm thành đỏ.

Giải. (a) Nặng hơn không khí: CO_2, O_2, SO_2 . (b) Nhẹ hơn không khí: H_2, N_2 . (c) Cháy được trong không khí: H_2 . (d) Tác dụng với nước tạo thành dung dịch acid: CO_2, SO_2 . (e) Làm đục nước vôi trong: CO_2, SO_2 . (f) Đổi màu giấy quỳ tím ẩm thành đỏ: CO_2, SO_2 .

Bài toán 18 ([TTV23], 5., p. 11). Khí lưu huỳnh dioxide được tạo thành từ cặp chất nào sau đây? (a) K₂SO₃, H₂SO₄. (b) K₂SO₄, HCl. (c) Na₂SO₃, NaOH. (d) Na₂SO₄, CuCl₂. (e) Na₂SO₃, NaCl. Viết PTHH.

 $\textit{Giải.} \hspace{0.1cm} \text{SO}_2 \hspace{0.1cm} \text{được tạo thành từ cặp chất} \hspace{0.1cm} \text{K}_2 \text{SO}_3, \text{H}_2 \text{SO}_4 : \text{K}_2 \text{SO}_3 + \text{H}_2 \text{SO}_4 \longrightarrow \text{K}_2 \text{SO}_4 + \text{H}_2 \text{O} + \text{SO}_2 \uparrow. \hspace{1cm} \Box$

Bài toán 19 ([TTV23], 6., p. 11). Dẫn 112 mL khí SO₂ (đktc) đi qua 700 mL dung dịch Ca(OH)₂ có nồng độ 0.01M, sản phẩm là muối calcium sulfite. (a) Viết PTHH. (b) Tính khối lượng các chất sau phản ứng.

 $Gi\acute{a}i. \ n_{\mathrm{SO}_2} = \tfrac{0.112}{22.4} = 0.005 \ \mathrm{mol}, \ n_{\mathrm{Ca(OH)}_2} = 0.01 \cdot 0.7 = 0.007 \ \mathrm{mol}. \ \mathrm{Vi} \ \mathrm{t\mathring{y}} \ \mathrm{s\acute{o}} \ \mathrm{mol} \ \tfrac{n_{\mathrm{Ca(OH)}_2}}{n_{\mathrm{SO}_2}} = \tfrac{0.007}{0.005} = 1.4 > 1 \ \mathrm{n\^{e}n} \ \mathrm{ph\mathring{a}n} \ \mathrm{$

3 Tính Chất Hóa Học của Acid

Bài toán 20 ([TTV23], 1., p. 14). Từ Mg, MgO, Mg(OH)₂ & dung dịch acid sulfuric loãng, viết các PTHH của phản ứng điều chế magnesium sulfate.

 $Gi\acute{a}i. \ \mathrm{Mg} + \mathrm{H_2SO_4} \longrightarrow \mathrm{MgSO_4} + \mathrm{H_2}, \\ \mathrm{MgO} + \mathrm{H_2SO_4} \longrightarrow \mathrm{MgSO_4} + \mathrm{H_2O}, \\ \mathrm{Mg(OH)_2} + \mathrm{H_2SO_4} \longrightarrow \mathrm{MgSO_4} + 2\mathrm{H_2O}. \\ \square$

Bài toán 21 ([TTV23], 2., p. 14). Có các chất sau: CuO, Mg, Al₂O₃, Fe(OH)₃, Fe₂O₃. Chọn 1 trong các chất đã cho tác dụng với dung dịch HCl sinh ra: (a) khí nhẹ hơn không khí & cháy được trong không khí. (b) dung dịch có màu xanh lam. (c) dung dịch có màu vàng nâu. (d) dung dịch không có màu. Viết PTHH.

Giải. [Nin09]: (a) Khí nhẹ hơn không khí & cháy được trong không khí là hydrogen. Mg + 2HCl → MgCl₂ + H₂↑. (b) Dung dịch có màu xanh làm là dung dịch muối copper (II). CuO + 2HCl → CuCl₂ + H₂O. (c) Dung dịch có màu vàng nâu: chọn Fe(OH)₃ hoặc Fe₂O₃. Fe(OH)₃ + 3HCl → FeCl₃ + 3H₂O hoặc Fe₂O₃ + 6HCl → 2FeCl₃ + 3H₂O. (d) Dung dịch không màu: dung dịch MgCl₂ hoặc AlCl₃. Mg + 2HCl → MgCl₂ + H₂↑ hoặc Al₂O₃ + 6HCl → 2AlCl₃ + 3H₂O.

Bài toán 22 ([TTV23], 3., p. 14). Viết PTHH: (a) magnesium oxide & acid nitric. (b) copper (II) oxide & hydrochloric acid. (c) aluminium oxide & sulfuric acid. (d) iron & hydrochloric acid. (e) zinc & sulfuric acid loãng.

 $\begin{array}{lll} \textit{Gi\'{a}i.} & \text{(a)} \ \text{MgO} + 2\text{HNO}_3 \longrightarrow \text{Mg(NO}_3)_2 + \text{H}_2\text{O.} & \text{(b)} \ \text{CuO} + \text{H}_2\text{SO}_4 \longrightarrow \text{CuSO}_4 + \text{H}_2\text{O.} & \text{(c)} \ \text{Al}_2\text{O}_3 + 3\text{H}_2\text{SO}_4 \longrightarrow \text{Al}_2(\text{SO}_4)_3 + 3\text{H}_2\text{O.} & \text{(d)} \ \text{Fe} + 2\text{HCl} \longrightarrow \text{FeCl}_2 + \text{H}_2 \uparrow . & \text{(e)} \ \text{Zn} + \text{H}_2\text{SO}_4 \longrightarrow \text{ZnSO}_4 + \text{H}_2 \uparrow . & \\ \end{array}$

Bài toán 23 ([TTV23], 4., p. 14). Có 10 g hỗn hợp bột 2 kim loại đồng & sắt. Giới thiệu phương pháp xác định thành phần % (theo khối lượng) của mỗi kim loại trong hỗn hợp theo: (a) Phương pháp hóa học. Viết PTHH. (b) Phương pháp vật lý. (Biết copper không tác dụng với acid HCl & acid H₂SO₄ loãng).

Giải. [Nin09, p. 12]: (a) Dùng dung dịch hydrochloric acid dư tác dụng với hỗn hợp, chỉ có sắt phản ứng: Fe+2HCl \longrightarrow FeCl₂+ $H_2 \uparrow$. Lọc, rửa, & cân chất rắn không tan sẽ biết khối lượng của Cu. Còn lại là Fe. (b) Cho 10 g hỗn hợp bột 2 kim loại vào phía trong 1 tờ giấy A4 gập đôi. Đưa nam châm đến phía ngoài của tờ giấy. Mở tờ giấy ra, sẽ tách riêng bột sắt do nam châm hút & bột đồng thì không. Cân từng chất.

4 1 Số Acid Quan Trọng

Bài toán 24 ([TTV23], 1., p. 19). Có các chất: CuO, BaCl₂, Zn, ZnO. Chất nào tác dụng với dung dịch HCl, dung dịch H₂SO₄ loãng sinh ra: (a) chất khí cháy được trong không khí? (b) dung dịch có màu xanh lam? (c) chất kết tủa màu trắng không tan trong nước & acid? (d) dung dịch không màu & nước? Viết tất cả các PTHH.

Giải. [Nin09, p. 13]: (a) Chất khí cháy được trong không khí ở đây chỉ có thể là H_2 . Chỉ có Zn tác dụng với dung dịch acid HCl & dung dịch H_2SO_4 loãng, giải phóng khí H_2 . $Zn + 2HCl \longrightarrow ZnCl_2 + H_2$, $Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2 \uparrow$. (b) Dung dịch có màu xanh lam là màu của muối copper (II). $CuO + H_2SO_4 \longrightarrow CuSO_4 + H_2O$, $CuO + 2HCl \longrightarrow CuCl_2 + H_2O$. (c) Chất kết tủa màu trắng không tan trong nước ở đây là $BaSO_4$. $BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 \downarrow + 2HCl$. (d) Dung dịch không màu & nước là dung dịch $ZnCl_2$, $ZnSO_4$. $ZnO + 2HCl \longrightarrow ZnCl_2 + H_2O$, $ZnO + H_2SO_4 \longrightarrow ZnSO_4 + H_2O$. \Box

Bài toán 25 ([TTV23], 2., p. 19). Sản xuất acid sulfuric trong công nghiệp cần phải có các nguyên liệu chủ yếu nào? Cho biết mục đích của mỗi công đoạn sản xuất acid sulfuric & viết PTHH.

Giải. Trong công nghiệp, acid sulfuric được sản xuất bằng phương pháp tiếp x'uc. Nguyên liệu là sulfur (hoặc quặng pyrit FeS_2), không khí, & nước. C'ac công đoạn sản xu'at acid sulfuric: Sản xuất sulfur dioxide bằng cách đốt sulfur trong không khí: $S + O_2 \xrightarrow{t^\circ} SO_2$. Sản xuất sulfur trioxide SO_3 bằng cách oxy hóa SO_2 (chất xúc tác là V_2O_5 ở nhiệt độ $450^\circ C$): $2SO_2 + O_2 \xrightarrow{t^\circ} 2SO_3$. Sản xuất acid sulfuric bằng cách cho SO_3 tác dụng với nước: $SO_3 + H_2O \longrightarrow H_2SO_4$.

Bài toán 26 ([TTV23], 3., p. 19). Bằng cách nào có thể nhận biết được từng chất trong mỗi cặp chất sau theo phương pháp hóa học? (a) Dung dịch HCl & dung dịch H₂SO₄. (b) Dung dịch NaCl & dung dịch Na₂SO₄. (c) Dung dịch Na₂SO₄ & dung dịch H₂SO₄. Viết PTHH.

Giải. [Nin09, p. 14]: Lấy 2 ống nghiệm nhỏ, mỗi ống chứa riêng biệt khoảng 1 mL dung dịch chưa biết. (a) Dùng thuốc thử $BaCl_2$, nếu chất nào tạo thành kết tủa trắng thì đó là H_2SO_4 : $BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 \downarrow + 2HCl$. (b) Dùng thuốc thử $BaCl_2$, nếu chất nào tạo thành kết tủa trắng thì đó là Na_2SO_4 : $BaCl_2 + Na_2SO_4 \longrightarrow BaSO_4 \downarrow + 2NaCl$. (c) Dùng quỳ tím để thử, nếu quỳ tím chuyển sang màu đỏ thì đó là H_2SO_4 .

Bài toán 27 ([TTV23], 4., p. 19). Bảng sau cho biết kết quả của 6 thí nghiệm xảy ra giữa Fe & dung dịch H₂SO₄ loãng. Trong mỗi thí nghiệm người ta dùng 0.2 g Fe tác dụng với thể tích bằng nhau của acid, nhưng có nồng độ khác nhau.

Thí nghiệm	Nồng độ acid	Nhiệt độ (°C)	Sắt ở dạng	Thời gian phản ứng xong (s)
1	1M	25	Lá	190
2	2M	25	Bột	85
3	2M	35	Lá	62
4	2M	50	Bột	15
5	2M	35	Bột	45
6	3M	50	Bột	11

Các thí nghiệm nào chứng tỏ: (a) Phản ứng xảy ra nhanh hơn khi tăng nhiệt độ? (b) Phản ứng xảy ra nhanh hơn khi tăng diện tích tiếp xúc? (c) Phản ứng xảy ra nhanh hơn khi tăng nồng độ acid?

Giải. [Nin09, p. 15]: Khi xét ảnh hưởng có 1 yếu tố nào đó đến tốc độ phản ứng thì thông thường người ta cố định các yếu tố còn lại, e.g., khi xét ảnh hưởng của yếu tố nhiệt độ, người ta cố định các yếu tố khác như nồng độ acid, diện tích tiếp xúc. (a) Thí nghiệm 2, 4, & 5. (b) Thí nghiệm 3 & 5. (c) Thí nghiệm 4 & 6.

Bài toán 28 ([TTV23], 5., p. 19). Sử dụng các chất có sẵn: Cu, Fe, CuO, KOH, C₆H₁₂O₆ (glucose), dung dịch H₂SO₄ loãng, H₂SO₄ đặc & các dụng cụ thí nghiệm cần thiết để làm các thí nghiệm chứng minh: (a) Dung dịch H₂SO₄ loãng có các tính chất hóa học của acid. (b) H₂SO₄ đặc có các tính chất hóa học riêng. Viết PTHH cho mỗi thí nghiệm.

Giải. [Nin09, p. 15]: (a) Dung dịch H_2SO_4 loãng có các tính chất hóa học của acid: $2KOH + H_2SO_4 \longrightarrow K_2SO_4 + 2H_2O$, Fe + $H_2SO_4 \longrightarrow FeSO_4 + H_2$ 'CuO + $H_2SO_4 \longrightarrow CuSO_4 + H_2O$. (b) Dung dịch H_2SO_4 đặc ngoài các tính chất hóa học của acid còn có các tính chất hóa học riêng: $Cu + 2H_2SO_4 \xrightarrow{t^\circ} CuSO_4 + SO_2 \uparrow + 2H_2O$, $C_6H_{12}O_6 \xrightarrow{H_2SO_4} 6C + 6H_2O$.

Bài toán 29 ([TTV23], 6., p. 19). Cho 1 lượng mạt sắt dư vào 50 mL dung dịch HCl. Phản ứng xong, thu được 3.36 L khí (đktc). (a) Viết PTHH. (b) Tính khối lượng mạt sắt đã tham gia phản ứng. (c) Tìm nồng độ mol của dung dịch HCl đã dùng.

Giải. (a) PTHH: Fe + 2HCl → FeCl₂ + H₂↑. (b)
$$n_{\text{Fe}} = n_{\text{H}_2} = \frac{3.36}{22.4} = 0.15 \text{ mol} \Rightarrow m_{\text{Fe}} = 0.15 \cdot 56 = 8.4 \text{ g. (c)}$$
 $n_{\text{HCl}} = 2n_{\text{H}_2} = 2 \cdot 0.15 = 0.3 \text{ mol} \Rightarrow C_{\text{M,HCl}} = \frac{0.3}{0.05} = 6\text{M}.$

Bài toán 30 ([TTV23], 7., p. 19). Hòa tan hoàn toàn 12.1 g hỗn hợp bột CuO, ZnO cần 100 mL dung dịch HCl 3M. (a) Viết PTHH. (b) Tính % theo khối lượng của mỗi oxide trong hỗn hợp ban đầu. (c) Tính khối lượng dung dịch H₂SO₄ nồng độ 20% để hòa tan hoàn toàn hỗn hợp các oxide trên.

Giải. (a) CuO + 2HCl \longrightarrow CuCl₂ + H₂O, ZnO + 2HCl \longrightarrow ZnCl₂ + H₂O. (b) Đặt $x \coloneqq n_{\text{CuO}}, y \coloneqq n_{\text{ZnO}}$ trong hỗn hợp khối lượng hỗn hợp $m_{\text{hh}} = 80x + 81y = 12.1$. Số mol HCl $n_{\text{HCl}} = 2(x+y) = 3 \cdot 0.1 = 0.3$ mol. Giải hệ phương trình

$$\begin{cases} 80x + 81y = 12.1, \\ 2(x+y) = 0.3, \end{cases}$$

được x=0.05 mol, y=0.1 mol. % $m_{\rm CuO}=\frac{0.05\cdot 80}{12.1}\cdot 100\%\approx 33.058\%,$ % $m_{\rm ZnO}=\frac{0.1\cdot 81}{12.1}\cdot 100\%\approx 66.942\%$ (hoặc % $m_{\rm ZnO}=100\%-\%m_{\rm CuO}\approx 100\%-33.058\%=66.942\%$). (c) CuO + H₂SO₄ \longrightarrow CuSO₄ + H₂O, ZnO + H₂SO₄ \longrightarrow ZnSO₄ + H₂O. $m_{\rm H_2SO_4}=n_{\rm CuO}+n_{\rm ZnO}=0.05+0.1=0.15$ mol $\Rightarrow m_{\rm H_2SO_4}=98\cdot 0.15=14.7$ g $\Rightarrow m_{\rm ddH_2SO_4}=\frac{14.7}{20\%}=73.5$ g.

5 Luyện Tập: Tính Chất Hóa Học của Oxide & Acid

Bài toán 31 ([TTV23], 1., p. 21). Có các oxide: SO₂, CuO, Na₂O, CO₂. Cho biết các oxide nào tác dụng được với: (a) nước. (b) hydrochloric acid. (c) sodium hydroxide. Viết PTHH.

Bài toán 32 ([TTV23], 2., p. 21). Các oxide nào sau: H₂O, CuO, Na₂O, CO₂, P₂O₅ có thể điều chế bằng: (a) phản ứng hóa hợp? Viết PTHH. (b) phản ứng hóa hợp & phản ứng phân hủy? Viết PTHH.

 $\begin{aligned} &\textit{Giải.} \ \ (a) \ \ \text{Oxide được điều chế bằng phản ứng hóa hợp: H_2O, Na_2O, P_2O_5. $2H_2 + O_2 \longrightarrow 2H_2O$, $4Na + O_2 \longrightarrow 2Na_2O$, $4P + 5O_2 \longrightarrow 2P_2O_5$. $(b) \ \ \text{Oxide được điều chế bằng phản ứng hóa hợp & phân hủy: CuO, CO_2. $2Cu + O_2 \longrightarrow 2CuO$, $Cu(OH)_2 \xrightarrow{t^\circ} CuO + H_2O$, $C + O_2 \longrightarrow CO_2$, $CaCO_3 \xrightarrow{t^\circ} CaO + CO_2 \uparrow$.} \end{aligned}$

Bài toán 33 ([TTV23], 3., p. 21). Khí CO được dùng làm chất đốt trong công nghiệp, có lẫn tạp chất là các khí CO₂, SO₂. Làm thế nào có thể loại bỏ được các tạp chất ra khỏi CO bằng hóa chất rẻ tiền nhất? Viết PTHH.

Giải. Sử dụng calcium hydroxide dư để loại bỏ CO_2 , SO_2 bằng cách sục hỗn hợp khí chưa sạch qua bình rửa khí chứa $Ca(OH)_2$ bởi vì $Ca(OH)_2$ là chất kiềm rẻ nhất. $CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 \downarrow + H_2O$, $SO_2 + Ca(OH)_2 \longrightarrow CaSO_3 \downarrow + H_2O$.

Bài toán 34 ([TTV23], 4., p. 21). Cần phải điều chế 1 lượng muối copper (II) sulfate. Phương pháp nào sau đây tiết kiệm được acid sulfuric? (a) Acid sulfuric tác dụng với copper (II) oxide. (b) Acid sulfuric đặc tác dụng với kim loại đồng. Vì sao?

 $Gi\mathring{a}i.$ (a) $CuO + H_2SO_4 \longrightarrow CuSO_4 + H_2O.$ (b) $Cu + 2H_2SO_4$ đặc $\stackrel{t^\circ}{\longrightarrow} CuSO_4 + 2H_2O + SO_2 \uparrow.$ So sánh 2 phương trình, ta thấy để điều chế cùng 1 lượng muối copper (II) sulfate như nhau, cách thứ nhất tiết kiệm acid sulfuric hơn.

Bài toán 35 ([TTV23], 5., p. 21). Thực hiện các chuyển đổi hóa học sau bằng cách viết các PTHH (ghi điều kiện của phản ứng, nếu có):

$$S_{2} \xrightarrow{(6)} H_{2}SO_{3} \xrightarrow{(7)} Na_{2}SO_{3} \xrightarrow{(8)} SO_{2}$$

$$S_{3} \xrightarrow{(1)} SO_{2} \xrightarrow{(2)} SO_{3} \xrightarrow{(4)} H_{2}SO_{4} \xrightarrow{(10)} BaSO_{4}$$

$$S_{3} \xrightarrow{(1)} Na_{2}SO_{3} \xrightarrow{(9)} Na_{2}SO_{4} \xrightarrow{(10)} BaSO_{4}$$

 $Gi\mathring{a}i. \ (1) \ S + O_2 \longrightarrow SO_2. \ (2) \ 2SO_2 + O_2 \ \frac{t^\circ}{V_2O_5} \ 2SO_3. \ (3) \ SO_2 + 2NaOH \longrightarrow Na_2SO_3 + H_2O. \ (4) \ SO_3 + H_2O \longrightarrow H_2SO_4. \ (5)$ $Cu + 2H_2SO_4 \ \mathring{a}\check{a}c \xrightarrow{t^\circ} CuSO_4 + 2H_2O + SO_2 \uparrow. \ (6) \ SO_2 + H_2O \longrightarrow H_2SO_3. \ (7) \ H_2SO_3 + 2NaOH \longrightarrow Na_2SO_3 + 2H_2O. \ (8)$ $Na_2SO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O + SO_2 \uparrow. \ (9) \ H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O. \ (10) \ Na_2SO_4 + BaCl_2 \longrightarrow BaSO_4 \downarrow + 2NaCl.$

6 Tính Chất Hóa Học của Base

Bài toán 36 ([TTV23], 1., p. 25). Có phải tất cả các chất kiềm đều là base không? Dẫn ra CTHH của 3 chất kiềm để minh họa. Có phải tất cả các base đều là chất kiềm không? Dẫn ra CTHH của các base để minh họa.

Bài toán 37 ([TTV23], 2., p. 25). Có các base sau: Cu(OH)₂, NaOH, Ba(OH)₂. Cho biết các base nào: (a) tác dụng được với dung dịch HCl. (b) bị nhiệt phân hủy. (c) tác dụng được với CO₂. (d) đổi màu quỳ tím thành xanh. Viết PTHH.

Bài toán 38 ([TTV23], 3., p. 25). Từ các chất có sẵn: Na₂O, CaO, H₂O. Viết PTHH điều chế các dung dịch base.

Bài toán 39 ([TTV23], 4., p. 25). Có 4 lọ không nhãn, mỗi lọ đựng 1 dung dịch không màu sau: NaCl, Ba(OH)₂, NaOH, Na₂SO₄. Chỉ được dùng quỳ tím, làm thế nào nhận biết dung dịch đựng trong mỗi lọ bằng phương pháp hóa học? Viết PTHH.

Bài toán 40 ([TTV23], 1., p. 27). Có 3 lọ không nhãn, mỗi lọ đựng 1 chất rắn sau: NaOH, NaCl, Ba(OH)₂. Trình bày cách nhận biết chất đựng trong mỗi lọ bằng phương pháp hóa học. Viết PTHH (nếu có).

Bài toán 41 ([TTV23], 2., p. 27). Có các chất: Zn, Zn(OH)₂, NaOH, Fe(OH)₃, CuSO₄, NaCl, HCl. Chọn chất thích hợp điền vào mỗi sơ đồ phản ứng sau & lập PTHH: (a) ... $\xrightarrow{t^{\circ}}$ Fe₂O₃ + H₂O. (b) H₂SO₄ + ... \longrightarrow Na₂SO₄ + H₂O. (c) H₂SO₄ + ... \longrightarrow NaCl + H₂O. (e) ... + CO₂ \longrightarrow Na₂CO₃ + H₂O.

Bài toán 42 ([TTV23], 1., p. 30). Viết PTHH thực hiện các chuyển đổi hóa học: (a) $CaCO_3 \rightarrow CaO \rightarrow Ca(OH)_2 \rightarrow CaCO_3$. (b) $CaO \rightarrow CaCl_2$. (c) $Ca(OH)_2 \rightarrow Ca(NO_3)_2$.

Bài toán 43 ([TTV23], 2., p. 30). Có 3 lọ không nhãn, mỗi lọ đựng 1 trong 3 chất rắn màu trắng: CaCO₃, Ca(OH)₂, CaO. Nhận biết chất đựng trong mỗi lọ bằng phương pháp hóa học. Viết PTHH.

Bài toán 44 ([TTV23], 3., p. 30). Viết PTHH của phản ứng khi dung dịch NaOH tác dụng với dung dịch H₂SO₄ tạo ra: (a) muối sodium hydrosunfate. (b) muối sodium sulfate.

Bài toán 45 ([TTV23], 4., p. 30). 1 dung dịch bão hòa khí CO₂ trong nước có pH = 4. Giải thích & viết PTHH của CO₂ với nước.

Bài toán 46 ([TTV23], 7.1., p. 9). Nêu các tính chất hóa học giống & khác nhau của base tan (kiềm) & base không tan. Dẫn ra ví dụ, viết PTHH.

Bài toán 47 ([TTV23], 7.2., p. 9). Các base khi bị nung nóng tạo ra oxide là: A. Mg(OH)₂, Cu(OH₂), Zn(OH)₂, Fe(OH)₃. B. Ca(OH)₂, Al(OH)₃, KOH, NaOH. C. Zn(OH)₂, Mg(OH)₂, Fe(OH)₃, KOH. D. Fe(OH)₃, Al(OH)₃, Zn(OH)₂, NaOH.

Bài toán 48 ([TTV23], 7.3., p. 9). Dung dịch HCl, khí CO_2 đều tác dụng với: A. $Ca(OH)_2$, $Ba(OH)_2$, NaOH, KOH. B. $Ca(OH)_2$, $Al(OH)_3$, KOH, NaOH. C. NaOH, KOH, $E(OH)_3$, $E(OH)_4$, $E(OH)_5$, E(O

Bài toán 49 ([TTV23], 7.4., p. 9). Viết CTHH của các: (a) base ứng với các oxide: Na₂O, Al₂O₃, Fe₂O₃, BaO. (b) oxide ứng với các base: KOH, Ca(OH)₂, Zn(OH)₂, Cu(OH)₂.

Bài toán 50 ([TTV23], 7.5., p. 9). Có 3 lọ không nhãn, mỗi lọ đựng 1 trong các chất rắn: Cu(OH)₂, Ba(OH)₂, Na₂CO₃. Chọn 1 thuốc thử để có thể nhận biết được cả 3 chất này. Viết PTHH.

Bài toán 51 ([TTV23], 8.1., p. 9). Bằng phương pháp hóa học nào có thể phân biệt được 2 dung dịch base: NaOH, Ca(OH)₂? Viết PTHH.

Bài toán 52 ([TTV23], 8.2., p. 9). Có 4 lọ không nhãn, mỗi lọ đựng 1 trong các dung dịch sau: NaOH, Na₂SO₄, H₂SO₄, HCl. Nhận biết dung dịch trong mỗi lọ bằng phương pháp hóa học. Viết PTHH.

Bài toán 53 ([TTV23], 8.3., p. 10). Cho các chất: Na₂CO₃, Ca(OH)₂, NaCl. (a) Từ các chất đã cho, viết các PTHH điều chế NaOH. (b) Nếu các chất đã cho có khối lượng bằng nhau, ta dùng phản ứng nào để có thể điều chế được khối lượng NaOH nhiều hơn?

Bài toán 54 ([TTV23], 8.4., p. 10). Bảng sau cho biết giá trị pH của dung dịch 1 số chất:

Dung dịch	A	В	С	D	E
рН	13	3	1	7	8

(a) Dự đoán trong các dung dịch trên: (1) Dung dịch nào có thể là acid, e.g., HCl, H₂SO₄? (2) Dung dịch nào có thể là base, e.g., NaOH, Ca(OH)₂? (3) Dung dịch nào có thể là đường, muối NaCl, nước cất? (4) Dung dịch nào có thể là acid acetic (có trong giấm ăn)? (5) Dung dịch nào có tính base yếu, e.g., NaHCO₃? (b) Cho biết: (1) Dung dịch nào có phản ứng với Mg, với NaOH? (2) Dung dịch nào có phản ứng với dung dịch HCl? (3) Các dung dịch nào trộn với nhau từng đôi một sẽ xảy ra phản ứng hóa học?

Bài toán 55 ([TTV23], 4., p. 25). Cho 15.5 g sodium oxide Na₂O tác dụng với nước, thu được 0.5 L dung dịch base. (a) Viết PTHH & tính nồng độ mol của dung dịch base thu được. (b) Tính thể tích dung dịch H₂SO₄ 20%, có khối lượng riêng 1.14 g/mL cần dùng để trung hòa dung dịch base nói trên.

Bài toán 56 ([TTV23], 3., p. 27). Dẫn từ từ 1.568 L khí CO₂ (đktc) vào 1 dung dịch có hòa tan 6.4 g NaOH, sản phẩm là muối Na₂CO₃. (a) Chất nào đã lấy dư & dư là bao nhiêu (L hoặc g)? (b) Tính khối lượng muối thu được sau phản ứng.

Bài toán 57 ([TTV23], 8.5., p. 10). 3.04 g hỗn hợp NaOH, KOH tác dụng vừa đủ với dung dịch HCl, thu được 4.15 g các muối clorua. (a) Viết PTHH. (b) Tính khối lượng của mỗi hydroxide trong hỗn hợp ban đầu.

Bài toán 58 ([TTV23], 8.6., p. 10). Cho 10 g CaCO₃ tác dụng với dung dịch HCl dư. (a) Tính thể tích khí CO₂ thu được ở đktc. (b) Dẫn khí CO₂ thu được ở trên vào lọ đựng 50 g dung dịch NaOH 40%. Tính khối lượng muối carbonate thu được.

Bài toán 59 ([TTV23], 8.7., p. 10). Cho m g hỗn hợp gồm Mg(OH)₂, Cu(OH)₂, NaOH tác dụng vừa đủ với 400 mL dung dịch HCl 1M & tạo thành 24.1 g muối clorua. Tính m.

Bài toán 60 ([TTV23], 1., p. 33). Dẫn ra 1 dung dịch muối khi tác dụng với 1 dung dịch chất khác thì tạo ra: (a) chất khí. (b) chất kết tủa. Viết PTHH.

Bài toán 61 ([TTV23], 2., p. 33). Có 3 lọ không nhãn, mỗi lọ đựng 1 dung dịch muối sau: CuSO₄, AgNO₃, NaCl. Dùng các dung dịch có sẵn trong phòng thí nghiêm để nhân biết chất đưng trong mỗi lo. Viết PTHH.

Bài toán 62 ([TTV23], 3., p. 33). Có các dung dịch muối: Mg(NO₃)₂, CuCl₂. Cho biết muối nào có thể tác dụng với: (a) Dung dịch NaOH. (b) Dung dịch HCl. (c) Dung dịch AgNO₃. Nếu có phản ứng, viết các PTHH.

Bài toán 63 ([TTV23], 4., p. 33). Cho các dung dịch muối sau phản ứng với nhau từng đôi một, viết dấu · nếu có phản ứng ℰ viết PTHH, dấu ∘ nếu không.

Bài toán 64 ([TTV23], 5., p. 33). Ngâm 1 đinh sắt sạch trong dung dịch copper (II) sulfate. Câu trả lời nào sau đây là đúng nhất cho hiện tượng quan sát được? A. không có hiện tượng nào xảy ra. B. Kim loại đồng màu đỏ bám ngoài đinh sắt, đinh sắt không có sự thay đổi. C. 1 phần đinh sắt bị hòa tan, kim loại đồng bám ngoài đinh sắt & màu xanh lam của dung dịch ban đầu nhạt dần. D. Không có chất mới nào được sinh ra, chỉ có 1 phần đinh sắt bị hòa tan. Giải thích cho sự lựa chọn & viết PTHH, nếu có.

Bài toán 65 ([TTV23], 1., p. 36). Cho các muối: CaCO₃, CaSO₄, Pb(NO₃)₂, NaCl. Muối nào nói trên: (a) không được phép có trong nước ăn vì tính độc hại của nó? (b) không độc nhưng cũng không nên có trong nước ăn vì vị mặn của nó? (c) không tan trong nước, nhưng bị phân hủy ở nhiệt độ cao? (d) rất ít tan trong nước & khó bị phân hủy ở nhiệt độ cao?

Bài toán 66 ([TTV23], 2., p. 36). 2 dung dịch tác dụng với nhau, sản phẩm thu được có NaCl. Cho biết 2 dung dịch chất ban đầu có thể là các chất nào. Minh họa bằng các PTHH.

Bài toán 67 ([TTV23], 3., p. 36). (a) Viết phương trình điện phân dung dịch muối ăn (có màng ngăn). (b) Các sản phẩm của sự điện phân dung dịch NaCl có nhiều ứng dụng quan trọng: Khí clo dùng để: ... Khí hydrogen dùng để: ... Sodium hydroxide dùng để: ... Diền các ứng dựng sau vào các chỗ trống cho phù hợp: tẩy trắng vải, giấy; nấu xà phòng; sản xuất hydrochloric acid; chế tạo hóa chất trừ sâu, diệt cỏ dại; hàn cắt kim loại; sát trùng, diệt khuẩn nước ăn; nhiên liệu cho động cơ tên lửa; bơm khí cầu, bóng thám không; sản xuất nhôm, sản xuất chất đẻo PVC; chế biến dầu mỏ.

Bài toán 68 ([TTV23], 4., p. 36). Dung dịch NaOH có thể dùng để phân biệt 2 muối có trong mỗi cặp chất sau được không? (a) Dung dịch K₂SO₄ & dung dịch Fe₂(SO₄)₃. (b) Dung dịch Na₂SO₄ & dung dịch CuSO₄. (c) Dung dịch NaCl & dung dịch BaCl₂. Viết PTHH, nếu có.

Bài toán 69 ([TTV23], 6., p. 33). Trộn 30 mL dung dịch có chứa 2.22 g CaCl₂ với 70 mL dung dịch có chứa 1.7 g AgNO₃. (a) Cho biết hiện tượng quan sát được & viết PTHH. (b) Tính khối lượng chất rắn sinh ra. (c) Tính nồng độ mol của chất còn lại trong dung dịch sau phản ứng. Cho thể tích của dung dịch thay đổi không đáng kể.

Bài toán 70 ([TTV23], 5., p. 36). Trong phòng thí nghiệm có thể dùng các muối KClO₃ hoặc KNO₃ để điều chế khí oxygen bằng phản ứng phân hủy. (a) Viết PTHH. (b) Nếu dùng 0.1 mol mỗi chất thì thể tích khí oxygen thu được có khác nhau không? Tính thể tích khí oxygen thu được. (c) Cần điều chế 1.12 L khí oxygen, tính khối lượng mỗi chất cần dùng. Các thể tích khí được đo ở đktc.

Bài toán 71 ([TTV23], 1., p. 39). Có các loại phân bón hóa học: KCl, NH₄NO₃, NH₄Cl, (NH₄)₂SO₄, Ca₃(PO₄)₂, Ca(H₂PO₄)₂, (NH₄)₂HPO₄, KNO₃. (a) Cho biết tên hóa học của các phân bón này. (b) Sắp xếp các phân bón này thành 2 nhóm phân bón đơn \mathcal{E} phân bón kép. (c) Trộn các phân bón nào với nhau ta được phân bón kép NPK?

Bài toán 72 ([TTV23], 2., p. 39). Có 3 mẫu phân bón hóa học không ghi nhãn: phân kali KCl, phân đạm NH₄NO₃ & phân supephotphat (phân lân) Ca(H₂PO₄)₂. Nhận biết mỗi mẫu phân bón trên băng phương pháp hóa học.

Bài toán 73 ([TTV23], 3., p. 39). 1 người làm vườn đã dùng 500 g (NH₄)₂SO₄ để bón rau. (a) Nguyên tố dinh dưỡng nào có trong loại phân bón này? (b) Tính thành phần % của nguyên tố dinh dưỡng trong phân bón. (c) Tính khối lượng của nguyên tố dinh dưỡng bón cho ruộng rau.

7 Salt – Muối

8 Phân Bón Hóa Học

9 Mối Quan Hệ Giữa Các Loại Hợp Chất Vô Cơ

Bài toán 74 ([TTV23], 1., p. 41). Chất nào trong các thuốc thử sau có thể dùng để phân biệt dung dịch sodium sulfate & dung dịch sodium carbonate? (a) Dung dịch barium chloride. (b) Dung dịch hydrochloric acid. (c) Dung dịch chì nitrate. (d) Dung dịch bạc nitrate. (e) Dung dịch sodium hydroxide. Giải thích & viết các PTHH.

Bài toán 75 ([TTV23], 2., p. 41). Cho các dung dịch sau lần lượt phản ứng với nhau từng đôi một, ghi 1 nếu có phản ứng, 0 nếu không có phản ứng. Viết PTHH nếu có.

	NaOH	HCl	H_2SO_4
$CuSO_4$			
HCl			
$Ba(OH)_2$			

Bài toán 76 ([TTV23], 4., p. 41). Có các chất: Na₂O, Na, NaOH, Na₂SO₄, Na₂CO₃, NaCl. (a) Dựa vào mối quan hệ giữa các chất, sắp xếp các chất trên thành 1 dãy chuyển đổi hóa học. (b) Viết PTHH cho dãy chuyển đổi hóa học ở (a).

Bài toán 77 ([TTV23], 2., p. 43). Để 1 mẩu sodium hydroxide trên tấm kính trong không khí, sau vài ngày thấy có chất rắn màu trắng phủ ngoài. Nếu nhỏ vài giọt dung dịch HCl vào chất rắn trắng thấy có khí thoát ra, khí này làm đục nước vôi trong. Chất rắn màu trắng là sản phẩm phản ứng của sodium hydroxide với chất nào sau đây? Giải thích & viết PTHH minh họa. (a) Oxygen trong không khí. (b) Hơi nước trong không khí. (c) Carbon dioxide & oxygen trong không khí. (d) Carbon dioxide & hơi nước trong không khí. (e) Carbon dioxide trong không khí.

Bài toán 78 ([TTV23], 3., p. 43). Trộn 1 dung dịch có hòa tan 0.2 mol CuCl₂ với 1 dung dịch có hòa tan 20 g NaOH. Lọc hỗn hợp các chất sau phản ứng, được kết tủa & nước lọc. Nung kết tủa đến khi khối lượng không đổi. (a) Viết PTHH. (b) Tính khối lượng chất rắn thu được sau khi nung. (c) Tính khối lượng các chất tan có trong nước lọc.

Tài liệu

[Nin09] Trần Trung Ninh. *Hướng Dẫn Giải Bài Tập Hóa Học 9*. Tái bản lần thứ 2. Nhà Xuất Bản Đại Học Quốc Gia Hà Nội, 2009, p. 186.

[TTV23] Lê Xuân Trọng, Cao Thị Thặng, and Ngô Văn Vụ. *Hóa Học 9*. Tái bản lần thứ 22. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 174.