Pixel & Voxel Representations of Graphs

Graph Drawing Northridge, Los Angeles – September 26, 2015

Build contact representation of graphs

Build contact representation of graphs

Contact Representations

- Vertices \Rightarrow Geometric objects (polygons, arcs, polyhedra)
- $\blacksquare \ \operatorname{Edges} \Rightarrow \operatorname{Contacts}$

Contact Representations

- Vertices ⇒ Geometric objects (polygons, arcs, polyhedra)
- Edges \Rightarrow Contacts

Goal: minimize polygonal complexity

Build contact representation of graphs

Build contact representation of graphs from unit blocks

Build contact representation of graphs from unit blocks

How many unit blocks are required?

■ Building contact representation from unit blocks

- Building contact representation from unit blocks
- Pixel in 2D, Voxel in 3D

- Vertices ⇒ Blobs (connected sets of pixels/voxels)
- \blacksquare Edges \Rightarrow Adjacent (face-to-face) pixels/voxels in two blobs

- Vertices ⇒ Blobs (connected sets of pixels/voxels)
- \blacksquare Edges \Rightarrow Adjacent (face-to-face) pixels/voxels in two blobs

- Vertices \Rightarrow Blobs (connected sets of pixels)
- Edges \Rightarrow Adjacent (face-to-face) pixels in two blobs

- Vertices \Rightarrow Blobs (connected sets of pixels)
- Edges \Rightarrow Adjacent (face-to-face) pixels in two blobs

- Vertices ⇒ Blobs (connected sets of pixels)
- Edges \Rightarrow Adjacent (face-to-face) pixels in two blobs

- Vertices \Rightarrow Blobs (connected sets of pixels)
- Edges \Rightarrow Adjacent (face-to-face) pixels in two blobs

- Vertices \Rightarrow Blobs (connected sets of pixels)
- Edges \Rightarrow Adjacent (face-to-face) pixels in two blobs

- Vertices \Rightarrow Blobs (connected sets of pixels)
- Edges \Rightarrow Adjacent (face-to-face) pixels in two blobs

- Vertices ⇒ Blobs (connected sets of voxel)
- Edges \Rightarrow Adjacent (face-to-face) voxels in two blobs

- Vertices \Rightarrow Blobs (connected sets of voxel)
- Edges \Rightarrow Adjacent (face-to-face) voxels in two blobs

Contact Representations

- Point-contact with circles [Koebe, 1936]
- Point-contact with triangles [De Fraysseix et al., 1994]
- Side-contact with hexagons [Gansner et al., 2010], [Bonichon et al., 2010]

Contact Representations with Rectilinear Polygons

■ Contact with 8-sided rectilinear polygons: [Yeap and Sarrafzadeh, 1993], [He, 1999], [Liao et al., 2003]

Contact Representations in 3D

- Contact representation of planar graphs with cuboids [Thomassen, 1986], [Bremner et al., 2012]
- Improper contact representation of planar graphs with cubes [Felsner and Francis, 2011]

Contact Representations in 3D

- Contact representation of planar graphs with cuboids [Thomassen, 1986], [Bremner et al., 2012]
- Improper contact representation of planar graphs with cubes [Felsner and Francis, 2011]
- Contact Representation of nonplanar graphs

Vertex Contact Graphs of Paths on a Grid (VCPG)

■ Contact graphs of grid paths [Aerts and Felsner, 2014]

Vertex Contact Graphs of Paths on a Grid (VCPG)

■ Contact graphs of grid paths [Aerts and Felsner, 2014]

Mosaic Drawing

■ Contact of square or hexagonal tilies [Cano et al., 2015]

Vertex Contact Graphs of Paths on a Grid (VCPG)

■ Contact graphs of grid paths [Aerts and Felsner, 2014]

Mosaic Drawing

■ Contact of square or hexagonal tilies [Cano et al., 2015]

Same representation, different objective!

Computational Complexity

■ Finding minimum-size representation is NP-complete in both 2D and 3D

Computational Complexity

 Finding minimum-size representation is NP-complete in both 2D and 3D

Reduction from: \mathcal{P}

Input: a planar max-degree-4 graph GFind a grid drawing with unit edge lengths

Computational Complexity

■ Finding minimum-size representation is NP-complete in both 2D and 3D

Pixel Representation

■ For a k-outerplanar graph, $\Theta(kn)$ pixels are necessary and sufficient

Computational Complexity

 Finding minimum-size representation is NP-complete in both 2D and 3D

Pixel Representation

■ For a k-outerplanar graph, $\Theta(kn)$ pixels are necessary and sufficient

Voxel Representation

• $O(n^2)$ voxels are sufficient

Computational Complexity

■ Finding minimum-size representation is NP-complete in both 2D and 3D

Pixel Representation

■ For a k-outerplanar graph, $\Theta(kn)$ pixels are necessary and sufficient

Voxel Representation

- $O(n^2)$ voxels are sufficient
- For a graph with treewidth τ , $\Theta(n \cdot \tau)$ voxels are necessary and sufficient

Computational Complexity

 Finding minimum-size representation is NP-complete in both 2D and 3D

Pixel Representation

■ For a k-outerplanar graph, $\Theta(kn)$ pixels are necessary and sufficient

Voxel Representation

- $O(n^2)$ voxels are sufficient
- For a graph with treewidth τ , $\Theta(n \cdot \tau)$ voxels are necessary and sufficient
- For a graph with genus g, $O((g+1)^2 n \log^2 n)$ voxels are sufficient

A graph G with n vertices, m edges, and an orthogonal drawing of total edge length l

A graph G with n vertices, m edges, and an orthogonal drawing of total edge length l

A graph G with n vertices, m edges, and an orthogonal drawing of total edge length l

A graph G with n vertices, m edges, and an orthogonal drawing of total edge length l

A graph G with n vertices, m edges, and an orthogonal drawing of total edge length l

A graph G with n vertices, m edges, and an orthogonal drawing of total edge length l

Our Result

Computational Complexity

 Finding minimum-size representation is NP-complete in both 2D and 3D

Pixel Representation

■ For a k-outerplanar graph, $\Theta(kn)$ pixels are necessary and sufficient

Voxel Representation

- $O(n^2)$ voxels are sufficient
- For a graph with treewidth τ , $\Theta(n \cdot \tau)$ voxels are necessary and sufficient
- For a graph with genus g, $O((g+1)^2 n \log^2 n)$ voxels are sufficient

Our Result

Computational Complexity

■ Finding minimum-size representation is NP-complete in both 2D and 3D

Pixel Representation

• For a k-outerplanar graph, $\Theta(kn)$ pixels are necessary and sufficient

Voxel Representation

- $O(n^2)$ voxels are sufficient
- For a graph with treewidth τ , $\Theta(n \cdot \tau)$ voxels are necessary and sufficient
- For a graph with genus g, $O((g+1)^2 n \log^2 n)$ voxels are sufficient

- An outerplanar graph is a 1-Outerplanar graph.
- Removing outer vertices from a k-outerplanar graph yields (k-1)-outerplanar graphs

- An outerplanar graph is a 1-Outerplanar graph.
- Removing outer vertices from a k-outerplanar graph yields (k-1)-outerplanar graphs

 \blacksquare triangulate

lacksquare $G_4: k$ -outerplanar with max-degree 4

- $G_4: k$ -outerplanar with max-degree 4
- Maximum shortest path length to reach outerface = $\Theta(k)$

- $G_4: k$ -outerplanar with max-degree 4
- Maximum shortest path length to reach outerface = $\Theta(k)$
- \Rightarrow G_4 has an orthogonal drawing with total edge length $\Theta(kn)$ [D. Dolev, T. Leighton, H. Trickey, 1984]

- G_4 : k-outerplanar with max-degree 4
- Maximum shortest path length to reach outerface = $\Theta(k)$
- \Rightarrow G_4 has an orthogonal drawing with total edge length $\Theta(kn)$ [D. Dolev, T. Leighton, H. Trickey, 1984]
- \Rightarrow G_4 has a pixel representation with size $\Theta(kn)$

- $G_4: k$ -outerplanar with max-degree 4
- Maximum shortest path length to reach outerface = $\Theta(k)$
- \Rightarrow G_4 has an orthogonal drawing with total edge length $\Theta(kn)$ [D. Dolev, T. Leighton, H. Trickey, 1984]
- \Rightarrow G_4 has a pixel representation with size $\Theta(kn)$
 - \blacksquare Representation for G?

- G_4 : k-outerplanar with max-degree 4
- Maximum shortest path length to reach outerface = $\Theta(k)$
- \Rightarrow G_4 has an orthogonal drawing with total edge length $\Theta(kn)$ [D. Dolev, T. Leighton, H. Trickey, 1984]
- \Rightarrow G_4 has a pixel representation with size $\Theta(kn)$
 - \blacksquare Representation for G?
 - Contract edges
 - Delete extra edges

- G_4 : k-outerplanar with max-degree 4
- Maximum shortest path length to reach outerface = $\Theta(k)$
- \Rightarrow G_4 has an orthogonal drawing with total edge length $\Theta(kn)$ [D. Dolev, T. Leighton, H. Trickey, 1984]
- \Rightarrow G_4 has a pixel representation with size $\Theta(kn)$
 - \blacksquare Representation for G?
 - Contract edges: identify blobs
 - Delete extra edges

- G_4 : k-outerplanar with max-degree 4
- Maximum shortest path length to reach outerface = $\Theta(k)$
- \Rightarrow G_4 has an orthogonal drawing with total edge length $\Theta(kn)$ [D. Dolev, T. Leighton, H. Trickey, 1984]
- \Rightarrow G_4 has a pixel representation with size $\Theta(kn)$
 - \blacksquare Representation for G?
 - Contract edges: identify blobs
 - Delete extra edges: remove contact pixels

Lower Bound

■ Any k-outerplane pixel representation has size at least $4k^2 - 4k$.

Lower Bound

- Any k-outerplane pixel representation has size at least $4k^2 4k$.
- \Rightarrow Some k-outerplanar graphs require $\Omega(kn)$ pixels

Lower Bound

- Any k-outerplane pixel representation has size at least $4k^2 4k$.
- \Rightarrow Some k-outerplanar graphs require $\Omega(kn)$ pixels

 \Rightarrow $\Theta(kn)$ pixels are sometimes necessary and always sufficient

Lower Bound

- Any k-outerplane pixel representation has size at least $4k^2 4k$.
- \Rightarrow Some k-outerplanar graphs require $\Omega(kn)$ pixels

- $\Rightarrow \Theta(kn)$ pixels are sometimes necessary and always sufficient
 - Linear pixels for outerplanar, quadratic for planar graphs.

Our Result

Computational Complexity

 Finding minimum-size representation is NP-complete in both 2D and 3D

Pixel Representation

■ For a k-outerplanar graph, $\Theta(kn)$ pixels are necessary and sufficient

Voxel Representation

- $O(n^2)$ voxels are sufficient
- For a graph with treewidth τ , $\Theta(n \cdot \tau)$ voxels are necessary and sufficient
- For a graph with genus g, $O((g+1)^2 n \log^2 n)$ voxels are sufficient

Our Result

Computational Complexity

■ Finding minimum-size representation is NP-complete in both 2D and 3D

Pixel Representation

■ For a k-outerplanar graph, $\Theta(kn)$ pixels are necessary and sufficient

Voxel Representation

- $O(n^2)$ voxels are sufficient
- For a graph with treewidth τ , $\Theta(n \cdot \tau)$ voxels are necessary and sufficient
- For a graph with genus g, $O((g+1)^2 n \log^2 n)$ voxels are sufficient

■ Add diagonal voxels

■ Add diagonal voxels

- Add diagonal voxels
- Add voxels for edges

- Add diagonal voxels
- Add voxels for edges

- Add diagonal voxels
- Add voxels for edges

- Add diagonal voxels
- Add voxels for edges

- Add diagonal voxels
- Add voxels for edges

Voxel Representations for Graphs

Voxel Representations for Graphs

Better bound for constant treewidth or constant genus

Our Result

Computational Complexity

 Finding minimum-size representation is NP-complete in both 2D and 3D

Pixel Representation

■ For a k-outerplanar graph, $\Theta(kn)$ pixels are necessary and sufficient

Voxel Representation

- $O(n^2)$ voxels are sufficient
- For a graph with treewidth τ , $\Theta(n \cdot \tau)$ voxels are necessary and sufficient
- For a graph with genus g, $O((g+1)^2 n \log^2 n)$ voxels are sufficient

Our Result

Computational Complexity

■ Finding minimum-size representation is NP-complete in both 2D and 3D

Pixel Representation

■ For a k-outerplanar graph, $\Theta(kn)$ pixels are necessary and sufficient

Voxel Representation

- $O(n^2)$ voxels are sufficient
- For a graph with treewidth τ , $\Theta(n \cdot \tau)$ voxels are necessary and sufficient
- For a graph with genus g, $O((g+1)^2 n \log^2 n)$ voxels are sufficient

 \blacksquare Make the maximum degree 4

■ Make the maximum degree 4

■ Make the maximum degree 4

Orthogonal drawing on the plane (with crossing) with total edge length $O((g+1)^2 n \log^2 n)$ [Leiserson, 1980]

■ Subdivide at bend points

■ Make the maximum degree 4

- Subdivide at bend points
- Split horizontal and vertical graphs

 \blacksquare Make the maximum degree 4

 \Downarrow

- Subdivide at bend points
- Split horizontal and vertical graphs

■ Make the maximum degree 4

 \Downarrow

- Subdivide at bend points
- Split horizontal and vertical graphs
- Combine horizontal and vertical graphs

Summary

Computational Complexity

 Finding minimum-size representation is NP-complete in both 2D and 3D

Pixel Representation

■ For a k-outerplanar graph, $\Theta(kn)$ pixels are necessary and sufficient

Voxel Representation

- $O(n^2)$ voxels are sufficient
- For a graph with treewidth τ , $\Theta(n \cdot \tau)$ voxels are necessary and sufficient
- For a graph with genus g, $O((g+1)^2 n \log^2 n)$ voxels are sufficient

- Approximation for minimum-size representation
 - $\,-\,$ Approximation algorithm or hardness

- Approximation for minimum-size representation
 - Approximation algorithm or hardness
- Tighten bound for constant genus graphs
 - improve upper bound of $O((g+1)^2 n \log^2 n)$?

- Approximation for minimum-size representation
 - Approximation algorithm or hardness
- Tighten bound for constant genus graphs
 - improve upper bound of $O((g+1)^2 n \log^2 n)$?
- Hexagonal or other shapes for pixels/voxels?

- Approximation for minimum-size representation
 - Approximation algorithm or hardness
- Tighten bound for constant genus graphs
 - improve upper bound of $O((g+1)^2 n \log^2 n)$?
- Hexagonal or other shapes for pixels/voxels?

Acknowledgements

- Giuseppe Liotta and Walter Didimo, University of Perugia
 Organizers, 2014 Bertinoro Workshop on Graph Drawing
- Sue Whitesides, University of Victoria