$$Efectivita = \frac{kvahlum}{kvahlum + piepudl} = \frac{90}{160} = 90\%$$

Strategie pro dosažení tohoto cíle může být následující

- Priorita se zvýší a časové kvantum sníží
 - ★ pokud vlákno v posledním běhu nevyužilo celé své časové kvantum (vlákno orientované na V/V),
 - ⋆ pokud vlákno dlouho čeká na CPU (hrozí problém hladovění vlákna).
- Priorita se sníží a časové kvantum se zvýší
 - pokud vlákno v posledním běhu využilo celé své časové kvantum (vlákno orientované na CPU).

Výkonnostní parametry

- Cache hit $count(n_h)$: počet případů, kdy data byla ve skryté paměti,
- Hit time (t_h): čas přístupu k datům ve skryté paměti,
- Cache miss count(n_m): počet případů, kdy data nebyla ve skryté paměti.
- ▶ Miss penalty (t_m) : čas přístupu k datům ve zdroji dat (data source),
- Cache reference: celkový počet přístupů k datům $n_r = n_h + n_m$,
- ► Cache Hit Ratio: $r_h = \frac{n_h}{n_e} = \frac{n_h}{n_h + n_m}$,
- Average Access Time: $t_{avg} = t_h + (1 r_h) \times t_m$.

$$= 1 + (1 - 0.3) \times 50$$

Pristup do coche

Problém s fragmentací fyzické paměti

- Externí fragmentace: po určitém čase je volná paměť reprezentována příliš malými oblastmi, do kterých se již nevejdou nově vznikající procesy.
- Interní fragmentace: VAS obsahuje volnou paměť, do které se může rozpínat halda a zásobníky vláken.

Příklad

- Na 32-bitovém CPU, které podporuje pouze 4KB stránky/rámce, je nainstalovaný 32-bitový OS, ve kterém běží 32-bitový proces. Systém používá dvouúrovňovou tabulku stránek a indexy do jednotlivých tabulek mají stejnou velikost.
- Předpokládejme, že proces bude alokovat ve svém VAS pouze následující datové struktury
 - ★ TEXT a DATA: 4 MB na nejnižších virtuálních adresách,
 - * halda: 4 MB na následujících virtuálních adresách,
 - ★ zásobník: 4 MB na nejvyšších virtuálních adresách.

Jaká bude struktura virtuální a fyzické adresy?

- Virtuální adresa (32 bitů): level 1 index (10 bitů) + level 2 index (10 bitů) + offset (12 bitů).
- Fyzická adresa (32 bitů): číslo rámce (20 bitů) + offset (12 bitů).
- Kolik řádek bude mít top level tabulka? ⇒ 2¹⁰ řádek.
- Kolik místa zabírá jedna řádka?
 - Číslo rámce (20 bitů) + kontrolní bit (P)⇒ zaokrouhlíme ~32 bitů = 4 B.
- Kolik řádek bude mít tabulka druhé úrovně? ⇒ 2¹⁰ řádek.
- Kolik místa zabírá jedna řádka?
 - Číslo rámce (20 bitů) + kontrolní bity (P,...)⇒ zaokrouhlíme ~32 bitů = 4 B.
- Kolik místa zabírají všechny tabulky pokud na systému běží 2⁷ podobných procesů?
 - ► $2^7 \times [1 \times (2^{10} \times 4) + 3 \times (2^{10} \times 4)]$ B = $2^7 \times 16$ KB = 2 MB.

Alobojene 12 MB, jedns tobolles 2 vocat police 2 x 4kiB - 4MiB

Náhoda Stráncé - Optimální => Nahodin to co bode povita za co nejvitsí dobo

Stronly = 2,3,2,1,5,2,4,5,3,2,5,2

1214-3

tómic a,b,c

6x Page Fault

Nóhiada Stance - NRU (Not Recently Used)

2 bity R - Inference bit, M - modified Dit elle nejmisisho RM vyhodime

	2		w 2	 !	csc‡	1	5	usct	2	4	ς	3	Hscf			w 5	2
Stimes	2	.	2		2			2	2				2		2		2
a R	1	•	1	•	0	 •	•	0	1	•	•	٠	Ō	٠	1	•	1
M	0	•	1		1		•	1	1	•	•	•	1		1		1
Stn		3			3		5	5	٠	4	٠	3	3				
p K		1			0		1	O	•	1	٠	1	0		,		
M		0			0		Ō	O		O		0	0				
Str						 1		1			5	•	5			5	
_ <u> </u>	•	•			٠	 1	•	0	•	•	1	٠	Ŏ	•		1	•
M .				•		 0	•	0	•		0	•	0			1	
	χ	' X	[χ	΄.			χ	χ	X					· ·

=7 7x Poux Foult

Nohiódo stiónel Fifo

a	2		2		5			5	3				
	•	3	•			2		•		2	5		•
C				1			4					2	
	Χ								χ		Χ		

=> 9 x Posse Foult , bosche vyhorvijo primi vložimov, Ne naposledy povijou

Nohido Stishly LRU (Cost Recently used)
2,3,2,1,5,2,4,5,3,2,5,2

0	2		2			2		3			
b		3	•		5					5	
				1			4		2		2
	λ	' አ	•	΄ Χ	Χ		Χ	X	X		

=> 7 vypade

Nóhuda Stiánky - Clock

- Noites utorije no phuni vloženou, pri vloženi R no 1, dotal utorije no R&O

2,3,2,1,5,2,4,5,3,2,5,2 hohod, posiñ

_	. > - -	! -1		1	1 213	1							
						R							
	Stionto	2		2		5			5	3			
α	R	1		1		1			1	1		•	
ط	Stionto		3			3	2			2	2	2	2
D	R		1			0	1			0	1	0	1
	Stunto		•		1	1		4		4		5	
C	R				1	0		1	•	Ó	•	1	
حاودا	=	O.	۹	α	۸	ما	C	α	٨	6		δ	
		Х	χ		χ	χ	χ	X		Χ		χ	

=> 8x Page Foult

JU	u e memi obsazem ram	lcu	٧	þι	upt	JIIU	Ca	เอน	:							
	Číslo stránky	2	3	2		1	5		2	4	5	3		2	5	2
	Čas	1	4	a	10	15	17	20	21	22	25	27	30	31	32	37

					R			R											_	_
	Stialfa	2		2	2		5	5		4	5	3	3							
a	R	4.		1	0		1	6		1	1	1	G		٠					
	C	7		7	1		7	7		7	7	7	7							
	StiorFo		3		3			3	2				2	2		2				
. b	R		1		O			0	1				Ó	1	•	1				
	, C		.7		7			3	7				7	7.	٠	7				
					-										•					
	 Cl /			-	٠	-/)		1					1		5					
	Stionfo	•	•	-	•	•								•	٠	•	•			
<u></u>	R	•			٠	1		0					O		1			٠		
	, C					7		7					3		7					
		×	χ			Χ	Χ		X	Χ	X	χ			X					
		9x	b^{s}	igc ,	Fou	17														

Mějme disk s těmito parametry

- HDD má pouze jeden povrch, který se otáčí rychlostí 10000 rpm.
- Velikost sektoru 512 B.
- Každá stopa má 320 sektorů.
- Průměrný čas vystavení hlaviček (seek time) je 10 ms.
- Vystavení hlaviček nad sousední stopu (track-to-track seek time) je 1ms.

RPS =
$$\frac{10000}{60}$$
, tot Spoidin' = $\frac{1}{10000}/2 = 3$
1 setten = $10+3+6-19$
 $\frac{1}{500}$
 $\frac{1}{500}$

2560 scb/où

Notion po dists

Notion journer section =
$$10+3+\frac{6}{320}$$

altern = $\left(13+\frac{6}{320}\right)$ x $2566 = 33,3285$

Příklad: UFS (Unix File System)

Přístup k souborům/adresářům

- Super blok obsahuje informaci, kde začínají struktury pro správu volného prostoru, tabulka i-nodů a datové bloky. Po připojí UFS se do paměti načte i-node kořenového adresáře (i-node číslo 2).
- Pokud chceme např. zobrazit obsah souboru /X/Y/Z, pak musíme načíst z dísku příslušné i-nody a datové bloky.

Příklad: FAT32/exFAT

Přístup k adresářů/souborů

- Boot sektor obsahuje informaci, kde začíná FAT, kopie FAT a obsah kořenového adresáře (Root directory). Při připojení FS se načte do hlavní paměti celé/část FAT.
- Pokud chceme např. zobrazit obsah souboru D: \X\Y\Z, pak musíme načíst z disku příslušné datové bloky.

Lot spoiding
$$\frac{1}{\frac{10000}{60}}$$
 /2 = 3 ms

Rcmove - +F

- 1) Kolik i-hodes musim pocist? Pocct odicsório v coste + 1
- Pouze polent Dik soubolu => 20pisc 1
- 3) Kolik dotových bloků se note 2
 - Poset dot. blots potribujet K vlosen soubor (1., 2. viour bloty) - Pocch Adicisio +
 - huscitam samothic dat bloby souborn
- 4) Kolik dot. bloků se zopice? 1 dot Plof V Palcht U mazanicho
- 5) Kolit sc Procode Alokaci / Dealo Kaci
 - 1x i-hode, poset distorych bloké soubore, poiet dot bloké pro tibulty (1.,2. vivia)

```
(2) Symbolic line
  1) Kolit i-hodes so hotte ?
                                    Fasime poure juntou linte = 2 regeneral -> Point adressio 2. seg
  2) Kolit i - hodes sc 25pitz ?
                                       2 -> pricul din a hour link
 3) Kolit dot bloke se mitel
                                      Point adjustic 2. 219
 4) Kolit dot blot i sc Espise 2
                                       Blue plo costo v like + parent Dir
 5) Operace alokování bloky + i - modes 2
                                     i-hode Linku, dot blut linku
(3) Hord Link
 1) Kolit i-hodes so haite ? Musimo dojit na konce adtreonaného, nacist :-nado, dojít do cílo => Počet Adre abor Ang
 2) Kolik 1 - hodes se espíte ? ex subor, prent dir honého (Refound, hórer rového)
3) Kolit dot bloke se mitel Obs odiessie (1...1...1)
                                                                                      i-wode surhow
                                                                                      musime accomment Referent
 4) Kolit dot blot i se Espise ? Pare jeden v posentag
5) Opasa slokovini bloky + i - modes ? O
(4) Copy cp /x/y
                                   /Z/w
Kom
1) Kolit i- modes se moite 2
                                  Adlessie zigementé + Soubon co kopinjeme
2) Kolit i-hodes sc 25pitz?
                                    Pricut + hour soubon
3) Kolit dot bloke se mitch
                                    Adicsi ic organicato + soubor (sonotní doto + tobulty 1., 2. úlobri)
4) Kolik dat blot i sc Espisc 2
                                    Souhor ( ... ) + Pricut
5) Operace plokovini bloky + i - wodes 2
                                     1x inode + Soubor
(5) Move mv /2/4 /2/4
 1) Kolit i-hodes se haite 2
                                  Soviet org
2) Kolit i - hodes sc 25pitz ?
                                                         (hs i-nude soubon se poure ztoplinje odtsz)
                                   Pouze obs parenti => 2
3) Kolit dot bloke sc mitch Soviet org
4) Kolit dat blot i sc Espisc 2
5) Operace placovini bloky + i - wales 2
```

dáme k dispozici pevný disk s následujícími parametry:

- Kapacita: 1 TiB
- Velikost sektoru: 4096 B
- Počet hlav: 2Počet cylindrů: 32768
- Průměrný počet sektorů na cylindr: 8192
- Rychlost: 10000 rpm
- Průměrná doba vystavení hlaviček: 9 ms
- Doba vystavení hlaviček na sousední cylindr: 3 ms
- 1. Jak dlouho bude trvat přečíst soubor o velikosti 7819264 B z disku, pokud je jeho obsah uložen na sektorech náhodně umístěných po disku?

V takové konfiguraci se provede následující příkaz shellu

- Kolik i-nodů se musí načíst?
- Kolik i-nodů se musí zapsať?
- 3. Kolik datových bloků se musí načíst?
- 4. Kolik datových bloků se musí zapsat? 5. Kolik operací při alokování/uvolňování bloků a i-nodů musí být provedeno? Každou operaci alokace/uvolně

Pott odtsi , bloto =
$$16 \text{ kiB} / 8 = 2043$$

$$2043^2 = 4194304$$

$$2043^2 = 8mgh$$

Bloty = 14 22 467 929 827 / 16 kil = B68 20 552 Hoku

$$\frac{1}{2043^{2}} = 7 + 1 + 1 + 21 = 30$$

Uživatel	Proces	Statická priorita	Počet vláken	Celková doba výpočtu [sec]
xvagner	P ₀	0	3	108
trdlicka	P ₁	26	1	54
trdlicka	P ₂	80	3	270
zdarekj	P ₃	71	1	45
zdarekj	P ₄	0	4	72
soch	P ₅	26	2	72

Po
$$135/3 = 45$$
 s dobihu (P2) $T=90$

Celtern odprsovsho = $45.4 = 130$

bc $2 P_2 = 130 - 135 = 45$
 $2 P_1 2 \text{ bode } 54 - \frac{45}{3} * 1 = 39$
 $2 P_5 2 \text{ bode } 72 - \frac{45}{3} * 2 = 42$

2 P1 2 bode
$$39 - 21 = 18$$

2 P0 2 bode $108 - 21 * \frac{3}{7} = 99$

$$\frac{2}{7}$$
 $\frac{9}{7}$ $\frac{9}{7}$ $\frac{9}{7}$ $\frac{9}{7}$ $\frac{9}{7}$ $\frac{9}{7}$ $\frac{9}{7}$

C2163,64 Po1P4 (3:4)

Celleury 235 k | maje crist)

T= 141.75 C1,c2,c3 PO po 54 /3 bude vic holovo

C4 hic = 130

T = 159.75