

Fakulta elektrotechnická

Katedra technologií a měření

KET/RJTD

6. přednáška – Statistická regulace výroby (pokračování), Statistická přejímací kontrola

6. týden © Tůmová 6. týden © Tůmová

4.3.1 Shewhartovy regulační

diagramy (ČSN ISO 8258)

(pokračování) (str. 69)

Shewhartovy regulační diagramy srovnáváním (str. 72)

- pro zaznamenání přítomnosti (nebo nepřítomnosti) určité vlastnosti (znaku) na každé jednotce v podskupině a napočítání, kolik jednotek tento znak vykazuje (nebo naopak nevykazuje)
- výsledek záznam do 1 diagramu (předp. rozdělení, které má 1 nezávislý parametr)

binomické rozdělení:

- diagram pro podíl neshodných jednotek (p) nebo
- diagram pro počet neshodných jednotek (np)

- diagram pro počet neshod (c) nebo
- diagram pro počet neshod na jednotku (u)

© Tůmová © Tůmová týden týden

Centrální přímka	Regulační meze akční
$\frac{}{p}$	$\overline{p} \pm 3\sqrt{\overline{p}(1-\overline{p})/n}$
$n\overline{p}$	$n\overline{p} \pm 3\sqrt{n\overline{p}(1-\overline{p})}$
\overline{c}	$c \pm 3\sqrt{c}$
$\frac{-}{u}$	$\overline{u} \pm 3\sqrt{\overline{u}/n}$

Tvorba diagramů srovnáváním – základní hodnoty nejsou stanoveny

6. týden

Centrální přímka	Regulační meze akční
${p_0}$	$\overline{p_0} \pm 3\sqrt{\overline{p_0}(1-\overline{p_0})/n}$
$n\overline{p_0}$	$n \overline{p_0} \pm 3 \sqrt{n \overline{p_0} \left(1 - \overline{p_0}\right)}$
$\overline{c_0}$	$\overline{c_0} \pm 3\sqrt{\overline{c_0}}$
$\frac{\overline{u_0}}{}$	$\overline{u_0} \pm 3\sqrt{\overline{u_0}/n}$

Tvorba diagramů srovnáváním – základní hodnoty jsou stanoveny

22

23

24

25

4000

4000

Příklad výpočtu regulačních mezí při kontrole srovnáváním

REGULAČNÍ DIAGRAM (np)

(počet neshodných jednotek)

Počet neshodných přepínačů během 1 h

		р	np	n	j
		0,00200	8	4000	1
np =		0,00350	14	4000	2
		0,00250	10	4000	3
		0,00100	4	4000	4
		0,00325	13	4000	5
LICI		0,00225	9	4000	6
	١	0,00175	7	4000	7
		0,00275	11	4000	8
		0,00375	15	4000	9
		0,00325	13	4000	10
		0,00125	5	4000	11
		0,00350	14	4000	12
		0,00300	12	4000	13
25		0,00200	8	4000	14
		0,00375	15	4000	15
20 A		0,00275	11	4000	16
l —		0,00225	9	4000	17
₁₅ B		0,00450	18	4000	18
A		0,00150	6	4000	19
10 10		0,00300	12	4000	20
10 1/C		0,00150	6	4000	21
_ В		0,00300	12	4000	22
5 - 5		0,00200	8	4000	23

0,00375

0,00350 0,06725

15

$$UCL_{np} = \overline{np} + 3\sqrt{\overline{np}(1-\overline{p})} = 20,587$$

$$LCL_{np} = \overline{np} - 3\sqrt{\overline{np}(1-\overline{p})} = 0,933$$

© Tůmová týden

Příklad výpočtu regulačních mezí při kontrole srovnáváním

REGULAČNÍ DIAGRAM (p)

(podíl neshodných jednotek)

6. týden © Tůmová

Příklad výpočtu regulačních mezí při kontrole srovnáváním

REGULAČNÍ DIAGRAM (C)

(počet neshod)

j	n	np	р
1	4000	8	0,00200
2	4000	14	0,00350
3	4000	10	0,00250
4	4000	4	0,00100
5	4000	13	0,00325
6	4000	9	0,00225
7	4000	7	0,00175
8	4000	11	0,00275
9	4000	15	0,00375
10	4000	13	0,00325
11	4000	5	0,00125
12	4000	14	0,00350
13	4000	12	0,00300
14	4000	8	0,00200
15	4000	15	0,00375
16	4000	11	0,00275
17	4000	9	0,00225
18	4000	18	0,00450
19	4000	6	0,00150
20	4000	12	0,00300
21	4000	6	0,00150
22	4000	12	0,00300
23	4000	8	0,00200
24	4000	15	0,00375
25	4000	14	0,00350

269

65týden 100000

Počet neshodných přepínačů během 1

$$p = 0.06725 / 25 = 0.002690$$

$$UCL_p = \bar{p} + 3\sqrt{\bar{p}(1-\bar{p})/n} = 0.00515$$

$$LCL_p = \overline{p} - 3\sqrt{\overline{p}(1-\overline{p})/n} = 0,00023$$

6. týden

Počet neshod na 20ti páskách délky 4000m $\overset{-}{C} = 68/20 = 3,4$ $UCL_{c} = \overset{-}{C} + 3\sqrt{\overset{-}{C}} = 8,932$

$$UCL_{c} = \overline{c} + 3\sqrt{c}$$
 = 8,932
 $LCL_{c} = \overline{c} - 3\sqrt{\overline{c}}$ = -2,132 =>0

Příklad výpočtu regulačních mezí při kontrole srovnáváním

REGULAČNÍ DIAGRAM (u)

(počet neshod na jednotce)

6. týden © Tůmová

13

Každou půlhodinu bylo kontrolováno n = 15 pneumatik a zaznamená počet neshod

j	n	С	u
1	15	4	0,2667
2	15	5	0,3333
3	15	3	0,2000
4	15	6	0,4000
5	15	2	0,1333
6	15	1	0,0667
7	15	5	0,3333
8	15	6	0,4000
9	15	2	0,1333
10	15	4	0,2667
11	15	7	0,4667
12	15	5	0,3333
13	15	2	0,1333
14	15	3	0,2000

210 55 3.6667

6. týder

4.3.2 a 4.3.3 (str. 75) Přehled dalších norem SPC (1)

- ČSN ISO 7873:1995 Regulační diagramy pro aritmetický průměr s výstražnými mezemi
- ČSN ISO 7966:1995 Přejímací regulační diagramy
- ČSN 010266:1987 Zvláštní typy statistické regulace
 Metoda kumulovaných součtů
- ISO/TR 7871:1997 Diagramy pro metodu kumulovaných součtů Návod k řízení jakosti a analýze pomocí metody CUSUM

Přehled dalších norem SPC (2)

- ČSN ISO 11462 Směrnice pro uplatňování statistické regulace procesu (SPC)
 - část 1: 2002 Prvky SPC
 - část 2: 2011 Katalog nástrojů a postupů
- ČSN ISO 7870 Regulační diagramy
 - 1: 2010 Všeobecné pokyny
 - 3: 2014 Přejímací regulační diagramy
 - 4: 2014 Regulační diagramy CUSUM

6. týden © Tůmová 15 6. týden © Tůmová 16

- Regulační diagramy s rozšířenými mezemi
- REGULAČNÍ DIAGRAMY TYPU EWMA (exponenciálně vážené klouzavé průměry)
- Regulační diagramy CCC

6. týden

© Tůmová

4.4.1 Ukazatel způsobilosti výrobního procesu (opak. – str.77)

 ČSN ISO 8258 - způsobilost výrobního procesu se určí

$$PCI = \frac{UTL - LTL}{6\sigma}$$

(UCL – LCL) = 6
$$\sigma$$
 = rozdíl regulačních mezí

4.4 Hodnocení způsobilosti procesu (pokračování)

(str. 77)

6. týden © Tůmová

18

4.4.2 Ukazatele způsobilosti

(dříve pojem "indexy způsobilosti" - str. 79)

20

<u>Ukazatel způsobilosti C_p (procesu)</u>

 charakterizuje možnosti procesu dané jeho variabilitou

$$C_p = \frac{USL - LSL}{6\sigma}$$

kde USL ... horní toleranční mez

LSL ... dolní toleranční mez

σ... směrodatná odchylka

 $6\sigma = UCL - LCL ...$ šířka regulačních mezí

Tvary hustoty odhadu Ĉ_p pro různé počty pozorování; odhad s_n

6. týden © Tůmová

21

ukazatel způsobilosti Cnk

- zohledňuje variabilitu i umístění hodnot znaku v tolerančním poli,
- charakterizuje skutečnou způsobilost procesu dodržovat předepsané toleranční meze
- je-li předepsána jen horní toleranční mez

$$C_{pk} = C_{pU} = \frac{USL - \mu}{3\sigma}$$

6. týden © Tůmová 22

je-li předepsána jen dolní toleranční mez

$$C_{pk} = C_{pL} = \frac{\mu - LSL}{3\sigma}$$

jsou-li předepsané obě meze

$$C_{pk} = \min \left\{ C_{pU}, C_{pL} \right\}$$

kde u ... střední hodnota sledovaného znaku

ukazatel způsobilosti C_{nm} (Taugiho index způsobilosti)

- variabilita
- není charakterizována rozptylem kolem střední hodnoty
- ale kolem optimální hodnoty (musí ležet ve středu tolerančního rozpětí)

$$C_{pm} = \frac{USL - LSL}{6\sqrt{\sigma^2 + (\mu - T)^2}}$$

kde T ... cílová hodnota

© Tůmová 23 © Tůmová 24 týden týden

Příklady na indexy způsobilosti

• Skripta: str. 80, obr. 4.8

Příklady rozdělení hodnot sledovaného znaku v tolerančních mezích a ukazatele způsobilosti

6. týden

© Tůmová

Obr. 7.8: Dosažení způsobilosti procesu seřizováním (A – nezpůsobilý proces: C_{pk} = 0.67; C_p = 1.53, R – způsobilý proces: C_{pk} = 1.53; C_p = 1.53.

6. týden

Obr. 7.9: Dosažení způsobilosti procesu snižováním variability a seřizováním A – nezpůsobilý proces: C_{pk} = 0,56; C_p = 0,74 B – způsobilý proces: C_{pk} = 1,33; C_p = 1,83)

 $\frac{\text{Ukazatel způsobilosti } C_{g}}{\text{(měřicího přístroje nebo měřicího systému)}}$

28

 charakterizuje možnosti měřicího přístroje nebo měřicího systému dané jeho variabilitou

 $\frac{ukazatel\ způsobilosti\ C_{gk}}{(měřicího\ přístroje\ nebo\ měřicího\ systému)}$

<u>Ukazatel způsobilosti C_m</u> (výrobního stroje)

4.2 Etapy statistické regulace (str. 67)

přípravná etapa – rozbor výrobního procesu

- ziištění, zda proces je v ustáleném stavu, tzn. ziišťujeme příčiny eventuální nestability, zda a jak se možné proces stabilizovat
- hodnocení trendu, rozevírání mezí $\pm \sigma$ a možnou eliminaci vymezitelných příčin
- použité nástroje: histogramy, regulační diagram

 2. etapa – udržování procesu v požadovaném stavu

- nástroje: diagram stability (regulační diagram)
- 3. etapa zlepšování procesu
- využívá stejné nástroje jako v 1. etapě
- regulační diagramy, analýza příčin (Ishikav.diagram. brainstorming), testy zvláštních příčin.
- Tato etapa se řadí do vvšších nástrojů ŘQ

vlastní regulace

• 1. etapa – uvedení procesu do požadovaného stavu ("léčení" procesu)

- zpřesnění odhadů parametrů rozdělení regulované veličiny.
- revize požadavků kladených na proces a odstranění vymezitelných příčin
- nástroje: regulační diagramy, analýza příčin (Ishikav.diagram, brainstorming) testy zvláštních příčin. 30

6. týder

2 postupové diagramy

- Skripta str. 68, obr. 4.4: Postupový diagram – průběh zavádění statistické regulace
- Skripta str. 78, obr. 4.7: Strategie zlepšení výrobního procesu

týden

© Tůmová týden

© Tůmová

(str. 83 – 122)

íden © Túmová

5.1 Charakteristika a princip statistické přejímky (str. 83)

- statistická přejímka je následná přejímací kontrola (vstupní, mezioperační, výstupní)
- odhaduje stav kvality dodávky při přejímání
- odběratele při přejímce výrobků zajímá kvalita dávky, tzn. podíl neshodných jednotek
- podle rozsahu kontroly se statistická přejímka dělí na stoprocentní a výběrovou

stoprocentní kontrola dávky –

provádí se:

- u malých dávek
- požadavek mimořádné kvality

z celkového počtu N jednotek dávky se kontrolou zjistí M neshodných jednotek a podíl neshodných jednotek p = M/N

nevhodná u velmi četných souborů a u destruktivních zkoušek

6. týden © Tůmová 35 6. týden © Tůmová

statistická kontrola dávky –

- místo kontroly všech jednotek N (základní soubor)
- kontroluje se jen jejich část n (výběrový soubor, výběr) a
- podle výsledku této kontroly se rozhoduje o kvalitě základního souboru
- tato kontrola je:

© Tůmová

37

a) výběrová – výběr musí být tzv. statisticky homogenní, tzn. vyrobený za stejných podmínek, testovací znaky musí být ze stejného rozdělení a proces musí být statisticky stabilní

- b) objektivní přejímací podmínky jsou předem dohodnuté
- c) statistická uplatňuje se princip statistické indukce, postup je vlastně test statistické hypotézy

6. týden © Tůmová 38

Základní pojmy v oblasti statistických přejímek

- <u>přejímací plán</u> = jednoznačné pravidlo pro přijetí, resp. zamítnutí dodávky
- je základem statistické přejímky (v mat. statistice je jeho alternativou test statistické hypotézy H)
- obsahuje:
 - 1. pevně stanovený rozsah výběru $n \ge N$ (zákl.souboru) a
 - 2. přesně definované přejímací kritérium
- 6. tydernapř. (n, Ac), $(n_1, Ac_1, Regvá, n_2, Ac_2)$

• přejímací kritérium (přejímací plán) tvoří:

- přejímací číslo
- <u>Ac</u> (v ČSN ISO, acceptance number),
 nebo <u>c</u> (v ČSN)
 = přípustný počet neshodných jednotek
 - = přípustný počet neshodných jednotek v daném výběru
- zamítací číslo
- <u>Re</u> (v ČSN ISO, rejectance number), nebo <u>z</u> (v ČSN)
 - = nepřípustný počet neshodných jednotek ve výběru

 rizika statistické přejímky (součást přejím. plánu)

- p₁ ... přípustný podíl neshod. jednotek v dávce
- p₂ ... nepřípust. podíl neshod. jednotek v dávce
- α (PR) ... <u>riziko dodavatele</u> = maximální ppst zamítnutí vyhovující dávky ($P \le P_1$); volí se hodnota $\alpha = 5$ %

$$P_1 = p_1.100[\%]$$

• β (CR) ... <u>riziko odběratele</u> = maximální ppst přijetí nevyhovující dávky ($P \ge P_2$); volí se hodnota $\beta = 10 \%$ $P_2 = p_2.100 [\%]$

© Tůmová

6. týden

• přípustná úroveň jakosti AQL

(Acceptance Quality Level) = mezní přijatelná hodnota průměrného procenta neshodných jednotek (odpovídá P₁, ale ne přesně α !!)

• nepřípustná úroveň jakosti LQ

(Limited Quality) = procento neshodných jednotek spojené s malou pravděpodobnostní přijetí (odpovídá P_2)

PLQ

(Probability of Acceptance at the Limiting Quality) = pravděpodobnost přijetí dávky s právě LQ (odpovídá β)