... NPDAs continued

Pushing Strings

Example:

$$\underbrace{q_1}^{a, b \to cdf} q_2$$

Another NPDA example

NPDA M

$$L(M) = \{w: n_a = n_b\}$$

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \lambda$ $b, 0 \rightarrow \lambda$

$$\lambda, \$ \rightarrow \$$$

$$q_1 \qquad \lambda, \$ \rightarrow \$$$

Execution Example: Time 0

Input

$$a, \$ \to 0\$$$
 $b, \$ \to 1\$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

current

state

$$\lambda$$
, \$ \rightarrow \$

\$

Stack

Input

- $a, \$ \rightarrow 0\$$
 - $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 - $a, 1 \rightarrow \lambda$

- $b, \$ \rightarrow 1\$$
- $b, 0 \rightarrow \lambda$

$$\lambda$$
, \$ \rightarrow \$

Stack

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$a, 1 \rightarrow \lambda$$
 $b, 0 \rightarrow \lambda$

$$(a, 1 \rightarrow \lambda)$$
 $b, 0 \rightarrow \lambda$

Stack

Input

Stack

$$a, \$ \rightarrow 0\$$$

$$b, \$ \to 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$a, 1 \rightarrow \lambda$$

$$b, 0 \rightarrow \lambda$$

$$\lambda$$
, \$ \rightarrow \$

Formalities for NPDAs

$$q_1$$
 $a, b \rightarrow w$ q_2

Transition function:

$$\delta(q_1, a, b) = \{(q_2, w)\}$$

Transition function:

$$\delta(q_1,a,b) = \{(q_2,w), (q_3,w)\}$$

Formal Definition

Non-Deterministic Pushdown Automaton NPDA

Instantaneous Description

Example:

Instantaneous Description

Example:

Instantaneous Description

 $(q_2,bb,aa\$)$

Time 5:

Input

Stack

 $a, \lambda \rightarrow a$ $b, a \rightarrow \lambda$ $\lambda \downarrow q_1 \qquad b, a \rightarrow \lambda \downarrow q_2 \qquad \lambda,$

 $\sqrt{q_3}$

We write:

```
(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)
```

Time 4

Time 5

A computation:

$$(q_0, aaabbb,\$) \succ (q_1, aaabbb,\$) \succ$$

 $(q_1, aabbb, a\$) \succ (q_1, abbb, aa\$) \succ (q_1, bbb, aaa\$) \succ$
 $(q_2, bb, aa\$) \succ (q_2, b, a\$) \succ (q_2, \lambda,\$) \succ (q_3, \lambda,\$)$

$$(q_0, aaabbb,\$) \succ (q_1, aaabbb,\$) \succ$$

 $(q_1, aabbb, a\$) \succ (q_1, abbb, aa\$) \succ (q_1, bbb, aaa\$) \succ$
 $(q_2, bb, aa\$) \succ (q_2, b, a\$) \succ (q_2, \lambda,\$) \succ (q_3, \lambda,\$)$

For convenience we write:

 $(q_0, aaabbb,\$) \succ (q_3, \lambda,\$)$ for the reflexive, transitive closure

Formal Definition

Language of NPDA M:

$$L(M) = \{w \colon (q_0, w, s) \succ (q_f, \lambda, s')\}$$
Initial state

Final state

Example:

$$(q_0, aaabbb,\$) \succ (q_3, \lambda,\$)$$

 $aaabbb \in L(M)$

NPDA M:

NPDA M:

Therefore:
$$L(M) = \{a^n b^n : n \ge 0\}$$

NPDA M:

NPDAs Accept Context-Free Languages

Theorem:

Context-Free
Languages
Accepted by
(Grammars)
NPDAs

Proof - Step 1:

```
Context-Free
Languages
Languages
(Grammars)

Languages
Accepted by
NPDAs
```

Convert any context-free grammar G to a NPDA M with: L(G) = L(M)

Proof - Step 2:

```
Context-Free
Languages
Accepted by
NPDAs
```

Convert any NPDA M to a context-free grammar G with: L(G) = L(M)

Converting Context-Free Grammars to NPDAs

An example grammar:
$$S \rightarrow aSTb$$

$$S \rightarrow aSTb$$

$$S \rightarrow b$$

$$T \rightarrow Ta$$

$$T \rightarrow \lambda$$

What is the equivalent NPDA?

Grammar:

$$S \rightarrow aSTb$$

$$S \rightarrow b$$

NPDA:

$$T \rightarrow Ta$$

$$T \rightarrow \lambda$$

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$
 $a, a \rightarrow \lambda$

$$\lambda, T \to \lambda$$
 $b, b \to \lambda$

 $\rightarrow (q_0)$ $\lambda, \lambda \rightarrow S$

$$(q_1)$$
 $\lambda, \$ \rightarrow \$$

The NPDA simulates leftmost derivations of the grammar

$$L(Grammar) = L(NPDA)$$

$$S \rightarrow aSTb$$

$$S \rightarrow b$$

$$T \rightarrow Ta$$

$$T \rightarrow \lambda$$

A leftmost derivation:

$$S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab \Rightarrow abab$$

NPDA execution: Time 0

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

 $\lambda, T \rightarrow \lambda$

$$\lambda, T \rightarrow Ta$$
 $a, a \rightarrow \lambda$

current state

$$\lambda, \lambda \rightarrow S$$

 $b, b \rightarrow \lambda$

Stack

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda$$
, $S \rightarrow b$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

 $a, a \rightarrow \lambda$

Stack

$$\lambda, \lambda \rightarrow S$$

$$\lambda, \$ \rightarrow \$$$

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

 $\lambda, \lambda \rightarrow S$

$$a, a \rightarrow \lambda$$

$$\lambda$$
, $S \rightarrow aSTb$

$$\lambda, S \rightarrow b$$

$$\lambda, T \rightarrow Ta$$

$$\lambda, T \rightarrow \lambda$$

$$\frac{T}{1}$$

Stack

$$b, b \rightarrow \lambda$$

 $a, a \rightarrow \lambda$

$$\lambda, \$ \rightarrow \$$$

In general:

Given any grammar G

We can construct a NPDA M

With
$$L(G) = L(M)$$

Constructing NPDA M from grammar G:

For any production For any terminal $\lambda, A \rightarrow W$ $a, a \rightarrow \lambda$

Grammar G generates string w

if and only if

NPDA M accepts W

$$L(G) = L(M)$$

Therefore:

For any context-free language there is an NPDA that accepts the same language

Converting NPDAs to Context-Free Grammars

For any NPDA M

we will construct

a context-free grammar G with

$$L(M) = L(G)$$

Intuition: The grammar simulates the machine

A derivation in Grammar G:

$$S \Rightarrow \cdots \Rightarrow abc \dots ABC \dots \Rightarrow abc \dots$$

Current configuration in NPDA $\,M\,$

A derivation in Grammar G:

terminals variables
$$S \Rightarrow \cdots \Rightarrow abc \dots ABC \dots \Rightarrow \cdots \Rightarrow abc \dots$$

Input processed

Stack contents

in NPDA M

Some Necessary Modifications

First, we modify the NPDA:

- It has a single final state q_f
- It empties the stack
 when it accepts the input

Second, we modify the NPDA transitions:

all transitions will have form

$$\begin{array}{c}
 q_i & a, B \to \lambda \\
 or
\end{array}$$

$$\begin{array}{c}
 q_j \\
 q_i & a, B \to CD \\
 \hline
 q_i
\end{array}$$

$$B, C, D$$
: stack symbols

Example of a NPDA in correct form:

$$L(M) = \{w: n_a = n_b\}$$

\$:initial stack symbol

The Grammar Construction

In grammar G:

Variables: $(q_i B q_j)$ states

Terminals:
Input symbols of NPDA

For each transition

$$\underbrace{q_i} \xrightarrow{a, B \to \lambda} \underbrace{q_j}$$

We add production

$$(q_i B q_j) \rightarrow a$$

For each transition

$$(q_i)$$
 $a, B \rightarrow CD$ (q_j)

We add production $(q_i B q_k) \rightarrow a(q_j C q_l)(q_l D q_k)$

For all states q_k, q_l

Stack bottom symbol $(q_o \$q_f)$ Start Variable: Start state final state

Example:

Grammar production:
$$(q_01q_0) \rightarrow a$$

Example:

Grammar productions:

$$(q_0 \$ q_0) \to b(q_0 1 q_0)(q_0 \$ q_0) | b(q_0 1 q_f)(q_f \$ q_0)$$

 $(q_0 \$ q_f) \to b(q_0 1 q_0)(q_0 \$ q_f) | b(q_0 1 q_f)(q_f \$ q_f)$

Example:

Grammar production: $(q_0 \$q_f) \rightarrow \lambda$

Resulting Grammar: $(q_0 \$q_f)$: start variable

$$(q_0 \$ q_0) \rightarrow b(q_0 1 q_0)(q_0 \$ q_0) | b(q_0 1 q_f)(q_f \$ q_0)$$

$$(q_0 \$ q_f) \rightarrow b(q_0 1 q_0)(q_0 \$ q_f) | b(q_0 1 q_f)(q_f \$ q_f)$$

$$(q_0 1 q_0) \rightarrow b(q_0 1 q_0)(q_0 1 q_0) | b(q_0 1 q_f)(q_f 1 q_0)$$

$$(q_0 1 q_f) \rightarrow b(q_0 1 q_0)(q_0 1 q_f) | b(q_0 1 q_f)(q_f 1 q_f)$$

$$(q_0 \$ q_0) \rightarrow a(q_0 0 q_0)(q_0 \$ q_0) | a(q_0 0 q_f)(q_f \$ q_0)$$

$$(q_0 \$ q_f) \rightarrow a(q_0 0 q_0)(q_0 \$ q_f) | a(q_0 0 q_f)(q_f \$ q_f)$$

$$(q_0 0 q_0) \rightarrow a(q_0 0 q_0)(q_0 0 q_0) | a(q_0 0 q_f)(q_f 0 q_0)$$

 $(q_0 0 q_f) \rightarrow a(q_0 0 q_0)(q_0 0 q_f) | a(q_0 0 q_f)(q_f 0 q_f)$

$$(q_0 1 q_0) \rightarrow a$$
$$(q_0 0 q_0) \rightarrow b$$

$$(q_0 \$ q_f) \rightarrow \lambda$$

Derivation of string abba

$$(q_0 \$ q_f) \Rightarrow a(q_0 0 q_0)(q_0 \$ q_f) \Rightarrow$$
 $ab(q_0 \$ q_f) \Rightarrow$
 $ab(q_0 1 q_0)(q_0 \$ q_f) \Rightarrow$
 $abba(q_0 1 q_0) \Rightarrow$
 $abba(q_0 1 q_0) \Rightarrow$

In general, in Grammar:

$$(q_0 \$ q_f) \Longrightarrow w$$

if and only if

W is accepted by the NPDA

Explanation:

By construction of Grammar:

$$(q_i A q_j) \Rightarrow w$$

if and only if

in the NPDA going from q_i to q_j the stack doesn't change below A and A is removed from stack