

AO8802

Common-Drain Dual N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO8802 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with gate voltages as low as 1.8V while retaining a 12V $V_{\text{GS(MAX)}}$ rating. This device is suitable for use as a uni-directional or bi-directional load switch, facilitated by its common-drain configuration.

Features

 $V_{DS}(V) = 20V$

 $I_D = 8A$

 $R_{DS(ON)}$ < 13m Ω (V_{GS} = 10V)

 $R_{DS(ON)}$ < 14m Ω (V_{GS} = 4.5V)

 $R_{DS(ON)}$ < 19m Ω (V_{GS} = 2.5V)

 $R_{DS(ON)}$ < 27m Ω (V_{GS} = 1.8V)

TSSOP-8 Top View

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter		Symbol	Maximum	Units
Drain-Source Voltage		V_{DS}	20	V
Gate-Source Voltage		V_{GS}	±12	V
Continuous Drain	T _A =25°C		8	
Current ^A	T _A =70°C	I_D	6.3	Α
Pulsed Drain Current ^B		I _{DM}	30	
	T _A =25°C	P_{D}	1.5	W
Power Dissipation A	T _A =70°C	- D	1.08	VV
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	°C

Thermal Characteristics							
Parameter	Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ heta JA}$	64	83	°C/W		
Maximum Junction-to-Ambient ^A	Steady-State	$\kappa_{\theta JA}$	89	120	°C/W		
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	53	70	°C/W		

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
STATIC PARAMETERS							
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0V$	20			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =16V, V _{GS} =0V			10	μА	
DSS	Zero Gate Voltage Drain Gurrent	T _J =58	5°C		25	μΑ	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±12V			100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_D=250\mu A$	0.5	0.75	1	V	
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V	30			Α	
		V_{GS} =10V, I_D =8A		10	13	mΩ	
		T _J =12	5°C	13.3	16	1115.2	
$R_{DS(ON)}$	Static Drain-Source On-Resistance	V_{GS} =4.5V, I_D =5A		11.5	14	mΩ	
		V_{GS} =2.5V, I_D =4A		15.4	19	mΩ	
		V_{GS} =1.8V, I_D =3A		22.2	27	mΩ	
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =8A		36		S	
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.73	1	V	
I _S	Maximum Body-Diode Continuous Current				2.4	Α	
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance			1810		pF	
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =10V, f=1MHz		232		pF	
C _{rss}	Reverse Transfer Capacitance			200		pF	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.6		Ω	
SWITCHII	NG PARAMETERS		•			•	
Q_g	Total Gate Charge			19.8		nC	
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =10V, I_{D} =8A		1.8		nC	
Q_{gd}	Gate Drain Charge			5		nC	
$t_{D(on)}$	Turn-On DelayTime			3.3		ns	
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =10V, R_{L} =1.3 Ω	,	5.9		ns	
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		44		ns	
t _f	Turn-Off Fall Time			7.7		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =8A, dI/dt=100A/μs		22		ns	
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =8A, dI/dt=100A/μs		9.8		nC	

A: The value of R_{BJA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

TSSOP-8 Package Data

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
	MIN	NOM	MAX	MIN	NOM	MAX	
A			1.20			0.047	
A1	0.05		0.15	0.002		0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
c	0.09		0.20	0.004		0.008	
D	2.90	3.00	3.10	0.114	0.118	0.122	
E		6.40 BSC		0.252 BSC			
E1	4.30	4.40	4.50	0.169	0.173	0.177	
e	0.65 BSC			0.0259 (REF)			
L	0.45	0.60	0.75	0.018	0.024	0.030	
У			0.10			0.004	
θ	0°		8°	0°		8°	

- NOTE: 1. LEAD FINISH: 150 MICROINCHES (3.8 um) MIN. THICKNESS OF Tin/Lead (SOLDER) PLATED ON LEAD 2. TOLERANCE ±0.10 mm (4 mil) UNLESS OTHERWISE SPECIFIED

- 3. COPLANARITY : 0.10 mm 4. DIMENSION L IS MEASURED IN GAGE PLANE

PACKAGE MARKING DESCRIPTION

NOTE:

LOGO

8802 F

- AOS LOGO
- PART NUMBER CODE.
- FAB LOCATION
- ASSEMBLY LOCATION
- WEEK CODE.
- ASSEMBLY LOT CODE

TSSOP-8 PART NO. CODE

PART NO.	CODE	PART NO.	CODE	PART NO.	CODE
AO8802	8802				

RECOMMENDED LAND PATTERN

UNIT: mm

