

Grafos e Algoritmos Computacionais

Busca em Dígrafos: Componentes Fortemente Conexos

Prof. André Britto

• Um dígrafo D é **fortemente conexo** quando para todo par de vértices $v,w \in VD$ existir um caminho em D de v para w e de w para v.

Ex.:

NÃO (Não existe, por exemplo, um caminho de 3 para 2)

Proposição 1

Os componentes fortemente conexos de D particionam a floresta de profundidade T em subárvores disjuntas.

 Para avaliar os componentes fortemente conexos preciso localizar as raízes dessa subárvore na floresta T. Essas raízes são chamados de vértices fortes de T.

Proposição 2

Dois vértices pertencem ao mesmo componente fortemente conexo **se e só se** existe um circuito orientado contendo ambos os vértices.

Proposição 3

Todo vértice em *D* pertence a exatamente um componente fortemente conexo.

Usaremos a função **High** definida da seguinte forma:

High: $VD \rightarrow \{1,2,...,n\}$ é tal que para cada $v \in VD$ High(v) = PE(g) onde g é o vértice de menor profundidade de entrada localizado no mesmo componente fortemente conexo de v, e que pode ser alcançado a partir de v por uma ou mais arestas da árvore de profundidade e no máximo uma aresta de retorno ou de cruzamento.

	V1	V 2	V 3	V 4	V 5	V 6	V7	V8	V9
High	1	1	1	4	4	4	7	3	9

Proposição

Um vértice $v \in VD$ é vértice forte **se e só se** High(v) = PE(v).

Prova

Página 100 do Szwarcfiter

Casos que podem ocorrer aresta x High:

- (1) (v,w) é aresta da árvore
 - Após a exploração de w conhece-se High(w). Se
 - $High(w) < High(v) \Rightarrow High(v) := High(w)$.
- (2) (v,w) é uma aresta de retorno
 - v,w pertence ao mesmo componente fortemente conexo.
 - Se $PE(w) < High(v) \Rightarrow High(v) := PE(w)$

- (3) (v,w) é aresta da avanço
 - não interfere: ver definição do High
- (4) (v,w) é uma aresta de cruzamento
 - v pertence ou n\u00e3o ao mesmo componente fortemente conexo que w?
 - Faz isso de uma pilha. Se w ainda está na pilha então faz parte de um mesmo componente.
 - Se sim se $PE(w) < High(v) \Rightarrow High(v) := PE(w)$


```
algoritmo ComponentesFortementeConexos (D, v, n)
procedimento Componente(v);
   início
     PE[v] := num;
     num := num+1;
     insira v na Pilha;
     High[v] := PE[v]; \{valor incial do High\}
     para todas as arestas (v,w) faça
         Se PE[w] = 0 então {w não é marcado}
            início
              Componente (w);
              High[v] := min(High[v], High[w]);
            fim
```

```
Senão {w é marcado}
      Se PE[w] < PE[v] e comp[w] = 0 então
         {aresta de cruzamento ou de retorno}
        High[v] := min(High[v], PE[w]);
Se High[v] = PE[v] então
  início
    {v é forte}
    compNo:= compNo + 1;
    repita
      {marcação dos vértices do novo componente}
      retire x da Pilha;
      comp[x] := compNo;
    até (x = v);
  fim
```

fim


```
início {p. principal}
  para todo vértice v de G faça
    início
      PE(v) := 0;
      comp[v] := 0;
    fim
  compNo := 0;
  num := 1;
  enquanto existir um vértice v tal que PE[v] = 0 faça
    Componente (v);
fim
```

Referências

- Seções 4.6 do Szwarcfiter, J. L., Grafos e Algoritmos Computacionais, Ed. Campus, 1983.
- Seção 22.5 do Cormen, Introduction to Algorithms, MIT Press, 2001.

Adaptado do material da Profa. Leila Silva.

Seção 1.7 do Grafos: conceitos, algoritmos e aplicações. Goldbarg, E. e Goldbarg M. Elsevier, 2012