Master's Method

Master's method

Method for solving recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where, $a \ge 1$, b > 1, and f(n) > 0

Idea: compare f(n) with $n^{\log_b a}$

- f(n) is asymptotically smaller or larger than $n^{log}_b{}^a$ by a polynomial factor n^ϵ
- f(n) is asymptotically equal with n^{log}b^a

Master's method

Method for solving recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where, $a \ge 1$, b > 1, and f(n) > 0

Case 1: if
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some $\epsilon > 0$, then: $T(n) = \Theta(n^{\log_b a})$

Case 2: if
$$f(n) = \Theta(n^{\log_b a})$$
, then: $T(n) = \Theta(n^{\log_b a} \lg n)$

Case 3: if
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 for some $\epsilon > 0$, and if

af(n/b) ≤ cf(n) for some c < 1 and all sufficiently large n, then:

T(n) =
$$\Theta(f(n))$$

regularity condition

$$T(n) = 2T(n/2) + n$$

$$a = 2$$
, $b = 2$, $log_2 2 = 1$

Compare $n^{\log_2 2}$ with f(n) = n

$$\Rightarrow$$
 f(n) = Θ (n) \Rightarrow Case 2

$$\Rightarrow$$
 T(n) = Θ (nlgn)

$$T(n) = 2T(n/2) + n^{2}$$

$$\alpha = 2, b = 2, \log_{2} 2 = 1$$
Compare n with $f(n) = n^{2}$

$$\Rightarrow f(n) = \Omega(n^{1+\epsilon}) \text{ Case } 3 \Rightarrow \text{ verify regularity cond.}$$

$$\alpha f(n/b) \le c f(n)$$

$$\Leftrightarrow 2 n^{2}/4 \le c n^{2} \Rightarrow c = \frac{1}{2} \text{ is a solution } (c<1)$$

$$\Rightarrow T(n) = \Theta(n^{2})$$

$$T(n) = 2T(n/2) + \sqrt{n}$$

$$a = 2, b = 2, log_2 2 = 1$$

Compare n with $f(n) = n^{1/2}$

$$\Rightarrow$$
 f(n) = $O(n^{1-\epsilon})$ Case 1

$$\Rightarrow$$
 T(n) = Θ (n)

$$T(n) = 3T(n/4) + nlgn$$

$$a = 3$$
, $b = 4$, $log_4 3 = 0.793$

Compare $n^{0.793}$ with f(n) = nlgn

$$f(n) = \Omega(n^{\log_4 3 + \varepsilon}) \text{ Case } 3$$

Check regularity condition:

$$3*(n/4)lg(n/4) \le (3/4)nlgn = c *f(n), c=3/4$$

$$\Rightarrow$$
T(n) = Θ (nlgn)

$$T(n) = 2T(n/2) + nlgn$$

 $a = 2, b = 2, log_2 = 1$

- Compare n with f(n) = nlgn
 - seems like case 3 should apply
- f(n) must be polynomially larger by a factor of n^ε
- In this case it is only larger by a factor of lgn