PROBLÉME I (CCP PSI 2011)

Notations

On note:

|z| le module du nombre complexe z.

J un intervalle de $[0, +\infty[$.

f une fonction définie sur J à valeurs dans $\mathbb R$ ou $\mathbb C$.

g une fonction définie sur $[0, +\infty[$ à valeurs dans \mathbb{R} ou \mathbb{C} .

Sous réserve de son existence, on note $\tilde{f}_g(x) = \int_I f(t)g(xt) dt$ pour x > 0.

Chaque fois qu'aucune confusion ne sera possible, on notera $\tilde{f}(x)$ au lieu de $\tilde{f}_q(x)$.

Objectifs

Pour différentes hypothèses sur la fonction f, sur l'intervalle J et pour deux choix de g, on se propose de déterminer la limite de $\tilde{f}_g(x)$ lorsque le nombre réel x tend vers $+\infty$.

Dans la partie 1, on étudie un exemple explicite avec application à des calculs de sommes de séries. Dans la partie 2, on considère une fonction f définie sur $[0, +\infty[$ à valeurs réelles et l'objectif est d'obtenir la limite en $+\infty$ de $\tilde{f}_g(x)$ lorsque $g(t) = |\sin(t)|$, lorsque f est de classe \mathcal{C}^1 ou lorsque f est continue par morceaux.

I. Une étude de séries

I.1. Étude de la fonction L

Pour tout x réel tel que la série entière $\sum_{k\geqslant 1}(-1)^{k-1}\frac{x^k}{k}$ converge, on note $L(x)=\sum_{k=1}^{+\infty}(-1)^{k-1}\frac{x^k}{k}$ sa somme.

- **1.1.1** Préciser le rayon de convergence de cette série entière, montrer que la fonction L est définie sur [-1,1] et expliciter L(x) pour $x \in]-1,1[$.
- **1.1.2** Montrer, avec soin, que la fonction L est continue sur l'intervalle [0,1]. En déduire que $L(1) = \ln(2)$.

I.2. Étude de la série
$$\sum_{k\geq 1} \frac{1}{k} \cos\left(\frac{2k\pi}{3}\right)$$

On considère la suite $(a_k)_{k\in\mathbb{N}^*}$ définie par

$$\forall p \in \mathbb{N}^*, \ a_{3p} = -\frac{2}{3p} \quad ; \quad \forall p \in \mathbb{N}, \ a_{3p+1} = \frac{1}{3p+1} \ \text{et} \ a_{3p+2} = \frac{1}{3p+2}$$

1.2.1 Montrer que

$$\sum_{k=1}^{3p} a_k = \sum_{k=p+1}^{3p} \frac{1}{k} = \frac{1}{p} \sum_{k=1}^{2p} \frac{1}{1 + \frac{h}{n}}.$$

1.2.2 Déterminer la limite de la somme $\sum_{k=1}^{3p} a_k$ lorsque $p \to +\infty$ (on pourra considérer la fonction

 $t \mapsto \frac{1}{1+t}$ sur un intervalle convenable). En déduire la convergence de la série $\sum_{k\geqslant 1} a_k$ et préciser sa somme.

1.2.3 En déduire que la série
$$\sum_{k\geqslant 1}\frac{1}{k}\cos\left(\frac{2k\pi}{3}\right)$$
 converge et montrer que sa somme est égale à $\ln\left(\frac{1}{\sqrt{3}}\right)$.

1.3 Étude des séries
$$\sum_{k\geq 1} \frac{\cos(k\alpha)}{k}$$
 et $\sum_{k\geq 1} \frac{\sin(k\alpha)}{k}$

Pour
$$t \in]0, 2\pi[$$
 et $n \in \mathbb{N}^*$, on note $\varphi(t) = \frac{1}{e^{it} - 1}$ et $S_n(t) = \sum_{k=1}^n e^{ikt}$.

On désigne par α un nombre réel fixé dans l'intervalle $]0,2\pi[$. Pour simplifier l'écriture des démonstrations, on supposera $\pi \leqslant \alpha < 2\pi$.

- **1.3.1** Montrer que $S_n(t) = \varphi(t)(e^{i(n+1)t} e^{it})$.
- **1.3.2** Montrer que $\varphi \in C^1([\pi, \alpha])$.
- **1.3.3** Montrer que l'intégrale $\int_{\pi}^{\alpha} e^{i(n+1)t} \varphi(t) dt$ tend vers 0 quand $n \to +\infty$ (on pourra utiliser une intégration par parties).
- **1.3.4** Expliciter $\int_{\pi}^{\alpha} S_n(t) dt$. Déduire de ce qui précède la convergence de la série $\sum_{k \geqslant 1} \frac{\mathrm{e}^{\mathrm{i}k\alpha}}{k}$. Expliciter la somme $\sum_{k=1}^{+\infty} \frac{\mathrm{e}^{\mathrm{i}k\alpha}}{k}$ en fonction de $\ln(2)$ et de $\int_{\pi}^{\alpha} \mathrm{e}^{\mathrm{i}t} \varphi(t) dt$.
- **1.3.5** Exprimer $e^{it}\varphi(t)$ en fonction de $\frac{e^{\frac{it}{2}}}{\sin\left(\frac{t}{2}\right)}$ où $t \in [\pi, \alpha]$.
- **1.3.6** En déduire la convergence des séries $\sum_{k\geqslant 1}\frac{\cos(k\alpha)}{k}$ et $\sum_{k\geqslant 1}\frac{\sin(k\alpha)}{k}$. Expliciter leur somme respective. Le résultat est-il conforme avec celui obtenu en **1.2.3**?

II. Limite d'une intégrale

Dans cette partie, on désigne par f une fonction continue par morceaux sur l'intervalle $[0, +\infty[$ à valeurs réelles et telle que l'intégrale généralisée $\int_0^{+\infty} |f(t)| \, \mathrm{d}t$ soit convergente. On désigne par g une fonction définie et continue sur l'intervalle $[0, +\infty[$ à valeurs complexes et (sous réserve d'existence) on note $\tilde{f}_g(x) = \int_0^{+\infty} f(t)g(xt) \, \mathrm{d}t$ pour x > 0.

2.1 Existence de $\tilde{f}_g(x)$.

On suppose que la fonction g est bornée sur \mathbb{R}^+ .

Justifier l'existence de $\tilde{f}_g(x)$ pour tout x > 0. Montrer que la fonction \tilde{f}_g est continue et bornée sur \mathbb{R}^{+*} .

2.2 Limite de $\tilde{f}_g(x)$ lorsque $g(t) = e^{it}$.

On suppose que f est de classe \mathcal{C}^1 sur \mathbb{R}^+ et à valeurs réelles.

Soit
$$\tilde{f}_g(x) = \int_0^{+\infty} f(t) e^{ixt} dt$$
.

2.2.1. Justifier l'affirmation :

Pour tout
$$\varepsilon>0$$
, il existe un réel positif A tel que $\int_A^{+\infty}|f(t)|\,\mathrm{d}t\leqslant \varepsilon$

- **2.2.2.** Le nombre réel A étant fixé, montrer que l'intégrale $\int_0^A f(t)e^{ixt} dt$ tend vers 0 lorsque x tend vers $+\infty$ (on pourra utiliser une intégration par parties).
- **2.2.3.** En déduire la limite de $\tilde{f}_g(x) = \int_0^{+\infty} f(t) e^{ixt} dt$ lorsque x tend vers $+\infty$.

Dans toute la suite, on suppose $g(t) = |\sin(t)|$ et on note simplement

$$\tilde{f}(x) = \int_0^{+\infty} f(t) |\sin(xt)| dt$$

2.3 Étude pour une fonction f particulière

On suppose (dans cet exemple) que f désigne la fonction E définie par $E(t) = e^{-t}$ pour $t \ge 0$, et donc $\tilde{E}(x) = \int_0^{+\infty} e^{-t} |\sin(xt)| dt$ pour x > 0.

- **2.3.1.** Pour $\gamma \in \mathbb{R}$, calculer l'intégrale $\theta(\gamma) = \int_0^{\pi} e^{\gamma y} \sin(y) dy$.
- **2.3.2.** Montrer que pour x > 0,

$$\tilde{E}(x) = \frac{1}{x} \int_0^{+\infty} e^{-\frac{u}{x}} |\sin(u)| du$$

- **2.3.3.** Exprimer pour $k \in \mathbb{N}$ et pour tout $x \in \mathbb{R}^*$, l'intégrale $\int_{k\pi}^{(k+1)\pi} e^{-\frac{u}{x}} |\sin(u)| du$ en fonction de $e^{-\frac{k\pi}{x}}$ et de $\theta(\gamma)$ pour un γ convenable.
- **2.3.4.** Justifier, pour x > 0, la convergence de la série $\sum_{k \ge 0} e^{-\frac{k\pi}{x}}$. Préciser sa somme.
- **2.3.5.** Expliciter $\tilde{E}(x)$ pour x > 0. Déterminer la limite de $\tilde{E}(x)$ lorsque x tend vers $+\infty$.

2.4 Étude générale

On désigne de nouveau par f une fonction que lconque continue par morceaux sur l'intervalle $[0, +\infty[$ et telle que l'intégrale généralisée $\int_0^{+\infty} |f(t)| \, \mathrm{d}t$ converge et on note

$$\tilde{f}(x) = \int_0^{+\infty} f(t) |\sin(xt)| dt$$
 pour $x > 0$

2.4.1. Lemme préliminaire

Le résultat de cette question, dont la démonstration utilise les séries de Fourier, pourra être admis!

Pour tout réel t tel que la série $\sum_{k\geqslant 1}\frac{\cos(2kt)}{4k^2-1}$ converge, on pose $h(t)=\sum_{k=1}^{+\infty}\frac{\cos(2kt)}{4k^2-1}$. Montrer que la fonction h est définie et continue sur \mathbb{R} . Justifier l'égalité :

$$\forall t \in \mathbb{R}, \ |\sin(t)| = \frac{2}{\pi} - \frac{4}{\pi}h(t)$$

2.4.2. Limite de $\tilde{f}(x)$ dans le cas \mathcal{C}^1

On suppose de plus que f est une fonction de classe \mathcal{C}^1 sur \mathbb{R}^+ . En utilisant les résultats obtenus dans la partie **2.2** et la question précédente, déterminer la limite de $\tilde{f}(x)$ lorsque $x \to +\infty$. Le résultat est-il conforme à celui obtenu pour la fonction E?

2.4.3. Cas d'une fonction continue par morceaux

2.4.3.1 Une limite.

Étant donnés deux nombres réels β et δ tels que $0 \leqslant \beta < \delta$, on considère, pour x > 0, l'intégrale $F(x) = \int_{\beta}^{\delta} |\sin(xt)| \, \mathrm{d}t$. Montrer que $F(x) = \frac{1}{x} \int_{\beta x}^{\delta x} |\sin(u)| \, \mathrm{d}u$.

On pose p la partie entière de $\frac{\beta x}{\pi}$ et q celle de $\frac{\delta x}{\pi}$. Pour $x>\frac{\pi}{\delta-\beta}$, donner un encadrement de F(x) en fonction de p,q et x.

En déduire que F(x) tend vers $\frac{2}{\pi}(\delta - \beta)$ lorsque $x \to +\infty$.

2.4.3.2 Limite de $\tilde{f}(x)$ dans le cas d'une fonction continue par morceaux

Si J est un intervalle de \mathbb{R}^+ et si f est une fonction continue par morceaux sur J à valeurs réelles et telle que l'intégrale $\int_{J} |f(t)| \, dt$ existe, on note toujours

$$\tilde{f}(x) = \int_{I} f(t) |\sin(tx)| dt$$

Quelle est la limite de $\tilde{f}(x)$ lorsque x tend vers $+\infty$:

- lorsque J est un segment et f une fonction en escalier?
- lorsque J est un segment et f une fonction continue par morceaux?
- lorsque $J = \mathbb{R}^+$ et f une fonction continue par morceaux?

