Symmetric Chain Decomposition

Junyu Cao

School of Mathematics and Statistics
University of Connecticut

December 5, 2013

Outline

- Symmetric chain decompositions in the Boolean lattice
- Necklace Poset
- Other quotient posets
 - Transposition
 - Group generated by transposition
 - $B_n/(1..n-1)$
 - i-cycle
- Summary

A chain in a poset, (P, <), is a **totally ordered subset** of P.

A chain in a poset, (P, <), is a **totally ordered subset** of P.

A chain in a poset, (P, <), is a **totally ordered subset** of P.

A **saturated chain** is a chain $x_1 < ... < x_k$ such that x_i covers x_{i-1} for each i > 1.

A chain in a poset, (P, <), is a **totally ordered subset** of P.

A saturated chain is a chain $x_1 < ... < x_k$ such that x_i covers x_{i-1} for each i > 1.

A poset is **ranked** if it satisfies: for any x < y, all saturated chains from x to y have the same length. Denote the rank of x as r(x).

A chain in a poset, (P, <), is a **totally ordered subset** of P.

A saturated chain is a chain $x_1 < ... < x_k$ such that x_i covers x_{i-1} for each i > 1.

A poset is **ranked** if it satisfies: for any x < y, all saturated chains from x to y have the same length. Denote the rank of x as r(x).

The saturated chain $x_1 < x_2 < ... < x_k$ is a **symmetric chain** in P if $r(x_1) + r(x_k) = r(P)$.

$$A = \{1,3,4,6,8,9\} \in B_{10}$$
, then $S_A = 1011010110$ and the bracket representation is $)())()()()$ $($ $\tau(S_A) = 1011010111$ $\tau^{-1}(S_A) = 1011010100$

$$A = \{1,3,4,6,8,9\} \in B_{10}$$
, then $S_A = 1011010110$ and the bracket representation is $)())()()()$ $($ $\tau(S_A) = 1011010111$ $\tau^{-1}(S_A) = 1011010100$

Symmetric chain decompositions in the Boolean lattice
Necklace Poset
Other quotient posets
Summary

Definition

 U_0 denotes the set of positions of unmatched zeros

Symmetric chain decompositions in the Boolean lattice
Necklace Poset
Other quotient posets
Summary

Definition

 U_0 denotes the set of positions of unmatched zeros

Symmetric chain decompositions in the Boolean lattice
Necklace Poset
Other quotient posets
Summary

Definition

 U_0 denotes the set of positions of unmatched zeros U_1 denotes the set of positions of unmatched ones

 U_0 denotes the set of positions of unmatched zeros U_1 denotes the set of positions of unmatched ones $M(x) := \{(a,b) : a \text{ zero in position a is matched to a one in position b} \}$

 U_0 denotes the set of positions of unmatched zeros U_1 denotes the set of positions of unmatched ones $M(x) := \{(a,b) : a \text{ zero in position a is matched to a one in position b} \}$

Theorem

For a x in B_n with $|U_0(x)| = k$, let

 $C_x = \{x, \tau(x), \tau^2(x), ..., \tau^k(x)\}$. The following is a symmetric chain decomposition of B_n :

$$S = \{C_x | x \in B_n, U_1(x) = \emptyset\}.$$

-Greene and Kleitman

Symmetric Chain:

0000-1000-1100-1110-1111

0100-0110-0111

0010-1010-1011

0001-1001-1101

00010

00001

Theorem

For all positive integers n, $B_n/(1...n)$ has a symmetric chain decomposition.

-K. K. Jordan

Outline

- Symmetric chain decompositions in the Boolean lattice
- 2 Necklace Poset
- Other quotient posets
 - Transposition
 - Group generated by transposition
 - $B_n/(1..n-1)$
 - i-cycle
- 4 Summary

Transposition Group generated by transposition $B_n/(1..n-1)$ i-cycle

Theorem

If $G = B_n/(i,j)$, G has a symmetric chain decomposition.

Transposition Group generated by transposition $B_n/(1..n-1)$ i-cycle

Theorem

If $G = B_n/(i,j)$, G has a symmetric chain decomposition.

Theorem

If $G = B_n/(i,j)$, G has a symmetric chain decomposition.

Proof

Define the anti-sequence of $10a_3a_4...a_n$ is $01a_3a_4...a_n$ (and vice-versa).

If we remove all chains with anti-sequence of elements of the form $10a_3a_4..a_n$, the remain is the symmetric chain decomposition of G.

Proof

For any $s_1 = 10a_3a_4...a_n$ and $s_2 = 01a_3a_4...a_n$

Proof

For any
$$s_1 = 10a_3a_4...a_n$$
 and $s_2 = 01a_3a_4...a_n$

• case1
$$\tau(s_1) = 11a_3a_4...a_n$$

Proof

For any $s_1 = 10a_3a_4...a_n$ and $s_2 = 01a_3a_4...a_n$

• case1
$$\tau(s_1) = 11a_3a_4...a_n$$

• case2
$$\tau(s_1) = 10b_3b_4...b_n$$

Transposition Group generated by transposition $B_n/(1...n-1)$ i-cycle

Transposition Group generated by transposition $B_n/(1..n-1)$ i-cycle

Example

symmetric chain decomposition:

0000-1000-1100-1110-1111

0010-1010-1011

0001-1001-1101

0101

Outline

- Symmetric chain decompositions in the Boolean lattice
- 2 Necklace Poset
- Other quotient posets
 - Transposition
 - Group generated by transposition
 - $B_n/(1..n-1)$
 - i-cycle
- Summary

Transposition Group generated by transposition $B_n/(1..n-1)$ i-cycle

Corollary

If G is generated by $(a_1, b_1), (a_2, b_2), ..., (a_i, b_i), B_n/G$ has a symmetric chain decomposition.

Transposition Group generated by transposition $B_n/(1...n-1)$ i-cycle

Transposition Group generated by transposition $B_n/(1..n-1)$ i-cycle

Example

Symmetric chain decomposition:

0000-1000-1100-1110-1111

0010-1010-1011

0101

Outline

- Symmetric chain decompositions in the Boolean lattice
- Necklace Poset
- Other quotient posets
 - Transposition
 - Group generated by transposition
 - $B_n/(1..n-1)$
 - i-cycle
- 4 Summary

Transposition Group generated by transposition $B_n/(1..n-1)$ i-cycle

Theorem

 $B_n/(1..n-1)$ is two copies of $B_{n-1}/(1..n-1)$. There is an edge between two parts if and only if the vertices are $a_1 a_2 ... a_k$ and $a_1 a_2 ... a_k n$ where $a_1, ..., a_k < n$.

Theorem

We use the following way to generate symmetric chains:

Theorem

We use the following way to generate symmetric chains:

• For two parts of $B_n/(1..n-1)$, use the same way in $B_{n-1}/(1..n-1)$ to generate chains.

Theorem

We use the following way to generate symmetric chains:

- For two parts of $B_n/(1..n-1)$, use the same way in $B_{n-1}/(1..n-1)$ to generate chains.
- 2 Eliminate the top edge of every chain in the second part of $B_n/(1..n-1)$.

Theorem

We use the following way to generate symmetric chains:

- For two parts of $B_n/(1..n-1)$, use the same way in $B_{n-1}/(1..n-1)$ to generate chains.
- ② Eliminate the top edge of every chain in the second part of $B_n/(1..n-1)$.
- 3 Add the edge between $a_1 a_2 ... a_k$ and $a_1 a_2 ... a_k n$ where $a_1 a_2 ... a_k$ is the top vertex of chains in the first part.

$$X_1 = B_{n-1}/(1...n-1), X_2 = B_n/(1...n-1)-X_1$$

$$X_1 = B_{n-1}/(1...n-1), X_2 = B_n/(1...n-1)-X_1$$

$$X_1 = B_{n-1}/(1...n-1), X_2 = B_n/(1...n-1)-X_1$$

 $f: X_1 \to X_2$

 $f(a_1 a_2 ... a_k) = a_1 a_2 ... a_k n$, f is bijective

$$X_1 = B_{n-1}/(1...n-1), X_2 = B_n/(1...n-1)-X_1$$

$$f: X_1 \rightarrow X_2$$

$$f(a_1 a_2 ... a_k) = a_1 a_2 ... a_k n$$
, f is bijective

Based on previous theorem, we can generate chains in X_1 and X_2 separately.

$$X_1 = B_{n-1}/(1...n-1), X_2 = B_n/(1...n-1)-X_1$$

$$f: X_1 \rightarrow X_2$$

$$f(a_1 a_2 ... a_k) = a_1 a_2 ... a_k n$$
, f is bijective

Based on previous theorem, we can generate chains in X_1 and X_2 separately.

guarantee the symmetric property

$$X_1 = B_{n-1}/(1...n-1), X_2 = B_n/(1...n-1)-X_1$$

$$f: X_1 \rightarrow X_2$$

$$f(a_1 a_2 ... a_k) = a_1 a_2 ... a_k n$$
, f is bijective

Based on previous theorem, we can generate chains in X_1 and X_2 separately.

guarantee the symmetric property

 \rightarrow increase one edge or decrease one edge of every chain

$$X_1 = B_{n-1}/(1...n-1), X_2 = B_n/(1...n-1)-X_1$$

$$f: X_1 \rightarrow X_2$$

$$f(a_1 a_2 ... a_k) = a_1 a_2 ... a_k n$$
, f is bijective

Based on previous theorem, we can generate chains in X_1 and X_2 separately.

guarantee the symmetric property

 \rightarrow increase one edge or decrease one edge of every chain eliminate the top edge of every chain of X_2 connect every top element s of X_1 with f(s)

Theorem

 $B_n/(1..n-1)$ is two copies of $B_{n-1}/(1..n-1)$. There is an edge between two parts if and only if the vertices are $a_1 a_2 ... a_k$ and $a_1 a_2 ... a_k n$ where $a_1, ..., a_k < n$.

Outline

- Symmetric chain decompositions in the Boolean lattice
- Necklace Poset
- Other quotient posets
 - Transposition
 - Group generated by transposition
 - $B_n/(1..n-1)$
 - i-cycle
- Summary

Theorem

For any $i \ge 2$, the poset $P = B_n/(123...i)$ has a symmetric chain decomposition. We can use the same way mentioned in the former theorem to generate this chains.

Theorem

For any $i \ge 2$, the poset $P = B_n/(123...i)$ has a symmetric chain decomposition. We can use the same way mentioned in the former theorem to generate this chains.

Proof

Use induction to prove.

Summary

 $B_n/(1..i)$ has a symmetric chain decomposition

Summary

 $B_n/(1..i)$ has a symmetric chain decomposition

Summary

 $B_n/(1..i)$ has a symmetric chain decomposition unproved: B_n/G has a symmetric chain decomposition in general case

Summary

 $B_n/(1..i)$ has a symmetric chain decomposition

unproved: B_n/G has a symmetric chain decomposition in

general case

key idea: the structure of chains cannot be changed

Thanks for listening