Universität zu Köln

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Praktikum B

B 2.4 Magnetisierung eines Ferrits

CATHERINE TRAN
CARLO KLEEFISCH
OLIVER FILLA

Contents

1	Mo	tivatio	n	3				
2	The	eoretise	che Grundlagen	3				
	2.1	Grund	llagen des Magnetismus	3				
	2.2	Magne	etismus ohne Ordnungsphänomene	4				
		2.2.1	Bahnmagnetismus und Spinmagnetismus	4				
		2.2.2	gyromagnetisches Verhältnis	4				
		2.2.3	Lande-Faktor	5				
		2.2.4	Bohr'sches Magneton	5				
		2.2.5	Diamagnetismus	5				
		2.2.6	Paramagnetismus	6				
			2.2.6.1 Langevin-Paramagnetismus	6				
			2.2.6.2 Pauli-Paramagnetismus	6				
	2.3	Magne	etismus mit Ordnungsphänomen	6				
		2.3.1	magnetische Ordnung	6				
		2.3.2	magnetische Anisotropie	6				
		2.3.3	Ferromagnetismus	7				
		2.3.4	Domänen / Weiß'sche Bezirke	7				
		2.3.5	Hysteresekurve	7				
		2.3.6	Temperaturabhängigkeit	8				
		2.3.7	Phasenübergänge	8				
	2.4	Entma	agnetisierung	8				
		2.4.1	Entmagnetisierungsfaktor	9				
		2.4.2	Herleitung des Entmagnetisierungsfaktors	9				
		2.4.3	gescherte Hysteresekurve	10				
		2.4.4	scheinbare Suszeptibilität	11				
3	Dui	Durchführung 12						
	3.1		chsaufbau	12				
	3.2		chsidee	12				
		3.2.1	Integration des Messsignals	13				
			Transformation des Messsignals					
			3.2.2.1 Bestimmung von $M(\varphi)$	13				
			3.2.2.2 Bestimmung von $H(\varphi)$	14				
	3.3	Messu	ing am beheizbaren Ferritkern	14				
		3.3.1	Magnetisierungskurve	14				
		3.3.2	Kommutierungskurve	14				
		3.3.3	Temperaturabhängigkeit	14				
	3.4	Messu	ingen am Ringkern mit Spalt	14				
		3.4.1	Magnetisierungskurve	14				
		3.4.2	Entmagnetisierungsfaktor	15				

4	Aus	wertui	$\mathbf{n}\mathbf{g}$	15	
	4.1	ngen am beheizbaren Ringkern	15		
		4.1.1	Kenngrößen	15	
		4.1.2	Kommutierungskurve und Suszeptibilität	16	
		4.1.3	Temperaturabhängigkeit	16	
	4.2	Messu	ngen am Ringkern mit Spalt	16	
		4.2.1	Kenngrößen	16	
		4.2.2	Entmagnetisierungsfaktor	21	
5	Fazit				
6	6 Literaturverzeichnis			23	

Motivation

In diesem Versuch werden Ordnungsphänomene von ferromagnetischen Materialien behandelt. Hierzu werden die Magnetisierungskurven an zwei verschiedenen Aufbauten aufgenommen. Deren zentraler Bestandteil ein Ringkern aus einem Ferrit-Werkstoff ist.

Anhand dieser Kurven lassen sich zahlreiche Eigenschaften dieses Ringkerns untersuchen, wie zum Beispiel die Suszeptibilität, das Temperatur- und das Entmagnetisierungsverhalten.

Mithilfe dieses Versuchs kann ein Einblick in Phänomene des Magnetismus erlangt werden. Dessen Wirkung beschäftigt Menschen schon seit hunderten von Jahren und welcher Grundlage für zahlreiche technische Anwendungen ist.

Theoretische Grundlagen

2.1 Grundlagen des Magnetismus

Das Phänomen des Magnetismus kann nicht klassisch erklärt werden, sondern muss durch die Quantenmechanik beschrieben werden. Sie befasst sich mit Strömen, was sie qualitativ von der Elektrostatik unterscheidet.

Die wichtigsten Größen sind die Flussdichte \vec{B} , die Magnetisierung \vec{M} und die Feldstärke \vec{H} . Diese werden durch die Feldkonstante $\mu_0 = 4\pi \cdot 10^{-7} \frac{\text{Vs}}{\text{Am}}$ bzw. die Permeabilität μ miteinander in Verbindung gebracht. Die Permeabilität beschreibt die Durchlässigkeit für magnetische Felder. [2]

$$\vec{B} = \mu_0 \cdot (\vec{H} + \vec{M})$$

$$= \mu \cdot \vec{H}$$
(2.1)

$$= \mu \cdot \vec{H} \tag{2.2}$$

Die Suszeptibilität χ ist eine dimensionslose Größe, welche die Magnetisierbarkeit von Materie beschreibt. Sie beschreibt die Änderung der Magnetisierung M durch die Änderung der Feldstärke H.

$$\chi = \frac{\mathrm{d}M}{\mathrm{d}H} \tag{2.3}$$

Das magnetische Dipolmoment $\vec{\mu}$ tritt auf, wenn elektrische Ladungen sich auf Kreisbahnen bewegen. Es lässt sich über das auf einen magnetischen Dipol wirkende Drehmoment $\vec{\tau}$ in einem Magnetfeld \vec{B} definieren.

Für eine ebene Leiterschleife ist es folgendermaßen beschrieben. [2] Die Dichte des magnetischen Momentes wird durch die Magnetisierung beschrieben.

$$\vec{\tau} = \vec{\mu} \times \vec{B} \tag{2.4}$$

$$\vec{M} = \frac{\vec{\mu}}{V} \tag{2.5}$$

Das Magnetfeld im Inneren einer Spule kann durch den Strom I, die Windungszahl n und die Länge der Spule l beschrieben werden. Dabei ist \vec{e}_z der Einheitsvektor längs der Spule, d.h. senkrecht zur Querschnittsfläche derselben. [2]

$$\vec{H} = \frac{In}{l}\vec{e}_z \tag{2.6}$$

Für eine einzelne Leiterschleife ist das Magnetfeld dagegen durch die eingeschlossene Fläche A zu beschreiben, sowie durch den Einheitsvektor \vec{e}_A senkrecht zu A.

$$\vec{H} = IA\vec{e}_A \tag{2.7}$$

2.2 Magnetismus ohne Ordnungsphänomene

2.2.1 Bahnmagnetismus und Spinmagnetismus

Der Bahnmagnetismus beschreibt das magnetische Moment \vec{m}_l eines Teilchens aufgrund seiner Bahnbewegung durch den Bahndrehimpuls. Analog gibt es Spinmagnetismus, dieser beschreibt das magnetische Moment eines Teilchens aufgrund seines Spins.

Besitzt ein Teilchen sowohl ein Bahndrehimpuls \vec{L} als auch einen Spin \vec{S} , so lässt sich das gesamte magnetische Moment \vec{m} dieses Teilchens ausdrücken als:

$$\vec{m} = \vec{m}_l + \vec{m}_s \tag{2.8}$$

Alternativ sind das magnetische Moment \vec{m} und der Gesamtdrehimpuls \vec{J} über das gyromagnetische Verhältnis γ miteinander verknüpft.

2.2.2 gyromagnetisches Verhältnis

Das magnetische Moment \vec{m} und der Gesamtdrehimpuls \vec{J} sind über das gyromagnetische Verhältnis γ miteinander verknüpft. [6] Dabei wird γ durch das Planck'sche Wirkungsquantum \hbar , das Bohr'sche Magneton μ_B und den Lande-Faktor g bestimmt.

$$\gamma = \frac{g\mu_B}{\hbar}$$

$$\vec{m} = \gamma \vec{J}$$
(2.9)

$$\vec{m} = \gamma \vec{J} \tag{2.10}$$

Besitzt ein Teilchen sowohl ein Bahndrehimpuls \vec{L} als auch einen Spin \vec{S} , so lässt sich das gesamte magnetische Moment \vec{m} durch Bahnmagnetismus und Spinmagnetismus darstellen.

$$\vec{m} = \vec{m}_l + \vec{m}_s \tag{2.11}$$

2.2.3 Lande-Faktor

Der Lande-Faktor g bestimmt das gyromagnetische Verhältnis γ .

Für ein Elektron ist der Lande-Faktor q durch den Gesamtdrehimpuls J, den Spin Sund den Bahndrehimpuls L bestimmt. [6] Im Falle reinen Spinmagnetismus gilt $g_s \approx 2$, ebenso bei reinem Bahnmagnetismus.

$$g = 1 + \frac{J(J+1) + S(S+1) + L(L+1)}{2J(J+1)}$$
 (2.12)

Die einzelnen Terme, z.B. J(J+1), sind proportional zu dem Erwartungswert der quadrierten Drehimpulsoperatoren, in diesem Beispiel \hat{J}^2 .

2.2.4 Bohr'sches Magneton

Das Bohr'sche Magneton μ_B beschreibt das magnetische Moment, das ein Elektron durch seine Rotation um den Atomkern erzeugt. Seine Einheit ist Energie pro Tesla.

$$\mu_B = \frac{e\hbar}{2m_e} \tag{2.13}$$

$$\mu_B \approx 5.788 \cdot 10^{-5} \frac{\text{eV}}{\text{T}}$$

$$\mu_B \approx 9.274 \cdot 10^{-24} \frac{\text{J}}{\text{T}}$$
(2.14)

$$\mu_B \approx 9.274 \cdot 10^{-24} \frac{J}{T}$$
 (2.15)

2.2.5 Diamagnetismus

Ein diamagnetischer Festkörper besitzt keine inneren magnetischen Momente. Durch ein äußeres Magnetfeld werden aber magnetische Momente im Festkörper induziert. Diese sind aufgrund der Lenz'schen Regel dem induzierenden Magnetfeld entgegengesetzt, weshalb die magnetische Suszeptibilität von diamagnetischen Festkörpern μ_{dia} negativ ist.

Für Isolatoren ist μ_{dia} außerdem von der Temperatur des Isolators unabhängig.

Perfekter Diamagnetismus ist bei Supraleitern zu finden. Diese weisen eine magnetische Suszeptibilität von $\chi_{\text{supra}} = -1$ auf.

Deshalb wird sich ein beweglicher Diamagnet in einem inhomogenen Magnetfeld aus diesem herausbewegen, was einen Unterschied zu Paramagneten darstellt.

Ein diamagnetischer Festkörper besitzt keine inneren magnetischen Momente. Durch ein äußeres Magnetfeld werden aber magnetische Momente im Festkörper induziert. Diese sind aufgrund der Lenz'schen Regel dem induzierenden Magnetfeld entgegengesetzt, weshalb die magnetische Suszeptibilität von diamagnetischen Festkörpern $\mu_{\rm dia}$ negativ ist. [6]

Für Isolatoren ist μ_{dia} außerdem unabhängig von der Temperatur des Isolators. [6] Perfekter Diamagnetismus ist bei Supraleitern zu finden. Diese weisen eine magnetische Suszeptibilität von $\chi_{\text{supra}} = -1$ auf.

2.2.6 Paramagnetismus

In einem paramagnetischen Festkörper liegen innere magnetische Dipolmomente vor, welche z.B. durch Spin und Bahndrehimpuls der Elektronen herrühren. Diese wechselwirken allerdings nicht miteinander, wodurch sie nur in einem äußeren Magnetfeld in Richtung des Feldes ausgerichtet werden. Die magnetische Suszeptibilität χ_{para} eines paramagnetischen Festkörpers ist daher positiv.

2.2.6.1 Langevin-Paramagnetismus Der Langevin-Paramagnetismus liefert Beschreibungen für paramagnetische Isolatoren. Die magnetische Suszeptibilität χ_{langevin} dieser ist durch das Curie-Gesetz durch die Curie-Konstante C und die Temperatur T beschrieben. [6]

$$\chi_{\text{langevin}} = \frac{C}{T}$$
(2.16)

2.2.6.2 Pauli-Paramagnetismus Der Pauli-Paramagnetismus beschreibt die Eigenschaften von paramagnetischen Metallen. Die magnetische Suszeptibilität χ_{pauli} eines solchen Metalle ist konstant. [6]

$$\chi_{\text{pauli}} = \text{const}$$
(2.17)

Hier tritt keine Temperaturabhängigkeit mehr auf, da aufgrund der Fermi-Statistik nur grob $\frac{T}{T_F}$ Elektronen in einem Energieintervall um die Fermi-Energie ihre Energie ändern können, wobei T_f die Fermi-Temperatur ist. Dadurch stellt sich ein temperaturunabhängiger Beitrag $\frac{C}{T}\frac{T}{T_F} = \frac{C}{T_F}$ ein. [6]

Der Pauli-Paramagnetismus ist deutlich schwächer als der Langevin-Paramagnetismus.

$$\frac{\chi_{\text{pauli}}}{\chi_{\text{langevin}}} \propto \frac{T}{T_F} \ll 1$$
 (2.18)

2.3 Magnetismus mit Ordnungsphänomen

2.3.1 magnetische Ordnung

Die magnetische Ordnung wird durch die Austauschwechselwirkung verursacht. Diese beruht auf dem Pauli-Prinzip.

2.3.2 magnetische Anisotropie

Anisotropie ist die Eigenschaft eines Material, die von der Ausrichtung der magnetischen Drehmomenten abhängt. Dabei bezeichnet man die energetisch günstigere Ausrichtung als Achse leichter Magnetisierung. Die Kristallstruktur bestimmt über die Art

der Anisotropie. Man unterscheidet zwischen Formanisotropie, Spannungsanisotropie und Kristallanisotropie.

Im Allgemeinen ist Anisotropie die Richtungsabhängigkeit einer Eigenschaft oder eines Vorgangs.

2.3.3 Ferromagnetismus

Bei Ferromagnetismus richten sich die magnetische Momente parallel zueinander aus. Im ferrimagnetischen Material dagegen sind die Momente abwechselnd antiparallel zueinander ausgerichtet, dennoch heben sich die Beträge sich nicht auf wie in einem antiferromagnetischen Material.

2.3.4 Domänen / Weiß'sche Bezirke

Weiß'sche Bezirke sind Bereiche mit gleichartige Magnetisierungsausrichrung. Der Grenzbereich zwischen zwei Weißschen Bezirke nennt man *Bloch-Wand*. Auch wenn kein äußeres Magnetfeld angelegt ist, existieren vereinzelte Bereiche mit parallelen Spins, die man *Domänen* nennt.

Legt man nun ein Magnetfeld an, verschmelzen kleine Domänen zu größeren und die Magnetisierung der Stoffes ist messbar. Bei kleiner Feldstärke findet reversible Wandverschiebungen statt.

Schaltet man die Feldstärke hoch finden sogenannte Barkhausen-Sprünge statt. Hierbei ändert sich die Ausrichtung alle magnetischen Momente ganzer Weiß'scher Bezirke schlagartig, so dass es zu einer deutlichen Änderung in der Magnetisierungskurve kommt. Dies geschieht, wenn Defekte in Kristallen zunächst nicht von der Verschiebung der Bloch-Wände betroffen sind. Sind sie fast umringt, so schließt sich die Domäne um den Defekt, wodurch die Magnetisierung sprunghaft ansteigt.

Kurz vor der Sättigung finden *Rotationsprozesse* statt, wo dann alle magnetische Momente in Richtung des äußeren Feldes zeigen.

2.3.5 Hysteresekurve

Die Hysteresekurve beschreibt das Verhalten eines Materials im äußeren Magnetfeld.

Die Kurve startet im Ursprung und steigt (durch Wandverschiebungen) leicht an, dreht man das Feld auf wird die Kurve wegen der Barkhausen-Sprünge steiler. Bei größer werdenden Feldstärken verläuft sie durch die Rotation wieder flacher zu. Dann findet die Sättigung statt, wo die maximale Magnetisierung erreicht ist. Diese Kurve bezeichnet man als Neukurve.

Entfernt man das Magnetfeld bzw. schaltet man es ab, sinkt die Magnetisierung nicht automatisch auf null, sondern eine Restmagnetisierung bleibt übrig, sogenanntes Remanenz.

Sollt auch diese verschwinden, muss man ein negatives Feld anlegen und die Koerzitivfeldstärke erreichen, der Stoff ist dann vollständig entmagnetisiert. Wird die Feldstärke weiter erhöht, magnetisiert der Stoff in die entgegengesetzte Richtung, bis die
Sättigung wieder auftritt.

Die Kommutierungskurve ist die Verbindungskurve der Hystereseschleifen-Umkehrpunkte. Die Fläche, die die Hysteresekurve umschließt, entspricht dem Energiegehalt, das erbracht werden muss, messbar als Wärme.

Anhand der Hysterese kann man erkennen ob eine Probe weichmagnetisch oder hartmagnetisch ist. Weichmagnetische Materialien haben eine kleine Koerzitivfeldstärke und eine hohe Sättigungsmagnetisierung, sie sind also leicht zu magnetisieren. Man verwendet diese oft für Transformatoren und Sensoren.

Hartmagnetische Materialien dagegen haben eine große Koerzitivfeldstärke und einen niedrigen Sättigungspunkt. Sie sind schwer zu magnetisieren, daher baut man daraus oft Dauermagnete.

2.3.6 Temperaturabhängigkeit

Magnetische Eigenschaften hängen von der Temperatur ab. Steigt diese, dann nimmt die Permeabilität ab, also die Ordnung der magnetische Momente. Durch Erhöhung der Temperatur fügt man dem System Energie zu und die Austauschwechselwirkung wird dadurch schwächer, bis sie irgendwann komplett überwunden wird. Dieser Punkt nennt man Curie-Temperatur, nur unter diese ist ein ferromagnetischer Stoff einsetzbar. Ab der Curie-Temperatur zeigt der Stoff paramagnetische Verhalten.

2.3.7 Phasenübergänge

Ordnungsparameter beschreibt den Zustand eines System beim Phasenübergang.

Bei Ferromagneten ist der Parameter die Magnetisierung. Beträgt der Parameter Null, so ist das System völlig ungeordnet. Verläuft ein Phasenübergang sprunghaft (z.B. vom Wasser zu Eis), klassifiziert man ihn als Übergang 1. Ordnung. Ist der Verlauf kontinuierlich (z.B. von ferromagnetisch zu paramagnetisch) spricht man von einem Übergang 2. Ordnung.

Hierbei sind sprunghaft und kontinuierlich wie folgt definiert. Die 1. partielle Ableitung der Enthalpie G(T, p) nach der Temperatur T ist unstetig bzw. stetig.

Latente Wärme ist die Wärme, die dazu führt, dass ein Stoff seinen Aggregatzustand ändert, sie führt deshalb nicht zu einer Temperaturerhöhung.

2.4 Entmagnetisierung

Laufen die Feldlinien eines äußeren magnetischen Feldes durch die Flächen eines Kristalls, so induzieren sie magnetische Dipolmomente im Kristall. Diesen kann man einen magnetischen Nordpol und einen magnetischen Südpol zuweisen.

Nach der Lenz'schen Regel wirkt das auf diese Weise induzierte Magnetfeld dem äußeren Feld entgegen. Dadurch wird das äußere Feld abgeschwächt, daher nennt man das induzierte Feld auch *Entmagnetisierungsfeld*.

2.4.1 Entmagnetisierungsfaktor

Um einen Stoff mit der Magnetisierung M zu entmagnetisieren, muss ein Entmagnetisierungsfeld H_{ent} angelegt werden. Der Entmagnetisierungsfaktor N ist der Proportionalitätsfaktor, der den Zusammenhang zwischen dem Entmagnetisierungsfeldes H_{ent} und der Magnetisierung M eines Materials beschreibt.

$$N \equiv \frac{H_{\text{ent}}}{M} \tag{2.19}$$

Um die Entmagnetisierung zu erreichen, ohne die interne Magnetisierung M zu verändern, muss das magnetische Feld H_E aus dem Medium in Luft verdrängt werden. Dazu kann ein Luftspalt im Medium erzeugt werden. Das Magnetfeld H_L im Luftspalt wird um den Betrag erhöht, um den das Feld H_E im Medium verringert wird.

$$N = \frac{l_L}{l} \tag{2.20}$$

Dies lässt sich mit einem Ringkern besonders gut realisieren.

2.4.2 Herleitung des Entmagnetisierungsfaktors

Betrachtet werde ein Ringkern mit dem Ringradius R und dem Ringquerschnitt mit Radius r und Fläche F_E . Dieser Ringkern bestehe aus zwei Hälften, die durch einen Luftspalt der Länge l_L und der Querschnittsfläche F_L . Die mittlere Länge des Rings l_E sei sehr viel größer als l_L . Weiterhin sei R sehr viel größer als 2r, sodass das Magnetfeld im Ringkern als homogen angenommen werden kann. Auch sei l_L klein, sodass auch das Magnetfeld im Spalt als homogen angenommen werden kann und der Streufluss vernachlässigbar ist.

Die Spule werde von einer zeitlich konstanten Stromdichte durchflossen. Dadurch lässt sich die Maxwell-Gleichung vereinfachen.

$$\vec{\nabla} \times \vec{H} = \vec{j} \tag{2.21}$$

Mithilfe des Satzes von Stokes können die Feldstärken mit Luftspalt und ohne Luftspalt verglichen werden. Dabei sei H die Feldstärke ohne Luftspalt.

$$H = H_E \cdot l_E + H_L \cdot l_L \tag{2.22}$$

Weil Magnetfelder divergenzfrei ist, müssen die homogenen Felder eine Verbindung zwischen Luftspalt und Ringkern herstellen. Die Anschlussbedingungen fordern folgende Gleichheit. Weil der Streufluss vernachlässigbar sein soll, gilt $F_E = F_L$, wodurch Gleichheit der Feldstärken folgt.

$$F_E \cdot B_E = F_L \cdot B_L$$

$$F_E = F_L \Rightarrow B_E = B_L \tag{2.23}$$

Luft wird nicht magnetisiert $(M_L = 0)$, der Ringkern dagegen schon $(M_E = M)$. Damit kann man die Materialbeziehungen (2.1) in die obige Gleicheitsrelation (2.23) ein erhält man folgende Relation.

$$B_E = \mu_0 \cdot (H_E + M)$$

$$B_L = \mu_0 \cdot H_L$$

$$\Rightarrow H_E + M = H_L$$
(2.24)

Durch Einsetzen in (2.22) kann man die Feldstärken H_E und H_L durch H und M darstellen.

$$\Rightarrow H_E = H - \frac{l_L}{l_E + l_L} M \tag{2.25}$$

$$\Rightarrow H_L = H + \frac{l_E}{l_E + l_L} M \tag{2.26}$$

Man sieht, dass die Feldstärke aus dem Ring in den Spalt verdrängt wird, die gesamte Feldstärke bleibt aber erhalten. Die Feldstärke H_E im Ring wird verringert, der Ring wird also entmagnetisiert.

Da die Magnetisierung M des Kerns im Versuch konstant bleibt, kann nur H geändert werden, um H_E auf 0T zu reduzieren. Daher muss das Entmagnetisierungsfeld H_{ent} angelegt werden, um H_E zu verringern. Dadurch kann man den Entmagnetisierungsfaktor N durch seine Definition (2.19) bestimmen.

$$H_{\text{ent}} = \frac{l_L}{l_E + l_I} M \tag{2.27}$$

$$N = \frac{l_L}{l_E + l_L} = \frac{l_L}{l} \tag{2.28}$$

2.4.3 gescherte Hysteresekurve

Das äußere Magnetfeld H wird über die Stromstärke gemessen, die Magnetisierung M des Ringkerns wird konstant gehalten. Das Magnetfeld H muss um ein Entmagnetisierungsfeld $H_{\rm ent}$ erhöht werden, um das innere Magnetfeld H_E des Kerns zu negieren. Die benötigte Stärke von $H_{\rm ent}$ hängt von der Breite des Luftspalts ab, was aus dem Entmagnetisierungsfaktor hervorgeht, siehe Gleichung (2.20).

In einem Ringkern ohne Luftspalt entspricht die Stärke des äußeren Magnetfeldes H der des inneren Magnetfeldes H_E . Mit einem Luftspalt steigt H an, somit wird die

 H_i = inneres Feld; H_a = äußeres Feld H_a- H_i = entmagnetisierendes Feld H

Figure 1: gescherte Hysteresekurve

Hystereseschleife nach außen geschert. Daher lässt sich H_{ent} durch die Scherung der Hystereseschleife bestimmen.

$$H_{\text{ent}} = H - H_E \tag{2.29}$$

2.4.4 scheinbare Suszeptibilität

Bei konstanter Magnetisierung M kann die Suszeptibilität χ als Quotient $\chi = \frac{M}{H}$ beschrieben werden, wobei H der Betrag der Feldstärke zur Sättigungsmagnetisierung M ist.

Falls ein Luftspalt im Medium vorliegt, müssen die effektive Feldstärke H_E im Kern und die Feldstärke H_L um Luftspalt betrachtet werden. Daher gibt es eine scheinbare $Suszeptibilität~\chi_{\rm Schein}$ und eine $wahre~Suszeptibilität~\chi_{\rm wahr}.$ Nur die wahre Suszeptibilität χ_{wahr} wirkt auf das effektiv wirkende Feld H_E .

$$\chi_{\text{Schein}} = \frac{M}{H}$$

$$\chi_{\text{wahr}} = \frac{M}{H_E}$$
(2.30)

$$\chi_{\text{wahr}} = \frac{M}{H_E} \tag{2.31}$$

Mit diesen Relationen kann man die wahre Suszeptibilität ermitteln.

$$(2.19) \Leftrightarrow H_{\text{ext}} = NM$$

$$= HN\chi_{\text{Schein}}$$

$$(2.29) \Leftrightarrow H_E = H - H_{\text{ext}}$$

$$= H - HN\chi_{\text{Schein}}$$

$$\chi_{\text{wahr}} = \frac{\chi_{\text{Schein}}H}{H_E}$$

$$= \frac{\chi_{\text{Schein}}H}{H - H_{\text{text}}}$$

$$= \frac{\chi_{\text{Schein}}H}{H - HN\chi_{\text{Schein}}}$$

$$\chi_{\text{wahr}} = \frac{\chi_{\text{Schein}}}{1 - N \cdot \chi_{\text{Schein}}} \qquad (2.32)$$

3 Durchführung

Dieser Versuch besteht aus zwei Teilen. Zunächst werden Messungen am beheizbaren Ferritkern durchgeführt, danach Messungen am Ferritkern mit Spalt. Diese lassen sich wiederum in die einzelnen Messungen aufteilen, welche im Folgenden besprochen werden.

3.1 Versuchsaufbau

Im Zentrum dieses Versuchs befinden sich zwei unterschiedliche Ferritkerne dessen Magnetisierung untersucht wird. Der erste ist ein beheizbarer Kern, welcher erhitzt werden kann, um Temperaturabhängigkeiten messbar zu machen. Der zweite Kern ist in der Hälfte geteilt und es lässt sich ein Spalt variabler Breite einstellen, was es möglich macht, den Entmagnetisierungsfaktor zu bestimmen.

Beide Ringkerne haben einen Querschnitt von $q=0.9\,\mathrm{cm}^2$ und einen Kernradius von $R=1.5\,\mathrm{cm}$. Sie sind von jeweils zwei Spulen umwickelt, einer Primärspule und einer Sekundärspule, deren Windungszahlen sich je nach Kern unterscheiden. Beim beheizbaren Kern haben beide Spulen eine Windungszahl von 17. Beim Ringkern mit Spalt hat die Sekundärspule ebenfalls eine Windungszahl von 17, die Primärspule allerdings eine von 54.

3.2 Versuchsidee

In der Grundidee des Versuchs wird an die Primärspule ein Strom angelegt. Der dadurch in der Sekundärspule induzierte Strom U_M hängt mit der Magnetisierung M des Kerns zusammen:

$$U_M = -n_s q \mu_0 \frac{\mathrm{d}M}{\mathrm{d}t} \tag{3.1}$$

Der Anteil des Magnetfeldes in der Sekundärspule, das vom Feld im Raum zwischen Kern und Spulenwicklung herrührt, wird dabei von einem Lufttransformator herausgefiltert. Für jeweils Primär- und Sekundärspule ist dies eine Spule ohne Kern, welche andersherum gewickelt und in Reihe geschaltet ist. Der Anteil des Magnetfeldes im Raum zwischen Kern und Spulenwicklung werden also zweimal erzeugt, nur einmal mit anderem Vorzeichen. Sie kürzen sich also genau heraus.

3.2.1 Integration des Messsignals

Um nun M zu bestimmen, wird das einlaufende U_M mittels eines Integrators zeitlich integriert und es folgt M(t) bis auf eine Konstante M(0).

$$U_{aus}(t) = -\frac{1}{RC} \int_0^t U_M(t') dt'$$
(3.2)

$$= -\frac{n_s q}{RC} \mu_0(M(t) - M(0)) \tag{3.3}$$

Ein Integrator ist dabei ein technisches Bauteil, bestehend aus einem Widerstand, einer Diode und einem Kondensator, welcher eine einlaufende Spannung, wie der Name schon sagt, zeitlich integriert.

3.2.2 Transformation des Messsignals

Aufgrund der hohen Frequenz der Wechselspannung von 50 Hz wird eine Hysteresekurve nun allerdings viel zu schnell durchlaufen, um eine geeignete Messung dieser zu ermöglichen. Dazu wird mit Hilfe zweier phasenempfindlicher Gleichrichter das Messpaar (H(t), M(t)) zu $(H(\varphi), M(\varphi))$ transformiert, was eine langsamere Abtastung der Kurve möglich macht.

3.2.2.1 Bestimmung von $M(\varphi)$ Ein phasenempfindlicher Gleichrichter multipliziert zum einlaufenden Messsignal U_E eine zweite sogenannte Referenzspannung U_R mit einer leicht unterschiedlicher Frequenz hinzu und bildet den zeitlichen Mittelwert. Es entsteht ein Signal, das die Hysteresekurve langsam durchfährt, wobei die Geschwindigkeit proportional zur Differenz der Mess- und Referenzfrequenz ist. Dies wird als "freilaufender Betrieb" bezeichnet.

$$M(t) = M(\varphi(t)) \tag{3.4}$$

Werden die beiden Frequenzen gleichgesetzt, lässt sich durch Änderung der Phasenverschiebung der beiden Signale die Hysteresekurve manuell abtasten oder bestimmte Punkte auf der Hysteresekurve ansteuern, was "*Phase-locked-Betrieb*" genannt wird.

$$M(t) = M(\varphi) \tag{3.5}$$

3.2.2.2 Bestimmung von $H(\varphi)$ Um nun die Hysteresekurve auftragen zu können, muss neben $M(\varphi)$ noch $H(\varphi)$ bestimmt werden. Dazu wird ein Transformator ohne Eisenkern, auch Luftinduktorium genannt, mit dem Stromkreis des Kerns in Reihe geschaltet. Die induzierte Spannung in der Sekundärseite des Luftinduktoriums ist proportional zu $\frac{\mathrm{d}H}{\mathrm{d}t}$, wodurch mit dem gleichen Prinzip wie bei der Magnetisierung zuvor $H(\varphi)$ bestimmt wird.

Mittel des Wertepaars $(M(\varphi), H(\varphi))$ is die Hysteresekurve nun abbildbar.

3.3 Messung am beheizbaren Ferritkern

3.3.1 Magnetisierungskurve

Im ersten Teil des Versuchs werden bei Zimmertemperatur die Magnetisierungskurven für verschiedene eingestellte Primärstromstärken zwischen 3 A und 0.1 A gemessen. Die Messung findet im freilaufenden Betrieb statt, damit $\varphi(t)$ über eine gewisse Zeit die ganze Kurve abdeckt.

3.3.2 Kommutierungskurve

Daraufhin wird die Kommutierungskurve angenähert, indem der obere Umkehrpunkt der Hysteresekurve als Funktion des Primärstroms ermittelt wird. Dazu wird in den Phase-locked-Betrieb gewechselt und φ wird so eingestellt, dass sich der Messpunkt auf dem Umkehrpunkt befindet. Dann wird während aktiver Messung der Primärstrom vom Maximum 3 A langsam auf 0 A reduziert.

Um den unteren Teil der Kommutierungskurve noch genauer aufzunehmen, wird der Bereich von 0.1 A bis 0 A mittels Feinjustierung der Stromstärke erneut aufgenommen.

3.3.3 Temperaturabhängigkeit

Die letzte Messung am beheizbaren Ferritkern beschäftigt sich mit der Temperaturabhängigkeit der maximalen Magnetisierung M(T). Dazu wird erneut φ im Phase-locked-Betrieb so eingestellt, dass der Messpunkt auf dem oberen Umkehrpunkt der Hysteresekurve liegt. Außerdem wird der Primärstrom auf den maximalen Wert von 3 A gestellt und der Heizstrom angeschlossen.

Bei aktiver Messung von wird der Ferritkern langsam aufgeheizt bis ein Phasenübergang zu erkennen ist, wobei der Heizstrom aufgrund von steigender Wärmeverluste stetig erhöht werden muss.

3.4 Messungen am Ringkern mit Spalt

3.4.1 Magnetisierungskurve

Für den Ferritkern mit Spalt wird zunächst auch die Magnetisierungskurve gemessen. Dies geschieht bei einer Stromstärke von 0.94 A, um die Kurve der beiden Ferritkerne später möglichst gut vergleichen zu können.

3.4.2 Entmagnetisierungsfaktor

In der letzten Messung des Versuchs werden mehrere Magnetisierungskurven für unterschiedliche Spaltbreiten von 0 mm bis 1 mm aufgenommen. Dabei wird für jede Spaltbreite den Primärstrom so eingestellt, dass die maximale Magnetisierung für alle Spalte gleich ist. Begonnen wird bei einer Spaltbreite von 1 mm und Primärstrom von 3 A.

Hierbei ist zu beachten, dass der Ringkern an zwei Stellen unterbrochen wird. Dadurch ist die Länge l_L des Luftspalts doppelt so groß, da beide Spalte addiert werden.

4 Auswertung

4.1 Messungen am beheizbaren Ringkern

4.1.1 Kenngrößen

Zunächst müssen die gemessenen Werte in die richtigen Einheiten konvertiert werden. Gemessen wurden Spannungen, diese müssen in die Magnetisierung M bzw. die magnetische Feldstärke H umgerechnet werden.

Die Umrechnung in die Feldstärke kann mittels der Relation (2.6) erfolgen. Der Strom I kann über das Ohm'sche Gesetz U=RI aus der Spannung U und dem Widerstand R ermittelt werden. Da der Widerstand konstant ist, kann er durch das Verhältnis der maximalen Stromstärke I_{max} und der maximalen Spannung U_{max} beschrieben werden. Weiterhin wird die Länge l der Spule benötigt. Diese entspricht dem Umfang des Ringkerns, also $l=2\pi r$ für einen Kern mit dem Radius r. Damit kann die Feldstärke H wie folgt ermittelt werden.

$$H = \frac{n_p}{2\pi r} \cdot \frac{I_{\text{max}}}{U_{\text{max}}} \cdot U \tag{4.1}$$

Aus der Versuchsanleitung [8] folgt, dass die Magnetisierung M aus der gemessenen Spannung U ermittelt werden kann. Hierbei sind $\nu = 50$ Hz die Frequenz des Wechselstroms, n_s die Windungszahl der Sekundärspule und $q = 0.9 \text{cm}^2$ die Querschnittsfläche des Kerns.

$$M = \frac{U}{47 \cdot 4\nu n_s q \mu_0} \tag{4.2}$$

Die entsprechenden Messergebnisse werden in Abbildung [3.3.1a] dargestellt. Es ergeben sich folgende Kenngrößen, die aus den Daten abgelesen werden können. Als Fehler werden hierbei die Differenzen der beiden Messwerte auf beiden Seiten der Kurve verwendet.

I_{\max} in A	Remanenz in $\left[\frac{A}{m}\right]$	$H_{ m K}$ in $\left[rac{A}{m} ight]$	$M_{\rm max}$ in $\left[10^6 \frac{A}{m}\right]$
3.00 ± 0.01	423.51 ± 20.42	6.58 ± 2.27	1243.66 ± 18.67
1.00 ± 0.01	401.68 ± 110.22	6.25 ± 2.03	1163.9 ± 18.87
0.29 ± 0.01	431.55 ± 60.85	5.51 ± 1.64	981.29 ± 24.64
0.10 ± 0.01	303.9 ± 42.27	4.95 ± 1.30	705.29 ± 26.18

Man sieht, dass die Remanenz und die maximale Magnetisierung mit steigender Stromstärke I_{max} zunehmen, was den Erwartungen entspricht. Selbiges gilt für die Koerzitivfeldstärke H_{K} , wenngleich diese im Rahmen der Ungenauigkeit nahezu konstant bleibt.

4.1.2 Kommutierungskurve und Suszeptibilität

Die Kommutierungskurven verlaufen grundsätzlich wie erwartet. Allerdings ist auffällig, dass die Kurve für $I_{\text{max}} = 100\,\text{mA}$ in eine negative Magnetisierung läuft, was sie von der Kurve für $I_{\text{max}} = 3\,\text{A}$ unterscheidet. Dies deutet auf einen systematischen Fehler bei der erstgenannten Messung hin.

Dies wirkt sich auch auf die differentielle Suszeptibilität χ aus. Bei der Messung mit $I_{\rm max}=3\,{\rm A}$ ist eine Abhängigkeit von $\chi\propto H^{-1}$ zu erkennen. Die differentielle Suszeptibilität für die Messung bei $I_{\rm max}=100\,{\rm mA}$ hat dagegen sehr viel kleinere Werte, die um einen Faktor von mindestens 20 kleiner sind. Auch dies lässt auf einen systematischen Fehler schließen. Ansonsten ist auch diese Kurve gespiegelt, was mit der negativen Magnetisierung zusammenhängt.

4.1.3 Temperaturabhängigkeit

Die Magnetisierung M(T) ist wie erwartet eine abfallende Kurve. Bei der Curie-Temperatur T_C findet ein Phasenübergang statt, bei dem das Material praktisch paramagnetisch wird. Daher kann man T_C am unteren Knick ablesen.

$$T_C = (76.5 \pm 0.5) \,^{\circ}\text{C}$$

4.2 Messungen am Ringkern mit Spalt

4.2.1 Kenngrößen

Analog zu den Messungen am beheizbaren Ringkern ohne Spalt können die Kenngrößen des Ringkerns mit Spalt ermittelt werden.

Figure 2: Einzelne Messungen der Kenngrößen

Figure 3: Kommutierungskurven

 ${\bf Figure~4:~Kommutierungskurven}$

Figure 5: Temperaturabhängigkeit der Magnetisierung

Figure 6: Vergleich der Kerne mit und ohne Spalt

$$I_{\rm max} \ {\rm in} \ {\rm A} \quad {\rm Remanenz} \ {\rm in} \left[\frac{{\rm A}}{{\rm A}m}\right] \quad H_{\rm K} \ {\rm in} \left[\frac{{\rm A}}{{\rm m}}\right] \quad M_{\rm max} \ {\rm in} \left[10^6\frac{{\rm A}}{{\rm m}}\right]$$
 ohne Spalt
$$3.00 \pm 0.01 \quad 423.51 \pm 20.42 \quad 6.58 \pm 2.27 \quad 1243.66 \pm 18.67$$
 mit Spalt
$$0.94 \pm 0.01 \quad 198.95 \pm 49.8 \quad 227.94 \pm 24.80 \quad 675.28 \pm 14.92$$

Die Stromstärken I_{max} sind so gewählt, dass die erzeugte Feldstärke in beiden Kernen gleich groß ist. Damit lassen sich die Materialeigenschaften vergleichen.

Dabei fällt auf, dass Remanenz und maximale Magnetisierung bei dem Kern mit Spalt nur etwa halb so groß wie beim Kern ohne Spalt ist. Dafür ist die Koerzitivfeldstärke beim Kern mit Spalt um einen Faktor 38 größer.

4.2.2 Entmagnetisierungsfaktor

Aus der Scherung der Hysteresekurven kann nach Gleichung (2.29) die Entmagnetisierungsfeldstärke H_{ent} ermittelt werden.

Figure 7: gescherte Hysteresekuven

Die maximale Magnetisierung $M_{\rm max} = (0.495 \pm 0.025) \cdot 10^6 \frac{\rm A}{\rm m}$, sie kann daher als konstant angenommen werden. Nach der Definition des Entmagnetisierungsfaktors (Ndef) kann damit der experimentelle Entmagnetisierungsfaktor $N_{\rm exp}$ abhängig von der Spaltbreite ermittelt werden. Die Ungenauigkeiten $\Delta N_{\rm exp}$ können durch die Gauß'sche Fehlerfortpflanzung bestimmt werden.

$$\Delta f = \pm \sqrt{\sum_{k=1}^{j} \left(\frac{\partial f}{\partial x_k} \Delta x_k\right)^2}$$
 (4.3)

$$\Delta N_{\rm exp} = \pm \sqrt{\left(\frac{\Delta H_{\rm ent}}{M_{\rm max}}\right)^2 + \left(\frac{H_{\rm ent} \cdot \Delta M_{\rm max}}{(M_{\rm max})^2}\right)^2} \tag{4.4}$$

Da die Ungenauigkeit der Entmagnetiserungsfeldstärken $\Delta H_{\rm ent}$ sehr viel kleiner als die Ungenauigkeiten der maximalen Magnetisierung $\Delta M_{\rm max}$ sind, wurden erstere in der Berechnung des Entmagnetisierungsfaktors N vernachlässigt, also $\Delta H_{\rm ent} \approx 0$.

Aus der Spaltbreite l_L und dem Radius R des Kerns der theoretische Entmagnetisierungsfaktor $N_{\rm theo}$ nach (2.20) bestimmt werden. Hierbei ist die Gesamtlänge durch den Umfang $2\pi R$ des Kerns und die Breite des Luftspalts l_L bestimmt.

$$N = \frac{l_L}{2\pi R + l_L} \tag{4.5}$$

Daraus ergeben sich folgende Ergebnisse. Alle Messwerte mit Spalt sind deutlich kleiner als die theoretischen Werte, die Abweichungen werden mit steigender Spaltbreite massiv größer. Dies deutet auf einen systematischen Fehler hin.

l_L	$I_{\rm max}$ in A	$H_{\rm ent}$ in $\left[10^3 \frac{\rm A}{\rm m}\right]$	$M_{\rm max}$ in $\left[10^6 \frac{\rm A}{\rm m}\right]$	$N_{\rm exp} \ {\rm in} \ [10^{-3}]$	$N_{\rm theo}$ in $[10^{-3}]$
$0.00~\mathrm{mm}$	0.50 ± 0.01	0.000 ± 0.000	0.49 ± 0.02	0.000 ± 0.000	0.00
$0.15~\mathrm{mm}$	0.79 ± 0.01	0.508 ± 0.001	0.49 ± 0.02	1.026 ± 0.052	1.59
$0.25~\mathrm{mm}$	1.00 ± 0.01	0.885 ± 0.001	0.50 ± 0.02	1.788 ± 0.090	2.65
$0.40~\mathrm{mm}$	1.27 ± 0.01	1.368 ± 0.001	0.50 ± 0.02	2.764 ± 0.140	4.23
$1.00~\mathrm{mm}$	2.12 ± 0.01	2.860 ± 0.004	0.49 ± 0.02	5.778 ± 0.292	10.50
$2.00~\mathrm{mm}$	3.00 ± 0.01	4.410 ± 0.009	0.50 ± 0.01	8.909 ± 0.450	20.78

$\mathbf{5}$ Fazit

6 Literaturverzeichnis

1. C. Kittel, Einführung in die Festkörperphysik, München: Oldenbourg Verlag, 2005

Figure 8: gescherte Hysteresekuven

- 2. J. D. Jackson, Classical Elektrodynamics, New York: John Wiley & Sons , 1962
- 3. E. Kneller, Ferromagnetismus, Berlin Heidelberg: Springer Verlag, 1962
- 4. W. Reith, Bergmann-Schaefer. Lehrbuch der Experimentalphysik. Elektromagnetismus, Bd. 2, Berlin: Walter de Gruyter Verlag, 2006
- 5. S. Hunklinger, Festkörperphysik, München: Oldenbourg Verlag, 2011
- 6. R. Gross und A. Marx, Festkörperphysik, München: Oldenbourg Verlag, 2012
- 7. M. Fink, R.-D. Heuer und H. Kleinpoppen, Bergmann-Schaefer. Bestandteile der Materie, Bd. 4, W. Raith, Hrsg., Berlin: Walter de Gruyter Verlag, 2003
- 8. Universität zu Köln, "Anleitung zum Versuch 2.4 Magnetisierung eines Ferrits", Juni 2013, Online verfügbar unter http://www.ph2.uni-koeln.de/fileadmin/Lehre/PraktikumB/B2.4.pdf