Análisis de la eficiencia de un algoritmo

IIC2283

Una noción general de algoritmo

Sea Σ un alfabeto.

Vamos a pensar en un algoritmo $\mathcal A$ como una función $\mathcal A: \Sigma^* \to \Sigma^*$

Una noción general de algoritmo

Sea Σ un alfabeto.

Vamos a pensar en un algoritmo \mathcal{A} como una función $\mathcal{A}: \Sigma^* \to \Sigma^*$

Esta es una representación general que incluye tanto a problemas de decisión como a los de computación.

¿Cómo se representa un problema de decisión?

Tiempo de ejecución de un algoritmo

A cada algoritmo $\mathcal A$ asociamos una función $\operatorname{tiempo}_{\mathcal A}: \Sigma^* \to \mathbb N$ tal que: $\operatorname{tiempo}_{\mathcal A}(w)$: número de pasos realizados por $\mathcal A$ con entrada $w \in \Sigma^*$

Para definir esta función tenemos que definir qué operaciones vamos a contar, y qué costo les asignamos.

Tiempo de ejecución de un algoritmo en el peor caso

El primer tipo de análisis que vamos a realizar de la complejidad de un algoritmo va a estar basado en el peor caso.

Tiempo de ejecución de un algoritmo en el peor caso

El primer tipo de análisis que vamos a realizar de la complejidad de un algoritmo va a estar basado en el peor caso.

Para cada algoritmo \mathcal{A} asociamos una función $t_{\mathcal{A}}: \mathbb{N} \to \mathbb{N}$ tal que

$$t_{\mathcal{A}}(n) = \max\{\text{tiempo}_{\mathcal{A}}(w) \mid w \in \Sigma^* \text{ y } |w| = n\},$$

donde |w| es el largo de w

Notación asintótica

En muchos casos, nos interesa conocer el *orden* de un algoritmo en lugar de su complejidad exacta.

▶ Queremos decir que un algoritmo es lineal o cuadrático, en lugar de decir que su complejidad es $3n^2 + 17n + 22$

Vamos a desarrollar notación para hablar del orden de un algoritmo.

Notación asintótica

Supuesto

La complejidad de un algoritmo va a ser medida en términos de funciones de la forma $f: \mathbb{N} \to \mathbb{R}_0^+$, donde $\mathbb{R}^+ = \{r \in \mathbb{R} \mid r > 0\}$ y $\mathbb{R}_0^+ = \mathbb{R}^+ \cup \{0\}$

Notación asintótica

Supuesto

La complejidad de un algoritmo va a ser medida en términos de funciones de la forma $f: \mathbb{N} \to \mathbb{R}_0^+$, donde $\mathbb{R}^+ = \{r \in \mathbb{R} \mid r > 0\}$ y $\mathbb{R}_0^+ = \mathbb{R}^+ \cup \{0\}$

Estas funciones incluyen a las funciones definidas en las transparencias anteriores, y también sirven para modelar el tiempo de ejecución de un algoritmo

1 Dr / =

La notación O(f)

Sea $f: \mathbb{N} \to \mathbb{R}_0^+$

Definición

$$O(f) = \{g: \mathbb{N} \to \mathbb{R}_0^+ \mid (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}) \\ (\forall n \ge n_0) (g(n) \le c \cdot f(n))\}$$

La notación O(f)

Sea
$$f: \mathbb{N} \to \mathbb{R}_0^+$$

Definición

$$O(f) = \{g: \mathbb{N} \to \mathbb{R}_0^+ \mid (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}) \\ (\forall n \ge n_0) (g(n) \le c \cdot f(n))\}$$

Decimos entonces que $g \in O(f)$

► También usamos la notación g es O(f), lo cual es formalizado como $g \in O(f)$

La notación O(f)

Sea
$$f: \mathbb{N} \to \mathbb{R}_0^+$$

Definición

$$O(f) = \{g : \mathbb{N} \to \mathbb{R}_0^+ \mid (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}) \\ (\forall n \ge n_0) (g(n) \le c \cdot f(n))\}$$

Decimos entonces que $g \in O(f)$

► También usamos la notación g es O(f), lo cual es formalizado como $g \in O(f)$

Ejercicio

Demuestre que $3n^2 + 17n + 22 \in O(n^2)$

Las notaciones $\Omega(f)$ y $\Theta(f)$

Definición

$$\Omega(f) = \{g : \mathbb{N} \to \mathbb{R}_0^+ \mid (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}) \\ (\forall n \ge n_0) (c \cdot f(n) \le g(n)) \}$$

$$\Theta(f) = O(f) \cap \Omega(f)$$

Las notaciones $\Omega(f)$ y $\Theta(f)$

Definición

$$\Omega(f) = \{g : \mathbb{N} \to \mathbb{R}_0^+ \mid (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}) \\ (\forall n \ge n_0) (c \cdot f(n) \le g(n))\}$$

$$\Theta(f) = O(f) \cap \Omega(f)$$

Ejercicios

- 1. Demuestre que $3n^2 + 17n + 22 \in \Theta(n^2)$
- 2. Demuestre que $g \in \Theta(f)$ si y sólo si existen $c, d \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tal que para todo $n \geq n_0$: $c \cdot f(n) \leq g(n) \leq d \cdot f(n)$

- L

Ejercicios

- 1. Sea p(n) un polinomio de grado $k \ge 0$ con coeficientes en los números enteros. Demuestre que $p(n) \in O(n^k)$.
- 2. ¿Cuáles de las siguientes afirmaciones son ciertas?

 - ► Si $f(n) \in O(n)$, entonces $f(n)^2 \in O(n^2)$
 - ▶ Si $f(n) \in O(n)$, entonces $2^{f(n)} \in O(2^n)$
- 3. Suponga que $\lim_{n\to\infty}\frac{f(n)}{g(n)}$ existe y es igual a ℓ . Demuestre lo siguiente:
 - ▶ Si $\ell = 0$, entonces $f \in O(g)$ y $g \notin O(f)$
 - ▶ Si $\ell = \infty$, entonces $g \in O(f)$ y $f \notin O(g)$
 - ▶ Si $\ell \in \mathbb{R}^+$, entonces $f \in \Theta(g)$
- 4. Encuentre funciones f y g tales que $f \in \Theta(g)$ y $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ no existe

100

Búsqueda binaria

Suponga que tiene una lista ordenada (de menor a mayor) $L[1\dots n]$ de números enteros con $n\geq 1$

¿Cómo podemos verificar si un número a está en L?

Búsqueda binaria

```
BúsquedaBinaria(a,\ L,\ i,\ j) if i>j then return no else if i=j then if L[i]=a then return i else return no else p:=\lfloor\frac{i+j}{2}\rfloor if L[p]< a then return BúsquedaBinaria(a,\ L,\ p+1,\ j) else if L[p]> a then return BúsquedaBinaria(a,\ L,\ i,\ p-1) else return p
```

Llamada inicial al algoritmo: BúsquedaBinaria(a, L, 1, n)

Tiempo de ejecución de búsqueda binaria

¿Cuál es la complejidad del algoritmo?

- ▶ ¿Qué operaciones vamos a considerar?
- ► ¿Cuál es el peor caso?

Tiempo de ejecución de búsqueda binaria

¿Cuál es la complejidad del algoritmo?

- ▶ ¿Qué operaciones vamos a considerar?
- ► ¿Cuál es el peor caso?

Si contamos sólo las comparaciones, entonces la siguiente expresión define la complejidad del algoritmo:

$$T(n) = \begin{cases} c & n=1 \\ T(\lfloor \frac{n}{2} \rfloor) + d & n>1 \end{cases}$$

donde $c \in \mathbb{N}$ y $d \in \mathbb{N}$ son constantes tales que $c \geq 1$ y $d \geq 1$

Tiempo de ejecución de búsqueda binaria

¿Cuál es la complejidad del algoritmo?

- ¿Qué operaciones vamos a considerar?
- ► ¿Cuál es el peor caso?

Si contamos sólo las comparaciones, entonces la siguiente expresión define la complejidad del algoritmo:

$$T(n) = \begin{cases} c & n=1 \\ T(\lfloor \frac{n}{2} \rfloor) + d & n>1 \end{cases}$$

donde $c \in \mathbb{N}$ y $d \in \mathbb{N}$ son constantes tales que $c \geq 1$ y $d \geq 1$

Esta es una ecuación de recurrencia

Solucionando una ecuación de recurrencia

¿Cómo podemos solucionar una ecuación de recurrencia?

► Técnica básica: sustitución de variables

Solucionando una ecuación de recurrencia

¿Cómo podemos solucionar una ecuación de recurrencia?

► Técnica básica: sustitución de variables

Para la ecuación anterior usamos la sustitución $n = 2^k$

- ▶ Vamos a resolver la ecuación suponiendo que *n* es una potencia de 2
- Vamos a utilizar inducción para demostrar que la solución obtenida nos da el orden del algoritmo

Si realizamos la sustitución $n = 2^k$ en la ecuación:

$$T(n) = \begin{cases} c & n=1 \\ T(\lfloor \frac{n}{2} \rfloor) + d & n>1 \end{cases}$$

obtenemos:

$$T(2^k) = \begin{cases} c & k = 0 \\ T(2^{k-1}) + d & k > 0 \end{cases}$$

Extendiendo la expresión anterior obtenemos:

$$T(2^{k}) = T(2^{k-1}) + d$$

$$= (T(2^{k-2}) + d) + d$$

$$= T(2^{k-2}) + 2d$$

$$= (T(2^{k-3}) + d) + 2d$$

$$= T(2^{k-3}) + 3d$$

$$= \cdots$$

Extendiendo la expresión anterior obtenemos:

$$T(2^{k}) = T(2^{k-1}) + d$$

$$= (T(2^{k-2}) + d) + d$$

$$= T(2^{k-2}) + 2d$$

$$= (T(2^{k-3}) + d) + 2d$$

$$= T(2^{k-3}) + 3d$$

$$= \cdots$$

Deducimos la expresión general para $k - i \ge 0$:

$$T(2^k) = T(2^{k-i}) + i \cdot d$$

Considerando i = k obtenemos:

$$T(2^k) = T(1) + k \cdot d$$

= $c + k \cdot d$

Considerando i = k obtenemos:

$$T(2^k) = T(1) + k \cdot d$$

= $c + k \cdot d$

Dado que $k = \log_2(n)$, obtenemos que $T(n) = c + d \cdot \log_2(n)$ para n potencia de 2

Considerando i = k obtenemos:

$$T(2^k) = T(1) + k \cdot d$$

= $c + k \cdot d$

Dado que $k = \log_2(n)$, obtenemos que $T(n) = c + d \cdot \log_2(n)$ para n potencia de 2

Usando inducción vamos a extender esta solución y vamos a demostrar que $T(n) \in O(\log_2(n))$

Inducción constructiva

Sea T(n) definida como:

$$T(n) = \begin{cases} c & n=1 \\ T(\lfloor \frac{n}{2} \rfloor) + d & n>1 \end{cases}$$

Queremos demostrar que $T(n) \in O(\log_2(n))$

▶ Vale decir, queremos demostrar que existen $e \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que $T(n) \le e \cdot \log_2(n)$ para todo $n \ge n_0$

Inducción constructiva

Sea T(n) definida como:

$$T(n) = \begin{cases} c & n=1 \\ T(\lfloor \frac{n}{2} \rfloor) + d & n>1 \end{cases}$$

Queremos demostrar que $T(n) \in O(\log_2(n))$

▶ Vale decir, queremos demostrar que existen $e \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que $T(n) \le e \cdot \log_2(n)$ para todo $n \ge n_0$

Inducción nos va servir tanto para demostrar la propiedad y como para determinar valores adecuados para e y n_0

Por esto usamos el término inducción constructiva

Inducción constructiva

Dado que T(1)=c y $\log_2(1)=0$ no es posible encontrar una valor para e tal que $T(1)\leq e\cdot \log_2(1)$

Dado que T(2)=(c+d), si consideramos e=(c+d) tenemos que $T(2) \leq e \cdot \log_2(2)$

▶ Definimos entonces e = (c + d) y $n_0 = 2$

Tenemos entonces que demostrar lo siguiente:

$$(\forall n \geq 2)(T(n) \leq e \cdot \log_2(n))$$

¿Cuál es el principio de inducción adecuado para el problema anterior?

- ► Tenemos n₀ como punto de partida
- \triangleright n_0 es un caso base, pero podemos tener otros
- ▶ Dado $n > n_0$ tal que n no es un caso base, suponemos que la propiedad se cumple para todo $k \in \{n_0, ..., n-1\}$

Queremos demostrar que $(\forall n \geq 2) (T(n) \leq e \cdot \log_2(n))$

Queremos demostrar que $(\forall n \geq 2) (T(n) \leq e \cdot \log_2(n))$

▶ 2 es el punto de partida y el primer caso base

Queremos demostrar que $(\forall n \geq 2)$ $(T(n) \leq e \cdot \log_2(n))$

- ▶ 2 es el punto de partida y el primer caso base
- ► También 3 es un caso base ya que T(3) = T(1) + d y para T(1) no se cumple la propiedad

Queremos demostrar que $(\forall n \geq 2) (T(n) \leq e \cdot \log_2(n))$

- ▶ 2 es el punto de partida y el primer caso base
- ▶ También 3 es un caso base ya que T(3) = T(1) + d y para T(1) no se cumple la propiedad
- Para $n \ge 4$ tenemos que $T(n) = T(\lfloor \frac{n}{2} \rfloor) + d$ y $\lfloor \frac{n}{2} \rfloor \ge 2$, por lo que resolvemos este caso de manera inductiva
 - Suponemos que la propiedad se cumple para todo $k \in \{2, ..., n-1\}$

La demostración por inducción fuerte

Casos base:

$$T(2) = c + d = e \cdot \log_2(2)$$

 $T(3) = c + d < e \cdot \log_2(3)$

La demostración por inducción fuerte

Casos base:

$$T(2) = c + d = e \cdot \log_2(2)$$

 $T(3) = c + d < e \cdot \log_2(3)$

Caso inductivo:

Suponemos que
$$n \ge 4$$
 y para todo $k \in \{2, \dots, n-1\}$ se tiene que $T(k) \le e \cdot \log_2(k)$

La demostración por inducción fuerte

Usando la definición de T(n) y la hipótesis de inducción concluimos que:

$$T(n) = T(\lfloor \frac{n}{2} \rfloor) + d$$

$$\leq e \cdot \log_2(\lfloor \frac{n}{2} \rfloor) + d$$

$$\leq e \cdot \log_2(\frac{n}{2}) + d$$

$$= e \cdot \log_2(n) - e \cdot \log_2(2) + d$$

$$= e \cdot \log_2(n) - (c + d) + d$$

$$= e \cdot \log_2(n) - c$$

$$\leq e \cdot \log_2(n)$$

Un segundo ejemplo de inducción constructiva

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 0 & n=0 \\ n^2 + n \cdot T(n-1) & n>0 \end{cases}$$

Un segundo ejemplo de inducción constructiva

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 0 & n=0 \\ n^2 + n \cdot T(n-1) & n>0 \end{cases}$$

Queremos determinar una función f(n) para la cual se tiene que $T(n) \in O(f(n))$

Un segundo ejemplo de inducción constructiva

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 0 & n=0 \\ n^2 + n \cdot T(n-1) & n>0 \end{cases}$$

Queremos determinar una función f(n) para la cual se tiene que $\mathcal{T}(n) \in O(f(n))$

ightharpoonup ¿Alguna conjetura sobre quién podría ser f(n)?

Dada la forma de la ecuación de recurrencia, podríamos intentar primero con f(n) = n!

Tenemos entonces que determinar $c \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que $T(n) \leq c \cdot n!$ para todo $n \geq n_0$

Dada la forma de la ecuación de recurrencia, podríamos intentar primero con f(n) = n!

Tenemos entonces que determinar $c \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que $T(n) \leq c \cdot n!$ para todo $n \geq n_0$

 Pero nos vamos a encontrar con un problema al tratar de usar la hipótesis de inducción

Supongamos que la propiedad se cumple para n:

$$T(n) \leq c \cdot n!$$

Supongamos que la propiedad se cumple para *n*:

$$T(n) \leq c \cdot n!$$

Tenemos que:

$$T(n+1) = (n+1)^{2} + (n+1) \cdot T(n)$$

$$\leq (n+1)^{2} + (n+1) \cdot (c \cdot n!)$$

$$= (n+1)^{2} + c \cdot (n+1)!$$

Supongamos que la propiedad se cumple para n:

$$T(n) \leq c \cdot n!$$

Tenemos que:

$$T(n+1) = (n+1)^{2} + (n+1) \cdot T(n)$$

$$\leq (n+1)^{2} + (n+1) \cdot (c \cdot n!)$$

$$= (n+1)^{2} + c \cdot (n+1)!$$

Pero no existe una constante c para la cual $(n+1)^2 + c \cdot (n+1)! \le c \cdot (n+1)!$

▶ Dado que $n \in \mathbb{N}$

¿Cómo solucionamos el problema con la demostración?

Una demostración por inducción puede hacerse más simple considerando una propiedad más fuerte.

Dado que la hipótesis de inducción se va a volver más fuerte

¿Cómo solucionamos el problema con la demostración?

Una demostración por inducción puede hacerse más simple considerando una propiedad más fuerte.

Dado que la hipótesis de inducción se va a volver más fuerte

Vamos a seguir tratando de demostrar que $T(n) \in O(n!)$ pero ahora considerando una propiedad más fuerte.

¿Cómo solucionamos el problema con la demostración?

Una demostración por inducción puede hacerse más simple considerando una propiedad más fuerte.

Dado que la hipótesis de inducción se va a volver más fuerte

Vamos a seguir tratando de demostrar que $T(n) \in O(n!)$ pero ahora considerando una propiedad más fuerte.

Vamos a demostrar lo siguiente:

$$(\exists c \in \mathbb{R}^+)(\exists d \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \geq n_0)(T(n) \leq c \cdot n! - d \cdot n)$$

Para tener una mejor idea de los posible valores para c, d y n_0 vamos a considerar primero el paso inductivo en la demostración.

Para tener una mejor idea de los posible valores para c, d y n_0 vamos a considerar primero el paso inductivo en la demostración.

Supongamos que la propiedad se cumple para n:

$$T(n) \leq c \cdot n! - d \cdot n$$

Para tener una mejor idea de los posible valores para c, d y n_0 vamos a considerar primero el paso inductivo en la demostración.

Supongamos que la propiedad se cumple para n:

$$T(n) \leq c \cdot n! - d \cdot n$$

Tenemos que:

$$T(n+1) = (n+1)^{2} + (n+1) \cdot T(n)$$

$$\leq (n+1)^{2} + (n+1) \cdot (c \cdot n! - d \cdot n)$$

$$= c \cdot (n+1)! + (n+1)^{2} - d \cdot n \cdot (n+1)$$

$$= c \cdot (n+1)! + ((n+1) - d \cdot n) \cdot (n+1)$$

Para poder demostrar que la propiedad se cumple para n+1 necesitamos que lo siguiente sea cierto:

$$(n+1)-d\cdot n \leq -d$$

Para poder demostrar que la propiedad se cumple para n+1 necesitamos que lo siguiente sea cierto:

$$(n+1)-d\cdot n \leq -d$$

De lo cual concluimos la siguiente restricción para d:

$$\frac{(n+1)}{(n-1)} \leq d$$

Para poder demostrar que la propiedad se cumple para n+1 necesitamos que lo siguiente sea cierto:

$$(n+1)-d\cdot n \leq -d$$

De lo cual concluimos la siguiente restricción para d:

$$\frac{(n+1)}{(n-1)} \leq d$$

Si consideramos $n \ge 2$ concluimos que $d \ge 3$

► Consideramos entonces $n_0 = 2$ y d = 3

Para concluir la demostración debemos considerar el caso base $n_0=2$

Para concluir la demostración debemos considerar el caso base $n_0 = 2$

Tenemos que:

$$T(0) = 0$$

 $T(1) = 1^2 + 1 \cdot T(0) = 1$
 $T(2) = 2^2 + 2 \cdot T(1) = 6$

Para concluir la demostración debemos considerar el caso base $n_0 = 2$

Tenemos que:

$$T(0) = 0$$

 $T(1) = 1^2 + 1 \cdot T(0) = 1$
 $T(2) = 2^2 + 2 \cdot T(1) = 6$

Entonces se debe cumplir que $T(2) \le c \cdot 2! - 3 \cdot 2$, vale decir,

$$6 \leq c \cdot 2 - 6$$

Para concluir la demostración debemos considerar el caso base $n_0 = 2$

Tenemos que:

$$T(0) = 0$$

 $T(1) = 1^2 + 1 \cdot T(0) = 1$
 $T(2) = 2^2 + 2 \cdot T(1) = 6$

Entonces se debe cumplir que $T(2) \le c \cdot 2! - 3 \cdot 2$, vale decir,

$$6 \leq c \cdot 2 - 6$$

Concluimos que $c \ge 6$, por lo que consideramos c = 6

► Tenemos entonces que $(\forall n \ge 2)(T(n) \le 6 \cdot n! - 3 \cdot n)$, de lo cual concluimos que $T(n) \in O(n!)$

El Teorema Maestro

Muchas de las ecuaciones de recurrencia que vamos a usar en este curso tienen la siguiente forma:

$$T(n) = \begin{cases} c & n = 0 \\ a \cdot T(\lfloor \frac{n}{b} \rfloor) + f(n) & n \geq 1 \end{cases}$$

donde a, b y c son constantes, y f(n) es una función arbitraria.

El Teorema Maestro nos dice cuál es el orden de T(n) dependiendo de ciertas condiciones sobre a, b y f(n)

El Teorema Maestro

El Teorema Maestro también se puede utilizar cuando $\lfloor \frac{n}{b} \rfloor$ es reemplazado por $\lceil \frac{n}{b} \rceil$

Antes de dar el enunciado del Teorema Maestro necesitamos definir una condición de regularidad sobre la función f(n)

Una condición de regularidad sobre funciones

Dado: función $f:\mathbb{N}\to\mathbb{R}_0^+$ y constantes $a,b\in\mathbb{R}$ tales que $a\geq 1$ y b>1

Definición

f es (a,b)-regular si existen constantes $c\in\mathbb{R}^+$ y $n_0\in\mathbb{N}$ tales que c<1 y

$$(\forall n \geq n_0)(a \cdot f(\lfloor \frac{n}{b} \rfloor) \leq c \cdot f(n))$$

Una condición de regularidad sobre funciones

Dado: función $f:\mathbb{N} \to \mathbb{R}^+_0$ y constantes $a,b \in \mathbb{R}$ tales que $a \geq 1$ y b>1

Definición

f es (a,b)-regular si existen constantes $c\in\mathbb{R}^+$ y $n_0\in\mathbb{N}$ tales que c<1 y

$$(\forall n \geq n_0)(a \cdot f(\lfloor \frac{n}{b} \rfloor) \leq c \cdot f(n))$$

Ejercicio

- 1. Demuestre que las funciones n, n^2 y 2^n son (a, b)-regulares si a < b.
- 2. Demuestre que la función $log_2(n)$ no es (1,2)-regular.

Por contradicción, supongamos que $log_2(n)$ es (1,2)-regular.

Entonces existen constantes $c \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que c < 1 y

$$(\forall n \geq n_0)(\log_2(\lfloor \frac{n}{2} \rfloor) \leq c \cdot \log_2(n))$$

Por contradicción, supongamos que $log_2(n)$ es (1,2)-regular.

Entonces existen constantes $c \in \mathbb{R}^+$ y $\mathit{n}_0 \in \mathbb{N}$ tales que c < 1 y

$$(\forall n \geq n_0)(\log_2(\lfloor \frac{n}{2} \rfloor) \leq c \cdot \log_2(n))$$

De esto concluimos que:

$$(\forall k \geq n_0)(\log_2(\lfloor \frac{2 \cdot k}{2} \rfloor) \leq c \cdot \log_2(2 \cdot k))$$

Vale decir:

$$(\forall k \geq n_0)(\log_2(k) \leq c \cdot (\log_2(k) + 1))$$

Vale decir:

$$(\forall k \geq n_0)(\log_2(k) \leq c \cdot (\log_2(k) + 1))$$

Dado que 0 < c < 1, concluimos que:

$$(\forall k \geq n_0)(\log_2(k) \leq \frac{c}{1-c})$$

Lo cual nos lleva a una contradicción.

Teorema

Sea $f: \mathbb{N} \to \mathbb{R}_0^+$, $a, b, c \in \mathbb{R}_0^+$ tales que $a \ge 1$ y b > 1, y T(n) una función definida por la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} c & n = 0 \\ a \cdot T(\lfloor \frac{n}{b} \rfloor) + f(n) & n \ge 1 \end{cases}$$

Teorema

Sea $f: \mathbb{N} \to \mathbb{R}_0^+$, $a, b, c \in \mathbb{R}_0^+$ tales que $a \ge 1$ y b > 1, y T(n) una función definida por la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} c & n = 0 \\ a \cdot T(\lfloor \frac{n}{b} \rfloor) + f(n) & n \ge 1 \end{cases}$$

1. Si
$$f(n) \in O(n^{\log_b(a)-\varepsilon})$$
 para $\varepsilon > 0$, entonces $T(n) \in \Theta(n^{\log_b(a)})$

Teorema

Sea $f: \mathbb{N} \to \mathbb{R}_0^+$, $a, b, c \in \mathbb{R}_0^+$ tales que $a \ge 1$ y b > 1, y T(n) una función definida por la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} c & n = 0 \\ a \cdot T(\lfloor \frac{n}{b} \rfloor) + f(n) & n \ge 1 \end{cases}$$

- 1. Si $f(n) \in O(n^{\log_b(a) \varepsilon})$ para $\varepsilon > 0$, entonces $T(n) \in \Theta(n^{\log_b(a)})$
- 2. Si $f(n) \in \Theta(n^{\log_b(a)})$, entonces $T(n) \in \Theta(n^{\log_b(a)} \cdot \log_2(n))$

Teorema

Sea $f: \mathbb{N} \to \mathbb{R}_0^+$, $a, b, c \in \mathbb{R}_0^+$ tales que $a \ge 1$ y b > 1, y T(n) una función definida por la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} c & n = 0 \\ a \cdot T(\lfloor \frac{n}{b} \rfloor) + f(n) & n \ge 1 \end{cases}$$

- 1. Si $f(n) \in O(n^{\log_b(a)-\varepsilon})$ para $\varepsilon > 0$, entonces $T(n) \in \Theta(n^{\log_b(a)})$
- 2. Si $f(n) \in \Theta(n^{\log_b(a)})$, entonces $T(n) \in \Theta(n^{\log_b(a)} \cdot \log_2(n))$
- 3. Si $f(n) \in \Omega(n^{\log_b(a)+\varepsilon})$ para $\varepsilon > 0$ y f es (a,b)-regular, entonces $T(n) \in \Theta(f(n))$

Usando el Teorema Maestro

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & n = 0 \\ 3 \cdot T(\lfloor \frac{n}{2} \rfloor) + c \cdot n & n \geq 1 \end{cases}$$

36

Usando el Teorema Maestro

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & n = 0 \\ 3 \cdot T(\lfloor \frac{n}{2} \rfloor) + c \cdot n & n \ge 1 \end{cases}$$

Dado que $\log_2(3) > 1.5$, tenemos que $\log_2(3) - 0.5 > 1$

Usando el Teorema Maestro

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & n = 0 \\ 3 \cdot T(\lfloor \frac{n}{2} \rfloor) + c \cdot n & n \ge 1 \end{cases}$$

Dado que $\log_2(3) > 1.5$, tenemos que $\log_2(3) - 0.5 > 1$

Deducimos que $c \cdot n \in O(n^{\log_2(3) - 0.5})$, por lo que usando el Teorema Maestro concluimos que $T(n) \in \Theta(n^{\log_2(3)})$

El Teorema Maestro y la función $\lceil x \rceil$

Suponga que cambiamos $\lfloor \frac{n}{b} \rfloor$ por $\lceil \frac{n}{b} \rceil$ en la definición de (a,b)-regularidad.

Entonces el Teorema Maestro sigue siendo válido pero con $T(\lfloor \frac{n}{b} \rfloor) + f(n)$ reemplazado por $T(\lceil \frac{n}{b} \rceil) + f(n)$

Analizando la complejidad de un algoritmo

Sea $\mathcal{A}: \Sigma^* \to \Sigma^*$ un algoritmo

Recuerde que $t_{\mathcal{A}}(n)$ es el mayor número de pasos realizados por \mathcal{A} sobre las entradas $w \in \Sigma^*$ de largo n

Definición (Complejidad en el peor caso)

Decimos que A en el peor caso es O(f(n)) si $t_A(n) \in O(f(n))$

Analizando la complejidad de un algoritmo

Notación

Las definición de peor caso puede ser modificada para considerar las notaciones Θ y Ω

Simplemente reemplazando O(f(n)) por $\Theta(f(n))$ u $\Omega(f(n))$, respectivamente

Por ejemplo, decimos que \mathcal{A} en peor caso es $\Omega(f(n))$ si $t_{\mathcal{A}}(n) \in \Omega(f(n))$