4. előadás

VALÓS SOROZATOK 3.

A műveletek és a határérték kapcsolata

$\overline{\mathbb{R}}$ struktúrája

A kibővített valós számok

$$\overline{\mathbb{R}}:=\mathbb{R}\cup\{-\infty,+\infty\}$$

halmazában bevezettünk egy rendezést is. \mathbb{R} eredeti rendezését megtartva azt mondtuk, hogy legyen

$$-\infty < x < +\infty$$

minden $x \in \mathbb{R}$ esetén.

Állapodjunk meg abban, hogy az \mathbb{R} -beli **műveleteket** az alábbiak szerint terjesztjük ki $\overline{\mathbb{R}}$ -ra:

 $\mathbf{1}^{o}$ (i) Minden x valós számra legyen

$$x + (+\infty) := (+\infty) + x := +\infty,$$
 $x + (-\infty) := (-\infty) + x := -\infty,$

(ii)
$$(+\infty) + (+\infty) := +\infty$$
, $(-\infty) + (-\infty) := -\infty$.

 2^o (i) Minden x pozitív valós számra legyen

$$x \cdot (+\infty) := (+\infty) \cdot x := +\infty, \qquad x \cdot (-\infty) := (-\infty) \cdot x := -\infty.$$

(ii) Minden x negatív valós számra legyen

$$x \cdot (+\infty) := (+\infty) \cdot x := -\infty, \qquad x \cdot (-\infty) := (-\infty) \cdot x := +\infty.$$

$$\begin{array}{ll} \text{(iii)} & (+\infty) \cdot (+\infty) := +\infty, & (-\infty) \cdot (-\infty) := +\infty, \\ & (+\infty) \cdot (-\infty) := (-\infty) \cdot (+\infty) := -\infty. \end{array}$$

 $\mathbf{3}^{o}$ Minden x valós számra legyen

$$\frac{x}{+\infty} := \frac{x}{-\infty} := 0.$$

 ${\bf 4^o}$ Ha $x\in\mathbb{R}$ és $y\in\{-\infty,+\infty\}$ vagy $y\in\mathbb{R}\setminus\{0\}$ és $x\in\overline{\mathbb{R}},$ akkor

$$\frac{x}{y} := x \cdot \frac{1}{y}.$$

1

Megjegyzések

- 1. A műveletek és a rendezés definíciói összhangban vannak a végtelenről kialakult szemléletes képünkkel; pl. $x+(+\infty):=+\infty$ azzal, hogy egy valós szám és egy "mindennél nagyobb" szám összege "mindennél nagyobb".
- **2.** Felhívjuk a figyelmet arra, hogy $\overline{\mathbb{R}}$ -on lényegében nem "igazi" műveleteket, azaz nem az $\overline{\mathbb{R}} \times \overline{\mathbb{R}}$ halmaz**on** értelmezett $\overline{\mathbb{R}}$ -beli értékeket felvevő függvényeket értelmeztünk. Bizonyos műveleteket nem definiáltunk. Ilyenek többek között a következők:

$$(+\infty) + (-\infty), \qquad 0 \cdot (\pm \infty), \quad \frac{\pm \infty}{\pm \infty}, \qquad \frac{c}{0} \quad (c \in \overline{\mathbb{R}}).$$

Műveletek határértékekkel

A konvergens sorozatoknál láttuk, hogy a három algebrai művelet és a határérték képzés sorrendje felcserélhető. A következő tétel azt állítja, hogy a "legtöbb esetben" ez igaz a tágabb értelemben vett határértékre is.

1. tétel. Tegyük fel, hogy az (a_n) és a (b_n) sorozatoknak van határértéke, és legyen

$$\lim (a_n) =: A \in \overline{\mathbb{R}}, \qquad \lim (b_n) =: B \in \overline{\mathbb{R}}.$$

Ekkor

 $\mathbf{1}^{o}$ az $(a_n + b_n)$ összeg-sorozatnak is van határértéke, és

$$\lim (a_n + b_n) = \lim (a_n) + \lim (b_n) = A + B,$$

feltéve, hogy az $A + B \in \overline{\mathbb{R}}$ összeg értelmezve van;

 2^{o} az $(a_n \cdot b_n)$ szorzat-sorozatnak is van határértéke, és

$$\lim (a_n \cdot b_n) = \lim (a_n) \cdot \lim (b_n) = A \cdot B,$$

feltéve, hogy az $A \cdot B \in \overline{\mathbb{R}}$ szorzat értelmezve van;

 $\mathbf{3}^{o}$ ha $b_{n} \neq 0$ $(n \in \mathbb{N})$, akkor az $\left(\frac{a_{n}}{b_{n}}\right)$ hányados-sorozatnak is van határértéke, és

$$\lim \left(\frac{a_n}{b_n}\right) = \frac{\lim \left(a_n\right)}{\lim \left(b_n\right)} = \frac{A}{B},$$

feltéve, hogy az $\frac{A}{B} \in \overline{\mathbb{R}}$ hányados értelmezve van.

1. megjegyzés. Figyeljük meg, hogy a konvergens sorozatok és a műveletek kapcsolatára vonatkozó korábbi eredményeinket (figyelembe véve az $\overline{\mathbb{R}}$ -beli műveletek definícióit) további 28 állítással egészítettük ki. Ezt szemléltetik az alábbi táblázatok.

$$A = \lim (a_n)$$
 $B = \lim (b_n)$

összeg	$A \in \mathbb{R}$	$A = +\infty$	$A = -\infty$	
$B \in \mathbb{R}$	A + B	$+\infty$	$-\infty$	
$B = +\infty$	$+\infty$	$+\infty$		
$B = -\infty$	$-\infty$		$-\infty$	

szorzat	A > 0	A = 0	A < 0	$A = +\infty$	$A = -\infty$
B > 0				$+\infty$	$-\infty$
B = 0		$A \cdot B$			
B < 0				$-\infty$	$+\infty$
$B = +\infty$	$+\infty$		$-\infty$	$+\infty$	$-\infty$
$B = -\infty$	$-\infty$		+∞	$-\infty$	$+\infty$

hányados	A > 0	A = 0	A < 0	$A = +\infty$	$A = -\infty$
B > 0	A/B	A/B	A/B	$+\infty$	$-\infty$
B < 0	A/B	A/B	A/B	$-\infty$	$+\infty$
B=0					
$B = +\infty$	0	0	0		
$B = -\infty$	0	0	0		

Bizonyítás. A definíciók alapján.

2. megjegyzés: Kritikus határértékekről beszélünk akkor, ha az imént megfogalmazott tétel nem alkalmazható. Ezeket az eseteket a táblázatban üresen hagyott helyek jelölik, és ez azt jelenti, hogy A és B megadott értékei nem határozzák meg az összeg-, a szorzat-, illetve a hányados-sorozat határértékét.

Ha pl. $A = +\infty$ és $B = -\infty$, akkor az $(a_n + b_n)$ összeg-sorozat határértékére (a_n) és (b_n) megválasztásától függően "minden" előfordulhat. Ezt mutatják az alábbi példák:

$$\begin{array}{lll} a_n := n + c, & b_n := -n \ (n \in \mathbb{N}, \ c \in \mathbb{R}) & \Longrightarrow & \lim \left(a_n + b_n\right) = c, \\ a_n := 2n, & b_n := -n \ (n \in \mathbb{N}) & \Longrightarrow & \lim \left(a_n + b_n\right) = +\infty, \\ a_n := n, & b_n := -2n \ (n \in \mathbb{N}) & \Longrightarrow & \lim \left(a_n + b_n\right) = -\infty, \\ a_n := n + (-1)^n, & b_n := -n \ (n \in \mathbb{N}) & \Longrightarrow & (a_n + b_n) - \text{nek nincs határértéke.} \end{array}$$

Ezért nem értelmeztük $\overline{\mathbb{R}}$ -ben $(+\infty)$ -nek és $(-\infty)$ -nek az összegét.

Hasonló egyszerű példákat lehet megadni a többi kritikus esetben is. Ekkor röviden

$$(+\infty) + (-\infty) \text{ (vagy } (+\infty) - (+\infty)), \qquad 0 \cdot (\pm \infty), \qquad \frac{\pm \infty}{+\infty}, \qquad \frac{0}{0}, \quad \frac{c}{0} \text{ } (c \in \overline{\mathbb{R}})$$

típusú határértékekről beszélünk. Ilyenkor a sorozat határértékének a meghatározása során a következő "módszert" követjük: a kritikus határértéket valamilyen "alkalmas" átalakítással igyekszünk nem kritikus határértékre visszavezetni. ■

Monoton sorozatok határértéke

A sorozatok egy légyeges osztályát képezik a monoton sorozatok. Látni fogjuk azt, hogy minden monoton sorozatnak van határértéke. Ha még azt is feltesszük, hogy a sorozat korlátos, akkor a sorozat konvergens is. Nem korlátos sorozatok határértéke pedig vagy $+\infty$ vagy $-\infty$. Mivel a monotonitást, illetve a korlátosságot egyszerűbb eldönteni, mint a konvergenciát vagy a határértéket, ezért a következő tétel sok esetben jól használható módszert ad a határérték-vizsgálatokhoz.

- **2.** tétel. Minden (a_n) monoton sorozatnak van határértéke.
 - **1º** (a) $Ha(a_n) \nearrow és felülről korlátos, akkor <math>(a_n)$ konvergens és

$$\lim (a_n) = \sup \{a_n \mid n \in \mathbb{N}\}.$$

(b) Ha $(a_n) \searrow \acute{e}s$ alulról korlátos, akkor (a_n) konvergens $\acute{e}s$

$$\lim (a_n) = \inf \{ a_n \mid n \in \mathbb{N} \}.$$

 2^{o} (a) Ha $(a_n) \nearrow \acute{e}s$ felülről nem korlátos, akkor

$$\lim (a_n) = +\infty.$$

(b) $Ha(a_n) \searrow \acute{e}s$ alulról nem korlátos, akkor

$$\lim (a_n) = -\infty.$$

Megjegyzés. A tételben elég feltenni azt, hogy a sorozat egy küszöbindextől kezdve monoton, hiszen véges sok tag nem befolyásolja a határértéket. ■

Bizonyítás.

 $\mathbf{1}^o$ (a) Tegyük fel, hogy az (a_n) sorozat monoton növekedő és felülről korlátos. Legyen

$$A := \sup \{ a_n \mid n \in \mathbb{N} \} \in \mathbb{R}.$$

Ez azt jelenti, hogy A a szóban forgó halmaznak a legkisebb felső korlátja, azaz

- $\forall n \in \mathbb{N} : a_n < A$ és
- $\forall \varepsilon > 0$ -hoz $\exists n_0 \in \mathbb{N} : A \varepsilon < a_{n_0} \le A$.

Mivel a feltételezésünk szerint az (a_n) sorozat monoton növekedő, ezért az

$$A - \varepsilon < a_n \le A$$

becslés is igaz minden $n > n_0$ indexre.

Azt kaptuk tehát, hogy

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}$, hogy $\forall n > n_0 : |a_n - A| < \varepsilon$.

Ez pontosan azt jelenti, hogy az (a_n) sorozat konvergens és $\lim (a_n) = A$.

- 1^{o} (b) Értelemszerű módosításokkal bizonyíthatjuk az állítást a monoton fogyó alulról korlátos sorozatokra.
 - 2^o (a) Tegyük fel, hogy az (a_n) sorozat monoton növekedő és felülről nem korlátos. Ekkor

$$\forall P \in \mathbb{R}\text{-hez } \exists n_0 \in \mathbb{N}: \ a_{n_0} > P.$$

A monotonitás miatt ezért egyúttal az is igaz, hogy

$$\forall n > n_0: a_n > P$$
,

és ez pontosan azt jelenti, hogy $\lim (a_n) = +\infty$.

2° (b) Értelemszerű módosításokkal bizonyíthatjuk az állítást a monoton fogyó alulról nem korlátos sorozatokra. ■

Nevezetes sorozatok 1.

1. Legyen $k = 1, 2, \dots$ egy rögzített természetes szám. Ekkor

$$\mathbf{1}^{o} \quad \lim_{n \to +\infty} \frac{1}{n^k} = 0,$$

$$2^{o} \quad \lim_{n \to +\infty} n^{k} = +\infty,$$

$$3^{o}$$
 $\lim_{n\to+\infty} \sqrt[k]{n} = +\infty.$

Bizonyítás.

1º Azt kell megmutatni, hogy

$$\forall \varepsilon > 0 \text{-hoz } \exists n_0 \in \mathbb{N}, \text{ hogy } \forall n > n_0 : \left| \frac{1}{n^k} - 0 \right| < \varepsilon.$$

Rögzítsük az $\varepsilon > 0$ számot. Mivel az

$$\left| \frac{1}{n^k} - 0 \right| = \frac{1}{n^k} \le \frac{1}{n} < \varepsilon \qquad \left(\Longrightarrow \frac{1}{\varepsilon} < n \right)$$

egyenlőtlenség igaz minden $n>n_0:=\left[\frac{1}{\varepsilon}\right]$ index
re, ezért $\varepsilon>0$ -hoz n_0 egy "jó" küszöbindex. Ez azt jelenti, hogy $\lim_{n\to+\infty}\frac{1}{n^k}=0$.

2º Most azt kell belátnunk, hogy

$$\forall P > 0$$
-hoz $\exists n_0 \in \mathbb{N}$, hogy $\forall n > n_0 : n^k > P$.

Rögzítsük a P > 0 számot. Mivel az

$$n^k \ge n > P$$

egyenlőtlenség igaz minden $n>n_0:=[P]$ indexre, ezért P-hez n_0 egy "jó" küszöbindex, így $\lim_{n\to+\infty}n^k=+\infty$.

3º Mivel $\sqrt[k]{n} > P \iff n > P^k$, ezért P > 0-hoz $n_0 := [P^k]$ egy "jó" küszöbindex, amiből következik, hogy $\lim_{n \to +\infty} \sqrt[k]{n} = +\infty$.

2. Legyen $m \geq 2$ természetes szám, és tegyük fel, hogy az $(a_n) : \mathbb{N} \to \mathbb{R}_0^+$ sorozat konvergens és $\lim (a_n) =: A \in \mathbb{R}$. Ekkor $A \geq 0$, továbbá az $(\sqrt[n]{a_n}, n \in \mathbb{N})$ sorozat is konvergens, és

$$\lim_{n \to +\infty} \sqrt[m]{a_n} = \sqrt[m]{A}.$$

Bizonyítás. Indirekt módon igazolható, hogy $A \ge 0$. Ha A = 0, akkor az állítás a definíció közvetlen következménye.

Tegyük fel, hogy m=2 és A>0. Ekkor

$$\sqrt{a_n} - \sqrt{A} = \left(\sqrt{a_n} - \sqrt{A}\right) \cdot \frac{\sqrt{a_n} + \sqrt{A}}{\sqrt{a_n} + \sqrt{A}} = \frac{1}{\sqrt{a_n} + \sqrt{A}} \cdot (a_n - A),$$

így

$$0 \le \left| \sqrt{a_n} - \sqrt{A} \right| \le \frac{1}{\sqrt{A}} \cdot |a_n - A| \quad (n \in \mathbb{N}).$$

Mivel $\lim (a_n) = A \Longrightarrow \lim (|a_n - A|) = 0$, ezért a közrefogási elvből következik, hogy $|\sqrt{a_n} - \sqrt{A}| \to 0$, ha $n \to +\infty$, így $\sqrt{a_n} \to \sqrt{A}$, ha $n \to +\infty$.

Az m > 2 esetben a bizonyítás hasonló. A gyöktelenítéshez az

$$a_n - A = \left(\sqrt[m]{a_n} - \sqrt[m]{A}\right) \cdot \left(\left(\sqrt[m]{a_n}\right)^{m-1} + \left(\sqrt[m]{a_n}\right)^{m-2} \cdot \sqrt[m]{A} + \dots + \left(\sqrt[m]{A}\right)^{m-1}\right)$$

azonosságot kell alkalmazni.

A geometriai/mértani sorozat

Tetszőlegesen rögzített $q \in \mathbb{R}$ paraméter esetén könnyen alakíthatunk ki **sejtéseket** a (q^n) geometriai (vagy mértani) sorozat viselkedéséről.

Valóban: ha például q=2, akkor $\lim_{n\to+\infty}2^n=+\infty$, sőt az is sejthető, hogy minden q>1 esetén is $+\infty$ lesz a (q^n) sorozat határértéke.

Ha $q = \frac{1}{2}$ vagy $q = -\frac{1}{2}$, akkor

$$\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = \lim_{n \to +\infty} \left(-\frac{1}{2}\right)^n = 0.$$

Azt várjuk továbbá, hogy (q^n) minden |q| < 1 esetén nullasorozat.

Ha q = -1, akkor a $((-1)^n)$ sorozat divergens.

A következő tétel azt állítja, hogy ezek a sejtések igazak.

3. Minden rögzített $q \in \mathbb{R}$ esetén a (q^n) geometriai sorozat határértékére a következők teljesülnek:

$$\lim_{n \to +\infty} q^n \begin{cases} = 0, & ha |q| < 1 \\ = 1, & ha |q| = 1 \\ = +\infty, & ha |q| < 1 \\ = +\infty, & ha |q| < 1 \end{cases}$$

$$\lim_{n \to +\infty} q^n \begin{cases} = 0, & ha |q| < 1 \\ = 1, & ha |q| < 1 \\ = +\infty, & ha |q| < 1 \end{cases}$$

Bizonyítás.

Legyen $q \ge 1$. Írjuk fel ezt a számot q = 1 + h (h > 0) alakban. A Bernoulli-egyenlőtlenségből következik

$$q^{n} = (1+h)^{n} \ge 1 + nh > nh \quad (n \in \mathbb{N}^{+}).$$

Így tetszőleges P>0 számra, ha $n>n_0:=\left\lceil\frac{P}{h}\right\rceil$, akkor

$$q^n > nh > P$$
,

és ez azt jelenti, hogy $\lim_{n\to +\infty}q^n=+\infty$.

Ha g=1, akkor az (1) konstans sorozatot kapjuk, ami konvergens, és 1 a határértéke.

Legyen $|q| \le 1$. Ha q=0, akkor az állítás nyilvánvaló. Ha 0<|q|<1, akkor az $\frac{1}{|q|}>1$ számot írjuk fel az $\frac{1}{|q|}=1+h$ (h>0) alakban. Ismét a Bernoulli-egyenlőtlenséget felhasználva azt kapjuk, hogy

$$\frac{1}{|q|^n} = \left(\frac{1}{|q|}\right)^n = (1+h)^n > 1+nh > nh \quad (n \in \mathbb{N}^+),$$

azaz

$$|q|^n < \frac{1}{nh} \quad (n \in \mathbb{N}^+).$$

Ha $\varepsilon > 0$ adott valós szám, akkor a

$$0 < |q|^n < \frac{1}{nh} < \varepsilon$$

egyenlőtlenség teljesül, ha $n > n_0 := \left[\frac{1}{\varepsilon}\right]$, ezért ε -hoz n_0 egy "jó" küszöbindex, ami azt jelenti, hogy $\lim_{n \to +\infty} |q|^n = 0$, következésképpen $\lim_{n \to +\infty} q^n = 0$ is igaz.

 $\underbrace{\text{Ha}}_{q} = -1$, akkor azt már láttuk, hogy a $((-1)^n)$ sorozatnak nincs határértéke.

 $\underbrace{\text{Ha }q \leq -1}$, akkor a (q^n) sorozat páros, illetve páratlan indexű részsorozatainak különböző a határértéke (a páros indexű részsorozat határértéke $+\infty$, a páratlan indexű részsorozaté pedig $-\infty$), ezért a (q^n) sorozatnak nincs határértéke.

n-edik gyökös sorozatok

1. feladat. Végezzünk számítógépes kísérleteket az

$$(\sqrt[n]{a})$$
 $(a > 0)$ és az $(\sqrt[n]{n})$

sorozat viselkedésének a megismerésére!

Megoldás. Használható például

https://www.wolframalpha.com/

Az eredmények:

Az $(\sqrt[n]{a})$ sorozat, ha a > 0: Legyen például a = 2. Ekkor azt kapjuk, hogy

$\sqrt[n]{2}$.	1	2	3	4	5	6	100	1 000	10 000
V Z :	2	1,414	1,256	1,189	1,149	1,122	1,0069	1,00069	1,000069

A sorozat első néhány tagját szemlélteti az alábbi ábra:

Azt sejthetjük tehát, hogy

$$\sqrt[n]{2} \to 1$$
, ha $n \to +\infty$.

Ha ez igaz, akkor

$$\sqrt[n]{\frac{1}{2}} \to 1$$
, ha $n \to +\infty$

is igaz.

Az a=2 paraméter helyett más a>1 értékeket véve alakíthatjuk ki azt a sejtést, hogy

$$\forall a > 0$$
 esetén $\sqrt[n]{a} \to 1$, ha $n \to +\infty$.

Az $(\sqrt[n]{n})$ sorozat:

$\sqrt[n]{n}$:	1	2	3	4	5	6	100	1 000	10 000
	1	1,414	1,442	1,414	1,379	1,348	1,047	1,00693	1,00092

A sorozat első néhány tagját szemlélteti az alábbi ábra:

A sejtés itt is az, hogy $\lim_{n\to+\infty} \sqrt[n]{n} = 1$.

A következő tétel azt állítja, hogy ezek a sejtések igazak. ■

4. $\mathbf{1}^{o}$ Minden a > 0 valós szánra az $(\sqrt[n]{a})$ sorozat konvergens, és

$$\lim_{n \to +\infty} \sqrt[n]{a} = 1.$$

 2^{o} Az $(\sqrt[n]{n})$ sorozat konvergens, és

$$\lim_{n \to +\infty} \sqrt[n]{n} = 1.$$

3º Tegyük fel, hogy az $(x_n): \mathbb{N} \to \mathbb{R}_0^+$ sorozat konvergens, és $\lim_{n \to +\infty} x_n = A > 0$. Ekkor az $(\sqrt[n]{x_n})$ sorozat is konvergens, és

$$\lim_{n \to +\infty} \sqrt[n]{x_n} = 1.$$

Bizonyítás.

1º Legyen a > 1.

(i) A számtani és a mértani közép közötti egyenlőtlenség alapján

$$1 \le \sqrt[n]{a} = \sqrt[n]{a \cdot 1 \cdot \ldots \cdot 1} < (n-1 \text{ darab 1-es}) < \frac{a+n-1}{n} = 1 + \frac{a-1}{n}.$$

A jobb oldalon szereplő sorozat határértéke 1, ezért a közrefogási elv szerint $\lim_{n\to+\infty} \sqrt[n]{a} = 1$.

- (ii) $\text{Ha} \ a = 1$, akkor az állítás nyilvánvaló.
- (iii) <u>Ha $0 \le a \le 1$ </u>, akkor $\frac{1}{a} > 1$, ezért (i) és a konvergens sorozatok éa a műveletek kapcsolatára vonatkozó tétel alapján

$$\sqrt[n]{a} = \sqrt[n]{\frac{1}{\frac{1}{a}}} = \frac{1}{\sqrt[n]{\frac{1}{a}}} \to \frac{1}{1} = 1$$
, ha $n \to +\infty$.

 2^o Ismét a számtani és a mértani közép közötti egyenlőtlenséget alkalmazzuk:

$$1 \le \sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \dots 1} < (n-2 \text{ darab 1-es}) < \frac{2\sqrt{n} + n - 2}{n} = 1 - \frac{2}{n} + \frac{2}{\sqrt{n}}.$$

A jobb oldalon szereplő sorozat határértéke 1, ezért a közrefogási elv szerint $\lim_{n\to+\infty} \sqrt[n]{n} = 1$.

$$\mathbf{3}^o \lim_{n \to +\infty} x_n = A > 0 \Longrightarrow \operatorname{az} \varepsilon := A/2 > 0 \text{-hoz } \exists n_0 \in \mathbb{N}, \operatorname{hogy}$$

$$\frac{A}{2} < x_n < \frac{3A}{2} \quad (\forall n > n_0 \text{ indexre}).$$

Ezért

$$\sqrt[n]{\frac{A}{2}} < \sqrt[n]{x_n} < \sqrt[n]{\frac{3A}{2}}, \quad \text{ha } n > n_0.$$

Az $\mathbf{1}^o$ állítás szerint a két szélső sorozat határértéke 1, ezért a közrefogási elvből következik, hogy $\lim_{n\to+\infty} \sqrt[n]{x_n}=1$.

Így a tétel minden állítását bebizonyítottuk.

Sorozatok nagyságrendje

2. feladat. Melyik szám nagyobb

$$1,0001^n \quad vagy \quad n^{1000}, \quad ha \ n \ el\'{e}g \ nagy?$$

A válaszhoz végezzünk ismét számítógépes kísérleteket. Ezekből azt a meglepő sejtést alakíthatnánk ki, hogy

 $1,0001^n$ nagyobb, mint n^{1000} ha n elég nagy.

Tovább kísérletezve vizsgálhatnánk az

$$\frac{n^{1000}}{1,0001^n} \quad \left(n \in \mathbb{N}^+\right)$$

hányados-sorozatot. Azt kapnánk, hogy n nagy értékeire a tört 0-hoz közeli értékeket vesz fel. Ezt most már úgy is megfogalmazhatjuk, hogy

$$\frac{n^{1000}}{1,0001^n} \to 0$$
, ha $n \to +\infty$.

Az 1,0001 alap és az 1000 kitevő helyett más értékeket véve alakíthatjuk ki azt a **sejtést**, hogy minden rögzített $k=1,2,\ldots$ és a>1 esetén

$$\lim_{n \to +\infty} \frac{n^k}{a^n} = 0.$$

A következő tétel (többek között) azt állítja, hogy ez a sejtés igaz.

5. $\mathbf{1}^{o}$ Ha k rögzített természetes szám és a > 1 rögzített valós szám, akkor

$$\lim_{n \to +\infty} \frac{n^k}{a^n} = 0.$$

 $\mathbf{2}^{o}$ Minden $a \in \mathbb{R}$ esetén

$$\lim_{n \to +\infty} \frac{a^n}{n!} = 0.$$

 3^o

$$\lim_{n \to +\infty} \frac{n!}{n^n} = 0.$$

Bizonyítás. Az állítás bizonyításához először a 0-hoz tartásra egy igen hasznos elégséges feltételt mutatunk meg.

<u>Segététel.</u> Tegyük fel, hogy az $(x_n): \mathbb{N} \to \mathbb{R}^+$ egy olyan sorozat, amelyre az $\left(\frac{x_{n+1}}{x_n}\right)$ sorozat és

 $0 \le \lim_{n \to +\infty} \frac{x_{n+1}}{x_n} < 1.$

 $Ekkor(x_n)$ egy nullasorozat.

<u>A segédtétel bizonyítása.</u> Legyen $A := \lim \left(\frac{x_{n+1}}{x_n}\right) < 1$. Vegyünk egy (A, 1) intervallumba eső q valós számot.

Válasszunk egy olyan $\varepsilon > 0$ -t, amelyre a

$$0 < A - \varepsilon$$
 és $A + \varepsilon < q$

egyenlőtlenségek teljesülnek. (Világos, hogy van ilyen ε .) Tekintsük az A pont ε sugarú környezetét. Mivel $\lim \left(\frac{x_{n+1}}{x_n}\right) = A$, ezért ehhez az ε számhoz létezik olyan $n_0 \in \mathbb{N}$ index, amelyre

$$0 < \frac{x_{n+1}}{x_n} < q \qquad (\forall n > n_0, \ n \in \mathbb{N}).$$

Így

$$\frac{x_{n_0+2}}{x_{n_0+1}} < q, \quad \frac{x_{n_0+3}}{x_{n_0+2}} < q, \quad \dots, \quad \frac{x_{n+1}}{x_n} < q \quad (n \ge n_0).$$

Ezeket az egyenlőtlenséget összeszorozva azt kapjuk, hogy

$$0 < x_{n+1} < \frac{x_{n_0+1}}{q^{n_0+1}} q^n \qquad (\forall n > n_0, \ n \in \mathbb{N}).$$

Mivel 0 < q < 1, ezért $\lim(q^n) = 0$. A közrefogási elvből következik, hogy $\lim(x_n) = 0$. \square

Az 5. állítás bizonyítása.

 $\mathbf{1}^o$ Az 5. tételt az $x_n:=\frac{n^k}{a^n}$ $(n\in\mathbb{N}^+)$ sorozatra alkalmazva kapjuk, hogy

$$0 < \frac{x_{n+1}}{x_n} = \frac{\frac{(n+1)^k}{a^{n+1}}}{\frac{n^k}{a^n}} = \left(\frac{n+1}{n}\right)^k \cdot \frac{1}{a} =$$
$$= \left(1 + \frac{1}{n}\right)^k \cdot \frac{1}{a} \to \frac{1}{a} < 1, \text{ ha } n \to +\infty,$$

ezért $\lim (x_n) = \lim_{n \to +\infty} \frac{n^k}{a^n} = 0.$

 ${f 2^o}$ Ha a=0, akkor az állítás nyilván igaz. Ha $a\in\mathbb{R}\setminus\{0\}$, akkor az 5. tételt most az $x_n:=rac{|a|^n}{n!}\ (n\in\mathbb{N})$ sorozatra alkalmazva kapjuk, hogy

$$0 < \frac{x_{n+1}}{x_n} = \frac{\frac{|a|^{n+1}}{(n+1)!}}{\frac{|a|^n}{n!}} = \frac{|a|}{n+1} \to 0 < 1 \text{ ha } n \to +\infty,$$

azaz $\lim (x_n) = \lim_{n \to +\infty} \frac{|a|^n}{n!} = 0$, de akkor $\lim_{n \to +\infty} \frac{a^n}{n!} = 0$ is teljesül.

 $\mathbf{3}^{o}$ Ha $\mathbb{N} \ni n \geq 2$, akkor

$$0 < \frac{n!}{n^n} = \frac{2}{n} \cdot \frac{3}{n} \cdots \frac{n}{n} \cdot \frac{1}{n} \le \frac{1}{n}.$$

Mivel $\lim_{n\to +\infty} \frac{1}{n} = 0$, ezért a közrefogási szerint $\lim_{n\to +\infty} \frac{n!}{n^n} = 0$.

Megjegyzés. Tekintsük például az $\left(\frac{n^3}{2^n}\right)$ sorozatot. Mivel $\lim (n^3) = \lim (2^n) = +\infty$ $(n^3$ és 2^n is "akármilyen nagy" lehet, ha n "elég nagy"), ezért a hányados határértékére vonatkozó tétel erre a sorozatra nem alkalmazható ("kritikus határérték"). A tétel $\mathbf{1}^o$ állításából azonban az következik, hogy

$$\frac{n^3}{2^n} \to 0$$
, ha $n \to +\infty$

ami azt jelenti, hogy a $\frac{n^3}{2^n}$ tört "akármilyen kicsi" lehet, ha n "elég nagy", azaz 2^n "sokkal nagyobb", mint n^3 , ha n "elég nagy". Röviden azt mondjuk, hogy a (2^n) sorozat $erősebben tart +\infty$ -hez, mint az (n^3) sorozat.

Általában: ha az (a_n) és a (b_n) sorozatnak is $+\infty$ a határértéke, akkor azt mondjuk, hogy (b_n) erősebben (vagy sokkal gyorsabban) tart $+\infty$ -hez, mint (a_n) , ha

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = 0.$$

Ebben az esetben azt is mondjuk, hogy b_n sokkal nagyobb, mint a_n , ha n elég nagy; és ezt így jelöljük:

$$a_n \ll b_n$$
, ha n elég nagy.

A most bevezetett jelöléssel a feladat állításait így fejezhetjük ki: ha a>1 rögzített valós és k rögzített pozitív természetes szám, akkor

$$n^k \ll a^n \ll n! \ll n^n$$
, ha n elég nagy.