•		/		
	PC	tur	P.	9 1

CS 59006. RL MDPs

Ayende

- UCRL2 (Pebe, josch Ronald 2010)

long term return

what is oracles what our algorithm

- Diameter D < 00.

$$T_b(n, c) = \sum_{i=1}^{t} T_i X_i = n, A_i = c$$

$$P_{t}(n'|n_{1}\alpha) = \frac{\sum_{i=1}^{t} \prod_{j=1}^{t} X_{j=1}^{t} x_{i} = \alpha_{i} X_{i+1} = n' t}{\max_{j=1}^{t} \prod_{j=1}^{t} (n_{1}\alpha) t}$$

- multinomial distribution PEDd - ontome ei w.p. Pi

This is A die with a sides, side i is the outcome with probability P; If we roll this die n times

what is P? I Ze $= \hat{P}$ $\hat{P}_i = \frac{\hat{Z}I(x_i=i)}{n}$ n +:1 x_+

we hope
$$\hat{p} \approx p$$
 $e_i = (i + 1)$ ab ibh index

Theorem (Concentration on simplex)

[Weissman et al. 2003]

Let X1, - X be i.i.d sequence of random

vonichles on (St, F, IP) such that X1. Susy 1.- my

Let $P_i = P(X_i = i)$ and $\hat{P}_i = \frac{1}{n} \sum_{b=1}^{n} \sum_{b=1}^{n} X_b = i\hat{Y}_b$

Then:
$$|P(IP_P)| > \sqrt{2m \log 2}$$

Now back to MDPs and UCRL2:

$$\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{2} \sum_{k=1}^{\infty} \frac{1$$

$$= C_{b}^{8} = \langle P' = P'(-1n_{1}a) \rangle ; P'(-1n_{1}a) \in C_{b}^{8}(n_{1}a) \cdot \forall (n_{1}a) \in X_{x}A \rangle$$

$$= The set ab Plansable model.$$

$$= \langle (2n_{1}a) \rangle \langle (2n_{1}$$

We wont the true probability kernel P to be in C & for all T, with probability at least 1-8.

UCRL 2:
- start with a policy
- Collect samples
- stop when the number samples ab least for
a per ab (h, a) is doubled,
- compute $C_b^{\delta}()$ and P_t - compute optimistic model P_t
- compute optimistic model Pt
- Compute TIK, the optimistic Policy
-Then start new epoch k+1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
If Te(Xb,Ab) < 2/Ty-! (Xb/Ab), you continue
otherwise stop the epoch.
How to come up with optimistic model.
we want R= max max max P(P') R= R PEC n PEC
7 PK
and $P + V_{k}(n) = max r(n a)$ $K + k$ $N = max r(n a)$ $N = max r(n a)$ $N = max r(n a)$
4 DIK NEA
+< \(\tilde{\gamma}(\cdot)\ma_1\v,\)

Define Mk, the extended MDP with the
same state space as M, but extended action space
$A_n = \{(\alpha, P'): \alpha \in A, P': C_P(n_1 \alpha)\}$
with the reward $r(n,(a,P))=r(n,a)$
and transition $P(- n , (a, p')) = P'(- n , a)$

For any Policy IT in M, there exist IT on M

such that for any $n \rightarrow q=D(n)$ on M $D(n), P = \overline{D}(n)$ on \overline{M} $D(\overline{M}) < D$

Solve for P and V af M, then J_{K} follows $J_{K}(n) \in Coverman} \times (n_{1}q) + m_{qh} \langle p'(n_{1}q), V \rangle$ $q \in A$ $p'(n_{1}q) \in C^{*}(n_{1}q)$

There is an efficient aly to solve it (UCPL 2)

Lemma. For a (P,V), satistying Bellman optimality equation:
optimality equation:
Span (V) (D WRL2, Chp38 Randil book]
b _{e,k}
Solving Bellman optimals for MK sive
K, PK, Vx. Since VK is not unique
and span (Vic) & D, we choose Vic s.t. 11/klos D
Proof of regret: RKCDIXIVIAIT lay (TIXIW)
$\hat{x} = \sum_{t=1}^{T} (P_{t} Y(x_{t} A_{t})) = \sum_{k=1}^{K} \sum_{t=T_{k}}^{T_{k+1}-1} (P_{t} Y(x_{t} A_{t}))$
optimism step:
with probabily ub leads 1-8.
Also we know: R= r(xt) -V(xt)+ P((1xt) (xt),V)

Monday, November 2, 2020

$$R_{k} \begin{cases} \sum_{t=1}^{r_{k}} \left(-V_{k}(x_{t}) + \langle \hat{P}_{k}(\cdot|x_{t}, n_{k}(x_{t}), V_{k}) + \sum_{t=1}^{r_{k}} \left(-V_{k}(x_{t}) + \langle \hat{P}_{k}(\cdot|x_{t}, n_{k}), V_{k} \rangle + A_{1} + \sum_{t=1}^{r_{k}} \left(\hat{P}_{k}(\cdot|x_{t}, n_{k}) - \hat{P}(\cdot|x_{t}, n_{k}), V_{k} \rangle + A_{2} + \sum_{t=1}^{r_{k}} \left(V_{k}(x_{t+1}) - V_{k}(x_{t}) + \langle \hat{P}(\cdot|x_{t}, n_{k}), V_{k} \rangle + A_{2} + \sum_{t=1}^{r_{k}} \left(V_{k}(x_{t+1}) - V_{k}(x_{t}) + \langle \hat{P}(\cdot|x_{t}, n_{k}), V_{k} \rangle + A_{2} + \sum_{t=1}^{r_{k}} \left(V_{k}(x_{t+1}) - V_{k}(x_{t}) + \langle \hat{P}(\cdot|x_{t}, n_{k}), V_{k} \rangle + A_{2} + \sum_{t=1}^{r_{k}} \left(V_{k}(x_{t+1}) - V_{k}(x_{t}) + \langle \hat{P}(\cdot|x_{t}, n_{k}), V_{k} \rangle + A_{2} + \sum_{t=1}^{r_{k}} \left(V_{k}(x_{t+1}) - V_{k}(x_{t}) + \langle \hat{P}(\cdot|x_{t}, n_{k}), V_{k} \rangle + A_{2} + \sum_{t=1}^{r_{k}} \left(V_{k}(x_{t+1}) - V_{k}(x_{t}) + V_$$

Taco (nia) =	Skyl J	τ (χ, = η,	$A_1 = 9$
	セニア	4	+ ')