Security Reductions of the Second Round SHA-3 Candidates

Bart Mennink (K.U.Leuven)

Joint work with: Elena Andreeva and Bart Preneel (K.U.Leuven)

Information Security Conference Florida, USA

October 26, 2010

Overview

- NIST's SHA-3 Hash Function Competition
- Security Notions of Hash Functions
- Classification of Security Reductions

4 Conclusions

NIST's SHA-3 Hash Function Competition

```
2004: Attacks by Wang et al. exposed vulnerabilities in several widely employed hash functions (incl. MD5 and SHA-1)
```

2007: US NIST launched a public competition for the design of a new hash function: SHA-3

```
Dec 2008: NIST announced 51 first round candidates
```

Jul 2009: NIST announced 14 second round candidates

End of 2010: NIST will announce 4 - 6 finalists

 \pm 2012: NIST will announce new hash function

NIST's SHA-3 Hash Function Competition

2004: Attacks by Wang et al. exposed vulnerabilities in several widely employed hash functions (incl. MD5 and SHA-1)

2007: US NIST launched a public competition for the design of a new hash function: SHA-3

Dec 2008: NIST announced 51 first round candidates

Jul 2009: NIST announced 14 second round candidates

End of 2010: NIST will announce 4 - 6 finalists

 \pm 2012: NIST will announce new hash function

SHA-3 must be efficient and secure

Hash function must provide message digests of 224, 256, 384 and 512 bits

- (i) At least one variant must support HMAC and randomized hashing For all *n*-bit digest values, the hash function must provide
 - (ii) preimage resistance
 - (iii) second preimage resistance
 - (iv) collision resistance
 - (v) resistance to the length-extension attack
- (vi) For any $m \le n$, the hash function specified by taking a fixed subset of m bits of the function's output is required to satisfy properties (ii)-(v) with n replaced by m

Hash function must provide message digests of 224, 256, 384 and 512 bits

(i) At least one variant must support HMAC and randomized hashing

For all *n*-bit digest values, the hash function must provide

- (ii) preimage resistance
- (iii) second preimage resistance
- (iv) collision resistance
- (v) resistance to the length-extension attack
- (vi) For any $m \le n$, the hash function specified by taking a fixed subset of m bits of the function's output is required to satisfy properties (ii)-(v) with n replaced by m

Hash function must provide message digests of 224, 256, 384 and 512 bits

For all *n*-bit digest values, the hash function must provide

- (ii) preimage resistance
- (iii) second preimage resistance
- (iv) collision resistance

(vi) For any $m \le n$, the hash function specified by taking a fixed subset of m bits of the function's output is required to satisfy properties (ii)-(v) with n replaced by m

Hash function must provide message digests of 224, 256, 384 and 512 bits

For all *n*-bit digest values, the hash function must provide

- (ii) preimage resistance
- (iii) second preimage resistance
- (iv) collision resistance

(vi) For any $m \le n$, the hash function specified by taking a fixed subset of m bits of the function's output is required to satisfy properties (ii)-(v) with n replaced by m

Hash function must provide message digests of

256

and 512 bits

For all *n*-bit digest values, the hash function must provide

- (ii) preimage resistance
- (iii) second preimage resistance
- (iv) collision resistance

Hash function must provide message digests of

256

and 512 bits

For all *n*-bit digest values, the hash function must provide

- (ii) preimage resistance
- (iii) second preimage resistance
- (iv) collision resistance

(vii) Additionally, we analyze the indifferentiability

Outline

- NIST's SHA-3 Hash Function Competition
- Security Notions of Hash Functions
- Classification of Security Reductions

4 Conclusions

Security in the Ideal Model

Security in the Ideal Model

Assumption: design is built on one or more ideal underlying primitives

Security in the Ideal Model

Assumption: design is built on one or more ideal underlying primitives

pre/sec/col security

Advantage of an adversary (with query access to these primitives) in finding preimages, second preimages or collisions

Security in the Ideal Model

Assumption: design is built on one or more ideal underlying primitives

pre/sec/col security

Advantage of an adversary (with query access to these primitives) in finding preimages, second preimages or collisions

- Davies-Meyer construction
- Preimage and collision resistant if E is assumed to be an ideal block cipher

Security in the Ideal Model

Indifferentiability (indiff)

Advantage of a distinguisher to differentiate ${\cal H}$ from a ${\it RO}$

Security in the Ideal Model

Indifferentiability (indiff)

Advantage of a distinguisher to differentiate ${\cal H}$ from a RO

Indifferentiability bound implies security bounds for pre/sec/col/...

Security in the Ideal Model

Indifferentiability (indiff)

Advantage of a distinguisher to differentiate ${\cal H}$ from a ${\it RO}$

Indifferentiability bound implies security bounds for pre/sec/col/...

 $\mathsf{Adv}^{\mathrm{col}}_{\mathcal{H}}$: advantage of a collision finding adversary for \mathcal{H}

 $\mathsf{Pr}^{\mathrm{col}}_{\mathsf{RO}}$: success probability of finding collision for $\mathcal H$ generically

 $\operatorname{\mathsf{Adv}}^{\operatorname{indiff}}_{\mathcal{H}}$: indifferentiability bound of \mathcal{H}

Security in the Ideal Model

Indifferentiability (indiff)

Advantage of a distinguisher to differentiate ${\cal H}$ from a RO

Indifferentiability bound implies security bounds for pre/sec/col/...

 $Adv_{\mathcal{H}}^{col}$: advantage of a collision finding adversary for \mathcal{H}

 $\mathsf{Pr}^{\mathrm{col}}_{\mathsf{RO}}$: success probability of finding collision for $\mathcal H$ generically

 $Adv_{\mathcal{H}}^{\text{indiff}}$: indifferentiability bound of \mathcal{H}

$$\mathbf{Adv}_{\mathcal{H}}^{\mathrm{col}} \leq \mathbf{Pr}_{\textit{RO}}^{\mathrm{col}} + \mathbf{Adv}_{\mathcal{H}}^{\mathrm{indiff}}$$

(formal proof in the full version of the paper)

Security in the Standard Model

Security in the Standard Model

Generic collision security of \mathcal{H} (gcol)

Advantage of an $\it{efficient}$ adversary in finding collisions for \cal{H}

Security in the Standard Model

Generic collision security of \mathcal{H} (gcol)

Advantage of an efficient adversary in finding collisions for ${\cal H}$

Strengthened Merkle-Damgård

- Strengthened Merkle-Damgård *preserves* collision resistance: collisions for the hash function imply collisions for the compression function
- Extension: all SHA-3 candidates with a suffix-free padding preserve collision resistance

Security in the Standard Model

• All SHA-3 candidates follow this 'generalized Merkle-Damgård design', where g may equal f, and the chopping is optional

Security in the Standard Model

- All SHA-3 candidates follow this 'generalized Merkle-Damgård design', where g may equal f, and the chopping is optional
- Generalized MD with suffix-free padding preserves collision-resistance
 - Collisions for this design imply collisions for f or $\operatorname{chop}_{l-n} \circ g$
- Formal proof in the full version of the paper

Outline

- NIST's SHA-3 Hash Function Competition
- Security Notions of Hash Functions
- Classification of Security Reductions

4 Conclusions

Security Comparison

	pad	ding
	sf	pf
BLAKE	1	1
BMW	1	Х
CubeHash	Х	Х
ECHO	1	1
Fugue	1	Х
Grøst	1	Х
Hamsi	1	Х
JH	1	Х
Keccak	Х	Х
Luffa	Х	Х
Shabal	1	1
SHAvite-3	1	1
SIMD	1	Х
Skein	1	1

Security Comparison

	pad	ding
	sf	pf
BLAKE	1	1
BMW	1	Х
CubeHash	Х	Х
ECHO	1	1
Fugue	1	Х
Grøstl	1	Х
Hamsi	✓	Х
JH	1	Х
Keccak	Х	Х
Luffa	Х	Х
Shabal	/	/
SHAvite-3	1	/
SIMD	1	Х
Skein	1	1

Explanation of the Table:

Optimal security upper bound

Non-optimal security upper bound

Efficient attack known

No non-trivial security bound known

? Design is similar to a secure design, but no non-trivial security bound known

Security Comparison

	pad	ding
	sf	pf
BLAKE	1	/
BMW	1	Х
CubeHash	Х	Х
ECHO	1	1
Fugue	1	Х
Grøst	1	Х
Hamsi	1	Х
JH	1	Х
Keccak	Х	Х
Luffa	Х	Х
Shabal	1	/
SHAvite-3	1	/
SIMD	1	Х
Skein	1	1

Explanation of the Table:

Optimal security upper bound

Non-optimal security upper bound

Efficient attack known

No non-trivial security bound known

? Design is similar to a secure design, but no non-trivial security bound known

Bounds and underlying assumptions are summarized in the paper!

	pad	ding	com	pressio	n fn.			
	sf	pf	pre	sec	col			
BLAKE	1	/						
BMW	1	Х						
CubeHash	Х	Х						
ECHO	1	1						
Fugue	1	Х						
Grøst	1	Х						
Hamsi	1	Х						
JH	1	Х						
Keccak	Х	Х						
Luffa	Х	Х						
Shabal	1	1						
SHAvite-3	1	1						
SIMD	1	Х						
Skein	1	1						
Optima	al	No	n-optima		Insecure	N	o bound	?

	pad	ding	com	pressio	n fn.
	sf	pf	pre	sec	col
BLAKE	1	1			
BMW	1	Х			
CubeHash	Х	Х			
ECHO	1	1			
Fugue	1	Х			
Grøst	1	Х			
Hamsi	1	Х			
JH	1	Х			
Keccak	Х	Х			
Luffa	Х	Х			
Shabal	1	\			
SHAvite-3	1	1			
SIMD	1	Х			
Skein	1	1			
Optim Prim	al 🔃	No	n-optima	l l	Insecure

(Collisions and preimages in constant time; sponge-like designs)

	pad	ding	com	pressio	n fn.	
	sf	pf	pre	sec	col	
BLAKE	1	/				
BMW	1	Х				
CubeHash	Х	Х				
ECHO	1	1				
Fugue	1	Х				
Grøst	1	Х				
Hamsi	1	Х				
JH	1	Х				
Keccak	Х	Х				
Luffa	Х	Х				
Shabal	1	1				
SHAvite-3	1	1				
SIMD	1	Х				
Skein	1	/				
Optima	al 📗	No	n-optima		Insecure	No bound

(PGV compression function [BRS02])

Similarity

II	pad	ding	com	pressio	n fn.			
	sf	pf	pre	sec	col			
BLAKE	1	/						
BMW	1	Х						
CubeHash	Х	Х						
ECHO	1	1						
Fugue	1	Х						
Grøstl	1	Х						
Hamsi	1	Х						
JH	1	Х						
Keccak	Х	Х						
Luffa	X	Х						
Shabal	1	1						
SHAvite-3	1	1						
SIMD	1	Х						
Skein	1	1						
Optima	al	No	n-optima	I	Insecure	No	bound	I

(Generalized PGV compression function [Sta09])

	pad	ding	com	pressio	n fn.	
	sf	pf	pre	sec	col	
BLAKE	1	/	?		?	
BMW	1	Х	?		?	
CubeHash	Х	Х				
ECHO	1	1				
Fugue	1	Х				
Grøst	1	Х				
Hamsi	1	Х				
JH	1	Х				
Keccak	Х	Х				
Luffa	Х	Х				
Shabal	1	1				
SHAvite-3	1	1				
SIMD	1	Х				
Skein	1	1				
Optima	al _	No	n-optima	I	Insecure	No bound

(Similar to the generalized PGV compression function)

	pad	ding	9 11				
	sf	pf	pre	sec	col		
BLAKE	1	1	?		?		
BMW	1	Х	?		?		
CubeHash	Х	Х					
ECHO	1	1					
Fugue	1	X					
Grøstl	1	Х					
Hamsi	1	Х					
JH	1	Х					
Keccak	Х	Х					
Luffa	Х	X					
Shabal	1	1					
SHAvite-3	1	1					
SIMD	1	Х					
Skein	1	/					
Optima	al 🛑	No	n-optima	1	Insecure		

(Security of compression function of Grøstl and Shabal proven differently)

No bound

Similarity

	pad	ding	com	compression fn.					
	sf	pf	pre	sec	col				
BLAKE	1	/	?		?				
BMW	1	Х	?		?				
CubeHash	Х	Х							
ECHO	1	1							
Fugue	1	Х							
Grøst	1	Х							
Hamsi	1	Х							
JH	1	Х							
Keccak	Х	Х							
Luffa	Х	Х							
Shabal	1	1							
SHAvite-3	1	1							
SIMD	1	Х							
Skein	1	1							
Optima	al 📗	No	n-optima	1	Insecure				

General remarks:

- ullet Insecure compression function \Rightarrow ideality cannot be assumed
- ullet Non-optimal bounds for f do not imply insecurity of ${\cal H}$

Similarity

Security Comparison: Indifferentiability of ${\cal H}$

	pad	ding	com	pressio	n fn.	\mathcal{H}			
	sf	pf	pre	sec	col	indiff			
BLAKE	1	/	?		?]		
BMW	1	Х	?		?		1		
CubeHash	Х	Х					1		
ECHO	1	1					1		
Fugue	1	Х					1		
Grøst	1	Х					1		
Hamsi	1	Х					1		
JH	1	Х					1		
Keccak	Х	Х					1		
Luffa	Х	Х					1		
Shabal	1	1					1		
SHAvite-3	1	1					1		
SIMD	1	Х					1		
Skein	1	1]		
Optima	al	No	n-optima	1	Insecur	e	No bound	?	Similarity

	pad sf	ding pf	com pre	pressio sec	n fn. col	\mathcal{H} indiff
BLAKE	1	1	?		?	
BMW	1	Х	?		?	
CubeHash	Х	Х				
ECHO	1	1				
Fugue	1	Х				
Grøstl	1	Х				
Hamsi	1	Х				
JH	1	Х				
Keccak	Х	Х				
Luffa	Х	Х				
Shabal	1	✓				
SHAvite-3	1	1				
SIMD	1	Х				
Skein	1	1				
Optima	al 🔃	No	n-optima	1	Insecur	e

(Hash function indifferentiable for ideal permutation(s)/block cipher)

	pad sf	ding pf	com pre	pressio sec	n fn. col	$rac{\mathcal{H}}{indiff}$		
BLAKE	1	1	?		?			
BMW	1	Х	?		?			
CubeHash	Х	Х						
ECHO	1	1						
Fugue	1	Х						
Grøst	1	Х						
Hamsi	1	Х						
JH	1	Х						
Keccak	Х	Х						
Luffa	Х	Х						
Shabal	1	1						
SHAvite-3	1	1						
SIMD	1	Х						
Skein	1	✓						
Optima	al 🔃	No	n-optima		Insecur	e	No bound [? S

(Hash function indifferentiable for ideal compression function)

		ding		pressio		\mathcal{H}		
	sf	pf	pre	sec	col	indiff		
BLAKE	1	/	?		?			
BMW	1	Х	?		?	?]	
CubeHash	Х	Х						
ECHO	1	1				?		
Fugue	1	Х				?		
Grøst	1	Х						
Hamsi	1	Х				?]	
JH	1	Х						
Keccak	Х	Х						
Luffa	X	X				?		
Shabal	1	1						
SHAvite-3	1	1						
SIMD	1	Х				?		
Skein	1	1						
Optima	al	No	n-optima		Insecur	e	: No bound [? Sim

(Hash function similar to an indifferentiable design)

		ding		pressio		\mathcal{H}
	sf	pf	pre	sec	col	indiff
BLAKE	1	1	?		?	
BMW	1	Х	?		?	?
CubeHash	X	Х				
ECHO	1	✓				?
Fugue	1	Х				?
Grøstl	1	Х				
Hamsi	1	Х				?
JH	/	X				
Keccak	X	Х				
Luffa	X	X				?
Shabal	1	/				
SHAvite-3	1	✓				
SIMD	/	X				?
Skein	1	1				
Optima	al	No	n-optima		Insecur	e

General remarks:

- Eight designs are proven indifferentiable
- Yellow boxes only: the bounds are not optimal

Similarity

	pad	ding	com	pressio	n fn.	has	h funct	ion		
	sf	pf	pre	sec	col	indiff	pre	sec		
BLAKE	1	/	?		?					
BMW	1	Х	?		?	?				
CubeHash	Х	Х								
ECHO	1	1				?				
Fugue	1	Х				?				
Grøst	1	Х								
Hamsi	1	Х				?				
JH	1	Х								
Keccak	Х	Х								
Luffa	Х	Х				?				
Shabal	1	1								
SHAvite-3	1	1								
SIMD	1	Х				?				
Skein	1	1								
Optima	Optimal Non-optimal Insecure No bound ? Similari									

	pad	ding	com	pressio	n fn.	has	h funct	ion	
	sf	pf	pre	sec	col	indiff	pre	sec	
BLAKE	1	/	?		?				
BMW	1	Х	?		?	?			
CubeHash	Х	Х							
ECHO	1	1				?			
Fugue	1	Х				?			
Grøst	1	Х							
Hamsi	1	Х				?			
JH	1	Х							
Keccak	Х	Х							
Luffa	Х	Х				?			
Shabal	1	1							
SHAvite-3	1	1							
SIMD	1	Х				?			
Skein	1	1							
Optima	al	No	n-optima		Insecur	e	No bou	nd ?	Similar

(Preimage resistance derived from indifferentiability)

	pad	ding	com	pressio	n fn.	has	h funct	ion	
	sf	pf	pre	sec	col	indiff	pre	sec	
BLAKE	1	/	?		?				
BMW	1	Х	?		?	?			
CubeHash	Х	Х							
ECHO	1	1				?			
Fugue	1	Х				?			
Grøst	1	Х							
Hamsi	1	Х				?			
JH	1	Х							
Keccak	Х	Х							
Luffa	Х	Х				?			
Shabal	1	1							
SHAvite-3	1	1							
SIMD	1	Х				?			
Skein	1	1							
Optimal Non-optimal Insecure No bound ? Similarity									

(Preimage resistance of Shabal proven differently)

	pad	ding	com	pressio	n fn.	has	h funct	ion
	sf	pf	pre	sec	col	indiff	pre	sec
BLAKE	1	1	?		?			
BMW	1	Х	?		?	?		
CubeHash	Х	Х						
ECHO	1	1				?		
Fugue	1	Х				?		
Grøst	1	Х						
Hamsi	1	Х				?		
JH	1	Х						
Keccak	Х	Х						
Luffa	X	Х				?		
Shabal	1	1						
SHAvite-3	1	1						
SIMD	1	Х				?		
Skein	1	1						
Optima	al 🔃	No	n-optima		Insecur	e	No bou	nd ?

(Second preimage resistance derived from indifferentiability)

	pad	ding	com	pressio	n fn.	has	h funct	ion
	sf	pf	pre	sec	col	indiff	pre	sec
BLAKE	1	/	?		?			
BMW	1	Х	?		?	?		
CubeHash	X	Х						
ECHO	1	1				?		?
Fugue	1	Х				?		
Grøstl	1	Х						
Hamsi	1	Х				?		
JH	1	Х						
Keccak	Х	Х						
Luffa	Х	Х				?		
Shabal	1	1						
SHAvite-3	1	1						
SIMD	1	Х				?		
Skein	1	1						
Optima	al	No	n-optima		Insecur	e	No bour	nd ?

(HAIFA designs are second preimage resistant)

	pad	ding	compression fn			hash function		
	sf	pf	pre	sec	col	indiff	pre	sec
BLAKE	1	/	?		?			
BMW	1	Х	?		?	?		
CubeHash	X	X						
ECHO	1	1				?		?
Fugue	1	X				?		
Grøstl	1	X						
Hamsi	1	X				?		
JH	1	X						
Keccak	Х	Х						
Luffa	X	X				?		
Shabal	1	1						
SHAvite-3	1	1						
SIMD	1	X				?		
Skein	1	1						
Optima	al	No	n-optima	1	Insecur	e	No bour	nd ?

General remarks:

- MD design does not preserve (second) preimage resistance
- Possible direction for proofs: graph based approach

II	pad	ding	com	pressio	n fn.		has	h funct	ion		
	sf	pf	pre	sec	col	indiff	pre	sec	gcol	col	
BLAKE	1	/	?		?						
BMW	1	Х	?		?	?					
CubeHash	Х	Х									
ECHO	1	1				?		?			
Fugue	1	Х				?					
Grøst	1	Х									
Hamsi	1	Х				?					
JH	1	Х									
Keccak	Х	Х									
Luffa	Х	Х				?					
Shabal	1	✓									
SHAvite-3	1	1									
SIMD	1	Х				?					
Skein	1	✓									
Optima	Optimal Non-optimal Insecure No bound ? Similarity										

	pad	ding	com	pressio	n fn.		has	h funct	ion	
	sf	pf	pre	sec	col	indiff	pre	sec	gcol	col
BLAKE	1	1	?		?					
BMW	1	Х	?		?	?				
CubeHash	Х	Х								
ECHO	1	1				?		?		
Fugue	1	Х				?				
Grøst	1	Х								
Hamsi	1	Х				?				
JH	1	Х								
Keccak	Х	Х								
Luffa	Х	Х				?				
Shabal	1	1								
SHAvite-3	1	1								
SIMD	1	Х				?				
Skein	1	1								
Optimal Non-optimal Insecure No bound ? Similarity										

(Collision resistance preservation for all designs with sf padding)

	padding compression fn.				hash function indiff pre sec gcol col						
	31	μı	pie	360	COI	mum	pie	360	gcoi	COI	
BLAKE	1	1	?		?						
BMW	1	Х	?		?	?					
CubeHash	Х	Х									
ECHO	1	1				?		?			
Fugue	1	Х				?					
Grøst	1	Х									
Hamsi	1	Х				?					
JH	1	Х									
Keccak	Х	Х									
Luffa	Х	Х				?					
Shabal	1	1									
SHAvite-3	1	1									
SIMD	1	Х				?					
Skein	1	√									
Optimal Non-optimal Insecure No bound ? Similarity											

(Collision resistance in the ideal model due to preservation)

	pad	ding	compression fn			hash function					
	sf	pf	pre	sec	col	indiff	pre	sec	gcol	col	
BLAKE	1	1	?		?						
BMW	1	Х	?		?	?					
CubeHash	Х	Х									
ECHO	1	1				?		?			
Fugue	1	Х				?					
Grøst	1	Х									
Hamsi	1	Х				?					
JH	1	Х									
Keccak	Х	Х									
Luffa	Х	Х				?					
Shabal	1	1									
SHAvite-3	1	1									
SIMD	1	Х				?					
Skein	1	1									
Optimal Non-optimal Insecure No bound ? Similarity											

(Collision resistance derived from indifferentiability)

		ding	compression fn			hash function					
	sf	pf	pre	sec	col	indiff	pre	sec	gcol	col	
BLAKE	1	1	?		?						
BMW	1	Х	?		?	?					
CubeHash	Х	Х									
ECHO	1	1				?		?			
Fugue	1	Х				?					
Grøst	1	Х									
Hamsi	1	Х				?					
JH	1	Х									
Keccak	Х	Х									
Luffa	Х	Х				?					
Shabal	1	✓									
SHAvite-3	1	1									
SIMD	1	Х				?					
Skein	1	1									
Optimal Non-optimal Insecure No bound ? Similarity											

General remarks:

- For 10 candidates, optimal collision resistance
- For others, graph based approach may be fruitful

Outline

- NIST's SHA-3 Hash Function Competition
- Security Notions of Hash Functions
- 3 Classification of Security Reductions

4 Conclusions

Conclusions

- Classification of the provable security results of the SHA-3 candidates
 - Preimage, second preimage and collision resistance
 - Indifferentiability
- Classification is based on security results in the ideal model
- We extended the standard proof of Merkle-Damgård collision resistance to cover all candidates with a suffix-free padding
- We formalized security implications of indifferentiability

Conclusions

- Classification of the provable security results of the SHA-3 candidates
 - Preimage, second preimage and collision resistance
 - Indifferentiability
- Classification is based on security results in the ideal model
- We extended the standard proof of Merkle-Damgård collision resistance to cover all candidates with a suffix-free padding
- We formalized security implications of indifferentiability
- Several observations and open problems
 - Most of the designs satisfy collision resistance and indifferentiability
 - Few results known on (second) preimage resistance

Thank you for your attention!

SUPPORTING SLIDES!!!

Security in the Ideal Model: Indifferentiability

- Indifferentiability of the hash function from a random oracle (indiff)
- Extension of indistinguishability: distinguisher may know the underlying structure of a hash function
- Hash function $\mathcal H$ built on π is indifferentiable from RO if there exists a simulator S such that for any distinguisher these games are indistinguishable

