Tecnología Electrónica Ingeniería en Electrónica

Universidad Tecnológica Nacional Facultad Regional Córdoba

Resistores Especiales

Definición

- En el apartado de resistores especiales caben toda una variedad de componentes resistivos no lineales que modifican su valor óhmico en función de algún factor externo.
 - Temperatura
 - PTC
 - NTC
 - Tensión aplicada
 - Varistores

- Luminosidad incidente
 - LDR
- Campo magnético
 - MDR

Resistores Especiales

PTC

- Coeficiente Positivo de Resistencia
- La resistencia aumenta al aumentar la temperatura.
- Se fabrican a partir de semiconductores para tener una ΔR apreciable.
 - Alrededor de 400 veces de variación.
- Se emplean las características R-T y V-I.

RESISTANCE vs. TEMPERATURE

- Características R T
 - La resistencia varia en forma lineal hasta que se alcanza la *Ts*
 - Ts → Temperatura de Transición.
 - Ts→Va desde 40°C a 180°C
 - $R_{25} = 20\Omega \text{ a } 120\Omega$ (PTCSL03)

Typical (≤ 5 V_{DC})

- Características V I
 - Si no se alcanza Ts, y la corriente es tal para evitar el autocalentamiento.
 - · Es útil para determinar el punto de trabajo optimo.

USOS

- Control de temperatura.
 - Activa o Desactiva dispositivos de control.
- Limitación de corriente
- Sensor de temperatura
- Desmagnetización en televisores
- Protección contra el recalentamiento en motores eléctricos.
- Indicadores de nivel
- Resistencias de compensación
- Como termostatos
- Provocar retardos en circuitos

Tipos de Encapsulado

USOS

USOS

- USOS -
 - Medición de Nivel.
 - Retardo de accionamiento de Relé

RTD - Termoresistencia

Definición

- Metales y aleaciones bobinadas para formar una resistencia dependiente de la temperatura.
- Material más empleado:
 - Platino
- Modelo más común:
 - PT-100
- Resistencia Nominal a 0°C
 - 100Ω a 200 Ω
- Tiempo de Respuesta:
 - 5seg.
- Formato:
 - 2, 3 y 4 terminales.
 - · Usar medición indirecta.
- Rango de Temperaturas:
 - -200°C a +850°C

RTD - Termoresistencia

- Tipos
 - Modo de 4 terminales. Medición Indirecta

Pt 100 Connections

RTD - Termoresistencia

Curva Temperatura vs Resistencia

Fuente: Electrónica para Estudiantes de Mecatrónica - ISBN 978-987-33-3304-0

Resistores Especiales

Varistores – VDR

- Resistencias cuyo valor óhmico depende de la tensión aplicada.
- Mientras mayor tensión menor valor de resistencia.
- A tensión baja es un resistor de alto valor.
- Sirve para suprimir picos transitorios.
 - Descargas Atmosféricas.
 - Accionamiento de interruptores en líneas de distribución.
 - · Interferencia electromagnética.
- Ante elevación permanente de la tensión a sus bornes se destruye.
- Contras
 - Mala disipación de Energía
 - Envejecimiento

- Características para Selección
 - Voltaje de Trabajo
 - 110% del voltaje Nominal a Proteger
 - Energía transitoria a absorber
 - Corriente pico transitoria
 - Encapsulado

Curva V- I

- ► Uc → Máxima Tensión de funcionamiento Continuo
- ▶ Ub → Tensión de Conmutación o tensión de ruptura
- Ures -> Es la tensión nominal de descarga del elemento.

Energía capaz de Absorber

Energía capaz de Absorber

$$E = V_{PICO} * I_{PICO} * t_2 * K$$

K depende de la relación entre t₁ y t₂

t ₂ uS	K
20	1
50	1.2
100	1.3
1000	1.4

Aplicaciones

Aplicaciones

Luego de Uso prolongado o Dañado

Resistores Especiales

Magnetoresistores – MDR

- El valor óhmico aumenta en función del campo magnético aplicado perpendicularmente a su superficie.
- Es decir la resistencia varía en función de la dirección del campo magnético.
- Es un efecto descubierto en 1857 por Lord Kelvin.
 - Se verifica en capas de película delgada.

Tipos de MDR

MAGNETORESISTENCIA	MATERIALES	CAMBIOS EN R
MR anisótropa (AMR)	Ferromagnéticos	5%
MR gigante (GMR)	Ferromagnéticos Multicapa	50%
MR túnel (TMR)	Ferromagnéticos Multicapa	1%
MR colosal (CMR)	Óxidos de perovskita de Magnaneso	600%

Ejemplos de MDR – MAG3110

Xtrinsic MAG3110 Magnetometer Block Diagram

Honeywell

VF401

2-Wire MR Fine-Pitch Ring Magnet Sensor

Resistores Especiales - HALL

Efecto HALL

- Al aplicar una corriente entre la caras del MR.
- Situar el elemento en un campo magnético
- Aparece una tensión conocida como tensión de Hall. En las caras opuestas

Resistores Especiales

- Fotoresistores, LDR (Light Depended Resistor)
 - El valor óhmico del componente disminuye al aumentar la intensidad de luz que incide sobre el componente.

- Parámetros (C-2795)
 - El valor óhmico
 - Entre 20KΩ y 140KΩ
 - Tiempo de Respuesta
 - 60seg → subida
 - 25seg → bajada
 - Respuesta Espectral
 - 570nm
 - Tensión
 - 150V DC

Curvas de Respuesta

LUX→ 1lumen * m2

Aplicaciones

