Temeljni koncepti analognog i digitalnog videosignala

Pretvorba svjetlosti u električki signal

- kako bi u multimedijskim sustavima kao medijske sadržaje mogli uključiti slike i videosignale, optičke slike (prostorni raspored svjetlosnih jakosti) potrebno je pretvoriti u električki signal
 - eklektički signal je jednodimenzijski signal (u određenom vremenskom trenutku zauzima samo jednu vrijednost napona ili struje)
 - postupkom analiziranja utvrđuje se raspored u skladu s kojim se optičke slike pretvaraju u električki signal
 - isti raspored se primjenjuje u postupku reprodukcije kojim se električki signal pretvara u sliku

- analiziranje slike
 - provodi se u videokameri
 - videokamera sadrži fotoosjetljivi senzor (aktivni element) pomoću kojeg se provodi analiziranje i optoelektrička pretvorba
 - prostorni raspored svjetlosnih jakosti koji predstavlja sliku, transformira se u vremenski slijed električkih impulsa
 - senzori se mogu podijeliti u dvije temeljne skupine
 - analizirajuće cijevi
 - poluvodički slikovni senzori (CCD, Charge Coupled Devices ili
 CMOS, Complementary Metal Oxide Semiconductor)
 - nastali električki impulsi svojom amplitudom odgovaraju svjetlosnoj jakosti trenutno analiziranog površinskog elementa slike i predstavljaju videosignal

senzor kamere

- optička slika scene usmjerava se na fotoosjetljivu površinu senzora
- pod utjecajem svjetlosti na fotoosjetljivoj površini senzora stvara se slika naboja, koja odgovara rasporedu svjetlosnih jakosti optičke slike
- kamere s analizirajućim cijevima
 - analiziranje slike provodi se elektronskim snopom koji se naziva analizirajući snop
 - elektronski snop se otklanja horizontalno i vertikalno uz pomoć otklonskih zavojnica, koje se nalaze se izvan cijevi za analiziranje
 - analizirajući snop prelazi preko slike naboja pohranjene na fotoosjetljivoj površini senzora pri čemu dolazi do neutralizacije pozitivnog naboja
 - time nastaju uzastopne promjene napona na izlazu iz kamere koje nazivamo videosignalom
- kamere s poluvodičkim slikovnim senzorima
 - ne postoji elektronski snop, već se analiziranje provodi horizontalnim i vertikalnim pomicanjem i očitavanjem naboja u točno određenom slijedu, koji ovisi o vrsti senzora

videosignal

- u akromatskoj (crno-bijeloj) kameri se pod videosignalom podrazumijeva luminantni signal (E'_Y), koji prenosi informaciju o luminanciji snimane scene
- u kromatskoj kameri (kameri u boji) nastaju tri signala koji se nazivaju signali primarnih boja
 - signal za crvenu boju E_R
 - signal za zelenu boju $E_{\rm G}$
 - signal za plavu boju E_B
 - ulazna svjetlost se u prizmi za razdvajanje boja dijeli na tri spektralne komponente, a svaka komponenta se usmjerava na vlastiti senzor u kome se provodi optoelektričke pretvorba

- reprodukcija slike
 - videosignal se pretvara u raspodjelu svjetlosnih jakosti (elektrooptička pretvorba) sinkrono s postupkom analiziranja u kameri
 - kao uređaji za prikazivanje slike najčešće se rabe:
 - katodne cijevi (CRT, Cathode Ray Tube)
 - ekrani s tekućim kristalima (LCD, Liquid Crystal Display)
 - ekrani s plazmom
 - videoprojektori

Analiziranje slike

- način analiziranja u kamerama s analizirajućim cijevima
 - analizirajući snop kreće se preko slike slijeva nadesno, a zatim se vraća na početak i započinje analiziranje iduće linije
 - proces analiziranja po linijama se nastavlja do kraja slike, kada se analizirajući snop vraća prema gore i započinje analiziranje nove slike
 - brzina analiziranja mora biti dovoljno visoka kako bi se cijela slika analizirala prije promjene njezina sadržaja

Analiziranje slike

- analiziranjem slike slijeva nadesno nastaje aktivni dio videosignala jedne linije (vidljiv na ekranu)
 - visokoj razini svjetlosnih jakosti (bijeli i svijetli dijelovi slike) odgovara veća amplituda električkog signala
 - niskoj razini svjetlosnih jakosti (crni dijelovi slike) odgovara manja amplituda videosignala
- povratak elektronskog snopa s kraja jedne na početak iduće linije ne smije biti vidljiv i događa se za vrijeme horizontalnog potisnog intervala (HPI)

MT06 - Sonja Grqić

Sastav videosignala

vremenski odnosi

 $T_{\rm H}$ - ukupno trajanje linije videosignala

 $T_{\rm HA}$ - aktivni dio linije videosignala

 $T_{\rm HP}$ - horizontalni potisni interval (HPI)

Razina crnog Potisna razina

Sastav videosignala

- horizontalni potisni interval
 - dodaje se nakon aktivnog dijela linije
 - osigurava potiskivanje elektronskog snopa u analizirajućoj cijevi i katodnoj cijevi za vrijeme horizontalnog povratka elektronskog snopa s kraja jedne na početak iduće linije
 - unutar HPI nalaze se horizontalni sinkronizacijski impulsi (HSI)
 - razina sinkronizacijskih impulsa je u području "crnjem od crnog" (ne vide se na ekranu)
 - omogućavaju sinkronizaciju odašiljačke i prijamne strane
- vertikalni potisni interval (VPI)
 - dodaje se nakon završetka analiziranja cijele slike
 - osigurava potiskivanje elektronskog snopa za vrijeme vertikalnog povratka ($T_{\rm VP}$) s kraja jedne na početak iduće slike
 - unutar VPI nalaze se vertikalni sinkronizacijski impulsi (VSI)
 - omogućavaju sinkronizaciju odašiljačke i prijamne strane

Amplitudni odnosi u videosignalu

- europska norme
 - E_Y u aktivnom dijelu linije može poprimiti bilo koju vrijednost između 0 mV (razina crnog) i 700 mV (razina bijelog)
 - potisna razina je jednaka razini crnog
 - razina sinkronizacijskih impulsa je -300 mV

Crno

Bijelo

Amplituda videosignala od vrha do vrha: 1V

Razina crnog: 0 mV

Razina bijelog: 700 mV

Razina sinkronizacijskih impulsa: -300 mV

Amplitudni odnosi u videosignalu

- američka TV norma
 - razine videosignala izražene u tzv. IRE jedinicama (Institute od Radio Engineers, sada poznat kao Institute of Electrical and Electronics Engineers (IEEE))
 - videosignal amplitude od vrha do vrha iznosa 1 V amplitudu od 140 IRE jedinica

Amplituda videosignala od vrha do vrha: 140 IRE (1 V

Razina crnog: 7,5 IRE (53,5 mV)

Potisna razina: 0 IRE (0mV)

Razina sinkronizacijskih impulsa: -40 IRE (-285,7 mV)

Horizontalna frekvencija

- proces analiziranja se ponavlja po linijama
 - analiziranje u horizontalnom smjeru se provodi u ritmu horizontalne frekvencije $f_{\rm H}$ ($f_{\rm H}$ =1/ $T_{\rm H}$)
 - horizontalna frekvencija je frekvencija izmjene linija
 - analiziranjem slike, slika se prikazuje kao slijed linija videosignala
 - povećanjem broja linija na koji se slika razlaže, raste kvaliteta slike ali raste i cijena prijenosnog sustava jer je potrebna veća širina frekvencijskog pojasa za prijenos videosignala

MT06 - Sonja Grqić

ZRK

© FER, ZRK

Reprodukcija slike

- pri reprodukciji slike u katodnoj cijevi napon videosignala modulira struju elektronskog snopa
 - struja elektronskog snopa se mijenja u ovisnosti o promjenama naponskih razina videosignala
 - prednja strana katodne cijevi izvedena je od sloja sastavljenog od posebnih vrsta fosfora koji svijetle kada u njih udari elektronski snop
 - u fosfornom sloju se kinetička energija elektronskog snopa pretvara u svjetlosnu jakost
 - luminancija površine na koju udari elektronski snop proporcionalna je struji elektronskog snopa
- odnos između struje elektronskog snopa i napona videosignala je nelinearan, što izaziva pogrešnu reprodukciju luminantnih razina i boja
- kako bi se nelinearnost pretvorbe električkog signala u svjetlost ispravila provodi se gama-korekcija

Gama-korekcija

- nelinearni odnos između napona
 E, koji se privodi katodnoj cijevi i
 luminancije slike Y može prikazati
 kao: Y=k(Ε)^γ
 - faktor γ (gama-faktor) iskazuje
 stupanj nelinearnosti koja se
 pojavljuje pri pretvorbi videosignala
 u svjetlost
- propisana vrijednost gama-faktora televizijskih prijamnika iznosi europskim TV sustavima γ =2,8, a u američkom sustavu γ =2,2
 - krivulja CRT televizora:
 - *Y*=k*E*^{2,8} (Europa)
 - Y=k*E*^{2,2} (Amerika)

Gama-korekcija

- gama-korekcija ne provodi se u televizorima
 - neekonomično rješenje (svaki TV prijamnik bi morao sadržavati složeno nelinearno pojačalo)
- gama-korekcija se provodi u kamerama
 - videosignal nastao u kameri (E),
 propušta se preko nelinearnog
 pojačala i nastaje signal E'
 - pojačalo ima recipročnu karakteristiku karakteristici katodne cijevi
 - gama-faktor tog pojačala iznosi
 - 1/2,8=0,3571 (Europa)
 - 1/2,2=0,4545(Amerika)

Gama-korekcija

- provedbom gama-korekcije u kameri poništava se nelinearnost katodne cijevi
- ukupna prijenosna karakteristika je linearna
- u akromatskim kamerama gamakorekcija se provodi na luminantnom signalu

-
$$Y \rightarrow E_Y^{1/\gamma} = E_Y'; (E_Y)^{\gamma} \rightarrow Y$$

 u kamerama u boji gama-korekcija se provodi na signalima primarnih boja

$$- R \rightarrow E_{R}^{1/\gamma} = E_{R}^{\gamma}; (E_{R}^{\gamma})^{\gamma} \rightarrow R$$

-
$$G \rightarrow E_G^{1/\gamma} = E_G; (E_G)^{\gamma} \rightarrow G$$

-
$$B \rightarrow E_B^{1/\gamma} = E_B^{\prime}; (E_B^{\prime})^{\gamma} \rightarrow B$$

Gama korekcija

djelovanje gama-korekcije

Ø z®

Gama korekcija

 karakteristika optoelektričke pretvorbe modernih kamera propisana je normama SMPTE-170M* i ITU-R BT.709

$$E' = 1,099 Y^{1/2,2} - 0,099$$

za $0,018 \le Y \le 1$

$$E' = 4,500 \text{ Y}$$

za $Y < 0,018$

^{*} Society for Motion Pictures and Television Engineers

MT06 - Sonja Grgić © FER, ZRK

Gama korekcija

- u multimedijskim sustavima, gdje se za reprodukciju slike rabe monitori računala, gama-korekcija postaje složeno pitanje
 - kamere mogu imati fiksni ili promjenjivi gama-faktor ili ga uopće ne moraju imati
 - programska podrška za obradu, kodiranje i pohranjivanje slike može uključivati gama-korekciju s jednim faktorom, a programska podrška za dekodiranje i prikazivanje slike može očekivati drugu vrijednost gama-faktora
 - Macintosh računala provode gama-korekciju gama-faktorom 1,8, SGI računala provode gama-korekciju uz gama-faktorom 1,4, a Sun i PC računala ne normiraju provedbu gama-korekcije
 - LCD monitori imaju linearnu karakteristiku elektrooptičke pretvorbe
- ista slika izgleda različito u različitim sustavima

Broj linija

- danas su u svijetu u uporabi dvije temeljne norme za televizijske sustave standardne kvalitete (SDTV, Standard Definition Television)
 - 525-linijska norma (L=485, preostalih 40 linija nalazi se u VPI)
 - 625-linijska norma (L=575, preostalih 50 linija nalazi se u VPI)
- u svijetu je u uporabi veći broj normi za televizijske sustave visoke kvalitete (HDTV, *High Definition Television*)
 - prostorni formati (broj uzoraka u liniji x broj linija u aktivnom dijelu slike)
 1920 x 1152, 1920 x 1080, 1920 x 1035, 1440 x 1152, 1280 x 720

- normizacija broja linija u TV sustavima provedena je na temelju svojstava ljudskog vizualnog sustava
- u projektiranju televizijskih sustava standardne kvalitete pretpostavljeno je da je granični kut oštrine vida približno jednak 1,5'
 - vizualna oštrina je manja jer elementi slike nisu jasno odijeljeni niti su stacionarni (čak ni kada kamera snima mirne slike)
- prilikom određivanja broja linija za analiziranje slike (L), broj linija se određuje na temelju dva uvjeta
 - L treba biti dovoljno velik da se ne vidi linijska struktura (tj. da se slika doživljava kao cjelina)
 - L ne treba biti prevelik kako se ne bi prenosili detalji koje ljudsko oko ne vidi

- u postupku određivanja potrebnog broja linija u sustavu treba definirati uvjete promatranja kao što su rasvjeta (osvjetljenje) i udaljenost promatrača od slike
 - promjenom udaljenosti mijenja se kut pod kojim oko vidi dva susjedna detalja u slici
 - promjenom rasvjete mijenja se osjetljivost štapića što djeluje na promjenu vidnog kuta
- optimalni broj linija u SDTV sustavima se određuje tako da za određenu udaljenost promatrača od slike (D), oko vidi susjedne linije pod kutom koji je približno jednak 1,5'
- u SDTV sustavima optimalna udaljenost promatrača od slike iznosi 4-6 visina slike (D=4-6H)

postupak određivanja potrebnog broja analizirajućih linija u SDTV

$$tg\frac{\alpha}{2} = \frac{\frac{H}{2L}}{D}$$

$$\alpha = 1.5' \Rightarrow tg\frac{1.5'}{2} \approx 2 \cdot 10^{-4}$$

$$L = \frac{H}{2D tg\frac{\alpha}{2}} = \frac{1}{2\frac{D}{H} tg\frac{\alpha}{2}}$$

$$L = \frac{1}{2\frac{D}{H} 2 \cdot 10^{-4}} \approx \frac{2500}{\frac{D}{H}}$$

$$\frac{D}{H} = 4 - 6 \Rightarrow L = 625 - 417$$

- broj linija u SDTV sustavima treba biti između 417 i 625
- SDTV norme
 - 525-linijska norma (L=485, preostalih 40 linija nalazi se u VPI)
 - 625-linijska norma (L=575, preostalih 50 linija nalazi se u VPI)

- u projektiranju televizijskih sustava visoke kvalitete pretpostavljen je granični kut oštrine vida od 1'
- u HDTV sustavima optimalna udaljenost promatrača od slike iznosi 3 visine slike (D=3H)
- za HDTV sustave vrijedi $\alpha = 1' \Rightarrow tg \frac{1'}{2} \approx 1,45 \cdot 10^{-4}$

$$\alpha = 1' \Rightarrow \operatorname{tg} \frac{1}{2} \approx 1,45 \cdot 10^{-4}$$

$$L = \frac{1}{2 \frac{D}{H} 1,45 \cdot 10^{-4}} \approx \frac{3448}{\frac{D}{H}}$$

$$\frac{D}{H} = 3 \Rightarrow L = 1149$$

- odabrani broj linija u HDTV sustavu iznosi L=1080
- ukupan broj linija u HDTV sustavu je 1125

Omjer stranica slike

- omjer stranica slike (AR, Aspect Ratio) je definiran kao omjer širine (W) i visine (H) slike
- u sustavima standardne televizije (SDTV) omjer stranica je 4:3 (1,33:1)
- u sustavima televizije visoke kvalitete (HDTV) omjer stranica je 16:9 (1,78:1)
- veličine televizijskog ekrana se najčešće izražavaju preko duljine dijagonale ekrana (S) iskazane u inčima

Utjecaj veličine ekrana

ovisnost udaljenosti promatranja i veličine ekrana

Frekvencija izmjene slika

- pokreti koje u prirodi vidimo kao kontinuirane, u u videosignalu prikazuju se uz pomoć više slika koje slijede jedna iza druge pri čemu svaka pokazuje određenu fazu kretanja
 - minimalan potreban broj slika za doživljaj kontinuiteta pokreta je 10 slika/s
 - za brze pokrete javlja se dojam neoštrine i 10 slika/s je preniska vrijednost
- dodatka poteškoća: nestanak slike za vrijeme VPI može dovesti do <u>efekta</u> treptanja (flicker)
 - pojava da gledatelj vidi zatamnjenje umetnuto između dvije slike
 - efekt treptanja nestaje pri dovoljno visokoj frekvenciji izmjene slika ($f_{\rm S}$)
 - efekt treptanja nestaje za većinu ljudi pri frekvencijama izmjene slika višim od 50 Hz (50 slika u sekundi)
- uvodi se pojam vertikalne frekvencije (f_V)
 - frekvencija s kojom se pojavljuje VPI
 - u SDTV sustavima f_V≠f_S

Frekvencija izmjene slika

- europska norma za analiziranje slike (625/50)
 - ukupan broj linija u slici: L_{U} =625
 - broj linija u aktivnom dijelu slike: L=575
 - vertikalna frekvencija: f_V=50 Hz
 - frekvencija izmjene slika: f_s=25 Hz
 - horizontalna frekvencija: $f_H = L_U \cdot f_S = 625 \cdot 25 = 15625 \text{ Hz}$
 - trajanje jedne linije videosignala: T_H = 1/ f_H = 64 μs
- američka norma za analiziranje slike u crno-bijeloj TV (525/60)
 - ukupan broj linija u slici: L_U =525
 - broj linija u aktivnom dijelu slike: L=485
 - vertikalna frekvencija: f_V=60 Hz
 - frekvencija izmjene slika: f_s=30 Hz
 - horizontalna frekvencija: $f_H = L_U \cdot f_S = 525 \cdot 30 = 15750 \text{ Hz}$
 - trajanje jedne linije videosignala: T_H = 1/ f_H = 63,49 μs
 - u televiziji u boji promijenjena je $f_{\rm H}$, a time je promijenjena i $f_{\rm V}$ na 59,94 Hz i $f_{\rm S}$ na 29,97 Hz

Spektar videosignala

- spektralne komponente nastale analiziranjem mirne slike su razmještene na razmacima određenim višekratnicima od $f_{\rm H}$ i $f_{
 m V}$
 - oblikuju ga komponente nf_H čije amplitude opadaju porastom frekvencije
 - oko svake komponente nf_H pojavljuju se harmonici od f_V ($nf_H \pm mf_V$)
- spektar videosignala se teorijski širi do beskonačnosti
 - u praksi se spektar ograničava određivanjem širine osnovnog pojasa videosignala (B_0), koja se razlikuje u različitim sustavima
 - visokofrekvencijske (VF) komponente za većinu slika imaju male amplitude i njihovo zanemarivanje neće bitno smanjiti kvalitetu slike
 - ljudskom vizualnom sustavu porastom frekvencije opada osjetljivost
 - $625/50 \rightarrow B_0 = 5 \text{ MHz}$
 - $525/60 \rightarrow B_0 = 4,2 \text{ MHz}$
 - 1125/50P, 1125/60P $\rightarrow B_0 = 60$ MHz
 - 1125/50I, 1125/60I $\rightarrow B_0 = 30$ MHz

Spektar videosignala

Spektar videosignala

- koliki broj harmonika od f_H se prenosi u sustavima 625/50 i 525/60 ukoliko se rabi progresivno analiziranje ($f_S = f_V$)?
 - 625/50 sustav (B_0 = 5 MHz) $f_H = L_U \cdot f_S$ = 625 ·50 =31 250 Hz broj harmonika od f_H je: 5 MHz/31 250=160
 - 525/60 sustav (B_0 = 4,2 MHz) $f_H = L_U \cdot f_S = 525 \cdot 60 = 31 500 Hz$ broj harmonika od f_H je: 4,2 MHz/31 500=133

Premali broj - frekvencijskih \rightarrow ili komponenti! Rješenje: smanjenje f_H ili povećanje B_0

- rješenje: analiziranje s proredom (*interlaced scanning*)
 - slika (frame) se dijeli na dvije poluslike (field)
 - unutar jedne slike prenose se dva VPI
 - broj linija u poluslici je dvostruko manji od ukupnog broja linija u slici

Analiziranje s proredom

- analiziranje s proredom
 - vertikalna frekvencija (f_V) je frekvencija izmjene poluslika, tj. frekvencija pojavljivanja VPI (zatamnjenja)
 - f_V je dvostruko viša od frekvencije izmjene slika ($f_V = 2 \cdot f_S$)
 - f_H je dvostruko niža od f_H sustava s progresivnim analiziranjem (uz uvjet da sustav s progresivnim analiziranjem ima jednaku frekvenciju pojave VPI)

1. poluslika

Slika

2. poluslika

MT06 - Sonja Grqić

© FER, ZRK

Analiziranje s proredom

- analiziranje s proredom
 - $f_{H} = L_{U} \cdot f_{S} = (L_{U}/2) \cdot f_{V}$
 - 625/50 sustav $\rightarrow f_{H}$ = 625·25 Hz = 312,5·50 = 15 625 Hz
 - trajanje linije videosignala: $T_{\rm H} = 1/f_{\rm H}$
 - $625/50 \text{ sustav} \rightarrow T_{H} = 1/15 625 \text{ Hz} = 64 \text{ }\mu\text{s}$
 - trajanje poluslike: $T_V = 1/f_V$
 - $625/50 \text{ sustav} \rightarrow T_{V} = 1/50 \text{ Hz} = 20 \text{ ms}$
 - trajanje slike: $T_S = 2 \cdot T_V$
 - $625/50 \text{ sustav} \rightarrow T_S = 2 \cdot 20 \text{ ms} = 40 \text{ ms}$
 - frekvencija izmjene slika: $f_S = 1/T_S$
 - $625/50 \text{ sustav} \rightarrow f_{S} = 1/40 \text{ ms} = 25 \text{ Hz}$

Analiziranje s proredom

Progresivno analiziranje

Analiziranje s proredom

Parametri signala

- 625/50 sustav
 - ukupno trajanje linije videosignala
 T_H = 64 μs
 - aktivni dio linije videosignala
 T_{HA} = 52 μs
 - horizontalni potisni interval (HPI)
 T_{HP} = 12 µs
 - ukupno trajanje slike $T_S = 625 \cdot 64 \mu s = 40 \text{ ms}$
 - aktivno vrijeme analiziranja slike $T_{SA} = 575 \cdot 52 \ \mu s = 29,9 \ ms$

Parametri signala

525/60 sustav

- $f_V = 59,94 \text{ Hz} (60/1,001 \text{ Hz})$
- $f_{H} = f_{V} \cdot L_{U}/2 = 59,94 \cdot 262,5 = 15734,25 \text{ Hz}$
- ukupno trajanje linije videosignala
 T_H = 63,5556 μs
- aktivni dio linije videosignala $T_{\rm HA}$ = 52,8556 μ s
- horizontalni potisni interval (HPI) T_{HP} = 10,7 µs
- ukupno trajanje poluslike $T_{V} = 1/f_{V} = 1/59,94 = 16,68335 \text{ ms}$
- ukupno trajanje slike $T_S = 2 \cdot T_V = 33,3667 \text{ ms}$
- frekvencija izmjene slika $f_S = 1/33,3667 = 29,97 \text{ Hz}$

vertikalna rezolucija

- broj crnih i bijelih horizontalnih linija koje se uzastopno izmjenjuju po visini slike, a mogu biti međusobno razlikovane od strane ljudskog vizualnog sustava
- ovisi o broju analizirajućih linija (L) po visini slike (H) za vrijeme analiziranja slike te značajkama optoelektričke i elektrooptičke pretvorbe

horizontalna rezolucija

- broj crnih i bijelih vertikalnih linija koje se uzastopno izmjenjuju po širini slike (W) pri čemu širina slike na kojoj se mjeri rezolucija mora biti jednaka visini slike
- u SDTV omjer stranica (AR) slike je 4:3
 - za određivanje rezolucije širinu slike treba pomnožiti s 3/4
- u HDTV omjer stranica (AR) slike je 16:9
 - za određivanje rezolucije širinu slike treba pomnožiti s 9/16

- pretpostavka: rezolucije u horizontalnom i vertikalnom smjeru su jednake
 - razmak između analizirajućih linija (a) određuje širinu elementa slike (b)
 - broj elemenata slike u T_{HA} iznosi (AR ·L)

a=b elementi slike su kvadratični

- za mjerenje rezolucije susjedni elementi slike trebaju imati različitu luminanciju
 - pretpostavka: u slici se izmjenjuju bijeli i crni elementi slike

Ukupan broj elemenata slike u aktivnom dijelu slike T_{SA} : (AR ·L) ·L

Trajanje jednog elemenata slike: $T_{PE} = T_{SA} / (AR \cdot L \cdot L) = (T_{HA} \cdot L) / (AR \cdot L \cdot L) = T_{HA} / (AR \cdot L)$

Perioda signala: $T_P = 2 \cdot T_{PE}$

Frekvencija signala: $f_P = 1/T_P = (AR \cdot L)/(2 \cdot T_{HA})$

- 625/50 sustav
 - ukupan broj elemenata slike u aktivnom dijelu slike:
 4/3⋅575⋅575≈440 833
 - trajanje jednog elemenata slike: $T_{\rm PF}$ =29,9 ms/440 833= 0,0678 µs
 - perioda signala: T_P =2·0,0678 = 0,1356 μs
 - frekvencija signala: $f_P=1/0,1356 \mu s=7,37 MHz$
 - za prijenos TV signala (pod navedenim pretpostavkama) bila bi potrebna
 širina frekvencijskog pojasa videosignala od B = 7,37 MHz
- vertikalna rezolucija je ograničena
 - sve linije u aktivnom dijelu slike nisu vidljive
 - ograničenje vertikalne rezolucije se iskazuje preko Kellovog faktora (K)
 - K je omjer broja vidljivih linija u slici i ukupnog broja linija u aktivnom dijelu slike
 - Kellov faktor se za pojedine sustave određuje vizualnim ispitivanjima u strogo kontroliranim uvjetima

- u SDTV pretpostavlja se da je Kellov faktor K=0,7 (za HDTV K=0,9)
 - vertikalna rezolucija nije L linija, već je (L · 0,7) linija
- vertikalna rezolucija nakon uključivanja K iznosi

$$625/50 \text{ norma} \rightarrow 575 \cdot 0.7 \approx 402 \text{ linije}$$

- zbog uvođenja Kellovog faktora dolazi do smanjenja potrebne širine frekvencijskog pojasa videosignala tako da ona iznosi $B = 0.7 \cdot f_P$
- opća formula za određivanje širine pojasa videosignala je:

$$B = K \cdot f_P = \frac{K \cdot AR \cdot L}{2 \cdot T_{HA}}$$

625/50 sustav

$$B = 0.7 \cdot f_{P} = 0.7 \cdot 7.37 \text{ MHz} = 5.159 \text{ MHz}$$

Nominalna (standardna) širina pojasa videosignala je B_0 =5 MHz!

za HDTV vrijedi K=0,9

Horizontalna rezolucija

- mjera kvalitete TV sustava ili uređaja
 - definira na širini jednakoj visini slike (H)
 - promatra se aktivni dio linije (T_{HA})
- izražava se preko
 - broja crnih i bijelih vertikalnih linija jednake širine (*HL*) koje se još mogu međusobno razlikovati na ekranu
 - videofrekvencije B_V generirane slikom koja sadrži crno-bijele vertikalne pruge jednake širine, koje se još mogu međusobno razlikovati na ekranu

$$B_{V} = \frac{1}{2} \frac{AR \cdot L_{H}}{T_{HA}} \qquad L_{H} = \frac{2B_{V}T_{HA}}{AR}$$

- 625/50 \rightarrow $T_{\rm HA}$ =52 μ s \rightarrow $L_{\rm H}$ =78· $B_{\rm V}$ ($B_{\rm V}$ je frekvencija izražena u MHz)
- maksimalna horizontalna rezolucija u 625/50 sustavu se dobiva za $B_V = B_0 = 5$ MHz

$$-L_{\text{Hmaks}}$$
=78· B_{V} =78·5MHz≈390 linija

približno vrijedi:

Povećanje širine pojasa za 1 MHz donosi dobitak u horizontalnoj rezoluciji od približno 80 linija.

Komponente signala u boji

kompozitni i komponentni videosignal

S zrk

Komponente signala u boji

- televizijski signal u boji nastaje u kameri koja sadrži odvojene senzore za svaku boju
 - izlazni signali iz kamere su gama-korigirani signali primarnih boja: crvene (E'_R) , zelene (E'_G) i plave (E'_B) , koji čine prvi oblik komponentnog videosignala
- preoblikovanjem signala primarnih boja nastaje
 - drugi oblik komponentnog videosignala
 - luminantna komponenta (E'_{Y}) + dvije krominantne komponente (signal razlike za crvenu boju $(E'_{R}-E'_{Y})$ i signal razlike za plavu boju $(E'_{B}-E'_{Y})$)
 - kompozitni signal u skladu s jednom od triju normi
 - NTSC National Television Systems Committee
 - PAL Phase Alternation Line
 - SECAM Séquentiel Couleur avec Mémoire

Komponente signala u boji

Razine signala E_{R}' E_{G}' E'_{B} Prikaz na monitoru E_{R}' E_{G}' E_{B}' S ZRK MT06 - Sonja Grgić © FER, ZRK

Primari u televiziji

- TV primari ≠ CIE primari
 - ovise o fosforima u TV prijamniku (r receiver) koji trebaju dati svjetlost primarnih boja određenih valnom duljinom uz dovoljni intenzitet
 - λ(Rr) = 610 nm
 λ(Gr) = 540 nm
 λ(Br) = 465 nm

 EBU (European Broadcasting Union) primari
- u akromatskoj televiziji luminantni signal E'_Y stvara crno-bijelu sliku
 - za bijelu sliku u akromatskoj TV vrijedi: E'_Y = 1
- u kromatskoj televiziji (televiziji u boji) luminantni signal E'_{Y} se dobiva zbrajanjem signala primarnih boja: E'_{R} , E'_{G} , E'_{B}
 - za bijelu sliku u kromatskoj TV vrijedi: E'_R=1, E'_G=1, E'_B=1
 - ako bi u kromatskoj TV vrijedilo : E'_Y=E'_R+E'_G+E'_B, za bijelu sliku vrijedilo bi da je E'_Y=3
- jakosti signala za crvenu E'_R, zelenu E'_G i plavu E'_B boju u kromatskoj TV odabiru se u skladu sa svojstvima ljudskog vizualnog sustava

Primari u televiziji

kromatske koordinate primarnih boja u različitim TV sustavima

NTSC primari (bijelo-C)

R: xr=0.67 yr=0.33 G: xg=0.21 yg=0.71 B: xb=0.14 yb=0.08

SMPTE primari (bijelo-D65)

R: xr=0.630 yr=0.340 G: xg=0.310 yg=0.595 B: xb=0.155 yb=0.070

EBU primari (bijelo-D65)

R: xr=0.64 yr=0.33 G: xg=0.29 yg=0.60 B: xb=0.15 yb=0.06

ITU-R BT.709 primari (bijelo-D65)

R: xr=0.64 yr=0.33 G: xg=0.30 yg=0.60 B: xb=0.15 yb=0.06

Primari u televiziji

opseg boja za različite vrste TV primara u dijagramu kromatičnosti

Dobivanje signala E_{Υ}

- krivulja luminoznosti
 - omogućava dobivanje luminantnog signala iz signala za primarne boje (u jednoj fazi razvoja televizije omogućila je kompatibilnost akromatske i kromatske televizije)
- EBU primari (europski TV sustavi)
 - λ (Rr) = 610 nm - λ (Gr) = 540 nm

FER ZEK

MT06 - Sonja Grgić

Dobivanje signala E_Y

$$v_{\lambda}(Rr) = 0.47$$
 $v_{\lambda}(Gr) = 0.92$
 $v_{\lambda}(Br) = 0.17$
1,56

relativni koeficijenti luminoznosti:

$$\overline{v_{\lambda}}(Rr) = \frac{0.47}{1.56} = 0.30$$
 $\overline{v_{\lambda}}(Gr) = \frac{0.92}{1.56} = 0.59$
 $\overline{v_{\lambda}}(Br) = \frac{0.17}{1.56} = 0.11$

$$E'_{Y} = 0.3 \cdot E'_{R} + 0.59 \cdot E'_{G} + 0.11 \cdot E'_{B}$$

Dobivanje signala E_Y

bijela slika

$$-E'_{R} = E'_{G} = E'_{B} = 1$$

$$-E'_{Y} = 0.3.1 + 0.59.1 + 0.11.1 = 1$$

crna slika

$$- E'_{R} = E'_{G} = E'_{B} = 0$$

 $- E'_{Y} = 0$

crvena slika

$$- E'_{R} = 1, E'_{G} = E'_{B} = 0$$

 $- E'_{Y} = 0,3$

žuta slika

$$-E'_{R} = 1, E'_{G} = 1, E'_{B} = 0$$

 $-E'_{Y} = 0,3 + 0,59 = 0,89$

signali E'_R, E'_G i E'_B sadržani su u E'_Y

$$E'_{Y} = 0.30 \cdot E'_{R} + 0.59 \cdot E'_{G} + 0.11 \cdot E'_{R}$$

- dovoljno bi bilo prenositi dva signala za primarne boje od kojih je oduzet E'_Y i signal E'_Y
- signali razlike za boju (signali za primarne boje od kojih je oduzet E'_{Y})

$$(E'_{R} - E'_{Y}) = E'_{R} - 0.30 \cdot E'_{R} - 0.59 \cdot E'_{G} - 0.11 \cdot E'_{B} = 0.70 \cdot E'_{R} - 0.59 \cdot E'_{G} - 0.11 \cdot E'_{B}$$

$$(E'_{B} - E'_{Y}) = E'_{B} - 0.30 \cdot E'_{R} - 0.59 \cdot E'_{G} - 0.11 \cdot E'_{B} = -0.30 \cdot E'_{R} - 0.59 \cdot E'_{G} + 0.89 \cdot E'_{B}$$

$$(E'_{G} - E'_{Y}) = E'_{G} - 0.30 \cdot E'_{R} - 0.59 \cdot E'_{G} - 0.11 \cdot E'_{B} = -0.30 \cdot E'_{R} + 0.41 \cdot E'_{G} - 0.11 \cdot E'_{B}$$

 signali razlike za boju su niskofrekvencijski signali kojima se frekvencijska širina pojasa može ograničiti na 1,3 MHz

Izvorna slika

 E'_{Y}

Izvorna slika - E'_Y

E'_R-E'_Y

Razine signala

E'_G-E'_Y

 $E'_{B}-E'_{Y}$

Prikaz na monitoru

E'_G-E'_Y

 $E'_{B}-E'_{Y}$

MT06 - Sonja Grgić

© FER, ZRK

Boja	E' _R	E' _G	E' _B	E' _Y	E' _R - E' _Y	E' _B - E' _Y	E' _G - E' _Y
bijela	1	1	1	1	0	0	0
žuta	1	1	0	0,89	0,11	-0,89	0,11
cijan	0	1	1	0,70	-0,70	0,30	0,30
zelena	0	1	0	0,59	-0,59	-0,59	0,41
purpurna	1	0	1	0,41	0,59	0,59	-0,41
crvena	1	0	0	0,30	0,70	-0,30	-0,30
plava	0	0	1	0,11	-0,11	0,89	-0,11
crna	0	0	0	0	0	0	0

Color-bar (maksimalno zasićene primarne i komplementarne boje + bijela + crna)

[-0,70 do 0,70]

[-0,89 do 0,89]

[-0,41 do 0,41]

za prijenos su odabrani signali (E'_R - E'_Y) i (E'_B - E'_Y) jer signal (E'_G - E'_Y) ima najmanji amplitudni raspon (od -0,41 do 0,41)

$$E'_{Y} = 0.30 \cdot E'_{R} + 0.59 \cdot E'_{G} + 0.11 \cdot E'_{B}$$

 $(E'_{B} - E'_{Y}) = -0.30 \cdot E'_{R} - 0.59 \cdot E'_{G} + 0.89 \cdot E'_{B}$
 $(E'_{R} - E'_{Y}) = 0.70 \cdot E'_{R} - 0.59 \cdot E'_{G} - 0.11 \cdot E'_{B}$

- u stvarnim sustavima amplitude signala (E'_R E'_Y) i (E'_B E'_Y) su reducirane (način redukcije ovisi o vrsti sustava)
- u sustavu PAL reducirane komponente krominantnog signala označavaju se kao E'_U i E'_V

$$E'_{U}$$
=0,493(E'_{B} - E'_{Y})
 E'_{V} =0,877(E'_{R} - E'_{Y})

 model prijenosa signala u boji u kome se prenosi luminantni signal i dva signala razlike za boju E'₁₁ i E'₁₂ naziva se YUV model

prijenos signala (E'_R - E'_Y) i (E'_B - E'_Y):

NTSC i PAL sustav → kvadraturna amplitudna modulacija (QAM) SECAM sustav → frekvencijska modulacija

- QAM
 - signali (E'_R E'_Y) i (E'_B E'_Y) moduliraju dva nositelja boje frekvencije f_K između kojih postoji fazni pomak od 90°
 - zbrajanjem moduliranih nositelja nastaje krominantni signal
- kompozitni (složeni) videosignal u boji
 - nastaje zbrajanjem luminantnog i krominantnog signala
- u sustavu PAL nositelj boje frekvencije $f_{\rm K}$ = 4,43 MHz moduliran je signalima $E'_{\rm U}$ i $E'_{\rm V}$
- u sustavu NTSC nositelj boje frekvencije $f_{\rm K}$ = 3,58 MHz moduliran je signalima $E'_{\rm I}$ i $E'_{\rm Q}$

oblikovanje kompozitnog videosignala

E_K - krominantni signal (QAM modulirani nositelj boje)

$$E'_{K} = (E'_{B} - E'_{Y}) \sin \Omega_{K}t + (E'_{R} - E'_{Y}) \cos \Omega_{K}t$$

$$E'_{K} = E'_{KA} \sin (\Omega_{K}t + \varphi) = E'_{KA} \cos \varphi \sin \Omega_{K}t + E'_{KA} \sin \varphi \cos \Omega_{K}t$$

$$(E'_{D} - E'_{V})$$

FAZA ODGOVARA VRSTI BOJE: $tg\varphi = \frac{(E_{\rm R}' - E_{\rm Y}')}{E_{\rm R}' - E_{\rm Y}'}$

AMPLITUDA ODGOVARA ZASIĆENJU BOJE:

$$E'_{KA} = \sqrt{(E'_{R} - E'_{Y})^{2} + (E'_{B} - E'_{Y})^{2}}$$

Vektorski prikaz boja

KROMINANTNE OSI: $(E'_B - E'_Y)$, $(E'_R - E'_Y)$

razine kompozitnog videosignala za "color-bar" (kromatske pruge)

Boja	E' _Y	E' _{KA}	$E'_{Y}+E'_{KA}$	E' _Y -E' _{KA}
bijela	1	0	1	1
žuta	0.89	0.89	1.78	0
cijan	0.70	0.76	1.46	-0.06
zelena	0.59	0.83	1.42	-0.24
purpurna	0.41	0.83	1.24	-0.42
crvena	0.30	0.76	1.06	-0.46
plava	0.11	0.89	1	-0.78
crna	0	0	0	0

razine kompozitnog
videosignala premašuju
razine bijelog i crnog

- razlog za redukciju signala
 (E'_R E'_Y) i (E'_B E'_Y)
- razina bijelog i crnog u kompozitnom videosignalu smije biti prekoračena za 33%

 kompozitni videosignal nakon redukcije amplituda krominantnog signala za ispitni signal "color-bar"

- luminantni i krominantni signal se zajedno prenose u istom frekvencijskom području
- spektar krominantnog signala se "učešljava" tako da ne smeta spektru luminantnog signala
 - frekvencija nositelja boje f_K
 odabrana je tako da spektralne
 komponente koje se pojavljuju
 oko f_K (označene crvenom
 bojom na slici desno) leže
 između dviju susjednih
 komponenti luminantnog
 signala (označene plavom
 bojom na slici desno)

© FER, ZRK

- rabi se u NTSC sustavu
 - krominantne komponente koje moduliraju f_{K} su: E'_{I} i E'_{Q}
 - nastaju zakretanjem osi (E'_U, E'_V) za 33°
 - I je os najveće razlučivosti boja u dijagramu kromatičnosti
 - Q je os najmanje razlučivosti boja u dijagramu kromatičnosti

$$E'_{1} = E'_{U} \cdot \cos 33^{\circ} - E'_{V} \cdot \sin 33^{\circ}$$

 $E'_{Q} = E'_{U} \cdot \cos 33^{\circ} + E'_{V} \cdot \sin 33^{\circ}$

$$E'_{Y} = 0.30E'_{R} + 0.59E'_{G} + 0.11E'_{B}$$
 $E'_{I} = 0.60E'_{R} - 0.27E'_{G} - 0.32E'_{B}$
 $E'_{Q} = 0.21E'_{R} - 0.52E'_{G} + 0.31E'_{B}$

YIQ model

prijenos signala E'₁ i E'_Q omogućava bolju reprodukciju boja

 položaj osi I i Q u CIE dijagramu kromatičnosti određen je vizualnim ispitivanjima osjetljivosti ljudskog vizualnog sustava na promjenu parametara koji određuju doživljaj boje

Formati digitalne slike

- digitalni formati videosignala izvedeni su iz analognog videosignala
 - frekvencija uzorkovanja određuje se u odnosu na horizontalnu frekvenciju ili frekvenciju nositelja boje analognih sustava
- preporuka ITU-R BT.601 (1986.)
 - Parametri kodiranja digitalnog televizijskog signala za studijske primjene uz omjere stranica slike 4:3 i 16:9 (Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios)
 - definira parametre za analogno-digitalnu pretvorbu videosignala u 525/60 i 625/50 sustavima (4:3 i 16:9 sustavi)
 - frekvencija uzorkovanja za luminantnu komponentu iznosi 13,5 MHz
 - formati slike su 720x576 za 625/50, te 720x486 za 525/59,94
- industrijske norme s kvadratičnim elementima slike (pikseli)
 - -625/50 sustavi -fs = 14,75 MHz $= 944 \times 15625$ Hz
 - -525/59,94 sustavi -fs = 12 + 3/11 MHz $= 780 \times [(60/1,001)\times 262,5]$

© FER, ZRK

Formati digitalne slike

Formati izvedeni iz 625/50 norme za analiziranje									
		Frekvencija uzorkovanja	Oblik piksela	Aktivno trajanje	Stvarni broj uzoraka u aktivnom dijelu slike		Podrška za analizu s	Napomena	
W	Н	(MHz)	-	linije u µs	W	Н	proredom		
768	576	14,75	768/767	52,06780	767	576	Y	"Industrijska norma" za 625/50 kvadratične piksele	
768	576	14 + 10/13	1/1	52,00000	768	576	Y	Rezolucija u računalima s kvadratičnim pikselima	
768	560	14,75	768/767	52,06780	767	576	Υ	CD (mirne slike)	
720	576	13,5	128/117	53,33333	702	576	Y	D1, DV, DVB, DVD (ITU-R BT.601)	
720	540	neodređena	1/1	neodređena	720	540	N	Kompromisni format koji je bolje izbjegavati	
704	576	13,5	128/117	52,14815	702	576	Y	DVD, H.263 (4CIF)	
702	576	13,5	128/117	52,00000	702	576	Y	Aktivni dio slike za 625/50 sustave u skladu s ITU-R BT.601	
544	576	10,125	512/351	53,72840	526+1/2	576	Υ	3/4 BT.601frekvencije uzorkovanja	
480	576	9	128/78	53,33333	468	576	Υ	2/3 BT.601 frekvencije uzorkovanja	
384	288	7,375	768/767	52,06780	383+1/2	288	N	1/4 od "industrijske norme" 768×576	
384	280	7,375	768/767	52,06780	383+1/2	288	N	CD (mirne slike)	
352	576	6,75	256/117	52,14815	351	576	Y	DVD	
352	288	6,75	128/117	52,14815	351	288	N	VCD, DVD, H.261 + H.263 (CIF)	
176	144	3,375	128/117	52,14815	175+1/2	144	N	H.261 + H.263 (QCIF)	

MT06 - Sonja Grgić

© FER, ZRK

Formati digitalne slike

	Formati izvedeni iz 525/59,94 norme za analiziranje									
Broj uzoraka		Frekvencija uzorkovanja	Oblik Aktivno		Stvarni broj uzoraka u aktivnom dijelu slike		Podrška za analizu s proredom	Napomena		
W	Н	(MHz)		linije u µs	width	height	proredom			
720	540	neodređeno	1/1	neodređeno	720	540	N	Kompromisni format koji je bolje izbjegavati		
720	486	13,5	4320/4739	53,33333	710,85	486	Υ	D1 (ITU-R BT.601)		
720	480	13,5	4320/4739	53,33333	710,85	486	Y	DV, DVB, DVD		
711	486	13,5	4320/4739	52,66667	710,85	486	Y	Aktivni dio slike za 525/59,94 sustave u skladu s ITU-R BT.601		
704	480	13,5	4320/4739	52,14815	710,85	486	Y	ATSC, DVD, VCD		
648	486	12 + 1452/4739	1/1	52,65556	648	486	Y	Rezolucija u računalima s kvadratičnim pikselima		
640	480	12 + 3/11	4752/4739	52,14815	646+5/22	486	Υ	D2: "industrijska norma" 525/59,94 s kvadratičnim pikselima		
640	480	12 + 1452/4739	1/1	52,00549	648	486	Υ	Rezolucija u računalima s kvadratičnim pikselima (cropped)		
480	480	9	6480/4739	53,33333	473,9	486	Υ	2/3 BT.601 frekvencije uzorkovanja		
352	480	6,75	8640/4739	52,14815	355,425	486	Υ	DVD		
352	240	6,75	4320/4739	52,14815	355,425	243	N	VCD, DVD		
320	240	6 + 3/22	4572/4739	52,14815	324	243	N	1/4 u odnosu na 640×480		

MT06 - Sonja Grgić

Formati digitalne slike

- formati slike koji se rabe u ITU-T preporukama
 - temeljni format je CIF (Common Interchange Format)
 - izvodi se iz formata slike koji nastaje analogno-digitalnom pretvorbom u skladu s ITU-R BT.601

Format	16CIF	4CIF	CIF	QCIF	SQCIF
Rezolucija	1408 × 1152	704 × 576	352 × 288	176 × 144	128 × 96
Broj piksela	1 622 016	405 504	101 376	25 344	12 288

- formati slike za prikazivanje na računalu
 - temeljni format je VGA (Video Graphics Array) 640x480 piksela
 - omjer stranica slike je 4:3 (osim za SXGA)
 - prikazivanje boja: od 16 boja uz 4 bpp (bits per pixel) do 16,7 milijuna boja uz 24 bpp (po 8 bita za crvenu, zelenu i plavu boju)

Format	VGA	SVGA	XGA	XGA+	SXGA	SXGA+	UXGA	QXGA
Rezolucija	640x480	800x600	1024x768	1152x864	1280x1024	1400x1050	1600x1200	2048x1536
Broj piksela	0,31 mil.	0,48 mil.	0,79 mil.	1 mil.	1,31 mil.	1,47 mil.	1,92 mil.	3,15 mil.

Formati digitalne slike

- ITU-R preporuka BT.601
 - uključuje dvije temeljne skupine normi
 - 13,5 MHz skupina normi za omjer stranica 4:3 i 16:9
 - 18 MHz skupina normi za omjer stranica 16:9
 - svaka skupina sadrži dvije strukture uzorkovanja
 - 4:4:4
 - komponente signala mogu biti $[E'_{Y}, (E'_{R}-E'_{Y}), (E'_{B}-E'_{Y})]$ ili $[E'_{R}, E'_{G}, E'_{B}]$
 - frekvencija uzorkovanja iznosi 13,5 MHz ili 18 MHz za svaku komponentu
 - 4:2:2
 - komponente signala su $[E'_Y, (E'_R-E'_Y), (E'_B-E'_Y)]$
 - frekvencija uzorkovanja za E'_{Y} je 13,5 MHz ili 18 MHz, a za $(E'_{R}-E'_{Y})$, $(E'_{B}-E'_{Y})$ 6,75 MHz ili 9 MHz (poduzorkovanje s faktorom 2)

• 13,5 MHz, 4:2:2 struktura uzorkovanja

Parametri	525 linija / 60 Hz	625 linija / 50 Hz					
Kodirani signali: Y, C_R, C_B	Ovi su signali dobiveni iz signala: E'_{Y} , $(E'_{R} - E'_{Y})$ i $(E'_{B} - E'_{Y})$						
Frekvencija uzorkovanja:							
• luminantni signal	13,5 M						
• svaki od signala razlike	6,75 M	HZ I					
Broj uzoraka po liniji:							
• luminantni signal	858	864					
• svaki od signala razlike	429	432					
Broj uzoraka po aktivnom							
dijelu linije:							
• luminantni signal	720						
• svaki od signala razlike	360						
Struktura uzorkovanja:	Ortogonalna, ponavlja se u svakoj liniji, poluslici i slici; uzorci za svaki od krominantnih signala se uzimaju na mjestu koje odgovara						
	neparnim uzorcima luminantnog signala u svakoj liniji						
Način kodiranja:	Ravnomjerna impulsno kodna modulacija (PCM) s osam (ili 10) bita po uzorku za luminantni signal i svaki od krominantnih signala						

• 18 MHz, 4:2:2 struktura uzorkovanja

Parametri	525 linija / 60 Hz	625 linija / 50 Hz				
Kodirani signali: Y, C_R, C_B	Ovi su signali dobiveni iz signala: E'_{Y} , $(E'_{R} - E'_{Y})$ i $(E'_{B} - E'_{Y})$					
Frekvencija uzorkovanja:						
• luminantni signal	18 MH					
• svaki od signala razlike	9 MH	Iz				
Broj uzoraka po liniji:						
• luminantni signal	1144	1152				
• svaki od signala razlike	572	576				
Broj uzoraka po aktivnom						
dijelu linije:						
• luminantni signal	960					
• svaki od signala razlike	480					
Struktura uzorkovanja:	Ortogonalna, ponavlja se u svakoj liniji, poluslici i slici; uzorci za					
	svaki od krominantnih signala se uzimaju na mjestu koje odgovara					
	neparnim uzorcima luminantnog signala u svakoj liniji					
Način kodiranja:	Ravnomjerna impulsno kodna modulacija (PCM) s osam (ili 10) bita					
	po uzorku za luminantni signal i svak	i od krominantnih signala				

strukture uzorkovanja

S ZRK

MT06 - Sonja Grgić © FER, ZRK

 rezolucija za komponente krominantnog signala iskazana relativno u odnosu na rezoluciju luminantnog signala

Struktura uzorkovanja	Horizontalna [%]	Vertikalna [%]
4:4:4	100	100
4:2:2	50	100
4:2:0	50	50
4:1:1	25	100

Brzina prijenosa

• ukupna brzine prijenosa kod analogno-digitalne pretvorbe komponentnog videosignala $R=(f_sn)_Y+(f_sn)_{CR}+(f_sn)_{CB}$

Format	f _S , MHz	n	R, Mbit/s
4:4:4	13,5	8	324
4:4:4	13,5	10	405
4:4:4	18	8	432
4:4:4	18	10	540
4:2:2	13,5/6,75	8	216
4:2:2	13,5/6,75	10	270
4:2:2	18/9	8	288
4:2:2	18/9	10	360
4:1:1	13,5/3,375	8	162

- ako se promatra samo aktivni dio slike brzine prijenosa se smanjuju (tzv. neto brzina prijenosa):
 - npr. za 13,5 MHz, 625/50, 4:2:2 vrijedi
 - R=720 x 576 x 25 x 8 + 360 x 576 x 25 x (8 + 8) = 166 Mbit/s
 - npr. za 13,5 MHz, 625/50, 4:1:1 vrijedi
 - R=720 x 576 x 25 x 8 + 180 x 576 x 25 x (8 + 8) = 124 Mbit/s

Brzina prijenosa

- primjer: videosignal u digitalnom obliku nastao primjenom preporuke ITU-R BT.601 uz kodiranje s 8 bita/uzorku za svaku komponentu u 4:2:2 formatu i uz frekvenciju izmjene slika 25 Hz
 - potreban broj bita za kodiranje aktivnog dijela jedne slike:
 (720 x 576)x8 bita+(360 x 288)x8+(360 x 288)x8=6 635 520 bita
 - brzina prijenosa za aktivni dio slike:6 635 520 bita x 25 = 165,88 Mbit/s = 20,736 MB/s
 - na tvrdi disk kapaciteta 5 GB moguće je pohraniti 4 minute nekomprimiranog digitalnog videosignala

Potrebna je kompresija videosignala!

- značajke HDTV sustava normira preporuka ITU-R BT.709: Vrijednosti
 parametara HDTV normi za produkciju i međunarodnu razmjenu
 programa 2. dio: HDTV sustavi s zajedničkim formatom slike u kome su
 elementi slike kvadratični (Parameter Values for the HDTV Standards for
 Production and International Programme Exchange PART 2: HDTV
 SYSTEMS WITH SQUARE PIXEL COMMON IMAGE FORMAT)
- pored preporuke ITU-R BT.709, značajke HDTV sustava su propisane i sljedećim SMPTE (Society for Motion Pictures and Television Engineers) normama:
 - SMPTE 296M: 1280 x 720 Progressive Image Sample Structure Analogue and Digital Representation and Analogue Interface (2001.)
 - SMPTE 274M: 1920 x 1080 Image Sample Structure, Digital Representation and Digital Timing Reference Sequences for Multiple Picture Rates (2003.)
- parametri analiziranja HDTV signala koji su pojavljuju u normi SMPTE 274M su jednaki parametrima iz drugog dijela preporuke ITU-R BT.709 (Part 2)

 značajke HDTV sustava u skladu s preporukom ITU-R BT.709 (Part 2) i SMPTE 274M

Parametar			Verl	ikalna	frekve	ncija/na	ačin anali:	ziranja		
. s. s.motar		30/P	30/PsF	60/I	50/P	25/P	25/PsF	50/I	24/P	24/PsF
Omjer stranica	16:9									
Broj uzoraka u aktivnom dijelu linije	1 920									
Struktura uzorkovanja	Ortogonalna									
Broj linija u aktivnom dijelu slike	1080									
Oblik elemenata slike	1:1 (kvadratični elementi slike)									

• segmentacija progresivno analizirane slike (PsF, *Progressive Segmented Frame*)

 parametri analiziranja slike u HDTV sustavu prema ITU-R BT.709 (Part 2)

Dter	Vrijednosti sustava									
Parametar	60/P	30/P	30/PsF	60/I	50/P	25/P	25/PsF	50/I	24/P	24/PsF
Ukupan broj linija					112:	5				
Vertikalna frekvencija (Hz)	60 (60/1,001)	30 60 (30/1,001) (60/1,001)		50	25	50		24 (24/1,001)	48 (48/1,001)	
Način analiziranja		1:1		2:1		1:1	1:1 2:1		1:1	
Frekvencija izmjene slika (Hz)	60 (60/1,001)	30 (30/1,001)			50	25			24 (24/1,001)	
Horizontalna frekvencija (Hz)	67 500 (67 500/1,001)	33 750 (33 750/1,001)			56 250	28 125			27 000 (27 000/1,001)	
Ukupan broj uzoraka u liniji - R, G, B, Y - CB, CR		2 200 1 100					540 320			750 375
Nominalna širina pojasa analognog signala (MHz)	60	30			60	30		30		
Frekvencija uzorkovanja – R, G, B, Y (MHz)	148,5 (148,5/1,001)	74,25 (74,25/1,001)		148,5	74,25			74,25 (74,25/1,001)		
Frekvencija uzorkovanja – CB, CR (MHz)	74,25 (74,25/1,001)	37,125 (37,125/1,001)		74,25	37,125		37,125 (37,125/1,001)			

MT06 - Sonja Grgić © FER, ZRK

- mogući formati HDTV signala za proizvodnju TV programa u europskim zemljama određeni su dokumentom EBU Tech 3299: High Definition (HD) Image Formats for Television Production
 - -Sustav 1 (S1)
 - 1280 horizontalnih uzoraka i 720 linija u aktivnom dijelu slike, progresivno analiziranje s frekvencijom izmjene slika 50Hz
 - -Sustav 2 (S2)
 - 1920 horizontalnih uzoraka i 1080 linija u aktivnom dijelu slike, analiziranje s proredom s frekvencijom izmjene slika 25 Hz
 - -Sustav 3 (S3)
 - 1920 horizontalnih uzoraka i 1080 linija u aktivnom dijelu slike, progresivno analiziranje s frekvencijom izmjene slika 25 Hz
 - -Sustav 4 (S4)
 - 1920 horizontalnih uzoraka i 1080 linija u aktivnom dijelu slike, progresivno analiziranje s frekvencijom izmjene slika 50 Hz

• frekvencije uzorkovanja i širine pojasa za komponente HDTV signala

Parametar sustava	Komponente signala	Sustavi 1, 2 i 3	Sustav 4
Širina pojasa	R,G,B	30 MHz	60 MHz
	Υ	30 MHz	60 MHz
	$C_{R'}$ C_{B}	15 MHz	35 MHz
Frekvencija	R,G,B	74,25 MHz	148,5 MHz
uzorkovanja	Υ	74,25 MHz	148,5 MHz
	C_{R}, C_{B}	37,125 MHz	74,25 MHz

brzine prijenosa digitalnog komponentnog HDTV signala

Sustav	Parametri	Ukupan broj Y uzoraka u Iiniji	Ukupan broj linija u slici	Ukupna brzina prijenosa (4:2:2, n=10)	Neto brzina prijenosa (4:2:2, n=10)
1	1280x720/P/50	1980	750	1,485 Gbit/s	921,6 Mbit/s
2	1920x1080/I/25	2640	1125	1,485 Gbit/s	1036,8Mbit/s
3	1920x1080/P/25	2640	1125	1,485 Gbit/s	1036,8Mbit/s
4	1920x1080/P/50	2640	1125	2,970 Gbit/s	2073,6Mbit/s

 brzine prijenosa su previsoke za djelotvoran prijenos bilo kojom vrstom komunikacijskog medija

Potrebna je kompresija videosignala!

