# Towards user-centered interactive medical image segmentation in VR with an assistive Al agent

Pascal Spiegler<sup>1</sup>, Arash Harirpoush<sup>1</sup> and Yiming Xiao<sup>1</sup>

Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada.

## Challenges in segmentation

#### **Problem:**

- Manual segmentation of 3D medical scans is time-consuming, laborintensive, and prone to errors
- Fully automatic algorithms lack reliability without user feedback
- Existing tools do not seamlessly integrate AI and VR for interactive, patientspecific segmentation

#### Goal:

- Develop an immersive VR system with AI assistance that facilitates efficient, accurate, and user-friendly segmentation
- Investigate optimal interaction modes (controller, head, eye) for mask refinement in VR

## Solution proposed: SAMIRA



**Development of SAMIRA**, a conversational AI agent in VR for medical image segmentation.

### Related works

#### 1) VR & Medical Training:

Early VR systems support clinical education but lack AI integration for segmentation (Chheang et al., 2024)

#### 2) AI in Medical Imaging:

Foundation models like **BiomedParse** and **SAM2** aid in segmentation but are limited to 2D or desktop applications (*Zhao et al., 2025, Kirillov et al., 2024*)

#### 3) Human-Computer Interaction in VR:

- Studies compare input modes: controller, head pointing, eye tracking (Sidenmark et al., 2023, Luro et al., 2019, Schultheis et al., 2024)
- Prior work shows controllers excel in accuracy; head and eye tracking are more natural but less precise

#### Gap:

No prior VR system integrates Al-powered, interactive 3D segmentation with human-in-the-loop workflows

## **SAMIRA**

**Fusion of AI & VR:** Combines foundational radiological models with an immersive VR interface for real-time, human-in-the-loop segmentation

#### **Key Components:**

- AI Models: BiomedParse and SAM2 perform initial segmentation, refinement, and mask propagation.
- **VR Interface:** Visualizes slices, reference images, and 3D reconstructions; supports speech and input modes for users.

## Workflow: Interaction modes



## The Al-Assisted Segmentation System

#### 1) BiomedParse:

- A **Transformer-based vision-language model** trained on 1.2 million medical images with reports.
- It can **detect**, **classify**, **and segment** 82 clinical concepts (like tumors) across different imaging modalities using natural language prompts.

#### 2) SAM2 (Segment Anything Model 2):

- A model designed for interactive segmentation using user prompts like points or boxes.
- It produces segmentation masks, which outline objects in images, and can **propagate these** masks across similar images or video frames

#### 3) RAG (Retrieval-Augmented Generation):

An AI framework that **searches a database** for relevant example images or slices, then **uses those** to generate more accurate, case-specific responses.

## Workflow steps





## **RAG** Pipeline

#### RAG Request 1: General Contextualization of Target



#### **RAG Request 2: Patient-Specific Guidance**



## Results

**Table 2** Comparison of interaction paradigms for segmentation refinement. Values are mean  $\pm$  standard deviation. The best score is in bold. NASA-TLX is out of 100.

| Interaction Mode | 3D Dice (%)      | Time (s)                         | NASA-TLX                        | Composite Score                 |
|------------------|------------------|----------------------------------|---------------------------------|---------------------------------|
| Controller       | $99.25\pm0.25$   | $\textbf{220.3}\pm\textbf{79.3}$ | $18.8 \pm 14.5$                 | $\textbf{0.51}\pm\textbf{1.91}$ |
| Head Pointing    | $99.21 \pm 0.30$ | $248.8 \pm 78.5$                 | $\textbf{16.8}\pm\textbf{13.9}$ | $0.20 \pm 1.56$                 |
| Eye Tracking     | $99.13 \pm 0.46$ | $251.1 \pm 78.7$                 | $26.6 \pm 15.4$                 | $-0.71\pm1.77$                  |

## Results



## Conclusion

#### **Key Findings:**

- User-centered VR interaction paradigms are feasible and effective for medical segmentation
- Al assistance enhances confidence, understanding, and accuracy.
- Head Pointing offers a low mental effort alternative, ideal for single-hand use.

#### **Implications:**

- Potential to improve clinical workflows, training, and patient-specific analysis.
- Combines immersive visualization with intelligent guidance for better decision-making.

#### **Future works:**

- Further refine interaction techniques for real-world clinical settings.
- Expand to other medical applications and datasets.
- Explore integration with emerging VR and AI technologies.

## Thank you!