

مستوى:السنة الأولى من سلك الباكالوريا

- شعبة التعليم الأصيل:مسلك العلوم الشرعية و مسلك اللغة العربية
- شعبة الآداب و العلوم الإنسانية: مسلك الآداب و مسلك العلوم الإنسانية

محتوى الدرس و الأهداف القدرات المنتظرة من الدرس و التعليمات الرسمية

- المتتاليات العددية؛
- المتتاليات الحسابية؛
- المتتاليات الهندسية
- _ التعرف على متتالية حسابية أو هندسية وتحديد أساسها وحدها الأول؛
- حساب الحد العام لمتتالية هندسية أو لمتتالية
- ساب مجموع n حدا متتابعة من متتالية المقرر؛ حسابية أو متتالية هندسية؟
- استعمال المتتاليات الحسابية والمتتاليات استعمال الأدوات المعلوماتية. الهندسية في حل مسائل متنوعة.

ـ يتم تقديم مفهوم المتتاليات من خلال وضعيات

_ يعتبر أي بناء نظري لمفهوم المتتالية خارج

ـ يشكل درس المتتاليات فرصة لتعويد التلاميذ على

المتتالبات الحسابية

نشاط1: لاحظ ثم أتمم بأربعة أعداد ملائمة لتسلسل كل متتالية من المتتاليات

....., 10, 8, 6, 4, 2, 0 (1

 \dots -12, -9, -6, -3, 0, 3, 6 (2)

....., 243,81, 27,9,3,1 (3

....., $\frac{1}{32}$, $\frac{1}{16}$, $\frac{1}{8}$, $\frac{1}{4}$, $\frac{1}{2}$, 1 (4)

....., 36, 25, 16, 9, 4, 1

 $\mathbb N$ أو جزء من $\mathbb N$ ليكن I هو

 $(u_n)_{n\geq 0}$ المعرفة بالصيغة الصريحة المعرفة بالصيغة الصريحة

 $\forall n \in \mathbb{N}$ $u_n = 2n + 3$: التالية

 u_0 أحسب حدها الأول 1

 $\left(u_{n}\right)_{n\geq0}$ أحسب الحدود الأربعة الأولى للمنتالية 2

 $u_1 = 2 \times 1 + 3 = 5$ $u_0 = 2 \times 0 + 3 = 3$

 $u_3 = 2 \times 3 + 3 = 9$ $u_2 = 2 \times 2 + 3 = 4 + 3 = 7$

نلاحظ أن أن فرق حدين متتالين هو العدد 2

7 تعریف :

نقول إن r متتالية حسابية إذا وجد عدد حقيقي r بحيث :

 $\forall n \geq n_0 \quad u_{n+1} = u_n + r$

 $\left(u_{n}
ight)_{n\geq n_{0}}$ العدد الحقيقي r يسمى أساس المتتالية

: المعرفة بالصيغة الصريحة التالية $\left(u_{n}\right)_{n\geq0}$ المعرفة بالصيغة الصريحة التالية

 $\forall n \in \mathbb{N} \quad u_n = 2n-1$

 u_0 أحسب حدها الأول 1

 $(u_n)_{n>1}$ أحسب الحدود الأربعة الأولى للمتتالية .2

 $\forall n \in \mathbb{N} \quad u_{n+1} - u_n \quad \text{i.3}$

 $u_0 = 2 \times 0 - 1 = 0 - 1 = -1$

 $u_1 = 2 \times 1 - 1 = 2 - 1 = 1$

 $u_2 = 2 \times 2 - 1 = 4 - 1 = 3$

 $u_3 = 2 \times 3 - 1 = 6 - 1 = 5$

نلاحظ أن أن فرق حدين متتالين هو العدد 2

 $u_{n+1} - u_n = (2(n+1)-1)-(2n-1)=(2n+2-1)-(2n-1)$

=(2n+2-1)-(2n-1)=(2n+1)-(2n-1)=2n+1-2n+1

 $u_{n+1} - u_n = 2 = r$

r=2 : هي حسابية أساسها هي حسابية أساسها

: تمرین المتالیة العددیة (u_n) المعرفة كالتالي :

 $\forall n \in \mathbb{N} \quad u_n = 2n + 3$

 $u_{n+1} - u_n : 1$

2. ماذا تستنتج ؟

 $u_n = \frac{n+3}{4}$: المعرفة كالتالي المنتالية العددية (u_n) المعرفة كالتالي:

بين أن المتتالية (u_n) حسابية وحدد أساسها وحدها الأول

 $u_{n+1}-u_n=\frac{(n+1)+3}{4}-\frac{n+3}{4}=\frac{1}{4}=r$: <u>Item</u>

 $\frac{1}{4} = r$ ومنه المتتالية $(u_n)_{n \in I}$ هي حسابية أساسها

 $u_0 = \frac{3}{4}$: وحدها الأول

. ميغة الحد العام للمتتالية بدلالة n

 u_0 إذا كانت (u_n) متتالية حسابية أساسها r وحدها الأول

 $u_n = u_0 + nr$: فان

r اساسها متتالیهٔ حسابیهٔ اساسها $\left(u_{n}
ight)_{n\geq n_{0}}$

 $p \ge n_0$ فان : $u_n = u_p + (n-p)r$ و $u_n = u_p$

 $u_6=31$ و $r=\frac{1}{2}$ اساسها $r=\frac{1}{2}$ او u_n

الأستاذ: عثماني نجيب

 $S_2 = u_7 + u_8 + u_9 + \dots + u_{25}$: فحسب المجموع التالي : $S_1 = u_3 + u_4 + u_5 + \dots + u_{30} = (30 - 3 + 1) \frac{u_3 + u_{30}}{2} (1 : -1) \frac{u_3 + u_{30}}{2}$ $S_1 = (28) \frac{u_3 + u_{30}}{5}$ $u_0=1$ وبما أن $r=\frac{1}{2}$ وسلية أساسها وحدها الأول (u_n) $u_n = u_0 + (n-0)r$: فان $u_n = 1 + \frac{n}{2}$: $u_n = 1 + (n-0)\frac{1}{2}$: $u_n = 1 + (n-0)\frac{1}{2}$ $u_{30} = 1 + \frac{30}{2} = \frac{32}{2} = 16$: $u_3 = 1 + \frac{3}{2} = \frac{5}{2}$: each induction $u_{30} = 1 + \frac{30}{2} = \frac{32}{2} = 16$ $S_1 = (28) \frac{u_3 + u_{30}}{2} = 14 \left(\frac{5}{2} + 16 \right) = 14 \left(\frac{37}{2} \right) = 7 \times 37 = 259$ وبالنالي: $S_2 = u_7 + u_8 + u_9 + \dots + u_{25} = (25 - 7 + 1) \frac{u_7 + u_{25}}{2} = (19) \frac{u_7 + u_{25}}{2} (2$ وبما أَن (u_n) متتالية حسابية أساسها r=-2 وحدها الأول $u_n = u_0 + (n-0)r$: فان $u_0 = 4$ $u_n = 4 - 2n$: $u_n = 4 + (n-0)(-2)$: $u_n = 4 + (n-0)(-2)$ $u_7 = 4 - 2 \times 7 = 4 - 14 = -10$ $u_{25} = 4 - 2 \times 25 = 4 - 50 = -46$ و $S_2 = (19) \frac{u_7 + u_{25}}{2} = (19) \frac{-10 + -46}{2} = (19) \frac{-56}{2} = 19 \times -28 = -532$ وبالتالي: r=2 وحدها المتثالية الحسابية الحسابية الحسابية الحسابية الذي أساسها $u_0 = 3$ الأول u_{10} اکتب u_n بدلالة n وحدد (1 $S = u_1 + u_1 + u_2 + \dots + u_{10}$: المجموع التالي (2 r=2 وحدها أن $(u_{\scriptscriptstyle n})$ متثالية حسابية أساسها $u_0 = 3$ الأول $u_n=2n+3$: أي $u_n=3+2(n-0)$: فأن $u_n=u_0+(n-0)r$: فأن $u_{10} = 23$ $u_1 = 5$: each $S = u_1 + u_1 + \dots + u_{10} = (10 - 1 + 1) \frac{u_1 + u_{10}}{2} (2$ $S = 10 \frac{5+23}{2} = 10 \times \frac{28}{2} = 10 \times 14 = 140$ r=4 وحدها $\left(u_{n}\right)_{n\geq1}$ وحدها وحدها $u_0 = -2$ الأول u_6 وحدد u_1 وحدد (1 $S=u_1+u_2+u_3+\cdots+u_6$: أحسب المجموع التالي (2 r=4 أ**جوبة:** أساسها r=4 وحدها أجوبة أساسها أ $u_0 = -2$ الأول $u_n = -2 + 4(n-0)$ $u_n = u_0 + (n-0)r$ فان : $u_n = 4n - 2$ $u_6 = 22$ $u_1 = 2$: $u_6 = 22$ $S = u_1 + u_1 + \dots + u_6 = (6 - 1 + 1) \frac{u_1 + u_6}{2} (2$ $S = 6\frac{2+22}{2} = 6 \times \frac{24}{2} = 6 \times 12 = 72$

 u_{2016} أحسب u_{2015} : بدلالة u_n بدلالة u_n أحسب أ $u_n = u_0 + nr$: الدينا (u_n) حسابية اذن (1: أجوبة (1) لدينا ومنه : $u_0 = u_0 + 3$ يعني $u_0 = u_0 + 6 \times \frac{1}{2}$ ومنه $u_n = 28 + \frac{n}{2}$ يعني $u_n = u_0 + nr$ (2) $u_{2015} = 28 + \frac{2015}{2} = \frac{2071}{2}$ (3) $u_{2016} = 28 + \frac{2016}{2} = 28 + 1008 = 1036$ $u_0=5$ و بحیث r التکن $u_0=5$ متتالیة حسابیة أساسها ا u_{2016} و u_{2015} : حدد r الحسب) 2 حدد $u_n = u_0 + nr$: حسابیة اذن (u_n) لدینا (1: أجوبة ومنه : $u_{100} = u_0 + 100$ يعني $u_{100} = u_0 + 100$ يعني $u_{100} = u_0 + 100$ $u_{2015} = 5 + 2015 \times \left(-\frac{1}{2}\right)$ يعني $u_n = u_0 + nr$: حسابية اذن (u_n) (2 $u_{2015} = \frac{10-2015}{2} = \frac{-2005}{2}$ $u_{2015} = 5 - \frac{2015}{2}$ $u_{2016} = \frac{-2005}{2} + \frac{-1}{2} = \frac{-2006}{2} = -1003$ 2. مجموع حدود متتابعة لمتتالية حسابية : لتكن $(u_n)_{n\in I}$ متتالية حسابية $n \succ p \geq n_0$ خيث $S_n = u_p + u_{p+1} + u_{p+2} + \cdots + u_n$ نضع $S_n = (n-p+1)\left(\frac{u_n + u_p}{2}\right)$ لدينا المجموع $S_n = u_p + u_{p+1} + u_{p+2} + \dots + u_n$ يحتوي على (n-p+1)وحدها r=3 وحدها $\left(u_n\right)_{n\geq 1}$ وحدها $u_0 = 5$ الأول u_{13} وحدد u_{8} اکتب u_{n} بدلالة u_{13} $S = u_0 + u_1 + u_2 + \dots + u_{13}$ (2) r=3 وحدها أن (u_n) متتالية حسابية أساسها $u_0 = 5$ الأول $u_n = 3n + 5$: $u_n = 5 + 3(n - 0)$: $u_n = u_0 + (n - 0)r$: فأن $u_8 = 3 \times 8 + 5 = 29$: ومنه $S = u_0 + u_1 + \dots + u_{13} = (13 - 0 + 1) \frac{u_0 + u_{13}}{2} (2$ $u_{13} = 3 \times 13 + 5 = 44$ ومنه نحسب: $S = 14 \frac{u_0 + u_{13}}{2} = \frac{14}{2} (5 + u_{13})$ $S = 7(5+44) = 7 \times 49 = 343$ وبالتالي: $u_0=1$ و حدها الأول $r=\frac{1}{2}$ الماسية أساسية (u_n) متتالية حسابية أساسية أساسية .1 $S_1 = u_3 + u_4 + u_5 + \dots + u_{30}$ أحسب المجموع التالي : $u_0=4$ و حدها الأول r=-2 المالية متتالية حسابية أساسها و حدها الأول .2

ص 2

ال المتتاليات الهندسية

نشاط1: لاحظ ثم أتمم بأربعة أعداد ملائمة لتسلسل كل متتالية من المتتاليات التالية :

.....,
$$-\frac{1}{32}$$
, $\frac{1}{16}$, $-\frac{1}{8}$, $\frac{1}{4}$, $-\frac{1}{2}$, 1 .2

نشاط2: نعتبر المتتالية العددية $\left(u_n\right)_{n\geq 0}$ المعرفة بالصيغة الصريحة $\forall n\in\mathbb{N}\quad u_n=2 imes 3^n$: التالية

$$\left(u_{n}
ight)_{n\geq0}$$
 أحسب الحدود الأربعة الأولى للمتتالية ما

$$\forall n \in \mathbb{N}$$
 $\frac{u_{n+1}}{u_n}$.2

الجواب :1)

 $u_3 = 2 \times 3^3 = 54$ $u_2 = 2 \times 3^2 = 18$ $u_1 = 2 \times 3^1 = 6$ $u_0 = 2 \times 3^0 = 2 \times 1 = 2$

$$\frac{u_{n+1}}{u_n} = \frac{2 \times 3^{n+1}}{2 \times 3^n} = \frac{3^{n+1}}{3^n} = \frac{3^n \times 3^1}{3^n} = 3^1 = 3 = q (2)$$

 $u_0 = 2$ نقول أن المتتالية $(u_n)_{n \ge 0}$ هندسية أساسها g = 3وحدها الأول $u_0 = 2$

q نقول إن متتالية هندسية إذا وجد عدد حقيقي نقول إن

 $\forall n \ge n_0 \quad u_{n+1} = qu_n \quad : \underbrace{}$

 $\left(u_{n}
ight)_{n\geq0}$ العدد الحقيقي q يسمى أساس المتتالية

 $\forall n \in \mathbb{N}$ $u_n = 5 \times 3^{2n+1}$:نعتبر المتتالية العددية $(u_n)_{n \geq 0}$ بحيث:

بين أن $\left(u_{n}
ight)_{n\geq0}$ متتالية هندسية و حدد أساسها q و حدها الأول

 $\frac{u_{n+1}}{u_n} = \frac{5 \times 3^{2n+3}}{5 \times 3^{2n+1}} = \frac{3^{2n+3}}{3^{2n+1}} = 3^{(2n+3)-(2n+1)} = 3^2 = 9 = q$

 $u_0=15$ الأول الأول وحدها الأول الذن: المتتالية $\left(u_n\right)_{n\geq 0}$ هندسية أساسها

: تمرين \underline{u}_n : المعرفة كالتالي العددية العددية

$$\forall n \in \mathbb{N} \quad u_n = 3 \times \left(\frac{2}{5}\right)^n$$

بين أن (u_n) متتالية هندسية و حدد أساسها و حدها الأول

2. صيغة الحد العام للمتتالية بدلالة n

 u_{n_0} إذا كانت u_n متتالية هندسية أساسها u_n غير منعدم وحدها الأول u_n فان $u_n=u_n$ q^{n-n_0}

: فير منعدم فان q غير منعدم فان النا كانت $(u_n)_{n\geq n_0}$ عند فان

 $m \ge n_0$ و $n \ge n_0$ لكل $u_n = u_m q^{n-m}$

 $u_2 = \frac{9}{2}$ و $u_5 = \frac{243}{2}$: متنالية هندسية بحيث (u_n) متنالية

n مدد q أساس المتتالية $\left(u_{\scriptscriptstyle n}
ight)$ و أكتب $u_{\scriptscriptstyle n}$ بدلالة

 $u_n = u_m q^{n-m}$: الجواب : لدينا (u_n) متتالية هندسية اذن : $u_5 = u_2 q^{5-2}$ ومنه : اذن : $u_5 = u_2 q^{5-2}$

q=3: $q^3=27$: $q^3=\frac{243}{9}$ $q^3=\frac{243}{9}$

q-3: $q^3 = \frac{243}{9}$ $q^3 = \frac{243}{9}$

 $u_n = \frac{9}{2}3^{n-2} = \frac{3^2 \times 3^{n-2}}{2} = \frac{3^{n-2+2}}{2} = \frac{3^n}{2}$: يعني $u_n = u_2 q^{n-2}$: لدينا أيضا $u_0 = 81$ الأول $u_0 = 81$ نعتبر المتتالية الهندسية (u_n) بحيث حدها الأول

 $q = \frac{1}{3}$: وأساسها

 u_3 اکتب u_n بدلالة u_1 (2) اکتب u_n و u_2

 $u_n=1$ حدد العدد الصحيح الطبيعي n بحيث (3) حدد الأجوبة: (1) نعلم أن $u_n > 0$ متتالية هندسية الأجوبة: $u_0 = 81$ أساسها $u_0 = 81$ أساسها $u_0 = 81$

 $u_n = 81 \times \left(\frac{1}{3}\right)^n$: ومنه $u_n = u_0 q^{n-0}$: اذن $u_n = u_0 q^{n-0}$: اذن $u_n = 81 \times \left(\frac{1}{3}\right)^2 = \frac{81}{9} = 9$ ومنه $u_n = 81 \times \left(\frac{1}{3}\right)^1 = \frac{81}{3} = 27$

 $u_3 = 81 \times \left(\frac{1}{3}\right)^3 = \frac{81}{27} = 3$

يعني $u_n = 1$ يعني $u_n = 1$ يعني $u_n = 1$ يعني $u_n = 1$

n=4 يعني $81=3^n$ يعني $\frac{81}{3^n}=1$

 $u_0 = 5$ نعتبر المتتالية الهندسية (u_n) بحيث حدها الأول:

 $u_3 = 40$ 9

q=2 هو $\left(u_{_{n}}\right)$ عن المتتالية من 1.

 u_4 بدلالة n و أحسب .2

 $u_n = 160$ حدد العدد الصحيح الطبيعي n بحيث 3.

 $(u_n)_{n\geq 0}$ الأجوبة : 1) نعلم أن $(u_n)_{n\geq 0}$ متتالية هندسية اذن

: يعني $q^3 = \frac{40}{5}$: يعني $u_3 = u_0 q^{3-0}$

q=2 يعني $q^3=8$

 $u_n = 5 \times (2)^n (2$

 $u_4 = 5 \times (2)^4 = 5 \times 16 = 80$ $\mathfrak{I}_{u_2} = 81 \times \left(\frac{1}{3}\right)^2 = \frac{81}{9} = 9 \,\mathfrak{I}_{u_1} = 81 \times \left(\frac{1}{3}\right)^1 = \frac{81}{3} = 27$

 $u_2 = 81 \times \left(\frac{1}{3}\right)^2 = \frac{81}{9} = 99 u_1 = 81 \times \left(\frac{1}{3}\right)^1 = \frac{81}{3} = 27(3)$

n = 5: $u_5 = 2 \times u_4 = 2 \times 80 = 160$

g. مجموع حدود متتابعة لمتتالية هندسية : لتكن $\left(u_{n}
ight)_{n\in I}$ غير منعدم نضع q

 $S_n = u_0 + u_1 + u_2 + \dots + u_n$

 $S_n = u_0 \left(\frac{1-q^{n+1}}{1-q} \right)$: فان $q \neq 1$

مثان: عتبر المتتالية العددية $(u_n)_{n\geq 0}$ المعرفة بالصيغة التالية

 $\forall n \in \mathbb{N} \qquad u_0 = 2 \mathfrak{g} \quad u_{n+1} = 3 \times U_n$

ي تحقق أن $\left(u_{n}\right)_{n\geq0}$ هندسية. 1

n عبر عن عبد يد يد عبر عن 2.

 $S_n = u_1 + u_2 + u_3 + \dots + u_5$: denoted the state of the state of

 $\frac{u_{n+1}}{u} = \frac{3 \times u_n}{u} = 3 = q \, (1: الجواب)$

 $u_0=3$ اذن: المتتالية هندسية أساسها g=gوحدها الأول

 $u_0=3$ فندسية أساسها 3=q فندسية أساسها $\left(u_n\right)_{n\geq 0}$

 $u_n = 3 \times (3)^n = 3^1 \times (3)^n = (3)^{n+1}$ $u_n = u_0 q^{n-0}$ \vdots

 $S_n = u_1 + u_2 + u_3 + \dots + u_5 = u_1 \times \frac{1 - q^{5 - 1 + 1}}{1 - q} = u_1 \times \frac{1 - q^5}{1 - q} (3)$

الأستاذ: عثماني نجيب

$$u_1 = 3^{1+1} = 3^2 = 9$$

$$S_n = 9 \times \frac{1 - 3^5}{1 - 3} = 9 \times \frac{1 - 3^5}{-2} = 9 \times \frac{1 - 243}{-2} = 9 \times \frac{-242}{-2} = 1029$$

 $u_5 = 486$: تمرین 13: اتکن (u_n) متتالیة هندسیة بحیث تمرین 13:

$$q \succ 0$$
 و أساسها $u_7 = 4374$

$$u_{10}$$
 و u_0 حدد أساس المنتالية (u_n) عدد أساس المنتالية (1

$$S=u_0+u_5+\cdots+u_{2009}$$
: أكتب المجموع التالي (4 n أحسب المجموع (3

$$q^2 = \frac{4374}{486} = 9$$
 يعني $u_7 = u_5 q^{7-5}$ المتنالية هندسية اذن: (u_n) يعني أجوية:

$$q \succ 0$$
 يعني : $q = -3$ وحسب المعطيات : $q = -3$

$$q = 3$$
: اذن

$$486 = u_0 3^5$$
يعني $u_5 = u_0 q^{5-0}$ (2) متتالية هندسية اذن (u_n)

$$u_0 = \frac{486}{3^5} = \frac{486}{243} = 2$$

$$u_{\!\scriptscriptstyle 10}\!=\!\!4374\!\!\times\!\!\!3^3\!=\!\!4374\!\!\times\!\!\!27\!=\!\!118098$$
 يعني $u_{\!\scriptscriptstyle 10}\!=\!u_{\!\scriptscriptstyle 7}q^3$ يعني $u_{\!\scriptscriptstyle 10}\!=\!u_{\!\scriptscriptstyle 7}q^{10-7}$

$$u_n = 2 \times 3^n$$
 يعني $u_n = u_0 q^{n-0}$ (3

$$S_n = u_0 + u_1 + u_1 + \dots + u_{2009} = u_0 \times \frac{1 - q^{20095 - 0 + 1}}{1 - q} = u_0 \times \frac{1 - q^{2010}}{1 - q} (4)$$

$$S_n = 2 \times \frac{1 - 3^{2010}}{1 - 3} = -(1 - 3^{2010}) = 3^{2010} - 1$$

: تمرين:14: المعرفة بالصيغة التالية العددية مين المعرفة بالصيغة التالية العددية مين المتتالية العددية العددي

$$\forall n \in \mathbb{N}$$
 $u_0 = 3$ $u_{n+1} = 2 \times U_n$

ية نحقق أن
$$(u_n)_{n\geq 0}$$
 هندسية 1.

n عبر عن
$$U_n$$
 بدلالة

$$S_n = u_1 + u_2 + u_3 + \dots + u_6$$
: أحسب المجموع 3

ص 4