CLAIM AMENDMENTS

1. (currently amended): A compound of the general formula I

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

 X_1, X_2, X_3, X_4 are each carbon where one <u>carbon of ring B</u> is substituted with Z and the rest of the <u>carbons are</u> independently <u>substituted</u> with Y; or one of X_1, X_2, X_3, X_4 is N, and the others are earbon where one carbon is substituted with Z and the rest independently with Y;

A is a ring selected from:

where D is selected from H, C₁₋₄ alkyl, halogen, amino;

Q is a bond, halogen, C₁₋₄-alkyl, O, S, SO, SO₂, CO, CS;

W is:

- (i) NR1R2 where R1 and R2 NR 1 R 2 where R 1 and R 2 are independently H, C₁₋₄ alkyl, C₁₋₄ alkylCF₃, aryl, hetaryl, C₁₋₄ alkylaryl, C₁₋₄ alkylhetaryl, C₃₋₈ cycloalkyl, C₂₋₆ alkenyl, cyclohetalkyl, C₁₋₄ alkylcycloalkyl, C₁₋₄ alkyl cyclohetalkyl, or R1 and R2 R 1 and R 2 are joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR3; and R 3 is selected from H, C₁₋₄ alkyl, aryl, hetaryl, C₁₋₄ alkyl aryl, C₁₋₄ alkyl hetaryl, COR4 where R4 COR4 where R 4 is selected from H, C₁₋₄ alkyl, aryl, hetaryl; or
- (ii) H, C_{1-4} alkyl, aryl, hetaryl, C_{3-8} cycloalkyl, cyclohetalkyl, C_{1-4} alkylaryl, C_{1-4} alkylhetaryl, C_{3-8} cycloalkyl, C_{1-4} alkylcycloalkyl, C_{1-4} alkyl cyclohetalkyl;

Y is H, halogen, CN, CF₃, nitro, OH, C₁₋₄ alkyl, C_{1-4} alkylNR5R6 C_{1-4} alkylNR5

OC₁₋₄ alkylhetaryl, OC₁₋₄ alkylcyclohetalkyl, SC₁₋₄ alkyl, SC₂₋₄ alkylOC₁₋₄alkyl, SC₁₋₄ alkylNR5R6, NR5COR6, NR5SO₂R6; and R5 and R6 SC₁₋₄ alkylNR⁵R⁶, NR⁵R⁶, NR⁵COR⁶, NR⁵SO₂R⁶; and R⁵ and R⁶ are each independently H, C₁₋₄ alkyl, or may be joined to form an optionally substituted 3-6 membered ring optionally containing an atom selected from O, S, NR7 and R7 NR⁷ and R⁷ is selected from H, C₁₋₄ alkyl, aryl, hetaryl, C₁₋₄ alkylaryl, C₁₋₄ alkylhetaryl;

Z is selected from:

where R8-where R⁸ is selected from H, C₁₋₄ alkyl;

R9 and R10 R^9 and R^{10} are independently selected from H, C_{1-4} alkyl, C_{1-4} alkylNR12R13, C_{1-4} alkylNR12

R11 is R^{11} is selected from OH, OC_{1-4} alkyl, NR12R13 $NR^{12}R^{13}$; n is 0-4;

where R12 and R13- R^{12} and R^{13} are independently selected from H, C_{1-4} alkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR14; and R14- R^{14} ; and R^{14} is selected from H, C_{1-4} alkyl.

2. (currently amended): A compound according to claim 1 wherein the compound of formula I is a compound of formula II:

 \mathbf{H}

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

 X_1 , X_2 , X_3 , X_4 are each carbon where one is substituted with Z and the rest independently with Y; or one of X_1 , X_2 , X_3 , X_4 is N, and the others are carbon where one carbon is substituted with Z and the rest independently with Y;

A is a ring selected from:

where D is selected from H, C₁₋₄ alkyl, halogen, amino;

Q is a bond, halogen, C₁₋₄ alkyl, O, S, SO, SO₂, CO, CS;

Wis:

- (i) NR1R2 where R1 and R2 are independently H, $C_{1.4}$ alkyl, $C_{1.4}$ alkylCF₃, aryl, hetaryl, $C_{1.4}$ alkylaryl, $C_{1.4}$ alkylhetaryl, $C_{3.8}$ cycloalkyl, $C_{2.6}$ alkenyl, cyclohetalkyl, $C_{1.4}$ alkylcycloalkyl, $C_{1.4}$ alkyl cyclohetalkyl, or R1 and R2 are joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR3; and R3 is selected from H, $C_{1.4}$ alkyl, aryl, hetaryl, $C_{1.4}$ alkyl aryl, $C_{1.4}$ alkyl hetaryl, COR4 where R4 is selected from H, $C_{1.4}$ alkyl, aryl, hetaryl; or
- (ii) W is H, $C_{1\cdot4}$ -alkyl, aryl, hetaryl, $C_{3\cdot8}$ -cycloalkyl, cyclohetalkyl, $C_{1\cdot4}$ -alkylaryl, $C_{1\cdot4}$ -alkylhetaryl, $C_{3\cdot8}$ -cycloalkyl, $C_{1\cdot4}$ -alkyleycloalkyl, $C_{1\cdot4}$ -alkyl cyclohetalkyl;

Y is H, halogen, CN, CF₃, nitro, OH, C₁₋₄ alkyl, C₁₋₄ alkylNR5R6, C₁₋₄ alkylhetaryl,

OC₁₋₄ alkyl, OC₂₋₄ alkylOC₁₋₄ alkyl, OC₁₋₄ alkylNR5R6, OC₁₋₄ alkylhetaryl,

OC₁₋₄ alkylcyclohetalkyl, SC₁₋₄ alkyl, SC₂₋₄ alkylOC₁₋₄ alkyl, SC₁₋₄ alkylNR5R6, NR5R6,

NR5COR6, NR5SO₂R6; and R5 and R6 are each independently H, C₁₋₄ alkyl, or may be joined to form an optionally substituted 3-6 membered ring optionally containing an atom selected from O, S,

NR7 and R7 is selected from H, C₁₋₄ alkyl, aryl, hetaryl, C₁₋₄ alkylaryl, C₁₋₄ alkylhetaryl;

Z is selected from:

wherein R⁸, R⁹, R¹⁰ and R¹¹ and n are as defined in claim 1

where R8 is selected from H, C₁₋₄ alkyl;

R9 and R10 are independently selected from H, $C_{1.4}$ alkyl, $C_{1.4}$ alkylNR12R13, $C_{1.4}$ alkylOR12, $C_{1.4}$ alkylhetaryl or may be joined to form a 5-8 membered ring containing an atom selected from SO, or SO₂;

R11 is selected from OH, OC₁₋₄ alkyl, NR12R13; n is 0-4;

where: R12 and R13 are independently selected from H, $C_{1.4}$ alkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR14; and R14 is selected from H, $C_{1.4}$ alkyl.

3. (previously presented): A compound selected from the group consisting of:

- 4. (previously presented): A compound according to claim 1, wherein the compound irreversibly inhibits JAK-3.
- 5. (previously presented): A compound according to claim 1, wherein the compound selectively inhibits JAK 3 with respect to JAK 1 or JAK 2.
- 6. (previously presented): A composition comprising a carrier and a compound according to claim 1.

7. (withdrawn): A method of treating a tyrosine kinase-associated disease state, the method comprising administering a therapeutically effective amount of a compound according to claim 1 or a pharmaceutical composition thereof.

8. (canceled)

- 9. (withdrawn): A method of suppressing the immune system of a subject, the method comprising administering a therapeutically effective amount of a compound according to claim 1 or a pharmaceutical composition thereof.
- 10. (original): A selective JAK 3 inhibitor comprising a functionality wherein the functionality is positioned to selectively interact with the Cysteine residue close to the front lip of the ATP-binding cavity of JAK3 (CYS909) whereby the inhibitor is selective for JAK3 with respect to JAK2 and JAK1.
- 11. (original): A selective JAK3 inhibitor according to claim 10 wherein the functionality irreversibly binds with the Cysteine residue.
- 12. (previously presented): A selective JAK3 inhibitor according to claim 10 wherein the functionality is an alkylating group.
- 13. (previously presented): A selective JAK3 inhibitor according to claim 10, wherein the functionality is a Michael acceptor.