Cloud Computing Service Architectures

Common cloud computing models

Service models:

- laaS: Infrastructure as a Service
 - e.g., Amazon EC2, Microsoft Azure, Google Compute Engine
- PaaS: Platform as a Service
 - e.g., Google AppEngine, Heroku, Apache Stratos
- SaaS: Software as a Service
 - Microsoft Office365, Amazon DynamoDB, gmail

Cloud infrastructure management

Management models:

- Public clouds
 - Utility model
 - Shared hardware
 - No control of hardware,
 - Self-managed (e.g., AWS, Azure, GCE)

Private clouds:

- More isolated (secure?),
- Federal compliance friendly
- Customizable hardware and hardware sharing
- Example: OpenStack, an open source platform for virtualized clouds

Virtualization: key to cloud boom

- Physical machine virtualization
 - Full virtualization: masking as physical machine to guest
 - Para-virtualization: Semi-transparent to guest
- Virtualization goes well beyond CPU or physical machines
 - Virtualized I/O (Elastic Block Storage)
 - Virtual private networks
 - Containers (e.g., AWS or Google Container Service)
 - Virtual switches/routers with software-defined networking (SDN)
 - Network function virtualization (NFV) forwarding-plane services

Cloud pricing models

- Market-driven: variety of pricing models for each of laaS, PaaS, SaaS service models
- Let's ask some questions:
 - How much does an hour of computing on a commodity core cost today?
 - How much does transferring 1GB of data over a wide-area network cost today?
 - How much does 1GB of storage for a month cost today?

Let's find out what the market looks like today!

EC2 compute pricing

	vCPU	ECU	Memory (GiB)	Instance Storage (GB)	Linux/UNIX Usage
General Purpose	- Current Ge	eneration			
t2.nano	1	Variable	0.5	EBS Only	\$0.0065 per Hour
t2.micro	1	Variable	1	EBS Only	\$0.013 per Hour
t2.small	1	Variable	2	EBS Only	\$0.026 per Hour
t2.medium	2	Variable	4	EBS Only	\$0.052 per Hour
t2.large	2	Variable	8	EBS Only	\$0.104 per Hour
m4.large	2	6.5	8	EBS Only	\$0.12 per Hour
m4.xlarge	4	13	16	EBS Only	\$0.239 per Hour
m4.2xlarge	8	26	32	EBS Only	\$0.479 per Hour
m4.4xlarge	16	53.5	64	EBS Only	\$0.958 per Hour

Do these numbers match our intuition based on market prices for computers and peripherals?

Google Cloud compute pricing

Machine type	Virtual CPUs	Memory	GCEU ¹	Lowest price ² (USD) per hour with full sustained usage	Typical price ³ (USD) per hour	Full price ⁴ (USD) per hour without sustained use	Preemptible price ⁵ (USD) per hour
n1-standard-1	1	3.75GB	2.75	\$0.035	\$0.038	\$0.050	\$0.015
n1-standard-2	2	7.5GB	5.50	\$0.070	\$0.076	\$0.100	\$0.030
n1-standard-4	4	15GB	11	\$0.140	\$0.152	\$0.200	\$0.060
n1-standard-8	8	30GB	22	\$0.280	\$0.304	\$0.400	\$0.120
n1-standard-16	16	60GB	44	\$0.560	\$0.608	\$0.800	\$0.240
n1-standard-32 ⁶	32	120GB	88	\$1.120	\$1.216	\$1.600	\$0.480

Spot pricing: market inside a cloud

	Linux/UNIX Usage	Windows Usage
eneral Purpose - Current Ger	neration	
m3.medium	\$0.0098 per Hour	\$0.0591 per Hour
n3.large	\$0.0196 per Hour	\$0.1171 per Hour
m3.xlarge	\$0.0379 per Hour	\$0.1382 per Hour
n3.2xlarge	\$0.075 per Hour	\$0.2752 per Hour
n4.large	\$0.027 per Hour	\$0.1391 per Hour
n4.xlarge	\$0.0468 per Hour	\$0.2785 per Hour
n4.2xlarge	\$0.0974 per Hour	\$0.5557 per Hour
n4.4xlarge	\$0.201 per Hour	\$1.1156 per Hour
m4.10xlarge	\$0.5948 per Hour	\$2.9799 per Hour

Cloud Computing

Infrastructure as a Service

Agenda

- Overview
 - Why do we need laaS?
 - How laaS meets cloud properties?

- Enabling Techniques
 - Virtualization Overview
 - Terminology & Taxonomy

Why do we need laaS?

- What is the problems in conventional case?
 - Companies IT investment for peak capacity
 - Lack of agility for IT infrastructure
 - IT maintain cost for every company
 - Usually suffered from hardware failure risk
 - ...etc
- These IT complexities force company back !!

- How to solve these problem?
 - Let's consider some kind of out-sourcing solution
 - Somebody will handle on demand capacity for me
 - Somebody will handle high available resource for me
 - Somebody will handle hardware management for me
 - Somebody will handle system performance for me
 - Somebody will ...
 - Frankly, that would be a great solution IF there were "somebody".
 - But who can be this "somebody", and provide all these services?

- Infrastructure as a Service will be the salvation.
 - laaS cloud provider takes care of all the IT infrastructure complexities.
 - laaS cloud provider provides all the infrastructure functionalities.
 - laaS cloud provider guarantees qualified infrastructure services.
 - laaS cloud provider charges clients according to their resource usage.
- But, what make all of these happen so magically?

- Assume that you are going to be an laaS cloud provider.
 - Then, what are the problems you are facing?
 - Clients will request different operating systems.
 - Clients will request different storage sizes.
 - Clients will request different network bandwidths.
 - Clients will change their requests anytime.
 - Clients will ...
 - Is there any good strategy?
 - Allocate a new physical machine for each incomer.
 - Prepare a pool of pre-installed machines for different requests.
 - or ...

• What if we allocate a new physical machine for each incomer?

 How about preparing a pool of pre-installed physical machines for all kinds of request?

Windows + Office Windows Server Linux + OpenOffice Linux Server

- Obviously, neither of previous strategies will work.
- We need more powerful techniques to deal with that.
- Virtualization techniques will help.
 - For computation resources
 - Virtual Machine technique
 - For storage resources
 - Virtual Storage technique
 - For communication resources
 - Virtual Network technique

Why do we need laaS?

How laaS meets cloud properties?

Properties and Characteristics

As a cloud provider, all of the fundamental

As a cloud provider, all of the fundamental properties and characteristics stated in previous lectures should be concerned and implemented.

Scalability & Elasticity

- What do scalability and elasticity mean in laaS?
 - Clients should be able to dynamically increase or decrease the amount of infrastructure resources in need.
 - Large amount of resources provisioning and deployment should be done in a short period of time, such as several hours or days.
 - System behavior should remain identical in small scale or large one.

Scalability & Elasticity

- How to approach scalability and elasticity in IaaS?
 - For computation resources:
 - Dynamically create or terminate virtual machines for clients on demand.
 - Integrate hypervisors among all physical machines to collaboratively control and manage all virtual machines.
 - For storage resources :
 - Dynamically allocate or de-allocate virtual storage space for clients.
 - Integrate all physical storage resources in the entire laaS system
 - Offer initial storage resources by thin provisioning technique.
 - For communication resources :
 - Dynamically connect or disconnect the linking state of virtual networks for clients on demand.
 - Dynamically divide the network request flow to different physical routers to maintain access bandwidth.

Availability & Reliability

- What do availability and reliability mean in laaS?
 - Clients should be able to access computation resources without considering the possibility of hardware failure.
 - Data stored in IaaS cloud should be able to be retrieved when needed without considering any natural disaster damage.
 - Communication capability and capacity should be maintained without considering any physical equipment shortage.

Availability & Reliability

- How to approach availability and reliability in laaS?
 - For computation resources:
 - Monitor each physical and virtual machine for any possible failure.
 - Regularly backup virtual machine system state for disaster recovery.
 - Migrate virtual machine among physical machines for potential failure prevention.
 - For storage resources:
 - Maintain data pieces replication among different physical storage devices.
 - Regularly backup virtual storage data to geographical remote locations for disaster prevention.
 - For communication resources:
 - Built redundant connection system to improve robustness.

- What do manageability and interoperability mean in laaS?
 - Clients should be able to fully control the virtualized infrastructure resources which allocated to them.
 - Virtualized resources can be allocated by means of system control automation process with pre-configured policy.
 - States of all virtualized resource should be fully under monitoring.
 - Usage of infrastructure resources will be recorded and then billing system will convert these information to user payment.

Manageability & Interoperability

- How to approach manageability and interoperability in laaS?
 - For computation resources:
 - Provide basic virtual machine operations, such as creation, termination, suspension, resumption and system snapshot.
 - Monitor and record CPU and memory loading for each virtual machine.
 - For storage resources:
 - Monitor and record storage space usage and read/write data access from user for each virtual storage resource.
 - Automatic allocate/de-allocate physical storage according to space utilization.
 - For communication resources :
 - Monitor and record the network bandwidth consumption for each virtual link.
 - Automatically reroute the data path when computation and storage are duplicated.

Performance & Optimization

- What do performance and optimization mean in laaS?
 - Physical resources should be highly utilized among different clients.
 - Physical resources should form a large resource pool which provide high computing power through parallel processing.
 - Virtual infrastructure resources will be dynamically configured to an optimized deployment among physical resources.

Performance & Optimization

- How to approach performance and optimization in laaS?
 - For computation resources:
 - Deploy virtual machine with load balancing consideration.
 - Live migrate virtual machines among physical ones to balance the system loading.
 - For storage resources:
 - Deploy virtual storage with hot spot access consideration.
 - Live migrate virtual storage among physical ones with different performance level.
 - For communication resources :
 - Consider network bandwidth loading when deploying virtual machines and storage.
 - Dynamically migrate virtual machines or storage to balance network flow.

Accessibility & Portability

- What do accessibility and portability mean in laaS?
 - Clients should be able to control, manage and access infrastructure resources in an easy way, such as the web-browser, without additional local software or hardware installation.
 - Provided infrastructure resources should be able to be reallocated or duplicated easily.

Accessibility & Portability

- How to approach accessibility and portability in laaS?
 - For computation resources:
 - Cloud provider integrates virtual machine management and access through webbased portal.
 - Comply the virtual machine standard for portability.
 - For storage resources :
 - Cloud provider integrates virtual storage management and access through webbased portal.
 - For communication resources:
 - Cloud provider integrates virtual network management and access through webbased portal.

Enabling Techniques

Virtualization

laaS Architecture

- Infrastructure as a Service (laaS) delivers computer infrastructure for cloud user, typically a platform virtualization environment as a service.
- **Virtualization** is an enabling technique to provide an abstraction of logical resources away from underlying physical resources.

- What is virtualization?
 - Virtualization is the creation of a virtual (rather than physical) version of something, such as an operating system, a server, a storage device or network resources.
 - It hides the physical characteristics of a resource from users, instead showing another abstract resource.
- But, where does virtualization come from?
 - Virtualization is NOT a new idea of computer science.
 - Virtualization concept comes from the component abstraction of system design, and it has been adapted in many system level.
 - Now, let's take a look of our original system architecture!!

- System abstraction :
 - Computer systems are built on levels of abstraction.
 - Higher level of abstraction hide details at lower levels.
 - Designer of each abstraction level make use of the functions supported from its lower level, and provide another abstraction to its higher one.
 - Example
 - files are an abstraction of a disk

- Machine level abstraction :
 - For OS developers, a machine is defined by ISA (Instruction Set Architecture).
 - This is the major division between hardware and software.
 - Examples:
 - X86
 - ARM
 - MIPS

- OS level abstraction :
 - For compiler or library developers, a machine is defined by ABI (Application Binary Interface).
 - This define the basic OS interface which may be used by libraries or user.
 - Examples:
 - User ISA
 - OS system call

Virtualization Overview

- Library level abstraction :
 - For application developers, a machine is defined by API (Application Programming Interface).
 - This abstraction provides the well-rounded functionalities.
 - Examples:
 - User ISA
 - Standard C library
 - Graphical library

Virtualization Overview

- The concept of virtualization is everywhere!!
 - In laaS, we focus the virtualization granularity at each physical hardware device.
- General virtualization implementation level:
 - Virtualized instance
 - Software virtualized hardware instance
 - Virtualization layer
 - Software virtualization implementation
 - Abstraction layer
 - Various types of hardware access interes
 - Physical hardware
 - Various types of infrastructure resources
- Different physical resources :
 - Server, Storage and Network

Virtualization

Terminology & Taxonomy

Virtual Machine

- What is Virtual Machine (VM)?
 - **VM** is a software implementation of a machine (i.e. a computer) that executes programs like a real machine.

Terminology:

- Host (Target)
 - The primary environment where will be the target of virtualization.
- Guest (Source)
 - The virtualized environment where will be the source of virtualization.

Isomorphism

Formally, virtualization involves the construction of an **isomorphism** from **guest** state to **host** state.

Emulation vs. Virtualization

- Emulation technique
 - Simulate an independent environment where guest ISA and host ISA are different.
 - Example
 - Emulate x86 architecture on ARM platform.
- Virtualization technique
 - Simulate an independent environment where guest ISA and host ISA are the same.
 - Example
 - Virtualize x86 architecture to multiple instances.

Process Virtual Machine

- Process virtual machine
 - Usually execute guest applications with an ISA different from host
 - Couple at ABI(Application Binary Interface) level via runtime system
 - Not persistent

System Virtual Machine

- System virtual machine
 - Provide the entire operating system on same or different host ISA
 - Constructed at ISA level
 - Persistent

Taxonomy

	System Virtual Machine	Process Virtual Machine
Emulation	Transmeta Crusoe (Emulate x86 on VLIW cpu)	Multi-processing system
Virtualization	XEN, KVM, VMWare (x86 virtualization software)	JVM, Microsoft CLI (High level language virtualization)

Techniques utilized in laaS

Virtual Machine Monitor

- What's Virtual Machine Monitor (VMM)?
 - **VMM** or **Hypervisor** is the software layer providing the virtualization.

Traditional Stack

Virtualized Stack

Virtualization Types

- Virtualization Types:
 - Type 1 Bare metal
 - VMMs run directly on the host's hardware as a hardware control and guest operating system monitor.
 - Type 2 Hosted
 - VMMs are software applications running within a conventional operating system.

Virtualization Approaches

- Virtualization Approaches:
 - Full-Virtualization
 - VMM simulates enough hardware to allow an unmodified guest OS.
 - Para-Virtualization
 - VMM does not necessarily simulate hardware, but instead offers a special API that can only be used by the modified guest OS.

Virtualization Approaches

Full-Virtualization

Pros	Need not to modify guest OS
Cons	Significant performance hit

Virtualization Approaches

Para-Virtualization

Pros	Light weight and high performance
Cons	Require modification of guest OS

Examples

Xen

- Type 1 Virtualization
- Para-Virtualization

KVM

- Type 2 Virtualization
- Full-Virtualization

To be continued... Virtualization techniques

References

- James Smith and Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processors".
- Xen. http://www.xen.org/
- Kernel-based Virtual Machine (KVM). http://www.linux-kvm.org/page/Main_Page
- From Wikipedia, the free encyclopedia
- All resources of the materials and pictures were partially retrieved from the Internet.