EE 303 Electromagnetic Waves – Fall Semester 2020 Homework 3

Due Date: November 16, 2020 Monday before 13:00.

Please upload your solutions to ODTUClass next Monday no later than 13:00.

Problem 1. (1.4 pts)Phasor electric field intensity of a uniform plane wave propagating in a simple, lossless non-magnetic dielectric medium ($\mu = \mu_0$, $\epsilon = \epsilon_r \epsilon_0$) is given by

$$\vec{E} = (12\hat{a}_y + A\hat{a}_z)e^{j\pi(By-6z)}, V/m$$

where A and B are real constants.

At t=0, the variation of <u>magnetic field intensity</u> is observed with respect to position. The maximum magnitude of the magnetic field intensity vector, \overline{H} is $\frac{2}{3\pi}A/m$ and the distance between the locations of two consecutive zeros of \overline{H} field in space along the direction of propagation is 10~cm.

- a) Find the positive real constant B.
- b) Find the unit vector along the direction of propagation.
- c) Find the constant A
- d) Find the intrinsic impedance of the medium.
- e) Find the dielectric constant of the medium (ϵ_r)
- f) Find the phase velocity of the wave.
- g) Find the the expression for the time-domain \overline{H} .

Solution of Question 1;

The information on H-fields gero locations enobles us to find
$$\frac{\lambda_{9}}{2} = 10$$
 and $\frac{\lambda_{9}}{2} = 10$ and $\frac{\lambda_$

$$|k|=10\pi$$
 is known so,
 $|k|=\sqrt{k_x^2+k_y^2+k_y^2}=\sqrt{(-\pi B)^2/(6\pi)^2}=\pi\sqrt{B^2+6^2}=10\pi$ is sortisfied for $B=8$
By 8
By 8

$$-8\pi a_{y}^{2}+6\pi a_{2}^{2}=10\pi \left(n_{x}a_{x}^{2}+n_{y}a_{y}^{2}+n_{z}a_{2}^{2}\right) \longrightarrow n_{x}=0$$

$$n_{y}=-0.8$$

$$n_{z}=0.6$$

$$|\hat{n}=-0.8a_{y}^{2}+0.6a_{z}^{2}|$$

c.) Earl
$$\hat{n}$$
 must be perpendicular for $V.P.W.$ So $\hat{E}.\hat{A}=0$ must be sortisfied.
$$\hat{E}.\hat{A}=(12a\hat{g}+4a\hat{g})\cdot(-9.8a\hat{g}+9.6a\hat{g})=0$$

$$-9.6+9.6.A=0 \longrightarrow [A=16]$$

d)
$$\eta = \frac{|E_{\text{max}}|}{|H_{\text{max}}|} = \frac{20}{\frac{2}{3\pi}} = \boxed{30\pi} \quad \text{[A]}$$

e-) Another 1 definition can be made as,
$$1 = \sqrt{\frac{M}{E}}$$
 by equating this to $30\pi\Omega$

$$1 = \sqrt{\frac{M}{E}} = \sqrt{\frac{MO}{E_0}} = \frac{1}{\sqrt{E_0}} = \frac{120\pi}{\sqrt{E_0}} = 30\pi \implies \sqrt{E_0} = 4$$
, $1E_0 = 16$

9-)
$$H_{ph} = \frac{1}{N} \cdot \hat{n} \times \hat{E}_{ph}$$
 for $V.P.W.$

$$= \frac{1}{30\pi} \underbrace{\left(-0.80\hat{q} + 0.60\hat{q}\right) \times \left(12\,\alpha\hat{q} + 16\alpha\hat{q}\right)}_{-20\hat{q}_{x}} \cdot e^{-7\pi\left(62 - 8q\right)} \underbrace{\left[H/m\right]}_{-20\hat{q}_{x}}$$

$$H(t) = \text{Re } \left\{ H_{\text{pn}} \cdot e^{3\omega t} \right\}$$

$$= \text{Re } \left\{ -\frac{2}{3\pi} \cdot \hat{\alpha_{x}} \cdot e^{3(\omega t - \pi (6z - 8y))} \right\}$$

$$|H_{1t}| = -\frac{2}{3\pi} a_t^2 \cdot \cos(\omega t - \pi (62 - 8y))$$
 [A/m]

Problem 2. (0.8 pts) Time-domain electric field expression for a uniform plane wave (propagating in a simple, lossless and source-free medium) is given as

$$\vec{E}(z,t) = \hat{a}_x A_x \cos(\omega t - kz) + \hat{a}_y A_y \cos(\omega t - kz + \theta)$$

Identify the polarization (both type and sense) and sketch the locus of $\vec{E}(z=0,t)$ for each of the following cases

- a) $A_x=3$ V/m, $A_y=4$ V/m and $heta=180^\circ$
- b) $A_x = 3 \ V/m$, $A_y = 3 \ V/m$ and $\theta = 45^\circ$
- c) $A_x = 3 \ V/m$, $A_y = 3 \ V/m$ and $\theta = -90^\circ$
- d) $A_x = 3 \ V/m$, $A_y = 4 \ V/m$ and $\theta = -135^\circ$

Solution of Question 2;

a-)
$$\overline{E}(2=0,t) = 3 \cos(\omega t) a_{x}^{2} + 4 \cos(\omega t + \pi) a_{y}^{2}$$

÷	wt	E×	Ey
0	0	3	-4
T/8	×4	3/12	-252
T/4	F/2	0	0
T/2	7	-3	4

Linear Polarization in a direction making an angle of a= 127° in xy-plane

Ł	wt	Ex	Eq
0	0	3	36
T/8	T/4	3√2	0
T/4	×/2	0	-312
T/2	π	-3	-3(2

Left Hand Eliptical Polarisation (LMEP)

4	wt	Ex	Ey
0	0	3	0
T/8	r14	30/2	3/2/2
7/4	×2	0	3
+1/2	7	-3	0

d-) flz, (, t) = 3 cos(wt) of + 4 cos (wt - 3 x/4) og

+ 1	wt	Ex	Ey
0	0	3	-252
7/8	×14	30/2	0
T/4	*/2	0	202
3T/4	37/4	-36/2	4-

Problem 3. (0.3 pts) (Reading Assignment Problem) For a wave travelling in a medium with a skin depth δ , what is the amplitude of electric field intensity vector \vec{E} at a distance of

- a) 2δ
- b) 4δ

compared with its initial value? Also specify your result in percentage.

Solution of Question 3;

Skin depth is a distance where E-field amplitude of wave reduces to its Ve value of its initial amplitude.

Assume, E= Eo. e JB3 = wave experiences a attenuation when travelling to of direction.

In its skin depth, (2=8)

$$|\vec{E}| = |E_0.e^{-\alpha.28}.e^{-3\beta.28}| = |E_0.e^{-2}| = 0.135 |E_0$$

$$|\vec{E}| = |\vec{E}_0.e^{-\alpha.48}.e^{-3\beta.48}| = |\vec{E}_0.e^{-4}| = 0,018 = 0$$

$$|\vec{E}| = |\vec{E}_0.e^{-\alpha.48}.e^{-3\beta.48}| = |\vec{E}_0.e^{-4}| = 0,018 = 0$$

$$|\vec{E}| = |\vec{E}_0.e^{-\alpha.48}.e^{-3\beta.48}| = |\vec{E}_0.e^{-4}| = 0,018 = 0$$

$$|\vec{E}| = |\vec{E}_0.e^{-\alpha.48}.e^{-3\beta.48}| = |\vec{E}_0.e^{-4}| = 0,018 = 0$$