- . Prove that L' is complete
- Prove that L'is a Banach space (i.e. a complete wormed linear space).

Convergence:
$$\|f_n - f\| \longrightarrow 0$$
 as $n \longrightarrow \infty$.

$$\{\chi_{n}\}\subset L^{4}$$
, $\sum_{\infty}^{1}\chi_{n}=S\in L^{+}$, $S_{n}=\sum_{n}^{1}\chi_{n}$ / $S_{n}=\sum_{n}^{1}\chi_{n}$

Defn A series
$$9 \times 10^3$$
 converges assolutely if $\sum_{n=1}^{\infty} ||x_n|| = B < \infty$.

$$\left\| \sum |X_{n}| \right\| \leq \sum \|X_{n}\| = \beta < \infty$$

$$S \text{ by MCT}, \quad \sum_{i} |X_{n}| \in L^{+} \cap L^{'}.$$

$$\left| \sum_{i} |X_{n}| \right| \leq \sum_{i} |X_{n}| \in L^{'},$$

$$SO DCT \text{ says} \quad \sum_{i} |X_{n}| \in L^{'}.$$

Showing that series converge blads to convergence of sequences
$$\begin{cases} f_j \end{cases} \longrightarrow \chi_i = f_i , \quad \chi_2 = f_2 - f, \quad \chi_3 = f_3 - f_2, \dots, \quad \chi_k = f_k - f_{k-1} \dots \\ \sum_i \chi_j = f_n . \end{cases}$$

Poblem: If is may be cauchy but the series ZX may not be convergent.

Solution: go to a subsequence of f_{nu}.

(form a "rapidly converging" sequence).

Let N_{k} be s.t. $m_{i}n > N_{k} \Rightarrow \|f_{m} - f_{n}\| < \frac{1}{2}k$ choose $n_{i} > N_{i}$, $n_{2} > N_{2}$, $n_{3} > N_{3}$, etc. then $\|f_{n_{j+1}} - f_{n_{j}}\| < \frac{1}{2^{j}}$

Let
$$x_i = f_{n_i}$$
, $x_2 = f_{n_2} - f_{n_i}$, etc.
Then $\sum_{i}^{\infty} x_i$ converges? so $f_{n_j} \longrightarrow \sum_{i}^{\infty} x_i$ in $\sum_{i}^{\infty} x_i$ cauchy

If
$$n$$
 Cauchy in L' — of f_n can they in measure.

who If n has a limit f in measure, and $f_{n_k} \to f$ are.

this gives a candidate for limit in L' .

is $f \in L'$?

does $f_n \to f$ in L' ?

$$f(x) = \begin{cases} \frac{1}{\sqrt{x}} & \text{old} \\ 0 & \text{old} \end{cases}$$

$$g(x) = \sum_{n=1}^{\infty} \frac{1}{2^n} f(x-r_n)$$
 where $\{r_n\} = Q$.

Can choose $\{Y_n\}$ to make $g(x) = \infty$ for any x.

can do 2 values, or countably many.

Could you make it finite everywhere by a different algorithm?