Gaussian Processes for Time Series

Raphaela Azar and Sbonelo Gumede $\label{eq:July 25, 2025} \text{July 25, 2025}$

Introduction

Variable	Feature Name	Feature Description	Unit
NO_2	Nitrogen dioxide	A harmful gas from vehicles and industry.	$\mu \mathrm{g/m^3}$
PM_{10}	Particulate matter 10	Small inhalable dust particles.	$\mu \mathrm{g/m^3}$
SO_2	Sulphur dioxide	Mainly from burning fossil fuels.	$\mu \mathrm{g/m^3}$
Direction	Wind direction	Indicates where the wind is coming from.	Degrees (0–360°)
Speed	Wind speed	How fast the wind is moving.	m/s

Table 1: Description of variables used in the analysis.

Exploratory Data Analysis

Figure 1: Correlation plot of the variables.

(a) Histogram of PM_{10} .

(b) Histogram of SO₂.

(c) Histogram of Direction.

(d) Histogram of Speed.

(a) Scatter plot of NO_2 .

(b) Histogram of NO_2 .

Let $Y := \text{NO}_2$ levels in the atmosphere. Notice that $Y \not\sim \mathcal{N}(\mu, \sigma)$ but $\log(Y) \dot\sim \mathcal{N}(\mu, \sigma)$. Our Gaussian process is of the form $h(x) \sim \mathcal{N}(f(x), g(x)), x \in \mathbb{R}$. The resultant covariance matrix of g(x) must be positive semi-definite. Thus g(x) must be chosen appropriately. The proposed model for the mean function is $f(x) = \alpha + x^T \beta$.

References

 $1.\ https://www.lung.org/clean-air/outdoors/what-makes-air-unhealthy/nitrogen-dioxide$