(19) 日本国特許庁 (JP)

(12) 特許公 **報**(B2)

(11)特許番号

第2969184号

(45)発行日 平成11年(1999)11月2日

(24)登録日 平成11年(1999)8月27日

(51) Int.CL ⁶		膜別記号	FΙ	•	
H01L	27/115		H01L	27/10	434
	21/8247			29/78	371
	29/788				
	29/792				

請求項の数1(全 9 頁)

(21)出願番号	特願平2-92021	(73)特許権者	99999999	
			カシオ計算機株式会社	
(22)出顧日	平成2年(1990)4月9日		東京都渋谷区本町1丁目6番2号	
		(72)発明者	松本 広	
(65)公開番号	特期平3-290970		東京都八王子市石川町2951番地の5 カ	
(43)公開日	平成3年(1991)12月20日		シオ計算機株式会社八王子研究所内	
審查請求日	平成9年(1997)3月17日	(72)発明者	内藤 英雄	
			東京都八王子市石川町2951番地の5 カ	
			シオ計算機株式会社八王子研究所内	
		審査官	瀧内 健夫	
		(58)調査した分野(Int.Cl. [®] , DB名)		
			H01L 21/8247	
			H01L 27/115	
			H01L 29/792	
		. ,		
			•	

(54) 【発明の名称】 薄膜トランジスタメモリ

1

(57)【特許請求の範囲】

【請求項1】半導体層と、この半導体層の一面側に形成 されたメモリ用ゲート絶縁膜と、該半導体層の一面側の 該メモリ用ゲート絶縁膜の上部に形成されたメモリ用ゲ ート電極と、前記半導体層の他面側に形成されたソー ス、ドレイン電極と、前記半導体層の他面および前記ソ ース、ドレイン電極を覆って形成され、前記メモリ用ゲ ート電極領域に対応する部分が他の部分より厚くされた ゲート絶縁膜と、該ゲート絶縁膜上に、前記半導体層領 域のほぼ全面に対応した領域を含んで形成された選択ト ランジスタ用ゲート電極とを備えたことを特徴とする薄 膜トランジスタメモリ。

【発明の詳細な説明】

〔産業上の利用分野〕

本発明は薄膜トランジスタメモリに関するものであ

2

3.

〔従来の技術〕

最近、電気的に書込み、消去、読出しが可能なE2PROM 等のメモリとして、メモリ用トランジスタと選択用トラ ンジスタとを薄膜トランジスタで構成した薄膜トランジ スタメモリが考えられている。

この薄膜トランジスタメモリとしては、従来、ガラス 等からなる絶縁性基板の上に、メモリ用の薄膜トランジ スタ(以下メモリトランジスタという)と選択用の薄膜 10 トランジスタ(以下選択トランジスタという)とを隣接 させて形成し、このメモリトランジスタと選択トランジ スタとを、その一方のソース電極と他方のドレイン電極 とを接続する接続配線を介して直列に接続してトランジ スタメモリを構成したものが知られている。なお、メモ リトランジスタと選択トランジスタとはそれぞれ、ゲー

8/21/05, EAST Vers BEST AVAILABLE COPY

10

ト電極と、ゲート絶縁膜と、i型半導体層と、ソース, ドレイン電極とを積層して構成されており、メモリトラ ンジスタのゲート絶縁膜は電荷蓄積機能をもつ絶縁膜で 形成され、選択トランジスタのゲート絶縁膜は電荷蓄積 機能のない絶縁膜で形成されている。

第9図は前記従来の薄膜トランジスタメモリの等価回 路図であり、ここでは、1つのメモリトランジスタに対 して2つの選択トランジスタを備えた薄膜トランジスタ メモリの等価回路を示している。

第9図において、Tiはメモリトランジスタ、Tzはメモ リトランジスタT1の両側に配置された2つの選択トラン ジスタであり、メモリトランジスタT1のソース電板S1は 一方の選択トランジスタT2のドレイン電極D2に接続さ れ、メモリトランジスタTiのドレイン電極Diは他方の選 択トランジスタT2のソース電板S2に接続されている。そ して、前記一方の選択トランジスタT2のソース電極S2は トランジスタメモリのソース電極50とされ、他方の選択 トランジスタT2のドレイン電極D2はトランジスタメモリ のドレイン電極Doとされており、前記ソース電極Soは図 示しないソースラインに接続され、前記ドレイン電極Do は図示しないドレインラインに接続されている。またメ モリトランジスタTiのゲート電極Giは図示しない第1の ゲートラインに接続され、2つの選択トランジスタT2の ゲート電極G2は図示しない第2のゲートラインに共通接 続されている。なお、前記第1および第2のゲートライ ンは多数本平行に配線され、ソースラインおよびドレイ ンラインはゲートラインと直交させて多数本配線されて おり、メモリトランジスタT1と選択トランジスタT2とに よって構成される薄膜トランジスタメモリは、第1,第2 れぞれ形成されている。

この薄膜トランジスタメモリの書込み、消去、読出し は次のようにして行なわれる。

第9図において、(a)は書込み時、(b)は消去 時、(c)は読出し時の電圧印加状態を示している。

まず書込みについて説明すると、書込み時は、第9図 (a)に示すように、ソース電極Soおよびドレイン電極 Doを接地 (GND) するとともに、選択トランジスタT2の ゲート電極G2にON電圧Vonを印加し、メモリトランジス タT1のゲート電極G1に書込み電圧+VPを印加する。この ような電圧を印加すると、選択トランジスタTzがオン し、メモリトランジスタT1のゲート電極G1とソース,ド レイン電極Si, Di との間に書込み電圧+Voがかかって、 メモリトランジスタTiが書込み状態(OFF状態)とな

また消去時は、第9図(b)に示すように、ソース電 極Soおよびドレイン電極Doを接地(GND)するととも に、選択トランジスタT2のゲート電極G2にON電圧Vonを 印加し、メモリトランジスタT1のゲート電極G1に、書込 み電圧 + Vo とは逆電位の消去電圧 - Vo を印加する。この 50

ような電圧を印加すると、選択トランジスタTzがオン し、メモリトランジスタTiのゲート電極Giとソース,ド レイン電極Si, Di との間に書込み電極+Ve と逆電位の電 位差(-Ve)が生じて、メモリトランジスタTiが消去状 態(ON状態)となる。

一方、読出し時は、第9図(c)に示すように、メモ リトランジスタTiのゲート電極Giとソース電極Soを接地 (GND) するとともに、選択トランジスタT2のゲート電 極G2 にON電圧Vonを印加し、ドレイン電極Doに読出し電 圧Voを印加する。このような電圧を印加すると、メモリ トランジスタT1が消去状態(ON状態)であればドレイン 電極Doからソース電極Soに電流が流れ、メモリトランジ スタTiが書込み状態(OFF状態)であれば前記電流は流 れないため、ソース電極Soからソースラインに流れる電 流の有無に応じた読出しデータが出力される。

なお、ここでは1つのメモリトランジスタT1 に対して 2つの選択トランジスタ™を備えた薄膜トランジスタメ モリについて説明したが、薄膜トランジスタメモリに は、1つのメモリトランジスタに対して1つの選択トラ ンジスタを備えているものがある。

(発明が解決しようとする課題)

しかしながら、前記従来の薄膜トランジスタメモリ は、基板上にメモリ用の薄膜トランジスタと選択用の薄 膜トランジスタとを隣接させて形成して、このメモリト ランジスタと選択トランジスタとを接続配線により直列 に接続したものであるため、1つのトランジスタメモリ の素子面積(平面積)が大きく、したがってトランジス タメモリを縦横に配列して構成されるメモリマトリック スの集積度を上げることが難しいという問題をもってい ゲートラインとソース、ドレインラインとの交差部にそ 30 た。しかも、従来の薄膜トランジスタメモリは、メモリ 用薄膜トランジスタのゲート絶縁膜を電荷蓄積機能をも つ絶縁膜とし、選択用薄膜トランジスタのゲート絶縁膜 を電荷蓄積機能のない絶縁膜としたものであるため、メ モリ用薄膜トランジスタと選択用薄膜トランジスタとを それぞれ別工程で製造しなければならず、したがって薄 膜トランジスタメモリの製造に多くの工程数を要すると いう問題ももっていた。

> 本発明は前記のような実情にかんがみてなされたもの であって、その目的とするところは、メモリ用薄膜トラ ンジスタと選択用薄膜トランジスタとで構成されるトラ ンジスタメモリの素子面積を小さくして集積度を上げる ことができるとともに、少ない工程数で容易に製造する ことができる薄膜トランジスタメモリを提供することに ある。

〔課題を解決するための手段〕

本発明の薄膜トランジスタメモリは、半導体層と、こ の半導体層の一面側に形成されたメモリ用ゲート絶縁膜 と、該半導体層の一面側の該メモリ用ゲート絶縁膜に対 応した部分の上部に形成されたメモリ用ゲート電極と、 前記半導体層の他面側に形成されたソース、ドレイン電

8/21/05, EAST VEBEST AVAILABLE COPY

20

極と、前記半導体層の他面および前記ソース、ドレイン 電極を覆って形成され、前記メモリ用ゲート電極領域に 対応する部分が他の部分より厚くされたゲート絶縁膜 と、該ゲート絶縁膜上に、前記半導体層領域のほぼ全面 に対応した領域を含んで形成された選択トランジスタ用 ゲート電極とを備えたものである。

このように、半導体層の一面側にメモリ用ゲート絶縁 膜とメモリ用ゲート電極を形成し、半導体層の他面側 に、ソース、ドレイン電極、およびゲート絶縁膜、選択 トランジスタ用ゲート電極を形成すると、メモリ用ゲー 10 一ト電極620とされている。 ト電極と選択トランジスタ用ゲート電極が積層される構 造となり、同一平面に並べて形成する場合に比して面積 を小さくすることができる。

〔実施例〕

以下、本発明の実施例を図面を参照して説明する。

第1図~第5図は本発明の第1の実施例を示したもの で、第1図および第2図は薄膜トランジスタメモリの断 面図および平面図である。

この薄膜トランジスタメモリの構造を説明すると、図 中11はガラス等からなる絶縁性基板であり、この基板11 上には下部ゲート電極Gioが形成されている。この下部 ゲート電極Gioは、基板11上に形成した下部ゲートライ ンGLioの上に局部的に突出形成されており、この下部ゲ ート電極Gioは、下部ゲートラインGLioと同じ幅に、300 0Åの厚さに形成されている。また、前記基板11上に は、前記下部ゲートラインGLioおよび下部ゲート電極G 10を覆う平坦化絶縁膜12が形成されている。この平坦化 絶縁膜12は電荷蓄積機能のない絶縁膜からなっており、 この平坦化絶縁膜12は、下部ゲートラインGL10を厚く覆 い、下部ゲート電極Gioを薄く覆う厚さに形成されてい る。なお、この平坦化絶縁膜12の下部ゲートラインGL10 上の部分の膜厚は4000Å、下部ゲート電極Gio上の部分 の膜厚は1000Åである。そして、この平坦化絶縁膜12の 上には、下部ゲート絶縁膜13が基板11のほぼ全面にわた って形成されている。この下部ゲート絶縁膜13はその上 層部にの全域に電荷蓄積機能をもたせたもので、この下 部ゲート絶縁膜13は、電荷蓄積機能のないSiN (窒化シ リコン)からなる下層絶縁膜13aの上に、Si (シリコ ン)の組成比を多くして電荷蓄積機能をもたせたSiNか らなるメモリ性絶縁膜13bを積層した二層膜となってい る。なお、前記下層絶縁膜13aの膜厚は900A、メモリ性 絶縁膜13bの膜厚は100Åである。この下部ゲート絶縁膜 13の上 (メモリ性絶縁膜136の上) には、アモルファス シリコンまたはポリシリコンからなる i 型の半導体層14 がトランジスタメモリの素子形状に対応するパターンに 形成されており、この半導体層14の両側部の上には、 n 型半導体(n型不純物をドープしたアモルファスシリコ ンまたはポリシリコン) からなるオーミックコンタクト 層15を介して、ソース電極Sとドレイン電極Dが形成さ れている。このソース電極Sおよびドレイン電極Dはそ 50 れぞれ、下部ゲート絶縁膜13の上に前記下部ゲートライ ンGL10と直交させて配線したソースラインSLおよびドレ インラインDLにつながっている。そして、前記半導体層 14およびソース, ドレイン電極S,Dの上には、基板11の ほぼ全面にわたって、電荷蓄積機能のない窒化シリコン からなる上部ゲート絶縁膜16が形成されている。この上 部ゲート絶縁膜16の上には、上部ゲートラインGL20が下 部ゲートラインGLioと平行に配線されており、この上部 ゲートラインGL20のうちの半導体層14上の部分は上部ゲ

6

そして、前記下部ゲート電極G10と、平坦化絶縁膜12 および電荷蓄積機能をもつ下部ゲート絶縁膜13と、半導 体層14およびソース、ドレイン電極S,Dとは、逆スタガ 一型のメモリ用薄膜トランジスタ(以下、メモリトラン ジスタという)Tioを構成している。また、このメモリ トランジスタTioのゲート電極である下部ゲート電極Gio は、半導体層14のチャンネル長方向の中央部(ソース、 ドレイン電極S,D間の中央部)に対向させて、半導体層1 4のチャンネル長方向幅のほぼ1/3の幅に形成されてお り、したがって下部ゲート絶縁膜13は、下部ゲート電極 Gloと対向する中央部だけがメモリ領域となっている。

一方、前記上部ゲート電極G20は、半導体層14の全体 に対向する電極とされており、この上部ゲート電極G20 と半導体層14との間の上部ゲート絶縁膜16は、下部ゲー ト絶縁膜13のメモリ領域(下部ゲート電極G10の対向部 分)の上の部分と、ソース,ドレイン電極S,Dのほぼ中 央に対向する位置からの外側の部分の膜厚を厚くし、前 記メモリ領域とソース電極Sとの間およびメモリ領域と ドレイン電極Dとの間の部分の膜厚をそれぞれ薄くした 30 絶縁膜とされている。すなわち、この上部ゲート絶縁膜 16は、半導体層13の全体を覆う下層絶縁膜16aと、この 下層絶縁膜16aの表面全体に形成されたエッチングスト ッパ用絶縁膜16bと、このエッチングストッパ用絶縁膜1 6bの上に前記メモリ領域およびソース,ドレイン電極S, Dのほぼ中央から外側の部分にそれぞれ対応させて形成 された上層絶縁膜16cとからなる積層間とされており、 前記下層絶縁膜16aと上層絶縁膜16cは例えば電荷蓄積機 能のないSiNで形成され、エッチングストッパ用絶縁膜1 6bは例えばAl2O3(アルミナ)で形成されている。ま た、下層絶縁膜16aの膜厚は1900Å、エッチングストッ バ用絶縁膜16bの膜厚は100Å、上層絶縁膜16cの膜厚は3 000Åとされており、この上部ゲート絶縁膜16の厚膜部 分(下層絶縁膜16aとエッチングストッパ用絶縁膜16bと 上層絶縁膜16cとからなる三層膜部分)の膜厚は、半導 体層14のメモリ領域対応部分に上部ゲート電極G20から ゲート電圧が印加されるのを防ぐのに十分な膜厚 (5000 Å)とされ、上部ゲート電極Gzoの薄膜部分(下層絶縁) 膜16aとエッチングストッパ用絶縁膜16bとからなる二層 膜部分)の膜厚は、半導体層14に上部ゲート電極G20か ら十分なゲート電圧を印加できる膜厚 (2000 A) とされ

ている。なお、この上部ゲート絶縁膜16の膜厚部分は、 ソース,ドレインラインSL,DLの長さ方向における絶縁 膜全長に形成されている。

そして、前記メモリトランジスタT10の上には、前記半導体層14およびソース、ドレイン電極S、DをメモリトランジスタT10と共用する2つの選択用薄膜トランジスタ(以下、選択トランジスタという)T20、T20が形成されている。この2つの選択トランジスタT20、T20は、前記半導体層14およびソース、ドレイン電極S、Dと、電荷蓄積機能のない上部ゲート絶縁膜16と、上部ゲート電極10G20とで構成されたコプラナー型薄膜トランジスタであり、一方の選択トランジスタT20は、半導体層14およびソース、ドレイン電極S、Dと、上部ゲート絶縁膜16の一方の薄膜部分と、上部ゲート電極G20とで構成され、他方の選択トランジスタT20は、前記半導体層14およびソース、ドレイン電極S、Dと、上部ゲート絶縁膜16の他方の薄膜部分と、上部ゲート電極G20とで構成されている。

この2つの選択トランジスタT20.T20は、そのゲート電極(上部ゲート電極)G20を半導体層14の全体に対向する電極としたことによってゲート側で共通接続されており、またこの両選択トランジスタT20,T20は、そのソース,ドレイン電極S,DをメモリトランジスタT10と共用したことによって、メモリトランジスタT10と直列に接続されている。

さらに、前記上部ゲート絶縁膜16の選択トランジスタ Tzo,Tzoを構成する2箇所の薄膜部分はそれぞれ、下部 ゲート絶縁膜13のメモリ領域に対応する膜厚部分のチャ ンネル長方向の幅を下部ゲート電極Gioのチャンネル長 方向幅より小さくすることによって、下部ゲート電極G 10の両側部にラップさせてある。このようにしているの は、メモリトランジスタTioと両選択トランジスタTzo,T 20との電気的な接続を確保するためであり、上部ゲート 絶縁膜16の選択トランジスタT20,T20を構成する薄膜部 分を下部ゲート電極G10にラップさせておけば、半導体 層14のメモリトランジスタT:0領域と選択トランジスタT 20領域との境界部(下部ゲート絶縁膜13のメモリ領域に 対応する部分の両側部)に、メモリトランジスタTuの ゲート電極(下部ゲート電極)Gioからも選択トランジ スタT20,T20のゲート電極 (上部ゲート電極) G20からも ゲート電圧を印加することができるから、メモリトラン ジスタTıoと選択トランジスタTzo,Tzoとの両方をONさせ たときに、半導体層14を介してドレイン電極Dからソー ス電極Sに電流が流れる。なお、この実施例では、上部 ゲート絶縁膜16のメモリ領域上の膜厚部分の幅を、下部 ゲート電極G10の幅のほぼ1/2としているが、この膜厚部 分の幅は、下部ゲート電極Gioの幅以下であれば任意の 幅でよく、要は、上部ゲート絶縁膜16の薄膜部分が下部 ゲート電極Gioの少なくとも側縁に対向していればよ 11.

第3図は前記薄膜トランジスタメモリの製造方法を示したもので、この薄膜トランジスタメモリは次のような 工程で製造される。

まず、第3図(a)に示すように、基板11上にゲートラインGLioとなる金属膜30を500人の厚さに堆積させ、その上に下部ゲート電極Gioとなる金属膜31を3000人の厚さに堆積させる。なお、下部ゲート電極Gioとなる上層の金属膜31はTa(タンタル)等で形成し、ゲートラインGLioとなる下層の金属膜30は、前記上層の金属膜31とエッチングレートの異なる金属、例えばCr(クロム)等で形成する。

次に、第3図(b)に示すように、前記上層の金属膜31のフォトリソグラフィ法によりパターニングして下部ゲート電極G10を形成し、次いで前記下層の金属膜30をフォトリソグラフィ法によりパターニングしてゲートラインGL10を形成する。

次に、第3図(c)に示すように、基板11上の全面に、SOG(スピン・オン・ガラス)と呼ばれるシラノール系無機絶縁物をスピンコート法により塗布してこれを約300℃で約1時間加熱し、下部ゲートラインGL10上の部分の膜厚が4000Å、下部ゲート電極G10上の部分の膜厚が1000Åで、かつ上面が平坦な平坦化絶縁膜12を形成する。

次に、第3図(d)に示すように、前記平坦化絶縁膜12の上に、下部ゲート絶縁膜13の下層絶縁膜(電荷蓄積機能のないSiN膜)13aと、電荷蓄積機能をもつメモリ性絶縁膜(Siの組成比を多くしたSiN膜)13bとを、900Å,100Åの厚さに連続して順次堆積させて、この下層絶縁膜13aとメモリ性絶縁膜13bとからなる二層の下部ゲート 絶縁膜13を形成し、その上に、i型アモルファスシリコンまたはi型ボリシリコンからなる半導体層14と、n型半導体(n型アモルファスシリコンまたはn型ボリシリコン)からなるオーミックコンタクト層15とを、1000 Å,250Åの厚さに連続して順次堆積させ、さらにその上に、Cr等からなるソース、ドレイン電極用金属膜40を500Åの厚さに堆積させる。

次に、前記ソース、ドレイン電極用金属膜40をフォトリソグラフィ法によりパターニングして、第3図(e)に示すように、ソース、ドレイン電極用金属膜40からなるソース、ドレイン電極S、Dおよびソース、ドレインラインSL、DLを形成し、次いでオーミックコンタクト層15をソース、ドレイン電極S、Dおよびソース、ドレインラインSL、DLの形状にパターニングする。

次に、第3図(f)に示すように、半導体層14をフォトリソグラフィ法によりトランジスタメモリの素子形状にパターニングして、メモリトランジスタT10を構成する。なお、この半導体層14は、ソースラインSLおよびドレインラインDLの下にもその全長にわたって残る。

次に、第3図(g)に示すように、基板11上の全面 50 に、上部ゲート絶縁膜16の下層絶縁膜16aと、エッチン グストッパ用絶縁膜16bと、上層絶縁膜16cを、1900Å,1 00Å,3000Åの厚さに堆積させる。

次に、第3図(h)に示すように、前記上層絶縁膜16 cのうち、下部ゲート絶縁膜13のメモリ領域(下部ゲー ト電極Gioの対向部分)とソース電極Sとの間および前 記メモリ領域とドレイン電極Dとの間の部分をフォトリ ソグラフィ法によってエッチング除去し、前記メモリ領 域の上の部分とソース、ドレイン電極S.Dのほぼ中央に 対向する位置から外側の部分とを、下層絶縁膜16aとエ ッチングストッパ用絶縁膜16bと上層絶縁膜16cとからな る三層膜部分構造の厚膜部分(膜厚5000Å)とし、前記 メモリ領域とソース、ドレイン電極S,Dとの間の部分 を、下層絶縁膜16aとエッチングストッパ用絶縁膜16bと からなる二層膜構造の薄膜部分 (膜厚2000 Å) 薄膜部分 とした上部ゲート絶縁膜16を形成する。この場合、前記 上層絶縁膜16cの除去部分をエッチングしても、このエ ッチングの進行はエッチングストッパ用絶縁膜16bによ って阻止されるから、上層絶縁膜16cをパターニングす るエッチング時に、下層絶縁膜16aがダメージを受ける ことはなく、したがって、この上部ゲート絶縁膜16は歩 留よく形成することができる。

次に、第3図(i)に示すように、前記上部ゲート絶縁膜16の上にAI(アルミニウム)等の金属膜を4000Åの厚さに堆積させ、この金属膜をフォトリソグラフィ法によりパターニングして上部ゲート電極G20および上部ゲートラインGL20を形成して、2つの選択トランジスタT20、T20を構成し、薄膜トランジスタメモリを完成する。

なお、この製造方法では、下部ゲート電極G10と平坦 化絶縁膜12を第3図(a)~(c)に示した工程で形成 しているが、この下部ゲート電極G10と平坦化絶縁膜12 は他の方法で形成することもできる。

すなわち、第4図は前記下部ゲート電極G10と平坦化 絶縁膜12を形成する他の方法を示している。

この方法は、下部ゲート電極Gioおよび下部ゲートラインGLioを前述した方法で第4図(a)に示すように形成した後、第4図(b)に示すように、基板11上の全面にPSG(燐ガラス)からなる絶縁膜12Aを減圧CVD法により約4000Åの厚さに堆積させ、この後、850℃~1000℃の水蒸気雰囲気中で30分以上加熱するリフロー処理により前記絶縁膜12Aを平坦化して、第4図(c)に示すように、下部ゲートラインGLio上の膜厚が約4000Å、下部ゲート電極Gio上の膜厚が約1000Åの平坦化絶縁膜12を形成する方法である。

なお、この第4図の方法で下部ゲート電極Gioと平坦 化絶緑膜12を形成する場合も、これ以後は、第3図の (d)~(i)に示した工程で薄膜トランジスタメモリ を製造する。

第5図は前記薄膜トランジスタメモリの等価回路図であり、この薄膜トランジスタメモリは、1つの薄膜トランジスタバエリは、2つの選択ンジスタの中に、メモリトランジスタT10と2つの選択

10

トランジスタT20,T20とを積層して形成した構成となっている。なお、第5図では1つの薄膜トランジスタメモリの等価回路を示しているが、この薄膜トランジスタメモリは、下部ゲートラインG10および上部ゲートラインG20とソース、ドレインラインSL,DLとの交差部にそれぞれ形成されている。

この薄膜トランジスタメモリの書込み,消去,読出し は次のようにして行なわれる。

第5図において、(a)は書込み時、(b)は消去 10 時、(c)は読出し時の電圧印加状態を示している。

まず書込みについて説明すると、書込み時は、第5図(a)に示すように、ソース電極Sおよびドレイン電極Dを接地(GND)するとともに、選択トランジスタT20,T20のゲート電極G20にON電圧Vonを印加し、メモリトランジスタT10のゲート電極G10に書込み電圧+VPを印加する。このような電圧を印加すると、2つの選択トランジスタT20,T20がオンし、メモリトランジスタT10のゲート電極G10とソース、ドレイン電極S,Dとの間に書込み電圧+VPがかかって下部ゲート絶縁膜13のメモリ領域(メモリ性絶縁膜13bのゲート電極G10対向部)に電荷がトラップされ、メモリトランジスタT10が書込み状態(OFF状態)となる。

また消去時は、第5図(b)に示すように、ソース電極Sおよびドレイン電極Dを接地(GND)するとともに、選択トランジスタT20のゲート電極G20にON電圧V0Nを印加し、メモリトランジスタT10のゲート電極G10に、書込み電圧+Veとは逆電位の消去弾圧-Veを印加する。このような電圧を印加すると、選択トランジスタT20がオンし、メモリトランジスタT10のゲート電極G10とソース、ドレイン電極S,Dとの間に書込み電圧+Veと逆電位の電位差(-Ve)が生じて下部ゲート絶縁膜13のメモリ領域にトラップされている電荷が放出され、メモリトランジスタT10が消去状態(ON状態)となる。

一方、読出し時は、第5図(c)に示すように、メモリトランジスタT10のゲート電極G10とソース電極Sを接地(GND)するとともに、選択トランジスタT20,T20のゲート電極G20にON電圧Vonを印加し、ドレイン電極Dに読出し電圧Voを印加する。このような電圧を印加すると、メモリトランジスタT10が消去状態(ON状態)であればドレイン電極Dからソース電極Sに電流が流れ、メモリトランジスタT10が書込み状態(OFF状態)であれば前記電流は流れないため、ソース電極Sからソースラインに流れる電流の有無に応じた読出しデータが出力される。

すなわち、前記薄膜トランジスタメモリは、下部ゲート電極G10と電荷蓄積機能をもつ下部ゲート絶縁膜13と 半導体層14およびソース、ドレイン電極S,Dとを積層し て構成したメモリトランジスタT10の上に、電荷蓄積機 能のない上部ゲート絶縁膜16上部ゲート電極G20とを積 層して、前記半導体層14およびソース、ドレイン電極S, 50 DをメモリトランジスタT10と共用する2つの選択トラン

20

ジスタT20,T20を構成したものである。

この薄膜トランジスタメモリは、メモリトランジスタ T10と選択用薄膜トランジスタT20、T20とを積層して構成 したものであるから、メモリトランジスタT10と選択トランジスタT20、T20とで構成されるトランジスタメモリ の素子面積を小さくして集積度を上げることができる。またこの薄膜トランジスタメモリでは、前記半導体層14 およびソース、ドレイン電極S、DをメモリトランジスタT10と選択トランジスタT20、T20とに共用しているため、前述したような少ない工程数で容易に製造することがで 10 きる。

そして、この薄膜トランジスタメモリにおいては、下 部ゲート電極G10を、基板11上に形成した下部ゲートラ インGLioの上に半導体層14の一部分に対向させて突出形 成して、下部ゲート絶縁膜13の下部ゲート電極Gioと対 向する部分をメモリ領域とし、さらに前記下部ゲートラ インGL10および下部ゲート電極G10の上に、下部ゲート ラインGL10を厚く覆い、下部ゲート電極G10は薄く覆う 平坦化絶縁膜12を形成して、この平坦化絶縁膜12の上に 下部ゲート絶縁膜13を形成することにより、半導体層14 のメモリ領域対応部分以外の部分と下部ゲートラインGL 10との間の絶縁膜(平坦化絶縁膜12と下部ゲート絶縁膜 13) の層厚を厚くし、さらに、半導体層14と上部ゲート 電極G20との間の上部ゲート絶縁膜16を、半導体層14の 全体を覆う下層絶縁膜16aとその表面全体に形成したエ ッチングストッパ用絶縁膜16bとその上に前記メモリ領 域に対応させて形成した上層絶縁膜16cとからなる積層 膜とすることにより、この上部ゲート絶縁膜16の膜厚を 半導体層14のメモリ領域対応部分の上において厚くして いるため、半導体層14の選択トランジスタT20領域とメ モリトランジスタTioのゲート電極である下部ゲート電 極Gioとの間(下部ゲートラインGLioとの間)、および 半導体層14のメモリトランジスタT10領域 (下部ゲート 絶縁膜13のメモリ領域に対応する部分)と選択トランジ スタT20,T20のゲート電極である上部ゲート電極G20との 間をそれぞれ確実に絶縁分離することができる。したが って、この薄膜トランジスタメモリによれば、選択トラ ンジスタT10がメモリトランジスタT10のゲート電極(下 部ゲート電極) Gioに印加するゲート電圧の影響で誤動 作することはなく、また、メモリトランジスタ『10が選 択トランジスタT20,T20のゲート電極 (上部ゲート電 極) G20 に印加するゲート電圧の影響で誤動作すること もないから、半導体層14およびソース,ドレイン電極S, Dを共用するメモリトランジスタT10と選択トランジスタ T20.T20とを積層して構成したものでありながら、メモ リトランジスタT10と選択トランジスタT20,T20とをそれ ぞれ正常に動作させて安定した書込み、消去、読出しを 行なうことができる。

しかもこの薄膜トランジスタメモリでは、前記上部ゲート絶縁膜16を、下層絶縁膜16aの表面全体にエッチン

グストッパ用絶縁膜16bを形成しその上に上層絶縁膜16c を形成した積層膜としているため、上層絶縁膜16を前記 メモリ領域に対応する形状にパターニングするエッチング時に下層絶縁膜16aがダメージを受けることはなく、したがって、膜厚を半導体層14のメモリ領域対応部分の上において厚くした上部ゲート絶縁膜16を歩留よく形成して、薄膜トランジスタメモリの信頼性を向上させることができる。

12

また、この薄膜トランジスタメモリでは、上部ゲート 絶縁膜16のソース、ドレイン電極S,Dのほぼ中央に対向 する位置から外側の部分の膜厚も厚くしているため、上 部ゲート電極G20とソース、ドレイン電極S,Dとの間の絶 縁耐圧も十分である。

なお、前記実施例の薄膜トランジスタメモリは、1つのメモリトランジスタT10に対して2つの選択トランジスタT20を備えたものであるが、本発明は、1つのメモリトランジスタに対して1つの選択トランジスタを備えた薄膜トランジスタメモリにも適用できる。

第6図〜第8図は本発明の第2の実施例を示している。この実施例の薄膜トランジスタメモリは、1つのメモリトランジスタT10に対して1つの選択トランジスタT20を備えたもので、第6図および第7図は薄膜トランジスタメモリの断面図および平面図であり、第8図は薄膜トランジスタメモリの等価回路図である。

この実施例の薄膜トランジスタメモリは、メモリトラ ンジスタTioのゲート電極である下部ゲート電極Gioを、 基板11上に形成した下部ゲートラインGL10の上に半導体 層14の一部分に対向させて突出形成して、下部ゲート絶 緑膜13の下部ゲート電極Gioと対向する部分をメモリ領 域とし、前記下部ゲートラインGL10および下部ゲート電 極Gioの上に、下部ゲートラインGLioを厚く覆い下部ゲ ート電極G10は薄く覆う平坦化絶縁膜12を形成して、こ の平坦化絶縁膜12の上に下部ゲート絶縁膜13を形成し、 かつ選択トランジスタT20のゲート電極である上部ゲー ト電極G20は半導体層14の全体に対向させて形成すると ともに、上部ゲート絶縁膜16を、半導体層14の全体を覆 う下層絶縁膜16aとその表面全体に形成したエッチング ストッパ用絶縁膜16bとその上に前記メモリ領域に対応 させて形成した上層絶縁膜16cとからなる積層膜とする ことにより、この上部ゲート絶縁膜16の膜厚を前記メモ リ領域に対応する部分の上において厚くしたもので、メ モリトランジスタTioは、下部ゲート電極Gioと、平坦化 絶縁膜12および下部ゲート絶縁膜13と、半導体層14およ びソース,ドレイン電極S,Dとによって構成され、選択 トランジスタT10は、前記半導体層14およびソース、ド レイン電極S,Dと、上部ゲート絶縁膜16の薄膜部分と、 上部ゲート電極G20とによって構成されている。

なお、この実施例の薄膜トランジスタメモリは、選択 トランジスタT20を1つとしただけで、基本的な構成は 50 前記第1の実施例と変わらないから、詳細な構造の説明 は図に同符号を付して省略する。また、この実施例の薄膜トランジスタメモリの書込み、消去、読出しは、第1 の実施例の薄膜トランジスタメモリと同様にして行なう ことができる。

〔発明の効果〕

本発明の薄膜トランジスタメモリは、半導体層の一面 側にメモリ用ゲート絶縁膜とメモリ用ゲート電極を形成 し、半導体層の他面側に、ソース、ドレイン電極、およ びゲート絶縁膜、選択トランジスタ用ゲート電極を形成 するので、メモリ用ゲート電極と選択トランジスタ用ゲート電極が積層される構造となり、同一平面に並べて形 成する場合に比して面積を小さくすることができる。

【図面の簡単な説明】

第1図〜第5図は本発明の第1の実施例を示したもので、第1図および第2図は薄膜トランジスタメモリの断面図および平面図、第3図は薄膜トランジスタメモリの

14

製造工程図、第4図は下部ゲート電極と平坦化絶縁膜の他の形成方法を示す工程図、第5図は薄膜トランジスタメモリの等価回路図である。第6図〜第8図は本発明の第2の実施例を示したもので、第6図および第7図は薄膜トランジスタメモリの等価回路図である。第9図は従来の薄膜トランジスタメモリの等価回路図である。第9図は従来の薄膜トランジスタメモリの等価回路図である。11……基板、T10……メモリ用薄膜トランジスタ、T20……選択用薄膜トランジスタ、GL10……下部ゲートライン、G10……下部ゲート電極、12……平坦化絶縁膜、13……下部ゲート絶縁膜、14……半導体層、15……オーミックコンタクト層、S……ソース電極、D……ドレイン電極、16……上部ゲート絶縁膜、160……下層絶縁膜、160……上部ゲート絶縁膜、160……上層絶縁膜、G20……上部ゲート電極。

【第1図】

【第8図】

8/21/05, EAST Version: 2.0.1.4

BEST AVAILABLE COPY 8/21/05, EAST Version: 2.0.1.4

G20

