Bayesian learning

SUMMARY

1. Bayes theorem	. 1
2. Bayesian Learning	. 3
3. Classes of hypotheses	
3.1 Exemplifying the application of Bayes theorem	. 5
3.2. Brute force MAP Learning	. 6
3.3. The Bayes Optimal Classifier	. 6
3.4. Gibbs Optimal Classifier [1]	
4. Brute force Bayesian Learning	. 8
5. Naïve Bayes Classifier	. 8
6. Bayesian Belief Networks (Bayes Nets) [1, 3]	10
7. Applications of Bayesian Learning	11
8. Other Bayesian learning related research topics	11

1. Bayes theorem

In a probability space (Ω, K, P) (a sample space, an event space, and a probability function) let us consider a partition $\{H_1, H_2, ..., H_n\}$ of Ω , with $H_i \in K$, $P(H_i) > 0$, and $E \in K$, P(E) > 0. Then, the Bayes formula is

$$P(H_j|E) = \frac{P(E|H_j) \cdot P(H_j)}{P(E)} = \frac{P(E|H_j) \cdot P(H_j)}{P(E|H_1) \cdot P(H_1) + \dots + P(E|H_n) \cdot P(H_n)}$$

Applications

- conditional probabilities are used in
 - o classification problems (ML)
 - o decision theory
 - o medical diagnosis

Example

Let us consider the following events (in clinical tests, screening programs):

H: a person (randomly chosen from a population) has a certain allergy A

E: the clinical test returns a positive result regarding A

 \vec{E} : the clinical test returns a *negative* result regarding A

Known data (from previous statistics):

- p = P(H) the probability that a person (randomly selected from the population) has the allergy A;
- the sensitivity of the test $s_1 = P(E|H)$ the probability of having a positive test when the allergy is
- the *specificity* of the test $s_2 = P(\bar{E}|\hat{H})$ the probability of having a negative test when the allergy is not present;
 - \circ \hat{H} a person does not suffer from A
- the probability of having a *false positive* answer is $P(E|\hat{H}) = 1 s_2$ the probability of having a *false negative* answer is $P(\bar{E}|H) = 1 s_1$

Given p, s_1, s_2 we would like to compute the *predictive value* P(H|E) - the probability that a person having a *positive* test is correctly diagnosed with the allergy A.

$$P(H|E) = \frac{P(H \cap E)}{P(E)} = \frac{P(E|H) \cdot P(H)}{P(E|H) \cdot P(H) + P(E|\hat{H}) \cdot P(\hat{H})} = \frac{s_1 \cdot p}{s_1 \cdot p + (1 - s_2) \cdot (1 - p)}$$

Statistical data

	ACTUAL							
		H: suffer from A (+)	\hat{H} : does not suffer from A (-)	Total				
P	E: positive test for A (+)							
R		400	210	610				
E		(true positives - TP)	(false positives - FP)					
D I C T	$ar{E}$: negative test for A (-)	310 (false negatives - FN)	1200 (true negatives - TN)	1510				
I O N	Total	710	1410	n= 2120				

Based on the statistical data we compute the following:

$$P(H|E) = \frac{400}{610} \approx 0.65 \qquad prec_{+} = \frac{TP}{TP + FP}$$

precision of the + class, positive predictive value (PPV)

$$P(\hat{H}|\bar{E}) = \frac{1200}{1510} \approx 0.79$$
 $prec_{-} = \frac{TN}{TN + FN}$

precision of the - class, negative predictive value (NPV)

$$P(E|H) = \frac{400}{710} \approx 0.56$$
 $sens = recall_{+} = \frac{TP}{TP + FN}$

sensitivity, recall, probability of detection (POD)

$$P(\bar{E}|\hat{H}) = \frac{1200}{1410} \approx 0.85$$
 $spec = recall_{-} = \frac{TN}{TN + FP}$

2. Bayesian Learning

- Bayesian reasoning provides a probabilistic approach to inference
- eager inductive learning
- Naïve Bayes Classifier (NBC) competitive with other learning algorithms (DTs, NNs) and in some cases outperforms other methods
 - o connection to **generative learning** algorithms
 - seeks to model the distribution of inputs of a given class
 - o good performance for text categorization and classification
 - o classifying news articles (20 classes) 89% accuracy
- provides practical learning algorithms
 - o combining prior knowledge/probabilities with observed data
 - Naïve Bayes learning
 - Naïve Bayes Classifier (NBC)
 - o Bayesian Belief Networks Bayes Nets
- provides a conceptual framework
 - o for evaluating other learning algorithms
 - o for obtaining additional insight into Occam's razor
- it is based on the Bayes theorem

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- P(h) = prior probability of hypothesis h
- P(D) = prior probability of training data D
- P(h|D) = probability of h given D
- P(D|h) = probability of D given h

[1]

- $P(h \mid D)$ probability that h holds given the observed training data D
- $P(D \mid h)$ probability of observing data D given some world in which hypothesis h holds
- Bayesian neural networks (BNNs)
 - o combine NNs and stochastic modeling
 - o a stochastic artificial neural network trained using Bayesian inference
- Bayesian Deep Learning
 - o integrate deep learning and Bayesian models
 - o uncertainty in learning
 - o Bayesian DL and a probabilistic approach of generalization

3. Classes of hypotheses

- in ML, we generally search for the most probable bypothesis given the training data
- Maximum a Posteriori (MAP) hypothesis
 - o the most probable hypothesis given the training data

$$h_{MAP} = \arg \max_{h \in H} P(h|D)$$

$$= \arg \max_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

$$= \arg \max_{h \in H} P(D|h)P(h)$$

- Maximum Likelihood (ML) hypothesis
 - \circ the hypothesis h that maximizes the likelihood of data D given h

$$h_{ML} = \arg \max_{h_i \in H} P(D|h_i)$$

[1]

[1]

- \circ if $P(h_i) = P(h_j)$ then $h_{MAP} = h_{ML}$
- O the ML hypothesis in learning a real valued function (regression) is the one that minimizes the sum of squared errors [1]

Consider any real-valued target function fTraining examples $\langle x_i, d_i \rangle$, where d_i is noisy training value

- $\bullet d_i = f(x_i) + e_i$
- e_i is random variable (noise) drawn independently for each x_i according to some Gaussian distribution with mean=0

Then the maximum likelihood hypothesis h_{ML} is the one that minimizes the sum of squared errors:

$$h_{ML} = \arg\min_{h \in H} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

- connection between MAP hypothesis and the MDL principle (*Minimum Descriptin Length*)
 - MDL a formalization of Occam's razor in which the best hypothesis (a model and its parameters) is the one that leads to the best compression od data.

3.1 Exemplifying the application of Bayes theorem

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, .008 of the entire population have this cancer.

$$P(cancer) = 0.008 \quad P(7cancer) = 0.992$$

$$h_1 = cancer, \quad h_2 = 7 cancer, \quad D = \{+, -\}$$

$$P(+|cancer) = 0.98 \quad P(-|cancer) = 0.02$$

$$P(+|7 cancer) = 0.03 \quad P(-|7 cancer) = 0.97$$
We have to find $P(h_1|+)$ and $P(h_2|+)$

$$Applying \quad bayes \quad theorem \quad (for b = \{+\})$$

$$P(+|cancer) \cdot P(cancer) = 0.98 \times 0.008 = 0.0078$$

$$P(+|7 cancer) \cdot P(7 cancer) = 0.03 \times 0.992 = 0.0078$$

$$P(+|7 cancer) \cdot P(7 cancer) = 0.03 \times 0.992 = 0.0078$$

$$P(+|7 cancer) \cdot P(7 cancer) = 0.03 \times 0.992 = 0.0078$$

$$P(+|7 cancer) \cdot P(7 cancer) = 0.0078 \times 0.0078$$

$$P(-|7 cancer) = 0.98 \times 0.008 = 0.0078$$

$$P(-|7 cancer) = 0.98 \times 0.008 = 0.0078$$

$$P(-|7 cancer) = 0.98 \times 0.008 = 0.0078$$

$$P(-|7 cancer) = 0.992 \times 0.0078 = 0.0078$$

3.2. Brute force MAP Learning

- Training
 - o Choose the hypothesis with the highest posterior probability

$$h_{MAP} = \arg \max_{h \in H} P(h|D)$$

$$= \arg \max_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

$$= \arg \max_{h \in H} P(D|h)P(h)$$

- Testing
 - o Given x, compute $h_{MAP}(x)$
- Drawback
 - \circ Requires to compute all probabilities P(D|h) and P(h)

3.3. The Bayes Optimal Classifier

- h_{MAP} the most probable hypothesis given the data **D**
- Given a new instance x, what is the most probable classification of x?
 - o $h_{MAP}(x)$ is not the most probable classification!!

 $V=\{v_1,v_2...\}$ – possible values for the target function

$$\frac{\mathbf{Answer}}{P(v_j \mid D)} = \sum_{h_i \in H} P(v_j \mid h_i) P(h_i \mid D)$$

The Bayes optimal classification of x

$$\arg \max_{v_j \in V} \sum_{h_i \in H} P(v_j | h_i) P(h_i | D)$$
(*)

- any system that classifies new instances according to (*) is called a Bayes optimal learner
 - o no other classification method using the same hypothesis space and the same prior knowledge can outperform the method, on average
 - o maximizes the probability that the new instance is classified correctly, given the available data

Example

Let us consider three hypotheses:

$$P(h_1|D) = .4,$$

 $P(h_2|D) = .3,$
 $P(h_3|D) = .3,$

Given new instance x which is classified

+ by h_1

- by h_2

- by h_3

$$P(-|h_1) = 0, P(+|h_1) = 1$$

$$P(-|h_2) = 1, P(+|h_2) = 0$$

$$P(-|h_3) = 1, P(+|h_3) = 0$$

what is the most probable classification of x?

Correct answer: - is the **Bayes optimal classification** of x (even if $h_{MAP}(x)=+$)

o h_1 is the MAP hypothesis

$$h_1(x) = +$$

$$\Rightarrow P(f(x) = +) = 0.4$$
and
$$P(f(x) = -) = 0.6$$

Bayes optimal classification

$$\sum_{\substack{h_i \in H \\ \sum_{h_i \in H}}} P(+|h_i)P(h_i|D) = .4$$

and

$$\arg\max_{v_j \in V} \sum_{h_i \in H} P(v_j | h_i) P(h_i | D) \ = \ -$$

3.4. Gibbs Optimal Classifier [1]

The Bayes optimal classifier provides the best result but is expensive for many hypotheses.

it computes the posterior probabilities for every hypothesis in \mathbf{H} and combines the predictions of each hypothesis to classify each new instance

Gibbs algorithm

- an alternative (less optimal) method:
 - 1. Choose a hypothesis h from H at random, according to the posterior probability distribution over H(P(h|D) D): data set; h: hypothesis)
 - 2. Use *h* to predict the classification of a new instance *x*.

• under certain conditions the expected **misclassification** error for Gibbs algorithm **is at most twice** the expected error of the Bayes optimal classifier.

4. Brute force Bayesian Learning

- let us assume that an instance x is described by a vector $\langle a_1, a_2, \dots a_n \rangle$ of attribute values
- the learning task is a classification one, there are m possible classes $\{c_1, c_2, \dots, c_m\}$
- during training we compute the probabilities $P(c_i)$ and $P(x|c_i)$, for all training instances x and for all classes $c_i \in \{c_1, c_2, ..., c_m\}$
- for a new query instance $x=\langle a_1, a_2, \dots a_n \rangle$, the most probable class c_{MAP} will be computed as the MAP hypothesis
 - \circ c_{MAP} = argmax $P(c_i \mid a_1, a_2, \dots a_n)$ = argmax $P(a_1, a_2, \dots a_n \mid c_i) \cdot P(c_i)$
- the result of the Bayesian inference depends strongly on the prior probabilities which must be available in order to apply the method
- Problem with "brute force"
 - o it cannot generalize for unseen examples x^{new} , since it dooes not have estimates $P(c_i | x^{\text{new}})$
 - o brute force does not have any bias
 - o in order to make the learning possible, we have to introduce a bias \Rightarrow Naïve Bayes Classifier (NBC)

5. Naïve Bayes Classifier

- when to use NBC
 - o the target function f is discrete valued and takes values from a finite set $V = \{v_1, v_2, ..., v_m\}$
 - o an instance is described by a conjunction of attribute values $x=\langle a_1, a_2, \dots a_n \rangle$
 - o attribute can take discrete values
 - o moderate or large training data is available
 - o the attributes $\langle a_1, a_2, \dots a_n \rangle$ that describe the instances are conditionally independent with h respect to their target classification

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

- the conditional independence assumption of attributes is often violated in practice, but it works well
- for a new instance x to be classified, the most probable value of f(x) is

$$v_{NB} = \underset{v_j \in V}{\operatorname{argmax}} P(v_j) \prod_i P(a_i | v_j)$$
[1]

- NBC does not search through the hypotheses space
 - \circ the output hypothesis is simply formed by estimating the parameters $P(v_j)$ and $P(a_i | v_j)$

- o eager learner
- the NBC classification algorithm

For each target value v_i

$$\hat{P}(v_j) \leftarrow \text{estimate } P(v_j)$$

For each attribute value a_i of each attribute a

$$\hat{P}(a_i|v_j) \leftarrow \text{estimate } P(a_i|v_j)$$

 $Classify_New_Instance(x)$

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} \hat{P}(v_j) \prod_{a_i \in x} \hat{P}(a_i | v_j)$$

[1]

- $\hat{P}(v_j)$ is computed as the frequency with which the target value v_j occurs in the training data: n_{vi}/n
 - n_{vj} is the number of training examples for which the target value is v_j
 - \bullet *n* is the number of training instances
- $\hat{P}(a_i|v_j)$ is computed as n_{aivj}/n_{vj} where n_{aivj} is the number of values for which the value of the i-th attribute is a_i and the target value is v_i

Example – learn the PlayTennis concept

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

train an NBC on this dataset

use the trained classifier to classify a new instance

$$x = (Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong)$$

$$v_{NB} = \underset{v_{j} \in \{yes, no\}}{\operatorname{argmax}} P(v_{j}) \prod_{i} P(a_{i}|v_{j})$$

$$= \underset{v_{j} \in \{yes, no\}}{\operatorname{argmax}} P(v_{j}) \quad P(Outlook = sunny|v_{j}) P(Temperature = cool|v_{j})$$

$$P(Humidity = high|v_{j}) P(Wind = strong|v_{j}) \quad (6.21)$$

We have to compute, from the training data, the needed probabilities

$$P(PlayTennis = yes) = 9/14 = .64$$

 $P(PlayTennis = no) = 5/14 = .36$

$$P(Wind = strong|PlayTennis = yes) = 3/9 = .33$$

 $P(Wind = strong|PlayTennis = no) = 3/5 = .60$

 \Rightarrow

$$P(yes)$$
 $P(sunny|yes)$ $P(cool|yes)$ $P(high|yes)$ $P(strong|yes) = .0053$ $P(no)$ $P(sunny|no)$ $P(cool|no)$ $P(high|no)$ $P(strong|no)$ $= .0206$

 \Rightarrow The classification of x is **no**.

- NBC: the problem of unseen data
 - if none of the training instances with target value v_j have the attribute value $a_i \Rightarrow \hat{P}(a_i|v_j) = 0$, and...

$$\hat{P}(v_j) \prod_i \hat{P}(a_i|v_j) = 0$$

- typical solution is the so called "m-estimate of probability"
 - $\hat{P}(a_i|v_j)$ is computed as $(n_{aivj}+1)/(n_{vj}+m)$ where

[1]

- \circ m is the number of possible values of attribute a_i
- o for each class, we consider adding m virtual examples (one for each possible value of attribute a_i)
- NBC is successfully applied for text classification (see [1], e.g. spam filtering)

6. Bayesian Belief Networks (Bayes Nets) [1, 3]

- the NBC assumption of conditional independence of attributes is too restrictive
- Bayesian Belief Networks describe conditional independence among subsets of variables

$$P(X|Y,Z) = P(X|Z)$$

- gradient ascent training of Bayesian networks
 - o objective function that is maximized is $P(D \mid h) =>$ searching for the ML hypothesis
 - o following the gradient of log P(D | h)
- Dynamic Bayesian Belief Networks
- The **Expectation Maximization** (EM) algorithm
 - learning in the presence of unobserved variables (variables are partially observable handling missing data)
 - alternative formulation of maximum likelihood for searching for the appropriate model parameters in the presence of latent (hidden) variables
 - it provides a framework to find the local maximum likelihood parameters of a statistical model and infer latent variables in cases where data is missing or incomplete
 - o used to train Bayesian Belief Networks, RBFNs
 - o foundation for many unsupervised clustering algorithms
 - o the basis for the **Baum-Welch** forward-backward algorithm for training Partially Observable Markov Models
 - o it can be used to fill in the missing data in a sample
 - applications
 - learning useful representations
 - unsupervised learning (Neural EM)
 - Deep EM for image reconstruction

7. Applications of Bayesian Learning

- NBC
 - o text categorization (e.g., spam classification)
 - o sentiment analysis and emotion recognition
 - o optimizing treatment decisions (medicine)
 - o word disambiguation
 - o outlier detection
- Bayesian networks
 - o medical diagnosis
 - biological systems

8. Other Bayesian learning related research topics

- Boosted NBC, Fuzzy NBC, Lazy NBC
- NBC for regression
- Multinomial NBC, Bernoulli NBC, Gaussian NBC (for handling continuous features)
- Hybrid models
 - o NBC for improving SVM performance
- Bayesian neural networks (BNNs)
 - o combine NNs and stochastic modeling
- Bayesian Deep Learning
 - o integrate deep learning and Bayesian models

[SLIDES]

- Bayesian learning (T. Mitchell) [1]Discrete Bayesian classifiers [3]

[READING]

- <u>Bayesian learning</u> (T. Mitchell) [1]
- Naïve Bayes Classifier (Zhang et al.) [2]

Bibliography

- [1] Mitchell, T., Machine Learning, McGraw Hill, 1997 (available at www.cs.ubbcluj.ro/~gabis/ml/ml-books)
- [2] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola, Dive into Deep Learning, 2020 (<u>http://d21.ai/</u>)