Lab 6

Part 1. Logistic Regression Separation

For this question, consider the dataset constructed with the following code:

```
x <- seq(-3, 3, length.out = 100)
sep_data <- tibble(x = x) |>
mutate(y = case_when(
    x < 0 ~ 0,
    x >= 0 ~ 1))
```

1. Data Vizualization (4 points)

Create a visualization the displays the data - and a smoothed fit.

Comment on this figure.

2. Bayes (4 points)

Fit the model using stan_glm. Comment on the results and any potential warnings.

3. MLE (4 points)

Fit the model using glm. Comment on the results and any potential warnings.

4. Bayesian Visualization (4 points)

Let's use the Bayesian estimation to plot an estimated (posterior) mean fit line.

Part 2. Detective Work Part 2

For this question, consider the dataset constructed with the following code:

I've created a synthetic dataset for you to explore. The goal is to try and recover the true model. Note: that in practice we don't know a "true model."

```
set.seed(10012025)
n <- 200
x1 \leftarrow seq(-3, 3, length.out = n)
x2 \leftarrow rnorm(n)
x3 \leftarrow rnorm(n)
x4 \leftarrow sample(c('A','B','C'), size = n, replace = T)
beta0 <- .4
beta1 <- .8
beta2 <- -.1
beta3 <- 0
betaB <- 0
betaC <- 1.5
beta1B <- 0
beta1C <- -1
dat tibble <- tibble(x1, x2, x3, x4)
X_mat \leftarrow model.matrix(~x1 + x2 + x3 + x4 + x1:x4)
beta_vec <- c(beta0, beta1, beta2, beta3, betaB, betaC, beta1B, beta1C)
dim(X_mat)
```

```
[1] 200 8
```

```
pi <- invlogit(X_mat %*% beta_vec)

y <- rbinom(n, 10, pi)
secret_data2 <- tibble(y =y, x1, x2, x3, x4)</pre>
```

5. Data Visualization (8 points)

Similar to this week's activity, explore how the x1 variables relate to y. Note, you should look for interactions between x4 and the other variables. Create a set of 4 figures and summarize your findings.