PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C08G 61/00

A1

(11) Internationale Veröffentlichungsnummer: WO 96/16100

(43) Internationales

Veröffentlichungsdatum: 30. Mai 1996 (30.05.96)

(21) Internationales Aktenzeichen:

PCT/EP95/04360

- (22) Internationales Anmeldedatum: 6. November 1995 (06.11.95)
- (30) Prioritätsdaten:

3465/94

17. November 1994 (17.11.94) CH

- (71) Anmelder (für alle Bestimmungsstaaten ausser US): CIBA-GEIGY AG [CH/CH]; Klybeckstrasse 141, CH-4002 Basel (CH).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): HAFNER, Andreas [CH/CH]; Bendenweg 3, CH-3177 Laupen (CH). VAN DER SCHAAF, Paul, Adriaan [NL/CH]; Impasse du Castel 9, CH-1700 Fribourg (CH). MÜHLEBACH, Andreas [CH/CH]; Les Grands Esserts 7, CH-1782 Belfaux (CH).
- (74) Gemeinsamer Vertreter: CIBA-GEIGY AG; Patentabteilung, Klybeckstrasse 141, CH-4002 Basel (CH).

(81) Bestimmungsstaaten: AL, AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TT, UA, US, UZ, VN, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO Patent (KE, LS, MW, SD, SZ, UG).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: THERMAL METATHESIS POLYMERISATION PROCESS AND A POLYMERISABLE COMPOSITION
- (54) Bezeichnung: THERMISCHES METATHESEPOLYMERISATIONSVERFAHREN UND POLYMERISIERBARE ZUSAM-MENSETZUNG

(57) Abstract

Disclosed is a composition comprising (a) at least one tight cycloolefin and (b) a catalytic quantity of at least one divalent-cationic compound of ruthenium or osmium with a metal atom, to which are bound 1-3 tertiary phosphine ligands with (in the case of ruthenium compounds) sterically exacting substituents, optionally non-photolabile neutral ligands and anions for charge balancing. The following condition must be observed: in ruthenium (tris-phenyl phosphine) dihalides or hydride-halides, the phenyl groups are substituted by C_1 - C_{18} -alkyl, C_1 - C_{18} -alkyl halide or C_1 - C_{18} -alkoxy. The composition is suitable for the production of moulded parts of all kinds and of coatings.

(57) Zusammenfassung

Zusammensetzung aus (a) mindestens einem gespannten Cycloolefin und (b) einer katalytischen Menge mindestens einer zweiwertigkationischen Ruthenium- oder Osmiumverbindung mit einem Metallatom, woran 1 bis 3 tertiäre Phosphinliganden mit im Fall der Rutheniumverbindungen sterisch anspruchsvollen Substituenten, gegebenenfalls nichtphotolabile Neutralliganden und Anionen zum Ladungsausgleich gebunden sind, mit der Massgabe, dass in Ruthenium(trisphenylphosphin)dihalogeniden oder -hydrid-halogeniden die Phenylgruppen mit C₁-C₁₈-Alkyl, C₁-C₁₈-Halogenalkyl oder C₁-C₁₈-Alkoxy substituiert sind. Die Zusammensetzung eignet sich zur Herstellung von Formteilen aller Art und von Beschichtungen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT AU BB BF BG BJ BR CCF CG CCN CCS CZ DE DE SFI FFR	Osterreich Australien Barbados Belgien Burkina Faso Bulgarien Benin Brasilien Belarus Kanada Zeutrale Afrikanische Republik Kongo Schweiz Côte d'Ivoire Kamerun China Tachechoslowakei Tachechische Republik Deutachland Dinemark Spanien Finnland Frankreich	GA GB GE GN GR HU IB IT JP KE KG KP KZ LI LK LV MC MD MG ML MN	Gabon Vereinigtes Königreich Georgien Guinea Griechenland Ungarn Irland Italien Japan Kenya Kirgisistan Demokratische Volksrepublik Korea Republik Korea Republik Korea Licchtenstein Sri Lanka Luxemburg Lettland Monaco Republik Moldau Madagaskar Mali Mongolei	MR MW NE NO NZ PL FT RO RU SD SE SK SN TD TG TJ TT UA US UZ VN	Mauretanien Malawi Niger Niger Niederlande Norwegen Neusceland Polen Portugal Rumanien Russische Föderation Sudan Schweden Slowenien Slowenien Slowenien Slowenien Trachad Togo Tadschikistan Trinidad und Tobago Utraine Vereinigte Staaten von Ameril Usbekistan

Thermisches Metathesepolymerisationsverfahren und polymerisierbare Zusammensetzung

Die vorliegende Erfindung betrifft ein Verfahren zur thermischen Polymerisation von gespannten Cycloolefinen; eine thermisch polymerisierbare Zusammensetzung aus einem solchen Cycloolefin und einem Einkomponenten-Katalysator für die thermisch induzierte Metathesepolymerisation; und mit der thermisch polymerisierbaren Zusammensetzung oder den vernetzten Polymeren beschichtete Trägermaterialien.

Demonceau et al. [Demonceau, A., Noels, A.F., Saive, E., Hubert, A.J., J. Mol. Catal. 76:123-132 (1992)] beschreiben $[(C_6H_5)_3P]_3RuCl_2$, $(p\text{-Cumen})RuCl_2P(C_6H_{11})_3$ und $[(C_6H_5)_3P]_3RuHCl$ als thermische Katalysatoren für die ringöffnende Metathesepolymerisation von Norbornen, einem kondensierten Polycycloolefin. Diese Katalysatoren haben sich auf Grund der zu geringen Aktivität bei der industriellen Herstellung nicht durchsetzen können. Es wird daher vorgeschlagen, die Aktivität durch den Zusatz von Diazoestern zu steigern. Es wird auch erwähnt, dass lediglich $(p\text{-Cumen})RuCl_2P(C_6H_{11})_3$ Norbornen in relativ kurzer Zeit bei 60°C zu polymerisieren vermag. Als weiteres Monomer wird noch Cycloocten erwähnt.

In der WO 93/13171 werden luft- und wasserstabile Einkomponenten- und Zweikomponenten-Katalysatoren auf der Basis von Carbonylgruppen enthaltenden Molybdän- und Wolframverbindungen sowie Ruthenium- und Osmiumverbindungen mit mindestens einem Polyenliganden für die thermische Metathesepolymerisation und eine photoaktivierte Metathesepolymerisation von gespannten Cycloolefinen, besonders Norbornen und Norbornenderivaten, beschrieben. Andere polycyclische - vor allen Dingen nicht-kondensierte polycyclische Cycloolefine werden nicht erwähnt. Die verwendeten Einkomponenten-Katalysatoren der Rutheniumverbindungen, nämlich [Ru(Cumen)Cl₂] und [(C₆H₆)Ru(CH₃CN)₂Cl]+PF₆- können zwar durch UV-Bestrahlung aktiviert werden; die Lagerstabilität der Zusammensetzungen mit Norbornen sind jedoch völlig unzureichend. Diese Katalysatoren vermögen die bekannten Zweikomponenten-Katalysatoren nur unzureichend zu ersetzen.

Es wurde nun überraschend gefunden, dass zweiwertig kationische Ruthenium- und Osmiumkomplexe hochwirksame Einkomponenten-Katalysatoren für die thermisch induzierte Metathesepolymerisation sind, wenn sie mindestens eine Phosphingruppe mit raumerfüllenden Substituenten am Metallatom gebunden enthalten. Es wurde ferner gefunden, dass die Zusammensetzungen luft- und feuchtigkeitsstabil sind und ohne Schutzvor-

kehrungen verarbeitet werden können. Die Ruthenium- und Osmiumkomplexe enthaltenden polymerisierbaren Zusammensetzungen sind darüberhinaus ausreichend stabil, so dass sie nicht vor der gewünschten Verarbeitungsart polymerisieren.

Ein Gegenstand der Erfindung ist eine Zusammensetzung aus (a) mindestens einem gespannten Cycloolefin, und (b) einer katalytischen Menge mindestens einer zweiwertigkationischen Ruthenium- oder Osmiumverbindung, wobei die Ruthenium- oder Osmiumverbindung ein Metallatom enthält, woran 1 bis 3 tertiäre Phosphinliganden mit im Fall der Rutheniumverbindungen sterisch anspruchsvollen Substituenten, gegebenenfalls nicht-photolabile Neutralliganden und Anionen zum Ladungsausgleich gebunden sind, mit der Massgabe, dass in Ruthenium(trisphenylphosphin)dihalogeniden oder -hydridhalogeniden die Phenylgruppen mit C₁-C₁₈-Alkyl, C₁-C₁₈-Halogenalkyl oder C₁-C₁₈-Alkoxy substituiert sind.

Bei den cyclischen Olefinen kann es sich um monocyclische oder polycyclische kondensierte beziehungsweise überbrückte Ringsysteme, zum Beispiel mit zwei bis vier Ringen, handeln, die unsubstituiert oder substituiert sind und Heteroatome wie zum Beispiel O, S, N oder Si in einem oder mehreren Ringen und/oder kondensierte aromatische oder heteroaromatische Ringe wie zum Beispiel o-Phenylen, o-Naphthylen, o-Pyridinylen oder o-Pyrimidinylen enthalten können. Die einzelnen cyclischen Ringe können 3 bis 16, bevorzugt 3 bis 12 und besonders bevorzugt 3 bis 8 Ringglieder enthalten. Die cyclischen Olefine können weitere nichtaromatische Doppelbindungen enthalten, je nach Ringgrösse bevorzugt 2 bis 4 solcher zusätzlichen Doppelbindungen. Bei den Ringsubstituenten handelt es sich um solche, die inert sind, das heisst, die die chemische Stabilität der Ruthenium- und Osmiumverbindungen nicht beeinträchtigen. Bei den Cycloolefinen handelt es sich um gespannte Ringe beziehungsweise Ringsysteme.

Wenn die cyclischen Olefine mehr als eine Doppelbindung enthalten, zum Beispiel 2 bis 4 Doppelbindungen, können sich abhängig von den Reaktionsbedingungen, dem gewählten Monomer und der Katalysatormenge, auch vernetzte Polymerisate bilden.

In einer bevorzugten Ausführungsform des erfindungsgemässen Verfahrens entsprechen die Cycloolefine der Formel I

worin

Q₁ ein Rest mit mindestens einem Kohlenstoffatom ist, der zusammen mit der -CH=CQ2-Gruppe einen mindestens 3-gliedrigen alicyclischen Ring bildet, welcher gegebenenfalls ein oder mehrere Heteroatome ausgewählt aus der Gruppe bestehend aus Silicium, Phosphor, Sauerstoff, Stickstoff und Schwefel enthält; und der unsubstituiert oder mit Halogen, =O, -CN, -NO₂, $R_1R_2R_3Si$ -(O)_u-, -COOM, -SO₃M, -PO₃M, $- {\rm COO(M_1)_{1/2}, -SO_3(M_1)_{1/2}, -PO_3(M_1)_{1/2}, C_1-C_{20}-Alkyl, C_1-C_{20}-Hydroxyalkyl} \\$ C_1 - C_{20} -Halogenalkyl, C_1 - C_6 -Cyanoalkyl, C_3 - C_8 -Cycloalkyl, C_6 - C_{16} -Aryl, $C_7-C_{16}-Aralkyl,\ C_3-C_6-Heterocycloalkyl,\ C_3-C_{16}-Heteroaryl,\ C_4-C_{16}-Heteroaralkyl$ oder R₄-X- substituiert ist; oder bei dem zwei benachbarte C-Atome mit -CO-O-COoder -CO-NR₅-CO- substituiert sind; oder bei dem gegebenenfalls an benachbarten Kohlenstoffatomen des alicyclischen Rings ein alicyclischer, aromatischer oder heteroaromatischer Ring ankondensiert ist, welcher unsubstituiert oder mit Halogen, -CN, -NO₂, $R_6R_7R_8Si$ -(O)_u-, -COOM, -SO₃M, -PO₃M, -COO(M₁)_{1/2}, -SO₃(M₁)_{1/2}, $-PO_3(M_1)_{1/2}, C_1-C_{20}-Alkyl, \ C_1-C_{20}-Halogenalkyl, C_1-C_{20}-Hydroxyalkyl,$ $C_1-C_6-Cyanoalkyl,\ C_3-C_8-Cycloalkyl,\ C_6-C_{16}-Aryl,\ C_7-C_{16}-Aralkyl,\ C_3-C_6-Hetero-C_{16}-Aryl,\ C_{16}-Aralkyl,\ C_{16}-C_{16}-Aralkyl,\ C_{16}-C_{16}-Aralkyl$ cycloalkyl, C₃-C₁₆-Heteroaryl, C₄-C₁₆-Heteroaralkyl oder R₁₃-X₁- substituient ist;

- X und X_1 unabhängig voneinander für -O-, -S-, -CO-, -SO-, -SO₂-, -O-C(O)-, -C(O)-O-, -C(O)-NR₅-, -NR₁₀-C(O)-, -SO₂-O- oder -O-SO₂- stehen;
- R_1 , R_2 und R_3 unabhängig voneinander C_1 - C_{12} -Alkyl, C_1 - C_{12} -Perfluoralkyl, Phenyl oder Benzyl bedeuten;
- $\rm R_4$ und $\rm R_{13}$ unabhängig C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₂₀-Hydroxyalkyl, C₃-C₈-Cycloalkyl, C₆-C₁₆-Aryl, C₇-C₁₆-Aralkyl bedeuten;
- R₅ und R₁₀ unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, Phenyl oder Benzyl bedeuten, wobei die Alkylgruppen ihrerseits unsubstituiert oder mit C₁-C₁₂-Alkoxy oder C₃-C₈-Cycloalkyl substituiert sind;
- R_6 , R_7 und R_8 unabhängig voneinander C_1 - C_{12} -Alkyl, C_1 - C_{12} -Perfluoralkyl, Phenyl oder Benzyl bedeuten;
- M für ein Alkalimetall und M1 für ein Erdalkalimetall stehen; und

WO 96/16100 PCT/EP95/04360

u für 0 oder 1 steht:

wobei der mit Q_1 gebildete alicyclische Ring gegebenenfalls weitere nicht-aromatische Doppelbindungen enthält;

- Q₂ Wasserstoff, C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{12} -Alkoxy, Halogen, -CN, R_{11} - X_2 darstellt;
- $\begin{array}{c} R_{11}\ C_1\text{-}C_{20}\text{-}Alkyl,\ C_1\text{-}C_{20}\text{-}Halogenalkyl,\ C_1\text{-}C_{20}\text{-}Hydroxyalkyl,\ C_3\text{-}C_8\text{-}Cycloalkyl,\ C_6\text{-}C_{16}\text{-}Aryl\ oder\ C_7\text{-}C_{16}\text{-}Aralkyl\ bedeutet;} \end{array}$
- X_2 -C(O)-O- oder -C(O)-NR₁₂- ist;

R₁₂ Wasserstoff, C₁-C₁₂-Alkyl, Phenyl oder Benzyl darstellt;

wobei die vorgenannten Cycloalkyl-, Heterocycloalkyl-, Aryl-, Heteroaryl-, Aralkyl- und Heteroaralkylgruppen unsubstituiert oder mit C_1 - C_{12} -Alkyl, C_1 - C_{12} -Alkoxy, -NO₂, -CN oder Halogen substituiert sind, und wobei die Heteroatome der vorgenannten Heterocycloalkyl-, Heteroaryl- und Heteroaralkylgruppen aus der Gruppe -O-, -S-, -NR₉- und -N= ausgewählt sind; und

 R_9 Wasserstoff, C_1 - C_{12} -Alkyl, Phenyl oder Benzyl darstellt.

Ankondensierte alicyclische Ringe enthalten bevorzugt 3 bis 8, besonders bevorzugt 4 bis 7 und insbesondere bevorzugt 5 oder 6 Ring-C-Atome.

Ist in den Verbindungen der Formel I ein asymmetrisches Zentrum vorhanden, so hat dies zur Folge, daß die Verbindungen in optisch isomeren Formen auftreten können. Einige Verbindungen der Formel I können in tautomeren Formen (z.B. Keto-Enol-Tautomerie) vorkommen. Liegt eine aliphatische C=C-Doppelbindung vor, so kann auch geometrische Isomerie (E-Form oder Z-Form) auftreten. Ferner sind auch Exo-Endo-Konfigurationen möglich. Die Formel I umfaßt somit alle möglichen Stereoisomeren, die in Form von Enantiomeren, Tautomeren, Diastereomeren, E/Z-Isomeren oder deren Gemische vorliegen.

In den Definitionen der Substituenten können die Alkyl-, Alkenyl- und Alkinylgruppen geradkettig oder verzweigt sein. Dasselbe gilt auch für den bzw. jeden Alkylteil von Alkoxy-, Alkylthio-, Alkoxycarbonyl- und von weiteren Alkyl-enthaltenden Gruppen. Diese Alkylgruppen enthalten bevorzugt 1 bis 12, bevorzugter 1 bis 8 und besonders bevorzugt 1 bis 4 C-Atome. Diese Alkenyl- und Alkinylgruppen enthalten bevorzugt 2 bis 12, bevorzugter 2 bis 8 und besonders bevorzugt 2 bis 4 C-Atome.

Alkyl umfaßt beispielsweise Methyl, Ethyl, Isopropyl, n-Propyl, n-Butyl, iso-Butyl, sek-Butyl, tert-Butyl sowie die verschiedenen isomeren Pentyl-, Hexyl-, Heptyl-, Octyl-,

Nonyl-, Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl, Pentadecyl, Hexadecyl-, Heptadecyl-, Octadecyl-, Nonadecyl- und Eicosylradikale.

Hydroxyalkyl umfaßt beispielsweise Hydroxymethyl, Hydroxyethyl, 1-Hydroxyisopropyl, 1-Hydroxy-n-Propyl, 2-Hydroxy-n-Butyl, 1-Hydroxy-iso-Butyl, 1-Hydroxy-sek-Butyl, 1-Hydroxy-tert-Butyl sowie die verschiedenen isomeren Pentyl-, Hexyl-, Heptyl-, Octyl-, Nonyl-, Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl, Pentadecyl, Hexadecyl-, Heptadecyl, Octadecyl-, Nonadecyl- und Eicosylradikale.

Halogenalkyl umfaßt beispielsweise Fluormethyl, Difluormethyl, Trifluormethyl, Chlormethyl, Dichlormethyl, Trichlormethyl, 2,2,2-Trifluorethyl, 2-Fluorethyl, 2-Chlorethyl, 2,2,2-Trichlorethyl sowie halogenierte, besonders fluorierte oder chlorierte Alkane, wie zum Beispiel der Isopropyl-, n-Propyl-, n-Butyl-, iso-Butyl-, sek-Butyl-, tert-Butyl-, und der verschiedenen isomeren Pentyl-, Hexyl-, Heptyl-, Octyl-, Nonyl-, Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl-, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecyl-, Nonadecyl- und Eicosylradikale.

Alkenyl umfaßt zum Beispiel Propenyl, Isopropenyl, 2-Butenyl, 3-Butenyl, Isobutenyl, n-Penta-2,4-dienyl, 3-Methyl-but-2-enyl, n-Oct-2-enyl, n-Dodec-2-enyl, iso-Dodecenyl, n-Octadec-2-enyl, n-Octadec-4-enyl.

Beim Cycloalkyl handelt es sich bevorzugt um C_5 - C_8 -Cycloalkyl, besonders um C_5 - oder C_6 -Cycloalkyl. Einige Beispiele sind Cyclopropyl, Dimethylcyclopropyl, Cyclobutyl, Cyclopentyl, Methylcyclopentyl, Cyclohexyl, Cyclohexyl, Cycloheptyl und Cyclooctyl.

Cyanoalkyl umfaßt beispielsweise Cyanomethyl (Methylnitril), Cyanoethyl (Ethylnitril), 1-Cyanoisopropyl, 1-Cyano-n-Propyl, 2-Cyano-n-Butyl, 1-Cyano-iso-Butyl, 1-Cyanosek-Butyl, 1-Cyano-tert-Butyl sowie die verschiedenen isomeren Cyanopentyl- und -hexylreste.

Aralkyl enthält bevorzugt 7 bis 12 C-Atome und besonders bevorzugt 7 bis 10 C-Atome. Es kann sich zum Beispiel um Benzyl, Phenethyl, 3-Phenylpropyl, α -Methylbenzyl, Phenbutyl oder α,α -Dimethylbenzyl handeln.

Aryl enthält bevorzugt 6 bis 10 C-Atome. Es kann sich beispielsweise um Phenyl, Pentalin, Inden, Naphthalin, Azulin oder Anthracen handeln.

Heteroaryl enthält bevorzugt 4 oder 5 C-Atome und ein oder zwei Heteroatome aus der Gruppe O, S und N. Es kann sich beispielsweise um Pyrrol, Furan, Thiophen, Oxazol, Thiazol, Pyridin, Pyrazin, Pyrimidin, Pyridazin, Indol, Purin oder Chinolin handeln.

Heterocycloalkyl enthält bevorzugt 4 oder 5 C-Atome und ein oder zwei Heteroatome aus der Gruppe O, S und N. Es kann sich beispielsweise um Oxiran, Azirin, 1,2-Oxathiolan, Pyrazolin, Pyrrolidin, Piperidin, Piperazin, Morpholin, Tetrahydrofuran oder Tetrahydrothiophen handeln.

Alkoxy ist beispielsweise Methoxy, Ethoxy, Propyloxy, i-Propyloxy, n-Butyloxy, i-Butyloxy, sek.-Butyloxy und t-Butyloxy.

Unter Alkalimetall ist im Rahmen der vorliegenden Erfindung Lithium, Natrium, Kalium, Rubidium und Cäsium, insbesondere Lithium, Natrium und Kalium zu verstehen.

Unter Erdalkalimetall ist im Rahmen der vorliegenden Erfindung Beryllium, Magnesium, Calcium, Strontium und Barium, insbesondere Magnesium und Calcium zu verstehen.

In den obigen Definitionen ist unter Halogen, Fluor, Chlor, Brom und Jod vorzugsweise Fluor, Chlor und Brom zu verstehen.

Für das erfindungsgemäße Verfahren besonders gut geeignete Verbindungen der Formel I sind jene, worin Q_2 Wasserstoff bedeutet.

Ferner sind für die Polymerisation Verbindungen der Formel I bevorzugt, worin der alicyclische Ring, den Q₁ zusammen mit der -CH=CQ₂- Gruppe bildet, 3 bis 16, bevorzugter 3 bis 12 und besonders bevorzugt 3 bis 8 Ringatome aufweist, und wobei es sich um ein monocyclisches, bicyclischen, tricyclisches oder tetracyclisches Ringsystem handeln kann.

Mit besonderem Vorteil läßt sich das erfindungsgemäße Verfahren mit denjenigen Verbindungen der Formel I durchführen, worin

Q₁ ein Rest mit mindestens einem Kohlenstoffatom ist, der zusammen mit der -CH=CQ₂-Gruppe einen 3- bis 20-gliedrigen alicyclischen Ring bildet, welcher gegebenenfalls ein oder mehrere Heteroatome ausgewählt aus der Gruppe Silicium, Sauerstoff, Stickstoff und Schwefel enthält; und der unsubstituiert oder mit Halogen, =O, -CN, -NO₂, $R_1R_2R_3Si$ - $(O)_u$ -, -COOM, -SO₃M, -PO₃M, -COO(M_1)_{1/2}, -SO₃(M_1)_{1/2}, -PO₃(M_1)_{1/2}, C_1 - C_{12} -Alkyl, C_1 - C_{12} -Halogenalkyl, C_1 - C_{12} -Hydroxyalkyl, C_1 - C_4 -Cyanoalkyl, C_3 - C_6 -Cycloalkyl, C_6 - C_{12} -Aryl, C_7 - C_{12} -Aralkyl, C_3 - C_6 -Heterocycloalkyl, C_3 - C_{12} -Heteroaryl, C_4 - C_{12} -Heteroaralkyl oder R_4 -X- substituiert ist; oder bei dem zwei benachbarte C-Atome in diesem Rest Q_1 mit -CO-O-CO-oder -CO-NR₅-CO- substituiert sind; oder bei dem gegebenenfalls an benachbarten Kohlenstoffatomen ein alicyclischer, aromatischer oder heteroaromatischer Ring ankondensiert ist, welcher unsubstituiert oder mit Halogen, -CN, -NO₂, $R_6R_7R_8Si$ -, -COOM, -SO₃M, -PO₃M, -COO(M_1)_{1/2}, -SO₃(M_1)_{1/2}, -PO₃(M_1)_{1/2}, C_1 - C_{12} -Alkyl, C_1 - C_{12} -Halogenalkyl, C_1 - C_{12} -Hydroxyalkyl, C_1 - C_4 -Cyanoalkyl, C_3 - C_6 -Cycloalkyl, C_6 - C_{12} -Aryl, C_7 - C_{12} -Aralkyl, C_3 - C_6 -Heterocycloalkyl, C_3 - C_1 -Heteroaryl, C_4 - C_{12} -Heteroaralkyl oder R_{13} - X_1 - substituiert ist;

- X und X_1 unabhängig voneinander für -O-, -S-, -CO-, -SO-, -SO₂-, -O-C(O)-, -C(O)-O-, -C(O)-NR₅-, -NR₁₀-C(O)-, -SO₂-O- oder -O-SO₂- stehen;
- R_1 , R_2 und R_3 unabhängig voneinander C_1 - C_6 -Alkyl, C_1 - C_6 -Perfluoralkyl, Phenyl oder Benzyl bedeuten;
- M für ein Alkalimetall und M_I für ein Erdalkalimetall stehen;
- R_4 und R_{13} unabhängig voneinander C_1 - C_{12} -Alkyl, C_1 - C_{12} -Halogenalkyl, C_1 - C_{12} -Hydroxyalkyl, C_3 - C_8 -Cycloalkyl, C_6 - C_{12} -Aryl, C_7 - C_{12} -Aralkyl bedeuten;
- R_5 und R_{10} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, Phenyl oder Benzyl bedeutet, wobei die Alkylgruppen ihrerseits unsubstituiert oder mit C_1 - C_6 -Alkoxy oder C_3 - C_6 -Cycloalkyl substituiert sind;
- R_6 , R_7 und R_8 unabhängig voneinander C_1 - C_6 -Alkyl, C_1 - C_6 -Perfluoralkyl, Phenyl oder Benzyl darstellen;
- u für 0 oder 1 steht;
- wobei der mit Q_1 gebildete alicyclische Ring gegebenenfalls weitere nichtaromatische Doppelbindungen enthält;
- $\rm Q_2$ Wasserstoff, $\rm C_1\text{-}C_{12}\text{-}Alkyl,\,C_1\text{-}C_{12}\text{-}Halogenalkyl,\,C_1\text{-}C_6\text{-}Alkoxy,\,Halogen,\,-CN,}$ $\rm R_{11}\text{-}X_2\text{-}$ bedeutet;
- R_{11} C_1 - C_{12} -Alkyl, C_1 - C_{12} -Halogenalkyl, C_1 - C_{12} -Hydroxyalkyl, C_3 - C_6 -Cycloalkyl, C_6 - C_{12} -Aryl oder C_7 - C_{12} -Aralkyl darstellt;
- X_2 -C(O)-O- oder -C(O)-NR₁₂- ist; und
- R₁₂ Wasserstoff, C₁-C₆-Alkyl, Phenyl oder Benzyl bedeutet;
- wobei die Cycloalkyl-, Heterocycloalkyl-, Aryl-, Heteroaryl-, Aralkyl- und Heteroaralkyl- gruppen unsubstituiert oder mit C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, -NO₂, -CN oder

WO 96/16100

Halogen substituiert sind, und wobei die Heteroatome der Heterocycloalkyl-, Heteroaryl- und Heteroaralkylgruppen aus der Gruppe -O-, -S-, -NR₉- und -N= ausgewählt sind; und

R₉ Wasserstoff, C₁-C₆-Alkyl, Phenyl oder Benzyl bedeutet.

Aus dieser Gruppe sind diejenigen Verbindungen der Formel I bevorzugt, worin Q₁ ein Rest mit mindestens einem Kohlenstoffatom ist, der zusammen mit der -CH=CQ₂-Gruppe einen 3- bis 10-gliedrigen alicyclischen Ring bildet, der gegebenenfalls ein Heteroatom ausgewählt aus der Gruppe Silicium, Sauerstoff, Stickstoff und Schwefel enthält, und der unsubstituiert oder mit Halogen, -CN, -NO₂, R₁R₂R₃Si-, -COOM, -SO₃M, -PO₃M, -COO(M₁)_{1/2}, -SO₃(M₁)_{1/2}, -PO₃(M₁)_{1/2}, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Hydroxyalkyl, C₁-C₄-Cyanoalkyl, C₃-C₆-Cycloalkyl, Phenyl, Benzyl oder R₄-X- substituiert ist; oder bei dem an benachbarten Kohlenstoffatomen gegebenenfalls ein alicyclischer, aromatischer oder heteroaromatischer Ring ankondensiert ist, welcher unsubstituiert oder durch Halogen, -CN, -NO₂, R₆R₇R₈Si-, -COOM, -SO₃M, -PO₃M, -COO(M₁)_{1/2}, -SO₃(M₁)_{1/2}, -PO₃(M₁)_{1/2}, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Hydroxyalkyl, C₁-C₄-Cyanoalkyl, C₃-C₆-Cycloalkyl, Phenyl, Benzyl oder R₁₃-X₁- substituiert ist;

 R_1 , R_2 und R_3 unabhängig voneinander C_1 - C_4 -Alkyl, C_1 - C_4 -Perfluoralkyl, Phenyl oder Benzyl bedeuten;

M für ein Alkalimetall und M1 für ein Erdalkalimetall stehen;

 $\rm R_4$ und $\rm R_{13}$ unabhängig voneinander $\rm C_1$ -C_6-Alkyl, $\rm C_1$ -C_6-Halogenalkyl, $\rm C_1$ -C_6-Hydroxyalkyl oder $\rm C_3$ -C_6-Cycloalkyl bedeuten;

X und X₁ unabhängig voneinander für -O-, -S-, -CO-, -SO- oder -SO₂- stehen;

 R_6 , R_7 und R_8 unabhängig voneinander C_1 - C_4 -Alkyl, C_1 - C_4 -Perfluoralkyl, Phenyl oder Benzyl darstellen;

und Q2 Wasserstoff bedeutet.

Insbesondere eignet sich das erfindungsgemäße Verfahren zur Polymerisation von Norbornen und Norbornenderivaten. Von diesen Norbornenderivaten sind diejenigen besonders bevorzugt, die entweder der Formel II

worin

X₃ -CHR₁₆-, Sauerstoff oder Schwefel;

 R_{14} und R_{15} unabhängig voneinander Wasserstoff, -CN, Trifluormethyl, (CH $_3$) $_3$ Si-O-, (CH $_3$) $_3$ Si- oder -COOR $_{17}$; und

 R_{16} und R_{17} unabhängig voneinander Wasserstoff, C_1 - C_{12} -Alkyl, Phenyl oder Benzyl bedeuten;

oder der Formel III

worin

X₄ -CHR₁₉-, Sauerstoff oder Schwefel;

 R_{19} Wasserstoff, C_1 - C_{12} -Alkyl, Phenyl oder Benzyl; und

R₁₈ Wasserstoff, C₁-C₆-Alkyl oder Halogen bedeuten;

oder der Formel IV

$$R_{20}$$
 (IV),

worin

X₅ -CHR₂₂-, Sauerstoff oder Schwefel;

R₂₂ Wasserstoff, C₁-C₁₂-Alkyl, Phenyl oder Benzyl;

 R_{20} und R_{21} unabhängig voneinander Wasserstoff, CN, Trifluormethyl, (CH $_3$) $_3$ Si-O-, (CH $_3$) $_3$ Si- oder -COOR $_{23}$; und

R₂₃ Wasserstoff, C₁-C₁₂-Alkyl, Phenyl oder Benzyl bedeuten; oder der Formel V entsprechen,

worin

X₆ -CHR₂₄-, Sauerstoff oder Schwefel;

R₂₄ Wasserstoff, C₁-C₁₂-Alkyl, Phenyl oder Benzyl;

Y Sauerstoff oder N-R₂₅; und

R₂₅ Wasserstoff, Methyl, Ethyl oder Phenyl bedeuten.

Folgende Verbindungen der Formel I sind für das erfindungsgemäße Polymerisationsverfahren besonders gut geeignet, wobei bi- und polycyclische Systeme durch Diels-Alder-Reaktionen zugänglich sind:

(6),
$$COO(CH_2)_5CH_3$$
 (7), $COO(CH_2)_5CH_3$

(8),
$$COO(CH_2)_{11}CH_3$$
 (9),

$$P(C_6H_5)_2 P(C_6H_5)_2$$
 (12),

(14),

$$Si(CH_3)_3$$
 (13),

In einer bevorzugten Ausführungsform enthalten die Cycloolefine nur Kohlenstoff- und Wasserstoffatome, und bevorzugt handelt es sich um 5- oder 6-gliedrige Ringe oder Ringsysteme mit einem bis drei 5- oder 6-gliedrigen Ringen, zum Beispiel um Norbornen, alkylierte Norbornene und Dicyclopentadien.

Die Ruthenium- und Osmiumverbindungen enthalten bevorzugt 2 oder 3 tertiäre Phosphingruppen. Unter Phosphingruppen werden im Rahmen der Erfindung tertiäre Phosphine verstanden. Die Anzahl zusätzlicher nicht photolabiler Neutralliganden richtet sich zum einen nach der Anzahl der Phosphinliganden und zum anderen nach der Wertigkeit der Neutralliganden. Einbindige Neutralliganden sind bevorzugt.

In einer bevorzugten Ausführungsform enthalten die erfindungsgemäss zu verwendenden zweiwertig-kationischen Ruthenium- und Osmiumverbindungen 3 Phosphingruppen und zwei einwertige Anionen zum Ladungsausgleich; oder 3 Phosphingruppen, zwei einbindige oder einen zweibindigen nicht-photolabilen Neutralliganden, und zwei einwertige Anionen zum Ladungsausgleich; oder 2 Phosphingruppen, einen monoanionischen, zusätzlich einbindigen nicht-photolabilen Neutralliganden, und ein einwertiges Anion zum Ladungsausgleich.

Nicht-photolabiler Ligand (auch als stark koordinierender Ligand bezeichnet) bedeutet im Rahmen der vorliegenden Erfindung, daß der Ligand bei Bestrahlung des Katalysators im sichtbaren oder nahen ultravioletten Spektralbereich nicht oder nur in unwesentlichem Ausmaß vom Katalysator dissoziiert.

Bei den monoanionischen, zusätzlich einbindigen nicht-photolabilen Neutralliganden handelt es sich bevorzugt um Cyclopentadienyl oder Indenyl, die unsubstituiert oder mit ein bis fünf C_1 - C_4 -Alkyl, besonders Methyl, oder -Si(C_1 - C_4 -Alkyl), besonders -Si(CH_3)₃ substituiert sind.

Bei den nicht-photolabilen Liganden kann es sich zum Beispiel um die Heteroatome O, S oder N enthaltende und solvatisierende anorganische und organische Verbindungen, die häufig auch als Lösungsmittel verwendet werden, handeln. Beispiele für solche Verbindungen sind H₂O, H₂S, NH₃; gegebenenfalls halogenierte, besonders fluorierte oder chlorierte aliphatische oder cycloaliphatische Alkohole oder Merkaptane mit 1 bis 18, bevorzugt 1 bis 12 und besonders bevorzugt 1 bis 6 C-Atomen, aromatische Alkohole oder Thiole mit 6 bis 18, bevorzugt 6 bis 12 C-Atomen, araliphatische Alkohole oder Thiole mit 7 bis 18, bevorzugt 7 bis 12 C-Atomen; offenkettige oder cyclische und aliphatische, araliphatische oder aromatische Ether, Thioether, Sulfoxide, Sulfone, Ketone, Aldehyde, Carbonsäureester, Lactone, gegebenenfalls N-C₁-C₄-mono- oder -dialkylierte Carbonsäureamide mit 2 bis 20, bevorzugt 2 bis 12 und besonders 2 bis 6 C-Atomen, und

gegebenenfalls $N-C_1-C_4$ -alkylierte Lactame; offenkettige oder cyclische und aliphatische, araliphatische oder aromatische, primäre, sekundäre und tertiäre Amine mit ein bis 20, bevorzugt 1 bis 12 und besonders bevorzugt 1 bis 6 C-Atomen.

Beispiele für solche nicht-photolabilen Liganden sind Methanol, Ethanol, n- und i-Propanol, n-, i- und t-Butanol, 1,1,1-Trifluorethanol, Bistrifluormethylmethanol, Tristrifluormethylmethanol, Pentanol, Hexanol, Methyl- oder Ethylmerkaptan, Cyclopentanol, Cyclohexanol, Cyclohexylmerkaptan, Phenol, Methylphenol, Fluorphenol, Phenylmerkaptan, Benzylmerkaptan, Benzylalkohol, Diethylether, Dimethylether, Diisopropylether, Di-n- oder Di-t-butylether, Tetrahydrofuran, Tetrahydropyran, Dioxan, Diethylthioether, Tetrahydrothiophen, Dimethylsulfoxid, Diethylsulfoxid, Tetra- und Pentamethylensulfoxid, Dimethylsulfon, Diethylsulfon, Tetra- und Pentamethylensulfon, Aceton, Methylethylketon, Diethylketon, Phenylmethylketon, Methylisobutylketon, Benzylmethylketon, Acetaldehyd, Propionaldehyd, Trifluoracetaldehyd, Benzaldehyd, Essigsäureethylester, Butyrolacton, Dimethylformamid, Dimethylacetamid, Pyrrolidon und N-Methylpyrrolidon, Indenyl, Cyclopentadienyl, Methyl- oder Dimethyl- oder Pentamethylcyclopentadienyl und Trimethylsilylcyclopentadienyl.

Die primären Amine können der Formel $R_{26}NH_2$, die sekundären Amine der Formel $R_{26}R_{27}NH$ und die tertiären Amine der Formel $R_{26}R_{27}R_{28}N$ entsprechen, worin R_{26} C_1 - C_{18} -Alkyl, unsubstituiertes oder mit C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes C_5 -oder C_6 -Cycloalkyl, oder unsubstituiertes oder mit C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes C_6 - C_{18} -Aryl oder C_7 - C_{12} -Aralkyl darstellt, R_{27} unabhängig die Bedeutung von R_{26} hat oder R_{26} und R_{27} gemeinsam Tetramethylen, Pentamethylen, 3-Oxa-1,5-pentylen oder -CH₂-CH₂-NH-CH₂-CH₂- oder -CH₂-CH₂-N(C_1 - C_4 -Alkyl)-CH₂-CH₂- bedeuten, und R_{28} unabhängig die Bedeutung von R_{26} hat. Das Alkyl enthält bevorzugt 1 bis 12 und besonders bevorzugt 1 bis 6 C-Atome. Das Aryl enthält bevorzugt 6 bis 12 C-Atome und das Aralkyl enthält bevorzugt 7 bis 9 C-Atome. Beispiele für Amine sind Methyl-, Dimethyl-, Trimethyl-, Ethyl-, Diethyl-, Triethyl-, Methyl-ethyl-, Dimethyl-ethyl, n-Propyl-, Di-n-propyl-, Tri-n-butyl-, Cyclohexyl-, Phenyl- und Benzylamin, sowie Pyrrolidin, N-Methylpyrrolidin, Piperidin, Piperazin, Morpholin und N-Methylmorpholin.

In einer bevorzugten Untergruppe handelt es sich bei den nicht-photolabilen Liganden um H_2O , NH_3 , unsubstituierte oder teilweise oder vollständig fluorierte C_1 - C_4 -Alkanole oder um Cyclopentadienyl. Ganz besonders bevorzugt sind H_2O , NH_3 , Cyclopentadienyl, Methanol und Ethanol.

Unter sterisch anspruchsvollen Substituenten werden im Rahmen der Erfindung solche verstanden, die die Ruthenium- und Osmiumatome sterisch abschirmen. So wurde überraschend gefunden, dass lineare Alkylgruppen als Substituenten in den Phosphinliganden Rutheniumverbindungen ohne jede thermische Aktivität für die Metathesepolymerisation von gespannten Cycloolefinen ergeben. Es wurde auch beobachtet, dass bei Osmiumverbindungen überraschend lineare Alkylgruppen als Substituenten in den Phosphinliganden eine ausgezeichnete thermokatalytische Aktivität für die Metathesepolymerisation von gespannten Cycloolefinen besitzen; bevorzugt verwendet man aber auch für die Osmiumverbindungen Phosphinliganden mit sterisch anspruchsvollen Substituenten. Es wurde ferner gefunden, dass die sterische Abschirmung von Triphenylphosphinliganden bei Ruthenium-dihalogeniden und Ruthenium-hydrid-halogeniden ungenügend ist und solche Katalysatoren nur eine mässige katalytische Aktivität für die Metathesepolymerisation von gespannten Cycloolefinen besitzen. Die katalytische Aktivität kann überraschend erheblich gesteigert werden, wenn die tertiären Phosphingruppen mit Alkyl oder Alkoxygruppen substituiertes Phenyl enthalten.

Die Phosphinliganden entsprechen bevorzugt den Formeln VI oder VIa

$$PR_{29}R_{30}R_{31}$$
 (VI),

$$R_{29}R_{30}P-Z_1-PR_{29}R_{30}$$
 (VIa),

worin

 R_{29} , R_{30} und R_{31} unabhängig voneinander α -verzweigtes C_3 - C_{20} -Alkyl; unsubstituiertes oder mit C_1 - C_{18} -Alkyl, C_1 - C_{18} -Halogenalkyl oder C_1 - C_{18} -Alkoxy substituiertes C_4 - C_{12} -Cycloalkyl; oder unsubstituiertes oder mit C_1 - C_{18} -Alkyl, C_1 - C_{18} -Halogenalkyl oder C_1 - C_{18} -Alkoxy substituiertes C_6 - C_{16} -Aryl;

die Reste R_{29} und R_{30} gemeinsam unsubstituiertes oder mit C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Alkoxy substituiertes Tetra- oder Pentamethylen bedeuten, oder unsubstituiertes oder mit C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Alkoxy substituiertes und mit 1 oder 2 1,2-Phenylen kondensiertem Tetra- oder Pentamethylen darstellen, und R_{31} die zuvor angegebene Bedeutung hat; und

 Z_1 lineares oder verzweigtes, unsubstituiertes oder mit C_1 - C_4 -Alkoxy substituiertes C_2 - C_{12} -Alkylen, unsubstituiertes oder mit C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes 1,2- oder 1,3-Cycloalkylen mit 4 bis 8 C-Atomen, oder unsubstituiertes oder mit

WO 96/16100 PCT/EP95/04360

 C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes 1,2 oder 1,3-Heterocycloalkylen mit 5 oder 6 Ringgliedern und einem Heteroatom aus der Gruppe O oder N bedeutet.

Bei den Resten R_{29} , R_{30} und R_{31} handelt es sich bevorzugt um gleiche Reste. Substituenten befinden sich bevorzugt in einer oder beiden Ortho- und/oder Metastellungen zum C-Atom der P-C-Bindung im Phosphin.

 R_{29} , R_{30} und R_{31} kann als Alkyl 3 bis 12, bevorzugter 3 bis 8, und besonders bevorzugt 3 bis 6 C-Atome enthalten. Besonders bevorzugt handelt es sich um α -verzweigtes Alkyl, zum Beispiel der Formel - $CR_bR_cR_d$, worin R_b H oder C_1 - C_{12} -Alkyl, R_c C_1 - C_{12} -Alkyl, und R_d C_1 - C_{12} -Alkyl oder unsubstituiertes oder mit C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes Phenyl darstellen, und die Summe der C-Atome im Rest - $CR_bR_cR_d$ 3 bis 18 beträgt. Beispiele für Alkyl sind i-Propyl, i- und t-Butyl, 1-Methyl- oder 1,1-Dimethylprop-1-yl, 1-Methyl- oder 1,1-Dimethylbut-1-yl, 1-Methyl- oder 1,1-Dimethylpent-1-yl, 1-Methyl- oder 1,1-Dimethylhex-1-yl, 1-Methyl- oder 1,1-Dimethylhex-1-yl, 1-Methyl- oder 1,1-Dimethyl- od

Bei den verwendeten Osmiumverbindungen kann R_{29} , R_{30} und R_{31} auch lineares Alkyl mit 1 bis 18, bevorzugt 1 bis 12, bevorzugter 1 bis 8, und besonders bevorzugt 1 bis 6 C-Atomen darstellen, zum Beispiel Methyl, Ethyl, n-Propyl, n-Butyl, n-Pentyl, n-Hexyl, n-Heptyl und n-Octyl.

Bedeuten R_{29} , R_{30} und R_{31} Cycloalkyl, so handelt es sich bevorzugt um C_5 - C_8 -Cycloalkyl, und besonders bevorzugt um C_5 - oder C_6 -Cycloalkyl. Einige Beispiele sind Cyclobutyl, Cycloheptyl, Cyclooctyl und besonders Cyclopentyl und Cyclohexyl, die bevorzugt unsubstituiert oder mit 1 bis 3 Alkyl-, Halogenalkyl- oder Alkoxygruppen substituiert sind. Beispiele für substituiertes Cycloalkyl sind Methyl-, Dimethyl-, Trimethyl-, Methoxy-, Dimethoxy-, Trimethoxy-, Trifluormethyl-, Bistrifluormethyl und Tristrifluormethylcyclopentyl und -cyclohexyl.

Bedeuten R₂₉, R₃₀ und R₃₁Aryl, so handelt es sich bevorzugt um C₆-C₁₂-Aryl und beson-

ders bevorzugt um Phenyl oder Naphthyl. Beispiele für substituiertes Aryl sind Methyl-, Dimethyl-, Trimethyl-, Methoxy-, Dimethoxy-, Trimethoxy-, Trifluormethyl-, Bistrifluormethyl und Tristrifluormethylphenyl.

Beispiele für an das P-Atom gebundenes, gegebenenfalls substituiertes beziehungsweise kondensiertes Tetra- und Pentamethylen sind

$$CH_3$$
 . H_7C_3' . $H_3\dot{C}$ und $H_3\dot{C}$

Andere geignete tertiäre Phosphine sind mit einer =PRa-Gruppe überbrückte Cycloaliphate mit 6 bis 8 Ringkohlenstoffatomen, zum Beispiel

worin Ra C_1 - C_6 -Alkyl, Cyclohexyl, unsubstituiertes oder mit 1 oder 2 C_1 - C_4 -Alkyl substituiertes Phenyl bedeutet.

In einer bevorzugten Ausführungsform entsprechen die Phosphinliganden der Formel VI, worin R_{29} , R_{30} und R_{31} unabhängig voneinander α -verzweigtes C_3 - C_8 -Alkyl, unsubstituiertes oder mit C_1 - C_4 -Alkyl substituiertes Cyclopentyl oder Cyclohexyl, oder unsubstituiertes oder mit C_1 - C_4 -Alkyl, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder Trifluormethyl substituiertes Phenyl darstellen. Besonders bevorzugte Beispiele für Phosphinliganden der Formel VI sind $(C_6H_5)_3P$, $(C_5H_9)_3P$, $(C_6H_{11})_3P$, (i- $C_3H_7)_3P$, (i- $C_4H_9)_3P$, (t- $C_4H_9)_3P$, $(C_2H_5$ -CH(CH $_3$)] $_3P$, $(C_3H_5$ -C(CH $_3$) $_3P$, $(C_3H_5)_3P$, (C_3H_5)

Geeignete Anionen von anorganischen oder organischen Säuren sind zum Beispiel Hydrid

(H $^{\Theta}$), Halogenid (zum Beispiel F $^{\Theta}$, Cl $^{\Theta}$, Br $^{\Theta}$ und I $^{\Theta}$), das Anion einer Sauerstoffsäure, und BF₄ $^{\Theta}$, PF₆ $^{\Theta}$, SbF₆ $^{\Theta}$ oder AsF₆ $^{\Theta}$. Es ist zu erwähnen, dass das zuvor erwähnte Cyclopentadienyl Ligand und Anion ist.

Weitere geeignete Anionen sind C_1 - C_{12} -, bevorzugt C_1 - C_6 - und besonders bevorzugt C_1 - C_4 -Alkoholate, die insbesondere verzweigt sind, zum Beispiel der Formel $R_xR_yR_zC$ - $O\Theta$ entsprechen, worin R_x H oder C_1 - C_{10} -Alkyl, R_y C_1 - C_{10} -Alkyl und R_z C_1 - C_{10} -Alkyl oder Phenyl darstellen, und die Summe der C-Atome von R_x , R_y und R_z 11 beträgt. Beispiele sind besonders i-Propyloxy und t-Butyloxy.

Andere geeignete Anionen sind C_3 - C_{18} -, bevorzugt C_5 - C_{14} - und besonders bevorzugt C_5 - C_{12} -Acetylide, die der Formel R_w - $C = C^{\Theta}$ entsprechen können, worin R_w C_1 - C_{16} -Alkyl, bevorzugt α -verzweigtes C_3 - C_{12} -Alkyl bedeutet, oder unsubstituiertes oder mit 1 bis 3 C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes Phenyl oder Benzyl darstellt. Einige Beispiele sind i-Propyl-, i- und t-Butyl-, Phenyl-, Benzyl-, 2-Methyl-, 2,6-Dimethyl-, 2-i-Propyl-6-methyl-, 2-t-Butyl-, 2,6-Di-t-butyl- und 2-Methyl-6-t-butyl-phenylacetylid.

Bei den Anionen von Sauerstoffsäuren kann es sich zum Beispiel um Sulfat, Phosphat, Perchlorat, Perbromat, Periodat, Antimonat, Arsenat, Nitrat, Carbonat, das Anion einer C₁-C₈-Carbonsäure wie zum Beispiel Formiat, Acetat, Propionat, Butyrat, Benzoat, Phenylacetat, Mono-, Di- oder Trichlor- oder -fluoracetat, Sulfonate wie zum Beispiel Methylsulfonat, Ethylsulfonat, Propylsulfonat, Butylsulfonat, Trifluormethylsulfonat (Triflat), gegebenenfalls mit C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen, besonders Fluor, Chlor oder Brom substituiertes Phenylsulfonat oder Benzylsulfonat, wie zum Beispiel Tosylat, Mesylat, Brosylat, p-Methoxy- oder p-Ethoxyphenylsulfonat, Pentafluorphenylsulfonat oder 2,4,6-Triisopropylsulfonat, und Phosphonate wie zum Beispiel Methylphosphonat, Ethylphosphonat, Propylphosphonat, Butylphosphonat, Phenylphosphonat, p-Methylphenylphosphonat und Benzylphosphonat handeln.

Besonders bevorzugt sind H^{Θ} , Cl^{Θ} , Br^{Θ} , BF_4^{Θ} , PF_6^{Θ} , SbF_6^{Θ} , AsF_6^{Θ} , $CF_3SO_3^{\Theta}$, C_6H_5 - SO_3^{Θ} , 4-Methyl- C_6H_5 - SO_3^{Θ} , 3,5-Dimethyl- C_6H_5 - SO_3^{Θ} , 2,4,6-Trimethyl- C_6H_5 - SO_3^{Θ} und 4- CF_3 - C_6H_5 - SO_3^{Θ} .

In einer bevorzugten Ausführungsform entsprechen die Ruthenium- und Osmiumverbindungen besonders bevorzugt den Formeln VII, VIIa, VIIb, VIIc oder VIId,

WO 96/16100 PCT/EP95/04360

- 20 -

$$\begin{array}{lll} \text{Me}^{2\Theta}(L_1)_2(L_2)(Y_1^{\Theta})_2 & \text{(VII),} \\ \\ \text{Me}^{2\Theta}(L_1)_3(Y_1^{\Theta})_2 & \text{(VIIa),} \\ \\ \text{Me}^{2\Theta}(L_1)_2L_3(Y_1^{\Theta}) & \text{(VIIb),} \\ \\ \text{Me}^{2\Theta}(L_1)_3L_4(Y_1^{\Theta})_2 & \text{(VIIc),} \\ \\ \text{Me}^{2\Theta}L_1(L_2)_3(Y_1^{\Theta})_2 & \text{(VIId),} \end{array}$$

worin

Me für Ru oder Os steht;

Y₁ das Anion einer einbasigen Säure bedeutet;

L₁ ein Phosphin der Formel VI oder VIa darstellt,

L₂ einen Neutralliganden bedeutet;

 L_3 unsubstituiertes oder mit C_1 - C_4 -Alkyl substituiertes Cyclopentadienyl darstellt; und L_4 für CO steht.

Für die einzelnen Bedeutungen von L_1 , L_2 , L_3 und Y_1 gelten die voranstehenden Bevorzugungen.

In einer besonders bevorzugten Ausführungsform stehen in Formel VII und VIId L_2 für ein C_1 - C_4 -Alkanol, in den Formeln VII, VIIa und VIId Y_1 für ein Anion einer einbasigen Säure, in Formel VIIb Y_1 für Cl oder Br, in Formel VIIc Y_1 für H, und in den Formeln VII bis VIId L_1 für Tri-i-propylphosphin, Tricyclohexylphosphin, Triphenylphosphin oder in den Phenylgruppen mit 1 bis 3 C_1 - C_4 -Alkyl substituiertes Triphenylphosphin.

Die erfindungsgemäss zu verwendenden Ruthenium- und Osmiumverbindungen sind bekannt oder nach bekannten und analogen Verfahren ausgehend von den Metallhalogeniden [zum Beispiel MeX_3 , $(MeArenX_2)_2$ oder $[Me(Diolefin)X_2]_2$] und Reaktion mit Phosphinen und Ligandenbildnern herstellbar.

Die erfindungsgemässe Zusammensetzung kann zusätzlich weitere nichtflüchtige offenkettige Comonomere enthalten, die mit den gespannten Cycloolefinen Copolymere bilden. Bei Mitverwendung von zum Beispiel Dienen können sich vernetzte Polymerisate bilden. Einige Beispiele für solche Comonomere sind olefinisch mono- oder di-ungesättigte Verbindungen wie Olefine und Diene aus der Gruppe Penten, Hexen, Hepten, Octen, Decen, Dodecylen, Acryl- und Methacrylsäure, deren Ester und Amide, Vinylether, Styrol, Butadien, Isopren und Chlorbutadien.

Die weiteren zur Metathesepolymerisation fähigen Olefine sind in der erfindungsgemässen Zusammensetzung zum Beispiel in einer Menge von bis zu 80 Gew. %, bevorzugt 0,1 bis 80 Gew. %, bevorzugter 0,5 bis 60 Gew. % und besonders bevorzugt 5 bis 40 Gew. % enthalten, bezogen auf die Gesamtmenge an Verbindungen der Formel I und weiterer zur Metathesepolymerisation fähiger Olefine.

Die erfindungsgemässe Zusammensetzung kann Formulierungshilfstoffe enthalten. Bekannte Hilfsstoffe sind Antistatika, Antioxidantien, Lichtschutzmittel, Weichmacher, Farbstoffe, Pigmente, Füllstoffe, Verstärkerfüllstoffe, Gleitmittel, Haftvermittler, viskositätserhöhende Mittel und Entformungshilfsmittel. Die Füllstoffe können in überraschend hohen Anteilen zugegen sein, ohne die Polymerisation nachteilig zu beeinflussen, zum Beispiel in Mengen von bis zu 70 Gew.-%, bevorzugt 1 bis 70 Gew.%, bevorzugter 5 bis 60 Gew.-%, besonders bevorzugt 10 bis 50 Gew.-% und insbesondere bevorzugt 10 bis 40 Gew.-%, bezogen auf die Zusammensetzung. Füllstoffe und Verstärkerfüllstoffe zur Verbesserung der optischen, physikalischen, mechanischen und elektrischen Eigenschaften sind in grosser Vielzahl bekannt geworden. Einige Beispiele sind Glas und Quarz in Form von Pulvern, Kugeln und Fasern, Metall- und Halbmetalloxide, Carbonate wie MgCO₃, CaCO₃, Dolomit, Metallsulfate wie Gips und Schwerspat, natürliche und synthetische Silikate wie Talk, Zeolithe, Wollastonit, Feldspate, Tonerden wie Chinaclay, Gesteinsmehle, Whisker, Carbonfasern, Kunststofffasern oder -pulver und Russ. Viskositätserhöhende Mittel sind insbesondere Metathesepolymerisate, die olefinisch ungesättigte Gruppen aufweisen und bei der Polymerisation in das Polymer eingebaut werden können. Solche Metathesepolymerisate sind bekannt und zum Beispiel unter dem Handelsnamen Vestenamere® käuflich. Andere viskositätserhöhende Mittel sind Polybutadien, Polyisopren oder Polychlorbutadien, sowie Copolymere von Butadien, Isopren und Chloropren mit Olefinen. Die viskositätserhöhenden Mittel können in einer Menge von 0,1 bis 50, bevorzugt 1 bis 30, und besonders bevorzugt 1 bis 20 Gew.-% enthalten sein bezogen auf die Zusammensetzung.

Katalytische Mengen bedeutet im Rahmen der vorliegenden Erfindung bevorzugt eine Menge von 0,0001 bis 20 Mol-%, besonders bevorzugt 0,001 bis 15 Mol-% und ganz be-

sonders bevorzugt 0,001 bis 10 Mol-%, bezogen auf die Menge des Monomers.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur thermischen Metathesepolymerisation, das dadurch gekennzeichnet ist, dass man eine Zusammensetzung aus (a) mindestens einem gespannten Cycloolefin, und (b) einer katalytischen Menge mindestens einer zweiwertig-kationischen Ruthenium- oder Osmiumverbindung, wobei die Ruthenium- oder Osmiumverbindung ein Metallatom enthält, woran 1 bis 3 tertiäre Phosphinliganden mit im Fall der Rutheniumverbindungen sterisch anspruchsvollen Substituenten, gegebenenfalls nicht-photolabile Neutralliganden und Anionen zum Ladungsausgleich gebunden sind, mit der Massgabe, dass in Ruthenium(trisphenylphosphin)-dihalogeniden oder -hydrid-halogeniden die Phenylgruppen mit C_1 - C_{18} -Alkyl, C_1 - C_{18} -Halogenalkyl oder C_1 - C_{18} -Alkoxy substituiert sind, polymerisiert.

Das erfindungsgemäße Verfahren kann in Anwesenheit eines inerten Lösungsmittels durchgeführt werden. Ein besonderer Vorteil des erfindungsgemäßen Verfahrens ist jener, daß bei flüssigen Monomeren das Verfahren ohne die Verwendung eines Lösungsmittels durchgeführt werden kann. Inert bedeutet, dass sich die Wahl der Lösungsmittel nach der Reaktivität der Ruthenium- und Osmiumverbindungen richtet, zum Beispiel, dass protisch polare Lösungsmittel nicht verwendet werden, wenn Substitutionsreaktionen wie der Austausch von Halogen durch Alkoxy zu erwarten sind.

Geeignete inerte Lösungsmittel sind zum Beispiel protisch-polare und aprotische Lösungsmittel, die allein oder in Mischungen aus mindestens zwei Lösungsmitteln verwendet werden können. Beispiele sind: Ether (Dibutylether, Tetrahydrofuran, Dioxan, Ethylenglykolmonomethyl- oder -diethylether, Ethylenglykolmonoethyl- oder -diethylether, Diethylenglykoldiethylether, Triethylenglykoldimethylether), halogenierte Kohlenwasserstoffe (Methylenchlorid, Chloroform, 1,2-Dichlorethan, 1,1,1-Trichlorethan, 1,1,2,2-Tetrachlorethan), Carbonsäureester und Lactone (Essigsäureethylester, Propionsäuremethylester, Benzoesäureethylester, 2-Methoxyethylacetat, γ-Butyrolacton, δ-Valerolacton, Pivalolacton), Carbonsäureamide und Lactame (N,N-Dimethylformamid, N,N-Diethylformamid, N,N-Dimethylacetamid, Tetramethylharnstoff, Hexamethylphosphorsäuretriamid, γ-Butyrolactam, ε-Caprolactam, N-Methylpyrrolidon, N-Acetylpyrrolidon, N-Methylcaprolactam), Sulfoxide (Dimethylsulfoxid), Sulfone (Dimethylsulfon, Diethylsulfon, Trimethylensulfon, Tetramethylensulfon), tertiäre Amine (N-Methylpiperidin, N-Methylmorpholin), aliphatische und aromatische Kohlenwasserstoffe wie zum Beispiel Petrolether, Pentan, Hexan, Cyclohexan, Methylcyclohexan, Benzol oder substituierte

Benzole (Chlorbenzol, o-Dichlorbenzol, 1,2,4-Trichlorbenzol, Nitrobenzol, Toluol, Xylol) und Nitrile (Acetonitril, Propionitril, Benzonitril, Phenylacetonitril). Bevorzugte Lösungsmittel sind aprotische polare und unpolare Lösungsmittel.

Bevorzugte Lösungsmittel sind Alkanole und aromatische Kohlenwasserstoffe sowie Gemische solcher Lösungsmittel.

Ein besonderer Vorteil der erfindungsgemäss zu verwendenden Katalysatoren ist deren Stabilität gegen Wasser und polare protische Lösungsmittel, die daher ebenfalls als Lösungsmittel verwendet werden können.

Es ist besonders hervorzuheben, dass die erfindungsgemäss im Verfahren eingesetzten Zusammensetzungen aus einem gegenenfalls substituierten Cycloolefin und Katalysator oft unempfindlich gegen Sauerstoff sind, was eine Lagerhaltung sowie Reaktionsausführung ohne Schutzgas ermöglicht. Viele dieser Zusammensetzungen weisen auch eine gute Lagerbeständigkeit auf, was deren Verarbeitung ebenfalls vereinfacht.

Die für das erfindungsgemässe Verfahren eingesetzten Monomere der Formel I und Katalysatoren können sowohl getrennt als auch gemeinsam als Gemisch gelagert werden, da der verwendete Katalysator eine besonders hohe Stabilität aufweist. Das Gemisch kann vor der thermischen Polymerisation als gebrauchsfertige Formulierung gelagert werden, was für die grosstechnische Anwendung des erfindungsgemässen Verfahrens von Vorteil ist. Die Lagerhaltung und Verarbeitung muss nicht unter Lichtausschluss erfolgen, da die verwendeten Katalysatoren keine Photometathesepolymerisation zu initiieren vermögen.

Die Reaktionstemperatur hängt im wesentlichen von der Aktivität, der Menge und der thermischen Stabilität der verwendeten Katalysatoren ab. Einige Katalysatoren sind so aktiv, dass sie die Polymerisation schon bei Raumtemperatur zu initiieren vermögen.

Das erfindungsgemässe Verfahren kann bei Raumtemperatur oder leicht erhöhter Temperatur, bevorzugt mindestens 40 °C und bevorzugter mindestens 60°C durchgeführt werden.. Insbesondere wird das erfindungsgemäße Verfahren bei Temperaturen von 40 bis 300 °C, bevorzugt 40 bis 250 °C, besonders bevorzugt 40 bis bis 200 °C und insbesondere bevorzugt 60 bis 140 °C durchgeführt. Nach der Polymerisation kann es vorteilhaft sein, die Polymeren bei erhöhten Temperaturen, zum Beispiel 80 bis 200 °C, nachzutempern.

PCT/EP95/04360

Bei den Cycloolefinen handelt es sich bekannterweise um gespannte Ringe. Cyclohexen kann generell mit Olefin-Metathese nicht polymerisiert werden. Diese Ausnahme ist dem Fachmann bekannt und beispielsweise in Ivin [Ivin, K.J. in: Ivin, K.J., Saegusa, T. (Hrsg.), Ring-Opening Polymerisation 1:139-144 Elsevier Applied Science Publishers, London und New York (1984)] beschrieben.

Bei den erfindungsgemäss hergestellten Polymerisaten kann es sich um Homopolymere oder Copolymere mit statistischer Verteilung der Struktureinheiten, Pfropfpolymere oder um Blockpolymere handeln, sowie um vernetzte Polymere dieser Art. Sie können ein mittleres Molekulargewicht (Mw) von z. B. 500 bis zu 2 Millionen Dalton, vorzugsweise 1000 bis 1 Million Dalton (bestimmt nach GPC durch Vergleich mit engverteilten Polystyrolstandards) aufweisen. Sofern die Cycloolefine mindestens 2 Doppelbindungen enthalten, können auch vernetzte Polymerisate gebildet werden.

Mit dem erfindungsgemässen Verfahren können thermoplastisch verformbare Werkstoffe zur Herstellung von Formkörpern aller Art und Beschichtungen hergestellt werden. Vorteilhaft werden Formgebung und Polymerisation in lösungsmittelfreien Reaktivsystemen verbunden, wobei Verarbeitungsverfahren wie zum Beispiel Spritzgiessen, Extrusion, Polymerisationen in vorgegebenen Formen (gegebenenfalls unter Druck) angewendet werden können.

Je nach verwendetem Monomer können die erfindungsgemässen Polymere sehr verschiedene Eigenschaften aufweisen. Einige zeichnen sich durch sehr hohe Sauerstoffpermeabilität, tiefe Dielektrizitätskonstanten, gute Wärmestabilität und geringe Wasserabsorption aus. Andere haben hervorragende optische Eigenschaften wie zum Beispiel hohe Transparenz und niedrige Brechungsindices. Ferner ist insbesondere der geringe Schrumpf hervorzuheben. Daher können sie in sehr unterschiedlichen technischen Gebieten Verwendung finden.

Die erfindungsgemäss hergestellten Polymere zeichnen sich als Schichten auf den Oberflächen von Trägermaterialien durch eine hohe Haftfestigkeit aus. Ferner zeichnen sich die
beschichteten Materialien durch eine sehr hohe Oberflächenglätte und -glanz aus. Unter
den guten mechanischen Eigenschaften ist insbesondere der geringe Schrumpf und die
hohe Schlagzähigkeit hervorzuheben, aber auch die thermische Beständigkeit. Ferner ist
die leichte Entformbarkeit und die hohe Lösungsmittelbeständigkeit zu erwähnen.

WO 96/16100 PCT/EP95/04360

Diese Polymeren eignen sich zur Herstellung von medizinischen Geräten, Implantaten oder Kontaktlinsen; zur Herstellung von elektronischen Bauteilen; als Bindemittel für Lacke; als photohärtbare Zusammensetzungen für den Modellbau oder als Klebstoffe zum Verkleben von Substraten mit niedrigen Oberflächenenergien (zum Beispiel Teflon, Polyethylen und Polypropylen). Die erfindungsgemäß hergestellten Polymere können auch zur Herstellung von Lacken durch Photopolymerisation verwendet werden, wobei einerseits klare (transparente) und sogar pigmentierte Zusammensetzungen verwendet werden können. Es können sowohl Weiss- als auch Buntpigmente verwendet werden. Ferner ist die Herstellung von Formkörpern nach thermoplastischen Formgebungsverfahren für Gebrauchsgegenstände aller Art zu erwähnen.

Die erfindungsgemäss zu verwendenden polymerisierbaren Zusammensetzungen eignen sich auch zur Herstellung von Schutzschichten. Ein weiterer Gegenstand der Erfindung ist eine Variante des erfindungsgemäßen Verfahrens zur Herstellung von beschichteten Materialien, bei dem man eine Zusammensetzung aus cyclischem Olefin, Katalysator und gegebenenfalls Lösungsmittel als Schicht auf einem Träger aufbringt, zum Beispiel durch Tauch-, Streich-, Giess-, Walz-, Rakel- oder Schleudergießverfahren, gegebenenfalls das Lösungsmittel entfernt, und die Schicht zur Polymerisation erwärmt. Mit diesem Verfahren können Oberflächen von Substraten modifiziert werden.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Trägermaterial, das mit einem erfindungsgemäßem Oligomer oder Polymer beschichtet ist und das ein Vernetzungsmittel enthält. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Trägermaterial, das mit einem erfindungsgemäßem Oligomer oder Polymer beschichtet ist. Diese Materialien eignen sich zur Herstellung von Schutzschichten oder Reliefabbildungen durch Bestrahlung (gegebenenfalls unter einer Photomaske) und anschließendem Entwickeln mit einem Lösungsmittel. Geeignete Vernetzungsmittel, die z.B. in einer Menge von 0,01 bis 20 Gew.% enthalten sein können, sind vor allem organische Bisazide, besonders das käufliche 2,6-Bis(4-azidobenzyliden)-4-methyl-cyclohexanon.

Ein anderer Gegenstand der vorliegenden Erfindung ist ferner ein beschichtetes Trägermaterial, das dadurch gekennzeichnet ist, dass auf einem Träger eine Schicht aus (a) mindestens einem gespannten Cycloolefin und (b) einer katalytischen Menge mindestens einer zweiwertig-kationischen Ruthenium- oder Osmiumverbindung aufgebracht ist, wobei die Ruthenium- oder Osmiumverbindung ein Metallatom enthält, woran 1 bis 3 tertiäre Phosphinliganden mit im Fall der Rutheniumverbindungen sterisch anspruchsvollen Sub-

stituenten, gegebenenfalls nicht-photolabile Neutralliganden und Anionen zum Ladungsausgleich gebunden sind, mit der Massgabe, dass in Ruthenium(trisphenylphosphin)dihalogeniden oder -hydrid-halogeniden die Phenylgruppen mit C_1 - C_{18} -Alkyl, C_1 - C_{18} -Halogenalkyl oder C_1 - C_{18} -Alkoxy substituiert sind.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung einer zweiwertig-kationischen Ruthenium- oder Osmiumverbindung, wobei die Ruthenium- oder Osmiumverbindung ein Metallatom enthält, woran 1 bis 3 tertiäre Phosphinliganden mit im Fall der Rutheniumverbindungen sterisch anspruchsvollen Substituenten, gegebenenfalls nicht-photolabile Neutralliganden und Anionen zum Ladungsausgleich gebunden sind, mit der Massgabe, dass in Ruthenium(trisphenylphosphin)dihalogeniden oder hydrid-halogeniden die Phenylgruppen mit C_1 - C_{18} -Alkyl, C_1 - C_{18} -Halogenalkyl oder C_1 - C_{18} -Alkoxy substituiert sind, als Katalysatoren für die thermische Metathesepolymerisation von gespannten Cycloolefinen.

Geeignete Trägermaterialien sind beispielsweise solche aus Glas, Mineralien, Keramiken, Kunststoffen, Holz, Halbmetallen, Metallen, Metalloxiden und Metallnitriden. Die Schichtdicken richten sich im wesentlichen nach der gewünschten Verwendung und können z.B. 0,1 bis 1000 μ m, bevorzugt 0,5 bis 500 μ m, besonders bevorzugt 1 bis 100 μ m betragen. Die beschichteten Materialien zeichnen sich durch eine hohe Haftfestigkeit und gute thermische und mechanische Eigenschaften aus.

Die Herstellung der erfindungsgemässen beschichteten Materialen kann nach bekannten Methoden wie zum Beispiel Streichen, Rakeln, Giessverfahren wie Vorhanggiessen oder Schleudergiessen erfolgen.

Bei Beschichtungen werden oft besonders gute Resultate erzielt, wenn man zur Polymerisation Cycloolefine verwendet, die zusätzlich 1 bis drei und bevorzugt eine weitere Doppelbindung enthalten und die im Rahmen der Erfindung polycyclische kondensierte oder direkt oder über Brückengruppen verknüpfte Ringsysteme darstellen.

Die folgenden Beispiele erläutern die Erfindung weiter.

Beispiele 1 und 2: Polymerisation von Dicyclopentadien in Substanz

2 g Biscyclopentadien werden mit 12 mg Katalysator vermischt und in eine Form
gegossen. Dann wird bei den in Tabelle 1 angegebenen Zeiten und Temperaturen

W 96/16100 PCT/EP95/04360

- 27 -

polymerisiert und 2 h bei 150°C nachgehärtet.

Es werden folgende Katalysatoren verwendet (Abkürzungen: MeOH: Methanol, Tos:

Tosylat, Cp: Cyclopentadienyl, Ph: Phenyl, Cy: Cyclohexyl):

 $A = Ru(PCy_3)_2(MeOH)_2(Tos)_2$

 $B = RuCl_2(PCy_3)_2$

 $C = Ru(H)_2(CO)(PPh_3)_3$

 $D = RuCpCl(PPh_3)_3$

 $E = RuCl_2[P(2-Methyl-C_6H_4)_3]_3$

Tabelle 1

<u>Beispiel</u>	Katalysator	Umsatz in %	Zeit, Temperatur	Polymer*
1 2 *vernetzt	A B	100 100	12 h; 80°C 12 h; 100°C	Tg = 122°C Tg = 118°C

Beispiele 3 bis 7: Polymerisation von Norbornen

500 mg Norbornen werden in 3 ml Chloroform gelöst und mit 3 mg Katalysator vermischt. Dann wird bei den in Tabelle 2 angegebenen Zeiten und Temperaturen polymerisiert. RT in Tabelle 2 bedeutet Raumtemperatur. Der Umsatz wird nach Ausfällen mit Ethanol bestimmt.

Tabelle 2

<u>Beispiel</u>	Katalysator	Umsatz in %	Zeit, Temperatur	<u>Mw</u> <u>M</u>	w/Mn
3 4 5 6	A B C D	97,5 93 25 30	10 min; RT 15 min; RT 2 h; 50°C 10 h; 50°C	300 k 2	.9 .0
7	E	65	10 h; 50°C	vernetzi	2.4

WO 96/16100 PCT/EP95/04360

- 28 -

PATENTANSPRÜCHE:

- 1. Zusammensetzung aus (a) mindestens einem gespannten Cycloolefin, und (b) einer katalytischen Menge mindestens einer zweiwertig-kationischen Ruthenium- oder Osmiumverbindung, wobei die Ruthenium- oder Osmiumverbindung ein Metallatom enthält, woran 1 bis 3 tertiäre Phosphinliganden mit im Fall der Rutheniumverbindungen sterisch anspruchsvollen Substituenten, gegebenenfalls nicht-photolabile Neutralliganden und Anionen zum Ladungsausgleich gebunden sind, mit der Massgabe, dass in Ruthenium(trisphenylphosphin)dihalogeniden oder -hydrid-halogeniden die Phenylgruppen mit C₁-C₁₈-Alkyl, C₁-C₁₈-Halogenalkyl oder C₁-C₁₈-Alkoxy substituiert sind.
- 2. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass es sich bei den cyclischen Olefinen um monocyclische Ringe oder polycyclische, überbrückte oder kondensierte Ringsysteme mit 2 bis 4 Ringen handelt, die unsubstituert oder substituiert sind und gegebenenfalls ein oder mehrere Heteroatome aus der Gruppe O, S, N und Si in einem oder mehreren Ringen und gegebenenfalls kondensierte aromatische oder heteroaromatische Ringe enthalten.
- 3. Zusammensetzung gemäss Anspruch 2, dadurch gekennzeichnet, dass die cyclischen Ringe 3 bis 16 Ringglieder enthalten.
- 4. Zusammensetzung gemäss Anspruch 3, dadurch gekennzeichnet, dass die cyclischen Ringe 3 bis 12 Ringglieder enthalten.
- 5. Zusammensetzung gemäss Anspruch 2, dadurch gekennzeichnet, dass die cyclischen Olefine weitere nicht-aromatische Doppelbindungen enthalten.
- 6. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass die Cycloolefine der Formel I

entsprechen, worin

- Q₁ ein Rest mit mindestens einem Kohlenstoffatom ist, der zusammen mit der -CH=CQ2-Gruppe einen mindestens 3-gliedrigen alicyclischen Ring bildet, welcher gegebenenfalls ein oder mehrere Heteroatome ausgewählt aus der Gruppe bestehend aus Silicium, Phosphor, Sauerstoff, Stickstoff und Schwefel enthält; und der unsubstituiert oder mit Halogen, =O, -CN, -NO₂, R₁R₂R₃Si-(O)_u-, -COOM, -SO₃M, -PO₃M, $-\mathsf{COO}(\mathsf{M}_1)_{1/2}, -\mathsf{SO}_3(\mathsf{M}_1)_{1/2}, -\mathsf{PO}_3(\mathsf{M}_1)_{1/2}, \mathsf{C}_1 - \mathsf{C}_{20} - \mathsf{Alkyl}, \mathsf{C}_1 - \mathsf{C}_{20} - \mathsf{Hydroxyalkyl}$ C_1 - C_{20} -Halogenalkyl, C_1 - C_6 -Cyanoalkyl, C_3 - C_8 -Cycloalkyl, C_6 - C_{16} -Aryl, $C_7 - C_{16} - Aralkyl, \ C_3 - C_6 - Heterocycloalkyl, \ C_3 - C_{16} - Heteroaryl, \ C_4 - C_{16} - Heteroaralkyl$ oder R₄-X- substituiert ist; oder bei dem zwei benachbarte C-Atome mit -CO-O-COoder -CO-NR₅-CO- substituiert sind; oder bei dem gegebenenfalls an benachbarten Kohlenstoffatomen des alicyclischen Rings ein alicyclischer, aromatischer oder heteroaromatischer Ring ankondensiert ist, welcher unsubstituiert oder mit Halogen, -CN, -NO₂, $R_6R_7R_8Si$ -(O)_u-, -COOM, -SO₃M, -PO₃M, -COO(M₁)_{1/2}, -SO₃(M₁)_{1/2}, -PO₃(M₁)_{1/2}, C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₂₀-Hydroxyalkyl, C_1 - C_6 -Cyanoalkyl, C_3 - C_8 -Cycloalkyl, C_6 - C_{16} -Aryl, C_7 - C_{16} -Aralkyl, C_3 - C_6 -Heterocycloalkyl, C₃-C₁₆-Heteroaryl, C₄-C₁₆-Heteroaralkyl oder R₁₃-X₁- substituiert ist;
- X und X_1 unabhängig voneinander für -O-, -S-, -CO-, -SO-, -SO₂-, -O-C(O)-, -C(O)-O-, -C(O)-NR₅-, -NR₁₀-C(O)-, -SO₂-O- oder -O-SO₂- stehen;
- R_1 , R_2 und R_3 unabhängig voneinander C_1 - C_{12} -Alkyl, C_1 - C_{12} -Perfluoralkyl, Phenyl oder Benzyl bedeuten;
- $\rm R_4$ und $\rm R_{13}$ unabhängig C $_1$ -C $_{20}$ -Alkyl, C $_1$ -C $_{20}$ -Halogenalkyl, C $_1$ -C $_{20}$ -Hydroxyalkyl, C $_3$ -C $_8$ -Cycloalkyl, C $_6$ -C $_{16}$ -Aryl, C $_7$ -C $_{16}$ -Aralkyl bedeuten;
- R₅ und R₁₀ unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, Phenyl oder Benzyl bedeuten, wobei die Alkylgruppen ihrerseits unsubstituiert oder mit C₁-C₁₂-Alkoxy oder C₃-C₈-Cycloalkyl substituiert sind;
- R_6 , R_7 und R_8 unabhängig voneinander C_1 - C_{12} -Alkyl, C_1 - C_{12} -Perfluoralkyl, Phenyl oder Benzyl bedeuten;
- M für ein Alkalimetall und M_1 für ein Erdalkalimetall stehen; und u für 0 oder 1 steht;
- wobei der mit Q_I gebildete alicyclische Ring gegebenenfalls weitere nicht-aromatische Doppelbindungen enthält;
- Q₂ Wasserstoff, C_1 - C_{20} -Alkyl, C_1 - C_{20} -Halogenalkyl, C_1 - C_{12} -Alkoxy, Halogen, -CN, R_{11} - X_2 darstellt;
- $R_{11} C_1 C_{20} Alkyl, C_1 C_{20} Halogenalkyl, C_1 C_{20} Hydroxyalkyl, C_3 C_8 Cycloalkyl, C_{20} C_{20}$

C₆-C₁₆-Aryl oder C₇-C₁₆-Aralkyl bedeutet;

X₂ -C(O)-O- oder -C(O)-NR₁₂- ist;

R₁₂ Wasserstoff, C₁-C₁₂-Alkyl, Phenyl oder Benzyl darstellt;

wobei die vorgenannten Cycloalkyl-, Heterocycloalkyl-, Aryl-, Heteroaryl-, Aralkyl- und Heteroaralkylgruppen unsubstituiert oder mit C_1 - C_{12} -Alkyl, C_1 - C_{12} -Alkoxy, -NO₂, -CN oder Halogen substituiert sind, und wobei die Heteroatome der vorgenannten Heterocycloalkyl-, Heteroaryl- und Heteroaralkylgruppen aus der Gruppe -O-, -S-, -NR₉- und -N= ausgewählt sind; und

R₉ Wasserstoff, C₁-C₁₂-Alkyl, Phenyl oder Benzyl darstellt.

- 7. Zusammensetzung gemäss Anspruch 6, dadurch gekennzeichnet, dass der alicyclische Ring, den Q_1 zusammen mit der -CH= CQ_2 -Gruppe bildet, 3 bis 16 Ringatome aufweist, und wobei es sich um ein monocyclisches, bicyclisches, tricyclisches oder tetracyclisches Ringsystem handelt.
- 8. Zusammensetzung gemäss Anspruch 6, dadurch gekennzeichnet, dass \mathbf{Q}_2 in Formel I für Wasserstoff steht.
- 9. Zusammensetzung gemäss Anspruch 6, dadurch gekennzeichnet, dass in den Verbindungen der Formel I
- \mathbf{Q}_1 ein Rest mit mindestens einem Kohlenstoffatom ist, der zusammen mit der -CH=CQ₂-Gruppe einen 3- bis 20-gliedrigen alicyclischen Ring bildet, welcher gegebenenfalls ein oder mehrere Heteroatome ausgewählt aus der Gruppe Silicium, Sauerstoff, Stickstoff und Schwefel enthält; und der unsubstituiert oder mit Halogen, =O, -CN, -NO₂, $R_1R_2R_3Si$ -(O)_u-, -COOM, -SO₃M, -PO₃M, -COO(M₁)_{1/2}, $-SO_3(M_1)_{1/2}, -PO_3(M_1)_{1/2}, \ C_1-C_{12}-Alkyl, \ C_1-C_{12}-Halogenalkyl, \ C_1-C_{12}-Hydroxy-C_{12$ alkyl, C_1 - C_4 -Cyanoalkyl, C_3 - C_6 -Cycloalkyl, C_6 - C_{12} -Aryl, C_7 - C_{12} -Aralkyl, C_3 - C_6 -Heterocycloalkyl, C_3 - C_{12} -Heteroaryl, C_4 - C_{12} -Heteroaralkyl oder R_4 -X- substituiert ist; oder bei dem zwei benachbarte C-Atome in diesem Rest Q₁ mit -CO-O-COoder -CO-NR₅-CO- substituiert sind; oder bei dem gegebenenfalls an benachbarten Kohlenstoffatomen ein alicyclischer, aromatischer oder heteroaromatischer Ring ankondensiert ist, welcher unsubstituiert oder mit Halogen, -CN, -NO₂, R₆R₇R₈Si-, -COOM, -SO₃M, -PO₃M, -COO(M_1)_{1/2}, -SO₃(M_1)_{1/2}, -PO₃(M_1)_{1/2}, C₁-C₁₂-Alkyl, C_1 - C_{12} -Halogenalkyl, C_1 - C_{12} -Hydroxyalkyl, C_1 - C_4 -Cyanoalkyl, C_3 - C_6 -Cycloalkyl, C_6 - C_{12} -Aryl, C_7 - C_{12} -Aralkyl, C_3 - C_6 -Heterocycloalkyl, C_3 - C_{12} -Heteroaryl, C₄-C₁₂-Heteroaralkyl oder R₁₃-X₁- substituiert ist;

- X und X_1 unabhängig voneinander für -O-, -S-, -CO-, -SO-, -SO₂-, -O-C(O)-, -C(O)-O-, -C(O)-NR₅-, -NR₁₀-C(O)-, -SO₂-O- oder -O-SO₂- stehen;
- R_1 , R_2 und R_3 unabhängig voneinander C_1 - C_6 -Alkyl, C_1 - C_6 -Perfluoralkyl, Phenyl oder Benzyl bedeuten;
- M für ein Alkalimetall und M_1 für ein Erdalkalimetall stehen;
- $\begin{array}{c} R_4 \text{ und } R_{13} \text{ unabhängig voneinander } C_1\text{-}C_{12}\text{-}Alkyl, \ C_1\text{-}C_{12}\text{-}Halogenalkyl,} \\ C_1\text{-}C_{12}\text{-}Hydroxyalkyl, \ C_3\text{-}C_8\text{-}Cycloalkyl, \ C_6\text{-}C_{12}\text{-}Aryl, \ C_7\text{-}C_{12}\text{-}Aralkyl} \text{ bedeuten;} \end{array}$
- R_5 und R_{10} unabhängig voneinander Wasserstoff, C_1 - C_6 -Alkyl, Phenyl oder Benzyl bedeutet, wobei die Alkylgruppen ihrerseits unsubstituiert oder mit C_1 - C_6 -Alkoxy oder C_3 - C_6 -Cycloalkyl substituiert sind;
- R_6 , R_7 und R_8 unabhängig voneinander C_1 - C_6 -Alkyl, C_1 - C_6 -Perfluoralkyl, Phenyl oder Benzyl darstellen;
- u für 0 oder 1 steht;
- wobei der mit Q_1 gebildete alicyclische Ring gegebenenfalls weitere nichtaromatische Doppelbindungen enthält;
- $\rm Q_2$ Wasserstoff, $\rm C_1\text{-}C_{12}\text{-}Alkyl,\,C_1\text{-}C_{12}\text{-}Halogenalkyl,\,C_1\text{-}C_6\text{-}Alkoxy,\,Halogen,\,-CN,}$ $\rm R_{11}\text{-}X_2\text{-}$ bedeutet;
- $\begin{array}{l} R_{11}\ C_1\text{-}C_{12}\text{-}Alkyl,\ C_1\text{-}C_{12}\text{-}Halogenalkyl,\ }C_1\text{-}C_{12}\text{-}Hydroxyalkyl,\ }C_3\text{-}C_6\text{-}Cycloalkyl,\ }C_6\text{-}C_{12}\text{-}Aryl\ oder\ }C_7\text{-}C_{12}\text{-}Aralkyl\ darstellt;\ } \end{array}$
- X_2 -C(O)-O- oder -C(O)-NR₁₂- ist; und
- R₁₂ Wasserstoff, C₁-C₆-Alkyl, Phenyl oder Benzyl bedeutet;
- wobei die Cycloalkyl-, Heterocycloalkyl-, Aryl-, Heteroaryl-, Aralkyl- und Heteroaralkylgruppen unsubstituiert oder mit C₁-C₆-Alkyl, C₁-C₆-Alkoxy, -NO₂, -CN oder
 Halogen substituiert sind, und wobei die Heteroatome der Heterocycloalkyl-, Heteroaryl- und Heteroaralkylgruppen aus der Gruppe -O-, -S-, -NR₉- und -N= ausgewählt
 sind; und
- R₉ Wasserstoff, C₁-C₆-Alkyl, Phenyl oder Benzyl bedeutet.
- 10. Zusammensetzung gemäss Anspruch 6, dadurch gekennzeichnet, dass in den Verbindungen der Formel I
- Q₁ ein Rest mit mindestens einem Kohlenstoffatom ist, der zusammen mit der -CH=CQ₂-Gruppe einen 3- bis 10-gliedrigen alicyclischen Ring bildet, der gegebenenfalls ein Heteroatom ausgewählt aus der Gruppe Silicium, Sauerstoff, Stickstoff und Schwefel enthält, und der unsubstituiert oder mit Halogen, -CN, -NO₂, R₁R₂R₃Si-, -COOM, -SO₃M, -PO₃M, -COO(M₁)_{1/2}, -SO₃(M₁)_{1/2}, -PO₃(M₁)_{1/2}, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Hydroxyalkyl, C₁-C₄-Cyanoalkyl,

- 32 -

C₃-C₆-Cycloalkyl, Phenyl, Benzyl oder R₄-X- substituiert ist; oder bei dem an benachbarten Kohlenstoffatomen gegebenenfalls ein alicyclischer, aromatischer oder heteroaromatischer Ring ankondensiert ist, welcher unsubstituiert oder durch Halogen, -CN, -NO₂, $R_6R_7R_8Si_{-}$, -COOM, -SO₃M, -PO₃M, -COO(M₁)_{1/2}, $-SO_3(M_1)_{1/2}, -PO_3(M_1)_{1/2}, \ C_1-C_6-Alkyl, \ C_1-C_6-Halogenalkyl, \ C_1-C_6-Hydroxyalkyl,$ C_1 - C_4 -Cyanoalkyl, C_3 - C_6 -Cycloalkyl, Phenyl, Benzyl oder R_{13} - X_1 - substituiert ist;

 R_1 , R_2 und R_3 unabhängig voneinander C_1 - C_4 -Alkyl, C_1 - C_4 -Perfluoralkyl, Phenyl oder Benzyl bedeuten;

M für ein Alkalimetall und M₁ für ein Erdalkalimetall stehen;

 $\rm R_4$ und $\rm R_{13}$ unabhängig voneinander $\rm C_1\text{-}C_6\text{-}Alkyl,\,C_1\text{-}C_6\text{-}Halogenalkyl,\,C_1\text{-}C_6\text{-}Hydroxy-}$ alkyl oder C3-C6-Cycloalkyl bedeuten;

X und X₁ unabhängig voneinander für -O-, -S-, -CO-, -SO- oder -SO₂- stehen;

 R_6 , R_7 und R_8 unabhängig voneinander C_1 - C_4 -Alkyl, C_1 - C_4 -Perfluoralkyl, Phenyl oder Benzyl darstellen;

und Q2 Wasserstoff bedeutet.

- 11. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass es sich bei den cyclischen Olefinen um Norbornen oder Norbornenderivate handelt.
- 12. Zusammensetzung gemäss Anspruch 11, dadurch gekennzeichnet, dass es sich bei den Norbornenderivaten um solche der Formel II

worin

-CHR₁₆-, Sauerstoff oder Schwefel; X_3

R₁₄ und R₁₅ unabhängig voneinander Wasserstoff, -CN, Trifluormethyl, (CH₃)₃Si-O-, (CH₃)₃Si- oder -COOR₁₇; und

 R_{16} und R_{17} unabhängig voneinander Wasserstoff, C_1 - C_{12} -Alkyl, Phenyl oder Benzyl bedeuten:

oder

um solche der Formel III

WO 96/16100

worin

X₄ -CHR₁₉-, Sauerstoff oder Schwefel;

 R_{19} Wasserstoff, C_1 - C_{12} -Alkyl, Phenyl oder Benzyl; und

R₁₈ Wasserstoff, C₁-C₆-Alkyl oder Halogen bedeuten;

oder

um solche der Formel IV

worin

X₅ -CHR₂₂-, Sauerstoff oder Schwefel;

R₂₂ Wasserstoff, C₁-C₁₂-Alkyl, Phenyl oder Benzyl;

R₂₀ und R₂₁ unabhängig voneinander Wasserstoff, CN, Trifluormethyl, (CH₃)₃Si-O-,

(CH₃)₃Si- oder -COOR₂₃; und

R₂₃ Wasserstoff, C₁-C₁₂-Alkyl, Phenyl oder Benzyl bedeuten;

oder

um solche der Formel V handelt,

worin

X₆ -CHR₂₄-, Sauerstoff oder Schwefel;

R₂₄ Wasserstoff, C₁-C₁₂-Alkyl, Phenyl oder Benzyl;

Y Sauerstoff oder N-R₂₅; und

R₂₅ Wasserstoff, Methyl, Ethyl oder Phenyl bedeuten.

- 13. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass die gespannten Cycloolefine nur Kohlenstoff- und Wasserstoffatome enthalten.
- 14. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass die gespannten Cycloolefine 5- oder 6-gliedrige Ringe oder Ringsysteme mit einem bis drei 5- oder 6-gliedrigen Ringen sind.
- 15. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass es sich bei den gespannten Cycloolefine um Norbornen, alkylierte Norbornene und Dicyclopentadien handelt.
- 16. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass es sich bei den gespannten Cycloolefinen um

(4),
$$COOCH_2CH_3$$
 (5),

(6),
$$COO(CH_2)_5CH_3$$
 (7), $COO(CH_2)_5CH_3$

(8),
$$COO(CH_2)_{11}CH_3$$
 (9),

$$P(C_6H_5)_2$$
 $P(C_6H_5)_2$

- 17. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass die Rutheniumund Osmiumverbindungen 2 oder 3 tertiäre Phosphingruppen enthalten.
- 18. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass die Rutheniumund Osmiumverbindungen 3 Phosphingruppen und zwei einwertige Anionen zum
 Ladungsausgleich; oder 3 Phosphingruppen, zwei einbindige oder einen zweibindigen
 nicht-photolabilen Neutralliganden, und zwei einwertige Anionen zum Ladungsausgleich;
 oder 2 Phosphingruppen, einen monoanionischen, zusätzlich einbindigen nicht-photolabilen Neutralliganden, und ein einwertiges Anion zum Ladungsausgleich enthalten.
- 19. Zusammensetzung gemäss Anspruch 18 dadurch gekennzeichnet, dass es sich bei den monoanionischen, zusätzlich einbindigen nicht-photolabilen Neutralliganden um Cyclopentadienyl oder Indenyl handelt, die unsubstituiert oder mit ein bis fünf C_1 - C_4 -Alkyl oder -Si(C_1 - C_4 -Alkyl) substituiert sind.
- 20. Zusammensetzung gemäss Anspruch 18, dadurch gekennzeichnet, dass es sich bei den einbindigen, nicht-photolabilen Liganden um H₂O, H₂S, NH₃; gegebenenfalls halogenierte, besonders fluorierte oder chlorierte aliphatische oder cycloaliphatische Alkohole oder Merkaptane mit 1 bis 18 C-Atomem, aromatische Alkohole oder Thiole mit 6 bis 18 C-Atomen, araliphatische Alkohole oder Thiole mit 7 bis 18 C-Atomen; offenkettige oder cyclische und aliphatische, araliphatische oder aromatische Ether, Thioether, Sulfoxide, Sulfone, Ketone, Aldehyde, Carbonsäureester, Lactone, gegebenenfalls N-C₁-C₄-monooder -dialkylierte Carbonsäureamide mit 2 bis 20 C-Atomen, und gegebenenfalls N-C₁-C₄-alkylierte Lactame; offenkettige oder cyclische und aliphatische, araliphatische oder aromatische, primäre, sekundäre und tertiäre Amine mit 1 bis 20 C-Atomen handelt.

21. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass die Phosphinliganden den Formeln VI oder VIa entsprechen

$$PR_{29}R_{30}R_{31}$$
 (VI),

$$R_{29}R_{30}P-Z_1-PR_{29}R_{30}$$
 (VIa),

worin

 R_{29} , R_{30} und R_{31} unabhängig voneinander α -verzweigtes C_3 - C_{20} -Alkyl; unsubstituiertes oder mit C_1 - C_{18} -Alkyl, C_1 - C_{18} -Halogenalkyl oder C_1 - C_{18} -Alkoxy substituiertes C_4 - C_{12} -Cycloalkyl; oder unsubstituiertes oder mit C_1 - C_{18} -Alkyl, C_1 - C_{18} -Halogenalkyl oder C_1 - C_{18} -Alkoxy substituiertes C_6 - C_{16} -Aryl;

die Reste R_{20} und R_{30} gemeinsam unsubstituiertes oder mit C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Alkoxy substituiertes Tetra- oder Pentamethylen bedeuten, oder unsubstituiertes oder mit C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl oder C_1 - C_6 -Alkoxy substituiertes und mit 1 oder 2 1,2-Phenylen kondensiertem Tetra- oder Pentamethylen darstellen, und R_{31} die zuvor angegebene Bedeutung hat; und

- Z_1 lineares oder verzweigtes, unsubstituiertes oder mit C_1 - C_4 -Alkoxy substituiertes C_2 - C_{12} -Alkylen, unsubstituiertes oder mit C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes 1,2- oder 1,3-Cycloalkylen mit 4 bis 8 C-Atomen, oder unsubstituiertes oder mit C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes 1,2 oder 1,3-Heterocycloalkylen mit 5 oder 6 Ringgliedern und einem Heteroatom aus der Gruppe O oder N bedeutet.
- 22. Zusammensetzung gemäss Anspruch 21, dadurch gekennzeichnet, dass es sich bei dem α -verzweigten Alkyl um solche der Formel - $CR_bR_cR_d$ handelt, worin R_b H oder C_1 - C_{12} -Alkyl, R_c C_1 - C_{12} -Alkyl, und R_d C_1 - C_{12} -Alkyl oder unsubstituiertes oder mit C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy substituiertes Phenyl darstellen, und die Summe der C_1 -Atome im Rest - $CR_bR_cR_d$ 3 bis 18 beträgt.
- 23. Zusammensetzung gemäss Anspruch 21, dadurch gekennzeichnet, dass die Phosphinliganden der Formel VI entsprechen, worin R_{29} , R_{30} und R_{31} unabhängig voneinander α -verzweigtes C_3 - C_8 -Alkyl, unsubstituiertes oder mit C_1 - C_4 -Alkyl substituiertes Cyclopentyl oder Cyclohexyl, oder unsubstituiertes oder mit C_1 - C_4 -Alkyl, C_1 - C_4 -Alkyl C_1 - C_4 -Alkoxy oder Trifluormethyl substituiertes Phenyl darstellen.

- 24. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass die Phosphinliganden $(C_6H_5)_3P$, $(C_5H_9)_3P$, $(C_6H_{11})_3P$, $(i-C_3H_7)_3P$, $(i-C_4H_9)_3P$, $(t-C_4H_9)_3P$, $(C_2H_5-CH(CH_3)]_3P$, $(C_2H_5-C(CH_3)_2]_3P$, $(C_3H_5+CH(CH_3))_3P$, $(C_3H_5$
- 25. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass die Anionen von anorganischen oder organischen Säuren ein Hydrid (H $^{\Theta}$), ein Halogenid, das Anion einer Sauerstoffsäure, BF $_4$ $^{\Theta}$, PF $_6$ $^{\Theta}$, SbF $_6$ $^{\Theta}$ oder AsF $_6$ $^{\Theta}$ sind.
- 26. Zusammensetzung gemäss Anspruch 25, dadurch gekennzeichnet, dass es sich bei den Anionen von Sauerstoffsäuren um Sulfat, Phosphat, Perchlorat, Perbromat, Periodat, Antimonat, Arsenat, Nitrat, Carbonat, das Anion einer C_1 - C_8 -Carbonsäure, Sulfonat, gegebenenfalls mit C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder Halogen substituiertes Phenylsulfonat oder Benzylsulfonat handelt.
- 27. Zusammensetzung gemäss Anspruch 25, dadurch gekennzeichnet, dass es sich bei den Anionen um H^{Θ} , Cl^{Θ} , Br^{Θ} , BF_4^{Θ} , PF_6^{Θ} , SbF_6^{Θ} , AsF_6^{Θ} , $CF_3SO_3^{\Theta}$, $C_6H_5-SO_3^{\Theta}$, 4-Methyl- $C_6H_5-SO_3^{\Theta}$, 3,5-Dimethyl- $C_6H_5-SO_3^{\Theta}$, 2,4,6-Trimethyl- $C_6H_5-SO_3^{\Theta}$ oder 4- $CF_3-C_6H_5-SO_3^{\Theta}$ handelt.
- 28. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass die Rutheniumund Osmiumverbindungen den Formeln VII, VIIa, VIIb, VIIc oder VIId entsprechen,

$$\mathsf{Me}^{2\Theta}(\mathsf{L}_1)_2(\mathsf{L}_2)(\mathsf{Y}_1^{\Theta})_2 \tag{VII),}$$

$$Me^{2\Theta}(L_1)_3(Y_1^{\Theta})_2$$
 (VIIa),

$$Me^{2\Theta}(L_1)_2L_3(Y_1^{\Theta})$$
 (VIIb).

$$Me^{2\Theta}(L_1)_3L_4(Y_1^{\Theta})_2$$
 (VIIc),

$$Me^{2\Theta}L_1(L_2)_3(Y_1^{\Theta})_2$$
 (VIId),

worin

Me für Ru oder Os steht;

Y₁ das Anion einer einbasigen Säure bedeutet;

L₁ ein Phosphin der Formel VI oder VIa gemäss Anspruch 21 darstellt,

L2 einen einwertigen Neutralliganden bedeutet;

 L_3 unsubstituiertes oder mit C_1 - C_4 -Alkyl substituiertes Cyclopentadienyl darstellt; und L_4 für CO steht.

- 29. Zusammensetzung gemäss Anspruch 28, dadurch gekennzeichnet, dass in Formel VII und VIId L_2 für ein C_1 - C_4 -Alkanol, in den Formeln VII, VIIa und VIId Y_1 für ein Anion einer einbasigen Säure, in Formel VIIb Y_1 für Cl oder Br, in Formel VIIc Y_1 für H, und in den Formeln VII bis VIId L_1 für Tri-i-propylphosphin, Tricyclohexylphosphin, Tri-phenylphosphin oder in den Phenylgruppen mit 1 bis 3 C_1 - C_4 -Alkyl substituiertes Tri-phenylphosphin stehen.
- 30. Zusammensetzung gemäss Anspruch 1, dadurch gekennzeichnet, dass die Rutheniumund Osmiumverbindungen in einer Menge von 0,0001 bis 20 Mol-% vorliegen.
- 31. Verfahren zur thermischen Metathesepolymerisation, das dadurch gekennzeichnet ist, dass man eine Zusammensetzung aus (a) mindestens einem gespannten Cycloolefin, und (b) einer katalytischen Menge mindestens einer zweiwertig-kationischen Ruthenium- oder Osmiumverbindung, wobei die Ruthenium- oder Osmiumverbindung ein Metallatom enthält, woran 1 bis 3 tertiäre Phosphinliganden mit im Fall der Rutheniumverbindungen sterisch anspruchsvollen Substituenten, gegebenenfalls nicht-photolabile Neutralliganden und Anionen zum Ladungsausgleich gebunden sind, mit der Massgabe, dass in Ruthenium(trisphenylphosphin)dihalogeniden oder -hydrid-halogeniden die Phenylgruppen mit C₁-C₁₈-Alkyl, C₁-C₁₈-Halogenalkyl oder C₁-C₁₈-Alkoxy substituiert sind, polymerisiert.
- 32. Verfahren zur Herstellung von beschichteten Materialien, bei dem man eine Zusammensetzung gemäss Anspruch 1 auf einem Träger aufbringt, gegebenenfalls das Lösungsmittel entfernt und die Schicht zur Polymerisation erwärmt.
- 33. Trägermaterial, das mit einem Oligomer oder Polymer aus der Zusammensetzung gemäss Anspruch 1 beschichtet ist und das ein Vernetzungsmittel enthält.

WO 96/16100 PCT/EP95/04360

- 42 -

- 34. Trägermaterial, das dadurch gekennzeichnet ist, dass auf einem Substrat eine Schicht aus einer Zusammensetzung gemäss Anspruch 1 aufgebracht ist.
- 35. Beschichtetes Trägermaterial, das dadurch gekennzeichnet ist, dass auf einem Träger eine Schicht aus (a) mindestens einem gespannten Cycloolefin und (b) einer katalytischen Menge mindestens einer zweiwertig-kationischen Ruthenium- oder Osmiumverbindung aufgebracht ist, wobei die Ruthenium- oder Osmiumverbindung ein Metallatom enthält, woran 1 bis 3 tertiäre Phosphinliganden mit im Fall der Rutheniumverbindungen sterisch anspruchsvollen Substituenten, gegebenenfalls nicht-photolabile Neutralliganden und Anionen zum Ladungsausgleich gebunden sind, mit der Massgabe, dass in Ruthenium-(trisphenylphosphin)dihalogeniden oder -hydrid-halogeniden die Phenylgruppen mit C_1 - C_{18} -Alkyl, C_1 - C_{18} -Halogenalkyl oder C_1 - C_{18} -Alkoxy substituiert sind.
- 36. Verwendung einer zweiwertig-kationischen Ruthenium- oder Osmiumverbindung, wobei die Ruthenium- oder Osmiumverbindung ein Metallatom enthält, woran 1 bis 3 tertiäre Phosphinliganden mit im Fall der Rutheniumverbindungen sterisch anspruchsvollen Substituenten, gegebenenfalls nicht-photolabile Neutralliganden und Anionen zum Ladungsausgleich gebunden sind, mit der Massgabe, dass in Ruthenium(trisphenylphosphin)-dihalogeniden oder -hydrid-halogeniden die Phenylgruppen mit C_1 - C_{18} -Alkyl, C_1 - C_{18} -Halogenalkyl oder C_1 - C_{18} -Alkoxy substituiert sind, als Katalysatoren für die thermische Metathesepolymerisation von gespannten Cycloolefinen.

INTERNATIONAL SEARCH REPORT

International application N .

PCT/EP 95/04360 CLASSIFICATION OF SUBJECT MATTER Int.Clb. : C08G 61/00 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.C1⁶. : C086 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPODOC, WPI, CAPLUS, CLAIMS C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category* Relevant to claim No. P,A WO, A1, 9507310 (CIBA-GEIGY AG),16 March 1995 1-36 (16.03.95)A WO, A2, 9313171 (MINNESOTA MINING AND MANUFACTURING 1-36 COMPANY), 8 July 1993 (08.07.93), Page 12, Line 34 - Page 13, Line 2; Page 15, Line 31 - Page 18, Line 5 Journal of Molecular Catalysis, Vol. 76, 1992, A 1-32 Albert Demonceau et al, "Ruthenium-catalysed ring-opening metathesis polymerization of cycloolefins initiated by diazoesters" Page 123 - Page 132 Further documents are listed in the continuation of Box C. Y See patent family annex. Special categories of cited documents: later document published after the international filing date or priority "A" document defining the general state of the art which is not considered to be of particular relevance date and not in conflict with the application but cited to understand the principle or theory understand the tavention "E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "O" document referring to an oral disclosure, use, exhibition or other 200223 document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 23 February 1996 (23.02.96) 03 April 1996 (03.04.96) Name and mailing address of the ISA/ Authorized officer European Patent Office

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)

Facsimile No.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No. PCT/EP 95/04360

Patent document Publication			TC17EP 95/04360		
cited in search report		Publication date	Patent family member(s)		Publication date
WO-A1-	9507310	16/03/95	NONE		uale .
WO-A2-	9313171	08/07/93	AU-A- EP-A- JP-T- US-A- US-A-	3075092 0617720 7502557 5198511 5296566	28/07/93 05/10/94 16/03/95 30/03/93 22/03/94

Form PCT/ISA/210 (patent family annex) (July 1992)

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP 95/04360

A KI	CCICIZICATING DCC		•			
A. ALA	SSIFIZIERUNG DES ANMELDUNGSGEO	ENSTANDES				
IPC6:	C08G 61/00					
B. REC	Internationalen Patentklassifikation (IPK) oder nach HERCHIERTE GEBIETE	der nationalen Klassifikation und der IPK				
	erter Mindestprüfstoff (Klassifikationssystem und Kla	ssifikationssymbole)				
IPC6:		,,,,,,,				
		l'al				
	aber nicht zum Mindestprüßtoff gehörende Veröffent	lichungen, soweit diese unter die recherchierte	n Gebiete fallen			
W/Xhaand						
waneng c	ler internationalen Recherche konsultierte elektronisch	ne Datenbank (Name der Datenbank und evil	verwendete Suchbegriffe)			
FDODOO						
	, WPI, CAPLUS, CLAIMS					
	WESENTLICH ANGESEHENE UNTERLAC					
Kategorie*	Bezeichning der Veröffentlichung, soweit erfo kommenden Teile	rderlich unter Angabe der in Betracht	Betr. Anspruch Nr.			
P,A	WO, A1, 9507310 (CIBA-GEIGY AG), 16 März 1995	1-36			
	(16.03.95)					
A	WO, A2, 9313171 (MINNESOTA MIN	ING AND	1-36			
	MANUFACTURING COMPANY), 8,	Juli 1993 (08.07.93)	1-36			
	Seite 12, Zeile 34 - Seite Zeile 31 - Seite 18, Zeile	13. Zeile 2: Seite 15				
	zerie 31 Jerce 16, Zerie	3				
						
A	Journal of Molecular Catalysis,	of Molecular Catalysis, Band 76, 1992,				
	Albert Demonceau et al, "Ruthenium-catalysed ring-opening metathesis polymerization of					
	cycloolefins initiated by d	ymerization of lazoesters"				
İ	Seite 123 - Seite 132					
ĺ						
1						
7 Waisan	V. C.					
- reia C	e Veröffentlichungen sind der Fortsetzung von zu entnehmen.	X Siehe Anhang Patent/am	nilie.			
	ere Kalegorien von angegebenen Veröffentlichungen: ichung, die den allgemeinen Stand der Technik definieri, aber nicht	T Spitere Veröffentlichung, die nach dem interni	itionaten Anmeldedatum oder den			
E* siteres Do	Eument, das redoch ern am oder nurh dem internationalen	Prioritatedatum veröffentlicht worden ist und n tondern nur zum Verstandnis des der Erfindun der ihr zugrundeliegenden Theorie angegeben i	t infranselledengen buusitt ogs			
Anmedee	atum veroffenthen worden ut ichung, die geognet utt, einen Prionistsanspruch zweifelhaft erschein	"X" Veröffentlichung von besonderer Bedautung: di	a basanananan Kata a			
bencht ger	outen das vereifentlichungsbetum einer anderen im Recharchen- nannten Veröffentlichung beiest werden soll oder die aus einem ande		e besnipruchte Erfindung kann			
Veröffentli	n Grund angegeben ist (wie ausgeführt) ichung, die sich auf eine mündliche Offenbarung, eine Benutzung, ei g oder andere Maßnahmen bezieht	Vaniffentlichung mit einer eine Gertriebild				
Verbffenti	chung, die vor dem internationalen Anmeidedatum, äber nach dem iten Prioritätidatum veröffenticht worden ist	"&" Veröffentlichung, die Mitglied dertetben Patent	familie iss			
	bschlusses der internationalen Recherche	Absendedatum des internationalen Recherch	nenberichts			
		o 3. 04. 96				
	ar 1996					
N E	stanschrift der Internationalen Recherchenbehörde propäisches Patentamt, P.B. 5818 Patentlaan 2	Bevollmächtigter Bediensteter				
(Q))) Te	L-2280 HV Rijswijk EL (=31-70) 340-2040, Tx. 31 651 epo ni,	SOFIA NIKOLOPOULOU				
Fa	ux: (+ 31-70) 340-3016 ISA/210 (Blatt 2) (Juli 1992)					

INTERNATIONALER RECHERCHENBERICHT Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen PCT/EP 95/04360

Im Recherchenbericht	PCT/EP 95/04360			
angefurtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der
WO-A1- 9507310	16/03/95	KEINE		Veröffendichung
WO-A2- 9313171	08/07/93	AU-A- EP-A- JP-T- US-A- US-A-	3075092 0617720 7502557 5198511 5296566	28/07/93 05/10/94 16/03/95 30/03/93 22/03/94

Formblatt PCT/ISA/210 (Anhang Patentfamilie) (Juli 1992)