(Continuous) Gaussian Processes

Multivariate normal

A random vector $\vec{X} = (X_1, \dots, X_d)$ is *(multivariate) normal* or *(multivariate) Gaussian* if and only if every linear combination $\vec{x} \cdot \vec{X}$ is univariate normal (with variance in $[0, \infty)$).

The distribution of a (multivariate) normal vector can be specified by the *mean vector* and the *covariance matrix*.

A Gaussian process $(X_t)_{t\in I}$ is a random process for which the finite-dimensional distributions are all multivariate normal, i.e. (X_{t_1},\ldots,X_{t_r}) is multivariate normal for every $r\in\mathbb{N}$, $t_1< t_2<\cdots< t_r$ all in I. Typically I is $[0,\infty)$ or [0,1].

Continuous Gaussian processes

We'll restrict our attention to Gaussian processes $(X_t)_{t \in I}$ that are *continuous* in t with probability 1.

Recall that for continuous processes, the distribution of the process is determined by the finite-dimensional distributions.

For a Gaussian process the f.d.d. are multivariate Gaussian, determined by the mean vectors and covariance matrices.

It follows that the distribution of a continuous Gaussian process $(X_t)_{t\in I}$ is determined by two functions:

the mean function $\mu(t) = \mathbb{E}[X_t]$ for $t \in I$ and the covariance function $\Sigma(s,t) = \text{Cov}(X_s,X_t)$ for $s \leq t$ both in I.

Brownian motion simulation

Brownian bridge

Brownian motion and Brownian bridge

(standard) Brownian motion $(W_t)_{t\geq 0}$ is a continuous Gaussian process with $\mu(t)=0$ and $\Sigma(s,t)=s$ for $s\leq t$.

(standard) Brownian bridge $(B_t)_{t\in[0,1]}$ is a continuous Gaussian process with $\mu(t)=0$ and $\Sigma(s,t)=s(1-t)$ for $s\leq t$.

How do we know that such processes exist? We can construct them as limits of things that exist.

Let $(Z_q)_{q \in \mathbb{Q} \cap [0,1]}$ be i.i.d. standard normal random variables.

Define a sequence of random functions $(W_t^{(n)})_{t\in[0,1]}$ for $n\in\mathbb{N}$ by:

$$W_t^{(1)}=tZ_1,$$

i.e. set $W_0^{(1)} = 0$ and $W_1^{(1)} = Z_1$, and then linearly interpolate.

Set $W^{(2)}$ to be the same at 0 and 1 but set

$$W_{1/2}^{(2)} = W_{1/2}^{(1)} + \frac{1}{\sqrt{2^2}} Z_{1/2},$$

and then linearly interpolate in between.

More generally define $W^{(n+1)}$ to be equal to $W^{(n)}$ at points $2i/2^n$, and define $W^{(n+1)}$ at the points q of the form $(2i+1)/2^n$ by adding some extra randomness $\frac{1}{\sqrt{2^n}}Z_q$ to $W_q^{(n)}$ and then linearly interpolating.

It's possible to check that $W^{(n+1)}$ has the claimed mean and covariance functions if we restrict to times of the form $i/2^n$.

This sequence of (random) continuous functions converges (as $n \to \infty$ (uniformly) to a random continuous function $(W_t)_{t \in [0,1]}$. This random function has the correct mean and covariance functions since it does at every dyadic rational point.

Brownian motion (BM)

BM has independent increments:

If $0 < s_1 < t_1 < s_2 < t_2, \ldots, < s_n < t_n$ then $(W_{t_i} - W_{s_i})_{i \le n}$ are independent random variables.

e.g. $(W_2 - W_1, W_4 - W_2)$ is bivariate normal (why?), and

$$\mathbb{E}[(W_4 - W_2)(W_2 - W_1)]$$

$$= \mathbb{E}[W_4 W_2] - \mathbb{E}[W_2^2] - \mathbb{E}[W_4 W_1] + \mathbb{E}[W_2 W_1]$$

$$= 2 - 2 - 1 + 1 = 0.$$

Definition of BM is equivalent to saying that $(W_t)_{t\geq 0}$ is a continuous process with:

- (i) $W_0 = 0$ and,
- (ii) with independent increments (if they are disjoint)
- (iii) and $W_t W_s \sim \mathcal{N}(0, t-s)$ for every $t > s \geq 0$.

Exercises

Suppose that $(W_t)_{t\geq 0}$ is a BM:

- (a) If s > 0 and $X_t = W_{t+s} W_s$ then $(X_t)_{t \ge 0}$ is a BM (and in fact it is independent of $(W_u)_{u < s}$).
- (b) If $X_0 = 0$ and $X_t = tW_{1/t}$ for t > 0 then $(X_t)_{t \ge 0}$ is a BM.
- (c) If c > 0 and $X_t = W_{ct}/\sqrt{c}$ then $(X_t)_{t>0}$ is a BM.
- (d) If $X_t = W_t tW_1$ then $(X_t)_{t \in [0,1]}$ is a Brownian Bridge.

Path properties of BM

Brownian motion is *recurrent*: for every t > 0 there exists T > t such that $W_T = 0$.

Sketch proof: Note that W_n-W_{n-1} for $n\in\mathbb{N}$ are i.i.d. $\sim \mathcal{N}(0,1)$. Eventually one of these (say W_N-W_{N-1}) has size greater than 2. Thus either $|W_N|>1$ or $|W_{N-1}|>1$. Since W is continuous this shows that $\mathcal{T}_1=\inf\{t:|W_t|=1\}$ is finite.

Similarly we can define $T_j = \inf\{t > T_{j-1} : |W_t - W_{T_{j-1}}| = 1\}$. One can show that $(S_i)_{i \in \mathbb{Z}_+}$ defined by $S_0 = 0$ and $S_j = W_{T_j}$ for $j \geq 1$ is a simple (unbiased) random walk. This simple random walk visits 0 infinitely often.... In fact, something stronger is true, e.g. in any interval of time $[0, \varepsilon]$ where $\varepsilon > 0$, BM visits 0 infinitely often.

Since this simple random walk also visits every integer infinitely often this shows that BM visits every point in $\mathbb R$ infinitely often as well.

Properties of BM

BM is both a *Markov process* (with state space \mathbb{R}), and a *Martingale*.

Brownian motion is not differentiable at any point.

E.g. $\frac{W_h}{h}$ for small h is like $tW_{1/t}$ for large t, which as a function of t has the same law as $(W_t)_{t>0}$ so it oscillates (does not converge) as $t\to\infty$.

Functional CLT

Let $(X_i)_{i\in\mathbb{N}}$ be i.i.d. random variables with mean 0 and variance 1. Let

$$Z_t^{(n)} = \frac{\sum_{i=1}^{\lfloor nt \rfloor} X_i}{\sqrt{n}}.$$

Then $(Z_t^{(n)})_{t\geq 0} \stackrel{\mathcal{D}}{\rightarrow} (W_t)_{t\geq 0}$.

(If $Z^{(n)}, Z$ are random objects taking values in some space E we write $Z^{(n)} \stackrel{\mathcal{D}}{\to} Z$ if $\mathbb{E}[f(Z^{(n)})] \to \mathbb{E}[f(Z)]$ as $n \to \infty$ for every bounded continuous function $f: E \to \mathbb{R}$)

Brownian bridge

Brownian bridge does not have independent increments.

E.g.
$$B_1 - B_{1/2} = -(B_{1/2} - B_0)$$
.

Exercise: Suppose that $(B_t)_{t\in[0,1]}$ is a BB, and $Z\sim\mathcal{N}(0,1)$ is independent of $(B_t)_{t\in[0,1]}$. Then $X_t=B_t+tZ$ is a BM on [0,1].

FCLT for empirical processes

Let $(X_i)_{i\in\mathbb{N}}$ be i.i.d. with cdf F, and let $F^{(n)}(x) = \frac{1}{n}\sum_{i=1}^n \mathbb{1}_{\{X_i \leq x\}}$. Then

$$\left(\sqrt{n}(F^{(n)}(x)-F(x))\right)_{x\in\mathbb{R}}\overset{\mathcal{D}}{\to}\left(B_{F(x)}\right)_{x\in\mathbb{R}}.$$

Note that $F(x) \in [0,1]$ so the right hand side is well defined.

If
$$X_i \sim U(0,1)$$
 then $B_{F(t)} = B_t$.

Exercise: Compute the mean of the left hand side at the point x. Calculate the covariance of the left hand side evaluated at the points x and y where $x \le y$.

More amazing facts

$$rac{W_t}{\sqrt{t}} \sim \mathcal{N}(0,1), \quad ext{ for every } t \geq 0,$$

but $\frac{W_t}{\sqrt{t}}$ oscillates unboundedly (see the Law of the Iterated Logarithm).

(There is a similar result for simple random walk: as $n \to \infty$ the distribution of $n^{-1/2}S_n$ converges to $\mathcal{N}(0,1)$ but as a random sequence $n^{-1/2}S_n$ does not converge.)

Let $(W_t^{[i]})_{t\geq 0}$ be independent BM for $i\in\mathbb{N}$. Then $\left((W_t^{[1]},W_t^{[2]})\right)_{t\geq 0}$ is a 2-dimensional BM, $\left((W_t^{[1]},W_t^{[2]},W_t^{[3]})\right)_{t\geq 0}$ is a 3-dimensional BM, etc.

2-dimensional BM

More amazing facts

- ▶ (1-dimensional) BM visits every point in \mathbb{R} infinitely often.
- ▶ for 2-dimensional BM, for every $k \in \mathbb{Z}_+$ there are (random) points in \mathbb{R}^2 visited exactly k times. Every neighbourhood of every point is visited infinitely often.
- ▶ for 3-dimensional BM there are (random) points visited exactly twice, and no point in \mathbb{R}^3 is visited 3 or more times, $|B_t| \to \infty$ as $t \to \infty$.
- ▶ for 4-dimensional BM no point in \mathbb{R}^4 is hit more than once.