STATG004: APPLIED BAYESIAN METHODS

2 hours

Answer ALL questions. Section A carries 40% of the total marks and Section B carries 60%. The relative weights attached to each question are as follows: A1 (10), A2 (10), A3 (20), B1 (20), B2 (20) and B3 (20). The numbers in square brackets indicate the relative weight attached to each part question.

You may use the following notation and results:

The **Beta distribution**, Beta(α, β), has probability density function

$$p(y \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha - 1} (1 - y)^{\beta - 1}, \quad 0 < y < 1,$$

where $\Gamma(.)$ is the Gamma function, mean $\frac{\alpha}{\alpha+\beta}$ and, for $\alpha, \beta > 1$, mode $\frac{\alpha-1}{\alpha+\beta-2}$.

The **Gamma** distribution, Gamma(α, β), has probability density function

$$p(y \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\beta y} , \quad y > 0 ,$$

and mean $\frac{\alpha}{\beta}$.

The **Normal** distribution, $Normal(\theta, \tau^{-1})$, has probability density function

$$p(y \mid \theta, \tau) = \sqrt{\frac{\tau}{2\pi}} \exp\left[-\frac{\tau}{2}(y - \theta)^2\right], \quad -\infty < y < \infty.$$

The **Poisson distribution**, Poisson(λ), has probability mass function

$$p(y \mid \lambda) = \frac{\lambda^y}{y!} e^{-\lambda}$$
, $y = 0, 1, 2, \dots$

SECTION A

- A1 A blood test T_1 to diagnose a disease D has probability of 80% of being correct regardless of the truth, i.e. 80% is the probability of the test being positive when a person truly has the disease, and 80% is also the probability of the test being negative when he/she is normal. If this test is positive, a different test T_2 is then carried out. The second test always correctly diagnoses if the person is in fact normal, but has a probability of 95% of being correct if he/she has the disease. Assume that, given the true disease status (i.e. having the disease or not) of a person, the second test is conditionally independent of the first test for the same person. Suppose that 10% of the people in the population under study is affected by the disease.
 - (a) A person tests positive on his/her first test. What is the probability that he/she really has the disease? [4]
 - (b) What is the probability that this person will test positive again on his/her second test, given that he/she tested positive on his/her first test? [6]

A2 Suppose that

$$Y \mid \theta \sim \text{Normal}(\theta, \tau^{-1}),$$

where θ is an unknown parameter and the value of τ is known.

- (a) Show that the distribution of $Y \mid \theta$ belongs to the one-parameter exponential family. [5]
- (b) Using the results from part (a), derive the conjugate prior for θ , clearly stating the prior mean and the prior precision of θ . [5]
- **A3** Suppose that the lifetime Y of a type of machine follows a Gamma $(4, \theta)$ distribution, i.e., $Y | \theta \sim \text{Gamma}(4, \theta)$, where θ is an unknown parameter.
 - (a) Suppose that we use a Gamma(α_0, β_0) prior for θ and that we record a random sample of the lifetimes (y_1, \ldots, y_n) from n machines of this type. Let \mathbf{y} denote the values (y_1, \ldots, y_n) of the sample and \bar{y} denote the sample mean $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$. Derive the posterior distribution for θ , clearly stating the parameters of the posterior.
 - (b) Suppose that we wish to predict the lifetime (denoted by \tilde{y}) of a new machine of the same type. Derive the predictive distribution $p(\tilde{y}|\mathbf{y})$. [6]
 - (c) Derive the Jeffreys prior for θ . Show that it can be written as a Gamma distribution.
 - (d) Is this Jeffreys prior proper? Justify your answer. [3]

SECTION B

B1 A study is carried out in which a count response variable is measured on n individuals at each of times 1, 2, ..., m. Let Y_{ij} denote the response of person i at time j. Y_{ij} may take values 0, 1, 2, ... Consider the following model for these data:

$$Y_{ij} \mid \alpha_i, \beta \sim \text{Poisson}(e^{\alpha_i + \beta(j-1)}), i = 1, ..., n; j = 1, ..., m,$$

 $\alpha_i \mid \mu_{\alpha}, \tau_{\alpha} \sim \text{Normal}(\mu_{\alpha}, \tau_{\alpha}^{-1}),$
 $\beta \sim \text{Normal}(0, 10^6),$
 $\mu_{\alpha} \sim \text{Normal}(0, 10^6),$
 $\tau_{\alpha} \sim \text{Gamma}(0.001, 0.001).$

- (a) Draw the directed acyclic graph (DAG) for this model. [4]
- (b) By moralising the graph, determine whether the following conditional independence statement is true: $Y_{i1} \perp \!\!\!\perp Y_{i2} \mid \alpha_i$. Justify briefly your answer. [5]
- (c) Derive the full-conditional distribution of τ_{α} , clearly stating the parameters of the distribution. [5]
- (d) Suppose, using a Gibbs sampler, after a burn-in of M iterations you have obtained samples $(\beta^{(M+1)}, \ldots, \beta^{(N)})$ from the posterior distribution of β . Explain how to use these samples to estimate the posterior mean, median, mode and the central 95% posterior credible interval of β . [6]
- **B2** (a) Prove that the posterior mode of $\theta | \mathbf{y}$ is an optimal point estimator $T(\mathbf{y})$ for θ that minimises the posterior expected loss under zero-one loss. [6]
 - (b) Assuming a Beta(0,0) prior for $\theta \in (0,1)$, derive a transformation $\phi = \phi(\theta)$ such that a uniform prior for ϕ is assumed. [5]
 - (c) List the main advantage and three disadvantages of using the Jeffreys prior.

 [4]
 - (d) Prove that two random variables X_1 and X_2 are identically distributed if they are exchangeable. [5]
- **B3** The data given in the table below are the numbers of pump failures, $Y_i = y_i$, observed in t_i thousands of hours for 10 different systems (indexed by i = 1, ..., 10) in a nuclear power plant:

	System i									
	1	2	3	4	5	6	7	8	9	10
y_i	5	1	5	14	3	19	1	1	4	22
t_i	94.3	15.7	62.9	14 125.8	5.2	31.4	1.0	1.0	2.1	10.5

You are asked to design an appropriate hierarchical Bayesian model for the inference about system-specific pump failure rates (per thousand hours) θ_i , which are unknown. Assume that $Y_i \mid \theta_i \sim \text{Poisson}(\theta_i t_i)$.

- (a) Write down all the probabilistic distributions for your model. [6]
- (b) Draw the DAG for your model. [4]
- (c) Suppose that the full-conditional distributions of all the unknown random variables in the model have been derived. Explain in detail how to use these distributions to develop a Gibbs sampler to obtain samples $\theta_6^{(M+1)}, \ldots, \theta_6^{(N)}$ from the posterior distribution for θ_6 , where M is the number of iterations of burn-in and N is the total number of iterations. [6]
- (d) The results from a hierarchical Bayesian model show that, although the posterior means of θ_5 and θ_6 are very similar, the 95% central posterior credible interval for θ_6 is much narrower than that for θ_5 . Briefly comment on the reason for this.