CS & IT ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE

Basics of COA

-> Led -> Daily revision -> weekly revision -> synday auto

Lecture No.- 02

Recap of Previous Lecture

Topics to be Covered

Topic CPU Registers

Topic Types of Architecture

Topic Program Counter

Topic Instruction Register

Topic Stack Pointer

Topic: CPU Registers

small memories inside CPU to carry out program execution.

CPU Register

- Special Purpose Registers

General Purpose Registers (GPRs)

Topic: CPU Registers

CPU Register

- General Purpose Registers (GPRs)
- Special Purpose Registers
 - Accumulator (AC)
 - Program Counter (PC)
 - Instruction Register (IR)
 - Stack Pointer (SP)
 - Flag Register / Program Status Word (PSW)
 - Address Register (AR) / Memory Address Register (MAR)
 - 7. Data Register (DR) / Memory Data Register (MDR) / MBR

Topic : Accumulator (AC)

Used to store result of ALU and sometimes on of the operand for ALU too.

Topic: Types of Architecture

Based on ALU input: from where 2 inputs of ALU Can be taken.

- AC-Based Architecture
- Register Based Architecture
- Register-Memory Based Architecture
- Complex System Architecture
- Stack Based Architecture

Topic: AC-Based Architecture

Result

$$AC \leftarrow a$$
 $AC \leftarrow AC + b$
 $AC \leftarrow AC + RI$

Topic: Register-Based Architecture

$$R3 \leftarrow Q$$
 $R2 \leftarrow B$
 $AC \leftarrow R3 + R2$
 $RY \leftarrow AC$
 $AC \leftarrow RY + RI$

Topic: Register-Memory Based Architecture

$$a+b+R1$$

$$AC \leftarrow R2 + b$$

$$AC \leftarrow R3 + R1$$

Topic: Complex System Architecture

$$AC \leftarrow a+b$$
 $R2 \leftarrow AC$
 $AC \leftarrow R2 + R1$

Topic: Stack-Based Architecture

from stack from stack

J ALU AC Lout-of use & syllabus

Topic: Program Counter (PC)

Stores address of next instruction to be executed

Topic: Instruction Register

Stores the current instruction to be executed

Stores the address of the top of the stack

Topic: Flag or Status Register Rogiam status Word

used to implement conditions Stores the status of the ALU result Input operands status Register Result sign flag => +ve or -ve Result 2 => zero flag=> zero or non-zero

Topic: Address Register or MAR

(AR)

Used to send address to memory

Topic: Data Register or MDR

- Used to send data to memory
- And to receive data from memory

2 mins Summary

Topic CPU Registers

Topic Types of Architecture

Topic Program Counter

Topic Instruction Register

Topic Stack Pointer

Happy Learning

THANK - YOU