Examen final de SIN: Test del bloc 2 (1,75 punts)

ETSINF, Universitat Politècnica de València, 27 de gener de 2022

Grup, cognoms i nom: 1,

Marca cada requadre amb una única opció. Puntuació: $\max(0, (\text{encerts} - \text{errors}/3) \cdot 1, 75/6)$.

1 A Siguen els següents 3 nodes d'un arbre de classificació amb mostres pertanyents a 3 classes:

c	1	2	3
n_1	2/12	5/12	5/12
n_2	3/11	4/11	4/11
n_3	5/11	3/11	3/11

on cada fila indica la probabilitat "a posteriori" de cada classe en el node. Quina de les següents desigualtats és certa?

- A) $\mathcal{I}(n_1) < \mathcal{I}(n_3) < \mathcal{I}(n_2)$
- B) $\mathcal{I}(n_3) < \mathcal{I}(n_2) < \mathcal{I}(n_1)$
- C) $\mathcal{I}(n_1) < \mathcal{I}(n_2) < \mathcal{I}(n_3)$
- D) $\mathcal{I}(n_2) < \mathcal{I}(n_3) < \mathcal{I}(n_1)$

2 D Siga M un model de Markov de conjunt d'estats $Q = \{1, 2, F\}$ i alfabet $\Sigma = \{a, b\}$. Donada la cadena x = bbb, l'aproximació de Viterbi a $P_M(x)$, $\tilde{P}_M(x)$, s'ha trobat mitjançant l'algorisme de Viterbi:

$$\begin{split} V_{11} &= \pi_1 B_{1b} = 0.3000 \\ V_{21} &= \pi_2 B_{2b} = 0.3333 \\ V_{12} &= \max(V_{11} A_{11} B_{1b}, V_{21} A_{21} B_{1b}) = \max(0.0450, 0.1000) = 0.1000 \\ V_{22} &= \max(V_{11} A_{12} B_{2b}, V_{21} A_{22} B_{2b}) = \max(0.0500, 0.0556) = 0.0556 \\ V_{13} &= \max(V_{12} A_{11} B_{1b}, V_{22} A_{21} B_{1b}) = \max(0.0150, 0.0167) = 0.0167 \\ V_{23} &= \max(V_{12} A_{12} B_{2b}, V_{22} A_{22} B_{2b}) = \max(0.0167, 0.0093) = 0.0167 \\ \tilde{P}(\text{bbb}) &= \max(V_{13} A_{1F}, V_{23} A_{2F}) = \max(0.0083, 0.0042) = 0.0083 \end{split}$$

El camí més probable (un dels camins més probables, si hi ha més d'un) mitjançant el qual M genera x és:

- A) 112 F
- B) 2 1 1 F
- C) 122 F
- D) 2 2 1 F

3 C Siga un problema de classificació en tres classes per a dades del tipus $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, amb les distribucions de probabilitat de la taula. Indica en quin interval es troba l'error del classificador $c(\mathbf{x})$ donat en la taula, ε :

- A) $\varepsilon < 0.25$.
- B) $0.25 \le \varepsilon < 0.50$.
- C) $0.50 \le \varepsilon < 0.75$.
- D) $0.75 \le \varepsilon$.

x	$P(c \mid \mathbf{x})$		
$x_1 x_2$	$c = 1 \ c = 2 \ c = 3$	$P(\mathbf{x})$	$c(\mathbf{x})$
0 0	0.2 0.1 0.7	0.2	2
0 1	0.4 0.3 0.3	0	1
1 0	0.3 0.4 0.3	0.4	3
1 1	0.4 0.4 0.2	0.4	1

 $\varepsilon = 0.70$

4 C Donada la següent taula de freqüències conjuntes de les 3 variables de interés:

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
С	0	1	0	1	0	1	0	1
N(A,B,C)	124	28	227	175	126	222	23	75

Quin és el valor de $P(A = 1 \mid B = 1, C = 0)$?

- A) 0.023
- B) 0.250
- C) 0.092
- D) 0.446
- 5 C Siga M un model de Markov de conjunt d'estats $Q=\{1,2,F\}$ i alfabet $\Sigma=\{a,b\}$. Després de l'aplicació d'una iteració de l'algorisme de reestimació per Viterbi, s'ha obtingut la taula de probabilitats de transició entre estats que es mostra a la dreta. A partir de quina taula de freqüències de transició entre estats s'ha obtés?

A	1	2	F
1	$\frac{4}{9}$	$\frac{1}{9}$	$\frac{4}{9}$
2	$\frac{4}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- C) A 1 2 F 1 8 2 8 2 12 3 3
- 6 D La figura següent mostra una partició de 6 punts bidimensionals en dos clústers, \bullet i \circ :

Si intercanviem de clúster els punts $(10,1)^t$ i $(7,1)^t$, es produeix una variació de la suma d'errors quadràtics (SEQ), $\Delta J = J - J'$ (SEQ després de l'intercanvi menys SEQ abans de l'intercanvi), tal que:

- A) $\Delta J < -7$.
- $\Delta J = 42.0 24.0 = 18.0$
- B) $-7 \le \Delta J < 0$.
- C) $0 \le \Delta J < 7$.
- D) $\Delta J \geq 7$.

Examen final de SIN: Problema del bloc 2 (2 punts)

ETSINF, Universitat Politècnica de València, 27 de gener de 2022

Grup, cognoms i nom: 1,

Problema sobre Perceptró

En la taula de l'esquerra es proporciona un conjunt de 3 mostres bidimensionals d'aprenentatge de 3 classes, mentre que en la taula de la dreta es proporciona un conjunt de pesos inicials per cada classe.

n	x_{n1}	x_{n2}	c_n
1	-2	-2	1
2	0	0	2
3	2	2	3

	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3
w_{c0}	0	-1	-1
w_{c1}	-2	0	4
w_{c2}	-2	0	4

Es demana:

- 1. (1.5 punts) Realitzeu una traça d'execució d'una iteració de l'algorisme Perceptró, amb factor d'aprenentatge $\alpha = 1$, marge $\gamma = 0.1$ utilitzant els pesos inicials proporcionats.
- 2. (0.5 punts) Representeu gràficament les regions de decisió del clasificador resultant, així com les fronteres de decisió necesàries per a la seua representació.

Solució:

1. Una iteració de Perceptró amb 1 mostra mal clasificada obté els següents pesos finals:

	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3
w_{c0}	-1	0	-2
w_{c1}	-2	0	4
w_{c2}	-2	0	4

2. La representació gràfica de les tres regions de decisió amb les dues fronteres de decisió involucrades és la següent:

