Problema Tutoriat

4 a) Știind că
$$\exists \mathbb{R}$$
 $\lim_{m\to\infty} (1+\frac{1}{2}+...+\frac{1}{m}-\theta n m) \xrightarrow{\text{not}} \mathcal{R} \in (0;1),$ calculați $\lim_{m\to\infty} (\frac{1}{m+1}+\frac{1}{m+2}+...+\frac{1}{2m}).$

Rezolvare:

$$\lim_{m\to\infty} \left(\frac{1}{m+1} + \frac{1}{m+2} + \dots + \frac{1}{2m} \right) = \lim_{m\to\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{2m} - 1 - \frac{1}{2} - \dots - \frac{1}{m} \right) =$$

$$= \lim_{m\to\infty} \left[\left(1 + \frac{1}{2} + \dots + \frac{1}{2m} \right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{m} \right) \right] =$$

$$= \lim_{m\to\infty} \left[\left(1 + \frac{1}{2} + \dots + \frac{1}{2m} - \ln 2m + \ln 2m \right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{m} - \ln m \right) - \ln m \right] =$$

$$= \lim_{m\to\infty} \left[\left(1 + \frac{1}{2} + \dots + \frac{1}{2m} - \ln 2m \right) + \ln 2m - \left(1 + \frac{1}{2} + \dots + \frac{1}{m} - \ln m \right) - \ln m \right] =$$

$$= \lim_{m\to\infty} \left[\left(1 + \frac{1}{2} + \dots + \frac{1}{2m} - \ln 2m \right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{m} - \ln m \right) + \ln \frac{2m}{m} \right] = c - c + \ln 2 =$$

$$= \ln 2$$

b) Fie xm=21+2+...+ 1 3, me IN+. Verificatio daca simil xm este converg.

Rezolvane:

Observaim ca 0 \(\times Xm < L \) \(\times m\) \(\times \) \(\times m\) \(\times

$$X_{m+1} - X_{m} = \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{m+1} - \frac{1}{2} + \dots + \frac{1}{m} = \frac{1}{2} + \dots + \frac{1}{m+1} - \frac{1}{2} + \dots + \frac{1}{m+1} - \frac{1}{2} + \dots + \frac{1}{m+1} - \frac{1}{2} + \dots + \frac{1}{m+1} = \frac{1}{2} + \dots + \frac{1}{2} + \dots + \frac{1}{2} + \dots + \frac{1}{2} = \frac{1}{2} + \dots + \frac{1}{2} + \dots + \frac{1}{2} = \frac{1}{2$$

Nu stim daçà ce am obțiunt este pozitiv sau negativ.

Vom încerco o alta abordare:

Presupurem ca $(x_m)_{m \in H+}$ the convergent => $\exists \lim_{n \to \infty} x_m = l \in [0;1]$ $\Rightarrow \lim_{n \to \infty} x_{2m} = l$ $(x_{2m})_m$ este un substite al lui $(x_m)_n$ si cum am presupus cai si rul reatru este convergent, substitul va avea aceeasi limità). Încercain sa ne falosin de primul subpunct (la examen va fi un subpunct ajutator la exerciti de acest gen).

lim (x2n-xn) = l-l=0 (Putem sà spargem limita decarece am presupus ca & l'este limità finità)

 $\begin{array}{l} x_{2m} - x_m = \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2m} \frac{1}{2} - \frac{1}{2} + \dots + \frac{1}{2m} \frac{1}{2} = \frac{1}{2} + \dots + \frac{1}{2m} \frac{1}{2} - \frac{1}{2} + \dots + \frac{1}{2m} \frac{1}{2} - \frac{1}{2} + \dots + \frac{1}{2m} \frac{1}{2} \end{array}$

Dim a) Stim ca $\frac{1}{m+1} + \dots + \frac{1}{2m} \longrightarrow \Re 2$

Asa cà notam cu $y_m = [1 + \frac{1}{2} + ... + \frac{1}{2m}] - [1 + \frac{1}{2} + ... + \frac{1}{m}]$ $x_{2m} - x_m = \frac{1}{m+1} + ... + \frac{1}{2m} - y_m \Rightarrow y_m = (\frac{1}{m+1} + ... + \frac{1}{2m}) + (x_m - x_{2m})$ Cum $y_m = [1 + \frac{1}{2} + ... + \frac{1}{2m}] - [1 + \frac{1}{2} + ... + \frac{1}{m}] \Rightarrow y_m \in \mathbb{Z}$ $\forall m \in \mathbb{N}^*$

 $\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{n \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{2m} + \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{n \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{2m} - \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{n \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{2m} - \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{n \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{2m} - \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{n \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{2m} - \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{n \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{2m} - \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{n \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{2m} - \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{n \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{2m} - \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{n \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{2m} - \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{m \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{2m} - \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{m \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{m \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{m \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{m \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{m \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{m \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{m \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) + \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{m \to \infty} \left(\frac{1}{m+1} + \dots + \frac{1}{2m} \right) \\
\frac{1}{2} \lim_{m \to \infty} y_m = \lim_{m \to \infty} y_m$

=> { lim ym = en2 => I pen ym=yp=en2 + m2p } => ymeII + weina } } }

>> In 2 EZZ

1<2<e>> 4m1</br>
em2<1</p>
fm2

Deci, presupunerea noastra este falsa.

sinul (Xm) men este divergent.

sinul (Xm) men este marginit

tim Xm

Observatje!

Conferm a)

Lim (1+2+...+1/m) =

- Lim (1+2+...+1/m - mm+6mm) =

- C+ Lim (9mm) = + 00