# KEEPING AN EYE ON HEALTHCARE COSTS

The D2Hawkeye Story

# D2Hawkeye

- Founded by Chris Kryder, MD, MBA in 2001
- Combine expert knowledge and databases with analytics to improve quality and cost management in healthcare
- Located in Massachusetts USA<sub>1</sub> grew very fast and was sold to Verisk Analytics in 2009

# D2Hawkeye



# Healthcare Case Management

- D2Hawkeye tries to improve healthcare case management
  - Identify high-risk patients
  - Work with patients to manage treatment and associated cost
  - Arrange specialist care
- Medical costs often relate to severity of health problems, and are an issue for both patient and provider
- Goal: improve the quality of cost predictions

# Impact

- Many different types of clients
  - Third party administrators of medical claims
  - Case management companies
  - Benefit consultants
  - Health plans
- Millions of people analyzed monthly through analytic platform in 2009
- Thousands of employers processed monthly

# Pre-Analytics Approach

- Human judgment MDs manually analyzed patient histories and developed
- Limited data sets
- Costly and inefficient
- Can we use analytics instead?

#### Quick Question

- In what ways do you think an analytics approach to predicting healthcare cost will improve upon the previous approach of human judgment? Select all that apply.
  - It will allow D2Hawkeye to analyze millions of patients.
  - It will allow D2Hawkeye to make predictions faster than doctors can.
  - It will allow D2Hawkeye use all available data (millions of cases) to make decisions.

# Claims Data

#### Data Sources

- Healthcare industry is data-rich but data may be hard to access
  - Unstructured doctor's notes
  - Unavailable hard to get due to differences in technology
  - Inaccessible strong privacy laws around healthcare data sharing
- What is available?

#### Data Sources

- Claims data
  - -Requests for reimbursement submitted to insurance companies or state-provided insurance from doctors, hospitals and pharmacies.
- Eligibility information
- Demographic information

### Claims Data

| ClaimType | ProviderName                                      | DiagCode | DiagDesc                                 | Source<br>DiagCode | SourceDiagDesc                              | ProcNDC<br>Code | ProcNDCDesc                              | ServiceDate | PaidAmount       |
|-----------|---------------------------------------------------|----------|------------------------------------------|--------------------|---------------------------------------------|-----------------|------------------------------------------|-------------|------------------|
| IDEN      | SOUTHEASTERN<br>MINNESOTA ORAL & MAX              | DD0238   | Dental Diseases                          |                    | Unspecified<br>Anomaly of Tooth<br>Position | DD007           | Anesthesia -<br>General                  | 4/22/2005   | s -              |
|           | ASSOCIATED ORAL &<br>MAXILLOFACIAL<br>SURGEONS PA | DD0238   | Dental Diseases                          | 5206               | Disturbances in<br>ToOther Eruption         | DD025           | Dental                                   | 7/8/2005    | \$ 272.68        |
| IDEN      | CENTRAL FLORIDA ORAL<br>SURGERY                   | DD0238   | Dental Diseases                          | 5206               | Disturbances in<br>ToOther Eruption         | DD025           | Dental                                   | 11/11/2005  | \$ 568.13        |
| Med       | ALPHARETTA INTERNA                                | DD0004   | ENT and Upper<br>Resp Disorders          | 4610               | Acute Maxillary<br>Sinusitis                | DD147           | Office Visit -<br>Established<br>Patient | 5/26/2005   | <b>\$</b> 125.85 |
| Med       | CUMMING FAMILY<br>MEDICINE                        | DD0170   | Neurotic and<br>Personality<br>Disorders | 30000              | Neurotic Disorders-<br>30000                | DD149           | Office Visit -<br>New Patient            | 6/20/2005   | s -              |
| Med       | ATLANTA WOMENS<br>HEALTH GROUP-<br>582483738.20   | DD0102   | Screening                                |                    | Special Screening<br>for Cystic Fibrosis    | DD077           | Lab - Blood<br>Tests                     | 7/29/2005   | \$ 1.52          |

#### Claims Data

- Richa structured data source
- Very high dimension
- Doesn't capture all aspects of a persons treatment or health - many things must be inferred
- Unlike electronic medical records we do not know the results of a test only that a test was administered

# D2Hawkeye's Claims Data

 Available: claims data for 2.4 million people over a span of 3 years

> "Observation" Period 2001-2003

"Results" Period 2003-2004

 Include only people with data for at least 10 months in both periods - 400,000 people

#### Quick Question

• A common problem in analytics is that you have some data available, but it's not the ideal dataset. This is the case for this problem, where we only have claims data. Which of the following pieces of information would we ideally like to have in our dataset, but are not included in claims data? (Select all that apply.)

- Blood test results
- Drugs prescribed to the patient
- Physical exam results (weight, height, blood pressure, etc.)

# Variables

#### Variables



# Variables - Cost Profiles



# Additional Variables

- Chronic condition cost indicators
- 269 medically defined risk rules
  - Interactions between illnesses
  - Interactions between diagnosis and age
  - Noncompliance to treatment
  - Illness severity
- Gender and age

#### Cost Variables

 Rather than using cost directly, we bucket costs and consider everyone in the group equal.



# Medical Interpre<mark>tation of</mark> Buckets



#### Quick Question

While we don't have all of the data we would ideally like to have in this problem (like test results), we can define new variables using the data we do have. Which of the following were new variables defined to help predict

- Variables to capture chronic conditions
- Noncompliance to treatment
- Illness severity
- Interactions between illnesses

# **Error Measures**

#### Error Measures

- Typically we use R2 or accuracy a but others can be used
- In case of D2Hawkeyen failing to classify a high-cost patient correctly is worse than failing to classify a low-cost patient correctly
- Use a "penalty error" to capture this asymmetry

# Penalty Error

- Key idea: use asymmetric penalties
- Define a "penalty matrix" as the cost of being wrong

|          |   | Outcome |   |   |   |   |  |
|----------|---|---------|---|---|---|---|--|
|          |   | 1       | 2 | 3 | 4 | 5 |  |
|          | 1 | 0       | 2 | 4 | 6 | 8 |  |
| ast      | 2 | 1       | 0 | 2 | 4 | 6 |  |
| Forecast | 3 | 2       | 1 | 0 | 2 | 4 |  |
| Fo       | 4 | 3       | 2 | 1 | 0 | 2 |  |
|          | 5 | 4       | 3 | 2 | 1 | 0 |  |

#### Baseline

- Baseline is to simply predict that the cost in the next "period" will be same as the cost in the current period
- Accuracy of 75%
- Penalty Error of 0.56

#### Quick Question

 The image below shows the penalty error matrix that we discussed before

|     |   | Outcome |   |   |   |   |  |
|-----|---|---------|---|---|---|---|--|
|     |   | 1       | 2 | 3 | 4 | 5 |  |
| ast | 1 | 0       | 2 | 4 | 6 | 8 |  |
|     | 2 | 1       | 0 | 2 | 4 | 6 |  |
| ည   | 3 | 2       | 1 | 0 | 2 | 4 |  |
| For | 4 | 3       | 2 | 1 | 0 | 2 |  |
|     | 5 | 4       | 3 | 2 | 1 | 0 |  |

• We can interpret this matrix as follows. Suppose the actual outcome for an observation is 3, and we predict 2. We find 3 on the top of the matrix, and go down to the second row (since we forecasted 2). The penalty error for this mistake is 2. If for another observation we predict (forecast) 4, but the actual outcome is 1, that is a penalty error of 3.

#### Quick Question

- What is the worst mistake we can make according to the penalty error matrix?
  - We predict 5 (very high cost), but the actual outcome is 1 (very low cost).
  - We predict 1 (very low cost), but the actual outcome is 5 (very high cost).
- What are the "best" types of mistakes we can make according to the penalty error matrix?
  - Mistakes where we predict one cost bucket HIGHER than the actual outcome.
  - Mistakes where we predict one cost bucket LOWER than the actual outcome.

# **CART to Predict Cost**

### Multi-class Classification

- We are predicting a bucket number
- Example



# Most Important Factors

 First splits are related to cost



# Secondary Factors

- Risk factors
- Chronic Illness
- · "Q146"
  - Asthma + depression
- · "Ql"
  - Risk factor indicating hylan injection
  - Possible knee replacement or arthroscopy



# Example Groups for Bucket 5

- Under 35 years old, between \$3300 and \$3900 in claims, C.A.D., but no office visits in last year
- Claims between \$3900 and \$43000 with at least \$8000 paid in last 12 months, \$4300 in pharmacy claims, acute cost profile and cancer diagnosis
- More than \$58000 in claims, at least \$55000 paid in last 12 months, and not an acute profile

#### Quick Question

 What were the most important factors in the CART trees to predict cost?

- Cost ranges from the previous year
- Risk factors
- Chronic conditions
- Number of office visits last year

# Claims Data in R

#### RMD

Refer to Rmarkdown file for the code.

#### Quick Question

- What is the average age of patients in the training set
  ClaimsTrain?
- What proportion of people in the training set (ClaimsTrain) had at least one diagnosis code for diabetes?

# Baseline Method and Penalty Matrix

#### RMD file

 Refer to the RMD file for details.

#### Quick Question

- Suppose that instead of the baseline method discussed, we used the baseline method of predicting the most frequent outcome for all observations. This new baseline method would predict cost bucket 1 for everyone.
- What would the accuracy of this baseline method be on the test set?
- What would the penalty error of this baseline method be on the test set?

# Predicting Healthcare Costs in R

#### Results

|        | Accı  | ігасу    | Penalty Error |          |  |  |
|--------|-------|----------|---------------|----------|--|--|
| Bucket | Trees | Baseline | Trees         | Baseline |  |  |
| All    | 80%   | 75%      | 0.52          | 0.56     |  |  |
| 1      | 85%   | 85%      | 0.42          | 0.44     |  |  |
| 2      | 60%   | 31%      | 0.89          | 0.96     |  |  |
| 3      | 53%   | 21%      | 1.01          | 1.37     |  |  |
| 4      | 39%   | 19%      | 1.01          | 1.72     |  |  |
| 5      | 30%   | 23%      | 1.01          | 1.88     |  |  |

# Insights

- Substantial improvement over the baseline
- Doubled accuracy over baseline in some cases
- Smaller accuracy improvement on bucket 5<sub>1</sub> but much lower penalty

# Analytics Provide an Edge

- Substantial improvement in D2Hawkeye's ability to identify patients who need more attention
- Because the model was interpretable physicians were able to improve the model by identifying new variables and refining existing variables
- Analytics gave D2Hawkeye an edge over competition using "last-century" methods