Question 1.

Note: derivation and parse tree will use E, T, and F to mean expr, term, and factor, and i and n to mean identifier and int-literal. The input string is then [i+n*(i+(n+n))].

Derivation:

Working string	Production
\mathbf{E}	$E \to E + T$
$\underline{\mathrm{E}} + \mathrm{T}$	$E \to T$
$\underline{\mathbf{T}} + \mathbf{T}$	$T \to F$
$\underline{\mathrm{F}} + \mathrm{T}$	$F \to i$
i + T	$T \to T * F$
$i + \underline{T} * F$	$T \to F$
$i + \underline{F} * F$	$F \to n$
i + n * <u>F</u>	$F \rightarrow (E)$
$i + n * (\underline{E})$	$E \to E + T$
$i + n * (\underline{E} + T)$	$\mathrm{E} \to \mathrm{T}$
$i + n * (\underline{T} + T)$	$T \to F$
$i + n * (\underline{F} + T)$	$F \to i$
$i + n * (i + \underline{T})$	$T \to F$
i + n * (i + F)	$F \rightarrow (E)$
$i + n * (i + (\underline{E}))$	$E \to E + T$
$i + n * (i + (\underline{E} + T))$	$\mathrm{E} \to \mathrm{T}$
$i + n * (i + (\underline{T} + T))$	$T \to F$
$i + n * (i + (\underline{F} + T))$	$F \to n$
i + n * (i + (n + T))	$T \to F$
$i + n * (i + (n + \underline{F}))$	$F \to n$
i + n * (i + (n + n))	

Parse tree:

Question 2.

(a) Possible solution:

Grammar rule	Action
$expr_0 \rightarrow expr_1 + term$	$expr_0.isconst \leftarrow (expr_1.isconst \land term.isconst)$
expr o term	$expr.isconst \leftarrow term.isconst$
$term_0 \rightarrow term_1 * factor$	$term_0 \leftarrow (term_1.isconst \land factor.isconst)$
term o factor	$term.isconst \leftarrow factor.isconst$
$factor o \mathbf{identifier}$	$factor.isconst \leftarrow false$
$factor o \mathbf{int} ext{-literal}$	$factor.isconst \leftarrow true$
$factor \rightarrow (expr)$	$factor.$ isconst $\leftarrow expr.$ isconst

(b) Annotated parse tree:

The isconst attribute is a synthesized attribute, so evaluation is strictly bottom-up (from the leaves towards the root.)

Question 3.

(a) Possible solution:

Grammar rule	Action
$expr_0 \rightarrow expr_1 + term$	$expr_0.postfix \leftarrow expr_1.psotfix + \Box + term.postfix + \Box + +.lexeme$
expr o term	$expr.postfix \leftarrow term.postfix$
$term_0 \rightarrow term_1 * factor$	$term_0.postfix \leftarrow term_1.postfix + \Box + factor.postfix + \Box + *.lexeme$
$term \rightarrow factor$	$term.postfix \leftarrow factor.postfix$
$factor o \mathbf{identifier}$	$factor.postfix \leftarrow identifier.lexeme$
$factor o \mathbf{int} ext{-literal}$	$factor.$ postfix \leftarrow int-literal.lexeme
$factor \rightarrow (expr)$	$factor.postfix \leftarrow expr.postfix$

In attribute rules, the + operator means string concatenation, terminal symbols are assumed to have a "lexeme" property, and $_{\sqcup}$ is a string representing a single space character.

(b) Annotated parse tree:

The postfix attribute is a synthesized attribute, so evaluation is strictly bottom-up (from the leaves towards the root.)

Question 4(628).

- (a) The attribute grammar defining the postfix attribute in Question 3 will work, just change "postfix" to "exprid". The postfix form of an expression has the property of being identical for subtrees which perform identical computations.
- (b) Annotated parse tree:

As with the previous attribute grammars, the postfix attribute is a synthesized attribute, and can be evaluated strictly bottom-up.

Question 4(428) / Question 5(628).

Note: parse will use E, T, and F to mean *expr*, *term*, and *factor*, and i and n to mean **identifier** and **int-literal**. The input string is then [i + n * (i + (n + n))].

Stack	Input string	Action
\$	i + n * (i + (n + n)) \$	shift i
\$ i	+ n * (i + (n + n)) \$	reduce $F \to i$
\$ F	+ n * (i + (n + n)) \$	reduce $T \to F$
\$ T	+ n * (i + (n + n)) \$	reduce $E \to T$
\$ E	+ n * (i + (n + n)) \$	shift +
\$ E +	n * (i + (n + n)) \$	shift n
E + n	* (i + (n + n)) \$	reduce $T \to F$
E + F	* (i + (n + n)) \$	reduce $F \to n$
E + T	* (i + (n + n)) \$	shift *
\$ E + T *	(i + (n + n))\$	shift (
\$ E + T * (i + (n + n)	shift i
\$ E + T * (i	+ (n + n))\$	reduce $F \to i$
\$ E + T * (F	+ (n + n))	reduce $T \to F$
\$ E + T * (T	+ (n + n))	reduce $E \to T$
\$ E + T * (E	+ (n + n))	shift +
\$ E + T * (E +	(n + n)	shift (
\$ E + T * (E + (n + n)) \$	shift n
E + T * (E + (n)	+ n)) \$	reduce $F \to n$
E + T * (E + (F))	+ n)) \$	reduce $T \to F$
E + T * (E + (T))	+ n)) \$	reduce $E \to T$
E + T * (E + (E)	+ n)) \$	shift +
E + T * (E + (E +	n)) \$	shift n
E + T * (E + (E + n)))) \$	reduce $F \to n$
E + T * (E + (E + F)))) \$	reduce $T \to F$
E + T * (E + (E + T)))) \$	reduce $E \to E + T$
E + T * (E + (E))) \$	shift)
E + T * (E + (E))) \$	reduce $F \to (E)$
E + T * (E + F)) \$	reduce $T \to F$
E + T * (E + T)) \$	reduce $E \to E + T$
\$ E + T * (E) \$	shift)
\$ E + T * (E)	\$	reduce $F \to (E)$
\$ E + T * F	\$	reduce T \rightarrow T * F
E + T	\$	reduce $E \to E + T$
\$ E		

Question 5(428) / Question 6(628).

Total storage required is [100] bytes.

(storage for next count and y can be overlapped because they have non-overlapping lifetimes.)