Mutation testing

Aleksandr Elmekeev

- Overview
- Terminology
- Problems
- Real Life Examples
- Summary

Overview

Test Pyramid

Test coverage

Criteria	<u>JaCoCo</u>	<u>Istanbul</u>
Function coverage	+	+
Statement coverage	+ (Instruction coverage)	+
Branch coverage	+	+
Modified condition/decision coverage	-	-
Linear Code Sequence and Jump (LCSAJ) coverage	-	-
Parameter value coverage	-	-

Quis custodiet ipsos custodes?

Who watches the watchmen?

Goals

- identify weakly tested pieces of code
- identify weak tests
- get rid of useless tests

Terminology

Mutation Operator (Mutator)

Туре	Example: before	Example: after
Arithmetic	a + b	a - b
Array declaration	[1, 2, 3]	0
Boolean	true	false
Conditional	for (var i = 0; i < 10; i++) { }	for (var i = 0; false; i++) { }
Equality	a < b	a <= b
Logical	a && b	a b
Void	voidMethod();	// no voidMethod call

Mutant

By number of mutators:

- Simple (first order)
- Complex (high order)

By state:

- Killed
- Timeout
- Error
- Survived / Escaped
- Equivalent

Mutant: RIP

- A test must reach the mutated statement.
- Test input data should infect the program state by causing different program states for the mutant and the original program.
- The incorrect program state must propagate to the program's output and be checked by the test.

Mutation score = killed / total

Problems

High Computational Cost

- reduce number of mutants
 - Mutant Sampling random subset of all mutants
 - Selective Mutation certain types of mutators to generate mutants
 - Mutant Clustering includes analysis of tests to identify subset
 - \circ **Higher Order Mutation** combines mutators (FOM \times N = HOM) to make a single one with the same possibility to fail as a set of others
- optimize execution process
 - o break the program by modules
 - Bytecode Translation technique
 - o parallel runs
 - o etc

Problems Related To Human Effort

- equivalent mutant problem
 - o suggest (SEM)
 - o detect (DEM)
 - o avoid (AEMG)
- human oracle problem

Real Life Examples

Typescript / Javascript (Angular)

Summary

Usage

When to use:

- 1. new tests to make sure the quality of them is good enough;
- 2. critical parts of software.

Be careful with:

1. file operations.

Useful Links

Read:

- Mutation testing on Wikipedia
- <u>Mutation Testing Repository</u> by Yue Jia and Mark Harman
- Analysis of Mutation Testing frameworks by scoban

Watch:

•