STOCK PRICE PREDICTION

RISHABH GUPTA(2014086) KUSHAGRA MAHAJAN(2014055)

INTRODUCTION

In this project, machine learning algorithms were used to predict the closing price of stocks of companies across various sectors (IT, Pharmaceutical ,Banking Industry) and find out if same model gives best performance across stocks in different sectors.

Stock price prediction has always been one of the most challenging problems affecting the lives of millions of people around the world. Recently the problem has gained great popularity due to its unpredictable behaviour. This work is our attempt to explore the performance of some of the common techniques on stock datasets.

DATASETS

We explore three datasets taken from Quandl.com :- HDFC Bank, TCS, CIPLA Pharmaceuticals Pvt. Ltd.

The datasets provided stock values for the past 8 years (3000 samples).

- 80%(2400 samples) of the data was chosen for training.
- 10% of the training data(240 samples) were used for validation.
- 20% of the total data was used for testing.

FEATURE EXTRACTION

The original data had the following features:
Opening, Highest, Lowest, Last, Closing prices,
Total trade Quantity and Turnover.
The features used for Learning Model are given in
Table-3.

EVALUATION METRICS

Mean Squared Error was used as an Evaluation Metrics for our Models.

PRE-PROCESSING

<u>Technique</u>	Applied	<u>Remarks</u>
Normalization	YES	The Dataset was scaled between 0 and 1.
PCA	NO	The number of features were not large.
Missing Values Correction	YES	Taking average of surrounding values

TECHNIQUES APPLIED

We have explored

- Simple and Regularized Linear Regression(LASSO and RIDGE).
 - Stochastic Gradient Descent
 - Batch Gradient Descent
- Polynomial Kernel Regression
- Gaussian Kernel Regression
- Support Vector Regression
 - Linear kernel
 - Polynomial kernel
 - o Gaussian kernel

METHODOLOGY

- We have used <u>Grid Search</u> along with <u>Cross Validation</u> Technique in each model(wherever possible) to hyper-tune the parameters and come up with the ones which gives minimum MSE.
- Using the best parameters various techniques were applied and MSE was computed.
- Nifty feature was removed and all techniques were again applied against best parameters and the results were compared.

CHALLENGES

Finding out the appropriate features was a big challenge. Lot of papers were consulted and research was done to come up with relevant features in stock market prediction. Some of the relevant works explored were:

- Feature Investigation for Stock market Prediction by Hui Lin[1].
- FEATURE SELECTION FOR PRICE CHANGE PREDICTION by Zehra Çataltepe1, Savaş Özer2, Vahide Unutmaz Barın2[2].

OBSERVATIONS

Note: All the values are normalized between 0 and 1.So MSE values are according to normalization.

<u>Linear and Regularized Regression</u>

After hyper-tuning the parameters (alpha and delta) Linear, LASSO and Ridge Regression was applied along with Stochastic and Batch Gradient Descent algorithm. The results corresponding to best parameters are as follows:

Table-1: MSE corresponding to best alpha and delta for Regularized Linear Regression.

Stock	Best Model	<u>Best</u>	MSE
		<u>Parameters</u>	
CIPLA	Simple	Alpha=0.05	0.001425
	Linear	Delta=0	
	Regression		
TCS	LASSO	Alpha=0.1	0.001067
	Linear	Delta=0.1	
	Regression		
HDFC	LASSO	Alpha=0.00005	0.002279
BANK	Linear	Delta=0.01	
	Regression		

Polynomial Kernel Regression

Extracting the polynomial features and then applying Linear Regression across different degree gives the following results against each stock:

Table-2: MSE corresponding to best degree in Polynomial Kernel Regression.

Stock	Best Degree	<u>MSE</u>
CIPLA	2	0.00006993
TCS	3	0.000884
HDFC	3	0.000149

• Gaussian Kernel Regression

Applying Gaussian Kernel Regression against best value of sigma across each stock gives the following results.

Table-3: MSE corresponding to best sigma in Gaussian Kernel Regression.

Stock	Best Sigma	MSE
CIPLA	0.0002	0.0210
TCS	0.2599*	0.000127
HDFC	0.02	0.000553

^{*} Standard deviation of Closing Prices of training set

• Support Vector Regression

Applying Support Vector Regression using linear, polynomial and Gaussian Kernel across each stock gives the following results.

Table-4: MSE corresponding to best alpha and sigma in Support Vector Regression.

Stock	<u>Kernel</u>	<u>MSE</u>	
CIPLA	Linear	0.00036	
	Polynomial	0.015	
	Gaussian	0.00246	
TCS	Linear	0.000155	
	Polynomial	0.00448	
	Gaussian	0.0003196	
HDFC	Linear	0.00000355	
	Polynomial	0.010	
	Gaussian	0.000144	

To explore and prove the importance of good feature selection we eliminated an important feature(NIFTY closing price) and recalculated the MSE.

The Best Accuracy is compared in both cases across all Models and stocks.

Table-5: Comparison of MSE when NIFTY feature was removed.

Stock	Technique	MSE	MSE
Stock	recillique		
		(With Nifty)	(Without
			<u>Nifty)</u>
CIPLA	Regularized	0.002279	0.00248
	Polynomial	0.00006993	0.0000703
	Gaussian	0.00045	0.020
	Support	0.000359	0.000341
	Vector		
TCS	Regularized	0.001067	0.001198
	Polynomial	0.000884	0.001966
	Gaussian	0.000127	0.0003548
	Support	0.000155	0.000155
	Vector		
HDFC	Regularized	0.001425	0.001465
	Polynomial	0.000149	0.0009838
	Gaussian	0.00045	0.0005535
	Support	0.0000355	0.00000379
	Vector		

RESULTS

The Best Model corresponding to each stock is as follows:

Table-6: Best Model of each Stock.

Tubic C. Best Michel of Cachi Stock.				
STOCK	BEST MODEL	<u>MSE</u>		
CIPLA	Polynomial	0.00006993		
	Kernel			
	Regression			
TCS	Gaussian	0.000127		
	Kernel			
	Regression			
HDFC	Support Vector	0.00000355		
BANK	Regression			
	(Linear Kernel)			

- We observe that the same model does not give best results across different stocks. Hence stocks across different sectors (IT, Banking, Pharmaceutical) move differently with features and historical data.
- The complexity of the best models of different stocks(Polynomial, Gaussian, Support Vector Regression) shows that the closing price of stock are not merely linearly related to the features but are rather more complex.
- The closing Price of HDFC BANK is most predictable among the 3 stocks as it gives the least MSE.
- The MSE values were found to be mostly higher when NIFTY feature was removed.
 This shows that the choice of good features is an important determinant in good performance from the machine learning models.

REFERENCES

- https://www.quandl.com/data/NSE?ke yword=
- http://web.itu.edu.tr/~cataltepe/pdf/2
 011 ICMFECataltepe.pdf
- http://www.ntu.edu.sg/home/elpwang
 /PDF web/13 ICONIP.pdf
- http://www.csie.ntu.edu.tw/~cjlin/libs vm/

Source Code

 https://github.com/git-rishabh/Stock-Price-Prediction

Additional Tables and Graph

Table-7: Features used in our Learning Model.

Previous Day Closing Price			
Same Day Opening Price			
Previous Day Nifty Closing Price			
10 Days Moving averages			
15 Days Moving averages			
20 Days Moving averages			
40 Days Moving averages			
10 Days Momentum			
40 Days Momentum			
Average Difference between Opening Price and			
Closing Price (5 Days)			
Average Difference between Opening Price and			
Closing Price (10 Days)			
Average Difference between Opening Price and			
Closing Price (40 Days)			
Average Difference between Highest Price and			
Lowest Price (5 Days)			
Average Difference between Highest Price and			
Lowest Price (10 Days)			
Average Difference between Highest Price and			
Lowest Price (40 Days)			
Volatility			
Average Turnover for 10 Days			

Table-8: Best Value of Alpha and Delta by applying cross validation and grid search

Stock		Alpha	Delta	MSE
CIPLA	LASSO	0.05	0	0.033688
	RIDGE	0.05	0	0.3688
TCS	LASSO	0.1	0.1	0.00139
	RIDGE	0.10	0	0.00144
HDFC	LASSO	0.00005	0.01	0.00146
	RIDGE	0.00001	0	0.00188

Table-9: MSE corresponding to best alpha and delta for Regularized Linear Regression.

<u>Stock</u>	<u>Parameters</u>	<u>Gradient</u>	<u>MSE</u>
		<u>Descent</u>	
CIPLA	Alpha=0.05	Stochastic	0.002474
	Delta=0	Batch	0.002279
TCS	Alpha=0.1	Stochastic	0.001067
	Delta=0.1	Batch	0.001116
HDFC	Alpha=0.00005	Stochastic	0.001425
	Delta=0.01	Batch	0.001754

Plots of Closing Price for 3000 days.

Note: These plots does not tell anything about the best model in each stock and any model should not be evaluated against these plots.

CIPLA DATASET

HDFC DATASET

TCS DATASET

