1 第七次作业 1

1 第七次作业

问题 1. 取球面上的北极点N, 再取赤道上东经 0° , 90° 的点A, B, 写出球面三角形NAB到平面三角形的同胚映射。

问题 2. 设J是无限集, 求证(\mathbb{R}^{J} , 箱拓扑不可度量化。

问题 3. 用 ω 表示正整数集, \mathbb{R}^{ω} 表示笛卡尔积. 记 $\mathbb{R}^{\infty} = \{(x_i) \in \mathbb{R}^{\omega} \mid x_i \text{ 中只有有限项非零}\}.$ 分别在积拓扑、一致拓扑和箱拓扑中确定 \mathbb{R}^{∞} 的闭包。

问题 4. 设 \mathbb{R}^{ω} 的子集 $X = \Pi_{n \in N^*} \left[0, \frac{1}{n} \right]$,对 $x = (x_n)$, $y = (y_n)$ 定义 $d(x,y) = \left[\sum_{i=1}^{\infty} \left(x_i - y_i \right)^2 \right]^{\frac{1}{2}}$.证明d是X上的度量。X作为 \mathbb{R}^{ω} 在积拓扑,箱拓扑,一致拓扑的子空间拓扑以及d所诱导的度量拓扑这四种拓扑的关系如何?

问题 5. 取定素数p,在有理数域 \mathbb{Q} 上定义映射 ν_p 如下:将非零有理数r写成 $r=p^k\frac{a}{b}$ 的形式,其中k是整数,且(p,a)=(p,b)=(a,b)=1 (这种表示是唯一的),令 $\nu_p(r)=k$ 以及 $\nu_p(0)=+\infty$.证明: $d_p\left(r_1,r_2\right)=p^{-\nu_p(r_1-r_2)}$ 是 \mathbb{Q} 上的度量。(例如: $\nu_3(9)=2,d_3(1,10)=3^{-2}$)