(Измененная редакция, Попр. 1994)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТАЛЬ ГОРЯЧЕКАТАНАЯ ДЛЯ АРМИРОВАНИЯ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

Технические условия

Hot-rolled steel for reinforcement of ferroconcrete structures. Specifications

OKII 09 3004; 09 3005; 09 3006; 09 3007; 09 3008

Дата введения 01.07.83

(Измененная редакция, Попр. 1994)

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР, Госстроем СССР

РАЗРАБОТЧИКИ

Н.М.Воронцов, канд.техн. наук; И.С.Гринь, канд.техн. наук; К.Ф.Перетятько; Г.И.Снимщикова; А.Г.Большова; Е.Д.Гавриленко; канд.техн. наук; К.В.Михайлов, д-р техн. наук; С.А.Мадатян, канд.техн. наук; Н.М.Мулин, канд.техн. наук; В.З.Мешков, канд.техн. наук, Б.П.Горячев, канд.техн. наук; Б.Н.Фридлянов; В.И.Петина

- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного Комитета СССР по стандартам от 17.12.82 № 4800
 - 3. B3AMEH FOCT 5.1459-72, FOCT 5781-75
 - 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ГОСТ 380-88	2.3, 2.4
ГОСТ 2590-88	1.6
ГОСТ 7564-73	4.5
ГОСТ 7565-81	3.4
ГОСТ 7566-81	3.2, 3.6, 5.1
ГОСТ 9454-78	4.8
ΓOCT 12004-81	4.6
ГОСТ 12344-88	4.1
ΓOCT 12348-78	4.1
ГОСТ 12350-78	4.1
ΓOCT 12352-81	4.1
ΓOCT 12355-78	4.1
ГОСТ 12356-81	4.1
ΓOCT 14019-80	4.7
ΓOCT 18895-81	4.1
OCT 14-34-78	Приложение 2

- 5. Ограничение срока действия снято по решению Межгосударственного совета по стандартизации, метрологии и сертификации (протокол 3-93 от 17.02.93)
- 6. ПЕРЕИЗДАНИЕ (декабрь 1993 г.) с Изменениями № 1, 2, 3, 4, 5, утвержденными в феврале 1984 г., июне 1987 г., декабре 1987 г., октябре 1989 г., декабре 1990 г. (5-84, 11-87, 3-88, 1-90, 3-91), с Поправкой (ИУС № 2-3, 1994)

Настоящий стандарт распространяется на горячекатаную круглую сталь гладкого и периодического профиля, предназначенную для армирования обычных и предварительно напряженных железобетонных конструкций (арматурная сталь).

В части норм химического состава низколегированных сталей стандарт распространяется также на слитки, блюмсы и заготовки.

(Измененная редакция, Изм. № 4).

1. Классификация и сортамент

- 1.1. В зависимости от механических свойств арматурная сталь подразделяется на классы A-I (A240), A-II (A300), A-III (A400); A-IV (A600), A-V (A800), A-VI (A1000).
- 1.2. Арматурная сталь изготовляется в стержнях или мотках. Арматурную сталь класса A-I (A240) изготовляют гладкой, классов A-II (A300), A-III (A400), A-IV (A600), A-V (A800) и A-VI (A1000) периодического профиля.

По требованию потребителя сталь классов A-II (A300), A-III (A400), A-IV (A600) и A-V (A800) изготовляют гладкой.

1.1; 1.2. (Измененная редакция, Изм. № 5).

- 1.3. Номера профилей, площади поперечного сечения, масса 1 м длины арматурной стали гладкого и периодического профиля, а также предельные отклонения по массе для периодических профилей должны соответствовать указанным в табл. 1.
- 1.4. Номинальные диаметры периодических профилей должны соответствовать номинальным диаметрам равновеликих по площади поперечного сечения гладких профилей.

Таблица 1

Номер профиля	Площадь	Масса 1 м	профиля
(номинальный	поперечного сечения	Теоретическая, кг	Предельные
диаметр стержня $d_{_{\rm H}}$)	стержня, см 2		отклонения, %
6	0,283	0,222	+9,0
8	0,503	0,395	-7,0
10	0,785	0,617	+5,0
12	1,131	0,888	-6,0
14	1,540	1,210	
16	2,010	1,580	
18	2,540	2,000	
20	3,140	2,470	+3,0
22	3,800	2,980	-5,0
25	4,910	3,850	
28	6,160	4,830	
32	8,040	6,310	
36	10,180	7,990	⊥ 2 0
40	· ·	*	+3,0 -4,0
	12,570	9,870	-4 ,0
45	15,000	12,480	
1			

50 19,630 55 23,760 60 28,270 70 38,480 80 50,270	15,410 18,650 22,190 30,210 39,460	+2,0 -4,0
---	--	--------------

(Измененная редакция, Изм. № 3).

1.5. Масса 1 м профиля вычислена по номинальным размерам при плотности стали, равной $7,85\cdot 10^3~{\rm kr/m}^3$. Вероятность обеспечения массы 1 м должна быть не менее 0,9.

(Измененная редакция, Изм. № 3).

- 1.6. Предельные отклонения диаметра гладких профилей должны соответствовать ГОСТ 2590-88 для обычной точности прокатки.
- 1.7. Арматурная сталь периодического профиля представляет собой круглые профили с двумя продольными ребрами и поперечными выступами, идущими по трехзаходной винтовой линии. Для профилей диаметром 6 мм допускаются выступы, идущие по однозаходной винтовой линии, диаметром 8 мм по двухзаходной винтовой линии.
- 1.8. Арматурная сталь класса А-II (А300), изготовленная в обычном исполнении, профилем, приведенным на черт. 1а, и специального назначения Ас-II (Ас300) профилем, приведенным на черт. 2а, должна иметь выступы, идущие по винтовым линиям с одинаковым заходом на обеих сторонах профиля.

Сталь класса A-III (A400), изготовляемая профилем, приведенным на черт. 16, и классов A-IV (A600), A-V (A800), A-VI (A1000) профилем, приведенным на черт. 16, 26, должна иметь выступы по винтовым линиям, имеющим с одной стороны профиля правый, а с другой - левый заходы.

Арматурную сталь специального назначения класса Ac-II (Ac300) изготовляют профилями, приведенными на черт. 1а или 2а.

Профиль, приведенный на черт. 2a, специального назначения изготовляется по согласованию изготовителя с потребителем. Форма и размеры профилей, приведенных на черт. 2a и б, могут уточняться.

Черт. 2

1.9. Размеры и предельные отклонения размеров арматурной стали периодического профиля, изготавливаемого по черт. 1а и б, должны соответствовать приведенным в табл. 2, а по черт. 2а и б - приведенным в табл. 3.

Таблица 2

Размеры, мм

Номер профиля	C	d	l	1	d_1	h_1	t	b	b ₁	r
(номинальный	Номин.	Пред.	Номин.	Пред.						
диаметр $d_{_{\rm H}}$)		откл.		откл.						
6	5,75		0,5	±0,25	6,75	0,5	5	0,5	1,0	0,75
8	7,5		0,75		9,0	0,75	5	0,75	1,25	1,1
10	9,3	+0,3	1,0		11,3	1,0	7	1,0	1,5	1,5
12	11,0	-0,5	1,25		13,5	1,25	7	1,0	2,0	1,9
14	13,0		1,25		15,5	1,25	7	1,0	2,0	1,9
16	15,0		1,5		18,0	1,5	8	1,5	2,0	2,2
18	17,0		1,5	$\pm 0,5$	20,0	1,5	8	1,5	2,0	2,2
20	19,0		1,5		22,0	1,5	8	1,5	2,0	2,2
22	21,0	+0,4	1,5		24,0	1,5	8	1,5	2,0	2,2
25	24,0	-0,5	1,5		27,0	1,5	8	1,5	2,0	2,2
28	26,5		2,0		30,5	2,0	9	1,5	2,5	3,0
32	30,5		2,0		34,5	2,0	10	2,0	3,0	3,0
36	34,5		2,5		39,5	2,5	12	2,0	3,0	3,5
40	38,5	+0,4	2,5	$\pm 0,7$	43,5	2,5	12	2,0	3,0	3,5
45	43,0	-0,7	3,0		49,0	3,0	15	2,5	3,5	4,5
50	48,0		3,0		54,0	3,0	15	2,5	3,5	4,5
55	53,0	+0,4	3,0	±1,0	59,0	3,0	15	2,5	4,0	4,5
60	58,0	-1,0	3,0		64,0	3,0	15	2,5	4,0	5,0
70	68,0	+0,5	3,0		74,0	3,0	15	2,5	4,5	5,5
80	77,5	-1,1	3,0		83,5	3,0	15	2,5	4,5	5,5

Примечание. По требованию потребителя предельные отклонения размера d_1 не должны превышать предельных отклонений d плюс удвоенные предельные отклонения h.

Размеры, мм

Номер профиля	(l	h		d_1	h ₁	h _r	$h_{\rm B}$	t	b	b_1	r_1	α,
(номинальный	Номин.	Пред.	Номин.	Пред.									град.
диаметр $d_{_{\rm H}}$)		Откл.		откл.									
10	8,7	+0,3	1,6	±0,5	11,9	1,6	0,6	1,0	10	0,7	1,5	11	
12	10,6	-0,5	1,6		13,8	1,6	0,6	1,0	10	0,7	2,0	11	
14	12,5		2,0		16,5	2,0	0,8	1,2	12	1,0	2,0	12	
16	14,2		2,5		19,2	2,5	1,0	1,5	12	1,0	2,0	12	
18	16,2		2,5	+0,65	21,2	2,5	1,0	1,5	12	1,0	2,0	12	
20	18,2		2,5	-0,85	23,2	2,5	1,0	1,5	12	1,0	2,0	12	50
22	20,3	+0,4	2,5		25,3	2,5	1,0	1,5	12	1,0	2,0	12	
25	23,3	-0,5	2,5		28,3	2,5	1,0	1,5	14	1,2	2,0	14	
28	25,9		3,0		31,9	3,0	1,2	1,8	14	1,2	2,5	14	
32	29,8	+0,4	3,2	+1,0	36,2	3,2	1,2	2,0	16	1,5	3,0	14	
36	33,7	-0,7	3,5	-1,2	40,7	3,5	1,5	2,0	18	1,5	3,0	19	
40	37,6		3,5		44,6	3,5	1,5	2,0	18	1,5	3,0	19	

1.10. Относительные смещения винтовых выступов по сторонам профиля, разделяемых продольными ребрами, не нормируются.

Размеры, на которые не установлены предельные отклонения, приведены для построения калибра и на готовом профиле не проверяются.

1.11. Овальность гладких профилей (разность наибольшего и наименьшего диаметров в одном сечении) не должна превышать суммы плюсового и минусового предельных отклонений по диаметру.

1.9. - 1.11. (Измененная редакция. Изм. № 3).

- 1.12. Арматурную сталь классов А-I (A240) и А-II (A300) диаметром до 12 мм и класса А-III (A400) диаметром до 10 мм включительно изготовляют в мотках или стержнях, больших диаметров в стержнях. Арматурную сталь классов AIV (A600), A-V (A800) и A-VI (A1000) всех размеров изготовляют в стержнях, диаметром 6 и 8 мм изготовляют по согласованию изготовителя с потребителем в мотках.
 - 1.13. Стержни изготовляют длиной от 6 до 12 м: мерной длины;

мерной длины с немерными отрезками длиной не менее 2 м не более 15% от массы партии; немерной длины.

В партии стержней немерной длины допускается наличие стержней длиной от 3 до 6 м не более 7% от массы партии.

По согласованию изготовителя с потребителем допускается изготовление стержней от 5 до $25\ \mathrm{M}.$

1.14. Предельные отклонения по длине мерных стержней должны соответствовать приведенным в табл. 4.

Таблица 4

Длина стержней, м	Предельные отклонения по дл	ине при точности порезки, мм
	обычной	повышенной
До 6 включ.	+50	+25
Св. 6	+70	+35

Стержни повышенной точности изготовляют по требованию потребителя.

1.15. Кривизна стержней не должна превышать 0,6% измеряемой длины.

Примеры условных обозначений.

Арматурная сталь диаметром 20 мм, класса A-II (A300): 20-A-II ГОСТ 5781-82

Арматурная сталь диаметром 18 мм, класса А-I (A240): 18-A-I ГОСТ 5781-82

В обозначении стержней класса A-II (A300) специального назначения добавляется индекс с: Ac-II (Ac300).

(Измененная редакция, Изм. №4).

2. Технические требования

- 2.1. Арматурную сталь изготовляют в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.
- 2.2. Арматурную сталь изготовляют из углеродистой и низколегированной стали марок, указанных в табл. 5. Марка стали указывается потребителем в заказе. При отсутствии указания марку стали устанавливает предприятие-изготовитель. Для стержней класса A-IV (A600) марки стали устанавливают по согласованию изготовителя с потребителем.

Таблица 5

Класс арматурной стали	Диаметр профиля, мм	Марка стали
A-I (240)	6 - 40	Ст3кп, Ст3пс, Ст3сп
A-II (A300)	10 - 40	Ст5сп, Ст5пс
·	40 - 80	18Γ2C
Ac-II (Ac300)	10 - 32	10ГТ
	(36 - 40)	
A-III (A400)	6 - 40	35ГС, 25Г2С
	6 - 22	32Г2Рпс
A-IV (A600)	10 - 18	80C
	(6 - 8)	
	10 - 32	20ХГ2Ц
	(36 - 40)	
A-V (A800)	(6 - 8)	
	10 - 32	23Х2Г2Т
	(36 - 40)	
A-VI (A1000)	10 - 22	22Х2Г2АЮ, 22Х2Г2Р,
		20Χ2Γ2CP

Примечания:

- 1. Допускается изготовление арматурной стали класса A-V(A800) из стали марок $22X2\Gamma2AHO$, $22X2\Gamma2P$, и $22X2\Gamma2CP$.
- 2. Размеры, указанные в скобках, изготовляют по согласованию изготовителя с потребителем.

(Измененная редакция, Изм. № 3, 4).

2.3. Химический состав арматурной углеродистой стали должен соответствовать ГОСТ 380-88, низколегированной стали - нормам, приведенным в табл. 6

Таблица 6

Марки					Массовая д	доля элементо	ов, %				
стали	Углерод	Марганец	Кремний	Хром	Титан	Цирконий	Алюминий	Никель	Cepa	Фосфор	Медь
									не б	более	
10ΓΤ	Не более 0,13	1,00-1,40	0,45-0,65	Не более 0,30	0,015-0,035	i	0,02-0,05	-	0,040	0,030	0,30
18Γ2C	0,14-0,23	1,20-1,60	0,60-0,90	Не более 0,30	-	Ī	-	0,30	0,045	0,040	0,30
32Г2Рпс	0,28-0,37	1,30-1,75	Не более 0,17	Не более 0,30	-	ı	0,001-0,015	0,30	0,050	0,045	0,30
35ГС	0,30-0,37	0,80-1,20	0,60-0,90	Не более 0,30	-	ı	-	0,30	0,045	0,040	0,30
25Γ2C	0,20-0,29	1,20-1,60	0,60-0,90	Не более 0,30	-	ı	=	0,30	0,045	0,040	0,30
20ХГ2Ц	0,19-0,26	1,50-1,90	0,40-0,70	0,90-1,20	-	0,05-0,14	-	0,30	0,045	0,045	0,30
80C	0,74-0,82	0,50-0,90	0,60-1,10	Не более 0,30	0,015-0,040	i	-	0,30	0,045	0,040	0,30
23Х2Г2Т	0,19-0,26	1,40-1,70	0,40-0,70	1,35-1,70	0,02-0,08	ı	0,015-0,050	0,30	0,045	0,045	0,30
22Х2Г2АЮ	0,19-0,26	1,40-1,70	0,40-0,70	1,50-2,10	0,005-0,030	-	0,02-0,07	0,30	0,040	0,040	0,30
22Х2Г2Р	0,19-0,26	1,50-1,90	0,40-0,70	1,50-1,90	0,02-0,08	-	0,015-0,050	0,30	0,040	0,040	0,30
20X2Γ2CP	0,16-0,26	1,40-1,80	0,75-1,55	1,40-1,80	0,02-0,08	-	0,015-0,050	0,30	0,040	0,040	0,30

2.3.1. В стали марки 20ХГ2Ц допускается увеличение массовой доли хрома до 1,7% и замена циркония на 0,02-0,08% титана. В стали марки 23Х2Г2Т допускается замена титана на 0,05-0,10% циркония. В этом случае в обозначении стали марки 20ХГ2Ц вместо буквы Ц ставят букву Т, стали марки 23Х2Г2Т вместо буквы Т ставят букву Ц.

В стали марки 32Г2Рпс допускается замена алюминия титаном или цирконием в равных елинипах.

- 2.3.2. Массовая доля азота в стали марки $22X2\Gamma2A$ Ю должна составлять 0.015-0.030%, массовая доля остаточного азота в стали марки $10\Gamma T$ не более 0.008%.
- 2.3.3. Массовая доля бора в стали марок $22X2\Gamma2P$, $20X2\Gamma2CP$ и $32\Gamma2P$ пс должна быть 0,001-0,007%. В стали марки $22X2\Gamma2A\Theta$ допускается добавка бора 0,001-0,008%.
- 2.3.4. Допускается добавка титана в сталь марок $18\Gamma 2C$, $25\Gamma 2C$, $35\Gamma C$ из расчета его массовой доли в готовом прокате 0.01-0.03%, в сталь марки $35\Gamma C$ из расчета его массовой доли в готовом прокате, изготовленном в мотках, 0.01-0.06%.
- 2.4. Отклонения по химическому составу в готовом прокате из углеродистых сталей по ГОСТ 380-88, из низколегированных сталей при соблюдении норм механических свойств по табл. 7. Минусовые отклонения по содержанию элементов (кроме титана и циркония, а для марки стали 20Х2Г2СР кремния) не ограничивают.

Таблица 7

Элементы	Предельные	Элементы	Предельные
	отклонения, %		отклонения, %
Углерод	+0,020	Cepa	+0,005
Кремний	+0,050	Фосфор	+0,005
Марганец	+0,100	Цирконий	+0,010
Хром	+0,050		-0,020
Медь	+0,050	Титан	±0,010

Примечание. По согласованию изготовителя с потребителем сталь может изготовляться с другими отклонениями по содержанию хрома, кремния и марганца.

(Измененная редакция, Изм. № 3).

2.5. Арматурную сталь классов A-I (A240), A-II (A300), A-III (A400), A-IV (A600) изготовляют горячекатаной, класса A-V (A800) - с низкотемпературным отпуском, класса A-VI (A1000) - с низкотемпературным отпуском или термомеханической обработкой в потоке прокатного стана.

Допускается не проводить низкотемпературный отпуск стали классов A-V (A800) и A-VI (A1000) при условии получения относительного удлинения не менее 9% и равномерного удлинения не менее 2% при испытании в течение 12 ч после прокатки.

2.6. Механические свойства арматурной стали должны соответствовать нормам, указанным в табл. 8.

Для стали класса A-II (A300) диаметром свыше 40 мм допускается снижение относительного удлинения на 0,25% на каждый миллиметр увеличения диаметра, но не более чем на 3%.

Для стали класса Ac-II (Ac300) допускается снижение временного сопротивления до 426 МПа (43,5 кгс/мм 2) при относительном удлинении δ_5 30% и более.

Для стали марки 25Г2С класса А-III (A400) допускается снижение временного сопротивления до 560 МПа (57 кгс/мм 2) при пределе текучести не менее 405 МПа (41 кгс/мм 2), относительном удлинении δ_5 не менее 20%.

2.7. Статистические показатели механических свойств стержней арматурной стали периодического профиля должны соответствовать приложению 1, с повышенной однородностью механических свойств - приложению 1 и табл. 9.

Вероятность обеспечения механических свойств, указанных в табл. 8, должна быть не менее 0,95.

(Измененная редакция, Изм. № 3).

Класс арматурной стали	текуче		Временное сопротивление разрыву $\delta_{\rm B}$		Относитель ное удлинение $\delta_5,\%$	Равномерное удлинение $\delta_{p},\%$	при тем - 6	я вязкость ипературе 50 °C	Испытание на изгиб в холодном состоянии (с - толщина оправки,
	H/mm ²	$\kappa \Gamma c / MM^2$	H/mm^2	кгс/мм2			M Дж/м 2	кгс·м/см ²	d - диаметр
					не менее				стержня)
A-I (A240)	235	24	373	38	25	-	-	-	180°;
									c = d
A-II (A300)	295	30	490	50	19	-	-	-	180°;
									c = 3d
Ac-II	295	30	441	45	25	-	0,5	5	180°;
(A300)									c = d
A-III	390	40	590	60	14	-	-	-	90°;
(A400)									c = 3d
A-IV	590	60	883	90	6	2	-	-	45°;
(A600)									c = 5d
A-V	785	80	1030	105	7	2	-	-	45°;
(A800)									c = 5d
A-VI	980	100	1230	125	6	2	-	-	45°;
(A1000)									c = 5d

Примечания:

1. По согласованию изготовителя с потребителем допускается не проводить испытание на ударную вязкость арматурной стали класса Ac-II.

2. (Исключен, Изм. № 3).

- 3. Для арматурной стали класса A-IV диаметром 18 мм стали марки 80C норма изгиба в холодном состоянии устанавливается не менее 30° .
- 4. Для арматурной стали класса A-I (A240) диаметром свыше 20 мм при изгибе в холодном состоянии на 180° с = 2d, класса A-II (A300) диаметром свыше 20 мм с = 4d.
 - 5. В скобках указаны условные обозначения класса арматурной стали по пределу текучести.

(Измененая редакция, Изм. № 1, 3, 5).

2.8. На поверхности профиля, включая поверхность ребер и выступов, не должно быть раскатанных трещин, трещин напряжения, рванин, прокатных плен и закатов.

Допускаются мелкие повреждения ребер и выступов, в количестве не более трех на 1 м длины, а также незначительная ржавчина, отдельные раскатанные загрязнения, отпечатки, наплывы, следы раскатанных пузырей, рябизна и чешуйчатость в пределах допускаемых отклонений по размерам.

(Измененная редакция, Изм. № 2).

- 2.9. Свариваемость арматурной стали всех марок, кроме 80С, обеспечивается химическим составом и технологией изготовления.
- 2.10. Углеродный эквивалент $C_{_{3 \text{KB}}} \leq C + \frac{Mn}{6} + \frac{Si}{10}~$ для свариваемой стержневой арматуры из низколегированной стали класса A-III (A400) должен быть не более 0,62.

(Введен дополнительно, Изм. № 5).

		S		\$	S_0	S/\overline{x}		S_0 / \widetilde{x}	
Класс	Номер	Для $\sigma_{_{\mathrm{T}}}$	Для $\sigma_{_{\rm B}}$	Для $\sigma_{_{\mathrm{T}}}$	Для $\sigma_{_{B}}$	Для $\sigma_{_{\mathrm{T}}}$	Для	Для $\sigma_{_{\mathrm{T}}}$	Для
арматурной стали	профиля	$(\sigma_{0,2})$		$(\sigma_{0,2})$		$(\sigma_{0,2})$	$\sigma^{_{\rm B}}$	$(\sigma_{0,2})$	$\sigma_{_{\scriptscriptstyle B}}$
		МПа (кгс/мм ²)		МПа (кгс/мм 2)					
			_	_	не более				
A-II (A300)	10-40	29 (3)	29 (3)	15 (1,5)	15 (1,5)	0,08	0,06	0,05	0,03
A-III (A400)	6-40	39 (4)	39 (4)	20 (2,0)	20 (2,0)	0,08	0,07	0,05	0,03
A-IV (A600)	10-32	69 (7)	69 (7)	39 (4)	39 (4)	0,09	0,07	0,06	0,05
A-V (A800)	10-32	78 (8)	78 (8)	49 (5)	49 (5)	0,09	0,07	0,06	0,05
A-VI (A1000)	10-32	88 (9)	88 (9)	49 (5)	49 (5)	0,08	0,07	0,05	0,04

Примечания:

- 1. S среднеквадратическое отклонение в генеральной совокупности испытаний;
- S_0 среднеквадратическое отклонение в партии-плавке;
- \bar{x} среднее значение в генеральной совокупности испытаний;
- \widetilde{x} минимальное среднее значение в партии-плавке.
- 2. Для арматурной стали в мотках диаметром 6 и 8 мм допускается повышение норм по S и S_0 на 4,9 МПа (0,5 кгс/мм 2).

3. (Исключен, Изм. № 5).

3. Правила приемки

3.1. Арматурную сталь принимают партиями, состоящими из профилей одного диаметра, одного класса, одной плавки-ковша и оформленными одним документом о качестве.

Масса партии должна быть до 70 т.

Допускается увеличивать массу партии до массы плавки-ковша.

3.2. Каждая партия сопровождается документом о качестве по ГОСТ 7566-81 с дополнительными данными:

номер профиля;

класс;

минимальное среднее значение \widetilde{x} и среднеквадратические отклонения S_0 в партии величин

$$\sigma_{_{T}}$$
 ($\sigma_{0,2}$) и $\sigma_{_{B}}$;

результаты испытаний на изгиб в холодном состоянии;

значения равномерного удлинения для стали класса A-IV (A600), A-V (800), A-VI (A1000).

3.3. Для проверки размеров и качества поверхности отбирают:

при изготовлении арматурной стали в стержнях - не менее 5% от партии;

при изготовлении в мотках - два мотка от каждой партии.

(Измененная редакция, Изм. № 3).

3.4. Для проверки химического состава пробы отбирают по ГОСТ 7565-81.

Массовую долю алюминия изготовитель определяет периодически, но не реже одного раза в квартал.

3.5. Для проверки на растяжение, изгиб и ударную вязкость от партии отбирают два стержня. Для предприятия-изготовителя интервал отбора стержней должен быть не менее половины времени, затраченного на прокатку одного размера профиля одной партии.

(Измененная редакция, Изм. № 3).

3.6. При получении неудовлетворительных результатов испытаний хотя бы по одному из показателей повторные испытания проводят по ГОСТ 7566-81.

4. Методы испытаний

- 4.1. Химический анализ стали проводят по ГОСТ 12344-88, ГОСТ 12348-78, ГОСТ 12350-78, ГОСТ 12352-81, ГОСТ 12355-78, ГОСТ 12356-81, ГОСТ 18895-81 или другими методами, обеспечивающими требуемую точность.
- 4.2. Диаметр и овальность профилей измеряют на расстоянии не менее 150 мм от конца стержня или на расстоянии не менее 1500 мм от конца мотка при массе мотка до 250 кг и не менее 3000 мм при массе мотка более 250 кг.
 - 4.3. Размеры проверяют измерительным инструментом необходимой точности.
- 4.4. От каждого отобранного стержня для испытания на растяжение, изгиб и ударную вязкость отрезают по одному образцу.
- 4.5. Отбор проб для испытания на растяжение, изгиб и ударную вязкость проводят по ГОСТ 7564-73.
 - 4.6. Испытание на растяжение проводят по ГОСТ 12004-81.
- 4.7. Испытание на изгиб проводят по ГОСТ 14019-80 на образцах сечением, равным сечению стержня.

Для стержней диаметром свыше 40 мм допускается испытание образцов, разрезанных вдоль оси стержня, на оправке, диаметром, уменьшенным вдвое по сравнению с указанным в табл. 4, с приложением усилия изгиба со стороны разреза.

- 4.8. Определение ударной вязкости проводят по ГОСТ 9454-78 на образцах с концентратором вида U типа 3 для стержней диаметром 12-14 мм и образцах типа 1 для стержней диаметром 16 мм и более. Образцы изготовляют в соответствии с требованиями ГОСТ 9454-78.
- 4.9. Допускается применять статистические и неразрушающие методы контроля механических свойств и массы профилей.
 - 4.10. Кривизна стержней измеряется на длине поставляемого профиля, но не короче 1 м.
- 4.11. Определение статистических показателей механических свойств в соответствии с обязательным приложением 2.
 - 4.12. Качество поверхности проверяют без применения увеличительных приборов.

4.10 - 4.12. (Введены дополнительно, Изм. № 3).

4.13. Измерение высоты поперечных выступов периодического профиля следует проводить по вертикальной оси поперечного сечения арматурного проката.

(Введен дополнительно, Изм. № 4).

5. Упаковка, маркировка, транспортирование и хранение

5.1. Упаковка, маркировка, транспортирование и хранение - по ГОСТ 7566-81 с дополнениями:

концы стержней из низколегированных сталей класса A-IV (A600) должны быть окрашены красной краской, класса A-V - красной и зеленой, класса A-VI (A1000) - красной и синей. Допускается окраска связок на расстоянии 0,5 м от концов;

стержни упаковывают в связки массой до 15 т, перевязанные проволокой или катанкой. По требованию потребителя стержни упаковывают в связки массой до 3 и 5 т.

На связки краска наносится полосами шириной не менее 20 мм на боковую поверхность по окружности (не менее 1/2 длины окружности) на расстоянии не более 500 мм от торца.

На мотки краска наносится полосами шириной не менее 20 мм поперек витков с наружной стороны мотка.

На неупакованную продукцию краска наносится на торец или на боковую поверхность на расстоянии не более 500 мм от торца.

На ярлыке, прикрепленном к каждой связке стержней, наносят принятое обозначение класса арматурной стали (например, A-III) или условное обозначение класса по пределу текучести (A400).

(Измененная редакция, Изм. № 3, 5).

Требования к статистическим показателям механических свойств

1. Предприятие-изготовитель гарантирует потребителю средние значения временного сопротивления $\sigma_{\rm B}$ и предела текучести (физического $\sigma_{\rm T}$ и условного $\sigma_{0,2}$) в генеральной совокупности - \widetilde{x}_i и минимальные средние значения этих же показателей в каждой партииплавке - \overline{x}_i ; значения которых устанавливаются из условий:

$$\begin{split} \overline{x}_i &\geq x_{i\delta p} + t \cdot S \\ \widetilde{x}_i &> 0.9 x_{i\delta p} + 3S_0 \\ \widetilde{x}_i &\geq x_{i\delta p} \end{split}$$

где $X_{i\,\delta p}$ - браковочные значения величин $\sigma_{\scriptscriptstyle B}$, $\sigma_{0,2}$, указанные в табл. 8 настоящего стандарта;

- t величина квантиля, принимаемая равной 2 для классов A-II и A-III и 1,64 для стержней классов A-IV, A-V и A-VI.
- 2. Контроль качества показателей механических свойств продукции на предприятии-изготовителе.
- 2.1. Требуемые показатели качества профилей обеспечиваются соблюдением технологии производства и контролируются испытанием согласно требований п. 3.5, пп. 4.4 4.8.
- 2.2. Величины \bar{x}_i , \tilde{x}_i , S и S₀ устанавливаются в соответствии с результатами испытаний и положений приложения 2.
- 3. Контроль качества показателей механических свойств продукции на предприятии-потребителе.
- 3.1. Потребитель при наличии документа о качестве на продукцию высшей категории качества может не проводить испытания механических свойств.
- 3.2. При необходимости проверки механических свойств от каждой партии проводится испытание шести образцов, взятых из разных пакетов или мотков и от разных профилей, и по результатам проверяется выполнение условий

$$x_{\min} \ge \widetilde{x}_i - 1,64S_0$$
$$\overline{x}_6 \ge \widetilde{x}_i \ge \widetilde{x}_{i\delta p}$$

где \overline{x}_6 - среднее значение механических свойств по результатам испытаний шести образцов; X_{min} - минимальное значение результатов испытаний шести образцов.

3.3. Минимальные значения относительного удлинения δ_5 и равномерного удлинения δ_p должны быть не менее значений, приведенных в табл. 8.

(Измененная редакция, Изм. № 3, 5).

ПРИЛОЖЕНИЕ 2 Обязательное

Методика определения статистических показателей прочностных характеристик механических свойств проката горячекатаного для армирования железобетонных конструкций

Настоящая методика распространяется на горячекатаный, ускоренно-охлажденный, термомеханически и термически упрочненный прокат периодического профиля, изготовленного в мотках или стержнях.

Методика применяется при оценке надежности механических свойств в каждой партииплавке и стали в целом, контроля стабильности технологического процесса.

- 1. Для определения статистических показателей механических свойств (предела текучести физического $\sigma_{_{\rm T}}$ или условного $\sigma_{_{0,2}}$, временного сопротивления разрыву $\sigma_{_{\rm B}}$) используются контрольные результаты испытаний, называемые генеральными совокупностями.
- 2. Соответствие механических свойств проката требованиям нормативно-технической документации определяется на основании статистической обработки результатов испытаний, образующих выборку из генеральной совокупности. Все выводы, результаты и заключения, сделанные на основании выборки, относятся ко всей генеральной совокупности.
- 3. Выборка совокупность результатов контрольных испытаний, образующих информационный массив, подлежащий обработке.

В выборку входят результаты сдаточных испытаний проката одного класса, одной марки и способа выплавки, прокатанной на один или группы близких профилеразмеров.

- 4. Выборка, на основании которой производится расчет статистических показателей, должна быть представительной и охватывать достаточно длительный промежуток времени, но не менее трех месяцев, в течение которого технологический процесс не изменяется. При необходимости промежуток времени для выборки можно увеличить. Проверка однородности выборки по нормативно-технической документации.
 - 5. Количество партий-плавок в каждой выборке должно быть не менее 50.
- 6. При формировании выборки должно соблюдаться условие случайного отбора проб от партии-плавки. Оценка анормальности результатов испытаний проводится по нормативно-технической документации.
- 7. При статистической обработке определяется среднее значение \overline{x} , среднее квадратическое отклонение S каждой выборки (генеральной совокупности), среднее квадратическое отклонение внутри партии-плавки S_0 , а также среднее квадратическое отклонение плавочных средних S_1 . Величина S_1 определяется по формуле

$$S_1^{} = \sqrt{S^2 - S_0^2} \; .$$

Величины \bar{x} , S определяются по нормативно-технической документации.

- 8. Проверку стабильности характеристик \bar{x} и S проводят в соответствии с ОСТ 14-34-78.
- 9. Величина S_0 определяется для ускоренно-охлажденной, термомеханически и термически упрочненной арматурной стали только экспериментальным методом, для горячекатаной экспериментальным методом и методом размаха по формуле

$$S_0^2 = \frac{\overline{\omega^2} + S_\omega^2}{2} \ , \ \text{где} \ \overline{\omega} \ \text{и} \ S\omega \ \text{- соответственно среднее значение и среднее квадратическое отклонение распределения размаха по двум испытаниям от партии. Минимальное значение $S_0$$$

- S_0 экспериментальным методом производится не менее чем на двух плавках для каждой марки стали, класса и профилеразмера проката путем случайного отбора не менее 100 проб от каждой плавки.
- 11. Величина минимального среднего значения прочностных характеристик ($\sigma_{\rm T}(\sigma_{0,2})$ и $\sigma_{\rm B}$) в каждой партии-плавке \widetilde{x}_2 определяется из условия $\widetilde{x}_1 = \overline{x} t \cdot S$, где t величина квантиля 1,64 для вероятности 0,95.
- 12. Минимальное значение результатов испытаний на растяжение двух образцов (n = 2) каждой партии, подвергаемой контролю, должно быть не менее \mathbf{X}_{\min} , определяемого по формуле

$$x_{\min} \ge \widetilde{x}_i - 1,64S_0$$

13. Для обеспечения гарантии потребителю механических свойств должны удовлетворяться следующие условия:

$$\overline{x}_i \ge x_{i\delta p} + 1,64S$$

$$\widetilde{x}_i \ge x_{i\delta p}$$

$$\widetilde{x}_i \ge 0.9x_{i\delta p} + 3S_0$$

где $X_{i\,\delta p}$ - браковочное значение $\sigma_{_T}(\sigma_{0,2})$ и $\sigma_{_B}$, указанное в соответствующей нормативнотехнической документации.

(Введено дополнительно, Изм. № 3).