IN GOD WE TRUST

PRINCIPLES OF ELECTRONICS

1398-1399 SECOND SEMESTER

Project 2

simulation

Omid Sharafi (96101838)

Instructor:
Dr.Kaveh Vash

July 27, 2020

Sharif University of Technology

Contents

1	Introduction							
2	Circuit bias							
3	Results of simulation							
	3.1	Maximum output power	Ę					
	3.2	DC power	6					
	3.3	Frequency response	6					

1 Introduction

In this project, the circuit is combination of differential amplifier and output stage with feedback. We should check voltage gain, maximum power of a 8 Load and DC power. We also draw frequency response of output and check its 3dB bandwidth. Node numbers and circuit design are like below.

Figure 1: Design and number of the circuit nodes

2 Circuit bias

As we can see, bias of the node's voltages and bias of transistors are similar to our theoretic calculation.

```
*** BEGIN: Saved Operating Point ***
.option
               1.0000p
+ gmindc=
. nodeset
 2 = 647.4257m
3 = -87.1183u
4 = -16.7388u
  5 = -650.6750m
          1.3491
          2.0000
  10 =
  16 =-363.3289m
  18 =-360.1126m
  19 =-363.2199m
 20 =-366.3273m
 21 =-886.8225n
22 = 0.
+ 22 = 0.
+ 100 = -15.0000
+ 200 = 15.0000
       END: Saved Operating Point ***
```

Figure 2: circuit nodes' voltages

There is just a little difference between collector current of Q_3 based on difference from what we assumed of V_{BEon} and its real values that we can see below.

**** bipolar junction transistors

subckt element model ib ic vbe vce vbc vs power betad gm rpi rx ro cpi cmu cbx ccs betaac ft	0:qx1 0:q2n3904 2.9224u 1.0004m 647.5128m 15.0001 -14.3526 -14.9999 15.0075m 342.3090 38.8435m 8.7913k 20.0000 114.3108k 23.8770p 1.4851p 0. 341.4867 243.7556x	2.0028 -1.3520 -1.3520 2.0026m 303.3093 38.7713m 7.8019k 20.0000 101.4730k 23.8630p 2.8467p 0. 0.	3. 3020u 1.0015m 650.6582m 1.9998 -1.3491 -2.0049m 303.2981 38.8753m 7.7807k 20.0000 101.1979k 23.8996p 2.8481p 0.	23.8549p 3.7290p 0. 0. 298.9662	2. 9612u 995. 8480u 647. 8517m 12. 9972 -12. 3494 -14. 3493 12. 9452m 36. 3027 38. 6669m 8. 6763b 20. 0000 112. 8177k 23. 8164p 1. 5565p 0.	0:q6 0:q2n3906 -4.9397u -1.1055m -650.6323m -12.8223 12.1717 -14.3495 14.1779m 223.7920 42.9125m 5.2011k 20.0000 101.4702k 27.8847p 1.7589p 0. 223.1921 230.3948x
subckt element model ib ic vbe vce vbc vs power betad gm rpi rx copi cmu cbx ccs betaac ft	0:q7 0:q2n3906 -4.9420u -985.9664u -650.6323m -650.6323m 0. -14.3495 644.7170u 199.5082 38.2726m 5.1987k 20.0000 101.4233k 26.2609p 4.5000p 0. 198.9676 198.0202x	0:qz 0:q2n3904 4.8070u 1.5140m 660.3879m 6.0224 -5.3620 -7.5395 9.1209m 314.9544 58.7037m 5.3447k 20.0000 69.5929k 30.8751p 2.0017p 0. 313.7543 284.1823x	0:q3 0:q2n3906 -21.9074u -4.6476m -689.5961m -7.9124 7.2228 -7.5401 36.7887m 212.1467 178.9349m 1.1727k 20.0000 23.0707k 75.6735p 2.0628p 0. 0. 209.8458 366.3460x	15.3601 -14.6832 -14.9997 47.5961m	0:q5 0:q2n3906 -13.6661u -3.0937m -677.1509m -14.6337 13.9565 1.0432 45.2812m 226.3766 119.5815m 1.8800k 20.0000 36.8352k 54.8400p 1.6854p 0. 224.8097 336.6983x	

Figure 3: bias of transistors

3 Results of simulation

3.1 Maximum output power

In the following picture, the input signal was $100\sqrt{2}mV$. The output signal's pick is 2V so the output power is:

$$P_{out} = \frac{V_o^2}{2 * R_L} = \frac{4}{2 * 8} = 0.25w$$

and the differential gain is:

$$20l0g_{10}A_v = 20log_{10}\frac{2000}{100*\sqrt{2}} = 23dB > 10dB$$

and the power calculated above is somehow the maximum power we can inject to an 8Ω resistor because we have limited our output swing.

Figure 4: output signal

3.2 DC power

For DC power usage we have:

```
**** voltage sources

subckt
element 0:vcc 0:vee 0:vin1 0:vb
volts 15.0000 -15.0000 0. 2.0000
current -14.3494m 11.7514m 0. -6.2907u
power 215.2406m 176.2703m 0. 12.5815u

total voltage source power dissipation= 391.5235m watts
```

Figure 5: DC power

3.3 Frequency response

As we can see below, our 3dB high frequency band is more than 20kHz and 3dB low frequency band is around 10Hz. So frequency response between 50Hz to 20KHz is completely flat. Because low band is not clear in first image, we have checked it again with linear command in hSpice.

Figure 6: output is completely flat between 50Hz to 20KHz

Figure 7: check 3dB low frequency band