MA2104

AY24/25 SEM 1 yyccbb

Vectors

- $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$
- comp_ab = $\|\mathbf{b}\|\cos\theta = \frac{\mathbf{a}\cdot\mathbf{b}}{\|\mathbf{a}\|}$
- The vector projection: $\text{proj}_{\mathbf{a}}^{\text{""}}\mathbf{b} = \text{comp}_{\mathbf{a}}\mathbf{b} \times \frac{\mathbf{a}}{\|\mathbf{a}\|}$
- **a** × **b** = $(a_2b_3 a_3b_2)$ **i** $(a_1b_3 a_3b_1)$ **j** + $(a_1b_2 a_2b_1)$ **k**
- $\bullet \|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$
- $m{\cdot}$ $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ = volume of
- parallelepiped.
- Representations of a line: vector/parametric.

Vector-valued Function

- $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$
- **r**(t) is a parametrization of curve C
- $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{r}(t) \times \mathbf{s}(t)) = \mathbf{r}'(t) \times \mathbf{s}(t) + \mathbf{r}(t) \times \mathbf{s}'(t)$
- Arc length:
- Assumption: continuous, traversing exactly once.
- $S = \int_a^b \sqrt{f'(t)^2 + g'(t)^2 + h'(t)^2} dt = \int_a^b ||\mathbf{r}'(t)|| dt$

Cylinders and Quadric Surfaces

• Cylinder $\rightarrow \exists$ plane P such that all the planes parallel to P interest the surface in the same curve

	to Finiterset the sunace in the same curve.		
•	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$	elliptic paraboloid	
	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$	hyperbolic paraboloid	
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	ellipsoid	
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	elliptic cone	
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	hyperboloid of one sheet	
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$	hyperboloid of two sheets	

Limits and Continuity

- **Continuous** \rightarrow f is continuous at (a,b) if $\lim_{(x,y)\to(a,b)}$ exists and is equal to f(a,b).
- A limit at (a,b) does not exist if the limits of f when approached from different paths do not agree.

- · How to prove a limit exists? go polar!
- 2D: $x = r \cos \theta + a, y = r \sin \theta + b, r \rightarrow 0^+$ when approaching (a,b)
- 3D: $x = p \sin \phi \cos \theta, y = p \sin \phi \sin \theta, z =$ $p\cos\phi, p\to 0^+$
- Squeeze Theorem:
- Since $\frac{x^4}{x^4+y^4} \le 1,\, 0 \le \left|\frac{x^4y}{x^4+y^4}\right| = \left|\frac{x^4}{x^4+y^4}y\right| \le |y|$

Partial Derivatives

PDE Examples

- Wave equation: $u_{tt}(x,t) = a^2 u_{xx}(x,t)$
- Transport equation: $u_t(x,t) = u_x(x,t)$
- Heat diffusion: $u_t(x,t) = u_{xx}(x,t)$
- Laplace equation: $u_{xx}(x,y) + u_{yy}(x,y) = 0$

Tangent Planes and Linear Approximations

- Equation of tangent plane at (a,b): $z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$
- Linearisation of f at (a,b): L(x,y) = z
- f is differentiable at (a,b) if $f(x,y) \approx L(x,y)$
- Alternatively, f is differentiable if f_x and f_y exist near (a,b) and are continuous at (a,b).
- Total differential: $dz = f_x(x,y)dx + f_y(x,y)dy$

The Chain Rule

- $\begin{vmatrix} \bullet \frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{r}(t)) = \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \\ \bullet \frac{\partial}{\partial t} f(\mathbf{r}(s,t)) = \nabla f(\mathbf{r}(s,t)) \cdot \frac{\partial}{\partial t} \mathbf{r}(s,t) \end{vmatrix}$

Implicit Differentiation

- Idea: G(x, y) = F(x(x, y), y(x, y), z(x, y)), $G_x/G_y=0$
- $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$, $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$
- Alternatively, apply $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial x} = \frac{\partial}{\partial z} \frac{\partial z}{\partial x}$.

Directional Derivatives

- $\nabla f(x_0, y_0)$ is normal to the level curve at (x_0, y_0) .
- For unit vector \vec{u} , $D_{\vec{u}}f(x,y) = \nabla f(x,y) \cdot \vec{u}$.
- \vec{u} , $D_{\vec{u}}f(x,y) = \nabla f \cdot \vec{u} = |\nabla f| \cos \theta$

Extrema and Saddle Points, Lagrange Multipliers

Extrema and Saddle Points

- A point (a,b) is a **critical point** of f(x,y) if $\nabla f(a,b) = \vec{0}$ or if one of the partial derivatives does not exist.
- A saddle point is NOT a local extremum.
- (2nd Derivative Test) $D=egin{array}{cc} f_{xx} & f_{xy} \ f_{yy} & f_{yy} \ \end{array} = f_{xx}f_{yy} f_{xy}^2$
- D < 0: saddle point.
- $D > 0, f_{xx} > 0$: minimum.
- $D > 0, f_{xx} < 0$: maximum.
- D=0: no information.

Lagrange Multipliers

- Scenario: optimise f(x,y) restricted to constraint g(x,y)=c
- $\nabla f \parallel \nabla q, \nabla f = \lambda \nabla q$
- System of equations: $\nabla f = \lambda \nabla g, g(x,y) = c$
- Case of two constraints
- Idea: optimise along a constraint curve in 4D

• $\nabla f = \lambda \nabla g + \mu \nabla h$ (because $\nabla f, \nabla g, \nabla h$ are coplanar).