(9) BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift _® DE 43 25 699 A 1

(5) Int. Cl.8: C 12 N 15/62

C 12 N 5/16 C 12 Q 1/02 // C12N 15/56,15/12

DEUTSCHES

Aktenzeichen: Anmeldetag:

P 43 25 699.6 30. 7.93

Offenlegungstag:

2. 2.95

PATENTAMT

(71) Anmelder:

Berns, Hartmut, 44627 Herne, DE

(74) Vertreter:

Herrmann-Trentepohl, W., Dipl.-Ing., 44623 Herne; Kirschner, K., Dipl.-Phys.; Grosse, W., Dipl.-Ing.; Bockhorni, J., Dipl.-ing., 81476 München; Thiel, C., Dipl.-Chem. Dr.rer.not., Pot. Anwälte, 44623 Herne (72) Erfinder:

Berns, Hartmut, 44627 Herne, DE; Heumann, Rolf, Prof. Dr., 44801 Bochum, DE

(54) Rekombinantes DNA-Konstrukt

Rekombiniertes, neuronalspezifisch aktiviertes, transkribierbares, lineares DNA-Konstrukt mit einem neuronalspezifischen DNA-Kontrollelement zur Transcriptionsinitiation eines in 3'-Richtung stromabwärts befindlichen Strukturgens; einem transkribierbaren, eukaryotischen Struktur-On-kogen, das in 3'-Richtung stromabwärts zum neuronalspezifischen DNA-Kontrollelement eingefügt ist, und ggf. einem in 3'-Richtung stromabwärts des Strukturgens eingefügten Konstrukt, bestehend aus einem transkribierbaren Reportergen, gekoppelt mit einem in 5'-Richtung stromaufwärts eingefügten DNA Fragment, das für eine interne Ribosomenbindungsstelle (IRES) kodiert.

Beschreibung

Die Erfindung betrifft ein rekombiniertes DNA-Konstrukt und insbesondere ein neuronalspezifisch aktiviertes, transkribierbares DNA-Konstrukt, neuronale Zellen, die ein solches Konstrukt enthalten sowie die Verwendung dieses Konstrukts und solcher Zellen zum Testen von Wirkstoffen.

Die Herstellung eines rekombinierten, heterologen DNA-Fragments zur Einbringung in das Genom eines 10 prokaryontischen und auch eukaryontischen Organismus unter Produktion von Transgenizität ist bekannt.

So beschreibt beispielsweise EP-OS 0 169 672 ein Verfahren zur Produktion eines transgenen, nichthumanen Säugetiers mit erhöhter Wahrscheinlichkeit der 15 Entwicklung von Neoplasmen durch chromosomatische Einbringung einer aktivierten Onkogensequenz in das Genom eines nichthumanen Säugetiers.

Die Erforschung von Nervenzellen war der Untersuchung mit DNA-Rekombinationsverfahren und ande- 20 ren molekulargenetischen Verfahren bisher nur eingeschränkt zugänglich. So beschränkten sich die Untersuchungen auf nur wenige Typen neuronaler Zellen, die kultiviert werden konnten. Biologische Effekte, die man an kultivierten Zellen beobachtet, sind jedoch zu relati- 25 vieren, da die Untersuchungsobjekte aus ihrer natürlichen Umgebung entfernt wurden und z. B. für Faktoren. die dort vom umliegenden Gewebe auf sie einwirken konnten, nicht mehr zugänglich sind. Somit besteht immer die Notwendigkeit, diese in vitro beobachteten Ef- 30 fekte in vivo zu verifizieren.

Das besondere Problem der Einbringung eines rekombinanten, ein Strukturgen enthaltenden DNA-Fragmentes in das Genom eines eukaryotischen Organismus zur Untersuchung seiner Wirkung auf Nervenzellen besteht darin, daß die Expression des Proteinprodukts des Strukturgens möglichst spezifisch zu erfolgen hat, so daß hiervon nur Nervenzellen betroffen werden. Diese hochspezifische Kontrolle der Expression von DNA-Genprodukten in Nervenzellen war nach dem Stand der 40 dung manifestiert. Technik bisher weder qualitativ noch quantitativ zufriedenstellend.

Ein weiteres Problem bei der Erforschung der Genexpression in Nervenzellen besteht darin, daß die Mechanismen der Genexpression im Nervensystem besonders 45 komplex sind, da dieses aus vielen Unterarten von neuronalen Zellen besteht, die während ihrer Entwicklung und ihrer Differenzierung komplizierte Wechselwirkungen eingehen. Man vermutet dabei, daß Änderungen der Expressionsrate einiger neuronaler Gene mit der 50 Informationsverarbeitung und -speicherung des Nervensystems zusammenhängen.

In neuronalen Zellen spielen die Ras-Proteine eine zentrale Rolle. Sie sind in der Lage Guanosintriphosphat (GTP) zu binden. Gebundenes GTP kann 55 dann durch GTPase-Aktivitäten zu Guanosindiphosphat (GDP) und anorganischem Phosphat (Pi) hydrolysiert werden. GDP kann im Anschluß durch einen Austauschfaktor vom Ras-Protein getrennt und wieder gegen GTP ausgetauscht werden. Durch die intrazellu- 60 nante Gene exprimierten Proteinen durch Kopplung läre Feinabstimmung der GTPase-Aktivitäten und des Austauschfaktors wird das Verhältnis von Ras/GTP zu Ras/GDP in der Zelle exakt reguliert.

Ras/GTP kann als aktiviertes Ras im Gegensatz zu

pine administration submitted them a collinguistic and a common segment of any properties.

cormaierweise absterben wurde, eit. Überlebenssigna-

(neurotrophes Signal) weiterleiten, das Neuronen am Absterben hindert Dieses Überlebenssignal wird von außen an das Neuron durch neurotrophe Faktoren (z. B. NGF = Nerve Growth Faktor) herangetragen und über Thyrosinkinase-Rezeptoren durch die Zellmembran ins Zellinnere von neuronalen Zellen weitergeleitet. Hier stimuliert es den Austauschfaktor und erhöht damit der Ras/GTP-Anteil, wodurch das neurotrophe Signal weitergeleitet wird.

Insbesondere bei der Untersuchung des Einflusses von aktiviertem Ras-Protein auf Nervenzellen wurde nicht mit ras-DNA, sondern mit Ras-Protein gearbeitet, das von außen nur in einen Bruchteil der Neuronen einzubringen war. Bisher war es nicht möglich, eine Population von Neuronen zu erzeugen, die das aktive ras-Strukturgen homogen in ihrem Genom integriert haben und dieses konstitutiv exprimieren.

Bei der Untersuchung der Wirkung von aktiviertem Ras-Protein auf verschiedene Zelltypen wurde ferner festgestellt, daß dieses zusammen mit anderen Induktoren viele nichtneuronale Zellen zur Transformation und damit zur unkontrollierten Proliferation anregen kann. Dies wäre bei stabiler genomischer ras-DNA-Integration für das heranwachsende Tier lethal, so daß die neuronale Spezifität der Ras-Expression für das Überleben eines transgenen Tieres, wie vorstehend erwähnt, essentiell ist.

Da exprimierte Ras-Proteine, wie vorstehend angedeutet, auch eine wichtige Rolle bei der Tumorentwicklung spielen, wurde ihre Entstehung und insbesondere die sie exprimierenden ras-Gene intensiv untersucht. So wurde beispielsweise gefunden, daß der Austausch einer einzigen Base in den ras-Genen von Harvey-(v-Ha-ras) und Kirsten (v-Ki-ras)-Sarcoma-Virus zu einem Aminosäureaustausch im vom ras-Gen exprimierten Ras-Protein führt (D.J.Capon et. al., Nature, Vol. 302, S. 33-37, (1983)). Die so mutierten Produkte führen schließlich zur Zelltransformation und damit zur unkontrollierten Proliferation dieser Zellen, wodurch sich die Tumorbil-

Zur Erforschung der Expressionsspezifität in Nervenzellen wurde das das ubiquitäre neuronale Protein Synapsin I kodierende Gen untersucht. Da regulatorische DNA-Sequenzen, die transkriptionale Kontrolle bewirken, oft in den 5'-flankierenden Regionen von Genen gefunden werden, wurden unter Verwendung von klonierter Synapsin I-cDNA (M.W. Kilimann und L.J. De-Gennaro, EMBO J., Vol. 4, S. 1997 bis 2002 (1985)) 5'-flankierende Regionen der Synapsin I-Gene von Ratte und Mensch isoliert, deren Nukleotidsequenzen bestimmt, diese einer Restriktionsanalyse unterzogen und so der Ort des Transkriptionsstarts kartiert. Der so von A. Sauerwald et al. gefundene Synapsin I-Promotor (A. Sauerwald et al, J. Biol. Chem., Vol. 265, Nr. 25, S. 14932-14937 (1990)) ermöglicht eine rein neuronale Expression, die sämtliche anderen, verschiedenen Zelltypen eines Säugetieres ausschließt.

Es ist aus dem Stand der Technik bekannt, die Expressionsrate bzw. den Expressionsort von durch rekombides rekombinanten DNA-Fragmentes mit einem Reportergen zu bestimmen. Dabei wird das rekombinante DNA-Fragment mit dem Reportergen so kombiniert, daß dessen Produkt zusammen mit dem Produkt des o de correce dos rekombinantes DNA Fragmentes k

mana prokaryontisches anazini vessen estivita the substratspezhische Reaktion aus iosi, die die Kopp

lung von zu untersuchendem Protein und dem Protein des Reportergens sichtbar macht. Beispielsweise läßt sich das für das prokaryontische Enzym β-Galaktosidase kodierende lacZ-Gen aus E.coli mit einem je nach Untersuchungsziel aufgebauten rekombinanten DNA-Fragment kombinieren. Bietet man dem exprimierten Enzym, das am Beginn der Metabolisierung vom Laktose steht, unter definierten Bedingungen ein bestimmtes synthetisches Farbstoffvorläufermolekül (X-Gal) an, so wird dieses zu einem blauen Farbstoff umgesetzt. Diese 10 Blaufärbung zeigt also gleichzeitig die Expression des mit der β-Galaktosidase gekoppelten, zu untersuchenden Proteinprodukts des auf dem rekombinanten DNA-Fragment befindlichen Strukturgens an (A. Kalnins et al., EMBO J. Vol. 2, No. 4,593 (1983)). Durch die Koexi- 15 stenz von Struktur- und Reportergen auf ein und demselben Transkript, ermöglicht durch die Ribosomenbindungsstelle, ist eine maximale Koexpression möglich.

Jedoch war es bisher nicht möglich, heterologe DNA herzustellen, in der ein beliebiges DNA-Strukturgen unter Kontrolle eines geeigneten Promotors neuronalspezifisch transkribiert und dessen Proteinprodukt in vivo konstitutiv exprimiert wird. Dabei wäre insbesondere die Kombination eines neuronalspezifischen Promotors mit einem Struktur-Onkogen nützlich, die bei der Erforschung des Mechanismus und der Beeinflussung neurodegenerativer Erkrankungen helfen könnte.

Es ist daher Aufgabe der Erfindung ein neuronalspezifisch aktiviertes DNA-Konstrukt mit transkribierbarer Sequenz eines Strukturonkogens zur Einbringung in das Genom eines nichthumanen Säugetieres zur Verfügung zu stellen.

Erfindungsgemäß wird diese Aufgabe mit einem DNA-Konstrukt gelöst, das ein neuronalspezifisches DNA-Kontrollelement zur Transkriptionsinitiation eines in 3'-Richtung stromabwärts befindlichen Strukturgens, ein transkribierbares, eukaryotisches Struktur-Onkogen, das in 3'-Richtung stromabwärts zum neuronalspezifischen DNA-Kontrollelement eingefügt ist, und ggf. ein in 3'-Richtung stromabwärts des Strukturgens eingefügtes Konstrukt, bestehend aus einem transkribierbaren Reportergen, gekoppelt mit einem in 5'-Richtung stromaufwärts eingefügten DNA-Fragment, das für eine interne Ribosomenbindungsstelle (IRES) kodiert, aufweist.

Besonders bevorzugt weist dieses Konstrukt den Synapsin I-Promotors der Ratte (nachstehend als "synp" bezeichnet) als hochspezifisches Werkzeug zur rein neuronalen Expression eines unter seiner Kontrolle stehenden, in 3'-Richtung stromabwärts befindlichen 50 DNA-Strukturgens,

das komplette, genomische v-Ha-ras Strukturgen des Menschen (nachstehend mit "ras" bezeichnet) in 3'-Richtung strombabwärts des synp-Promotors,

ein Reportergen, vorzugsweise das bekannte lacZ-Gen, 55 mit dem der Nachweis der Expression von aktiven Ras-Protein ermöglicht wird, wobei dem Reportergen in 5'-Richtung stromaufwärts ein Gen für die interne Ribosomenbindungsstelle (IRES) vorgeschaltet ist, auf.

Es versteht sich, daß unter den erfindungsgemäß verwandten Begriffen Promotor, Kontrollelement, Struktur-Onkogen, Reportergen und DNA-Konstrukt und Fragment sowohl die vollständigen Sequenzen, wie sie

vom ras-Strukturgen kodierte Ras-Protein durch die rein neuronale Kontrolle des synp-Promotors ausschließlich in neuronalen Zellen exprimiert werden. Ferner wird die vom lacZ-Gen kodierte β-Galaktosidase durch Einwirkung der IRES koexprimiert, so daß durch β-Galaktosidase-Aktivität und der damit verbundenen Farbreaktion diejenigen neuronalen Populationen, in denen aktives Ras-Protein exprimiert wird, identifiziert werden können.

Der synp-Promotor bictet also den Vorteil, die Wirkung eines beliebigen Proteins auf Nervenzellen zu untersuchen. Da die Expression des Proteins somit hochspezifisch nur in Nervenzellen durchgeführt wird, ist es möglich, eine Population von Neuronen zu erzeugen, die homogen in ihrem Genom das aktive ras-Strukturgen integriert haben und dieses konstitutiv exprimieren. Diese Expression geschieht unabhängig vom Typ der neuronalen Zellen, was nach dem Stand der Technik bisher unmöglich war.

Anstelle des synp-Promotors der Ratte können naturgemäß auch andere neuronalspezifische Promotoren oder Kontrollelemente verwandt werden, insbesondere auch synp-Promotoren des Menschen und andere Säugetiere, beispielsweise der Maus.

Das ras-Struktur-Onkogen kodiert für aktives Ras-Protein. Es enthält im 12. Triplett gegenüber dem Wildtypgen eine G-T-Punktmutation, die auf Aminosäureebene einen Glycin-Valin-Austausch bedingt. Dies hat zur Folge, daß die Tertiärkonformation des Proteins in der aktiven, GTP-gebundenen Form eingefroren wird, so daß GTP nicht mehr hydrolysierbar ist und so permanent ein neurotrophes Signal unabhängig von der Aktivierung des Austauschfaktors weitergeleitet wird.

Dies bietet erfindungsgemäß den Vorteil, daß neuronale Populationen, deren neurotrophe Faktoren ihr Überlebenssignal über Ras/GTP weiterleiten, somit von diesen Faktoren unabhängig sind, wenn in ihnen aktives Ras-Protein exprimiert wird. In diesen Populationen findet demzufolge während des ontogenetischen Zeitraumes ihrer Abhängigkeit von neurotrophen Faktoren kein neuronaler Zelltod statt.

Alternativ können andere Onkogene verwandt werden, deren Proteine eine Rolle in neuronalen Zellen spielen. Insbesondere sind dies andere ras-Onkogene, wie N-ras oder Ki-ras in allen ihren Varianten sowie Naras in seinen von der Val 12-Variante abweichenden Varianten, beispielsweise mit einer Abweichung im 50. Triplett.

Durch die Integration des Konstruktes in das Genom der befruchteten Eizelle des werdenden Tieres ist gewährleistet, daß in sämtlichen Neuronen aller Populationen sowohl des zentralen, als auch des peripheren Nervensystems des erwachsenen Tieres das Konstrukt vorhanden ist und exprimiert wird, da es an die Genome aller Körperzellen mitotisch weitergegeben wird. Damit stehen im adulten Tier sämtliche neuronalen Subtypen zur Erforschung der Wirkung von aktivem Ras-Protein zur Verfügung.

Ein weiterer Vorteil besteht darin, daß die beobachteten Effekte durch das Einbringen in das Genom eines nichthumanen Säugetieres in vivo verifiziert werden können, so daß Ergebnisse erhalten werden, die für einen ganzheitlichen Organismus gültig sind, wodurch die Bereirstellung des erfindungsgemäßen DNA-Fragments

Durch diese Konstruktion kann inspesolidere da

 möglich ist, die Expression von Ras-Protein sowohl vom Ort als auch von ihrer Stärke abzuschätzen, in dem man sie mit der Signalintensität der durch das Reportermolekül ausgelösten Farbreaktion korreliert. Hierdurch wird wesentlich die Auswahl einer bestimmten transgenen Linie oder bestimmter neuronaler Strukturen mit erhöhter Überlebensfähigkeit, die man auf Ras-Effekte hin untersuchen will, erleichtert.

Die Erfindung wird durch die folgende eingehende Beschreibung mit Bezug auf die folgenden Figuren 10 deutlicher.

Fig. 1 zeigt schematisch die Klonierungsstrategie zur Herstellung des erfindungsgemäßen DNA-Konstrukts.

Fig. 2 zeigt maßstabgerecht den Anteil der DNA-Elemente am Gesamthaushalt einschließlich einer Ein- 15 gangssequenz von 2,9 kpb. Die Eingangssequenz ist ohne Bedeutung für die Aktivität und Spezifität des Promotors an sich, kann aber einen Einfluß auf das Ausmaß der Aktivität haben.

Ben DNA-Konstrukts.

Nach einer Ausführungsform der Erfindung wird nun das Verfahren zur Herstellung des erfindungsgemäßen DNA-Fragmentes mit Bezug auf Fig. 1 beschrieben.

Zur Herstellung wurden fünf verschiedene Vektoren 25

1. pBluescript SK - mit der Insertion des Synapsin 1-Promotors der Ratte in 5'-3'-Richtung zwischen den SaII- und BamH1-Stellen (ohne Synapsin- 30 Startkodon) = SK -- syp (Dr. M. W. Kilimann, Inst. f. Physiol. Chemie, Ruhr-Universität Bochum, Deutschland).

2. pBluescript SK - mit der Insertion des kompletten genomischen v-Ha-ras-Strukturgens des Men- 35 schen in der BamH1-Stelle = SK -- ras (R. Jaggi, Inselspital Bern, Schweiz).

3. pBluescript $SK^+ = SK^+$

4. pBR322 (Fa. Stratagene, Heidelberg).

5. p1726, das das IRES des Enzephalomyokarditis- 40 virus und das hierzu richtig orientierte komplette lacZ-Strukturgen von E.coli enthält (J. Majors, Washington Univ. School of Medicine, St. Louis, Miss. USA).

Zur Erzeugung des in Fig. 1 gezeigten Vektors 6 wurde der SK - -synp-Vektor mit der Restriktionsendonuklease BamHI geschnitten und damit das Ende des Synapsinpromotors im 5'-nichttranslatierten Bereich geöffnet. Der SK--ras-Vektor 2 wurde ebenfalls mit BamHI 50 geschnitten, wodurch das ras-Strukturgen von dem mit ihm verbundenen Vektor SK befreit wurde.

Das ras-Strukturgen wurde mit dem geöffneten SK -synp-Vektor ligiert und die korrekte Orientierung des Strukturgens durch Sequenzierung des Überganges 55 Promotor/Strukturgen verifiziert, wodurch sich Vektor SK-synp-ras 6 ergab. Anschließend wurde Vektor 6 mit der Restriktionsendonuklease Notl verdaut, wodurch die meisten genomischen ras-Sequenzen in 3'-Richtung stromabwärts des Stoppkodons einschließ- 60 lich der Polyadenylierungsstelle entfernt wurden. Der gcöffnete Vektor (6) war somit bereit zur Aufnahme des IRES/lacZ-Fragments, dessen Enden zu den durch Notl generierten Schnittstellen kohäsiv sein mußten. Die ent-

Garage Contract المراكب ومعادمته الإ engarin kengalah Japan dan Jamasa

Zur Integration des IRES/facz-bragments in vekto.

(6) wurde folgende Klonierungsstrategie angewandt:

Das DNA-Plasmid p1726 5, das das IRES/lacZ-Fragment innerhalb zweier xbal-Schnittstelle eingefügt besaß, wurde mit der Restriktionsendonuklease Xbal geschnitten, wodurch das IRES/lacZ-Fragment von mit ihm verbundenen Plasmidsequenzen befreit wurde. Das DNA-Plasmid pBluescriptSK+ wurde mit Xbal geöffnet und mit dem IRES/lacZ-Fragment ligiert. Die korrekte Orientierung von IRES in Nachbarschaft zu der bereits vorhandenen XmaIII-Schnittstelle wurde durch eine Restriktionsanalyse verifiziert. Um auf der anderen Seite des IRES/lacZ-Fragments eine weitere xmaIII-Schnittstelle zu erhalten, wurde das DNA-Plasmid pBR322 (Vektor 4 in Fig. 1) einem NruI/BamHI-Doppelverdau unterzogen und das entstandene, eine Xmal-Schnittstelle enthaltende Fragment zwischen die Plasmidschnittstellen Smal und BamHI unter Erzeugung des Vektors 3 einligiert. Durch einen XmallI-Verdau ließ sich auf diese Weise das IRES/lacZ-Fragment zu-Fig. 3 zeigt die DNA-Sequenz des erfindungsgemä- 20 rückgewinnen. Es wurde in den geöffneten Vektor 6 unter Erzeugung des in Fig. 1 gezeigten Vektors 7 eingefügt, und die korrekte Orientierung von IRES in Nachbarschaft des ras-Strukturgens wurde durch eine Restriktionsanalyse verifiziert. Um die für die Injektion in Zygoten geeignete DNA zu erhalten, mußten vorher alle Vektorsequenzen entfernt werden. Dies ließ sich durch einen Verdau von Vektor 7 mit Xhol erreichen, durch den man das gebrauchsfertige linearisierte DNA-Konstrukt erhielt, das in Fig. 2 komplett und in Fig. 3 in seien wesentlichen Bestandteilen dargestellt ist.

Die Einbringung dieses DNA-Fragmentes in das Genom eines nicht humanen Tieres geschah mit dem Fachmann bekannten Techniken.

Die Herstellung erfolgte nach Standardtechniken, wie sie im einzelnen von Brigid Hogan, Frank Costantini und Elizabath Lacy in dem Laborhandbuch "Manipulating the Mouse Embryo", Cold Spring Harbor Laboratory, 1986, beschrieben werden:

- hormonelle Stimulation der Oozyten-Donoren zwecks Super- und Zwangsovulation;
- Befruchtung der Oozyten durch Zusammensetzen der Donoren mit Böcken;
- Entnahme der Zygoten nach Tötung der Dono-
- Injektion der DNA-Lösung in einen der beiden Vorkerne einer Zygote;
- Zusammensetzen der Zygoten-Rezipienten mit vasektomierten Böcken zur Identifikation empfängnisbereiter Tiere;
- Transfer der injizierten Zygoten in die Ampulla betäubter empfängnisbereiter Rezipienten;
- Zucht und Identifikation transgener Nachkom-

In einer weiteren Ausführungsform der Erfindung wird das erfindungsgemäße DNA-Konstrukt in einem Test-Verfahren zur Bestimmung neuronaler Schädigung verwendet. Gemäß diesem Verfahren wird ein Säugetier, etwa eine Maus oder eine Ratte, in dessen Genom das erfindungsgemäße DNA-Fragment eingebracht wurde, der Wirkung einer Substanz mit Verdacht auf neuronenschädigende Wirkung ausgesetzt. Das Ausmaß der Schädigung bzw. Zerstörung der neurona-Zellen in diesem Versuchstier wird mit dem Zustand

some sometime to warkung besummit werder adiist ein besondere. Volliem Substanzen im Verdach 7

auf neuronenschädigende Wirkung spezifisch und in viel kleineren Mengen als bisher prüfen zu können.

In einer weiteren Ausführungsform der Erfindung wird die Herstellung neuronaler Zeilkulturen ermöglicht, deren Zellen das erfindungsgemäße DNA-Fragment homogen enthalten. Es ist ein Vorteil dieses Verfahrens, mit dieser Zellkulturen die spezifische Wirkung des erfindungsgemäßen Strukturgens auf neuronale Zellen zu untersuchen. So können Versuche in vitro durchgeführt werden, die im Versuchstier nicht möglich wären oder durch die das Versuchstier unerwünschten Beeinträchtigungen ausgesetzt wäre.

Patentansprüche

1. Rekombiniertes, neuronalspezifisch aktiviertes, transkribierbares, lineares DNA-Kontrukt, gekennzeichnet durch:

ein neuronalspezifisches DNA-Kontrollelement zur Transcriptionsinitiation eines in 3'-Richtung 20 stromabwärts befindlichen Strukturgens;

ein transkribierbares, eurokaryotisches Struktur-Onkogen, das in 3'-Richtung stromabwärts zum neuronalspezifischen DNA-Kontrollelement eingefügt ist und

ggf. ein in 3'-Richtung stromabwärts des Strukturgens eingefügtes Konstrukt, bestehend aus einen transkribierbaren Reportergen, gekoppelt mit einem in 5'-Richtung stromaufwärts eingefügten DNA-Fragment, das für eome omtereme Ribosomenbindungsstelle (IRES) kodiert.

2. DNA-Konstrukt nach Anspruch 1, dadurch gekennzeichnet, daß das neuronalspezifische DNA-Kontrollelement ein Synapsin I-Promotor, insbesondere der Ratte ist.

3. DNA-Konstrukt nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Struktur-Onkogen ein ras-Onkogen ist.

4. DNA-Konstrukt nach Anspruch 3, dadurch gekennzeichnet, daß das Struktur-Onkogen das komplette, genomische v-Ha-ras-Strukturgen des Menschen ist.

 5. DNA-Konstrukt nach einem der Ansprüche 1 bis
 4, dadurch gekennzeichnet, daß das Reportergen für β-Galactosidase kodiert.

6. DNA-Konstrukt nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zur Herstellung des DNA-Konstrukts Plasmide verwendet werden, ausgewählt aus pBluescriptSK⁻, pBluescriptSK⁺, pBR322 und p1726.

7. DNA-Konstrukt nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es in Zygoten eingebracht wird.

8. DNA-Konstrukt nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es in somatische 55 Zellen eingebracht wird.

9. DNA-Konstrukt nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das vom Struktur-Onkogen kodierte aktive Protein im Genom des transgenen, nichthumanen Säugetiers konstitutiv 60 exprimiert wird.

10. DNA-Konstrukt nach einem der Ansprüche 1 bis 9. dadurch gekennzeichnet, daß das Produkt des

The second section of the second seco

DNA-Konstrakt hach eiten sich Steblich in 58 Steblich in 58 St. daren hypres

sion des Proteinproduktes des Reportergens Expressionseigenschaften des Struktur-Onkogens überprüft werden können.

12. Neuronale Zelle, dadurch gekennzeichnet, daß sie das DNA-Konstrukt nach einem der Ansprüche 1 bis 11 enthält.

13. Verwendung des DNA-Konstrukts nach einem der Ansprüche 1 bis 11 oder der Zelle nach Anspruch 12 zum Testen von Wirkstoffen auf neuronalspezifische Aktivität.

Hierzu 10 Seite(n) Zeichnungen

Nummer:

DE 45. 5 5 5 7.1 C 12 N 5/6? 2. Februar 1995

Int. Cl.⁶: Offenlegungstag:

Nummer: Int. Cl.6:

Offenlegungstag:

DE 43 25 699 A1 C 12 N 15/62 2. Februar 1995

Fig. 2

Nummer: DE 43 25 699 A1
Int. Cl.⁶: C 12 N 15/62
Offenlegungstag: 2, Februar 1995

Figur 3

,			GTAAATTTTT		AATTGGGGGC TTAACCCCCG	
61	TTTCAGAGAT AAAGTCTCTA				GTGGCAGACA CACCGTCTGT	
121	GCTGGAGACA CGACCTCTGT				AACACAGACA TTGTGTCTGT	
181	CAGACAGACA GTCTGTCTGT				GGGCTTGGCG CCCGAACCGC	
241	AACCCCCAAA TTGGGGGTTT				AGGTCACATA TCCAGTGTAT	
301	TTTAATCATT AAATTAGTAA				ATTCAAATAT TAAGTTTATA	
		GTGGTTTTAA	TGTAATAAGA	AAGTATATAT	ACATAATTGA	CCGGAGGACA
421	CTGCAAAGTT GACGTTTCAA				CTGATTACAC GACTAATGTG	
		TCGTCTCCTT	ACTCCCGTAC	ATCTGATTTA	TACAAGCACA	CCTTCTCCGA
		GTCTCAATGA	CGACGTCCTT	TACGAAGACG	TAACGTATGG	GTCTCAAAGG
		CTCTCGTACA	CAAAAAAGGT	CTACACACAT	GAACACACTC	TAAGAGACCC
		ACACAACGGA	CTTGCACGTA	ACGAGTTATA	CGAGTACACA	CAATGGGACC
		GATGTATATA	TGGACCTACG	GGCACACAAG	ACACTACATG	TATATGGGAC
		ACAAAAAGAT	AAACACAATA	AGGTACACAA	GGAAGTCCGA	GAGTGATGGG
841	AAGTGTCCAC TTCACAGGTG	CTCCGCCTGT GAGGCGGACA	CTGGTGATGT GACCACTACA	TTACGCTACC AATGCGATGG	CCGTGCTCTT GGCACGAGAA	TTCTTTGCCT AAGAAACGGA

Nummer: Int. Cl.6: Offenlegungstag: 2. Februar 1995

DE 43.25 6 . 7.1 C 12 N 15/62

Figur 3

		F 1	gur 3			
961	TTATGTTCCC	CTCCGAGTAT	GCTTCTATCC	CGACCCTCAA	CCCCAAAATG	CCTTCAGAGG
	AATACAAGGG	GAGGCTCATA	CGAAGATAGG	GCTGGGAGTT	GGGGTTTTAC	GGAAGTCTCC
1021	TGAAAATCAA	CACTGGAAAC	ACAAGTATCT	GGGAAGGGTA	ACAATGCAAG	TTAGCCTGAG
	ACTTTTAGTT	GTGACCTTTG	TGTTCATAGA	CCCTTCCCAT	TGTTACGTTC	AATCGGACTC
1081	GATTTAGGAG	GAGGCTGAAA	AACAGAGTAG	GAGCCTTACT	ACGGGTCCAG	ACCCTACGGA
	CTAAATCCTC	CTCCGACTTT	TTGTCTCATC	CTCGGAATGA	TGCCCAGGTC	TGGGATGCCT
1141	CAAGAACCCC	CACTCCCACT	CCCCAAATTG	CGCATTCCCT	CCCCCATCAG	AGGGGGAGGG
	GTTCTTGGGG	GTGAGGGTGA	GGGGTTTAAC	GCGTAAGGGA	GGGGGTAGTC	TCCCCCTCCC
1201	GAAGAGGATG	CAGCGCGGCG	CGGCGCGTGC	GCACTGTCGG	ATTTAGTACC	GCGGACAGAG
	CTTCTCCTAC	GTCGCGCCGC	GCCGCGCACG	CGTGACAGCC	TAAATCATGG	CGCCTGTCTC
1261	CCTTCGCCCC	CGCTGCCGGC	GCGCGCCACC	ACCTCCCCAG	CACCAAAGGC	GGGCTGACGT
	GGAAGCGGGG	GCGACGGCCG	CGCGCGGTGG	TGGAGGGGTC	GTGGTTTCCG	CCCGACTGCA
1321	CACTCTCCAG	CCCTCCCCAA	ACTCCCCTAC	CTCACCGCCT	TGGTCGCGTC	CGTGCAGCGG
	GTGAGAGGTC	GGGAGGGGTT	TGAGGGGATG	GAGTGGCGGA	ACCAGCGCAG	GCACGTCGCC
1381	TGAGTCCAGT	CGGGCCGCAC	CACAAGAGGT	GCAAGATAGG	GGGGTGCAGG	CGCGACCATA
	ACTCAGGTCA	GCCCGGCGTG	GTGTTCTCCA	CGTTCTATCC	CCCCACGTCC	GCGCTGGTAT
1441	CGCTCTGCGG	CGGCAGAGCC	TCAGCGCTGC	CTCAGTCTGC	AGCGGGCAGC	AGAGGAGTCG
	GCGAGACGCC	GCCGTCTCGG	AGTCGCGACG	GAGTCAGACG	TCGCCCGTCG	TCTCCTCAGC
1501	CGTCGTGCCA	GAGAGCGCCG	CCGTGCTCCT	GAGCCCCTTG	CGCTCCGCCC	CCGCGGCCCA
	GCAGCACGGT	CTCTCGCGGC	GGCACGAGGA	CTCGGGGAAC	GCGAGGCGGG	GGCGCCGGGT
1561	CCGACCCACT GGCTGGGTGA	GCCCCTTGGA CGGGGAACCT	TCCGGGGCCG AGGCCCCGGC	CATGAGGAGC GTACTCCTCG	CTACTGCCTT	TATAAGCTGG ATATTCGACC ikturgen
1621	TGGTGGTGGG	CGCCGTCGGT	GTGGGCAAGA	GTGCGCTGAC	CATCCAGCTG	ATCCAGAACC
	ACCACCACCC	GCGGCAGCCA	CACCCGTTCT	CACGCGACTG	GTAGGTCGAC	TAGGTCTTGG
1681	ATTTTGTGGA	CGAATACGAC	CCCACTATAG	AGGTGAGCCT	GGCGCCACCG	TCCAGGTGCC
	TAAAACACCT	GCTTATGCTG	GGGTGATATC	TCCACTCGGA	CCGCGGTGGC	AGGTCCACGG
1741	AGCAGCTGCT	GCGGGCGAGC	CCAGGACACA	GCCAGGATAG	GGCTGGCTGC	AGCCCCTGGT
	TCGTCGACGA	CGCCCGCTCG	GGTCCTGTGT	CGGTCCTATC	CCGACCGACG	TCGGGGACCA
1801	CCCCTGCATG	GTGCTGTGGC	CCTGTCTCCT	GCTTCCTCTA	GAGGAGGGGA	GTCCCTCGTC
	GGGGACGTAC	CACGACACCG	GGACAGAGGA	CGAAGGAGAT	CTCCTCCCCT	CAGGGAGCAG

in the control of the

 Nummer:
 DE 43 25 699 A1

 Int. CL^a:
 C 12 N 15/62

 Offenlegungstag:
 2. Februar 1995

1921	TGTGTGAACT ACACACTTGA	CCCCCACGG GGGGGGTGCC	Figur 3 AAGGTCCTGA TTCCAGGACT	GGGGGTCCCT CCCCCAGGGA	GAGCCCTGTC CTCGGGACAG	CTCCTGCAGG GAGGACGTCC
1981	ATTCCTACCG	GAAGCAGGTG	GTCATTGATG	GGGAGACGTG	CCTGTTGGAC	ATCCTGGATA
	TAAGGATGGC	CTTCGTCCAC	CAGTAACTAC	CCCTCTGCAC	GGACAACCTG	TAGGACCTAT
2041	CCGCCGGCCA	GGAGGAGTAC	AGCGCCATGC	GGGACCAGTA	CATGCGCACC	GGGGAGGGCT
	GGCGGCCGGT	CCTCCTCATG	TCGCGGTACG	CCCTGGTCAT	GTACGCGTGG	CCCCTCCCGA
2101	TCCTGTGTGT	GTTTGCCATC	AACAACACCA	AGTCTTTTGA	GGACATCCAC	CAGTACAGGT
	AGGACACACA	CAAACGGTAG	TTGTTGTGGT	TCAGAAAACT	CCTGTAGGTG	GTCATGTCCA
2161	GAACCCCGTG CTTGGGGCAC	AGGCTGGCCC TCCGACCGGG	GGGAGCCCAC CCCTCGGGTG	GCCGCACAGG CGGCGTGTCC	TGGGGCCAGG ACCCCGGTCC	CCGGCTGCGT GGCCGACGCA
2221	CCAGGCAGGG GGTCCGTCCC		CTCTCTGCGC GAGAGACGCG			
2281	CCGTAGCCAG	CTCTCGCTTT	CCACCTCTCA	GGGAGCAGAT	CAAACGGGTG	AAGGACTCGG
	GGCATCGGTC	GAGAGCGAAA	GGTGGAGAGT	CCCTCGTCTA	GTTTGCCCAC	TTCCTGAGCC
2341	ATGACGTGCC TACTGCACGG		GTGGGGAACA CACCCCTTGT			
2401	CTCGGCAGGC GAGCCGTCCG		GCCCGAAGCT CGGGCTTCGA			
2461	AGACCCGGCA	GGTGAGGCAG	CTCTCCACCC	CACAGCTAGC	CAGGGACCCG	CCCCGCCCG
	TCTGGGCCGT	CCACTCCGTC	GAGAGGTGGG	GTGTCGATCG	GTCCCTGGGC	GGGGCGGGGC
2521	CCCCAGCCAG	GGAGCAGCAC	TCACTGACCC	TCTCCCTTGA	CACAGGGCAG	CCGCTCTGGC
	GGGGTCGGTC	CCTCGTCGTG	AGTGACTGGG	AGAGGGAACT	GTGTCCCGTC	GGCGAGACCG
2581						CAGCGGCCCC GTCGCCGGGG
2641	TCGCGCTGTA	AGTCTCCCGG	GACGGCAGGG	CAGTGAGGGA	GGCGAGGGCC	GGGGTCTGGG
	AGCGCGACAT	TCAGAGGGCC	CTGCCGTCCC	GTCACTCCCT	CCGCTCCCGG	CCCCAGACCC
2701	CTCACGCCCT	GCAGTCCTGG	GCCGACACAG	CTCCGGGGAA	GGCGGAGGTC	CTTGGGGAGA
	GAGTGCGGGA	CGTCAGGACC	CGGCTGTGTC	GAGGCCCCTT	CCGCCTCCAG	GAACCCCTCT
2761	GCTGCCCTGA	GCCAGGCCGG	AGCGGTGACC	CTGGGGCCCG	GCCCCTCTTG	TCCCCAGAGT
	CGACGGGACT	CGGTCCGGCC	TCGCCACTGG	GACCCCGGGC	CGGGGAGAAC	AGGGGTCTCA

Nummer: DE 43 25 699 A1 Int. Cl.⁶: C 12 N 15/62

Offenlegungstag: 2. Februar 1995

F	iç	дu	r	3	

2881	CTGAGTCGAG GACTCAGCTC	ACCTGGGTGC	AGGGTGGTCA TCCCACCAGT	AACCCTGGCC TTGGGACCGG	AGACCTGGAG TCTGGACCTC	TTCAGGAGGG AAGTCCTCCC
2941	CCCCGGGCCA GGGGCCCGGT	CCCTGACCTT GGGACTGGAA	TGAGGGGCTG ACTCCCCGAC	CTGTAGCATG GACATCGTAC	ATGCGGGTGG TACGCCCACC	CCCTGGGCAC GGGACCCGTG
3001	TTCGAGATGG AAGCTCTACC	CCAGAGTCCA GGTCTCAGGT	GCTTCCCGTG CGAAGGGCAC	TGTGTGGTGG ACACACCACC	GCCTGGGGAA CGGACCCCTT	GTGGCTGGTG CACCGACCAC
3061	GAGTCGGGAG CTCAGCCCTC	CTTCGGGCCA GAAGCCCGGT	GGCAAGGCTT CCGTTCCGAA	GATCCCACAG CTAGGGTGTC	CAGGGAGCCC GTCCCTCGGG	CTCACCCAGG GAGTGGGTCC
3121	CAGGCGGCCA GTCCGCCGGT	CAGGCCGGTC GTCCGGCCAG	CCTCCTGATC GGAGGACTAG	CCATCCTCC GGTAGGGAGG	TTTCCCAGGG AAAGGGTCCC	AGTGGAGGAT TCACCTCCTA
3181	GCCTTCTACA CGGAAGATGT	CGTTGGTGCG GCAACCACGC	TGAGATCCGG ACTCTAGGCC	CAGCACAAGC GTCGTGTTCG	TGCGGAAGCT ACGCCTTCGA	GAACCCTCCT CTTGGGAGGA
3241	GATGAGAGTG CTACTCTCAC	GCCCCGGCTG CGGGGCCGAC	CATGAGCTGC GTACTCGACG	AAGTGTGTGC TTCACACACG	TCTCCTGACG AGAGGACTGC Stopp	CAGGTGAGGG GTCCACTCCC
3301	GGACTCCCAG CCTGAGGGTC	GGCGGCCGCT CCGCCGGCGA	CTAGAGGAAT GATCTCCTTA	TCCGCCCCTC AGGCGGGGAG Interna	AGGGAGGGG	GGGGGATIGC
2361						
3301	TTACTGGCCG AATGACCGGC Site>	AAGCCGCTTG TTCGGCGAAC	GAATAAGGCC CTTATTCCGG	GGTGTGCGTT CCACACGCAA	TGTCTATATG ACAGATATAC	TTATTTTCCA AATAAAAGGT
	AATGACCGGC Site>	TTCGGCGAAC	CTTATTCCGG	CCCGGAAACC	ACAGATATAC	TTCTTGACGA
3421	AATGACCGGC Site> CCATATTGCC GGTATAACGG	TTCGGCGAAC GTCTTTTGGC CAGAAAACCG	CTTATTCCGG AATGTGAGGG TTACACTCCC	CCACACGCAA CCCGGAAACC GGGCCTTTGG	TGGCCCTGTC ACCGGGACAG	TTCTTGACGA AAGAACTGCT
3421	AATGACCGGC Site> CCATATTGCC GGTATAACGG GCATTCCTAG CGTAAGGATC	TTCGGCGAAC GTCTTTTGGC CAGAAAACCG GGGTCTTTCC CCCAGAAAGG	AATGTGAGGG TTACACTCCC CCTCTCGCCA GGAGAGCGGT	CCACACGCAA CCCGGAAACC GGGCCTTTGG AAGGAATGCA TTCCTTACGT	TGGCCCTGTC ACCGGGACAG AGGTCTGTTG TCCAGACAAC	TTCTTGACGA AAGAACTGCT AATGTCGTGA TTACAGCACT ACCCTTTGCA
3421 3481 3541	AATGACCGGC Site> CCATATTGCC GGTATAACGG GCATTCCTAG CGTAAGGATC AGGAAGCAGT TCCTTCGTCA	TTCGGCGAAC GTCTTTTGGC CAGAAAACCG GGGTCTTTCC CCCAGAAAGG TCCTCTGGAA AGGAGACCTT	CTTATTCCGG AATGTGAGGG TTACACTCCC CCTCTCGCCA GGAGAGCGGT GCTTCTTGAA CGAAGAACTT	CCACACGCAA CCCGGAAACC GGGCCTTTGG AAGGAATGCA TTCCTTACGT GACAAACAAC CTGTTTGTTG	TGGCCCTGTC ACCGGGACAG AGGTCTGTTG TCCAGACAAC GTCTGTAGCG CAGACATCGC	TTCTTGACGA AAGAACTGCT AATGTCGTGA TTACAGCACT ACCCTTTGCA TGGGAAACGT CGTGTATAAG
3421 3481 3541 3601	AATGACCGGC Site> CCATATTGCC GGTATAACGG GCATTCCTAG CGTAAGGATC AGGAAGCAGT TCCTTCGTCA GGCAGCGGAA CCGTCGCCTT	TTCGGCGAAC GTCTTTTGGC CAGAAAACCG GGGTCTTTCC CCCAGAAAGG TCCTCTGGAA AGGAGACCTT CCCCCCACCT GGGGGGTGGA	CTTATTCCGG AATGTGAGGG TTACACTCCC CCTCTCGCCA GGAGAGCGGT GCTTCTTGAA CGAAGAACTT GGCGACAGGT CCGCTGTCCA	CCACACGCAA CCCGGAAACC GGGCCTTTGG AAGGAATGCA TTCCTTACGT GACAAACAAC CTGTTTGTTG GCCTCTGCGG CGGAGACGCC	TGGCCTGTC ACCGGGACAG AGGTCTGTTG TCCAGACAAC GTCTGTAGCG CAGACATCGC CCAAAAGCCA GGTTTTCGGT	TTCTTGACGA AAGAACTGCT AATGTCGTGA TTACAGCACT ACCCTTTGCA TGGGAAACGT CGTGTATAAG GCACATATTC GTTGTGGAAA

Commence of the commence of th

Nummer: Int. Cl.6:

DE 43 25 699 ... C 12 N 15/62 Offenlegungstag: 2. Februar 1995

Figur 3

3841	GGTTAAAAAA	CGTCTAGGCC	CCCCGAACCA	CGGGGACGTG	GTTTTCCTTT	GAAAAACACG
	CCAATTTTT	GCAGATCCGG	GGGGCTTGGT	GCCCCTGCAC	CAAAAGGAAA	CTTTTTGTGC
3901	ATGATAAGCT TACTATTCGA	TGCCACAACC ACGGTGTTGG	ATGATTACGG TACTAATGCC lacZ - Stru	TAAGTGACCG	GCAGCAAAAT	CAACGTCGTG GTTGCAGCAC
3961	ACTGGGAAAA	CCCTGGCGTT	ACCCAACTTA	ATCGCCTTGC	AGCACATCCC	CCTTTCGCCA
	TGACCCTTTT	GGGACCGCAA	TGGGTTGAAT	TAGCGGAACG	TCGTGTAGGG	GGAAAGCGGT
4021	GCTGGCGTAA	TAGCGAAGAG	GCCCGCACCG	ATCGCCCTTC	CCAACAGTTG	CGCAGCCTGA
	CGACCGCATT	ATCGCTTCTC	CGGGCGTGGC	TAGCGGGAAG	GGTTGTCAAC	GCGTCGGACT
4081	ATGGCGAATG	GCGCTTTGCC	TGGTTTCCGG	CACCAGAAGC	GGTGCCGGAA	AGCTGGCTGG
	TACCGCTTAC	CGCGAAACGG	ACCAAAGGCC	GTGGTCTTCG	CCACGGCCTT	TCGACCGACC
4141	AGTGCGATCT	TCCTGAGGCC	GATACTGTCG	TCGTCCCCTC	AAACTGGCAG	ATGCACGGTT
	TCACGCTAGA	AGGACTCCGG	CTATGACAGC	AGCAGGGGAG	TTTGACCGTC	TACGTGCCAA
4201	ACGATGCGCC	CATCTACACC	AACGTAACCT	ATCCCATTAC	GGTCAATCCG	CCGTTTGTTC
	TGCTACGCGG	GTAGATGTGG	TTGCATTGGA	TAGGGTAATG	CCAGTTAGGC	GGCAAACAAG
4261	CCACGGAGAA	TCCGACGGGT	TGTTACTCGC	TCACATTTAA	TGTTGATGAA	AGCTGGCTAC
	GGTGCCTCTT	AGGCTGCCCA	ACAATGAGCG	AGTGTAAATT	ACAACTACTT	TCGACCGATG
4321	AGGAAGGCCA	GACGCGAATT	ATTTTTGATG	GCGTTAACTC	GGCGTTTCAT	CTGTGGTGCA
	TCCTTCCGGT	CTGCGCTTAA	TAAAAACTAC	CGCAATTGAG	CCGCAAAGTA	GACACCACGT
4381	ACGGGCGCTG	GGTCGGTTAC	GGCCAGGACA	GTCGTTTGCC	GTCTGAATTT	GACCTGAGCG
	TGCCCGCGAC	CCAGCCAATG	CCGGTCCTGT	CAGCAAACGG	CAGACTTAAA	CTGGACTCGC
4441	CATTTTTACG	CGCCGGAGAA	AACCGCCTCG	CGGTGATGGT	GCTGCGTTGG	AGTGACGGCA
	GTAAAAATGC	GCGGCCTCTT	TTGGCGGAGC	GCCACTACCA	CGACGCAACC	TCACTGCCGT
4501	GTTATCTGGA	AGATCAGGAT	ATGTGGCGGA	TGAGCGGCAT	TTTCCGTGAC	GTCTCGTTGC
	CAATAGACCT	TCTAGTCCTA	TACACCGCCT	ACTCGCCGTA	AAAGGCACTG	CAGAGCAACG
4561	TGCATAAACC	GACTACACAA	ATCAGCGATT	TCCATGTTGC	CACTCGCTTT	AATGATGATT
	ACGTATTTGG	CTGATGTGTT	TAGTCGCTAA	AGGTACAACG	GTGAGCGAAA	TTACTACTAA
4621	TCAGCCGCGC	TGTACTGGAG	GCTGAAGTTC	AGATGTGCGG	CGAGTTGCGT	GACTACCTAC
	AGTCGGCGCG	ACATGACCTC	CGACTTCAAG	TCTACACGCC	GCTCAACGCA	CTGATGGATG
4681	GGGTAACAGT	TTCTTTATGG	CAGGGTGAAA	CGCAGGTCGC	CAGCGGCACC	GCGCCTTTCG
	CCCATTGTCA	AAGAAATACC	GTCCCACTTT	GCGTCCAGCG	GTCGCCGTGG	CGCGGAAAGC

n Cl.6: DE 43 25 699 A1
Cl.6: C 12 N 15/62
Oifenlegungstag: 2. Februar 1995

,			-
-	١	aur	4
	1	uuı	J

4801	TCGAAAACCC AGCTTTTGGG	GAAACTGTGG CTTTGACACC	Figur 3 AGCGCCGAAA TCGCGGCTTT	TCCCGAATCT AGGGCTTAGA	CTATCGTGCG GATAGCACGC	GTGGTTGAAC CACCAACTTG
4861	TGCACACCGC	CGACGGCACG	CTGATTGAAG	CAGAAGCCTG	CGATGTCGGT	TTCCGCGAGG
	ACGTGTGGCG	GCTGCCGTGC	GACTAACTTC	GTCTTCGGAC	GCTACAGCCA	AAGGCGCTCC
4921	TGCGGATTGA	AAATGGTCTG	CTGCTGCTGA	ACGGCAAGCC	GTTGCTGATT	CGAGGCGTTA
	ACGCCTAACT	TTTACCAGAC	GACGACGACT	TGCCGTTCGG	CAACGACTAA	GCTCCGCAAT
4981	ACCGTCACGA	GCATCATCCT	CTGCATGGTC	AGGTCATGGA	TGAGCAGACG	ATGGTGCAGG
	TGGCAGTGCT	CGTAGTAGGA	GACGTACCAG	TCCAGTACCT	ACTCGTCTGC	TACCACGTCC
5041	ATATCCTGCT	GATGAAGCAG	AACAACTTTA	ACGCCGTGCG	CTGTTCGCAT	TATCCGAACC
	TATAGGACGA	CTACTTCGTC	TTGTTGAAAT	TGCGGCACGC	GACAAGCGTA	ATAGGCTTGG
5101	ATCCGCTGTG	GTACACGCTG	TGCGACCGCT	ACGGCCTGTA	TGTGGTGGAT	GAAGCCAATA
	TAGGCGACAC	CATGTGCGAC	ACGCTGGCGA	TGCCGGACAT	ACACCACCTA	CTTCGGTTAT
5161	TTGAAACCCA	CGGCATGGTG	CCAATGAATC	GTCTGACCGA	TGATCCGCGC	TGGCTACCGG
	AACTTTGGGT	GCCGTACCAC	GGTTACTTAG	CAGACTGGCT	ACTAGGCGCG	ACCGATGGCC
5221	CGATGAGCGA	ACGCGTAACG	CGAATGGTGC	AGCGCGATCG	TAATCACCCG	AGTGTGATCA
	GCTACTCGCT	TGCGCATTGC	GCTTACCACG	TCGCGCTAGC	ATTAGTGGGC	TCACACTAGT
		CCCCTTACTT	AGTCCGGTGC	CGCGATTAGT	GCTGCGCGAC	ATAGEGACCI
		GCTAGGAAGG	GCGGGCCACG	TCATACTTCC	GCCGCCTCGG	CIGIGGIGCC
		ATAAACGGGC	TACATGCGCG	CGCACCTACT	TCTGGTCGGG	AAGGGCCGAC
		CAGGTAGTTT	TTTACCGAAA	GCGATGGACC	TCTCTGCGCG	GGCGACIAGG
		GCGGGTGCGC	TACCCATTGT	CAGAACCGCC	AAAGCGATTI	AIGACCGICC
		CATAGGGGCA	AATGTCCCGC	CGAAGCAGAC	CCTGACCCAC	CIAGICAGCG
5641	TGATTAAATA	TGATGAAAAC	GGCAACCCGT	GGTCGGCTTA	CGGCGGTGAT	TTTGGCGATA
	ACTAATTTAT	ACTACTTTTG	CCGTTGGGCA	CCAGCCGAAT	GCCGCCACTA	AAACCGCTAT

The same of the sa

 Nummer:
 DE 43 25 699 A1

 Int. Cl.6:
 C 12 N 15/62

 Offenlegungstag:
 2. Februar 1995

Figur 3

		Fig	ur 3			
5761	CAGCGCTGAC GTCGCGACTG	GGAAGCAAAA CCTTCGTTTT	CACCAGCAGC	AGTTTTTCCA TCAAAAAGGT	GTTCCGTTTA CAAGGCAAAT	TCCGGGCAAA AGGCCCGTTT
5821	CCATCGAAGT	GACCAGCGAA	TACCTGTTCC	GTCATAGCGA	TAACGAGCTC	CTGCACTGGA
	GGTAGCTTCA	CTGGTCGCTT	ATGGACAAGG	CAGTATCGCT	ATTGCTCGAG	GACGTGACCT
5881	TGGTGGCGCT	GGATGGTAAG	CCGCTGGCAA	GCGGTGAAGT	GCCTCTGGAT	GTCGCTCCAC
	ACCACCGCGA	CCTACCATTC	GGCGACCGTT	CGCCACTTCA	CGGAGACCTA	CAGCGAGGTG
5941	AAGGTAAACA	GTTGATTGAA	CTGCCTGAAC	TACCGCAGCC	GGAGAGCGCC	GGGCAACTCT
	TTCCATTTGT	CAACTAACTT	GACGGACTTG	ATGGCGTCGG	CCTCTCGCGG	CCCGTTGAGA
6001	GGCTCACAGT	ACGCGTAGTG	CAACCGAACG	CGACCGCATG	GTCAGAAGCC	GGGCACATCA
	CCGAGTGTCA	TGCGCATCAC	GTTGGCTTGC	GCTGGCGTAC	CAGTCTTCGG	CCCGTGTAGT
6061	GCGCCTGGCA	GCAGTGGCGT	CTGGCGGAAA	ACCTCAGTGT	GACGCTCCCC	GCCGCGTCCC
	CGCGGACCGT	CGTCACCGCA	GACCGCCTTT	TGGAGTCACA	CTGCGAGGGG	CGGCGCAGGG
6121	ACGCCATCCC	GCATCTGACC	ACCAGCGAAA	TGGATTTTTG	CATCGAGCTG	GGTAATAAGC
	TGCGGTAGGG	CGTAGACTGG	TGGTCGCTTT	ACCTAAAAAC	GTAGCTCGAC	CCATTATTCG
6181	GTTGGCAATT	TAACCGCCAG	TCAGGCTTTC	TTTCACAGAT	GTGGATTGGC	GATAAAAAAC
	CAACCGTTAA	ATTGGCGGTC	AGTCCGAAAG	AAAGTGTCTA	CACCTAACCG	CTATTTTTTG
6241	AACTGCTGAC	GCCGCTGCGC	GATCAGTTCA	CCCGTGCACC	GCTGGATAAC	GACATTGGCG
	TTGACGACTG	CGGCGACGCG	CTAGTCAAGT	GGGCACGTGG	CGACCTATTG	CTGTAACCGC
6301	TAAGTGAAGC ATTCACTTCG	GACCCGCATT CTGGGCGTAA	GACCCTAACG CTGGGATTGC	CCTGGGTCGA GGACCCAGCT	ACGCTGGAAG TGCGACCTTC	GCGGCGGGCC
6361	ATTACCAGGC	CGAAGCAGCG	TTGTTGCAGT	GCACGGCAGA	TACACTTGCT	GATGCGGTGC
	TAATGGTCCG	GCTTCGTCGC	AACAACGTCA	CGTGCCGTCT	ATGTGAACGA	CTACGCCACG
6421	TGATTACGAC	CGCTCACGCG	TGGCAGCATC	AGGGGAAAAC	CTTATTTATC	AGCCGGAAAA
	ACTAATGCTG	GCGAGTGCGC	ACCGTCGTAG	TCCCCTTTTG	GAATAAATAG	TCGGCCTTTT
6481	CCTACCGGAT	TGATGGTAGT	GGTCAAATGG	CGATTACCGT	TGATGTTGAA	GTGGCGAGCG
	GGATGGCCTA	ACTACCATCA	CCAGTTTACC	GCTAATGGCA	ACTACAACTT	CACCGCTCGC
6541	ATACACCGCA	TCCGGCGCGG	ATTGGCCTGA	ACTGCCAGCT	GGCGCAGGTA	GCAGAGCGGG
	TATGTGGCGT	AGGCCGCGCC	TAACCGGACT	TGACGGTCGA	CCGCGTCCAT	CGTCTCGCCC
6601	TAAACTGGCT	CGGATTAGGG	CCGCAAGAAA	ACTATCCCGA	CCGCCTTACT	GCCGCCTGTT
	ATTTGACCGA	GCCTAATCCC	GGCGTTCTTT	TGATAGGGCT	GGCGGAATGA	CGGCGGACAA

racinin roma i maga aga

ZEICHNUNGEN SEITE 10

Nummer: Int. Cl.⁶:

DE 43 25 609 7.3 C 12 N 15/62

Offenlegungstag: 2. Februar 1995

G721	ACGGTCTGCG TGCCAGACGC	CTGCGGGACG GACGCCCTGC	Figur 3 CGCGAATTGA GCGCTTAACT	ATTATGGCCC TAATACCGGG	ACACCAGTGG TGTGGTCACC	CGCGGCGACT GCGCCGCTGA
6781	TCCAGTTCAA	CATCAGCCGC	TACAGTCAAC	ACCIACTGAT	GGAAACCAGC	CATCGCCATC
	AGGTCAAGTT	GTAGTCGGCG	ATGTCAGTTG	TCGTTGACTA	CCTTTGGTCG	GTAGCGGTAG
6841	TGCTGCACGC	GGAAGAAGGC	ACATGGCTGA	ATATCGACGG	TTTCCATATG	GGGATTGGTG
	ACGACGTGCG	CCTTCTTCCG	TGTACCGACT	TATAGCTGCC	AAAGGTATAC	CCCTAACCAC
6901	GCGACGACTC	CTGGAGCCCG	TCAGTATCGG	CGGAATTCCA	GCTGAGCGCC	GGTCGCTACC
	CGCTGCTGAG	GACCTCGGGC	AGTCATAGCC	GCCTTAAGGT	CGACTCGCGG	CCAGCGATGG
6961	ATTACCAGTT TAATGGTCAA	GGTCTGGTGT CCAGACCACA	CAAAAATAAT GTTTTTATTA Stopp	TTATT		