Régression linéaire généralisée sur composantes supervisées pour la modélisation jointe des réponses

Julien GIBAUD¹, Xavier BRY¹ et Catherine TROTTIER^{1,2}

 1 IMAG, CNRS, Univ. Montpellier, France. 2 Univ. Paul-Valéry Montpellier 3, Montpellier, France.

Séminaire des doctorant.es

Sommaire

- Problématique
- 2 Recherche de composantes
 - Définition des composantes supervisées
 - La méthode SCGLR
- Classification
- 4) Mélange de réponses à composantes communes
 - La méthode Response-Mixture SCGLR
 - Simulations
- Derspectives et conclusion

Motivations

Motivations écologiques

Dans un contexte de réchauffement climatique on cherche à

- Trouver les déterminants principaux des abondances d'espèces, parmi un grand nombre de variables
- Identifier des communautés d'espèces influencées par des déterminants communs

Motivations

Motivations écologiques

Dans un contexte de réchauffement climatique on cherche à

- Trouver les déterminants principaux des abondances d'espèces, parmi un grand nombre de variables
- Identifier des communautés d'espèces influencées par des déterminants communs

Traduction statistique

- Trouver des dimensions fortes permettant d'expliquer au mieux les réponses
 - Procherche de composantes supervisées
- Identifier des groupes de réponses partageant des dimensions explicatives propres à chaque groupe
 - → Classification

Sommaire

- Problématique
- 2 Recherche de composantes
 - Définition des composantes supervisées
 - La méthode SCGLR
- Classification
- 4 Mélange de réponses à composantes communes
 - La méthode Response-Mixture SCGLR
 - Simulations
- 5 Perspectives et conclusion

Qu'est-ce qu'une composante?

Notations

- $Y = [y_1, \dots, y_q] \in \mathbb{R}^{n \times q}$ la matrice donnée des variables **réponses** (abondances d'espèces)
- $X = [x_1, \dots, x_p] \in \mathbb{R}^{n \times p}$ la matrice donnée des variables **explicatives**

Qu'est-ce qu'une composante?

Notations

- $Y = [y_1, \dots, y_q] \in \mathbb{R}^{n \times q}$ la matrice donnée des variables **réponses** (abondances d'espèces)
- $X = [x_1, \dots, x_p] \in \mathbb{R}^{n \times p}$ la matrice donnée des variables **explicatives**

Définition

Une composante est un vecteur f permettant de synthétiser l'information contenue dans les données et respectant

- $f_h = Xu_h$, pour tout $h = 1, \dots, H$, et $F = [f_1, \dots, f_H]$
- $f_h \perp f_g$, pour tout $h \neq g$

Qu'est-ce qu'une composante?

Notations

- $Y = [y_1, \dots, y_q] \in \mathbb{R}^{n \times q}$ la matrice donnée des variables **réponses** (abondances d'espèces)
- $X = [x_1, \dots, x_p] \in \mathbb{R}^{n \times p}$ la matrice donnée des variables **explicatives**

Définition

Une composante est un vecteur f permettant de synthétiser l'information contenue dans les données et respectant

- $f_h = Xu_h$, pour tout $h = 1, \dots, H$, et $F = [f_1, \dots, f_H]$
- $f_h \perp f_g$, pour tout $h \neq g$

Exigences

- Les composantes doivent être proches des variables pour être interprétables
- Elles doivent bien prédire les réponses Y

Qu'est-ce qu'une composante supervisée?

Les composantes supervisées sont des composantes permettant d'expliquer une variable réponse.

$$orall k=1,\ldots,q, \quad y_k \sim \mathbb{P}_{y_k}(\eta_k)$$

avec $\eta_k = F\gamma_k$, où F = XU et où γ_k est un vecteur de coefficients (effets des composantes sur la réponse y_k). \mathbb{P}_{y_k} est une loi de probabilité adaptée à la réponse.

Nous voulons:

Nous voulons:

• des composantes ...

Nous voulons:

- des composantes ...
- ... qui puissent expliquer les réponses ...

Nous voulons:

- des composantes ...
- ... qui puissent expliquer les réponses ...
- ... et qui soient interprétables.

SCGLR (Bry et al., 2018)

Pertinence structurelle (SR)

Le critère $\phi(u)$ mesure la "force" de la composante Xu (proximité aux variables x_i)

SCGLR (Bry et al., 2018)

Pertinence structurelle (SR)

Le critère $\phi(u)$ mesure la "force" de la composante Xu (proximité aux variables x_j)

Qualité d'ajustement (GoF)

Le critère $\psi(u,\theta)$ est la vraisemblance du modèle à composantes

→ vraisemblance du modèle = probabilité que le modèle donne aux observations réalisées

SCGLR (Bry et al., 2018)

Pertinence structurelle (SR)

Le critère $\phi(u)$ mesure la "force" de la composante Xu (proximité aux variables x_j)

Qualité d'ajustement (GoF)

Le critère $\psi(u,\theta)$ est la vraisemblance du modèle à composantes

ightarrow vraisemblance du modèle = probabilité que le modèle donne aux observations réalisées

Critère SCGLR

$$\underset{u, ||u||^2=1}{\operatorname{argmax}} s \ln (\phi(u)) + (1-s) \ln (\psi(u, \theta))$$

Le réel $s \in [0,1]$ permet de régler un compromis entre SR et GoF

Méthodes d'estimation

Estimation de u

L'algorithme PING permet de résoudre les programmes de la forme

$$\begin{cases} \underset{u}{\operatorname{argmax}} & c(u), \\ \text{s.c.} & \|u\|^2 = 1 \quad \text{et} \quad D^T u = 0, \end{cases}$$

avec D la matrice de contrainte d'orthogonalité des composantes

Méthodes d'estimation

Estimation de u

L'algorithme PING permet de résoudre les programmes de la forme

$$\begin{cases} \operatorname{argmax} & c(u), \\ \operatorname{s.c.} & \|u\|^2 = 1 & \text{et} & D^T u = 0, \end{cases}$$

avec D la matrice de contrainte d'orthogonalité des composantes

Estimation de θ

On trouve θ par maximum de vraisemblance, i.e. on résout

$$\nabla_{\theta} \psi(u, \theta) = 0$$

Sommaire

- Problématique
- 2 Recherche de composantes
 - Définition des composantes supervisées
 - La méthode SCGLR
- Classification
- 4 Mélange de réponses à composantes communes
 - La méthode Response-Mixture SCGLR
 - Simulations
- Derspectives et conclusion

Qu'est-ce que la classification?

Idée

Classifier des objets statistiques dans des groupes

→ Objets : individus, variables, réponses...

Qu'est-ce que la classification?

Exemples

Il existe plusieurs méthodes de classification :

- Méthodes de partitionnement
 - \rightarrow Ex : K-means, CAH,...
- Méthodes par probabilité d'appartenance
 - → Ex : modèle de mélange,...

Qu'est-ce que la classification?

Exemples

Il existe plusieurs méthodes de classification :

- Méthodes de partitionnement
 - \rightarrow Ex : K-means, CAH,...
- Méthodes par probabilité d'appartenance
 - → Ex : modèle de mélange,...

Objectifs

- Objets à grouper : réponses
- Méthode : modèle de mélange

Sommaire

- Problématique
- 2 Recherche de composantes
 - Définition des composantes supervisées
 - La méthode SCGLR
- Classification
- Mélange de réponses à composantes communes
 - La méthode Response-Mixture SCGLR
 - Simulations
- 5 Perspectives et conclusion

Modèle de mélange de réponses

Encore plus de notations

- *G* le nombre de groupes
- z_{kg} la variable indicatrice latente qui vaut 1 si la réponse y_k est dans le groupe g
- ullet p_g la probabilité *a priori* qu'une réponse soit dans le groupe g

Modèle de mélange de réponses

Encore plus de notations

- *G* le nombre de groupes
- z_{kg} la variable indicatrice latente qui vaut 1 si la réponse y_k est dans le groupe g
- ullet p_g la probabilité *a priori* qu'une réponse soit dans le groupe g

Modèle

Conditionnellement à $z_{kg}=1$, $y_k \sim \mathbb{P}(\theta_g)$ de densité $d(y_k;\theta_g)$. La vraisemblance du modèle s'écrit : $\prod_{k=1}^q \sum_{g=1}^G p_g d(y_k;\theta_g)$, avec θ_g comprenant :

- les vecteurs u_g propres à chaque groupe
- les γ_{kg} (effets de la composante $f_g = Xu_g$ sur y_k)

Modèle de mélange de réponses

Encore plus de notations

- *G* le nombre de groupes
- z_{kg} la variable indicatrice latente qui vaut 1 si la réponse y_k est dans le groupe g
- ullet p_g la probabilité *a priori* qu'une réponse soit dans le groupe g

Modèle

Conditionnellement à $z_{kg}=1$, $y_k \sim \mathbb{P}(\theta_g)$ de densité $d(y_k;\theta_g)$. La vraisemblance du modèle s'écrit : $\prod_{k=1}^q \sum_{g=1}^G p_g d(y_k;\theta_g)$, avec θ_g comprenant :

- les vecteurs u_g propres à chaque groupe
- les γ_{kg} (effets de la composante $f_g = Xu_g$ sur y_k)

Problème: Vraisemblance compliquée à maximiser

Méthode d'estimation (Dempster et al., 1977)

On utilise l'algorithme Expectation-Maximization (EM). Il permet de :

- Maximiser une vraisemblance en présence de variables latentes
 - \rightarrow Ici : la variable nominale de groupe z_{kg}
- Estimer la loi conditionnelle de chaque z_k sachant les observations
 - → lci : les probabilités a posteriori d'appartenance aux groupes de chaque réponse

Response-Mixture SCGLR

Vraisemblance

$$\psi(u_1,\ldots,u_G,Y;\Xi)=\prod_{k=1}^q\sum_{g=1}^Gp_g\mathcal{N}_n(\mu_{kg},\Sigma_g),\ \mu_{kg}=Xu_g\gamma_{kg},\ \Sigma_g=\sigma_g^2I$$

Response-Mixture SCGLR

Vraisemblance

$$\psi(u_1,\ldots,u_G,Y;\Xi)=\prod_{k=1}^q\sum_{g=1}^G\rho_g\mathcal{N}_n(\mu_{kg},\Sigma_g),\ \mu_{kg}=Xu_g\gamma_{kg},\ \Sigma_g=\sigma_g^2I$$

Critère à maximiser

$$\underset{\forall g, \|u_g\|^2=1}{\operatorname{argmax}} s \sum_{g=1}^{G} \ln \left(\phi(u_g) \right) + (1-s) \ln \left(\frac{\psi(u_1, \dots, u_G, Y; \Xi)}{} \right)$$

Response-Mixture SCGLR

Vraisemblance

$$\psi(u_1,\ldots,u_G,Y;\Xi)=\prod_{k=1}^q\sum_{g=1}^G\rho_g\mathcal{N}_n(\mu_{kg},\Sigma_g),\ \mu_{kg}=Xu_g\gamma_{kg},\ \Sigma_g=\sigma_g^2I$$

Critère à maximiser

$$\underset{\forall g, \|u_g\|^2=1}{\operatorname{argmax}} s \sum_{g=1}^{G} \ln \left(\phi(u_g)\right) + (1-s) \ln \left(\psi(u_1, \dots, u_G, Y; \Xi)\right)$$

Méthode d'estimation

On alterne itérativement ces deux maximisations :

- On trouve $\Xi = \{(p_g)_g, (\gamma_{kg})_{kg}, (\sigma_g^2)_g\}$ à l'aide de l'algorithme EM
- Pour tout g, on trouve u_g à l'aide de l'algorithme PING

(十四) (1) (1) (1) (1) (1) (1) (1) (1)

Simulations

Simulation des réponses

On simule quatre variables latentes φ_i , pour $i = 1, \dots, 4$.

Les variables latentes φ_1 et φ_2 sont corrélées à 0.5.

On simule deux groupes de réponses de la manière suivante :

$$\forall i = 1, \ldots, 40, \quad y_i = \gamma_{i,1}\varphi_1 + \gamma_{i,2}\varphi_3 + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, I_n)$$

$$\forall i = 41, \ldots, 100, \quad y_i = \gamma_{i,1}\varphi_2 + \gamma_{i,2}\varphi_4 + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, I_n)$$

où, pour tout
$$i$$
, $-4 < \gamma_{i,1} < 4$

et, pour tout
$$i$$
, $-2 < \gamma_{i,2} < 2$.

Simulations

Simulation des réponses

On simule quatre variables latentes φ_i , pour $i = 1, \dots, 4$.

Les variables latentes φ_1 et φ_2 sont corrélées à 0.5.

On simule deux groupes de réponses de la manière suivante :

$$\forall i = 1, \ldots, 40, \quad y_i = \gamma_{i,1}\varphi_1 + \gamma_{i,2}\varphi_3 + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, I_n)$$

$$\forall i = 41, \ldots, 100, \quad y_i = \gamma_{i,1}\varphi_2 + \gamma_{i,2}\varphi_4 + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, I_n)$$

où, pour tout i, $-4 < \gamma_{i,1} < 4$

et, pour tout i, $-2 < \gamma_{i,2} < 2$.

Simulation des variables explicatives

La matrice X contient 30 variables divisées en cinq blocs :

$$X = [B_1, B_2, B_3, B_4, B_5]$$

Pour $i=1,\ldots,4$, B_i est un faisceau de cinq variables centrées en φ_i .

 B_5 est un bloc de dix variables sans rôle prédictif.

Probabilité a posteriori d'inclusion

- $\forall i = 1, \dots, 40, \mathbb{P}(y_i \text{ est dans le groupe } 1) > 0.999$
- $\forall i = 41, ..., 100, \mathbb{P}(y_i \text{ est dans le groupe 2}) > 0.999$

Probabilité a posteriori d'inclusion

- $\forall i = 1, ..., 40, \mathbb{P}(y_i \text{ est dans le groupe } 1) > 0.999$
- $\forall i = 41, ..., 100, \mathbb{P}(y_i \text{ est dans le groupe 2}) > 0.999$

Corrélation

groupe 1		
$\rho^2(\varphi_1,f_1^1)$	0.982	
$\rho^{2}(\varphi_{3},f_{1}^{2})$	0.966	

groupe 2
$$\rho^{2}(\varphi_{2}, f_{2}^{1}) \quad 0.972$$

$$\rho^{2}(\varphi_{4}, f_{2}^{2}) \quad 0.984$$

Autres simulations

Simulations

On reprend les simulations précédentes avec une corrélation de 0.9 entre φ_1 et φ_2 .

Autres simulations

Simulations

On reprend les simulations précédentes avec une corrélation de 0.9 entre φ_1 et φ_2 .

Probabilité a posteriori d'inclusion

- $\mathbb{P}(y_i \text{ est dans le groupe } 1) \approx 0.5$
- $\mathbb{P}(y_i \text{ est dans le groupe 2}) \approx 0.5$

Autres simulations

Simulations

On reprend les simulations précédentes avec une corrélation de 0.9 entre φ_1 et φ_2 .

Probabilité a posteriori d'inclusion

- $\mathbb{P}(y_i \text{ est dans le groupe } 1) \approx 0.5$
- $\mathbb{P}(y_i \text{ est dans le groupe 2}) \approx 0.5$

Corrélation

groupe 1	
$\rho^2(\varphi_1, f_1^1)$	0.776
$\rho^2(\varphi_3, f_1^2)$	0.378

groupe 2		
$\rho^2(\varphi_2, f_2^1)$	0.818	
$\rho^2(\varphi_4, f_2^2)$	0.348	

Sommaire

- Problématique
- 2 Recherche de composantes
 - Définition des composantes supervisées
 - La méthode SCGLR
- Classification
- 4 Mélange de réponses à composantes communes
 - La méthode Response-Mixture SCGLR
 - Simulations
- 5 Perspectives et conclusion

Perspectives

- Étendre la méthode aux GLM
- Ajout d'un critère encourageant l'éloignement des sous-espaces explicatifs des groupes

Remerciements et Références

Merci de votre attention

- Bry, X., Trottier, C., Mortier, F., and Cornu, G. (2018). Component-based regularization of a multivariate GLM with a thematic partitioning of the explanatory variables. *Statistical Modelling*, pages 1471082X18810114.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society : Series B (Methodological)*, 39(1):1–22.