Finding the image of a function

Philip Pennance¹ - June 5, 1998

1. Definition

Let $f: A \to B$. The *image* of f is the set

$$\operatorname{Im} f = \{ f(a) : a \in A \}.$$

2. Remarks

It follows that $b \in \text{Im } f$, if and only if $\exists a \in A$ such that f(a) = b. Therefore, to check that a given element $b \in B$ is in Im f it suffices to show that the equation: f(x) = b has a solution $x \in A$. The image of f is just the set of $b \in B$ such that f(x) = b has a solution. Finding this set may be easy or very hard depending on the nature of the function f. We illustrate with some simple examples.

3. Example

Let $f: \{x \in \mathbb{R} : x \ge 0\} \to \mathbb{R}$ be given by

$$f(x) = \sqrt{x}$$
.

Find $\operatorname{Im} f$.

Solution The equation f(x) = b is equivalent to $\sqrt{x} = b$, $x \ge 0$. We are required to find the set of all elements b in the codomain $\mathbb R$ for which this equation has a solution. If b < 0 there is no solution since, by definition, the principal square root is non negative. If $b \ge 0$ then $\sqrt{b^2} = |b| = b$ and so $x = b^2$ is a solution of the equation f(x) = b. Thus

$$\operatorname{Im} f = \{ x \in \mathbb{R} : x \ge 0 \}$$

4. Example

Let $f: \{x \in \mathbb{R} : x \ge 0\} \to \mathbb{R}$ be given by $f(x) = \sqrt{x} + 7$. Find Im f.

Solution The equation: f(x) = b is

equivalent to $\sqrt{x} + 7 = b$, $x \ge 0$. We must find the set of all elements b in the codomain $\mathbb R$ for which this equation has a solution. If $b \ge 7$, then $b-7 \ge 0$. In this case:

$$\sqrt{(b-7)^2} + 7 = |b-7| + 7
= b-7+7
= b$$

Therefore $x = (b-7)^2$ is a solution f(x) = b. On the other hand if b < 7, the equation f(x) = b has no solution since $\sqrt{(b-7)^2}$ is non negative by definition. We conclude that

$$\operatorname{Im} f = \{ b \in \mathbb{R} : b \ge 7 \}.$$

5. Example

Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \sqrt{x^2 + 1}.$$

Find $\operatorname{Im} f$.

Solution The equation f(x) = b is equivalent to $\sqrt{x^2 + 1} = b$, $x \in \mathbb{R}$. If b < 0 this clearly has no solutions. On the other hand if $b \ge 0$

$$\begin{array}{rcl} \sqrt{x^2+1} & = & b \\ \Rightarrow & x^2+1 & = & b^2 \\ \Rightarrow & x^2 & = & b^2-1 \end{array}$$

Clearly if $b^2 < 1$ there is no solution. If $b^2 \ge 1$, substitution reveals that both $x = \sqrt{b^2 - 1}$ and $x = -\sqrt{b^2 - 1}$ are solutions. Thus f(x) = b has solutions if and only if $b \ge 0$ and $b^2 \ge 1$. But $b \ge 0$ and $b^2 \ge 1$ both hold if and only if $b \ge 1$. Hence

$$\operatorname{Im} f = \{b \in \mathbb{R} : b \geq 1\}$$

¹ http://pennance.us

6. Example

Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = -3 - |2x|.$$

Find $\operatorname{Im} f$.

Solution

$$f(x) = b$$

$$\Leftrightarrow -3 - |2x| = b, \quad x \in \mathbb{R}$$

$$\Leftrightarrow |2x| = -(b+3)$$

Clearly if b > -3 this can have no solutions. On the other hand, if $b \le -3$,

then $x = \frac{b+3}{2}$ is a solution since

$$f(x) = -3 - \left| 2\frac{b+3}{2} \right|$$

$$= -3 - |b+3|$$

$$= (-3) + (b+3)$$

$$= b$$

and so

$$\operatorname{Im} f = \{ b \in \mathbb{R} : b \le -3 \}.$$