electricity lecture notes

erentar

2023-02-17 - present

Contents

0	Nor	nenclat	tur	e a	anc	lc	co	n	ve	n	ti	or	ıs												
1	Intr	o																							
	1.1	Books																							
	1.2	Exam																							
2	Elec	ectrostatics																							
	2.1	Electri	c fi	eld	١																				

Chapter 0

Nomenclature and conventions

Definitions are ended with a \Box

Chapter 1

Intro

1.1 Books

- Giancoli physics: electricity, magnetism, optics, and modern physics (he thinks this is bad because no exercises, but provides of an easy reading)
- Fundamentals of electric circuits, Alexander, Sadiku

1.2 Exam

3 questions:

- 1. exercise (solving with thevenin)
- 2. electrostatics (theory and/or practice)
- 3. electromagnetism (theory and/or practice)

questions 2 and 3: - theoretical topic (explain/prove the following, derive, \dots) - sample problems from lectures - completely new problem

Chapter 2

Electrostatics

Definition 1. Electrostatics: Study of electrical charges at rest

Coulomb (C): unit of charge.

- Conductors have free electrons. Electrons can move through the material.
- Insulators do not have free electrons. Electrons cannot move through the material, they are stronly bound to one atom.
- Semiconductors: are inbetween the other two. They can be tuned such that they only conduct on a conditional basis.

Definition 2. Coulomb's law: The force \vec{F} between two particles with respective charges $q_1, q_2 2$ are given by

$$F_{1,2} = rac{1}{4*\pi*\epsilon_0} rac{q_1*q_2}{r^2}*\underbrace{ec{e_r}}_{between~the~two~particles}$$

where

- q_1, q_2 are the charges of respective particles
- ε_0 is the permittivity of vacuum

2.1 Electric field

Definition 3. Electric field \vec{E} : force per unit charge at a given point

The force \vec{F} on a charge q within an electric field \vec{E} : $\vec{F} = q * \vec{E} \Leftrightarrow \vec{E} = \frac{\vec{F}}{q}$

Electric field is a vector field. It maps a given point to a vector.

field: point -> vector

Total electric field \vec{E}_{total} resulting from two point charges q_1, q_2 at a point P is equal to the sum of these electric fields:

$$\vec{E}_{\text{total}}(P) = \vec{E}_1(P) + \vec{E}_2(P)$$
 (2.1)

Slide 12 at https://p.cygnus.cc.kuleuven.be/bbcswebdav/pid-34057619-dt-content-rid-329740934_3/orgs/C7964141-B-2223/H01S_Electric%20field.pdf shows the electric field resulting from a charged line. We pretend the line is composed of point charges and integrate from -y to +y to calculate the total charge resulting from the entire line.

To keep the integral as a single-var integral, we fix x to be constant and integrate over the angle θ .