Differential Equations in Geophysical Fluid Dynamics

XI. Advection-diffusion-reaction equation

Jang-Geun Choi

Center for Ocean Engineering University of New Hampshire

Apr, 2025

This seminar is supported by mathematics community EM (maintained by Prof. Gunhee Cho) and oceanography community COKOAA.

Recap

Now, we know two partial differential equations:

Advection equation

$$\frac{\partial C}{\partial t} + \frac{\partial (uC)}{\partial x} = 0 \qquad (1)$$

Diffusion equation

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(A \frac{\partial C}{\partial x} \right) \tag{2}$$

Advection-diffusion equation

So, we know advection-diffusion equation, that governs transport of almost everything!

Random-walk and diffusion

We talked Eulerian and Lagrangian descriptions of advection:

Eulerian

$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = 0 \tag{4}$

Lagrangian

$$\frac{dX}{dt} = u, \quad \frac{dC}{dt} = 0 \quad (5)$$

How about those of diffusion?

Eulerian

$$\frac{\partial C}{\partial t} = A \frac{\partial^2 C}{\partial x^2} \tag{6}$$

Lagrangian

$$dX = \sqrt{2A}dW$$
(6)
$$X^{n+1} = X^n + \sqrt{2A\Delta t} N(0,1)$$

Advection-diffusion-reaction equation

https://jang-geun.github.io/vis_geo_adv_diff_1.gif

Advection-diffusion-reaction equation

Governing equation (model) for radioactive decay is given by

$$\frac{dC}{dt} = -aC \tag{8}$$

where a is decay rate. How do we couple this chemical model to hydrodynamics model?

Just add advection and diffusion terms!

$$\frac{\partial C}{\partial t} + \nabla \cdot (\vec{u}C) = \nabla \cdot A \nabla C - aC \qquad (9)$$

$$\frac{\partial (uC)}{\partial x} + \frac{\partial (vC)}{\partial y} + \frac{\partial (wC)}{\partial z} \qquad A_h \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2}\right) + \frac{\partial}{\partial z} \left(A_z \frac{\partial C}{\partial z}\right)$$

Advection-diffusion-reaction equation

Tons of applications...

```
Stock et al., 2005; He et al., 2008; Lee et al., 2024; Kim et al., 2016; Shin et al., 2017; Choi et al., 2018; Cheng et al., 2021; Kampouris et al., 2021; Choi et al., 2023; Choi et al., 2025;...
```

Assignment

Consider ageophysical $(1 \ll Ro_T)$ linear wind-driven current problem given by

$$\frac{\partial u}{\partial t} = A_z \frac{\partial^2 u}{\partial z^2} \tag{10a}$$

$$A_z \frac{\partial u}{\partial z} \bigg|_{z=0} = \frac{\tau_x^s}{\rho_0} \tag{10b}$$

$$u = 0|_{z=-h} \tag{10c}$$

- 1. Find steady-state solution \tilde{u} of the problem.
- 2. Based on the superposition principle, non-steady velocity component, defined as $u = \tilde{u} + u'$, can be decomposed. Find governing equation for u' and solve it with initial condition $u|_{t=0} = f(z)$.
- 3. If free-slip bottom boundary condition, $\partial u/\partial z|_{z=-h}=0$, is used instead of (10c), is there steady-state solution?

References I

- Cheng, Matthew LH et al. (2021). "A baseline for microplastic particle occurrence and distribution in Great Bay Estuary". In: *Marine Pollution Bulletin* 170, p. 112653.
- Choi, Jang-Geun et al. (2018). "Physical forces determine the annual bloom intensity of the giant jellyfish Nemopilema nomurai off the coast of Korea". In: Regional Studies in Marine Science 24, pp. 55–65.
- Choi, Jang-Geun et al. (2023). "New diagnostic sea surface current fields to trace floating algae in the Yellow Sea". In: *Marine Pollution Bulletin* 195, p. 115494.
- Choi, Jang-Geun et al. (2025). "Modeling the Influence of Directional Swimming Ability in American Lobster (Homarus americanus) Postlarvae on Settlement". In: Fisheries Oceanography, e70004.

References II

- He, Ruoying et al. (2008). "Historic 2005 toxic bloom of Alexandrium fundyense in the western Gulf of Maine: 2. Coupled biophysical numerical modeling". In: Journal of Geophysical Research: Oceans 113.C7.
- Kampouris, Konstantinos et al. (2021). "Oil spill model uncertainty quantification using an atmospheric ensemble". In: *Ocean Science* 17.4, pp. 919–934.
- Kim, Dae-Won et al. (2016). "Physical processes leading to the development of an anomalously large Cochlodinium polykrikoides bloom in the East sea/Japan sea". In: *Harmful Algae* 55, pp. 250–258.
- Lee, Seung-Tae et al. (2024). "Surface and subsurface dispersal of radioactive materials from Fukushima by subpolar gyre and intermediate waters in the North Pacific". In: Scientific Reports 14.1, p. 5055.

References III

- Shin, Jung-Wook et al. (2017). "Variability of phytoplankton size structure in response to changes in coastal upwelling intensity in the southwestern East Sea". In: *Journal of Geophysical Research: Oceans* 122.12, pp. 10262–10274.
- Stock, Charles A et al. (2005). "Evaluating hypotheses for the initiation and development of Alexandrium fundyense blooms in the western Gulf of Maine using a coupled physical-biological model". In: Deep Sea Research Part II: Topical Studies in Oceanography 52.19-21, pp. 2715–2744.