Basics of Radio Astronomy

Lisa Young (NMT)

Sixteenth Synthesis Imaging Workshop 16-23 May 2018

Essential Radio
Astronomy
Condon & Ransom

Princeton University Press, 2016

https://science.nrao.edu/opportunities/courses/era/

ALMA (NRAO/ESO/NAOJ); C. Brogan, B.

Q1. What are we looking at?

B. Saxton, W. Cotton and R. Perley (NRAO/AUI/NSF)

Saxton (NRAO/AUI/NSF)

Q2. How did you make these images?

Q1. What are we looking at? check the spectrum

B. Saxton, W. Cotton and R. Perley (NRAO/AUI/NSF)

Saxton (NRAO/AUI/NSF)

Opacity of the Atmosphere (solid line is altitude at which transmission is reduced by factor of 2)

Black body emission has a characteristic shape.

$$B(\nu,T) = B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/k_BT} - 1}$$

$$\approx \nu^2 \text{ at low } \nu,$$

$$\sim v^2 \text{$$

Modified black bodies (here scaled $_{10^{-10}}$ by v^1 and v^2) are currently popular for cool dust that is not completely optically thick, so composition and grain size matter. $cm^{-2} Hz^{-1}$ 10^{-13} check your slopes! 10^{-14} 10^{-15} 10^{-16} or see Draine & Li 2007 10^{-17} 10¹² 1011 10⁹ 10⁸ 10¹⁰ 10^{13} 1014 frequency (Hz)

Modified black bodies (here scaled

Bremsstrahlung (a.k.a. free-free) emission

optically thin, thermal emission from ionized gas: HII regions etc.

good for estimating density & temperature of ionized gas

- counting ionizing photons
- inferring star formation rate

$$j_{f\!f}(\nu) = \frac{8}{3} \left(\frac{2\pi}{3}\right)^{1/2} \frac{e^6}{m_e^{3/2}c^3} \frac{n_e n_i}{(k_B T)^{1/2}} g_{f\!f}(\nu,T) e^{-h\nu/k_B T}$$
 emission coefficient (e.g. erg s⁻¹ cm⁻³ Hz⁻¹ ster⁻¹)

$$j_{f\!f}(\nu) = \frac{8}{3} \left(\frac{2\pi}{3}\right)^{1/2} \frac{e^6}{m_e^{3/2}c^3} \frac{n_e n_i}{(k_B T)^{1/2}} g_{f\!f}(\nu, T) e^{-h\nu/k_B T} + \text{radiative transfer}$$

$$j_{f\!f}(\nu) = \frac{8}{3} \left(\frac{2\pi}{3}\right)^{1/2} \frac{e^6}{m_e^{3/2}c^3} \frac{n_e n_i}{(k_B T)^{1/2}} g_{f\!f}(\nu, T) e^{-h\nu/k_B T} + \text{radiative transfer}$$

Orion Nebula 8.4 GHz Dicker et al 2009

HST optical

Synchrotron emission

nonthermal (usu: relativistic) electrons in a B field can get particle energies, n and B

 $f(E) = f_o E^{-s}$ power law distribution of electron energies

$j_{sy}(\nu) \propto P_o \, B^{(s+1)/2} \, f_o \, \nu^{-(s-1)/2} \, + \, {\rm radiative \ transfer}$

$j_{sy}(\nu) \propto P_o \, B^{(s+1)/2} \, f_o \, \nu^{-(s-1)/2} \, + \, {\rm radiative \ transfer}$

$j_{sy}(\nu) \propto P_o \, B^{(s+1)/2} \, f_o \, \nu^{-(s-1)/2} \, + \, {\rm radiative \ transfer}$

synchrotron from active galaxy Her A, $\nu \sim 6.5~\mathrm{GHz}$

B. Saxton, W. Cotton and R. Perley (NRAO/AUI/NSF)

Synchrotron emission is polarized! Gives info on B field.

Mulcahy et al 2017; NGC 628, VLA @ 3 GHz

5 GHz

mostly
synchrotron
from
moderate-z
active
galaxies

Real objects often have a combination of many kinds of emission.

Peel et al 2011

Digression - some definitions that we think are important

physical T

excitation T_{ex}

receiver Trec

system T_{sys}

antenna T_A

brightness T_B

$$B(
u,T) = B_{
u}(T) = rac{2h
u^3}{c^2} rac{1}{e^{h
u/k_BT} - 1}$$

Planck function

Maxwell-Boltzmann velocity dist.

$$f(v) = 4\pi n \left(\frac{m}{2\pi k_B T}\right)^{3/2} v^2 e^{-mv^2/2k_B T}$$

physical T

excitation T_{ex}

receiver Trec

system T_{sys}

antenna T_A

brightness T_B

$$n_2/n_1 = (g_2/g_1)e^{-h\nu_o/KT_{\rm ex}}$$

This one describes the relative populations of two energy levels, in a collection of atoms/molecules/ions.

T_{ex} may or may not be equal to T, depending on how well-behaved your particles are.

physical T

excitation T_{ex}

receiver Trec

system T_{sys}

antenna T_A

brightness T_B

$$B_{
u}(T) \simeq rac{2
u^2}{c^2} k_B T$$
 when $h
u \ll k_B T$

Thus: we define T_B as a scaled version of the specific intensity.

$$I_{\nu} = 2\frac{\nu^2}{c^2} k_B T_B$$

thermal rad, τ < 1, low ν : T_B < T

nonthermal rad: T_B can do whatever it wants since T is not meaningful

physical T

excitation T_{ex}

receiver Trec

system T_{sys}

antenna T_A

brightness T_B

kT_A is the power delivered by a thermal source at the input of the receiver (e.g. if you replaced the whole antenna/dish with a resistor).

So T_A is a measure of how bright your source is & how it couples to your telescope beam. $T_A < T_B$ because of efficiency of telescope.

tricky units note: $J = W Hz^{-1}$ erg = erg s⁻¹ Hz⁻¹

physical T

excitation T_{ex}

receiver T_{rec}

system T_{sys}

antenna T_A

brightness T_B

These quantify the noise that will be contributed to your measurement by emission from the receiver, dish, atmosphere, etc.

Generally want them to be as small as possible.

At high frequencies T_{sys} is strongly weather-dependent.

physical T

excitation T_{ex}

receiver Trec

system T_{sys}

antenna T_A

brightness T_B

system temperature is particularly important because

$$\Delta T_{
m RMS} = rac{T_{
m sys}}{\sqrt{\Delta
u \, au}}$$

rms temperature fluctuations in your measurement scale with T_{sys}.

Increasing bandwidth (Δv) and integration time (τ) helps.

HL Tau, $v \sim 290$ GHz, $\lambda \sim 1$ mm, resolution ~ 0.03 "

B. Saxton, W. Cotton and R. Perley (NRAO/AUI/NSF)

ALMA (NRAO/ESO/NAOJ); C. Brogan, B. Saxton (NRAO/AUI/NSF)

Her A, $\nu \sim 6.5$ GHz, $\lambda \sim 5$ cm, resolution ~ 0.5 "

Diffraction theory: this telescope (by itself) has a resolution $\sim \lambda/D$ radians.

How can we do better than that?

with an interferometer.

an adding interferometer (e.g. Michelson-Morley expt)

Leonardo Motta, scienceworld.wolfram.com

Interferometer theory, very loosely.

correlation* of E field at Earth = FT of brightness distribution of the sky.

J2000 Right Ascension

Other good books

"What am I looking at?"

Rybicki & Lightman Radiative Processes in Astrophysics Longair High Energy Astrophysics

"How did you make those images?"
Rohlfs & Wilson Tools of Radio Astronomy
Thompson, Moran & Swenson Interferometry & Synthesis in Radio Astronomy

