Math Problem Set 4

Matthew Brown OSM Boot Camp 2018

July 9, 2018

Problem 6.6.

$$Df(x,y) = \begin{bmatrix} 6xy + 4y^2 + y & 3x^2 + 8xy + x \end{bmatrix}$$
$$D^2f(x,y) = \begin{bmatrix} 6y & 6x + 1 \\ 6x + 1 & 8x \end{bmatrix}$$

The critical points are (0,0) and $(-\frac{1}{3},-\frac{2}{3})$. $D^2f(0,0)$ is indefinite, so the point is not a local extremum. $D^2f(-\frac{1}{3},-\frac{2}{3})$ is actually "negative definite" (I think?) so the point is a local maximum.

Problem 6.11. The minimizer of f is $-\frac{b}{2a}$. If we apply Newton's method to any $x_0 \in \mathbb{R}$,

$$x_1 = x_0 - \frac{f'(x_0)}{f''(x_0)} = x_0 - \frac{2ax_0 + b}{2a} = \frac{2ax_0 - (2a_x 0 + b)}{2a} = -\frac{b}{2a}$$

Problem 7.1. Proof. Consider two elements $a, b \in C = \text{Conv}(S)$ Then by the definition of C, we can represent a, b as linear combinations

$$a = \lambda_1 x_1 + \dots + \lambda_n x_n$$
$$b = \Lambda_1 y_1 + \dots + \Lambda_n y_m$$

where $\{x_i\}_{i=1}^n, \{y_i\}_{j=1}^m \in S \text{ and } \sum_{i=1}^n \lambda_i = \sum_{j=1}^m \Lambda_j = 1 \text{ with all } \lambda_i, \lambda_j \in [0,1].$ Now consider a combination ka + (1-k)b, with $k \in [0,1]$. We want to show that this is in C. We have

$$ka + (1 - k)b = k(\lambda_1 x_1 + \dots + \lambda_n x_n) + (1 - k)(\Lambda_1 y_1 + \dots + \Lambda_n y_m)$$

= $k\lambda_1 x_1 + \dots + k\lambda_n x_n + \dots + (1 - k)\Lambda_1 y_1 + \dots + (1 - k)\Lambda_m y_m$

Define

$$\{r_i\}_{i=1}^{m+n} = \{k\lambda_1, ...k\lambda_n, (1-k)\Lambda_1, ..., (1-k)\Lambda_m\}$$

Then

$$\sum_{i=1}^{m+n} r_i = k \sum_{i=1}^{n} x_i + (1-k) \sum_{i=1}^{m} y_i = k \cdot 1 + (1-k) \cdot 1 = 1$$

Also, $r_i \in [0, 1]$ for each i. And we showed above that we can write ka + (1 - k)b as a linear combination of elements in S with coefficients $r_1, ... r_{m+n}$. so $ka + (1 - k)b \in C$, and this shows that C is convex

Problem 7.2. Proof. Two Parts:

• (i) Suppose H is a hyperplane. Let $x, y \in H, \lambda \in [0, 1]$. We know $\langle a, x \rangle = b$ and $\langle a, y \rangle = b$, so

$$\langle a, \lambda x + (1 - \lambda)y \rangle = \langle a, \lambda x \rangle + \langle a, (1 - \lambda)y \rangle = \lambda b + (1 - \lambda)b = b$$

And so $\lambda x + (1 - \lambda)y \in H$.

• (ii) Very similar to (i)... Suppose H is the half-plane $\{x \in \mathbb{R}^n | \langle a, x \rangle \leq b\}$. Let $x, y \in H, \lambda \in [0, 1]$. We know $\langle a, x \rangle = c$ and $\langle a, y \rangle = d$ for some $c, d \leq b$, so

$$\langle a, \lambda x + (1 - \lambda)y \rangle = \langle a, \lambda x \rangle + \langle a, (1 - \lambda)y \rangle = \lambda c + (1 - \lambda)c \le \lambda b + (1 - \lambda)b = b$$

And so $\lambda x + (1 - \lambda)y \in H$.

Problem 7.4. *Proof.* I'll first show the four facts.

• (i)

$$\begin{aligned} ||x-y||^2 &= \langle x,x\rangle + \langle y,y\rangle - 2\langle x,y\rangle \\ &= \langle x,x\rangle - 2\langle x,p\rangle + \langle p,p\rangle + \langle y,y\rangle - 2\langle p,y\rangle + \langle p,p\rangle + 2(-\langle x,y\rangle + \langle x,p\rangle - \langle p,p\rangle + \langle p,y\rangle) \\ &= ||x-p||^2 + ||p-y||^2 + 2\langle x-p,p-y\rangle \end{aligned}$$

- (ii) We can use the identity from (i). See that $||p-y||^2$ is always strictly positive for $y \neq p$, and if 7.14 holds then the term $\langle x-p,p-y\rangle$ is also nonnegative and the result follows.
- (iii) This will just be more manipulation of $\langle \rangle$ (RETURN TO THIS PROBLEM)
- (iv)

Problem 7.13. I'll argue by contradiction. Suppose that f is convex and bounded above, but f is not a constant function. Then there exist points $x_1, x_2 \in \mathbb{R}^n$ where $f(x_1) \neq f(x_2)$. Let M be the upper bound for f.

Suppose WLOG that $f(x_2) \ge f(x_1)$ Consider the line through these two points $L_{f(a),f(b)} = \{af(x_1) + bf(x_2) | a + b = 1\}$. I can choose a^*, b^* so that $a^*f(x_1) + b^*f(x_2) > M$. See that $f(x_2)$ is on the line segment between $a^*f(x_1)$ and $b^*f(x_2)$, so it can be expressed as

$$f(x_2) = \lambda a^* f(x_1) + (1 - \lambda) b^* f(x_2)$$

for some $\lambda \in [0, 1]$.

Recall that $a^*x_1 + b^*x_2$ is in the domain of our function, so we can also think about ... ABORTED ATTEMPT - I HAVE INTUITION IN GRAPHS BUT CANNOT FORMALIZE

Problem 7.20. The first thing to note is that that

$$-f$$
 is convex $\iff -f(\lambda x_1 + (1-\lambda)x_2) \le -(\lambda f(x_1) + (1-\lambda)f(x_2))$
 $\iff f(\lambda x_1 + (1-\lambda)x_2) \ge (\lambda f(x_1) + (1-\lambda)f(x_2))$

for $\lambda \in [0,1]$. And if we combine with the fact that f is convex we see that

$$f(\lambda x_1 + (1 - \lambda)x_2) = \lambda f(x_1) + (1 - \lambda)f(x_2)$$

for $\lambda \in [0,1]$, which is quite a handy fact. Indeed, this looks a LOT like the conditions we need for linearity - I just need a way to pass from λ to other scalars... Ugh. I'm just hitting a roadblock tonight, I guess... PROBLEM INCOMPLETE

Problem 7.21. *Proof.* I'll show both implications.

- \Rightarrow Suppose x^* minimizes f. Then there exists an open neighborhood U of x^* such that for $x \in U$, $f(x^*) < f(x)$. Because ϕ is increasing, this implies that for $x \in U$, $\phi(f(x^*)) < \phi(f(x))$ and x^* is a local minimizer for $\phi \circ f$.
- \Leftarrow I'll show the contrapositive (even though that's probably needlessly complicating it, sorry). Suppose x^* does not minimize f. Then for any open neighborhood U of x^* , there exists $x_0 \in U$ such that $f(x^*) \geq f(x_0)$. Because ϕ is increasing, this implies that for $\phi(f(x^*)) \geq \phi(f(x_0))$ and x^* is not a local minimizer for $\phi \circ f$.