Investigating the Trustworthiness of Wikipedia and the Media in the Scope of COVID-19

Scott Huang, Calvin Tam, Leena Elamrawy

Overview: Wikipedia vs Media?

Question: How biased are certain popular news outlets in how they cover the effects and the spread of COVID-19, and how does the language used in these news articles compare to the language used in Wikipedia articles?

Hypothesis: Wikipedia vs Media?

We hypothesize that certain historically unbiased, trustworthy journalism brands such as the New York Times will be the least biased, and that Wikipedia will be utilizing more biased language than that of the respected, reputable news sources.

Data Ingestion Process

News Articles Dataset

Wikipedia Dataset

PageViews per Language Over Time(Top 10)

Total Pageviews per Language (Top 30)

Total Pageviews Over Time Jan-May 2020

Total Pageviews per Language(Top 5)

Methods

- Topic Modeling
 - Latent Dirichlet allocation(LDA)
 - Structural Topic Model(STM)
- Topic Distribution
- Distance Functions
 - Wasserstein Distance
 - Frobenius Norm

Latent Dirichlet allocation - LDA

Structural Topic Model - STM

 $\vec{\theta}_d | X_d \gamma, \Sigma \sim \text{LogisticNormal}(\mu = X_d \gamma, \Sigma)$

Topic Distribution

Topic Distribution

$$\mathbf{A}_{n \times m} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}_{n \times m}$$

Where n is the number of days of the time interval, m is the number of the topics, Aij = is the proportion of topic j of all content published on Day i

Distance Functions

Frobenius Norm

$$||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}$$
 where $A = \mu$ - ν

Wasserstein Distance

$$W_p(\mu,
u) := \left(\inf_{\gamma \in \Gamma(\mu,
u)} \int_{M imes M} d(x,y)^p \, \mathrm{d}\gamma(x,y)
ight)^{1/p},$$

Result - STM topics

Top Topics

Results - Topic Distribution

Results - Plot by Topic

Jan 1, 2020

Xinhua News, the Huanan Seafood Market in Wuhan was closed on 1 January 2020 for "renovation"

Jan 20, 2020

China's NHC confirmed that the coronavirus had begun to be transmitted between humans

China, Wuhan, Outbreak

China's NHC confirmed that the coronavirus had begun to be transmitted between humans

March 22, 2020

NYC start

Results-Plot by Source

Results-Biasness Measurements

Conclusions

- CNN is the most trustworthy source by both metrics
- Wikipedia is the least trustworthy source
- In general: Traditional News Agency > Online media > Wikipedia
- Result may varies if we consider more Wikipedia articles

Future Directions

- Extend the temporal scope as well as number of Wikipedia articles
- Explore Topic Modeling by deep word embeddings from BERT or XLNet
- More fine-grained semantic analysis of each topic
- Specifically look into the Russian articles since they have the most pageviews

