WHAT IS CLAIMED IS:

1	1.	A hydraulically settable lightweight concrete composition
2	which cures to a cu	red composite following addition of water and exhibits strain
3	hardening behavior	following cure, said composition comprising
4	a)	a brittle inorganic matrix precursor;
5	b)	reinforcing fibers having a minimum average length of about
6		4 mm, present in an amount of from 0.5 volume percent to
7		less than 4 volume percent based on the total volume of cured
8		composite;
9	c)	at least one lightweight aggregate having a mean particle size
10		in the range of 10 μm to 1000 μm , in an amount effective to
11		achieve a target density in said cured composite below about
12		2000 kg/m².
1	2.	The composition of claim 1, wherein said reinforcing fibers
2	comprise polymeric	reinforcing fibers having a mean diameter from 10 to 60 $\mu m,$
3	a mean length of 4 i	nm to 30 mm, a strength of 800 MPa or higher, a modulus of
4	elasticity of 10 to 30	00 GPa, interfacial chemical bonding below 4.0 J/m², interface
5	frictional stress from	n 0.5 to 3.0 MPa, and an interface slip hardening coefficient
6	below 3.0.	
1	3.	The composition of claim 1, wherein said lightweight
2	aggregate comprises	s microballoons having a mean diameter of from 10 μm to 100
3	μm.	
4	4.	The composition of claim 3, wherein said microballoons have
5	walls of glass, cerar	nic, or polymer.
1	5.	The composition of claim 1, wherein said brittle inorganic
2	matrix precursor cor	nprises a hydraulically settable cement or an inorganic polymer.

1	6. The composition of claim 1, wherein said brittle inorganic
2	matrix precursor comprises a Portand cement.
1	7 The composition of claim 1 comprising for each one part by
1	7. The composition of claim 1, comprising, for each one part by
2	weight of cement, from 1.0 to 3.0 volume patent reinforcing organic fibers and
3	sufficient lightweight aggregate to achieve a density, when cured by addition of
4	water, of from 800 kg/m^3 to 1900 kg/m^3 .
1	8. The composition of claim 1, wherein said reinforcing fibers
2	are selected from the group consisting of high density polyethylene fibers, polyvinyl
3	alcohol fibers, and polyarylamide fibers.
1	9. The composition of claim 1, wherein said fibers contain polar
	•
2	or hydrophilic groups.
1	10. The composition of claim 1, wherein at least a portion of said
2	lightweight aggregate comprises gas filled voids.
1	11. The composition of claim 1, wherein gas filled voids are
2	present, and a cured composite achieved by adding water and curing, has a density
3	of from 1500 kg/m ³ to 1900 kg/m ³ .
1	12. A fiber reinforced lightweight concrete structure, comprising
2	a cured, fiber reinforced brittle matrix composite prepared by adding water to the
3	composition of claim 1 to form a hydraulically curable composition, and allowing
4	said curable composition to cure.
1	13. The composite of claim 9 which has a density in the range of
2	800 to 2000 kg/m ³ and exhibits a tensile strain of 2% or greater.
1	14. The composite of claim 9 which has a density in the range of
2	900 kg/m ³ to 1600 kg/m ³ and a tensile strain capacity greater than 3.0%.