

Lineare Algebra I, Lösungen Blatt 12 (A1,A3,A4)

Aufgabe 1 (4 Punkte). Sei V ein K-Vektorraum und $F:V\to V$ eine lineare Abbildung mit $F^2=F\circ F=F$. Zeigen Sie: es existieren Unterräume $U,W\subset V$ mit

$$V = U \oplus W$$
 und $F(w) = 0$, $F(u) = u$ $\forall w \in W$, $\forall u \in U$.

Sei U = F(V) und $W = \ker F$. Dann gilt schon mal für alle $w \in W : F(w) = 0$. Für alle $u \in U = \operatorname{Im} F$ existiert $v \in V$ mit u = F(v). Daher ist

$$F(u) = F(F(v)) = F(v) = u,$$

da $F^2=F$. Außerdem gilt für $v\in U\cap W$: F(v)=0, da $v\in W$, aber auch F(v)=v, da $v\in U$. Damit ist also

$$0 = F(v) = v$$

und $U \cap W = \{0\}$. Bleibt zu zeigen, dass U + W = V. Es gilt bereits $U + W \subset V$. Sei also $v \in V$, zu zeigen ist $v \in U + W$. Sei

$$u = F(v)$$
 und $w = v - u$.

Dann gilt v=u+w mit $u\in U$ sowie $w\in W=\ker F,$ da

$$F(w) = F(v) - F(u) = F(v) - F^{2}(v) = F(v) - F(v) = 0,$$

wobei wir die Linearität von F und $F^2 = F$ benutzt haben. Also ist $v = u + w \in U + W$.

Aufgabe 3 (4 Punkte). Sei $\mathcal{B} = (\sin, \cos, \sin \cdot \cos, \sin^2, \cos^2)$ und $V = \operatorname{Span} \mathcal{B} \subset \operatorname{Abb}(\mathbb{R}, \mathbb{R})$. Man betrachte die lineare Abbildung $F: V \to V$, wobei F(f) = f' die Ableitung von $f \in V$ ist.

1. Zeigen Sie, dass \mathcal{B} eine Basis von V ist.

Seien $\lambda_i \in \mathbb{R}$, so dass

$$\lambda_1 \sin + \lambda_2 \cos + \lambda_3 \sin \cos + \lambda_4 \sin^2 + \lambda_5 \cos^2 = 0$$
.

Damit gilt für alle $x \in \mathbb{R}$:

$$\lambda_1 \sin(x) + \lambda_2 \cos(x) + \lambda_3 \sin(x) \cos(x) + \lambda_4 \sin^2(x) + \lambda_5 \cos^2(x) = 0.$$

Für $x = \frac{\pi}{2}, x = \frac{3\pi}{2}, x = 0, x = \pi$ folgt

$$\lambda_1 + \lambda_4 = 0 \qquad \lambda_2 + \lambda_5 = 0$$
$$-\lambda_1 + \lambda_4 = 0 \qquad -\lambda_2 + \lambda_5 = 0$$

womit also $\lambda_1 = \lambda_4 = \lambda_2 = \lambda_5 = 0$. Da $\sin \cos \neq 0$ ist dann auch $\lambda_3 = 0$.

2. Bestimmen Sie die Matrix $M_{\mathcal{B}}^{\mathcal{B}}(F)$ bezüglich der Basis \mathcal{B} .

 $F(\sin) = \cos, F(\cos) = -\sin, F(\sin\cos) = \cos^2 - \sin^2, F(\sin^2) = 2\sin\cos, F(\cos^2) = -2\cos\sin\cos\theta$ ergibt mit $F(v_j) = \sum_{i=1}^5 a_{ij}v_i$:

$$A = M_{\mathcal{B}}^{\mathcal{B}}(F) = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -2 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

3. Bestimmen Sie Basen von im F und ker F. Zunächst gilt

$$\operatorname{im} A = \operatorname{Span}(v_1, v_2, v_3, v_4, v_5) = \operatorname{Span} \left(\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -2 \\ 0 \\ 0 \end{pmatrix} \right).$$

Offenbar ist $\mathcal{B} = (v_1, v_2, v_3, v_4)$ linear unabhängig und $v_5 \in \text{Span}(v_1, v_2, v_3, v_4)$. Also ist \mathcal{B} eine Basis von Im A. Damit ist

$$\mathcal{B} = (-\sin, \cos, \cos^2 - \sin^2, \sin \cos)$$

eine Basis von im F.

$$A = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -2 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \qquad \stackrel{I \leftrightarrow II,III \leftrightarrow IV}{\rightarrow} \qquad \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 2 & -2 \end{pmatrix}$$

$$\stackrel{IV+III,IV \leftrightarrow V,IV/2}{\rightarrow} \qquad \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Also ist

$$\ker A = \operatorname{Span} \mathcal{A} = \operatorname{Span} \left(\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \right)$$

Also ist

$$(\cos^2 + \sin^2) = (1)$$

eine Basis von $\ker F$.

(Das ist natürlich nicht verwunderlich: gilt f'=0 für ein differenzierbares $f\in Abb(\mathbb{R},\mathbb{R})$, dann ist f konstant. Da $\cos^2,\sin^2\in V$ ist auch jede konstante Abbildung $f(x)=k=k(\cos^2+\sin^2)\in V$.)