1 Teoria do ćwiczeń z przykładami

System Infromacyjny: (U, A)

U - zbiór obiektów;

A - zbiór atrybutów warunkowych;

Przykład: (U,A), $U = \{ob_1, ob_2, ob_3\}, A = \{a_1, a_2, a_3\}$

	a_1	a_2	a_3
ob_1	1	2	3
ob_2	3	2	5
ob_3	10	2	17

System decyzyjny: (U, A, d)

U - zbiór obiektów;

A - zbiór atrybutów warunkowych;

d - atrybut decyzyjny

 $d \not\in A$

Przykład: System decyzyjny zapisujemy jako (U, A, d), przyjmijmy,

 $U = \{ob_1, ob_2, ob_3\}$

$$A = \{a_1, a_2, a_3\}$$

$$d \in D = 1, 2$$

Przykładowy system decyzyjny zgodny z opisem powyzej, moze wygladac nastepujaco,

	a_1	a_2	a_3	d
ob_1	7	2	3	1
ob_2	3	3	5	2
ob_3	10	45	4	1

Zdefiniujmy reguły decyzyjne wzajemnie niesprzeczne,

$$(a_1 = 1) \Rightarrow (d = 1)$$

$$(a_1=2) \land (a_2=7) \Rightarrow (d=1)$$

$$(pogoda = soneczna) \land (zona = wpracy) \land (czas = wolny) \Rightarrow (decyzja = park)$$

$$(pogoda = soneczna) \land (zona = wdomu) \land (czas = wolny) \Rightarrow (decyzja = dom)$$

Reguły decyzyjne wzajemnie sprzeczne

$$(a_1=1) \Rightarrow (d=1)$$

$$(a_1=1) \Rightarrow (d=2)$$

$$(pogoda = soneczna) \land (zona = wpracy) \land (czas = wolny) \Rightarrow (decyzja = park)$$

 $(pogoda = soneczna) \land (zona = wpracy) \land (czas = wolny) \Rightarrow (decyzja = dom)$

Reguła z alternatywna decyzja

 $(pogoda = soneczna) \land (zona = wpracy) \land (czas = wolny) \Rightarrow (decyzja = park) \lor (decyzja = dom)$

2 Algorytm z rodziny sekwencyjnie pokrywajacych (sequential covering)

Idea algorytmu pokrywajacego obiekty

Szukamy w obiektach systemu decyzyjnego, poczawszy od pierwszego, a skończywszy na ostatnim reguł długosci jeden, które sa niesprzeczne. Po znalezieniu reguły niesprzecznej, dany obiekt wyrzucamy z rozwazan, pamietajac o tym, ze dalej bierze udział w sprawdzaniu sprzecznosci i moze wspierac inne reguły. Jezeli po przeszukaniu wszystkich obiektów, pozostaja obiekty nie wyrzucone z rozwazan, szukamy w nich kombinacji niesprzecznej długosci dwa i postepujemy analogicznie jak w przypadku reguł pierwszego rzedu. Wyszukiwanie reguł niesprzecznych jest kontynuowane do momentu wyeliminowania wszystkich obiektów niesprzecznych. Jezeli w systemie pojawia sie obiekty, które sa sprzeczne na wszystkich deskryptorach, nie kreujemy z nich reguł.

Przykładowe wyliczanie reguł pokrywajacych obiekty:

Dany mamy system decyzyjny (U, A, d), gdzie $U=o_1,o_2,...,o_7,o_8,$ $A=a_1,a_2,...,a_6,$ d – atrybut decyzyjny

	a_1	a_2	a_3	a_4	a_5	a_6	d
o_1	1	1	1	1	3	1	1
o_2	1	1	1	1	3	2	1
03	1	1	1	3	2	1	0
04	1	1	1	3	3	2	1
05	1	1	2	1	2	1	0
o_6	1	1	2	1	2	2	1
07	1	1	2	2	3	1	0
o_8	1	1	2	2	4	1	1

Rząd I:

z o_1 brak

z o_2 $(a_6 = 2) \Rightarrow (d = 1)[3]$, wyrzucamy z rozważań obiekty o_2, o_4, o_6

z o_3 brak

z o_5 brak

z o_7 brak

z o_8 $(a_5 = 4) \Rightarrow (d = 1)$, wyrzucamy z rozwazan obiekt o_8

Rzad II:

z o_1 $(a_3=1) \land (a_4=1) \Rightarrow (d=1)[2]$, wyrzucamy z rozwazan obiekt o_1 z o_3 $(a_3=1) \land (a_5=2) \Rightarrow (d=0)$, wyrzucamy z rozwazan obiekt o_3

z o_5 $(a_5=2) \land (a_6=1) \Rightarrow (d=0)[2]$, wyrzucamy z rozwazan obiekt o_5 z o_7 $(a_3=2) \land (a_5=3) \Rightarrow (d=0)$, wyrzucamy z rozwazan obiekt o_7