EE5137 Stochastic Processes: Problem Set 1 Assigned: 14/01/22, Due: 21/01/22

There are six non-optional problems in this problem set.

- 1. Exercise 1.1 (Gallager's book)
- 2. Exercise 1.2 (Gallager's book)
- 3. Exercise 1.3 (Gallager's book)
- 4. We say that A_1, A_2, A_3, \ldots is an *increasing* sequence of events if $A_i \subset A_{i+1}$ for all $i \geq 1$. Let

$$A = \lim_{i \to \infty} A_i = \bigcup_{i=1}^{\infty} A_i.$$

(a) Show carefully using the axioms of probability we stated in class that

$$\Pr\{A\} = \lim_{i \to \infty} \Pr\{A_i\}$$

- (b) Formulate an analogous result for a decreasing sequence of events.
- 5. In Section 1.2.1 of Gallager's book, we saw that given a sample space Ω a σ -algebra \mathfrak{F} of Ω is a collection of subsets of Ω that satisfies (i) $\Omega \in \mathfrak{F}$; (ii) For any sequence of sets $A_1, A_2, \ldots \in \mathfrak{F}$, $\bigcup_{n=1}^{\infty} A_n \in \mathfrak{F}$; and (iii) For every $A \in \mathfrak{F}$, $\Omega \setminus A \in \mathfrak{F}$. The elements of \mathfrak{F} are called *events* in probability theory and \mathfrak{F} -measurable sets in measure theory.
 - (a) Show that if \mathfrak{F}_1 and \mathfrak{F}_2 are σ -algebras so is $\mathfrak{F}_1 \cap \mathfrak{F}_2$;
 - (b) Is it true that if $\{\mathfrak{F}_{\alpha}\}_{{\alpha}\in\mathcal{I}}$ is a family of σ -algebras, so is $\bigcap_{{\alpha}\in\mathcal{I}}\mathfrak{F}_{\alpha}$?
 - (c) Consider parts (a) and (b) for unions.
- 6. (Strengthened Union Bound) Let A_1, \ldots, A_n be arbitrary events. Prove that

$$\Pr\left\{\bigcup_{i=1}^{n} A_i\right\} \le \min_{1 \le k \le n} \left(\sum_{i=1}^{n} \Pr\{A_i\} - \sum_{i=1: i \ne k}^{n} \Pr\{A_i \cap A_k\}\right).$$

Hint: For any two sets C and D, $C = (C \cap D) \cup (C \cap D^c)$.

7. (Optional) Often, by using the union bound or its variants (such as Question 6 or Gallager's ρ -trick¹), it is easy to upper bound probabilities. Lower bounding probabilities is often harder, but very useful. Let A_1, \ldots, A_n be arbitrary events. Prove that

$$\Pr\left\{\bigcup_{i=1}^{n} A_i\right\} \ge \sum_{i=1}^{n} \frac{\Pr\{A_i\}^2}{\sum_{j=1}^{n} \Pr\{A_i \cap A_j\}}.$$

¹This says that $\Pr\{\bigcup_{i=1}^n A_i\} \leq \left(\sum_{i=1}^n \Pr\{A_i\}\right)^{\rho}$ for any $0 \leq \rho \leq 1$. Prove this.

This bound is called de Caen's lower bound. Obviously from the form of the inequality, you've to use the Cauchy-Schwarz inequality somewhere.

8. (Optional) This is another lower bound on the union of n events A_1, \ldots, A_n . Prove that

$$\Pr\left\{\bigcup_{i=1}^{n} A_i\right\} \ge \frac{\sum_{i,j} \Pr\{A_i\} \Pr\{A_j\}}{\sum_{i,j} \Pr\{A_i \cap A_j\}}.$$

This bound is called the Chung-Erdős inequality. Obviously from the form of the inequality, you've to use the Cauchy-Schwarz inequality somewhere.