

임베디드 시스템 설계 및 실험 02 분반

2주차 실험 환경 구축

조교 최진우 jwchoi9965@pusan.ac.kr

조교 소개

최진우

- 임베디드 시스템 연구실 (자연대연구실험동 314호)
- 지도교수 : 백윤주 교수님
- 이메일 : jwchoi9965@pusan.ac.kr
- 연구내용
 - 임베디드 시스템 및 임베디드 AI
 - 딥러닝 모델 경량화를 통한 임베디드 AI 연구
 - 임베디드 음성인식 AI 연구
 - 졸음운전, 운전자 식별 등 차량 데이터 기반 AI 연구

초소형 음성인식 모듈

5.2 x 2.5 cm 4.0 x 2.1 cm

cm 2.7 x 1.6 cm

2.0 x 1.1 cm

2.1 x 1.9 cm

주차별 실험 계획

 주차	날짜	실험내용	
1	09.01	분반편성 및 Overview	
2	09.07	실험 환경 구축	
3	09.14	실험 장비 사용법 이해 및 GPIO 조작	
4	09.21	Scatter file 이해 및 플래시 메모리에 통합 바이너리 업로드	
5	09.28	Polling방식을 이용한 UART 통신 및 Clock control	
6	10.05	Interrupt 방식을 활용한 GPIO 제어 및 UART 통신	
7	10.12	Bluetooth	
8	10.19	휴강 (중간고사 없음)	
9	10.26	TFT-LCD & ADC	
10	11.02	Timer	
11	11.09	DMA (Direct Memory Access)	
12~14	11.16 ~ 11.30	텀 프로젝트 준비	
15	12.07	텀 프로젝트 발표	
16	미정	기말고사	

추후 변경 가능

성적

		실험	(40)				설계	∥과제	(60)	
출석	태도	발표	보고 서	수업 검사	소계	제안 서	최종 보고 서	필기 시험	동작 검사	소계
5	5	10	5	15	40	5	10	20	25	60

실험 수업 진행 방식

임베디드 시스템 설계 및 실험

- 출석 체크
- 자리 이동 및 다른 조와 잡담 금지
- 예비 발표 자료 제출
 - 발표 자료 수요일 13:00 까지 조교에게 PDF 및 영상 제출 (늦으면 감점)
- 예비 발표 조의 발표 내용 및 조교 설명을 참고해 실험 (미션) 시작
- 미션을 구현한 조는 조교의 간단한 퀴즈 및 검사
- 코드 백업 및 삭제, 자리 정리 후 귀가 (코드가 컴퓨터에 남아있으면 안 됨)
- 다음 실험 수업 전까지 실험 코드 및 결과보고서 PLATO에 제출
 - 결과보고서의 형식은 자유, 표지 제외 3장 이상, 실험 목표/과정/결과 등이 잘 드러나게 작성
 - 보고서에 전체 코드를 그대로 붙여 넣으면 감점
 - 결과보고서는 PDF 형식으로, 코드(main.c)와 함께 PLATO 에 제출

앞

1조 박성민, 이종목, 김동찬, 임주은

2조 이동근, 조영진, 노윤정, 박건우

3조 이다은, 김은지, 장서윤, 이희근, 최성렬 4조 송재홍, 조준서, 이현규, 나인수

5조 김 아나스타시야, 권재섭, 김만재, 강중헌, 박선민 6조 예르자노프 지네덴, 카즈타예 바 굴나즈, 정재원, 박시형

7조 수흐바탈 텐게스, 강영훈, 김승연, 조재현, 김윤종 8조 윤건우, 신재환, 예진욱, 박동진

9조 강준우, 김태경, 여지수, 최상준, 최정혜 10조 송세연, 임연후, 최이한, 김윤재

조장 선정 및 연락처 교환 단톡방 생성

예비 발표 순서

예비 발표 순서 정하기

9월 21일 (4주차)	9월 28일 (5주차)
9조	3조

10월 5일 (6주차)	10월 12일 (7주차)	10월 26일 (9주차)
5조	1조 10조	7조

11월 2일 (10주차)	11월 9일 (11주차)
2조	6조
4조	8조

동영상 강의

개발 환경 구축 및 개발 장비 교육

동영상 참고

Contents

IAR EW 설치 (실험실에서는 필요 없음)

IAR Embedded Workbench 설치

- 실험실에는 라이센스 및 프로그램이 이미 설치되어 있음
- 개인 혹은 조별로 사용하기 위한 방법
 - https://www.iar.com/kr/iar-embedded-workbench2/#!?currentTab=free-trials
 - -> IAR Embedded Workbench for Arm 다운로드

IAR Embedded Workbench 설치

- 설치 파일 실행
- Install IAR Embedded Workbench for ARM 클릭해서 IAR 툴 및 모든 드라이버 설치

IAR Embedded Workbench 설치

 설치된 IAR License Manager for Arm 실행

IAR Embedded Workbench 설치

• Register with IAR Systems to get an evaluation license 선택

IAR Embedded Workbench 설치

• Register 클릭

IAR Embedded Workbench 설치 • 라이센스 종류 두가지

- - 1. 코드 제한 없이 30일
 - 2. 코드 제한으로 무제한
 - 수업 과제는 코드 제한으로도 가능

• 차후 텀 프로젝트는 새로 설치해서 다른 이메일을 이용하여 30일 Time limited 사용

Select the manufacturer of the processor you intend to run your code on: * STMicroelectronics ▼

Manufacturer는 STMicroelectonics 선택

IAR Embedded Workbench 설치

• 왼쪽과 같은 메일이 오면 라이선스 번호 확인 후

오른쪽과 같이 하단에 입력

IAR Embedded Workbench 설치

 trial 버전과 실험실에 설치된 버전은 서로 프로젝트 호환이 안 되므로 프로젝트를 새로 만들고 코드를 복사해야 함

Contents

프로젝트 및 실험 장비 설정

- 원하는 경로에 원하는 이름으로 폴 더 생성 (ex: project_test)
- project_test/ 폴더에 실험 제공 파일 (CoreSupport, libraries, user 등)

- IAR Embedded Workbench IDE 실행
- Project Create New Project
- Empty project OK
- 생성한 project test 폴더에 원하는 프로젝트 명 (ex: test) 으로 저장

- 프로젝트 오른쪽 클릭 Add Add Group으로 project_test 폴더의 구조와 같이 만들기
 - 필수는 아니지만 보기 좋게 하기 위함
 - 하나하나 추가해야 함
- 프로젝트 오른쪽 클릭 Add Add Files으로 .c, .h, .s 파일 모두 추가
 - 이건 필수

• 프로젝트 오른쪽 클릭 libraries - Options

- General Options Targ 탭 – Device
 - ST STM32F1 STM32F107 – ST STM32F107VC

- General Options Library Configuration 탭
 - Library
 - Normal
 - CMSIS
 - Use CMSIS

- Runtime Checking –
 C/C++ Compiler
 - List 탭
 - Output list file
 - Assembler mnemonics
 - Diagnostics

- Runtime Checking C/C++ Compiler
 - Preprocessor 탭
 - Additional include directories: (one per line) \$PROJ_DIR\$\text{\text{\text{Mibraries}}\text{\text{CMSIS}\text{\text{\text{DeviceSupport}}}}\$ \$PROJ_DIR\$\text{\text{\text{Mibraries}}\text{\text{CMSIS}\text{\text{\text{DeviceSupport}}}\$}\$ \$PROJ_DIR\$\text{\text{\text{Mibraries}}\text{\text{STM32F10x_StdPeriph_Driver_v3.5}\text{\text{\text{\text{\text{\text{Visites}}}}}\$}\$ \$PROJ_DIR\$\text{\text{\text{\text{Wiser}}}\$ \$PROJ_DIR\$\text{\text{\text{\text{Wiser}}}\$}\$
 - Defined symbols: (one per line)
 USE_STDPERIPH_DRIVER
 STM32F10X_CL

- Runtime Checking –
 Output Converter
 - Generate additional output
 - Output format –
 Raw binary

• Runtime Checking – Linker – List 탭

• 모두 체크

- user/main.c에 원하는 코드 작성
- F7 (Make) 로 컴파일
- 첫 컴파일 시 저장하는 창이 뜸
 - project_test/ 폴더에 프로젝트 명으로 저장

```
main.c x

main()

#include "stm32f10x.h"

int main(void)

while (1) {

return 0;
```

PC와 연 결 보드 - JTAG 연결 플랫케이블 조심히 다뤄주세요

5V 1A 전원 연결 (5V 5A 전원 절대 연결 금 지, 같은 규격이므로 주의!!)

- 보드
 - 5V 1A 전원 연 결
 - JTAG 연결
- JTAG
 - 보드와 연결
 - PC와 연결

- options Runtime checking – Debugger – Setup 탭
 - Driver J-link/J-Trace

- options Runtime checking - Debugger
 - Download
 - Verify download
 - Use flash loader(s)

- Download and Debug
 - 동의 묻는 창 뜨면 Accept
 - 보드 flash에 프로그램 다운로 드 하면서 디버깅 모드로 들어 감
- Stop Debugging
 - 디버깅 모드에서 나오기
- 보드 전원 껐다 켜기
- 원하는 대로 동작하는지 확인

실험 주의사항

- 실험 장비들을 연결 및 분리할 때 반드시 모든 전원을 끄고 연결해주세요.
- 장비 사용시 충격이 가해지지 않도록 주의해주세요.
- 자리는 항상 깔끔하게 유지하고 반드시 정리 후 퇴실해주세요.
- 실험 소스 코드와 프로젝트 폴더는 백업 후 반드시 삭제해주세요.
- 장비 관리, 뒷정리가 제대로 되지 않을 경우 해당 조에게 감점이 주어집니다.
- 동작 중 케이블 절대 뽑지말것
- 보드는 전원으로 USBPort나 어댑터(5V,1A)를 사용할것 (5V 5A 어댑터(비슷하게 생김) 와 혼동하지 말 것, 사용시 보드가 타버림 -> 감점)
- 디버깅 모드 중에 보드 전원을 끄거나 연결 케이블을 분리하지 말 것!!!
- ->지켜지지 않을 시 해당 조 감점

다음 수업 내용

3주차 실험 내용

- 프로젝트 생성 및 설정
- Datasheet 및 Reference Manual을 참고하여 해당 레지스터 및 주소에 대한 설정 이해
- GPIO(general-purpose input/output)를 사용하여 LED제어
- 오실로스코프에 대한 이해와 DebugPin설정