

What is claimed is:

1. An amphiphilic block copolymer of formula

5 wherein A is a hydrophobic polysiloxane or perfluoroalkyl polyether segment;
 SU b
 B
 10 B is a surface-modifying hydrophilic segment having a weight average molecular weight of ≥ 100
 that is devoid of a crosslinkable group;
 Q is a moiety comprising at least one crosslinkable ethylenically unsaturated group;
 (alk) is $C_2 - C_{20}$ -alkylene which is unsubstituted or substituted by hydroxy;
 L₁, L₂ and L₃ are each independently of the other a linking group;
 p1 and q1 are each independently of the other an integer from 1 to 12; and either
 t is 0 and p and q are each independently of the other an integer from 1 to 25; or
 t is an integer from 1 to 8 and p and q are each 0.

- 15 2. An amphiphilic block copolymer according to claim 1 of formula

wherein A, B, L₁, L₂, L₃, Q, (alk), p1 and q1 are each as defined in claim 1.

- 20 3. An amphiphilic block copolymer according to claim 1 of formula

wherein A, B, L₁, L₂ and Q are each as defined in claim 1, and p and q are each independently of the other an integer from 2 to 20.

- 25 4. An amphiphilic block copolymer according to claim 1, wherein A is a polysiloxane segment of formula

wherein (alk') is alkylene having 1 to 20 carbon atoms which may be interrupted by -O-;

x is 0 or 1;

80 to 100 % of the radicals R₁, R'₁, R''₁, R₂, R'₂, R''₂, R₃ and R₄, independently of one another, are C₁-C₈-alkyl, and 0-20% of the radicals R₁, R'₁, R''₁, R₂, R'₂, R''₂, R₃ and R₄, independently of one another, are unsubstituted or C₁-C₄ alkyl- or C₁-C₄- alkoxy-substituted phenyl, fluoro(C₁-C₁₈-alkyl) or cyano(C₁-C₁₂-alkyl),

s₁ is an integer from 5 to 700;

s₂ is the sum of (p+q+t-2) if x is 0, and is the sum of (p+q+t) if x is 1; wherein p, q and t are as defined in claim 1, and

the sum (s₁+s₂) is from 5 to 700.

5. An amphiphilic block copolymer according to claim 1, wherein L₁, L₂ and L₃ are each independently of the other a bivalent linking group of formula

15 - X₁ - C(O) - NH - R₁₀ - NH - C(O) - X₂ - (4a),

- X₁ - C(O) - R₁₀ - C(O) - X₂ - (4b),

- X₁ - C(O) - (4c),

- C(O) - X₂ - (4d), or

- X₁ - C(O) - X₂ - (4e),

20 wherein X₁ and X₂ are each independently of the other a group -O-, -S- or -NR₀-, R₀ is hydrogen or C₁-C₄-alkyl, and R₁₀ is linear or branched C₁-C₁₈-alkylene or unsubstituted or C₁-C₄-alkyl- or C₁-C₄- alkoxy-substituted C₆-C₁₀-arylene, C₇-C₁₈-aralkylene, C₆-C₁₀-arylene-C₁-C₂-alkylene-C₆-C₁₀-arylene, C₃-C₈-cycloalkylene, C₃-C₈-cycloalkylene-C₁-C₆-alkylene, C₃-C₈-cycloalkylene-C₁-C₂-alkylene-C₃-C₈-cycloalkylene or C₁-C₆-alkylene-C₃-C₈-cycloalkylene-C₁-C₆-alkylene.

6. An amphiphilic block copolymer according to claim 5, wherein L₁ is a linking group of formula (4a), (4c) or (4e), L₂ is a linking group of formula (4a), and L₃ is a linking group of formula (4b) or (4c).

5 7. An amphiphilic block copolymer according to claim 1, wherein B is a non-ionic segment selected from the group consisting of a polyoxyalkylene, polysaccharid, polypeptide, poly(vinylpyrrolidone), polyalkylacrylate or -methacrylate, polyhydroxyalkylacrylate or -methacrylate, polyacyl alkylene imine, polyacryl amide, polyvinyl alcohol, polyvinyl ether and a polyol, or is a polyionic segment selected from the group consisting of a polyallylammonium, polyethylenimine, polyvinylbenzyltrimethylammonium, polyaniline, sulfonated polyaniline, polypyrrole and polypyridinium segment, and a polyacrylic and polymethacrylic acid, a polythiophene-acetic acid, a polystyrenesulfonic acid and a zwitterionic segment, or a suitable salt thereof.

15 8. An amphiphilic block copolymer according to claim 1, wherein Q is a radical Q₁ of formula

wherein (Alk) is linear or branched C₁-C₁₂-alkylene, X is -O- or -NH-, R₁₁ is an olefinically unsaturated copolymerisable radical having from 2 to 24 carbon atoms which is unsubstituted or further substituted by C₁-C₄alkoxy, halogen, phenyl or carboxy, and w is the number 0 or 1.

20 9. An amphiphilic block copolymer according to claim 1, wherein Q is a polyoxyalkylene, poly(vinylpyrrolidone), poly(hydroxyethylacrylate), poly(hydroxyethylmethacrylate), polyacrylamide, poly(N,N-dimethylacrylamide), polyacrylic acid, polymethacrylic acid, polyacyl alkylene imine or a copolymeric mixture of two or more of the above-mentioned polymers which

25 in each case comprises one or more ethylenically unsaturated bond and has a weight average molecular weight of, for example, ≥100.

10. An amphiphilic block copolymer according to claim 9, wherein Q is a hydrophilic segment of formula

wherein L' is a bivalent linking group of formula

wherein X₁ and X₂ are each independently of the other a group -O-, -S- or -NR₀-, R₀ is hydrogen or C₁-C₄-alkyl, and R₁₀ is linear or branched C₁-C₁₈-alkylene or unsubstituted or C₁-C₄-alkyl- or C₁-C₄-alkoxy-substituted C₆-C₁₀-arylene, C₇-C₁₈-aralkylene, C₆-C₁₀-arylene-C₁-C₂-alkylene-C₆-C₁₀-arylene, C₃-C₈-cycloalkylene, C₃-C₈-cycloalkylene-C₁-C₆-alkylene, C₃-C₈-cycloalkylene-C₁-C₂-alkylene-C₃-C₈-cycloalkylene or C₁-C₆-alkylene-C₃-C₈-cycloalkylene-C₁-C₆-alkylene,

Q₂ is a radical of formula

wherein (Alk) is linear or branched C₁-C₁₂-alkylene, X is -O- or -NH-, R₁₁ is an olefinically

20 unsaturated copolymerisable radical having from 2 to 24 carbon atoms which is unsubstituted or further substituted by C₁-C₄alkoxy, halogen, phenyl or carboxy, and w is the number 0 or 1,

Q₃ is C₃-C₁₂-alkenyl or a radical -(CH₂)₁₋₄-O-R₁₆ wherein R₁₆ is acryloyl, methacryloyl or a group -C(O)-NH-(CH₂)₂₋₄-O-C(O)-C(R₁₇)=CH₂ and R₁₇ is hydrogen or methyl,

Q₄ is a radical of formula

wherein X₃ is -O- or -NR, R is hydrogen or C₁-C₄-alkyl, X₄ is a group -C(O)-O-, -O-C(O)-NH- or -NH-C(O)-O-, (Alk') is C₁-C₈-alkylene, e is an integer of 0 or 1, and R₁₈ is C₁-C₁₂-alkylene, phenylene or C₇-C₁₂-phenylenealkylene,

one of the radicals R₆ and R₇ is hydrogen and the other is methyl,

(alk'') is C₁-C₆-alkylene, c is the number 0 or 1, and each of a and b independently of the other is a number from 0 to 100, the sum of (a+b) being from 2 to 100,

R₈ is hydrogen; C₁-C₁₂-alkyl unsubstituted or substituted by hydroxy or fluoro and/or

15 uninterrupted or interrupted by oxygen; C₅-C₈-cycloalkyl; phenyl; or benzyl;

R₉ is C₁-C₁₂-alkyl, benzyl, C₂-C₄-alkanoyl, benzoyl or phenyl, and

z is an integer from 2 to 150.

11. An amphiphilic block copolymer according to claim 2 of formula (1a), wherein

20 A is a polysiloxane segment of formula

wherein x and s_2 are each 0, and R_1 , R_1' , R_1'' , R_2 , R_2' , R_2'' , R_3 and R_4 are each independently of one another $\text{C}_1\text{-C}_4$ -alkyl, B is a polyoxyalkylene, poly(vinylpyrrolidone), poly(hydroxyethylacrylate), poly(hydroxyethylmethacrylate), polyacrylamide, poly(*N,N*-dimethylacrylamide), polyacrylic acid, polymethacrylic acid, polyacyl alkylene imine or a copolymeric mixture of two or more of the above-mentioned polymers,

L_1 is a linking group of formula

L_2 is a linking group of the above formula (4a), and L_3 is a linking group of the above formula (4c) or of the formula

wherein X_1 and X_2 are each independently of the other a group $-\text{O}-$, $-\text{S}-$ or $-\text{NR}_0-$, R_0 is hydrogen or $\text{C}_1\text{-C}_4$ -alkyl, and R_{10} is linear or branched $\text{C}_1\text{-C}_{18}$ -alkylene or unsubstituted or $\text{C}_1\text{-C}_4$ -alkyl- or $\text{C}_1\text{-C}_4$ -alkoxy-substituted $\text{C}_6\text{-C}_{10}$ -arylene, $\text{C}_7\text{-C}_{18}$ -aralkylene, $\text{C}_6\text{-C}_{10}$ -arylene- $\text{C}_1\text{-C}_2$ -alkylene- $\text{C}_6\text{-C}_{10}$ -arylene, $\text{C}_3\text{-C}_8$ -cycloalkylene, $\text{C}_3\text{-C}_8$ -cycloalkylene- $\text{C}_1\text{-C}_6$ -alkylene, $\text{C}_3\text{-C}_8$ -cycloalkylene- $\text{C}_1\text{-C}_2$ -alkylene- $\text{C}_3\text{-C}_8$ -cycloalkylene or $\text{C}_1\text{-C}_6$ -alkylene- $\text{C}_3\text{-C}_8$ -cycloalkylene- $\text{C}_1\text{-C}_6$ -alkylene,

Q is a radical Q_1 of formula

wherein (Alk) is linear or branched $\text{C}_1\text{-C}_{12}$ -alkylene, X is $-\text{O}-$ or $-\text{NH}-$, R_{11} is an olefinically unsaturated copolymerisable radical having from 2 to 24 carbon atoms which is unsubstituted or further substituted by $\text{C}_1\text{-C}_4$ alkoxy, halogen, phenyl or carboxy, and w is the number 0 or 1, or Q

is a polyoxyalkylene, poly(vinylpyrrolidone), poly(hydroxyethylacrylate), poly(hydroxyethylmethacrylate), polyacrylamide, poly(N,N-dimethylacrylamide), polyacrylic acid, polymethacrylic acid, polyacyl alkylene imine or a copolymeric mixture of two or more of the above-mentioned polymers which in each case comprises one or more ethylenically unsaturated bond and has a weight average molecular weight of, for example, ≥ 100 , and p_1 is an integer from 1 to 6, and q_1 is an integer from 1 to 8.

12. An amphiphilic block copolymer according to claim 3 of formula (1b), wherein A, B, L₁, L₂ and Q are as defined in claim 11, and p and q are each independently of the other an integer 2 to 15.

13. A process for the manufacture of a molding, which comprises crosslinking an amphiphilic block copolymer of formula (1) according to claim 1 in a mold.

14. A process according to claim 13 wherein the molding is an ophthalmic molding and wherein the block copolymer is photo-crosslinked in an ophthalmic mold using actinic radiation.

15. A molding obtained by the process according to claim 13.

16. A molding according to claim 15, which is an ophthalmic molding, intraocular lens, or artificial cornea.

17. A molding according to claim 15, which is a contact lens.