The AI economist: Improving Equality and Productivity with AI-Driven Tax Policies

Stephan Zheng, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin Gruesbeck, David C. Parkes, and Richard Socher, 2020, mimeo.

Presenter: Yoji Tomita

RL-GT ゼミ June 17, 2021

Table of Contents

1. Introduction

- 2. Economic Simulations: Learning in Gather-and-Build Games
 - 2.1 Notation and Preliminaries
 - 2.2 Environment Rules and Dynamics
 - 2.3 Using Machine Learning to Optimize Agent Behavior

1. Introduction

・イントロダクション

2. Economic Simulations: Learning in Gather-and-Build Games

- ・Economic environment について.
- ・まずは税の無い設定 ("free-market") で説明する.

2.1 Notation and Preliminaries

- Partial-observable multi-agent Markov Games(MGs): $(S, A, r, \mathcal{T}, \gamma, o, \mathcal{I})$
 - · S: 状態空間 (state space)
 - ・ A: 行動空間 (action space)
 - ・ $r_{i,t}$:報酬関数 (reward function)
 - ・ \mathcal{T} : 遷移関数 (transition function) $s_{t+1} \sim \mathcal{T}(\cdot \mid s_t, \boldsymbol{a}_t)$
 - ・ γ :割引因子 (discount factor)
 - $o_{i,t}$: 観測 (observation)
 - time step $t = 0, 1, \dots, H$.

- Agents' policy : $\pi_i(\cdot \mid o_{i,t}, h_{i,t}; \theta_i)$
 - ・ $h_{i,t}$: hidden state (自分の私的情報と, 過去の history)
 - θ_i : policy \mathcal{O} parameter
 - ・エージェント i は次の最大化問題を得く policy を求める:

$$\max_{\theta_i} \mathbb{E}_{a_i \sim \pi_i, \mathbf{a}_{-i} \sim \mathbf{\pi}_{-i}, s' \sim \mathscr{T}} \left[\sum_t \gamma^t r_{i,t} \right]. \tag{1}$$

- ・データ効率性のため, すべてのエージェントは training の間パラメータ θ を共有する.
- ・彼らの行動 $\pi_i(a_i \mid o_i, h_i; \theta)$ は, agent-specific observations o_i と hidden-state h_i によって異なる.

2.2 Environment Rules and Dynamics

Gather-and-Build game

- · 2 次元の grid (25 × 25) からなる世界が舞台.
- ・エージェントはフィールドを歩き回り, 資源 (石と木) を集め, それらを 1 つずつ 使って家を建て, また資源を coin を介してトレードする.
- ・ 資源は空タイルに確率的に産み出される.
- ・エージェントは家を建てると coin が得られるが, 得られる coin は agent の skill ごとに異なる.

Labor and Skill.

- ・Agent の action(moving, gathering, trading, building) にはそれぞれ labor cost が設定されている.
- ・各 time に agent がどれか1つ行動をとると, その labor cost がかかる.
- ・building skill (1以上 3以下) が各 agent に設定されていて, 家を建てると agent は 10× skill 分の coin を得る.
- collection skill (1以上2以下) もあり, 資源を拾うとこの skill 分の資源を得る (skill 1.2 の場合, 確定で1つ資源を得て, さらに確率 0.2 でもう1つ資源を得る)

Environment Scenario.

- field は水により4つの区域に別れている(水 部分は通れない)
- ・資源は空間的に集まって発生する.
- 4 agents
- ・ building skills は 1.13, 1.33, 1.65, 22.2 (Pareto 分布 w/ exponent a=4, scale m=1 の quartiles を元に設定)
- ・1 episode は H=1000 time steps からなる.

2.3 Using Machine Learning to Optimize Agent Behavior

Agent Φ utility function:

$$u_i(x_{i,t}, l_{i,t}) = \text{crra}\left(x_{i,t}^c\right) - l_{i,t}, \text{ where } \text{crra}(z) = \frac{z^{1-\eta} - 1}{1 - \eta}, \quad \eta > 0.$$
 (2)

- ・ $x_{i,t} = (x_{i,t}^w, x_{i,t}^s, x_{i,t}^c)$: i の保有する木・石・コイン.
- ・ $l_{i,t}$: 蓄積労働量.
- ・η: エージェントの utility function の non-linearity をコントロールするパラメータ.
- ・ Rational economic agent は以下の最大化を行う.

$$\forall i: \max_{\pi_i} \mathbb{E}_{a_i \sim \pi_i, \ \boldsymbol{a}_{-i} \sim \boldsymbol{\pi}_{-i}, s' \sim \mathscr{T}} \left[u_i(x_{i,0}, l_{i,0}) + \sum_{t=1}^{H} \gamma^t \underbrace{(u_i(x_{i,t}, l_{i,t}) - u_i(x_{i,t-1}, l_{i,t-1}))}_{=r_{i,t}} \right].$$

Deep RL agents

・ deep neural network を用いる agent policy を modelling する:

$$a_{i,t} \sim \pi(o_{i,t}^{\text{world}}, o_{i,t}^{\text{agent}}, o_{i,t}^{\text{market}}, o_{i,t}^{\text{tax}}, h_{i,t-1}; \theta)$$

- ・ $o_{i,t}^{ ext{world}}$: 近くの状況に関する観測.
- ・ $o_{i,t}^{ ext{agent}}$: public な agent の状況 (資源・コイン保有) と, private agent states(skill 値と labor performed)
- ・ $o_{i,t}^{\mathrm{market}}$: transfer market の状況(bid, ask offer)
- $o_{i,t}^{\text{tax}}$: tax rates