Midterm Exam

Subject: Probability Theory Period: 2016.2

1. Let X and Y be independent real random variables with $X \sim \exp(\alpha)$ and $Y \sim \exp(\beta)$. Show that

$$\mathbf{P}[X < Y] = \frac{\alpha}{\alpha + \beta}.$$

- 2. Let A_1, A_2, \ldots be independent events. Let X be a real random variable which is $\sigma(A_n, A_{n+1}, \ldots)$ -measurable for each $n \in \mathbb{N}$. Prove that X is deterministic.
- 3. Let A_1, A_2, \ldots be independent events, let $x \in \mathbb{R}$, and let

$$S_x = \left(\lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{A_i} \le x\right).$$

Prove that $\mathbf{P}(S_x)$ must equal 0 or 1.

- 4. Let X_1, X_2, X_3 be independent real random variables. Prove that X_1, X_2, X_3 are deterministic if $X_1 + X_2 + X_3$ is.
- 5. (Box–Muller method) Let U and V be independent and uniformly distributed on [0,1]. Define

$$X := \sqrt{-2\log(U)}\cos(2\pi V)$$
 and $Y := \sqrt{-2\log(U)}\sin(2\pi V)$.

Show that X and Y are independent with distribution $\mathcal{N}_{0,1}$.

6. Toss a coin with $\mathbf{P}[\text{Heads}] = p$ repeatedly. Let A_k be the event that k or more consecutive heads occurs amongst the tosses numbered $2^k, 2^k + 1, \dots, 2^{k+1} - 1$. Show that

$$\mathbf{P}[A_k \quad \text{i.o.}] = \begin{cases} 1 & \text{if } p \ge \frac{1}{2} \\ 0 & \text{if } p < \frac{1}{2}. \end{cases}$$

- 7. Let X_1, \ldots, X_n be independent and symmetric real random variables and let $S = X_1 + \cdots + X_n$. Show that
 - 1. for all $x \in \mathbb{R}$, $\mathbf{P}[S \ge x] = \mathbf{P}[S \le -x]$,
 - 2. is the conclusion necessarily true without the assumption of independence?

Thursday, October 13