P3 de Álgebra Linear I -2012.1

16 de junho de 2012.

Gabarito

1) Seja A uma matriz 3×3 com polinômio característico

$$p(\lambda) = \det(A - \lambda Id) = (1 - \lambda)(2 - \lambda)^{2}.$$

- a) Calcule o determinante de A e o traço de A.
- b) Considere a matriz $B = A^3$. Determine o traço de B.
- c) Determine se a matriz A possui inversa. Em caso afirmativo determine o traço de A^{-1} (a matriz inversa de A).

Suponha agora que a matriz A é da forma

$$A = P D P^t$$

onde D é uma matriz diagonal e P é uma matriz ortogonal.

- d) Sabendo que o vetor (1,1,1) é um autovetor de A associado ao autovalor 1, encontre (se possível) uma base ortonormal β formada por autovetores de A.
- e) Determine explicitamente as matrizes $P \in D$.

Resposta:

a) Os autovalores de A são as raízes de $p(\lambda)$ e suas multiplicidades as multiplicidades como raízes. Portanto os autovalores de A são 1 (simples) e 2 duplo.

O determinante de A, det(A), é o produto dos autovalores contados com multiplicidade,

$$\det(A) = 1 \cdot (2) \cdot (2) = 4.$$

O traço de A, tr(A), é a soma dos autovalores contados com multiplicidade,

$$tr(A) = 1 + (2) + (2) = 5.$$

b) Observe que se $A(\overrightarrow{v}) = \lambda \overrightarrow{v}$ então $B(\overrightarrow{v}) = \lambda^3 \overrightarrow{v}$. Portanto, se λ é um autovalor de A temos que λ^3 é um autovalor de B. Logo $1 = 1^3$ e $8 = 2^3$ são autovalores de B. Como

$$\det(B) = \det(A^3) = \det(A)^3 = 5^3 = 4^3 = 64$$

e este determinante é o produto dos autovalores de B temos que o terceiro autovalor σ de B verifica

$$det(B) = 64 = 1 (8) \sigma, \quad \sigma = 8.$$

Portanto os autovalores de B são $1^3=1$ e $2^3=8$, o último com multiplicidade dois. Logo

$$tr(B) = 1 + (8) + (8) = 17.$$

c) O determinante de A é diferente de 0. Portanto A possui inversa. Observamos também que se $A(\overrightarrow{v}) = \lambda \overrightarrow{v}$ então $\lambda \neq 0$ e $A^{-1}(\overrightarrow{v}) = \lambda^{-1} \overrightarrow{v}$

$$\overrightarrow{v} = A^{-1} A(\overrightarrow{v}) = A^{-1} (\lambda \overrightarrow{v}) = \lambda A^{-1} (\overrightarrow{v}), \quad A^{-1} (\overrightarrow{v}) = \lambda^{-1} \overrightarrow{v}.$$

Logo os autovalores de A^{-1} são 1 e 1/2. Como no item anterior as multiplicidade de 1 é um e a multiplicidade de 1/2 é dois. Portanto,

$$\operatorname{tr}(A^{-1}) = 1 + 1/2 + 1/2 = 2.$$

d) A matriz A possui uma base ortogonal de autovetores (exatamente os colunas da matriz P). Portanto os autovetores associados a 2 são perpendiculares aos autovetores associados a 1. Portanto pertencem ao plano x + y + z = 0. Um autovetor associado a 2 é (1, -1, 0). Um autovetor associado a 2 é ortogonal a (1, -1, 0) e (1, 1, 1) é

$$\bar{u} = (1, -1, 0) \times (1, 1, 1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{vmatrix} = (-1, -1, 2).$$

Portanto, uma base ortonormal β formada por autovetores de A é

$$\left\{ \left(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3} \right), \left(1/\sqrt{2}, -1/\sqrt{2}, 0 \right), \left(1/\sqrt{6}, 1/\sqrt{6}, -2/\sqrt{6} \right) \right\}.$$

e) Pelo item anterior temos que P é uma matriz ortogonal cujas colunas são autovetores de A e D é a matriz diagonal formada pelos autovalores correspondentes (cuidado com a ordem!). Portanto,

$$P = \begin{pmatrix} 1\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

2) Considere a matriz

$$A = \left(\begin{array}{ccc} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array}\right)$$

e observe que (1,1,1) é um autovetor de A.

- (a) Determine todos os autovalores de A.
- (b) Determine (se possível) uma base ortonormal de autovetores de A.
- (c) Determine explicitamente matrizes $D, P \in P^{-1}$ tais que

$$A = P D P^{-1},$$

onde D é uma matriz diagonal.

Resposta:

a) Observamos que

$$\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Logo 0 é um autovalor de A.

O polinômio característico de A é

$$\begin{vmatrix} 2 - \lambda & -1 & -1 \\ -1 & 2 - \lambda & -1 \\ -1 & -1 & 2 - \lambda \end{vmatrix} = (2 - \lambda) \left((2 - \lambda)^2 - 1 \right) +$$

$$+ \left(-2 + \lambda - 1 \right) - \left(1 + 2 - \lambda \right)$$

$$= (2 - \lambda) \left(3 - 4\lambda + \lambda^2 \right) - 6 + 2\lambda$$

$$= \lambda^3 + 4\lambda^2 - 11\lambda + 6 - 6 + 2\lambda =$$

$$= -\lambda^3 + 6\lambda^2 - 9\lambda =$$

$$= -\lambda \left(\lambda^2 - 6\lambda + 9 \right).$$

Logo as raízes do polinômio são $\lambda = 0$ e

$$\frac{6 \pm \sqrt{36 - 36}}{2}, \quad \lambda = 3.$$

Logo os autovalores são 0 e 3 (duplo).

b) Como A é simétrica é diagonalizável. Os autovetores associados a 3 são perpendiculares aos autovetores associados a 0, logo estão no plano x+y+z=0. Agora podemos usar a mesma base da primeira questão da prova,

$$\left\{\left(1/\sqrt{3},1/\sqrt{3},1/\sqrt{3}\right),\left(1/\sqrt{2},-1/\sqrt{2},0\right),\left(1/\sqrt{6},1/\sqrt{6},-2/\sqrt{6}\right)\right\}$$
.

c) Uma forma diagonal de A é

$$D = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{array}\right).$$

A matriz P é a matriz (ortogonal, para simplificar os cálculos) formadas pelos autovetores de A na ordem correspondente a D,

$$P \begin{pmatrix} 1\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{pmatrix}.$$

Como P é ortogonal, P^{-1} é a transposta de P,

$$P^{-1} = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6} \end{pmatrix}.$$

3) Considere a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

de projeção ortogonal no plano

$$\pi: x + y - z = 0.$$

Isto é, $T(\bar{u}) = u$ se \bar{u} é um vetor paralelo ao plano π e $T(\bar{n}) = \bar{0}$ se \bar{n} é um vetor perpendicular ao plano π .

- (a) Determine a matriz $[T]_{\mathcal{E}}$ de T na base canônica.
- (b) Encontre (se possível) uma base γ tal que a matriz de T na base γ seja

$$[T]_{\gamma} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

(c) Considere a base η de \mathbb{R}^3

$$\{(1,1,-1),(0,1,1),(1,1,1)\}$$

Determine a matriz $[T]_{\eta}$ de T na base η .

(d) Determine os autovalores da transformação linear

$$T^5 - 3T^4 + T^3 - T^2 - 3I$$
.

Resposta:

a) Consideramos uma base ortonormal α de \mathbb{R}^3 formada por autovetores de T,

$$\alpha = \{ \overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_3 \},\,$$

onde

$$\overrightarrow{u}_1 = (1/\sqrt{3}, 1/\sqrt{3}, -1/\sqrt{3}),$$

$$\overrightarrow{u}_2 = (1/\sqrt{2}, -1/\sqrt{2}, 0),$$

$$\overrightarrow{u}_3 = (1/\sqrt{6}, 1/\sqrt{6}, 2/\sqrt{6}),$$

$$T(\overrightarrow{u}_1) = \overrightarrow{0}, \quad T(\overrightarrow{u}_2) = \overrightarrow{u}_2, \quad T(\overrightarrow{u}_3) = \overrightarrow{u}_3.$$

Portanto,

$$[T]_{\alpha} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Usando matrizes de mudança de base temos que $[T]_{\mathcal{E}}$ é igual ao seguinte produto de matrizes

$$\begin{pmatrix} 1\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ -1/\sqrt{3} & 0 & 2/\sqrt{6} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{3} & -1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & 2/\sqrt{6} \end{pmatrix}$$

$$= \begin{pmatrix} 1\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ -1/\sqrt{3} & 0 & 2/\sqrt{6} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & 2/\sqrt{6} \end{pmatrix}$$

$$= \begin{pmatrix} 1/2 + 1/6 & -1/2 + 1/6 & 2/6 \\ -1/2 + 1/6 & 1/2 + 1/6 & 2/6 \\ 2/6 & 2/6 & 4/6 \end{pmatrix} = \begin{pmatrix} 2/3 & -1/3 & 1/3 \\ -1/3 & 2/3 & 1/3 \\ 1/3 & 1/3 & 2/3 \end{pmatrix}.$$

Logo

$$[T]_{\mathcal{E}} = \begin{pmatrix} 2/3 & -1/3 & 1/3 \\ -1/3 & 2/3 & 1/3 \\ 1/3 & 1/3 & 2/3 \end{pmatrix}.$$

b) Não existe. Em tal caso as matrizes $[T]_{\mathcal{E}}$ e $[T]_{\gamma}$ seriam semelhantes e teriam os mesmos autovalores. Os autovalores de $[T]_{\mathcal{E}}$ são 1 (duplo), e 0 e os de $[T]_{\alpha}$ são 0 (duplo) e 2.

c) Temos

$$\begin{pmatrix} 2/3 & -1/3 & 1/3 \\ -1/3 & 2/3 & 1/3 \\ 1/3 & 1/3 & 2/3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

$$\begin{pmatrix} 2/3 & -1/3 & 1/3 \\ -1/3 & 2/3 & 1/3 \\ 1/3 & 1/3 & 2/3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix},$$

$$\begin{pmatrix} 2/3 & -1/3 & 1/3 \\ -1/3 & 2/3 & 1/3 \\ 1/3 & 1/3 & 2/3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 2/3 \\ 4/3 \end{pmatrix}.$$

Escrevemos

$$(1,1,2) = x(1,1,-1) + y(0,1,1) + z(1,1,1),$$

portanto

$$1 = x + z$$
, $1 = x + y + z$, $2 = -x + y + z$.

Logo y=0 (segunda equação menos a primeira equações) e $2\,z=3,\,z=3/2$ (primeira mais terceira). Logo x=-1/2. Portanto,

$$(2/3, 2/3, 4/3) = 2/3(1, 1, 2) = -(1/3)(1, 1, -1) + (3/3)(1, 1, 1).$$

Logo

$$T(1,1,1) = -1/3(1,1,-1) + 0(0,1,1) + 1(1,1,1).$$

Obtemos

$$[T]_{\eta} = \left(\begin{array}{ccc} 0 & 0 & -1/3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

d) O cálculo dos autovalores é independente da base escolhida. Escreveremos T na base α onde T é diagonal (lembre o primeiro item)

$$[T]_{\alpha} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Observamos que

$$[T]_{\alpha}^{5} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$-3 [T]_{\alpha}^{4} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{pmatrix},$$

$$+[T]_{\alpha}^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$-[T]_{\alpha}^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

$$-3 I = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{pmatrix}.$$

Somando temos

$$[T]_{\alpha}^{5} - 3[T]_{\alpha}^{4} + [T]_{\alpha}^{3} - [T]_{\alpha}^{2} - 3I = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5 \end{pmatrix}.$$

Portanto, os autovalores são -3 e -5 (duplo).