COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor Lecture 24

SUMMARY

Last Class:

Analysis of gradient descent for optimizing convex functions.

This Class:

- Introduction to convex sets and projection functions.
- (The same) analysis of projected gradient descent for optimizing under convex functions under (convex) constraints.
- Online learning, regret, and online gradient descent.
- Application to stochastic gradient descent.

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \operatorname*{arg\,min} f(\vec{\theta}),$$
 $\vec{\theta} \in \mathcal{S}$

where S is a convex set.

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in S$ and $\lambda \in [0, 1]$: $(1 - \lambda)\vec{\theta_1} + \lambda \cdot \vec{\theta_2} \in S$

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}),$$

where S is a convex set.

Definition – Convex Set: A set $\mathcal{S} \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in \mathcal{S}$ and $\lambda \in [0,1]$: $(1-\lambda)\vec{\theta_1} + \lambda \cdot \vec{\theta_2} \in \mathcal{S}$

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} :

$$P_{\mathcal{S}}(\vec{y}) = \arg\min_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} - \vec{y}\|_{2}$$

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}),$$

where S is a convex set.

Definition – Convex Set: A set $\mathcal{S} \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta}_1, \vec{\theta}_2 \in \mathcal{S}$ and $\lambda \in [0,1]$: $(1-\lambda)\vec{\theta}_1 + \lambda \cdot \vec{\theta}_2 \in \mathcal{S}$

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} :

$$P_{\mathcal{S}}(\vec{y}) = \arg\min_{\vec{\theta} \in \mathcal{S}} \|\vec{\theta} - \vec{y}\|_{2}$$

• For $S = \{\vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \le 1\}$ what is $P_S(\vec{y})$?

Often want to perform convex optimization with convex constraints.

$$\vec{\theta}^* = \operatorname*{arg\,min}_{\vec{\theta} \in \mathcal{S}} f(\vec{\theta}),$$

where S is a convex set.

Definition – Convex Set: A set $S \subseteq \mathbb{R}^d$ is convex if and only if, for any $\vec{\theta_1}, \vec{\theta_2} \in S$ and $\lambda \in [0,1]$: $(1-\lambda)\vec{\theta_1} + \lambda \cdot \vec{\theta_2} \in S$

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} :

$$P_{\mathcal{S}}(\vec{y}) = \underset{\vec{\theta} \in \mathcal{S}}{\operatorname{arg min}} \|\vec{\theta} - \vec{y}\|_{2}$$

- For $S = \{\vec{\theta} \in \mathbb{R}^d : \|\vec{\theta}\|_2 \le 1\}$ what is $P_S(\vec{y})$?
- For S being a k dimensional subspace of \mathbb{R}^d , what is $P_S(\vec{y})$?

PROJECTED GRADIENT DESCENT

Projected Gradient Descent

- Choose some initialization $\vec{\theta}_1$ and set $\eta = \frac{R}{G\sqrt{t}}$.
- For i = 1, ..., t 1
 - $\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$
 - $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)}).$
- Return $\hat{\theta} = \arg\min_{\vec{\theta_i}} f(\vec{\theta_i})$.

CONVEX PROJECTIONS

Analysis of projected gradient descent is almost identifical to gradient descent analysis!

CONVEX PROJECTIONS

Analysis of projected gradient descent is almost identifical to gradient descent analysis! Just need to appeal to following geometric result:

Theorem – Projection to a convex set: For any convex set $\mathcal{S} \subseteq \mathbb{R}^d$, $\vec{y} \in \mathbb{R}^d$, and $\vec{\theta} \in \mathcal{S}$,

$$||P_{S}(\vec{y}) - \vec{\theta}||_{2} \le ||\vec{y} - \vec{\theta}||_{2}.$$

4

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon$$

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon$$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon$$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta_{i+1}}^{(out)} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon$$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta_{i+1}}^{(out)} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

Step 1.a: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta_{i+1}} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

$$f(\hat{\theta}) \leq f(\vec{\theta}_*) + \epsilon$$

Recall:
$$\vec{\theta}_{i+1}^{(out)} = \vec{\theta}_i - \eta \cdot \vec{\nabla} f(\vec{\theta}_i)$$
 and $\vec{\theta}_{i+1} = P_{\mathcal{S}}(\vec{\theta}_{i+1}^{(out)})$.

Step 1: For all
$$i$$
, $f(\vec{\theta_i}) - f(\vec{\theta_*}) \le \frac{\|\vec{\theta_i} - \theta_*\|_2^2 - \|\vec{\theta_{i+1}}^{(out)} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$.

$$\textbf{Step 1.a:} \ \ \text{For all} \ \ i, \ f(\vec{\theta_i}) - f(\vec{\theta_*}) \leq \frac{\|\vec{\theta_i} - \vec{\theta_*}\|_2^2 - \|\vec{\theta}_{i+1} - \vec{\theta_*}\|_2^2}{2\eta} + \frac{\eta G^2}{2}.$$

Step 2:
$$\frac{1}{t}\sum_{i=1}^{t} f(\vec{\theta_i}) - f(\vec{\theta_*}) \leq \frac{R^2}{2\eta \cdot t} + \frac{\eta G^2}{2} \implies$$
 Theorem.

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classification systems, learn from mistakes over time.

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classification systems, learn from mistakes over time.

Want to minimize some global loss $L(\vec{\theta}, \mathbf{X}) = \sum_{i=1}^n \ell(\vec{\theta}, \vec{x_i})$, when data points are presented in an online fashion $\vec{x_1}, \vec{x_2}, \dots, \vec{x_n}$ (similar to streaming algorithms)

In reality many learning problems are online.

- Websites optimize ads or recommendations to show users, given continuous feedback from these users.
- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Face recognition systems, other classification systems, learn from mistakes over time.

Want to minimize some global loss $L(\vec{\theta}, \mathbf{X}) = \sum_{i=1}^{n} \ell(\vec{\theta}, \vec{x_i})$, when data points are presented in an online fashion $\vec{x_1}, \vec{x_2}, \dots, \vec{x_n}$ (similar to streaming algorithms)

Stochastic gradient descent is a special case: when data points are considered a random order for computational reasons.

ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function f, we see a different objective function at each step:

$$f_1, f_2, \ldots, f_t : \mathbb{R}^d \to \mathbb{R}$$

ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function f, we see a different objective function at each step:

$$f_1, f_2, \ldots, f_t : \mathbb{R}^d \to \mathbb{R}$$

- At each step, first pick (play) a parameter vector $\vec{\theta}^{(i)}$.
- Then are told f_i and incur cost $f_i(\vec{\theta}^{(i)})$.
- **Goal:** Minimize total cost $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})$.

ONLINE OPTIMIZATION FORMAL SETUP

Online Optimization: In place of a single function f, we see a different objective function at each step:

$$f_1, f_2, \ldots, f_t : \mathbb{R}^d \to \mathbb{R}$$

- At each step, first pick (play) a parameter vector $\vec{\theta}^{(i)}$.
- Then are told f_i and incur cost $f_i(\vec{\theta}^{(i)})$.
- **Goal:** Minimize total cost $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})$.

Our analysis will make no assumptions on how f_1, \ldots, f_t are related to each other!

7

ONLINE OPTIMIZATION EXAMPLE

Home pricing tools.

 $\vec{x} = [\#baths, \#beds, \#floors...]$

- Parameter vector $\vec{\theta}^{(i)}$: coefficients of linear model at step *i*.
- Functions f_1, \ldots, f_t : $f_i(\vec{\theta}^{(i)}) = (\langle \vec{x_i}, \vec{\theta}^{(i)} \rangle price_i)^2$ revealed when $home_i$ is listed or sold.
- Want to minimize total squared error $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})$ (same as classic least squares regression).

ONLINE OPTIMIZATION EXAMPLE

UI design via online optimization.

- Parameter vector $\vec{\theta}^{(i)}$: some encoding of the layout at step *i*.
- Functions f_1, \ldots, f_t : $f_i(\vec{\theta}^{(i)}) = 1$ if user does not click 'add to cart' and $f_i(\vec{\theta}^{(i)}) = 0$ if they do click.
- Want to maximize number of purchases, i.e., minimize $\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)})$.

REGRET

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

In online optimization we will ask for the same.

$$\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)}) \leq \min_{\vec{\theta}} \sum_{i=1}^{t} f_i(\vec{\theta}) + \epsilon = \sum_{i=1}^{t} f_i(\vec{\theta}^{off}) + \epsilon$$

 ϵ is called the regret and ϵ/t is the average regret.

In normal optimization, we seek $\hat{\theta}$ satisfying:

$$f(\hat{\theta}) \leq \min_{\vec{\theta}} f(\vec{\theta}) + \epsilon.$$

In online optimization we will ask for the same.

$$\sum_{i=1}^{t} f_i(\vec{\theta}^{(i)}) \leq \min_{\vec{\theta}} \sum_{i=1}^{t} f_i(\vec{\theta}) + \epsilon = \sum_{i=1}^{t} f_i(\vec{\theta}^{off}) + \epsilon$$

 ϵ is called the regret and ϵ/t is the average regret.

ullet This error metric is a bit unusual: Comparing online solution to best fixed solution in hindsight. ϵ can be negative!

INTUITION CHECK

What if for $i=1,\ldots,t,$ $f_i(\theta)=|\theta-1000|$ or $f_i(\theta)=|\theta+1000|$ in an alternating pattern?

How small can the regret ϵ be? $\sum_{i=1}^t f_i(\vec{\theta}^{(i)}) \leq \sum_{i=1}^t f_i(\vec{\theta}^{off}) + \epsilon$.

INTUITION CHECK

What if for $i=1,\ldots,t,$ $f_i(\theta)=|\theta-1000|$ or $f_i(\theta)=|\theta+1000|$ in an alternating pattern?

How small can the regret ϵ be? $\sum_{i=1}^t f_i(\vec{\theta}^{(i)}) \leq \sum_{i=1}^t f_i(\vec{\theta}^{off}) + \epsilon$.

What if for $i=1,\ldots,t,$ $f_i(\theta)=|\theta-1000|$ or $f_i(\theta)=|\theta+1000|$ in no particular pattern? How can any online learning algorithm hope to achieve small regret?

Assume that:

- f_1, \ldots, f_t are all convex.
- Each f_i is G-Lipschitz (i.e., $\|\vec{\nabla}f_i(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.)
- $\|\vec{\theta}^{(1)} \vec{\theta}^{off}\|_2 \le R$ where $\theta^{(1)}$ is the first vector chosen.

Assume that:

- f_1, \ldots, f_t are all convex.
- Each f_i is G-Lipschitz (i.e., $\|\vec{\nabla}f_i(\vec{\theta})\|_2 \leq G$ for all $\vec{\theta}$.)
- $\|\vec{\theta}^{(1)} \vec{\theta}^{off}\|_2 \le R$ where $\theta^{(1)}$ is the first vector chosen.

Online Gradient Descent

- Pick some initial $\vec{\theta}^{(1)}$.
- Set step size $\eta = \frac{R}{G\sqrt{t}}$.
- For i = 1, ..., t
 - Play $\vec{\theta}^{(i)}$ and incur cost $f_i(\vec{\theta}^{(i)})$.
 - $\bullet \ \vec{\theta}^{(i+1)} = \vec{\theta}^{(i)} \eta \cdot \vec{\nabla} f_i(\vec{\theta}^{(i)})$

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1,\ldots,f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta=\frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1,\ldots,f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta=\frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Upper bound on average regret goes to 0 and $t \to \infty$.

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1,\ldots,f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta=\frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Upper bound on average regret goes to 0 and $t \to \infty$. No assumptions on f_1, \ldots, f_t !

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1,\ldots,f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta=\frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Upper bound on average regret goes to 0 and $t \to \infty$. No assumptions on $f_1, \dots, f_t!$

Step 1.1: For all
$$i$$
, $\nabla f_i(\theta^{(i)})^T (\theta^{(i)} - \theta^{off}) \le \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1,\ldots,f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta=\frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Upper bound on average regret goes to 0 and $t \to \infty$. No assumptions on $f_1, \dots, f_t!$

Step 1.1: For all
$$i$$
, $\nabla f_i(\theta^{(i)})^T (\theta^{(i)} - \theta^{off}) \le \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$

Convexity \Longrightarrow **Step 1:** For all *i*,

$$f_i(\theta^{(i)}) - f_i(\theta^{off}) \le \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2}.$$

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1,\ldots,f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta=\frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Step 1: For all
$$i$$
, $f_i(\theta^{(i)}) - f_i(\theta^{off}) \le \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2}$

Theorem – OGD on Convex Lipschitz Functions: For convex G-Lipschitz f_1,\ldots,f_t , OGD initialized with starting point $\theta^{(1)}$ within radius R of θ^{off} , using step size $\eta=\frac{R}{G\sqrt{t}}$, has regret bounded by:

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \le RG\sqrt{t}$$

Step 1: For all
$$i$$
, $f_i(\theta^{(i)}) - f_i(\theta^{off}) \le \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{\eta G^2}{2} \implies$

$$\left[\sum_{i=1}^t f_i(\theta^{(i)}) - \sum_{i=1}^t f_i(\theta^{off})\right] \le \sum_{i=1}^t \frac{\|\theta^{(i)} - \theta^{off}\|_2^2 - \|\theta^{(i+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{t \cdot \eta G^2}{2}$$

$$= \frac{\|\theta^{(1)} - \theta^{off}\|_2^2 - \|\theta^{(t+1)} - \theta^{off}\|_2^2}{2\eta} + \frac{t \cdot \eta G^2}{2}$$

$$\le R^2/(2\eta) + t\eta G^2/2 = RG\sqrt{t}$$