Álgebra Preuniversitaria

Teoría y Ejercicios Resueltos

Plataforma Preuniversitaria

27 de julio de 2025

Índice general

1.	Exponentes y Radicales	F
	1.1. Propiedades de los Exponentes	5
	1.2. Ejercicios Resueltos	5
	1.3. Ejercicios Propuestos	6
2.	Límites y Continuidad	7
	2.1. Concepto de Límite	7
	2.2. Ejercicios Resueltos	7
	Soluciones de Ejercicios Propuestos A 1. Soluciones del Capítulo 1	9

ÍNDICE GENERAL

4

Capítulo 1

Exponentes y Radicales

1.1. Propiedades de los Exponentes

Los exponentes son una herramienta fundamental en álgebra. A continuación presentamos las propiedades más importantes:

- 1. $a^m \cdot a^n = a^{m+n}$ (Producto de potencias de igual base)
- 2. $\frac{a^m}{a^n}=a^{m-n}$ (Cociente de potencias de igual base)
- 3. $(a^m)^n = a^{m \cdot n}$ (Potencia de una potencia)
- 4. $(a \cdot b)^n = a^n \cdot b^n$ (Potencia de un producto)
- 5. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ (Potencia de un cociente)
- 6. $a^0 = 1$ (Exponente cero)
- 7. $a^{-n} = \frac{1}{a^n}$ (Exponente negativo)

1.2. Ejercicios Resueltos

Ejercicio. [ALG_EXP_001] Calcula el valor de la siguiente expresión:

$$2^3 \cdot 2^4 \div 2^2$$

Solución. Para resolver esta expresión, aplicamos las propiedades de los exponentes:

1) Producto de potencias de igual base: $a^m \cdot a^n = a^{m+n}$ 2) Cociente de potencias de igual base: $a^m \div a^n = a^{m-n}$

Aplicando estas propiedades:

$$2^3 \cdot 2^4 \div 2^2 = 2^{3+4} \div 2^2 = 2^7 \div 2^2 = 2^{7-2} = 2^5 = 32$$

Respuesta: 32

Ejercicio. [ALG_EXP_002] Simplifica la siguiente expresión:

$$\left(\frac{x^2y^{-3}}{x^{-1}y^2}\right)^{-2} \cdot \frac{x^4}{y^6}$$

Solución. Vamos a simplificar paso a paso:

1) Primero simplificamos la fracción dentro del paréntesis:

$$\frac{x^2y^{-3}}{x^{-1}y^2} = x^{2-(-1)} \cdot y^{-3-2} = x^3 \cdot y^{-5}$$

2) Aplicamos el exponente -2:

$$(x^3 \cdot y^{-5})^{-2} = x^{3 \cdot (-2)} \cdot y^{-5 \cdot (-2)} = x^{-6} \cdot y^{10}$$

3) Multiplicamos por la segunda fracción:

$$x^{-6} \cdot y^{10} \cdot \frac{x^4}{y^6} = x^{-6+4} \cdot y^{10-6} = x^{-2} \cdot y^4$$

4) Expresamos con exponentes positivos:

$$x^{-2} \cdot y^4 = \frac{y^4}{x^2}$$

Respuesta: $\frac{y^4}{x^2}$

Ejercicio. [ALG_EXP_003] Si x = 2 e y = 3, calcula el valor de la siguiente expresión:

$$\left(\frac{x^4\cdot y^{-2}}{x^{-1}\cdot y^3}\right)^2\cdot \frac{x^6}{y^4}$$

Solución. Vamos a resolver este problema paso a paso:

1) Primero simplificamos la fracción dentro del paréntesis:

$$\frac{x^4 \cdot y^{-2}}{x^{-1} \cdot y^3} = x^{4 - (-1)} \cdot y^{-2 - 3} = x^5 \cdot y^{-5}$$

2) Aplicamos el exponente 2:

$$(x^5 \cdot y^{-5})^2 = x^{5 \cdot 2} \cdot y^{-5 \cdot 2} = x^{10} \cdot y^{-10}$$

3) Multiplicamos por la segunda fracción:

$$x^{10} \cdot y^{-10} \cdot \frac{x^6}{y^4} = x^{10+6} \cdot y^{-10-4} = x^{16} \cdot y^{-14}$$

4) Expresamos con exponentes positivos:

$$x^{16} \cdot y^{-14} = \frac{x^{16}}{y^{14}}$$

5) Sustituimos los valores x = 2 e y = 3:

$$\frac{2^{16}}{3^{14}} = \frac{65536}{4782969} = \frac{65536}{4782969}$$

Respuesta: $\frac{65536}{4782969}$

Nota: Este resultado se puede simplificar, pero se deja en forma de fracción para mayor precisión.

Ejercicio. [ALG_EXP_004] Simplifica la siguiente expresión y encuentra el valor cuando a=4 y b=2:

$$\frac{(a^3b^{-2})^4 \cdot (a^{-1}b^3)^2}{(a^2b^{-1})^3 \cdot (a^{-2}b^2)^2}$$

Solución. Vamos a simplificar esta expresión compleja paso a paso:

1) Desarrollamos las potencias en el numerador:

$$(a^3b^{-2})^4 = a^{3\cdot 4} \cdot b^{-2\cdot 4} = a^{12} \cdot b^{-8}$$

$$(a^{-1}b^3)^2 = a^{-1\cdot 2} \cdot b^{3\cdot 2} = a^{-2} \cdot b^6$$

2) Desarrollamos las potencias en el denominador:

$$(a^2b^{-1})^3 = a^{2\cdot 3} \cdot b^{-1\cdot 3} = a^6 \cdot b^{-3}$$

$$(a^{-2}b^2)^2 = a^{-2\cdot 2} \cdot b^{2\cdot 2} = a^{-4} \cdot b^4$$

3) Reescribimos la expresión original:

$$\frac{a^{12} \cdot b^{-8} \cdot a^{-2} \cdot b^{6}}{a^{6} \cdot b^{-3} \cdot a^{-4} \cdot b^{4}}$$

4) Agrupamos términos semejantes:

$$\frac{a^{12-2} \cdot b^{-8+6}}{a^{6-4} \cdot b^{-3+4}} = \frac{a^{10} \cdot b^{-2}}{a^2 \cdot b^1}$$

5) Simplificamos aplicando propiedades de división:

$$\frac{a^{10}}{a^2} \cdot \frac{b^{-2}}{b^1} = a^{10-2} \cdot b^{-2-1} = a^8 \cdot b^{-3}$$

6) Expresamos con exponentes positivos:

$$a^8 \cdot b^{-3} = \frac{a^8}{b^3}$$

7) Sustituimos los valores a = 4 y b = 2:

$$\frac{4^8}{2^3} = \frac{65536}{8} = 8192$$

Respuesta: 8192

Nota: La expresión simplificada es $\frac{a^8}{b^3}$, que es mucho más manejable que la expresión original.

1.3. Ejercicios Propuestos

Ejercicio. Calcula: $3^2 \cdot 3^5 \cdot 3^{-3}$

Ejercicio. Simplifica: $\frac{(x^3)^2 \cdot x^4}{x^8}$

Capítulo 2

Límites y Continuidad

2.1. Concepto de Límite

El límite de una función f(x) cuando x tiende a a es el valor al que se aproxima f(x) cuando x se acerca arbitrariamente a a.

$$\lim_{x \to a} f(x) = L$$

2.2. Ejercicios Resueltos

Ejercicio. [CAL_LIM_001] Calcula el siguiente límite:

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

Solución. Este es un límite de la forma $\frac{0}{0}$ (indeterminación). Vamos a resolverlo:

1) Factorizamos el numerador:

$$x^2 - 4 = (x+2)(x-2)$$

2) Simplificamos la fracción:

$$\frac{x^2 - 4}{x - 2} = \frac{(x+2)(x-2)}{x-2} = x + 2$$

3) Calculamos el límite:

$$\lim_{x \to 2} (x+2) = 2 + 2 = 4$$

Respuesta: 4

Nota: Este límite se puede resolver también aplicando la regla de L'Hôpital, pero la factorización es más directa.

Apéndice A

Soluciones de Ejercicios Propuestos

A.1. Soluciones del Capítulo 1

Solución. Para $3^2 \cdot 3^5 \cdot 3^{-3}$:

$$3^2 \cdot 3^5 \cdot 3^{-3} = 3^{2+5-3} = 3^4 = 81$$

Solución. Para $\frac{(x^3)^2 \cdot x^4}{x^8}$:

$$\frac{(x^3)^2 \cdot x^4}{x^8} = \frac{x^6 \cdot x^4}{x^8} = \frac{x^{10}}{x^8} = x^2$$