A note on avoidable words in squarefree ternary words

Narad Rampersad School of Computer Science University of Waterloo Waterloo, ON, N2L 3G1 CANADA

nrampersad@math.uwaterloo.ca

February 1, 2008

Abstract

We completely characterize the words that can be avoided in infinite squarefree ternary words.

1 Introduction

Let Σ be a finite, non-empty set called an *alphabet*. We denote the set of all words of finite length over the alphabet Σ by Σ^* . Let Σ_k denote the alphabet $\{0, 1, \ldots, k-1\}$; e.g., $\Sigma_3 = \{0, 1, 2\}$.

A map $h: \Sigma^* \to \Delta^*$ is called a *morphism* if h satisfies h(xy) = h(x)h(y) for all $x, y \in \Sigma^*$. A morphism may be defined simply by specifying its action on Σ . A morphism $h: \Sigma^* \to \Sigma^*$ such that h(a) = ax for some $a \in \Sigma$ is said to be *prolongable on a*; we may then repeatedly iterate h to obtain the *fixed point* $h^{\omega}(a) = axh(x)h^2(x)h^3(x)\cdots$

An square is a word of the form xx, where $x \in \Sigma^*$. A word w' is called a subword of w if w can be written in the form uw'v for some $u, v \in \Sigma^*$. We say a word w is squarefree (or avoids squares) if no subword of w is an square.

It is easy to check that no binary word of length ≥ 4 avoids squares. However, Thue [1] gave an example of a infinite squarefree ternary word. There are certain words that are avoidable in infinite squarefree ternary words and others that are unavoidable; e.g., the word 101 is avoidable, whereas the word 012 is not. In the next section we characterize all words that can be avoided in infinite squarefree ternary words.

2 Results

Theorem 1. Let w be any infinite squarefree word over Σ_3 . Then w contains at least one occurrence of each of the following words: 012, 021, 102, 120, 201, 210.

Proof. This can be verified by an exhaustive computer search. It suffices to check all 34422 squarefree words of length 30 over Σ_3 .

Theorem 2. Let a, b, and c be distinct letters of Σ_3 . Then there exists an infinite squarefree word over Σ_3 that contains no occurrences of each of the words abca and acba.

Proof. It is easy to see that $(abca, acba) \in \{(0120, 0210), (1021, 1201), (2012, 2102)\}$. Hence it suffices to show that there exists an infinite squarefree word over Σ_3 that avoids 0120 and 0210, as we may simply rename a, b, and c to get the desired avoidance. Consider the morphism h defined as follows:

$$\begin{array}{ccc} 0 & \rightarrow & 12 \\ 1 & \rightarrow & 102 \\ 2 & \rightarrow & 0 \end{array}$$

Then the fixed point $h^{\omega}(0)$ is squarefree and avoids 101 and 202. The only way to obtain 0120 from the morphism h is h(202) = 0120, but $h^{\omega}(0)$ avoids 202. Similarly, the only way to obtain 0210 is 1h(11)2 = 102102, but $h^{\omega}(0)$ avoids the square 11. The result now follows. \square

Theorem 3. Let x be any word over Σ_3 such that $|x| \geq 4$. Then there exists an infinite squarefree word over Σ_3 that contains no occurrences of x.

Proof. It suffices to prove the theorem for |x| = 4. Consider the set \mathcal{A} of all squarefree words of length 4 over Σ_3 . We have $\mathcal{A} = \mathcal{A}' \cup \mathcal{A}''$, where

$$\mathcal{A}' = \{0102, 0121, 0201, 0212, 1012, 1020, 1202, 1210, 2010, 2021, 2101, 2120\}$$

and

$$\mathcal{A}'' = \{0120, 0210, 1021, 1201, 2012, 2102\}.$$

Note that all words in \mathcal{A}' contain a subword of the form aba, where a and b are distinct letters of Σ_3 . It is well known that for any such subword aba, there exists an infinite squarefree word over Σ_3 that avoids aba. Hence, for any word $x \in \mathcal{A}'$, there exists an infinite squarefree word over Σ_3 that avoids x.

Now consider the set \mathcal{A}'' . Note that all words in \mathcal{A}'' are of the form abca, where a, b, and c are distinct letters of Σ_3 . Theorem 2 implies that for any such word abca, there exists an infinite squarefree word over Σ_3 that avoids abca. Hence, for any word $x \in \mathcal{A}$, there exists an infinite squarefree word over Σ_3 that avoids x. The result now follows.

References

[1] A. Thue, "Über unendliche Zeichenreihen", Norske vid. Selsk. Skr. Math. Nat. Kl. 7 (1906), 1–22.