Foundations of Software Fall 2023

Week 11

```
Different Kinds of Maps
```

What is missing?

```
\begin{array}{cccc} \textit{Term} & \rightarrow & \textit{Term} & (\lambda x.t) \\ \textit{Type} & \rightarrow & \textit{Term} & (\Lambda X.t) \end{array}
```

Different Kinds of Maps

What is missing?

```
Term \rightarrow Term (\lambda x.t)
```

Agenda today:

- ► Type operators
- ► Dependent types

Type Operators and System F_{ω}

Type Operators

Example. Type operators in Scala:

```
def termIdentity(x: Int): Int = x // similar to
val termIdentity: Int => Int = (x: Int) => x

type MkFun[T] = T => T // equiv to
type MkFun = [T] =>> T => T
val f: MkFun[Int] = (x: Int) => x
```

Type Operators

Example. Type operators in Scala:

```
def termIdentity(x: Int): Int = x // similar to
val termIdentity: Int => Int = (x: Int) => x

type MkFun[T] = T => T // equiv to
```

type MkFun = [T] =>> T => T val f: MkFun[Int] = (x: Int) => x

Type operators are functions at the type-level.

 $\lambda X :: K.T$

4

Type Operators

Example. Type operators in Scala:

```
def termIdentity(x: Int): Int = x // similar to
val termIdentity: Int => Int = (x: Int) => x

type MkFun[T] = T => T // equiv to
type MkFun = [T] =>> T => T
val f: MkFun[Int] = (x: Int) => x
```

Type operators are functions at the type-level.

 $\lambda X :: K.T$

Two Problems:

- ► Type checking of type operators
- ► Equivalence of types

Kinding

Problem: avoid meaningless types, like MkFun[Int, String].

Kinding

Problem: avoid meaningless types, like MkFun[Int, String].

```
 \begin{array}{lll} * & & \text{proper types, e.g. } \textit{Bool, Int} \rightarrow \textit{Int} \\ * \Rightarrow * & & \text{type operators: map proper types to proper types} \\ * \Rightarrow * \Rightarrow * & & \text{two-argument operators} \\ (* \Rightarrow *) \Rightarrow * & & \text{type operators: map type operators to proper types} \\ \end{array}
```

5

6

Kinding

Problem: avoid meaningless types, like MkFun[Int, String].

```
 \begin{array}{ll} * & \text{proper types, e.g. } \textit{Bool, Int} \rightarrow \textit{Int} \\ * \Rightarrow * & \text{type operators: map proper types to proper types} \\ * \Rightarrow * \Rightarrow * & \text{two-argument operators} \\ \end{array}
```

 $(*\Rightarrow *)\Rightarrow *$ type operators: map type operators to proper types

Equivalence of Types

Problem: all the types below are equivalent

```
egin{aligned} \textit{Nat} & \rightarrow \textit{Bool} & \textit{Nat} & \rightarrow \textit{Id} \; \textit{Bool} & \textit{Id} \; \textit{Nat} & \rightarrow \textit{Id} \; \textit{Bool} \\ \textit{Id} \; \textit{Nat} & \rightarrow \textit{Bool} & \textit{Id} \; (\textit{Nat} & \rightarrow \textit{Bool}) & \textit{Id} \; (\textit{Id} \; (\textit{Id} \; \textit{Nat} & \rightarrow \textit{Bool}) \\ \end{aligned}
```

We need to introduce a *definitional equivalence* relation on types, written $S \equiv \mathcal{T}$. The most important rule is:

$$(\lambda X :: K.S) T \equiv [X \mapsto T]S$$
 (Q-AppAbs)

And we need one typing rule:

$$\frac{\Gamma \vdash t : S \qquad S \equiv T}{\Gamma \vdash t : T}$$
 (T-Eq)

First-class Type Operators

Scala supports passing type operators as argument:

```
def makeInt[F[_]](f: () => F[Int]): F[Int] = f()
// equiv to
def makeInt[F <: [X] =>> Any](...): ...
makeInt[List](() => List[Int](3))
makeInt[Option](() => None)
makeInt[[T] =>> (T, T)](() => (3, 4))
```

First-class type operators supports *polymorphism* for type operators, which enables more patterns in type-safe functional programming.

System F_{ω} — Syntax

Formalizing first-class type operators leads to System F_{ω} :

$$\begin{array}{cccc} \textbf{t} & ::= & ... & \textit{terms} \\ & & \lambda X :: \textit{K.t} & \textit{type abstraction} \\ \\ \textbf{T} & ::= & \textit{types} \end{array}$$

$$\begin{array}{ccc} \mathbb{K} & ::= & & kinds \\ & * & kind \ of \ proper \ types \\ & \mathsf{K} \Rightarrow \mathsf{K} & kind \ of \ operators \end{array}$$

System F_{ω} — Semantics

$$\frac{t_1 \longrightarrow t_1'}{t_1 \ t_2 \longrightarrow t_1' \ t_2} \tag{E-App1}$$

$$\frac{t_2 \longrightarrow t_2'}{t_1 \ t_2 \longrightarrow t_1 \ t_2'} \tag{E-App2}$$

$$(\lambda x: T_1.t_1) \ v_2 \longrightarrow [x \mapsto v_2]t_1$$
 (E-AppAbs)

$$\frac{t\longrightarrow t'}{t\left[T\right]\longrightarrow t'\left[T\right]}\tag{E-TAPP}$$

$$(\lambda X :: K.t_1)[T] \longrightarrow [X \mapsto T]t_1$$
 (E-TAPPTABS)

System F_{ω} — Kinding

$$\frac{X :: K \in \Gamma}{\Gamma \vdash X :: K}$$
 (K-TVAR)

8

10

$$\frac{\Gamma, X :: \mathcal{K}_1 \vdash \mathcal{T}_2 : \mathcal{K}_2}{\Gamma \vdash \lambda X :: \mathcal{K}_1 . \mathcal{T}_2 :: \mathcal{K}_1 \Rightarrow \mathcal{K}_2} \tag{K-Abs}$$

$$\frac{\Gamma \vdash T_1 : \mathcal{K}_1 \Rightarrow \mathcal{K}_2 \qquad \Gamma \vdash T_2 : \mathcal{K}_1}{\Gamma \vdash T_1 \ T_2 :: \mathcal{K}_2} \tag{K-App)}$$

$$\frac{\Gamma \vdash \mathcal{T}_1 : * \qquad \Gamma \vdash \mathcal{T}_2 : *}{\Gamma \vdash \mathcal{T}_1 \to \mathcal{T}_2 : *} \tag{K-Arrow)}$$

$$\frac{\Gamma, X :: K_1 \vdash T_2 :: *}{\Gamma \vdash \forall X :: K_1. T_2 :: *}$$
 (K-All)

System F_{ω} — Type Equivalence

$$T \equiv T$$

$$\frac{T \equiv S}{S \equiv T}$$

$$\frac{S \equiv U \qquad U \equiv T}{S \equiv T}$$

$$\frac{S_1 \equiv T_1 \qquad S_2 \equiv T_2}{S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2} \tag{Q-Arrow}$$

$$\frac{S_2 \equiv T_2}{\forall X :: K_1. S_2 \equiv \forall X :: K_1. T_2}$$
 (K-All)

$$\frac{S_2 \equiv T_2}{\lambda X :: K_1. S_2 \equiv \lambda X :: K_1. T_2}$$
 (Q-Abs)

$$\frac{S_1 \equiv T_1 \qquad S_2 \equiv T_2}{S_1 S_2 \equiv T_1 T_2} \tag{Q-App)}$$

$$(\lambda X :: K.T_1) T_2 \equiv [X \mapsto T_2]T_1$$
 (Q-AppAbs)

11

System F_{ω} — Typing

$$\frac{x: T \in \Gamma}{\Gamma \vdash x: T} \tag{T-VAR}$$

$$\frac{\Gamma \vdash T_1 :: * \qquad \Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \rightarrow T_2}$$
 (T-Abs)

$$\frac{\Gamma \vdash t_1 : S \to T \qquad \Gamma \vdash t_2 : S}{\Gamma \vdash t_1 \ t_2 : T} \tag{T-App)}$$

$$\frac{\Gamma, X :: K_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda X :: K_1.t_2 : \forall X :: K_1.T_2}$$
 (T-TABS)

$$\frac{\Gamma \vdash t : \forall X :: K, T_2 \qquad \Gamma \vdash T :: K}{\Gamma \vdash t \ [T] : [X \mapsto T] T_2} \qquad \text{(T-TAPP)}$$

$$\frac{\Gamma \vdash t : S \qquad S \equiv T \qquad \Gamma \vdash T :: *}{\Gamma \vdash t : T}$$
 (T-Eq)

Kinding question

```
Clicker question: What are the kinds of \lambda X :: * .X \rightarrow X and
\forall X :: * .X \rightarrow X, respectively?
```

```
A. * and *
```

 $\mathsf{B.}\ *\,\mathsf{and}\ *\Rightarrow *$

C. $* \Rightarrow *$ and *

D. $* \Rightarrow *$ and $* \Rightarrow *$

URL: ttpoll.eu

Session ID: cs452

13

Example

```
\textit{type PairRep}[\textit{Pair}::* \Rightarrow * \Rightarrow *] = \{
     pair: \forall X. \forall Y. X \rightarrow Y \rightarrow (Pair \ X \ Y),fst: \forall X. \forall Y. (Pair \ X \ Y) \rightarrow X,
      snd: \forall X. \forall Y. (Pair\ X\ Y) \rightarrow Y
\textit{def swap}[\textit{Pair} :: * \Rightarrow * \Rightarrow *, X :: *, Y :: *]
      (rep : PairRep Pair)
      (pair : Pair X Y) : Pair Y X
      let x = rep.fst [X] [Y] pair in
      let y = rep.snd[X][Y] pair in
      rep.pair [Y] [X] y x
```

The method swap works for any representation of pairs.

Properties

14

Theorem [Preservation]: if $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Theorem [Progress]: if $\vdash t : T$, then either t is a value or there exists t' with $t \longrightarrow t'$.

Dependent Types

Why Does It Matter?

16

17

Example 1. Track length of vectors in types:

```
egin{array}{lll} \emph{NVec} & :: & \emph{Nat} 
ightarrow * \\ \emph{first} & : & (\emph{n:Nat}) 
ightarrow \emph{NVec} (\emph{n}+1) 
ightarrow \emph{Nat} \end{array}
```

 $(x:S) \to T$ is called dependent function type. It is impossible to pass a vector of length 0 to the function *first*.

17

Why Does It Matter?

Example 1. Track length of vectors in types:

```
\begin{array}{lll} \textit{NVec} & :: & \textit{Nat} \rightarrow * \\ \textit{first} & : & (\textit{n:Nat}) \rightarrow \textit{NVec} \; (\textit{n}+1) \rightarrow \textit{Nat} \end{array}
```

 $(x:S) \to T$ is called dependent function type. It is impossible to pass a vector of length 0 to the function *first*.

Example 2. Safe formatting for *sprintf*:

```
sprintf : (f:Format) \rightarrow Data(f) \rightarrow String
Data([]) = Unit
Data('\%' :: 'd' :: cs) = Nat * Data(cs)
Data('\%' :: 's' :: cs) = String * Data(cs)
Data(c :: cs) = Data(cs)
```

Dependent Function Type (a.k.a. ☐ Types)

A dependent function type is inhabited by a dependent function:

$$\lambda x : S.t : (x:S) \rightarrow T$$

Dependent Function Type (a.k.a. ☐ Types)

A dependent function type is inhabited by a dependent function:

$$\lambda x:S.t$$
 : $(x:S) \rightarrow T$

If T does not depend on x, it degenerates to function types:

 $(x:S) \rightarrow T = S \rightarrow T$ where x does not appear free in T

The Calculus of Constructions

19

The Calculus of Constructions: Syntax

```
t ::=
                                               terms
                                                 variable
        \lambda x:t.t
                                                 abstraction
        t t
                                                 application
        (x:t) \rightarrow t
                                                 dependent type
                                                 sort of proper types
                                                 sort of kinds
Γ ::=
                                                contexts
                                                 empty context
        \Gamma, x:T
                                                 term variable binding
```

The semantics is the usual β -reduction.

The Calculus of Constructions: Typing

18

20

$$\vdash * : \Box (\text{T-Axiom}) \qquad \frac{x: T \in \Gamma}{\Gamma \vdash x : T} \text{ (T-Var)}$$

$$\frac{\Gamma \vdash S : s_1 \qquad \Gamma, x: S \vdash t : T}{\Gamma \vdash \lambda x: S. t : (x: S) \to T} \qquad \text{(T-Abs)}$$

$$\frac{\Gamma \vdash t_1 : (x: S) \to T \qquad \Gamma \vdash t_2 : S}{\Gamma \vdash t_1 t_2 : [x \mapsto t_2] T} \qquad \text{(T-App)}$$

$$\frac{\Gamma \vdash S : s_1 \qquad \Gamma, x: S \vdash T : s_2}{\Gamma \vdash (x: S) \to T : s_2} \qquad \text{(T-Pi)}$$

$$\frac{\Gamma \vdash t : T \qquad T \equiv T' \qquad \Gamma \vdash T' : s}{\Gamma \vdash t : T'} \qquad \text{(T-Conv)}$$

The equivalence relation $\mathcal{T} \equiv \mathcal{T}'$ is based on β -reduction.

Four Kinds of Lambdas

Example	Туре
$\lambda x: \mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \times$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$

Four Kinds of Lambdas

Example	Type
λx : $\mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \ x$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
$\lambda F: * \to *. \lambda x: F \mathbb{N}. x$	$(F:* \to *) \to (F \mathbb{N}) \to (F \mathbb{N})$

22

Four Kinds of Lambdas

Example	Туре
λx : $\mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f:\mathbb{N} \to \mathbb{N}.f \times$	$(\mathbb{N} o \mathbb{N}) o \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
λF :* \rightarrow *. λx : $F \mathbb{N}$. x	$(F:* o *) o (F\;\mathbb{N}) o (F\;\mathbb{N})$
λX:*.X	$* \rightarrow *$
λF :* \rightarrow *. F \mathbb{N}	(* o *) o *

Four Kinds of Lambdas

Example	Туре
λx : $\mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \times$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
λF :* \rightarrow *. λx : $F \mathbb{N}$. x	$(F:* o *) o (F\;\mathbb{N}) o (F\;\mathbb{N})$
λX :*. X	$* \rightarrow *$
λF :* \rightarrow *. F \mathbb{N}	(* o *) o *
$\lambda n:\mathbb{N}.NVec\ n$	$\mathbb{N} \to *$
$\lambda f: \mathbb{N} \to \mathbb{N}.NVec (f 6)$	$(\mathbb{N} \to \mathbb{N}) \to *$

22

Strong Normalization

Given the following β -reduction rules

$$\frac{t_1 \longrightarrow t_1'}{\lambda x : \mathcal{T}_1.t_1 \longrightarrow \lambda x : \mathcal{T}_1.t_1'} \qquad \qquad (\beta\text{-Abs})$$

$$\frac{t_1 \longrightarrow t_1'}{t_1 \; t_2 \longrightarrow t_1' \; t_2} \tag{β-App1)}$$

$$\frac{t_2 \longrightarrow t_2'}{t_1 \ t_2 \longrightarrow t_1 \ t_1'} \tag{\beta-App2}$$

$$(\lambda x: T_1.t_1)t_2 \longrightarrow [x \mapsto t_2]t_1$$
 $(\beta$ -Appabs)

Theorem [Strong Normalization]: if $\Gamma \vdash t : T$, then there is no infinite sequence of terms t_i such that $t = t_1$ and $t_i \longrightarrow t_{i+1}$.

23

Dependent Types in Coq

Proof Assistants

Dependent type theories are at the foundation of proof assistants, like Coq, Agda, etc.

By Curry-Howard Correspondence

- ightharpoonup proofs \longleftrightarrow programs
- ▶ propositions ←→ types

25

Proof Assistants

Dependent type theories are at the foundation of proof assistants, like Coq, Agda, etc.

By Curry-Howard Correspondence

- ightharpoonup proofs \longleftrightarrow programs
- ▶ propositions ←→ types

Two impactful projects based on Coq:

- ► CompCert: certified C compiler
- ▶ Mechanized proof of 4-color theorem

26

```
Type Universes in Coq
```

```
The rule \Gamma \vdash \textit{Type} : \textit{Type} is unsound (Girard's paradox).
```

```
\Gamma \vdash Prop : Type_{1}
\Gamma \vdash Set : Type_{1}
\Gamma \vdash Type_{i} : Type_{i+1}
\frac{\Gamma, x : A \vdash B : Prop \qquad \Gamma \vdash A : s}{\Gamma \vdash (x : A) \rightarrow B : Prop}
\frac{\Gamma, x : A \vdash B : Set \qquad \Gamma \vdash A : s \qquad s \in \{Prop, Set\}}{\Gamma \vdash (x : A) \rightarrow B : Set}
\frac{\Gamma, x : A \vdash B : Type_{i} \qquad \Gamma \vdash A : Type_{i}}{\Gamma \vdash (x : A) \rightarrow B : Type_{i}}
```

27

28

Coq 101 - inductive definitions and recursion

Coq 101 - inductive definitions and recursion

Recursion has to be structural.


```
Coq 101 - proofs
```

The 2nd branch has the type even S(S(double n')), and Coq knows by normalizing the types:

```
even S(S(double n')) \equiv_{\beta} even(double(S n'))
```

Recap: Curry-Howard Correspondence

28

29

Propositions as types in the context of intuitionistic logic.

Proposition	Term & Type
$A \wedge B$	t:(A,B)
$A \vee B$	t: A + B
$A \rightarrow B$	t:A o B
1	t : False
$\neg A$	$t:A o extit{False}$
∀ <i>x</i> : <i>A</i> . <i>B</i>	$t:(x:A)\to B$
∃ <i>x</i> : <i>A</i> . <i>B</i>	t: (x:A, B)

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop := conj : A \rightarrow B \rightarrow A \land B where "A \land B" := (and A B) : type_scope.
```

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.

Inductive or (A B:Prop) : Prop :=
lor_introl : A -> A \/ B
lor_intror : B -> A \/ B
where "A \/ B" := (or A B) : type_scope.
```

31

31

31

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.

Inductive or (A B:Prop) : Prop :=
    | or_introl : A -> A \/ B
    | or_intror : B -> A \/ B
where "A \/ B" := (or A B) : type_scope.

Inductive False : Prop :=.
```

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.

Inductive or (A B:Prop) : Prop :=
lor_introl : A -> A \/ B
lor_intror : B -> A \/ B
where "A \/ B" := (or A B) : type_scope.

Inductive False : Prop :=.

Definition not (A:Prop) := A -> False.
Notation "~ x" := (not x) : type_scope.
```

Curry-Howard correspondence in Cog - continued

```
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
Notation "A <-> B" := (iff A B) : type_scope.
```

Curry-Howard correspondence in Coq - continued

```
1 Notation "A -> B" := (forall (_ : A), B) : type_scope.
2 Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
3 Notation "A <-> B" := (iff A B) : type_scope.

1 Inductive ex (A:Type) (P:A -> Prop) : Prop :=
2     ex_intro : forall x:A, P x -> ex (A:=A) P.

3 Notation "'exists' x .. y , p" :=
5     (ex (fun x => .. (ex (fun y => p)) ..)) : type_scope.
```

32

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) are not provable.

32

33

```
    LEM: ∀P.P ∨ ¬P
    DNE: ∀P.¬¬P → P
```

By curry-howard correspondence, there are no terms that inhabit the types above.

Curry-Howard correspondence in Coq - continued

```
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
Notation "A <-> B" := (iff A B) : type_scope.

Inductive ex (A:Type) (P:A -> Prop) : Prop :=
ex_intro : forall x:A, P x -> ex (A:=A) P.

Notation "'exists' x .. y , p" :=
(ex (fun x => .. (ex (fun y => p)) ..)) : type_scope.

Inductive eq (A:Type) (x:A) : A -> Prop :=
eq_refl : x = x :>A
Notation "x = y" := (eq x y) : type_scope.
```

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) are not provable.

```
    LEM: ∀P.P ∨ ¬P
    DNE: ∀P.¬¬P → P
```

By curry-howard correspondence, there are no terms that inhabit the types above.

However, $\forall P.P \rightarrow \neg \neg P$ can be proved.

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) are not provable.

```
    LEM: ∀P.P ∨ ¬P
    DNE: ∀P.¬¬P → P
```

By curry-howard correspondence, there are no terms that inhabit the types above.

However, $\forall P.P \rightarrow \neg \neg P$ can be proved. How?

33

33

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) are not provable.

```
    LEM: ∀P.P ∨ ¬P
    DNE: ∀P.¬¬P → P
```

By curry-howard correspondence, there are no terms that inhabit the types above.

However, $\forall P.P \rightarrow \neg \neg P$ can be proved. How?

We will prove that LEM is equivalent to DNE:

```
1 Definition LEM: Prop := forall P: Prop, P \/"P.
2 Definition DNE: Prop := forall P: Prop, ""P -> P.
3 Definition LEM_DNE_EQ: Prop := LEM <-> DNE.
```

 $\mathsf{LEM} \to \mathsf{DNE}$

34

$\mathsf{DNE} \to \mathsf{LEM}$

```
Definition DNE_To_LEM :=

fun (dne: forall P : Prop, ~~P -> P) (Q:Prop) =>

(dne (Q \/ ~ Q))

(fun H: ~(Q \/ ~Q) =>

let nq := (fun q: Q => H (or_introl q))

in H (or_intror nq)

).

Check DNE_To_LEM : DNE -> LEM.

Definition proof := conj LEM_To_DNE DNE_To_LEM.

Check proof : LEM <-> DNE.
```

Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in programming languages is limited.

- Scala supports path-dependent types and literal types.
- ▶ Dependent Haskell is proposed by researchers.

36

Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in programming languages is limited.

- Scala supports path-dependent types and literal types.
- ▶ Dependent Haskell is proposed by researchers.

Challenge: the decidability of type checking.

Problem with Type Checking

Value constructors:

```
 \begin{array}{lll} \textit{NVec} & : & \mathbb{N} \to * \\ \textit{nil} & : & \textit{NVec} \ 0 \\ \textit{cons} & : & \mathbb{N} \to (n : \mathbb{N}) \to \textit{NVec} \ n \to \textit{NVec} \ n + 1 \\ \end{array}
```

Appending vectors:

```
\begin{array}{ll} \textit{append} & : & (m:\mathbb{N}) \to (n:\mathbb{N}) \to \textit{NVec } m \to \textit{NVec } n \to \textit{NVec } (n+m) \\ \textit{append} & = & \lambda m:\mathbb{N}. \, \lambda n:\mathbb{N}. \, \lambda l:\textit{NVec } m. \, \lambda t:\textit{NVec } n. \\ & & \textit{match } l \textit{ with } \\ & | \textit{nil} \Rightarrow t \\ & | \textit{cons} \times r \textit{ y} \Rightarrow \textit{cons} \times (r+n) \textit{ (append } r \textit{ n} \textit{ y} \textit{ t}) \end{array}
```

Question: How does the type checker know S(r + n) = n + (S r)?

37

Reading for next week ▶ Chapter 18 – Case Study: Imperative Objects