9.
$$\Gamma(\rho)\Gamma(q) = \Gamma(\rho\tau_q)B(\rho\eta)$$
, $\rho_1 q \in IR^+$

old. $\Gamma(\rho) = \int_{0}^{\infty} t^{\rho-1} e^{-t} dt$, $\rho_1 > 0$
 $B(\rho_1 q) = \int_{0}^{\infty} t^{\rho-1} e^{-t} dt$, $\rho_1 q > 0$
 $\Gamma(\rho)\Gamma(q) = \int_{0}^{\infty} t^{\rho-1} e^{-t} dt$
 $\int_{0}^{\infty} u^{-1} e^{-t} dt$
 $\int_{0}^{\infty} u^{-1}$

$$= \int_{0}^{2} \int_{0}^{1} \int_$$