MAC 4722 - Linguagens, Autômatos e Computabilidade

Rodrigo Augusto Dias Faria - NUSP 9374992 Departamento de Ciência da Computação - IME/USP

5 de abril de 2016

Lista 2

L2.1 (Sipser 1.16) Resolva o exercício 1.16.

a) Resposta: Seja N o AFN dado na questão e A a linguagem reconhecida por N, onde:

$$\begin{split} N &= \{Q, \Sigma, \delta, q_0, F\} \\ Q &= \{1, 2\} \\ \Sigma &= \{a, b\} \\ q_0 &= 1 \\ F &= \{1\} \\ \delta &= \end{split}$$

$$\begin{array}{c|c|c} s & a & b \\ \hline 0 & 1 & \{1, 2\} & \{2\} \\ t & 2 & \emptyset & \{1\} \\ \hline \end{array}$$

Agora, vamos construir um AFD $M = \{Q', \Sigma, \delta', q_{0'}, F'\}$, equivalente à N, que reconhece

A.

$$Q' = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$$

 $\Sigma = \{a, b\}$
 $q_{0'} = E(\{1\}) = \{1\}$
 $F' = \{\{1\}, \{1, 2\}\}$
 $\delta' =$

Figura 1: Diagrama de estados para o AFD M.

b) Resposta: Seja N o AFN dado na questão e A a linguagem reconhecida por N, onde:

$$\begin{split} N &= \{Q, \Sigma, \delta, q_0, F\} \\ Q &= \{1, 2, 3\} \\ \Sigma &= \{a, b\} \\ q_0 &= 1 \\ F &= \{2\} \\ \delta &= \end{split}$$

Agora, vamos construir um AFD $M=\{Q',\Sigma,\delta',q_{0'},F'\}$, equivalente à N, que reconhece A. $Q'=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}\}$ $\Sigma=\{a,b\}$ $q_{0'}=E(\{1\})=\{1,2\}$ $F'=\{\{2\},\{1,2\},\{2,3\},\{1,2,3\}\}$ $\delta'=$

		a	b
Estados	Ø	Ø	Ø
	{1}	{3}	Ø
	{2}	$\{1,2\}$	Ø
	{3}	{2}	$\{2,3\}$
	$\{1,2\}$	$\{1,2,3\}$	Ø
	$\{1,3\}$	$\{2,3\}$	$\{2,3\}$
	$\{2,3\}$	$\{1,2\}$	$\{2,3\}$
	$\{1,2,3\}$	$\{1,2,3\}$	$\{2,3\}$

A figura 2 é o AFD simplificado que mostra apenas os estados que são alcançáveis a partir do estado inicial $\{1,2\}$.

Figura 2: Diagrama de estados para o AFD M.

L2.2 (Sipser 1.6c) Dê um DFA/AFD para $A = \{w \mid w \text{ possui 0101 por subcadeia}\}$. Considere o alfabeto $\Sigma = \{0, 1\}$.

Seja $M = \{Q, \Sigma, \delta, s, F\}$ o AFD da figura 3 que reconhece A, onde:

1
$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

2
$$\Sigma = \{0, 1\}$$

3
$$\delta =$$

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_0 & q_1 & q_0 \\ g & q_1 & q_1 & q_2 \\ q_2 & q_3 & q_0 \\ g & q_3 & q_1 & q_4 \\ q_4 & q_4 & q_4 \end{array}$$

4
$$s = q_0$$

5
$$F = \{q_4\}$$

Agora, precisamos mostrar que o AFD M reconhece a linguagem A, ou seja, para todo $w \in \Sigma^*, w \in L(M) \iff w \in A$.

Sem perda de generalidade, vamos assumir que w é da forma au. Vamos definir $\forall w \in \Sigma^*$:

$$\hat{\delta}_{M}(q_{0}, w) = \begin{cases} q_{0}, & \text{se } w = \epsilon \\ \delta(q_{0}, w), & \text{se } w \in \Sigma \\ \hat{\delta}_{M}(q, u), & \text{se } w = au \end{cases}$$

onde
$$a \in \Sigma, |u| > 0$$
 e $q = \delta(q_0, a)$.

Figura 3: Diagrama de estados do AFD M que reconhece A.

Note que $\delta(q_0, w) = q \iff w \in L(q)$, ou seja, o autômato termina em um estado q dado uma cadeia w, se e somente se, w satisfaz as propriedades para o estado q. Sendo assim, vamos definir:

 $L(q_0) = \{ w \in \Sigma^* \mid 0101 \text{ não \'e subcadeia de } w \text{ e } w \text{ não termina com } 0, 01 \text{ ou } 010. \}$

 $L(q_1) = \{ w \in \Sigma^* \mid 0101 \text{ não \'e subcadeia de } w \text{ e } w \text{ não termina com } 01 \text{ ou } 010, \text{ mas termina com } 0. \}$

 $L(q_2) = \{ w \in \Sigma^* \mid \ 0101$ não é subcadeia de we wnão termina com 010, mas termina com 01. }

 $L(q_3) = \{ w \in \Sigma^* \mid 0101 \text{ não \'e subcadeia de } w, \text{ mas } w \text{ termina com } 010. \}$

 $L(q_4) = \{ w \in \Sigma^* \mid 0101 \text{ \'e subcadeia de } w. \}$

AFIRMAÇÃO: $L(M) = \{w \in \Sigma^* \mid w \text{ possui 0101 por subcadeia}\}$, de forma tal que as propriedades (a), (b), (c), (d) e (e) valem $\forall w \in \Sigma^*$:

- (a) $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_0 \iff w \in L(q_0),$
- (b) $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_1 \iff w \in L(q_1),$
- (c) $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_2 \iff w \in L(q_2),$
- (d) $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_3 \iff w \in L(q_3)$ e
- (e) $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_4 \iff w \in L(q_4).$

Demonstração. Vamos provar a afirmação por indução em |w|.

Base: |w| = 0

Nesse caso, $w = \epsilon$ e pela definição de $\hat{\delta}_{\mathrm{M}}$ temos que $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_0$ e, portanto, $w \in L(q_0)$. Por outro lado, se $w \in L(q_0)$, então, pela mesma definição de $\hat{\delta}_{\mathrm{M}}$, temos que $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_0$.

Hipótese de Indução: Suponha que a afirmação é verdadeira para qualquer cadeia w, tal que |w| < n.

Passo: Seja $w \in \Sigma^*$ e |w| = n. Lembrando que w = au, $a \in \Sigma$, |u| > 0 e $u \in \Sigma^{n-1}$.

Agora, precisamos mostrar que a afirmação também vale para todas as possibilidades de transição de $\hat{\delta}_{\rm M}(q_0,u)$ e a.

(1) $\hat{\delta}_{\mathrm{M}}(q_0, u) = q_0 \ \mathrm{e} \ a = 1$

Temos que |u| < n e, por hipótese de indução, podemos concluir que $\hat{\delta}_{\rm M}(q_0,u) = q_0 \iff u \in L(q_0)$. Logo:

$$\hat{\delta}_{\mathcal{M}}(q_0, w) = \hat{\delta}_{\mathcal{M}}(q_0, au)$$

$$= \delta(\hat{\delta}_{\mathcal{M}}(q_0, u), a)$$

$$= \delta(q_0, a)$$

$$= q_0$$

Portanto, $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_0 \iff w \in L(q_0).$

(2) $\hat{\delta}_{\mathrm{M}}(q_0, u) = q_0 \in a = 0$

Temos que |u| < n e, por hipótese de indução, podemos concluir que $\hat{\delta}_{\mathrm{M}}(q_0, u) = q_0 \iff u \in L(q_0)$. Logo:

$$\hat{\delta}_{\mathcal{M}}(q_0, w) = \hat{\delta}_{\mathcal{M}}(q_0, au)$$

$$= \delta(\hat{\delta}_{\mathcal{M}}(q_0, u), a)$$

$$= \delta(q_0, a)$$

$$= q_1$$

Portanto, $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_1 \iff w \in L(q_1).$

(3) $\hat{\delta}_{\mathrm{M}}(q_0, u) = q_1 \in a = 0$

Temos que |u| < n e, por hipótese de indução, podemos concluir que $\hat{\delta}_{\mathrm{M}}(q_0, u) = q_1 \iff u \in L(q_1)$. Logo:

$$\hat{\delta}_{\mathcal{M}}(q_0, w) = \hat{\delta}_{\mathcal{M}}(q_0, au)$$

$$= \delta(\hat{\delta}_{\mathcal{M}}(q_0, u), a)$$

$$= \delta(q_1, a)$$

$$= q_1$$

Portanto, $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_1 \iff w \in L(q_1).$

(4) $\hat{\delta}_{\mathrm{M}}(q_0, u) = q_1 \in a = 1$

Temos que |u| < n e, por hipótese de indução, podemos concluir que $\hat{\delta}_{\rm M}(q_0,u) = q_1 \iff u \in L(q_1)$. Logo:

$$\hat{\delta}_{M}(q_{0}, w) = \hat{\delta}_{M}(q_{0}, au)$$

$$= \delta(\hat{\delta}_{M}(q_{0}, u), a)$$

$$= \delta(q_{1}, a)$$

$$= q_{2}$$

Portanto, $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_2 \iff w \in L(q_2).$

(5) $\hat{\delta}_{\mathrm{M}}(q_0, u) = q_2 e a = 0$ Temos que |u| < n e, por hipótese de indução, podemos concluir que $\hat{\delta}_{\mathrm{M}}(q_0, u) = q_2 \iff u \in L(q_2)$. Logo:

$$\hat{\delta}_{\mathcal{M}}(q_0, w) = \hat{\delta}_{\mathcal{M}}(q_0, au)$$

$$= \delta(\hat{\delta}_{\mathcal{M}}(q_0, u), a)$$

$$= \delta(q_2, a)$$

$$= q_3$$

Portanto, $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_3 \iff w \in L(q_3).$

(6) $\hat{\delta}_{M}(q_{0}, u) = q_{2} e a = 1$ Temos que |u| < n e, por hipótese de indução, podemos concluir que $\hat{\delta}_{M}(q_{0}, u) = q_{2} \iff u \in L(q_{2})$. Logo:

$$\hat{\delta}_{\mathcal{M}}(q_0, w) = \hat{\delta}_{\mathcal{M}}(q_0, au)$$

$$= \delta(\hat{\delta}_{\mathcal{M}}(q_0, u), a)$$

$$= \delta(q_2, a)$$

$$= q_0$$

Portanto, $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_0 \iff w \in L(q_0).$

(7) $\hat{\delta}_{M}(q_{0}, u) = q_{3} e a = 0$ Temos que |u| < n e, por hipótese de indução, podemos concluir que $\hat{\delta}_{M}(q_{0}, u) = q_{3} \iff u \in L(q_{3})$. Logo:

$$\hat{\delta}_{\mathcal{M}}(q_0, w) = \hat{\delta}_{\mathcal{M}}(q_0, au)$$

$$= \delta(\hat{\delta}_{\mathcal{M}}(q_0, u), a)$$

$$= \delta(q_3, a)$$

$$= q_1$$

Portanto, $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_1 \iff w \in L(q_1).$

(8) $\delta_{\mathrm{M}}(q_0, u) = q_3$ e a = 1Temos que |u| < n e, por hipótese de indução, podemos concluir que $\hat{\delta}_{\mathrm{M}}(q_0, u) = q_3 \iff u \in L(q_3)$. Logo:

$$\hat{\delta}_{\mathcal{M}}(q_0, w) = \hat{\delta}_{\mathcal{M}}(q_0, au)$$

$$= \delta(\hat{\delta}_{\mathcal{M}}(q_0, u), a)$$

$$= \delta(q_3, a)$$

$$= q_4$$

Portanto, $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_4 \iff w \in L(q_4).$

(9) $\hat{\delta}_{\mathrm{M}}(q_0, u) = q_4$ e a = 0 ou a = 1Esse caso é trivialmente verdade pois, nesse ponto, já sabemos que u contém a subcadeia 0101 e, não importa o símbolo a lido, temos que $\hat{\delta}_{\mathrm{M}}(q_0, u) = q_4 \iff u \in L(q_4)$ e $\hat{\delta}_{\mathrm{M}}(q_0, w) = q_4 \iff w \in L(q_4)$.

Sendo assim, podemos concluir que o autômato M da Figura 3 está correto, pois $\hat{\delta}_{\mathrm{M}}(q_0, w) \cap F \neq \emptyset \iff w \in A$.

L2.3 Dada uma linguagem L, seja $Pref(L) = \{x | \text{ existe palavra } y \text{ tal que } xy \text{ está em } L\}$, $Suf(L) = \{y | \text{ existe palavra } x \text{ tal que } xy \text{ está em } L\}$, $Fat(L) = \{y | \text{ existem palavras } x \text{ e } z \text{ tais que } xyz \text{ estão em } L\}$.

Demonstre que se L é regular, então Pref(L), Suf(L) e Fat(L) também o são. Sugestão: Observe que Fat(L) = Suf(Pref(L)).

L2.4 Complete a demonstração do teorema 1.25.

Resposta: Vale lembrar da construção dada na prova do teorema 1.25.

Suponha que A_1 e A_2 são linguagens reconhecidas por M_1 e M_2 , respectivamente, onde $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ e $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construa M para reconhecer $A_1 \cup A_2$, onde $M = (Q, \Sigma, \delta, q_0, F)$.

$$1 Q = Q_1 \times Q_2.$$

 Σ , o alfabeto, é o mesmo em M_1 e M_2 .

3
$$\delta$$
 = para cada $(r_1, r_2) \in Q$ e cada $a \in \Sigma$, faça $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$.

4
$$q_0 = (q_1, q_2)$$
.

5
$$F = (F_1 \times Q_2) \cup (Q_1 \times F_2).$$

Demonstração. Para demonstrar que M reconhece $A_1 \cup A_2$, devemos dividir a prova em duas partes.

AFIRMAÇÃO: Toda palavra pertencente à linguagem reconhecida por M está presente em $A_1 \cup A_2$.

Tome uma palavra w qualquer reconhecida pelo autômato M. Sabe-se que ao transitarmos através de δ por M, a partir do estado inicial q_0 , existe um passeio P no autômato M que leva a um estado final. Pela construção de M, cada estado nesse passeio é rotulado por um par ordenado (r_1, r_2) , onde $r_1 \in M_1$ e $r_2 \in M_2$. Se tomarmos o passeio P_1 , considerando de P apenas as coordenadas r_1 do par ordenado, este é equivalente ao passeio dado pelas transições δ_1 na tentativa de reconhecimento de w em M_1 . Analogamente, podemos tomar o passeio P_2 , a partir de P, considerando apenas as coordenadas r_2 , o que equivaleria à tentativa de reconhecimento da palavra w em M_2 . Pela construção de M, temos ainda que o estado final do passeio P é rotulado por um par ordenado (r_1, r_2) , onde $r_1 \in F_1$ ou $r_2 \in F_2$. Dessa forma, ou P_1 ou P_2 , ou ambos, terminam com um estado final, logo, $w \in A_1$, ou $w \in A_2$, ou $w \in A_1$ e $w \in A_2$, o que é equivalente a dizer que $w \in A_1 \cup A_2$.

AFIRMAÇÃO: Toda palavra pertencente à linguagem $A_1 \cup A_2$ é reconhecida por M. Tomemos agora w como sendo uma cadeia pertencente a $A_1 \cup A_2$, onde |w| = m. Logo,

existe um passeio $P_1 = x_0, x_1, \ldots, x_m$ em M_1 , tal que $x_0 = q_1$ construído a partir de δ_1 , ou um passeio $P_2 = z_0, z_1, \ldots, z_m$, construído a partir de δ_2 em M_2 , tal que $z_0 = q_2$, e que x_m ou z_m , ou ambos, são estados finais. Como o conjunto de estados Q de M foi construído através do produto cartesiano de $Q_1 \times Q_2$ e a função de transição $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$, para cada par ordenado $(r_1, r_2) \in Q$ e cada $a \in \Sigma$, existe um caminho $P = (x_0, z_0), (x_1, z_1), \ldots, (x_m, z_m)$ em M, obtido a partir de w, e como x_m ou z_m , ou ambos, são estados finais, (x_m, z_m) também é um estado final e, portanto, M reconhece a palavra w.