Accident Severity Prediction with Machine Learning

Moataz Bellah Ben Khedher

Introduction

- ► About 1.25 million deaths per year
- Accidents are the Leading cause of death among young people aged 15 to 29
- Almost half of those killed on the roads are "vulnerable users" (pedestrians, cyclists and motorcyclists).
- ▶ Without sustained action, road accidents are projected to become the seventh leading cause of death by 2030.
- Accurate prediction of accident severity can be helpful to provide proactive solutions and test the readiness of road practitioners and local governments.
- In this project, we develop machine learning models to predict severity of road accidents in UK based on data collected in 2017.

Data

- Data acquired from UK government open data portal website
- Dataset was downloaded as CSV file
- 2203 records of traffic accidents that occurred in Leeds, UK in 2017

Data Exploration

Data count

Severity by Gender

Data preprocessing

Check for Missing Data

Data preprocessing

Removing irrelevant attributes

	Time	road_type	Road_Surface	Day_or_Night	Weather_Conditions	Casualty_Class	Gender	Age_of_Casualty	Severity
	815	А	Dry	Day	Other	Pedestrian	Female	61	Serious
	1330	A	Dry	Day	Fine without high winds	Driver or rider	Male	36	Slight
	805	А	Wet/Damp	Day	Fine without high winds	Driver or rider	Male	32	Slight
,	805	А	Wet/Damp	Day	Fine without high winds	Driver or rider	Male	30	Slight
[1705	U	Wet/Damp	Night	Raining without high winds	Vehicle or pillion passenger	Female	26	Slight

Data preprocessing

► Feature Engineering: Convert time to categorical variable : Peak and Offpeak

	Time	road_type	Road_Surface	Day_or_Night	Weather_Conditions	Casualty_Class	Gender	Age_of_Casualty	Severity
0	peak	Α	Dry	Day	Other	Pedestrian	Female	61	Serious
1	offpeak	Α	Dry	Day	Fine without high winds	Driver or rider	Male	36	Slight
2	peak	Α	Wet/Damp	Day	Fine without high winds	Driver or rider	Male	32	Slight
3	peak	Α	Wet/Damp	Day	Fine without high winds	Driver or rider	Male	30	Slight
4	peak	U	Wet/Damp	Night	Raining without high winds	Vehicle or pillion passenger	Female	26	Slight

Model Building

Build 6 machine learning classifiers:

- Logistic Regression (LR)
- LinearDiscriminantAnalysis (LDA)
- K-Nearest Neighbor (Knn)
- Decision Tree (CART)
- Gaussian Naive Bayes (NB)
- Support Vector Machine (SVM)

Model Building

▶ Data were splitted into 80% training data and 20% validation data

Model	Accuracy
LR	0.8524
LDA	0.8411
KNN	0.8382
CART	0.7434
NB	0.0590
SVM	0.8536

▶ SVM slightly outperforms LDA, so we choose it for further validation

Model Building

	Precision	Recall	F1-Score	Support
Fatal	0.00	0.00	0.00	2
Serious	0.00	0.00	0.00	64
Slight	0.85	1.00	0.92	375
Avg/total	0.72	0.85	0.78	441

Conclusion

- In this project, we propose a machine learning model to predict the severity of traffic accidents in the city of Leeds, UK.
- A comparative approach was followed to identify the best performing model among 6 models.
- We found that SVM model performs the best but not the optimal
- Critical imbalance between the 3 severity classes
- Further improvements are required to optimize the model performance.