Advanced Electromagnetism I

PHYS 435

Fall 2025

Contents

1	Lecture 2: Gauss's Law 1.1 Gauss's Law	3 3
2	Lecture 3: The curl of $\vec{E}(\nabla \times \vec{E})$ 2.1 Problem 2.18 Griffiths	3 3 4
3	Lecture 4: Electric Potential 3.1 Electric Potential 3.2 Potential 3.3 Poisson's Equation	5 6 6
4	Lecture 5: Electrostatic Boundary Conditions 4.1 Line Charge 4.2 Spherical Shell 4.3 Sheet of Charge 4.3.1 Loop 4.3.2 General Statement	7 8 9 10 10
5	5.1 Recap: Boundary Conditions	11 11 11 11 12
6	Lecture 7: Perfect Conductors	13
7		14 14 14 14 15 15 16 16 16 17

1. LECTURE 2: GAUSS'S LAW

August 27, 2025

1.1 Gauss's Law

The electric field from a collection of charges is the vector sum of the fields from each charge.

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \frac{q_i}{|\vec{r_i}|^2} \hat{\vec{r_i}}, \ \vec{r_i} = \vec{r} - \vec{r'}_i$$

1.2 Gauss's Law in Differential Form

The divergence of the electric field is proportional to the charge density.

$$\oint_C v(\vec{r}) \cdot d\vec{a} = \int_v (\nabla \cdot \vec{v}(\vec{r})) d\tau$$

 $\vec{v}(\vec{r}) =$ any differentiable vector field

$$\nabla \cdot \vec{v} = \text{divergence} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

Apply to Gauss's Law:

$$\oint \vec{E} \cdot d\vec{a} = \int_{v} (\nabla \cdot \vec{E}(\vec{r})) d\tau = \frac{Q_{enc}}{\epsilon_{0}}, \ Q_{enc} = \int_{v} \rho(\vec{r}) d\tau
\int_{v} (\nabla \cdot \vec{E}) d\tau = \int_{v} (\rho(\vec{r})/\epsilon_{0}) d\tau$$

$$\nabla \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\epsilon_0}$$

 ϵ_0

Divergence Identity:

$$\nabla_r \cdot (\frac{\vec{r}}{r^2}) = 4\pi \delta^3(\vec{r})$$

2. LECTURE 3: THE CURL OF $\vec{E}(\nabla \times \vec{E})$

August 29, 2025

Integral:

$$\oint_C \vec{E} \cdot d\vec{a} = \frac{Q_{enc}}{\epsilon_0}$$

Differential:

$$\nabla \times \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\epsilon_0}$$

2.1 Problem 2.18 Griffiths

Approach: Use superposition to add contributions from each sphere.

2.2 Practice using the differential form of Gauss's Law

Example 2.2.1. For the differential form, it is important to remember we are considering a specified point in space.

Consider two identical charged plates and the electric field between them is constant. The charge density is 0 between the plates. $\nabla \cdot \vec{E} = 0, \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \Rightarrow$ Charge density is 0 $\nabla \cdot \vec{E} \neq 0 \Rightarrow$ charge density

Example 2.2.2. Now consider $\nabla \times \vec{E}$ (curl)

By Stokes's theorem:
$$\int_{S} (\nabla \times \vec{v}) \cdot d\vec{a} = \oint_{C} \vec{v} \cdot d\vec{l}$$

The curl of any electric field due to a fixed charge distribution is zero:

$$\nabla \times \vec{E}(\vec{r}) = 0$$

For any closed loop,

$$\oint \vec{E} \cdot d\vec{l} = 0$$

3. LECTURE 4: ELECTRIC POTENTIAL

September 3, 2025

3.1 Electric Potential

For static charge distributions

 $\nabla \times \vec{E} = 0 \rightarrow$ implies that 3 components of \vec{E} are related to each other.

Stokes's Theorem states that:

$$\begin{split} &\int_{S} (\nabla \times \vec{E}) \cdot d\vec{a} = \oint_{P} \vec{E} \cdot d\vec{l} \\ &\oint_{P} \vec{E} \cdot d\vec{l} = 0 \\ &\oint_{P} \vec{E} \cdot d\vec{l} \text{ is independent of path} \\ &\int_{a}^{b} \vec{E} \cdot d\vec{l} + \int_{b}^{a} \vec{E} \cdot d\vec{l} = 0 \end{split}$$

Only the endpoints a and b matter

We can define a scalar function $V(\vec{r})$ such that:

$$\begin{split} &\int_a^b \vec{E} \cdot d\vec{l} = V(\vec{a}) - V(\vec{b}) \\ &V(\vec{r}) = -\int_a^r \vec{E} \cdot d\vec{l} \\ &V(b) - V(a) = -\int_0^b \vec{E} \cdot d\vec{l} + \int_0^a \vec{E} \cdot d\vec{l} = -\int_a^b \vec{E} \cdot d\vec{l} \\ &\text{Fundamental thereom of gradients: } V(b) - V(a) = \int_a^b \nabla V \cdot d\vec{l} \\ &\to \vec{E} = -\nabla V(\vec{r}) \end{split}$$

3.2 Potential

1. V is the (electric) potential.

$$E = \frac{N}{C}, \quad V = \frac{N \cdot m}{C} = \frac{J}{C} = \text{Volt}$$

2. The potential at one point has no physical significance.

Potential differences matter. We always define some reference point O. Typically choose O such that V(O) = 0. We can always change the

reference point if we wish $V(\vec{r}) \to V(\vec{r}) + C$.

$$\vec{E} \rightarrow \vec{E}$$

3. Superposition also works with the potential

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \dots + \vec{E}_N$$

$$\vec{E} = -\nabla V \text{ or } V(\vec{r}) = -\int_0^r \vec{E} \cdot d\vec{l}$$

$$V_{total} = -\int_0^r \vec{E}_1 \cdot d\vec{l} + -\int_0^r \vec{E}_2 \cdot d\vec{l} + \dots + -\int_0^r \vec{E}_N \cdot d\vec{l}$$

$$= v_1(\vec{r}) + v_2(\vec{r}) + \dots + v_N(\vec{r})$$

Example 3.2.1 (Potential due to a point charge).

$$\vec{E} = \frac{q}{4\pi\epsilon_0} \frac{1}{r^2} \vec{r}$$

$$V(\vec{r}) = -\int_0^{\vec{r}} \vec{E} \cdot d\vec{l}$$

$$= -\int_{\infty}^r \frac{q}{4\pi\epsilon_0} \frac{1}{r'^2} dr'$$

$$= \frac{q}{4\pi\epsilon_0} \frac{1}{r}$$

3.3 Poisson's Equation

$$\vec{E} = -\nabla V, \textit{Gauss's law} \\ \nabla \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\epsilon_0} \\ \rightarrow \nabla^2 V = \frac{\rho(\vec{r})}{\epsilon_0} + \textit{Boundary conditions}$$

4. LECTURE 5: ELECTROSTATIC BOUNDARY CONDITIONS

September 5, 2025

Recall: $\vec{E}(\vec{r}) = -\nabla V(\vec{r})$, and also $\nabla^2 V(\vec{r}) = \frac{\rho(\vec{r})}{\epsilon_0}$.

Invert: $\nabla^2 V(\vec{r}) = -\frac{\rho(\vec{r})}{\epsilon_0} \to V(\vec{r}) = f(p)$.

For a point charge, $V(\vec{r}) = \frac{q}{4\pi\epsilon_0 \nabla}$, where $\vec{\nabla} = \vec{r} - \vec{r}'$.

If we add another charge, $V(\vec{r}) = \frac{q}{4\pi\epsilon_0 \nabla} + \frac{q'}{4\pi\epsilon_0 \nabla'}$ (just superpose).

For N charges: $V(\vec{r}) = \sum_{i=1}^{N} \frac{q_i}{4\pi\epsilon_0 \nabla_i}$.

For a continuous distribution: $V(\vec{r}) = \int \frac{dq}{4\pi\epsilon_0 \nabla} = \int \frac{\rho(\vec{r}')}{4\pi\epsilon_0 \nabla} d\tau'$.

For a line charge: $V(\vec{r}) = \int \frac{\lambda(\vec{r}')}{4\pi\epsilon_0 \nabla} dl'$.

For a surface charge: $V(\vec{r}) = \int \frac{\sigma(\vec{r}')}{4\pi\epsilon_0 \nabla} da'$.

For a volume charge: $V(\vec{r}) = \int \frac{\rho(\vec{r}')}{4\pi\epsilon_0 \nabla} d\tau'$.

4.1 Line Charge

Example 4.1.1 (Find e-field from line charge).

$$\begin{split} &\int dV = \int \frac{dq}{4\pi\epsilon_0 \nabla} = \int \frac{\lambda dx'}{4\pi\epsilon_0 \sqrt{x'^2 + z^2}} \\ &V = \frac{\lambda}{4\pi\epsilon_0} \int_{-L}^{L} \frac{dx'}{\sqrt{x'^2 + z^2}} = \frac{\lambda}{4\pi\epsilon_0} \left[\ln(x' + \sqrt{x'^2 + z^2}) \right]_{-L}^{L} \\ &V(z) = \frac{\lambda}{4\pi\epsilon_0} \ln\left(\frac{L + \sqrt{L^2 + z^2}}{-L + \sqrt{L^2 + z^2}} \right) \\ &\vec{E} = -\nabla V = -(\frac{\partial V}{\partial x} \hat{x} + \frac{\partial V}{\partial y} \hat{y} + \frac{\partial V}{\partial z} \hat{z}) = -\frac{\partial V}{\partial z} \hat{z} = \frac{2L\lambda}{4\pi\epsilon_0} \frac{1}{z\sqrt{L^2 + z^2}} \hat{z} \end{split}$$

$Spherical\ Shell$ 4.2

Example 4.2.1 (Spherical Shell).

Spherical shell with radius R and surface charge density σ

 $\label{eq:Formula} \textit{For } r < R: \quad Q_{enc} = 0, \quad \vec{E} = 0$

For r > R: $\oint \vec{E} \cdot d\vec{a} = \frac{Q_{enc}}{\epsilon_0}$, $\vec{E} = \frac{\sigma}{\epsilon_0} \frac{R^2}{r^2} \hat{r}$ where $Q_{enc} = 4\pi R^2 \sigma$

 $At \ r = R: \quad E_{out} - E_{in} = \frac{\sigma}{\epsilon_0}$ $Since \ E_{in} = 0: \quad E_{out} = \frac{\sigma}{\epsilon_0}$

4.3 Sheet of Charge

Example 4.3.1 (Imagine sheet of charge).

Infinite sheet of charge with surface density σ Using Gauss's law with cylindrical Gaussian surface:

$$\begin{split} \oint \vec{E} \cdot d\vec{a} &= \frac{Q_{enc}}{\epsilon_0} \\ E \cdot 2A &= \frac{\sigma A}{\epsilon_0} \\ E &= \frac{\sigma}{2\epsilon_0} \\ For \ x > 0 : \quad \vec{E} &= \frac{\sigma}{2\epsilon_0} \hat{x} \\ For \ x < 0 : \quad \vec{E} &= -\frac{\sigma}{2\epsilon_0} \hat{x} \\ Magnitude: \ |E| &= \frac{\sigma}{2\epsilon_0} \ (constant) \end{split}$$

4.3.1 Loop

$$\begin{split} & \oint \vec{E} \cdot d\vec{l} = 0 \\ & = E_{above}^{''} l - E_{below}^{''} l = 0 \rightarrow E_{above}^{''} = E_{below}^{''} \end{split}$$

4.3.2 General Statement

 $\vec{E}_{above} - \vec{E}_{below} = \frac{\sigma}{\epsilon_0} \hat{n}, \ \hat{n} \ is \ a \ unit \ vector \ defining \ the \ surface \ normal..$

5. LECTURE 6: ELECTROSTATIC ENERGY

September 8, 2025

5.1 Recap: Boundary Conditions

From the previous lecture, we found the boundary conditions at a sheet of charge:

$$\vec{E}_{above} - \vec{E}_{below} = \frac{\sigma}{\epsilon_0} \hat{n} \tag{1}$$

$$\nabla V_{above} - \nabla V_{below} = -\frac{\sigma}{\epsilon_0} \hat{n} \tag{2}$$

$$\left. \frac{\partial V}{\partial n} \right|_{above} - \left. \frac{\partial V}{\partial n} \right|_{below} = -\frac{\sigma}{\epsilon_0} \tag{3}$$

where \hat{n} is an outward pointing normal and $\frac{\partial V}{\partial n} = \nabla V \cdot \hat{n}$.

5.2 Work and Potential Energy

How much energy does it take to move a charge from point a to point b? For a charge q in an electric field:

$$\vec{F}(\vec{r}) = q\vec{E}(\vec{r}) \tag{4}$$

$$\vec{F}_{ext} = -q\vec{E}(\vec{r}) \quad (external force needed) \tag{5}$$

The work done by the external force:

$$W = \int_{a}^{b} \vec{F}_{ext} \cdot d\vec{l} = -q \int_{a}^{b} \vec{E} \cdot d\vec{l}$$
 (6)

$$= q[V(b) - V(a)] \quad (conservative force) \tag{7}$$

Key insight: The potential $V(\vec{r})$ has units of $\frac{energy}{charge}$. If we set the reference point at infinity where $V(\infty) = 0$, then:

$$W(\vec{r}) = qV(\vec{r}) \tag{8}$$

5.3 Energy in Discrete Charge Arrangements

Imagine we are in a vacuum with no initial fields.

Step 1: Bring in charge q_1 at location \vec{r}_1

$$W_1 = 0$$
 (no electric field to work against) (9)

Step 2: Bring in charge q_2 at location \vec{r}_2

$$W_{12} = q_2 V_1(\vec{r}_2) = \frac{q_1 q_2}{4\pi\epsilon_0 |\vec{r}_2 - \vec{r}_1|}$$
(10)

Step 3: Bring in charge q_3 at location \vec{r}_3

$$W_{123} = q_3 V_1(\vec{r}_3) + q_3 V_2(\vec{r}_3) \tag{11}$$

$$= \frac{q_1 q_3}{4\pi\epsilon_0 |\vec{r}_3 - \vec{r}_1|} + \frac{q_2 q_3}{4\pi\epsilon_0 |\vec{r}_3 - \vec{r}_2|} \tag{12}$$

Total energy:

$$W_{total} = W_{12} + W_{13} + W_{23} (13)$$

$$= \frac{q_1 q_2}{4\pi\epsilon_0 |\vec{r}_2 - \vec{r}_1|} + \frac{q_1 q_3}{4\pi\epsilon_0 |\vec{r}_3 - \vec{r}_1|} + \frac{q_2 q_3}{4\pi\epsilon_0 |\vec{r}_3 - \vec{r}_2|}$$
(14)

General expression for N charges:

$$W = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{q_i q_j}{|\vec{r}_i - \vec{r}_j|}$$
 (15)

$$= \frac{1}{2} \sum_{i=1}^{N} q_i V_i(\vec{r_i}) \tag{16}$$

where $V_i(\vec{r_i})$ is the potential at $\vec{r_i}$ due to all other charges.

5.4 Energy in Continuous Charge Distributions

For continuous charge distributions:

$$W = \frac{1}{2} \int_{all\ space} \rho(\vec{r}) V(\vec{r}) d\tau \tag{17}$$

Using Gauss's law: $\rho(\vec{r}) = \epsilon_0 \nabla \cdot \vec{E}(\vec{r})$

$$W = \frac{\epsilon_0}{2} \int (\nabla \cdot \vec{E}) V \, d\tau \tag{18}$$

$$= \frac{\epsilon_0}{2} \left[-\int \vec{E} \cdot \nabla V \, d\tau + \oint \vec{E} \cdot d\vec{a} \right] \tag{19}$$

$$=\frac{\epsilon_0}{2}\int E^2 d\tau \tag{20}$$

Final result:

$$W = \frac{\epsilon_0}{2} \int E^2(\vec{r}) d\tau \tag{21}$$

The quantity $\frac{\epsilon_0 E^2}{2}$ is the **energy density** with units of $\frac{energy}{volume}$.

Example 5.4.1 (Point charge energy). For a point charge q:

$$W_{pt\ charge} = \frac{\epsilon_0}{2} \int \left(\frac{q}{4\pi\epsilon_0 r^2}\right)^2 d\tau \tag{22}$$

$$= \frac{\epsilon_0}{2} \int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} \frac{q^2}{(4\pi\epsilon_0)^2 r^4} r^2 \sin\theta \, dr \, d\theta \, d\phi \tag{23}$$

$$=\frac{q^2}{32\pi^2\epsilon_0}\int_0^\infty \frac{dr}{r^2} = \frac{q^2}{8\pi\epsilon_0} \left[-\frac{1}{r} \right]_0^\infty = \infty$$
 (24)

Note: The self-energy of a point charge is infinite, indicating the classical model breaks down at small scales.

LECTURE 7: PERFECT CONDUCTORS *6*.

September 10, 2025

Recap: We defined the energy as being stored in the electric field $W = \frac{\epsilon_0}{2} \int E^2(\vec{r}) d\tau$ Note Superposition is not just adding the energy of each field $W_{total} = \frac{\epsilon_0}{2} \int E_1^2(\vec{r}) + E_2^2(\vec{r}) d\tau = W_1 + W_2 + W_3 + W_4 + W_4 + W_5 + W_5$ $\frac{\epsilon_0}{2} \int E_1(\vec{r}) \cdot E_2(\vec{r}) d\tau$

Materials can be characterized by how free charges are to move in that material.

Insulator: charges are tightly bound to the atoms that form the material (ceramics, rubbery teflon).

Conductor: charges are free to move, very weakly bound (gold, platinum, aluminum, salt water).

Properties of conductors:

- 1. $\vec{E}=0$ inside conductor at equilibrium. If electric field is present, the charges will move ($\vec{F}=q\vec{E}$) until the field is cancelled out. The net effect is that charges separate.
- 2. $\rho(\vec{r}) = 0 \ \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} = 0 \rightarrow \rho = 0$. This is called screening. 3. if the conductor has net charge, it must lie at the surface. if E = 0 inside the conductor, there is no place for the charge to be except for on the surface.
- 4. A conductor is an equipotential. $V = -\int_a^b \vec{E} \cdot d\vec{l} = 0 \rightarrow V(b) = V(a)$ potential everywhere is the same 5. The electric field just outside conductor is perpendicular to the surface.
- 6. If a conductor with an internal cavity is placed in an electric field, the field in the cavity is zero.
- 7. If a charge is placed in the cavity, all spatial information is lost to those outside the conductor.

Surface Charge: The boundary conditions we found tell us the perpendicular field outside of the conductor For a sheet charge $\vec{E}_{above} - \vec{E}_{below} = \frac{\sigma}{\epsilon_0} \hat{n}$

For a conductor $\vec{E}_{below} = 0 \rightarrow \vec{E}_{above} = \frac{\sigma}{\epsilon_0} \hat{n} \rightarrow \frac{\partial V}{\partial n} = \nabla \cdot \hat{n}$

Force on the conductor:

Capacitance:

 $V = V_+ - V_-$

 $\nabla^2 V = \frac{\rho}{\epsilon_0}$ $V \propto Q$

7. COMMON MATH

7.1 Vector Calculus

7.1.1 Vector Operations

Example 7.1.1 (Vector Dot Product). The dot product of two vectors:

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$
$$= |\vec{A}| |\vec{B}| \cos \theta$$

Example 7.1.2 (Vector Cross Product). The cross product in component form:

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$
$$= (A_y B_z - A_z B_y)\hat{i} + (A_z B_x - A_x B_z)\hat{j} + (A_x B_y - A_y B_x)\hat{k}$$

7.1.2 Differential Operators

Example 7.1.3 (Gradient). The gradient of a scalar function:

$$\nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j} + \frac{\partial f}{\partial z}\hat{k}$$
$$= \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)f$$

Example 7.1.4 (Divergence). The divergence of a vector field:

$$\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

Example 7.1.5 (Curl). The curl of a vector field:

$$\nabla \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$

7.2 Line Integrals and Path Integrals

Example 7.2.1 (Line Integral of a Vector Field). Work done by a force along a path:

$$W = \int_{C} \vec{F} \cdot d\vec{r}$$
$$= \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \frac{d\vec{r}}{dt} dt$$

where $\vec{r}(t)$ parametrizes the curve C from t = a to t = b.

Example 7.2.2 (Line Integral of a Scalar Field). *Integral of a scalar function along a curve:*

$$\int_{C} f(x, y, z) ds = \int_{a}^{b} f(\vec{r}(t)) \left| \frac{d\vec{r}}{dt} \right| dt$$

Example 7.2.3 (Closed Path Integral). Circulation around a closed loop:

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\nabla \times \vec{F}) \cdot \hat{n} \, dS$$

This is Stokes' theorem.

7.3 Surface and Volume Integrals

Example 7.3.1 (Surface Integral). Flux through a surface:

$$\begin{split} \Phi &= \iint_S \vec{F} \cdot \hat{n} \, dS \\ &= \iint_S \vec{F} \cdot \frac{\vec{r}_u \times \vec{r}_v}{|\vec{r}_u \times \vec{r}_v|} |\vec{r}_u \times \vec{r}_v| \, du \, dv \end{split}$$

where $\vec{r}(u, v)$ parametrizes the surface S.

Example 7.3.2 (Volume Integral). *Integral over a volume:*

$$\iiint_V f(x,y,z) \, dV = \iiint_V f(x,y,z) \, dx \, dy \, dz$$

7.4 Differential Equations

Example 7.4.1 (First-Order Linear ODE).

$$\frac{dy}{dx} + P(x)y = Q(x)$$
Solution: $y = e^{-\int P(x)dx} \left[\int Q(x)e^{\int P(x)dx} dx + C \right]$

Example 7.4.2 (Second-Order Linear ODE with Constant Coefficients).

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = f(x)$$
Characteristic equation: $r^2 + ar + b = 0$

Example 7.4.3 (Wave Equation).

$$\begin{split} \frac{\partial^2 u}{\partial t^2} &= c^2 \nabla^2 u \\ \frac{\partial^2 u}{\partial t^2} &= c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \end{split}$$

7.5 Complex Numbers and Phasors

Example 7.5.1 (Complex Exponential). Euler's formula and complex representation:

$$e^{i\theta} = \cos \theta + i \sin \theta$$

 $z = re^{i\theta} = r(\cos \theta + i \sin \theta)$

Example 7.5.2 (Phasor Notation). AC voltage representation:

$$V(t) = V_0 \cos(\omega t + \phi)$$
$$\tilde{V} = V_0 e^{i\phi} \quad (phasor)$$

7.6 Series and Summations

Example 7.6.1 (Taylor Series).

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$
$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x - a)^n$$

Example 7.6.2 (Fourier Series).

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$
$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$
$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

7.7 Coordinate Systems

Example 7.7.1 (Spherical Coordinates).

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$
$$dV = r^{2} \sin \theta \, dr \, d\theta \, d\phi$$

Example 7.7.2 (Cylindrical Coordinates).

$$x = \rho \cos \phi$$
$$y = \rho \sin \phi$$
$$z = z$$
$$dV = \rho d\rho d\phi dz$$

7.8 Special Functions

Example 7.8.1 (Dirac Delta Function).

$$\delta(x) = \begin{cases} \infty & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases}$$
$$\int_{-\infty}^{\infty} \delta(x) \, dx = 1$$
$$\int_{-\infty}^{\infty} f(x) \delta(x - a) \, dx = f(a)$$

Example 7.8.2 (Heaviside Step Function).

$$H(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases}$$
$$\frac{d}{dx}H(x) = \delta(x)$$

7.9 Matrix Operations

Example 7.9.1 (Eigenvalue Problem).

$$A\vec{v} = \lambda \vec{v}$$
$$\det(A - \lambda I) = 0$$

Example 7.9.2 (Matrix Exponential).

$$e^{A} = \sum_{n=0}^{\infty} \frac{A^{n}}{n!}$$

= $I + A + \frac{A^{2}}{2!} + \frac{A^{3}}{3!} + \cdots$

7.10 Statistical Physics

Example 7.10.1 (Boltzmann Distribution).

$$P(E) = \frac{1}{Z}e^{-\beta E}$$

$$Z = \sum_{i} e^{-\beta E_{i}} \quad (partition function)$$

$$\beta = \frac{1}{k_{B}T}$$

Example 7.10.2 (Maxwell-Boltzmann Distribution).

$$f(v) = 4\pi v^2 \left(\frac{m}{2\pi k_B T}\right)^{3/2} e^{-mv^2/(2k_B T)}$$