

Sistemas de Numeração em Computação

Disciplina: Introdução à Arquitetura de Computadores

Luciano Moraes Da Luz Brum

Universidade Federal do Pampa – Unipampa – Campus Bagé

Email: <u>lucianobrum18@gmail.com</u>

- ▶ Introdução;
- Soma de números binários;
- Representações de números
 - Inteiros Positivos;
 - Sinal Magnitude;
 - Complemento de B-1;
 - Complemento de B;
- Subtração de números binários;
- Estouro de Representação;
- Resumo;

Números binários normalmente exigem uma grande quantidade de dígitos, ou seja, grandes cadeias de 0's e 1's.

➤ Isso pode induzir facilmente à erros visuais, portanto emprega-se normalmente as notações em base octal e hexadecimal para representar números binários, por serem mais compactas.

BASE 10	BASE 2	BASE 8	BASE 16
0	0000	00	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	04	4
5	0101	05	5
6	0110	06	6
7	0111	07	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

- Dos sistemas de numeração utilizados em computação:
 - > O sistema decimal é utilizado para entrada e saída de dados no computador;
 - > O sistema binário é utilizado para cálculos internos e armazenamento;
 - ➤ Os sistemas **hexadecimal** e **octal** são utilizados como forma de compactar informações internas.

- Dos sistemas de numeração utilizados em computação:
 - > O sistema decimal é utilizado para entrada e saída de dados no computador;
 - > O sistema binário é utilizado para cálculos internos e armazenamento;
 - ➤ Os sistemas hexadecimal e octal são utilizados como forma de compactar informações internas. (porque hexadecimal e octal?)

➤ Cada digito do sistema binário é denominado de bit, a contração de binary digit.

Para um quarteto de bits, chamamos de nibble.

> Para um octeto de bits, chamamos de byte.

➤ Para grandes conjuntos de bits e bytes, usamos os mesmos denominadores do sistema decimal (K para kilo, M para mega, ...).

0 ou 1	1 bit
4 bits	1 nibble
8 bits	1 byte
1024 bits	1 Kilobit (2 ¹⁰ <i>bits</i>)
1024 bytes	1 Kilobyte (2 ¹⁰ bytes)
1024 Kilobytes	1 Megabyte (2 ²⁰ bytes)
1024 Megabytes	1 Gigabyte (2 ³⁰ bytes)
1024 Gigabytes	1 Terabyte (2 ⁴⁰ bytes)
1024 Terabytes	1 Petabyte (2 ⁵⁰ bytes)
1024 Petabytes	1 Exabyte (2 ⁶⁰ bytes)

- ➤ Introdução;
- > Soma de números binários;
- Representações de números
 - Inteiros Positivos;
 - Sinal Magnitude;
 - Complemento de B-1;
 - Complemento de B;
- Subtração de números binários;
- Estouro de Representação;
- Resumo;

Soma de Números Binários

Mesmas regras da soma de números decimais, porém só existem 2 símbolos em vez de 10;

a	b	C = a + b	Vai-um
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Soma de Números Binários

Mesmas regras da soma de números decimais, porém só existem 2 símbolos em vez de 10;

а	b	Vem-um	C = a + b	Vai-um
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- ➤ Introdução;
- Soma de números binários;
- > Representações de números
 - Inteiros Positivos;
 - Sinal Magnitude;
 - Complemento de B-1;
 - Complemento de B;
- Subtração de números binários;
- Estouro de Representação;
- Resumo;

Representação dos Números

> Até o momento foi utilizada a notação de números inteiros positivos;

É necessário modificar ou expandir essa representação para incluir números negativos;

➤ Existem 4 representações que serão analisadas em detalhes a seguir: Inteiros Positivos, Sinal-Magnitude, Complemento de B-1 e Complemento de B;

- ➤ Introdução;
- Soma de números binários;
- Representações de números
 - **►** Inteiros Positivos;
 - Sinal Magnitude;
 - Complemento de B-1;
 - Complemento de B;
- Subtração de números binários;
- Estouro de Representação;
- Resumo;

Inteiros Positivos

 \triangleright Faixa de representação: [0 , $B^n - 1$];

> Valor do número: $\sum_{n=1}^{\infty} x_i \cdot B^i$, mesmo método usado para conversão pelo método polinomial;

➤ Troca de Sinal: Não existe tal função;

Soma de dois números: Utilizamos a tabela de soma apresentada anteriormente;

- ➤ Introdução;
- Soma de números binários;
- Representações de números
 - Inteiros Positivos;
 - > Sinal Magnitude;
 - Complemento de B-1;
 - Complemento de B;
- Subtração de números binários;
- Estouro de Representação;
- Resumo;

Neste representação, um digito é utilizado para representar o sinal do número (o bit mais significativo);

Em nossos exemplos, utilizaremos 0₂ para positivo e 1₂ para negativo;

Exemplo: 100₂ é um número negativo e 011₂ é um número positivo;

Neste representação, um digito é utilizado para representar o sinal do número (o bit mais significativo);

Em nossos exemplos, utilizaremos 0₂ para positivo e 1₂ para negativo;

Exemplo: 100₂ é um número negativo e 011₂ é um número positivo;

O que acontece com a faixa de representação dos números?

Neste representação, um digito é utilizado para representar o sinal do número (o bit mais significativo);

Em nossos exemplos, utilizaremos 0₂ para positivo e 1₂ para negativo;

Exemplo: 100₂ é um número negativo e 011₂ é um número positivo;

O que acontece com a faixa de representação dos números?

$$> [-(B^{n-1}-1), (B^{n-1}-1)];$$

Comparação dos valores: Inteiro Positivos X Sinal Magnitude.

Número Binário	Inteiro Positivo	Sinal Magnitude
000	0	0
001	1	1
010	2	2
011	3	3
100	4	-0
101	5	-1
110	6	-2
111	7	-3

A faixa de representação da magnitude é reduzida em um fator igual a base B em comparação com os Inteiros Positivos!

A faixa de representação da magnitude é reduzida em um fator igual a base B em comparação com os Inteiros Positivos! Das B^n combinações, usa — se somente $2.\,B^{n-1}-1.$

Prova:

- Representação em IP (decimal 2 dígitos): [0, 99].
- Representação em SM (decimal 2 dígitos): [-9, 9].
- Representação em IP (binário 4 dígitos): [0000, 1111].
- Representação em SM (binário 4 dígitos): [-111, 111].
- Obs: nos binários, apenas uma representação é perdida.

Cálculo do valor do número: a = S(a)M(a), onde:

> S(a) é o sinal do número. Pode ser '+' (0) ou '-' (1);

ightharpoonup M(a) é a magnitude: $\sum_{n-2} x_i . B^i$;

- ➤ Troca de Sinal: Troca-se o S(a) e mantem-se a M(a) do número.
 - Se S(a) for '+', então S(a) = '-';
 - Se S(a) for '-', então S(a) = '+';

> Soma de dois números:

S (a)	S (b)	S (c)	M(c)	Exemplo
+	+	+	M(a) + M (b)	5 + 7 = 12
-	-	-	M(a) + M (b)	-5 + -7 = - 12
+	-	Se M(a) >= M(b), + Se M(a) < M(b), -	M(a) - M (b) M(b) - M (a)	7 + -5 = 2 5 + -7 = -2
-	+	Se M(a) > M(b), - Se M(a) <= M(b), +	M(a) - M (b) M(b) - M (a)	-7 + 5 = -2 -5 + 7 = 2

➤ Soma de dois números:

S (a)	S (b)	S (c)	M(c)	Exemplo
+	+	+	M(a) + M (b)	$5_{10} + 7_{10} = 12_{10}$
-	-	_	M(a) + M (b)	$-5_{10} + -7_{10} = -12_{10}$
+	-	Se M(a) >= M(b), + Se M(a) < M(b), -	M(a) - M (b) M(b) - M (a)	$7_{10} + -5_{10} = 2_{10}$ $5_{10} + -7_{10} = -2_{10}$
_	+	Se M(a) > M(b), - Se M(a) <= M(b), +	M(a) - M (b) M(b) - M (a)	$-7_{10} + 5_{10} = -2_{10}$ $-5_{10} + 7_{10} = 2_{10}$

- > Necessidade de conhecer as tabelas de soma e subtração de números binários !
- > Manipulação de números em Sinal Magnitude é muito complexa!

- ➤ Introdução;
- Soma de números binários;
- Representações de números
 - Inteiros Positivos;
 - Sinal Magnitude;
 - > Complemento de B-1;
 - Complemento de B;
- Subtração de números binários;
- Estouro de Representação;
- Resumo;

- Números positivos são representados conforme os modos anteriores;
- Números negativos são representados através do complemento;
- \blacktriangleright Definição: O Complemento de um número é obtido subtraindo-se esse número da maior quantidade representável (B^n-1-a) ;
- > Exemplos:
 - ightharpoonup Complemento de 458_{10} : $(B^n 1 a) = (10^3 1 458) = 999_{10} 458_{10} = 541_{10}$
 - ightharpoonup Complemento de 101_2 : $(B^n 1 a) = (2^3 1 101) = 111_2 101_2 = 010_2$

 \succ Faixa de representação, para B par: $[-\{(B^n/2)-1\}, +\{(B^n/2)-1\}];$

 \triangleright Faixa de representação, para B impar: [-(B^n-3)/2, +(B^n-1)/2];

Base	Dígitos	Faixa	Faixa em decimal
2	3	100,101,110,111,000,001,010,011	-3,-2,-1,-0,0,1,2,3
2	4	1000,1001,,1111,0000,0001,,0111	-7,-6,,-0,0,1,,7
3	3	112,120,121,,222,000,001,,111	-12,-11,-10,,-0,0,1,,13
10	2	50,,98,99,00,01,,48,49	-49,,,-1,-0,0,1,,48,49

- Cálculo do valor do número:
- > Sinal:
 - > Se estiver na metade superior da faixa de representação, negativo;
 - > Se estiver na metade inferior da faixa de representação, positivo;
 - > Para bases pares, basta analisar o digito mais significativo;
- Magnitude
 - \triangleright Se for positivo: $\sum_{n-1} x_i . B^i$;
 - > Se for negativo: Efetua-se o complemento do número e após, $\sum_{n=1}^{\infty} x_i \cdot B^i$;
 - > Exemplo:

$$> 011_2 = 0.2^2 + 1.2^1 + 1.2^0 = 3_{10}$$

$$> 101_2$$
 (negativo) = $111_2 - 101_2 = 010_2 = 0.2^2 + 1.2^1 + 0.2^0 = -2_{10}$

> Troca de sinal: Basta complementar todos os dígitos do número.

Base	Dígitos	Número(decimal)	Complemento (decimal)
2	4	1110 ₂ (-1 ₁₀)	0001 ₂ (+1 ₁₀)
2	4	1001 ₂ (-6 ₁₀)	0110 ₂ (+6 ₁₀)
2	4	1010 ₂ (-5 ₁₀)	0101 ₂ (+5 ₁₀)
2	4	0101 ₂ (+5 ₁₀)	1010 ₂ (-5 ₁₀)
3	3	102 ₃ (+11 ₁₀)	120 ₃ (-11 ₁₀)
3	3	111 ₃ (+13 ₁₀)	111 ₃ (+13 ₁₀)

> Em bases ímpares, ocorre estouro de representação com o maior n° positivo!

➤ Soma em complemento de B-1:

	a + b	- a - b	a – b	-a + b	a + b
1° Operando	0011 ₂ (+3 ₁₀)	1110 ₂ (-1 ₁₀)	0110 ₂ (+6 ₁₀)	1011 ₂ (-4 ₁₀)	0100 ₂ (+4 ₁₀)
2° Operando	+ 0011 ₂ (+3 ₁₀)	+ 1101 ₂ (-2 ₁₀)	1010 ₂ (-5 ₁₀)	0111 ₂ (+7 ₁₀)	+ 0100 ₂ (+4 ₁₀)
Resultado	0110 ₂ (+6 ₁₀)	11011 ₂ (erro)	10000 ₂ (erro)	10010 ₂ (erro)	1000 ₂ (-7 ₁₀) (ESTOURO)
Resultado Corrigido	0110 ₂ (+6 ₁₀)	110 <mark>0</mark> ₂ (-3 ₁₀)	0001 ₂ (+1 ₁₀)	0011 ₂ (3 ₁₀)	

➤ Obs: Sempre que ocorrer vai-um e o resultado possuir 1 bit na posição n+1, eliminamos o vai-um e somamos ao resultado!

Representação	Dígitos	Faixa Positiva	Faixa Negativa
Decimal	3	000,001,002,,498,499	500,501,,998,999
C 9	3	000,001,002,,498,499	-499,-498,,-1,-0

- Introdução;
- Soma de números binários;
- Representações de números
 - **► Inteiros Positivos**;
 - Sinal Magnitude;
 - **➤** Complemento de B-1;
 - **Complemento de B**;
- Subtração de números binários;
- Estouro de Representação;
- Resumo;

> Números positivos são representados conforme os modos anteriores;

Magnitude dos números negativos são obtidas através do complemento de B $(B^n - a)$;

> Exemplos:

Complemento de 458_{10} : $(B^n - a) = (10^3 - 458_{10}) = 1000_{10} - 458_{10} = 542_{10}$

Complemento de 101_2 : $(B^n - a) = (2^3 - 101_2) = 1000_2 - 101_2 = 011_2$ ($010_2 + 1_2$)

- Faixa de representação, para B par: $[-(B^n/2), +(B^n/2)-1];$
- Faixa de representação, para B ímpar: $[-(B^n-1)/2, +(B^n-1)/2]$;

Base	Dígitos	Faixa	Faixa em decimal
2	3	100,101,110,111,000,001,010,011	-4,-3,-2,-1,0,1,2,3
2	4	1000,1001,,1111,0000,0001,,0111	-8,-7,,-1,0,1,,7
3	3	112,120,121,,222,000,001,,111	-13,-12,-11,,- 0,0,1,,13
10	2	50,,98,99,00,01,,48,49	-50,,,-2,- 1,0,1,,48,49

➤ Obs: Não existe mais a dupla representação do zero e um número negativo adicional é representado!

- Cálculo do valor do número:
 - ➤ Sinal: (MESMA REGRA DO COMPLEMENTO DE B-1)
 - > Magnitude
 - \triangleright Se for positivo: $\sum_{n-1} x_i . B^i$;
 - Se for negativo:
 - 1. Efetua-se o complemento de B do número $(B^n a)$ OU
 - 2. Efetua-se o complemento de B-1 e soma + 1 ao resultado;
 - > Exemplo:
 - $> 011_2$ (positivo) = 0.2² + 1.2¹ + 1.2⁰ = 3₁₀
 - $> 101_2$ (negativo) = $010_2 + 1_2 = 011_2 = 0.2^2 + 1.2^1 + 1.2^0 = -3_{10}$

➤ Troca de sinal: Complemento de B ou Complemento de B-1 e soma + 1 no resultado.

Base	Dígitos	Número(decimal)	Complemento (decimal)
2	4	1110 ₂ (-2 ₁₀)	$0001_2 + 1_2 = 0010_2 (+2_{10})$
2	4	1001 ₂ (-7 ₁₀)	$0110_2 + 1_2 = 0111_2 (+7_{10})$
2	4	1010 ₂ (-6 ₁₀)	$0101_2 + 1_2 = 0110_2(+6_{10})$
2	4	0101 ₂ (+5 ₁₀)	$1010_2 + 1_2 = 1011_2 (-5_{10})$
2	4	1000 ₂ (-8 ₁₀)	$0111_2 + 1_2 = 1000_2 (-8_{10})$
3	3	102 ₂ (+11 ₁₀)	$120_3 + 1_3 = 121_3 (-11_{10})$
3	3	111 ₂ (+13 ₁₀)	$111_3 + 1_3 = 112_3 (-13_{10})$

➤ Obs: Em bases pares, ocorre estouro ao trocar o sinal do maior nº negativo (maior magnitude)!

Complemento de B

➤ Soma em complemento de B:

	1° operando	2° operando	Resultado	Resultado Corrigido
a + b	0011 ₂ (+3 ₁₀)	0101 ₂ (+5 ₁₀)	1000 ₂ (-8 ₁₀)	estouro
a + b	0010 ₂ (+2 ₁₀)	0101 ₂ (+5 ₁₀)	0111 ₂ (7 ₁₀)	Já está Correto
- a - b	1011 ₂ (-5 ₁₀)	1111 ₂ (-1 ₁₀)	11010 ₂ (erro)	1010 ₂ (-6 ₁₀)
a – b	0101 ₂ (+5 ₁₀)	1101 ₂ (-3 ₁₀)	10010 ₂ (erro)	0010 ₂ (+2 ₁₀)
- a + b	1101 ₂ (-3 ₁₀)	0100 ₂ (+4 ₁₀)	10001 ₂ (+1 ₁₀)	0001 ₂ (+1 ₁₀)

➤ Obs: Quando ocorrer vai-um e o resultado possuir 1 bit na posição n+1, eliminamos o vai-um do resultado! Comparação dos Métodos

Comparação dos metodos						
Binário	Inteiros Positivos	Sinal-Magnitude	Complemento de B-1	Complemento de B		
0000_{2}	0	+0	+0	0		
00012	1	1	1	1		
00102	2	2	2	2		
00112	3	3	3	3		
01002	4	4	4	4		
01012	5	5	5	5		
01102	6	6	6	6		
01112	7	7	7	7		
10002	8	-0	-7	-8		
10012	9	-1	-6	-7		
10102	10	-2	-5	-6		
10112	11	-3	-4	-5		
11002	12	-4	-3	-4		
1101 ₂	13	-5	-2	-3		
11102	14	-6	-1	-2		
11112	15	-7	-0	-1		

Comparação das faixas de representação

➤Inteiros Positivos: [0 , $B^n - 1$];

Sinal Magnitude: $[-(B^{n-1}-1), (B^{n-1}-1)];$

> Complemento de B-1: $[-\{(B^n/2)-1\}, +\{(B^n/2)-1\}];$

> Complemento de B: $[-\{(B^n/2)\}, +\{(B^n/2)-1\}];$

Tópicos

- ➤ Introdução;
- Soma de números binários;
- Representações de números
 - Inteiros Positivos;
 - Sinal Magnitude;
 - Complemento de B-1;
 - Complemento de B;
- Subtração de números binários;
- Estouro de Representação;
- Resumo;

Subtração de Números Binários

- Existem 2 formas de efetuar a subtração:
- FORMA 1:
 - > Transformando a subtração em soma, efetuando o complemento do subtraendo:

$$C = a - b = a + (-b)$$

- A troca de sinal e a soma são realizadas de acordo com o sistema de representação usado;
- > Exemplos:
- $> 0111_2 (7_{10}) 0101_2 (5_{10}) = 0111_2 (7_{10}) + 1011_2 (-5_{10}) = 10010_2 = 0010_2 (2_{10}) \text{ (comp. De B)}$
- $> 1110_2 (-1_{10}) 1101_2 (-2_{10}) = 1110_2 (-1_{10}) + 0010_2 (2_{10}) = 10000_2 = 0001_2 (1_{10})$ (comp. de B-

Subtração de Números Binários

FORMA 2: Através da Tabela própria de subtração:

a	b	Emprestou-um	C = a - b	Pede-um
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Subtração de Números Binários

>Exemplos:

Complemento de B					
1° Operando	1000 ₂ (-8 ₁₀)	0110 ₂ (6 ₁₀)	0100 ₂ (4 ₁₀)	1010 ₂ (-6 ₁₀)	
2° Operando	- 1111 ₂ (-1 ₁₀)	- 0101 ₂ (5 ₁₀)	- 1110 ₂ (-2 ₁₀)	- 0010 ₂ (+2 ₁₀)	
Resultado	1001 ₂ (-7 ₁₀)	0001 ₂ (1 ₁₀)	0110 ₂ (6 ₁₀)	1000 ₂ (-8 ₁₀)	

Tópicos

- Introdução;
- Soma de números binários;
- Representações de números
 - **► Inteiros Positivos**;
 - > Sinal Magnitude;
 - **➤** Complemento de B-1;
 - **Complemento de B**;
- Subtração de números binários;
- **Estouro de Representação**;
- Resumo;

Estouros de Representação

Exemplos (considere complemento de B):

$$> 1000_2 + 0001_2 =$$

$$> 1000_2 + 1111_2 =$$

$$>0111_2 + 1111_2 =$$

$$>0111_2 + 0011_2 =$$

Estouros de Representação

>Exemplos:

$$> 1000_2 + 0001_2 = 1001_2$$

$$\rightarrow$$
 -8₁₀ + 1₁₀ = -7₁₀ (não ocorreu estouro nem vai-um)

$$> 1000_2 + 1111_2 = 0111_2$$

$$>-8_{10} + -1_{10} = 7_{10}$$
 (ocorreu estouro e vai-um)

$$>0111_2 + 1111_2 = 0110_2$$

$$> 7_{10} + -1_{10} = 6_{10}$$
 (não ocorreu estouro e ocorreu vai-um)

$$>0111_2 + 0011_2 = 1010_2$$

$$> 7_{10} + 3_{10} = -6_{10}$$
 (ocorreu estouro e não ocorreu vai-um)

Estouros de Representação

- > Existem 2 formas para determinar se ocorreu estouro em complemento de 2:
 - Ocorre estouro em complemento de 2 quando o vai-um é diferente do vem-um do dígito mais significativo;
 - Analisando o bit mais significativo dos operandos e do resultado, conforme tabela abaixo;

Sinal de a	Sinal de b	Sinal da resposta	Sinal real da resposta	Estouro
+	+	+	+	Não
+	+	=	+	Sim
-	-	-	=	Não
-	-	+	=	Sim
+	-	+/-	+/-	Nunca Ocorre
-	+	-/+	-/+	Nunca Ocorre

Tópicos

- ➤ Introdução;
- Soma de números binários;
- Representações de números
 - Inteiros Positivos;
 - Sinal Magnitude;
 - Complemento de B-1;
 - Complemento de B;
- Subtração de números binários;
- Estouro de Representação;
- Resumo;

Resumo

➤ Foi apresentado um maior detalhamento do sistema de numeração binário e parte de seu uso em computação;

Foram introduzidas as operações de soma e subtração em binário e suas tabelas;

> Foram demonstrados os sistemas de representação de n°s binários;

➢ Foi demonstrado o quando e o porquê da ocorrência de estouros de representação;

Exercícios

- 1. Converter os números 16_{10} e 15_{10} para binário (6 bits), realizar a soma entre eles:
 - ➤ Sinal-Magnitude;
 - Complemento de B-1;
 - Complemento de B;

2. Mesmo exercício anterior para os números -16_{10} e -10_{10} :

- 3. Qual a faixa de representação de números binários inteiro-positivos de 6 bits?
 - ➤ E em Sinal-Magnitude?
 - E em complemento de B-1?
 - E em complemento de B?

Exercícios

- 4. Realize as seguintes operações em 4 bits (indicar estouro e carry se houver):
- Faça em Complemento de B-1 e em Complemento de B.

- $1001_2 + 1000_2 =$
- \bullet 0111₂ + 1001₂ =
- $0101_2 + 1010_2 =$
- $0110_2 + 0111_2 =$
- 1000₂ + 1111₂ =
- 1001₂ + 1111₂ =

Sugestão de Leitura

Canal de Ensino do prof. Dr. Sandro Camargo:

https://www.youtube.com/user/scamargo10/videos

Leitura do capítulo 2 do livro Fundamentos de Arquitetura de Computadores (Raul Fernando Weber).

Dúvidas?