

Universidade do Minho Departamento de Matemática

Fórmulas trigonométricas úteis

1.
$$\sin^2 x + \cos^2 x = 1$$
.

2.
$$\operatorname{tg} x = \frac{\operatorname{sen} x}{\operatorname{cos} x}$$
, $\operatorname{cotg} x = \frac{\operatorname{cos} x}{\operatorname{sen} x}$.

3.
$$\sec x = \frac{1}{\cos x}$$
, $\csc x = \frac{1}{\sin x}$.

4.
$$\sin 2x = 2 \sin x \cos x$$
.

5.
$$\cos 2x = \cos^2 x - \sin^2 x$$
.

6.
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
, $\sin^2 x = \frac{1 - \cos 2x}{2}$.

	$\pi/6$	$\pi/4$	$\pi/3$
sen	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$
cos	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2

	0	$\pi/2$	π	$3\pi/2$
sen	0	1	0	-1
cos	1	0	-1	0

Fórmulas hiperbólicas úteis

$$sh: \mathbb{R} \longrightarrow \mathbb{R}
 x \longmapsto \frac{e^x - e^{-x}}{2}$$

$$\begin{array}{ccc}
\text{ch} : & \mathbb{R} & \longrightarrow & \mathbb{R} \\
x & \longmapsto & \frac{e^x + e^{-x}}{2}
\end{array}$$

1.
$$\cosh^2 x - \sinh^2 x = 1$$
.

2.
$$\operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x}$$
, $\operatorname{coth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x}$.

3.
$$\operatorname{sech} x = \frac{1}{\operatorname{ch} x}$$
, $\operatorname{cosech} x = \frac{1}{\operatorname{sh} x}$.

$$4. \, \operatorname{sh} 2x = 2 \operatorname{sh} x \operatorname{ch} x.$$

5.
$$\operatorname{ch} 2x = \operatorname{ch}^2 x + \operatorname{sh}^2 x$$
.

6.
$$\cosh^2 x = \frac{\cosh 2x + 1}{2}$$
, $\sinh^2 x = \frac{\cosh 2x - 1}{2}$.