MA-106 Linear Algebra

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 17th February, 2015 D1 - Lecture 19

Recall:

- A square matrix A is diagonalizable if and only if A has a basis consisting of eigenvectors.
- For an invertible matrix S, $S^{-1}AS$ is a diagonal matrix if and only columns of S are eigenvectors of A.
- If x_1, \ldots, x_r are eigenvectors of A associated to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$, then x_1, \ldots, x_r are linearly independent.
- If A has n distinct eigenvalues, then A is diagonalizable.
- A triangular matrix need not be diagonalizable.
- Assume A and B are diagonalizable . Then A and B have same set of eigenvectors if and only if AB = BA.

M.K. Keshari () D1 - Lecture 19 17th February, 2015 2 / 13

Eigenvalues of A^k

- If $Ax = \lambda x$, then $A^2x = A(Ax) = A(\lambda x) = \lambda(Ax) = \lambda^2 x$. Similarly $A^kx = \lambda^k x$ for any $k \ge 0$. Thus if λ is an eigenvalue of A with associated eigenvector x, then λ^k is an eigenvalue for λ^k , with the same associated eigenvector λ^k for $k \ge 0$. If λ^k is invertible, then $\lambda \ne 0$. Hence, the same also holds for k < 0 since $\lambda^{-1}x = \lambda^{-1}x$.
- Assume A is diagonalizable. Then $S^{-1}AS = \Lambda$ is diagonal where columns of S are eigenvectors of A. Now $(S^{-1}AS)(S^{-1}AS) = S^{-1}A^2S = \Lambda^2$, which is diagonal. Hence eigenvectors of A^2 are same as eigenvectors of A. Similarly $(S^{-1}AS)^k = S^{-1}A^kS = \Lambda^k$. For $k \ge 0$, A^k is diagonalizable and the same also holds for k < 0 if A is invertible.

Application: Fibonacci Numbers

Let $F_0=0$, $F_1=1$ and $F_k=F_{k-1}+F_{k-2}$ for $k\geq 2$ define the Fibonacci sequence. What is the kth term?

If
$$u_k = \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix}$$
, then $\begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_k \\ F_{k-1} \end{bmatrix}$, i.e., $u_k = Au_{k-1}$ for $k \ge 1$, where $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow u_k = A^k u_0$ for $k \ge 1$.

Characteristic polynomial of A: $(1 - \lambda)(-\lambda) - 1 = \lambda^2 - \lambda - 1$.

Eigenvalues:
$$\lambda_1 = \frac{1+\sqrt{5}}{2}$$
, $\lambda_2 = \frac{1-\sqrt{5}}{2}$.

The eigenvalues are distinct \Rightarrow the associated eigenvectors x_1 and x_2 are linearly independent $\Rightarrow \{x_1, x_2\}$ is a basis for \mathbb{R}^2 .

Write $u_0 = c_1x_1 + c_2x_2$. Then $u_k = A^ku_0 = A^k(c_1x_1 + c_2x_2)$

$$=c_1A^kx_1+c_2A^kx_2=c_1\left(\frac{1+\sqrt{5}}{2}\right)^kx_1+c_2\left(\frac{1-\sqrt{5}}{2}\right)^kx_2.$$

Q: Find x_1 , x_2 , c_1 and c_2 and get the exact formula for F_k .

An Application: Steady State

Suppose we have a system where the current state depends linearly on the previous one, i.e., $u_k = Au_{k-1}$. Then observe that $u_k = A^k u_0$.

The **steady state** of the system is $u_{\infty} = \lim_{k \to \infty} (u_k)$.

Q. How do we find the steady state?

- If u_0 is an eigenvector of A associated to λ , then $u_k = \lambda^k u_0$.
- If x_1, \ldots, x_r are eigenvectors of A associated to $\lambda_1, \ldots, \lambda_r$ resp. and $u_0 \in \operatorname{Span}\{x_1, \dots, x_r\}$, i.e., $u_0 = c_1x_1 + \dots + c_rx_r$ for scalars c_1, \ldots, c_r , then $u_k = A^k u_0 = c_1 A^k x_1 + \dots + c_r A^k x_r = c_1 \lambda_1^k x_1 + \dots + c_r \lambda_r^k x_r.$
- If A is diagonalizable, then there is a basis of \mathbb{R}^n consisting of eigenvectors of A. Hence, the previous remark holds for all $u_0 \in \mathbb{R}^n$.
- Let A be diagonalizable and u_k represent population of some species. Under what conditions will there be a population explosion? What conditions will force the population to become extinct? When does the population stabilise to a non-zero value? **Hint:** Answer depends on eigenvalues λ_i of A.

5 / 13

An Application: Predator - Prey Model

Let us study the dynamics of spotted owl and wood rat polpulation. Assume owls diet are mostly rats and likewise rats are mostly predated by owls. Let O_k and R_k denote population of owls and rats in month k. Let us model the population dynamics as follows

$$O_{k+1} = 0.5O_k + 0.4R_k$$

 $R_{k+1} = -pO_k + 1.1R_k$

Here pO_k is the no. of rats consumed per month per owl.

- 1.1 is growth rate of rats in the absence of owls, (10% increase monthly) $0.5O_k$ means 50% decrease in owls population if there are no rats.
- $0.4R_k$ means growth rate of owl population if rats are present.

Write the system as
$$u_{k+1} = Au_k$$
, where $u_k = \begin{pmatrix} O_k \\ R_k \end{pmatrix}$, $A = \begin{pmatrix} 0.5 & 0.4 \\ -p & 1.1 \end{pmatrix}$.

Assume $u_0 = (100 \ 100)^T$ and p = 0.2. Then $u_k = A^k u_0$.

Find whether the populations grow, decline or approach a steady state.

Complex Eigenvalues

Ex: Rotation by 90°,
$$K = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
, $|K - \lambda I| = \lambda^2 + 1$.

It has no eigenvector, since rotation by 90° changes the direction.

K has eigenvalues, but they are not real. They are imaginary numbers i and -i, where $i^2 = -1$.

The associated eigenvectors are also not real. Let us compute them.

$$(K - iI)x_1 = \begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} x_1 = 0 \Rightarrow x_1 = \begin{bmatrix} 1 \\ -i \end{bmatrix},$$

$$(K+iI)x_2 = \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} x_2 = 0 \Rightarrow x_2 = \begin{bmatrix} 1 \\ i \end{bmatrix}.$$

The eigenvalues are distinct (though imaginary), hence eigenvectors are linearly independent.

If
$$S = \begin{bmatrix} x_1 & x_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}$$
, then $S^{-1}KS = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$.

M.K. Keshari () D1 - Lecture 19 17th February, 2015 7 / 13

Complex Numbers

Conclusion: We need complex numbers \mathbb{C} even if we are working with real matrices. Over \mathbb{C} , an $n \times n$ matrix A always has n eigenvalues.

Reason: Fundamental theorem of Algebra

Every polynomial over $\mathbb C$ of degree n has n roots in $\mathbb C$.

For a complex number x = a + ib, its conjugate is $\bar{x} = a - ib$.

Note that
$$\bar{x} \cdot x = a^2 + b^2$$
.

If
$$x=(x_1,\ldots,x_n)$$
, $y=(y_1,\ldots,y_n)\in\mathbb{C}^n$ are complex vectors,

define
$$(x \cdot y = \bar{x_1}y_1 + \cdots + \bar{x_n}y_n) \in \mathbb{C}$$
. Then

•
$$x \cdot x = |x_1|^2 + \cdots + |x_n|^2 \in \mathbb{R}$$
 and is ≥ 0 .

$$\bullet \ x \cdot x = 0 \Leftrightarrow x = 0.$$

• For
$$c \in \mathbb{C}$$
, $x \cdot c x = \bar{x_1} c x_1 + \cdots + \bar{x_n} c x_n = (x \cdot x) c$.

• Observe
$$c x \cdot x = \bar{c}(x \cdot x)$$

(In fact, this defines a complex inner product on \mathbb{C}^n).

Real Symmetric $n \times n$ Matrix A:

• For every $x \in \mathbb{C}^n$, $x \cdot Ax \in \mathbb{R}$. Let us do it for n = 2.

If
$$x = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \in \mathbb{C}^2$$
, $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$, then $Ax = \begin{pmatrix} az_1 + bz_2 \\ bz_1 + dz_2 \end{pmatrix}$.
Now $x \cdot Ax = \bar{z_1}(az_1 + bz_2) + \bar{z_2}(bz_1 + dz_2)$

$$= (a|z_1|^2 + d|z_2|^2) + b(\bar{z_1}z_2 + \bar{z_2}z_1) \in \mathbb{R}.$$

• Every eigenvalue of A is real. Let $\lambda \in \mathbb{C}$ be an eigenvalue of A, with associated eigenvector $x \in \mathbb{C}^n$. Then $Ax = \lambda x \Rightarrow x \cdot Ax = x \cdot \lambda x = (x \cdot x)\lambda$.

Since $x \neq 0 \Rightarrow x \cdot x$ is a positive real number $\Rightarrow \lambda = \frac{x \cdot Ax}{x \cdot x} \in \mathbb{R}$.

• A has real eigenvector associated to (real) eigenvalue λ . This follows from the fact that dim $N(A-\lambda I)\geq 1$. We can also find it from complex eigenvector $x\in\mathbb{C}^n$. Write x=u+iv, where $u,\ v\in\mathbb{R}^n$. Then $Ax=\lambda x\Rightarrow Au+iAv=\lambda(u+iv)\Rightarrow Au=\lambda u$ and $Av=\lambda v$. Therefore u and v are eigenvector of A associated to λ .

Real Symmetric $n \times n$ Matrix A:

• If $\lambda_1 \neq \lambda_2$ are distinct eigenvalues of A with eigenvectors $x_1, x_2 \in \mathbb{R}^n$, then x_1 and x_2 are orthogonal, i.e., $x_1^T x_2 = 0$.

Now
$$\lambda_1(x_1^T x_2) = (\lambda_1 x_1)^T x_2 = (Ax_1)^T x_2 = (x_1^T A^T) x_2$$

= $x_1^T (Ax_2) = x_1^T (\lambda_2 x_2) = \lambda_2 (x_1^T x_2)$.

Since $\lambda_1 \neq \lambda_2$, we get $x_1^T x_2 = 0$.

• If A has n distinct eigenvalues, then there is an orthogonal matrix Q and a diagonal matrix Λ such that $A = Q\Lambda Q^T$.

A has *n* distinct eigenvalues \Rightarrow A is diagonalizable \Rightarrow $S^{-1}AS = \Lambda$, where S is (real) invertible and Λ is diagonal.

If
$$S = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$$
 with $x_i \in \mathbb{R}^n$, then x_i 's are eigenvectors of A .

Since
$$x_i^T x_j = 0$$
 for $i \neq j$, $Q = \begin{bmatrix} \frac{x_1}{\|x_1\|} & \cdots & \frac{x_n}{\|x_n\|} \end{bmatrix}$

is an orthogonal matrix, i.e., $Q^{-1} = Q^T$.

Note Q = SD, where D is a diagonal matrix with diagonal entries $1/\|x_1\|, \ldots, 1/\|x_n\|$.

Therefore
$$Q^{-1}AQ = D^{-1}S^{-1}ASD = D^{-1}\Lambda D = \Lambda \Rightarrow A = Q\Lambda Q^T$$
.

Spectral Theorem for a Real Symmetric Matrix

Theorem Every real symmetric matrix A can be diagonalised. Further there is an orthogonal matrix Q and a diagonal matrix Λ such that $A = Q \Lambda Q^T$.

Once you know that A can be diagonalised, $A = Q\Lambda Q^T$ follows from the previous slide + Gram-Schmidt process applied to each eigenspace of A. (Without Proof)

Ex: Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
. Then $A - \lambda I = \begin{bmatrix} 1 - \lambda & 0 & 0 \\ 0 & -\lambda & 1 \\ 0 & 1 & -\lambda \end{bmatrix}$ and $\det(A - \lambda I) = (1 - \lambda)(\lambda^2 - 1)$. Eigenvalues: $\lambda_1 = 1, \lambda_2 = 1, \lambda_3 = -1$. Eigenvectors: $x_1 = (1, 0, 0)^T$, $x_2 = (0, 1, 1)^T$ and $x_3 = (0, 1, -1)$. Observe

Eigenvectors: $x_1 = (1, 0, 0)^T$, $x_2 = (0, 1, 1)^T$ and $x_3 = (0, 1, -1)$. Observe $x_1^T x_3 = 0 = x_2^T x_3$.

Gram-Schimdt gives an orthonormal basis $\{u_1, u_2\}$ for N(A - I), and let $u_3 = x_3/\|x_3\|$. Then $Q = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$ is an orthogonal matrix.

Further, $A = Q \Lambda Q^T$, where Λ is a diagonal matrix with entries 1, 1, -1 on the diagonal.

For extra reading: Sketch of proof of Spectral Theorem

Since A is real symmetric, it has a real eigenvalue, say λ_1 . Let x_1 be a real eigenvector of A associated to λ_1 .

Let W_1 be the orthogonal complement of $\mathrm{Span}(x_1)$. Then $A:\mathbb{R}^n\to\mathbb{R}^n$ takes W_1 to W_1 , i.e. $A|_{W_1}:W_1\to W_1$. (Needs checking)

Since W_1 is n-1-dimensional, the matrix associated to $A|_{W_1}$ with respect to some basis B of W_1 , i.e. $[A|_{W_1}]_B^B$, is square of size n-1 and symmetric.

Using induction on n, we get a basis x_2, \ldots, x_n of W_1 consisting of eigenvectors of $A|_{W_1}$. Then x_1, \ldots, x_n is a basis of \mathbb{R}^n consisting of eigenvectors of A. This proves that A is diagonalizable.

Let $\lambda_1, \ldots, \lambda_r$ be distinct eigenvalues of A with U_1, \ldots, U_r as their eigenspaces. Then U_i is orthogonal to U_j for $i \neq j$, since their elements are eigenvectors corresponding to different eigenvalues.

 $\dim(U_i)$ = the number of times λ_i is repeating as eigenvalue of A.

Gram-Schmidt gives an orthonormal basis B_i of U_i .

For extra reading

Let $B = \bigcup_{i=1}^r B_i = \{y_1, \dots, y_n\}$ be an orthonormal basis of \mathbb{R}^n . Each y_i is an eigenvector of A.

Let $Q = [y_1 \ y_2 \ \dots \ Y_n]$ be an orthogonal matrix. Then $Q^{-1}AQ = \Lambda$ will be diagonal matrix. Hence $A = Q\Lambda Q^{-1}$, and $Q^{-1} = Q^T$. This completes the proof.

• Let A be symmetric, and $A = Q \Lambda Q^T$.

If $Q = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$ then

$$A = Q \wedge Q^{T} = \begin{bmatrix} x_{1} & \dots & x_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{bmatrix} \begin{bmatrix} x_{1} & \dots & x_{n} \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \lambda_{1} x_{1} & \dots & \lambda_{n} x_{n} \end{bmatrix} \begin{bmatrix} x_{1} & \dots & x_{n} \end{bmatrix}^{T} = \lambda_{1} x_{1} x_{1}^{T} + \dots + \lambda_{n} x_{n} x_{n}^{T}.$$

Each matrix $\lambda_i x_i x_i^T$ is a projection matrix (check!) projecting a vector on the line spanned by x_i . Hence every symmetric matrix

A can be decomposed as sum of n projection matrices.