

Лекция 2

Ортогональность

Содержание лекции:

В настоящей лекции мы подробно обсудим ортогональные системы векторов и методы работы с ними. Будет определено ортогональное дополнение подпространства и ортогональный проектор - те понятия, которыми наиболее часто оперирует геометрия. Мы докажем основные свойства разложения векторов по ортогональным системам, а также сформулируем и решим одну из самых важных задач геометрии - задачу о перпендикуляре.

Ключевые слова:

Ортогональные векторы, теорема Пифагора, ортогональное дополнение, ортогонализация Грама-Шмидта, ортогональный и ортонормированный базис, ортогональная сумма подпространств, ортогональный проектор, задача о перпендикуляре, коэффициенты Фурье, неравенство Бесселя, равенство Парсеваля.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

2.1 Ортогональные векторы

 $\|$ Пусть $x,y \in E$. Говорят, что x **ортогонален** y (пишут $x \perp y$), если $\langle x,y \rangle = 0$.

Лемма 2.1. Пусть $x \perp y_1, y_2, \dots, y_k$, тогда $x \perp \mathcal{L} \{y_1, y_2, \dots, y_k\}$.

▶

$$\left\langle \sum_{i=1}^{k} \alpha_i y_i, x \right\rangle = \sum_{i=1}^{k} \alpha_i \left\langle y_i, x \right\rangle.$$

•

Теорема 2.1. (Об ортогональности и линейной независимости) Пусть $\{x_1, x_2, \dots, x_k\}$ - набор ненулевых попарно ортогональных векторов, тогда $\{x_1, x_2, \dots, x_k\}$ - линейно независимый набор.

▶

Рассмотрим нулевую линейную комбинацию

$$\sum_{i=1}^{k} \alpha_i x_i = 0, \quad ||x_j|| \neq 0,$$

$$\left\langle \sum_{i=1}^{k} \alpha_i x_i, x_j \right\rangle = \sum_{i=1}^{k} \alpha_i \left\langle x_i, x_j \right\rangle = \alpha_j \left\langle x_j, x_j \right\rangle = \alpha_j ||x_j||^2 = 0 \quad \Rightarrow \quad \alpha_j = 0.$$

4

Теорема 2.2. (Пифагора) Пусть $\{x_1, x_2, \dots, x_k\}$ - набор ненулевых попарно ортогональных векторов, тогда

$$\left\| \sum_{i=1}^{k} x_i \right\|^2 = \sum_{i=1}^{k} \|x_i\|^2.$$

$$\left\| \sum_{i=1}^{k} x_i \right\|^2 = \left\langle \sum_{i=1}^{k} x_i, \sum_{j=1}^{k} x_j \right\rangle = \sum_{i,j=1}^{k} \left\langle x_i, x_j \right\rangle = \sum_{i=1}^{k} \left\langle x_i, x_i \right\rangle = \sum_{i=1}^{k} \|x_i\|^2.$$

4

Говорят, что x ортогонален подпространству $L \leq X_E$, если

$$\forall y \in L \quad \langle x, y \rangle = 0.$$

Nota bene Для обозначения данного факта обычно пишут $x \perp L$.

ОРТОГОНАЛЬНОСТЬ

Ортогональным дополнением пространства L называется множество

$$M = \{ x \in X : \quad x \perp L \} .$$

Лемма 2.2. Ортогональное дополнение тоже является подпространством X_E .

В этом легко убедиться прямой проверкой.

4

2.2 Ортогональный базис

Теорема 2.3. Пусть $\{x_j\}_{j=1}^k$ - линейно-независимый набор в евклидовом пространстве X_E , тогда $\{x_j\}_{j=1}^k$ можно преобразовать в ортогональный набор $\{e_j\}_{j=1}^k$.

Используем процесс ортогонализации Грама-Шмидта:

1.
$$e_1 = x_1$$
,

2.
$$e_2 = x_2 + \alpha_2^1 e_1$$
, $e_2 \perp e_1 \implies \alpha_2^1 = -\frac{\langle x_2, e_1 \rangle}{\langle e_1, e_1 \rangle}$,

3.
$$e_3 = x_3 + \alpha_3^2 e_2 + \alpha_3^1 e_1$$
, $e_3 \perp e_1$ $e_3 \perp e_2$ \Rightarrow $\alpha_3^1 = -\frac{\langle x_3, e_1 \rangle}{\langle e_1, e_1 \rangle}$, $\alpha_3^2 = -\frac{\langle x_3, e_2 \rangle}{\langle e_2, e_2 \rangle}$

4. ...

5.
$$e_m = x_3 + \alpha_m^{m-1} e_{m-1} + \ldots + \alpha_m^2 e_2 + \alpha_m^1 e_1, \quad \Rightarrow \quad \alpha_m^j = -\frac{\langle x_m, e_j \rangle}{\langle e_i, e_i \rangle}$$

Nota bene Для $\{x_j\}_{j=1}^k$ процесс ортогонализации не оборвется, то есть все $e_j \neq 0$.

От противного. Пусть

$$e_m = x_m + \alpha_m^{m-1} e_{m-1} + \ldots + \alpha_m^2 e_2 + \alpha_m^1 e_1 = 0,$$

тогда

$$e_m = x_m + \alpha_m^{m-1} \sum_{i=1}^{m-1} \alpha_{m-1}^i x_i + \ldots + \alpha_m^2 \sum_{i=1}^2 \alpha_2^i x_i + \alpha_m^1 x_1 = 1 \cdot x_m + \sum_{i=1}^{m-1} \beta_i x_i = 0,$$

но это означает, что $\{x_j\}_{j=1}^k$ - линейно зависимый набор. Противоречие.

4

 $\pmb{Nota~bene}~~\Pi$ усть $\{x_j\}_{j=1}^k$ - линейно независимый набор, а $\{x_j\}_{j=1}^{k+1}$ - линейно-зависимый, тогда $e_{k+1}=0$.

 ${\it Nota \ bene}$ Имеет место следующее неравенство: $\|e_m\| \leq \|x_m\|$

Рассмотрим скалярное произведение:

$$\langle e_m, e_m \rangle = \langle x_m, e_m \rangle + 0 + \ldots + 0, \quad \Rightarrow \quad \|e_m\|^2 = \langle x_m, e_m \rangle \leq \|x_m\| \cdot \|e_m\|.$$

Базис $\{e_j\}_{j=1}^n$ евклидова пространства X_E называется

- ортогональным, если $\langle e_i, e_{j \neq i} \rangle = 0.$ ортонормированным, если $\langle e_i, e_j \rangle = \delta_{ij}.$

Теорема 2.4. Любой базис евклидова пространства X_E может быть преобразован к ортонормированному базису.

Ортогонализация Грама-Шмидта с последующей нормировкой.

Лемма 2.3. Базис $\{e_j\}_{j=1}^n$ в X_E ортонормирован тогда и только тогда, когда

$$\forall x, y \in X_E : \quad x = \sum_{i=1}^n \xi^i e_i, \quad y = \sum_{j=1}^n \eta^j e_j, \quad \langle x, y \rangle = \sum_{i=1}^n \xi^i \eta^i.$$

Nota bene Матрица Грама скалярного произведения ортогональном базисе имеет диагональный вид, а в ортонормированном базисе имеет сид единичной матрицы.

2.3Ортогональная сумма подпространств

Теорема 2.5. Пусть L - подпространство линейного пространства X_E и

$$M = L^{\perp} = \{ x \in X_E : \quad x \perp L \} ,$$

тогда

$$E = L + M \quad \Leftrightarrow \quad \forall x \in X_E \quad \exists! z \in L, \ h \in L^{\perp} : \quad x = z + h.$$

- 1. Пусть $\{e_j\}_{j=1}^k$ ортонормированный базис в L,
- 2. Дополним $\{e_j\}_{j=1}^k$ до базиса $X_E: \{e_1, e_2, \dots, e_k; x_{k+1}, x_{k+2}, \dots, x_n\}$
- 3. Проведем процесс ортогонализации Грама-Шмидта

$$\{e_1, e_2, \dots, e_k; e_{k+1}, e_{k+2}, \dots, e_n\},\$$

ОРТОГОНАЛЬНОСТЬ

4.
$$\forall x = \sum_{i=1}^{k} \xi^{i} e_{i} + \sum_{i=k+1}^{n} \xi^{i} e_{i} = z + h \quad \Rightarrow \quad X_{E} = L + M.$$

5. Пусть
$$x = h_1 + z_1 = h_2 + z_2$$
, тогда $h_2 - h_1 = z_1 - z_2$ и

$$||h_2 - h_1||^2 = \langle z_1 - z_2, h_2 - h_1 \rangle = 0, \Rightarrow h_2 - h_1 = 0.$$

Nota bene В данном случае прямая сумма $X_E = L + M = L \oplus M$ называется также ортогональной суммой подпространств L и M.

Nota bene В более общем случае, сумма попрано ортогональных подпространств $L_i \perp L_{j \neq i}$ называется ортогональной суммой подпространств:

$$L = \bigoplus_{i=1}^{s} L_i.$$

2.4 Ортогональный проектор

Ортогональным проектром на подпространство L называется линейный оператор, обладающий следующим свойством:

$$\mathcal{P}_L^{\perp}(x) = z, \quad zx = z + h, \quad z \in L, \quad h \in M = L^{\perp}.$$

Nota bene При этом вектор z называется ортогональной проекцией x на L.

Теорема 2.6. Пусть $\{e_j\}_{j=1}^n$ - ортонормированный базис в X_E . Тогда вид ортогонального проектора в этом базисе:

$$\mathcal{P}_L^{\perp} x = \sum_{i=1}^k \langle x, e_i \rangle e_i, \quad \forall x \in E.$$

Для доказательства этого утверждения достаточно показать, что

$$x = z + h \quad \Rightarrow \quad \mathcal{P}_L^{\perp} z = z, \quad \mathcal{P}_L^{\perp} h = 0.$$

Действительно, пусть e_i - элемент базиса, лежащий в L, тогда

$$\mathcal{P}_L^{\perp} e_j = \sum_{i=1}^k \langle e_j, e_i \rangle e_i = e_j.$$

Если e_l - элемент базиса, лежащий в M ($k < l \le n$), тогда

$$\mathcal{P}_L^{\perp} e_l = \sum_{i=1}^k \langle e_l, e_i \rangle e_i = 0.$$

2.5 Задача о перпендикуляре

Задачей о перпендикуляре называется задача об отыскании компонент произвольного вектора x в подпространствах L и M.

Nota bene Алгоритм решения задачи о перпендикуляре:

- 1. Найти ортонормированный базис $\{e_j\}_{j=1}^k$ подпространства L;
- 2. Найдем ортогональную проекцию $\mathcal{P}_L^{\perp}x=\sum_{i=1}^k \langle x,e_i \rangle\,e_i,$
- 3. Найдем ортогональную проекцию $\mathcal{P}_M^{\perp} = x \mathcal{P}_L^{\perp}$.

Лемма 2.4. Имеет место следующее сравнение:

$$\left\| \mathcal{P}_L^{\perp} x \right\| \le \|x\|$$

Из теоремы Пифагора непосредственно следует, что

$$\|\mathcal{P}_L^{\perp} x\|^2 + \|\mathcal{P}_M^{\perp} x\|^2 = \|x\|^2.$$

 $Nota\ bene$ При $x \in L$ данное неравенство обращается в равенство.

Коэффициенты $\alpha_i = \langle x, e_i \rangle$ ортонормированном базисе $\{e_i\}_{i=1}^n$ пространства X_E называются коэффициентами Фурье вектора x относительно этого базиса.

Лемма 2.5. Справедливо следующее равенство:

$$\|\mathcal{P}_L^{\perp} x\|^2 = \sum_{i=1}^k |\langle x, e_i \rangle|^2 = \sum_{i=1}^k |\alpha_i|^2$$

Действительно, прямой проверкой можно убедиться, что

$$\|\mathcal{P}_{L}^{\perp}x\|^{2} = \langle \mathcal{P}_{L}^{\perp}x, \mathcal{P}_{L}^{\perp}x \rangle = \sum_{i,j=1}^{k} \langle \langle x, e_{i} \rangle e_{i}, \langle x, e_{j} \rangle e_{j} \rangle =$$

$$= \sum_{i,j=1}^{k} \langle x, e_{i} \rangle \langle x, e_{j} \rangle \langle e_{i}, e_{j} \rangle = \sum_{i=1}^{k} |\langle x, e_{i} \rangle|^{2} = \sum_{i=1}^{k} |\alpha_{i}|^{2}$$

ОРТОГОНАЛЬНОСТЬ

Лемма 2.6. (Следствие предыдущих лемм) Неравенство Бесселя:

$$||x||^2 \ge \sum_{i=1}^k |\alpha_i|^2$$
, $||x||^2 = \sum_{i=1}^k |\alpha_i|^2 \iff x \in L$.

Теорема 2.7. Система ортонормированных векторов $\{e_i\}_{i=1}^k$ является полной в X_E тогда и только тогда, когда для любого $x \in X_E$ имеет место равенство Парсеваля:

$$||x||^2 = \sum_{i=1}^k |\alpha_i|^2$$
, $\alpha_i = \langle e_i, x \rangle$, $\forall x \in X_E$.

▶

⇒ Очевидно.

 \Leftarrow Пусть для любого x выполняется равенство Парсеваля. Предположим, что

$$x = z + h$$
, $z = \sum_{i=1}^{k} \langle x, e_i \rangle e_i$, $h \perp z$,

тогда по теореме Пифагора

$$||x||^2 = ||z||^2 + ||h||^2, \quad \sum_{i=1}^k |\alpha_i|^2 = \sum_{i=1}^k |\alpha_i|^2 + ||h||^2,$$

откуда следует, что h=0 и система $\{e_i\}_{i=1}^k$ - полная в X_E .

4