Національний технічний університет України «Київський Політехнічний Інститут» Факультет інформатики і обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №5 3 предмету «Надійність комп'ютерних систем»

Виконав:

Студент IV курсу ФІОТ групи IO-12 Бута С. О.

Залікова книжка №1205

Завдання

Обчислити ТВ і Р (Т), де T = 8760 год = 1 рік, комп'ютера, що складається з 20 + C30 вузлів. При обчисленнях вважати, що інтенсивності відмов і відновлень вузлів СР є постійними величинами, відмови окремих вузлів незалежні і відмова одного з них призводить до відмови СР. Умови експлуатації задані за варіантом (С3), максимальна температура навколишнього середовища дорівнює Tmax C0 (при обчисленнях вважати, що в корпусі СР температура на & Delta; t вище).

Оцінити ефективність і доцільність методів підвищення надійності СР.

Варіант #1205

С3 => 2 (корабельні умови експлуатації)

C5 => 0 (N = 40 годин)

C16 => 5

C29 = > 16

$$C30 = 5$$

Num := 35 + C(30) = 46 Кількість вузлів максимальна температура Δt

tmax := 16 + C(16) = 27

delt := C(29) - 6 = 16

Наименование	Кэ	Kt, t = 43∘C	Kt, t = 27∘C	A
Интегральные схемы	2,20	1,54	0,00	1,87
Конденсаторы	2,00	1,94	0,00	1,97
Оптоэлектронные элементы	4,00	2,54	0,00	3,27
Оптоэлектронные элементы	4,00	0,00	1,33	2,67

Соединения пайкой	3,00	1,54	0,00	2,27
Переключатели кнопочные	3,00	0,00	1,10	2,05
Платы с металлизированными				
отверстиями	3,00	1,54	0,00	2,27
Провода	4,00	2,19	0,00	3,10
Провода	4,00	0,00	1,36	2,68
Резисторы	4,00	2,34	0,00	3,17
Разъёмы	4,00	3,05	0,00	3,53
Разъёмы	4,00	0,00	1,24	2,62
Трансформаторы	3,00	3,34	0,00	3,17
Электронно-лучевые трубки	4,00	1,54	0,00	2,77

Таблица 1.1. Значение коэффициентов Кэ, Кт, А.(учитывая температуру и корабельные условия)									
N	Кол-во	Обозначение	Наименование узла	KF	Интенс, KF				
1	1	(MPU)	Главная плата Socket 775	3,16	11,15				
			Видеоадаптер PCI Express		22,70				
2	1	(VA)	nVidia	6,43					
		(X1.1-B1.1-X1.3), (X1.2-B1.2-			27,49				
3	2	X1.4)	BUS15-MO-MPU	-					
4	2	(MO)	Монитор	2*3,67=7,34	23,27				
		(X1.5-B1.3-X1.7), (X1.6-B1.4-			30,82				
5	2	X1.8)	BUS3-U-220V						
6	5	(KY)	Кулер	5*5,02=25,1	88,60				
7	4	(CPU)	Процессор Intel	4*1,06=4,24	14,97				
8	1	(R)	Кнопка «Reset»		35,00				
9	4	(RAM)	Модуль памяти DDR2 DRAM	4*1=4	14,12				
10	1	(ROM)	ROM BIOS	0,70	2,47				
11	6	(X13-S-X13.1,,X18-S-X18.1)	BUS7-SATA.U		48,85				
12	6	(HDD)	HDD Western Digital	6*8,13=48,78	87,80				
13	1	(UP)	UP Asus	12,00	42,36				
14	1	(X13.3-B13.1-X13.4)	BUS3-U-220V		15,06				
15	1	(X19-I-X19.1)	BUS40-IDE.U-MPU		487,23				
			Оптический накопитель DVD-		13,41				
16	1	(DVD)	RW	3,80					
17	1	(KB)	Клавиатура	4,12	10,60				
18	1	(PS)	Манипулятор «Мышь»	9,18	32,40				
19	1	(CD2)	Светодиод «Работа HDD»		20,15				
			Светодиод «Питание		20,15				
20	1	(CD1)	включено»						
21	1	(P)	Кнопка включения питания СР		35,00				
22	1	(DN)	Внутренний динамик 0,21		0,74				
24	1	(UPT)	Батарея питания для часов	3,70	14,34				
Всего	46		Всего		1098,68				
			Сеть питания		830,00				
			Сумма		1928,68				

Общая таблица интенсивностей

Эксплутационная интенсивность отказов MPU и VA (в зависимости от ИС, конденсаторы, платы, резисторы, разъёмы.

A = 3.53 (разъёмы)

ЭИО **MPU** $\lambda = 3.16 * 3.53 = 11.15$ KF;

ЭИО **VA** $\lambda = 6.43 * 3.53 = 22.70 KF.$

Эксплутационная интенсивность отказов МО в зависимости от ИС, конденсаторы, платы, резисторы, трансформаторы и электронно-лучевая трубка.

A = 3.17 (трансформаторы)

ЭИО **МО** $\hat{\lambda} = 7.34 * 3.17 = 23.27$ KF.

Эксплутационная интенсивность отказов кулера в зависимости от провода, соединения пайкой и разъёмы. А = 3.53 (разъёмы)

ЭИО **KY** $\lambda = 25.1 * 3.53 = 88.6$ KF.

Эксплутационная интенсивность отказов CPU и ROM BIOS в зависимости от ИС с разъёмом.

A = 3.53 (разъёмы)

ЭИО **СРU** $\lambda = 4.24 * 3.53 = 14.97$ KF;

ЭИО **ROM** $\lambda = 0.70 * 3.53 = 2.47$ KF.

Эксплутационная интенсивность отказов RAM будем в зависимости от ИС, конденсаторы, резисторы, разъёмы, печатные платы с металлизированными отверстиями.

A = 3.53 (разъёмы)

ЭИО **RAM** $\lambda = 4*3.53 = 14.12$ KF.

Эксплутационная интенсивность отказов UP в зависимости от ИС, конденсаторы, резисторы, разъёмы, печатные платы с металлизированными отверстиями.

A = 3.53 (разъёмы)

ЭИО **UP** $\lambda = 12 * 3.53 = 42.36$ KF.

Эксплутационная интенсивность отказов DVD и PS в зависимости от ИС, конденсаторы, резисторы, разъёмы, печатные платы с металлизированными отверстиями, оптоэлектрические элементы.

A = 3.53 (разъёмы)

ЭИО **DVD** $\lambda = 3.8 * 3.53 = 13.41 \text{ KF};$

ЭИО **PS** $\lambda = 9.18 * 3.53 = 32.40 \text{ KF}.$

Эксплутационная интенсивность отказов HDD, учитывая температурный коэффициент для HDD при 43°C, Kt = 1.8 (для 6 HDD):

ЭИО **HDD** $\lambda = \lambda Kt = 48.78 * 1.8 = 87.8 KF.$

Эксплутационная интенсивность отказов КВ в зависимости от ИС, разъёмы, переключатели кнопочные.

A = 2.62 (разъёмы)

ЭИО **КВ** $\lambda = 4.12 * 2.62 = 10.8$ KF.

Эксплутационная интенсивность отказов DN в зависимости от трансформатор, соединительные провода, разъём, соединение пайкой.

A = 3.53 (разъёмы)

ЭИО **DN** $\lambda = 0.21 * 3.53 = 0.74$ KF.

Эксплутационная интенсивность отказов батареи UPT, учитывая, что при повышении температуры на 10° С её ЭИО увеличивается в 2 раза, что при $K_9 = 3.0$ даёт A = 4.78.

ЭИО **UPT** $\lambda = 3.0 * 4.78 = 14.34$ KF.

Разъёмы СР производится по формуле:

 $\lambda x = \lambda 0 K \kappa K p K c K u K o K a$

 $\lambda x = \lambda 0 * K \kappa * K p * K c * 4 * 0.5 * 1$

Наименование узла	N	λ0, F	Kκ	Kp	Kc	λx, F
X1.1 X1.4	15,00	1,20	3,28	2,70	0,39	8,28922
X1.5 X1.8	3,00	6,50	1,55	2,70	0,39	21,218
X7,X22,X26X28	2,00	1,20	1,36	3,87	0,39	4,92636
X13-X18, X13.1-X18.1	7,00	1,20	2,16	2,70	0,39	5,45875
X13.2-X19.2	4,00	1,20	1,72	2,70	0,39	4,34678
X13.3-X13.4	3,00	6,50	1,55	2,70	0,39	21,218
X19, X19.1	80,00	1,20	17,70	3,87	0,43	70,691

Таблица значений коэффициентов для узлов

Кабели и шнуры

 $\lambda = \lambda x + \lambda n + \lambda c = \lambda x + \lambda onKmLKuKaKo + 2\lambda ocnKuKaKo$

λоп = 1 Fit/м — интенсивность отказа одного метра провода в нормальных условиях эксплуатации,

Kт — коэффициент температурного режима (Kт 1,49 (1) при 40°C(27), Kт = 3,27 (1.8) при

 $82 \circ C(43)$),

L = ln — суммарная длина всех проводов,

n — количество жил,

1 — длина провода,

Кч — коэффициент эксплуатации в корабельных условиях (Кч = 4),

λос — интенсивность отказов соединений данного типа

После упрощения

 $\lambda_{\Pi} = 1 * K_{T} * L * 4 * 1 * 0.5 = 2 * K_{T} * L$

 $\lambda c = 2*\lambda oc*n*4*1*0.5 = 4*\lambda oc*n$

Наименование	l , м	п, шт.	Кт	λп	λος	λc	λx	λ
X1.1-B1.1-X1.3, X1.2-B1.2-X1.4	1,20	15,00	3,00	7,20	0,20	12,00	8,29	27,49
X1.5-B1.3-X1.7, X1.6-B1.4-X1.8	1,20	3,00	3,00	7,20	0,20	2,40	21,22	30,82
X13-S-X13.1 X18-S-X18.1	0,20	7,00	4,80	1,92	1,50	42,00	4,93	48,85
X13.3-B13.1-X13.4	1,20	3,00	3,00	7,20	0,20	2,40	5,46	15,06
X19-I-X19.1	0,30	80,00	4,80	2,88	1,50	480,00	4,35	487,23

Таблица значений коэффициентов для проводов

Переключатели кнопочные R и P:

$$\lambda = \lambda n + \lambda \kappa + \lambda c + 0.5 \lambda p,$$

$$\lambda \Pi = \lambda O \Pi K T L K T K A K O = 1 * 1,8 * 1,2 * 4 * 1 * 0.5 = 4,32 KF,$$

 $\lambda_K = \lambda_0 Kt K \cdot K \cdot Ka Ko = 6.5 * 1.8 * 4 * 1 * 0.5 = 23.4 KF,$

ЭИО четырёх соединений пайкой:

$$\lambda c = 4\lambda 0 K_{4} K_{6} K_{6} = 4 * 0.6 * 4 * 1 * 0.5 = 4.8 KF,$$

ЭИО разъёма на 2 контакта $\lambda p = 4,92$ F. Следовательно:

ЭИО **R, P**
$$\lambda = 4.32 + 23.4 + 4.8 + 0.5 * 4.92 = 35$$
 KF.

Светодиоды CD1 и CD2 будем производить по формуле:

 $\lambda = \lambda 0 K t K_3 + \lambda \Pi + \lambda c + 0.5 \lambda p,$

где ЭИО светодиодов:

$$\lambda 0 \text{KtK}_{9} = 0.19 * 1.8 * 4 = 1.37 \text{ KF},$$

провода:

 $\lambda \hat{\Pi} = \lambda o \Pi K T L K \Psi K a K o = 1 * 1,8 * 1,2 * 4 * 1 * 0.5 = 4.32 K F,$

четыре соединения пайкой: $\lambda c = 4\lambda 0 K$ чKаKо = 4 * 1.5 * 4 * 1 * 0,5 = 12 KF,

ЭИО разъёма на 2 контакта $\lambda p = 4,92$ KF. Следовательно:

ЭИО **CD1,CD2**

$$\lambda = 1,37 + 4,32 + 12 + 0,5 * 4,92 = 20.15$$

Exponent_raspredelenie

$$\mathbf{P(t)} := \mathbf{e}^{-\lambda t} \rightarrow \mathbf{e}^{-0.00192868 \cdot t}$$

Наработка на отказ

$$T_{\text{min}} := \frac{1}{\lambda} \rightarrow 518.48932948959910405$$

Надёжность за год

$$P(8760)$$
 float, $10 \rightarrow 4.597184008e-8$

Источник бесперебойного питания

$$\lambda 2 := \lambda - (830 - 8) \cdot 10^{-6}$$

$$P2(t) := e^{-\lambda 2t} \rightarrow e^{-0.00110668 \cdot t}$$

наработка на отказ

$$T_{\text{min}} := \frac{1}{\lambda 2} \rightarrow 903.60357104131275527$$

надёжность за год

 $P2(8760) \text{ float}, 10 \rightarrow 0.00006162044766$

Кондиционер

$$\lambda 3 := \frac{\lambda 2}{1.2}$$

P3(t) :=
$$e^{-\lambda 3t} \rightarrow e^{-0.0009222333333333333333333}$$

наработка на отказ

$$T_{\text{мм}} \coloneqq rac{1}{\lambda 3} o 1084.32428524957530632553$$

P3(8760) float, $10 \rightarrow 0.0003100540255$

Лабораторные условия

$$\lambda 4 := \frac{\lambda 3}{3.5}$$

$$P4(t) := e^{-\lambda 4t} \rightarrow e^{-0.000263495238095238095237143 \cdot t}$$

$$\underset{\text{\tiny MWN}}{T} := \frac{1}{\lambda 4} \rightarrow 3795.134998373513572139352173$$

$$P4(8760) \text{ float}, 10 \rightarrow 0.0994382644$$

Амортизаторы

$$\lambda 5 := 0.85 \cdot \lambda 4$$

$$P5(t) := e^{-\lambda 5t} \rightarrow e^{-0.00022397095238095238095157155 \cdot t}$$

$$T := \frac{1}{\lambda 5} \rightarrow 4464.86470396883949663453196834$$

 $P5(8760) \text{ float}, 10 \rightarrow 0.140579018$

Учёт циклической работы

$$\alpha := \frac{N}{24 \cdot 7} \text{ float}, 5 \rightarrow 0.2381$$

$$\lambda e := \lambda 5 \cdot \alpha + \frac{\lambda 5 \cdot (1 - \alpha)}{45} \text{ float}, 5 \rightarrow 0.00005712$$

$$\mathbf{P6(t)} := \mathbf{e}^{-\lambda\mathbf{e}\cdot\mathbf{t}} \to \mathbf{e}^{-0.00005712\cdot\mathbf{t}}$$

Наработка на отказ

$$T_{\text{min}} := \frac{1}{\lambda e} \rightarrow 17507.002801120448179$$

Надёжность за год

 $P6(8760) \text{ float}, 10 \rightarrow 0.6063055573$