به نام خدا

آزمایش شماره ۸

آز معماری - دکتر سربازی آزاد

دانشكده مهندسي كامپيوتر

دانشگاه صنعتی شریف

نيمسال اول ١-٠٠

امیرحسین هادیان - ۹۷۱۰۲۶۰۹

محمدرضاً مفیضی - ۹۸۱۰۶۰۵۹ علی حاتمی تاجیک - ۹۸۱۰۱۳۸۵

انشکده مهندسی کامپیوتر آز معماری آز معماری آزمایش شماره ۸

command	address	hex address	binary address	micro-opcode	enable	s select	d select	op	load sr	OE1	OE2	WE	extra	load IR	enable counter	load pc	extra
no operation	0	nex dual ess	00000000	000	0	0	0	0	0	0	0	0	0	0	0	0	0
fetch - load IR	1	01	00000001	000	0	0	0	0	0	1	1	1	0	1	0	0	0
fetch - count pc	2	02	00000010	000	0	0	0	0	0	1	1	1	0	0	1	0	0
check jump instrucntion	3	03	00000011	001	0	0	0	0	0	0	0	0	0	1	1	1	1
check mem instruction	4	04	00000100	010	0	0	0	0	0	0	0	0	0	1	0	1	0
alu - check sub	5	05	00000101	011	0	0	0	0	0	0	0	0	0	1	0	0	0
add	6	06	00000110	000	1	0	0	0	1	1	1	1	0	0	0	0	0
jump to fetch	7	07	00000111	111	0	0	0	0	0	0	0	0	0	0	0	0	1
sub	8	08	00001000	000	1	0	0	1	1	1	1	1	0	0	0	0	0
jump to fetch	9	09	00001001	111	0	0	0	0	0	0	0	0	0	0	0	0	1
memory - check store	10	0A	00001010	011	0	0	0	0	0	0	0	0	0	1	1	0	1
memory load	11	0B	00001011	000	1	0	1	0	0	0	0	1	0	0	0	0	0
jump to fetch	12	0C	00001100	111	0	0	0	0	0	0	0	0	0	0	0	0	1
memory store	13	0D	00001101	000	0	1	0	0	0	1	1	0	0	0	0	0	0
jump to fetch	14	0E	00001110	111	0	0	0	0	0	0	0	0	0	0	0	0	1
jump - check o , always	15	0F	00001111	010	0	0	0	0	0	0	0	0	1	0	1	0	1
jump - check s	16	10	00010000	011	0	0	0	0	0	0	0	0	1	0	0	1	1
jump if z = 1	17	11	00010001	100	0	0	0	0	0	0	0	0	1	1	0	0	0
jump to fetch	18	12	00010010	111	0	0	0	0	0	0	0	0	0	0	0	0	1
jump if s = 1	19	13	00010011	101	0	0	0	0	0	0	0	0	1	1	0	0	0
jump to fetch	20	14	00010100	111	0	0	0	0	0	0	0	0	0	0	0	0	1
jump - check always	21	15	00010101	011	0	0	0	0	0	0	0	0	1	1	0	0	0
jump if o = 1	22	16	00010110	110	0	0	0	0	0	0	0	0	1	1	0	0	0
jump to fetch	23	17	00010111	111	0	0	0	0	0	0	0	0	0	0	0	0	1
always jump	24	18	00011000	000	0	0	0	0	0	1	1	1	0	0	0	1	0
jump to fetch	25	19	00011001	111	0	0	0	0	0	0	0	0	0	0	0	0	1

جدول ۱: میکروایسنتراکشنها

۱ هدف

هدف این آزمایش پیادهسازی مدار کنترل کامپیوتر ساخته شده در آزمایشهای قبل به صورت ریزبرنامه پذیر است.

۲ طراحی

۱.۲ مدار کنترلی

برای طراحی مدار کنترلر به صورت ریزبرنامه پذیر ابتدا باید میکرو اینستراکشنها را طراحی کنیم که شرح آن به شکل زیر است: ابتدا دستور را در ثبات لود می کنیم.(fetch) سپس شمارنده دستور را یکی زیاد می کنیم تا در مرحله بعدی آن را لود کنیم و اگر دستور پرشی باشد، مقدار آدرس پرش در شمارنده دستور لود می شود و سپس دستور مور نظر لود خواهد شد. سپس با بررسی بیتهای دستور از بیت پرارزش، نوع دستور را تشخیص می دهیم و سیگنالهای کنترلی درست را ارسال می کنیم که این عمل تشخیص دستور با استفاده از میکرو آپکودها و معماری سیستم کنترلی موجود در صورت آزمایش صورت می گیرد. جدول دستورهای میکرو اینستراکشن که در حافظه به صورت ایستا ذخیره شده است در جدول

برای طراحی فیزیک این قسمت از طراحی پیشنهادی موجود در صورت آزمایش استفاده شد. طول میکرو اینستراکشنها با توجه به تعداد سیگنالهای کنترلی ۱۶ بیت شد که البته ۲ بیت آن رزرو است و بعدا می تواند مورد استفاده قرار گیرد. به علت اینکه حافظه ۱۶ بیتی در پروتئوس نداشتیم، از دو حافظه ۸ بیتی برای ذخیره میکرو اینستراکشنها استفاده کردیم. تصویر مدار کنترل در شکل ۱ آمده است.

۲.۲ تغییرات انجام شده

در این آزمایش بخش کنترلی به طور کامل با ریز معماری اجرا کننده ریز دستورات جایگزین شده ولی ورودیها همچنان مثل آزمایش قبل IR و خروجیها سیگنالهای کنترلی مورد نیاز در مدار هستند. از طرفی چون در بعضی حالات ریز دستورات، سینگالهای کنترلی به Z تغییر پیدا می کنند (با استفاده از بافر سه حالته)، در ورودی رجیسترها و بخشهایی از مدار که از این سیگنال ها استفاده می کنند از and این سیگنالها با کلاک استفاده شده تا مقدار Z عملکرد این بخشها را خراب نکند. از آنجایی که در ریز دستورات به خود دستور دسترسی نداریم، با تعیین سیگنال کنترلی یک مالتی پلکسر مشخص می کنیم که مبدا و مقصد در ALU از دستور خوانده شود و یا مقدار ثابت از پیش تعیین شده باشد.

۳ تست

برای بررسی درستی عملکرد سیستم، برنامه اول آزمایش قبل (جمع ۱۰ جمله اول از سری فیبوناچی) را روی ماشین اجرا کردیم که خروجی آن به صورت شکل ۲ است. حاصل یعنی عدد ۸۸ به صورت باینری در رجیستر R0 (همان A) نشان داده شده است (که از آدرس صفر حافظه خوانده شده است).

انشکده مهندسی کامپیوتر آز معماری آز معماری آزمایش شماره ۸

شکل ۱: مدار کنترلی

انشکده مهندسی کامپیوتر آز معماری آز معماری

شکل ۲: تست