

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A method of evaluating whiteness of light emitted from a ~~light source~~ fluorescent lamp, comprising the steps of:
calculating chroma C , using a method defined by the CIE 1997 Interim Color Appearance Model (Simple Version); and
calculating whiteness W from the chroma C using an equation (1),

$$W = aC + b \dots (1)$$

where the coefficient a is a negative real number and the coefficient b is a positive real number.

2. (Currently Amended) A method of evaluating whiteness of light emitted from a ~~light source~~ fluorescent lamp, comprising the steps of:
calculating chroma C , using a method defined by the CIE 1997 Interim Color Appearance Model (Simple Version); and
calculating whiteness W from the chroma C using an equation (1),

$$W = aC + b \dots (1)$$

where the coefficient a is a negative real number, the coefficient b is a positive real number, and the whiteness W is 100 when the chroma C is 0.

3. (Currently Amended) A method of evaluating whiteness of light emitted from a ~~light source~~ fluorescent lamp, comprising the steps of:
calculating chroma C , using a method defined by the CIE 1997 Interim Color Appearance Model (Simple Version); and
calculating whiteness W from the chroma C using an equation (1),
$$W = aC + b \dots (1)$$
where the coefficient a is a negative real number, the coefficient b is a positive real number, the whiteness W is 100 when the chroma C is 0, and the whiteness W is 50 under a standard illuminant A .
4. (Currently Amended) The method of Claim 1,
wherein the chroma C is a chroma of the light emitted from the ~~light source~~ fluorescent lamp, and
the coefficient a is -5.3 and the coefficient b is 100.
5. (Currently Amended) The method of Claim 1,
wherein the chroma C is a chroma of light obtained when the light from the ~~light source~~ fluorescent lamp is reflected off from a surface of an object whose Munsell value and Munsell chroma is 9.5 and 0, respectively, and
the coefficient a is -4.4 and the coefficient b is 100.
6. (Currently Amended) The method of Claim 1,
wherein the chroma is a chroma of light obtained when the light emitted from the ~~light source~~ fluorescent lamp is reflected off a blank surface of a newspaper, and
the coefficient a is -3.3 and the coefficient b is 100.

7. (Currently Amended) A method of evaluating comparative whiteness of light emitted from two light sources, comprising the steps of:

calculating chroma $C1$ of light from a first light source and chroma $C2$ of light from a second light source using a method defined by the CIE 1997 Interim Color Appearance Model (Simple Version); and

calculating comparative whiteness Wc from the chroma $C1$ and the chroma $C2$, using an equation (2),

$$Wc = (C1 - C2) / C1 \dots (2).$$

8-90. (Cancelled)