Binary Trees

Reading: Lewis & Chase 12.1, 12.3 Eck 9.4.1

Objectives

- Tree basics
- Learn the terminology used when talking about trees
- Discuss methods for traversing trees
- Discuss a possible implementation of trees with nodes
- Examine a binary tree example

Tree Basics

- So far, all the data structures that we have encountered were linear. Objects in an array, list, stack, or queue are placed one after the other in a line.
- Sometimes it is useful to organize data into groups and subgroups.
- This type of organization of data is hierarchical, or non-linear, since the data appears at various levels.

Hierarchical Organizations Family Trees

- Family trees can be arranged in various ways.
- This diagram shows Emily's children and grandchildren.

Hierarchical Organizations Family Trees

This diagram shows Pat's parents and grandparents.

Hierarchical Organizations Businesses

A hierarchical diagram of a business:

Hierarchical Organizations Files and Directories

Files and directories on a computer:

- A tree is a set of nodes connected by edges that show a relationship between the nodes.
- The nodes are arranged in levels that indicate the hierarchy of the nodes. The top level is a single node called the root.

- The **children** of a node are those **directly** below it. A has 4 children: B, C, D, E
- The parent of a node is the node directly above it. C's parent is A

- All nodes have exactly 1 parent, except the root, which has no parent. H's parent is C
- Nodes that share a parent are siblings.
 B, C, D, and E are siblings.

- The nodes <u>below</u> a given node (on the downward paths to the leaves) are its descendants.
- D's descendants are I, J, K, Q, R, S and T.

- The nodes <u>above</u> a given node (on the upward path towards the root) are its ancestors.
- Q's ancestors are I, D, and A

- A leaf is a node that has no children.
- Any node that is <u>not a leaf</u> is an <u>interior</u> node (or non-leaf node).

- What are the leaf nodes?
- What are the siblings of J?
- What are the children of E?
- What are the descendants of B?
- What are the ancestors of P?

- What are the leaf nodes? NOPGHQRSTLM
- What are the siblings of J?
- What are the children of E?
- What are the descendants of B?
- What are the ancestors of P?

- What are the leaf nodes? NOPGHQRSTLM
- What are the siblings of J? I K
- What are the children of E?
- What are the descendants of B?
- What are the ancestors of P?

- What are the leaf nodes? NOPGHQRSTLM
- What are the siblings of J? I K
- What are the children of E? L M
- What are the descendants of B?
- What are the ancestors of P?

- What are the leaf nodes? N O P G H Q R S T L M
- What are the siblings of J? I K
- What are the children of E? L M
- What are the descendants of B? F G N O P
- What are the ancestors of P?

- What are the leaf nodes? NOPGHQRSTLM
- What are the siblings of J? I K
- What are the children of E? L M
- What are the descendants of B? F G N O P
- What are the ancestors of P? F B A

- A subtree of a node is a tree rooted at one of that node's children.
- Node B has 2 subtrees.
- Node A has 4 subtrees.

- We can reach any node in a tree by following a path that begins at the root and goes from node to node along the edges that connect them.
- The path to R is A D I R

- The length of a path is the number of edges that compose it.
- The length of the path to R is 3

- The height of a tree is the number of levels in the tree, or the number of nodes along the longest path between the root and a leaf.
- This example tree has height 4.

- The path between the root and any other node is unique – there is no circularity in a tree.
- A tree-like data structure that has circularity is called a graph.

- In a general tree, each node can have any number of children.
- A tree in which the nodes have at most n children is called an n-ary tree.
- In particular, a tree whose nodes have at most 2 children is called a binary tree.

Binary Trees

- We know how to create and link nodes together to form a list.
- A doubly-linked list can be formed by using two references in the node object – one to point to the next node and one to point to the previous node in the list.

Binary Trees

- By using a similar node class with 2 references, we can form binary trees.
- Each node contains a reference to its left and its right subtree.

- When we iterate a linear data structure, such as a list, the order in which to process the data is clear.
- When we iterate a tree it is called a traversal, and the order of processing the nodes is not unique.
- Each node must be visited (i.e. processed in some way) exactly once.

- We know that the subtrees of the root of a binary tree are also binary trees.
- We can use the recursive nature of a binary tree to define its traversal.
- To visit all the nodes in a binary tree we have to
 - visit the root
 - visit all nodes in the left subtree
 - visit all nodes in the right subtree

- Visiting the left subtree before the right subtree is simply a convention.
- The root can be visited before, between, or after its two subtrees.

root
left subtree
right subtree

left subtree root right subtree

left subtree right subtree

- The order in which the root node and its subtrees are visited allows us to define the 3 most common tree traversals
 - preorder
 - inorder
 - postorder
- The pre-, in-, and post- refer to the visitation of the root node.

pre-order
root
left subtree
right subtree

in-order
left subtree
root
right subtree

post-order
left subtree
right subtree
root

Preorder Traversal

- In a preorder traversal, the root node is visited <u>before</u> its subtrees:
 - visit the root
 - visit all nodes in the left subtree
 - visit all nodes in the right subtree

root left right

B

B C

BCF

BCFK

BCFKG

BCFKGL

BCFKGLP

BCFKGLPM

BCFKGLPMD

BCFKGLPMDH

BCFKGLPMDHJ

BCFKGLPMDHJN

Preorder Traversal Exercise

What is the preorder traversal of this tree?

Preorder Traversal Exercise

What is the preorder traversal of this tree?

BCFGKDHJL

Inorder Traversal

- In an inorder traversal, the root node is visited <u>between</u> its subtrees:
 - visit all nodes in the left subtree
 - visit the root
 - visit all nodes in the right subtree

left root right

K

left root right

KF

left root right

KFC

KFCP

KFCPL

KFCPLG

KFCPLGM

KFCPLGMB

KFCPLGMBH

KFCPLGMBHD

KFCPLGMBHDJ

KFCPLGMBHDJN

Inorder Traversal Exercise

What is the inorder traversal of this tree?

Inorder Traversal Exercise

What is the inorder traversal of this tree?

FCGKBHDLJ

Postorder Traversal

- In a postorder traversal, the root node is visited <u>after</u> its subtrees:
 - visit all nodes in the left subtree
 - visit all nodes in the right subtree
 - visit the root

left right root

K

KF

KFP

KFPL

KFPLM

KFPLMG

KFPLMGC

KFPLMGCH

KFPLMGCHN

KFPLMGCHNJ

Postorder Traversal Example

KFPLMGCHNJD

Postorder Traversal Example

KFPLMGCHNJDB

Postorder Traversal Exercise

What is the postorder traversal of this tree?

Postorder Traversal Exercise

What is the postorder traversal of this tree?

FKGCHLJDB

Distinguishing the Traversal Types

Distinguishing the Traversal Types

Distinguishing the Traversal Types

Preorder (left/red window): B C F K G L P M D H J N Inorder (bottom/green window): K F C P L G M B H D J N Postorder (right/blue window): K F P L M G C H N J D B

Building a Binary Tree

- Unlike classes that represent lists, stacks, or queues, tree classes often do **not** have methods to add or remove elements.
- There is no obvious place to add a new element.
- Removing a node is even less clear
 - how would you indicate which node should be removed? - can't number them like in a list
 - what happens to the children of the removed node?

Building a Binary Tree

- Trees are built up, node by node.
- Let's build this tree:


```
BinaryTree<String> b = new BinaryTree<String>("B");
BinaryTree<String> d = new BinaryTree<String>("D");
BinaryTree<String> c = new BinaryTree<String>("C", d, null);
BinaryTree<String> a = new BinaryTree<String>("A", b, c);
```

BinaryTreeNode<T> Instance Variables

```
public class BinaryTreeNode<T> {
    T element;
    BinaryTreeNode<T> left;
    BinaryTreeNode<T> right;
    ...
}
```


BinaryTreeNode<T> Constructors

```
public class BinaryTreeNode<T> {
    T element;
    BinaryTreeNode<T> left;
    BinaryTreeNode<T> right;
    public BinaryTreeNode(T dataObj) {
        element = dataObj;
        left = right = null;
    public BinaryTreeNode(T dataObj,
                           BinaryTreeNode<T> 1,
                           BinaryTreeNode<T> r) {
        element = dataObj;
        left = 1;
        right = r;
```

BinaryTreeNode<T> toString

BinaryTreeNode<T> isLeaf - Exercise

BinaryTreeNode<T> isLeaf

BinaryTree<T>

- Now that we have a class to represent a node in the tree, we can define a class to represent the tree itself.
- The only node that we need a reference to is the root node. All other nodes are accessible from the root.
- We will declare a reference to the root node as an instance variable.

BinaryTree<T> Instance Variable

```
public class BinaryTree<T> {
    BinaryTreeNode<T> root;
    ...
}
```


BinaryTree<T> Constructors

```
public class BinaryTree<T> {
    BinaryTreeNode<T> root;

    public BinaryTree() {
        root = null;
    }

    public BinaryTree(T element) {
        root = new BinaryTreeNode<T> (element);
    }

    ...
}
```

BinaryTree<T> Constructors, cont.

```
public class BinaryTree<T> {
   public BinaryTree(T element, BinaryTree<T> leftSubtree,
                              BinaryTree<T> rightSubtree) {
       root = new BinaryTreeNode<T> (element);
       if (leftSubtree != null) {
           root.left = leftSubtree.root;
       } else {
           root.left = null;
       if (rightSubtree != null) {
           root.right = rightSubtree.root;
       } else {
           root.right = null;
```