Lógica CC

	2º Teste A 18 de janeiro de 2021 —		duração: 2 horas —	
Nome: _				Número:
		Grupo I		

Este grupo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indicada é verdadeira (V) ou falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída será 1 valor, -0,25 valores ou 0 valores, consoante a resposta esteja certa, errada, ou não seja assinalada resposta, respetivamente. A cotação total neste grupo é no mínimo 0 valores.

F ٧ Existem fórmulas do Cálculo Proposicional φ e ψ tais que $\varphi \lor \psi, \varphi \to \psi \not\vdash \psi$. 1. 2. Seja Γ um conjunto maximalmente consistente. Se $p_0 \leftrightarrow p_1 \in \Gamma$, então $p_0 \lor p_1 \in \Gamma$. Seja L um tipo de linguagem com um símbolo de relação unário R. Para quaisquer 3. L-termo t e variável x, $(\exists x_0 \mathsf{R}(x_0) \land \exists x_1 \neg \mathsf{R}(x_1))[t/x] = \exists x_0 \mathsf{R}(x_0) \land \exists x_1 \neg \mathsf{R}(x_1)$. Sejam L um tipo de linguagem e φ uma L-fórmula. Para qualquer L-estrutura E, E é modelo de $\{\varphi\}$ ou E é modelo de $\{\neg\varphi\}$. 5. Seja L o tipo de linguagem ($\{f\}, \{R\}, \mathcal{N}$) em que $\mathcal{N}(f) = 1$ e $\mathcal{N}(R) = 1$. Existem 216 L-estruturas cujo domínio é $\{1, 2, 3\}$.

Grupo II

A L_{Arit} -fórmula $\forall x_0(x_0 = 0 \lor \neg(x_0 = 0))$ é instância de tautologias.

Com exceção da questão 4, as respostas às questões deste grupo devem ser apresentadas nos espaços que se lhes seguem.

- 1. Considere o tipo de linguagem $L=(\{\mathsf{c},\mathsf{f}\},\{=,\mathsf{R}\},\mathcal{N})$ em que $\mathcal{N}(\mathsf{c})=0,\,\mathcal{N}(\mathsf{f})=2,\,\mathcal{N}(=)=2$ e $\mathcal{N}(\mathsf{R})=2.$
 - (a) Sem justificar, indique um L-termo t_1 que tenha exatamente quatro subtermos e indique um L-termo t_2 tal que $VAR(t_2) = \{x_0\}$ e $x_0 \in VAR(t_2[t_1/x_0])$.

Resposta:
$$t_1 = t_2 = t_3$$

(b) Sem justificar, indique uma L-fórmula φ com três subfórmulas tal que x_0 não seja substituível sem captura de variáveis por x_1 em φ .

Resposta:

(c) Sem justificar, indique uma forma normal prenexa que seja logicamente equivalente à L-fórmula $\neg \forall x_0 \mathsf{R}(x_0, \mathsf{c}) \lor \mathsf{R}(x_0, x_1)$.

Resposta:

2. Considere o tipo de linguagem L da questão anterior. Seja $E = (\mathbb{Z}, \overline{})$ a L-estrutura tal que:

$$\bar{c} = 0; \qquad \equiv \{(z_1, z_2) \in \mathbb{Z}^2 : z_1 = z_2\};
\bar{f} : \mathbb{Z}^2 \to \mathbb{Z} \text{ tal que } \bar{f}(z_1, z_2) = z_1 \times z_2; \qquad \bar{R} = \{(z_1, z_2) \in \mathbb{Z}^2 : z_1 < z_2\}.$$

Seja a a atribuição em E tal que $a(x_i) = -i$, para todo $i \in \mathbb{N}_0$.

(a) Sem justificar, indique $f(x_1, f(x_2, x_3))[a]_E$.

Resposta:

(b) Seja φ a L-fórmula $\forall x_1(\neg(\mathsf{f}(x_1,x_2)=x_0)\to(\mathsf{R}(x_1,\mathsf{c})\vee\mathsf{R}(\mathsf{c},x_1)))$. Indique $\varphi[a]_E$. Justifique. Resposta:

(c) Diga se a $L\text{-}{\it formula}\ \varphi$ da alínea anterior é válida em E. Justifique. Resposta:

- (d) Sem justificar, indique uma L-fórmula válida em E que represente a afirmação: O quadrado de qualquer inteiro diferente de zero é igual ao quadrado de um outro inteiro. Resposta:
- 3. Sejam φ uma fórmula do Cálculo Proposicional e Γ um conjunto de fórmulas do Cálculo Proposicional. Prove que, se não existem derivações em DNP de φ a partir de Γ , então φ não é um teorema de DNP.

Resposta:

4. Sejam L um tipo de linguagem, φ e ψ L-fórmulas, x uma variável e Γ um conjunto de L-sentenças. Prove que se $\Gamma \models \varphi$ e $\varphi \rightarrow \psi$ é universalmente válida, então $\Gamma \models \forall x \psi$.

Cotações	I	II.1	II.2	II.3	II.4
Cotações	6	1,75+1,5+1,5	1,5+1,75+1,5+1,5	1,5	1,5