Math 210 (Modern Algebra I), HW# 3,

Fall 2025; Instructor: Sam Hopkins; Due: Wednesday, September 24th

- 1. For p a prime number, a group G is called a p-group if every element has order a power of p. Prove that a finite abelian p-group is generated by its elements of maximal order.
- 2. Let G be a group. An automorphism $\varphi \in \operatorname{Aut}(G)$ is called *inner* if it is conjugation by some fixed $h \in G$, i.e., is of the form $\varphi \colon g \mapsto hgh^{-1}$. Also recall that the *center* of G is $Z(G) = \{g \in G \colon gx = xg \text{ for all } x \in G\}.$
 - (a) Prove that Inn(G), the set of inner automorphisms of G, is a subgroup of Aut(G). (In fact it is a normal subgroup, but you do not need to prove that.)
 - (b) Prove that Z(G) is a normal subgroup of G.
 - (c) Prove that G/Z(G) is isomorphic to Inn(G).
- 3. An action of a group G on a set S is called *transitive* if for every $x, y \in S$ there is a $g \in G$ such that $g \cdot x = y$. An action of a group G on a set S is called *free* if $g \cdot x = x$ for some $x \in S$ and $g \in G$ implies g = e. In what follows, let $S = \{1, 2, ..., n\}$ and let G be a finite group.
 - (a) Suppose G acts transitively on S. Prove that n divides the order of G.
 - (b) Suppose G acts freely and transitively on S. Prove that the order of G is exactly n.
 - (c) Give an example, for each $n \geq 1$, of such a G acting freely and transitively on S.
- 4. The cycle type of a permutation $\sigma \in S_n$ in the symmetric group on n letters is the list $m_1(\sigma), m_2(\sigma), \ldots, m_n(\sigma)$ where $m_i(\sigma)$ is the number of i-cycles in σ 's cycle decomposition.
 - (a) Prove that two permutations in S_n are in the same conjugacy class if and only if they have the same cycle type.
 - (b) Prove that the cardinality of the conjugacy class of $\sigma \in S_n$ is $\frac{n!}{1^{m_1} m_1! 2^{m_2} m_2! \cdots n^{m_n} m_n!}$ where $m_i = m_i(\sigma)$ are the numbers in the cycle type of σ .
- 5. Let G be a finite group of order pq for distinct primes p < q. Prove that G is not simple, i.e., that it has a normal subgroup $N \subseteq G$ other than $\{e\}$ and G.

Hint: use the Sylow theorems; specifically, show that any Sylow q-subgroup is normal in G.