MATH 355: HOMEWORK 6

ALEXANDER LEE

Exercise 1 (3.2.2). (a) Limit points of $A: \{-1,1\}$. Limit points of B: [0,1].

- (b) A is neither open nor closed. B is neither open nor closed.
- (c) A contains isolated points. B does not contain isolated points.
- (d) $\overline{A} = A \cup \{-1\}$. $\overline{B} = [0, 1]$.
- **Exercise 2** (3.2.4). (a) If $s \in A$, then $s \in \overline{A}$ and we are done. Now suppose $s \notin A$. By Lemma 1.3.8, for every $\epsilon > 0$, there exists an $a \in A$ ($a \neq s$) such that $s \epsilon < a$. Since $s = \sup(A)$, we also know that a < s. Thus, every ϵ -neighborhood $V_{\epsilon}(s)$ intersects A at some point other than s. That is, s is a limit point of A, so $s \in \overline{A}$ in this case as well.
 - (b) An open set O cannot contain its supremum $s = \sup(O)$ since every ϵ -neighborhood $V_{\epsilon}(s)$ of s is not be a subset of O. Specifically, this is because for any $\epsilon > 0$ and $a \in O$, we have that $a < s + \epsilon$ since $s = \sup(O)$.

Exercise 3 (3.2.6). (a) False. Consider the open set $\mathbb{R} \setminus \{\sqrt{2}\}$.

- (b) False. Consider the closed sets of the form $C_n = [n, \infty)$ for $n \in \mathbb{N}$. Observe that $C_n \subseteq C_{n+1}$ and $\bigcap_{n=1}^{\infty} C_n = \emptyset$.
- (c) True. Given a nonempty open set O, we know that for $a \in O$, there exists an ϵ -neighborhood $V_{\epsilon}(a) \subseteq O$. By the Density of \mathbb{Q} in \mathbb{R} , there exists a rational number $r \in V_{\epsilon}(a)$. Thus, we have that $r \in O$.
- (d) False. Consider the bounded infinite closed set $F = {\sqrt{2} + 1/n : n \in \mathbb{N}} \cup {\sqrt{2}}$. Observe that F does not contain any rational number.
- (e) True. The Canter set is defined as $C = \bigcap_{n=0}^{\infty} C_n$. Since each C_n is the union of a finite collection of closed sets, each C_n is closed. The intersection of an arbitrary collection of closed sets is closed, so the Cantor set C is closed.

Exercise 4 (3.2.8). (a) Definitely closed since the closure of any set is closed.

- (b) Definitely open since $A \setminus B = A \cap B^c$ and the intersection of a finite collection of open sets is open.
- (c) Definitely open since $(A^c \cup B)^c = A \cap B^c$, which is closed as explained in part (b).
- (d) Definitely closed since $(A \cap B) \cup (A^c \cap B) = (A \cup A^c) \cap B = \mathbb{R} \cap B = B$.
- (e) Definitely open. By the definition of closure, we know $A^c \subseteq \overline{A^c}$. We also know that $\overline{A}^c \subseteq A^c$. Thus, $\overline{A}^c \subseteq \overline{A^c}$. It follows that $\overline{A}^c \cap \overline{A^c} = \overline{A}^c$, which is open since the closure of any set is closed and the complement of a closed set is open.

Exercise 5 (3.2.9). (a) We first show that $(\cup_{\lambda \in \Lambda} E_{\lambda})^c = \cap_{\lambda \in \Lambda} E_{\lambda}^c$.

$$x \in \left(\cup_{\lambda \in \Lambda} E_{\lambda}\right)^{c} \iff x \notin \cup_{\lambda \in \Lambda} E_{\lambda}$$

$$\iff \forall \lambda \in \Lambda, \ x \notin E_{\lambda}$$

$$\iff \forall \lambda \in \Lambda, \ x \in E_{\lambda}^{c}$$

$$\iff x \in \cap_{\lambda \in \Lambda} E_{\lambda}^{c}.$$

Next, we show that $(\bigcap_{\lambda \in \Lambda} E_{\lambda})^c = \bigcup_{\lambda \in \Lambda} E_{\lambda}^c$.

$$\begin{array}{ll} x \in \left(\cap_{\lambda \in \Lambda} E_{\lambda} \right)^{c} \iff x \notin \cap_{\lambda \in \Lambda} E_{\lambda} \\ \iff \exists \lambda \in \Lambda \text{ s.t. } x \notin E_{\lambda} \\ \iff \exists \lambda \in \Lambda \text{ s.t. } x \in E_{\lambda}^{c} \\ \iff x \in \cup_{\lambda \in \Lambda} E_{\lambda}^{c}. \end{array}$$

(b) Suppose $\{E_{\lambda}: \lambda \in \Lambda\}$ is a finite collection of open sets. Each E_{λ}^{c} is thus a closed set by Theorem 3.2.13. As such, $\cup_{\lambda \in \Lambda} E_{\lambda}^{c}$ is the union of a finite collection of closed sets. By Theorem 3.2.3, $\cap_{\lambda \in \Lambda} E_{\lambda}$ is open. It follows that $(\cap_{\lambda \in \Lambda} E_{\lambda})^{c}$ is closed by Theorem 3.2.13. Since $(\cap_{\lambda \in \Lambda} E_{\lambda})^{c} = \cup_{\lambda \in \Lambda} E_{\lambda}^{c}$, the union of a finite collection of closed sets is therefore closed.

Suppose $\{E_{\lambda}: \lambda \in \Lambda\}$ is an arbitrary collection of open sets. As such, $\cap_{\lambda \in \Lambda} E_{\lambda}^{c}$ is the intersection of an arbitrary collection of closed sets. By Theorem 3.2.3, $\cup_{\lambda \in \Lambda} E_{\lambda}$ is open. It follows that $(\cup_{\lambda \in \Lambda} E_{\lambda})^{c}$ is closed by Theorem 3.2.13. Since $(\cup_{\lambda \in \Lambda} E_{\lambda})^{c} = \cap_{\lambda \in \Lambda} E_{\lambda}^{c}$, the intersection of an arbitrary collection of closed sets is closed.

- **Exercise 6** (3.2.10). (i) Such a set cannot exist. Let $A \subseteq [0,1]$ be a countable set. Since A is countable, there exists a bijection $f: \mathbb{N} \to A$. We can use the function f to define a sequence (a_n) where $a_n = f(n)$ for all $n \in \mathbb{N}$. Because $(a_n) \subseteq A \subseteq [0,1]$, (a_n) is bounded. By the Bolzano-Weierstrass Theorem, (a_n) has a convergent subsequence $(a_{n_k}) \to a$. Since f is a bijection, all the terms of (a_n) are distinct, so at most one term in (a_{n_k}) can be equal to a. Let (b_n) be a subsequence of (a_{n_k}) without the term a if it exists. It follows that $(b_n) \to a$, so a is a limit point.
 - (ii) Consider the set $\mathbb{Q} \cap [0,1]$.
 - (iii) Such a set cannot exist. Suppose A has an uncountable number of isolated points. For every isolated point $x \in A$, there exists an $\epsilon_x > 0$ such that $V_{\epsilon_x}(x) \cap A = \{x\}$. Each neighborhood $V_{\epsilon_x}(x)$ can intersect with at most 2 other neighborhoods, since if a neighborhood intersects with more than 2 neighborhoods, then one of the three neighborhoods in question would intersect another isolated point in A, which is not possible. By the Density of $\mathbb Q$ in $\mathbb R$, we can choose a rational number r in each neighborhood. Each r can be chosen for at most 2 neighborhoods. Regardless, because we have uncountably many neighbors, we therefore have uncountably many rational numbers since each rational number r corresponds to at most 2 neighborhoods. This is a contradiction since $\mathbb Q$ is countable.

Exercise 7 (3.2.13). Suppose A is an open and closed set such that $A \subset \mathbb{R}$ and $A \neq \emptyset$. Thus, there exists $x_0 \in A$ and $x_1 \notin A$. Without loss of generality, suppose $x_0 < x_1$. Consider the closed interval $I = [x_0, x_1]$. A and I are closed, so $A \cap I$ is closed as well since the intersection of an arbitrary collection of closed sets is closed.

Since $A \cap I$ is nonempty and bounded above, it has a supremum $s = \sup(A \cap I)$ by Axiom of Completeness. It follows that $s \in I \cap A \subseteq A$ because $A \cap I$ is closed. Since A is also open, there exists $V_{\epsilon}(s) \subseteq A$. We also know that $[s, x_1] \subseteq I$. Choose $\epsilon_1 < \min\{\epsilon, x_1\}$. It follows that $s + \epsilon_1 \in A$ and $s + \epsilon_1 \in I$, so $s + \epsilon_1 \in A \cap I$. This is a contradiction since we assumed that $s = \sup(A \cap I)$. Therefore, the only sets that are both open and closed are $\mathbb R$ and \emptyset .

Exercise 8 (3.2.14). (a) We first show that E is closed if and only if $\overline{E} = E$. Let L be the set of all limit points of E. Then,

$$\begin{array}{ll} E \text{ is closed} & \Longleftrightarrow \ L \subseteq E \\ & \Longleftrightarrow \ E \cup L = E \\ & \Longleftrightarrow \ \overline{E} = E. \end{array}$$

Next, we show that E is open if and only if $E^{\circ} = E$.

$$E \text{ is open } \iff \forall x \in E, \ \exists V_{\epsilon}(x) \subseteq E$$

$$\iff E^{\circ} = E.$$

(b) We begin with showing that $\overline{E}^c = (E^c)^{\circ}$. Let L be the set of all limit points of E. Then,

$$x \in \overline{E}^c \iff x \in (E \cup L)^c$$

 $\iff x \in E^c \cap L^c \text{ (by DeMorgan's Laws)}$
 $\iff x \in E^c \wedge x \text{ is not a limit point of E}$
 $\iff x \in E^c \text{ s.t. } \exists V_{\epsilon}(x) \subseteq E^c$
 $\iff x \in (E^c)^{\circ}.$

Next, we show that $(E^{\circ})^c = \overline{E^c}$.

$$(E^{\circ})^{c} = (((E^{c})^{c})^{\circ})^{c}$$

$$= (\overline{E^{c}}^{c})^{c} \text{ (since } \overline{E}^{c} = (E^{c})^{\circ})$$

$$= \overline{E^{c}}$$