Inteligência Artificial

Sistemas Especialistas

José Luis Seixas Junior

Índice

- Contextualização.
- Definição.
- Aplicação.
- Vantagens.
- Estrutura;

Contextualização

- Paradigma: Simbólico;
- Por Definição:
 - Identifica questões relevantes ao problema;
 - Resolve problemas complexos;
 - Explica o resultado;
 - Aprende continuamente;
 - Sabe quando aplicar "exceções";
 - Age humanamente;

Definição

- Algoritmo que tenta replicar o conhecimento do humano especialista, sendo assim um clone cognitivo;
- Sistema com corpo de conhecimento que pretender realizar uma tarefa não trivial usualmente realizada apenas por especialistas humanos.

Aplicação

- Sistemas (de computação ou não):
 - Especialistas caros ou insuficientes;
 - Conhecimento distribuído;
 - Formação de especialista difícil;
 - Ambiente hostil/difícil acesso;
 - Dependência de especialistas com risco de perda de conhecimento importante;

Vantagens

- Preservação de conhecimento;
- Disponibilidade de conhecimento;
- Facilidade de atualização;
 - Indicação de linha de raciocínio;
- Liberação de profissionais humanos para atividades prioritárias ou menos repetitivas;

- Base de Fatos:
 - Todo o conhecimento do sistema sobre o problema o qual está tentando resolver;
 - Representação:
 - Banco de Dados;
 - Redes Semânticas;
 - Frameworks;
 - Entre outros...

- Base de regras:
 - Conhecimento do especialista sobre o escopo de problema;
 - Usualmente regras de produção;
 - Exemplo:
 - Regras de busca? Custo Uniforme?

- Regras:
 - Conectivos lógicos de implicação direta:
 - if/else
 - Condicionamento em pares lógicos:
 - E/OU
 - A consequência de uma de uma regra pode ser multivalorada;

- Máquina de inferência:
 - Regras que mudam a base de fatos, gerando novos fatos, até o objetivo/resposta do problema.
 - Encadeamento Progressivo / Forward Chaining;
 - Encadeamento Regressivo / Backward Chaining;

Exemplos

- Progressivo:
 - Generalização de Árvore de Decisão;
 - Dados de entradas muito maiores que os objetivos;

- Regressivo:
 - Lógica gramatical;

R1: se A então B

R2: se B então C

R3: se C então X

Dado : A

Objetivo: X

Exemplo

- Todo artrópode de seis patas é inseto;
- Todos os insetos são invertebrados;
- A abelha é um artrópode;
- A abelha tem seis patas;

Problemas

- Encadeamento circular;
- Regras conflitantes;
- Regras implícitas (ou subordinadas);
- Condições inacessíveis;

Base de conhecimento

Regras:

- SE artrópode(x) e NumeroDePatas(x, 6)
 ENTÃO inseto(x).
- SE inseto(x) ENTÃO invertebrado(x);

Fatos:

- artrópode(abelha).
- NumeroDePata(abelha,6);

Problema

Encadeamento circular:

- se A então B
- se B então C
- se C então A

Problemas

- Regras Conflitantes:
 - SEA \rightarrow ~C;
 - SEA \rightarrow C;

- se A então B
- se B então C
- se A então não C

Problemas

- Condições Inacessíveis:
 - A e B nunca serão verdades juntas;
 - Parodoxo de resolução;

- se A e B então C
- se A então não B

Atividade 04/1

 Elaborar a base de conhecimento de um sistema especialista para consulta de doares/receptores de sangue com base no sistema ABO e o fator RH. Dados o o tipo sanguíneo e fator RH do doador, e fator RH do receptor, retornar se a doação é possível e quem pode ser o receptor.

Atividade 04/2

 Crie as bases de fatos e de regras para a construção da árvore genealógica da sua família.