Multivariate Causal Discovery with General Nonlinear Relationships

Patrik Reizinger*, Yash Sharma, Matthias Bethge, Bernhard Schölkopf, Ferenc Huszár, Wieland Brendel

Our goal is causal discovery for nonlinear models

Input: observational data

Goal: infer the edges

$$X_1 = f_1(N_1)$$

 $X_2 = f_2(X_1, N_2)$
 $X_3 = f_3(X_1, X_2, N_3)$

 X_i - observed variables

 N_i - exogenous (noise) variables

Desiderata for causal discovery

Nonlinear

End-to-end differentiable

Scalable

Observational

No interventions

Desiderata for causal discovery

$$\frac{\partial}{\partial X_i}$$

Nonlinear

End-to-end Differentiable

Observational

Related work

Intuition: the inverse DGP captures the DAG in linear SEMs

Example

 X_i - observed variables

 N_i - exogenous (noise) variables

DGP

$$\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \mathbf{a} & 1 & 0 \\ \mathbf{a}b & \mathbf{b} & 1 \end{bmatrix} \begin{bmatrix} N_1 \\ N_2 \\ N_3 \end{bmatrix}$$

Inverse DGP

$$\begin{bmatrix} N_1 \\ N_2 \\ N_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -a & 1 & 0 \\ 0 & -b & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

The inference Jacobian the DAG in a nonlinear SEM

 X_i - observed variables

 N_i - exogenous (noise) variables

Identifiable representation learning for causal discovery

Identifiability

How to learn f^{-1} from data?

- Opportunity: recent nonlinear
 ICA results → indeterminacies
- SEM:
 - Jacobian of f^{-1} is lower-triangular
 - Causal ordering is unknown

 θ_i - parameter f^{-1} - inference (unmixing) function

Resolving the permutation indeterminacy of ICA

1. ICA indeterminacy + unknown order of N_i

Resolving the permutation indeterminacy of ICA

1. ICA indeterminacy + unknown order of N_i

2. Two trainable permutation networks

$$\left[egin{array}{ccc} \mathbf{S}_{\mathrm{ICA}} \end{array}
ight] \left[egin{array}{ccc} \mathbf{0} & * \ * & 0 & 0 \ 0 & * & \blacktriangle \end{array}
ight] \left[egin{array}{ccc} \mathbf{S} \end{array}
ight]$$

Resolving the permutation indeterminacy of ICA

1. ICA indeterminacy + unknown order of N_i

$$\begin{bmatrix} & 0 & * \\ * & 0 & 0 \\ 0 & * & \blacktriangle \end{bmatrix} \xrightarrow{?} \begin{bmatrix} * & 0 & 0 \\ & * & 0 \\ 0 & \blacktriangle & * \end{bmatrix}$$

2. Two trainable permutation networks

3. Loss: the Jacobian should be lower triangular

Results

Validation experiments

Comparing to NonSENS

DGP	d	MCC	Acc_{π}	Acc	SHD
	3	1.	1.	1.	0.
LIN. SEM	5	1.	0.966	1.	0.0013
	8	1.	1.	1.	0.
	3	1.	1.	1.	0.
NL. SEM	5	0.971 ± 0.07	0.828	0.974	0.0262
	8	0.987 ± 0.03	0.793	0.968	0.0318

# Layers	MCC	Acc	SHD
1	1.	1.	0.
2	0.999	1.	0.0056
3	0.932 ± 0.09	0.9	0.1
4	0.833 ± 0.01	0.817	0.1833
5	0.848 ± 0.02	0.839	0.1611

Results

Validation experiments

Comparing to NonSENS

d	MCC	Acc_{π}	Acc	SHD
3	1.	1.	1.	0.
5	1.	0.966	1.	0.0013
8	1.	1.	1.	0.
3	1.	1.	1.	0.
5	0.971 ± 0.07	0.828	0.974	0.0262
8	0.987 ± 0.03	0.793	0.968	0.0318
	5 8 3 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

# Layers	MCC	Acc	SHD
1	1.	1.	0.
2	0.999	1.	0.0056
3	0.932 ± 0.09	0.9	0.1
4	0.833 ± 0.01	0.817	0.1833
5	0.848 ± 0.02	0.839	0.1611

Conclusion

Nonlinear

Observational

End-to-end differentiable

Scalable

Assumptions

(Zimmermann et al., 2021)

Multivariate Causal Discovery with General Nonlinear Relationships

Patrik Reizinger*, Yash Sharma, Matthias Bethge, Bernhard Schölkopf, Ferenc Huszár, Wieland Brendel

We learn the edges of the DAG

[1] Monti et al. Causal Discovery with General Non-Linear Relationships Using Non-Linear ICA

N – exogenous, X – observed

Causal discovery with Nonlinear ICA (Monti et al.)

- NonSENS (Monti et al., [1]) is the most relevant prior work
- Nonlinear ICA + HSIC (independece test between latents and observations)
- Limitations:
 - Not scalable
 - Not differentiable: Cannot be used in a causal representation learning pipeline
 - Yields false positives for indirect causes
- Advantages:
 - Has a significance value

Multivariate Causal Discovery with General Nonlinear Relationships

Patrik Reizinger*, Yash Sharma, Matthias Bethge, Bernhard Schölkopf, Ferenc Huszár, Wieland Brendel