

VOTING PROCEDURE

#nodes = 5#messages exchanged = 5*5= 25

#nodes = 5 #messages exchanged = 5*5 = 25

- Vote value based on the history of the node.
- Total vote value also changes.
- Total vote = 5
- Vote/node = 1
- hf = history factor
- d = denominator
- Total vote(t) = $\sum hf * LCM(d)$
- Votes values = LCM(d) * hf
 - LCM = 60
 - t = (190/60)*60 = 190
 - A = 4/5 * 60 = 48
 - B = 2/3 * 60 = 40
 - C = 3/3 * 60 = 60
 - D = 2/4 * 60 = 30
 - E = 1/5 * 60 = 12

UNSUCCESSFUL ELECTIONS

ODD NODES

#possible voting = $(n-1)^n$

#possible chains = (n-1)!

Unsuccessful Election Probability

$$=\frac{(n-1)!}{(n-1)^n}$$

EVEN NODES

#possible voting = $(n-1)^n$

let a non-trivial factor of n be f_i

#possible unsuccessful elections = $\sum_{n=1}^{\infty} (n-1)!$

$$(n-1)! + \sum \frac{(n-1)!}{fi!} = c$$

Unsuccessful Election Probability

$$=\frac{c}{(n-1)^n}$$

Probability of Unsuccessful Election for odd nodes

Probability of Unsuccessful Election for even nodes

Probability of Unsuccessful Election for odd nodes

Probability of Unsuccessful Election for even nodes

2 LEVEL VOTING

Traditional Election:

```
#nodes = 25
#messages = 25*25 = 625
```

2 level Election:

```
#nodes = 25
#groups = 5
#members/group = 5
```

```
#messages/group = 5*5 = 25
#messages at 1st level = 25*5 = 125
```

#messages by group electives = 5*5 = 25

#total messages = 125 + 25 = 150

Messages reduces by a factor of 625/150 = 4.16667

MESSAGE REDUCTION FACTOR FOR N NODES

Traditional Voting

$$\#$$
 nodes $= n$
 $\#$ messages $= n^2$

$f = \frac{n^2}{n(\sqrt{n} + 1)}$ $= \frac{n}{\sqrt{n} + 1} = O(\sqrt{n})$

2 Level Voting

$$\#$$
 nodes $= n$
 $\#$ groups $= \sqrt{n}$
 $\#$ nodes/group $= \sqrt{n}$

```
# messages/group =\sqrt{n}^2 = n

# messages within all groups = n\sqrt{n}

# messages by group electives = \sqrt{n}^2 = n

#total messages = (n\sqrt{n} + n)

= n(\sqrt{n} + 1)
```

Number of Message Reduction Factor compared to traditional voting

FAULT TOLERANCE

A traditional election of n nodes can tolerate $\lfloor n-1 \rfloor/2$ byzantine nodes.

- Let there be n nodes and $m=\sqrt{n}$ groups with each having m nodes.
- At second level there will be m electives from each of the m groups elected from the first level.
- Second level can be considered as a traditional voting mechanism for electives, so we can tolerate at worst $\frac{\lfloor m-1 \rfloor}{2}$ elected byzantine nodes out of m nodes.
- Let us consider all the nodes(m) of these $\frac{\lfloor m-1 \rfloor}{2}$ groups of electives are byzantine, which makes $\frac{m\lfloor m-1 \rfloor}{2}$ nodes byzantine.
- From each of the remaining $\left(m-\frac{\lfloor m-1\rfloor}{2}\right)$ we can tolerate $\frac{\lfloor m-1\rfloor}{2}$ nodes, which makes $\left(m-\frac{\lfloor m-1\rfloor}{2}\right)\left(\frac{\lfloor m-1\rfloor}{2}\right)$ more byzantine nodes.

$$ft = \left(2m - \frac{\lfloor m-1\rfloor}{2}\right) \left(\frac{\lfloor m-1\rfloor}{2}\right)$$

THANKYOU