תרגילים: NP שלמות

 $A \leq_P C$ אזי $B \leq_P C$ וגם $A \leq_P B$ אם A, B, C אזי $B \leq_P C$ הוכיחו כי לכל

תשובות

 $w\in \Sigma^*$ לכל $w\in A\Leftrightarrow f(w)\in B$ שמקיימת $M\in A$ לכל לכל $w\in A$ לכל תהי

 $w \in \Sigma^*$ לכל $w \in B \Leftrightarrow f(w) \in C$ שמקיימת שמקיימת הרדוקציה הרדוקציה שמקיימת

 $A \leq_P C$ נוכיח שקיימת רדוקציה

h פונקצית הרדוקציה

 $h(w) = g\left(f(w)
ight)$ נגדיר $w \in \Sigma^*$ לכל

נכונות הרדוקציה

 $w \in A \Leftrightarrow h(w) \in C$ שלב 1. נוכיח כי

$$.h(w) = g\left(f(w)\right) \in C \Leftarrow f(w) \in B \Leftarrow w \in A$$
 אם •

$$.h(w) = g\left(f(w)\right) \notin C \Leftarrow f(w) \notin B \Leftarrow w \notin A$$
 אם •

שלב 2. נוכיח כי h חשיבה בזמן פולינומיאלי:

f את הפולינומם של p_f את הפולינומם

g את הפולינומם של ב- נסמן ב-

$$p_f(|w|) + p_g(|f(w)|) \le p_f(|w|) + p_g(p_f(|w|)) = p_f(|w|) + (p_f \circ p_f)(|w|)$$

.|w| בזמן פולינומיאלי בגודל הרכבה אל שני פולינומים. לכן ניתן לחשב את $p_f \circ p_f$ באטר כאשר