

Linear mixed models

23.06.2022

Danny Arends

Fachgebiet Züchtungsbiologie und molekulare Tierzüchtung Humboldt-Universität zu Berlin

Assignments from last week

Let's take a look at my answers for lecture 7

Exam dates

- * Exam
 - * 28/07/2021 14:00 via Zoom/Moodle
- * Re-Exam
 - * 23/09/2021 14:00 via Zoom/Moodle

SIGN UP via AGNES

Best grade will count

Linear mixed models

23.06.2022

Danny Arends

Fachgebiet Züchtungsbiologie und molekulare Tierzüchtung Humboldt-Universität zu Berlin

Before we start

Today

- * Lecture is an adaptation of
 - Introductory tutorial for performing linear mixed effects analyses (Tutorial 2) - Bodo Winter
 - http://www.bodowinter.com/tutorial/bw_LME_tutorial2.pdf

Also check out his tutorial on Linear Models (tutorial1)

* After the introduction I'll show an example from my current research

Short lecture

- * The lecture is short, 22 pages of PDF
 - * Compressed into 29 slides
- * Read the PDF
 - * I will ask questions about it on the exam
- * Ask any questions you might have

Linear Mixed Effect Analyse

- Linear mixed effects analyse
 - Random Effects
- * How to in R
 - Significance
- * Random intercept model
- * Random slope model
- * Linear mixed model example on the Berlin Fat Mouse

Why?

- * Measurements are not independent
 - * Same individual, over time (time series)
 - Related individuals
- We need to take into account the fact that the number of measurements we have != N
 - * If we Don't:
 - Overestimate the statistical power
 - * Significant results due to relatedness
 - Spurious relationships

Linear models

- * Modeling a relationship
 - * Response ~ Predictor
- * In this tutorial we look at pitch

http://www.bodowinter.com/tutorial/politeness data.csv

Data structure

- * Subject (a person)
- * Gender (sex of the person)
- * Scenario (question)
- * Attitude (polite versus informal)
- * Frequency (aka Pitch)

```
1 subject, gender, scenario, attitude, frequency
2 F1, F, 1, pol, 213.3
3 F1, F, 1, inf, 204.5
4 F1, F, 2, pol, 285.1
5 F1, F, 2, inf, 259.7
6 F1, F, 3, pol, 203.9
7 F1, F, 3, inf, 286.9
```

Most elemental linear model

* The hypothesis of Winter & Grawunder, 2012

frequency ~ attitude + ε

- * Attitude a two level categorical factor:
 - * Formal & Informal

Image by Rinto F Rozi from Pixabay

Extending the linear model

* We include sex of the participant

frequency ~ attitude + gender + ε

- * Now things get a little more complicated.
 - * By design: Multiple measures per subject

Random effects

Every subject has a slightly different voice pitch, and this is going to be a factor that affects all responses from the same subject, thus rendering these different responses inter-dependent rather than independent.

* So, subject 1 may have a mean voice pitch of 233 Hz across different utterances, and subject 2 may have a mean voice pitch of 210 Hz per subject

Image by photosforyou from Pixabay

Random effects

Extending the model

* Model individual differences by allowing different random intercepts for each individual (subject).

frequency ~ attitude + gender + (1|subject) + ε

Different questions

- * Similar to the case of by-subject variation, we also expect by-item variation.
- * There might be something special about "Excusing for coming too late"
 - * Leading to overall higher pitch compared to "Asking for a favor"
 - * Regardless of the influence of politeness

Different questions

Extended model

* Account for them in our model:

frequency ~ attitude + gender + (1|subject) + (1|item) + ε

In R

- * No default support for linear mixed models
- * Ime4 package
- * Provides the function Imer()
- * Comparable to Im()

Some R - code


```
library(lme4)
url <- "http://www.bodowinter.com/tutorial/politeness data.csv"
politeness = read.csv(url)
boxplot(frequency ~ attitude + gender,
        col = c("white", "lightgray"), politeness)
lmer(frequency ~ attitude + gender, data = politeness)
Error in mkReTrms(findbars(RHSForm(formula)), fr) : No random effects
terms specified in formula
politeness.model = lmer(
    frequency ~ attitude + gender + (1|subject) + (1|scenario),
    data=politeness
summary(politeness.model)
```

summary(politeness.model)


```
Linear mixed model fit by REML ['lmerMod']
Formula: frequency ~ attitude + (1 | subject) + (1 | scenario)
  Data: politeness
REML criterion at convergence: 793.5
Scaled residuals:
   Min
           1Q Median 3Q
                                  Max
-2.2006 -0.5817 -0.0639 0.5625 3.4385
Random effects:
Groups Name
                 Variance Std.Dev.
scenario (Intercept) 219
                             14.80
subject (Intercept) 4015 63.36
Residual
                             25.42
                     646
Number of obs: 83, groups: scenario, 7; subject, 6
Fixed effects:
           Estimate Std. Error t value
(Intercept) 202.588
                     26.754 7.572
attitudepol -19.695 5.585 -3.527
Correlation of Fixed Effects:
           (Intr)
attitudepol -0.103
```

Model significance


```
politeness.null = lmer(
   frequency ~ gender + (1|subject) + (1|scenario),
   data=politeness, REML = FALSE
)

* Include attitude into the model

politeness.model = lmer(
   frequency ~ attitude + gender + (1|subject) + (1|scenario),
   data=politeness, REML = FALSE
```

Comparison

* anova(politeness.null, politeness.model)

```
Data: politeness
Models:

politeness.null: frequency ~ gender + (1 | subject) + (1 | scenario)

politeness.model: frequency ~ attitude + gender + (1 | subject) + (1 | scenario)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

politeness.null 5 816.72 828.81 -403.36 806.72

politeness.model 6 807.10 821.61 -397.55 795.10 11.618 1 0.0006532 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Publication

"... politeness affected pitch ($\chi^2_{(1)}$ =11.62, p=0.00065), lowering it by about 19.7 Hz ± 5.6 (standard errors) ..."

Random slopes versus intercepts

- Random slopes versus random intercepts
- You see that each scenario and each subject is assigned a different intercept.
- * That's what we would expect, given that we've told the model with "(1|subject)" and "(1|scenario)" to take by-subject and by-item variability into account.

```
$scenario
  (Intercept) attitudepol
                            genderM
     243,4859
                -19.72207 -108.5173
     263.3592
                -19.72207 -108.5173
                -19.72207 -108.5173
     268, 1322
                -19.72207 -108.5173
     277, 2546
5
     254.9319
                -19.72207 -108.5173
     244.8015
                -19.72207 -108.5173
     245,9618
                -19.72207 -108.5173
$subject
   (Intercept) attitudepol
                             genderM
      243.3684
                 -19.72207 -108.5173
F1
F2
      266,9443
                 -19.72207 -108.5173
F3
      260.2276
                 -19.72207 -108.5173
М3
      284.3536
                 -19.72207 -108.5173
Μ4
      262.0575
                 -19.72207 -108.5173
M7
      224.1292
                 -19.72207 -108.5173
attr(,"class")
[1] "coef.mer"
```

Random intercept model

Fixed effects (attitude and gender) are all the same for all subjects and items.

Our model is a random intercept model.

In this model, we account for baseline-differences in pitch, We assume that whatever the effect of politeness is, it's going to be the same for all subjects and items.

Random slope model

- * For example, it might be expected that some people are more polite, others less.
 - * If so, what we need is a **random slope** model, where subjects and items are not only allowed to have differing intercepts, but where they are also allowed to have different slopes for the effect of politeness.

Random slope model

* The notation "(1+attitude|subject)" means that you tell the model to expect differing baseline-levels of frequency (the intercept, represented by 1) as well as differing responses to the main factor in question (attitude).

Summary

- * Random effects
- * Mixed Models
 - * Random intercept model
 - * Random slope model
- * For the Assignment
 - * 1) Read the tutorial

http://www.bodowinter.com/tutorial/bw LME tutorial2.pdf

* 2) More practice exercises

An example: Linear mixed model multiple QTL time series mapping

Overview

- * Short introduction
 - Linear mixed models (LMM)
 - Multiple QTL mapping (MQM)
 - * The Berlin fat mouse advanced inbred line (AIL)
- * Model selection
 - Akaike information criterion (AIC)
 - * Litter size + Litter Number = Litter type
 - Growth curves
- * Results of LMM MQM time series mapping
- * Conclusions / Discussion

Short introduction

OLDT-UNIA, RSITAY

Linear mixed models

- * An extension to linear models, allowing for a combination of fixed and random effects
 - * Fixed effects
 - Model parameters are fixed (non-random) quantities
 - * Advantage: Non-biased estimates for parameters
 - Random effects
 - Model parameters are considered as random variables
 - * Hierarchy between variables
 - * Advantage: efficient, as such random/mixed effect models are good at dealing with repeated measurements

An example

- * m large elementary schools from a single country
- * n pupils are chosen randomly at each school
- * Y_{ij} is the score of the j^{th} pupil at the i^{th} school

Random effects example

Wikipedia

$$Y_{ij} = \mu + U_i + W_{ij}$$

- * μ: Average test score for the entire population
- * U_i: School-specific random effect
 - * The difference between the average score at school i and the average score in the entire country
- * W_{ij}: Individual-specific random effect
 - * The difference of the *j*-th pupil's score from the average for the *i*-th school

Fixed effects example

Wikipedia

- * Fixed effects can capture differences in scores among different groups across different schools
 - * For example:
 - Sex of the individual (Male, Female)
 - * Race (White, Black, Chinese)
 - Parent education level

$$Y_{ij} = \mu + \beta_1 \mathrm{Sex}_{ij} + \beta_2 \mathrm{Race}_{ij} + \beta_3 \mathrm{ParentsEduc}_{ij} + U_i + W_{ij}$$

Short introduction

Multiple QTL mapping

- * Genetic markers as fixed effects into the model
 - * Account for known genetic effects
 - * More power to detect other effects
 - Disentangle QTLs in close proximity (LD)
 - * QTLs with opposite direction of effects
- * Model selection
- QTL detection using the best model

Short introduction

Multiple QTL mapping

Short introduction

The Berlin fat mouse advanced inbred line

- * Model organism for polygenic obesity
- Five fold increased fat percentage (compared to B6)
- Long-term selected for high fatness
- * Several features of the metabolic syndrome

Materials & Methods

- * 344 individuals in generation 28
- * 17.971 genetic markers (after QC)
- * Time series data on body weight
 - * Days: 21, 28, 35, 42, 49, 56, 63, 70

Akaike information criterion (AIC)

- * Model selection is the task of selecting a statistical model from a set of candidate models
- * Akaike information criterion (AIC) is an estimator of the relative quality of statistical models
- * Lower = Better

Litter size + Litter Number = Litter type

- * Litter size Number of individuals in a litter
- * Litter number The nth litter of a female
 - Encoded in two different ways
 - Litter A (1st), Litter B (2nd), etc (5 levels)
 - F (1st) versus N (not the 1st)
- Litter type Combination of Litter size and number
 - * Lt5 = A8, B10, C12
 - * Lt2 = F8, N10, F10, N12

Litter size + Litter Number = Litter type

* Null-model (Mo)

Fixed effect

P = F + (1|individual)

- * P = Body weight
- * F = ID of the Father

Random effect

		Random	Degrees of
ID	Model	effect	freedom
m0	P = F	1 individual	30
m1_L2	$P = F + L_{n2}$	1 individual	30 + 1
m1_L5	$P = F + L_{n5}$	1 individual	30 + 4
m2_L2	$P = F + L_{n2} + L_{s}$	1 individual	30 + 1 + 4
m2_L5	$P = F + L_{n5} + L_{s}$	1 individual	30 + 4 + 4
m2_Lt2	$P = F + L_{t2}$	1 individual	30 + 7
m2_Lt5	P = F + L _{t5}	1 individual	30 + 13

	m1_L2	m1_L5	m2_L2	m2_L5	m2_Lt2	m2_Lt5
m0	-18.452	-18.452 -20.114		-19.988	-23.245	-19.254
m1_L2		-1.662	-3.254	-1.537	-4.794	-0.802
m1_L5	1.662		-1.592	0.126	-3.131	0.860
m2_L2 3.254 1.59		1.592		1.718	-1.540	2.452
m2_L5	1.537	-0.126	-1.718		-3.257	0.734
m2_Lt2	4.794	3.131	1.540	3.257		3.992
m2_Lt5	0.802	-0.860	-2.152	-0.734	-3.992	
			•			
	-6.403	-18.039	-28.881	-17.158	-39.960	-12.017
Rank	6	3	2	4	1	5

Growth curves

- * Stepwise model selection
 - * AIC drop of > 10 is considered model improvement

ID	Model	Random effect	Δ ΑΙC	Model comparison result
m3	P = F + L _{t2}	1 individual		
m4	P = F + L ₁₂ + S	1 individual	1.7	season should NOT be a fixed effect
m5	P = F + L _{t2} + T	1 individual	-4700.2	time should be a fixed effect
m6	P = F + L _{t2} + T	time individual	-770.2	time should be a random slope effect
m7	P = F + L _{t2} + T + T ²	time individual	-3556.0	time ² should be a fixed effect
m8	$P = F + L_{t2} + T + T^2 + T^3$	time individual	-962.5	time ³ should be a fixed effect
m9	$P = F + L_{t_2} + T + T^2 + T^3 + T^4$	time individual	-6.6	time ⁴ should NOT be a fixed effect
m10	$P = F + L_{t_2} + T + T^2 + T^3 + M_{(jObes1)} + (M_{(jObes1)};T)$	time individual	-225.2	jObes1 top marker and interaction with time should be included

(random effects not shows)

Estimate the global mean

(random effects not shows)

Mean + Time

(random effects not shows)

Mean + Time + Time²

(random effects not shows)

Mean + Time + Time² + Time³

(random effects not shown)

Mean + Family + Time + Time² + Time³

(random effects not shows)

Mean + Family + Litter type₍₂₎ + Time + Time² + Time³

(random effects not shows)

Mean + Family + Litter type₍₂₎ + Time + Time²+ Time³+ jObes1 + jObes1:Time

QTL mapping

- * Scan to the genome
 - * Add the marker under consideration to the model
 - * For example: chromosome 1

$$+ M_x + M_x:T$$

Mean + Family + Litter type₍₂₎ + T+ T²+ T³+ jObes1 + jObes1:Time+ M_x + M_x :T

- * After scanning all chromosomes
 - * 5 new QTL detected

Name	Chr	Start	Top marker	Stop	LOD	Num	ber of	alleles	Effect relative to B6N			
						B6N	Н	BFMI	Н	BFMI	H/Day	BFMI/Day
nR1	1	149,553,681	UNC1938399	154,868,088	7.14	83	145	116	0.80	0.41	-0.078	-0.067
nR2	3	26,989,539	UNC030576333	35,953,921	5.99	46	173	125	0.10	0.42	0.039	-0.025
nR3	3	49,901,885	JAX00522656	52,973,026	5.03	60	158	126	0.21	-0.08	0.046	0.081
nR4	9	86,816,288	UNC090485124	99,363,348	6.34	171	133	40	-0.05	0.49	-0.027	-0.105
nR5	19	37,825,545	UNC30294194	40,410,259	4.83	81	179	81	0.11	-0.37	0.012	0.069
jObes1	3	36,481,201	UNC5048297	36,854,743	43.23	39	165	140	-0.07	-1.44	-0.011	0.201

* Chromosome 3, near jObes1

* Chromosome 3, near jObes1

- * Segregation distortion at nR3
 - * Foxo1 is a well known regulator of insulin

Insulin Pathway

Insulin Pathway

Conclusions / Discussion

- * LMM MQM time series mapping is more sensitive
 - * It uses all available data
 - Corrects for known genetic effects
- * 5 novel QTL are detected
- * Within the nR3 QTL segregation distortion is observed
 - * Foxo1 is the only gene in this region
- Many genes from the insulin pathway located underneath the newly identified regions

Summary

- * Random effects
- * Mixed Models
 - Random intercept model
 - Random slope model
- * For the Assignment
 - * 1) Read the tutorial

http://www.bodowinter.com/tutorial/bw_LME_tutorial2.pdf

- * 2) More practice exercises
- * An example on how linear mixed models can improve QTL detection

Quest ions?

Ions by <u>Iluvia ramos https://prezi.com</u>
Wizard Hat - New Horizon & Interactive Studios - http://clubpenguin.wikia.com

Knight helm - Plants vs Zombies 2 - PopCap Games (Juli 2013)