

Capstone 2

The group members 5

Sarah Al-Zahrani

Seham Salman

Maha Sultan

Nawal Mohammed

Mthayel Almutairi

Introduction

Smart Learning Management Platform

A Learning Management System (LMS) is a comprehensive digital platform designed to streamline the educational process in online environments. It allows easy student enrollment, tracks academic progress, and analyzes learning behavior through detailed reports and data insights. LMS serves as a central tool for enhancing education quality, improving the learner's experience, and supporting data-driven decision-making within educational institutions.

Project Focus

Enhancing the quality of Learning Management System (LMS) data and analyzing it effectively using advanced cloudbased tools.

The project aims to improve the accuracy and organization of LMS data to ensure its reliability and usability. It also involves leveraging cloud-based analytical tools to extract meaningful insights that support decision-making and enhance the educational process.

Data Protection and Compliance

Refers to the protection of sensitive LMS data through the enforcement of governance policies and security controls. It ensures data confidentiality, integrity, and availability while meeting privacy regulations and institutional standards. This helps maintain trust and prevents unauthorized access or misuse of information.

Data Accuracy Consistency

This refers to ensuring that data is correct, reliable, and uniformly maintained across systems and processes. Accurate data reflects real-world values without errors, while consistent data remains uniform across different platforms and timeframes. Together, they are essential for effective decisionmaking, reliable reporting, and maintaining the integrity of business and educational systems.

Data Ingestion and Preparation

 We collected data from three main sources:

 We built a centralized database using MySQL hosted on AWS RDS.

PostgreSQL (LMS system database)

CSV files

 (containing attendance records)

 Local MySQL database (from Stage 1 of the program) • We used Airbyte and SQL and Python to extract and load the data into the RDS database, ensuring schema consistency and valid relationships between tables.

DATA LINEAGE

Target

Data Profiling and Quality Rules ©

We performed initial profiling using SQL and Python to analyze:

- Mis
- Missing values (nulls)
- Distinct values
- 7
- Field validity (e.g., email format)
- We created Data Quality Rules for critical columns to capture and document inconsistencies.

TableName	Column Name	Data Type	Number of record	Unique Values	Duplicates %	Missing %
	id	bigint		2208	0	0
cohort enrollments	user_id	bigint	2208	856	61.23%	0
	client_id	text	#11 #2 #6 1#6 0#	2	99.91%	0

Rules &

Num	CriticalData Element (CDE)	Rule
	score	score must be between 0 and 100.
2	question_ids	should be formatted correctly, e.g., separated by\n-
3	name	[Track Domain] - [Start Month] - [Attendanc Type : Online / Onsite] - [Learning Type : Self Paced / Instructor led].
4	filename	[project_or_model][task_type][topic]_[optional_tag].[extension]
5 · 5 · · ·	name	[kind] -[Topic / Title] - [Date (optional)]

Observation & Recommendations &

Observation table Column Name		Observation		
Cohorts	days	Some entries are empty rather than null. These fields should be filled with valid day values (e.g., {Mon, Tue, Wed, Thu, Fri}).		
Cohorts	name	Some entries do not follow the standard format (e.g., "M2.3-GenAl-Intro-B2").		
Cohorts	times	Some entries are empty rather than null. These fields should be filled with valid time values (e.g., "09:00-10:00", "14:00-15:30"		
handin attachments	filename	Ensure that all filenames adhere to the expected format, such as "Assignment_Code.zip"		
programs	description	HTML code is present (e.g., <div><h1>GenAl Introduction</h1></div>). Remove HTML and use plain text.		

Data Cleaning and Transformation

- Merging some files like attendance
- Removing duplicates using DISTINCT
- Handling missing values by filling it
- Standardizing date formats with DATE_FORMAT
- Trimming extra spaces using TRIM
- Merging datasets using UNION
- Saving the cleaned data into new tables in the Ims_dev schema

Data Governance and PDPL Compliance

Data Governance Principles:

Data Quality: Regular profiling and validation ensure accurate, complete, and consistent data.

Data Integrity: Controlled access ensures that only authorized users can modify data.

Data Transparency:
Clear data
documentation with
metadata for all tables
and columns.

Data Governance and PDPL Compliance

PDPL Compliance:

Data Privacy and Masking:

Sensitive information (student emails, first names, and last names) is masked to protect personal data.

Data Minimization:

Only necessary data is collected and stored, and outdated data is removed.

User Rights Management:

Users can access, correct, or delete their data upon request.

Compliance Monitoring:

Regular audits ensure adherence to PDPL requirements.

Data Security:

access control are applied to ensure data protection.

Data Privacy and Masking

id	role	email	last_name	first_name
9405	{student}	Stephen.Vaughn@gmail.com	Vaughn	Stephen
10089	{student}	Marc.Kane@gmail.com	Kane	Marc
8791	{student}	Scott.Gonzalez@gmail.com	Gonzalez	Scott

id	role	email					last_name	first_name
9405	{student}	S*********@gmail.com	28		(j.e.).	60) 441	V****	S*****
10089	{student}	M*****@gmail.com	N	(5)		***	K***	M***
8791	{student}	S*********@gmail.com	4	ė		į.	G*****	S****

Masking Sensitive information

Metadata Report

DataSet	Source	Process	Target	Attributes	Data Type
	Bootcamp Attendance			Student_id	text
attendance	Records CSVs and local database SQL	SQL Python	AWS RDS SQL	Course_Name	text
	Script	Script		Cohort	text

Attributes describe	Master and Reference	Masking
Unique identifier for each student	Master Data	- All the -
Name of the course the student is enrolled in	Master Data	column No Need
Group or batch to which the student belongs	Master Data	

Overview Business requirements

dashboard

dashboard

Challenges Faced in the Project:

Data Integration from Multiple Sources

We worked with datasets from three different sources and loading into a single RDS database.

Merging Attendance Records

Attendance files for Client 1 and Client 2 were separate. We standardized their formats and merged them into one file

Inconsistent Student Status Across Clients

Student statuses
(e.g., Enrolled,
Withdrawn) were
recorded differently
across multiple
tables for each
client

4

K

Goncius on

#