1 Subgradients

1. (\star) If $f: \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable at x, the $\partial f(x) = {\nabla f(x)}$.

Solution. By the gradient (first-order) conditions for convexity, we know that $\nabla f(x) \in \partial f(x)$. Next suppose $g \in \partial f(x)$. This means that for all $v \in \mathbb{R}^n$ and $h \in \mathbb{R}$ we have

$$f(x+hv) \ge f(x) + hg^T v \implies \frac{f(x+hv) - f(x)}{h} \ge g^T v.$$

Using -h in place of h gives

$$f(x - hv) \ge f(x) - hg^T v \implies g^T v \ge \frac{f(x - hv) - f(x)}{-h}.$$

Taking limits as $h \to 0$ gives

$$\nabla f(x)^T v \ge g^T v \ge \nabla f(x)^T v.$$

Thus all terms are equal. Subtracting gives

$$(\nabla f(x) - g)^T v = 0,$$

which holds for all $v \in \mathbb{R}^n$. Letting $v = \nabla f(x) - g$ proves

$$\|\nabla f(x) - g\|_2^2 = 0$$

giving the result.

2. Fix $f: \mathbb{R}^n \to \mathbb{R}$ and $x \in \mathbb{R}^n$. Then the subdifferential $\partial f(x)$ is a convex set.

Solution. Let $g_1, g_2 \in \partial f(x)$ and $t \in (0,1)$. We must show $(1-t)g_1 + tg_2$ is a subgradient. Note that, for any $y \in \mathbb{R}^n$, we have

$$f(x) + ((1-t)g_1 + tg_2)^T(y-x) = (1-t)(f(x) + g_1^T(y-x)) + t(f(x) + g_2^T(y-x))$$

$$\leq (1-t)f(y) + tf(y)$$

$$= f(y).$$

- 3. (a) True or False: A subgradient of $f: \mathbb{R}^n \to \mathbb{R}$ at x is normal to a hyperplane that globally understimates the graph of f.
 - (b) True or False: If $g \in \partial f(x)$ then -g is a descent direction of f.
 - (c) True or False: For $f: \mathbb{R} \to \mathbb{R}$, if $1, -1 \in \partial f(x)$ then x is a global minimizer of f.
 - (d) True or False: Let $f: \mathbb{R}^n \to \mathbb{R}$ and let $g \in \partial f(x)$. Then $\alpha g \in \partial f(x)$ for all $\alpha \in [0,1]$.
 - (e) True or False: If the sublevel sets of a function are convex, then the function is convex.

Solution.

- (a) False. The underestimating hyperplane is a subset of \mathbb{R}^{n+1} but a subgradient is an element of \mathbb{R}^n .
- (b) False. Consider $f(x_1, x_2) = |x_1| + 2|x_2|$ and note that $(1, -2) \in \partial f(3, 0)$ but (-1, 2) is not a descent direction.
- (c) True. The subdifferential of f at x is convex, and thus contains 0. If 0 is a subgradient of f at x, then x is a global minimizer.
- (d) False. Suppose $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2$. Then $\partial f(1) = \{2\}$, and thus doesn't contain 2α for $\alpha \in [0,1)$.

- (e) False. A counterexample is $f(x) = -e^{-x^2}$. The converse is true though. Functions that have convex sublevel sets are called *quasiconvex*.
- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x_1, x_2) = |x_1| + 2|x_2|$. Compute $\partial f(x_1, x_2)$ for each $x_1, x_2 \in \mathbb{R}^2$.

Solution. Write $f(x_1, x_2) = f_1(x_1, x_2) + f_2(x_1, x_2)$ where $f_1(x_1, x_2) = |x_1|$ and $f_2(x_1, x_2) = 2|x_2|$. When $x_1 \neq 0$ we have $\partial f_1(x_1, x_2) = \{(\operatorname{sgn}(x_1), 0)^T\}$ and when $x_1 = 0$ we have

$$\partial f_1(x_1, x_2) = \{(b, 0)^T \mid b \in [-1, 1]\}.$$

When $x_2 \neq 0$ we have $\partial f_2(x_1, x_2) = \{(0, 2\operatorname{sgn}(x_2))^T\}$ and when $x_2 = 0$ we have

$$\partial f_2(x_1, x_2) = \{(0, c)^T \mid c \in [-2, 2]\}.$$

Combining we have

$$\partial f(x_1, x_2) = \partial f_1(x_1, x_2) + \partial f_2(x_1, x_2),$$

where we are summing sets. Recall that if $A, B \subseteq \mathbb{R}^n$ then

$$A+B=\{a+b\mid a\in A,b\in B\}.$$

This gives 4 cases:

- (a) If $x_1, x_2 \neq 0$ this gives $\partial f(x_1, x_2) = \{(\operatorname{sgn}(x_1), 2\operatorname{sgn}(x_2))^T\}.$
- (b) If $x_1 = 0$ and $x_2 \neq 0$ we have $\partial f(x_1, x_2) = \{(b, 2\operatorname{sgn}(x_2))^T \mid b \in [-1, 1]\}.$
- (c) If $x_1 \neq 0$ and $x_2 = 0$ we have $\partial f(x_1, x_2) = \{(\operatorname{sgn}(x_1), c)^T \mid c \in [-2, 2]\}.$
- (d) If $x_1 = 0$ and $x_2 = 0$ we have $\partial f(x_1, x_2) = \{(b, c)^T \mid b \in [-1, 1], c \in [-2, 2]\}.$