Appendix0_10

```
# NDNS analysis, data management -----
# Change the data path accordingly -----
setwd("/home/wangcc-me/Downloads/UKDA-6533-stata11_se/stata11_se/") # on Ubuntu
library(epiDisplay)
library(plyr)
library(tidyverse)
# Read the data into memory ------
library(haven)
data <- read_dta("ndns_rp_yr1-4a_foodleveldietarydata_uk.dta")</pre>
data56 <- read_dta("ndns_rp_yr5-6a_foodleveldietarydata.dta")</pre>
data78 <- read_dta("ndns_rp_yr7-8a_foodleveldietarydata.dta")</pre>
names(data)
names (data56)
names (data78)
names(data) [names(data) == "seriali"] <- "id"</pre>
names(data56)[names(data56) == "seriali"] <- "id"</pre>
names(data78)[names(data78) == "seriali"] <- "id"</pre>
# Extract the data we needed ------
df14d <- data[, c(113, 1, 2, 3, 5, 6, 7, 8, 9, 21, 24, 55, 57, 58,
   59, 60, 61, 62, 63, 64)]
var <- names(df14d)</pre>
df56d <- data56 %>% select(var)
df78d <- data78 %>% select(var)
dfs1 <- rbind(df14d, df56d, df78d)
dfs2 \leftarrow dfs1[dfs1$Age >= 19, ]
rm(data, data56, data78)
dfs2
# Calculate the time (minute and hour) when they eat ------
dfs2$MealTime chr <- as.character(dfs2$MealTime)</pre>
dfs2$MealTime_hm <- unlist(strsplit(dfs2$MealTime_chr, " "))[c(FALSE,</pre>
   TRUE)]
dfs2$MealHourN <- as.numeric(unlist(strsplit(dfs2$MealTime_hm, ":"))[c(TRUE,</pre>
   FALSE, FALSE)])
dfs2$MealMinN <- as.numeric(unlist(strsplit(dfs2$MealTime_hm, ":"))[c(FALSE,</pre>
   TRUE, FALSE)])
dfs2$MealMinNO <- (60 * dfs2$MealHourN) + dfs2$MealMinN
dfs3 <- dfs2[order(dfs2$id, dfs2$DayNo, dfs2$MealMinNO), ]</pre>
length(unique(dfs3$id)) ## number of participants = 6155
# Create a subset data with only the first observation of each
# participant -----
NDNS <- dfs3[!duplicated(dfs3$id), ]</pre>
with(NDNS, tab1(SurveyYear, graph = FALSE, decimal = 2))
# #SurveyYear :
```

```
# Frequency Percent Cum. percent
# NDNS Year 1 801 13.01
                                13.01
                  812 13.19
# NDNS Year 2
                                      26.21
# NDNS Year 2 812 13.19
# NDNS Year 3 782 12.71
# NDNS Year 4 1055 17.14
# NDNS Year 5 625 10.15
# NDNS Year 6 663 10.77
                                     38.91
                                     56.05
                                     66.21
                                      76.98
# NDNS Year 7
                  703 11.42
                                     88.40
# NDNS Year 8
                  714 11.60
                                    100.00
                6155 100.00
  # Total
                                    100.00
# create a variable combine id and day No -----
dfs3 <- dfs3 %>%
mutate(id_dy = paste(id, DayNo, sep = "D"))
# For each subject, the total energy/carbohydrate intake for each eating
# time can be calculated -----
old <- Sys.time()</pre>
Energy <- ddply(dfs3, .(id_dy, id, SurveyYear, DayNo, Age, Sex,</pre>
                        DiaryDaysCompleted, MealHourN, DayofWeek),
                summarise,
                Tot_Energ = sum(EnergykJ),
                Tot_Carb = sum(Carbohydrateg),
                Tot_Sugar = sum(Totalsugarsg),
                Tot Starch = sum(Starchg))
new <- Sys.time() - old</pre>
print(new)
# Time difference of 3.876385 mins
rm(df14d, df56d, df78d, dfs2)
# Calculate the energy from total carbohydrates ------
Energy <- Energy %>%
  mutate(KJcarbo = Tot Carb * 16) %>%
  mutate(CarKJpercentage = KJcarbo/Tot_Energ) %>%
  mutate(Carbo = cut(CarKJpercentage, breaks = c(0, 0.26, 0.75, 2),
        right = FALSE)) %>% mutate(Carbo2 = cut(CarkJpercentage, breaks = c(0,
    0.26, 2), right = FALSE))
Energy0 <- Energy[!(Energy$Tot_Energ == 0), ]</pre>
          # some food consumption does not contain any carbohydrates
Energy0$Carbo <- factor(Energy0$Carbo, labels = c("Low_carb", "Med_carb",</pre>
    "High_carb"))
Energy0$Carbo2 <- factor(Energy0$Carbo2, labels = c("Low_carb", "Med_or_high_carb"))</pre>
# Generate data sets for each day ------
dta_day1 <- Energy0 %>%
  filter(DayNo == 1) %>%
  select(c("id", "Age",
    "Sex", "DayofWeek", "MealHourN", "Carbo", "Carbo2")) %>%
  mutate(DayofWeek = factor(DayofWeek,
    levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
        "Saturday", "Sunday")))
```

```
dta_day2 <- Energy0 %>%
  filter(DayNo == 2) %>%
  select(c("id", "Age",
    "Sex", "DayofWeek", "MealHourN", "Carbo", "Carbo2")) %>%
 mutate(DayofWeek = factor(DayofWeek,
    levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
        "Saturday", "Sunday")))
dta_day3 <- Energy0 %>%
  filter(DayNo == 3) %>%
  select(c("id", "Age",
    "Sex", "DayofWeek", "MealHourN", "Carbo", "Carbo2")) %>%
  mutate(DayofWeek = factor(DayofWeek,
    levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
        "Saturday", "Sunday")))
dta_day4 <- Energy0 %>%
  filter(DayNo == 4) %>%
  select(c("id", "Age",
    "Sex", "DayofWeek", "MealHourN", "Carbo", "Carbo2")) %>%
  mutate(DayofWeek = factor(DayofWeek,
   levels = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
        "Saturday", "Sunday")))
vecid1 \leftarrow unique(dta_day1$id) # n = 6153
vecid2 \leftarrow unique(dta_day2$id) # n = 6153
vecid3 \leftarrow unique(dta_day3$id) # n = 6151
vecid4 \leftarrow unique(dta_day4$id) # n = 6026
Noday1 <- setdiff(vecid, vecid1) # two subjects did not have day 1 data
Noday2 <- setdiff(vecid, vecid2) # two subjects did not have day 2 data
Noday3 <- setdiff(vecid, vecid3) # four subjects did not have day 3 data
Noday4 <- setdiff(vecid, vecid4) # 129 subjects did not have day 4 data
# Transform the data shape from long to wide -----
dta_d1_wide <- dta_day1[, -7] %>%
  spread(key = MealHourN, value = Carbo)
names(dta_d1_wide)[5:28] <- paste(rep("H", 24), 0:23, sep = "")
dta_d2_wide <- dta_day2[, -7] %>%
  spread(key = MealHourN, value = Carbo)
names(dta_d2_wide)[5:28] <- paste(rep("H", 24), 0:23, sep = "")</pre>
dta_d3_wide <- dta_day3[, -7] %>%
  spread(key = MealHourN, value = Carbo)
names(dta_d3_wide)[5:28] <- paste(rep("H", 24), 0:23, sep = "")</pre>
dta_d4_wide <- dta_day4[, -7] %>%
  spread(key = MealHourN, value = Carbo)
names(dta_d4_wide)[5:28] <- paste(rep("H", 24), 0:23, sep = "")
# recode NA to not eating -----
for (i in 5:ncol(dta_d1_wide))
  if (is.factor(dta_d1_wide[, i])) levels(dta_d1_wide[,
```

```
i]) <- c(levels(dta_d1_wide[, i]), "Not_eating")</pre>
dta_d1_wide[is.na(dta_d1_wide)] <- "Not_eating"</pre>
for (i in 5:ncol(dta_d2_wide))
  if (is.factor(dta_d2_wide[, i])) levels(dta_d2_wide[,
    i]) <- c(levels(dta_d2_wide[, i]), "Not_eating")</pre>
dta_d2_wide[is.na(dta_d2_wide)] <- "Not_eating"</pre>
for (i in 5:ncol(dta_d3_wide))
  if (is.factor(dta_d3_wide[, i])) levels(dta_d3_wide[,
    i]) <- c(levels(dta_d3_wide[, i]), "Not_eating")</pre>
dta_d3_wide[is.na(dta_d3_wide)] <- "Not_eating"</pre>
for (i in 5:ncol(dta_d4_wide))
  if (is.factor(dta_d4_wide[, i])) levels(dta_d4_wide[,
    i]) <- c(levels(dta_d4_wide[, i]), "Not_eating")</pre>
dta_d4_wide[is.na(dta_d4_wide)] <- "Not_eating"</pre>
Mplus VERSION 7.4
MUTHEN & MUTHEN
07/28/2018
            9:55 AM
INPUT INSTRUCTIONS
  TITLE:
            3-class at level 1 (CW), 3-classes at level 2 (CB) random effects model - non-pa
            ordered polytomous variables for carb intake at each time slot over four
            days of NDNS survey 2008/09 - 2015/16
            variable 0 = not eating
                      1 = eating & carb provided < 50% calorie
                      2 = eating & carb provided >= 50% calorie
  DATA:
            File is H:\summer_project\Mplus\TimeSlots\NDNS_Tslots.dat;
  VARIABLE: NAMES = id id_dy Age Sex H6_9 H9_12 H12_14 H14_17 H17_20
                    H20_22 H22_6;
            USEVAR = H6_9 H9_12 H12_14 H14_17 H17_20
                    H20_22 H22_6;
            auxiliary = Age Sex;
            CATEGORICAL = H6_9 H9_12 H12_14 H14_17 H17_20
                    H20_22 H22_6;
            CLUSTER = id;
            IDVARIABLE = id_dy;
            BETWEEN = CB;
```

```
WITHIN = H6_9 H9_12 H12_14 H14_17 H17_20
                    H20_22 H22_6;
            CLASSES = CB(3) CW(3);
            MISSING are .;
  ANALYSIS:
  type = mixture twolevel;
  starts = 50 25;
  process = 8(starts);
 MODEL:
 %within%
  %overall%
 %between%
 %overall%
 CW ON CB;
  Savedata:
   file is H:\summer_project\Mplus\TimeSlots\Multilevel\NDNSslot_CW3CB3.txt;
   save is cprob;
   format is free;
3-class at level 1 (CW), 3-classes at level 2 (CB) random effects model - non-par
ordered polytomous variables for carb intake at each time slot over four
days of NDNS survey 2008/09 - 2015/16
variable 0 = not eating
1 = eating & carb provided < 50% calorie
2 = eating & carb provided >= 50% calorie
SUMMARY OF ANALYSIS
Number of groups
                                                                 1
Number of observations
                                                              24483
Number of dependent variables
                                                                  7
                                                                  0
Number of independent variables
Number of continuous latent variables
                                                                  0
Number of categorical latent variables
                                                                  2
Observed dependent variables
  Binary and ordered categorical (ordinal)
  H6_9
               H9 12
                         H12_14
                                                   H17_20
                                       H14_17
                                                               H20_22
  H22 6
```

Observed auxiliary variables
AGE SEX

Categorical latent variables
CB CW

Variables with special functions

Cluster variable ID ID variable ID_DY

Within variables

H6_9 H9_12 H12_14 H14_17 H17_20 H20_22

H22_6

Estimator MLR
Information matrix OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations 100
Convergence criterion 0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations 500

Convergence criteria

Loglikelihood change 0.100D-02

Relative loglikelihood change 0.100D-05

Derivative 0.100D-02

Optimization Specifications for the M step of the EM Algorithm for Categorical Latent variables

Number of M step iterations 1
M step convergence criterion 0.100D-02
Basis for M step termination ITERATION

Optimization Specifications for the M step of the EM Algorithm for Censored, Binary or Ordered Categorical (Ordinal), Unordered

Categorical (Nominal) and Count Outcomes

Number of M step iterations 1 0.100D-02 M step convergence criterion Basis for M step termination ITERATION Maximum value for logit thresholds 15 Minimum value for logit thresholds -15 Minimum expected cell size for chi-square 0.100D-01 Maximum number of iterations for H1 2000 Convergence criterion for H1 0.100D-03 Optimization algorithm **EMA** Integration Specifications

Integration Specifications

Type STANDARD

Number of integration points 15

Dimensions of numerical integration 0

Adaptive quadrature 0N

Random Starts Specifications

Number of initial stage random starts 50

Number of final stage optimizations 25

Number of initial stage iterations	10
Initial stage convergence criterion	0.100D+01
Random starts scale	0.500D+01
Random seed for generating random starts	0
Parameterization	LOGIT
Link	LOGIT
Cholesky	OFF

Input data file(s)

H:\summer_project\Mplus\TimeSlots\NDNS_Tslots.dat
Input data format FREE

SUMMARY OF DATA

Number	of	missing data patterns	1
Number	of	y missing data patterns	0
Number	of	u missing data patterns	1
Number	of	clusters	6155

COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value 0.100

UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

H6_9			
Category	1	0.313	7655.000
Category	2	0.184	4500.000
Category	3	0.504	12328.000
H9_12			
Category	1	0.222	5447.000
Category	2	0.295	7227.000
Category	3	0.482	11809.000
H12_14			
Category	1	0.195	4783.000
Category	2	0.454	11112.000
Category	3	0.351	8588.000
H14_17			
Category	1	0.283	6926.000
Category	2	0.338	8277.000
Category	3	0.379	9280.000
H17_20			
Category	1	0.124	3043.000
Category	2	0.582	14240.000
Category	3	0.294	7200.000
H20_22			
Category	1	0.356	8722.000
Category		0.363	8898.000
Category	3	0.280	6863.000
H22_6			

Category	1	0.666	16295.000
Category	2	0.169	4144.000
Category	3	0.165	4044.000

RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES

Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers:

-166348.815	153942	31
-166348.815	573096	20
-166348.815	253358	2
-166348.816	318230	46
-166348.816	246261	38
-166348.873	285380	1
-166348.908	903420	5
-166349.394	120506	45
-166349.394	966014	37
-166349.394	207896	25
-166349.395	195873	6
-166349.513	68985	17
-166349.514	366706	29
-166352.737	76974	16
-166357.057	127215	9
-166482.723	533738	11
-166495.844	645664	39
-166668.918	372176	23

THE BEST LOGLIKELIHOOD VALUE HAS BEEN REPLICATED. RERUN WITH AT LEAST TWICE THE RANDOM STARTS TO CHECK THAT THE BEST LOGLIKELIHOOD IS STILL OBTAINED AND REPLICATED.

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters 134

Loglikelihood

HO Value -166348.815 HO Scaling Correction Factor 1.8182 for MLR

Information Criteria

Akaike (AIC) 332965.630 Bayesian (BIC) 334051.799 333625.950 Sample-Size Adjusted BIC

(n* = (n + 2) / 24)

MODEL RESULTS USE THE LATENT CLASS VARIABLE ORDER

CB CW

Latent Class Variable Patterns

CB	CW
Class	Class
1	1
1	2
1	3
2	1
2	2
2	3
3	1
3	2
3	3

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS BASED ON ESTIMATED POSTERIOR PROBABILITIES

Latent	Class
Patte	ern

1	1	4050.97975	0.16546
1	2	1561.55249	0.06378
1	3	1286.46696	0.05255
2	1	2746.94031	0.11220
2	2	3011.00217	0.12298
2	3	1341.59686	0.05480
3	1	2748.25320	0.11225
3	2	4770.55950	0.19485
3	3	2965.64876	0.12113

FINAL CLASS COUNTS AND PROPORTIONS FOR EACH LATENT CLASS VARIABLE BASED ON ESTIMATED POSTERIOR PROBABILITIES

Latent Class	
Variable	Class

CB	1	6898.99902	0.28179
	2	7099.53906	0.28998
	3	10484.46094	0.42823
CW	1	9546.17285	0.38991
	2	9343.11426	0.38162
	3	5593.71240	0.22847

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASS PATTERNS

BASED ON THEIR MOST LIKELY LATENT CLASS PATTERN

Class Counts and Proportions

	nt Class ttern		
1	1	4262	0.17408
1	2	1406	0.05743
1	3	1178	0.04812
2	1	2807	0.11465
2	2	2946	0.12033
2	3	1260	0.05146
3	1	2745	0.11212
3	2	5315	0.21709
3	3	2564	0.10473

FINAL CLASS COUNTS AND PROPORTIONS FOR EACH LATENT CLASS VARIABLE BASED ON THEIR MOST LIKELY LATENT CLASS PATTERN

Late	nt Class			
Va	riable	Class		
СВ		1	6846	0.27962
		2	7013	0.28644
		3	10624	0.43393
CW		1	9814	0.40085
		2	9667	0.39485
		3	5002	0.20431

CLASSIFICATION QUALITY

Entropy 0.630

Average Latent Class Probabilities for Most Likely Latent Class Pattern (Row) by Latent Class Pattern (Column)

Latent Class Variable Patterns

Latent Class	CB	CW
Pattern No.	Class	Class
1	1	1
2	1	2
3	1	3
4	2	1
5	2	2
6	2	3
7	3	1
8	3	2
9	3	3

	1	2	3	4	5	6	7	8	9
1	0.720	0.091	0.073	0.016	0.032	0.004	0.005	0.033	0.025
2	0.720	0.609	0.073	0.016	0.032	0.004	0.040	0.005	0.023
3	0.103	0.003	0.629	0.003	0.002	0.007	0.011	0.036	0.027
4	0.019	0.004	0.002	0.692	0.184	0.051	0.011	0.034	0.003
5	0.042	0.001	0.001	0.158	0.709	0.045	0.001	0.035	0.009
6	0.012	0.037	0.013	0.065	0.084	0.702	0.042	0.003	0.042
7	0.011	0.029	0.004	0.012	0.002	0.022	0.641	0.126	0.153
8	0.026	0.003	0.009	0.025	0.024	0.001	0.115	0.675	0.123
9	0.046	0.024	0.004	0.003	0.010	0.018	0.079	0.174	0.642

MODEL RESULTS

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value		
Within Level						
Latent Class Patr	tern 1 1					
Thresholds						
H6_9\$1	-0.718	0.218	-3.294	0.001		
H6_9\$2	0.973	0.299	3.258	0.001		
H9_12\$1	-2.516	0.463	-5.433	0.000		
H9_12\$2	0.675	0.132	5.118	0.000		
H12_14\$1	-1.025	0.145	-7.057	0.000		
H12_14\$2	1.240	0.116	10.725	0.000		
H14_17\$1	-1.566	0.149	-10.520	0.000		
H14_17\$2	1.090	0.100	10.909	0.000		
H17_20\$1	-1.998	0.125	-16.000	0.000		
H17_20\$2	1.549	0.100	15.556	0.000		
H20_22\$1	-0.933	0.085	-10.914	0.000		
H20_22\$2	1.829	0.103	17.770	0.000		
H22_6\$1	0.253	0.083	3.046	0.002		
H22_6\$2	2.308	0.117	19.691	0.000		
Latent Class Pattern 1 2						
Thresholds						
H6_9\$1	-4.021	1.788	-2.249	0.025		
H6_9\$2	-0.115	0.259	-0.445	0.656		
H9_12\$1	0.167	0.373	0.448	0.654		
H9_12\$2	2.142	0.586	3.657	0.000		
H12_14\$1	-3.210	1.518	-2.115	0.034		
H12_14\$2	0.858	0.167	5.124	0.000		
H14_17\$1	0.044	0.384	0.114	0.909		
H14_17\$2	1.617	0.293	5.509	0.000		
H17_20\$1	-2.109	0.390	-5.409	0.000		
H17_20\$2	1.399	0.196	7.126	0.000		
H20_22\$1	-0.367	0.174	-2.109	0.035		

H20_22\$2	2.347	0.382	6.151	0.000
H22_6\$1	0.754	0.259	2.912	0.004
H22_6\$2	2.542	0.264	9.646	0.000
Latent Class Pa	ttern 1 3			
Thresholds				
H6_9\$1	-15.000	0.000	999.000	999.000
H6_9\$2	2.357	0.783	3.011	0.003
H9_12\$1	-1.433	0.703	-3.850	0.000
H9_12\$2	-0.604	0.279	-2.166	0.030
H12_14\$1	-1.988	0.257	-7.749	0.000
H12_14\$2	0.524	0.125	4.209	0.000
H14_17\$1	-1.027	0.232	-4.436	0.000
H14_17\$2	0.274	0.131	2.087	0.037
H17_20\$1	-2.665	0.310	-8.605	0.000
H17_20\$2	0.707	0.112	6.322	0.000
H20_22\$1	-0.527	0.152	-3.462	0.001
H20_22\$2	0.702	0.138	5.102	0.000
H22_6\$1	1.119	0.185	6.062	0.000
H22_6\$2	1.748	0.183	9.544	0.000
Latent Class Pa	ttern 2 1			
Thresholds				
H6_9\$1	1.663	0.199	8.370	0.000
H6_9\$2	1.839	0.198	9.274	0.000
H9_12\$1	-2.150	0.281	-7.643	0.000
H9_12\$2	-0.869	0.140	-6.190	0.000
H12_14\$1	-1.978	0.191	-10.349	0.000
H12_14\$2	0.323	0.078	4.139	0.000
H14_17\$1	0.237	0.183	1.293	0.196
H14_17\$2	0.782	0.123	6.352	0.000
H17_20\$1	-2.936	0.428	-6.853	0.000
H17_20\$2	0.632	0.081	7.807	0.000
H20_22\$1	0.028	0.142	0.194	0.846
H20_22\$2	0.868	0.086	10.145	0.000
H22_6\$1	0.658	0.109	6.010	0.000
H22_6\$2	1.326	0.100	13.215	0.000
Istant Class Da	±± 0 0			
Latent Class Pa	ttern 2 2			
Thresholds				
H6_9\$1	1.640	0.171	9.619	0.000
H6_9\$2	1.906	0.179	10.678	0.000
H9_12\$1	-1.954	0.347	-5.636	0.000
H9_12\$2	-0.360	0.127	-2.842	0.004
H12_14\$1	-0.016	0.189	-0.084	0.933
H12_14\$2	0.948	0.135	7.029	0.000
H14_17\$1	-1.906	0.301	-6.327	0.000
H14_17\$2	0.371	0.080	4.614	0.000
H17_20\$1	-0.812	0.116	-7.030	0.000
H17_20\$2	0.910	0.089	10.259	0.000
H20_22\$1	-0.742	0.089	-8.318	0.000

H20_22\$2	0.998	0.085	11.705	0.000
H22_6\$1	0.298	0.083	3.608	0.000
H22_6\$2	1.337	0.099	13.475	0.000
Latent Class	Pattern 2 3			
Thresholds				
H6_9\$1	-1.072	0.500	-2.144	0.032
H6_9\$2	-0.309	0.346	-0.892	0.372
H9_12\$1	2.441	1.044	2.339	0.019
H9_12\$2	3.599	1.983	1.815	0.069
H12_14\$1	-1.029	0.211	-4.880	0.000
H12_14\$2	0.603	0.123	4.913	0.000
H14_17\$1	-0.010	0.243	-0.041	0.967
H14_17\$2	0.784	0.157	4.977	0.000
H17_20\$1	-0.953	0.107	-4.684	0.000
H17_20\$2	0.779	0.203	5.784	0.000
H20_22\$1	-0.105	0.210	-0.500	0.617
H20_22\$2	1.203	0.135	8.914	0.000
H22_6\$1	0.582	0.299	1.950	0.051
H22_6\$2	1.370	0.206	6.653	0.000
Latent Class	Pattern 3 1			
m, , , , ,				
Thresholds	4 500			
H6_9\$1	-4.593	1.699	-2.703	0.007
Н6_9\$2	-2.975	0.428	-6.957	0.000
H9_12\$1	-0.322	0.207	-1.553	0.120
H9_12\$2	0.398	0.363	1.095	0.274
H12_14\$1	-5.060	3.668	-1.380	0.168
H12_14\$2	0.307	0.100	3.080	0.002
H14_17\$1	0.186	0.530	0.351	0.726
H14_17\$2	0.317	0.245	1.295	0.195
H17_20\$1	-4.019	0.957	-4.199	0.000
H17_20\$2	0.747	0.093	7.987	0.000
H20_22\$1	-0.233	0.132	-1.767	0.077
H20_22\$2	0.607	0.109	5.571	0.000
H22_6\$1	1.304	0.146	8.918	0.000
H22_6\$2	1.850	0.160	11.579	0.000
	2.000	0.100	2270.0	0.000
Latent Class	Pattern 3 2			
Thresholds				
H6_9\$1	-1.232	0.195	-6.305	0.000
H6_9\$2	-0.858	0.169	-5.068	0.000
H9_12\$1	-4.377	1.937	-2.260	0.024
H9_12\$2	-1.488	0.316	-4.717	0.000
H12_14\$1	-1.727	0.227	-7.611	0.000
H12_14\$2	0.302	0.082	3.666	0.000
H14_17\$1	-1.834	0.237	-7.730	0.000
H14_17\$2	-0.294	0.186	-1.582	0.114
H17_20\$1	-2.588	0.180	-5.313	0.000
H17_20\$2	0.631	0.467	10.187	0.000
_				
H20_22\$1	-0.920	0.078	-11.852	0.000

1100 000	0 0	460 (0 072	6 200	0 000			
H20_22\$					0.000			
H22_6\$1								
H22_6\$2	1.	162 (0.129	9.039	0.000			
Latent Clas	Latent Class Pattern 3 3							
Thresholds								
H6_9\$1	-4.	941 5	5.813 -	0.850	0.395			
H6_9\$2	-2.	680 (0.002			
H9_12\$1	-0.	765 (0.640 -	1.195	0.232			
H9_12\$2	1.	164 (0.920	1.265	0.206			
H12_14\$	1 -1.	415 (0.439 -	3.226	0.001			
H12_14\$		566 (0.085	6.626	0.000			
H14_17\$		052 (0.650 -	3.158	0.002			
H14_17\$		612 (0.210		0.004			
H17_20\$		627 (0.427 -		0.000			
H17_20\$			0.103		0.000			
H20_22\$		850 (0.329 -		0.010			
H20_22\$					0.000			
H22_6\$1				6.349	0.000			
H22_6\$2	1.	893 (0.179 1	.0.582	0.000			
Between Lev	el							
Categorical	Latent Variab	les						
Within Leve	1							
Intercepts								
CW#1		076 (0.366 -	-0.208	0.835			
CW#2			0.309		0.124			
OWIIZ	0.	110	0.000	1.000	0.121			
Between Level								
CW#1	ON							
CB#1		223 (0.473	2.585	0.010			
CB#2			0.441	1.796	0.073			
OBIIZ	0.	100	0.111	1.700	0.010			
CW#2	ON							
CB#1	-0.	282 (0.535 -	0.526	0.599			
CB#2			0.455	0.733	0.464			
3D112	0.		. 100	3.100				
Means								
CB#1	-0.	417 (0.100 -	4.178	0.000			
CB#2	-0.			5.770	0.000			
	•	•						

QUALITY OF NUMERICAL RESULTS

Condition Number for the Information Matrix (ratio of smallest to largest eigenvalue)

SAVEDATA INFORMATION

0.428E-04

Save file

 $\label{thm:local_model} H: \mbox{\tt Multilevel\NDNSslot_CW3CB3.txt}$

Order of variables

H6_9

H9_12

H12_14

H14_17

H17_20

H20_22

H22_6

ID_DY

AGE

SEX

CPROB1

CPROB2

CPROB3

CPROB4

CPROB5

CPROB6

CPROB7

CPROB8

CPROB9

CB

MLCJOINT

ID

Save file format Free

Save file record length 10000

DIAGRAM INFORMATION

Mplus diagrams are currently not available for Mixture analysis. No diagram output was produced.

Beginning Time: 09:55:10 Ending Time: 10:02:01 Elapsed Time: 00:06:51

MUTHEN & MUTHEN 3463 Stoner Ave.

Los Angeles, CA 90066

Tel: (310) 391-9971 Fax: (310) 391-8971

Web: www.StatModel.com Support: Support@StatModel.com

Copyright (c) 1998-2015 Muthen & Muthen