Chapitre 4: Les circuits combinatoires

Licence en Ingénierie Informatique

Pr Youssou FAYE

Année 2020-2021

Les circuits combinatoires

Un Circuit combinatoire est un circuit dont les sorties dépendent uniquement de la combinaison des états des entrées à l'instant de l'observation

- Demi additionneur
- Additionneur complet
- Décodeur
- Codeur (encodeur)
- Multiplexeur
- Démultiplexeur
- Transcodeur
- Comparateur
- Multiplieur

Demi additionneur

- Effectue l'addition de 2 bits
 - Entrées: 2 bits à additionner(A,B)
 - Sortie: 2 bits: résultat partiel (S) et la retenue(R)

Table d'addition

A	B	R	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

S= résultat R= retenue Formes canonique des deux fonctions de sorties S et R (disjonctive)

$$S = A.\overline{B} + \overline{A}.B$$
$$= A \oplus B$$

Représentations

R = A.B

Additionneur complet

- Effectue l'addition de deux bits en tenant compte d'une retenue R' en entrée.
- Tient en compte de la retenue des bits de poids inférieurs
 - Entrées: 3 bits (2 bits à additionner (A,B) et 1 bit de la retenue résultante de l'addition des bits de poids inférieurs (R')

Table d'addition

(b)

Formés canonique des deux fonctions de sorties S et R (disjonctive)

$$\begin{array}{ll} S & = & \overline{A}.\overline{B}.R' + \overline{A}.B.\overline{R'} + A.\overline{B}.\overline{R'} + A.B.R' \\ \\ & = & \overline{R'}.(\overline{A}.B + A.\overline{B}) + R'.(\overline{A}.\overline{B} + A.B) \\ \\ & = & \overline{R'}.(A \oplus B) + R'.(\overline{A} \oplus B) \\ \\ & = & R' \oplus A \oplus B \end{array}$$

Additionneur complet

- Exemple: Additionneur de 4 bits
 - 2 nombres A $(A_0A_1A_2A_3)$ et B $(B_0B_1B_2B_3)$

Codeur ou Encodeur (I)

- Dispose de 2ⁿ entrées
- Dispose de n sorties
- Une seule entrée est active à la fois (elle sera à 1 et les autres entrées à 0)
 - Exemple: un clavier qui génère un code lorsque l'on appuie sur une touche
- La sortie délivre le code binaire du rang de l'entrée
 - Exemple: encodeur à 4=2ⁿ entrées et 2 sorties
 - La table de vérité donne toutes les combinaisons possibles des entrées et leur(s) sortie(s) correspondantes
 - Pour le codeur, l'appuie simultané sur plus d'une touche ne donne rien, par conséquent on supprime toutes les combinaisons correspondantes à l'appuie sur plusieurs touches

Table de vérité

	Ent	Soi	rtie		
E ₃	$\mathbf{E_2}$	$\mathbf{E_1}$	E ₀	S_1	S ₀
0	0	0	0		
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1		
0	1	0	0	1	0
0	1	Û	1		
0	1	1	0		
0	1	1	1		
1	0	0	0	1	1
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
-1	1	1	1	•	

Codeur ou Encodeur (2)

- Dispose de 2ⁿ entrées
- Dispose de n sorties
- Une seule entrée est active à la fois (elle sera à 1 et les autres entrées à 0)
 - Exemple: un clavier qui génère un code lorsque l'on appuie sur une touche
- La sortie délivre le code binaire du rang de l'entrée
 - Exemple: encodeur à 4=2ⁿ entrées et 2 sorties

Table de vérité

E ₀	Eı	E ₂	E ₃	Sı	S ₀
I	0	0	0	0	0
0	I	0	0	0	I
0	0	I	0	I	0
0	0	0	I	I	I

Equations Booléennes des sorties:

$$S_0 = \bar{E}_0 E_1 \bar{E}_2 \bar{E}_3 + \bar{E}_0 \bar{E}_1 \bar{E}_2 E_3$$

$$S_1 = \bar{E}_0 \bar{E}_1 E_2 \bar{E}_3 + \bar{E}_0 \bar{E}_1 \bar{E}_2 E_3$$

Décodeur (sélecteur de sortie)

- Dispose de n entrées appelées entrées d'adresse
- Dispose de 2ⁿ sorties
- Seule la sortie dont le rang est égale à la valeur binaire mise en entrée est active

Exemple: décodeur à 2 entrées et 4=2² sorties

Εı	Eo	S ₀	Sı	S ₂	S ₃
0	0	-	0	0	0
0	I	0	I	0	0
I	0	0	0	I	0
I	I	0	0	0	I

Equations booléennes des sorties

- •Si E_0 =0 et E_1 =1, comme E_0 est le bit de poids faible (LSB), alors la valeur décimale 2 en entrée :
- c'est la sortie S₂ et elle seule qui est active.

Décodeur

- Mise en cascade de décodeurs
 - Exemple: un décodeur à 3 entrées en utilisant deux décodeurs à 2 entrées

- •Si E₀=0 et E₁=1, comme E₀ est le bit de poids faible (LSB), alors la valeur décimale 2 en entrée dans les deux décodeurs.
- •Et si A₀=1, le décodeur 2 est actif,
- c'est la sortie S₆ et elle seule qui est activée.

Le multiplexeur

- Dispose de 2ⁿ entrées E_i (de données)
- Dispose d'une seule sortie qui prend la valeur de l'une des entrées E_i de sorte que la configuration binaire des A_i code le numéro de l'indice de cette entrée
- Dispose de n entrées d'adresse A_i dont la valeur décimale indique l'indice de l'entrée E_i sélectionnée.
- Exemple: n=3, si A₀=0 ; A₁=1 ; A₂=1 (A₀ poids faible), on a la valeur 6 en adresse, l'entrée E₆ et elle seule, est aiguillée vers la sortie.

Le multiplexeur

• Plusieurs files d'attente pour un guichet unique

Les 4 files d'attente accèdent au même guichet

Le multiplexeur

- Exemple : un multiplexeur à n= 2 adresses A_i et 2n=4 entrées de données E_i.
- Il n'y a donc qu'un seul ET transparent à la fois, et donc une seule entrée E_i dirigée vers la sortie S.

Table de vérité

	Αı	A ₀	S
	0	0	E ₀
_	0	-	Εı
•	I	0	E ₂
	I	I	E ₃

$$S = \overline{A}_1.\overline{A}_0.E_0 + \overline{A}_1.A_0.E_1 + A_1.\overline{A}_0.E_2 + A_1.A_0.E_3$$

A l'aide des entrées d'adresses A_0 , A_1 du décodeur, on active une sortie et une seule du décodeur. Il n'y a donc qu'un seul ET transparent à la fois, et donc une seule entrée E_i dirigée vers la sortie

Si A₀=1, A₁=0, l'entré E₁ est dirigée vers la sortie

Si A₀=1, A₁=1, l'entré E₃ est dirigée vers la sortie.

Multiplexeur

Mise en cascade de multiplexeurs

Si $A_0=0$, $A_1=1$, $A_2=0$, l'entrée 2 d'un décodeur est activée, Et si $B_0=0$, $B_1=1$, le multiplexeur 2 est actif, C'est l'entrée 10 du MUX 2 est dirigée vers la sortie S

Le Démultiplexeur

• Une seule file d'attente pour plusieurs guichets

Démultiplexeur

- Dispose d'une seule entrée E
- Dispose de 2ⁿ sorties S_i (de données) Dispose de n entrées d'adresse A_i dont la valeur décimale indique l'indice de la sortie S_i à la quelle est dirigée l'entrée E.
 - Exemple: démultiplexeur à n=2 adresses A_i, une entrée E et 2ⁿ =4 sorties de données.

A l'aide des adresses A_0 , A_1 du décodeur, on ne rend transparent qu'une seule porte ET à la fois. L'entrée E est dirigée vers la sortie dont l'indice correspond à la valeur décimale de l'adresse mise en entrée Exemple: Si l'adresse est égale à 2 ($A_0=0,A_1=1$), l'entrée E est dirigée vers la sortie S_2

Transcodeur

- Fait la conversion de codes binaires
- Exemple: du code binaire pur vers le code binaire réfléchi

Table de vérité

Décimal	Binaire pure			Binaire réfléc		chi
Decimal	E ₂	Εi	Eo	S ₂	Sı	S ₀
0	0	0	0	0	0	0
I	0	0	_	0	0	Ι
2	0	-	0	0	Ι	I
3	0	-	-	0	I	0
4	I	0	0	I	I	0
5	1	0	I	I	I	Ι
6	I	I	0	I	0	I
7	I	I	I	Ī	0	0

Equation de transcodage de binaire pur en binaire réfléchi

$$S_0 = E_0 \bar{E}_1 \bar{E}_2 + \bar{E}_0 E_1 \bar{E}_2 + E_0 \bar{E}_1 E_2 + \bar{E}_0 E_1 E_2$$

$$S_1 = \bar{E}_0 E_1 \bar{E}_2 + + E_0 E_1 \bar{E}_2 + \bar{E}_0 \bar{E}_1 E_2 + E_0 \bar{E}_1 E_2$$

$$S_2 = \bar{E}_0\bar{E}_1E_2 + E_0\bar{E}_1E_2 + \bar{E}_0E_1E_2 + E_0E_1E_2$$

La simplification par les tableaux de Karnaugh

$$S_0 = E_0 \bar{E}_1 + E_1 \bar{E}_0$$

$$S_1 = \bar{E}_1 E_2 + + E_1 \bar{E}_2$$

$$S_2 = E_2$$

Le comparateur (I)

- Compare deux nombres binaires
 - Comparateur d'égalité de deux nombres A(A₁A₀) et B(B₁B₀)

. ~	$\mathbf{\Omega}$	•	•	1	, •	
S =	()	S1	10	den	tın	nes
	O		т,	4011		Lacs

S = 1	si	différents
-------	----	------------

$egin{array}{c} \mathbf{A_0}\mathbf{A_1} \\ \mathbf{B_0}\mathbf{B_1} \end{array}$	0 0	0 1	11	10
0 0	0	1	1	1
0 1	1	0	1	1
11	1	1	0	1
1 0	1	1	1	0

Les équations booléennes de sortie sont donc : $SO = \overline{A}_0B_0 + A_0\overline{B}_0 + A_1\overline{B}_1 + \overline{A}_1B_1 = A_0 \oplus B_0 + A_1 \oplus B_1$

Le comparateur (2)

Compare deux nombres binaires

• Comparateur d'égalité de deux nombres A(A₁A₀)

et
$$B(B_1B_0)$$
 $S = 1$ si identiques $S = 0$ si différents

;	Sortie	Comparaison	В		A	
	S		B_0	B_1	A_0	A_1
	1	A=B	0	0	0	0
	0	A <b< td=""><td>1</td><td>0</td><td>0</td><td>0</td></b<>	1	0	0	0
	0	A <b< td=""><td>0</td><td>1</td><td>0</td><td>0</td></b<>	0	1	0	0
	0	A <b< td=""><td>1</td><td>1</td><td>0</td><td>0</td></b<>	1	1	0	0
	0	A>B	0	0	1	0
	1	A=B	1	0	1	0
	0	A <b< td=""><td>0</td><td>1</td><td>1</td><td>0</td></b<>	0	1	1	0
	0	A <b< td=""><td>1</td><td>1</td><td>1</td><td>0</td></b<>	1	1	1	0
	0	A>B	0	0	0	1
	0	A>B	1	0	0	1
	1	A=B	0	1	0	1
	0	A <b< td=""><td>1</td><td>1</td><td>0</td><td>1</td></b<>	1	1	0	1
	0	A>B	0	0	1	1
	0	A>B	1	0	1	1
	0	A>B	0	1	1	1
	1	A D	1	1	1	1

A_0A_1 $_0B_1$	0 0	0 1	1 1	1 0
0 0	1			
0 1		1		
11			1	
10				1

Les équations booléennes de sortie sont donc :

$$S0 = \overline{A}_{1} \overline{A}_{0} \overline{B}_{1} \overline{B}_{0} + A_{1} \overline{A}_{0} B_{1} \overline{B}_{0} + A_{1} A_{0} B_{1} B_{0} + \overline{A}_{1} A_{0} \overline{B}_{1} B_{0}$$

$$S0 = \bar{A}_0 \bar{B}_0 (\bar{A}_1 \bar{B}_1 + A_1 B_1) + A_0 B_0 (\bar{A}_1 \bar{B}_1 + A_1 B_1)$$

$$S0 = (\overline{A_1}\overline{B_1} + A_1\overline{B_1})(\overline{A_0}\overline{B_0} + \overline{A_0}\overline{B_0}) = (\overline{A_1} \oplus \overline{B_1})(\overline{A_0} \oplus \overline{B_0})$$

Le comparateur (3)

• Comparateur d'égalité et d'inégalité (nombre de 1bit)

Table de vérité

В	Α	S ₀ :A <b< th=""><th>S_I:A=B</th><th>S₂:A></th></b<>	S _I :A=B	S ₂ :A>
0	0	0	-	0
0	—	0	0	I
I	0	I	0	0
I	I	0	I	0

Les équations booléennes de sortie sont donc : $S_0 = \overline{A}.B$, $S_1 = \overline{A}.\overline{B} + A.B = (\overline{A} \oplus \overline{B})$, $S_2 = A.\overline{B}$

Le comparateur (4)

- Compare deux nombres binaires de n bits
 - Comparateur d'égalité et d'inégalité (nombre de 2 bits)
 - Exemples: comparer deux nombres $A(A_1A_0)$ et $B(B_1B_0)$

Table de vérité

A		В		Sorties			Comparaison
A_1	A_0	B_1	B_0	S_0	S_1	S_2	
0	0	0	0	1	0	0	A=B
0	0	0	1	0	1	0	A <b< td=""></b<>
0	0	1	0	0	1	0	A <b< td=""></b<>
0	0	1	1	0	1	0	A <b< td=""></b<>
0	1	0	0	0	0	1	A>B
0	1	0	1	1	0	0	A=B
0	1	1	0	0	1	0	A <b< td=""></b<>
0	1	1	1	0	1	0	A <b< td=""></b<>
1	0	0	0	0	0	1	A>B
1	0	0	1	0	0	1	A>B
1	0	1	0	1	0	0	A=B
1	0	1	1	0	1	0	A <b< td=""></b<>
1	1	0	0	0	0	1	A>B
1	1	0	1	0	0	1	A>B
1	1	1	0	0	0	1	A>B
1	1	1	1	1	0	0	A=B

- •Si A=B, S₀=1 et les autres sorties sont à 0
- •Si A<B, S₁=1 et les autres sorties sont à 0
- •Si A>B, S₂=1 les autres sorties sont à 0

Circuit?

Multiplieur

• Exemple: Multiplication de deux nombres $A(A_3A_2A_1A_0)$ et $B(B_2B_1B_0)$

