PATENT ABSTRACTS OF JAPAN

(11) Publication number:

08-095066

(43) Date of publication of application: 12.04.1996

(51) Int. Cl.

1/1339 G02F GO2F 1/13

(21) Application number: 06-231030

(71) Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22) Date of filing:

27. 09. 1994

(72) Inventor:

NISHIYAMA KAZUHIRO

ASAYAMA JUNKO TAKIMOTO AKIO

(54) MANUFACTURE OF LIQUID CRYSTAL ELEMENT AND DEVICE THEREOF

(57) Abstract:

PURPOSE: To uniformly scatter spacers on the surface of a substrate by dropping down the dispersion solution of spacers on the surface of the substrate, and rotating the substrate. CONSTITUTION: A substrate 6 is fixed to a rotatable stage 7, dispersion liquid 2 dispersing spacers 1 therein is dropped down on the surface of the substrate through a vessel 3, a connecting pipe 5, and a nozzle 4, the substrate 6 is rotated, and hence the spacers 1 are uniformly scattered on the surface of the substrate 6. This scattering method is very effective for scattering of the spacer of about 1µm size which is hitherto difficult.

LEGAL STATUS

[Date of request for examination]

28, 09, 1999

[Date of sending the examiner's

decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

Date of final disposal for

application]

[Patent number]

3189591

[Date of registration]

18.05.2001

[Number of appeal against examiner's

(19)日本国特許庁 (JP)

(12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号

特開平8-95066

(43)公開日 平成8年(1996)4月12日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 2 F 1/1339 1/13 5 0 0

101

審査請求 未請求 請求項の数3 OL (全 4 頁)

(21)出願番号	特願平6-231030	(71)出願人	000005821 松下電器産業株式会社
(22)出願日	平成6年(1994)9月27日		大阪府門真市大字門真1006番地
		(72)発明者	西山 和廣
			大阪府門真市大字門真1006番地 松下電器
			産業株式会社内
		(72)発明者	朝山 純子
			大阪府門真市大字門真1006番地 松下電器
			産業株式会社内
		(72)発明者	滝本 昭雄
			大阪府門真市大字門真1006番地 松下電器
	·		産業株式会社内
		(74)代理人	弁理士 小鍜治 明 (外2名)

(54) 【発明の名称】 液晶素子の製造方法及びその装置

(57)【要約】

【目的】 基板表面にスペーサーの分散溶液を滴下し、 基板を回転させることにより、基板表面に均一にスペー サーを分散することを目的とする。

【構成】 回転可能なステージ?に基板6を固定し、スペーサー1を分散した分散液2を容器3、連結管5、ノズル4を通って基板表面に滴下し、基板6を回転させることにより、基板6の表面に均一にスペーサー1を分散する。この分散方法は、従来難しかった1 μ m程度のスペーサーの散布にも非常に有効である。

1 スペーサ

2 分散液

3 容器

4 ノズル

の推動し

6 基板 7 ステージ

8 基板回転装置

【特許請求の範囲】

【請求項1】溶媒中に分散したスペーサーを前記溶媒と 共に基板上に塗布し前記基板を回転させ溶媒を蒸発さ せ、前記基板上に均一に前記スペーサーを分散させるエ 程を有することを特徴とした液晶素子の製造方法。

【請求項2】溶媒中に分散したスペーサーを前記溶媒と 共に高速で回転させた基板上にスプレーした後、さらに 基板を回転させ溶媒を蒸発させ、基板上に均一にスペー サーを分散させる工程を有することを特徴とした液晶素 子の製造方法。

【請求項3】基板を固定し回転するステージと、前記ス テージの上部に液体を滴下することができるノズルと、 前記ノズルと連結したスペーサーを分散させた溶液を保 持する容器とを備えたスペーサーの散布装置を有する液 晶素子の製造装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、液晶を用いた液晶素子 の製造方法、特に液晶パネルの基板間のギャップ厚を所 定の距離で、均一に作製するためのスペーサー粒子の散 20 布工程を有する液晶素子の製造方法及びその装置に関す るものである。

[0.0002]

【従来の技術】従来のスペーサーの散布方法としては、 乾式散布方法と湿式散布方法がある。従来の乾式散布方 法とは、不活性気体を噴出させると同時にスペーサーを 気体中に分散させ、基板上に堆積させる方法である。湿 式散布方法は、スペーサーをアルコール等の溶媒に混合 分散させた混合液を霧状にし基板に散布する方法であ る。

[0003]

【発明が解決しようとする課題】しかしながら従来の乾 式散布方法では、スペーサーが帯電することによりスペ ーサーが凝集してしまう。また湿式方法では、同じく数 μ m以下の小さなスペーサーにおいては凝集しやすく、 また基板上での溶媒が蒸発する時においても、凝集して しまう傾向があり、スペーサーが均一に分散されず、ギ ャップ精度が得られず、このスペーサーの凝集が配向乱 れの原因ともなり問題とされてきた。

【0004】本発明は前記従来技術の課題を解決するた 40 めに、非常に容易でかつ高度に均一にスペーサーを分散 させ、ギャップ精度の優れた液晶素子の製造方法を提供 することを目的とする。

[0005]

【課題を解決するための手段】前記目的を達成するため に、本発明の第一のスペーサーの分散工程は、溶媒中に 分散したスペーサーを前記溶媒と共に基板上に塗布し基 板を回転させ溶媒を蒸発させ、前記基板上に均一にスペ ーサーを分散させることを特徴とする。

程は、溶媒中に分散したスペーサーを前記溶媒と共に、 高速で回転させた基板上にスプレーした後、さらに基板 を回転させ溶媒を蒸発させ、基板上に均一にスペーサー を分散させることを特徴とする。

[0007] さらに、本発明の液晶素子の製造装置は、 基板を固定し回転することのできるステージと前記ステ ージの上部に液体を滴下することのできるノズルと、前 記ノズルと連結したスペーサーを分散させた溶液を保持 する容器とを具備していることを特徴とする。

10 [0008]

> 【作用】本発明によれば、あらかじめスペーサーを溶媒 中に分散させておいた混合分散液を基板表面に塗布し、 スピナー等を用いて基板を高速回転させるか、または、 高速回転させている基板にスプレーすれば良いため、非 常に容易でかつ高度に分散した状態のピーズ散布が可能 であり、また、それにより、ギャップ精度の優れた液晶 素子を製造することが可能となる。

[0009]

【実施例】本発明に用いる溶媒は配向膜に悪影響を与え るもの以外であれば何でもよいが、ビーズが溶媒中で凝 集してはいけないことから、極性の高い溶媒が良い。そ ういう意味では最もアルコールが用い易い。また基板の 回転中に溶媒が蒸発しないといけないこと、またあまり にも速く蒸発してしまうと分散液の塗布時間に分散濃度 が大きく依存し、再現性が悪くなることから、散布場所 の環境温度において、蒸気圧が3mmHg~50mmH gの溶媒が最も適している。

【0010】本発明に用いるスペーサーの形状には全く 制限がない。また、スペーサーの大きさも制限がなく、 強誘電性液晶素子に用いられる1μm程度のビーズであ っても、非常に高度に分散可能である。特にこの場合、 従来の湿式法や乾式法では、ビーズの凝集が避けられな い領域であるため、本発明の分散法は非常に有効であ る。本発明で使用可能な基板の大きさは、1分間に10 00回転以上回転させることができる基板であれば本発 明の散布方法が使用可能なため、100インチや200 インチのような大きな基板であっても可能である。

【0011】また本発明の液晶素子の製造装置に使用す るスペーサーの分散装置は、図1に示すように、液体中 にスペーサー1を分散させて調製した分散液2を保持し ておく容器3とその分散液を取り出すためのノズル4が 連結管5でつながっており、そのノズル4の下部には基 板6を固定し回転させることのできるステージ7があ る。容器3には超音波発生装置(図示せず)が取り付け てあればさらにスペーサーの分散性は向上する。 またノ ズル4はスプレー噴射、滴下の両方可能なノズルが望ま 1,63.

【0012】以下本発明の各実施例について説明する。 (実施例1) 成分がSiO₂ からなる直径1. 0 μmの [0006]また、本発明の第二のスペーサーの分散エ 50 球形のスペーサを5mgとりイソプチルアルコール50

30

m1を加え、超音波で1時間拡散させ、混合分散液を調製しこれを容器1に入れる。次に、配向処理を施したガラス基板(55mm×65mm×1.1mm)をステージ4に設置し、先ほど調製した混合分散液をノズル2を通して基板表面に塗布し、3000rpmで30秒回転させる。すると約1000個/mm²の密度で非常に均一にスペーサーが分散できる。

【0013】次に同じく配向処理を施したガラス基板 ($55 \, \mathrm{mm} \times 65 \, \mathrm{mm} \times 1$. $1 \, \mathrm{mm}$) に接着剤をシール 印刷し、先ほどのスペーサーを分散させたガラス基板を 10 貼合わせ液晶を注入すると、非常に基板間のギャップ厚 が均一な液晶表示素子が得られるものである。

【0014】(実施例2)成分が SiO_2 からなる直径 0.8μ mの球形のスペーサーを5mgとりイソプロビルアルコール50mlを加え、超音波で1時間拡散させ、混合分散液を調製し容器1に入れる。次に、配向処理を施したガラス基板(55mm $\times65$ mm $\times1.1$ mm)をステージ4に設置し、先ほど調製した混合分散液を基板表面に塗布し、6000rpmで30秒回転させる。すると約1000個/mm² の密度で非常に均一に 20スペーサーが分散できる。

【0015】次に同じく配向処理を施したガラス基板 (55mm×65mm×1.1mm)に接着剤をシール 印刷し、先ほどのスペーサーを分散させたガラス基板を 貼合わせ液晶を注入すると、非常に基板間のギャップ厚 が均一な液晶表示素子が得られる。

[0016] (実施例3) 成分が SiO_2 からなる直径 0.8 μ mの球形のスペーサーを2mgとりプロビルアルコール50 mlを加え、超音波で2時間拡散させて、混合分散液を調製し容器1に入れる。次に、配向処理を 30施したガラス基板(500 mm \times 500 mm \times 5 mm)をステージ4に設置し、先ほど調製した混合分散液を基板表面に塗布し、2000 rpmで60秒回転させる。すると約300個 ℓ mm ℓ 0 密度で非常に均一にスペーサーが分散できる。

[0017] 次に同じく配向処理を施したガラス基板 (500mm×500mm×5mm) に接着剤をシール 印刷し、先ほどのスペーサーを分散させたガラス基板を 貼合わせ液晶を注入すると、非常に基板間のギャップ厚 が均一な液晶表示素子が得られる。

[0018] (実施例4) 成分が SiO_2 からなる直径 1.5 μ mの球形のスペーサーを5 mg E b 1 ープタノール5 0 m 1 を加え、超音波で1 時間拡散させて、混合分散液を調製し、容器1 に入れる。次に、配向処理を施したガラス基板(100 mm \times 100 mm \times 1.5 mm)をステージ4 に設置し、先ほど調製した混合分散液を基板表面に塗布し、3000 r pmで50 秒回転させる。すると約1000 個/mm² の密度で非常に均一にスペーサーが分散できる。

[0019] 次に同じく配向処理を施したガラス基板 50

(100mm×100mm×1.5mm) に接着剤をシール印刷し、先ほどのスペーサーを分散させたガラス基板を貼合わせ液晶を注入すると、非常に基板間のギャップ厚が均一な液晶表示素子が得られる。

[0020] (実施例5) 成分が SiO_2 からなる直径 1.0 μ mの球形のスペーサーを5 mg とりイソプチルアルコール50 mlを加え、超音波で1 時間拡散させ、混合分散液を調製しこれを容器1に入れる。次に、配向処理を施したガラス基板(55 mm \times 65 mm \times 1.1 mm)をステージ4に設置し、3000 rpmで30秒回転させ、先ほど調製した混合分散液をノズル2を通して基板表面にスプレー散布し、さらに3000 rpmで30秒回転させる。すると約1000個/mm² の密度で非常に均一にスペーサーが分散できる。

[0021] 次に同じく配向処理を施したガラス基板 (55mm×65mm×1.1mm) に接着剤をシール 印刷し、先ほどのスペーサーを分散させたガラス基板を 貼合わせ液晶を注入すると、非常に基板間のギャップ厚 が均一な液晶表示素子が得られる。

[0022] (実施例6)成分が SiO_2 からなる直径 0.8 μ mの球形のスペーサーを5mgとりイソプロピルアルコール50mlを加え、超音波で1時間拡散させ、混合分散液を調製し容器1に入れる。次に、配向処理を施したガラス基板(55mm $\times65$ mm $\times1.1$ mm)をステージ4に設置し、6000rpmで30秒回転させ、先ほど調製した混合分散液を基板表面にスプレー散布し、さらに6000rpmで300秒回転させる。すると約1000個/mm² の密度で非常に均一にスペーサーが分散できる。

【0023】次に同じく配向処理を施したガラス基板 (55mm×65mm×1.1mm)に接着剤をシール 印刷し、先ほどのスペーサーを分散させたガラス基板を 貼合わせ液晶を注入すると、非常に基板間のギャップ厚 が均一な液晶表示素子が得られる。

[0024] (実施例7) 成分が SiO_2 からなる直径 $0.8\mu m$ の球形のスペーサーを2mgとりプロピルアルコール50mlを加え、超音波で2時間拡散させ、混合分散液を調製し容器1に入れる。次に、配向処理を施したガラス基板($500mm \times 500mm \times 5mm$)をステージ4に設置し、2000rpm c 30 秒回転させ、先ほど調製した混合分散液を基板表面にスプレー散布し、さらに2000rpm c 60 秒回転させる。すると約300 個/ mm^2 の密度で非常に均一にスペーサーが分散できる。

[0025] 次に同じく配向処理を施したガラス基板 (500mm×500mm×5mm) に接着剤をシール 印刷し、先ほどのスペーサーを分散させたガラス基板を 貼合わせ液晶を注入すると、非常に基板間のギャップ厚 が均一な液晶表示素子が得られる。

【0026】 (実施例8) 成分がSiO2 からなる直径

5

1. 5μ mの球形のスペーサーを5 mgとり1 ープタノール5 0 m 1 を加え、超音波で1 時間拡散させ、混合分散液を調製し容器1 に入れる。次に、配向処理を施したガラス基板(1 0 0 mm×1 0 0 mm×1 . 5 mm)をステージ4 に設置し、3 0 0 0 r pmで3 0 秒回転させ、先ほど調製した混合分散液を基板表面にスプレー散布し、さらに3 0 0 0 r pmで5 0 秒回転させる。すると約1 0 0 0 個/ mm² の密度で非常に均一にスペーサーが分散できる。

[0027] 次に同じく配向処理を施したガラス基板 $(100\,\mathrm{mm}\times100\,\mathrm{mm}\times1.5\,\mathrm{mm})$ に接着剤をシール印刷し、先ほどのスペーサーを分散させたガラス基板を貼合わせ液晶を注入すると、非常に基板間のギャップ厚が均一な液晶表示素子が得られる。

[0028]

[発明の効果]以上のように本発明は、溶液中に分散させたスペーサーを基板上に塗布し、基板を高速で回転さ

せることにより、溶媒を蒸発させスペーサーを基板上に 均一に散布させるため、スペーサーの散布としては非常 に簡単であり、しかも高度に再現性良く分散させること が可能であるという特徴を有する。

【図面の簡単な説明】

【図1】本発明の一実施例の液晶素子の製造装置におけるスペーサー散布装置の概略図

【符号の説明】

- 1 スペーサー
- 0 2 分散液
 - 3 容器
 - 4 ノズル
 - 5 連結管
 - 6 基板
 - 7 ステージ
 - 3 基板回転装置

[図1]

- 1 スペーサ
- 2 分散液
- 3 客器
- 4 ノズル 5 連結管
- 5 基板
- ロ 各位 7 ステージ
- 8 基板回転装置

