

[ES-7860_111018-CH]

AU7860 SDK 使用说明

V0.1

目录

AU7860) SDK 概述	1
1.	AU7860 的特点及系统功能	1
2.	AU7860 软件的层次	2
3.	AU7860 SDK 包	Acc. 100 AV
4.	AU7860 软件主流程	
GPIO 应	7用说明	7
1.	GPIO 复用关系	7
2.	普通 GPIO 的使用	8
3.	上下拉电阻的配置及特点	8
4.	特殊应用	9
ADC 应	用说明	10
1.	如何设置 GPIO 口为 ADC 通道	10
2.	读取指定通道的 ADC 值	10
3.	芯片电源输入端电压采样	10
按键与约	特殊应用用说明如何设置 GPIO 口为 ADC 通道读取指定通道的 ADC 值芯片电源输入端电压采样エ外应用说明	11
1.	工外应用说明ADC 按键	11
	红外输入	
段码 LC	:D 接口应用说明	12
1.	LCD 接口使用流程	12
2.	应用实例	12
	用说明	
PWM点	时钟和闹钟配置	16
	PWM 接口使用方法	
2	注意事项	16

AU7860 SDK 概述

1. AU7860 的特点及系统功能

AU7860 系列是山景开发的多应用、高性能音频 SOC 芯片,片上系统基于高性能增强型 51 MCU 运行。山景提供完善的 SDK 套件,方便客户二次开发。

AU7860 SOC 及其系统具有如下特点及功能:

图 1: AU7860 系统的特点和功能

图 2: AU7860 SDK 软件功能

所有功能按逻辑和条理归类在 SDK 不同的文件夹下。

2. AU7860 软件的层次

上层应用代码将相关的底层模块组织在一起、实现高层次的逻辑功能。

上层应用代码主要有:播放流程、设备切换、主函数、FM 控制、录音控制等各种功能模式的控制代码。

上层应用代码全部以源代码的形式提供, 便于客户做二次开发。

底层驱动实现对硬件的抽象。SDK中将客户不需要关注的底层驱动打包成 LIB 库,另外,客户可能会修改的那部分底层驱动则不适合打包成 LIB 库,仍然是以源代码的形式提供,便于修改。

图 3: AU7860 SDK 软件层次

3. AU7860 SDK 包

AU7860 系统软件基本按照功能和层次划分, 存放于 SDK 不同的文件夹下, 简介如下:

文件夹	存放的主要代码	与用户相关性
config	各种系统实现的功能选择以及和该功能	选择 SDK 具备的功能, 定义功能 IO
	相关的配置,如 IO,buffer	等
device	系统模式控制代码和设备切换逻辑相关	用户增加系统模式时,需要理解模式
	的代码	增加的方法和设备切换的代码逻辑
display	显示示例。	用户可以扩充自己更丰富的显示
eeprom	如果断点记忆功能基于 24C02 E ² PROM	
	实现,这里存放了 24C02 和 I ² C 的代码	
fs	文件系统初始化,曲目和文件夹的预搜	
	索,曲目和文件夹浏览	
key	ADC 按键、旋转编码开关、IR 按键获取	用户根据产品按键的类型、数量、码
	并解析为各种系统消息	值修改对应的键值表
library	各硬件模块驱动	
line-in	LINE-IN (AUX-IN)模式控制示例	
otg	USB读卡器模式、iPhone USB模式、USB	
	声卡模式控制示例	
play	播放控制逻辑,曲目信息、歌词同步显示	

	逻辑	
radio	FM 模式示例	
record	录音和回放模式示例	
rtc	时钟和日历模式示例	
system	系统前台总控制代码含 main()函数,系统	
	后台处理控制,断点记忆功能代码等	

表 1: SDK 包文件夹说明

各文件夹下包含的".c"和".h"文件,详见 SDK 软件包。

4. AU7860 软件主流程

AU7860 系统软件采用前后台方式构建和运行。

sysctrl.c 文件中的 main()函数实现了系统前台的主要功能模块的大循环,如图 4。

interrupt.c 文件中的几个函数实现了系统后台的几个中断服务功能,如图 5。

系统各功能模块内部多数采用状态机结构,各功能模块间采用消息传递和少量全局变量机制。

图 4: 系统前台主流程

图 5: 系统后台中断服务

系统各模块的使用说明见随后各章节。

GPIO 应用说明

1. GPIO 复用关系

AU7860 共有 5 组 GPIO,除了可以作为普通 GPIO 使用外,还可以复用为其它功能,具体复用关系见下表 2。如何配置 IO 口的功能角色请参考 SDK 中的"gpio.h"文件。

特别注意,多数 GPIO 口被多种功能复用,必须保证同一时刻一个 GPIO 口只扮演一种功能角稳。

IO 名称	普通 GPIO	ADC IO	LCD IO	SD 和 SPI IO	FM-IN IO	PWM IO	其它功能 IO
GPIO_A[0]		ADC_CHANNEL_A0					fast_uart_txd(o)
GPIO_A[1]		ADC_CHANNEL_A1					fast_uart_rxd(i)
GPIO_A[2]	<u> </u>	ADC_CHANNEL_A2					
GPIO_A[3]				SD_DAT(io)		W	
GPIO_A[4]	上 Γ 拉 电 阻 円 配			SD_CMD(io)			
GPIO_A[5]	直,刀弧羽之怕			SD_SCK(o)	/ W		
GPIO_A[6]					FM-IN_1R		
GPIO_A[7]					FM-IN_1L		
GPIO_B[0]			LCD0				fast_uart_txd(o) B 口与 A 口不能同 时作为串口使用
GPIO_B[1]	增强电流驱动力的 双向 3.3V IO,上下		LCD1				fast_uart_rxd(i) B 口与 A 口不能同 时作为串口使用
GPIO_B[2]	拉电阻可配置,分		LCD2				8051_uart_txd(o)
GPIO_B[3]	强弱 2 档,可直推		LCD3				8051_uart_rxd(i)
GPIO_B[4]	LED 段码屏		LCD4	SPI_MISO(i)			
GPIO_B[5]			LCD5	SPI_SCK(o)			
GPIO_B[6]		<i>#</i>	LCD6	SPI_MOSI(o)			
GPIO_B[7]		7	LCD7				
GPIO_C[0]	带中断触发的普通 双向 3.3V IO, 上下				FM-IN_2R	PWM_CH_C0	可做外部唤醒 IO
GPIO_C[†]	拉电阻可配置,分 强弱2档;				FM-IN_2L	PWM_CH_C1	可做外部唤醒 IO
GPIO_C[2]	带上拉,带中断触 发,且耐压达 5V						可做外部唤醒 IO
0. 10_0[2]	的单纯输入口						A BOX I BL XHIII
	普通双向 3.3V IO,					PWM_CH_D0	
GPIO_D[0]	上下拉电阻可配		LCD8			不 能 与	
0. 10_D[0]	置,		2000			PWM_CH_C0	
	分强弱 2 档					同时使用	

GPIO_D[1]		ADC_CHANNEL_D1			PWM_CH_D1 不能与 PWM_CH_C1 同时使用	
GPIO_D[2]			LCD9		PWM_CH_D2	
GPIO_D[3]			LCD10		PWM_CH_D3	
GPIO_D[4]			LCD11			
GPIO_D[5]			LCD12			4
GPIO_D[6]			LCD13			
GPIO_D[7]			LCD14			
GPIO_E[0]	普通双向 3.3V IO,	ADC_CHANNEL_E0				
GPIO_E[1]	上下拉电阻可配	ADC_CHANNEL_E1				<u> </u>
GPIO_E[2]	置,	ADC_CHANNEL_E2				5S_RST_KEY1
GPIO_E[3]	分强弱2档	ADC_CHANNEL_E3			<i></i>	5S_RST_KEY2
GPIO_E[4]		ADC_CHANNEL_E4				BOOSTER_CTRL

表 2: GPIO 复用关系

注释:

FM-IN_R,FM-IN_L,用于连接 FM 模拟音源 R 和 L 声道。 5S_RST_KEY1,5S_RST_KEY2,用于长按 5 秒复位系统。 BOOSTER_CTRL,用于 DC-DC booster 的 PWM 控制信号输出。 各 IO 的详细连接方式,请参考系统应用指南和参考设计图纸。

本章简介普通 GPIO 口的特性和注意事项,作为其它功能 IO 的使用祥见各功能章节。

2. 普通 GPIO 的使用

SDK 提供几个 API 函数对 GPIO 进行配置和读写操作,详见"gpio.h"文件。

注意:将普通 GPIO 配置为其它功能 IO 之后,如果需要重新配置为普通 GPIO 使用,需要调用相应的函数或者配置对应寄存器。

3. 上下拉电阻的配置及特点

内部上下拉电阻设置的真值表如下:

GPIO_X_PU	GPIO_X_PD	功能
0	0	作为数字信号接口(上拉有效)
1	1	作为数字信号接口(下拉有效)
1	0	作为数字信号接口(无上下拉)

注: X可以是A/B/C/D/E口。

AU7860 芯片, GPIO 上的电平≤1.40V 判断为逻辑 0, ≥1.60V 判断为逻辑 1, 设逻辑阀值 Vth≈1.5V, 针对于该 Vth 值:

弱上拉/下拉阻值(约): 95K

强上拉/下拉阻值(约): 28K

Shanghai Mountain View Silicon Technology Co., Ltd.

强、弱两档通过 GPIO_X_DS 寄存器配置,相应位为 1 时为强档。X 可以是 A/B/C/D/E 口。

4. 特殊应用

使用 GPIO 捕获外部信号并产生中断。 直接操作 GPIO 的控制寄存器。

ADC 应用说明

AU7860 集成 12 位精度的 ADC 硬件单元,支持共 12 路内部和外部模拟通道采样,包括:

- 9路外部 IO端口信号采样,详见 GPIO 复用关系表。
- 3 路内部信号采样。含,音频输出左右声道 (ADC_CHANNEL_AUDIO_L 和 ADC_CHANNEL_AUDIO_R),常用于简单音频频谱显示; 1 路芯片电源输入端电压采样,用于检测显示系统电源电压。

1. 如何设置 GPIO 口为 ADC 通道

使用 GPIO 口作为 ADC 通道时,GPIO 的输出控制寄存器使能位为 0,上拉电阻控制位为 0,下拉电阻控制位为 1,对应的 GPIO 口才能正确进入 ADC 模式。比如,设置 GPIO A1 为 ADC 通道,需要使用以下代码:

ClrGpioRegBit (GPIO_A_OE, 1<<1); //设置输出使能位为 0 ClrGpioRegBit (GPIO_A_PU, 1<<1); //设置上拉电阻控制位为 0 SetGpioRegBit (GPIO_A_PD, 1<<1); //设置下拉电阻控制位为 1

3路内部信号采样无需进行上述设置。

2. 读取指定通道的 ADC 值

函数接口请参考 SDK 中的 "adc.h"。

一个 API 函数对指定通道进行 ADC 采样,输出 0-4095 的采样值。当然,输出值与参考电压源的选择也有关系,参考电压有 2 种,ADC_VREF_BG24 和 ADC_VREF_AVDD33,它们的区别如下:

宏定义	参考电压	支持的输入电压范围	理论输出采样值
ADC_VREF_BG24	内部 2.4V 稳压源	0~2.4V	(Vin/2.4)*4096
ADC_VREF_AVDD33	AVDD33	0~AVDD33	(Vin/AVDD33)*4096

使用何种参考电压取决于具体应用。

3. 芯片电源输入端电压采样

电源输入端 LDOIN 可检测的电压范围从 3.3V 至 4.6V。在"adc.h"中有 API 函数,返回该电压值,单位是毫伏。返回值范围为 3300~4600。此函数建议 1 秒以上调用一次,频繁调用会增加芯片功耗。

按键与红外应用说明

7860 SDK 中实现的按键驱动有 ADC 按键、IR 按键和旋转编码开关。 SDK 为不同的按键输入提供统一的接口,请参考"key.h"。 在 3 种按键功能都工作情况下,SDK 的默认逻辑查询顺序是: ADC 按键 → 旋转编码开关 → IR 按键。

1. ADC 按键

SDK 中的 ADC 驱动,即 "adc_key.c" 针对 AU7860 开发板系统的 ADC 按键电路设计。按键动作与事件的对应关系定义在 "adc_key.c"中的一个 2 维数组内。用户根据实际产品电路调整消抖、按键与 ADC 值取值范围等,以及调整按键动作与消息事件的映射关系。

2. 红外输入

SDK中的IR驱动,即"ir_key.c"针对AU7860开发板系统的IR遥控器及电路设计,IR接收头连接到GPIO_C[2]口,兼容5V和3.3V两种电压的IR接收头。

IR 遥控器的键值定义在"adc_key.c"中的一个1维数组内,厂商编号由宏定义。按键动作与消息事件的对应关系定义在"adc_key.c"中的一个2维数组内。用户根据实际使用的IR 遥控器,修改IR 键值表和厂商编号宏定义。

段码 LCD 接口应用说明

AU7860 提供 15 个段码 LCD IO 口, 具体见 GPIO 复用关系章节。 支持:

- 1/2 偏压、1/3 偏压、1/4 偏压
- 8 种 LCD 工作电压选择,包括 2.6V, 2.7V, 2.8V, 2.9V, 3.0V, 3.1V, 3.2V, 3.3V。 另外, AU7860 支持休眠模式下刷屏。

1. LCD 接口使用流程

流程简图:

图 6: LCD 接口使用流程

API 函数及其使用方法,请参考 SDK 中的"lcdseg.h"文件。

2. 应用实例

假如使用的 LCD 屏的资料如下:

● 初始化

COM2

COM3

COM4

COM2

COM3

COM4

该液晶屏 4 个 COM 口, 9 个 SEG 口, 偏压为 1/3, 工作电压为 3.3V。假设液晶屏的管脚和芯片的管脚连接关系如下:

PIN1(COM1)	PIN2(COM2)	PIN3(COM3)	PIN4(COM4)	PIN5(SEG1)	PIN6(SEG2)	PIN7(SEG3)	PIN8(SEG4)
LCD1	LCD2	LCD3	LCD4	LCD5	LCD6	LCD7	LCD8

PIN9(SEG5)	PIN10(SEG6)	PIN11(SEG7)	PIN12(SEG8)	PIN13(SEG9)	PIN14(SEG10)	PIN15(SEG11)
LCD9	LCD10	LCD11	LCD12	LCD13	LCD14	LCD15

那么初始化 LCD 显示模块: LcdInit (0x3fe0, 0x001e, LCD_BIAS_3, VLCD_3V3)。

1G

1E

1B

1C

2G

2E

2B

2C

3G

3E

S3

3B

3C

4G

4E

P1

4B

4C

S9

S10

S4

S5

S12

S13

S14

● 更新显示缓存

由于使用 9 个 SEG 口,每个 COM 需要占用 2 个 byte 的 Buf,但只有 bit0~bit8 有效。

举例:如果显示"1234"和"USB",电池显示满格,那么各个段位的点亮情况如下(1为亮,0为灭):

PIN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
COM1				COM1	0	0	0	1	0	1	1	0	1	0	0
COM2			COM2		0	1	1	1	1	1	1	1	1	0	0
СОМ3		СОМЗ			0	1	1	0	0	1	0	1	1	0	0
COM4	COM4				0	0	1	1	0	1	0	0	0	0	1

对应的 Buf 数据应该为:

COM1 对应 Buf[0:1]: 0x0168 COM2 对应 Buf[2:3]: 0x01FE

COM3 对应 Buf[4:5]: 0x01A6 COM4 对应 Buf[6:7]: 0x042C

因此,用如下代码:

BYTE Buf[8] = {0x01, 0x68, 0x01, 0xFE, 0x01, 0xA6, 0x04, 0x2C}; LcdSetData(Buf);

RTC 应用说明

AU7860 集成 RTC 硬件单元, RTC 能够为系统提供以下功能:

- 实时时钟
- 最多8个闹钟
- 休眠模式下的闹钟唤醒

1. 时钟和闹钟配置

针对不同的应用需求,系统提供2套API函数,详见"rtc.h"文件。

应用 1: 需要年、月、日、时、分、秒、星期设置和读取,闹钟模式支持每天、每周和单次 3 种的应用;

应用 2: 仅需要时、分、秒设置和读取,闹钟模式仅支持每天和单次 2 种的应用。

关于闹钟标志获取、闹钟清除和关闭的 API 函数,也详见"rtc.h"文件。

注意: 针对应用 1 有效的时间设定范围为 1980 年 1 月 1 日 0 时 0 分 0 秒到 2099 年 12 月 31 日 23 时 59 分 59 秒。

PWM 应用说明

AU7860 支持 4 路 PWM 通道的分别设置,并能同时输出,可应用于触摸屏时钟,蜂鸣器,LED 呼吸效果等。 PWM 通道与 GPIO 的复用关系,详见 GPIO 复用关系章节。

1. PWM 接口使用方法

具体 API 函数及使用方法,请参考"pwm.h"。

2. 注意事项

AU7860 的 PWM 的输出频率不受系统分频的影响。