Homework 10

Zachary Moring

November 13, 2024

Code for the Lean portion is here: https://github.com/zpm-bu/cs511-formal-methods/blob/assignments/lean/Homework/hw10.lean

Exercise 1. If \mathcal{M} is a relational structure, the first-order theory of \mathcal{M} is:

$$\operatorname{Th}(\mathcal{M}) \stackrel{\operatorname{def}}{=} \{ \varphi \mid \varphi \text{ is a first-order sentence s.t. } \mathcal{M} \vDash \varphi \}$$

Is $Th(\mathcal{M})$ deductively closed?

Because we are dealing with first-order sentences, completeness tells us that $\mathcal{M} \vDash \varphi$ is equivalent to $\mathcal{M} \vdash \varphi$. Thus, every statement $\varphi \in \text{Th}(\mathcal{M})$ is also in

The same is true *mutatis mutandis* to show that every statement $\psi \in \overline{\mathcal{M}}$ is also an element of Th(\mathcal{M}).

Thus by double containment, $\operatorname{Th}(\mathcal{M})$ is deductively closed.

Exercise 2.1. Write a first-order sentence φ_1 which, in any Σ' structure \mathcal{M} satisfying Γ , asserts "every vertex has at least one of the colors: blue, green, purple, or yellow."

$$\varphi_1 \stackrel{\text{def}}{=} \forall v. \ B(v) \lor G(v) \lor P(v) \lor Y(v)$$

Exercise 2.2. Write a first-order sentence φ_2 which asserts "every vertex has at most one color."

This is a little brute-force, but it seems like the most straightforward way to handle it:

$$\varphi_2 \stackrel{\text{def}}{=} \forall v. \ \neg(B(v) \land G(v)) \ \land \ \neg(B(v) \land P(v)) \ \land \ \neg(B(v) \land Y(v)) \land \ \neg(G(v) \land P(v)) \ \land \ \neg(F(v) \land Y(v))$$

Exercise 2.3. Write a first-order sentence φ_3 which asserts "no two adjacent vertices have the same color."

Again, the most straightforward rule is kind of a brute-force approach, but it definitely works:

$$\varphi_3 \stackrel{\text{def}}{=} \forall u \forall v. \ R(u,v) \to \neg (B(u) \land B(v)) \ \land \ \neg (G(u) \land G(v)) \land \ \neg (P(u) \land P(v)) \ \land \ \neg (Y(u) \land Y(v))$$

Exercise 2.4. Show that if \mathcal{M} is an infinite planar graph then there is a Σ -structure \mathcal{M}' which expands \mathcal{M} with four unary relations $B^{\mathcal{M}'}$, $G^{\mathcal{M}'}$, $P^{\mathcal{M}'}$, $Y^{\mathcal{M}'}$ and which satisfies $\varphi_1 \wedge \varphi_2 \wedge varphi_3$; that is, \mathcal{M}' is four-colorable and thus \mathcal{M} is also four-colorable.

In Chapter 4, we are given the fact that every finite planar graph is 4-colorable. We will rely on that fact here.

Consider a finite subset of \mathcal{M}' , the finite graph M. Because \mathcal{M}' is planar, M is also planar. So M is a finite planar graph and thus M is four-colorable. Thus, $M \vDash \varphi_1 \wedge \varphi_2 \wedge \varphi_3$.

Therefore since M is an arbitrary finite submodel of \mathcal{M}' , by compactness, there exists a finite model of a four-coloring for \mathcal{M}' .