- 1. The-Axiom-of-Completeness
 - 1.1. Initial Definition for R
 - 1.2. Axiom of Completeness
 - 1.3. Upper and Lower Bounds
 - 1.4. Supremum and Infimum
 - 1.5. Maximum and Minimum
 - 1.6. Q and the Axiom of Completeness
 - 1.7. $\sup(c + A) = c + \sup A$
 - 1.8. Alternative Phrasing for Supremum
 - 1.9. Additional Review
- $2. \ \, {\rm Consequences-of-Completeness}$
 - 2.1. Nested Interval Property

- **ID:** 202501180703
- Timestamp: Sunday 19th January, 2025 11:39
- Tags: Mathematics, Analysis-I-Abbott, The-Axiom-of-Completeness
- References:
 - Abbott, S., Understanding Analysis

Main Content

Main Idea

R is an ordered field and contains Q as a subfield.

Explanation

R is a field, meaning that addition and multiplication of real numbers are commutative, associative, and the distributive property holds. R also has an order, meaning the following two properties hold:

1. If $x \in R$ and $y \in R$, then one and only one of the statements

$$x < y,$$
 $x = y,$ $y < x$

is true.

2. If $x, y, z \in R$, if x < y and y < z, then x < z.

Finally, R is a set containing Q. The operations of addition and multiplication on Q extend to all of R in such a way that every element of R has an additive inverse and every nonzero element of R has a multiplicative inverse.

Review

1. Define the set of real numbers.

- ID: 202501180727
- Timestamp: Sunday 19th January, 2025 11:39
- Tags: Mathematics, Analysis-I-Abbott, The-Axiom-of-Completeness
- References:
 - Abbott, S., Understanding Analysis

Main Content

Main Idea

Every nonempty set of real numbers that is bounded above has a least upper bound.

Explanation

Review

1. Define the Axiom of Completeness.

Links to Other Notes

• Initial Definition for R

Table of Contents

- **ID:** 202501180734
- Timestamp: Sunday 19th January, 2025 11:39
- Tags: Mathematics, Analysis-I-Abbott, The-Axiom-of-Completeness
- References:
 - Abbott, S., Understanding Analysis

Main Content

Main Idea

A set $A \subset R$ is bounded above if there exists a number $b \in R$ such that $a \leq b$ for all $a \in A$. The number b is called an upper bound for A. Likewise, the set A is bounded below if there exists a lower bound $l \in R$ such that $l \leq a$ for every $a \in A$.

Explanation

Review

1. Define upper and lower bounds.

Links to Other Notes

- Initial Definition for R
- Axiom of Completeness

Table of Contents

- ID: 202501180743
- Timestamp: Sunday 19th January, 2025 11:39
- Tags: Mathematics, Analysis-I-Abbott, The-Axiom-of-Completeness
- References:
 - Abbott, S., Understanding Analysis

Main Content

Main Idea

A real number s is the least upper bound for a set $A \subset R$ if it meets the following two criteria:

- 1. s is an upper bound for A;
- 2. if b is any upper bound for A, then $s \leq b$.

Explanation

The least upper bound is frequently called the supremum of the set A, denoted $s = \sup A$.

Review

- 1. Define the supremum of a set.
- 2. Define the infimum, or the greatest lower bound, of a set.
- 3. Are least upper bounds unique? Explain.
- 4. Let

$$A = \{\frac{1}{n} : n \in N\} = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}.$$

What is $\sup A$ and $\inf A$?

- Initial Definition for R
- Axiom of Completeness
- Upper and Lower Bounds

- **ID**: 202501181241
- Timestamp: Sunday 19th January, 2025 11:39
- Tags: Mathematics, Analysis-I-Abbott, The-Axiom-of-Completeness
- References:
 - Abbott, S., Understanding Analysis

Main Content

Main Idea

A real number a_0 is a maximum of the set A if a_0 is an element of A and $a_0 \ge a$ for all $a \in A$.

Explanation

The supremum can exist and not be a maximum, but when a maximum exists, then it is also the supremum.

Review

- 1. Define maximum.
- 2. Define minimum.
- 3. Consider the open interval

$$(0,2) = \{x \in R : 0 < x < 2\},\$$

and the closed interval

$$[0,2] = \{x \in R : 0 \le x \le 2\}.$$

What are the maximums of the two sets? What are the supremums?

- Initial Definition for R
- Axiom of Completeness
- Upper and Lower Bounds
- Supremum and Infimum

- ID: 202501181257
- Timestamp: Sunday 19th January, 2025 11:39
- Tags: Mathematics, Analysis-I-Abbott, The-Axiom-of-Completeness
- References:
 - Abbott, S., Understanding Analysis

Main Content

Main Idea

The Axiom of Completeness is not a valid statement about Q.

Explanation

Consider the set

$$S = \{ r \in Q : r^2 < 2 \}.$$

This set is certainly bounded above, however, when we search for the least upper bound, we can always find a smaller supremum. For example, we might try b = 2, b = 3/2, b = 142/100, b = 1415/1000, and so on.

Review

- 1. Is the Axiom of Completeness a valid statement about Q? Explain.
- 2. Does the set

$$S = \{ r \in Q : r^2 < 2 \}$$

have a supremum under R?

- Initial Definition for R
- Axiom of Completeness
- Upper and Lower Bounds
- Supremum and Infimum
- Maximum and Minimum

• ID: 202501181310

• Timestamp: Sunday 19th January, 2025 11:39

• Tags: Mathematics, Analysis-I-Abbott, The-Axiom-of-Completeness

• References:

- Abbott, S., Understanding Analysis

Main Content

Main Idea

Let $A \subset R$ be nonempty and bounded above, and let $c \in R$. Define the set c + A by

$$c + A = \{c + a : a \in A\}.$$

Then $\sup(c+A) = c + \sup A$.

Explanation

Let $s = \sup A$. We see that $a \leq s$ for all $a \in A$, which implies $c + a \leq c + s$ for all $a \in A$. Thus c + s is an upper bound for c + A and condition (1) of Supremum and Infimum is verified. For (2), let b be an arbitrary upper bound for c+A, thus $c+a \leq b$ for all $a \in A$. This is equivalent to $a \leq b - c$ for all $a \in A$, from which we conclude that b - c is an upper bound for A. Because s is the least upper bound of A, $s \leq b - c$, which can be rewritten as c+s < b. This verifies part (2) of Supremum and Infimum, and we conclude $\sup(c+A) = c + \sup A.$

Review

1. Prove $\sup(c+A) = c + \sup A$.

- Initial Definition for R
- Axiom of Completeness
- Upper and Lower Bounds

- Supremum and Infimum
- Maximum and Minimum
- $\bullet\,$ Q and the Axiom of Completeness

- ID: 202501181335
- Timestamp: Sunday 19th January, 2025 11:39
- Tags: Mathematics, Analysis-I-Abbott, The-Axiom-of-Completeness
- References:
 - Abbott, S., Understanding Analysis

Main Content

Main Idea

Assume $s \in R$ is an upper bound for a set $A \subset R$. Then, $s = \sup A$ if and only if, for every choice of $\epsilon > 0$, there exists and element $a \in A$ satisfying $s - \epsilon < a$.

Explanation

For the forward direction, assume $s = \sup A$ and consider $s - \epsilon$, where $\epsilon > 0$ has been arbitrarily chosen. Because $s - \epsilon < s$, part (2) of Supremum and Infimum implies that $s - \epsilon$ is not an upper bound for A. If this is the case, then there must be some element $a \in A$ for which $s - \epsilon < a$.

Conversely, assume s is an upper bound with the property that no matter how $\epsilon > 0$ is chosen, $s - \epsilon$ is no longer an upper bound for A. Notice that what this implies is that if b is any number less than s, then b is not an upper bound. To prove that $s = \sup A$, we must verify part (2) of Supremum and Infimum. Because we have just argued that any number smaller than s cannot be an upper bound, it follows that if b is some other upper bound for A, then s < b.

Review

1. What is an alternative phrasing for part (2) in Supremum and Infimum? Explain.

- Initial Definition for R
- Axiom of Completeness
- Upper and Lower Bounds
- Supremum and Infimum

- Maximum and Minimum
- $\bullet\,$ Q and the Axiom of Completeness
- $\sup(c + A) = c + \sup A$

- ID: 202501181521
- Timestamp: Sunday 19th January, 2025 11:39
- Tags: Mathematics, Analysis-I-Abbott, The-Axiom-of-Completeness
- References:
 - Abbott, S., Understanding Analysis

Main Content

Questions

- 1. (a) Write a formal definition in the style of Supremum and Infimum for the infimum or greatest lower bound of a set.
 - (b) Now, state and prove a version of Alternative Phrasing for Supremum for greatest lower bounds.
- 2. Give an example of each of the following, or state that the request is impossible.
 - (a) A set B with inf $B \ge \sup B$.
 - (b) A finite set that contains its infimum but not its supremum.
 - (c) A bounded subset Q that contains its supremum but not its infimum.
- 3. (a) Let A be nonempty and bounded below, and define $B = \{b \in R : b \text{ is a lower bound for } A\}$. Show that sup $B = \inf A$.
 - (b) Use (a) to explain why there is no need to assert that greatest lower bounds exist as part of the Axiom of Completeness.
- 4. As in $\sup(c + A) = c + \sup A$, let $A \subset R$ be nonempty and bounded above, and let $c \in R$. This time define the set $cA = \{ca : a \in A\}$.
 - (a) If $c \ge 0$, show that $\sup(cA) = c \sup A$.
 - (b) Postulate a similar type of statement for $\sup(cA)$ for the case c < 0.

Solutions

1. (a) A real number n is the greatest lower bound for a set $A \subset R$ if it meets the following two criteria:

- 1. n is a lower bound for A;
- 2. if b is any lower bound for A, then b < n.
- (b) Assume $n \in R$ is a lower bound for a set $A \subset R$. Then, $n = \inf A$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $a < n + \epsilon$.

Proof. Assume $n = \inf A$ and consider $n + \epsilon$, where $\epsilon > 0$ has been chosen arbitrarily. Because $n < n + \epsilon$, the definition for infimum implies that $n + \epsilon$ is not a lower bound for A. Thus, there must be some element $a \in A$ such that $a < n + \epsilon$.

Conversely, assume there exists an element $a \in A$ that satisfies $a < n + \epsilon$. In other words, for any number b that is greater than n, b is not a lower bound. Thus, according to the definition, n is the greatest lower bound for A.

- 2. (a) Consider $B = \{0\}$; sup $B = \inf B = 0$, thus, $\inf B \ge \sup B$.
 - (b) Impossible, finite sets must have both a maximum and minimum, and thus, must contain their infimum and supremum.
 - (c) Consider $B = \{b \in Q : 0 < b \le 1\}$; sup $B = 1 \in B$ and inf $B = 0 \notin B$.
- 3. (a) Since every $b \in B$ is a lower bound for A, we have $b \leq a$ for all $a \in A$. In particular, inf A, being the greatest lower bound of A, satisfies $b \leq \inf A$ for all $b \in B$. Thus, sup $B \leq \inf A$, since sup B is the least upper bound of B. Conversely, by definition of $\inf A$, $\inf A$ is a lower bound for A, so $\inf A \in B$. Since sup B is the least upper bound for B, it must satisfy sup $B \geq \inf A$. Therefore, sup $B = \inf A$.
 - (b) The existence of the infimum for a bounded below set A can always be derived from the Axiom of Completeness as follows:
 - Define B to be the set of all lower bounds of A.
 - The Axiom of Completeness guarantees that B has a supremum sup B.
 - By definition and part (a), sup $B = \inf A$.

Thus, the existence of greatest lower bounds (infima) is already implicit in the Axiom of Completeness, as every bounded below set can be "reduced" to a problem of finding the supremum of its set of lower bounds.

- 4. (a) Let $s = \sup A$. We see that $a \le s$ for all $a \in A$, which implies $ca \le cs$ for all $a \in A$. Thus, cs is an upper bound for cA and condition (1) of Supremum and Infimum is verified. For (2), let b be an arbitrary upper bound for cA, thus $ca \le b$ for all $a \in A$. This is equivalent to $a \le b/c$ for all $a \in A$, from which we conclude that b/c is an upper bound for A. Because s is the least upper bound of A, $s \le b/c$, which can be rewritten as $cs \le b$. This verifies part (2) of Supremum and Infimum, and we conclude $\sup (cA) = c \sup A$.
 - (b) If c < 0, $\sup(cA) = c \inf A$.

Review

1.

Links to Other Notes

- Initial Definition for R
- Axiom of Completeness
- Upper and Lower Bounds
- Supremum and Infimum
- Maximum and Minimum
- $\bullet\,$ Q and the Axiom of Completeness
- $\sup(c + A) = c + \sup A$
- Alternative Phrasing for Supremum

Table of Contents

- **ID:** 202501191115
- Timestamp: Sunday 19th January, 2025 11:39
- Tags: Mathematics, Analysis-I-Abbott, Consequences-of-Completeness
- References:
 - Abbott, S., Understanding Analysis

Main Content

Main Idea

For each $n \in N$, assume we are given a closed interval $I_n = [a_n, b_n] = \{x \in R : a_n \le x \le b_n\}$. Assume also that each I_n contains I_{n+1} . Then, the resulting nested sequence of closed intervals

$$I_1 \supset I_2 \supset I_3 \supset I_4 \supset \dots$$

has a nonempty intersection; that is, $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Explanation

Consider the set

$$A = \{a_n : n \in N\}$$

of left-hand endpoints of the intervals. Because the intervals are nested, we see that every b_n serves as an upper bound for A. Thus, we are justified in setting

$$x = \sup A$$
.

Now, consider a particular $I_n = [a_n, b_n]$. Because x is an upper bound for A, we have $a_n \le x$. The fact that each b_n is an upper bound for A and that x is the least upper bound implies $x \le b_n$.

Therefore, we have $a_n \leq x \leq b_n$, which means $x \in I_n$ for every choice of $n \in N$. Hence, $x \in \bigcap_{n=1}^{\infty} I_n$, and the intersection is not empty.

Review

1. State and prove the Nested Interval Property.

Links to Other Notes

- Initial Definition for R
- Axiom of Completeness
- Upper and Lower Bounds
- Supremum and Infimum
- Maximum and Minimum
- Q and the Axiom of Completeness
- $\sup(c + A) = c + \sup A$
- Alternative Phrasing for Supremum

Table of Contents