

3 1176 00166 1900

NASA CR-159,084

NASA Contractor Report 159084

NASA-CR-159084

1981 00 14192

SCI MODEL STRUCTURE DETERMINATION PROGRAM (OSR) USER'S GUIDE

SYSTEMS CONTROL, INC. (Vt)
1801 Page Mill Road
Palo Alto, California 94304

NASA Contract NAS1-14549
November 1979

APR 15 1981

LANGLEY RESEARCH CENTER
HAMPTON, VIRGINIA
CASSIUS L. VIMS

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

TABLE OF CONTENTS

	Page
I. INTRODUCTION AND OVERVIEW	1
II. BACKGROUND	3
III. PROGRAM STRUCTURE	5
IV. INPUTS TO THE PROGRAM	7
V. OUTPUTS OF THE PROGRAM	13
VI. FILE DESCRIPTION	14

I. INTRODUCTION AND OVERVIEW

System identification technology has been used successfully for many vehicles. Because of their large number of degrees of freedom and complex aerodynamic interactions, the rotorcraft have always presented a special challenge to system identification methods. A completely integrated methodology has been developed under this NASA contract to solve this difficult problem. This methodology has also been translated into a user oriented series of computer programs. This volume provides basic guidelines for efficient and effective use of one of these computer programs.

Figure 1 shows a schematic flowchart of the overall data processing technique for rotorcraft. The first step in this procedure is state estimation and instrument calibration. This is implemented by the computer program DEKFIS (for Discrete Extended Kalman Filter and Smoothen) which implements an extended Kalman filter/smooth using the Friedland-Duffy formulation. Instrument biases and scale factors are estimated at this stage together with any state which is not measured directly. The second step involves estimation of the mathematical model of various forces, moments and interchanges. This is implemented in OSR (Optimal Subset Regression) computer program which uses a regression technique. Accurate estimates of parameters are obtained in the final step. One of two computer programs is used for this purpose. SCIDNT implements the maximum likelihood method for linear systems and NLSCIDNT extends the method to nonlinear rotorcraft models.

The contract research effort which led to the results in this report was financially supported by the Structures Laboratory, USARL (AVRADCOM), NASA Langley Research Center and NASA Ames Research Center.

Figure 1 Integrated Rotorcraft System Identification Procedure

Accuracy of parameter estimates may be improved by using flight test inputs based on the input design program, INDES.

This user's manual describes the OSR computer program. The details of the theory and the particular implementation used are given in the final report.*

* Hall, W.E., Gupta, N.K., Hansen, R. and Bohn, J., "State Estimation and Parameter Identification for Rotorcraft," final report on contract NASI-14549, May 1978.

II. BACKGROUND

The computer program, OSR (Optimal Subset Regression) estimates models for rotorcraft body and rotor force and moment coefficients. The technique used is based on the subset regression algorithm, described extensively in Draper and Smith [1]. Given time histories of aerodynamic coefficients (e.g. C_x , C_y , C_z , etc.), aerodynamic variables (e.g. forward speed, angle-of-attack, etc.) and control inputs, the program computes correlation between various time histories and the model structure determination is based on these correlations. The procedure may be described as follows. Consider a single force or moment coefficient y and assume that it may be a non-linear function of several aerodynamic variables or control inputs, x' (called independent variables). A number of functions of x' are formed to describe all possible relations between y and x' . Let x be a collection of such functions; y and x are assumed to be related by the equation:

$$y = x^T \theta + e \quad (1)$$

where θ is an $M \times 1$ vector of unknown parameters and e is noise. For sake of simplicity e is assumed white and gaussian. If there are N measurements, Equation (1) may be written as:

$$Y = X\theta + e$$

where Y is an $N \times 1$ vector and X is an $N \times M$ matrix. The program then performs a series of hypothesis tests based on the F-ratio criterion to determine which θ 's are zero. The x terms corresponding to non-zero θ 's are the model forms for the corresponding aerodynamic force or moment coefficient.

The program has the following features:

- (1) The program is set up for rotorcraft models.
- (2) The coefficients, x , are specified in a separate subroutine. Therefore, the form and number of functional forms of basic variables may be changed easily.
- (3) Each force or moment coefficient is treated separately, allowing maximum flexibility.
- (4) Up to 80 terms may be specified in each model.
- (5) Any term may be forced in the equation. Also terms may be forced out of the equation.
- (6) Time histories of measured and estimated variables (based on the model structure) may be printed out if desired.

III. PROGRAM STRUCTURE

This section gives a brief discussion of the major subroutines and functional blocks of OSR. Figure 3.1 shows the basic program structure.

The main routine, MAIN reads the data sets up the problem and does most of the computation. Most of the other subroutines are special purpose subprograms. From user viewpoint only the TRANSG subroutine is of importance.

The TRANSG routine uses an initial set of variables to create new sets of variables. For example given α we may create an α^2 time history in this subroutine. Other variables may be added as desired. In general this subroutine has to be changed for each run. However, for projects in which the model (i.e., TRANSG) remains unchanged, the appropriate TRANSG subroutine can be incorporated into OSR at the beginning of the project and remain unchanged through the end of the project.

Other parts of Figure 3.1 are self descriptive.

MAIN

Read input
↓
Create new variables

{ RDBL2
Read and write labels for printout
TRANSG
Compute new variables based on input data

Compute covariance matrix

Compute correlation matrix

Enter a variable
↓
{ STEPRG
Determine variable to
be included

STEP
Compute parameter
estimate and update
correlation matrix

Compute regression equation coefficients,
standard error and F-ratio-to-remove for
for variables in the equation

Compute partial correlation
coefficient, tolerance and
F-ratio for variables out
of the equation

↓
Print regression table { WHICHX

Check if a variable should be
removed from the equation

Check if a new variable may be
entered. If not proceed to next
step

↓
Compute residuals { RESIDS
Reread mass storage device

Print residuals, if desired

Figure 3.1. OSR Basic Program Structure

IV. INPUTS TO THE PROGRAM

OSR requires three classes of input. The first type, which always consists of cards, defines the structure of the time history file, specifies program tolerances and constraints, and determines types of output.

The second type of input, referred to as the time-history input or input data file, consists of tabular values of control settings, state variable, and other relevant model parameter time histories. This data can consist of cards, which would then be read with data of the first type, or a file on a mass storage device (disk or tape). No choice as to the logical unit number is permissible and it must be TAPE4. The format of the input data file is defined in the input of the first type.

The third type of input is not program data but rather a user supplied subroutine. The purpose of this routine is to enable the user to generate additional variables which are functions of the original variables read from the input data file. The structure of the subroutine, called TRANSG, is shown in Figure 4.1. The first NOV elements of array X contains the original variables read from the input data file arranged according to the sorting array (see TABLE 4.1, card type 4).

A sample input deck is shown in Figure 4.2.

Table 4.1

<u>CARD TYPE</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>NAME</u>	<u>DESCRIPTION</u>
1	1-52	I3A4	ITITLE	Alphanumeric title for the problem
2	1-5	I5	N	Number of data points to be used
	6-10	I5	NSKIP	Number of data points to be skipped on input data file
	11-15	I5	NOV	Number of variables from input data to be used in regression analysis
	16-20	I5	NVA	Number of variables added by transgeneration (i.e., by TRANSG) to be used in regression
	22-25	A4	ZEROI	YES if the y regression equation is to pass through the origin, NO if not. (The word YES or NO must be left justified)
	27-30	A4	STOR9	YES if the mean and covariance matrices are to be written on TAPE9, otherwise leave blank
	31-35	I5	NITEM	Number of variables read per record on input data file ($NITEM \geq NOV$)
	36-40	I5	NTRANS	=0 TRANSG not called and no variables are added by trans-generation. #0 TRANSG is called and variables are added by transgeneration
3	Blank card required			
4	1-80	40I2	ISORT(I), I=1,NOV	Vector to specify the selection and order of variables to be used in the analysis. The Ith variable in the analysis will be the ISORT(I) element of the <u>input data file</u>

Table 4.1 (Continued)

<u>CARD TYPE</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>NAME</u>	<u>DESCRIPTION</u>
5	1-3	I3	NAIT	Logical unit number for data input file. (May be 5 for card input or 7 for disk or tape only)
	4-6	I3	NVFC	Number of variable format cards. (This card is the first and may be the only one, ten is maximum.)
	9-80	18A4	RES(I), I=1,18	Format specification for reading input data file; if RES(1) is blank, file is assumed to be unformatted data
6	1-80	20A4	RES(I), I=19,...	
7	1	A1	ECHK	Blank if table information follows. * terminates the reading of this card type and the remainder of this card is ignored
	2-3	I2	K	Index of the variables corresponding to the first of the following tables
	5-76	9A8	DUMY	8-character tables for variables K to K+8. NOTE: only six characters are printed in most of the output
8	1-7	1-7	LBIAS	=TRUE if any of the variables are to be biased =FALSE if none are biased and no cards of type 9 are read
9	1	A1	ECHR	Blank if bias information follows. * terminates the reading of this card type and the remainder of this card

Table 4.1 (Continued)

<u>CARD TYPE</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>NAME</u>	<u>DESCRIPTION</u>
	2-4	I3	L	Index of variable to be biased
	5-15	F11.0	BIAS(L)	Value of the bias NOTE: bias will be subtracted from variable before transgression variables are added
10		RES	X(I),I=1, NITEM	If time history data file consists of cards read them here
	Subproblem cards; may include as many subproblem card sets as desired.			
11	1-48	12A4	ITITLE(I), I=14,25	Alphanumeric title information identifying subproblem
12	1-5	I5	KDEP	Index of the dependent variable
	6-10	I5	MAXSTP	Maximum number of iterations permitted MAXSTP \leq 2*(NOV+NVA)
	13-15	A3	RESID	=YES if residuals are to be printed or plotted
	18-20	A3	SUMTAB	=YES if summary table is to be printed
	21-30	F10.0	FIN	F value for inclusion
	31-40	F10.0	FOU	F value for deletion
	41-50	F10.0	TO	Tolerance level
	51-60	F10.0	ERTEST	Regression steps will step when R ² \geq 1.0-ERTEST
	61-65	L5	PRTRES	TRUE if table of residuals is to be printed
	66-70	L5	PLTRES	TRUE if plots of residuals are desired
13	1-80	80I1	C(I),I=1, NOV+NVA	Flag to indicate status of the variables in this subproblem.

Table 4.1 (Continued)

<u>CARD TYPE</u>	<u>COLUMNS</u>	<u>FORMAT</u>	<u>NAME</u>	<u>DESCRIPTION</u>
				<p>$C(I)=1$; Ith variable is not to be used in any possible regression equation</p> <p>$C(I)=2$; Ith variable is an independent variable for this subproblem and may be used in regression equation</p> <p>$C(I)=3,4,\dots,9$; Ith variable will be forced into the regression equation. All variables with $C(I)=9$ will be forced in first followed by variables with $C(I)=8$, etc.</p> <p>Note: If $C(I) \leq 0$ the program sets it to 2. The dependent variable has its $C(I)$ set to 1 by the program.</p>

```

SUBROUTINE TRANSG (X, NOV, NVA)
DIMENSION X(1)
Statements defining added variables or modifications of
original variables
RETURN
END

```

Figure 4.1

Figure 4.2 Input Data

V. OUTPUTS OF THE PROGRAM

Output from the program consists of a title page with input data information (Figure 5.1), one or more pages of the first twenty time history points (Figure 5.2), one or more pages showing the mean and standard deviation of the variables (Figure 5.3), one or more pages showing the covariance matrix (Figure 5.4), one or more pages of the correlation matrix (Figure 5.5), and one or more pages of a summary for each iteration done by the program (Figure 5.6).

In addition to the standard output above, there are three optional output capabilities controlled by variables on card type 12:

- 1) A summary table indicating what variables were entered or removed from the regression equation during the run. (Figure 5.7).
- 2) A list of residuals consisting of actual and computed values for the dependent variable, the difference between the actual and computed values of the dependent variable, the relative error of the difference, and the first five variables included in the regression equation. (Figure 5.8).
- 3) A printer plot of actual and calculated time histories for the dependent variable (Figure 5.9).

VI. FILE DESCRIPTION

Besides the card reader and printer, the following files are used by the program:

- TAPE2 contains time histories of the original and also the transgenerated variables. It is needed to calculate the residuals of the variables being regressed.
- TAPE3 contains the summary table for the current regression run.
- TAPE4 contains the time history input data.
- TAPE9 contains the mean and covariance matrix for all variables, both original and transgenerated.

1 RSRB2 RUN

*
* OPTIMAL SUBSET REGRESSION PROGRAM
*
*
* MODEL STRUCTURE DETERMINATION PROCEDURE
* FOR USE IN PARAMETER IDENTIFICATION
*
*
* DEVELOPED BY:
* SYSTEMS CONTROL, INC. (VT.)
* PALO ALTO, CAL.

NUMBER OF DATA POINTS 127
NUMBER OF POINTS TO SKIP OVER 0
NUMBER OF ORIGINAL VARIABLES. 19
NUMBER OF GENERATED VARIABLES 0
NUMBER OF TOTAL VARIABLES 19

Figure 5.1 Input Data Information

FIRST 20 POINTS OF INPUT DATA:

ROOT LAT	U COLL	V PCL	W AR	P TR	Q ZR	R LR	PHI AR	TIA NM	LONG
-4.645745E-03 -2.47366E-04	2.33457E-09	6.07101E-01	0.	0.	0.	0.	-3.23233E-35	-3.77255E-08	0.
0. 0.	0. 0.	0. 0.	3.12143E-06 -2.42225E-02	1.04961E-06 -2.62222E-02	-2.79233E-02	-1.05230E-07			
1.23709E-03 -3.22220E-03	1.03673E-02	-2.29229E-01	6.27177E-03	-1.20677E-03	4.55265E-05	9.25105E-35	-3.47774E-12	1.09000E+01	
0. 0.	0. 0.	0. 0.	1.70155E-01	7.27770E-02	6.72357E-01	3.72551E-12	-1.45647E-12	1.05318E-03	
6.62734E-03 4.07116E-02	2.13341E-02	-2.79114E-01	1.55391E-02	-6.31294E-03	2.47235E-03	2.66236E-03	-7.23677E-05	1.00000E+01	
0. 0.	0. 0.	0. 0.	3.09201E-01	1.92129E-01	1.24971E-00	3.25075E-02	-1.51123E-02	5.05103E-03	
3.25175E-03 1.32910E-01	1.72767E-02	4.21221E-02	1.817402E-02	-1.36611E-02	5.33357E-03	6.21215E-03	-2.77676E-03	1.03000E+01	
0. 0.	0. 0.	0. 0.	4.94693E-01	1.16750E-01	1.71746E+00	1.78899E-02	-6.55111E-12	7.40169E-03	
5.35134E-03 2.71680E-01	5.74105E-03	1.72220E-01	2.10677E-02	-2.52305E-02	6.39647E-03	1.03730E-02	-6.72399E-03	1.00000E+01	
0. 0.	0. 0.	0. 0.	6.31011E-01	9.29111E-02	2.91123E-00	7.54671E-01	-2.26239E-02	1.03127E-03	
4.74417E-03 4.72860E-01	-1.22579E-02	9.92421E-02	2.01560E-02	-1.73212E-02	9.36119E-03	1.36106E-02	-1.27476E-02	1.03000E+01	
0. 0.	0. 0.	0. 0.	7.23045E-01	1.03463E-01	2.25778E+00	-1.20407E-12	-5.61108E-02	9.71173E-03	
3.36591E-03 7.31602E-01	-5.21589E-02	-1.13293E-01	1.37731E-02	-5.02352E-02	1.03776E-02	1.67103E-02	-2.16776E-02	1.00000E+01	
0. 0.	0. 0.	0. 0.	7.10126E-01	1.21462E-01	2.20693E-00	-1.79962E-02	-1.24217E-02	1.03453E-02	
1.98637E-03 1.06104E+00	-9.14010E-02	-7.14719E-01	1.47223E-02	-5.36464E-02	1.15593E-02	2.22213E-02	-1.036217E-02	1.03000E+01	
0. 0.	0. 0.	0. 0.	3.31612E-01	1.43277E-01	2.79005E+00	-1.51178E-12	-7.71522E-02	1.03453E-02	
7.62233E-04 1.46568E+00	-1.31395E-01	-1.42375E-01	1.831272E-02	-7.70160E-02	1.27213E-02	2.62903E-02	-6.71270E-02	1.00000E+01	
0. 0.	0. 0.	0. 0.	3.20233E-01	1.85120E-01	3.13397E+00	-1.20377E-02	-1.02900E-02	1.03397E-02	
-1.63834E-04 1.95123E+00	-1.63614E-01	-2.42307E+00	1.99124E-02	-1.01291E-02	1.03645E-02	2.92133E-02	-6.33522E-02	1.03000E+01	
0. 0.	0. 0.	0. 0.	1.85311E-01	1.66300E-01	3.56310E+00	-1.16925E-03	-3.27133E-02	1.03176E-02	
-7.59443E-04 2.22854E+00	-2.01369E-01	-4.19739E+00	2.03073E-02	-1.02722E-01	1.49611E-02	3.37305E-02	-3.31756E-02	1.00000E+01	
0. 0.	0. 0.	0. 0.	8.59102E-01	2.03925E-01	4.07993E+00	-3.77411E-03	-3.37453E-02	1.03742E-02	
-1.18501E-03 3.18262E+00	-2.26131E-01	-5.61260E+00	2.37546E-02	-1.14621E-01	1.92911E-04	3.09709E-02	-1.05727E-01	1.03103E+01	
0. 0.	0. 0.	0. 0.	3.10372E-01	2.30301E-01	4.69233E+00	-4.19339E-04	-3.37453E-02	1.03076E-02	
-1.35502E-03 3.93968E+00	-2.37134E-01	-7.13172E+00	2.73956E-02	-1.25739E-01	1.68497E-02	4.29376E-02	-1.29053E-01	1.00000E+01	
0. 0.	0. 0.	0. 0.	1.67860E-01	2.61170E-01	5.60051E+00	-1.73997E-03	-1.32951E-02	1.03741E-02	
-2.06935E-03 4.79658E+00	-2.33530E-01	-9.71374E+00	3.12773E-02	-1.35977E-01	1.63973E-02	4.92156E-02	-1.22212E-01	1.03000E+01	
0. 0.	0. 0.	0. 0.	7.14734E-01	2.71024E-01	6.20102E+00	-1.77643E-03	-3.25333E-02	1.03370E-02	
-2.80333E-03 5.76044E+00	-2.26565E-01	-1.03468E+01	3.49759E-02	-1.45264E-01	1.63229E-02	5.43197E-02	-1.33224E-01	1.00000E+01	
0. 0.	0. 0.	0. 0.	6.24629E-01	2.82279E-01	7.08755E+00	-3.91705E-04	-3.12644E-02	1.03318E-02	
-4.08466E-03 6.63664E+00	-1.97455E-01	-1.19702E+01	3.17346E-02	-1.43672E-01	1.070493E-02	6.17255E-02	-2.13214E-01	1.03000E+01	
0. 0.	0. 0.	0. 0.	5.97567E-01	3.06115E-01	9.05172E-11	-6.47143E-03	-7.96455E-02	1.03730E-02	
-9.49277E-03 8.20532E+00	-1.61466E-01	-1.19760E+01	3.10297E-02	-1.577705E-01	1.066127E-02	6.34732E-02	-2.64307E-01	-1.00000E+01	
0. 0.	0. 0.	0. 0.	2.05312E-01	2.34427E-01	7.70952E+00	-5.03570E-02	-4.90204E-02	1.037319E-02	
-1.69731E-02 9.42559E+00	-7.68710E-02	-1.40375E+01	1.71637E-02	-1.53577E-01	1.57459E-02	7.21639E-02	-2.76238E-01	-1.00000E+01	
0. 0.	0. 0.	0. 0.	7.78171E-01	1.74363E-01	7.15261E-01				

Figure 5.2 Time History Table

1 RSHAZ RUN

VARIABLE	N:AN	STANDARD DEVIATION
ADOT	1 -.26361E-02	.57511E-01
U	2 109.42	144.53
V	3 1.1946	12.747
W	4 -5.0312	11.967
P	5 -.13260	.45160
O	6 .54352E-01	.10397
R	7 -.27544E-01	.77293E-01
PHI	8 -1.6413	2.3763
THETA	9 -.54799	.69663
LUNG	10 .39370	5.2497
LAT	11 0.	0.
COLL	12 .39370	5.2497
PED	13 0.	0.
XR	14 -1.4767	2.0547
YR	15 -.19544	.99325
ZR	16 2.5691	6.4153
LR	17 .35155E-01	.35202
MR	18 .78207E-01	.12532
FR	19 .43372E-01	.85976E-01

Figure 5.3 Means and Standard Deviations

1 RSRA2 RUN

ADJUSTED SUBSET REGRESSION*

COVARIANCE MATRIX

VARIABLE NUMBER	1	2	3	4	5	6	7	8	9	10
1	.3309E-02	.2505	.3147	-.1021	-.1453E-01	-.3767E-03	.1750E-03	-.1267E-01	-.1932E-02	.1976E-01
2		.2090E+05	449.0	-475.3	-9.832	9.325	-1.350	-318.1	-99.23	-13.43
3			162.5	-54.33	-1.501	-3.942	.6255	-12.29	-2.352	-1.059
4				193.7	-.6625E-01	-.1164	-.2866	19.04	2.434	4.212
5					.2319	-.1119E-01	.1480E-01	.2123	.4852E-01	.6723E-01
6						.1381E-01	-.4960E-02	-.1327	-.3497E-01	-.1729E-01
7							.5934E-02	-.1730E-02	.2611E-02	.1090E-01
8								2.612	1.921	.1230E-01
9									.4854	.1000
10										27.56

18

Figure 5.4 Covariance Matrix

VARIABLE NUMBER	11	12	13	14	15	16	17	18	19
1	0.	.2038E-01	0.	-.2206E-02	-.2013E-04	.1124E-01	.1273E-02	-.1361E-03	.1473E-02
2	0.	15.47	0.	-295.8	-.9223	421.4	7.791	16.96	13.13
3	0.	5.441	0.	-6.275	3.0793	48.93	2.586	.1574	.3204
4	0.	4.564	0.	14.69	-2.719	-75.30	-.8950	-.6434	-.5670
5	0.	.1077E-01	0.	.1123	.3115	-.9160	.6574E-03	.3634E-02	-.2211E-02
6	0.	.2045E-01	0.	-.154	-.4637E-01	-.7387E-01	-.7171E-02	.53E9E-02	.3235E-02
7	0.	-.7755E-01	0.	.1532E-01	.9622E-01	.2196	.1316E-01	-.1421E-02	.6003E-01
8	0.	.3169	0.	4.354	-.1551	-9.951	-.3073	-.2230	-.1523
9	0.	-.5635E-03	0.	1.414	-.2372E-01	-2.736	-.3959E-01	-.7741E-01	-.4733E-01
10	0.	0.	0.	1.031	.1541	.9339	.1d13E-01	-.1273	.1206E-01
11	0.	0.	0.	0.	0.	0.	0.	0.	0.
12	27.56	0.	0.	-.2540	-.1406	-17.30	.1126	.8243E-01	.4002E-01
13	0.	0.	0.	0.	0.	0.	0.	0.	0.
14		4.308		.1753E-01	-6.020	-.6012E-01	-.2507	-.1437	.
15				.9865	1.770	.1719	.6216E-02	.1374E-01	
16					70.82	.5988	.1111	.1454	
17						.1239	-.1404E-03	.9d33E-02	
18							.1576E-01	.8076E-02	
19									.7372E-02

19

Figure 5.4 (Continued)

1 RSR2 RUN

OPTIMAL SUBJECT REGRESSION

CORRELATION MATRIX

VARIABLE NUMBER	1	2	3	4	5	6	7	8	9	10
1	1.000	.3012E-01	.4293	-.1482	-.5202	-.6300E-01	.3333E-01	-.4433E-01	-.4747E-01	.5544E-01
2		1.000	.2436	-.5523	-.1412	.6203	-.1212	-.9296	-.9031	-.1770E-01
3			1.000	-.3556	-.2445	-.3005	.6370	-.4075	-.3222	-.1597E-01
4				1.000	-.1153E-01	-.9333E-01	-.3104	.6360	.6267	.2175E-01
5					1.000	-.2374	.3990	.1867	.1447	.2659E-01
6						1.000	-.6193	-.5393	-.2393	-.3162E-01
7							1.000	-.9765E-02	.4865E-01	.2670E-01
8								1.000	.9225	.9699E-03
9									1.000	.4921E-01
10										1.000

Figure 5.5 Correlation Matrix

VARIABLE NUMBER	11	12	13	14	15	16	17	18	19
1	0.	.67211-01	0.	-.11315-01	-.3222	.52041-01	.52935-01	-.74675-01	.2974
2	0.	.15061-01	0.	-.2767	-.54245-02	.3454	.1531	.4074	.5146
3	0.	.31301-01	0.	-.2350	.2976	.4952	.5764	.93345-01	.2724
4	0.	.72131-01	0.	.3341	-.2264	-.7312	-.2120	-.4316	-.5721
5	0.	.35661-01	0.	.1113	.7975	-.1157	.35715-02	.04333-01	-.61325-01
6	0.	.37461-01	0.	-.6263	-.4533	-.4015E-01	-.1959	.0413	.3619
7	0.	-.1910	0.	.91435-01	.7610	.3350	.4553	-.1473	.1217
8	0.	.25511-01	0.	.3782	-.35995-01	-.4756	-.3638	-.7534	-.7485
9	0.	-.14411-03	0.	.9724	-.3456E-01	-.3667	-.1614	-.6892	-.7911
10	0.	0.	0.	.1392	.2901E-01	.2114E-01	.98112-02	-.1931	.26735-01
11	0.	0.	0.	0.	0.	0.	0.	0.	0.
12	1.000	0.	0.	-.23071-01	-.26761-01	-.3716	.60925-01	.1252	.83564-01
13	0.	0.	0.	0.	0.	0.	0.	0.	0.
14			1.000		.34522-02	-.3415	-.8154E-01	-.9531	-.7433
15					1.000	.2142	.4916	.52125-01	.1273
16						1.000	.1987	.1031	.2023
17							1.000	-.43035-02	.3262
18								1.000	.7484
19									1.000

21

Figure 5.5 (Continued)

1 KSR42Z RUN		PROBLEMS - RDT AS DEPENDENT VARIABLE				OPTIMAL SUBSET REGRESSION									
SUB-PROBLEMS															
DEPENDENT VARIABLE															
MAXIMUM NUMBER OF STEPS															
F-LEVEL FOR INCLUSION															
F-LEVEL FOR DELETION															
TOLERANCE LEVEL															
STEP NUMBER															
VARIABLE ENTERED															
VARIANCE EXPLAINED BY R-SQ .277010E4															
STD. ERROR OF ESTIMATION .04902629															
ANALYSIS OF VARIANCE															
DF SUM OF SQUARES MEAN SQUARE F-RATIO															
REGRESSION	1	.11721	.11721	52.762											
RESIDUAL	126	.30245	.040167-02												
VARIABLES IN EQUATION															
VARIABLE	COEFFICIENT	STD. ERROR	F TO REMOVE		VARIABLE	PARTIAL CORR.	TOLERANCE	F TO ENTER							
P	-0.636E1-1	.9133E-02	48.76 > 121		U	.22897E-01	.9291	4.202							
					V	.3545E0	.9402	19.16							
					Z	.1111E0	.9239	6.207							
					C	.2228E2	.9340	5.041							
					R	.2201E2	.8544	15.26							
					PHI	.4320E-02	.9621	.1027L-02							
					THETA	.13615E-01	.9710	1.559							
					LUNG	.93644E-01	.9443	1.106							
					L1	.1E1	.1.000	0							
					CULL	.1311E1	.9507	1.312							
					PLD	.0E1	.1.000	0							
					X1	.47957E-01	.9076	.2481							
					X2	.1334E2	.3651	2.262							
					ZK	-.21663E-01	.9556	.5071-01							
					LR	.66720E-01	.1.000	.2262							
					MR	-.43022E-01	.9559	.2389							
					IK	.3126E2	.9982	13.29							
CONSTANT	0														

Figure 5.6 First Iteration I/O

I NSVÄZ PUN		PROTEIN- RUG AS DEPENDENT VARIABLE				OPTIMAL SUBJECT REGRESSION			
STEP NUMBER 2									
VARIABLE ENTERED 3									
VARI EXPLAINED BY R-SQ .37445E54									
STD. ERROR OF ESTIMATION .053E1925									
ANALYSIS OF VARIANCE									
DF SUM OF SQUARES MEAN SQUARE F-RATIO									
REGRESSION 2 .15756 .7732E-01 47.577									
RESIDUAL 125 .26260 .2100E-02									
VARIABLES IN EQUATION						VARIABLES NOT IN EQUATION			
VARIABLE	COEFFICIENTS	SIG.	T-STAT.	F-STAT.	P-ENTER	VARIABLE	P-ENTER	TOLERANCE	E.T.O. ENTER
V	.14463E-02	.32805E-02	.19.16	.121	.0	U	.2	.11325	.9336
P	-.537605E-01	.87092E-02	.36.10	.121	.4	Y	.4	-.54222E-01	.0032
						Z	.6	-.13512	.6055
						R	.7	.35870E-01	.2667
						EH	.8	.13656	.8239
						TEIA	.9	.13159	.0012
						LNE	.10	.19550	.2717
						LAI	.11	0.	1.000
						CUL	.12	.71329E-01	.2244
						PEO	.13	0.	1.000
						BB	.14	.13520	.9317
						Y4	.15	-.35112	.1050
						Z1	.16	-.21410	.7227
						LR	.17	-.23348	.0455
						H4	.18	-.21509E-01	.9230
						NR	.19	.23334	.9143
CONSTANT 0.									

Figure 5.6b. Second Iteration I/O

8 ESRBZ FUN		PROFILE: I= VD.1 AS DEPENDENT VARIABLE				OPTIMAL SUBSET REGRESSIONS																																																																																																																																
STEP NUMBER 12																																																																																																																																						
VARIABLES ENTERED 6																																																																																																																																						
VARM EXPLAINED BY E-SO .93210376																																																																																																																																						
STD. ERROR OF ESTIMATION .01574616																																																																																																																																						
ANALYSIS OF VARIANCE																																																																																																																																						
<table border="1"> <thead> <tr> <th></th><th>DF</th><th>SUM OF SQUARES</th><th>MEAN SQUARE</th><th>F-RATIO</th></tr> </thead> <tbody> <tr> <td>REGRESSION</td><td>12</td><td>.39124</td><td>.32681E-01</td><td>131.26</td></tr> <tr> <td>RESIDUAL</td><td>115</td><td>.26521E-01</td><td>.22800E-03</td><td></td></tr> </tbody> </table>										DF	SUM OF SQUARES	MEAN SQUARE	F-RATIO	REGRESSION	12	.39124	.32681E-01	131.26	RESIDUAL	115	.26521E-01	.22800E-03																																																																																																																
	DF	SUM OF SQUARES	MEAN SQUARE	F-RATIO																																																																																																																																		
REGRESSION	12	.39124	.32681E-01	131.26																																																																																																																																		
RESIDUAL	115	.26521E-01	.22800E-03																																																																																																																																			
VARIABLES IN EQUATION																																																																																																																																						
<table border="1"> <thead> <tr> <th>VARIABLE</th><th>Coefficient</th><th>STD. ERROR</th><th>t-STATISTICS</th><th>F-TEST</th><th>INDEPENDENCE</th><th>PARTIAL CORR.</th><th>TOLERANCE</th><th>F-TEST CRIT.</th></tr> </thead> <tbody> <tr> <td>U</td><td>2</td><td>-.205564E-03</td><td>.10145E-03</td><td>5.122</td><td>(2)</td><td>.P11</td><td>6</td><td>.11990E-01</td></tr> <tr> <td>V</td><td>3</td><td>.810854E-02</td><td>.60243E-03</td><td>51.72</td><td>(2)</td><td>.L03</td><td>16</td><td>-.31455E-02</td></tr> <tr> <td>W</td><td>4</td><td>-.2070751E-02</td><td>.25606E-03</td><td>64.39</td><td>(2)</td><td>.LAT</td><td>11</td><td>.4571</td></tr> <tr> <td>Z</td><td>5</td><td>.9700751E-01</td><td>.16337E-01</td><td>55.26</td><td>(2)</td><td>.PL3</td><td>13</td><td>1.000</td></tr> <tr> <td>Q</td><td>6</td><td>.7136071E-01</td><td>.33551E-01</td><td>4.332</td><td>(2)</td><td>.ZK</td><td>16</td><td>1.000</td></tr> <tr> <td>R</td><td>7</td><td>-.132046</td><td>.75160E-01</td><td>204.7</td><td>(2)</td><td>.NR</td><td>18</td><td>-.625552E-01</td></tr> <tr> <td>THETA</td><td>9</td><td>.8123111E-01</td><td>.212311E-01</td><td>12.39</td><td>(2)</td><td></td><td></td><td>.7259E-01</td></tr> <tr> <td>CULL</td><td>12</td><td>-.5422021E-02</td><td>.611447E-03</td><td>167.1</td><td>(2)</td><td></td><td></td><td>.1223E-01</td></tr> <tr> <td>XP</td><td>14</td><td>.1374271E-01</td><td>.63302E-02</td><td>10.37</td><td>(2)</td><td></td><td></td><td>.8635</td></tr> <tr> <td>VR</td><td>15</td><td>-.2724971E-01</td><td>.97164E-02</td><td>3.301</td><td>(2)</td><td></td><td></td><td></td></tr> <tr> <td>LR</td><td>17</td><td>-.633144E-01</td><td>.10505E-01</td><td>17.15</td><td>(2)</td><td></td><td></td><td></td></tr> <tr> <td>NR</td><td>19</td><td>1.02159</td><td>.61711E-01</td><td>11.36</td><td>(2)</td><td></td><td></td><td></td></tr> <tr> <td>CONSTANT</td><td>0.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> </tbody> </table>									VARIABLE	Coefficient	STD. ERROR	t-STATISTICS	F-TEST	INDEPENDENCE	PARTIAL CORR.	TOLERANCE	F-TEST CRIT.	U	2	-.205564E-03	.10145E-03	5.122	(2)	.P11	6	.11990E-01	V	3	.810854E-02	.60243E-03	51.72	(2)	.L03	16	-.31455E-02	W	4	-.2070751E-02	.25606E-03	64.39	(2)	.LAT	11	.4571	Z	5	.9700751E-01	.16337E-01	55.26	(2)	.PL3	13	1.000	Q	6	.7136071E-01	.33551E-01	4.332	(2)	.ZK	16	1.000	R	7	-.132046	.75160E-01	204.7	(2)	.NR	18	-.625552E-01	THETA	9	.8123111E-01	.212311E-01	12.39	(2)			.7259E-01	CULL	12	-.5422021E-02	.611447E-03	167.1	(2)			.1223E-01	XP	14	.1374271E-01	.63302E-02	10.37	(2)			.8635	VR	15	-.2724971E-01	.97164E-02	3.301	(2)				LR	17	-.633144E-01	.10505E-01	17.15	(2)				NR	19	1.02159	.61711E-01	11.36	(2)				CONSTANT	0.							
VARIABLE	Coefficient	STD. ERROR	t-STATISTICS	F-TEST	INDEPENDENCE	PARTIAL CORR.	TOLERANCE	F-TEST CRIT.																																																																																																																														
U	2	-.205564E-03	.10145E-03	5.122	(2)	.P11	6	.11990E-01																																																																																																																														
V	3	.810854E-02	.60243E-03	51.72	(2)	.L03	16	-.31455E-02																																																																																																																														
W	4	-.2070751E-02	.25606E-03	64.39	(2)	.LAT	11	.4571																																																																																																																														
Z	5	.9700751E-01	.16337E-01	55.26	(2)	.PL3	13	1.000																																																																																																																														
Q	6	.7136071E-01	.33551E-01	4.332	(2)	.ZK	16	1.000																																																																																																																														
R	7	-.132046	.75160E-01	204.7	(2)	.NR	18	-.625552E-01																																																																																																																														
THETA	9	.8123111E-01	.212311E-01	12.39	(2)			.7259E-01																																																																																																																														
CULL	12	-.5422021E-02	.611447E-03	167.1	(2)			.1223E-01																																																																																																																														
XP	14	.1374271E-01	.63302E-02	10.37	(2)			.8635																																																																																																																														
VR	15	-.2724971E-01	.97164E-02	3.301	(2)																																																																																																																																	
LR	17	-.633144E-01	.10505E-01	17.15	(2)																																																																																																																																	
NR	19	1.02159	.61711E-01	11.36	(2)																																																																																																																																	
CONSTANT	0.																																																																																																																																					
<hr/>																																																																																																																																						
F-LEVEL OR TOLERANCE INSUFFICIENT FOR COMPUTATION																																																																																																																																						

Figure 5.6c Last Iteration I/O

SUMMARY TABLE

STEP NUMBER	VARIABLE ENTERED OR REMOVED	BETA ENTERED	BETA REMOVED	T-TEST	F VALUE TO ENTER OR REMOVE	NUMBER OF INDEPENDENT VARIABLES INCLUDED	
1	P	.6252337	.27733.8	.2770308	46.7643	1	
2	V	.6122972	.1751500	.0923278	17.1612	2	
3	XR	.15	.6722573	.1511303	.0773713	17.4376	3
4	NK	.19	.7021473	.1471327	.0621022	16.2411	4
5	XH	.14	.6735375	.1630678	.2658353	13.06323	5
6	COLL	1.	.0666142	.262160	.0211532	13.1917	6
7	R	7	.7132333	.1333491	.0477771	36.5360	7
8	W	4	.9326191	.1791157	.0301356	33.1193	8
9	U	2	.0530627	.001325	.0131533	45.1613	9
10	LR	.17	.9337216	.1133445	.0108761	15.7543	10
11	THETA	9	.9661126	.0299131	.0103085	16.9643	11
12	Q	6	.9625252	.1321017	.0022506	5.3073	12

Figure 5.7 Variables Entered or Removed

LIST OF RESIDUALS

CASE NUMBER	X1.11	COMPONENT	RESIDUAL	RESIDUAL/X1.11	X1.31	X1.31	X1.31	X1.31	X1.31
1	-5486E-03	-1629E-02	1227E-32	-2.2704E-03	9.	-2102E-02	-2823E-02	-1942E-02	-1151E-02
2	-1237E-02	-3227E-03	.5064E-33	.1111	.6277E-02	.1009E-01	.7270E-01	.231de-02	.1702
3	-5428E-02	-1554E-02	-1127E-01	-2811E-01	-1215E-01	-2.115E-01	-1.122	-5121E-02	.5062
4	-5942E-02	-5632E-02	-3015E-03	.5279E-01	-1.221E-01	-17.57E-01	.1149	-7251E-02	.4449
5	-5511E-02	-7.70E-02	-2119E-02	-1817	-2107E-01	-2751E-02	-2.212E-01	-1122E-02	.0316
6	-4744E-02	-6.125E-02	-1.381E-02	-2911	.2015E-01	-1.935E-01	.1055	-9720E-02	.7230
7	-3367E-02	-1324E-02	-1.952E-01	-2922	-1379E-01	-2.216E-01	-1212	-1011E-01	.7562
8	-1967E-02	-2142E-02	-1.1521E-03	-7002E-01	-1.179E-01	-9140E-01	.1433	-1103E-01	.6366
9	-1622E-03	-3923E-03	-3.079E-01	-1.121	-1.137E-01	-1.120	-1.152	-1299E-01	.6568
10	-1635E-03	-3.775E-03	.7141E-03	-4.359	-1.141E-01	-1.156	.1100	-1314E-01	.6303
11	-7295E-03	-1.697E-02	-5.37E-03	-1.237	-2117E-01	-2011	.2099	-1354E-01	.5193
12	-1.1461E-02	-2.1471E-02	.5613E-03	-1.013	-2377E-01	-2261	.2306	-1570E-01	.0104
13	-1.1550E-02	-2.4221E-02	-1.711E-03	-2.924	-2750E-01	-2371	.2312	-1224E-01	.7674
14	-2.443E-02	-2.5721E-02	-2.254E-03	-3.941	.3111E-01	-2.166	.2710	-1167E-01	.7140
15	-2.6644E-02	-2.6731E-02	-9.67E-02	-1.077E-02	-1.178E-01	-2.246	.2991	-1113E-01	.6569
16	-1.6852E-02	-3.260E-02	-1.2471E-03	-2019	-1759E-01	-1.1975	.3569	-1377E-01	.5676
17	-5454E-02	-9.313E-02	-1.1541E-03	-1203E-01	-3103E-01	-1.1612	.1215	-1212E-01	.2623
18	-1.654dE-01	-1.1147E-01	-5.812E-02	-3423	-1.765E-01	-1.7071E-01	.1415	-1320E-01	.2664
19	-1.7511E-01	-1.2239E-02	-9.165E-02	-3665	-1.664E-01	-9.639E-01	.1597	-1523E-01	.5310
20	-1.1525E-01	-1.0531E-01	-4.7131E-02	-3054	-12.99E-01	.3260	.2234	-1477E-01	.6466
21	-1.3722E-01	-6.2405E-02	-2.9225E-02	-2519	-1.298E-01	.6049	.2920	-1553E-01	.8700
22	-1.1216E-01	-1.1478E-02	-1.1001E-01	-3754	-1.1522E-01	.7259	.1317	-1575E-01	.4680
23	-1.0521E-01	-2.6021E-02	-1.1254E-01	-1.195	-1.1232E-01	.1.265	.1214	-1322E-01	.1.192
24	-1.1231E-02	-1.1416E-01	-1.1952	-1.0619E-02	-1.1679	.1.08	.1337	-1.1206	
25	-1.6391E-02	-1.2271E-02	-1.1931	-1.1651E-02	-1.1111	.1205	-1.2764E-01	-1.2591	
26	-1.6332E-02	-1.1523E-02	-1.1523E-01	-2.326	-1.3360E-02	.2.575	.1503E-01	-1.1423E-01	-1.305
27	-1.3330E-02	-1.4450E-01	-1.1872E-01	-5.922	-1.206E-01	.3.012	.1591E-01	-1.2621E-01	-1.153
28	-1.1406E-02	-1.0691E-01	-1.1246E-01	-6.762	-1.2148E-01	.1.484	.1.171	-1.0641E-01	.8459
29	-1.0117E-02	-1.1111E-02	-1.1111E-01	-2.769	-2.5994E-01	.1.954	.1212	-1.7213E-02	.7773
30	-7.0440E-02	-9.0554E-02	-1.1611E-01	-2.285	-1.6141E-01	.6.275	.6761E-01	-1.6322E-02	.5352
31	-4.5971E-02	-6.1331E-02	-1.1571E-01	-1.713	-1.979E-01	.5.1255	-1.5792E-01	-1.6394E-02	.3077
32	-1.1546E-01	-9.6647E-03	-1.1636E-01	-1.662	-1.1267	.6.684	-1.5165E-01	-1.3179E-02	.4692
33	-2.2412E-01	-1.1563E-01	-1.1453E-01	-265	-1.1572	.6.629	.1117	-1.5242E-02	.8416
34	-3.1222E-01	-1.1561E-01	-1.1442E-02	-1.1433	-1.1377	.6.641	-1.5463E-01	-1.1366E-01	.1.015
35	-3.3655E-01	-5.2971E-01	-1.1543E-01	-1.1333	-1.1254	.5.121	-1.2911E-01	-1.2219E-01	.1.205
36	-3.3661E-01	-6.2334E-01	-1.2671E-01	-1.7509	-1.1119	.3.776	-1.4225E-01	-1.3023E-01	.1.343
37	-3.1045E-01	-4.3645E-01	-1.2264E-01	-1.050	-1.1923	.3.501	-1.5012E-01	-1.3112E-01	.1.2349
38	-2.2474E-01	-1.3423E-01	-1.2490E-01	-1.192	-1.1430	.3.002	-1.2925E-01	-1.2113E-01	.1.167
39	-2.1371E-01	-1.9764E-01	-1.2767E-01	-1.211	-1.1232	.2.412	-1.2574E-01	-1.2172E-01	.7084
40	-2.1564E-01	-6.1331E-01	-1.0441E-01	-3.957	-1.1974	.2.116	.1.115	-1.2776E-01	.7.079
41	-2.2438E-01	-5.6101E-01	-1.1511E-01	-6.655	-1.1711E-01	.1.558	-1.1767	-1.1214E-01	.6.977
42	-2.1223E-01	-4.0041E-01	-1.1757E-01	-6.153	-1.1511E-01	.1.218	.2.514	-1.3152E-01	.6.537
43	-3.1591E-01	-2.1431E-01	-8.4361E-02	-2.637	-1.2121E-01	.2.192	.2.992	-1.1772E-01	.5246
44	-3.5535E-01	-6.6040E-01	-5.5401E-02	-1.1544	-1.1073	.6.633	.3.303	-1.4310E-01	.5572
45	-3.6808E-01	-3.9241E-01	-2.7115E-02	-1.1115	-1.1115	.1.992	-1.3350	-1.5795E-01	.5352
46	-3.7664E-01	-1.3764E-01	-4.5276E-03	-1.2031E-03	-1.1342	-1.7163E-01	.1.1336	-1.5074E-01	.5179
47	-3.7155E-01	-3.1467E-01	-2.2266E-02	-1.2115E-01	-1.123	.2.215	-1.4557	-1.2197E-01	.2029
48	-3.2440E-01	-1.3066E-01	-4.7179E-02	-1.1333	-1.1671	.4.250	.4.916	-1.5427E-01	.6.666
49	-3.2633E-01	-2.6097E-01	-1.6769E-02	-2.060	-1.1335	.5.777	.5.150	-2.1122E-01	.5.997
50	-2.2966E-01	-2.2699E-01	-8.7721E-02	-2.957	-1.1938	.7.330	.6.3355	-2.5339E-01	.4.8446

Figure 5.8 Residuals

Figure 5.9 Plot of Regression Run

