

High Efficiency, 8.0A 40V Input **Synchronous Step Down Regulator**

General Description

The SY8308 develops a high efficiency synchronous step-down DC/DC regulator capable of delivering 8A continuous current. The device integrates main switch and synchronous switch with very low $R_{DS(ON)}$ to minimize the conduction loss.

The SY8308 operates over a wide input voltage range from 4V to 40V. The device adopts the instant PWM architecture to achieve fast transient responses for high step down applications and high efficiency at light loads.

Ordering Information

Features

- Low R_{DS(ON)} for Internal Switches $(Top/Bottom):25m\Omega/12m\Omega$
- 4~40V Input Voltage Range
- 8.0A Output Current Capability
- Selectable 350 kHz/500kHz Switching Frequency
- PFM/PWM Selectable Light Load Operation Mode
- Instant PWM Architecture to Achieve Fast Transient Responses.
- Programmable Soft-start Limits the Inrush Current
- Programmable Valley Current Limit Threshold
- Hic-cup Mode Output Short Circuit Protection
- Power Good Indicator
- 0.6V±1% Reference Voltage
- Compact Package: QFN3.5×3.5-20

Applications

- LCD-TV
- SetTop Box
- Notebook
- Storage
- High Power AP Router
- Networking

Typical Applications

Figure 1. Schematic Diagram

Pinout (top view)

(QFN3.5×3.5-20)

Top Mark: BDYxyz, (Device code: BDY, $x=year\ code$, $y=week\ code$, $z=lot\ number\ code$)

Pin Name	Pin Number	Pin Description					
BS	1	Boot-strap pin. Supply high side gate driver. Connect a $0.1\mu F$ ceramic capacide tween the BS and the LX pin.					
IN	2,3,4,5	uput pin. Decouple this pin to the GND pin with at least a 10μF ceramic capacitor.					
LX	6,19,20	ductor pin Connect this pin to the switching node of the inductor.					
GND	7,8,17,18, Exposed pad	Fround pin.					
MODE	9	Operating mode selection under light load. Pull this pin low for PFM operating; put this pin high or floating for PWM operation.					
SS	10	Soft-start programming pin. Connect a capacitor from this pin to ground to program the soft-start time. $t_{ss}(ms)$ =Css(nF)×0.6V/6 μ A. Leave this pin open for default 1ms soft-start.					
EN	11	Enable control. Pull high to turn on. Do not leave it floating.					
PG	12	Power good Indicator. Open-drain output when the output voltage is within 85% to 122% of regulation point.					
FS	13	Switching frequency selection. Pull this pin low for 350kHz; pull this pin high or floating for 500kHz.					
FB	14	Output feedback pin. Connect this pin to the center point of the output resistor divider (as shown in Figure 1) to program the output voltage: $V_{OUT}=0.6\times(1+R_1/R_2)$.					
ILMT	15	Valley current limit programming. $I_{LMT_VALLEY}(A)=3600/R_{LMT}(k\Omega)$. Leave this pin open for default 6A valley current limit threshold.					
OVCC	16	Internal 3.3V output. Decouple this pin to ground with at least a 4.7μF capacitor.					

Block Diagram

Figure 2. Block Diagram

Absolute Maximum Ratings (Note 1)

Supply Input Voltage
Supply Input Voltage
LIMT, FS, PG, EN, MODE, SS, LX Voltage
Power Dissipation, P _D @ T ₁ =25°C, QFN3.5×3.5-20 3.6W
Package Thermal Resistance (Note 2)
θ _{JA} 28°C/W
Θ _{JC} 4°C/W
Junction Temperature Range
Lead Temperature (Soldering, 10 sec.) 260°C
Storage Temperature Range
Dynamic LX voltage in 10ns duration IN+3V to GND-5V
Recommended Operating Conditions (Note 3)
Supply Input Voltage 4V to 40V
Junction Temperature Range

Electrical Characteristics

 $(V_{IN} = 12V, T_A = 25$ °C, $I_{OUT} = 1A$, unless otherwise specified)

$(V_{IN} = 12V, T_A = 25^{\circ}C, I_{OUT} = 1)$				I		
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	$V_{\rm IN}$		4		40	V
Input UVLO Threshold	$V_{\rm UVLO}$				3.9	V
Input UVLO Hysteresis	V_{HYS}			0.3		V
Quiescent Current	IQ	$I_{OUT}=0, V_{FB}=V_{REF}\times 105\%$		60		μA
Shutdown Current	Ishdn	EN=0			4	μA
Feedback Reference Voltage	V_{REF}		0.594	0.6	0.606	V
FB Input Current	I_{FB}	$V_{FB}=3.3V$	-50		50	nA
Top FET RON	R _{DS(ON)1}			25		mΩ
Bottom FET RON	R _{DS(ON)2}			12		mΩ
Bottom FET Valley Current		D 2001 O 6001 O			10	
Limit Program Range	$I_{LMT,RNG}$	$R_{LMT}=300k\Omega\sim600k\Omega$	6		12	Α
Bottom FET Valley Current	T	D 2001 C	0.6	10	1.4.4	
Limit Setting Accuracy	I_{LMT}	$R_{LMT}=300k\Omega$	9.6	12	14.4	Α
Bottom FET Reverse Current		MODE III I	2.5			
Limit	$I_{LMT,RVS}$	MODE=High	3.5			A
EN Input Voltage High	$V_{\rm EN,H}$		1.5			V
EN Input Voltage Low	$V_{\rm EN,L}$				0.4	V
EN Leakage Current	I _{EN}	4 .			1	μA
MODE Input Voltage High	V _{MODE,H}	XES	V _{CC} -0.8			V
MODE Input Voltage High	V _{MODE,L}		. 66 313		0.4	V
MODE Leakage Current	I _{MODE}				1	μA
FS Input Voltage High	V _{FS,H}	•	V _{CC} -0.8		1	V
FS Input Voltage High	V _{FS,L}		¥ (C 0.0		0.4	V
FS Leakage Current	IFS				1	μA
15 Leakage Current	1rS	V _{FB} falling, PG from high to			1	•
/ ($ m V_{PG,TH}$	low	81	85	89	$%V_{REF}$
Y		V _{FB} rising, PG from low to	85	90	95	%V _{REF}
		high				
Power Good Threshold		V _{FB} falling, PG from low to				
		high	104	110	116	$%V_{REF}$
identilo	t _{PG,DLY} V _{PG_LOW}	V _{FB} rising, PG from high to				
		low	116	122	128	$%V_{REF}$
		Low to high		200		μs
Power Good Delay		High to low		10		
\sim		Sink 5mA to PG pin,		10		μs
Power Good Low Voltage		FB=0.6V			0.4	V
Soft start Charging Current		1 B-0.0 V		6		μA
Internal Soft-start Time	I _{SS}	SS floating		1		ms
Output Over Voltage Threshold	V _{OVP}	V _{FB} rising	116	122	128	%V _{REF}
Output Over Voltage Hysteresis		A LR 119111R	110	10	120	$%V_{REF}$
Output OVP Delay	V _{OVP,HYS}			15		
Output Under Voltage	t _{OVP,DLY}			13		μs
Protection Threshold	$V_{\text{OUT},\text{UVP}}$	V _{FB} falling	45	50	55	$\%V_{REF}$
	t			200		
Output UVP Delay	t _{UVP,DLY}	CC floating		200		μs
UVP Hic-cup ON Time	t _{UVP,ON}	SS floating		3		ms
UVP Hic-cup OFF Time	t _{UVP,OFF}	SS floating	46.0	21		ms
Switching Frequency	f_{SW}	FS=Floating, CCM	400	500	600	kHz
VCC Output Voltage	V_{VCC}		3.15	3.3	3.45	V

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Min ON Time	t _{ON,MIN}			80		ns
Min OFF Time	t _{OFF,MIN}			160		ns
Thermal Shutdown	т			150		°C
Temperature	T_{SD}			150		°C
Thermal Shutdown Hysteresis	T_{HYS}			15		°C

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: Package thermal resistance is measured in the natural convection at TA = 25°C on a four-layer Silergy Evaluation Board.

Note 3: The device is not guaranteed to function outside its operating conditions.

cileroy Contidential For High Intity

QFN3.5×3.5-20 Package Outline

Side view

Recommended PCB layout (Reference only)

Notes: All dimension in millimeter and exclude mold flash & metal burr.

Taping & Reel Specification

1. QFN3.5×3.5-20 taping orientation

Feeding direction ----

2. Carrier Tape & Reel specification for packages

Package types	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Trailer length(mm)	Leader length (mm)	Qty per reel
QFN3.5×3.5	12	8	13"	400	400	3000

3. Others: NA