Table 1: Scores for 2D problems. Mean scores and standard deviations are shown over 7 training instances in the left three columns. The right three columns show results of statistical tests in binary comparisons to p=0.5 confidence. A green check is marked when GAN-MC significantly outperforms its counterpart. Red X and orange check marks denote cases where GAN or GAN-DO significantly outperform their counterpart. A gray dash indicates that neither model outperforms the other to the desired statistical certainty.

	GAN	GAN-DO	GAN-MC	GAN-DO ✓ GAN ✗	GAN-MC ✓ GAN ✗	GAN-MC ✓ GAN-DO ✓
			Problem 1			
Invalidity (%) ↓	7.41 ± 3.67	$0.11{\pm}0.05$	0.14 ± 0.06	√	√	-
MMD (E-3) \downarrow	$7.21{\pm}1.94$	$3.17{\pm}0.12$	$2.66{\pm}0.04$	✓	✓	✓
F1 ↑	$.392 {\pm} 0.108$	$0.831 {\pm} 0.25$	$0.850 {\pm} 0.011$	✓	✓	✓
			Problem 2			
Invalidity (%) ↓	$3.27{\pm}0.66$	$0.24{\pm}0.07$	$0.56 {\pm} 0.23$	√	✓	√
MMD (E-3) \downarrow	$2.57{\pm}0.03\%$	$2.53{\pm}0.01\%$	$2.43{\pm}0.01\%$	✓	✓	✓
F1 ↑	$0.829 {\pm} 0.012$	$0.863 {\pm} 0.011$	$0.876{\pm}0.006$	✓	✓	✓

Table 2: Remake of Table 2 in original paper with GAN-MC, showing invalidity metric. GAN scores are also re-evaluated, showing less anomalous results. Standard deviations over the 4 runs are included. Any GAN-MC score that is significant to p < 0.05 over the corresponding GAN score (same quantity of positive data) is bolded. **Lower is better.**

(a) M	(a) Models (b) Problem 1		(c) Problem 2				
	Negative		Positive Samples			Positive Samples	
	Samples	1K	4K	16K	1K	4K	16K
GAN	0	$10.7\% \pm 5.3\%$	$11.6\%\pm2.9\%$	$11.9\% \pm 1.6\%$	$6.0\% \pm 1.5\%$	$3.2\% \pm 1.3\%$	$3.3\% \pm 0.7\%$
GAN-MC	1K	$2.0\%\pm2.3\%$	$0.7\%\pm0.2\%$	$1.5\%\pm0.8\%$	$2.3\%\pm0.7\%$	$1.9\% \pm 0.7\%$	$1.6\%\pm0.7\%$
GAN-MC	4K	$\boldsymbol{0.5\%}\pm\boldsymbol{0.3\%}$	$\textbf{0.5}\%\pm\textbf{0.3}\%$	$\mathbf{0.5\%}\pm\mathbf{0.2\%}$	$\boldsymbol{0.6\%}\pm\boldsymbol{0.2\%}$	$\textbf{0.7}\%\pm\textbf{0.3}\%$	$\mathbf{0.7\%}\pm\mathbf{0.2\%}$
GAN-MC	16K	$0.5\%\pm0.3\%$	$\textbf{0.7\%}\pm\textbf{0.5\%}$	$\textbf{0.6\%}\pm\textbf{0.3\%}$	$\textbf{0.5\%}\pm\textbf{0.1\%}$	$\textbf{0.2\%}\pm\textbf{0.1\%}$	$\textbf{0.2\%}\pm\textbf{0.1\%}$

Table 3: Invalidity Rates (%) with Standard Deviations for engineering datasets. Lower scores are better. Problems are sorted by GAN validity rate (harder problems at bottom). Mean scores and standard deviations are shown over 7 training instances in the left three columns. The right three columns show results of statistical tests in binary comparisons to p=0.5 confidence. A green check is marked when GAN-MC significantly outperforms its counterpart. Red X and orange check marks denote cases where GAN or GAN-DO significantly outperform their counterpart. A gray dash indicates that neither model outperforms the other to the desired statistical certainty.

	GAN	GAN-DO	GAN-MC	GAN-DO 🗸 GAN 🗶	GAN-MC ✓ GAN ✗	GAN-MC ✓ GAN-DO ✓
Three-Bar Truss	$0.32{\pm}0.51\%$	$0.00 \pm 0.00\%$	$0.34{\pm}0.49\%$	_	_	✓
Gearbox	$0.33 {\pm} 0.09\%$	$0.02 {\pm} 0.02\%$	$0.07{\pm}0.05\%$	✓	✓	✓
Concrete Beam	$1.03 {\pm} 0.97\%$	$0.16 {\pm} 0.14\%$	$1.14{\pm}0.46\%$	✓	_	✓
Pressure Vessel	$1.30 {\pm} 0.32\%$	$0.11 {\pm} 0.07\%$	$0.95{\pm}0.29\%$	✓	✓	✓
Comp. Spring	$1.49{\pm}1.00\%$	$0.77{\pm}0.67\%$	$1.06{\pm}0.58\%$	_	_	_
Ashby Chart	$1.54{\pm}0.97\%$	$1.12{\pm}0.39\%$	$0.63{\pm}0.17\%$	_	✓	✓
Welded Beam	$1.74{\pm}0.89\%$	$0.67{\pm}0.39\%$	$0.53{\pm}0.14\%$	✓	✓	_
Cantilever Beam	$4.16{\pm}0.87\%$	$2.51{\pm}0.79\%$	$3.00{\pm}0.62\%$	✓	✓	_
Bike Frame	$4.77{\pm}1.21\%$	$2.85{\pm}0.63\%$	$6.51 {\pm} 3.04\%$	✓	_	✓
Car Impact	$4.78{\pm}0.55\%$	$1.92 {\pm} 0.48\%$	$3.84{\pm}0.78\%$	✓	✓	✓
Heat Exchanger	$5.35{\pm}1.00\%$	$3.77 {\pm} 0.70\%$	$3.68{\pm}0.82\%$	✓	✓	_
Ship Hull	$93.97{\pm}0.64\%$	$93.54{\pm}0.97\%$	$92.05{\pm}2.31\%$	_	✓	_

Table 4: F1 scores with Standard Deviations for engineering datasets. Higher scores are better. Problems are sorted by GAN F1 score (harder problems at bottom). Mean scores and standard deviations are shown over 7 training instances in the left three columns. The right three columns show results of statistical tests in binary comparisons to p=0.5 confidence. A green check is marked when GAN-MC significantly outperforms its counterpart. Red X and orange check marks denote cases where GAN or GAN-DO significantly outperform their counterpart. A gray dash indicates that neither model outperforms the other to the desired statistical certainty.

	GAN	GAN-DO	GAN-MC	GAN-DO ✓ GAN ✗	GAN-MC ✓ GAN ✗	GAN-MC ✓ GAN-DO ✓
Compression Spring	0.960 ± 0.003	0.956 ± 0.004	$0.962{\pm}0.005$	Х	_	✓
Ashby Chart	$0.959 {\pm} 0.007$	$0.960 \!\pm\! 0.005$	$0.922{\pm}0.014$	_	×	✓
Concrete Beam	$0.957 {\pm} 0.002$	$0.954 {\pm} 0.004$	$0.956{\pm}0.005$	_	_	_
Welded Beam	$0.955{\pm}0.006$	$0.936 {\pm} 0.013$	$0.850{\pm}0.025$	×	×	✓
Three-Bar Truss	$0.938 {\pm} 0.022$	$0.948 {\pm} 0.012$	$0.957{\pm}0.005$	_	✓	✓
Pressure Vessel	$0.947 {\pm} 0.012$	$0.944{\pm}0.013$	$0.932 {\pm} 0.013$	_	×	_
Gearbox	$0.899{\pm}0.023$	$0.872 {\pm} 0.021$	$0.891 {\pm} 0.018$	×	_	✓
Car Impact	$0.883 {\pm} 0.017$	$0.844 {\pm} 0.041$	$0.893 {\pm} 0.010$	×	_	✓
Heat Exchanger	$0.876{\pm}0.035$	$0.869 {\pm} 0.023$	$0.867 {\pm} 0.021$	_	_	_
Cantilever Beam	$0.845{\pm}0.038$	$0.818 {\pm} 0.027$	$0.875{\pm}0.018$	_	✓	✓
Ship Hull	$0.769 {\pm} 0.082$	$0.708 {\pm} 0.273$	$0.713 {\pm} 0.248$	_	_	_
Bike Frame	$0.681 {\pm} 0.030$	$0.684{\pm}0.025$	$0.741 {\pm} 0.010$	_	✓	✓

Table 5: Updated topology optimization experiments averaged over 1-2 runs (for now). We have benchmarked and added GAN-DO. Instead of reporting average number of floating pixels, we instead report the percentage of the image that is floating, which we call constraint violation magnitude.

	Invalidity (%) \downarrow	Violation Magnitude (%) \downarrow
GAN	36.3	0.254
GAN-DO (Synthetic negative data)	22.2	0.329
GAN-MC (Synthetic negative data)	18.9	0.145
GAN-DO (Rejected negative data)	12.6	0.085
GAN-MC (Rejected negative data)	16.0	0.118

Figure 1: Randomly-selected topologies generated by GAN-DO trained on rejected negative data with constraint violations annotated.

Figure 2: Randomly-selected topologies generated by GAN-DO manually annotated into groups.

Figure 3: Randomly-selected topologies generated by GAN-MC trained on rejected negative data with constraint violations annotated (taken from submitted paper draft). GAN-MC topologies do not have a visible issue with diversity.