## 전 기 이 론

1. 그림의 이상적인 OP Amp에서 증폭기의 출력  $v_{out}$ 이 포화(saturation) 되지 않는 입력  $v_{in}\left[V
ight]$ 의 범위는?



$$2 - \frac{1}{2} \le v_{in} \le \frac{1}{3}$$

$$3 - 2 \le v_{in} \le 3$$

2. 자유공간과 특정 매질간의 비투자율이 1, 비유전율이 100일 때, 자유공간과 그 특정 매질에서 각각의 파장 [m]은? (단, 주파수는  $300\ [MHz]$ 이다)

|                  | <u> 자유공간</u> | <u>매질</u> |
|------------------|--------------|-----------|
| 1                | 0.5          | 0.1       |
| 2                | 1            | 0.1       |
| 3                | 1            | 0.2       |
| 4                | 1.5          | 0.1       |
| ( <del>5</del> ) | 1.5          | 0.2       |

3. 그림의 회로에서  $\omega=2{,}500$  [rad/s] 이며, 전압 v(t)의 페이저는  $V_m \angle 0$   $^\circ$  [V] 일 때, 저항에 흐르는 전류  $i_R$ 이 전류원 i(t)와 위상이 지상 45  $^\circ$ 가 되는 저항 R  $[\Omega]$ 은?



- $2 \frac{1}{2}$
- **4** 2
- ⑤ 3

4. 다음은 출력임피던스가  $16 \ [\Omega]$ 인 앰프의 스피커 결선이다.  $16 \ [\Omega]$ 인 스피커 1개만을 연결할 때와 그림과 같이  $8 \ [\Omega]$ 의 스피커 2개를 직렬로 추가 연결할 때, 스피커 합성 임피던스  $[\Omega]$ 와 이때 나타나는 현상은?



- ①  $8[\Omega]$ , 전체 음량이 작아진다.
- ②  $8[\Omega]$ , 전체 음량이 커진다.
- ③  $16[\Omega]$ , 전체 음량이 작아진다.
- ④  $16 [\Omega]$ , 전체 음량이 커진다.
- ⑤  $16 [\Omega]$ , 음량의 변화는 없다.

5. 그림의 RLC 직렬 공진회로에서 공진주파수가 5[kHz]로 주어질 때, 다음 회로를 통해 구한 파라미터 결과로 옳지 않은 것은?



- ① 전류 : 5∠0° [A]
- ② 커패시터 전압: 250∠-90° [V]
- ③ 양호도 $(\mathit{Q})$  : 2
- ④ 대역폭 : 2 [kHz]
- ⑤ 반전력 주파수에서의 전력 : 250 [W]
- 6. 평형 3상 Y-Y 결선회로에서 선간전압  $\overline{V}_{ab}$ 는  $80\sqrt{3} \angle -60\,^\circ$   $[V_{rms}]$ 이며, 한 상의 선로 임피던스는 1+j3  $[\Omega]$ , 상부하 임피던스는 39+j37  $[\Omega]$ 이다. 이 때, b상에 흐르는 선전류  $[A_{rms}]$ 는?
  - ①  $\sqrt{2}$   $\angle$  -135  $^{\circ}$
  - $2\sqrt{2} \angle -15^{\circ}$
  - $3\sqrt{2} \angle 105^{\circ}$
  - $4 \sqrt{3} \angle -135^{\circ}$
  - $\bigcirc$   $\sqrt{3} \angle 105^{\circ}$
- 7. 길이가  $L\left[m\right]$ 이고 반지름이  $r\left[m\right]$ 인 특정 재질의 도선의 저항을  $R\left[\Omega\right]$ 이라고 하자. 이때 그림과 같이 같은 재질이면서 길이가  $L\left[m\right]$ 이고 반지름의 길이가  $2r\left[m\right]$ 인 도선 A와 길이가  $2L\left[m\right]$ 이고 반지름의 길이가  $r\left[m\right]$ 인 도선 B를 직렬로 연결하였을 때합성 저항  $\left[\Omega\right]$ 의 크기는?



- $\bigcirc$  2 R
- $2 \frac{9}{4}R$
- $3\frac{5}{2}R$
- 4 3 R

8. 그림의 회로에서 a-b 간의 합성 정전 용량  $C_{eq}\left[F\right]$ 는?



- ① 4.5
- 2 6.5
- ③ 11
- 4 13
- <sup>⑤</sup> 15
- 9.  $F(s)=rac{1}{(s+1)^2(s+2)}$  의 라플라스 역변환에 대응되는 시간함수 f(t)는?
  - ①  $f(t) = e^{-t} + te^{-t} + e^{-2t}$
  - ②  $f(t) = e^{-t} te^{-t} e^{-2t}$
  - $3 f(t) = -e^{-t} + e^{-2t}$
  - $(4) f(t) = -e^{-t} + te^{-t} + e^{-2t}$
  - $5 f(t) = -e^t + te^t + e^{2t}$
- 10. 그림의 회로에서 a-b 간에 8 [V]의 직류전압을 인가할 때, 저항  $R_{\mathtt{A}}$ 에서의 전류 i [A]는?



- 1
- 2 1.5
- 3 2
- 4 2.5
- 5 4

#### 전 기 이 론

### 11. 그림의 회로에 대한 설명으로 옳은 것은?



- ①  $\left| \frac{v_o(t)}{v_i(t)} \right|$  가 1보다 작고, 차단주파수가  $\frac{1}{2\pi\sqrt{RC}}$  인 저역통과 1차필터
- ②  $\left| \frac{v_o(t)}{v_i(t)} \right|$  가 1보다 작고, 차단주파수가  $\frac{1}{2\pi RC}$  인 저역통과 1차필터
- ③  $\left| \frac{v_o(t)}{v_i(t)} \right|$  가 1보다 작고, 차단주파수가  $\frac{1}{2\pi RC}$  인 저역통과 2차필터
- ④  $\left| \frac{v_o(t)}{v_i(t)} \right|$  가 1보다 크고, 차단주파수가  $\frac{1}{2\pi\sqrt{RC}}$  인 고역통과 2차필터
- ⑤  $\left| \frac{v_o(t)}{v_i(t)} \right|$  가 1보다 크고, 차단주파수가  $\frac{1}{2\pi RC}$  인 고역통과 1차필터

## 13. 그림의 회로에서 저항 $4\,[\varOmega]$ 와 저항 $2\,[\varOmega]$ 에서 각각의 소비전력 $[\,W]$ 은?



|     | $4[\Omega]$ 소비전력_ | $2[\Omega]$ 소비전력 |
|-----|-------------------|------------------|
| 1   | 9                 | 0                |
| 2   | 9                 | 9                |
| 3   | 9                 | 18               |
| 4   | 18                | 9                |
| (5) | 18                | 18               |

# 12. 그림의 회로에서 저항 R에 최대전력이 전달되기 위한 저항 $R\left[\Omega ight]$ 의 값은?



- ① 3
- 2 6
- 3 12
- **4** 15
- **⑤** 27

### 14. 그림의 회로에서 전류 $i_o[mA]$ 는?



- 1
- 2 6
- 3 7
- 4 16
- **5** 17

### 15. 그림의 v(t)함수의 실효값은?



- $\bigcirc \frac{\sqrt{3}}{\sqrt{2}}$
- $2 \frac{2\sqrt{3}}{\sqrt{2}}$
- $4 \quad \frac{\sqrt{2}}{\sqrt{3}}$
- $\boxed{5} \quad \frac{\sqrt{3}}{2}$

### 16. 2단자쌍 회로망의 Y-파라미터가 그림과 같을 때, 전류 $I_2[A]$ 는?



- 3 1
- 4 2
- ⑤ 4
- 17. 그림의 스펙트럼을 가지는 시간함수 v(t)는? (단,  $\delta(f)$ 는 임펄스함수이고,  $w_o=2\pi f_o$ 이다)



- $v_o e^{\omega_o t}$
- $\Im v_o \sin \omega_o t$
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

18.  $F(s) = \frac{3s^2 + 30s + 120}{s(s^2 + 9s + 30)}$  의 라플라스 역변환에 대응되는 시간함수

f(t)의 초깃값과 최종값의 합은?

- ① 0
- 2 3
- 3 4
- 4 7
- ⑤ ∞

- 19.  $1 \times 10^8$  [V]의 전압과,  $1 \times 10^5$  [A]의 전류로 1 [ $\mu {
  m sec}$ ] 동안 방전이 된 낙뢰가 가진 에너지량 [Wh]은?
  - ①  $\frac{1}{36} \times 10^4$
  - $2 \frac{1}{36} \times 10^5$
  - $3\frac{1}{36} \times 10^6$
  - $4 \frac{1}{36} \times 10^7$
  - $(5) \frac{1}{36} \times 10^8$

- 20. 50 [kWh]의 전력량을 설명한 것으로 옳지 않은 것은?
  - ① 5 [kW]의 전열기를 600 [min] 사용한 전력량이다.
  - 2 100 [kW]의 부하를 30 [min] 사용한 전력량이다.
  - ③ 100~[V] 전원에서  $10~[\Omega]$ 의 저항을 50~[hr] 사용한 전력량이다.
  - ④  $100~[\Omega]$ 의 저항에 10~[A]의 전류를 5~[hr] 사용한 전력량이다.
  - ⑤ 200~[V] 전원에서 10~[A](역률 1)의 부하를 20~[hr] 사용한 전력량이다.