

SECOND SEMESTER 2015-16

Course Handout Part II Date: 05/01/2016

In addition to part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : BIO G513

Course Title : MICROBIAL & FERMENTATION TECHNOLOGY

Instructor-in-charge : SANDHYA MARATHE

Instructor : PrabhatNathJha and S. N. Mukhopadhyay

1. SCOPE & OBJECTIVES:

The course introduces and delineates various aspects of pure and applied microbiology. It mainly dwells upon the basic principles of Fermentation Technology and Downstream Processing, which involve various strategies for strain selection and improvement, media formulation, sterilization, inoculum development, various fermenter configurations and modes of operation, cell harvesting and product recovery, kinetics of growth and enzyme catalyzed reactions. The course also focuses on the industrial applications of bioprocesses (Industrial Biotechnology) for the commercial manufacture of value-added biotechnological products like solvents, organic acids, antibiotics, enzymes, biopharmaceuticals etc.

2. Study Resources:

A. Text Book: "Fermentation Microbiology and Biotechnology" Edited by E.M.T El-Mansi, C.F.A. Bryce, A.L. Demain& A.R. Allman (2007), Taylor and Francis Grp., London.

B. Reference Books:

- I. "Principles of Fermentation Technology" by Stanbury, Whitaker & Hall, (1997) Aditya Books (P) Ltd., New Delhi
- II. 'Bioprocess Engineering: Basic Concepts' by Michael L. Shuler & F. Kargi (2003) Prentice-Hall.
- III. Current research articles, reviews and lecture notes will be made available.

3. Course Plan: TB: Text Book; RB I, II & III: Reference Books # 1 #2 & #3

Lec.#	Learning Objectives	Chapter #		
1	General	Introduction to the course	Chap 1	
	Introduction		(TB, RB I)	
2 – 4	Strain isolation,	Microorganism Screening, Culture preservation, Strain	Chap 3, 6 (RB I)	
	improvement and	improvement: Mutagenesis, Protoplast fusion and r-		
	Inocula	DNA technology; Criteria for transfer, development of		
	Development	inocula for yeast, bacterial and mycelial processes		
5 – 9	Microbiology of	Growth kinetics of microorganism, Mass balances for	Chap 2, 4, 5 (TB),	
	Industrial	bioreactors, kinetic models, Batch, Fed-Batch and	Chap 2, 4 (RB I),	
	Fermentation	continuous cultures, Stoichiometry of growth and	Chap 6 (RB-II)	
		product formation. Media design, Formulation &		
		Optimization. Mixed cultures.		

10 – 14	Enzyme Kinetics	Enzyme and Co – factor modifications, Reaction	Chap 8 (TB),			
	•	mechanisms, kinetic models. Enzyme inhibition,	Chap 3 (RB II)			
		Inhibition kinetic models, Industrial enzymes.				
15 - 17	Sterilization	Heat Transfer Phenomenon; Media & Air: Batch &	-			
		Continuous sterilization in fermenter, thermal death				
		kinetics.				
18 – 20	Enzyme & Cell	Immobilized enzyme & cell systems, physiology of	Chap 10 (TB)			
	Immobilization &	immobilized microbial cells, design of immobilized				
	Applications	reactors.				
21 – 27	Fermentation	Anaerobic and Aerobic fermentations, Different types	Chap 11-14 (TB)			
	Processes and	of bioreactors, Design, Operation and Applications,	Chap 7 - 8 (RB			
	Bioreactors Design	Scale up & Scale down. Biosensors, software sensors	1)			
	and applications	and controls, Instrumentation and control of				
		bioprocesses. Animal and Plant cell bioreactors.				
28 – 30	Transport	Introduction to Mass Transfer: Agitation and aeration, Chap 9 (Ti				
	Phenomenon	Rheology and Mixing				
31 – 35	Downstream	Basic principles of Cell Separation: Filtration and	cell Separation: Filtration and Chap 10 (RB I)			
	processing	Centrifugation; Cell disruption – Mechanical & Non-				
	Basic Concepts on	mechanical methods. Precipitation, Dialysis, Reverse				
	Product Recovery	osmosis, Chromatography, Drying, Crystallization.				
	& Purification					
36 – 40	Illustrations of	Details of the process, parameters and materials for the	Seminars (RB			
	Industrial	industrial manufacture of Antibiotics (β-lactam);				
	Biotechnology:	Solvents (acetone); Amino acid (Lysine); Organic acids				
	Fermentation &	(Citric acid); Alcohols (Ethanol); Ind. Enzymes				
	Product recovery	(Protease/Amylase) and Biopharmaceuticals (Insulin/				
	steps	Interferon etc.)				

4. Evaluation Scheme:

Component	Duration	Weight %	Date & Time	Remarks
Mid-semester test	50 mins	25	14/3 4:00- 5:30 PM	Closed Book
Quizzes (Surprise),	Variable	35		Closed
Assignments,				Book/Open
Seminar & Report				Book
Comprehensive	3 hours	40	4/5 AN	Closed and
Exam				Open Book
	Total	100		

- 5. **Chamber consultancy hour**: To be announced in class room.
- 6. **Notices:** Notices will be displayed on Bio Notice Board.
- 7. **Make up Policy:** Make up decisions will be made on a case-by-case basis and only genuine cases will be considered. No make ups for quizzes.

Instructor-in-Charge BIO G513

