

PLDAC Chants d'oiseaux

25 mai 2023

Valentin Bencheci, Aymeric Delefosse

Master DAC - Sorbonne Université

まくよ ナデ そもナナ

Contexte

Detection and Classification of Acoustic Scenes and Events

- Workshop & Challenge annuels : rassemblement de la communauté de chercheurs du domaine du traitement du signal audio .
- Se concentre principalement sur la détection et la classification des scènes et événements acoustiques.

Exemples

- 2022 & 2023 : Few-shot Bioacoustic Event Detection
- 2021 : Automated Audio Captioning
- 2018 : Bird audio detection ← notre problématique

Qui dit détection ou classification... implique souvent des techniques issues de l'apprentissage automatique.

Mais...

DCASE 0000

La communauté du traitement du signal audio a connu un certain décalage par rapport aux développements dans les domaines de l'informatique et de la data science.

Pourquoi?

- Complexité et de la spécificité des données audio.
- Communauté qui a évolué de manière relativement isolée ⇒ manque de transfert de connaissances.

Quel lien avec DAC?

Mais depuis ces dernières années, il existe une convergence plus étroite entre les deux communautés.

Les données au cœur de tout

- Avancées dans le *deep learning* dans ce domaine, grâce aux réseaux de neurones convolutionnels et récurrents.
- Soutenues par la disponibilité de grandes quantités de données audio.
- Progrès de l'informatique distribuée.

Challenge et données

Bird Audio Detection

Challenge

- Développer un système capable de détecter la présence ou l'absence de sons d'oiseaux dans des enregistrements audio.
- Décision binaire ou probabiliste \in [0,1].
- ⇒ Capacité à généraliser (défi important).

Freefield

- Enregistrements de terrain à travers le monde.
- Diversité des emplacements et des environnements.
- ∧ Classes déséquilibrées : 25 % sons d'oiseaux

Warblr

- Enregistrements audio provenant d'utilisateurs de l'application Warblr, couverture variée des emplacements et des environnements britanniques.
- Bruits de fond tels que le trafic, les voix humaines et les imitations d'oiseaux par les humains.
- ∧ Classes déséquilibrées : 75 % sons d'oiseaux

Données

BirdVox

- Enregistrements effectués par des unités de surveillance à distance.
- Échantillonnage uniforme sur différents moments de la journée et conditions météorologiques.
- Classes équilibrées

Au total : 35 690 enregistrements avec 17 997 sons contenant des chants d'oiseaux et 17 693 sons n'en contenant pas.

Principal défi

Représentation temporelle (forme d'onde)

Avantages

- Visualiser intuitive du signal audio.
- Identifier les moments de silence ou de faible amplitude, ainsi que les pics et les moments d'intensité sonore élevée.
- Repérer des motifs ou des caractéristiques spécifiques dans le signal audio.

Inconvénients

- Pas d'informations détaillées sur la nature exacte des composantes fréquentielles du son.
- Ne permet pas d'identifier précisément les différentes sources sonores présentes dans le signal.
- Limité par la résolution temporelle de l'affichage.

Représentation spectrale

SORBONNE

Nécessité de se tourner vers des représentations spectrales.

Avantages

- Visualiser des composantes fréquentielles du signal audio.
- Identifier les changements de fréquence, les harmoniques et les caractéristiques spectrales spécifiques.
- Utile pour la détection d'événements sonores, la classification d'instruments, l'analyse musicale...

Inconvénients

- Peut nécessiter une résolution temporelle plus fine pour représenter les variations rapides dans le signal.
- Processus parfois irréversible...

Représentation spectrale

Mais il existe plusieurs représentations... laquelle choisir?

Les plus communes...

- Spectrogramme?
- Chromagramme?
- Cepstre?
- ⇒ Dans tous les cas : Fourier!

Représentation spectrale : Chromagramme

(a) Enregistrement contenant des oiseaux

(b) Enregistrement ne contenant pas d'oiseaux

Mais il existe plusieurs représentations... laquelle choisir?

Chromagramme

- Représentation temps/notes de musique.
- Met l'accent sur les informations tonales et harmoniques d'un signal audio.
- Largement utilisé dans des applications telles que la transcription musicale automatique, la reconnaissance des accords et l'analyse comparative de morceaux de musique.
- ⇒ Représentation non pertinente pour notre problème.

Représentation spectrale : Spectrogramme

Mais il existe plusieurs représentations... laquelle choisir?

Spectrogramme

- Représentation temps/fréquence.
- Met l'accent sur la répartition spectrale de l'énergie ou de la puissance du signal audio.
- Utile pour observer les changements de fréquences, les harmoniques, les transitions tonales et les événements sonores dans le temps.
- Possibilité de passer en 3D : temps/fréquence/amplitude.
- ⇒ Représentation **pertinente** pour notre problème.

Mais il existe plusieurs représentations... laquelle choisir?

Cepstre

- Met l'accent sur l'étude structures périodiques temporelles des caractéristiques spectrales d'un signal audio.
- Fournit des informations sur les enveloppes spectrales et les variations dans le domaine fréquentiel du signal.
- Utile pour l'analyse des formants vocaux, la détection des harmoniques, la reconnaissance de la parole et d'autres applications liées aux caractéristiques temporelles du signal audio.
- Réversible!
- ⇒ Représentation **pertinente** pour notre problème.

Expérimentations et résultats

Performance

Modèle	Pooling	Freefield1010		Warblrb10K		BirdVox	
		AUC	F1	AUC	F1	AUC	F1
CNN	Max probability	.847	.730	.849	.926	.873	.860
CNN	Temporal	.842	.706	.853	.937	.888	.885
CRNN _{RNN}	Temporal	.841	.708	.789	.921	.877	.868
CRNN _{LSTM}	Temporal	.857	.783	.868	.906	.882	.873
$CRNN_{LSTM}$	Soft Attention	.849	.783	.858	.908	.870	.857
CRNN Transformers	Temporal	.820	.755	.844	884	.836	.811
CRNN _{GRU}	Max probability	.861	.778	.860	.908	.882	.872
$CRNN_{GRU}$	Temporal	.840	.719	.818	.923	.890	.883
CRNN _{GRU}	Soft Attention	.859	.784	.870	.916	.891	.883

Table 1 - Performance de différents modèles sur Freefield, Warblr et BirdVox

- « Convolutional Recurrent Neural Networks for Bird Audio Detection » Cakir et al. 2017
 - Define a regularized loss for training the CNN
 - Can be seen as looking for the label of similar images for regularization
 - Results slightly better than Sukhbaatar model

References

References I

Cakir, Emre et al. (août 2017). « Convolutional Recurrent Neural Networks for Bird Audio Detection ». In: 2017 25th European Signal Processing Conference (EUSIPCO). Kos, Greece: IEEE, p. 1744-1748. isbn: 978-0-9928626-7-1. doi: 10.23919/EUSIPC0.2017.8081508. (Visité le 21/03/2023).