第七节 无穷小的比较

一 无穷小的比较

二 等价无穷小的替换

观察各极限

无穷小的比较

例如, 当 $x \to 0$ 时, x, x^2 , $\sin x, x^2 \sin \frac{1}{x}$ 都是无穷小.

$$\lim_{x\to 0}\frac{x^2}{x}=0,$$

 x^2 比x要快得多;

$$\lim_{x\to 0}\frac{\sin x}{x}=1,$$

sin x与x大致相同;

$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{x^2} = \lim_{x \to 0} \sin \frac{1}{x}$$
 不存在. 不可比.

极限不同, 反映了趋向于零的"快慢"程度不同.

定义1 设 α,β 是同一过程中的两个无穷小,且 $\alpha \neq 0$.

- (1) 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = 0$,则称 β 是比 α 高阶的无穷小,记作 $\beta = o(\alpha)$;
 - (2) 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = \infty$,则称 β 是比 α 的低阶无穷小;
- (3) 如果 $\lim \frac{\beta}{\alpha} = C(C \neq 0)$,则称 β 与 α 是同阶的无穷小;特殊地 如果 $\lim \frac{\beta}{\alpha} = 1$,则称 β 与 α 是等价的无穷小;记作 $\alpha \sim \beta$;

常用等价无穷小: 当 $x \to 0$ 时,

$$\sin x \sim x$$
, $\tan x \sim x$, $1 - \cos x \sim \frac{1}{2}x^2$,
 $\arcsin x \sim x$, $\arctan x \sim x$, $\ln(1+x) \sim x$,
 $e^x - 1 \sim x$, $(1+x)^{\mu} - 1 \sim \mu x$.

定义2 如果 $\lim \frac{\beta}{\alpha^k} = C(C \neq 0, k > 0)$,就说 β 是关于 α 的 k阶的无穷小.

例1 证明: $\exists x \to 0$ 时, $4x \tan^3 x \to x$ 的四阶无穷小.

$$\lim_{x\to 0} \frac{4x \tan^3 x}{x^4} = 4 \lim_{x\to 0} \left(\frac{\tan x}{x}\right)^3 = 4,$$

故当 $x \to 0$ 时, $4x \tan^3 x \to x$ 的四阶无穷小.

限

例2 当 $x \to 0$ 时,求 $\tan x - \sin x$ 关于x的阶数.

解
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x\to 0} \left(\frac{\tan x}{x} \cdot \frac{1 - \cos x}{x^2} \right) = \frac{1}{2},$$

 $\therefore \tan x - \sin x$ 为x的三阶无穷小.

等价无穷小替换

定理1(等价无穷小替换定理)

设 $\alpha \sim \alpha'$, $\beta \sim \beta'$ 且 $\lim \frac{\beta'}{\alpha'}$ 存在,则

$$\lim \frac{\beta}{\alpha} = \lim \frac{\beta'}{\alpha} = \lim \frac{\beta'}{\alpha'} = \lim \frac{\beta'}{\alpha'}.$$

证
$$\lim \frac{\beta}{\alpha} = \lim (\frac{\beta}{\beta'} \cdot \frac{\beta'}{\alpha'} \cdot \frac{\alpha'}{\alpha})$$

$$= \lim \frac{\beta}{\beta'} \cdot \lim \frac{\beta'}{\alpha'} \cdot \lim \frac{\alpha'}{\alpha} = \lim \frac{\beta'}{\alpha'}.$$

例3 求
$$\lim_{x\to 0} \frac{\tan^2 2x}{1-\cos x}$$
.

解 当
$$x \to 0$$
时, $1 - \cos x \sim \frac{1}{2}x^2$, $\tan 2x \sim 2x$.

原式 =
$$\lim_{x\to 0} \frac{(2x)^2}{\frac{1}{2}x^2} = 8.$$

注意 不能滥用等价无穷小代换.

对于代数和中各无穷小不能分别替换.

例4 求 $\lim_{x\to 0} \frac{\tan x - \sin x}{\sin^3 2x}$

错解 当 $x \to 0$ 时, $\tan x \sim x$, $\sin x \sim x$.

原式×
$$\lim_{x\to 0}\frac{x-x}{(2x)^3}=0.$$

$$\tan x - \sin x = \tan x (1 - \cos x) \sim \frac{1}{2}x^3$$

原式 =
$$\lim_{x\to 0} \frac{\frac{1}{2}x^3}{(2x)^3} = \frac{1}{16}$$
.

B

例5 求 $\lim_{x\to 1} \frac{x^m-1}{x^n-1}$.

解 当 $x \to 1$ 时, $x^m - 1 = (1 + (x - 1))^m - 1 \sim m(x - 1)$

 $x^n-1\sim n(x-1).$

原式 =
$$\lim_{x\to 1} \frac{m(x-1)}{n(x-1)} = \frac{m}{n}$$
.

定理2 设α,β是同一趋向过程下的两个无穷小,

则 $\alpha \sim \beta$ 的充要条件是 $\alpha - \beta = o(\beta)$ 或 $\alpha - \beta = o(\alpha)$.

证 必要性. 设 $\alpha \sim \beta$, 即 $\lim \frac{\alpha}{\beta} = 1$, 所以

$$\lim(\frac{\alpha}{\beta} - 1) = 0 \quad \text{ is } \lim\frac{\alpha - \beta}{\beta} = 0$$

$$\therefore \quad \alpha - \beta = o(\beta).$$

同理 $\alpha - \beta = o(\alpha)$.

充分性. 设
$$\alpha - \beta = o(\beta)$$
, 则 $\lim \frac{\alpha - \beta}{\beta} = 0$, 即 $\lim \frac{\alpha}{\beta} = 1$,

 $\alpha \sim \beta$.

定理2说明

(1) 如果 $\alpha = \beta + o(\beta)$,则 $\alpha \sim \beta$,所以在求极限时, 分子或分母高阶无穷小的部分可以不计.

例6 求
$$\lim_{x\to 0} \frac{\tan 5x - \cos x + 1}{\sin 3x}$$

解

- $\therefore \tan 5x \sim 5x, \ \sin 3x \sim 3x, \ 1 \cos x \sim \frac{1}{2}x^2,$
- $\therefore 1-\cos x=o(\tan 5x),$
- $\therefore \tan 5x \cos x + 1 \sim \tan 5x \sim 5x$

(2) 如果 $\alpha \sim \beta$, 则 $\alpha 与 \beta$ 可以 互为近似代替,误差 是 α 或 β 的高阶无穷小.

例如, 当 $|x| \ll 1$ 时, $\sin x \approx x$, $1 - \cos x \approx \frac{1}{2}x^2$

极 限