PKI Infrastructure

Т	able of			
1	Exe	ecuti	ve Summary:	3
2	Introduction:			3
3	SSL PKI Design & Implementation:			4
	3.1	Inst	tall and configure an offline Root Certification Authority	5
	3.2	Inst	tall and issue a Certification Authority	15
	3.3	Cor	nfigure the appropriate certificate templates of the issuing CA	37
	3.4	Che	eck the revocation status of certificates by installing and configuring an online responder	40
	3.5	Cre	ate a fully operational TLS-enabled Web page and observe encrypted traffic	50
			monstrate at least two (2) attacks against your infrastructure in alignment with the threat modelling	_
	3.6.	1	HTTPS Man—in –the—Middles and Impersonators	58
	3.6.	2	Certification of Counterfeit:	59
4	SSI	L PK	(I threat modelling & Ethical Considerations	61
	4.1	SSL	PKI Threat modelling approach (threat identification, validation)	61
	4.2	PKI	security issues/attacks relevant to the case with discussion	62
	4.2.	1	Threat 1: Threatening the PKI Security	63
	4.2.	2	Threat #2: The larceny regarding Issued Website Certificates:	63
	4.2.	3	Threat #3: Refusal of service attacks	63
	4.3	Thr	eat mitigation plan(s)	64
	4.4	Crit	tical discussion on ethical and legal issues in context to IoT	64
5	Cor	nclus	sion:	66

1 Executive Summary:

Secure communication can only be assured if there is a way to verify the other party's identity digitally. Otherwise, an assailant can easily capture the transmission and impersonate involved entities, by performing a MITM Attack. After the introduction of public-key cryptography, the technology becomes the game-changer in decision making to verify a partner's public key trust. in the context of the private key they hold. Means that only legitimate users or system who holds the respective private key can communicate with each other

2 Introduction:

Public Key infrastructure is defined as a framework for managing digital certificate, encryption keys and anything in between. the primary(Isirova and Potii, 2018) role of the PKI to Establish the identity and encrypt the data flowing across the network, thus protective sensitive information being access by unauthorised parties, public Key Cryptography is the system that makes it possible by issuing two key systems that make both parties to verify each other identities and then establish the encrypted connection between each other

The Authentication process relies on the Asymmetric Encryption, in which two key systems Public Key and Private Key combination used to encrypt and decrypt the data so anything encrypted with the public key can be decrypted by the private key .Figure 1.1 Graphical Presentation is the clear and concise process how Asymmetric Encryption works

Encryption and Decryption Process is Vice-versa according to Figure 1

.

this paper demonstrates an SSL and PKI design Implementation in detailed structure overview and evaluates the security posture of if its applicability and availability in the context of the different attack vector and threat model and It also explore critical discussion and ethical issue based on previous research and current research outcome. then it will suggest the remediation steps which can be applied to protect and harden the current PKI system,

3 SSL PKI Design & Implementation:

3.1 Install and configure an offline Root Certification Authority

1 Click on the Server manager to install Certificate service

2 Click on the Add Role and Feature

3 Select the Role-based or Feature-based Installation and click next

4 Select the Applicable server from the List

5 Click on the Active Directory Certificate service and click on the next

6 Now select the Checkbox for Certificate Authority

7 Click on the Install button

8 After the Installation click on Notification area and execute Active Directory Configuration service

9 Select the Certificate Authority and Click next

10 There are two option for the Root CA deployment

Enterprise CA: It can be Integrated with Active Directory (Imran Ijaz, 2012)Environment with automatic trust mechanism, but the only disadvantage of such time deployment is that server must be online

Standalone CA: Standalone server can be work in offline mode as well as it can be installed any server environment

11 Select the Root CA

12 Select Create new Private Key

There are two forms of cryptography:(Fernando, Sison and Medina, 2019) the symmetric and asymmetric key cryptography. Symmetric Cryptography performs encryption and decryption using the single key while Asymmetric cryptography involves two key-pair which mathematically paired with each other, the public key is placed generally on the server and Private key are hold by a person or a computer who want to access the service or decrypt the data

13 Select the Cryptographic Provider as **RSA** with **2048** key length and **SHA1** Hash Algorithm

14 Again, Click next Button

15 Validity of the Certificate will be set 5 years

16 Click on the Next

17 Click on the Configure

18 Configuration Complete now close the Wizard

