Where are they looking? Topicos de Investigación I

Arotoma Bacilio, Bitzer Nazareth Bedon Vasquez, Bruno Fabio Huarcaya Canal, Oscar Mejia Puma, Miguel Angel

> Universidad Nacional de Ingeniería Facultad de Ciencias

Escuela Profesional de Ciencia de la Computación

Introducción

Where are they looking Team Bomb!

Introducción

Detalles del Trabajo

El desarrollo del presente trabajo incluye:

- Estructuración de los datos.
- 2. Preparación de los modelos.
- Evaluación de modelos.
- 4. Validación de resultados.
- Análisis y Conclusiones.

Introducción

Porqué localización de interiores

Las aplicaciones más frecuentes son:

- Marketing en retail (publicidad, oferta, cupones).
- Orientación en interiores (guías).
- Eficiencia en la atención (grado de incidencia).

Where are they looking Team Bomb!

Porqué localización de

Porqué localización de interiores

finición del Proble

Indoor Location

Casos de Prueba

Accuracy y Error Me

Resultado

Caso 2

Caso 3

Introducción Porqué Machine Learning

Soluciones para indoor location

Ecuación de Rappaport:

RSSI = -10 n log(d) + tx Power

Propuesta:

Modelar usando Machine Learning.

Where are they looking Team Bomb!

Porqué Machine Learning

Introducción Definición del Problema

Area Experimental

Where are they looking Team Bomb!

The Court of the C

Porqué Machine Learning Definición del Problema

and an included

Caene do Pruoh

Modelos de Aprendizaj

Resultados

Caso 1

Caso 3

Casos de Prueba

El presente trabajo evalua la eficiencia para tres tipos de sucesos.

Caso 1:

Emisor: Microcontroller BLE 4.0, a un único nivel de potencia.

Receptor: Raspberry Pi con antena BLE 4.0.

► Caso 2:

Emisor: Beacon BLE 4.0, a siete niveles de potencia.

Receptor: Raspberry Pi con antena BLE 4.0.

Caso 3:

Emisor: Beacon BLE 4.0, a siete niveles de potencia.

Receptor: Smartphone BLE 4.0.

Where are they looking Team Bomb!

Introducción

Porqué localización

Porqué Machine Learning

5 Indoor Location

Casos de Prueba

Modelos de Aprendizaje Accuracy y Error Medio

Resultados

Caso 1

Caso 3

Casos de Prueba

Where are they looking Team Bomb!

.....

ntroducción

interiores

Definición del Prob

Indoor Location

Casos de Prueba

Accuracy v Error Medio

Resultados

Caso 1

Caso 3

onclusiones

Caso 1: microController \rightarrow RPI2

Casos de Prueba

Where are they looking Team Bomb!

Porqué localización d

Porqué Machine Learni

Indoor Location

Casos de Prueba

Modelos de Aprendizaje

Resultados

Caso 1

Caso 3

Conclusiones

Caso 2: Beacon → RPI2

Casos de Prueba

Where are they looking

Team Bomb!

ntroducción

Porqué localización de interiores

Porqué Machine Learni

Indoor Location

Casos de Prueba

Modelos de Aprendizajo

Resultados

Caso 1

2000 2

Conclusiones

Caso 3: Beacon \rightarrow Smartphone

Indoor Location Modelos de Aprendizaje

Where are they looking Team Bomb!

Introducción

Porqué localización de interiores

Definición del Problen

Casos de Prueba

Modelos de Aprendizaje

Resultados

Caso

Caso 2

Conclusiones

FC - UNI Computer Science

Indoor Location Precisión y Error

Precisión

 $Precision = nAciertos/nTest \times 100\%$

Error Métrico

$$dv = |p/3 - y/3| \times 1.5 - 1.0$$
$$dh = |p\%3 - y\%3| \times 1.5 - 1.0$$
$$d = \sqrt{dv^2 + dh^2}$$

Where are they looking Team Bomb!

ntroducción

Porqué localizad

Porqué Machine Learning

Indoor Location

Casos de Prueba

Accuracy y Error Medio

Resultados

Caso 1

Caso 3

Caso 1: microController → RPI2

Evaluación de Clasificación

Where are they looking Team Bomb!

ntroduccion

Porqué localización de interiores

Definición del Probl

Indoor Location

Casos de Pruel

Accuracy v Error Medi

Resultad

Caso 1

aso 2

aso 3

Caso 1: microController → RPI2

Evaluación de Regresión

Where are they looking Team Bomb!

troducción

Porqué localización de interiores

Definición del Probl

Indoor Location

Casos de Pruel

Accuracy v Error Medi

Resultad

Caso 1

aso 2

aso 3

Conclusiones

FC - UNI Computer Science

Clasificación

Caso 1: microController → RPI2

Where are they looking Team Bomb!

Caso 1

Regresión

Caso 2: Beacon → RPI2

Evaluación de Clasificación

Where are they looking Team Bomb!

Caso 2: Beacon → RPI2

Evaluación de Regresión

Where are they looking Team Bomb!

FC - UNI Computer Science

Caso 3: Beacon \rightarrow Smartphone

Evaluación de Clasificación

Where are they looking Team Bomb!

troducción

Porqué localización de interiores

Porqué Machine Learni

Indoor Location

Casos de Prueh

Acquirect y Error Medic

Recultados

Caso 1

_ . . .

Caso 3: Beacon \rightarrow Smartphone

Evaluación de Regresión

Where are they looking Team Bomb!

Caso 3

Conclusiones

Where are they looking Team Bomb!

Conclusiones

bitzer se la come doblada con triple nudo. miguelito no me paga mis 18 lucas q me debe.

Gracias por su atención

