

1976

ENVIRONMENTAL MONITORING AND BASELINE DATA

Compiled under the SMITHSONIAN INSTITUTION ENVIRONMENTAL SCIENCES PROGRAM

Temperate Studies
Rhode River, Maryland

Edited by David L. Correll

QH 84.3 N714 1977 CBC

1976

ENVIRONMENTAL MONITORING AND BASELINE DATA

Compiled under the SMITHSONIAN INSTITUTION ENVIRONMENTAL SCIENCES PROGRAM

Temperate Studies
Rhode River, Maryland

Edited by David L. Correll

Table of Contents

			Pa	ge	
nt	roduction		1	-	2
	Figure 1,	Map of the Chesapeake Bay area	3	-	4
	Figure 2,	Map of Rhode River subwatersheds	5	-	6
	Table 1.	Land use analysis of the Rhode River basins monitored in 1975.	7	-	10
	Figure 3,	Map of the Rhode River with channel axes	11	-	12
	Figure 4,	Map of the Rhode River with estuarine model development stations	13	-	14
	Figure 5,	Map of the Severn River with estuarine model development stations	15	-	16
	Figure 6,	Map of the Choptank River with estuarine model development stations	17	-	18
	Figure 7,	Map of the Ponlar Island group	19	-	20
	Figure 8,	Map of watershed 109 (cornfield)	21	-	22
	Figure 9,	Map of watershed 110 (forest)	23	-	24
ui	de to the	contents of the computer data bank			
	Table 2.	Station description for estuarine stations.	25	-	31
	Table 3.	Cross comparison list of watershed and upland stations.	32	-	36
	Table 4.	Principal investigator list.	37	-	39
	Table 5.	Research funding source list.	40		
	Table 6.	Analytical techniques code list.	41	-	51
	Table 7.	Parameters measured in estuarine work.	52	-	97
	Table 8.	Parameters measured on subwatershed runoff waters.	98	-	119
	Table 9.	Parameters measured in upland ecology work.	120	_	142

		Page					
Data report for parameters not scheduled to be incorporated into the computer data bank							
Plankton Primary Production and Phosphorus Uptake 143							
Tidal Marsh Community Met	abolism	144					
Corn Plant Height and Lea	f Area Indexes	145					
	leaf area index of corn plants ed 109 in 1976.	146					
Biomass and Nutrient Remo	val of Corn on Watershed 109	147					
(grams/m ²)	nopulations and nutrient mass withdrawal by corn plants of 109 in 1976.	148 - 151					
	phorus concentrations in corn g dry wt) on watershed 109.	152 - 154					
	dahl nitrogen concentrations in parts (mg/g dry wt) on water-	155 - 157					
nutrient c	eight (g/plant) and total ontent (g/plant) for various s on watershed 109.	158 - 162					
	to fresh plant weight ratios lant parts for watershed 109.	163 - 165					
Weed Population and Leaf	Data	166					
	of weeds found in cultivated watershed 109 in 1976.	167					
Table 17. !leed data	for watershed 109 in fall of 1976	168 - 173					
Corn Plant Heights and So	il Coverage on Watershed 109	174					
	t and total plant soil coverage hed 109 during the growing 76).	175					
	ip of corn plant height to plant age for watershed 109.	176					

			Page	
	Figure 12,	Relationship between corn plant height and leaf area index on watershed 109 (1976).	177	
Sun	light - Inc	ident Total White Light Intensities	178	
	Table 18.	Average hourly langleys (g-cal/cm 2 -min).	179 - 2	214
	Figure 13,	Sunlight	215	
Weat	ther Station	n Data	216	
	Table 19.	Weather station data (relative humidity, air temperature, and barometric pressure).	217 - 2	238
	Figure 14,	Relative humidity	239	
	Figure 15,	Air temperature	240	
	Figure 16,	Barometric pressure	241	
	Table 20.	Weather station data (evaporation).	242 - 2	244
	Figure 17,	Evaporation	245	
	Table 21.	Weather station data (rainfall (cm)).	246 - 2	262
	Table 22.	Daily rainfall for field-sized watershed 109.	263	
	l Speed and ce Light Int	Direction, Sunlight - Incident Total tensities	264	
Wate	er Ouality M	Monitoring Data at CBCES Dock	265	
	Table 23.	Water quality monitoring data at CBCES dock (temperature, pH, dissolved oxygen, turbidity, salinity, and tide height).	266 - 2	279

INTRODUCTION

The formation of the Chesapeake Bay Center for Environmental Studies was initiated in 1964 and land acquisition as well as facilities development is still going on. At present the center has approximately 2,600 acres of land (approximately 4 square miles) and controls the water frontage and near water portions of a large part of the Rhode River watershed. The Rhode River is a small subestuary of the Chesapeake Bay (approximately 0.1 percent of the open water area of the bay, see map number 1). It is large enough to have the complexities and many of the properties typical of larger subestuaries of the bay, but small enough to be studied in depth. The Rhode River has an open water area of approximately 2 square miles and a watershed of approximately 13 square miles.

The goals of the Rhode River Program are (1) to establish an understanding of the operation of this ecosystem with special emphasis upon the interaction of the watershed and the estuary and (2) to monitor long-term changes in the ecosystem and relate them to the activities of man as well as to other variations in environmental conditions.

The watershed of the Rhode River is actually composed of about twelve subwatersheds, each of which contains a different pattern of land use. Of these subwatersheds a number have a topography which lends itself to monitoring the composition and volume of the runoff water. These runoff waters have a fundamental impact upon the corresponding portions of the Rhode River estuary. Map number 2 outlines the boundaries of the subwatersheds and Table 1 details the area and land use composition of the subwatersheds monitored in 1975.

Another major interaction of the Rhode River ecosystem is the exchange of water masses with the open bay. This maintains the salinity gradient and determines many of the properties of the estuary. Map number 3 illustrates the aquatic system with channel axes and axial distances marked. Map number 4 illustrates the estuarine sampling stations and transects in the Rhode River. These are the stations used for integrated data collection for the development of estuarine models.

In 1976 research projects were initiated in the Severn and Choptank Rivers. Maps show the stations used in these studies. The major goal of this work was to compare submerged vascular plant data and environmental data at these sites with Rhode River data.

In 1966 the Smithsonian Institution was given the first of a group of Islands in Chesapeake Bay called the Poplar Island Group (map 7). Some research has been conducted there over the intervening years and will be included in this report.

This report is primarily a guide to the research data collected during 1976. In the interests of practicality, all data which is currently scheduled to be included in the Center's computer data bank on magnetic tape will only be described sufficiently for interested parties to identify what is in the bank, whether it would be of interest to retrieve it, and how to in fact retrieve it. Other categories of data will be handled as in previous yearly reports.

Figure 1. Map of the Chesapeake Bay area. An arrow points to the location of the Rhode River subestuary. The Poplar Islands are enclosed in a circle.

Figure 2. Map of the watershed of the Rhode River subestuary of Chesapeake Bay. Subwatershed boundaries are delineated with dashed lines. Stream-gauging notch weirs, with automated discharge rate-recording and volume-integrated water sampling instrumentation are now operating at locations 101, 102, 103, 105, 106, 107, 108, 109, and 110. Tidal flux stations with recording current meter and tide gauge interfaced with volume-integrated water samplers for incoming and for outgoing tidal waters are now operating at stations 121 and 122. The Rhode River grid is shown on the margins.

TABLE 1. LAND USE ANALYSIS OF RHODE RIVER ESTUARY WATERSHEDS UNDER STUDY.

Hectares in each land use category 1

Basin	Row Crops	Hay Fields	Upland wet areas	Tidal marshes	Forest
101 (North Branch of Muddy Creek)	21.6 (9.6)	0.72 (0.3)	2.40 (1.1)	0.00	85.3
102 (Blue Jay Branch of Muddy Creek)	34.8 (18.1) 6.68 (3.5)	0.97 (0.5)	0.00	90.6
103 (William- son Branch of Muddy Creek)	5.09 (2.0)	10.4 (4.1)	0.68 (0.3)	0.00	159
105 (North Branch of Sellman Creek)	4.91 (13.1	1.52 (4.1)	0.00	0.00	11.7
106 (South Branch of Sellman Creek)	12.1 (12.7) 14.7 (15.4)	0.00	0.00	42.8
107 (Fox Creek)	2.45 (13.5) 0.00	0.19 (0.67)	0.00	16.8
108 (Stein- lein Branch of Muddy Creek)	35.2 (23.5) 14.2 (9.5)	1.36 (0.91)	0.00	58.4
109 (Gorn Field)	10.4 (63.8) 0.00	0.00	0.00	4.26
110 (Forest)	0.00	0.00	0.00	0.00	5.71
111 (Pasture) ³	0.00	0.00	0.00	0.00	1.65
121 (Main Branch of Muddy Creek Flux Sec- tion)	260 (21.2) **	59.0 (4.8)	0.00	549

TABLE 1. LAND USE ANALYSIS OF RHODE RIVER ESTUARY WATERSHEDS UNDER STUDY

Hectares in each land use category 1

	Old Fields	Pasture	Feed Lots ⁷	Residential and others	Total area
(37.7)	41.6 (18.4)	60.7 (26.9)	0.000	13.6 (6.0)	226
(47.2)	13.0 (6.8)	34.8 (18.1)	0.036	10.8 (5.6)	192
(62.8)	35.6 (14.1)	31.4 (12.4)	0.062	11.6 (4.6)	253
(31.2)	18.4(49.1)	0.80 (2.1)	0.000	0.16(0.4)	37.5
(44.9)	4.77(5.0)	19.6 (20.7)	0.100	1.22(1.3)	95.3
(59.6)	4.67(16.6)	2.54(9.0)	0.000	1.56(5.5)	28.2
(38.9)	20.2 (13.5)	16.2 (10.8)	0.028	4.82(3.2)	150
(26.1)	1.37(8.4)	0.00	0.000	0.26(1.6)	16.3 ²
(90.6)	0.53(8.4)	0.00	0.000	0.054(0.9)	6.3
(27.3)	0.00	4.41 (72.7)	0.000	0.00	6.06
(44.7)	157 (12.8)	109 (8.8)	**	94.8 (7.7)	1229.0

TABLE 1. LAND USE ANALYSIS OF RHODE RIVER ESTUARY WATERSHEDS UNDER STUDY.

Hectares in each land use category

Basin	Row	Crops	Нау	Fields	Ug	oland we areas		Tidal marshes	Forest
122 (Fox Point Flux Section) ⁴	22.1	(7.4)	**		0.70	(0.2)	46.	9 (15.7)	203
123 (Bearneck Creek Flux Section)	21.5	(6.6)	**			(0.00)	(8.	9)(2.7)	129
124 (Cadle Creek Flux Section)	2.6	(2.1)	**		0.5	(0.4)	0.	8 (0.7)	19.0
Total Area	422	(14.2)	48.2	(1.6)	65.8	(2.2)	56.	6 (1.9)	1370

Footnotes:

- 1. Land use in 1976 for basins 101-111, and in 1972 for basins 121-124. The numbers in parentheses are percentages.
- 2. This basin is part of basin 108.
- 3. This basin is part of basin 101.
- 4. Also includes basin 101, 102, 103, 108, 110, 121, and 26 ha of mud flats and tidal creek.
- 5. Also includes 60.7 ha of tidal creek open waters.
- 6. Also includes 19.9 ha of tidal creek of open waters.
- 7. Feed lot area was arbitrarily determined to be 0.001 ha per hog.
- ** This category was not separated from the others.

TABLE 1. LAND USE ANALYSIS OF RHODE RIVER ESTUARY WATERSHEDS UNDER STUDY

Hectares in each land use category 1

	Old Fields	Pasture		dential Total thers area
(67.9)	15.3(5.1)	0.5 (0.2)	** 10.5	(3.5) 299.4
(39.5)	40.3(12.3)	8.4 (2.6)	** 118	(36.2) 327.5
(15.7)	15.3(12.6)	19.1 (15.8)	** 63.9	(52.8) 121.6
(46.2)	367(12.4)	303 (10.2)	0.226(0.0) 331	(11.2) 2964 (89%)

Figure 3. Map of the Rhode River subestuary of Chesapeake Bay. The names of the various arms of Rhode River are given. Channel axes are drawn in with axial distances in kilometers from the mouths upstream. Rooted, submerged aquatic plant sampling stations are designated.

Figure 3. Rhode River estuary map.

Figure 4. Map of the Rhode River subestuary of Chesapeake Bay. Transect stations are designated by a terminal T. In general, parameters were measured as vertical profiles or vertically integrated samples at point stations and as horizontally integrated samples or horizontal profiles at transect stations.

Figure 4. Map of the Rhode River subestuary of Chesapeake Bay.

Figure 5. Severn River sampling stations.

MILES

76° 30'

KILOMETERS

Figure 6. Choptank River sampling stations.

Figure 7. Map of the Poplar Island group with approximate boundaries at various times in the past designated. In 1976 only Coaches Island was not owned by the Smithsonian Institution. For the location of the island group in Chesapeake Bay see Figure 1. Rooted, submerged aquatic plant sampling stations are designated.

Figure 7. Poplar Island map.

POPLAR ISLAND GROUP

Figure 8. Watershed 109 map. This small watershed is a subwatershed of watershed 108 in Figure 2 and is also known as Intensive Study Site No. 14.

Figure 8. Watershed 109 map, a field-sized cropland (corn) watershed.

Figure 9. Watershed 110 map. This small watershed is also known as Intensive Study Site No. 2.

Figure 9. Watershed 110 map, a field-sized forest watershed.

Table 2. Station Description for Estuarine Stations.

Description	North fork of Muddy Creek.	Main branch of Muddy Creek above fork.	Halfway between C8 and the first fork of Muddy Creek.	Downstream end of Muddy Creek channel.	Between Fox Point and northern end of Corn Island.	In channel west of northern end of Big Island.	Transect from RR4 to northeast of Corn Island.	Channel near RR7 channel marker.	Transect from RR3 to RR4.	Center of mouth of Rhode River (line from Dutchman's Point to Cheston Point).	Transect from RR2 to RR3.
Rhode River grid location	5578 - 3723	5500 - 3506	6084 - 3409	6217 - 2868	6976 - 3313	7169 - 3373 7265 - 3687 7470 - 3976	*	7711 - 3928 8952 - 3482	*	9193 - 2675 9518 - 1578	*
Axial designation (Km)	RR 6.8 N	RR 6.95	RR 6.15	RR 5.40	RR 4.50	RR 4.3 RR 4.0 RR 3.65	RR 3.65 - 4.3	RR 3.3 RR 2.1	RR 1.8 - 3.65	RR 1.0 RR 0.0	RR 0.0 -
Computer station code	00035	00034	00033	00032	00031	030.4 030.2 00030	00042	029.4 00029	00041	028.4 00028	00040
Station name	52	90	C7	83	60	RR4C RR4B RR4A	RR4T	RR3B RR3A	RR3T	RR2B RR2 A	RR2T

* See individual stations.

Table 2. (Continued)

Description	In West River off Cheston Point.	Center of mouth of West River (line from Dutchman's Point to Curtis Point).	Transect from WRR1 to WRL1.	WR2 channel marker.	Sellman Creek.	In Cadle Creek channel.	Transect from CC Km 0 to CC Km 1.0.	In Bear Neck Creek channel.	Transect from BN Km O to BN Km 1.6.	In Whitemarsh Creek channel.	Transect from WM Km 0 to WM Km 0.9.
Rhode River grid location	9843 - 0976	10373 - 1217	*	11265 - 1458	7470 - 5072	9398 - 3156 9590 - 3626 9494 - 4012	*	8651 - 4036 8337 - 4687 8265 - 5265	*	8385 - 4880 8795 - 4892 8988 - 4892	*
Axial designation (Km)	WR 0.6	RR -1.17 (WR 0.0)	WR 0.0 1.2	WR -1.0	1.3	00 0.0 0.0 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0	- 0.0 0.0	BN 0.0 BN 0.8 BN 1.3	BN 0.0 - 1.6	MM 0.0 WM 0.45 WM 0.7	- 0.0 WW 0.0
Computer station code	022.4	00022	00026	00021	98000	038.8 00039 039.2	00045	036.6 036.8 00037	00043	037.8 00038 038.2	00044
Station name	WRTB	WRIA	WRIT	WRO	SEL	CCA CCB CCC	CCT	BNA BNB BNC	BNT	WMA	MMT

Table 2. (Continued)

Description	Mouth of the Rhode River off Cheston Point.	In Canning House Bay, south of channel marker RR 4.	In shallows south of channel marker RR 7.	In shallows off Fox Cove.	Center of sediment trap area at mouth of Muddy Creek.	Transect	Transect	Transect
Rhode River grid location	9100 - 1400	8600 - 2500	8750 - 3400	6700 - 3600	6450 - 2950	*	*	*
Axial designation (Km)	RR 0.0	RR 1.0	RR 2.1	RR 4.0	RR 5.1	NA	NA	NA
Computer station code	00028**	028.4**	00029**	030.2**	031.5**	00040	00041	00042
Station name						RR2T	RR3T	RR4T

* See individual stations.
** These stations are not in the channel, but in the shallows.

Table 2. (Continued)

Description	In shallows just north of channel marker 9.	In shallows on upstream shore of Todd Point,	In shallows on upstream shore of Horn Point.	On south shore at concrete bulkhead just downstream from channel marker 27.	On southeastern shoreline opposite Warwick Creek.	On eastern shoreline opposite channel marker 41 (at mouth of Hunting Creek).	On southeastern shore opposite channel marker 58 (on upstream side of a narrow point).	On the western shore opposite channel marker 79 (just downstream from Denton).	Transect	Transect
Latitude N/ Longitude W	38 ^o 39¹ 0" 76º 20¹ 0"	380 37' 42" 76 ⁰ 13' 45"	38 ⁰ 36 12" 76 ⁰ 8 21"	380 34' 6" 760 3' 24"	38 ⁰ 36' 33" 75 ⁰ 58' 30"	380 40' 27" 75 ⁰ 56' 42"	38 ⁰ 46' 42" 75 ⁰ 57' 48"	38 ⁰ 52' 57" 75 ⁰ 50' 24"	÷	*
Axial designation (Km)	CR 0.6	CR 10.2	CR 20.8	CR 30.8	CR 39.6	CR 48.4	CR 67.9	CR 88.3	NA	NA
Computer station code	00071	00072	00073	00074	00075	92000	00077	00078	T1700	0072T
Station	71	72	73	74	75	76	77	78	7117	727

Table 2. (Continued)

Description	Transect	Transect	Transect	Transect	Transect
Latitude N/ Longitude W	*	*	*	*	*
Axial designation (Km)	NA	NA	NA	NA	NA
Computer station code	00737	0074T	0075T	0076T	T7700
Station name	73T	747	757	767	777

* See individual stations.

Table 2. (Continued)

Description	Midway between Jefferson Island and northern Poplar Island in 3-4 feet of water.	On inner (eastern) side of south end of Poplar Island.	Near dock of northeastern side of Coaches Island.	On eastern shore of southeastern corner of Coaches Island.	Transect	Transect	Transect
Latitude N/ Longitude W	38 ⁰ 46' 12" 76 ⁰ 22' 30"	38 ⁰ 45' 33" 76 ⁰ 22' 42"	38 ⁰ 45' 18" 76 ⁰ 21' 57"	38 ⁰ 45' 0" 76 ⁰ 21' 45"	*	*	*
Axial designation (Km)	NA	NA	NA	NA	NA	NA	NA
Computer station code	00081	00082	00083	00084	T1800	0082T	0083T
Station name	81	82	83	84	811	82T	83T

* See individual stations.

Table 2. (Continued)

Description	In shallows south of warning marker at Horn Point.	On north shore just upstream from highway 50 bridge.	In shallows on south shore at Brewer Point.	In shallows on southwest shore of Round Bay, just west of small marsh point.	On the western shore of Cedar Point.	At upper extent of 5-foot channel near a small island.	Transect	Transect	Transect	Transect	Transect
Latitude N/ Longitude W	38 ⁰ 58' 18" 76 ⁰ 28' 18"	390 0' 30" 760 30' 15"	390 1' 45" 760 32' 6"	390 2' 6" 760 34' 0"	390, 4' 0" 760 33' 51"	39 ⁰ 4' 48" 76 ⁰ 36' 24"	*	*	*	*	*
Axial designation (Km)	SeR 1.9	SeR 7.3	SeR 10.9	SeR 13.2	SeR 16.0	SeR 20.2	NA	NA	NA	NA	NA
Computer station code	16000	00092	00093	00094	56000	96000	T1600	0092T	0093T	0094T	15600
Station name	91	. 92	93	94	95	96	91T	92T	93T	94T	95T

* See individual stations.

Cross Comparison List of Watershed and Upland Stations. Table 3.

Description	900' northeast of junction of North and Main forks of Muddy Creek.	Three tributaries join to form the fork of Muddy Creek. This weir is on the northern-most tributary.	Middle tributary of north fork of Muddy Creek at intersection with old Muddy Creek Road.	Southernmost tributary of the north fork of Muddy Creek at the intersection with new Muddy Creek Road.	Main branch of Muddy Creek at intersection with new Muddy Creek Road (upstream of first large culvert south of Mill Swamp Road).	On northern tributary of Sellman Creek.	The main (and southernmost) branch of Sellman Creek.	500' from mouth of the small stream feeding Fox Cove.	1,000' upstream of the mouth of Steinlein Creek.
Rhode River grid location	5768 - 3793	5732 - 4317	5134 - 4098	4744 - 4268	5049 - 3159	7061 - 5878	6927 - 5829	6610 - 3780	5951 - 2366
Computer station code	66000	10100	00102	00103	00004	00105	00106	00107	00108
Station name	Spring house	Weir 101 (North Branch)	Weir 102 (Blue Jay Branch)	Weir 103 (Williamson Branch)	C4	Sellman Creek North Branch Weir	Sellman Creek South Branch Weir	Fox Creek Weir	Steinlein Creek Weir

Table 3. (Continued)

Rhode River grid location Description	6098 - 1988 Near the lower end of field-sized watershed composed of four corn fields. A branch of Steinlein Creek.	6025 - 3615 Field-sized watershed composed of only forest. Drains directly into Muddy Creek estuary. Northern portion of intensive study site number 2.	6040 - 4723 Field-sized watershed composed only of pasture. A subwatershed of the north branch of Muddy Creek.	5195 - 3207 On the main (southern) fork of Muddy Creek just downstream of the last tributary about 600' downstream from Muddy Creek Road.	6927 - 3317 Mouth of the sediment trap of Muddy Creek between Fox Point and northern end of Corn Island.	8671 - 4293 Mouth of Bear Neck Creek.	9439 - 3171 Mouth of Cadle Creek.
Computer Rhode station gri	8609 60100	00110 6025 -	00111 6040 -	00121 5195 -	00122 6927 -	00123 8671 -	00124 9439 -
Station name	Corn field Watershed Weir	Forest Area Weir	Pasture Watershed Weir	Main Branch of Muddy Creek Flux Section	Fox Point Flux Section	Bear Neck Creek Flux Section	Cadle Creek Flux

Table 3. (Continued)

Description	Hog Island. Mature forest with only minimal disturbance historically (selective logging).	North branch of tidal Muddy Creek. Mature forest with only minimal disturbance historically.	Undisturbed for approximately 130 years, previously site of slave quarters and presettlement Indian village.	Mature forest prior to approximately 1830 - 1840, was intensively cultivated for many years.	Young forest on lands used for cultivated crops prior to about 1940 - 1945.	Young forest on lands used for cultivated crops prior to about 1940 - 1945.	Young forest on lands used for mule pasture prior to about 1940.
Rhode River grid location	6200 - 3000	6100 - 3500	9800 - 3800	5200 - 4300	6400 - 3400	6600 - 4000	5900 - 4000
Computer station code	00001	00000	00003	40000	00002	90000	00000
Pre 1975 station name	Forest ecology site #1	Forest ecology site #2	Forest ecology site #3	Forest ecology site #4	Forest ecology site #5	Forest ecology site #6	Forest ecology site #7
Present station name	Intensive study site l	Intensive study site 2	Intensive study site 3	Intensive study site 4	Intensive study site 5	Intensive study site 6	Intensive study site 7

Table 3. (Continued)

Description	Phalaris grass meadow used for pasture prior to about 1940.	Old field, abandoned on or about 1972.	Lawns located around buildings, in duck yard, and along entrance road.	Old field, abandoned on or about 1968.	Mature forest on outer end of Fox Point. A residence was located there until recent times.	Field-sized watershed composed of four corn fields. A subwatershed of the Steinlein Creek basin.	Field-sized watershed composed only of cow pasture. A subwatershed of the North Branch of Muddy Creek basin.	High marsh between Fox Point and dock.	High marsh between Hog Island and Fox Point.
Rhode River grid location	5900 - 4400	6800 - 6300	6050 - 4150	5800 - 2500	6900 - 3450	6400 - 1900	6100 - 4700	6500 - 3500	6200 - 3200
Computer station code	80000	60000	000010	00011	00012	00014	00015	00016	00017
Pre 1975 station name	Forest ecology site #8	Steven's farm field	CBCES lawns	Steinlein's farm field	Fox Point forest	NA	Kirkpatrick- howat's pasture	Fox Cove marsh	Hog Island marsh
Present station name	Intensive study site 8	Intensive study site 9	Intensive study site 10	Intensive study site ll	Intensive study site 12	Intensive study site 14	Intensive study site 15	Intensive study site 16	Intensive study site 17

Table 3. (Continued)

Description	High marsh on point east of Corn Island.	Low marsh on south shore near channel at mouth of Muddy Creek.	High marsh southwest of Corn Island.	Freshwater swamp on North Branch of Muddy Creek just upstream of old entrance road.	Freshwater swamp on Steinlein Creek upstream of weir.	Pine forest on water tower hill west of Center.	Pine forest east of Fox Point road.
locusi i	High marsh Island.	Low marsh at mouth o	High mars	Freshwater swa Muddy Creek ju entrance road.	Freshwater swamp upstream of weir	Pine forest on west of Center.	Pine fore
Rhode River grid location	7300 - 3100	6100 - 2800	6800 - 2800	5700 - 4200	5900 - 2200	5900 - 4200	6400 - 3600
Computer station code	00018	00019	00050	00021	00022	00023	00024
Pre 1975 station name	Nixon's Nose	Track site	Kirkpatrick marsh	North Branch Swamp	NA	NA	NA
Present station name	Intensive study site 18	Intensive study site 19	Intensive study site 20.	Intensive study site 21	Intensive study site 22	Intensive study site 23	Intensive study site 24

Table 4. Principal Investigator Code List

Investigator	Affiliation	Code
Dr. Rita Colwell	Department of Microbiology University of Maryland College Park, Maryland 20742	001
Mr. Gary R. Chirlin	Chesapeake Bay Center for Environmental Studies*	027
Dr. David L. Correll	Chesapeake Bay Center for Environmental Studies*	002
Mr. Robert Cory	Oceanographer U.S. Geological Survey Chesapeake Bay Center for Environmental Studies*	003
Dr. Bert G. Drake	Radiation Biology Laboratory Smithsonian Institution 12441 Parklawn Drive Rockville, Maryland 20852	004
Dr. John H. Falk	Chesapeake Bay Center for Environmental Studies*	005
Dr. Maria A. Faust	Chesapeake Bay Center for Environmental Studies*	006
Mr. Gary M. Fellers	Department of Zoology University of Maryland College Park, Maryland 20742	028
Dr. W. Ronald Heyer	Department of Vertebrate Zoology Museum of Natural History Smithsonian Institution Washington, D.C. 20560	007
Ms. Amy Hiatt	Chesapeake Bay Center for Environmental Studies*	030
Mr. Daniel Higman	Chesapeake Bay Center for Environmental Studies*	800
Dr. James F. Lynch	Chesapeake Bay Center for Environmental Studies*	009

Table 4. (Continued)

Investigator	<u>Affiliation</u>	Code
Ms. Irene Magyar	Department of Zoology University of Maryland College Park, Maryland 20742	010
Mr. Albert D. Maizels	Suite 304, Columbia Medical Bldg. 1835 Eye Street, N.W. Washington, D.C. 20006	011
Ms. Patricia Melhop	Chesapeake Bay Center for Environmental Studies*	012
Dr. Eugene S. Morton	National Zoological Park Smithsonian Institution Washington, D.C. 20009	029
Dr. Jack W. Pierce	Sedimentology Department Museum of Natural History Smithsonian Institution Washington, D.C. 20560	013
Dr. Edward J. Pluhowski	U.S. Geological Survey Northeastern Region National Center, Mail Stap #43 Reston, Virginia 22092	014
Mr. Jan Reese	Box 298 St. Michaels, Maryland 21663	015
Dr. Raymond T. Rye	Department of Paleobiology Museum of Natural History Smithsonian Institution Washington, D.C. 20560	017
Dr. Howard H. Seliger	Department of Biology Johns Hopkins University 34th and North Charles Street Baltimore, Maryland 21218	018
Dr. William J. L. Sladen	School of Hygiene and Public Health Johns Hopkins University 615 N. Wolfe Street Baltimore, Maryland 21205	019

Table 4. (Continued)

Investigator	Affiliation	Code
Ms. Patricia A. Straat	Biospherics Inc. 4928 Wyaconda Road Rockville, Maryland 20852	030
Dr. J. Kevin Sullivan	Chesapeake Bay Center for Environmental Studies*	021
Dr. Theodore W. Suman	Anne Arundel Community College Arnold, Maryland	022
Ms. Marilyn Taub	Department of Zoology University of Maryland College Park, Maryland 20742	023
Mr. John P. Tregoe	1520 Langeford Road Baltimore, Maryland 21207	031
Dr. Dennis Whigham	Chesapeake Bay Center for Environmental Studies*	032
Dr. Tung-Lin Wu	Chesapeake Bay Center for Environmental Studies*	026

^{*} Chesapeake Bay Center for Environmental Studies Smithsonian Institution Route 4, Box 622 Edgewater, Maryland 21037

Table 5. Research Funding Codes.

Source	Code
Chesapeake Bay Center direct federal funding	001
Smithsonian Institution Environmental Sciences Program	002
Smithsonian Research Foundation	003
Smithsonian Fluid Research Fund	004
National Science Foundation	005
Environmental Protection Agency	006

Table 6. Analytical Techniques Code List

Parameter and Units	Technique	Code
Flow rate (liters/sec.)	Monitor depth in stilling well of water backed up by sharp- crested V-notch weir (Correll, Pierce and Faust, 1975).	031
Flow rate (liters/sec.)	Monitor tidal current velocity with electromagnetic current meters. Correct for cross-sectional areas with tide gauge-operated cam and potentiometer.	032
Total flow (liters)	Flow rate integrated over time.	033
Water temperature (degrees C)	Mercury thermometer	034
Water temperature (degrees C)	Thermistor	035
рН	Indicator dyes and color comparator	036
рН	Hydrogen electrode	037
Turbidity (Jackson units)	Scattering of columnated white light with Hach turbidimeter.	038
Turbidity (meters)	Secci disc	039
Turbidity (% transmission)	Transmission of white light.	040
Turbidity (% transmission)	Transmission of green light.	041
Light penetration (absorbance)	Measurement of vertical absorbance of incident sunlight in water column.	042
Total and mineral suspended particulates (mg/liter)	Gravimetric on millipore HA filters before and after firing organics (Correll, Pierce and Faust, 1975).	043

Table 6. (Continued)

Parameter and Units	Technique	Code
Total N (µg N/liter)	Sum of organic plus ammonia N (by Kjeldahl) and nitrate plus nitrite N by reduction to nitrite and colorimetry (Correll, Pierce and Faust, 1975).	044
Organic N (including NH3 (μα N/liter)	Kjeldahl distillation and nesslerization after digestion with H ₂ SO ₄ .	045
Ammonia N (µg N/liter)	Oxidation to nitrite and colorimetry.	046
Nitrite + Nitrate N (µg N/liter)	Reduction to nitrite and colorimetry.	047
Nitrite N (µg N/liter)	Colorimetry (by reaction with a diazo dye).	048
Total P (μg P/liter)	Digestion with perchloric acid and colorimetry (ammonium molybdate and stannous chloride reduction.	049
Dissolved total P (µg P/liter)	Total P on millipore HA filtrate.	050
Inorganic P (µg P/liter)	Colorimetry on whole water with no digestion.	
Dissolved inorganic P (µg P/liter)	Colorimetry on millipore HA filtrate with no digestion.	
Total organic matter (g cal./liter)	Wet digestion with chromic acid and titration.	051
Cations (Ni, Cu, Zn, Pb, Cr, Cd, Mn, Fe, K, Ca, Mg)	500 ml sample plus 5 ml concentrate. HNO ₃ concentrated to 10 ml by boiling. Assaved by atomic absorption with internal standards.	052
Total and fecal coliform bacteria (MPN/100 ml)	As described in Standard Methods (1971).	053

Table 6. (Continued)

Parameter and Units	Technique	Code
Total and fecal streptococci (#/100 ml)	As described in Standard Methods (1971) and by Millipore Corp. membrane filter technique.	054
Salmonella (#/100 m1)	As described in Standard Methods (1971) and confirmation including serotyping.	055
Total viable heterotrophs (#/ml)	Standard plate counts.	056
Salinity and conductivity (0/00 mmhos)	Normally determined with an induction type salinometer. Sometimes by titration of halogen ions.	057
Organic carbon (mg C/liter)	Combustion at $550^{\rm O}$ for 10' purification and weighing of released ${\rm CO}_2$.	058
Dissolved oxygen (mg/liter)	Clark-type oxygen electrode or by modified Winkler titration.	059
Chlorophyll a (µg/liter)	Fluorometric assay of 90% acetone extracts by three filter methods before and after acidification (Loftus and Carpenter, 1971).	060
Adult and nauplii copepods, rotifers, polychaetes, other macrozooplankton, tintinnids, other microzooplankton	Identified and counted under the microscope with aid of a Sedwick-rafter cell. Fixed in field with Bouin's fixative.	061
Leaf litter parameters	Collected in 1 m ² boxes, sorted to species, dried 24 hours at 60°, weighed and area measured with a CdS diode leaf area meter.	062

Table 6. (Continued)

Parameter and Units	Technique	Code
Small mammal populations	Animals are trapped with a grid of 100 Sherman live traps at each site, left permanently in place. Mammals are trapped for three nights per month at each site. Animals are identified, permanently marked for future recognition, weighed, sexed, and their reproductive condition noted. Minimal population densities are estimated from the ratio of trapped animals which previously have been captured and marked: number of unmarked animals.	063
Ant populations	Sweep sampling, litter sampling, baiting, soil coring and general collecting of ants; observation of behavior; monitoring of temperature and humidity in air and soil; mapping of colony location, cover objects, vegetation. Study sites to be marked with painted sections of conduits and small plastic surveyor's flags. Humidity sensors and thermistor probes to be implanted in soil on a long-term basis; possibility of multiplex data recorder to be operated at one or more sites on a long-term basis.	064
Understory arthropods	Monthly sweep samples of understory arthropods; arthropods later sorted to species, measured, and assigned to trophic grouping. Foliage density measured seasonally.	065
Leaf litter arthropods	Sampling. Leaf litter is removed from within a 1/10 sq. meter sampling frame from each of 10 subsite sampling stations at each site (total of 1 sq. meter of leaf litter per site per month). The litter is collected in plastic bags. The subsite sampling stations for each of the three major sites are determined from a computer generated table of random numbers.	066

Table 6. (Continued)

Parameters and Units	Technique	Code
Leaf litter arthropods	The organisms are extracted from the leaf litter into alcohol through the use of Berlese funnels. Leaf litter from each subsample site is placed into one funnel (a total of 10 funnels for each of the three sites). Incandescent light bulbs (40 - 60 watts) are used for drying the leaf litter. The alcohol jars containing the arthropods are removed from the funnels at the end of a three week period.	066
	The arthropods are sorted and studied under a stereo dissecting microscope. This part of the project is done at Anne Arundel Community College.	
Lawn project	A combination of lawn clipping collection, sweep sampling, soil coring, and vacuum sampling are used. Invertebrates are sorted by species.	067
Squirrel populations	Intensive live trapping at each site was conducted following prebaiting unset traps for a week. Trapped animals were ear tagged and tail clipped for field siting. (Flyger, 1959).	068
Soil temperature and moisture	At each soil sampling station moisture and temperature probes were buried at depths of 5, 15, 30, and 75 cm with electrical leads connected to sockets in a junction box aboveground for manual readings. Delmhorst gypsum block moisture sensors and a Delmhorst, Model KS-1, moisture testor are used. The ranges of the testor have been modified to allow zeroing against 0, 100, or 10,000 ohms resistance. In situ calibration curves for each probe were constructed by gravimetric moisture determinations from soil cores at the appropriate depths under various	069

Table 6. (Continued)

Parameters and Units	<u>Technique</u>	· <u>Code</u>
Soil temperature and moisture	moisture conditions. Temperature was measured with Fenwal precision unicurve thermistors, coated with epoxy cement and resistance was read with a battery powered Fluke digital multimeter. During intensive study periods reading of probes are made daily. At other times they are read approximately weekly.	069
Soil pH	pH was measured with a hydrogen electrode system after suspension of an aliquot of soil core in one ml of distilled water per g of soil and centrifugation	070
Phosphorus, available ortho- phosphate, total orthophosphate acid labile, and total phosphorus in soils	Total phosphorus, acid labile, and orthophosphate were determined as described by Correll and Miklas (1975). Total phosphorus was determined on whole soil only. Orthophosphate was determined on whole soil, a l M K Cl extract, and on a distilled water extract. The extraction procedure is to extract one g of soil with 15 ml distilled water, then with 10 ml distilled water, removing soil from extraction liquid by centrifugation. The extracted soil is then reextracted in the same manner but with 1 M K Cl.	071
Total ammonia and nitrate in soils, exchangeable ammonia and nitrate in soils, and	Total Kjeldahl nitrogen is determined by digestion with sulfuric acid and hydrogen peroxide, distillation and Nesslerization (Martin, 1972).	072
organic nitrogen	Total ammonia is determined by Kjeldahl distillation from undigested but alkaline samples plus Nesslerization.	
	Water soluble ammonia is determined as above but on distilled water extracts of soil.	

Table 6. (Continued)

Parameters and Units Technique Code 072 Total ammonia and Exchangeable ammonia is nitrate in soils. determined on 1 M K Cl extracts of previously water exchangeable ammonia and nitrate extracted soils. in soils, and Nitrate is determined by the organic nitrogen modified Conway microdiffusion method (Stanford, et al (1973)). Corn and weed pop-Corn plant heights and total 073 ulations, soil plant soil coverage are measured in the cornfield watershed at coverage, and plant nutrient approximately 10 day intervals during the growth season. Heights were measured at five stations on randomly selected plants. Soil coverage was measured by taking vertical color pictures from an elevation of 6 meters. Percent leaf coverage was estimated by projecting the color slides onto a grid with randomly selected intercepts premarked. The percentage of intercepts which fell on plants was then used to calculate soil coverage (pointintercept method). At approximatley 20 day intervals during the growing season and at harvest time corn plants were excavated at five stations. They were separated into roots, stems, leaves, flowers, corn kernels, and corn cobs for dry weight determinations, total Kjeldahl nitrogen content, and total phosphorus determinations. Nutrient assays were done by the same techniques as for soils. In September aboveground weed biomass was measured as numbers and dry weight by species in three 25 m² plots at each of the ten stations. Three random 0.5 x 0.5 m

subplots were sampled.

Table 6. (Continued)

Parameters and Units	Technique	Code
Tree coring and populations	Populations of seedlings, saplings, and mature tree species were surveyed by laying out quadrats, identifying and tagging individuals, measuring their heights, diameters, and ages (by morphology or by coring).	074
Bottom sediment sampling	At each station three Pflueger cores were taken unless the bottom was too hard in which case three Ekman Dredge samples were taken. These samples were analyzed for percent organics, mineralogy, and mineral particle size distribution. In the case of cores these parameters were measured as vertical profiles.	075
Submerged plant populations	A common steel garden rake is used to collect plants by scrapping the surface of the bottom sediments in random paths in areas of 0.6 to 1.2 meters depth. Sampling stations are selected in areas of shallows relatively protected from wave action. A total area of bottom of from 10 to 100 square meters per station is sampled, depending upon plant abundance. Samples of plants from each station are sorted by species, counted, dried to constant weight at 60°C in an oven and weighed. On site visual observations are also recorded of presence or absence of plants.	076

Table 6. (Continued)

Parameters and Units	Technique	Code
Herbicides in soils, streams, bay waters, and sediment	At each station 15 ½ of surface waters are taken and 50 g Ca Cl ₂ are added. The sample is allowed to stand overnight and is then filtered through a Gilman, type A, glass fiber filter. The filter is then treated with anhydrous sodium sulfate and extracted with benzene and methylene dichloride. The filtrate is extracted with benzene and then with methylene dichloride. Sediment cores (3) were taken at each station with a Pflueger corer. In cases of hard bottom conditions, a set of three Ekman dredge samples were taken. These sediment samples were stored on ice until they could be segmented (cores). Subsamples of 10 g weight were then mixed with 10 g anhydrous sodium sulfate and extracted with benzene and methylene dichloride.	077
Mineralogy and sand/ silt/clay fraction- ation	Soils are fractionated into sand, silt, and clay by screening and hydrodynamic methods and each fraction is weighed. The amount of organics is determined by firing. Mineralogy is determined on silt and clay fractions by X-ray diffraction. Preparation is described by Carroll (1970). Soils are analyzed for free-iron oxides and allophane (Jackson, 1956).	078
In vivo chlorophyll a concentrations	Between stations the boat was operated at an even speed and surface waters were pumped continuously from a depth of 0.5 m through a flow-thru door (110-880A) on a Turner model 111 flurometer. The flurometer had a F4T4-B1 blue excitation lamp, a Corning 5-60 excitation filter, a Corning 2-64 emission filter and a red sensitive	079

Table 6. (Continued)

Parameters and Units Technique Code In vivo chlorophyll a photomultiplier tube (R-136). 079 The signal was recorded on a strip chart. A sample of known volume was taken at a marked time position on the chart, filtered through a Millipore HA filter, and the filter was dissolved in 90% acetone saturated with Mg CO3 and stored in the dark. The acetone extract was then analyzed for chlorophyll a by the method of Loftus and Carpenter (1971). The average in vivo fluorometer response was then determined by integration of the transect recording and the concentration of chlorophyll a was determined by multiplying times the ug in vitro chlorophyll a per in vivo response unit. 080 Plankton primary

Plankton primary production and phosphorus uptake by double label technique

Inorganic carbon and orthophosphate uptake are determined by simultaneous exposure to C-14 labeled HCO3 and P-32 labeled PO4 in light and dark bottles, incubated in a running water estuarine incubator exposed to sunlight. Time course of uptake for one hour is measured.

References for Technique Codes

- Carroll, D. (1970). <u>Clay Minerals</u>: <u>A Guide to Their X-Ray Identification</u>. Geol. Soc. Amer. Sp. Paper 126, 80 pp.
- Correll, D. L. and Miklas, J. (1975). <u>In:</u> Mineral Cycling in Southeastern Ecosystems. F. G. Howell, J. B. Gentry, and M. H. Smiths, editors. ERDA Symposium Series (Conf-740513).
- Correll, D. L.; Pierce, J. W.; Faust, M. A. (1975). A quantitative study of the nutrient sediment, and coliform bacterial constituents of water runoff from the Rhode River watershed. <u>In: Non-Point Sources of Water Pollution</u>, Proc. Southeastern Regional Conf., Blacksburg, Va. Publ. by Virginia Water Resources Research Center.
- Flyger, V. F. (1959). A comparison of methods for estimating squirrel populations. J. Wildlife Management 23: 220-223.
- Jackson, M. L. (1956). <u>Soil Chemical Analysis Advanced Course</u>. 2nd Ed. M. L. Jackson, Madison, Wisc. <u>895 pp</u>.
- Loftus, M. E. and Carpenter, J. H. (1971). A fluorometric method of determining chlorophylls a, b, and c. J. Marine Res. 29: 319-338.
- Martin, D. F. (1972). Marine Chemistry. Vol. 1. pp. 174-179.
 Marcel Dekker, New York, N.Y.
- Standard Methods for the Examination of Water and Waste Water, 13th Ed. (1971). American Public Health Assoc., New York.
- Stanford, G.; Carter, J. N.; Simpson, E. C., Jr.; Schwaniger, D. E. (1973).
 Nitrate Determination of a Modified Conway Microdiffusion Method.
 J. of the Assoc. Official Anal. Chem. 56:1365-8.

Table 7. Parameters Measured in Estuarine Work.

Salinity (ppt)

Category: 210

Format: XX.XX

Sample type: GRB

Technique code: 057

Investigator code: 002

Funding code: 006

File ID: RHO

Computer station code	Station name	Time span	Time frequency
00021	WRO	Feb Apr. May - July Aug Dec.	Twice a week Once a week Every two weeks
00022	WR1A	ıı ı	II
022.4	WR1B	11	11
00023	WR1 C	11	п
00028	RR2A	11	11
028.4	RR2B	п	п
00029	RR3A	п	11
029.4	RR3B	11	п
00030	RR4A	II	11
030.2	RR4B	II .	п
030.4	RR4C	II	11
00031	C9	Feb Dec.	Once a week
00032	C8	II .	11

Table 7. (Continued)

Salinity (ppt)

Computer station code	Station name	Time span	Time frequency
00033	C7	Feb Dec.	Once a week
00034	C6	п	п
00035	C5	п	п
00036	SEL	п	п
036.6	BNA	Feb July Aug Dec.	Once a week Every two weeks
036.8	BNB	п	II .
00037	BNC	п	п
037.8	WMA	п	u .
00038	WMB	ti .	II .
038.2	WMC	ti .	II .
038.8	CCA	tt.	п
00039	CCB	п	п
039.2	ccc	п	п

Table 7. (Continued)

Salinity (ppt)

Category: 210

Format: XX.XX

Sample type: GRB

Technique code: 057

Investigator code: 002

Funding code: 006

Computer station code	Station name	Time span	Time frequency
	Jean Toll Hame	Time Span	Time Trequency
00028	28	Apr Oct.	Once a month
028.4	28.4	ш	п
00029	29	II	n
030.2	30.2	II	п
031.5	31.5	п	п
00071	71	п	Once a season
00072	72	п	п
00073	73	п	н
00074	74	п	п
00075	75	п	п
00076	76	п	п
00077	77	п	п
00078	78	п	п

Table 7. (Continued)

Salinity (ppt)

Computer station code	Station name	Time span	Time frequency
00081	81	Apr Oct.	Once a season
00082	82	п	п
00083	83	п	п
00084	84	н	н

Table 7. (Continued)

Temperature (O C)

Category: 212

Format: XX.XX

Sample type: FLX

Technique code: 035

Investigator code: 002

Funding code: 006

File ID: RHO

Computer

station code	Station name	Time span	Time frequency
00021	WRO	Feb Apr. May - July Aug Dec.	Twice a week Once a week Every two weeks
00022	WRIA	П	н
022.4	WRIB	H	п
00023	WRIC	U	u
00028	RR2A	п	п
028.4	RR2B	H.	u
00029	RR3A	11	u
029.4	RR3B	н	п
00030	RR4A	п	u
030.2	RR4B	H.	п
030.4	RR4C	II .	п
00031	C9	Feb Dec.	Once a week
00032	C8	п	п

Table 7. (Continued)

Temperature (OC)

Computer station			
code	Station name	Time span	Time frequency
00033	C7	Feb Dec.	Once a week
00034	C6	п	п
00035	C5	ш	п
00036	SEL	11	п
036.6	BNA	Feb July Aug Dec.	Once a week Every two weeks
036.8	BNB	п	п
00037	BNC	II	п
037.8	WMA	11	п
00038	WMB	н	п
038.2	WMC	, II	н
038.8	CCA	п	п
00039	CCB	II .	п
039.2	ССС	н	п

Table 7. (Continued)

Temperature (° C)

Category: 212

Format: XX.XX

Sample type: GRB

Technique code: 035

Investigator code: 002

Funding code: 006

Computer station code	Station name	Time span	Time frequency
00028	28	Apr Oct.	Once a month
028.4	28.4	ıı	п
00029	29	н	п
030.2	30.2	II .	п
031.5	31.5	II .	H
00071	71	II .	Once a season
00072	72	II	п
00073	73	II .	II
00074	74	п	п
00075	75	п	п
00076	76	н	п
00077	77	н	п п
00078	78	II .	п

Table 7. (Continued)

Temperature (O C)

Computer station code	Station name	Time span	Time frequency
0000	ocacion name	Time span	Time Trequency
00081	81	Apr Oct.	Once a season
00082	82	н	п
00083	83	11	п
00084	84	н	п

Table 7. (Continued)

рΗ

Category: 213

Format: XX.X

Sample type: GRB

Technique code: 036

Investigator code: 002

Funding code: 005

File Id: RHO

Computer	
station	

station code	Station name	Time span	Time frequency
00021	WRO	Feb July Aug Dec.	Once a week Every two weeks
022.4	WRIB	II .	п
028.4	RR2B	II .	п
029.4	RR3B	II .	п
030.2	RR4B	п	п
00031	C9	Feb July	Once a week
00032	C8	п	п
00033	С7	п	п
00034	C6	п	н
00035	C5	п	п
00036	SEL	ш	ш

Table 7. (Continued)

рН

Computer station				
code	Station name	Time span	Time frequency	
036.6	BNB	Feb July Aug Dec.	Once a week Every two weeks	
00038	WMB	п	п	
00039	CCB	п	п	

Table 7. (Continued)

рН

Category: 213

Format: XX.X

Sample type: HIT

Technique code: 036

Investigator code: 002

Funding code: 005

File ID: RHO

C	om	pu	ter	
ς	ta	ti	on	

station code	Station name	Time span	Time frequency
00026	WRIT	Feb July Aug Dec.	Once a weeks Every two weeks
00040	RR2T	п	н
00041	RR3T	u	п
00042	RR4T	u u	п
00043	BNT	ш	п
00044	WMT	u	п
00045	сст	п	п

Table 7. (Continued)

Turbidity (Jackson units)

Category: 220

Format: XXX

Sample type: GRB

Technique code: 038

Investigator code: 002

Funding code: 006

File ID: RHO

Computer
station

station code	Station name	Time span	Time frequency
00021	WRO	Feb July Aug Dec.	Once a week Every two weeks
022.4	WRIB	п	II
028.4	RR2B	п	п
029.4	RR3B	II	и
030.2	RR4B	п	п
00031	С9	Feb Dec.	Once a week
00032	C8	п	11
00033	С7	n	п
00034	C6	11	п
00035	C5	If	п
00036	SEL	"	п

Table 7. (Continued)

Turbidity (Jackson units)

Computer station code	Station name	Time span	Time frequency
036.8	BNB	Feb July Aug Dec.	Once a week Every two weeks
00038	WMB	11	п
00039	ССВ	п	11

Table 7. (Continued)

Turbidity (Jackson units)

Category: 220

Format: XXX

Sample type: HIT

Technique code: - 038

Investigator code: 002

Funding code: 005

File ID: RHO

code	Station name	Time span	Time frequency
00026	WRIT	Feb July Aug Dec.	Once a week Every two weeks
00040	RR2T	II.	n
00041	RR3T	ıı	п
00042	RR4T	п	n
00043	BNT	п	11
00044	WMT	п	11
00045	ССТ	н	11

Table 7. (Continued)

Turbidity (Jackson units)

Category: 220

Format: XXX

Sample type: GRB

Technique code: 038

Investigator code: 002

Funding code: 006

Computer station code	Station name	Time span	Time frequency
00028	28	Apr Oct.	Once a month
028.4	28.4	п	II .
00029	29	II .	II .
030.2	30.2	п	н
031.5	31.5	п	II .
00071	71	п	Once a season
00072	72	п	II .
00073	73	п	п
00074	74	п	п
00075	75	п	п
00076	76	п	п
00077	77	п	п
00078	78	n .	п

Table 7. (Continued)

Turbidity (Jackson units)

Computer station			
code	Station name	Time span	Time frequency
00081	81	Apr Oct.	Once a season
00082	82	п	п
00083	83	п	п
00084	84	н	п
00091	91	June	Once a year
00092	92	н	н
00093	93	н	п
00094	94	и	н
00095	95	н	п
00096	96	н	п

Table 7. (Continued)

Total suspended solids and mineral suspended solids (mg/1)

Category: 250

Format: XXXX.X, XXXX.X

Sample type: GRB

Technique code: 043

Investigator code: 013

Funding code: 006

Computer station code	Station name	Time span	Time frequency
00028	28	Apr Oct.	Once a month
028.4	28.4	п	и
00029	29	п	п
030.2	30.2	n	п
031.5	31.5	п	п
00071	71	п	Once a season
00072	72	н	п
00073	73	II	11
00074	74	п	п
00075	75	п	н
00076	76	п	п
00077	77	п	п
00078	78	п	п

Table 7. (Continued)

Total suspended solids and mineral suspended solids (mg/2)

Computer station code	Station name	Time span	Time frequency
			11110
00081	81	Apr Oct.	Once a season
00082	82	п	n .
00083	83	п	п
00084	84	п	п
00091	91	June	Once a year
00092	92	п	H .
00093	93	п	п
00094	94	п	П
00095	95	ıı	п
00096	96	n	п

Table 7. (Continued)

Mineral size distribution - sand, silt, clay (%)

Category: 251

Format: XX.XX, XX.XX, XX.XX

Sample type: SED

Technique code: 078

Investigator code: 013

Funding code: 006

Computer	
station	

station code	Station name	Time span	Time frequency
00028	28	Apr Oct.	Once a month
028.4	23.4	11	11
00029	29	п	п
030.2	30.2	11	п
031.5	31.5	п	11
00071	71	п	Once a season
00072	72	п	11
00073	73	n	11
00074	74	11	16
00075	75	н	п
00076	76	н	n .
00077	77	n .	п
00078	78	11	п

Table 7. (Continued)

Mineral size distribution - sand, silt, clay (%)

Computer station			
code	Station name	Time span	Time frequency
00081	81	Apr Oct.	Once a season
00082	82	H	11
00083	83	H	II
00084	84	H	II .
00097	91	June	Once a year
00092	92	11	ii .
00093	93	11	п
00094	94	11	tt.
00095	95	11	и
00096	96	11	11

Table 7. (Continued)

Organics (%)

Category: 252

Format: XX.XX

Sample type: SED

Technique code: 078

Investigator code: 013

Funding code: 006

File ID: 4RI

Computer station code	Station name	Time span	Time frequency
00028	28	Apr Oct.	Once a month
028.4	28.4	п	п
00029	29	п	п
030.2	30.2	п	II
031.5	31.5	п	п
00071	71	п	Once a season
00072	72	п	п
00073	73	п	п
00074	74	п	n
00075	75	п	II .
00076	76	п	n
00077	77	п	п
00078 -	78	п	11

Table 7. (Continued)

Organics (%)

Computer station			
code	Station name	Time span	Time frequency
00081	81	Apr Oct.	Once a season
00082	82	п	п
00083	83	п	п
00084	84	u	п
00091	91	June	Once a year
00092	92	u .	н
00093	93	н	п
00094	94	н	п
00095	95	н	n .
00096	96	ш	II

Table 7. (Continued)

Mineralogy (%)

Category:	256 257 258 259 260 261 262 263	Montmorillonite Illite Kaolinite Gibbsite Chlorite Ouartz K-Spar Plagiclase Talc	Format:	XX.XX, XX.XX, XX.XX, XX.XX, XX.XX, XX.XX, XX.XX, XX.XX,	XX.XX XX.XX XX.XX XX.XX XX.XX XX.XX XX.XX
		9			
		Amph.		XX.XX,	
	265	Clin.		XX.XX,	XX.XX
	266	Calcite		XX.XX,	XX.XX
	267	Dolomite		XX.XX,	XX.XX

Sample type: GRB and SED

Technique code: 078

Investigator code: 013

Funding code: 006

File ID: 4RI

Computer station code	Station name	Time span	Time frequency
00028	28	Apr Oct.	Once a month
028.4	28.4	п	н
00029	29	п	11
030.2	30.2	н	н
031.5	31.5	п	u
00071	71		Once a season
00072	72	u	
00073	73	u	n
00074	74	п	11

Table 7. (Continued)

Mineralogy (%)

Computer station code	Station name	Time span	Time frequency
		Time span	Time Trequency
00075	75	Apr Oct.	Once a season
00076	76	п	II.
00077	77	п	п
00078	78	п	п
00081	81	п	п
00082	82	п	п
00083	83	п	п
00084	84	п	П
00091	91 .	June	Once a year
00092	92	н	п
00093	93	п	п
00094	94	п	и
00095	95	п	п
00096	96	п	п

Table 7. (Continued)

Nitrate + nitrite, ammonia + amino acid, Kjeldahl nitrogen, and nitrite ($\mu g/liter$)

Category: 311

Format: X.XX EXX, X.XX EXX, X.XX EXX, X.XX EXX

Sample type: GRB

Technique code: 046, 047, and 048

Investigator code: 002

Funding code: 005

Computer station code	Station name	Time span	Time frequency
00021	WRO	Feb July Aug Dec.	Once a week Every two weeks
022.4	WRIB	п	н
028.4	RR2B	п	п
029.4	RR3B	п	п
030.2	RR4B	п	ш
00031	C9	Feb Dec.	Once a week
00032	C8	п	н
00033	С7	п	п
00034	C6	п	п
00035	C5	п	п
00036	SEL	п	II .

Table 7. (Continued)

Nitrate + nitrite, ammonia + amino acid, Kjeldahl nitrogen, and nitrite ($\mu g/liter$)

Computer station code	Station name	Time span	Time frequency
036.8	BNB	Feb July Aug Dec.	Once a week Every two weeks
00038	WMB	п	п
00039	CCB	п	п

Table 7. (Continued)

Nitrate + nitrite, ammonia + amino acid, Kjeldahl nitrogen, and nitrite ($\mu g/liter$)

Category: 311

Format: X.XX EXX, X.XX EXX, X.XX EXX, X.XX EXX

Sample type: HIT

Technique code: 046, 047, and 048

Investigator code: 002

Funding code: 005

Computer station code	Station name	Time span	Time frequency
00026	WRIT	Feb July Aug Dec.	Once a week Every two weeks
00040	RR2T	11	11
00041	RR3T	n	11
00042	RR4T	11	11
00043	BNT	11	11
00044	WMT	н	n
00045	ССТ	11	n

Table 7. (Continued)

Total phosphorus (µg/liter)

Category: 320

Format: X.XX EXX

Sample type: GRB
Technique code: 049

Investigator code: 002

Funding code: 005

Computer	
station	

station code	Station name	Time span	Time frequency
00021	WRO	Feb July Aug Dec.	Once a week • Every two weeks
022.4	WR1B	II .	11
028.4	RR2B	п	11
029.4	RR3B	11	11
030.2	RR4B	11	11
00031	С9	Feb Dec.	Once a week
00032	C8	ti .	11
00033	С7	п	11
00034	C6	n .	11
00035	C5	п	н
00036	SEL	II .	11

Table 7. (Continued)

Total phosphorus (µg/liter)

Computer station code	Station name	Time span	Time frequency
036.8	BNB	Feb July Aug Dec.	Once a week Every two weeks
00038	WMB	tt	н
00039	CCB	п	п

Table 7. (Continued)

Total phosphorus (µg/liter)

Category: 320

Format: X.XX EXX
Sample type: HIT

Technique code: 049

Investigator code: 002

Funding code: 005

Computer	
station	

station code	Station name	Time span	Time frequency
00026	WRIT	Feb July . Aug Dec.	Once a week Every two weeks
00040	RR2T	п	п
00041	RR3T	II	н
00042	RR4T	н	п
00043	BNT	н	w II
00044	WMT	н	п
00045	ССТ	п	п

Table 7. (Continued)

Dissolved inorganic phosphorus, dissolved total phosphorus, and inorganic phosphorus ($\mu g/liter$)

Category: 321

Format: X.XX EXX, X.XX EXX, X.XX EXX

Sample type: GRB

Technique code: 050

Investigator code: 002

Funding code: 005

Computer			
station	Ctation name	Time chan	Time fracuency
code	Station name	Time span	Time frequency
00021	WRO	Feb July Aug Dec.	Once a week Every two weeks
022.4	WRIB	tt	n
028.4	RR2B	п	II
029.4	RR3B	п	II
030.2	RR4B	п	п
00031	C9	Feb Dec.	Once a week
00032	C8	п	u
00033	C7	п	ıı
00034	C6	п	ш
00035	C5	п	П
00036	SEL	п	п

Table 7. (Continued)

Dissolved inorganic phosphorus, dissolved total phosphorus, and inorganic phosphorus ($\mu g/liter$)

Computer station code	Station name	Time span	Time frequency
036.8	BNB	Feb July Aug Dec.	Once a week Every two weeks
00038	WMB	II .	п
00039	ССВ	tt	п

Table 7. (Continued)

Dissolved inorganic phosphorus, dissolved total phosphorus, and inorganic phosphorus ($\mu g/liter$)

Category: 321

Format: X.XX EXX, X.XX EXX, X.XX EXX

Sample type: HIT

Technique code: 050

Investigator code: 002

Funding code: 005

File ID: RHO

Computer

station code	Station name	Time span	Time frequency
00026	WRIT	Feb July Aug Dec.	Once a week Every two weeks
00040	RR2T	II .	п
00041	RR3T	II .	п
00042	RR4T	п	п
00043	BNT	п	п
00044	WMT	п	п
00045	ССТ	Ü	п

Table 7. (Continued)

Organic carbon - combustion (mg/liter)

Category: 330

Format: X.XX EXX

Sample type: GRB

Technique code: 058

Investigator code: 002

Funding code: 005

Computer station			
code	Station name	Time span	Time frequency
00021 •	WRO	Feb July Aug Dec.	Once a week Every two weeks
022.4	WRIB	II .	tt.
028.4	RR2B	n .	u
029.4	RR3B	и	n
030.2	RR4B	It	n
00031	С9	Feb Dec.	Once a week
00032	C8	ıı	n
00033	C7	tt	u
00034	C6	u	п
00035	C5	11	u
00036	SEL	п	11
036.8	BNB	Feb July Aug Dec.	Once a week Every two weeks
00038	WMB	11	ıı
00039	ССВ	u	11

Table 7. (Continued)

Organic carbon - combustion (mg/liter)

Category: 330

Format: X.XX EXX Sample type: HIT

Technique code: 058

Investigator code: 002

Funding code: 005

File ID: RHO

Computer

station code	Station name	Time span	Time frequency
00026	WRIT	Feb July Aug Dec.	Once a week Every two weeks
00040	RR2T	п	п
00041	RR3T	п	п
00042	RR4T	н	H
00043	BNT	н	п
00044	WMT	п	п
00045	ССТ	п	ti .

Table 7. (Continued)

Dissolved oxygen (mg/liter)

Category: 340

Format: XX.XX

Sample type: GRB

Technique code: 059

Investigator code: 018

Funding code: 005

Computer
ctation

station code	Station name	Time span	Time frequency
00021	WRO	Feb Apr. May - July Aug Dec.	Twice a week Once a week Every two weeks
00022	WRIA	п	п
022.4	WR1B	u	п
00023	WR1C	п	п
00028	RR2A	п	н
028.4	RR2B	п	п
00029	RR3A	11	и
029.4	RR3B	и	н
00030	RR4A	н	н
030.2	RR4B	н	п
030.4	RR4C	п	11
036.6	BNA	II .	11
036.8	BNB	п	п

Table 7. (Continued)

Dissolved oxygen (mg/liter)

Computer station code	Station name	Time span	Time frequency
00037	BNC	Feb Apr. May - July Aug Dec.	Twice a week Once a week Every two weeks
037.8	WMA	п	п
00038	WMB	п	н
038.2	WMC	п	н
038.8	CCA	п	п
00039	CCB	п	п
039.2	ccc	ıı	п

Table 7. (Continued)

Dissolved oxygen (mg/liter)

Category: 340

Format: XX.XX

Sample type: GRB

Technique code: 059

Investigator code: 002

Funding code: 005

Computer	
station	

station code	Station name	Time span	Time frequency
00031	С9	Feb Dec.	Once a week
00032	C8	п	п
00033	C7	п	н
00034	C6	н	п
00035	C5	п	п
00036	SEL	п	и

Format:

X.XX EXXX

X.XX EXXX X.XX EXXX

X.XX EXXX

Table 7. (Continued)

Herbicides (µg/l)

Category: 361 Atrazine

362 Linuron 364 Trifluralin 370 Alachlor

Sample type: GRB and SED

Technique code: 077

Investigator code: 026

Funding code: 006

File ID: 4RI

Computer

station code	Station name	Time span	Time frequency
00028	28	Apr Oct.	Once a month
028.4	28.4	п	п
00029	29	п	п
030.2	30.2	п	п
031.5	31.5	п	п
00071	71	11	Once a season
00072	72	п	u
00073	73	и	п
00074	74	п	п
00075	75	п	п
00076	76	п	п
00077	77	п	н
00078	78	п	II

Table 7. (Continued)

Herbicides (µg/l)

Computer station			
code	Station name	Time span	Time frequency
00081	81	Apr Oct.	Once a season
00082	82	п	п
00083	83	II.	и
00084	84	п	ti .
00091	91	June	Once a year
00092	92	п	п
00093	93	п	п
00094	94	п	u
00095	95	п	u
00096	96	п	П

Table 7. (Continued)

Chlorophyll a (ug/liter)

Category: 410

Format: X.XX EXX, X.XX EXX, X.XX EXX

Sample type: HIT

Technique code: 060

Investigator code: 018

Funding code: 006

File ID: RHO

Computer

station code	Station name	Time span	Time frequency
0040T	RR2T	June - Oct.	Once a month
0041T	RR3T		и
0042T	RR4T	II.	и
031.5	RR8.5	п	н

Table 7. (Continued)

Chlorophyll a (µg/liter) and chlorophyll a in vivo fluorescence (µg/liter)

Category: 410

Format: X.XX EXX, X.XX EXX, X.XX EXX

Sample type; HIT

Technique code: 060 and 079

Investigator code: 018

Funding code: 006

File ID: 4RI

Computer station code	Station name	Time span	Time frequency
0028T	28T	June - Oct.	Once a month
28.4T	28.4T	п	11
0029T	29T	п	11
31.5T	31.5T	11	11
0071T	71T	11	Once a season
0072T	72T	n	п
0073T	73T	11	n
0074T	74T	11	n
0075T	75T	11	п
0076T	76T	11	п
0091T	91T	June	Once a year
0092T	92T	n	11
0093T	93T	11	II
0094T	94T	n	11

Table 7. (Continued)

Aquatic plants (mg)

Sample type: GRB

Technique code: 076

Investigator code: 002

Funding code: 006

File ID: 4RI

Computer station code	Station name	Time span	Time frequency
00028	28	June - Oct.	Once a month
028.4	28.4	11	п
00029	29	п	11
030.2	30.2	11	11
031.5	31.5	11	11

Table 7. (Continued)

Fecal coliform (#/100 ml)

Category: 710

Format: X.XX EXX

Sample type: GRB

Technique code: 053

Investigator code: 006

Funding code: 005

Computer station code	Station name	Time span	Time frequency
code	Station name	Time Span	Time Trequency
00021	WRO	Feb July Aug Dec.	Once a week Every two weeks
00028	RR2A	п	н
00029	RR3A	п	II
00030	RR4A	п	u
030.4	RR4C	н	и
00031	С9	Feb Dec.	Once a week
00032	C8	п	H
00033	C7	и	п
00034	C6	п	н
00035	C5	и	и
00036	SEL	и	п
036.8	BNB	Feb July	Once a week
00038	WMB	Aug Dec.	Every two weeks
00039	CCB	n .	п

Table 7. (Continued)

Fecal streptococci (#/100 ml)

Category: 712

Format: X.XX EXX
Sample type: GRB

Technique code: 054

Investigator code: 006

Funding code: 005

Computer	
ctation	

station			
code	Station name	Time span	Time frequency
00021	WRO	Feb July Aug Dec.	Once a week Every two weeks
00028	RR2A	н	н
00029	RR3A	п	11
00030	RR4A	u u	н
030.4	RR4C	н	п
00031	C9	Feb Dec.	Once a week
00032	C8	II	н
00033	С7	II	П
00034	C6	11	11
00035	C5	п	11
00036		н	П
036.8	BNB	Feb July Aug Dec.	Once a week Every two weeks
00038	WMB	11	11
00039	CCB	п	II .

Table 7. (Continued)

Total viable heterotrophs (#/ml), 7 days total viable heterotrophs (#/ml), 48 hours

Category: 714

Format: X.XX EXX

Sample type: GRB

Technique code: 056

Investigator code: 006

Funding code: 005

station code	Station name	Time span	Time frequency
00021	WRO	Feb July Aug Dec.	Once a week Every two weeks
00028	RR2A	11	п
00029	RR3A	11	п
00030	RR4A	11	n
030.4	RR4C	п	11
036.8	BNB	11	п
00038	WMB	11	11
00039	ССВ	11	п

Table 8. Parameters Measured on Subwatershed Runoff Waters.

Flow rate (liters/sec.)

Category: 130

110

121

Forest

Main Branch

Format: X.XX EXX

Sample type: GRB

Technique code: 031

Investigator code: 002

Funding code: 005 and 006

Computer station code	Station name	Time span	Time	frequency
101	North Branch	Jan Dec.	0nce	a week
102	Blue Jay	Jan Dec.	0nce	a week
103	Williamson	Jan Dec.	Once	a week
105	Sellman North	Jan Dec.	0nce	a week
106	Sellman South	Jan Dec.	0nce	a week
107	Fox Creek	June - Dec.	0nce	a week
108	Steinlein	Jan Dec.	Once	a week
109	Cumberstone	May - Dec.	0nce	a week

Oct. - Dec.

Jan. - Dec.

Once a week

Once a week

Table 8. (Continued)

Total flow (liters)

Category: 131

Format: X.XX EXX

Sample type: FLX

Technique code: 033

Investigator code: 002

Funding code: 005 and 006

Computer

station code	Station name	Time span	Time frequency
Code	Jeacion name	Time span	Time Trequency
101	North Branch	Jan Dec.	Once a week
102	Blue Jay	Jan Dec.	Once a week
103	Williamson	Jan Dec.	Once a week
105	Sellman North	Jan Dec.	Once a week
106	Sellman South	Jan Dec.	Once a week
107	Fox Creek	June - Dec.	Once a week
108	Steinlein	Jan Dec.	Once a week
109	Cumberstone	May - Dec.	Once a week
110	Forest	Oct Dec.	Once a week
121	Main Branch	Jan Dec.	Once a week

Table 8. (Continued)

Temperature (O Centigrade)

Category: 212

Format: XX.XX

Sample type: GRB

Technique code: 034

Investigator code: 002

Funding code: 005

Computer
ctation

station code	Station name	Time span	Time frequency
099	Spring	Jan Dec.	Once a week
101	North Branch	Jan Dec.	Once a week
102	Blue Jay	Jan Dec.	Once a week
103	Williamson	Jan Dec.	Once a week
004	C4	Jan Dec.	Every two weeks
105	Sellman North	Jan Dec.	Once a week
106	Sellman South	Jan Dec.	Once a week
107	Fox Creek	Jan Dec.	Once a week
108	Steinlein	Jan Dec.	Once a week
109	Cumberstone	Apr Dec.	Once a week
110	Forest	Oct Dec.	Every two weeks
121	Main Branch	Jan Dec.	Once a week
122	Fox Point	Apr Dec.	Once a week

Table 8. (Continued)

рН

Category: 213

Format: XX.X

Sample type: GRB

Technique code: 036

Investigator code: 002

Funding code: 005

Computer station			
code	Station name	Time span	Time frequency
099	Spring	Jan Dec.	Every two weeks
101	North Branch	Jan Dec.	Every two weeks
102	Blue Jay	Jan Dec.	Every two weeks
103	Williamson	Jan Dec.	Every two weeks
004	C4	Jan Dec.	Every two weeks
105	Sellman North	Jan Dec.	Every two weeks
106	Sellman South	Jan Dec.	Every two weeks
107	Fox Creek	Jan Dec.	Every two weeks
108	Steinlein	Jan Dec.	Every two weeks
109	Cumberstone	Apr Dec.	Every two weeks
110	Forest	Oct Dec.	Every two weeks
121	Main Branch	Jan Dec.	Every two weeks

Table 8. (Continued)

Turbidity (Jackson units)

Category: 220

Format: XXX

Sample type: GRB and FLX

Technique code: 038

Investigator code: 002

Funding code: 005

Computer station			
code	Station name	Time span	Time frequency
099	Spring*	Jan Dec.	Every two weeks
101	North Branch	Jan Dec.	Once a week
102	Blue Jay	Jan Dec.	Once a week
103	Williamson	Jan Dec.	Once a week
004	C4*	Jan Dec.	Every two weeks
105	Sellman North	Jan Dec.	Once a week
106	Sellman South	Jan Dec.	Once a week
107	Fox Creek	Jan Dec.	Once a week
108	Steinlein	Jan Dec.	Once a week
109	Cumberstone	Apr Dec.	Once a week
110	Forest*	Oct Dec.	Every two weeks
121	Main Branch	Jan Dec.	Once a week
122	Fox Point	Apr Dec.	Once a week

^{*} GRB sample only

Table 8. (Continued)

Total and mineral suspended particulates (mg/liter)

Category: 250

Format: XXXX.X, XXXX.X

Sample type: GRB and FLX*

Technique code: 043

Investigator code: 013

Funding code: 005 and 006

Computer station

station code	Station name	Time span	Time frequency
101	North Branch	Jan Dec.	Once a week
102	Blue Jay	Jan Dec.	Once a week
103	Williamson	Jan Dec.	Once a week
105	Sellman North	Jan Dec.	Once a week
106	Sellman South	Jan Dec.	Once a week
107	Fox Creek	Jan Dec.	Once a week
108	Steinlein	Jan Dec.	Once a week
109	Cumberstone	Apr Dec.	Once a week
110	Forest	Oct Dec.	Once a week
121	Main Branch	Jan Dec.	Once a week
122	Fox Point	Apr Dec.	Once a week

^{*} Usually FLX, GRB when flow is low.

Table 8. (Continued)

N total (µg/liter)

Category: 310

Format: X.XX EXX

Sample type: FLX

Technique code: 044

Investigator code: 002

Funding code: 005 and 006

Computer

station code	Station name	Time span	Time frequency
101	North Branch	Jan Dec.	Once a week
102	Blue Jay	Jan Dec.	Once a week
103	Williamson	Jan Dec.	Once a week
105	Sellman North	Jan Dec.	Once a week
106	Sellman South	Jan Dec.	Once a week
107	Fox Creek	Jan Dec.	Once a week
108	Steinlein	Jan Dec.	Once a week
109	Cumberstone	Apr Dec.	Once a week
110	Forest	Oct Dec.	Once a week
121	Main Branch	Jan Dec.	Once a week
122	Fox Point	Apr Dec.	Once a week

Table 8. (Continued)

Nitrite + nitrate, ammonia, nitrite + amino acid, total Kjeldahl nitrogen, and nitrite nitrogen ($\mu g/liter$)

Category: 311

Format: X.XX EXX, X.XX EXX, X.XX EXX, X.XX EXX, X.XX EXX

Sample type: GRB

Technique code: 044 - 048

Investigator code: 002

Funding code: 005 and 006

Com	p	u	t	er	

station code	Station name	Time span	Time frequency
099	Spring	Jan Dec.	Every two weeks
101	North Branch	Jan Dec.	Every two weeks
102	Blue Jay	Jan Dec.	Every two weeks
103	Williamson	Jan Dec.	Every two weeks
004	C4	Jan Dec.	Every two weeks
105	Sellman North	Jan Dec.	Every two weeks
106	Sellman South	Jan Dec.	Every two weeks
107	Fox Creek	Jan Dec.	Every two weeks
108	Steinlein	Jan Dec.	Every two weeks
109	Cumberstone	Apr Dec.	Every two weeks
110	Forest	Oct Dec.	Every two weeks
121	Main Branch	Jan Dec.	Every two weeks

Table 8. (Continued)

Nitrite + nitrate, ammonia, total Kjeldahl nitrogen, and nitrite nitrogen $(\mu g/liter)$

Category: 311

Format: X.XX EXX, X.XX EXX, X.XX EXX, X.XX EXX

Sample type: FLX

Technique code: 044 - 048

Investigator code: 002

Funding code: 005 and 006

Computer
station

station code	Station name	Time span	Time frequency
101	North Branch	Nov Dec.	Once a week
102	Blue Jay	Nov Dec.	Once a week
103	Williamson	Nov Dec.	Once a week
105	Sellman North	Nov Dec.	Once a week
106	Sellman South	Nov Dec.	Once a week
107	Fox Creek	Nov Dec.	Once a week
108	Steinlein	Nov Dec.	Once a week
109	Cumberstone	Nov Dec.	Once a week
110	Forest	Nov Dec.	Once a week
121	Main Branch	Nov Dec.	Once a week
122	Fox Point	Nov Dec.	Once a week

P total (µg/liter)

Category: 320

Format: X.XX EXX

Sample type: GRB

Computer

121

122

Main Branch

Fox Point

Technique code: 049

Investigator code: 002

Funding code: 005 and 006

station			
code	Station name	Time span	Time frequency
099	Spring	Jan Dec.	Every two weeks
101	North Branch	Jan Dec.	Évery two weeks
102	Blue Jay	Jan Dec.	Every two weeks
103	Williamson	Jan Dec.	Every two weeks
004	C4	Jan Dec.	Every two weeks
105	Sellman North	Jan Dec.	Every two weeks
106	Sellman South	Jan Dec.	Every two weeks
107	Fox Creek	Jan Dec.	Every two weeks
108	Steinlein	Jan Dec.	Every two weeks
109	Cumberstone	Apr Dec.	Every two weeks
110	Forest	Oct Dec.	Every two weeks

Jan. - Dec. Apr. - Dec. Every two weeks

Every two weeks

P total (µg/liter)

Category: 320

Format: X.XX EXX

Sample type: FLX

Technique code: 049

Investigator code: 002

Computer	
station	

station code	Station name	Time span	Time frequency
101	North Branch	Jan Dec.	Once a week
102	Blue Jay	Jan Dec.	Once a week
103	Williamson	Jan Dec.	Once a week
105	Sellman North	Jan Dec.	Once a week
106	Sellman South	Jan Dec.	Once a week
107	Fox Creek	Jan Dec.	Once a week
108	Steinlein	Jan Dec.	Once a week
109	Cumberstone	Apr Dec.	Once a week
110	Forest	Oct Dec.	Once a week
121	Main Branch	Jan Dec.	Once a week
122	Fox Point	Apr Dec.	Once a week

Table 8. (Continued)

Dissolved inorganic phosphorus, dissolved total phosphorus, and inorganic phosphorus ($\mu g/liter$)

Category: 321

Format: X.XX EXX, X.XX EXX, X.XX EXX

Sample type: GRB

Technique code: 050

Investigator code: 002

C	0	m	p	u	t	e	r	
				٠				

station code	Station name	Time span	Time frequency
099	Spring	.Jan Dec.	Every two weeks
101	North Branch	Jan Dec.	Every two weeks
102	Blue Jay	Jan Dec.	Every two weeks
103	Williamson	Jan Dec.	Every two weeks
004	C4	Jan Dec.	Every two weeks
105	Sellman North	Jan Dec.	Every two weeks
106	Sellman South	Jan Dec.	Every two weeks
107	Fox Creek	Jan Dec.	Every two weeks
108	Steinlein	Jan Dec.	Every two weeks
109	Cumberstone	Apr Dec.	Every two weeks
110	Forest	Oct Dec.	Every two weeks
121	Main Branch	Jan Dec.	Every two weeks

Table 8. (Continued)

Dissolved inorganic phosphorus, dissolved total phosphorus, and inorganic phosphorus ($\mu g/liter$)

Category: 321

Format: X.XX EXX, X.XX EXX, X.XX EXX

Sample type: FLX

Technique code: 050

Investigator code: 002

С	om	p	u	t	e	r	

station			
code	Station name	Time span	Time frequency
101	North Branch	Jan Dec.	Once a week
102	Blue Jay	Jan Dec.	Once a week
103	Williamson	Jan Dec.	Once a week
105	Sellman North	Jan Dec.	Once a week
106	Sellman South	Jan Dec.	Once a week
107	Fox Creek	Jan Dec.	Once a week
108	Steinlein	Jan Dec.	Once a week
109	Cumberstone	Apr Dec.	Once a week
110	Forest	Oct Dec.	Once a week
121	Main Branch	Jan Dec.	Once a week

Organic carbon - combustion (mg/liter)

Category: 330

Format: X.XX EXX

Sample type: GRB

Technique code: 058

Investigator code: 002

Funding code: 005 and 006

Computer

code	Station name	Time span	Time frequency
121	Main Branch	June - Dec.	Every two weeks
122	Fox Point	Jan Dec.	Every two weeks

Organic carbon - combustion (mg/liter)

Category: 330

Format: X.XX EXX

Sample type: FLX

Technique code: 058

Investigator code: 002

C	om	puter	
c	ta	tion	

code	Station name	Time span	Time frequency
121	Main Branch	June - Dec.	Once a week
122	Fox Point	Jan Dec.	Once a week

Table 8. (Continued)

Total organic matter (g cal/liter)

Category: 331

Format: X.XX EXX

Sample type: GRB

Technique code: 051

Investigator code: 002

Computer station			
code	Station name	Time span	Time frequency
099	Spring	Jan Dec.	Every two weeks
101	North Branch	Jan Dec.	Every two weeks
102	Blue Jay	Jan Dec.	Every two weeks
103	Williamson	Jan Dec.	Every two weeks
004	C4	Jan Dec.	Every two weeks
105	Sellman North	Jan Dec.	Every two weeks
106	Sellman South	Jan Dec.	Every two weeks
107	Fox Creek	Jan Dec.	Every two weeks
108	Steinlein	Jan Dec.	Every two weeks
109	Cumberstone	Apr Dec.	Every two weeks
110	Forest	Oct Dec.	Every two weeks
121	Main Branch	Jan Dec.	Every two weeks

Table 8. (Continued)

Total organic matter (g cal/liter)

Category: 331

Format: X.XX EXX

Sample type: FLX

Technique code: 051

Investigator code: 002

Funding code: 005 and 006

Computer

station code	Station name	Time span	Time frequency
101	North Branch	Jan Dec.	Once a week
102	Blue Jay	Jan Dec.	Once a week
103	Williamson	Jan Dec.	Once a week
105	Sellman North	Jan Dec.	Once a week
106	Sellman South	Jan Dec.	Once a week
107	Fox Creek	Jan Dec.	Once a week
108	Steinlein	Jan Dec.	Once a week
109	Cumberstone	Apr Dec.	Once a week
110	Forest	Oct Dec.	Once a week
121	Main Branch	Jan Dec.	Once a week

Herbicides (µg/liter)

Category: 360 Simazine

361 Atrazine 362 Linuron 364 Trifluralin 370 Alachlor

Format: X.XX E ± XX

Sample type: FLX

Technique code: 077

Investigator code: 026

Funding code: 002 and 006

Computer

Station			
code	Station name	Time span	Time frequency
101	North Branch	June - Dec.	Once a week
102	Blue Jay	June - Dec.	Once a week
103	Williamson	June - Dec.	Once a week
105	Sellman North	June - Dec.	Once a week
106	Sellman South	June - Dec.	Once a week
107	Fox Creek	June - Dec.	Once a week
108	Steinlein	June - Dec.	Once a week
109	Cumberstone	Apr Dec.	Once a week
110	Forest	Oct Dec.	Once a week
121	Main Branch	Jan Dec.	Once a week

Table 8. (Continued)

Category:	380 381 382 383 384 385 386 387 388 389	Format:	X.XX EXX X.XX EXX X.XX EXX X.XX EXX X.XX EXX X.XX EXX X.XX EXX X.XX EXX X.XX EXX X.XX EXX	Nickel (µg/liter) Copper (µg/liter) Zinc (µg/liter) Lead (µg/liter) Chromium (µg/liter) Cadmium (µg/liter) Manganese (µg/liter) Iron (µg/liter) Potassium (µg/liter) Calcium (µg/liter)
	389 390		X.XX EXX X.XX EXX	Calcium (µg/liter) Magnesium (µg/liter)

Sample type: FLX

Technique code: 052

Investigator code: 026

Computer station code	Station name	Time span	Time frequency
Code	Station name	Time Span	Time Trequency
. 099	Spring	Jan Dec.	Once a week
101	North Branch	Jan Dec.	Once a week
102	Blue Jay	Jan Dec.	Once a week
103	Williamson	Jan Dec.	Once a week
105	Sellman North	Jan Dec.	Once a week
106	Sellman South	Jan Dec.	Once a week
107	Fox Creek	Jan Dec.	Once a week
108	Steinlein	Jan Dec.	Once a week
109	Cumberstone	Apr Dec.	Once a week
110	Forest	Oct Dec.	Once a week
121	Main Branch	Jan Dec.	Once a week
122	Fox Point	Apr Dec.	Once a week

Table 8. (Continued)

Total coliform and fecal coliform (#/100 ml)

Category: 710

Format: X.XX EXX, X.XX EXX

Sample type: GRB

Technique code: 053

Investigator code: 006

Funding code: 002, 005 and 006

Computer	

code	Station name	Time span	Time frequency
099	Spring	Jan Dec.	Once a week
101	North Branch	Jan Dec.	Once a week
102	Blue Jay	Jan Dec.	Once a week
103	Williamson	Jan Dec.	Once a week
105	Sellman North	Jan Dec.	Once a week
106	Sellman South	Jan Dec.	Once a week
107	Fox Creek	Jan Dec.	Once a week
108	Steinlein	Jan Dec.	Once a week
109	Cumberstone	Apr Dec.	Once a week
110	Forest	Oct Dec.	Once a week
121	Main Branch	Jan Dec.	Once a week

Table 8. (Continued)

Total streptococci and fecal streptococci (#/100 ml)

Category: 712

Format: X.XX EXX, X.XX EXX

Sample type: GRB

Technique code: 054

Investigator code: 006

Funding code: 002, 005 and 006

station code	Station name	Time span	Time frequency
			- armer american and receipts in the particular and an armer and
099	Spring	Jan Dec.	Once a week
101	North Branch	Jan Dec.	Once a week
102	Blue Jay	Jan Dec.	Once a week
103	Williamson	Jan Dec.	Once a week
105	Sellman North	Jan Dec.	Once a week
106	Sellman South	Jan Dec.	Once a week
107	Fox Creek	Jan Dec.	Once a week
108	Steinlein	Jan Dec.	Once a week
109	Cumberstone	Apr Dec.	Once a week
110	Forest	Oct Dec.	Once a week
121	Main Branch	Jan Dec.	Once a week

Table 8. (Continued)

Total viable heterotrophs (7 days) and total viable heterotrophs (48 hours) $\frac{(\#/m1)}{}$

Category: 714

Format: X.XX EXX, X.XX EXX

Sample type: GRB

Technique code: 056

Investigator code: 006

Funding code: 002, 005 and 006

Computer

station			
code	Station name	Time span	Time frequency
099	Spring	Jan Dec.	Once a week
101	North Branch	Jan Dec.	Once a week
102	Blue Jay	Jan Dec.	Once a week
103	Williamson	Jan Dec.	Once a week
105	Sellman North	Jan Dec.	Once a week
106	Sellman South	Jan Dec.	Once a week
107	Fox Creek	Jan Dec.	Once a week
108	Steinlein	Jan Dec.	Once a week
109	Cumberstone	Apr Dec.	Once a week
110	Forest	Oct Dec.	Once a week
121	Main Branch	Jan Dec.	Once a week

Table 9. Parameters Measured in Upland Ecology Research.

Litter Fall

Investigator: 002 and 032

Project code: LTR

Funding code: 001 and 002

Technique code: 062

Frequency: Once a week

Time span: January - December

Intensive study sites: 002, 004, and 005

Litter boxes were moved to a new set of locations in 1976. Twenty boxes were arranged in a stratified random grid on a part of site 2, which corresponds to watershed 110 (Figure 9). Twelve boxes were relocated in a stratified random grid at site 5 and 48 boxes were relocated in a stratified random grid within an expanded area which included the original site 4. This reorganization was completed for site 2 by May 20, for site 4 by May 30, and for site 5 by May 18.

Table 9. (Continued)

Litter Fall

Site 2*

	3166 2	3162			
Litter box number	Grid coord	linates			
101	3809	6085			
102	3812	6127			
103	3830	6142			
104	3828	6144			
105	3790	6034			
106	3776	6063			
107	3783	6096			
108	3754	6056			
109	3710	6042			
110	3790	6111			
111	3767	6140			
112	3770	6161			
113	3727	6169			
114	3709	6181			
115	3764	6238			
116	3741	6221			
117	3658	6085			
118	3674	6141			
119	3674	6155			
120	3661	6154			

^{*} See Figure 9.

Table 9. (Continued)

<u>Litter Fall</u>

Site 4

Litter box number	Grid coor	dinates
121	4292	5208
122	4281	5214
123	4280	5235
124	4275	5283
125	4270	5266
126	4268	5230
127	4267	5243
128	4261	5201
129	• 4239	5292
130	4225	5232
131	4222	5246
132	4212	5215
133	4191	5364
134	4179	5359
135	4174	5319
136	4172	5306
137	4167	5328
138	4124	5325
139	4117	5393
140	4116	5347
141	4115	5304
142	4114	5310

Table 9. (Continued)

Site 4

Litter box number	Grid coor	dinates
143	4111	5301
144	4104	5392
145	4200	5472
146	4189	5463
147	4189	5405
148	4190	5475
149	4184	5470
150	4177	5449
151	4174	5455
152	4140	5425
153	4132	5475
154	4117	5476
155	4111	5485
156	4108	5434
157	4098	5369
158	4096	5312
159	4083	5351
160	4074	5387
161	4067	5370
162	4058	5381
163	4052	5317
164	4052	5373
165	4022	5335
166	4015	5354

Table 9. (Continued)

Site 4

Litter box number	Grid coord	linates
167	4008	5346
168	4053	5388

LEAF LITTER BOX LOCATIONS SITE 4

RHODE RIVER HECTARE GRID (X 1000)

Table 9. (Continued)

Litter Fall

Site 5

Litter box number	Grid coord	inates
169	3419	6284
170	3413	6327
171	3410	6342
172	3437	6395
173	3358	6265
174	3351	6309
175	3337	6358
176	3331	6362
177	3362	6375
178	3391	6404
179	3396	6442
180	3316	6415

LEAF LITTER BOX LOCATIONS

SITE 5

Small mammal populations

Investigator: 009

Project code: SMM

Funding code: 001/002

Technique code: 063

Frequency: once a month

Time span: January - November

Intensive sites studied: 001, 002, 004, and 009

January - May stations were as follows: 1, 4, 5, 9

January stations were as follows: 2

May - November stations were as follows: 4, 9

Key to Parameters Coded

Species:

1 = Peromyscus

2 = Blarina

3 = Microtus 4 = Sorex

5 = Mus

6 = Zapus

7 = Tamias

Capture status:

0 = New

1 = Recaptured, alive

2 = Recaptured, dead 3 = New, dead

4 = Escaped

Sex:

1 = Male

2 = Female

3 = Unknown

Age/color:

1 = Adult/brown

2 = Subadult/grey-brown

3 = Juvenile/grey

Reproductive conditions:

1 = Testes ascended

2 = Testes descended, small

3 = Testes descended, large

4 = Testes shriveled 5 = Mammaries, tiny

6 = Mammaries, small

7 = Mammaries, large

8 = Mammaries, w/milk

Pregnant:

0 = No

1 = Yes

2 = Unknown

Ectoparasites:

l = Flea

2 = Tick

3 = Mite

Time of capture:

1 = Morning, 1st day

2 = Afternoon, 1st day

3 = Morning, 2nd day 4 = Afternoon, 2nd day

5 = Morning, 3rd day

Comments:

1 = released, weak
2 = bloody vagina

3 = No tail

4 = White spot on forehead

5 = Nematodes

6 = Injured animal

7 = Damaged toes

8 = Remarks

Ant populations

Investigator: 009

Project code: ANT

Funding code: 001/002/004

Technique code: 064

Frequency: variable

Time span: February - July

Intensive sites studied: 1, 2, 3, 4, 5, and 6

List of Ant Transects

Code	Location	Description
1	Just north of North Branch weir	Stations at intervals of 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50 m from stream.
2	Just south of North Branch weir	Floodplain and hillside. Stations at intervals of 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50 m from stream.
3	~ 200 m south of North Branch weir	All floodplain. Stations at intervals of 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 50 m from stream.
4	Lower Stevens field	Young floodplain and old field. Stations at intervals of 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50 m from stream.
5	Eastern Stevens field (site 009)	Young floodplain and old field. ~ 200 m north of transect #4. Stations at 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50 m.
6	Lower Stevens field	Young floodplain and old field. ~ 350 m north of transect #4. Stations at 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50 m.
7	Western triangle (site 004)	Mature hardwood forest above floodplain of North Branch. Twenty stations at 10 m intervals.
8	Stevens field	5-6 year old abandoned field. Twenty stations at 10 m intervals.
9	Lower Stevens field	2 year old abandoned field. Twenty stations at 10 m intervals.
10	Howat pasture	300 m north of entrance to CBCES, off Contees Wharf Road. Twenty stations at 10 m intervals.
11	Howat cornfield	Just south of entrance to CBCES, off Contees Wharf Road. Twenty stations at 10 m intervals.
12	Area 5	35 year old woods just west of Fox Point and south of road. Twenty stations at 10 m intervals.

Understory Arthropods

Investigator: 009

Funding code: 001/002/004

Technique code: 065

Frequency: monthly

Time span: January - August

Intensive sites studied: 004, 005, 009

Leaf Litter Arthropods

Investigator: 022

Technique code: 066

Frequency: monthly

Time span: January - December

Intensive sites studied: 004, 005, 009

Woodland bird populations in forest and old field sites.

Investigator: 012

Funding code: 001

Technique: see 1974 ESP report

Time span: spring - early summer

Tadpole populations in swamp upstream of weir 101.

Investigator: 007

Funding code: 002

Technique code: not yet available

Frequency: weekly

Time span: spring

Lawn Project

Primary production

Investigator: 005

Project code: TRF

Funding code: 001

Technique: 067

Frequency: variable

Time span: February - November

Intensive study site No. 10

Soils (chemical)

Category: 213 pH

312 Organic nitrogen 313 Water soluble NO₃

314 KC1 NO₃

315 Non exchangeable NO₃
316 Water soluble NH₄

317 KC1 NH₄

318 Non exchangeable NH₄ 320 Total phosphorus

322 Water soluble orthophosphorus 323 KCl extractable orthophosphorus 324 Acid soluble orthophosphorus

331 Total organic matter

Format: 213 XX.X

312 X.XXEXX 313 X.XXEXX 314 X.XXEXX 315 X.XXEXX 316 X.XXEXX 317 X.XXEXX 318 X.XXEXX 320 X.XXEXX 322 X.XXEXX 323 X.XXEXX

324 X.XXEXX 331 X.XXEXX

Investigator: 002
Funding code: 006

Technique: 070, 071, and 072

Frequency: Variable

Time span: April - December

Station numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 at intensive study

site #14 (see Figure 8).

Soils (chemical)

April - June stations were as follows:

1
2, 3 composite
4, 5 composite
6, 7 composite
8, 9 composite
10

June - December stations were as follows:

1 2, 3, 4, 5 composite 6, 7, 8, 9 composite 10

Soils (temperature and moisture)

Category: 212 Temperature (Kohms)

214 Moisture (mg H₂0/cc soil)

Format: XX.X, XXX.X

Investigator: 002

Funding code: 006

Technique: 069

Frequency: variable

Time span: April - December

1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 at intensive study site #14 (see Figure 8). Station numbers:

April - June stations were as follows:

2, 3 composite 4, 5 composite 6, 7 composite

8, 9 10 composite

June - December stations were as follows:

2, 3, 4, 5 composite 6, 7, 8, 9 composite

Soils (mineralogy) (%)

Category:	251 255 256 257 258 259	Mineral size distribution Montmorillonite Illonite Kaolinite Gibbsite Chlorite	Format:	XX.XX XX.XX XX.XX XX.XX XX.XX
	260	Quartz		XX.XX
	261	K-spar		XX.XX
	262	Plagiclase		XX.XX
	263	Talc		XX.XX
	264	Amph.		XX.XX
	265	Clin.		XX.XX
	266	Calcite		XX.XX
	267	Dolomite		XX.XX

Investigator: 013 Funding code: 006

Technique: 078

Frequency: Once a year

Time span: January

Station numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 at intensive study site #14 (see Figure 8)

Soils (mineralogy)

 Category:
 301
 Total iron (%)
 Format:
 XX.XX

 300
 Extractable iron (%)
 XX.XX

 312
 Organic N
 X.XX EXX

 330
 Organic carbon
 XX.XX

 332
 Organic matter
 XX.XX

Investigator: 013

Funding code: 006

Technique: 078

Frequency: Every week

Time span: April - December

Station numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 at intensive study

site #14 (see Figure 8)

April - June stations were as follows:

2, 3 composite 4, 5 composite 6, 7 composite

8, 9 composite

June - December stations were as follows:

1 2, 3, 4, 5, composite 6, 7, 8, 9 composite 10

Soils (herbicides)

Category: 361 Atrazine (ug/l)

370 Alachlor (ug/2)

Format: X.XX E+XX, X.XX E+XX

Investigator: 026

Funding code: 006

Technique: 077

Frequency: variable

Time span: April - December

Station numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 at intensive study site #14 (see Figure 8)

April - June stations were as follows:

1 2, 3 composite

4, 5 composite 6, 7 composite

8, 9 composite 10

June - December stations were as follows:

2, 3, 4, 5 composite 6, 7, 8, 9 composite

Soils (microbiology)

Investigator: 006 and Kim Perry

Funding code: 002 and work/learn program

Technique: Total viable bacteria and fecal coliforms and

streptococcus were identified as described by

technique codes 53, 54, and 56.

Time span: May 7, May 13, and June 24

Sampling sites: Intensive study site 14 (cornfield) and

Rhode River watershed 109.

Plankton Primary Production and Phosphorus Uptake

Investigator: 002

Funding code: 005 and work/learn program

Technique code: 080

Time and locations: October 22 CBCES dock

November 11 WRIT, RR3T

November 22 RR3T, RR4T

December 8 WRIT

Tidal Marsh Community Metabolism

Investigator: 004

Funding code: 001 and 003

Technique: A clear plexiglass gas exchange chamber is used to seal off a one meter square portion of marsh community down to the

sediments. It is temperature controlled to ambient inside.

Air from a meter or two above the marsh is drawn through the

chamber and changes in CO2 concentration are measured.

Light intensity is monitored. Dark measurements are also

made.

Times: Frequent all day studies are conducted during the growing

season.

Stations: Several plant communities in the high marsh of Kirkpatrick

Marsh.

Corn Plant Height and Leaf Area Indexes

Investigator: 002

Funding code: 006

Technique: All leaves from individual plants selected at random at each

station were measured. The height of the highest part of

the plant was also measured.

Frequency: 20 day intervals during growing season.

Stations: Five of the soil sampling stations on watershed 109 (Figure 8).

Table 10. Height and leaf area index of corn plants on watershed 109 in 1976.

Station	July 2	July 23	August 12	September 7
l Corn height (cm)	105	270	229	267
Leaf area index	-	1.11	2.71	3.30
3 Corn height (cm)	202	292	289	308
Leaf area index	-	3.57	2.96	3.01
5 Corn height (cm)	200	301	258	-
Leaf area index	-	4.39	2.66	2.89
6 Corn height (cm)	117	262	231	231
Leaf area index	2.04	2.97	3.29	2.39
		•		
8 Corn height (cm)	239	357	326	336
Leaf area index	3.20	3.41	3.09	2.95
		3.09	2.94	2.91

Biomass and Nutrient Removal of Corn on Watershed 109

Investigator: 002

Funding code: 006

Technique code: 073

Frequency: Approximately every 20 days during the growing season.

Stations: Five soil stations on watershed 109 (Figure 8).

Table 11. Corn plant populations and nutrient mass (grams/ m^2) withdrawal by corn plants of watershed 109 in 1976

A. Total phosphorus

Days since planting Mean # plants/m² 50 71 112 157 91 (7/23)Station (7/2)(8/12)(9/3)(10/18)4.5 Above ground 1.020 1.593 1.760 7.578 6.215 0.275 Below ground 0.072 0.315 0.135 0.180 Total 1.092 1.908 1.895 7.758 6.489 4.8 3 2.587 Above ground 3.470 2.434 3.805 5.385 Below ground 0.250 0.165 0.269 0.811 0.178 4.282 Total 2.837 2.434 3.970 5.654 3.8 1.017* Above ground 0.445** 1.395 3.085 4.021 Below ground 0.049 0.243 0.369 0.160 0.167 Total 0.494 1.638 3.454 1.197 4.188 Mean total 2.686 2.128 2.584 5.692 5.216 SD 0.629 0.792 1.120 2 4.7 7 4.1

3.7

** No total phosphorus on tassles.

10

^{*} Total phosphorus in kernels omitted.

Table 11. (Continued)

A. Total phosphorus

Days since planting

Station	Mean # plants/m ²	57 (7/2)	78 (7/23)	98 (8/12)	119 (9/3)	164 (10/18)
5	4.1	0.000	0.006	0.007	0.000	0.040
Above ground		2.809	2.226	2.907	2.092	3.042
Below ground		0.299	0.259	0.123	0.148	0.074
Total		3.108	2.485	3.030	2.240	3.116
8	3.6					
Above ground	3.0	13.359**	2.318	4.227	6.008	3.715
Below ground		2.050	0.202	0.158	0.263	0.083
Total		15.411	2.520	4.385	6.271	3.798
Mean total		9.260	2.503	3.708	4.256	3.457
4	3.9					

^{9 3.9}

^{**} No total phosphorus data on tassles.

Table 11. (Continued)

B. Total Kjeldahl nitrogen

		Days after planting						
Station	Mean # plants/m ²	50 (7/2)	71 (7/23)	91 (8/12)	112 (9/3)	157 (10/18)		
l Above ground	4.5	8.280	8.510	10.350	36.810	24.930		
Below ground		0.536	0.315	0.135	1.570	0.275		
Total		8.82	8.825	10.480	38.35	25.20		
3 Above ground	4.8	13.94	18.99	8.707	17.57	28.680		
Below ground		1.60	0.25	0.178	1.40	0.269		
Total		15.54	19.24	8.885	18.94	28.950		
6 Above ground	3.8	4.222	12.47	18.74	7.78*	18.290		
Below ground		0.049	0.243	0.369	0.16	0.167		
Total		4.271	12.710	19.110	7.94	18.460		
Mean total		9.54	13.59	12.83	28.65	24.2		
		5.67	5.26	5.50	-	5.32		
2	4.7							
7	4.1							

10

3.7

^{*} Nitrogen mass of kernels omitted.

Table 11. (Continued)

B. Total Kjeldahl nitrogen

Days a	fter p	lanti	ng
--------	--------	-------	----

Station	Mean # plants/m ²	57 (7/2)	78 (7/23)	98 (8/12)	119 (9/3)	164 (10/18)
5 Above ground	4.1	9.464	16.79	11.07	30.46	17.02
Below ground		0.976	0.258	0.123	0.148	0.074
Total		10.44	17.04	11.19	30.61	17.71
8 Above ground	3.6	15.11	16.45	12.87	20.00	22.72
Below ground		0.306	0.202	0.158	0.853	0.083
Total		15.412	16.65	13.03	20.86	22.80
Mean total		12.93	16.85	12.11	25.74	20.28

4 3.9

9 3.9

Table 12. Total phosphorus concentrations in corn plant parts (mg/g dry wt) on watershed 109.

A. July 2, 1976

Total phosphorus (mg/g dry wt)

Roots	Stalks	Leaves	Tassles	Ears	Husks
2.38	3.17	4.02	Station 1 -	-	-
5.09	3.09	8.66	Station 3 6.61	-	1
5.11	1.97	10.02	Station 5 11.34	-	-
1.44	1.74	2.56	Station 6 -	-	-
2.15	2.36	3.95	Station 8 -	-	-
	B. July 23, 1	976.			
3.45	2.57	2.67	Station 1 3.71	4.68	4.00
2.81	1.78	2.91	Station 3 1.72	3.77	3.06
2.23	1.76	2.00	Station 5 2.72	4.22	2.94
2.42	2.26	2.83	Station 6 2.17	No sample	2.03
2.51	2.60	2.49	Station 8 2.31	4.80	2.81

Table 12. (Continued)

C. August 12, 1976

Total phosphorus (mg/g dry wt)

Roots	Stalks	Leaves	Tassles	Kernels	Cobs	Husks
1.28	1.77	2.60	Station 1 1.56	2.58	2.76	1.36
1.28	2.17	3.82	Station 3 1.63	2.58	1.48	1.53
1.18	1.13	3.68	Station 5 1.37	3.14	3.77	1.52
2.14	2.68	3.57	Station 6 2.16	None	4.00	1.44
1.13	2.54	3.51	Station 8 1.99	2.82	2.11	1.93
	D. Septem	ber 3, 1976				
0.9	2.1	4.2	Station 1 1.1	3.4	5.5	2.5
1.0	1.0	3.5	Station 3 1.7	4.1	7.8	2.8
1.0	0.7	3.2	Station 5 1.0	4.8	6.4	1.4
1.3	0.7	2.4	Station 6 1.3	-	-	1.0
1.6	3.0	4.1	Station 8 0.9	4.6	5.8	1.5

Table 12. (Continued)

E. October 18, 1976

Total phosphorus (mg/g dry wt)

Roots	Stalks	Leaves	Tassles	Kernels	Cobs	Husks
0.90	2.4	3.0	Station 1 0.63	4.02	0.93	2.5
0.97	1.85	2.05	Station 3 0.962	3.95	0.83	2.02
0.57	0.633	1.07	Station 5 0.955	3.49	0.67	0.679
1.32	3.46	3.26	Station 6 0.582	4.33	2.04	2.43
0.79	1.14	2.74	Station 8 0.965	3.46	0.77	1.01

Table 13. Total Kjeldahl nitrogen concentrations in corn plant parts (mg/g dry wt) on watershed 109.

A. July 2, 1976

Kjeldahl nitrogen (mg/g dry wt)

Roots	Stalks	Leaves	Tassles	Ears	Husks
		S	tation 1		
17.75	16.54	31.73	•	-	-
10.01	13.68	32.76	tation 3 44.75	-	-
17.31	12.84	S1 24.96	ation 5 31.71	-	-
7.87	7.49	29.28	23.11		-
14.48	12.31	36.83	cation 8 27.52	-	-
	B. July 23, 1	976			
18.01	5.44	32.24	ation 1 34.32	30.15	17.24
11.08	5.97	39.56	ation 3 18.02	21.47	10.65
7.33	6.61	29.70 St	ation 5 13.14	27.71	21.35
9.53	7.49	46.28	ation 6 15.47	No sample	17.06
12.41	8.06	St 34.84	ation 8 13.10	29.17	15.30

Table 13. (Continued)

C. August 12, 1976

Kjeldahl nitrogen (mg/g dry wt)

Roots	Stalks	Leaves	Tassles	Kernels	Cobs	Husks
8.47	8.26	21.7	Station 1 8.55	14.7	3.53	6.71
3.42	3.10	21.4	Station 3 10.9	12.2	4.51	2.21
5.61	2.04	18.1	Station 5 6.79	14.8	33.0	8.39
9.50	4.23	25.6	Station 6 13.1	-	28.5	8.08
2.46	1.44	21.3	Station 8 9.28	13.4	10.6	4.80
	D. Septem	ber 3, 1976				
7.9	6.0	18.8	Station 1 5.7	23.9	5.5	5.2
8.5	6.2	17.9	Station 3 9.3	18.1	7.8	9.4
4.3	3.5	20.1	Station 5 10.4	20.0	6.4	9.0
10.6	4.6	18.0	Station 6 8.8	-	-	4.2
5.2	7.3	21.5	Station 8 5.9	13.2	5.8	4.8

Table 13. (Continued)

E. October 18, 1976

Kjeldahl nitrogen (mg/g dry wt)

Roots	Stalks	Leaves	Tassles	Kernels	Cobs	Husks
6.4	6.4	10.9	Station 1 8.3	16.0	4.0	10.8
6.2	7.8	8.9	Station 3 6.8	21.3	3.4	10.6
8.7	4.8	10.3	Station 5 7.9	18.5	6.3	9.4
14.1	12.9	14.4	Station 6 12.5	21.3	8.1	8.5
9.5	9.0	16.5	Station 8	18.9	5.4	4.6

Table 14. Corn dry weight (g/plant) and total nutrient content (g/plant) for various plant parts on watershed 109.

A. July 2, 1976 - (day 50 for stations 1, 3, and 6; day 57 for stations 5 and 8).

	1	3	5	6	8	Mean	sd	N:P
Husks	Not pre	sent yet						
Cobs	Not pre	sent yet						
Kernels	Not pre	sent yet						
Tassles Dry mass Total P Kj. N	No sample	1.36 .009 .067	2.108 .024 .067	2.08 *	0.89 * .025	1.61 .017 .052	0.59	6.8:1
Leaves Dry mass Total P Kj. N	43.2 .174 1.370		51.8 .519 1.292	.071	.283	.310	.56	11.4:1
Stalks Dry mass Total P Kj. N	28.5 .053 .471		74.0 .142 .950	.046	85.3 .201 1.051	.130	27.2 .078 .37	12.2:1
Roots Dry mass Total P Kj. N	6.7 .016 .119	33.2 .169 .333	13.8 .073 .238	.013	.085	.071	.27	8.3:1
Total Dry mass Total P Kj. N	78.4 .243 1.960	160.7 .892 3.237	141.7 .758 2.547	64.7 .130* 1.124	197.1 .569* 4.281	.518	55.9 .326 1.21	11.2:1

^{*} No data on tassles

Table 14. (Continued)

B. July 23, 1976 - (day 71 for stations 1, 3, and 6; day 78 for stations 5 and 8).

	Or and the property country of the	1	3	5	6	8	Mean	sd	N:P
Husks Dry mass Total P Kj. N		17.0 .068 .293	36.7 .112 .391	20.9 .061 .446	18.0 .037 .307	33.0 .093 .505	25.1 .074 .390	9.1 .03 .090	6.6:1
Ears Dry mass Total P Kj. N		4.06 .019 .122	13.0 .051 .279		No sample	16.4 • .081 .418		7.3	13.4:1
Tassles Dry mass Total P Kj. N		6.70 .025 .209	4.96 .0085 .089	.017	4.48 .010 .069		5.34 .014 .100	1.02 .006 .060	22:1
Leaves Dry mass Total P Kj. N		17.3 .047 .258	60.7 .177 2.401	64.3 .129 1.910	44.9 .127 2.078	69.3 .173 2.414	51.3 ·131 1.870	21.0 .052 .770	33:1
Stalks Dry mass Total P Kj. N		75.8 .195 .412	107.0 .190 .639	139.0 .245 .919				25.0 .044 .210	7:1
Roots Dry mass Total P Kj. N		20.4 .070 .367	18.4 .052 .209	28.2 .063 .206	26.5 .064 .253		23.1 .062 .260	4.1 .006 .066	9.3:1
Total Dry mass Total P Kj. N	1	41.3 .424 1.961	240.8 .591 4.008	280.0 .606 4.157	.431	256.3 .700 4.625	202.5 .550 3.619	80.0 .120 1.03	14.6:1

Table 14. (Continued)

C. August 12, 1976 - (day 91 for stations 1, 3, and 6; day 98 for stations 5 and 8).

		_	0001011					
**************************************	1	3	5	6	8	Mean	sd	N/P
Husks Dry mass Total P Kj. N	18.3 .025 .123	21.7 .033 .146	36.4 .055 .305	29.4 .042 .237	.075	29.0 .046 .200	9.0 .020 .073	9.6
Cobs Dry mass Total P Kj. N	19.9 .054 .070	26.9 .040 .121	10.2 .038 .337	22.0 .088 .627		21.3 .056 .235	7.01 .020 .140	9.3
Kernels Dry mass Total P Kj. N	37.2 .096 .547	46.5 .120 .567	67.1 .210 .993	Ē	115.0 .324 1.541	66.5 .188 .912		10.7
Tassles Dry mass Total P Kj. N	3.5 .005 .030	2.9 .005 .032	6.1 .008 .041	4.3 .009 .056	.0 1	4.48 .008 .042	1.36 .003 .012	11.6
Leaves Dry mass Total P Kj. N	39.2 .101 .851	31.2 .119 .668		62.5 .223 1.600	.190	.156	12.7 .050 .386	14.2
Stalks Dry mass Total P	61.9 .110	70.3 .153	93.5		203.0			2.9:1
Roots Dry mass Total P Kj. N	23.1 .030 .196	28.9 .037 .099	25.1 .030 .141		.044		9.6 .028 .140	8.9:1
Total Dry mass Total P Kj. N	203.0 .421 2.328		278.0 .739 2.730	.909	484.0 1.218 3 3.620	305.0 .759 3.112		9.1:1

^{*} No kernels.

Table 14. (Continued)

D. September 3, 1976 - (day 112 for stations 1, 3, and 6; day 119 for stations 5 and 8).

	1	3	5	6	8	Mean	sd	N/P
Husks Dry mass Total P Kj. N	70.1 .175 .470	37.2 .104 .350	54.8 .077 .543	73.2 .073 .307	32.1 .048 .154	48.6 .101 .379	17.3 .054 .170	8.3
Cobs Dry mass Total P Kj. N	58.5 .094 .322	34.1 .095 .266	.59.4 .083 .380		44.8 .040 .307	49.2 .078 .260	12.1 .026 .307	8.7
Kernels Dry mass Total P Kj. N	201.0 .683 4.804	65.4 .268 1.184	231.0 1.109 4.620		221.0 1.017 2.917	180.0 .769 3.381	77.0 .381 1.693	9.7
Tassles Dry mass Total P Kj. N	4.55 .005 .026	2.3 .004 .021	4.9 .005 .051	4.6 .006 .040	3.0 .003 .018	3.87 .005 .031	1.32 .001 .014	13.7
Leaves Dry mass Total P Kj. N	70.0 .294 1.316	43.8 .153 .784	67.0 .214 1.347	56.0 .134 1.008	73.1 .300 1.572	62.0 .219 1.205	12.0 .077 .310	12.1
Stalks Dry mass Total P Kj. N	206.0 .433 1.236	169.0 .169 1.048	105.0 .074 .368	85.7 .060 .394	.261	131.0 .199 .736	54.0 .154 .39	8.2
Roots Dry mass Total P Kj. N	44.2 .040 .349	34.4 .0344 .292	36.3 .036 .156	32.2 .042 .341	45.5 .073 .237	38.4 .045 .275	6.0 .016 .080	13.5
Total Dry mass Total P Kj. N	654.0 1.724 8.523		558.0 1.600 7.465	.315	507.0 1.742 5.794	526.0 1.473 6.432	111.0 .435 2.003	9.1

^{*} No kernels.

Table 14. (Continued)

E. October 18, 1976 - (day 157 for stations 1, 3, and 6; day 164 for stations 5 and 8).

- China da anno anno anno anno anno anno anno	1	3	5	6	88	Mean	sd	N/P
Husks Dry mass Total P Kj. N	38.7 .097 .418	26.1	11.4	58.0		36.6 .304	18.4	9.6
Cobs Dry mass Total P Kj. N	49.4 .046 .198	35.8 .030 .122	26.7 .018 .168	32.4 .066 .262	.028	36.2 .038 .190	8.4 .019 .051	11.1
Kernels Dry mass Total P Kj. N	192.0 .772 3.072	192.0 .758 4.090	185.0 .646 3.423	57.4 .249 1.223	200.0 .692 3.780	165.0 .520 3.118	61.0 .32 1.126	13.2
Tassles Dry mass Total P Kj. N	1.54 .001 .013	1.50 .001 .010	3.16 .003 .025	2.43 .001 .030	1.57 .002 .017	2.04 .002 .019	.736 .001 .008	26
Leaves Dry mass Total P Kj. N	52.5 .158 .572	35.3 .072 .314	29.5 .032 .304	59.3 .193 .854		44.1 .115 .554	12.2 .065 .245	10.7
Stalks Dry mass Total P Kj. N	128.0 .307 .891	110.0 .204 .858	.035	118.0 .408 1.522	.140	107.0 .219 .929	29.5 .145 .455	9.4
Roots Dry mass Total P Kj. N	67.9 .061 .435	58.2 .056 .361	31.0 .018 .270	33.6 .044 .474	.023	43.9 .040 .363	17.9 .019 .092	20
Total Dry mass Total P Kj. N	530.0 1.442 5.599			703.0 1.102 4.858	1.055	515.0 1.107 5.431	129.0 .245 .827	10.8

Table 15. Dry weight to fresh plant weight ratios for corn plant parts for watershed 109.

A. July 2, 1976

Roots	Stalks	Leaves	Ţ	Tassles	Ears	Husks
.16	.11	.24	Station	1	-	-
.22	.10	.28	Station	3.14	-	-
.15	.105	.23	Station	5 .17	-	-
.195	.099	.271	Station	8 .298	-	-
	B. July 23, 1976					
.21	.17	.33	Station	1 .54	.14	.15
.21	.17	.34	Station	3 .42	.11	.22
.28	.16	.27	Station	5.43	.13	.13
.21	.16	.21	Station	.32		.20
.21	.15	.28	Station	8 .31	.10	.20

Table 15. (Continued)

C. August 12, 1976

Roots	Stalks	Leaves	Tassles	Kernels	Cobs	Husks
.186	.207	.279	Station 1 .636	.400	.184	.253
.177	.191	.259	Station 3 .487	.415	.198	.247
.179	.267	.239	Stations 5 .533	. 447	.058	.241
.145	.237	.308	Station 6 .429	None	.141	.203
.166	.261	. 252	Station 8 .589	. 523	.216	.259
	D. Septem	ber 3, 1976				
.20	.23	. 44	Station 1 .91	.68	.40	.46
.27	.31	.30	Station 3 .91	. 58	.21	.27
.18	.19	.50	Station 5 .82	.64	.35	.33
.18	.21	. 50	Station 6	-		.40
.19	.22	.71	Station 8 .86	.64	.42	.35

Table 15. (Continued)

E. October 18, 1976

Roots	Stalks	Leaves	Tassles	Kernels	Cobs	Husks
.22	.27	.84	Station 1 .96	.82	.70	.65
.24	.20	.82	Station 3 .94	.78	. 58	. 57
.18	.26	.67	Station 5 .93	.82	.67	.50
.16	.24	.83	Station 6 .90	.76	.58	.65
.18	.27	.62	Station 8 .87	.80	.59	.81

Weed Population and Leaf Data

Investigator: 002

Funding code: 006

Technique:code: 073

Table 16. Checklist of weeds found in cultivated fields of watershed 109 in 1976.

Common name	Scientific name
Bermuda grass	Cynodon sp.
Blackberry	Rubus sp.
Foxtail grass	Setaria sp.
Grape	Vitis sp.
Horse nettle	Solanum carolinense
Ironweed	Vernonia noveboracensis
Milkweed	Asclepias sp.
Morning glory	Ipomea hederacea
Onion	Allium sp.
Panic grass	Panicum sp.
Partridge pea	Cassia fasciculata
Pokeweed	Phytolacca americana
Trumpet creeper	Campsis radicans
Virginia creeper	Parthenocissus sp.

Table 17. Weed data for watershed 109 in fall of 1976.

Solanum carolinense

Station number	Number of plants $(\#/m^2 \pm \sigma)$,	Aboveground dry wt. $(g/m^2 \pm \sigma)$	Leaf area index (m ² /m ² ± σ)	Leaf number (#/m ² ± σ)
1 2 3	6.68 ± 7.76 0	14.1 ± 20.2 0 0	.177 ± .258	90.7 ± 101 0 0
2 3 4 5 6 7 8 9	6.69 ± 8.94 2.22 ± 4.52 0	18.8 ± 40.3 1.82 ± 5.32	.214 ± .467 .031 ± .092	64.4 ± 112 16.0 ± 36.5
7 8	.444 ± 1.33	1.02 ± 3.07	.003 ± .009	2.22 ± 6.67
9 10	5.32 ± 5.29 6.67 ± 12.8	15.2 ± 23.1 24.3 ± 46.7	.088 ± .147 .155 ± .319	23.6 ± 25.5 101 ± 199
Total	2.80 ± 3.14	7.52 ± 9.50	.067 ± .085	29.8 ± 40.2
		Cassia fascicul	ata	
1 2 3 4 5 6 7 8 9	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 333 ± 1000
Total	.089 ± .281	.307 ± .971	.001 ± .003	33.3 ± 105
		Parthenocissus	sp.	
1 2 3 4 5 6 7 8 9	0 0 0 0 0 0 .889 ± 2.67 1.33 ± 4.00 0	0 0 0 0 0 0 0 .889 ± 2.67 2.67 ± 8.00 0	0 0 0 0 0 0 0 .040 ± .120 .023 ± .068	0 0 0 0 0 0 125 ± 375 15.6 ± 46.7 0
Total	.222 ± .479	.356 ± .860	.006 ± .014	14.1 ± 39.3

Table 17. (Continued)

V	j	t	i	S	S	p.	

Station number	Number of plants $(\#/m^2 \pm \sigma)$	Aboveground dry wt. (g/m² ± σ)	Leaf area index (m ² /m ² ± σ)	Leaf number (#/m ² ± σ)
1 2 3 4 5 6 7 8 9	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 2.76 ± 8.27	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 39.1 ± 117
Total	.133 ± .421	.276 ± .873	.004 ± .012	3.91 ± 12.4
		Rubus sp.		
1 2 3 4 5 6 7 8 9	0 0 .444 ± 1.33 0 0 0 .444 ± 1.33 .889 ± 1.76 1.33 ± 4.00 4.44 ± 5.81	0 0 2.89 ± 8.67 0 0 0 .667 ± 2.00 .889 ± 1.76 10.5 ± 31.6 5.82 ± 7.98	0 0 .003 ± .009 0 0 0 .009 ± .028 .007 ± .015 .129 ± .388 .089 ± .145	0 0 2.67 ± 8.00 0 0 0 4.44 ± 13.3 4.00 ± 9.38 21.8 ± 65.3 25.3 ± 34.4
Total	.755 ± 1.37	2.08 ± 3.51	.024 ± .046	5.82 ± 9.54
		Asclepias sp.	_	
1 2 3 4 5 6 7 8 9	0 0 0 0 .444 ± 1.33 0 2.67 ± 4.47 2.22 ± 5.33 .444 ± 1.33	0 0 0 0 6.89 ± 20.7 0 8.71 ± 17.0 26.3 ± 61.7 5.07 ± 15.2	0 0 0 0 .049 ± .146 0 .113 ± .216 .041 ± .084 .045 ± .136	0 0 0 0 9.78 ± 29.3 0 62.2 ± 144 4.89 ± 9.75 5.33 ± 16.0
Total	.578 ± 1.01	4.70 ± 8.3	.027 ± .043	8.22 ± 19.3

Table 17. (Continued)

Grass (unidentified)

Station number	Number of plants $(\#/m^2 \pm \sigma)$	Aboveground dry wt. $(g/m^2 \pm \sigma)$	Leaf area index (m ² /m ² ± σ)	Leaf number (#/m ² ± σ)
1 2 3	3.56 ± 10.7 0 .444 ± 1.33	1.29 ± 3.87 0 .044 ± .133	.022 ± .066 0 .000 ± .001	258 ± 775 0 1.78 ± 5.33
2 3 4 5 6 7 8	.444 ± 1.33 0 0 0	.018 ± .053 0 0	.000 ± .001	.889 ± 2.67 0 0
9 10	.444 ± 1.33	.044 ± .133	.000 ± .001	.889 ± 2.67
Total	.489 ± 1.10	.140 ± .405	.002 ± .007	26.2 ± 81.5
		Sedge (unidentif	ied)	
1 2 3 4 5 6 7 8 9	0 0 0 0 .889 ± 2.67 0 0 0	0 0 0 0 .489 ± 1.47 0 0 0	0 0 0 0 .008 ± .022 0 0 0	0 0 0 0 5.78 ± 17.33 0 0 0
Total	.089 ± .281	.049 ± .155	.001 ± .003	.578 ± 1.83
		<u>Setaria sp.</u>		
1 2 3	.444 ± 1.33 .444 ± 1.33 .444 ± 1.33	.133 ± .40 .133 ± .40 .133 ± .40	.001 ± .001 .001 ± .001 .000 ± .001	3.56 ± 10.7 3.56 ± 10.7 4.0 ± 12.0
2 3 4 5 6 7 8 9	0 3.11 ± 7.94 26.7 ± 30.4 0 0 0	0 1.16 ± 2.92 37.0 ± 61.4 0 0 0	.011 ± .026 .371 ± .710 0 0	27.6 ± 64.4 195 ± 245 0 0 0
Tota1	3.11 ± 8.34	3.86 ± 11.7	.038 ± .117	23.4 ± 60.9

Table 17. (Continued)

Panicum sp.

Station number	Number of plants (#/m ² ± σ)	Aboveground dry wt. (g/m² ± σ)	Leaf area index (m ² /m ² ± σ)	Leaf number (#/m ² ± σ)		
1 2 3 4 5 6 7 8 9	0 0 0 .444 ± 1.33 .444 ± 1.33 1.33 ± 4.0 0 0 0 0 4.00 ± 12.0	0 0 0 .267 ± .800 1.96 ± 5.87 .133 ± .400 0 0 0 0	0 0 0 .008 ± .023 .019 ± .056 .004 ± .011 0 0 0 13.8 ± 41.3	0 0 0 3.11 ± 9.33 5.33 ± 16.0 7.56 ± 22.7 0 0 0 17.3 ± 52		
Total	.622 ± 1.26	.245 ± .609	1.38 ± 4.36	3.33 ± 5.61		
Campsis radicans						
1 2 3 4 5 6 7 8 9	.444 ± 1.33 .444 ± 1.33 3.11 ± 4.37 13.8 ± 15.0 .888 ± 1.76 7.56 ± 9.68 0 2.67 ± 2.00 6.67 ± 9.16 4.44 ± 7.60	3.02 ± 9.07 3.02 ± 9.07 2.93 ± 3.92 21.5 ± 33.9 .532 ± 1.13 30.1 ± 23.4 0 3.02 ± 3.23 9.32 ± 13.2 11.4 ± 27.4	.006 ± .019 .006 ± .019 .023 ± .039 .075 ± .089 .005 ± .011 .034 ± .041 0 .016 ± .027 .013 ± .021 .006 ± .011	12.9 ± 38.7 12.9 ± 38.7 54.7 ± 96.8 194 ± 267 5.32 ± 10.6 96.9 ± 128 0 12.9 ± 12.8 22.7 ± 40.4 30.2 ± 63.9		
Total	4.00 ± 4.34	8.48 ± 10.0	.018 ± .022	44.3 ± 60.0		
Ipomea hederacea						
1 2 3 4 5 6 7 8 9	0 0 2.22 ± 5.32 .444 ± 1.33 4.88 ± 7.69 1.78 ± 2.11 .889 ± 1.76 .889 ± 1.76 .889 ± 1.76	0 0 6.62 ± 19.6 .044 ± .133 3.38 ± 5.84 .668 ± 1.11 .800 ± 1.99 1.33 ± 2.91 .267 ± .566 2.18 ± 6.10	0 0 .004 ± .010 .001 ± .003 .027 ± .048 .003 ± .004 .004 ± .008 .004 ± .008 .001 ± .003 .027 ± .081	0 14.2 ± 37.0 1.33 ± 4.00 41.8 ± 53.4 6.67 ± 8.48 6.67 ± 13.6 5.33 ± 10.6 4.44 ± 10.7 14.2 ± 37.0		
Total	1.29 ± 1.44	1.53 ± 2.10	.007 ± .011	9.46 ± 12.4		

Table 17. (Continued)

Allium sp.

Station number	Number of plants (#/m ² ± σ)	Aboveground dry wt. (g/m² ± σ)	Leaf area index (m ² /m ² ± σ)	Leaf number (#/m ² ± σ)		
1 2 3 4 5 6 7 8 9	0 0 4.00 ± 12.0 0 1.33 ± 2.00 .444 ± 1.33 2.22 ± 3.53 4.89 ± 5.93 .444 ± 1.33 1.78 ± 2.91	0 0 .133 ± .400 0 .028 ± .052 .022 ± .067 .068 ± .100 .194 ± .283 .011 ± .033 .078 ± .120	0 0 * * * * * * * * * * * *	0 0 4.00 ± 12.0 0 1.33 ± 2.00 .444 ± 1.33 2.22 ± 3.53 5.77 ± 6.96 .444 ± 1.33 2.67 ± 4.00		
Total	1.51 ± 1.74	.053 ± .066		1.69 ± 1.97		
Dicots (unidentified)						
1 2 3 4 5 6 7 8 9	0 0 0 .444 ± 1.33 0 0 .889 ± 1.76 0	0 0 0 .178 ± .533 0 0 .996 ± 2.78 0	0 0 0 .003 ± .008 0 0 .001 ± .002 0	0 0 0 4.44 ± 13.3 0 7.11 ± 21.3 0		
Total	.133 ± .300	.117 ± .314	.000 ± .001	1.16 ± 2.52		
Total weeds per station						
1 2 3 4 5 6 7 8 9	7.56 ± 7.06 .889 ± 1.76 10.7 ± 16.5 21.8 ± 10.6 18.7 ± 18.0 37.8 ± 37.9 8.44 ± 8.35 12.9 ± 11.8 15.6 ± 13.3 21.3 ± 19.9	18.5 ± 18.8 3.16 ± 9.03 12.8 ± 21.7 39.9 ± 44.8 16.5 ± 21.3 68.0 ± 64.8 13.2 ± 18.4 34.4 ± 60.1 45.0 ± 49.8 40.0 ± 51.9	.206 ± .242 .010 ± .021 .031 ± .050 .300 ± .445 .158 ± .188 .412 ± .692 .170 ± .288 .091 ± .105 .277 ± .414 .326 ± .376	365 ± 739 16.4 ± 38.8 77.3 ± 135 263 ± 241 129 ± 126 306 ± 209 97.4 ± 144 47.1 ± 58.4 79.1 ± 85.5 563 ± 945		
Total	15.6 ± 10.2	29.1 ± 19.7	.198 ± .132	194 ± 175		

^{*} Leaf area not determined.

Table 17. (Continued)

Station	Sampling dates
1	August 23, 1976
2	September 8, 1976
3	September 8, 1976
4	September 7, 1976
5	August 23, 1976
6	September 8, 1976
7	September 8, 1976
8	September 7, 1976
9	September 7, 1976
10	September 8, 1976

Corn Plant Heights and Soil Coverage on Watershed 109

Investigator: 002

Funding code: 006

Technique code: 073

Corn height and total plant soil coverage for watershed 109 during the growing season (1976). Figure 10.

Figure 11. Relationship of corn plant height to plant soil coverage for watershed 109.

Sunlight - Incident Total White Light Intensities

<u>Technique</u> - Detector was an Eppley precision pyranometer with a clear quartz dome mounted on the top of west side of main building. Data points were recorded every 5 minutes.

Research Funding: Environmental Sciences Program.

AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min)
Day of 1976

Table 18. JANUARY 1976.

Hour											
of Day	٢	2	2	4	5	9	7	ω	6	10	1
500- 600	0.01	0.01	0.01	00.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
002 -009	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
700- 800	0.01	90.0	0.01	0.03	0.04	0.05	0.01	0.01	0.03	0.03	0.02
800- 900	0.15	0.25	0.03	0.23	0.22	0.31	0.03	0.01	0.24	0.23	0.11
900- 1000	0.42	0.39	0.04	0.42	0.45	0.54	0.05	90.0	0.27	0.46	0.13
1000- 1100	09.0	0.46	0.05	0.63	0.64	99.0	60.0	0.12	0.37	0.65	0.20
1100- 1200	0.71	0.38	90.0	0.69	0.72	0.71	0.12	0.21	0.74	0.73	0.15
1200- 1300	0.71	0.38	0.07	0.74	0.74	0.73	0.10	0.31	0.74	0.75	0.15
1300- 1400	0.64	0.29	0.08	99.0	99.0	0.65	0.09	0.54	19.0	0.67	0.17
1400- 1500	0.46	0.22	0.07	0.49	0.49	0.49	90.0	0.24	0.51	0.49	0.12
1500- 1600	0.25	0.13	0.04	0.27	0.27	0.28	0.05	0.08	0.29	0.24	90.0
1600- 1700	0.05	0.03	0.01	90.0	0.04	0.07	0.02	0.04	0.07	0.04	0,02
1700- 1800	00.00	0.01	0.01	0.01	0.01	0.01	0.01	00.00	0.01	0.01	0.01
1800- 1900	00.00	0.01	0.01	0.01	0.01	00.00	0.01	00.00	00.00	00.00	0.01
1900- 2000	00.00	0.01	0.01	0.01	0.01	00.00	0.01	00.00	00.00	00.00	0.01
Total	244.0	161.9	34.3	258.3	262.2	273.5	45.6	103.1	242.0	262.1	73.8

⁽g-cal/cm²-day)

avalue includes some estimated hourly values.

Table 18. JANUARY 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min)

Day of 1976

Hour				•							
of Day	12	13	14	15	16	17	18	19	50	21	22
500- 600	0.01	00.00	00.00	00.00	00.00	0.01	0.01	00.00	0.01	0.01	0.01
002 -009	00.00	00.00	00.00	00.00	00.00	0.01	0.01	0.01	0.01	0.01	0.01
700- 800	0.01	0.03	0.03	0.03	0.02	0.02	0.04	0.05	0.02	0.03	0.04
800- 900	0.16	0.22	0.20	0.22	90.0	60.0	0.23	0.28	0.03	60.0	0.24
900- 1000	0.42	0.44	0.44	0.45	0.12	0.22	0.47	0.50	90.0	0.12	0.48
1000- 1100	0.65	0.61	0.63	0.65	0.12	0.47	0.67	0.67	0.09	0.26	0.48
1100- 1200	0.70	0.73	0.74	0.75	0.22	0.57	92.0	0.77	0.13	0.24	0,68
1200- 1300	0.75	0.61	0.75	0.76	0.27	0.43	0.79	0.79	0.20	0.15	0.63
1300- 1400	99.0	0.38	0.70	0.69	0.26	0.33	0.72	0.73	0.10	0.15	0.78
1400- 1500	0.48	0.22	0.54	0.51	0.32	0.24	0.56	0.57	0.08	0.10	0.63
1500- 1600	0.25	0.10	0.32	0.17	0.19	0.12	0.33	0.35	0.07	0.11	0.40
1600- 1700	90.0	0.01	0.09	0.05	90.0	0.07	0.10	0.11	0.04	90.0	60.0
1700- 1800	00.00	00.00	00.00	00.00	00.00	0.01	0.01	0.01	0.01	0.01	0.01
1800- 1900	00.00	00.00	00.00	00.00	0.01	0.01	00.00	0.01	0.01	00.00	0.01
1900- 2000	00.00	00.00	00.00	00.00	0.01	0.01	00.00	0.01	0.01	00.00	0.01
Total	250.7	203,4	268.4	256.9	102.2	159.4	286.4	297.2	57.7	86.5	273.1
(g-cal/cm ² -day)											

(g-cal/cm⁻-day) avalue includes some estimated hourly values.

m-min)	
(g-cal/cm ²	2
VERAGE HOURLY LANGLEYS	107 of 107
HOURLY	ç
AVERAGE	

Table 18. JANUARY 1976.

																•		
	31	00.00	00.00	0.02	60.0	0.28	0.31	0.19	0.22	0.20	0.25	0.16	90.0	0.01	0.01	0.01	111.8	
	30	00.00	00.00	0.02	0.11	0.22	0.46	0.59	99.0	0.35	0.19	0.09	0.07	0.01	00.00	00.00	222.0 167.8	
	29	00.00	00.00	0.03	0.18	0.46	99.0	0.78	0.78	0.54	0.09	0.09	0.07	0.01	00.00	00.00	222.0	
	28	00.00	00.00	0.04	0.23	0.46	0.67	0.79	0.83	0.77	0.63	0.38	0.15	0.01	00.00	00.00	299.8	
1	27	00.00	00.00	00.00	0.01	0.03	0.05	0.05				0.03	0.01	0.01	00.00	00.00	23.6	
+ C C + C + C + C + C + C + C + C + C +	26	0.01	0.01	0.01	0.04a	0.06a	0.08ª	0.15a	0.28a	0.32a	0.14a	0.13a	0.018	00.00	00.00	00.00	74.4	
	25	0.01	0.01	0.04a	0.19a	0,28a	0.38a	0.36a				0.02ª	0.02a	00.00	00.00	00.00	107.4	
	24	0.01	0.01	0.02	0.20	0.45	0.49	0.65	0.74	0,68	0.53	0.33	0.12	0.01	0.01	0.01	260,4	
	23	0.01	0.01	0.04	0.23	0.47	0.65	0.50	0.41	0.43	0.28	0.33	0.16	0.02	0.01	0.01	218.8	
Hour	of Day	500- 600	002 -009	700- 800	800- 900	900- 1000	1000- 1100	1100- 1200	1200- 1300	1300- 1400	1400- 1500	1500- 1600	1600- 1700	1700- 1800	1800- 1900	1900- 2000	Total	$(g-cal/cm^2-day)$

⁽g-cal/cm⁻-day)

avalue includes some estimated hourly values.

Table 18. FEBRUARY 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm²-min) Day of 1976

Hour					Day or	1970	0					
of Day		32	33	34	35	36	37	38	39	40	41	42
500- (900	00.00	00.00	00.00	00.00	0.01	0.01	0.01	00.00	00.00	0.01	00.00
-009	700	00.00	00.00	0.01	00.00	0.01	0.01	0.01	00.00	00.00	0.01	00.00
	300	0.01	0.05	0.03	0.12	0.02	0.01	90.0	0.04	0.07	90.0	00.00
800-	006	0.04	0.28	0.07	0.31	60.0	0.03	0.29	0.30	0.30	0.33	90.0
900- 10	1000	0.08	0.47	0.12	0.33	0.47	0.05	0.41	0.55	0.56	0.38	0.19
1000- 1	1100	0.20	0.72	0.18	0.62	0.46	90.0	0.62	0.74	0.76	0.74	0.26
1100- 12	1200	0.21	0.82	0.32	0.78	0.37	0.09	0.83	0.86	0.88	0.83	0.21
1200- 13	1300	0.27	0.89	0.57	0.51	0.44	0.10	96.0	0.91	0.91	0.82	0.22
1300- 14	1400	0.16	0.83	09.0	0.43	0.50	0.10	0.80	0.83	0.86	0.64	0.23
1400- 15	1500	0.14	0.68	0.41	0.43	0.31	0.15	0.68	0.68	0.71	0.59	0.34
1500- 16	1600	0.10	0.45	0.39	0.41	0.20	0.13	0.47	0.23	0.48	0.32	0.48
1600- 17	1700	0.04	0.19	0.18	0.17	0.09	0.05	0.21	0.08	0.22	0.17	0.22
1700- 18	1800	00.00	0.02	0.02	0.01	0.02	0.02	0.02	_	0.02	0.03	0.02
1800- 19	1900	00.00	00.00	00.00	00.00	0.01	0.01	00.00	00.00	00.00	0.01	00.00
1900- 20	2000	00.00	00.00	00.00	00.00	0.01	0.01	00.00	00.00	00.00	00.00	00.0
La+o⊓		77 5		725 / 176 / 251 1	251 1	181	بر م	325 9	317 3	347 5	298.9 135.1	135.1

77.5 325.4 176.0 251.1 184.4 $(g-cal/cm^2-day)$ and a some estimated hourly values.

(g-cal/cm ² -min)	
AVERAGE HOURLY LANGLEYS	Day At 1076
HOURLY	È
AVERAGE	

Table 18. FEBRUARY 1976.

Hour				200	200	,						
of Day	43	44	45	46	47	48	49	50	51	52	53	
500- 600	00.00	0.01	00.00	00.00	00.00	00.00	00.00	00.00	00.0	00.00	00.00	
	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	
700- 800	0.09	0.01	0.08	90.0	0.05	0.02	0.07	0.10	0.07	0.07	0.03	
800- 900	0.34	0.09	0.34	0.27	0.16	0.09	0.18	0.36	0.21	0.36	0.03	
900- 1000	0.59	0.24	0.59	0.37	0.51	0.57	0.28	0,62	0.59	0,62	0,08	
1000- 1100	0.77	0.36	0.79	0.27	0.70	19.0	0.50	0.81	0.86	0,82	0.03	
1100- 1200	0.88	0.74	0.91	0.42	0.64	0.50	0.90	0.93	0.78	06.0	0.11	
1200- 1300	0.79	0.43	0.94	0.55	0.42	0.76	0.84	96.0	0.85	0.92	0.18	
1300- 1400	0.90	0.39	0.88	0.74	0.65	0.38	0.78	0.89	0.91	0.81	0.14	
1400- 1500	99.0	0.38	0.73	19.0	0.49	0.62	0.51	0.74	0.75	0.57	0.09	
1500- 1600	0.45	0.12	0.50	0,40	0.22	0.37	0.19	0.52	0.53	0.37	0.27	
1600- 1700	0.24	0.04	0.23	0.17	0.14	0.17	0.07	0.25	0.26	0.16	0.25	
1700- 1800	0.02	0.01	0.02	0.03	0.02	0.02	0.01	0.03	0.03	0.04	0.04	
1800- 1900	00.00	0.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	
1900- 2000	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	
Total	344.9	169.8	360.5	237.8	241.4	250.5	259.5	371.6	350.8	339.4	75.2	
(g-cal/cm-day)												

1976.
FEBRUARY
Table 18.

10 10 10 10								
	54	55	56	57	58	59	09	
009	00.00	00.00	00.00	00.00	00.00	00.00	00.00	
700	00.00	00.00	0.00	00.00	00.00	0.01	0.01	
300	0.13	0.14	0.14	0.15	0.14	0.15	0.14	
006	0.41	0.41	0.42	0.26	0.41	0.29	0.40	
1000	0.68	0.68	0.52	0.47	0.67	0.42	99.0	
1100	0.89	0,88	0.74	0.48	0.79	0.52	0.84	
1100- 1200	1.01	1.02	0.74	09.0	0.99	0.71	0.94	
1200- 1300	1.03	0.87	0.56	0.59	1.00	0.83	1.00	
1300- 1400	0.97	99.0	0.59	0.44	0.94	0.51	0.94	
1500	0.81	0.70	0.71	0.37	0.78	0.41	0.78	
1500- 1600	0.57	0.53	0.43	0.28	0.47	0.28	0.56	
1600- 1700	0.29	0.29	0.28	0.14	0.25	0.14	0.28	
1700- 1300	0.04	0.04	0.07	0.04	0.05	0.04	0.05	
1800- 1900	00.00	00.00	00.00	00.00	00.00	00.00	00.00	
2000	00.00	00.00	00.00	00.00	00.00	00.00	00.00	
Total	411.5	372.0	311.7	228.9	388.5	258.1	395.8	
(g-cal/cm ² -day)								

AVERAGE HOURLY LANGLEYS (g-cal/cm²-min) Day of 1976 Table 18. MARCH 1976.

Hour

	-	The state of the s	The same of the sa	The state of the s		Name and Address of the Owner, where	Column Street, Square Street, Square,		The second secon	The state of the last of the l	The Party and Personal Property and Personal
of Day	61	62	63	64	65	99	29	89	69	70	71
200- 600	00.00	00.00	0.01	0.01	00.00	00.00	00.00	00.00	00.00	0.01	00.00
002 -009	0.01	00.00	0.01	0.01	0.02	00.00	0.02	0.01	00.00	0.01	0.04
700-, 800	0.13	0.02	0.02	0.05	0.21	0.05	0.22	0.05	0.01	90.0	0.27
800- 900	0.32	0.07	90.0	0.08	0.47	0.11	0.52	0.14	0.03	0.12	0.57
900- 1000	0.57	0.11	0.12	0.13	0.70	0.19	0.78	0.54	0.03	0.29	0.77
1000- 1100	0.69	0.15	0.16	0.15	0.88	0.18	0.98	99.0	90.0	0.50	1.02
1100- 1200	0.79	0.16	0.22	0.19	0.98	0.29	1.09	0.41	0.07	0,62	1.13
1200- 1300	0.78	0.16	0.25	0.22	1.00	0.45	1.11	0.63	0.09	09.0	1.15
1300- 1400	0.83	0.15	0.22	0.22	0.90	0.39	1.04	0.43	0.07	0.56	1.06
1400- 1500	0.67	0.16	0.15	0.20	0.72	0.44	0.88	0.29	90.0	0.53	0.87
1500- 1600	0.47	0.16	0.12	0.12	0.11	0.34	0.64	0.20	0.04	0.49	0.63
1600- 1700	0.23	0.05	0.07	0.08	0.02	0.19	0.36	0.10	0.04	0.33	0.33
1700- 1800	0.04	0.01	0.02	0.03	0.02	0.09	0.08	0.02	0.02	0.08	0.07
1800- 1900	00.00	0.01	0.01	0.01	00.00	00.00	00.00	00.00	0.01	0.01	00.00
1900- 2000	00.00	0.01	0.01	0.01	00.00	00.00	00.00	00.00	0.01	00.00	00.00
Total	332.0	74.4	89.5	92.9	362.8	162.8	463.6	210.5	37.6	255.9	475.5

 $\left(g\text{-cal/cm}^2\text{-day} \right)$ and estimated hourly values.

Table 18. MARCH 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm²-min) Day of 1976

Hour											
of Day	72	73	74	75	92	77	78	79	80	81	82
500- 600	00.00	0.01	0.00	00.00	00.00	0,0	00.00	0.01	00.00	00.00	00.00
002 -009	0.04	0.02	0.03	0.02	0.01	0.05	0.07	0.04	0.04	0.07	0.04
700- 800	0.10	0.10	0.26	0.15	0.05	0.30	0.25	0.20	0.26	0.09	0.22
800- 900	0.16	0.37	0.49	0.42	0.09	0.58	0.54	0.46	0.55	0.27	0,40
900- 1000	0.28	09.0	0.78	0.84	0.07	0.75	0.81	0.72	0.82	0.64	0.54
1000- 1100	0.17	0.63	1.00	1.02	0.10	0.57	1.00	1.03	1.00	0,68	0,62
1100- 1200	0.09	0.61	1.14	0.92	0.07	0.42	0.98	1.15	1.11	0.52	0.91
1200- 1300	0.10	0.10	1.16	0.75	0.09	0.49	0.58	1.15	1.13	0.68	0.76
1300- 1400	0.11	0.58	1.09	0.69	60.0	0.85	0.30	0.92	1.05	0.42	1.03
1400- 1500	0.10	0.89	0.92	09.0	0.14	1.02	0.54	0.71	0,88	0.12	0.94
1500- 1600	0.13	0.65	0.67	0.46	0.15	0.67	0.58	0.54	0.63	0.14	0.71
1600- 1700	0.17	0.37	0.39	0.33	0.04	0.40	0.31	0.28	0.34	0.37	0.43
1700- 1800	0.03	0.09	0.10	0.08	0.01	0.11	0.09	90.0	0.08	0.13	0.13
1800- 1900	0.01	00.00	00.00	00.00	0.01	0.01	0.01	0.01	00.00	00.00	00.00
1900- 2000	0.01	00.00	00.00	00.00	0.01	00.00	0.01	00.00	00.00	00.00	00.00
Total 2	91.6	304.2	483.8	377.8	58.5	375.8	368.0	440.0	474.1	248.4	404.1
(g-cal/cm ⁻ -day)	2011 Car 11 Latter 6 60+ 100 0	+ cm +		0.1.							
	ממוום ממ	דוווס פנור	ST.TOO	משרתם א							

Table 18. MARCH 1976.

Hour		AVE	RAGE HO	URLY LA Day	NGLEYS of 197	AVERAGE HOURLY LANGLEYS (g-cal/cm ² -min) Day of 1976	cm ² -min			
of Day	83	84	85	98	87	88	89	90	91	
500- 600	00.00	0.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	
002 -009	0.08	0.08	0.04	0.08	0.07	0.10	0.11	0.01	0.01	
700- 800	0.33	0.33	0.21	0.33	0.26	0.39	0.37	0.04	90.0	
800- 900	09.0	0.62	0.38	0.62	0.53	0.70	0.47	0.10	0.10	
900- 1000	0.86	0.88	0.40	0,86	0.87	0.95	0.48	0.22	0.16	
1000- 1100	1.07	1.06	0.25	1.06	0.75	1.14	09.0	0.48	0.15	
1100- 1200	1.16	1.17	0.22	1.15	0.19	0.20	0.67	0.45	0.16	
1200- 1300	1.16	1.19	0.44	1.14	0.29	0.10	0.74	0.42	0.19	
1300- 1400	1.09	1.10	0.70	1.07	0.76	1.16	0.75	0.34	0.15	
1400- 1500	0.92	0.93	0.67	0.91	0.32	0.98	0.53	0.28	0.07	
1500- 1600	0.70	69.0	0.41	0.69	0.14	0.74	0.35	0,22	0.05	
1600- 1700	0.42	0.41	0.22	0.42	0.07	0.46	0.18	0.11	0.02	
1700- 1800	0.13	0.13	90.0	0.13	0.05	0.15	0.07	0.04	0.01	
1800- 1900	0.01	0.01	00.00	0.01	00.00	00.00	00.00	0.01	0.01	
1900- 2000	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	0.01	
Total	511.8	516.5	239.6	507.8	258.7	424.4	320.5	164.4	71.3	
(g-cal/cm ² -day)										
avalue includes	some estimated hourly values.	imated	hourly	valuės.						

Table 18. APRIL 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min)
Day of 1976

	102	9 0.20	0 0.18	70.0 68	0.16	19a 0.32				5 0.24					00.00	00.00	0 145.5
	101	7 0.29	7 0.60	5 0,89	6 0.93		8 0.88ª		9 1.13				2 0.12	00.00	00.00	00.00	2 555.0
	100	7 0.27	6 0.57	2 0.85	99.0 7	3 0.40	7 0.38	1 0.37		3 0.84		8 0.24	18 0.12	00.00	00.00	00.00	4 348.2
	3 99	0.01a 0.07	0.20a 0.16	0.46a 0.32		1.06a 0.43		1.29a 0.3	1.32ª 0.89		1.09ª 0.65		0.52ª 0.08	0.22a 0.00	0.01ª 0.00	0°00 0°00	2 310.4
	86 /								1,30a 1,3					æ		0.00a 0.C	8 613.2
	5 97	00.00	11 0.13	57 0.42		93 0.98	13 0.87			1,22ª 1,2	96 1.09	_					.2 568.8
	95 96	00.00 00.00	0.03ª 0.11	0.12a 0.37	0.27ª 0.67	0.36a 0.93	0.26a 1.13				1.06 0.9			24 0.14	02 0.01	00 00	.4 544.2
	94 9	0.01a 0.	0,16a 0,			1,00a 0.	1,16a 0.					0.80a 0.83	0.50ª 0.55	0.22ª 0.24	0.00ª 0.02	0.00ª 0.00	583.8 302.4
:	93	0 00.0				0.53 1	0.26 1			0.58 1	0.18 1	0.28 0	0,30ª 0		0.04ª 0	0,02ª 0	205.2 5
	95	00.00	0.01	90.0	0.22	0.65	1.11	0.49	0.55	0.36	0.48	0.52	0.38	0.11	0.01	00.00	297.4
		009	700	800	900	1000	1100	1200	1300	00	1500	1600	1700	1800	1900	2000	
Hour	of Day	9 -009	2 -009	700-8	6 -008	900- 10	1000- 11	1100- 12	1200- 13	1300- 1400	1400- 15	1500- 16	1600- 17	1700- 18	1800- 19	1900- 20	Total

AVERAGE HOURLY LANGLEYS (g-cal/cm2-min) Day of 1976

Table 18. APRIL 1976.

Hour												
of Day	103	104	105	106	107	108	109	110	111	112	113	
500- 600	0.29	0.27	0.26	0.21	0.22	0.21	0.23	0.26	0.19	0.27	0.27	
002 -009	09.0	0.57	0.56	0.44	0.50	0.50	0.51	0.53	0.49	0.56	0.31	
700- 800	0.88	0.86	0.84	0.79	0.75	0.74	0.78	0.79	0.77	0.84	0.38	
800- 900	1.12	1.09	1.06	1.04	0.98	0.94	1.01	1.01	0.98	1.05	0.78	
900- 1000	1,08a	1,01a	1.02ª	0.77	1.10	-1-	1.17	1.17	1.05	1.02ª	0.46	
1000-1100	1.25a	1.24a	О: ДТ	0.57	0.86	1.18	0.10	0.20	0.88	1,18ª	0.19	
1100- 1200	1.34a	1.32a	N AG	0.85	0.80	1.16	09.0	0.70	0.83	1.27ª	0.33	
1200- 1300	1.35a	0.97	1.15	0.89	1.09	1.06	1.10	1.09	0.98	1.14	69.0	
1300- 1400	1.01	0.99	0.95	0.74	0.64	0.87	0.91	0.89	0.77	96.0	0.57	
1400- 1500	0.74	0.73	0.70	99.0	0.62	0.64	0.65	0.64	0.62	0.65	99.0	
1500- 1600	0.45	0.44	0.39	0.41	0.29	0.37	0.38	0.37	0.37	0.27	0.42	
1600- 1700	0.16	0.15	0.13	0.09	0.09	0.12	0.13	0.12	0.10	0.16	0.15	
1700- 1800	0.01	0.01	0.01	0.01	00.00	0.01	0.01	0.01	0.01	0.01	0.01	
1800- 1900	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	0.01	00.00	
1900- 2000	00.00	00.00	00.00	00.00	00.00	00.00	00.0	00.00	00.00	0.01	00.00	
Total p-cal/cm ² -day)	616.8	579.0	424.2	450.8	477.5	535.4	456.8	469.8	486.1	564.0	317.1	

(g-cal/cm⁻-day) avalue includes some estimated hourly values.

Table 18. APRIL 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm²-min) Day of 1976

	121	0.04	0.24	0.51	0.79	1.04	0.79	1.32a	1.31a	1.22ª	98.0	0.39	0,40	0.25	0.05	00.00	552,6
	120	0.03	0.24	0.53	0.82	1.07	0.27	0.27	0.22	0.31	0.36	69.0	0.56	0.29	90.0	00.00	343.9
	119	0.03	0.23	0.53	0.82	1.07	0.35	0.15	0.28	0.23	0.41	0.61	0.54	0.27	90.0	00.00	334.4
Day 01 1970	118	0.03	0.25	0.54	0.83	1.08	0.10	0.10	0.46	0.65	0.62	0.81	0.52	0.29	90.0	00.00	379.9
nay c	117	0.01	0.16	0.43	0.42	0.30				0.29	0.31	0.44	0.25	0.21	0.05	00.00	241.8
	116	00.00	0.02	0.04	0.12	0.24	0.20	0.36	0.43	0.35	0.28	0.13	0.15	0.22	0.02	00.00	154.7
	115	0.02	0.18	0.44	0.72	0.97				1.17a	1.04	0.83	0.56	0.27	0.05	00.00	421.1 594.6 154.7 241.8 379.9 334.4 343.9 552.6
	114	0.01	0.14	0.21	0.71	1.00	1.02	0.67	0.12	0.49	0.93	0.81	0.56	0.29	0.04	00.00	421.1
		009	700	800	900	000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	
Hour	of Day	-009	-009	-002	800-	006		1100-	1200- 1300	1300-	1400-	1500-	1600-	1700-	1800-	1900-	Total

 $(g-cal/cm^2-day)$ avalue includes some estimated hourly values.

AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min)
Day of 1976 Table 18. MAY 1976.

Hour											
of Day	122	123	124 .	125	126	127	128	129	130	131	132
500- 600	0.01	0.04	0.04	0.05	90.0	0.05	0.01	0.04	0.07	0.07	90.0
002 -009	0.01	0.23	0.22	0.28	0.27	0.30	0.05	0.22	0.28	0.27	0.23
700- 800	0.05	0.43	0.49	0.57	0.58	0.48	0.12	0.39	0.58	0.58	0.51
800- 900	0.07	0.78	0.56	0.87	0.86	92.0	0.21	0.70	0.88	0.85	0.74
900- 1000	0.11	1.01	0.62	0.77	1.10	0.94	0.43	0.94	1.12	0.98	0.54
1000- 1100	0.09	1.20a	NO DATA		1.28ª	0.77	0.47	0.63	1.33a	0.87	0.57
1100- 1200	0.11	1.31a			1.38a	0.61	0.39	0.19	1.40a	0.38	19.0
1200- 1300	0.12	1.33a	1.44ª	1.48ª	1.36a	0.25	0.76	0.15	1.42ª	0.36	0.39
1300- 1400	90.0	1.18a		1.36a	1.28ª	1.08	0.54	0.77	1.34a	0.83	0.46
1400- 1500	0.04	1.00		1.14a	1.06	0.86	0.62	0.81	1.12	1.04	0.32
1500- 1600	0.05	0.73		0.88	0.84	0.65	0.24	0.65	0,88	0.70	0.19
1600- 1700	0.02	0.45		0.57	0.55	0.52	0.07	0.46	0.61	0.35	0.10
1700- 1800	0.03	0.23	0.32	0.30	0.23	0.14	0.05	0.31	0.32	0.23	60.0
1800- 1900	0.03	0.04		0.05	60.0	0.02	0.02	0.11	0.07	0.09	0.05
1900- 2000	00.00	00.00		00.00	00.00	0.01	00.00	00.00	00.00	0.01	00.00
Total	48.5	597.6	542.4	676,8	656.4	446.4	238.9	382.4	680.4	458.5	295.8
(g-cal/cm ² -day)											

avalue includes some estimated hourly values.

Table 18. MAY 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min)
Day of 1976

Hour				المرا	1010						
of Day	133	134	135	136	137	138	139	140	141	142	143
500- 600	0.03	0.05	0.01	0.04	0.01	0.01	0.05	0.07	0.05	0.04	0.10a
002 -009	0.21	0.23	0.07	0.14	90.0	0,08	0.32	0.27	0.27	0.14	0.34a
700- 800	0.56	0.34	0.12	0.22	0.18	0.16	0.42	0.59	0.54	0.14	0.67a
800- 900	0,88	0.64	0.13	0.38	0.50	0.26	0.45	0.75	0.80	0.14	0.91ª
900- 1000	1.02	0.43	0.36	0.28	0.52	0.11	0.38	0.37	1.03	0.55ª	1.14a
1000- 1100	1,36a	0.69	0.49	0.56	0.67	0.49	0.34	0.41	1.26a	0.64a	1.33a
1100- 1200	1.45a	0.70	0.42	0.43	0.65	0.31	0.37	0.58	1.35a	0.50a	1.43a
1200- 1300	1.44a	0.75	0.52	0.63	0.47	0.23	0.22	0.50	1.40a	0.71a	1.43a
1300- 1400	1.34a		0.57	0.57	0.27	0.56	0.30	0.52	1.32ª	1.26a	1.34ª
1400- 1500	0.67	0.46	0.90	0.58	0.19	0.49	0.17	0.41	1.13	1.10a	1.17a
1500- 1600	96.0	0.35	0,62	0.77	0.39	0.71	0.08	09.0	0.85	0.888	0.88a
1600- 1700	0.69	0.21	0.36	0.44	0.63	0,62	0.04	0.45	0.33	0.63a	0.60a
1700- 1800	0.39	0.25	0.19	0.20	0.38	0.29	0.07	0.28	0.27	0.33a	0.35ª
1800- 1900	0.12	0.10	90.0	90.0	0.12	0.11	90.0	0.11	0.07	0.088	0.10a
1900- 2000	00.00	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.02	00.00	00.00
											-
Total	667.2	360.6	290,8	319.2	303.2	266.3	197.0	355.9	641.4	428.4	707.4
(g-cal/cm ² -day)											
avalue includes	some estimated hourly values.	Lmated 1	hourly	values.							

(cm2-min)	
S (g-cal/cm ²	2
LANGLEYS	Dour of 1076
E HOURLY	5
AVERAGE	

Table 18. MAY 1976.

Hour

of Day	144	145	146	147	148	149	150	151	152	
200- 600	0.09a	. 0,10a	00.00	0.01	0.01	0.06a	0,02a	00.00	0.01a	
002 -009		0.32a	60.0	0.05	0.15	0.30a	0.10a	0.10a	0.06a	
700- 800	0,65a	0.58a	0.36	0.10	0.31	0,628	0.21a	0.20a	0.11a	
800- 900	0,898	0.78a	0.62	0.18	0.64	0.90a	0.44a	0.28a	0.25a	
900- 1000			0.93	0.23	0.91	1,12a		0.32a	0.36a	
1000- 1100	1.26a	1.21a	0.75	0.18	0.76	1.29a	0.25a	0.31a	0.38a	
1100- 1200		1.26a	06.0	0.55	0.19	1.33a	0.188	0.44a	0.83a	
1200- 1300	1.36a	1.38a	0.35	09.0	0.45	1.35a	0,19a	0.76a	1.34a	
1300- 1400	1.03a	1.30a	0.10	0.67	0.65	1.29a	0.14a	0.80a	1.15a	
1400- 1500	0,884	1.04a	0.36	0.23	0.39	1,11a	0.06a	0.31a	1.09a	
1500- 1600	0,81a	1.01	09.0	0.09	1.04	0.92a		0.20a	0.87a	
1600- 1700		0.84	0.55	90.0	0.70	0.63a		0.14a	0.60a	
1700- 1800		0.51	0.39	0.18	0.57	0.37a		0.07a	0.16a	
1800- 1900	0.10a	0.27	0.15	0.15	0.31	0.068	0.00	0.00a	0.04a	
1900- 2000	00.00	0.08	0.02	0.05	0.19	00.00	00.00	00.00	00.00	
Total	626.4	693.6	370.9 199.8	199.8	467.9	631.0	125.4	235.8	435.0	4
(B-car/cm	day,									

Table 18. JUNE 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min)

Day of 1976

Hour				6							
of Day	153	154	155	156	157	158	159	160	161	162	163
500- 600	0.084	00.00	0.01	0.14a	0.16	0.17	0.16	0.12	0.12	0.14	0.11
002 -009	0.24a	0.08	0.10	0.38a	0.42	0.43	0.42	0.43	0.26	0.37	0.26
700- 800	0.57a	0.14	0.31	0.70a	0.71	0.71	0.69	0.63	0.53	0.63	0.61
800- 900	0.85a	90.0	0.59	0.97a	0.99	96.0	0.88	0.92	0.73	0.87	0,83
900- 1000	0.85	0.19	69.0	1,20a	0.87	0.78	0.63	1.13	0.82	1.09	96.0
1000- 1100	1.04	0.11	0.71	0.83	1.42ª	1,30a	1.35a	ΑT	0.93	1,16a	1.18
1100- 1200	0.81	0.11	1.17a	0.92	1.40a	1,42ª	1,31a	ΑŒ	0.90	1.25a	1.27a
1200- 1300	0.16	0.16	1,01a	96.0	1.31a	1.40a	1,30a	ON	1.09	1.25ª	1.27a
1300- 1400	0.92	0.11	0.84a	0.80	1.14a	1.30a	0.84a	0.73	1.07	1.14a	1.09
1400- 1500	0.43	0.13	0.71a	0.70	1.11	1.09	1.08	0.95	0.94	0.95	0,89
1500- 1600	0.84	0.15	0.67a	09.0	0.88	0.80	0.77	0.75	0.71	0.78	0,68
1600- 1700	0.64	0.07	0.48a	0.48	0.61	0.48	0.47	0.49	0.45	0.41	0.45
1700- 1800	0.45	0.04	0.30a	0.23	0.33	0.30	0.20	0.24	0.20	0.20	0.21
1800- 1900	0.16	0.02	0.088	0.07	0.08	0.07	0.02	90.0	0.04	0.04	0.05
1900- 2000	60.0	0.02	00.00	00.00	0.01	00.00	00.00	00.00	00.00	00.00	00.00
Total	487.8	83.2	460.2 538.8	538.8	636.4	673.8	607.2	387.0	527.2	616.8	591.6
(g-cal/cm-day)											

avalue includes some estimated hourly values.

AVERAGE HOURLY LANGLEYS (g-cal/cm²-min) Day of 1976

Table 18. JUNE 1976.

Hour				,							
of Day	164	165	166	167	168	169	170	171	172	173.	174
500- 600	0.10	0.10	0.07	0.03	90.0	0.15	0.01	0.07	90.0	0.12	90.0
002 -009	0.22	0.30	0.22	0.12	0.25	0.38	0.17	0.19	0.16	0.33	0.19
	0.45	0.57	0.41	0.26	0.51	0.50	0.37	0.18	0.19	0.48	0.31
300 - 900	0.76	0.85	09.0	0.39	0.75	0.75	0.50	0.30	0.32	0.45	0.44
900- 1000	1.00	1.06	0.67	0.48	96.0	09.0	0.71	0.60	0.56	0.64	0.50
1000- 1100	96.0	0.81	0.72	0.57	1.10	0.40	0.61	0.17	0.34	0.51	0.55
1100- 1200	0.10	0.19	0.29	0.70	1.17	0.45	0.38		NO DATA	0.35	0.35
1200- 1300	0.36	0.07	0.32	0.49	1.13	0.59	0.61		NO DATA	0.53	0.81
1300- 1400	0.76	0.33	0.44	0.28	1.08	0.49	09.0		0.30	0.52	0.61
1400- 1500	0.91	1.07	0.21	0.64	0.88	0.49	09.0	1.08	1.09	0.68	0.70
1500- 1600	99.0	0.85	0.16	0.29	0.61	0.49	0.48	0.86	0.87	0.38	0.36
1600- 1700	0.46	0.61	0.16	0.34	0.43	0.46	0.49	0.59	0,40	0.05	0.30
1700- 1800	0.18	0.33	0.05	0.17	0.11	0.14	0.23	0.30	0.30	0.09	0.29
1800- 1900	0.02	0.08	0.01	0.07	0.07	0.03	0.05	0.08	0.13	0.03	0.09
1900- 2000	00.00	0.01	0.01	00.00	00.00	0.01	00.00	00.00	0.01	0.01	0.01
Total	417.0	434.5	261.0	291.4	550.0	356.9	348.7	303.7	283.8	310.2	334.5

 $⁽g\text{-cal/cm}^2\text{-day})$ A value includes some estimated hourly values.

Table 18. JUNE 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min)

																					•
	182	0,08	0.31	0.57	0.83	1.04	69.0	0.34a	0.82ª	69.0	1.02	0.83	0.43	0.20	0.11	0.01		178.2			
	181	0.10	0.38	0.56	0.86	1.09	0.84a	NO DATA	1,32a	1.04a	1.04	0.89	0.62	0.37	0.12	0.01		554.4 478.2			
	180	0.02	90.0	0.12	0.18	0.45	0.45	0.49	0.08	0.41	0.95	0.85	09.0	0.21	0.11	0.02	400	201.2			
Day of 1976	179	0.05	0.18	0.27	0.51	1.04	0.86	0.52	0.56	0.33	0.49	0.83	0.47	0.28	0.05	0.01	0 000	2,986			
Day c	178	60.0	0.33	09.0	0.87	0.82	0.25	0.33	0.18	99.0	99.0	0.59	0.45	0.22	0.08	0.01		20g.5		alues.	
	177	0.04	0.21	0.29	0.78	0.81	1.20a	1.12a	0.98a	1.20a	1.09	0.89	0.55	0.13	0.10	0.02	1	561.6		nourly v	3
	176	0.04	0.13	0.18	0.48	0.45	0.75	0.18	0.27	0.47	0.77	0.92	0.64	0.22	90.0	0.01	1	222.8		Imated 1	
	175	90.0	0.19	0.31	0.44	0.50	0.55	0.35	0.81	0.61	0.70	0.36	0.30	0.29	60.0	0.01	1	554.5		some esti	
Hour	of Day	500- 600	002 -009	700- 800	800- 900	900- 1000	1000- 1100	1100- 1200	1200- 1300	1300- 1400	1400- 1500	1500- 1600	1600- 1700	1700- 1800	1800- 1900	1900- 2000		Total	(g-cal/cm ² -day)	avalue includes some estimated hourly values,	

AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min) Day of 1976

Table 18. JULY 1976.

Hour				B							
of Day	183	184	185	186	187	188	189	190	191	192	193
200- 600	0.07	0.13	0.12	0.05	0.07	0.07ª	0.02	90.0	0.04	0.07	0.02
002 -009	0.27	0.18	0.35	0.17	0.20	0.27a	60.0	0.22	0.12	0.25	0.04
700- 800	0.51	0.54	09.0	0.55	0,61ª	0.46a	0.29	0,46	0.33	0.53	0.03
800- 900	0.54	0.76	98.0	0.79	0.84a	0.74ª	0.40	0.74	0.57	0.80	0.01
900- 1000	0.49	0.54	1.09	1.01	0.86a	1.03ª	0.40	0.93	0.95	1.05	0.02
1000- 1100	0.40	0.35	1.20a	1.16	0.97a	1,25ª	0.46	1.02	1.13	1.12	90.0
1100- 1200	0.45	0.17	1.06a	0.988	1.24ª	1.27ª	69.0	0.74	0.20	0.98	0.25
1200- 1300	0.91	0.54	0.91a	0,68ª	1.37a	1,20ª	0.50	0,87	0.19	0.83	0.91
1300- 1400	0.61	0.73	0.30a	0.98a	1.22ª	1.24ª	0.78	0.63	0.39	0.67	0.65
1400- 1500	0.44	0.67	0.46a	0.58a	1,13ª	1.05	69.0	0.79	0.74	0,62	0.61
1500- 1600	0.67	0.65	0.22ª	0,66ª	0.92ª	0.79	0.52	0.64	0.64	0.39	0.84
1600- 1700	0.27	0.46	0.088	0.16a	0.64a	0.44	0.54	0.25	0.53	0.64	0.48
1700- 1800	0.11	0.25	0.06a	0.06ª	0.42ª	0.30	90.0	0.11	0.25	0.17	0.13
1800- 1900	0.12	0.08	0.02ª	0.07a	0.14a	0.12	0.01	0.01	0.13	90.0	0.01
1900- 2000	0.01	0.01	00.00	0.02ª	0.02a	0.01	0.01	00.00	0.02	0.01	0.01
Total.	353.1	364.1	439.8	471.6 639.0	0.629	614.4	328.0	449.6	374.4	491.1	244.6

(g-cal/cm²-day)

avalue includes some estimated hourly values.

Table 18, JULY 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min)

Day of 1976

Hour				Day o	of 1976	.0					
of Day	194	195	196	197	198	199	200	201	202	203	204
500- 600	0.07	0.09	0.08	0.03	0.05	0.07	90.0	0.07	80.0	90.0	0.02
002 -009	0.30	0.32	0.32	0.22	0.18	0.27	0.25	0.28	0.28	0.27	0.09
700- 800	0.59	09.0	09.0	0.29	0.47	0.55	0.64	0.55	0.52	0.32	0.22
800- 900	0.72	0.85	0.86	0.42	0.73	0.83	0.85	0.82	0.77	0.58	0.28
900- 1000	0.95	1.08	1.07	0.89	1.05	0.99	1.09	1.05	1.00	0.67	0.34
1000- 1100	0.49	0.31	0.84	0.69	0.64	1.32ª	1.30a	1.26a	1.14	0.55	0.46
1100- 1200	0.52a	0.37	0.82	NO DATA	1 0.25	1.48ª	1.42a	1.36a	1.35a	0.23	0.47
1200- 1300	1,42a	0.34	0.87	NO DATA	1 0.16	1.56a	1.42a	1.42a	1.26a	0.16	0.56
1300- 1400	1.32a	0.40	09.0	0.97	0.71	1.38a	1.389	1.14a	0.92a	0.56	69.0
1400- 1500	1.18a		0.49	96.0	0.64	1.24a	1.20a	1.04	96.0	69.0	0.58
1500- 1600	0.87	0.54	0.50	0.44	0.57	0.85	0.86	0.81	0.79	0.42	0.14
1600- 1700	0.59	0.43	0.30	0.03	0.10	0.64	0.63	0.55	0.54	0.36	0.04
1700- 1800	0.39	0.29	0.11	0.21	00.00	0.37	0.35	0.30	0.28	60.0	0.08
1800- 1900	0.13	0.07	0.07	90.0	0.02	0.11	0.11	0.10	0.10	00.00	0.04
1900- 2000	0.03	0.01	0.01	00.00	00.00	00.00	0.01	0.01	0.01	0.01	0.02
Total	574.2	384.3	453.2	318.5	334.3	9.669	694.2	645.6	0.009	300.2	244.5

 $(g-cal/cm^2-day)$ avalue includes some estimated hourly values.

AVERAGE HOURLY LANGLEYS (g-cal/cm2-min) Day of 1976

Table 18. JULY 1976.

				~													
	213	0.12	0.36	0.58	0.83	0.93	0.83	0.71	1.03	0,68	0.67	0.49	0.26	0.13	0.02	00.00	460.2
	212	0.17	0.36	0.59	0.83	1.00	92.0	0.70	0.62	0.57	0.41	0.22	0.10	90.0	0.01	00.00	388.2 385.9 460.2
	211	0,018	90.0	0.15	0.50	0.88	0.78	0.76	0.95	1.02	0.80	0.49	90.0	00.00	0.01	00.00	388.2
	210	0.068	0.25a	0.48a	0.74a	0.98a	1,02ª	1.28a	1.24a	1,06a	0.78a	0.51a	0.25a	0.05a	00.00	00.00	522.0
Day of 1910	209	0.07a	0.27a	0.50a	0.71a	1.02ª	1.18a	1.01a	0,888	0.70a	0.43a	0.338	0,38ª	0.25a	0.10a	00.00	469.8
ט לשט	208	0,08a	0.26a	0.58a	0,86a	1,12a	1.25a	1.36a	1.35a	1.28a	1.14a	0.92a	0,688	0.37a	0.12a	00.00	682.2 469.8
	207	0,03ª	0.32a	0.37a	0.87a	1.00a	1.26a	1.45a	1.44a	1,28a	1,18a	1.02ª	0.74a	0.33a	0.13a	0.018	720.0
	506	0,06a	0.26a	0.52a	0,80a	1.04a	1.05a	1.12a	1.03a	1,24ª	1.04a	0,86ª	0.44a	0.18a	0,08ª	0,01a	583.8 720.0
	205	0.01	0.02	0.07	0.11	0.15	0.44a	0.35a	0.54a	0.58a	0.54a	0.23a	0,21a	0,10a	0.01a	00.00	201.6
		009	700	800	900	1000	1100	1200	1300	300- 1400	1500	1600	1700	1800	1900	2000	1.2.
Hour	of Day	500-	-009	-002	800-	-006	1000-	1100-	1200-	1300-	1400-	1500-	1600-	1700- 1800	1800-	1900-	Total

⁽g-cal/cm²-day)

avalue includes some estimated hourly values.

Table 18. AUGUST 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min)
Day of 1976

Hour				5	-						
of Day	214	215	216	217	218	219	220	221	222	223	224
500- 600	0.03	0.03	0.03	0.03	0.03	0.02	0.04a	0,04a	0.01a	0.01	0.01
002 -009	0.21	0.24	0.23	0.19	0.18	0.17	0.14a	0.088		0.15	0.13
700- 800	0.49	0.35	0.49	0.45	0.46	0.41	0.33a	0.12a	0.12a	0.38	0.36
800- 900	0.74	0,62	99.0	0.74	0.76	99.0	0,32a		0.18	0.57	99.0
900- 1000	0.72	0.83	0.86	0.97	0.93	0.90	0.32a	0.38a	0.16	0.81	0.92
1000- 1100	0.21	0.70	0.85	0.92	1.03	1.08	0.64a	0.32a	0.16	1.11	0.74
1100- 1200	0.36	0.89	1.26a	1.11a	1.24a	1.18	0,66a	0.84a	0.18	1.36a	0.17
1200- 1300	0.26	0.79	1.37ª	1.31a	1.24a	1.08	0.40a	1.09a	0.11	1.34a	0.19
1300- 1400	0.33	0.72	1,28ª	1.28a	1.28a	1.18	0.16a	0.36a	0.08	1.30a	0.40
1400- 1500	0.68	0.92	1.14	1.16a	0.89	1.16	0.25a	0.42a	0.10	1.07	0.95
1500- 1600	0.63	0.77	0.89	0.78	0.54	1.16	0.18a	0.26a	0.07	0.59	0.83
1600- 1700	0.32	0.31	0.61	0.52	0.54	0.87	0.13a	0.27a	0.05	0.55	0.58
1700- 1800	0.36	0.13	0.41	0.29	0.17	0.17a	0.08a	0,10a	0.05	0.26	0.33
1800- 1900	0.04	0.05	0.12	0.08	0.04	0.06a	0.02ª	0.04a	0.05	0.05	0.08
1900- 2000	00.00	00.00	00.0	0.01	00.00	00.00	00.00	0.01a	0.02	0.03	00.00
Total	323.4	323.4 442.4	612,0	590.4	559.8	0.909	220.2	270.6	81,6	574.8	381.2
(g-cal/cm ² -day)											

Table 18. AUGUST 1976.

	235
	234
	233
	232
cm ² -min	231 232
(g-cal/	230
NGLEYS of 197	29
URLY LA Day	27 228 23
AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min) Day of 1976	227
AVE	226
	225
Hour	of Day

Jnou					The same of the same of	The second secon				-	
of Day	225	226	227	228	229	230	231	232	233	234	235
500- 600	0.02	0.02	0.02	0.02	0.01	0.03	0.02	0.02	0.03	0.03	0.05
002 -009	0.19	0.18	0.16	0.15	0,15	0.24	0.20	0.21	0.19	0.17	0.24
700- 800	0.40	0.41	0.41	0.33	0.28	0.43	0.48	0.50	0.46	0.55	0.52
800- 900	69.0	0.67	0.62	0.62	0.75	0.78	0.76	0.77	0.77	0.77	0.74
900- 1000	0.93	0.89	0.89	0.61	0.68	1.02	1.01	1.01	1.02	1.02	1,00
1000- 1100	1.1	1.07	1.03	0.75	0.79	1.25a		1.24a	1.08	1.24a	1.16
1100- 1200	0.78	1.18	1.12	99.0	1.23a	1.34a	1.34a	1,36a	1.34a	1.34a	1.24
1200- 1300	0.83	1.06	1.16	0.61	1.10a	1.32a	1.35a	1.40a	1,26a	1.35a	1.24
1300- 1400	1.08	1.09	1.07	0.79	1.12a	1.24a	1,26a	1.27a	1.10a	1.26a	1.16
1400- 1500	0.86	0.94	0.87	0.22	1.07	1.01	1.04	1.05	1.06		1.01
1500- 1600	0.54	0.71	09.0	0.02	0.84	0.79	0.80	0.82	0.81	0.81	0.82
1600- 1700	0.53	0.36	0.24	0.13	0.56	0.54	0.53	0.57	0.56	0.54	0.50
1700- 1800	0.25	0.09	0.03	0.19	0.28	0.25	0.25	0.28	0.21	0.24	0.23
1800- 1900	0.05	0.03	00.00	0.04	0.03	0.03	0.03	0.03	0.03	0.01	0.04
1900- 2000	0.01	00.00	00.00	00.00	0.01	00.00	00.00	00.00	00.00	00.00	0.01
Total	497.7	522.2	495.4	309.1	534.0	616.2	619.2	631.8	595.2	622.2	597.6
(g-cal/cm ² -day)	ay)										
avalue inclu	avalue includes some estimated hourly values	i mated	y Latto d	values							
111111111111111111111111111111111111111	, iii			1 2 5 6 6							

Table 18. AUGUST 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm²-min)
Dav of 1976

Hour				Day	Day of 1976	.0				
of Day	236	237	238	239	240	241	242	243	244	
500- 600	00.00	0.01	0.01	0.01	0.01	00.00	0.01	0.02	0.02	
002 -009	0.13	0.11	90.0	0.10	0.10	0.07	0.13	0,21	0.17	
700- 800	0.37	0.28	0.23	0.30	0.26	0.20	0.36	0.51	0.39	
800- 900	0,62	0.54	0.36	0.53	0.53	0.31	99.0	0.78	0.76	
900- 1000	0.86	0.75	0.62	92.0	0.70	0.37	0.87	1.02	1.01	
1000- 1100	1.02	0.91	0.71	0.92	0.82	0.51	1.06	1.24a	1.17	
1100- 1200	1.13	0.97	0.74	1.01	0.90	09.0	1.10	1.32a	1,32a	
1200- 1300	1.07	0.79	0.81	1.04	0.72	0.53	0.82	1.34a	1.29a	
1300- 1400	1.08	0.87	0.78	0.95	0.19	0.51	0.63	1.24a	1.15	
1400- 1500	0.94	0.77	0.78	0.79	0.04	0.61	0.84	1.01	0.98	
1500- 1600	0.73	0.58	0.56	0.50	0.05	0.49	0.68	92.0	0.87	
1600- 1700	0.49	0.37	0.32	0.34	0.07	0.28	0.42	0.48	0.64	
1700- 1800	0.22	0.14	0.15	0.13	0.07	0.11	0.15	0.19	0.32	
1300- 1900	0.02	0.02	0.02	0.01	0.02	0.01	0.01	00.00	0.14	
1900- 2000	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	
Total	520.8	425.8	369.5 443.6	443.6	269.1	276.3	463.6	607.2	613.8	
(g-cal/cm ² -day)										
avalue includes	s some estimated hourly values.	imated]	hourly	ralues.						

AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min) Day of 1976

Table 18. SEPTEMBER 1976.

Hour					a						
of Day	245	246	247	248	249	250	251	252	253	254	255
500- 600	90*0	0.03	0.03	0.04	0.02	0.03	0.05a	0.05a	0.11	0.10	0.27
	0.36	0.12	0.16	0.24	0.22	0.26	0.23a	0.24a	0.33	0.12	0.49
	09.0	0.22	0.26	0.41	0.45	0.52	0.53a	0.52ª	0.59	0.21	0.79
800- 900	0.87	0.26	0.22	0.70	0.69	0.80	0.79a	0.78a	0.89	0.26	1.02
900- 1000	0.91	0.34	0.31	0.68	0.89	1.04	1.04a	1.12ª	1.06	0.16	1.04a
1000- 1100	0.65	0.61	0.31	19.0	1.06	1.24a	1,19a	1.19a	1.13	0.25	1.18a
1100- 1200	0.56	0.49	0.57	0.24	1.13	1.32a	1.26a	1.26a	1.01	0.41	1.24a
1200- 1300	0.54	0.51	0.15	0.29	0.64	1,31a	1.23a	1.24a	1.17	0.70	1.22a
1300- 1400	0.88	0.50	0.50	0.55	0.50	1.24a	1.13a	1.13a	1.01	69.0	1.11
1400- 1500	0.91	0.63	1.08	0.65	0.83	1.05	0.96a	0.92a	0.79	0.94	0.89
1500- 1600	0.72	0.61	0.83	0.64	0.72	0.81	0.71a	0.71a	0.53	19.0	09.0
1600- 1700	0.35	0.56	0.45	0.46	0.32	0.54	0.44a	0.40a	0.27	0.34	0.31
1700- 1800	0.20	0.30	0.16	0.22	0.18	0.24	0.15a	0.14a	0.07	0.11	0.08
1800- 1900	0.04	0.03	0.03	0.03	0.04	0.03	0.04a	0.03a	0.01	0.01	0.01
1900- 2000	00.00	00.00	00.00	0.01	00.00	00.00	0.03a	0.03a	0.02	0.01	0.01
Total	461.8	313.7	305.7	351.1	462.9	625.8	536.8	585.6	545.7	299.5	615.6

 $⁽g-cal/cm^2-day)$ avalue includes some estimated hourly values.

Table 18. SEPTEMBER 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min)

Day of 1976

Hour					Day Of	0161 10	0					
of Day		256	257	258	259	260	261	262	263	264	265	266
200- 600		0,20	0.22	0.20	0.14	60.0	0.11	0.19	0.22	0.28	0.22	0.24
002 -009		0.49	0.43	0.41	0.20	0.11	0.21	0.38	0.47	0.46	0.42	0.45
700- 800		0.75	0.70	0.81	0.28	0.12	0.38	0.80	0.74	99.0	0.48	0.75
800- 900		0.98	96.0	0.93	0.34	0.14	0.47	0.90	96.0	0.87	0.27	1.02
900- 1000		1.07			0.34	0.18	0.59	1.08	1.14	1.07	0.32	1,10a
1000- 1100		1.16a			0.29	0.18	0.42	0.63	1,10a	1.17	0.25	1.14a
1100- 1200		1.23a			0.24	0.21	0.38	0.45	1.16a		0.38	1,20a
1200- 1300		1.18a				0.27	0.58	0.62	1.16a		0.44	1,20a
1300- 1400		1.04	0.95	96.0	0.25	0.42	0.81	0.49	1.10a	0.89	0.23	1.08
1400- 1500		0.82	0.73	0.76	0.21	0.29	0.71	0.41	0.73	0.64	0.22	98.0
1500- 1600		0.57	0.44	0.24	0.13	0.28	0.43	0.25	0.48	0.30	0.30	09.0
1600- 1700		0.28	0.25	0.14	0.11	0.15	0.19	0.17	0.23	0.13	0.26	0.29
1700- 1800		90.0	90.0	0.04	90.0	0.04	90.0	0.07	90.0	0.05	0.07	60.0
1800- 1900		00.00	00.00	0.01	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00
1900- 2000		00.00	00.00	0.01	00.00	00.0	00.00	00.00	00.00	00.00	00.00	00.00
Total		589.8	564.6	539.4	171.5	152.2	322.3	387.6	573.0	477.3	232.2	601.2
(g-cal/cm2-day)	()											
avalue includes	es s	ome est	some estimated hourly values,	nourly 1	alues.							

(g-cal/cm ² -min)	9
AVERAGE HOURLY LANGLEYS	Day of 1976

Table 18. SEPTEMBER 1976.

Hour				0				
of Day	267	268	269	270	271	272	273	274
500- 600	0.36	0.30	0.29	0.13	0.17	0.16	0.21	0.14
002 -009	0.54	0.37	0.34	0.18	0.19	0.42	0.26	0.16
700- 800	0.80	0.70	0.42	0.33	0.31	0.75	0.32	0.22
	1.02	0.71	0.48	0.45	0.26	0.94	0.54	0.19
900- 1000	19.0	0.83	0.46	0.77	0.23	1.18	0.64	0.19
1000- 1100	0.07	0.56	0.58	0.92	0.34	0.40	0.55	0.25
1100- 1200	0.56	0.57	0.82	0.76	0.54	0.79	0.63	0.31
1200- 1300	0.80	0.94	0.56	0.53	0.51	1.12	0.57	0,30
1300- 1400	1.03	0.95	0.87	0.27	0.37	0.89	0.37	0.19
1400- 1500	0.77	0.71	09.0	0.22	0.26	0.55	0.27	0.11
1500- 1600	0,48	0.46	0.41	0.18	0.17	0.34	0.20	0.11
1600- 1700	0.26	0.23	0.24	0.13	0.10	0.21	0.16	0.08
1700- 1800	0.08	0.07	0.07	0.04	0.04	0.05	0.05	0.04
1800- 1900	00.00	0.01	0.01	0.02	0.01	0.02	0.02	0.02
1900- 2000	00.00	0.01	0.01	0.02	0.01	0.02	0.02	0.01
Total	454.1	450.1	375.7	306.7	215.3	477.0	305.5 150.3	150.3

 $(g-cal/cm^2-day)$ avalue includes some estimated hourly values.

Table 18. OCTOBER 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm²-min)

Day of 1976

Hour				IJäÿ	Day of 1970	0					
of Day	275	276	277	278	279	280	281	282	283	284	285
500- 600	0.01	0.03	90.0	90.0	0.04	0.03	0.04	0.02	0.03	0.11	0.12
002 -009	0.04	0.05	0.12	0.12	0.18	0.11	0.21	0.10	0.08	0.34	0.35
700- 800	0.08	90.0	0.11	0.23	0.31	0.43	0.40	0.21	0.11	0.61	0.61
800- 900	0.12	0.08	0.15	0.32	0.34	0.55	0.53	0.32	0.23	0.83	0.83
900- 1000	0.11	0.12	0.27	0.53	0.33	0.50	0.45	0.26	0.52	1.02	1.00
1000- 1100	0.13	0.09	0.35	0.64	0.58	0.70	0.46	0.36	0.51	0.94	1.09
1100- 1200	0.15	0.07	0.39	0.76	0.65	0.94	0.39	0.33	0.47	0.95	1.08
1200- 1300	0.13	0.09	0.38	0.54	0.64	0.82	0.47	0.24	0.35	0.87	96.0
1300- 1400	0.08	0.08	0.18	0.43	0.54	0.43	0.48	0.29	0.40	09.0	0.77
1400- 1500	0.07	90.0	0.12	0.44	0.29	0.41	0.46	0.23	0.18	0.50	0.53
1500- 1600	0.05	0.04	0.09	0.12	0.23	0.20	0.20	0.11	0.16	0.30	0.25
1600- 1700	0.04	0.04	0.04	0.04	0.03	0.03	0.02	0.01	90.0	0.05	0.03
1700- 1800	0.03	0.03	0.03	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00
1800- 1900	0.03	0.03	0.03	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00
1900- 2000	0.03	0.03	0.03	00.00	00.00	00.00	00.00	00.00	00.00	0.01	0.01
Total $(\alpha - ca)/cm^2 - day$	76.0	68.0	157.5	262.4	249.0	309.4	247.7	149.0	186.8	429.4	460.9

(g-cal/cm⁻day)
avalue includes some estimated hourly values.

 (g-cal/cm'-min)	
AVERAGE HOURLY LANGLEYS (Day of 1976

Table 18. OCTOBER 1976.

Hour											
of Day	286	287	288	289	290	291	292	293	294	295	296
500- 600	0.12	0.13	0.10	0.11	0.10	0.07	0.17	0.17	0.04	0.08	0.08
002 -009	0.33	0.41	0.35	0.32	0.27	0.11	0.40	0.37	0.05	0.30	0.18
700- 800	0.61	0.57	0.63	0.58	0.54	0.13	09.0	0.63	0.07	0.55	0.51
800- 900	0.87	0.81	0.84	0.80	0.56	0.14	0.84	0.83	0.09	0.75	0.75
900- 1000	1.02	96.0	1.00	96.0	0.89	0.18	0.50	0.81	0.08	0.86	0.89
1000- 1100	1.09	1.02	1.06	1.01	0.77	0.21	0.44	0.86	90.0	96.0	96.0
1100- 1200	1.08	1.01	1.05	0.99	0.62	0.21	0.84	0.87	0.10	0.94	0.94
1200- 1300	0.99	0.89	0.91	0.87	0.73	0.14	0.91	0.65	0.07	0.77	0,82
1300- 1400	0.79	0.64	0.69	0.68	0.52	0.14	0.69	0.50	0.05	0.38	0.59
1400- 1500	0.53	0.41	0.43	0.43	0.24	0.11	0.43	0.27	0.07	0.33	0.35
1500- 1600	0.24	0.21	0.18	0.16	0.13	60.0	0.18	0.11	0.07	60.0	0.10
1600- 1700	0.04	0.03	0.02	0.02	0.03	0.03	0.03	0.02	0.03	0.01	0.01
1700- 1800	00.00	00.00	00.00	00.00	00.0	0.01	00.00	0.01	0.01	00.00	0.01
1800- 1900	00.00	00.00	00.00	00.00	00.00	0.01	00.00	0.01	0.01	00.00	0.01
1900- 2000	0.01	00.00	00.00	00.00	00.00	0.01	00.00	0.01	0.01	00.00	0.01
Total	468.2	427.3	437.1	417.4	325.6	7.66	366.7	368.1	49.2	363.4	380.0

 $⁽g-cal/cm^2-day)$ avalue includes some estimated hourly values.

Table 18. OCTOBER 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm²-min) Day of 1976

	305	0.01	0.02	0.07	0.22	0.33	0.55	0.89	0.81	0.55	0.31	0.25	0.04	0.01	0.01	0.01	249.6
	304	0.02	0.07	0.21	0.28	0.35	0.55	0.57	0.47	0.31	0.15	90.0	0.03	0.02	0.02	0.02	196.8
	303	0.02	0.09	0.32	0.55	0.75	0.88	0.92	0.87	0.74	0.53	0.27	0.04	0.01	0.01	0.01	369.8 196.8
	302	0.02	0.09	0.37	0.57	0.76	0.76	0.92	0.87	0.73	0.52	0.27	0.05	0.01	0.01	0.01	366.3
Day 01 1970	301	0.02	0.07	0.27	0.54	0.74	0.87	0.84	0.77	0.52	0.29	0.13	0.03	0.02	0.02	0.02	318.2
המ	300	0.01	0.03	0.15	0.49	0.50	0.51	0.59	0.73	0.63	0.48	0.25	0.05	0.01	0.01	0.01	275.6
	299	0.02	0.03	0.08	0.11	0.13	0.13	0.17	0.22	0.13	0.08	0.08	0.03	0.02	0.02	0.03	88.3
	298	0,02	0.03	0.08	0.11	0.16	0.15	0.11	0.12	0.08	0.08	90.0	0.03	0.02	0.02	0.02	74.6
	297	0,02	0.09	0.32	09.0	0.77	0.91	0.95	06.0	0.73	0.55	0.25	90.0	0.01	0.01	0.02	381.3
Hour	of Day	500- 600	002 -009	700- 800	800- 900	900- 1000	1000- 1100	1100- 1200	1200- 1300	1300- 1400	1400- 1500	1500- 1600	1600- 1700	1700- 1800	1800- 1900	1900- 2000	Total

(g-cal/cm -day) avalue includes some estimated hourly values.

Table 18. NOVEMBER 1976.

g-cal/cm ² -min)	
AVERAGE HOURLY LANGLEYS (Day of 1976

Hour											
of Day	306	307	308	309	310	311	312	313	314	315	316
500- 600	0.01	0.02	0.02	0.02	0.02	0.01	0,02	0.01	0.02	0,02	0.02
002 -009	90.0	0.07	90.0	0.04	0.03	0.05	0.08	0.04	0.04	0.02	0.03
700- 800	0.28	0.28	0.32	0.09	0.07	0.25	0.22	0.12	0.14	0.15	0.19
800- 900	0.54	0.53	0.37	0.25	0.21	0.51	0.43	0.20	0.14	0.41	0.26
900- 1000	0.75	0.73	0.40	0.41	0.31	0.72	0.68	0.49	0.50	0.59	0.26
1000- 1100	0.87	0.86	0.68	0.67	0.48	0.82	99.0	0.77	0.63	0.75	0.28
1100- 1200	0.91	0.89	0.37	0.87	99.0	0.38	0.58	0.40	0.79	0.30	0.29
1200- 1300	0.86	0.83	0.33	0.74	99.0	0.83	0.46	0.57	0.77	69.0	0.46
1300- 1400	0.43	0.69	0.20	0.51	0.42	0.68	0.56	0.76	0.67	0.63	0.42
1400- 1500	0.27	0.50	0.18	0.46	0.34	0.46	0.33	0.28	0.45	0.48	0.34
1500- 1600	0.25	0.25	0.10	0.21	0.18	0.22	0.10	0.19	0.21	0.24	0.21
1600- 1700	0.04	0.04	0.03	0.02	0.03	0.03	0.02	0.03	0.03	0.04	0.05
1700- 1800	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
1800- 1900	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01
1900- 2000	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01
Total	326.6	354.4	197.4	268.7	215.4	336.7	259.9	242.3	274.4	298,9	179.7
(g-cal/cm2-day)											
avalue includes some estimated hourly values,	some est	imated	hourly	values.							

Table 18. NOVEMBER 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm^2-min)
Day of 1976

	327	0.01	0.01	0.15	0.34	0.58	0.74	99.0	09.0	09.0	0.33	0.16	0.04	0.01	0.01	0.01		260.1
	326	0.01	0.01	0.11	0.29	0.59	0.45	0.49	0.64	0.46	0.43	0.20	0.03	0.01	0.01	0.01		227.1
	325	00.00	0.01	0.10	0.22	0.51	0.70	0.75	0.55	0.34	0.31	0.14	0.04	00.00	00.00	00.00		221.8
	324	0.01	0.02	0.12	0.35	0.55	0.69	0.75	0.73	0.61	0.42	0.21	0.03	00.00	00.00	00.00		271.9
	323	0.01	0.02	0.14	0.33	0.57	0.71	0.77	0.70	0.64	0.45	0.23	0.04	00.00	00.00	00.00		278,8
0	322	0.01	0.02	0.15	0.35	0.45	0.48	0.53	0.49	0.30	0.21	0.15	0.05	00.00	00.00	0.01		194.5
0/61 10	321	0.01	0.02	0.16	0.39	0.59	0.73	0.79	0.76	0.65	0.46	0.23	0.04	00.00	00.00	0.01		294.4
Day or	320	00.00	0.02	0.09	0.11	0.11	0.20	0.21	0.16	0.18	0.17	0.09	0.04	0.01	0.01	0.01		86.3
	319	0.01	0.02	0.16	0.41	0.63	0.76	0.82	0.80	0.69	0.36	0.19	0.04	00.00	00.00	00.00		298.0
	318	0.01	0.02	0.17	0.41	0.63	0.77	0.83	0.82	0.44	0.31	0.20	0.04	00.00	00.00	00.00		284.2
	317	0,02	0.02	0.03	0.04	0.05	0.07	0.10	0.13	0.52	0.38	0.15	0.04	00.00	00.00	00.00		99.1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
۶ı		009 -	- 700	- 800	- 900	- 1000	- 1100	- 1200	- 1300	- 1400	- 1500	- 1600	- 1700	- 1300	- 1900	- 2000		al
Hon	of Day	500-	-009	700-	800-	-006	1000-	1100-	1200-	1300-	1400-	1500-	1600-	1700-	1300-	1900-		Total

 $[\]left(g - \operatorname{cal/cm}^2 - \operatorname{day} \right)$ avalue includes some estimated hourly values.

Table 18. NOVEMBER 1976.

o. AVERAGE HOURLY LANGLEYS (g-cal/cm ² -min) Day of 1976	8 329 330 331 332 333 334 335	00 0.00 0.00 0.00 0.00 0.00	0.03 0.02 0.02 0.01 0.01 0.01	0.18 0.12 0.09 0.05	0.40 0.39 0.22 0.11	0.56 0.36 0.45 0.14 0.16	72 0.69 0.33 0.66 0.28 0.22 0.08 0.70	0.55 0.40 0.72 0.64	0.35 0.37 0.68 0.68	40 0.23 0.33 0.35 0.59 0.08 0.12 0.65	0.24 0.20 0.20	0.12 0.11 0.13	0.04 0.06 0.03	00 0.01 0.00 0.00 0.00 0.00 0.01 0.00	01 0.01 0.00 0.00 0.00 0.00 0.01		251.8 210.7 167.5 216.5 190.0 62.8 49.9 287.8	
AVERAGE HOUR																	210.7 167.5 2	
Table 18. NOVEMBER 1970. Hour	of Day 328	500- 600 0.01	600- 700 0.02	700- 800 0.14	800- 900 0.36	900- 1000 0.57	1000- 1100 0.72	1100- 1200 0.77	1300	1300- 1400 0.40	1400- 1500 0.36	1500- 1600 0.20	1600- 1700 0.03	1700- 1800 0.00	1800- 1900 0.01	1900- 2000 0.01	Total 251.8 (g-cal/cm ² -day)	r r

rable 18. DECEMBER 1976.

AVERAGE HOURLY LANGLEYS (g-cal/cm²-min) Day of 1976

Hour				۲۵	Day of 1910						
of Day	336	337	338	339	340	341	342	343	344	345	346
500- 600	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	00.00
002 -009	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	00.00
700- 800	0.17	0.04	0.12	0.12	0.18	0.19	0.02	0.05	0.12	0.11	0.04
800- 900	0.46	0.08	0.37	0.36	0.49	0.44	0.03	0.07	0.32	0.32	0.07
900- 1000	0.58	0.12	0.51	0.55	0.70	09.0	0.04	0.08	0.52	0.47	0.11
1000- 1100	0.70	0.27	0.71	0.57	0.70	0.70	90.0	0.11	0.65	09.0	0.15
1100- 1200	0.75	0.58	0.75	0.72	0.73	0.70	0.07	0.11	0.71	99.0	0.14
1200- 1300	0.73	0.64	0.73	0.71	0.71	0.63	0.08	0.16	69.0	0.64	0.12
1300- 1400	0.63	0.39	0.62	0.56	09.0	0.45	90.0	0.24	0.57	0.31	0.17
1400- 1500	0.44	0.14	0.44	0.25	0.41	0.20	0.11	0.21	0.40	0.25	0.12
1500- 1600	0.22	0.18	0.22	0.15	0.19	0.08	0.11	0.14	0.18	0.12	0.05
1600- 1700	0.04	0.03	0.04	0.03	0.03	0.02	0.03	0.04	0.02	0.02	0.01
1700- 1800	0.01	00.00	0.01	00.00	00.00	0.01	0.01	0.01	00.00	00.00	0.01
1800- 1900	0.01	00.00	0.01	00.00	00.00	0.01	00.00	0.01	00.00	00.00	0.01
1900- 2000	0.01	00.00	0.01	00.00	00.00	0.01	0.01	0.01	0.01	00.00	0.01
Total (g-cal/cm ² -day)	290.4	155.6	278,8	248.9	290.7	248.3	43.1	81.5	257.4	214.2	65.3

76.
1976
DECEMBER
38.
Table

Hour	Table 10. DECEMBER 1970. Hour	.0/6	AVE	AVERAGE HOURLY LANGLEYS (g-cal/cm ² -min) Day of 1976	JRLY LAI Day	NGLEYS of 197	(g-cal/	cm ² -min	(
of Day		347	348	349	350	351	352	353	354	355	356	357
500-	009	0.01	00.00	0.01	0.01	0.01	0.01	00.00	0.01	00.00	00.00	0.01
-009	700	0.01	00.00	0.01	0.01	0.01	0.01	00.00	0.01	00.00	00.00	0.01
700-	800	0.02	0.04	0.10	0.04	0.04	0.02	90.0	60.0	0.05	90.0	90.0
800-	006	0.07	0.26	0.31	0.10	0.07	90.0	0.25	0.33	0.13	0.28	0.24
-006	1000	0.10	0.48	0.48	0.13	0.10	0.25	0.45	0.42	0.15	0.47	0.46
1000-	1100	0.11	0.65	0.64	0.15	0.11	0.59	0.61	0.41	0.27	99.0	0.62
1100-	1200	0.14	0.74	0.72	0.14	0.15	0.68	0.70	0.47	0.19	0.55	0.71
1200-	1300	0.14	0.72	0.72	0.14	0.14	0.54	0.70	0.53	60.0	0,62	0.71
1300-	1400	0.10	0.63	0.63	0.16	0.09	0.56	09.0	0.56	90.0	0.56	0.62
1400-	1500	0.10	0.45	0.46	0.16	0.07	0.43	0.43	0.35	90.0	0.45	0.38
1500-	1600	0.05	0.23	0.24	0.08	90.0	0.19	0.22	0.11	0.04	0.20	0.24
1600-	1700	0.02	0.04	90.0	0.04	0.02	0.04	0.04	0.02	0.01	0.05	0.03
1700-	1800	0.01	00.00	00.00	0.01	0.01	00.00	00.00	00.00	00.00	0.01	0.01
1800-	1900	0.01	00.00	0.01	0.01	0.01	00.00	00.00	00.00	00.00	0.01	0.01
1900-	2000	0.01	0.01	0.01	0.01	00.0	00.00	00.00	00.00	00.00	0.01	0.01
Total	, c-l	58.1	259.0	267.7	73.8	57.8	206.8	245.1	201.0	67.1	240.0	254.9
(g-cal,	(g-cal/cm ² -day)											
avalue	avalue includes sor	ne est	some estimated hourly values.	nourly v	ralues.							

.976.	
DECEMBER .	
-8	
Table	

/cm ² -min)	
(g-cal)	926
LANGLEYS	ay of 19
AGE HOURLY	De
AVERAGE	

Hour	1									
of Day	358	359	360	361	362	363	364	365	366	
500- 600	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
002 -009	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
700- 800	0.05	0.09	0.10	0.04	0.08	0.04	0.02	0,08	0.03	
800- 900	0.23	0.28	0.27	0.13	0.27	0.13	0.04	0.26	90.0	
900- 1000	0.45	0.49	0.44	0.30	0.49	0.32	0.08	0.48	0.25	
1000- 1100	0.61	99.0	0.47	0.59	99.0	0.62	0.13	0.64	0.54	
1100- 1200	0.70	0.74	0.53	0.72	0.74	0.63	0.14	0.72	0.74	
1200- 1300	69.0	0.74	0.39	0.73	0.74	0.68	60.0	0.47	0.74	
1300- 1400	0.52	0.64	0.29	0.64	0.64	0.39	0.10	0.33	0.65	
1400- 1500	0.29	0.47	0.15	0.46	0.46	0.20	0.13	0.28	0.48	
1500- 1600	0.10	0.26	0.03	0.25	0.23	0.11	0.08	0.19	0,26	
1600- 1700	0.03	0.05	0.03	0.04	90.0	0.03	0.03	90.0	90.0	
1700- 1800	00.00	00.00	0.01	00.00	0.01	0.01	0.01	0.01	0.01	
1800- 1900	00.00	00.00	0.01	00.00	0.01	0.01	0.01	0.01	0.01	
1900- 2000	00.00	00.00	0.01	00.00	0.01	0.01	0.01	0.01	0.01	
Total	225.9	271.3	171.2	243.0	268.1	196.4	59.8	219.6	239.9	
(g-cal/cm ² -day)										
avalue includes	some estimated hourly values	imated	hourly	values.						

Figure 13. Sunlight.

Weather Station Data (map 2)

<u>% Relative Humidity and Air Temperature</u> - Measured using a Hygrothermograph - Belfort Instrument Company.

Barometric Pressure - Measured using an aneroid type barometer.

Microbargraph - Belfort Instrument Company.

<u>Rainfall</u> - Measured using a weighing rain gauge - Belfort Instrument

Company at the weather station and manually read, total event gauges at
other locations.

Evaporation - Measurements are taken of the amount of water evaporating from an open pan. Wind run adjacent to the pan and maximum/minimum temperatures of the water in the pan were also taken.

<u>Principal Investigator</u>: Daniel Higman, Chesapeake Bay Center for Environmental Studies, Smithsonian Institution.

Research Funding: Smithsonian Institution.

Table 19. Weather Station Data (Relative humidity, air temperature, and barometric pressure).

4	Relative Humidity	Humidity	Air Ten	Air Temperature	Baromet	Barometric Pressure
1976	Max.	Min.	Max.	Min.	Max.	IX. Min.
book	94	52	3.9	-4.4	992	748
2	96	51	1.7	-7.2	692	763
ന	96	47	6.1	9.0	763	753
4	53	34	9.0	-3.3	692	758
വ	78	36	-2.2	4.6-	769	774
9	89	31	lacon • facon	-13.3	774	769
7	96	59	-	-5.0	692	754
æ	26	45	9.0	-8.3	763	751
6	82	24	-3.3	-12.2	770	763
10	88	23	0	-14.4	774	770
=	16	49	1.7	-3.9	177	758
12	95	43	17.8	-5.6	768	757
13	96	54	lease lease s	-6.7	767	750
14	88	27	10.6	-3.9	99/	750
15	75	30	4.4	-7.2	768	764
16	06	44	5.0	-2.8	764	753
17	89	37	[.]	-8.9	762	753

Table 19. (Continued)

,	as a	.1																	
c	c Pressure Mercury	K. Min.	762	771	765	752	754	755	754	761	763	759	758	753	753	757	737	734	764
	Barometric Pressure	Max.	776	778	770	764	759	765	761	769	767	763	763	758	758	761	757	764	766
	Alr lemperature 0 C	Min.	ı	1	-7.2	-5.0	-7.2	-12.2	-8.3		5.6	9.0	4.4	0	-3.9	-2.8	-1.7	1	1
	Alr lem	Max.	-6.1	7.8	-2.2	0	0	-4.4	4.4	1.7	lone lone + lone	o. 8	huun 4 Imme	9.01	2.8	lore a lore	5.0		9.0
	Humidity %	Min.	36	39	53	46	32	42	50	19	89	16	36	36	20	64	81	35	99
	Relative Humidity %	Max.	85	85	66	86	52	83	92	86	86	97	92	17	94	95	76	94	93
	Day of	1976	80	19	20	21	22	23	24	25	26	27	28	59	30	33	32	33	34

Table 19. (Continued)

	Relative	Relative Humidity	Air Temperature	erature	Barometr	Barometric Pressure
Day of 1976	Max.	% Min.	Max.	C Min.	Max.	mm or mercury x. Min.
35	97	43	8.3	4.6-	768	764
36	98	46	kome • kome	-1.7	177	19/
37	93	53	-1.7	-5.6	762	758
38	73	33	-1.7	-8.3	762	757
39	74	53	6.1	-3.3	756	750
40	06	35	3.3	-7.2	992	755
41	95	53	11.11	-7.8	765	751
42	80	32	13.3		764	750
43	86	28	8.9	-6.1	692	764
44	96	40	16.7	3.3	765	760
45	94	28	7.8	-6.1	776	197
46	94	37	13.3	-7.2	776	092
47	92	41	18.9	6.7	762	753
48	70	28	23.3	Locate Locate Locate	760	755
49	93	42	22.8	5.6	758	748
50	74	24	16.7	7.2	757	750
57	92	33	11.7	-1.7	692	757

Table 19. (Continued)

90000	Relative Humidity	dity	Air Temperature	ture	Barometric Pressure	ssure
1976	Max.	Min.	Max.	Min.	Max. Min.	Min.
52	98	49	12.2	-2.8	692	757
53	97	41	15.0	9.0	191	748
54	87	26	2.8	-6.7	770	758
55	88	23	16.1	-6.7	770	992
99	82	33	15.6	1.1	768	765
57	79	38	16.7	4.4	765	092
58	92	25	18.9	2.2	763	092
59	19	23	20.6	6.7	763	758
09	93	24	23.3	,	764	758
19	16	41	20.02	6.7	292	092
62	97	06	6.7	4.4	765	763
63	96	84	6.1	3.3	992	764
64	96	83	7.8	5.0	768	763
65	96	34	26.1	4.4	763	757
99	95	30	15.0	-3.3	763	758
29	86	16	13.9	-6.1	762	758
89	92	41	7.8	-2.8	764	092

Table 19. (Continued)

30000	Relative Humidity	Humidity	Air Tem	Air Temperature	Barometri	Barometric Pressure
1976	Max.	Min.	Max.	Min.	Max.	Aim of Mercury
69	86	44	3.9	-1.7	763	753
70	94	68	1.7	-3.3	762	756
71	96	31	8.3	-1.7	692	759
72	93	53	10.0	-3.3	177	757
73	80	36	20.0	been	760	747
74	92	35	9.4	-2.8	765	760
75	98	56	14.4	-3.9	763	759
9/	86	45	7.8	0	758	740
77	52	56	-	-5.0	764	750
78	06	30	5.0	4.6-	797	763
79	98	25	20.6	4.4	763	758
80	82	40	19.4	7.2	197	755
81	86	40	23.9	5.0	760	749
82	97	31	10.0	-2.8	770	760
83	66	28	11.1	-5.0	772	692
84	26	33	15.6	-2.2	770	764
85	93	44	15.6	5.0	764	759

Table 19. (Continued)

400	Relative Humidity	nidity	Air Temperature	ature	Barometric Pressure	ssure
1976	Max.	Min.	Max.	Min.	Max. Min.	Min.
98	86	33	18.3	2.8	765	762
87	76	57	17.2	8.9	763	755
88	16	28	15.6	2.8	765	758
89	66	40	13.9	-1.7	191	763
06	96	99	12.2	7.8	763	760
16	66	76	11.7	7.8	763	754
92	94	31	13.3	2.8	757	751
93	94	41	14.4	1.7	760	756
94	80	31	15.6		762	757
95	96	19	11.11	1.1	757	750
96	92	25	13.3	-1.1-	19/	757
26	86	56	17.8	-2.8	758	756
98	06	24	1.91	2.8	760	758
66	95	40	11.11	2.2	764	759
100	78	26	8.3	-1.7	764	762
10	88	25	16.1	4.4	765	759
102	52	36	13.9		992	755

Table 19. (Continued)

	Relative Humidity	midity	Air Temperature	ature	Barometric Pressure	ssure
Day of 1976	Max.	Min.	Max.	Min.	mm of Mercury Max. Min.	ry Min.
103	85	28	8.9	-3.9	770	992
104	93	20	16.7	-3.3	792	762
105	98	21	17.8	-2.2	764	762
106	94	23	20.0		992	763
107	96	30	30.0	5.6	764	762
108	94	31	30.6	10.0	992	764
109	96	31	28.9	11.1	766	764
110	96	49	25.6	-	764	759
111	97	42	26.7	11.7	759	756
112	95	37	26.7	12.8	758	756
113	94	40	25.6	lame described form	758	756
114	97	20	24.4	7.8	192	758
115	06	40	21.1	6.7	763	755
116	93	22	21.7	11.7	755	746
117	97	42	13.3	4.4	760	748
118	09	34	9.4	9.0	764	760
119	73	32	15.0	1.7	764	762

Table 19. (Continued)

	0.1:+:10	4.5	T v.+V	0001	- n+ cmon cd	Dance de la Paris Dance de la Company de la
Day of	Reidtive numiuity	idillal Ly	0	AII lemperature	mm of	Mercury
1976	Max.	Min.	Max.	Min.	Max.	IX. Min.
120	92	30	17.8	2.8	764	762
121	26	31	19.4	2.2	764	760
122	96	72	1.0	12.2	092	752
123	96	41	20.0	8.9	756	753
124	26	25	15.0	3.9	761	753
125	06	29	13.3	lerre •	797	762
126	97	24	23.3	forms forms	766	762
127	83	36	26.1	13.9	763	760
128	87	52	24.4	11.7	762	756
129	86	28	15.0	2.8	992	762
130	66	23	18.3	9.0	765	763
131	98	38	24.4	3.9	765	757
132	95	54	21.1	1.1	759	755
133	95	30	16.7	4.4	763	755
134	86	36	17.2	2.8	992	763
135	92	09	23.9	14.4	765	192
136	94	28	24.4	15.0	762	761

Table 19. (Continued)

Jay of	Relative Humidity %	Humidity %	Air Temperature O C	erature C	Barometri	Barometric Pressure
1976	Мах.	Min.	Max.	Min.	Max.	Min.
137	94	77	22.2	18.3	767	757
138	94	54	23.3	16.1	757	752
139	94	51	21.1	5.6	754	749
140	87	34	11.7	3.9	757	753
141	74	28	25.0	7.8	758	756
142	78	31	26.7	12.2	757	753
143	92	32	22.2	6.7	759	756
144	94	40	18.3	8.3	758	755
145	98	36	19.4	6.1	755	753
146	96	42	18.3	7.2	761	754
147	94	26	14.4	8.3	764	160
148	26	41	20,6	6.7	99/	764
149	26	32	22.2	6.7	191	764
150	94	29	18.3	15.0	764	757
151	94	70	21.1	15.0	757	756
152	94	99	23.9	14.4	758	755
153	06	46	28.9	18.3	756	754

Table 19. (Continued)

30 0	Relative Humidity	umidity	Air Temperature	erature	Barometri	Barometric Pressure
1976	Max.	Min.	Max.	Min.	Max.	x. Min. or riel cury
154	16	62	18.3	13.3	764	756
155	79	34	18.9	9.4	992	763
156	96	30	21.1	5.6	770	992
157	94	56	22.2	5.6	771	768
158	94	32	21.7	5.6	792	763
159	93	36	27.2	8.3	763	759
160	16	36	27.2	13.3	759	756
161	93	28	30.6	13.3	760	757
162	92	38	28.3	14.4	760	757
163	16	31	29.4	17.2	757	753
164	98	42	27.8	15.0	765	754
165	85	53	25.0	13.3	768	765
166	94	72	28.9	16.7	992	762
167	66	52	30.0	15.6	762	759
168	66	20	27.2	19.4	759	757
169	66	70	23.9	17.2	763	759
170	86	26	26.1	17.8	764	762

Table 19. (Continued)

90	Relative Humidity	Humidity %	Air Temperature	erature	Barometri	Barometric Pressure
1976	Max.	// Min.	Max.	Min.	Max.	min or mercury
171	66	58	26.7	17.8	762	758
172	100	99	31.1	18.9	759	757
173	100	74	27.8	20.0	762	759
174	66	63	25.6	18.9	764	762
175	66	59	26.7	18.3	992	764
176	66	59	27,8	17.2	764	759
177	97	58	29.4	20.0	758	756
178	66	46	26.7	16.1	763	758
179	100	40	30.6	13.3	764	762
180	100	41	29.4	15.6	762	758
181	96	53	28.3	17.8	759	756
182	96	54	27.2	15.6	756	752
183	26	42	25.6	13.3	760	755
184	26	33	26.1	10.0	762	760
185	96	41	26.1	13.9	762	759
186	26	51	23.9	11.7	759	757
187	96	42	25.0	13.9	763	758

Table 19. (Continued)

	Relative	Relative Humidity	Air Tem	Air Temperature	Barometri	Barometric Pressure
Day of 1976	Max.	% Min.	Max.	c Min.	mm of Max.	mm of Mercury x. Min.
188	66	52	26.7	13.9	763	760
189	66	19	24.4	16.1	761	758
190	66	56	27.2	13.3	760	758
191	86	56	26.1	15.6	762	759
192	66	48	26.7	12.2	763	759
193	100	55	25.0	16.1	754	748
194	95	20	25.6	16.1	752	748
195	82	44	24.4	13,3	753	751
961	84	52	23.9	16.1	756	753
197	86	29	25.0	15.6	757	755
198	66	20	28.9	18.3	757	753
199	66	40	23.9	3.0	760	754
200	00	36	26.7	9.0	765	19/
201	100	40	28.3	12.8	797	765
202	86	44	30.0	14.4	766	762
203	66	41	30.6	9	762	759
204	86	70	24.4	19.4	765	760

Table 19. (Continued)

30,000	Relative	Relative Humidity	Air Ten	Air Temperature	Barometri	Barometric Pressure
1976	Max.	Min.	Max.	Min.	Max.	Min. Or ner early
205	86	73	25:0	19.4	765	759
206	86	48	30.6	19.4	759	756
207	66	35	24.4	12.2	763	757
208	100	42	25.6	8.3	765	197
209	96	48	28.3	15.6	197	757
210	86	46	29.4	15.6	759	757
211	66	64	28.3	18.3	758	755
212	86	22	28.3	17.2	757	755
213	66	53	28.3	18.5	756	753
214	100	49	24.4	14.4	758	753
215	100	41	23.3	1.1	765	759
216	100	37	25.6	10.6	768	765
217	66	42	26.1	10.6	99/	763
218	66	40	28.9	13.3	763	760
219	06	44	29.4	17.2	760	758
220	97	65	25.0	20.0	759	758
221	100	29	23.9	18.9	759	758

Table 19. (Continued)

40000	Relative Humidity	nidity	Air Temperature	ture	Barometric Pressure	saure
1976	Max.	Min.	Max.	Min.	Max. Min.	Min.
222	100	66	18.9	17.8	759	754
223	100	47	25.0	13.3	765	758
224	66	48	26.7	13.3	191	765
225	98	48	28.9	15.0	765	160
226	86	50	30.0	16.7	760	757
227	66	54	27.8	17.2	092	757
228	100	70	26.7	16.7	760	758
229	100	42	23.3	12.8	763	092
230	66	37	24.4	9.4	765	762
231	66	40	23.9	12.2	992	762
232	86	39	22.8	12.8	768	99/
233	98	43	24.4	7.8	692	99/
234	86	38	26.7	8.9	992	761
235	66	46	31.1	12.8	761	758
236	100	43	29.4	16.1	761	759
237	100	09	27.2	15.6	992	19/
238	66	99	26.7	15.6	992	763

Table 19. (Continued)

	Relative	Relative Humidity	Air Temperature	erature	Barometri	Barometric Pressure
Day of 1976	Max.	% Min.	Мах.	Min.	Max.	IIII OI MErcury
239	66	55	30.0	18.3	764	761
240	86	63	26.7	18.9	763	762
241	66	69	25.6	17.8	763	760
242	100	44	27.8	18.3	762	760
243	100	38	21.1	8.9	767	763
244	100	44	21.7	5.6	191	792
245	66	40	26.1	10.0	764	761
246	66	69	20.6	15.0	765	761
247	86	44	21.7	12.8	792	765
248	86	49	25.0	11.1	764	758
249	66	47	26.1	12.8	760	757
250	66	28	22.2	7.2	765	760
251	100	33	25.6	5.0	797	764
252	66	37	30.0	10.6	765	762
253	86	42	28.3	11.7	764	758
254	86	42	18.9	8.9	759	754
255	66	36	22.2	3.9	761	758

Table 19. (Continued)

Barometric Pressure mm of Mercury Max. Min.	192	167	765	762	759	759	758	757	751	750	753	762	763	761	757	753	754
Baromet mm o Max.	792	697	768	765	762	760	759	759	757	753	763	765	765	763	762	757	192
Air Temperature 0 C Max. Min.	8.3	10.0	10.6	14.4	17.2	13.9	11	11.7	10.6	8.3	4.4	2.2	8.3	9.4	11.7	16.7	7.8
Air Tem Max.	27.8	27.8	28.9	19.4	19.4	25.0	23.3	24.4	25.0	16.7	16.7	22.8	18.3	19.4	21.1	22.2	1
Relative Humidity Max. Min.	41	54	40	93	98	59	. 58	47	48	80	33	34	51	99	29	88	48
Relati Max.	66	66	66	66	98	86	66	100	100	66	86	86	86	86	66	100	100
Day of 1976	256	257	258	259	260	261	262	263	264	265	566	267	268	269	270	172	272

Table 19. (Continued)

40	Relative Humidity	midity	Air Temperature	ture	Barometric Pressure	ssure
1976	Max.	Min.	Max.	Min.	Max. Min.	Min.
273	66	58	16.1	7.2	761	758
274	66	86	13.3	11	758	753
275	98	86	13.3	12.2	758	753
276	66	86	12.8	1.1	757	756
277	100	16	14.4	11.7	192	756
278	66	99	18.3	12.8	765	762
279	95	55	17.8	10.0	765	763
280	66	58	19.4	8.3	763	092
281	66	72	21.1	13.3	763	191
282	98	87	20.0	16.1	762	756
283	98	09	20.0	7.2	755	742
284	66	39	13.9	3.9	763	754
285	100	36	12.8	loom been	692	763
286	66	37	15.0	-1.1	768	764
287	98	39	20.6	9.0	764	751
288	98	28	14.4	9.0	758	751
289	98	29	21.1	0	758	754

Table 19. (Continued)

40	Relative	Relative Humidity	Air Tem	Air Temperature	Barometri	Barometric Pressure
1976	Max.	Min.	Мах.	. Min.	Max.	Min of refoury
290	95	32	14.4	7.2	764	755
291	100	72	8.3	=	764	762
292	100	41	8.9	-2.8	772	764
293	66	43	10.0	-3.3	772	767
294	86	84	13.3	7.8	767	747
295	97	33		9.0-	760	749
296	86	31	8.9	-3.9	792	760
297	86	59	1.1.	-5.0	771	191
298	100	85	8.3	4.4	768	760
299	100	66	12.2	7.8	197	751
300	100	49	1.1		764	756
301	95	33	4.4	4.4	770	765
302	86	36	5.6	1.9-	772	692
303	86	19	13.9	-6.1	692	765
304	66	09	9.4	-3.9	992	755
305	66	20	13.9	5.6	760	753
306	66	32	7.8	-3.9	892	758

Table 19. (Continued)

	Relativ	Relative Humidity	Air Tem	perature	Barometri	Barometric Pressure
Day of 1976	Max.	% Min.	Max.	o'c Max. Min.	mm of Max.	mm of Mercury «. Min.
307	66	30	10.0	-6.1	770	765
308	96	43	10.0		765	759
309	86	43	10.6	0	760	758
310	86	41	5.6	0	763	758
31.1	86	59	10.0	4.4	765	761
312	88	34	13.3	-1.7	761	756
313	73	38	2.2	4.4	765	758
314	74	35	5.0	-6.7	765	755
315	86	34	11.7	-3.9	759	752
316	86	38	6.7	-6.1	765	759
317	86	65		-5.0	167	765
318	97	38	4.4	-6.1	692	792
319	66	31	7.8	-7.8	792	763
320	66	54	3.3	-5.0	763	760
321	66	31	7.8	-6.7	768	762
322	66	40	6.1	-8.3	768	755
323	96	32	11.11	9.0	757	752

Table 19. (Continued)

E	Relative Humidity	dity	Air Temperature	ature	Barometric Pressure	ssure
2	Max.	Min.	Max.	Min.	Max. Min.	Min.
	98	28	18.9	و. و. د	755	748
	66	34	8.3	-3.9	756	753
Section	100	33	8.3	-6.7	754	750
faces	100	36	2.2	-3.9	762	752
	66	36	2.2	-8,3	766	762
	66	38	3.3	-10.6	766	762
	98	56	4.4	-6.7	765	761
	98	43	14.4	-2.8	762	759
	66	54	18.3		759	756
form	100	95	faces forms forms	7.2	758	751
forme	100	50	8.3	-6.7	767	750
	06	36	-3.9	-12.2	770	768
	97	35	lame lecon	E 33.3	773	767
	74	36	7.8	-7.2	768	758
	16	32	-5.6	-14.4	774	768
	98	37	3.9	-12.2	177	767
	66	49	7.1	-10.6	774	770

Table 19. (Continued)

Barometric Pressure mm of Mercury Max. Min	774 760	760 750	767 755	797 971	797 977	769 765	764 754	774 754	775 766	765 759	758 751	758 750	767 758	757	756 744	763 746	
Air Temperature O C Max. Min.		9.0	-8.9	-12.2	-3.9	1.7	1.7	-10.0	-12.2	9.0-	-1.7	-1.7	-6.1	-7.8	9.0	6.8-	1
	60 4.4	8.3	41 0.6	34 1.7	35 6.7	7.5 6.7	81 3.9	29 0	1.1	50 2.8	56 3.3	38 6.1	37 5.6	46 8.9	6.7	36 0	
Relative Humidity % Max. Min.	100	100	92	93	84	66	100	18	96	89	86	86	66	100	100	66	e e
Day of 1976	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	257

Table 19. (Continued)

Day of	Relative	Relative Humidity %	Air Tempo	Air Temperature	Barometric Pressure	Pressure
1976	Max.	Min.	Max.	Min.	Max.	Min.
358	74	32	4.4	-5.6	759	754
359	98	37	-3.3	-11.7	768	759
360	66	37	2.2	-12.2	765	754
361	66	40	2.2	-5.6	754	746
362	66	34	-1.7	-5.6	754	746
363	66	42	5.6	-4.4	748	744
364	86	52	-2.2	-10.0	755	746
365	77	42	-3.9	-15.6	761	751
366	85	35	-5.0	-11.7	757	751

Figure 14. Relative Humidity.

Figure 15. Air temperature.

Figure 16. Barometric pressure.

Table 20. Weather Station Data (Evaporation).

Day of 1976	Evaporation Cm	Day of 1976	Evaporation Cm	Day of 1976	Evaporation Cm
127	0.49	150	-	173	1.68
128	0.52	151	-	174	0.47
129	-	152	-	175	0.55
130	-	153	N 4	176	0.66
131	1.58	154	-	177	0.64
132	0.67	155	0.42	178	-
133	0.58	156	0.56	179	-
134	0.32	157	-	180	1.99
135	0.26	158	69	181	0.57
136	· -	159	1.80	182	0.50
137	-	160	0.38	183	-
138	0.84	161	0.55	184	0.99
139	-	162	0.55	185	-
140	0.89	163	0.68	186	-
141	-	164	-	187	-
142	0.51	165	-	188	2.01
143	-	166	-	189	0.51
144	-	167	0.41	190	0.43
145	2.26	168	0.58	191	0.46
146	0.51	169	0.68	192	-
147	0.25	170	0.39	193	-
148	0.30	171	-	194	1.60
149	0.64	172	-	195	0.77

Table 20. (Continued)

Day of 1976	Evaporation Cm	Day of 1976	Evaporation Cm	Day of 1976	Evaporation Cm
196	-	219	0.61	242	-
197	1.04	220		243	1.73
198	1.47	221	-	244	-
199	-	222	-	245	0.83
200	-	223	-	246	0.43
201	-	224	0.48	247	0.25
202	2.72	225	0.53	248	-
203	0.27	226	0.48	249	-
204	0.65	227	-	250	-
205	2.10	228	-	251	1.93
206	-	229	1.70	252	-
207	-	230	0.60	253	0.92
208	1.77	231	0.63	254	0.38
209	0.44	232	0.59	255	-
210	0.54	233	0.47	256	-
211	0.46	234	-	257	1.34
212	-	235	-	258	0.46
213	-	236	1.60	259	-
214	-	237	0.48	260	2.64
215	1.47	238	0.41	261	0.22
216	0.52	239	0.41	262	-
217	0.53	240	-	263	-
218	0.55	241	-	264	1.22

Table 20. (Continued)

Day of 1976	Evaporation Cm	Day of 1976	Evaporation Cm
265	0.23	288	0.50
266	0.36	289	0.34
267	0.38	290	-
268	0.38	291	-
269	-	292	0.66
270	-		
271	0.36		
272	1.17		
273	0.19		
274	-		
275	-		
276	-		
277	-		
278	-		
279	0.21		
280	0.19		
281	0.17		
282	0.15		
283	-		
284	-		
285	-		
286	1.30		
287	0.22		

Figure 17. Evaporation.

Table 21. Weather Station Data (Rainfall (cm)).

Stations (see Figure 2)

D	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	8624 , 5912	Southeast River grid loca 10003,2423	2016, 1088	4960, 6327
1	0.89	-	-	-	5.26
2	-	-	-	-	-
3	1.19	-	-	-	1.09
4	-	-	-	-	Trace
5	-	-	-	-	-
6	-	-	-	-	-
7	1.91	-	-	-	1.04
8	0.41	-		-	1.19
9		-	-	• -	-
10	-	-	-	-	-
11	0.13	-	-	-	-
12	-	-	-	-	-
13	0.05	-	-	-	-
14	0.08	-	-	-	0.36
15	-	-	-	-	-
16	-	-	-	-	-
17	-	-	-	-	-
18	-	-	-	-	-
19	-	-	-		-
20	Trace	-	-	-	0.15
21	0.13	-	-	-	-
22	-	-	-	-	-

Table 21. (Continued)

Stations (see Figure 2)

	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	8624, 5912	River grid locat 10003, 2423	ions 2016, 1088	4960, 6327
23	-	-	-	-	-
24	***	-	-	-	-
25	-	-	-	-	-
26	2.34	-	-	-	0.91
27	3.68	**	-	-	4.60
28	0.05	-	-	-	0.51
29	-	-	-	-	**
30	Trace	-	-	-	-
31	-	-	-	om	-
32	1.50	0.33	-	-	€ 0.72
33	0.74	1.65	2.06	-) 0.72
34	Trace	-	-	-	-
35	-	-	-	-	-
36	•	-	-	-	-
37	Trace	0.05	-	-	-
38	-	-	-	-	-
39	-	-	-	-	-
40	-	-	-	-	-
41	-	-	-	-	-
42	Trace	0.08	-	-	-
43	-	-	-	-	-
44	0.25	0.13	0.38	-	-

Table 21. (Continued)

Stations (see Figure 2)

	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	8624, 5912	River grid locat 10003, 2423	2016, 1088	4960, 6327
45	-	0.25	-	-	0.18
46	-	-	-	-	0.43
47	-	-	-	-	Trace
48	Trace	0.05	-	-	Trace
49	0.76	-	-	-	Trace
50	-	0.71	0.81	-	0.79
51	-	-	-	-	Trace
52	-	-	-	-	-
53	1.04	0.99	-	-	1.12
54	-	-	- "	-	-
55	-	-	-	-	-
56	-	-	-	-	-
57	-	-	-	-	-
58	-	-	-	-	-
59	-	-	-	-	-
60	-	-	-	-	-
61	-	-	-	-	-
62	0.05	-	-	-	0.03
63	0.05	0.10	1.02	-	0.03
64	0.03	0.18	-	-	Trace
65	0.23	-	-	-	0.10
66	Trace	-	-	-	

Table 21. (Continued)

Stations (see Figure 2)

	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	Rhode i 8624, 6912	River grid locat 10003, 2423	ions 2016, 1088	4960, 6327
67	- m		46	een-	-
68	0.05		~	•	**
69	1.73	2.16	•	~	(0 00
70	1.65	0.79	•	••	{ 3.20
71	-	~	3.30	-	**
72	0.10	0.13	ma .	-	-
73	0.30	0.25	**		0.28
74	-	nea	we .	~	rec .
75	0.08	elso)	-	-	~
76	1.07	0.86	-	-	1.07
77	-	0.28	1.73	des .	-
78	69	~	os.	-	~
79	ose.	san.	~	-	-
80	-	-	90	**	ens
81	0.03	Sit	riae	0.05	0.15
82	œ		-	186	-
83	Trace	No.	•	-	***
84		700	***	0.02	
85	0.05	-	••	-	0.05
86	an	os.	··	-	eno)
87	1.14	1.07		0.05	Trace
88	500	-	1.14	0.89	0.91

Table 21. (Continued)

Stations (see Figure 2)

Day of	Central	Northeast	Southeast	Southwest	North Central
1976	6075, 4126	8624, 5912	River grid locati 10003, 2423	2016, 1088	4960, 6327
89	œ	ue.	-	one	-
90	0.13	0.08	One	0.08	0.15
91	2.01	1.30	GER	- 1	0.71
92	1.19	1.93	3.07	1.52	2.51
93	Trace	NO.	***	ow	0.03
94	***	œ	-	0.05	-
95	0.46	0.51	-	the control of the co	0.48
96	**	166	0.56	ale	-
97		æ	-	~	-
98	-	WGF	-		***
99	0.05	69	-	-	-
100		-	-	940	on.
101	-	-	***	-	es.
102	-	-	-	50	-
103	-		-	-	·
104	-	-	us.		-
105	-	one.	***	-	-
106	-	-	-		-
107	•	99.0	-	998	-
108	-	40	-	900	WG
109	-		-	ose .	-
110		**	-	os.	

Table 21. (Continued)

Stations (see Figure 2)

Windows and Control of the Control o	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	8624, 5912	River grid loca 10003, 2423	2016, 1088	4960, 6327
111	**		ON .	-	nee .
112	***	640	grs.	~	••
113	0.61	o _b	0.36		0.18
114	Trace	0.41	-		-
115	nse		**	mé	440
116	0.18	-	-		Trace
117	-	rça.	0.13	0.20	0.18
118			-	-	App
119	-	~	m.t	000	
120		•	SAM .	•••	-
121	ANI	45-	••	-	~
122	4.17	3.51	3.02	0.05	2.64
123	100	up	ND	3.56	Trace
124	mo	-	~	wa	
125	**	-	-	-	-
126	-	NA	•	-	-
127	-	-	-		~
128	-	one,	440	-	-
129	ster	way.	400	-	we
130	Trace	-	-	-	~
131	œ	99	*	-	
132	99	100	~	0.64	-

Table 21. (Continued)

Stations (see Figure 2)

	Central	Northeast	Southeast		North Central
Day of 1976	6075, 4126	Rhode 8624, 5912	River grid loca 10003, 2423	2016, 1088	4960, 6327
133	0.53	en en	0.56	64	0.56
134	-	-	-	-	-
135	Trace	-	-	-	Trace
136	-	-	-	-	800
137	0.56	0.79	0.46	0.02	0.41
138	Trace	0.89	-	0.30	0.18
139	1.73	1.17	-	0.08	0.79
140	Min	-	1.83	0.81	0.38
141	***	-	-	-	*
142		-	-	-	-
143	•	-	-	***	-
144	Trace	-	-	40e	-
145	49	-	-	***	-
146	0.08	-	-	-	-
147	0.46	0.41	0.41	0.13	0.51
148	0.05	-	-	-	0.03
149	-	-	-	0.15	-
150	3.45	2.92	-	0.15	2.01
151	0.18	***	2.20	-	1.93
152	-	-	-	0.94	Trace
153		-	-	-	-
154	0.03	-		enc)	Trace

Table 21. (Continued)

Stations (see Figure 2)

	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	Rhode 8624, 5912	River grid loca 10003, 2423	2016, 1088	4960, 6327
155	Trace	-		94	-
156	-	••	-	-	-
157	-	-	-	-	-
158	-	-	-	-	-
159	-	-	-	-	-
160	m	-	-	-	-
161		-	~	-	-
162	-	-	-	-	-
163	-	-		-	-
164	-	-	-	-	-
165	-	-	-	-	-
166	-	-	-	-	-
167	-	-	-	-	-
168	0.36	-	-	-	-
169	3.96	4.27	4.37	-	2.59
170	0.08	-	-	1.78	Trace
171	-	-	-	-	-
172	0.13	0.30	-	-	-
173	0.48	0.25	-	-	0.23
174	0.05	-	-	-	-
175	-	-	0.30	-	-
176	-	-	-	-	-

Table 21. (Continued)

Stations (see Figure 2)

	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	8624, 5912	River grid loca 10003, 2423	2016, 1088	4960, 6327
177	-	-	-	-	-
178	-	-	-	-	-
179	-	-	-	-	-
180	-	-	-	-	-
181	-	-	- *	1 -	-
182	1.40	1.37	-	-	-
183	0.05	-	-	-	1.50
184	-	-	-	-	-
185	0.18	-	-	-	0.18
186	-	-	-	-	Trace
187	-	-	-	-	-
188	-	<u>-</u>	0.41	-	-
189	0.46	0.64	0.18	-	0.20
190	0.13	0.30	-	0.53	0.79
191	0.05	-	-	-	0.20
192	1.14	-	-	-	-
193	2.08	-	2.54	0.76	3.18
194	-	-	-	-	0.23
195	-	-	-	-	-
196	-	-	-	-	-
197	1.17	3.84	-	1.02	1.04
198	3.45	2.39	3.91	-	0.13

Table 21. (Continued)

Stations (see Figure 2)

	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	8624, 5912	River grid locat 10003, 2423	ions 2016, 1088	4960, 6327
199	-	0.91	-	<u>-</u>	3.23
200	-	-	-	-	-
201	-	-	-	-	-
202	-	-	-	-	-
203	an	-	-	-	-
204	Trace	-	-	-	0.03
205	-	-	-	-	Trace
206	-	-	-	-	-
207	-	-	-	-	-
208	Trace	0.53	-	-	-
209	-	-	-	-	-
210	-	-	-	-	-
211	2.13	-	-	-	0.53
212	-	-	-	-	1.78
213	0.03	-	1.68	-	-
214	0.23	-	0.53	-	0.48
215	-	-	-	-	-
216	-	-	-	-	-
217	Trace	-	-	-	-
218	-	-	-	-	-
219	-	-	-	-	-
220	-	-	-	-	-

Table 21. (Continued)

Stations (see Figure 2)

	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	8624, 5912	River grid loca 10003, 2423	2016, 1088	4960, 6327
221	7.62	2.13	0.18	-	0.86
222	2.16	3.66	5.13	-	0.43
223	-	-	1.09	-	0.25
224	-	-	-	-	-
225	Trace	-	-	-	-
226	-	-	-	-	-
227	2.69	1.98	-	-	-
228	2.57	1.68	1.68	-	2.74
229	64	-	3.00	-	0.84
230	-	-	-	-	-
231	-	-	-	-	-
232	=	-	-	-	-
233	-	-	-	-	-
234	0.03	-	-	-	-
235	-	-	-	-	-
236	-	-	-	-	-
237	-	-		1 -	-
238	-	-	-	-	-
239	-	-	-	-	-
240	1.45	1.47	2.51	-	2.29
241	-	_	-	-	-
242	-	-	-	-	-

Table 21. (Continued)

Stations (see Figure 2)

W V CONTRACTOR AND GOOD TO SEE	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	8624, 5912	River grid loca 10003, 2423	2016, 1088	4960, 6327
243	ote		-		-
244	an a	60	-	-	-
245	-	-	100	cre.	969
246	0.18		nu nu	094	0.18
247	na	694	es.	0.30	0.05
248	es		86 0	on	-
249	w/ds	en	NAS	-	••
250	un.	***	-	400	95
251	-	No	**	100	-
252	400	0.0	-	-	-
253	Trace	465	-	-	**
254	0.76	49	0.76	0.81	0.94
255	-	N/A	on.	***	-
256	-	-	***	900	
257	Trace	-	-	~	-
258	-	nie .	••	No.	
259	1.37	***	479	6.10	Trace
260	3.20	4.83	3.05	2.79	5.41
261	-	**	-	198	Trace
262	No.	-	-	-	-
263	60		œ	-	-
264	mo .	**	100	•	-

Table 21. (Continued)

Stations (see Figure 2)

	Central	Northeast	Southeast	Southwest	North Centra
Day of 1976	6075, 4126	Rhode 8624, 5912	River grid Tocat 10003, 2423	ions 2016, 1088	4960, 6327
		0024, 3712	10009, 2425	2010, 1000	1500, 002,
265	0.05	-	-	•	•
266	-	-	-	-	-
267	0.03	-	-	-	-
268	-	-	-	-	-
269	-	-	-	-	-
270	0.76	-	-	0.89	0.66
271	1.04	-	-	0.13	0.20
272	-	-	1.68	0.51	-
273	.	-	-	0.13	0.56
274	2.64	2.21	2.68	2.34	2.34
275	0.28	1.98	-	1.07	0.56
276	2.54	2.67	2.68	1.45	2.36
277	0.18	0.25	***	-	0.33
278	-	-	-	-	0.05
279	-	-	es.	-	-
280	-	-	-	-	-
281	-	-	-	-	-
282	-	2.01	4.47	-	-
283	(2.77	-	4.39	5.70
284	4.95	-	-	-	0.03
285	(-		-	-
286	-	-	-	-	-

Table 21. (Continued)

Stations (see Figure 2)

	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	8624, 5912	River grid loca 10003, 2423	2016, 1088	4960, 6327
287	Trace	. <u>-</u>	-	-	-
288	-	-		-	-
289	Mid	-	-	-	-
290	-	-	-	-	-
291	0.94	2.64	0.81	0.68	0.86
292		-	-	0.58	0.03
293	-	-	-	-	-
294	4.17	2.26	-	-	3.12
295	-	-	3.63	4.47	1.37
296	cas	-	₩	-	Trace
297	-	-	-	-	-
298	0.69	0.81	-	0.20	0.28
299	3.00	3.25	3.22	-	0.58
300	0.43	-	-	0.30	3.10
301	-	-	-	3.61	-
302	-	-	-	-	-
303	-	-	-	-	-
304	1.07	2.84	-	-	-
305	1.70	-	-	-	2.46
306	-	-	-	2.46	-
307	-	-	2.69	-	-
308	-	-	***	-	-

Table 21. (Continued)

Stations (see Figure 2)

	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	Rhode 8624, 5912	River grid loca 10003, 2423	tions 2016, 1088	4960, 6327
309	-	-	-	-	-
310	-	-	-	-	-
3]1	-	-	-	-	-
312	-	-	-	-	-
313	-	-	-	-	-
314	-	-	-	-	-
315	-	-	-	-	-
316	-	-	-	-	-
317	0.38		-	-	0.41
318	-	-	-	-	-
319		-	-	-	-
320	0.03	-	-	-	Trace
321	-	-	-	-	1 -
322	-	-	-	-	-
323	- ,	-	-	-	
324	-	-	-	-	-
325	-	-	-	-	-
326	0.15	-	-	-	-
327	-	-	-	0.13	-
328	-	-	0.61	-	-
329	-	-	-	-	-
330	-	-	-	-	-

Table 21. (Continued)

Stations (see Figure 2)

	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	8624, 5912	River grid locat 10003, 2423	2016, 1088	4960, 6327
331	0.05	-	-	-	-
332	0.13	-	-	-	0.30
333	0.33	-	0.33	-	0.05
334	1.14	-	-	1.32	1.45
335	-	-	-	-	-
336	-		-	-	-
337	-	-	-	-	-
338	-	-	-	-	-
339	-	-	-	-	-
340	Trace	-	-	-	-
341	0.13	-	-	-	-
342	3.61	-	-	3.81	3.56
343	0.08	-	4.17	-	Trace
344	-	-	-	-	-
345	-	-	-	-	-
346	0.30	-	-	-	0.23
347	-	-	-	0.51	0.25
348	-	-	-	0.43	-
349	-	-	-	-	-
350	Trace	•	-	-	-
351	0.41	-	-	-	0.05
352	-	-	-	-	0.33

Table 21. (Continued)

Stations (see Figure 2)

	Central	Northeast	Southeast	Southwest	North Central
Day of 1976	6075, 4126	Rhode 8624, 5912	River grid loca 10003, 2423	tions 2016, 1088	4960, 6327
353	-	-	-	-	-
354	-	-	-	~	Trace
355	0.84	-	-	-	0.25
356	-	- -	-		0.53
357	-	-	-	-	-
358	-	-	-	-	-
359	-	-	-	-	-
360	0.53	-	-	-	1.09
361	0.58	-	- .	-	-
362	-	-	-	-	-
363	-	-	-	-	
364	0.25	-	-	-	0.25
365	-	-	-	-	-
366	-	_	-	_	-

Table 22. Daily Rainfall for Field-sized Watershed 109.

Date	Rainfall (cm/day)	Date	Rainfall (cm/day)
April 15	0.43	August 14 - 15	3.96
April 22	0.05	August 27	3.07
May 1	3.30	September 2	0.20
May 12	0.58	September 10	0.64
May 14 - 18	1.68	September 15 - 17	4.22
May 19	0.46	September 20	0.08
May 26	0.05	September 26 - 27	0.84
May 27	0.46	September 30 -	E 12
May 29 - 31	3.56	October 3	5.13
June 16	4.90	October 9	4.62
June 19 - 20	0.13	October 16 - 17	.0.94
June 21 - 22	0.61	October 20	3.89
June 30	0.30	October 24 - 25	3.43
July 3 - 6	0.25	October 30	2.54
		November 12	0.51 (snow)
July 7	0.64		
July 11	2.67		
July 12	0.20		
July 15	0.86		
July 16	3.10		
July 21	0.23		
July 29	0.74		
July 30 - August 1	0.84		
August 7 - 9	5.64		

Wind Speed and Direction

Sunlight - Incident Total White Light Intensities

<u>Technique</u> - Sunlight detector was an Eppley precision pyranometer with a clear quartz dome mounted on the roof of the instrument shed at the end of the dock. Data points were recorded every 10 minutes on strip charts at the dock.

<u>Principal Investigator</u>: Robert Cory, U.S. Geological Survey, Chesapeake Bay Center for Environmental Studies.

Research Funding: U.S. Geological Survey.

Water Quality Monitoring Data at CBCES Dock

Parameters - Temperature (°C)
pH
Dissolved oxygen (ppm)
Turbidity (Jackson units)
Salinity (ppt)
Tide height (ft)

<u>Technique</u> - All parameters except tide height were taken at a depth of 1 meter as described in U.S. Geological Survey, Water Resources
Investigation Publication 10-74.

<u>Principal Investigator</u>: Robert Cory, U.S. Geological Survey, Chesapeake Bay Center for Environmental Studies.

Research Funding: U.S. Geological Survey.

Table 23. Water Quality Monitoring Data at CBCES Dock.

VERK HO DA VR HAX HIN HAX 1 1 1 76 4.0 3.7 B17 1 1 1 2 76 4.0 3.7 B17 1 1 1 2 76 2.6 1.0 3.0 B19 1 1 1 2 76 2.5 1.9 9.0 2 2 1 10 76 2.7 1.7 9.3 2 2 1 10 76 2.7 1.7 9.3 2 2 1 10 76 2.6 1.4 9.2 2 1 10 76 2.6 1.4 9.2 2 1 10 76 2.6 1.4 9.2 2 1 10 76 2.6 1.4 9.2 2 1 10 76 2.6 1.4 9.2 2 1 10 76 2.6 1.4 9.2 3 1 15 76 3.3 2.5 9.2 4.3 1.1 9.5 4.8 9.1 4.8 9.1 4.8 9.1 4.9 9.2 4.8 9.2 4.8 9.1 4.9 9.2 4.9 9.3 4.9 9.2 4.9 9.3 4.0 9.3 4.0
1 176 4.0 3.7 8.7 8.1 1 1 1 1 1 1 1 1 1
1 1 7 6 3 6 6 6 6 6 6 6 6
1 6 76 2.7 2.1 8.8 8.4
1
2 1 1 2 7 6 2.7 1.7 9.3 9.0 8.5 1 1 1 2 7 6 2.3 9.0 8.5 1 1 2 7 6 2.3 9.0 8.5 1 1 1 2 7 6 2.3 9.0 8.5 1 1 1 1 2 7 6 2.3 9.0 8.5 1 1 1 1 2 7 6 2.3 9.0 8.5 1 1 1 1 2 7 6 2.3 9.0 8.5 1 1 1 1 2 7 6 2.3 9.5 8.4 8.5 1 1 1 1 2 7 6 2.3 9.5 8.4 8.5 1 1 1 2 7 6 2.3 9.5 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
2 1 1 6 76 2.7 1.7 9.3 9.0 8.5 1 1 76 2.7 1.7 9.3 9.0 8.5 1 1 1 76 2.4 1.4 9.2 8.7 1.7 9.3 9.0 8.5 1 1 1 76 2.4 1.4 9.2 8.7 1.1 9.2 8.7 1.1 9.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 7 6 2 7 1 1 7 9 2 3 9 0 0 1 1 1 2 7 6 2 7 1 1 1 2 7 6 2 1 1 1 1 2 7 6 2 1 1 1 1 2 7 6 2 1 1 1 1 2 7 6 2 1 1 1 1 2 7 6 2 1 1 1 1 2 7 6 2 1 1 1 1 2 7 6 2 1 1 1 1 1 2 7 6 2 1 1 1 1 1 1 2 7 6 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 7 6 2 7 1 7 9 2 3 9 0 0 1 1 1 7 6 2 1 1 7 6 1
2 1 10 76 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 7 6 2 1 1 1 1 7 6 2 1 1 1 1 7 6 2 1 1 1 1 7 6 2 1 1 1 1 7 6 1 1 1 1 7 6 1 1 1 1 7 6 1 1 1 1
11 15 16 16 16 16 16 16
2 1 13 76 3.6 2.0 9.5 6.9 6.9 1 14 76 3.0 2.1 9.4 6.9 1 16 76 2.0 9.5 6.9 9.5 1 17 76 13 1 17 6.2 9.2 6.9 9.2 1 18 76 2.1 9.2 6.9 9.2 1 18 76 2.1 9.2 9.2 8.6 9.2 1 18 76 2.1 9.2 9.2 8.6 9.2 1 18 76 2.1 9.2 9.0 9.2 8.6 9.2 9.0 9.2 9.2 9.0 9.2 9.2 9.0 9.2 9.2 9.0 9.2 9.2 9.0 9.2 9.2 9.0 9.2 9.2 9.0 9.2 9.2 9.0 9.2 9.2 9.2 9.0 9.2 9.2 9.2 9.3 9.1 9.2 9.2 9.3 9.1 9.2 9.2 9.3 9.1 9.2 9.2 9.3 9.1 9.2 9.2 9.3 9.1 9.2 9.2 9.3 9.1 9.2 9.2 9.3 9.1 9.2 9.2 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3
4.3 1.15 76 3.3 2.5 9.2 8.8 9.1 115 76 3.3 2.5 9.2 8.8 9.1 116 76 2.3 118 76 2.3 118 76 2.3 118 76 2.3 118 76 2.3 118 76 2.3 118 76 2.3 118 76 2.3 118 76 2.3 118 76 2.3 118 76 2.3 118 76 2.3 118 76 2.3 118 76 2.5 11.5 9.2 8.8 9.1 8.7 8.8 9.1 8.7 8.8 9.1 8.7 8.8 9.1 8.7 8.8 9.1 8.7 8.8 9.1 8.7 8.8 9.1 8.7 8.8 9.1 8.7 8.8 9.1 126 76 2.8 1.8 9.2 8.8 9.1 126 76 2.8 1.8 9.1 9.2 8.8 9.1 126 76 2.8 1.8 9.1 9.2 8.8 9.1 126 76 2.8 1.8 9.1 9.2 8.8 9.1 126 76 2.8 1.8 9.1 9.2 8.8 9.1 126 76 2.8 1.8 9.1 9.2 8.8 9.1 126 76 2.8 1.8 9.2 8.8 9.1 126 76 2.8 1.8 9.2 8.8 9.1 126 76 2.8 1.8 9.2 8.8 9.1 126 76 2.8 1.8 9.2 8.8 9.1 126 76 2.8 1.8 9.2 8.8 9.1 126 76 2.8 1.8 9.2 8.8 9.1 126 76 2.8 1.8 9.2 8.8 9.1 126 76 2.8 1.8 9.2 8.8 9.1 126 76 2.8 1.8 9.2 8.8 9.7 126 76 76 76 76 76 76 76 76 76 76 76 76 76
3 1 15 76 3.3 2.5 8.8 9.2 8.8 1 16 76 3.3 2.5 8.8 9.2 8.8 1 16 76 3.3 1 18 76 2.3 1 18 76
1 15 76 3.3 2.5 9.2 H.9 **** 1 17 76 3.1 1.8 9.1 H.9 **** 1 18 76 2.1 1.8 9.1 H.9 **** 1 20 76 1.7 10.9 **** 1 21 76 1.7 10.9 **** 1 22 76 2.2 1.5 9.2 8.8 *** 1 24 76 2.9 1.8 9.1 H.7 **** 1 27 76 2.9 1.8 9.1 H.7 **** 1 27 76 2.9 1.8 9.1 H.7 **** 1 28 76 2.9 1.8 9.1 H.7 **** 1 29 76 2.9 1.8 9.1 H.7 **** 1 20 76 2.9 1.8 9.1 H.7 *** 1 20 76 2.9 1.8
15 76
1 17 76 3.1 1.8 9.1 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8
1 10 76 6.1 10.0 0.10 10.0 10.0 10.0 10.0 10.0
3 1 2 0 76 1.7 0.9 *** *** *** *** *** *** *** *** *** *
3.3 0.8 9.2 8.6 8.6 4.6 1.2 76 2.2 1.5 9.2 8.8 8.8 4.8 1 23 76 2.9 1.8 9.1 8.8 9.1 8.8 1 8.6 1.8 9.1 8.7 1.8 1.8 1.8 1.8 9.2 8.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
2.5 1.5 9.2 8.8 even 4 1 22 76 2.2 1.3 9.1 8.8 even 1 24 76 2.9 1.8 9.1 8.7 even 1 25 76 2.9 2.1 9.2 9.7 14.6 4 1 25 76 3.4 1.8 9.4 8.7 10.9 4 1 26 76 2.6 1.7 9.2 8.7 10.9 4 1 28 76 2.6 1.7 9.2 8.7 10.9
22 76 2.2 1.3 9.1 8.8 23 76 2.5 1.6 9.1 8.8 24 76 2.8 1.8 9.1 8.5 8.5 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6
22 76 2.2 1.3 9.1 B.8 ***** 24 76 2.8 1.8 9.1 B.7 ***** 26 76 2.8 1.8 9.2 9.0 18.6 1 26 76 3.4 1.8 9.4 8.9 18.0 1 27 76 2.6 1.7 9.4 8.9 18.0 1 28 76 2.6 1.4 9.4 8.9 18.0 1
24 76 2.8 1.8 9.2 9.0 14.6 2.6 76 2.8 1.8 9.2 9.0 14.9 2.6 76 2.4 1.8 9.4 9.4 86.9 14.9 2.7 6 2.6 1.4 9.3 8.7 10.2
23 76 2.4 1.8 9.4 8.9 18.0 27 76 2.4 1.7 9.2 8.9 18.0 28 76 2.6 1.4 9.3 8.7 18.2
27 76 2.4 1.7 9.2 8.9 18.0 28 76 2.6 1.4 9.3 8.7 18.2

-	7	-							,						- 70			.0	•	,,	20 0	. ~	. 73	۰	2								_
TIDE HEIGHT	Z.		\$ 1							*	å		0 4	100	4.	4.	3.4	40.6	'n	4	ก็แ	0 4	4	4.5	6.4	S .	un u	n u	0 4	7	3	4.3	ιο -
1106	Ŧ	4.9	9,	0 1	96.0	เมา	100	6. (a)	6.0	5.7	P	n 4	0 9	2 6	6.9	7.2	4.4	6.1	6.7	e e	0 .	9 9	4.	7.2	0.0	7.1	9	P	* 4	2 .0	9	7.4	6.5
SALINITY	Z	6.74	6,68	9 0	9 00	6.0	6.25	5,83	85.8	6,07	ก่อง	តំ។	e of	3 (0)	5.40	4.0	5.65	5.52	5.58	5,63	0 n	6.03	5,95	5.46	5,75	10 to	2.5	a :	ນ ແ ຄຸດ ຊຸດ		3 4	5.16	5.52
SALI	X X	7.24	7.42	2000	3 80	6.50	6.62	24.5	58.0	6.50	0.00	2004	* 0 * 0	0.00	6.03	0.50	6.11	6.13	5.23	500	D -	* C	6.50	6.50	6.33	9400	0.00	0.00	0.0	. 0	1 45 2 8 3 8 3 8 4 8 5 8 6 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	44.9	10.9
TURBIDITY JCU	Z Z	œ	r- 1	• •	o >-		0	9	7.	P- :	30 P	٠- ٢	- 1-	- 40	40		7.	9	P 1	r- 8	** (e un	0	ທໍ	, Q	នោះ	រោធ	a s	o 4	> P-	~ 40	ທ	•
1088	*	6	cod (a :	- 15			85 87	6 0-0 0-0	area o	ə .	Q	P (3	n og	0*	11.	9	15	prof.	en e	~ .	** C	g.	52	00 2000 2000	a a :	39 9	3 (າ ຜ ∾ ຄ	20	-	15,	11:
z	A A	110.	00.	* (106.	102	107.	102.	110.	- C	N v	* 0	* 7 %	un	109.	109.	1120	106.	306.		600	300	120	305	308.	900	0 0	* 600	5 G	000	106.	35.0	102.
DISSOLVED OXYGEN	2	4.60	E .	9 .	12.7		13,7	13:3	14.1	*	**		* * *	9 10	100	. e.	34.4	33.4	(a)	e e	602	9 6	100	Gh s cost	12.7	4	() () () () () ()	20 (20 (20 (20 (20 (20 (20 (20 (200	3 4	0 CP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20.5	11.3
A705516	A A	23	* 23		120.	3 2 6	120.	33.	52 53	00 (04 (04 (n o	000	32.0	200	122.	129.	125	60 50 50	122	200	121	30.0	22	129.	122.	1200	250	0 0 0 0	* u	200	132	132.	- CP
3	X A X	16,3	0	0 .	200	4	4.61	0 .	0 0	0.0	n u	ក្ កំ កំ	2 6	200	20	0.4	15.3	34.4	9.47	0.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19°	15.0	14.2		00 v	0 .	- P	n (6'	1 LF	24.	55 23 25
II.	Z Z	. es	9	70 0	9 00	9 un	un un	10°	80 *0	8	0 0	20 0	0 4	3 40	9	8	9	មា	0 ·	ສຸ	er 10	ា ខេត	. m	ø •	e0 10	ຜ່	40 c	n .	ស្ន ស្ន	9 02	 	4.0	
•	X X	0.0	6	> c	2 0	00	9	0.0	ор Ф	0.6	30 c	P 0	9 0	9 30	80	9.0	60	8.7	G3 (30 c	B 0	9 00	65	9	99	о» е со:	ದ್ಯಾ ಇರೀ	2° 0	25 G	9 3 C		2.0	8
ATURE	E	 (C)	9.7.	25 C			10	о го	*:	CP- 1		7 a	- 0	000	2	1.7		203	3.7	ar e	- 0 - u	0 m	8	2,3	5.5	N O	0,0	, c	7 L	3 0.	7.0	5.9	
TEMPERATURE DEG C	* A X	2.6	es e	7 I		3 00	in a	es es	2.4	0	De 1	7	9 a	9	9	4. E.	3,5	4.4	100	***	0 0	* C	30.0	9.01	7,2	4.00	.00		***	7 6	1 On	10.7	8.0
	CE 3m	16	10	0	0 4	1.6	100			9								16	10	9 7	0 .	0 %	16			16	16	0 1	2 2	2 4	200		
	DATE HO DA YR		200							es e								_				9 2					2 50		-		20.0		
	ž																																
	38 73 75 75	un	មារ	ត	n w	3 40	ហ			•	ο.	a 4	D 4	9 40	0			٢	r- !	P }		- f-	-			ap :	33 6	D 4	2 3 42	2 02	3 43		
								EXTREME	AVERAGE							EXTREME	AVERAGE							EXTREVE	AVERAGE							EXTREPE	AVERAGE

Table 23. (Continued)

HIN HAX HIN MAX SAT PIN SAT PAX HIN HAX HIN HAX HIN MAX SAT PIN SAT PAX HIN HAX HIN HAX HAX			TEMPE DE	TEMPERATUME DEG C	4	Ŧ		ISSOLVE	DISSOLVED OXYGEN PPM	z	TURB	TURBIDITY	SALI	SAL INITY PPT	TIDE	нЕ 16нТ F T
9 2 2 2 6	# E			N I	HAX	Z	MAX	SAT	2	SAT	¥	r I	MAX	Z	H A X	Z
9 2	.	2 26		9 9		6.0	14.2	130.	13.0	117.	a o	•	5.77	5.04	3.4	5.5
9 2 2 27 7 6 1111		2 28		9.0	9.5	8.8	6	137.	13.2	119:	15	ه د	5,34	4.80	6.7	0.4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.	5 58		8.8	9.5	6.7	14.4	134.	13.4	121.	27	20	5.25	08.4	6.5	a. G
11.9 10.2 9.1 9.2 8.8 14.6 13.6 13.1 13.7 12.3 113. 27. 6. 5.77 3.62 7.4 10.5 9.0 9.2 8.8 14.6 13.6 13.1 117, 10. 7 3.79 3.62 7.4 10.5 9.0 9.2 8.8 14.6 13.6 13.1 117, 10 7 3.79 3.62 7.4 10.5 9.0 9.2 8.8 14.6 13.6 13.6 13.8 13.8 3.62 7.4 10.5 9.0 9.2 9.2 14.4 13.6 13.8 13.8 13.8 13.8 13.8 10.5 9.0 9.2 9.2 14.4 13.6 13.8 13.8 13.8 10.5 9.0 9.2 9.2 14.4 13.6 13.8 13.8 13.8 10.5 9.0 9.2 9.2 14.4 13.6 13.8 13.8 10.5 9.0 9.2 14.4 13.6 13.8 13.8 10.5 9.5 9.5 9.5 14.4 13.8 13.8 10.5 9.5 9.5 9.5 13.4 13.8 10.5 9.5 9.5 9.5 14.5 13.8 10.5 9.5 9.5 9.5 14.5 13.8 10.5 9.5 9.5 9.5 14.5 13.8 10.5 9.5 9.5 9.5 14.5 13.8 10.5 9.5 9.5 9.5 14.5 13.8 10.5 9.5 9.5 9.5 14.5 13.8 10.5 9.5 9.5 9.5 14.5 13.8 10.5 9.5 9.5 9.5 14.5 13.8 10.5 9.5 9.5 9.5 14.5 10.5 9.5 9.5 9.5 14.5 10.5 9.5 9.5 9.5 10.5 9.5	٠. ر	— r			٠,٠	0 0	2.4	137.	0.6	123,	5 4	~ :	91.5	m d	40 4	
11.9 8.1 9.2 8.7 15.1 137, 12.3 113, 27, 6, 6.77 3.62 7.4 10.5 9.0 9.2 8.8 14.6 136, 13.0 118, 14, 7, 6.15 4.51 6.7 10.5 9.0 9.2 8.8 14.6 136, 13.0 118, 14, 7, 6.15 6.7 10.5 9.0 9.2 9.1 14.8 14.2 13.1 13.4 15.5 13.4 15.5 13.4 15.5 13.4 15.5 13.4 15.5 13.4 15.5 13.4 15.5 13.4 15.5 13.4 15.5 13.4 15.5 13.4 13.5 13.5		u u n ù			9.6	9 9	15.1	137.	12.4	113.	4	9 6	4.33	3.62	4.	
10.5 9.0 9.2 8.8 14.6 136. 13.0 118. 14. 17. 5.15 4.51 6.7	J.		11.9	8.1	9.3	1.8	15.1	137.	12.3	113.	27.	•	5.17	3,62	7.4	5.1
10 3 4 76 9.5 8.7 9.5 9.1 15.4 13.5 13.1 117 10 7 3.79 3.45 3.33 6.9 10 3 5.6 10.0	5 E		10.5	9.0	9.5	8.8	14.6	136.	13.0	118.	14.	7.	51.5	4.51	6.7	5,3
10							1	5	:	:		,		;	•	ų
10 3 6 70 10 6 7 7 7 7 10 10 7 7 10 10	= =	4 4		9 9			0 4	30.	7.6	: 6	9 5	~ «	A. B.	3,44		2
10 3 7 7 7 7 7 7 7 7 7		n 40		10.4	7 0	0.0	17.	153	11.55	109	9	9 0	9 6	3,62	9	0
10	. =) M		6.4	6	9.1	13.4	124.		108	9	=	3,85	3,56	6.3	7,04
10	=	6		4.6	9.5	9.2	14.9	137.	12.4	113.	11	œ	3.74	RE . E	6.2	5.6
12.0 6.2 9.5 9.1 14.1 128. 11.9 107. 16. 10. 3.75 3.47 7.6 11.9 12.0 6.2 9.5 9.1 14.1 123. 12.4 104. 15 10 3.56 3.27 7.6 11.3 12.6 12.8	¥;	or c		9.4	7° 0	0.0	13.5	120.	11.2	600	2.5	2 5	3,68	3,33	9.4	9 -
12.0 6.2 9.5 9.0 15.8 142. 10.7 90. 21. 7. 3.45 3.27 7.6 11 3 176 8.1 6.4 9.5 9.1 14.1 123. 12.4 104. 15. 10. 3.75 3.42 6.9 11 3 2.76 7.8 6.4 9.5 9.2 14.1 123. 12.4 104. 15 11 3.44 2.81 7.0 11 3 3.76 6.6 9.5 9.2 14.4 123. 12.4 104. 15 11 3.44 2.81 7.0 11 3 3.76 6.6 9.5 9.2 14.4 104. 15. 11 3.44 2.81 7.0 12 3 3.76 6.6 9.5 9.2 14.4 10.1 10.1 19 12 3.56 2.92 7.5 13 3.76 6.6 9.5 9.2 14.4 13.1 10.8 91. 20. 10. 3.74 2.81 7.6 13 3.17 6.8 9.5 9.5 11.4 95. 10.8 91. 20. 10. 3.74 2.81 7.6 13 3.17 6.8 9.4 9.1 3.6 12.0 12.1 10.4 91. 10. 3.74 3.55 3.67 6.8 15 3.17 6.8 9.4 9.1 3.6 12.0 12.0 10.3 18. 12. 3.55 3.67 6.8 15 3.17 6.8 9.4 9.1 13.6 12.0 10.3 18. 12. 10. 3.77 5.8 15 3.2 7.6 12.1 10.0 8.3 7.7 11.5 10.4 9.5 10.4 9.5 10.4 9.5 10.4 15 3.2 7.6 12.1 10.0 8.3 7.7 11.5 10.7 9.5 10.8 13.5 10.7 9.5 10.8 15 3.2 7.6 12.1 10.0 8.3 7.7 11.5 11.7 9.5 10.4 9.5 10		2		•		•	•	•	•	:	3	-	•	;	:	;
10.2 0.5 0.5 0.1 14.1 123. 11.9 107. 16. 10. 3.75 3.42 6.9 11 3 176 7.8 6.4 9.5 9.2 14.6 123. 12.4 106. 15 11 3.44 2.81 7.6 11 3 276 7.8 6.4 9.5 9.2 14.6 123. 12.4 106. 17 12 3.44 2.81 7.6 11 3 476 6.6 9.5 9.2 14.6 123. 12.4 106. 17 12 3.44 2.81 7.6 11 3 476 6.6 9.5 9.2 14.6 12.1 12.6 10. 17 12 3.56 2.92 7.5 11 3 476 6.6 9.5 9.2 14.4 11.4 91. 12 12 12 12 12 3 476 6.6 9.5 9.6 11.9 102. 10.8 91. 20 13 3.74 3.15 13 476 6.6 6.6 6.7 6.8 9.5 10.8 91. 20 10. 3.74 2.81 7.6 12 3 476 6.8 9.4 9.1 13.6 120. 12.0 103. 18. 12. 3.55 3.67 6.8 12 3 276 11.3 10.9 9.6 10.6 10.8 11.1 11.1	E A		12.0	6.2	9.5	0.6	15.8	142.	10.7	.06	21.	7.	3,85	3.27	7.6	3.
1 3 176 6.4 9.5 9.3 14.1 123. 12.4 104. 15 10 3.56 3.21 7.6 11 3 176 6.4 9.5 9.2 13.5 13.1 100. 15 11 3.56 3.56 3.15 11.1 3 13.76 9.5 9.2 13.3 13.1 10.6 10. 17 12 3.56 3.15 5.0 11 3 15.6 9.5 9.2 9.2 13.3 12.4 9.6 10. 19 12 3.56 3.15 6.0 11 3 17.6 9.5 9.5 9.2 13.3 12.4 10.6 11.6 11.6 11.6 11.6 11.6 11.6 12 3.56 3.15 6.0 11.5 11.6 12 11.6 12 12 3.56 3.15 6.0 11.5 11.6 12 11.6 12 12 12 3.56 3.15 6.0 12 3.15 6.0 12 3.15 6.0 12 3.74 3.15 6.0 12 3.15 6.0 3.15	E E		10.2	8.5	6.5	9.1	14:1	128.	11.9	107.	16.	10.	3.75	3.42	6.9	5.5
1 3 17 6 6 6 6 6 6 6 6 6		,									,	:			,	,
1 3 76 6.6 9.5 9.2 13.3 116. 12.2 106. 17 12 3.56 2.92 7.5 1	==	3 3 3		9 9		m e		123.	12.4	104.	2 5	2.	9 4 6 0 4 6 0 4 6	2,61		0 n
11 3 14 76 943 945 941 144 134 124 194 13 350 3415 641 13 16 76 948 748 945 941 134 120 114 194 12 3450 3415 641 13 16 76 948 945 945 941 134 120 116 111 18 12 345 3415 741 13 16 76 948 945 945 941 134 120 1154 1104 911 20 110 3474 241 746 12 3 18 76 646 447 849 845 114, 95, 1048 871 16 10 3462 3427 641 12 3 18 76 646 447 849 845 114, 95, 1048 871 16 10 3462 642 12 3 2 76 124 104 849 143 114 114 114 114 114 114 114 114 115 114 116 116 116 116 116 116 116 116 116	=	E .		9*9	6	6	13,3	116.	12.2	106.	=	21	3,56	2,92	7.5	0.0
1 1 1 1 1 1 1 1 1 1	=:	# L		•	n ((°	7	123			3ª C	3:	20.4		9 4	* 4
11 3 17 76 8.0 5.8 8.9 8.6 11.9 102. 10.8 91. 20 13 3.74 3.09 5.7 9.8 9.8 9.8 9.8 9.8 11.9 102. 10.8 91. 20. 10. 3.74 2.81 7.6 11.2 11.2 11.2 11.2 11.3 11.3 11.3 11.3		3 1 6		9	9 6	0.0	13.3	120	11.6	101	18	12	9 6	3,15	7.1	3
9.8 5.8 9.5 8.6 14.6 131, 10.8 91, 20, 10, 3.74 2.81 7.6 12 3 18 76 6.6 4.7 8.9 8.5 11.4, 95, 10.8 87, 16 10 3.62 3.27 6.1 12 3 2 76 11.3 8.0 8.3 11.4, 95, 10.8 87, 16 10 3.62 3.27 6.1 12 3 2 76 11.3 8.0 8.3 10.9 96, 10.4 88, 11 10.3 10.9 96, 10.4 11 3.74 3.22 6.2 12 3 2 76 11.3 8.0 8.3 10.9 96, 10.4 88, 11 10 3.97 3.62 6.2 12 3 2 7 6 12.1 10.0 8.3 7.7 11.5 110, 95 88, 13 8 4.38 3.97 6.2 12 3 2 4 76 12.1 10.0 8.3 179 14.8 132, 10.4 95, 11 10 10 4.38 3.97 6.2 12 3 2 4 76 12.1 10.1 9.6 8.5 11.9 143, 11.9 111, 16 10 4.62 3.27 6.9	=	3 17		9	6.9	9.6	11.9	102.	10.8	91.	50	13	3.74	3.09	5,7	£ • 3
12 3 18 76 6.6 4.7 8.9 8.5 11.4, 95. 10.8 87. 16 10 3.62 3.67 6.8 12 3 27 6.1 3 3 3 3 3 3 3 3 3	ш		9.6	5.8	9.5	9.6	14.6	131.	10.8	91.	.02	10.	3.74	2.81	7.6	4.1
12 3 18 76 6.6 4.7 8.9 8.5 11.4 95 10.8 87 16 10 3.62 3.27 6.1 12 3 10 10 96 10 10 10 10 10 10 10 1	GE		H.7	9.8	4.6	9.1	13.6	120.	12.0	163.	18.	12.	3,55	3.67	6.8	5.0
12																
12 3 10 76 85.9 6.0 8.5 8.3 10.9 96. 10.4 88. 14 10 3.97 3.62 6.2 11.2 3 20 76 11.3 8.0 11.3 8.1 10.3 8.3 10.9 96. 10.4 88. 14 10 3.97 3.62 6.2 11.2 3 27 76 11.1 10.0 8.3 17.4 6.5 11.2 3 2.2 76 11.1 10.0 8.3 17.4 11.5 110. 9.5 88. 13 8 4.33 3.97 6.5 11.2 3 2.3 76 12.1 10.0 8.3 17.4 11.5 110. 9.5 88. 13 8 4.33 3.97 6.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	7	3 18		+:1	6.9	8.5	11.4.	95.	10.8	87.	91	2	3,62	3,27	1.9	e .
12 3 27 6 12.0 10.3 8.3 7.7 11.5 110. 9.5 88. 13 8 4.38 3.74 6.9 12 3 2.7 6 12.1 10.0 8.3 7.7 11.5 110. 9.5 88. 13 8 4.38 3.97 5.9 12 3 2.3 76 12.1 9.6 8.9 7.9 13.8 13.2 10.4 95. 15 10 4.33 3.97 6.2 12 3 2.4 76 12.4 9.2 7.7 14.9 14.3 11.9 111. 16 10 4.62 3.27 6.9 12.4 4.7 9.2 7.7 14.9 14.3 9.5 87. 18. 8. 4.62 3.27 6.9			•	9 3	ສຸດ	m «	o -	96	400	. E	* 4		30.6	3.62	0 0	0 7
12 3 22 76 12:1 10:0 8:3 7.7 11:5 110; 9:5 88. 13 8 4.38 3.97 5.9 12 3 23 76 12:1 9:6 8:9 7:9 14:8 132; 10:4 95; 15 10 4.33 3.97 6.2 12 3 24 76 12:4 10:1 9.2 8:5 14:9 143; 11:9 111; 16 10 4:62 3.27 6.9 6.8 12:4 4.7 9:2 7.7 14:9 143; 9:5 87, 18, 8, 4:62 3.27 6.9		3 6		0.0	7 -	7.8	10.6	98.		06	8 1	: =	30	3.74	4	5.6
12 3 23 76 12.1 9.6 8.9 7.9 14.8 132, 10.4 95, 15 10 4.33 3.97 6.2 12 3 24 76 12.4 10.1 9.2 8.5 14.9 143, 11.9 111. 16 10 4.62 4.09 6.8 12.4 4.7 9.2 7.7 14.9 143, 9.5 87, 18, 8, 4.62 3.27 6.9	: ==	3 55	-	10.0	3	:	11.5	110.	9.5	88.	13	œ	4.38	3.97	5.9	4.6
12.4 4.7 9.2 7.7 14.9 143, 9.5 87, 18, 8, 4.62 3.27 6.9	===	3 23		10.1	B 0	6.0	8 0	132.	10.4	95.	9 2	9 9	4.62	3.97	9 9	
	W		_	4.7	9.5	7.7	14.9	143,	9.5	87.	18.	20	4.62	3.27	6.9	6.4
													!			

HIN HAX SAT HIN SAT TURBIOITY 8.9 15.5 15.0 11.9 112. 17 12 19 15.0 1	HAX HIN HAX SAT HIN SAT PAR TURBUITY SALINI PHAY HIN HAX HIN HAX HIN HAX SAT HIN SAT PAR HIN HAX HIN H	HAX HIN HAX SAT HIN SAT PAX HIN HAX HI
HIN HAX SAT HIN SAT TURBIOTY 8.9 15.5 15.0 11.9 112. 17 12 14 15.0 15.1 15.1 15.1 15.1 15.1 15.1 15.1	HIN HAX SAT HIN SAT FAX HIN HAX SALIMI SALIMI SAT FAX HIN HAX SALIMI SAT SALIMI SAT FAX HIN HAX SALIMI SAT SALIMI SALIMI SAT SALIMI SALIMI SAT SALIMI SALIMI SAT SALIMI SALIMI SAT SALIMI SALIMI SAT SALIMI SALIMI SAT SALIMI SALIMI SAT SALIMI SALIMI SALIMI SAT SALIMI SALIMI SAT SALIMI SAT SALIMI SAT SALIMI SAT SALIMI SAT SALIMI S	HIN HAX SAT HIN SAT TURBIDITY SALINITY TIDE PPH HAX HIN HAX HI
DISSOLVED OXYGEN HAX SAT HIN SAT FAX HIN HIS LIST LIST LIST LIST LIST LIST LIST LI	DISSOLVED OXYGEN TURBIDITY SALINI PAX PAT PAX	15.50LVED OXYGEN
SAT HIN SAT PAX HIN HIS	SAT HIN SAT TURBIDITY SALIMI PATH HAX SAT HIN HAX SAT HIN SAT WAX HIN HAX SAT HIN SAT WAX HIN HAX SAT	SAT HIN SAT VAX HIN HAX HIN HAX
TURBIDITY JCU	TUBBIOLITY SALINI SAT PAX HIN HAX 112. 17 12 4.56 113. 22 11 4.80 115. 19 14 4.92 116. 20 15 4.92 117. 12 4.92 118. 13 4.92 119. 27 11 4.92 110. 27 11 4.92 110. 27 12 4.92 110. 27 14 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 12 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 12 4.92 110. 27 18 13 4.92 110. 27 16 4.80 110. 27 17 12 4.92 110. 27 18 18 13 4.92 110. 27 17 12 4.92 110. 27 18 18 18 4.92 110. 27 18 18 18 4.92 110. 27 18 18 18 18 4.92 110. 27 17 12 4.92 110. 28 2.88 1	TURBIDITY SALINITY TIDE SAT FAX HIN HAX HIN HAX 1112. 17 12 4.56 4.27 6.8 110. 22 16 5.16 4.66 6.9 110. 20 16 5.04 4.44 8.3 110. 20 16 5.04 4.44 8.3 110. 20 16 5.04 4.44 8.3 110. 20 11 5.16 4.62 6.5 110. 20 15 4.86 4.27 7.3 110. 20 14 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 6.5 110. 27 17 4.92 4.56 6.5 110. 27 17 4.92 4.56 6.5 110. 27 18 12 4.86 4.95 6.5 110. 12 4.96 4.56 6.5 110. 12 4.96 4.56 6.5 110. 12 4.96 4.56 6.5 110. 12 4.96 4.66 6.66 110. 12 4.96 4.66 6.66 110. 12 4.96 4.66 6.66 110. 12 4.96 4.66 6.66 110. 12 4.96 4.66 6.66 110. 12 6.96 6.96 6.96 110. 12 6.96 6.96 6.96 110. 12 6.96 6.96 6.96 110. 12 6.96 6.96 6.96 110. 12 6.96 6.96 6.96 110. 12 6.96 6.96 6.96 110. 12 6.96
TURBIDITY JCU	TUBBIOLITY SALINI SAT PAX HIN HAX 112. 17 12 4.56 113. 22 11 4.80 115. 19 14 4.92 116. 20 15 4.92 117. 12 4.92 118. 13 4.92 119. 27 11 4.92 110. 27 11 4.92 110. 27 12 4.92 110. 27 14 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 12 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 4.92 110. 27 17 12 4.92 110. 27 18 13 4.92 110. 27 16 4.80 110. 27 17 12 4.92 110. 27 18 18 13 4.92 110. 27 17 12 4.92 110. 27 18 18 18 4.92 110. 27 18 18 18 4.92 110. 27 18 18 18 18 4.92 110. 27 17 12 4.92 110. 28 2.88 1	TURBIDITY SALINITY TIDE SAT FAX HIN HAX HIN HAX 1112. 17 12 4.56 4.27 6.8 110. 22 16 5.16 4.66 6.9 110. 20 16 5.04 4.44 8.3 110. 20 16 5.04 4.44 8.3 110. 20 16 5.04 4.44 8.3 110. 20 11 5.16 4.62 6.5 110. 20 15 4.86 4.27 7.3 110. 20 14 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 7.3 110. 27 17 4.92 4.56 6.5 110. 27 17 4.92 4.56 6.5 110. 27 17 4.92 4.56 6.5 110. 27 18 12 4.86 4.95 6.5 110. 12 4.96 4.56 6.5 110. 12 4.96 4.56 6.5 110. 12 4.96 4.56 6.5 110. 12 4.96 4.66 6.66 110. 12 4.96 4.66 6.66 110. 12 4.96 4.66 6.66 110. 12 4.96 4.66 6.66 110. 12 4.96 4.66 6.66 110. 12 6.96 6.96 6.96 110. 12 6.96 6.96 6.96 110. 12 6.96 6.96 6.96 110. 12 6.96 6.96 6.96 110. 12 6.96 6.96 6.96 110. 12 6.96 6.96 6.96 110. 12 6.96
T	BELIOITY SALINI LOUD HINN HAX HINN HINN HAX HAX HINN HAX HAX HINN HAX	1000 HIN HAX HIN HAX 112 4,56 4,27 6,88 6,59 6,59 6,59 6,59 6,59 6,59 6,59 6,59
င် ခြံခွဲခဲ့တ်တိတ်ခဲ့ ကို ခဲ့ တိတ်ခွဲခဲ့ခဲ့ခဲ့ ကို ခို ခွဲခဲ့ခဲ့ခဲ့ခဲ့ခဲ့ ခဲ့ ခဲ့ ခိုခဲ့ခဲ့တိတ်တိတ် မ	A 4440000	SALINITY PATINITY PAT
X X 44402004 0 4 00044444 0 4 444444 4 4 44402000 0 4 00044444 0 4 444444 4 4 4	и на	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	N	

Table 23, (Continued)

Ė	z	0.9	, ,	N :	ڻ - م	7 4	6.3	5,3	6.	•	ຸທຸ	2.	0.5		6.4	5.4	Cu :	3 3	3		 	5.6	5.3		*	77	q	s.	7 (L)	4,46	5.0
HE 16h 1 F 1																			Ť												
1106	MAX	7.1	9.9	7.1	200	3 0	7.2	6.5	5.5	0.1	7	7:1	6.0		7.5	6.8	4.9	3 3 3 3 3 3	3 3 8	9 1	::	7.4	7.0		8.4	4	6.5	7.0	5.5	7.0	4.0
SALINITY	Z	4 .98	9° 3°	5.46	n.	5.71	86.4	5.47	5,17	5,77	5.00	5.71	5.77	0	5.52	5,75	5.89	61.9	6.25	61.9	44.0	5.89	61.9	,	6,38	0 0 0	6.13	6.25	5.45 6.25	4,01	424
SALI	XAA	10 4 0	5,95	5,83	0 0	6.07	61.9	5.91	61.9	6.13	6.33	6.13	6.13	0	6,31	6.19	6.50	77.0	6.62	6.74	6.74	6.87	6.65		6.81	9.0	6.34	44.9	6.50 8.50 8.50	6.83	69.69
TURBIDITY	KIN	01	. 01	-	4 :	11	*	13.	13	15	* *	=	5.	<u>.</u>	::	13.	97	E 60	502	18	18	16.	19,		9	9 4	2	Q.	2 2	10.	14.
TURB	¥	91		50	0 0	3 39	20.	18.	3	9 5		18	50	<u>-</u>	20.	18.	33	36	36	30	9 69	36.	32.		52	a c	2.5	7	53	52	21.
2	SAT	57.	6.6	104.	67	103.	57.	78.	107.	=======================================	e v.	107.	108	* 60 *	. 4.0	103.	100.	94.	92.	86.	77.	.11.	90°		87.	3 0	5	11.	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 8	5.5	40.
DISSOLVED OXYGEN	E S	4.9		9.1		10:1	6.4	7.0	10.5	10.8	0 0	6.6	10.1	.01	8.0	1.6	9.3	, v	9.6	7.8	9	6.9	8 . 2		7.8	* * *	7.8	9.9	5.3	6.3	7.0
DISSOLV	SAT	138.	164	136.	# C	133.	164.	136.	148.	154	38.	. 7 7	0 0 0	:	154.	142.	147.	137	129	122.	123.	147.	129.	:	121.	3 7 7 8	109	112.	89°	134.	110
	MAX	11.4	14.0	11.9	0.0	12.8	14.0	12.0	14.0	***	12.4	13.1	16.9	9.31	14.1	13.0	36.8	11.9	11.2	10.6	10.0	14.8	11.2		10.7	* * *	2	· ·	2 3	11.2	7
ī	N I		7.5	9.6	80 0	8.1	7.5	9.1	0.6	• •	7 60	0.6	0.6	•	8.8	9.6	9.1	. 0	30	8.6	8 8	8.2	8.7		4.8	3 0		8 . 2	7.6	7.5	E . B
	HAX	0.0	6	9.1	ag c	0.0	4.6	9.1	9.6	ທີ່	9 6	9.6	4.0		9.6	4.6	9.6	4	6.3	9.1	9.0	9.6	9.3		9.0	* 0		H .	G *		8
TEMPERATURE Deg C	Z Z	20.4	19.2	19.7	7.5	14.4	14.4	18.2	14.2	14.6	15.7	17.0	16.3	10.0	14.2	15.7	16.8	18.4	17.6	18.0	19.6	16.8	18.3		18.4	8 C	21.2	21.2	17.1	17.1	19.6
TEMPE	HAX	23.2	21.6	50.6	1.00	15.7	23.2	20.0	16.2	17.7	B. 0	18.2	17.5		16.1	17.7	50.5	200	50.6	50.6	20.4	50.9	20.6		19.6	***	22.0	55.5	19.6	22.5	21.4
	DATE HO DA YR	2 76							29 76				4 76				6 76				12 76								19 76		
	40 DA	4 22		*					4				no r				un i	חיו ח	us.		n in								n n		
	WEEK	17	:=	1	=:	::			18	8 .	9 6	9	82	0			61	61	61	61	6 6				50	200	202	50	0 0 0 70		
							EXTREME	AVERAGE							EXTREME	AVERAGE						EXTREVE	AVERAGE							ENTREVE	AVERAGE

Table 23. (Continued)

HE1GH1 FT	ž I	6.4	5.5	5.1	5.6	€.2	6.1	1.4	5.5		7 4	100	5.6	5.7	D 4	•	5.3	5.6	6.0	່	5.7	5,3			5.4	9.5	,	0 .0 0 .4	2.4	9°9	0 0	9.0	4.6	;	5.6
T106 HE	нах	6.6	7.0	7.0	7.1	7.0	7.6	7.6	6.9	,	4	7 0	7.6	7.0	0.	:	7.6	7:1	- F	6.9	6.9	6.9	و د د د		9.8	7.0	,	7.7	6.0	7.4	9.0		2	:	7.3
111.	z x	6.38	6.31	6.31	6.38	6.25	6.25	6.25	6,32	:	****	50.00	5,83	5.64	5,77	0 . 40	5.64	6.05	10.9	6.07	6.67	6.07	5.00 U.00		5,95	6.03		6.13	6.01	6.07	61.9	6.44	10 4	•	6.18
SALINITY	X X	6.62	6.74	6.68	6.87	6.62	29.9	6.87	99.9				6.50	6.38	6.38	0.63	6.14	6.52	6.31	9 9	6.50	6.50	6.38		6.68	94.9		20.0	6.3B	6,38	6.62	6° / 4	72 1	•	6.55
TURBIDITY	z	25	:::	15	9.	=	13	:	13.		> 0	- :	0	10	0 :		•	10.	= :	2.7	2		* C	:	10.			a		4 3 3	=:	2 [: :	:	12.
TURBI	¥	91	20	23	5.6	25	91	24.	20.	:		9 9	. ~	15	e :	3	23.	17.	9 :	- 4	9.	3 3 4	\$ 4 \$	2	18.	17.		a :	3	8 3	1.6	0.2		• 0 3	19.
z	SAT	76.	9	82.	9.4	92.	78.	73.	19.	,	62.		76.	.18	9.6	900	, 59	ģ2.	76.	200	89.	97.	78.		16.	.88		011	80	85.	=	7.5		:	65.
DISSOLVED OXYGEN PPM	z	7.1	2	7.3	4.	7.2	6.9	6.1	7.1		ໝູດ	70,	9.9	7.0	A . C	*	en en	7.1	9.9		1.6	8.2	6.5		6.5	7.5			9	6.8	5.8	6.9		2.0	6.8
DISSOLVE	SAT	100	117	119	115	112.	91.	119.	107.		123	60	122.	146.	162.	136.	162.	. 131.	134.	3.5	130	134.	157.		159.	141.		168	142	126.	131.	133		::	143.
	# X	2.1	10.	10.2	9	9.5	0.0	10.2	9,3		9.00	9 1	10.0	14,1	12.8	11.0	12.8	10.8	11.4	10.0	10.6	10.9	5.5	3	12.5	11.5					_	4.5		2.0	11.1
H	Z I	* * *	2.6	7.7	7:1	7.7	7.6	7.6	1.6		7,2	• ;	- 6	7.6	9.0	1.6	7.2	7.6	1.4	6 4	7.7	7.9	7.7	•	7.4	7.7		4.0	2 6	7.9	8.1	, c		9.	8.0
	X	* *		8	9.0	8.4	7.8	8.5	8.3		. S			9	0.6	9.6	0.6	60	8.6	w «	0 00	6.7	0.0		9.0	8.1		0.0	9.6		8.7	00 0		9.1	8.6
TEMPERATURE DEG C	Z	16.2	8.0	3.8	16.9	10.7	19.2	16.2	18.4		18.9	9.6	200	20.7	21.6	21.3	18.9	\$0.02	50.4	- u	21.1	21.7	22.8	63.0	20:1	21.5						24.0		23.8	54.9
TEMPE	. #	18.4	200	20.00	21.3	4.10	20.1	21.4	20.3		21.6	23.2		23.0	25.8	54.5	25,8	23.0	21.8	22.4	23.7	24.4	25.7	E	27.8	24.1		28.0					•	28.0	26.8
	- X	16													16					4 76			8 76									5 76			
	PO DA YR	5 20	-										2 2		9								•					_				9	-		
	* EEK	2	7 6	40	7 2		5 12				25	25	25	22	22	25			23	23	3.5	2 6	23	57				\$2	5 6	7 7	5	50			
								EXTREME	AVERAGE								EXTREPE	AVERAGE				,			EXTREME	AVERAGE								EXTREPE	AVERAGE

Table 23. (Continued)

ИЕ 16 М Г F Т	NI N	5.5	5.7	o (2.0	5.5	5.2	5.7	1.		2.0	. S.	o		4	,	2.1		, ,	5.5	2.5		 	5.2	5.5	6.3		0.5	10.4		4.7	5.0
110E HE	MAX	9.9	7:1	* *	4.	7.2	7.4	7.1	,	2.4	4.9	6.7	2.	* *	4.	•	7.0			-	5.9	9 1	7.3	7.3	7.0	7.3	. 0	7.2	0.0		7.3	8.8
žI.	z	5.52	5.64	20.0	6.25	6.13	5.52	5.91	;	6.31	6.74	47.9	20.2	7.24	4.31	2	6.82		7.30	9 4 9	***	****	7:15	7.11	7.24	7.11	7.7.9	***	6.87	6.81	6.81	6.94
SALINITY	XAM	6.99	6.13	0 0	6.8	29.9	66.9	6.55	2	19.9	7.05	7.36	7.86	2,6	7.86	2	7,33	•	7.4.7	***	***	# C	7,36	7.61	7.47	7.30	7.30	20038	7.24	7.05	7.49	7.25
D117	Z Z	15	15	= 2	: 2	14	7.	12.	:	* 4	: :	2	_;	9 6		•	15.	:	7	9	3 3	* !	- 9	16.	17.	1.7	. e	***	15	9 9	15.	16.
TURBIDITY	×	26	61	Z :	3.5	50	.92	21.		9 0	500	55	23	7 6	33	2	.55	į	5 70	5.5	*	* t	S 62	26.	24.	23	2 % 2 %	*	97	5.2	.92	54.
z	SAT	79.	61.		9 9	*	76.	19.	1		3 8	3 8 9	# 1 # 1	3 3 3	0		*	Ş	,	68		* :	77.	65	.99	59.	9 99 9 8	* 0 0 *	57.	7.9.	57.	.69
DISSOLVED OXYGEN PPM	Z	6.6	5.6	2 . 9		* * *	0 • 9	6.2	:	* *		*	* :	. 0			•		4 .	2 2	*	* 1	e Ru	4	5.0	4.6	5.4	* 0 * *	4.4	5.7	*:	4.
DISSOLV	SAT	132.	144.	****		\$ \$ \$	144.	137.				*	3 :	101		•	101.		0 00	7 8	***	***	118	147,	129.	122.	145		113.	* * * * * * * * *	145.	126.
	H X	10.1	10.8	7 0 0 0		*	10.8	10.4			*	* * *	* :	* 0	1		9		* 0	**	*	***	- 6	1.1	9.6	9.5	0 # 0 # 0 #	3 3 3 2	9		10.8	4.5
Į.	z	7.4	8.0	9 6	6.2	7.5	7.4	7.8	1		7.2	7.2	* :	7.6		•	7.4	i	• •	7.6	* *	*	::	7.4	7.6	7.5	0.7	*	7.6	9.6	7,5	7.7
	X 4 H	8.8	9.8	- ·	3	8.7	8.8	8.7	,	30 G		7.8	* :	9 6	1	•	8.3		D 0		***	**	 	89	9.8	8.5		*	8.5	20 s	1.8	9.6
TEMPERATURE DEG C	NIN	25.2	26.2	26.7	26.6	27.3	25.2	26.3	;	28.1	27.2	27.5	300	20.0		3	28.1		2.02	*	*	* 1	26.8	26.8	27.5	26.1	20.02	*	:	24.7	24.7	26.2
TEMPE DE	HAX	27.5	28.8	29.5	28.6	30.4	30.4	28.5	:	30.0	29.7	30.8	31.1	29.5		,	30.4		5000	* *	*	* (27°5	59.9	29.1	28.1	0 . B . S	*	* * *	* *	28.8	28.5
	Y.	92												76				. ;	2 5	19	16	19	22							2 9		
	DATE HO DA YR	6 17												62 9							4 _	r 1					6 2			7 14		
	MEEK	25	52	2 2	2 52	52			;	92	56	56	56	92				;	20	27	27	27	2 2			28	28	28	28	58 58 58		
							EXTREPE	AVERAGE							54054	E > 1 0 5 7 5	AVERAGE							EXTREPE	AVERAGE						EXTREPE	AVERAGE

Table 23. (Continued)

29 7 15 76 6 C C C C C C C C C C C C C C C C C	DISSOLVED OXYGEN TURBIDITY SALINITY TIDE HEIGHT JCU PPT	SAT WIN SAT PAX MIN HAX HIN HAX	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.7 61. 20 34 7.30 7.00 2.5	5.4 69. 22 16 7.30 6.93 6.6	107. 4.4 57. 28 20 7.11 6.87 6.5 5.3	口。CO ~ CO ~	TO	157, 4.4 57, 28, 9, 7,36 6,64 6.9 5,1	133. 5.3 68. 23. 15. 7.22 6.87 6.0 5.4		·····································	OC OC	· · · · · · · · · · · · · · · · · · ·	6.2 82. 30 22 7.86 7.61 6.9	157, 4.7 63, 24 20 7.73 7.49 5.9 5.	68, 4.7 63, 30, 20, 7.86 7,49 7,4 5,1	158, 5.6 74. 28. 21, 7.80 7.53 7.0 5.5	6.8 92, 25 19 7.80 7.42 7.2	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.5 46. 26 17 8.11 7.61 6.8	2.0 26. 34 22 8.33 7.86 6.8	201. 4.0 53. 34 26 8.11 7.73 7.1 5.5 3.91. 4.2 56. 40 27 8.23 7.73 7.1 5.5	201. 2.0 26. 40. 16. 8.23 7.42 7.2 5.3	162, 4.3 58, 30, 21, 8.00 7.60 7.0 5.5	77. 4.5 60. 37 25 8.30 7.86 7.1 5.6 166. 5.3 71. 35 23 8.36 7.92 7.4 5.5	5.0 66. 35 29 8.23 7.80 7.0	3.0 39. were even 8.36 7.30 7.3	2.5 32. 26 17 8.67 7.95 7.1	5.1 67. 24 17 8.61 8.23 6.4	73. 2.5 32. 37. 17. 8,67 7.30 7,4 4.3	
MODATE MODATE	•	z z	OF L	2 Co. Or	7.8	7.6	233		7,4 12.4	4.7		* 5	***	****		7.5	7.5 32.6	7.6 11.7	. 0 .	£ 0	9	4.5	7.40	7.1 15.1	7,5 12,1	 14 15 15 15 15 15 15 15 15 15 15 15 15 15	7.9 8.5	7,5	3.0	7.4	7.0 33.2	
X	TEMPERATURE DEG C	z m x	* 0		* * *	3 4 4 4			55.9	55.9	•	3 3 8 3 8 3 8 3	3 3	* * * * * * * * * * * * * * * * * * * *	# Y	28.7	27.6	20.5	2.6.2	77 * * * C' *	*	26.5	# * C2	26.5	28,5	* (*) * * (*) * (*)	*	* 11	26.0	26.8	25.5	
		, č	153 p	0	60	7 19	9 E		,			اب در در در در	9 OF	1 25	7 26	200			7 29	7 30	. 00	8	തത			an an	00	en e	P 00			

Table 23. (Continued)

нЕ16н1 F T	z z	~~~~~~~ ~~~~~~~	5.	5.4		4.	n n	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.0	5.7		5.3	9.6
TIDE HE	M A A	0 - 1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	7.1	99	000000	3.5	7.2	4400004	7.4	7.2	0.4.4.0.0.00 0.4.4.0.0.00	7.6	7.2
11.	z E	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.36	8.52	88.557 99.399 1177 1177	8.67	9.02	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8.67	9.84	4444 4444 4444 4444	8.80	9.18
SALINITY	МАХ	20000000000000000000000000000000000000	9.12	16.8	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9.88	9.54	999999	9.75	9.44	0. 9.62 9.62 9.80 9.81	10.13	71.6
V110	Z	800 S S S S S S S S S S S S S S S S S S	18.	.02	20 17 19 20 20 20	17.	19.	* * * * * O U U U D	21.	23.	0 4 4 4 9 P P P P P P P P P P P P P P P P	16.	17.
TURBIDITY	×	77788888 77788888	34.	28.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26.	24.	6 0 0 0 8 3 8 3 3 M 8 3 3 5 8 8 8 8 8	30.	30.	0 0 8 0 0 5 8	0 3 8	3 3
z	SAT	6 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	33.	62.	25.00 25.00 25.00 25.00 25.00	. 4.	72.	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	50.	63.	70. 74. 66. 75.	61.	6.8
DISSOLVED OXYGEN	I Z	~ 0	2.5	4.7	0000440 00000	1:1	9.6	0444084 04440	3.8	9.	የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ	4.7	ery usi
DISSOLVE	SAT	170. 146. 115. 127. 151.	189.	151.	00000000000000000000000000000000000000	166.	148.	150. 150. 170. 170.	168.	143.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	152.	130.
	HAX	8.00.00	13.9	11.4	129.45 129.45 129.45	12.6	11.4		12.7	11.0	144450 5 100 5 6 7 6 100 7 6 7 6	111.7	10.6
H.	N.	0874747 087460	7.0	7.5		7.4	7.5		7.4	1.6	4444444	7.4	7.6
	T A A	00000000000000000000000000000000000000	9.6	8.6	0 2 3 0 0 0 0 0	83	9.6	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.0	8.7	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9.0	8.7
TEMPERATUME DEG C	z I	200 + + 200 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	26.1	27,3	* 0 * * 0 * * * * * * * * * * * * * * *	54.9	25.8	Masses - 8 8 8 8 8 - 8 8 8 8 8 - 8 8 8 8 8 8 0 8 8 8 8 8	27.3	27.3	0 0 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	54.4	25.8
TEMPE	H X	* * * * * * *	:	:		*	:	* * * * * * * * * * * * * * * * * * * *	*	*	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	:	:
	DATE HO DA: YR	12 76 114 76 114 76 115 76 116 76 117 76			90 - 45 4 6			26 76 27 76 28 76 29 76 31 76 1 76			25 4 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
	DATE HO DA:	0 0 0 0 0 0			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9						\$ \$ \$ \$ \$ \$ \$ \$ \$		
	WEEK				******								
		. !	EXTREPE	AVERAGE		EXTREPE	AVERAGE		EXTREME	AVERAGE		EXTREPE	AVERAGE

	WEEK	150	37	37	2	200		EXTREME	AVERAGE			9 6	38	38	38	38	EXTREPE	AVERAGE	39	9 0	5 6	36	36	39	EXTREME	AVERAGE	•	9		0	0.	0,	EXTREPE	AVERAGE
																						-							• -	•	-	-		
	DAT	9 9 9	_		-						40			-						200								~ .						
	DATE HO DA YR	76									9 2									1,6								2;						
TEMPE	# A X	27.0	23.5	24.0	700	25.6		21.5	25.7	;	63.46	24.1	24.3	23.9	23.3	\$5.4	54.6	23.7	22.0						35.6	22.0	21.1	7.61	17.	18.6	18.0	19.7	21.1	19.1
TEMPERATUME DEG C	z I	25.5	22.0	2 . E	22.5	23.5		61.9	23.1		22.6	22.8	22.3	52.6	22.3	21.3	21.3	22.4	50.5						50.5	20.8	_	10.4	-	-	_	_	17.2	17.8
a .	HAX	90 50	9.0	9.0	200	9			6.7			9	8	8	8.4	69	1.8	8.5	8.5	ກຸ	9	8.5	8.4	8.3	6.7	8.5	0.8	· .		5	7.5	e e	9.0	7.6
I.	Z Z	7.8	7.5	9.	:		,	•	7.8		* * *		1.1	6.7	9.0	4.	7.4	7.7	1.6	٠, د د	7.8	6.7	1.6	5.	7.5	7.7	1.4		100	7.5	7.1	7.2	7.1	7.2
٥	I A	4.01			4 0	B. B		***	10.2			9	6,3	5.5	89	5.	11.2	8,3	9.5	2.0	10.7	6.7	e.	æ	10.7	9.6	7.1	9.0		5.	1.6	16.3	10.3	7.4
DISSOLVED GXYGEN	SAT	138,	101	6.7	200	114.		104.	132.		001	91.	80.	120.	109.	95.	141.	103.	112.	121	131	106	115.	100	131,	117.	.98		2 1	96	86.	120.	120.	.69
ED OXYGEN	FIN	5.3	4.8	en 1				7	4.0	. •	9 m	2 4	60	4.6	1.9	5.4	3.6	9.0	5.9	9	6.2	6.7	9.0	nt.	4.6	0.9	 3.5	e .		, m	5.0	0.9	3.5	5.1
	SAT	57.	.65	9 6	•	18		• / 0	. 99		6.5	52.	47.	57.	83.	22	47.	61.	71.	. a	75.	91.	56.	65.	56.	73.	42.	, 62,	9 0	.09	56.	68.	42.	.69
TURB	¥ A X	5.23	* * *	* :			,	. 77	22.	1	2 2 2 2	*	*	3 3	* * *	# 3 9	:	*	53	2 5	2.5	S	52	52	55.	25.	5.4	53	50	50	18	=	54.	21.
TURBIDITY	Z H	89 49	9	3 : 9 :			•	9	18.		3 2	3 2	3 3	3 2 2	3 9	9	* * * * * * * * * * * * * * * * * * * *	* * 3	50	9 6	20	9	91	5	16.	19.	11	0 0		12	12	15	12.	16.
SÁLI	НАХ	10.32	10.58	99.0	2.0	10.71		2	10.63		20.01	10.64	10.71	10.96	11.16	91:11	11.16	10.79	11.22	11.35	11,35	11.29	11,35	11.48	11.48	11.32	11.61	11.35	10.00	10.90	10.58	10.64	11.61	11.03
SALINITY	Z.	9.88	10.00	6000	000	10.39		9	96.6		00.00	10.20	10.32	10.58	10.77	05.01	10.00	10.41	10.96	10.40	11.03	11.03	11.09	10.90	10.96	11.00	11.09	60.11	10.01	10.26	10.32	10.39	10.26	10.64
1106	X A	7.5	9.9	9	9 4	6.8	•	2.,	6.8			6.8	6.5	6.9	7.1	9.9	7.4	6.9	7.4	0 6	9	7.7	e .	4.7	7.8	7.3	7.5	9.		7.3	7.5	7.8	8.1	7.7
нЕ 16н1 F T	Z X	5.5	2.	, i	n u	່ທ່		2.6	5.4	:	3 (5	5.7	S	5.6	s.	'n	S.	5.6	6.0	ກິດ	9	9	4.6	•	4.8	5.7	9	9 4		6.0	6.5	6.5	5.0	4.0

Table 23. (Continued)

	,	m		~ ~			-	<i>m</i>			•		0.1		•	.0		_					_	_	_		~	_					
нЕ16н1 F 1	Z	6.3	9	4 10	ıs	ė	6.4	5.8	u	30.0	*	un u	n u		3.	ະດ		5.3	2 4	S	5.6	4.	,		# · ·	9 9	S	5.4	*	6 .1	4.7	4	•
TIDE	H X	7.5	6.7	4 (6.9	7.6	8.7	7.3		7.0	4.0	0.0		.0.	7.2	8.0		7.1	e m	6.7	6.9	4.0		7.1	9.9	3 5 3 3 3 3	9.9	7.2	ر و • ه	0 ~	7.2	9	j 3
SALINITY	Z	10.39	10.20	10.26	10.13	10.39	9.81	10.22	10 64	10.71	10.64	10.52	***	8.11	8.11	10.05		8,36	8 6 4 6	8,30	8,36	H . 4.0	•	6.36	8.40	3 9 3 0 3 0	8.05	7.61	7.86	7.07	7.61		•
SAL	HAX	10.71	10.71	10.64	10.71	11.03	11.03	10,75	10	11.42	11.03	11.03	10.70	9.24	11.42	10.75		9.05	8.50	9	9.05	66.0		9.05	8.93	2 2 2 2 2 2 2 2	8.36	8.11	8.23	4.62	8.36	000	0 . 6
TURBIDITY	Z	13	2	4 5	9		12.	50	ŗ	- 3	91	9 9	= :	:=	=	15.		13	4 4	12	3 3	g .	:	12.	13.	- ÷	13	13	51	m m	13.		:
10RB	¥	18	18	61	0	20	21.	19.	ć	22	50	25	200	50	24.	21.		16	Ø €	202	3 3	3 -	;	٠1،	23.	Q 3	18	50	6	91	20.	•	0
z	SAT	83.	95.	73.	600	104.	73.	. 18	671	103	93.	# F	76.	96	72.	68.		79.	20 CF	101	89.	86.		19.	.69	3 3 3 3 3 3 3 3	112.	100	112.	100	109.	:	:
ED OXYG	z	7.3	7.8	4.9	4	6	4.4	7.7		9.6	8.5	7.7	9 1	. 60	6.9	8.2		7.8	90 0	10.2	8.9	B . 6		7.8	8.9	* *	11.9	11.4	11.8	12.2	11.4	:	2.1
DISSOLVED OXYGEN PPM	SAT	136.	116.	111	200	133.	154.	134.		142	116.	96	. 40	102.	142.	112.		104	126.	120	144.	130.		144.	123,	* 0	170.	150.	135	1350	170.		
	# X	11.6	10.0		13.4	11.6	14.5	11.7		15.5	10.5	O !		10.1	12.5	10.4	٠	10.2		12.	14:2	12.8		14.2	12.2		11.6	15.4	14.0	4.4.	17.6	, 4,	,
I	Z	7.3	7.9	2.0	7.4	6.	7.2	7.5	d	9 60	4.8	7.8	- r	7.9	7.2	7.9		7.6	9 7	6	8	9.0	:	7.0	7.7	* 0 3 0	7.7	# · #	8.4	* 0 * 0 * 0	7.7	6	2
	. A	8.5	7.0	9 6	9 9	. 60	8.8	8.5	9	9.0	6.1	80 c	, c	9	4.6	9.6		9.6	20 X	8	9.6	3 C	7	9,3	8.8		9.1	9.1	9.0	2 ° °	9.1		2
TEMPERATURE DEG C	H	17.2	19.7	18.0	19.6	16.0	15.4	17.5		15.8	15.7	13.B	7.0	12.4	11.7	14.1		12.0	9.0	11.2	11.8	7.	•	10.1	11.3	12.9	4.6	10.0	9.7	00	0.6		0.0
TEMPE	H	19.8	20.1	19.0	18.2	18.0	20.3	19.1	9.	10.0	16.6	16.0	7.0	13.3	18.0	15.5		13.2	9 4	12.1	13.0	12.8	1 2 4 1	13.2	12.6		12.4	11.0	10.8	9.0	12.4		***
•	æ	76	16	2 2	9	92			ž	2.2	16	9:	9 4	2.2				2	9 4	9	16	92	2			9 2	2 2	16	16	16			
	DATE 10 DA'YR	- 4	0	2:	: 2	2:			:	S	91	11	9 0	50								92								~ ~			
	304	100	0.1	9 9	2	20			-	2 2	10	2:	2 0	22				10	9 0	9	2	9 9	2			9 0		10	=:	==			
	WEEK	44	7	77	: -	:=			ç	4	42	42	2 0	45				43		7	+3	e .	?			;;	;	:	;	::			
							EXTREPE	AVERAGE							EXTREPE	AVERAGE								EXTREME	AVERAGE						EXTREPE		AVERBEE

	Ta	Table	23.		(Con	(Continued)							٠						
					1	TEMPERATURE DEG C		I	3	ISSOLVE P	DISSOLVED OXYGEN PPM	z	1683	1LRBIDITY JCU	SALIMITY	¥111.	1105 HE1GHT	E 1 GHT	
	MFFK	¥	DATE PU DA YR	<u>۽</u> ج	FAX	2 2	¥A¥	, X	* A k	SAT	N 18	SAT	Y A X	N. I.	M.A.M.	N N	×	ž E	
	£ ,	==	4 7		9.01	9.5	7.0	7.9	9.5	130.	E	106.	16	e :	7.60	7.61	6.0	n d	
	ր գ Դ գ	==	n a	2 5			e e.	0 T	14.4	121.	0.0	104.		¶ 4 4 m	7.92	7.86	9.4	i u	
	25.4	=	~				9.6	£.5	12.9	121.	10.6	. 57.	9.	<u>+</u>	7.92	7,73	-1 O	4.5	
	1 4 U (1	==	T . 0				C	T	2 2		4.00	9.5	919	2 4	7.05	7.73	4.0	ଜୁନ ଅଟ	
	. t	=	1.0		**	2.6	7 3 3	3 3 3 3	14.7	113.	11.2	97	5	in.	7.98	7.73		 	
EXTHEME	٠				10.6	5.0	9.1	e. 9	13.6	130.	10.4	. 46	6	12.	6.05	7.61	7.0	3.6	
AVEHAGE					H. 9	7.6	¥.	8.5	14.6	116.	10.9	. 66	17.	14.	7.92	7.73	4.9	.a.	
	4.5	=:				3 :	3 :	3 :	9 : 9 : 3 :	3 :	3 :	9 : 6 : 5 :	# . 9 :	3 3 0	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3	3 1	3 1	
	\$ 1	==	7 -			-	2 2 2 2 2 2 2	3 3 3	3 7	100	3 0 0	104	3 -	u J s s	7.61	122	3 7 3 4 6 4	9 7	
	9.9		4				3 3 7	0777	14.7	126	12,3	105.	, e	0.	7.61	7.45	6.0	1 15	
	9.	=	3)				3 3	3 3 3	15.d	136.	12.9	108.	13	20	7.67	7.30	5.8	6.4	
	4 4	=:	16	2 2	r. r.	~; o	3 0 0	3 4 5 5 6 6	200	350	12.3	102.	=:	3 4	7,36	6,99	ស្វ ។ ស្វ ម	ب ج رد	
	e F	:	:						7	103	* * * * * * * * * * * * * * * * * * * *	:		0		:	•		
EXTREPE		:			0.0	5.5	2 2 0	*	15.8	136.	12.3	102.	56.	• 9	1.61	66.9	6.5	£ . 4	
AVEHAUE					5.1	2.4 1	3 3 3	3 3	15.1	129.	12.7	166.	17.	70	7.59	7.25	6.1	a.	
	. 1.	=:	F			3° 5	3 3	3 3	3 .	***	3 3 3	***	9 -	9 ·	3 1 3 1 3	****	3 0	, n	
	- r	-	7 7				3 3 3	3 3 3 3 3 3 3 3	7 2	500	12.0	104	3 (1	30		65.7		กัง	
	; ;	=	2 2				3 3	3	14.7	125	12.2	105	, .v	10	6,17	7.61	6.9	2.5	
	~ 1	=:	20				* * * * * * * * * * * * * * * * * * * *	3 3	13.2	115.	10.0	E7.	5	æ :	8.1	7.61	1.0	3	
	- r- + +		V. V	16	a in	• m	9 4 9 5 9 5	3 3 3	13.2	116.	12.1	· · ·	7.0	2 *	6.42	7.46	t. 0	, ,	
EXTREME					7.6	3.3	3 3	3 3 6 9	14.7	129.	10.0	87.	. i. 2	ф.	24.8	7.42	6.9	3.5	
AVEHAGE					4.4	9.4	3 3	3 8 8	30 T	120,	11.8	100.	17.		8.08	7.64	6.3	4.7	
	Ę	:	,				;		4	ě		Š	2	5	ì		•		
	r a		11 2				2 2 2	2 4	0 0		0.0	•	- (-	000			•	
	7 4	::	200				3 3	3 0	2007	3 6		107	4 17	* =		71.90	2 4	- a - s	
	Q. 5	:=	1,12				3 3	3 3	1.0	33.	7.7	107	77	7.	3,40	6.23	*	 	
	r.	=	5.2				3 3	3 0 3	7.41	131.	5.B	52.	13	6	6.74	8.23	5.2	4.5	
	4 4		÷ –	2 2	0 4 2	4.5	3 3 8 3 8 3	8 2 3 3 3 3	34.0	116.	11.6	 	52	21	6.61 6.61	6.4.6 9.4.6	ກຸດ	7 4	
EATHEPE					H.3	3.4	3 3 3	3 9	15.1	138.	9.6	• p •	17.	·	41.0	8.05	6.5	£ • 4	
AVEHAGE					6.7	6.,	3 4 4	3 3	14.1	125.	10.4	*6P	13.	10.	6.55	6.25	6.1	4.0	

					DE OF C	A LUNE.					PPM PPM		3	030	d	Ppr		
	* tik	e o	DATE PU DA YE	ž	×	z Z	4 2 4	I	· AX	Q:	2 2 2	SAT	W A X	Z Z	MAK	π ::	× 22	Z X
	1.7	C	n.	42	4.	3.5	3 3	3 3	14.0	118.	20	58.	P 4	32	8.55	8.42	3	5.0
	68	~	m	5	80.00	3° 6'	***	3 3 3	3.3.8	115.	12.2	.65	26	12	5,67	64.8	5.7	3.8
	JN 7	2	er u	9 :	3.6	.+ .	3 to 5	3 4 4 4 4 4	3 1	121.	12.7	104.		15	47.0	20 c	3,0	0.0
	7 .		89 -	0 ;	3,0	* ti	3 5	2 2 2	0 1	,			7 .		0	0 .	ລັດ	
	F 3	2 7	υ »	6 3	- 3	ກຸດ	2 2 2 2 2 2 2	\$ 20 00 00 00 00 00 00	n c	1 3 C s	13.6	1113		200	0 0 0	0°0 x	7 0	e d
	4 4	12	- x	9.	r c	-	3 3	3 3	30	114	12.6	104.	12	13	3.40		. W	7 - 6
(4) (4) (3) (4) (4)					3	4.	8 8 8	3 3 3	15.6	133	11.8	9		-	90.86	8.13	7.6	8.
1					7 2		1 12	3 3		125		105.	21.		6.73	. 4		7
101111111111111111111111111111111111111					7					• 2 2 7)	7	;	2		4	2	
	50	2	y	2	0	£	3 3	3 3 3	5.01	. 20%	13.4	900	d1	(*)	6.6	90	(,0	9
	200	. ~	9	2	(F)	2 3	4.000	***	7	122	3	110.	20	33	0.0	0.35	0	,
	20	27	,m4	10	7	0.0	D 40 00 00	9 9 9 9	5.0	23	13.4	105		=	8.36	3.65	S. S.	4
	50	~	:2	14	3.6	3.1	3 3 3	3 3	1001	124.	13.0	107.	7.7		19.9	8,33	5,5	4.
	90	75	(P)	42	3.4	5.5	***	******	r. 0.4	114.	10.9	*06	50	13	64.3	0.63	5.7	*
	a .	N .	# 1	0 :	9 ·	ar s ⊶ s	3 : 3 : 4 :	3 t	# C	9 .	e e	. E. C.	3 4	n 4 9	0 to 0	900	eg o	S 4
	n c	u ~	~	5	2	0 0 2	2 2 2	2	7		9 * 5 *	.00	3	ž Ž	74.0	0 * 0	o n	ŕ
ATHEME					3.6	1.6	3 3	3 3	10,2	124.	10.9	.06	3.5	11.	19.67	8,05	90	4.0
D V F M A G F					0.00	m o	3 3 3	\$ 3 3	1007	120.	12.6	103,	14.	12.	8,52	8,22	3,0	4
	2	12	10	7.6	7.0	m	2 2 2	92 03 73 73	7:4	110.	12.4	100	3	3 3	30	8,23	9	4
	53	7	-	36	5	7	3 3 3 3	27 # # 29	, e		5	25%	13		0.74	8.30	.0	:3
	3.5	12	7.	7.0	2.7	0	0.400	3 5 5 5	· 5	108	1204	6.6	2	0.7	64.0	00.0	0.1	4
	51	2	G.	16	2.0	9.1	9 9 9 6	2000	13,3	106.	1000	97.	13	,-4 ,-4	6.42	8.11	6+3	.2
	ŝ	34	20	9.2	4.1	2,9	***	2 2 2 2	3 7 6	106.	12.2	101	13	=	69.8	30.00	3.5	*
	ສິ່	N -	200	76	m s	e :	****	3 6 3 6 3 6	9.	101.	P- 0	30 o	92 0	~ °	5,443	m e iu e a a	· · ·	m r
	r c	3		G ~		9	K R R	2 2 2	3	000	9	***	\$	7	0 * 0	9		7
EXTHENE					*	0.0	***	0 8 0 2	14.4	110.	11.5	5 5°	36.	30.	. 8.74	8.11	6.8	(F)
AVENAGE					3.0	107	3 3 4	***	14.3	107.	12.1	.16	14.	11.	8.50	8.25	6.1	6.3
	74 167	12		16	80.7	0.3	3 2 2	3 3 3	14.4	686	3.5	92.	13	peril peril	174.3	92.0	77 83	4 . 1
	e2 :	2		3	3 .	0.6	7.8	2.5	200	e 6:	10.8	H.S.		0	8.49	(F)	n v	, n
	N (C)	ne :		9	er.	0 0	200	L.	0.0	* 35°	() a par .	20 C	a (6.61	es o	40	4
	20.3	2 7		9 1	7 0	e .	2 °	0,7	16.68		0	, n	7 .	3 0	කි ය ඉ ය ය	P (0	ก็เ	* 4
	u r	4 -				0 e	0.0		3 -	* 6.0	(i e	* * * * * * * * * * * * * * * * * * * *	** **	2 0	0 7	0 0	2 4	
	25	4 24	2,5	6 5	0 4 U 74	, E	2.7	7.0	2 7 7 7	900	7 00 0	96	- 24	2 mi	0 0 0 0 0 0 0 0 0 0 0 0	8	7.0	
EXTREME					Z . D	0 • 3		7.5	8.4	102.	10.B	. 42	.5	10.	30.00	8.23	3.0	9.0
AVES L.C.F.					0 0	0.0	7.8	7.6	16.6	1600	111.7	5.5	12.	10.	6.9	N 7 - 8	5,1	4.6

	p	z	* 171
	H913	1.	3.0
	11DE HE16HT	>< -≼ £	7.0
	× = = = = = = = = = = = = = = = = = = =	Z E	8 . 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	SALINITY	* 414	3 G G G G G G G G G G G G G G G G G G G
	10kulully JCU	Z Z	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	16.Ku	* A ×	-0
		15. Q	0 0 0 0 0 0
	ISSULVED AXYGEN	2 2.	10.0
	15501.46	. AAR.	102.
	9	P. A. A.	32.6
	E 1	2	44
	T.	44 44	22
(pan	CC	z z	19 4 0 0 19 4
Table 23. (Continued	JEMBERATURE DEG C	* 6.8	W 70
•		n ž	76
23		DATE NU DA TH	12 30 76
Table		76 FE FE FE FE FE FE FE FE FE FE FE FE FE	Cu tu un ve

