APAR'S CLASSROOM | ASG FLIX

Chapter 2 Organic chemistry

COMPRESSED NOTE

Audio Book available from next edition

Title Goes Here

এই নোটগুলো বুয়েট, মেডিকেল, ঢাবি এর সেরা সেরা ভাইয়াদের ক্লাস থেকে সংগৃহীত। ধন্যবাদ জানাই ঐ সকল টিচারদের যারা জ্ঞানকে সবার মাঝে ছড়িয়ে দিচ্ছে।

Type writers and Infographers: >

MD shariful islam
Abrar mahmud abru
Rajib Hossain Sunny
Ahsan Habib

পরবর্তী Edition এ নোটটি আরো আপডেট করা হবে।

Index

যেই টপিকগুলো কভার করতে হবে আমাদের।

_			\rightarrow	
1	ইতিহাস	\3	দেৎ পারে	ì
•.		•	9 11 0	

- ২. শ্রেণীবিভাগ
- ৩. সমগোত্রীয় শ্রেণী
- ৪. কার্যকরী মূলক
- ে নামকরণ
- ৬. সমাণুতা
- ৭.বন্ধন বিভাজন
- ৮, বিকারক।
- ৯. অ্যালকেন
- ১০. অ্যালকিন
- ১১. অ্যালকাইন
- ১২. অ্যালকাইন হ্যালাইড
- ১৩. অ্যারাইল হ্যালাইড ২৯. রেজোন্যান্স
- ১৪. অ্যালকোহল
- ১৫. ইথার
- ১৬. অ্যালডিহাইড

১৭. কিটোন

- ১৮. কার্বক্সিলিক এসিড।
- ১৯. এসিডের জাতক
 - ২০. এস্টার
 - ২১. অ্যামাইড
 - ২২. এসিড হ্যালাইড
 - ২৩. অ্যানহাইড্রাইড
 - ২৪. অ্যামিন
 - ২৫. ডায়াজোনিয়াম লবণ
 - ২৬. বেনজিন
 - ২৭. ফেনল
 - ২৮. টলুইন

 - ৩০. সাবান ও ডিটারজেন্ট
 - ৩১. পলিমারকরণ
 - ৩২. অ্যালিফেটিকের রূপান্তর

Index

History of Organic Chemistry

উনবিংশ শতাব্দীর প্রথমভাগে রসায়নবিদরা ধারণা করত যে জীব হতে প্রাপ্ত যৌগসমূহ সংশ্লেষণাত্মকভাবে তৈরি করা অত্যন্ত জটিল। প্রাণশক্তি মতবাদ অনুসারে, জৈব পদার্থসমূহ এক ধরনের প্রাণশক্তির অধিকারী। তারা এসকল যৌগের নাম দিলেন জৈব যৌগ; এবং অজৈব পদার্থের রসায়নের গবেষণায় আত্মনিয়োগ করলেন। কেননা, অজৈব রসায়ন তুলনামূলকভাবে সহজ।

১৮১৫ খ্রিষ্টাব্দে বার্জেলিয়াস প্রাণশক্তি তত্ত্বের vital force theory দ্বারা জৈব এবং অজৈব যৌগগুলি পার্থক্য করেন্ তিনি বলেন: "যৌগগুলোর উৎপত্তির জন্য উদ্ভিদ কিংবা প্রাণীদেহে উপস্থিত প্রাণশক্তির প্রয়োজন হয়।" তার মতে, এই শক্তি মানুষের করায়ত্ত নয়, তাই পরীক্ষাগারে অজৈব যৌগ থেকে জৈব যৌগগুলি প্রস্তুত করা সম্ভব নয়।

History of Organic Chemistry

উনবিংশ শতাব্দীর প্রথম অর্ধে এটা প্রমাণিত হয় যে, জৈব যৌগসমূহ গবেষণাগারে সংশ্লেষণ করা সম্ভব। ১৮১৬ সালের দিকে ফরাসি রসায়নবিদ মাইকেল শেভরিউল চর্বি ও ক্ষারের মাধ্যমে গঠিত সাবান নিয়ে গবেষণা শুরু করেন। সে উপলব্ধি করলো যে, বিভিন্ন এসিড ও ক্ষারের সমন্বয়ে সাবান তৈরি হয়। তিনি আরও কিছু যৌগ তৈরির মাধ্যমে প্রমাণ করলেন যে প্রাণশক্তির প্রভাব ছাড়াও চর্বির রাসায়নিক পরিবর্তন সাধন সম্ভব। ১৮২৮ সালে জার্মান বিজ্ঞানী ফ্রেডরিখ ভোলার মানুষের মূত্রের একটি জৈব উপাদান ইউরিয়া তৈরি করলেন অজৈব যৌগ অ্যামোনিয়াম সায়ানেট হতে। তিনি অ্যামোনিয়াম ক্লোরাইড ও লেড সায়ানেট এর বিক্রিয়া অক্সিজেন প্রভাবকের সাহায্যে উচ্চ চাপ এবং ২০০ সেলসিয়াস তাপমাত্রায় ঘটিয়ে অ্যামোনিয়াম সায়ানেট নামক লবণ এবং লেড ক্লোরাইড উৎপন্ন করেন। অ্যামোনিয়াম সায়ানেটকে তাপ দিলে এর আণবিক গঠন বিন্যাসের মাধ্যমে ইউরিয়া তৈরি হয়। এই প্রক্রিয়াকে এখন বলা হয় ভোলার সংশ্লেষণ। যদিও ভোলার এসময় এবং পরবর্তীতে প্রাণশক্তি ধ্বংসের দাবির ব্যাপারে সন্দিহান ছিলেন, তবুও ঐতিহাসিকরা এই ঘটনাকে একটি গুরুত্বপূর্ণ ব্যাপার হিসেবে দেখেন।

জৈব রসায়ন

ত্যালকেনঃ কার্বনের একক বন্ধন

সাধারণ সংকেত	C_nH_{2n+2}	
CH4- (মিথেন)	CH_4	
C2H6 (ইথেন)	$CH_3 - CH_3$	
C3H8 (প্রোপেন)	$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_3}$	
C4H10 (বিউটেন)	$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_3}$	
C5H12 (পেন্টেন)	$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_3}$	

সাধারণ সংকেত	$C_{nH_{2n+1}}$	
CH ₃ (মিথাইল)	CH ₃ —	
C ₂ H ₅ (ইথাইল)	$CH_3 - CH_2 -$	
C ₃ — H ₇ (প্রোপাইল)	$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} -$	
C ₄ — H ₉ (বিউটাইল)	$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_2} -$	
C ₅ — H ₁₁ (পেন্টাইল)	$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 -$	

জৈব রসায়ন

অ্যালকিনঃ কার্বন-কার্বন দ্বিবন্ধন।

সাধারণ সংকেত	C_nH_{2n}
(ইথিন)	C_2H_4
(প্রোপিন)	C_3H_6
(বিউটিন)	C_4H_8
(পেন্টিন)	C_5H_{10}

অ্যালকাইনঃ কার্বন-কার্বন ত্রিবন্ধন।

সাধারণ সংকেত	C_nH_{2n-2}
(ইথাইন)	C_2H_2
(প্রোপাইন)	C_3H_4
(বিউটাইন)	C_4H_6
(পেন্টাইন)	C_5H_8

সমগোত্রীয় শ্রেণি

সমগোত্রীয় শ্রেণিঃ একই মৌলের সমন্বয়ে গঠিত জৈব যৌগ সমুহকে
 ক্রমবর্ধমান আণবিক ভর অনুযায়ী সাজালে যদি পরপর দুটি
 সদস্যের মাঝে একটি মিথাইল (-CH2-)মূলকের পার্থক্য থাকে,যদি
 এদের রাসায়নিক ধর্মে যথেষ্ট মিল থাকে, যদি এদের ভৌত ধর্ম
 পর্যায়ক্রমে আবর্তিত হয় এবং যদি এদের একটি সাধারণ সংকেত
 থাকে তখন এদের সমগোত্রীয় শ্রেণি বলে।

যেমনঃ

আলকেন C _{nH2n+2}
CH4(মিথেন)
C2H6(ইথেন)
C3H8(প্রোপেন)
C4H10(বিউটেন)
C5H12(পেন্টেন)

<mark>অ্যালকিন</mark> C _n H _{2n}
C2H4(ইথিন)
C3H6(প্রোপিন)
C4H8(বিউটিন)
C5H10(পেন্টিন

কার্যকরী মূলক

- কার্যকরী মূলক (Functional Group): জৈব যৌগের অণুতে উপস্থিত যেসকল পরমাণুতে বা মূলক সমস্ত জৈব যৌগের ধর্মকে (বিশেষ করে বিক্রিয়া কৌশল) নিয়ন্ত্রণ করে তাদের কার্যকরী মূলক বলে।
 - [-COOH] (কার্বোক্সলিক এসিড)

 - ෳ [−COX] (এসিড হ্যালাইড)

 - ◎ [−CN] (সায়ানো বা অ্যালকোহল)

 - [-CO] (কিটোন)

 - [—SH] (থাইঅল)
 - [-NH2] (অ্যামিন)
 - (অ্যালকিন)
 - [—CEC—] (অ্যালকাইন)
 - (অ্যারাইল)

- » 1. সর্বোচ্চ কার্বন শিকল গণনা করতে হবে।
 - (ক) গণনার সময় খেয়াল করতে হবে যেন কার্যকরী মূলক সর্বনিম্ন স্থানে থাকে।
 - (খ) শাখা যেন সর্বনিম্ন স্থানে থাকে ।
- » 2. একের অধিক শাখার ক্ষেত্রে ইংরেজি বর্ণমালার ক্রম অনুসারে হবে।
- » 3. কোন জৈব যৌগে একের অধিক কার্যকরী মূলক থাকতে পারে না। যদি থাকে অগ্রধিকারের ক্রমে যে উপরে সে কার্যকরী মূলক, বাকিগুলো শাখা।
- » অবস্থান নির্নয়ের জন্য গণনা করতে হবে।
- » অ্যালকেনের ক্ষেত্রে গণনা করতে হবে দুইবার। একবার বাম থেকে ডানে, আরেকবার ডান থেকে বামে।

- » বাক্সের ভিতর বসবে দ্বি-বন্ধনের অবস্থান।
- » অবস্থান নির্নয়ের জন্য গণনা করতে হয়।

- » অ্যালকেন ব্যাতীত অন্য সকল জৈব যৌগের ক্ষেত্রে গণনা হবে শুধুমাত্র ১ বার। এমনভাবে গণনা করতে হবে যেন কার্যকরী মূলক সর্বনিম্ন স্থানে থাকে।
- » অবস্থান নির্ণয়ের জন্য গণনা করতে হয়।
- » অ্যালকেনের ক্ষেত্রে গণনা হবে দুইবার। একবার বাম থেকে ডানে, আরেকবার ডান থেকে বামে।
- » অ্যালকেন ব্যতীত অন্য সকল জৈব যৌগের ক্ষেত্রে গণনা হবে শুধু মাত্র একবার। এমনভাবে গণনা করতে হবে যেন কার্যকরীমূলক সর্বনিম্ন স্থানে থাকে।

» বাক্সের ভেতরে বসবে দ্বি-বন্ধনের অবস্থান।

$$\mathrm{CH_3} - \mathrm{CH} \equiv \mathrm{C} - \mathrm{CH_3}$$
 $\mathrm{CH_2} - \mathrm{CH_3}$ ধাপ ৩ ধাপ ২ ধাপ ১ $3-$ মিথাইল পেন্ট $-2-$ ইন

» বাক্সের ভেতরে বসবে <mark>ত্রিবন্ধনের</mark> অবস্থান।

$${
m CH_3}$$
 (3) ${
m HC}\equiv {
m C}-{
m CH_2}-{
m CH_2}-{
m CH}-{
m CH}_3$ ${
m 5}-{
m Five}$ হৈক্স ${
m -1}-{
m Sin}$

অ্যালকোহল - অল অ্যালডিহাইড - নল কিটোন - নোন

4

□ 2 — মিথাইল-বিউটেন

$$\begin{array}{ccc} \mathrm{CH_3} & \mathrm{CH_3} \\ | & | \\ \mathrm{H_3C-CH-CH_2-CH_3} \ / \ \mathrm{H_3C-CH_2-CH-CH_3} \end{array}$$

□ 3,4 — ডাইমিথাইল পেন্ট -2 — ইন

2,2,4 — ট্রাইমিথাইল পেন্টেন

$$\begin{array}{ccc} \text{CH}_3 & \text{CH}_3 \\ \text{I} & \text{I} \\ \text{H}_3\text{C} - \overset{\text{I}}{\text{C}} - \overset{\text{CH}}{\text{CH}}_2 \text{- CH- CH}_3 \\ \text{CH}_3 & \text{CH}_3 \end{array}$$

- ✓ কার্যকরী মূলকযুক্ত কার্বনে কোনো H না থাকলে 3°
- ✓ কার্যকরী মূলকযুক্ত কার্বনে একটি H থাকলে 2°
- ✓ কার্যকরী মূলকযুক্ত কার্বনে একের অধিক H না থাকলে 1°

প্রোপানল
$$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{OH}$$
 1° / প্রাইমারি/ n

সমানুতাঃ একই আণবিক সংকেত কিন্তু ভিন্ন ভিন্ন গাঠনিক সংকেত।

সমাণুতার প্রকারভেদঃ

(১) গাঠনিক সমাণুতার প্রকারভেদঃ

(i) শিকল বা চেইন সমাণুতাঃ একই আণবিক সংকেত কিন্তু ভিন্ন ভিন্ন গাঠনিক সংকেত যেখানে চেইন বা শিকলে কার্বন সংখ্যার তারতম্য আছে।

(ii) কার্যকরী মূলক সমাণুতাঃ একই আণবিক সংকেত কিন্তু ভিন্ন ভিন্ন গাঠনিক সংকেত যেখানে কার্যকরী মূলকের তারতম্য রয়েছে।

$$C_2H_6O$$
 \rightarrow CH_3-CH_2OH ইথানল $OR \rightarrow$ ইথার
$$\rightarrow CH_3-O-CH_3$$
 মিথক্সি মিথেন

ইথারের নামকরণ

ইথারের নামকরণঃ

ইথার = অক্সি অ্যালকেন

কার্বন সংখ্যা	অ্যালকেন	অক্সি
٥	মিথেন	মিথক্সি
২	ইথেন	ইথক্সি
•	প্রোপেন	প্রপক্সি

- 0 এর যে পাশে কম কার্বন ঐ পাশ → অক্সি
- ➡ 0 এর যে পাশে কম কার্বন ঐ পাশ → অ্যালকেন

 \longrightarrow O এর দুই পাশে C সংখ্যা সমান থাকলে যেকোনো একপাশে
অক্সি, যেকোনো এক পাশে অ্যালকেন।

অক্সি অ্যালকেন
$$CH_3-CH_2-O-CH_2-CH_3$$
 $2C$ $2C$ ইথক্সি ইথেন

অক্সি অ্যালকেন

$$CH_3 - O - CH_3$$
 $1C$

1C

মিথক্সি মিথেন

মিথক্সি মিথেন

(iii) অবস্থান সমাণুতাঃ একই আণবিক সংকেত কিন্তু ভিন্ন ভিন্ন গাঠনিক সংকেত যেখানে কার্যকরী মূলকের অবস্থানের তারতম্য রয়েছে।

অক্সি অ্যালকেন

$$CH_3 - CH_2 - O - CH_2 - CH_3$$
 $2C$

ইথক্সি

ইথক্সি

ইথক্সি

ইথক্সি

ইথক্সি

ইথক্সি

অক্সি অ্যালকেন

$$CH_3 - O - CH_3$$
 $1C$

1C

মিথক্সি

মিথেন

মিথক্সি

মিথেন

- (iv) টটোমারিজমঃ স্বতস্কূর্তভাবে এক কার্যকরীমূলকযুক্ত যৌগ থেকে আরেক কার্যকরীমূলক যুক্ত যৌগে পরিণত হয়।
 - ⇒ সাধারণত কিটোন এটি প্রদর্শন করে। এজন্য এর অপর নাম

 হলো কিটো ইনল সমাণুতা।
 - ➡ একমাত্র স্বতস্কূর্ত বা গতিশীল সমাণুতা হলো টটোমারিজম।

(v) মেটামারিজমঃ কার্যকরী মূলকের উভয় পাশে C সংখ্যা তারতম্যের জন্য যে সমাণুতা সৃষ্টি হয়, তাকে মেটামারিজম বলে।

সাধারণত ইথার, কিটোন, 2° অ্যালকোহল, 2° অ্যামিন মেটামারিজম প্রদর্শন করতে পারে।

ভ্রিমাত্রিক বা স্টেরিও সমাণুতার প্রকারভেদঃ

ত্রিমাত্রিক বা স্টেরিও সমাণুতা

জ্যামিতিক বা সিস ট্রান্স সমাণুতা

নোট •⊀

আলোক সমাণুতা বা অপটিক্যাল আইসোমারিজম

♦ জ্যামিতিক বা সিস ট্রান্স সমাণুতাঃ একই আণবিক সংকেত ও একই
গাঠনিক সংকেত বিশিষ্ট কোনো জৈব যৌগের অণুতে বন্ধনের মুক্ত
আবর্তন সম্ভব না হলে দুটি ভিন্ন কাঠামোর সৃষ্টি হয়। একে জ্যামিতিক
সমাণুতা বলে।

♦ জ্যামিতিক সমাণুতার শর্ত ♦

abC = Cba (a
$$\neq$$
 b) \bigcirc CH₃HC = CH CH₃

abC = Cbd (a
$$\neq$$
 b, b \neq d) \bigcirc CH₃HC = CHCl

$$\circ$$
 abC = Cde (a \neq b, d \neq e) \diamond CH₃HC = CClBr

1 কার্বন-কার্বন দ্বিবন্ধন

ছিবন্ধনযুক্ত বাম কার্বনের দুই হাত ভিন্ন

সিবন্ধনযুক্ত ডান কার্বনের দুই হাত ভিন্ন

- 1 কার্বন-কার্বন দ্বিবন্ধন
- - রিবন্ধনযুক্ত ডান কার্বনের দুই হাত ভিন্ন

$$\frac{2}{(1)} \frac{1}{CH_3} \frac{3}{HC} = C \frac{HCH_3}{3}$$

$$\frac{2}{3} \frac{1}{3} \frac{3}{3}$$
 (3) CH₃ H C = C Cl Br

$$\frac{2}{(2)} \frac{1}{CH_3} \frac{3}{HC} = \frac{1}{CH} \frac{3}{CH}$$

$$\begin{array}{cccc} \mathbf{X} & 2 & 1 & \times \\ (4) & CH_3 & H & C = CH_2 \end{array}$$

$$\begin{array}{ccc} \times & \times & 1 \\ (5) (CH_3)_2 C = CHCH_3 \end{array}$$

- ♦ সিসঃ একই রকম পরমাণু বা মূলকগুলো একই পাশে থাকলে সিস।
- উ্রাঙ্গঃ একই রকম পরমাণু বা মূলকগুলো বিপরীত পাশে থাকলে
 ট্রাঙ্গ।

সিস বিউট -2 — ইন ডায়অয়িক এসিড বাণিজ্যিক নামঃ ম্যালোয়িক এসিড

ট্রান্স বিউট -2 — ইন ডায়অয়িক এসিড বাণিজ্যিক নামঃ ফিউমারিক এসিড

🔷 আলোক সমাণুতা বা অপটিক্যাল আইসোমারিজমঃ

- 🕸 যে সকল যৌগে কাইরাল কার্বন থাকে তারা আলোক সক্রিয় হয়।
- আলোক সক্রিয় যৌগসমূহ আলোক সমাণুতা প্রদর্শন করে।
- 🕸 যে কার্বনে চারটি ভিন্ন পরমাণু বা মূলকযুক্ত থাকে তাকে কাইরাল কার্বন বলে।

♦ আলোকসক্রিয় যৌগের বৈশিষ্ট্যসমূহ ♦

- কাইরাল কার্বন থাকের।
- 🕸 আলোক সক্রিয় যৌগসমূহ তল সমাবর্তিত আলোর তলকে একবার ঘড়ির কাটার দিকে, আরেকবার ঘড়ির কাঁটার বিপরীত দিকে পরিভ্রমন করে।
- 🕸 যখন ঘড়ির কাঁটার দিকে পরিভ্রমণ করে তখন তাকে ডানঘূর্ণী বা d বলা হয়।
- 🕸 যখন ঘড়ির কাটার বিপরীত দিকে পরিভ্রমণ করে তখন তাকে। বামঘূৰ্ণী বা 1 বলা হয়।
- 🕸 আলোক সমাণুদ্বয় d এবং l কে পরস্পর পরস্পরের এনানসিওমার বলে।
- 🕸 এনানসিওমারদ্বয়ের আবর্তন কোণ সমান কিন্তু বিপরীত।

d ল্যাকটিক এসিড আবর্তন কোণঃ $+2.24^{\circ}$ আবর্তন কোণঃ -2.24° মাংশপেশীতে পাওয়া যায়।

ℓ ল্যাকটিক এসিড টক দইতে পাওয়া যায়

♦ রেসিমিক মিশ্রণঃ সমমোলার পরিমাণ এনানসিওমারের মিশ্রনকে রেসিমিক মিশ্রন বলে। রেসিমিক মিশ্রণের আবর্তন কোণ শূন্য। কারণ এনানসিওমারদ্বয়ের আবর্তন কোণ সমান কিন্তু চিহ্ন বিপরীত।

Ж মেসো যৌগঃ কাইরাল কার্বন থাকা সত্ত্বেও আলোক নিচ্জিয় যৌগ। যেমনঃ টারটারিক এসিড।

 $C_4H_6O_6$ (টারটারিক এসিড)

এক অংশ আরেক অংশের আবর্তন কোণের মাত্রাকে প্রশমিত করে । তাই কাইরাল কার্বন থাকা সত্ত্বেও মেসো যৌগ আলোক নিষ্ক্রিয়।

ভায়াস্টেরিওমারঃ একের অধিক কাইরাল কার্বন বিশিষ্ট , একই আণবিক সংকেতযুক্ত কন জৈব যৌগের ভিন্ন ভিন্ন কনফিগারেশন বিশিষ্ট দুটি আলোক সমাণু যদি পরস্পরের দর্শন প্রতিবিম্ব না হয়-তখন এদেরকে পরস্পর পরস্পরের ভায়াস্টেরিওমার বলে।

যেমনঃ মেসো টারটারিক এসিড এবং আলোক সক্রিয় টারটারিক এসিড পরস্পর পরস্পরের ডায়াস্টেরিওমার।

(মেসো টারটারিক এসিড)

(আলোকসক্রিয় টারটারিক এসিড)

😠 সমাণুর সংখ্যাঃ

কার্বন সংখ্যা	সমাণু সংখ্যা	
4	2	
5	3	
6	5	
7	9	
8	18	

- ➡ 4 কার্বনের কম হলে অ্যালকেন সমাণু দিতে পারেনা।
- ➡ 4 বা তার বেশী কার্বন বিশিষ্ট অ্যালকেন AlCl₃এর উপস্থিতিতে সমাণু দেয়।

क) प्रानकारेन शानारेष

 C_4H_9X-4 টি সমাণু C_4H_9Cl-4 টি সমাণু C_4H_9Br-4 টি সমাণু C_4H_9I-4 টি সমাণু

2) অ্যালকোহল ও ইথার

 $C_2H_6O - 2$ টি সমাণু C₃H₈O - 3 টি সমাণু $C_4H_{10}O - 7$ টি সমাণু

খ) অ্যালকাইল ডাই-হ্যালাইড

 $C_4H_8X_2-10$ টি সমাণু $C_4H_8Cl_2-10$ টি সমাণু $C_4H_8Br_2-10$ টি সমাণু $C_4H_8Br_2-10$ টি সমাণু

2) कार्वनिल यौश

 $C_2H_4O - 2$ টি সমাণু $C_3H_6O - 4$ টি সমাণু $C_5H_{10}O - 7$ টি সমাণু

3 টি ইথার 4 টি অ্যালকোহল 4 টি অ্যালডিহাইড 3 টি কিটোন

কার্বনিল যৌগ মানে অ্যালডিহাইড বা কিটোন।

- 4) বেনজিন (C₆H₆)
 - ক) দ্বিপ্রতিস্থাপকের ক্ষেত্রে সমাণু তিনটিঃ

$$C_6H_4Cl_2 - 3$$
 টি সমাণু $C_6H_4(OH)_2 - 3$ টি সমাণু $C_6H_4ClOH - 3$ টি সমাণু

- খ) ত্রিপ্রতিস্থাপকের ক্ষেত্রেঃ
 - (i) প্রতিস্থাপক তিনটি একই হলে সমাণু 3 টি। $C_6H_3Cl_3 \rightarrow$ সমাণু 3 টি
 - (ii) দুটি প্রতিস্থাপক একই, অপরটি ভিন্ন হলে সমাণু 6 টি। $C_6H_3Cl_2OH o$ সমাণু 6 টি
 - (ii) তিনটি প্রতিস্থাপকই ভিন্ন ভিন্ন হলে সমাণু 10 টি। $C_6H_3OHCINO_2 \rightarrow$ সমাণু ১০ টি

$$(1) CH_3 - CH_2 - CH_2 - CH_2 - OH$$
 (বিউটানল)

(3)
$$CH_3 - CH - CH_2 - OH$$
 (2 — মিথাইল প্রপানল)

$$(5) CH_3 - CH_2 - O - CH_2 - CH_3$$
 (ইথক্সি ইথেন)

(6)
$$CH_3 - O - CH_2 - CH_2 - CH_3$$
 (মিথক্সি প্রপেন)

(7)
$$CH_3 - O - CH - CH_3$$
 (মিথক্সি প্রপেন)
|
 CH_3

 CH_3

(1)
$$CH_3 - CH_2 - CH_2 - CH_2 - CHO$$
 (পেন্টান্যাল)
$$CH_3$$

$$(2) CH_3 - CH_2 - CH - CHO (2 - মিথাইল বিউটান্যাল)$$

(3)
$$\mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{CHO}$$
 (3 — মিথাইল বিউটান্যাল)

$$(5) CH_3 - CH_2 - CO - CH_2 - CH_3$$
 (পেন্টানোন -3)

$$(6) ext{ CH}_3 - ext{CO} - ext{CH}_2 - ext{CH}_2 - ext{CH}_3$$
 (পেন্টানোন -2)

$$(7) CH_3 - CO - CH - CH_3 (3 - মিথাইল বিউটানোন $-2)$$$

জৈব রসায়ন

- 米 কেন্দ্রাকর্ষী বিকারক বা নিউক্লিওফাইল বা Nu-: কেন্দ্রকে আকর্ষণ করে যে বিকারক।
 - ❖ সকল আনায়ন ও মুক্তজোড় ইলেকট্রন বিশিষ্ট যৌগ। যেমনঃ $H_2\ddot{O}$, $\ddot{N}H_3$, $R-\ddot{O}-H$ ইত্যাদি Nu^- ।
 - ❖ Nu সমূহ লুইস ক্ষার নামে পরিচিত।
- # ইলেকট্রন আকর্ষী বিকারক বা ইলেকট্রোফাইল বা E+:

 ইলেকট্রনকে আকর্ষণ করে যে বিকারক।
 - ❖ সকল ক্যাটায়ন ও অষ্টক পূর্ণ যৌগ। যেমনঃ AlCl₃, FeCl₃, BF₃, SO₃, BeCl₃ ইত্যাদি E⁺
- তিড়িৎ ঋণাত্মকতাঃ সমযোজী বন্ধনে আবদ্ধ শোয়ারকৃত
 ইলেকট্রনকে নিজের দিকে টেনে নেওয়ার ক্ষমতাকে তিড়িৎ
 ঋণাত্মকতা বলে।

H = 2.1				
	C = 2.5	N = 3	0 = 3.5	F = 4
			S = 2.5	Cl = 3
				Br = 2.8
				I = 2.5

» সুষম বিভাজনঃ H₂ H − H H · · H

2.1 2.1 ফ্রি-র্যাডিকেল

সমযোজী বন্ধনের সুষম বিভাজনের ফলে সৃষ্টি হয় ফ্রি-র্য়াডিকেল।

জৈব রসায়ন

Н

বিষম বিভাজনের ফলে সৃষ্টি হয় কার্বো-ক্যাটায়ন ও কার্বো-অ্যানায়ন।

★ কার্বোক্যাটায়ন ও কার্বোনিয়াম আয়নের স্থায়িত্বের ক্রমঃ

$$-C^{+}RH_{3} > -C^{+}HR_{2} > -C^{+}H_{2}R > -C^{+}H_{3}$$

 $3^{o} > 2^{o} > 1^{o} > -C^{+}H_{3}$

অ্যালকাইল মূলক ইলেকট্রন দাতা গ্রুপ। অ্যালকাইল মূলক যুক্ত থাকলে ধনাত্মক চার্জ হ্রাস পায়। যতবেশি অ্যালকাইল মূলক যুক্ত থাকে ততবেশি ধনাত্মক চার্জ ততবেশি হ্রাস পায়।

চাৰ্জ যত কম স্থায়িত্ব তত বেশি।

★ কার্বনায়নের স্থায়িত্বের ক্রমঃ

$$-C^{+}H_{3} > -C^{+}H_{2}R > -C^{+}HR_{2} > -C^{+}RH_{3}$$

 $-C^{+}H_{3} > 1^{o} > 2^{o} > 3^{o}$

অ্যালকাইল মূলক ইলেকট্রন দাতা গ্রুপ। অ্যালকাইল মূলক যুক্ত থাকলে ধনাত্মক চার্জ বৃদ্ধি পায়। যতবেশি অ্যালকাইল মূলক যুক্ত থাকে ততবেশি ধনাত্মক চার্জ ততবেশি বৃদ্ধি পায়।

চাৰ্জ যত বেশি স্থায়িত্ব তত কম।

আলিকেন

০১। উর্টজ ও উর্টজ ফিটিগ বিক্রিয়াঃ

(ক) উর্টজ বিক্রিয়াঃ দুই অণু অ্যালকাইল হ্যালাইড কে Na ধাতুর উপস্থিতিতে শুক্ষ ইথারের মধ্য দিয়ে চালনা করলে উৎপন্ন হয় উচ্চতর অ্যালকেন।

$$R-X+2Na+X-R \xrightarrow{\ensuremath{\mathfrak{GR}}\ensuremath{\overline{\mathtt{S}}}\ensuremath{\overline{\mathtt{S}}}\ensuremath{\overline{\mathtt{S}}}\ensuremath{\overline{\mathtt{S}}}\ensuremath{\mathtt{VII}}\ensuremath{\mathtt{R}}-R+2NaX$$
 $CH_3-Cl+2Na+Cl-CH_3 \xrightarrow{\ensuremath{\mathfrak{GR}}\ensuremath{\overline{\mathtt{S}}}\ensuremath{\overline{\mathtt{S}}}\ensuremath{\mathtt{VII}}\ensuremath{\mathtt{S}}}\ensuremath{\mathtt{C}}\ensuremath{\mathtt{H}}_3-Cl+2NaCl$

(খ) উর্টজ ফিটিগ বিক্রিয়াঃ এক অণু অ্যারেল হ্যালাইড এবং এক অণু অ্যালকাইল হ্যালাইডকে একত্রে Na ধাতুর উপস্থিতিতে শুষ্ক ইথারের মধ্য দিয়ে চালনা করলে উৎপন্ন হয় অ্যারোম্যাটিক হাইড্রোকার্বন।

$$ArX + R - X + 2Na \xrightarrow{\mathfrak{S}} Ar - R + 2NaX$$

$$Cl$$
 CH_3 $+CH_3Cl + 2Na \xrightarrow{\mathfrak{S}}$ ইথার $+2NaCl$

০২। ডিকার্বক্সিলেশন বা কার্বক্সিত্যাজন বিক্রিয়াঃ

জৈব এসিডের লবণকে সোডালাইম বলে। সোডালাইম (NaOH + CaO) এর মধ্য দিয়ে চালনা করলে উৎপন্ন হয় জৈব এসিডের লবণ থেকে এক কার্বন কম বিশিষ্ট অ্যালকেন।

$$CH_3COONa + NaOH + CaO \longrightarrow CH_4 + Na_2CO_3$$
 সোডিয়াম ইথানয়েট সোডালাইম মথেন বা অ্যাসিটেড

আালকেন

 $\mathrm{CH_3CH_2COONa} + \mathrm{NaOH} + \mathrm{CaO} \longrightarrow \mathrm{CH_3} - \mathrm{CH_3} + \mathrm{Na_2CO_3}$ সোডিয়াম প্রোপানয়েট ইথেন

কোব সংশ্লেষনঃ জৈব এসিডের লবণের মধ্যে পানি চালনা করে তড়িৎ বিশ্লেষণ করলে উৎপন্ন হয় অ্যালকেন।

জৈব এসিডের লবণ
$$+ H_2O$$
 $\xrightarrow{\text{Electrolysis}}$ আ্যালকেন $+ CO_2 +$ ক্ষার $+ H_2$ জৈব এসিডের লবণের সমান কার্বন বিশিষ্ট

$$2CH_3COONa \xrightarrow{Electrolysis} CH_3 - CH_3 + 2CO_2 + 2NaOH + H_2$$

আনোডে জারণঃ
$$2CH_3COO^- - e^- \longrightarrow CH_3 - CH_3 + 2CO_2$$

ক্যাথোডে বিজারণঃ
$$2Na^+ + 2e^- \longrightarrow 2Na$$

 $2Na + 2H_2O \longrightarrow 2NaOH + H_2$

$$2CH_3COO^- + 2Na^+ + 2H_2O \rightarrow CH_3 - CH_3 + 2CO_2 + 2NaOH + H_2$$

🔏 অ্যারোমিটিকিকরণ বিক্রিয়াঃ এই বিক্রিয়া তিন ধাপে সম্পন্ন হয়।

- 1. তাপ বিয়োজন
- 2. চাক্রিকরণ
- 3. হাইড্রোজেন বিচ্যুতি

অ্যালকেন

আ্যালকেন

₩ অ্যালকেনের হ্যালোজিনেশনঃ (ফ্রি র্যাডিকেল কৌশল)

(i) সূচনা স্তরঃ
$$Cl - Cl \xrightarrow{h\nu} Cl \cdot + Cl \cdot$$

(ii) বিস্তারণ স্তরঃ
$${
m Cl} - {
m H} {ullet} {
m CH}_3
ightarrow {
m H} - {
m Cl} + {
m e} {
m CH}_3$$
 ${
m e} {
m CH}_3 + {
m Cl} {
m e} {
m Cl} + {
m Cl} {
m e}$

(iii) সমাপ্তি শুরঃ
$$\mathrm{Cl} ullet + \mathrm{Cl} ullet \to \mathrm{Cl}_2$$
 $ullet \mathrm{CH}_3 + ullet \mathrm{CH}_3 \to \mathrm{CH}_3 - \mathrm{CH}_3$ $ullet \mathrm{CH}_3 + \mathrm{Cl} ullet \to \mathrm{CH}_3 - \mathrm{Cl}$

 $H \bullet \bullet CH_3$

অ্যালকেনের ক্ষেত্রে কার্বন সংখ্যা যত বেশি, গলনাঙ্ক-স্ফুটনাঙ্ক তত বেশি।

অ্যালকিন

% অ্যালকিনঃ

- ⇒ कार्तन कार्तन षि-तक्षन।
- \Rightarrow সাধারণ সংকেত C_nH_{2n}

😠 অ্যালকিন প্রস্তুতিঃ

(১) ইথানলের মধ্যে 350° C তাপমাত্রায় অ্যালুমিনা (Al_2O_3) চালনা করলে উৎপন্ন হবে ইথিন।

$$CH_3 - CH_2 - OH \xrightarrow{Al_2O_3, 350^{\circ}C} H_2C = CH_2$$
 (ইথিন)

(২)
$$CH_3CH_2OH + H_2SO_4 \xrightarrow{100^{\circ}C} CH_3CH_2HSO_4$$
(গাঢ়) (ইথাইল হাইড্রোজেন সালফেট)

$$CH_3CH_2OH + H_2SO_4 \xrightarrow{165-170^{\circ}C} CH_2 = CH_2$$
 (অতিরিক্ত)

$$CH_3CH_2OH + H_2SO_4 \xrightarrow{140^{\circ}C} CH_3CH_2OCH_2CH_3$$
(অতিরিক্ত)

(ইথক্সি ইথেন)

একক বন্ধন থাকলে প্রতিস্থাপন বিক্রিয়া দেয়

দ্বিবন্ধন বা ত্রিবন্ধন বন্ধন থাকলে যুত বিক্রিয়া দেয়

স্ল অ্যালকিনের ইলেকট্রন আকর্ষি যুত বিক্রিয়ার কৌশলঃ

ধাপ-১: পাই ইলেকট্রনের প্রভাবে বিকারক ইলেকট্রোফাইল ও নিউক্লিউফাইলে বিভাজিত হয়।

$$E - Nu \rightarrow E^+ + Nu^-$$

ধাপ ২: পাই ইলেকট্রনের প্রভাবে E⁺ দ্বিবন্ধনযুক্ত একটি কার্বনে যুক্ত হয় ফলে দ্বিবন্ধনযুক্ত অপর কার্বনে ধনাত্মক চার্জের সৃষ্টি হয়।

ধাপ ৩: Nu⁻ সহজেই ধনাত্মক কার্বনের সাথে যুক্ত হয়ে যুত যৌগ তৈরি করে।

$$\begin{array}{c|c}
C - C^{+} & + Nu^{-} \rightarrow & C - C \\
\downarrow & \downarrow & \downarrow \\
E & Nu
\end{array}$$

যুত বিক্রিয়ায় যে আগে যুক্ত হয় সে বিক্রিয়া কৌশল নির্ধারক।

 E^+ আগে যুক্ত হলে ইলেকট্রন আকর্ষী।

 Nu^- আগে যুক্ত হলে কেন্দ্র আকর্ষী।

যেহেতু অ্যালকিনের যুত বিক্রিয়ায় পাই ইলেকট্রনের প্রভাবে প্রথমে যুক্ত হয়, তাই অ্যালকিনের যুত বিক্রিয়া ইলেকট্রন আকর্ষী যুত বিক্রিয়া।

🗯 অপ্রতিসম অ্যালকিনঃ দ্বি-বন্ধন যুক্ত কার্বনে H সংখ্যা অভিন্ন।
যেমনঃ $CH_3 - CH = CH_2$

🔀 প্রতিসম অ্যালকিনঃ দ্বি-বন্ধন যুক্ত কার্বনে H সংখ্যা সমান।

যেমনঃ
$$H_2C-CH_2$$
 , $CH_3-CH=CH-CH_2-CH_3$

- » প্রতিসম বিকারকঃ (+) (−) একই। যেমনঃ Br₂ Br⁺ Br[−]

$$H_2C \stackrel{\pi}{=} CH_2 + H^+Br^- \longrightarrow H_2C - CH_2$$

$$|\sigma| |\sigma$$

$$H Br$$

- **স্ল** মার্কনিকভ ও বিপরীত মার্কনিকভ নীতিঃ
 - (ক) মার্কনিকভ নীতিঃ অপ্রতিসম অ্যালকিন এবং অপ্রতিসম বিকারকের যুত বিক্রিয়ায় দ্বিন্ধনযুক্ত যে কার্বনে বেশি সংখ্যক H থাকে সেখানে বিকারকের ধনাত্মক অংশ যুক্ত হয়। দ্বিন্ধনযুক্ত অপর কার্বনে যুক্ত হয় বিকারকের ঋণাত্মক অংশ।

যেহেতু 2° কার্বোক্যাটায়নের স্থায়িত্ব 1° থেকে বেশি তাই 90 ভাগ সময় 2 — ব্রোমো প্রোপেন উৎপন্ন হয়।

- » কার্যকরী মূলকযুক্ত কার্বনে কোনো H না থাকলে 3°/ টারশিয়ারি/ নিও/ neo
- » কার্যকরী মূলকযুক্ত কার্বনে একটি H থাকলে 2°/ সেকেন্ডারী/ আইসো/ iso
- » সকল কার্বনে একের অধিক H থাকলে 1°/ প্রাইমারী/ n

মার্কনিকভ নীতি মেনে চলে আয়নিক কৌশল।

স মার্কনিকভ নীতির কৌশলঃ

2° কার্বোক্যাটায়ন

2 – ব্রোমো প্রোপেন

বা

ISO – ব্রোমাইল প্রোপেন

$$CH_3 - CH = CH_2 + H^+Br^- \rightarrow CH_3 - CH - CH_2 \xrightarrow{Br^-} CH_3 - CH_2 - CH_2 - Br$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

1° কার্বোক্যাটায়ন

1 – ব্রোমো প্রোপেন

বা

n – ব্রোমাইল প্রোপেন

যেহেতু 2° কার্বোক্যাটায়নের স্থায়িত্ব 1° থেকে বেশি তাই 90 ভাগ সময় 2 — ব্রোমো প্রোপেন উৎপন্ন হয়।

- » ধনাত্মক চার্জযুক্ত কার্বনে কোনো H না থাকলে 3° কার্বোক্যাটায়ন।
- » ধনাত্মক চার্জযুক্ত কার্বনে একটি H থাকলে 2° কার্বোক্যাটায়ন।
- » ধনাত্মক চার্জযুক্ত কার্বনে একের অধিক H থাকলে 1° কার্বোক্যাটায়ন।

আলিকিন

(খ) বিপরীত মার্কনিকভ নীতি বা পারঅক্সাইড নীতি বা খারাশের নীতিঃ জৈব পারঅক্সাইডের উপস্থিতিতে অপ্রতিসম অ্যালকিন এবং অপ্রতিসম বিকারকের যুত বিক্রিয়াইয় দ্বি-বন্ধনযুক্ত যে কার্বনে বেশি সংখ্যক H থাকে সেখানে বিকারকের ঋণাত্মক অংশ যুক্ত হয়, দ্বিবন্ধনযুক্ত অপর কার্বনে যুক্ত হয় বিকারকের ঋণাত্মক অংশ।

- » কার্যকরী মূলকযুক্ত কার্বনে কোনো H না থাকলে 3°/ টারশিয়ারি/ নিও/ neo
- » কার্যকরী মূলকযুক্ত কার্বনে একটি H থাকলে 2°/ সেকেন্ডারী/ আইসো/ iso
- » সকল কার্বনে একের অধিক H থাকলে 1°/ প্রাইমারী/ n

আ্যালকিন

★ বিপরীত মার্কনিকভ নীতি মেনে চলে ফ্রির্যাডিক্যাল কৌশলঃ

$$R-O-O-R \longrightarrow RO \bullet + \bullet OR$$
 $RO \overset{\checkmark}{\bullet} + H \overset{\checkmark}{\bullet} \bullet Br \longrightarrow RO - H + \bullet Br$
 $CH_3 - CH \overset{\checkmark}{\stackrel{\smile}{\leftarrow}} CH_2 \overset{\checkmark}{\stackrel{\rightarrow}{\rightarrow}} CH_3 - \overset{\checkmark}{CH} - CH_2 \overset{H \overset{\smile}{\rightarrow} Br}{\longrightarrow} CH_3 - CH - CH_2 + \bullet Br$
 $Br \qquad H \qquad Br$

$$2^{\circ}$$
 ফ্রির্যাডিকেল বা, $CH_3 - CH_2 - CH_2$ Br
$$1 - (AICH) (AICH) (AICH) (AICH)$$

$$1 - (AICH) (AI$$

বা, আইসো ব্রোমাইল প্রোপেন (10%)

2 – ব্রোমো প্রোপেন

2° ফ্রির্য়াডিক্যাল এর স্থায়িত্ব 1° থেকে বেশি তাই 90 ভাগ সময় ১ — ব্রোমোপ্রোপেন, বাকি 10 ভাগ সময় 2 — ব্রোমো প্রোপেন উৎপন্ন হয়।

- » ফ্রির্যাডিক্যাল যুক্ত কার্বনে কোনো H না থাকলে 3° ফ্রি র্যাডিক্যাল।
- » ফ্রির্যাডিক্যাল যুক্ত কার্বনে একটি H থাকলে 2° ফ্রি র্যাডিক্যাল।
- » ফ্রির্যাডিক্যাল যুক্ত কার্বনে একের অধিক H থাকলে 1° ফ্রির্যাডিক্যাল।

আলিকিন

অ্যালকিনের ওজনীকরণঃ

» অ্যালকিনের ওজনীকরণ করলে উৎপন্ন অ্যালকিন ওজনাইড। একে Zn ধাতুর উপস্থিতিতে আর্দ্র বিশ্লেষন করলে দুই অণু একই বা ভিন্ন ভিন্ন কার্বনিল যৌগ।

অ্যালকিন + O_3 —> অ্যালকিন ওজনাইড $\frac{H_2O/Zn}{}$ সুই অণু একই বা ভিন্ন কার্বনিল যৌগ

कार्वनिल योग भारन व्यालिएशरेए वा किछोन

» প্রপ-1 ইন কে ওজনীকরণের পর Zn ধাতুর উপস্থিতিতে আর্দ্র বিশ্লেষণ করলে কি পাওয়া যায়?

বৈশিষ্ট্যঃ

- $1. \ \ 0_3$ অণু পাই বন্ধনে আক্রমণ করে।
- 2. Zn + H₂O দারা আর্দ্রবিশ্লেষণ করলে ZnO এবং কার্বনিল যৌগ পাওয়া যাবে। কিন্তু শুধু H₂O দারা আর্দ্রবিশ্লেষণ করলে H₂O₂ তৈরী হওয়ায় > C = O যৌগ জারিত হয় —COOH তৈরী করবে।

$$C = C + O_3 \longrightarrow C \longrightarrow C = O + ZnO$$

$$O + O$$

$$O + O$$

প্রতিসম অ্যালকিন নিলে উৎপন্ন যৌগদ্বয় একই হয়

আালকিন

➤ 2 — মিথাইল বিউট —2 — ইন কে ওজনীকরণের পর Zn ধাতুর উপস্থিতিতে আর্দ্র বিশ্লেষণ করলে কি পাওয়া যায়?

$$CH_{3} - C = CH - CH_{3} + O_{3} \longrightarrow CH_{3} - C \longrightarrow O \longrightarrow O$$

$$CH_{3} - CH - CH_{3} \xrightarrow{H_{2}O/Zn} O$$

For MCQ (ShortCut):

$$CH_3$$
 $CH_3 - C \neq CH - CH_3$
 $CH_3 - CO - CH_3 - CH_3 - CH_3$
 $CH_3 - CO - CH_3 + CH_3 - CH_3 + CH_3$
 $CH_3 - CH_3 + CH_3 C$

▶ 2,3 — ডাইমিথাইল বিউট —2 — ইন কে ওজনীকরণের পর Zn ধাতুর উপস্থিতিতে আর্দ্র বিশ্লেষণ করলে কি পাওয়া যায়?

For MCQ (ShortCut):

$$CH_3$$
/ CH_3
 CH_3 – CH_3 – CH_3 – CH_3 – $CO - CH_3$
 $CH_3 - CO - CH_3$ – $CH_3 - CO - CH_3$
 $CH_3 - CO - CH_3 + CH_3 - CO + CH_3 - ZnO$
প্রপানন প্রোপানোন
বা, অ্যাসিটোন বা, অ্যাসিটোন

ওজনীকরণ এবং আর্দ্র বিশ্লেষণের পর প্রাপ্ত উৎপাদ দুটি একই হলে বলা যায় একটি উৎপাদ পাওয়া গিয়েছে।

 ওজনীকরণ বিক্রিয়াঃ কার্বনিল যৌগ থেকে অ্যালকিন (উৎপাদ থেকে বিক্রিয়া)

ধাপ ১: কার্বনিল যৌগের সংকেত

ধাপ ২: অক্সিজেন মুখোমুখি করণ

ধাপ ৩: দ্বিবন্ধন দ্বারা '0' বিচ্যুতিকরণ

» একটি অ্যালকিনকে ওজনীকরণের পর আর্দ্রবিশ্লেষণ করলে ইথান্যাল এবং মিথান্যাল পাওয়া যায়। অ্যালকিনটি কি হতে পারে?

ধাপ ১: CH₃-CHO HCHO

ধাপ ২: CH₃-CHO = OHCH

ধাপ ৩: CH₃-CH=CH₂ প্রপ-১-ইন

আ্যালকিন

» একটি অ্যালকিনকে ওজনীকরণের পর আর্দ্রবিশ্লেষণ করলে অ্যাসিটোন এবং ইথ্যান্যাল পাওয়া যায়। অ্যালকিনটি কি হতে পারে?

- একক বন্ধন থাকলে সম্পুক্ত যৌগ
- দ্বি-বন্ধন বা ত্রি-বন্ধন অর্থাৎ (π) পাই বন্ধনের উপস্থিতি থাকলে অসম্পৃক্ত যৌগ।
- অসম্পক্ত যৌগ যুত বিক্রিয়া দেয়।
- যুত বিক্রিয়ায় দ্বি-বন্ধন বা ত্রিবন্ধনযুক্ত এক কার্বনে যুক্ত হয় (+),
 অপর কার্বনে যুক্ত হয় (-)।

প্রতিবার যুত বিক্রিয়ায় একটি পাই (π) বন্ধন ভেঙে দুটি সিগমা (σ) বন্ধন সৃষ্টি হয়।

আ্যালকিন

★ বিক্রিয়া ৯: অসম্পৃক্ততার পরীক্ষাঃ

অসম্পৃক্ততার পরীক্ষা দুইটি

ক) বেয়ার পরীক্ষা

- খ) ব্রোমিন দ্রবণ পরীক্ষা
- » ক) বেয়ার পরীক্ষাঃ বেয়ার পরীক্ষায় ব্যবহৃত হয় ক্ষারীয় ${\rm KMnO_4}$ এর গাঢ় বেগুনী বর্ণের জলীয় দ্রবন ।

$$H_2C = \frac{\pi}{\sigma} CH_2 + H_2O + [O] \xrightarrow{KMnO_4} H_2C - CH_2$$
ইথিলিন বা OH OH
ইথিন খ্লাইকল (বৰ্ণহীন)

$$KMnO_4 + KOH \rightarrow K_2MnO_4 + H_2O + [O]$$

২। ব্রোমিণ দ্রবণ পরীক্ষাঃ ব্রোমিণ দ্রবন পরীক্ষায় ব্যবহৃত হয় নিষ্ক্রিয় দ্রাবক CCl4 এর উপস্থিতিতে লাল বর্ণের Br4।

$$H_2C \stackrel{\pi}{=} CH_2 + Br_2 (CCl_4)$$
 \longrightarrow $H_2C - CH_2$ $|\sigma| |\sigma|$ $|\sigma|$ $|\sigma|$

আ্যালকাইন

% অ্যালকাইনঃ

- \Rightarrow কার্বন কার্বন ত্রি-বন্ধন।
- \Rightarrow সাধারণ সংকেত $C_n H_{2n-2}$

$$CaC_2 + H_2O \longrightarrow HC = CH$$

ইথাইন বা অ্যাসিটিলিন

» অসম্পৃক্ত যৌগ ততক্ষণ পর্যন্ত যুত বিক্রিয়া দিবে যতক্ষণ পর্যন্ত না সম্পৃক্ত হয়।

> অ্যালকিন যুত বিক্রিয়া দেয় একবার, অ্যালকাইন যুত বিক্রিয়া দেয় দুইবার।

ত্যালকাইন

★ ১) বেয়ার পরীক্ষাঃ

বয়ার পরীক্ষাঃ
$$HC \equiv CH + H_2O + [O] \xrightarrow{KMnO_4} HC - CH$$
ইথাইন বা
$$OH OH$$

$$OH OH$$
আ্যাসিটিলিন

টেট্রাহাইদ্রক্সি ইথেন (বৰ্ণহীন)

$$KMnO_4 + KOH \rightarrow K_2MnO_4 + H_2O + [O]$$

২) ব্রোমিণ দ্রবণ পরীক্ষাঃ

★ অ্যালকাইনের পানিযোজনের বিক্রিয়াঃ

অ্যালকাইন $+ H_2O$ $\xrightarrow{20\% \ H_2SO_4, 60^{\circ}C}$ অন্তর্বতী যৌগ \longrightarrow পূনর্বিন্যাস \longrightarrow কার্বনিল যৌগ

কার্বনিক যৌগ মানে অ্যালডিহাইড বা কিটোন

» পুনর্বিন্যাসের সময় OH এর H দ্বিন্ধনযুক্ত পাশের কার্বনে চলে যায়।

আ্যালকাইন

$$CH_{3} - CH \equiv C - H + H_{2}O \xrightarrow{\frac{2\% \text{ HgSO}_{4}}{20\% \text{ H}_{2}\text{SO}_{4}}} CH_{3} - C = C - H$$

$$CH_{3} - CO - CH_{3}$$

★ অ্যালকাইনের ওজনীকরণঃ

অ্যালকাইন + O_3 ightarrow আ্যালকাইল ওজনাইড ightarrow দুই কিটোন

$$\mathrm{CH_3}-\mathrm{C}\equiv\mathrm{C}-\mathrm{CH_3}+\mathrm{O_3}\longrightarrow\mathrm{CH_3}-\mathrm{C}-\mathrm{C}-\mathrm{CH_3}\dfrac{\mathrm{H_2O/Zn}}{\mathrm{O}-\mathrm{O}}$$
 বিউট -2 – আইন $\mathrm{O}-\mathrm{O}$ $\mathrm{CH_3}-\mathrm{C}-\mathrm{C}-\mathrm{CH_3}+\mathrm{ZnO}$ $\mathrm{CH_3}$

» ইথাইন বা অ্যাসিটিলিনের ক্ষেত্রে উৎপন্ন হয় গ্লাই অক্সাল।

$$HC \equiv CH + O_3 \longrightarrow HC - CH \xrightarrow{H_2O/Zn} HC - CH + ZnO$$
ইথাইন বা $O-O$ O O গ্রাই অক্সাল

আলৈকাইন

» Zn ধাতুর অনুপস্থিতিতে আর্দ্রবিশ্লেষণ করলে উৎপন্ন হয় কার্বক্সিলিক এসিড।

$$CH_{3} - C \equiv C - CH_{3} + O_{3} \longrightarrow CH_{3} - C - C - CH_{3} \xrightarrow{H_{2}O} CH_{3} - C - C - CH_{3}$$

$$0 - O \qquad 0 \qquad 0$$

$$+H_{2}O_{2} \longrightarrow CH_{3} - COOH + CH_{3}COOH$$

★ অ্যালকাইনের পানিযোজনের বিক্রিয়াঃ

$$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{C} \equiv \mathrm{CH} + [\mathrm{Ag}(\mathrm{NH_3})_2]^+ \to \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{C} \equiv \mathrm{CAg} \downarrow$$
 বিউট -1 – আইন ডাই অ্যামিন সিলভার বিউটানাইড ক্রিন্টের্ন সিলভার আয়ন

$$CH_3 - C \equiv C - CH_3 + [Ag(NH_3)_2]^+ \rightarrow$$
 কোনো বিক্রিয়া হয় না

$$HC \equiv CH + [Ag(NH_3)_2]^+ \rightarrow AgC \equiv CAg \downarrow$$
 সাদা ব্যাসিটিলিন স্বিল্ডার ইথানাইড

$${
m CH_3-CH_2-C}\equiv {
m CH}+[{
m Cu}({
m NH_3})_2]^+ o {
m CH_3-CH_2-C}\equiv {
m CCu}\downarrow {
m min}$$
 বিউট -1 – আইন ডাই অ্যামিন সিলভার ইথানাইড কপার আয়ন

$$CH_3 - C \equiv C - CH_3 + [Cu(NH_3)_2]^+ \to$$
 কোনো বিক্রিয়া হয় না বিউট $-2 -$ আইন

$$\mathrm{HC} \equiv \mathrm{CH} + [\mathrm{Cu}(\mathrm{NH}_3)_2]^+
ightarrow \mathrm{CuC} \equiv \mathrm{CCu} \downarrow$$
 লাল ব্যাসিটিলিন কপার ইথানাইড

আলেকাইন

- » জৈব যৌগের ক্ষেত্রে কার্বনের যেকোনো একপাশে ত্রিবন্ধন থাকলে sp
- » জৈব যৌগের ক্ষেত্রে কার্বনের যেকোনো একপাশে দ্বিবন্ধন থাকলে sp²
- » জৈব যৌগের ক্ষেত্রে কার্বনের সকল পাশে একক বন্ধন থাকলে sp³

 $SP \rightarrow S : P = 1 : 1 (50\% : 50\%)$

 $SP^2 \rightarrow S : P = 1 : 2 (33.33\% : 66.67\%)$

 $SP^3 \rightarrow S : P = 1 : 3 (25\% : 75\%)$

- মুখোমুখি অধিক্রমনের ফলে যে বন্ধন সৃষ্টি হয় তাকে সিগমা বন্ধন বলে।
- পাশাপাশি অধিক্রমনের ফলে যে বন্ধন সৃষ্টি হয় তাকে পাই বন্ধন বলে।
- সিগমা বন্ধনের দৈর্ঘ্য যত কম হবে পাশাপাশি অধিক্রমন তথা পাই বন্ধন শক্তিশালী হবে।
- ◆ বন্ধনের দৃঢ়তা যেখানে বেশি সক্রিয়তা সেখানে কম।
 S চরিত্র বেশি হলে, মুখোমুখি অধিক্রমণ শক্তিশালী হয়।
- ▶ e⁻ আকর্ষী যুত বিক্রিয়ায় ইথিন এবং ইথাইন এর মধ্যে কে বেশি সক্রিয় এবং কেন?

উত্তর: ইথিন এবং ইথাইন উভয়ের ক্ষেত্রেই পাই ইলেকট্রনের প্রভাবে প্রথমে E ⁺ এসে যুক্ত হয়। ইলেকট্রন আকর্ষী যুত বিক্রিয়ায় ইথাইন হতে ইথিন বেশি সক্রিয়।

$$C_2H_4$$
 (ইথিন)

 $C = C$
 C_2H_4 (ইথিন)

 $C = C$
 C_2H_4 (ইথিন)

S: P = 1: 2 (33.3%: 66.67%)

ইথিন এ কার্বন SP² সংকরিত

$$C_2H_2$$
 (ইথাইন)

$$H - C \equiv C - H$$

S: P = 1:1 (50% : 50%)

ইথাইন এ কার্বন SP সংকরিত

আলেকাইন

ইথাইনে ১ চরিত্র বেশি। ১ চরিত্র বেশি হলে মুখোমুখি অধিক্রমণ শক্তিশালী হয়। অর্থাৎ ইথাইন এ সিগমা বন্ধন শক্তিশালী। তাই কার্বন-কার্বন বন্ধনের দৃঢ়তা বৃদ্ধি পায়। এই কারণে কার্বন-কার্বন বন্ধন দৈর্ঘ্য ইথাইনে কম। কার্বন কার্বন বন্ধন দৈর্ঘ্য কম হলে পাশাপাশি অধিক্রমন শক্তিশালী হয়।

অর্থাৎ, পাই (π) বন্ধন দৃঢ় হয়।

❖ দৃঢ়তা যেখানে বেশি সক্রিয়তা সেখানে কম।

এজন্যই ইলেকট্রন আকর্ষী যুত বিক্রিয়ায় ইথাইন কম সক্রিয়। ইথিনের মুখোমুখি অধিক্রমণ কম শক্তিশালী। তাই কার্বন কার্বন বন্ধনের দৃঢ়তা ইথিনে কম। এই কারণে কার্বন-কার্বন বন্ধন দৈর্ঘ্য ইথিনে বেশি। ফলে পাশাপাশি অধিক্রমণ কম শক্তিশালী হয়।

উপরোক্ত কারণে, ইথিনের বন্ধনের দৃঢ়তা কম। তাই ইথিনের π ইলেকট্রনের সক্রিয়তা ইথাইন হতে বেশি। ফলে ইলেকট্রন আকর্ষী যুত বিক্রিয়ায় ইথিন বেশি সক্রিয়।

আালকাইন-1 সমূহ কেন অম্লধর্মী ?

উত্তর: HC ≡ CH SP SP

অ্যালকাইন-1 এ ত্রিবন্ধন যুক্ত কার্বনদ্বয় SP সংকরিত। S: P = 1: 1। S চরিত্র বেশি বলে মুখোমুখি অধিক্রমণ শক্তিশালী হয়। কার্বন কার্বন বন্ধনের দৃঢ়তা বৃদ্ধি পায়। কার্বন-কার্বন বন্ধনের দৃঢ়তা বৃদ্ধির সাথে কার্বনের সাথে হাইড্রোজেন বন্ধন দুর্বল হয়। ফলে H অপসারিত হওয়ার উপক্রম হয়। তাই অ্যালকাইন-1 সমূহ অম্লধর্মী।

বেনজিন প্রস্তুতিঃ

1.
$$HC \equiv CH \xrightarrow{400^{\circ} C}$$
 (ইথাইন বা অ্যাসিটিলিনের পলিমারকরণ)

ইথাইন বা অ্যাসিটিলিন

বেনজয়েট

বেনজিন

$$2. \ n$$
 – হেক্সেন $\frac{{\rm Al_2O_3,500 \, ^{\circ} \, C}}{40 \ {\rm atm}}$ (অ্যারোমেটিকিকরন) বা, pt $(10-15 \ {\rm atm})$

3. ি + NaOH + CaO — ি (ডিকার্বক্সিলেশন বা কার্বক্সিত্যাজন)
সোডালাইম
সোডিয়াম

6. আলকাতরা থেকে বেনজিন প্রস্তুতিঃ

কয়লার অন্তর্ধুম পাতন করলে যে জলীয় অংশ পাওয়া যায় তাকে আলকাতরা এবং যে গ্যাসীয় অংশ যাওয়া যায় তাকে কোল গ্যাস বলে।

আলকাতরার আংশিক পাতনঃ

লঘু তেলের আংশিক পাতনঃ

লঘু তেল
$$\frac{110 - 140^{\circ}\text{C}}{\text{পাতন}}$$
 50 % বেনজল

90% বেনজল
$$\xrightarrow{80-82^{\circ}\text{C}}$$
 \bigcirc (বেনজিন)

90 % এবং 50% বেনজনের মিশ্রণ
$$\frac{111 - 112 \, ^{\circ}\text{C}}{\text{পাতন}}$$
 টেলুইন)

CH₃

লঘু তেলে অম্লীয় অপদ্রব্য দূর করতে ব্যবহৃত হয় NaOH

ক্ষারীর অপদ্রব্য দূর করতে ব্যবহৃত হয় H_2SO_4

হাকেল তত্ত্বঃ

যে সকল চক্রে 4n+2 সংখ্যক π সঞ্চালনক্ষম ইলেকট্রন থাকে তারা অ্যারোমেটিক। (n=0,1,2,3....) অর্থাৎ অ্যারোমেটিক হতে হলে π ইলেকট্রন লাগবে 2/6/10/14/18... টি।

 π বন্ধনের ইলেকট্রনকে বলে π ইলেকট্রন

একটি π বন্ধনে ২ টি পাই ইলেকট্রন থাকে

বেনজিনের ইলেকট্রন আকর্ষি প্রতিস্থাপন বিক্রিয়ার কৌশলঃ

1. সুষমচাক্রিক বা কার্বোসাইক্লিক: চক্রে শুধু কার্বন এবং হাইড্রোজেন থাকবে। যেমনঃ বেনজিন।

2. বিষমচাক্রিক বা হেটারোসাইক্লিকঃ চক্রে শুধু কার্বন এবং হাইড্রোজেন ছাড়াও অন্য মৌল থাকবে। যেমনঃ

 অসম্পৃক্ততার জন্য বেনজিন যুত বিক্রিয়া দেয়ার কথা থাকলেও, যুত বিক্রিয়া দিতে পারে না । কারণ এতে তার অ্যারোমেটিসিটি নষ্ট হয়ে যায়।

এজন্য বেনজিন ইলেকট্রন আকর্ষী প্রতিস্থাপন বিক্রিয়া দেয়।

অ্যারোমেটিক যৌগ দুই ভাগে বিভক্তঃ

ধাপ-1: E+ বেনজিন চক্রের একটি কার্বনে যুক্ত হয়। ফলে অ্যারোমেটিসিটি নষ্ট হয়ে একটি অন্তবর্তী সিগমা কমপ্লেক্সের সৃষ্টি হয়।

ধাপ-2: বিক্রিয়াস্থলে উপস্থিত একটি ক্ষার (B⁻) এর সাথে প্রটোন অপসারিত হয়। ফলে অ্যারোমিটিসিটি পুনঃস্থাপিত হয়।

■ সকল ক্যাটায়ন এবং অষ্টক অপূর্ণ যৌগ যেমন- SO_3 , BF_3 , $AlCl_3$, $FeCl_3$, $BeCl_2$ ইত্যাদি ইলেকট্রন আকর্ষী বিকারক বা ইলেকট্রোফাইল বা E^+ ।

বিক্রিয়াঃ

(ক) বেনজিনের নাইট্রেশনঃ

$$+ HNO_3 + H_2SO_4$$
 $+ HNO_3 + H_2SO_4$
নাইটোবেনজিন

বিক্রিয়াঃ

(খ) বেনজিনের সালফোনেশনঃ

বেনজিন সালফোনিলিক এসিড

(গ) বেনজিনের হ্যালোজিনেশনঃ

(ঘ) ফ্রিডেল ক্রাফট অ্যালকাইলেশন বিক্রিয়াঃ

(৬) ফ্রিডেল ক্রাফট অ্যাসাইলেশন বিক্রিয়াঃ

■ সকল ক্যাটায়ন এবং অষ্টক অপূর্ণ যৌগ যেমন- SO_3 , BF_3 , $AlCl_3$, $FeCl_3$, $BeCl_2$ ইত্যাদি ইলেকট্রন আকর্ষী বিকারক বা ইলেকট্রোফাইল বা E^+ ।

(ক) বেনজিনের নাইট্রেশনঃ

কৌশলঃ

সূচনা স্তরঃ
$$+ HN03 + 2H_2SO_4 \Rightarrow NO_2^+ + 2H_2SO_4^- + H_3O_4^+$$

(খ) বেনজিনের সালফোনেশন:

বেনজিন সালফোনিলিক এসিড

কৌশল:

সূচনা স্তর:
$$H_2SO_4 + H_2SO_4$$
 $SO_3 + HSO_4^- + H_3O^+$

সিগমা কমপ্লেক্স

বেনজিন সালফোনিলিক এসিড

(গ) বেনজিনের হ্যালোজিনেশন:

কৌশল:

সূচনা স্তর:
$$Cl_2^+$$
 FeCl $_3$ Cl_4^+ FeCl $_4^-$

সিগমা কমপ্লেক্স

Cl

ক্লোরোবেনজিন

ক্লোরোবেনজিন

মিথাইল বেনজিন/টলুইন

কৌশল:

সিগমা কমপ্লেক্স

অ্যাসাইল ক্লোরাইড

অ্যাসিটোফেনন

কৌশল:

সিগমা কমপ্লেক্স

অর্থো প্যারা নির্দেশকঃ

- NH₂ (অ্যামিন)
- NHR (প্রতিস্থাপিত অ্যামিন)
- OR (অ্যালকক্সি বা ইথার)
- R (অ্যালকাইল) CH₃-, C₂H₅- ইত্যাদি
- OH (অ্যালকোহল / হাইড্রোক্সি)
- X (হ্যালোজেন) F, CI, Br, I সক্রিয়তা হ্রাসকারী

সক্ৰিয়তা বৃদ্ধিকারী বা সক্ৰিয়কারী

- হ্যালোজেন বাদে সকল অর্থোপ্যারা নির্দেশক সক্রিয়তা বৃদ্ধিকারী বা সক্রিয়কারী।
- কিন্তু হ্যালোজেন সক্রিয়তা হ্রাসকারী বা নিদ্রিয়কারী।
- বাকী সকল কার্যকরী মূলক মেটা নির্দেশক।
- মেটা নির্দেশকগুলো সক্রিয়তা হ্রাসকারী বা নিদ্ধিয়কারী।

মেটা নির্দেশকঃ

- NO₂ (নাইট্রো)
- CHO (অ্যালডিহাইড)
- COOH (কার্বোক্সিলিক এসিড) ইত্যাদি

কার্যকরীমূলকের কাছের দুটি কোণা অর্থো

কার্যকরীমূলকের ঠিক বিপরীত কোণা প্যারা

কার্যকরীমূলকের বাকী দুটি কোণা মেটা

জৈব ৱসায়ন

- 2, 6 → অর্থো
- 3, 5 → মেটা
- 4 → প্যারা

> -OH কেন অর্থোপ্যারা নির্দেশক?

উত্তর: —OH মূলকের উপস্থিতিতে বেনজিন চক্রের রেজোন্যান্সের সময় অর্থোপ্যারা অবস্থানে ইলেকট্রন ঘনত্ব বৃদ্ধি পায়। ফলে নতুন করে আগত E⁺ অর্থোপ্যারা অবস্থানে যুক্ত হয়।

> -Cl কেন অর্থোপ্যারা নির্দেশক?

উত্তর: —Cl মূলকের উপস্থিতিতে বেনজিন চক্রের রেজোন্যান্সের সময় অর্থোপ্যারা অবস্থানে ইলেকট্রন ঘনত্ব বৃদ্ধি পায়। ফলে নতুন করে আগত E⁺ অর্থোপ্যারা অবস্থানে যুক্ত হয়।

- CH₃ কেন অর্থোপ্যারা নির্দেশক?

উত্তর: — CH_3 মূলকের উপস্থিতিতে বেনজিন চক্রের রেজোন্যান্সের সময় অর্থোপ্যারা অবস্থানে ইলেকট্রন ঘনত্ব বৃদ্ধি পায়। ফলে নতুন করে আগত E^* অর্থোপ্যারা অবস্থানে যুক্ত হয়।

বন্ধন বিহীনঅনুরণন

- NH₂ কেন অর্থোপ্যারা নির্দেশক?

উত্তর: - NH₂ মূলকের উপস্থিতিতে বেনজিন চক্রের রেজোন্যান্সের সময় অর্থোপ্যারা অবস্থানে ইলেকট্রন ঘনত্ব বৃদ্ধি পায়। ফলে নতুন করে আগত E⁺ অর্থোপ্যারা অবস্থানে যুক্ত হয়।

রাফ: অর্থো প্যারা নির্দেশকের জন্য-

কাজ:

- (১) ইলেকট্রন নিচের দিকে পাশের বন্ধন এর মাঝে যায়।
- (২) দ্বিবন্ধন পাশের কোনায় যায়।

রাফ: অর্থো প্যারা নির্দেশকের জন্য-

ফলাফল:

- (১) ইলেকট্রন যেখানে যায় সেখানে নতুন বন্ধন সৃষ্টি হয়।
- (২) দ্বিন্ধন যে কোনায় যায় সেখানে সৃষ্টি হয় '-'।
- (৩) আগের চিত্রের অপরিবর্তিত দুটি দ্বিবন্ধন আগের অবস্থানেই বসবে।

- NO₂ কেন অর্থোপ্যারা নির্দেশক?

উত্তর: - NO₂ মূলকের উপস্থিতিতে বেনজিন চক্রের রেজোন্যান্সের সময় অর্থোপ্যারা অবস্থানে ইলেকট্রন ঘনত্ব বৃদ্ধি পায়। ফলে নতুন করে আগত E⁺ অর্থোপ্যারা অবস্থানে যুক্ত হয়।

রাফ: মেটা নির্দেশকের জন্য-

কাজ:

- (১) দ্বিবন্ধন ভেঙে ইলেকট্রন উপরের দিকে পাশের বন্ধনের মাঝে যায়। ফলাফল:
- (১) ইলেকট্রন যেখানে যায় সেখানে নতুন বন্ধন সৃষ্টি হয়।
- (২) দ্বিন্ধন যে কোনায় যায় সেখানে সৃষ্টি হয় '+'।
- (৩) আগের চিত্রের অপরিবর্তিত দুটি দ্বিক্ষন আগের অবস্থানে বসবে।

> E+ ইলেকট্রোফাইল যুক্ত হওয়ার প্রবণতা যত বেশি হয়, বেনজিন চক্রের সক্রিয়তা তত বেশি হয়।

উত্তর: E⁺ যুক্ত হওয়ার প্রবণতা যত কম হয়, বেনজিন চক্রের সক্রিয়তা তত হ্রাস পায়।

অর্থপ্যারা নির্দেশকগুলো কেন সক্রিয়তাবৃদ্ধিকারী বা সক্রিয়কারী?

উত্তর: অর্থোপ্যরা নির্দেশকের উপস্থিতিতে বেনজিন চক্রের রেজোন্যান্সের সময় অর্থোপ্যারা অবস্থানে ইলেকট্রন ঘনত্ব বৃদ্ধি পায়। ফলে নতুন করে আগত E⁺ যুক্ত হওয়ার প্রবণতা বৃদ্ধি পায়। তাই অর্থোপ্যারা নির্দেশকগুলো সক্রিয়তা বৃদ্ধিকারী বা সক্রিয়কারী।

মেটা নির্দেশক কেন সক্রিয়তা হ্রাসকারী বা নিদ্রিয়কারী?

উত্তর: মেটা নির্দেশকের উপস্থিতিতে বেনজিন চক্রের রেজোন্যান্সের সময় অর্থোপ্যারা অবস্থানে ইলেকট্রন ঘনত্ব হ্রাস পায়। ফলে নতুন করে আগত E⁺ যুক্ত হওয়ার প্রবণতা হ্রাস পায়। তাই মেটা নির্দেশকগুলো সক্রিয়তা হ্রাসকারী বা নিষ্ক্রিয়কারী।

আবেশীয় ফল (Inductive effect):

তড়িৎ ঋণাত্মকতার প্রভাবে সিগমা বন্ধনের ইলেকট্রনের স্থানান্তরকে আবেশীয় ফল বলে ।

- আবেশীয় ফল শুধুমাত্র অর্থোপ্যারা নির্দেশকগুলো প্রদর্শন করতে পারে ।
- -OH, X ঋণাত্মক আবেশীয় ফল বা -I প্রদর্শন করে।
- বাকি সকল অর্থোপ্যারা নির্দেশক ধনাত্মক আবেশীয় ফল বা +I
 প্রদর্শন করে।
- আবেশীয় ফল ধনাত্মক মানে বেনজিন চক্রের দিকে e⁻ এর স্থানান্তর ।
- আবেশীয় ফল ধনাত্মক মানে বেনজিন চক্রের বিপরীত দিকে e⁻ এর স্থানান্তর।

তড়িৎ ঋণাত্মকতা যার বেশি, e তার দিকে স্থানান্তরিত হয়।

মেসোমারিক ফল(Mesomeric Effect):

রেজোন্যান্সের প্রভাবে পাই (π) বন্ধনের ইলেকট্রনের স্থানান্তরকে মেসোমারিক ফল বলে।

- সকল অর্থোপ্যারা নির্দেশক ধনাত্মক মেসোমারিক ফল বা +M প্রদর্শন করে।
- সকল মেটা নির্দেশক ধনাত্মক মেসোমারিক ফল বা -M প্রদর্শন করে।

বিশেষ বিক্রিয়া

মেসোমারিক ফল(Mesomeric Effect):

রেজোন্যান্সের প্রভাবে পাই (π) বন্ধনের ইলেকট্রনের স্থানান্তরকে মেসোমারিক ফল বলে।

- সকল অর্থোপ্যারা নির্দেশক ধনাত্মক মেসোমারিক ফল বা +M প্রদর্শন করে।
- সকল মেটা নির্দেশক ধনাত্মক মেসোমারিক ফল বা -M প্রদর্শন করে।

বিশেষ বিক্রিয়া

জৈব রসায়ন

অ্যাকাইল হ্যালাইড প্রস্তুতিঃ

* লুকাস বিজারক দারা 1°, 2°, 3° অলকোহল পার্থক্যকরণঃ

$$CH_3$$
 CH_3
 CH_3

$$_{-}^{\text{CH}_3}$$
 $_{-}^{\text{CH}_3}$ $_{-}^{\text{CH}_3}$ $_{-}^{\text{CH}}$ $_{-}^{\text{CH}}$ $_{-}^{\text{CH}}$ $_{-}^{\text{CH}}$ $_{-}^{\text{CH}}$ $_{-}^{\text{CH}}$ $_{-}^{\text{CH}_3}$ $_{-}^{\text{CH}_3}$

$$\mathrm{CH_3}$$
— $\mathrm{CH_2}$ — $\mathrm{OH}+~\mathrm{ZnCl_2}+\mathrm{HCl}~\longrightarrow$ কক্ষতাপমাত্রায় কোন বিক্রিয়া হয় না

*
$$CH_3$$
— CH_2 — $OH + PCl_3$ — CH_3 — CH_2 — $Cl + H_3PO_3$

* $CH_3 - CH_2 - OH + PCl_5 \longrightarrow CH_3 - CH_2 - Cl + POCl_3 + HCl$

গ্রীগনার্ড বিকারকের বিক্রিয়া

RMgX ক্রীগনার্ড / গ্রীনার্ড বিকারক (আলকোহল ম্যাগনেশিয়াম হ্যালাইড) RX + Mg ক্ষ ইথার RMgX

RMgX + HCHO (মিথান্যাল বা ফরমালডিহাইড) 1°অ্যালকোহল
RMgX + HCHO ব্যতীত যে কোন অ্যালডিহাইড 2°অ্যালকোহল
RMgX + HCHO ketone 3°অ্যালকোহল

 $\mathrm{H^+}$ → খনিজ এসিড (HCl/ $\mathrm{H_2}$ $\mathrm{SO_4/HNO_3}$ ইত্যাদি)

$$O_{\pi_{\parallel} \not O}$$
 $O_{H_3} \cap O_{H_3} \cap O_{H_4} \cap O_{H_5} \cap O_{H_5$

4.
$$\overset{-}{CH_3}$$
 $\overset{+}{M}gBr + O = \overset{-}{C} - \overset{-}{O} - \overset{+}{M}gBr \xrightarrow{H_2O/H^+} O = C - O - Mg(OH)Br$ CH_3 ସର୍ଶାବ $CH_3 - COOH$

 $RX + OH^- \to ($ আালকোহল) [প্রতিস্থাপন কৌশল $/SN^1,SN^2$] $RX + OH^- \to$ আালকিন [অপসারণ কৌশল/ সাইফের নীতি / E_1,E_2]

বিক্রিয়া – ১৬: অ্যালকাইল হ্যালাইড এর প্রতিস্থাপন বিক্রিয়া (SN^1, SN^2) : (ক) এক আনবিক প্রতিস্থাপন বিক্রিয়া (SN^1) :

(ক) SN¹ বিক্রিয়া: এই বিক্রিয়া দুই ধাপে সম্পন্ন হয়। ধাপ-১ → অ্যালকোহল হ্যালাইডটি ধীর গতিতে বিয়োজিত হয়।

ধাপ-২ → দ্রুত গতিতে নিউক্লিয়ফাইল কার্বোনিয়াম আয়নের সাথে যুক্ত হয়ে প্রতিস্থাপিত যৌগ গঠন করে ।

$$\begin{array}{c} CH_{3} \\ CH_{3} - C \\ CH_{3} \\ CH_{3} \end{array} + OH_{(aq)}^{-} \xrightarrow{fast} \begin{array}{c} CH_{3} \\ I \\ CH_{3} \end{array}$$

একের অধীক ধাপ সম্পন্ন বিক্রিয়ার ক্ষেত্রে ধীরতম ধাপ বিক্রিয়ার গতিকে নিয়ন্ত্রন করে। যেহেতু, গতি নিয়ন্ত্রনকারী প্রথম ধাপে বিক্রিয়ক হিসেবে শুধুমাত্র অ্যা কাইল হ্যালাইড রয়েছে তাই বিক্রিয়ার গতি শুধুমাত্র অ্যালকাইল হ্যালাইডের ঘনমাত্রার উপর নির্ভরশীল। তাই, এটি SN^1 বিক্রিয়া।

st SN 1 বিক্রিয়ার সক্রিয়তার ক্রম : 3° > 2° > 1° > RX

Rough : 3° সাধারণত অ্যাকাইল হ্যালাইড SN¹ বিক্রিয়া দেয়।

(খ) দ্বিআণবিক প্রতিস্থাপন বিক্রিয়া বা ((SN² বিক্রিয়া) : এই বিক্রিয়া এক ধাপে সম্পন্ন হয়। SN² বিক্রিয়ার ফলে অ্যালকাইল হ্যালাইডের জ্যামিতিক কাঠামোর পরিব্তন হয়ে যায়।

Off Topic: OH⁻ যুক্ত হবে হ্যালোজেন যে দিকে ঠিক বিপরীত দিকে দিয়ে।

যেহেতু বিক্রিয়াটি এক ধাপে সম্পন্ন হয় তাই বিক্রিয়ার গতি আলকাইল হ্যালাইড এবং নিউক্লিয়াফাইল(Nu^-) উভয়ের ঘনমাত্রার উপর নির্ভরশীল। তাই এটি SN^2 বিক্রিয়া।

সক্রিয়তার ক্রমঃ 1° > 2° > 3° RX

সাধারণত 1 ° RX SN² বিক্রিয়া দেয়।

সাইজেফের নীতি:

আলাকাইল হ্যালাইডের সাথে আলকোহলীয় ক্ষারের অপসারণ বিক্রিয়ার α থেকে হ্যালোজেন এবং সন্নিহিত যে $\beta-c$ এ কম সংখ্যক থাকে সেখান থেকে অপসারিত হয়।

ফলে সংশ্লিষ্ট lpha এবং eta কার্বনের মাঝে দ্বিবন্ধন সৃষ্টি হয়।

$$CH_3-CH-CH_2-CH_3+KOH \longrightarrow KCl+H_2O+CH_3CH=CH_3CH$$
 বিউট-2 – ইন (80%) + $CH_2=CH-CH_2-CH_3$ বিউট-1 – ইন (20%)

 \mathbf{E}_1 মেকানিজমঃ দুই ধাপে সম্পন্ন হয়।

সক্রিয়তার ক্রমঃ 3° > 2° > 1° RX

ধাপঃ ১- ধীরগতিতে α c থেকে লিভিং গ্রুপ অপসারিত হয়।

ধাপঃ ২- একটি ক্ষার B^- এর সাথে দ্রুত গতিতে βc কার্বন থেকে H অপসারিত হয়।ফলে α , β কার্বনের মাঝে দ্বিবম্বন সৃষ্টি হয়।

E2 মেকোনিজমঃ এক ধাপে সম্পন্ন হয়।

সক্রিতার ক্রমঃ 1° > 2 > ° > 3° Rx

একই সাথে α কার্বন থেকে লিভিং গ্রুপ এবং একটি ক্ষার B^- এর সাথে βc থেকে H অপসারিত হয়।ফলে α , β কার্বনের মাঝে দ্বিবম্বন সৃষ্টি হয়।

হালোফরম বিক্রিয়া

অ্যালকোহল, অ্যালডিহাইড বা কিটোন ক্ষারের উপস্থিতিতে সংশ্লিষ্ট হ্যালোজেনের সাথে বিক্রিয়া করে হ্যালোফরম উৎপন্ন করে যদি এদের মিথাইল কার্বোনিল মূলক থাকে।

অ্যালকোহল/Aldehyde/Ketone + $OH^- + X_2 \rightarrow CHX_3 +$ জৈব এসিড এর লবণ শূর্তঃ এদের মিথাইল কার্বোনিল (CH_3CO^-) মূলক থাকতে হবে।

Note: যদি বামপাশ অথবা ডানপাশ যেকোন একপাশ থেকে ২ নং C-এ O থাকে তাহলে বুঝতে হবে মিথাইল কার্বোনিল মূলক আছে।

$$CH_3CH_2OH$$
 ($\sqrt{}$) CH_3CHO ($\sqrt{}$) $CH_3CH_2CH_2OH$ (\times) $CH_3CH_2CHOHCH_3$ ($\sqrt{}$) CH_3COCH_3 ($\sqrt{}$)

$$CH_3CH_2CHOHCH_3 + OH^- + I_2 \rightarrow CHI_3 + CH_3CH_2COO^-$$

পরীক্ষাগারে ব্লিচিং পাউডার,পানি এবং ইথানলের মিশ্রণকে উত্তপ্ত করলে উৎপন্ন হয় ক্লোরোফরম।

$$Ca(OCl)Cl + H_2O \longrightarrow Ca(OH)_2Cl + Cl_2$$
 ব্লিচিং পাউডার

$$\mathrm{CH_3} - \mathrm{CH_3} - \mathrm{OH} + \mathrm{Cl_2} \longrightarrow \mathrm{CH_3} + \mathrm{CHO}$$
 ইথানল

$$CH_3 - CHO + Cl_2 \longrightarrow CCl_3 - CHO$$
্রেরারাল
$$CCl_3 - CHO + Ca(OH)_2 \longrightarrow HCCl_3 + (HOOC)_2 Cu$$
্রেরারাফরম

ক্লোরোফরম এর নাইট্রেশনঃ

অ্যালকোহল, অ্যালডিহাইড বা কিটোন ক্ষারের উপস্থিতিতে সংশ্লিষ্ট হ্যালোজেনের সাথে বিক্রিয়া করে হ্যালোফরম উৎপন্ন করে যদি এদের মিথাইল কার্বোনিল মূলক থাকে।

$$CHCl_3 + HNO_3 \rightarrow CCl_3 - NO_2 + H_2O$$

$$\mathrm{H^{+}CCl_{3}}$$
 $\mathrm{OH^{-}NO_{2}}$ ক্লোরোপিক্রিন বা কাঁদুনে গ্যাস (Tear Gas)

ক্লোরোফরম এর বিশুদ্ধতা যাচাইঃ

$$CHCl_3 + O_2 \rightarrow COCl_2 + HCl$$
 ফসজিন গ্যাস (বিষাক্ত)

এজন্য ক্লোরোফরমকে রঙ্গিন বোতলে রাখা হয় এবং ঋনাত্মাক প্রভাবক হিসেবে যোগ করা হয় ইথানল।

★ ক্লোরোফরমের বিশদ্ধতা শনাক্তকরনে ব্যবহৃত হয় AgNO3।

$$AgNO_3 + HCl \rightarrow AgCl \downarrow + HNO_3$$
(সাদা অধ্যক্ষেপ)

★ যদি ক্লোরোফরমের $AgNO_3$ যোগ করার পর সাদা অধঃক্ষেপ সৃষ্টি হয় তবে বুঝতে হবে ক্লোরোফরম অ বিশুদ্ধ। কারণ $AgNO_3$, HCl এর সাথে বিক্রিয়া করে এর সাদা অধঃক্ষেপ তৈরি করে। উৎপন্ন HCl হয়েছে মানে ফসজিন গ্যাস উৎপন্ন হয়েছে ।

অ্যায়িন

ightharpoonup আমিনঃ ক্ষেত্রে N এর সাথে কোন H না থাকলে 3^0 , N এর সাথে 1^0 । থাকলে 1^0 ।

$$ightharpoonup$$
 আ্যামিন ক্ষারধর্মী: অ্যামিনের ক্ষার ধর্মের ক্রম-
$$2^0 > 1^0 > 3^0 > {\rm NH_3} > 0$$
 অ্যানিলিন বা ফিনাইল অ্যামিন

 $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3 > C_6H_5NH_2$ ArN H_2 ডাইমিথাইল অ্যামিন মিথাইল অ্যামিন ট্রাইমিথাইল অ্যামিন

ক্ষার: যে e⁻ দান করে। (ইলেকট্রনীয় মতবাদ) ক্ষার:। যে H⁺ গ্রহণ করে। (প্রোটনিক মতবাদ)

- ★ অ্যালকাইলে আবেশীয় ফল ধনাত্মক। তাই অ্যালকাইল ইলেকট্রন দাতা গ্রুপ।
- >কেন মিথাইল অ্যামিন থেকে ডিমিথাইল অ্যামিন তীব্ৰ ক্ষার ?

উত্তরঃ

$$\begin{array}{ccc} CH_3 - NH_2 & CH_3 - NH - CH_3 \\ \hline e^- & e^- \end{array}$$

ধনাত্মক আবেশীয় ফলের কারণে অ্যালকাইল মূলক e^- দাতা গ্রুপ। অ্যালকাইল মূলক যুক্ত থাকলে N এর ইলেকট্রন ঘনত্ব বৃদ্ধি পায়। যত বেশি অ্যালকাইল মূলক যুক্ত থাকে N এর ইলেকট্রন ঘনত্ব তত বেশি হয়।ফলে ইলেকট্রন দানের প্রবণতাও বৃদ্ধি পায়। এজন্য মিথাইল অ্যামিন থেকে ডাই মিথাইল অ্যামিন তীব্র ক্ষার।

আ্যায়িন

> কেন ট্রাইমিথাইল অ্যামিন থেকেও দূর্বল ক্ষার ?

উত্তরঃ

$$\begin{array}{c|c}
CH_3 \\
e^- & \downarrow e^- e^- \\
H_3C - N - CH_3
\end{array}$$

ট্রাইমিথাইল আমিনে তিনটি অ্যালকাইল মূলক যুক্ত থাকায় স্থানিক বাধার কারণে H+ যুক্ত হওয়া বাধাপ্রাপ্ত হয়।তাই ট্রাইমিথাইল অ্যামিন দূর্বল ক্ষার।

কেন অ্যানিলিন দূর্বলতম ক্ষার ?

উত্তরঃ

রেজোন্যান্সের কারণে অ্যানিলিনে N এর e⁻ বেনজিন চক্রের দিকে স্থান্তান্তরিত হয়। ফলে N এর e⁻ দান করার প্রবণতা হ্রাস পায়। তাই অ্যানলিন দূর্বলতম ক্ষার।

আ্যামিন

কার্বিল অ্যামিন বিক্রিয়া

অ্যালকোহল, অ্যালডিহাইড বা কিটোন ক্ষারের উপস্থিতিতে সংশ্লিষ্ট হ্যালোজেনের সাথে বিক্রিয়া করে হ্যালোফরম উৎপন্ন করে যদি এদের মিথাইল কার্বোনিল মূলক থাকে।

■ কার্বিল অ্যামিন বিক্রিয়া দ্বারা যেকোন 1° অ্যামিন এবং ক্লোরফরম সনাক্ত করা যায়।

$${
m CH_3NH_2+CHC1_3+KOH} \longrightarrow {
m CH_3NC}$$
মিথাইল অ্যামিন
মিথাইল আইসোসায়ানাইড
গন্ধ: পঁচা মাছের মতো আঁশটে

Off Topic:

(-NC→ আইসোসায়ানাইড / আইসো নাইট্রাইল) (-CN → সায়ানাইড/নাইট্রল)

বিক্রিয়া ২০ : হফম্যান ক্ষুদ্রাংশকরন বিক্রিয়া

এসিড আমাইড ($-CONH_2$) + Br_2 + ক্ষার \rightarrow এক কার্বন কম বিশিষ্ট 1° অ্যামিন।

$$\mathrm{CH_3CONH_2} + \mathrm{Br_2} + \mathrm{KOH} \to \mathrm{CH_3NH_2} + \mathrm{NH_2} + \mathrm{KBr} + \mathrm{K_2CO_3} + \mathrm{H_2}$$
 O ইথেন্যামাইড মিথাইল অ্যামিন

আামিন

 $\mathrm{CH_3CH_2CONH_2} + \mathrm{Br_2} + \mathrm{KOH} o \mathrm{CH_3CH_2CONH_2} + \mathrm{KBr} + \mathrm{K_2CO_3H_2O}$ প্রোপান্যামাইড ইথানাইল অ্যামিন

$$ONH_2$$
 ONH_2 ONH

ডায়াজোকরণ বিক্রিয়াঃ

$$NH_2$$
 + NaNO₂ + HCl $\xrightarrow{0-5^{\circ}C}$ বনজিন

$$N_2Cl$$
 + $H_3PO_2+H_2O$ — Cu^+ তাইপোফসফরাস এসিড বেনজিন

আ্যায়িন

N = N - OHপ্যারাহাইডোঅক্সি আজোবেনজিন যুগলায়ন বা

কাপালিং বিক্রিয়া

বিজারক: Zn-Hg/HCl, Zn-HCl, LiAl₄, H₂ S, Na₂SO₄, Na আলকোহল,

NaBH₄ , H₂/Pt , H₂/Ni Pd/Ba SO₄,Sn-HCl

তীব্র বিজারক

মৃদু বিজারক

व्यानकाशन

> কার্বন সংখ্যা বৃদ্ধির সাথে সাথে অ্যালকোহলের গলনাঙ্ক স্ফুটনাংক বৃদ্ধি পায়, কিন্তু দ্রাব্যতা হ্রাস পায়।

স্টার্চ হতে ইথানল প্রস্তুতিঃ

মল্টঃ বার্লি বীজকে 15°C তাপমাত্রার নিচে রেখে দিলে তা অঙ্কুরিত হয়। একে মল্ট বলে।

মল্টোজের জলীয় দ্রবণকে বলা হয় ওয়ার্ট।

> মোলাসেস বা মাতগুড় বা চিটাগুড় হতে ইথানল প্রস্তুতিঃ

চিনি করে আখের রস থেকে চিনি কেলাসিত করার পর যে গাঢ় সিরাপের মতো অংশ পরে থাকে তাকে মোলাসেস বা মাতগুড় বা চিটাগুড় বলা হয়।

- মোলাসেসে ৩০% সুক্রোজ এবং ৩৫% গ্লুকোজ ও ফুক্টেজের মিশ্রণ থাকে।
- মোলাসেসে অপদ্রব্য দূর করার জন্য এর মধ্যে যোগ করা হয় (NH₄)₂ SO₄ এবং (NH₄)₃ PO₄ । এরপর এর মধ্যে যোগ করা হয় ঈয় । ঈয় থেকে ইনভারটেজ এবং জাইমেজ নামক দুটি এনজাইম বের হয় ।

<u>ज्यानकाश</u>न

$$C_{12}H_{22}O_{11} + H_{12}O \xrightarrow{\overline{z}$$
নভারটেজ $C_6H_{12}O_6 + C_6H_{12}O_6$ সুক্রোজ $C_6H_{12}O_6 \xrightarrow{\overline{s}} CH_3CH_2OH$ ইথানল

- অ্যালকোহলের বিশুদ্ধতা বৃদ্ধির জন্য একে বার বার পাতন করতে হয়।
- 95.6% ইথানল এবং 4.4% পানির সমস্ফুটন মিশ্রণকে বলা হয় রেকটিফাইট স্পিরিট।
- রেকটিফাইট স্পিরিট থেকে শতভাগ বিশুদ্ধ অ্যালকোহল প্রাপ্তির জন্য এর মধ্যে চুন রোগ করা হয়।
- শতভাগ বিশুদ্ধ অ্যালকোহলকে বলা হয়় পরম অ্যালকোহল।
- মিথাইল অ্যালকোহল, ন্যাপথা, পিরিডন মিশ্রিত অসেবনীয় অ্যালকোহলকে বলে মেথিলেটেড স্পিরিট।

প্রি এস্টারিকরণ বিক্রিয়াঃ

জৈব এসিড
$$+$$
 অ্যালকোহল $\xrightarrow{H^+}$ এস্টার $+$ H_2O $CH_3COOCH_3 + CH_3COOCH_3 + H_2O$

- ★ বিক্রিয়া ২৩ অ্যালকোহল সনাক্তকরণঃ
- (ক) Na ধাতুসহ পরীক্ষা : $CH_3CH_2 + CH_3OH + Na \rightarrow CH_3CH_2ON + H_2 ↑ (বুদবুদ)$
- (খ) PCl₅ সহ পরীক্ষা:

$$\mathrm{CH_3CH_2OH} + \mathrm{PCl_5} \longrightarrow \mathrm{CH_3CH_2Cl} + \mathrm{POCl_5} + \mathrm{HCl}$$
 $\mathrm{HCl} + \mathrm{NH_3} \longrightarrow \mathrm{NH_4Cl} \uparrow$ সাদা ধোয়া

আলকোহোল

(গ) আরোডক্স পরীক্ষা (মিথানল সনাক্তকরণ)

(ঘ) আরডোরম বিক্রিয়া পরীক্ষা : (ইথানল সনাক্তকরণ)

$$\mathrm{CH_3CH_2OH} + \mathrm{NaOH} + \mathrm{I_2} \longrightarrow \mathrm{CH_3I_2} \downarrow + \mathrm{HCOONa}$$
 হলদ অধঃক্ষেপ

(৬) অ্যাক্রোলিন পরীক্ষা (গ্লিসারিন সনাক্তকরণ):

ফেনল (কার্বলিক এসিড)

🛨 ফেনল প্রস্তুতিঃ

(খ) ডাত্ত প্রনালীতে ফেনল প্রস্তুতি:

(গ) কিউমিন হতে ফেনল প্রস্তুতি:

ফেনল (কার্বলিক এচিড)

★ বিক্রিয়া ২৫: রাইমার টাইম্যান বিক্রিয়া (এই বিক্রিয়ায় উৎপয় হয় স্যালিসালিডিহাইড)

অর্থো হাইড্রক্সি বেনজালডিহাইড (স্যালিসালডিহাইড)

:কোব বিক্রিয়া (এই বিক্রিয়ায় উৎপন্ন হয় স্যালিসাইলিক এসিড)

:**ফেনল সনাক্তকরণঃ** তিন উপায়ে ফেনল সনাক্ত করা হয়।

(ক) ফেব্রিক ক্লোরাইড পরীক্ষাঃ

$$C_6H_5-OH+FeCl_3 \rightarrow (C_6H_5-O)_6Fe_2$$
 ডাইফেরিক হেক্সাফিনেট (বেগুনি বর্ণ)

(খ) ব্রোমিন দ্রবন পরীক্ষাঃ

$$OH \qquad Br OH \\ OH \qquad Br Br$$

$$Br OH \\ Br$$

$$Br OH \\ Br$$

2.4.6 - ট্রাইব্রোমো ফেনল

ফেনল (কার্বলিক এসিড)

(গ) লিবারম্যান পরীক্ষা: প্রথমে ফেনলে $NaNO_2$ এবং H_2SO_4 রোগ করা হয়। ফলে নীল বর্ণের নাইট্রাসো ফেনল উৎপন্ন হয়।

পুনরায় এর মধ্যে H_2SO_4 চালনা করলে লাল বর্ণের ইন্ডোফেনল উৎপন্ন হয়। ইন্ডোফেনলের মধ্যে ক্ষার চালনা করলে নীল বা সবুজ বর্ণের ইন্ডোফেনলের লবণ তৈরি হয়।

কেনল অম্লধর্মী কেন?

উত্তর: রেজোন্যান্সের কারণে O এর সাথে H এর বন্ধন দুর্বল হয়ে যায়। ফলে H অপসারিত হওয়ার উপক্রম হয়। তাই ফেনল অম্লধর্মী।

ইথার প্রস্তুতিঃ

(ক) উইলিয়ামসন সংশ্লেষণ

$$ONa$$
 $O-CH_3$ $O-C$

খ) উইলিয়ামসন অবিরাম ইথারীকরণঃ

$$CH_3-CH_2-OH+H_2SO_4$$
 $\longrightarrow CH_3-CH_2-O-CH_2-CH_3$ ইথানিল ইথানিল (অতিরিক্ত)

रेथांब

অ্যালকোহলের জারণঃ

$$2^{\circ}$$
 অ্যালকোহল $\stackrel{[\circ]}{\longrightarrow}$ কিটোন $\stackrel{[\circ]}{\longrightarrow}$ জৈব এসিড

$$3^{\circ}$$
 অ্যালকোহল $\xrightarrow{[{\scriptsize o}]}$ অ্যালকিন $\xrightarrow{[{\scriptsize o}]}$ কিটোন $\xrightarrow{[{\scriptsize o}]}$ জৈব এসিড

- অ্যালকোহলকে বারবার জারন বা তীব্র জারন করলে উৎপন্ন হয় জৈব এসিড।
- এসিডকে তীব্র বিজারন করলে উৎপন্ন হয়় অ্যালকোহল।
- সাধারনত অ্যালকোহলের তীব্র জারনের জন্য ব্যবহার হয় $K_2 Cr_2 O_7^+$
- অ্যালকোহল ^{তীর জারন} জৈব এসিড
- □ জৈব এসিড ^{তীৱ জারন} স্থালকোহল

1.
$$CH_3 - CH_2 - OH \xrightarrow{Cu,350^{\circ}C} CH_2 - CHO + H_2$$

2.
$$CH_3 - CHOH - CH_3 \xrightarrow{Cu,350^{\circ}C} CH_3 - CO - CH_3 + H_2$$

3.
$$CH_3 \xrightarrow{CH_3} CH_3 OH \xrightarrow{Cu,350^{\circ}C} CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} CH_3$$

- $igoplus H_2SO_4$ কার্বনিক যৌগ। কার্বনিক যৌগ মানে অ্যালডিহাইড/ কিটোন বিক্রিয়া ২৯: কার্বনিক যৌগের বিজারন বিজারক: Zn-Hg/ HCl, Zn-HCl, LiAlH4, H2S, NaBH4, NaSO3, Na-অ্যালকোহল, Sn-HCl, Pb/BaSO4, H2/Pt, H2/Ni
- ি ক্লিসেনসনঃ বিজারনের ফলে কার্বলিক যৌগ হাইড্রোকর্বনে পরিনত হয়।

 ি ক্লিসেনসন বিজারনের ফলে কার্বলিক যৌগ হাইড্রোকর্বনে পরিনত হয়।

কার্বনিল যৌগ

কার্বনিল যৌগ মানে অ্যালডিহাইড বা কিটোনঃ

ু
$$C=0$$
 $\frac{H}{H}$ $C=0$ $\frac{H}{R}$ $C=0$ $\frac{R}{R}$ $C=0$ কার্বনিল মূলক অ্যালডিহাইড ক্টোন

$$R$$
 (আলকাইল) \longrightarrow $CH_3 - CH_2 - CH_3 - CH_2 - CH_2 - \cdots$

⊙ বিক্রিয়া -২৯: কার্বনিল যৌগের বিজারণ

বিজারকঃ Zn-Hg/HCl, Zn-HCl, Li AlH₄, H₂S, NaBH₄, Na₂ S₃,Na-আলকোহোল,Sn-HCl,Pd/BaSO₄, H₂/Pt, H₂/Ni

$$-CHO$$
 $\xrightarrow{Zn-Hg/HCl}$ ব্যতীত যে কোনো বিজারক $-CH_3$ (1° অ্যালকোহল) $-CHO$ $\xrightarrow{Zn-Hg/HCl}$ $-CH_3$ ক্লিমেনসন বিজারন মিথাইল

■ ক্লিমেসন বিজারণ ফলে কার্বনের যৌগ হাইড্রোকার্বনের পরিনত হয়।

কার্বনিল যৌগ সনাক্তকরণঃ

DNP (2,4 — ডাই নাইট্রোফিনাইল হাইড্রাজিন) পরীক্ষা দ্বারা কার্বনিল যৌগ সনাক্তকরণ করা হয়।

$$C = O + H_2 N - NH - O \longrightarrow C = N - NH - O \longrightarrow NO_2$$

$$+H_2 O$$

2,4- ডাই নাইট্রোফিনাইল হাইড্রাজিন (হলদ বা কমলা অধঃক্ষেপ)

কার্বনিল যৌগ

- টলেন বিকারকঃ [Ag((NH₃)₂]OH [Ag((NH₃)₂]Cl [Ag((NH₃)₂]+
- 🜟 ফেহলিং দ্রবণঃ সম আয়তন CuSO4 + NaKC4H4O6
- টলেন বিকারক এবং ফেহলিং দ্রবণ উভয়েই অ্যালডিহাইড এর সাথে বিক্রিয়া করে কোনটিই কিটোনের সাথে বিক্রিয়া করে না। এজন্য অ্যালডিহাইড এবং কিটোনের মধ্যে পার্থক্য করতে টলেন বিকারক এবং ফেহলিং দ্রবণ ব্যাবহৃত হয়।
- অ্যালডিহাইডের সাথে টলেন বিকারকের বিক্রিয়ায় সিলভার (Ag) দর্পণ তৈরি হয়।

 $CH_3CHO + [Ag(NH_3)_2]OH \rightarrow CH_3COONH_4 + NH_3 + H_2O + Ag$

 $CH_3CHO + NaOH + Cu (OH)_2 \rightarrow CH_3COONa + NH_3 + H_2O + Cu_2O ↓$ (লাল অধঃক্ষেপ) কিউপাস অক্সাইড

- টলেন বিকারক এবং ফেহলিং দ্রবণ অ্যালিডিহাইড ছাড়াও ফরমিক এসিড (HCOOH), গ্লুকোজ $C_6H_{12}O_6$ এর সাথে বিক্রিয়া করে।
- ★ কার্বনিল যৌগের সাথে লঘু ক্ষারের বিক্রিয়া (ক্যানিজারো বা অ্যালডল ঘনীভবন বিক্রিয়া)
- αH থাকলে অ্যালডল ঘনীভবন, αH না থাকলে ক্যানিজারো বিক্রিয়া।
- αс এর সাথে যে Η তাই αΗ।
- কার্যকরী মূলক যে কার্বনে যুক্ত থাকে তাকে ac বলে।
- αc না থাকলে aH থাকার কোন সুযোগ নেই।

কাৰ্বনিল যৌগ

- ★ (ক) ক্যানিজারো বিক্রিয়াঃ αΗ বিহীন অ্যালডিহাইড বা কিটোন লঘু ক্ষারের উপস্থিতিতে একবার জারিত হয়়, আরেকবার বিজারিত হয়।
- জারিত হয়ে প্রথমে জৈব এসিড যা পরবর্তীতে জৈব এসিডের লবণে পরিণত হয়।
- বিজারিত হয়ে উৎপন্ন হয় অ্যালকোহল।

HCHO + NaOH → HCOONa+CH₃OH

★ খ) অ্যাল্ডল ঘনীভ্বন বিক্রিয়াঃ αH আছে এমন অ্যাল্ডিহাইড বা কিটোন লঘু ক্ষারের উপস্থিতিতে 2 অণু পরস্পরের সাথে যুক্ত হয়ে হাইড্রোক্সি কার্বনিল যৌগ বা অ্যাল্ডল গঠন করে।

বেনজাইল অ্যালকোহল

$$2 ext{CH}_3 ext{CHO} + ext{NaOH}_{ ext{(dil)}} \longrightarrow ext{CH}_3 - ext{CH}_3 - ext{CH}_4 - ext{COH}_5$$
 বউটানল

কার্বনিল যৌগ

- ★ অ্যাল্ডল বিক্রিয়ার মেকানিজমঃ ক্ষারের উপস্থিতিতে অ্যাল্ডল ঘনীভবন নিম্নরূপে তিন ধাপে ঘটে। যেমন-
- লঘু NaOH এর উপস্থিতিতে অ্যালিডিহাইড বা কিটোন থেকে একটি আলফা হাইড্রোজেন ক্ষারের OH আয়ন দ্বারা অপসারিত হয় ও কার্বানায়ন গঠন করে।

$$\alpha$$
 _ _ _ CH3 - CHO + OH $ightarrow$ CH $_2$ - CHO + H $_2$ O আলিডিহাইড ক্ষার কার্বানায়ন

2. উৎপন্ন কার্বানায়ন দ্বিতীয় অণুকে আক্রমণ করে কার্বণ বন্ধন গঠন করে।

$$0\delta$$
 — 0

3. পানি অণু থেকে একটি প্রোটন ঋণাত্মক অক্সিজেন পরমাণুতে যুক্ত হয়ে অ্যালডল উৎপন্ন করে।

$$O-$$
 OH | CH₃ - C - CH₂ - CHO + H₂O \rightarrow CH₃ - C - CH₂ - CHO + OH | H আ্যাল্ডল

- ★ কেন্দ্রাকর্ষী (নিউক্লিওফিলিক) যুত বিক্রিয়ায় প্রথমে নিইক্লিওফাইল (Nu⁻)
 এসে কার্বনিল কার্বনের সাথে যুক্ত হয়।
- * কার্বনিল কার্বনে যুক্ত হওয়ার প্রবণতা যত বেশি হবে কেন্দ্রাকর্ষী যুত বিক্রিয়ার সক্রিয়তা তত বেশি হবে।

কার্বনিল যৌগ

- ★ সক্রিয়তা ক্রমঃ কার্বানাইল বা কার্বনিল যৌগে কেন্দ্রাকর্ষী যুত বিক্রিয়ার দুটি বিষয়ের উপর নির্ভর করে। যথা-
- অ্যালকাইল মূলকের স্টেরিক বাধাঃ কার্বনিল কার্বনের সাথে সংযুক্ত অ্যালকাইল গ্রুপের আকার ও পরিমান বৃদ্ধির সাথে সাথে কার্বনিল কার্বনের নিউক্লিওফাইলের আক্রমণ বাধাগ্রস্ত হয়। ফলে স্থানিক বাধাজনিত কারনে কেন্দ্রাকর্ষী যুত বিক্রিয়ার সক্রিয়তা হ্রাস পায়।

$$\begin{array}{c} O \\ II \\ -C-H > CH_3 - C-CH_3 \end{array}$$

2. কার্বনাইল বা কার্বনিল কার্বনে সংযুক্ত অ্যালকাইল মূলকের ধনাত্মক আবেশীয় প্রভাবঃ অ্যালকাইল মূলক ইলেকট্রন দাতা বলে কার্বনিল কার্বনকে ইলেকট্রন দেয়। এতে কার্বনিল কার্বনের ধনাত্মক আধান হ্রাস পায়। ফলে নিউক্লিওফাইল কার্বনিল কার্বনের সাথে সহজে যুক্ত হতে পারে না। অর্থাৎ সক্রিয়তা হ্রাস পায়।

- * যত বেশি অ্যালকাইল মূলক কার্বনিল যৌগের কেন্দ্রাকর্ষী যুত বিক্রিয়ায়
 সক্রিয়তা তত কম।
- 💥 কিটোন হতে অ্যালডিহাইড বেশি সক্রিয়।

জৈৰ এগিড

★ অ্যালকোহলের জারণঃ

- 1° অ্যালকোহল $\stackrel{[\circ]}{\longrightarrow}$ অ্যালডিহাইড $\stackrel{[\circ]}{\longrightarrow}$ জৈব এসিড
- 2° অ্যালকোহল $\stackrel{[\circ]}{\longrightarrow}$ কিটোন $\stackrel{[\circ]}{\longrightarrow}$ জৈব এসিড
- 3° অ্যালকোহল $\xrightarrow{[\circ]}$ অ্যালকিন $\xrightarrow{[\circ]}$ কিটোন $\xrightarrow{[\circ]}$ জৈব এসিড
- অ্যালকোহলকে বারবার জারন বা তীব্র জারন করলে উৎপন্ন হয়় জৈব এসিড।
- এসিডকে তীব্র বিজারন করলে উৎপন্ন হয় অ্যালকোহল।
- সাধারনত অ্যালকোহলের তীব্র জারনের জন্য ব্যবহৃত হয়।

$$CH_3 - CN + H_2O/H^+ \longrightarrow CH_3 - COOH$$

$$\begin{array}{c}
\sqrt{\text{COON}} \\
\text{CN} \\
\text{O}
\end{array}
+ \text{H}_2\text{O}/\text{H}^+$$

* সমযোগী বন্ধনে শেয়ারকৃত ইলেকট্রনকে নিজের দিকে টেনে নেয়ার ক্ষমতাকে তড়িৎ ঋণাত্মক বলে।

জৈব এসিডকে যত বেশি হ্যালোজেন থাকে জৈব এসিডের সক্রিয়তা তত বেশি। কারণ হ্যালোজেন তড়িৎ ঋণাত্মক মৌল। তড়িৎ ঋণাত্মক কারণে বন্ধনজোড় ইলেকট্রন হ্যালোজেনের দিকে চলে আসে। তাই H এর বন্ধন দূর্বল হয়ে H সহজে অপসারিত হয়।

জৈৰ এগিড

$${
m CH_3-C00H}<{
m CH_2Cl-C00H}<{
m CH_2Cl-C00H}<{
m CCl_3-C00H}$$
 তড়িৎ ঋনাত্বকতা ${
m 3}$

- * হেল ভোলহার্ট জেলনক্ষি বিক্রিয়া (HVZ বিক্রিয়া)
 - ⇒ হ্যালোজেন দ্বারা এসিডের αΗ প্রতিস্থাপনঃ

$$\begin{array}{c} \text{CH}_3 - \text{COOH} + \text{Cl}_2/\text{hv} \longrightarrow \text{CH}_3 - \text{COOH} \xrightarrow{\text{Cl}_2/\text{hv}} \text{CH}_3 - \text{COOH} \xrightarrow{\text{Cl}_2/\text{hv}} \\ \downarrow \qquad \qquad \qquad \qquad \\ \text{CCl}_3 - \text{COOH} \longleftarrow \\ \alpha \text{C} \quad \alpha \text{H} \end{array}$$

🕒 কেন্দ্রাকর্ষী যুত বিক্রয়ায় প্রথমে নিউক্লিওফাইল এসে কার্বনিল কার্বনে যুক্ত হয়।

 \Box জৈব এসিড কেন্দ্রাকর্ষী যুত বিক্রিয়া দিতে পারে না। কারণ রেজোন্যান্স এর কারণে জৈব এসিডের কার্বনিল কার্বনে ধনাত্মক চার্জ থাকেনা। ফলে Nu^- এসে কার্বনিল কার্বনে যুক্ত হতে পারে না।

$$\overrightarrow{R-C}-\overrightarrow{\bigcirc}-H \longrightarrow R-\overrightarrow{C}=\overrightarrow{O}-H$$

জৈব এসিড

শাইট্রোগ্লিসারিন প্রস্তুতিঃ

$$\begin{array}{c} \text{CH}_2 - \text{OH} \\ \mid \\ \text{CH} - \text{OH} + \text{HNO}_3 \\ \mid \\ \text{CH}_2 - \text{OH} \\ \text{CH}_2 - \text{OH} \\ \text{ \mathbb{Q}} \\$$

※ TNT (ট্রাই নাইট্রো টলুইন) প্রস্তৃতিঃ

$$\stackrel{\text{CH}_3}{\bigcirc}$$
 +HNO $_3$ + H $_2$ SO $_4$ $\stackrel{\text{NO}_2}{\bigcirc}$ $\stackrel{\text{CH}_3}{\bigcirc}$ NO $_2$ $\stackrel{\text{NO}_2}{\bigcirc}$ $\stackrel{\text{NO}_2}{\bigcirc}$

₩ ডেটল প্রস্ততিঃ

জৈৰ গ্ৰসিড

প্যারাসিটামল প্রস্তুতিঃ

OH OH OH NO2
$$+$$
 HNO3 + H2SO4 $+$ আর্থোনাইট্রো ফেনল $+$ NO2

প্যারানাইট্রো ফেনল

$$\begin{array}{c}
OH \\
\hline
OH \\
NO_2
\end{array}
+ CH_3COCOOCH_3$$

$$OH \\
+ CH_3COOH_3$$

$$NHCOCH_3$$

N-অ্যাসিটো অ্যামিনোফেনল (প্যারাসিটামল)

জৈব এসিড

***** অ্যামাইনো এসিডঃ

$$H_2N-CH-COOH$$

$$CH_3$$

🕒 অ্যামাইনো এসিড জুইটার আয়ন তৈরি করে।

$$H_2N^+ - CH - COO^+$$

 I
 CH_3

প্রপটাইড বন্ধনঃ

$$H_{2}N - CH - COOH + H_{2}N - CHCOOH$$
 CH_{3}
 CH_{3}
 CH_{3}
 $H_{2}N - CH - CO - NH - CH - COOH + H_{2}O$
 CH_{3}
 CH_{3}
 CH_{3}

প্রলিমারকরন বিক্রিয়া

- ★ সংযোজন বা চেইন পলিমারকরণঃ সংযোজন বা চেইন পলিমারকরণ বিক্রিয়ার উদাহরণঃ-
- (ক) পলিইথিনঃ

$$nH_2C = CH_2 \xrightarrow[1000-1200 \text{ atm}]{O_2, 1000-200 \text{ °C}} + H_2C = CH_2 + n$$

♦ (খ) পলিপ্রোপিনঃ

$$nCH_{3} - CH = CH_{2} \xrightarrow{\text{TiCl}_{3}, 120^{\circ}\text{C}} + CH_{2} + CH_{2} + n$$

$$CH_{3} - CH = CH_{2} \xrightarrow{\text{TiCl}_{3}, 120^{\circ}\text{C}} + CH_{2} + CH_{2} + CH_{3}$$

◆ (গ) PVC:

$$HC \equiv CH + HCl$$
 $\xrightarrow{HgCl_2}$ $H_2C = CHCl$ ভিনাইল ক্লোরাইড

$$nCH_3 = CHCl$$

— টারশিয়ারী কিউটাইল পারঅক্সাইড

— $H_2C - CH \frac{1}{n}$

— Cl

◆ (ঘ) পলিস্টাইরিনঃ

♦ (ঙ) টেফলনঃ

n
$$F_2C = CF_2$$
 $\xrightarrow{FeSO_4 + H_2O_2} \xrightarrow{F} F_2C - CF_2 \frac{1}{n}$

পলিমারকরন বিক্রিয়া

- (ক) পলিথিন: ঔষধের প্যাকেট প্রস্তুতি, গৃহস্থালি কাজের মগ, বালতি, পানির ট্যাংক প্রস্তুতিতে।
- (খ) পলিপ্রোপিন: এটি সবচেয়ে হালকা পলিমার প্লাস্টিক। মোটা রজ্জু বা রোপ, কার্পেট প্রস্তুতিতে।
- (গ) পিভিসি (পলিভিনাইল ক্লোরাইড): কৃত্রিম চামড়া, কার্পেট, গ্রামোফোন রেকর্ড প্রস্তুতিতে।
- (ঘ) পলিস্টাইরিন: খাবার পাত্র, কসমেটিক বোতল, শিশুদের খেলনা প্রস্তুতিতে।
- (৬) টেফলন: ননস্টিকের হাড়ি পাতিল এর হাতল প্রস্তুতিতে।

পলিমারকরন বিক্রিয়া

- ★ (2) ঘনীভবন পলিমারকরন বিক্রিয়াঃ ঘনীভবন পলিমারকরন বিক্রিয়ার উদাহরণ-
- ♦ (ক) পলিএস্টার বা পলিটেরেথেলেটঃ

n HOOC – COOH + nHO –
$$CH_2$$
 – CH_2 – OH

♦ (খ) নাইলন -66

$$nHOOC - (CH_2)_4 - COOH + nH_2N - (CH_2)_6 - NH_2$$

(গ) মেলামিনঃ

$$nH_2N-CO-NH_2$$
 TiO_2 H_2N NH_2 NH_2 NH_2 NH_2

♦ (ঘ) মেলাডুরঃ

পলিমারকরন বিক্রিয়া

♦ (ইউরিয়া ফরমালডিহাইড রেজিন বা ফরমিকা):

 $nH_2N - CO - NH_2 + nHCHO$

♦ (ঙ) ব্যাকেলাইট বা প্লাস্টিকঃ

★ ব্যবহারঃ

নাইলন-৬৬: টুথবাশ প্রস্তুতিতে।

ডেক্রন বা টেরিলিন বা পলিস্টার: সুতা, মোজা, সোয়েটার, শাড়ি প্রস্তুতিতে।

ব্যাকেলাইট প্লাস্টিক : টেলিফোন হ্যান্ডসেট তৈরিতে।

টপিক- [জৈব যৌগের ব্যাসিক ধারনা, সমগ্রোত্রীয় শ্রেনি, নামকরন]

 $2NH_4CI + Pb(CNO)_2 \rightarrow PbCl_2 + 2NH_4CNO$

 $NH_4CNO \xrightarrow{\Delta} H_2N-CO-NH_2$

- (ক) সমগ্রোএীয় শ্রেনি কাকে বলে?
- (খ) প্রানশক্তি মতবাদটি ব্যাখ্যা কর।
- (গ) কার্বক্সিলিক এসিডের নামকরনের ধাপগুলো বর্ননা করো উদাহরন সহ।
- (ঘ) অধিক সংখ্যক জৈব যৌগের উৎপত্তির কারন বিশ্লেষন কর।

সমাধান

(ক)

সমগ্রোতীয় শ্রেনি

(খ)

প্রানশক্তি মতবাদ:

(গ)

যেসব জৈব যৌগের অণুতে কার্যকরী মূলক হিসেবে কার্বক্সিল মূলক (-COOH) উপস্থিত থাকে, তাদেরকে কার্বক্সিলিক এসিড বলা হয়। এর সাধারণ সংকেত $C_nH_{2n+1}COOH$ । এখানে, $n=0,\ 1,\ 2,\ 3$ ইত্যাদি।

কার্বক্সিলিক মলকের কার্বন পরমাণুর সাথে H বা অ্যালকাইল মূলক (R) যুক্ত থাকলে তাকে অ্যালিফেটিক কার্বক্সিলিক এসিড হয়। যেমন: মিথানয়িক এসিড (H – COOH), ইথানয়িক এসিড (CH₃ – COOH)। কার্বক্সিলিক মূলকের কার্বন পরমানুর সাথে অ্যারাইল মূলক যুক্ত থাকলে তাকে অ্যারোমেটিক কার্বক্সিলিক এসিড বলা হয়। যেমন- বেনজোয়িক এসিড। (CH₃ – COOH)।

★ কার্বক্সিলিক এসিডের নামকরনের ধাপগুলো নিম্নরুপঃ

- ১/ এ জাতীয় সমগােত্রীয় শ্রেণির যৌগের নামের শেষে 'অয়িক এসিড' লেখা হয়।
- ২/ -COOH মূলকের কার্বন পরমাণুকে ১নং কার্বন ধরে বৃহত্তর শিকলটিকে প্রধান শিকল হিসেবে নির্বাচন করা হয়।
- ৩/ প্রধান শিকলটিকে এমনভাবে নির্বাচন করা হয় যেন সবগুলা শাখা শিকল সরাসরি প্রধান শিকলের সাথে যুক্ত থাকে।
- 8/ প্রধান শিকলের কার্বনের সংখ্যানুযায়ী মূল যৌগের নামকরণ করা হয়।
- ৫/ শাখা শিকলগুলােকে অ্যালকেনের রীতি অনুযায়ী উল্লেখ করা হয়।
- ৬/ কার্বক্সিলিক এসিড এর ক্ষেত্রে কার্যকরী মূলকের কার্বন প্রমাণু শিকলের এক প্রান্তে থাকে। তাই এর অবস্থান নির্দেশক সংখ্যা 1, নামকরণে এ সংখ্যাকে উল্লেখ করা হয় না।

উদাহরনঃ

১/
$$\mathrm{CH_3} - \mathrm{CH} = \mathrm{CH} - \mathrm{COOH}$$
 (বিউট $-2 - \overline{2}$ ন $-1 - \mathrm{o}$ থিক এসিড)
$$\mathrm{CH_3}$$
 $|$ ২/ $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH} - \mathrm{COOH}$ (2-ফরমাইলপেন্টানোয়িক এসিড)
$$\mathrm{CH_3}$$
 $|$ ৩/ $\mathrm{CH} \equiv \mathrm{C} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{COOH}$ (3-মিথাইল-পেন্ট-4-আইন-1-ওয়িক এসিড)

(ঘ)

প্রকৃতিতে জৈব যৌগের সংখ্যা অধিক। এ সংখ্যামান প্রায় ৮০ লক্ষের মত। এতো অধিক সংখ্যক যৌগের কারণ হিসেবে কার্বনের বিশেষ কিছু বৈশিষ্ট্যপূণ ধমকে চিহ্নিত করা হয়েছে।

- ১. কার্বনের ক্যাটিনেশন ধর্ম (Catenation property of carbon)
- ২. সমাণুতা (Isomerism)
- ৩. কাবন প্রমাণুর দ্বিন্ধন ও ত্রিবন্ধন গঠনের সক্ষমতা (Capability of forming)
- 8. তড়িৎ ঋণাত্মকতা ও বন্ধন শক্তি (Electronegativity and streng)

কার্বনের ক্যাটিনেশন ধর্মঃ কার্বন পরমাণুর আকার অপেক্ষাকৃতভাবে যথেষ্ট ছােট। কার্বন পরমাণুর যােজ্যতা চার। এ দুটি ধর্মের কারণে C - C সমযােজী বন্ধন খুবই শক্তিশালী হয় বলে কার্বন পরমাণুর প্রধান বৈশিষ্ট্য হলাে;

কার্বন পরমানুগুলো পরস্পরের সাথে যুক্ত হয়ে বিভিন্ন প্রকারের সরল শিকল, শাখা শিকল, বদ্ধ শিকল, পার্শ্ব শিকল গঠন করতে পারে। কার্বন পরমাণুর নিজেদের মধ্যে স্বাভাবিক নিয়মে যুক্ত হওয়ার এ ধর্ম হলাে ক্যাটিনেশন ধর্ম। কার্বন পরমাণুর ক্যাটিনেশন ধর্ম জৈব যৌগের প্রাচুর্য্যতার অন্যতম প্রধান কারণ।

ক্যাটেনেশনঃ কার্বনের অসংখ্য পরমাণু নিজেদের মধ্যে যুক্ত হয়ে ছােট-বড় বিভিন্ন আকার ও আকৃতির দীর্ঘ শিকল বা বলয় গঠন করার ক্ষমতাকে কার্বনের ক্যাটেনেশন বলে।

কার্বনের ক্যাটেনেশন বলতে কার্বনের শিকল বুঝায়। কার্বন, সিলিকন, সালফার, ফসফরাস প্রভৃতি। যৌগ ক্যাটিনেশন ধর্ম দেখায়। তবে কার্বনের ক্যাটিনেশন প্রবণতা অত্যন্ত বেশি। চতুর্যোজ্যতা, অরবিটাল সংকরণ ও কার্বনকার্বন বন্ধনের অধিক স্থিতিশীলতার কারণে কার্বন ক্যাটিনেশন দেখায়। অর্থাৎ কার্বন বিভিন্ন দৈর্ঘ্য বা আকৃতির (খােলা বা চক্রাকার) শিকলযুক্ত। সম্পৃক্ত (একক বন্ধনযুক্ত) বা অসম্পৃক্ত (দ্বিবন্ধন বা ত্রিবন্ধনযুক্ত) জৈব যৌগ গঠনকরে।

সমানুতাঃ সমাণুতা ধর্মের কারণে অধিক সংখ্যক জৈব যৌগ উৎপন্ন হয়। আণবিক সংকেত একই কিন্তু গাঠনিক সংকেত ভিন্ন। ফলে যৌগের ধর্মও ভিন্ন হয়। এ ধরনের যৌগকে একে অপরের সমাণুক যৌগ বলা হয় এবং বিষয়টিকে সমাণুতা বলে। যেমনঃ

(ঘ)

 $C_4H_{10}O$ আণবিক সংকেত বিশিষ্ট দুটি যৌগ বিউটেন ও 2-মিথাইলপ্রােপান সম্ভব। ভাবে C_2H_6O আণবিক সংকেতবিশিষ্ট দুটি যৌগ ইথানল ও মিথােক্সিমিথেন বা 2-অক্সাপ্রােপান সম্ভব।

কার্বন পরমাণুর দ্বিবন্ধন ও ত্রিবন্ধন গঠনের সক্ষমতাঃ কার্বন পরমাণুর আকার যথেষ্ট ছােট এবং যােজ্যেতা স্তরে চারটি বিজাড় ইলেকট্রনের উপস্থিতির কারণে কার্বন পরমাণুর অপর কার্বন পরমাণুর সাথে এমনকি অক্সিজেন, নাইট্রোজেন প্রভৃতি পরমাণুর সাথে দ্বিবন্ধন ও ত্রিবন্ধন গঠন করতে সামর্থ্য রাখে। এর ফলে জৈব যৌগের সংখ্যা অধিক হয়।

তড়িং ঋণাত্মকতা ও বন্ধন শক্তিঃ পাউলির স্কেল অনুযায়ী কার্বন পরমাণুর ঋণাত্মকতার মান 2.5। এ মান খুবই কম আবার খুব বেশিও নয়। কার্বন পরমাণুর আকারও খুব ছােটে হয়। এসব ধর্মের কারণে কার্বন পরমাণুর অতিসহজেই হাইড্রোজেন, অক্সিজেন, নাইট্রোজেন, হ্যালােজেন এমনকি ধাতব মৌলের সাথেও বন্ধন গঠন করার সামর্থ্য রাখে। এ কারণেও জৈব যৌগের সংখ্যা অধিক হয়।

সূজনশীল - ১

★ টপিক- [সমাণুতা]

প্রতীক	আনবিক সংকেত
A	C ₅ H ₁₀ O
В	С ₆ Н ₁₂ О

- (ক) সমানুতা কাকে বলে?
- (খ) আলোক সমাণুতার শর্তগুলো আলোচনা কর।
- (গ) "A ও B এর সমান সংখ্যক সমানু"- ব্যাখ্যা কর।
- (ঘ) জৈব ও অজৈব যৌগের মধ্যে পার্থক্য লিখ।

(ক)

সমানুতা:

(খ)

আলোক সমাণুতার শর্তগুলো হলো:

(গ)

জৈব যৌগের আণবিক সংকেত অভিন্ন হওয়া সত্ত্বেও এদের গাঠনিক সংকেতের ভিন্নতার কারণে এবং অণুস্থিত পরমানুসমূহেরর ত্রিমাত্রিক বিন্যাসের ভিন্নতার কারণে এদের বিভিন্ন ভৌতধর্ম ও রাসায়নিক ধর্মের ভিন্নতা প্রকাশ পায়, সেসব যৌগকে সমাণু (isomers) এবং যৌগের এরূপ ধর্মকে সমাণুতা (isomerism) বলা হয়।

জৈব যৌগের সমাণুতাকে প্রধানত দুটি ভাগে ভাগ করা হয়।

- ১/ গাঠনিক সমাণুতা (Structural isomerism)
- ২/ ত্রিমাত্রিক সমাণুতা বা স্টেরিও সমাণুতা (Streo isomerism)

উদ্দীপকের যৌগ দুটি A ও B অথ্যাৎ পেন্টান্যাল ও হেক্সান্যাল গাঠনিক সমানুতা প্রদর্শন করে। এদের সমানু সমূহ নিম্নে দেওয়া হলো:

সজনশীল - ১

$$A = C_5H_{10}O = CH_3 - CH_2 - CH_2 - CH_2 - CH_0$$

CH₃

শিকল সমাণু: (i) $CH_3 - CH_2 - CH - CHO$

CH₃ | (ii) CH₃-C-CHO | CH₃

অবস্থান সমাণু : 🗙

কার্যকরী মূলক সমাণু : $CH_3 - CH_2 - CO - CH_2 - CH_3$ মেটামারিজম সমাণু : $CH_3 - CO - CH_2 - CH_2 - CH_3$

OH

টটোমারিজম সমাণু:

CH₃-CH=C-CH₂-CH₃

 $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CHO}$ অথ্যাৎ, পেন্টান্যাল এর সমাণু ৫টি।

 $B = C_6H_{12}O = CH_3-CH_2-CH_2-CH_2-CH_0$

 CH_3

শিকল সমাণু: (i) CH₃-CH₂-CH₂-CH-CHO

CH₃ CH₃ | | (ii) CH₃-CH-CH-CHO

অবস্থান সমাণু: 🗙

কার্যকরী মূলক সমাণু : $CH_3 - CH_2 - CO - CH_2 - CH_2 - CH_3$ মেটামারিজম সমাণু : $CH_3 - CO - CH_2 - CH_2 - CH_2 - CH_3$

সৃজনশীল - ১

 $\mathrm{CH_3-CH_2-CH_2-CH_2-CH_2-CH_0}$ অথ্যাৎ, হেক্সান্যাল এর সমাণু ৫ টি। "A ও B এর সমান সংখ্যক সমাণু"- কথাটি যথার্থ।

(ঘ)

জৈব ও অজৈব যৌগের মধ্যে পার্থক্য নিম্নরুপঃ

7 (,5	<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
বৈশিষ্ট্য	জৈব যৌগ	অজৈব যৌগ
১. সংজ্ঞা	উৎস নির্বিচারে জাত	অজৈব প্রক্রিয়ায় সৃষ্ট
	হাইডােকার্বন	যৌগসমূহকে অজৈব যৌগ
	ও হাইড্রোকার্বন হতে	বলে।
	উ্ভূত যৌগ সমূহকে জৈব	
	যৌগ বলে ।	
২. অণুর গঠন	অধিকাংশ জৈব যৌগ উচ্চ	অজৈব যৌগ সাধারণত নিম্ন
·	আণবিক ভরবিশিষ্ট পলিমার	আণবিক ভরবিশিষ্ট, এদের
	অবস্থায় বিরাজ করে। তাই	অণুর গঠন সরল।এদের
	এদের অণুতে বহু সংখ্যক	অণুতে তুলনামূলকভাবে কম
	পরমাণু থাকে এবং	সংখ্যক পরমাণু থাকে।
	অণুর গঠন বেশ জটিল	
	र ग्न ।	
৩. উপস্থিত মৌল	জৈব যৌগে অবশ্যই কার্বন	অজৈব যৌগ গঠনের ক্ষেত্রে
	থাকে; কার্বনের সঙ্গে	যেকোনাে দুই বা
	প্রধানত H এবং কোনাে	ততােধিক মৌল থাকতে
	কোনাে ক্ষেত্রে 0, N, S,	পারে।
	P,	
	হ্যালােজেন ইত্যাদি মৌল	
	থাকে।	

সৃজনশীল - ১

৪. সংখ্যা	কার্বনের চতুর্যোজ্যতা ও ক্যাটিনেশন ধর্মের কারণে জৈব যৌগের সংখ্যা ৮০ লাখের বেশি।	অজৈব যৌগে কার্বনের মতাে কোনাে বিশেষ। বৈশিষ্ট্য সম্পন্ন মৌল নির্দিষ্টভাবে থাকে না বলে এদের সংখ্যা স্বল্প (১ লাখের কম)।
৫. পােেলারিটি	অধিকাংশ জৈব যৌগের অণু অপােলার। এরা পানি বা পােলার দ্রাবকে অদ্রবণীয় কিন্তুু জৈব দ্রাবকে দ্রবণীয়।	অধিকাংশ অজৈব যৌগের অণু পােলার বলে। পানি বা পােলার দ্রাবকে অদ্রবণীয় কিন্তু জৈব দ্রাবকে অদ্রবণীয়।
৬. প্রকৃতি	জৈব যৌগ প্রধানত সমযােজী প্রকৃতির হয়।এজন্য এরা অদানাদার কঠিন বা তরল বা গ্যাসীয় হয় এবং এদের গলনাঙ্ক ও স্ফুটনাঙ্ক নিম্ন হয়।	অজৈব যৌগ আয়নিক ও সমযােজী উভয় প্রকৃতির হতে পারে।আয়নিক প্রকৃতির অজৈব যৌগসমূহ সাধারণত কেলাসাকার ও উচ্চ গলনাঙ্ক ও স্কুটনাঙ্ক বিশিষ্ট হয়।
৭. সমগােত্রীয় শ্রেণি	প্রত্যেক জৈব যৌগ একটি নির্দিষ্ট সমগােবীয় শ্রেণির অন্তর্ভুক্ত।	অজৈব যৌগসমূহের কোনাে সমগাে ত্রীয় শ্রেণি নেই। এরা সমাণুতা ধর্মের পরিবর্তে সমরুপতা প্রদর্শন করে।
৮. বিক্রিয়া ধরন	অধিকাংশ জৈব যৌগের বিক্রিয়া জটিল প্রকতির এবং ধীরে ধীরে সম্পন্ন হয় ।	

সৃজনশীল - ১

৯. দহন	জৈব যৌগসমূহ সহজে জ্বলে	অজৈব যৌগসমূহ সাধারণত
	জ্বলনে গ্যাসীয় পদার্থ তৈরি হয়	জ্বলে না,তবে জ্বললে পাত্রে
	বলে জ্বলন শেষে পাত্ৰে	অনুদ্বায়ী কঠিন অবশেষ
	কোনাে অবশেষ থাকে না।	থেকে যায়।

টপিকঃ অ্যারোমেটিক যৌগ - অ্যালকেনের পূর্ব

সৃজনশীল প্রশ্নঃ ১

$$CaC_2 + H_2O \rightarrow \boxed{A} + Ca(OH)_2$$

$$\downarrow H_2(Pd + Ba SO_4)$$

$$\boxed{B}$$

- ক. ফ্যারাডের সূত্রটি লিখ।
- খ. সিমেন্টে জিপসাম যোগ করা হয় কেন?
- গ. 'A' হতে কীভাবে একটি অ্যারোমেটিক যৌগ প্রস্তুত করবে? বর্ণনা কর।
- ঘ. 'A' ও 'B' এর মধ্যে কোনটি অধিক অম্লীয়? বিশ্লেষণ করো।

গ. উদ্দীপকের বিক্রিয়াটি নিম্নরূপ:-

$$CaC_2 + H_2O \rightarrow HC \equiv CH + Ca(OH)$$

এখানে, 'A' হলো $HC \equiv CH$, অর্থাৎ ইথাইন।

ইথাইন হতে অ্যারোমেটিক যৌগ প্রস্তুতিঃ $400-500^{\circ}$ C তাপমাত্রায় উত্তপ্ত লৌহ নলের ভেতর দিয়ে ইথাইন গ্যাস চালনা করলে তিন অণু ইথাইন যুক্ত হয়ে নেন জিন উৎপন্ন করে যা একটি অ্যারোমেটিক যৌগ।

ঘ. উদ্দীপকের সম্পূর্ণ বিক্রিয়াটি নিম্নরূপ :-

$$CaC_2 + H_2O \rightarrow HC \equiv CH + Ca(OH)_2$$

$$\downarrow (A)$$

$$\downarrow H_2(Pd + BaSO_4)$$

$$CH_2 = CH_2$$
(B)

HC \equiv CH + 2Ag(NH $_3$) $_2$ NO $_3$ \rightarrow Ag − C \equiv C − Ag \downarrow NH $_4$ NO $_3$ + NH $_3$ কিন্তু ইথিনের ক্ষেত্রে প্রান্তীয় H − পরমাণু না থাকায় এরূপ ঘটে না। তাই বলা যায়, ইথাইন ইথিনের তুলনায় অধিক অম্লীয়।

টপিকঃ অ্যারোমেটিক যৌগ - অ্যালকেনের পূর্ব

সৃজনশীল প্রশ্নঃ ২

COONa
$$\begin{array}{c} & & & \\ & \downarrow & \\ & & \\$$

[রা. বো. '১৯]

- ক. কার্যকরী মূলক কাকে বলে?
- খ. উর্টজ বিক্রিয়া কেন শুষ্ক ইথার ব্যবহার করা হয়?
- গ. A যৌগের কার্যকরী মূল কের শনাক্তকারী পরীক্ষা রূসায়নিক সমীকরণসহ লিখ।
- ঘ. A ও B যৌগকে নাইট্রেশান করলে প্রতিস্থাপক একই অবস্থানে যুক্ত হবে কি না - বিশ্লেষণ করো।

গ্র উদ্দীপকের বিক্রিয়াটি নিম্নরূপ:-

সুতরাং, A যৌগটি হলো অ্যানিলিন।

অ্যানিলিনের শনাক্তকরণ পরীক্ষাঃ-

ফ্লোরোফর্ম ও অ্যালকোহলীয় কস্টিক পটাস (KOH) দ্রবণের সাথে ফিনাইল অ্যামিন বা অ্যানিলিনকে উত্তপ্ত করলে তীব্র গন্ধযুক্ত ফিনাইল আইসো-সায়ানাইড বা ফিনাইল কার্বন অ্যামিন উৎপন্ন হয়।

এ বিক্রিয়া দ্বারা অ্যানিলিন শনাক্ত করা যায়।

ঘ. উদ্দীপকের 'গ' হতে প্রাপ্ত A ও B যৌগদ্বয় যথাক্রমে অ্যানিলিন ও বেনজয়িক এসিডের নাইট রেশন করলে প্রতিস্থাপক একই অবস্থানে যুক্ত হবে। কারণ নিম্নে উল্লেখ করা হলো:-

উল্লেখ্য, - NH গ্রুপ অর্থো প্যারা নির্দেশক হলেও অ্যানিলিনের নাইট রেশন মেটা অবস্থানে হয়। কারণ নাইট্রেশনের সময় এসিডের H^+ আয়ন অ্যানিলিনের সাথে বিক্রিয়া করে অ্যানিলিনিয়াম লবণ উৎপন হয়। উৎপন্ন অ্যানিলিনিয়ম আয়ন মেটা নির্দেশক বিধায় পরবর্তীতে যখন নাইট্রেশন ঘটে তা মেটা অবস্থানে ঘটে এবং মেটা নাইট্রো অ্যানিলিন উৎপন্ন হয়।

অপরদিকে, বেনজয়িক এসিডের - COOH মূলক বেনজিন বলয়ের সক্রিয়তা হ্রাস কারী মূলক। ফলে বেনজয়িক এসিডের বলয়ে - COOH উপস্থিত থাকায় -COOH মূলক বেনজিন বলয় থেকে ইলেকট্রন ঘনত্ব নিজের দিকে টেনে নেয় ফলে বেনজিন বলয়ে অর্থো ও প্যারা অবস্থানে ইলেকট্রন ঘনত্ব হ্রাস পায় কিন্তু মেটা অবস্থানে তুলনামূলক ইলেকট্রন ঘনত্ব বেশি থাকে। তাই আগমনকারী ২য় ইলেকট্রোফাইল মূল কটি মেটা অবস্থানে প্রবেশ করে। তাই বেনজয়িক এসিডের নাইট্রেশনে মেটা নাইট্রো বেনজয়িক এসিড উৎপন্ন হয়।

COOH
$$+$$
 HO $-$ NO $_2$ $\xrightarrow{\text{গাড় H}_2\text{SO}_4}$ \longrightarrow NO $_2$ $+$ H $_2$ O আ্যানিলিন \longrightarrow মেটা-নাইট্রো বেনজয়িক এসিড

সুতরাং উপরিউক্ত আলোচনার প্রেক্ষিতে বলা যায় যে, অ্যানিলিন ও বেনজয়িক এসিডের নাইট্রেশনে প্রতিস্থাপক একই অবস্থানে যুক্ত হবে।

সূজনশীল প্রশ্নঃ ৩

$$A \xrightarrow{Zn} C_6H_6 \xrightarrow{CH_3Cl} C'C'$$

[সি. বো. '১৯]

- ক. পরম শূণ্য তাপমাত্রার সংজ্ঞা দাও।
- খ. তড়িৎ রাসায়নিক কোষে লবণ সেতু ব্যবহার করা হয় কেন?
- গ. 'B' হতে 'C' যৌগ তৈরি সমীকরণ সহ বর্ণনা করো।
- ঘ. 'X' ও 'C' যৌগের মধ্যে ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিয়ায় কোনটি অধিক সক্রিয়?

গ. উদ্দীপকে X যৌগটি হলো বেনজিন। ফেনলকে Zn গুঁড়াসহ শুষ্ক পাতন করলে বেন জিন উৎপন্ন হয়। সুতরাং উদ্দীপকের A যৌগটি হলো ফেনল। উদ্দীপকে সম্পূর্ণ বিক্রিয়া নিম্নরূপঃ-

সুতরাং উদ্দীপকের B যৌগটি হলো নাইট্রোজেন।

নাইট্রোবেনজিন (B) হতে ফেনল (A) প্রস্তৃতিঃ

নাইট্রোবেনজিন Sn + গাঢ় HCl দ্বারা বিজারিত করলে অ্যানিলিন পাওয়া যায়।অ্যানিলিনকে NaNO2 এবং HCl (গাঢ়) দ্বারা 0-5°C তাপমাত্রায় ডায়াজোকরণ করলে বেন জিন ডায়াজোনিয়াম ক্লোরাইড পাওয়া যায়।

উৎপন্ন বেনজিন ডায়াজোনিয়াম ক্লোরাইডকে 4°C এর অধিক তাপমাত্রায় আর্দ্র বিশ্লেষিত করলে ফেনলে পরিণত হয়।

$$NO_2$$
 NH_2 $+6$ [H] গাড় H_2SO_4 $+2$ H_2O নাইট্রোবেনজিন অ্যানিলিন NH_2 N_2Cl $+ HNO_2$ $NANO_2 + HCl$ (গাড়) $+ H_2O$ ত্যানিলিন বনজিন ডায়ানোজিয়াম ক্লোরাইড

$$N_2Cl$$
 OH $+N_2Cl$ $+N_2+HCl$ বেনজিন ডায়ানোজিয়াম ফেনল ক্লোরাইড (A)

ঘ. উদ্দীপকের 'গ' হতে প্রাপ্ত 'C' যৌগটি হলো টলুইন এবং 'X' যৌগটি বেনজিন। ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিয়ার ক্ষেত্রে বেনজিন ও টলুইনের মধ্যে টলুইন অধিক সক্রিয়।

কেননা, টলুইনের বেনজিন বলয়ের সাথে বলয় সক্রিয়কারী গ্রুপ $(-CH_3)$ মূলক বিদ্যমান থাকে। বেনজিন বলয়ের সাথে $-CH_3$ মূলক যুক্ত হলে মিথাইলের C-H বন্ধন ভেঙ্গে ইলেকট্রন জোড় বেনজিন বলয়ের অর্থো ও প্যারা অবস্থানে অনুরণনের মাধ্যমে প্রবেশ করে এবং এ দুটি অবস্থানে ইলেকট্রন ঘনত্ব বৃদ্ধি পায়। মিথাইল মূলক বেন জিন বলয়ে অর্থো ও প্যারা অবস্থানে ইলেকট্রন ঘনত্ব বাড়িয়ে দেয় বলে নতুন প্রতিস্থাপক এ দুটির স্থানে আক্রমণ করে এবং অর্থো ও প্যারা উৎপাদ সৃষ্টি করে। তাই ইলেকট্রনাকর্ষী বিক্রিয়ায় বেনজিন অপেক্ষা টলুইন অধিক সক্রিয়।

বিক্রিয়াঃ

অপরদিকে বেন জিনের ক্ষেত্রে কোনো সক্রিয় কারী পার্শ্ব শিকল যুক্ত না থাকায় টলুইনের মতো কোনো অনুরূপ ঘটনা ঘটে না। তাই বেনজিনের ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিয়া কক্ষ তাপমাত্রায় হয় না। এজন্য একে একটু উত্তপ্ত করতে হয়।

সুতরাং উপরিউক্ত বিশ্লেষণ থেকে বলা যায়, বেনজিন ও টলুইনের মধ্যে টলুইন ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিয়ায় অধিক সক্রিয়।

- গ) C যৌগ হতে কিভাবে আলকোহল প্রস্তুত করবে?
- ঘ) "উদ্দীপকের একটি উৎপাদ ক্যানিজারো বিক্রিয়া দেখালেও হ্যালোফরম বিক্রিয়া প্রদর্শন করে না"- বিক্রিয়াসহ কারণ বিশ্লেষণ কর।

গ. উদ্দীপকের A যৌগটি হলো ৩ কার্বন বিশিষ্ট অ্যালকিন। সুতরাং যৌগটি হলো $C_3H_6(CH_3-CH=CH_2\,)$

বিক্রিয়াটি সম্পূর্ণ করে পাই,

$$CH_3 - CH = CH_2 + O_3 \xrightarrow{Zn} CH_3 - CHO + HCHO + H_2O_2$$
(C) (D)

সুতরাং C যৌগটি হলো ইথানল (CH₃ - CHO)।

গ্রিগনার্ড বিকারক (CH₃ — MgI) এর সাথে ইথান্যাল এর বিক্রিয়ায় প্রথমে একটি যুত যৌগ উৎপন্ন হয়। পরে তা আর্দ্র বিশ্লেষিত হয়ে অ্যালকোহল উৎপন্ন হয়।

সুতরাং C যৌগটি হলো ইথানল (CH3 – CHO)।

গ্রিগনার্ড বিকারক (CH₃ — MgI) এর সাথে ইথান্যাল এর বিক্রিয়ায় প্রথমে একটি যুত যৌগ উৎপন্ন হয়। পরে তা আর্দ্র বিশ্লেষিত হয়ে অ্যালকোহল উৎপন্ন হয়।

$$CH_{3} - MgI + CH_{3} - CHO \longrightarrow CH_{3} - CH - O^{-}Mg^{+}I \longrightarrow$$

$$Zn \longrightarrow CH_{3} - CH - OH + MgOH(I)$$

$$CH_{3} - CH - OH + MgOH(I)$$

প্রোপানল-২ (অ্যালকোহল)

ঘ. উদ্দীপকে D যৌগটি হল মিথান্যাল (H — CHO) [গ হতে]। মিথান্যাল ক্যানিজারো বিক্রিয়া দেখালেও হ্যালোফরম বিক্রিয়া প্রদর্শন করে না।নিচে তা বিক্রিয়াসহ বিশ্লেষণ করা হলোঃ

আমরা জানি, যেসব যৌগের অণুতে CH_3-CO- মূলক বিদ্যমান কেবল তারাই হ্যালোফরম বিক্রিয়ায় অংশগ্রহণ করে। মিথান্যাল যৌগটিতে CH_3-CO- মূলক নেই বলে এটি হ্যালোফরম বিক্রিয়া দেয় না।

অপরদিকে α - হাইড্রোজেন বিহীন অ্যালডিহাইড গুলো ক্যানিজারো বিক্রিয়া দেয় H - CHO যৌগে $\alpha - H$ নেই বলে এটি ক্যানিজারো বিক্রিয়া দেয়।

অপরদিকে α- হাইড্রোজেন বিহীন অ্যালডিহাইড গুলো ক্যানিজারো বিক্রিয়া দেয় Η — CHO যৌগে α — Η নেই বলে এটি ক্যানিজারো বিক্রিয়া দেয়।

ক্যানিজারো বিক্রিয়া হল গাঢ় ক্ষারের প্রভাবে। α-হাইড্রোজেন বিহীন দুই অনু অ্যালডিহাইড যুগপৎ জারণ-বিজারণ বিক্রিয়ার ফলে এক অনু অ্যালডিহাইড জারিত হয়ে কার্বক্সিলিক এসিডের ক্ষার ধাতুর লবণ ও অপর অনু বিজারিত হয়ে অ্যালকোহলে পরিণত হয়। Η — CHO এর দুই অনু এ বিক্রিয়ার মাধ্যমে সোডিয়াম ফরমেট ও মিথানল উৎপন্ন করে।

$$H-CHO+H-CHO$$
 $\xrightarrow{50\% \text{ NaOH}}$ $CH_3-OH+HCOONa$ সোডিয়াম ফরমেট

উপরোক্ত আলোচনা থেকে বলা যায়, উদ্দীপকের যৌগ অর্থাৎ D যৌগটি ক্যানিজারো বিক্রিয়া দেখালেও হ্যালোফরম বিক্রিয়া প্রদর্শন করে না।

টপিকঃ Phenol, প্যারাসিটামল, পলিমার

সৃজনশীল প্রশ্নঃ ১

$$\begin{array}{c}
\text{Cl} \\
+ 2 \text{ NaOH} & \xrightarrow{350 - 400^{\circ}\text{C}} \\
\hline
150 \text{ atm}
\end{array}$$

$$P + \text{NaCl} + \text{H}_2\text{O}$$

- (ক) এনানশিওমার কী?
- (খ) নাইট্রেশন বিক্রিয়ায় গাঢ় H,SO, ব্যবহার করা হয় কেন?
- (গ) P যৌগ থেকে ব্যথা নিবারক একটি ঔষধ কীভাবে তৈরি করা যায়? ব্যাখ্যা কর।
- (ঘ) কিউমিন ফেনল পদ্ধতিতে P যৌগের উৎপাদন পদ্ধতি আলােচনা কর।

ক. যে আলােকে সমাণুদ্বয় এক সমতলীয় আলােকে তলকে একই আবর্তন কােণে পরস্পর বিপরীত দিকে আবর্তন করে এবং তাদের সমমােলাের মিশ্রণের আবর্তন মাত্রা প্রশমিত হয়ে শূন্য হয়ে যায় তাদেরকে পরস্পরের এনানশিওমার বলে।

গ. উদ্দীপকের বিক্রিয়াটি হল-

স্যালিসাইলিক

এসিড

Cl
$$+ 2 \text{ NaOH} \xrightarrow{350 - 400^{\circ}\text{C}} P + \text{NaCl} + \text{H}_2\text{O}$$

সুতরাং P যৌগটি ফেনল। ফেনল হতে জ্বর ও ব্যথা নিবারক ওষুধ অ্যাসপিরিন প্রস্তুত করা হয়।নিচে ফেনল হতে অ্যাসপিরিন প্রস্তুত প্রণালী আলােচেনা করা হল:

4-7 বায়ুচাপ ও 125°C তাপমাত্রায় সােডিয়াম ফিনেটের সাথে CO2 এর বিক্রিয়ায় সােডিয়াম স্যালিসাইলিক এসিডকে অ্যাসিটিক অ্যানহাইড্রাইড দ্বারা উত্তপ্ত করলে অক্সি অ্যাসিটাইল স্যালিসাইলিক এসিড বা অ্যাসপিরিন উৎপন হয়।

অ্যাসপিরিন

ঘ. উদ্দীপকের P যৌগটি ফেনল। নিচে কিউমিন-ফেনল পদ্ধতিতে ফেনলের উৎপাদন পদ্ধতি আলােচনা করা হল- অশােধিত পেট্রোলিয়ামকে পরিশােধনের সময় উপজাত হিসাবে বেনজিন ও প্রােপিন পাওয়া যায়। বেনজিন ও প্রােপিনকে প্রভাবক H3PO, এর উপস্থিতিতে 250°C তাপমাত্রায় 30atm চাপ প্রয়ােগ করলে কিউমিন উৎপন্ন হয়। কিউমিনের মধ্যে 130°C তাপমাত্রায় বায়ু চালনা করলে এটি জারিত হয়ে কিউমিন হাইড্রোপারঅক্সাইডে পরিণত হয়। একে লঘু H,SO, দ্বারা 100°C তাপমাত্রায় বিয়ােজিত করলে ফেনল ও প্রােপানােন উৎপন্ন হয়।

সুতরাং P যৌগটি ফেনল। ফেনল হতে জ্বর ও ব্যথা নিবারক ওষুধ অ্যাসপিরিন প্রস্তুত করা হয়।নিচে ফেনল হতে অ্যাসপিরিন প্রস্তুত প্রণালী আলােচেনা করা হল:

বেনজিন ও প্রোপিন পেট্রোলিয়াম হতে পাওয়া যায় এবং উপজাত প্রােপানােন একটি অতি প্রয়ােজনীয় রাসায়নিক উপাদান।তাই মােট উৎপাদনের 40% এ পদ্ধতিতে উৎপাদন করা হয়।

সৃজনশীল প্রশ্নঃ ২

$$A \xrightarrow{Zn} B \xrightarrow{\text{নাইট্রেশন}} C \xrightarrow{Sn + \text{গাঢ় HCl}} D$$

'B' ইথানলের ট্রাইমার।

- ক. এনানসিওমার কাকে বলে?
- খ. ফিউরান অ্যারােমেটিক যৌগ কেন?
- গ. উদ্দীপকের A যৌগ হতে জ্বর ও ব্যথানাশক একটি ঔষধ প্রস্তুতি সমীকরণসহ লেখাে।
- ঘ. উদ্দীপকের C এবং D যৌগের মধ্যে কোনটি ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিয়ায় অধিক সক্রিয়? অনুরণনসহ বিশ্লেষণ করাে।

- ক. অপ্রতিসকোনাে যৌগ অণু ও এর দর্পণ প্রতিবিম্ব পরস্পর সমাপতিত না হলে যে দুটি ভিন্ন গঠনের অণু আলােক সক্রিয় হয় তাদেরকে ম কার্বন সম্বলিত পরস্পারের এনানসিওমার বলে।
- খ. ফিউরান যৌগের সংকেত হলাে ---

ফিউরান যৌগে দু'টি π - বন্ধনের কারণে 4টি π ইলেকট্রন রয়েছে । আবার ফিউরান চক্রের হেটারাে পরমাণু অক্সিজেনে দু'টি নিঃসঙ্গজোড় ইলেকট্রন রয়েছে , যার একটি নিঃসঙ্গজোড় ইলেকট্রন চক্রের ভিতরের দিকে অবস্থান করে । এই চক্রের ভিতরের দিকে , নিঃসজোড় ইলেকট্রন সঞ্চালনক্ষম । অর্থাৎ বলা যায় ফিউরানে মােটে 6 টি সঞ্চালনক্ষম π -ইলেকট্রন আছে । এই ৬টি π ইলেকট্রন (4n+2) সংখ্যাকে সমর্থন করে তখন n=1 হয় । অর্থাৎ ফিউরান একটি অ্যারােমেটিক যৌগ

গ. উদ্দীপকের B যৌগটি হলাে ইথাইনের ট্রাইমার অর্থাৎ B যৌগটি হলাে বেনজিন । ফেনলকে জিংকসহ শুষ্ক পাতন করলে বেনজিন পাওয়া যায় সুতরাং A যৌগটি হলাে ফেনল । প্যারাসিটামল প্রস্তুতি : ফেনলকে কক্ষ তাপমাত্রায় লঘু HNO₃ ; দ্বারা বিক্রিয়া করলে 2 - নাইট্রোফেনল ও 4 - নাইট্রোফেনলের মিশ্রণ পাওয়া যায় । মিশ্রণ হতে 4 - নাইট্রোফেনলকে পৃথক করে Sn ও HCl দ্বারা বিজারিত করলে 4 - অ্যামিনাে ফেনলকে পরিণত হয় । 4 - অ্যামিনাে ফেনলকে ইথানয়িক অ্যানহাইড্রাইড দ্বারা অ্যাসিটাইলেশন করলে N- অ্যাসিটো - 4 - অ্যামিনাে ফেনল (4 - হাইড্রক্সি অ্যাসিটানিলাইড) বা প্যারাসিটামল উৎপন্ন হয়।

$$\begin{array}{c|c} CH_3 & OH \\ \hline & & \\$$

$$HO$$
 \longrightarrow NO_2 $\xrightarrow{[H]}$ HO \longrightarrow NH_2 $\xrightarrow{(CH_3CO)_2O}$ \longrightarrow 4 — অ্যামিনোফেনল \longrightarrow HO \longrightarrow $NHCOCH_3$

ঘ, উদ্দীপকের বিক্রিয়াটি নিম্নরুপ-

$$NO_2$$
 $Sn +$ পাঢ় HCl Δ আনিলিন (D)

সুতরাং উদ্দীপকের C D. যৌগদ্বয় হলাে যথাক্রমে নাইট্রোবেনজিন ও অ্যানিলিন । নাইট্রোবেনজিন ও অ্যানিলিনের মধ্যে অ্যানিলিন ইলেকট্রন আকর্ষী প্রতিস্থাপন বিক্রিয়ায় অধিক সক্রিয় । নিম্নে তা আলােচেনা করা হলাে -NH , বেনজিন বলয় সক্রিয়কারী মূলক । অ্যানিলিন অণুতে -NH , ধনাত্মক মেসােমারিক ফল দারা এর নিঃসঙ্গ ইলেকট্রন জােড় বেনজিন বলায়ে ঠেলে দেয় । তখন অনুরণনে (II) – (IV) নং কাঠামােতে অর্থােও প্যারা অবস্থানে ইলেকট্রন ঘনত্ব বৃদ্ধি পেয়ে বেনজিন বলায় অধিক সক্রিয় হয়।

চিত্রঃ অ্যানিলিনের রেজোন্যান্স কাঠামো

আবার, NO, মূলক বেনজিন বলয় সক্রিয় হ্রাসকারী মূলক । এটি বেনজিন বলয়ে উপস্থিত থেকে ইলেকট্রন নিজের দিকে টেনে নিয়ে বেনজিন চক্রের ইলেকট্রন ঘনত্ব হ্রাস করে । অর্থাৎ –NO . | লঘু মূলকের জন্য অর্থো ও প্যারা অবস্থানে ইলেকট্রন ঘনত্ব কমে যায় । ফলে বেনজিন চক্রের সক্রিয়তা হ্রাস পায়।

$$= \frac{0 \cdot \delta^{+} \cdot 0^{\delta^{+}}}{\delta^{+}}$$

চিত্রঃ নাইট্রোবেনজিনের রেজোন্যান্স কাঠামো

সুতরাং ইলেকট্রনাকর্ষী প্রতিস্থাপন বিক্রিয়ায় C ও D এর মধ্যে D যৌগটি বেশি সক্রিয়।

সৃজনশীল প্রশ্নঃ ৩

জনাব হামিদুর রহমান মডার্ন প্লাস্টিক পলিমার ও লীনা পলিমার ইন্ডাস্ট্রির ব্যবস্থাপনা পরিচালক। তার প্রথম ইন্ডাস্ট্রিতে রান্নাঘরের যাবতীয় প্লাস্টিক সামগ্রী, বৈদ্যুতিক সামগ্রী, পানির পাইপ, গ্রাস্টিক সিরিঞ্জ ইত্যাদি প্রস্তুত হয়। লীনা পলিমার ইন্ডাস্ট্রি হতে প্রাপ্ত উৎপাদ তিনি বিভিন্ন সাে য়েটার, মােজা, শার্টিং কাপড়, ইত্যাদি প্রস্তুতকারী প্রতিষ্ঠানে সরবরাহ করেন।

- ক. উচ্চ পলিমার কী?
- খ, রাবার বলতে কী বােঝ?
- গ. হামিদুর রহমানের ইন্ডাস্ট্রিদ্বয়ে কী ধরনের পলিমারকরণ সম্পন্ন হয় বর্ণনা কর।
- ঘ. মর্ভান প্লাস্টিক ইন্ডাস্ট্রিতে উৎপাদ সৃষ্টির প্রক্রিয়া যথাযথ বিক্রিয়াসহ বিশ্লেষণ কর।

- ক. উচ্চ আণবিক ভরবিশিষ্ট পলিমারকে বলা হয় উচ্চ পলিমার।
- খ. সাধারণ অবস্থায় রাবারের উপর টান বা পীড়ন প্রয়ােগ করলে এদের আকারের বিকৃতি ঘটে কিন্তু টান বা পীড়ন সরিয়ে নিলে পুনরায় পূর্বের অবস্থায় ফিরে যায়। যেমন- প্রাকৃতিক রাবার, পলিবিউটাডাইন রাবার, পলিক্রোরােনি রাবার প্রভৃতি এ জাতীয় পলিমারের উদাহরণ। এদের প্রসারণশীলতা ও টানশক্তির মান খুবই উচ্চ এবং এ মান 300 psi হতে 3000 psi পর্যন্ত হয়ে থকে
- গ. হামিদুর রহমানের মডার্ন প্লাস্টিক ইন্ডাস্ট্রিতে রান্নাঘরের যাবতীয় মস্টিক সামগ্রী, বৈদ্যুতিক সামগ্রী, পানির পাইপ, প্লাস্টিক সিরিঞ্জ ইত্যাদি প্রস্তুত হয়। অর্থাৎ এ ইন্ডাস্ট্রিতে অ্যালকিনের যুত। পলিমারকরণ বিক্রিয়ার মাধ্যমে উৎপাদ তৈরি করা হয়। যুত পলিমারকরণ : একই কার্যকরী মূলকযুক্ত মনােমার যেমন, অ্যালকিন, অ্যালকাইন, অ্যালডিহাইড ইত্যাদির মধ্যে যুত পলিমারকরণ প্রভাবকের উপস্থিতিতে ঘটে। উৎপন্ন পলিমারের। সংকেত মনােমারের পূর্ণ গণিত হয়। যেমন্, পলিইথিলিন।

$${
m nCH_2=CH_2}$$
 উচ্চচাপ, তাপ ${
m den}$ ${
m den}$

হামিদুর রহমানের লীনা পলিমার ইন্ডাস্ট্রি হতে প্রাপ্ত উৎপাদ তিনি সাে রেটার, মাে জাে, শার্টিং কাপড়, শাড়ি ইত্যাদি প্রস্তুতকারী কারখানায়। সরবরাহ করেন। অর্থাৎ এক্ষেত্রে তার উৎপাদ পলিএস্টার, নাইলন। ইত্যাদি। অর্থাৎ এ ইন্ডাস্টরিতে ঘনীভবন পলিমারকরণ বিক্রিয়ার মাধ্যমে উৎপাদ তৈরি হয়। ঘনীভবন পলিমারকরণ : এ পদ্ধতিতে দুটি ভিন্ন কার্যকরী মূলকযুক্ত। | ভিন্ন শ্রেণির মনােমারের মধ্যে অথবা একই শ্রেণির মনাােমারের মধ্যে। বিক্রিয়াকালে সরল অণু যেমন H²O, CH³OH, NH³, HCI ইত্যাদি।

অপসারণের মাধ্যমে বহু মনোমাত্র যুক্ত হয়ে দীর্ঘ শিকল পলিমার গঠিত হয়। যেমন পলিএস্টার, নাইলন ইত্যাদি

ডাই কার্বক্সিলিক এসিড + ডাই - অল \longrightarrow পলিএস্টার + nH_2O ডাই কার্বক্সিলিক এসিড + ডাই - অ্যামিন \longrightarrow নাইলন + nH_2O

ঘ. হামিদুর রহমানের মজার্ন প্লাস্টিক ইন্ডাস্ট্রিতে অ্যালকিন ও অ্যালকাইনের পলিমারকরণের মাধ্যমে উৎপাদ পাওয়া যায় ইথিলিনের পলিমারকরণ : উচ্চ চাপে (1000 - 1200 atm) ও ভাপমাত্রা 200°C এ সামান্য অক্সিজেন প্রভাবকের উপস্থিতিতে তরলীভূত ইথিলিনেত্র অসংখ্য অণু (প্রায় 400 - 2.000 আণু) পর যুক্ত হয়ে পলিইথিলিন বা পলিথিন নামক সাদা অস্বচ্ছ কঠিন প্লাস্টিক পদার্থ উৎপন্ন হয়।

$${
m nCH_2=CH_2} \longrightarrow {
m \begin{tabular}{c} \begin{$$

অ্যালকাইনের পলিমারকরণ : প্রায় 160 250°C তাপমাত্রায় উত্তপ্ত মারকিউরিক ক্লোরাইড (HgC) প্রভাবকের উপর দিয়ে অ্যাসিটিলিন ও শুক্ষর হাইড্রোজেন ক্লোরাইড গ্যাসের মিশ্রণ চালনা করলে উভয়ের মধ্যে সংযোজনা ক্রিয়ার ফলে ভিনাইল ক্লোরাইড গ্যাস উৎপন্ন হয়। উৎপন্ন ভিনাইল ক্লোরাইডকে জৈব পারঅক্সাইড যেমন, বেনজোয়িল পারঅক্সাইড অথবা - বিউটাইল পারঅক্সাইড প্রভাবকের উপস্থিতিতে অধিক চাপ ও উচ্চ তাপমাত্রায় উত্তপ্ত করলে পলিভিনাইল ক্লোরাইড (PVC) উৎপন্ন হয়। উৎপল PVC কে 52°C তাপমাত্রায় ও 9 atm চাপে হেস্টেন দ্রাবকে রাখা হয়।

$$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Hg}_{(\mathrm{g})}+\mathrm{HCl}_{(\mathrm{g})} \xrightarrow{250^{\circ}\mathrm{C}} \mathrm{CH}_{2}=\mathrm{CHCl}_{(\mathrm{g})}$$
 আ্যাসিটিলিন ভিনাইল ক্লোরাইড