Differentialrechnung

Def Sei $I \subset \mathbb{R}$ Intervall, $f: I \to \mathbb{R}$ und $x_0 \in I$. f heißt differenzierbar im Punkt x_0 , falls der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} =: f'(x_0)$$

in \mathbb{R} existiert. Ist f in x_0 differenzierbar, so wird $f'(x_0)$ die Ableitung von f an der Stelle x_0 genannt. Die Gerade durch den Punkt $(x_0, f(x_0))$ mit der Steigung $f'(x_0)$ heißt die Tangente an den Graphen von f im Punkt $(x_0, f(x_0))$. f heißt differenzierbar auf I, falls f in jedem $x_0 \in I$ differenzierbar ist.

Satz 5.1 Wenn f differenzierbar in x_0 ist, dann ist f stetig in x_0 .

Satz 5.2 Sei $I \subset \mathbb{R}$ Intervall, $f, g: I \to \mathbb{R}$ und $x_0 \in I$. Wenn die Funktionen f, g in x_0 differenzierbar sind, dann sind f + g, $cf(c \in \mathbb{R})$, fg in x_0 differenzierbar und es gilt

$$(f+g)'(x_0) = f'(x_0) + g'(x_0),$$
$$(cf)'(x_0) = cf'(x_0),$$
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

Wenn außerdem $g(x_0) \neq 0$, so ist $\frac{f}{g}$ in x_0 differenzierbar und

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}.$$

Satz 5.3 (Kettenregel) Seien I, J Intervalle und $g: I \to J$, $h: J \to \mathbb{R}$ Funktionen. Sei g differenzierbar in $x_0 \in I$ und h differenzierbar in $g(x_0)$. Dann ist $h \circ g$ in x_0 differenzierbar und es gilt

$$(h \circ g)'(x_0) = h'(g(x_0))g'(x_0).$$

Satz 5.4 (Ableitung der Umkehrfunktion) Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ eine streng monotone und stetige Funktion. Sei I' := f(I) und $f^{-1}: I' \to I$ die Umkehrfunktion zu f. Ist f in $x_0 \in I$ differenzierbar und $f'(x_0) \neq 0$, so ist f^{-1} in $y_0 := f(x_0)$ differenzierbar und es gilt

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

Differential rechnung (Fortsetzung)

Satz 5.5 (Ableitung einer Potenzreihe) Die Potenzreihe $\sum_{n=0}^{\infty} c_n x^n$ habe den Konvergenzradius R > 0. Dann darf diese Reihe für alle x mit |x| < R gliedweise differenziert werden, d.h.

$$\frac{d}{dx}\sum_{n=0}^{\infty}c_nx^n = \sum_{n=0}^{\infty}\frac{d}{dx}(c_nx^n) = \sum_{n=1}^{\infty}c_nnx^{n-1} \text{ für alle } x \text{ mit } |x| < R.$$

Außerdem hat die Reihe $\sum_{n=1}^{\infty} c_n n x^{n-1}$ auch den Konvergenzradius R.

Def Sei $f: I \to \mathbb{R}$ und $x_0 \in I$.

f hat in x_0 ein lokales Maximum, falls ein $\varepsilon > 0$ existiert, so dass $f(x) \leq f(x_0)$ für alle x mit $|x - x_0| < \varepsilon$.

f hat in x_0 ein lokales Minimum, falls ein $\varepsilon > 0$ existiert, so dass $f(x) \ge f(x_0)$ für alle x mit $|x - x_0| < \varepsilon$.

f hat in x_0 ein globales Maximum, falls $f(x) \leq f(x_0)$ für alle $x \in I$.

f hat in x_0 ein globales Minimum, falls $f(x) \ge f(x_0)$ für alle $x \in I$.

f hat in x_0 ein lokales bzw. globales Extremum, falls f in x_0 ein lokales bzw. globales Maximum oder Minimum besitzt.

Satz 5.6 (Notwendige Bedingung für lokales Extremum)

 $f:(a,b)\to\mathbb{R}$ habe in $x_0\in(a,b)$ ein lokales Extremum. Wenn f differenzierbar in x_0 ist, dann ist $f'(x_0)=0$.

Def Sei $f:(a,b) \to \mathbb{R}$. $x_0 \in (a,b)$ heißt stationärer Punkt von f, falls $f'(x_0) = 0$.

Satz 5.7 (Rolle) Sei a < b, $f: [a, b] \to \mathbb{R}$ stetig auf [a, b], differenzierbar auf (a, b) und f(a) = f(b). Dann existiert ein $\xi \in (a, b)$ mit $f'(\xi) = 0$.

Satz 5.8 (Mittelwertsatz) Sei $a < b, f: [a, b] \to \mathbb{R}$ stetig auf [a, b] und differenzierbar auf (a, b). Dann existiert ein $\xi \in (a, b)$ mit

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Satz 5.9 (verallgemeinerter Mittelwertsatz)

Sei $a < b, f, g: [a, b] \to \mathbb{R}$ stetig auf [a, b] und differenzierbar auf (a, b). Sei $g'(x) \neq 0$ für alle $x \in (a, b)$. Dann existiert ein $\xi \in (a, b)$ mit

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Satz 5.10 (Monotonie) Sei $a < b, f : [a, b] \to \mathbb{R}$ stetig auf [a, b] und differenzierbar auf (a, b). Dann gilt:

f'(x) = 0 für alle $x \in (a, b) \Leftrightarrow f$ ist konstant auf [a, b]

 $f'(x) \ge 0$ für alle $x \in (a,b) \Leftrightarrow f$ ist monoton wachsend auf [a,b]

f'(x) > 0 für alle $x \in (a, b) \Rightarrow f$ ist streng monoton wachsend auf [a, b]

 $f'(x) \leq 0$ für alle $x \in (a,b) \Leftrightarrow f$ ist monoton fallend auf [a,b]

f'(x) < 0 für alle $x \in (a, b) \Rightarrow f$ ist streng monoton fallend auf [a, b]

Satz 5.11 Sei $a < b, f: [a, b] \to \mathbb{R}$ stetig auf [a, b]. Sei f differenzierbar in einer Umgebung $U \subset (a, b)$ von $x_0 \in (a, b)$ vielleicht mit Ausnahme des Punktes x_0 selbst.

f hat in x_0 ein lokales Minimum, wenn $f'(x) \leq 0$ für alle $x \in U$ mit $x < x_0$ und $f'(x) \geq 0$ für alle $x \in U$ mit $x > x_0$.

f hat in x_0 ein lokales Maximum, wenn $f'(x) \ge 0$ für alle $x \in U$ mit $x < x_0$ und $f'(x) \le 0$ für alle $x \in U$ mit $x > x_0$.

Satz 5.12 (Hinreichende Bedingungen für lokales Extremum) Sei $a < b, f: [a, b] \to \mathbb{R}$ stetig auf [a, b] und zweimal differenzierbar auf (a, b).

Sei $x_0 \in (a, b)$, $f'(x_0) = 0$ und $f''(x_0) < 0$ bzw. $f''(x_0) > 0$. Dann hat f in x_0 ein lokales Maximum bzw. Minimum.

Höhere Ableitungen

Def Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ differenzierbar auf I. Dann ist $f': I \to \mathbb{R}$ definiert. Ist f' auf I differenzierbar, so heißt f zweimal differenzierbar auf I und die zweite Ableitung wird definiert durch

$$f''(x) := (f')'(x), \quad x \in I.$$

Analog definiert man weitere Ableitungen. Man schreibt üblicherweise $f', f'', f''', f^{(4)}, f^{(5)}, ..., f^{(n)}, ...$ Außerdem setzt man $f^{(0)} := f$.

Wenn f an der Stelle $x_0 \in I$ bzw. auf I existiert, so heißt f n-mal differenzierbar in x_0 bzw. auf I. Ist die n-te Ableitung zusätzlich stetig auf I, so heißt f n-mal stetig differenzierbar auf I. Die Menge aller n-mal stetig differenzierbaren auf I wird mit $C^n(I)$ bezeichnet. f heißt unendlich oft differenzierbar auf I, falls alle Ableitungen $f^{(n)}$, $n \in \mathbb{N}$ auf I existieren. Man schreibt in diesem Fall $f \in C^{\infty}(I)$.

Konvexität

Def Sei $f: I \to \mathbb{R}$ eine Funktion auf einem Intervall I. f heißt konvex auf I, wenn für je zwei verschiedene Punkte $x_0, x_1 \in I$ und für alle $\lambda \in (0,1)$ gilt:

$$f((1-\lambda)x_0 + \lambda x_1) \le (1-\lambda)f(x_0) + \lambda f(x_1)$$

Wenn die umgekehrte Ungleichung gilt, wird f konkav genannt. f heißt streng konvex bzw. streng konkav, falls wir echte Ungleichungen mit < bzw. > betrachten.

Satz 5.13 (Zweite Ableitung und Konvexität) Sei $f: I \to \mathbb{R}$ eine zweimal differenzierbare Funktion auf einem Intervall I. Dann gilt:

```
f'' \ge 0 auf I \Leftrightarrow f ist konvex auf I

f'' \le 0 auf I \Leftrightarrow f ist konkav auf I

f'' > 0 auf I \Rightarrow f ist streng konvex auf I

f'' < 0 auf I \Rightarrow f ist streng konkav auf I
```

Def Sei $f: I \to \mathbb{R}$ stetig. $x_0 \in I$ heißt Wendepunkt von f, falls f in x_0 sein Konvexitätsverhalten wechselt, d.h. wenn es Intervalle (a, x_0) und (x_0, b) gibt derart, dass eine der folgenden Bedingungen erfüllt ist: f ist konkav auf (a, x_0) und konvex auf (x_0, b) bzw. f ist konvex auf (a, x_0) und konkav auf (x_0, b)