In the Claims

1-22 (canceled).

23 (currently amended). A composition of matter comprising compound selected from:

a)

Formula (X)

in which R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is -CH- or -N-, R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester, Cat^+ represents one or several identical or different organic or mineral cation(s) including the proton H^+ , Na^+ , NH_4^+ , K^+ , Li^+ , $(CH_3CH_2)_3NH^+$, lysine or any other suitable pharmaceutically acceptable cation, B is O or NH, m is an integer from 1 to 3, and Y is O Cat+, a nucleoside, or a radical -A-R, wherein A is O, NH, CHF, CF_2 or CH_2 , and R is selected from the group consisting of:

$$-- (CH2)n --- C --- R2$$

$$R1$$

wherein n is an integer from 2 to 20, R_1 is a (C_1-C_3) alkyl group, and R_2 is an halogenated (C_1-C_3) alkyl, a (C_1-C_3) alkoxy- (C_1-C_3) alkyl, an halogenated (C_2-C_3) acyl or a (C_1-C_3) alkoxy- (C_2-C_3) acyl;

$$- (CH2)n R1$$

wherein n is an integer from 2 to 20, and R₁ is a methyl or ethyl group; and

$$-\overset{R_3}{\underset{R_4}{\overset{}{\bigcirc}}} - w = \overset{R_5}{\underset{R_6}{\overset{}{\bigcirc}}}$$

wherein R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is –CH- or – N-, and R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester;

in which R₃, R₄, and R₅, identical or different, are a hydrogen or (C₁-C₃)alkyl group, W is –CH- or – N-, R₆ is an (C₂-C₃)acyl, an aldehyde, an (C₁-C₃)alcohol, or an (C₂-C₃)ester, Cat+ represents one or several identical or different organic or mineral cation(s) including the proton H⁺, Na⁺, NH₄⁺, K⁺, Li⁺, (CH₃CH₂)₃NH⁺, lysine or any other suitable pharmaceutically acceptable cation, B is O or NH, m is an integer from 1 to 3, and Y is O Cat+, a nucleoside, or a radical –A-R, wherein A is O, NH, CHF, CF₂ or CH₂, and R is selected from the group consisting of:

$$-- (CH2)n --- C --- R2$$

$$R1$$

wherein n is an integer from 2 to 20, R_1 is a (C_1-C_3) alkyl group, and R_2 is an halogenated (C_1-C_3) alkyl, a (C_1-C_3) alkoxy- (C_1-C_3) alkyl, an halogenated (C_2-C_3) acyl or a (C_1-C_3) alkoxy- (C_2-C_3) acyl;

$$CH_2$$
 CH_2 R_1

wherein n is an integer from 2 to 20, and R₁ is a methyl or ethyl group; and

$$- \begin{matrix} R_3 \\ - C \\ R_4 \end{matrix} - W = C \begin{matrix} R_5 \\ R_6 \end{matrix}$$

wherein R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is –CH- or – N-, and R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester; or

d) a composition comprising a carrier and:

Formula (X)

in which R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is CH- or N, R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester, Cat+ represents one or several identical or different organic or mineral cation(s) including the proton, B is O or NH, m is an integer from 1 to 3, and Y is O Cat+, a nucleoside, or a radical A-R, wherein A is O, NH, CHF, CF₂ or CH₂, and R is selected from the group consisting of:

$$\begin{array}{c|c}
 & OH \\
 & | \\
 \hline
 & (CH_2)_n - C - R_2 \\
 & R_1
\end{array}$$

$$\begin{array}{c|c} & \text{CH}_2 \\ \hline & - (\text{CH}_2)_n & R_1 \end{array}$$

wherein n is an integer from 2 to 20, and R₁ is a methyl or ethyl group; and

$$\begin{array}{c|c}
R_3 \\
-C - W = C \\
R_4
\end{array}$$

wherein R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_4-C_3) alkyl group, W is CH- or N-, and R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_4-C_3) alcohol, or an (C_2-C_3) ester;

in which R₃, R₄, and R₅, identical or different, are a hydrogen or (C₁-C₃)alkyl group, W is CH-or N-, R₆ is an (C₂-C₃)acyl, an aldehyde, an (C₁-C₃)alcohol, or an (C₂-C₃)ester, Cat+ represents one or several, identical or different organic or mineral cation(s) including the proton, B is O or NH, m is an integer from 1 to 3, and Y is O Cat+, a nucleoside, or a radical A-R, wherein A is O, NH, CHF, CF₂ or CH₂, and R is selected from the group consisting of:

$$\begin{array}{c|c}
 & OH \\
 & - (CH_2)_n - C - R_2 \\
\hline
 & R_1
\end{array}$$

wherein n is an integer from 2 to 20, and R₁ is a methyl or ethyl group; and

$$\begin{array}{c|c}
 & R_3 \\
 & C - W = C \\
\hline
 & R_4 \\
\end{array}$$

wherein R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is CH- or N-, and R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester;

24 (currently amended). The composition of matter according to claim 23 according to claim 37, wherein said carrier is an adjuvant.

25 (currently amended). The composition of matter according to claim 24, wherein said composition of matter further comprises an antigen selected from a microbial antigen, a viral antigen, a bacterial antigen, a fungal antigen, a protozoan antigen, a yeast antigen, a parasite antigen, a Mycobacterium bovis antigen or a tumoral antigen.

26 (currently amended). The composition of matter according to claim 23 according to claim 37, wherein said carrier is a pharmaceutically acceptable carrier.

27-30 (canceled).

31 (withdrawn-currently amended). A method of activation activating a $\gamma\delta$ T cell, the method comprising bringing a $\gamma\delta$ T cell into contact with a composition comprising a $\gamma\delta$ T cell activator selected from the group consisting of:

a)

in which R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is -CH- or -N-, R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester, Cat+ represents one or several identical or different organic or mineral cation(s) including the proton, B is O or NH, m is an integer from 1 to 3, and Y is O-Cat+, a nucleoside, or a radical -A-R, wherein A is O, NH, CHF, CF_2 or CH_2 , and R is selected from the group consisting of:

$$-- (CH2)n --- C --- R2$$

$$R1$$

wherein n is an integer from 2 to 20, R_1 is a (C_1-C_3) alkyl group, and R_2 is an halogenated (C_1-C_3) alkyl, a (C_1-C_3) alkoxy- (C_1-C_3) alkyl, an halogenated (C_2-C_3) acyl or a (C_1-C_3) alkoxy- (C_2-C_3) acyl;

$$-(CH2)n R1$$

wherein n is an integer from 2 to 20, and R₁ is a methyl or ethyl group; and

$$\begin{array}{c|c}
R_3 \\
-C \\
-W \\
-R_4
\end{array}$$

wherein R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is -CH- or - N-, and R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester;

b)
$$R5 \qquad R3 \qquad O \qquad O$$

$$R6 \qquad C = W - C \qquad NH - P - O \rightarrow_{m} P - Y$$

$$R4 \qquad O-Cat + O-Cat + Formula (XI)$$

in which R₃, R₄, and R₅, identical or different, are a hydrogen or (C₁-C₃)alkyl group, W is –CH- or – N-, R₆ is an (C₂-C₃)acyl, an aldehyde, an (C₁-C₃)alcohol, or an (C₂-C₃)ester, Cat+ represents one or several identical or different organic or mineral cation(s) including the proton, B is O or NH, m is an integer from 1 to 3, and Y is O Cat+, a nucleoside, or a radical –A-R, wherein A is O, NH, CHF, CF₂ or CH₂, and R is selected from the group consisting of:

$$-- (CH2)n --- C --- R2$$

$$R1$$

$$-(CH_2)_n - R_1$$

wherein n is an integer from 2 to 20, and R₁ is a methyl or ethyl group; and

$$-\begin{matrix} R_3 \\ C \\ R_4 \end{matrix} - W = C R_5$$

wherein R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is -CH- or - N-, and R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester; and

32 (withdrawn). The method according to claim 31 wherein the $\gamma\delta$ T cell is brought into contact with said $\gamma\delta$ T cell activator in vitro.

33 (withdrawn-currently amended). A method of immunotherapy or stimulation of an immune response comprising the administration of a composition comprising a $\gamma\delta$ T cell activator selected from the group consisting of:

in which R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is -CH- or -N-, R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester, Cat+ represents one or several identical or different organic or mineral cation(s) including the proton, B is O or NH, m is an integer from 1 to 3, and Y is O Cat+, a nucleoside, or a radical -A-R, wherein A is O, NH, CHF, CF_2 or CH_2 , and R is selected from the group consisting of:

$$- (CH_2)_n - C - R_2$$
 R_1

wherein n is an integer from 2 to 20, R_1 is a (C_1-C_3) alkyl group, and R_2 is an halogenated (C_1-C_3) alkyl, a (C_1-C_3) alkoxy- (C_1-C_3) alkyl, an halogenated (C_2-C_3) acyl or a (C_1-C_3) alkoxy- (C_2-C_3) acyl;

$$- (CH2)n R1$$

wherein n is an integer from 2 to 20, and R₁ is a methyl or ethyl group; and

$$- \overset{R_3}{\overset{|}{\underset{R_4}{\overset{|}{\smile}}}} - w = \overset{R_5}{\overset{|}{\underset{R_6}{\overset{|}{\smile}}}}$$

wherein R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is -CH- or - N-, and R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester;

in which R₃, R₄, and R₅, identical or different, are a hydrogen or (C₁-C₃)alkyl group, W is –CH- or – N-, R₆ is an (C₂-C₃)acyl, an aldehyde, an (C₁-C₃)alcohol, or an (C₂-C₃)ester, Cat+ represents one or several identical or different organic or mineral cation(s) including the proton, B is O or NH, m is an integer from 1 to 3, and Y is O Cat+, a nucleoside, or a radical –A-R, wherein A is O, NH, CHF, CF₂ or CH₂, and R is selected from the group consisting of:

$$- (CH2)n - C - R2$$

$$R1$$

wherein n is an integer from 2 to 20, R_1 is a (C_1-C_3) alkyl group, and R_2 is an halogenated (C_1-C_3) alkyl, a (C_1-C_3) alkoxy- (C_1-C_3) alkyl, an halogenated (C_2-C_3) acyl or a (C_1-C_3) alkoxy- (C_2-C_3) acyl;

$$CH_2$$
 CH_2
 R_1

wherein n is an integer from 2 to 20, and R₁ is a methyl or ethyl group; and

$$- \begin{matrix} \begin{matrix} R_3 \\ \\ C \end{matrix} - W = C \end{matrix} = \begin{matrix} R_5 \\ R_4 \end{matrix}$$

wherein R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is -CH- or -N-, and R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester; or c)

34 (withdrawn). The method according to claim 33, wherein said subject is suffering from a tumor, solid tumor, an infectious disease, or an autoimmune disease or an allergic disease or said subject requires the stimulation of an immune response.

35 (withdrawn). The method according to claim 33, wherein said composition further comprises an antigen.

36 (new). A composition comprising a carrier and a compound selected from:

i) $R5 \qquad R3 \qquad O \qquad O$ $R6 \qquad C = W - C \qquad NH - P - B - P - Y$ $R4 \qquad O-Cat + O-Ca$

Formula (X)

in which R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is -CH- or -N-, R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester, Cat+ represents H^+ , Na^+ , NH_4^+ , K^+ , Li^+ , $(CH_3CH_2)_3NH^+$, lysine or any other suitable pharmaceutically acceptable cation, B is O or NH, m is an integer from 1 to 3, and Y is O Cat+, a nucleoside, or a radical -A-R, wherein A is O, NH, CHF, CF₂ or CH₂, and R is selected from the group consisting of:

$$-- (CH2)n --- C --- R2$$

$$R1$$

$$-(CH_2)_n R_1$$

wherein n is an integer from 2 to 20, and R_I is a methyl or ethyl group; and

$$- \begin{matrix} R_3 \\ - C \\ R_4 \end{matrix} - W = C \begin{matrix} R_5 \\ R_6 \end{matrix}$$

wherein R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is -CH- or - N-, and R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester;

R5
$$C = W - C - NH - P - O - MP - Y$$
R6 $R4 = O - Cat + O - Cat + Formula (XI)$

in which R_3 , R_4 , and R_5 , identical or different, are a hydrogen or $(C_1\text{-}C_3)$ alkyl group, W is -CH- or -N-, R_6 is an $(C_2\text{-}C_3)$ acyl, an aldehyde, an $(C_1\text{-}C_3)$ alcohol, or an $(C_2\text{-}C_3)$ ester, Cat+ represents H^+ , Na^+ , NH_4^+ , K^+ , Li^+ , $(CH_3CH_2)_3NH^+$, lysine or any other suitable pharmaceutically acceptable cation, B is O or NH, m is an integer from 1 to 3, and Y is O-Cat+, a nucleoside, or a radical -A-R, wherein A is O, NH, CHF, CF_2 or CH_2 , and R is selected from the group consisting of:

$$-- (CH2)n --- C --- R2$$

$$R1$$

$$-(CH2)n R1$$

wherein n is an integer from 2 to 20, and R₁ is a methyl or ethyl group; and

$$-\overset{R_3}{\underset{R_4}{\overset{}{\bigcirc}}} - w = \overset{R_5}{\underset{R_6}{\overset{}{\bigcirc}}}$$

wherein R_3 , R_4 , and R_5 , identical or different, are a hydrogen or (C_1-C_3) alkyl group, W is -CH- or - N-, and R_6 is an (C_2-C_3) acyl, an aldehyde, an (C_1-C_3) alcohol, or an (C_2-C_3) ester; or

37 (new). The composition according to claim 36, wherein said compound is: