Metody nieparametryczne w statystyce

Tomasz Wójtowicz

Wydział Zarządzania AGH Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie

Metody rangowe

Niech X i Y będą dwoma cechami o rozkładach określonych przez dystrybuanty F i G.

Chcemy porównać te rozkłady na podstawie prób losowych X_1,\dots,X_{n_1} i $Y_1,\dots,Y_{n_2}.$

Czyli chcemy zweryfikować hipotezę, że:

$$F(x) = G(x)$$
 dla wszystkich $x \in \mathbb{R}$.

Jeżeli: X ma rozkład $N(m_1, \sigma)$ i Y ma rozkład $N(m_2, \sigma)$ (czyli mają to samo odchylenie stand., ale różnią się wartościami oczekiwanymi) równość rozkładów X i Y jest równoważna równości:

$$m_1 = m_2$$

hipoteza alternatywna może mieć jedną z poniższych postaci:

$$m_1 \neq m_2$$

$$m_1 < m_2$$

$$m_1 > m_2$$

Do weryfikacji zestawu hipotez

$$H_0$$
: $m_1 = m_2$

$$H_1$$
: $m_1 < m_2$

można zastosować statystykę t-Studenta:

$$t = \frac{\bar{X} - \bar{Y}}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

gdzie

$$s_p^2 = \frac{1}{n_1 + n_2} \Big((n_1 - 1)S_X^2 + (n_2 - 1)S_Y^2 \Big)$$

Posługując się pojęciem dystrybuanty, hipotezy:

$$H_0$$
: $m_1 = m_2$

$$H_1$$
: $m_1 < m_2$

można zapisać w równoważnej postaci jako:

$$H_0$$
: $F(x) = G(x)$ dla wszystkich $x \in \mathbb{R}$.

$$H_1$$
: $F(x) \ge G(x)$ dla wszystkich $x \in \mathbb{R}$ i $F \ne G$

gdzie F jest dystrybuantą X, a G jest dystrybuantą Y.

Z kolei hipotezy:

$$H_0$$
: $F(x) = G(x)$ dla wszystkich $x \in \mathbb{R}$.

$$H_1$$
: $F(x) \ge G(x)$ dla wszystkich $x \in \mathbb{R}$ i $F \ne G$

można zapisać dokładniej jako

$$H_0$$
: $F(x) = G(x)$ dla wszystkich $x \in \mathbb{R}$.

$$H_1$$
: $G(x) = F(x - \delta)$ dla wszystkich $x \in \mathbb{R}$ i $\delta > 0$

Jeżeli rozkłady cech X i Y odbiegają od rozkładu normalnego lub nie są znane do weryfikacji powyższych hipotez możemy posłużyć się **testem Wilcoxona**.

Procedura testu Wilcoxona

- mam dane: $x_1, ..., x_{n_1}$ i $y_1, ..., y_{n_2}$
- łączymy je w jedną próbę połączoną: $x_1, \dots, x_{n_1}, y_1, \dots, y_{n_2}$
- nadajemy rangi wszystkim obserwacjom w próbie połączonej
- ullet niech r_1 , ..., r_{n_2} będą rangami y_1 , ..., y_{n_2} w próbie połączonej
- statystyka Wilcoxona jest równa

$$W = \sum_{i=1}^{n_2} r_i$$

ullet hipotezę H_0 odrzucamy, gdy statystyka W jest odpowiednio duża

Jeżeli F = G i dystrybuanta F jest **ciągła**, to:

$$\frac{n_2(n_2+1)}{2} \le W \le n_1 n_2 + \frac{n_2(n_2+1)}{2}$$

Ponadto:

1. rozkład statystyki Wilcoxona W nie zależy od dystrybuanty F

2.
$$E(W) = \frac{n_2(n_2+n_1+1)}{2}, D^2(W) = \frac{n_1n_2(n_2+n_1+1)}{12}$$

3. dla dowolnego $x \in \mathbb{R}$:

$$P\left(\frac{W - EW}{\sqrt{D^2(W)}} \le x\right) \to \Phi(x)$$

gdy $\min(n_1, n_2) \to +\infty$, a Φ jest dystrybuantą rozkładu N(0,1).

Test Wilcoxona można też stosować do weryfikacji hipotez:

$$H_0$$
: $F(x) = G(x)$ dla wszystkich $x \in \mathbb{R}$.

$$H_1$$
: $F(x) \leq G(x)$ dla wszystkich $x \in \mathbb{R}$ i $F \neq G$

(czyli rozkład X jest bardziej na lewo względem Y)

co można też zapisać:

$$H_0$$
: $F(x) = G(x)$ dla wszystkich $x \in \mathbb{R}$.

$$H_1$$
: $G(x) = F(x - \delta)$ dla wszystkich $x \in \mathbb{R}$ i $\delta < 0$

lub też do hipotez:

$$H_0$$
: $F(x) = G(x)$ dla wszystkich $x \in \mathbb{R}$.

$$H_1: F(x) \neq G(x)$$
 dla wszystkich $x \in \mathbb{R}$ i $F \neq G$

(czyli rozkład X jest przesunięty względem Y)

co można też zapisać:

$$H_0$$
: $F(x) = G(x)$ dla wszystkich $x \in \mathbb{R}$.

$$H_1$$
: $G(x) = F(x - \delta)$ dla wszystkich $x \in \mathbb{R}$ i $\delta \neq 0$

Test Manna-Whitneya

- służy do weryfikacji tych samych hipotez co test Wilcoxona,
- statystyka U jest równa liczbie takich par (x_i, y_j) , że $y_j > x_i$

•
$$E(U) = \frac{n_1 n_2}{2}$$
, $D^2(U) = \frac{n_1 n_2 (n_2 + n_1 + 1)}{12}$

• można pokazać, że:

$$U = W - \frac{n_2(n_2 + 1)}{2}$$

• czyli statystyki *U* i *W* są sobie równoważne.

Test Wilcoxona można stosować również do weryfikacji hipotezy głównej, że rozkład G powstaje przez przesunięcie rozkładu F w prawo o $\Delta>0$, tzn.:

$$G(x) = F(x - \Delta)$$

Wtedy odpowiednia hipoteza ma postać:

$$H_0$$
: $\Delta = \Delta_0$.

W poprzednich przypadkach mieliśmy:

$$H_0$$
: $\Delta = 0$.

Tę nową hipotezę można zweryfikować stosując test Wilcoxona do danych: x_1,\ldots,x_{n_1} i $y_1-\Delta_0,\ldots,y_{n_2}-\Delta_0$.

Jeżeli rzeczywiście byłoby

$$G(x) = F(x - \Delta)$$

to mediana rozkładu zmiennej $(Y_j - \Delta) - X_i$ byłaby równa 0.

Z tego wynika, że naturalnym estymatorem parametru przesunięcia Δ jest mediana z próby

$$D_{ji} = Y_j - X_i \text{ dla } i = 1, ..., n_1, j = 1, ..., n_2.$$

Jest to **estymator Hodgesa-Lehmanna** wielkości przesunięcia w problemie dwóch prób.

Stosując analogiczne rozumowanie jak wcześniej możemy wyznaczyć przedział ufności dla Δ .

Do zadanego α dobierzmy w_{α} takie, by:

$$P(w_{\alpha} \le U \le n_1 n_2 - w_{\alpha}) = 1 - \alpha$$

gdzie U jest statystyką Mana-Whitneya. Ponieważ U przyjmuje tylko wartości naturalne, to w_{α} jest liczbą naturalną.

Wtedy przedział ufności dla Δ ma postać:

$$\left[D_{(w_{\alpha})},D_{(n_1n_2-w_{\alpha}+1)}\right]$$

gdzie $D_{(k)}$ oznacza k-tą wartość w uporządkowanym ciągu D_{ij} .

Dotychczasowe rozważania o testowaniu równości rozkładów cech X i Y było prowadzone przy założeniu, że F jest ciągła. Przy tym założeniu mamy

$$P(X=Y)=0.$$

Jeżeli dopuścimy, by rozkłady X i Y nie były ciągłe wtedy w próbie $x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2}$ niektóre wartości mogą się powtarzać (tzw. obserwacje związane). Wtedy należy jako rangę każdej z powtarzających się obserwacji przyjmujemy średnią arytmetyczną ich rang.

Przykład

obserwacje	-1	-1	-1	4	4	4	4	11	11
nr	1	2	3	4	5	6	7	8	9
rangi	2	2	2	5,5	5,5	5,5	5,5	8,5	8,5

Test Wilcoxona dla par

Rozważmy sytuację, w której mamy pary obserwacji $(X_1, Y_1), ..., (X_n, Y_n),$ przy czym pary są od siebie wzajemnie niezależne, ale zmienne w parze mogą być zależne. Załóżmy, że pary mają ten sam rozkład dwuwymiarowy.

Wtedy, by zbadać równość rozkładów X i Y badamy rozkład różnicy Y-X.

Jeżeli X i Y mają taki sam rozkład, to Y-X ma rozkład symetryczny względem 0. Wtedy hipotezę główną można zapisać w postaci:

$$H_0$$
: $F(x) = 1 - F(-x)$ dla każdego $x \in \mathbb{R}$.

Hipotezy alternatywne mogą mieć wtedy postać:

 $H_1: 1 - F(-x) \le F(x)$ dla każdego $x \in \mathbb{R}$. (lewostronna skośność)

 $H_1: 1 - F(-x) \ge F(x)$ dla każdego $x \in \mathbb{R}$. (prawostronna skośność)

Test Wilcoxona dla par

Statystyka testowa Wilcoxona W^+ dla par obserwacji jest zdefiniowana jako suma rang wartości bezwzględnych różnic odpowiadających różnicom dodatnim.

Jeżeli dystrybuanta F jest ciągła i F(x) = 1 - F(-x) dla każdego $x \in \mathbb{R}$, to:

1. Rozkład statystyki W^+ nie zależy od dystrybuanty F.

2.
$$E(W^+) = \frac{n(n+1)}{4}, D^2(W^+) = \frac{n(n+1)(2n+1)}{24}$$

3. dla dowolnego $x \in \mathbb{R}$:

$$P\left(\frac{W^+ - EW^+}{\sqrt{D^2(W^+)}} \le x\right) \to \Phi(x)$$

4. gdy n $\rightarrow +\infty$, a Φ jest dystrybuantą rozkładu N(0,1)

Test Wilcoxona dla par

Jeżeli uważamy, że rozkład X jest przesunięty względem rozkładu Y o pewną stałą Δ , tzn. $F(x) = F_0(x - \Delta)$, gdzie F_0 jest dystrybuantą rozkładu symetrycznego względem 0 i $\Delta > 0$. (odpowiada to sytuacji gdy wartości w pierwszej grupie systematycznie przewyższają wartości w drugiej grupie.

To powyższe przypuszczenie możemy sprawdzić weryfikując hipotezę:

$$H_0$$
: $\Delta = 0$

za pomocą statystyki W^+ analogicznie jak wcześniej.

Mediana wartości $B_{ij} = \frac{1}{2}(D_i + D_j)$ jest **estymatorem Hodgesa-Lehmanna** wielkości przesunięcia dla par obserwacji