Возможности программного продукта КРЕДО ТРАНСКОР 3.0 для задач дорожного строительства

Будо А. Ю., старший преподаватель кафедры «Геодезия и аэрокосмические геотехнологии» (Белорусский национальный технический университет)
Будо Ю. П., старший преподаватель кафедры «Геодезия и геоинформационные системы» (Полоцкий государственный университет)

Аннотация. Рассматриваются возможности программного продукта КРЕДО ТРАНСКОР 3.0 для подбора геодезических и картографических проекций, имеющих наименьшие искажения для отображаемой территории местности, с целью последующего преобразования в выбранную проекцию данных картографических веб-сервисов (Google карты, Bing догори и др.) с возможностью дальнейшего проектирования на них автомобильных и железных дорог или подобных линейных объектов, а также для решения других задач дорожного строительства.

Введение. В настоящее время можно наблюдать стремительное распространение спутниковых технологий во многих областях деятельности, что объясняется высокой точностью и быстротой получения информации. Массовое внедрение глобальных навигационных спутниковых систем в дорожное строительство открывает широкие возможности для повышения качества работ, снижения трудозатрат при их производстве. С другой стороны, использование спутникового оборудования требует от современных инженеров понимания основ высшей геодезии и умения работать с многочисленными системами координат. Уменьшить трудоёмкость решения задач по преобразованию координат системами между онжом при помощи специализированных программных продуктов, одним из которых является система, разрабатываемая белорусской компанией Кредо-Диалог, И имеет ТРАНСКОР [1]. Данный программный продукт хорошо зарекомендовал себя и пользуется популярностью среди инженеров в СНГ. Программа проста в освоении, поскольку в ее основе лежит удобная и привычная для большинства геодезистов платформа Кредо ДАТ.

1. Функциональные возможности программного продукта КРЕДО ТРАНСКОР.

Программный продукт ТРАНСКОР в первую очередь предназначен для трансформации или пересчёта координат, а также для установления параметров связи между системами координат. А также обладает рядом дополнительных функциональных возможностей:

- 1. Преобразование геоцентрических, геодезических, плоских и локальных систем координат.
 - 2. Определение ключей местных систем координат.
- 3. Поддержка большого количества геодезических и картографических проекции.
 - 4. Создание ведомостей по всем видам работ с трансформацией координат.
 - 5. Расчет аномалий и высот при помощи модели геоида.
 - 6. Установление параметров связи систем координат.
 - 7. Поиск параметров геоцентрического перехода.

На рис.1 показан внешний вид главного окна программы.

Интерфейс программы включает в себя несколько окон, главными из которых являются окна с исходными и целевыми системами координат и координатами точек в них, которые могут быть как проимпортированы из текстового файла, так и введены с клавиатуры.

Выбрать необходимые для работы системы координат, а также задать их параметры можно в Библиотеке геодезических данных, которая содержит также эллипсоиды, датумы и геоиды, используемые в странах СНГ. Также есть возможность выполнить импорт систем координат из международной базы EPSG (European Petroleum Survey Group), пересчёт в которые осуществляется через популярную библиотеку PROJ4.

За последнее десятилетие использование веб-карт стало неотъемлемой частью в работе каждого специалиста. В версии 3.0 программы ТРАНСКОР реализована возможность подключения картографических сервисов. Данные сервисов в режиме реального времени подгружаются в проект с учетом системы координат, заданной в Свойствах проекта, позволяя таким образом отслеживать положение объектов на

карте или космическом снимке. Например, для просмотра сервиса Google Maps доступны четыре типа данных: карты, спутник, рельеф и гибрид (совместное изображение спутниковых снимков и картографической информации). После подгрузки веб-карты, в заданной пользователем системе координат, выполняется её импорт в проект с нужным уровнем детализации, получая, таким образом, растровое изображение, к которому можно затем дополнительно применить трансформацию по двум, трём или четырём точкам.

Появление и использование большого количества систем координат и проекций [2] связано с невозможностью отобразить эллипсоидальную поверхность Земли на плоскости без искажений. Выбирая систему координат и используемую в ней проекцию, можно регулировать характер этих искажений. Например, в используемой в РБ государственной системе координат СК-95 используется проекция Гаусса-Крюгера, в которой нулевые искажения вдоль осевого меридиана. При удалении от осевого меридиана размер искажений возрастает, достигая для территории РБ относительной ошибки 1:2000 на краю шестиградусной зоны, т.е. линия длиной 1 километр, измеренная на местности, будет отображаться на плане или карте размером на 50 см большим. Таким образом, проекция Гаусса-Крюгера подходит для объектов, вытянутых с севера на юг. А для объектов, вытянутых с запада на восток, можно использовать коническую проекцию Ламберта, для которой точки с наименьшими искажениями будут располагаться вдоль стандартных параллелей. Часто вытянутые объекты, например, автомобильные дороги имеют произвольное расположение и подобрать для них наилучшую классическую проекцию становится проблематично. Для решения такой задачи доктором технических наук, профессором кафедры «Геодезия аэрокосмические геотехнологии» Белорусского национального технического университета В.П. Подшиваловым в 1998 г. предложен новый класс проекций, формирование которых возможно в автоматическом режиме [3]. Такие проекции объединяют достоинства геодезических и картографических проекций: высокую точность, разнообразие и приспособляемость к форме и размерам изображаемой территории. На основе теории, разработанной профессором В.П. Подшиваловым, в программу Кредо ТРАНСКОР 3.0 добавлен функционал вычисления оптимальных параметров композиционной проекции, которая

обеспечивает минимальные искажения для больших площадных и протяженных линейных объектов произвольной ориентации.

Композиционная комбинированный проекция ЭТО ВИД проекции, представляющий собой объединение двух проекций: конической и поперечноцилиндрической с различными коэффициентами влияния с итоговым суммарным значением коэффициентов влияния равным 1.0. Использование этой проекции позволяет добиться оптимальных условий отображения конкретной области и подбора для этой области наилучшего варианта коэффициентов влияния конической и поперечно-цилиндрической проекции. Проекция предназначена для использования на территориях где стандартные проекции на отдельных участках имеют значительные отклонения масштабного коэффициента от 1.0 – протяженных линейных и площадных объектах пересекающих несколько 6-ти градусных зон. Расчет оптимальных коэффициентов влияния двух проекций в Кредо ТРАНСКОР 3.0 выполняется автоматически, он зависит от полноты указанных пользователем описывающих объект. Моделирование масштабов изображений композиционных проекциях сохраняет и основное преимущество исходных проекций - они остаются конформными.

2. Преимущества использования композиционной проекции на примере участка автомобильной дороги Орша – Брест.

Чтобы рассмотреть преимущества композиционной проекции, рассмотрим следующий пример. Имеется участок автомобильной дороги Орша — Брест, для которого необходимо подобрать оптимальную проекцию. В таблице 1 можно увидеть координаты точек в системе координат WGS84. В таблице 2 приведены координаты (колонка 2, 3) этих же точек в СК-95 (зона 5), а также масштабные коэффициенты искажений (колонка 5) и относительная ошибка масштаба искажений (колонка 4). На рис.2 приведены параметры композиционной проекции, которые в автоматическом режиме были рассчитаны в программе Кредо ТРАНСКОР 3.0. В таблице 3 представлены координаты точек в композиционной проекции (колонка 2, 3), относительная ошибка масштаба искажений (колонка 4) и значение масштаба искажений (колонка 5).

Таблица 1. Координаты пунктов трассы в WGS-84

Название пункта	Широта	Долгота
1	2	3
Барановичи	53°07'19.91"	26°01'07.58"
Борисов	54°10'47.33"	28°34'36.77"
Брест	52°05'32.03"	23°44'14.56"
Ивацевичи	52°42'16.99"	25°20'13.43"
Кобрин	52°12'49.45"	24°21'30.01"
Минск	53°48'35.97"	27°46'16.35"
Орша	54°37'21.67"	30°26'23.68"
Толочин	54°24'10.59"	29°41'21.00"

Таблица 2. Результаты пересчёта в СК-95 (зона 5)

Название пункта	N , м	Е, м	1/m	m
1	2	3	4	5
Барановичи	5888788.912	434435.199	18963	1.00005
Борисов	6007199.357	603080.741	7673	1.00013
Брест	5778750.023	276544.370	1632	1.00061
Ивацевичи	5843177.766	387724.025	6466	1.00015
Кобрин	5790535.325	319581.560	2504	1.00040
Минск	5965163.379	550927.630	31434	1.00003
Орша	6060787.916	722277.265	1650	1.00061
Толочин	6034219.968	674742.096	2670	1.00037

Таблица 3. Результаты пересчёта в композиционную проекцию

Название пункта	N, м	Е, м	1/m	m
1	2	3	4	5
Барановичи	5889484.100	1720532.385	21963	0.99995
Борисов	6006319.617	1890263.002	19514	1.00005
Брест	5781072.320	1561599.915	19442	0.99995
Ивацевичи	5844328.221	1673392.985	166849	0.99999
Кобрин	5792390.638	1604739.010	19466	1.00005
Минск	5964773.870	1837722.815	106877	1.00001
Орша	6058722.052	2009940.742	38059	0.99997
Толочин	6032644.422	1962165.682	207095	1.00000

По значениям рассчитанных масштабов, можно графически изобразить поверхность. На рис.3 и рис.4 представлены поверхности, построенные по значениям масштабных искажений для СК-95 и системы координат на основе композиционной проекции.

Из сравнения таблиц 2 и 3 можно заметить, что наибольшие искажения будут получены для точек в районе г. Бреста. Так для этого города в СК-95 наибольшее отклонение от единичного масштаба составляет 0.00061, для композиционной проекции: 0.00005, что на порядок меньше. Сравнивая относительные ошибки масштабов для СК-95 получаем разброс от 1:31434 (г. Минск) до 1: 1632 (г. Брест). Для композиционной проекции разброс существенно меньше: от 1:207095 (г. Толочин) до 1:19442 (г. Брест).

По полученным результатам можно сделать вывод, что композиционная проекция для данного участка автомобильной дороги имеет наименьшие искажения масштабов, и является оптимальной для данного объекта.

Также следует отметить, что для менее протяжённых объектов использование композиционной проекции позволяет получить масштабные коэффициенты, значения которых близки друг к другу, что позволяет на всём протяжённом объекте использовать в тахеометрах одни и те же настройки линейного масштаба, что сокращает период геодезических работ и уменьшает вероятность появления ошибок при выполнении топографической съёмки местности и выносе в натуру осей дорог.

Список литературы:

- 1. https://credo-dialogue.ru/produkty/korobochnye-produkty/197-credo-transkor-naznachenie.html
- 2. https://www.jasondavies.com/maps/transition/
- 3. Подшивалов, В.П. Теоретические основы формирования координатной среды для геоинформационных систем / В.П. Подшивалов. Новополоцк: Научное издание ПГУ, 1998 г. 125 с.

Рисунки.

Рис. 1. Интерфейс программного продукта КРЕДО ТРАНСКОР 3.0

Рис.2. Диалог автоматического поиска параметров композиционной проекции

Рис.3. Поверхность, построенная по значениям масштабных искажений для СК-95

Рис.4. Поверхность, построенная по значениям масштабных искажений для композиционной проекции