1

AI25BTECH11036-SNEHAMRUDULA

Question:

Consider the lines given by

$$L_1: x + 3y - 5 = 0,$$

 $L_2: 3x - ky - 1 = 0,$
 $L_3: 5x + 2y - 12 = 0.$

Match the Statements/Expressions in Column I with the Statements/Expressions in Column II.

Column I

Column II

(A) L_1, L_2, L_3 are concurrent, if

(a) k = 9

(B) One of L_1, L_2, L_3 is parallel to at least one of the other two, if

(b) $k = \frac{-6}{5}$ (c) $k = \frac{5}{6}$

(C) L_1, L_2, L_3 form a triangle, if

(D) L_1, L_2, L_3 do not form a triangle, if

Solution:

Solution: The general form of a line is $\mathbf{n}^{\mathsf{T}}\mathbf{x} = p$, where **n** is the normal vector. For the given lines:

$$L_1: \mathbf{n}_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \quad p_1 = 5,$$

$$L_2: \mathbf{n}_2 = \begin{pmatrix} 3 \\ -k \end{pmatrix}, \quad p_2 = 1,$$

$$L_3: \mathbf{n}_3 = \begin{pmatrix} 5 \\ 2 \end{pmatrix}, \quad p_3 = 12.$$

(A) **Concurrent:** The lines are concurrent if the matrix $\begin{pmatrix} 1 & 3 & -5 \ 3 & -k & -1 \ 5 & 2 & -12 \end{pmatrix}$ has determinant zero.

Computing the determinant:

$$1((-k)(-12) - (-1)(2)) - 3(3(-12) - (-1)(5)) + (-5)(3(2) - (-k)(5))$$

$$= 1(12k + 2) - 3(-36 + 5) - 5(6 + 5k)$$

$$= 12k + 2 + 93 - 30 - 25k$$

$$= -13k + 65.$$

Setting it equal to zero: $-13k + 65 = 0 \Rightarrow k = 5$.

So concurrent if k = 5. Hence (A) matches with (s).

(B) **Parallel:** Two lines are parallel if their normal vectors are scalar multiples.

Checking pairs:

• \mathbf{n}_1 and \mathbf{n}_2 : $\frac{3}{1} = \frac{-k}{3} \Rightarrow k = -9$. • \mathbf{n}_2 and \mathbf{n}_3 : $\frac{3}{5} = \frac{-k}{2} \Rightarrow k = \frac{-6}{5}$. • \mathbf{n}_1 and \mathbf{n}_3 : $\frac{1}{5} = \frac{3}{2}$, which is false $\hat{\mathbf{a}}$ not parallel.

So parallel if $k = \frac{-6}{5}$. Hence (B) matches with (q).

(C) Form a triangle: The lines form a triangle if they are neither concurrent nor parallel. So $k \neq 5$ and $k \neq \frac{-6}{5}$.

A typical example is k = 9. Hence (C) matches with (p).

(D) **Do not form a triangle:** The lines do not form a triangle if they are either concurrent or two of them are parallel.

Hence possible when k = 5 or $k = \frac{-6}{5}$.

Here the option is k = 5. Hence (D) matches with (s).

