# Feistal Ciphers Structure

#### Overview

- Cipher
- Block Ciphers
- Block vs. Stream Ciphers
- Block Cipher Principles
- Substitution-Permutation Ciphers
- Diffusion and Confusion
- Feistel Cipher Structure
- Feistel Cipher Design Principles

## Cipher

- In cryptography, a cipher (or cypher) is an algorithm for performing encryption or decryption.
  - a series of well-defined steps that can be followed as a procedure.
- Cryptography (or cryptology; from Greek is the practice and study of hiding information.



### **Block Ciphers**

One of the most widely used types of cryptography algorithms.

- Provide strong secrecy and/or authentication services
- In particular will introduce DES (Data Encryption Standard)

### Block vs Stream Ciphers

- **Block ciphers** process messages into blocks, each of which is then en/decrypted
- like a substitution on very big characters
  - ☐ 64-bits or more
- Stream ciphers process messages a bit or byte at a time when en/decrypting
- many current ciphers are block ciphers
- hence are focus of course

## Block Cipher Principles

- block ciphers look like an extremely large substitution
- □ would need table of 2<sup>64</sup> entries for a 64-bit block
  - □ 64-bit general substitution block cipher, key size 2<sup>64</sup>!
- most symmetric block ciphers are based on a Feistel
  Cipher Structure
- needed since must be able to decrypt ciphertext to recover messages efficiently

### Substitution-Permutation Ciphers

- in 1949 Shannon introduced idea of substitutionpermutation (S-P) networks
  - modern substitution-transposition product cipher
- these form the basis of modern block ciphers
- □ S-P networks are based on the two primitive cryptographic operations we have seen before:
  - substitution (S-box)
  - permutation (P-box) (transposition)
- provide confusion and diffusion of message

#### Diffusion and Confusion

- Introduced by Claude Shannon to thwart cryptanalysis based on statistical analysis
  - Assume the attacker has some knowledge of the statistical characteristics of the plaintext
- cipher needs to completely obscure statistical properties of original message
- a one-time pad does this

#### Diffusion and Confusion

More practically Shannon suggested combining elements to obtain:

- □ **Diffusion** dissipates statistical structure of plaintext over bulk of ciphertext
- Confusion makes relationship between ciphertext and key as complex as possible

### Feistel Cipher Structure

- Horst Feistel devised the feistel cipher
  - implements Shannon's substitution-permutation network concept
- partitions input block into two halves
  - process through multiple rounds which
  - perform a substitution on left data half
  - based on round function of right half & subkey
  - then have permutation swapping halves

# Feistel Cipher Structure



### Feistel Cipher

- n sequential rounds
- $\square$  A substitution on the left half  $L_i$ 
  - □ 1. Apply a round function F to the right half R<sub>i</sub> and
  - $\square$  2. Take XOR of the output of (1) and  $L_i$
- The round function is parameterized by the subkey K<sub>i</sub>
  - $\square$   $K_i$  are derived from the overall key K

# Feistel Cipher Design Principles

block size increasing size improves security, but slows cipher key size increasing size improves security, makes exhaustive key searching harder, but may slow cipher number of rounds increasing number improves security, but slows cipher subkey generation greater complexity can make analysis harder, but slows cipher round function greater complexity can make analysis harder, but slows cipher fast software en/decryption & ease of analysis are more recent concerns for practical use and testing

### Feistel Cipher Decryption



