

300MHz Single Supply Video Amplifier with Low In/Out Rail

■ Bandwidth: 300MHz

Single supply operation down to 3V

■ Low input & output rail

■ Very low harmonic distortion

■ Slew rate: 400V/µs

■ Voltage Input noise: 7nV/√Hz

■ Specified for 150 Ω load and 100 Ω load

■ Tested on 5V power supply

■ Data min. and max. are tested during production (*Table 3*)

Description

The TSH341 is a single supply operational amplifier featuring a large bandwidth of 300MHz at unity gain for only 9.8mA of quiescent current.

An **advantage** of this circuit is its low input and output rail feature which is very close to GND in single supply. This rail is tested and guaranteed during production at 60mV (max.) from GND on a 150Ω load. This allows a good output swing which fits perfectly when driving a video signal on a 75Ω video line. Chapter 5 gives technical support when using the TSH341 as a driver for video DAC output on a video line. In particular, this chapter focuses on applying a video signal DC shift to avoid any clamping of the synchronization tip.

The TSH341 is available in the tiny SOT23-5 and SO8 plastic packages.

Pin Connections (top view)

Applications

- High-end video systems
- High Definition TV (HDTV)
- Broadcast video
- Multimedia products

Order Codes

Part Number	Temperature Range	Package	Packaging	Marking
TSH341ILT		SOT23-5	Tape & Reel	K307
TSH341ID	-40°C to +85°C	SO-8	Tube	H341I
TSH341IDT		30-6	Tape & Reel	H341I

1 Absolute Maximum Ratings

Table 1. Key parameters and their absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{CC}	Supply voltage ¹	6	V	
Vid	Differential Input Voltage ²	+/-0.5	V	
V _{in}	Input Voltage Range ³	-0.2 to +3	V	
T _{oper}	Operating Free Air Temperature Range	-40 to +85	°C	
T _{std}	Storage Temperature	-65 to +150	°C	
Tj	Maximum Junction Temperature	150	°C	
R _{thjc}	Thermal Resistance Junction to Case SOT23-5 SO8	80 28	°C/W	
R _{thja}	Thermal Resistance Junction to Ambient Area SOT23-5 SO8	250 175	°C/W	
P _{max} .	Maximum Power Dissipation (@Ta=25°C) for Tj=150°C SOT23-5 SO8	500 715	mW	
	CDM: Charged Device Model	2	kV	
ESD	HBM: Human Body Model	1.5	kV	
	MM: Machine Model	200	V	
	Output Short Circuit	4		

¹⁾ All voltage values, except differential voltage are with respect to network terminal.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Power Supply Voltage	3 to 5.5 ¹	V
Vicm	Common Mode Input Voltage	-0.4 to 3	V

¹⁾ Tested in full production at 0V/5V single power supply

²⁾ Differential voltage are non-inverting input terminal with respect to the inverting input terminal.

³⁾ The magnitude of input and output voltage must never exceed V_{CC} +0.3V.

An output current limitation protects the circuit from transient currents. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuit on amplifiers.

2 Electrical Characteristics

Table 3. $V_{CC} = +5V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit		
DC Perfo	rmance							
	Input Offset Voltage	T _{amb} , V _{icm} =0.6V	-15	-3	15	>/		
V_{io}		-40°C < T _{amb} < +85°C		-5		mV		
ΔV_{io}	V _{io} drift vs. Temperature	-40°C < T _{amb} < +85°C		-30		μV/°C		
	Input Bias Current	T _{amb} , V _{icm} =0.6V		6	16			
l _{ib}		-40°C < T _{amb} < +85°C		7.2		μΑ		
A _{VD}	Open Loop Gain	ΔV_{OUT} =2V, RL=150 Ω	70	100		dB		
CMB	Common Mode Rejection Ratio	$\Delta V_{icm} = 2V$	-60	-85		, ID		
CMR	20 log ($\Delta V_{icm}/\Delta V_{io}$)	-40°C < T _{amb} < +85°C		-83		dB		
SVR	Supply Voltage Rejection Ratio	ΔV_{cc} =4V to 5V, V_{icm} =0.6V	-60	-85		dB		
SVK	20 log ($\Delta V_{cc}/\Delta V_{io}$)	-40°C < T _{amb} < +85°C		-84		ub		
PSR	Power Supply Rejection Ratio 20 log (ΔV _{cc} /ΔV _{out})	ΔV_{cc} =200mVp-p, F=1MHz		-77		dB		
R _{IN}	Input Resistance			8.2		ΜΩ		
C _{IN}	Input Capacitance			3.5		pF		
ICC	Total Supply Current	No Load, V _{icm} =0.6V		9.8	12.7	mA		
Dynamic	Performance and Output Characteri	stics	•		•			
Bw	-3dB Bandwidth	Small Signal V_{OUT} =20m V_{p} V_{icm} =0.6 V_{r} , R_{r} =150 Ω $Gain$ =+1 $Gain$ =+2	90	300 150		MHz		
5 **	Gain Flatness @ 0.1dB	Small Signal V_{OUT} =20m V_{P} Gain=+2, V_{icm} =0.6 V_{r} RL=150 Ω		65		141112		
FPBW	Full Power Bandwidth	V_{icm} =2V, V_{OUT} = 2Vp-p, Gain=1, R_L = 150 Ω	70	100		MHz		
SR	Slew Rate	V_{OUT} =2 Vp - p , R_L =150 Ω , $Gain$ =+2,		400		V/μs		
V _{OH}	High Level Output Voltage	$R_L = 150\Omega$	3.7	3.9		V		
V _{OL}	Low Level Output Voltage	$R_L = 150\Omega$		40	60	mV		
1	Output Short Circuit Current	T _{amb}	70	100		A		
I _{OUT}		-40 °C < T_{amb} < $+85$ °C		90		mA		
Noise an	d Distortion							
eN	Equivalent Input Noise Voltage F = 100kHz 7			nV/√Hz				
iN	Equivalent Input Noise Current (+) F = 100kHz 1.5			pA/√Hz				
HD2	2nd Harmonic Distortion	V_{OUT} = 2Vp-p, R_L = 150 Ω Gain=+2, F= 10MHz,		-57		dBc		
HD3	3rd Harmonic Distortion	V_{OUT} = 2Vp-p, R_L = 150 Ω Gain=+2, F= 10MHz,		-63		dBc		

Figure 1. Frequency response

Figure 2. Gain flatness - SOT23-5L

Figure 3. Total input noise vs. frequency

Figure 4. Frequency response on capa-load

Figure 5. Gain flatness - SO8

Figure 6. Positive and negative slew rate

Figure 7. Distortion on 100Ω load

Figure 8. Output lower rail vs. frequency

Figure 9. Output voltage swing vs. frequency

Figure 10. Distortion on 150 Ω load

Figure 11. Output voltage swing vs. Vcc

Figure 12. Quiescent current vs. Vcc

Figure 13. Isource

Figure 14. Bandwidth vs. temperature

Figure 15. Input offset vs. temperature

Figure 16. Reverse isolation vs. frequency

Figure 17. Ibias vs. temperature

Figure 18. Supply current vs. temperature

Figure 19. Output lower rail vs. temperature

Figure 20. SVR vs. temperature

Figure 21. Output higher rail vs. temperature

Figure 22. CMR vs. temperature

TSH341 Evaluation Boards

3 Evaluation Boards

An evaluation board kit optimized for high speed operational amplifiers is available (order code: KITHSEVAL/STDL). The kit includes the following evaluation boards, as well as a CD-ROM containing datasheets, articles, application notes and a user manual:

- SOT23_SINGLE_HF BOARD: Board for the evaluation of a single high-speed op-amp in SOT23-5 package.
- SO8_SINGLE_HF: Board for the evaluation of a single high-speed op-amp in SO8 package.
- SO8_DUAL_HF: Board for the evaluation of a dual high-speed op-amp in SO8 package.
- SO8_S_MULTI: Board for the evaluation of a single high-speed op-amp in SO8 package in inverting and non-inverting configuration, dual and signle supply.
- SO14_TRIPLE: Board for the evaluation of a triple high-speed op-amp in SO14 package with video application considerations.

Board material:

- 2 layers
- FR4 (Er=4.6)
- epoxy 1.6mm
- copper thickness: 35µm

Figure 23: Evaluation kit for high speed op-amps

4 Power Supply Considerations

Correct power supply bypassing is very important for optimizing performance in high-frequency ranges. Bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency bypassing. A capacitor greater than $10\mu F$ is necessary to minimize the distortion. For better quality bypassing, a capacitor of 10nF is added using the same implementation conditions. Bypass capacitors must be incorporated for both the negative and the positive supply. On the SO8_SINGLE_HF board, these capacitors are C8 and C6.

Figure 24: Circuit for power supply bypassing

5 Using the TSH341 to Drive Video Signals

Figure 25. Implementation of the video driver on output video DACs

V_{OI} (50MHz) = 150mV (Figure 8)

To drive the video signal properly, the output of the driver must be at least equal to 250 mV (assuming V_{io} and V_{OL} variations).

• 1st solution:

Set the video DAC 0-IRE output level to 125mV.

• 2nd solution:

Implementation of a DC component in the input of the driver.

6 Package Mechanical Data

6.1 SO-8 Package

SO-8 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
E	3.80		4.00	0.150		0.157
е		1.27			0.050	
Н	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k		8° (max.)				
ddd			0.1			0.04

6.2 SOT23-5L (5-pin) package

SOT23-5L MECHANICAL DATA

DIM.	mm.			mils		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	0.90		1.45	35.4		57.1
A1	0.00		0.15	0.0		5.9
A2	0.90		1.30	35.4		51.2
b	0.35		0.50	13.7		19.7
С	0.09		0.20	3.5		7.8
D	2.80		3.00	110.2		118.1
E	2.60		3.00	102.3		118.1
E1	1.50		1.75	59.0		68.8
е		0.95			37.4	
e1		1.9			74.8	
L	0.35		0.55	13.7		21.6

7 Revision History

Date	Revision	Description of Changes
01 Jan. 2005	1	First release corresponding to Preliminary Data version of datasheet.
23 Mar. 2005	2	Datasheet of mature, full-specification product

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

