Calculus I

Plotting curves defined by implicit equations

Todor Miley

2019

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

We illustrate the algorithm for:

$$x^2 + 2y^2 = 1$$

 $x^2 + 2y^2 - 1 = 0$
Set $H(x, y) = x^2 + 2y^2 - 1$

- Elementary algorithm: fix large rectangle.
- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

We illustrate the algorithm for:

$$x^2 + 2y^2 = 1$$

 $x^2 + 2y^2 - 1 = 0$
Set $H(x, y) = x^2 + 2y^2 - 1$

- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

We illustrate the algorithm for:

$$x^2 + 2y^2 = 1$$

 $x^2 + 2y^2 - 1 = 0$
Set $H(x, y) = x^2 + 2y^2 - 1$

- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

We illustrate the algorithm for:

$$x^2 + 2y^2 = 1$$

 $x^2 + 2y^2 - 1 = 0$
Set $H(x, y) = x^2 + 2y^2 - 1$

- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

We illustrate the algorithm for:

$$x^2 + 2y^2 = 1$$

 $x^2 + 2y^2 - 1 = 0$
Set $H(x, y) = x^2 + 2y^2 - 1$

- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

We illustrate the algorithm for:

$$x^2 + 2y^2 = 1$$

 $x^2 + 2y^2 - 1 = 0$
Set $H(x, y) = x^2 + 2y^2 - 1$

- Elementary algorithm: fix large rectangle.
- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.

Let H-continuous; is there simple algorithm to sketch H(x, y) = 0? Yes.

Illustrate the algorithm for:

$$y^{2}(y^{2}-3)=x^{2}(x^{2}-5)$$

$$H(x,y)=y^{2}(y^{2}-3)$$

$$-x^{2}(x^{2}-5)$$

- Elementary algorithm: fix large rectangle.
- Split the grid in triangular mesh. One strategy to do that is shown.
- For each triangle:
 - Fix two corners $P(x_P, y_P)$ and $Q(x_Q, y_Q)$.
 - If H(x_P, y_P) and H(x_Q, y_Q) have different sign then H must become zero somewhere on the segment between P and Q.
 - Select a point between P and Q and "guess" that H is zero there.
 - In our implementation, we select the midpoint (i.e., $\frac{1}{2}P + \frac{1}{2}Q$).
 - Connect the selected pts. for each triangle.
 - Repeat for ever finer grid.