卵日本国特許庁(JP)

⑩特許出願公開

平1-207973 ⑩ 公 開 特 許 公 報(A)

Solnt. Cl. 4

織別記号

庁内整理番号

平成1年(1989)8月21日 63公開

29/78 21/88 29/46 H 01 L

301

--8422-

-6708-5F

R-7638-5F審査請求 未請求 請求項の数 1 (全2頁)

会発明の名称

MOS型半導体装置の製造方法

昭63-33305 @特

昭63(1988) 2月16日 顋 29出

明 伽発 者 誠

長野県諏訪市大和3丁目3番5号 セイコーエブソン株式

セイコーエブソン株式 願人 の出

東京都新宿区西新宿2丁目4番1号

会社

79代 理 人 弁理士 最上 務 外1名

1. 発明の名称

MOS型半導体装置の製造方法

2. 特許額求の範囲

高融点金属ゲート電極の少くとも側面を含む裏 面を察化処理する事を特徴とするMOS刑半選体 装置の製造方法。

3. 発明の詳細な説明

(産業上の利用分野)

木売明はタングステン・ゲート登板やモリブデ ン・ゲート電極を有するMOS型半導体装置のゲ ート電頻安定化処理方法と構造に関する。

〔従来の技術〕

従来、タングステン・ゲートMOS FETや モリプデン・ゲートMOS FETに於ては、半 悪体基板上にゲート距縁膜を介してスパック等の 方法にてクングステン膜やモリブデン膜を形成し、 該高融点金属膜をホト・エッチングによりパター ン状にエッチングしゲート発摘となし、豚ゲート 質極をマスクとして自己競合型に不能物をイオン 打込み等してソース・ドレインを形成するのが通

(発明が解決しようとする課題)

しかし、上記、従来技術によるとタングステン ・ゲート電極やモリブデン・ゲート電極が吸湿し たりあるいは高温度の不純物ガスに晒されるとエ ッチングされたりして、化学的に不安定であり、 盤塵に向かないと云う問題点があった。

本発明は、かかる従来技術の問題点をなくし、 化学的に安定な処理を従したタングステン・ゲー ト電極やモリプテン・ゲート電極を提供する事を 目的とする。

(課題を解決するための手段)

上記問題点を解決するために、本発明はMOS 型半導体装置の製造方法に関し、高融点金属ゲー ト電極の少くとも側面を含む表面を変化処理する 手段をとる.

(实施例)

以下、実施例により本発明を詳述する。

第一関は本発明の一実施例を示す高融点金属ゲートの寮化処理技である。すなわち、いま、Siの麦間にフィールドSiの2 酸 2 及びゲートSiの2 職 3 を形成し、その表面に、タングステン等の高融点金属股を全面にスパッタ法をで形成し、ホト・エッチング法により移タングステン等のあからないは 京楽 プラズマ 雰囲気に 断す 等して、クングステン 意化 腹 5 等の 窒化 限を形成 ひこん ひょう ングステン を化 腹 5 等の 窒化 限を形成 して 成る。尚、ホト・エッチング 時のホトレデストを残存

尚、ホト・エッチング時のホトレデストを残存させたまま家化処理してゲート金属の側面のみを窓化処理する事も出来、更に、例えばクングステン際上にチクン腹を形成してゲート電極状となし、窒化処理する事により、ゲート表面はチクン変化腺、ゲート側面はタングステン窒化腺を形成したり、タングステン膜上に家化チクン酸を形成して、同様の変化膜構造をなす事もできる。

契に、本発明は、高融点金属ゲートのみならず 高融点金額配線にも適用できるがは云うまでもない。

(発明の効果)

本発明により高融点金属ケートの化学的不安定性をなくする事ができ、タングステン・ゲートMOS FETによる集積回路装置が安定に量産化できる効果がある。

4. 図面の簡単な説明

第1図は本発明の一実施例を示す高融点金器ゲ ートの変化処理法を示す図。

」···Si 恭板

2・・・フィールドSiO2 膜

3・・・ゲートSiOュ 膜

4・・・タングステン・ゲート

5・・・タングステン策化膜

5 タンプステン室化膜 4 タンプステン室化膜 3 ゲートSiO2膜 2 スールドSiO.膜 1 Si基板

第 1 図

DIALOG(R)File 352:Derwent WPI

(c) 2001 Derwent Info Ltd. All rts. reserv.

008017742 **Image

Image available

WPI Acc No: 1989-282854/198939

Mfg. MOS semiconductor device - having tungsten or molybdenum gate electrode by forming nitride film on gate electrode NoAbstract Dwg 1/1

Patent Assignee: EPSON CORP (SHIH)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

JP 1207973 A 19890821 JP 8833305 A 19880216 198939 B

Priority Applications (No Type Date): JP 8833305 A 19880216

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 1207973 A 8

Title Terms: MANUFACTURE; MOS; SEMICONDUCTOR; DEVICE; TUNGSTEN; MOLYBDENUM; GATE; ELECTRODE; FORMING; NITRIDE; FILM; GATE;

1 1

ELECTRODE; NOABSTRACT Derwent Class: L03; U11; U12

International Patent Class (Additional): H01L-021/88; H01L-029/78

File Segment: CPI; EPI

EUROPEAN PATENT OF

Patent Abstracts of Japan

PUBLICATION NUMBER

01207973

PUBLICATION DATE

21-08-89

APPLICATION DATE

16-02-88

APPLICATION NUMBER

63033305 ٠:

APPLICANT: SEIKO EPSON CORP;

INVENTOR: IWAMATSU SEIICHI;

INT.CL.

H01L 29/78 H01L 21/88 H01L 29/46

TITLE

MANUFACTURE OF MOS TYPE

SEMICONDUCTOR DEVICE

ABSTRACT :

PURPOSE: To make a high melting point metal gate electrode chemically stable, by treating the surface including side faces of the high melting point metal gate electrodes by nitriding.

CONSTITUTION: A field SiO₂ film 2 and a gate SiO₂ film 3 are formed on the surface of an Si substrate 1. The film of a high melting point metal such as tungsten and the like is formed on the whole surface of the above films 2 and 3 with a spatter technique and so on. The foregoing film of tungsten and the like is etched to become pattern like and a tungsten gate 4 is formed. After that, the nitride films of a tungsten nitride film 5 and the like are formed by nitrogen ion driving or by exposing in a nitrogen plasma atmosphere or by taking other similar steps. The chemical instability of a high melting point metal gate is thus prevented.

COPYRIGHT: (C)1989, JPO& Japio