1ª Parte. Derivadas Parciais.

Derivada parcial: Suponha que f(r,s,...,y,z) seja uma função de n variáveis. A derivada parcial de Regra da cadeia para uma variável f em relação a sua variável t e representada por **independente.** f_t e é definida como sendo a função obtida Seja w=f(x,y), onde f é uma função diferenciável derivando-se f em relação a t e considerando-se de x e y. Se x=g(t) e y=h(t), onde g e h são as outras variáveis como constantes.

Notação: f_x , f_y , $\partial f/\partial fx$, $\partial f/\partial y$

À medida que damos um zoom em um ponto pertencente à uma superfície, que é o gráfico de Regra da cadeia: duas variáveis uma função diferenciável de duas variáveis, a independentes superfície parece mais e mais com um plano (seu Seja w=f(x,y), onde f é uma função diferenciável plano tangente) e podemos aproximar a função, de x e y. Se x=g(s,t) e y=h(s,t) são tais que as nas proximidades do ponto, por uma função derivadas parciais de primeira ordem $\partial x/\partial x$, $\partial x/\partial t$, linear de duas variáveis.

Derivada parcial de segunda ordem:

 f_{xx} , f_{yx} , f_{xy} , f_{yy} ; $\partial^2 f/\partial x^2$ etc

Derivadas parciais mistas de segunda ordem:

 $f_{vx} = f_{xv}$

igualdade das Teorema da parciais mistas (Schwartz). Se $f_{xv}(a,b)$ $f_{yx}(a,b)$ forem contínuas em (a,b), então $f_{xy}(a,b) = f_{yx}(a,b)$

Linearidade local. Fórmula de aproximação, diferenciação total:

> variação de f = (taxa de variação na direção x). △x + (taxa de variação na direção y). △y $\triangle f = \partial f/\partial x. \triangle x + \partial f/\partial y. \triangle y$

Linearização local. Aproximação pelo plano tangente a f(x,y) para (x,y) próximo do ponto (a,b). Desde que f seja diferenciável em (a,b) podemos aproximar f(x,y)

 $f(x,y)=f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(y-b).$ Pensamos em a e b como fixos, de modo que a expressão no segundo membro linear em x e y. O segundo membro desta aproximação chama-se a linearização local de f perto de x=a, y=b.

Diferencial. A diferencial de uma função z=f(x,y)A diferencial df (ou dz), num ponto (a,b) é a função linear de dx e dy dada pela fórmula $df=f_x(a,b).dx +f_y(a,b).dy$

A diferencial num ponto geral frequentemente é escrita como $df=f_x.dx + f_y.dy$

Teorema. Se as derivadas parciais f_x e f_y existem perto do ponto (a,b) e são contínuas em (a,b), então f é diferenciável em (a.b).

Teorema da igualdade das derivadas parciais mistas (Schwartz). Seja f: $A \subset R^2$ -> R, A aberto. Se f or de classe C² em A, $\partial^2 f(x,y)/\partial x \partial y = \partial^2 f(x,y)/\partial y \partial x$ para todo $(x,y) \in A$.

2ª Parte. Regra da cadeia e Teorema da função implícita.

funções diferenciáveis de t, então w é uma função diferenciável de t e

 $dw/dt = \partial w/\partial x.dx/dt + \partial w/\partial y.dy/dt$

 $\partial y/\partial s$, $\partial y/\partial xt$ existem, então $\partial w/\partial s$ e $\partial w/\partial t$ também existem e são dadas por

 $\partial w/\partial s = \partial w/\partial x.\partial x/\partial s + \partial w/\partial y.\partial y/\partial s$

e

 $\partial \mathbf{w}/\partial \mathbf{t} = \partial \mathbf{w}/\partial \mathbf{x}.\partial \mathbf{x}/\partial \mathbf{t} + \partial \mathbf{w}/\partial \mathbf{y}.\partial \mathbf{y}/\partial \mathbf{t}$

Regra da cadeia e diagrama em árvore.

Para achar a taxa de variação de uma variável derivadas com relação a outra numa cadeia de funções e compostas diferenciáveis;

- a) Trace um diagrama em árvore exprimindo as relações entre as variáveis e assinale cada ligação no diagrama a derivada que relaciona as variáveis nas extremidades.
- b) Paca cada caminho entre duas variáveis multiplique as derivadas de cada passo ao longo do caminho.
- c) Some as contribuições de cada caminho.

Diferenciação Implícita. Se a equação f(x,y)=0define y como uma função diferenciável de x, então

 $dy/dx = -F_x(x,y)/F_y(x,y),$

Condições de aplicabilidade do teorema da função implícita.

i. Se F(a,b,c)=0, $F_z(a, b, c) \neq 0$, e F_x , F_y , e F_z são contínuas dentro da esfera, então a equação F(x, y, z) define z como uma função de x e y perto do ponto (a, b, c) e esta função é diferenciável com derivadas das por:

$$\partial z/\partial x = -F_x(x,y)/F_z(x,y), \quad F_x(x,y) \neq 0$$

e

$$\partial z/\partial y = -F_y(x,y)/F_z(x,y), \quad F_z(x,y) \neq 0$$

3ª Parte. Derivadas direcionais e vetor gradiente.

Coeficiente angular da curva de nível: Se a curva de nível f(x,y)=C for o gráfico de uma função de x diferenciável, o coeficiente angular de sua tangente é dado pela fórmula $dy/dx=-f_x/f_y$

GRADIENTE

O vetor grad f é chamado o gradiente da função escalar f.

$$\nabla f = grad f = \frac{\partial f}{\partial x} i + \frac{\partial f}{\partial y} j + \frac{\partial f}{\partial z} k$$

Propriedades geométricas do vetor gradiente

Se f é diferenciável no ponto (a,b) e grad $f(a,b)\neq 0$ então:

- a) A direção de grad f(a,b) é:
- Perpendicular ao contorno de f que passa por (a,b)
- Paralelo à direção de f crescente
- b) O módulo do gradiente é:
- -Taxa de variação máxima de f no ponto.
- -Grande quando os contornos estão próximos uns dos outros e pequena quando estão afastados.

DERIVADA DIRECIONAL. Se f é uma função diferenciável de x e y, então a derivada direcional de f na direção do vetor unitário \mathbf{u} é $D_{\mathbf{u}}f(\mathbf{x},\mathbf{y}) = \nabla f(\mathbf{x},\mathbf{y}).\mathbf{u}$

4ª Parte. Plano tangente e reta normal.

Plano tangente.

A- Suponha que f tenha derivadas parciais contínuas. Uma equação do plano tangente à superfície z=f(x,y) no ponto $P(x_o,y_o,x_o)$ é dada por $z-z_o=f_x(x_o,y_o)(x-x_o)+f_v(x_o,y_o)(y-y_o)$

B- Plano tangente. Se w é diferenciável em (a,b,c), então a equação do plano tangente à superfície da por $\mathbf{w}(\mathbf{x},\mathbf{y},\mathbf{z})=0$ em (a,b,c) é $\mathbf{w}_{x}(\mathbf{a},\mathbf{b},\mathbf{c})(\mathbf{x}-\mathbf{a})+\mathbf{w}_{y}(\mathbf{a},\mathbf{b},\mathbf{c})(\mathbf{y}-\mathbf{b})+\mathbf{w}_{z}(\mathbf{a},\mathbf{b},\mathbf{c})(\mathbf{z}-\mathbf{c})=0$

Reta Normal.

Equações paramétricas de uma reta no espaço. Uma reta L paralela ao vetor V=<a,b,c> e contendo o ponto $P=(x_1,y_1,z_1)$ é representada pelas equações paramétricas

 $x=x_1+at$, $y=y_1+bt$, $z=z_1+ct$ Se os números a, b, c são todos não nulos, podemos eliminar o parâmetro t e obter as **equações simétricas**

 $(x-x_1)/a=(y-y_1)/b=(z-z_1)/c$

SÉRIES DE TAYLOR

Série de Taylor para funções de uma

variável.

 $\begin{array}{ll} f(x) = f(a) + f(a)(x-a) + f''(a)(x-a)^2/2! + ... + \\ f^{(n-1)}(a)(x-a)^{(n-1)} / (n-1)! + R_n \\ \text{onde } R_n, \text{ o resto após n termos.} \\ R_n = f^{(n)}(t)(x-a)^{(n)} / n! & a \leq t \leq x \end{array}$

Procedimento para determinar o intervalo de convergência da série de potências, e o raio de convergência.

-Série de potências em x:

Se Lin(n-> ∞) a_{n+1} / a_n = L, então

- a) M=0 => a série converge para todo x;
- b) $m\neq 0 => a$ série converge para o intervalo;
- c) -1/L<x<1/L e diverge fora deste intervalo. Os pontos extremos do intervalo de convergência devem ser examinados separadamente.

-Série de potências em x-a:

Se Lin(n-> ∞) $b_{n+1} / b_n = M$, então

- a) M=0 => a série converge para todo x;
- b) $m\neq 0 => a$ série converge para o intervalo;
- c) a-(1/|M|) < x < a + (1/|M|) e diverge fora deste intervalo. Os pontos extremos do intervalo de convergência devem ser examinados separadamente.

Série de Taylor para funções de duas variáveis. $f(x,y) = f(a,b) + (x-a).f_x(a,b) + (y-b).f_y(a,b) + \{(x-a)^2.f_{xx}(a,b) + 2.(x-a).(y-b).f_{xy}(a,b) + (y-b)^2.f_{yy}(a,b)\} + ...$

Derivadas Parciais

EXERCÍCIOS.

1ª Parte. Derivadas Parciais.

1) Se $f(x,y) = x^3 + x^2 y^3 - 2y^2$, determine $f_x(2,1)$ e $f_{v}(2,1)$.

Respostas. $f_x(2,1)=16 e f_y(2,1)=8$

2) Se $f(x,y) = 4 - x^2 - 2y^2$, ache $f_x(1,1)$ e $f_y(1,1)$ e b) z=x Ln y; x=3t, $y=e^t$ interprete estes números como inclinações.

- **3)** Se f(x,y) = sen[x/(1+y)], calcule $\partial f/\partial x \in \partial f/\partial y$.
- 4) Determine $\partial z/\partial x$ e $\partial z/\partial y$ se z é definido implicitamente como uma função de x e y pela equação

$$x^3+y^3+z^3+6xyz=1$$

Respostas. $\partial z/\partial x = -(y^2 + 2yz)/(z^2 + 2xy)$ $\partial z/\partial y = -(y^2 + 2xz)/(z^2 + 2xy)$

5) Determine f_x , f_y e f_z se $f(x,y,z)=e^{xy}$ Ln z.

Respostas. f_x ,=ye^{xy} Ln z, f_y = xe^{xy} Ln z e f_z =e^{xy} / z

- 6) Para cada uma das seguintes funções, calcule as derivadas parciais de primeira ordem f_x e f_y:
- a) $f(x,y) = 2x^3y + 3xy^2 + y/x$
- b) $f(x,y)=(xy^2+1)^5$

- 7) Para cada uma das funções, calcule as derivadas parciais de segunda ordem f_{xx} , f_{yy} , f_{xy} , f_{yx} .
- a) $f(x,y)=x^2+y^3-2xy^2$
- b) f(x,y)=x Ln y

se seu comprimento é de 8 pés e está crescendo a 3 pés/s, enquanto que sua largura é de 6 pés e está crescendo? Anton p. 349

9) Mostre que $f(x,y)=xe^{xy}$ é diferenciável em (1,0) e determine sua linearização ali. Em seguida use a linearização para aproximar f(1,1;-0,1).

> a) $f_x=e^{xy}+xye^{xy}$, $f_y=x^2e^{xy}$. b) L(x,y)=x+yc) f(1,-1,-0,1)=1

- 10) a) Se $z=f(x,y)=x^2+3xy-y^2$, determine o diferencial
- b) Se x varia de 2 a 2,05 e y varia de 3 a 2,96,

compare os valores de Δz e dz.

a) dz = (2x+3y)dx+(3x-2y)dyb) $\Delta z = 0.6449$

2ª Parte. Regra da cadeia e Teorema da função implícita.

- 1) Use a regra da cadeia para calcular dz/dt.
- a) $z=x^3-3xy^2$; x=2t, $y=t^2$

Respostas. $f_x(1,1)=-2$ e $f_y(1,1)=-4$ **2)** Calcule dz/dt, sendo $z=x^2++3x+1$, x=2t+1 e $y=t^2$.

R: $18t^2 + 14t + 4$ Solução. $dz/dt = \partial z/\partial x.dx/dt + \partial z/\partial y.dy/dt$

3ª Parte. Derivadas direcionais e vetor gradiente.

1) Determine o gradiente de $f(x,y)=3x^2y$ no ponto (1,2) e use-o para calcular a derivada direcional na direção do vetor a=3i+4j. Anton p.362

R: $D_{ij}f(1,2)=48/5$

2) Seja $f(x,y)=x^2e^y$. Determine o valor máximo de uma derivada direcional em (-2,0), e determine o vetor unitário na direção do qual o valor máximo ocorre.

Anton p.362

R: a) grad $f(-2,0) = 4.(3)^{1/2}$ b) $\hat{\mathbf{u}} = \mathbf{i}/(2)^{1/2} + \mathbf{i}/(2)^{1/2}$

3) Determine a derivada direcional de f(x,y,z)=x2yyz3+z no ponto P(1,-2,0) na direção do vetor a=2i+j-2k e determine a taxa máxima de crescimento de f em p. Anton p.369

R: a) $D_u f(1,-2,0) = -3$ b) $grad(1,-2,0) = 3(2)^{1/2}$

4ª Parte. Plano tangente e reta normal.

1) Determine uma equação para o plano tangente e equações paramétricas para a reta normal à 8) A que taxa está variando a área de um retângulo superfície z=x²y no ponto (2,1,4).(Anton v.2p.354)

R: a) 4x+4y-z=8 b) x=2+4t, y=1+4t, z=4-t

2) Determine o plano tangente ao parabolóide R: 34 pés/s $z=2x^2+y^2$ no ponto (1, 1,3).

R: z=4x+2y-3