Analysis of PDEs

Introduction

For $U \subset \mathbb{R}^n$ is open, partial differential equation of order k, a system of PDEs.

Data and Well-Posedness

well-posedness?

Notations) Let $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ be a multi-index(where $\mathbb{N} = \{0, 1, 2, 3, \dots\}$). Then define : $|\alpha|$, $D^{\alpha}f(x)$, x^{α} , $\alpha!$, $\beta \leq \alpha$.

Classifying PDEs

linear, semi-linear, quasi-linear, fully non-linear

Cauchy-Kovalevskaya Theorem

Theorem) (Picard-Lindelöf) Suppose there exist r, K > 0 s.t. $B_r(u_0) = \{w \in \mathbb{R}^n : |w - u_0| < r\}$ and $|f(x) - f(y)| \le K|x - y|$ for all $x, y \in B_r(x_0)$. Then there exists $\epsilon > 0$ (depending in r and K) and a unique C^1 -function $u: (-\epsilon, \epsilon) \to U$ solving

$$\dot{u}(t) = f(u(t)), \quad u(0) = u_0 \in U$$
 (1)

with $u:I\subset\mathbb{R}\to U$.

Motivation for Cauchy-Kovalevskaya? formal power series solution

Theorem) (Cauchy-Kovalevskaya, for the case of ODEs) The formal power series solution(to be constructed) converges to a solution of (1) in a neighbourhood of t = 0 if f is real analytic(to be defined) at u_0 . (to be followed from a general result.)

Definition) real analytic function $f: U \to \mathbb{R}, U \subset \mathbb{R}^n$.

• Last lecture : $U \subset \mathbb{R}^n$ open, $f: U \to \mathbb{R}$ is real analytic at $x_0 \in U$ if $\exists f_\alpha \in \mathbb{R}, r > 0$ s.t.

$$f(x) = \sum_{\alpha} f_{\alpha}(x - x_0)^{\alpha} \quad \forall |x - x_0| < r$$

Properties of real analytic functions

• f is real analytic at x_0 if and only if $\exists s > 0$ and $C, \rho > 0$ such that:

$$\sup_{|x-x_0| < s} \left| D^{\alpha} f(x) \right| \le C \frac{|\alpha|!}{\rho^{|\alpha|}}$$

• If f is RA(real analytic) at x_0 , it is RA for all x close enough to x_0 .

• If $f: U \to \mathbb{R}$ is real analytic everywhere on a connected set U, then f is determined by its values on any open subset of U. (Or by its Taylor expansion at a single point.)

(proofs in ES1)

Example : If r > 0 set

$$f(x) = \frac{r}{r - (x_1 + \dots + x_n)} \quad \text{for } |x| < r/\sqrt{n}$$

(Verify it is RA and find its Taylor expansion)

Definition) $g \gg f$ (majorises), majorant

Lemma)

- (i) If $q \gg f$ and q converges for |x| < r then f also converges (absolutely) for |x| < r.
- (ii) If f converges for |x| < r, then for any $s \in (0, r/\sqrt{n})$, f has a majorant that converges for $|x| < s/\sqrt{n}$. (n is the dimension of the space)

Remark: If $f = (f^1, \dots, f^m)$ and $g = (g^1, \dots, g^m)$ are formal power series, then we say

$$g \gg f$$
 if $g^i \gg f^i$ $i = 1, \dots, m$

Cauchy-Kovalevskaya for First Order Systems

As coordinates on \mathbb{R}^n we take (x',t) = x where $x' = (x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1}$, $t = x^n \in \mathbb{R}$. Set $B_r^n = \{t^2 + |x'|^2 < r^2\}$, $B_r^{n-1} = \{|x'| < r, t = 0\}$

We consider a system of equations for unknown $\underline{u}(x) \in \mathbb{R}^m$,

$$\underline{u}_t = \sum_{j=1}^{n-1} \underline{B}_j(\underline{u}, x') \cdot \underline{u}_{x_j} + \underline{c}(\underline{u}, x') \quad \text{on } B_r^n \\
\underline{u} = 0 \quad \text{on } B_r^{n-1}$$
(2)

(Note we assume $\underline{\underline{B}}_j$ and \underline{u} do not depend explicitly on t. why do we note lose any generality by assuming this?) Write $\underline{\underline{B}}_j = ((b_j^{kl}))$ and $\underline{c} = (c^1, \cdots, c^m)^T$. Then in components (2) reads: write out

Theorem) (Cauchy-Kovalevskaya) Assume $\{\underline{\underline{B}}_j\}_{j=1}^{n-1}$ and \underline{c} are real analytic. Then for sufficiently small r>0 there exists a unique real analytic function $\underline{u}:B_r^n\to\mathbb{R}^m$ solving the problem (2).

Reduction to a First Order System

Example)

Consider the PDE problem for $u: \mathbb{R}^3 \to \mathbb{R}$

$$u_{tt} = uu_{xy} - u_{xx} + u_t$$

$$u\big|_{t=0} = u_0$$

$$u_t\big|_{t=0} = u_1$$
(3)

where $u_0, u_1 : \mathbb{R}^2 \to \mathbb{R}$ are given real analytic functions (near 0).

Write out how we do the reduction to a First order system and apply Cauchy-Kovalevskaya.

Note: Which fact does this procedure rely on?

How can we generalize this to solve the quasilinear problem :

$$\sum_{|\alpha|=k} a_{\alpha}(D^{k-1}u, \dots, u, x)D^{\alpha}u + a_{0}(D^{k-1}u, \dots, u, x) = 0 \quad \text{for } |x| < r$$

$$u = \frac{\partial u}{\partial x_n} = \dots = \frac{\partial^{k-1} u}{\partial x_n^{k-1}} = 0$$
 for $|x'| < r$, $x_n = 0$

(called a Cauchy problem)?

Cauchy Problems for Quasilinear Equations with Data on a Surface

Real analysis hypersurface

Let γ be the unit normal to Σ and suppose u solves

$$\sum_{|\alpha|=k} a_{\alpha}(D^{k-1}u, \dots, u, x)D^{\alpha}u + a_{0}(D^{k-1}u, \dots, u, x) = 0 \quad \text{in } B_{\epsilon}(x)$$

$$u = \gamma^{i}\partial_{i}u = \dots = (\gamma^{i}\partial_{i})^{k-1} = 0 \quad \text{on } \Sigma$$

$$(4)$$

How do we translate this into a Cauchy problem on B_r^n ?

Definition) suface Σ non-characteristic at $x \in \Sigma$ for a problem \dagger (derive the relation to satisfy in terms of (\dagger))

Theorem) Suppose $\Sigma \subset \mathbb{R}^n$ is a real analytic hypersurface. If Σ is non-characteristic for (4) at $x \in \Sigma$, there exists a unique real analytic solution to (4) in a neighbourhood of x.

Characteristic Surfaces for 2nd Order Linear PDE

Consider the linear operator

$$Lu = \sum_{i,j=1}^{n} a_{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i} \frac{\partial u}{\partial x^{i}} + cu$$

with $a_{ij}, b_i, c: \mathbb{R}^n \to \mathbb{R}$ and the Cauchy problem

$$Lu = f$$
, $u = \sum_{i=1}^{n} \xi^{i} \frac{\partial u}{\partial x^{i}} = 0$ on $\Pi_{\xi} = \{\xi \cdot x = 0\}$

-Condition for Π_{ξ} to be characteristic, a principal symbol of L, elliptic operator,

Criticisms/Shortcomings of Cauchy-Kovalevskaya

What are thy?

Elliptic Boundary Value Problems

Dirichlet Problem (for laplace equation)

Hölder and Sobolev Spaces

Hölder spaces

 $U \subset \mathbb{R}^n$ open, $C^k(U)$, $C^k(\overline{U})$, Hölder continuity with exponent γ , Hölder seminorm $[u]_{C^{0,\gamma}}(\overline{U})$, $C^{k,\gamma}(\overline{U})$ Hölder norm $||u||_{C^{k,\gamma}(\overline{U})}$

The Spaces $L^p(U)$, $L^p_{loc}(U)$

 $U \subset \mathbb{R}^n$ open suppose $1 \leq p < \infty$. L^p for $p \in [1, \infty]$. Why are these spaces complete? $L^p_{\text{loc}}(U)$ space.

Weak Derivatives

Definition) α^{th} weak derivative of $u \in L^1_{\text{loc}}$

 \star Check that if $D^{\alpha}u=v$, then v is indeed also a weak derivative of u.

Lemma) Suppose $v, \tilde{v} \in L^1_{loc}(U)$ are both weak α -derivatives of $u \in L^1_{loc}(U)$. Then $v = \tilde{v}$ almost everywhere, *i.e.* weak derivative is unique.

Definition) Sobolev space, H^k , $W^{k,p}$ -norm, $W_0^{k,p}$ -space.

We will find out that these spaces will be useful in fining solutions of PDEs. In particular, the H^k spaces will be useful.

Example : Let $U=B_1(0)=\{|x|<1\}\subset\mathbb{R}^n$. Set $u(x)=|x|^{-\lambda}$ for $x\in U\setminus\{0\}$ and $\lambda>0$. show : $u\in W^{1,p}(U)$ \Leftrightarrow $\lambda<\frac{n-p}{p}$.

Theorem) For each $k=1,2,\cdots$ and $1 \leq p \leq \infty$. Then the space $W^{k,p}(U)$ is a Banach space.

Approximation of Functions in Sobolev Spaces

Convolution and Smoothing

Definition) standard mollifier, ϵ -mollification.

Let $U_{\epsilon} = \{x \in U | \operatorname{dist}(x, \partial U) > \epsilon\}.$

Theorem) (Properties of Mollifiers)

- (i) $f^{\epsilon} \in C^{\infty}(U_{\epsilon})$ and $D^{\alpha} f^{\epsilon} = \int_{U} D_{x}^{\alpha} \eta_{\epsilon}(x y) f(y) dy$.
- (ii) $f^{\epsilon} \to f$ almost everywhere as $\epsilon \to 0$.
- (iii) If $f \in C^0(U)$, then $f^{\epsilon} \to f$ uniformly on compact subsets of U.
- (iv) If $1 \leq p < \infty$ and $f \in L^p_{loc}(U)$ then $f^{\epsilon} \to f$ in $L^p_{loc}(U)$, i.e.

$$||f^{\epsilon} - f||_{L^p(V)} \to 0 \quad \forall V \subset\subset U$$

(proved in handout)

Lemma) Assume $u \in W^{k,p}(U)$ for some $1 \le p < \infty$. Set $u^{\epsilon} = \eta_{\epsilon} * u$ in U_{ϵ} . Then

- (i) $u^{\epsilon} \in C^{\infty}(U_{\epsilon}) \quad \forall \epsilon > 0$
- (ii) If $V \subset\subset U$, then $u^{\epsilon} \to u$ in $W^{k,p}(V)$

We can do better:

Theorem) (Global approximation by smooth functions) Suppose $U \subset \mathbb{R}^n$ is open and bounded, and suppose $u \in W^{k,p}(U)$ for some $1 \leq p < \infty$. Then there exists functions $u_n \in C^{\infty}(U) \cap W^{k,p}(U)$ such that

$$u_n \to u$$
 in $W^{k,p}(U)$

Note, we do not assert $u_n \in C^{\infty}(\overline{U})$. When can this result go bad?

Definition) $C^{k,\alpha}$ domain

Theorem) Suppose $U \subset \mathbb{R}^n$ is a $C^{0,1}$ domain (U has Lipshitz boundary). Let $u \in W^{k,p}(U)$ for some $1 \leq p < \infty$. Then there exist functions $u_m \in C^{\infty}(\overline{U})$ such that $u_m \to u$ in $W^{k,p}(U)$.

Theorem) (Extension of Sobolev functions) Suppose $U \subset \mathbb{R}^n$, open, bounded, is a $C^{1,0}$ domain. Choose a bounded V such that $U \subset\subset V$. Then there exists a bounded linear operator $E:W^{1,p}(U)\to W^{1,p}(\mathbb{R}^n)$ such that for each $u\in W^{1,p}(U)$:

- (i) Eu = u almost everywhere in U.
- (ii) Eu has support in V.
- (iii) $||Eu||_{W^{1,p}(\mathbb{R}^n)} \le C||u||_{W^{1,p}(U)}$ where C only depends on U,V and p.

We call Eu an **extension of** u **to** \mathbb{R}^n . This is not unique.

Lemma) Suppose $U = B_r(0) \cap \{x_n > 0\}$. Suppose $u \in C^1(\overline{\{x_n > 0\}})$. We can find an $Eu \in C^1(\mathbb{R}^n)$ such that

$$||Eu||_{W^{1,p}(B_r(0))} \le C||u||_{W^{1,p}(U)}$$

for some constant C > 0.

Lemma) Suppose $U \subset \mathbb{R}^n$, bounded, open C^1 -domain. Suppose $u \in C^1(\overline{U})$. Then $\exists \overline{u} \in C^1_c(\mathbb{R}^n)$ that depends linearly on u and that

$$\left\|\overline{u}\right\|_{W^{1,p}(\mathbb{R}^n)} \le C \|u\|_{W^{1,p}(U)} \quad u = \overline{u} \text{ on } U$$

We can repeat our argument to show a result for extensions of functions in $W^{1,p}(U)$ where U is a C^k domain, using a suitable higher order reflections.

Trace theorem

Theorem) (Trace Theorem) Assume $U \subset \mathbb{R}^n$ is open, bounded C^1 domain. There exists a bounded linear operator

$$T: W^{1,p}(U) \to L^p(\partial U) \quad 1 \le p < \infty$$

such that

- (i) $Tu = u|_{\partial U}$ if $u \in W^{1,p}(U) \cap C(\overline{U})$
- (ii) $||Tu||_{L^p(\partial U)} \le C||u||_{W^{1,p}(U)}$ for all $u \in W^{1,p}(U)$ where C = C(U,p) only depends on U and p.

The trace map $T: W^{1,p}(U) \to L^P(\partial U)$ is not surjective.

Note: One can show without difficulty that if $u \in W_0^{1,p}(U)$ then Tu = 0. The converse is also true: if $u \in W^{1,p}(U)$ and Tu = 0 then $u \in W_0^{1,p}(U)$.

Sobolev Inequalities, Embeddings

Theorem) (Sobolev-Gagliardo-Nirenberg, or SGN) Assume n > p. We have $W^{1,p}(\mathbb{R}^n) \subset L^{p^*}(\mathbb{R}^n)$ with $p^* = \frac{np}{n-p} > p$, and $\exists C > 0$ depending only on n, p such that $\forall u \in W^{1,p}(\mathbb{R}^n)$,

$$||u||_{L^{p^*}(\mathbb{R}^n)} \le C||Du||_{L^p(\mathbb{R}^n)} \le C||u||_{W^{1,p}(\mathbb{R}^n)}$$

(makes use of next lemma)

Lemma) (projection lemma) Let $n \geq 2$ and $f_1, \dots, f_n \in L^{n-1}(\mathbb{R}^{n-1})$. For any $1 \leq i \leq n$, denote $\tilde{x}_i = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) \in \mathbb{R}^{n-1}$ (remove i^{th} component from $(x_1, \dots, x_n) \in \mathbb{R}^n$) and

$$f: \mathbb{R}^n \to \mathbb{R}$$
 $f(t) = f_1(\tilde{x}_1) f_2(\tilde{x}_2) \cdots f_n(\tilde{x}_n)$

Then $f \in L^1(\mathbb{R}^n)$ with

$$||f||_{L^1(\mathbb{R}^n)} \le \prod_{i=1}^n ||f_i||_{L^{n-1}(\mathbb{R}^{n-1})}$$

In fact, in the example sheet (Exercise 2.9), you will see that this family of inequality, bounding $\|u\|_q$ by $\|Du\|_p$, can only exist for only particular pair of exponents (p,q) satisfying $\frac{1}{q} = \frac{1}{p} - \frac{1}{n}$

Corollary 1) Let $U \subset \mathbb{R}^n$ be open, bounded C^1 -domain, and $1 \leq p < n$. Then $W^{1,p}(U) \subset L^{p^*}(U)$ (where p^* is as before) and $\exists C(p, n, U)$ such that

$$\left\| u \right\|_{L^{p^*}(U)} \leq C(p,n,U) \big\| u \big\|_{W^{1,p}(U)} \quad \forall u \in W^{1,p}(U)$$

Corollary 2) (Poincaré Inequality) Suppose $U \subset \mathbb{R}^n$ be open and bounded. Suppose $u \in W_0^{1,p}(U)$ for some $1 \leq p < n$. Then we have the following estimate.

$$||u||_{L^q(U)} \le C||Du||_{L^p(U)} \quad \forall q \in [1, p^*)$$

where C = C(p, q, n, U). In particular,

$$||u||_{L^p(U)} \le C||Du||_{L^p(U)}$$

Now suppose $n . Then naively, we might expect a function in <math>W^{1,p}(\mathbb{R}^n)$ to be better than L^{∞} . In fact, we have

Theorem) (Morrey's Inequality) Suppose $n . Then <math>\exists C = C(p, n)$ such that

$$||u||_{C^{0,\gamma}(\mathbb{R}^n)} \le C||u||_{W^{1,p}(\mathbb{R}^n)} \quad \forall u \in C_c^1(\mathbb{R}^n)$$

where $\gamma = 1 - \frac{n}{p}$. (interpretation?)

Corollary) Let $n . Suppose <math>u \in W^{1,p}(U)$. For $U \subset \mathbb{R}^n$ open, bounded C^1 -domain. (boundedness is in fact not necessary.) Then $\exists u^* \in C^{0,1-\frac{n}{p}}(U)$ such that $u = u^*$ almost everywhere, and

$$\|u^*\|_{C^{0,1-\frac{n}{p}}(U)} \le C\|u\|_{W^{1,p}(U)}$$

for some C = C(n, p, U).

By iterating these results, it is possible to establish similar embedding results for $W^{k,p}(\mathbb{R}^n)$ into $W^{k',p'}(\mathbb{R}^n)$ for k' < k, p' > p or $C^{k',\gamma}(\mathbb{R}^n)$ for k' < k.

For example, we have $u \in W^{2,2}(\mathbb{R}^3)$ then $u \in C^{0,1/2}(\mathbb{R}^3)$ (prove how this is done).

Second Order Elliptic Equations

Let $U \subset \mathbb{R}^n$ and consider the operator

$$Lu = -\sum_{i,i=1}^{n} \left(a^{ij}(x)u_{x_j} \right)_{x_i} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u \quad \text{(Divergence form)}$$

where a^{ij}, b^i, c are given functions on U. Typically we will assume they are at least L^{∞} , but sometimes we will require more.

Definition) Elliptic / uniformly elliptic operator L.

Assume L is uniformly elliptic

We consider the boundary value problem

$$\begin{cases} Lu = f & \text{in } U \\ u|_{\partial U} = 0 \end{cases} \tag{5}$$

where U is always open bounded C^1 -domain.

Definition) A weak solution $u \in H_0^1(U)$, the form B[u,v].

Theorem) (Lax-Milgram) Let H be a (real) Hilbert space, with inner product (\cdot, \cdot) and suppose $B: H \times H \to \mathbb{R}$ is a bilinear mapping such that... (state and prove)

Energy Estimates

Suppose $a^{ij}, b^i, c \in L^{\infty}(U)$ for U open, bounded and B[u, v] as before.

Theorem) There exist $\alpha, \beta > 0$ and $\gamma \geq 0$ such that

- (i) $|B[u,v]| \le \alpha ||u||_{H^1(U)} ||v||_{H^1(U)}$ for all $u,v \in H^1(U)$ and
- (ii) $\beta \|u\|_{H^1(U)}^2 \leq B[u,u] + \gamma \|u\|_{L^2(U)}^2$ (Gårding Inequality)

Remark: If $B[\cdot,\cdot]$ is a bilinear form corresponding to an operator with $b^i=0,\ c\geq 0$ then we can deduce Gårding's inequality holds with $\gamma=0$ for $u\in H^1_0(U)$ by modifying the above proof with choosing ϵ appropriately.

Theorem) (First Existence Theorem for Weak Solutions) Let $U \subset \mathbb{R}^n$ be open, bounded and L be as before. Then there exists $\gamma \geq 0$ such that for any $\mu \geq \gamma$ and any $f \in L^2(U)$ there exists a unique weak solution to the boundary value problem(BVP):

$$\begin{cases} Lu + \mu u = f & \text{in } U & \cdots \\ u = 0 & \text{on } \partial U \end{cases}$$

Moreover, $||u||_{H^1(U)} \le C||f||_{L^2(U)}$ for some $C = C(L, U, \mu)$

Definition) weak convergence (in a Hilbert space)

Theorem) Let H be a separable Hilbert space and suppose $(u_n)_{n=1}^{\infty}$ is a bounded sequence, $u_n \in H$, $||u_n|| \leq K$ for all n. Then $(u_n)_{n=1}^{\infty}$ admits a weakly convergent subsequence.

Lemma) (Poincaré revisited) Suppose $u \in H^1(\mathbb{R}^n)$. Let

$$Q = [\xi_1, \xi_1 + L] \times [\xi_2, \xi_2 + L] \times \cdots \times [\xi_n, \xi_n + L]$$

be a cube of side length L. Then we have:

$$\|u\|_{L^2(Q)}^2 \le \frac{1}{|Q|} \Big(\int_Q u dx \Big)^2 + \frac{n}{2} |L|^2 \|Du\|_{L^2(Q)}^2$$

Note, this is equivalent to saying $\|u-\overline{u}\|_{L^2(Q)}^2 \leq \frac{n}{2}|L|^2\|Du\|_{L^2(Q)}^2$ where $\overline{u} = \frac{1}{|Q|}\int_Q u(x)dx$.

Theorem) (Rellich-Kondrachov) Suppose $U \subset \mathbb{R}^n$ is open, bounded C^1 -domain. Let $(u_m)_{m=1}^{\infty}$ be a sequence in $H^1(U)$ with

$$||u_m||_{H^1(U)} \le K$$

Then there exists $u \in H^1(U)$ and a subsequence $(u_{m_j})_{j=1}^{\infty}$ such that u_{m_j} tends to u weakly in $H^1(U)$ and strongly in $L^2(U)$, i.e.

$$u_{m_j} \to u \quad \text{in } L^2(U), \quad u_{m_j} \xrightarrow{weak} u \quad \text{in } H^1(U)$$

Remark: Could replace $H^1(U)$ with $H^1_0(U)$ everywhere and the result will hold. Then we could drop C^1 regularity of ∂U (follows from the proof)

Definition) A bounded linear operator $K: H \to H$ being compact,.

Theorem) (Fredholm alternative for compact operators) Let $K: H \to H$ be a compact operator. Then (state) (see Linear Analysis for proof)

Formal adjoint L^{\dagger}

If $b \in C^1(U)$, this is an elliptic operator itself, otherwise we have to understand this as a formal expression through the following definition.

Definition) We say $v \in H_0^1(U)$ is a weak solution of the adjoint problem if...

With this setting, along with the additional assumption that a^{ij} is uniformly elliptic, we have the following result.

Theorem) (Fredhold alternative for elliptic BVP) Consider

$$\begin{cases} Lu = f & \text{in } U, \quad f \in L^2(U) \\ u = 0 & \text{on } \partial U \end{cases}$$
 (6)

Then either

- (a) for each $f \in L^2(U)$, (12) admits a unique weak solution, or
- (b) there exist a weak solution to

$$\begin{cases} Lu = 0 & \text{in } U \\ u = 0 & \text{on } \partial U \end{cases}$$
 (7)

with $u \neq 0$.

If (b) holds, the dimension of the space $N \subset H_0^1(U)$ of weak solutions to (13) is finite and equals the dimension of $N^* \subset H_0^1(U)$, the space of weak solutions to the homogeneous adjoint problem

$$\left\{ \begin{array}{ll} L^{\dagger}v=0 & \mbox{in } U \\ v=0 & \mbox{on } \partial U \end{array} \right.$$

Finally (12) has a solution iff

$$(f, v)_{L^2(U)} = 0 \quad \forall v \in N^*$$

Spectrum of Elliptic Operators

Suppose $A: H \to H$ is a bounded linear operator on a Hilbert space H. Then **Definition**) $\rho(A)$, $\sigma(A)$ (spectrum), point spectrum, eigenvalue, eigenvector.

Theorem) (Spectrum of a compact operator) Assume $\dim(H) = \infty$ and $K: H \to K$ is compact and H is separable, then

- (i) $0 \in \sigma(K)$,
- (ii) $\sigma(K) \{0\} = \sigma_p(K) \{0\}$ and
- (iii) either $\sigma(K) \{0\}$ is finite or $\sigma(K) \{0\}$ is a sequence tending to 0.

If moreover K is symmetric, $K = K^{\dagger}$, then there exists a countable orthonormal basis of H consisting of eigenvectors.

Theorem) (Spectrum of L) Let L, B, U be as in the last theorem. Then

(i) there exists an at most countable set $\Sigma \subset \mathbb{R}$ such that the BVP

$$\begin{cases} Lu = \lambda u + f & \text{in } U \\ u = 0 & \text{on } \partial U \end{cases} \dots \dots (\diamondsuit)$$

has a unique weak solution for each $f \in L^2(U)$ iff $\lambda \notin \Sigma$.

- (ii) If Σ is infinite then $\Sigma = \{\lambda_k\}_{k=1}^{\infty}$ (i.e. is at most countably infinite) and up to reordering, $\lambda_k \nearrow \infty$ as $k \to \infty$.
- (iii) To each $\lambda \in \Sigma$, there is a attached a finite dimensional space

$$\mathcal{E}(\lambda) = \{ u \in H_0^1(U) : u \text{ is a weak soution of } Lu = \lambda u \text{ in } U, u = 0 \text{ on } U \}$$

We say $\lambda \in \Sigma$ is an eigenvalue of L and $u \in \mathcal{E}(\lambda)$ is the corresponding eigenfunction.

Theorem) (Spectrum of symmetric elliptic operators) Suppose L is a symmetric uniformly elliptic operator $Lu = -\sum_{i,j=1}^{n} (a^{ij}u_{x_i})_{x_j} + cu$ on $U \subset \mathbb{R}^n$ open, bounded, C^1 domian. Then we can represent the eigenvalues of L as

$$\lambda_1 \le \lambda_2 \le \cdots$$

where each eigenvalue appears multiple times according to its multiplicity $(\dim(\mathcal{E}(\lambda)))$, and there exists an orthonormal basis $\{w_k\}_{k=1}^{\infty}$ for $L^2(U)$ with $w_k \in H_0^1(U)$ an eigenfunction of L corresponding to λ_k , i.e.

$$\begin{cases} Lw_k = \lambda_k w_k & \text{in } U \\ w_k = 0 & \text{on } \partial U \end{cases}$$

Elliptic Regularity

Suppose $U \subset \mathbb{R}^n$ is open, and $V \subset\subset U$. For $0 < |h| < \mathrm{dist}(V, \partial U)$, we define the difference quotients

$$\Delta_i^h u(x) = \frac{u(x + he_i) - u(x)}{h} \quad i = 1, 2, \dots, n$$

and define

$$\Delta^h u(x) = (\Delta_1^h u(x), \Delta_2^h u(x), \cdots, \Delta_n^h u(x))$$

Note $\Delta_i^h(x)u \in H^1(V)$ if $u \in H^1(U)$.

Lemma) Suppose $u \in L^2(U)$. Then $u \in H^1(V)$ with $||Du||_{L^2(V)} \leq K$ iff $||\Delta^h u||_{L^2(V)} \leq K$ for some $K \geq 0$ and all $0 < |h| < \frac{1}{2} \mathrm{dist}(V, \partial U)$.

Theorem) (Interior Regularity) Suppose L is a uniformly elliptic operator on U, $a^{ij} \in C^1(U)$, b^i , $c \in L^{\infty}(U)$ and $f \in L^2(U)$. Suppose further that $u \in H^1(U)$ satisfies

$$B[u,v] = (f,v) \quad \forall v \in H_0^1(U) \quad \cdots \quad (\star)$$

Then $u \in H^2_{loc}(U)$ and for each $V \subset\subset U$ we have the estimate

$$||u||_{H^2(V)} \le C(||f||_{L^2(U)} + ||u||_{L^2(U)})$$

where C = C(U, V, L) does not depend on f.

Theorem) (Higher interior regularity) Let m be a non-negative integer, assume $a^{ij}, b^i, c \in C^{m+1}(U)$ and $f \in H^m(U)$ (or $\in L^2(U) \cap H^m_{loc}(U)$). Suppose $u \in H^1(U)$ satisfies $B[u, v] = (f, v)_{L^2(U)}$ for all $v \in H^1_0(U)$. Then in fact $u \in H^{m+2}_{loc}(U)$ and for each $V \subset U$ we have

$$||u||_{H^{m+2}(V)} \le C(||f||_{H^m(U)} + ||u||_{L^2(U)})$$

where C = C(U, V, L) does not depend on u or f. (proof in ES4)

Remarks:

- Note this is a local result
- This result allows us to understand the equation as holding pointwise almost everywhere. Let $v \in C_c^{\infty}(U)$ and $B[u,v] = (f,v)_{L^2(U)}$. Since $u \in H^2_{loc}(U)$, we can integrate by parts to find $\int_U (Lu-f)vdx = 0$. This holds for any $v \in C_c^{\infty}(U)$, so Lu = f almost everywhere. If m is large enough, $f \in H^m(U)$ implies $u \in C^2_{loc}(U)$ and solution is classical. (Exercise: figure out how large m should be, using Sobolev embedding).

Theorem) (Boundary H^2 regularity) Assume $a^{ij} \in C^1(\overline{U})$, $b^i, c \in L^\infty(U)$ and $f \in L^2(U)$. Suppose $u \in H^1_0(U)$ is a weak solution of Lu = f in U, u = 0 on $\partial U(\diamond)$ and finally assume ∂U is C^2 . Then $u \in H^2(U)$ and we have the estimate

$$\left\|u\right\|_{H^2(U)} \leq C \big(\left\|f\right\|_{L^2(U)} + \left\|u\right\|_{L^2(U)} \big)$$

If the BVP has a unique solution for each $f \in L^2(U)$, we can drop the $||u||_{L^2(U)}$ term from RHS.

We can still do better.

Theorem) (Higher boundary regularity) Let $m \in \mathbb{N}$, assume $a^{ij}, b^i, c \in C^{m+1}(\overline{U}), f \in H^m(U)$ and ∂U is C^{m+2} . Then if $u \in H_0^1(U)$ is the weak solution of

$$\begin{cases} Lu = f & \text{in } U \\ u = 0 & \text{on } \partial U \end{cases}$$

We in fact have $u \in H^{m+2}(U)$ with

$$||u||_{H^{m+1}(U)} \le C(||f||_{H^m(i)} + ||u||_{L^2(U)})$$

and can drop $\|u\|_{L^2(U)}$ if solution for the BVP exists for all $f \in L^2(U)$.

Initial-Boundary Value Problems for Wave Equations

Suppose $U \subset \mathbb{R}^n$ is open with C^1 -boundary. We define $U_T, \Sigma_t, \partial^* U_T, Lu$ (where $a^{ij}, b^i, b, c \in C^1(\overline{U}_T)$). Assume a^{ij} satisfy the uniform ellipticity condition.

We consider the initial-boundary value problem (IBVP).

Definition) weak solution of the IBVP

(Note that, we do not say $\partial_t u = \psi'$ on Σ_0 in trace sense, because $\partial_t u$ is just a L^2 -function while we do not have trace theorem for L^2 functions.)

Theorem) A weak solution to a IBVP, if it exists, is unique. (would be useful to evoke the motivation of the proof)

Theorem) Given $\psi \in H_0^1(U)$, $\psi' \in L^2(U)$ and $f \in L^2(U_T)$, there exists a weak solution $u \in H^1(U_T)$ and

$$||u||_{H^1(U_T)} \le C(||\psi||_{H^1(U)} + ||\psi'||_{L^2(U)} + ||f||_{L^2(U_T)})$$
 (8)

for some $C = C(U, T, a^{ij}, a^i, b, c)$ not depending on u.

Improved Regularity for the hyperbolic IBVP

We define for a Banach space X, $L^p((0,T);X) = \{u: (0,T) \to X: \|u\|_{L^p((0,T);X)} < +\infty\}$ with norm $\|u\|_{L^p((0,T);X)}$

Theorem) (Higher Regularity for IBVP) If a^{ij} , b^i , b, $c \in C^{k+1}(\overline{U}_T)$, ∂U is C^{k+1} and

$$\begin{split} \partial_t^i u \big|_{\Sigma_0} &\in H^1_0(U), \quad i = 0, \cdots, k \\ \partial_t^{k+1} u \big|_{\Sigma_0} &\in L^2(U) \\ \partial_t^i f &\in L^2((0,T); H^{k-i}(U)), \quad i = 0, \cdots, k \end{split}$$

Then $u \in H^{k+1}(U_T)$ and

$$\partial_t^i u \in L^{\infty}((0,T); H^{k+1-i}(U)), \quad i = 0, \dots, k+1$$

(proof in handout)

Note that since $u_{tt}|_{\Sigma_0} = (f - Lu)|_{\Sigma_0}$ etc, the conditions on Σ_0 can be reduced tot he requirements that

$$\psi \in H^{k+1}(U), \quad \psi' \in H^k(U)$$

together with some compatibility condition hold at $\partial \Sigma_0$. (how do we do this? find the compatibility condition)

Finite propagation speed and solutions on unbounded domains

Let $S_0 \subset U$ be an open set with smooth boundary and let

$$D = \{(t, x) \in U_T : x \in S_0, t \in (0, \tau(x))\}\$$

where $\tau: S_0 \to \mathbb{R}$ is a smooth function vanishing at ∂S_0 . We say $S' = \{(\tau(x), x) : x \in S_0\} \subset U_T$ is **space-like** if (state)

Theorem) If S_0, D, S' are as above with S' space-like and $u \in H^1(U_T)$ is a weak solution to the IBVP $(\ref{eq:space-like})$. Then $u|_D$ depends only on $\psi|_{S_0}, \psi'|_{S_0}$ and $f|_D$.

This implies in particular that signals propagate at finite speed: suppose

$$\sum_{i,j} a^{ij} \xi_i \xi_j \le \mu |\xi|^2 \quad \forall (x,t) \in U_T, \ \xi \in \mathbb{R}^n$$

Then no signal propagates faster than $\sqrt{\mu}$. (state how we can formalize this)

Using this property, we can construct solutions on *unbounded domains* by reducing locally to a bounded problem and using this uniqueness result - state how I do this.