12 λD 中的数学:第一个尝试

Mathematics in λD : a first attempt

读书笔记

许博

1 疑问

1. P260, Remark 12.2.1 中,为何定义 $\Pi P: S \to *_p.(Px \Rightarrow Py)$ 也可以表示 x=y?

2 先举个例子

第十一章中,我们在 λD 中表示了逻辑。在本章中,将转向数学(mathematics)。尽管逻辑的推导框架对数学至关重要,因为逻辑包含了推理的原则,但是数学本身要比单纯的逻辑多的多。

本章以一个关于偏序集合的例子开始,即证明在这样的集合中只存在至多一个最小元。一个在集合 S 上的关系 R 如果满足自反性,反对称性和传递性,则这个关系是偏序的。

Definition 12.1.1 Let S be a set and \leq a binary relation on S. Then $m \in S$ is a *least element* of S with respect to \leq if $\forall_{n \in S} (m \leq n)$.

Lemma 12.1.2 Let S be a set, partially ordered by \leq . Assume that S has a least element with respect to \leq . Then this least element is unique.

Proof Assume that m_1 and m_2 are elements of S and that both are least elements. Then $\forall_{n \in S} (m_1 \leq n)$ and $\forall_{n \in S} (m_2 \leq n)$. In particular, $m_1 \leq m_2$ and $m_2 \leq m_1$. Hence, $m_1 = m_2$, by antisymmetry of \leq . It follows that, if S has a least element, then this element is unique.

在 λD 中形式化这个证明:

Figure 12.1 A first attempt of proving Lemma 12.1.2 in λD

注意到其中存在的几个问题。有一些可以以直观的方式解决:

- 符号 ' \leq ' 表示在 S 上的一个任意的偏序关系。这些隐含的假设会在章节 12.4 中明确的表示。
- 全称量词 \forall 在 λ D 中被编码为 Π 。
- 解决未知项 t_1 和 t_2 代表什么: 应是 \forall -消去规则的实例,所以令 $t_1 \equiv \forall -el(S, \lambda x: S.m_1 \leq x, u, m_2)$ 以及 $t_2 \equiv \forall -el(S, \lambda y: S.m_2 \leq y, v, m_1)$,或者简单地令 $t_1 \equiv um_2$ 以及 $t_2 \equiv vm_1$ 。

剩下的问题似乎更加重要:

- *Q1* 符号 '=' 表示了基本的相等关系,作为数学中许多领域的基础,但尚未是我们系统的一部分,如何补足这点?
- Q2 行 (3) 中 t3 代表什么?
- Q3 如何表达 S 拥有一个最小元?
- Q4 如何表达最小元的唯一性?
- Q5 如何证明最小元的唯一性,也即 t_4 是什么?