On the Role of Parallel Trade on Manufacturers and Retailers Profits in the Pharmaceutical Sector

Pierre Dubois¹ Morten Sæthre²

 1 Toulouse School of Economics, University of Toulouse Capitole 2 Norwegian School of Economics (NHH)

Motivation

- Financing innovation in pharmaceuticals is mostly based on Patent protected monopoly prices for innovators
- Price discrimination across countries may however incentivize pharmacy retailers to use parallel trade of drugs as an alternative procurement channel to directly importing from producer
- Does it prevent innovating firm to get largest share of profits, versus retailers or parallel traders?
- Why is there parallel trade?
 - Large cross-country price differences because of national price regulations
 - Parallel Trade fully legal within EEA
 - Supply obligations and competition policy prevent rationing

Parallel traded or directly imported: Example in Norway

• Pharmacist must inform consumers if drug is parallel imported

Norwegian Pharmaceutical Market

- Three large pharmacy retail chains for prescription drugs (Apotek 1, Boots and Vitus) covering 85 % of all pharmacies
- Prescription drugs are subject to a price cap but wholesale price and margins are not regulated
- Co-payment of 36 % for on patent drugs but out of pocket amount capped (520 NOK= 65 EUR in 2013 per three months.
- Data:
 - Transactions from the Norwegian Directorate of Health covering all purchases of reimbursable drugs by individuals in Norway
 - Wholesale prices from registry data of Norwegian Institute of Public Health Details

Drug Producer cost c_t

Outline

- Theoretical Model
 - Consumer Behavior
 - Pharmacy Behavior
 - Manufacturer and Parallel Importer Bargaining with Pharmacies
- Econometrics
 - Demand identification and estimation with unobserved choice sets optimally chosen by pharmacies
 - Bargaining parameters identification and estimation
- Empirical Results on Atorvastatin market 2004-2008 (Lipitor by Pfizer under patent until 2011)
- Counterfactuals
 - Banning parallel imports
 - Banning direct imports foreclosure
 - Decreasing retail price

Consumer Behavior

- Consumers have exogenous need for a drug but can choose PI or DI
- ullet Consumers fully reimbursed and prices are identical $(p_{0ct}=p_{1ct}=ar{p}_t)$
- Reduced form evidence shows that relative sales of PI versus DI depends on pharmacist's margins
- Pharmacies can restrict access to lower margin version, by proposing choice set {PI, DI} or {PI}
- Denote θ_{ct} the probability that $\{PI, DI\}$ is proposed
- Utility of consumer i from drug version k = 0 or 1 at chain c and t:

$$u_{ikct} = V_{ikct} + \varepsilon_{ict} + \lambda_c \varepsilon_{ikct}$$

• Assuming ε_{ict} and ε_{ikct} are i.i.d. extreme value sequentially observed

Consumer Behavior

• Individual choice probabilities are then:

$$s_{i1ct}(\boldsymbol{\theta}_t) = \underbrace{\frac{e^{(1-\theta_{ct})V_{i0ct} + \theta_{ct}\lambda_c \ln(e^{\frac{V_{i0ct}}{\lambda_c}} + e^{\frac{V_{i1ct}}{\lambda_c}})}{\sum_{\tilde{c}} e^{(1-\theta_{\tilde{c}t})V_{i0\tilde{c}t} + \theta_{\tilde{c}t}\lambda_{\tilde{c}} \ln(e^{\frac{V_{i0\tilde{c}t}}{\lambda_{\tilde{c}}}} + e^{\frac{V_{i1\tilde{c}t}}{\lambda_{\tilde{c}}}})}}_{\text{Probability to choose chain } c} \underbrace{\frac{e^{\frac{V_{i1ct}}{\lambda_c}}{\lambda_c}}{e^{\frac{V_{i0ct}}{\lambda_c}} + e^{\frac{V_{i1ct}}{\lambda_c}}}}_{\text{prob. both}}}_{\text{probability}}$$

where

$$E_{\epsilon}[\max_{k}(V_{ikct} + \lambda_c \epsilon_{ikct})] = \underbrace{\lambda_c \ln \left(\sum_{k \in \{0,1\}} e^{V_{ikct}/\lambda_c}\right)}_{\text{expected utility preferred version}}$$

• Denoting $F\left(.|\beta\right)$ the cdf of $\mathbf{V}_{it}\equiv\left(V_{i01t},...,V_{iC1t},V_{i11t},...,V_{i1Ct}\right)$:

$$s_{kct} = \int s_{ikct} dF(\mathbf{V}_{it}|\beta)$$

Pharmacy Chains Behavior

• Profit of chain c from PI (good 0) and DI (good 1) is $(p_{kct} = \bar{p}_t)$:

$$\pi_{ct} = \sum_{k \in \{0,1\}} \left(\bar{p}_t - w_{kct} \right) s_{kct}(\boldsymbol{\theta}_t)$$

ullet Nash equilibrium across firms in $heta_{ct}$ give $heta_{ct}^*(\mathbf{w}_{0t},\mathbf{w}_{1t})$ with:

$$\frac{\partial \pi_{ct}}{\partial \theta_{ct}} \begin{cases} \leq 0 & \text{if } \theta_{ct} = 0, \\ = 0 & \text{if } 0 < \theta_{ct} < 1, \\ \geq 0 & \text{if } \theta_{ct} = 1. \end{cases}$$

Interior solutions satisfy

$$0 = \int \sum_{k} (\bar{p}_{t} - w_{kct}) \begin{bmatrix} \frac{\partial s_{ikt|c}}{\partial \theta_{ct}} & \underbrace{s_{ict}}_{\text{choose}} + \underbrace{s_{ikt|c}}_{\text{choose}} & \frac{\partial s_{ict}}{\partial \theta_{ct}} \end{bmatrix} dF(\mathbf{V}_{it})$$

$$\underset{k \text{ in } c}{\underbrace{change \text{ of } chain \text{ } c}} \underset{\text{in } c}{\underbrace{choose \text{ } k}} \underset{\text{prob. } c}{\underbrace{change}}$$

Manufacturer Behavior and Bargaining

- Total sales come from two channels:
 - Direct import channel (good 1) to all chains c
 - Parallel imports (good 0) by all chains c
- ullet Letting $oldsymbol{ heta}_t^* \equiv oldsymbol{ heta}_t^*(\mathbf{w}_{0t},\mathbf{w}_{1t})$ the manufacturer profit is

$$\Pi_t(\mathbf{w}_{1t}) = \sum_c \left[(w_{1ct} - c_t) s_{1ct}(\theta_t^*) + (p_{1ct}' - c_t) s_{0ct}(\theta_t^*) \right]$$

with c_t the marginal cost of production, and p_{1ct}^l the manufacturer price in source country used by c.

Assume pairwise negotiation maximize the Nash-product

$$(\Pi_t - \Pi_{-c,t})^{b_{1c}} (\pi_{ct} - \pi_{-1,ct})^{1-b_{1c}}$$

with bargaining weight b_{1c} and disagreement profits $\Pi_{-c,t}$ and $\pi_{-1,ct}$

◆ロト ◆問ト ◆ヨト ◆ヨト 季目 ◆900

Manufacturer Behavior and Bargaining

Nash-in-Nash equilibrium first order conditions are

$$b_{1c}\frac{\partial \Pi_t/\partial w_{1ct}}{\Pi_t-\Pi_{-c,t}}+(1-b_{1c})\frac{\partial \pi_{ct}/\partial w_{1ct}}{\pi_{ct}-\pi_{-1,ct}}=0$$

where

$$\pi_{ct} - \pi_{-1,ct} = (\bar{p}_t - w_{1ct}) s_{1ct} + (\bar{p}_t - w_{0ct}) \Delta_{1c} s_{0ct},$$

$$\Pi_t - \Pi_{-c,t} = \sum_{\tilde{c}} \left(w_{1\tilde{c}t} \Delta_{1c} s_{1\tilde{c}t} + p_{1ct}' \Delta_{1c} s_{0\tilde{c}t} \right),$$

- Need to take into account $\theta_t^*(\mathbf{w}_{0t}, \mathbf{w}_{1t})$ in derivatives
- Allows identify bargaining parameters b_{1c} if all prices known
- ullet Similar for parallel import behavior and parameters b_{0c}

Estimation strategy

Two-step estimation:

- Demand estimation:
 - Estimate mixed logit discrete choice model with individual data but unobserved choice set (θ_{ct})
 - Use pharmacies profit maximizing conditions and observed margins to account for pharmacies choice of assortment θ_{ct}
- Estimate upstream firms bargaining parameters:
 - First order conditions for "Nash-in-Nash" bargaining
 - Use source countries prices and interaction with companies indicators to construct moment conditions for estimating bargaining weights

Specification

 Estimate discrete choice demand model described using individual choice probability with:

$$V_{ijct} = \alpha_{jct} + \nu_{ijct}$$

where latent groups utility specifications are:

$$v_{ijct} = \delta_j^{g_i} + \sigma_j^{g_i} v_i^j + \delta_c^{g_i} + \sigma_c^{g_i} v_i^c$$

 $\delta_c^{g_i}$ and $\sigma_c^{g_i}$ are chain specific utility mean and dispersion terms, $\delta_j^{g_i}$ and $\sigma_j^{g_i}$ are PI or DI specific utility mean and dispersion terms, conditional on individual *i*'s group g_i (unobserved latent group).

- ullet Each group, g, has a population share au_g
- $\boldsymbol{\beta} = (\delta_p^g, \sigma_p^g, \delta_c^g, \sigma_c^g, \lambda_1, ..., \lambda_C, \tau_1, ..., \tau_G)$

Demand Identification and Estimation

• Given $(\alpha_{0ct}, \alpha_{1ct}, \theta_{ct})$, estimate β by ML using choice sequence \mathcal{P}_i

$$L_{i}(\beta; \alpha_{0ct}, \alpha_{1ct}, \theta_{ct}) = \sum_{g \in \mathcal{G}} \tau_{g} \int \prod_{p \in \mathcal{P}_{i}} s_{ik(p)c(p)t(p)}(\nu_{i}) dF(\nu_{i}|\beta)$$

where

$$s_{ikct} = \frac{e^{V_{i0ct} + \theta_{ct}\lambda_c\delta_{ict}}}{\sum_{\tilde{c}} e^{V_{i0\tilde{c}t} + \theta_{\tilde{c}t}\lambda_{\tilde{c}}\delta_{i\tilde{c}t}}} \left(1_{\{k=0\}} + (-1^{\{k=0\}})\theta_{ct} \frac{e^{V_{i1ct}/\lambda_c}}{e^{V_{i0ct}/\lambda_c} + e^{V_{i1ct}/\lambda_c}} \right)$$

with $\delta_{ict} = \ln(1 + e^{(V_{i1ct} - V_{i0ct})/\lambda_c})$

• Use pharmacies optimal behavior to get $\theta_{ct}(\mathbf{w}_{0t}, \mathbf{w}_{1t})$ and define a nested fixed point algorithm

Nested Fixed Point Algorithm

- Inner loop: solve for $\alpha_{0t}(\beta)$, $\alpha_{1t}(\beta)$ and $\theta_t(\beta)$
 - For given (θ, β) , can invert the system (Berry, 1994, BLP, 1995):

$$s_{kct}(\boldsymbol{\theta}_t, \alpha_{0ct}, \alpha_{1ct}, \beta) = \hat{s}_{kct}$$

and define $\alpha_{0t}(\hat{s}_t, \theta_t, \beta)$, $\alpha_{1t}(\hat{s}_t, \theta_t, \beta)$

ullet Then, $heta_t$ is solution of the fixed point

$$\theta_t(\alpha_{0t}(\hat{s}_t, \theta_t, \beta), \alpha_{1t}(\hat{s}_t, \theta_t, \beta), \beta) = \theta_t$$

assuming Nash equilibrium existence between pharmacies with

$$\theta_{ct}(\alpha_{0ct}, \alpha_{1ct}, \beta) = \underset{\theta_{ct} \in [0,1]}{\arg\max} \, \pi_{ct}(\theta_{-ct}, \alpha_{0ct}, \alpha_{1ct}, \beta, w_{0ct}, w_{1ct})$$

- Existence is guaranteed by Brouwer's fixed point theorem if image of $[0,1]^C$ by $\theta_t(\alpha_{0t}(\hat{\boldsymbol{s}}_t,.,\beta),\alpha_{1t}(\hat{\boldsymbol{s}}_t,.,\beta),\beta)$ is $[0,1]^C$
- Outer loop: estimate β by ML on individual choices

Identifying Bargaining Parameters

- Optimality conditions of bargaining game relate demand and bargaining parameters b_{0c} and b_{1c} to prices of drugs in source countries for parallel importer (\mathbf{p}_{0t}^I) and manufacturer (\mathbf{p}_{1t}^I)
- With $\mathbf{p}_t^I(\mathbf{b}) = (\mathbf{p}_{0t}^I(\mathbf{b}), \mathbf{p}_{1t}^I(\mathbf{b}))$, specify:

$$\mathbf{p}_t'(\mathbf{b}) = \mathbf{X}_t \eta + \epsilon_t,$$

where \mathbf{X}_t include wholesale prices in source countries, company fixed effects, interactions with source country prices

• Assume \mathbf{Z}_t such that $E[\boldsymbol{\varepsilon}_t|\mathbf{Z}_t]=0$ and identify parameters (η,\mathbf{b}) using GMM where \mathbf{Z}_t include exchange rate shocks, price ceiling \bar{p}_t , indicators for pharmacy chain identity, interactions, inclusive value of upstream firm

Demand Estimates: Preference heterogeneity

Latent groups	g = 0	g = 1	g = 2	g = 3			
$ au_g$	0.07	0.26 (0.00)	0.29 (0.00)	0.38 (0.00)			
η_g	0.00	1.37 (0.07)	1.46 (0.07)	1.75 (0.07)			
Drug version sp	ecific tas	ste $(\delta_k^g +$	$\sigma_k^g v_i^k$)				
δ_0^g	0.00	0.53 (0.04)		-0.39 (0.04)			
σ_0^g	0.22 (0.13)	0.02 (0.83)	0.98 (0.01)	0.81 (0.02)			
Chain specific t	aste (δ_c^g)	$+ \sigma_c^g v_i^c$					
δ_2^g	0.00	4.09	1.94	-4.30			
c of	-	(0.03)	(0.05)	,			
$\delta_3^{ m g}$	0.00	-0.97 (0.12)	6.46 (0.07)	-3.80 (0.10)			
σ_2^g	3.01	6.50	7.96	2.67			
-	(0.13)	(0.23)	(0.10)	(0.13)			
$\sigma_3^{\mathcal{g}}$	2.75 (0.16)	3.27 (0.13)	3.59 (0.07)	2.52 (0.13)			
$\lambda_1, \lambda_2, \lambda_3$	0.32, 0.54, 0.54 (0.01), (0.01), (0.01)						

Demand Estimates: Foreclosure probabilities θ_{ct}

Strength		40mg			80mg			
Chain	Year	2004	2005	2006	2004	2005	2006	2007
1	Mean	0.008	0.522	0.404	0.037	0.041	0.016	0.358
	p25	0.006	0.081	0.004	0.007	0.007	0.006	0.005
	Median	0.007	0.632	0.012	0.020	0.010	0.011	0.106
	p75	0.010	0.880	1.000	0.035	0.020	0.024	0.858
2	Mean	1.000	1.000	0.437	1.000	0.839	1.000	1.000
	p25	1.000	1.000	0.018	1.000	0.979	1.000	1.000
	Median	1.000	1.000	0.152	1.000	1.000	1.000	1.000
	p75	1.000	1.000	1.000	1.000	1.000	1.000	1.000
3	Mean	0.756	0.962	1.000	1.000	0.302	0.847	0.502
	p25	0.438	1.000	1.000	1.000	0.035	1.000	0.208
	Median	1.000	1.000	1.000	1.000	0.055	1.000	0.308
	p75	1.000	1.000	1.000	1.000	0.414	1.000	1.000

Bargaining Parameters Estimates

	Manufacturer	Importer			
Chain 1	0.94 (0.02)	0.51 (0.51)			
Chain 2	0.55 (0.12)	0.24 (0.36)			
Chain 3	0.63 (0.15)	0.34 (0.30)			
	46.11 0.00 462				

Counterfactual Experiments

- Banning Parallel Imports Details
- Banning Direct Imports Foreclosure
- Banning Direct Imports Foreclosure and reducing retail price

Banning Parallel Imports

	Δq_0	Δq_1	Δw_1	Δπ
Chain 1	$-12.56 \\ -100\%$	14.68 435%	[0.73, 0.77] [36%, 37%]	[-12.31, -12.98] [-89%, -94%]
Chain 2	-5.11 $-100%$	4.05 100%	[0.05, 0.41] [2%, 20%]	$[-1.66, -4.24] \\ [-21\%, -54\%]$
Chain 3	$-6.32 \\ -100\%$	5.25 217%	[0.13, 0.47] [6%, 23%]	[-2.59, -5.27] $[-33%, -66%]$
				ΔΠ
Manufacturer		23.99 243%	[0.30, 0.55] [15%, 27%]	[15.09, 21.03] [22%, 30%]
Parallel	-23.99 $-100%$			$-1.27 \\ -100\%$

Prevent Direct Imports foreclosure by Pharmacies $(\theta_c = 1)$

	Δq_0	Δq_1	Δw_0	Δw_1	$\Delta\pi$
Chain 1	-8.75 -70%	9.38 343%	0.09 5%	0.07 4%	$-1.26 \\ -10\%$
Chain 2	-0.23 -5%	$-0.13 \\ -4\%$	0.01 0%	0.01 1%	$-0.38 \\ -5\%$
Chain 3	$-1.30 \\ -21\%$	1.04 49%	0.02 1%	0.02 1%	-0.53 -7%
					ΔΠ
Manufacturer		10.29 120%		0.03 2%	0.97 1%
Parallel	$-10.29 \\ -43\%$		0.04 2%		0.36 32%

Price decrease ($\Delta p = -20\%$) and no foreclosure ($\theta_c = 1$)

	Δq_0	Δq_1	Δw_0	Δw_1	$\Delta\pi$
Chain 1	-8.76 -70%	9.42 344%	-0.04 -2%	$-0.03 \\ -1\%$	-8.88 -68%
Chain 2	−0.27 −5%	$-0.08 \\ -2\%$	$-0.44 \\ -22\%$	$-0.17 \\ -8\%$	$-3.35 \\ -45\%$
Chain 3	$-1.45 \\ -23\%$	1.15 54%	$-0.17 \\ -9\%$	$-0.08 \\ -4\%$	$-4.45 \\ -62\%$
					ΔΠ
Manufacturer		10.49 122%		-0.09 -4%	-1.92 -3%
Parallel	$-10.49 \\ -44\%$		$-0.22 \\ -11\%$		$-0.47 \\ -42\%$

Price decrease (Δp) and no foreclosure $(\theta_c = 1)$

Δp		-10%	-15%	-20%	-25%	-30%
$\Delta\pi$	Chain 1	-4.95	-6.93	-8.88	-10.81	-12.66
		-38%	-53%	-68%	-83%	-97%
	Chain 2	-2.42	-3.23	-3.35	-4.15	-4.83
		-32%	-43%	-45%	-56%	-65%
	Chain 3	-2.52	-3.49	-4.45	-5.30	-6.15
		-35%	-48%	-62%	-74%	-85%
$\Delta\Pi$	Manufacturer	-0.11	-0.67	-1.92	-2.72	-3.65
		-0%	-1%	-3%	-4%	-6%
	Parallel	-0.07	-0.27	-0.47	-0.68	-0.88
		-6%	-24%	-42%	-60%	-78%
Nb o	f chain-market exits	2	9	19	26	37

Conclusion and Policy Implications

Method:

- Demand estimation method with unobserved choice sets endogenously determined by retailer foreclosure optimal strategy
- Upstream firms optimal behavior to get bargaining parameters
- Empirical Results and policy implications:
 - Pharmaceutical retailers play prominent role in fostering parallel trade
 - Foreclosure of DI by pharmacy and wholesale price negotiations benefit pharmacies and reduce the manufacturer profits
 - Reducing retail price cap redistributes profits in favor of manufacturer and lowers total expenses

Norwegian Data and Pharmaceutical Market

Difference in margins between direct and parallel imports (Back)

Chain Sales of Direct versus Parallel Imports of Lipitor

Dep. Var. In $\frac{s_{1ct}}{s_{0ct}+s_{1ct}}$	(OLS)	(OLS)	(2SLS)	(OLS)	(OLS)	(2SLS)
DI margin m _{1ct}	2.125**	1.911**	2.428**			
PI margin m _{0ct}	(0.523) -0.119**	(0.558) -0.247**	(0.597) -0.572**			
D:ff ()	(0.033)	(0.059)	(0.118)	0.175**	0.329**	0.717**
Diff. $(m_{1ct} - m_{0ct})$				(0.043)	(0.057)	0.717** (0.097)
Chain 1	-0.412**	-0.415**	-0.390**	-0.485**	-0.474**	-0.453**
Chain 2	(0.085) 0.135	(0.089) 0.087	(0.089) -0.026	(0.085) 0.112	(0.089) 0.055	(0.093) -0.081
)/ *M ==	(0.072)	(0.073)	(0.091)	(0.076)	(0.078)	(0.089)
Year*Month FE N	No 574	Yes 574	Yes 574	No 574	Yes 574	Yes 574

Instruments: wholesale price in France, Germany, Italy, Spain, United Kingdom, Greece and exchange rates between NOK and Euro, Swiss Franc and US\$.

Banning Parallel Imports

• Without PI, market share of chain c is

$$s_{1ct_{noPl}}^* = \int rac{e^{V_{i1ct}}}{\sum_{ ilde{c}} e^{V_{i1 ilde{c}t}}} dF(v_i|oldsymbol{eta})$$

• Assume counterfactual demands in other chains $\tilde{c} \neq c$ do not change when c disagrees with manufacturer, Nash bargaining:

$$\max_{w_{1ct}} \left\{ ((w_{1ct} - c_t) s_{1ct_{noPl}}^*)^{b_{1c}} ((\bar{p}_t - w_{1ct}) s_{1ct_{noPl}}^*)^{1-b_{1c}} \right\}$$

 \rightarrow

$$w_{1ct_{noPl}}^* = b_{1c}\bar{p}_t + (1-b_{1c})c_t$$

 \bullet However, c_t not identified using only wholesale price equations

Banning Parallel Imports

• Pharmacy chains use parallel imports if profitable implies, for all c:

$$\pi^*_{\mathit{ct}_{noPI}} \equiv (\bar{p}_t - w^*_{1\mathit{ct}_{noPI}}) s^*_{1\mathit{ct}_{noPI}} \leq \pi^*_{\mathit{ct}}$$

 Then can bound counterfactual wholesale prices, manufacturer and pharmacy chains profit using:

$$\bar{p}_t - \min_{c \in \{1,..,C\}} \left\{ \frac{1}{1 - b_{1c}} \frac{\pi_{ct}^*}{s_{1ct_{noPl}}^*} \right\} \le c_t \le \min_{c \in \{1,..,C\}} \left\{ p_{1ct}' \right\}$$

where $p_{1,ct}^I$ is source country price. Back