King's County Data Set

Module01 – Final Project

The Problem:

Predict the prices of house as accurately as possible.

Steps used:

- Cleaned data by first finding null values and replacing them with appropriate values
- Checked the data types and made sure to fix the one that was supposed to be a 'float' but was an 'object' -- sqft_basement
- Checked for outliers and multicollinearity and took steps to continue cleaning the data
- Created three new features to help with the data:
 - price/sqft
 - o 3beds/2baths
 - Quality of homes
- Lastely, separated the data into continuous and categorical data in order to run an OLS
 - Ended with an r-squared value of 0.972 which shows how closely the model fits to the data

Bedrooms and Bathrooms - PRICE

Houses that have 3 bedrooms and a range of 1 to 2 bathrooms sell for a reasonable price -- affordable

Bedrooms and Bathrooms - GRADE

Houses that have 3 bedrooms and a range of 1 to 2 bathrooms have an average grade of 8 out of 11.

Where to buy and sell?

The zipcodes with the best quality houses fall into - grade 8:

- 98119
 98011
 98072
- 98177
 98027
 98092

Average price of homes:

The homes in the zipcodes with the best quality homes range from \$400,000 to the most expensive of \$1M.

Variables that matter!

- Continuous variables
 - price_per_sqft
 - sqft_living
 - sqft_lot15
- Categorical variables
 - quality
 - bathrooms
 - bedrooms
 - o view
 - condition
 - o floors
 - waterfront

Conclusion: With a R-Squared value of 0.972 this means that the model shows how close it fits the data -- therefore we can predict future home prices