Information and coding theory

Project I

Practical informations

Each project should be executed by groups of two students. We expect each group to provide:

- A brief report (in PDF format) collecting the answers to the different questions.
- The scripts you have implemented.

The report and the scripts should be submitted as a tar.gz (or zip) file on Montefiore's submission plateform (http://submit.montefiore.ulg.ac.be) before $March\ 21,\ 23:59\ GMT+2$. You must concatenate your sXXXXXX ids as group, archive and report names.

Questions

Information measures

Exercises by hand

Let \mathcal{X} and \mathcal{Y} be two random variables that take on values x_1, x_2, x_3, x_4 and y_1, y_2, y_3, y_4 . The joint distribution of these two random variables is as follows:

	$x = x_1$	$x = x_2$	$x = x_3$	$x = x_4$
$y = y_1$	1/8	1/16	1/16	1/4
$y = y_2$	1/16	1/8	1/16	0
$y = y_3$	1/32	1/32	1/16	0
$y = y_3$ $y = y_4$	1/32	1/32	1/16	0

Let \mathcal{W} and \mathcal{Z} be two binary random variables whose values are determined as follows:

Calculate

- 1. $H(\mathcal{X}), H(\mathcal{Y}), H(\mathcal{W}), H(\mathcal{Z})$
- 2. $H(\mathcal{X}, \mathcal{Y}), H(\mathcal{X}, \mathcal{W}), H(\mathcal{Y}, \mathcal{W}), H(\mathcal{W}, \mathcal{Z})$
- 3. $H(\mathcal{X}|\mathcal{Y}), H(\mathcal{W}|\mathcal{X}), H(\mathcal{Z}|\mathcal{W}), H(\mathcal{W}|\mathcal{Z})$
- 4. $H(\mathcal{X}, \mathcal{Y}|\mathcal{W}), H(\mathcal{W}, \mathcal{Z}|\mathcal{X})$
- 5. $I(\mathcal{X}; \mathcal{Y}), I(\mathcal{X}; \mathcal{W}), I(\mathcal{Y}; \mathcal{Z}), I(\mathcal{W}; \mathcal{Z})$
- 6. $I(\mathcal{X}; \mathcal{Y}|\mathcal{W}), I(\mathcal{W}; \mathcal{Z}|\mathcal{X})$

Implementation

In Python or Julia.

- 7. Write a function *entropy* that computes $H(\mathcal{X})$, the entropy of a random variable \mathcal{X} , given¹ its probability distribution $P_{\mathcal{X}} = (p_1, p_2, \ldots, p_n)$. What are the key parts of your implementation? Intuitively, what is measured by the entropy?
- 8. Let \mathcal{X} and \mathcal{Y} be two discrete random variables. Write a function $joint_entropy$ that computes $H(\mathcal{X}, \mathcal{Y})$, the joint entropy of \mathcal{X} and \mathcal{Y} . What are the key parts of your implementation? Compare this function with the entropy function, what do you notice?
- 9. Let \mathcal{X} and \mathcal{Y} be two discrete random variables. Write a function $conditional_entropy$ that computes $H(\mathcal{X}|\mathcal{Y})$, the conditional entropy of \mathcal{X} given \mathcal{Y} . What are the key parts of your implementation?
- 10. Let \mathcal{X} and \mathcal{Y} be two discrete random variables. Write a function $mutual_information$ that computes $I(\mathcal{X}; \mathcal{Y})$, the mutual information between \mathcal{X} and \mathcal{Y} . What are the key parts of your implementation? What can you deduce from the influence of one variable on the other?
- 11. Let \mathcal{X} , \mathcal{Y} and \mathcal{Z} be three discrete random variables. Write functions $cond_joint_-$ entropy and $cond_mutual_information$ that compute $H(\mathcal{X}, \mathcal{Y}|\mathcal{Z})$ and $I(\mathcal{X}; \mathcal{Y}|\mathcal{Z})$ respectively. To do so, extend the $joint_entropy$ and $mutual_information$ functions.

Computer-aided exercises

12. Using implemented functions, verify and compare your results of questions 1 to 6.

Designing informative experiments

Figure 1: Example of a Sudoku grid and its solution.

The goal of this logic-based game is to fill in a 9×9 grid with digits so that each column, each row, and each of the nine 3×3 subgrids that compose the grids contain all of the digits from 1 to 9. Typically, an *unsolved Sudoku* (see left grid on Figure 1) is a partially completed grid where each given digit is called a *clue*.

Let us associate a random variable \mathcal{X} to each square of the grid (\mathcal{X}_1 to \mathcal{X}_9 on first row, \mathcal{X}_{10} to \mathcal{X}_{18} on second row, etc. until \mathcal{X}_{81}). The entropy of the grid is the sum of the entropies of all random variables $\mathcal{X}_1, \ldots, \mathcal{X}_{81}$.

¹In practice, you will pass the appropriate probability distribution(s) as argument(s) of the functions.

- 13. What is the entropy of a single square (i.e., a random variable) independently of others?
- 14. What is the entropy of the following subgrid?

	2	
8		
	3	

- 15. What is the entropy of the unsolved Sudoku grid?
- 16. Using information theory, how would you proceed to solve the Sudoku? Which squares would you fill in first? Justify.
- 17. Let us assume that you can choose *one* additional clue (i.e., revealing the correct digit in an empty square). Which one would you choose and why?
- 18. Let us assume that you can choose *sequentially* more than one clue. Design a strategy (using information theory) that determines the next clue to reveal.
- 19. Let us assume that you can choose *simultaneously* more than one clue. Design a strategy (using information theory) that determines the next clues to reveal (at once).