Vehicle Dynamics

Lesson n.4:

Suspensions

Outline

- General introduction:
 - Kinematics parameters
 - Types of automotive suspensions
- Independent suspensions:
 - Double Wishbone (SLA)
 - Multilink
 - MacPherson
- •Anti-squat and Anti-dive
- Roll center

Suspensions functions

- 1. Isolate of Ms from Mu (comfort)
- 2. Transfer (react to) control forces
- 3. Limit roll motion
- 4. Limit load transfer
- 5. Control wheel motion (proper ranges for kinematic parameters

- Camber angle (campanatura);
- Scrub (spazzolamento);
- Kingpin axis (sterzata) and Caster angle (incidenza del montante);
- Toe angle (convergenza);
- Roll center

Camber angle

Front view

Aim: to maximize the contact area

Scrub

Note

- Track variation
- Unwanted lateral dynamics

Kingpin axis and angle (sterzo)

Steering system

Impact on camber variation due to wheel steering

Front view

Lateral view

Toe angle (convergenza)

Toe In Toe in

Impact on lateral slip

Lateral dynamics and cornering

Roll center

9.4.28 ROLL CENTER — The point in the transverse vertical plane through any pair of wheel centers at which lateral forces may be applied to the sprung mass without producing suspension roll. (See Note 16.)

9.4.29 ROLL AXIS — The line joining the front and rear roll centers.

16. The *roll center* defined in 9.4.28 constitutes an idealized concept and does not necessarily represent a true instantaneous center of rotation of the sprung mass.

Types of automotive suspensions

1. Solid axle suspensions

- Solid axles
- 2 dof mechanism
- Ease of manufacturing

- 2. Independent suspensions: 1 dof mechanism per wheel

- Huger space to host the engine
- Mu limited

- Higher roll stiffness
- Independent motion for the wheels

Example of 4-bar linkage suspension

4-bar or Double Wishbone suspensions(SLA)

Kinematic schematic

Possibile solution: A-arms

PROs:

- Low weight
- Flexible design
- Low aerodynamic drag

CONTRAs:

- Camber worsening for the inner wheel (SLA)

Application:

- Front suspensions for vehicles with rear traction (longitudinal engine)

Sospensione multi-link

Possibile schema della sospensione

Braccetti della sospensione (tipicamente 5)

Cerniere sferiche

Calcoliamo i g.d.l.!

Vantaggi:

- Flessibilità di progettazione
- Catena cinematica veramente 3D

Svantaggi:

- Messa a punto difficoltosa (molti parametri)

Applicazione:

- Sospensioni posteriori

Multi-link suspension

PROs:

- Flexible design
- 3D kinematic chain

CONTRAs:

- Difficult development

Application:

- Rear suspensions

MacPherson suspension

Kinematic scheme

Possibile design

PROs:

- -Wide room for engine and transmission
- Load distribution along a wide region
- Reduced number of components

CONTRAs:

- Huge size in z-direction → height

Application:

- Front suspensions

Mac-Pherson strut

Anti-features

Acceleration

- -Anti-squat
- -Anti-lift
- -Anti-pitch

Braking

- -Anti-dive
- -Anti-lift