# Formale Systeme, Automaten und Prozesse Zusammenfassung

# Justin Korte

#### Februar 2023

## 1 Deterministische Endliche Automaten

# 1.1 Alphabet

- Ein Alphabet ist eine nichtleere, endliche Menge, deren Elemente als Zeichen bezeichnet werden.
- Ein Wort über einem Alphabet ist eine endliche Folge/ein Tupel von Zeichen aus dem Alphabet.
- Eine formale Sprache über einem Alphabet ist eine (Teil-) Menge von Wörtern über diesem Alphabet.

Für die Notation werden für Alphabete eine Variation von  $\Sigma$ ,  $\Gamma$  verwendet, für die Zeichen eine Variation von  $a, b, c, \ldots$  und für die Zeichen eine Variation von  $u, v, w, \ldots$  und für Sprachen eine Variation von  $K, L, M, \ldots$ 

## 1.2 Wörter

- $\Sigma^*$  bezeichnet die Menge aller Wörter über dem Alphabet  $\Sigma$ .
- $\varepsilon$  bezeichnet hierbei das leere Wort.
- |w| bezeichnet die Länge des Wortes w.
- $|w|_a$  bezeichnet die Häufigkeit des Zeichens a im Wort w.
- uv bezeichnet die Verkettung von u und v.

#### 1.3 Teilwörter

Sind u, v Wörter. Dann ist u

- $\bullet$  ein Präfix von v, falls es ein Wort w gibt mit v=uw
- ein Infix von v, falls es zwei Wörter w, w' gibt mit v = wuw'
- ein Suffix von v, falls es ein Wort w gibt mit v = wu

#### 1.4 Deterministischer endlicher Automat

Ein deterministischer endlicher Automat (DFA oder DEA) ist ein 5-Tupel der Form:

$$(Q, \Sigma, \delta, q_0, F)$$

- Q ist eine endliche Menge, die als **Zustände** bezeichnet werden.
- $\Sigma$  ist ein Alphabet, das **Eingabealphabet**
- $\delta: Q \times \Sigma \to Q$  eine Abbildung, die **Transitionsfunktion**
- $q_0 \in Q \text{ der Anfangszustand}$
- $F \subseteq Q$  die Menge der **Endzustände**

# 1.5 Graphische Darstellung eines DFA's

In der graphischen Darstellung eines Automatens verwendet man

- Knoten als Darstellungen von Zuständen
- eine gerichtete mit a beschriftete Kante von Knoten q zu Knoten r falls  $\delta(q,a)=r$
- einen Pfeil zur Darstellung des Anfangzustandes
- einen umkreisten Zustand als Darstellung eines Endzustands



#### 1.6 Lauf

Die Berechnung eines DFA auf einem Eingabewort bezeichnet man als **Lauf**. Sei  $A = (Q, \Sigma, \delta, q_0, F)$  ein DFA. Dann ist ein Lauf von A eine Folge  $(r_0, a_1, r_1, a_2, ..., r_{n-1}, a_n, r_n)$  mit  $n \ge 0$  und  $r_0, ..., r_n \in Q$  sowie  $a_1, ..., a_n \in \Sigma$ , sodass  $r_0 = q_0$  und  $\delta(r_{i-1}, a_i) = r_i$ ,  $1 \le i \le n$  gilt. Dann ist  $(r_0, a_1, r_1, a_2, ..., r_{n-1}, a_n, r_n)$  bzw.  $(r_0, r_1, r_2, ..., r_{n-1}, r_n)$  ein Lauf von A auf dem Wort  $w = a_1...a_n$ .

Dabei kann der DFA ein Wort **akzeptieren**, falls  $r_n \in F$ , ansonsten **verwirft** der DFA das Wort.

#### 1.7 DFA-Erkennbarkeit

Die von einem DFA A erkannte Sprache ist

$$L(A) := \{ w \in \Sigma^* \mid A \text{ akzeptiert } w \}$$

Eine Sprache L heißt **DFA-erkennbar**, wenn es einen DFA A gibt, sodass L = L(A)

# 2 Operationen auf Sprachen

#### 2.1 Mengenoperationen

Sei K, L, M und Varianten Sprachen über dem Alphabet  $\Sigma$ . Da Sprachen Mengen bilden, können auch **Vereinigung**, **Durchschnitt** und **Differenz** gebildet werden. Zusätzlich definieren wir für eine Sprache L das Komplement  $\overline{L}$ .

$$\begin{split} K \cup L &:= \{\, x \in K \cup L \,\,|\, x \in K \vee x \in L \,\} \\ K \cap L &:= \{\, x \in K \cap L \,\,|\, x \in K \wedge x \in L \,\} \\ K \setminus L &:= \{\, x \in K \setminus L \,\,|\, x \in K \wedge x \not\in L \,\} \\ \overline{L} &:= \Sigma^* \setminus L. \end{split}$$

# 2.2 Verkettung von Sprachen

Seien  $K, L \subseteq \Sigma^*$  Sprachen. Dann is die Verkettung von K und L definiert als

$$KL := \{ uv \mid u \in K, v \in L \} \subseteq \Sigma^*$$

### 2.2.1 Rechenregeln von Sprachverkettungen

Für alle Sprachen K, L, M gilt (Beweise Kap. 1)

- Assoziativgesetz
  - $\blacktriangleright$  (KL)M = K(LM)
  - $ightharpoonup L\{\varepsilon\} = \{\varepsilon\}L = L$
  - $\blacktriangleright L\emptyset = \emptyset L = \emptyset$
- Distributivgesetz
  - $ightharpoonup K(L \cup M) = KL \cup KM$
  - $\blacktriangleright$   $(K \cup L)M = KM \cup LM$

### 2.2.2 Potenzen von Sprachen

Sei  $L\subseteq \Sigma^*$  eine Sprache. Dann sind die Potenzen  $L^n,\quad n\in\mathbb{N}$  wiefolgt induktiv definiert:

$$L^0 := \{\varepsilon\},$$
 
$$L^{n+1} := L^N L \qquad \qquad \text{(Für alle } n \in \mathbb{N}\text{)}$$

#### 2.2.3 Iteration von Sprachen

Die Iteration (auch Kleene-Stern einer Sprache L ist die Sprache

$$L^* := \bigcup_{n \in \mathbb{N}} L^n$$

Da  $L^0 := \{\varepsilon\}$ , gilt :  $\varepsilon \in L^0 \subseteq L^*$ 

## 2.2.4 Rechenregeln auf Iterationen

Für alle  $L \subseteq \Sigma^*$  gilt:

- $L^*L^* = L^*$
- $(L^*)^* = L^*$
- $L^* = \{\varepsilon\} \cup LL^* = \{\varepsilon\} \cup L^*L$
- $\emptyset^* = \{\varepsilon\}$