

### A Stable Voronoi-based Algorithm for Medial Axis Extraction through Labeling Sample Points

#### **Farid Karimipour**

Assistant Professor
Department of Geomatics, College of Engineering, University of Tehran, Iran
fkarimipr@ut.ac.ir



#### Mehran Ghandehari

MSc Student of GIS
Department of Geomatics, College of Engineering, University of Tehran, Iran
ghandehary@ut.ac.ir



### Medial Axis (MA)

The medial axis (also called skeleton) is the closure of the set of points in an object  $\mathcal{O}$  that have at least two closest points on the object's boundary  $\partial \mathcal{O}$ 



## Medial Axis (MA)

#### **Properties:**

- There is a unique MA for a given shape.
- The MA is topologically equivalent to its shape.
- There is a one-to-one relation between a shape and its MA: a shape can be reconstructed from its MA



Department of Geomatics

## **Instability of Medial Axis**

- The MA is very sensitive to small changes of the boundary, which produces many irrelevant branches in the MA.
- Two very similar shapes can have significantly different MAs:





### **Instability of Medial Axis**

- Solution: Filtering extraneous branches
  - Simplification: Smooth the boundary before computing the MA (pre-processing).
  - Pruning: Remove the irrelevant branches of the extracted MA (post-processing).

 Disadvantage: May alter the topological or geometrical structure of the MA

Department of Geomatics

## **Instability of Medial Axis**

#### Our approach:

A modification to a Voronoi-based MA extraction algorithm (i.e., one-step crust and skeleton extraction) through labeling the sample points

Department of Geomatics

### **One-Step Crust and Skeleton Extraction**

- Proposed by Gold and Snoeyink (1999)
- Extracts both the boundary (crust) and the MA (skeleton), simultaneously

Every Voronoi/Delaunay edge is either part of the crust (Delaunay) or the skeleton (Voronoi), which is determined by inCircle test



$$InCircle (D_1, D_2, V_1, V_2) = \begin{bmatrix} x_{D1} & y_{D1} & x_{D1}^2 + y_{D1}^2 & 1 \\ x_{D2} & y_{D2} & x_{D2}^2 + y_{D2}^2 & 1 \\ x_{V1} & y_{V1} & x_{V1}^2 + y_{V1}^2 & 1 \\ x_{V2} & y_{V2} & x_{V2}^2 + y_{V2}^2 & 1 \end{bmatrix}$$

**Department of Geomatics** 



### **One-Step Crust and Skeleton Extraction**

- The *InCircle(D1, D2, V1, V2)* determines the position of *V*2 respect to the circle passes through *D1, D*2 and *V*1:
  - a) V2 is outside the circle  $\rightarrow D1D2$  belongs to the crust
  - b) V2 is inside the circle  $\rightarrow$  V1V2 belongs to the skeleton







### **Our Approach**

 Observation: extraneous edges are the Voronoi edges created between the sample points that lie on the same segment of the curve

 Solution: Labeling the sample points to automatically avoid appearing such edges in the medial axis



**F. Karimipour and M. Ghandehari**Department of Geomatics
University of Tehran

### Our Approach

- Modifications applied to one-step algorithm:
  - Labeling the sample points: Each segment of the shape is assigned a unique label; and all of its sample points are assigned the same label.
  - Extracting the crust and MA: each Delaunay edge passes the InCircle test
    - If InCircle<0 and the corresponding Delaunay vertices have</li> the same labels, that Delaunay edge is added to the crust.
    - If InCircle>0 and the corresponding Delaunay vertices have different labels, its dual is added to the MA.



Department of Geomatics

#### Results



One-step crust and skeleton algorithm



Our algorithm



### Results

Different segmentations lead to different MAs:







### Discussion

Stability

Noise



**One-step algorithm** 

Our algorithm



#### Discussion

#### **Flexibility**





One-step algorithm





**Our algorithm** 

**Department of Geomatics** 



#### Discussion

#### Open curves



**One-step algorithm** 



Our algorithm

#### **Conclusion and Future Work**

- Improving the one-step crust and skeleton algorithm through labeling the sample points
- The solution is
  - Simple
  - Easy to implement
  - Robust to boundary perturbations
  - Able to handle sharp corners and open curves
  - Stable, even in the presence of significant noise and perturbations
- Extending the approach for surface reconstruction and 3D MA extraction



Department of Geomatics

# Thank you for your attention

**Department of Geomatics**