Explore Spark for Metagenome assembly

Zhong Wang, Ph.D.
Group Lead, DOE Joint Genome Institute
Lawrence Berkeley National Lab

Metagenome is the genome of a microbial community

Microbial communities are "dark matters"

Number of Species

>90% of the species haven't been seen before

Metagenome sequencing

Metagenome assembly

Genome ~= Book Metagenome ~= Library

Scale is an enemy

Complexity is another...

- Data complexity
 - Contamination
 - Number of microbial species
 - Species abundance distribution
 - Sequencing errors
- Algorithm complexity
 - Multiple steps, each has different time/space characteristics

The Ideal Solution

- □ Easy to develop
- □ Robust
- □ Scale to big data
- □ Efficient

2009: Special Hardware

2010: MP/MPI on supercomputers

MPI version
412 Gb, 4.5B reads
2.7 hours on 128x24 cores
NESRC Supercomputer

Problems:

Fast, scalable

- Experienced software engineers
- Six months of development time
- One task fails, all tasks fail

2013: Hadoop/BioPig

Karan Bhatia, Henrik Nordberg, Kai Wang

Challenges in application

- 2-3 orders of magnitude slower than MPI
- IO optimization, e.g., reduce data copying
- Some problems do not easily fit into map/reduce framework, e.g., graph-based algorithms
- Runs on AWS, but cost \$\$\$ if not optimized

Addressing big data: Apache Spark

- New scalable programming paradigm
 - Compatible with Hadoop-supported storage systems
- Improves efficiency through:
 - In-memory computing primitives
 - General computation graphs
- Improves usability through:
 - Rich APIs in Java, Scala, Python
 - Interactive shell

☐ Efficient

□ Easy to develop

□ Robust?

Goal: Metagenome read clustering

- Clustering reads based on their genome of origin can reduce metagenome problem to single-genome problem
- Ideally scale up to TB data sizes

Algorithm

 highly frequent kmers (n-grams)

Contamination prediction

K-mer generation and filtering

- K-mer generation
- Filter out low frequency k-mers (noise)
- Compute edge weight
- Remove low weight edges

Read graph generation and filtering Graph partition

- Connected component
- Power-iteration clustering

Platforms we run spark

- Standalone Spark on single large memory server
- On-demand Spark cluster over HPC
- AWS Elastic Map Reduce (EMR)

Testing the accuracy of the algorithm with a small toy test dataset

Species:

- 6 bacterial species (10kb from each)
- Synthetic communities with random proportions of each genome, reads drawn from single genome sequencing projects (noisy)
- Ideal situation (no shared sequences between genomes, sufficient sequencing coverage):

Reads of the same color belong to the same genome

Real world datasets

Dataset	Number of spieces	Sampling depth
Soil metagenome	High	Low
Cow rumen metagenome	Medium	Low to medium
Maize transcriptome ("fake metagenome")	Low	High

Data grows during analysis

Graph is ~200x larger than input data

Tuning parallelism for load balance

K-mer generation/filtering: partition_size = 16Mb

K-mer generation/filtering: partition_size = 1.3Mb

Tuning parallelism for performance

Optimizing parameters can reduce total running time from > 90 min to 20 min

Scale well on small data

Performance over different datasets

Data complexity is a big driving factor for compute time

Cost on AWS EMR spot instances

Projected cost for a typical 1TB dataset: ~\$500

Scaling up to 100Gb: failed

Read graph generation/filtering

Potential solutions

- Avoid shuffling:
 - generate the graph, save to disk, then merge partitions outside of Spark.
- Size-specific parameters
 - Larger datasets may not use parallelism parameters optimized for smaller ones
- Your inputs...

Overall impression of Spark

- ✓ Easy to develop
 - Scala/python API
 - Databricks notebook
- ✓ Efficient
 - Much, much faster than Hadoop
 - High cluster utilization rate

- ? Robust
 - Platform dependent
 - 30% failure rate on AWS
- ? Scale
 - Problem specific
 - Intermediate data size may change during running
 - Problem complexity may grow with scale

Acknowledgements

Spark Team

Xiandong Meng Jordan Hoffman@Harvard

Lisa Gerhardt, Evan Racah @ NERSC

Gary Jung, Greg Kurtzer Bernard Li, Yong Qin @ HPC

Thank You.

