MAST30001 Stochastic Modelling

Tutorial Sheet 8

- 1. A CTMC $(X_t)_{t\geq 0}$ with state space $\mathcal{S}=\{1,2,3,4\}$ has non-zero transition rates $q_{1,2}=4,\ q_{2,1}=1=q_{2,4}$ and $q_{2,3}=3$. Suppose that $\mathbb{P}(X_0=1)=1$ (i.e. the chain starts in state 1), and let $T_1=\inf\{t>0:X_t\neq X_0\}$ be the first jump time of $(X_t)_{t\geq 0}$, and $T_2=\inf\{t>T_1:X_t\neq X_{T_1}\}$ denote the time of the second jump.
 - (a) Draw the transition diagram for the CTMC $(X_t)_{t\geq 0}$

- (b) Describe the communicating classes of $(X_t)_{t\geq 0}$ 3 and 4 tree absorbing states (so their out communicating classes), while 1 and 2 communication with each other COCCI. COM
- (c) Find $h_{1,3}$, the probability of ever reaching state 3.

 This is the same as for the jump chain, which has transition diagram Add Wechat powcoder

The hitting probability of state 3 is $\frac{3/5}{3/5+1/5} = 3/4$.

- (d) What is the distribution of T_1 ? exponential(4)
- (e) What is the distribution of X_{T_1} ? $X_{T_1} = 2$ with probability 1
- (f) Find $\mathbb{E}[T_2]$.

This is the expectation of the sum of the first two jump times which are respectively exponential(4) and exponential(3 + 1 + 1) random variables, so the expectation is $\frac{1}{4} + \frac{1}{3+1+1} = 9/20$.

- (g) What is the distribution of X_{T_2} ? $\mathbb{P}(X_{T_2} = 1) = \frac{1}{5} = \mathbb{P}(X_{T_2} = 4)$, while $\mathbb{P}(X_{T_2} = 3) = 3/5$
- (h) Find $m_{1,\{3,4\}}$, which is the expected time until $(X_t)_{t\geq 0}$ reaches state 3 or 4. Let $A = \{3,4\}$ then

$$m_{1,A} = \frac{1}{4} + m_{2,A}$$

$$m_{2,A} = \frac{1}{5} + \frac{1}{5}m_{1,A} + 0$$

Solving gives $m_{1,A} = 9/16$.

- (i) Find the limiting proportion of time spent in each state. This is random. The limiting proportion of time spent in state 3 is 1 with probability $h_{1,3}$, and zero with probability $1 h_{1,3}$. The limiting proportion of time spent in state 4 is 1 with probability $h_{1,4} = 1 h_{1,3}$ and zero with probability $h_{1,3}$. The limiting proportion of time spent in states 1 and 2 are zero respectively.
- 2. Let $\lambda, \mu > 0$, and consider a CTMC with state space $\mathcal{S} = \mathbb{Z}_+$ whose non-zero transition rates are $q_{i,i+1} = \lambda$ and $q_{i+1,i} = (i+1)\mu$ for each $i \in \mathbb{Z}_+$.
 - (a) Axgloi graph the project of since each state $i \ge i_0$ we wait for less than a exponential $(\lambda + \mu)$ amount of time before jumping, and we jump down with probability $\sum_{i,j} \frac{1}{\mu + \lambda} \ge \frac{1}{\mu + \lambda} = \frac{1}{\mu + \lambda}$

Therefore for all states $i \geq i_0$ (i.e. all but finitely many of the states) we have a bias (that is quarter below) and left DWV of i for each $i \geq i_0$. On the other hand $m_{i,i_0} < \infty$ for each $i < i_0$ since this is the same as the expected hitting time of i_0 starting from i for a finite-state Markov chain with state space $\{0,1,\ldots,i_0\}$. This shows that m_{i,i_0} is finite for every i, and thus the expected return time to i_0 is finite. This means that the expected return time to every state is finite, so the chain is positive recurrent.

(b) Find the stationary distribution. This is a birth and death chain so it satisfies the detailed balance equations. Thus, for each $i \in \mathbb{N}$,

$$\pi_i i\mu = \pi_{i-1}\lambda.$$

Solving gives $\pi_i = \left(\frac{\lambda}{\mu}\right)^i \frac{1}{i!} \pi_0$. Summing over $i \in \mathbb{Z}_+$ gives

$$1 = \pi_0 \sum_{i=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^i \frac{1}{i!} = \pi_0 e^{\lambda/\mu},$$

so $\pi_0 = e^{-\lambda/\mu}$ and $\pi_i = e^{-\lambda/\mu} \left(\frac{\lambda}{\mu}\right)^i \frac{1}{i!}$. So the stationary distribution is Poisson with parameter λ/μ .

(c) Find the limiting distribution, starting from initial distribution a.

This is an irreducible positive recurrent Markov chain, so the limiting distribution is π regardless of the starting distribution

- (d) Find the limiting proportion of time spent in each state. As above, this is π
- 3. (CTMCs as limits of DTMCs) Let P be a stochastic matrix with i, j-th entry $p_{i,j}$, and such that $p_{i,i} = 0$ for all i. For $(\lambda_i)_{i \in \mathcal{S}}$ and for each integer $m > \sup_{i \in \mathcal{S}} \lambda_i$, define a DTMC $(Y_n^{(m)})_{n \in \mathbb{Z}_+}$ by

$$\mathbb{P}(Y_{n+1}^{(m)} = i | Y_n^{(m)} = i) = \left(1 - \frac{\lambda_i}{m}\right),$$

and for $i \neq j$

$$\mathbb{P}(Y_{n+1}^{(m)} = j | Y_n^{(m)} = i) = \frac{\lambda_i}{m} p_{ij}.$$

Define a continuous time process (not a CTMC though) by

$$X_t^{(m)} = Y_{|mt|}^{(m)},$$

where |a| is the greatest integer not bigger than a.

- (a) What does a typical trajectory of $X^{(m)}$ look like? At what times does it jump? The chain only has jumps at times k/m for k an integer. Given the chain is in state i, it stays there for a geometric λ_i/m (> 0) number of 1/m time units $A_i \in \mathcal{F}_{i}$ the proof of these time units are the number of integer time units between jumps in the $Y^{(m)}$ chain.
- (b) Given X_t^m to show the content time $T^{(m)}(i) = \min\{t \geq 0: X_t^{(m)} \neq i\}$

As mentioned in the previous problem the $Y^{(m)}$ chain stays at state i for a geometric (λ_i/m) number of time units before jumping. Then considering the time change to get from $Y^{(m)}$ to $X^{(m)}$, the variable $mT^{(m)}(i)$ is geometric λ_i/m (>0); that is for k=1,2,...

$$\mathbb{P}(T^{(m)}(i) = k/m) = \frac{\lambda_i}{m} \left(1 - \frac{\lambda_i}{m} \right)^{k-1}.$$

- (c) As $m \to \infty$, to what distribution does that of the previous item converge? A standard calculation (do it!) shows that if Z_p is geometric p, then pZ_p converges in distribution to an exponential distribution with mean 1 as $p \to 0$. Since $mT^{(m)}(i)$ is geometric λ_i/m , $T^{(m)}(i)$ converges to an exponential variable with rate λ_i .
- (d) It turns out that $X^{(m)}$ converges (in a certain sense) as $m \to \infty$ to a continuous time Markov chain. What are its transition rates? Since the holding times converge to exponential variables as m goes to infinity, the description of the limiting chain is as follows. Given $X_0 = i$ the chain waits an exponential with rate λ_i time and then jumps to state j with probability $p_{i,j}$ (the state jumped to is independent of the time of the jump). Then the chain stays in state j and exponential λ_j amount of time and jumps to state k with probability $p_{j,k}$, and so on. Thus the transition rates are $\lambda_i p_{i,j}$ for $j \neq i$.