Undergraduate Topology Robert H. Kasriel (Dover Publication) Solutions to exercises Part I Chapters I to IV

Bernard Carrette

May 4, 2023

Figure 1

Remarks and warnings

You're welcome to use these notes, but they may contain errors, so proceed with caution: I graduated in 1979, went straight in the industry (where I didn't have to use fancy maths), and picked mathematics and physics again after I retired, so my mathematics got rusty for sure. If you do find an error, typo's, I'd be happy to receive bug reports, suggestions, and the like, through Github.

Contents

1	Sets	, Functions, and Relations	5
	1.1	Sets and Membership	6
		1.1.1	6
		1.1.2	6
		1.1.3	6
	1.2	Some remarks on the use of the connectives and, or, implies	7
		1.2.1	7
		1.2.2	7
		1.2.3	8
		1.2.4	8
		1.2.5	8
		1.2.6	9
		1.2.7	9
		1.2.8	9
		1.2.9	10
	1.3	Subsets	11
	1.4	Union and Intersection of sets	11
		1.4.1	11
		1.4.2	12
		1.4.3	14
	1.5	Complementation	15
		1.5.1	15
		1.5.2	18
	1.6	Set identities and other set relations	19
		1.6.1	19
		1.6.2	20
		1.6.3	22
		1.6.4	22
	1.7	Counterexamples	23
		1.7.1	23
		1.7.2	23
		1.7.3	24
		1.7.4	24
		1.7.5	24
		1.7.6	25

CONTENTS 3

	1.7.7																			 	25
	1.7.8																			 	25
	1.7.9																			 	26
1.8	Collectio	$_{ m ns}$	of	Se	ts															 	27
	1.8.1																			 	27
	1.8.2																			 	29
	1.8.3																			 	29
	1.8.4																			 	30
	1.8.5																			 	31
	1.8.6																			 	32
1.9	Cartesian	ı F	ro	du	ct															 	34
	1.9.1																			 	34
	1.9.2																			 	35
	1.9.3																			 	35
	1.9.4																			 	36
	1.9.5																			 	36
1.10	Function	\mathbf{S}																		 	37
	1.10.1																			 	37

List of Figures

1		. 1
1.1	he 3 sets A, B, C	. 12
1.2	he 4 sets A, B, C, D	. 14
1.3	he 3 sets A, B, C	. 15

Sets, Functions, and Relations

1.1 Sets and Membership

1.1.1

List explicitly the elements of the set

$${x: x < 0 \text{ and } (x-1)(x+2)(x+3) = 0}$$

$$\{-3, -2\}$$

♦

1.1.2

List the elements of the set

 ${x: 3x - 1 \text{ is a multiple of 3}}$

$$\{x:\, x=k+\frac{1}{3},\, k\in\mathbb{Z}\}$$

♦

1.1.3

Sketch on a number line each of the following sets.

- (a) $\{x: |x-1| \le 3\}$
- (b) $\{x: |x-1| \le 3 \text{ and } |x| \le 2\}$
- (c) $\{x: |x-1| \le 3 \text{ or } |x| \le 2\}$

1.2 Some remarks on the use of the connectives and, or, implies

1.2.1

Demonstrate by means of a table showing truth values that the following is a true statement for any choice of p and q. Thus show that it is a tautology.

$$(\neg q \Rightarrow \neg p) \Rightarrow (p \Rightarrow q)$$

p	q	$\neg q$	$\neg p$	$\neg q \Rightarrow \neg p$	$p \Rightarrow q$	$(\neg q \Rightarrow \neg p) \Rightarrow (p \Rightarrow q)$
T	T	F		T	T	T
T		T	F	F	F	T
		F	T	T	T	T
F	F	T	T	T	T	T

1.2.2

Show by means of a truth table that the statement

$$((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$$

is a tautology.

p	q	r	$p \Rightarrow q$	$q \Rightarrow r$	$(p \Rightarrow q) \land (q \Rightarrow r))$	$p \Rightarrow r$	$ ((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r) $
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T
T	F	T	F	T	F	T	T
T	F	F	F	T	F	F	T
F	T	T	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T
F	F	F	$\mid T \mid$	T	T	$\mid T \mid$	T

1.2.3

Show by means of a truth table that

$$(p \land q) \Rightarrow (p \lor q)$$

is a tautology.

p	q	$p \wedge q$	$p \lor q$	$(p \land q) \Rightarrow (p \lor q)$
T	T	T	T	T
T	F	F	F	T
F	T	F	T	T
F	F	F	F	T

1.2.4

Suppose that p and q are statements such that $(p \wedge q)$ is a false statement. Does it follow that the statement

$$(p \text{ is false}) \lor (q \text{ is false})$$

is a true statement?

1)	q	$p \wedge q$	$\neg p$	$\neg q$	$\neg p \vee \neg q$
7	r	F	F	F	T	T
1	7	T	F	T	F	T
1	7	F	F	T	T	T

The answer is Yes.

♦

1.2.5

Negate the following statement: If two angles of a triangle have equal measure, then the length of two sides of that triangle are equal.

First we note that $\neg(p\Rightarrow q)\Leftrightarrow (p\wedge \neg q).$ Indeed,

p	q	$p \Rightarrow q$	$\neg(p \Rightarrow q)$	$\neg q$	$p \land \neg q$	$ \mid \neg(p \Rightarrow q) \Leftrightarrow (p \land \neg q) \mid $
T	T	T	F	F	F	T
T	F	F	T	T	T	T
F	T	T	F	F	F	T
F	F	T	F	T	F	T

Putting p as two angles of a triangle have equal measure and $\neg q$ as no two sides of that triangle have equal length we get the true 'false' statement:

Two angles of a triangle have equal measure \wedge no two sides of that triangle have equal length.

•

1.2.6

Write the contrapositive of the statement in Exercise 5.

The contrapositive of $p \Rightarrow q$ is $\neg q \Rightarrow \neg p$. Putting $\neg p$ as no two angles of a triangle have equal measure and $\neg q$ as no two sides of that triangle have equal length we get

If no two sides of that triangle have equal length then no two angles of a triangle have equal measure.

•

1.2.7

Write the converse of the statement in Exercise 5.

The converse of $p \Rightarrow q$ is $q \Rightarrow p$, giving

If two sides of a triangle have equal length then two angles of a that triangle have equal measure.

4

1.2.8

Write the contrapositive of the following statement

If a person belongs to Committee A, then he must be a member of Committee B and he must be a member of Committee C.

Lets put

 $p \equiv$ a person belongs to Committee A

 $q \equiv$ a person belongs to Committee B

 $r \equiv$ a person belongs to Committee C

then the given statement translates as

$$p \Rightarrow (q \wedge r)$$

and the contrapositive

$$\neg (q \land r) \Rightarrow \neg p$$

This last statement is equivalent with

$$(\neg q \vee \neg r) \Rightarrow \neg p$$

or in plain text:

If a person does not belong to Committee B or C , then he is not a member of Committee A.

♦

1.2.9

Write the contrapositive of the following statement

If
$$x \in A$$
 and $x \in B$, then $x \in C$

Lets put

$$p \equiv x \in A$$

$$q\equiv x\in B$$

$$r\equiv x\in C$$

then the given statement translates as

$$p \wedge r \Rightarrow r$$

and the contrapositive

$$\neg(r) \Rightarrow \neg(p \land q)$$

This last statement is equivalent with

$$\neg(r) \Rightarrow (\neg p \vee \neg q)$$

i.e:

$$x \notin C \Rightarrow (x \notin A \lor x \notin B)$$

4

1.3 Subsets

No exercises!

1.4 Union and Intersection of sets

1.4.1

Let G_1 be the graph of the equation $x^2 + y^2 = 16$, and let G_2 be the graph of the equation $x^2 - y^2 = 1$. Sketch the sets $G_1 \cup G_2$ and $G_1 \cap G_2$.

 $G_1 \cup G_2$ contains all the points defined by the graphs G_1 and G_2 . $G_1 \cap G_2 \equiv \{A, B, C, D\}$ contains the 4 points at the intersection of the two graphs.

1.4.2

We define the sets A, B, C as follows: $A = \{(x, y) : x^2 + y^2 \le 9\}, B = \{(x, y) : x + y \ge 3\}, C = \{(x, y) : x \ge 0\}.$

Draw sketches of each of the following sets:

- (a) $A \cup (B \cup C)$
- (b) $A \cap (B \cup C)$
- (c) $(A \cap B) \cup (A \cap C)$
- (d) $(A \cup B) \cup C$
- (e) $A \cup (B \cap C)$
- $(f) \quad (A \cup B) \cap (A \cup C)$

Figure 1.1: The 3 sets A, B, C

1.4.3

Let A, B, C as follows: $A = \{(x, y) : x + y \le 5\}, B = \{(x, y) : x + y \ge 3\}, C = \{(x, y) : x \ge 3\},$ and $D = \{(x, y) : y \ge 3\}.$

Draw a sketch for each of the following sets:

- (a) $(A \cap B) \cap C$
- (b) $[(A \cap B) \cap C] \cap D$

Figure 1.2: The 4 sets A, B, C, D

1.5 Complementation

1.5.1

Sketch each of the following sets: (the sets A, B, C are defined as in exercise 3page 8)

- $(a) \sim (A \cap B)$
- $(b) \quad (\sim A) \cup (B)$
- $(c) \quad \sim (A \cup B)$
- $(d) \quad (\sim A) \cap (B)$
- (e) C-A
- $(f) \sim (A \cap C)$
- $(g) \quad (\sim A) \cup (\sim B)$
- $(h) \quad (\sim A) \cap (A)$
- $(i) \quad C (A \cup B)$
- (j) $(C-A)\cap (C-B)$
- $(k) \sim (\sim A)$

Figure 1.3: The 3 sets A, B, C

1.5.2

On the basis of the sketches made in the previous exercise, formulate a proposition about relation that exist concerning complementation, union, and intersection. Try out your conjecture on other examples. In subsequent exercises you will be asked to try to prove such conjectures.

$$\begin{array}{lll} 1.4.2\,(a) \ {\rm and} \ (d) & A \cup (B \cup C) = (A \cup B) \cup C) \\ 1.4.2\,(b) \ {\rm and} \ (c) & A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \\ 1.4.2(e) \ {\rm and} \ (f) & A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \\ 1.5.1(a) \ {\rm and} \ (g) & \sim (A \cap B) = (\sim A) \cup (\sim B) \\ 1.5.1(h) & (\sim A) \cap A = \emptyset \\ 1.5.1(i) \ {\rm and} \ (j) & C - (A \cup B) = (C - A) \cap (C - B) \\ 1.5.1(k) & \sim (\sim A) = A \end{array}$$

1.6 Set identities and other set relations

1.6.1

Prove that if $A \subset B$, then:

- (a) $A \cap C \subset B \cap C$
- (b) $\sim B \subset \sim A$
- (c) $A \cap B = A$
- (d) $A \cup C \subset B \cup C$

a) $A \cap C \subset B \cap C$

Given is $x \in B$ if $x \in A$. Suppose $x \in A \cap C$, then $x \in A$ (given) and $x \in C$ but $x \in B$ (given) and as $x \in C$ follows that $x \in B \cap C$. And we conclude that $A \cap C \subset B \cap C$.

 \Diamond

b) $\sim B \subset \sim A$

Given is $x \in B$ if $x \in A$. If $x \notin B$ then $x \in A$. As $A \subset B$, A will not be in A but $x \in A$. So $x \in A$ and thus $A \subset B$ and thus $A \subset A$.

 \Diamond

c) $A \cap B = A$

Given is $x \in B$ if $x \in A$. Suppose $x \in A \cap B$, then $x \in A$ and thus $A \cap B \subset A$. Suppose $x \in A$, then $x \in B$ as $A \subset B$ and thus $x \in A \cap B$ from which we conclude $A \subset A \cap B$.

 \Diamond

d) $A \cup C \subset B \cup C$

Given is $x \in B$ if $x \in A$. Suppose $x \in A \cup C$, then $x \in A$ or $x \in C$. But $x \in B$ (given), so $x \in B$ or $x \in C$ and thus $x \in B \cup C$, from which we conclude $A \cup C \subset B \cup C$.

1.6.2

Verify that each of the following is an an identity:

- (a) $A \cup \emptyset = A$
- (b) $A \cap \emptyset = \emptyset$
- (c) $A \cap A = A$
- (d) $A \cup A = A$
- $(e) \quad (A \cup B) \cup C = A \cup (B \cup C)$
- $(f) \quad (A \cap B) \cap C = A \cap (B \cap C)$
- $(g) \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $(h) \quad X (A \cup B) = (X A) \cap (X B)$
- (i) $A \cap \sim A = \emptyset$
- (j) $A \cup \sim A = U$
- a) $A \cup \emptyset = A$

This is a consequence of remark 3.3 page 7: the empty set \emptyset is a subset of every set. So, $\emptyset \subset A$ giving the asked identity.

 \Diamond

b) $A \cap \emptyset = \emptyset$

If $x \in A \cap \emptyset$ then $x \in A$ and x must also be in \emptyset which is impossible by definition. So there is no element $x \in \emptyset$ which can satisfy $x \in A \cap \emptyset$ giving the proposed identity.

 \Diamond

c) $A \cap A = A$

Suppose $x \in A \cap A$, then $x \in A$ and $x \in A$ and thus $x \in A$, giving $A \cap A \subset A$. Suppose $x \in A$, then obviously $x \in A$ and $x \in A$, giving $A \subset A \cap A$. Hence $A \cap A = A$

 \Diamond

$\mathbf{d)} \quad A \cup A = A$

Suppose $x \in A \cup A$, then $x \in A$ or $x \in A$ and thus $x \in A$, giving $A \cup A \subset A$. Suppose $x \in A$, then obviously $x \in A$ or $x \in A$, giving $A \subset A \cup A$. Hence $A \cup A = A$

e)
$$(A \cup B) \cup C = A \cup (B \cup C)$$

Suppose $x \in (A \cup B) \cup C$, then $x \in (A \cup B)$ or $x \in C$ and thus $x \in A$ or $x \in B$ or $x \in C$. So $x \in B$ or $x \in C$ can be written as $x \in (B \cup C)$. So $x \in A$ or $x \in (B \cup C)$, giving $(A \cup B) \cup C \subset A \cup (B \cup C)$. The same reasoning yields for $x \in A \cup (B \cup C)$ giving the identity.

(

$$\mathbf{f)} \quad (A \cap B) \cap C = A \cap (B \cap C)$$

Suppose $x \in (A \cap B) \cap C$, then $x \in (A \cup B)$ and $x \in C$ and thus $x \in A$ and $x \in B$ and $x \in C$. So $x \in B$ and $x \in C$ can be written as $x \in (B \cap C)$. So $x \in A$ and $x \in (B \cup C)$, giving $(A \cap B) \cap C \subset A \cap (B \cap C)$. The same reasoning yields for $x \in A \cap (B \cap C)$ giving the identity.

 \Diamond

$$\mathbf{g)} \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Suppose $x \in A \cup (B \cap C)$, then $x \in A$ or $x \in (B \cap C)$. Take the case $x \in A$, then $x \in A \cup B$ and $x \in A \cup C$ which implies $x \in (A \cup B) \cap (A \cup C)$, giving $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$. The other case: if $x \in B \cap C$ then $x \in B$ and $x \in C$. So, $x \in A \cup B$ and $x \in A \cup C$ giving also $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$.

On the other hand, be $x \in (A \cup B) \cap (A \cup C)$ then $x \in (A \cup B)$ and $x \in (A \cup C)$. Let's first take the case $x \in A$ then obviously $x \in A \cup (B \cap C)$ even if $x \notin B \cap C$. Alternatively, be $x \notin A$ then we must have $x \in B$ and $x \in C$ which implies $x \in B \cap C$, giving again $x \in A \cup (B \cap C)$.

 \Diamond

h)
$$X - (A \cup B) = (X - A) \cap (X - B)$$

Suppose $x \in X - (A \cup B)$, then $x \notin A$ and $x \notin B$ which implies $x \in X - A$ and $x \in X - B$ and thus $x \in X - A \cap X - B$ giving $X - (A \cup B) \subset (X - A) \cap (X - B)$.

The other way around. Suppose $x \in (X-A) \cap (X-B)$. Then $x \in (X-A)$ and $x \in (X-B)$ which implies $x \notin A$ and $x \notin B$ giving $x \notin A \cup B$ which in turn implies $x \in X - (A \cup B)$ giving $(X-A) \cap (X-B) \subset X - (A \cup B)$.

Conclusion: $X - (A \cup B) = (X - A) \cap (X - B)$

 \Diamond

i)
$$A \cap \sim A = \emptyset$$

Suppose $x \in A \cap \sim A$, then $x \in A$ and $x \notin A$ which is a contradiction, so the only element which is always an element of any set is the empty set, so $A \cap \sim A \subset \emptyset$. Suppose on the contrary that $x \in \emptyset$. This implies that x correspond to the empty set and as the empty set is an element of

any set, we have $\emptyset \subset A \cap \sim A$

 \Diamond

\mathbf{j}) $A \cup \sim A = U$

Suppose $x \in A \cup \sim A$, then $x \in A$ or $x \notin A$. So, in any case $x \in U$ and thus $A \cup \sim A \subset U$. On the opposite way suppose that $x \in U$. Then obviously $x \in A$ or $x \in \sim A$ and thus $U \subset A \cup \sim A$.

♦

1.6.3

Prove that if $A \subset C$ and $B \subset C$, then $A \cup B \subset C$.

Given is $A \subset C$ and $B \subset C$. Take $x \in A$, then $x \in C$, so even if $x \notin B$, then $x \in A \cup B$ reduces to $x \in A$ and thus $x \in C$. The same reasoning yields for $x \in B$, giving $A \cup B \subset C$.

♦

1.6.4

Prove that if $A \subset B$ and $A \subset C$, then $A \subset B \cap C$.

Given is $A \subset B$ and $A \subset C$. Take $x \in A$, then $x \in C$ and $x \in B$, which implies $x \in C \cap B$. giving indeed $A \subset B \cap C$.

1.7 Counterexamples

In each of the following exercises state whether the statement is necessarily true. Assume that A, B and C are subsets of a universal set U. Justify with a proof or a counterexample.

1.7.1

If $A \cup C = B \cup C$, then A = B

Not TRUE.

Be $A \subset C$ and $B \subset C$, then we have $A \cup C = B \cup C \equiv C = C$ even if $A \cap B = \emptyset$.

♦

1.7.2

$$(A \cup B) - B = A$$

Not TRUE.

Be $A\cap B\neq\emptyset$, take $x\in A$ and $x\in B$, then x can't be $x\in(A\cup B)-B$ although it is an element of A.

1.7.3

$$(A - B) \cup B = A$$

Not TRUE.

This is only true if $B \subset A$

♦

1.7.4

$$\sim (A - B) = \sim (A \cap \sim B)$$

TRUE.

Suppose first that A and B are disjoint, i.e. $A \cap B = \emptyset$, then A - B = A and $\sim (A - B) = \sim A$. On the other hand $A \subset \sim B$, so $A \cap \sim B = A$, giving $\sim (A \cap \sim B) = \sim A$, giving indeed $\sim (A - B) = \sim (A \cap \sim B)$.

Suppose now that A and B are not disjoint, i.e. $A \cap B \neq \emptyset$. Be $x \in A - B \subset A$. This is equivalent with the statement $x \in A \land x \notin B$. Negating this statement: $\neg(x \in A \land x \notin B) \Leftrightarrow x \notin A \lor x \in B$. This give $\sim (A - B) \equiv x \notin A \lor x \in B$.

Be now $x \in A \cap \sim B$. This is equivalent with the statement $x \in A \land x \notin B$. Negating this statement: $\neg(x \in A \cap \sim B) \Leftrightarrow x \notin A \lor x \in B$. This give $\sim (A \cap \sim B) \equiv x \notin A \lor x \in B$, resulting in $\sim (A - B) = \sim (A \cap \sim B)$.

•

1.7.5

$$\sim (\sim (\sim A)) = \sim A$$

TRUE.

Be $x \in \sim (\sim (\sim A))$. This is equivalent to $x \notin \sim (\sim A)$. Which on it's turn is equivalent with $x \in \sim A$. So, $\sim (\sim (\sim A)) \subset \sim A$.

Be $x \in A$. This is equivalent to $x \notin (A)$. Which on it's turn is equivalent with $x \in (A)$. So, $A \subset (A)$.

Both cases reduce to $\sim (\sim (\sim A)) = \sim A$.

♦

1.7.6

$$A \cup (B - C) = (A \cup B) - C$$

Not TRUE.

Be $x \in A \cup (B - C)$. This is equivalent to $x \in A \lor x \in (B - C)$. Suppose $x \in A$, then $x \in A \cup B$. Let's consider the set C so that $(A \cup B) \subset C$, then $(A \cup B) - C = \emptyset$. We get a contradiction and the proposed statement is not true.

•

1.7.7

$$\sim (A - B) = (\sim A) \cup B$$

TRUE.

Be $x \in (A-B)$. This is equivalent to $x \in A \land x \notin B$. Negating this statement: $\neg(x \in A \land x \notin B) \Leftrightarrow x \notin A \lor x \in B$. This is equivalent to the statement $x \in (\sim A) \cup B$. So $\sim (A-B) \subset (\sim A) \cup B$. Consider now $x \in (\sim A) \cup B$. So $x \notin A \lor x \in B$. If we have the case $x \notin A$ then also $x \notin (A-B)$ as x can not be one of the remaining elements of A after the complement of B relative to A. Also, if $x \in B$ then also $x \notin (A-B)$ as x is an element of B and thus can not be an element of A. Thus, in both cases we have, $x \notin (A-B)$ which implies $x \in \sim (A-B)$. So $(\sim A) \cup B \subset \sim (A-B)$.

•

1.7.8

If
$$A - B = C - B$$
, then $A = C$.

Not TRUE.

Suppose $A \subset B$, then $A - B = \emptyset$. Choose a C such that $C \subset B$ and also $A \cap C = \emptyset$, then also $C - B = \emptyset$ and get A - B = C - B although $A \neq C$.

♦

1.7.9

If
$$A - (B \cap C) = (A - B) \cap (A - C)$$
.

TRUE.

Suppose $x \in A - (B \cap C)$, then $x \in A \land x \notin B \cap C$. As x can not be simultaneously in B and C, then also x must be simultaneously in A - B and A - C as the "complementation of A with B and C will not "subtract" x out of A, and considering that $x \in A$ we have $A - (B \cap C) \subset (A - B) \cap (A - C)$ Suppose $x \in (A - B) \cap (A - C)$, then x must be an element of A but not an element of B and C. This means that $x \notin B \cap C$ and thus the complementation of A by $B \cap C$ has no effect on x. Thus, $(A - B) \cap (A - C) \subset A - (B \cap C)$.

1.8 Collections of Sets

1.8.1

Suppose that $A,\,B$ and C are the following subsets of the plane:

 $A=\{(x,y):x^2+y^2\leq 16\},\, B=\{(x,y):x\geq 0 \text{ and } y\leq 0\},\, C=\{(x,y):y\leq x\}.$ If $\mathscr K$ is the collection of sets $\{A,\,B,\,C\}$, sketch each of the following sets:

- (a) $\bigcap \mathcal{K}$
- (b) $\bigcup \mathcal{K}$
- (c) $\bigcup \mathcal{K} \bigcap \mathcal{K}$

(p) The sets $A,\,B,\,C$

a)
$$\bigcap \mathscr{K}$$

 \Diamond

b) $\bigcup \mathcal{K}$

 \Diamond

c) $\bigcup \mathcal{K} - \bigcap \mathcal{K}$

1.8.2

Recall that \mathbb{P} is the symbol for the set of positive integers. Suppose that for each $n \in \mathbb{P}$, we let $A_n = \{x \in \mathbb{R} : x \ge n\}$. Describe the sets $\bigcup \{A_n : n \in \mathbb{P}\}$ and $\bigcap \{A_n : n \in \mathbb{P}\}$.

$$S = \bigcup \{A_n : n \in \mathbb{P}\}\$$

$$S = [1, +\infty)$$

$$\Diamond$$

$$S = \bigcap \{A_n : n \in \mathbb{P}\}\$$

$$S = \emptyset$$

This can be understood by the fact that for every $x \in \mathbb{R}$, you can find a $n \in \mathbb{P}$ so that $x \notin A_n$. So, no x can be an element of S.

1.8.3

Suppose that for each $n \in \mathbb{P}$, K_n is a non-empty set such that $K_{n+1} \subset K_n$. Let $\mathcal{K} = \{K_n :$ $n \in \mathbb{P}$.

In each of the following, if the statement is necessarily true, say so and justify your answer. If the statement is not necessarily true, give a counterexample to justify your answer.

(a)
$$\bigcup \mathcal{K} = K_1$$

(a)
$$\bigcirc \mathcal{K} = K_1$$

(b) $\bigcap \{K_i : i = 1, 2, \dots, n\} = K_n$
(c) $\bigcap \mathcal{K} \neq \emptyset$

(c)
$$\bigcap \mathcal{K} \neq \emptyset$$

(a)
$$\bigcup \mathcal{K} = K_1$$
.

TRUE.

Be $x \in K_n$ for any arbitrary n. So, $x \in K_n \cup K_{n-1}$. But $K_n \cup K_{n-1} = K_{n-1}$, giving $x \in K_{n-1}$. Repeating that process with $K_{n-1} \subset K_{n-2} \subset \dots K_2 \subset K_1$ we get $x \in K_n$.

(b)
$$\bigcap \{K_i : i = 1, 2, \dots, n\} = K_n$$
.

TRUE.

Suppose first that for all n we have K_n is a proper subset of K_{n-1} . Then $K_n \cap K_{n-1} = K_n$. Be $x \in K_n$ but not in K_{n-1} for any arbitrary n. Then, $x \in K_n \cap K_{n-1}$ is equivalent to $x \in K_n$. Repeating that process with we have $K_n \cap K_{n-1} \cap K_{n-2} \cap \dots K_2 \cap K_1 = K_n$ and get $x \in K_n$. Hence, $\bigcup \mathcal{K} = K_1.$

In the case that for some or all n we have $K_n = K_{n-1}$ we could also state that $\bigcap \{K_i : i = 1\}$ $1, 2, \ldots, n$ = K_{n-1} but as $K_n = K_{n-1}$ we can write $\bigcap \{K_i : i = 1, 2, \ldots, n\} = K_{n-1} = K_n$.

The same is true in the case that a sequence of the subsets are proper subset of each other i.e. $K_{n+p} = K_{n+p-1} = \dots K_{n+1} = K_n = K_{n-1} = \dots = K_{n-t}$. then one could write $\bigcap \{K_i : i = 1, 2, \dots, n\} = K_{n+p}$ but as $K_{n+p} = K_n$, the original statement holds.

 \Diamond

(c) $\bigcap \mathcal{K} \neq \emptyset$.

TRUE.

As no K_n is an empty set, K_n will always contain at least one element and due to (b) we get indeed $\bigcap \mathcal{K} \neq \emptyset$: suppose that for a given n, K_n contains only one element x, then all subsequent K_{n+p} must also have only one element i.e. x and we will get $\bigcap \mathcal{K} = \{x\}$

•

1.8.4

For each real number r > 0, let $L_r = \{x : x \ge r\}$. Sketch the set $\bigcup \{L_r : r > 0\}$ and $\bigcap \{L_r : r > 0\}$ on a number line. If a set happens to be empty, say so.

 \Diamond

$$\bigcap \{L_r : r > 0\} = \emptyset.$$

Indeed, take an arbitrary r and be $\epsilon > 0$ then $\exists x \in L_r : x \notin L_{r+\epsilon}$. Then, $L_r \cap L_{r+\epsilon} = \emptyset$. So, whatever L_r we choose in the collection $\mathscr{L} = \{L_r : r \in \mathbb{R}^+\}$ there always be a $L_{r'}$ for which $L_r \cap L_{r'} = \emptyset$ and hence $\bigcap \{L_r : r > 0\} = \emptyset$.

1.8.5

Let U be a set and let \mathscr{K} be a non-empty collection of subsets of U. \sim will signify the complement with respect to U. Prove the following set identities. The identities are quite important and are known as De Morgan's Laws.

(a)
$$\sim (\bigcup \{K : K \in \mathcal{K}\}) = \bigcap \{\sim K : K \in \mathcal{K}\}\$$

(b)
$$\sim (\bigcap \{K : K \in \mathcal{K}\}) = \bigcup \{\sim K : K \in \mathcal{K}\}\$$

(a)
$$\sim (\bigcup \{K : K \in \mathcal{K}\}) = \bigcap \{\sim K : K \in \mathcal{K}\}\$$

Suppose $x \in \sim (\bigcup \{K : K \in \mathcal{X}\})$, then $x \notin \bigcup \{K : K \in \mathcal{X}\}$. This means that x is not an element of any $K \in \mathcal{K}$ i.e. $\forall K \in \mathcal{K} : x \notin K$. This can also be expressed as $\forall K \in \mathcal{K} : x \in \sim K$. This means that x is an element of all $\sim K$ giving $x \in \bigcap \{\sim K : K \in \mathcal{K}\}$ and thus $\sim (\bigcup \{K : K \in \mathcal{K}\}) \subset \bigcap \{\sim K : K \in \mathcal{K}\}$.

Suppose now that $x \in \bigcap \{\sim K : K \in \mathcal{K}\}$. This means that x is an element of $\{\sim K : K \in \mathcal{K}\}$ for all K i.e. $x \notin \{K : K \in \mathcal{K}\}$ for all K, (indeed if x would be an element of a $K \in \mathcal{K}$ then x would not be an element of its complement and so x could not be an element of $\bigcap \{\sim K : K \in \mathcal{K}\}$. The conclusion is that $x \notin \bigcup \{K : K \in \mathcal{K}\}$ and thus $x \in \sim \bigcup \{K : K \in \mathcal{K}\}$. Hence, $\bigcap \{\sim K : K \in \mathcal{K}\}$ $\subset \sim (\bigcup \{K : K \in \mathcal{K}\})$.

Conclusion $\sim (\bigcup \{K : K \in \mathcal{K}\}) = \bigcap \{\sim K : K \in \mathcal{K}\}.$

 \Diamond

(b)
$$\sim (\bigcap \{K : K \in \mathcal{K}\}) = \bigcup \{\sim K : K \in \mathcal{K}\}\$$

Suppose $x \in \sim (\bigcap \{K : K \in \mathcal{K}\})$, then $x \notin \bigcap \{K : K \in \mathcal{K}\}$. This means that there exists at least one $K \in \mathcal{K}$ so that x is not an element of this K i.e. $\exists K \in \mathcal{K} : x \notin K$. This can also be expressed as $\exists K \in \mathcal{K} : x \in \sim K$. This means that x is an element of $\bigcup \{\sim K : K \in \mathcal{K}\}$ and thus $\sim (\bigcap \{K : K \in \mathcal{K}\}) \subset \bigcup \{\sim K : K \in \mathcal{K}\}$.

Suppose now that $x \in \bigcup \{ \sim K : K \in \mathscr{K} \}$. This means that x is an element of at least one $\sim K : K \in \mathscr{K}$. Stated differently, there exist at least one $K : K \in \mathscr{K}$ for which $x \notin K$. This means that x can not be an element of $\bigcap \{ K : K \in \mathscr{K} \}$ and thus $x \in \sim \bigcap \{ K : K \in \mathscr{K} \}$ which means $\bigcup \{ \sim K : K \in \mathscr{K} \} \subset \sim (\bigcup \{ K : K \in \mathscr{K} \})$

Conclusion $\sim (\bigcap \{K : K \in \mathcal{K}\}) = \bigcup \{\sim K : K \in \mathcal{K}\}.$

1.8.6

Let $S = \{1, 2, 3, 4, 5\}$ and let $\mathscr{P}(S)$ be the power set of S. List the elements in $\mathscr{P}(S)$.

We order them according to the number of elements in the subsets. We check the number of subsets by using the $\binom{5}{m}$ formula (i.e. combination without repetition).

5 elements
$$\binom{5}{5} = 1$$

 $\{1, 2, 3, 4, 5\}$
4 elements $\binom{5}{5} = 5$

4 elements
$$\binom{5}{4} = 5$$

$$\{1, 2, 3, 4\}$$

$$\{1,2,3,5\}$$

$$\{1, 2, 4, 5\}$$

$$\{1, 3, 4, 5\}$$

$$\{2, 3, 4, 5\}$$

3 elements
$$\binom{5}{3} = 10$$

$$\{1, 2, 3\}$$

$$\{1, 2, 4\}$$

$$\{1, 2, 5\}$$

$$\{1, 3, 4\}$$

$$\{1, 3, 5\}$$

$$\{1, 4, 5\}$$

$$\{2, 3, 4\}$$

$$\{2, 3, 5\}$$

$$\{2, 4, 5\}$$

$$\{3, 4, 5\}$$

2 elements
$$\binom{5}{2} = 10$$

- $\{1, 2\}$
- $\{1, 3\}$
- $\{1, 4\}$
- $\{1, 5\}$
- $\{2, 3\}$
- $\{2, 4\}$
- $\{2, 5\}$
- ${3,4}$
- ${3,5}$
- $\{4, 5\}$

1 element
$$\binom{5}{1} = 5$$

- {1}
- {2}
- {3}
- {4}
- ſξl

0 elements
$$\binom{5}{0} = 1$$

Ø

Note that the total number of subsets in $\mathscr{P}(S)$ is 1+5+10+10+5+1=32 which corresponds to 2^5 .

1.9 Cartesian Product

1.9.1

Suppose that $A \subset B$ and C is a set. Prove that $A \times C \subset B \times C$.

Be $x \in A$ and $y \in C$. As $A \subset B$, then x is also in B. Thus $\underbrace{(x,y)}_{x \in A, y \in C} \in A \times C$ means also that

$$\underbrace{(x,y)}_{x \in B, y \in C} \in B \times C$$

♦

1.9.2

Let $A = \{1, 2, 3\}$, $B = \{a, b\}$, and $C = \{\alpha, \beta\}$. List the elements of each of the following sets:

(a)
$$A \times (B \cup C)$$

(b)
$$(A \times B) \cup (A \times C)$$

(c)
$$(A \cup B) \times C$$

(c)
$$(A \times C) \cup (B \times C)$$

(a)
$$A \times (B \cup C)$$

$$(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)$$

$$(1, \alpha), (1, \beta), (2, \alpha), (2, \beta), (3, \alpha), (3, \beta)$$

 \Diamond

(b)
$$(A \times B) \cup (A \times C)$$

$$(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)$$

$$(1, \alpha), (1, \beta), (2, \alpha), (2, \beta), (3, \alpha), (3, \beta)$$

 \Diamond

(c)
$$(A \cup B) \times C$$

$$(1,\alpha), (1,\beta), (2,\alpha), (2,\beta), (3,\alpha), (3,\beta), (1,\alpha), (1,\beta), (2,\alpha), (2,\beta), (3,\alpha), (3,\beta)$$

$$(a, \alpha), (a, \beta), (b, \alpha), (b, \beta)$$

 \Diamond

(c)
$$(A \times C) \cup (B \times C)$$

$$(1, \alpha), (1, \beta), (2, \alpha), (2, \beta), (3, \alpha), (3, \beta), (1, \alpha), (1, \beta), (2, \alpha), (2, \beta), (3, \alpha), (3, \beta)$$

$$(a, \alpha), (a, \beta), (b, \alpha), (b, \beta)$$

4

1.9.3

Are any of the sets in Exercise 2 the same? If so write the set identities that are suggested by your observations. Try to prove your conjecture.

In exercise 2 we can see that that the set (a) and (b) are the same. Also (c) and (d) are the same. This suggests the following identities $A \times (B \cup C) = (A \times B) \cup (A \times C)$ and $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

$$\mathbf{A} \times (\mathbf{B} \cup \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cup (\mathbf{A} \times \mathbf{C})$$

Proof:

Be $x \in A$ and $y \in B \cup C$, so y is an element of B or C. Consider $(x,y) \in A \times (B \cup C)$. As the y can be an element of B or C follows immediately that $(x,y) \in (A \times B)$ or $(x,y) \in A \times C$ and thus $(x,y) \in (A \times B) \cup (A \times C)$. And get $A \times (B \cup C) \subset (A \times B) \cup (A \times C)$

Suppose now that $(x,y) \in (A \times B) \cup (A \times C)$. The (x,y) is an element of $A \times B$ or $A \times C$. For the same $x \in A$ this implies that $y \in B$ or $y \in C$ and thus $(x,y) \in A \times (B \cup C)$, giving $(A \times B) \cup (A \times C) \subset A \times (B \cup C)$ leading with the previous $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

 \Diamond

$$(\mathbf{A} \cup \mathbf{B}) \times \mathbf{C} = (\mathbf{A} \times \mathbf{C}) \cup (\mathbf{B} \times \mathbf{C})$$

Proof:

Be $x \in A \cup B$ and $y \in C$, so x is an element of A or B. Consider $(x,y) \in (A \cup B) \times C$. As the x can be an element of A or B follows immediately that $(x,y) \in (A \times C)$ or $(x,y) \in (B \times C)$ and thus $(x,y) \in (A \times B) \cup (A \times C)$. And get $(A \cup B) \times C \subset (A \times C) \cup (B \times C)$

Suppose now that $(x, y) \in (A \times B) \cup (\mathbf{A} \times C)$. The (x, y) is an element of $A \times C$ or $B \times C$. For the same $y \in C$ this implies that $x \in A$ or $x \in B$ and thus $(x, y) \in (A \times C) \cup (B \times C)$, giving $(A \times C) \cup (B \times C) \subset (A \cup B) \times C$ leading with the previous $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

♦

1.9.4

Suppose that A is a set consisting of five elements and B is a set consisting of three elements. How many elements does the set $A \times B$ have? The set $B \times A$?

 $A \times B$ has $5 \times 3 = 15$ elements. Indeed in the element $(x, y) \in A \times B$ we can choose for x out of the five elements of A and for each choice of x we are free to choose one element out of the 3 elements of B.

For $B \times A$, the reasoning is the same and get $3 \times 5 = 15$ elements.

1.9.5

Suppose that A is a set consisting of m elements and B is a set consisting of n elements, where m and n are positive integers. How many elements are there in $A \times B$?

 $A \times B$ has $m \times m$ elements. Indeed in the element $(x,y) \in A \times B$ we can choose for x out of the m elements of A and for each choice of x we are free to choose one element out of the n elements of B.

•

1.9.6

Suppose that A is a set consisting of three elements, B consists of four elements and C consists of two element. How many elements are there in the set $(A \times B) \times$?

 $(A \times B) \times C$ has $(3 \times 4) \times 2 = 24$ elements. Indeed in the element $((x, y), z) \in (A \times B) \times C$ we have for (x, y), $3 \times 4 = 12$ elements (see Exercise 1.9.5) and for each choice of this (x, y) we are free to choose one element out of the 2 elements of C.

1.10 Functions

1.10.1

 \blacklozenge