Homework 4 - Gaussian Distribution, Uniform Distribution, Box-Müller transformation

Professor: Ren Jung Chang 張仁宗 Student: N16066176 Chen Wei Yu 余振瑋

Oct 14 2017

Abstract

The homework 4 is designed for disgussing the uniform distribution of an random sequences with the mean and standard deviation. And how to use the transformation technique to generate the exponential deviate or the normal deviate from the uniform distribution sequences.

List of Figures

1	Histogram of normrnd	3
2	Sequence with normrnd	4
3	Error between estimated mean and true mean	4
4	Histogram of Box-Müller methods and normrnd	7
5	Sequence diagram of BoxMüller methods and normrnd	8
6	Cordinate of two normal random numbers	9
7	Histogram of first random number by BoxMüller method in	
	polar form	10
8	Histogram of second random number by BoxMüller method in	
	polar form with different standard deviations	11
9	Histogram of first random number by BoxMüller method in	
	trigonometric operation with different standard deviations	12
10	Histogram of second random number by BoxMüller method in	
	trigonometric operation with different standard deviations	13
11	Histogram of random number by naive function normrnd	14
12	Histogram of first random number by BoxMüller method in	
	polar form with means	15
13	Histogram of second random number by BoxMüller method in	
	polar form with different means	16

14	Histogram of first random number by BoxMüller method in	
	trigonometric operation with different means	16
15	Histogram of second random number by BoxMüller method in	
	trigonometric operation with different meanns	17
16	Histogram of random number by naive function normrnd with	
	different means	17
17	Mean of first random number by BoxMüller method in polar	
	form with different standard deviations	18
18	Mean of second random number by BoxMüller method in polar	
	form with different standard deviations	19
19	Mean of first random number by BoxMüller method in trigono-	
	metric operation with different standard deviations	20
20	Mean of second random number by BoxMüller method in	
	trigonometric operation with different standard deviations	21
21	Mean of random number by naive function normrnd	21
22	Mean of first random number by BoxMüller method in polar	
	form with means	22
23	Mean of second random number by BoxMüller method in polar	
	form with means	22
24	Mean of first random number by BoxMüller method using	
	trigonometric operation with different means	23
25	Mean of second random number by BoxMüller method using	
	trigonometric operation with different means	23
26	Mean of random number by naive function normrnd with dif-	
	ferent means	24
27	STD of first random number by BoxMüller method in polar	
	form with STDs	25
28	STD of second random number by BoxMüller method in polar	
	form with STDs	26
29	STD of first random number by BoxMüller method using trigono-	
	metric operation with different STDs	27
30	STD of second random number by BoxMüller method using	
	trigonometric operation with different STDs	28
31	STD of second random number by naive function normrnd	
	with different STDs	29
32	Uniform distribution in spcfied range	31
33	Mean of uniform distribution in specified range with different	
	sequence length in semilog scale	31
34	Standard deviation of uniform distribution in specified range	
	with different sequence length in semilog scale	32

1 Homework Problem

1.1 Prblem 1

1.1.1 Problem

Use Matlab to generate Gaussian x_i with specified mean μ_x and the standard deviation σ_x , and plot time series, distribution diagram, and histogram.

1.1.2 Answer

Figure 1: Histogram of normrnd

Figure 2: Sequence with normrnd

Figure 3: Error between estimated mean and true mean with different sequence in semilog diagram

1.2 Problem 2

1.2.1 Problem

Use Box-Müller transformation to generate two independent Gaussian sequences through input two independent uniform distributions generated by yourself.

1.2.2 Answer

There are two classical ways to implement the Box-Müller method[1][2]. One way is using two independent variables $x_1 \sim U[0, 1]$ and $x_2 \sim U[0, 1]$ with the trigonometric operations in the Cartesian coordinate, the other is based on the previous method but changes the coordinate to the polar coordinate.

To understand the tranformation method, we discuss the "exponential deviate" at first. Consider $x \sim U[0,1]$ and y is an exponential distribution in [0,1]. The probability density function of y is defined as

$$g(y) = \{ \begin{array}{l} 0, \ y < 0 \\ \lambda e^{-\lambda y}, \ y > 0. \end{array}$$
 (1)

By the fundamental transformation law of probabilities, we can get

$$x = G(y) = \int_{-\infty}^{y} g(u)du = 1 - e^{-\lambda y}$$
(2)

so we can get the exponential deviates of y by inserting $x \sim U[0,1]$ to

$$y = -ln|1 - x|. (3)$$

The transformation can be applied on more than one dimension. If $x_1, x_2 \cdots$ are random deviates with a joint probability distribution $p(x_1, x_2, \cdots) dx_1 dx_2 \cdots$, and if y_1, y_2, \cdots are each functions of all the x's (same number of as x's), then the joint probability distribution of the y's is

$$p(y_1, y_2, \cdots) dy_1 dy_2 \cdots = p(x_1, x_2, \cdots) \left| \frac{\partial(x_1, x_2, \cdots)}{\partial(y_1, y_2, \cdots)} \right| dy_1 dy_2 \cdots$$
 (4)

where $\frac{\partial()}{\partial()}$ is the Jacobian determinant of the x's with respect to the y's.

The transformation is the spirit behind the Box-Müller method. The other descirptions are same as the hint of homework.

Figure 6 shows that the two random variables will be form an cirle region which is same as the assumption of the modified Box-Müller method.

Figure $17\sim26$ show that the estimated mean will converge to the ture mean no metter the different mean values or the different the standard deviation values.

```
Input: \mu, \sigma
Result: Return two normal deviate random numbers
RSQ=0; (RSQ: square root of square sum)
while RSQ=0 or RSQ>1 do
   let z_1 and z_2 \sim U[-1, 1] which is in the unit circle
      z_1 = rand() * 2 - 1.0
      z_2 = rand() * 2 - 1.0
      RSQ = z_1^2 + z_2^2
      FAC = \sqrt{\|(-2 \times ln(RSQ)/RSQ)\|}
   if (RSQ \neq 0) and (RSQ < 1) then
    break
   end
end
x_1 = z_1 \times FAC * \sigma + \mu
x_2 = z_2 \times FAC * \sigma + \mu
Output: x_1, x_2
       Algorithm 1: BoxMüller method in the polar form
Input: \mu, \sigma
Result: Return two normal deviate random numbers
R_1=0; (R_1 : \text{first uniform random nomber})
while R_1 = \theta do
   let R_1 \sim U[0,1] but \neq 0
      R_1 = rand()
   if R_1 \neq 0 then
    break
   end
end
R_2 = rand
Left = \sqrt{-2*ln(R1)}
x_1 = Left \times \cos(2 \times \pi \times R_2) \times \sigma + \mu
x_2 = Left \times \sin(2 \times \pi \times R_2) \times \sigma + \mu
Output: x_1, x_2
 Algorithm 2: BoxMüller method with trigonometric operation
```


Figure 4: The first two columns are the random numbers generated by the BoxMüller method in polar form. The third and fourth column are the random numbers generated by the BoxMüller method with the trigonometric operation. Final one is generated by the naive Matlab function normrnd.

Figure 5: The first two columns are the random numbers generated by the BoxMüller method in polar form with the sequence. The third and fourth column are sequence plot of the random numbers generated by the BoxMüller method with the trigonometric operation. Final one is generated by the naive Matlab function normrnd.

Figure 6: Using the first BoxMüller method shows that the two normal distribution random numbers can be generated from an circle region.

Figure 7: Histogram of first random number by BoxMüller method in polar form with different standard deviations

Figure 8: Histogram of second random number by BoxMüller method in polar form with different standard deviations

Figure 9: Histogram of first random number by BoxMüller method in trigonometric operation with different standard deviations

Figure 10: Histogram of second random number by BoxMüller method in trigonometric operation with different standard deviations

Figure 11: Histogram of random number by naive function normrnd with different standard deviations

Figure 12: Histogram of first random number by BoxMüller method in polar form with different means $\,$

Figure 13: Histogram of second random number by BoxMüller method in polar form with different means

Figure 14: Histogram of first random number by BoxMüller method in trigonometric operation with different means

Figure 15: Histogram of second random number by BoxMüller method in trigonometric operation with different means

Figure 16: Histogram of random number by naive function normrnd with different means

Figure 17: Mean of first random number by BoxMüller method in polar form with different deviations in semilog scale $\frac{1}{2}$

Figure 18: Mean of second random number by BoxMüller method in polar form with different deviations in semilog scale

Figure 19: Mean of first random number by BoxMüller method in trigonometric operation with different standard deviations in semilog scale

Figure 20: Mean of second random number by BoxMüller method in trigonometric operation with different standard deviations in semilog scale

Figure 21: Mean of random number by naive function normrnd with different standard deviations

Figure 22: Mean of first random number by BoxMüller method in polar form with different means

Figure 23: Mean of second random number by BoxMüller method in polar form with different means

Figure 24: Mean of first random number by BoxMüller method using trigonometric operation with different means

Figure 25: Mean of second random number by BoxMüller method using trigonometric operation with different means

Figure 26: Mean of random number by naive function norm rnd with different means $\,$

Figure 27: STD of first random number by BoxMüller method in polar form with different STDs $\,$

Figure 28: STD of second random number by BoxMüller method in polar form with different STDs $\,$

Figure 29: Mean of first random number by BoxMüller method using trigonometric operation with different STDs $\,$

Figure 30: Mean of second random number by BoxMüller method using trigonometric operation with different STDs $\,$

Figure 31: Mean of second random number by naive function norm rnd with different STDs $\,$

1.3 Problem 3

1.3.1 Problem

Repeat problem 1 and 3, by generating a time series of uniform sequence with specified range.

1.3.2 Answer

The probability density of an continous uniform distribution sequence is defined as

$$f(x) = \left\{ \begin{array}{l} \frac{1}{b-a}, \text{ for } a \le x \le b \\ 0, \text{ for } x < a \text{ or } x > b. \end{array} \right.$$
 (5)

[3]

$$\int_{a}^{b} f(x)dx = 1 \tag{6}$$

.

With the mean and the standard deviation, we can reform the equation 5 to this form

$$f(x) = \begin{cases} \frac{1}{2\sigma\sqrt{3}} & \text{, for } -\sigma\sqrt{3} + \mu \le x \le \sigma\sqrt{3} + \mu \\ 0 & \text{, for others} \end{cases}$$
 (7)

With the equation 7, we can get equation

$$\sigma = \frac{b-a}{\sqrt{12}}, \mu = \frac{a+b}{2} \tag{8}$$

Input: min,max

Result: Output of the uniform deviate random number in the range of [min, max]

DIS=(max-min)/2;

MEAN=(max+min)/2; Caculating the mean of the range.

 $STD=(DIS)/\sqrt{3}$; Caculating the standard deviation of the range.

Initialized the variable TMP which TMP > 1.0

while $TMP > 1.0 \ or \ TMP < -1.0 \ do$

TMP = (rand-0.5)/0.5

OUT=TMP*DIS+MEAN

if $TMP \leq (DIS + MEAN)$ and $TMP \geq (DIS - MEAN)$ then

 $\begin{array}{c} \mid \ \, \mathrm{break} \\ \mathbf{end} \end{array}$

.

end

Output: OUT

Algorithm 3: Uniform deviate random number generator in the specified range U[min, max]

Figure 32: Uniform distribution in specified range

Figure 33: Mean of uniform distribution in spcfied range with different sequence length in semilog scale

Figure 34: Standard deviation of uniform distribution in spcfied range with different sequence length in semilog scale

From the Figure $17 \sim 31$, we can know the Box-Müller can generated the normal deviate random numbers at well. We may use the third moment (skewness) or the fourth moment (kurtosis) to analyze the performance of the output distribution.

2 Code

All of my codes can be found at the Gihub StochasticMatlabCodeHomework4.

- BoxMüller.m : The file is my own function based on the Box-Müller method in polar form.
- BoxMüller_Tri.m : The file is my own function based on the Box-Müller method with trigonometric operations.
- UniRand.m: The file is my own function of uniform distribution random in specified range U[min, max].
- Problem1.m : Figure $1 \sim 3$
- Problem2a.m : Figure $4 \sim 6$

 Problem2b.m : Figure 7 ~ 11

 Problem2c.m : Figure 12 \sim 16

 Problem2d.m : Figure 17 \sim 21

 Problem2f.m : Figure 27 \sim 31

 Problem3.m : Figure $32 \sim 34$

References

[1] Numerical Recipes in C: The Art of Scientific Computing

[2] Box—Muller transform from Wikipedia

[3] Uniform distribution from Wikipedia