Основные операции с изображениями Фильтры и их применение

Диц Даниил Денисович

НТУ Сириус

7 марта 2025 г.

Операции с изображениями

- Логические
- Статистические
- Геометрические
- Математические
- Афинные преобразования

Распределение интенсивности пикселей

Математическое представление:

$$H(k) = \sum_{i=0}^{W-1} \sum_{j=0}^{H-1} \delta(I(i,j) - k)$$

где:

- ightharpoonup H(k) количество пикселей с интенсивностью k
- ightharpoonup I(i,j) интенсивность в точке (i,j)
- $ightharpoonup \delta$ функция Кронекера

Важность

Анализ гистограммы помогает:

- Оценить контраст изображения
- Выявить переэкспозицию
- Подобрать параметры обработки

Операция свертки

Input with padding

0	0	0	0	0	0
0	2	3	1	4	0
0	3	1	3	2	0
0	3	0	1	3	0
0	0	2	0	1	0
0	0	0	0	0	0

conv

ı	kernel								
	1	0	-1						
	1	0	-1						
	1	0	-1						
ď									

Output of original size

-4	1	-2	4
-4	3	-5	5
-3	2	-3	4
-2	2	-2	1

Операция свертки

Основная формула:

$$(f * g)(x,y) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} f(x-i,y-j) \cdot g(i,j)$$

Где:

- ightharpoonup f исходное изображение
- g ядро свертки (фильтр)
- k радиус ядра

Примеры ядер

Размытие:

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Собель (Х):

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

```
blur = cv. GaussianBlur(img, (5,5), 0) sobel\_x = cv. Sobel(img, cv.CV\_64F, 1, 0, ksize=5)
```

Важные аспекты

- Размер ядра влияет на силу эффекта
- ▶ Граничные условия (padding) важны для обработки краев
- Нормализация значений сохраняет диапазон интенсивностей

Аффинный сдвиг

Матрица преобразования:

$$M = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix}$$

Формула преобразования:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

```
def translate(img, x, y):
transMat = np.float32(
    [[1, 0, x],
    [0, 1, y]])
return cv.warpAffine(
    img, transMat,
    (img.shape[1],
    img.shape[0]))
```

Поворот

Матрица поворота:

$$M = \begin{bmatrix} \alpha & \beta & (1-\alpha)x_0 - \beta y_0 \\ -\beta & \alpha & \beta x_0 + (1-\alpha)y_0 \end{bmatrix}$$

где:

- $ightharpoonup \alpha = \cos \theta$
- $\beta = \sin \theta$
- (x_0, y_0) центр вращения

Гауссово размытие (GaussianBlur)

Функция ядра Гаусса:

$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

Операция свертки:

$$I'(x,y) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} I(x+i,y+j) \cdot G(i,j)$$

Детектор границ Канни (Canny)

Основные этапы:

1. Вычисление градиентов:

$$G_{x} = \frac{\partial I}{\partial x}, \quad G_{y} = \frac{\partial I}{\partial y}$$

2. Магнитуда и направление:

$$|G| = \sqrt{G_x^2 + G_y^2}, \quad \theta = \arctan\left(\frac{G_y}{G_x}\right)$$

- 3. Подавление немаксимумов
- 4. Гистерезисная фильтрация (125, 175)

Поиск особенностей

Определение

Особенности (features) — это уникальные точки или области на изображении, которые можно выделить и описать.

Примеры особенностей

- Углы (например, углы зданий)
- Границы (например, края объектов)
- ▶ Текстуры (например, узоры на ткани)

Требования к особенностям

- ▶ Устойчивость к изменениям масштаба
- Устойчивость к поворотам
- Устойчивость к изменениям освещения

Построение SIFT дескриптора

Рис.: разница Гауссианов

Построение SIFT дескриптора

Рис.: Поиск сквозного экстремума

Основные этапы сопоставления

1. Детекция ключевых точек

- Алгоритмы: ORB, SIFT, SURF
- ORB: быстрый, работает в реальном времени
- ▶ SIFT: более точный, но запатентован

2. Вычисление дескрипторов

- Дескриптор вектор, описывающий область вокруг ключевой точки
- ORB: бинарные дескрипторы
- SIFT: вещественные дескрипторы

3. Сопоставление дескрипторов

- Brute-Force: попарное сравнение всех дескрипторов
- FLANN: быстрый, но приближенный метод

Применение сопоставления особенностей

Поиск объектов

- Сравнение особенностей эталонного изображения с целевым
- Пример: поиск лица на фотографии

Сшивка изображений

- Поиск общих точек для объединения снимков
- Пример: панорамные фотографии

3D-реконструкция

- ▶ Восстановление 3D-структуры по нескольким 2D-изображениям
- ▶ Пример: создание 3D-моделей зданий

Рис.: Пример сопоставления особенностей