Section V.1

Remark V.1.1 Previously, we defined a **vector space** V to be any collection of mathematical objects with associated addition and scalar multiplication operations that satisfy the following eight properties for all $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}$ in V, and all scalars (i.e. real numbers) a, b.

•
$$\vec{\mathbf{u}} \oplus (\vec{\mathbf{v}} \oplus \vec{\mathbf{w}}) = (\vec{\mathbf{u}} \oplus \vec{\mathbf{v}}) \oplus \vec{\mathbf{w}}$$
.

•
$$a \odot (b \odot \vec{\mathbf{v}}) = (ab) \odot \vec{\mathbf{v}}$$
.

•
$$\vec{\mathbf{u}} \oplus \vec{\mathbf{v}} = \vec{\mathbf{v}} \oplus \vec{\mathbf{u}}$$
.

•
$$1 \odot \vec{\mathbf{v}} = \vec{\mathbf{v}}$$
.

• There exists some
$$\vec{z}$$
 where $\vec{v} \oplus \vec{z} = \vec{v}$.

•
$$a \odot (\vec{\mathbf{u}} \oplus \vec{\mathbf{v}}) = a \odot \vec{\mathbf{u}} \oplus a \odot \vec{\mathbf{v}}.$$

• There exists some
$$-\vec{\mathbf{v}}$$
 where $\vec{\mathbf{v}} \oplus (-\vec{\mathbf{v}}) = \vec{\mathbf{z}}$.

•
$$(a+b)\odot\vec{\mathbf{v}}=a\vec{\mathbf{v}}\oplus b\vec{\mathbf{v}}.$$

Remark V.1.2 Every Euclidean space \mathbb{R}^n is a vector space, but there are other examples of vector spaces as well.

For example, consider the set \mathbb{C} of complex numbers with the usual defintions of addition and scalar multiplication, and let $\vec{\mathbf{u}} = a + b\mathbf{i}$, $\vec{\mathbf{v}} = c + d\mathbf{i}$, and $\vec{\mathbf{w}} = e + f\mathbf{i}$. Then

$$\vec{\mathbf{u}} + (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = (a + b\mathbf{i}) + ((c + d\mathbf{i}) + (e + f\mathbf{i}))$$

$$= a + b + c + d\mathbf{i} + e\mathbf{i} + f\mathbf{i}$$

$$= ((a + b\mathbf{i}) + (c + d\mathbf{i})) + (e + f\mathbf{i})$$

$$= (\vec{\mathbf{u}} + \vec{\mathbf{v}}) + \vec{\mathbf{w}}$$

All eight properties can be verified in this way.

Remark V.1.3 The following sets are just a few examples of vector spaces, with the usual/natural operations for addition and scalar multiplication.

- \mathbb{R}^n : Euclidean vectors with n components.
- C: Complex numbers.
- $M_{m,n}$: Matrices of real numbers with m rows and n columns.
- \mathcal{P}^n : Polynomials of degree n or less.
- \mathcal{P} : Polynomials of any degree.
- $C(\mathbb{R})$: Real-valued continuous functions.

Activity V.1.4 (~20 min) Consider the set $V = \{(x,y) | y = e^x\}$ with operations defined by

$$(x,y) \oplus (z,w) = (x+z,yw)$$
 $c \odot (x,y) = (cx,y^c)$

Part 1: Show that V satisfies the distribution property

$$(a+b)\odot \vec{\mathbf{v}} = (a\odot \vec{\mathbf{v}}) \oplus (b\odot \vec{\mathbf{v}})$$

by substituting $\vec{\mathbf{v}} = (x, y)$ and showing both sides simplify to the same expression. Part 2: Show that V contains an additive identity element satisfying

$$(x,y) + \vec{\mathbf{z}} = (x,y)$$

for all $(x, y) \in V$ by choosing appropriate values for $\vec{\mathbf{z}} = (?,?)$.

Remark V.1.5 It turns out $V = \{(x,y) | y = e^x\}$ with operations defined by

$$(x,y) \oplus (z,w) = (x+z,yw)$$
 $c \odot (x,y) = (cx,y^c)$

satisfies all eight properties.

•
$$\vec{\mathbf{u}} \oplus (\vec{\mathbf{v}} \oplus \vec{\mathbf{w}}) = (\vec{\mathbf{u}} \oplus \vec{\mathbf{v}}) \oplus \vec{\mathbf{w}}$$
.

•
$$a \odot (b \odot \vec{\mathbf{v}}) = (ab) \odot \vec{\mathbf{v}}.$$

•
$$\vec{\mathbf{u}} \oplus \vec{\mathbf{v}} = \vec{\mathbf{v}} \oplus \vec{\mathbf{u}}$$
.

•
$$1 \odot \vec{\mathbf{v}} = \vec{\mathbf{v}}$$
.

• There exists some
$$\vec{z}$$
 where $\vec{v} \oplus \vec{z} = \vec{v}$.

•
$$a \odot (\vec{\mathbf{u}} \oplus \vec{\mathbf{v}}) = a \odot \vec{\mathbf{u}} \oplus a \odot \vec{\mathbf{v}}.$$

• There exists some
$$-\vec{\mathbf{v}}$$
 where $\vec{\mathbf{v}} \oplus (-\vec{\mathbf{v}}) = \vec{\mathbf{z}}$.

•
$$(a+b)\odot \vec{\mathbf{v}} = a\vec{\mathbf{v}} \oplus b\vec{\mathbf{v}}.$$

Thus, V is a vector space.

Activity V.1.6 (~ 15 min) Let $V = \{(x,y) \mid x,y \in \mathbb{R}\}$ have operations defined by

$$(x,y) \oplus (z,w) = (x+y+z+w, x^2+z^2)$$
 $c \odot (x,y) = (x^c, y+c-1).$

Part 1: Show that 1 and the scalar multiplication identity satisfying

$$1 \odot (x, y) = (x, y)$$

by simplifying $1 \odot (x, y)$ to (x, y).

Part 2: Show that there cannot exist an addition identity property satisfying

$$\vec{\mathbf{v}} \oplus \vec{\mathbf{z}} = \vec{\mathbf{v}}$$

for all vectors $\vec{\mathbf{v}} \in V$ by showing that $(0, -1) \oplus \vec{\mathbf{z}} \neq (0, -1)$ no matter how $\vec{\mathbf{z}} = (z_1, z_2)$ is chosen. Part 3: Is V a vector space?

Definition V.1.7 A linear combination of a set of vectors $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_m\}$ is given by $c_1\vec{\mathbf{v}}_1 + c_2\vec{\mathbf{v}}_2 + c_2\vec{\mathbf{v}}_3 + c_2\vec{\mathbf{v}}_3 + c_2\vec{\mathbf{v}}_3$ $\cdots + c_m \vec{\mathbf{v}}_m$ for any choice of scalar multiples c_1, c_2, \ldots, c_m .

For example, we can say $\begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ since

$$\begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Definition V.1.8 The span of a set of vectors is the collection of all linear combinations of that set:

$$\operatorname{span}\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_m\} = \{c_1\vec{\mathbf{v}}_1 + c_2\vec{\mathbf{v}}_2 + \dots + c_m\vec{\mathbf{v}}_m \mid c_i \in \mathbb{R}\}.$$

For example:

$$\operatorname{span}\left\{ \begin{bmatrix} 1\\-1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\} = \left\{ a \begin{bmatrix} 1\\-1\\2\\1 \end{bmatrix} + b \begin{bmatrix} 1\\2\\1 \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

Activity V.1.9 (~10 min) Consider span $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$.

Part 1: Sketch
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$
 $3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix},$ $0 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$ and $-2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -4 \end{bmatrix}$

$$3\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}3\\6\end{bmatrix},$$

$$0 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

and
$$-2\begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} -2\\-4 \end{bmatrix}$$

Part 2: Sketch a representation of all the vectors belonging to span $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\} = \left\{ a \begin{bmatrix} 1 \\ 2 \end{bmatrix} \middle| a \in \mathbb{R} \right\}$ in the xyplane.

Activity V.1.10 (~10 min) Consider span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$.

Part 1: Sketch the following linear combinations in the xy plane.

$$1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} -1 \\ 1 \end{bmatrix} \qquad 0 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} \qquad 1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
$$-2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} \qquad -1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Part 2: Sketch a representation of all the vectors belonging to span $\left\{\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}-1\\1\end{bmatrix}\right\}$ in the xy plane.

Activity V.1.11 (~ 5 min) Sketch a representation of all the vectors belonging to span $\left\{ \begin{bmatrix} 6 \\ -4 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \end{bmatrix} \right\}$ in the xy plane.