Universidad Nacional Autónoma de México

Seminario de Tesis

Cálculos cuánticos de hidratación de lantánidos

Braulio Joel Rojas Mayoral

Septiembre de 2012

 Tab la 1: Cálculos hechos con dos DFT para ser comparados con los datos BCL

LnDFTBase	$\langle r_{Ln-O} \rangle$	$\Delta_{ m hyd} { m H}$	$\Delta_{\mathrm{hyd}}\mathrm{H}_{cp}$
La1+0B3P86VQZ	2.2965	-404.427081	-404.102876
La1+0TPSShVQZ	2.3064	-401.859492	-400.928329
Ce1+0B3P86VQZ	2.2761	-374.249702	-373.721492
Ce1+0TPSShVQZ	2.2864	-373.996352	-373.430462
Lu1+0B3P86VQZ	2.093	-511.468829	-511.196175
Lu1+0TPSShVQZ	2.1039	-509.252533	-508.744010

Tabla 2: Cálculos BCL para el sistema de ${\rm La^{3+}}$ y una molécula agua, usando el el pseudo potencial de 28 electrones de Stuttgart y la correspondiente base para La y las bases AUG-cc-pViZ (i=D, T, Q y 5) para la moécula de agua.

Sistema	$\langle r_{Ln-O} \rangle$	$\Delta_{ m hyd} { m H}$	$\Delta_{\rm hyd} H_{cp}$
La1+0MP2CaoDZ	2.2958	-396.35664	-388.76668
La1+0MP2CaoTZ	2.2867	-398.51879	-394.17115
La1+0MP2CaoQZ	2.2802	-401.72554	-397.57012
La1+0MP2Cao5Z	2.2745	-405.37835	-397.97437

Figura 1: Gráfica de los datos de la tabla 2, distancia del Lantano al oxígeno, en función del tamaño de la base de la molécula de agua.

Figura 2: Gráfica de los datos de la tabla 2, energía de hitratación del Lantano, en función del tamaño de la base de la molécula del agua.

Tabla 3: Cálculos BCL para el sistema de Lu $^{3+}$ y una molécula agua, usando el el pseudo potencial de 28 electrones de Stuttgart y la correspondiente base para Lu y las bases AUG-cc-pViZ (i=D, T, Q y 5) para la moécula de agua.

		- \	,
Sistema	$\langle r_{Ln-O} \rangle$	$\Delta_{ m hyd} H$	$\Delta_{\mathrm{hyd}}\mathrm{H}_{cp}$
Lu1+0MP2CaoDZ	2.0715	-516.81044	-506.30335
Lu1+0MP2CaoTZ	2.0658	-520.04478	-512.23601
Lu1+0MP2CaoQZ	2.0551	-525.39512	-514.69588
Lu1+0MP2Cao5Z	2.0402	-532.78832	-516.18853

Tabla 4: Cálculos BCL para el sistema de ${\rm La^{3+}}$ y una molécula agua, usando el el pseudo potencial de 28 electrones de Stuttgart y la correspondiente base para La, el pseudopotencial de Stuttgart para el oxígeno y las bases AUG-cc-pViZ (i=D, T, Q y 5) para el hidrógeno.

Sistema	$\langle r_{Ln-O} \rangle$	$\Delta_{ m hyd} { m H}$	$\Delta_{\mathrm{hyd}}\mathrm{H}_{cp}$
La1+0MP2CaBeDZ	2.2982	-401.35549	-388.37423
La1+0MP2CaBeTZ	2.3154	-387.60339	-379.14067
La1+0MP2CaBeQZ	2.3186	-382.93170	-376.29999
La1+0MP2CaBe5Z	2.3176	-382.21094	-376.33214

Figura 3: Gráfica de los datos de la tabla 3, distancia del Lutecio al oxígeno, en función del tamaño de la base de la molécula de agua.

Figura 4: Gráfica de los datos de la tabla 3, energía de hitratación del Lutecio, en función del tamaño de la base de la molécula del agua.

Tabla 5: Cálculos BCL para el sistema de Lu^{3+} y una molécula agua, usando el el pseudo potencial de 28 electrones de Stuttgart y la correspondiente base para La, el pseudopotencial de Stuttgart para el oxígeno y las bases AUG-cc-pViZ (i=D, T, Q y 5) para el hidrógeno.

Sistema	$\langle r_{Ln-O} \rangle$	$\Delta_{\mathrm{hyd}}\mathrm{H}$	$\Delta_{\mathrm{hyd}}\mathrm{H}_{cp}$
Lu1+0MP2CaBeDZ	2.0599	-519.94047	-505.15755
Lu1+0MP2CaBeTZ	2.0786	-505.94920	-494.93235
Lu1+0MP2CaBeQZ	2.0851	-501.30933	-491.64679
Lu1+0MP2CaBe5Z	2.0877	-500.97550	-491.26398

Tabla 6: Cálculos cuánticos de la distancia promedio lantánido- oxígeno a diferentes niveles y con diferentes bases (Las referencias están indicas por los superíndices entre corchetes).

Ln	MP2(VDZ)	B3P86(VQZ)	$B3LYP(RSC28)^{[2]}$	SCRF(MP2)	$B3P86(CEP)^{[1]}$	$\operatorname{Exp}^{[1]}$	$\operatorname{Exp}^{[2]}$
$La(H_2O)_9^{3+}$	2.61957	2.60331	2.62-2.60*				$2.580^{[6]}$
$Ce(H_2O)_9^{3+}$	2.59853		2.59	2.59606	2.5641	$2.52^{[3]}$	
$Eu(H_2O)_9^{3+}$	2.51671		2.51		2.47	$2.42^{[4]}$	$2.457^{[6]}$
$Gd(H_2O)_9^{3+}$	2.50280	2.49365	$2.50 \text{-} 2.52^*$		2.48	$2.41^{[5]}$	$2.446^{[6]}$
$Gd(H_2O)_8^{3+}$	2.46092		2.45-2.43**			$2.41^{[5]}$	$2.446^{[6]}$
$Lu(H_2O)_9^{3+}$	2.42330	2.41997	2.42	2.38347			
$Lu(H_2O)_8^{3+}$	2.37370		$2.37 2.35^{**}$				

^{*} Cálculos considerando la segunda esfera de hidratación $Ln(H_2O)_9(H_2O)_{12}^{3+}$

^{**} Cálculos considerando la segunda esfera de hidratación $\rm Ln(H_2O)_8(H_2O)^{3+}_{14}$

Figura 5: Gráfica de los datos de la tabla 4, distancia del Lantano al oxígeno, en función del tamaño de la base del hidrógeno.

Figura 6: Gráfica de los datos de la tabla 4, energía de hitratación del Lantano, en función del tamaño de la base del hidrógeno.

Tabla 7: Cálculos cuánticos de la distancia promedio lantánido- oxígeno a diferentes niveles y con diferentes bases (Las referencias están indicas por los superíndices entre corchetes).

	-	*	,
Ln	MP2(Cao)	MP2(CEP-31G)	B3P86(CEP)
$La(H_2O)_9^{3+}$	2.57983	2.64479	2.60856
$Lu(H_2O)_9^{3+}$	2.36954	2.41428	

Figura 7: Gráfica de los datos de la tabla 5, distancia del Lutecio al oxígeno, en función del tamaño de la base del hidrógeno.

Figura 8: Gráfica de los datos de la tabla 5, energía de hitratación del Lutecio, en función del tamaño de la base del hidrógeno.

Referencias

- [1] V. Buzko, I. Sukhno, A. Polushin y D. Kashaev, Int. J. Quantum Chem. 111: 11 (2011).
- [2] J. Kuta y A. E. Clark *Inor. Chem.* **49**: 17 (2010).
- [3] S. Ishiguro, Y. Umebayashi, Coord. Chem. Rev. 226:103 (2002).
- [4] A. G. Allen, J. J. Bucher, D. K. Shuh, N. M. Edelstein y I. Craig, *Inorg. Chem.* **39**: 595 (2000).
- [5] T. Yamaguchi, M. Nomura, H. Wakita, H. Ohtaki, J. Chem. Phys. 89: 5153 (1988).
- [6] R. E. Gerkin y W. J. Reppart Acta Crystallogr. C40: 781 (1984). E. Basurto. J. Phys. D: Appl. Phys. 44 (2011) 342001.