ДОСЛІДЖЕННЯ ПАРАМЕТРІВ АЛГОРИТМУ ДИСКРЕТНОГО ПЕРЕТВОРЕННЯ ФУР'Є

Мета роботи - ознайомлення з принципами реалізації спектральногот аналізу випадкових сигналів на основі алгоритму перетворення Φ ур'є, вивчення та дослідження особливостей даного алгоритму з використанням засобів моделювання і сучасних програмних оболонок.

3.1. Основні теоретичні відомості

В основі спектрального аналізу використовується реалізація так званого дискретного перетворювача Фур'є (ДПФ) з неформальним (не формульним) поданням сигналів, тобто досліджувані сигнали представляються послідовністю відліків x(k)

$$F_{x}(p) = \sum_{k=0}^{N-1} x(k) \cdot e^{-jk\Delta t p \Delta \omega}$$

$$\omega \to \omega_p \to p\Delta\omega \to p$$
 $\Delta\omega = \frac{2\pi}{T}$

На всьому інтервалі подання сигналів T, 2π - один період низьких частот. Щоб підвищити точність треба збільшити інтервал T.

$$t \to t_k \to k\Delta t \to k$$
; $\Delta t = \frac{T}{N} = \frac{1}{k_{son}} \cdot f' \circ p$.

ДПФ - проста обчислювальна процедура типу звірки (тобто Σ -е парних множень), яка за складністю також має оцінку $\mathbf{N}^2 + \mathbf{N}$. Для реалізації ДПФ необхідно реалізувати поворотні коефіцієнти ДПФ:

$$W_{N}^{pk} = e^{-jk\Delta t\Delta\omega p}$$

Ці поворотні коефіцієнти записуються в $\Pi 3 \text{У}$, тобто є константами.

$$W_{N}^{pk}=e^{-jk}\frac{T}{N}p\frac{2\pi}{T}=e^{-j\frac{2\pi}{N}pk}$$

 W_N^{pk} не залежать від **T**, а лише від розмірності перетворення **N.** Ці коефіцієнти подаються не в експоненційній формі, а в тригонометричній.

$$W_{N}^{pk} = \cos\left(\frac{2\pi}{N}pk\right) - j\sin\left(\frac{2\pi}{N}pk\right)$$

Ці коефіцієнти повторюються (тому і **p** до **N-1**, і **k** до **N-1**, а (**N-1**) • (**N-1**)) з періодом **N**(2π).. Т.ч. в ПЗУ треба зберігати N коефіцієнтів дійсних і уявних частин. Якщо винести знак коефіцієнта можна зберігати **N**/2 коефіцієнтів.

 $2\pi/N$ - деякий мінімальний кут, на який повертаються ці коефіцієнти. У ПЗУ окремо зберігаються дійсні та уявні частини компілюють коефіцієнтів. Більш загальна форма ДПФ представляється як:

$$F_{x}(p) = \sum_{k=0}^{N-1} x(k) \cdot W_{N}^{pk}$$

ДПФ дуже зручно представити у вигляді відповідного графа. Приклад: граф 4-х точкового ДПФ. ($k = \overline{0,3}$; $p = \overline{0,3}$)

Коефіцієнти зручно представити у вигляді таблиці:

p k	0	1	2	3
0	\mathbf{W}_{4}^{0}	\mathbf{W}_{4}^{0}	\mathbf{W}_{4}^{0}	\mathbf{W}_{4}^{0}
1	\mathbf{W}_{4}^{0}	\mathbf{W}_4^1	W_4^2	W_4^3
2	\mathbf{W}_{4}^{0}	W_4^2	\mathbf{W}_{4}^{0}	W_4^2
3	\mathbf{W}_{4}^{0}	W_4^3	W_4^2	W_4^1

Різних тут всього 4 коефіцієнта:

$$W_4^0 = \cos\left(\frac{2\pi}{4}\cdot 0\right) - j\sin\left(\frac{2\pi}{4}\cdot 0\right) = 1$$
 $(W_4^1 = -j; W_4^2 = -1; W_4^3 = +j)$

Можна в пам'яті зберігати тільки 2, а решта брати з "-", якщо $\frac{N}{2}$ –1 < pk . 4 ДПФ це вироджені перетворення, по модулю ці коефіцієнти = 1 і всі 4 ДПФ можуть реалізуватися на 24-х суматора. Це буде далі використовуватися в реалізації ШПФ з основою 4.

2ДПФ реалізується ще простіше:

$$(W_2^0 = +1; W_2^1 = -1)$$

Спеціальна схема реалізації ДПФ з активним використанням пауз між відліками

При реалізації ДПФ можна організувати обробку в темпі надходження даних. Реалізація схеми в БПФ з активним використанням пауз на 4-х точках виглядає так:

Ця схема сильно залежить от Δt и N.

3.2. Завдання на лабораторну роботу

Для згенерованого випадкового сигналу з Лабораторної роботи N 1 відповідно до заданого варіантом (Додаток 1) побудувати його спектр, використовуючи процедуру

дискретного перетворення Фур'є. Розробити відповідну програму і вивести отримані значення і графіки відповідних параметрів.

3.3. Зміст звіту

Звіт по лабораторній роботі повинен містити такі матеріали:

- 1. Титульний лист.
- 2. Основні теоретичні відомості, необхідні для виконання лабораторної роботи.
- 3. Умови завдання для варіанту бригади.
- 4. Лістинг програми із заданими умовами завдання.
- 5. Результати виконання кожної програми.
- 6. Висновки щодо виконання лабораторної роботи.

3.4. Контрольні питання

- 1. Імпульсний спектр і спектр потужності. Пряме і зворотне перетворення Фур'є.
- 2. Спектральна щільність і взаємно-спектральна щільність.
- 3. Зв'язки між спектральною потужністю і кореляційною функцією.
- 4. Спектр енергії.
- 5. Ортогональні і парціальні складові спектрів. Функція когерентності.
- 6. Особливості організації дискретного перетворення Фур'є (ДПФ). Схема ДПФ з активним використанням пауз між відліками