Les indices de prix hédoniques Principes et Illustration à partir du Prix des Terrains à Bâtir

Ronan Le Saout, Benjamin Vignolles

INSEE SMS, 24 Mars 2017

Motivations

- La méthode des prix hédoniques : un large emploi pour les études économiques avec une théorie micro-économique établie ;
- Une réflexion plus statistique pour la construction des indices de prix;
- Relier ces 2 approches, à travers l'exemple du prix des terrains à bâtir;
- Manski (2015) : nécessité d'ouvrir "la boîte noire" des statistiques publiques pour limiter les incertitudes conceptuelles.

Les indices hédoniques

 Pour les indices de prix, Moulton (2001) détaille les pratiques aux Etats-Unis

- Construire des indices de prix pour des biens hétérogènes;
- Prendre en compte les différences et les évolutions de la qualité des biens, ainsi que le progrès technique;
- Effectuer des ajustements de qualité ou de mode lorsque des produits sont substitués dans un panier de biens.

Un exemple d'évolution des prix

En France

- Usages principaux en France
 - Indice de prix des logements anciens;
 - Indice de prix des logements neufs;
 - Indice des terres et prés agricoles;
 - Indice des coûts de la construction ;
 - Ajustement de la qualité pour l'indice des prix à la consommation.

Questions et analyses

- Que nous apprend la théorie économique pour la construction des indices? Quel est le rôle du panier de biens de référence?
- Analyse hédonique des prix des terrains à bâtir sur la période 2006-2012 à l'aide de près de 400.000 observations individuelles;
- Quantification du biais associé aux variables omises : contraintes réglementaires de la construction, aménités locales et accessibilité aux équipements;
- Conclusions en matière de bonnes pratiques pour la construction d'indices hédoniques.

Plan de la présentation

- Quelques rappels théoriques
- Synthèse sur les indices hédoniques
- Données EPTB et autres sources
- Estimation et résultats

Le cadre de Rosen (1974)

- Bien composite \underline{z} de caractéristiques (z_1, \ldots, z_n)
- Un acheteur maximise son utilité $U(x,\underline{z},\alpha_i)$ avec x autres biens de prix unitaire et α_i caractéristiques individuelles, le vendeur sa fonction de profit

Le cadre de Rosen (1974)

- La fonction de prix $p(\underline{z})$ peut être analysée comme l'enveloppe des fonctions d'enchère (des acheteurs et des vendeurs), elle n'est donc pas reliée directement à une fonction d'offre ou de demande.
- Elle doit être non linéaire et ne doit pas contenir de variables sur les caractéristiques des acheteurs (α_i) ou des vendeurs (β_k) .
- Le prix implicite de z_j est $p_j = \frac{\partial P}{\partial z_j} = \frac{\partial U/\partial z_j}{\partial U/\partial x}$ et permet de calculer dans une seconde étape les fonctions de demande et les surplus du consommateur. Cette étape n'est pas utile pour le calcul d'un indice de prix.

Théorie des indices

- Pas uniquement la simple application de la régression de première étape $p(\underline{z})$, dont l'estimation relève de choix statistiques.
- Hypothèse sur la composition du panier de biens de référence.
- Indice de Laspeyres : fixe le panier de biens de référence à la période 0 de caractéristiques X^0 , i.e. $\frac{p(X^0, \beta^t)}{p(X^0, \beta^0)}$.
- Indice de Paasche : fixe le panier de biens de référence à la période t, i.e. $\frac{p(X^t, \beta^t)}{p(X^t, \beta^0)}$.
- Indice de Fisher et de Törnqvist, racine carrée des indices de Laspeyres et Paasche, arithmétique ou géométrique.

La méthode sur périodes adjacentes

- Un indice de prix sur périodes adjacentes se rapproche d'un indice géométrique type Törnqvist.
- Une seule fonction de prix est estimée, qui inclut une (ou plusieurs) indicatrice d'évolution temporelle, $I_{0,t}^{\mathrm{PA}} = \frac{p\left(X^{0 \cup t}, \beta^{t}\right)}{p\left(X^{0 \cup t}, \beta^{0}\right)} = \frac{p\left(X^{0 \cup t}, (\beta_{0}^{t}, \beta_{-0})\right)}{p\left(X^{0 \cup t}, (\beta_{0}^{0}, \beta_{-0})\right)}$.
- Si la fonction de prix explique le log du prix

$$Ln(Prix) = Ln(Prix Ref) + \beta \cdot X + \gamma \cdot \mathbf{1} \{Annee t\} + \varepsilon$$

L'indice est $\exp(\gamma)$, indépendant de la composition du panier des biens de référence.

La méthode sur périodes adjacentes

- Choix retenu pour les indices des terres et prés agricoles (Lefebvre et Rouquette 2012) et des maisons neuves (Balcone 2013).
- Précision aisée à calculer par la Delta-Méthode $\sqrt{n}\left(\exp\left[\widehat{\beta_0}\right]-\exp\left[\beta_0\right]\right) \stackrel{\mathscr{L}}{\longrightarrow} \mathscr{N}\left(0,\mathbb{V}\left(\widehat{\beta_0}\right)\exp\left[2\beta_0\right]\right)$

Les autres méthodes

- Une régression hédonique est estimée à chaque période et la valeur du panier de référence est estimée à chaque date, $\operatorname{Log}(\operatorname{Prix})^{(i)} = \beta^{(i)} \cdot X^{(i)} + \varepsilon^{(i)}$
- La méthode d'imputation est un indice arithmétique (L pour Laspeyres), $I_{0,t}^{\text{Imputation},L} = \sum_{i \in 0} \text{Exp}\left(\left(\widehat{\beta^{(t)}} \widehat{\beta^{(0)}}\right) \cdot X^{(i)}\right)$;

Les autres méthodes

- La méthode par bien de référence est un indice géométrique, $I_{0,t}^{\text{BienRef.,L}} = \operatorname{Exp}\left(\left(\widehat{\beta^{(t)}} \widehat{\beta^{(0)}}\right) \cdot \overline{X^{(0)}}\right);$
- La méthode à qualité fixée est un indice géométrique qui recalcule un prix de référence

$$I_{0,t}^{\text{Qualite Fixee},L} = \operatorname{Exp}\left(\left(\overline{\operatorname{Log}\left(\operatorname{Prix}^{(t)}\right)} - \widehat{\beta^{-(0)}}\overline{X^{(t)}}\right) - \widehat{\alpha^{(0)}}\right);$$

Les autres méthodes

- Ces 2 dernières méthodes sont très proches. L'avantage de la méthode à qualité fixée est de ne nécessiter, pour l'indice de Laspeyres, qu'une estimation de la fonction hédonique à la période 0.
- Potentiel biais car $\mathbb{E}(\text{Log}(\text{Prix})/X) = \text{Log}(\text{Prix})$ mais $\mathbb{E}(\text{Prix}/X) = (\text{Prix}) \cdot \text{Exp}(\sigma^2/2)$
- Précision complexe à calculer.

Biais de variables omises

- Des signes contraires à l'intuition peuvent apparaître du fait de relations complexes entre la fonction de prix et les courbes d'offre et de demande (Pakes 2003);
- Mais cela peut aussi être le cas avec des variables omises (Benkard et Bajari 2005) :
 - Le rendement des caractéristiques inobservées peut différer selon les périodes ;
 - Le contenu moyen des caractéristiques inobservées différe à chaque période, en cas de progrès technique non pris en compte par exemple.
- A relier au mode de prise en compte de l'espace et de l'hétérogénéité. Des analyses désagrégées réduisent ce biais.

Les données EPTB

- Enquête sur le prix des terrains à bâtir, période 2006-2012.
- Environ 400.000 observations.
- Peu de caractéristiques physiques : surface et viabilisation.
- Pas de relation claire entre le prix et la surface.
- Appariement avec les aménités au niveau commune :
 - Distance à la commune de 50.000 habitants et zonage unité urbaine ;
 - Aménités touristiques;
 - Distance aux équipements (train, aéroport, hôpital, supermarché);
 - Risques.

Modèles estimés

- Modèle annuel liant le log du prix (ou prix au m2) aux variables explicatives.
- Goffette-Nagot (2000) pour un cadre théorique, Combes *et al.* (2011) pour une analyse empirique hédonique non centrée sur les indices.
- 4 types de variables : caractéristiques du terrain, de la localisation, contraintes réglementaires, aménités environnementales et autres variables de localisation.
- Analyse de la robustesse de la spécification (analyse semi-paramétrique).
- Différents modèles :
 - Moyenne simple;
 - Indice sur périodes adjacentes;
 - Indice par méthode d'imputation, bien de référence et à qualité fixée.

Le choix des variables explicatives

	(1)	(2)	(3)	(4)
	Log(Prix)	Log(Prix)	Log(Prix)	Log(Prix)
	EPTB	Loc.	COS	Aménités
Surface $(\cdot 10^{-3})$	-0.068	0.041	0.115	0.119
Viabilisé	0.057	0.058	0.053	0.052
Distance commune 50.000 hab.		-0.009	-0.005	-0.005
Grand pôle (GP)		0.248	0.138	0.058
(Ref. Couronne GP)				
Proche plusieurs GP		-0.131	-0.100	-0.089
Petit pôle (PP)		-0.167	-0.135	-0.206
Couronne PP		-0.479	-0.400	-0.408
Hors pôles		-0.406	-0.339	-0.328
COS			0.046	0.039
Haut débit				0.020
Haute montagne				0.452
Plage				0.094
Taux équ. touristiques				0.038
Dist. littoral <30 kms				-0.018
${ m (Dist. littoral < 30kms)}^2$				0.649
Dist. gare				-0.002
Dist. aéroport				-0.002
Dist. hôpital				-0.003
Dist. supermarchés				-0.014
Constante	10.810	11.037	10.258	10.487
Nb. Obs.	368.537	368.537	368.537	368.537
R2 ajusté	0.025	0.284	0.358	0.388

Lecture : Modèle liant le log du prix aux variables explicatives avec des indicatrices d'année pour la période 2006-2012.

L'effet des aménités

- Un modèle très peu explicatif avec les seules variables issues de l'enquête;
- L'effet des unités urbaines est différent avec ou sans contrôle des aménités;
- Les aménités et l'accessibilité aux équipements sont valorisées dans le prix;
- Mais inclure les aménités n'améliore que peu le pouvoir explicatif du modèle;
- Les indicatrices géographiques ou d'unités urbaines captent une partie de l'hétérogénéité spatiale.

Biais de variable omise

Biais de variable omise

- Des évolutions cohérentes mais une interprétation économique qui peut être différente;
- Des résultats proches en incluant les contraintes réglèmentaires, avec ou sans les aménités;
- De fortes divergences de taux de croissance entre 2006 et 2007 et, entre 2008 et 2009;

Comparaison des méthodes

Taux de croissance

Conclusions

- Des indices sensibles à la méthode choisie et au biais de variables omises, avec une forte divergence de la méthode d'imputation en 2009 :
- Les indices construits, quelle que soit la méthode retenue, présentent des évolutions différentes de celle des prix moyens;
- Les aménités et l'accessibilité aux équipements sont valorisées dans le prix, mais influencent peu les indices;

Conclusions

- L'indice de prix des terrains semble refléter des hausses plus élevées en début de période mais moins élevées par la suite.
- Avant la crise, les derniers terrains mis en vente pouvant être de qualité décroissante, il y a une correction à la hausse de la qualité.
 Après la crise, cela peut traduire un effet volume, seuls les terrains de meilleur qualité trouvant acheteurs;
- La prise en compte de l'espace est effectuée à travers les variables explicatives ou une hypothèse d'hétérogénéité spatiale. La dépendance spatiale reste non prise en compte dans la construction des indices de prix.