Mechanising Recursion Schemes with Magic-Free Coq Extraction

David Castro-Perez, Marco Paviotti, and Michael Vollmer

d.castro-perez@kent.ac.uk

02-05-2024

Background

Hylomorphisms

Fold over Lists

One way to guarantee recursive functions are well-defined is via Recursion Schemes.

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr g b [] = b
foldr g b (x : xs) = g x (foldr g b xs)
```

There are many different kinds of Recursion Schemes (e.g. Folds, Paramorphisms, Unfolds, Apomorphisms, . . .)

```
Least Fixed-Point Fix f \cong f (Fix f)
```

```
data Fix f = In { inOp :: f (Fix f) }
                                                     f (Fix f) \longrightarrow f x
fold :: Functor f =>
            (f x \rightarrow x) \rightarrow
            Fix f ->
                                                        Fix f \longrightarrow x
fold a = f
    where f(In x) = (a_x fmap f) x
                                                  f-algebra
```

```
data Fix f = In { inOp :: f (Fix f) }
fold :: Functor f =>
                                                    f (Fix f) \longrightarrow f x
            (f x \rightarrow x) \rightarrow
            Fix f ->
                                                      Fix f ..... x
fold a = f
    where f(In_x) = (a \cdot fmap f) x
                           initial f-algebra
```

Hylomorphisms: Divide-and-conquer Computations

Hylomorphisms: Divide-and-conquer Computations

Hylomorphisms: Divide-and-conquer Computations

Example I: Folds as Hylomorphisms

```
f-coalgebra
data Fix f = In { inOp :: f (Fix f) }
                                                 f (Fix f) \cdots f x
fold :: Functor f =>
                                                  inOp
           (f x \rightarrow x) \rightarrow
           Fix f ->
                                                   Fix f ..... x
fold a = a / fmap (fold a) . inOp
                                              f-algebra
```

Example II: Nonstructural Recursion

```
data TreeF a b = Leaf | Node b a b
instance Functor (TreeF a) where
 fmap f Leaf = Leaf
 fmap f (Node 1 x r) = Node (f 1) x (f r)
split :: [Int] -> TreeF Int [Int]
split [] = Leaf
split (h : t) = Node l h r
                                              TreeF Int [Int] ...... TreeF Int ([Int] -> [Int])
 where
                                                 split
                                                                                merge
   (1, r) = partition (\langle x - \rangle x < h) t
                                                   merge :: TreeF Int ([Int] -> [Int]) ->
         [Int] -> [Int]
merge Leaf = \acc -> acc
merge (Node 1 x r) = \acc -> 1 (x : r acc)
gsort :: [Int] -> [Int]
qsort = flip f []
 where
   f = hvlo merge split
```

Example II: Nonstructural Recursion

```
data TreeF a b = Leaf | Node b a b
                                                TreeF Int-coalgebra
instance Functor (TreeF a) where
 fmap f Leaf = Leaf
 fmap f (Node 1 x r) = Node (f 1) x (f r)
split :: [Int] -> TreeF Int [Int]
split [] = Leaf
split (h : t) = Node l h r
                                               TreeF Int [Int] -----> TreeF Int ([Int] -> [Int])
 where
                                                  split
                                                                                   merge
    (1, r) = partition (\x -> x < h) t
                                                     [Int] ------ [Int] -> [Int]
merge :: TreeF Int ([Int] -> [Int]) ->
         [Int] -> [Int]
merge Leaf = \acc -> acc
merge (Node 1 x r) = \acc \rightarrow 1 (x : r acc)
                                                               TreeF Int-algebra
qsort :: [Int] -> [Int]
qsort = flip f []
 where
    f = hylo merge split
```

Adjoint Folds

Given an adjunction:

$$\mathcal{D} \stackrel{\mathsf{L}}{\underset{\mathsf{R}}{\longleftrightarrow}} \mathcal{C}$$

- There is a correspondence of arrows $|\cdot|$: $\mathsf{Hom}_{\mathcal{D}}(LA,B) \cong \mathsf{Hom}_{\mathcal{C}}(A,RB)$: $[\cdot]$.
- An initial algebra on the right corresponds to an universal property on the left:

$$\operatorname{\mathsf{Hom}}_{\mathcal{D}}(L\,\mu F,B)\cong\operatorname{\mathsf{Hom}}_{\mathcal{C}}(\mu F,R\,B)$$

 μ analogous to Haskell's Fix

F is an endofunctor in ${\cal C}$

L, R are functors between C & \mathcal{D} ; the *left* and *right* adjoints.

Conjugate Hylomorphisms

Every recursion scheme is a conjugate hylomorphism

recursion scheme	adjunction	conjugates	para-hylo equation	algebra
(hylo-shift law)	$Id \dashv Id$	$\alpha \dashv \alpha$	$x = a \cdot (id \triangle D x \cdot \alpha C \cdot c) : A \leftarrow C$	$a: C \times D A \to A$
mutual recursion	$\Delta\dashv(\times)$	ccf	$\begin{array}{l} x_1 = a_1 \cdot (id \triangle D \ (x_1 \triangle x_2) \cdot c) \ : \ A_1 \leftarrow C \\ x_2 = a_2 \cdot (id \triangle D \ (x_1 \triangle x_2) \cdot c) \ : \ A_2 \leftarrow C \end{array}$	$a_1: C \times D (A_1 \times A_2) \rightarrow A_1$ $a_2: C \times D (A_1 \times A_2) \rightarrow A_2$
accumulator	$- \times P \dashv (-)^P$	ccf	$x = a \cdot (outl \triangle ((D (\Lambda x) \cdot c) \times P)) : A \leftarrow C \times P$	$a: C \times D(A^P) \times P \rightarrow A$
course-of-values (§5.6)	$U_D \dashv Cofree_D$	ccf	$x = a \cdot (id \triangle D (D_{\infty} x \cdot [\![c]\!]) \cdot c) : A \leftarrow C$	$a: C \times D (D_{\infty} A) \to A$
finite memo-table (§5.6)	$U_*\dashvCofree_*$	ccf	$x = a \cdot (id \triangle D (D_* x \cdot (c)_*) \cdot c) : A \leftarrow C$	$a: C \times D (D_* A) \to A$
T 11 4 T-100				a 5 at 1

Table 1. Different types of para-hylos building on the canonical control functor (ccf); the coalgebra is $c: C \to D$ C in each case.

R. Hinze, N. Wu, J. Gibbons: Conjugate Hylomorphisms - Or: The Mother of All Structured Recursion Schemes. POPL 2015.

Why Mechanising Hylomorphisms in Coq?

- Structured Recursion Schemes have been used in Haskell to structure functional programs, but they do not ensure termination/productivity
- On the other hand, Coq does not capture all recursive definitions
- The benefits of formalising hylos in Coq is three fold:
 - Giving the Coq programmer a library where for most recursion schemes they do not have to prove termination properties
 - Extracting code into ML/Haskell to provide termination guarantees even in languages with non-termination
 - Using the laws of hylomorphisms as tactics for **program calculation** and **optimisation**

- 1. Avoiding axioms: functional extensionality, heterogeneous equality,
- 2. Extracting "clean" code: close to what a programmer would have written directly in OCaml.
- 3. Fixed-points of functors, non-termination, etc.

- 1. Avoiding axioms: functional extensionality, heterogeneous equality,
- 2. Extracting "clean" code: close to what a programmer would have written directly in OCaml.
- 3. Fixed-points of functors, non-termination, etc.

Our solutions (the remainder of this talk):

1. Machinery for building setoids, use of decidable predicates, ...

- 1. Avoiding axioms: functional extensionality, heterogeneous equality,
- 2. Extracting "clean" code: close to what a programmer would have written directly in OCaml.
- 3. Fixed-points of functors, non-termination, etc.

Our solutions (the remainder of this talk):

- 1. Machinery for building setoids, use of decidable predicates, ...
- 2. Avoiding type families and indexed types.

- 1. Avoiding axioms: functional extensionality, heterogeneous equality,
- 2. Extracting "clean" code: close to what a programmer would have written directly in OCaml.
- 3. Fixed-points of functors, non-termination, etc.

Our solutions (the remainder of this talk):

- 1. Machinery for building setoids, use of decidable predicates, ...
- 2. Avoiding type families and indexed types.
- 3. Containers & recursive coalgebras

Roadmap

Part I: Extractable Containers in Coq

Part II: Recursive Coalgebras & Coq Hylomorphisms

Part III: Code Extraction & Examples

Part I

Extractable Containers in Coq

Part II

Recursive Coalgebras & Coq Hylomorphisms

Part III

Code Extraction & Examples

Wrap-up