

《人工智能数学原理与算法》

第2章:机器学习基础

2.5 逻辑回归I

王翔

xiangwang@ustc.edu.cn

01 分类问题

02 逻辑回归

03 过拟合

目录

分类

口 分类器

线性分类器

特征	系数

简单线性分类器

Score(x) = 各特征的加权和

If Score(x) > 0:

ŷ = **41**

Else:

 $\hat{y} = -1$

贷款人 特征

Input:

线性分类器

Model:
$$\hat{\mathbf{y}}_i = \text{sign}(\text{Score}(\mathbf{x}_i))$$

Score(\mathbf{x}_i) = $\mathbf{w}_0 h_0(\mathbf{x}_i) + \mathbf{w}_1 h_1(\mathbf{x}_i) + ... + \mathbf{w}_D h_D(\mathbf{x}_i)$

= $\sum_{j=0}^{D} \mathbf{w}_j h_j(\mathbf{x}_i) = \mathbf{w}^T h(\mathbf{x}_i)$

```
特征 1 = h<sub>0</sub>(x) ... e.g., 1
特征 2 = h<sub>1</sub>(x) ... e.g., x[1] = #贷款金额
特征 3 = h<sub>2</sub>(x) ... e.g., x[2] = # 年收入
或者, log(x[1]) x[2] = log(#贷
款金额) / #年收入...
特征 D+1 = h<sub>D</sub>(x) ... 关于x[1],..., x[d]的函数
```

口 假设只有两个特征具有非零系数

特征	系数	值
	W_0	0.0
#贷款金额	W1	1.0
#年收入	W2	-1.5

口 决策边界示例

特征	系数	值
	W_0	0.0
#贷款金额	W 1	1.0
#年收入	W2	-1.5

Score(x) = 1.0 #贷款金额- 1.5 #年收入

决策边界将 + 和 - 区分开

口 对于更多输入 (线性特征) ...

口 对于更一般的特征...

更一般的分类器 (非线性特征) → 更复杂的形状

01 分类问题

02 逻辑回归

03 过拟合

目录

口 每一种智能行为X都对应着一种人工X智能,行为X与环境需要进行交互

	贷款违约预测		
input	申请人的信息,共47种特征,包含了如贷款金额、贷款年限、贷款利率、年收入、工作年限等		
output	申请人贷款是否违约		
feedback	正确与否		

逻辑回归四要素与数据形态

- 1. 算法/模型: f(及部分 θ)
- 2. 计算: f_{θ}/i nput/output/feedback转换
- 3. 数据: <input, output, feedback>
- 4. 知识: θ (及部分f)

- ▶表示:逻辑回归模型长什么样? 机器编码 f_A、input、output、feedback。
- ightharpoonup推理:逻辑回归模型怎么用来解决问题? 给定input,机器实现 $f_{ heta}$ 计算output。
- ightharpoonup学习:逻辑回归模型怎么来的? 基于数据<input, output, feedback>集, 给定f, 更新计算 θ 。
- ▶数据: <input, output, feedback> <申请人的信息,是否违约,模型判断正确 与否>

你确定这个预测吗? 类别概率

口 你对预测有多大信心?

目前为止,我们已经输出了一个十1 或 -1 的预测。然而,我们对这个预测到底有多确定?

口 在分类中使用概率

口 目标: 从数据中学习条件概率

训练数据: N个 观测值 (xi,yi)

x[1] = #贷款金额	x[2] = #年收入	y = 是否违约
317.96k	635k	-1
866.1k	305k	+1
136.08k	45k	+1
95.21k	100k	-1
	•••	

在训练数据上 优化质量指标

通过寻找最优的wv 找到最佳模型

可以用于预测 🕏

估算 P(y|x) 可以提高可解释性:

- 预测 ŷ = +1并告诉我你有多确定

使用逻辑回归预测类别概率

口 到目前为止,我们专注于决策边界

Score(
$$x_i$$
) = $w_0 h_0(x_i) + w_1 h_1(x_i) + ... + w_D h_D(x_i)$
= $\mathbf{W}^T \mathbf{h}(\mathbf{X}_i)$

是否要将 Score(xi)与

P(y=+1|X,**ŵ**)关联?

ロ 如何理解Score(xi)?

口 为什么不直接使用回归来构建分类器?

□ 逻辑函数 (Logistic, 也称sigmoid, logit)

$$sigmoid(Score) = \frac{1}{1 + e^{-Score}}$$

Score	- ∞	-2	0.0	+2	+∞
Sigmoid (Score)	0	0.12	0.5	0.88	1

口 了解逻辑回归模型

$$P(y=+1|x_i,w) = \frac{1}{1 + e^{-w^T}h(x)}$$

Score(x _i)	$P(y=+1 x_i, \mathbf{w})$
0	0.5
-2	0.12
2	0.88
4	0.98

□ 逻辑回归 → 线性决策边界

口 逻辑回归模型系数的影响

#贷款金额 - #年收入

口 比较和对比回归模型

• 具有高斯误差的线性回归

$$y_i = \mathbf{w}^T h(\mathbf{x}_i) + \epsilon_i \qquad \epsilon_i \sim N(0, \sigma^2)$$

$$\Rightarrow p(\mathbf{y}|\mathbf{x}, \mathbf{w}) = N(\mathbf{y}; \mathbf{w}^T h(\mathbf{x}), \sigma^2)$$

• 逻辑回归

$$P(y|x,w) = \begin{cases} \frac{1}{1 + e^{-w^{T}h(x)}} & y = +1 \\ \frac{e^{-w^{T}h(x)}}{1 + e^{-w^{T}h(x)}} & y = -1 \end{cases}$$

逻辑回归的损失函数: 最大似然估计 (MLE) 的负对数似然

口 回顾: 高斯线性回归模型

口 寻找最佳系数

×[1] = #贷款金额	×[2] = # 年收入	y = 是否违约
384.85k	476k	-1
741.68k	75k	+1
403.05k	121k	+1
317.96k	63.5k	+1
86.61k	305k	-1
13.61k	45k	-1
952.08k	100k	+1
421.83k	45k	+1
42.43k	93.6k	-1

口 寻找最佳系数

x[1] = #贷款金额	×[2] = # 年收入	y = 是否违约
741.68k	75k	+1
403.05k	121k	+1
317.96k	63.5k	+1
952.08k	100k	+1
421.83k	45k	+1

P(y=+1)	$(x_i, w) =$	1.0
. ()	1, , 1, , , /	•

x[1] = #贷款金额	×[2] = #年收入	y = 是否违约
384.85k	476k	-1
86.61k	305k	-1
13.61k	45k	-1
42.43k	93.6k	-1

$$P(y=+1|x_i,w) = 0.0$$

口 学习具有最大似然估计 (MLE) 的逻辑回归模型

数据点	x[1]	x[2]	У	选择 w 以优化
X1, y 1	741.68k	75k	+1	P(y=+1 x[1]=2, x[2]=1,w)
X2, y 2	384.85k	476k	-1	P(y=-1 x[1]=0, x[2]=2,w)
X3, y 3	86.61k	305k	-1	P(y=-1 x[1]=3, x[2]=3,w)
X4,Y4	403.05k	121k	+1	P(y=+1 x[1]=4, x[2]=1,w)

$$\ell(\mathbf{w}) = \underbrace{\begin{array}{cccc} P(\mathbf{y}_1 | \mathbf{x}_1, \mathbf{w}) & P(\mathbf{y}_2 | \mathbf{x}_2, \mathbf{w}) & P(\mathbf{y}_3 | \mathbf{x}_3, \mathbf{w}) & P(\mathbf{y}_4 | \mathbf{x}_4, \mathbf{w}) \\ & & \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w}) \end{array}}$$

口 找到"最佳"分类器

对于所有可能的wo,w1,w2,选择似然性最大的

$$\ell(\mathbf{w}) = \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

$$\ell(w_0=0, w_1=1, w_2=-1.5) = 10^{-6}$$

逻辑回归的梯度上升

口 最大化似然性

口 我们的优化目标

• 可以计算梯度,但没有以下问题的闭式解:

$$\nabla \ell(\mathbf{w}) = 0$$

- 使用梯度下降
- 与高斯的 MLE 一样,将目标重写为:

log -likelihood

$$\widehat{w} = \underset{\widehat{W}}{argmax} \ \ell(w) = \underset{\widehat{W}}{argmax} \ \ell\ell(w)$$

口 逻辑对数似然的梯度

	P(y=+1 x _i ,w) ≈ 1	$P(y=+1 x_i,w)\approx 0$
y _i =+1	$\Delta_i = 0,$ $P(y = +1 x_i, w) 不变$	$\Delta_i = 1,$ $P(y = +1 x_i, w) 上升$
y _i =-1	$\Delta_i = -1,$ $P(y = +1 x_i, w)$ 下降	$\Delta_i = 0,$ $P(y = +1 x_i, w) 不变$

口 逻辑回归的梯度上升


```
init \mathbf{w}^{(1)} = 0, t = 1

while \|\nabla \ell(\mathbf{w}^{(t)})\| > \epsilon

for j = 0,...,D

partial[j] = \sum_{i=1}^{N} h_j(\mathbf{x}_i) \left(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)})\right)

\mathbf{w}_j^{(t+1)} \leftarrow \mathbf{w}_j^{(t)} + \mathbf{\eta} \text{ partial}[j]

\mathbf{t} \leftarrow \mathbf{t} + \mathbf{1}
```

线性分类器和逻辑回归的总结 (以线性分类器为例)

- 描述决策边界与线性分类器
- 使用类别概率表达预测结果的置信度
- · 定义逻辑回归模型
- 将逻辑回归输出结果解释为类别概率
- 分析系数取值对逻辑回归输出的影响
- 使用似然函数衡量分类器质量
- 通过梯度上升法优化负对数似然损失函数来训练逻辑回归模型