

Handbook of Operational Amplifier Circuit Design

OTHER McGRAW-HILL HANDBOOKS OF INTEREST

American Institute of Physics · American Institute of Physics Handbook
Baumeister and Marks · Standard Handbook for Mechanical Engineers

Beeman · Industrial Power Systems Handbook

Blatz · Radiation Hygiene Handbook

Brady · Materials Handbook

Burington and May · Handbook of Probability and Statistics with Tables

Condon and Odishaw · Handbook of Physics

Coombs · Basic Electronic Instrument Handbook

Coombs · Printed Circuits Handbook

Croft, Carr, and Watt · American Electricians' Handbook

Dean · Lange's Handbook of Chemistry

Etherington · Nuclear Engineering Handbook

Fink · Electronics Engineers' Handbook

Fink and Carroll · Standard Handbook for Electrical Engineers

Gruenberg · Handbook of Telemetry and Remote Control

Hamsher · Communication System Engineering Handbook

Harper · Handbook of Electronic Packaging

Harper · Handbook of Materials and Processes for Electronics

Harper · Handbook of Thick Film Hybrid Microelectronics

Harper · Handbook of Wiring, Cabling, and Interconnecting for Electronics

Henney · Radio Engineering Handbook

Hicks · Standard Handbook of Engineering Calculations

Hunter · Handbook of Semiconductor Electronics

Huskey and Korn · Computer Handbook

Ireson · Reliability Handbook

lasik · Antenna Engineering Handbook

Juran · Quality Control Handbook

Klerer and Korn · Digital Computer User's Handbook

Koelle · Handbook of Astronautical Engineering

Korn and Korn · Mathematical Handbook for Scientists and Engineers

Kurtz · The Lineman's and Cableman's Handbook

Landee, Davis, and Albrecht · Electronic Designer's Handbook

Machol · System Engineering Handbook

Maissel and Glang · Handbook of Thin Film Technology

Markus · Electronics and Nucleonics Dictionary

Markus · Handbook of Electronic Control Circuits

Markus and Zeluff · Handbook of Industrial and Electronic Circuits

Perry · Engineering Manual

Skolnik · Radar Handbook

Smeaton · Motor Application and Maintenance Handbook

Terman · Radio Engineers' Handbook

Truxal · Control Engineers' Handbook

Tuma · Engineering Mathematics Handbook

Tuma · Handbook of Physical Calculations

Tuma · Technology Mathematics Handbook

Watt and Summers · NFPA Handbook of the National Electrical Code

Handbook of Operational Amplifier Circuit Design

DAVID F. STOUT

Senior Engineering Specialist Aeronutronic Ford Corporation

Edited by

MILTON KAUFMAN

President, Electronic Writers and Editors, Inc.

McGRAW-HILL BOOK COMPANY

New YorkSt. LouisSan FranciscoAucklandDüsseldorfJohannesburgKuala LumpurLondonMexicoMontrealNew DelhiPanamaParisSão PauloSingaporeSydneyTokyoToronto

Library of Congress Cataloging in Publication Data

Stout, David F.

Handbook of operational amplifier circuit design.

1. Operational amplifiers. 2. Electronic circuit design. I. Kaufman, Milton. II. Title. TK7871.58.06S76 621.3815′35 76–3491 ISBN 0-07-061797-X

Copyright © 1976 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

890 KPKP 85432

The editors for this book were Harold B. Crawford, Ross J. Kepler, and Betty Gatewood, the designer was Naomi Auerbach, and the production supervisor was George E. Oechsner. It was set in Caledonia by The Kingsport Press.

Printed and bound by The Kingsport Press.

To Mildred Stout and David M. Kaufman

Contents

NTI	RODUCTION TO OPERATIONAL AMPLIFIERS
1.1	Overview of Operational Amplifiers
	The Op Amp Model
	Parameters of the Ideal Op Amp
1.2	Applications of Op Amps
	Linear Amplifiers
	Nonlinear Amplifiers
	Comparators
	Filters
	Logarithmic Applications
	Multivibrators
	Oscillators – Generators
	Regulators
	Sampling Circuits
1.3	The Real Op Amp
	Op Amp Packaging
	Parameters of Real Op Amps
	Voltage Gain
	Bandwidth
	Slew Rate
	Input Resistance
	Input Bias Current
	Input Offset Current
	Input Offset Voltage
1.4	Op Amps Compared with Transistors
	Gain
	Frequency Response
	Input Impedance
	Output Resistance
1.5	Basic Op Amp Circuits
	Basic Inverting Op Amp Circuit
	Basic Noninverting Op Amp Circuit
1.6	Real and Ideal Op Amps Compared
	Finite Open-loop Gain
	Finite Bandwidth
	Finite Input Resistance
	Output Resistance > 0
1.7	The Feedback Equation
1.8	Large-Signal Behavior of Op Amps
1.9	Open-Loop Characteristics of Op Amps
	Calculations Using Decibals

		Op Amp Open-loop Phase Shift	1-21
		Gain and Phase of a Zero	1-22
	* **	The Bode Approximation	1-22
	1.10	Closed-Loop Characteristics of Op Amps	1-23
	1.11	Loop Gain and Phase	1-24
	1.12	Circuits Inside an Op Amp	1-25
		Input Differential Amplifier	1-25
		Second Differential Amplifier	1-27
		Level-Shifting Amplifier	1-27
		Output-Power Amplifier	1-27
2.	FUN	DAMENTALS OF CIRCUIT DESIGN USING OP AMPS	2-1
	2.1	Basic Rules Which Simplify Design	2-1
		Inverting Amplifier	2-1
		Noninverting Amplifier	2-2
	2.2	How to Minimize Op Amp Errors	2-3
	4.4		
		Input Offset Voltage V _{to}	2-3
		Input Bias Current I _b	2-5
		Input Offset Current I _{io}	2-8
		Equivalent Input Noise V_n and I_n	2-9
		Input Resistance R_{id} and R_{ic}	2-12
		Input Capacitance C_{id} and C_{ic}	2-12
		Output Resistance R_0	2-13
		Open-loop Gain A _v and Open-loop DC Gain A _{vo}	2-14
		Bandwidth f_u , f_{cp} , f_f	2-16
		Slew Rate S	2-17
		Common-Mode Rejection Ratio (CMRR)	2-18
		Power Supply Rejection Ratio (PSRR)	2-21
	2.3	General Method to Compute A _{vc}	2-21
		Y Parameters	2-22
		Computing A _{nc} with Y Parameters	2-24
3.	FEE	DBACK STABILITY	3-1
3.	FEE	DBACK STABILITY	3-1
3.	FEE!		3-1 3-1
3.		Review of Feedback Theory	3-1
3.		Review of Feedback Theory	3-1 3-2
3.		Review of Feedback Theory	3-1 3-2 3-3
3.		Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation	3-1 3-2 3-3 3-3
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin	3-1 3-2 3-3 3-3 3-10
3.		Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits	3-1 3-2 3-3 3-3 3-10 3-11
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation	3-1 3-2 3-3 3-3 3-10 3-11 3-11
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits	3-1 3-2 3-3 3-3 3-10 3-11
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation	3-1 3-2 3-3 3-3 3-10 3-11 3-11
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead Compensation	3-1 3-2 3-3 3-3 3-10 3-11 3-11 3-13 3-15
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used	3-1 3-2 3-3 3-3 3-10 3-11 3-11 3-13 3-15
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network Fifth—Excessive Resistance Between Ground and Op Amp Positive Input.	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network Fifth—Excessive Resistance Between Ground and Op Amp Positive Input. Sixth—Excessive Stray Capacitance Between Op Amp Output and	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network Fifth—Excessive Resistance Between Ground and Op Amp Positive Input Sixth—Excessive Stray Capacitance Between Op Amp Output and Balance Terminals	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network Fifth—Excessive Resistance Between Ground and Op Amp Positive Input. Sixth—Excessive Stray Capacitance Between Op Amp Output and Balance Terminals Seventh—Inadequate Power-Supply Bypassing	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25 3-26 3-26 3-26
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First-Compensation Recommended by Data Sheet Not Used Second-Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third-Excessive Capacitive Load on Op Amp Fourth-Incorrect Phase Lead/Lag in Feedback Network Fifth-Excessive Resistance Between Ground and Op Amp Positive Input Sixth-Excessive Stray Capacitance Between Op Amp Output and Balance Terminals Seventh-Inadequate Power-Supply Bypassing Feedback Stability-Design Examples	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25 3-26 3-26 3-26 3-26 3-26 3-26 3-26
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First - Compensation Recommended by Data Sheet Not Used Second - Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third - Excessive Capacitive Load on Op Amp Fourth - Incorrect Phase Lead/Lag in Feedback Network Fifth - Excessive Resistance Between Ground and Op Amp Positive Input Sixth - Excessive Stray Capacitance Between Op Amp Output and Balance Terminals Seventh - Inadequate Power-Supply Bypassing Feedback Stability-Design Examples First Example - Inverting Amplifier with Gain of 10	3-1 3-2 3-3 3-3 3-10 3-11 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25 3-26 3-27 3-27
3.	3.1 3.2 3.3	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network. Fifth—Excessive Resistance Between Ground and Op Amp Positive Input. Sixth—Excessive Stray Capacitance Between Op Amp Output and Balance Terminals Seventh—Inadequate Power-Supply Bypassing Feedback Stability-Design Examples First Example—Inverting Amplifier with Gain of 10 Second Example—Wide Bandwidth Amplifier.	3-1 3-2 3-3 3-3 3-10 3-11 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25 3-26 3-27 3-27 3-31
3.	3.1	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network Fifth—Excessive Resistance Between Ground and Op Amp Positive Input. Sixth—Excessive Stray Capacitance Between Op Amp Output and Balance Terminals Seventh—Inadequate Power-Supply Bypassing Feedback Stability-Design Examples First Example—Inverting Amplifier with Gain of 10 Second Example—Wide Bandwidth Amplifier Feedback-Stability Measurements	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25 3-26 3-27 3-27 3-31 3-31 3-31
3.	3.1 3.2 3.3	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network. Fifth—Excessive Resistance Between Ground and Op Amp Positive Input. Sixth—Excessive Stray Capacitance Between Op Amp Output and Balance Terminals Seventh—Inadequate Power-Supply Bypassing Feedback Stability-Design Examples First Example—Inverting Amplifier with Gain of 10 Second Example—Wide Bandwidth Amplifier.	3-1 3-2 3-3 3-3 3-10 3-11 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25 3-26 3-27 3-27 3-31
3.	3.1 3.2 3.3	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network Fifth—Excessive Resistance Between Ground and Op Amp Positive Input. Sixth—Excessive Stray Capacitance Between Op Amp Output and Balance Terminals Seventh—Inadequate Power-Supply Bypassing Feedback Stability-Design Examples First Example—Inverting Amplifier with Gain of 10 Second Example—Wide Bandwidth Amplifier Feedback-Stability Measurements	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25 3-26 3-27 3-27 3-31 3-31 3-31
3.	3.1 3.2 3.3	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network Fifth—Excessive Resistance Between Ground and Op Amp Positive Input Sixth—Excessive Stray Capacitance Between Op Amp Output and Balance Terminals Seventh—Inadequate Power-Supply Bypassing Feedback Stability-Design Examples First Example—Inverting Amplifier with Gain of 10 Second Example—Wide Bandwidth Amplifier Feedback-Stability Measurements Loop-gain Measurement Method Closed-loop AC Method	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25 3-26 3-27 3-27 3-31 3-35 3-35 3-35
3.	3.1 3.2 3.3	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network Fifth—Excessive Resistance Between Ground and Op Amp Positive Input. Sixth—Excessive Stray Capacitance Between Op Amp Output and Balance Terminals Seventh—Inadequate Power-Supply Bypassing Feedback Stability-Design Examples First Example—Inverting Amplifier with Gain of 10 Second Example—Wide Bandwidth Amplifier Feedback-Stability Measurements Loop-gain Measurement Method	3-1 3-2 3-3 3-3 3-10 3-11 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25 3-26 3-27 3-27 3-31 3-35 3-35 3-35
3.	3.1 3.2 3.3 3.4 3.5	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First-Compensation Recommended by Data Sheet Not Used Second-Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third-Excessive Capacitive Load on Op Amp Fourth-Incorrect Phase Lead/Lag in Feedback Network Fifth-Excessive Resistance Between Ground and Op Amp Positive Input. Sixth-Excessive Stray Capacitance Between Op Amp Output and Balance Terminals Seventh-Inadequate Power-Supply Bypassing Feedback Stability-Design Examples First Example-Inverting Amplifier with Gain of 10 Second Example-Wide Bandwidth Amplifier Feedback-Stability Measurements Loop-gain Measurement Method Closed-loop AC Method Transient-Response Method	3-1 3-2 3-3 3-3 3-10 3-11 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25 3-26 3-27 3-27 3-31 3-35 3-35 3-35
4.	3.1 3.2 3.3 3.4 3.5	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network Fifth—Excessive Resistance Between Ground and Op Amp Positive Input Sixth—Excessive Stray Capacitance Between Op Amp Output and Balance Terminals Seventh—Inadequate Power-Supply Bypassing Feedback Stability-Design Examples First Example—Inverting Amplifier with Gain of 10 Second Example—Wide Bandwidth Amplifier Feedback-Stability Measurements Loop-gain Measurement Method Closed-loop AC Method	3-1 3-2 3-3 3-3 3-10 3-11 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25 3-26 3-27 3-27 3-31 3-35 3-35 3-35
	3.1 3.2 3.3 3.4 3.5	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead-Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network. Fifth—Excessive Resistance Between Ground and Op Amp Positive Input. Sixth—Excessive Stray Capacitance Between Op Amp Output and Balance Terminals Seventh—Inadequate Power-Supply Bypassing Feedback Stability-Design Examples First Example—Inverting Amplifier with Gain of 10 Second Example—Wide Bandwidth Amplifier Feedback-Stability Measurements Loop-gain Measurement Method Closed-loop AC Method Transient-Response Method	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25 3-26 3-27 3-31 3-35 3-37 3-38
	3.1 3.2 3.3 3.4 3.5	Review of Feedback Theory Results of Positive and Negative Feedback First-Cut Stability Analysis Development of the Loop-gain Equation Gain Margin and Phase Margin Compensation Circuits Lag Compensation Lead Compensation Lead-lag Compensation The Seven Major Causes of Op Amp Instability First—Compensation Recommended by Data Sheet Not Used Second—Closed-Loop Gain Too Low for Type (and Amount) of Compensation Used Third—Excessive Capacitive Load on Op Amp Fourth—Incorrect Phase Lead/Lag in Feedback Network Fifth—Excessive Resistance Between Ground and Op Amp Positive Input. Sixth—Excessive Stray Capacitance Between Op Amp Output and Balance Terminals Seventh—Inadequate Power-Supply Bypassing Feedback Stability-Design Examples First Example—Inverting Amplifier with Gain of 10 Second Example—Wide Bandwidth Amplifier. Feedback-Stability Measurements Loop-gain Measurement Method Closed-loop AC Method Transient-Response Method	3-1 3-2 3-3 3-3 3-10 3-11 3-13 3-15 3-18 3-19 3-20 3-22 3-24 3-25 3-26 3-27 3-27 3-31 3-35 3-35 3-35 3-35 3-35

	CONTENT	S ix
	4.3 Current Amplifier	4-12
	4.4 Transresistance Amplifier	4-14
	4.5 Transconductance Amplifier	4-16
	4.6 AC Coupled Inverting Amplifier	
	4.7 Charge-Sensitive Amplifier	
	4.8 Summing Amplifier	
	4.6 Summing Ampimer	
5.	COMPARATORS	5-1
	5.1 Zero-Crossing Detector	5-1
	5.2 Zero-Crossing Detector with Hysteresis	5-5
	5.3 Level Detector	5-9
	5.4 Level Detector with Hysteresis	5-11
6.	CONVERTERS	6-1
	6.1 Dual-Slope A/D Converter	6-1
	6.1 Dual-Slope A/D Converter	6-8
7.	DEMODULATORS AND DISCRIMINATORS	7-1
	7.1 Synchronous AM Demodulator	7-1
	7.2 FM Demodulator	7-4
	7.3 Pulse-Width Discriminator	
8.	DETECTORS	8-1
	8.1 Positive-Peak Detector	
	8.2 Phase Detector	. 8-4
_	DIFFERENTIAL AMPLIFIERS	9-1
9.		
	9.1 Basic Differential Amplifier	. 9-1
	9.2 Instrumentation Amplifier	, 5-0
_	LOW-PASS FILTERS	10-1
0.		
	10.1 Second-Order Low-Pass Filter	. 10-1
	10.2 Third-Order Low-Pass Filter	. 10-0
	HIGH PAGG FILTERS	11-1
1.	HIGH-PASS FILTERS	
	11.1 Second-Order High-Pass Filter	. 11-1
	11.2 Third-Order High-Pass Filter	. 11-7
	DANIEL DE LA CIUTERA	12-1
2.	BANDPASS FILTERS	
	12.1 Multiple-Feedback Bandpass Filter	12-1
	12.2 State-Variable Bandpass Filter	12-7
		13-1
3.	BANDSTOP FILTERS	
	13.1 Active Inductor Bandstop Filter	13-1
	13.2 Twin-Tee Bandstop Filter	13-4
		14.4
14.	FREQUENCY CONTROL	14-1
	14.1 Frequency Doubler	14-1
	14.9 Frequency Difference Detector	14-6

x CONTENTS

15.	INTEGRATORS AND DIFFERENTIATORS	5-1
	15.1 Differentiator	15-1 15-9
16.	LIMITERS AND RECTIFIERS	6-1
	16.1 Amplitude Limiter	16-1 16-5
17.	LOGARITHMIC CIRCUITS	7-1
	17.1 Differential Logarithmic Amplifier	17-1 17-8
18.	MODULATORS	8-1
	18.1 Amplitude Modulator	18-1 18-7 18-9
19.	MULTIPLIERS AND DIVIDERS	9-1
	19.1 FET-Controlled Multiplier	19-1 19-6
20.	MULTIVIBRATORS	20-1
	20.1 Astable Multivibrator 20.2 Bistable Multivibrator 20.3 Monostable Multivibrator	20-1 20-4 20-7
21.	OSCILLATORS	21-1
	21.1 Wien-Bridge Sine-Wave Oscillator 21.2 Voltage-Controlled Oscillator	21-1 21-5
22.	PARAMETER ENHANCEMENT AND SIMULATION	22-1
	22.1 Capacitance Multiplier	22-1 22-3
23.	POWER CIRCUITS	23-1
	23.1 Op Amp Bandwidth/Power Booster	
24.	REGULATORS	24-1
	24.1 Current-Limited Voltage Regulator 24.2 High-Voltage Regulator 24.3 Shunt Voltage Regulator 24.4 Precision Voltage Reference 24.5 Dual Voltage Regulator 24.6 Switching Voltage Regulator 24.7 Floating-Load Current Regulator 24.8 Grounded-Load Current Regulator	24-1 24-9 24-11 24-13 24-13 24-15 24-17 24-19

25.	SAM	PLING	CIRCUITS		25-1
	25.1 25.2 25.3	Precisi	ultiplexer n Gate Multiplexer and-Hold Circuit		25-4
26.	TIMI	E AND	PHASE CIRCUITS		26-1
	26.1 26.2 26.3	Adjusta	ead/Lag Circuit ole Lead/Lag Circuits Timer		26-1 26-3 26-5
27.	WAV	EFORM	GENERATORS		27-1
	27.1 27.2 27.3	Voltage	Ramp Generator		27-4
Appe	endix	I. 0	PERATIONAL AMPLIFIER PARAME	TERS	1-1
Appe	endix	II. O	PERATIONAL AMPLIFIER MAXIMU	JM RATINGS	11-1
Appo	endix	III. C	RCUIT FABRICATION TECHNIQUE	S	III-1
			Input Terminals Output Terminal Power Supply Terminals 2 Noise Prevention Techniques		. III-1 . III-2 . III-3 . III-3
			Grounding/Bypassing Problems Shielding/Guarding		. III-5
		11	1.3 Passive Devices in Op Amp Circuit Resistors		. III-6
App	endix	IV. P	OTATION USED IN HANDBOOK		IV-1
App	endix	V. [ECIBEL CALCULATIONS		V-1
App	endix	VI. F	C CIRCUIT CHARACTERISTICS .		VI-1

Index follows Appendix VI.

Preface

Operational amplifiers have become one of the most popular electronic devices in use today. They are versatile, easy to use, and have many applications. This Handbook takes advantage of the easily systematized nature of op amp design. In a clear, step-by-step way, it provides engineers, technicians, and scientists with time- and work-saving procedures for designing or analyzing a circuit using op amps. The Handbook thus eliminates the need for time-consuming searches through the available literature to learn which equations are applicable to a particular circuit.

To help designers quickly determine which equations are applicable to their particular needs, the Handbook presents all such equations in quick-reference tabular form. This kind of simplified format makes the Handbook

easily used by technicians as well as engineers and scientists.

The Handbook of Operational Amplifier Circuit Design provides concise, easy-to-follow information and procedures that include such labor-saving design aids as:

1. A basic introduction to op amps for those new to the field (chapter 1).

2. The two fundamental rules needed to design op amp circuits (chapter 2).

3. A comprehensive list of op amp error sources and methods by which they can be minimized (chapter 2).

4. A method of designing an amplifier with any required frequency

response (chapter 2).

5. A detailed description of commonly used frequency compensation circuits and their effect on loop gain, phase margin, and gain margin (chapter 3).

6. A listing of the seven major causes of op amp instability, and remedies

for this problem (chapter 3).

7. Design information on 68 op amp circuits (chapters 4 through 27). A list of design equations is provided for each circuit. The exact meaning and applicability of each equation is also given.

8. A parameter list accompanying each set of design equations, which carefully explains what each parameter or component is and what it does to

circuit performance.

9. A comprehensive design procedure for one or two circuits in each of the design chapters (chapters 4 through 27). Each design procedure shows a recommended set of design steps that can be used to quickly construct a working model of the circuit.

- 10. A detailed numerical example for each circuit for which a design procedure is given. This example clearly shows how the design steps are carried out.
- 11. Six appendixes covering op amp parameters, maximum ratings, circuit fabrication techniques, notation used in the handbook, decibel calculation hints, and a comprehensive table of RC transfer functions.

The author wishes to acknowledge the ever-helpful support of his wife, Mildred, who painstakingly typed the entire manuscript. The author and editor also wish to thank Analog Devices, Inc., Fairchild Semiconductor Corp., National Semiconductor Corp., and Teledyne Philbric for allowing us to use some of their material.

David F. Stout Milton Kaufman

Handbook of Operational Amplifier Circuit Design

Introduction to Operational Amplifiers

1.1 OVERVIEW OF OPERATIONAL AMPLIFIERS

The operational amplifier is a direct-coupled high-gain amplifier which uses feedback to control its performance characteristics. Internally, it consists of several series-connected transistor amplifiers. Externally, it is represented by the symbol shown in Fig. 1.1. The operational amplifier (op amp) is widely popular with analog-circuit designers because of its nearly ideal characteristics.

The op amp is capable of amplifying, controlling, or generating any sinusoidal or nonsinusoidal waveform over frequencies from dc to many megahertz. All classical computational functions are possible such as addition, subtraction, multiplication, division, integration, and differentiation. It is useful for innumerable applications in control systems, regulating systems, signal processing, instrumentation, and analog computation.

Functionally, as shown in Fig. 1.1, the op amp contains one output terminal which is controlled by two input terminals. If a positive voltage is applied to the positive (+) input, the op amp output will go positive. Likewise, a positive voltage on the negative (-) input will cause the output to go negative. A simplified model of the op amp is shown in Fig. 1.2. It indicates that an op amp can be represented by a voltage source which is controlled by two "floating" terminals. The op amp has high voltage gain for differential

Fig. 1.1 Standard op amp symbol.

$$v_p \circ \underbrace{\hspace{1cm} (+)}_{v_n \circ \underbrace{\hspace{1cm} (-)}_{v_n \circ \underbrace{\hspace{1cm} (-)}_{v_n \circ \underbrace{\hspace{1cm} (v_p - v_n)}_{v_n \circ \underbrace{\hspace{1cm} (v_p - v_n)}_{v_n \circ \underbrace{\hspace{1cm} (v_p - v_n)}_{v_n \circ \underbrace{\hspace{1cm} (-)}_{v_n \circ }}_{v_n \circ \underbrace{\hspace{1cm} (-)}_{v_n \circ \underbrace{\hspace{1cm} (-)}_{v_n \circ }}_{v_n \circ \underbrace{\hspace{1cm} (-)}_{v_n \circ \underbrace{\hspace{1cm} (-)}_{v_n \circ }}_{v_n \circ \underbrace{\hspace{1cm} (-)}_{v_n \circ }}$$

Fig. 1.2 Alternate symbol for an op amp.

signals effective between the two inputs. The op amp also has very low gain for signals applied to both inputs simultaneously. These are called common-mode input signals.

The two inputs are labeled positive and negative or noninverting and inverting. The positive input is in phase with the output, and the negative input is 180° out of phase with the output. If we connect two resistors to the op amp as shown in Fig. 1.3, we have the basic noninverting amplifier circuit. The circuit gain from v_i to v_o is determined only by the resistors R_f and R_1 . If we replace R_f by a short circuit and remove R_1 , we have a very popular circuit known as the voltage follower. It has a gain of exactly 1. The basic inverting amplifier is shown in Fig. 1.4. Again, its gain is determined only by R_f and R_1 .

Fig. 1.3 Noninverting amplifier.

Fig. 1.4 Inverting amplifier.

Both inputs to the op amp can be used simultaneously for differential-amplifier circuits, as shown in Fig. 1.5. The output voltage is proportional to the difference in the voltages applied to the two inputs. The constant of proportionality depends only on the size of the R_f and R_1 resistors.

Fig. 1.5 Differential amplifier.

The operational amplifier is most versatile in simulating mathematical functions. Figure 1.6 shows a circuit which produces the sum of the inputs. Figure 1.7 produces an output voltage which is proportional to the integral of the input voltage. (This is an integrator.) Likewise, Fig. 1.8 produces an output voltage which is proportional to the derivative of the input voltage. (This is a differentiator.)

Op amps can be used to convert voltage to voltage, as in Figs. 1.3 and 1.4, or voltage to current, as in Fig. 1.9, or current to voltage, as in Fig. 1.10, or current to current, as in Fig. 1.11.

This chapter is intended primarily for readers who are only slightly familiar with the op amp. Topics covered will be a comparison of ideal and real op amps, applications of op amps, calculations with basic circuits, and gain/phase plots over frequency.

THE OP AMP MODEL The operational amplifier model shown in Fig. 1.1 is the normal symbol seen in simplified schematics. More detailed schematics show more terminals on the op amp, as shown in Fig. 1.12. Some op amps require most of these extra terminals, while some require only the addition of power-supply terminals.

Fig. 1.6 Summing circuit.

The op amp triangle symbol points in the direction of increasing signal level. The main output terminal is at one comer of the triangle. Sometimes a lower-power-level output is available and is shown next to the main output terminal. The inputs are always on the side opposite the output terminal. The other two sides of the triangle are for all the remaining terminals.

Fig. 1.7 Integrator.

Fig. 1.8 Differentiator.

Fig. 1.9 Voltage-to-current converter.

Fig. 1.10 Current-to-voltage converter.

PARAMETERS OF THE IDEAL OP AMP An op amp will perform most satisfactorily in the circuits described in this book if it has the following ideal properties (see Sec. 1.3 and Chap. 2 for a discussion of each parameter):

- 1. Differential voltage gain = ∞ .
- 2. Common-mode voltage gain = 0.
- 3. Bandwidth = ∞ .
- 4. Input impedance = ∞ .
- 5. Output impedance = 0.
- 6. Output voltage = 0 when input voltage = 0.
- 7. Parameter drift with temperature = 0.
- 8. Equivalent input noise = 0.

None of these ideal parameters are achieved by any operational amplifier, nor will they ever be achieved. Manufacturers of op amps are continually improving their products, and some of these parameters are now so close to the ideal that the difference is hardly discernible. It would not be worthwhile to tabulate the state of the art, since improvements in op amp technology are reported in the literature every day.

Fig. 1.11 Current-to-current converter.

When selecting an op amp for a specific application, the designer usually will be looking for optimum performance of two or three parameters. After an op amp with the best possible values for these parameters is found, it is often discovered that many of the other parameters are much less than optimum. This is the trade-off that every designer must go through during

Fig. 1.12 Symbol showing some of the possible terminals found on different types of op amps.

the design phase of a circuit. It is not possible to find an op amp which has state-of-the-art performance of every parameter. For example, low-noise op amps are not usually wide-bandwidth devices. Likewise, wide-bandwidth op amps may not have a very high input impedance.

1.2 APPLICATIONS OF OP AMPS

Op amps can be used in nearly every area of linear and nonlinear electronics and also in a few digital applications.

LINEAR AMPLIFIERS The primary use of op amps is for linear amplifiers where highly stable gain is the main requirement. The high gain of the op amp combined with heavy feedback results in amplification which is almost independent of temperature, time, and op amp gain changes. For example, assume an op amp has a gain of 10^5 and feedback is used to reduce the circuit gain to 10. The ratio of op amp gain to circuit gain is $10^5/10 = 10^4$. Factors which affect the op amp gain will have 10^4 times less effect on the circuit gain. If the op amp gain changes from 10^5 to 2×10^5 (a 100 percent change), the circuit gain will change $100\%/10^4 = 0.01\%$. This is the major benefit of highgain op amps. The circuit can also be designed so that gain is traded for gain stability. If higher gains are desired, one automatically gets less stability.

In addition to stability, the heavy feedback mentioned above has several other benefits. Nonlinearity is reduced, bandwidth is increased, input and output impedances are changed, and the op amp can be replaced without

affecting circuit gain.

Linear amplifiers using op amps can be constructed with either positive or negative gain. The magnitude of gain can range from less than one to several million, the upper limit depending on the particular op amp used. As mentioned above, however, the very high gain circuit will have poor gain stability and its bandwidth will be very narrow.

NONLINEAR AMPLIFIERS Many types of nonlinear amplifiers are possible using op amps. One of the most common is an op amp circuit which precisely amplifies signals of one polarity but not the other. This is known as a precision rectifier. Several variations of this basic circuit are possible, such as rectification in either direction. Adding a capacitor in one arrangement makes the circuit a filtered precision rectifier. Slight rearrangements of the diode and capacitor change the circuit to a peak detector, peak-to-peak detector, or average-value detector. Another slight modification turns this circuit into an absolute-value amplifier (full-wave rectifier).

COMPARATORS The op amp is a natural choice for a comparator owing to its high gain. The output terminal changes from plus saturation to minus saturation, or vice versa, with a millivolt or less change across the input terminals. By definition, this is a zero cross detector: the output changes polarity whenever the input passes through zero voltage. With a small bias on one input or the other, the circuit becomes a level detector. In this case the output changes state only when the signal input passes through the value of the bias on the other input.

Comparators have other more complex capabilities such as double-ended level detectors, level detectors with prescribed hysteresis, window detectors, and pulse-height analyzers. Most types of analog-to-digital converters require a comparator. This is such a widely required device that many specialized op amps are simply called comparators on the data sheet.

FILTERS Filter design has been revolutionized (and revitalized) because of the operational amplifier. One of the disadvantages of conventional filter design was its reliance on inductors. A simple op amp circuit is able to behave as a very stable, highly linear inductor. Modern filters, accordingly, use resistors, capacitors, and op amps as long as the application is within the frequency limitations of the op amps. These simulated inductors do not have all the disadvantages of real inductors: nonlinearity, hysteresis, core loss, radiation, unwanted coupling, large size, and difficult fabrication.

All the popular filter types are realizable with op amp filters (usually called

active filters). A few of these types include:

Low-pass filters High-pass filters Bandpass filters Bandstop filters

The ripple, phase, and rolloff of these filters can be tightly controlled with Chebyshev, Butterworth, or Bessel characteristics. Any combination of these

classical characteristics is also possible with active filters.

Several other important advantages are offered by active filters. First, their output impedance (for most configurations) is less than $1\ \Omega$. This relieves the designer of the task of impedance matching. The input impedance of active filters is usually fairly high; so impedance matching is not required there either. Second, active filters can be designed to provide gain and/or supply large amounts of power.

Passive *RLC* filters require impedance matching at both the input and output and have less than unity gain at all frequencies. They can supply large amounts of power by appropriate choice of components. However, they

cannot provide power gain as is possible with active filters.

LOGARITHMIC APPLICATIONS If nonlinear elements (diodes or transistors) are used in the feedback circuit, a host of logarithmic circuits are possible. The basic circuit provides an output voltage proportional to the logarithm of the input voltage. Either dc or ac signals can be converted in this manner. A simple part rearrangement turns the circuit into an antilog circuit.

Log and antilog circuits are sometimes known as compressors and expanders, respectively, when utilized for audio and video signals. By use of appropriate combinations of log and antilog circuits, the following types

of functions are possible:

Multiplier Divider Squaring circuit $Y = X^n$ circuit Square-root circuit

Square root of the sum of squares

All these functions can be performed on either ac or dc signals.

MULTIVIBRATORS All three basic types of multivibrators are possible with the op amp. These basic types are the bistable (flip-flop), monostable (one-shot or single-shot), and the astable (rectangular-waveform generator) multivibrators. It is true that these are really digital functions and are much easier to build using digital microcircuits. However, more flexibility is offered with the op amp approach. For example, most digital microcircuits operate between specific voltages such as +5 and ground or -10 and ground. The maximum power level of these devices is also restricted. A multivibrator built with an op amp can operate between a wide range of minimum voltages

(such as -20 to zero) and a wide range of maximum voltages (such as zero to +20 V). Thus, a multivibrator with a 40-V (± 20 -V) pulse output or a 1-V output could be designed. The power level could be increased to any desired level by inserting buffer transistors after the op amp but inside the feedback loop.

OSCILLATORS-GENERATORS Waveforms of many shapes, sizes, and frequencies are realizable using op amps. Sine-wave oscillators are implemented by using phase-shift feedback, inductor-capacitor feedback, or twin-tee feedback. The oscillator frequency and/or amplitude can be voltage-controlled. Negative feedback can be simultaneously incorporated to provide a highly stable output amplitude. Two- or three-phase circuits are commonly seen. Frequency stability can be assured by utilizing a quartz crystal or tuning fork.

Waveform generators have been designed which provide all the commonly required waveshapes. Rectangular shapes with either fixed or independently adjustable width and period adjustments are possible. Sawtooth generators with either fixed or independently adjustable rise and fall times are also commonly seen. The same comments can be made regarding triangle generators, which are merely a special class of sawtooth generators. Staircase generators can also be implemented with an op amp and several other parts. The step size, step period, and reset time can all be made independently adjustable.

Any of the adjustable parameters discussed above can be performed with voltage control. The op amp makes voltage control of parameters much

easier than is possible using discrete parts.

REGULATORS Tight control of some parameter such as voltage, current, or temperature is easily performed using the op amp as a comparator. The op amp is such a useful device for voltage regulation that a whole class of specialized op amps has been developed for this application. These are commonly called monolithic voltage regulators. Since it is beyond the scope of this book to discuss special offshoots of the op amp device, we will discuss only how regulators are implemented using standard op amps. The monolithic voltage regulators utilize the same theory and electronic parts as regulators using op amps and discrete parts. However, monolithic regulators place most of the other electronic parts on the same monolithic chip as the op amp.

Voltage regulators of the following types can be designed around the

ordinary op amp:

Series pass regulation

Shunt regulation

Positive output

Negative output

Switching

Foldback

Current-limited

Floating

High voltage

Precision

Other specialized voltage regulators are also possible.

Current regulators can be designed to handle many specialized applications. They are often seen supplying current to floating loads, grounded loads, or even active complex loads. **SAMPLING CIRCUITS** In this age of computerized control of analog processes, sampling circuits are indispensable. We will present design information on a number of sampling circuits such as precision analog gates, sample-and-hold circuits, and analog-to-digital converters. The sampling portion of these circuits requires one or two field-effect transistors in conjunction with an op amp. Analog-to-digital converters often require two or three op amps.

1.3 THE REAL OP AMP

OP AMP PACKAGING The operational amplifier is available in many shapes and sizes. The designer's choice of shape and size depends on packaging and performance requirements. In general, the larger op amps have the best performance. The small units, such as those shown in Figs. 1.13 to 1.15, usually contain a single monolithic chip. The larger packages, such as that shown in Fig. 1.16, contain a printed circuit with discrete parts. Each part can be optimally selected to produce op amps in which some of the parameters are nearly ideal.

Fig. 1.13 The TO-99 op amp package. (National Semiconductor Corp.)

Many hybrid-microcircuit op amps are also available in relatively small packages. The package sometimes used is similar to Fig. 1.13. Hybrid op amps have many of the advantages of discrete op amps, but their package size is close to that of the monolithic devices. It is not nearly as easy to select resistors and transistors in a hybrid op amp as it is in a discrete op amp. However, if one is willing to pay the cost, hybrid op amps with discrete op amp performance can be obtained.

PARAMETERS OF REAL OP AMPS Now that we have discussed both op amp packaging and the ideal op amp parameters (Sec. 1.1), we will discuss the relationship between packaging and real parameters. It should become obvious that larger op amps usually have better parameters. We will also briefly explain the meaning of each parameter.

Voltage gain This parameter is often called open-loop gain and is specified at dc. It is defined as the ratio of an output-voltage change to an input-

Fig. 1.14 Several types of dual in-line packages commonly used for op amps. (National Semiconductor Corp.)

voltage change. One should not judge the quality of an op amp with this parameter, since it is an easy matter to cascade transistors to obtain large amounts of voltage gain. Throughout the text we will call it A_{vo} . The value of A_{m} may be only 1.000 for some wide-bandwidth devices, or A_{m} might have a maximum over one hundred million for chopper-stabilized op amps.

 A_{no} is the differential voltage gain at dc, that is, the ratio of output voltage to the voltage between the two input terminals. The gain from both inputs (tied together) to the output is called common-mode voltage gain A_{cmo}.

 A_{cmo} is usually thousands of times smaller than A_{vo} .

Fig. 1.15 For high-density packaging the op amp may be put inside a flat pack.

Bandwidth The bandwidth of a device can be defined in several ways. The three methods commonly seen on op amp data sheets are:

1. Unity-Gain Crossover Frequency. This is obviously the frequency at which the voltage gain passes through a gain of 1 (0 db). We will call this frequency f_u throughout the text. Values of f_u from 1 kHz to 100 MHz are

Fig. 1.16 The highest-quality op amps utilize discrete parts and are placed in packages as shown above. (Analog Devices.)

available. The typical value for monolithic op amps is in the range of 0.5 to 5 MHz. Special-purpose discrete-component op amps such as electrometers sometimes have very low bandwidths, or special wide-bandwidth devices may have an f_u of 100 MHz.

2. Unity-Gain Risetime. Often the op amp is connected as a unity-gain noninverting circuit and its small-signal risetime t_r is measured. The bandwidth is then computed from $BW = 0.35/t_r$. This bandwidth will be quite

close to the f_u defined above.

3. Full-Power Bandwidth. This bandwidth is usually 10 to 100 times lower in frequency than f_u . It is defined as the maximum frequency at which a full-sized undistorted sine wave can be observed at the op amp output. If the op amp is using ± 15 -V supplies, a full output is approximately ± 10 V. Monolithic op amps do not have full-power bandwidth beyond 0.5

MHz, while discrete-part op amps may extend up to 10 MHz.

Slew rate This parameter is related to full-power bandwidth. When an op amp is overdriven with a high-frequency sine wave, the output appears to be a triangular waveform. The slope of this triangular-output waveform is the slew rate. It is expressed in volts per microsecond. The best monolithic op amps have slew rates of $100 \text{ V}/\mu\text{s}$, while the typical is $1 \text{ V}/\mu\text{s}$. Discrete-part op amps can be optimized for this parameter and achieve over $1{,}000 \text{ V}/\mu\text{s}$ slew rates.

Input resistance This parameter is defined as either differential input resistance R_{id} (between the two input terminals) or common-mode input resistance R_{ic} (from either input terminal to the negative power-supply terminal). In monolithic op amps R_{id} ranges from several hundred kilohms to several megohms. R_{ic} is not specified very often, but it is often $10^8~\Omega$ or more. Some monolithic op amps have FET input transistors diffused on the same chip. The input resistance may approach $10^{12}~\Omega$ in these devices. Discrete-part op amps with FET input transistors may possess an R_{id} and/or R_{ic} of $10^{13}~\Omega$.

Input bias current This parameter, called I_b , is the average value of the two op amp input currents. Ideally, this current should be zero so that the input and feedback circuitry will not be disturbed. In monolithic op amps this current ranges from 1 nA to 1 μ A. FET input monolithic op amps require slightly less than 1 nA. Good discrete-part op amps require less than

Input offset current The currents going into the two op amp inputs are always slightly different. The difference between these two currents I_{io} is defined as the input offset current. This current should also be zero in the ideal case. Monolithic op amps have input offset currents ranging from less than 1 to several hundred nanoamperes. Discrete-part op amps are better,

being much less than 1 pA.

1 pA input bias current.

Input offset voltage The voltage required across the op amp inputs to drive the output to zero is called the input offset voltage V_{io} . In monolithic op amps this parameter is often quite high if the input bias current is low. It usually ranges from 1 to 100 mV. Discrete-part op amps can be designed so that both types of offsets are somewhat optimized. Quite often, however, producers of op amps do not specify input offset voltage, since it can be nulled out using offset-adjustment terminals. Rather, they specify the temperature coefficient of the offset voltage. Discrete-part op amps may possess offset-voltage temperature coefficients of only $0.1~\mu\text{V}/^{\circ}\text{C}$. The best monolithic op amp is around $1~\mu\text{V}/^{\circ}\text{C}$, and most of these devices are up around 5 to $10~\mu\text{V}/^{\circ}\text{C}$.

1.4 OP AMPS COMPARED WITH TRANSISTORS

In this section we will take a look at the advantages and disadvantages of op amps compared with transistors. This comparison may be used as a foundation for expanding one's design capabilities from transistors into the area of op amps. The same type of transition was required by many circuit designers when the electronic industry started changing from vacuum tubes to transistors. In that case, the transition was difficult, since vacuum tubes are easier to understand than transistors. The transition from transistors to op amps is different. Here we are changing from a device which has many design difficulties to a device which is relatively easy to use. Even though the op amp contains from 10 to 100 transistors inside its envelope, it is probably the easiest electronic device with which one may perform a "cookbook" circuit design.

GAIN Transistors provide voltage gain from zero to 100, depending on the circuit and the input and output terminals used. Op amps can provide voltage gain from zero to over one million, depending on the circuit arrangement and type of op amp used. These are the voltage gains at dc.

FREQUENCY RESPONSE Individual transistors can be obtained which have little degradation of gain (-3-dB) at frequencies up to 5 or 10 GHz. The -3-dB frequencies for op amps are in the 1-Hz to 10-kHz range. However, op amps usually operate with such large amounts of feedback that the effective -3-dB frequency may be over 10 Mhz.

INPUT IMPEDANCE The input resistance of a FET input op amp may be as high as $10^{13}~\Omega$. The typical value is over 1 M Ω for bipolar monolithic op amps. The input capacitance is typically 3 pF. Bipolar transistors have input resistances of only a few thousand ohms. FET transistors, however, have input resistances comparable with FET input op amps. The input capacitances of transistors may be only 1 pF or less for small-geometry devices.

OUTPUT RESISTANCE The output resistance of most op amps is $100~\Omega$ or less. When feedback is incorporated, this output resistance may be reduced to below $1~\Omega$. This is an almost ideal situation. Transistors, on the other hand, have output resistances of thousands or tens of thousands of ohms. Since their gain is not too high, the output resistance cannot be lowered more than a few octaves when feedback is incorporated. A high output resistance is one undesirable characteristic of transistors.

1.5 BASIC OP AMP CIRCUITS

Two simple op amp circuits which have wide usage will be discussed in this section. These are called the basic inverting and noninverting op amp circuits. Many of the more complex circuits in this handbook are merely extensions of these two basic circuits.

BASIC INVERTING OP AMP CIRCUIT Figure 1.17 shows the basic inverting op amp circuit. The voltage gain at dc and low frequencies is called A_{vco} . This is equal to

$$A_{vco} = \frac{v_o}{v_i} = -\frac{R_f}{R_1} \tag{1.1}$$

The circuit voltage gain as a function of frequency is called A_{vc} . Since R_f and R_1 represent resistances, the amplifier gain is somewhat independent of frequency, as shown in Fig. 1.18. At higher frequencies, where the op amp gain has fallen off to the point where it equals A_{vco} , the circuit gain falls off at the same rate.

Fig. 1.17 Basic inverting op amp circuit. The voltage gain is $v_o/v_i = -R_f/R_1$.

If R_f and R_1 become two impedances Z_f and Z_1 , the ratio Z_f/Z_1 may be a function of frequency. Simple filters may be constructed by using appropriate reactive components for Z_f and Z_1 . For instance, if Z_1 is a capacitor $(Z_1 = 1/j2\pi fC)$ and Z_f is a resistor $(Z_f = R)$,

$$A_{vc} = -\frac{Z_f}{Z_1} = \frac{-R}{1/j2\pi fC} = -j2\pi fRC$$

The circuit gain therefore increases with frequency until the op amp gain is reached. Then the circuit gain will fall with frequency at the same rate the op amp gain falls with frequency.

Fig. 1.18 Open-loop gain of op amp shown in Fig. 1.17 and the closed-loop gain after the resistors R_t and R_1 are added.

The circuit of Fig. 1.17 has an input impedance of Z_1 (or R_1). The output impedance is very small, usually less than 1Ω .

BASIC NONINVERTING OP AMP CIRCUIT If we apply the input voltage v_1 to the positive op amp input as shown in Fig. 1.19, we have a noninverting amplifier. Negative feedback is still required, however, to stabilize the

Fig. 1.19 Basic noninverting op amp circuit.

circuit and to set the gain. For this circuit the closed-loop voltage gain at dc and low frequencies is

$$A_{vco} = \frac{v_o}{v_i} = 1 + \frac{R_f}{R_1}$$
 (1.2)

Note that no minus sign is used. If impedances are used instead of resistances, the closed-loop gain as a function of frequency is

$$A_{vc} = \frac{v_o}{v_i} = 1 + \frac{Z_f}{Z_1} \tag{1.3}$$

 Z_f and Z_1 may be either linear or nonlinear. The above equation holds true no matter how nonlinear they become.

The input impedance of a noninverting op amp circuit is very high—approximately equal to the op amp input impedance times the ratio A_v/A_{vc} . The output impedance is very low, usually below 1 Ω .

1.6 REAL AND IDEAL OP AMPS COMPARED

We will now explore what happens to the closed-loop gain [Eqs. (1.1) to (1.3)] when real op amp parameters are incorporated.

FINITE OPEN-LOOP GAIN The relationship between A_v (open-loop gain) and A_{vc} (closed-loop gain) is

$$A_{vc}(\text{inverting}) = \frac{-Z_f/Z_1}{1 + 1/A_v + Z_f/A_vZ_1}$$
 (1.4)

and

$$A_{vc}(\text{noninverting}) = \frac{1 + Z_f/Z_1}{1 + 1/A_v + Z_f/A_vZ_1}$$
 (1.5)

The numerators of both above equations are simply the ideal closed-loop gains. The degradation to the ideal closed-loop gains comes about from the terms in the denominator. Ideally, the term $A_v = \infty$. This means that $1/A_v = 0$ and $Z_f/A_vZ_1 = 0$. The denominator then becomes 1 + 0 + 0, and the effect of the open-loop gain vanishes.

If $A_v \neq \infty$, the effect of A_v on closed-loop gain A_{vc} becomes larger as A_v becomes smaller. We will first examine the significance of this statement for the dc case (using A_{vo} and A_{vco}). Later we will examine the ac case (using A_v and A_{vc}). As a specific example, assume $Z_f/Z_1 = 100$ and $A_{vo} = 1,000$. Equation (1.4) becomes

$$\begin{split} A_{vco}(\text{inverting}) &= \frac{-100}{1 + 1/1,000 + 100/1,000} \\ &= \frac{-100}{1.101} = -90.83 \end{split}$$

This indicates a 9.2 percent reduction of dc gain from the 100 desired. It also means (and this is probably more important) that a 100 percent change in A_{vo} will result in a change in A_{vco} of approximately 9 percent. The exact change is determined by using Eq. (1.4) twice, once for each value of A_{vo} .

If A_{vo} is increased to 10,000, A_{vco} is only reduced to

$$A_{vco} = \frac{-100}{1 + 1/10,000 + 100/10,000} = -99.00$$

Thus the gain error is only 1 percent if the op amp has a gain of 10,000. By similar calculations we find that if the required A_{vco} is only 10 and A_{vo} is still 10,000, the error is reduced to 0.1 percent. We conclude that the gain error depends on the ratio of open- to closed-loop gains. Table 1.1 summarizes this conclusion.

TABLE 1.1 Gain Error at DC Caused by Finite Open-Loop DC Gain

A_{vo}/A_{vco}	% gain error (dc)	
1	-50	
10	9	
10^{2}	-1	
10^{3}	-0.1	
104	-10^{-2}	
10^{5}	-10^{-3}	
10^{6}	-10^{-4}	

We can also make a table of gain errors for the ac case. As shown in Figs. 1.18 and 1.21, the op amp open-loop gain has a -90° phase shift over much of the usable range of frequencies. This causes a phase difference of 90° between A_v and A_{vc} for these frequencies. As a result, the degradation of A_{vc} by A_v is much less than shown for the dc case. Table 1.2 shows A_{vc} reduction as a function of the ratio A_v/A_{vc} . We will explore the equations behind this table in Chap. 2. It applies only for the region between the first pole of A_v and the first pole of A_{vc} (i.e., from 10 to 10^5 Hz in Fig. 1.21).

TABLE 1.2 AC Gain Error Caused by Finite Open-Loop AC Gain

A_v/A_{vc}	% gain error (ac)
1	-33
10	-0.6
10^{2}	-0.006
10^{3}	-5×10^{-5}
104	-5×10^{-7}
10^{5}	-5×10^{-9}
10^{6}	-5×10^{-11}

FINITE BANDWIDTH If the amplifier is required to handle ac signals also, the degradation of gain at various frequencies must be considered. Referring back to Fig. 1.18, we note that the ratio A_v/A_{vc} is the largest at low frequencies. The ratio gets progressively smaller until it equals 1 at the point where the A_v and A_{vc} curves intersect. The error when $A_v/A_{vc} = 1$ is -33 percent. This explains why the intersection of the two curves is not abrupt. Since the error

gets large very fast in the $A_v/A_{vc}=1$ region, the A_{vc} curve falls off and gradually blends in with the A_v curve.

FINITE INPUT RESISTANCE This parameter lowers the closed-loop gain slightly and also limits the high input impedance expected with the noninverting amplifier. The equation for reduction in closed-loop gain is similar to the equation for finite A_v . For the following equations R_{id} is the op amp differential input resistance (i.e., between the + and - input terminals) and R_{ic} is the op amp common-mode input resistance (i.e., from either input terminal to the negative power-supply terminal).

$$A_{vc}(\text{inverting}) = \frac{-R_f/R_1}{1 + 1/A_v + R_f/A_vR_1 + R_f/A_vR_{id} + R_f/A_vR_{ic}}$$
(1.6)

and

$$A_{vc}(\text{noninverting}) = \frac{1 + R_{f}/R_{1}}{1 + 1/A_{v} + R_{f}/A_{v}R_{1} + R_{f}/A_{v}R_{id} + R_{f}/A_{v}R_{ic}}$$
 (1.7)

Equations (1.6) and (1.7) are identical to Eqs. (1.4) and (1.5) except that the factor $R_f/A_vR_{id} + R_f/A_vR_{ic}$ has been added to the denominators. If the three terms A_v , R_{id} , and R_{ic} are all very large, this entire factor is very small and does not affect gain. This is one case where one op amp parameter may help another. That is, if for some reason R_{id} is low but A_v is very large, the net result is a large product A_vR_{id} . The above factor would then be negligible.

It is a little more difficult to show a table indicating the percent effect on gain due to finite R_{id} and R_{ic} , since A_v is also included. For purposes of illustration, assume $R_{ic} \ge R_{id}$ (as is usually the case). We can therefore drop R_f/A_vR_{ic} for this example. We may now make a table of percent error of A_{vc} as a function of A_v and R_{id} . If A_v is high and R_{id} is low, A_{vc} will have little degradation. If both A_v and R_{id} are high, A_{vc} will be essentially undisturbed. However, if both A_v and R_{id} are low, severe degradation of A_{vc} will occur. For simplicity, the accompanying table is computed only at dc, so A_{vo} is used

A_{vo}	$R_{id},~\Omega$	% gain error
1	104	-92.3
1	10^{6}	-91.7
1	10^{8}	-91.7
10^{2}	104	-10.7
10^{2}	10^{6}	- 9.92
10^{2}	10^{8}	- 9.91
10^{4}	104	-0.12
10^{4}	10^{6}	- 0.11
10^{4}	10^{8}	- 0.11
10^{6}	104	- 0.0012
10^{6}	10^{6}	- 0.0011
10^{6}	108	- 0.0011

NOTE: This table assumes $R_f = 10 \text{k}\Omega$, $R_1 = 1 \text{k}\Omega$, and $A_{vco} = 10$.

in place of A_v . This table provides the interesting result that gain error is much more sensitive to A_{vo} than it is to R_{id} . Changes to R_{id} are only 0.01 to 0.1 percent as influential on gain error as A_{vo} . The error at frequencies above the first op amp pole must be computed with the 90° lag of A_v considered.

OUTPUT RESISTANCE > **0** The output resistance of an op amp affects the circuit output resistance, gain, and stability. We will save the stability discussion for Chap. 3.

The heavy feedback usually incorporated in an op amp circuit makes the circuit output resistance effectively very low. If the op amp output resistance

is R_o , the circuit output resistance is

$$R_{\text{out}} = \frac{R_o}{\beta A_v}$$

$$\beta = \frac{R_1}{R_v + R_v}$$
(1.8)

where

 R_o is commonly 100 Ω or less. A_{vo} is quite large in most op amps—typically 5×10^4 to 10^6 . Therefore the circuit output resistance at dc may be less than

$$R_{\rm out} = \frac{100}{5 \times 10^4} = 2 \times 10^{-3} \ \Omega$$

(This result assumes $\beta=0.1$ and $A_{vo}=5\times 10^5$.) At high frequencies the situation is not so good. R_o often goes up to several hundred ohms near unity open-loop gain. Thus A_v is small and R_o is large at the same time. At these frequencies R_{out} may be nearly as large as R_o .

Many other nonideal op amp parameters could be listed here and their effects on circuit performance summarized. We will save these details for Chap. 2. The point to be emphasized here is: All parameters tabulated in an op amp data sheet should be carefully studied and their effects on circuit performance calculated. Compromises must often be resorted to in the design of many circuits because of the nonideal behavior of the op amp. The designer must continually refresh his approach so that the important parameters are optimized and time is not wasted on attempts to optimize less important parameters.

1.7 THE FEEDBACK EQUATION

The feedback equation, which is fundamental to all op amp circuit analysis and design, will be derived and explained in this section. This equation is of the form

$$A_{vc} = \frac{A_v}{1 + \beta A_v} \tag{1.9}$$

for the noninverting circuit, and

$$A_{vc} = \frac{A_v(\beta - 1)}{1 + \beta A_v}$$
 (1.10)

for the inverting circuit, where

$$\beta = \frac{R_1}{R_1 + R_f}$$

as before. Some textbooks manipulate the algebra slightly and state these equations as

$$A_{vc} = \frac{1/\beta}{1 + 1/A_v\beta} \tag{1.9A}$$

for the noninverting circuit, and

$$A_{vc} = \frac{1 - 1/\beta}{1 + 1/A_{vB}} \tag{1.10A}$$

for the inverting circuit, but the outcome is identical. [Note that Eqs. (1.9A) and (1.10A) are exactly the same as Eqs. (1.4) and (1.5), except $\beta = R_1/(R_1 + R_f)$ is substituted.]

Equation (1.9) [or (1.9A)] is derived as follows: By inspection of Fig. 1.19, we get

$$v_x = \beta v_o = \frac{R_1 v_o}{R_1 + R_f} \tag{1.11}$$

by using simple voltage-divider theory. Since the op amp has a voltage gain of A_v ,

$$v_o = A_v(v_i - v_x) \tag{1.12}$$

Substituting v_x from Eq. (1.11) into Eq. (1.12), we get

$$v_o = A_v(v_i - \beta v_o)$$

Solving this for $A_{vc} = v_o/v_i$, the final result becomes

$$A_{vc} = \frac{v_o}{v_i} = \frac{A_v}{1 + \beta A_v}$$

which is identical to Eq. (1.9).

Equation (1.10) [or (1.10A)] is derived using Fig. 1.17. In this case, however, v_x is found by superimposing the voltage at v_x caused by v_i with the voltage at v_x caused by v_o . The voltage-divider action is opposite in these two cases.

$$v_x = \frac{R_f v_i}{R_1 + R_f} + \frac{R_1 v_o}{R_1 + R_f} \tag{1.13}$$

Since v_x is the only signal driving the op amp,

$$\upsilon_o = -A_v \upsilon_x$$

Rearranging this, we get

$$v_x = \frac{-v_o}{A_v}$$

Substituting this result into Eq. (1.13), the composite formula is

$$-\frac{v_o}{A_v} = \frac{R_f v_i}{R_1 + R_f} + \frac{R_1 v_o}{R_1 + R_f}$$

Rearranging terms and using the facts that $1 - 1/\beta = -R_f/R_1$ and $\beta = R_1/(R_1 + R_f)$, we get

$$A_{vc} = \frac{v_o}{v_c} = \frac{A_v(\beta - 1)}{1 + \beta A_v}$$

This is identical to Eq. (1.10).

The meaning and usage of the feedback equation can now be explained. We will begin with Eq. (1.9), since it is simpler than the others. It is repeated here for convenience.

$$A_{vc} = \frac{A_v}{1 + \beta A_v} \tag{1.9}$$

The term A_v is usually much larger than 10^4 . The term β is usually in the range of 0.001 to 1. If the product βA_v is very large, say 100 or more, the 1 in the denominator can be discarded and we get

$$A_{vc} \approx \frac{A_v}{\beta A_v} = \frac{1}{\beta}$$

In the noninverting case the gain A_{vc} is therefore

$$A_{vc} = \frac{1}{\beta} = \frac{R_1 + R_f}{R_1} = 1 + \frac{R_f}{R_1}$$

The same comments apply to the inverting amplifier [eq. (1.10)]. If we drop the 1 in the denominator,

$$A_{vc} \approx \frac{A_v(\beta-1)}{\beta A_v} = \frac{\beta-1}{\beta} = -\frac{R_f}{R_1}$$

What do the above results mean? In Sec. 1.6 we showed that the difference between real and ideal closed-loop gain becomes very small as A_v or A_{vo} becomes very large. Values of $A_{vo} > 1,000 \, A_{vco}$ are required to keep the real dc gain within 0.1 percent of the ideal dc gain. A large A_v or A_{vo} has many other benefits. For example, if $A_{vo} = 1,000 \, A_{vco}$, a 100 percent change in A_{vo} will affect A_{vco} by only 100%/1,000 = 0.1%. Examination of any typical op amp data sheet shows that a 100 percent change in A_{vo} is very likely. One must therefore be sure that $A_{vo} \gg A_{vco}$ (and $A_v \gg A_{vc}$) for all temperatures within which the op amp must perform.

1.8 LARGE-SIGNAL BEHAVIOR OF OP AMPS

Many applications of op amps require saturation in the positive or negative direction. A clear understanding of the basic nonlinear behavior of the op amp is a necessary prerequisite to any large-signal design using the saturation characteristics of the device.

A typical input-output voltage-transfer function of an op amp is shown in Fig. 1.20. This particular op amp was operated with ± 15 -V power supplies. The maximum \pm op amp output is usually several volts less than the power-supply voltages. Thus this device saturates at ± 13 V. These limits cannot be exceeded no matter how hard the inputs are driven (within the maximum input capability of the op amp, naturally). The output limits can be raised only by increasing the \pm power-supply voltages. These voltages, however, must not exceed the maximums stated on the data sheet or damage will result.

The op amp of Fig. 1.20 is linear only over the $v_{\text{out}} = \pm 10\text{-V}$ range. The open-loop gain A_{vo} in this linear region can be computed from the transfer function. Since a +10-V output requires only a +0.1-mV input, the gain is

$$A_{vo} = \frac{\Delta v_{\text{out}}}{\Delta v_{\text{in}}} = \frac{10 \text{V}}{10^{-4} \text{V}} = 100,000$$

If a nonlinear application required the output to rise all the way up to +13 V, +0.3-mV input is required. The voltage gain in this case is

$$A_{vo} = \frac{\Delta v_{\text{out}}}{\Delta v_{\text{in}}} = \frac{13\text{V}}{3 \times 10^{-4}\text{V}} = 43,000$$

Whenever operation is required in the saturation region, this reduction in gain must be recognized.

Fig. 1.20 A typical input-output transfer function of an op amp.

Fig. 1.21 Gain and phase of a typical op amp. The output v_o is relative to the positive input v_1 . The negative input is assumed to be grounded. A typical closed-loop gain curve $(A_{vco}=10)$ is also shown.

1.9 OPEN-LOOP CHARACTERISTICS OF OP AMPS

Whenever the op amp is used to amplify ac signals, the plot of open-loop frequency response as shown in Fig. 1.21 must be consulted. This plot provides a wealth of information useful in dc, ac, and feedback analysis. The horizontal line on top of the plot is the dc gain of the op amp A_{vo} . The -3-dB point (open-loop bandwidth) is that point where the gain is 3 dB below the horizontal line. Unity open-loop gain frequency f_u is where the gain passes through zero dB($A_v = 1$).

CALCULATIONS USING DECIBELS A review of operations using decibels (dB) will be useful at this point. We will be working with voltage (or sometimes current) ratios in this book, so the relationship to remember is

$$dB = 20 \log \left(\frac{v_2}{v_1}\right)$$

or

$$dB = 20 \log \left(\frac{i_2}{i_1}\right)$$

A table of dB vs. v_2/v_1 (or i_2/i_1) is given in Appendix V. The table is much easier to use than the equations above. For example, suppose an op amp has an open-loop gain at dc of 94.7 dB. What is the corresponding voltage ratio $(v_2/v_1 = v_{\text{out}}/v_{\text{in}})$? We merely find a set of dB values which add up to 94.7 dB and record the corresponding voltage ratio for each as follows:

dB	v_2/v_1
90	31,623
4.0	1.5849
0.7	1.0839
94.7	$\overline{\text{Product}} = 31,623 \times 1.5849 \times 1.0839$
	= 54,324.3

The voltage ratio corresponding to 94.7 dB is the product of the 3 v_2/v_1 ratios above. Thus

$$94.7 \text{ dB} = 54.324.3 \text{ V/V}$$

The table is used in the other direction as per the following example: Suppose we are told the gain (v_2/v_1) of a device is 39,450. How many dB is this? We begin by finding the largest v_2/v_1 which is less than 39,450, i.e., 31,623, which is equal to 90 dB. Then we divide 39,450 by 31,623 to get 1.2475 and look for the next ratio under this on the table. We find that 1.1220, corresponding to 1.0 dB, is the next lower number. Again we divide 1.2475 by 1.1220 to get 1.1119, which corresponds to approximately 0.9 dB. Now we add all the dB's found above to get our answer:

$$90 \text{ dB} + 1.0 \text{ dB} + 0.9 \text{ dB} = 91.9 \text{ dB}$$

This is equivalent to 39,450.

OP AMP OPEN-LOOP PHASE SHIFT A plot of the op amp open-loop phase is very valuable for feedback-stability calculations. We will explore this in detail in Chap. 3. Many op amp data sheets do not show phase plots, so we will describe how to make one using the open-loop gain plot. First, however, we will describe the meaning of the phase plot.

Referring back to Fig. 1.21, it is noted that the gain plot has two points where the slope of the plot becomes steeper (i.e., at 10 and 10⁶ Hz). These points are called poles. At frequencies between the first pole (we will always count from the left to the right) and the second pole the slope is -20 dB/decade. This is equal to -6 dB/octave. At frequencies above the second pole the slope is -40 dB/decade (-12 dB/octave). One should learn to use both dB/decade and dB/octave, since literature on op amps use both methods.

As shown in Fig. 1.22, each pole causes a 90° phase lag in the op amp gain. The 90° lag does not occur at the pole, but at frequencies above the pole. The phase lag due to a pole is 45° right at the frequency of the pole. The full 90° lag occurs at all frequencies greater than 10 times the pole frequency.

Fig. 1.22 Relationship between a pole and the phase shift it causes.

A second pole causes another 90° phase lag. Figure 1.21 shows the shape of a phase plot for an op amp having two poles.

GAIN AND PHASE OF A ZERO The function opposite to that of a pole is called a zero. A zero causes the gain to have a $+20 \, \mathrm{dB/decade}$ slope for all frequencies above the zero. A zero causes a $+45^{\circ}$ phase shift at the frequency of the zero and a $+90^{\circ}$ phase shift for all frequencies greater than 10 times the zero frequency. Figure 1.23 shows the relationship between the gain and phase of a zero.

THE BODE APPROXIMATION When constructing gain and phase plots for some complex circuits, it becomes quite cumbersome to plot exact gain and phase. Many designers use the Bode-approximation method for constructing gain

and phase for their "first-cut" design. After the design has progressed somewhat, effort is (sometimes) put into constructing exact gain and phase plots.

The Bode-approximation method uses the dashed lines of Figs. 1.22 and 1.23. Note that all plots can be made with straight lines. The straight lines intersect at the pole or zero frequency in the gain plots. The straight lines intersect at 1/10 and 10 times the pole or zero frequency in the phase plots.

Fig. 1.23 Gain and phase of a zero.

The straight lines on the gain plots always have a slope of $0, \pm 20 \text{ dB/decade}$, $\pm 40 \text{ dB/decade}$, etc. The straight lines on the phase plot always have slopes of $0, \pm 45^{\circ}/\text{decade}, \pm 90^{\circ}/\text{decade}$, etc.

1.10 CLOSED-LOOP CHARACTERISTICS OF OP AMPS

When feedback circuitry is connected from the op amp output to the input, a closed-loop circuit results. The closed-loop frequency characteristics are dramatically different from the open-loop characteristics. Figure 1.24 shows some of the possible ways the closed-loop frequency characteristics can be shaped. The first thing one notices is that all closed-loop curves fall within the open-loop curve. This is true of all op amp circuits which utilize passive feedback networks.

The phase response of closed-loop op amp circuits is also much different from that of open-loop op amps. In all the closed-loop curves shown in Fig. 1.24, each pole will produce a -90° phase shift and each zero will cause a $+90^{\circ}$ phase shift. Often there might be two poles or two zeros at one frequency. In these cases a -180° phase shift occurs for the double pole and

Fig. 1.24 Five possible classes of closed-loop frequency characteristics. Others are possible.

+180° for the double zero. The full 180° phase shift takes effect over a 2-decade frequency range, as did single poles and zeros.

1.11 LOOP GAIN AND PHASE

Loop gain is another parameter which is extensively used in op amp circuits. Its principal application is for feedback analysis, which we will explore in Chap. 3. Loop gain is merely the product of the op amp gain and the feedback-network transfer function. This requires one passage around the loop—hence the name "loop gain."

It would be beneficial at this point to digress slightly and show in Table 1.3 the types of gain discussed so far. This will help avoid confusing one type

of gain with another.

Briefly, the way loop gain is used in feedback analysis is as follows: (1) The loop gain is calculated (or measured) and plotted as a function of frequency. (2) The phase of loop gain is also plotted as a function of frequency. The resultant plots may look something like Fig. 1.25, although the exact shape depends on the circuit, op amp, load, and other factors. (3) The frequency at which the loop gain passes through 0 dB (loop gain of 1) is noted. (4) The loop phase is also noted at this same frequency. If the phase is more than 45° above the -180° line, the amplifier will be stable. If the phase is within $\pm 5^{\circ}$ of the -180° line, the circuit will probably oscillate.

TABLE 1.3 Types of Gain Used in Op Amp Circuits

Name	Description	Typical schematic
Open-loop gain	The gain of the op amp from v_1 to v_o . This is called $\frac{v_o}{v_1} = A_v$	V ₁ O + Av O VO
Closed-loop gain	The gain of the entire op amp circuit after feedback and input networks are added. This is called	V ₁ 0 Z ₁ A _V 0 V ₀
	$rac{v_o}{v_1} = A_{vc}$	Ť
Loop gain	The gain through the feedback network and the op amp, i.e., from v_1 to v_o . This is called $\frac{v_o}{v_1} = A_f A_v$	Z _f O V ₁
	v_1 (A _f defined below)	
Feedback-net- work gain (usually an attenuation)	The voltage-transfer function of the feedback network. This is called	Z _f 0 v ₁
	$\frac{v_o}{v_1} = A_f = \frac{Z_1}{Z_1 + Z_f}$	<u>+</u>

The number of degrees that the phase shift is above the -180° line is called the phase margin ϕ_m . In Fig. 1.25 the phase margin is approximately 90°. A design which results in a nominal phase margin of 45°, or a worst-case minimum of 30°, is considered an adequate design.

1.12 CIRCUITS INSIDE AN OP AMP

To those who are already familiar with transistor circuits, a brief description of the transistor circuits inside an op amp will be enlightening. Those who are not interested in the internal workings of an op amp may skip this section without loss of continuity.

A large number of circuits are presently in use inside op amps. We could not possibly discuss all these circuits here. Many monolithic op amps, however, use the general scheme as shown in Fig. 1.26.

INPUT DIFFERENTIAL AMPLIFIER This stage determines the ultimate gain stability, common-mode rejection, bias drift, input impedance, slewing rate,

Fig. 1.25 The loop-gain and loop-phase plots of a typical op amp circuit.

bandwidth, and noise of the op amp. Subsequent stages have little effect on these parameters. That is, if the first stage has a voltage gain of 10, the errors in the second stage will only be 1/10 as noticeable as errors of equal size in the first stage. It is therefore mandatory that the input differential amplifier be carefully designed and produced with repeatable quality.

The input-differential-amplifier stage usually has a circuit similar to Fig. 1.27A. This is greatly simplified when compared with a real op amp. The current source is required so that the circuit will have a large common-mode rejection (this will be explained in Chap. 2).

Fig. 1.26 Block diagram of a popular method for constructing an op amp.

SECOND DIFFERENTIAL AMPLIFIER This stage (Fig. 1.27*B*) is almost identical to the input differential amplifier except that a resistor takes the place of the current source. The common-mode rejection requirement is not as great in the second stage; so a simple resistor current source is sufficient. The seven critical parameters determined by the input stage are 10 to 100 times less critical in this second stage. Only one output is used on this second stage.

LEVEL-SHIFTING AMPLIFIER The quiescent output voltage of an op amp should be zero if the input differential voltage is zero. The output of the two differential amplifiers discussed previously does not usually provide this zero output voltage. Often, another stage is required to provide a dc level shift and to provide some more gain. A standard PNP common-emitter amplifier as shown in Fig. 1.27C is often used. The load resistor is made up of two diodes and a resistor. This provides a temperature-compensated voltage divider for driving the output-power amplifier. A small resistor is placed in the emitter to provide some negative feedback. This stage also transforms the high impedance of the second differential amplifier to a low impedance capable of driving the output-power amplifier.

OUTPUT-POWER AMPLIFIER This stage is usually an emitter follower of the complementary type; that is, the NPN transistor in Fig. 1.27D handles the

Fig. 1.27 The four main stages of a typical op amp. (A) The input differential amplifier. (B) The second differential amplifier. (C) The level-shifting amplifier. (D) The output-power amplifier.

1-28 INTRODUCTION TO OPERATIONAL AMPLIFIERS

positive output signal and the PNP transistor handles the negative output signal. An emitter follower provides high current gain, wide bandwidth, high input impedance, and a low output impedance. Since this stage must drive devices outside the op amp, it has substantial current-driving capability. Current limiting beyond a fixed value is usually provided to protect the op amp.

REFERENCES

- 1. Giles, J. N.: "Fairchild Semiconductor Linear Integrated Circuits Applications Handbook," Fairchild Semiconductor, 1967.
- 2. Millman, J., and C. C. Halkias: "Integrated Electronics: Analog Digital Circuits and Systems," McGraw-Hill Book Company, New York, 1972.

Fundamentals of Circuit Design Using Op Amps

2.1 BASIC RULES WHICH SIMPLIFY DESIGN

By using the ideal properties of op amps listed in Sec. 1.1, we arrive at two basic rules which greatly simplify op amp circuit design. These rules are:

1. Op amp input terminals draw no current.

2. Voltage across input terminals is zero.

These rules are adequate for most design work. They are also adequate to use for an initial design in those cases where op amp parameter drifts must later be considered. Circuits of any complexity can be handled with these rules. Circuits which require a more careful design afterward are usually the following types:

1. Low-level dc and high-precision dc circuits must consider input offset voltage, input bias current, input offset current, equivalent input noise, and

input resistance.

2. Low-level ac, high-precision ac, and wide-bandwidth ac circuits must consider equivalent input noise, finite bandwidth, finite slew rate, and input capacitance.

3. All precision circuits must consider output resistance, common-mode

rejection ratio, and power-supply rejection ratio.

These additional considerations will be discussed at length in the next section. In the meantime, several examples using the two basic rules are in order.

INVERTING AMPLIFIER The most fundamental version of an inverting op amp circuit is shown in Fig. 2.1. Let us consider each of the two basic rules individually to see how easily they are applied.

BASIC RULE 1: No current goes into positive or negative input terminals: This means that the current passing through R_1 must be identical with the current through R_f . Two equations can therefore be developed by just using Ohm's law:

$$v_i - v_x = iR_1 \tag{2.1}$$

$$v_x - v_o = iR_f \tag{2.2}$$

BASIC RULE 2: Voltage across input terminals is zero: Since the positive input terminal is grounded (at zero voltage), the negative input terminal must be at zero voltage also. Thus $v_x = 0$ and Eqs. (2.1) and (2.2) become

$$v_i = iR_1$$
$$-v_o = iR_f$$

or, by manipulating the algebra on these two equations, we get

$$i = \frac{v_i}{R_1}$$

$$i = -\frac{v_o}{R_t}$$

Setting these two equations equal to each other, the final results are

$$i = \frac{v_i}{R_1} = -\frac{v_o}{R_f}$$

or

$$\frac{v_o}{v_i} = -\frac{R_f}{R_1} \tag{2.3}$$

Equation (2.3) is the fundamental gain equation for inverting amplifiers. It should be committed to memory.

NONINVERTING AMPLIFIER The fundamental noninverting-amplifier circuit is shown in Fig. 2.2. We can use the same approach used in the first example.

Fig. 2.1 Fundamental inverting-amplifier circuit.

Fig. 2.2 Fundamental noninverting-amplifier circuit.

BASIC RULE 1: No current goes into positive or negative input terminals: the same current I therefore flows in R_1 and R_f . We can develop two equations just by using Ohm's law:

$$v_o - v_x = iR_f \tag{2.4}$$

$$v_x - 0 = iR_1 \tag{2.5}$$

BASIC RULE 2: Voltage across input terminals is zero: This means that $v_i = v_x$. Incorporating this into Eqs. (2.4) and (2.5), we get

$$v_o - v_i = iR_f$$
$$v_i - 0 = iR_f$$

Solving for i in each case,

$$i = rac{v_o - v_i}{R_f} = rac{v_o}{R_f} - rac{v_i}{R_f}$$
 $i = rac{v_i}{R_i}$

Setting these equal to each other,

$$i = \frac{v_o}{R_f} - \frac{v_i}{R_f} = \frac{v_i}{R_1}$$

Solving for v_o/v_i , we get the final result

$$\frac{v_o}{v_i} = 1 + \frac{R_f}{R_1} \tag{2.6}$$

This is the fundamental equation of noninverting amplifiers. It should also be committed to memory.

In the discussions to follow we will be using both upper- and lower-case voltages and currents, i.e., V_i , v_i , I_b , i_o , etc. The upper-case notation represents either complex ac signals or dc signals. The lower-case notation is reserved for instantaneous incremental signals, which may include nonlinear, ac, and/or dc signals.

2.2 HOW TO MINIMIZE OP AMP ERRORS

We now consider the effects of each op amp parameter on Eqs. (2.3) and (2.6). A method (or methods) to minimize these adverse effects will be outlined in each case. Methods for measuring each parameter are described in reference 2 of Chap. 3.

INPUT OFFSET VOLTAGE V_{io} All op amps have a slight mismatch of the emitter-base forward bias voltages of the two input transistors. This results in a voltage offset at the op amp output. The input offset voltage V_{io} (between the bases of the two input transistors) is related to the output offset V_o by

$$V_o = \pm V_{io} \left(1 + \frac{R_f}{R_1} \right)$$

This equation is true for both the inverting and noninverting configurations. If, for example, the circuit has a voltage gain of -1,000 (an inverting amplifier), we divide the output offset voltage by 1,001 to obtain the input offset voltage. Op amp data sheets always specify the offset voltage at the input

terminals, since the magnitude of output offset depends on the circuit gain. The input offset is independent of the circuit. By definition, the input offset voltage is that voltage required across the input terminals which nulls the output. The input offset voltage V_{io} is typically in the range of a fraction of a millivolt to several millivolts. In high-gain circuits the output offset voltage may therefore be several volts. This offset will vary with temperature and could cause problems in a dc-coupled system. It is often neglected in ac circuits unless the sum of output offset voltage and peak ac voltage is a voltage approaching either power-supply voltage. Clipping of the output signal would then begin to occur.

Fig. 2.3 Three methods to cancel effect of input offset voltage V_{io} . (A) Using terminals provided on op amp. (B) Typical method for noninverting amplifiers. (C) Typical method for inverting amplifiers.

Many op amps have special offset-adjustment terminals such as that shown in Fig. 2.3A. A potentiometer is placed between these two terminals with the wiper connected to the minus power-supply terminal. Adjustments of ± 15 mV equivalent input offset voltage are possible with this method. This adjustment merely places the output offset at the desired value. The temperature effect on offset voltage, such as that shown in Fig. 2.4, is still present. The temperature coefficient of input offset voltage is typically 5 to 10 $\mu\text{V}/^{\circ}\text{C}$ for bipolar monolithic op amps. For chopper-stabilized op amps this coefficient may be only 0.1 to 1.0 $\mu\text{V}/^{\circ}\text{C}$.

If the op amp does not provide offset terminals, the circuits of Fig. 2.3B and C are recommended. Other schemes are possible, such as temperature-sensitive circuits which cancel out most of the offset-voltage drift.

INPUT BIAS CURRENT I_b The input transistors in the first-differential-amplifier stage of the op amp must be forward-biased. This requires a small current into each of their bases. The input bias current I_b is defined as one-half the sum of these two currents, in other words, the average of the two currents. This definition applies only if the output terminal is balanced or nulled to zero volts.

The typical input bias current for bipolar monolithic op amps ranges from 10 to several thousand nanoamperes. High-quality chopper-stabilized or parametric op amps may have input bias currents under 10 pA.

Fig. 2.4 Typical curves showing input offset voltage as a function of temperature. Note: Either positive or negative slope is possible. The op amp is assumed to be nulled at +25°C.

As with input offset voltage, the input bias current is a dc parameter and may not affect the design of an ac amplifier. If the circuit must amplify ac and dc, the bias current must be considered. If the amplifier is for ac only, one must determine whether the resulting output offset plus the peak ac signal gets near the saturation region of the op amp. If this happens, the peaks of the ac signal will be clipped.

By reference to Fig. 2.5A we will show how the input bias current is a potential error source. All currents and voltages are assumed to be dc to simplify the discussion. Suppose we require an inverting amplifier with a gain of -1,000 and an input resistance of $1,000 \Omega$. The input resistor R_1 must be $1,000 \Omega$ to satisfy the input-resistance requirement. R_1 must be 1,000 times greater to satisfy the gain requirement:

$$A_{vco} = -\frac{R_f}{R_1} = -1,000$$

Thus R_f must equal 1 M Ω . Assume the input bias current is 100 nA. This current will pass through R_1 and R_f . We then have $I_b = I_1 + I_f$:

$$I_b = \frac{V_i - V_b}{R_1} + \frac{V_o - V_b}{R_f}$$

We assume $V_i = 0$ so that the bias current can be isolated from the signal. The term V_b will be less than V_o by a factor A_v (10,000 or more). We can therefore drop V_b and solve for V_o :

$$V_o = I_b R_f$$

= $10^{-7} \times 10^6 = 0.1 \text{ V}$

The error caused by input bias current can be almost totally canceled if an extra resistor, having a resistance R_p , is added to the circuit as shown in Fig. 2.5B. This resistor is often made adjustable with a maximum value two or three times the computed R_p . The I_b into the op amp positive input will develop a voltage across R_p which will cancel the effects of I_b into the negative input. Perfect cancellation does not take place, however, because the two

Fig. 2.5 (A) Circuit showing effect of input bias current (inverting amplifier). (B) The most popular method for reducing the error caused by input bias current. (C) Solution to problem for noninverting circuit.

bias currents are not exactly equal. We will look into this problem in the next section.

The output error caused by I_b is often larger than that caused by the input offset voltage. The size of the error caused by bias current depends upon the size of R_p . If R_p is larger than V_{io}/I_b , the output-voltage error caused by I_b will be larger than that caused by V_{io} . If, in the above example, we had a V_{io} of 5 mV,

$$\frac{V_{io}}{I_b} = \frac{5 \times 10^{-3}}{10^{-7}} = 50 \text{ k}\Omega$$

Any R_p in this op amp circuit greater than 50 k Ω will create an error due to input bias current which is larger than the error caused by input offset voltage.

The solution to input-bias-current error described above and shown in Fig. 2.5B is for an inverting-amplifier circuit. If a noninverting amplifier needs error correction for the same reason, the circuit of Fig. 2.5C is recommended. As before, the source resistance seen by both op amp input terminals must be identical to reduce the error caused by input bias current.

As should be expected, input bias current varies with temperature. Figure 2.6A shows a typical curve of this temperature dependence. If we always make sure that the resistances seen by both inputs are identical, bias-current changes with temperature should not cause problems.

Fig. 2.6 Typical variation of op amp input currents with temperature. (A) Input bias current I_b . (B) Input offset current I_{ib} .

INPUT OFFSET CURRENT I_{io} The two input transistors of any op amp will always require slightly different bias currents. The difference between these two currents is defined as the input offset current I_{io} . As might be expected, I_{io} also varies with temperature. Figure 2.6B shows this variation with temperature for a typical op amp. Since the offset current may flow into either op amp input terminal, the resulting output-voltage error is

$$V_o = \pm I_{io}R_f$$

The bias-current compensation scheme presented in the last section (i.e., using R_p does nothing to cancel the effects of I_{io} . We can compensate for any given I_{io} by choosing an R_p slightly larger or smaller than $R_1R_f/(R_1+R_f)$. However, at another temperature I_{io} is different, and as a result the op amp output voltage will shift. Several circuits which cancel the effects of I_{io} changes with temperature are shown in Fig. 2.7 (Ref. 2).

Figure 2.7A is a simple compensation scheme which is recommended for inverting-amplifier circuits. The current from the base of the PNP transistor is injected into the NPN input transistor inside the LM101. The 2N2605 is a

Fig. 2.7 Various methods for canceling the effects of changes in I_{io} with temperature. (A) Basic inverting amplifier. (B) Voltage follower. (C) For use if large commonmode range required. (D) Differential input compensation. (National Semiconductor Corp.)

silicon planar transistor which has nearly the same base-current characteristics over temperature as the NPN input transistors. The small difference between the devices is corrected by selecting R_2 for zero op amp output offset voltage. This circuit does not require the compensation resistor R_p .

For voltage-follower applications the circuit of Fig. 2.7B is often used. The compensation current comes through R_1 , which is adjustable for each particular op amp. The diode regulates the compensation current so that compensation does not change with signal level. The input impedance of the voltage follower is not reduced with this circuit. For the LM101 shown, the typical

input impedance is 1,000 M Ω .

Figure 2.7C provides even better compensation over temperature than Fig. 2.7B. It is also useful over a larger common-mode range. The emitter of Q_3 is fed from a current source (Q_1 and Q_2). This prevents the input-voltage level from changing the compensation current from the base of Q_3 . Variations of input bias and offset currents with power-supply voltage are also reduced with this circuit.

The final circuit, shown in Fig. 2.7D, provides all the good features of Fig. 2.7C, except that compensation on both input terminals is now provided. R_3 and R_4 are selected for the different bias-current requirements on these two inputs. The circuit can be further optimized over temperature if the source resistances seen by the inputs are made equal (see Fig. 2.5). However, in applications where this is not possible, R_3 and R_4 can be selected for mini-

mum output drift.

If one does not want to design external compensation circuits for the above op amp deficiencies, a higher-quality op amp may be used. Of course, one must be willing to pay the price for op amps which are optimized for low input voltage offset, low input bias current, and low input offset current. Three types of op amps which have low input offsets and temperature coefficients are FET input, varactor input, and chopper-stabilized op amps. These are available as discrete packaged op amps. The FET and chopper-stabilized types are also available in monolithic form in the TO-99 package.

EQUIVALENT INPUT NOISE V_n and I_n This parameter affects both the ac and dc characteristics of op amp circuits. Op amp specification sheets tabulate data on equivalent input noise from 0.01 Hz to over 1 MHz. Op amp noise is specified by use of an equivalent input-noise voltage and an equivalent input-noise current. The actual noise in the op amp is created in a number of places in the first few stages in the op amp. To simplify noise calculations, all these noise sources are assumed to be lumped into a single equivalent input-noise current and a single equivalent input-noise voltage. Figure 2.8 shows the circuit placement of these noise sources in front of a noiseless op amp.

Fig. 2.8 Placement of the equivalent input-noise voltage and equivalent input-noise current generators in front of a noiseless op amp.

At least four different types of units are used to specify input noise. These units are:

Voltage:
Volts/√Hz rms
Volts²/Hz rms
Volts peak-to-peak
Noise figure in dB

Current:

Amperes/VHz rms

Amperes/Hz rms

Amperes peak-to-peak

Noise figure in dB

In this text we will use volts/ $\sqrt{\text{Hz}}$ and amperes/ $\sqrt{\text{Hz}}$, which are rms numbers quite easily correlated with simple measurements. Before we get into methods to optimize op amp circuits for low noise, we will work out methods to make conversions from the other three types of noise specification to the one we will use in this text. The volts/ $\sqrt{\text{Hz}}$ and amperes/ $\sqrt{\text{Hz}}$ terminology is used by a large number of op amp and transistor manufacturers. These units allow the easiest computation of circuit parameters which will minimize noise. When we say volts/ $\sqrt{\text{Hz}}$ we mean the rms voltage over a 1-Hz bandwidth. This number must also be specified at some center frequency. Some texts call this the spot noise. It is not usually measured with instruments having a 1-Hz bandwidth, as this is usually too difficult. Rather, a more convenient bandwidth such as $\frac{1}{10}$ or $\frac{1}{100}$ the center operating frequency is used. The number obtained in this manner is then divided by the square root of the bandwidth. This converts the number to volts/ $\sqrt{\text{Hz}}$.

As an example, suppose we measure the spot noise of some device at 10 kHz using an rms voltmeter having a bandwidth of 100 Hz. The equivalent input-voltage noise measures 300 nV. The spot noise is therefore

$$\begin{split} V_n &= \frac{300 \text{ nV}}{\sqrt{100 \text{ Hz}}} \\ &= \frac{300 \text{ nV}}{10 \text{ }\sqrt{\text{Hz}}} = 30 \text{ nV}/\sqrt{\text{Hz}} \text{ at } 10 \text{ kHz} \end{split}$$

The same type of calculation could be performed using data from a noisecurrent measurement.

Some data sheets provide noise data in units of volts²/Hz or amperes²/Hz. To obtain volts/ $\sqrt{\text{Hz}}$ and amperes/ $\sqrt{\text{Hz}}$ one needs merely to take the square root of these numbers. For example, the Fairchild μA741 has a noise voltage of 4×10^{-16} volts²/Hz at 10 kHz. The spot noise at 10 kHz is therefore 2×10^{-8} volta/ $\sqrt{\text{Hz}}$

Very low frequency noise, such as that in the region from 0.01 to 1 Hz, is difficult to measure with an rms meter. One approach to this problem is to pass the signal through a low-pass filter having a 1-Hz upper cutoff frequency. The filter output is applied to an oscilloscope and the peak-to-peak excursions are estimated. The rms voltage is then 0.707 of one-half the measured peak-to-peak amplitude. The numbers obtained with these peak-to-peak measurements are only a rough estimate, since the amplitude of low-frequency noise in most devices increases as the frequency goes down. As a result, if a peak-to-peak estimate is once made, it will always be exceeded by a larger signal if one waits long enough. The correct peak-to-peak reading is that amplitude which is exceeded only 10 to 15 percent of the time (Ref. 3).

The fourth type of noise information often shown in data sheets is the "noise figure" expressed in dB. The noise figure is a measure of additional noise which is contributed by the amplifier above that noise already in the input signal. If the input signal is only that due to source resistor noise, its equivalent rms voltage is

$$V_R = \sqrt{4kTR_s} \qquad V/\sqrt{Hz} \tag{2.7}$$

where $k = \text{Boltzmann's constant} = 1.374 \times 10^{-23} \text{ J/K}$

T = temperature, K

 R_s = source resistance, Ω

At room temperature the resistor noise is

$$V_R = 0.13 \sqrt{R_s} \qquad \text{nV}/\sqrt{\text{Hz}} \tag{2.8}$$

If the amplifier contributes an equivalent input-voltage noise of V_n and an equivalent input-current noise of I_n , the noise figure is defined as

$$NF = 10 \log_{10} \frac{V_n^2 + I_n^2 R_s^2 + 4kTR_s}{4kTR_s} \qquad dB$$
 (2.9)

To find V_n and I_n at any given frequency, we must use data-sheet curves, such as that shown in Fig. 2.9, which relate NF to R_s and frequency. The equation must be solved for two NFs at the given frequency, since both V_n and I_n are unknowns.

Fig. 2.9 Narrow-band spot-noise-figure contours for μ A725. (Fairchild Semiconductor.)

An example of the above procedure would be worthwhile at this point. Suppose we want to find V_n and I_n of the Fairchild μ A725 at 1 kHz. Using Fig. 2.9, we note that NF = 1 dB if f=1 kHz and $R_s=18$ k Ω . Likewise, NF = 5 dB if f=1 kHz and $R_s=1,300$ Ω . These numbers are substituted into Eq. (2.9) for each R_s :

$$V_n^2 + I_n^2 (18,000)^2 = 4kT(18,000) \left[\text{antilog} \left(\frac{1 \text{ dB}}{10} \right) - 1 \right]$$
 (2.10)

$$V_n^2 + I_n^2 (1,300)^2 = 4kT(1,300) \left[\text{antilog} \left(\frac{5 \text{ dB}}{10} \right) - 1 \right]$$
 (2.11)

Subtracting the bottom equation from the top, we get

 $I_n[(18,000)^2 - (1,300)^2]$

$$=4kT\Big\{18,000\Big[\operatorname{antilog}\!\left(\frac{1}{10}\right)-1\Big]-1,300\Big[\operatorname{antilog}\!\left(\frac{5}{10}\right)-1\Big]\Big\}$$

Now we need only substitute in k and T, then solve for I_n . (Note that the value of antilog $\frac{1}{10}$ is 1.259 and antilog $\frac{5}{10}$ is 3.163.) The final result becomes $I_n = 0.307 \text{ pA}/\sqrt{\text{Hz}}$. This value of I_n is substituted into either Eq. (2.10) or Eq. (2.11) to solve for V_n . After this calculation we get $V_n = 6.77 \text{ nV}/\sqrt{\text{Hz}}$.

We will now show how to minimize the op amp output noise once we have curves of V_n and I_n vs. frequency. The output-voltage noise due to V_n in the circuit of Fig. 2.8 is

$$V_{onv} = \frac{R_1 + R_f}{R_1} V_n \tag{2.12}$$

or

$$V_{onv} = \frac{Z_1 + Z_f}{Z_1} V_n \tag{2.13}$$

The relation $(Z_1 + \overline{Z_t})/\overline{Z_t}$ is called the voltage-noise gain of the circuit. Note that the voltage-noise gain is larger than the gain for normal input voltages. For a noninverting amplifier the gains will be identical. The op amp outputvoltage noise due to I_n is

$$V_{oni} = R_f I_n \tag{2.14}$$

or

$$V_{oni} = Z_f I_n \tag{2.15}$$

The total output noise is the rms sum of V_{onv} and V_{oni} :

$$V_{on} = \sqrt{V_{onv}^2 + V_{oni}^2}$$

Therefore the minimum value of V_{on} is achieved when $V_{onv} = V_{oni}$. To satisfy this, we must set Eq. (2.12) equal to Eq. (2.14) [or Eq. (2.13) equal to Eq. (2.15)]. This results in the following:

$$\frac{R_1 + R_f}{R_1} V_n = R_f I_n$$

Rearranging this, we get

$$\frac{V_n}{I_n} = \frac{R_1 R_f}{R_1 + R_f} \tag{2.16}$$

Minimum noise is therefore achieved when the parallel resistance of R_1 and R_f is made equal to the ratio V_n/I_n . The latter ratio is appropriately called the noise resistance of the op amp.

INPUT RESISTANCE R_{id} and R_{ic} These parameters have already been explored in detail in Sec. 1.6, where real and ideal op amps were compared. Equations were given which showed the effect of R_{id} (differential input resistance) and R_{ic} (common-mode input resistance) on the circuit gain A_{vc} . Equation (1.6) showed the effect on the inverting amplifier, and Eq. (1.7) was for the noninverting amplifier. The effect of Ric on circuit gain is so small that it is usually disregarded. The effect of R_{id} is also extremely small and is neglected unless it is in the order of 10 k Ω or less. Since the cheapest monolithic op amps have an R_{id} much greater than 10 k Ω , the effect of input resistance can be neglected in all but very specialized applications.

INPUT CAPACITANCE C_{id} and C_{ic} . These two parameters are seldom stated on op amp data sheets. Their effect on the closed-loop gain of the invertingamplifier configuration is negligible. Both C_{id} and C_{ic} have typical values of 1 to 2 pF and maximum values of 3 pF for monolithic op amps. The common-mode input capacitance C_{ic} , however, does have some deleterious effect on the noninverting amplifier at high frequencies. Since this type of amplifier is often driven by a high-impedance source, a capacitance to ground at the op amp positive input will attenuate high frequencies. The only way around this problem is to use careful layout procedures and to choose an op amp with low C_{ic} . (See Appendix III for fabrication procedures which minimize stray capacitances.) As we will find in Chap. 3, the input capacitances play a major role in the op amp loop stability. We will defer further comment on this subject until Chap. 3.

OUTPUT RESISTANCE R_o This parameter was discussed in Sec. 1.6. Equation (1.8) showed that the relationship between op amp output resistance R_o and closed-loop output resistance $R_{\rm out}$ is $R_{\rm out} = R_o/\beta A_r$. At frequencies much lower than the loop-gain unity crossover the parameter $R_{\rm out}$ is very small.

Fig. 2.10 The closed-loop circuit output resistance $R_{\rm out}$ is placed as shown to determine its effect on circuit performance.

However, as shown with Eq. (1.8), in the region of unity loop-gain crossover the op amp output resistance goes up and βA_v drops. This tends to cause

both stability and gain problems.

Solution to the feedback-stability problems caused by R_o will be covered in Chap. 3. We will discuss the gain problem only briefly. As shown in Fig. 2.10, we can represent R_{out} as a resistance in series with the load R_L . The actual circuit output voltage v_o' will be slightly lower than v_o because of the voltage divider formed by R_{out} and R_L . Thus,

$$v_o' = \frac{R_L}{R_L + R_{\text{out}}} v_o \tag{2.17}$$

At low frequencies, where βA_v is large and R_o is small, $R_{\rm out}$ will be small. As an example, consider the 748 op amp. At frequencies up to 50 kHz, R_o is approximately 70 Ω . At 50 kHz the open-loop gain is 200. If $\beta = \sqrt[4]{4}$, $\beta A_v = 50$ at 50 kHz. The output resistance of the circuit at this frequency is therefore [using Eq. (1.8)]

$$R_{\rm out} = \frac{70}{50} = 1.4 \ \Omega$$

If $R_L=1~{\rm k}\Omega$ and $v_o=10~{\rm V},$ the output-voltage reduction due to $R_{\rm out}$ is [using Eq. (2.17)]

$$\begin{split} v_o - v_o' &= \left[1 - \frac{R_L}{R_L + R_{\text{out}}}\right] v_o \\ &= \left[1 - \frac{1,000}{1,000 + 1.4}\right] 10 = 14 \text{ mV reduction} \end{split}$$

At lower frequencies the voltage reduction will be even smaller. This error would probably go unnoticed. Now consider what happens at unity loop gain $(\beta A_v = 1)$, where, at the same time R_o has increased to 120 Ω (this happens at f = 100 kHz),

$$R_{\text{out}}(100 \text{ kHz}) = \frac{R_o}{\beta A_v} = \frac{120}{1} = 120 \Omega$$

The output-voltage reduction will be

$$\begin{split} v_o - v_o' &= \left[1 - \frac{R_L}{R_L + R_{\text{out}}}\right] v_o \\ &= \left[1 - \frac{1,000}{1,000 + 120}\right] 10 = 1.07 \text{ V} \end{split}$$

The error in this case is more than 10 percent.

How do we reduce these errors caused by R_o ? The most obvious suggestions are: (1) Do not require operation at frequencies where $\beta A_v = 10$ or less. (2) Keep R_L large. (3) Place an emitter follower between the op amp and R_L . The last suggestion will make the load resistance R_L seen by the op amp very large. Thus the voltage-divider action between $R_{\rm out}$ and R_L will be very small.

OPEN-LOOP GAIN A_r AND OPEN-LOOP DC GAIN A_{ro} These parameters are also called the ac and dc differential gains, since they are the ratio of the op amp output voltage v_o to the difference between the input terminals $v_p - v_n$. We discussed the degradation caused by a finite open-loop gain in Sec. 1.6. Equations (1.4) and (1.5) related closed-loop dc gain A_{vco} to open-loop dc gain A_{vo} . We found that gain was reduced 1 percent or more (from the ideal gain) if A_{vo}/A_{vco} was 100 or less. If we can guarantee $A_{vo}/A_{vco} > 100$ for all temperatures, then as A_{vo} varies with temperature the circuit gain will be stable to within 1 percent. Likewise, if a 0.1 percent amplifier is required, we must guarantee that $A_{vo}/A_{vco} > 1,000$ under all conditions.

The degradation to A_{vco} by a finite A_{vo} follows the above rules only for frequencies up to the first pole of the op amp. Between the first-pole frequency

and the second-pole frequency the true circuit gain is

$$A_{vc}(\text{inverting}) = \frac{-A_v R_f / R_1}{\sqrt{A_v^2 + (1 + R_f / R_1)^2}}$$
(2.18)

and
$$A_{vc}(\text{noninverting}) = \frac{+A_v R_f / (R_1 + R_f)}{\sqrt{A_v^2 + [1 + R_f / (R_1 + R_f)]^2}}$$
(2.19)

These equations are the basis for Table 1.2 of percent gain error (ac only). Since A_v is 90° out of phase with A_{vc} , the effect of A_v on the accuracy and stability of A_{vc} is much less than the effect of A_{vo} on A_{vco} .

Suppose we wish to find the maximum frequency with which we can expect 1 percent accuracy for an X10 amplifier using the Fairchild μ A741A. We first refer to the data sheet and determine the minimum open-loop gain and minimum unity-gain bandwidth at +25°C. As shown in Fig. 2.11, we use the above data to make a plot of A_v as a function of frequency. The mini-

mum value of A_v at dc (i.e., A_{vo}) is given to be 50,000. We draw a horizontal line at that value. The unity-gain crossover frequency (called the bandwidth in this data sheet) is 0.44 MHz. We then draw a line having a slope of -20 dB/decade such that it passes through $A_v = 1$ at 0.44 MHz. This line is extended up and to the left until it intersects the $A_v = 50,000$ line. We define the resulting plot as the worst-case minimum curve of A_v at $+25^{\circ}$ C.

Now, to determine the worst-case A_v over temperature, we must assume two things: (1) The first pole at 8.5 Hz does not appreciably change frequency

Fig. 2.11 Curves of A_r for the Fairchild μ A741A taken at +25 and +125°C.

with temperature. (2) The slope of A_v above the pole frequency remains at -20 dB/decade. We next examine the data sheet to find the minimum A_{vo} over temperature. The test conditions for this A_{vo} (and the A_{vo} at $+25^{\circ}$ C) must not be too different from the planned use of the amplifier. Assuming the power supplies to be used are ± 20 V, $R_L = 2$ k Ω , and the output $= \pm 15$ V (peak-to-peak), the minimum A_{vo} over temperature is 32,000 at $+125^{\circ}$ C. We draw a horizontal line at 32,000 on Fig. 2.11. At 8.5 Hz we change the slope to -20 dB/decade and note that the $A_v = 1$ intersection occurs at 0.27 MHz.

The closed-loop gain A_{vc} curve is drawn as a straight horizontal line at $A_{vc}=10$ until it intersects the two A_v curves. We next determine the gain errors due to the lower A_v curve. According to Table 1.1, the error will be less than -0.1 percent at dc, since $A_{vo}/A_{vco}=3,200$ at dc. At 28 Hz the phase shift of A_v will be almost -90° relative to A_{vc} . At this frequency $A_v/A_{vc}=1,000$; so the gain error according to Table 1.2 is -5×10^{-5} percent. Likewise, at 280 Hz the gain error is -0.006 percent, at 2,800 Hz the gain error is -0.6 percent, and at 28 kHz the gain error is -33 percent. We can reason-

ably assume this circuit will be better than 1 percent stable up to about 3,000 Hz and over the temperature range -55 to +125°C.

Our suggested methods to reduce the errors caused by changes in A_v

and A_{vo} are:

- 1. Choose an op amp with a high dc gain and/or wide bandwidth.
- 2. Keep the temperature variations to a minimum.
- 3. Make sure the ratios $A_{\nu}/A_{\nu c}$ and $A_{\nu o}/A_{\nu co}$ are as high as possible over as many frequencies as possible.

BANDWIDTH f_u, f_{cp}, f_f The bandwidth f_u as defined in Chap. 1 is the frequency where the op amp gain is 1. It can also be determined by measuring the op amp risetime when the op amp is connected as a unity-gain noninverting amplifier. The bandwidth is then computed from

$$f_u = \frac{0.35}{t_r} \tag{2.20}$$

where t_r is the 10 to 90 percent risetime.

We are usually more interested in the closed-loop bandwidth than in the open-loop bandwidth. Throughout the text we will use f_{cp} as the frequency at which the closed-loop gain is down 3 dB. This is the dominant (first) pole frequency of the closed-loop circuit. Referring back to Fig. 2.11, the closedloop bandwidth is the frequency where the open- and closed-loop curves intersect. Thus, in Fig. 2.9 the closed-loop bandwidth is 44 kHz at +25°C and 27 kHz at $+125^{\circ}\text{C}$.

Some data sheets provide information on the change of closed-loop bandwidth with temperature. One must be careful, however, because these are usually typical data. The worst-case minimum closed-loop bandwidth, over temperature, may be much less than the data sheet implies. The method outlined above will probably give more accurate worst-case data.

When the circuit must supply large output-voltage swings, the maximum

Fig. 2.12 Full power (large-signal voltage swing) as a function of frequency for the LM101 op amp. (National Semiconductors.)

closed-loop bandwidth is much less than f_u . Depending on the size of the peak output voltage, the bandwidth may only be $\frac{1}{10}$ or $\frac{1}{100}$ of f_u . This high-level bandwidth is called f_f , since it is the maximum frequency at which full-power output response can be expected. Many data sheets provide curves showing the maximum peak-to-peak output voltage as a function of frequency. Figure 2.12 is a curve of this type for the LM101 op amp. The curve was obtained by noting the voltage at each frequency where ≤ 5 percent distortion occurs. If more than 5 percent distortion is acceptable, slightly higher voltages may be allowed.

The strong relationship between full-power response and the compensation capacitor is immediately obvious. Also, it should be noted that the curves flatten off rather abruptly at the top because the data were taken using ±15-V power supplies. Thus one would expect abrupt limiting as soon as the peak-to-peak amplitude approaches 30 V.

Bandwidth may be extended with the following methods:

1. Keep output amplitude low so that the full-power response curves are not approached.

2. Use the minimum compensation on the widest-bandwidth device.

3. Allow slightly more distortion in the output signal.

SLEW RATE S As mentioned in Chap. 1, the maximum slew rate is the maximum rate at which an overdriven op amp can change its output voltage. This limiting action does not take place suddenly. It is observed to begin at one location on a sine wave as the frequency or amplitude is increased and then broaden out to include most of the sine wave. The exact nature of this complicated phenomenon depends on the type of op amp, the compensation used, and the load capacitance. We can best illustrate how slew rate depends on amplitude and frequency with a specific example. Figure 2.13 shows output waveforms from an LM101 with a sine-wave input. The circuit tested was the unity-gain noninverting type with a 30-pF compensation capacitor. The figure shows that it takes both high frequency and large voltage to cause maximum distortion. If the peak-to-peak voltage is small, the LM101 can provide distortionless gain up to 200 kHz. If the compensation capacitor is only 3 pF, distortionless gain is possible up to 1 MHz. Output waveforms up to 20 V or more are possible (for frequencies below 20 kHz).

Slew-rate limiting is characterized by a definite flattening on one portion of the sine wave. This flat portion is due to a constant-current source charging a capacitance. Precision ramp generators are built with the same principle. If the constant current is *I*, the slope of this slew-rate limit is

$$\frac{\Delta v}{\Delta t} = \frac{I}{C} \tag{2.21}$$

The capacitances and current generators causing the slew-rate limiting may be in several locations.

1. Often a compensation capacitor C_c is placed between the collectors of the input differential stage. The slew-rate limit at this point is then

$$\frac{\Delta v}{\Delta t} = \frac{2I_c}{C_c}$$

where I_c is the quiescent collector current of either input transistor.

2. If a large-load capacitor C_L is connected to the op amp, the maximum slew rate is

$$\frac{\Delta v}{\Delta t} = \frac{I_o}{C_L}$$

Fig. 2.13 Output waveforms from an LM101 with a unity-gain noninverting configuration and 30-pF compensation. The circuit input was a sine wave in all cases. The dashed lines represent the ideal output waveform.

where I_o is the maximum available op amp output current. The ultimate slew-rate limitation of the circuit will be the smallest I/C ratio in the op amp.

If slew-rate limiting is a problem, the designer may consider the following suggestions:

suggestions:

1. Slew rate is higher for high-gain circuits. Perhaps the input signal can be reduced and the circuit gain increased.

2. The compensation-capacitor size may be too large. Some op amps have several methods for compensation from which to choose. Use of input lead-lag compensation mentioned in Chap. 3 is one possible suggestion for increasing slew rate.

3. If a large-load capacitance is the cause of slew-rate limiting, perhaps

an emitter-follower buffer will help isolate the op amp from C_L .

Maximum slew rate S_{max} is related to full-power response by

$$S_{\text{max}} = 2\pi f_f V_{pp} \tag{2.22}$$

where f_f and V_{pp} are the coordinates of a point on a curve such as Fig. 2.12. Suppose we wish to find the maximum slew rate of the LM101 if $V_{pp} = 10 \text{ V}$ and $C_f = 30 \text{ pF}$. From Fig. 2.12 we note that $f_f = 8 \text{ kHz}$ at $V_{pp} = 10 \text{ V}$ and $C_f = 30 \text{ pF}$. Thus,

$$\begin{split} \mathbf{S}_{\text{max}} &= 2\pi f_{\text{f}} \mathbf{V}_{pp} = (6.28)(8 \times 10^3 \text{ Hz})(10 \text{ V}) \\ &= 5 \times 10^5 \text{ V/s} = 0.5 \text{ V/}\mu\text{s} \end{split}$$

COMMON-MODE REJECTION RATIO (CMRR) Nearly all op amps have differential inputs. Many applications of op amps require both these differential inputs

for proper operation. Some of these same applications require that any common voltage simultaneously applied to both inputs should not be amplified. This is not entirely possible in real op amps. This "common-mode" voltage always arrives at the output at some finite level. The common-mode rejection ratio (CMRR) is a measure of how much this common-mode signal is rejected relative to the desired differential-mode signal. CMRR is defined as

$${\rm CMRR} = \frac{A_{vo}}{A_{cmo}} \qquad {\rm at~dc} \qquad (2.23A)$$

$${\rm CMRR} = \frac{A_v}{A_{cm}} \qquad {\rm at~any~frequency} \qquad (2.23B)$$

or (2.23B)

where

 $A_{vo} = \text{op amp differential gain at dc}$ $A_v = \text{op amp differential gain as a function of}$ frequency

 $A_{cmo} = \text{op}$ amp common-mode gain at de

 A_{cm} = op amp common-mode gain as a function of frequency

Figure 2.14 clarifies the definition of A_v and A_{cm} (or A_{vo} and A_{cmo} , which are merely the dc components of A_r and A_{cm}). Data sheets provide CMRR data in several forms. The most common form is merely one or two numbers

stating the minimum and/or typical CMRR at dc. More useful data sheets provide curves showing minimum CMRR vs. frequency. A tabulated minimum CMRR at de in conjunction with a typical CMRR vs. frequency could be used to make an approximate minimum CMRR

vs. frequency plot.

Figure 2.15A shows a typical CMRR curve for the 101A op amp. The data sheet also states that the minimum CMRR at dc is 80 dB over the military temperature range (-55 to +125°C). The curve of CMRR vs. frequency (Fig. 2.15A) must accordingly be lowered by 23 dB at all frequencies if worst-case performance calculations are to be made. This is a rough approximation for worst-case minimum CMRR, but it will usually be satisfactory if no better data exist.

Fig. 2.14 Definitions of op amp differential gain A_v (usually called the open-loop gain) and commonmode gain A_{cm} .

Assume the designer knows the nature of his common-mode input voltage over frequency. A reasonable question to ask is: What will the output voltage be over frequency due to the common-mode input? To answer this question, we need plots of CMRR and A_v which were both obtained under similar operating conditions. Figure 2.15A and B will be used. If both plots are in dB vs. frequency, the calculations will be simplified. Since $CMRR = A_v/A_{cm}$, $A_{cm} = A_v/CMRR$. Therefore

$$20 \log A_{cm} = 20 \log A_v - 20 \log CMRR \tag{2.24}$$

(See Appendix V for rules of logarithms.) The three terms are all expressed in dB. To obtain $20 \log A_{cm}$ (in dB) at a given frequency, we merely subtract 20 log CMRR (in dB) from 20 log A_v (in dB) at that frequency.

Subtracting log terms is the same as dividing normal numbers (i.e., if we

calculate 20 log 1,000 –20 log 10, we get 20×3 –20 \times 1 = 60 –20 = 40 = 20 log 100. This is the same as saying 1,000/10 = 100). The resulting plot of 20 log A_{cm} is shown in Fig. 2.15C. To obtain the plot of output voltage vs. frequency due to a common-mode voltage, we must multiply A_{cm} by the input common-mode voltage. Again, this is most easily done if both are in dB.

The circuit surrounding the op amp also has a CMRR of its own. In Chap. 9 we will show how to incorporate the op amp CMRR into the circuit CMRR to obtain the total CMRR. As it turns out, the total CMRR is always less than the circuit or op amp CMRR. We will take up ways to increase circuit CMRR in Chap. 9. The op amp CMRR can be optimized in the following ways:

- 1. Choose an op amp with a large minimum CMRR at dc.
- 2. Choose an op amp with the largest possible CMRR values over the same frequency range to be used in the circuit.

Fig. 2.15 Curves of (A) CMRR, (B) A_r , and (C) A_{cm} for the 101A op amp.

3. Measure each op amp for maximum CMRR before installation in the circuit (see Appendix IV).

4. Make sure circuit CMRR is at least ten times larger than op amp CMRR (see Chap. 9).

POWER-SUPPLY REJECTION RATIO (PSRR) This parameter is defined as the ratio of a change in input offset voltage to a change in power-supply voltage. The test is usually performed at some given frequency (60 Hz, 1 kHz, etc.); however, data sheets seldom state the frequency. The resulting number is expressed in μ V/V or dB. When stated in dB, the number is actually negative, since the input offset change is much smaller than the power-supply change. A negative dB means the ratio is less than 1 (i.e., -20 dB = 0.1).

To determine the effect of PSRR on a given circuit, we can use the same type of calculation used to determine the effects of input offset voltage. As we recall, the op amp output voltage V_0 is related to the input offset voltage $V_{i\theta}$ by the following:

$$V_o = \left(1 + \frac{R_f}{R_s}\right) V_{io}$$
 (2.25)

This expression holds for both inverting and noninverting amplifiers (see Sec. 2.2). From the definition of PSRR we have

$$PSRR = \frac{V_{io}}{V_{*}}$$
 (2.26)

where V_{io} is an equivalent ac rms voltage across the op amp input terminals and V_s is an ac rms voltage on both power-supply terminals (in phase). We can find the op amp output ripple voltage by combining Eqs. (2.25) and (2.26). The result is

$$V_o = \left(1 + \frac{R_f}{R_1}\right) V_s \times PSRR \tag{2.27}$$

Suppose the power supplies have a 0.1-V rms ripple and the op amp has a PSRR of 20 μ V/V (-94 dB). If the op amp is connected as an X1000 inverting amplifier, its output ripple will be

$$\begin{array}{l} V_{o}({\rm rms}) = (1+1{,}000)(0.1~{\rm V~rms})(20\times 10^{-6}{\rm V/V}) \\ = 0.02~{\rm V~rms} \end{array}$$

Whether or not this disturbs the circuit function depends on the size of the real output signal and its required signal-to-noise ratio.

The effects of op amp PSRR can be minimized several ways:

- 1. Choose an op amp with a small PSRR.
- 2. Reduce the power-supply ripple with additional filtering.
- 3. Increase the input signal.
- 4. Decrease the circuit gain.

2.3 GENERAL METHOD TO COMPUTE A_{vc}

In Secs. 2.1 and 1.5 we state that the gain of a simple inverting amplifier is $-\mathbf{Z}_f/\mathbf{Z}_1$ (see Fig. 2.16A). Likewise, the gain of a simple noninverting amplifier is $1+\mathbf{Z}_f/\mathbf{Z}_1$ (see Fig. 2.16B). These equations are true only if \mathbf{Z}_1 and \mathbf{Z}_f are two-terminal devices (i.e., resistors, capacitors, inductors, diodes, etc.). If \mathbf{Z}_1 and/or \mathbf{Z}_f are changed to three-terminal circuits with one terminal grounded as in Fig. 2.16C, the equations above do not apply. A more gen-

2-22

Fig. 2.16 (A) Simple inverting-amplifier circuit. (B) Simple noninverting-amplifier circuit. (C) Complex inverting-amplifier circuit which requires use of Y parameters.

eral approach using *Y* parameters is required. We will now introduce *Y* parameters and then show how they are used in op amp circuits.

Y PARAMETERS We will start with the general three-terminal network shown in Fig. 2.17A. All three-terminal networks can be reduced to three blocks as shown, where each block can be an impedance Z or an admittance Y. The admittance has a real part G (the conductance) and an imaginary part G (the susceptance). Thus admittance is expressed as

$$Y = G + jB$$

just as impedance is expressed as

$$Z = R + jX$$

where R is resistance and X is reactance. We convert from one system to the other by

$$Z = \frac{1}{Y}$$
 or $R + jX = \frac{1}{G + jB}$

Individual components are expressed as follows:

Resistance: $R = \frac{1}{G}$ or $G = \frac{1}{R}$

Inductance: $X = sL = \frac{1}{B}$ or $B = \frac{1}{sL}$

Capacitance:

$$X = \frac{1}{sC} = \frac{1}{B} \quad \text{or} \quad B = sC$$

By use of Fig. 2.17B and C we can obtain the four Y parameters. If the output is shorted to ground, we get

$$Y_{11} = \text{short-circuit input admittance} = \frac{I_1}{V_1}$$

$$Y_{21} =$$
 short-circuit forward transfer admittance
$$= \frac{I_2}{V_1}$$

If the input is then shorted to ground, the other two parameters are

$$Y_{12} = \text{short-circuit reverse transfer admittance}$$

$$= \frac{I_1}{V_2}$$

$$Y_{22}={
m short\text{-}circuit}$$
 output admittance $=rac{I_2}{V_2}$

If the three-terminal circuit is made up of passive elements (resistors, capacitors, inductors, transformers, diodes, etc.), $Y_{12} = Y_{21}$. This greatly simplifies

Fig. 2.17 Determining the Y parameters of a three-terminal network. (A) The general three-terminal circuit put in simplified three-block form. (B) Computation of Y_{11} and Y_{21} . (C) Computation of Y_{12} and Y_{22} .

the algebra in the following pages. We will simply call Y₁₂ and Y₂₁ the transfer admittance Y_t in the following discussion.

It is a rather laborious task to compute or measure the short-circuit parameters of a network as a function of frequency. Therefore, we have provided the Y parameters for many common RC networks in Appendix VI. In the following pages we will show how to use the curves in Appendix VI to obtain the frequency response of almost any op amp circuit which uses BC networks.

COMPUTING A_{rc} WITH Y PARAMETERS The most basic op amp circuit which requires the use of Y parameters is shown in Fig. 2.16C. As it turns out, we need to know only the transfer parameter Y_t of the input and output networks. The closed-loop gain of the entire op amp circuit is

$$A_{vc} = \frac{V_2}{V_1} = -\frac{Y_{t1}}{Y_{tf}} \tag{2.28}$$

where $Y_{t1} = Y_{12}$ (= Y_{21}) of the input network $Y_{tf} = Y_{12}$ (= Y_{21}) of the feedback network The parameters Y_{t1} and Y_{tf} often contain many sC terms which vary with frequency. To obtain the overall circuit response as a function of frequency, it is best to use dB plots. The circuit gain is then simply the Y_{tt} plot (in dB) subtracted from the Y_{t1} plot (in dB).

Fig. 2.18 Calculation of an op amp circuit response using Y parameters. (A) The circuit. (B) Computing Y_{t1} of input network. (C) Computing Y_{tf} of feedback network.

An example would be worthwhile at this point. Given the circuit of Fig. 2.18A, what is the plot of voltage gain vs. frequency? The input network is composed of G_1 , G_2 , and G_1 and the feedback network is composed of G_2 , G_3 , G_3 , and G_4 .

The transfer admittance of the input network is found (see Fig. 2.18*B*) by grounding the right side of G_2 . The current through G_2 is calculated for an input voltage on the left of G_1 . The transfer admittance is

$$Y_{t1} = \frac{I_o}{V_{in}} = \frac{-G_1 G_2 / C_1}{s + [(G_1 + G_2) / C_1]}$$

This transfer admittance is plotted in Fig. 2.19A. The transfer admittance for the feedback network is similarly found as shown in Fig. 2.18C. The result is

$$Y_{tf} = \frac{I_o}{V_{in}} = \frac{-C_2 \left\{ s^2 + s \left[(G_3 + G_4)/C_3 \right] + (G_3G_4/C_2 C_3) \right\}}{s + \left[(G_3 + G_4)/C_3 \right]}$$

This equation is plotted in Fig. 2.19B. If we (point-by-point) subtract Y_U (in dB) from Y_U (in dB), we get the circuit transfer function shown in Fig. 2.19C. The result is a two-pole low-pass filter with a corner frequency of 1 kHz.

Fig. 2.19 (A) The input transfer admittance. (B) The feedback transfer admittance. (C) The ratio Y_{t1}/Y_{tf} .

REFERENCES

1. Giles, J. N.: "Fairchild Semiconductor Linear Integrated Circuits Applications Handbook," Fairchild Semiconductor, 1967.

2. Widlar, R. J.: "Drift Compensation Techniques for Integrated DC Amplifiers,"

National Semiconductor Corp., AN-3, 1967.

3. Smith, L., and D. H. Sheingold: Noise and Operational Amplifier Circuits, *Analog Dialogue*, Analog Devices, Inc., vol. 3, no. 1, March 1969.

Feedback Stability

3.1 REVIEW OF FEEDBACK THEORY

Feedback of the circuit output to the circuit input is required for most op amp applications. The feedback network totally dominates the circuit characteristics. The op amp merely provides gain-usually orders of magnitude more than required. The feedback network determines what is done with all this gain. This feedback may be negative, which is usually done with the op amp negative (-) input. The feedback may also be positive by utilizing the op amp positive (+) input. Or a combination of positive and negative feedback is often used. Other variations are possible: If the feedback network has a phase shift, feedback to the negative input may become positive. Likewise, feedback to the positive input can become negative feedback under similar conditions. In this chapter we will discuss negative feedback and how it can cause circuit instability whenever it becomes positive feedback. Several things can cause this unwanted positive feedback. We call these various reasons for positive feedback "the seven causes of op amp instability." We will explore them in detail in this chapter. These seven causes may not be obvious causes of circuit instability to the reader at this point. By the end of this chapter, we hope the reader will be able to use these seven ideas to handle an op amp stability analysis of any complexity. The seven causes of instability are:

1. Compensation recommended by op amp data sheet not used.

2. Closed-loop gain too low for type (and amount) of compensation used.

3. Excessive capacitive load on op amp.

4. Incorrect phase lead/lag in feedback network.

5. Excessive resistance between ground and op amp positive input.

6. Excessive stray capacitance between op amp output and balance terminals.

7. Inadequate power-supply bypassing.

The above seven causes of op amp instability fall in two categories: (1) design errors in the load and feedback circuit and (2) unexpected circuit elements. The first category is avoided by careful consideration of the first five causes of instability. The second category is handled by assuming worst-case circuit elements (such as stray capacitance at op amp input) and by using proved construction techniques. Both categories will be adequately covered in this chapter.

We will first lay a firm foundation of feedback theory. However, we will discuss only that portion of the theory which relates to op amps. This approach greatly simplifies the analysis of op amp stability. Only voltage-mode transfer functions will therefore be required in this chapter. That is, the op amp transfer function will always be expressed as volts out/volts in. Likewise, the transfer function of the feedback network will be expressed as a voltage ratio. This ratio can be easily computed for feedback networks of almost any complexity, as we will show later in the chapter. As we showed in Sec. 2.3, a computation of the forward gain of complex op amp circuits requires the use of Y parameters. This is not necessary for feedback analysis. We will do all our work with voltage ratios.

The most important parameter in an op amp stability analysis is *loop gain*. Loop gain is merely the product of the op amp gain and the feedback-network gain. If the true loop gain of a feedback circuit is known, the margin of stability of that circuit is easily determined. This is done by making plots of loop gain and its phase as a function of frequency. It takes only a few seconds to determine the circuit stability with these plots. If the plots show a marginal stability, the loop-gain equation will tell the designer which components are responsible. We will spend the rest of Sec. 3.1 showing how to develop the loop-gain equation, how to plot it, and how to determine stability margins from the plots. Section 3.2 will then describe in detail the various methods available to modify the loop gain to achieve stability.

Section 3.3 will analyze each of the seven causes of instability. Methods of overcoming each cause will be discussed in detail. Loop gain will again be the primary tool when discussing the seven causes. Then in Sec. 3.4 we will use the ideas developed in this chapter to perform a complete stability analysis of several typical circuits.

RESULTS OF POSITIVE AND NEGATIVE FEEDBACK It will be a good idea at this point to compare briefly positive with negative feedback. Sometimes the differences between them are so subtle that it is difficult at first glance to determine which type of feedback is used in a circuit. Most circuits are designed to use one type of feedback. A few are designed to use both types of feedback. In reality, all circuits have both types of feedback present at one frequency or another.

Positive feedback is used for circuits of the following types:

- 1. Generator (sine, square, pulse, sawtooth, etc.)
- 2. Bistable (flip-flop)
- 3. Comparator

Note that in the applications listed above, either no input is required to generate an output, or the output waveshape bears no resemblance to the input waveshape. This is the major characteristic of positive feedback. Electronically, the following happens in positive-feedback circuits: Some type of waveform on the input (noise, pulse, etc.) starts to be amplified by the op amp. The amplified waveform at the output of the op amp then passes back through the feedback network to the point where the input waveform is occurring. Since the feedback signal is the same polarity as the original signal, they add to each other and create an even larger waveform. If the positive feedback is dc-coupled to the input, the op amp is driven into saturation and may remain locked up. This locked-up condition can be changed only by removing power or driving the input with a large signal of the opposite polarity. If the positive feedback is not dc-coupled to the input, the circuit will oscillate at the frequency where the op amp gain times the feedback circuit gain equals 1.

Negative feedback is useful for the following reasons:

To widen amplifier bandwidth
 To reduce amplifier distortion

3. To minimize phase shift and flatten frequency response

4. To minimize temperature-induced gain variations

5. To allow parts interchangeability without affecting circuit performance

6. To reduce or increase output resistance, depending on circuit configuration

7. To reduce or increase input resistance, depending on circuit con-

iguration

In reviewing the above two lists, we note that (1) the main function of positive feedback is waveform generation, and (2) the main function of negative feedback is to allow accurate control of existing waveforms. Since these functions are so different, we cannot say one type of feedback has any advantage or disadvantage over the other. However, considered by themselves, each type of feedback has several disadvantages of which one must be aware.

Negative feedback has two problems:

1. All the advantages of negative feedback are obtained at the expense of gain. If a 1,000:1 improvement of some parameter (such as bandwidth or distortion) is required, the gain of the open-loop circuit must be reduced by 1,000 to obtain it. For this very reason, op amps typically have open-loop gains of 10,000 to over 1 million. We will discuss this limitation many times throughout this book.

2. Negative feedback sometimes becomes positive feedback at certain frequencies—thus causing the circuit to oscillate. This problem is the main topic of the present chapter. We will explore this problem from every angle. By the end of this chapter, the reader should know how to prevent the occurrence of positive feedback when negative feedback is desired.

Positive feedback also has the following potential drawback:

If positive feedback is used without negative feedback, the desired waveform generation may not be stable with temperature, load, aging, etc. The function of the circuit must not be dependent on the magnitude of op amp gain. This requirement will be discussed further in the chapters on oscillators and waveform generators.

FIRST-CUT STABILITY ANALYSIS If the designer does not have time for a complete stability analysis using the procedure developed in this chapter, the following general rule of thumb may be useful in simple designs: (1) As shown in Fig. 3.1, make a plot of op amp open-loop gain. (2) On the same sheet of paper, plot the circuit closed-loop gain. (3) Determine the rate of closure of the two plots at their point of intersection. (4) If this rate of closure is less than 40 dB/decade (12 dB/octave), the circuit will probably be stable.

This rule of thumb assumes several things: (1) The capacitive load C_L on the op amp output terminal is small (< 100 pF in most cases). (2) Stray capacitance C_S between the op amp input terminals is very small (< 5 pF). (3) The feedback resistor R_f is small (< 20 k Ω) if the stray input capacitance is 5 pF or more. Also, the rule of thumb is most accurate for high values of closed-loop gains ($A_{rc} > 10$). If the closed-loop gain approaches 1, it is best to keep stray and load capacitance small and to keep the rate of closure less than 40 dB/decade.

DEVELOPMENT OF THE LOOP-GAIN EQUATION An unstable feedback circuit is one which has 360° of phase lag around the loop. The first 180° is already

accounted for by using the negative input terminal of the op amp. Feedback analysis is primarily concerned with causes of the second 180° . All plots, formulas, and discussions regarding feedback stability are centered on this second 180° phase lag. Thus, when we say the loop phase shift is 90° , it is actually $180+90=270^\circ$. The low-frequency phase lag of the op amp output relative to the noninverting input is zero degrees. Likewise, relative to the inverting input the phase lag is 180° . Op amp data sheets always plot phase lag relative to the noninverting input. However, when working with negative feedback, the inverting input is always used. One should always remember to add 180° mentally to the data-sheet phase lag to obtain the actual phase lag. Otherwise, a reader surveying literature on the subject may be led to believe that a 180° phase shift of loop gain will cause oscillation.

Fig. 3.1 Finding approximate stability of circuit by using rate of closure between closed-loop gain and op amp open-loop gain.

In Chap. 1 we showed that the gain of an inverting amplifier is $-R_f/R_1$. We also showed that the gain of a noninverting amplifier is $1 + R_f/R_1$. These gain equations were derived using the ideal op amp properties:

 $\begin{array}{ll} \text{1. Input resistance} = \infty & (R_{\text{in}} = \infty) \\ \text{2. Output resistance} = 0 & (R_o = 0) \\ \text{3. Voltage gain} = \infty & (A_v = \infty) \\ \text{4. Bandwidth} = \infty & (f_{op1} = \infty) \\ \text{5. Offset} = 0 & (V_{io} = I_b = I_{io} = 0) \\ \end{array}$

In Chap. 2 we computed the effect of nonideal op amp properties on amplifier performance. We will now determine the effect of nonideal properties on feedback stability. It will become apparent in the following discussion that as the ideal properties 1, 2, and 4 become more nonideal the circuit becomes more unstable.

An op amp with infinite bandwidth will not oscillate when it is operated with purely resistive negative feedback. Infinite bandwidth means that the op amp has zero phase shift at all frequencies. A real op amp, however, has a —3-dB bandwidth at some finite frequency—usually in the 1-Hz to 1-MHz range. Real op amps thus have 90 or more degrees of phase lag at normal operating frequencies. Likewise, the feedback network and load circuit create additional phase lag. When the op amp phase lag is combined with these other phase lags, a potentially unstable circuit is possible. This instability will now be shown mathematically through use of the closed-loop gain equations derived in Chap. 2. These equations are repeated below:

$$A_{vc} = \frac{V_o}{V_i} = \frac{A_v}{1 + \beta A_v} \tag{3.1}$$

for the noninverting amplifier, or

$$A_{vc} = \frac{V_o}{V_i} = \frac{A_v (\beta - 1)}{1 + \beta A_v}$$

$$(3.2)$$

for the inverting amplifier, where

 $\beta=$ voltage transfer ratio of feedback network (function of frequency) $A_v=$ open-loop voltage gain of op amp (function of frequency). This is the gain relative to the positive input terminal.

These closed-loop gains become unstable $(A_{vc} = \infty)$ whenever the denominator term equals zero. This occurs when $A_r = -1 = 1$ /180°. Either A_v or β or both can cause this condition. The term βA_r is called the loop gain, since it is the gain through the op amp back through the feedback network to the op amp input—thus completing a loop.

In both the inverting amplifier and the noninverting amplifier β is defined

$$\beta = \frac{R_1}{R_1 + R_f} \tag{3.3}$$

Suppose R_1 and R_f each become a two-terminal network of electronic components. R_1 then becomes $Z_{\rm in}$ and R_f becomes Z_f as shown in Fig. 3.2A. β is now defined as

$$\beta = \frac{Z_{\rm in}}{Z_{\rm in} + Z_f} \tag{3.4}$$

Note that we show an impedance Z_p from the op amp positive input to ground. This Z_p is usually a resistor or a resistor bypassed with a capacitor. The function of this resistor was explained in Chap. 2. If $Z_p = Z_f/100$ or less at frequencies near unity loop gain, Eq. (3.4) will be unaffected. Otherwise β must be computed with the general method to be outlined below.

Often $Z_{\rm in}$ and/or A_f are not two-terminal networks as shown in Fig. 3.2A but are three-terminal networks as shown in Fig. 3.2B. The simple formula for β above cannot then be used. The procedure for obtaining β in these complex cases will now be developed. The simple circuit shown in Fig. 3.2A is merely a special case of the method to be developed. This method of analysis will be most useful because it will allow one to incorporate load capacitance and input stray capacitance. Both these capacitances decrease amplifier stability.

In the following analysis we will compute the feedback voltage $V_a - V_b$ across the op amp input terminals relative to the op amp output voltage V_o .

If Z_{in} and Z_f are each simple two-terminal networks as shown in Fig. 3.2A, and $Z_p = 0$, then

$$\beta = \frac{V_a - V_b}{V_o} = \frac{Z_{in}}{Z_{in} + Z_f}$$
 (3.5)

This β can be used to compute both closed-loop gain (see Chap. 2) and feedback stability. However, with a circuit like that in Fig. 3.2B we can still derive a $(V_a - V_b)/V_o$, but this ratio is not β . Instead, we will call this term the feedback factor A_f . We define

$$A_f = \frac{V_a - V_b}{V_a} \tag{3.6}$$

This term cannot be substituted into the closed-loop gain equation in place of β . The resulting calculated value for closed-loop gain A_{vc} will sometimes be in error if this is tried. A_f is used in place of β only for determining the characteristics of the loop gain A_fA_v . When $A_fA_v=-1$, the circuit is unstable. As we will show in the following sections, the margin of stability can be determined by examining the gain and phase of A_fA_v .

The feedback factor A_f is computed assuming no input to the circuit. The branch of the circuit containing the input-voltage source is accordingly replaced with the output impedance of the generator Z_g . Figure 3.2C shows how this is done. Note that the feedback loop has been spread out in a straight line for easier computation of A_f . The feedback factor is simply V_5/V_2 .

Another simplification has been made to Fig. 3.2C to speed the calculation of A_t . The op amp input impedance Z_{id} has changed places with Z_p . The

Fig. 3.2 Rearrangement of op amp circuit to simplify calculation of A_f . (A) Simple circuit with two-terminal networks. (B) Complex circuit with three-terminal networks. (C) Loop opened up so that A_f can be computed.

reason for this is as follows: Feedback-stability calculations require that we know the magnitude and phase of the op amp differential input voltage $V_a - V_b$. But $V_a - V_b$ is a fraction $Z_{id}/(Z_{id} + Z_p)$ of the voltage V_a . This fraction is unchanged if Z_p and Z_{id} change places. One may argue that the op amp is sensitive to V_a and V_b independently, thus invalidating the ideas above. Most op amps have a common-mode rejection ratio of 1,000 or more. Thus V_a and/or V_b have less than 0.001 the effect of $V_a - V_b$ on the op amp output. If Z_{ib} and Z_p exchange places, the effect on the op amp output will be almost negligible. This rearrangement makes it easier to visualize the computation of V_5 and A_f . V_5 is much easier to obtain if it is the result of the last voltage divider in a ladder network. If Z_p and Z_{id} had remained in their original locations, we would have had to find V_a and V_b separately, then determine $V_a - V_b$. We will now proceed to calculate V_5 to show how this simplified method operates.

Assume the circuit of Fig. 3.2C is composed of the components as shown in Fig. 3.3A. Z_f is three resistors, $Z_{\rm in}$ is three resistors, Z_p is a single resistor, R_8 is the op amp input resistance, and C is the op amp input capacitance. Networks of this type which are driven from one voltage source (V_2) are quite easy to simplify. The object is to simplify the feedback network until it looks like one of the classical RC networks shown in Appendix VI.

Fig. 3.3 (A) Feedback network of Fig. 3.2C, where Z_p , $Z_{\rm in}$, and Z_p are assumed to be as shown. (B) Simplified network. (C) Ultimate simplification.

The first simplification is to combine R_1 , R_2 , and R_3 into one equivalent resistor in series with a new voltage source V_2 . This is called a Thévenin equivalent circuit (see Ref. 1). The equivalent voltage replacing V_2 is

$$V_2' = \frac{R_2 V_2}{R_1 + R_2} = 0.5 V_2 \tag{3.7}$$

which is merely the open-circuit output voltage of V_2 , R_1 , R_2 , and R_3 (i.e., R_3 not connected to R_4 or R_7). The equivalent resistance in series with V_2 is found by shorting V_2 to ground and finding the resistance from D, back through the Z_f network to ground. This resistance is

$$R_f = R_3 + \frac{R_1 R_2}{R_1 + R_2}$$

= 10 + 10 = 20 k Ω (3.8)

The network Z_{in} can be replaced by a single resistor to ground with a magnitude of

$$R_{\rm in} = R_4 + \frac{R_5 R_6}{R_5 + R_6}$$

= 10 + 10 = 20 k\Omega (3.9)

Figure 3.3B shows the resulting simplified network. One more step, however, is required to put the feedback network into a classical form. $R_{\rm in}$, R_f , and V_2 can be combined into another Thévenin equivalent circuit just as above. Accordingly,

$$V_2'' = \frac{V_2' R_{\rm in}}{R_{\rm in} + R_f} = \frac{20}{20 + 20} V_2' = 0.5 V_2'$$
 (3.10)

and

$$R_f' = \frac{R_{in}R_f}{R_{in} + R_f} = \frac{(20)(20)}{20 + 20} = 10 \text{ k}\Omega$$
 (3.11)

 V_2'' is related to V_2 by substituting Eq. (3.7) into Eq. (3.10), resulting in

$$\begin{split} V_2'' &= \frac{V_2 R_2 R_{\text{in}}}{(R_1 + R_2)(R_{\text{in}} + R_f)} \\ &= \frac{(20)(20)V_2}{(40)(40)} = 0.25 V_2 \end{split} \tag{3.12}$$

 R_7 and R_f are now added to make one equivalent feedback resistor R (see Fig. 3.3C). The final simplified network is identical to one of the RC networks shown in Appendix VI. The transfer function for this network is

$$\frac{V_5}{V_2''} = \frac{1/CR}{s + [(R + R_8)/CRR_8]}$$
(3.13)

Substituting Eq. (3.12) into Eq. (3.13) gives us

$$A_{f} = \frac{V_{5}}{V_{2}} = \frac{R_{\text{in}} R_{2}/CR(R_{\text{in}} + R_{f})(R_{1} + R_{2})}{s + [(R + R_{8})/CRR_{8}]}$$

$$= \frac{R_{\text{in}} R_{2}/2\pi CR(R_{\text{in}} + R_{2})(R_{1} + R_{2})}{jf + [(R + R_{8})/2\pi CRR_{8}]}$$
(3.14)

Substituting component values from previous calculations into the above equation, we get

$$\begin{split} A_f &= \frac{(20)(20)/2\pi(5\times10^{-12})(20)(40)(40)}{jf + \left[(20+1,000)/2\pi(5\times10^{-12})(20)(1,000)\right]} \\ &= \frac{4\times10^5}{jf + 1.6\times10^6} \end{split}$$

The gain and phase plots of the above transfer function are shown in Fig. 3.4. Loop gain A_fA_v is obtained by multiplying the A_f found above with the A_v given in the op amp data sheet.

Assume the op amp has a dc open-loop gain of 10⁵ and pole frequencies of 10 and 10⁶ Hz. The transfer function of the op amp is

$$\begin{split} A_v &= \frac{(2\pi)^2 \times 10^{12}}{(s+20\pi)(s+2\pi\times 10^6)} \\ &= \frac{10^{12}}{(\textit{jf}+10)(\textit{jf}+10^6)} \end{split}$$

Figure 3.4B shows the gain and phase plots of this op amp. The product of op amp gain and the feedback factor is thus

$$\begin{split} A_f A_v = & \frac{4 \times 10^5}{jf + 1.6 \times 10^6} \frac{10^{12}}{(jf + 10)(jf + 10^6)} \\ = & \frac{4 \times 10^{17}}{(jf + 10)(jf + 10^6)(jf + 1.6 \times 10^6)} \end{split}$$

Fig. 3.4 Bode plots of gain and phase. (A) Feedback network A_f . (B) Op amp A_r . (C) Loop gain A_tA_r .

The product $A_f A_v$ is shown in Fig. 3.4C. Note that if the gain plots are all in dB, each vertical coordinate in Fig. 3.4C is merely the sum of corresponding points at the same frequency in Fig. 3.4A and B. Likewise, phase in Fig.

3.4C is the sum of phase in Fig. 3.4A and B at each frequency.

The example just outlined shows how the loop gain of fairly complex op amp circuits can be quite easily obtained. By utilizing the loop-gain equation in conjunction with gain and phase plots, computational errors can be minimized. One should never rely on just the equations or the plots. It is also helpful to relate specific components to specific poles in the loop gain. This will be helpful in the following sections, where we will find that poles are the prime cause of instability. If it is known that a given resistor or capacitor is the cause of a pole at a critical frequency, often the size of these components can be adjusted to stabilize the circuit.

The preceding example could have had complex RC networks instead of all the resistors shown. The method of computing A_t would still be the same.

GAIN MARGIN AND PHASE MARGIN Now that we have a simplified method for computing loop gain, we will put it to use determining stability. We will first state several rules of thumb which will greatly simplify the calculations of this section.

RULE 1: For the gain plot use linear coordinates for gain and logarithmic coordinates for frequency. The gain, however, should be expressed in dB, thus making it a logarithmic plot. This will allow us to multiply two gain plots by simply adding the dB at each frequency.

RULE 2: Make all plots using the Bode approximations. After the final loop-gain and -phase plots are determined, convert the approximate plots to

actual plots using the method discussed in Chap. 2. We now define gain margin and phase margin:

PHASE MARGIN ϕ_m : Using the loop-gain plot, determine the frequency f_g at which the gain equals 1. Then using the loop-phase plot, at the frequency f_g , measure the number of degrees that the loop phase is above -180° . This number is the phase margin ϕ_m .

GAIN MARGIN A_m : Using the loop-phase plot, determine the frequency f_{π} at which the phase lag equals 180°. Then using the loop-gain plot, measure the number of dB that the loop gain is below zero dB at the frequency f_{π} .

This number is the gain margin A_m .

If the loop-gain and -phase plots are accurately constructed, A_m and ϕ_m can be quickly determined. It is best to determine phase margin first, since it is sometimes difficult to determine gain margin. This is so because some op amp data sheets do not show the phase lag passing through -180° . The loop phase also may not pass through -180° at frequencies of interest. In these cases the phase margin itself will suffice to give a number for stability margin.

What values of gain and phase margins are required in a feedback circuit? Ideally we want a gain margin of 40 or more dB and a phase margin of 180°. This set of conditions is impossible to obtain; so a compromise is usually accepted. A reasonable phase margin used by circuit designers is 45°. Likewise a gain margin of 10 dB is acceptable. These margins will result in a closed-loop gain having a small-signal step-response overshoot of approximately 20 percent. A ϕ_m of 45° also means that the closed-loop frequency response will have less than 3 dB of peaking. If analysis shows that the worst-case minimum phase margin is 45°, the design is adequate. Some designers use 45° as nominal and 30° as the worst-case minimum. If this is a true worst case, which considers all possible circuit-degradation factors, then 30° worst case is satisfactory.

In the last paragraph we hinted that gain and phase margins are related to closed-loop transient response and closed-loop frequency response. The closed-loop responses are handy tools with which to determine stability margin, since loop-gain characteristics are sometimes very difficult to measure. We will explore this further in Sec. 3.5.

3.2 COMPENSATION CIRCUITS

If the calculation of gain and phase margins indicates poor stability, compensation can restore stability. In this section we will review the popular compensation schemes seen on op amp data sheets. Since these data sheets seldom tell the user what the compensation scheme is doing to loop gain, we will discuss that aspect extensively. The exact effect of each compensation scheme on gain and phase margins will be another goal of this section.

LAG COMPENSATION This type of compensation is also known as dominant-pole compensation. The dominant pole in a loop-gain plot is the lowest-frequency pole. Consider the loop-gain plot shown in Fig. 3.5, which has two poles. Plot A is the original loop gain, which has the dominant pole f_{lp1}^{λ} at 100 kHz and a second pole f_{lp2}^{λ} at 10 MHz. The plot shows that the second pole occurs at about one-third the frequency of unity-gain crossover. The dominant pole causes a phase lag of 90° for all frequencies above ten times f_{lp1}^{λ} . At unity-gain crossover, or three times f_{lp2}^{λ} , another lag of 72° takes place

Fig. 3.5 The effect of lag compensation on loop gain. Curve *A*: before compensation. Curve *B*: after lag compensation.

owing to $f_{p_2}^{\ell}$, for a total lag of 162° at that point. The resulting phase margin is 18° and the gain margin is 20 dB. This circuit would be very close to instability, especially if component values changed slightly because of temperature changes.

Lag compensation can be used to produce the loop-gain curve *B* shown in Fig. 3.5. A new dominant pole is added to the loop response at a frequency sufficiently low that the old dominant pole occurs near unity gain. As noted in the figure, the phase margin becomes 45°. This is always the result if one can force the second pole of loop gain to occur at unity-gain crossover.

At least three methods are commonly utilized to create a simple lag as noted above. Figure 3.6 shows these three most common types. The method shown in Fig. 3.6A can be implemented on any op amp, even if a special lag terminal is not available. It does have the disadvantage, however, of requiring fairly large capacitors. The dominant-pole frequency is found from

$$f_p = \frac{1}{2\pi R_o C_c} \tag{3.15}$$

where

 R_o = output resistance of op amp C_c = compensation capacitance

Many op amps have an output resistance of approximately 100Ω . If a 100-Hz pole is required as shown in Fig. 3.5,

$$f_p = \frac{1}{6.28 \times 100 C_c} = 100 \text{ Hz}$$
 $C_c = 15.9 \mu\text{F}$

or

Obviously, this is a difficult way to lag-compensate an op amp. An unpolarized capacitor is required for this application, and the physical size of an un-

Fig. 3.6 Three circuit methods utilized to produce lag compensation.

polarized 15.9- μ F capacitor would be unreasonably large. If a resistor of, say, 10,000 Ω is placed in series with the op amp output, the required C_c is only 0.159 μ F. This will not increase the circuit output impedance if the op amp output can still be used as the circuit output terminal. The feedback circuitry, however, must be in series with the lag network. In some applications this will not be possible, so the networks shown in Fig. 3.6B or C may be required.

Some op amps have a lag-compensation terminal available for creating a low-frequency dominant pole. The internal circuitry of this type of op amp is generally as shown in Fig. 3.6B. The output resistance of the op amp at this

point is R_x .

If this resistance R_x is quite large, the external capacitor can be reasonably small. The output resistance of the op amp output terminal is unaffected by

 R_x unless R_x is after the last stage.

Figure 3.6C shows another way to achieve lag compensation. Two op amp terminals are required in this method. The output impedance of the circuit at these terminals is at least several thousand ohms. The required compensation capacitor will therefore be less than $0.1~\mu F$ in most cases.

Lag compensation has several disadvantages of which the designer must be aware. First, this method of assuring stability severely decreases the op amp available bandwidth. It is recommended only for dc or low-frequency applications. Second, the capacitor required to make the circuit unconditionally stable is often too large physically.

LEAD COMPENSATION The main cause of instability problems is the excess number of poles in the loop gain. We must make sure that only one or two poles occur before the loop-gain frequency response decreases to unity. Preferably, the second pole occurs right at unity-loop-gain crossover. This gives us a phase margin of exactly 45°.

Lead compensation can create a zero in the loop gain at any desired frequency. If the loop gain has three poles before unity-gain crossover, this zero can cancel one of the poles. The net result is two poles before unity crossover. Any of the three poles can be canceled, although best results are usually achieved by eliminating the second pole. The third pole can then be made to coincide with unity-gain crossover, resulting in a 45° phase margin. With this technique, the circuit bandwidth may be increased by at least several octaves. If the new second pole occurs at unity-gain crossover, we can also connect the circuit up as a unity-gain amplifier without worrying about instability. As we shall see in Sec. 3.3, unity-gain amplifiers are difficult to construct using op amps which have two or more poles before unity-loop-gain crossover. Even lead compensation will not work in some cases, as we shall see below.

Lead compensation is implemented as shown in Fig. 3.7A. A small capacitor C_f is placed in parallel with the feedback capacitor R_f . No special op amp compensation terminals are required. The zero frequency is

$$f_z = \frac{1}{2\pi R_f C_f} \tag{3.16}$$

This compensation capacitor also inserts another pole into the loop gain at a frequency of

$$f_p = \frac{(R_1 + R_f)f_z}{R_1} = A_{vc}f_z \tag{3.17}$$

where A_{vc} is the noninverting circuit gain.

If the circuit gain is low, f_p is not large with respect to f_z . In this case the improvement in stability may not be worth the effort, since f_z almost cancels f_p and the second op amp pole effectively moves up slightly to a new value f_p . This is shown graphically in Fig. 3.7B for a circuit gain of

$$\frac{R_1 + R_f}{R_1} = 2$$

Also shown in Fig. 3.7B is the ideal case where $f_p \gg f_z$. In this case the phase margin before compensation was less than zero. After compensation the phase margin became 45°.

Fig. 3.7 (*A*) Circuit with lead compensation. (*B*) Bode loop gain plot of circuit *A* before compensation and after compensation (shown for high and low A_{vc}). (*C*) Bode loop gain where we set $f_z > f_{ov2}$.

It is possible in many cases, if the required circuit gain A_{pc} is high, to set $f_z > f_{op2}$ by several octaves. This will increase the bandwidth even further than indicated above. It all depends on how close f_{op3} is to f_{op2} . If they are widely separated and f_{op3} does not interfere with the zero f_z we can set $f_z > f_{op2}$. The main criterion to watch for is that the slope of loop gain is -20 dB/decade as it goes through unity gain. This slope must have been established for several octaves before passing through unity gain. Figure 3.7C shows the Bode plots of this type of lead compensation.

If lead compensation is used to cancel out a pole caused by op amp input capacitance, a new pole is not created along with the zero. The reader should

compare the circuits in Appendix VI. The simple lead network with a resistive load has both a zero and a pole. When the resistive load is shunted with stray capacitance and we set $R_1C_s = R_fC_f$, the pole and zero cancel. The net effect is an all-pass transfer function with no poles and no zeros.

LEAD-LAG COMPENSATION Design flexibility is enhanced if the designer can create a pole and a zero in the loop gain. Any of the lag circuits of Fig. 3.6 can be used in conjunction with the lead circuit shown in Fig. 3.7 to manipulate the loop-gain curve. Note, however, that the lag circuits create only one pole but the lead circuit creates both a pole and a zero. Several better ways to implement lead-lag compensation will be shown below. These methods

Fig. 3.8 Two possible ways in which independent lead and lag networks can increase stability. (A,B,C) Standard method. (D,E,F) Wide-bandwidth method. (G) Phase of A'_v for wide-bandwidth case.

create exactly one pole and one zero. However, the pole is not independent of the zero. If one needs total independence of the pole and zero, the circuits of Fig. 3.6 and 3.7 must be used.

Figure 3.8 shows two of the possible ways lead and lag networks can be used to increase stability of a feedback circuit. In part A of the figure a loopgain curve with a phase margin near zero is shown. A lead-lag network with a pole having a frequency lower than the loop-gain dominant pole f_{lp1} is shown in B. Figure 3.8C shows the effect on loop gain when the lead-lag compensation is included. The compensation network zero f_z is chosen such that it exactly cancels the original dominant pole f_{lp1} . The compensation pole f_p ideally is placed slightly below f_{lp1} so that the second loop-gain

pole occurs right at unity-loop-gain crossover (or slightly higher in frequency).

Since the lead-lag compensation pole and zero are not independent, it may not be possible to achieve both the main two objectives: pole-zero cancellation and f_{lp2}^1 at unity-gain crossover. However, we do have some design latitude on both these objectives. If we can allow the phase margin to be as low as 27°, we can let f_{lp2}^1 occur up to an octave before unity-loop-gain crossover. We can also allow f_{lp2}^1 to occur anywhere after unity-loop-gain crossover, but this is wasteful of the circuit capabilities.

The placement of the zero also has some latitude. It does not have to exactly cancel the original dominant pole. Figure 3.8D, E, and F shows a case where $f_z \gg f_{lp1}$. In this case closed-loop gains having bandwidths several octaves higher than in Fig. 3.8C are possible. The main thing one must watch for is that the zero $f_z = f'_{|z|}$ is at least two or three octaves lower in frequency than unity-loop-gain crossover. It is a good practice, in complicated cases like this, to make phase plots for loop gain (before and after compensation). Precise values for both gain and phase margins can then be determined. The phase plot of A_v shown in Fig. 3.8F is plotted in Fig. 3.8G. The phase margin for this particular compensation example is 39°. The gain margin is undefined because the phase lag never goes below -180°. The phase margin before compensation was zero, since the second-pole f_{lp2} occurred 11/2 orders of magnitude below the unity-loop-gain crossover frequency.

The three most common circuits which are used for lead-lag compensation are shown in Fig. 3.9. Each of these methods has advantages and disadvantages when compared with the other two. We will find that circuit Bhas the best overall flexibility and performance.

The circuit shown in Fig. 3.9A is a common method of compensation. The equations for the compensation pole and zero are

$$f_z = \frac{1}{2\pi R_c C_c} \tag{3.18}$$

$$f_p = \frac{1}{2\pi (R_x + R_c)C_c} \tag{3.19}$$

The major disadvantages of this method are: (1) one or two special compensation terminals are required on the op amp; (2) the pole and zero are not independent; and (3) the resistance R_x is not usually specified on the data sheet. The value of R_r can be computed by solving Eq. (3.19) for R_x :

$$R_x = \frac{1}{2\pi f_p C_c} - R_c \tag{3.20}$$

and correlating this with curves of frequency response on the data sheet. For example, the μ A709 data sheet indicates that $f_p=1$ kHz if $R_c=1,500$ Ω and $C_c = 100 \text{ pF}$. Computing R_x , we get

$$R_x = \frac{1}{6.28 \times 10^3 \times 10^{-10}} - 1,500$$
$$= 1.59 \text{ M}\Omega$$

Figure 3.9B shows a lead-lag-compensation circuit which requires no special op amp terminals. This method is called input lead-lag compensation. The zero frequency in this case is

$$f_z = \frac{1}{2\pi R.C_c} \tag{3.21}$$

Note that this is exactly the same zero-frequency formula as the first lead-lag circuit. The pole, however, for input lead-lag compensation is

$$f_p = \frac{R_1 + R_f}{2\pi C_c (R_1 R_f + R_1 R_c + R_1 R_p + R_c R_f + R_p R_f)}$$
(3.22)

We observe that the above pole is independent of any internal op amp resistance R_x . This will help stabilize the pole frequency over temperature if high-quality external components are used. This means that the phase margin will be more stable over temperature compared with a compensation method which relies on an internal R_x .

Equation (3.22) indicates that f_p depends on R_1 , R_f , R_p , R_c , and C_c . The zero f_z depends only on R_c and C_c . Thus f_p can be made nearly independent of f_z . R_1 , R_f , and R_p are determined by the closed-loop-gain requirements. The closed-loop gain is equal to R_f/R_1 . R_p is then computed from R_p

Fig. 3.9 Three typical lead-lag-compensated op amp circuits. (A) Lead-lag compensation of an internal op amp node. (B) Input lead-lag compensation. (C) Miller-effect lead-lag compensation.

 $R_f R_1 / (R_f + R_1)$. R_f and R_1 can usually be varied over a wide range as long as the ratio R_f / R_1 is equal to the required closed-loop gain.

Op amp slewing rate depends on the location of the compensation network. The higher the signal level at the point of compensation, the more severely slewing rate is affected. If one is handling fairly large signal levels in the circuit and does not want slew-rate limiting to become worse than the basic op amp, input lead-lag compensation is recommended. At no point in the op amp circuit is the signal level lower than across the input terminals. This is an ideal place for compensation when slewing rate is a design concern.

The last type of lead-lag compensation we will discuss is often called Miller-effect compensation. Figure 3.9C shows the general type of circuit involved in this method. Leads are brought out of the op amp from the input and output of an internal stage. This is often just the base and collector leads of a single common-emitter stage inside the op amp. Only one small capacitor C_c across these terminals is required to produce lead-lag compensation. The zero created exactly cancels out the dominant-pole f_{lp1} of the loop-gain function. The new pole created is at a frequency

$$f_p = \frac{1}{2\pi R_x C_c A_{ro2}} \tag{3.23}$$

where

 $R_x = ext{output resistance at op amp at terminal } A$ $A_{vo2} = ext{voltage gain of op amp from terminal } A ext{ to terminal } B$

This method of compensation also gets rid of the second-pole f_{lp2} of the loop gain. A mathematical analysis of the effect of C_c on loop gain shows that f_{lp2} is not canceled, but it shifts down in frequency and becomes the new f_p .

The main problem with Miller-effect compensation is the calculation of f_p . Data sheets do not give values for R_x and A_{vo2} . However, curves of openloop gain before and after compensation are available which allow us to determine stability margins. One could even compute the product $R_x A_{vo2}$ from these data, but this is not as important as the effect on loop gain. Thus the curves are usually sufficient.

A primary advantage of Miller-effect compensation is the fact that two poles are canceled out and one new pole created. The other two lead-lag-compensation schemes created one pole and one zero. Miller-effect compensation would therefore be useful to stabilize wide-bandwidth op amps which have three or more poles above unity gain. Since the new dominant-pole f_p depends on two op amp parameters (both of which are temperature-dependent), one must choose C_c so that for the worst-case temperature extremes an adequate phase margin is realized. Data sheets almost never give the user information regarding effects of compensation over temperature. When using any compensation scheme which depends on internal op amp parameters, a totally different approach to stability analysis must be used. The designer must either measure stability of all production circuits using the procedure outlined in Sec. 3.5 or must design a circuit with a very large phase margin.

3.3 THE SEVEN MAJOR CAUSES OF OP AMP INSTABILITY

The frequency-compensation techniques developed in the last section are usually sufficient to design stable op amp circuits. We also include this section and Sec. 3.4 for those circuit designs which still have instability problems. These sections can be used by the more thorough circuit designers

who wish to consider every angle of stability analysis. Only in this way can one be sure the circuit will be stable under the worst set of conditions. This approach may be too expensive for some design tasks but is mandatory for others.

There are many ways to list the causes of op amp instability. The seven causes presented here are grouped so that they are a practical system for op amp stability analysis. The designer does not have to follow the order presented here, since any one of the seven causes can be the main cause of instability in a particular design. However, the order presented here closely parallels the normal design steps of an op amp circuit. Design and stability analysis should proceed in parallel.

The seven causes of instability are as follows:

1. Compensation recommended by op amp data sheet not used.

2. Closed-loop gain too low for type (and amount) of compensation used.

3. Excessive capacitive load on op amp.

- 4. Incorrect phase lead/lag in feedback network.
- 5. Excessive resistance between ground and op amp positive input.
- 6. Excessive stray capacitance between op amp output and balance terminals.

7. Inadequate power-supply bypassing.

We will consider each of the seven separately in the pages to follow. There will occasionally be some overlapping among the first five, since these can all be analyzed using loop gain. Experienced designers, or those having computer-aided design facilities available, can handle the first five all at once with one large loop-gain formula. In this text, however, we will emphasize taking one at a time, since this gives us better visibility of the problem.

FIRST CAUSE OF INSTABILITY—COMPENSATION RECOMMENDED BY DATA SHEET NOT USED This should be the first item to check in troubleshooting an unstable op amp circuit. A manufacturer's recommended compensation is the result of extensive testing with a large number of op amps. It should work for most applications if reasonable layout and bypassing are provided. If anything other than the standard inverting and noninverting amplifier is being designed, however, special precautions must be taken. The rest of this section will consider some of these special precautions. For the present, let us discuss further the compensation recommended on op amp data sheets.

The frequency-compensation networks given by a manufacturer are designed to provide stability for the full production distribution of their device. They usually have taken into account the unit-to-unit variation of open-loop gain, output resistance of compensation terminals, and phase shift at unity-gain crossover, and also the effects of temperature and power-supply voltage on these parameters. It would be too conservative to compensate for the worst-case variations of all op amp parameters at once, since some of them effectively cancel out the other's effect on stability. For example, in some op amps when the gain drops with reduced supply voltage, the compensation-terminal output resistance also goes down. According to Eq. (3.15) (lag compensation) or Eq. (3.19) (lead-lag compensation), this will increase the frequency of the compensated loop-gain dominant pole. The phase-margin change will therefore be minimal, even though two parameters affecting it have changed substantially.

If a dc or low-frequency circuit is being designed, it might be a good idea to overcompensate. This is one way to be absolutely sure the full production run of circuits will be stable. This sort of "brute-force" approach works best for lag compensation and is summarized in the following rule of thumb: A

tenfold increase in compensation capacitance will provide ten times more stability and ten times less bandwidth.

A corollary to the above rule of thumb might state: Compensation less than the data-sheet recommendation must only be done if one computes (and plots) the loop gain for the worst-case combination of variables. If the phase margin is still greater than 30°, using less than recommended compensation might be acceptable.

SECOND CAUSE OF INSTABILITY—CLOSED-LOOP GAIN TOO LOW FOR TYPE (AND AMOUNT) OF COMPENSATION USED We have mentioned several times that some op amps cannot be operated in the unity-gain configuration unless they have been compensated in a special manner. We will now explore this problem in detail and outline a method which will allow any op amp to be operated with any closed-loop gain.

This problem will be analyzed first graphically and then mathematically. In Sec. 3.1 we stated a rule of thumb which allowed a first-cut stability analysis to be performed using plots of closed-loop gain and op amp open-loop

Fig. 3.10 Determining phase margin by using open- and closed-loop-gain curves.

gain. Now that we have discussed loop gain, phase margin, and compensation circuits, we can expand our use of that rule of thumb to determine minimum allowable gain for a circuit. The rule of thumb stated that if the rate of closure between plots of open-loop and closed-loop gains was 40 dB/decade or less, the circuit would probably be stable. In place of closed-loop gain we can use $1/A_f$, since this simplifies the procedure. However, as we recall from earlier discussions, we should not use $1/A_f$ actually to determine the closed-loop circuit gain. This will be a substitution which is completely accurate for stability analysis but is sometimes wrong when used to determine closed-loop gain.

Fig. 3.10 will be used to show how the graphical construction technique operates. Curve A is a typical op amp open-loop-gain plot. So that we can easily relate stability to closed-loop gain in this example, we will assume $A_f = \beta$. This is true for simple inverting and noninverting amplifiers which contain only two-terminal input and feedback networks (see Sec. 2.5). B, C, D, and E are plots of $1/A_f$ corresponding to closed-loop gains of 1,000(60 dB), 100(40 dB), 10(20 dB), and 1(zero dB), respectively. For curve E the rate of closure is 20 dB/decade, which results in an absolutely stable circuit. Since the zero frequency in $1/A_f$ is an order of magnitude above the point of intersection, the circuit has a phase margin of approximately 90° . Curve E intersects at 20 dB/decade. However, the zero of $1/A_f$ occurs at the same point.

The resulting phase margin is 45° . Curve D intersects at 40 dB/decade, which puts it on the threshold of oscillation. Its phase margin is very close to zero, since $1/A_f$ occurs an order of magnitude lower in frequency than the intersection. Curve E intersects A at 60 dB/decade and represents an unstable circuit. The phase margin in this case is less than zero degrees.

It is apparent from Fig. 3.10 that instability increases as closed-loop gain is reduced. The real cause of this instability is the zero in $1/A_f$ and the second pole of A_v . If the second pole of A_v is canceled with compensation, the circuit could be stable down to a 20-dB closed-loop gain. As it exists, a minimum of 40-dB closed-loop gain is recommended. If additional compensation is utilized to increase the zero frequency of $1/A_f$ by one or two orders of magnitude, the circuit could be made stable down to unity closed-loop gain.

Fig. 3.11 Standard amplifier circuits. (*A*) Inverting amplifier. (*B*) Non-inverting amplifier.

We will now explore the mathematics of the foregoing comments and work out a method to compute accurately the minimum stable closed-loop gain. The formulas shown will apply only to the standard inverting and noninverting amplifier circuits. Determining minimum closed-loop gain for more complex circuits can be done using a similar approach. The closed-loop-gain formula of an inverting amplifier (see Fig. 3.11) is

$$A_{vc} = \frac{R_f}{R_1 + R_f} \frac{-A_v}{1 + [R_1 A_v / (R_1 + R_f)]}$$
(3.24)

For the noninverting amplifier the formula is

$$A_{vc} = \frac{A_v}{1 + [R_1 A_r / (R_1 + R_f)]}$$
 (3.25)

In both these equations A_v is a positive real number at low frequencies. That is, A_v is referred to the positive input terminal of the op amp.

In Eq. (3.24) or (3.25), sustained oscillation is likely if

$$\frac{R_1 A_v}{R_1 + R_f} = -1 = 1 \ \underline{/180^\circ} \tag{3.26}$$

From the op amp data sheet determine the op amp gain at the frequency where its phase lag is 180°. Call this gain A_{π} . Oscillation now occurs when

$$\frac{R_1 A_{\pi}}{R_1 + R_f} = -1 = 1 \ \underline{/180^{\circ}}$$
 (3.27)

From Chap. 1 we recall that

$$A_{vc} = \frac{R_1 + R_f}{R_1} \qquad \text{(noninverting)}$$
 (3.28)

and $A_{vc} = \frac{R_1 + R_f}{R_1} - 1 \qquad \text{(inverting)}$ (3.29)

Therefore, the minimum closed-loop gains which assure stability $(\phi_m \ge 0)$ are

$$A_{rc}(\min) = A_{\pi}$$
 (noninverting) (3.30)

$$A_{pe}(\min) = A_{\pi} - 1$$
 (inverting) (3.31)

If a phase margin ϕ_m greater than zero is required, one must determine the new gain A_{π} at the frequency where the phase lag is ϕ_m° less than 180°. This new A_{π} is substituted into Eqs. (3.30) and (3.31) to determine minimum

possible closed-loop gain.

Now that we have both graphical and mathematical methods to determine minimum closed-loop gain, let us discuss ways to lower this minimum. In examining Fig. 3.10, we note that two changes can be made which will lower the minimum closed-loop gain: (1) The zero in $1/A_f$ (pole in A_f) must increase in frequency or be eliminated. (2) The second pole of A_v must be increased in frequency or eliminated. Recalling all we learned in Sec. 3.2, the way to accomplish the two objectives above is to compensate. Depending on the bandwidth required, we can use lag, lead, or lead-lag compensation. The reader is referred to Sec. 3.2 for ways to accomplish this goal. In Sec. 3.4 we will give specific examples of this procedure.

THIRD CAUSE OF INSTABILITY – EXCESSIVE CAPACITIVE LOAD ON OP AMP All operational amplifiers have a finite output resistance R_o . This resistance is a function of frequency and increases quite rapidly as the op amp gain approaches unity. As output resistance is usually defined, it is effectively in series with the output terminal. If a load capacitor C_L is connected from the output terminal to ground, a lag network is created. This lag network is in series with the feedback network; so it causes another pole in the loop gain. If the pole frequency of this lag network is near gain crossover, the phase margin of the circuit will be reduced. In practice it is best to keep this pole frequency at least two to ten times larger than the loop-gain crossover frequency. One method of doing this is by controlling the size of C_L .

Suppose the maximum output resistance R_o is 500 Ω at 1 MHz. If 1 MHz is also the loop-gain crossover frequency and the phase margin is 20°, the phase lag caused by R_o and C_L must be not more than a few degrees at 1 MHz. If we choose C_L such that the pole frequency of R_o and C_L is 10 MHz, then the phase shift they cause at 1 MHz will be 6° (see the phase plot of a simple lag network in Chap. 2). Solving for C_L ,

$$C_L = \frac{1}{2\pi f R_o} = \frac{1}{(6.28)10^7 \times 500}$$

= 32 pF (not very much!) (3.32)

Thus op amps with small phase margins and a large output resistance will oscillate if they drive much of a capacitive load. For refined calculations we must also include the effect of load resistance R_L and feedback resistance R_f . The real pole caused by C_L must be calculated using R_o in parallel with R_L and R_f . Usually R_o is much smaller than the other two; so R_L and R_f can be neglected.

As might be expected, a large capacitive load also decreases circuit bandwidth. Figure 3.12 shows a family of curves which indicate how increasing C_L lowers bandwidth as it increases instability. The peaking of the closed-loop response is an indicator of instability. In Sec. 3.5 we will show graphically the relationship between closed-loop peaking and phase margin.

If C_L cannot be reduced, a circuit modification as shown in Fig. 3.13 will handle any size of capacitive load. The mathematics of this circuit is very

Fig. 3.12 Curves showing how increased load capacitance affects both instability and bandwidth.

complex, but we will show a simplified method to determine component sizes which will get us started. Then the stability test procedure to be shown in Sec. 3.5 can be used to place the phase margin accurately at any desired value.

In Fig. 3.13, the lag network composed of R_o , R_2 , and C_L creates a pole in the loop gain. The frequency of this pole is approximately

$$f_p = \frac{1}{2\pi (R_o + R_2)C_L} \tag{3.33}$$

The components C_f and R_f likewise form a lead network. This places a zero in the loop gain at an approximate frequency of

$$f_z = \frac{1}{2\pi R_f C_f} \tag{3.34}$$

The object is to make the zero cancel out the pole. Setting $f_p = f_z$, we find that the compensation capacitor C_f required is

$$C_f = \frac{C_L(R_o + R_2)}{R_f} \tag{3.35}$$

In practice R_2 is chosen to be 50 to 500 Ω . Higher values will tend to increase the closed-loop output resistance.

This method of compensating for large C_L has one drawback. It will work

Fig. 3.13 Op amp circuit which will handle large capacitive loads without reducing phase margin.

satisfactorily only for op amps which are stable at unity gain. This can be achieved by using lag compensation, lead-lag compensation, or an op amp with this inherent capability. Many op amps, such as the 741, are stable at unity gain. These types of op amps are identified by the fact that the second pole occurs at unity-gain crossover.

FOURTH CAUSE OF INSTABILITY - INCORRECT PHASE LEAD/LAG IN FEEDBACK NETWORK

Many op amp circuits possess a phase lead or lag in the feedback network even though the designer did not plan it that way. Phase lead can be caused by stray capacitance across the feedback resistor. This type of stray capacitance can also occur in printed-circuit boards if the copper trace from the op amp output is too close to the input, or vice versa.

Phase lag in the feedback network is troublesome in amplifiers which require a large feedback resistor—i.e., FET op amps, high-gain—high-input-resistance inverting amplifiers, etc. In these cases the input resistor is large. The feedback resistor is even larger if the circuit is to have gain. The feedback resistor and input capacitance form a 90° lag network. The corner frequency of this lag network must be at least ten times the unity-loop-gain frequency in order to not subtract more than 6° from the phase margin.

Since unwanted phase lag in the feedback network is most likely to cause instability, we will concentrate on it. There are actually three stray capacitances which must be considered at the op amp input terminals. Figure 3.14A shows that we are considering the stray capacitances from the input terminals to ground (C_1 and C_3) and also between the input terminals (C_2). The feedback factor A_f is approximately

$$A_{f} = \frac{R_{p}C_{3}[s + (1/R_{p}C_{3})]/R_{f}^{2}C_{1}(C_{2} + C_{3})}{[s + (1/R_{f}C_{1})]\{s + [1/R_{p}(C_{2} + C_{3})]\}}$$

$$= \frac{R_{p}C_{3}[jf + (1/2\pi R_{p}C_{3})]/R_{f}^{2}C_{1}(C_{2} + C_{3})}{2\pi[jf + (1/2\pi R_{f}C_{1})]\{jf + [1/2\pi R_{p}(C_{2} + C_{3})]\}}$$
(3.36)
$$R_{p} = \frac{R_{1}R_{f}}{R_{1} + R_{f}}$$

where

We note that these stray capacitances have caused two poles and a zero in the feedback factor. We can make several comments regarding Eq. (3.36) if we assume some component values such as $C_1 = C_2 = C_3$ and $R_f = 3R_p$ (closed-loop gain $R_f/R_1 = 2$). In this case the two poles will be one-half and one-third the frequency of the zero. Since the poles occur first, and there are two of them, A_f will have a substantial phase lag at all frequencies near these poles and the zero.

A solution to this excessive phase lag is to create another zero in A_f . This can be accomplished in several ways. One approach is lead compensation. If we put a small capacitor C_f around the feedback resistor, we get

$$A_{f} = \frac{C_{3}C_{f}[jf + (1/2\pi R_{p}C_{3})][jf + (1/2\pi R_{f}C_{f})]}{(C_{1} + C_{f})(C_{2} + C_{3})\{jf + [1/2\pi R_{p}(C_{1} + C_{f})]\}\{jf + [1/2\pi R_{p}(C_{2} + C_{3})]\}}$$
(3.37)

All these poles and zeros are fairly close together in frequency; so pole-zero cancellation is possible. However, the required capacitance of C_f is very small. For example, if $R_1 = 1$ k Ω , $R_f = 10$ k Ω , $C_1 = C_2 = C_3 = 5$ pF, then the required C_f is in the range of 0.5 to 0.9 pF. These two values depend on which pole we attempt to cancel out. In either case, stray capacitance around

the feedback resistor will be perhaps half of any C_f we attempt to install. The phase-margin testing procedure outlined in Sec. 3.5 is required after using this type of compensation.

Another approach to the problem is to use input lead-lag compensation.

Utilizing the circuit of Fig. 3.14B, we get

$$A_{f} = \frac{\left[R_{1}R_{c}/(R_{1}R_{f} + R_{1}R_{c} + R_{1}R_{p} + R_{f}R_{c} + R_{f}R_{p})\right]\left[jf + (1/2\pi R_{c}C_{c})\right]}{jf + \left[(R_{1} + R_{f})/2\pi C_{c}(R_{1}R_{f} + R_{1}R_{c} + R_{1}R_{p} + R_{f}R_{c} + R_{f}R_{p})\right]} (3.38)$$

The following assumptions were made to derive Eq. (3.38):

1. The effects of stray capacitances can be neglected, since the unity-loop-gain crossover is one or two orders of magnitude lower after compensation (see Fig. 3.8). This is possible only if R_f is not too large. Check to see

Fig. 3.14 Stray capacitances at input of op amp which can cause unwanted phase lag. Stray-capacitance cancellation is possible using lead compensation A or lead-lag compensation B.

that $f = 1/2\pi R_f C_s$ (where $C_s =$ a typical stray capacitance) is at least several octaves above the new unity-loop-gain crossover frequency.

2. Op amp input resistance is much larger than R_1 and R_f .

AMP POSITIVE INPUT A closer examination of the mathematics which derived Eq. (3.36) reveals another possible pole in the loop gain. This pole is caused by a special set of conditions which only some designers will have. If the op amp has a fairly low input resistance and the input resistor is large (>10 k Ω), this extra pole may occur near unity-loop-gain crossover. The problem is compounded because op amp input resistance decreases an order of magnitude or more at frequencies near its unity-gain crossover. It is not worthwhile to expand Eq. (3.36) here to show the effect of low R_i and high R_p , since the mathematics gets too involved. We will merely outline the steps required to analyze and solve this potential problem.

The problem may cause excessive lag in loop gain if:

1. Op amp input resistance R_i is ten times R_f or smaller at op amp unitygain crossover.

2. R_1 is large (> 10 k Ω).

The solution to this problem is simple—bypass the positive op amp input to ground with a capacitor C:

$$C \ge \frac{10}{2\pi f_u R_p} \tag{3.39}$$

where f_u is the op amp unity-gain-crossover frequency, and $R_p = R_1 R_f / (R_1 + R_f)$.

Some designers may wish to calculate the effect of R_p on loop gain. Referring to Fig. 3.3 and the accompanying text, we note that R_p can be lumped in with other parts in the computation of A_f . This procedure can also be used to determine the effectiveness of the bypass capacitor across R_p .

SIXTH CAUSE OF INSTABILITY—EXCESSIVE STRAY CAPACITANCE BETWEEN OP AMP OUTPUT AND BALANCE TERMINALS Many op amps have one of their balance terminals right next to the output terminal. For example, the 101 output terminal is pin 6 and one of the balance terminals is pin 5 (TO-99 package). This particular balance terminal has a signal which is of the same polarity as the output terminal. If any excessive stray capacitance exists between these terminals, a slight amount of positive feedback is possible. As this stray capacitance gets larger, the loop phase margin is lowered. Experiments with the 101, for instance, revealed the following: Starting with a compensation which produces a phase margin of 45°, different small capacitances were placed between pins 5 and 6. It was found that 3 /4 pF reduced the phase margin to 34°, 1 pF to 32°, and 11 /4 pF to 30°. These are substantial reductions to the phase margin from such an unlikely source.

Stray capacitance between balance and output terminals usually occurs because the designer thinks the balance terminal is a dc-adjustment terminal. The balance wires (or traces on a printed-circuit board) may run 6 or 8 inches to a potentiometer which is used for the dc balance. The output terminal may follow the same route. Under these conditions several picofarads stray capacitance between terminals is possible.

The balance terminals must be treated like any wire in the signal path. Wire lengths should be kept short, and their placement relative to other wires should be carefully studied before artwork on a board is firmed up. Multilayer boards with ground planes between layers of signal traces are recommended. Some manufacturers recommend placing a 0.1- μ F capacitor between balance terminals when they are used. If the balance terminals are not required, they can be tied together.

SEVENTH CAUSE OF INSTABILITY—INADEQUATE POWER-SUPPLY BYPASSING This problem is seldom handled with feedback analysis, although it can be done if sufficient data are available. Few designers resort to an analysis, however, since a few rules of thumb are sufficient for all but the very exotic applications of op amps. These rules are:

1. Bypass the positive and negative power supplies with capacitors to ground.

2. These bypass capacitors can be 0.01- to 0.1- μ F ceramic capacitors in most op amp ($f_u \approx 1$ MHz) applications.

3. High-speed (wide-bandwidth) op amp circuits and those using feedforward compensation should be bypassed with low-inductance capacitors at each op amp on both supply leads. 4. Bypass at least once per card (both + and - supplies) or every 3 to 5 op amps, whichever comes first.

5. Extra bypassing is required for op amps driving high-capacitance

loads.

6. A large tantalum capacitor ($\approx 22~\mu\text{F}$) on the negative supply to ground is recommended at least once per board. This is not usually required for the positive supply.

7. High-current buffers driven by op amps require additional bypassing so that transients will not get back to the op amp. At least $0.1~\mu F$ ceramic

per 50 mA is recommended.

3.4 FEEDBACK-STABILITY-DESIGN EXAMPLES

We will now present the stability-design portion of several op amp circuit designs. The discussion will be centered around the first five causes of instability and the various compensation schemes presented in Sec. 3.2. The last two causes of instability are not easily subject to analysis and rely mainly on rules of thumb based on experience.

FIRST FEEDBACK-STABILITY EXAMPLE—NONINVERTING AMPLIFIER WITH GAIN OF 10 As our first example, let us design a circuit with a gain of 10 and using the 101A op amp. We will determine the widest possible bandwidth using standard compensation techniques shown in this chapter. The main stability criterion we will require is that a phase margin of 45° is guaranteed at room temperature using typical 101A parameters. A true worst-case design might allow the phase margin to be only 30° when all parameters go to their worst-case limits simultaneously. We will not go into that depth in this example.

A good starting point is to make plots of the 101A open-loop gain and phase using minimum recommended compensation. Figure 3.15A and B shows these plots. For those interested in detailed mathematical calculations to supplement the graphical approach used here, we find the op amp gain equation as follows:

1. The two poles give us denominator terms such as jf + 40 and $jf + 2 \times 10^6$.

2. Multiply the numerator by these pole frequencies.

3. Multiply the numerator by the op amp dc gain (1.6×10^5) .

4. The op amp gain as a function of frequency becomes

$$\begin{split} A_v &= \frac{40 \times 2 \times 10^6 \times 1.6 \times 10^5}{(jf + 40)(jf + 2 \times 10^6)} \\ &= \frac{1.28 \times 10^{13}}{(jf + 40)(jf + 2 \times 10^6)} \end{split}$$

The first-cut circuit is shown in Fig. 3.16A. Minimum compensation requires a 3-pF capacitor between the compensation terminals. Referring to Sec. 3.2, we note that this is lead-lag compensation of the type shown in Fig. 3.9C. The pole defined by Eq. (3.23) is at 40 Hz. It need not be computed, since the data-sheet plot for minimum compensation is given.

Let us assume the circuit must have an input impedance of $100 \text{ k}\Omega$. The input resistor R_1 must then be $100 \text{ k}\Omega$. For a gain of 10 the required feedback

resistor is 1 M Ω . According to Eq. (3.5) the feedback factor is

$$\beta = A_f = \frac{R_1}{R_1 + R_f} = \frac{10^5}{10^5 + 10^6} = 0.0909 = -20.8 \text{ dB}$$

Fig. 3.15 $\,$ (A) LM101A open-loop gain and loop gain. (B) LM101A open-loop phase and loop phase.

To obtain the loop gain we must subtract 20.8 dB from all points on the op amp gain plot. Figure 3.15A shows the result in short dashed lines. The unity-loop-gain crossover frequency is 600 kHz. The phase lag at this frequency is 110° , which makes a phase margin of $180^{\circ} - 110^{\circ} = 70^{\circ}$. The amplifier appears to be very stable indeed.

Let us add a few practical considerations to the circuit and see how much the phase margin is reduced. First we consider the effect of load capacitance. The op amp data sheet shows an approximate output resistance R_0 of 100 Ω near unity-loop-gain crossover. We will assume a load capacitance

Fig. 3.16 Inverting amplifier using 101A op amp with a gain of 10.

 C_L of 300 pF. Referring to Eq. (3.32), we see that because of R_o and C_L a new pole is created at a frequency of

$$f_p = \frac{1}{2\pi R_o C_I} = \frac{1}{6.28 \times 10^2 \times 3 \times 10^{-10}} = 5.5 \text{ MHz}$$

This pole is added to the loop-gain plot in Figure 3.15A. No change in unity-loop-gain crossover frequency is observed. However, at that frequency the phase plot in Fig. 3.15B shows that approximately 5° has been subtracted from the phase margin. This makes the phase margin 65°, which is still very good. The transfer function for R_o and C_L is $A_L = 5 \times 10^6/(jf + 5 \times 10^6)$. This term will be incorporated into the final loop-gain equation after all other factors in the loop gain are computed.

Next we compute the effects of stray capacitance across the op amp input terminals. Assume the combination C_s of op amp input capacitance and stray capacitance across the input adds up to 5 pF. The circuit composed of R_1 , R_f , and C_s (with $V_i = 0$) perfectly matches one of the classical circuits shown in Appendix VI. The feedback factor for this circuit is

$$\begin{split} A_f &= \frac{1/2\pi R_f C_s}{jf + \left[(R_1 + R_f)/2\pi R_1 R_f C_s \right]} \\ &= \frac{1/6.28 \times 10^6 \times 5 \times 10^{-12}}{jf + \left[(10^5 + 10^6)/6.28 \times 10^5 \times 10^6 \times 5 \times 10^{-12} \right]} \\ &= \frac{31,800}{jf + 350,100} \end{split}$$

This new pole in the loop gain is shown in Fig. 3.15A. The loop gain now becomes unity at about 400 kHz instead of the original 600 kHz. The phase

plot is also drastically changed, and at 400 kHz the loop phase lag is 150°. The phase margin is therefore $180^{\circ} - 150^{\circ} = 30^{\circ}$. This phase margin is 15° less than the goal stated in the opening paragraph of this section. We must carefully examine the reasons for not achieving this goal and work out a way

to overcome this potential instability problem.

The capacitance across the op amp input in combination with the 1-M Ω feedback resistor are the real cause of the problem. We could assume a smaller capacitance, but a value lower than 4 pF is not recommended. The data sheets of many op amps specify a 3-pF maximum input capacitance. The printed-circuit board must be extremely well laid out to keep stray capacitance below 1 pF. For these reasons 5 pF is a reasonably conservative value for C_s.

The feedback resistor is the next likely candidate in our attempt to restore stability. If R_0 is reduced to 500 k Ω (and R_1 is reduced to 50 k Ω), the pole caused by R_f and C_s increases to 600 kHz. The unity-loop-gain crossover then returns to 600 kHz. The loop-phase plot also moves slightly to the right. However, a close examination reveals that the phase margin is still approximately 30°. In addition to this problem, the circuit input impedance has been lowered to 50 k Ω .

Additional compensation can restore the phase margin to 45°. The only problem is to decide which method is optimum. We will briefly tabulate several options and then try the one which looks most promising.

- 1. Lead compensation: If we add a small capacitor across $R_{\rm f}$, a zero is added to the loop gain. This zero is calculated so that it cancels the pole caused by R_f and C_s . The closed-loop bandwidth will remain essentially unchanged.
- 2. Input lead-lag compensation: By inserting a series RC circuit across the op amp input terminals, we can create both a pole and a zero in the loop gain. The pole is at a lower frequency than the zero, as shown in Fig. 3.8E. The zero must be placed at a frequency several octaves below the pole caused by C_s and R_f . Likewise, the new compensation pole must be at least several octaves lower in frequency than the above zero. This increases phase margin but reduces closed-loop bandwidth.
- 3. Increase C_c compensation: If C_c is increased, the dominant pole of loop gain is reduced in frequency. This makes the second pole occur closer to unity gain, causing the phase margin to increase. The closed-loop bandwidth is also reduced.

Of these three options, only the first does not decrease the closed-loop bandwidth. We will therefore use lead compensation to stabilize the amplifier. The instability is caused by the 350-kHz pole owing to C_s and R_f . The zero from the lead compensation must be placed at this same frequency. Since R_f and f_z are fixed, we solve for C_f :

$$C_f \!=\! \frac{1}{2\pi f_z R_f} \!=\! \frac{1}{6.28 \times 3.5 \times 10^5 \times 10^6} \!= 1.6~\mathrm{pF}$$

The plot of loop gain will now look identical to the plot before C_s was considered. The new value of A_t is again

$$A_f = \frac{R_1}{R_1 + R_f} = \frac{10^4}{10^4 + 10^5} = 0.0909$$

The phase margin is restored to 65°, showing that the 1.6-pF capacitor is sufficient to restore stability.

We must still consider the fifth cause of instability, namely, the resistor R₂ between the op amp positive input and ground. The size of this resistor is

90.9 k Ω . In most cases if R_2 is below 10 k Ω , the designer need not worry about it. If R_2 is too large, either it can be bypassed or C_f can be made slightly larger. In the generation of the total loop-gain equation, R_2 merely adds to R_f (see Sec. 3.1 under Development of the Loop-Gain Equation). The new value for A_f (assuming R_2 is unbypassed) is

$$A_f(\text{final}) = \frac{10^5}{10^5 + 1.09 \times 10^6} = 0.084$$

A recalculation of the pole caused by C_s shows it is now 347.7 kHz. Since the pole changed only 3 kHz, it is unlikely C_f will need to be changed.

We can now compute the final loop-gain equation. It will be the product of op amp gain, the transfer function A_L caused by R_o and C_L , and A_f .

$$\begin{split} \text{Loop gain} &= A_v A_f A_L \\ &= \frac{1.28 \times 10^{13}}{(jf + 40)(jf + 2 \times 10^6)} \frac{0.084(jf + 3.5 \times 10^5)}{jf + 3.5 \times 10^5} \frac{5 \times 10^6}{jf + 5 \times 10^6} \\ &= \frac{5.38 \times 10^{18}}{(jf + 40)(jf + 2 \times 10^6)(jf + 5 \times 10^6)} \end{split}$$

SECOND FEEDBACK-STABILITY EXAMPLE—WIDE-BANDWIDTH UNITY-GAIN INVERTING AMPLIFIER The procedures presented in this chapter are especially useful for difficult design problems. As an example of a difficult design problem we will look at the stability of a unity-gain amplifier capable of 10-MHz operation. The circuit input resistance is to be $10,000~\Omega$. After data sheets of several op amps are examined, the μ A702 (Fairchild) is chosen. Its data sheet shows

that if compensation is used as shown in Fig. 3.17, a unity-gain 20-MHz circuit is possible. This is a good margin above the required 10-MHz bandwidth.

We start by making accurate plots of open-loop gain and phase for the μ A702. Figure 3.18A shows the gain plot obtained from the data sheet. This device has three poles before unity-gain crossover, and their estimated locations are 0.7, 4, and 40 MHz. Figure 3.18B shows how we can graphically obtain the phase plot when it is not shown on the data sheet. The dashed lines show the 90° lag plot for each pole. The -45°

Fig. 3.17 Recommended compensation for μ A702 if unity-gain 10-MHz operation is required.

point for each of these plots correspond to the pole center frequency. The slope of the phase plots is -45° per decade for one decade above and below the pole frequency. The slope is zero elsewhere. The phase plot for the op amp is drawn by merely adding the contributions from each pole at each frequency.

We next determine the effect of the 50-pF lead-compensation capacitor on the op amp gain plot. According to the data sheet this capacitor cancels out the second pole f_{op2} . The resultant open-loop gain with only this capacitor installed is shown in Fig. 3.18A (dashed lines). Referring to Eq. (3.31), we note that the minimum closed-loop gain (for $\phi_m = 45^\circ$) is now $A_\pi - 1 = 32$ dB - 1 = 39.8 - 1 = 38.8, whereas before compensation the minimum

Fig. 3.18 (A) Compensating the μ A702 gain. (B) Compensating the μ A702 phase.

gain was $A_{\pi} - 1 = 52$ dB - 1 = 398 - 1 = 397. This is getting closer to our goal, but more compensation is required to allow unity closed-loop gain. Figure 3.17 shows that the data sheet also recommends input lead-lag compensation. We will now compute and plot the effect of this additional compensation on open-loop gain. Equation (3.21) is used to compute the zero

frequency.

$$f_z = \frac{1}{2\pi R_c C_c} = \frac{1}{(6.28)(200)(10^{-9})} = 795 \text{ kHz}$$

This is very close to the open-loop dominant pole of 700 kHz; so the two will cancel. The new dominant-pole frequency is found by using Eq. (3.22).

$$\begin{split} f_p &= \frac{R_1 + R_f}{2\pi C_c (R_1 R_f + R_1 R_c + R_1 R_p + R_c R_f + R_p R_f)} \\ &= \frac{10^4 + 10^4}{6.28 \times 10^{-9} (10^4 \times 10^4 + 10^4 \times 200 + 10^4 \times 500 + 200 \times 10^4 + 500 \times 10^4)} \\ &= 27.9 \text{ kHz} \end{split}$$

The effects of this new pole and zero are plotted on Fig. 3.18A (dotted line). The second pole now occurs close to unity-gain crossover, making $A_{\pi}=4$ dB. The minimum gain for a phase margin of 45° is now $A\pi-1=4$ dB -1=1.58-1=0.58, which is less than unity. It appears at this point that the compensation recommended by the data sheet is adequate. Next we look into the third, fourth, and fifth causes of instability before the stability analysis is complete.

We will now determine the load capacitance, which will decrease the phase margin by, say, 6°. Before we do this, however, we must find the approximate frequency of unity-loop-gain crossover. This requires us to estimate loop gain. Assume for the present that the feedback network R_1 and R_f has no stray capacitance and hence no phase lag. The feedback factor A_f is therefore $R_1/(R_1+R_f)=10^4/2\times10^4=0.5=-6$ dB. The loop gain is A_f times the op amp open-loop gain A_v . This means that we merely subtract 6 dB from all points on the totally compensated plot shown in Fig. 3.18A. This new plot is shown in Fig. 3.19A. The corresponding plot of loop phase is shown in Fig. 3.19B. The second pole now occurs below unity gain, which will give us good loop stability. Since the loop-gain crossover is at 32 MHz, the phase margin is $180-130=50^\circ$. This is close to the $\phi_m=45^\circ$ determined above.

An accurate plot of a pole (see Chap. 1) shows a phase lag of 6° at a frequency ten times lower than the pole. If we want the load capacitance C_L to diminish the phase margin by no more than 6° , we must make [using Eq. (3.32)]

$$C_L \leq \frac{1}{2\pi (10f_g)R_o}$$

where

$$f_g$$
 = unity-loop-gain crossover frequency R_o = op amp output resistance = 200 Ω

In other words, the pole caused by R_o and C_L must be at least ten times the frequency of unity-loop-gain crossover to cause less than 6° reduction in phase margin. This would reduce the phase margin to $50-6=44^{\circ}$. Calculating C_L , we get

$$C_L = \frac{1}{6.28 \times 10 \times 3 \times 10^7 \times 200} = 2.65 \text{ pF}$$

This is such a small load capacitance that we should probably take a different approach. Suppose our load is guaranteed to be less than 25 pF. What reduction in phase margin will this cause? Again using Eq. (3.32), we get

$$f_p = \frac{1}{2\pi R_p C_L} = \frac{1}{6.28 \times 200 \times 25 \times 10^{-12}} = 32 \text{MHz}$$

If we plot this additional pole on Fig. 3.19A, we note that unity-gain crossover is still at 32 MHz. However, the phase plot from about 4 MHz and higher is picking up the lag due to two poles. By the time 32 MHz is reached, the phase margin is only about 5°. This is a very poor phase margin.

Fig. 3.19 (A) Final compensation for μ A702 gain. (B) Final compensation of μ A702 phase.

We could specify that C_L shall never go above 5 or 10 pF, but that severely restricts the utility of the amplifier. Perhaps we can increase ϕ_m by reducing the closed-loop bandwidth to approximately 10 MHz. We cannot merely increase C_c to reduce bandwidth in Fig. 3.18A, since C_c will reduce the frequency of the compensation pole and zero. The resultant phase margin would not change. We must find a way of reducing the pole frequency by 2 without appreciably affecting the zero frequency. This can be done by doubling C_c and dividing R_c by 2. The zero frequency remains unchanged while the new pole becomes [see Eq. (3.22)]

$$f_p = \frac{10^4 + 10^4}{6.28 \times 2 \times 10^{-9} (10^4 \times 10^4 + 10^4 \times 10^2 + 10^4 \times 500 + 10^2 \times 10^4 + 500 \times 10^4)}$$

= 14.2 kHz

The new loop-gain plot is shown with a dotted line in Fig. 3.19A. The unity-loop-gain crossover frequency becomes 13 MHz. The phase plot of Fig. 3.19B is changed only for frequencies near the new f_p . The phase lag near unity-loop-gain crossover is not affected. Therefore, the phase margin is increased to a value of $180 - 137 = 43^{\circ}$.

The effects of stray capacitance across the op amp input terminals will now be considered. In previous sections we showed that this stray capacitance C_s in combination with the feedback resistor creates another pole at a frequency of $f_p = \frac{1}{2}\pi R_f C_s$. With input lead-lag compensation this pole is no longer present. The impedance of R_c and C_c is so low at frequencies near loop-gain crossover that any stray capacitance up to about 30 pF is swamped out. The effects of R_p on loop gain are also minimized for this same reason. The fourth and fifth causes of instability need not be considered further.

3.5 FEEDBACK-STABILITY MEASUREMENTS

A good designer never relies on a paper design of a circuit but instead always does extensive testing of all circuit parameters and if time is available, does many of these tests with worst-case environments and/or part-parameter variations. Feedback stability is probably the most important circuit parameter. It can totally disable an op amp circuit for quite a few reasons. Some of these reasons are quite straightforward and can be quickly analyzed. Other reasons for instability may be difficult to predict and also difficult to analyze. It is therefore mandatory that a good op amp circuit designer know at least two or three stability-testing methods. The number of methods he uses for any particular circuit will depend on the time available and the degree to which the designer wants to understand the circuit. We will present three methods of measuring stability in this section.

LOOP-GAIN MEASUREMENT METHOD A designer who wants to verify each loopgain calculation can measure the transfer function of each portion of the loop. Several of these measurements are quite difficult, but the effort always results in greater understanding of circuit operation.

Most op amp oscillation problems occur at frequencies between 10 kHz and 10 MHz. Some wide-bandwidth op amps have problems up to 100 MHz. The equipment required for measuring transfer functions affecting loop gain is as follows:

1. Sine-wave generator capable of 1 kHz to 10 MHz (or more). This generator should have a constant output amplitude over frequency.

2. Dual-beam or dual-trace oscilloscope. This oscilloscope should have the capability of showing the precise phase relationship between two inputs. That is, both traces should be triggered by one input. A low-capacitance (< 10-pF) probe should be used.

The op amp open-loop gain as a function of frequency can be measured by several methods. Op amp manufacturers have published many circuits for performing this test in various application notes. This is a difficult test at frequencies below 100Hz, since the low-frequency op amp gain is so high. For this reason the gain test is usually restricted to frequencies above 1 kHz.

The change in loop gain due to a load capacitance can be determined by running the above test with a load capacitance installed. The op amp output

resistance changes substantially at frequencies near its unity-gain crossover. Therefore, this test should not be made with a simulated R_0 but must include the actual R_0 of the op amp. The transfer function due to R_0 and C_L can be obtained by subtracting (on a dB scale) the op amp gain plot from the op amp plus C_L gain plot. Be sure to include the oscilloscope probe capacitance in the value recorded for C_L .

The transfer function for the feedback network must be made very carefully. The phase lag under investigation may be caused by only a few picofarads of stray capacitance C_s . The oscilloscope probe may have more input capacitance C_i than the stray capacitance being simulated. If one has an oscilloscope probe with the same input capacitance as the C_s to be simulated, the probe can be used in place of the simulated C_s . If the probe capacitance is higher than C_s, the probe effects must be subtracted from the transferfunction plot. Assume that the measured transfer-function pole frequency is $f_p = \frac{1}{2}\pi R_f C$, where R_f is the feedback capacitor and $C = C_s + C_i$. If we know f_p , R_f , C_s , and C_i , the pole frequency f'_p without C_i is computed from $f'_p = \frac{1}{2}\pi R_f C_s$, where $C_s = \frac{1}{(2\pi f_p R_f)} - C_i$. It is a good idea to run this test on the circuit board using the actual R_f , C_s , and op amp. The op amp should have power applied, but the side of R_t normally connected to the op amp output should be disconnected. The generator then drives R_f at this point and the low-capacitance probe is attached across the op amp input. If too much difficulty is experienced with this test, the probe should be connected to the op amp output and the op amp plot subtracted from the results of this test (on a dB scale).

Fig. 3.20 Closed-loop ac method for determining phase margin ϕ_m . (A) Phase margin as a function of closed-loop peaking. (B) Frequency plots showing how peaking is defined.

CLOSED-LOOP AC METHOD Closed-loop measurements are much easier to perform than open-loop measurements. The only problem with closed-loop measurements is that one cannot isolate a problem down to a specific part very easily. The ease of a closed-loop measurement, however, more than outweighs this small disadvantage.

The ac method requires a sine-wave generator and an oscilloscope. The generator must be capable of frequencies at least twice the closed-loop bandwidth. Likewise, the oscilloscope must not appreciably attenuate frequencies of the same magnitude. The method will work for either inverting-or noninverting-amplifier configurations.

Fig. 3.21 Transient-overshoot method for determining phase margin ϕ_m . (A) Curve showing approximate relationship of ϕ_m to percent overshoot. (B) Overshoot curves showing how percent overshoot is defined.

The closed-loop ac method gives us approximate phase margin once we determine the magnitude of closed-loop peaking. Figure 3.20A shows the approximate phase margin as a function of closed-loop ac peaking. Figure 3.20B shows how closed-loop peaking is defined. Each curve shown represents a different damping factor ζ . The frequency f_n is the frequency at which the circuit will oscillate if $\zeta = 0$ (i.e., if the phase margin $\phi_m = 0$). This family of curves are graphical representations of the formula

$$|A_{vc}| = \frac{A_{vo}}{\sqrt{[1 - (f^2/f_n^2)]^2 + (4\zeta^2 f^2/f_n^2)}}$$
(3.40)

where

 $|A_{vc}|$ = magnitude of closed-loop gain A_{vo} = op amp open-loop gain at dc f_n = frequency of peaking or frequency of oscillation if $\phi_m = 0$

 $\zeta = \text{damping factor}$

Use of Fig. 3.20A to determine phase margin has several limitations:

1. The frequency of the op amp dominant pole must be more than a decade lower than the intersection frequency of closed- and open-loop plots.

2. The third pole of op amp open-loop gain (if any) must be at least two

octaves higher in frequency than the second pole.

If these conditions are not met, the ac method can still be used to observe relative stability. The relationship between ϕ_m and closed-loop peaking will not be right, but one can still determine roughly how close the circuit is to instability. It is simple to add C_s and C_L and watch the peaking grow until the circuit finally breaks out into oscillation.

TRANSIENT-RESPONSE METHOD The fastest method for determining phase margin is by observing the transient overshoot. Because this method is quick and easy to set up, it is best suited for production-line testing of circuit stability. This method has the same two limitations as the ac method; it is accurate only for two-pole response and the poles must be widely separated.

The relationship between transient overshoot and phase margin is shown in Fig. 3.21A. In Fig. 3.21B we show how overshoot is defined. Suppose we let the steady-state value of the output be 100. The percent overshoot is merely the difference between the peak value and 100.

Transient-overshoot measurements must be made at a low level. The peak output voltage should be less than 100 or 200 mV to avoid slew-rate limiting.

The transient-response method is ideal for experimentally determining such things as maximum C_L , maximum R_f , minimum gain, and C_s associated with different printed-circuit layouts.

REFERENCES

- Millman, J., and H. Taub: "Pulse, Digital, and Switching Waveforms," McGraw-Hill Book Company, New York, 1965.
- 2. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers Design and Applications," McGraw-Hill Book Company, New York, 1971.
- 3. Millman, J., and C. C. Halkias: "Integrated Electronics," McGraw-Hill Book Company, New York, 1972.
- "Linear Integrated Circuits Applications Handbook," Fairchild Semiconductor, Mountain View, 1967.
- "Linear Integrated Circuits Data Catalog," Fairchild Semiconductor, Mountain View, 1973.
- 6. "Feedback and Control Systems Theory and Problems" (Schaum's Outline Series), Schaum Publishing Co., New York, 1967.

Chapter 4

Amplifiers

INTRODUCTION

Amplifiers are the most widely utilized application for operational amplifiers. We will cover eight of these applications in this chapter. Differential-mode applications will be explored separately, in detail, in Chap. 9, as they are such an important class of amplifiers. Since the inverting amplifier is the fundamental building block of most analog systems, it will be covered first with a numerical example worked out in detail. Other basic circuits such as (1) the noninverting amplifier, (2) the current amplifier, (3) the current-to-voltage amplifier (or the transresistance amplifier), and (4) the voltage-to-current amplifier (or the transconductance amplifier) will be presented with a large number of design equations.

At the end of the chapter several other types of amplifiers will be briefly presented along with several of their design equations. These include accoupled inverting amplifier, charge-sensitive amplifier, and summing amplifier.

4.1 BASIC INVERTING AMPLIFIER

ALTERNATE NAMES Inverting-mode amplifier, inverting configuration, phase inverter, inverter.

EXPLANATION OF OPERATION In Fig. 4.1A, assume v_i starts to drive v_n (i.e., $v_n - v_p$) in the same direction as v_i . The op amp output $A_{vo}(v_p - v_n)$ will then be driven in a direction opposite to that of v_i . This will cause a feedback current through R_f which attempts to drive $v_n - v_p$ back toward zero. If A_{vo} is very large, $v_n - v_p$ is driven to nearly zero and the current into the op amp negative input terminal also approaches zero. All the input current through R_1 must therefore flow through R_f . The current through R_p also approaches zero as A_{vo} becomes very large. The voltage at v_n can thus be assumed equal to zero, which makes computation of the circuit gain quite easy. Since the same current i_i flows in R_1 and R_f ,

$$i_i = \frac{v_i}{R_1} = -\frac{v_o}{R_f}$$

The closed-loop-circuit voltage gain at dc becomes

$$A_{vco} = \frac{v_o}{v_i} = -\frac{R_f}{R_1}$$

In the design equations and design procedure to follow we will show the effect of various op amp parameters on the accuracy and stability of A_{vco} . Likewise, we will examine the closed-loop voltage gain as a function of frequency A_{vc} . The effects of nonideal op amp parameters on A_{vc} will also be summarized.

Fig. 4.1 (A) Basic inverting-amplifier circuit. (B) Definition of input/output resistances and voltage gain.

DESIGN PARAMETERS

Parameter	Description
A_v	Open-loop voltage gain of op amp as a function of frequency
A_{vo}	Open-loop dc voltage gain of op amp (A_{vo} may be substituted for A_v in any equation if dc characteristics are wanted)
A_{vc}	Closed-loop voltage gain of circuit as a function of frequency
A_{vco}	Closed-loop dc voltage gain of circuit
β	Voltage feedback ratio of R_1 and R_f , i.e., $\beta = R_1/(R_1 + R_f)$
f_{cp}	First-pole frequency of circuit, i.e., the -3-dB bandwidth
f_{op}	First-pole frequency of op amp
I_b	Input bias current of op amp
I_{io}	Input offset current of op amp
I_n	Equivalent input noise current of op amp
$\ddot{R_1}$	Input resistor
R_{t}	Feedback resistor
R_{ic}	Common-mode input resistance of op amp

DESIGN PARAMETERS (Continued)

Parameter	Description
R_{id}	Differential input resistance of op amp (Fig. 4.1B)
$R_{ m in}$	Input resistance of circuit
$R_{\scriptscriptstyle L}$	Load resistance of circuit
R_o	Output resistance of op amp
$R_{ m out}$	Output resistance of circuit
t_r	Risetime of circuit (10 to 90%)
V_{io}	Input offset voltage of op amp
V_n	Equivalent input noise voltage of op amp
V_{on}	Output noise voltage of circuit
v_o	Output voltage of circuit

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Closed-loop voltage gain assuming ideal op amp parameters	$A_{vc} = -rac{R_f}{R_1}$
2	Closed-loop voltage gain if finite op amp gain $A_{\rm r}$ is included	$A_{rc}=rac{-R_{f}/R_{1}}{1+1/eta A_{r}}$
		where $\beta = \frac{R_1}{R_1 + R_f}$
3	Closed-loop voltage gain if differential input resistance R_{id} is included $(A_v \text{ must also be included})$	$A_{vc} = \frac{-R_f/R_1}{1 + 1/\beta A_c + R_f/A_v R_{id}}$
4	Closed-loop voltage gain if the op amp output resistance R_n is included (A_r must also be included)	$A_{vr} = rac{-R_f/R_1}{1 + (R_f + R_g)/eta A_v R_f}$
5	Size of R_f for minimum gain error due to A_v , R_{id} , and R_o	$R_f(ext{opt}) = \left(rac{R_{id}R_o}{2eta} ight)^{1/2}$
6	Input resistance of circuit assuming ideal op amp parameters	$R_{\rm in} = R_1$
7	Input resistance of circuit assuming finite $A_{ u o}$	$R_{ m in}=R_{ m I}\left(1+rac{R_f}{A_{ro}R_{ m I}} ight)$
8	Output resistance of circuit assuming ideal op amp parameters	$R_{ m out}=0$
9	Output resistance of circuit assuming finite op amp output resistance R_o and finite A_v	$R_{ m out} = rac{R_o}{1+eta A_c}$
10	Bandwidth of circuit assuming bandwidth (-3 dB) of op amp is at f_{op} (f_{op} = first pole of the op amp)	$f_{cp} = rac{f_{op}A_{co}R_1}{R_f}$
11	Small-signal risetime of circuit (10 to 90%)	$t_r = rac{0.35 \ R_f}{f_{op} A_{vo} R_1}$
12	Output dc voltage change due to input offset-voltage change of op amp (assuming I_b and $I_{io} = 0$)	$\Delta V_o = \pm \ \Delta V_{io} \frac{R_1 + R_f}{R_1}$

DESIGN EQUATIONS (Continued)

Eq. No.	Description	Equation
13	Output dc voltage due to input bias current of op amp assuming $R_p=0$ and $V_{io}=0$	$V_o = I_b R_f$
14	Output dc voltage change due to input offset-current change of op amp assuming	$\Delta V_o = \pm \ \Delta I_{io} R_f$
	$R_p = \frac{R_1 R_f}{R_1 + R_f}$	
	and $V_{io} = 0$	
15	Output-noise voltage due to an equivalent op amp input noise voltage in volts/ $\sqrt{\rm Hz}$	$V_{ m on} = V_n igg(1 + rac{R_f}{R_1} igg) \mathrm{V} / \sqrt{\mathrm{Hz}}$
16	Output-noise voltage due to both equivalent op amp input-voltage noise and current noise (V/\sqrt{Hz}) and A/\sqrt{Hz} or V^2/Hz and A^2/Hz)	$V_{ m on} = \left[V_n^2 \left(1 + rac{R_f}{R_1} ight)^2 + I_n^2 R_f^2 ight]^{1/2}$
17	Optimum value for R_p to minimize output-voltage offset due to I_b	$R_p = rac{R_1 R_f}{R_1 + R_f}$

DESIGN PROCEDURE

The approach one takes in designing an inverting amplifier depends on the application of the circuit. Many designs will merely require usage of Eqs. 1, 6, and 9 (voltage gain and input/output resistances). High-frequency applications may require a trade-off between Eqs. 1 (voltage gain) and 10 (closed-loop bandwidth). Low-level precision dc amplifiers may require compromises among Eqs. 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, and 17. This last category would be the most difficult, since there are many conflicting requirements in the above list of equations. For example, Eq. 5 indicates that an optimum R_f can be chosen which reduces the effect of changes in A_v , R_{id} , and R_o on the circuit. Contrary to this, Eqs. 7, 12, 13, 14, and 16 imply that R_f should be as small as practical. The final choice for R_f in this case would probably be simplified if a few extra dollars were invested in a good-quality instrumentation op amp.

In the design steps to follow, we will assume that the op amp type is already chosen and that both the closed-loop dc gain A_{vco} and the minimum input

resistance $R_{\rm in}$ are specified.

The variation of dc closed-loop gain A_{veo} as a result of variations in open-loop dc gain A_{vo} , differential input resistance R_{id} , R_1 , R_f , and output resistance R_o will be calculated. The drift of the circuit output dc voltage as a result of drifts in input offset voltage V_{io} and input offset current I_{io} will be determined. The small-signal risetime, bandwidth, and output noise will also be computed.

DESIGN STEPS

Step 1. Compute the optimum R_f with Eq. 5:

$$R_f(ext{opt}) = \left(\frac{R_{id}R_o}{2\beta}\right)^{1/2}$$

where $\beta = 1/(1 - A_{vco})$ may be used as a first cut.

Step 2. Determine the size of R_1 using Eq. 1 and the results of step 1 above:

$$R_1 = \frac{-R_f}{A_{vco}}$$

If this computed R_1 is less than the minimum specified circuit input resistance, a compromise among Eqs. 1, 5, and 6 may be required. Assuming Eqs. 1 and 6 are more important, we will calculate the errors caused by a nonoptimum R_f in the following steps. This approach means we let $R_1 = R_{\rm in}$ and $R_f = -A_{\rm reco} R_1$.

Step 3. Given the range of temperatures within which the circuit is to be operated, the variations in A_{vo} , R_{id} , R_1 , R_5 , V_{io} , and I_{io} are determined from

the op amp data sheet.

Step 4. Assuming a given range of frequencies must be amplified with minimum error and noise, the following parameters as a function of frequency are also found from the data sheet: A_v , R_o , V_n , and I_n .

Step 5. Compute the variations in closed-loop dc voltage gain A_{reo} using data from step 3 and Eqs. 2, 3, and 4. Repeat this step using A_r at selected

frequencies of interest.

Step 6. Determine the circuit output resistance $R_{\rm out}$ at selected frequencies using Eq. 9. Compute the reduction of A_{rc} using $R_{\rm out}$ and R_L with voltage-divider theory. The effective voltage gain A_{rc} with R_L attached is

$$A_{vc}$$
 (with R_L) = $\frac{A_{vc}$ (no load) R_L
 $R_L + R_{out}$

Step 7. Determine the true input resistance by usage of Eq. 7. If the input resistance is critical and this calculation reveals a design deficiency, R_1 may need to be increased. Steps 2, 5, 6, and 7 will then need to be repeated.

Step 8. Compute the variation in A_{vco} due to resistance changes in R_1 and R_f . Since $A_{vc} = -R_f/R_1$, a ± 1 percent change in either R_f or R_1 will result in a ± 1 percent change in A_{vc} . If R_1 increases 1 percent as R_f decreases 1 percent, A_{vc} will decrease 2 percent. Resistor variations are unpredictable with some types, and the \pm sign must be used (see Appendix III).

Step 9. Compute R_p according to Eq. 17.

Step 10. If R_p has been determined according to Eq. 17, Eq. 13 will not need to be calculated. The output offset drift voltage will be controlled only by ΔV_{io} and ΔI_{io} . Determine the total output-offset-voltage change from Eqs. 12 and 14. If the temperature-dependent drifts of V_{io} and I_{io} are known in both magnitude and direction, the actual ΔV_o can be determined. However, in most cases \pm symbols should be used, since either input terminal of the op amp can require more bias voltage or more bias current than the other. The output dc voltage error caused by the value of V_{io} at $+25^{\circ}$ C can be nulled out using special terminals on most op amps.

Step 11. Use Eq. 10 to compute the small-signal bandwidth and Eq. 11

for the small-signal risetime.

Step 12. If the equivalent input-noise current and noise voltage is available as a function of frequency, the output-noise voltage as a function of frequency can be determined. Equation 16 requires that V_n be in units of V/\sqrt{Hz} or V^2/Hz and I_n be in units of A/\sqrt{Hz} or A^2/Hz . This equation will need to be solved at 5 or 10 frequencies using V_n and I_n data at these same frequencies.

EXAMPLE OF INVERTING-AMPLIFIER DESIGN An actual design of an inverting amplifier with a gain of -100 will now be presented.

Design Requirements

 $A_{vco} = -100$

 $R_{\rm in} \geq 1,000 \Omega$

Op amp = μ A741A (Fairchild)

 $R_L \geq 2,000 \Omega$

Device Data (-55 to +125°C and ± 20 V supply voltages)

 $V_{io} = \pm 0.8 \text{ mV typical}, \pm 4.0 \text{ mV worst case } (-55 \text{ or } +125^{\circ}\text{C})$

 $\Delta V_{io} = \pm 15 \,\mu \,\text{V/}^{\circ}\text{C}$ maximum

 $I_{io} = \pm 3.0$ nA typical, ± 70 nA worst case (-55°C)

 $\Delta I_{io} = \pm 0.5 \text{ nA/°C}$ maximum

 $R_{id} = 6 \text{ M}\Omega \text{ typical}, 0.5 \text{ M}\Omega \text{ worst case } (-55^{\circ}\text{C})$

 $A_{vo} = 5 \times 10^4$ minimum at +25°C and 3.2×10^4 minimum over temperature $(-55 \text{ to } +125^{\circ}\text{C})$

 $f_{op} = 8$ Hz typical, 6 Hz at +125°C

 $R_o = 70~\Omega$ dc to 10 kHz, 90 Ω at 100 kHz, and 280 Ω at 1 MHz

 $V_n = 5 \times 10^{-15} \text{ V}^2/\text{Hz}$ at 10 Hz, $10^{-15} \text{ V}^2/\text{Hz}$ at 100 Hz, $5 \times 10^{-16} \text{ V}^2/\text{Hz}$ from 1 to 100 kHz

 $I_n = 5 \times 10^{-23} \text{ A}^2/\text{Hz}$ at 10 Hz, $5 \times 10^{-24} \text{ A}^2/\text{Hz}$ at 100 Hz, $8 \times 10^{-25} \text{ A}^2/\text{Hz}$ at 1 kHz, 3×10^{-25} A²/Hz from 10 to 100 kHz

 $\Delta R_1 = \pm 100 \text{ ppm/}^{\circ}\text{C} \text{ (i.e., } \pm 10^{-4} \text{ change in } 1^{\circ}\text{C})$

 $\Delta R_f = \pm 100 \text{ ppm/°C}$

Step 1. The value of β , the voltage transfer ratio of the feedback network, is

$$\beta = \frac{1}{1 - A_{reg}} = \frac{1}{1 + 100} = 0.0099$$

The optimum R_t can now be computed from

$$R_f(\text{opt}) = \left(\frac{R_{id} R_o}{2\beta}\right)^{1/2}$$
$$= \left(\frac{6 \times 10^6 \times 70}{2 \times 0.0099}\right)^{1/2}$$
$$= 145.600 \Omega$$

 $= 145,600 \Omega$

Step 2. The size of R_1 becomes

$$R_1 = \frac{-R_f \text{ (opt)}}{A_{vco}} = \frac{-1.456 \times 10^5}{-100} = 1,456 \Omega$$

This resistance also satisfies the 1,000 Ω minimum-input-resistance requirement.

Step 3. The variations of the following parameters over the temperature range of -55 to +125°C are (using data at +25°C as a reference):

Parameter	-55°C	+25°C	+125°C
A_{vo}	3.2×10^{4}	5×10^4	
R_{id}	0.5×10^{6}	$6 imes 10^6$	
ΔV_{io}	$\pm 2 \text{ mV}$	$\pm 0.8 \text{ mV}$	$\pm 2.3 \text{ mV}$
ΔI_{ia}	± 43 nA	±3 nA	± 53 nA
R_1	$1{,}456\pm11.6\Omega$	$1,456\Omega$	$1,\!456\pm14.6\Omega$
R_t	$145,600 \pm 1,160 \Omega$	$145,600 \Omega$	$145,600 \pm 1,456 \Omega$

(The above are from the Fairchild data sheet.)

Step 4. The variations of the following parameters over the frequency range of dc to 1 MHz are:

Parameter	de	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz
$egin{array}{l} A_v \ R_o \ V_n^2, V^2/{ m Hz} \ I_n^2, A^2/{ m Hz} \end{array}$	$\frac{5\times10^4}{70}$	4×10^{4} 70 5×10^{-15} 5×10^{-23}	$4,000 70 10^{-15} 5 \times 10^{-24}$	0	$\begin{array}{c} 40 \\ 70 \\ 5 \times 10^{-16} \\ 3 \times 10^{-25} \end{array}$	$\begin{array}{c} 4 \\ 90 \\ 5 \times 10^{-16} \\ 3 \times 10^{-25} \end{array}$	0.4 280

(The above is from the Fairchild data sheet.)

Step 5. The ideal gain should be

$$\begin{split} A_{vco}(\text{ideal}) &= -\frac{R_f}{R_1} \\ &= -\frac{145{,}600}{1{,}456} = -100 \end{split}$$

Since the open-loop dc gain A_{vo} is only 5×10^4 worst-case minimum at $\pm 25^{\circ}$ C, the actual gain will be (assuming ideal values for R_1 and R_f)

$$\begin{split} A_{vco}(A_{vo} \neq \infty) &= \frac{-R_{\it f}/R_{\rm 1}}{1 + 1/\beta A_{vo}} = \frac{-145,\!600/1,\!456}{1 + 1/0.0099 \times 5 \times 10^4} \\ &= -99.798387 \end{split}$$

If A_{vo} decreases to 3.2×10^4 at $+125^{\circ}$ C, the dc closed-loop gain is reduced to

$$A_{vco}(A_{vo} = 3.2 \times 10^4) = \frac{-145,600/1,456}{1 + 1/0.0099 \times 3.2 \times 10^4}$$
$$= -99.685336$$

This gain is approximately 0.1 percent lower than the closed-loop gain at room temperature. The degradation caused by the typical input resistance R_{id} at +25°C is

$$\begin{split} A_{vco}(R_{id} = 6 \ \mathrm{M}\Omega) &= \frac{-R_f/R_1}{1 + 1/\beta A_{vo} + 2R_f/A_{vo}R_{id}} \\ &= \frac{-145,\!600/1,\!456}{1 + 1/0.0099 \times 5 \times 10^4 + 2 \times 145,\!600/5 \times 10^4 \times 6 \times 10^6} \\ &= -99,\!798290 \end{split}$$

An input resistance of 6 M Ω is obviously not an error source of concern. If the worst-case minimum R_{id} of 0.5 M Ω is used, we get

$$\begin{split} \mathbf{A}_{\textit{\tiny \textit{PCO}}}(R_{\textit{id}} = 0.5 \text{ M}\Omega) = & \frac{-145,\!600/1,\!456}{1 + 1/0.0099 \times 5 \times 10^4 + 2 \times 145,\!600/5 \times 10^4 \times 0.5 \times 10^6} \\ = & -99.797227 \end{split}$$

This is still a very small error when compared with the effects of a finite A_{ro} . The change of R_{id} over the worst-case temperature range will affect the closed-loop gain by approximately 0.001 percent.

The effects of a finite R_o in conjunction with R_f are determined by Eq. 4.

$$\begin{split} A_{vco}(R_o = 70 \ \Omega) &= \frac{-R_f/R_1}{1 + (R_f + R_o)/\beta A_{vo}R_f} \\ &= \frac{-145,600/1,456}{1 + (145,600 + 70)/0.0099 \times 5 \times 10^4 \times 145,600} \\ &= -99,79829 \end{split}$$

This gain is approximately the same as that computed when only the finite A_{p_0} was considered.

The effects of output resistance at frequencies above the first op amp pole (≈ 8 Hz) must be determined with caution. Since A_v lags A_{vc} 90° for these frequencies, Eq. 4 must take this into account. This is done as follows (at 1 kHz where $A_v = -j400$):

$$\begin{split} A_{\rm rc}(f&=1~{\rm kHz},\,R_{\rm o}=70~\Omega) &= \frac{-100}{1+(145,600+70)/0.0099\times(-j400)\times145,600} \\ &= \frac{-100}{1+j0.2526} = \frac{-100}{1.0314~/14^{\circ}} \\ &= 96.95~/-14^{\circ} \end{split}$$

The closed-loop gain has a slight phase lag at 1 kHz. If we had not considered the phase shift of A_v , we would have mistakenly computed A_{vc} as follows:

$$A_{vc} = \frac{-100}{1 + (145,600 + 70)/0.0099 \times 400 \times 145,600} = 79.83$$

Suppose one wishes to compute the reduction of A_{vco} due to two causes such as $R_o = 70 \Omega$ (at dc) and $R_{id} = 0.5 M\Omega$. This is done as follows:

$$A_{vco} = -100 \frac{99.79829}{100} \frac{99.797227}{100} = -99.595926$$

Step 6. As in the previous step, the phase shift of A_v must be considered if the op amp first-pole frequency is exceeded.

$$\begin{split} R_{\text{out}}(\text{dc}) &= \frac{R_o}{1 + \beta A_v} \\ &= \frac{70}{1 + 0.0099 \times 5 \times 10^4} = 0.1411 \ \Omega \\ R_{\text{out}}(1 \text{ kHz}) &= \frac{70}{1 + 0.0099(-j400)} \\ &= \frac{70}{\sqrt{1^2 + (-3.96)^2}} = \frac{70}{\sqrt{1 + 15.68}} \\ &= \frac{70}{4.084 / \!\!\!\! - 76^\circ} = 17.14 / \!\!\!\! / 476^\circ \ \Omega \\ R_{\text{out}}(100 \text{ kHz}) &= \frac{90}{1 + 0.0099(-j4)} \\ &= \frac{90}{\sqrt{1^2 + (-0.0396)^2}} = \frac{90}{\sqrt{1 + 0.001568}} \\ &= \frac{90}{1.00078} = 89.93 \end{split}$$

The reduction in closed-loop gain A_{vc} due to interaction between $R_{\rm out}$ and R_L is computed by use of voltage-divider theory. If $R_{\rm out} = 17.14~\Omega~(1~{\rm kHz})$ and $R_L = 2~{\rm k}\,\Omega$, the effective closed-loop gain A_{vc} is

$$\begin{split} A_{vc}(\text{with } R_L) &= \frac{A_{vco}(\text{no load})R_L}{R_L + R_{\text{out}}} \\ &= \frac{-96.95 \times 2,000}{2,000 + 17.14} = -96.12 \end{split}$$

Step 7. The true input resistance at dc is

$$R_{\rm in} = R_1 \left(1 + \frac{R_f}{A_{vo}R_1} \right) = 1,456 \left(1 + \frac{145,600}{5 \times 10^4 \times 1,456} \right)$$
$$= 1,459 \ \Omega$$

Step 8. If we use $\pm 25^{\circ}$ C as a reference, the closed-loop-gain variation due to resistor changes over temperature is ($\pm 25^{\circ}$ C)

$$\begin{split} A_{vco} &= -\frac{R_f \pm \Delta R_f}{R_1 \pm \Delta R_1} \\ &= -\frac{145,600 \pm 145,600 \times 10^{-4} \times 100}{1,456 \pm 1,456 \times 10^{-4} \times 100} \\ &= -\frac{145,600 \pm 1,456}{1,456 \pm 14.56} = -98.02 \text{ to } -102.02 \end{split}$$

Step 9. The required value of R_p is

$$R_p = \frac{R_1 R_f}{R_1 + R_f} = \frac{(1,456)(145,600)}{1,456 + 145,600} = 1,442 \ \Omega$$

Step 10. The change in dc output voltage due to the change of V_{io} over 100°C is (+25 to +125°C)

$$\begin{split} \Delta V_o &= \pm \ V_{io} \, \frac{R_1 + R_f}{R_1} \\ &= \pm \, \frac{15 \times 10^{-6} \times 100^{\circ}\text{C}}{^{\circ}\text{C}} \, \frac{1,456 + 145,600}{1,456} = \pm \, 0.1515 \, \, \text{V} \end{split}$$

The change in dc output voltage due to the change of I_{io} over 100°C is

$$\Delta V_o = \pm \Delta I_{io} R_f = \pm \frac{0.5 \times 10^{-9} \times 100^{\circ} \text{C} \times 145,600}{^{\circ} \text{C}} = 7.28 \text{ mV}$$

Step 11. The small-signal bandwidth is

$$f_{cp} = \frac{f_{op} A_{vo} R_1}{R_f}$$

$$= \frac{(8 \text{ Hz}) 5 \times 10^4 (1,456)}{145,600} = 4 \text{ kHz}$$

The small-signal risetime is

$$t_r = \frac{0.35 \ R_f}{f_{op} A_{vo} R_1} = \frac{0.35 \ (145,600)}{8 \times 5 \times 10^4 \times 1,456}$$
$$= 87.5 \ \mu \text{s}$$

Step 12. The output noise at 10 Hz is computed from

$$\begin{split} V_{\text{on}}(10 \text{ Hz}) &= \left[V_n^2 \left(1 + \frac{R_f}{R_1} \right)^2 + I_n^2 R_f^2 \right]^{1/2} \\ &= \left[5 \times 10^{-15} \left(1 + \frac{145,600}{1,456} \right)^2 + 5 \times 10^{-23} (145,600)^2 \right]^{1/2} \\ &= 7.2 \ \mu\text{V rms at } 10 \text{ Hz} \end{split}$$

At 100 Hz, 1 kHz, 10 kHz, and 100 kHz the output noise is

$$\begin{split} V_{\rm on}(100~{\rm Hz}) &= [10^{-15}(101)^2 + 5 \times 10^{-24}(145,600)^2]^{1/2} \\ &= 3.2~\mu{\rm V~rms~at~}100~{\rm Hz} \\ V_{\rm on}(1~{\rm kHz}) &= [5 \times 10^{-16}(101)^2 + 8 \times 10^{-25}(145,600)^2]^{1/2} \\ &= 2.3~\mu{\rm V~rms~at~}1~{\rm kHz} \\ V_{\rm on}(10~{\rm kHz}) &= [5 \times 10^{-16}(101)^2 + 3 \times 10^{-25}(145,600)^2]^{1/2} \\ &= 2.3~\mu{\rm V~rms~at~}10~{\rm kHz} \\ V_{\rm on}(100~{\rm kHz}) &= [5 \times 10^{-16}(101)^2 + 3 \times 10^{-25}(145,600)^2]^{1/2} \\ &= 2.3~\mu{\rm V~rms~at~}100~{\rm kHz} \end{split}$$

REFERENCES

1. Niu, G.: Gain-Error Nomograms for Op Amps, EEE, February 1967, p. 104.

Moschytz, G. S.: The Operational Amplifier in Linear Active Networks, *IEEE Spectrum*, January 1970, p. 42.

3. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers – Design and Applications," pp. 427-436, McGraw-Hill Book Company, New York, 1971.

4.2 BASIC NONINVERTING AMPLIFIER

ALTERNATE NAMES Voltage follower, noninverting configuration.

EXPLANATION OF OPERATION The operation of this circuit is similar to that of the basic inverting amplifier except for the following (see Fig. 4.2):

1. The input signal is applied directly to the noninverting input, thereby making the output in phase with the input.

2. The resistor R_1 is connected to ground instead of being connected to the input voltage.

3. The closed-loop voltage gain for the noninverting amplifier is

$$A_{vc} = \frac{v_o}{v_i} = 1 + \frac{R_f}{R_1}$$

Fig. 4.2 Basic noninverting-amplifier circuit.

DESIGN PARAMETERS

These will be identical to those of the inverting amplifier except that R_1 is no longer the input resistor.

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Closed-loop voltage gain assuming ideal op amp parameters	$A_{vc} = 1 + \frac{R_f}{R_c}$
2	Closed-loop voltage gain if finite op amp gain A_v is included	$A_{vc} = \frac{1 + R_f/R_1}{1 + 1/\beta A}$
3	Closed-loop voltage gain if differential input resistance R_{id} and common-mode input resistance R_{ic} are included (A_v must also be included)	$A_{vc} = rac{1 + R_f/R_1}{1 + 1/eta A_v + 2R_f/A_v R_{id}}$
4	Closed-loop voltage gain if the op amp output resistance R_n is included $(A_v \text{ must also be included})$	$A_{vc} = \frac{1 + R_f/R_1}{1 + (R_1 + R_f + R_o)/A_v R_1}$
5	Size of R_f for minimum gain error due to A_v , R_{id} , and R_o	$R_f(\text{opt}) = \left(\frac{R_{id}R_oR_f}{2R_s}\right)^{1/2}$
6	Input resistance of circuit assuming ideal op amp parameters	$R_{\rm in} = \infty$
7	Input resistance of circuit assuming finite A_v , finite R_{id} , and and nonzero R_o	$R_{ m in} = rac{eta A_v R_{id}{}^2 R_f}{(R_f + R_o)(R_{id} + 2eta R_f)} \ pprox eta A_v R_{id}$
8	Output resistance of circuit assuming ideal op amp parameters	$R_{\text{out}} = 0$
9	Output resistance of circuit assuming finite op amp output resistance R_o and finite A_v	$R_{\text{out}} = \frac{R_o(R_f + R_o)(R_{id} + 2\beta R_f)}{\beta A_v R_f R_{id}}$
10	Bandwidth of circuit assuming bandwidth (-3 dB) of op amp is at f_{op} (f_{op} = first pole of the op amp)	$pprox rac{R_o}{eta A_v} \ f_{cp} = rac{f_{op} A_{vo} R_1}{R_1 + R_f}$
11	Small-signal risetime of circuit (10 to 90%)	$t_r = \frac{0.35 \ (R_1 + R_f)}{f_{op} A_{vo} R_1}$
12	Output dc-voltage change due to an input offset-voltage change of op amp (assuming I_b and $I_{io}=0$)	$\Delta V_o = \pm \ \Delta V_{io} rac{R_1 + R_f}{R_1}$
13	Output dc voltage due to input bias current of op amp assuming $R_p = 0$ and $V_{lo} = 0$	$V_o = I_b R_f$
14	Output dc-voltage change due to an input-offset-current change of op amp assuming	$\Delta V_o = \pm \; \Delta I_{io} R_f$
	$R_p = \frac{R_1 R_f}{R_1 + R_f}$	
	and $V_{io} = 0$	

DESIGN EQUATIONS (Continued)

Eq. No.	Description	Equation
15	Output-noise voltage due to an equivalent op amp input-noise voltage in V/√Hz	$V_{\rm on} = V_n \left(1 + \frac{R_f}{R_1} \right) V / \sqrt{Hz}$
16	Output-noise voltage due to both equivalent op amp input-noise voltage and current (V/\sqrt{Hz}) and A/\sqrt{Hz} or V^2/Hz	$V_{ m on} = \left[V_n^2 \left(1 + rac{R_f}{R_1} ight)^2 + I_n^2 R_f^2 ight]^{1/2}$
17	Optimum value for R_p to minimize output offset voltage due to I_p	$R_p = R_s - \frac{R_1 R_f}{R_1 + R_f}$
		If this is negative, place R_p in series with noninverting input and let
		$R_p = \frac{R_1 R_f}{R_1 + R_f} - R_s$

REFERENCES

1. Moschytz, G. S.: The Operational Amplifier in Linear Active Networks, *IEEE Spectrum*, January 1970, p. 42.

 Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers – Design and Applications," pp. 427–436, McGraw-Hill Book Company, New York, 1971.

4.3 CURRENT AMPLIFIER

ALTERNATE NAMES Current-to-current converter, impedance transformer.

EXPLANATION OF OPERATION This circuit supplies an output current i_o through the load resistor R_L which is proportional to the input current i_i . The output current is independent of the resistance of R_L over a specified range of R_L . Current amplifiers, ideally, have zero input resistance and infinite output resistance.

The circuit operates as follows: According to Chap. 2, we can (for a first approximation) assume that (1) the voltage across the op amp input terminals is zero, and (2) neither op amp input terminal draws any current. Using these

two statements, we conclude that

Fig. 4.3 Current amplifier.

$$v_i = 0$$
 and $v_x = -i_i R_f$

Using basic circuit theory, we also note that

$$i_o = i_s + i_i$$
 and $v_x = -i_s R_s$

Combining the last three equations, we find that the current gain is

$$A_{ic} = \frac{i_o}{i_i} = 1 + \frac{R_f}{R_s}$$

Note that the direction of i_0 is into the op amp if i_i is as shown.

DESIGN EQUATIONS

Equation	$A_{ic}=rac{t_o}{t_i}=1+rac{R_f}{R_s}$	$A_{\mathrm{tc}} = rac{1 + R_f/R_s}{1 + 1/eta A_v}$	where $eta = rac{R_s}{R_s + R_L}$	$A_{ic}=rac{(R_s+R_f)A_v}{R_L+R_o+R_s(1+A_v)}$	$A_{ic} = \frac{R_{id}[(R_f + R_s)A_v + R_s]}{(R_{id} + R_f)(R_s + R_L + R_o) + R_s(R_L + R_o) + R_sR_{id}A_v}$	$R_{ m in}=rac{R_f}{1+A_v}$	$R_{ m in} = rac{R_{td} \left[R_f (R_s + R_L + R_o) + R_s (R_L + R_o) ight]}{(R_{td} + R_f)(R_s + R_L + R_o) + R_s (R_L + R_o) + R_s R_{td} A_v}$	$R_{ m out} = R_s (1 + A_v)$	$R_{\text{out}} = \frac{(R_f + R_s)(R_o + R_s)[(R_{id} + R_f)(R_s + R_o) + R_s R_o + R_s R_{id} A_v]}{(R_{id} + R_f + R_s)(R_f R_s + R_f R_o + R_s R_o)}$	$0 < R_L < \frac{ V^{+_j} - 3}{ i_i (\max) (1 + R_d/R_s)}$	$0 < R_L < \frac{ V^{(-)} - 3}{ t_i (\max) (1 + R_{\mu}/R_s)}$
Description	Closed-loop current gain assuming ideal op amp parameters	Closed-loop current gain if finite op amp gain A_v is included		Closed-loop current gain if A_{ν} , the op amp output resistance R_{ν} and R_{L} are included	Closed-loop current gain if A_v , R_v , R_L , and the op amp input resistance R_{id} are included	Closed-loop input resistance considering A_v as the only nonideal parameter	Closed-loop input resistance if A_v , R_{id} , R_L , and R_o are considered	Closed-loop output resistance considering A_v as the only nonideal parameter	Closed-loop output resistance considering A_v , R_{id} , and R_L	Range of R_L resistance over which Eq. 1 is true $(i_i < 0)$	Range of R_L resistance over which Eq. 1 is true $(i, > 0)$
Eq. No.		¢1		က	4	ນ	9	7	∞	6	10

DESIGN PARAMETERS

Parameter	Description			
A_{ic}	Current gain of circuit			
A_v	Open-loop voltage gain of op amp as a function of frequency			
A_{vo}	Open-loop dc voltage gain of op amp $(A_{vo}$ may be substituted for A_v in an equation if dc characteristics are wanted)			
A_{vc}	Closed-loop voltage gain of op amp as a function of frequency			
A_{vco}	Closed-loop dc voltage gain of op amp			
β	Voltage feedback ratio of R_s and R_L			
i_i	Input current			
i_{α}	Output current			
R_{id}	Differential input resistance of op amp			
Rin	Input resistance of circuit			
R_o	Output resistance of op amp			
$R_{ m out}$	Output resistance of circuit			
V(+)	Positive supply voltage			
V ⁽⁻⁾	Negative supply voltage			

REFERENCE

1. Nieu, G.: Op Amps Act as Universal Gain Elements, *Electron. Des.*, Jan. 18, 1968, p. 78.

4.4 TRANSRESISTANCE AMPLIFIER

ALTERNATE NAMES Current-to-voltage converter, transimpedance amplifier, I-to-V converter, photodiode amplifier.

EXPLANATION OF OPERATION A transresistance amplifier behaves as if it were a resistor with power gain. It provides an output voltage which is proportional to the input current. The proportionality constant is the feedback resistor R_f such that $v_o = -i_i R_f$. This circuit is characterized by zero input resistance and zero output resistance if the op amp is ideal. Only one resistor (R_f) is required for this circuit. The maximum size of this resistor (i.e., the circuit gain) is limited only by the output-voltage capability of the op amp and the size of input current.

Fig. 4.4 Transresistance amplifier.

DESIGN PARAMETERS

Parameter	Description
A_{rc}	Closed-loop transresistance of circuit
A_v	Open-loop voltage gain of op amp as a function of frequency (for dc per-
	formance A_{vo} may be substituted for A_{v}
R_{t}	Feedback resistor
R_{id}	Differential input resistance of op amp
$R_{\rm in}$	Input resistance of circuit
R_o	Output resistance of op amp
$R_{ m out}$	Output resistance of circuit
v_o	Output voltage

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Closed-loop transresistance assuming ideal op amp parameters	$ ext{A}_{ ext{rc}} = rac{v_o}{i_i} = - R_f$
2	Closed-loop transresistance if A_v and the op amp input resistance R_{id} are considered	$A_{rc} = \frac{-R_f R_{id} A_v}{R_f + R_{id} (1 + A_v)}$
3	Closed-loop transresistance if A_v , R_{id} , and the op amp output resistance R_o are considered	$A_{rc} = \frac{-R_{id}(R_f + R_{id})(R_f + R_o)A_v - R_o(R_{id} + R_f + R_o)}{(R_{id} + R_f + R_o)[R_o + R_f + R_{id}(1 + A_v)]}$
4	Input resistance of circuit assuming ideal op amp parameters	$R_{\rm in} = 0$
5	Input resistance of circuit assuming a finite A_v	$R_{\rm in} = \frac{R_f}{1 + A}$
6	Input resistance of circuit assuming finite A_v , R_{id} , and R_o	$R_{\rm in} = \frac{R_{id}(R_o + R_f)}{R_o + R_f + R_{id}(1 + A_v)}$
7	Output resistance of circuit assuming ideal op amp parameters	$R_{\text{out}} = 0$
8	Output resistance of circuit assuming a finite A_v	$R_{\text{out}} = \frac{R_o}{1 + A}$
9	Output resistance of circuit assuming finite A_v , R_{id} , and R_o	$R_{\text{out}} = \frac{R_o(R_f + R_{id})}{R_o + R_f + R_{id}(1 + A_v)}$

REFERENCE

1. Nieu, G.: Op Amps Act as Universal Gain Elements, Electron. Des., Jan. 18, 1968, p. 78.

4.5 TRANSCONDUCTANCE AMPLIFIER

See also Current Regulators in Chap. 24.

ALTERNATE NAMES Voltage-to-current converter, V-to-I converter, transadmittance amplifier, current source, controlled-current source.

EXPLANATION OF OPERATION This circuit provides a current through R_L which is proportional to the input voltage v_i . The output current i_o is sensed by the sense resistor R_s . The resulting sense voltage is fed back in series with the input voltage v_i . The circuit closely resembles the noninverting amplifier shown in Fig. 4.2 except that in this case R_s is usually quite small.

The voltage at v_o is

$$v_o = \frac{v_i(R_s + R_L)}{R_s}$$

The current through R_L is

$$i_o = \frac{v_o}{R_s + R_L}$$

Combining these equations, we get

$$i_o = \frac{v_i}{R_s}$$

Fig. 4.5 The transconductance amplifier with a floating load.

and the output current is seen to be independent of R_L .

This circuit is often used for a current regulator where v_i is held constant. We will cover this subject in detail in Chap. 24.

DESIGN PARAMETERS

Parameter	Description	
A_{gc}	Closed-loop transconductance of circuit	
A_v	Open-loop voltage gain of op amp as a	
	function of frequency (for dc per-	
	formance A_{vo} may be substituted for	
	A_n	
β	Transfer function of feedback network	
$egin{array}{c} eta \ oldsymbol{i_o} \end{array}$	Output current of circuit	
R_{a}	Internal resistance of voltage-source	
~	driving circuit	
R_{id}	Differential input resistance of op amp	
$R_{\rm in}$	Input resistance of circuit	
R_L	Load resistance	
$R_{\rm o}$	Output resistance of op amp	
$R_{ m out}$	Output resistance of circuit	
R_s	Output-current-sensing resistor	
v_i	Input voltage to circuit	

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Closed-loop transcon- ductance assuming ideal op amp parameters	$A_{gc}=rac{i_o}{v_i}=rac{1}{R_s}$
2	Closed-loop transconductance if finite op amp gain A_v is considered	
		where $\beta = \frac{R}{R_s + R_L + R_o}$
3	Closed-loop transconductance if A_v and the opamp input resistance R_{id} are considered	$A_{gc} = \frac{R_{id}A_{v} - R_{s}}{R_{L}(R_{s} + R_{id} + R_{g}) + R_{s}(R_{id} + R_{g}) + R_{s}R_{id}A_{v}}$
4	Closed-loop transconductance if A_v , R_{id} , and the op amp output resistance R_o are considered	$A_{gc} = \frac{R_{id}A_{v} - R_{s}}{(R_{o} + R_{L})(R_{s} + R_{id} + R_{g}) + R_{s}(R_{id} + R_{g}) + R_{s}R_{id}A_{v}}$
5	Input resistance of circuit assuming ideal op amp parameters	$R_{ m in}=\infty$
6	Input resistance of circuit assuming finite A_v , R_o , and R_{id}	$R_{\rm in} = R_{id}(1 + \beta A_v)$
7	Input resistance of circuit considering total effect of A_v , R_o , R_{id} , R_o , and R_L	$R_{ m in} = R_{id} + R_g + rac{R_g(R_o + R_L + R_{id}A_v)}{R_s + R_L + R_o}$
8	Output resistance of circuit assuming ideal op amp parameters	$R_{ m out} = \infty$
9	Output resistance of circuit assuming finite A_v	$R_{ m out} = R_{ m s} (1 + A_{ m v})$
10	Output resistance of circuit considering all factors	$R_{ ext{out}} = R_o + rac{R_s[R_g + R_{id}(1+A_v)]}{R_s + R_{id} + R_g}$

REFERENCE

1. Nieu, G.: Op Amps Act as Universal Gain Elements, *Electron. Des.*, Jan. 18, 1968, p. 78.

4.6 AC-COUPLED INVERTING AMPLIFIER

ALTERNATE NAMES Capacitor-coupled amplifier, de-isolated amplifier.

EXPLANATION OF OPERATION If dc isolation of stages is required, an input and/or output isolation capacitor may be used. (See Fig. 4.6.) DC biasing

Fig. 4.6 AC-coupled inverting amplifier.

to the inverting input is obtained through the feedback resistor. The size of R_p is approximately equal to R_f , since R_1 is isolated from the circuit.

This type of circuit is also useful for shaping of the frequency characteristics. As will be shown in the design equations, the lower cutoff frequency depends on R_1 and C_1 or R_L and C_2 (whichever frequency is lowest). The upper cutoff frequency depends on the op amp.

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Closed-loop voltage gain of circuit	$A_{vc} = \frac{v_o}{v_1} = -\frac{R_f}{R_1} \frac{s}{s + 1/R_1 C_1}$
2	Lower cutoff frequency (-3 dB)	$f = \frac{1}{2\pi R_1 C_1}$ or $\frac{1}{2\pi R_1 C_2}$ (whichever is highest)
3	Output offset voltage assuming $R_p = 0$ and C_2 removed	$\Delta V_o = \pm V_{io} + I_b R_f$
4	Nominal size of R_p to minimize output offset assuming C_2 not used	$R_p \approx R_f$
5	Input impedance	$Z_{\rm in} = R_1 + \frac{1}{sC_1}$
6	Output impedance	$Z_{ m out} pprox rac{R_o}{eta A_v} + rac{1}{s C_2}$
		where $\beta = \frac{R_1 + 1/sC_1}{R_1 + R_f + 1/sC_1}$

REFERENCE

 Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers – Design and Application," p. 222, McGraw-Hill Book Company, New York, 1971.

4.7 CHARGE-SENSITIVE AMPLIFIER

ALTERNATE NAMES Charge-to-voltage converter, capacitive transducer amplifier.

Fig. 4.7 Charge-sensitive amplifier.

EXPLANATION OF OPERATION Many high-impedance transducers such as proportional counters, capacitance microphones, and some accelerometers require an amplifier which converts a transfer of charge into a change of voltage. The voltage across the transducer is usually held constant. We can therefore assume that either the capacitance of the transducer changes by ΔC or a charge of ΔQ is emitted from the transducer. The equation relating these two phenomena is

$$\Delta Q = V_c \Delta C$$

where

 ΔQ = quantity of charge transferred

 ΔC = change in capacitance

 $V_c = \text{constant voltage across the transducer}$

The capacitance microphone actually has a changing capacitance which varies in proportion to the acoustical input. The proportional counter (used to detect x-rays) puts out a quantity of charge ΔQ in response to each detected x-ray.

The amplifier output-voltage change is

$$\Delta v_o = \frac{-V_c \Delta C}{C_f}$$

if the transducer is of the capacitive type. For charge-emitting transducers the amplifier output-voltage change is

$$\Delta v_o = \frac{-\Delta Q}{C_f}$$

since $\Delta Q = V_c \Delta C$.

The lower cutoff frequency (-3 dB) of this circuit is

$$f_{cp1} = \frac{1}{2\pi R_f C_f}$$

The upper cutoff frequency (-3 dB) is

$$f_{cp2} = \frac{1}{2\pi R_1 C}$$

The resistor R_f is required only to discharge C and C_f . Without its presence these capacitors would build up a charge when input signals are present. If the leakage paths around C and C_f are too small, this bias could gradually run the op amp into saturation.

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Midband gain for an input-capacitance change of ΔC	$\frac{\Delta v_o}{\Delta C} = -\frac{V_c}{C_f}$
2	Midband gain for an input charge of ΔQ	$\frac{\Delta v_o}{\Delta Q} = -\frac{1}{C_f}$
3	Lower cutoff frequency (-3 dB)	$f_{cp1} = \frac{1}{2\pi R_f C_f}$
4	Upper cutoff frequency (-3 dB)	$f_{cp2} = \frac{1}{2\pi R_1 C}$

REFERENCES

- Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers Design and Applications," p. 233, McGraw-Hill Book Company, New York, 1971.
- 2. Stout, D. F.: A Low Noise Charge Sensitive Video Preamplifier for Use with the SEC Camera Tube, Space Programs Summary, Jet Propulsion Laboratory, 37–54, vol. III, p. 137.

4.8 SUMMING AMPLIFIER

ALTERNATE NAMES Adding/subtracting amplifier, weighted summing amplifier, adder, subtractor.

Fig. 4.8 Summing amplifier for addition and subtraction.

EXPLANATION OF OPERATION The negative feedback used in the basic inverting and noninverting-amplifier circuits tends to drive the two op amp input terminals to the same voltage. This makes summation of currents at both input terminals possible without interaction between input branches. Thus, one op amp can be used for both addition and subtraction of a large number of voltages. These may be do or ac voltages (or both).

This circuit must be designed in the following sequence:

- 1. Select the value of the feedback resistor R_f . Its maximum size is determined by the allowable output-voltage offset using $\Delta V_o = \pm I_{io}R_f$, where I_{io} is the op amp input offset current.
 - 2. Select resistors R_1 through R_6 as if all input signals were to be inverted.
 - 3. Calculate the parallel value of R_1 , R_2 , R_3 , and R_f . Call this R_A .

4. Calculate the parallel value of R_4 , R_5 , and R_6 . Call this R_B .

- 5. If $R_A > R_B$, do not use R_p . Choose R_n such that $R_A = R_B$, where R_n is now included in the parallel-resistance calculation for R_A .
- 6. If $R_B > R_A$, do not use R_n . Choose R_p such that $R_A = R_B$, where R_p is now included in the parallel-resistance calculation for R_B .

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Output voltage of circuit	$\begin{aligned} v_{o} &= A_{vc1}v_{1} + A_{vc2}v_{2} + A_{vc3}v_{3} \\ &+ A_{vc4}v_{4} + A_{vc5}v_{5} + A_{vc6}v_{6} \end{aligned}$
2	Voltage gain for inverting input voltages $(v_1, v_2, \text{ and } v_3)$	$A_{vc1} = rac{v_o}{v_1} = -rac{R_f}{R_1}$
		$\begin{split} A_{vc2} &= \frac{\upsilon_o}{\upsilon_2} = -\frac{R_f}{R_2} \\ &\text{etc.} \end{split}$
3	Voltage gain for noninverting input voltages $(v_4, v_5, \text{ and } v_6)$	$A_{rc4} = \frac{R_C}{R_C + R_4} \left(1 + \frac{R_f}{R_x} \right)$
		where R_C = parallel resistance of R_5 , R_6 , and R_p
		$R_x = \text{parallel resistance of} \ R_1, R_2, R_3, \text{ and } R_n$
		$A_{vc5} = \frac{R_D}{R_D + R_5} \left(1 + \frac{R_f}{R_x} \right)$
		where R_D = parallel resistance of R_4 , R_6 , and R_p
4	Output offset voltage due to input offset current	etc. $\Delta V_o = \pm \ I_{io} R_f$
5	Output offset voltage due to input offset voltage	$\Delta V_o = \pm V_{io} \left(1 + rac{R_f}{R_x} ight)$

REFERENCES

- 1. Kostanty, R. G.: Doubling Op Amp Summing Power, *Electronics*, Feb. 14, 1972, p. 73.
- 2. Barber, J. C.: Mix Various Signals by a Simple Method, *Electron. Des.*, Mar. 1, 1968, p. 90.

Chapter 5

Comparators

INTRODUCTION

This class of circuits is used to convert analog signals into bilevel signals. This is done by comparing an input signal with a reference voltage. Whenever the signal changes from less than the reference to greater than the reference (or vice versa), the output voltage of the comparator abruptly changes state. The character of this change of state is subject to the designer's choice. It can be TTL compatible or ECL compatible or can possess a wide set of limits such as \pm 15 V. Likewise, the input characteristics of the comparator can take on many possible forms. The voltage comparison can take place at zero voltage or any \pm voltage through manipulation of resistor networks.

In this chapter we will provide design information on the eight basic

comparator types:

1. Inverting zero-crossing detector

2. Noninverting zero-crossing detector

- 3. Inverting zero-crossing detector with hysteresis
- 4. Noninverting zero-crossing detector with hysteresis

5. Inverting level detector

- 6. Noninverting level detector
- 7. Inverting level detector with hysteresis

8. Noninverting level detector with hysteresis

The seventh (and eighth) type is the most mature of the list. We will therefore provide a complete design procedure and example for this type only. For the preceding six we will provide the explanation of operation and design equations.

5.1 ZERO-CROSSING DETECTOR

ALTERNATE NAMES Zero-crossing comparator, zero-level detector, Schmitt trigger.

EXPLANATION OF OPERATION We will begin this discussion with the inverting zero-crossing detector. Afterward we will compare these results with the noninverting zero-crossing detector.

Inverting zero-crossing detector A zero-crossing detector determines if an input voltage is greater than zero or less than zero. In response to this deter-

mination, the output voltage can assume only two possible states. The output assumes the positive state if $v_i < 0$ and the negative state if $v_i > 0$. As shown in Fig. 5.1A, the magnitudes of the positive and negative output voltages are determined only by zener diodes Z_1 and Z_2 . If $v_i < 0$, $v_o = V_{z_1}$ and if $v_i > 0$, $v_{o} = -V_{zz}$. Figure 5.1B illustrates the approximate input-output transfer function of the circuit.

Several sources of error in this circuit should be recognized. The errors due to the op amp input currents will be discussed first. These include the input bias current I_b and the input offset current I_{io} . Ideally, the output voltage should switch whenever v_i passes through zero volts. When the output switches, this means that the current direction through the zener diodes is reversing. At this instant the output voltage is passing through zero voltage. When $v_0 = 0$, we must have $i_i = I_b$. We conclude that the

Inverting zero-crossing detector (A) and its transfer function (B).

circuit does not switch until $v_i = i_i R_1 = I_b R_1$. The op amp input bias current therefore causes an error in switching at zero input voltage. This error is minimized by installing an R_p as shown such that $R_p = R_1$. The only error remaining from input bias current will be due to the difference in bias currents into the two op amp inputs—i.e., the input offset current I_{io} . Since $I_{io} \ll I_b$, if we make R_p adjustable (from $\frac{1}{4}R_1$ to $4R_1$), R_p can be set so that switching occurs at zero input voltage.

The op amp input offset voltage V_{io} causes a switching error in v_i equal in magnitude to V_{io} . In the worst case this must be added to the errors caused by I_b and I_{io} . I_{io} and V_{io} can be of either polarity with respect to I_b . Assuming all errors are stacked up in the same direction, the worst-case offset at v_i is $V_{\text{off}} = V_{io} + I_{io}R_1 \text{ if } R_1 = R_p \text{ and } V_{\text{off}} = V_{io} + I_b |(R_1 - R_p)| \text{ if } R_1 \neq R_p. \text{ The null}$ terminals (and R_p) can be utilized to cancel most of V_{off} at room temperature. Since V_{io} , I_b , and I_{io} are time- and temperature-sensitive, V_{off} will assume nonzero values at later times and/or other temperatures. One should realize,

therefore, that the zero-crossing detector can be made to switch when v_i is exactly equal to zero at one temperature only. At a later time and/or temperature, when I_b , V_{io} , and I_{io} have changed, the switching will take place at a voltage slightly different from zero.

Figure 5.2 shows both typical and ideal voltage-transfer functions of an op amp. The fact that these transfer functions differ creates another error source for the zero-crossing detector. The total voltage swing at the op amp output, i.e., $V^{(+)}$ —3 to $V^{(-)}$ +3 (or vice versa), can take place only if the input voltage v_i has changed by more than

$$\Delta v_i({\rm min}) = \frac{V^{(+)} - V^{(-)} - 6}{A_{vo}}$$

where A_{vo} is the (large-signal) dc voltage gain of the op amp. The output-switching time also gets very long as the $\Delta v_i(\min)$ above is approached. The input-voltage change must usually exceed $\Delta v_i(\min)$ by a factor of 10 to 100 in

Fig. 5.2 Typical and ideal voltage-transfer curves for an op amp (from negative input to output).

order to achieve the maximum output-switching speed (i.e., the maximum

slew rate of the op amp).

The basic zero-crossing detector has a major drawback because of a phenomenon called chatter. If the input voltage has noise in the order of $\Delta v_i(\min)$, then as v_i goes through zero volts the output may switch states several times before the final decision is made. This can be avoided only by filtering out the noise, using a lower-gain op amp, or using hysteresis (to be discussed later in this chapter). Hysteresis will also speed up the circuit-switching time. However, the switching speed cannot be made faster then the open-loop slew rate of the op amp.

Noninverting zero-crossing detector This circuit, shown in Fig. 5.3A, merely reverses the use of R_1 and R_p as shown in Fig. 5.1A. The performance of the noninverting circuit is identical to that of the inverting circuit except that

the transfer function (Fig. 5.3B) is rotated about the vertical axis.

Fig. 5.3 Noninverting zero-crossing detector (A) and its transfer function (B).

DESIGN PARAMETERS

Parameter	Description	
A_{ro}	Voltage gain of op amp at dc	
I_b	Input bias current of op amp	
I_{io}	Input offset current of op amp	
R_1	Resistor attached to op amp inverting input	
R_2	Resistor which establishes correct current in Z_1 and Z_2	
R_{id}	Differential input resistance of op amp	
Rin	Input resistance of circuit	
Rout	Output resistance of circuit	
R_{ν}	Resistor used to nullify the effects of I_h	
R_{z_1}	Dynamic resistance of Z ₁	
R_{z_2}	Dynamic resistance of Z ₂	
v_i	Input voltage to circuit	
$\Delta v_i(\min)$	Minimum input-voltage change which may cause a full output change	
$V^{(+)}$	Positive supply voltage	
$V^{(-)}$	Negative supply voltage	
V_{io}	Input offset voltage of op amp	
v_o	Circuit output voltage	
$ {V_{ m off}}$	Error in trip voltage of circuit caused by nonideal op amp input parameters	
V_{z_1}	Breakdown voltage of Z ₁ , plus the forward breakdown voltage of Z ₂	
V_{z_2}	Breakdown voltage of Z ₂ , plus the forward breakdown voltage of Z ₁	

DESIGN EQUATIONS

Eq.	Description	Equation
100.		Equation
1	Output voltage when $v_i < 0$ assuming ideal op amp parameters and square zener characteristics	INVERTING
		$v_o = V_{Z1}$
		NONINVERTING $v_a = -V_{22}$
2	O to the section of the section of	,
2	Output voltage when $v_i > 0$ assuming ideal op amp parameters and square zener characteristics	INVERTING $v_{o} = -V_{Z2}$
		NONINVERTING
		$v_o = V_{Z_1}$
		NOTE: Zener voltages are dependent on their bias current. For this circuit the bias current depends on the size of R_2
3	Maximum offset (from zero) of v_i trip point considering op amp input parameters and $R_1 = R_p$	$V_{ m off} = \pm (V_{io} + I_{io}R_{\scriptscriptstyle 1})$
4	Maximum offset (from zero) of v_i trip point considering op amp input parameters and $R_1 \neq R_p$	$V_{\rm off} = \pm (V_{io} + I_b (R_1 - R_p))$
5	Minimum change in v_i required to provide full-magnitude output change of state	$\Delta v_i(\min) = \frac{V^{(+)} - V^{(-)} - 6}{A_{vo}}$
6	Optimum R_1 source resistance if effects of changes in V_{io} and I_b with temperature are to be minimized	$R_1 = rac{\Delta V_{io}/\Delta T}{\Delta I_b/\Delta T}$
7	Input resistance of circuit	$R_{\rm in} = R_{\scriptscriptstyle 1} + R_{\scriptscriptstyle p} + R_{id}$
8	Output resistance of circuit	$R_{ m out} = R_{ m z_1}$ (positive output) or $R_{ m z_2}$ (negative output)
9	Optimum size for R ₂	The resistance of R_2 is chosen such that the zener diodes are operated at their recommended current levels

5.2 ZERO-CROSSING DETECTOR WITH HYSTERESIS

ALTERNATE NAMES Zero-crossing comparator, zero-level comparator, regenerative comparator, Schmitt trigger, bilevel latch, latching comparator, latching zero-crossing detector.

EXPLANATION OF OPERATION The operator of this circuit is almost identical to that of the basic zero-crossing detector except that hysteresis is now included

Inverting zero-crossing detector with hysteresis Hysteresis is provided by merely adding R_f to the circuit. Since R_f is connected from the op amp output to the noninverting input, it provides a small amount of positive feedback. The effect of this type of positive feedback is best explained by comparing Fig. 5.4B with Fig. 5.1B. Hysteresis causes the Z curve of Fig.

Fig. 5.4 Inverting zero-crossing detector with hysteresis (A) and its transfer function (B).

5.1B to widen out into the boxed Z shape of Fig. 5.4B. If the box width reduces to zero width, i.e., if $R_f = \infty$, the circuit and transfer function become identical to that of Fig. 5.1. Note that v_g vs. v_i always travels clockwise around the box. If v_i is less than zero and becoming more positive, it has to cross zero and rise to $R_pV_{ZI}/(R_p + R_f)$ before the output switches states. The arrows in Fig. 5.4B show that this is the only path by which this change of state can occur. After the transition has taken place, the output cannot return to the positive state unless v_i has a negative noise spike of at least

$$v_i(\text{noise, peak}) = \frac{R_p(V_{Z1} + V_{Z2})}{R_p + R_f}$$

The hysteresis circuit therefore provides noise immunity and prevents the output from chattering between states as v_i passes through zero. The only disadvantage to this circuit is that larger voltage excursions are required to initiate a change of states. The hysteresis also makes a substantial improvement in output-switching speed. The maximum switching speed, however, is equal to the maximum slew rate of the op amp.

Noninverting zero-crossing detector with hysteresis As with the basic zero-cross detector, the noninverting circuit is identical to the inverting circuit except that the transfer function is rotated about the vertical axis.

Fig. 5.5 Noninverting zero-crossing detector with hysteresis (A) and its transfer function (B).

DESIGN PARAMETERS

Parameter	Description	
A_{vo}	Op amp voltage gain at dc	
I_b	Input bias current of op amp	
I_{io}	Input offset current of op amp	
R_1	Resistor for inverting input	
R_2	Resistor to set current level in Z_1 and Z_2	
R_{f}	Feedback resistor to establish hysteresis	
R_{id}	Differential input resistance of op amp	
$R_{\rm in}$	Input resistance of circuit	
$R_{\rm out}$	Output resistance of circuit	
R_p	Part of hysteresis feedback circuit	
R_{z_1}	Dynamic resistance of zener Z ₁	
R_{z_2}	Dynamic resistance of zener Z_2	
ΔV_1	Portion of hysteresis loop caused by V_{z_1}	
ΔV_2	Portion of hysteresis loop caused by V_{z_2}	
v_i	Input voltage to circuit	
$\Delta v_i(\min)$	Minimum input-voltage change which may cause a full output change	
$V^{(+)}$	Positive power-supply voltage	
V ⁽⁻⁾	Negative power-supply voltage	

DESIGN PARAMETERS (Continued)

Parameter	meter Description	
$\overline{\mathrm{V}_{io}}$	Input offset voltage of op amp	
	Output voltage of circuit	
$v_o \ V_{ m off}$	Error in trip voltage due to nonideal op amp input parameters	
V_{z_1}	Breakdown voltage of Z ₁ , plus the forward breakdown voltage of Z ₂	
$egin{array}{c} V_{Z1} \ V_{Z2} \end{array}$	Breakdown voltage of Z ₂ , plus the forward breakdown voltage of Z ₁	

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Value of positive output voltage	$v_o = V_{Z1}$
2	Value of negative output voltage	$v_o = -V_{Z2}$
3	Ideal positive trip point for v_i assuming ideal op amp and square zener characteristics	INVERTING $\Delta V_1 = \frac{R_p V_{Z1}}{R_p + R_f}$
		NONINVERTING $\Delta V_2 = \frac{R_p V_{Z2}}{R_p + R_f}$
4	Ideal negative trip point for v_i assuming ideal op amp and square zener characteristics	INVERTING $\Delta V_2 = -\frac{R_p V_{Z2}}{R_p + R_f}$ NONINVERTING
		$\Delta V_1 = -rac{R_{ ho}V_{Z1}}{R_{ ho}+R_{ ho}}$
5	Maximum error in above trip points considering op amp input parameters and assuming $R_1 = R_p$ and $R_f > R_p$	$V_{ m off} = \pm \left(V_{io} + I_{io}R_{ m i} ight)$
6	Maximum error in above trip points considering op amp input parameters and assuming $R_1 \neq R_p$ and $R_f \gg R_p$	$V_{\mathrm{off}} = \pm \left[V_{io} + I_b \mid (R_1 - R_p) \mid \right]$
7	Minimum change in v_i required to provide full-magnitude output change of state	$\Delta v_i \approx 0$ since positive feedback makes forward gain approach ∞
8	Optimum R_1 (source + input resistor) if effects of V_{io} and I_b over temperature are to be minimized	$R_1 = \frac{\Delta V_{io}/\Delta T}{\Delta I_b/\Delta T}$
9	Input resistance of circuit	INVERTING $R_{ m in} pprox R_{ m i} + R_{ m p} + R_{id}$
		NONINVERTING $R_{ m in} pprox R_p + rac{R_f R_{id}}{R_f + R_{id}}$
10	Output resistance of circuit	$R_{ m out} = R_{Z1} ext{ (positive output)}$ or $= R_{Z2} ext{ (negative output)}$
11	Optimum size for R ₂	R_2 is chosen to provide recommended current through zener diodes

5.3 LEVEL DETECTOR

ALTERNATE NAMES Schmitt trigger, level comparator.

EXPLANATION OF OPERATION The operation of this circuit is similar to that of the zero-crossing detector except that the resistor $(R_1 \text{ or } R_p)$ which is normally grounded is returned to a reference voltage V_R . This change makes the output voltage change states whenever the input voltage passes through V_R rather than zero. V_R can be positive or negative, or it may be a variable which varies according to some system function.

Inverting level detector A level detector determines if an input voltage is greater or less than a reference voltage. In response to this determination, the level-detector output voltage can assume only two possible states. The output assumes the positive state if $v_i < V_R$ and the negative state if $v_i > V_R$. Figure 5.6A shows the inverting level-detector circuit, and Fig. 5.6B indicates several of the possible transfer functions. Note that V_R can be positive (solid line) or negative (dashed line). The two output-voltage levels are determined only by Z_1 and Z_2 .

Errors due to I_b , I_{io} , and V_{io} are similar to those of the zero-crossing detector. They are minimized by making $R_p \approx R_1$. The total output swing is still $V_{Z1} + V_{Z2}$ as before.

This circuit will also tend to chatter at the instant of state changing if v_i has noise larger than

$$v_i(\min) = \frac{V_{Z1} + V_{Z2}}{A_{ro}}$$

Fig. 5.6 Inverting level detector (A) and its transfer function (B).

This chattering can be avoided by noise filtering, reducing A_{vo} (using a different type of op amp), or using hysteresis as shown in the next section.

Noninverting level detector and its transfer function. The output voltage in this circuit assumes the positive state V_{Z1} if $v_i > V_R$ and the negative state $-V_{Z2}$ if $v_i < V_R$. As before, V_R can be positive, negative, or variable. Bias errors are reduced by incorporating R_p . Noise problems are reduced by filtering, lowering A_{v0} , or incorporating hysteresis.

Fig. 5.7 Noninverting level detector (A) and its transfer function (B).

DESIGN PARAMETERS

Parameter	Description
A_{vo}	Op amp voltage gain at de
I_b	Input bias current of op amp
I_{io}	Input offset current of op amp
R_1	Resistor attached to op amp inverting input
R_2	Resistor which establishes correct current in Z_1 and Z_2
R_{id}	Differential input resistance of op amp
$R_{\rm in}$	Input resistance of circuit
R_p	Resistor used to nullify the effects of I_b
R_{Z1}	Dynamic resistance of zener diode Z ₁
R_{Z2}	Dynamic resistance of zener diode Z ₂
v_i	Input voltage to circuit
$\Delta v_i (ext{min})$	Minimum input-voltage change which may cause a full output change
$V^{(+)}$	Positive power-supply voltage

DESIGN PARAMETERS (Continued)

Parameter	Description	
V ⁽⁾	Negative power-supply voltage	
V_{io}	Input offset voltage of op amp	
v_o	Output voltage of circuit	
$ m V_{off}$	Error in trip voltage due to nonideal op amp input parameters	
V_R	Reference voltage used to establish trip point	
V_{z_1}	Breakdown voltage of Z ₁ , plus the forward breakdown voltage of Z ₂	
V_{z_2}	Breakdown voltage of Z_2 , plus the forward breakdown voltage of Z_1	

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Output voltage when $v_i < V_R$, assuming ideal op amp parameters and square zener characteristics	INVERTING $v_o = V_{Z1}$ NONINVERTING $v_o = -V_{Z2}$
2	Output voltage when $v_i > V_R$, assuming ideal op amp parameters and square zener characteristics	INVERTING $v_o = -V_{Z2}$ NONINVERTING $v_o = V_{Z1}$
3	Maximum deviation from V_R of v_i trip point considering op amp input parameters and $R_1 = R_p$	$V_{ m off} = \pm \left(V_{io} + I_{io} R_1 ight)$
4	Maximum deviation from V_R of v_i trip point considering op amp input parameters and $R_1 \neq R_p$	$V_{ ext{off}} = \pm \left[V_{io} + I_b \mid (R_1 - R_p) \mid \right]$
5	Minimum change in v_i required to provide full-magnitude output change of state	$\Delta v_i(\min) = \frac{V_{Z1} + V_{Z2}}{A_{vo}}$
6	Optimum source resistance R_1 if effects of changes in V_{io} and I_b with temperature are to be minimized	$R_1 = rac{\Delta V_{io}/\Delta T}{\Delta I_b/\Delta T}$
7	Input resistance of circuit	$R_{\rm in} = R_1 + R_p + R_{id}$
8	Output resistance of circuit	$R_{ m out} = R_{ m Z1} \; { m (positive \; output)} \ { m or} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;$
9	Optimum size for R ₂	R ₂ is chosen to provide the recommended bias current through the zener diodes

5.4 LEVEL DETECTOR WITH HYSTERESIS

ALTERNATE NAMES Latching comparator, latching Schmitt trigger, latching level detector, regenerative comparator, regenerative level detector.

EXPLANATION OF OPERATION A level detector with hysteresis is the most versatile and useful of the comparator circuits discussed in this chapter. It can be designed to change output states whenever the input voltage passes through any selected reference voltage. The noise immunity can be tailored

to each application by choosing the amount of hysteresis. The absolute voltages of the two output states are selected by using two appropriate zener diodes.

Inverting level detector with hysteresis A level detector determines if an input voltage v_i is above or below a reference voltage V_R . In response to this determination, the output voltage will assume one of two possible states. Referring to Fig. 5.8B, the output-voltage states are $+V_{Z1}$ if $v_i < (V_R R_f - R_p V_{Z2})/(R_p + R_f)$ and $-V_{Z2}$ if $v_i > (V_R R_f + R_p V_{Z1})/(R_p + R_f)$. The actual

Fig. 5.8 Inverting level detector with hysteresis (A) and its transfer function (B).

reference voltage is therefore $V_R R_f/(R_p+R_f)$ instead of V_R . In practice, however, since only small amounts of hysteresis are required, we usually make $R_p \ll R_f$. If $R_f = 100 R_p$, the actual reference voltage is only about 1 percent from V_R .

The hysteresis voltage above V_R is

$$\Delta V_1 = \frac{R_p V_{Z1}}{R_p + R_f}$$

and the hysteresis voltage below V_R is

$$\Delta V_2 = \frac{R_p V_{Z2}}{R_p + R_f}$$

The two trip points are therefore approximately $V_R + \Delta V_1$ and $V_R - \Delta V_2$. Op amp input currents will cause another error in the trip points. Input bias current I_b flowing through R_1 will make v_i differ from the actual voltage at the op amp inverting input v_n . These two voltages will differ by $v_i - v_n = I_b R_1$. If R_1 is made equal to R_f in parallel with R_p , the effects of the bias current into the op amp input terminals will cancel and this error source will be minimized. The difference between the two input currents, i.e., the input offset current I_{io} , will be the only remaining current error. The error caused by I_{io} can be minimized by making R_1 adjustable. Since I_b may be larger in either op amp terminal, R_1 should be adjustable from above to below the value computed above.

The op amp input offset voltage causes another error in the trip point equal in magnitude to the offset voltage. In the worst case this must be added to the offset voltages due to I_b and I_{io} . I_{io} and V_{io} can be of either polarity with respect to I_b . Assuming all errors are stacked up in the same direction, the

worst-case offset at v_i is

$$V_{\text{off}} = V_{io} + I_{io}R_1$$

if $R_1 = R_p$, and

$$V_{\text{off}} = V_{io} + I_b \mid (R_1 - R_p) \mid$$

if $R_1 \neq R_p$. The op amp null terminals and the adjustable R_1 can be utilized to cancel most of $V_{\rm off}$ at room temperature. Since V_{io} , I_b , and I_{io} are all time-and temperature-sensitive, $V_{\rm off}$ will assume nonzero values at later times and/or other temperatures. The level detector will therefore switch when $v_i = V_R + \Delta V_1$ or $v_i = V_R - \Delta V_2$ at only one temperature. At later times and/or temperatures the trip points will differ from these by a small voltage.

Since this circuit has positive feedback, the output changes abruptly whenever the trip points are exceeded. The slew rate will be limited to the maximum slew rate of the op amp with the compensation used. Once the transition between states has taken place, noise will not cause the output to chatter between states as long as the noise in v_i is less than

$$\Delta v_i(\min) = \Delta V_1 + \Delta V_2$$

Noninverting level detector with hysteresis This circuit is similar to the inverting level detector with hysteresis. The resistors R_1 and R_p have been interchanged, which reverses the transfer function (compare Fig. 5.8B with Fig. 5.9B). This also causes the trip voltages to be slightly different, since the positive feedback current is now summed with the input current. In the inverting circuit the positive feedback current was summed with current from the reference voltage V_R .

DESIGN PARAMETERS

Parameter	Description	
$\overline{A_{ro}}$	Op amp voltage gain at de	
I_b	Input bias current of op amp	
I_{io}	Input offset current of op amp	
R_1	Resistor attached to op amp inverting input	
R_2	Resistor which establishes correct current in \mathbb{Z}_1 and \mathbb{Z}_2	
$R_{\rm f}$	Feedback resistor which establishes hysteresis	
R_{id}	Differential input resistance of op amp	
$R_{\rm in}$	Input resistance of circuit	
Rout	Output resistance of circuit	

DESIGN PARAMETERS (Continued)

Parameter	Description	
R_n	Part of hysteresis feedback circuit	
R_{z_1}	Dynamic resistance of zener diode Z ₁	
R_{z_2}	Dynamic resistance of zener diode Z ₂	
ΔV_1	Portion of hysteresis loop caused by V_{z_1}	
ΔV_2	Portion of hysteresis loop caused by V_{z_2}	
v_i	Input voltage to circuit	
$\Delta v_i(ext{min})$	Minimum input-voltage change which may cause a full output-voltage change	
V ⁽⁺⁾	Positive power-supply voltage	
$V^{(-)}$	Negative power-supply voltage	
V_{io}	Input offset voltage of op amp	
V_L	Lower trip voltage	
v_o	Output voltage of circuit	
$ m V_{off}$	Error in trip voltage due to nonideal op amp input parameters	
V_R	Reference voltage used to establish trip voltages	
V_n	Upper trip voltage	
V_{z_1}	Breakdown voltage of Z ₁ , plus the forward breakdown voltage of Z ₂	
V_{z_2}	Breakdown voltage of Z ₂ , plus the forward breakdown voltage of Z ₁	

Fig. 5.9 Noninverting level detector with hysteresis (A) and its transfer function (B).

DESIGN EQUATIONS

	Project Edovitono	
Eq. No.	Description	Equation
1	Value of positive output voltage	$v_o = V_{Z1}$
2	Value of negative output voltage	$v_o = -V_{Z2}$
3	Upper trip voltage for v_i , assuming ideal op amp parameters and square zener characteristics	INVERTING $V_U = \frac{V_R R_f + R_p V_{Z1}}{R_f + R_p}$
4	Lower trip voltage for v_i , assuming ideal	NONINVERTING $V_{U} = rac{V_{R}(R_{p}+R_{f})+R_{p}V_{Z2}}{R_{f}}$ INVERTING
	op amp parameters and square zener characteristics	$V_L = rac{V_R R_f - R_p V_{Z2}}{R_f + R_p}$ $NONINVERTING$ $V_L = rac{V_R (R_p + R_f) - R_p V_{Z1}}{R_f}$
5	Width of hysteresis loop	$\Delta V_1 + \Delta V_2 = \frac{(V_{Z1} + V_{Z2})R_p}{R_p + R_f}$
6	Maximum error in input trip point due to op amp input errors if $R_1 = R_p R_f / (R_p + R_f)$	$V_{ m off} = \pm \left(V_{io} + I_{io} R_1 ight)$
7	Maximum error in input trip point due to op amp input errors if $R_1 \neq R_p R_f / (R_p + R_f)$	$V_{\mathrm{off}} = \pm \left(V_{io} + I_b \mid R_1 - \frac{R_p R_f}{R_p + R_f} \mid \right)$
8	Minimum change in v_i required to provide full-magnitude output change of state	$\Delta v_i \approx 0$ since positive feedback makes forward gain approach ∞
9	Optimum R_1 if effects of V_{io} and I_b over temperature are to be minimized	$R_1 = \frac{\Delta V_{io}/\Delta T}{\Delta I_b/\Delta T}$
10	Input resistance of circuit	$INVERTING \ R_{in} pprox R_1 + R_p + R_{id} \ NONINVERTING \ R_i pprox R_p + rac{R_f R_{id}}{R_f + R_{id}}$
11	Output resistance of circuit	$R_{ m out} = R_{Z1}$ (positive output) or R_{Z2} (negative output)
12	Optimum size relationship between R_1 and R_p (it is best to leave R_1 adjustable)	$R_1 = \frac{R_p R_f}{R_p + R_f}$

DESIGN PROCEDURE

One must first establish which performance requirements are most important before design can proceed. Often, different performance requirements result in conflicts among the various design equations. It is best to write down the performance requirements in a list in order of descending priority. Only in this way can rational trade-offs be performed when conflicts among various design equations take place.

For this design procedure we will assume the descending priority of performance requirements are as follows:

1. The nominal reference voltage $(V_U + V_L)/2$ is specified. Its stability

over a given range of temperatures is to be calculated.

2. The noise level in v_i is specified, which implies a minimum size for the hysteresis loop $(\Delta V_1 + \Delta V_2)$.

3. The two output levels are given.

4. The input resistance is to be chosen for maximum trip-voltage stability.

5. The output resistance is to be calculated.

6. The minimum allowable supply voltages are to be calculated.

DESIGN STEPS FOR INVERTING LEVEL DETECTOR WITH HYSTERESIS

Step 1. Select diodes Z_1 and Z_2 which are approximately 0.6 V below the specified upper and lower output voltages (see Eqs. 1 and 2). Choose R_2 so that the zener diodes operate at the current (and voltages) specified on their data sheets. Make sure the chosen current level is comfortably below the minimum short-circuit output current of the op amp.

Step 2. Compute a nominal value for R_1 using Eq. 9. $R_1 = (\Delta V_{io}/\Delta T)/2$

 $(\Delta I_b/\Delta T)$. Use the same ΔT in both the denominator and numerator.

Step 3. Choose a hysteresis-loop size $V_U - V_L$ which is larger than the peak-to-peak noise in v_i . An R_f which satisfies Eqs. 3, 4, and 12 is found from

$$R_f = \frac{R_1(V_{Z1} + V_{Z2})}{V_U - V_L}$$

Step 4. Compute the following:

$$R_p = \frac{R_1 R_f}{R_f - R_1}$$

Step 5. Using the specified V_R , find the upper trip voltage from Eq. 3:

$$V_{U} = \frac{V_{R}R_{f} + R_{p}V_{Z1}}{R_{f} + R_{p}}$$

Find the lower trip voltage from Eq. 4:

$$V_L = \frac{V_R R_f - R_p V_{Z2}}{R_f + R_p}$$

Verify that $V_U - V_L$ is correct as chosen in step 3.

Step 6. Compute the maximum error in trip voltages V_U and V_L by using Eq. 6:

$$V_{\rm off} = \pm (V_{io} + I_{io}R_1)$$

Step 7. Compute the input resistance of the circuit.

$$V_{\rm in} \approx R_1 + R_p + R_{id}$$

Step 8. Compute the output resistance of the circuit using the dynamic resistances of the zener diodes at their operating points.

$$R_{\text{out}} = R_{Z1}$$
 (positive output) or R_{Z2} (negative output)

DESIGN EXAMPLE An example of an inverting level detector with hysteresis will be described below. The 741 type of op amp will be used, although this device is not recommended for fast level detectors.

Design Requirements

$$\begin{split} &\frac{V_U+V_L}{2} = +4 \text{ V (approximately)} \\ &v_i(\text{noise} < 0.1 \text{ V peak-to-peak} \\ &V_{21} = +10 \text{ V } (\pm 0.5 \text{ V}) \\ &-V_{Z2} = -4 \text{ V } (\pm 0.5 \text{ V}) \end{split}$$

Device Data

741

41

$$V_{io} (+25^{\circ}\text{C}) = 3 \text{ mV max}$$

 $\frac{\Delta V_{io}}{\Delta T} (+25^{\circ}\text{C}) = 15 \mu\text{V/°C}$
 $I_{io} (+25^{\circ}\text{C}) = 30 \text{ nA max}$
 $\frac{\Delta I_b}{\Delta T} (+25^{\circ}\text{C}) = 1.3 \text{ nA/°C}$
 $R_{id}(\text{min}) = 3 \times 10^{5} \Omega$

Minimum short-circuit output current = 10 mA

Zener Diodes

$$V_{Z1}$$
 (1N5240) = 9.4 V at 3 mA (+ 0.6 V forward) V_{Z2} (1N703) = 3.4 V at 5 mA (+ 0.6 V forward) R_{Z1} (at 3 mA) = 10 Ω R_{Z2} (at 5 mA) = 80 Ω

NOTE: The zener voltages do not have to be operated at their "data sheet" test currents. In operation at lower currents, the zener voltage will decrease and the dynamic resistance will increase. Preliminary testing of the zener diodes on a transistor/diode curve tracer will allow the designer to determine the voltage and dynamic resistance at any operating current.

Step 1. Trial-and-error calculation of zener currents and voltages is required, since both zener currents pass through the same resistor R_2 . Assume that ±20 V is used for the op amp supply voltages. If we also assume that 3 V (maximum) is lost in the 741 because of saturation, the op amp output voltage will switch between $\pm 17 \text{ V}$. The current through R_2 will be approximately

$$I_{Z1} = \frac{17V - 10V}{R_2} = \frac{7 \text{ V}}{R_2}$$

during the time the op amp output is +17 V. While the op amp output voltage is -17 V, the current through R_2 will be approximately

$$I_2 = \frac{17V - 4V}{R_2} = \frac{11 \text{ V}}{R_2}$$

The current through R_2 when the output voltage is negative will therefore be ¹¹/₇ larger than that when the output voltage is positive. Consequently, it is recommended that the low-voltage zener be a higher-test-current device than the higher-voltage zener. For Z_2 we will use an IN5240 (10 V at 20 mA but 9.4 V at 3 mA according to the curve tracer). The ratio 5 mA/3 mA = 1.66is reasonably close to the ratio of currents through R_2 ($\frac{11}{7} = 1.57$). If we choose I_1 to be 3 mA,

$$R_2 = \frac{7 \text{ V}}{3 \text{ mA}} = 2,300 \Omega$$

The current I_2 will be approximately

$$I_2 = \frac{11 \text{ V}}{2,300 \Omega} = 4.8 \text{ mA}$$

Step 2

$$R_1 = \frac{\Delta V_{io}/\Delta T}{\Delta I_b/\Delta T} = \frac{15 \ \mu V/^{\circ}C}{1.3 \ \text{nA}/^{\circ}C} = 11,500 \ \Omega$$

Step 3. Since the peak-to-peak noise in v_i is less than 0.1 V, we will make the hysteresis-loop size 0.2 V. Thus we have

$$\begin{split} R_{f} &= \frac{R_{1}(V_{Z1} + V_{Z2})}{V_{U} - V_{L}} \\ &= \frac{11,500(9.4 + 3.4 + 1.2)}{0.2} = 805 \text{ k}\Omega \end{split}$$

Step 4. R_p is found from

$$R_{p} = \frac{R_{1}R_{f}}{R_{f} - R_{1}}$$

$$= \frac{11,500(805,000)}{805,000 - 11,500} = 11,667 \Omega$$

Step 5. The upper trip voltage is

$$\begin{aligned} \mathbf{V}_{U} &= \frac{V_{r}R_{f} + R_{p}V_{Z1}}{R_{f} + R_{p}} \\ &= \frac{4 \times 805,000 + 11,667(9.4 + 0.6)}{805,000 + 11,667} = 4.0857 \, \mathbf{V} \end{aligned}$$

The lower trip voltage is

$$\begin{split} V_L &= \frac{V_R R_f - R_p V_{Z2}}{R_f + R_p} \\ &= \frac{4 \times 805,000 - 11,667(3.4 + 0.6)}{805,000 + 11,667} = 3.8857 \end{split}$$

The actual hysteresis width will be

$$V_U - V_L = 4.0857 - 3.8857 = 0.20 \text{ V}$$

Step 6. The maximum error in the trip voltages V_U and V_L at $\pm 25^{\circ}\mathrm{C}$ will be

$$V_{\rm off} = \pm (V_{io} + I_{io}R_1)$$

= $\pm (3 \times 10^{-3} + 3 \times 10^{-8} \times 11,500) = \pm 6.45 \text{ mV}$

Step 7. The circuit input resistance is

$$R_{\rm in} \approx R_1 + R_p + R_{id}$$

 $\approx 11,500 + 11,667 + 300,000 \approx 323,167 \ \Omega$

Step 8. The circuit output resistance for positive output voltages is $10~\Omega~(R_{\rm Z1})$. For negative output voltages the output resistance is $80~\Omega~(R_{\rm Z2})$.

Converters

INTRODUCTION

This chapter will be confined to two types of converters, analog-to-digital converters and digital-to-analog converters. The analog-to-digital converter is commonly called the A/D converter, or ADC for brevity. The digital-to-analog converter is likewise called the D/A converter or DAC. Since these are rather complex circuits, we will restrict ourselves to one approach for each type.

6.1 DUAL-SLOPE A/D CONVERTER

ALTERNATE NAMES Analog-to-digital converter, ADC, A-D converter, dual-ramp A/D converter.

EXPLANATION OF OPERATION Figure 6.1 shows an ADC designed to operate on positive input voltages. An inverter in front of the v_i terminal is required for negative input voltages. Likewise, the reference voltage $V_{\it R}$ must be negative. Sequencing of the logic is automatic. The digital equivalent of v_i will be repeatedly determined once per cycle. This is the familiar technique used in digital voltmeters. The cycle time may range from seconds down to milliseconds, depending principally on the speed of the op amps.

The following explanation of operation assumes an 8-bit ADC. The design equations, however, are general enough to handle word lengths other than 8.

Fig. 6.1 Simplified analog portion of dual-slope ADC.

This ADC actually has four modes of operation. These modes last for durations of T_1 , T_2 , T_3 , and T_4 s. They are known as:

 T_1 : clear-pulse mode

T₂: Input-voltage integration mode

 T_3 : Reference-voltage integration mode

T₄: Standby mode when automatic zeroing may take place

Briefly, the following events occur during these modes (refer to Figs. 6.1) to 6.3):

 T_1 : This pulse clears the 7493s in preparation for a new cycle. Both S_1

and S_2 are off. FF1 and 2 are set to Q = 1.

 T_2 : S_1 is on and S_2 is off. During this fixed length of time the input voltage v_i is integrated. Comparator A_4 changes state at the beginning of T_2 as v_2 passes through zero.

Fig. 6.2 An 8-bit dual-slope ADC.

 T_3 : S_2 is on and S_1 is off. During this *variable* length of time the negative reference voltage drives the integrator output back toward zero. At the end of T_3 , when v_2 passes through zero, the comparator again changes state.

 T_4 : S_1 and S_2 are both off. This standby time can be used for automatic zeroing. This type of circuitry is quite complex and will not be covered here.

During T_3 an 8-bit counter accumulates pulses from a clock. At the end of T_3 the clock is turned off and the counter contents are transferred to an 8-bit output register. The binary number in this register is proportional to time T_3 .

Assume that v_i is constant during T_2 (this can be done with a sample-and-hold circuit). The integrator output voltage at the end of T_2 is $v_2(t_2) = -v_iT_2/R_1C_1$. During T_3 this voltage is returned to zero using V_R ; so we also have $v_2(t_3) = v_2(t_2) - V_RT_3/R_1C_1$. But $v_2(t_3) = 0$; so the following is true:

$$-\frac{v_iT_2}{R_1C_1} = \frac{V_RT_3}{R_1C_1}$$

$$T_3 = \frac{v_iT_2}{-V_R} \qquad \text{(where V_R is negative)}$$

or

The comparator may change states at some nonzero input voltage. This will not create an error, since the first integration (T_2) is in the opposite direction of the second integration (T_3) and the errors cancel. The error sources which must be considered are the input offset voltage and current of the integrator. These are partially canceled out (at one temperature) with the resistor network shown connected to the noninverting input of A_3 .

Details of circuit operation are rather lengthy, and reference to the timing chart (Fig. 6.3) will be necessary. This type of ADC is automatic in operation

Fig. 6.3 Timing chart for the dual-slope ADC.

and performs one analog-to-digital conversion each $T_1+T_2+T_3+T_4$ s. We assume a starting point for our discussion at the instant T_1 starts. Pulse T_1 sets both flip-flops to Q=1 and clears the eight-stage counter to zero. It is assumed all zeroing and drift compensation is completed prior to T_1 . T_1 is generated by the 555 timer and may have a duration of 1 to 10 ms. The spacing between T_1 pulses should be at least greater than T_2+T_3+ any zeroing time required.

AND 1 and AND 2 prevent the output of FF1 from being used until the end of T_1 . After T_1 is over, AND 1 and AND 3 pass a HIGH v_7 to A_1 which turns on the CMOS gate S_1 . A_3 is then allowed to integrate v_i for a period of time T_2 . As v_2 begins to integrate downward, A_4 switches v_3 to the HIGH state. This signal passes over to AND 4 but cannot pass farther, since v_4 is LOW. Meanwhile, v_7 is allowing NAND 2 to transfer clock pulses to the 8-bit counter. After 256 pulses have been accumulated, the last stage of the counter toggles FF1 through OR 1. This terminates the integration of v_i .

counter toggles FF1 through OR 1. This terminates the integration of v_i . At this time T_2 ends and T_3 starts. S_1 is turned off and S_2 is turned on. This action applies a negative V_R to the integrator, resulting in a v_2 which ramps upward. During this time the eight-stage counter receives pulses through NAND 1, since v_3 , v_4 , and v_5 are all HIGH. When v_2 passes through zero, v_3 and v_5 go LOW, and the counter stops. At this same instant a v_6 pulse is generated which transfers the counter contents to some other registers (such as a pair of 7475s). This 8-bit word will remain in the holding registers until the same time in the next cycle. As the transfer takes place, a trigger is sent over to FF1 to switch v_4 to the LOW state. At the end of T_3 the trailing edge of the v_3 pulse also toggles FF2. This also keeps v_7 at the LOW state. During T_4 both v_4 and v_7 remain LOW. Automatic zeroing can be incorporated during this time to offset any integrator drift which has occurred since the start of T_1 .

DESIGN PARAMETERS

Parameter	Description	
ADC	Analog-to-digital converter	
A_1	Comparator used to drive the CMOS gate S ₁	
A_2	Comparator used to drive the CMOS gate S ₂	
A_3	High-quality op amp connected as an integrator	
A_4	Comparator used to sense the position of v_2	
C_1	Determines integration time	
f_c	Clock frequency	
I_{io}	A_3 input offset current	
N	Number of stages in binary counter	
R_1	Part of integrator time constant	
R_{S1}, R_{S2}	ON resistances of S_1 and S_2	
S_1 to S_2	CMOS switches	
t_o to t_3	Time of different events as shown in Fig. 6.3	
T_1	Time of clearing and presetting mode	
T_2	Time for integration of input voltage (fixed duration)	
T_3	Time to integrate v_2 back to zero (variable duration)	
T_4	Standby mode	
T_c	Time of one clock cycle $(T_c = 1/f_c)$	
v_1 to v_8	Voltage waveforms as shown in Figs. 6.1 to 6.3	
v_i	Input voltage to ADC	
V_{io}	A ₃ input offset voltage	
V_R	Negative reference voltage	

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Integrator output voltage v_2 at the end of T_2	$v_2(t_2) = -\frac{v_i T_2}{R_1 C_1}$
2 ·	Integrator output voltage v_2 at the end of T_3	$v_2(t_3) = v_2(t_2) - \frac{V_R T_3}{R_1 C_1}$
3	Pulse width T_1	$T_1 \approx 0.7 R_{12} C_2$
4	Cycle time $T_1 + T_2 + T_3 + T_4$	$T_1 + T_2 + T_3 + T_4 \approx 0.7(R_{12} + R_{13})C_2$
5	Length of time T_2	$T_2 = 2^N T_c$
6	Length of time T ₃	$T_3 = \frac{-v_i T_2}{V_R}$
7	Optimum $v_{\mathfrak{s}}$ pulse width	$T_5 \approx R_{14}C_3 \ll T_c$
8	Drift of v_2 during $T_2 + T_3$ integration period	$\Delta v_2 = \frac{\pm (T_2 + T_3)[V_{io}(1 + R_1C_1) + R_1I_{io}]}{R_1C_1}$
9	Fractional error in v_i conversion due to ON resistances of S_1 and S_2	$\Delta v_i(\text{max}) = \frac{ R_{s1} - R_{s2} \text{ max}}{R_1}$

DESIGN PROCEDURE

The design of the analog portion of this circuit is straightforward, since it contains only an integrator, three comparators, and two CMOS switches. To simplify this presentation, no error-correction circuits other than the integrator compensation circuit are shown. Many zeroing and compensation circuits are seen in the ADC literature.

The prime trade-offs to be considered are the cycle time vs. speed of devices and the number of output bits vs. offset errors. The dual-slope ADC is normally used in low-speed, high-accuracy systems. In this procedure we will assume, therefore, that the cycle time $T_1 + T_2 + T_3 + T_4$ is fixed. The offset errors are mostly removed by the integrator compensation-resistor network. Higher-accuracy systems would require many more gates and logic than shown here.

DESIGN STEPS

Step 1. Determine R_{12} and C_2 with Eq. 3. The time T_1 is chosen to be 1 to 10 ms, which is much more than adequate to set FF1 and FF2 and clear the counter.

Step 2. After a total cycle time $T_1 + T_2 + T_3 + T_4$ is chosen, R_{13} is computed using Eq. 4. R_{13} can be made adjustable if a variable cycle time is required. The minimum R_{13} , however, is constrained by the maximum T_2 and

 T_3 expected in the following steps.

Step 3. Calculate the time T_2 using Eq. 5. Ascertain that this gives reasonable values for R_1 and C_1 using Eq. 1. This is done as follows: First compute T_2 using N, the number of conversion bits required, and T_c , the period of one clock cycle. Let v_i be the largest expected input voltage and let $|v_2(t_2)|$ be at least 2 V less than $|V^{(-)}|$. The R_1C_1 product resulting from using Eqs. 1 and 5 may be quite large if long integration times are desired. Large values of C_1 may result in capacitor leakage currents approaching the input bias current of A_3 . The zero-adjust circuit will make up for some of this error

at one temperature. Large values of R_1 will cause an equivalent input-voltage offset due to the input bias current. Again, the zero-adjust circuit will probably cancel out much of this error, but caution is still advisable.

Step 4. Use Eq. 6 to determine the required reference voltage V_R . Let

 $T_3 = T_2$ as computed in step 3. Again, use $v_i(max)$ for the calculation.

Step 5. Select resistor ratios R_3/R_4 and R_5/R_6 which will provide at least several times $\pm (V_{io} + I_b R_1)$ at each end of R_7 . Let R_7 be at least ten times $R_4 + R_6$. Set $R_2 = R_1$ so that bias currents into A_3 will have a first-order cancellation. R_7 can be used to trim any remaining offsets.

Step 6. R_8 is chosen to be greater than the manufacturer's recommended

minimum-load resistor for A_3 .

Step 7. R_{14} is selected so that it will sink the input current of OR 1 and the 7475s without producing more than 1 V.

Step 8. The maximum drift in v_2 at the end of the T_2 to T_3 integration period is found from Eq. 8.

EXAMPLE OF AN ADC DESIGN We will numerically illustrate the design procedure by designing a basic 8-bit ADC.

Design Requirements

$$\begin{array}{l} v_i({\rm max}) = +1 \ {\rm V} \\ {\rm V}_R = -1 \ {\rm V} \\ f_c = 1.0 \ {\rm kHz} \ (T_c = 10^{-3} \ {\rm s}) \\ N = 8 \\ {\rm Cycle \ time} = 1 \ {\rm s} \\ T_1 = 10 \ {\rm ms} \\ v_2(t_2) = -3 \ {\rm V} \ {\rm maximum} \\ V^{(\pm)} = \pm \ 5 \ {\rm V} \end{array}$$

Device Data (-55 to +125°C)

$$\left. \begin{array}{l} V_{io} = \pm~5~\text{mV} \\ I_b = 50~\text{nA} \\ I_{io} = \pm~30~\text{nA} \\ R_L(\text{nominal}) = 2{,}000~\Omega \end{array} \right\}~\text{HA2700 op amp}$$

 S_1 to S_2 ON resistance range: 100 to 1,000 Ω

Step 1. We have chosen $T_1 = 10$ ms so

$$R_{12}C_2 = \frac{T_1}{0.7} = \frac{0.01}{0.7} = 0.0143$$

Let us choose a convenient value for C_2 such as 0.1μ F. Thus,

$$R_{12} = \frac{0.0143}{C_2} = \frac{0.0143}{10^{-7}} = 143 \text{ k}\Omega$$

Step 2. The total cycle time is determined principally from R_{13} and C_2 . Since C_2 is already found,

$$\begin{split} R_{13} &= \frac{T_1 + T_2 + T_3 + T_4}{0.7~C_2} - R_{12} \\ &= \frac{1}{0.7~(10^{-7})} - 143,000 = 14~\text{M}\Omega \end{split}$$

Step 3. Using Eq. 5, we get

$$T_2 = 2^N T_c = 2^8 \times 10^{-3} = 256 \text{ ms}$$

From a slight rearrangement of Eq. 1 we get

$$R_1C_1 = \frac{T_2v_i(\max)}{|v_2(\max)|} = \frac{(0.256) \times 1}{|-3|} = 0.0853$$

If we choose $C_1 = 1 \mu F$,

$$R_1 = \frac{0.0853}{C_1} = \frac{0.0853}{10^{-6}} = 85.3 \text{ k}\Omega$$

Step 4. Using Eq. 6 we get

$$V_R = \frac{-v_i T_2}{T_3} = \frac{-v_i T_2}{T_2} = -v_i = -1 \text{ V}$$

Step 5. The maximum input offset over temperature will be

$$\begin{aligned} V_{io}(\text{equivalent}) &= \pm (V_{io} + I_b R_1) = \pm (5 \times 10^{-3} + 5 \times 10^{-8} \times 8.53 \times 10^{4}) \\ &= \pm \ 12 \ \text{mV} \end{aligned}$$

We need to generate at least \pm 12 mV from \pm 2.4-V sources. If a maximum offset adjustment of \pm 20 mV is assumed, we need

$$\frac{R_4}{R_3 + R_4} = \frac{R_6}{R_5 + R_6} = \frac{20 \text{ mV}}{2.4 \text{ V}}$$

This can be satisfied by $R_4=R_6=1{,}000~\Omega$ and $R_3=R_5=120~\mathrm{k}\Omega$. R_7 can be a 20-k Ω potentiometer. First-order cancellation of input offsets is achieved by letting $R_2=R_1=85.3~\mathrm{k}\Omega$.

Step 6. As per the manufacturer's recommendation we choose $R_8 = 2.000 \ \Omega_{\odot}$

Step 7. If OR 1 is a 7432 and the 4-bit registers are 7475s, R_{14} must sink 10 mA while v_6 is in the LOW state. This current must not produce more than 1 V across R_{14} . We therefore require that

$$R_{14} \le 1 \text{ V}/10 \text{ mA} = 100 \Omega$$

We will assume $R_{14} = 100 \Omega$. This will make the transfer pulse width

$$V_6$$
(pulse width) $\approx R_{14}C_3 \approx 100 \times 10^{-7} \approx 10 \ \mu s$

This is a sufficient trigger pulse width for any TTL device.

Step 8. If an active integrator drift-compensation circuit is not used, the maximum error of v_2 at the end of each cycle may be found from Eq. 8:

$$\Delta v_2(\text{max}) = \frac{\pm (T_2 + T_3) \left[V_{io}(1 + R_1 C_1) + R_1 I_{io} \right]}{R_1 C_1}$$

$$= \frac{\pm (2 \times 0.256) \left[5 \times 10^3 (1 + 0.0853) + 85,300 \times 3 \times 10^{-8} \right]}{0.0853}$$

$$= \pm 48 \text{ mV}$$

Voltage v_2 integrates down to -3 V for a maximum v_i of 1 V. Thus, a 48-mV error in v_2 is equivalent to a 48/3 = 16-mV error in the measurement of v_i . This is significantly larger than the basic A/D error caused by converting v_i into 256 discrete digital output numbers (this is called quantization error). The quantization error of an 8-bit ADC operating on a v_i (max) of 1 V is 1 V/256 = 3.9 mV. However, this effective 16-mV error in v_i occurs only in the worst case over the full -55 to $+125^{\circ}$ C temperature range.

REFERENCES

 Goldberg, H. S.: Three-Phase A/D Conversion Has High Accuracy and Low Cost, EDN, Jan. 20, 1973, p. 82.

2. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers – Design and Applications," p. 346, McGraw-Hill Book Company, New York, 1971.

6.2 DIGITAL-TO-ANALOG CONVERTER

ALTERNATE NAMES D/A converter, DAC, unipolar D/A converter.

EXPLANATION OF OPERATION The R-2R ladder method of D/A conversion has the advantage of requiring only two resistance values in the resistor network. Converters which utilize ladders having binary-weighted resistors result in a large spread of required resistor values. For example, a 10-bit D/A converter would require the largest ladder resistor to have 1,024 times the resistance of the lowest resistor. Converter errors may occur with large resistance values because of op amp input bias current. Low resistor values create possible error sources because the resistance of the switch (op amp voltage follower) for each binary bit becomes appreciable in comparison with that of the resistor. The R-2R ladder overcomes both these problems by utilizing mid-range resistors. We will present equations which give the errors caused by resistors (in the ladder network) which are too large or too small.

The operation of this D/A converter is best understood by first assuming that one bit of the input digital word is OFF and all other bits are ON. After v_o is determined for each bit, one at a time, superposition is used to determine v_o for any arbitrary combination of input bits. Suppose first that bit 1, the most significant bit (MSB), is OFF ($v_1 = 0$) and all other bits are ON (v_2 through $v_8 = +5$ V). If G1 is an inverting gate, such as 1/6 of a 74CO4 CMOS hex inverter, then v_9 will be OFF when v_1 is ON. The output of A_1 , v_{10} will also be ON. A CMOS gate driving a voltage follower produces precisely +5.00 V when v_{10} is ON and 0.00 V when v_{10} is OFF. The error is less than 1 mV if selected 74CO4 devices are used. Of course, the +5.00 V supply for these gates must be regulated as shown in Fig. 6.4. The voltage at v_{11} is determined by noting that this type of ladder network has a resistance to ground of exactly 2R when looking left or right of any node. A_1 is driving v_{11} with a 2R source resistance; so the voltage at v_{11} is precisely 5/3 V when $v_{10} = 5.00$ V.

By similar reasoning, if v_2 is OFF and all other inputs are ON, $v_{14} = 5/3$ V. Transferring v_{14} over to v_{11} results in 5/6 V at v_{11} . This is one-half that achieved at v_{11} when v_1 was OFF and all other inputs were ON. Going down the ladder, we find that each bit, by itself, contributes one-half the voltage to v_{11} of the bit to its right. If all inputs are OFF, the voltage at v_{11} is

$$v_{11}(\text{max}) = +\frac{5}{3} + \frac{5}{6} + \frac{5}{12} + \frac{5}{24} + \frac{5}{48} + \frac{5}{96} + \frac{5}{192} + \frac{5}{384} = 3.320 \text{ V}$$

The A_9 circuit has a gain of

$$A_{vc} = 1 + \frac{R_8}{R_7}$$

In practice R_7 is usually twice R_8 , giving $A_{vc}=1.5$. In this case we get $v_o=3.320\times 1.5=4.9536$ V. The full-scale trim pot R_3 can be adjusted so that the output voltage is exactly 5.000 V when all inputs v_1 to v_8 are OFF. The zero trim pot R_5 is set so that $v_o=0.000$ when v_1 to v_8 are all ON. This

Fig. 6.4 A high-precision R-2R D/A converter.

zero trim may not be possible with some types of op amps. In these cases a negative supply voltage (-5 or -10) may be required for A_9 .

The error sources in this circuit are the resistor ladder, input offset drifts of A_9 , and the stability of Z. The feedback network resistors of A_9 , the zero trim pot, and the full-scale trim pot must also be considered. All resistors mentioned above should be of the low-drift metal-film type if 8 bits or more of D/A conversion is required. A_9 should be a low-offset, low-drift op amp. The R and 2R resistors should be kept under $100 \text{ k}\Omega$ so that A_9 bias currents do not develop appreciable errors. Lastly, the reference diode Z should be sufficiently stable for the number of bits chosen in this DAC.

DESIGN PARAMETERS

Parameter	Description	
A_1 to A_8	Voltage followers which provide nearly zero loading of the CMOS gates and drive the resistor network with a nearly zero source resistance	
A_9 A_{10}	Inverting amplifier which provides nearly zero output resistance Voltage follower to provide low-resistance source of +5-V reference Op amp open-loop gain Digital-to-analog converter	
A_v DAC		

DESIGN PARAMETERS (Continued)

Parameter	Description	
G_1 to G_8	CMOS gates (selected for low saturation voltages)	
I_{io}	Input offset current of A_9	
LSB, MSB	Least significant and most significant bit of input digital word	
N	Number of conversion bits	
R	Standard resistance used in precision resistor network. This value is chosen such that a reasonable compromise between the errors calculated in Eqs. 4 and 5 is achieved	
R_o	Output resistance of op amps A_1 to A_8 (closed-loop)	
Rout	Open-loop output resistance of op amps	
v_o	Output voltage of DAC	
v_1 to v_{14}	Voltages as indicated in Fig. 6.4	
V_{io}	Input offset voltage of A ₉	
V_R	Reference voltage	
V_z	Zener breakdown voltage	
Z	Reference diode	

DESIGN EQUATIONS

Eq.	Description	Equation
1	Output voltage as a function of inputs	$v_o = \frac{\bar{v}_1}{2} + \frac{\bar{v}_2}{4} + \dots + \frac{\bar{v}_N}{2^N}$
2	Voltage gain from v_{11} to v_o	$A_{vc} = 1 + \frac{R_8}{R_7}$
3	Output resistance of A_1 to A_8 (closed-loop)	$R_o = rac{R_{ m out}}{1 + A_v}$
4	Worst-case error in v_{10} due to the change in output resistance of A_1 (important if R is low)	$\Delta v_{10}({ m max}) = rac{\Delta R_o({ m max})}{3R}$ NOTE: This implies that $3R$ must be at least 2^N times larger than $\Delta R_o({ m max})$ in order to maintain accuracy
5	Worst-case error in v_o due to changes in V_{io} and I_{io} of A_9 (important if R is high)	$\Delta v_o = \pm \left[\left(1 + rac{R_s}{R_ au} ight) \! V_{io} + R_s I_{io} ight]$
6	Resistor values, R ₁	$R_1 pprox rac{V^{(+)} - V_Z}{I_Z}$
7	$R_{\scriptscriptstyle T}$	$R_T = R_2 + R_3 + R_4 > 10 \ R_1$
8	R_2	$R_2 = \frac{R_T[V_R - 5V_{io}(\text{max})]}{V_Z}$
9	R_3	$R_3 = \frac{10 V_{io} R_T}{V_Z}$
10	R_4	$R_4 = R_T - R_2 - R_3$
11	R_5	$R_5 = 100$ to 1,000 Ω
12	R_6	$R_6 = \frac{R_5 V_R}{10 V_{io}(\text{max})}$
13	R_7	$R_7 = \frac{2RA_{vc}}{3(A_{vc} - 1)}$
14	$R_{ m s}$	$R_8 = R_7 (A_{vc} - 1)$
15	R	$R \gg 2^N R_o$

REFERENCES

- 1. Widlar, R. J.: A Fast Integrated Voltage Follower with Low Input Current, National
- Widiai, R. J.: A Past Integrated Voltage Pollower with Low Input Current, National Semiconductor Application Note AN-5, May 1969.
 Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers Design and Applications," p. 335, McGraw-Hill Book Company, New York, 1971.

Demodulators and Discriminators

INTRODUCTION

Signal-processing circuits are often called upon to extract one type of information from a composite waveform. This process is called demodulation, since it is the inverse to modulation. Traditionally, some demodulator circuits are called discriminators, and these two names are often used interchangeably. We will present design equations for three types of demodulators in this chapter. For AM demodulation we choose the synchronous demodulator, since the standard continuous AM demodulator, or precision rectifier, is presented in Chap. 16. The circuit to be shown for FM demodulation is a precision-type circuit which requires no tuned circuits. Pulse-width demodulation (or discrimination) is the last subject to be covered.

7.1 SYNCHRONOUS AM DEMODULATOR

ALTERNATE NAMES Phase-sensitive demodulator, suppressed-carrier AM demodulator, synchronous-switching demodulator, phase-sensitive detector, lock-in amplifier, synchronous detector.

EXPLANATION OF OPERATION In addition to all the above names given to this circuit, it can also be considered to be a synchronized full-wave rectifier. If the input signal v_i is exactly in phase with the carrier signal v_c , the output will look like a full-wave rectified waveform. As shown in Fig. 7.2, the average value of the full-wave rectified output is the parameter that is maximized. If v_i is 90° out of phase, the average value of the output is zero. Likewise, most random noise will not be synchronous with v_c and will be greatly attenuated in this circuit. Synchronous demodulators are often used in lownoise systems because of this noise-reducing property.

The A_1 stage of Fig. 7.1 is an inverting amplifier with a gain of $-R_2/R_1$. Thus $-v_iR_2/R_1$ appears at the left side of switch S. This signal receives further gain of $-R_7/R_6$ during the time when S is on. Through this route the signal receives a total gain of R_2R_7/R_1R_6 . To this must be added the signal at v_0 coming directly through R_5 with a gain of $-R_7/R_5$. During the time S is on

we have

$$v_o(S \text{ on}) = v_i \left(\frac{R_2 R_7}{R_1 R_6} - \frac{R_7}{R_5} \right)$$

While S is off we have

$$v_o(S \text{ off}) = v_i \left(-\frac{R_7}{R_5}\right)$$

To provide a symmetrical full-wave rectified signal at v_o with minimum ripple (when v_i and v_c are in phase), the gain term R_2R_7/R_1R_6 must be twice the size of R_7/R_5 . Under these conditions the maximum output voltage is

Fig. 7.1 Synchronous AM demodulator.

The dc output voltage as a function of phase angle ϕ between v_i and v_c is (assuming v_i is a sinusoid)

$$v_o(\mathrm{dc}) = 0.637 |v_i(\mathrm{peak})| \frac{R_7}{R_5} \cos \phi$$

The 0.637 constant is the average value of a half sine wave. If v_i is another type of waveform, another appropriate constant will be needed. The A_2 stage is an integrator with dual inputs (through R_5 and R_6). The degree of ripple in v_o can be controlled with C_1 . If this capacitor is not too large, no integrator reset is needed. A compromise between output ripple and drift must sometimes be made. The peak-to-peak output-ripple voltage when v_i and v_c are in phase is

$$v_o(\text{peak-to-peak}) \le \frac{v_i(\text{peak-to-peak})}{2\pi R_5 C_1 f_c}$$

Fig. 7.2 Waveforms at various points in synchronous AM demodulator.

DESIGN PARAMETERS

Parameter	Description		
$\overline{A_{vc}}$	Closed-loop gain of entire circuit		
β	Current gain of Q		
C_1	Capacitor which controls magnitude of ripple in v_o		
$egin{array}{c} eta \ C_1 \ C_2 \ D \end{array}$	Coupling capacitor for v_c		
	Switching diode		
f_c	Chopper (or carrier) frequency into Q		
I_{co}	Collector-base leakage current of Q		
φ	Phase difference between v_i and v_c		
Q	Drive transistor for FET		
R_1, R_2	Gain-determining resistors for A ₁		
R_5, R_6, R_7	Gain-determining resistors for A ₂		
R_3, R_8	Used to null effects of input bias currents in A_1 and A_2		
R_4	Causes the FET source-to-gate voltage to return quickly to zero bias when Q is turned on and D is reverse-biased		
R_9, R_{10}	Resistors used to set proper current levels in Q		
S	FET switch (low ON resistance desirable)		
V_{cc}	Collector supply voltage for Q		
v_c	Chopper (or carrier) input rectangular waveform		
v_i	Input signal to be demodulated		
$v_i(0^\circ)$	Input signal exactly in phase with v_c		
$v_i(90^\circ)$	Input-signal phase leading the phase of v_c by 90°		
v_o	Circuit output signal		
$\vec{V_p}$	FET pinch-off voltage		

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Voltage gain while S is on	$A_{vc} = \frac{v_o}{v_i} = \frac{R_2 R_7}{R_1 R_6} - \frac{R_7}{R_5}$
2	Voltage gain while S is off	$A_{vc} = \frac{v_o}{v_i} = -\frac{R_7}{R_5}$
3	Relationship between gain-determining resistors to provide minimum unfiltered output ripple	$R_2 R_5 = 2 R_1 R_6$
4	Average dc output voltage as a function of phase angle between v_i and v_c (assuming v_i is a sinusoid)	$v_o(\mathrm{dc}) = 0.637 \; v_i(\mathrm{peak}) \; rac{R_7}{R_5} \cos \phi$
5	Peak-to-peak output-ripple voltage when v_i and v_c are in phase	$v_o(\text{peak-to-peak}) \leq \frac{v_i(\text{peak-to-peak})}{2\pi R_5 C_i f_c}$
6	Optimum size of R ₃	$R_3 = \frac{R_1 R_2}{R_1 + R_2}$
7	Optimum size of R ₈	$R_8 = \frac{1}{1/R_5 + 1/R_6 + 1/R_7}$
8	Minimum required V_{cc}	$V_{cc} > v_i(\text{peak}) + V_p + 2$
9	Maximum required V_E	$V_{\it E} < v_i({ m peak}) - 2$
10	Optimum size for R_9	$R_{9} = rac{v_{c}(\mathrm{peak})eta R_{10}}{V_{cc} + V_{E} }$
11	Optimum size for R_{11}	$R_{11} < \frac{1}{10I_{co}(\max)} - R_9$
12	Minimum size for C_2	$C_2 > \frac{3(R_9 + R_{11})}{f_c R_9 R_{11}}$

REFERENCES

1. Bergersen, T. B.: Field Effect Transistors in Chopper and Analog Switching Circuits, Motorola Semiconductor Products, Inc., Application Note AN-220, 1966.

2. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers – Design and Applications," p. 413, McGraw-Hill Book Company, New York, 1971.

3. Lloyd, A. G.: Phase Detector/Modulator Operates from DC to 30 kHz, *Electron. Des.*, June 10, 1971, p. 82.

7.2 FM DEMODULATOR

ALTERNATE NAMES Time-averaging FM demodulator, FM discriminator, FM detector, pulse-counting FM demodulator, frequency meter.

EXPLANATION OF OPERATION An FM demodulator of this type does not require tuned circuits. Thus the circuit will not drift out of tune as it ages. This is very important in applications where unattended operation for long periods of time is mandatory. Basically, the demodulator shown in Fig. 7.3 is composed of four simple circuits discussed in other chapters of this book. First, a zero-crossing detector (see Chap. 5) changes the input signal into rectangular waveforms. This signal, as shown in Fig. 7.4, is differentiated in the second circuit (see Chap. 15). Then the negative (or positive) pulses

from the differentiator are removed with a precision rectifier (see Chap. 16). A simple passive rectifier circuit can be used if dc stability of the demodulator transfer function is not important. Fourth, a low-pass filter (or integrator) produces an output waveform which is equal to the average value of the positive (or negative) pulses. This filter controls the magnitude of ripple present in the output signal. The low-pass filter circuit is easily combined with the precision rectifier by merely installing the capacitor C_4 . If separate low-pass filtering is desired, Chap. 10 should be consulted.

As shown in Fig. 7.3, A_1 is connected as an inverting zero-crossing detector with hysteresis (see Sec. 5.2). The peak-to-peak hysteresis is chosen so that it is at least an order of magnitude larger than the peak-to-peak noise present

Fig. 7.3 A time-averaging FM demodulator.

in V_i . A_1 can be a comparator type of op amp if high speed is important. The slew rate of A_1 over the peak-to-peak limits of v_1 must be substantially faster than the time of one cycle of V_i . Otherwise v_1 will be triangular in shape instead of rectangular.

The design of the A_2 stage should proceed as outlined in Sec. 15.1. R_4 and C_2 are required to guarantee feedback stability. R_6 and C_3 help reduce bias drift and noise problems. C_1 and R_5 determine the actual differentiation properties of this circuit.

The transfer function of the differentiator is

$$\frac{v_2}{v_1} = \frac{R_4 C_1 \exp(-t/R_5 C_2) - R_5 C_2 \exp(-t/R_4 C_1)}{R_4 C_1 - R_5 C_2}$$

Fig. 7.4 Waveforms at various locations in Fig. 7.3.

 C_1 and R_5 must be sized according to the constraints imposed by the following:

$$v_2(\max) = R_5 C_1 \left. \frac{dv_1}{dt} \right|_{\max} = R_5 C_1 S(\max)$$

where

$$\frac{dv_1}{dt}\Big|_{\max} = S(\max) = \text{slew rate of } A_1$$

Also, the time constant C_2R_5 must be approximately

$$R_5C_2 \approx rac{1}{5f_c(ext{min})}$$

where $f_c(\min)$ is the minimum carrier frequency expected. This equality guarantees that each v_2 pulse will return to the baseline before the next pulse occurs. If the tail on each pulse gets too long, the amplitude of v_2 is reduced. This reduces the overall demodulation sensitivity of the circuit. If C_2R_5 is too short, the average rectified signal at v_o will be too small, and again, sensitivity will be reduced.

The last stage of the circuit can be designed for a positive or negative output as shown in Chap. 16. The filter capacitor is chosen such that the carrier frequency f_c ripple is greatly attenuated compared with the FM modulation frequency f_m . According to Chap. 16 we must have

$$\frac{1}{2\pi f_c R_8} \ll C_4 \ll \frac{1}{2\pi f_m R_8}$$

If the modulation is not present, the quiescent output voltage v_o will be

$$v_o(\text{quiescent}) = \frac{0.45 \ v_2(\text{rms})R_8}{R_7}$$

DESIGN PARAMETERS

Parameter	Description
A_1	Op amp for zero-crossing-detector stage
A_2	Op amp for differentiator stage
A_3	Op amp for rectifier-filter stage
C_1	Primary differentiation capacitor
C_2	Provides feedback stability in A ₂
C_3	Provides feedback stability and reduces equivalent input noise of A_2
C_4	Filter capacitor for A ₃
D_1, D_2	Provides precision rectification in conjunction with A_3
f_c	Input carrier frequency
f_m	Modulation frequency
R_1	Protects A_1 from large V_i transients
R_2 , R_3	Establishes hysteresis in zero-crossing detector
R_4	Provides feedback stability in A ₂
R_5	Primary differentiation resistor
R_6	Used to cancel effect of op amp input bias current
R_7, R_8	Establishes gain of rectifier-filter stage
S	Slew rate of A_1
V_i	Input carrier containing FM
$V_n(\text{peak-to-peak})$	Peak-to-peak noise in V_i
v_1	Rectangular waveform produced by A_1
v_2	Differentiated v_1
v_o	Modulation signal extracted from V_i

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Transfer function of differentiation stage	$\frac{v_2}{v_1} = \frac{R_4 C_1 \exp(-t/R_5 C_2) - R_5 C_2 \exp(-t/R_4 C_1)}{R_4 C_1 - R_5 C_2}$
2	Maximum allowable slew rate of input stage	$S(\max) = \frac{v_2(\max)}{R_5 C_1}$
3	Nominal value for time constant of pulse tail	$R_5 C_2 pprox rac{1}{5 f_c(ext{min})}$
4	Range of C_4 so that f_c ripple is minimized and f_m modulation is maximized	$\frac{1}{2\pi f_c R_8} \ll C_4 \ll \frac{1}{2\pi f_m R_8}$
5	Quiescent output voltage with no FM modulation present	$v_o(ext{quiescent}) = rac{0.45 \ v_2(ext{rms}) R_8}{R_7}$
6	Resistor values	$R_1 = \frac{R_2 R_3}{R_2 + R_3}$ $R_2 = 1 \text{ to } 10 \text{ k}\Omega$

Eq. No.	Description	Equation
		$R_3 = R_2 \left[\frac{V_1(\text{max})}{10V_n(\text{peak-to-peak})} - 1 \right]$
		R_4 , R_5 , R_6 : See steps 1 through 9 of Sec. 15.1
		$R_7=2$ to $10~{\rm k}\Omega$ $R_8=10$ to $100~{\rm k}\Omega$ (depends on size of v_o required)
		$R_9 = rac{R_7 R_8}{R_7 + R_8}$
7	Capacitor values	C_1 , C_2 , C_3 : See steps 1 through 9 of Sec. 15.1
		C ₄ : See steps 5 through 7 in Sec. 16.2

REFERENCES

 Whittington, K. R.: Simple F-M Demodulator for Audio Frequencies, Electronics, Nov. 30, 1962, p. 89.

2. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers – Design and Applications," p. 419, McGraw-Hill Book Company, New York, 1971.

7.3 PULSE-WIDTH DISCRIMINATOR

ALTERNATE NAMES Pulse-width demodulator, pulse-width detector, pulse catcher.

EXPLANATION OF OPERATION In communication systems a need often arises to extract pulses of a given width from a line containing a multitude of waveforms. The circuit described here generates an output pulse if and only if a pulse is received which is a specified width \pm some given tolerance. This circuit allows the designer to choose both the pulse width and the tolerance. Referring to Fig. 7.5, this pulse-width demodulator operates as follows:

1. The input pulse is first "squared up" using a level detector with hysteresis. This circuit changes all input waveforms into pulses of uniform amplitude and rejects all noise below a specified threshold. This is further clarified in Fig. 7.6, where pulses of various lengths, amplitude, and noise content are shown.

2. The input pulse, of unknown length T_x , is then applied to an integrator-level detector circuit, and also to one input of a NOR gate.

3. The integrator-level detector will trip if T_x is longer than the required pulse T_p minus a specified tolerance. Thus v_3 will go low if $T_x > T_p - \Delta T_p$.

4. When v_3 goes low, it causes the A_3 single shot to generate a pulse having a width $T_t = 2 \Delta T_p$. This pulse goes to the other input of the NOR gate.

5. If the input pulse T_x ends during the time T_t is present, a pulse will appear at v_5 . If T_x ends before T_t starts or after T_t ends, no pulse will occur at v_5 .

6. The pulse width at v_5 will depend on the width of each T_x pulse and the width of ΔT_p . Another single shot, A_4 , is therefore added so that uniform output pulses are produced.

The first level detector A_1 is designed according to rules outlined in Sec. 5.4. In some applications a zero-crossing detector with hysteresis may be more useful (Sec. 5.2). Section 20.3 provides all the necessary design in-

Fig. 7.5 Pulse-width discriminator for positive-going pulses.

Fig. 7.6 Timing diagram of pulse-width discriminator ($T_p = 1.0$ ms and $T_t = 0.4$ ms is assumed).

formation for the two one-shot circuits. If a positive output pulse T_o is required, an op amp or transistor inverter may follow the A_4 circuit.

The integrator is merely a passive circuit composed of R_5 and C_1 . These should be low-drift (and low-leakage) parts if precision pulse-width discrimination is required. C_1 is discharged through D_1 at the termination of T_x .

Suppose one wants to make the pulse width T_p and tolerance $\pm T_p$ adjustable. R_5 is the best candidate for a $T_p - \Delta T_p$ adjustment. R_{16} is the best choice for a potentiometer to adjust $2\Delta T_p$.

DESIGN PARAMETERS

Parameter	Description	
$\Delta I_{b1}/\Delta T$	Change in input bias current as a function of temperature for A ₁	
$\Delta I_{b2}/\Delta T$	Change in input bias current as a function of temperature for A ₂	
I_{z_1} to I_{z_6}	Optimum zener currents for Z_1 to Z_6	
S_3	Slew rate of A_3	
S_4	Slew rate of A ₄	
T_o	Output pulse width	
T_p	Nominal acceptable input pulse width	
$T_p \pm \Delta T_p$	Range of input pulse widths which cause circuit to generate an output pulse	
T_t	Tolerance of acceptable pulse widths $(T_t = 2\Delta T_p)$	
T_x	Input pulse of unknown width	
v_1 to v_5	Nonlinear waveforms at various points in circuit	
Δv_1	Peak-to-peak hysteresis for first level detector	
Δv_2	Peak-to-peak hysteresis for second level detector	
Δv_5	Change of v_5 as the NOR gate output changes from high to low	
v_i	Input voltage to circuit	
v_o	Output voltage from circuit	
V_{D1}	Forward breakdown voltage of D_1	
V_{DZ2}	Forward breakdown voltage of Z ₂	
V_{L1}	Trip voltage for first level detector	
V_{L2}	Trip voltage for second level detector	
V_{Z1} to V_{Z6}	Optimum zener breakdown voltages of Z_1 to Z_6 . Note that calculations using V_{23} to V_{26} must include the forward breakdown voltage of the other zener in series with them	
$\Delta V_{io1}/\Delta T$	Change of A_1 input offset voltage with temperature	
$\Delta V_{io2}/\Delta T$	Change of A_2 input offset voltage with temperature	
$V^{(+)}$	Positive power-supply voltage	
V ⁽⁻⁾	Negative power-supply voltage	

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Required pulse width minus tolerance	$T_p - \Delta T_p = R_5 C_1 \ln \left(\frac{V_{Z1}}{V_{Z1} - V_{L2}} \right)$
		where $V_{\scriptscriptstyle L2} =$ second-level-detector trip point
2	Pulse width of T_t	$T_t = 2\Delta T_p = 0.8 \ R_{16}C_3$ if $R_{13} = R_{14}$ and $V_{24} > 3 \ V$
3	Output pulse width	$T_o = 0.8 \ R_{23}C_5$ if $R_{19} = R_{20}$ and $V_{Z6} > 3 \ V$

Eq. No.	Description	Equation
4	Pulse width at v_5	$t_3 - t_2 = T_p + \Delta T_p - T_x$ (only if T_x is in the range $T_p \pm \Delta T_p$, otherwise $t_3 - t_2 = 0$)
5	Trip voltage for first level detector	$V_{L1} = \frac{V_A(R_1 + R_2) + R_1 V_{D1}}{R_2}$
6	Peak-to-peak hysteresis for first level detector	$\Delta v_1 = \frac{(V_{Z1} + V_{D1})R_1}{R_1 + R_2}$
7	Trip voltage for second level detector	$V_{L2} = \frac{V_B R_8 + V_{Z2} R_7}{R_7 + R_8}$
8	Peak-to-peak hysteresis for second level detector	$\Delta v_2 = rac{(V_{Z2} + V_{DZ2})R_7}{R_7 + R_8}$
9	Optimum R_3 if effects of V_{io} and I_b (of A_1) over temperature are to be minimized	$R_3 = \frac{\Delta V_{io1}/\Delta T}{\Delta I_{b1}/\Delta T}$
10	Optimum R_6 if effects of V_{ib} and I_b (of A_2) over temperature are to be minimized	$R_6 = rac{\Delta V_{io2}/\Delta T}{\Delta I_{b2}/\Delta T}$
11	Optimum relationship among R_1 , R_2 , and R_3	$R_3 = \frac{R_1 R_2}{R_1 + R_2}$
12	Optimum relationship among R_6 , R_7 , and R_8	$R_6 = \frac{R_7 R_8}{R_7 + R_8}$
13	Optimum resistance of R_4	$R_4 = \frac{V^{(+)} - V_{Z1}}{I_{Z1}}$

DESIGN PROCEDURE

As with any circuit-design task, the designer must first ask: What are the constant and variable parameters in this circuit? We will assume that the constants of this design task are T_p , $\pm \Delta T_p$, the minimum full-width voltage of T_x , the peak-to-peak noise in v_i , and the characteristics of the output pulse. The other parameters will depend on these constants, as shown in Eqs. 1 to 8.

DESIGN STEPS

Step 1. Compute a nominal value for R_3 using Eq. 9.

$$R_3 = \frac{\Delta V_{io1}/\Delta T}{\Delta I_{b1}/\Delta T}$$

Use the same ΔT in both the numerator and denominator. Do not allow R_3 to go above 20 k Ω (bipolar op amps).

Step 2. Choose a highly stable regulator diode for Z_1 . Otherwise, the voltage charging the R_5 - C_1 integrator will vary with temperature and $T_p - \Delta T_p$ will be unstable.

Step 3. Choose a hysteresis width Δv_1 which is 1 to 10 percent of the trip level V_{L1} . At this point Eqs. 6 and 11 can be combined to determine R_1 :

$$R_1 = \frac{R_3(V_{Z1} + V_{D1})}{V_{Z1} - \Delta v_1}$$

Step 4. Use Eq. 11 to calculate

$$R_2 = \frac{R_1 R_3}{R_1 - R_3}$$

Step 5. Equation 5 is now rearranged to determine the required bias voltage V_A :

$$V_A = \frac{R_2 V_{L1} - R_1 V_{D1}}{R_1 + R_2}$$

Step 6. Calculate a resistance for R_4 using Eq. 13 which will drive the optimum current through Z_1 . This current will be found on the Z_1 data sheet. Make sure that $R_4 \ll R_1 + R_2$ so that R_4 will drive the correct current into Z_1 . This inequality should be satisfied by a factor of at least 100.

Step 7. Compute a nominal value for R_6 using Eq. 10:

$$R_6 = \frac{\Delta V_{io2}/\Delta T}{\Delta I_{b2}/\Delta T}$$

Use the same ΔT in numerator and denominator. Keep $R_6 < 20 \text{ k}\Omega$ for bipolar op amps.

Step 8. Z_2 does not need to be a voltage-regulator diode, since A_2 is merely providing a trigger pulse for A_3 . The nominal value for R_9 is calculated as follows:

$$R_9 = \frac{V^{(+)} - V_{Z2}}{I_{Z2}}$$

It is recommended that $V_{z2} \approx V_{z3}$ so that V_3 will adequately trigger the T_t single shot A_3 . As will be shown in step 13, for TTL logic circuits, $V_{z2} \approx 5 \text{ V}$.

Step 9. Choose a hysteresis width Δv_2 which is 1 to 10 percent of the trip level V_{L2} . Equations 8 and 12 are combined to provide a method to find R_7 :

$$R_{7} = \frac{R_{6}(V_{Z2} + V_{DZ2})}{V_{Z2} + V_{DZ2} - \Delta v_{2}}$$

Step 10. Use Eq. 12 to calculate

$$R_8 = \frac{R_6 R_7}{R_7 - R_6}$$

Step 11. Equation 7 is now rearranged to determine the required bias voltage V_B :

$$V_{B} = \frac{V_{L2}(R_{7} + R_{8}) - V_{Z2}R_{7}}{R_{8}}$$

Step 12. Equation 1 is rearranged so that R_5C_1 can be computed:

$$R_5 C_1 = \frac{T_p - \Delta T_p}{\ln \left[V_{Z1} / (V_{Z1} - V_{L2}) \right]}$$

Individual values for R_5 and C_1 are determined using the following ideas:

1. R_5 must not load down the regulated voltage established by Z_1 . Otherwise Eq. 1 will not be true. If possible, let R_5 be 100 or 1,000 times larger than R_4 to overcome this problem.

2. C1 should be a high-quality low-leakage capacitor if stability of

 $T_p - \Delta T_p$ over temperature is required. It is recommended that C_1 not exceed

 $0.1 \mu F$.

Step 13. Choose Z_4 to be compatible with the voltage requirements of the NOR gate. For TTL logic a 4.8- to 5.1-V zener diode should be adequate. R_{17} is chosen to provide the zener current, the current through R_{14} to R_{16} , and the current into the digital device. If the digital device is TTL, it will draw no current when v_4 is high. Thus, if R_{14} and R_{16} are 10 to 100 times larger than R_{17} , their loading effect on V_{23} will not be worth considering. The nominal value for R_{17} is

$$R_{17} = \frac{V^{(+)} - V_{Z4}}{I_{Z4}}$$

Step 14. Find the resistances of R_{13} and R_{14} as follows:

$$R_{13} = R_{14} = \frac{100 V_{Z4}}{I_{Z4}}$$

Step 15. Let $R_{11} = R_{12} = 10 \text{ k}\Omega$ if a bipolar monolithic op amp is used for A_3 . Set $R_{10} = 10R_{13}$.

Step 16. Make sure that

$$\frac{V_{Z3} + V_{Z4}}{2 S_3} < T_t$$

If this inequality is not true, A_3 may be too slow (S_3 too low) for this application.

Step 17. Calculate $C_2 = T_t/R_{10}$. If $R_{10}C_2$ is too small, triggering will not occur. If $R_{10}C_2$ is too large, multiple output pulses will occur for each input pulse.

Step 18. Set $R_{16} = 2 R_{13}$. Compute C_3 as follows:

$$C_3 = \frac{T_t}{0.8 \ R_{16}}$$

Step 19. Choose Z_5 and Z_6 according to the output-pulse requirements of the discriminator. R_{24} is computed as follows:

$$R_{24} = \frac{V^{(+)} - V_{Z6}}{I_{Z6}}$$

Step 20. Determine the resistances of R_{19} and R_{20} from

$$R_{19} = \frac{50\Delta v_5}{I_{Z6}}$$

$$R_{20} = \frac{100V_{Z6}}{I_{Z6}} - R_{19}$$

Step 21. Let $R_{21}=R_{22}=10~{\rm k}\Omega$ if a bipolar monolithic op amp is used for A_4 . Set $R_{18}=10~R_{19}$.

Step 22. Make sure that

$$\frac{V_{Z5} + V_{Z6}}{2 S_4} < T_o$$

If this inequality is not true, A_4 may be too slow (S_4 too low) for this application

Step 23. Calculate $C_4 = T_0/R_{18}$. Multiple triggering or lack of triggering will result unless C_4 is properly sized.

Step 24. Set $R_{23} = 2R_{19}$. Compute C_5 as follows:

$$C_5 = \frac{T_o}{0.8 \ R_{23}}$$

DESIGN EXAMPLE As a numerical illustration we will design a discriminator for extracting 10-ms pulses from a noisy signal. The results of tests on an actual circuit built according to the design steps confirm the validity of this example.

Design Requirements

 $T_p = 10 \text{ ms with } \pm 5\text{-V}$ amplitude and 10-ms spacing between pulses

 T_t : 20 percent of T_p or 2 ms

 $v_i = \pm 5$ -V composite waveform with 1-V noise (peak-to-peak)

 $\dot{V}^{(+)} = +10 \text{ V} \text{ and } V^{(-)} = -10 \text{ V}$

 T_0 : 5 ms, +5.5 V standby, -5.5 V during pulse

Device Data

$$\begin{split} \frac{\Delta V_{io1}}{\Delta T} &= \frac{\Delta V_{io2}}{\Delta T} = 5 \text{ mV } (-55 \text{ to } +125^{\circ}\text{C}) \\ \frac{\Delta I_{b1}}{\Delta T} &= \frac{\Delta I_{b2}}{\Delta T} = 400 \text{ nA } (-55 \text{ to } +125^{\circ}\text{C}) \\ I_{Z1} &= 0.5 \text{ mA } (1\text{N}4566, 6.4 \text{ V}) \\ I_{Z2} &= I_{Z3} = I_{Z4} = I_{Z5} = 5 \text{ mA } (1\text{N}705\text{A}, 4.8 \text{ V}) \\ S_{3} &= S_{4} = 0.5 \text{ V}/\mu\text{s} \end{split}$$

Step 1. Equation 9 produces

$$\begin{split} R_3 &= \frac{\Delta V_{io1}/\Delta T}{\Delta I_{b1}/\Delta T} \\ &= \frac{5\times 10^{-3}}{4\times 10^{-7}} = 12{,}500~\Omega \end{split}$$

Step 2. A 1N4566 reference diode (6.4 V) is chosen for Z_1 . Its temperature coefficient is 0.005%/°C; so it will contribute an error to T_p which can be calculated using Eq. 1.

Step 3. The trip level V_{L1} of the first level detector is chosen to be 3 V. This level is halfway between the peak noise and the peak voltage of the input pulses T_x . The hysteresis width Δv_1 is chosen to be 1 percent of 3 V, or 30 mV. R_1 is now computed:

$$R_1 = \frac{R_3(V_{Z1} + V_{D1})}{V_{Z1} - \Delta v_1} = \frac{(12,500)(6.4 + 0.7)}{6.4 - 0.03} = 13,932 \ \Omega$$

Step 4. Equation 11 now provides us with R_2 :

$$R_2 = \frac{R_1 R_3}{R_1 - R_3} = \frac{(13,932)(12,500)}{13,932 - 12,500} = 121,613 \ \Omega$$

Step 5. The bias voltage V_A is now computed:

$$V_A = \frac{R_2 V_{L1} - R_1 V_{D1}}{R_1 + R_2} = \frac{(121,613)3 - 13,932(0.7)}{13,932 + 121,613} = 2.62 \text{ V}$$

Step 6. The required R_4 is

$$R_4 = \frac{V^{(+)} - V_{Z1}}{I_{Z1}} = \frac{10 - 6.4}{0.5 \times 10^{-3}} = 7,200 \ \Omega$$

 R_4 is 17 times less than $R_2=121{,}613\,\Omega$. This will make I_Z lower than the required 0.5 mA by 0.047 mA. If R_4 is lowered to

$$R_{4} = \frac{V^{(+)} - V_{Z1}}{I_{Z} + V_{Z1}/(R_{1} + R_{2})} = \frac{10 - 6.4}{0.5 \times 10^{-3} + 6.4/(13,932 + 121,613)} = 6,579 \ \Omega$$

then I_{Z1} will remain at 0.5 mA.

Step 7. R_6 is found from Eq. 10:

$$R_6 = \frac{\Delta V_{io2}/\Delta T}{\Delta I_{b0}/\Delta T} = 12,500 \ \Omega$$
 (same as R_3)

Step 8. R_9 is computed as follows:

$$R_9 = \frac{V^{(+)} - V_{Z2}}{I_{Z2}} = \frac{10 - 4.8}{5 \times 10^{-3}} = 1,040 \ \Omega$$

Step 9. Let $V_{L2}=3$ V. This is halfway up the R_5C_1 charging curve which levels off at $v_1(\max)=6.4$ V. If V_{L2} is more than 80 percent of $v_1(\max)$, small variations in R_5 and C_1 will begin to have an appreciable effect on stability. Let $\Delta v_2=0.1$ $V_{L2}=0.1(3)=300$ mV. R_7 is now found from

$$R_7 = \frac{R_6(V_{Z2} + V_{DZ2})}{V_{Z2} + V_{DZ2} - \Delta v_2} = \frac{12,500(4.8 + 0.7)}{4.8 + 0.7 - 0.3} = 13,221 \ \Omega$$

Step 10. Equation 12 produces

$$R_8 = \frac{R_6 R_7}{R_7 - R_6} = \frac{(12,500)(13,221)}{13,221 - 12,500} = 229.2 \text{ k}\Omega$$

Step 11. The bias voltage for the second level detector is

$$V_{B} = \frac{V_{L2}(R_{7} + R_{8}) - V_{Z2}R_{7}}{R_{8}} = \frac{3(13,221 + 229,200) - 4.8(13,221)}{229,200} = 2.90 \text{ V}$$

Step 12. The R_5C_1 product is computed from Eq. 1:

$$R_5C_1 = \frac{T_p - \Delta T_p}{\ln \left[V_{Z1} / (V_{Z1} - V_{L2}) \right]} = \frac{0.01 - 0.001}{\ln \left[6.4 / (6.4 - 3) \right]} = 0.01423$$

As a first approach, let $R_5=100~R_4=100~(6,579)=657,900~\Omega$. The resulting C_1 is

$$C_1 = \frac{0.01423}{R_5} = \frac{0.01423}{657,900} = 0.0216 \ \mu\text{F}$$

If C_1 is readjusted up to a standard value of 0.022 μ F,

$$R_5 = \frac{0.01423}{C_1} = \frac{0.01423}{2.2 \times 10^{-8}} = 646,800 \ \Omega$$

Step 13. \mathbb{Z}_4 is chosen to be compatible with TTL logic. The calculated \mathbb{R}_{17} is

$$R_{17} = \frac{V^{(+)} - V_{Z4}}{I_{Z4}} = \frac{10 - 4.8}{5 \times 10^{-3}} = 1,040 \ \Omega$$

Step 14. The $R_{13} - R_{14}$ voltage divider is computed from

$$R_{13} = R_{14} = \frac{100 \ V_{Z4}}{I_{Z4}} = \frac{100(4.8)}{5 \times 10^{-3}} = 96,000 \ \Omega$$

Step 15. Assuming A_3 is a 741 type of op amp, we can let $R_{11} = R_{12} = 10$ kΩ. We also compute $R_{10} = 10$ $R_{13} = 10(96,000) = 960$ kΩ.

Step 16. Is the A_3 op amp slew rate sufficiently fast? Check the following:

$$\begin{split} \frac{V_{\text{Z3}} + V_{\text{Z4}}}{2 \ S_3} &\stackrel{?}{<} T_t \\ \frac{4.8 + 4.8}{2(0.5 \times 10^6)} &\stackrel{?}{<} 2 \times 10^{-3} \\ 9.6 \times 10^{-6} &< 2 \times 10^{-3} \end{split}$$

The inequality is satisfied.

Step 17. C_2 is found from

$$\begin{split} C_2 = & \frac{T_t}{R_{10}} = \frac{2 \times 10^{-3}}{9.6 \times 10^5} \\ &= 2.08 \times 10^{-9} = 2,080 \text{ pF} \end{split}$$

Step 18. R_{16} and C_3 are determined.

$$\begin{split} R_{16} &= 2~R_{13} = 2(96,000) = 192~\text{k}\Omega \\ C_3 &= \frac{T_t}{0.8~R_{16}} = \frac{2\times 10^{-3}}{0.8(192,000)} = 0.013~\mu\text{F} \end{split}$$

Step 19. R_{25} is found from

$$R_{25} = \frac{V^{(+)} - V_{Z6}}{I_{Z6}} = \frac{10 - (4.8 + 0.7)}{5 \times 10^{-3}} = 900 \ \Omega$$

Step 20. We next compute

$$\begin{split} R_{19} &= \frac{50\Delta V_5}{I_{Z6}} = \frac{50(2)}{5\times 10^{-3}} = 20,000 \ \Omega \\ R_{20} &= \frac{100 V_{Z6}}{I_{Z6}} - R_{19} = \frac{100(5.5)}{0.005} - 20,000 = 90,000 \ \Omega \end{split}$$

Step 21. Assuming A_4 is a 741 op amp, we let $R_{21} = R_{22} = 10$ kΩ. We next compute $R_{18} = 10$ $R_{19} = 10(20,000) = 200$ kΩ.

Step 22. The slew rate of A_4 is checked against the requirement:

$$\begin{split} \frac{V_{\rm Z5} + V_{\rm Z6}}{2~S_4} &\stackrel{?}{<} T_o \\ \frac{5.5 + 5.5}{2(0.5 \times 10^6)} &\stackrel{?}{<} 5 \times 10^{-3} \\ 11 \times 10^{-6} &< 5 \times 10^{-3} \end{split}$$

The inequality is satisfied.

Step 23. The required C_4 is

$$C_4 = \frac{T_o}{R_{18}} = \frac{5 \times 10^{-3}}{200,000} = 0.025 \ \mu\text{F}$$

Step 24. R_{23} and C_5 are the last values to be determined:

$$\begin{split} R_{23} &= 2~R_{19} = 2(20,000) = 40~\text{k}\Omega \\ C_5 &= \frac{T_o}{0.8~R_{23}} = \frac{5\times10^{-3}}{0.8(40,000)} = 0.156~\mu\text{F} \end{split}$$

REFERENCE

 Benson, R. A., Jr., and F. M. Cancillier: Pulse Width Discriminator Uses Unijunction Transistor, Electron. Des., Mar. 1, 1968, p. 96.

Detectors

INTRODUCTION

In this chapter we will discuss two types of detectors. The first circuit, called the peak detector, determines the peak amplitude of a waveform during a given period of time. The second circuit, unrelated to the first, detects the phase difference between two input signals.

8.1 POSITIVE-PEAK DETECTOR

ALTERNATE NAMES Peak holder, peak-signal tracker.

EXPLANATION OF OPERATION The circuitry of a peak detector can be arranged for positive- or negative-peak detection. For each of these cases the output can be made positive or negative. The circuit we have chosen to discuss, in Fig. 8.1, selects positive peaks and produces a negative output.

Peak detectors track the input signal and hold the output at the highest

Fig. 8.1 Positive-peak detector with negative output.

peak found since operation of the reset switch. They continuously compare the input waveform with the stored peak value to determine if the stored value must be updated. This is graphically illustrated in Fig. 8.2. A peak detector may be thought of as a type of sample/hold circuit. It samples and holds the peak value of the largest peak in a given measurement interval. This is extremely useful in applications where widely spaced transients in a system must be measured.

This peak detector is actually a combination of two circuits described in other chapters of this handbook. The circuit of A_1 is similar to the precision rectifier discussed in Chap. 16. However, the feedback resistor R_f and ca-

Fig. 8.2 Input and output waveforms of positive-peak detector.

pacitor C_f of Fig. 16.5 have been replaced by an active feedback network, namely, R_3 , R_4 , R_5 , C_2 , C_3 , and A_2 . The A_2 circuit is merely a fast integrator (see Chap. 15 for the rules of integrator design).

The circuit gain is defined as the ratio of peak output voltage to peak input voltage. In terms of circuit components the gain is

$$A_{vc} = \frac{v_o(\text{peak})}{v_i(\text{peak})} = -\frac{R_3}{R_1}$$

After a peak is stored on C_3 , diode D_2 is reverse-biased for all succeeding lower amplitudes. This actually opens the feedback loop. The A_1 output will then try to saturate with negative v_i . Diode D_1 prevents this by holding the A_1 output near -0.7 V if v_i becomes negative.

This circuit may be unstable with some types of op amps because of the large phase shift around the loop (see Chap. 3). The gain A_{vc} must be critically damped or overdamped to prevent overshoot. An overshoot may be interpreted as a maximum peak, so caution in the feedback design is recommended. C_1 and C_2 are two possible compensation capacitors. Since the size of these capacitors is critically dependent on the types of op amp, an experimental approach is recommended: Start with $C_1 = C_2 = 5 \text{ pF}$ and work up or down from that value while observing the overshoot in V_1 with $v_i = a$ step function.

If the peak must be stored for long periods of time, A_2 should be an FET input op amp. C_3 should also be a low-leakage capacitor. The bias current of A_2 and the leakage current of C_3 will produce a peak-hold error of

$$\Delta v_o = \frac{I \times \text{hold time}}{C_3}$$

where I is the sum of A_2 input bias current and C_3 leakage current.

DESIGN PARAMETERS

Parameter	Description
A_{vc}	Voltage gain of entire circuit until first peak is reached. Afterward this is the ratio of the output voltage to the maximum input peak
C_1, C_2	Compensation capacitors for feedback stability
C_3	Integrating capacitor which holds peak output voltage
D_1	Diode to prevent A_1 negative saturation during negative input voltages
I_b	Input bias current of A ₂
I_c	Leakage current of C ₃
$I_{o2}(\max)$	Maximum output current of A ₂
R_1	Determines gain of circuit along with R_3
R_2	Used to cancel most of the offset caused by input bias current of A_1
R_3	Determines gain of circuit along with R_1
R_4	Determines speed of response of circuit
R_5	Used to cancel most of the integrator error caused by the input bias current of A_2
S_2	Slew rate of A_2
t_r	Approximate speed of response of circuit
ΔT	Sampling time of circuit, i.e., from reset to reset
v_i	Input voltage to circuit
v_1	Output of rectifier circuit
v_o	Value of peak voltage determined during ΔT
Δv_o	Error in v_o due to I_b and I_c

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Voltage gain of circuit (i.e., peak output to peak input)	$A_{vc} = \frac{v_o(\text{peak})}{v_i(\text{peak})} = -\frac{R_3}{R_1}$
2	Approximate risetime of integrator (circuit cannot accurately respond to peaks having risetimes faster than this)	$t_r \approx R_4 C_3$ NOTE: This assumes the slew rate limit S_2 of A_2 is not exceeded $[S_2 = I_{o2}(\max)/C_3]$
3	Optimum value for R_2	$R_2 = \frac{R_1 R_3}{R_1 + R_3}$
4	Optimum value for R_5	$R_5 = R_4$
5	Error in stored peak value of v_o due to I_b and I_c	$\Delta v_o = rac{(I_b + I_c) \ \Delta T}{C_3}$

REFERENCES

1. "Applications Manual for Computing Amplifiers," p. 88, George A. Philbrick Researches, Inc., 1966.

2. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers – Design and Applications," p. 357, McGraw-Hill Book Company, New York, 1971.

8.2 PHASE DETECTOR

ALTERNATE NAMES Phase-difference detector, phase-shift detector, phase-error detector, phase-to-dc converter.

EXPLANATION OF OPERATION Many systems require a measurement of the phase difference between two signals of the same frequency. The circuit shown in Fig. 8.3 will make this measurement accurately even if the input amplitudes are much different. The output v_o will be zero if the phase difference between v_A and v_B is zero. If the phase of v_B leads the phase of v_A , v_o will be positive. The dc output voltage v_o will vary linearly from zero to $+V_{Z2}$ as $\phi_B - \phi_A$ varies from 0 to 180°. Likewise, v_o will vary linearly from zero to $-V_{Z1}$ as $\phi_B - \phi_A$ varies from 0 to -180°. This is shown for several cases in Fig. 8.4.

The circuits of A_1 and A_2 are zero-crossing detectors with hysteresis (see Chap. 5). A_2 is of the inverting type so that v_2 lags v_B by 180°. Because of the high gain of these zero-crossing detectors, v_1 and v_2 are rectangular waveforms.

 C_1 , R_7 and C_2 , R_8 are differentiation networks. D_1 and D_2 select the positive pulses resulting from this differentiation. The pulses from D_1 make the flip-flop circuit A_3 go into the low state such that $v_5 = -V_{Z1}$. (See Chap. 20 for a discussion of flip-flops.) Pulses from D_2 cause the flip-flop to go into

Fig. 8.3 Phase detector utilizing zero-crossing detectors, differentiators, and an op amp flip-flop.

Fig. 8.4 Waveforms at various locations in Fig. 8.3.

the other state so that $v_5 = V_{Z2}$. If v_A is exactly in phase with v_B , the flip-flop will spend equal amounts of time in the high and low states. The voltage at v_0 will therefore be zero.

If the phase of v_B leads the phase of v_A , the flip-flop will spend more time in the high state and v_0 will be positive. Likewise, if the phase of v_B lags that of v_A , v_0 will be negative. The scale factor, i.e., volts/degree, is set only by the choice of V_{Z1} and V_{Z2} . If these are identical diodes, the scale factor is

$$v_o = \frac{(\phi_B - \phi_A) V_{Z1}}{180} \frac{\text{volts}}{\text{degree}}$$

The range of frequencies over which accurate performance can be guaranteed depends on different factors at the low and high ends of the spectrum. At low frequencies the risetimes of v_1 and v_2 may not be fast enough to transfer adequate trigger pulses through the differentiation networks to the flipflop. Also, the output filter R_{15} and C_3 becomes less efficient at low frequencies. These deficiencies result in a v_0 which is noisy or temporarily saturated at $\pm V_{Z1}$.

At high frequencies the slew-rate limits of A_1 and A_2 start to reduce the peak-to-peak amplitude of v_1 and v_2 . This will cause the trigger pulses v_3 and v_4 to diminish in amplitude also until the flip-flop no longer triggers. This must not be allowed to occur, since the flip-flop will again hang up in one state or the other.

DESIGN PARAMETERS

Parameter	Description	
$\overline{A_1, A_2}$	Op amps used as zero-crossing detectors.	Note that A_2 is inverting
C_1, C_2	Differentiation capacitors	
f_c	Frequency of v_A and v_B	

Parameter	Description
$\overline{I_{z_1}, I_{z_2}}$	Nominal current through Z_1 and Z_2
ϕ_A	Phase of v_A (assumed zero)
ϕ_B	Phase of v_B relative to v_A
R_1, R_2	Determines level of hysteresis in A_1
R_3	Prevents input bias current of A_1 from causing a nonzero crossover in A_1 circuit
R_4	Prevents input bias current of A_2 from causing a nonzero crossover in A_2 circuit
R_5, R_6	Determines level of hysteresis in A ₂
R_7, R_8	Differentiation resistors
R_{10}, R_{13}	Determines level of hysteresis in flip-flop
R_{11}, R_{12}	Prevents excessive input currents in A_3
R_{14}	Controls current levels in Z_1 and Z_2
R_{15}	Determines ripple of f_c in v_o
R_{iA}	Input resistance of circuit at v_A input
R_{iB}	Input resistance of circuit at v_B input
R_{i2}	Input resistance of A_2
R_{o1}	Output resistance of A ₁
R_{o2}	Output resistance of A ₂
T_r	Time for output voltage to settle to within 1% of final value
v_A	Reference input signal
$v_{\scriptscriptstyle B}$	Input whose phase is to be determined
$\Delta v_A(\min)$	Peak-to-peak noise immunity of A ₁ circuit
$\Delta v_{B}(\min)$	Peak-to-peak noise immunity of A ₂ circuit
v_o	Output voltage of circuit which is proportional to phase difference between v_A and v_B
V_{z_1}	Zener voltage of Z_1 plus the forward drop of Z_2
V_{z_2}	Zener voltage of Z_2 plus the forward drop of Z_1
$V^{(+)}, V^{(-)}$	Positive and negative power-supply voltages

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Output voltage as a function of the phase difference between v_A and v_B (assuming $V_{Z1} = V_{Z2}$)	$v_o = \frac{(\phi_B - \phi_A) V_{Z1}}{180} \frac{\text{volts}}{\text{degree}}$
2	Maximum allowed time constant of differentiation networks	$R_7 C_1 = R_8 C_2 < \frac{1}{2f_c}$
3	Input resistance at A input	$R_{iA} = R_1 + R_2$
4	Input resistance at B input	$R_{iB} = R_4 + R_{i2}$
5	Peak-to-peak noise immunity (hysteresis) of A_1 circuit	$\Delta v_{A}(\min) = \frac{\left[v_{1}(\max) - v_{1}(\min)\right]R_{1}}{R_{1} + R_{2}}$
6	Peak-to-peak noise immunity (hysteresis) of A_2 circuit	$\Delta v_B(\mathrm{min}) = \frac{\left[v_2(\mathrm{max}) - v_2(\mathrm{min})\right]R_5}{R_5 + R_6}$
7	Optimum sizes for differentiation resistors R_7 and R_8	$5R_{01} < R_7 < 0.1R_9$ and $5R_{02} < R_8 < \frac{0.1(R_{10}R_{13})}{R_{10} + R_{13}}$ NOTE: These resistors must satisfy Eq. 2 also

Eq.	Description	Equation
8	Standby value of v_4	$v_4({ m standby,\ high}) = rac{V_{Z2}R_{10}}{R_{10}+R_{13}}$ when v_5 is high and
		$v_4(\mathrm{standby,\ low}) = \frac{-V_{Z1}(R_8 \parallel R_{10})}{(R_8 \parallel R_{10}) + R_{13}}$ when v_5 is low
9	Required time constant of output network to achieve 1% ripple at $f_c(\min)$	$R_{15}C_3>rac{100}{2\pi f_c(ext{min})}$
10	Optimum size for R ₃	$R_3 = \frac{R_1 R_2}{R_1 + R_2}$
11	Optimum size for R ₄	$R_4 = \frac{R_5 R_6}{R_5 + R_6}$

DESIGN PROCEDURE

Assume the input voltage and its frequency are given. Second, the output-voltage limits for a $\pm 180^{\circ}$ phase difference are specified. The maximum allowable ripple in the output is often of prime importance. We will now indicate a set of recommended design steps assuming the previous requirements are given.

DESIGN STEPS

Step 1. Choose $V^{(+)}$ and $V^{(-)}$ to be compatible with the specified inputand output-voltage levels. A_1 and A_2 may be comparators operated between $V^{(+)}$ and ground, since v_1 and v_2 merely need to be squared-up versions of v_A and v_B .

Step 2. Choose Z_1 (= Z_2) so that Eq. 1 provides the required transfer

function

Step 3. Assume $v_1(\max) = v_2(\max) = V^{(+)} - 3$ V and $v_1(\min) = v_2(\min) = -V^{(-)} + 3$ V. In accordance with Eq. 3, we next choose $R_1 + R_2$ to be equal to the required input resistance R_{iA} at v_A . For symmetry we let $R_5 + R_6 = R_1 + R_2$. Equation 5 is rearranged to compute R_1 :

$$R_1 = \frac{\Delta v_A(\min) R_{iA}}{v_1(\max) - v_1(\min)}$$

 R_2 is then found from $R_2 = R_{iA} - R_1$.

Step 4. Equations 3 and 6 are combined with $R_1 + R_2 = R_{iA} = R_5 + R_6$ to determine R_5 :

$$R_5 = \frac{\Delta v_B(\min) R_{iA}}{v_2(\max) - v_2(\min)}$$

 R_6 is then found from $R_6 = R_{iA} - R_5$.

Step 5. Compute R_3 and R_4 from Eqs. 10 and 11:

$$R_3 = \frac{R_1 R_2}{R_1 + R_2}$$

$$R_5 R_6$$

$$R_4 = \frac{R_5 R_6}{R_5 + R_6}$$

Step 6. Assume the A_1 and A_2 output resistances R_{01} and R_{02} are the maximum values given in their data sheets. This usually occurs at a high frequency near the unity-gain crossover frequency. Set $R_7 = 10R_{01}(\text{max})$ and $R_8 = 10R_{02}$ (max). C_1 and C_2 are now computed with the aid of Eq. 2:

$$C_1 = \frac{1}{2f_c R_7}$$
$$C_2 = \frac{1}{2f_c R_8}$$

Step 7. Let $R_9 = 10R_7$ and $R_{10} = 10R_8$. Resistor R_{13} is computed so that the trigger pulses at v_3 and v_4 are several times larger than the v_4 standby voltage. When v_5 is high, v_4 is computed from Eq. 8 (first part)

$$v_4(\text{standby}) = \frac{+V_{Z2}R_{10}}{R_{10} + R_{13}}$$

Resistor R_{13} must be computed so that $v_1(\max) - v_1(\min)$, the pulse amplitude at v_1 and v_3 , is twice the amplitude of v_4 (standby). This assures us that v₃ will trigger the flip-flop from the high state to the low state. Compute R_{13} from

$$R_{13} = \frac{R_{10}(2V_{Z2} - \upsilon_1(\max) + \upsilon_1(\min))}{\upsilon_1(\max) - \upsilon_1(\min)}$$

Step 8. When v_5 is in the low state, v_4 is also in the low state. However, D_2 is forward-biased in this case, and R_8 and R_{10} appear to be in parallel. As a consequence we have

$$|v_4(\text{standby, low})| < |v_4(\text{standby, high})|$$

Triggering the flip-flop from the low state to the high state will therefore be easier than the triggering from high to low described in step 7. If we have designed the circuit such that $A_1 = A_2$, $R_{01} = R_{02}$, $C_1 = C_2$, $R_7 = R_8$, and $R_9 =$ R_{10} , triggering in both directions will be assured. If these five equalities are not true, v_4 (standby, low) may need to be adjusted using R_8 , R_{10} , or R_{13} . Triggering is assured only if

$$|v_2(\max) - v_2(\min)| \ge |2v_4(\text{standby, low})|$$

Step 9. Resistor R_{14} is now sized so that it provides the correct current through Z_1 and Z_2 . If Z_1 and Z_2 are identical,

$$R_{14} = \frac{V^{(+)} - 3 - V_{Z2}}{I_{Z2}}$$

Step 10. The time constant $R_{15}C_3$ can be selected only after a trade-off analysis is made.

1. $R_{15}C_3$ must be large enough to diminish the f_c ripple in v_o to a reasonably low level.

2. $R_{15}C_3$ must not be too large or v_0 will have a response time which is too slow.

These two statements are summarized in the following opposing requirements:

$$R_{15}C_3 pprox rac{100}{2\pi f_c} \qquad ext{for } pprox 1\% \ f_c ext{ ripple in } v_o$$
 $R_{15}C_3 pprox rac{T_r}{5} \qquad ext{for a } v_o ext{ within } 1\% ext{ of final value in time } T_r$

The output filter is a simple one-stage RC filter. At frequencies above f = $1/2\pi RC$ the filter attenuates by a factor of 10 for each factor of 10 increase in frequency. If we want an attenuation of 100 at f_c , we need $R_{15}C_3 = 100/2\pi f_c$ as stated above.

EXAMPLE OF PHASE-DETECTOR DESIGN We will numerically illustrate the preceding design steps with a 1,000-Hz phase-detector design. Experimental data from an actual circuit have confirmed the validity of the design steps.

Design Requirements

$$R_{iA} = R_{iB} > 5,000 \Omega$$

 $f_c = 1,000 \text{ Hz}$

 $\Delta v_A(\min) = \Delta v_B(\min) = 0.1 \text{ V}$

 $v_A = 10$ -V peak-to-peak sine wave

 $v_B = 10$ -V peak-to-peak sine wave with phase varying from -180 to $+180^\circ$ with respect to v_A

Phase-to-voltage scale factor = 4 V/180°

 $T_r < 1 \, {\rm s}$

Device Data

 $R_{01}(\max) = R_{02}(\max) = 200 \Omega \text{ at } 1 \text{ MHz}$

 $I_{Z_1} pprox 5$ mA to develop 3.3 V using a 1N703A zener diode

Step 1. v_A and v_B have ± 5 -V peak values and v_O has ± 4 -V peaks. We can safely allow $V^{(+)} = 5 \text{ V}$ and $V^{(-)} = -5 \text{ V}$ for A_1 and A_2 . A_3 requires slightly larger power-supply voltages if the full $v_0(\text{max}) = \pm 4 \text{ V}$ is required.

Step 2. If we choose 1N703A zener diodes, we can expect zener voltages of 3.4 V ± 5 percent at $I_z = 5$ mA. We must add the zener forward breakdown voltage of 0.7 V to obtain the actual limits for v_o . The resultant voltage becomes $\pm (3.4 + 0.7) = \pm 4.1$ V. However, these are 5 percent diodes, so the voltage may come in at anything between $\pm (3.23 + 0.7) =$ ± 3.93 and $\pm (3.57 + 0.7) = \pm 4.27$ V. R_{14} can be trimmed as a last step to achieve the required $v_o = \pm 4.0 \text{ V}$.

Step 3. The peak-to-peak square waves at v_1 and v_2 are

$$v_{\rm 1}({\rm peak\text{-}to\text{-}peak}) = v_{\rm 1}({\rm max}) - v_{\rm 1}({\rm min}) = {\rm V^{(+)}} - 3 + {\rm V^{(-)}} - 3 \\ = 5 - 3 + 5 - 3 = 4 {\rm \ V}$$

$$\begin{array}{l} v_2({\rm peak\text{-}to\text{-}peak}) = v_2({\rm max}) - v_2({\rm min}) = V^{(+)} - 3 + V^{(-)} - 3 \\ = 10 - 6 = 4 \ {\rm V} \end{array}$$

If $R_1 + R_2 = R_5 + R_6 = 10 \text{ k}\Omega$, the required minimum input resistance R_{iA} at v_A will be satisfied. At v_B the input resistance R_{iB} is much higher, since R_4 is in series with the op amp input resistance (usually >1 M Ω). R_1 and R_2 are computed from

$$R_1 = \frac{\Delta v_A(\min) R_{iA}}{v_1(\max) - v_1(\min)} = \frac{0.1(10^4)}{4} = 250 \ \Omega$$

$$R_2 = R_{iA} - R_1 = 10,000 - 250 = 9,750 \ \Omega$$

Step 4. R_5 and R_6 are computed:

$$R_5 = \frac{\Delta v_B(\min) R_{iA}}{v_2(\max) - v_2(\min)} = \frac{0.1(10^4)}{4} = 250 \ \Omega$$

$$R_6 = R_{iA} - R_5 = 10,000 - 250 = 9,750 \ \Omega$$

Step 5. R_3 and R_4 are computed:

$$R_3 = \frac{R_1 R_2}{R_1 + R_2} = \frac{250(9,750)}{250 + 9,750} = 244 \Omega$$

$$R_4 = \frac{R_5 R_6}{R_5 + R_6} = \frac{250(9,750)}{250 + 9,750} = 244 \Omega$$

Step 6. The differentiation networks are next designed:

$$\begin{split} R_7 &= 10 R_{O1}(\text{max}) = 10(200) = 2,000 \ \Omega \\ R_8 &= 10 R_{O2}(\text{max}) = 10(200) = 2,000 \ \Omega \\ C_1 &= \frac{1}{2 f_c R_7} = \frac{1}{2(1,000)2,000} = 0.25 \ \mu\text{F} \\ C_2 &= \frac{1}{2 f_c R_8} = \frac{1}{2(1,000)2,000} = 0.25 \ \mu\text{F} \end{split}$$

Step 7. R_9 , R_{10} , and R_{13} are computed:

$$\begin{split} R_9 &= 10R_7 = 10(2,000) = 20 \text{ k}\Omega \\ R_{10} &= 10R_8 = 10(2,000) = 20 \text{ k}\Omega \\ R_{13} &= \frac{R_{10}[2V_{Z2} - v_1(\max) + v_1(\min)]}{v_1(\max) - v_1(\min)} \\ &= \frac{(20,000)(2 \times 4 - 4)}{4} = 20 \text{ k}\Omega \end{split}$$

Step 8. The two inputs have been symmetrical up to this point; so triggering of the flip-flop in both directions is assured.

Step 9. The first-cut size for R_{14} is computed from

$$R_{14} = \frac{V^{(+)} - 3 - V_{Z2}}{I_{Z2}} = \frac{10 - 3 - 4}{0.005} = 600 \ \Omega$$

This resistor could be replaced with a 1-k Ω pot having a title of VOLTS/DEGREE TRIM (range is limited).

Step 10. Suppose we size $R_{15}C_3$ so that $T_r = 0.1$ s. Since the output ripple is not specified, we will be satisfied with whatever the computations tell us. First we solve

$$R_{15}C_3 = \frac{T_r}{5} = \frac{0.1}{5} = 0.02 \text{ s}$$

The corner frequency for this filter is

$$f = \frac{1}{2\pi R_{15}C_3} = \frac{1}{6.28(0.02)} = 7.96 \text{ Hz}$$

Since 1,000 Hz is 125.7 times larger than 7.96 Hz, the ripple at v_o will be 125.7 times less than the ripple at v_s . If we choose $C_3 = 1 \ \mu F$,

$$R_{15} = \frac{T_r}{5C_3} = \frac{0.1}{5 \times 10^{-6}} = 20 \text{ k}\Omega$$

Laboratory verification of the above circuit showed the transfer function to be within 2 percent of that predicted. The offset-adjustment terminals were

found to be quite useful on A_1 and A_2 , since the precise trip level in each stage had a significant effect on the transfer function.

REFERENCE

1. Woodbury, J. R.: Measuring Phase with Transistor Flip-Flops, *Electronics*, Sept. 22, 1961, p. 56.

Differential Amplifiers

INTRODUCTION

The differential-input-single-ended-output amplifier is one of the most versatile circuits available. It is required in innumerable applications where low-level transducer signals must be converted to a higher power level. Often the transducer has a high common-mode voltage (i.e., both sides of the transducer operating at some appreciable voltage off ground). This common-mode voltage must be rejected, and only the differential signal across the transducer must be amplified.

We will present here design equations for the two most popular differential amplifiers using op amps. The first circuit emphasizes simplicity and is the basic type of differential amplifier using a single op amp. It has the drawback of requiring tightly matched resistors to keep the common-mode gain low. The second circuit requires three op amps but results in a high-quality instrumentation amplifier.

9.1 BASIC DIFFERENTIAL AMPLIFIER

ALTERNATE NAMES Differential-input amplifier, low-cost instrumentation amplifier, differential dc amplifier, difference amplifier, error amplifier, data amplifier, transducer amplifier.

EXPLANATION OF OPERATION This circuit is the lowest-cost approach to a differential amplifier. It provides an output voltage which is proportional to the difference of two voltage signals. It is most often used in dc and low-frequency applications. However, frequencies up to several kHz are possible with slightly degraded performance. It also has a fairly low input impedance. For optimum differential-amplifier performance, the three op amp circuit in the following section is recommended.

Differential gain A_d is defined as $A_d = v_o/(v_2 - v_1)$. If this circuit is perfectly balanced (i.e., if $R_3/R_1 = R_4/R_2$), the differential gain is

$$A_d = \frac{v_o}{v_2 - v_1} = \frac{R_3}{R_1} = \frac{R_4}{R_2}$$

The common-mode gain of a differential amplifier is defined as

$$A_c = \frac{2v_o}{v_1 + v_2} = \frac{v_o}{\text{average of input voltages}} = \frac{v_o}{v_{ic}}$$

If the amplifier is perfectly balanced and the op amp has no common-mode gain, the circuit will have no common-mode gain. This is a desirable feature but is difficult to achieve with this basic circuit.

If the circuit is not perfectly balanced and/or the op amp has a finite common-mode gain, the output voltage will be $v_2 - v_1$ times the differential gain plus $(v_2 + v_1)/2$ times the common-mode gain.

Fig. 9.1 Basic differential amplifier.

Op amp data sheets do not specify common-mode gain. Instead, the common-mode rejection ratio (CMRR) is given, where

$$CMRR = \frac{\text{differential gain}}{\text{common-mode gain}} = \frac{A_d}{A_c}$$

If the circuit is perfectly balanced and CMRR $\neq \infty$, the common-mode gain due to the op amp only is

$$A_{co} = \frac{v_o}{v_{ic}} = \frac{R_3^2}{R_1(R_1 + R_3) \times \text{CMRR}}$$

If the op amp $CMRR = \infty$ but the circuit is not perfectly balanced, the common-mode gain due to the circuit unbalance only is

$$A_{cc} = \frac{v_o}{v_{ic}} = \frac{R_4 R_1 - R_2 R_3}{R_1 (R_2 + R_4)}$$

Common-mode rejection (CMR) is often used on data sheets. By convention CMR is given in dB and is defined as

$$CMR = 20 \log |CMRR|$$

The CMR of most op amps is 60 dB or higher.

The circuit output voltage due to A_{co} times v_{ic} is independent of the output voltage due to A_{cc} times v_{ic} . If we consider both common-mode gains simultaneously, the output voltage is

$$v_0 = A_{co} v_{ic} + A_{cc} v_{ic} = v_{ic} (A_{co} + A_{cc})$$

The CMRR for both the circuit and op amp combined becomes

$$ext{CMRR}_c = rac{ ext{differential gain}}{ ext{total common-mode gain}} \ = rac{A_d}{v_o/v_{ic}} = rac{A_d}{A_{co} + A_{cc}}$$

The dc stability of v_o over time and temperature often requires careful attention in differential-amplifier design. Many applications of this circuit are for low-level transducers which require a large dc gain. The offset of v_o (and the drift of this offset) caused by I_b , I_{io} , and V_{io} must be recognized. If $R_3/R_1=R_4/R_2$, the I_b term will cause no problem and the output offset is

$$\Delta V_o = \pm rac{V_{io}(R_1+R_3)}{R_1} \pm I_{io}R_3$$

Methods to reduce this offset (and its drift over time and temperature) are suggested in Chap. 2.

DESIGN PARAMETERS

Parameter	Description
A_c	Common-mode gain of a differential amplifier circuit
A_{cc}	Common-mode gain due to resistor mismatching
A_{co}	Common-mode gain due to finite CMRR of op amp
A_d	Differential voltage gain of circuit
A_{v}	Open-loop gain of op amp (varies with frequency)
A_{vo}	Open-loop dc gain of op amp
CMR	Op amp common-mode rejection = 20 log CMRR
CMRR	Common-mode rejection ratio of op amp. This is defined as the ratio of op amp differential gain to op amp common-mode gain. CMRR varies with frequency
$CMRR_c$	Common-mode rejection ratio of entire circuit after both A_{cc} and A_{co} have been considered
$f_{ m max}$	Maximum frequency at which high-accuracy performance can be achieved
f_{cm}	Frequency at which the minimum op amp CMRR is less than that required
f_{cp}	Frequency at which the circuit gain is down 3 dB from a dc gain of A_d (i.e., first-pole frequency of closed loop)
f_u	Gain crossover frequency of op amp
I_{io}	Input offset current of op amp. This parameter varies with temperature
R_1, R_2, R_3, R_4	Matched set of resistors which determine gain of circuit
R_5	Offset-adjustment potentiometer. The actual connection scheme varies with the type of op amp
R_{inc}	Common-mode input resistance of circuit, i.e., between either v_1 or v_2 and ground
R_{ind}	Differential input resistance of circuit, i.e., between terminals v_1 and v_2
R_o	Op amp output resistance
v_1, v_2, v_o, v_{ic}	Voltages as shown in schematic. These may be dc and/or ac voltages
ΔV_o	Output offset error due to input voltage and current offsets
V_{ic}	Input offset voltage of op amp. This parameter varies with tem-

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Differential gain if $\frac{R_3}{R_1} = \frac{R_4}{R_2}$	$A_d = \frac{v_o}{v_2 - v_1} = \frac{R_3}{R_1} = \frac{R_4}{R_2}$ NOTE: Generator output resistances must be included in R_1 and/or R_2
2	Common-mode gain due to mismatch of $\frac{R_3}{R_1} = \frac{R_4}{R_2}$	$A_{cc} = \frac{v_o}{v_{ic}} = \frac{R_4 R_1 - R_2 R_3}{R_1 (R_2 + R_4)}$
3	Differential gain if $\frac{R_3}{R_1} = \frac{R_4}{R_2}$ $CMRR = \infty$ $A_v \neq \infty$	$A_d = \frac{v_o}{v_2 - v_1} = \frac{A_v R_3}{R_1 A_v + R_3}$
	(use A_{vo} in place of A_v for decomputations)	
4	Common-mode gain if op amp CMRR $\neq \infty$	$A_{co} = \frac{v_o}{v_{ic}} = \frac{R_3^2}{R_1(R_1 + R_3)\text{CMRR}}$
5	Differential input resistance	$R_{ind} = R_1 + R_2$
6	Common-mode input resistance	$R_{inc} = \frac{R_1 + R_2}{2}$
7	Output offset voltage	$\Delta V_o = \pm rac{V_{io}(R_1 + R_3)}{R_1} \pm I_{io}R_3$

DESIGN PROCEDURE

The most common requirements for differential amplifiers, in order of importance, are as follows:

1. A high and stable differential gain A_d over time, temperature, and

frequency

2. Low common-mode gain A_c relative to A_d 3. Low output offset ΔV_o due to I_b , I_{io} , and V_{io}

4. A high input resistance

DESIGN STEPS

Step 1. Is the op amp open-loop gain A_v at least 100 times larger than the required differential gain A_d at all frequencies and temperatures of interest? If no, then A_d may not be stable with temperature and power-supply voltage variations at those frequencies where $A_v < 100 \ A_d$. Call the upper frequency at which this is true $f_{\rm max}$. (See Fig. 9.2.)

Step 2. Set $R_3/R_1 = A_d$ and $R_4/R_2 = A_d$.

Step 3. Set $R_1 = R_2 = R_{ind}/2$.

Step 4. NOTE: R_{inc} will now = R_1 . Step 5. Set $R_3 = A_d R_1$ and $R_4 = A_d R_1$.

Step 6. Is the output voltage offset $\Delta V_o = [V_{io}(R_1 + R_3)/R_1] + I_{io}R_3$ too large? If yes, lower the resistance of resistors R_1 , R_2 , R_3 , and R_4 until ΔV_o (off-

set) is satisfactory. Note, however, that this lowers both the differential- and common-mode input resistances. A compromise must usually be made.

Step 7. Compute the common-mode gain resulting from mismatch of $R_3/R_1 = R_4/R_2$:

$$A_{cc} = \frac{v_o}{v_{ic}} = \frac{R_4 R_1 - R_2 R_3}{R_1 (R_2 + R_4)}$$

Step 8. A curve showing minimum CMRR of the op amp as a function of frequency must be found. However, data sheets usually give only tabular values for minimum and typical dc CMRR. Some data sheets also provide typical CMRR as a function of frequency. If the three pieces of information above are available, a plot of minimum CMRR as a function of frequency can

Fig. 9.2 Curves of CMRR (typical and minimum) as a function of frequency. Curves of A_v (typical and minimum) as a function of frequency. Curve of A_d (typical and minimum) as a function of frequency.

be constructed as shown in Fig. 9.2. This new curve tells us the frequency at which minimum worst-case CMRR begins to degrade circuit performance. This frequency we call f_{cm} . Common-mode errors will get worse above f_{cm} .

This frequency we call f_{cm} . Common-mode errors will get worse above f_{cm} . Step~9. Compute the common-mode gain resulting from the op amp CMRR.

$$A_{co} = \frac{R_3^2}{R_1(R_1 + R_3) \text{CMRR}}$$

If $A_d = 100$ and the minimum op amp CMRR is $60 \text{ dB} (1,000), A_{co} = 9.9 \times 10^{-2}$. This can be reduced by decreasing A_d or using a better op amp.

Step 10. Compute the common-mode rejection ratio of the entire circuit.

$$CMRR_c = \frac{A_d}{A_{cc} + A_{co}}$$

If $A_d = 100$, $A_{cc} = 3.95 \times 10^{-3}$, and $A_{co} = 9.9 \times 10^{-2}$ as computed above, then $CMRR_c = 971 = 59.7 \text{ dB}.$

Step 11. Feedback stability must be examined using the seven causes of op amp instability listed in Chap. 3.

Step 12. If A_{vo} is quite variable owing to temperature changes or powersupply changes, Eq. 3 must be solved for each value of A_{vo} to determine its effect on differential gain. The effect of A_v on A_d at frequencies where A_v is falling at -20 dB/decade must be handled differently. In this region of frequencies, A_v has a 90° phase lag relative to A_d . Equation 3 must be modified to the following:

$$A_d = \frac{A_v R_3}{\sqrt{R_1^2 A_v^2 + R_3^2}}$$

DESIGN EXAMPLE

Design Requirements

 $R_{ind} = 10 \text{ k}\Omega$ $R_{inc} = 5 \text{ k}\Omega$ $A_d = 100$ $\Delta V_a < 0.1 \text{ V}$ $CMRR_c > 60 \text{ dB } (1,000)$

 $f_{\rm max} > 100 \; {\rm Hz}$

Device Data (741 op amp)

 $A_{vo} = 25,000 \text{ if } V^{(\pm)} = \pm 2 \text{ V}$ $A_{vo} = 250,000 \text{ if } V^{(\pm)} = \pm 20 \text{ V}$ CMRR (min) = 70 dB (3.160)

 $V_{i0} (max) = 7.5 \text{ mV } (0 \text{ to } 70^{\circ}\text{C range})$ I_{io} (max) = 300 nA (0 to 70°C range)

 ϕ_m (open-loop) = 80°

Closed-loop bandwidth (normalized to 1 MHz at $+25^{\circ}$ C) = 1.12 at -55° C and 0.8 at +125°C.

Step 1. Start the design process by examining the 741 curve showing open-loop gain as a function of frequency. As shown in Fig. 9.2, a heavy line is drawn along the gain = 100 line until it intersects with the open-loop curve. The frequency of this intersection is f_{cp} . The heavy line then follows the open-loop curve down to below unity gain. The heavy line is the differential gain A_d . Since the heavy line is more than 40 dB below A_v only from dc up to 100 Hz, $f_{\text{max}} = 100$ Hz. This particular differential amplifier will have highly stable A_d only below f_{max} . It will be usable from f_{max} to f_{cp} . However, temperature and power-supply-voltage variations will have a slight effect on its performance. We will compute these variations in step 12 below.

 $R_3/R_1 = R_4/R_2 = 100.$ Step 2.

 $R_1 = R_2 = R_{ind}/2 = 5{,}000 \Omega$ (use 5,110- Ω metal film). Step 3.

 $R_{inc} = R_1 = 5{,}110 \Omega$. This is satisfactory. Step 4.

Step 5. $R_3 = R_4 = A_d R_1 = 511 \text{ k}\Omega \text{ (metal film)}.$

$$\begin{split} Step~6. \quad \Delta V_o &= \frac{V_{io}(R_1+R_3)}{R_1} + I_{io}R_3 \\ &= \frac{(0.0075)(516,110)}{5,110} + (3\times 10^{-7})(5.11\times 10^5) \\ &= 0.7575 + 0.1533 = 0.9108~\mathrm{V,~maximum~worst~case} \end{split}$$

NOTE: With the 741 this offset can be nulled out using the offset terminals. The variations of V_{io} and I_{io} over temperature, however, will create a finite ΔV_o at other temperatures.

Step 7. Assume R_1 , R_4 are both 0.1 percent high and R_2 , R_3 are both 0.1 percent low in resistance.

$$\begin{split} A_{cc} &= \frac{R_4 R_1 - R_2 R_3}{R_1 (R_2 + R_4)} \\ &= \frac{(511,511)(5,115.11) - (5,104.89)(510,489)}{5,115.11(5,104.89 + 511,511)} = 0.00395 \end{split}$$

Step 8. Assume operation of the differential amplifier is only for frequencies below 100 Hz where CMRR is always greater than 70 dB (70 dB = 3,160).

$$Step \ 9. \quad A_{co} = \frac{R_3^2}{R_1(R_1 + R_3) \text{CMRR}}$$

$$= \frac{(511,000)^2}{5,110(5,110 + 511,000)(3,160)} = 0.0313$$

$$Step \ 10. \quad \text{CMRR}_c = \frac{100}{0.00395 + 0.0313} = 2,836.9 = 69.1 \text{ dB}$$

Step 11. The 741 is internally compensated and has an open-loop phase margin of 80°. It is therefore unlikely that instability causes numbered 1, 2,

or 4 will be applicable (see Chap. 3). The other instability causes will be briefly discussed.

3. The 741 has a maximum output resistance R_o of 300 Ω at 1 mHz. We must make sure that capacitive loading does not create a pole near gain cross-over—otherwise the 80° phase margin is reduced. If the pole is at a frequency ten times gain crossover, it will reduce the phase margin only 6°. The load capacitance to do this is

$$C_L(\text{max}) = \frac{1}{2\pi (10f_u)R_o} = \frac{1}{(6.28)(10^7)(300)} = 53 \text{ pF}$$

- 5. The resistance between ground and the noninverting terminal is the parallel combination of 5,110 Ω and 511 k Ω . No problem should be experienced with a resistance this low.
- 6. Careful board layout should be used which minimizes the capacitance between the 741 offset and output terminals.
- 7. In most applications, $0.1-\mu F$ ceramic capacitors from $V^{(+)}$ to ground and $V^{(-)}$ to ground for each four or five op amps is adequate to prevent unwanted feedback.
- Step 12. The changes of dc differential gain resulting from variations of open-loop gain are computed. While one does not expect $V^{(\pm)}$ to vary from ± 2 to ± 20 V, at least this calculation will give an indication of the sensitivity of A_d to power-supply variations.

$$\begin{split} A_d(A_{vo} = 250 \text{ k, dc}) &= \frac{A_{vo}R_3}{R_1A_{vo} + R_3} \\ &= \frac{250,000 \times 511,000}{5,110(250,000) + 510,000} = 99.9596 \\ A_d(A_{vo} = 25 \text{ k, dc}) &= \frac{25,000 \times 511,000}{5,110(25,000) + 510,000} = 99.6016 \end{split}$$

This calculation shows that the differential gain changes only 0.36 percent while the open-loop gain is reduced 90 percent.

At frequencies between f_{op} and f_{cp} the gain variations in A_d must be computed using

$$A_d = \frac{A_v R_3}{\sqrt{R_1^2 A_v^2 + R_3^2}}$$

Assume we want to determine the circuit performance up to 2 kHz. The open-loop variations of A_v at 2 kHz are a little more difficult to obtain from a data sheet. The 741 data sheet states that the closed-loop bandwidth varies from 10 kHz at 25°C to 11.2 kHz at -55°C to 8 kHz at 125°C. Since the open-loop-gain curve is decreasing at 20 dB/decade at these frequencies, the open-loop gain is changing at the same rate as the closed-loop bandwidth. The nominal A_v at 2 kHz is 500. At -55°C, A_v is (1.12)500 = 560 and at 125°C, A_v is (0.8)500 = 400. Substituting these into the above equation,

$$\begin{split} A_d(\text{nominal, 2 kHz}) &= \frac{500 \times 511,000}{\sqrt{5,110^2 \times 500^2 + 511,000^2}} = 98.05783 \\ A_d(-55^{\circ}\text{C, 2 kHz}) &= \frac{560 \times 511,000}{\sqrt{5,110^2 \times 560^2 + 511,000^2}} = 98.442473 \\ A_d(125^{\circ}\text{C, 2 kHz}) &= \frac{400 \times 511,000}{\sqrt{5,110^2 \times 400^2 + 511,000^2}} = 97.014167 \end{split}$$

These calculations show that the 2-kHz differential gain changes by +0.4 or -1 percent over the military temperature range (-55 to +125°C).

REFERENCES

- 1. Cate, Tom: Op Amps or Instrumentation Amplifiers? EEE, August 1970, p. 52.
- Schick, Larry L.: Linear Circuit Applications of Operational Amplifiers, IEEE Spectrum, April 1970, p. 36.
- 3. Barna, A.: "Operational Amplifiers," John Wiley & Sons, Inc., New York, 1971.

9.2 INSTRUMENTATION AMPLIFIER

The basic differential amplifier described in Sec. 9.1 has many limitations. Its input resistance is quite low, whereas differential-amplifier applications often require very high input resistances. High values of differential gain require a large feedback resistor which causes excess dc output offset due to the op amp input offset current. If both high gain and high input resistance are required, the problem is doubly compounded because the input resistor must be very large and the feedback resistor must be much larger than the input resistor. Since it is difficult to match high-megohm resistors, the CMRR due to resistor mismatching will suffer. Clearly, these four parameters (R_{in} , A_d , CMRR_c, and ΔV_o) interact and a reasonable compromise cannot always be achieved with the basic differential amplifier.

The instrumentation-quality differential amplifier described here overcomes some of the above limitations. It does so, however, at the expense of requiring three op amps. With the availability of two, three, or four op amps in a package this is no longer of concern. The major problem in using mul-

tiple packaged op amps is matching the two input op amps. This is often needed to reduce the drift of input offset voltage.

The instrumentation amplifier shown in Fig. 9.3 is essentially the basic differential amplifier of Fig. 9.1 with noninverting amplifiers attached to each input. The output voltages from stages A_1 and A_2 are

$$\begin{split} v_3 &= \left(1 + \frac{R_2}{R_1}\right) v_1 - \frac{R_2}{R_1} v_2 + v_{ic} \\ v_4 &= \left(1 + \frac{R_3}{R_1}\right) v_2 - \frac{R_3}{R_1} v_1 + v_{ic} \end{split}$$

where v_{ic} is the common-mode input voltage $[v_{ic} = (v_1 + v_2)/2]$. If the output stage is perfectly balanced, i.e., if $R_6/R_4 = R_7/R_5$,

$$\upsilon_o = \frac{R_6}{R_4}(\upsilon_4 - \upsilon_3) = \frac{R_6(R_1 + R_2 + R_3)(\upsilon_2 - \upsilon_1)}{R_1R_4}$$

If we let $R_2 = R_3$ and $R_4 = R_5 = R_6 = R_7$,

$$A_d = \frac{v_o}{v_2 - v_1} = 1 + \frac{2R_2}{R_1}$$

The input stages A_1 and A_2 can be designed for high gain without causing excessive dc offset. The output stage A_3 can use small resistors to minimize dc offset.

Fig. 9.3 Instrumentation amplifier using three op amps.

As with the basic differential amplifier, the CMRR of the circuit depends on the CMRR of A_3 and how perfectly $R_6/R_4=R_7/R_5$. A mismatch of R_1 , R_2 , or R_3 merely affects the differential gain $[A_d=v_o/(v_2-v_1)]$ and not the common-mode gain $(A_c=v_o/v_{ic})$. The input impedances of the noninverting inputs are typically greater than $10^{10}~\Omega$ while the impedances driving R_4 and R_5 are nearly zero. The gain of this entire circuit is usually controlled only with adjustments to R_1 .

DESIGN PARAMETERS

Parameter	Description
A_{cc}	Common-mode gain of circuit
A_d	Differential gain of circuit
CMRR	Common-mode rejection ratio of op amp
I_{b1}	Input bias current of A ₁
I_{b2}	Input bias current of A ₂
R_1 to R_3	Resistors which set gain of input stages A_1 and A_2
R_4 to R_7	Resistors which set gain of output stage A_3
v_1	Input voltage to noninverting terminal of A_1
v_2	Input voltage to noninverting terminal of A_2
v_3	Output voltage of A ₁
v_4	Output voltage of A ₂
v_{ic}	Common-mode input voltage to circuit
Vio	Input offset voltages of A_1 and A_2
v_{o}	Output voltage of circuit
ΔV_o	Output offset voltage of circuit

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Differential gain of circuit if $R_6/R_4 = R_7/R_5$	$A_d = \frac{v_o}{v_2 - v_1} = \frac{R_6(R_1 + R_2 + R_3)}{R_1 R_4}$
2	Differential gain of circuit if $R_2 = R_3$ and $R_4 = R_5 = R_6 = R_7$	$A_d = 1 + \frac{2R_2}{R_1}$
3	Common-mode gain if op amp CMRR = ∞ and $R_6/R_4 \neq R_7R_5$	$A_{cc} = rac{v_o}{v_{ic}} = rac{R_7 R_4 - R_5 R_6}{R_4 (R_5 + R_7)}$
4	Common-mode gain if A_3 has finite CMRR and $R_6/R_4 = R_7/R_5$	$A_{co} = \frac{v_o}{v_{ic}} = \frac{R_6^2}{R_4(R_4 + R_6)\text{CMRR}}$
5	Output offset voltage if input offset voltages of A_1 and A_2 are in opposite directions and each with a magnitude of V_{io}	$\Delta V_o = \pm \frac{2 R_6 V_{io} (R_1 + R_2 + R_3)}{R_1 R_4}$
6	Output offset voltage if input bias currents of A_1 and A_2 are I_{b1} and I_{b2}	$v_o = \frac{R_6}{R_4} (R_3 I_{b1} - R_2 I_{b2})$

REFERENCE

1. Tobey, G. E., J. G. Graeme, and Huelsman, L. P.: "Operational Amplifiers - Design and Applications," p. 206, McGraw-Hill Book Company, New York, 1971.

Low-Pass Filters

INTRODUCTION

There is no lack of active low-pass filter circuits in the literature. The circuit designer's task is to determine which of these numerous circuits:

1. Allow a low-pass filter to be designed in a short period of time without going through many difficult equations.

2. Provide a filter with good feedback stability.

3. Will not require a large circuit.

In this chapter we will present two of the most commonly used single op amp low-pass-filter circuits. These are simple circuits utilizing single feedback. The first is a second-order filter which will be described in detail including a design procedure and example. A third-order filter will then be described in approximately the same level of detail. By cascading second-and third-order filters, one may produce filters of almost any order. Procedures for cascaded filter design are given in the references at the end of the chapter.

10.1 SECOND-ORDER LOW-PASS FILTER

ALTERNATE NAMES Unity-gain low-pass filter, active RC low-pass filter, active inductorless low-pass filter.

EXPLANATION OF OPERATION This circuit provides two complex poles with adjustable damping. By proper choice of R_1 , R_2 , C_1 , and C_2 of Fig. 10.1, the

Fig. 10.1 Single-feedback second-order low-pass filter using a unity-gain amplifier.

transfer function can be made to exhibit the range of characteristics shown in Fig. 10.2. The curves of Fig. 10.2 were obtained with an actual circuit using a 741 op amp and a pole frequency f_{cp} of 1,000 Hz. Using the design steps for this circuit (which will be listed later), the following component values were calculated:

Bessel: $R_1=R_2=10{,}800~\Omega$ $C_1=0.0133~\mu{\rm F}$ $C_2=0.01~\mu{\rm F}$ Butterworth: $R_1=R_2=10{,}800~\Omega$ $C_1=0.02~\mu{\rm F}$ $C_2=0.01~\mu{\rm F}$ 3-dB Chebyshev: $R_1=R_2=49{,}400~\Omega$ $C_1=0.01~\mu{\rm F}$ $C_2=1{,}470~\rm{pF}$

Fig. 10.2 Test data of three typical two-pole low-pass filters using the circuit of Fig. 10.1.

The transfer function of Fig. 10.1 is

$$A_{vc} = \frac{V_o}{V_i} = \frac{1}{s^2(C_1C_2R_1R_2) + s[C_2(R_1 + R_2)] + 1}$$

The locations of the two complex poles are

$$s_{1,} \ s_{2} = \frac{-C_{2}(R_{1} + R_{2}) \pm \left[C_{2}^{2}(R_{1} + R_{2})^{2} - 4C_{1}C_{2}R_{1}R_{2}\right]^{1/2}}{2C_{1}C_{2}R_{1}R_{2}}$$

Figure 10.3 shows the pole locations in the s domain for all filters discussed in this section. In this figure the corner frequency has been normalized to $\omega = 1 \text{ rad/s}$.

The damping factor ζ determines the shape of A_{vc} in the frequency region near f_{cp} . Low values of ζ cause the frequency-response curve to have more peaking near the pole frequency. This term is related to the familiar circuit Q by

$$\zeta = \frac{1}{2O}$$

The circuit transfer function can be put in the classical form to help us find ζ :

$$A_{vc} = \frac{1}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

where $\omega_n = 2\pi f_{cp}$ is the natural resonant radian frequency of the circuit. We now can determine ζ to be

$$\zeta = \frac{R_1 + R_2}{2} \left(\frac{C_2}{R_1 R_2 C_1} \right)^{1/2}$$

The formula for ζ gives a value of 0.383 for the Chebyshev filter plotted in Fig. 10.2. Similarly, values of $\zeta = 0.866$ and 0.707 are obtained for these particular Bessel and Butterworth filters, respectively.

Fig. 10.3 Pole locations in s domain of the transfer function of Fig. 10.1.

TABLE 10.1 Unscaled Capacitor Values for Fig. 10.1

Type of two-pole			
low-pass filter	ζ	C", F	C'', F
Bessel	0.8659	0.9066	0.6799
Butterworth	0.7072	1.414	0.7071
Chebyshev (0.1-dB peak)	0.6516	1.638	0.6955
Chebyshev (0.25-dB peak)	0.6179	1.778	0.6789
Chebyshev (0.5-dB peak)	0.5789	1.949	0.6533
Chebyshev (1-dB peak)	0.5228	2.218	0.6061
Chebyshev (2-dB peak)	0.4431	2.672	0.5246
Chebyshev (3-dB peak)	0.3833	3.103	0.4558

DESIGN PARAMETERS

Parameter	Description
$\overline{A_n}$	Op amp voltage gain as a function of frequency
A_{vc}	Voltage gain of circuit as a function of frequency
$C_{.1}, C_{.2}$	Final values for capacitors after both impedance and frequency scaling. Determines f_{cn} and ζ
C_1', C_2'	Intermediate values for C_1 and C_2 after frequency scaling
C_1', C_2'	Unscaled capacitor values from Table 10.1
f_{cp}	Pole (or corner) frequency of circuit
Q	Determines height of peak in frequency response
Ř	Common value of R_1 and R_2 (both = R)
R_1, R_2	Determines f_{en} and ζ
S_A^B	Sensitivity of B to variations in A (applies to all sensitivity functions listed in Design Equations)
V_i	Circuit input voltage
V	Circuit output voltage
ω_n	Natural radian frequency of poles of circuit
ζ	Damping factor

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Transfer function (voltage gain) of circuit	$A_{vc} = \frac{V_o}{V_i} = \frac{1}{s^2 (C_1 C_2 R_1 R_2) + s[C_2 (R_1 + R_2)] + 1}$ or $A_{vc} = \frac{1}{s^2 + 2\zeta \omega_n s + \omega_n^2}$
2	Location of two complex poles of Eq. 1 in s domain	$s_1, \ s_2 = \frac{-C_2(R_1 + R_2) \pm \left[C_2^2(R_1 + R_2)^2 - 4C_1C_2R_1R_2\right]^{1/2}}{2C_1C_2R_1R_2}$
3	Relationship between initial and final capacitor values	$C_1 = rac{C_1''}{2\pi f_{cp}R}$ $C_2 = rac{C_2''}{2\pi f_{cp}R}$
4	Damping factor of circuit	$\zeta = \frac{R_1 + R_2}{2} \left(\frac{C_2}{R_1 R_2 C_1} \right)^{1/2}$ $= \left(\frac{C_2}{C_1} \right)^{1/2} \text{ if } R_1 = R_2$
5	Relationship between circuit Q and damping factor	$Q = \frac{1}{2\zeta}$
6	Relationship between pole frequency and natural radian frequency	$\omega_n = 2\pi f_{cp}$
7	Sensitivity of f_{cp} to variations in R_1 , R_2 , C_1 , or C_2	$S_{R_1}^{\ell_{CP}} = S_{R_2}^{\ell_{CP}} = S_{C_1}^{\ell_{CP}} = S_{C_2}^{\ell_{CP}} = -\frac{1}{2}$

Eq. No.	Description	Equation
8	Sensitivity of ζ to variations in R_1 , R_2 , C_1 , or C_2	NOTES: 1. $S_{R1}^{cp} = -\frac{1}{2}$ means that if R_1 increases in value by 1% , f_{cp} will decrease in frequency by $\frac{1}{2}\%$ 2. After all sensitivities of a given parameter are computed, they are algebraically added to determine the total result $S_{R_1}^* = \frac{1}{2} - \frac{1}{4\pi\zeta f_{cp}R_1C_1}$ $S_{R_3}^* = \frac{1}{2} - \frac{1}{4\pi\zeta f_{cp}R_1C_1}$ $S_{\xi_1}^* = \frac{1}{2} - \left(\frac{1}{R_1} + \frac{1}{R_2}\right) \frac{1}{4\pi\zeta f_{cp}C_1}$ $S_{\xi_2}^* = \frac{1}{2}$
9	Required op amp open- loop gain to assure accuracy	$A_v \gg \frac{C_1}{2C_2}$ at f_{cp} and lower frequencies

DESIGN PROCEDURE

Several approaches are given in the literature for designing this circuit. The one we have chosen to present here (Ref. 1) requires only very simple calculations. Its only disadvantage is that the capacitor values are different, whereas some design approaches result in $C_1 = C_2$.

DESIGN STEPS

Step 1. Choose C_1'' and C_2'' from Table 10.1 according to the type of filter required.

Step 2. Using the required corner frequency f_{cp} , perform the following frequency scaling:

$$C_1' = \frac{C_1''}{2\pi f_{cp}}$$
 $C_2' = \frac{C_2''}{2\pi f_{cp}}$

Step 3. Choose a value $R=R_1=R_2$ which will produce practical sizes for C_1 and C_2 according to

$$C_1 = \frac{C_1'}{R} \qquad C_2 = \frac{C_2'}{R}$$

This procedure is called impedance scaling.

NOTE: The remaining steps are not required unless the designer has time for gaining further insight into error sources, etc.

Step 4. Compute the damping factor ζ using Eq. 4. Compare the result with data in Table 10.1 to verify that the correct filter has been designed.

Step 5. If required, use Eq. 7 to compute the sensitivity of f_{cp} to variations in R_1 , R_2 , C_1 , and C_2 . Likewise, Eq. 8 may be used to determine the sensitivity of ζ to changes in R_1 , R_2 , C_1 , and C_2 .

Step 6. From the op amp data sheet determine A_v at f_{cp} . This value of A_v must satisfy Eq. 9 by at least a factor of 100 in order to keep the actual frequency response (Fig. 10.2) less than 0.2 dB from the ideal frequency response.

EXAMPLE OF SECOND-ORDER LOW-PASS FILTER DESIGN The six design steps will be numerically illustrated through an example. The results of tests on a circuit designed using these steps were previously shown in Fig. 10.2 (3-dB Chebyshev).

Design Requirements

$$f_{cp}=1{,}000~{
m Hz}$$

Peaking $pprox 3~{
m dB}$ (Chebyshev)
Maximum capacitor size $pprox 0.01~\mu{
m F}$

Device Data

$$\begin{split} &A_v(1,000~{\rm Hz}) = 1,000 \\ &\Delta R_1 = 0.018~R_1 \\ &\Delta R_2 = 0.018~R_2 \\ &\Delta C_1 = 0.01~C_1 \\ &\Delta C_2 = 0.01~C_2 \\ \end{split} \right\} (-55~{\rm to}~+125^{\circ}{\rm C})$$

Step 1. From Table 10.1 we obtain $C_1'' = 3.103$ F and $C_2'' = 0.4558$ F. Step 2. Frequency scaling:

$$C_{1}' = \frac{C_{1}''}{2\pi f_{cp}}$$

$$= \frac{3.103}{2\pi \times 1,000} = 4.94 \times 10^{-4}$$

$$C_{2}' = \frac{C_{2}''}{2\pi f_{cp}}$$

$$= \frac{0.4558}{2\pi \times 1.000} = 7.25 \times 10^{-5}$$

Step 3. Since C_1 is always the largest capacitor in this design approach, we scale R so that $C_1 = 0.01 \ \mu\text{F}$.

$$R = \frac{C_1'}{C_1} = \frac{4.94 \times 10^{-4}}{10^{-8}} = 49,400 \ \Omega$$

$$C_2 = \frac{C_2'}{R} = \frac{7.25 \times 10^{-5}}{49.400} = 1,470 \ \text{pF}$$

Also,

Step 4

$$\zeta = \left(\frac{C_2}{C_1}\right)^{1/2} = \left(\frac{1.47 \times 10^{-9}}{10^{-8}}\right)^{1/2} = 0.383$$

Step 5. The sensitivity functions are:

$$S_{R_1}^{f_{Cp}} = S_{R_2}^{f_{Cp}} = S_{C_1}^{f_{Cp}} = S_{C_2}^{f_{Cp}} = -\frac{1}{2}$$

The fractional variations of R_1 and R_2 over temperature are

$$\frac{\Delta R_1}{R_1} = \frac{\Delta R_2}{R_2} = 0.018 \ (-55 \text{ to } +125^{\circ}\text{C})$$

Thus if these resistances increase as temperature increases, f_{cp} will decrease by $^{1}\!/_{2}(0.018)~f_{cp}=9~{\rm Hz}$ as the temperature increases from $-55~{\rm to}~+125^{\circ}{\rm C}$. The fractional variations of C_{1} and C_{2} over temperature are

$$\frac{\Delta C_1}{C_1} = \frac{\Delta C_2}{C_2} = 0.01 \; (-55 \; \text{to} \; +125 ^{\circ}\text{C})$$

If the capacitances increase as temperature increases, f_{cp} will decrease by $^{1}/_{2}(0.01)1,000=5$ Hz as the temperature increases from -55 to $+125^{\circ}$ C. Changes to ζ as temperature varies are

$$\begin{split} S_{R_1}^{\zeta} &= \frac{1}{2} - \frac{1}{4\pi \zeta f_{cp} R_1 C_1} \\ &= \frac{1}{2} - \frac{1}{4\pi (0.383) 1,000 (49,400) 10^{-8}} = 0.0794 \end{split}$$

If $\Delta R_1/R_1$ increases by 0.018 as the temperature increases from -55 to $+125^{\circ}\mathrm{C}$, then ζ will correspondingly increase by 0.0794(0.383)0.018 = 5.5×10^{-4} . It should be realized that the generator driving R_1 has a finite resistance. This resistance (and its variations) must be incorporated into all R_1 calculations.

Continuing the calculations:

$$\begin{split} S_{Rz}^{\zeta} &= \frac{1}{2} - \frac{1}{4\pi\zeta f_{cp}R_2C_1} \\ &= \frac{1}{2} - \frac{1}{4\pi(0.383)1,000(49,400)10^{-8}} = 0.0794 \\ \text{Also,} \qquad S_{C_1}^{\zeta} &= \frac{1}{2} - \left(\frac{1}{R_1} + \frac{1}{R_2}\right) \frac{1}{4\pi\zeta f_{cp}C_1} \\ &= \frac{1}{2} - \left(\frac{1}{49,400} + \frac{1}{49,400}\right) \frac{1}{4\pi(0.383)1,000(10^{-8})} = -0.341 \\ S_{C_2}^{\zeta} &= \frac{1}{2} \end{split}$$

Step 6. We must satisfy

$$A_v \gg \frac{C_1}{2C_2} = \frac{10^{-8}}{2(1.47 \times 10^{-9})} = 3.4$$

at 1,000 Hz. This is assured by more than 100, since $A_v(1,000~{\rm Hz}) \ge 1,000$ in most monolithic op amps.

REFERENCES

- 1. Shepard, R. R.: Active Filters: Part 12-Short Cuts to Network Design, *Electronics*, Aug. 18, 1969, p. 82.
- Al-Nasser, F.: Tables Shorten Design Time for Active Filters, Electronics, Oct. 23, 1972, p. 113.
- 3. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers Design and Applications," p. 296, McGraw-Hill Book Company, New York, 1971.

10.2 THIRD-ORDER LOW-PASS FILTER

ALTERNATE NAMES Unity-gain low-pass filter, active low-pass filter, active inductorless low-pass filter, active *RC* filter.

EXPLANATION OF OPERATION The circuit shown in Fig. 10.4 is nearly identical to the circuit shown in Fig. 10.1 except for the additional RC input stage. These two additional passive parts add a pole on the negative real axis. Compare Fig. 10.3 with Fig. 10.6. The resulting three-pole (third-order) filter rolls off at $-60 \, \mathrm{dB/decade}$ or $-18 \, \mathrm{dB/octave}$ at frequencies above f_{cp} .

Fig. 10.4 Single-feedback third-order low-pass filter using a unity-gain amplifier.

This is shown in Fig. 10.5, where the actual response curves of three circuits with different peaking characteristics are plotted. A 741 op amp was used with a selected pole frequency of 1,000 Hz.

The transfer function of Fig. 10.4 is

$$A_{vc} = \frac{V_o}{V_i} = \frac{1}{s^3 A + s^2 B + sC + 1}$$

where
$$A = C_1C_2C_3R_1R_2R_3$$

 $B = R_3C_2C_3(R_1 + R_2) + C_1C_3R_1(R_2 + R_3)$
 $C = C_1R_1 + C_3(R_1 + R_2 + R_3)$

Fig. 10.5 Measured frequency response of three typical third-order filters using the circuit of Fig. 10.4.

Fig. 10.6 Pole locations in s domain of the transfer function of Fig. 10.4.

The locations of the three poles in the *s* domain are not easily expressed in terms of circuit components. Table 10.2 lists the pole locations for a normalized cutoff frequency of 1 rad/s.

The damping factor ζ is not defined for third-order systems. However, the peaking of the frequency plot can be controlled by choosing appropriate capacitance values in Table 10.3.

TABLE 10.2 Pole Locations in s Domain for the Single-Feedback Third-Order Low-Pass Filter

Type of three-pole	Location of	Location of two
low-pass filter	real pole	complex poles
Bessel	-0.942	$-0.746 \pm j \ 0.711$
Butterworth	-1.000	$-0.500 \pm j \ 0.866$
Chebyshev (0.1-dB peak)	-0.696	$-0.348 \pm i \ 0.866$
Chebyshev (0.25-dB peak)	-0.609	$-0.305 \pm j \ 0.866$
Chebyshev (0.5-dB peak)	-0.530	$-0.265 \pm j \ 0.866$
Chebyshev (1-dB peak)	-0.444	$-0.222 \pm j \ 0.866$
Chebyshev (2-dB peak)	-0.345	$-0.173 \pm j \ 0.866$
Chebyshev (3-dB peak)	-0.286	$-0.143 \pm j \ 0.866$

TABLE 10.3 Unscaled Capacitor Values for Fig. 10.4

Type of three-pole			
low-pass filter	C_1''	C_2''	C_3''
Bessel	0.9880	1.423	0.2538
Butterworth	1.392	3.546	0.2024
Chebyshev (0.1-dB peak)	1.825	6.653	0.1345
Chebyshev (0.25-dB peak)	2.018	8.551	0.1109
Chebyshev (0.5-dB peak)	2.250	11.23	0.08950
Chebyshev (1-dB peak)	2.567	16.18	0.06428
Chebyshev (2-dB peak)	3.113	27.82	0.03892
Chebyshev (3-dB peak)	3.629	43.42	0.02533

DESIGN PARAMETERS

Parameter	Description
$\overline{A_v}$	Op amp voltage gain as a function of frequency
A_{vc}	Voltage gain of circuit as a function of frequency
C_1 , C_2 , C_3	Final values for capacitors after both impedance and frequency scaling. These capacitors determine f_{cp} and the magnitude of peaking near f_{cp}
C_1', C_2', C_3'	Intermediate values for C_1 , C_2 , and C_3 after frequency scaling
C_1'', C_2'', C_3''	Unscaled capacitor values from Table 10.3
f_{cp}	Pole or corner frequency of circuit
R	Common value of R_1 , R_2 , and R_3
R_1, R_2, R_3	Determines f_{cp} along with C_1 , C_2 , and C_3
V_i	Input voltage to circuit
V_o	Output voltage of circuit

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Transfer function (voltage gain) of circuit	$A_{vc} = \frac{V_o}{V_i} = \frac{1}{s^3A + s^2B + sC + 1}$ where $A = C_1C_2C_3R_1R_2R_3$ $B = R_3C_2C_3(R_1 + R_2) + C_1C_3R_1(R_2 + R_3)$ $C = C_1R_1 + C_3(R_1 + R_2 + R_3)$
2	Relationship between initial and final capacitor values	$egin{align*} C_{1} &= rac{C_{1}''}{2\pi f_{cp}R} \ C_{2} &= rac{C_{2}''}{2\pi f_{cp}R} \ C_{3} &= rac{C_{3}''}{2\pi f_{-R}R} \ \end{split}$
3	Recommended minimum A_v at f_{cp}	$A_v(f_{cp}) \ge 100$

DESIGN PROCEDURE

At least two simplified design approaches are possible for this circuit. One could assume $R=R_1=R_2=R_3$ and solve for R and the capacitor values. Conversely, we could let $C=C_1=C_2=C_3$ and solve for C and the resistor values. The design steps will utilize the first method in conjunction with Table 10.3.

DESIGN STEPS

Step 1. Choose C_1'' , C_2'' , and C_3'' from Table 10.3 according to the type of filter required.

Step 2. Using the required corner frequency f_{cp} , perform the following frequency scaling:

$$C_{1}' = \frac{C_{1}''}{2\pi f_{cp}}$$

$$C_{2}' = \frac{C_{2}''}{2\pi f_{cp}}$$

$$C_{3}' = \frac{C_{3}''}{2\pi f_{cp}}$$

Step 3. Choose a value $R = R_1 = R_2 = R_3$ which will produce convenient sizes for C_1 , C_2 , and C_3 according to

$$C_1 = \frac{C_1'}{R}$$

$$C_2 = \frac{C_2'}{R}$$

$$C_3 = \frac{C_3'}{R}$$

This procedure is called impedance scaling.

Step 4. To minimize errors due to the op amp, verify that the following is satisfied:

$$A_v(\text{at } f_{cp}) \ge 100$$

EXAMPLE OF THIRD-ORDER LOW-PASS-FILTER DESIGN The four design steps will be used to design a third-order Bessel filter.

Design Requirements

$$f_{cp} = 1,000 \text{ Hz}$$

Maximum capacitor size 0.01 μF

Device Data

$$A_v(1,000 \text{ Hz}) = 1,000$$

Step 1. From Table 10.3 we get

$$C_1'' = 0.9880$$

 $C_2'' = 1.423$
 $C_3'' = 0.2538$

Step 2. Frequency scaling is performed as follows:

$$\begin{split} C_1' &= \frac{C_1''}{2\pi f_{cp}} = \frac{0.9880}{2,000\pi} = 1.572 \times 10^{-4} \\ C_2' &= \frac{C_2''}{2\pi f_{cp}} = \frac{1.423}{2,000\pi} = 2.265 \times 10^{-4} \\ C_3' &= \frac{C_3''}{2\pi f_{cp}} = \frac{0.2538}{2,000\pi} = 4.039 \times 10^{-5} \end{split}$$

Step 3. C_2 is always the largest capacitor, so we let

$$C_2 = 0.01 \ \mu F$$

and solve for R, C_1 , and C_3 as follows:

$$R = \frac{C_2'}{C_2} = \frac{2.265 \times 10^{-4}}{10^{-8}} = 22,650 \ \Omega$$

$$C_1 = \frac{C_1'}{R} = \frac{1.572 \times 10^{-4}}{22,650} = 6,940 \ \mathrm{pF}$$

$$C_3 = \frac{C_3'}{R} = \frac{4.039 \times 10^{-5}}{22,650} = 1,783 \ \mathrm{pF}$$

Step 4. Verification of Eq. 3:

$$A_v(1,000 \text{ Hz}) = 1,000 > 100$$

10-12 LOW-PASS FILTERS

REFERENCES

- Al-Nasser, F.: Tables Shorten Design Time for Active Filters, Electronics, Oct. 23, 1972, p. 113.
- 2. Shepard, R. R.: Active Filters: Part 12-Short Cuts to Network Design, *Electronics*, Aug. 18, 1969, p. 82.

High-Pass Filters

INTRODUCTION

This chapter is similar in many respects to Chap. 10. We will present the same two circuits discussed in that chapter. However, the R's and C's are exchanged. This changes the circuits from low-pass to high-pass filters. As before, the resulting circuits are

- 1. Easily designed with very simple calculations.
- 2. Stable against oscillation and parameter drift.
- 3. Implemented with only one op amp.

11.1 SECOND-ORDER HIGH-PASS FILTER

ALTERNATE NAMES Unity-gain high-pass filter, active high-pass filter, active inductorless high-pass filter, ac-coupled voltage follower, active RC filter.

EXPLANATION OF OPERATION The circuit shown in Fig. 11.1 provides zero response at dc and unity gain from f_{cp} up to the frequency where the op amp gain crosses unity. By proper choice of R_1 , R_2 , C_1 , and C_2 the transfer function can be made to exhibit the range of characteristics shown in Fig. 11.2. These curves were obtained from an actual circuit using a 741 op amp. The f_{cp} was chosen to be 100 Hz. It will be noted that this circuit is a high-pass filter only for those frequencies between f_{cp} and f_u of the op amp. Since f_u

Fig. 11.1 Single-feedback second-order high-pass filter using a unity-gain amplifier.

varies with temperature, the filter will have progressively more error as f_u is approached.

The transfer function of Fig. 11.1 is

$$A_{vc} = \frac{V_o}{V_i} = \frac{s^2}{s^2 + s(1/R_2C_1 + 1/R_2C_2) + 1/R_1R_2C_1C_2}$$

Fig. 11.2 Test data of three typical two-pole high-pass filters using the circuit of Fig. 11.1.

Fig. 11.3 Pole locations in s domain of the transfer function of Fig. 11.1.

The locations of the two complex poles are

$$s_1, \ s_2 = -\frac{1}{2R_2} \frac{C_1 + C_2}{C_1 C_2} \pm \left[\left(\frac{C_1 + C_2}{2R_2 C_1 C_2} \right)^2 - \frac{1}{R_1 R_2 C_1 C_2} \right]^{1/2}$$

Figure 11.3 shows the pole locations in the s domain for all filters discussed in this section. Each pole also has a zero at s = 0 + j0 due to the blocking capacitor C_1 . In Fig. 11.3 the corner frequency has been normalized to 1 rad/s.

The damping factor ζ determines the shape of A_{vc} in the frequency region near f_{cp} . Low values of ζ cause the frequency-response curve to have more peaking near the pole (corner) frequency. This term is related to the familiar circuit Q by

$$\zeta = \frac{1}{2O}$$

DESIGN PARAMETERS

Parameter	Description
$\overline{A_v}$	Op amp voltage gain as a function of frequency
A_{vc}	Voltage gain of circuit as a function of frequency
C, C_1, C_2	Common value of C_1 and C_2 . Determines both f_{cp} and ζ
f_{cp}	Poles, or corner frequency, of circuit
f_u	Op amp unity-gain crossover frequency
Q	Determines height of peak in frequency response
\tilde{R}_1, R_2	Final values for resistors after both impedance and frequency scaling
R_1^{i}, R_2^{i}	Intermediate values for R_1 and R_2 after frequency scaling
R_1'', R_2''	Unscaled resistor values from Table 11.1
S_1, S_2	Locations of complex poles in s domain
S_A^B	Sensitivity of parameter B to a change in parameter A
V_i	Circuit input voltage
V_o	Circuit output voltage
ω_n	Natural radian frequency of poles of circuit
ζ	Damping factor

TABLE 11.1 Unscaled Resistor Values for Fig. 11.1

Type of two-pole high-pass filter	ζ	R_1'	R_2'
Bessel	0.8659	1.103	1.471
Butterworth	0.7072	0.7072	1.414
Chebyshev (0.1-dB peak)	0.6516	0.6105	1.438
Chebyshev (0.25-dB peak)	0.6179	0.5624	1.473
Chebyshev (0.5-dB peak)	0.5789	0.5131	1.531
Chebyshev (1-dB peak)	0.5228	0.4509	1.650
Chebyshev (2-dB peak)	0.4431	0.3743	1.906
Chebyshev (3-dB peak)	0.3833	0.3223	2.194

DESIGN EQUATIONS

Eq.	Description	Equation
1	Transfer function (voltage gain) of circuit	$\begin{split} A_{vc} &= \frac{V_o}{V_i} \\ &= \frac{s^2}{s^2 + s \left[(1/R_2C_1) + (1/R_2C_2) \right] + (1/R_1R_2C_1C_2)} \end{split}$

Eq. No.	Description	Equation
2	Location of two complex poles of Eq. 1	$s_1, s_2 = -\frac{1}{2R_2} \frac{C_1 + C_2}{C_1 C_2}$
		$\pm \left[\left(\frac{C_1 + C_2}{2R_2C_1C_2} \right)^2 - \frac{1}{R_1R_2C_1C_2} \right]^{1/2}$
3	Damping factor of circuit	$\zeta = \frac{1}{2} \left(\frac{R_1 C_1}{R_2 C_2} \right)^{1/2} + \frac{1}{2} \left(\frac{R_1 C_2}{R_2 C_1} \right)^{1/2}$
4	Sensitivity of f_{cp} to variations in R_1 , R_2 , C_1 , or C_2	$S_{R_1}^{f_{CP}} = S_{R_2}^{f_{CP}} = S_{C_1}^{f_{CP}} = S_{C_2}^{f_{CP}} = -\frac{1}{2}$
		NOTES: 1. $S_{R_1}^{f_{CP}} = -\frac{1}{2}$ means that if R_1
		increases in value by 1%, f_{cp} will decrease in frequency by $\frac{1}{2}\%$ 2. After all sensitivities of a given parameter are computed, they are algebraically added
		to determine the total result
5	Sensitivity of ζ to variations in R_1 , R_2 , C_1 , or C_2	$S_{R_1}^{\varsigma} = \frac{1}{2}$
		$S_{R_2}^{\zeta} = \frac{1}{2} - \frac{1}{2\zeta\omega_n R_2} \left(\frac{1}{C_1} + \frac{1}{C_2}\right)$
		$S_{C_1}^{\zeta} = \frac{1}{2} - \frac{1}{2\zeta\omega_n R_2 C_1}$
		$S_{C_2}^{\zeta} = \frac{1}{2} - \frac{1}{2\zeta\omega_n R_2 C_2}$
6	Relationship between initial and final resistor values	$R_1 = KR_1'$
	and mar resistor values	$R_2 = KR'_2$ where $K = \frac{1}{2\pi f_{ev}C_1} = \frac{1}{2\pi f_{ev}C_2}$
		$\frac{1}{2\pi f_{cp}C_1} = \frac{2\pi f_{cp}C_2}{2\pi f_{cp}C_2}$
7	Required op amp open-loop gain to assure accuracy	$A_v \ge 100$ at all frequencies where high-pass operation is required

DESIGN PROCEDURE

The design approach to be presented requires very simple calculations even though Eqs. 1 to 7 may appear quite difficult. The end result is capacitors of equal value but resistors of different values. Other approaches may give equally sized resistors and differently sized capacitors. Setting two variables equal at the outset is the key to simplified design.

DESIGN STEPS

Step 1. Choose R_1' and R_2' from Table 11.1 according to the type of filter required.

Step 2. Using the chosen corner frequency f_{cp} , perform the following frequency scaling:

$$C = \frac{1}{2\pi f_{cp}}$$

Step 3. Choose a constant K which will provide practical capacitor sizes for C_1 and C_2 according to

$$C_1 = C_2 = \frac{C}{K}$$

Step 4. Calculate values for resistors with

$$R_1 = KR_1' \qquad R_2 = KR_2'$$

These last two steps are called impedance scaling.

NOTE: Steps 1 to 4 cover the basic design of the filter. The remaining steps are provided only for the designer who wishes to obtain more insight into the filter operation, error sources, etc.

Step 5. Compute the damping factor ζ using Eq. 3. Compare the result with data in Table 11.1 to verify that the correct filter has been designed.

Step 6. If required, use Eq. 4 to compute the sensitivity of f_{cp} to variations in R_1 , R_2 , C_1 , and C_2 . Likewise, Eq. 5 can be used to determine the sensitivity of ζ to changes in R_1 , R_2 , C_1 , and C_2 .

Step 7. Determine the range of frequencies where $A_v \ge 100$ from the op amp data sheet. This value of A_v must be maintained in order to keep the actual frequency response within 0.1 dB of the theoretical response. This is even more important as temperature changes, since A_v has a strong dependence on temperature in most op amps.

EXAMPLE OF SECOND-ORDER HIGH-PASS FILTER A Butterworth high-pass filter will be designed to illustrate the seven design steps. The response of an actual filter built with this procedure was shown in Fig. 11.2 along with Chebyshev and Bessel filters.

Design Requirements

 $f_{cp} = 100 \text{ Hz}$

Response = Butterworth ($\zeta = 0.707$) Maximum capacitor size = 0.1μ F

Device Data

 $A_v \ge 100 \text{ up to } 10 \text{ kHz}$

Step 1. From Table 11.1 we get

$$R_1' = 0.7072$$
 $R_2' = 1.414$

Step 2. Frequency scaling is performed.

$$C = \frac{1}{2\pi f_{cp}} = \frac{1}{2\pi \times 100} = 1.592 \times 10^{-3}$$

Step 3. If we want the capacitor sizes of C_1 and C_2 to be 0.1 μ F,

$$K = \frac{C}{C_1} = \frac{C}{C_2} = \frac{1.592 \times 10^{-3}}{10^{-7}} = 1.592 \times 10^4$$

Step 4. The final resistor values become

$$\begin{array}{l} R_1 \doteq KR_1' = 1.592 \times 10^4 (0.7072) = 11{,}255~\Omega \\ R_2 \doteq KR_2' = 1.592 \times 10^4 (1.414) = 22{,}505~\Omega \end{array}$$

Step 5. The damping factor is checked at this point:

$$\begin{split} \zeta &= \frac{1}{2} {\left(\frac{R_1 C_1}{R_2 C_2} \right)^{1/2}} + \frac{1}{2} {\left(\frac{R_1 C_2}{R_2 C_1} \right)^{1/2}} \\ &= \frac{1}{2} {\left(\frac{R_1}{R_2} \right)^{1/2}} + \frac{1}{2} {\left(\frac{R_1}{R_2} \right)^{1/2}} = {\left(\frac{R_1}{R_2} \right)^{1/2}} \end{split}$$

since $C_1 = C_2$. Thus,

$$\zeta = \left(\frac{11,255}{22,505}\right)^{1/2} = 0.7072$$

This checks out with Table 11.1.

Step 6. The sensitivity of f_{cp} to component variations is as follows:

$$S_{R_1}^{fcp} = S_{R_2}^{fcp} = S_{C_1}^{fcp} = S_{C_2}^{fcp} = -\frac{1}{2}$$

Therefore, if any of these passive components increase in value by 1 percent, f_{cp} will decrease in frequency by $\frac{1}{2}$ percent.

The sensitivity of ζ to component variations is

$$\begin{split} S_{R_1}^{\zeta} &= \frac{1}{2} \\ S_{R_2}^{\zeta} &= \frac{1}{2} - \frac{1}{2\zeta\omega_n R_2} \left(\frac{1}{C_1} + \frac{1}{C_2} \right) \\ &= \frac{1}{2} - \frac{1/10^{-7} + 1/10^{-7}}{2(0.7072)2\pi (100)22,505} = -0.5000 \\ S_{C_1}^{\zeta} &= \frac{1}{2} - \frac{1}{2\zeta\omega_n R_2 C_1} \\ &= \frac{1}{2} - \frac{1}{2(0.7072)2\pi (100)22,505(10^{-7})} = 1.310 \times 10^{-6} \\ S_{C_2}^{\zeta} &= \frac{1}{2} - \frac{1}{2\zeta\omega_n R_2 C_2} \\ &= \frac{1}{2} - \frac{1}{2(0.7072)2\pi (100)22,505(10^{-7})} = 1.310 \times 10^{-6} \end{split}$$

Step 7. Since $A_v > 100$ from dc to 10 kHz, the response curve should be stable from f_{cp} to 10 kHz. A 100 percent variation of A_v should therefore cause less than a 1 percent change (<0.1 dB) in A_{vc} within this frequency range.

REFERENCES

- 1. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers Design and Applications," p. 298, McGraw-Hill Book Company, New York, 1971.
- 2. Shepard, R. R.: Active Filters: Part 12, Short Cuts to Network Design, *Electronics*, Aug. 18, 1969, p. 82.

11.2 THIRD-ORDER HIGH-PASS FILTER

ALTERNATE NAMES Unity-gain high-pass filter, active high-pass filter, active inductorless high-pass filter, ac-coupled voltage follower, active *RC* filter.

EXPLANATION OF OPERATION The circuit shown in Fig. 11.4 provides zero response at dc and unity gain from f_{cp} up to the frequency where the op amp gain crosses unity. By proper choice of the six passive components the transfer function can be made to exhibit the range of characteristics shown in Fig. 11.5. These curves were obtained from an actual circuit utilizing a 741 op amp. The f_{cp} was chosen to be 100 Hz. It should be noted that this circuit is a high-pass filter only for those frequencies between f_{cp} and f_u of the op amp. Experience tells us that f_u varies with temperature. The filter will accordingly have more error drift in the region near f_u .

Fig. 11.4 Single-feedback third-order high-pass filter using a unity-gain amplifier.

Fig. 11.5 Test data of three typical three-pole high-pass filters using the circuit of Fig. 11.4.

where

The transfer function of Fig. 11.4 is

$$\begin{split} A_{vc} &= \frac{V_o}{V_i} = \frac{s^3}{s^3 + Ds^2 + Es + F} \\ D &= \frac{1}{R_3} \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right) + \frac{1}{R_2 C_1} \\ E &= \frac{1}{R_3} \left(\frac{1}{R_1 C_2 C_3} + \frac{1}{R_1 C_1 C_3} + \frac{1}{R_2 C_1 C_3} + \frac{1}{R_2 C_1 C_2} \right) \\ F &= \frac{1}{R_1 R_2 R_3 C_1 C_2 C_3} \end{split}$$

DESIGN PARAMETERS

Parameter	Description	
$\overline{A_v}$	Op amp voltage gain as a function of frequency	
A_{vc}	Voltage gain of circuit as a function of frequency	
$\frac{A_{vc}}{C}$	Initial capacitor size	
C_1, C_2, C_3	Final capacitor sizes	
D, E, F	Variables used in Eq. 1	
f_{cp}	Corner frequency of filter	
K	Constant used in filter design	
R_1, R_2, R_3	Final resistor sizes	
R_1', R_2', R_3'	Initial unscaled resistor sizes	
V_i	Input voltage to circuit	
V_o	Output voltage from circuit	

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Transfer function (voltage gain) of circuit	$A_{vc} = \frac{V_o}{V_i} = \frac{s^3}{s^3 + Ds^2 + Es + F}$
		where $D = \frac{1}{R_3} \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right) + \frac{1}{R_2 C_1}$
		$E = \frac{1}{R_3} \left(\frac{1}{R_1 C_2 C_3} + \frac{1}{R_1 C_1 C_3} + \frac{1}{R_2 C_1 C_3} + \frac{1}{R_2 C_1 C_2} \right)$
		$F = \frac{1}{R_1 R_2 R_3 C_1 C_2 C_3}$
2	Relationship between initial and final resistor values	$R_1 = KR'_1$ $R_2 = KR'_2$ $R_3 = KR'_3$
		where $K = \frac{1}{2\pi f_{cp}C_1} = \frac{1}{2\pi f_{cp}C_2} = \frac{1}{2\pi f_{cp}C_3}$
3	Required op amp open-loop gain to assure accuracy	$A_v \ge 100$ at all frequencies where high-pass operation is required

DESIGN PROCEDURE

The following design steps require only simple calculations even though the characteristic equation (Eq. 1) of a third-order filter is quite cumbersome. A

good feature of the procedure is that it gives equally sized capacitors. This is usually convenient, since it is easier to have a wide range of resistors available instead of capacitors.

DESIGN STEPS

Step 1. Choose R'_1 , R'_2 , and R'_3 from Table 11.2 according to the type of filter required.

Step 2. Using the chosen corner frequency f_{cp} , perform the following frequency scaling:

$$C = \frac{1}{2\pi f_{cp}}$$

Step 3. Choose a constant K which will provide practical capacitor sizes for C_1 , C_2 , and C_3 according to

$$C_1 = C_2 = C_3 = \frac{C}{K}$$

Step 4. Calculate values for resistors with

$$R_1 = KR'_1$$
 $R_2 = KR'_2$ $R_3 = KR'_3$

These last two steps are called impedance scaling.

Step 5. Determine the range of frequencies where $A_v \ge 100$ using the op amp data sheet. This value of A_v must be maintained in order to keep the actual frequency response within 0.1 dB of the theoretical response. This is even more important as temperature changes, since A_v has a strong dependence on temperature in most op amps.

TABLE 11.2 Unscaled Resistor Values for Fig. 11.4

Type of three- pole high-pass filter	R_1'	R_2'	R_3'
Bessel	0.7027	1.012	3.940
Butterworth	0.2820	0.7184	4.941
Chebyshev (0.1-dB peak)	0.1503	0.5479	7.435
Chebyshev (0.25-dB peak)	0.1169	0.4955	9.017
Chebyshev (0.5-dB peak)	0.08905	0.4444	11.17
Chebyshev (1-dB peak)	0.06180	0.3896	15.56
Chebyshev (2-dB peak)	0.03595	0.3212	25.69
Chebyshev (3-dB peak)	0.02303	0.2756	39.48

EXAMPLE OF THIRD-ORDER HIGH-PASS FILTER A Chebyshev filter with 3-dB peaking will be designed to illustrate the five design steps. The response of an actual filter built with this procedure was shown in Fig. 11.5.

Design Requirements

$$f_{cp} = 100 \; \text{Hz}$$

Response = 3-dB Chebyshev

Maximum capacitor size = $0.1 \mu F$

Device Data

 $A_v \ge 100 \text{ up to } 10 \text{ kHz}$

Step 1. From Table 11.2 we get

$$R_1' = 0.02303$$
 $R_2' = 0.2756$ $R_3' = 39.48$

Step 2. Frequency scaling is performed.

$$C = \frac{1}{2\pi f_{cp}} = \frac{1}{2\pi \times 100} = 1.592 \times 10^{-3}$$

Step 3. If we want the capacitor sizes to be $0.1 \mu F$,

$$K = \frac{C}{C_1} = \frac{C}{C_2} = \frac{C}{C_3} = \frac{1.592 \times 10^{-3}}{10^{-7}} = 1.592 \times 10^4$$

Step 4. The final resistor values become

$$R_1=KR_1'=1.592\times 10^4~(0.02303)=366.6~\Omega$$
 $R_2=KR_2'=1.592\times 10^4~(0.2756)=4,388~\Omega$ $R_3=KR_3'=1.592\times 10^4~(39.48)=628,500~\Omega$

Step 5. Since $A_v \ge 100$ from dc to 10 kHz, the filter response should be stable from f_{cp} to 10 kHz. A 100 percent variation of A_v should therefore cause less than a 1 percent change (<0.2 dB) in A_{vc} within this frequency range.

REFERENCES

- 1. Al-Nasser, F.: Tables Shorten Design Time for Active Filters, *Electronics*, Oct. 23, 1972, p. 113.
- 2. Shepard, R. R.: Active Filters: Part 12 Short Cuts to Network Design, *Electronics*, Aug. 18, 1969, p. 82.

Bandpass Filters

INTRODUCTION

Information regarding many types of bandpass amplifiers using op amps is readily available in the literature. In this chapter we will provide logically organized design information on two of the most popular bandpass circuits. Both these filter types, multiple-feedback and biquadratic, will be described in detail. The discussions will include step-by-step design procedures and fully worked out examples.

12.1 MULTIPLE-FEEDBACK BANDPASS FILTER

ALTERNATE NAMES Dual-feedback bandpass filter, active resonator, active filter, active bandpass amplifier, active RC filter.

EXPLANATION OF OPERATION This circuit, shown in Fig. 12.1, is useful for several reasons:

1. It requires only one op amp.

2. Adjustment of the resonant frequency f_o can be performed with one resistor R_2 .

3. If \tilde{Q} is less than 10, the sensitivity of Q and f_o to component variations is not large.

Fig. 12.1 Bandpass filter using multiple feedback.

4. If Q is less than 10, a large spread in calculated component values will not occur.

5. One resistor, R_3 , may be used to adjust both Q and the midband gain H. This resistor also affects f_o , so Q and H should always be adjusted before f_o .

This is an inverting circuit with a transfer function expressed as

$$A_{vc} = \frac{V_o}{V_i} = \frac{-As}{s^2 + Bs + C}$$

$$A = \frac{1}{R_1C_1}$$

$$B = \frac{1/C_1 + 1/C_2}{R_3}$$

$$C = \frac{1/R_1 + 1/R_2}{R_2C_1C_2}$$

where

Capacitors are more difficult to trim, so the design of this circuit often begins by assuming $C = C_1 = C_2$, where C is some practical value. We can now state the effect of the three resistors on f_o , H, and Δf ($\Delta f = f_o/Q$).

$$\begin{split} R_1 &= \frac{1}{2\pi\Delta f HC} \\ R_2 &= \left[2\pi C \left(\frac{2f_o^2}{\Delta f} - \Delta f H \right) \right]^{-1/2} \\ R_3 &= \frac{1}{\pi\Delta f C} \end{split}$$

We note from the above that

1. R_1 affects both Δf and H.

2. R_2 affects f_0 , Δf , and H; however, the effect on Δf and H is small.

3. R_3 affects only Δf .

We can also invert these three equations to get

$$f_o = \frac{1}{2\pi} \left[\frac{1}{R_3 C_1 C_2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \right]^{1/2}$$

$$Q = \frac{f_o}{\Delta f} = \frac{\left[R_3 (1/R_1 + 1/R_2) \right]^{1/2}}{(C_2/C_1)^{1/2} + (C_1/C_2)^{1/2}}$$

$$H = \frac{R_3 C_2}{R_1 (C_1 + C_2)}$$

DESIGN PARAMETERS

Parameter	Description
$A_v(f_o)$	Open-loop voltage gain of op amp at frequency f_0
A_{vc}	Closed-loop voltage gain of circuit as a function of frequency
C, C_1, C_2	Common value for capacitors in circuit
$\Delta C/C$	Fractional change in capacitance of a capacitor C over a specified temperature range
f_o	Resonant frequency of circuit
Δf	Frequency difference between -3 -dB points on A_{vc} response curve (bandwidth)

Parameter	Description
H	Voltage gain of circuit at f_0
I_b	Input bias current of op amp
Q	Quality factor of circuit
\tilde{R}_1	Resistor which controls input resistance of circuit
R_2	Resistor which principally controls resonant frequency of circuit
R_3	Resistor which affects only Q of circuit
$\Delta R/R$	Fractional change in the resistance of a resistor R over a specified temperature range
S_A^B .	Sensitivity of parameter B to changes in parameter A
V_i	Input voltage to circuit
\mathbf{V}_{o}	Output voltage from circuit
V_{oo}	Circuit output offset voltage

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Voltage gain of circuit	$A_{vc} = \frac{V_o}{V_i} = \frac{-As}{s^2 + Bs + C}$
		where $A = \frac{1}{R_1 C_1}$
		$B = \frac{1/C_1 + 1/C_2}{R_3}$
		$C = \frac{1/R_1 + 1/R_2}{R_3 C_1 C_2}$
		$s=2\pi f$
2	Voltage gain of circuit at f_o	$H = \frac{R_3 C_2}{R_1 (C_1 + C_2)}$
3	Bandpass-filter center frequency	$f_o = \frac{1}{2\pi} \left(\frac{1/R_1 + 1/R_2}{R_3 C_1 C_2} \right)^{1/2}$
4	Q of circuit	$Q = \frac{[R_3(1/R_1 + 1/R_2)]^{1/2}}{(C_2/C_1)^{1/2} + (C_1/C_2)^{1/2}}$
5	Bandwidth (3 dB down from gain at f_o)	$\Delta f = \frac{f_o}{Q} = \frac{1/C_1 + 1/C_2}{2R_3}$
6	R_1 in terms of other parameters	$R_1 = \frac{1}{2\pi\Delta f HC}$ where $C = C_1 = C_2$
7	R_2 in terms of other parameters	$R_2 = \left[2\pi C \left(\frac{2f_0^2}{\Delta f} - \Delta f H\right)\right]^{-1/2}$
8	R_3 in terms of other parameters	$R_3 = \frac{1}{\pi \Delta f C}$
9	Sensitivity of f_o to component parameter changes	$S_{R_3}^{f_0} = S_{C_1}^{f_0} = S_{C_2}^{f_0} = -\frac{1}{2}$
10		$S_{R_1}^{f_0} = \frac{-1}{8\pi^2 f_o^2 R_1 R_3 C_1 C_2}$

Eq. No.	Description	Equation
11		$S_{R_2}^{f_0} = \frac{-1}{8\pi^2 f_o^2 R_2 R_3 C_1 C_2}$
12	Sensitivity of Q to component parameter changes	$S_{R_1}^{\mathbf{Q}} = \frac{R_1}{2(R_1 + R_2)} - \frac{1}{2}$
13		$S_{R_3}^{Q} = \frac{1}{2}$
14		$S_{C_1}^{Q} = \frac{Q}{2\pi f_o R_3 C_1} - \frac{1}{2}$
15		$S_{2}^{0} = \frac{Q}{2\pi f_{o}R_{3}C_{2}} - \frac{1}{2}$

DESIGN PROCEDURE

This list of design steps assumes capacitor values are more difficult to trim than are resistor values. It also assumes both capacitor values are identical. The algebra is greatly simplified, since several variables disappear from the equations.

DESIGN STEPS

Step 1. Choose values for f_o , H, and Q. As mentioned previously, this circuit design should not be attempted if Q > 10 is required. The chosen op amp places some restrictions on the choices for f_o and H. Using the op amp open-loop-frequency plot, make sure that $H < 0.01 A_v$ at f_o . This will guarantee that a 100 percent change in A_v will have much less than a 1 percent effect on f_o and H.

Step 2. Let $C = C_1 = C_2$ be some practical value. Compute the follow-

ing:

$$R_3 = \frac{2Q}{2\pi f_0 C}$$

If R_3 is too large, then I_b , the op amp input bias current, will cause a dc offset at V_b with a magnitude of

$$V_{oo} = I_b R_3$$

If this offset is larger than allowed for the application, choose a higher C. Recompute R_3 and V_{oo} .

Step 3. Find R_1 from

$$R_1 = \frac{Q}{2\pi f_0 CH}$$

Step 4. Compute R_2 from

$$R_2 = \frac{Q}{(2\pi f_o C)(2Q^2 - H)}$$

Step 5. Determine the sensitivity of f_0 to component parameter variations using Eqs. 9 to 11.

Step 6. Determine the sensitivity of Q to component parameter variations using Figs. 12 to 15

tions using Eqs. 12 to 15.

Step 7. Verify that H is correct using Eq. 2.

Step 8. Verify that f_0 is correct using Eq. 3.

Step 9. Verify that Q is correct using Eq. 4.

Step 10. Verify that Δf is correct using Eq. 5.

EXAMPLE OF BANDPASS-FILTER DESIGN A bandpass filter with a center frequency of 1,000 Hz will now be designed using the 10 design steps.

Design Requirements

$$f_o = 1,000 \text{ Hz}$$

 $H = 10$
 $Q = 5$
 $\Delta f = f_o/Q = 200 \text{ Hz}$
 $V_{co}(\text{max}) = \pm 1 \text{ V}$

Device Data

$$\begin{split} &A_v(1,000~{\rm Hz}) = 1,000\\ &I_b = 10^{-8}~{\rm A}\\ &\frac{\Delta R_1}{R_1} = \frac{\Delta R_2}{R_2} = \frac{\Delta R_3}{R_3} = +0.02~(-55~{\rm to}~+125^{\circ}{\rm C})\\ &\frac{\Delta C_1}{C_1} = \frac{\Delta C_2}{C_2} = -0.03~(-55~{\rm to}~+125^{\circ}{\rm C}) \end{split}$$

Step 1. The required parameters of the circuit are $f_o = 1,000$ Hz, H = 10, and Q = 5. We next verify that

$$H \le 0.01 A_v (f_o)$$

 $10 \le 0.01 (1,000)$
 $10 \le 10$

This is obviously satisfied.

Step 2. Our initial choice for C will be 0.01 μ F. We next compute

$$R_3 = \frac{2Q}{2\pi f_o C} = \frac{2(5)}{2\pi (1,000)10^{-8}} = 159 \text{ k}\Omega$$

The output offset is now checked:

$$V_{oo} = I_b R_3 = (10^{-8}) \ 1.6 \times 10^5 = 1.6 \ \text{mV}$$

Step 3. R_1 is computed:

$$R_1 = \frac{Q}{2\pi f_o CH} = \frac{5}{2\pi (1,000)10^{-8}(10)} = 7,960 \ \Omega$$

Step 4. R_2 is determined:

$$R_2 = \frac{Q}{(2\pi f_o C)(2Q^2 - H)} = \frac{5}{(2\pi \times 1,000 \times 10^{-8})(2 \times 5^2 - 10)} = 1,990 \ \Omega$$

Step 5. The sensitivity of f_o to various parameter variations is computed:

$$R_3$$
: $S_{R_3}^{f_0} = -\frac{1}{2}$

Since $\Delta R_3/R_3$ increases by 0.02 as the temperature increases from -55 to +125°C, f_o will change by $-\frac{1}{2} \times 0.02 \times 1,000$ Hz = -10 Hz.

$$C_1$$
 and C_2 : $S_{C_1}^{f_0} = S_{C_2}^{f_0} = -\frac{1}{2}$

We have indicated that $\Delta C_1/C_1$ and $\Delta C_2/C_2$ both change by -0.03 as the temperature changes from -55 to $+125^{\circ}$ C. This will make f_o increase by $(-1/2) \times (-0.03) \times 1,000 = +15$ Hz for each capacitor.

$$R_1: \qquad S_{R_1}^{f_0} = \frac{-1}{8\pi^2 f_0^2 R_1 R_3 C_1 C_2} = \frac{-1}{8\pi^2 (10^6)7,960(159,000)10^{-8} 10^{-8}} = -0.1$$

If $\Delta R_1/R_1 = +0.02$ as the temperature varies from -55 to +125°C, f_o will change $-0.1 \times 0.02 \times 1.000 = -10$ Hz.

$$R_2$$
: $S_{R_2}^{f_0} = \frac{-1}{8\pi^2 f_0^2 R_2 R_3 C_1 C_2}$ $= \frac{-1}{8\pi^2 (10^6) 1.990 (159.000) 10^{-8} 10^{-8}} = -0.4$

This will cause a -8-Hz shift in f_o .

The total shift in frequency caused by variations in R_1 , R_2 , R_3 , C_1 , and C_2 is -10 + 15 + 15 - 10 - 8 = 2 Hz.

Step 6. The sensitivity of Q to various parameter variations is computed:

$$R_1$$
: $S_{R_1}^{Q} = \frac{R_1}{2(R_1 + R_2)} - \frac{1}{2} = \frac{7,960}{2(7,960 + 1,990)} - \frac{1}{2} = -0.1$

The $\Delta R_1/R_1 = +0.02$ change will cause Q to change by $(-0.1) \times (0.02) \times 5 = -0.01$ as the temperature increases from -55 to +125°C.

$$S_{R_3}^{Q} = \frac{1}{2}$$

This will cause Q to change by $\frac{1}{2} \times 0.02 \times 5 = +0.05$ as the temperature increases from -55 to $+125^{\circ}$ C.

$$C_1 \text{ or } C_2:$$

$$S_{C_1}^{Q} = \frac{Q}{2\pi f_o R_3 C_1} - \frac{1}{2}$$

$$S_{C_2}^{Q} = \frac{Q}{2\pi f_o R_3 C_2} - \frac{1}{2}$$

$$= \frac{5}{2\pi (1,000)159,000(10^{-8})} - \frac{1}{2}$$

$$= 4.86 \times 10^{-4}$$
identical since $C_1 = C_2$

If C_1 and C_2 each decrease by -0.03 as the temperature changes from -55 to +125°C, Q will change by 4.86×10^{-4} (-0.03)5 = -7.2×10^{-6} .

The total shift in Q caused by variations in R_1 , R_3 , C_1 , and C_2 is $-0.01 + 0.05 - 2 \times 7.2 \times 10^{-6} = +0.04$.

Step 7. Equation 2 is used to verify H:

$$H = \frac{R_3C_2}{R_1(C_1 + C_2)} = \frac{(159,000)10^{-8}}{7,960(10^{-8} + 10^{-8})} = 9.987$$

Step 8. Equation 3 is used to verify f_0 :

$$f_o = \frac{1}{2\pi} \left(\frac{1/R_1 + 1/R_2}{R_3 C_1 C_2} \right)^{1/2} = \frac{1}{2\pi} \left(\frac{1/7,960 + 1/1,990}{159,000 \times 10^{-8} \times 10^{-8}} \right)^{1/2} = 1,000.29 \text{ Hz}$$

Step 9. Equation 4 is used to verify Q:

$$Q = \frac{[R_3(1/R_1 + 1/R_2)]^{1/2}}{(C_2/C_1)^{1/2} + (C_1/C_2)^{1/2}} = \frac{[159,000(1/7,960 + 1/1,990)]^{1/2}}{(10^{-8}/10^{-8})^{1/2} + (10^{-8}/10^{-8})^{1/2}}$$
= 4.997

Step 10. Equation 5 is used to verify Δf :

$$\Delta f = \frac{1/C_1 + 1/C_2}{2\pi R_3} = \frac{1/10^{-8} + 1/10^{-8}}{2\pi \times 159,000} = 200.19$$

REFERENCES

- Geffe, P. R.: Designers Guide to Active Bandpass Filters, Parts 1 to 5, EDN, Feb. 5, 1974, p. 68; Mar. 5, 1974, p. 40; Apr. 5, 1974, p. 46; May 5, 1974, p. 63; June 5, 1974, p. 65.
- 2. Robinson, L.: Active Bandpass Filter with Adjustable Center Frequency and Constant Bandwidth, *EEE*, February 1968, p. 124.
- 3. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers Design and Applications," p. 291, McGraw-Hill Book Company, New York, 1971.

12.2 STATE-VARIABLE BANDPASS FILTER

ALTERNATE NAMES Biquadratic filter, biquad filter, active resonator, active filter, active *RC* filter, active bandpass amplifier.

EXPLANATION OF OPERATION Analog-computer technology provides a very stable bandpass filter shown in Fig. 12.2. This circuit requires three op amps

Fig. 12.2 An inverting state-variable bandpass filter.

which, preferably, should be in one package for thermal tracking. This circuit has several advantages over single op amp bandpass filters. First, if components are properly selected, the passband center frequency f_o can be made independent of circuit Q. Second, the sensitivity of f_o and Q to parameter variations is very low in the state-variable filter. Third, high circuit Q's are possible $(Q \gg 5)$.

The filter is made up of two integrators $(A_2 \text{ and } A_3)$ and a summing ampli-

fier. The passband center frequency is

$$f_o = \frac{1}{2\pi} \left(\frac{R_3}{R_4 R_5 R_6 C_1 C_2} \right)^{1/2}$$

The circuit Q is

$$Q = \frac{1 + R_2/R_1}{1 + R_3/R_4} \left(\frac{R_3 R_5 C_1}{R_4 R_6 C_2} \right)^{1/2}$$

If we initially set $R_3 = R_4$ (fixed resistors) and $C = C_1 = C_2$ (fixed capacitors), these equations reduce to

$$f_o = \frac{1}{2\pi (R_5 R_6 C^2)^{1/2}}$$

$$Q = \frac{(1 + R_2/R_1)(R_5/R_6)^{1/2}}{2}$$

and

Suppose we let R_5 and R_6 be ganged pots with identical resistances. In this case R_5/R_6 always equals unity and Q depends only on R_1 and R_2 . If the common value of R_5 and R_6 is R, the equations reduce to

$$f_o = \frac{1}{2\pi RC}$$
$$Q = \frac{R_1 + R_2}{2R_1}$$

The ganged pots R_5 and R_6 are used to set f_0 while R_2 is used for Q adjustment.

The transfer function for the circuit shown in Fig. 12.2 is

$$A_{vc} = \frac{V_o}{V_i} = \frac{-sA}{s^2 + sB + C}$$

where
$$A = \frac{1}{R_5 C_1} \frac{1 + R_3 / R_4}{1 + R_1 / R_2}$$

 $B = \frac{1}{R_5 C_1} \frac{1 + R_3 / R_4}{1 + R_2 / R_1}$
 $C = \frac{R_3}{R_4} \frac{1}{R_5 R_6 C_1 C_2}$

DESIGN PARAMETERS

Parameter	Description
A_{vc}	Closed-loop voltage gain of circuit as a function of frequency
C_1, C_2	Capacitors which help determine bandpass center frequency
f_o	Bandpass center frequency
H	Voltage gain of circuit at resonance

Parameter	Description
I_b	Op amp input bias current
Q	Quality factor of circuit
\bar{R}_1, R_2	Resistors which determine Q of circuit
R_3, R_4	Resistors which set gain of A_1
R_5, R_6	Resistors which control f_{θ} of circuit
R_x	Resistor used in tee networks to make large simulated resistances in place of R_5 and R_6
S_A^B	Sensitivity of parameter B to variations in parameter A
ω_0	Radian frequency of passband $(\omega_o = 2\pi f_o)$

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Passband center frequency	$f_o = \frac{1}{2\pi} \left(\frac{R_3}{R_4 R_5 R_6 C_1 C_2} \right)^{1/2}$
2	Circuit Q	$Q = \frac{1 + R_2/R_1}{1 + R_3/R_4} \left(\frac{R_3 R_5 C_1}{R_4 R_6 C_2}\right)^{1/2}$
3	Circuit gain at f_o	$H=R_2/R_1$
4	Voltage gain of circuit (in classical form)	$egin{aligned} A_{vc} = & rac{V_o}{V_i} = rac{sH\omega_o/Q}{s^2 + s(\omega_o/Q) + \omega_o^2} \ & ext{where} \ \ \omega_o = 2\pi f_o \ & s = j2\pi f \end{aligned}$
5	Sensitivity of f_o to component parameter variations	$S_{R_3}^{f_0} = \frac{1}{2}$ $S_{R_4}^{f_0} = S_{R_5}^{f_0} = S_{R_6}^{f_0} = -\frac{1}{2}$ $S_{C_4}^{f_0} = S_{C_5}^{f_0} = -\frac{1}{2}$
6	Sensitivity of Q to component parameter variations	$S_{R_1}^{\mathbf{Q}} = S_{R_2}^{\mathbf{Q}} = \frac{R_2}{R_1 + R_2}$
		$S_{R_3}^{Q} = S_{R_4}^{Q} = \frac{1}{2} - \frac{R_3}{R_3 + R_4}$ $S_{R_5}^{Q} = S_{R_6}^{Q} = \frac{1}{2}$ $S_{R_1}^{Q} = S_{R_2}^{Q} = \frac{1}{2}$
7	Voltage gain of circuit	$A_{vc} = rac{V_o}{V_i} = rac{-sA}{s^2 + sB + C}$ where $A = rac{1}{R_5C_1}rac{1 + R_3/R_4}{1 + R_1/R_2}$ $B = rac{1}{R_5C_1}rac{1 + R_3/R_4}{1 + R_2/R_1}$ $C = rac{R_3}{R_4}rac{1}{R_5R_6C_1C_2}$

DESIGN PROCEDURE

This circuit has two design requirements: (1) the passband center frequency f_0 and (2) the circuit Q. The gain H at f_0 is fixed once Q is chosen. The design steps to follow will show an optimum way to calculate circuit-component values using the required f_0 and Q. The sensitivity of f_0 and Q to component parameter variations is dependent only on the quality of passive components used.

DESIGN STEPS

Step 1. Compute nominal values for R_3 and R_4 using

$$R_3 = R_4 = \frac{10^8}{f_0}$$

These values are not critical and may be selected from one-half to twice the computed R_3 . However, $R_3 = R_4$ must be maintained. If A_1 is a conventional bipolar monolithic op amp, do not allow $R_3 = R_4$ to go above 1 M Ω . If A_1 has a low I_b , R_3 and R_4 may be 10 M Ω or more.

Step 2. Select a common value for C_1 and C_2 in the vicinity of

$$C_1 = C_2 = \frac{10^{-7}}{f_o}$$

Again, as in step 1, a value for $C_1 = C_2$ from one-half to twice the computed value may be used.

Step 3. Compute the required common values for R_5 and R_6 from

$$R_5 = R_6 = \frac{1}{2\pi f_0 C_1}$$

As in step 1, these resistors may cause offset problems if they become much larger than 1 M Ω (or 10 M Ω if A_2 and A_3 have low input bias currents). If this is a problem, C_1 and C_2 can be adjusted upward and $R_5 = R_6$ recalculated. If C_1 and C_2 are already too large, R_5 and R_6 can each be replaced with the tee network shown in Fig. 12.2. The value for R_x in each tee network is

$$R_x = \frac{10^{10}}{R_5 - 2 \times 10^5}$$

Offsets at the output of A_2 can be further reduced by returning the non-inverting input of A_2 to ground through a resistor with the same resistance as R_5 . Likewise, A_3 offsets can be reduced by returning the noninverting input of A_3 to ground through a resistor equal to R_6 .

Step 4. Set $R_1 = R_3$. Compute R_2 from

$$R_2 = R_1(2Q - 1)$$

Step 5. Use Eq. 3 to compute the circuit gain H at resonance.

Step 6. Compute the sensitivity of f_o to component parameter variations using Eq. 5.

Step 7. Compute the sensitivity of Q to component parameter variations using Eq. 6.

EXAMPLE OF BANDPASS-FILTER DESIGN A filter with a center frequency of 100 Hz will be designed using the seven steps. This example will illustrate the ease with which this circuit can be designed even though the transfer function is quite complex.

Design Requirements

$$f_o = 100 \text{ Hz}$$

 $Q = 50$

Device Data ($\Delta T = -55 \text{ to } +125^{\circ}\text{C}$)

$$\frac{\Delta R}{R} = +0.018$$
 (all resistors)

$$\frac{\Delta C}{C} = -0.027$$
 (all capacitors)

Op amp type: quad 741 $I_b = 0.5 \mu A \text{ (max)}$

Step 1. Nominal values for R_3 and R_4 are $10^8/f_0 = 10^8/100 = 1 \text{ M}\Omega$.

Step 2. Nominal values for C_1 and C_2 are $10^{-7}/f_0 = 10^{-7}/100 = 1,000 \text{ pF}$.

Step 3. Required values for R_5 and R_6 are

$$R_5 = R_6 = \frac{1}{2\pi f_0 C_1} = \frac{1}{2\pi (100)10^{-9}} = 1.59 \text{ M}\Omega$$

These resistors will cause an output offset voltage in A_2 and A_3 of $I_bR_5 = 0.5 \times 10^{-6} \times 1.59 \times 10^6 = 0.8$ V. To prevent this offset at the output of A_2 and A_3 , we will use two of the tee circuits shown in Fig. 12.2.

$$R_x = \frac{10^{10}}{R_5 - 2 \times 10^5} = \frac{10^{10}}{1.59 \times 10^6 - 2 \times 10^5} = 7,194 \Omega$$

As an additional guard against offsets we can return the noninverting inputs of A_2 and A_3 to ground through $100 \text{ k}\Omega + 7.194 = 107 \text{-k}\Omega$ resistors.

Step 4. We set $R_1 = R_3 = 1 \text{ M}\Omega$. R_2 is found from

$$R_2 = R_1(2Q - 1) = 10^6(2 \times 50 - 1) = 99 \text{ M}\Omega$$

This value of R_2 appears to be impractical. We can use the same tee recommended in step 3 to solve this problem. The required value of R_x is

$$R_x = \frac{10^{10}}{R_2 - 2 \times 10^5} = \frac{10^{10}}{9.9 \times 10^7 - 2 \times 10^5} = 101 \ \Omega$$

Step 5. The circuit gain H at resonance is

$$H = \frac{R_2}{R_1} = \frac{9.9 \times 10^7}{10^6} = 99$$

Step 6. Sensitivity-function computations for f_o variations are as follows: RESISTORS

$$S_{R_3}^{f_0} = \frac{1}{2}$$

$$S_{R_4}^{f_0} = S_{R_5}^{f_0} = S_{R_6}^{f_0} = -\frac{1}{2}$$

The $\Delta R/R = +0.018$ (-55 to +125°C) specified for all resistors will cause f_o to increase by $\frac{1}{2}(0.018)100$ Hz = 0.9 Hz owing to R_3 . Resistors R_4 , R_5 , and R_6 will each cause f_o to decrease by the same amount.

CAPACITORS

$$S_{C_1}^{f_0} = S_{C_2}^{f_0} = -\frac{1}{2}$$

The $\Delta C/C = -0.027$ specified for each capacitor will cause f_0 to increase by $-\frac{1}{2}(-0.027)100 \text{ Hz} = 1.35 \text{ Hz}.$

The total shift in f_o due to parameter variations of the above six components will be +0.9-0.9-0.9-0.9+1.35+1.35=+0.9 Hz. This 0.9 percent positive frequency shift will occur as the temperature increases from -55 to $+125^{\circ}$ C.

Step 7. Sensitivity-function computations for Q variations are as follows: RESISTORS R_1 AND R_2

$$S_{R_1}^{Q} = S_{R_2}^{Q} = \frac{R_2}{R_1 + R_2} = \frac{9.9 \times 10^7}{10^6 + 9.9 \times 10^7} = 0.99$$

This will cause Q to vary by 0.99(0.018)50 = 0.891 as the temperature varies from -55 to +125°C.

RESISTORS R_3 AND R_4

$$S_{R_3}^Q = S_{R_4}^Q = \frac{1}{2} - \frac{R_3}{R_3 + R_4} = \frac{1}{2} - \frac{10^6}{10^6 + 10^6} = 0$$

RESISTORS R_5 AND R_6

$$S_{Rs}^{Q} = S_{Re}^{Q} = \frac{1}{2}$$

The change in Q due to this sensitivity function is $\frac{1}{2}(0.018) \times 50 = 0.45$. CAPACITORS

$$S_{C_1}^Q = S_{C_2}^Q = \frac{1}{2}$$

The change in Q due to changes in each capacitance is $\frac{1}{2}(-0.027)50 = -0.675$. The total change in Q as the temperature varies from -55 to +125°C will be

$$0.891 + 0.891 + 0.45 + 0.45 - 0.675 - 0.675 = 1.332$$

This is a 2.7 percent change in Q.

REFERENCES

- 1. Kerwin, W. J., L. P. Huelsman, and R. W. Newcomb: State Variable Synthesis for Insensitive Integrated Circuit Transfer Functions, *IEEE J. Solid-State Circuits*, vol. SC-2, pp. 87-92, September 1967.
- 2. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers Design and Applications," p. 307, McGraw-Hill Book Company, New York, 1971.

Bandstop Filters

INTRODUCTION

These circuits are especially useful in systems containing unwanted signals of fixed frequencies. Often the only way to eliminate the unwanted signals is to pass the main signal through several bandstop filters. Each filter will reduce one unwanted frequency to a tolerable level. Since no filter is ideal, frequencies on either side of the bandstop frequency f_0 will also be slightly affected. If the response curve of the filter is very sharp, its effect on the system may be minimal. However, a highly stable, very sharp bandstop (or notch) filter is practical only if the unwanted signal frequency is also very stable.

13.1 ACTIVE INDUCTOR BANDSTOP FILTER

ALTERNATE NAMES Notch filter, active bandstop filter, active RC notch filter, parasitic suppressor, hum-reduction circuit.

EXPLANATION OF OPERATION The circuit shown in Fig. 13.1 provides unity gain for all frequencies from dc to f_u except at f_o , the notch frequency. The voltage gain of the circuit at f_o may be 50 or 60 dB below unity with a careful selection of components. The notch frequency is tuned using C_1 or C_2 . These components actually affect both notch frequency and notch depth. The final notch depth (sharpness) is controlled using R_1 . C_1 or C_2 may become fairly large with a low notch frequency. In this case C_1 or C_2 may use a large fixed capacitor in parallel with a trimmer capacitor.

The transfer function of the circuit is

$$A_{vc} = \frac{V_o}{V_i} = \frac{j2\pi C_2 R^2 (f^2 - f_o^2)}{f(R + R_3) + j2\pi C_2 R^2 (f^2 - f_o^2)}$$

where $R = R_4 = R_5$ and f_0 , the notch frequency, is

$$f_o = \frac{1}{2\pi R(C_1 C_2)^{1/2}}$$

When $f = f_o$, the numerator goes to zero and the gain A_{vc} ideally should also equal zero. In practice, the gain of this circuit will be 50 or 60 dB ($\frac{1}{316}$ to $\frac{1}{1,000}$) below unity if the following relationship is exactly satisfied:

$$\frac{R_1}{R_2} = \frac{R_3}{R_4 + R_5} = \frac{R_3}{2R}$$

The notch-sharpness adjustment R_1 is used to satisfy this equation.

The bandstop filter shown in Fig. 13.1 is a variation of the basic differential amplifier shown in Fig. 9.1. There are two differences between the circuits:

1. The resistor going to ground $(R_4 \text{ in Fig. 9.1})$ has been replaced with C_1 , C_2 , R_4 , R_5 , and A_2 . This network simulates a series RLC network. At its resonant frequency f_0 it becomes a pure resistance $R_4 + R_5$.

Fig. 13.1 Bandstop filter which utilizes an active inductor.

Fig. 13.2 Frequency-response curve of active-inductor bandstop filter.

2. Both differential inputs in Fig. 13.1 are tied together. Therefore, if this were a balanced differential amplifier (as in Fig. 9.1), the output would be zero. For this circuit (Fig. 13.1), zero output occurs only at the resonant frequency where $R_1/R_2 = R_3/(R_4 + R_5)$. At all other frequencies the differential amplifier is out of balance and the circuit gain is +1.

DESIGN PARAMETERS

Parameter	Description
A_1	Op amp for differential amplifier
A_2	Op amp for simulated inductance
A_{vc}	Voltage gain of circuit
C_1	Capacitor which is C portion of effective series RLC circuit. This part affects f_0 only
C_2	Part of simulated inductance in RLC circuit. This part affects both f_o and Q
f_o	Notch center frequency
f_{y}	Unity-gain crossover frequency of A ₁
f_1 , f_2	Frequencies where circuit response is 3 dB below the frequencies far removed from f_0
Q	Quality factor of circuit $Q = f_0/(f_2 - f_1)$
R_1, R_2, R_3	Gain-determining resistors
R_4, R_5	Resistive portion of effective <i>RLC</i> circuit
R	Common value for R_4 and R_5 ($R = R_4 = R_5$)
$R_{\rm in}$	Input resistance of circuit
V_i	Input voltage to circuit
$\dot{V_o}$	Output voltage from circuit

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Voltage gain of circuit	$A_{vc} = \frac{V_o}{V_i} = \frac{j2\pi C_2 R^2 (f^2 - f_o^2)}{f(R + R_3) + j2\pi C_2 R^2 (f^2 - f_o^2)}$
		where $R = R_4 = R_5$
2	Notch frequency	$f_o = \frac{1}{2\pi R (C_1 C_2)^{1/2}}$
3	Resistor ratios required for proper operation	$\frac{R_1}{R_2} = \frac{R_3}{R_4 + R_5} = \frac{R_3}{2R}$
4	Q of circuit	$Q = \frac{\pi f_o C_2 R}{2}$
5	Input resistance of circuit at f_o	$R_{\rm in} = \frac{R_1(R_3 + 2R)}{R_1 + R_3 + 2R}$
6	Input resistance of circuit at all frequencies not near f_o	$R_{\rm in}=R_{ m i}$

DESIGN PROCEDURE

In order to simplify the calculations for this bandstop filter, we begin by fixing the nominal value of all resistors. The two capacitors then depend only on the resistor choices, the notch frequency, and the notch sharpness.

DESIGN STEPS

Step 1. Set $R_1 = R_2 = R_3 = 2R_{\rm in}$ where $R_{\rm in}$ is equal to or above the minimum required input resistance.

Step 2. Set $R = R_4 = R_5 = R_1/2$. Step 3. Compute $C_2 = 2Q/\pi f_0 R$.

Step 4. Compute $C_1 = 1/[(2\pi f_0 R)^2 C_2]$. The smaller of C_1 or C_2 may be used to tune f_0 .

Step 5. Compute Eq. 2 to verify that the correct notch frequency has been implemented.

EXAMPLE OF BANDSTOP-FILTER DESIGN We will design a medium-Q bandstop filter for 1,000 Hz to illustrate the five design steps numerically.

Design Requirements

$$f_o = 1,000 \text{ Hz}$$

$$Q = 5$$

 $R_{\rm in}(\min) = 10,000 \Omega$

Step 1

$$R_1 = R_2 = R_3 = 2(R_{\rm in}) = 2(10,000 \ \Omega) = 20,000 \ \Omega$$

Step 2

$$R = R_4 = R_5 = \frac{R_1}{2} = \frac{20,000}{2} = 10,000 \ \Omega$$

Step 3

$$C_2 = \frac{2Q}{\pi f_0 R} = \frac{10}{\pi 1,000 \times 10^4} = 0.318 \ \mu \text{F}$$

Step 4

$$C_1 = \frac{1}{(2\pi f_o R)^2 C_2} = \frac{1}{(2\pi 10^3 \times 10^4)^2 \ 3.18 \times 10^{-7}} = 795 \ \mathrm{pF}$$

Step 5

$$f_o = \frac{1}{2\pi R (C_1 C_2)^{1/2}} = \frac{1}{2\pi (10^4)(0.159\times 10^{-6}\times 1.59\times 10^{-9})^{1/2}} = 1,000~\mathrm{Hz}$$

REFERENCE

1. Harris, R. J.: The Design of an Operational Amplifier Notch Filter, *Proc. IEEE*, October 1968, p. 1722.

13.2 TWIN-TEE BANDSTOP FILTER

ALTERNATE NAMES Notch filter, active bandpass filter, active *RC* notch filter, parasitic suppressor, hum-reduction circuit.

EXPLANATION OF OPERATION The circuit shown in Fig. 13.3 provides a means to adjust circuit Q without affecting notch frequency. The circuit Q is adjustable from approximately 0.3 to 50 using R_4 . The minimum Q is obtained when the R_4 wiper is at ground potential. Notch depth and frequency are controlled with the six components in the twin tee. The basic six-component twin tee $(C_1, C_2, C_3, R_1, R_2, \text{ and } R_3)$ typically provides a maximum Q of 0.3, approximately. A_1 and A_2 provide bootstrapping back to the twin-tee ground

Fig. 13.3 Twin-tee bandstop filter with adjustable Q.

point, thus making a maximum Q of 50 possible. Figure 13.4 shows the range of adjustment R_4 provides.

The transfer function of the circuit is

$$A_{vc} = \frac{V_o}{V_i} = \frac{s^3 + As^2 + Bs + C}{s^3 + Ds^2 + Es + C}$$

where
$$A=\frac{R_2(R_1+R_3)C_1C_3}{\Delta}$$

$$B=\frac{R_2(C_1+C_3)}{\Delta}$$

$$C=\frac{1}{\Delta}$$

$$D=\frac{R_2(R_1+R_3)C_1C_3+R_1R_3C_2C_3+R_1R_2C_2(C_1+C_3)}{\Delta}$$

$$E=\frac{R_2(C_1+C_3)+R_1C_2+(R_1+R_3)C_3}{\Delta}$$

$$\Delta=R_1R_2R_3C_1C_2C_3$$

The notch frequency is

$$f_o = \frac{1}{2\pi} \left(\frac{C_1 + C_3}{C_1 C_2 C_3 R_1 R_3} \right)^{1/2}$$

The design of this circuit is simplified if the following relations are used:

$$R_1 = R_3 = 2 R_2$$
 $C_1 = C_3 = \frac{C_2}{2}$
 $R_1C_1 = R_2C_2 = R_3C_3$

Fig. 13.4 Gain as a function of frequency for the twin-tee bandstop filter.

DESIGN PARAMETERS

Parameter	Description
A_1	Buffer amplifier with high input resistance which does not load twin-tee network
A_2	Low-output-resistance buffer which bootstraps ground return of twin tee to circuit output voltage
A_{vc}	Voltage gain of circuit
C_1, C_2, C_3	Capacitors which determine notch frequency
f_o	Notch frequency
Q	Quality factor of circuit
\tilde{R}_1, R_2, R_3	Resistors which determine notch frequency
R_{4}	Potentiometer used to adjust the Q
R_a	Generator output resistance
V_i	Circuit input voltage
$\dot{V_o}$	Circuit output voltage

DESIGN EQUATIONS

Eq. No.	Description	Equation	
1	Voltage gain of circuit	$A_{vc} = rac{V_o}{V_i} = rac{s^3 + Ds^2 + Es + C}{s^3 + Ds^2 + Es + C}$	
	chean	where $A=rac{R_2(R_1+R_3)C_1C_3}{\Delta}$	

Eq. No.	Description	Equation
		$B = \frac{R_2(C_1 + C_3)}{\Delta}$
		$C = \frac{1}{\Delta}$
		$D = \frac{R_2(R_1 + R_3)C_1C_3 + R_1R_3C_2C_3 + R_1R_2C_2(C_1 + C_3)}{\Delta}$
		$E = \frac{R_2(C_1 + C_3) + R_1C_2 + (R_1 + R_3)C_3}{\Delta}$
		$\Delta = R_1 R_2 R_3 C_1 C_2 C_3$
2	Notch frequency	$f_o = \frac{1}{2\pi} \left(\frac{C_1 + C_3}{C_1 C_2 C_3 R_1 R_3} \right)^{1/2}$
3	Recommended relation- ship between resistors	$R_1 = R_3 = 2R_2 \ge 100 \ R_g$
4	Recommended relation- ship between capacitors	$C_1 = C_3 = \frac{C_2}{2}$
5	Recommended relation- ships between resis- tors and capacitors	$R_1 C_1 = R_2 C_2 = R_3 C_3$

DESIGN PROCEDURE

Since the equations describing this circuit are so complex, a simplified approach is necessary. The steps can be used for a first-cut design, with refinements made afterward.

DESIGN STEPS

Step 1. Choose $R_1 = R_3$ equal to a practical value greater than 100 R_g . Set $R_2 = R_1/2$.

Step 2. C_1 and C_3 are found by combining Eqs. 2 through 5:

$$C_{1}=C_{3}=\frac{1}{4\pi f_{o}R_{2}}$$

Step 3. Using Eq. 4, we now determine C_2 and C_3 :

$$C_2 = 2C_1 \qquad C_3 = C_1$$

Step 4. Verify that f_0 is correct using Eq. 2:

$$f_o = \frac{1}{2\pi} \left(\frac{C_1 + C_3}{C_1 C_2 C_3 R_1 R_3} \right)^{1/2}$$

EXAMPLE OF BANDSTOP-FILTER DESIGN The design of a 60-Hz bandstop filter using the four design steps will be presented.

Design Requirements

$$f_o = 60 \text{ Hz}$$

Largest resistor = 2 M Ω

Design Parameters

$$R_a = 600 \Omega$$

Step 1. We first compute $100~R_g=100(600)=600~\text{k}\Omega$. Set $R_1=R_3=2~\text{M}\Omega$ to satisfy Eq. 3. We then set $R_2=R_1/2=1~\text{M}\Omega$.

Step 2. We determine C_1 and C_3 as follows:

$$C_1 = C_3 = \frac{1}{4\pi f_o R_2} = \frac{1}{4\pi (60) 10^6} = 1,320 \text{ pF}$$

Step 3. C_2 is simply $C_2 = 2C_1 = 2(1,320) = 2,640$ pF. Step 4. The resonant frequency is double-checked:

$$\begin{split} f_o &= \frac{1}{2\pi} \left(\frac{C_1 + C_3}{C_1 C_2 C_3 R_1 R_3} \right)^{1/2} \\ &= \frac{1}{2\pi} \left(\frac{1.32 \times 10^{-9} + 1.32 \times 10^{-9}}{1.32 \times 10^{-9} \times 2.64 \times 10^{-9} \times 1.32 \times 10^{-9} \times 2 \times 10^{6} \times 2 \times 10^{6}} \right)^{1/2} \\ &= 60.2 \text{ Hz} \end{split}$$

REFERENCES

- 1. Dobkin, B.: "High Q Notch Filter," National Semiconductor Corp. Linear Brief LB-5, 1969.
- 2. Ramey, R. L., and E. J. White: "Matrices and Computers in Electronic Circuit Analysis," p. 36, McGraw-Hill Book Company, New York, 1971.

Frequency Control

INTRODUCTION

In this chapter we present design information on several circuits which manipulate frequency or perform a function related to frequency. The first circuit presents a method for doubling the input frequency. The second circuit provides the designer with an analog voltage proportional to the difference between two input frequencies. Other chapters in this handbook contain more frequency-related circuits. A frequency-to-voltage converter, or FM detector, is described in Chap. 7. A frequency divider, or bistable multivibrator, is shown in Chap. 20. Chapter 21 describes a voltage-to-frequency converter (voltage-controlled oscillator).

14.1 FREQUENCY DOUBLER

ALTERNATE NAMES Frequency multiplier, harmonic generator.

EXPLANATION OF OPERATION The circuit shown in Fig. 14.1 is a practical frequency doubler since it requires only one +5-V supply. A_1 and A_3 are comparators which operate from a wide range of supply voltages. A_2 is an integrator with dc negative feedback which forces v_2 to stay out of saturation.

The output IC is an exclusive OR gate.

The timing diagram in Fig. 14.2 is useful to visualize how the circuit operates. Both A_1 and A_3 are operated as level-detecting comparators. A_1 is set to trip at V_C and A_3 is set to trip at V_B . Resistors R_1 to R_2 provide hysteresis (positive feedback) in the A_1 circuit. This forces the A_1 output voltage to make clean transitions between states each time v_i passes through the trip point. In many applications we can let $V_C = \text{zero volts}$. The trip voltage V_C for a raising waveform [zero to $v_i(\text{peak})$] is slightly higher than V_A because of the hysteresis:

$$V_C = V_A + \frac{5R_1}{R_1 + R_2 + R_3}$$

For a falling waveform [v_i (peak) to zero] the trip voltage is V_A , since $v_1 = 0$ and no hysteresis voltage is fed back.

In A_3 , the output voltage v_3 changes states each time v_2 passes through V_B .

Fig. 14.1 A frequency doubler with a TTL-compatible output.

Fig. 14.2 Waveforms at various locations in the frequency doubler.

The outputs from A_1 and A_3 are rectangular waveforms with duty cycles which

depend on the relationship of V_A to v_i and V_B to v_2 .

Since A_2 is an integrator, v_2 is a triangular waveform. Voltage v_3 will be a symmetrical square wave (50 percent duty cycle) only if the average voltage of v_2 equals V_B . The input voltage v_i may not be symmetrical, so V_A may be set to obtain the required symmetry.

The dc feedback voltage v_4 is equal to the average value of v_3 . This averaging is done with a brute-force filter composed of R_6 and C_2 . The dc feedback voltage forces the average value of v_3 to equal the average value of v_1 . Both v_1 and v_3 are rectangular waveforms with an ON voltage of +5 V and an OFF voltage of zero. Therefore, v_1 and v_3 will have identical ON and OFF times if the v_4 feedback is utilized. With the integrator in the loop, however, v_3 will be delayed by one-half of the v_1 ON time.

The circuit output voltage v_o is high when v_3 or v_1 is high, but not when both are high. Since v_i may not be a 50 percent duty cycle waveform, v_o will not be a 50 percent waveform. If a 50 percent duty cycle is required, V_4 can be appropriately adjusted.

DESIGN PARAMETERS

Parameter	Description
A_1, A_3	Comparators or op amps used as comparators
A_2	Dual-input integrator
A_{v3}	Open-loop dc voltage gain of A ₃
C_1, C_2	Integrating capacitors
$f_i(\min)$	Limiting lower frequency where integrator output voltage reaches ± saturation
$f_i(\max)$	Limiting upper frequency where output voltage changes of A_2 are not sufficient to switch A_3 on and off
I_{b1}	Input bias current of A_1
I_{b2}	Input bias current of A ₂
R_1, R_2	Resistors which determine hysteresis of A ₁
R_3, R_5	Output pull-up resistors of A_1 and A_3 (required only if A_1 and A_3 have open collector outputs)
R_4, R_6	Integrating resistors
V_A, V_B	Bias voltages
V_C	Bias voltage plus hysteresis for A ₁
v_i	Circuit input voltage
v_o	Circuit output voltage
v_1 to v_4	Voltage waveforms at various locations in circuit
$v_1(on)$	Peak voltage of v_1
$v_1(\text{off})$	Minimum voltage of v_1

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Trip voltage of A_1 for rising v_i waveform	$V_C = V_A + \frac{5R_1}{R_1 + R_2 + R_3}$
2	Integrator output voltage	$v_2 = \frac{\int (v_4 - v_1)dt}{(R_3 + R_4)C_2} + v_4$
3	Nominal resistor values	$R_1 \ll rac{V_A}{I_{b_1}}$ The minimum R_1 should be $pprox 1 \; \mathrm{k}\Omega$

Eq. No.	Description	Equation
4		$R_2 = \frac{5R_1 - (R_1 + R_3)(V_C - V_A)}{V_C - V_A}$
5		$R_3 = 1$ to 10 k Ω
6		$R_4 \ll rac{5}{I_{b2}} - R_3$
7		$R_5 = 1$ to $10 \text{ k}\Omega$
8		$R_6 \ll \frac{5}{I_{b2}} - R_5$
9	Nominal capacitor values	$C_1 pprox rac{1}{(R_3 + R_4)f_i(ext{min})}$
10		$C_2 pprox rac{5}{(R_5 + R_6)f_i(ext{min})}$
11	Minimum frequency of operation	$f_{ m i}({ m min}) pprox rac{1}{(R_3+R_4)C_1}$
12	Maximum frequency of operation	$f_i(ext{max}) pprox rac{v_i(ext{on})A_{v3}}{2R_4C_1\;v_3(ext{on})}$

DESIGN PROCEDURE

If this circuit is designed around one supply voltage (+5 V), several parts can be saved. Design equations 1 through 5 have assumed this simplification. We will also assume a symmetrical sine wave is driving the circuit and that a TTL-compatible output is required.

DESIGN STEPS

Step 1. Choose a V_C which is 0.1 to 10 percent larger than V_A . A large V_C (1 to 10 percent) is required only if v_i contains excessive noise. Select R_1 such that it satisfies Eq. 3:

$$R_1 \approx \frac{10^{-3} \ V_A}{I_{b1}}$$

Step 2. Assuming 111-type comparators are to be used, we can let $R_3 = R_5 = 5{,}100 \Omega$. Compute the required R_2 using Eq. 4:

$$R_2 = \frac{5R_1 - (R_1 + R_3)(V_C - V_{\scriptscriptstyle A})}{V_C - V_{\scriptscriptstyle A}}$$

Step 3. Compute R_4 and R_6 from Eqs. 6 and 8:

$$R_4 = \frac{10^{-3}}{I_{b2}} - R_3$$

$$R_6 = \frac{10^{-3}}{I_{b2}} - R_5$$

Step 4. Capacitor values depend on the minimum input frequency $f_i(min)$. Recommended capacitor values come from application of Eqs. 9 and 10:

$$\begin{split} C_1 &= \frac{1}{(R_3 + R_4)f_i(\text{min})} \\ C_2 &= \frac{5}{(R_5 + R_6)f_i(\text{min})} \end{split}$$

EXAMPLE OF FREQUENCY-DOUBLER DESIGN Suppose we want a frequency doubler for an audio application. Electronic music synthesizers require frequency doublers (or multipliers) to generate "rich" sounds. The input-output voltages and frequency range must be compatible with standard studio practice.

Design Requirements

 $f_i(\min) = 20 \text{ Hz}$

 $v_o = TTL$ compatible

 $V_i(\text{noise}) = 0.1\text{-V peak}$

 v_i = sine wave varying from zero to +4 V (NOTE: Many comparators do not allow the input voltage to exceed the limits of the two supply voltages. If our supply voltages are +5 V and ground, v_i must be within the 0-to +5-V range at all times)

Device Data

$$I_{b1} = 10^{-7} \text{ A (111 comparator)}$$

$$I_{b2} = 2 \times 10^{-9} \text{ A (108 op amp)}$$

Step 1. Our choice for V_A will be ground potential with $V_C=0.2$ V, since the peak noise in v_i is 0.1 V. This small offset will not make v_1 very nonsymmetrical. R_1 is computed from

$$R_1 \approx \frac{10^{-3} V_A}{I_{b1}} = 0$$

We will set $R_1 = 1,000 \Omega$.

Step 2. R_2 is determined from

$$\begin{split} R_2 &= \frac{5R_1 - (R_1 + R_3)(V_C - V_A)}{V_C - V_A} \\ &= \frac{5(1{,}000) - (1{,}000 + 5{,}100)(0.2 - 0)}{0.2 - 0} = 18.9 \text{ k}\Omega \end{split}$$

We will let $R_1 = 18 \text{ k}\Omega$.

Step 3. R_4 is determined from Eq. 6:

$$R_4 = \frac{10^{-3}}{I_{b2}} - R_3 = \frac{10^{-3}}{2 \times 10^{-9}} - 5,100$$
$$= 495 \text{ k}\Omega$$

We will use $R_4 = 470 \text{ k}\Omega$. The calculation for R_6 is identical, so we also set $R_6 = 470 \text{ k}\Omega$.

Step 4. Capacitor values are as follows:

$$\begin{split} C_1 &= \frac{1}{(R_3 + R_4) \, f_i(\mathrm{min})} = \frac{1}{(5,100 + 470,000) \, 20} = 0.1 \ \mu\mathrm{F} \\ C_2 &= \frac{5}{(R_5 + R_6) \, f_i(\mathrm{min})} = \frac{5}{(5,100 + 470,000) \, 20} = 0.5 \ \mu\mathrm{F} \end{split}$$

REFERENCE

1. "Linear Applications," p. AN41-4, National Semiconductor Corp., January 1972.

14.2 FREQUENCY-DIFFERENCE DETECTOR

ALTERNATE NAMES Frequency comparator, bipolar frequency-difference detector, heterodyne circuit, frequency discriminator.

EXPLANATION OF OPERATION While this circuit is less accurate than a digital frequency-difference detector, it has several advantages:

1. It can interface directly with analog circuits on the input and output.

2. It provides both sign and magnitude of the difference frequency.

3. It is simple to understand and requires only a few parts.

As shown in Fig. 14.3, each input line triggers a single shot once per cycle. These output pulses are all of identical amplitude and duration. One pulse train drives the noninverting input of a low-pass filter and the other pulse train drives the inverting input of the same low-pass filter. The dc output of the low-pass filter will therefore be proportional to the difference of the average values of these two pulse trains. Since the average value of each pulse train is proportional to that particular input frequency, v_{θ} will be proportional to the difference in the two input frequencies.

If a 74123 dual single shot is utilized, triggering can be performed on

Fig. 14.3 A frequency-difference detector.

either a rising or falling waveform. Figure 14.4 assumes triggering on the rising waveform. For a rising waveform the output pulse will begin (at the latest) when the input rises to 2 V. If the trailing-edge input is used, trigger-

ing occurs (at the latest) when the input signal falls to 0.8 V.

The output pulses from the two single shots should be identical in all respects if balanced operation is desired. Since the dual single shot is operating from a +5-V supply, both pulse trains will have identical amplitudes. The OFF amplitudes of v_3 and v_4 are also required to be identical, since the low-pass filter responds to the average value of each pulse train. The average value of each pulse train is

$$v_3(av) = v_3(on) T_1 f_1 + v_3(off)$$

and

$$v_4(av) = v_4(on) T_2 f_2 + v_4(off)$$

The dc output voltage from the circuit is

$$\upsilon_{o}(\mathrm{dc}) = \frac{R_{6}}{R_{4}} \left[\upsilon_{4}(\mathrm{on}) T_{2} f_{2} + \upsilon_{4}(\mathrm{off}) \right] - \frac{R_{5}}{R_{3}} \left[\upsilon_{3}(\mathrm{on}) T_{1} f_{1} + \upsilon_{3}(\mathrm{off}) \right] + V_{oo}$$

where R_6/R_4 is the op amp noninverting gain, $-R_5R_3$ is the op amp inverting gain, and V_{oo} is the op amp output offset voltage due to V_{io} and I_{io} . In practice we attempt to set $R_6/R_4=R_5/R_3$, $v_3({\rm on})=v_4({\rm on})$, $T_1=T_2$, and $v_3({\rm off})=v_4({\rm off})$. If we also adjust R_8 to cancel out the effects of V_{oo} , the dc output voltage reduces to

$$v_o({\rm dc}) = \frac{R_6 v_4({\rm on}) T_2(f_2 - f_1)}{R_4}$$

Fig. 14.4 Waveforms at various locations in the frequency-difference detector.

14-8 FREQUENCY CONTROL

These conditions can always be met if R_1 , R_3 , and R_8 are made adjustable. The pulse widths are typically set to be 0.1 to 0.2 of the smaller of $1/f_1$ or $1/f_2$. The pulse widths as given on the 74123 data sheet are:

$$T_1 \approx 0.25 R_1 C_1 \text{ s} T_2 \approx 0.25 R_2 C_2 \text{ s}$$

DESIGN PARAMETERS

Parameter	Description
A_1	Dual-input low-pass filter
C_1, C_2	Determines pulse widths of T_1 and T_2
C_3, C_4	Determines low-pass properties of A_1 circuit
f_1	Reference frequency
f_2	Unknown frequency
f_{max}	Maximum of f_1 or f_2
I_h	A ₁ input bias current
I_{io}	A ₁ input offset current
I_{z_1}, I_{z_2}	Nominal recommended currents for Z_1 and Z_2
R_1, R_2	Determines pulse widths of T_1 and T_2
R_3 to R_6	Determines gain and low-pass properties of A ₁ circuit
R_7 to R_{10}	Offset adjustment circuit to set $v_o(dc) = 0$ when $f_1 = f_2$
T_1, T_2	Widths of pulses in v_3 and v_4 pulse trains
U_1, U_2	Single-shot multivibrators
$v_{\rm o}({ m dc})$	Circuit output de voltage
v_1 to v_4	Voltage waveforms (see Fig. 14.4)
V_{io}	Input offset voltage of A ₁
V_{oo}	Output offset voltage of A ₁

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Circuit output voltage assuming all error sources and offsets are trimmed out with R_1 , R_3 , and R_8	$v_o(\text{dc}) = \frac{R_6 v_4(\text{on}) T_2(f_2 - f_1)}{R_4}$
2	Pulse width of T_1 (ON time)	$T_1 \approx 0.25 R_1 C_1 \text{ s}$
3	Pulse width of T_2 (ON time)	$T_2 \approx 0.25 R_2 C_2 \text{ s}$
4	Maximum T_1 and T_2	$T_1 = T_2 \le \frac{0.2}{f_{\text{max}}}$
5	Average value of v_3	$v_3(\mathrm{av}) = v_3(\mathrm{on})T_1f_1 + v_3(\mathrm{off})$
6	Average value of v_4	$v_4(\mathrm{av}) = v_4(\mathrm{on}) T_2 f_2 + v_4(\mathrm{off})$
7	Required gain-setting resistor ratios	$\frac{R_5}{R_3} = \frac{R_6}{R_4} = \frac{v_o(\text{max})}{v_4(\text{on})T_2 f_2 - f_1 _{\text{max}}}$
8	Offset-adjustment network resistor relationships	$egin{aligned} R_7 &= R_9 \ R_8 &> R_7 \ R_{10} &pprox R_8 \ R_{10} &> R_3 \end{aligned}$

Eq. No.	Description	Equation
9	Recommended size of R ₃	Minimum load resistor allowed for single shot $< R_3 \ll \frac{v_3(\text{on})}{I_b}$
10	Recommended sizes for C_3 and C_4	$C_3 = C_4 \gg \frac{1}{2\pi f_{\max} R_5}$
11	Recommended size for R_1 and R_2	$5~\mathrm{k}\Omega < R_{\scriptscriptstyle 1} = R_{\scriptscriptstyle 2} < 50~\mathrm{k}\Omega$ (if using a 74123)
12	Output offset voltage of A_1	$V_{oo} = V_{io} \left(1 + rac{R_5}{R_3} ight) + I_{io}R_5$

DESIGN PROCEDURE

A dual single shot from the medium-power TTL family is assumed in this procedure. If op amp single shots are utilized, Chap. 20 should be consulted.

DESIGN STEPS

Step 1. Choose pulse widths T_1 and T_2 which satisfy Eq. 4:

$$T_1 = T_2 \le \frac{0.2}{f_{\text{max}}}$$

Step 2. Select R_1 and R_2 in the 5- to 50-k Ω range. The lower values of R_1 and R_2 allow T_1 and T_2 to extend down to 40 ns. Calculate values for C_1 and C_2 from

$$C_1 = C_1 \approx \frac{4T_1}{R_1}$$

The closest practical capacitor size to those calculated above can be used. The resistors R_1 and R_2 can be readjusted accordingly.

Step 3. Calculate a value for R_3 using Eq. 9:

$$R_3 \ll \frac{v_3(\text{on})}{I_b}$$

A minimum value for R_3 is 470 Ω if the 74123 single shot is used. If R_3 is adjustable, a 470- Ω resistor should be placed in series with it.

Step 4. The value of R_5 is found using Eq. 7:

$$R_5 = \frac{R_3 \ v_o({\rm max})}{v_4({\rm on}) T_2 |f_2 - f_1|_{\rm max}}$$

Let $R_6 = R_5$ and $R_4 = R_3$. Check to see that $A_r(f_{\rm max})$ is at least five or ten times larger than R_5/R_3 . If this is not true, the gain of the integrator stage must be lowered by reducing R_6 and R_5 . An additional dc-coupled buffer amplifier may be used if a larger $v_o({\rm max})$ is needed.

Step 5. C_3 and C_4 are determined using Eq. 10:

$$C_3 = C_4 \gg \frac{1}{2\pi f_{\rm max} R_5}$$

These capacitors control the amount of ripple noise in v_o . An inequality by a factor of 100 to 1,000 may be required for Eq. 10.

Step 6. The balancing-network resistors are approximated using Eqs. 8:

$$R_8 = R_{10} \approx 100 R_3$$

 $R_7 = R_9 = \frac{V_{Z1}}{I_{T1}}$

Check to make sure that $R_8 \gg R_7$. If this is not so, some compromise in the above values may be required.

EXAMPLE OF FREQUENCY-DIFFERENCE-DETECTOR DESIGN Suppose we need a circuit which must monitor the stability of a 10-kHz signal relative to a highly stable 10-kHz clock. We want a positive dc output if the unknown frequency is higher than the reference. This requires that we make f_2 the unknown and f_1 the reference. A ± 1 -kHz deviation is expected for f_2 .

Design Requirements

$$\begin{array}{l} f_1 = 10\text{-kHz reference sine wave} \\ v_1 = 8 \text{ V peak-to-peak (zero to +8 V)} \\ f_2 = 10 \pm 1 \text{ kHz (unknown)} \\ v_2 = 6 \text{ V peak-to-peak (zero to +6 V)} \\ f_{\text{max}} = \text{highest } f_2 = 11 \text{ kHz} \\ v_o(\text{dc, max}) = \pm 1 \text{ V for a } f_1 - f_2 = \pm 1 \text{ kHz} \\ V^{(\pm)} = \pm 15 \text{ V} \end{array}$$

Device Data

$$\begin{array}{l} v_{3}(\text{on}) = v_{4}(\text{on}) = 3.9 \text{ V (assuming } V_{cc} = 5.0 \text{ V}) \\ V_{3}(\text{off}) = v_{4}(\text{off}) = 0.2 \text{ V} \\ V_{io} = 2 \text{ mV} \\ I_{b} = 300 \text{ nA} \\ I_{io} = 30 \text{ nA} \\ v_{0}(\text{sat}) = \pm 13 \text{ V} \\ V_{Z1} = V_{Z2} = 6.4 \text{ V at } I_{Z1} = I_{Z2} = 0.5 \text{ mA} \end{array}$$

Step 1. $T_1 = T_2$ is calculated from

$$T_1 = T_2 = \frac{0.2}{f_{\text{max}}} = \frac{0.2}{11,000} = 18.1 \ \mu\text{s}$$

Step 2. Let the first-cut R_1 and R_2 equal $10 \text{ k}\Omega$. C_1 and C_2 are computed as follows:

$$C_1 = C_2 = \frac{4T_1}{R_1} = \frac{4(18.1 \times 10^{-6})}{10^4} = 7,240 \text{ pF}$$

If we use standard 6,800-pF capacitors for C_1 and C_2 ,

$$R_1 = R_2 = \frac{4T_1}{C_1} = \frac{4(18.1 \times 10^{-6})}{6,800 \times 10^{-12}} = 10,600 \ \Omega$$

Step 3. R_3 must be much less than

$$R_3 \ll \frac{v_3(\text{on})}{I_b} = \frac{3.9}{300 \times 10^{-9}} = 13 \text{ M}\Omega$$

This will be easy to satisfy. We will let R_3 be a 2-k Ω potentiometer in series with a 1-k Ω resistor. The median R_3 will be 2,500 Ω .

Step 4. R_5 is determined by using Eq. 7:

$$R_5 = \frac{R_3 v_o(\text{max})}{v_4(\text{on}) T_2 |f_2 - f_1|_{\text{max}}} = \frac{2,500 \text{ (1)}}{3.9(18.1 \times 10^{-6})1,000} = 35.4 \text{ k}\Omega$$

We also assume

$$R_6 = R_5 = 35.4 \text{ k}\Omega$$

 $R_4 = R_3 = 2,500 \Omega$

The gain of most monolithic op amps is ≈ 100 at 10 kHz. Since $R_5/R_3 = 14.16$, little gain error will occur.

Step 5. C_3 and C_4 are found from

$$C_{3} = C_{4} \gg \frac{1}{2\pi f_{\rm max} R_{5}} = \frac{1{,}000}{2\pi (1{,}000)354{,}000} = 0.45~\mu{\rm F}$$

We will let $C_3 = C_4 = 0.47 \ \mu F$.

Step 6. The balancing-network calculations follow:

$$\begin{split} R_8 &= R_{10} \approx 100\,R_3 = 100(2{,}500) = 250~\text{k}\Omega \\ R_7 &= R_9 \approx \frac{V^{(+)} - V_{Z1}}{I_{Z1}} = \frac{15 - 6.4}{0.5 \times 10^{-3}} = 17{,}200~\Omega \end{split}$$

This is sufficiently lower than R_8 so that R_8 will not load R_7 and R_9 .

REFERENCE

 Campbell, J. D.: A Simple Frequency Difference Detector, EEE, November 1970, p. 80.

Chapter 15

Integrators and Differentiators

INTRODUCTION

An integrator is a low-pass filter, and a differentiator is a high-pass filter. Each of these two circuits therefore performs a mathematical function which is the inverse of the other. Even though these circuits are related mathematically, the practical problems associated with each are completely different. The prime differentiator problems are noise and instability. The integrator is prone to dc drift and offset.

15.1 DIFFERENTIATOR

ALTERNATE NAMES First-derivative circuit, differentiating amplifier, high-pass filter.

EXPLANATION OF OPERATION An ideal differentiator produces an instantaneous output voltage which is precisely proportional to the instantaneous derivative of the input voltage. The basic circuit which will perform this function requires the op amp, C_1 , and R_f in Fig. 15.1. The other parts $(R_1, C_f, R_p,$ and C_p) have been added for reasons to be explained below. R_1 and C_p , if properly sized, will stabilize the feedback loop, which is inherently unstable in the basic differentiator circuit. Referring to Fig. 15.2, if R_1 is not present, the open- and closed-loop frequency responses of the circuit intersect at 40 dB/decade (12 dB/octave). As shown in Chap. 3, the intersection should be 20 dB/decade (6 dB/octave) or less to provide absolute stability.

Most op amps have another open-loop pole near f_n which leads to more instability. C_f does not allow the closed-loop gain curve to intersect the open-loop curve until the unity-gain crossover frequency has been exceeded. This provides an additional measure of stability.

 R_p prevents I_b from producing a dc offset at the op amp output. R_p can be made adjustable from $< R_f$ to $> R_f$ to cancel out the effects of both I_b and I_{io} . Capacitor C_p is required to bypass the thermal noise of R_p to ground and

Fig. 15.1 A low-noise differentiator with overload protection and good feedback stability.

Fig. 15.2 Differentiator frequency-response curves for three circuit configurations compared with the op amp open-loop response.

to maintain loop stability. It is added only if R_p is greater than 5 or 10 k Ω . C_p is chosen so that its reactance is less than one-tenth R_p for all frequencies down to f_d , if possible. See Chap. 3 for a discussion of the feedback-stability aspects of C_p and R_p .

Since this circuit is sensitive to the slope of the input signal, the designer must be aware of the relation between maximum input slope and maximum

output voltage:

$$v_o(\max) = R_f C_1 \frac{dv_i}{dt} (\max)$$

If the possibility exists that input slopes steeper than the above maximum slope may be present, the zener-diode clamp is recommended. These zeners will prevent C_1 from acquiring a charge when unipolar noise bursts occur. This avoids a temporary paralysis of the input which could possibly last for a period of time after the burst.

True differentiation will occur for frequencies below f_{cp1} . Beyond this frequency the circuit behaves as a voltage amplifier with progressively lower gain at higher frequencies.

DESIGN PARAMETERS

Parameter	Description	
A_{vc}	Closed-loop gain of differentiator as a function of frequency	
C_1	Input capacitor required in basic differentiator	
C_f	Feedback capacitor utilized for stability	
C_p	Bypass capacitor utilized to hold op amp noninverting input at ac ground	
f_o	Geometric center frequency of passband for closed-loop circuit	
f_{op1}	First-pole frequency of op amp	
f_{op2}	Second-pole frequency of op amp	
f_{cp1}	First-pole frequency of closed-loop circuit	
f_{cp2}	Second-pole frequency of closed-loop circuit	
f_d	Characteristic frequency of differentiator, i.e., the low-frequency	
	unity-gain crossover frequency of closed-loop circuit	
f_u	The unity-gain crossover frequency of the op amp	
I_{io}	Op amp input offset current	
I_n	Op amp equivalent input noise current	
$\ddot{R_1}$	Input resistor utilized for stability	
R_{ℓ}	Feedback resistor required in basic differentiator	
$R_{id}^{'}$	Op amp differential input resistance	
$R_n^{'''}$	Resistor used to cancel effects of the op amp input bias current	
v_i^{ν}	Circuit input voltage	
V_{io}	Op amp input offset voltage	
V_n	Op amp equivalent input noise voltage	
v_o	Circuit output voltage	
V_{on}	Total circuit output noise voltage	
V_{oni}	Circuit output noise voltage due to op amp equivalent input noise current	
\mathbf{V}_{onv}	Circuit output noise voltage due to op amp equivalent input noise voltage	

DESIGN EQUATIONS

Eq.

01

co

20

9

6

 ∞

Equation	$v_o = -R_f C_1 \frac{dv_i}{dt}$	$A_{vc} = rac{v_o}{v_i} = rac{-jf/2\pi R_1C_f}{(jf + 1/2\pi R_1C_1)(jf + 1/2\pi R_fC_f)}$ $= rac{-sR_fC_1}{(1 + sR_1C_1)(1 + sC_fR_f)}$	$f_a = \frac{1}{2\pi R_f C_1}$	$f_{cp_1} = \frac{1}{2\pi R_1 C_1}$	$f_{cpz} = \frac{1}{2\pi R_f C_f} $	$f_o \le (f_d f_u)^{1/2}$ NOTE: $f_o = (f_{cp1} f_{cp2})^{1/2}$	$f_d = rac{dv_i}{dt_{ m max}} = rac{1}{2\pi v_o({ m max})} = rac{1}{2\pi R_f C_1}$	$\left. rac{dv_t}{dt} ight _{ ext{error}} = rac{1}{C_1} igg[ig(rac{1}{R_1} + rac{1}{R_{td}} ig) V_{to} + I_{to} igg]$	$\mathbf{V}_{onv} = \frac{\mathbf{V}_n \{s^2 + s \left[(R_1 C_1 + R_f C_1) + R_f C_f) / R_1 R_f C_t C_f \right] + (1/R_1 R_f C_1 C_f) \}}{(s+1/R_1 C_1)(s+1/R_f C_f)}$
Description	Ideal output voltage in time domain for $f < f_{arphi_1}$	Ideal circuit gain for all frequencies	Low-frequency unity-gain crossover frequency (i.e., the differentiator characteristic frequency)	First-pole frequency of circuit (due to input circuit)	Second-pole frequency of circuit (due to feedback circuit)	Midband frequency f_o for best performance, noise and stability trade-off	Relationship between f_a , the maximum expected input-voltage rate of change and the maximum desired output voltage	Differentiation error caused by nonideal op amp input characteristics	Differentiator output rms noise due to equivalent input-voltage noise of op amp

to equivalent	
noise due	amp
tput rms n	oise of op
rentiator ou	t-current no
10 Differ	ndui

$$V_{oni} = \frac{I_n s / R_1 C_f}{(s+1/R_1 C_1)(s+1/R_f C_f)}$$

$$V_{on} = (V_{oni}^2 + V_{onv}^2)^{1/2}$$

$$R_p = R_f$$

 $C_p = \frac{10}{2\pi f_d R_p}$ NOTE: This should be a low-leakage capacitor so it will not degrade the effect of R_p

 $C_1 < 1~\mu F$ (if possible or $< 10~\mu F$ (with caution) NOTE: C_1 should be a low-leakage capacitor such as polystyrene or polycarbonate Choose R_f such that the peak feedback current $c_o(\max)/R_f$ is $\approx 500~\mu\mathrm{A}$.

DESIGN PROCEDURE

This circuit should present no design difficulties as long as the preceding noise and stability equations are followed. R_1 is the critical part which reduces both noise and instability. C_f provides additional protection against instability for op amps having excessive high-frequency phase lag. The zener diodes are required only if large unipolar noise bursts are expected and if a temporary paralysis cannot be tolerated.

DESIGN STEPS

Step 1. Choose the \pm maximum limits for v_o . Let the \pm power-supply voltages be at least 3 V greater than $\pm v_o(\text{max})$.

Step 2. Choose R_f so that 500 μA flows through it in the presence of $\pm v_o(\max)$.

$$R_f = \frac{v_o(\text{max})}{5 \times 10^{-4}}$$

Step 3. Assuming the maximum input slope is known, determine the size of C_1 using Eq. 7:

$$C_1 = \frac{v_o(\text{max})}{R_f \frac{dv_i}{dt}\Big|_{\text{max}}}$$

NOTE: If C_1 is larger than $0.1~\mu\mathrm{F}$, make sure its leakage resistance is at least 100 times larger than R_f . Otherwise this leakage resistance (R_x) will cause the differentiator to act as an inverting amplifier having a gain of $-R_f/R_x$. The output signal resulting from this will be added to that caused by differentiation, thus causing a distorted output waveform.

Step 4. Compute the differentiator characteristic frequency f_d from

$$f_d = \frac{1}{2\pi R_t C_1}$$

Step 5. Let $R_p = R_f$. Compute the optimum C_p using Eq. 13:

$$C_p = \frac{10}{2\pi f_d R_p}$$

NOTE: The leakage resistance of C_p should be at least 100 times larger than R_p .

Step 6. If the op amp is guaranteed by the manufacturer to be stable with 100 percent feedback (unity-gain amplifier), let $f_o = (f_d f_u)^{1/2}$. If the op amp second pole (f_{op2}) occurs at a lower frequency than f_u , say at a frequency of Af_u , let

$$f_o = (Af_d f_u)^{1/2}$$

(i.e., if $f_{op2} = 500$ kHz and $f_y = 1$ MHz, A = 0.5).

Step 7. Let the two closed-loop poles be placed at

$$f_{cp1} = \frac{f_o}{2}$$
 and $f_{cp2} = 2 f_o$

Step 8. Determine R_1 from Eq. 4:

$$R_1 = \frac{1}{2\pi f_{cp1} C_1}$$

Step 9. Determine C_f from Eq. 5:

$$C_f = \frac{1}{2\pi f_{cn2} R_f}$$

Step 10. Determine the differentiation error caused by nonideal op amp input parameters using Eq. 8.

Step 11. Compute the output noise as a function of frequency using Eqs. 9, 10, and 11.

DESIGN EXAMPLE As a practical example suppose we need to generate a rectangular waveform from a sawtooth waveform. The maximum input slope is given to be $\pm 0.1 \text{ V/}\mu\text{s}$. The resulting maximum output voltage should be ± 10 V.

Device Data (108 op amp)

 $V_{io} = 2 \text{ mV max at } +25^{\circ}\text{C}$

 $I_{io} = 0.2$ nA max at +25°C

 $V_n \approx 50 \text{ nV/Hz}^{1/2}$

 I_n (not specified for 108)

 $f_{op1} = 20 \text{ Hz (minimum compensation)}$

 $f_{op2} = 2$ MHz (minimum compensation) $f_u = 3$ MHz (minimum compensation)

 $R_{id} = 3 \times 10^7 \ \Omega$

Step 1. If we choose the power-supply voltages to be ±15 V, no possibility of nonlinear behavior due to op amp saturation will exist. Step 2.

$$R_f = \frac{v_o(\text{max})}{5 \times 10^{-4}} = \frac{10}{5 \times 10^{-4}} = 20 \text{ k}\Omega$$

Step 3.

$$C_1 = \frac{v_o(\text{max})}{R_f \frac{dv_i}{dt}}\bigg|_{\text{max}} = \frac{10}{(20,000)\ 0.1/10^{-6}} = 0.005\ \mu\text{F}$$

Step 4.

$$f_d = \frac{1}{2\pi R_c C_1} = \frac{1}{2\pi \times 20,000 \times 5 \times 10^{-9}} = 1,592 \text{ Hz}$$

Step 5. Let $R_p = R_f = 20 \text{ k}\Omega$ also.

We compute C_p from

$$C_p = \frac{10}{2\pi f_d R_p} = \frac{10}{2\pi \times 1,592 \times 20,000} = 0.05 \ \mu \, \text{F}$$

Step 6. Since the second pole of the op amp f_{op2} occurs at a frequency slightly below the unity-gain crossover frequency f_u , the factor A must be used.

$$A = \frac{f_{cp2}}{f_u} = \frac{2}{3}$$

thus

$$f_o = (Af_d f_n)^{1/2} = (0.667 \times 1,592 \times 3 \times 10^6)^{1/2} = 56,441 \text{ Hz}$$

Step 7.

$$f_{cp1} = \frac{f_o}{2} = 28.2 \text{ kHz}$$

 $f_{cp2} = 2f_o = 113 \text{ kHz}$

Step 8.

$$R_1 = \frac{1}{2\pi f_{cp1}C_1} = \frac{1}{2\pi \times 28,200 \times 5 \times 10^{-9}} = 1,129 \Omega$$

Step 9.

$$C_f = \frac{1}{2\pi f_{cp2} R_f} = \frac{1}{2\pi \times 113,000 \times 20,000} = 70 \text{ pF}$$

The differentiation error caused by the nonideal op amp input parameters is

$$\begin{split} \frac{dv_i}{dt} \bigg|_{\text{error}} &= \frac{1}{C_1} \bigg[\bigg(\frac{1}{R_1} + \frac{1}{R_{id}} \bigg) V_{io} + I_{io} \bigg] \\ &= \frac{(1/1,384 + 1/3 \times 10^7) 2 \times 10^{-3} + 2 \times 10^{-10}}{5 \times 10^{-9}} \\ &= 289 \text{ V/s error or} \\ &= 289 \text{ } \psi V/\mu \text{s error} \end{split}$$

We can determine the circuit output-voltage error using Eq. 1:

$$v_o(\text{error}) = -R_f C_1 \frac{dv_i}{dt}\Big|_{\text{error}} = -20,000 \times 5 \times 10^{-9} \times 289 = -0.0289 \text{ V}$$

Step 11. Since the 108 data sheets do not specify equivalent input-current noise, the differentiator output noise is simply

$$\begin{split} V_{on} &= \frac{V_n \{s^2 + s [(R_1C_1 + R_fC_1 + R_fC_f)/R_1R_fC_1C_f] + (1/R_1R_fC_1C_f)\}}{(s + 1/R_1C_1)(s + 1/R_fC_f)} \\ &= \frac{50[s^2 + (2.4 \times 10^5)s + 8.96 \times 10^8] \text{ nV}}{2 \times 10^7(s + 1.45 \times 10^5)(s + 5.81 \times 10^5)} \\ &= \frac{50(s + 3.793)(s + 2.36 \times 10^5)}{(s + 1.45 \times 10^5)(s + 5.81 \times 10^5)} \text{ nV} \\ &= \frac{50(jf + 604)(jf + 37,560)}{(jf + 23,077)(jf + 92,469)} \text{ nV} \end{split}$$

The noise ranges from 50 nV down to <1 nV over the differentiator useful frequency range (f_d to f_{cn1}).

REFERENCES

- 1. Best, R. E.: Differentiator Noise Is No Problem, Electron. Des., June 21, 1966, p. 92.
- 2. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers Design
- and Applications," p. 218, McGraw-Hill Book Company, New York, 1971.

 3. Philbrick, G. A.: "Applications Manual for Computing Amplifiers," p. 48, Nimrod Press, Boston, Mass., 1966.

15.2 INTEGRATOR

ALTERNATE NAMES Integrating amplifier, integral amplifier, definite-integral circuit, analog integrator, low-pass filter.

EXPLANATION OF OPERATION An ideal integrator produces an output voltage which is proportional to the integral of the input voltage. In other words, the output is proportional to the product of the amplitude and duration of the input. The integrator performs this mathematical operation on an instantaneous basis, producing an output proportional to the sum of the products of instantaneous voltages and vanishingly small increments of time. The result is an output exactly proportional to the area under a waveform.

The circuit shown in Fig. 15.3 performs integration by using an op amp to force the same current through both R_1 and C_f . The voltage across the feedback capacitor is related to capacitor current by

$$v_c = -\frac{1}{C_f} \int i_f dt$$

Since the circuit causes i_f to equal the input current $(i_i = v_i/R_1)$,

$$v_c = v_o = -\,\frac{1}{R_{\scriptscriptstyle 1}C_{\scriptscriptstyle f}}\int\! v_i\,dt$$

The gain of the circuit is given by $-1/R_1C_f$. Thus the output voltage will change by $-1/R_1C_f$ V/s for each volt of input. Numerically, the circuit performs integration in the following manner. For a start, assume $v_i = v_o = 0$, $R_1 = 10~\mathrm{k}\Omega$, and $C_f = 1~\mu\mathrm{F}$. Under these conditions no current will flow through R_1 or C_f . If a -1-V dc level is suddenly applied to v_i , a current of $v_i/R_1 = -1/10^4 = -100~\mu\mathrm{A}$ will immediately flow in R_1 . If we assume the op amp draws no current, $100~\mu\mathrm{A}$ must also immediately flow through C_f . To obtain a dc current of $100~\mu\mathrm{A}$ through C_f , we require a linear positive ramp

Fig. 15.3 A low-drift integrator with manual reset.

at v_o . The current through the capacitor must satisfy $i_f = C_f(dv_c/dt)$. The ramp at v_o will therefore have a slope of

$$\frac{dv_o}{dt} = \frac{i_f}{C_f} = \frac{-v_i}{R_1 C_f} = \frac{-(-1)}{10^4 \times 10^{-6}} = 100 \text{ V/s}$$

This is equivalent to saying

$$v_o = -\frac{1}{R_1 C_t} \int v_i dt = 100t$$

Since the input waveform can be sinusoidal or nonlinear, we have used the lowercase generalized nomenclature. The uppercase nomenclature is only for sinusoidal ac operations or dc parameters.

The op amp input offset voltage V_{io} and input offset current I_{io} add errors to the above equations. If R_p is not included in the circuit, the error caused by I_{io} is replaced by a larger error due to input bias current I_b . The output voltage with these errors included is

$$\upsilon_{o} = -\frac{1}{R_{1}C_{f}} \left(\int \! \upsilon_{i} dt \pm \int \! V_{io} dt \right) \pm \frac{1}{C} \int \! I_{io} dt \pm V_{io}$$

Note that V_{io} causes a small step voltage $\pm V_{io}$ and a \pm ramp with a gain of $1/R_1C_f$. However, I_{io} causes a \pm ramp with a gain of $1/C_f$. This latter error source may be reduced if the designer has the option available to increase C_f and lower R_1 . If this is done, one must realize that the input resistance is lowered and the leakage component of C_f will probably be increased. The leakage current through C_f must be less than I_b .

Fig. 15.4 Frequency characteristics of a typical integrator compared with a typical op amp.

If the finite gain of the op amp A_{vo} is considered, the transfer function of an integrator is

$$A_{vc} = \frac{v_o}{v_i} = \frac{-A_{vo}f_{op\,1}f_i}{(jf + A_{vo}f_{op\,1})(jf + f_i/A_{vo})}$$

where A_{vo} , f_{op1} , and f_i are defined in Fig. 15.4. The response of a practical integrator to a step function of amplitude -V is

$$v_o = A_{vo}V\bigg[1 - \frac{\exp(-t/A_{vo}R_1C_f)}{1 - f_i/A_{vo}f_{op\,1}} - \frac{\exp(-2\pi f_{op\,1}t)}{1 - f_{op\,1}A_{vo}/f_i}\bigg]$$

DESIGN PARAMETERS

Parameter	Description		
A_{vo}	Open-loop voltage gain of op amp at dc		
C_f	Feedback capacitor		
f_{cp1}	First-pole frequency of circuit		
f_{cp2}	Second-pole frequency of circuit		
$f_{cp2} \ f_i$	Characteristic frequency of integrator		
$f_{op 1}$	First-pole frequency of op amp		
f_u	Unity-gain crossover frequency of op amp		
i_f	Feedback capacitor current		
I_b	Op amp input bias current		
I_{io}	Op amp input offset current		
$R_{\scriptscriptstyle 1}$	Input resistor to circuit		
R_2	Resistor used to protect op amp inverting input from large transients		
	through C_f when power supplies are turned off (required only if		
	$C_f \ge 0.05 \ \mu\text{F}$		
R_f	Resistor used to reset integrator by discharging C_f		
R_p	Resistor used to nullify effects of I_b		
T_o	Equivalent time constant of op amp dominant pole		
T_s	Time to reset integrator to zero		
v_c	Capacitor voltage		
v_i	Input voltage to circuit		
V_{io}	Op amp input offset voltage		
v_o	Output voltage of circuit		

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Ideal output voltage	$v_o = -rac{1}{R_1C_f}\int\! v_i dt$
2	Output voltage considering nonideal op amp input current and voltage and assuming $R_1 = R_p$. If R_p is not used, $+I_b$ must replace $\pm I_{io}$	$egin{aligned} v_o = & -rac{1}{R_1C_f}igg(\int\! v_i dt \pm \int\! V_{io} dtigg) \ & \pmrac{1}{C}\int\! I_{io} dt \pm V_{io} \end{aligned}$
3	Transfer function of circuit considering finite op amp gain	$A_{vc} = \frac{v_o}{v_i} = \frac{-A_{vo}f_{op1}f_i}{(jf + A_{vo}f_{op1})(jf + f_i/A_{vo})}$
4	Response of circuit to a step-voltage input of $-V$	$\begin{aligned} v_o = A_{vo}V \bigg[1 - \frac{\exp(-t/A_{vo}R_1C_f)}{1 - f_i/A_{vo}f_{op1}} \\ - \frac{\exp(-2\pi f_{op1}t)}{1 - f_{op1}A_{vo}/f_i} \bigg] \end{aligned}$

15-12 INTEGRATORS AND DIFFERENTIATORS

Eq. No.	Description	Equation
5	Response of circuit for small values of time for a step-voltage input of $-V$	$v_o = rac{V}{R_1 C_f} \left[t + t_o + T_o \exp(-t/T_o) ight]$ where $T_o = rac{1}{2\pi f_{op1}}$
6	Response of circuit for large values of time for a step-voltage input of $-V$	$v_o = A_{vo}V[1 - \exp(-t/A_{vo}R_1C_f)]$
7	Optimum size for R_1 to minimize effects of I_{io} and V_{io} if $R_1 = R_p$	$R_{\scriptscriptstyle 1} = rac{V_{io}}{I_{io}}$
8	Optimum size for R_1 to minimize effects of I_b and V_{to} if $R_p = 0$	$R_1 = \frac{V_{io}}{I_b}$
9	Optimum size for reset resistor R_f if 0.1% accuracy in starting point is required	$R_f \le \frac{T_s}{7C_f}$
		NOTE: S_1 must be open and S_2 closed during reset
10	First pole frequency of integrator	$f_{cp1} = \frac{f_i}{A_{vo}}$
11	Integrator crossover frequency (characteristic frequency of integrator)	$f_i = \frac{1}{2\pi R_1 C_f}$

REFERENCE

1. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers – Design and Applications," p. 213, McGraw-Hill Book Company, New York, 1971.

Limiters and Rectifiers

INTRODUCTION

This chapter discusses circuits which modify signals only if their amplitude possesses certain magnitude or polarity characteristics.

The limiter does not modify the input signal until it rises to a given amplitude. Beyond this amplitude the signal is abruptly clipped. We will present design information on the conventional feedback circuit which performs

limiting by clipping all waveforms above a given magnitude.

Precision rectifiers alter the input signal depending on its instantaneous polarity. A half-wave rectifier can be made to remove either the positive or negative portions of a waveform. Likewise, the output signal can be chosen to display the selected polarity in either a positive or negative format. Full-wave rectifiers accept both input polarities. However, one of the input polarities becomes inverted so that the output is unipolar. Either type of rectifier can be operated with or without a filter capacitor in the feedback loop. Without this capacitor the output waveforms are of the same shape as the input, although their polarity may be inverted or amplified. The filter capacitor transforms the circuit into a precision ac-dc converter such that the output dc level is exactly proportional to the average value of the rectified input signal.

16.1 AMPLITUDE LIMITER

ALTERNATE NAMES Limited amplifier, volume compressor, amplitude leveler, feedback limiter, precision limiter, limiting amplifier.

EXPLANATION OF OPERATION Amplitude limiters are required in many systems where the amplitude of a signal cannot be allowed to exceed given positive or negative limits. This function is often done utilizing resistor/zener networks. A zener in the feedback network of an op amp will also accomplish the same function without excessive loading of the input signals. Extensive coverage of these circuits is given in the literature. These circuits all suffer from one common disadvantage, namely, any time or temperature variation of the zener breakdown voltage creates a circuit error of corresponding size. This may be acceptable for applications where amplitude limiting is performed only for protection or noise reduction. However, in

that class of circuits where the limiting voltage is an important system

parameter, a precision limiter, as described below, is required.

In this section we will cover, in detail, the design of the precision bridge-type amplitude limiter shown in Fig. 16.1. The diode bridge is placed in the forward loop of the feedback network. This means that the effects of all nonlinear, forward resistance, and temperature characteristics of the diodes will be divided by a factor of $1/\beta A_v$ in the closed-loop circuit. The transfer characteristics of the circuit, shown in Fig. 16.2, are therefore dependent only on resistor values and the two reference voltages V_{R1} and V_{R2} . The slope of

Fig. 16.1 A precision bridge-type amplitude-limiter circuit.

the linear region is identical to that of an inverting amplifier, namely, $-R_f/R_1$. The positive limiting output voltage is given by

$$V_o(\text{sat,pos}) = \frac{V_{R1}R_fR_4}{R_fR_4 + R_fR_2 + R_4R_2}$$

The negative limiting output voltage is

$$V_o({\rm sat},{\rm neg}) = \frac{V_{R2}R_fR_4}{R_fR_4 + R_fR_3 + R_4R_3}$$

In the linear region of circuit operation the four diodes are all forward-biased. The voltage v_a closely follows v_d and the circuit gain is

$$A_{vc} = -\frac{R_f}{R_1}$$

Note that no power can flow directly from v_a to v_d . All power for v_d comes through R_2 or R_3 . However, v_b and v_c are controlled by v_a , since v_a is a stiff source and draws current through D_1 and D_3 . If D_1 is conducting, v_b is one diode drop above v_a , and likewise v_d is one diode drop below v_b . If D_3 is conducting, v_c is one diode drop below v_a and v_d is one diode drop above v_c . In either case, $v_a \approx v_d$. Utilizing back-to-back diodes in series with the signal

flow allows cancellation of most of the temperature-induced changes of diode characteristics. Any residual error caused by a mismatch of diodes will be reduced by a factor of $1/\beta A_v$, since the diodes are within the forward loop of the feedback circuit.

If v_a was not present, the maximum positive v_d is set by the voltage divider composed of V_{R1} , R_2 , R_4 , and R_f . Likewise the most negative v_d is set by the voltage divider composed of V_{R2} , R_3 , R_4 , and R_f . v_a cannot swing v_d beyond these limits. If v_a swings positive beyond the upper limit, D_1 becomes reverse-biased and v_d remains at the upper limit shown in Fig. 16.2. If v_a swings negative, it reverse-biases D_3 at the limit shown in Fig. 16.2. Thus D_1 and D_3 are switches which cause the abrupt change in circuit characteristics when the limiting voltages are reached.

Fig. 16.2 Transfer function of precision bridge-type amplitude limiter.

DESIGN PARAMETERS

Parameter	Description
$\overline{A_v}$	Op amp open-loop gain as a function of frequency
A_{vc}	Closed-loop gain of circuit in linear region of operation
β	Feedback ratio due to R_t and R_t
D_1 to D_4	Diode bridge used to switch circuit from linear to limited
R_1	Input resistor which establishes input resistance of circuit
R_2 to R_3	Resistors which provide output current for diode bridge
R_4	Resistor used to refer output of diode bridge to ground
$R_{\rm f}$	Feedback resistor
R_{n}	Resistor used to minimize effects of op amp input bias current
v_a to v_d	Diode bridge voltages
v_i	Input voltage to circuit
v_o	Output voltage of circuit
$V_o(\text{sat,pos})$	Positive limited output voltage
V _o (sat,neg)	Negative limited output voltage
V_{R_1}	Magnitude of positive reference voltage
V_{R2}^{R1}	Magnitude of negative reference voltage

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Voltage gain of circuit in linear region assuming ideal op amp and diode parameters	$A_{vc} = \frac{v_o}{v_i} = -\frac{R_f}{R_1}$
2	Voltage gain of circuit in linear region assuming finite op amp gain	$A_{vc} = \frac{-R_f/R_1}{1+1/\beta A_v}$
3	Positive limiting output voltage	$V_o(\text{sat,pos}) = \frac{V_{R_1} R_f R_4}{R_f R_4 + R_f R_2 + R_2 R_4}$
4	Negative limiting output voltage	$V_o(\text{sat,neg}) = \frac{-V_{R2}R_fR_4}{R_fR_4 + R_fR_3 + R_3R_4}$

REFERENCE

1. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers – Design and Applications," p. 247, McGraw-Hill Book Company, New York, 1971.

Fig. 16.3 Input-output waveforms and transfer functions of four basic precision half-wave rectifiers.

16.2 PRECISION HALF-WAVE RECTIFIER

ALTERNATE NAMES Polarity selector, ideal half-wave rectifier, ideal diode, zero-bound circuit, precision AM detector, precision ac-dc converter, low-level ac-dc converter.

EXPLANATION OF OPERATION This circuit comes in four basic configurations. Figure 16.3 shows pictorially the input-output relationship of these four basic circuits along with a plot of each transfer function. A precision half-wave rectifier performs very closely to the expected response of an ideal diode. Figure 16.4B shows the response expected if one could produce an ideal diode. The ideal diode possesses several advantages relative to the silicon diode. First, the ideal diode can rectify signals down to zero volts amplitude. Second, the forward-conduction region of an ideal diode is linear.

In the inverting half-wave precision rectifier circuit shown in Fig. 16.5 the two ideal properties discussed above can be approached with nearly zero error. The circuit will rectify low-level signals with peak voltages of only $0.7/A_v$. If $A_v = 1,000$, precision linear rectification of a 0.7-mV signal is possible.

The circuit operates by providing two gains. For one polarity of input, D_1 is reverse-biased and D_2 is forward-biased. Under these conditions the gain of the circuit is $\pm R_f/R_1$ (+ for Fig. 16.6 and – for Fig. 16.5). If the opposite-polarity input is applied, D_1 is forward-biased and D_2 is reverse-biased. The gain of the circuit then becomes zero. The slope of the linear gain and the breakpoint are insensitive to temperature owing to the $1/A_r$ factor.

Fig. 16.4 Typical V-I curve of a silicon diode (A) and an ideal diode (B).

Figure 16.6 shows the circuit configuration for the noninverting precision half-wave rectifier.

Several sources of error are possible in the circuits of Figs. 16.5 and 16.6. If the op amp output offset voltage approaches 0.7 V, D_1 or D_2 may begin to conduct. This will add a dc component to v_0 which may be falsely interpreted as a rectified ac signal. The portion of this error voltage due to the op amp input offset voltage may be eliminated by adding a coupling capacitor in series with R_1 . This will cause the dc gain of the circuit to equal unity.

Fig. 16.5 Inverting precision half-wave rectifier (solid lines for positive-polarity selection and dashed lines for negative-polarity selection).

Fig. 16.6 Noninverting precision half-wave rectifier (solid lines for positive-polarity selection and dashed lines for negative-polarity selection).

Even though mid-band ac signals will be amplified by R_f/R_1 , the input offset voltage will be multiplied by 1. If R_p is made equal to R_f , a further reduction in offset is possible by cancellation of the effects of each input bias current.

Capacitor C_f is added to the circuit if a dc output voltage proportional to the peak input voltage is required. The magnitude of this dc voltage is given in Eq. 5.

DESIGN PARAMETERS

Parameter	Description	
$\overline{A_v}$	Op amp open-loop gain (varies with frequency)	
A_{vo}	Op amp de open-loop gain	
A_{vc}	Closed-loop gain of circuit during linear-gain portion of cycle	
$B^{\circ\circ}$	Variable used in computations	
C_1	Input isolation capacitor to reduce errors due to input offset voltage	
C_f	Feedback capacitor used to provide dc output instead of half-wave rectified ac	
D_1	Provides an effective feedback resistance of zero ohms during portion of waveform when no output voltage is required	
D_2	Passes op amp output on to V_0 terminal during portion of waveform	
_	when undistorted output is required	
f_m	Modulating frequency of input carrier frequency f_c	
f_c	Carrier frequency of input waveform	
$f_{ m max}$	Maximum frequency at which high-accuracy performance can be achieved	
f_u	Unity-gain frequency of the op amp (gain crossover frequency)	
I_b	Input bias current of op amp	
I_{io}	Input offset current of op amp	
$\vec{R_1}$	Controls gain and input resistance of circuit	
R_f	Controls gain of circuit. R_f also controls degree of filtering provided by C	
R_{id}	Op amp differential input resistance	
R_o^{\cdots}	Op amp output resistance	
R_n	Resistor used to minimize offset due to input bias current	
$R_p S$	Slew rate of op amp	
t_{rr}	Reverse recovery time of diodes	
$rac{\Delta V_i}{\Delta t}$	Fastest slew rate of input waveform	
v_i	Input voltage	
\overrightarrow{V}_{io}	Input offset voltage of op amp	
v_o	Output voltage	

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Voltage gain of circuit if solid diode connections are used $(C_f = 0)$	INVERTING $A_{vc} = \frac{v_o}{v_i} = -\frac{R_f}{R_1} \text{ if } v_i > 0$ $A_{vc} = 0 \text{ if } v_i < 0$ NONINVERTING $A_{vc} = \frac{v_o}{v_i} = 1 + \frac{R_f}{R_1} \text{ if } v_i > 0$ $A_{vc} = 0 \text{ if } v_i < 0$

Eq. No.	Description	Equation
2	Voltage gain of circuit if dashed diode connections are used $(C_f = 0)$	$\begin{aligned} &\text{Inverting} \\ &A_{vc} = \frac{v_o}{v_i} = -\frac{R_f}{R_1} \text{ if } v_i < 0 \\ &A_{vc} = 0 \text{ if } v_i > 0 \\ &\text{Noninverting} \\ &A_{vc} = \frac{v_o}{v_i} = 1 + \frac{R_f}{R_1} \text{ if } v_i < 0 \end{aligned}$
3	Input resistance	v_i R_1 $A_{vc} = 0$ if $v_i > 0$ INVERTING $R_{in} = R_1$ NONINVERTING $R_{in} = A_v R_{id}$
4	Size of filter capacitor C_f	$\frac{1}{2\pi f_c R_f} \ll C_f \ll \frac{1}{2\pi f_m R_f}$
5	Magnitude of dc output voltage if C_f utilized	INVERTING $V_o(\mathrm{dc}) = -\frac{0.45\ v_i(\mathrm{rms})R_f}{R_1}$ NONINVERTING $V_o(\mathrm{dc}) = 0.45\ v_i(\mathrm{rms})\Big(1+rac{R_f}{R_i}\Big)$
6	Maximum high-accuracy frequency of circuit (error < 1%)	$f_{\text{max}} = \frac{f_u}{100 A_{vc} }$
7	Required slew rate of op amp for a nonsinusoidal input waveform	$S> A_{vc} rac{\Delta v_i}{\Delta t}$
8	Required slew rate of op amp for sinusoidal input	$S > 2\pi f_c A_{vc} v_i(ext{peak})$
9	Maximum dc offset voltage at op amp output	$V_o(\text{off,max}) = V_{io} \left(1 + \frac{R_f}{R_1} \right) + \frac{2I_b + I_{io}}{2R_f}$
10	Voltage gain of circuit if op amp gain is considered	In Eqs. 1 and 2 replace $\frac{R_f}{R_1}$ with $\frac{R_f A_v}{R_1 A_v + R_f}$
11	Optimum value of R_p	IF C_1 USED $R_p = R_f$ IF C_1 NOT USED $R_p = \frac{R_1 R_f}{R_1 + R_f}$
12	Maximum diode reverse recovery time so that output waveform will not be distorted	$t_{rr} < \frac{0.01}{f_c}$

Eq. No.	Description	Equation
13	Effective forward voltage drop of precision rectifier (note that this increases with frequency as A_v drops)	$V_f = \frac{0.7}{A_v}$ (silicon diodes assumed)

DESIGN PROCEDURE

Precision rectifiers are often utilized to extract a modulation frequency f_m from a carrier frequency f_c . This is called AM demodulation. In the following design procedure we will assume such an application. Other applications, such as AGC detectors, require a consideration of the topics to be discussed below. The inverting circuit (Fig. 16.5) will be assumed.

DESIGN STEPS

Step 1. Choose R_1 so that it equals the required input resistance of the circuit.

Step 2. Compute the maximum frequency f_{max} at which high-accuracy performance can be expected:

$$f_{\text{max}} = \frac{f_u}{100|A_{vc}|}$$

Step 3. Compute the required slew rate of the op amp

$$v_i = \text{sinusoid: } S > 2\pi f_c | A_{vc} | v_i(\text{peak})$$

$$v_i = \text{nonsinusoid: } S > A_{vc} \frac{\Delta v_i}{\Delta t}$$

Step 4. Compute $R_f = A_{vc}R_1$.

Step 5. If filtering of the rectified output is not required, skip steps 5 through 7 and do not install C_f . Compute

$$B = \left(\frac{f_c}{f_m}\right)^{1/2}$$

Step 6. Compute

$$C_f = \frac{B}{2\pi f_c R_f}$$

In this equation, B sets the ripple level of f_c in v_o .

Step 7. Verify

$$C_f = \frac{1}{2\pi f_m R_f B}$$

In this equation, B sets the degree of attenuation of f_m in v_o .

NOTE: C_f was found by a compromise above. It must be large enough to keep the f_c ripple low. However, it must be low enough so that the f_m modulation does not vanish. The above computation results in a geometric mean value for C_f .

Step 8. Compute the size of R_p required to minimize the effects of bias-current offset

$$R_p = \frac{R_1 R_f}{R_1 + R_f}$$

Step 9. Compute the dc output level for the median $v_i(rms)$ input.

$$v_o(\mathrm{dc}) = \frac{\pm 0.45 v_i(\mathrm{rms}) R_f}{R_1}$$

Polarity depends on the direction of D_1 and D_2 .

Step 10. If a negative v_o (filtered or unfiltered) is required, the solid diode connections shown in Fig. 16.5 are required. A positive output requires the dashed diode connections. The reverse recovery time t_{rr} of the diodes must be less than $0.01/f_c$ or the output waveform will be distorted.

Step 11. Compute the dc output error caused by V_{io} , I_b , and I_{io} . This will vary with temperature.

$$V_o(\text{offset,max}) = (A_{vc} + 1) \ V_{io}(\text{max}) + \frac{2I_b + I_{io}}{2R_f}$$

Step 12. Examine the feedback stability of the circuit using the seven causes of instability outlined in Chap. 3.

Step 13. If voltage-gain accuracy over temperature and power-supply variations is important, determine the magnitude of closed-loop gain for different values of open-loop gain using

$$A_{vc} = \frac{-R_f A_v}{R_1 A_v + R_f}$$

DESIGN EXAMPLE Assume a demodulator design is required which will efficiently extract a low-frequency modulation from a 7-kHz carrier frequency. The upper frequency component of the modulation is 2 Hz. A positive output waveform is required, but the negative portion of the input waveform contains the required information. Therefore, an inverting circuit is used.

Tentative Circuit-Performance Requirements

 $A_{vc} = -3$ $R_{in} = 2,000 \Omega$ $f_m = 2$ -Hz sine wave $f_c = 7$ -kHz sine wave $v_i(\text{peak-to-peak}) = 1 \text{ V}$ $v_o(\text{peak-to-peak}) = 3 \text{ V}$ Positive output with filtering

Maximum offset without external offset adjustment = 0.5 V

Op Amp Parameters (741)

 $f_u = 800 \text{ kHz}$ Maximum 3 V (peak-to-peak) frequency = 100 kHz $S(\min) = 0.5 \text{ V}/\mu\text{s}$ $V_{io}(\max) = 6 \text{ mV}$ $I_{io}(\max) = 0.5 \mu\text{A}$

 $I_b(\text{max}) = 1.5 \ \mu\text{A}$ $\phi_m(\text{open-loop}) = 80^\circ$

 $A_v^{m} = 25,000 \text{ if } V^{(\pm)} = \pm 2 \text{ V to } 250 \text{ k}\Omega \text{ if } V^{(\pm)} = \pm 20 \text{ V}$

Closed-loop bandwidth (normalized) = 1 at 25°C, 1.12 at -55°C, and 0.8 at 125°C

DESIGN STEPS

Step 1 $R_1 = R_{in} = 2,000 \Omega$.

Step 2

$$f_{\text{max}} = \frac{f_u}{100|A_{vc}|} = \frac{8 \times 10^5}{100 \times 3} = 2667 \text{ Hz.}$$

Step 3

$$S > 2\pi f_c | A_{vc} | v_i({
m peak}) = 6.28 \times 7 \times 10^3 \times 3 \times 0.5 = 0.066 \ {
m V}/\mu {
m S}$$

Step 4

$$R_2 = |A_{vc}|R_1 = 3 \times 2,000 = 6,000 \Omega$$

Step 5

$$B = \left(\frac{f_c}{f_m}\right)^{1/2} = \left(\frac{7,000}{2}\right)^{1/2} = 59.16$$

Step 6

$$C_1 = \frac{B}{2\pi f_c R_o} = \frac{59.16}{6.28 \times 7,000 \times 6,000} = 0.22 \ \mu \text{F}$$

Step 7

$$C_f = \frac{1}{2\pi f_m R_f B} = \frac{1}{6.28 \times 2 \times 6,000 \times 59.16} = 0.22 \ \mu \text{F}$$

Step 8

$$R_p = \frac{R_1 R_f}{R_1 + R_f} = \frac{2,000 \times 6,000}{2,000 + 6,000} = 1,500 \ \Omega$$

Step 9

$$V_o(\mathrm{dc}) = \frac{+0.45 \ v_i(\mathrm{rms}) \ R_f}{R_1} = \frac{0.45 \times 0.35 \times 6,000}{2,000} = +0.473 \ \mathrm{V}$$

Step 10 Appropriate D_1 and D_2 direction chosen for a positive output. The diode chosen is the IN191, which has a t_{rr} of 0.5 μ s. This satisfies the requirement $t_{rr} < 0.01/7,000 = 1.4~\mu$ s. Laboratory tests showed no distortion.

Step 11 The maximum output offset is

$$\begin{split} \Delta V_o &= (A_{vc} + 1) \ V_{io}(\text{max}) + \frac{2I_b + I_{io}}{2R_{\it f}} \\ &= 4 \times 6 \times 10^{-3} + \frac{2 \times 1.5 \times 10^{-6} + 0.5 \times 10^{-6}}{2 \times 6.000} = 24 \ \text{mV} \end{split}$$

Step 12 The 741 is internally compensated and has an open-loop phase margin of 80°. It is therefore unlikely that instability causes 1 or 2 in Chap. 3 will be applicable. The other potential instability causes are now considered:

3. The 741 has a maximum output resistance R_o of 300 Ω at 1 MHz. The capacitive load, in conjunction with R_o , must not create a pole near gain

crossover-otherwise the 80° phase margin will be reduced. If the pole is set at least ten times higher than the gain crossover frequency, the phase margin will not be reduced more than 6°. The load capacitance which will reduce the phase margin from 80 to 74° is

$$C_L = \frac{1}{2\pi (10f_u)R_c} = \frac{1}{(6.28)10^7(300)} = 53 \text{ pF}$$

More load capacitance than 53 pF could be allowed, since a phase margin of 74° is still quite high.

- 4. R_t is so low that little phase lag of the feedback network is likely. In fact, with C_t installed, the feedback network causes a lead in the loop gain.
 - 5. The resistance between the positive input and ground is 1500 Ω .
- 6. Careful board layout is required—depending on the op amp pin locations.
- 7. Ceramic 0.1-µF capacitors between each power-supply terminal to

ground are usually sufficient. Some op amps require much less than this. Step 13. The changes of dc closed-loop gain resulting from changes of dc open-loop gain are computed as follows:

$$A_{vc}(A_{vo} = 250 \text{ k}, \text{ dc}) = \frac{-R_f A_v}{R_1 A_v + R_f} = \frac{-6,000 \times 250,000}{2,000 \times 250,000 + 6,000} = 2.99996$$

$$A_{vc}(A_{vo} = 25 \text{ k}, \text{ dc}) = \frac{-6,000 \times 25,000}{2,000 \times 25,000 + 6,000} = 2.9996$$

The closed-loop gain changes only 0.01 percent from a 90 percent reduction of open-loop gain.

REFERENCES

- 1. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers Design and Applications," p. 245, McGraw-Hill Book Company, New York, 1971.

 2. Millman, J., and C. C. Halkias: "Integrated Electronics: Analog Digital Circuits
- and Systems," p. 572, McGraw-Hill Book Company, New York, 1972.

 3. Smith, J. I.: "Modern Operational Circuit Design," p. 36, John Wiley & Sons, Inc.,
- New York, 1971.
- 4. Kreeger, R.: Ac-to-dc Converters for Low Level Input Signals, EDN, Apr. 5, 1973, p. 60.

Logarithmic Circuits

INTRODUCTION

Logarithmic and antilogarithmic amplifiers are basic building blocks for many nonlinear circuits. They are also intrinsically useful by themselves as analog compressors and expanders. In this chapter we will first discuss, in detail, a high-precision-low-drift log amplifier. Second, design details will be systematically presented for an antilog amplifier.

Log and antilog amplifiers are mathematical inverses of each other. Their principal usefulness is in applications such as multipliers, dividers, and square-root circuits. We will discuss some of these more complex applications in Chap. 19.

17.1 DIFFERENTIAL LOGARITHMIC AMPLIFIER

ALTERNATE NAMES Log ratio circuit, log amplifier, log converter, data compressor, log subtracting circuit.

EXPLANATION OF OPERATION The differential log amplifier shown in Fig. 17.1 provides several useful types of transfer functions. Since it has differential inputs and adjustable gain, transfer functions of the following forms are possible:

$$\begin{split} v_o &= K \log_a v_1 \\ v_o &= K \log_a \left(\frac{v_1}{v_2}\right) = K \log_a v_1 - K \log_a v_2 \\ v_o &= K \log_a \left(\frac{1}{v_2}\right) = -K \log_a v_2 \end{split}$$

where K = gain of circuit

a = b as of logarithm, which can be set at e, 10, or any other useful number

There is really only one constant in the above equations, since logarithms of different bases are related to each other by a constant. For example, the relationship between logarithms to the bases 10 and e is

$$\frac{\log_{10} x}{\log_e x} = 0.4343$$

To simplify the following discussion, we will therefore work exclusively with natural logarithms (base e = 2.71828).

In Fig. 17.1 if we assume $R_1 = R_2$, $R_3 = R_4$, $R_5 = R_6$, $R_9 = R_{10}$, $R_{11} = R_{12}$, and $R_{13} = R_{14}$, the transfer function of the circuit is

$$v_o = rac{kTR_{15}R_{13}}{q(R_{16} + R_T)R_{11}} \ln \left(rac{v_1/R_7}{v_2/R_8}
ight)$$

Resistor R_T is a device having a positive linear temperature coefficient (a silicon resistor). It is used to cancel the T in the transfer function. Other-

Fig. 17.1 A differential-input logarithmic amplifier with adjustable gain and logarithm base.

wise v_o would vary linearly with temperature. T is the temperature in degrees Kelvin (273 K = 0°C).

Several other design tricks will keep this circuit from drifting with temperature. Transistors Q_1 and Q_2 should be a matched pair of devices on one chip. Ideally they should be gain-regulated such as the μ A726 temperature-controlled differential pair (Fairchild). This device has active temperature-regulating circuitry on the same chip as the matched pair so that external temperature sources have no effect on transistor parameters. A_1 and A_2 should also be a matched pair of op amps. Perhaps A_1 to A_4 could be a high-quality quad set of op amps on one chip.

This circuit is designed only for positive input voltages. Diodes D_1 to D_4 clamp the outputs of A_1 and A_2 to zero if negative input voltages are accidentally applied. The output v_0 however, can swing positive or negative as

shown in the plotted transfer function (Fig. 17.2).

Fig. 17.2 Transfer function of the differential log amplifier.

Feedback stability of A_1 and A_2 is controlled with R_9 , R_{10} , C_1 , and C_2 . Selection of these parts is quite difficult, since stability depends on the feedback factor, and the feedback factor depends on the input voltages v_1 and v_2 . Experience has shown that the following equations provide reasonable values for these four components:

$$R_9 = R_{10} = \frac{v_3(\max) - 0.7}{v_1(\max)/R_7 + v_3(\max)/R_{11}}$$
 $C_1 = C_2 = \frac{1}{\pi f_0 R_9}$

A tolerance of ± 20 percent is sufficient for these parts.

DESIGN PARAMETERS

Parameter	Description
A	Apparent resistance of R_T at 0 K (-273°C)
A_1, A_2	Differential-input log amplifiers
A_3	Summing differential amplifier
A_4	Temperature-compensating circuit
В	Slope of R_T as a function of temperature
β C_1 to C_2	Current gain of Q_1 and Q_2
C_1 to C_2	Feedback-stabilizing capacitors
D_1 to D_4	Diodes used to clamp A_1 and A_2 if a negative input voltage is acciden-
	tally applied to v_1 or v_2
E	Fractional error in transfer function
f_u	Frequency of open-loop unity gain $(A_1 \text{ and } A_2)$
I_{b1} to I_{b2}	Input bias current of A_1 and A_2
ΔI_{b1} to ΔI_{b2}	Change of input bias current of A_1 and A_2
k	Boltzmann's constant = 1.380×10^{-23} J/K
q	Electronic charge = 1.60×10^{-19} C
Q_1 to Q_2	Transistors which provide logarithmic characteristics to circuit
R_1 to R_4	Resistors to compensate for bulk-resistance effects of Q_1 and Q_2 at high levels
R_5 to R_6	Part of diode clamp circuits
R_7 to R_8	Gain-determining resistors
R_9 to R_{10}	Feedback-compensating resistors
R_{11} to R_{14}	Gain-determining resistors of differential summing amplifier A ₃
R_{15} to R_{16}	Determines gain of temperature-compensating circuit
R_{17} to R_{20}	A_1 and A_2 input offset adjustment to trim circuit at $v_0 = 0$
R_{Q1} to R_{Q2}	Effective collector-emitter resistance of Q_1 and Q_2
R_T	Positive-temperature-coefficient resistor
T	Temperature in kelvins (0 K = -273° C)
$V^{(\pm)}$	Power-supply voltages
v_o	Circuit output voltage
v_1 to v_2	Circuit input voltages
Δv_1 to Δv_2	Measurement errors in v_1 or v_2
V_{io1} to V_{io2}	Input offset voltages of A_1 and A_2
ΔV_{io1} to ΔV_{io2}	Change in input offset voltages of A_1 and A_2

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Output-circuit voltage assuming $R_1 = R_2$, $R_3 = R_4$, $R_5 = R_6$, $R_9 = R_{10}$, $R_{11} = R_{12}$, and $R_{13} = R_{14}$	$v_o = rac{kTR_{15}R_{13}}{q(R_{16} + R_7)R_{11}} \ln \left(rac{v_1/R_7}{v_2/R_8} ight)$
2	Error in measurement of v_1 due to A_1 input errors (important at low v_1 levels)	$\Delta v_1 = \pm V_{io1} + R_7 I_{b1}$
3	Error in measurement of v_2 due to A_2 input errors (important at low v_2 levels)	$\Delta v_2 = \pm V_{io2} + R_8 I_{b2}$ NOTE: The above two errors can be mostly canceled out at one temperature with the R_{18} potentiometers. If A_1 and A_2 have identical parameter drifts with temperature, Δv_1 and Δv_2 will cancel over temperature

Eq. No.	Description	Equation
4	Required relationship among R_1 , R_3 , and R_7 to cancel the effects of bulk resistance in Q_1 (important at high v_1 levels)	$R_{Q1} = \frac{R_1 R_7}{R_1 + R_3}$
5	Required relationship among R_2 , R_4 , and R_8 to cancel the effects of bulk resistance in Q_2 (important at high v_2 levels)	$R_{Q2} = rac{R_2 R_8}{R_2 + R_4}$
6	Approximate dynamic range possible for v_1 input (assuming no cancellation of errors in A_3)	$rac{v_1(ext{max})}{v_1(ext{min})} pprox rac{kTE^2R_7/qR_{Q1}(ext{min})}{\Delta V_{io1}(ext{max}) + R_7 \Delta I_{b1}(ext{max})}$
7	Approximate dynamic range possible for v_2 input (assuming no cancellation of errors in A_3)	$rac{v_2(ext{max})}{v_2(ext{min})} pprox rac{kTE^2R_8/qR_{Q2}(ext{min})}{\Delta V_{io2}(ext{max}) + R_8 \; \Delta I_{b2}(ext{max})}$
8	Resistor values R_1 , R_2	$R_1 = R_2 = 10 \ \Omega$
9	R_3	$R_3 = \frac{R_1 R_7}{R_{Q_1}(\min)} - R_1$
10	R_4	$R_4 = \frac{R_2 R_8}{R_{Q2}(\min)} - R_2$
11	R_5, R_6	$R_5 = R_6 = 10 \text{ k}\Omega$
12	R_7 , R_8	$R_{7}=R_{8}pproxrac{\Delta V_{io1}/\Delta T}{\Delta I_{b1}/\Delta T}$
13	R_9, R_{10}	$R_9 = R_{10} = \frac{(kT/q)\ln(v_1/v_2)(\max)}{[v_1(\max)/R_7] - [kT\ln(v_1/v_2)(\max)/qR_{11}]}$
14	p p	(assume $T = 300 \text{ K}$)
15	R_{11}, R_{12} R_{13}, R_{14}	$R_{11} = R_{12} = 10 \text{ k}\Omega$ $R_{13} = R_{14} = R_{11} \left[\frac{qv_o(\text{max})}{kT \ln(v_o/v_o)(\text{max})} \right]^{1/2}$
10	113, 114	E
		(assume T = 300 K)
16	R_{15}	$R_{15} = BT \left[\frac{qv_o(\max)}{kT \ln(v_1/v_2)(\max)} \right]^{1/2}$
		(assume $T = 300 \text{ K}$)
17	R_{16}	$R_{16} = -A$
18	R ₁₇	$R_{17} \ge 10R_7$
19	R_{18}	$R_{18} \geqq \frac{R_{17}}{10}$
20	R_{19}	$R_{19} pprox rac{V^{(+)} \; R_{20}}{100 \; V_{io1}({ m max})}$
21	R_{20}	$R_{20} \leqq \frac{R_{18}}{100}$

Eq. No.	Description	Equation
22	Resistance of positive- temperature-coefficient device	$R_T \approx A + BT$
23	Capacitor values: C_1 , C_2	$C_1 = C_2 \approx \frac{1}{\pi f_u R_9}$
24	Bulk resistance of Q_1	$R_{Q1} = \frac{kTR_7}{qv_1\beta}$
25	Bulk resistance of Q_2	$R_{q2} = \frac{kTR_8}{qv_2\beta}$

DESIGN PROCEDURE

Many complicating factors must be considered to design a high-quality log amplifier. We will assume that linearity is the most important parameter and let the other parameters be controlled by physical limitations imposed by the design equations.

DESIGN STEPS

Step 1. If A_1 and A_2 are identical op amps, R_7 and R_8 are determined from Eq. 12.

Step 2. Calculate the minimum expected bulk resistances of Q_1 and Q_2 using Eqs. 24 and 25.

Step 3. Compute values for R_3 and R_4 using Eqs. 8, 9, and 10 and the results of steps 1 and 2.

Step 4. Let $R_{11}=R_{12}=10~\text{k}\Omega$. Determine values for R_9 and R_{10} using Eq. 13.

Step 5. Compute values for R_{13} and R_{14} from Eq. 15.

Step 6. The resistance of most positive-coefficient temperature-sensitive resistors (silicon resistors) can be described by the form shown in Eq. 22. If the temperature could be extended down to 0 K (-273°C), its resistance would theoretically be A. The slope of resistance as a function of temperature is B. Use these numbers to compute R_{15} and R_{16} using Eqs. 16 and 17.

Step 7. Calculate values for C_1 and C_2 using Eq. 23.

Step 8. Calculate approximate values for R_{17} to R_{20} using Eqs. 18 to 21.

EXAMPLE OF LOG-AMPLIFIER DESIGN Suppose we wish to precondition analog data before they are applied to an analog-to-digital converter. Our goal is to keep the A/D error small by compressing the input voltage (which encompasses four orders of magnitude) into $\pm 10~\rm V$ (slightly more than 1 order of magnitude). The A/D converter accepts voltages from $-10~\rm to$ $+10~\rm V$. The input voltage to the log amplifier ranges from 0.001 to 10 V. The output voltage is to be zero when the input voltage is 0.1 V. The required transfer function, along with test data from a circuit designed with the following steps, is shown in Fig. 17.2.

Design Requirements

 $v_o(\text{max}) = \pm 10 \text{ V}$

 $v_1(\min) = 10^{-3} \text{ V}$

 $v_1(\text{max}) = 10 \text{ V}$

$$v_2 = 0.1 \text{ V (fixed)}$$

 $V^{(\pm)} = \pm 15 \text{ V}$

Device Data

$$\begin{array}{l} \Delta V_{io1} = \Delta V_{io2} = \pm 0.3 \; \mathrm{mV} \; (0 \; \mathrm{to} + 75 ^{\circ} \mathrm{C}) \\ V_{io1}(\mathrm{max}) = 1 \; \mathrm{mV} \\ \Delta I_{b1} = \Delta I_{b2} = 2 \; \mathrm{nA} \\ f_{u} = 10^{6} \; \mathrm{Hz} \\ R_{T} = 500 \; \Omega \; \mathrm{at} \; 300 \; \mathrm{K} \\ A = -730 \; \Omega \\ B = 4.1 \; \Omega/\mathrm{K} \\ \beta = 150 (\mathrm{max}), \; 100 \; \mathrm{at} \; I_{c}(\mathrm{max}) \end{array}$$

Step 1. R_7 and R_8 must be approximately

$$R_{7}=R_{8}pprox rac{\Delta V_{io1}/\Delta T}{\Delta I_{b1}/\Delta T}pprox rac{3 imes 10^{-4}}{2 imes 10^{-9}}pprox 150~{
m k}\Omega$$

Step 2. The minimum bulk resistances of Q_1 and Q_2 are

$$\begin{split} R_{\rm Q1}({\rm min}) &= R_{\rm Q2}({\rm min}) = \frac{kTR_7}{qv_1({\rm max})\;\beta[{\rm at}\;I_c({\rm max})]} \\ &= \frac{(1.38\times 10^{-23}\;{\rm J/K})(273\;{\rm K})1.5\times 10^5\;\Omega}{(1.6\times 10^{-19}\;{\rm C})(10\;{\rm V})(100)} \\ &= 3.53\;\Omega \end{split}$$

Step 3. From Eq. 8: $R_1 = R_2 = 10 \Omega$. Equations 9 and 10 provide

$$\begin{split} R_3 &= R_4 = \frac{R_1 R_7}{R_{Q1}(\text{min})} - R_1 = \frac{10(1.5 \times 10^5)}{3.53} - 10 \\ &= 425 \text{ k}\Omega \end{split}$$

Step 4. We let $R_{11}=R_{12}=10~{\rm k}\Omega$ as recommended. R_9 and R_{10} are found from

$$\begin{split} R_9 &= R_{10} = \frac{(kT/q) \mathrm{ln}(v_1/v_2) (\mathrm{max})}{\left[v_1(\mathrm{max})/R_7\right] - \left[kT \; \mathrm{ln}(v_1/v_2) (\mathrm{max})/q R_{11}\right]} \\ &= \frac{\left[(1.38 \times 10^{-23}) (300) / 1.6 \times 10^{-19}\right] \mathrm{ln}(10/0.1)}{(10/1.5 \times 10^5) - \left[(1.38 \times 10^{-23}) (300) \mathrm{ln}(10/0.1) / (1.6 \times 10^{-19}) 10^4\right]} \\ &= 2.176 \; \Omega \end{split}$$

Step 5. R_{13} and R_{14} are now found:

$$\begin{split} R_{13} &= R_{14} = R_{11} \left[\frac{q v_o(\text{max})}{k T \ln(v_1/v_2)(\text{max})} \right]^{1/2} \\ &= 10^4 \left[\frac{1.6 \times 10^{-19} \times 10}{1.38 \times 10^{-23} (300) \ln(10/0.1)} \right]^{1/2} = 91.6 \text{ k}\Omega \end{split}$$

Step 6. Equation 16 gives us R_{15} :

$$\begin{split} R_{15} &= BT \left[\frac{q v_o(\text{max})}{kT \ln(v_1/v_2)(\text{max})} \right]^{1/2} \\ &= (4.1)(300) \left[\frac{1.6 \times 10^{-19} \times 10}{1.38 \times 10^{-23} (300) \ln(10/0.1)} \right]^{1/2} \end{split}$$

= 11.3 k Ω (during test this resistor is trimmed so that $v_{\rm o} = 10$ when $v_{\rm 1} = 10$)

Equation 17 provides: $R_{16} = -A = -(-730) = 730 \Omega$

Step 7. Capacitor values are

$$C_1 = C_2 \approx \frac{1}{\pi f_u R_9} \approx \frac{1}{\pi 10^6 \times 2,176} \approx 146 \text{ pF}$$

Step 8. R_{17} to R_{20} are determined using Eqs. 18 to 21:

$$\begin{split} R_{17} & \geq 10 \ R_7 = 10 \ (150 \ \text{k}\Omega) = 1.5 \ \text{M}\Omega \\ R_{19} & \leq \frac{R_{17}}{10} = \frac{1.5 \times 10^6}{10} = 150 \ \text{k}\Omega \\ R_{20} & \leq \frac{R_{18}}{10} = \frac{150,000}{10} = 1,500 \ \Omega \\ R_{19} & \approx V^{(\pm)} \frac{R_{20}}{100V_{io1}(\text{max})} \\ & \approx \frac{15(1,500)}{100(10^{-3})} \approx 225 \ \text{k}\Omega \end{split}$$

REFERENCES

 Morgan, D. R.: Get the Most out of Log Amplifiers by Understanding the Error Sources, EDN, Jan. 10, 1973, p. 52.

2. Sheingold, D., and F. Pouliot: The Hows and Whys of Log Amps, *Electron. Des.*, Feb. 1, 1974, p. 52.

17.2 ANTILOGARITHMIC AMPLIFIER

ALTERNATE NAMES Antilog amplifier, inverse-log amplifier, antilog converter, data expander, exponential amplifier.

EXPLANATION OF OPERATION This circuit is merely a modification of the log circuit described in the last section. The antilog function is implemented in Fig. 17.3 by changing the connections to Q_1 and Q_2 in the log circuit of Fig. 17.1.

The relationship between input and output voltages in this circuit is

$$v_o = D \ \exp \ (-E v_1) \label{eq:vo}$$
 where $D = \frac{R_5 V_R (R_7 + R_8)}{R_1 R_7}$

$$E = -rac{R_1R_7}{kT(R_T+R_2+R_3)}$$

The D term is equal to the required output voltage when the input voltage is zero.

The R_T and R_2 terms in E establish the dynamic range of the antilog amplifier. For a given $\pm v_1(\max)$ input range, the total number of decades excursion of v_o increases as E increases in magnitude. The maximum input voltage range $\pm v_1(\max)$ is controlled mainly by the $R_T/(R_T+R_2)$ ratio. In some applications this ratio can be made quite large, so $\pm v_1(\max)$ may be many tens or hundreds of volts, if required. The resistor R_T must have a positive temperature coefficient to cancel the T term in Eq. 1 (see Design Equations).

The emitter saturation currents I_{E1} and I_{E2} will have no effect on v_o if they track over temperature. If they are not equal, they merely affect D (see

Fig. 17.3 Antilog amplifier formed by changing the input and feedback circuits of Fig. 17.1.

Fig. 17.4 Response of an antilog amplifier using component values computed in the example.

Eqs. 1 and 2); however, they still should be selected so their ratio remains constant over temperature.

The dynamic range of v_o is limited by V_n , I_n , V_{io} , I_b , and I_{io} of both op amps. In practice, only three or four decades of dynamic range is possible without going to expensive op amps and complex temperature-compensating circuits.

DESIGN PARAMETERS

Parameter	Description	
A	Apparent resistance of R_T at 0 K (-273°C)	
A_1 to A_2	Nonlinear amplifiers	
A_3	Buffer to extend output-voltage range	
В	Slope of R_T as a function of temperature	
C_1 to C_2	Feedback-stabilizing capacitors	
D	Output voltage when $v_i = 0$	
E	Determines dynamic range of circuit	
I_b	Op amp input bias current $(A_1 \text{ to } A_2)$	
I_{io}	Op amp input offset current $(A_1 \text{ to } A_2)$	
I_n	Equivalent rms input noise current of an op amp $(A_1 \text{ to } A_2)$	
k	Boltzmann's constant = 1.380×10^{-23} J/K	
N	Number of decades response of circuit on either side of $v_o = D$	
q	Electronic charge = 1.60×10^{-19} C	
Q_1 to Q_2	Transistors used to provide nonlinear transfer function	
R_1	Sets reference current into A_1	
R_2 to R_3	Part of temperature-compensation circuit	
R_4 , R_9	Provides feedback stability	
R_5	Establishes gain of A ₂ circuit	
R_6	Cancels effect of I_b in A_2	
R_7 to R_8	Establishes gain of A ₃ buffer stage	
R_T	Provides temperature compensation	
T	Temperature in kelvins ($0^{\circ}C = 273 \text{ K}$)	
v_o	Circuit output voltage	
v_1	Circuit input voltage	
v_e	Voltage at emitters of Q_1 to Q_2	
V_{io}	Input offset voltage of an op amp	
V_n	Equivalent rms input voltage noise of an op amp	
V_R	Reference voltage	

Eq. No.	Description	Equation
1	Circuit output voltage	$v_o = D \exp(-Ev_1)$
		where $D = \frac{R_5 V_R (R_7 + R_8)}{R_1 R_7}$
		$E = -\frac{q(R_T + R_3)}{kT(R_T + R_2 + R_3)}$
2	Voltage at junction of transistor emitters	$v_e = \frac{v_1(R_T + R_3)}{R_T + R_2 + R_3} - \frac{kT}{q} \ln \left(\frac{V_R I_{E2} R_5}{v_o I_{E1} R_1} \right)$
3	R_T , R_2 , and R_3 required to provide ${}^\pm N$ decades response of v_o about D (nominal v_o)	$\frac{R_T + R_3}{R_T + R_2 + R_3} = \frac{kTN \ln 10}{q v_1(\text{max}) }$

Eq. No.	Description	Equation
4	Resistor values, R_1	$R_1 = 10^6$ (chosen such that it does not load down V_R)
5	R_2	$R_2 = (R_T + R_3) \left[\frac{q v_1(\text{max}) }{kTN \ln 10} - 1 \right]$
		(T = 300 K)
6	R_3	$R_3 = -A$
7	R_4	$R_4 = 10 \text{ k}\Omega$
8	R_5, R_6	$R_5 = R_6 = \frac{DR_1}{10V_R}$
9	Capacitor C ₁	$C_1 = 100 \text{ pF}$
10	Resistance of R_T as a function of temperature	$R_T = A + BT$

DESIGN PROCEDURE

This antilog amplifier will provide the best performance over temperature if the transistors are a single-chip matched set. The op amps should be high-quality devices with low V_n , I_n , V_{io} , I_b , and I_{io} . Offset-adjustment terminals would also be a desirable feature. Resistor R_T provides most of the temperature compensation if $R_2 \gg R_T$. The circuit is trimmed for $v_o = D$ when $v_1 = 0$ using R_5 . Likewise, $v_o(\max)$ is trimmed when v_1 is fully negative using R_2 .

DESIGN STEPS

Step 1. The temperature characteristics of R_T must first be obtained. Most positive temperature-sensitive resistors (silicon resistors) can be described by the relationship shown in Eq. 10. The apparent resistance of R_T at 0 K is A. The slope of resistance as a function of temperature is B. Use A to determine R_3 using Eq. 6. (Note that A is a negative number, so R_3 will be positive.)

Step 2. Calculate a value for R2 using Eq. 5.

Step 3. Calculate values for R_5 and R_6 using Eq. 8.

EXAMPLE OF AN ANTILOG-AMPLIFIER DESIGN The three design steps will be numerically illustrated through the design of an antilog amplifier which is the inverse of the log amplifier designed in Sec. 17.1. This circuit will produce $v_o = +10^{-3}$ V if $v_1 = +10$ V and $v_o = +10$ V if $v_1 = -10$ V. If $v_1 = \text{zero}$, v_o should be 0.1 V, which is the geometric center of 10^{-3} V and 10 V.

Design Requirements

 $D = 0.1 \text{ V (output when } v_1 = 0)$

N = 2 (\pm decades response on either side of D)

 $\pm v_1(\text{max}) = \pm 10 \text{ V}$ $V_R = +5.00 \text{ V}$

Device Data

 $A = -730 \Omega$

A = -130 M $B = 4.1 \Omega/\text{K}$

 $R_T = 500 \Omega$ at 300 K

Step 1. Resistor R_3 is simply

$$R_3 = -A = -(-730) = 730 \Omega$$

Step 2. R_2 is calculated from

$$\begin{split} R_2 &= (R_T + R_3) \bigg[\frac{q |v_1(\text{max})|}{kTN \ln 10} - 1 \bigg] \\ &= (500 + 730) \bigg[\frac{1.6 \times 10^{-19} (10)}{1.38 \times 10^{-23} (300) 2 \ln 10} - 1 \bigg] = 102 \text{ k}\Omega \end{split}$$

Step 3. R_5 and R_6 are found from

$$R_5 = R_6 = \frac{DR_1}{10V_B} = \frac{0.1(10^6)}{10 (5)} = 2,000 \ \Omega$$

REFERENCES

- Sheingold, D., and F. Pouliot: The Hows and Whys of Log Amps, Electron. Des., Feb. 1, 1974, p. 52.
- "Logarithmic Converters," National Semiconductor Corp., Application Note AN-30, November 1969.

Modulators

INTRODUCTION

We will present systematized design information on three types of modulators in this chapter. Each of these modulators requires a corresponding demodulator, detector, discriminator, or decoder at the other end of the system to restore the information to its original form. These other circuits are discussed in Chaps. 7, 8, 14, and 16.

The first circuit we present will be the amplitude modulator—sometimes called the linear modulator. This circuit is similar in function to that used by AM broadcast stations to superimpose an audio signal on a high-frequency carrier signal. Multipliers, discussed in Chap. 19, can also be used for AM modulation.

Frequency modulation, or voltage-to-frequency conversion, is covered in

The second circuit to be presented is the pulse-amplitude modulator. This is similar to the amplitude modulator except that the circuit is optimized for pulse-handling efficiency. The last circuit will be a pulse-width modulator. This is a good modulator to use in digital systems which operate at fixed pulse voltages. It is also quite useful in high-power systems such as motor drives and switching power supplies.

18.1 AMPLITUDE MODULATOR

ALTERNATE NAMES AM modulator, linear modulator, linear amplitude modulator.

EXPLANATION OF OPERATION The carrier frequency is applied to the v_c terminal as shown in Fig. 18.1. The modulation input, at a lower frequency than v_c , is applied to v_m . An inverted replica of v_m appears at v_1 . Its amplitude and offset are controlled by R_2 and R_4 . The offset adjustment R_4 controls the modulation depth. The amplitude adjustment R_2 determines the final peak-to-peak amplitude of v_o .

On positive v_c cycles, switches S_1 and S_4 are turned on. In this state they look like a resistor (R_{on}) of 50 to 500 Ω , depending on the type of CMOS switch chosen. During this same time, switches S_2 and S_3 are off. In the off

state these devices look like a resistor (R_{off}) of many megohms. On negative v_c cycles just the opposite occurs: S_1 and S_4 are off and S_2 and S_3 are on.

Chopped versions of v_1 appear at v_2 and v_3 . Figure 18.2 shows that v_2 and v_3 are chopped on opposite half cycles of v_c . The amplitudes of v_2 and v_3 are smaller than v_1 depending on the size of the $R_8/(R_6+R_8)$ and $R_{11}/(R_7+R_{11})$ ratios. Voltage waveform v_2 is then inverted to create v_4 . Waveforms v_3 and v_4 are combined in the summing amplifier A_4 . Figure 18.2 shows the final v_0 result. The peak-to-peak magnitude of v_0 can again be adjusted using R_{12} , if required.

The only significant error source in this circuit is the magnitudes of $R_{\rm on}$ and $R_{\rm off}$ relative to R_6 , R_7 , R_8 , and R_{11} . For example, when S_1 is off and S_2 is on, the voltage at v_2 should be zero. Instead, it is approximately $v_2({\rm off}) \approx v_1 R_{\rm on}/R_{\rm off}$. Conversely, when S_1 is on and S_2 is off, the voltage at v_2 should be exactly $R_8/(R_6+R_8)$. In this case switch errors give us $v_2({\rm on}) \approx v_1 R_8/(R_{\rm on}+R_6+R_8)$. If R_8 is small, the error is significant. The errors at v_3 are similar in nature and are listed in the design equations.

Modulation depth adi Peak-to-peak amplitude adj R₉ -5 V R, +5 \ S A₃ 1/4 LM324 1/LM324 1 CD4016 S_2 1 CD4016 Out +5 V Out 5.I K S 1 CD4016 R12 \overline{v}_{c} in LM339 S3 1 CD 4016 Out LM324

Fig. 18.1 A precision amplitude modulator which uses CMOS switches.

Fig. 18.2 Voltage waveforms at various locations in Fig. 18.1. A sawtooth modulation waveform is assumed.

DESIGN PARAMETERS

Parameter	Description
A_1	Buffer amplifier which sets modulation depth and system gain
A_2	Comparator used to invert v_c
A_3	Amplifier used to invert v_2
A_4	Summing amplifier used to combine v_3 and v_4
I_{b4}	Input bias current of A ₄
R	Common value for R_6 to R_{11}
R_1 to R_2	Determines system gain for v_m
R_3 to R_4	Sets modulation depth
R_5	Limits current into A_2
$R_6, R_8 \text{ to } R_{10}$	Establishes magnitude of negative portion of output waveform
R_{7}, R_{11}	Establishes magnitude of positive portion of output waveform
R_{12}	Can be used in conjunction with R_2 to adjust system gain
$R_{\rm on},R_{\rm off}$	S_1 to S_4 on and off resistances
$R_{\rm in}$	Input resistance seen by v_m input
S_1 to S_4	CMOS switches
v_o	Circuit output-voltage waveform
Δv_o	DC offset in v_o caused by A_4
v_1 to v_4	Voltage waveforms as shown in Figs. 18.1 and 18.2
v_c , \bar{v}_c	Carrier input voltage and its inverse

Parameter	Description	
v_m	Modulation input voltage	
V _N	Most negative value of V_R	
\mathbf{V}_{n}^{N}	Most positive value of V_R	
$\stackrel{\cdots}{V_N}$ $\stackrel{}{V_P}$ $\stackrel{}{V_R}$	Reference voltage used to adjust modulation depth	
$V^{(+)}$	Power-supply voltages	

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Output voltage v_o when S_1 is on and S_2 is off (neglecting switch errors and op amp errors)	$v_o(-) = \frac{-R_2 R_9 R_{12}}{R_{10} (R_6 + R_8)} \left(\frac{v_m}{R_1} + \frac{V_R}{R_3} \right)$
2	Output voltage v_o when S_3 is on and S_4 is off (neglecting switch errors and op amp errors)	$v_o(+) = \frac{R_2 R_{12}}{(R_7 + R_{11})} \left(\frac{v_m}{R_1} + \frac{V_R}{R_3} \right)$
3	Peak-to-peak output voltage v_o when switch errors are included	$v_o(\pm) \approx rac{\pm R_2 R_{12} R_{ m off}}{(R+R_{ m on})(R+R_{ m off})+R R_{ m off}} \left(\!rac{v_m}{R_1} + rac{V_R}{R_3}\! ight)$
4	Voltage v_1 as a function of v_m and V_R	$v_1 = -R_2 \left(\frac{v_m}{R_1} + \frac{V_R}{R_3} \right)$
5	Voltage v_2 while S_1 is on and S_2 is off	$v_2 = \frac{R_8 v_1}{R_6 + R_8}$
6	Voltage v_3 while S_3 is on and S_4 is off	$v_3 = \frac{R_{11}v_1}{R_7 + R_{11}}$
7	${\rm Voltage}\ v_{\scriptscriptstyle 4}$	$v_4 = -\frac{R_9 v_2}{R_8}$
8	Voltage v_o	$v_o = -R_{12} \left(\frac{v_4}{R_{10}} + \frac{v_3}{R_{11}} \right)$
9	Resistor values R ₁	$R_1 \ge R_{\mathrm{in}}$ required
10	R_2	$R_2 < \frac{R_1(V^{(\pm)} -2)}{ \upsilon_m \max} \text{ or } < \frac{R_3(V^{(\pm)} -2)}{ V_R _{\max}} \text{ whichever is smaller}$
11	R_3, R_4	$R_3 = R_4 = R_1$
12	R_5	$R_{\rm 5} = {\rm zero~to~100~k\Omega}$ (use manufacturer's recommendation for $A_{\rm 2}$)
13	R_6 to R_{11}	$R = R_6 = R_7 = R_8 = R_9 = R_{10} = R_{11} = (R_{\text{on}} R_{\text{off}})^{1/2}$
14	R_{12}	$R_{12} = 2R_{11}$
15	Output offset due to I_{b4}	$\Delta v_o = I_{b4} R_{12}$

DESIGN PROCEDURE

We assume all op amps are operating from the same $V^{(\pm)}$ supplies. If a larger output is required, all stages or perhaps only A_4 can be connected to higher-

voltage supplies. Fewer power supplies are required if the comparator (A_2) , the four switches, and the three op amps can use the same voltages.

DESIGN STEPS

Step 1. Choose a comparator, switches, and op amps which utilize the same supply voltages. The \pm supply voltages must be at least 2 V higher than the \pm peak values expected at v_o .

Step 2. Choose R_1 to be greater than or equal to the minimum allowed

input resistance at v_m .

Step 3. Choose a range of values for V_R which is slightly larger than the expected positive and negative peaks of v_m . Set V_P and V_N equal to the two limits of this range.

Step 4. Use Eqs. 11 and 12 to obtain values for R_3 , R_4 , and R_5 . Resistor R_5 is usually between 1 and 5 k Ω , but the comparator (A_2) specification sheet should be consulted.

Step 5. Solve both portions of Eq. 10 to determine an optimum value

for R_2 . Let R_2 be less than the smaller value calculated.

Step 6. Use the CMOS switch specification to estimate $R_{\rm on}$ and $R_{\rm off}$ for these particular values of $V^{(\pm)}$, $v_1({\rm max})$, and $\pm v_c$. Calculate values for R_6 through R_{11} using Eq. 13.

Step 7. Rearrange Eq. 1 as follows to compute a value for R_{12} (let $R = R_6 = R_8 = R_9 = R_{10}$):

$$R_{12} = \frac{4 R R_1 v_o(\text{peak})}{3 R_2 v_m(\text{peak})}$$

To rearrange this equation, we assumed the nominal value for V_R would be $v_R / 2$.

If R_{12} is too large, the bias current of A_4 will cause an output offset. Calculate this offset using $\Delta v_o = I_{b4} \ R_{12}$. If the offset is more than can be tolerated, decrease R_{12} until a satisfactory offset is achieved. This change will lower the overall circuit gain, so an opposite change to the circuit transfer function must be made elsewhere. The best option is to lower all the R resistors by the same magnitude that R_{12} was lowered. This will slightly increase switching errors, but this is usually of less concern than a dc offset in v_o .

Step 8. Solve Eqs. 1 and 2 to make sure the correct positive and negative

peak output voltages will be achieved.

Step 9. Solve Eq. 3 to determine the worst-case expected errors in v_o .

EXAMPLE OF AN AM MODULATOR DESIGN Suppose we wish to modulate a 2-kHz carrier with transponder information between 3 and 100 Hz. The modulation signal has a maximum peak-to-peak amplitude of 4 V. The modulated carrier is required to have a peak-to-peak amplitude of 6 V.

Design Requirements

 $v_m = \pm 2$ V centered on zero $v_o = \pm 3$ V centered on zero $V^{(\pm)} = \pm 5$ V

 $R_{\rm in} \ge 5,000 \ \Omega$ $\Delta v_{\rm o}({\rm max}) = \pm 0.1 \ {\rm V}$

Device Data (+25°C)

 $R_{\rm on} = 580 \ \Omega$

 $R_{\rm off} = 4 \times 10^8 \,\Omega \,(125 \text{-nA leakage with 5 V})$

 $I_{b4} = 500$ nA (out of device, since this op amp has a PNP input stage)

Step 1. We choose one-fourth of an LM339 quad comparator for A_2 . This device works quite well from supply voltages of ± 5 V. If a ± 5 -V v_c is not available, the other three sections of the comparator can be utilized to square up and level shift the carrier input to the proper waveform. The 4016 quad CMOS switch is used for S_1 through S_4 . Three sections of the LM324 quad op amp are utilized for A_1 , A_3 , and A_4 . Both these devices also operate fairly efficiently from ± 5 V. Slightly better performance can be achieved in switch performance using ± 10 V, however.

Step 2. We will let $R_{in} = R_1 = 10 \text{ k}\Omega$. This satisfies the 5-k Ω minimum

input resistance.

Step 3. We will let $V_P = +5$ V and $V_N = -5$ V so that the same supply voltages can be used. This means, of course, that the ± 5 V must now be regulated. Otherwise, the depth of modulation (percent modulation) will vary with supply voltage.

Step 4. Equation 11 provides us with $R_3 = R_4 = R_1 = 10 \text{ k}\Omega$. For the

LM339 comparator we can let $R_5 = zero$.

Step 5. The two portions of Eq. 10 are computed as follows:

$$\begin{split} R_2 &< \frac{R_1[|V^{(\pm)}|-2]}{|v_m| \max} \\ &< \frac{10^4 \ (5-2)}{2} \\ &< 15,000 \ \Omega \\ R_2 &< \frac{R_3[|V^{(\pm)}|-2]}{|V_R| \max} \\ &< \frac{10^4 \ (5-2)}{5} \\ &< 6,000 \ \Omega \end{split}$$

Also,

We therefore let $R_2 = 5{,}000 \Omega$.

Step 6. The common value for R_6 through R_{11} is $R = (R_{\rm on}R_{\rm off})^{1/2} = 482 \text{ k}\Omega$.

Step 7. A value for R_{12} is found from

$$R_{12} = \frac{4RR_1 \ v_o(\text{peak})}{3R_2 \ v_o(\text{peak})} = \frac{4(482,000)10^4(3)}{3(5,000) \ 2} = 1.928 \ \text{M}\Omega$$

This resistance seems quite high, so we now calculate the dc offset in v_o due to A_4 input bias current:

$$v_o = I_{b4} R_{12} = (-5 \times 10^{-7}) \ 1.928 \times 10^6 = -0.965 \ \mathrm{V}$$

This is about ten times too large, so we make the following resistor changes (these changes will lower Δv_0 to 0.0964 V):

$$R_{12} = 193 \text{ k}\Omega$$

 $R = R_6 = R_7 = R_8 = R_9 = R_{10} = R_{11} = 48 \text{ k}\Omega$

Step 8. As a double check on our calculations above, we put values into Eqs. 1 and 2 to find the peak-to-peak v_o (assume $V_R = v_m(\text{peak})/2$)

$$\begin{split} \upsilon_o(-) &= \frac{-R_2 R_9 R_{12}}{R_{10} (R_6 + R_8)} \left[\frac{\upsilon_{\rm m}({\rm peak})}{R_1} + \frac{\upsilon_{\rm m}({\rm peak})}{2~R_3} \right] \\ &= \frac{-5,000 (48,000) 193,000}{48,000 (48,000) + 48,000)} \left[\frac{2}{10^4} + \frac{2}{2(10^4)} \right] = -3.015625~{\rm V} \end{split}$$

$$\begin{split} v_o(+) &= \frac{R_2 R_{12}}{R_7 + R_{11}} \left[\frac{v_m(\text{peak})}{R_1} + \frac{v_m(\text{peak})}{2 \ R_3} \right] \\ &= \frac{5,000(193,000)}{48,000 + 48,000} \left[\frac{2}{10^4} + \frac{2}{2(10^4)} \right] = +3.015625 \ \text{V} \end{split}$$

These peak voltages can be trimmed if R_2 or R_{12} is made adjustable.

Step 9. The peak-to-peak output voltage with switch errors accounted for is now calculated using Eq. 3:

$$\begin{split} \upsilon_o(\pm) &\approx \frac{\pm R_2 R_{12} R_{\rm off}}{(R+R_{\rm on})(R+R_{\rm off}) + R R_{\rm off}} \left[\frac{\upsilon_m({\rm peak})}{R_1} + \frac{\upsilon_m({\rm peak})}{2~R_3} \right] \\ &\approx \frac{\pm 5,000(193,000)~4 \times 10^8}{(48,000+580)(48,000+4 \times 10^8) + 48,000(4 \times 10^8)} \left[\frac{2}{10^4} + \frac{2}{2(10^4)} \right] \\ &\approx \pm 2.997334 \end{split}$$

Even though the R resistors had to be lowered by a factor of 10, the switch errors cause only an 18.2-mV error (3.015625 - 2.997334).

REFERENCES

- 1. Kelly, R. G.: Linear Modulator Has Excellent Temperature Stability, *EEE*, July 1968, p. 102.
- 2. Althouse, J.: Linear Amplifier Circuit Eliminates Transformers, *Electronics*, Mar. 21, 1966, p. 99.

18.2 PULSE-AMPLITUDE MODULATOR

ALTERNATE NAMES Pulse-height modulator, PAM, analog gate, gated amplifier, single-channel multiplexer, sampling gate.

EXPLANATION OF OPERATION This circuit is quite similar to the amplitude modulator in the previous section. In this case, however, a unipolar output is required; so the circuit is about 50 percent the size of Fig. 18.1. The pulses are applied to v_c and the modulation waveform drives the circuit at v_m . For the circuit shown in Fig. 18.3, v_c must cross through zero. If a logic circuit such as a TTL device is driving v_c , the + input of A_2 should be biased to +1.4 V. The object, of course, is to switch A_2 on and off so that \bar{v}_c (an inverted v_c) appears at its output.

The modulation input v_m can be centered about zero, or it can be exclusively positive or negative. The modulation depth adjustment R_4 is used to

place v_1 at the correct bias point.

Each time v_c goes high, S_1 turns on and S_2 turns off. During this time the voltage at v_2 is $v_1R_6/(R_5+R_6)$. In between pulses, when v_c is low, S_1 is off and S_2 is on. During this time the voltage at v_2 is very small ($\approx v_1R_{\rm on}/R_{\rm off}$). The voltage at v_o is inverted with a magnitude of $v_o = -v_2R_7/R_6$.

DESIGN PARAMETERS

Parameter	Description	
$\overline{A_1}$	Amplifier which controls the modulation gain and the depth of modulation	
A_2	Comparator used to invert v_c	
A_3	Buffer amplifier used to provide a low circuit output resistance and a constant load resistance to the switch circuit	
I_{b3}	Input bias current of A ₃	

Parameter Description			
R_1 to R_2	Controls modulation gain		
R_3 to R_4	Controls modulation range		
R_5	This resistor, along with R_6 , must be much larger than R_{on} so that switch errors are minimized		
R_6 to R_7	Along with R_5 , these resistors control the gain of A_3		
$R_{ m on},R_{ m off}$	On and off resistances of S_1 and S_2		
S_1, S_2	CMOS switches		
v_c, \bar{v}_c	Input carrier voltage (pulse train to be modulated)		
v_m	Modulation waveform used to control height of output pulses		
\mathbf{V}_{N}^{m}	Negative reference voltage		
\mathbf{V}_{P}^{N}	Positive reference voltage		
$\overrightarrow{\mathbf{V}}_{R}$	Reference voltage at wiper of R_4		
v_1	Output voltage from input buffer		
v_{2}	Output voltage from switches		
v_{o}	Circuit output pulse train		
Δv	Offset in output voltage due to input bias current of A_3		

Fig. 18.3 A pulse-amplitude modulator.

Eq. No.	Description	Equation
1	Output voltage v_o when S_1 is on and S_2 is off (neglecting switch errors and op amp errors)	$v_o(\text{on}) = \frac{R_2 R_7}{R_5 + R_6} \left(\frac{v_m}{R_1} + \frac{V_R}{R_3} \right)$
2	Output voltage v_o when S_1 is on and S_2 is off (switch errors included)	$v_o(\text{on}) = \frac{R_2 R_7 R_{\text{off}} \left[(v_m / R_1) + (V_R / R_3) \right]}{(R_5 + R_{\text{on}})(R_6 + R_{\text{off}}) + R_6 R_{\text{off}}}$

Eq. No.	Description	Equation
3	Output voltage v_o when S_1 is off and S_2 is on (due to switch errors only)	$v_o(\text{off}) = \frac{R_2 R_7 R_{\text{on}} \left[(v_m / R_1) + (V_R / R_3) \right]}{(R_5 + R_{\text{on}})(R_6 + R_{\text{off}}) + R_6 R_{\text{on}}}$
4	Output offset due to I_{b3}	$\Delta v_o = I_{b3} R_7$
5	Voltage v_1	$v_1 = -R_2 \left(\frac{v_m}{R_1} + \frac{V_R}{R_3} \right)$
6	Voltage v_2 while S_1 is on and S_2 is off (switch errors included)	$\upsilon_{2} = \frac{R_{6}R_{\rm off}\upsilon_{1}}{(R_{5} + R_{\rm on})(R_{6} + R_{\rm off}) + R_{6}R_{\rm off}}$

Fig. 18.4 Waveforms of the pulse-amplitude modulator.

REFERENCES

 Stojanovic, B.: Pulse Height Modulator Multiplies Voltage by Frequency, EEE, July 1968, p. 99.

2. Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers – Design and Applications," p. 398, McGraw-Hill Book Company, New York, 1971.

18.3 PULSE-WIDTH MODULATOR

ALTERNATE NAMES Voltage-to-pulse-width converter, two-state amplifier, switching-mode amplifier, pulse-duration modulator, PWM circuit.

Fig. 18.5 A pulse-width modulator utilizing two comparators $(A_1 \text{ and } A_3)$ and an integrator (A_2) .

Fig. 18.6 Waveforms at various locations in the pulse-width modulator.

EXPLANATION OF OPERATION Pulse-width modulation is used in a variety of applications where highly accurate and efficient control of power is required. PWM techniques are widely used in power supplies, motor controls, and even some hi-fi amplifiers. The circuit shown in Fig. 18.5 performs pulse-width modulation with two comparators $(A_1 \text{ and } A_3)$ and an integrator (A₂). A sine wave or a rectangular waveform with 30 to 70 percent duty cycle is applied to v_p . A_1 changes the v_p input to a 50 percent duty cycle square wave using its high open-loop gain along with an appropriate choice for V_R . Rectangular-input waveforms must have approximately 50 percent duty factor. Voltage waveform v_1 is integrated with A_2 to form a precise triangular waveform at v_2 (see Fig. 18.6).

The modulation input v_m is compared with the triangular waveform v_2 in the A_3 comparator. Whenever the triangular waveform is larger than v_m , v_o is low. If v_m is larger, v_o is high. The output-voltage pulse width is precisely proportional to v_m from pulse widths of 0 to 100 percent of the period

of v_n .

Fig. 18.7 Response of a typical PWM with various values of R_4 . It is assumed that $R_2 = 1,000\Omega$, $R_3 = 10 \text{ k}\Omega$, $C = 0.1 \mu\text{F}$, and f = 500 Hz.

High accuracy and low drift require a good integrator (A_2) . The comparators contribute little to the system errors.

For the sake of economy and compactness this design assumes operation from one positive power supply. The comparators can be in a common package or even one-half of a quad comparator chip. The op amp, however, must not drift, so it should be of good quality.

The feedback resistor R_4 is required to minimize A_2 drift. It must be small enough to prevent drift yet large enough so that it does not destroy the linearity of the modulator. Figure 18.7 shows the effect of this resistor on

linearity.

DESIGN PARAMETERS

Parameter	Description	
A_1, A_3	Standard open-collector comparators	
	Op amp with high-quality input characteristics	
$\frac{A_2}{C}$	Integration capacitor	
f_p	Input carrier frequency	
PWM	Pulse-width modulation (modulator)	
R_1 , R_6 to R_7	Provides comparator input protection if needed	
R_2 , R_8	Pull-up resistors for open-collector outputs of comparators	
R_3^2	Integration resistor	
R_4	Provides sufficient de feedback to stabilize A_2 gain to keep integrator in linear region	
R_5	Biases A_2 with a voltage equal to the average value of v_1 . This part is used to place v_2 in the linear region of A_2	
T_o	Output pulse width	
v_o	Output-voltage waveform	
v_1	Integrator input-voltage waveform	
v_2	Integrator output-voltage waveform	
$\overline{\mathbf{V}_A}$	Bias voltage for A ₂	
V_L	Lower limit of integrator output waveform (this is set equal to the lowest expected v_m input)	
v_m	Modulation input voltage – ranges from V_L to V_U	
v_p^m	Pulse or carrier input	
V_R	Switching point for A_1 (typically $+1.4$ V)	
$V_{ m sat}$	Voltage v_1 during saturation of A_1 output transistor	
$V_U^{\rm sat}$	Upper limit of integrator output waveform (this is set equal to the highest expected v_m input)	
V ^(±)	Power-supply voltages	

Eq.	Description	Equation
1	Output pulse width as a function of v_m	$T_o pprox rac{v_m - V_L}{f_p(V_U - V_L)}$ (where V_L and V_U are adjusted to put entire v_2 in linear range of A_2 using R_5)
2	Integrator output v_2 during v_1 on time assuming $R_4C > (R_2 + R_3)C$	$v_{2} pprox V_{U} - rac{t \left[V^{(+)} - V_{A} ight]}{C(R_{2} + R_{3})} + V_{A}$
3	Integrator output v_2 during v_1 off time assuming $R_4C > R_3C$	$v_2 \approx V_L - \frac{t(V_{\text{sat}} - V_A)}{CR_3} + V_A$
4	Required nominal V_A	$V_{\scriptscriptstyle A} pprox v_1$ (average) if $R_{\scriptscriptstyle 2} \ll R_{\scriptscriptstyle 3}$
5	Peak-to-peak triangle magnitude at integrator output	$v_2({ m peak}{ m -to-peak}) pprox rac{V^{(+)}}{4f_p CR_3} = v_m({ m max}) - v_m({ m min})$
6	Resistor values, R ₁	$R_1 = 0$ to 100 k Ω (depending on maximum allowable input currents and voltages for A_1)
7	R_2, R_8	$R_2=R_8=500$ to 5,000 Ω [should be $\ll R_3$ yet not so small that A_1 pulls excessive $V^{(+)}$ current]

Eq.	Description	Equation
8	R_3	$R_3 = \frac{V^{(+)}}{4f_p C[v_m(\text{max}) - v_m(\text{min})]}$
9	R_4	$R_4 = 2(R_2 + R_3)$
10	R_5	$R_5 = 1$ to 10 k Ω
11	R_6 to R_7	$R_6 = R_7 = R_1$
12	Feedback capacitor size	$C = 0.01$ to 1 μ F (see step 3 of Design Procedure)

DESIGN PROCEDURE

To simplify the calculations for this circuit, we have abbreviated many of the design equations. This procedure will provide a first-cut set of resistor values. Resistor R_5 should be adjustable as shown in Fig. 18.5 to trim the integrator range of operation. Otherwise the circuit has few problems and is easily designed.

DESIGN STEPS

Step 1. Select a value for $V^{(+)}$ which is equal to the required v_o pulse height. This supply voltage should be at least 3 V higher than the expected V_U .

Step 2. Select values for R_1 , R_2 , R_6 , R_7 , and R_8 according to the types of comparators picked for A_1 and A_3 . If the data sheet provides no recom-

mendation, let all these resistors equal 2,000 Ω .

Step 3. Select a capacitor C using the following "rough" selection guide:

f_p , Hz	$C, \mu F$
1-10	10
10-100	1
100-1,000	0.1
1,000-10,000	0.01

Step 4. Calculate a value for R_3 using Eq. 8. If R_3 is not at least ten times larger than R_2 , either of the following can be done:

1. Lower R_2 until $R_3 = 10R_2$. Be careful that the new R_2 does not cause

excessive output current to flow in A_1 during the v_1 low state.

2. Raise R_3 until $R_3 = 10R_2$. Capacitor C must be lowered so that Eq. 8 is still satisfied.

Step 5. Find values for R_4 and R_5 using Eqs. 9 and 10.

EXAMPLE OF A PULSE-WIDTH-MODULATOR DESIGN As a numerical illustration, we will design a pulse-width modulator which operates at $2~\rm kHz$. The $10-\rm V$ output pulse should vary from zero width to $0.5-\rm ms$ width as the modulation signal varies from $3~\rm to~6~\rm V$.

Design Requirements

 $T_o = 0$, corresponding to $v_m = 3$ V $T_o = 500 \ \mu s$, corresponding to $v_m = 6$ V $f_p = 2,000$ Hz $v_o(\text{peak}) = 15$ V

Device Data

$$V_{\text{sat}}(A_1) = 0.3 \text{ V (measured)}$$

Step 1. With a $v_o(\text{peak}) = 15\text{-V}$ requirement, we choose $V^{(+)} = 15 \text{ V}$.

Step 2. The LM339 quad comparator is chosen for A_1 and A_3 . This device can sink a maximum of 20 mA into its output terminal through R_2 or $R_{\rm s}$. If we want to keep power consumption down, suppose we let the current through R_2 and R_8 be 5 mA. This fixes the resistor values at $R_2 = R_8 =$ 15 V/5 mA = 3,000 Ω. Application notes for this device indicate that no input resistor is required. However, to prevent loading of A_2 , v_p , and v_m , we will let $R_1 = R_6 = R_7 = 2,000 \Omega$. Step 3. In accordance with the proposed "rough" selection guide, we

will let $C = 0.01 \,\mu\text{F}$.

Step 4. We now use Eq. 8 to find R_3 :

$$\begin{split} R_3 &\approx \frac{V^{(+)}}{4 f_p C \left[v_m(\text{max}) - v_m(\text{min}) \right]} \\ &\approx \frac{15}{4 (2,000) 10^{-8} (6-3)} = 62.5 \text{ k}\Omega \end{split}$$

This is much larger than ten times R_2 , so no recalculation is necessary. Step 5. Resistor R_4 is found from

$$R_4 = 2(R_2 + R_3) = 2(3,000 + 62,500) = 65.5 \text{ k}\Omega$$

We will choose a value of 10 k Ω for R_5 .

REFERENCE

1. Schmid, H.: Digital Meters for Under \$100, Electronics, Nov. 28, 1966, p. 88.

Multipliers and Dividers

INTRODUCTION

Multiplication and division of two or more analog quantities can be implemented with a variety of methods. Traditionally, the most popular approach has been to use a log amplifier in conjunction with an antilog amplifier. These two circuits can also be used to generate nearly any fractional exponent either below or above 1. At the cost of four op amps and two differential amplifiers both multiplication and division can be simultaneously provided with the log-antilog circuit. We will discuss the log-antilog multiplier/divider in Sec. 19.2.

Section 19.1 will provide design information on the voltage-controlled FET multiplier. This is probably the simplest and most easily implemented multiplier in the literature. Satisfactory performance can be achieved with this circuit only after the FET transfer characteristics are made linear. This is done with proper biasing and local feedback around the FET.

19.1 FET-CONTROLLED MULTIPLIER

ALTERNATE NAMES Voltage-controlled amplifier, analog multiplier, linear multiplier.

EXPLANATION OF OPERATION Field-effect transistors make nearly ideal voltage-controlled resistors. Their range of operation, however, is limited by several constraints which must be understood before their utility can be fully exploited. Field-effect transistors have a voltage-controlled drain-to-source resistance of $R_{DS} = V_p^2/I_{DSS}|v_c - 2V_p|$. We will let R_{DS} be the drain-to-source resistance of both Q_1 and Q_2 , since they are identical devices at the same temperature and use the same v_c .

The output of the A_1 stage in Fig. 19.1 is

$$v_o = -\frac{v_1 R_2 R_{10}}{(R_1 + R_2) R_{DS}}$$

But R_{DS} depends on the control voltage v_c . This control voltage depends on v_2 and V_R . For proper circuit operation V_R must be positive and v_2 can range from zero to a specified negative limit. These polarities must be observed. The current through R_{DS} is identical to the current through R_9 since A_2 draws

insignificant current. The control voltage v_c will force $R_{\rm DS}$ to the correct resistance so that these currents are equal. Since the inverting input of A_2 tries to remain at ground potential (because of feedback), we can draw the following conclusion:

$$I_{Q2} = \frac{v_4 - 0}{R_{DS}} = I_{R9} = \frac{0 - v_2}{R_9}$$

The voltage divider R_3 to R_4 provides us with

$$v_4 = \frac{V_R R_4}{R_3 + R_4}$$

Combining these two equations gives

$$R_{DS} = \frac{R_4 R_9 V_R}{|v_2| \ (R_3 + R_4)}$$

 Q_1 and Q_2 must be a matched pair on a single chip such as the 2N5196. The control voltage v_c drives the gates of both Q_1 and Q_2 . This guarantees that $R_{DS1} = R_{DS2}$. The final result for v_o is found by substituting the R_{DS} expression into the v_o expression:

$$v_o = -\; \frac{v_1 |v_2| R_2 R_{10} (R_3 + R_4)}{V_R R_4 R_9 (R_1 + R_2)} \label{eq:volume}$$

If we allow $R_1 = R_3$, $R_2 = R_4$, and $R_9 = R_{10}$, the above equation reduces to

$$v_o = -\frac{v_1|v_2|}{V_R}$$

Fig. 19.1 A linear multiplier which utilizes the voltage-controlled resistance property of field-effect transistors.

This circuit can even be used as a divider by allowing V_R to be an input variable. However, the available range for V_R is only several volts, which makes this option inadvisable. Also, if one attempts to drive the R_3 to R_{DS} to R_9 circuit backward by letting V_R be negative and v_2 positive, a lock-up condition will occur. The A_2 circuit has positive feedback in this situation. Suppose the inverting input of A_2 is a few microvolts more positive than ground. This will drive v_c negative, which causes R_{DS} to increase. This causes the A_2 inverting input to go more positive. In several microseconds (or less) v_c is driven to the negative saturation voltage of A_2 . This causes R_{DS2} and R_{DS1} to lock up at maximum resistance. The same thing occurs if the A_2 inverting terminal starts out several microvolts negative. A_2 quickly goes to positive saturation. We conclude that the polarities noted in Fig. 19.1 must be observed.

This circuit will exhibit less than 5 percent distortion only if the following are considered:

1. R_9 must be larger than $R_{DS}(\min)$.

2. The voltages at v_3 and v_4 must always be less than ± 1 V.

3. The control voltage v_c must operate only in the range from zero down to $2V_p$.

4. FETs with large V_p are used. Note, however, that A_2 must be able to

drive v_c down to $2V_p$.

5. R_{DS} (min) must be at least 100 times larger than R_2 or R_4 so that R_{DS} does not load the R_1 to R_2 and R_3 to R_4 dividers. This will cause an error which varies according to the magnitude of v_2 .

DESIGN PARAMETERS

Parameter	Description	
C_1, C_2	Capacitors required if A_1 or A_2 tend to be unstable (≈ 100 to 500 pF)	
FET	Field-effect transistor	
I_{DSS}	The drain-to-source current of an FET if $V_{GS} = 0$ and $V_{DS} = 5$ or 10 V	
I_{Q1}, I_{Q2}	Drain-to-source current through Q_1 or Q_2	
I_{R9}	Current through R_9	
Q_1, Q_2	Field-effect transistors	
R_1 to R_4	Input attenuators	
R_5 to R_8	FET biasing and feedback resistors	
R_9 to R_{10}	Determines overall gain of circuit	
R_{DS}	Drain-to-source resistance of an FET at a specified gate-to-source voltage	
R_{G1}, R_{GR}	Generator resistances for V_1 and V_R	
v_0 to v_4 , v_c	Voltages as noted in Fig. 19.1	
V_p	FET pinch-off voltage (where R_{DS} approaches infinity)	
V_R	Reference input voltage	
$V^{(\pm)}$	Positive and negative supply voltages	

Eq. No.	Description	Equation
1	Output voltage of circuit	$v_o = -\frac{v_1 v_2 R_2R_{10}(R_3 + R_4)}{V_RR_4R_9(R_1 + R_2)}$
2	Output voltage of circuit if $R_1 = R_3$, $R_2 = R_4$, $R_9 = R_{10}$	$v_{o} = -\frac{v_{1} v_{2} }{V_{R}}$

Eq. No.	Description	Equation
3	R_{DS} as a function of control voltage v_c	$R_{DS} = \frac{V_p^2}{I_{DSS} v_c - 2V_p }$
4	Minimum value for R_{DS} if non- linearity is to be minimized	$R_{DS}(\min) = \frac{ V_p }{2I_{DSS}}$
5	Maximum recommended value for R_{DS}	$R_{DS}(\max) = 10R_{DS}(\min)$
6	Minimum and maximum recommended $ v_2 $	$ v_2 =\frac{V_RR_4R_9}{R_{DS}(R_3+R_4)}$ NOTE: Use the minimum and maximum R_{DS} from Eqs. 4 and 5
7	Optimum range for v_c	$v_{\rm c}$ range = $2V_p$ to zero
8	Resistor values R_1 , R_3	$R_1 = R_3 > 100 \; R_{G1} \; {\rm or} \; 100 \; R_{GR} \; ({\rm whichever} \; {\rm is} \; {\rm larger})$
9	R_2, R_4	$R_2 = R_4 < \frac{R_{DS}(\min)}{100}$
10	R_5, R_6, R_7, R_8	$R_5 = R_6 = R_7 = R_8 > 1,000 R_2$
11	R_9, R_{10}	$R_9 = R_{10} = \frac{ v_o _{\text{max}} (R_1 + R_2) V_p }{2 v_1 _{\text{max}} R_2 I_{DSS}}$

DESIGN PROCEDURE

The design of this circuit begins by choosing a good-quality matched FET pair with a high V_p . The op amp A_2 must be able to swing to a negative output voltage twice the value of V_p .

DESIGN STEPS

Step 1. Choose a single-chip set for Q_1 and Q_2 which track I_{DSS} and V_p over temperature. A high value for V_p is also desirable. Choose good-quality op amps for A_1 and A_2 which will drive v_c more negative than $2V_p$ with several volts margin. Let the \pm power supplies be compatible with $\pm v_o(\max)$ and $2V_p$ with several volts margin.

Step 2. Compute $R_{DS}(\min)$ from Eq. 4. Choose a common value for R_2 and R_4 which is less than 1 percent of $R_{DS}(\min)$. Choose a common value for R_1 and R_3 which is at least 100 times larger than R_{G1} or R_{GR} .

Step 3. Calculate a nominal value for R_5 through R_8 using Eq. 10.

Step 4. Compute values for R_9 and R_{10} using Eq. 11.

Step 5. Determine the allowable range of v_2 from Eqs. 4, 5, and 6.

EXAMPLE OF MULTIPLIER DESIGN This circuit is a simple multiplier, and as would be expected, it has several limitations which should be recognized. Both v_1 and v_2 have definite limits over which linearity of $v_o = -v_1|v_2|/V_R$ can be expected. We will assume for this example that Q_1 and Q_2 are a 2N5196 dual-FET device and the op amp outputs can drive ± 15 V.

Design Requirements

$$\begin{array}{l} v_o = -v_1 |v_2|/5 \\ \pm v_o ({\rm max}) = \pm 5 \; {\rm V} \\ V^{(\pm)} = \pm 15 \; {\rm V} \\ v_1 \; {\rm range} = \pm 5 \; {\rm V} \\ V_R = +5.00 \; {\rm V} \; {\rm regulated} \end{array}$$

Device Data

$$V_p (Q_1, Q_2) = -3 \text{ V}$$
 measured on a 2N5196

Step 1. Dual-FET specification sheets do not usually specify the degree of matching and tracking over temperature of I_{DSS} and V_p . Fairly good results can be achieved if the dual device is on a single chip and has guaranteed tracking of 5 or 10 μ V/°C for differential gate-source voltage. This is often the only parameter specified over temperature. For this example we choose the 2N5196 dual FET which has a specified pinch-off voltage of -0.7 to -4 V. The device tested in this example measured -3 V for both Q_1 and Q_2 . The maximum required drive from A_2 is $2V_p = 2(-3) = -6$ V. We will use the 747 op amp for this application. The power supplies will be ± 15 V so that the maximum $v_0 = \pm 5$ V can be achieved.

Step 2. The minimum R_{DS} is

$$R_{\rm DS}({
m min}) = \frac{|V_p|}{2I_{\rm DSS}} = \frac{3}{2 \times 0.85 \times 10^{-3}} = 1,765 \ \Omega$$

The common value for R_2 and R_4 must be

$$R_2 = R_4 < \frac{1,765}{100} = 17.65 \ \Omega$$

We will use $17.4-\Omega$ precision resistors.

Assume the source resistances for v_1 and v_2 are 50 Ω . We should make $R_1 = R_3 \ge 100(50) = 5{,}000 \Omega$ at least. We will use $5{,}110{-}\Omega$ precision resistors.

Step 3. With Eq. 10 we get

$$R_5 = R_6 = R_7 = R_8 \ge 1,000 \ R_2 = 1,000(17.4) = 17.4 \ \text{k}\Omega$$

We will use $100-k\Omega$ resistors.

Step 4. R_9 and R_{10} are found with Eq. 11:

$$\begin{split} R_9 &= R_{10} = \frac{|v_o|_{\max}(R_1 + R_2)|V_p|}{2|v_1|_{\max}R_2I_{DSS}} \\ &= \frac{5(5,110 + 17.4)3}{2(5)17.4(8.5 \times 10^{-4})} = 520 \text{ k}\Omega \end{split}$$

Step 5. We first compute the minimum and maximum allowable R_{DS} from Eqs. 4 and 5:

$$\begin{split} R_{DS}(\mathrm{min}) &= \frac{|V_p|}{2I_{DSS}} = \frac{3}{2(0.85 \times 10^{-3})} = 1,765 \ \Omega \\ R_{DS}(\mathrm{max}) &= 10R_{DS}(\mathrm{min}) = 10(1,765) = 17,650 \ \Omega \end{split}$$

The range of allowable v_2 values is now determined with the help of Eq. 6:

$$\begin{split} |v_2|_{\min} &= \frac{V_R R_4 R_9}{R_{DS}(\max)(R_3 + R_4)} = \frac{5(17.4)520,000}{17,650(5,110 + 17.4)} = 0.50 \text{ V} \\ v_2(\max) &= \frac{V_R R_4 R_9}{R_{DS}(\min)(R_3 + R_4)} \\ &= \frac{5(17.4)520,000}{1,765(5,110 + 17.4)} = 5 \text{ V} \end{split}$$

Figure 19.2 shows the response of a circuit built according to the above calculations. The worst-case linearity error was 4.4 percent of full-scale output.

Fig. 19.2 Measured transfer function of multiplier shown in Fig. 19.1 built according to the design steps.

REFERENCES

- 1. Christie, W. C.: Multiply and Divide with a Dual Photo Resistor, *Electron. Des.*, vol. 21, p. 108, Oct. 10, 1968.
- 2. Mollinga, T.: The FET as a Voltage Controlled Resistor, EEE, January 1970, p. 58.
- 3. Graeme, J. G.: "Applications of Operational Amplifiers—Third-Generation Techniques," p. 97, McGraw-Hill Book Company, New York, 1973.

19.2 LOG-ANTILOG MULTIPLIER/DIVIDER

ALTERNATE NAMES Analog multiplier, analog divider, analog multiplier/divider, one-quadrant multiplier/divider.

EXPLANATION OF OPERATION Although operation is restricted to the first quadrant (for v_1 , v_2 , v_3 , and v_o), this circuit is extremely useful in a variety of applications. Linearity errors of less than 1 percent can be achieved if input offsets of A_1 , A_2 , and A_3 are properly handled. This minimal error is possible over two to three decades of input voltages.

The circuits of A_1 , A_2 , and A_3 are single-ended log amplifiers. Two of these

circuits are utilized in the log ratio circuit shown in Fig. 17.1. Note that Q_1 and Q_2 are effectively connected in series. This results in addition of logarithms or, in other words, multiplication of v_1 and v_2 . The output from A_1 and A_2 drives the A_4 antilog circuit and thereby produces the product of v_1 and v_2 at v_0 .

The output from A_3 is treated differently. This voltage subtracts current from Q_4 . Subtraction of logarithmic quantities results in division. The

final result is

$$v_o = \frac{v_1 v_2}{v_2}$$

The foregoing remarks will now be treated in mathematical terminology. Each output voltage from the three log amplifiers is equal to the emitter-base voltage of the transistor in its feedback loop. The following can be stated:

$$\begin{split} &v_4 = -\frac{kt}{q} \ln \frac{v_1}{R_1 I_{ES1}} = -v_{BE1} \\ &v_5 = -\frac{kt}{q} \ln \frac{v_2}{R_2 I_{ES2}} = -v_{BE2} \\ &v_6 = -\frac{kt}{q} \ln \frac{v_3}{R_3 I_{ES3}} = -v_{BE3} \end{split}$$

The bases of Q_1 and Q_3 are at ground potential (through 10 Ω). Starting at the base of Q_1 , we trace the following voltage loop:

$$v_{BE1} + v_{BE2} - v_{BE4} - v_{BE3} = 0$$

Transistor Q_4 has the following voltage-current relationship:

$$v_{BE4} = -\frac{kt}{q} \ln \frac{I_{C4}}{\alpha_4 I_{ES4}}$$

If this equation and the other equations for emitter-base voltages are substituted into the voltage-loop equation, we get

$$-\frac{kt}{q} \ln \frac{v_1}{R_1 I_{ES1}} - \frac{kt}{q} \ln \frac{v_2}{R_2 I_{ES2}} + \frac{kt}{q} \ln \frac{v_3}{R_3 I_{ES3}} + \frac{kt}{q} \ln \frac{I_{C4}}{\alpha_4 I_{ES4}} = 0$$

If $I_{ES1} = I_{ES2} = I_{ES3} = I_{ES4}$ and $\alpha_4 = 1$, this reduces to

$$-\ln\frac{v_1}{R_1} - \ln\frac{v_2}{R_2} + \ln\frac{v_3}{R_3} = -\ln I_{C4}$$

or

$$\ln I_{C4} = \ln \frac{v_1 v_2 R_3}{R_1 R_2 v_3}$$

Taking the antilog of each side,

$$I_{C4} = \frac{v_1 v_2}{v_3} \frac{R_3}{R_1 R_2}$$

the output voltage v_o is related to I_{C4} by $v_o = I_{C4}R_{10}$. The output voltage now becomes

$$v_o = \frac{v_1 v_2}{v_3} \frac{R_3 R_{10}}{R_1 R_2}$$

If we let $R_1 = R_2 = R_3 = R_{10}$,

$$v_o = \frac{v_1 v_2}{v_3}$$

The circuit of Fig. 19.3 can be easily converted into a square-root circuit. If v_0 is connected to v_3 and $v_2 = 1$ V,

$$v_{0} = \frac{v_{1}(1)}{v_{0}}$$
 or $v_{0} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{2} = v_{1}^{1/2}$
 $v_{3} = v_{1}^{1/2}$
 $v_{4} = v_{1}^{1/2}$
 $v_{5} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{2} = v_{1}^{1/2}$
 $v_{3} = v_{1}^{1/2}$
 $v_{4} = v_{1}^{1/2}$
 $v_{5} = v_{1}^{1/2}$
 $v_{6} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{2} = v_{1}^{1/2}$
 $v_{3} = v_{1}^{1/2}$
 $v_{4} = v_{1}^{1/2}$
 $v_{5} = v_{1}^{1/2}$
 $v_{6} = v_{1}^{1/2}$
 $v_{7} = v_{1}^{1/2}$
 $v_{8} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{2} = v_{1}^{1/2}$
 $v_{3} = v_{1}^{1/2}$
 $v_{4} = v_{1}^{1/2}$
 $v_{5} = v_{1}^{1/2}$
 $v_{6} = v_{1}^{1/2}$
 $v_{7} = v_{1}^{1/2}$
 $v_{8} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{2} = v_{1}^{1/2}$
 $v_{3} = v_{1}^{1/2}$
 $v_{4} = v_{1}^{1/2}$
 $v_{5} = v_{1}^{1/2}$
 $v_{6} = v_{1}^{1/2}$
 $v_{7} = v_{1}^{1/2}$
 $v_{8} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{2} = v_{1}^{1/2}$
 $v_{3} = v_{1}^{1/2}$
 $v_{4} = v_{1}^{1/2}$
 $v_{5} = v_{1}^{1/2}$
 $v_{6} = v_{1}^{1/2}$
 $v_{7} = v_{1}^{1/2}$
 $v_{8} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{2} = v_{1}^{1/2}$
 $v_{3} = v_{1}^{1/2}$
 $v_{4} = v_{1}^{1/2}$
 $v_{5} = v_{1}^{1/2}$
 $v_{7} = v_{1}^{1/2}$
 $v_{8} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{2} = v_{1}^{1/2}$
 $v_{3} = v_{1}^{1/2}$
 $v_{4} = v_{1}^{1/2}$
 $v_{5} = v_{1}^{1/2}$
 $v_{7} = v_{1}^{1/2}$
 $v_{8} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{2} = v_{1}^{1/2}$
 $v_{3} = v_{1}^{1/2}$
 $v_{4} = v_{1}^{1/2}$
 $v_{5} = v_{1}^{1/2}$
 $v_{7} = v_{1}^{1/2}$
 $v_{8} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{2} = v_{1}^{1/2}$
 $v_{3} = v_{1}^{1/2}$
 $v_{4} = v_{1}^{1/2}$
 $v_{5} = v_{1}^{1/2}$
 $v_{7} = v_{1}^{1/2}$
 $v_{8} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{2} = v_{1}^{1/2}$
 $v_{3} = v_{1}^{1/2}$
 $v_{4} = v_{1}^{1/2}$
 $v_{5} = v_{1}^{1/2}$
 $v_{6} = v_{1}^{1/2}$
 $v_{7} = v_{1}^{1/2}$
 $v_{8} = v_{1}^{1/2}$
 $v_{1} = v_{1}^{1/2}$
 $v_{2} = v_{1}^{1/2}$
 $v_{3} = v_{$

Fig. 19.3 A multiplier/divider which uses three log amplifiers and an antilog amplifier.

DESIGN PARAMETERS

Parameter	Description	
A_1 to A_3	Log-amplifier-circuit op amps	
A_4	Antilog-amplifier-circuit op amp	
α_4	Common-base current gain of Q_4	
β_1 to β_4	Common-emitter current gains of Q_1 to Q_4	
C_1 to C_4	Capacitors required for feedback stability	
f_{u1} to f_{u3}	Unity-gain crossover frequency of A_1 to A_3	
I_{C4}	Collector current of Q ₄	
I_{ES1} to I_{ES4}	Emitter saturation currents of Q_1 to Q_4	

Parameter	Description	
I_{io}	Input offset current of A_1 , A_2 , or A_3	
\tilde{k}	Boltzmann's constant = 1.38×10^{-23} J/K	
q	Electronic charge = 1.6×10^{-19} C	
Q_1 to Q_3	Transistors used in log amplifiers	
Q_4	Transistor used in antilog amplifier	
R_1 to R_3	Resistors used to determine gain of input stages and to provide a high input resistance	
R_4 to R_6 , R_{11}	Compensates for input bias currents of A_1 to A_4	
R_7 to R_9	Utilized to provide feedback stability in A_1 to A_3 circuits	
R_{10}	Determines overall gain of circuit along with R_1 to R_3	
$R_{\rm in}$	Input resistance of any input	
R_{S1} to R_{S3}	Source resistances of v_1 to v_3 sources	
T	Temperature in kelvins (273 K = 0°C)	
v_o to v_6	Voltages as noted in Fig. 19.3	
V_{BE1} to V_{BE4}	Base-to-emitter voltages of Q_1 to Q_4	
V_{io}	Input offset voltage of A_1 , A_2 , or A_3	

Eq. No.	Description	Equation
1	Output voltage of circuit as a function of the three input voltages	$v_o = rac{v_1 v_2}{v_3} rac{R_3 R_{10}}{R_1 R_2}$
2	Output voltages of three log amplifiers	$v_4 = -\frac{kt}{q} \ln \frac{v_1}{R_1 I_{ES1}}$
		$v_5 = -\frac{kt}{q} \ln \frac{v_2}{R_2 I_{ES2}}$
		$v_6 = -\frac{kt}{q} \ln \frac{v_3}{R_3 I_{ES3}}$
3	Output voltage of antilog amplifier as a	$v_o = I_{C4}R_{10}$
	function of its input current	where $I_{C4} = \frac{v_1 v_2}{v_3} \frac{R_3}{R_1 R_2}$
4	Resistor values R_1 , R_2 , R_3	$R_1 = R_2 = R_3 = R_{\rm in}$ required for each input NOTE: The source resistance must be at least 1,000 times smaller than each input resistor
5	R_4	$R_4 = R_1$
6	R_5	$R_5 = R_2$
7	R_6	$R_6 = R_3$
8	R_7	$R_7 \approx \frac{(kt/q) \ln v_1(\text{max})}{[v_1(\text{max})/R_1] - [v_2(\text{max})/R_2\beta_2]}$
9	R_8	$R_8 pprox rac{(kt/q) \ln v_2(\max)}{[v_2(\max)/R_2] + [v_o(\max)/R_{10}]}$
10	R_9	$R_{9} \approx \frac{(kt/q) \ln v_{3}(\mathrm{max})}{[v_{3}(\mathrm{max})/R_{3}] - [v_{o}(\mathrm{max})/R_{10}\beta_{4}]}$
11	R_{10}	$R_{10} = \frac{R_1 R_2 v_0(\text{max})}{R_3 (v_1 v_2 / v_3)(\text{max})}$

Eq. No.	Description	Equation
12	R ₁₁	$R_{11}=R_{10}$
13	Capacitor values C_1	$C_1 pprox rac{1}{\pi f_{u1} R_7}$
14	C_2	$C_2 pprox rac{1}{\pi f_{u2} m R_8}$
15	C_3	$C_3 pprox rac{1}{\pi f_{u3} m R_{ m e}}$

DESIGN PROCEDURE

We assume limits have already been placed on the magnitudes of v_1 , v_2 , v_3 , and v_a . Next we choose good-quality op amps which have low input offsets and stability in the unity-gain configuration. The matched transistor sets Q_1, Q_2 and Q_3, Q_4 should have no more than $10 \, \mu \text{V/}^\circ \text{C}$ differential v_{BE} temperature coefficient.

DESIGN STEPS

Step 1. Choose values for R_1 , R_2 , and R_3 which are at least 100 or 1,000 times larger than the source resistances of v_1 , v_2 , and v_3 . Also let $R_4 = R_1$, $R_5 = R_2$, and $R_6 = R_3$.

Step 2. Choose good-quality op amps for A_1 through A_4 . The input offset currents should be less than $v_1(\min)/R_1$, $v_2(\min)/R_2$, or $v_3(\min)/R_3$. Likewise, the input offset voltages should be smaller than $v_1(\min)$, $v_2(\min)$, or

Step 3. Use Eq. 11 to determine a value for R_{10} . Set $R_{11} = R_{10}$.

Step 4. Nominal values for R₇, R₈, and R₉ are found using Eqs. 8, 9, and 10. Any resistor within ±20 percent of the computed value will be sufficient.

Step 5. Compute nominal values for C_1 , C_2 , and C_3 using Eqs. 13, 14, and 15. Again, ± 20 percent tolerances are satisfactory.

EXAMPLE OF MULTIPLIER/DIVIDER DESIGN Let us assume a compact multiplier/divider is required using a quad op amp such as the 324. The inputs must range from 10 mV to 5 V, and v_0 must not exceed 10 V.

Design Requirements

 $v_{o} = 10 \text{ mV to } 10 \text{ V}$

 $v_1 = 10 \text{ mV to 5 V}$

 $v_2 = 10 \text{ mV to 5 V}$

 $v_3 = 10 \text{ mV to 5 V}$

Device Data (Room Temperature)

 $V_{io} = 7 \text{ mV maximum}$

 $I_{io} = 50 \text{ nA maximum}$

 $R_{S1} = R_{S2} = R_{S3} < 100 \ \Omega$

 $\beta_1 = \beta_2 = \beta_3 = \beta_4 = 100$ $f_{u1} = f_{u2} = f_{u3} = 10^6 \text{ Hz}$

Step 1. Given the source resistances of 100 Ω , we choose $R_1 = R_2 =$ $R_3 = 1,000 R_{S1} = 10^3(100) = 100 \text{ k}\Omega$. We also let $R_4 = R_5 = R_6 = 100 \text{ k}\Omega$.

Step 2. All three inputs are identical, so we compute

$$\frac{v_1(\min)}{R_1} = \frac{0.01}{10^5} = 100 \text{ nA}$$

This current is only twice the value of $I_{io}(\max)$, so $v_1(\min) = 10$ mV is truly a minimum. The maximum input offset voltage is 7 mV. This is also large enough so that v_1 , v_2 , or v_3 will not produce accurate results below 10 mV.

Step 3. R_{10} and R_{11} are computed from

$$\begin{split} R_{10} &= R_{11} = \frac{R_1 R_2 \upsilon_o(\text{max})}{R_3 (\upsilon_1 \upsilon_2 / \upsilon_3)(\text{max})} \\ &= \frac{10^5 \times 10^5 \times 10}{10^5 (10)} = 100 \text{ k}\Omega \end{split}$$

Step 4. Nominal values for R_7 , R_8 , and R_9 are

$$R_7 \approx \frac{(kt/q) \ln v_1(\max)}{[v_1(\max)/R_1] - [v_2(\max)/R_2\beta_2]} = \frac{[1.38 \times 10^{-23}(300)/1.6 \times 10^{-19}] \ln 5}{(5/10^5) - (5/10^5 \times 100)}$$

$$\approx 833 \Omega$$

We will use $R_7 = 1 \text{ k}\Omega$.

$$\begin{split} R_8 &\approx \frac{(kt/q) \, \ln \, \upsilon_2(\text{max})}{[\upsilon_2(\text{max})/R_2] + [\upsilon_o(\text{max})/R_{10}]} \\ &\approx \frac{[1.38 \times 10^{-23} (300)/1.6 \times 10^{-19}] \, \ln \, 5}{(5/10^5) + (10/10^5)} = 278 \, \, \Omega \end{split}$$

We will use $R_8 = 300 \Omega$.

$$\begin{split} R_9 &\approx \frac{(kt/q) \, \ln \, v_3(\text{max})}{\left[v_3(\text{max})/R_3 \right] - \left[v_o(\text{max})/R_{10} \beta_4 \right]} \\ &\approx \frac{\left[1.38 \times 10^{-23} (300)/1.6 \times 10^{-19} \right] \, \ln \, 5}{(5/10^5) - (10/10^5 \times 100)} = 850 \, \, \Omega \end{split}$$

We will use $R_9 = 1 \text{ k}\Omega$.

Step 5. The feedback-stability capacitors C_1 , C_2 , and C_3 are now computed:

$$C_1 \approx \frac{1}{\pi f_{\nu 1} R_7} = \frac{1}{\pi (10^6) 10^3} = 318 \text{ pF}$$

We will use $C_1 = 330 \text{ pF}$.

$$C_2 \approx \frac{1}{\pi f_{u2} R_8} = \frac{1}{\pi (10^6)300} = 1{,}061~\mathrm{pF}$$

We will use $C_2 = 1,000 \text{ pF}$.

$$C_3 \approx \frac{1}{\pi f_{u3} R_9} = \frac{1}{\pi (10^6) 10^3} = 318 \text{ pF}$$

We will use $C_3 = 330 \text{ pF}$.

REFERENCES

 Counts, L., and D. Sheingold: Analog Dividers: What Choice Do You Have?, EDN, May 5, 1974, p. 55.

2. National Semiconductor Corp. Application Note AN-4.

3. Dobkin, R. C.: Logarithmic Converters, IEEE Spectrum, November 1969, p. 69.

Multivibrators

INTRODUCTION

Many circuit functions which are ordinarily performed with digital microcircuits can also be performed with op amp circuits. Three of these digital-type functions will be discussed in this chapter. The astable multivibrator, or free-running rectangular-waveform generator, will be discussed first. This will be a generalized circuit which produces nonsymmetrical waveforms where both amplitude and time symmetry can be individually selected. The bistable multivibrator, commonly known as the flip-flop, will also be described in detail. Lastly, the monostable multivibrator, often called the one-shot or single-shot, will be presented. This last circuit will also contain a detailed example showing numerical results of the design steps.

These circuits are implemented much more easily (and require less space) with digital microcircuits. However, op amps provide a much wider selectable range of circuit parameters. The upper and lower amplitudes in digital microcircuits are usually fixed at +5 and ground or -12 and ground, etc. Op amp circuits provide the possibility of using any upper and lower amplitude which falls within the range of ± 20 V. Longer time constants are also possible using op amps with high input impedances.

20.1 ASTABLE MULTIVIBRATOR

ALTERNATE NAMES Free-running square-wave generator, rectangular-wave-form generator, square-wave generator.

EXPLANATION OF OPERATION The circuit shown in Fig. 20.1 generates a rectangular waveform with selectable positive and negative pulse widths. There are effectively three circuits in Fig. 20.1: (1) an integrator composed of C and R_1 (or R_2), (2) a comparator, performed by the op amp, and (3) a latch composed of the positive-feedback network R_4 and R_5 in conjunction with the op amp.

Circuit operation is as follows: Assume v_0 has just switched to $+V_{Z2}$. At this instant v_1 is at a voltage of $-\beta V_{Z1}$ and v_2 has just switched to $+\beta V_{Z2}$. The positive feedback through R_4 causes v_2 to be more positive than v_1 , so the op amp remains locked in this state. Meanwhile, the positive v_0 causes a current

to flow through D_1 and R_1 which charges C. The voltage across the capacitor increases according to

$$v_{\scriptscriptstyle 1} = (\beta V_{\scriptscriptstyle Z1} + V_{\scriptscriptstyle Z2} - V_{\scriptscriptstyle D}) \left[1 - \exp \! \left(\! - \frac{t}{R_{\scriptscriptstyle 1} C} \right) \right] \! - \beta V_{\scriptscriptstyle Z1}$$

When this voltage rises to just slightly above $+\beta V_{z_2}$, the op amp switches states and v_0 drops to $-V_{z_1}$. Simultaneously, v_2 drops to $-\beta V_{z_1}$. The negative

Fig. 20.1 Nonsymmetrical astable multivibrator.

output voltage begins to discharge C through R_2 and D_2 . During this period the capacitor voltage follows

$$v_1 = (V_{Z1} + \beta V_{Z2} - V_D) \exp\left(-\frac{t}{R_2 C}\right) - (V_{Z1} - V_D)$$

When v_1 decreases to slightly below $-\beta V_{Z1}$, the op amp switches states and the cycle repeats itself. Diodes D_1 and D_2 therefore allow totally different positive and negative pulse durations.

DESIGN PARAMETERS

Parameter	Description	
β	Voltage feedback ratio due to R_4 and R_5	
C	Capacitor used to determine durations of T_1 and T_2	
D_1	Diode which conducts during T_1	
$\hat{D_2}$	Diode which conducts during T_2	
I,	Op amp input bias current	
$\mathring{R_1}$	Resistor used to determine duration of T_1	
R_2	Resistor used to determine duration of T_2	
R_3^2	Resistor used to control zener current	
R_4 , R_5	Network for positive feedback	
T_1	Positive pulse duration	

Parameter	Description	
T_2	Negative pulse duration	
v_1	Voltage across C	
v_2	Voltage at op amp noninverting terminal	
v_{α}	Output voltage of circuit	
V_{z_1}	Breakdown voltage of Z ₁ plus the forward breakdown voltage of Z ₂	
$V_{z_2}^{z_1}$	Breakdown voltage of Z_2 plus the forward breakdown voltage of Z_1 during time when v_0 is positive	
Z_1, Z_2	Zener diodes used to establish positive and negative limits of output waveform	

Fig. 20.2 Waveforms at various locations in Fig. 20.1.

Eq. No.	Description	Equation
1	Duration of T_1 (in seconds)	$T_1 = R_1 C \ln \left[\frac{V_{22} + \beta V_{21} - V_D}{V_{22} (1 - \beta) - V_D} \right]$
		where $\beta = \frac{R_5}{R_4 + R_5}$
2	Duration of T_2 (in seconds)	$T_2 = R_2 C \ln \left[\frac{V_{Z1} + \beta V_{Z2} - V_D}{V_{Z1}(1 - \beta) - V_D} \right]$
3	Frequency of oscillation	$f = \frac{1}{T_1 + T_2}$

Eq. No.	Description	Equation
4	Duty cycle	$D = \frac{R_1}{R_1 + R_2} = \frac{T_1}{T_1 + T_2}$
5	Maximum size for R_1	$R_{_1} \ll rac{V_{Z2}}{I_b}$
6	Maximum size for R_2	$R_2 \ll rac{V_{Z1}}{I_b}$

REFERENCE

1. Graeme, J. G.: "Applications of Operational Amplifiers—Third-Generation Techniques," p. 164, McGraw-Hill Book Company, New York, 1973.

20.2 BISTABLE MULTIVIBRATOR

ALTERNATE NAMES Flip-flop, bipolar flip-flop, bistable flip-flop, one-bit memory, binary counter.

EXPLANATION OF OPERATION The flip-flop possesses two completely stable output states. A transition from one state to the other, or vice versa, occurs only upon the arrival of a trigger pulse. In the circuit of Fig. 20.3, two

Fig. 20.3 Bistable multivibrator with separate R and S trigger inputs.

separate trigger-pulse inputs are utilized. This type of flip-flop is commonly called the *R-S* flip-flop. A trigger pulse at the *S* input sets the output to a high state, and a trigger pulse at the *R* input resets the output to a low state. These input triggers do not need to be pulses, since dc coupling is used throughout the circuit. In effect, the circuit is a dual-input level detector with hysteresis (see Chap. 5).

Operation of the circuit is as follows: Assume that the output voltage v_o

is in the low state, $-V_{z_1}$. Also assume the S and R inputs are zero. The voltage at the op amp noninverting terminal v_2 is equal to βv_o where $\beta = R_3/(R_3 + R_4)$. Thus

$$v_2(\text{low}) = \frac{-R_3 V_{Z1}}{R_3 + R_4}$$

If the R input is zero, the voltage at v_1 is

$$V_{1} = \frac{V_{\rm ref}R_{2}}{R_{1} + R_{2}}$$

If $v_1 > v_2$, the op amp output will remain locked in the low state.

If a pulse (or any other waveform) is impressed on S with an amplitude sufficient to drive $v_2 > v_1$, the op amp output will switch to the high state of

$$v_o = V_{z_2}$$

The voltage at v_2 will likewise change to a steady-state value of $v_2(\text{high}) = R_3 V_{z_2} / (R_3 + R_4)$. During the time that v_s is present, a fraction of v_s equal to $v_s R_4 / (R_3 + R_4)$ will be superimposed on v_2 . This is shown in Fig. 20.4.

If a signal is impressed on R having a sufficient amplitude such that $v_1 > v_2$, the op amp output will switch (or reset) to the low state. As shown in Fig. 20.4, if the set pulse is of a longer duration than the reset pulse, v_0 may immediately switch back to the high state upon removal of the reset pulse. This will occur if $v_2 > v_1$ after the termination of the reset pulse.

This circuit can also operate with only one trigger input. Either the S or R input can be used as the single-input trigger terminal. For example, if

Fig. 20.4 Output of flip-flop for various waveforms at the R and S input terminals.

the S input is to be used, the R input would be grounded. A set trigger would need to have characteristics as described above. A reset trigger pulse, however, would be a negative pulse on the S input. The reset pulse must be more negative than

$$\upsilon_{N}\!=\!\frac{V_{\mathrm{ref}}R_{2}(R_{3}+R_{4})}{R_{4}(R_{1}+R_{2})}\!-\!\frac{R_{3}V_{Z2}}{R_{4}}$$

It is worth noting that if the R input is grounded, the circuit operation is identical to the noninverting level detector with hysteresis (see Sec. 5.4). If the S input is grounded, operation is identical to the inverting level detector with hysteresis.

DESIGN PARAMETERS

Parameter	Description	
β	Voltage feedback ratio of R_3 and R_4	
R	Reset input terminal	
R_1, R_2	Voltage divider used to establish trip level	
R_3, R_4	Voltage divider used to establish hysteresis (positive feedback)	
R_5	Resistor used to control zener-diode current	
S	Set input terminal	
v_o	Output voltage	
v_1	Voltage at op amp inverting terminal	
v_2	Voltage at op amp noninverting terminal	
$\tilde{ m V}_{ m ref}$	Reference-voltage source used to establish trip level of circuit	
V_{z_1}	Breakdown voltage of Z ₁ plus forward breakdown voltage of Z ₂	
V_{z_2}	Breakdown voltage of Z ₂ plus forward breakdown voltage of Z ₁	
Z_1, Z_2	Zener diodes which determine magnitudes of output high and low states	

Eq. No.	Description	Equation
1	Magnitude of high-state output voltage	$v_o(\mathrm{high}) = \mathrm{V}_{\mathrm{Z2}}$
2	Magnitude of low-state output voltage	$v_o(\mathrm{low}) = -V_{Z1}$
3	Magnitude of v_2 during high state (assuming S input is present)	$v_2(\text{high}) = \frac{R_3 \ V_{Z2} + R_4 \ v_S}{R_3 + R_4}$
4	Magnitude of v_2 during low state (assuming S input is present)	$v_2(\text{low}) = \frac{-R_3 \ V_{Z1} + R_4 \ v_S}{R_3 + R_4}$
5	Magnitude of v_1	$v_1 = rac{R_2 \ V_{ m ref} + R_1 \ v_R}{R_1 + R_2}$
6	Size of negative pulse required to reset circuit using S input	$v_R(\text{set terminal}) = \frac{V_{\text{ref}}R_2(R_3 + R_4)}{R_4(R_1 + R_2)} - \frac{R_3V_{Z2}}{R_4}$

20.3 MONOSTABLE MULTIVIBRATOR

ALTERNATE NAMES One-shot, single-shot, triggered pulse generator.

EXPLANATION OF OPERATION In the standby condition, the circuit output voltage is positive with a magnitude of V_{Z2} . v_2 is held at a fraction β of this positive voltage owing to the R_5 to R_6 voltage divider. Likewise, v_3 is held at $V_D (\approx 0.6)$ V by the forward breakdown voltage of D_1 . By making $\beta V_{Z2} > V_D$, the circuit is stable with the op amp positive input slightly more positive than

the op amp negative input.

When a negative trigger pulse appears at v_2 , it is amplified by the op amp. Positive feedback through R_5 and R_6 makes v_2 even more negative. The op amp then locks up with the output equal to $-V_{Z1}$. v_2 is locked up at $-\beta V_{Z1}$. R_3 begins to charge C_1 with a negative voltage. D_1 no longer conducts, as it is back-biased. When C_1 is charged down to a voltage slightly more negative than $-\beta V_{Z1}$, the op amp switches states again. The output returns to V_{Z2} . v_2 returns to βV_{Z2} and C_1 starts charging positively through R_2 and R_3 until D_1 conducts. When D_1 starts conducting, the circuit is reset and ready for a new trigger pulse.

Fig. 20.5 Basic monostable multivibrator.

DESIGN PARAMETERS

Parameter	Description		
В	Feedback factor for positive input terminal of the op amp		
C_1	Determines pulse width and reset time		
C_2	Part of input differentiator		
C_3 , C_4	Bypass capacitors – typically 0.01- to 0.1-μF ceramic for most op amps		
D_1°	Clamps negative input of op amp at +0.6 V during standby time		
D,	Selects negative trigger pulses from differentiator circuit		
D_3^2	Allows reset time to be shorter than pulse width		
L.	Standby current through R ₄		

Parameter	Description
I_b	Bias current into the op amp negative input terminal
I_{io}	Input offset current of op amp
R_1	Part of input differentiator
R_2	Determines reset time of circuit
R_3	Determines pulse width
R_4	Current limiter for Z_1 and Z_2
R_5, R_6	Voltage divider for positive feedback (determines feedback factor β)
R_p	Parallel resistance of R_1 and R_6
$R_{\text{out}}(+)$	Output resistance of circuit during standby (positive output)
$R_{\text{out}}(-)$	Output resistance of circuit during pulse (negative output)
R_{Z1}	Dynamic zener impedance (resistance) of Z_1 at chosen current level
R_{Z2}	Dynamic zener impedance (resistance) of Z ₂ at chosen current level
S	Slew rate of op amp
TC_{Z1}	Temperature coefficient of Z ₁ breakdown voltage (in %/°C)
TC_{Z2}	Temperature coefficient of \mathbb{Z}_2 breakdown voltage (in $\%/^{\circ}$ C)
T_p	Pulse width
T_r	Reset time—determines when circuit is ready for next trigger pulse
v_i	Input trigger waveform
v_1	Differentiated input waveform
v_2	Sum of 2 waveforms: (1) Negative trigger pulse formed by C_2 , R_1 , and D_2 .
	(2) A fraction β of the output waveform V_{ϱ}
v_3	Slowly varying waveform (due to C_1) which determines pulse width and
	reset time
v_o	Output pulse
V_{Z_1}	Breakdown voltage of Z_1 plus forward breakdown voltage of Z_2
V_{z_2}	Breakdown voltage of Z ₂ plus forward breakdown voltage of Z ₁
V ⁽⁺⁾	Positive supply voltage
V ⁽⁻⁾	Negative supply voltage
V(+,sat)	Maximum positive output saturated voltage of op amp
V(-,sat)	Maximum negative (most negative) output saturated voltage of op amp
X_{C2}	Reactance of C_2 to input waveform
Z_1	Determines negative peak voltage of output pulse
\mathbf{Z}_{2}	Determines magnitude of positive standby output voltage
Z_{in}	Input impedance of circuit to trigger waveform. For fast-trigger waveforms this is essentially equal to R_p

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Pulse width	$T_p = R_3 C_1 \ln \left(\frac{1 + 0.6 / V_{Z2}}{1 - \beta} \right)$
2	Pulse width if $R_5 = R_6$ and $V_{Z2} > 3 \text{ V}$	$T_p = 0.8 R_3 C_1$
3	Reset time	$T_r = \frac{R_2 R_3 C_1}{R_2 + R_3} \ln \left(\frac{V_{Z2} + \beta V_{Z1}}{V_{Z2} - 0.6} \right)$
4	Reset time if $R_5 = R_6$ and $V_{Z1} = V_{Z2} > 3 \text{ V}$	$T_r = \frac{0.5 \ R_2 R_3 C_1}{R_2 + R_3}$
5	$v_{ m 3}$ during pulse	$v_3(t) = (V_{Z2} + 0.6) \exp\left(\frac{-t}{R_3C_1}\right) - V_{Z2}$
6	v_3 during reset	$v_3(t) = (V_{22} + \beta V_{21}) \left\{ 1 - \exp\left[\frac{-t(R_2 + R_3)}{R_2 R_3 C_1}\right] \right\} - \beta V_{21}$

Eq. No.	Description	Equation
7	v_2 standby required	$v_2(\text{standby}) \ge 0.8 \text{ V}$
8	Input voltage required	$v_{i}({ m peak}{-}{ m to}{-}{ m peak},{ m required}) \ge 1.5\;{ m eta V}_{{ m Z}2}$
9	Differentiator time constant required	$\frac{V_{Z1} + V_{Z2}}{2S} < R_1 C_2 < \frac{T_p}{2}$
10	Loading of R_1	$R_6 \ll R_1$
11	Standby output resistance	$R_{\rm out}(+) = \frac{R_{\rm Z2}R_{\rm 4}}{R_{\rm Z2} + R_{\rm 4}}$
12	Output resistance during pulse	$R_{\text{out}}(-) = \frac{R_{Z1}R_4}{R_{Z1} + R_4}$
13	Feedback factor	$\beta = \frac{R_6}{R_5 + R_6}$
14	Input impedance	$Z_{\rm in} pprox X_{C2} + rac{R_1 R_6}{R_1 + R_6}$
15	Standby output current	$I_4(\text{standby}) = \frac{V(+, \text{sat}) - V_{22}}{R_4}$

DESIGN PROCEDURE

The amplitude and pulse width are usually the most important output characteristics for this circuit. In the following design procedure we assume these two parameters are of prime importance. Input and output impedances are also specified, but some compromise is possible. The input trigger voltage required and the maximum op amp output current are also specified. If these last two requirements cannot be met, input/output buffer stages may be necessary.

DESIGN STEPS

Step 1. Choose Z_1 and Z_2 . Z_2 sets the level of positive standby output voltage and as shown in Fig. 20.6, Z_1 sets the negative peak voltage of the pulse. Z_1 and Z_2 may be deleted if the op amp saturation characteristics are to be used for maximum and minimum voltages.

Step 2. R_4 must be chosen using two criteria. It must be low enough so that the circuit will have sufficient driving power. It must be high enough so that standby current I_4 through Z_2 is not excessive. The minimum R_4 is found from

$$R_4(\min) = \frac{V(+, \text{sat}) - V_{Z2}}{I_4(\max)}$$

The maximum R_4 is determined by the maximum allowable circuit output resistances. The circuit output resistances are $R_{\text{out}}(+)$ for standby and $R_{\text{out}}(-)$ during the pulse. $R_{\text{out}}(+)$ is the parallel combination of R_4 and the dynamic resistance of Z_2 . The dynamic resistance of a zener depends on its bias point. Thus the dynamic impedance of Z_2 depends on the size of R_4 . In most cases, however, $R_{zz} \leq R_4$ and R_4 need not be included in the calculation for $R_{\text{out}}(+)$. The other output resistance $R_{\text{out}}(-)$ is similarly computed.

In most cases it is nearly equal to R_{Z1} . The final compromise for R_4 will determine the standby current in R_4 :

$$I_4 = \frac{V(+, \text{sat}) - V_{z2}}{R_4}$$

Step 3. Find the sum of R_5 and R_6 as follows:

$$R_5 + R_6 = \frac{100 V_{Z2}}{I_4}$$

NOTE: For simplified algebra, set $R_5=R_6=50{\rm V}_{\rm Z2}/I_4$ and skip steps 4 and 5.

Step 4. R₆ is then found from

$$R_6 = \frac{100}{L_4}$$

Step 5. Compute

$$R_5 = \frac{100(V_{Z2} - 1)}{I_4}$$

Step 6. Solve

$$\beta = \frac{R_6}{R_5 + R_6}$$

Step 7. Set $R_1 = 10 R_6$.

Step 8. Compute the parallel resistance R_p of R_1 and R_6 :

$$R_p = \frac{R_1 R_6}{R_1 + R_6}$$

Is $R_p > Z_{in}$ (minimum)? If yes, Eq. 14 is satisfied. If no, the resistances of

 R_1 , R_5 , and R_6 must be increased.

Step 9. Is the slew rate of the op amp much faster than the rate required to form a good-quality pulse? Figure 20.6 shows the pulse degradation resulting when the op amp slew rate is not fast enough to form a pulse with steep sides. For example, assume T_p is to be 100 μ s wide and 10 V from standby to the (negative) pulse peak. If $S = 0.5 \text{ V}/\mu$ s, the rise and fall times of the pulse (0 to 100 percent) will each be 20 μ s.

Step 10. Find

$$C_2 = \frac{T_p}{R_1}$$

Also, check to make sure that $[(V_{z1} + V_{z2})/2S] < T_p$. If this inequality is not true, the chosen op amp is too slow for the chosen pulse amplitude $V_{z1} + V_{z2}$ and pulse width T_p . If R_1C_2 is too small, triggering will not occur. If R_1C_2 is too large, multiple output pulses will occur for each input pulse.

Step 11. Set $R_3 = R_5 + R_6$.

Step 12. Compute

$$C_1 = \frac{T_p}{R_3 \ln \left[(1 + V_D/V_{22})/(1 - \beta) \right]}$$
 if $R_5 \neq R_6$
 $C_1 = \frac{T_p}{0.8 R_2}$ if $R_5 = R_6$ and $V_{22} > 3 \text{ V}$

or $C_1 = \frac{1}{0.8 R_3}$ if $R_5 = R_6$ and $V_{Z2} > 3 V$ Step 13. Another option exists for the designer at this point. If the reset time T_r is not critical, it can be set equal to T_p . This means R_2 and D_3

can be deleted from the circuit and step 14 skipped.

Step 14. Resistor R_2 is found as follows:

$$R_2 = \frac{R_3 T_r}{R_3 C_1 \ln \{ [V_{z2} (1+\beta)] / (V_{z2} - V_D) \} - T_r}$$

Step 15. Check to see if R_2 and R_3 are in the range 10 k Ω to 1 M Ω . Also, make sure C_1 is in the range 1,000 pF to 2 μ F. Operation outside these ranges may produce oscillation problems or drift of T_p . Wide-bandwidth op amps (unity-gain crossover above several MHz) may perform satisfactorily with C_1 below 1,000 pF and R_2 , R_3 below 10 k Ω .

Fig. 20.6 Monostable multivibrator waveforms v_2 , v_3 , and v_0 .

Step 16. The next calculation determines the required size of trigger waveform:

$$v_i(\text{peak-to-peak, required}) = 1.5 \,\beta V_{zz}$$

If v_i (peak-to-peak) is less than 80 percent of the value computed above, triggering cannot be guaranteed.

Step 17. Error sources must be considered next.

1. If R_3 is large (>1 M Ω), op amp input bias I_b and offset I_{io} currents will affect T_p . These currents vary with temperature. The current through R_3 during the pulse ($\approx V_{Z_1}/R_3$) must be large compared with the maximum current I_b into the op amp negative input terminal. In summary, for a stable T_p ,

$$I_b(\max) + I_{io}(\max) \ll \frac{V_{Z1}}{R_3}$$

2. The pulse voltages (standby and peak negative) will vary with temperature, since these voltages are determined by Z_1 and Z_2 . Temperature-stable zeners can be used to hold these voltages constant.

DESIGN EXAMPLE

Tentative Circuit-Performance Requirements

$$\begin{array}{l} T_p = 200~\mu\text{s} \\ T_r = 50~\mu\text{s} \\ -V_{Z1} = -5.7~\text{V}~(1\text{N}5231) \\ V_{Z2} = +10.6~\text{V}~(1\text{N}5240) \\ v_i~(\text{peak-to-peak, available}) = 4~\text{V}~(\text{square wave}) \\ Z_{\text{in}} = 5,000~\Omega,~\text{minimum} \\ R_{\text{out}}(+) = 50~\Omega,~\text{maximum} \\ R_{\text{out}}(-) = 50~\Omega,~\text{maximum} \\ I_4 = 10~\text{mA},~\text{maximum} \end{array}$$

Op Amp Parameters (µA 741)

$$S = 0.5 \text{ V/}\mu\text{s}$$

 $I_{io} = 300 \text{ nA}$
 $I_b = 800 \text{ nA}$
 $V(+,\text{sat}) = +13 \text{ V}$
 $V(-,\text{sat}) = -13 \text{ V}$

Other Critical Parameters

$$R_{z_1}=35~\Omega$$
, maximum at 10 mA (1N5231) $R_{z_2}=35~\Omega$, maximum at 10 mA (1N5240) $TC_{z_1}=\pm0.03\%/^{\circ}\mathrm{C}$, maximum $TC_{z_2}=+0.075\%/^{\circ}\mathrm{C}$, maximum $V^{(+)}=+15~\mathrm{V}$ $V^{(-)}=-15~\mathrm{V}$

Step 1 Z_1 will be an 1N5231 zener diode which has a typical breakdown voltage of 5.1 V. Adding this 5.1 V to the 0.6-V forward breakdown voltage of Z_2 results in $-V_{Z1}=-5.7$ V, as required. Likewise, using a 10-V IN5240 for Z_2 results in a V_{Z2} of 10.6 V.

$$\begin{split} \textit{Step 2} & \qquad R_{4}(\min) = \frac{V(+, \text{sat}) - V_{Z2}}{I_{4}(\max)} = \frac{13 - 10.6}{0.01} = 140 \; \Omega \\ & \qquad R_{\text{out}}(+) = \frac{R_{4}(\min) \times R_{Z2}}{R_{4}(\min) + R_{Z2}} = \frac{240 \times 35}{240 + 35} = 30.55 \; \Omega \\ & \qquad R_{\text{out}}(-) = \frac{R_{4}(\min) \times R_{Z1}}{R_{4}(\min) + R_{Z1}} = \frac{240 \times 35}{240 + 35} = 30.55 \; \Omega \end{split}$$

 I_4 is set to 10 mA as originally specified since $R_{\rm out}(+)$ and $R_{\rm out}(-)$ are sufficiently low.

$$\begin{split} \textit{Step 3} \qquad & R_5 + R_6 = \frac{100 V_{Z2}}{I_4} = \frac{100 \times 10.6}{0.01} = 106,\!000 \; \Omega \\ \\ \textit{Step 4} \qquad & R_6 = \frac{100}{I_4} = \frac{100}{0.01} = 10^4 \; \Omega \\ \\ \textit{Step 5} \qquad & R_5 = \frac{100 (V_{Z2} - 1)}{I_4} = \frac{100 (10.6 - 1)}{0.01} = 96,\!000 \; \Omega \end{split}$$

$$\begin{split} Step~6 & \beta = \frac{R_6}{R_5 + R_6} = \frac{10,000}{106,000} = 0.0943 \\ Step~7 & R_1 = 10R_6 = 10^5~\Omega \\ Step~8 & R_p = \frac{R_1R_6}{R_1 + R_6} = \frac{10^5 \times 10^4}{1.1 \times 10^5} = 9,090.9~\Omega \end{split}$$

This resistance is greater than $Z_{in}(min)$, so we can proceed.

Step 9 $S = 0.5 \text{ V/}\mu\text{s}$, $T_p = 200 \mu\text{s}$, and peak-to-peak pulse output is 10.7 + 5.1 = 15.8 V. The op amp will slew 15.8 V in $15.8/S = 15.8/0.5 = 21.6 \mu\text{s}$.

Step 10
$$C_2 = \frac{T_p}{R_1} = \frac{2 \times 10^{-4}}{10^5} = 2,000 \text{ pF}$$

$$\frac{V_{Z1} + V_{Z2}}{2S} = \frac{5.7 + 10.6}{2 \times 0.5} = 16.3 \text{ } \mu\text{s} < T_p = 200 \text{ } \mu\text{s}$$

The inequality is satisfied.

Step 11
$$R_3 = R_5 + R_6 = 106,000 \ \Omega$$

Step 12

$$\begin{split} C_1 = & \frac{T_p}{R_3 \text{ln}[(1+0.6/\text{V}_{22})/(1-\beta)]} = \frac{2 \times 10^{-4}}{1.06 \times 10^5 \text{ln}[(1+0.6/10.6)/(1-0.0943)]} \\ = & 0.012 \ \mu\text{F} \end{split}$$

Step 13 $T_r < T_p$ is specified.

Step 14

$$\begin{split} R_2 &= \frac{R_3 T_r}{R_3 C_1 \mathrm{ln}\{[V_{Z2}(1+\beta)]/(V_{Z2}-0.6)\} - T_r} \\ &= \frac{(1.06 \times 10^5)(0.5 \times 10^{-4})}{(1.06 \times 10^5)(0.12 \times 10^{-6}) \; \mathrm{ln}\{[10.6(1+0.0943)]/(10.6-0.6)\} - 0.5 \times 10^{-4}} \\ &= 41.410 \; \Omega \end{split}$$

Step 15 C_1 , R_2 , and R_3 are all within the limits specified in this step. Step 16

$$\begin{array}{l} v_i(\text{peak-to-peak, required}) = 1.5 \beta V_{z2} = 1.5 (0.0943) (10.6) \\ = 1.50 \text{ V (peak-to-peak)} \end{array}$$

Step 17

1.
$$\dot{I}_b(\text{max}) + I_{io}(\text{max}) = 800 \text{ nA} + 300 \text{ nA} = 1.1 \ \mu\text{A}.$$

$$\frac{V_{Z1}}{R_3} = \frac{5.6}{1.06 \times 10^5} = 52.8 \ \mu A$$

Since $52.8 \gg 1.1$, T_p will be constant with temperature. This assumes C_1 and R_3 are also low-drift components.

2. $TC_{Z1} = \pm 0.03\%$ /°C for the IN5231 $TC_{Z2} = +0.075\%$ /°C for the IN5240

The two output-voltage levels V_{Z1} and V_{Z2} will have the same temperature coefficients as stated above.

MULTIVIBRATORS 20-14

REFERENCES

- Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers Design and Applications," p. 392, McGraw-Hill Book Company, New York, 1971.
 Millman, J., and C. C. Halkias: "Integrated Electronics Analog Digital Circuits and Systems," p. 581, McGraw-Hill Book Company, New York, 1972.

Oscillators

INTRODUCTION

In this chapter we will provide detailed design information on two popular oscillator circuits. First to be described is the popular Wien-bridge sinewave oscillator. The circuit presented will be a superior design which has controlled amplitude and frequency stability. The second circuit presented is a voltage-controlled square-wave generator.

Other types of oscillators are presented elsewhere in this handbook. Chapter 20 contains detailed design information on the basic square-wave generator. Several types of waveform generators are presented in Chap. 27.

21.1 WIEN-BRIDGE SINE-WAVE OSCILLATOR

ALTERNATE NAMES Phase-shift oscillator, AGC oscillator, sine-wave generator.

EXPLANATION OF OPERATION A Wien bridge is made up of a series RC circuit in one branch of a bridge and a parallel RC circuit in another branch. In the Wien-bridge oscillator shown in Fig. 21.1 these components are R_1 , R_2 , C_1 , and C_2 . The circuit will oscillate at that frequency where the phase of V_1 is identical to the phase of V_0 . This frequency, in terms of circuit components, is

$$f_o = \frac{1}{2\pi (R_1 R_2 C_1 C_2)^{1/2}}$$

Oscillation cannot be sustained unless the positive feedback through R_1 , R_2 , C_1 , and C_2 is exactly equal to the forward gain controlled by R_3 , R_5 , and R_6 . The feedback factor (gain from V_0 to V_1) through the Wien bridge is (at f_0)

$$A_f = 1 + \frac{R_2}{R_1} + \frac{C_1}{C_2}$$

The forward gain of the amplifier is (at dc)

$$A_{vc} = 1 + \frac{R_3}{R_5} + \frac{R_3 R_4}{R_5 R_1}$$

Fig. 21.1 A Wien-bridge oscillator which requires only one component for tuning.

These gains will be equal if we satisfy the following equalities:

$$R_2 = R_3 = R_4 = R_5$$
 (in practice R_3 is made 5 to 10 percent higher) $C_1 = C_2$

In basic Wien-bridge oscillators R_1 is returned to ground. In the present circuit, however, it is returned to a virtual ground at the inverting input of A_2 . This additional circuit, composed of A_2 , R_4 , and R_5 , is added so that a single part R_1 can be used for tuning. The A_2 circuit forces the positive feedback to equal the negative feedback for all values of R_1 .

The circuit composed of D_1 , D_2 , and R_6 is used to maintain V_0 amplitude stability. If V_0 tries to increase owing to load changes, diodes D_1 and D_2 conduct harder. This makes R_3 appear to be smaller, which lowers the gain of A_1 and restores V_0 to its correct value. The diodes keep R_6 out of the circuit until a firm oscillation is present. Otherwise the circuit would have too much negative feedback and would not start.

If R_1 is to be variable, its limits should be controlled. The minimum R_1 is constrained by the maximum available gain of A_2 at f_0 . Equation 5 must be satisfied, so that the gain of the A_2 circuit $(-R_4/R_1)$ will never attempt to exceed the open-loop gain of A_2 at f_0 . Conversely, very large values of R_1 will cause A_1 to have a dc output offset of $I_{b1}R_1$. The maximum R_1 is therefore constrained by the maximum allowable output offset.

DESIGN PARAMETERS

Parameter	Description Op amp which oscillates		
A_1			
A_2	Op amp used to keep gain of A_1 constant as R_1 is adjusted		
A_f	Feedback factor V_1/V_o of Wien bridge		

Parameter	Description
A_{vc}	Gain of A_1 circuit from V_1 to V_0 assuming Wien bridge is not present
C_1 to C_2	Determines frequency of oscillation along with R_1 and R_2
D_1 to D_2	Used to control gain (and output amplitude) of A ₁ circuit
f_o	Frequency of oscillation
f_{u2}	Unity-gain crossover frequency of A ₂
I_{b1}	Input bias current of A_1
$R_1(\min)$	Fixed portion of R_1
$R_1(\max)$	Variable portion of R ₁
R_2	Controls frequency of oscillation along with R_1 , C_1 , and C_2
R_3	Sets basic gain of A_1 circuit
R_4 to R_5	Controls effect of A_2 circuit on the gain of A_1 circuit
R_6	Used to adjust stability and also output amplitude (to a lesser extent)
V_1 to V_3	Voltages at various nodes in Fig. 21.1
V_o	Output voltage
ΔV_o	Output offset due to input bias current of A ₁
$V^{(\pm)}$	Power-supply voltages

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Frequency of oscillation	$f_o = \frac{1}{2\pi (R_1 R_2 C_1 C_2)^{1/2}}$
2	Feedback factor of Wien bridge at f_o	$A_f(f_o) = \frac{V_1}{V_o} = 1 + \frac{R_2}{R_1} + \frac{C_1}{C_2}$
3	Gain of A_1 circuit from V_1 to V_o (assuming Wien bridge is disconnected)	$A_{vc} = 1 + \frac{R_3}{R_5} + \frac{R_3 R_4}{R_5 R_1}$
	Recommended resistor values:	
4	R_1 (variable portion)	$R_1(\max) \leq \frac{\Delta V_o(\max)}{I_{b1}}$
5	R_1 (fixed portion)	$R_{_{1}}(\min) \geq \left(rac{R_{_{4}}^{2}}{4\pi^{2}R_{_{2}}C_{_{1}}C_{_{2}}f_{_{u2}}^{2}} ight)^{1/3}$
6	R_2, R_4, R_5	$R_2 = R_4 = R_5 = [R_1(\text{max})]^{1/2}$
7	R_3	$R_3 pprox 1.1~R_2$
8	R_{6}	$R_6 \approx 100 R_3$
9	Recommended capacitor values $C_1 C_2$	$C_1 = C_2 = \frac{1}{2\pi f_o R_2}$
10	Maximum f_o	$f_o({ m max}) pprox \left(rac{f_{u2}}{4\pi^2 R_2 R_4 C_1 C_2} ight)^{1/3}$
11	Minimum f_o	$f_o(ext{min}) pprox rac{1}{2\pi} \left[rac{I_{b1}}{R_2 C_1 C_2 \Delta V_o(ext{max})} ight]^{1/2}$

DESIGN PROCEDURE

We begin by assuming the midband frequencies are most important. We then perform calculations to determine the maximum and minimum frequency limits of the oscillator.

DESIGN STEPS

Step 1. Compute a value for $R_1(max)$ using Eq. 4.

Step 2. Sequentially apply Eqs. 6, 7, and 8 to determine the other resistor values.

Step 3. Determine nominal values for C_1 and C_2 using Eq. 9.

Step 4. Compute the fixed portion of R_1 using Eq. 5. The variable portion of R_1 should be a log-taper potentiometer if one wants a constant octave/degree control of frequency.

Step 5. Compute the approximate frequency limits expected from the

oscillator using Eqs. 10 and 11.

Step 6. Double-check all previous calculations by computing f_o with Eq. 1 at $R_1(\min)$, $R_1(\max)$, and the square root of $R_1(\max)$.

WIEN-BRIDGE-OSCILLATOR DESIGN EXAMPLE An oscillator with a mid-range frequency of 1,000 Hz will be designed. The maximum output voltage (peak-to-peak) and output offset are specified. The op amps are also predetermined. We are asked to determine the upper- and lower-frequency limits of the oscillator.

Design Requirements

$$V_o = \pm 10 \text{ V}$$

 $\Delta V_o(\text{max}) = 0.1 \text{ V}$
 $f_o(\text{midband}) = 1,000 \text{ Hz}$
 $A_1 \text{ and } A_2 = \text{LM } 324$
 $V^{(\pm)} = \pm 15 \text{ V}$

Device Data

$$f_{u2} = 5 \times 10^5 \text{ Hz}$$

 $I_{b1} = 3 \times 10^{-8} \text{ A}$

Step 1. The adjustable portion of R_1 is

$$R_1(\text{max}) = \frac{\Delta V_o(\text{max})}{I_{h_1}} = \frac{0.1}{3 \times 10^{-8}} = 3.3 \text{ M}\Omega$$

Step 2. Equation 6 provides us with

$$R_2 = R_4 = R_5 = [R_1(\text{max})]^{1/2} = (3.3 \times 10^6)^{1/2} = 1,830 \ \Omega$$

Equation 7 is approximately

$$R_3 \approx 1.1 \ R_2 = 1.1(1,830) = 2,000 \ \Omega$$

 R_6 is found from Eq. 8:

$$R_6 \approx 100 \ R_3 = 100(2,000) = 200 \ \mathrm{k}\Omega$$

Step 3. Equation 9 gives us nominal values for C_1 and C_2 :

$$C_{\scriptscriptstyle 1} = C_{\scriptscriptstyle 2} = \frac{1}{2\pi f_{\scriptscriptstyle 0} R_{\scriptscriptstyle 2}} = \frac{1}{2\pi (1{,}000)1{,}830} = 0.087~\mu\text{F}$$

The output will not be a pure sine wave unless these capacitors are closely matched.

Step 4. The fixed portion of R_1 is

$$\begin{split} R_{\rm l}({\rm min}) &= \left(\frac{R_{\rm d}^2}{4\pi^2R_{\rm 2}C_{\rm 1}C_{\rm 2}f_{\rm u2}^2}\right)^{1/3} \\ &= \left[\frac{1,830^2}{4\pi^2(1,830)(0.087\times 10^{-6})^2(5\times 10^5)^2}\right]^{1/3} = 29~\Omega \end{split}$$

Step 5. We now substitute data into Eqs. 10 and 11 to find the oscillator range:

$$\begin{split} f_o(\text{max}) &= \left(\frac{f_{u2}}{4\pi^2 R_2 R_4 C_1 C_2}\right)^{1/3} \\ &= \left[\frac{5\times 10^5}{4\pi^2 (1,830)^2 (0.087\times 10^{-6})^2}\right]^{1/3} = 7,900 \text{ Hz} \\ f_o(\text{min}) &= \frac{1}{2\pi} \left[\frac{I_{b1}}{R_2 C_1 C_2 \Delta V_o(\text{max})}\right]^{1/2} \\ &= \frac{1}{2\pi} \left[\frac{3\times 10^{-8}}{(1,830)(0.087\times 10^{-6})^2 0.1} = 23.4 \text{ Hz} \right] \end{split}$$

Step 6. The oscillator frequency is computed using Eq. 1 along with the results of steps 1, 2, 3, and 4.

$$\begin{split} f_o(\min) &= \frac{1}{2\pi \ [R_1(\max)R_2C_1C_2]^{1/2}} \\ &= \frac{1}{2\pi \ [(3.3\times 10^6)1,830(0.087\times 10^{-6})^2]^{1/2}} = 23.4 \\ f_o(\text{nom}) &= \frac{1}{2\pi \ [R_1(\text{nom})R_2C_1C_2]^{1/2}} \\ &= \frac{1}{2\pi \ [1,830(1,830)(0.087\times 10^{-6})^2]^{1/2}} = 1,000 \ \text{Hz} \\ f_o(\text{max}) &= \frac{1}{2\pi \ [R_1(\text{min})R_2C_1C_2]^{1/2}} \\ &= \frac{1}{2\pi \ [29(1,830)(0.087\times 10^{-6})^2]^{1/2}} = 7,958 \ \text{Hz} \end{split}$$

REFERENCES

- Brokaw, P.: FET Op Amp Adds New Twist to an Old Circuit, EDN, June 5, 1974, p. 75.
- 2. Coers, G.: MOSFET Network Minimizes Audio Oscillator Distortion, *Electronics*, Jan. 3, 1972, p. 85.
- 3. Widlar, R. J., and J. N. Giles: Avoid Over Integration, *Electron. Des.*, Feb. 1, 1966, p. 56.

21.2 VOLTAGE-CONTROLLED OSCILLATOR

ALTERNATE NAMES VCO, voltage-controlled pulse generator, voltage-to-frequency converter, V/F converter, VFC.

EXPLANATION OF OPERATION The op amp circuit is an integrator which is constantly attempting to drive its output terminal high. The rate at which the output slews high is

$$\frac{\Delta v_1}{\Delta t} = \frac{v_m}{R_1 C_1}$$

Whenever v_1 rises to V_c , the threshold input of the timer causes the output terminal to drop to the low state. But this output terminal is attached to the gate of Q_1 . A low voltage at this point turns the FET on, discharges C_1 , and lowers v_1 to approximately zero. The rate of discharge depends on the sizes of C_1 and $R_{\rm on}$ of the FET. The timer trigger voltage, attached to the threshold terminal through R_4 , also slews downward. When the trigger terminal drops to $V_c/2$, the timer output changes to the high state. This turns Q_1 off, which stops the C_1 discharge. The R_4C_2 delay network is required so that the trigger

Fig. 21.2 A voltage-controlled pulse generator which utilizes an op amp integrator in conjunction with an IC timer.

action does not occur until C_1 is fully discharged. This requires that $R_4C_2 > R_{\rm on}C_1$.

The output pulse width is approximately

$$T_p \approx 0.7 R_4 C_2$$

The width of this pulse controls the upper frequency of the VCO. If $T_o = 1 \, \mu \, \text{s}$, the VCO has only 0.2 percent nonlinearity (of the T_o/v_m transfer function) up to approximately 10 kHz. At low frequencies where the width of T_p is much smaller than T_o ,

$$f_o pprox rac{1}{T_o} pprox rac{2 \ v_m}{V_c R_1 C_1}$$

Fig. 21.3 Waveforms at various locations in the voltage-controlled oscillator.

DESIGN PARAMETERS

Parameter	Description
$\overline{A_1}$	Op amp used as an integrator which is reset once per cycle
C_1	Determines integration time along with R_1
C_2	Determines pulse width along with R ₄
f_o	Output frequency
$f_o(\text{nom})$	Mid-range output frequency corresponding to $v_m(nom)$
I_{DSS}	Drain-to-source saturation current of FET (at $V_{GS} = 0$, $V_{DS} = -5$ V)
I_{z_1}	Nominal zener-diode current
R_1	Determines input resistance of circuit and integration time of A_1
R_2	Cancels effect of input bias current of A_1
R_3	Limits drain-to-gate current in Q ₁
R_4	Controls output pulse width along with C_2
R_5	Controls zener-diode current
R_6 to R_8	Used to set $f_0 \approx 0$ when $v_m = 0$ unless A_1 has offset-adjustment terminals
Ron	On resistance of Q_1
T_o	Time between output pulses
T_p	Output pulse width
v_{o}	Output-voltage waveform
v_1 to v_2	Voltages as shown in Figs. 21.2 and 21.3
\vec{V}_A to \vec{V}_B	Reference voltages used for offset adjustment
V_c	Control voltage established by Z_1
Vio	Input offset voltage of A_1
v_m , v_m (nom)	Input modulation voltage and its nominal (mid-range) value
V_n	Pinch-off voltage of Q_1
$V_p \ V^{(\pm)}$	Power-supply voltages
Z_1	Reference diode

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Output frequency if $T_o \gg T_p$	$f_o pprox rac{ v_m }{V_c R_1 C_1}$
2	Output frequency if $T_o \approx T_p$ (near upper limit of f_o)	$f_o pprox rac{1}{0.7 R_4 C_2 + (V_c R_1 C_1 / v_m)}$
3	Width of negative output pulse	$T_p \approx 0.7R_4C_2$
4	Width of positive output pulse	$T_o \approx \frac{V_c R_1 C_1}{ v_m }$
	Resistor values:	
5	R_1, R_2	$R_1 = R_2 = \frac{ v_m(\text{nom}) }{V_c C_1 f_o(\text{nom})}$
6	R_3	$R_3 \approx 100 \text{ k}\Omega$
7	R ₄ *	$R_4 \approx 10 \text{ k}\Omega$
8	R_5	$R_5 \approx \frac{V^{(+)} - V_c}{I_{Z1}}$
		NOTE: If offset-adjustment terminals are provided on the op amp, skip steps 9 to 11 and ground the lower end of R_2
9	R_6	$R_6 pprox rac{R_2}{10}$ to $rac{R_2}{100}$
10	R_7	$R_{7} pprox rac{R_{6}}{100}$ to $rac{R_{6}}{1,000}$
11	R_8	$R_8 pprox rac{R_7 V_A}{10 V_{io}}$
		$({\rm let}\ V_{\scriptscriptstyle A} = -V_{\scriptscriptstyle B})$
	Capacitor values:	T.
12	C_1	$C_1 = \frac{T_p}{10R_{\text{on}}}$
13	C_{z}	$C_2 = \frac{T_p}{0.7R_4}$
14	FET on resistance (at $V_{GS} = 0$)	$R_{\rm on} = \frac{V_p}{2I_{DSS}}$

DESIGN PROCEDURE

These design steps are fairly straightforward, owing to the simplicity of the circuit. Timer ICs in conjunction with op amps make the design of a large class of circuits greatly simplified. We begin this procedure by assuming the pulse width T_o and the nominal f_o [and its corresponding $v_m(\mathsf{nom})$] are specified.

DESIGN STEPS

Step 1. Choose an FET having a V_p less than $V^{(+)}$. Compute $R_{\rm on}$ using Eq. 14.

21-9

Step 2. Calculate a nominal value for C_1 using Eq. 12. Use the standard value closest to that calculated.

Step 3. Resistors R_1 and R_2 are now found from Eq. 5. Use a nominal

 v_m and the corresponding nominal f_o .

Step 4. The selection of R_3 is not critical. For high-speed operation (>10 kHz) one should probably keep R_3 in the 100-k Ω range. Likewise, a nominal choice for R_4 is 10 k Ω .

Step 5. Calculate approximate values for R_5 to R_8 using Eqs. 8 to 11.

Step 6. Compute a value for C_2 with Eq. 13.

EXAMPLE OF A VCO DESIGN Suppose we want a VCO having a range from nearly dc to 10 kHz. The (negative) pulse width is to be approximately 10 percent of the period at 10 kHz. Let the nominal v_m of -5 V correspond to $f_0 = 5$ kHz.

Design Requirements

$$\begin{split} f_o(\text{nom}) &= 5 \text{ kHz} \\ f_o(\text{min}) &= \text{dc} \\ f_o(\text{max}) &= 10 \text{ kHz} \\ v_m(\text{nom}) &= -5 \text{ V} \\ v_m(\text{min}) &= 0 \text{ (shorted to ground)} \\ v_m(\text{max}) &= -10 \text{ V} \\ V^{(\pm)} &= \pm 15 \text{ V} \\ V_A &= -V_B &= +15 \text{ V} \end{split}$$

Device Data

$$V_{io}({\rm max}) = 5~{\rm mV}$$

 $V_p = 3.2~{\rm V}~(2{\rm N}2608,~{\rm measured})$
 $I_{DSS} = 3.2~{\rm mA}~(2{\rm N}2608,~{\rm measured})$
 $I_{Z1} = 0.5~{\rm mA}~(1{\rm N}4566)$
 $V_c = 6.4~{\rm V}~(1{\rm N}4566)$

Step 1. The 2N2608 FET has a pinch-off voltage of 1 to 4 V. We will assume 3.2 V in the following.

$$R_{\rm on} = \frac{V_p}{2I_{\rm DSS}} = \frac{3.2}{2(3.2 \times 10^{-3})} = 500 \ \Omega$$

Step 2. Equation 12 provides a nominal value for C_1 :

$$C_{\rm 1} = \frac{T_p}{10R_{\rm on}} = \frac{1}{10f_o({\rm max})10R_{\rm on}} = \frac{1}{10(10^4)10(500)} = 2{,}000~\rm pF$$

NOTE: $T_p = 1/10 f_o(\text{max}) = 1/10(10^4) = 10 \ \mu\text{s}$.

Step 3. Use Eq. 5 to find
$$R_1$$
 and R_2 :

$$R_{\rm 1} = R_{\rm 2} = \frac{|\upsilon_m({\rm nom})|}{V_c C_{\rm 1} f_o({\rm nom})} = \frac{|-5|}{6.4(2\times 10^{-9})5{,}000} = 78~{\rm k}\Omega$$

Step 4. Let
$$R_3 = 100 \text{ k}\Omega$$
 and $R_4 = 10 \text{ k}\Omega$.

Step 5. Other resistor values are computed:

$$\begin{split} R_5 &\approx \frac{V^{(+)} - V_c}{I_{Z1}} = \frac{15 - 6.4}{5 \times 10^{-4}} = 17,\!200~\Omega \\ R_6 &\approx \frac{R_2}{10} = \frac{78,\!000}{10} = 7,\!800~\Omega~(\text{use }10~\text{k}\Omega) \\ R_7 &\approx \frac{R_6}{100} = \frac{10,\!000}{100} = 100~\Omega \end{split}$$

$$R_8 \approx \frac{R_7 V_A}{10 V_{io}} = \frac{100(15)}{10(5 \times 10^{-3})} = 30 \text{ k}\Omega$$

Step 6. Capacitor C2 becomes

$$C_2 = \frac{T_p}{0.7R_4} = \frac{10^{-5}}{0.7(10^4)} = 1,430 \text{ pF}$$

REFERENCE

1. Klement, C.: Voltage to Frequency Converter Constructed with Few Components is Accurate to 0.2%, *Electron. Des.*, vol. 13, p. 12, June 21, 1973.

Parameter Enhancement and Simulation

INTRODUCTION

The versatility of op amps allows the circuit designer many opportunities to create circuits possessing new and unique characteristics. Some of these unique circuits are those which multiply capacitance or simulate inductance. In this chapter we will present one circuit of each type. Numerous designs for parameter enhancement exist in the literature. The circuits chosen for presentation here we feel would be most useful for the application-oriented designer.

22.1 CAPACITANCE MULTIPLIER

ALTERNATE NAMES Low-Q capacitor simulator, simulated capacitor.

EXPLANATION OF OPERATION In some low-level high-impedance circuits very large capacitors are required. For example, suppose a designer needs a nonpolarized $100,000-\mu F$ capacitor for a low-voltage application. This requirement is difficult to implement with passive components. A capacitance multiplier could be used if the application does not require a high-Q capacitor.

This circuit uses the high gain of the op amp to multiply capacitance. The effective capacitance seen between point Z_{in} and ground in Fig. 22.1A is

$$C_{\rm in} = \frac{R_3 C_1}{R_1}$$

As shown in Fig. 22.1B, this capacitor has an effective series resistance which lowers its Q. This series resistance is $R_s = R_1$.

The circuit also has an effective leakage current through the capacitor. The effective leakage current does not depend on the voltage between $Z_{\rm in}$ and ground. It has a value of

$$I_{L} = \frac{V_{io} + I_{io} R_{3}}{R_{1}}$$

This equation assumes $R_2 = R_3$. Otherwise, the input bias current of the op amp would cause an even larger I_L . It is obvious that a high-quality op amp is required if a low-leakage simulated capacitor is desired.

If C_{in} is to be nonpolarized, C_1 must also be nonpolarized.

Fig. 22.1 A single-ended capacitance multiplier (A) and its equivalent circuit (B).

DESIGN PARAMETERS

Parameter	Description		
C_1	Capacitor which is multiplied		
$C_{\rm in}$	Effective input capacitance of circuit		
I_i	Current into circuit at Z _{in} terminal		
\vec{I}_{io}	Input offset current of op amp		
	Effective leakage current through input capacitance		
Q	Quality factor of circuit		
\tilde{R}_1	Resistor which controls the effective series resistor of Z _{in}		
R_2	Makes A ₁ a noninverting unity-gain amplifier		
R_3	Controls size of effective C_{in}		
R_s	Effective series resistance in Z _{in}		
S	$s = i 2\pi f$		
V_1	Voltage at Z _{in} terminal		
V_{io}	Input offset voltage of op amp		
$Z_{\rm in}$	Input impedance of circuit		

Fig. 22.2 The input impedance of a typical capacitor multiplier as a function of frequency.

		ONS	

Eq. No.	Description	Equation
1	Value of simulated capacitance	$C_{\rm in} = \frac{R_3 C_1}{R_1}$
2	Value of effective series resistance	$R_s = R_1$
3	Effective leakage current of capacitor if $R_2 = R_3$	$I_L = \frac{V_{io} + I_{io}R_3}{R_1}$
4	Input impedance at $C_{\rm in}$	$Z_{\rm in} = R_1 + \frac{R_1}{sR_3C}$
5	Q of circuit	$Q = \frac{1}{2\pi f R_s C_{\rm in}}$
6	Required R_2	$R_2 = R_3$

REFERENCES

- Schmutz, L. E.: Transistor Gain Boosts Capacitor Value, Electronics, July 25, 1974, p. 116.
- 2. National Semiconductor Corp. Applications Note AN-29, December 1969.
- 3. George A. Philbrick Researches, Inc., Applications Manual for Computing Amplifiers, 1966, p. 97, Nimrod Press, Inc., Boston, Mass.

22.2 INDUCTANCE SIMULATOR

ALTERNATE NAMES Simulated inductor, capacitance-to-inductance converter, low-Q inductance simulator.

EXPLANATION OF OPERATION This circuit utilizes a triple op amp, eight resistors, and a small capacitor. Stage A_1 is an integrator which has a dc gain of R_2/R_1 and a pole at $f_{cp1}=1/2\pi R_2 C$. The transfer function of this first stage is

$$\frac{V_2}{V_1} = \frac{R_2/R_1}{1 + sR_2C}$$

The voltage-to-current converter A_2 to A_3 has a transfer function of

$$I_o = \frac{V_2 R_4 R_7 / R_3 R_6}{R_8 + Z_L [1 - (R_4 R_7 / R_5 R_6)]}$$

If we let

$$R_3 = R_4 = R_5 = R_6 = R_7$$

then I_o reduces to

$$I_o = \frac{V_2}{R_o}$$

If we combine the above equation with the integrator transfer function, the result is

$$I_o = \frac{R_2 V_1}{R_1 R_8 \ (1 + s R_2 C)}$$

Fig. 22.3 An inductance simulator which utilizes an integrator in conjunction with a voltage-to-current converter (A). The equivalent circuit of an inductance simulator (B).

This current must equal the input current, since A_1 draws essentially no current and R_1 is very large. The input impedance of this circuit is therefore

$$Z_{\rm in} = \frac{V_1}{I_o} = \frac{R_1 R_8 \ (1 + s R_2 C)}{R_2}$$

The input impedance is equivalent to a series RL circuit with a resistor of

$$R = \frac{R_1 R_8}{R_2}$$

and an inductance of

$$L = R_1 R_8 C$$

The Q of a series RL circuit is

$$Q = \frac{2\pi fL}{R}$$

The Q is a direct function of frequency; so the circuit will have a Q_{\min} corresponding to some f_{\min} .

The circuit also has an upper frequency limit where the closed-loop gain of the A_1 circuit equals the open-loop gain of A_1 . This frequency is

$$f_{\text{max}} = \frac{f_u R_1}{R_2}$$

In Fig. 22.4 this occurs at approximately 1 kHz.

Fig. 22.4 The impedance of a typical inductance simulator as a function of frequency.

DESIGN PARAMETERS

Parameter	ameter Description	
C	Reactive element in circuit whose properties are inverted in A_2 and A_3 to create a simulated inductor	
f_{\max}	Frequency where A_1 open-loop gain is insufficient to perform integration	
f_{\min}	Minimum frequency where a specified minimum Q is possible	
f_u	Unity-gain crossover frequency of A ₁	
I_o	Output current of A ₂ to A ₃ voltage-to-current converter	
I_b	Input bias current of A ₁	
Ľ	Simulated inductance	
Q_{\min}	Specified minimum Q of circuit	
R	Effective series resistance of L	
R_1 to R_2	Controls de gain of integrator	
R_3 to R_8	Controls voltage-to-current transfer ratio of A ₂ to A ₃ circuit	
S	$s = j2\pi f$	
V_1	Voltage at Z _{in} terminal	
V_2	Integrator output voltage	
ΔV_2	DC output offset voltage from integrator	
$V^{(\pm)}$	Power-supply voltages	
Zin	Input impedance of circuit	
Z_r	Load impedance seen by voltage-to-current converter	

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Simulated inductance	$L = R_1 R_8 C$
2	Series resistance of simulated inductance	$R = \frac{R_1 R_8}{R_2}$
3	Q of RL circuit	$Q = \frac{2\pi fL}{R} = 2\pi fR_2C$
	Resistor values:	-
4	R_1	$R_1 = \frac{R_2 V_1 _{\text{max}}}{2\pi f_{\text{min}} R_2 C V_2 _{\text{max}}}$
5	R_2	$R_2 = \left \frac{\Delta V_2(\text{max})}{10I_b(\text{max})} \right $
6	R_3 to R_7	$R_3 = R_4 = R_5 = R_6 = R_7 = 1 \text{ to } 10 \text{ k}\Omega$
7	R_8	$R_8 = \frac{L}{R_1 C}$
8	Recommended capacitor value	$C = \frac{Q_{\min}}{2\pi f_{\min} R_2}$
9	Maximum frequency of operation	$f_{\rm max} = \frac{f_u R_1}{R_2}$

DESIGN PROCEDURE

This procedure could start out assuming L, R_{\min} , and f_{\min} are specified or L, Q_{\min} , and f_{\min} are specified. We will assume the latter.

DESIGN STEPS

Step 1. Use Eq. 3 to determine the R_2C product required.

$$R_2C = \frac{Q_{\min}}{2\pi f_{\min}}$$

Step 2. Let R_2 be chosen so that the worst-case V_2 dc offset is only about 10 percent of $|V_2|_{\text{max}}$:

$$R_2 = \left| \frac{V_2(\text{max})}{10I_b(\text{max})} \right|$$

Step 3. Calculate R_1 from

$$R_1 = \frac{R_2 |V_1|_{\text{max}}}{2\pi f_{\text{min}} R_2 C |V_2|_{\text{max}}}$$

Step 4. Compute a value for C from

$$C = \frac{Q_{\min}}{2\pi f_{\min} R_2}$$

Step 5. The value for R_8 is

$$R_8 = \frac{L}{R_1 C}$$

Step 6. Choose a common value for R_3 , R_4 , R_5 , R_6 , and R_7 which is equal to or greater than the load resistance most commonly used on the A_2 to A_3 specification sheets. This value is usually between 1 and 10 k Ω .

Step 7. If needed, compute the effective series resistance of the in-

ductance using Eq. 2.

Step 8. Calculate the maximum frequency of operation using Eq. 9.

EXAMPLE OF INDUCTANCE-SIMULATOR DESIGN For a numerical illustration suppose we wish to create a 0.1-H choke having a minimum Q of 100. The choke is to operate with a 1-V peak-to-peak sine wave which has a minimum frequency of 100 Hz. Operation below 100 Hz will be possible, but the Q will decrease from 100 at 100 Hz to 1 at 1 Hz.

Design Requirements

$$\begin{split} |\mathbf{V}_1|_{\text{max}} &= 1 \; \mathbf{V} \\ L &= 0.1 \; \mathbf{H} \\ Q_{\text{min}} &= 100 \\ f_{\text{min}} &= 100 \; \mathbf{Hz} \\ V^{(\pm)} &= \pm 15 \; \mathbf{V} \end{split}$$

Device Data

$$\begin{aligned} |V_{\rm 2}|_{\rm max} &= 10~{\rm V} \\ I_b &= 5\times 10^{-7}~{\rm A~(maximum)} \\ f_{\rm u} &= 1~{\rm MHz} \end{aligned}$$

Step 1. Equation 3 provides us with

$$R_2C = \frac{Q_{\min}}{2\pi f_{\min}} = \frac{100}{2\pi (100)} = 0.159$$

Step 2. The value for R_2 is

$$R_2 = \left| \frac{V_2(\text{max})}{10I_b(\text{max})} \right| = \frac{10}{10(5 \times 10^{-7})} = 2 \text{ M}\Omega$$

Step 3. We compute R_1 as follows:

$$R_{\rm 1} = \frac{R_{\rm 2} |V_{\rm 1}|_{\rm max}}{2\pi f_{\rm min} R_{\rm 2} C |V_{\rm 2}|_{\rm max}} = \frac{2 \times 10^6 (1)}{2\pi (100) 0.159 (10)} = 2 \ {\rm k}\Omega$$

Step 4. The integration capacitor has a value of

$$C = \frac{Q_{\min}}{2\pi f_{\min} R_2} = \frac{100}{2\pi (100)2 \times 10^6} = 0.08 \ \mu F$$

Step 5. We find R_8 from

$$R_8 = \frac{L}{R_1 C} = \frac{0.1}{2,000(8 \times 10^{-8})} = 628 \ \Omega$$

Step 6. We will let the common value of R_3 through R_7 be $2 \text{ k}\Omega$.

Step 7. The effective series resistance of the inductor is

$$R = \frac{R_1 R_8}{R_2} = \frac{2,000(628)}{2 \times 10^6} = 0.628 \ \Omega$$

Step 8. The maximum frequency of operation is

$$f_{\text{max}} = \frac{f_u R_1}{R_2} = \frac{10^6 (2 \times 10^3)}{2 \times 10^6} = 1,000 \text{ Hz}$$

REFERENCES

- 1. Allen, P. E., and J. A. Means: Inductor Simulation Derived from an Amplifier Roll-off Characteristic, *IEEE Trans. Circuit Theory*, July 1972, p. 395.
- Kalinowski, J. J.: An Inductance Realization Using Two Operational Amplifiers, IEEE Proc., September 1968, p. 1636.
- 3. Roy, S. C. D.: Inductor Realization with RC Elements, *IEEE Proc.*, September 1971, p. 1380.
- 4. Berndt, D. F., and S. C. D. Roy: Inductor Simulation Using a Single Unity Gain Amplifier, *IEEE J. Solid-State Circuits*, June 1969, p. 161.
- 5. Roy, S. C. D., and V. Nagarajan: On Inductor Simulation Using a Unity-Gain Amplifier, IEEE J. Solid-State Circuits, June 1970, p. 95.

Power Circuits

INTRODUCTION

Most op amps are low-level devices with optimized input characteristics. Although high-power op amps are available, it is sometimes advisable to combine an op amp having excellent input characteristics with a high-power output circuit. This additional circuit can be tailored to perform various types of tasks beyond the capability of the op amp. The power level may be increased, the voltage swing increased, the slew rate increased, the bandwidth increased, or the current-driving capability increased using appropriate output circuits. In this chapter we will discuss several such applications.

The first circuit to be presented increases power level, slew rate, and bandwidth. The second circuit increases both power level and peak-to-peak voltage swing.

23.1 OP AMP BANDWIDTH/POWER BOOSTER

ALTERNATE NAMES Op amp buffer, push-pull buffer amplifier, complementary transistor output circuit, slew-rate booster.

EXPLANATION OF OPERATION As shown in Fig. 23.1, this circuit drives the buffer transistors from the op amp power-supply terminals. The simplified circuit, in Fig. 23.2, shows that this circuit makes a feedback loop out of the buffer transistors and the op amp output transistors. This is called voltage-series feedback (Ref. 1). The resistor ratio $R_6/(R_6+R_7)$ feeds back a portion of V_2 to the emitters of Q_3 and Q_4 . This is degenerative feedback which lowers the output resistance, widens bandwidth, and increases slew rate.

$$A_{vc} = \frac{V_2}{V_1} = -\frac{R_2}{R_1}$$

The additional circuit merely reduces the portion of the work load required of the op amp so that it will operate more efficiently. The improvement in high-frequency operation is directly related to the choices for R_6 and R_7 . Assume the $f_{\it B}$ of Q_1 and Q_2 is at least ten times greater than $f_{\it u}$ of the op amp. We can then use the following ideas to approximate the new bandwidth, full-power response, and slew rate.

Fig. 23.1 A complementary power booster which utilizes voltage-series feedback.

1. Let $\beta=R_6/(R_6+R_7)$ be the feedback factor from V_2 back to the emitters of Q_3 and $Q_4.$

2. Use the open-loop gain plot and maximum output-voltage swing plot

(as shown in Fig. 23.3) to estimate performance changes graphically.

3. The new closed-loop bandwidth is approximately $f'_1 = f_1/\beta$, since the op amp share of gain has been lowered from A_{vc} to βA_{vc} . This is clearly illustrated in Fig. 23.3A.

4. The new full-power response frequency is likewise found by multiplying the old peak output by β and finding the appropriate frequency. The curve of output voltage as a function of load resistance must also be factored into the above calculation. In most cases R_6 will lower the output-voltage curve from that shown in the data sheet.

5. As mentioned in Chap. 2, the slew rate is directly related to full-power response by

$$S_{\max} = 2\pi f_f V_{pp}$$

where f_f and V_{pp} are the coordinates of a point on the curve in Fig. 23.3B. Slew rate will therefore be increased in this circuit by the same factor that full-power bandwidth was increased.

The output power level is determined by the drive capability of Q_1 and Q_2 . The output resistance of the buffer is approximately

$$R_o pprox rac{[h_{ie3} + (1+eta_3)(R_{_A} + R_{_6})][h_{ie1} + (1+eta_1)R_{_{10}}]}{eta_1eta_3R_4}$$

Fig. 23.2 Simplified version of Fig. 23.1 which shows Q_1 , Q_3 and Q_2 , Q_4 feedback loops.

This equation assumes that the buffer is symmetrical, i.e., $h_{ie1} = h_{ie2}$ and $\beta_1 = \beta_2$. In the absence of op amp output transistor data the following estimates can be used for standard bipolar monolithic devices:

$$h_{ie3} = 3,000 \ \Omega$$

 $\beta_3 = 300$

The size of R_A is usually indicated on the op amp data sheet.

Resistors R_8 and R_9 are required to cancel crossover distortion. R_9 is adjusted at full output power and at the full-power bandwidth frequency.

DESIGN PARAMETERS

Parameter	Description	
A_{vc}	Voltage gain of complete circuit	
β	Feedback factor determined by R_6 and R_7	
β_1	Current gain of Q_1	
β_3	Current gain of Q_3	
f_1	Small-signal bandwidth (-3 dB) of op amp at a closed-loop gain of A_{vc}	
\hat{f}_{i}	Small-signal bandwidth (-3 dB) of entire circuit (or op amp at a closed-loop gain of βA_{pr})	
f_2	Frequency of a given maximum op amp output (peak-to-peak) voltage	
f_2'	Frequency of a given maximum op amp output (peak-to-peak) voltage if the op amp gain is reduced by β	
$f_{\scriptscriptstyle B}$	Small-signal bandwidth (-3 dB) of a transistor current gain	
f_t	A specified point on the op amp maximum output-voltage curve	
fant	Frequency of the first pole of the op amp	

Parameter	Description	
f_{op2}	Op amp second-pole frequency	
f_u	Unity-gain crossover frequency of op amp	
h_{ie1}	Input resistance of Q_1	
$h_{ie3} \atop I^{(+)}$	Input resistance of Q_3	
$I^{(+)}$	Current into op amp (+) power-supply terminal	
$I_{ m out}$	Output current of circuit	
Q_1 to Q_2	Output transistors of circuit	
Q_3 to Q_4	Output transistors of op amp	
R_1	Determines input resistance and gain of circuit	
R_2	Sets gain of circuit (along with R_1)	
R_3	Cancels effect of op amp input bias current	
R_4 to R_5	Determines point at which Q_1 and Q_2 are turned on	
R_6 to R_7	Controls feedback factor of output circuit	
R_8 to R_9	Used to minimize crossover distortion	
R_{10} to R_{11}	Provides dc negative feedback in output transistors to prevent thermal runaway	
R_A to R_B	Output current-limiting resistors in op amp	
R_{o}	Output resistance of circuit	
$R_{\rm in}$	Input resistance of circuit	
S_{max}	Maximum slew rate of op amp	
V_1	Input voltage	
V_2	Output voltage	
$V^{(\pm)}$	Power-supply voltages	
V_{pp}	Peak-to-peak output voltage of op amp	

Fig. 23.3 Open-loop voltage gain (A) and maximum output-voltage swing (B), both shown as a function of frequency for a 741 op amp.

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Voltage gain of circuit	$A_{vc} = \frac{V_2}{V_1} = -\frac{R_2}{R_1}$
2	Feedback factor of output buffer stage	$\beta = \frac{R_6}{R_6 + R_7}$
3	Output resistance of circuit if $h_{ie1} = h_{ie2}$, $\beta_1 = \beta_2$, and $h_{oe1} = h_{oe2}$	$R_o pprox rac{[h_{ie3} + (1+eta_3)\langle R_4 + R_6 \rangle][h_{ie1} + (1+eta_1)R_{10}]}{eta_1eta_3R_4}$
	Resistor values:	
4	R_1	$R_1 = R_{in}$ required
5	R_2	$R_2 = -R_1 A_{vc}$
6	R_3	$R_3 = \frac{R_1 R_2}{R_1 + R_2}$
7	R_4 to R_5	$R_4 = R_5 = \frac{0.7}{I^{(+)}(\text{max, peak})}$
8	R_6	$R_6 = \frac{\beta V_2(\text{max, peak})}{I^{(+)}(\text{max, peak})}$
9	R_7	$R_7 = \frac{R_6(1-\beta)}{\beta}$

DESIGN PROCEDURE

This circuit can be used to extend bandwidth, slew rate, and output current by a factor of 2 to 10 over those of the basic op amp. The full-power bandwidth will simultaneously be extended by a factor of $\sqrt{2}$ to $\sqrt{10}$, approximately. Output power can be increased 20 or more using this circuit.

DESIGN STEPS

Step 1. Let β equal the reciprocal of the bandwidth improvement required. That is, if f_u of the op amp is 1 MHz and a 10-MHz f_u is required, a β of 0.1 is necessary.

Step 2. Let R_1 equal the required input resistance of the circuit.

Step 3. Calculate R_2 from Eq. 5 using the required closed-loop voltage gain of the circuit A_{vc} .

Step 4. Resistor R₃ is found from Eq. 6, which is equivalent to the

parallel resistance of R_1 and R_2 .

Step 5. Determine values for R_4 and R_5 using Eq. 7. The $I^{(+)}$ (max, peak) term is the desired peak current through the op amp (+) power-supply terminal. This current must be approximately β times the peak current allowed through Q_1 and Q_2 .

Step 6. Since we want the output-voltage swing of the op amp to be β

times the swing of V_2 , Eq. 8 gives us a reasonable choice for R_6 .

Step 7. Calculate Eq. 9 to determine a value for R_7 .

Step 8. Use Eq. 3 to compute the circuit output resistance.

EXAMPLE OF POWER-BOOSTER DESIGN A 741-type op amp is to be provided with a booster to increase output power by 9. We assume that the 2N3904-2N3906 complementary transistor pair is to be utilized.

Design Requirements

$$V_2(\text{max, peak}) = \pm 10 \text{ V}$$

$$V^{(\pm)} = \pm 15 \text{ V}$$

$$I_{\text{out}}(\text{max, peak}) = 50 \text{ mA}$$

$$f_u = 4 \text{ MHz}$$
 (total circuit)

$$\ddot{A}_{vc} = -2$$

$$R_{\rm in} = 1,000 \ \Omega$$

Device Data

 $\beta_1 = 80$ at 50-mA collector current

$$\beta_3 = 300$$
 (estimated)

$$h_{ie1} = 200$$

$$h_{ie3} = 3,000$$
 (estimated)

$$f_u = 0.4 \text{ MHz (op amp, minimum)}$$

$$I^{(+)}(\text{max, peak}) = 5 \text{ mA} (\pm 10\text{-V output into } 2,000 \Omega)$$

$$R_{A} = 25 \Omega$$

Step 1. We want a bandwidth improvement of approximately 10, so $\beta = 1/10$.

Step 2. We set
$$R_1 = R_{in} = 1,000 Ω$$
.

Step 3. Equation 5 provides us with
$$R_2 = -R_1 A_{vc} = -1,000(-2) = 2,000 \Omega$$
.

Step 4. Resistor R_3 must be approximately

$$R_3 = \frac{R_1 R_2}{R_1 + R_2} = \frac{1,000(2,000)}{1,000 + 2,000} = 667 \ \Omega$$

Step 5. Equation 7 provides values for

$$R_4 = R_5 = \frac{0.7}{I^{(+)}(\text{max. peak})} = \frac{0.7}{0.005} = 140 \ \Omega$$

Step 6. A reasonable choice for R_6 is provided if we compute Eq. 8:

$$R_6 = \frac{\beta V_2(\text{max, peak})}{I^{(+)}(\text{max, peak})} = \frac{0.1(10)}{0.005} = 200 \ \Omega$$

Step 7. R_7 is found using Eq. 9:

$$R_7 = \frac{R_6(1-\beta)}{\beta} = \frac{200(1-0.1)}{0.1} = 1,800 \ \Omega$$

Step 8. The output resistance of the circuit is approximately

$$\begin{split} R_o &\approx \frac{\left[h_{ie3} + (1+\beta_3)(R_A + R_6)\right] \left[h_{ie1} + (1+\beta_1)R_{10}\right]}{\beta_1\beta_3R_4} \\ &\approx \frac{\left[3{,}000 + (1+300)(25+200)\right] \left[200 + (1+80)4.7\right]}{80(300)140} \approx 12.2~\Omega \end{split}$$

REFERENCES

1. Millman, J., and C. C. Halkias: "Integrated Electronics: Analog and Digital Circuits and Systems," p. 430, McGraw-Hill Book Company, New York, 1972.

 Gagnon, R., and R. Karwoski: Complementary Output Stage Improves Op Amp Response, Electronics, Sept. 25, 1972, p. 110.

3. Wooley, B. A., S. J. Wong, and D. O. Pederson: A Computer Aided Evaluation of the 741 Amplifier, *IEEE J. Solid-State Circuits*, vol. SC-6, no. 6, p. 357, December 1971.

23.2 OP AMP OUTPUT-VOLTAGE BOOSTER

ALTERNATE NAMES Op amp buffer, push-pull buffer amplifier, complementary transistor output circuit, high-voltage op amp.

EXPLANATION OF OPERATION This circuit operates like the circuit described in Sec. 23.1. In this voltage booster, shown in Fig. 23.4, however, one additional transistor has been included in each output loop. These new transistors Q_1 and Q_2 serve a dual function. They provide an additional stage of gain and also control the power-supply voltages applied to the op amp. The positive op amp supply voltage is

$$V^{(+)} = \frac{R_5 V_{CC}}{R_4 + R_5} - 0.7$$

Likewise, the negative op amp supply voltage is

$$V^{(-)} = \frac{R_6 V_{EE}}{R_6 + R_7} + 0.7$$

Fig. 23.4 An op amp booster which increases output power level and voltage swing. The op amp output stage is shown to simplify the discussion.

Resistors R_4 to R_7 are sized so that the op amp operates at its recommended supply voltages. The full supply voltage $V^{(+)} - V^{(-)}$ must be less than the BV_{CEQ} of either Q_3 or Q_4 .

At low frequencies where $|X_{C2}| \gg R_{10}$ the voltage gain from V_3 to V_4 is A_{vo} of the op amp. However, the voltage gain from V_3 to V_2 is $A_{vo}A_{VA}A_{V1}A_{V3}$, where A_{VA} is the common-emitter voltage gain of Q_4 , A_{V1} is the common-base voltage gain of Q_1 , and A_{V3} is the common-emitter voltage gain of Q_3 . The dc magnitudes of these gains are

$$\begin{split} A_{VA} &= \frac{-\beta_A (R_4 \| R_5)}{h_{ieA} + (1 + \beta_A)(R_A + R_{10})} \\ A_{V1} &= \frac{\alpha_1 (R_8 \| h_{ie3})}{h_{ib1}} \\ A_{V3} &= \frac{-\beta_3 (R_2 \| R_L)}{h_{ie3}} \end{split}$$

From Q_A to Q_3 the current-gain increase is only that due to β_3 (of Q_3). Therefore, the power-gain increase of this circuit over that of the op amp is

$$A_p = \beta_3 A_{VA} A_{V1} A_{V3}$$

The voltage gain of the entire circuit is

$$A_{vc} = -\frac{R_2}{R_1}$$

Fig. 23.5 The open- and closed-loop gains of Fig. 23.4 shown as a function of frequency.

This gives us a total power gain of

$$A_{pc} = A_{vc}^2 \, \frac{R_1}{R_L} = \frac{R_2^2}{R_1 R_L}$$

This circuit can become unstable because of the additional voltage gain provided by Q_4 , Q_1 , and Q_3 (and Q_B , Q_2 , and Q_4). The R_2C_1 lead network provides phase compensation near the loop-gain unity-gain crossover frequency. The optimum value for C_1 is approximately

$$C_{1} \approx \frac{1}{R_{2}A_{VA}A_{V1}A_{V3}} \left(\frac{R_{1} + R_{2}}{A_{vo}R_{1}R_{10}C_{2}\omega_{1}} \right)^{1/2}$$

This provides approximately 45° of phase margin. If more phase margin is required, C_1 could be increased by a factor of 2 or 3. For those interested in detailed loop-stability information, the loop gain is

$$\text{Loop gain} = \frac{A_{vo}\omega_1[s + (1/R_{10}C_2)][s + (1/R_2C_1)]}{(s + \omega_1)[s + (R_1 + R_2)/R_1R_2C_1][s + (1/R_{10}C_2A_{VA}A_{V1}A_{V3})]}$$

This is plotted, along with closed-loop gain, in Fig. 23.5 for a typical circuit constructed and tested by the authors.

DESIGN PARAMETERS

Parameter	Description	
α_1	Common-base current gain of Q_1	
A_{pc}	Power gain of entire circuit	
A_{V1}	Voltage gain of Q ₁	
A_{V3}	Voltage gain of Q_3	
A_{VA}	Voltage gain of Q_A	
A_{pc}	Voltage gain of complete circuit	
A_{vo}	Voltage gain of op amp at dc	
β_A	Common-emitter current gain of Q_A	
β_3	Common-emitter current gain of Q_3	
BV_{CEO3}	Collector-emitter breakdown voltage of Q_3	
BV _{CE04}	Collector-emitter breakdown voltage of Q_4	
C_1	Capacitor used to stabilize feedback loop of entire circuit	
C_2	Stabilizes feedback loop by placing another zero in the loop gain near	
-	the op amp second-pole frequency	
h_{ib1}	Common-base input resistance of Q_1	
h_{ieA}	Common-emitter input resistance of Q_A	
h_{ie3}	Common-emitter input resistance of Q_3	
K	Fraction which relates size of $V^{(+)}$ to V_{CC} and $V^{(-)}$ to V_{EE}	
Q_1 to Q_2	Transistors which provide gain and also control levels of $V^{(+)}$ and $V^{(-)}$	
Q_3 to Q_4	High-power complementary output transistors	
Q_A to Q_B	Output transistors in op amp	
R_1	Resistor which sets circuit gain and also determines input resistance of circuit	
R_2	Controls circuit gain	
R_3	Cancels effect of op amp input bias current	
R_4 to R_5	Controls magnitude of $V^{(+)}$	
R_6 to R_7	Controls magnitude of V ⁽⁻⁾	
R_8 to R_9	Load resistors for Q_1 and Q_2	
R_{10}°	Provides dc load for op amp and also affects loop stability	
R_A to R_B	Output current-limiting resistors in op amp	
R_L^{α}	Circuit load resistance	
V_1^L	Circuit input voltage	

23-10 POWER CIRCUITS

Parameter	Description	
V_2	Circuit output voltage	
V_3 , V_4	Op amp input and output voltages	
V_{cc}	Positive power-supply voltage	
$\stackrel{-}{V_3},\stackrel{-}{V_4}$ $\stackrel{-}{V_{CC}}$ $\stackrel{-}{V_{EE}}$ $\stackrel{-}{V^{(+)}}$	Negative power-supply voltage	
$V^{(+)}$	Op amp power-supply voltages	
ω_1	Radian frequency of op amp first pole	
X_{C2}	Reactance of C_2	

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Voltage gain of complete circuit	$A_{vc} = -\frac{R_2}{R_1}$
2	Power gain of complete circuit	$A_{pc} = A_{vc}^2 \frac{R_1}{R_L} = \frac{R_2^2}{R_1 R_L}$
3	Voltage at op amp (+) power- supply terminal	$V^{(+)} = \frac{R_5 V_{CC}}{R_4 + R_5} - 0.7$
4	Voltage at op amp (—) power- supply terminal	$V^{(-)} = \frac{R_6 V_{EE}}{R_6 + R_7} + 0.7$
5	Required minimum collectoremitter breakdown voltage for Q_3 and Q_4	$\begin{aligned} BV_{CEO3}(\text{min}) &= BV_{CEO4}(\text{min}) \\ &= 1.5(V_{CC} - V_{EE}) \end{aligned}$
6	Voltage gain of op amp transistor Q_A with connections as shown in Fig. 23.4 (commonemitter stage)	$A_{VA} = \frac{-\beta_A (R_4 R_5)}{h_{ieA} + (1 + \beta_A)(R_A + R_{10})}$
7	Voltage gain of Q_1 (commonbase stage)	$A_{V1} = \frac{\alpha_1(R_8 h_{ie3})}{h_{ib1}}$
8	Voltage gain of Q ₃ (commonemitter stage)	$A_{V3} = rac{-oldsymbol{eta}_{3}(R_{2} R_{L})}{h_{ie3}}$
9	Approximate compensation capacitor required	$C_{_{1}} pprox rac{1}{R_{2}A_{_{VA}}A_{_{V1}}A_{_{V3}}} \left(rac{R_{_{1}}+R_{_{2}}}{A_{_{vo}}R_{_{1}}R_{_{10}}C_{2}\omega_{_{1}}} ight)^{1/2}$

REFERENCE

1. Garza, P. P.: Getting Power and Gain out of the 741-type Op Amp, p. 99, *Electronics*, Feb. 1, 1973.

Regulators

VOLTAGE REGULATORS

All high-quality equipment requires voltage regulators to provide stable voltages to the various circuits. In the following pages both low- and high-voltage regulators with current limiters will be discussed. Other types of voltage regulators to be covered include a shunt regulator, precision reference, dual regulator, and switching regulator.

24.1 CURRENT-LIMITED VOLTAGE REGULATOR

ALTERNATE NAMES Adjustable power supply, short-circuit-proof power supply, precision voltage source, buffered-zener reference supply.

EXPLANATION OF OPERATION As shown in Fig. 24.1, this voltage source requires one op amp and two transistors. Q_2 could be eliminated if current limiting is not required. Q_1 could be eliminated if the op amp maximum output current is capable of driving the load.

Transistor Q_1 is basically an emitter follower. Its emitter is always approximately 0.6 V below its base. The base voltage is provided by the op amp, which, in turn, depends on the voltages at each of its two inputs. The op amp positive input is fixed at the zener voltage V_R . The negative input voltage V_N depends on the output voltage according to

$$V_N = \frac{V_o R_1}{R_1 + R_c}$$

Since this is negative feedback, the output voltage will remain fixed at a voltage which makes $V_N = V_R$. Thus

$$V_o = \frac{V_N(R_1 + R_f)}{R_1} = \frac{V_R(R_1 + R_f)}{R_1}$$

The output voltage is adjusted with the rheostat which is part of R_1 .

Regulation against load variations is accomplished as follows: Suppose R_L is decreased in value such that the output current increases. Since the emitter follower has a finite output resistance, V_o will drop slightly. The feedback voltage V_N will also make a corresponding drop. V_N will now be

lower with respect to V_R , which will cause the op amp output voltage to increase. Since the emitter of Q_1 follows its base voltage, V_o will also increase. This increase of V_o will counteract most of the decrease in V_o due to the increased load. The resultant change in V_o will be perhaps 100 or 1,000 times less than would be expected without feedback.

Regulation against input-voltage variations ΔV_{cc} is assured for three reasons:

1. The high power-supply rejection ratio of the op amp will almost completely prevent variations in V_{cc} passing through the op amp to V_o .

2. The emitter follower Q_1 has a very large power-supply rejection ratio (usually 80 to 100 dB). Since this stage has a voltage gain of only 1 (approximately), coupling of changes in V_{cc} to V_o is extremely small.

Fig. 24.1 Positive-output current-limited voltage regulator.

3. The only other possible coupling of V_{cc} to V_o is through the zener reference voltage V_R . The relationship between changes in V_{cc} and changes in V_R is

$$\Delta V_{R} = \frac{R_{Z} \Delta V_{cc}}{R_{x}}$$

where R_z is the dynamic zener resistance and R_x is the resistance between V_{cc} and the zener. However, the R_x for this circuit is R_5 , which is tied to V_o . Therefore, V_o keeps the zener-diode voltage V_R constant and V_R keeps V_o constant. The change in V_R with V_{cc} will be approximately zero.

Output current limiting is provided with only two parts, Q_2 and R_E . The resistance of R_E is chosen such that at a specified output current $I_o(\max)$, the voltage across R_E becomes large enough to turn on Q_2 . This pulls base current away from Q_1 , which causes V_o to drop to zero. All load resistances smaller than $R_L(\min)$ will maintain V_o at zero and I_o at approximately $0.6/R_E$. The pass transistor must be capable of withstanding the power generated from

$$P = \frac{V_{cc} \times 0.6}{R_{\scriptscriptstyle F}} = V_{cc} \times I_o({\rm max})$$

Current limiting for the op amp is provided with R_B . This extra resistor is required if the op amp output cannot be shorted to its negative supply

terminal, which, in this case, is connected to ground.

The zener diode Z_1 provides the reference voltage V_R to the op amp. The quality (and price) of Z_1 will be the major factor in determining the temperature stability of the voltage regulator. Low-priced zeners may have voltage temperature coefficients of 0.05% C while high-priced units go down to 0.0005% C. Z_1 is provided with a current I_Z from the regulated output through R_5 . If R_5 is properly sized, a temperature coefficient near zero may be possible. However, if this is to be a variable output-voltage supply, I_Z will be different for each setting of V_o . A two-stage zener-diode circuit may be required so that the voltage driving R_5 is constant. This will also make I_Z constant.

This circuit makes V_0 depend on V_R and V_R depend on V_0 . Consequently, the power supply may lock up into an undesired state at the moment of turn-on. A starting circuit composed of R_2 , R_3 , and D_1 guarantees that Z_1 is sufficiently biased even before Q_1 and the op amp turn on. Once the active devices are on, the diode D_1 becomes reverse-biased and R_5 provides bias

for Z_1 .

Reduction of ripple and noise on V_R is provided by R_4 and C_1 . These parts are required only in voltage regulators which have very tight noise specifications.

DESIGN PARAMETERS

Parameter	Description	
$\overline{A_v}$	Op amp open-loop gain as a function of frequency	
β	Voltage transfer ratio of feedback network = $R_1/(R_1 + R_f)$	
C_1	Part of filter which makes V_R a noise-free reference voltage	
D_1	Diode which biases Z_1 until op amp and Q_1 have turned on	
f_n	Lowest frequency of noise to be removed from V_o (e.g., for power supplies operating off 60-Hz power line, make $f_n < 60$ Hz)	
h_{FE1}	Q_1 current gain	
h_{IE1}	Q_1 input resistance	
I_{C01}	Q ₁ collector cutoff current	
I_E	Q_1 emitter current	
I_f	Feedback current through R_f	
I_{io}	Op amp input offset current	
I_n	Op amp equivalent input rms current noise	
I_o	Output current of circuit	
$I_o(\max)$	Maximum output current of circuit (where current limiting begins)	
I_Z	Zener-diode current	
I_{Z0}	Zener-diode current for zero temperature coefficient of voltage	
$P_{oa}(\max)$	Maximum allowable power dissipation in op amp	
Q_1	Pass transistor (for power gain)	
Q_2	Current-sensing transistor	
R_1	Part of feedback network which goes to ground	
R_2	Part of starting circuit	
R_3	Part of starting circuit	
R_4	Part of V_R filter	
R_5	Feedback resistor for biasing Z ₁ from a regulated voltage	
R_B	Resistor in base circuit of Q_1 for limiting op amp output current	
R_E	Resistor in emitter circuit of Q_1 for current limiting the circuit output	
R_f	Feedback resistor	
R_o	Output resistance of op amp	
$R_{ m out}$	Output resistance of voltage regulator	

Parameter	Description	
ΔT	Change in temperature	
$V^{(+)}$	Positive power-supply voltage (= V_{cc} in this circuit)	
V_{RF1}	Base-to-emitter voltage of Q_1	
$egin{array}{c} V_{BE1} \ V_{cc} \ V_{io} \ V_o \ V_N \end{array}$	Power-supply voltage for circuit	
V_{io}^{cc}	Op amp input offset voltage	
V.	Output voltage of circuit	
V	Feedback voltage to negative input of op amp	
V_n	Op amp equivalent rms input noise voltage in volts/ $\sqrt{\text{Hz}}$	
V_R^n	Reference voltage established by Z ₁	
Z_1	Zener reference diode	

Eq. No.	Description	Equation
1	Resistance of $R_1 + R_f$	$R_1 + R_f \gg R_L$ (to prevent feedback network from loading circuit)
2	Output voltage of circuit if $A_v = \infty$	$V_o = rac{V_R}{eta} = V_R \left(1 + rac{R_f}{R_1} ight)$ NOTE: Use both Eqs. 1 and 2 to determine R_1 and R_f
3	Output voltage of circuit if $A_v < \infty$	$V_o = V_R \frac{A_v}{1 + \beta A_v} - \frac{V_{BE1}}{1 + \beta A_v}$
		where $eta = rac{R_1}{R_1 + R_f}$ $V_{\scriptscriptstyle BP,1} pprox 0.6 ext{ V}$
4	Minimum load current for which regulation is assured	$V_{BE1} \approx 0.6 \text{ V}$ $I_o(\min) > I_{C01}(\max)[1 + h_{FE1}(\max)] - I_f - I_{Z0}$
5	Sensitivity of V_o to a temperature change ΔT (if Eq. 9 is true)	$\begin{split} \frac{\Delta V_o}{\Delta T} &= \left(1 + \frac{R_f}{R_1}\right) \!\! \left(\pm \frac{\Delta V_R}{\Delta T} \pm \frac{\Delta V_{io}}{\Delta T}\right) \pm \frac{\Delta I_{io}}{\Delta T} R_f \\ \text{NOTE: Partial cancellation is possible if } \Delta V_R \\ \text{drifts in opposite direction of } \Delta V_{io} \text{ or } \Delta I_{io} \end{split}$
6	Resistor values	$R_5 = \frac{V_0 - V_R}{I_{Z0}}$
7		$R_2 = 2R_5$
8		$R_3 = \frac{R_2 V_R}{2 V_{cc} - V_R}$
9		$R_4 = \frac{R_1 R_f}{R_1 + R_f}$
10		$R_E = \frac{0.6}{I_o(\text{max})}$
11		$R_{\scriptscriptstyle B}({ m min}) = rac{V_{\scriptscriptstyle o}^2({ m min})}{P_{\scriptscriptstyle oa}({ m max})}$

Eq. No.	Description	Equation
12	Closed-loop output resistance of voltage regulator	$R_{ m out} pprox rac{R_B + h_{IE1}}{(h_{FE1} + 1)eta A_v}$
13	% regulation	$\frac{\Delta V_o}{V_o} = \frac{R_{\rm out} \times 100}{R_L({\rm min}) + R_{\rm out}} \%$
14	Capacitance of C_1	$C_1 \gg \frac{1}{2\pi f_n R_4}$
15	Noise in V_o due to op amp	$V_{\text{on}} = \left[\left(1 + \frac{R_f}{R} \right)^2 V_n^2 + R_f^2 I_n^2 \right]^{1/2} \text{ rms volts}$
16	Maximum power dissipation in Q_1 if output terminal is shorted to ground	$P = \frac{0.6V_{cc}}{R_E}$

DESIGN PROCEDURE

Depending on the design requirements, Eqs. 1 to 15 could be arranged in several logical design sequences. The following sequence of steps assumes:

1. A fixed output voltage V_o is specified.

2. Feedback resistors should load circuit no more than 2 percent.

3. A_v is finite, but high enough that Eq. 3 is not used.

4. Minimum R_L is specified and maximum R_L is to be determined.

5. Stability of V_o with temperature is to be calculated.

- 6. Percent load regulation is to be calculated.
- 7. Lowest-frequency noise is specified.

8. Output noise is to be calculated.

A slightly rearranged procedure would be required if (1) A_v is only 100 or 1,000, (2) the temperature stability is specified, (3) the percent regulation is specified, or (4) the output noise is specified.

DESIGN STEPS

Step 1. Using the minimum R_L , choose $R_1 + R_f \ge R_L(\min)$. For a first cut we may try $R_1 + R_f = 100 R_L(\min)$. Equations 1 and 2 are now solved for R_1 and R_f :

$$R_f = \frac{100 R_L(\min)(V_o - V_R)}{V_o}$$

$$R_1 = 100 R_L(\min) - R_f$$

Step 2. R_5 is found as follows: Using the zener-diode data sheet, determine the zener current I_{Z0} where V_R exhibits the smallest change with temperature. Many high-quality zener diodes have an optimum bias point where the change in V_R is less than $\pm 0.0005\%$ °C. Thus $R_5 = (V_o - V_R)/I_{Z0}$. According to Eq. 7, we also choose $R_2 = 2R_5$.

Step 3. Determine the maximum R_L by using Eq. 4 and the fact that $I_0(\min) = V_0/R_L(\max)$. Thus,

$$R_{L}(\max) = \frac{V_{o}}{I_{o}(\min)} = \frac{V_{o}}{I_{C01}(\max)[1 + h_{FEI}(\max)] - I_{f} - I_{Z0}}$$

where

$$I_f = \frac{V_o}{R_f + R_1}$$

Step 4. If required, determine the sensitivity of V_o to changes in temperature using Eq. 5. If Eq. 9 is not satisfied, i.e., $R_4 \neq R_1 R_f / (R_1 + R_f)$, then the $\pm \Delta I_{io} R_f / \Delta T$ term must be replaced with $\pm \Delta I_b R_f / \Delta T$ (worst case).

Step 5. Solve for R₃ from

$$R_3 = \frac{R_2 V_R}{2V_{cc} - V_R}$$

Step 6. Find R4 from

$$R_4 = \frac{R_1 R_f}{R_1 + R_f}$$

and if a low-noise V_{ϱ} is desired find C_1 from

$$C_1 = \frac{10}{2\pi f_n R_4}$$

Step 7. If current limiting is not required, delete Q_2 and replace R_E with a wire. If current limiting is needed, solve for

$$R_E = \frac{0.6}{I_o(\text{max})}$$

Step 8. If additional short-circuit protection is desired for the op amp, find $R_R(\min)$ from

$$R_B(ext{min}) pprox rac{h_{FE\,1}}{I_o(ext{max})} igg[V_{cc} - V_o - rac{h_{FE\,1} P_{oa}(ext{max})}{I_o(ext{max})} igg]$$

If this number is negative, no resistor is needed.

Step 9. If percent regulation is to be determined, first find the closed-loop output resistance from

$$R_{
m out} pprox rac{R_B + h_{IE1}({
m max})}{(h_{FE1}({
m min}) + 1)eta A_v}$$

then the percent regulation is

% regulation =
$$\frac{R_{\text{out}} \times 100}{R_L(\text{min}) + R_{\text{out}}}$$
 %

This is the percent change in output voltage when the load resistance changes from ∞ to $R_L(\min)$. If step 3 does not allow $R_L(\max) = \infty$, the actual percent regulation will be slightly better than computed above.

Step 10. Noise due to the op amp can be found from

$$V_{\rm on} = \left[\left(1 + \frac{R_f}{R_1} \right)^2 V_n^2 + R_f^2 I_n^2 \right]^{1/2}$$
 rms volts

Since both V_n and I_n vary with frequency, this equation must be solved at several frequencies of interest.

EXAMPLE OF VOLTAGE-REGULATOR DESIGN We will use the 10 design steps to design an actual voltage regulator. Experimental data from the actual circuit using a 741 op amp will be compared with the calculations of the 10 steps.

Design Requirements

$$V_o = 15 \text{ V}$$

 $V_{cc} = 20 \text{ V minimum}$

 $R_L = 15 \Omega$ minimum $V_R = 6.4 \text{ V}$, 1N4566 $I_{Z_0} = 0.5 \text{ mA}$ $f_n = 60 \text{ Hz}$ $I_o = 1.0 \text{ A maximum}$

Device Data

 $A_v > 10^4$ for all frequencies of interest

 $I_{C01} = 2 \mu A$ maximum

 $h_{FE1} = 50 \text{ minimum}$

 $\Delta V_{io} = +10 \ \mu V/^{\circ}C$

 $\Delta I_{io} = -60 \text{ pA/°C}$

 $P_{oa} = 300 \text{ mW maximum}$

 $h_{IE1} = 2,000 \Omega$ maximum

 $V_n = 4 \times 10^{-8} \text{ V}/\sqrt{\text{Hz}}$ at 60 Hz

 $I_n = 3 \times 10^{-12} \text{ A}/\sqrt{\text{Hz}} \text{ at } 60 \text{ Hz}$

 $\Delta V_R = \pm 0.001\% / ^{\circ} C = \pm 64~\mu V/ ^{\circ} C$ (polarity and magnitude depend on particular diode)

Step 1. Since $R_L(\min) = 15 \Omega$, $R_1 + R_f = 100 R_L(\min) = 1{,}500 \Omega$ shall be selected. These individual resistors become

$$R_f = \frac{100R_L(\min)(V_o - V_R)}{V_o}$$

$$= \frac{100(15)(15 - 6.4)}{15} = 860 \Omega$$

and

$$R_1 = 100R_L(\min) - R_f$$

= 1,500 - 860 = 640 \Omega

Step 2. I_{z_0} , the optimum zener current, is 0.5 mA. Thus,

$$R_{5} = \frac{V_{o} - V_{R}}{I_{Z0}}$$
$$= \frac{15 - 6.4}{5 \times 10^{-4}} = 17.2 \text{ k}\Omega$$

and

$$R_2 = 34.4 \text{ k}\Omega$$

Step 3. To determine the maximum load resistor (for which regulation can be expected) we first must find

$$I_f = \frac{V_o - V_R}{R_f}$$

$$= \frac{15 - 6.4}{860} = 10 \text{ mA}$$

We now can obtain

$$\begin{split} R_L(\text{max}) &= \frac{V_o}{I_{C01}(\text{max})[1 + h_{FE1}(\text{max})] - I_f - I_{Z0}} \\ &= \frac{15}{2 \times 10^{-6}(1 + 200) - 10^{-2} - 5 \times 10^{-4}} \\ &= \frac{15}{-0.0101} = -1,500 \ \Omega \end{split}$$

Has something gone wrong in our calculations? No, the reason for the negative answer is simple. I_f and I_{Z0} are large enough that they place a constant load on the voltage regulator which is larger than the minimum load. Examination of Eq. 4 reveals that regulation is possible if $I_o(\min) + I_f + I_{Z0} > I_{co1}(\max)[1 + h_{FE1}(\max)]$. This is true for this particular regulator design because our feedback currents were chosen to be quite large (≈ 1 percent of I_o). The maximum R_L we may use is therefore ∞ .

Step 4. The sensitivity of V_o to changes in V_R , V_{io} , and I_{io} with tem-

perature is

$$\begin{split} \frac{\Delta V_o}{\Delta T} &= \left(1 + \frac{R_f}{R_1}\right) \!\! \left(\pm \frac{\Delta V_R}{\Delta T} \pm \frac{\Delta V_{io}}{\Delta T}\right) \pm \frac{\Delta I_{io}}{\Delta T} \, R_f \\ &= \left(1 + \frac{860}{640}\right) \!\! \left(\pm 64 \times 10^{-6} + 10 \times 10^{-6}\right) - (60 \times 10^{-12}) \!\! \left(860\right) \\ &= (2.34) (+74 \text{ to } -54 \times 10^{-6}) - 0.052 \times 10^{-6} \\ &= +173 \text{ to } -126 \ \mu\text{V/}^\circ\text{C} \end{split}$$

The direction and magnitude of this drift in V_o with temperature depend on the drift of the zener voltage with respect to the op amp input offset voltage. If one has enough patience to screen (test) many zener diodes and op amps, a pair of devices which have equal and opposite drifts can probably be found.

Step 5. R_3 is found from

$$\begin{split} R_3 = & \frac{R_2 V_R}{2 V_{cc} - V_R} = \frac{2 R_5 V_R}{2 V_{cc} - V_R} \\ = & \frac{2 (17,200) (6.4)}{2 (20) - 6.4} = 6,560 \ \Omega \end{split}$$

Step 6. Assume we want the voltage regulator to attenuate 60-Hz ripple. If we tune the filter R_4C_1 to a frequency of only 6 Hz, any 60-Hz ripple on Z_1 will be attenuated by a factor of $10(20~\mathrm{dB})$ before it is applied to the op amp. Thus we make

$$R_4 = \frac{R_1 R_f}{R_1 + R_f} = \frac{640 \times 860}{640 + 860} = 367 \ \Omega$$

$$C_1 = \frac{10}{2\pi f_* R_4} = \frac{10}{(6.28)(6)(367)} = 722 \ \mu\text{F}$$

and

This may seem an unreasonably large capacitor to use; however, it need only be a 10-V device. The same f_n can be achieved with $R_4=3,670~\Omega$ and $C_1=72~\mu\text{F}$. The only compromise we make with these new values is that R_4 is not equal to the parallel combination of R_1 and R_f . This choice for R_4 was originally made so that variations of I_b with temperature will not affect circuit performance. As we saw in step 4, however, I_{io} does not appreciably affect the drift of V_o , so variations in I_b will not be much worse. We can therefore make R_4 10 or 100 times larger and use a more reasonable capacitance for C_1 . Step 7. An output-current limit of 1 A is specified, so R_E must be

$$R_E = \frac{0.6}{I \text{ (max)}} = \frac{0.6}{1} = 0.6 \Omega$$

Step 8. Additional short-circuit protection to the op amp is provided by making

$$\begin{split} R_{B} &= \frac{h_{FE1}}{I_{o}(\text{max})} \left[V_{cc} - V_{o} - \frac{h_{FE1}P_{oa}(\text{max})}{I_{o}(\text{max})} \right] \\ &= \frac{50}{1} \left[20 - 15 - \frac{50(0.3)}{1} \right] = -100 \ \Omega \end{split}$$

Thus no R_B is required.

Step 9. The closed-loop output resistance of the voltage regulator is

$$R_{
m out} pprox rac{R_B + h_{IE1}({
m max})}{[h_{FE1}({
m min}) + 1]eta A_v} = rac{750 + 2,000}{(50 + 1)(640/1,500) \ 10^4} = 0.0126 \ \Omega$$

Now we can find the percent regulation as the load changes from $R_L = \infty$ to $R_L = 15 \Omega$.

% regulation =
$$\frac{R_{\text{out}} \times 100\%}{R_L(\text{min}) + R_{\text{out}}}$$

= $\frac{0.0126 \times 100\%}{15 + 0.0126} = 0.084$ percent

Step 10. Noise in V_0 due to the op amp will be

$$\begin{split} V_{\rm on} &= \left[\left(1 + \frac{R_f}{R_1} \right)^2 V_n^2 + R_f^2 I_n^2 \right]^{1/2} \\ &= \left[\left(1 + \frac{860}{640} \right)^2 (4 \times 10^{-8})^2 + (860)^2 (3 \times 10^{-12})^2 \right]^{1/2} \\ &= 8.95 \times 10^{-8} \ {\rm V/\sqrt{Hz}} \end{split}$$

This output noise is mostly due to V_n .

The experimental data confirming the above calculations are as follows:

$$\begin{array}{ll} R_{_{1}}=634~\Omega & C_{_{1}}=77~\mu\mathrm{F} \\ R_{_{2}}=34.4~\Omega & V_{_{0}}=15.25~\mathrm{V} \\ R_{_{3}}=6,630~\Omega & I_{_{0}}(\mathrm{max})=1.2~\mathrm{A}~(\mathrm{down~to~}V_{_{0}}=13~\mathrm{V}) \\ R_{_{4}}=3,690~\Omega & R_{_{0ut}}<0.05~\Omega \\ R_{_{5}}=17.26~\Omega & R_{_{0ut}}<0.05~\Omega \\ R_{_{E}}=0.6~\Omega & R_{_{B}}=815~\Omega & R_{_{f}}=854~\Omega \end{array}$$

REFERENCES

- Tobey, G. E., J. G. Graeme, and L. P. Huelsman: "Operational Amplifiers Design and Applications," p. 230, McGraw-Hill Book Company, New York, 1971.
- Millman, J., and C. C. Halkias: "Integrated Electronics—Analog Digital Circuits and Systems," p. 698, McGraw-Hill Book Company, New York, 1972.
- Giles, J. N. (ed.): "Fairchild Semiconductor Linear Integrated Circuits Applications Handbook," p. 144, Fairchild Semiconductor, Mountain View, Calif., 1967.

24.2 HIGH-VOLTAGE REGULATOR

ALTERNATE NAMES High-voltage regulated power supply, current-limited high-voltage regulator, short-circuit-proof high-voltage supply.

EXPLANATION OF OPERATION A 30-V op amp (between + and - supply terminals) can regulate large voltages if it is biased with zener diodes as shown in Fig. 24.2. Zener diode Z_3 maintains 30 V across the op amp for all possible input or output voltages V_{cc} or V_o . Zener diode Z_1 holds the op amp positive supply terminal 6 V above V_o . Zener diode Z_2 keeps the op amp inverting input terminal 10 V below V_o . R_1 and R_f are chosen such that the op amp positive input is also held 10 V below V_o . Current for Z_1 and Z_3 is provided by the constant-current source made up of Q_3 , R_2 , R_3 , and Z_4 . R_E and Q_2 provide current limiting in the event of a heavy load. The rest of the circuit

Fig. 24.2 A high-voltage regulator which uses a standard 30-V op amp.

is described in Sec. 24.1. A filter for the zener voltage $(R_4$ and C_1 of Fig. 24.1) and starting circuit $(R_2, R_3, \text{ and } D_1 \text{ of Fig. 24.1})$ may also be used in this circuit if necessary.

DESIGN EQUATIONS

The design equations for this circuit are similar to those of Fig. 24.1 except for the following:

Eq. No.	Description	Equation	
1	Output voltage	$V_o = rac{V_{Z2}(R_1 + R_f)}{R_f}$	
2	Resistor values	$R_1 = \frac{100(V_o - V_{Z2})}{I_o(\max)}$	
3		$R_f = \frac{100 \ V_o}{I_o(\text{max})} - R_1$	

Eq. No.	Description	Equation
4		$\begin{split} R_3 = \frac{V_{Z4} - 0.6}{I_{Z1} + I_{Z3} + I_{oa} - I_{Z4}} \\ \text{where} I_{Z1} = \text{optimum } Z_1 \text{ current} \\ I_{Z3} = \text{optimum } Z_3 \text{ current} \\ I_{Z4} = \text{optimum } Z_4 \text{ current} \\ I_{oa} = \text{nominal op amp supply current} \\ V_{Z4} = \text{nominal } Z_4 \text{ zener voltage} \end{split}$
5		$R_2 = \frac{V_{cc} - V_{Z4} - V_{Z1} - V_o}{I_{Z4}}$
6		$R_4 = rac{V_o - V_{Z2}}{I_{Z2}}$ where $V_2 = ext{nominal } Z_2 ext{ zener voltage}$ $I_{Z2} = ext{optimum } Z_2 ext{ current}$
7		$R_5 = \frac{V_o + V_{Z1} - V_{Z3}}{I_{oa} + I_{Z3}}$ where $\begin{array}{c} V_{Z1} = \text{nominal } Z_1 \text{ zener voltage} \\ V_{Z3} = \text{nominal } Z_3 \text{ zener voltage} \end{array}$

REFERENCE

1. English, M.: Applications for Fully Compensated Op-Amp ICs, *EEE*, January 1969, p. 62.

24.3 SHUNT VOLTAGE REGULATOR

ALTERNATE NAMES Shunt regulator, parallel regulator.

EXPLANATION OF OPERATION The shunt method of voltage regulation is used when high output-to-input current isolation is required. If the prime source of power must deliver a constant load current even though load resistance changes are expected, this regulator is recommended. The circuit keeps I_{cc} at a constant value of $I_o + I_s + \text{current}$ into R_Z , R_f , and the op amp (see Fig. 24.3).

Fig. 24.3 Shunt voltage regulator.

If the output voltage tries to drop owing to an increased load-current demand, the following occurs: less current flows through R_f , which makes V_1 drop slightly. Since V_1 is attached to the positive op amp input, the op amp output will drop. This reduces the base bias of Q_1 , which accordingly reduces I_s . The reduction in I_s will be almost exactly equal to the increase in I_o . The input current I_{cc} will remain essentially constant.

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Output voltage	$V_o = V_R rac{R_1 + R_f}{R_1}$
2	Resistor values	$R_i = \frac{V_{cc} - V_o}{I_i}$
3		where $I_{cc} \ge I_o(ext{max})$ $R_z = rac{V_o - V_Z}{I_Z}$ where $I_z = ext{optimum zener current}$
4		$R_f = \frac{100 \text{ V}_R}{I_{cc}}$
5		$R_{\scriptscriptstyle 1} = \frac{100 \; V_{\scriptscriptstyle o}}{I_{cc}} - R_{\scriptscriptstyle f}$
6		$R_E = \frac{V_o}{I_{cc}}$

REFERENCE

 Denker, J. B., and D. A. Johnson: Hybrid Approach to Regulation Solves Power Supply Problems, *Electronics*, Aug. 2, 1973, p. 91.

Fig. 24.4 Precision voltage reference.

24.4 PRECISION VOLTAGE REFERENCE

ALTERNATE NAMES Reference-voltage source, precision power supply.

EXPLANATION OF OPERATION High-quality reference diodes used for precision sources have good voltage stability only if their current remains stable with time and temperature. The zener current is chosen such that the zener voltage has a very small temperature coefficient. In Fig. 24.4, the zener current depends on the choice of R_1 , R_2 , R_f , and V_o . Likewise, V_o depends on R_1 , R_f , and V_R . Since V_R and I_Z are given on the zener data sheet, we obtain two equations with three unknown resistances. It is therefore recommended to pick R_f and solve for R_1 from the V_o equation. The I_Z equation can then be used to determine R_2 .

DESIGN EQUATIONS

Description	Equation
Output voltage	$V_o = rac{V_R(R_1 + R_f)}{R_f}$
Zener-diode current	$I_{\rm Z} = rac{V_{o}R_{1}}{R_{2}(R_{1}+R_{f})}$
	or $I_Z = \frac{V_R R_2}{R_f}$
Voltage at op amp inverting input	$V_{1} = \frac{V_{o}R_{1}}{R_{1} + R_{f}} = I_{z}R_{2}$

REFERENCES

1. Goldfarb, W.: Single-Supply Reference Source Uses Self Regulating Zener, *Electronics*, June 7, 1973, p. 107.

 Shah, M. J.: Stable Voltage Reference Uses Single Power Supply, Electronics, Mar. 13, 1972, p. 74.

24.5 DUAL VOLTAGE REGULATOR

ALTERNATE NAMES Tracking regulator, dual op amp supply, dual-polarity supply.

EXPLANATION OF OPERATION The stability of voltage regulators ultimately depends on the quality (and cost) of the reference diode. Many times both positive and negative supplies are required. This is often implemented by using two separate reference diodes and associated power-boosting circuitry. The circuit of Fig. 24.5 allows the use of only one reference diode for both supplies, which results in a considerable cost savings.

The + and - output voltage need not have the same absolute magnitude. Since the reference diode most likely to be chosen is the 6.4-V variety, R_4 and R_5 will each have 3.2 V applied across them. The op amps merely amplify these two voltages to produce $V_o(+)$ and $V_o(-)$. R_f and R_1 in each op amp circuit can therefore be independently chosen to produce nearly

any + or - voltage combination.

 Z_1 is a preregulator made up of a standard low-cost zener. It helps maintain a constant current through Z_2 , which is required for a highly stable V_R . R_6 is chosen to lessen the effects of input offset-current drift in the op amps. If $R_1(+)$ and $R_f(+)$ have resistances much different from $R_1(-)$ and $R_f(-)$, a separate R_6 may be needed for each op amp.

Fig. 24.5 Dual voltage regulator.

Description	Equation
Positive output voltage	$V_o(+) = \frac{R_f(+) \ V_R(+)}{R_1(+)}$
Negative output voltage	$V_o(-) = rac{R_f(-) \ V_R(-)}{R_1(-)}$
Reference voltages	$V_R(+) = \frac{V_R R_5}{R_4 + R_5}$
	$V_{R}(-) = \frac{V_{R}R_{4}}{R_{4} + R_{5}}$
Offset drift-reducing resistor	$R_6 = \text{average of} \frac{R_1(-)R_f(-)}{R_1(-) + R_f(-)} \text{and} \frac{R_1(+)R_f(+)}{R_1(+) + R_f(+)}$
Resistor values	$R_3 = rac{V_Z - V_R}{2 \; I_R}$ where I_R is the optimum Z_2 current
	$R_2 = rac{V_{cc}(+) - V_{cc}(-) - V_Z}{2\;I_Z}$ where I_Z is the optimum Z_1 current
	$R_4 = R_5 \geqq \frac{10 \ V_R}{I_R}$
	$R_{\rm i}(+) \text{ or } R_{\rm i}(-) \ge \frac{10 V_R}{I_R}$
	(These two equations prevent excessive loading of V_R)

REFERENCE

 Jones, H. T.: Build a Dual Voltage Regulator for \$11, Electron. Des., Dec. 23, 1971, p. 70.

24.6 SWITCHING VOLTAGE REGULATOR

ALTERNATE NAMES Switching-mode regulator, switching regulator, buck regulator.

EXPLANATION OF OPERATION The switching regulator is used in applications where small size and/or high efficiency is required. These advantages come about because the series pass transistor Q_1 switches between totally on and totally off on a periodic basis. Typical operation frequencies are 5 to 100 kHz. The switching time of Q_1 must be quite small compared with the on or off times if efficiency is to be kept high.

Fig. 24.6 Switching voltage regulator.

Referring to Fig. 24.6, the circuit operates as follows: Assume, for a start, that V_f is rising and suddenly $V_f > V_R + V_H$. The op amp output will accordingly be driven negative—turning Q_3 , Q_2 , and Q_1 off. The current which had been flowing in Q_1 , L, and R_L cannot be turned off instantaneously when Q_1 is turned off. The stored inductor current will therefore flow up through the diode. The current will decay, since it has no driving source, and cause V_o eventually to drop. When V_o drops, this causes V_f to drop below V_R . The op amp then goes positive. Q_3 , Q_2 , and Q_1 are turned on and the inductor current begins to increase. This continues until $V_f > V_R + V_H$, which completes one cycle. Figure 24.7 shows currents and voltages in Q_1 and D during the on and off times.

Fig. 24.7 Idealized voltage and current waveforms of the switching regulator.

Description	Equation
Approximate output voltage (see Fig. 24.7)	$V_o pprox rac{t_{ m on} V_{ m cc}}{t_{ m on} + t_{ m off}}$
Values for inductor and capacitor	$L = rac{\left(V_{cc} - V_o\right) t_{ m on}}{2 \left(I_p - I_o ight)}$
	$C = \frac{V_{cc} - V_o}{4\pi^2 f_o^2 L V_r}$
	$\begin{array}{ll} \text{where} & I_{\scriptscriptstyle p} = \text{peak-load current (usually 5 to 20\%} \\ & \text{larger than } I_{\scriptscriptstyle 0}) \\ I_{\scriptscriptstyle 0} = \text{rated-load current} \\ V_{\scriptscriptstyle r} = \text{maximum allowed peak-to-peak ripple} \\ & \text{voltage} \end{array}$
Operating frequency	$f_o = \frac{1}{t_{\rm on} + t_{\rm off}}$
	$\approx \frac{R_c V_R (V_{cc} - V_R)}{V_{cc} V_r L}$ NOTE: The exact V_o and f_o must consider the risetime t_r and fall time t_f of Q_1
Resistor values	$R_{\rm I} = \frac{V_{cc} - V_R}{I_Z}$
	where I_z = optimum zener current
	$R_2 = \frac{10 \ R_1 V_r}{V_{cc} - V_R}$
	$R_3 = 10R_1 - R_2$
	$R_4 = \frac{V_{cc}\beta_1\beta_2}{I_o}$

Description	Equation
	where eta_1 and eta_2 are the minimum current gains of Q_1 and Q_2
	$R_5 = rac{eta_1eta_2eta_3V_{cc}}{I_o}$
	$R_6 = R_3$
	$R_7 = \frac{R_6 V_R}{V_o - V_R}$

REFERENCES

- Widlar, R. J.: "Designing Switching Regulators," National Semiconductor Corp., 1969.
- 2. Capel, A.: New Control Technique in dc/dc Regulators for Space Applications, *IEEE Trans. Aerosp. Electron. Syst.*, vol. AES-8, no. 4, p. 472, July 1972.
- 3. Olla, R. S.: Switching Regulators: The Efficient Way to Power, *Electronics*, Aug. 16, 1973, p. 91.
- 4. Hauser, J. A.: Get with Switching Regulators, Electron. Des., Apr. 25, 1968, p. 62.

CURRENT REGULATORS

Current regulators, i.e., current sources, come in two classes. One class is those devices which provide a source of constant current. The other is often called voltage-to-current converters, wherein the output current is a function of the input voltage. These two classes, in reality, can be performed by the same circuits. The first class merely clamps the input terminal to a fixed-voltage source, thereby providing a constant output current. In all the circuits to follow, the voltage source can be replaced by an input-voltage signal to change the circuit to a voltage-to-current converter (see Chap. 4).

Current regulators are called upon to handle floating loads (both leads off ground) and grounded loads (one lead grounded). We will present a circuit for each type. Only those types capable of handling load currents under several amps will be discussed.

24.7 FLOATING-LOAD CURRENT REGULATOR

ALTERNATE NAMES Current source, voltage-to-current converter, voltage-to-current amplifier, transconductance amplifier, current sink, constant-current regulator, controlled current source, unipolar current source.

EXPLANATION OF OPERATION Current sources are always made with a simple application of Ohm's law: $I_o = V_o/R_s$. Thus we merely need a voltage amplifier with a fixed output V_o , and a sampling resistor R_s for the output current I_o . The feedback voltage is generated across R_s . Any tendency for I_o to change will be reproduced by a change in V_o . This change is fed back to the input through the feedback resistor R_f , resulting in a correction which restores both V_o and I_o to their original values. Figure 24.8 shows a typical way this is performed if the load resistor R_L must have both terminals off ground. The input voltage V_R is generated by a zener diode which is chosen according to the stability requirements of I_o .

Fig. 24.8 Current regulator for a floating load (i.e., where both leads of the load are off ground).

The output voltage at V_o is computed from the basic formula for a noninverting amplifier:

$$V_o = \frac{V_R(R_f + R_1)}{R_1}$$

If R_f is at least 100 times larger than R_s , the output current is

$$I_o = \frac{V_o}{R_o}$$

Combining these two equations yields

$$I_o = \frac{V_R(R_f + R_1)}{R_1 R_s}$$

Note that I_0 is totally independent of R_L . However, if R_L gets too large, Q_1 will saturate as it attempts to maintain I_0 at a constant value. The current will then fall off as R_L is further

increased. That is, when $R_L + R_s = V_{cc}/I_o$ is reached, the current I_o will begin to vary according to

$$I_o = \frac{V_{cc}}{R_L + R_s}$$

DESIGN PARAMETERS

Parameter	Description Open-loop gain of op amp at dc	
A_{ro}		
I_{o}	Output current of circuit	
I_{Z0}	Optimum zener-diode current	
$P_1(\max)$	Maximum allowable dissipation for Q_1	
Q_1	Buffer transistor to increase output-current capability of circuit	
R_1	Part of feedback network	
R_2	Resistor used to optimize zener current	
R_{t}^{z}	Feedback resistor	
$R_{L}^{'}$	Load resistor	
R_{out}	Output resistance of current regulator	
R_s	Current-sensing resistor used for feedback control of I_{o}	
V_{cc}	Input voltage (positive power supply)	
V_o^{cc}	Voltage across sense resistor	
V_R	Zener voltage	

DESIGN EQUATIONS

Description	Equation
Output current into load resistor R_L	$I_o = \frac{V_R(R_f + R_1)}{R_1 R_s}$
Output resistance of circuit driving R_L (but not including R_L)	$R_{\text{out}} = \frac{R_f + R_1 A_{vo}}{R_f + R_1 + R_s}$

Description	Equation
Maximum allowable R_L after which I_o will not remain constant	$R_{\scriptscriptstyle L}({ m max}) = rac{V_{\scriptscriptstyle CC}}{I_o} - R_{\scriptscriptstyle s}$
Voltage at transistor emitter	$V_E = \frac{V_R(R_fR_s + R_fR_L + R_sR_L)}{R_1R_s}$
Voltage at V_o	$V_o = rac{V_E R_s}{R_s + R_{\scriptscriptstyle L}}$
Resistor values	$R_s \ge \frac{I_o V_{cc} - P_1(\max)}{I_o^2}$
	$R_f \ge 100 R_s$
	$R_{\scriptscriptstyle 1} = \frac{V_{\scriptscriptstyle R} R_{\scriptscriptstyle f}}{I_{\scriptscriptstyle o} R_{\scriptscriptstyle s} - V_{\scriptscriptstyle R}}$
	$R_p = rac{R_1 R_f}{R_1 + R_f}$
	$R_2 = \frac{V_{cc} - V_R}{I_{Z0}}$

REFERENCE

1. Analog Devices, Inc., Analog Dialogue, vol. 2, no. 1, p. 4, March 1968.

24.8 GROUNDED-LOAD CURRENT REGULATOR

ALTERNATE NAMES These are the same as those for the last circuit plus single-ended current source.

EXPLANATION OF OPERATION Operation of this regulator is similar to that of the floating-load current regulator. In this case, however, the current-sampling resistor R_s is floating and the load resistor R_L has one end grounded. Since R_s is floating, two feedback resistors R_f and R_4 are required. The conventional feedback resistor R_f samples the current and R_4 provides a reference voltage from the other side of R_s . If R_4 was deleted, both R_s and R_L would become sampling resistors. The current through R_L would then be determined by the resistance of R_L . A true current regulator puts out a current totally independent of R_L .

With R_4 connected, the output current is

$$I_o = \frac{R_f V_R}{R_1 R_s}$$

if the following is satisfied: $R_1 = R_3$ and $R_f = R_4 + R_s$. If $R_1 + R_f \gg R_s$, the output resistance of this current source is

$$R_{\rm out} = R_s \, rac{R}{\Delta R}$$

where R is the least accurate resistor of R_1 , R_f , R_3 , and R_4 , and ΔR is the number of ohms by which that least accurate resistor deviates from the ideal. The ideal resistances are determined from $R_1 = R_3$ and $R_f = R_4 + R_8$. If R_1 and R_3 have small trimming potentiometers in series with them, R_{out} can be

trimmed to almost infinity. However, resistor changes with temperature must be recognized, since a very small change will quickly reduce the output resistance. The voltage source driving R_3 has a source resistance which must be added to R_3 to determine the true R_3 . If the voltage follower is used as shown in Fig. 24.9, the source resistance will be much smaller than 1 Ω . If R_3 is very large, say more than 100 k Ω , the source resistance will be negligible.

If a negative current source is required, the following changes to Fig. 24.9 must be done: 1. V_R must drive the grounded side of R_1 and the left side of R_3 must be grounded, 2. Q_1 must be replaced with a PNP transistor with

a –V applied to its collector.

Fig. 24.9 Grounded-load current regulator.

DESIGN PARAMETERS

Parameter	Description	
I_o	Output current	
I_{z_0}	Optimum zener-diode current	
$P_1(\max)$	Maximum allowable power dissipation of Q_1	
Q_1	Buffer transistor to provide high output currents	
Ř	Any of R_1 , R_3 , R_4 , or R_f	
R_1	Part of feedback network	
R_2	Establishes optimum current in zener diode	
R_3	Part of feedback network	
R_4	Part of feedback network	
R_{ϵ}	Part of feedback network	
R_L	Load resistance	
R_s^L	Current-sensing resistor	
ΔR	A small change in any of R_1 , R_3 , R_4 , or R_6	
$\overline{\mathrm{V}_{cc}}$.	Positive input voltage to circuit	
$\overset{,}{V}_{o}^{cc}$	Output voltage at R_t	
$\stackrel{\circ}{V_R}$	Reference voltage of zener diode	
Z_1	Zener diode	

Description	Equation
Output current into load resistor R_L	$I_o = \frac{V_R R_f}{R_1 R_s}$
Output resistance of current source	$R_{ m out} = R_s rac{R}{\Delta R}$
Maximum allowable load resistor	$R_L(\text{max}) = \frac{V_{cc}}{I_o} - R_s$
Output voltage across R_L	$V_o = I_o R_L$
Resistor values	$R_s \ge \frac{V_{cc}I_o - P_1(\max)}{I_o^2}$ $R_f \ge 100R_s$
	$R_4 = R_f - R_s$
	$R_1 = R_3 = \frac{R_f V_R}{V_{cc} - V_R}$
	$R_2 = \frac{V_{cc} - V_R}{I_{Z_0}}$

REFERENCES

Graeme, J. G.: "Application of Operational Amplifiers – Third-Generation Techniques," p. 78, McGraw-Hill Book Company, New York, 1973.
 Dobkin, R. C.: Bilateral Current Source, Op Amp Circuit Collection, National Semi-

conductor Corp., February 1970, p. 6.

3. Jung, W.: Low Temperature Coefficient Current Source Becomes Ultra-Compliant with Two Resistors, Electron. Des., June 7, 1973, p. 108.

Sampling Circuits

INTRODUCTION

Two classes of sampling circuits will be presented in this chapter: (1) real-time sampling circuits, simply called multiplexers, and (2) delayed sampling circuits, called sample-and-hold (S/H) multiplexers. The multiplexer term implies that two or more inputs converge to a common output. The number of inputs is determined by system requirements and could conceivably be 100 or more if certain design rules are followed. However, one must pay a price for many inputs. Sampling time per input channel must be lower. Crosstalk and loading from other channels increase with large numbers of channels. These problems are present in both real-time multiplexers and S/H multiplexers.

This chapter contains design data on three types of sampling circuits. An FET real-time multiplexer using CMOS switches will be presented first. The errors expected in an FET multiplexer will be detailed. The second circuit is a real-time multiplexer which uses precision op amp gates. This circuit has extremely good accuracy but suffers from limited input range.

A sample/hold circuit will also be described in detail. The discussion will explore the conflicting requirements of speed and accuracy. This particular type of S/H circuit was chosen for presentation since it is available from several manufacturers on a single chip (except for the holding capacitor).

25.1 FET MULTIPLEXER

ALTERNATE NAMES Analog multiplexer, multichannel sampling circuit, analog commutator, multichannel analog switch, CMOS multiplexer, MUX.

EXPLANATION OF OPERATION Either junction field-effect transistors (JFETs) or metal-oxide semiconductor FETs (MOSFETs) can be utilized as the switching devices in a multiplexer. If MOSFETs are used, the complementary type, CMOS, is recommended, since it provides the best overall performance. These devices are available in large arrays which are optimized for this application.

Figure 25.1A shows a representative four-channel CMOS multiplexer. The detail of each switch is shown in Fig. 25.1B. By paralleling an N-channel with a P-channel FET, the interaction between the gate voltage and the source voltage is minimized. This interaction is explained as follows: The

drain-to-source on resistance R_{DS} in an ideal FET is determined only by the voltage on the gate. In a real FET, however, R_{DS} depends on the voltage between gate and source or between the gate and drain, whichever is smaller. This is not usually a problem in the FET OFF state, since the gate is pulled to a large enough \pm voltage that the source or drain voltage cannot bring the FET into the conductive state. When the FET is ON, however, the drain-to-source resistance is modulated by the drain (or source) voltage. This undesirable feature is called resistance modulation. The parallel CMOS switch reduces resistance modulation to a second-order error. This is possible since the resistance vs. V_{GS} curves of the two devices have opposite slopes. The ON resistance remains almost constant as V_S or V_D vary from zero to maximum.

The errors due to a nonzero R_{DS} (on) are further minimized by using a non-inverting op amp circuit at the output node of the four switches. The input resistance of a noninverting op amp circuit is approximately

$$R_{\rm in} \approx A_{vo} R_{id}$$

The voltage gain of the circuit from a typical input, say v_1 , is therefore

$$A_{vc} = \frac{\upsilon_o}{\upsilon_1} = \frac{R_{\rm in}}{R_{\rm DS1}({\rm on}) + R_{\rm in}} \label{eq:avc}$$

If a 1 percent accurate multiplexer is required, $R_{\rm in}({\rm min})$ must be at least 100 times larger than $R_{DS}({\rm on,max})$. Likewise, a 0.1 percent circuit requires an $R_{\rm in}({\rm min})/R_{DS}({\rm on,max})$ ratio greater than 1,000.

Fig. 25.1 A four-channel CMOS multiplexer (A), a detailed diagram of one switch and its driver (B), and the equivalent circuit of a switch (C).

Another dc error source which should be considered in a high-accuracy MUX is the leakage current through the OFF switches. These currents can be converted to equivalent leakage resistances to simplify error calculations. Assume that S_1 is on and all other switches are off. If v_2 , v_3 , and v_4 all equal zero (and all have small source resistances), we assume that the three leakage resistances of S_2 , S_3 , and S_4 are connected in parallel to ground. In this case it appears that a resistance of

$$R_L = \frac{1}{1/R_{DS2}(\text{off}) + 1/R_{DS3}(\text{off}) + 1/R_{DS4}(\text{off})}$$

is shunted from v_5 to ground. The voltage gain of the entire circuit, assuming an ideal op amp and nonideal switches, is then

$$A_{vc} = \frac{v_o}{v_1} = \frac{R_L}{R_{DS1}(\text{on}) + R_L}$$

The ratio $R_{DS}(\text{off})/R_{DS}(\text{on})$ must be much larger than 1,000 if a 0.1 percent MIX is required.

Attenuation of high frequencies through the multiplexer can be caused by either op amp limitations or FET output capacitance. The -3-dB frequency of the op amp is simply its unity-gain crossover frequency if the noninverting configuration shown in Fig. 25.1A is utilized. The -3-dB frequency of each FET switch is $\frac{1}{2}\pi R_{DS}(\text{on})C_o$. Since the output terminals of all four switches are in parallel, C_o must be multiplied by four to determine the actual -3-dB frequency due to this cause.

If high-speed commutating operation is required, several other factors must be investigated. The FET switch driving circuit is often slower than the switch itself. The op amp unity-gain bandwidth must also be adequate. Manufacturer's data should be consulted.

DESIGN PARAMETERS

Parameter	Description
A_1	Wide-bandwidth operational amplifier which is stable with 100% feedback
A_{vo}	DC open-loop voltage gain of op amp
A_{vc}	Closed-loop voltage gain of circuit from any particular input to the output
C_i	Input capacitance of an FET switch
$\dot{C_t}$	Transfer capacitance of an FET switch
C_{o}	Output capacitance of an FET switch
f_{cp}	The pole frequency of the circuit (where voltage gain has been reduced 3 dB)
MUX	Multiplexer
$R_{DSN}(on)$	On resistance of FET switch No. N
$R_{DSN}(\text{off})$	Off resistance of FET switch No. N
R_{id}	Differential input resistance of op amp
Rin	Closed-loop input resistance of op amp
R_L	Parallel resistance seen at op amp input due to OFF switches
S_1 to S_4 , S_N	FET switches, Nth FET switch
v_a to v_5	Voltages as shown in Fig. 25.1
$\vec{\mathrm{V}}_{DD}$. Maximum positive voltage applied to CMOS gates (i.e., drain voltage)
V_{S1} to V_{S4} , V_{SN}	Drive signals for FET switches, Nth drive signal
V_{SS}	Largest negative voltage applied to CMOS gates (i.e., source voltage)

Eq. No.	Description	Equation
1	Voltage gain from any input v_1 to v_4 to v_6 assuming ideal op amp and switches	$A_{vc} = \frac{v_o}{v_1} = \frac{v_o}{v_2} = \frac{v_o}{v_3} = \frac{v_o}{v_4} = 1$
2	Voltage gain from a typical input (say v_1) assuming nonideal op amp and switches	$A_{vc} = \frac{v_o}{v_1} = \frac{R_L \parallel R_{in}}{R_{DS1}(\text{on}) + R_L \parallel R_{in}}$
3	Approximate input resistance of op amp	$R_{ m in}pprox A_{vo}R_{id}$
4	Shunting resistance of off switches assuming S_1 on and S_2 to S_4 off	$R_{L} = \frac{1}{1/R_{DS2}(\text{off}) + 1/R_{DS3}(\text{off}) + 1/R_{DS4}(\text{off})}$
5	Bandwidth of circuit assuming an ideal op amp $(S_1 \text{ on and } S_2 \text{ to } S_4 \text{ off})$	$f_{cp} = \frac{1}{2\pi R_{DS1}(\text{on})(C_{o1} + C_{o2} + C_{o3} + C_{o4})}$
6	Maximum signal levels allowed for v_1 (v_2 to v_4 are similar)	$V_{SS} \le v_1 \le V_{DD}$

REFERENCES

or

- Bergersen, T. B.: Field Effect Transistors in Analog Switching Circuits, Motorola Application Note AN-220, 1966.
- Givins, S.: Field Effect Transistors as Analog Switches, Comput. Des., June 1974, p. 106.
- 3. Fullager, D.: Analog Switches Replace Reed Relays, *Electron. Des.*, June 21, 1973, p. 98.
- 4. Schmid, H.: Electronic Analog Switches, Electro-Technology, June 1968, p. 35.

25.2 PRECISION GATE MULTIPLEXER

ALTERNATE NAMES Analog multiplexer, analog commutator, multichannel analog switch, multichannel sampling circuit, MUX.

EXPLANATION OF OPERATION Although this circuit is useful only for negative input voltages, it is popular because of its simplicity and high accuracy. If only a three-channel input is required, such as that shown in Fig. 25.2, a quad op amp along with several easily available resistors and diodes provides a low-cost multiplexer. This circuit also allows us to adjust the gain of each channel independently (Ref. 1).

The three input circuits are essentially precision rectifiers. For example, if $v_{S1} \leq 0$, the A_1 circuit has a gain of

$$\frac{v_4}{v_1} = -\frac{R_2}{R_1} \quad \text{if } v_1 \le 0$$

$$\frac{v_4}{v_1} = 0 \quad \text{if } v_1 > 0$$

The diode D_1 is reverse-biased in this case, so v_{S1} has no effect on the precision rectifier action. However, if v_{S1} is >1 V, D_1 is forward-biased. This

Fig. 25.2 A three-channel multiplexer utilizing precision gates (useful only for negative input voltages).

clamps the output of A_1 to negative saturation, since D_4 is reverse-biased and the feedback loop is opened. In this case $v_4 = 0$ for all values of v_1 as long as

$$\frac{|v_1|}{R_1} < \frac{v_{S1}}{R_3}$$

If v_1 gets more negative than this inequality allows, v_4 will become positive. R_3 is usually made much smaller than R_1 so that the inequality will be easily satisfied.

The output signals from the precision rectifiers are summed into the A_4 adder circuit. This provides another phase inversion. Thus v_0 will always be negative, since v_1 , v_2 , and v_3 are required to be negative. Resistors R_{10} , R_{11} , and R_{12} provide another opportunity for independent adjustment of the gain of each channel.

DESIGN PARAMETERS

Parameter	Description	
A_1 to A_3	Op amps used in precision rectifiers	
A_4	Op amp used in adder circuit	
D_3 , D_4 , D_7 , D_8 , D_{11} , D_{12}	Diodes used in A_1 to A_3 feedback circuits to provide precision rectification	

Eq. No.	Description	Equation
1	Voltage gain from v_1 to v_o assuming $v_{S1} > 1$ V	$\frac{v_o}{v_1} = \frac{R_2 R_{13}}{R_1 R_{10}}$
2	Voltage gain from v_2 to v_o assuming $v_{S^2} > 1 \text{ V}$	$\frac{v_o}{v_2} = \frac{R_5 R_{13}}{R_4 R_{11}}$
3	Voltage gain from v_3 to v_o assuming $v_{S3}>1$ V	$\frac{v_o}{v_3} = \frac{R_8 R_{13}}{R_7 R_{12}}$
4	Maximum allowed (negative) v_1	$ v_1 _{\max} < rac{R_1 v_{S1}}{R_3}$
5	Maximum allowed (negative) v_2	$ v_2 _{ ext{max}} < rac{R_4 v_{S2}}{R_6}$
6	Maximum allowed (negative) v_2	$ v_3 _{ m max} < rac{R_7 v_{S3}}{R_9}$

REFERENCE

1. "Precision Gate," G. A. Philbrick Researches, Inc., Applications Manual for Computing Amplifiers, Nimrod Press, Inc., Boston, Mass., June 1966, p. 58.

25.3 SAMPLE-AND-HOLD CIRCUIT

ALTERNATE NAMES Sample/hold circuit, S/H, sampling circuit.

EXPLANATION OF OPERATION As shown in Fig. 25.3, an S/H circuit requires a high-output-current op amp (A_1) , a high-quality switch (S), a low-leakage capacitor (C), and an output op amp (A_2) which has a low input bias current. The input op amp must be capable of driving a capacitive load without any hint of instability. The switch must have a high $R_{DS}(\text{off})/R_{DS}(\text{on})$ ratio so that C can quickly charge to its peak value and maintain that value with minimal droop between sampling times. This switch must also have very small coupling between its digital input and analog output. This coupling would allow switching transients (which occur at S turn-off) to change the final voltage stored on C. Lastly, the output op amp bias and offset currents (and their change with temperature) must be small.

Circuit operation is fairly straightforward. The input op amp (A_1) maintains v_2 at the same potential as v_1 . During the sampling interval T_1 , the volt-

age v_2 is deposited on C by the closure of S. After T_1 terminates (when S opens), the voltage v_2 is maintained on C for a duration T_2 until the next sampling interval. Op amp A_2 holds the transferred value of v_2 on its output v_o for the entire T_2 duration.

We will now consider the effect of nonideal parameters on the S/H circuit performance. The holding capacitor must be carefully sized. The following

constraints limit the maximum size of C:

1. Op amp A_1 must have a current drive capability of at least

$$I_{\text{max}} = \frac{C[v_o(\text{max}) - v_o(\text{min})]}{T_1}$$

Fig. 25.3 A basic sample-and-hold circuit (A). Exaggerated output waveform (B).

2. The maximum ON resistance of S and the sampling time T_1 controls the upper limit for C. If a 1 percent S/H is required, we need $T_1 > 5\,R_{DS}({\rm on,max})\,C$. If a 0.1 percent system is desired, make $T_1 > 7\,R_{DS}({\rm on,max})\,C$.

Both the above factors tell us that a large C requires a large sampling time T_1 . A high current-drive capability from A_1 and a low ON resistance for S are also mandatory if C is large. At the other end of the scale, however, if C is too small, other problems show up. These problems are listed:

1. During the hold period, T_2 leakage currents through C, S, and the A_2

input will easily discharge a small capacitor.

2. The gate-to-source (or gate-to-drain) capacitance transfers charge to/from C when the gate waveform turns S off. This error adds or subtracts from the sample voltage stored on C. If C is small, the error is more pronounced.

Monolithic circuits are available which contain A_1 , A_2 , and S on a single chip. Each of these devices is optimized according to the trade-offs itemized above.

DESIGN PARAMETERS

Parameter	Description
A_1	High-current-driver op amp
A_2	Op amp with high input resistance
A_{vc}	Closed-loop voltage gain of entire circuit
C	Holding capacitor
$C_{\scriptscriptstyle GD}$	Gate-to-drain capacitance of switch
I_{\max}	Maximum output current available from A ₁
N	Variable used in accuracy calculations
R_c	Leakage resistance of C
R_{DS}	Drain-to-source resistance of S
R_{ic}^{DS}	Common-mode input resistance of A ₂
S	Electronic switch
S/H	Sample and hold
T_1	Sampling time
T_2	Time between samples
v_o to v_3	Voltages as indicated in Fig. 25.3
$v_3(droop)$	Voltage droop on C during hold time T_2
Δv_3	Error voltage added to (or subtracted from) v_3 owing to $C_{\scriptscriptstyle GD}$
Δv_c	Change in gate voltage of S
$V^{(\pm)}$	Power-supply voltages

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Voltage gain of circuit during sample time	$A_{vc} = \frac{v_o}{v_1} = 1$
2	Required output-current capability of A_1	$I_{\text{max}} = \frac{C\left[v_o(\text{max}) - v_o(\text{min})\right]}{T_i(\text{min})}$
3	Required sampling interval T_1	$T_1(\min) = 5R_{DS}(\text{on,max})C \text{ for a } 1\% \text{ S/H or } T_1(\min) = 7R_{DS}(\text{on,max})C \text{ for a } 0.1\% \text{ S/H}$
4	Magnitude of error voltage deposited on C when v_G changes by Δv_G	$\Delta v_3 = \Delta v_o = rac{\Delta v_G C_{GD}}{C + C_{GD}}$
5	Maximum droop of voltage v_3 during T_2	$v_3(ext{droop}) = v_3(ext{max}) \left[1 - \exp\left(-\frac{T_2}{RC}\right)\right]$
		where $R = R_{ic} R_c R_{DS}(\text{off})$

DESIGN PROCEDURE

We begin this procedure by assuming that T_2 , A_{vc} , $v_o(\max)$, $v_o(\min)$, and Δv_G are fixed by the system into which this S/H circuit is to be installed. The S/H circuit accuracy and droop are also specified. We also assume A_1 , A_2 , S, and the type of holding capacitor have been selected. Our job is to compute the capacitor size, the voltage error of v_3 (and v_0) caused by Δv_G , and the droop of v_3 (and v_a) during T_2 .

DESIGN STEPS

Step 1. Equation 5 is rearranged to determine C:

$$C \geq \frac{T_2}{R \, \ln\{v_3(\text{max})/[v_3(\text{max}) - v_3(\text{droop})]\}}$$

where $R = R_{ic} ||R_c|| R_{DS}(\text{off})$

A value of R_c can be obtained from the specification sheet for the type of capacitor used even though the exact capacitance of the capacitor is not known until the calculation above is performed.

Step 2. Choose a value *N* from the following table:

Required Sampling Accuracy, %	N
10 .	3
1	5
0.1	7
0.01	9

Calculate a first-cut sampling time T_1 using a modified form of Eq. 3:

$$T_1(\min) = NR_{DS}(\text{on,max})C$$

Determine a second-cut sampling time using a rearranged Eq. 2:

$$T_{\rm 1}({\rm min}) = \frac{C \left[v_{\rm o}({\rm max}) - v_{\rm o}({\rm min}) \right]}{I_{\rm max}}$$

Use the higher of the two values calculated above for the actual T_1 .

Step 3. Use Eq. 4 to find the approximate holding error due to switch capacitance.

S/H CIRCUIT DESIGN EXAMPLE Suppose we want to sample and hold a speech signal before it is sent into an A/D converter. We will assume the highest audio frequency of interest is 5 kHz. According to the rules of sampling, we must sample at a frequency of at least 10 kHz. Thus $T_2 \approx 1/10^4 = 100 \, \mu s$. The maximum input- and output-voltage levels are specified. The gate drive of S is also given.

Design Requirements

$$\begin{split} T_2 &= 100~\mu\text{s} \\ v_o(\text{max}) &= +10~\text{V} \\ v_o(\text{min}) &= 1~\text{V} \\ \Delta v_G &= 15~\text{V} \\ v_3(\text{droop}) &= 0.01~\text{V} \\ V^{(+)} &= +15~\text{V} \\ V^{(-)} &= \text{ground} \\ N &= 5~(1~\text{percent accuracy}) \end{split}$$

Device Data

$$\begin{array}{l} I_{\rm max} = 10 \text{ mA } (A_1 = \frac{1}{4} \text{ LM324}) \\ R_{DS}({\rm on,max}) = 1{,}000 \; \Omega \\ C_{GD} = 4 \text{ pF} \\ R_{DS}({\rm off,min}) = 1.5 \times 10^{11} \; \Omega \\ R_{ic} = 1.5 \times 10^{12} \; \Omega \\ R_{L}({\rm min}) = 2{,}000 \; \Omega \\ R_{c} \approx 10^{13} \; \Omega \end{array} \right\} \; (S = \frac{1}{4} \; \text{CD4016})$$
 (polycarbonate capacitor)

Step 1. The holding capacitor is

$$\begin{split} C & \geq \frac{T_2}{R \, \ln\{V_3(\text{max})/[V_3(\text{max}) - V_3(\text{droop})]\}} \\ & \geq \frac{10^{-4}}{(1.5 \times 10^{12}) \|10^{13}\| (1.5 \times 10^{11}) \, \ln[10/(10 - 0.01)]} \geq 0.74 \, \, \text{pF} \end{split}$$

This capacitance is unreasonably small because the leakage resistances are so high. Assume a reasonable capacitance of 100 pF is used for C.

Step 2. We let N = 5, since a 1 percent circuit is required. The first-cut $T_1(\min)$ is

$$T_1(\min) = N R_{DS}(\text{on,max})C$$

= 5(1,000) $10^{-10} = 0.5 \mu \text{s}$

The second-cut $T_1(\min)$ is

$$\begin{split} T_{\rm I}({\rm min}) &= \frac{C \left[\upsilon_o({\rm max}) - \upsilon_o({\rm min}) \right]}{I_{\rm max}} \\ &= \frac{10^{-10} (10-1)}{2 \times 10^{-2}} = 0.045 \; \mu {\rm s} \end{split}$$

It appears that the risetime of the voltage on C is constrained more by $R_{DS}(on)$ than it is by I_{max} . We therefore let $T_1 = 0.5 \ \mu \text{s}$. Step 3. The approximate holding error due to C_{GD} is

$$\begin{split} \Delta v_o &\approx \frac{\Delta v_G C_{GD}}{C + C_{GD}} \\ &\approx \frac{15(4 \times 10^{-12})}{10^{-10} + 4 \times 10^{-12}} = 0.58 \text{ V} \end{split}$$

This error is 5.8 percent of $v_o(\max)$ and 58 percent of $v_o(\min)$. If we raise C to 1,000 pF, these errors are reduced to 0.58 and 5.8 percent, respectively. Step 3 must also be redone. The new T_1 is 5 μ s.

REFERENCES

- 1. Jones, D.: Applications of a Monolithic Sample-and-Hold/Gated Operational Amplifier, Harris Semiconductor Application Note 517, March 1974.
- 2. Buchanan, J. E.: C-MOS Switch Speeds Up Sample-and-Hold Circuit, Electronics, Sept. 27, 1973, p. 127.
- 3. Patstone, W., and C. Dunbar: Choosing a Sample-and-Hold Amplifier Is Not as Simple as It Used to Be, Electronics, Aug. 2, 1973, p. 101.

Time and Phase Circuits

INTRODUCTION

This chapter contains design information on two types of circuits. The first two sections describe circuits which control the phase lead or phase lag of a system without affecting gain. The relationship between frequency and phase will be thoroughly presented.

The last circuit in the chapter presents a method of delaying a bilevel signal by a specified time. This can also be done with a timer IC, but the circuit shown here can be implemented with one-fourth of a quad op amp and several other parts. The required board space is less than required with a timer IC. The use of an FET input op amp allows time delays of days or weeks to be implemented.

26.1 PHASE LEAD/LAG CIRCUIT

ALTERNATE NAMES Lead/lag circuit, all-pass circuit, constant-amplitude phase shifter.

EXPLANATION OF OPERATION This circuit provides a phase adjustment of v_o with respect to v_1 from -180 to $+180^\circ$ (Ref. 1). The voltage gain remains

Fig. 26.1 A single op amp phase-adjustment circuit which can provide either a lead or a lag.

constant at 1/5 for changes in either frequency or phase adjustment. The phase adjustment is accomplished by simultaneously changing R_3 and R_4 or simultaneously changing C_1 and C_2 . If an easier method of adjustment is required, the circuits shown in Sec. 26.2 are recommended.

If $R_1 = 5R_2$, the voltage transfer function of the lead/lag circuit is

$$A_{vc} = \frac{v_o}{v_1} = \frac{1}{5} \frac{1 - jX/3}{1 + jX/3}$$

where
$$X = 2\pi fRC - 1/2\pi fRC$$

 $R = R_3 = R_4$
 $C = C_1 = C_2$

Fig. 26.2 The output phase of Fig. 26.1 relative to its input phase.

The voltage gain is always 1/5, since the absolute magnitude of 1 - jX/3 is always equal to that of 1 + jX/3.

The phase shift of the circuit can be expressed as

$$\phi = -2 \tan^{-1} \left(\frac{X}{3} \right)$$

If $2\pi fRC$ approaches dc, ϕ approaches +180°. This provides the normal inverting gain of -1/5, since C is open-circuited at dc. As $2\pi fRC$ increases to unity, the phase shift becomes zero. Lastly, when $2\pi fRC$ approaches infinity, the phase shift approaches -180°.

DESIGN PARAMETERS

Parameter	Description
C_1, C_2	Part of phase-shifting network
C	Common value for C_1 and C_2
f	Frequency in hertz
φ	Phase shift in degrees
R_1, R_2	Sets voltage gain of circuit at 1/5
R_3, R_4	Part of phase-shifting network

Parameter	Description	
R	Common value for R_3 and R_4	
X	Variable used in Eq. 1	
v_1	Input voltage (reference phase)	
v_2	Output voltage (phase-shifted relative to v_1)	

Eq.	Description	Equation
1	Voltage transfer function of circuit	$A_{vc} = \frac{v_o}{v_1} = \frac{1}{5} \frac{1 - jX/3}{1 + jX/3}$
		where $X = 2\pi fRC - 1/2\pi fRC$ $R = R_3 = R_4$ $C = C_1 = C_2$
2	Phase shift of v_o relative to v_1	$\phi = -2 \tan^{-1} \left(\frac{X}{3} \right)$
3	Required relationship between R_1 and R_2	$R_1 = 5R_2$

REFERENCES

Genin, R.: Realization of an All-Pass Transfer Function Using Operational Amplifiers, IEEE Proc., October 1968, p. 1746.

26.2 ADJUSTABLE LEAD/LAG CIRCUITS

ALTERNATE NAMES All-pass circuit, constant-amplitude phase shifter, lead network, lag network.

EXPLANATION OF OPERATION Figure 26.3A is an adjustable phase-lead circuit with a range of 0 to $+180^{\circ}$. Likewise, Fig. 26.3B is a phase-lag circuit which can be adjusted from 0 to -180° . Both these circuits have the advantage of requiring the use of only one resistor to adjust phase. As with the circuit shown in Fig. 26.1, the phase difference between v_o and v_1 depends on both the component values and the frequency. Figures 26.4A and B show the phase shift of these circuits as a function of $2\pi f R_3 C$ (Ref. 1).

DESIGN PARAMETERS

Parameter	Description	
C	Part of phase-shifting network	
f	Frequency in hertz	
R_1, R_2	Establishes gain of circuit	
R_3	Part of phase-shifting network	
v_1	Input voltage (reference phase)	
v_o	Output voltage (phase-shifted relative to v_1)	

Fig. 26.3 An adjustable phase-lead circuit (A) and an adjustable phase-lag circuit (B).

Fig. 26.4 Phase as a function of $2\pi f R_3 C$ for the lead circuit (A) and the lag circuit (B).

DESIGN EQUATIONS

Eq. No.	Description	Equation
	LEAD CIRCUIT (Fig. 26.3A)	
1	Voltage transfer function of circuit	$A_{vc} = \frac{v_o}{v_1} = \frac{j2\pi f R_3 C - 1}{j2\pi f R_3 C + 1}$
2	Phase shift of $v_{\scriptscriptstyle 0}$ relative to $v_{\scriptscriptstyle 1}$	$\phi = 2 \tan^{-1} (1/2\pi f R_3 C)$
3	Required relationship between R_1 and R_2 LAG CIRCUIT (Fig. 26.3B)	$R_1 = R_2$
	LAG CIRCOII (Fig. 20.3b)	
4	Voltage transfer function of circuit	$A_{vc} = \frac{v_o}{v_1} = \frac{1 - j2\pi f R_3 C}{1 + j2\pi f R_3 C}$
5	Phase shift of v_o relative to v_1	$\phi = -2 \tan^{-1} (2\pi f R_3 C)$
6 .	Required relationship between R_1 and R_2	$R_1 = R_2$

REFERENCE

1. Francis, J. R.: Constant-Amplitude Phase Shifter, EEE, January 1971, p. 63.

26.3 ANALOG TIMER

ALTERNATE NAMES Timer, interval timer, RC timer, long-interval timer.

EXPLANATION OF OPERATION An op amp can perform some of the functions of the monolithic IC timer. One such application is the generation of long delays lasting hours or days. The FET input op amp is superior to the timer IC in this application because of its high input resistance. The circuit shown in Fig. 26.5 can generate delays of days or weeks if a low-leakage capacitor and an FET input op amp are utilized.

The op amp is used as a comparator with ac positive feedback through R_5 , R_6 , and C. The switch is in the clear-standby position prior to timer

operation. In this state the voltage at the op amp inverting input is

$$V' = V_1 = \frac{R_2 V_R}{R_1 + R_2}$$

$$V_R \circ V_1 \circ R_3 \circ V_1 \circ FET \circ V_2 \circ V_1 \circ FET \circ V_2 \circ V_3 \circ V_4 \circ V_4 \circ V_4 \circ V_5 \circ$$

Fig. 26.5 An analog timer which can provide a time delay up to many days or weeks.

and the voltage at the noninverting input is

$$v_2(\text{standby}) = \frac{(R_5 || R_6) V_R}{R_4 + R_5 || R_6}$$

Resistor values are chosen such that $v_2(\text{standby}) \leq V_1$ (by at least several volts). This guarantees that the output v_4 will be at the LOW state in the standby mode.

When S is placed in the RUN position, the current through R_4 begins to charge C toward a final value of V_R . Voltages v_3 and v_4 are near zero during the RUN mode, since the op amp inverting input is more positive than its

Fig. 26.6 Waveforms at various locations in the timer shown in Fig. 26.5.

noninverting input. When v_2 charges up to approximately V_1 , the op amp output switches to the HIGH state. A fraction $R_5/(R_5+R_6)$ of v_4 is ac-coupled back to the op amp noninverting input to assure a clean, quick change of state. After the timer period has ended, the voltage v_2 continues to rise toward V_R until S is placed in the clear position. Voltage v_4 remains high until this clear operation takes place.

DESIGN PARAMETERS

Parameter	Description	
C	Provides long-duration time constant along with R_4	
R_1, R_2	Establishes trip voltage V_1 for op amp inputs	
R_3	Makes driving resistance for op amp inputs equal so that input bias currents do not affect timing accuracy	
R_4	Main timing resistor used to provide a long-duration time constant	
R_5 , R_6	Provides positive feedback (hysteresis) so that op amp will make a quick, clean change of states at end of timing period	

Parameter	Description	
R_c	Capacitor leakage resistance	
R_{ic}	Common-mode input resistance of op amp	
R_L^{κ}	Manufacturer's minimum recommended load resistance for op amp	
S	Mechanical switch or relay (must have low leakage between contacts when in OFF state)	
T	Period of timer in seconds	
V_1, V_1'	Trip voltage at op amp inverting input	
v_2	Voltage at op amp noninverting input	
v_2 (standby)	Voltage at op amp noninverting input while S is in standby position	
v_3	Positive feedback voltage	
v_4	Output voltage	
V_R	Reference input voltage (timer can be no more stable than this voltage)	
$V^{(\pm)}$	Power-supply voltages	

DESIGN EQUATIONS

Eq.	Description	Equation
1	Time delay in seconds	$T = R_4 C \ln \left(\frac{V_R}{V_R - V_1} \right)$
2	Time delay in seconds if $R_1 = R_2$ (this means that $V_R = 2V_1$)	$T = 0.693R_4C$
3	Fixed voltage at op amp inverting input (assuming $R_{ic} \gg R_3$)	$V_1' = V_1 = \frac{R_2 V_R}{R_1 + R_2}$
4	Voltages v_2 and v_3 during standby mode	$v_2(\text{standby}) = v_3(\text{standby})$ = $\frac{(R_5 R_6) V_R}{R_4 + R_5 R_6}$
5	Voltage v_2 as a function of time during run mode Recommended resistor values:	$v_2(t) = \mathbf{V}_R \left[1 - \exp\left(-\frac{t}{R_4 C}\right) \right]$
6	R_1,R_2	$R_1 = R_2$ chosen so they do not load down V_R source
7	R_3, R_4	$R_3 = R_4 = \frac{T}{0.693C}$
8	R_5	$R_5 = 0.1R_6$
9	R_6	$R_6 \gg R_L$
10	Recommended capacitor size	Use a stable, low-leakage, high-capacitance device such as a polycarbonate, polystyrene, or polyester capacitor

DESIGN PROCEDURE

Since timer ICs are more practical for short-duration timing, we will assume this procedure is for a very long timing interval. The op amp is assumed to be a high-quality FET input device. A capacitor is picked which has the highest possible capacitance-leakage resistance product.

DESIGN STEPS

Step 1. Since circuit size is usually important, these design steps begin with several trade-offs. One approach is to study available capacitors to find which type has the highest value for

$$\frac{(Capacitance)(leakage\ resistance)(stability)}{volume}$$

The effects of temperature must be considered in this trade-off. The leakage resistance does not need to be larger than the op amp common-mode input resistance. Good candidates for *C* are polycarbonate, polystyrene, or polyester capacitors. The polystyrene device has the best capacitance-leakage resistance product, but it turns sour above 80°C.

Step 2. Determine values for R_3 and R_4 according to Eq. 7. These resistors should be no larger than $\frac{1}{100}$ of R_c or R_{ic} if a 1 percent timer is required.

Step 3. Let R_6 be 10 times the load resistance expected for the circuit. Compute an approximate value for R_5 using Eq. 8.

Step 4. Choose values for $R_1 = R_2$ which will not excessively load V_R .

EXAMPLE OF A TIMER DESIGN We will design a 1,000-s timer to illustrate the design steps numerically. Polycarbonate capacitors have been chosen for C, and a high-quality FET input op amp is assumed.

Design Requirements

$$T = 1,000 \text{ s} \pm 1 \text{ percent}$$

 $V_0 = 10 \text{ V}$

$$V_R = 10 \text{ V}$$

 $V^{(+)} = 10 \text{ V}$

$$V^{(+)} = 10 \text{ V}$$

 $R_t = 2,000 \Omega$

Device Data (+25°C)

$$R_{ic} \approx 10^{11} \, \Omega$$

$$R_c \approx 10^{10} \Omega$$
 $C = 10 \mu F$

Step 1. We assume a 10- μ F polycarbonate capacitor is available. Its leakage resistance is specified to be approximately $10^{10}\,\Omega$.

Step 2. Resistors R_3 and R_4 are found from

$$R_3 = R_4 = \frac{T}{0.693C} = \frac{1,000}{0.693(10^{-5})} = 144 \text{ M}\Omega$$

This is only 69 times smaller than R_c , so our 1 percent accuracy requirement will not quite be achieved. Since the ΩF product of a capacitor type is constant at one temperature, a larger polycarbonate device would not help the situation. A polystyrene capacitor has a large enough leakage resistance to give 1 percent accuracy, but it is no good above 80°C. If a timer with much better than 1 percent accuracy is required, a crystal clock with a large number of counters is recommended.

Step 3. Since $R_L=2{,}000~\Omega$, we let $R_6=20~\mathrm{k}\Omega$. The value for R_5 can be in the vicinity of

$$R_5 = \frac{R_6}{10} = \frac{20,000}{10} = 2,000 \ \Omega$$

Step 4. The V_R source has an output resistance of <10 Ω , so we let $R_1=R_2=1{,}000~\Omega$.

Waveform Generators

INTRODUCTION

Ramp, triangle, and staircase generators are discussed in this chapter. Square-wave and pulse generators have already been covered in Chap. 20. Sine-wave generators were presented in Chap. 21.

Ramp (or sawtooth) generators, often used in cathode-ray-tube sweep systems, will be presented in Sec. 27.1. Section 27.2 contains detailed design information on a highly adjustable triangle waveform generator. The last section will cover design details of a staircase generator.

27.1 VOLTAGE RAMP GENERATOR

ALTERNATE NAMES Voltage-sweep generator, sawtooth generator, freerunning sweep oscillator.

EXPLANATION OF OPERATION The two CMOS transistors Q_1 and Q_2 operate in the current-mirror configuration. Resistor R_1 establishes a current I_2 in Q_2 of

$$I_2 = \frac{V^{\scriptscriptstyle (+)} - V_{\scriptscriptstyle T2}}{R_1} + \frac{1 - 2\{KR_1[V^{\scriptscriptstyle (+)} - V_{\scriptscriptstyle T2}]\}^{1/2}}{2KR_1^2}$$

Transistors Q_1 and Q_2 should be on the same chip so that their drain characteristics will be approximately equal. Since $V_{T1} = V_{T2}$, we must have $I_1 = I_2$. We therefore have established a constant current with a magnitude which depends on R_1 . This current-mirror concept allows us to simulate a high-impedance current source using a resistor R_1 in an isolated branch.

During the ramp formation (\bar{T}_1) , Q_3 is held OFF by the G_1 , G_2 latch. Constant current I_1 develops a precisely linear ramp by charging up C. Op amp A_1 has an extremely high input impedance, so it will not affect the current-mirror-charging circuit. The same ramp voltage developed on C appears at v_o . When v_o rises to V_U , the output of comparator A_3 goes LOW. This flips the latch, which causes C to discharge quickly through Q_3 . When v_o has discharged down to V_L , the output of comparator A_2 goes LOW. This again flips the latch, which opens Q_3 . The ramp is then allowed to begin over again.

Fig. 27.1 A free-running voltage-ramp generator.

The upper and lower trip levels $(V_U \text{ and } V_L)$ are determined by the sizes of R_2 through R_5 . If we want $V_L \approx 0$, the inverting input of A_2 can be grounded. In this case A_2 must be capable of operating with input voltages down to ground potential. If this is not the case, the negative supply terminal of A_2 must be returned to a voltage below zero. We must then be careful that the G_1 input is driven correctly. A clamp diode will be required to keep $v_2 \geq \text{zero volts}$.

DESIGN PARAMETERS

Parameter	Description High-input-resistance buffer used to sense voltage ramp across C	
$\overline{A_1}$		
A_2, A_3	Comparators used to detect V_U and V_L	
C	Integrating capacitor used to generate ramp	
G_1, G_2	NAND gates wired as a latch	
I_1	Reflected current equal to I_2	
$\vec{I_2}$	Current generated by $V^{(+)}$, R_1 , and Q_2	
\bar{K}	CMOS constant (≈ 0.004)	
Q_1, Q_2	Mirror-type current source	

Parameter	Description		
Q_3	Switch used to discharge C		
R_1	Used to adjust magnitude of I_1 and I_2		
R_2, R_3	Sets level of V_L		
R_4, R_5	Sets level of V_U		
T_1	Ramp duration		
T_2	Ramp retrace time		
v_o, v_1	Ramp voltage waveform (use v_o for the output, since any load on v_1 will degrade the ramp waveshape)		
v_2	Trigger voltage for latch used to terminate retrace		
v_3	Trigger voltage for latch used to terminate ramp		
v_4	Voltage used to hold Q_3 on during retrace		
V_L	Lower limit of ramp waveform		
$\overline{V_R}$	Reference voltage used to create V_L and V_U		
V_{T2}	Threshold voltage of Q ₂ FET (usually 2 to 3 V)		
\mathbf{V}_{U}	Upper limit of ramp waveform		
$V^{(+)}$	Positive power-supply voltage		

Fig. 27.2 Waveforms at various locations in the voltage-ramp generator.

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Charging current into C during ramp	$I_1 = \frac{V^{\scriptscriptstyle (+)} - V_{\scriptscriptstyle T2}}{R_{\scriptscriptstyle 1}} + \frac{1 - 2\{KR_{\scriptscriptstyle 1}[V^{\scriptscriptstyle (+)} - V_{\scriptscriptstyle T2}]\}^{\scriptscriptstyle 1/2}}{2KR_{\scriptscriptstyle 1}^2}$
2	Rate of rise of ramp	$\frac{\Delta v_1}{\Delta t} = \frac{I_1}{C}$

Eq. No.	Description	Equation
3	Upper trip voltage	$V_U = \frac{R_4 V_R}{R_4 + R_5}$
4	Lower trip voltage	$V_L = \frac{R_2 V_R}{R_2 + R_3}$
5	Duration of ramp	$T_{1} = \frac{R_{1}C(V_{U} - V_{L})}{V^{(+)} - V_{T}}$
6	Ramp retrace time	$T_2 = R_{DS}(\text{on})C(\ln V_U - \ln V_L)$
7	Frequency of oscillation	$F_o = \frac{1}{T_1 + T_2}$

REFERENCES

- 1. McKinley, R. J.: Dual Op Amp Comparator Controls Ramp Reference, *Electronics*, Oct. 11, 1971, p. 76.
- 2. Hart, B. L., and R. W. J. Barker: A Precision Timed Ramp Generator with Zero Idling Power Consumption, *IEEE Proc.*, July 1973, p. 1047.

27.2 VOLTAGE TRIANGLE GENERATOR

ALTERNATE NAME Free-running triangle generator.

EXPLANATION OF OPERATION An ideal triangle generator has the following properties:

1. Independent adjustment of positive and negative slopes

2. Peak-to-peak amplitude adjustment which has no effect on positive and negative slopes

3. A dc offset adjustment which can place the triangle waveform at any

location within the limits of the two power-supply voltages

The circuit shown in Fig. 27.3 closely approaches this ideal. Resistors R_2 and R_3 provide independent positive and negative slope adjustment. Resistor R_4 determines the peak-to-peak limits of the triangle, and R_5 is the offset adjustment.

Fig. 27.3 A voltage-triangle generator which utilizes an integrator and a comparator.

Fig. 27.4 Waveforms at various locations in the voltage-triangle generator.

Circuit operation is briefly explained as follows: Op amp A_1 is an integrator. Its output slews either positive or negative depending on the instantaneous polarity of v_1 . Figure 27.4 shows the triangle which appears at the output terminal of A_1 . Voltage v_1 is a rectangular waveform with \pm limits established by the zener diodes. When v_1 is V_{Z2} (a positive voltage), v_o integrates downward. Likewise, when v_1 is negative, v_o integrates upward. The v_1 waveform is created by the A_2 comparator. This circuit changes states whenever v_2 passes through V_R . As shown in Fig. 27.4, v_2 is a composite waveform made from v_o and v_1 . If R_4 is adjusted upward from center such that v_o dominates the shape of v_2 , A_2 trips sooner than nominal and the peakto-peak voltage at v_o will decrease. Conversely, if R_4 is adjusted such that v_1 dominates the shape of v_2 , A_1 has to integrate further before A_2 trips. This increases the peak-to-peak amplitude of v_o . Potentiometer R_5 also controls the trip point of A_2 . However, the shape of v_2 is not affected, since R_5 merely controls the dc level of v_o without influencing its shape.

DESIGN PARAMETERS

Parameter	Description	
A ₁ Op amp used in integrator stage		
A_2	Op amp (or comparator) used to control triangle offset and peak-to-peak amplitude	
D_1, D_2	Diodes which allow separate control of positive and negative triangl slopes	

Parameter	Description	
$f_{ m min}$	Minimum triangle generator output frequency	
I_{b2}	Input bias current of A ₂	
I_{Z1}, I_{Z2}	Nominal bias current for Z_1 and Z_2	
R_1	Resistor which controls maximum ± slopes of triangle	
R_2 , R_3	Resistors (variable, if required) which control minimum ± slopes of triangle	
R_4	Potentiometer which determines peak-to-peak amplitude of triangle	
R_5	Potentiometer which controls the triangle dc offset	
R_6	Resistor used to establish a nominal bias current in Z ₁ and Z ₂	
v_1	Rectangular waveform from A ₂	
v_2	Composite waveform made from v_o and v_1	
v_o	Output triangle waveform	
$v_o(\mathrm{peak})$	The \pm peak value of v_o relative to its average (dc) value (i.e., $\frac{1}{2}$ of its peak-to-peak value)	
V_R	Reference voltage set by R ₅ which controls triangle offset	
$V_{\rm sat}$	The voltage difference between $V^{(\pm)}$ and the respective \pm maximum output voltages from A_1	
V_{Z1}	The zener breakdown voltage of Z_1 plus the forward breakdown voltage of Z_2	
V_{Z2}	The zener breakdown voltage of Z_2 plus the forward breakdown voltage of Z_1	
$V^{(\pm)}$	Power-supply voltages	
Z_1, Z_2	Zener diodes used to control amplitude of v_1	

DESIGN EQUATIONS

Eq. No.	Description	Equation
1	Positive slope of output ramp	$\frac{\Delta v_o}{\Delta t} = \frac{V_{Z1}}{(R_1 + R_3)C}$
2	Negative slope of output ramp	$\frac{\Delta v_o}{\Delta t} = \frac{-V_{Z2}}{(R_1 + R_2)C}$
3	Maximum peak-to-peak amplitude of ramp when $R_{4B} = 0$	$v_{o}(\mathrm{max},\mathrm{peak\text{-}to\text{-}peak}) = V^{(+)} - V^{(-)} - 2V_{\mathrm{sat}}$
4	Maximum positive offset	v_o (+ off) $\leq V^{(+)} - v_o$ (peak)
5	Maximum negative offset	v_o (- off) $\ge V^{(-)} + v_o$ (peak)
	Resistor values:	
6	R_1	$R_{\scriptscriptstyle 1} pprox rac{V_{\scriptscriptstyle Z} - V_{\scriptscriptstyle D}}{C \Delta v_{\scriptscriptstyle o}/\Delta t _{ m max}}$
7	R_2	$R_2 = rac{V_{Z2} - V_D}{C \left \Delta v_o \middle/ \Delta t ight _{ ext{min}}} - R_1$
		where $\Delta v_o/\Delta t$ applies to negative slopes only
8	R_3	$R_3 = \frac{ V_{Z1} - V_D}{C(\Delta v_o / \Delta t)_{\min}} - R_1$
		where $\Delta v_o/\Delta t$ applies to positive slopes only
9	R_4, R_5	$10R_6 \le R_4 = R_5 \le {}^{1}/_{100}I_{b2}$

Eq. No.	Description	Equation
10	R_{6}	$R_{6}pprox rac{V^{(+)}-V_{Z2}}{I_{Z2}}pprox rac{ V^{(-)} -V_{Z1}}{I_{Z1}}$
11	Integrating capacitor	$Cpprox rac{10^{-7}}{f_{ ext{min}}}$
12	Zener-diode voltages	$2 \text{ V} \le V_{Z1} \le V_{Z2} \le V^{(\pm)} - 2$

DESIGN PROCEDURE

A wide range of component-value combinations will provide satisfactory circuit operation. The designer, therefore, has more latitude for component values than the design equations suggest. The approach used here is to choose the integrator capacitor according to a rule of thumb (Eq. 11). The other equations then provide first-cut values for resistor values. As in all circuit designs, some adjustment of component values is always required after the first breadboard is tested.

Step 1. Calculate a value for C using Eq. 11. In most cases the actual value for C can be anything within an order of magnitude on either side of the calculated value.

Step 2. Choose two identical zener diodes $(Z_1 \text{ and } Z_2)$ at the approximate center of the range suggested in Eq. 12.

Step 3. Calculate a value for R_1 using Eq. 6.

Step 4. Compute values for R_2 and R_3 with Eqs. 7 and 8. Step 5. Find an approximate value for R_6 using Eq. 10.

Step 6. Resistors R_4 and R_5 are chosen to lie somewhere within the range suggested in Eq. 9.

EXAMPLE OF A TRIANGLE GENERATOR DESIGN We will design a subaudio triangle generator using the six design steps.

Design Requirements

$$f_{\min} = 10^{-2} \text{ Hz}$$

$$\left| \pm \frac{\Delta v_o}{\Delta t} \right|_{\max} = 10 \text{ V/s}$$

$$\left| \pm \frac{\Delta v_o}{\Delta t} \right|_{\min} = 0.01 \text{ V/s}$$

$$V^{(\pm)} = \pm 15 \text{ V}$$

Device Data

$$\begin{array}{l} I_{b2} = 3 \times 10^{-8} \; \mathrm{A} \\ V_{D} = 0.7 \; \mathrm{V} \end{array}$$

Step 1. A nominal value for C is

$$C \approx \frac{10^{-7}}{f_{\min}} = \frac{10^{-7}}{10^{-2}} = 10 \ \mu \text{F}$$

Step 2. Equation 12 suggests we use zener diodes with breakdown voltages between 2 V and 15-2=13 V. We will use 1N707 diodes, which have a breakdown voltage of 8 V at 5 mA. The actual breakdown voltages to

be used in the following calculations must have 0.7 V added to the 8 V, since one zener is forward-biased while the other is in the zener breakdown region. We conclude that $|V_{z1}| = V_{z2} = 8.7 \text{ V}$.

Step 3. Equation 6 provides us with

$$\begin{split} R_1 &\approx \frac{V_Z - V_D}{C |\Delta v_o/\Delta t|_{\rm max}} \\ &\approx \frac{8.7 - 0.7}{10^{-5}~(10)} = 80~\text{k}\Omega \end{split}$$

Step 4. The slope-adjustment resistors are found from Eqs. 7 and 8 (these equations are identical since $V_{z2} = |V_{z1}|$):

$$\begin{split} R_2 &= R_3 = \frac{V_{Z2} - V_D}{C |\Delta \upsilon_o / \Delta t|_{\min}} - R_1 \\ &= \frac{8.7 - 0.7}{10^{-5} \; (0.01)} - 80{,}000 = 80 \; \mathrm{M}\Omega \end{split}$$

With such a large input resistor, we must use an FET input op amp for A_1 . Otherwise the input resistance and bias current of A_1 would affect the triangle accuracy at low sweep rates.

Step 5. Equation 10 is calculated to provide us with R_6 :

$$R_6 = \frac{V^{(+)} - V_{Z2}}{I_{Z2}} = \frac{15 - 8.7}{5 \times 10^{-3}} = 1,260 \ \Omega$$

Any resistor between 1,000 and 1,500 Ω should be satisfactory.

Step 6. Resistors R_4 and R_5 must first satisfy

$$R_4 = R_5 \ge 10 \ R_6 = 10(1,260) = 12,600 \ \Omega$$

They must also satisfy

$$R_4 = R_5 \le \frac{1}{100 I_{b2}} = \frac{1}{100(3 \times 10^{-8})} = 0.33 \text{ M}\Omega$$

We will let $R_4 = R_5 = 100 \text{ k}\Omega$.

REFERENCE

 Larsen, D. G.: Triangle Wave Generator Keeps Slopes Constant as Amplitude Changes, Electron. Des., Sept. 28, 1972, p. 80.

27.3 VOLTAGE STAIRCASE GENERATOR

ALTERNATE NAMES Step generator, staircase generator.

EXPLANATION OF OPERATION Each negative transition of v_1 causes the timer IC to produce a positive output pulse for a duration T_2 . This pulse turns on the CMOS switch S_1 , causing the A_1 circuit to integrate upward for the duration of the timer pulse. The voltage added to v_o during T_2 is

$$\Delta v_o = \frac{V_R T_2}{[R_{DS}(\text{on}) + R_3] C_3}$$

Each Δv_o step of the staircase is held by the integrator until the next negative transition of v_1 . Any droop in the step during this hold time T_1 is caused by leakage current through S_2 or C_3 .

The staircase generator is reset when the binary counter is full and G_1 activates S_2 . The size of the AND gate must be compatible with the counter size.

This circuit offers several advantages over the conventional D/A approach for staircase generation:

1. All step amplitudes and risetimes are guaranteed to be identical,

since they are formed by the same components.

2. The circuit is glitch-free, since the circuit is in the integrate mode during the rising portion of each step. (A glitch is a noise transient caused by timing errors in the counter of a conventional D/A converter.)

3. Step amplitudes are easily adjusted with only one part (R_3) . The integrate duration T_2 is (assuming timer is the 555 type)

$$T_2 = 1.1 R_1 C_2$$

Substituting this into the equation for Δv_{o} , we get

$$\Delta v_o = \frac{1.1 \; R_1 C_2 V_R}{[R_{DS}(\text{on}) + R_3] \; C_3}$$

If C_2 and C_3 are identical capacitor types with reasonable tracking over temperature, Δv_o will be quite stable. Also, if $R_{DS}(\text{on}) \ll R_3$, errors caused by switch-resistance variations will be minimized.

Fig. 27.5 A triggered-voltage staircase generator with automatic reset.

Fig. 27.6 Waveforms in the staircase generator circuit.

DESIGN PARAMETERS

Parameter	Description
$\overline{A_1}$	Op amp used as integrate-and-hold circuit
C_1	Used to make $v_2(av) = 0$
C_2	Determines time T_2
C_2 C_3	Determines step size
FF_1 to FF_N	N-stage counter
G_1	N-input AND gate
R_1	Determines time T_2
R_2	Used to make $v_2(av) = 0$
R_3	Determines step size
R_4	Clamps v_4 to ground when S_1 is off
$R_{DS}(on)$	On resistance of S_1 and/or S_2
S_1	Sampling switch which causes integrator to integrate only during rising portion of each step
S_2	Switch which clears integrator at end of staircase
$\overline{T_1}$	Period of v_1 waveform
T_2	Pulse width of timer output
T_3	Duration of staircase
v_1 to v_5	Voltages as shown in Figs. 27.5 and 27.6
Δv_a	Step size
V_{DD}	Drain supply voltage for CMOS devices
V_R	Reference voltage which helps determine step amplitude
V_{SS}	Source supply voltage for CMOS devices

DESIGN EQUATIONS

Eq.	Description	Equation
1	Magnitude of each step voltage	$\Delta v_o = rac{V_R T_2}{[R_{DS}(ext{on}) + R_3]C_3}$
2	Integrate duration T_2 (assuming 555-type timer is utilized)	$T_2 = 1.1 \ R_1 C_2$
3	Input capacitor C_1 size	$C_{\scriptscriptstyle 1} \gg \frac{1}{2\pi f_{\scriptscriptstyle 1 \rm p} R_{\scriptscriptstyle 2}}$
4	Timer capacitor C_2	C_2 is chosen according to timer design specification
5	Recommended integrator capacitor size C_3	$C_3 \ll \frac{T_1}{R_{DS}(ext{on})}$
	Resistor values:	
6	R_1	R_1 is chosen according to timer design specification (see Eq. 2)
7	R_2	$R_2 = 2$ to $10 \text{ k}\Omega$
8	R_3	$R_3 = rac{V_R \ T_2}{\Delta v_o \ C_3} - R_{DS}(ext{on})$ NOTE: Make $R_3 \gg R_{DS}(ext{on})$
9	R_4	$R_4 \gg R_{DS}(\mathrm{on})$

REFERENCE

 Strange, M.: Staircase Generator Resists Output Drift, Electronics, Dec. 4, 1972, p. 90.

Operational Amplifier Parameters

The following tabulation contains the common parameters found on operational amplifier data sheets. The list is not complete, since some parameters found in particular data sheets are not widely used or their application is for only a very specialized type of op amp. The minimum, typical, and maximum parameter values are for op amps at 25°C and in existence in 1976. Most of these parameters are discussed in Chaps. 1 and 2.

Parameter	Description	Units	Min	Typical	Max
A_{cm}	Common-mode voltage				
	gain as a function of				
	frequency	dB			
A_{cmo}	Common-mode voltage				
	gain at de	dB	-40	0	60
A_{r}	Differential voltage gain				
· ·	as a function of frequency	dB			
A_{vo}	Differential voltage gain				
	at dc	dB	53	90	170
C_{ic}	Common-mode input				
	capacitance	pF	1	2	3
C_{id}	Differential input				
	capacitance	pF	1	2	30
CMRR	Common-mode rejection				
	ratio	dB	-160	-90	-64
f_{t}	Full-power bandwidth				
	(-3 dB)	kHz	0.05	50	50,000
f_{op1}	First pole of op amp	Hz	1	10	4,000
f_{op2}	Second pole of op amp	MHz	0.5	1	100
f_u	Frequency of unity				
	voltage gain	MHz	0.25	1	200
I_b	Input bias current	nA	10-4	100	45,000
I_{io}	Input offset current	nA	10^{-4}	20	6,000
$\Delta I_{io}/\Delta T$	Temperature coefficient				
	of input offset current	pA/°C	10^{-3}	100	3,000

1-2 OPERATIONAL AMPLIFIER PARAMETERS

Parameter	Description	Units	Min	Typical	Max
I_n	Equivalent rms input noise current at 10 Hz	pA/\sqrt{Hz}	0.5	1	1.8
I_{snk}	Maximum sink output current	mA	0.5	1	10^{3}
I_{src}	Maximum source output current	mA	5	10	10^{3}
[(±)	Nominal power-supply current	mA	0.03	3	35
P_D	Power consumption if $V^{(\pm)} = \pm 15 \text{ V}$ and $R_L = \infty$	mW	0.5	30	10^{3}
P_o	Percent overshoot for large-signal voltage follower	%	5	10	50
PSRR	Power-supply rejection	dB	-100	-90	-55
ϕ_m	ratio Phase margin	Degrees	5	10	50
\mathbf{R}_{ic}	Common-mode input resistance	МΩ	1	10	10^{8}
R_{id}	Differential input resistance	мΩ	0.09	1	107
R_o	Output resistance at dc	Ω	4	50	10^3
$egin{array}{c} S \ t_r \ t_s \end{array}$	Slew rate Risetime (10 to 90%) Voltage-follower large-	V/μs μs	0.005 0.002	0.5 0.35	6,000 1.4
	signal settling time $(to < 0.1\%)$	μs	0.05	1.2	2
V_{io}	Input offset voltage Temperature coefficient of	mV	0.075	3	50
$\Delta V_{io}/\Delta T$	input offset voltage	$\mu V/^{\circ}C$	0.6	5	50
V_n	Equivalent rms input noise voltage at 10 Hz	nV/\sqrt{Hz}	8	10	35
$V_o^{(+)}$	Maximum positive output swing	v	$V^{(+)} - 4$	$V^{(+)} - 2$	$V^{\scriptscriptstyle(+)}$
$V_o^{(-)}$	Maximum negative output swing	v	V ⁽⁻⁾	$V^{(-)} + 2$	$V^{(-)} + i$
$V_{\min}^{(\pm)}$	Minimum supply voltages	v	±1	±3	±12

Operational Amplifier Maximum Ratings

If the following parameters are exceeded, the operational amplifier may be damaged. Not all these parameters will be found on every op amp data sheet. Only those the manufacturer feels are important for his particular type of op amp are usually given. All ratings assume an ambient temperature of 25°C.

Maximum rating	Description	Units	Min	Typical	Max
$I_{\rm in}$	Maximum (±) input				
	terminal current	mA	1	5	10
I_o	Maximum output current				
	(source or sink)	Α	0.005	0.01	1
$P_D(\max)$	Maximum internal				
	dissipation	W	0.2	0.5	2
T_s	Maximum output short-				
	circuit duration	S	0	00	00
V_{ic+}	Maximum positive common-mode input	V	$V^{(+)} - 3$	$V^{(+)}$	$V^{(+)} + 1$
5 7	voltage	v	V 3	V	V T 1
V_{ic-}	Maximum negative common-mode input voltage	V	V ⁽⁻⁾ — 10	V ⁽⁻⁾	$V^{(-)} + 1$
V_{id}	Maximum differential				
· ia	input voltage	V	±1	±30	±30
V ^(±)	Maximum power-supply				
	voltages	V	±8	±22	±4

Circuit Fabrication Techniques

INTRODUCTION

Although op amps are being made more foolproof each year, the designer must still be familiar with protection circuitry and noise-reduction methods. High-performance devices usually need special consideration in these two areas. Also, the passive devices in each circuit must not be forgotten. The performance of most feedback circuits utilizing high-gain op amps depends almost entirely on the quality of the passive components.

III.1 PROTECTION CIRCUITS

Methods to protect each type of op amp terminal will be considered.

INPUT TERMINALS The \pm input terminals of op amps must be protected against excessive currents and voltages. In most cases this protection is implemented by not allowing the input voltages to exceed the manufacturer's maximum ratings. If input voltages are within prescribed limits, maximum input currents will not be exceeded. In those cases where the range of input voltages cannot be guaranteed, one or two of the protective circuits shown in Fig. III.1 may be required. Diodes D_3 and D_4 in the figure will not allow the op amp differential input voltage to exceed ± 0.7 V. Some super beta op amps (such as the 108) also have internal diodes across the inputs. Since these diodes are on the op amp chip, their current must be limited by the external circuit to prevent excessive chip dissipation. Diodes D_3 and D_4 , in conjunction with R_3 and R_4 , will keep most of the excess current away from the op amp in an overvoltage condition. But since most op amp circuits contain resistors in the op amp input circuits $(R_1, R_2, \text{ and } R_5)$, these can be used to further limit input currents.

Transient overloads on either the + or - inputs relative to ground can be handled in several ways. Many op amps specify that the common-mode input voltages cannot exceed the supply voltages. Diodes D_1 , D_2 , D_5 , and D_6 will constrain op amp input voltages to stay within 0.7 V of $V^{(\pm)}$. These diodes could also be returned to voltages other than $V^{(\pm)}$ if required.

Zener diodes Z_1 to Z_4 can also be utilized to protect each input from \pm over-

Fig. III.1 Several ways to limit op amp differential and common-mode input voltages.

voltages. However, zener diodes are more expensive than general-purpose diodes. Either approach provides the same degree of protection.

OUTPUT TERMINAL At 25°C most op amps can tolerate a short circuit from the output terminal to ground for an indefinite period. At elevated temperatures the designer should consider the power-dissipation derating curve. For example, suppose we are using an op amp with the following maximum ratings and characteristics:

Maximum internal dissipation, 400 mW Derating above 25°C ambient, 6 mW/°C Output current limit, 20 mA Power-supply voltages, ±15 V

If the output is shorted to ground, the current limiter inside the op amp can inject 20 mA into the short. The op amp dissipation will be 20 mA \times 15 V =

Fig. III.2 Output terminal protection circuits.

300 mW. This is only 100 mW below the maximum. We divide 100 mW by the derating factor (6 mW/°C) to determine the maximum ambient temperature where this shorted condition is safe: 100 mW/6 mW/°C = 16.7°C. Therefore this op amp should not be operated in ambient temperatures above 25°C + 16.7°C = 41.6°C if the output is shorted to ground.

Many op amps can also allow an output short circuit to either power-supply terminal with no damage. If the output terminal has any possibility of accidental connection to voltages larger than $V^{(\pm)}$, the ideas recommended in Fig. III.2 may be used. Diodes D_1 and D_2 will clamp the output to a maximum of $V^{(\pm)} \pm 0.7$ V. Zener diodes Z_1 and Z_2 could be used to keep the output voltage within any arbitrary output range.

POWER-SUPPLY TERMINALS Many op amps are destroyed by power-supply transients or accidental reversal of power-supply voltages. Several circuits which protect the op amp from such problems are shown in Fig. III.3 (Ref. 1). Protection against supply reversal is easily implemented with two diodes as shown in Fig. III.3A. Power-supply transient protection can be provided with the circuit of Fig. III.3B. The zener-diode breakdown voltages are chosen to be greater than $V^{(\pm)}$ but less than $V^{(\pm)}$ (max). Thus Z_1 and Z_2 will dissipate power only in a transient situation. The FET devices Q_1 and Q_2 are chosen with an I_{DSS} larger than the expected op amp supply current but less than the recommended zener

Fig. III.3 Protection of the op amp power-supply terminals. (A) Protection against supply reversal. (B) Protection against supply transients.

currents for Z_1 and Z_2 . Capacitors C_1 and C_2 bypass all high frequencies to ground. Some op amps will oscillate if the capacitors are not included.

III.2 NOISE PREVENTION TECHNIQUES

Every designer is familiar with the saying "It worked beautifully as a bread-board but everything went wrong on the prototype." Many of these prototype failures are due to (1) grounding/bypassing problems, (2) shielding/guarding problems, (3) unexpected interface problems, and (4) unwanted coupling problems. Sometimes these potential problems are overlooked during the breadboard phase of a project because "by accident" they were not present. A good designer develops the prototype configuration in the back of his mind all during the breadboard phase. He experiments with the relative positions of parts and wiring in low-level and high-gain circuits to prevent unwanted parasitics from destroying circuit performance. In this section we will consider several ways to anticipate and prevent such problems.

GROUNDING/BYPASSING PROBLEMS Good systems are designed with a single ground point which is characterized as having the smallest quantity of noise, ripple, and transients in the system (Ref. 3). By definition both positive and negative power buses have tight ac coupling to this single ground point for a wide range of frequencies. Ideally each part in all circuits which must return to ground is brought over to this single ground point. In practical systems containing tens or hundreds of active devices, this ideal is not easily achieved. Instead, each op amp, or small group of op amps, has a local single ground point. The local \pm power buses have good-quality bypass capacitors which return to the local single ground point. Each local single ground point services op amps which will not interfere with each other. In other words, a 10-W op amp should not be operated from the same power-supply potentials and ground point as a low-level-instrumentation op amp.

Circuits which pull large currents from the power supply should have independent ± buses and ground wires which return all the way back to the main power-supply terminals and the system single ground point. Low-level

circuits can be "daisy-chained" as shown in Fig. III.4.

Reference 2 provides us with a set of five rules which will circumvent most grounding problems. These rules assume the system is made up of amplifiers, but system performance will also be improved for other types of circuits.

1. The signal ground for all amplifiers should be a flat plane such as a large copper area of a printed circuit board. The signal ground of amplifiers

Fig. III.4 Grounding philosophy which will yield a low-noise system.

on other boards should be connected to the low-level amplifier signal ground with grounding straps or large conductors.

2. Connect all system chassis grounds together with heavy wire or braid.

3. Connect the signal ground of the lowest level amplifier in the system to chassis ground. Make this connection as close as possible to the actual op amp input signal

4. Connect the ground return of the source voltage (external transducer, etc.) for the lowest level amplifier to the same chassis

ground mentioned in item 3.

5. Power ground and \pm power leads may be "daisy-chained" between amplifiers. Make only one connection between power ground and signal ground. This connection should be as close as possible to the cluster of grounds mentioned in items 3 and 4 above (see Fig. III.4).

SHIELDING/GUARDING The performance of op amp circuits with low-input current requirements can be improved through the use of guarding techniques. Guarding is the preferred method to control leakage currents into the op amp \pm input terminals. For example, in most TO-99 op amps, pin 3 is the noninverting input and pin 4 is $V^{(-)}$. If copper traces going to these pins are separated by 0.05 in for a distance of 1 in, then a leakage resistance of $10^{11} \Omega$ is possible at a temperature of 125°C (Ref. 4). This assumes a high-quality epoxy glass board which has been properly cleaned. If the circuit is a high-input resistance voltage follower, the error caused by $V^{(-)}$ leaking through $10^{11} \Omega$ may be significant. Suppose the voltage follower input is at +10 V and $V^{(-)}$ is -15 V. The leakage current will be

$$I_L \! = \! \frac{10 - (-15) \; \mathrm{V}}{10^{11} \; \Omega} \! = 250 \; \mathrm{pA}$$

This is more leakage than the worst-case offset current of the 208 op amp.

Since most leakage currents on printed circuit boards occur along surfaces, this is where guarding procedures must be implemented. As shown in Fig. III.5, a guard ring is placed around the sensitive terminal (or terminals). This must be done on both sides of the board since the ± inputs usually touch both sides. The guard rings are

Bottom view

Fig. III.5 Typical guard ring for a TO-99 op amp where both ± inputs must be protected. (National Semiconductor Corp.)

Fig. III.6 Guard-ring connections for: (A) an inverting amplifier, (B) a voltage follower, and (C) a noninverting amplifier. tional Semiconductor Corp.)

electrically connected to a low-impedance source having the same potential as the \pm inputs. Thus, for an inverting amplifier, as shown in Fig. III.6A. attach the guard rings to ground. For a voltage follower the guard rings should be connected to the op amp output. Figure III.6C shows how guard rings are biased in a noninverting amplifier.

High-impedance circuits also require shielding to prevent pickup of stray ac electric and magnetic fields. This must be done in a way which will not compromise the dc guarding circuit. In most cases it is best to completely enclose a low-level amplifier (or the input circuitry) with a grounded shield (Ref. 6). If low-frequency magnetic fields (under 100 Hz) are present, a high-permeability magnetic shield should be used. Aluminum or copper shielding may be utilized for electromagnetic interference above 100 Hz.

III.3 PASSIVE DEVICES IN OP AMP CIRCUITS

The ultimate accuracy and stability of many op amp circuits have a one-toone correspondence with the accuracy and stability of the passive components in that circuit. A good circuit designer should therefore be familiar with the range of characteristics available for each type of passive device. This section will briefly summarize the range of major parameters for several passive devices.

Typical Posistor Parameters (25°C)

Typical Resistor Farameters (20 0)								
Туре	Resistance range available, Ω		Purchase tolerance,		Temperature coefficient, %/°C		Drift in 1,000 h,	
	Min	Max	Min	Max	Min	Max	Min	Max
Carbon composition	0.1	1011	2	30	±0.01	±0.25	3	10
Metal film	1	2×10^8	0.01	10	± 0.0002	± 0.01	10^{-3}	0.5
Wire-wound	0.1	$2 imes 10^5$	0.01	10	0.002	0.01		
Metal glaze	1	$2 imes 10^6$	1	5	0.005	0.025	0.6	1
Cermet film	10	10^{7}	1	5	0.01	0.05	0.1	0.2
Carbon film	10	10^{9}	0.25	10	-0.02	-0.2	-0.02	-0.3

Typical Capacitor Parameters (25°C)

Туре	Capacit rang availa pF	ge	Purchase tolerance, %		Temperature coefficient, %/°C		Drift in 1,000 h,	
	Min	Max	Min	Max	Min	Max	Min	Max
Ceramic	5	3	5	+80 -30	±0.003	±2	3	20
Mylar	1,000	2	1	20	0.02	0.2	0.1	0.5
Polystyrene	10	3	0.05	20	-0.01	-0.02	0.01	0.1
Polycarbonate	1,000	20	1	20	±0.005	± 0.03	0.25	5
Glass	0.5	0.2	1	20	0.01	0.6	0.5	10
Porcelain	1	0.01	1	10	0.003	0.01	0.5	1

REFERENCES

- Graeme, J.: Protect Op Amps from Overloads, Electron. Des., vol. 10, p. 96, May 10, 1973
- 2. Sheingold, D. H., and EID staff: Grounding Low Level Instrumentation Systems, *Electron. Instr. Dig.*, Jan.-Feb. 1966, p. 16.
- 3. Thornwall, J. C.: Design Noise Out of Spacecraft Loads, *Electron. Des.*, vol. 8, p. 64, Apr. 11, 1968.
- 4. National Semiconductor Corp.: Applications Note AN-29, Dec. 1969.
- 5. Morrison, R.: Protecting Signal Circuits by Grounding and Shielding, *Instr. Technol.*, Oct. 1973, p. 33.
- 6. Philbrick, G. A.: Researches, Inc., Applications Manual—Computing Amplifiers, 1966, p. 26.

Appendix IV

Notation Used in Handbook

 A_1 Typical op amp symbol

Common mode voltage gain of op amp A_{cm}

Common mode voltage gain of circuit due to resistor unbalance Acc

Acmo Common mode voltage gain of op amp at de

 A_{co} Common mode gain of circuit due to op amp CMRR ≠ ∞

 A_d Differential voltage gain of circuit

ADC Analog-to-digital converter

Voltage transfer function of feedback network (β) A_f A_{gc} Transconductance of voltage-to-current converter Aic

Current gain of current amplifier circuit

 A_m Gain margin

 A_{π} Gain of op amp when its phase $\log = -\pi$ Transresistance of current-to-voltage converter A_{rc}

Open-loop voltage gain of op amp A, Voltage gain of voltage amplifier circuit A_{vc}

 A_{vco} Voltage gain of voltage amplifier circuit at de A_{vn} Voltage gain of a passive network Open-loop voltage gain of op amp at dc A_{vo} Common-base current gain of transistor α

β Feedback circuit voltage gain (A_f)

β Transistor current gain C_1 Typical capacitor symbol C_c C_f Compensation capacitor Feedback capacitor

 \vec{C}_{GD} FET gate-to-drain capacitance

 C_{ic} Op amp common-mode input capacitance C_{id} Op amp differential input capacitance

Load capacitor

 C_L **CMR** Op amp common-mode rejection **CMRR** Op amp common-mode rejection ratio Circuit common-mode rejection ratio CMRR.

DAC Digital-to-analog converter

dBDecibel

 D_1 Typical diode symbol

Resonant or natural frequency f_o, f_n Small signal bandwidth of transistor β $\mathbf{f}_{\boldsymbol{\beta}}$

First pole frequency of feedback network $f_{\beta p1}$ First zero frequency of feedback network $f_{eta z 1} f_c$

Carrier or clock frequency

IV-2 NOTATION USED IN HANDBOOK Frequency at which CMRR becomes too low to satisfy circuit requirements f_{cm} f_{cp1} f_{cz1} First pole frequency of closed-loop circuit First zero frequency of closed-loop circuit f_g Maximum frequency of full output voltage swing Frequency at which loop gain is unity f_{lp1} First pole of loop gain f_{lz1} First zero of loop gain f_m Modulation frequency f_{\max} Maximum frequency for a given circuit performance First pole frequency of op amp f_{op1} $f_p f_\pi$ Frequency of a pole Frequency at which loop phase lag is -180° ($-\pi^{\circ}$) Unity gain crossover frequency of op amp Frequency of a zero h_{fe} Transistor common-emitter current gain (β) h_{ib} Transistor common-base input resistance h_{ie} Transistor common-emitter input resistance h_{oe} Transistor common-emitter output conductance h_{re} Transistor common-emitter reverse voltage gain I_1 Typical symbol for complex or dc current i_1 Typical symbol for instantaneous current I_b Op amp input bias current I_c Capacitor leakage current I_{CBO} Collector-to-base leakage current I_{DSS} FET drain-to-source saturation current I_i, i_i Input current Iio Op amp input offset current I_n Equivalent rms input noise current I_o , i_o Output current of circuit Zener current I_z k Boltzmann's constant $(1.38 \times 10^{-23} \text{ joule/K})$ L_1 Typical inductance symbol LSB Least significant bit **MSB** Most significant bit MUX Multiplexer NF Noise figure φ Phase angle ϕ_m Phase margin PSR Power supply rejection **PSRR** Power supply rejection ratio **PWM** Pulse width modulator Electronic charge $(1.6 \times 10^{-19} \text{ C})$ qQ Quality factor at resonance Q_1 Typical transistor symbol R_1 Typical resistor symbol R_c Compensation resistor R_{DS} FET drain-to-source resistance R_f Feedback resistor R_g Generator resistance R_{ic} Op amp common-mode input resistance R_{id} Op amp differential input resistance $R_{\rm in}$ Input resistance of circuit Rinc Common-mode input resistance of circuit Rind Differential input resistance of circuit R_L Load resistance

 R_{a} Op amp output resistance

 R_{out} Circuit output resistance

 R_p Resistor used to cancel effect of input bias current

 $R_{\rm g}$ Source resistance

Dynamic zener resistance r_z

IV-3 NOTATION USED IN HANDBOOK R_z Static zener resistance S_1 Typical switch symbol (mechanical or electronic) S Complex radian frequency $(s = \sigma + j\omega)$ S S_A^B Sensitivity of parameter B to a change in parameter A S/H Sample-and-hold TTemperature Op amp risetime (unity gain follower) t_r T_r Single-shot reset time $T_p^r V_1$ Pulse width Typical complex or dc voltage Typical instantaneous voltage v_1 $\begin{array}{c}
 V_{cc} \\
 V_{D}
 \end{array}$ Collector supply voltage Diode forward voltage drop $egin{aligned} \mathbf{V}_{DD} \ \mathbf{V}_{EE} \ \mathbf{V}_{i}, \, v_{i} \ \mathbf{V}_{ic} \ \mathbf{V}_{io} \end{aligned}$ FET drain supply voltage Emitter supply voltage Circuit input voltage Common-mode input voltage Op amp input offset voltage $egin{array}{c} v_n \ V_n \ V_o, \ v_o \ V_{on} \ V_{oo} \end{array}$ Voltage applied to op amp inverting input Equivalent rms input noise voltage Output voltage of circuit Output noise voltage Output offset voltage $egin{array}{c} v_p \ V_p \ V_R \ V_{SS} \end{array}$ Voltage applied to noninverting input of op amp FET pinch-off voltage Reference de voltage; resistor noise (Johnson noise) FET source-supply voltage $V_z^{s.}$ Zener breakdown voltage Radian frequency ω Natural or resonant radian frequency $\omega_n, \, \omega_o$ X_{c} Capacitive reactance Input admittance of a circuit with the output shorted (incremental, lower y_{11}, Y_{11} case: complex, uppercase) Reverse transfer admittance, i.e., the input short-circuit current with 1 V y_{12}, Y_{12} applied to output terminals

Forward transfer admittance, i.e., the output short-circuit current with 1 V y_{21}, Y_{21}

applied to input terminals

Output admittance of circuit when input terminals are shorted y_{22}, Y_{22} Transfer admittance of input circuit Y_{t1} Transfer admittance of feedback circuit

 Y_{tf} Typical zener-diode symbol Z_1 Z_f Short-circuit feedback impedance Z_{id} Op amp input impedance $Z_{\rm in}$ Circuit input impedance

Appendix V

Decibel Calculations

Calculations involving op amp gain and loop gain are conveniently performed using decibels. Since most op amp data sheets tabulate many of their parameters in decibels, a good designer should be able to convert quickly between ratios and decibels. Table V.1 can be used for these conversions in the absence of a calculator having log functions. This table is merely a numerical listing of the function

$$\mathrm{dB} = 20 \, \log \left(\frac{V_2}{V_1} \right)$$

Use of Table V.1 is best described by two examples.

TABLE V.1 Numerical Listing of $dB = 20 \log (V_2/V_1)$

V_2/V_1	dB
1.001152	0.01
1.002305	0.02
1.003460	0.03
1.004616	. 0.04
1.005773	0.05
1.006932	0.06
1.008092	0.07
1.009253	0.08
1.010416	0.09
1.011579	0.1
1.023293	0.2
1.035142	0.3
1.047129	0.4
1.059254	0.5
1.071519	0.6
1.083927	0.7
1.096478	0.8
1.109175	0.9
1.122018	1.0
1.258925	2.0

V_2/V_1	dB
1.412538	3.0
1.584893	4.0
1.778279	5.0
1.995262	6.0
2.238721	7.0
2.511886	8.0
2.818383	9.0
3.162278	10.0
10.00000	20.0
31.62278	30.0
100.0000	40.0
316.2278	50.0
1,000.000	60.0
3,162.278	70.0
10,000.00	80.0
31,622.78	90.0
10^{5}	100
3.162278×10^{5}	110
10^{6}	120
3.162278×10^{6}	130
10^{7}	140
3.162278×10^{7}	150
108	160

EXAMPLE 1: CONVERTING A RATIO TO dB

Suppose a voltage gain (ratio) of $V_2/V_1 = 875,000$ must be converted to dB. In Table V.1 find the largest ratio less than 875,000. This is obviously 316,-228, which corresponds to 110 dB. The following division is performed:

$$\frac{875,000}{316,228} = 2.767$$

We note in Table V.1 that 2.5119, corresponding to 8 dB, is the next number below 2.767. The numerical flow chart below shows how the process continues.

EXAMPLE 2: CONVERTING dB TO A RATIO

An op amp is specified to have an open-loop dc voltage gain of 98 dB. What is the corresponding voltage ratio? Table V.1 indicates that 31,623 corresponds to 90 dB. This leaves 8 dB, which is equivalent to a ratio of 2.5119. We multiply these two ratios to find the ratio corresponding to 98 dB.

$$31,623 \times 2.5119 = 79,434$$

Thus 79,434 is equivalent to 98 dB.

RC Circuit Characteristics

This appendix is useful for developing circuits having a wide variety of gainvs.-frequency characteristics. This procedure was described in detail in Sec. 2.3. In order to save space, only gain-vs.-frequency plots are shown. Plots of phase vs. frequency can be constructed using the method described in Sec. 1.9. In the following pages

$$s = \sigma + j\omega$$
 and $\omega = 2\pi f$

Numbers next to each slope on the gain-vs.-frequency plots indicate multiples of ± 20 dB/decade (i.e., 1 = +20 dB/decade, -3 = -60 dB/decade, etc.). Whenever possible, the magnitude of each plateau is also given.

REFERENCES

- 1. Scott, N. R.: "Analog and Digital Computer Technology," pp. 36–39, McGraw-Hill, Inc., 1960.
- 2. Moschytz, G. S.: FEN Filter Design Using Tantalum and Silicon Integrated Circuits, *Proc. IEEE*, vol. 58, pp. 550-566, Apr. 1970.
- 3. Truxal, J. G.: "Control Engineers Handbook," pp. 6–32 to 6–42, McGraw-Hill, Inc., 1958.
- 4. Bradley, F. R., and R. McCoy: Driftless DC Amplifier, *Electronics*, Apr. 1952, pp. 144-148.

VI-2 RC CIRCUIT CHARACTERISTICS

ONE~ELEMENT NETWORKS		
Network	Open-circuit voltage gain A _{vn} = V ₂ / V ₁	Short-circuit transfer admittance A _t = I ₂ /V ₁
V ₁ 0	1	- 1 R
00	1 ————————————————————————————————————	R A IA ₁ I ω →
	1	-sC
V ₁ 0 V ₂	1	1 1

TWO-ELEMENT NETWORKS		
Network	Open circuit voltage gain A _{vn} = V ₂ /V ₁	Short circuit transfer admittance $A_1 = I_2 / V_1$
V ₁ O V ₂	1 1+sT	– <u>1</u>
T=RC	1	1/R
V ₁ O V ₂	sT	- sC
O O T = RC	Avn ω	1

VI-4 RC CIRCUIT CHARACTERISTICS

TWO-ELEMENT NETWORKS		
Network	Open circuit voltage gain	Short circuit transfer admittance
	$A_{vn} = V_2 / V_1$	A ₁ = I ₂ / V ₁
V ₁ O V ₂	1	_ <u>1+sT</u> R
о <u> </u>	1	1 1/
T = RC	Α _{νη} ω	$ \begin{array}{c c} 1 \\ R \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
V ₁ O	1	_ <u>sc</u> 1+ sT
0		
T=RC	1 ———— Ανη	1 T R

THREE-ELEMENT NETWORKS		
Network	Open-circuit voltage gain A _{Vn} = V ₂ /V ₁	Short-circuit transfer admittance $A_1 = I_2/V_1$
V ₁ O R ₂ C V ₂	1	$-\frac{1+sT_{1}}{R_{1}(1+sT_{2})}$
OO $T_{1} = (R_{1} + R_{2})C$ $T_{2} = R_{2}C$	1 ———— Ανη	$ \begin{array}{c c} \uparrow & \uparrow \\ \uparrow & \uparrow \\ \downarrow & \uparrow \\ \downarrow & \uparrow \\ \hline \downarrow & \downarrow \\ \downarrow & \uparrow \\ \hline \downarrow & \downarrow \\ $
V 0 1 1 ₂ V ₂	1	- s(C ₁ +C ₂)(1+sT ₂) 1+sT ₁
$T_1 = RC_2$ $T_2 = \frac{RC_4C_2}{C_1 + C_2}$	1 ————————————————————————————————————	$ A_{\uparrow} $ $ A_{$

VI-6 RC CIRCUIT CHARACTERISTICS

THREE-ELEMENT NETWORKS		
Network	Open circuit voltage gain $A_{vn} = V_2 / V_4$	Short circuit transfer admittance $A_{\dagger} = I_2 / V_{\dagger}$
V ₁ O V ₂ V ₂ V ₂	1	$\frac{-(1+sT_2)}{(R_1+R_2)(1+sT_1)}$
$T_{1} = \frac{R_{1}R_{2}C}{R_{1} + R_{2}}$ $T_{2} = R_{2}C$	1 ————————————————————————————————————	$ \begin{array}{c c} & \downarrow \\ \hline R_1+R_2 & \uparrow \\ \downarrow \\ 1A_1 & \downarrow \\ \hline T_1 & \downarrow \\ \hline T_2 & \downarrow \\ \omega \longrightarrow \end{array} $
V ₁ O	1	- sC ₁ (1+sT ₂) - 1+sT ₁
OO	1	
T ₁ = R(C ₁ +C ₂) T ₂ = RC ₂	A _{νη} ω	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

THEE ELEMENT NETWORKS			
	THREE-ELEMENT NETWORKS		
Network	Open-circuit voltage gain	Short—circuit transfer admittance	
Neiwork			
	A _{vn} = V ₂ /V ₁	A ₁ = I ₂ / V ₁	
R_1 R_2 I_2	1	-1	
V ₁ 0 - V ₂	1 + s T ₁	$(R_1 + R_2)(1 + sT_2)$	
±c +c			
0			
	1 —	R ₁ +R ₂ -1	
T ₁ =R ₁ C	1	1 1 2	
R₄ R₀C	1 =	$\frac{1}{T_2}$	
$T_2 = \frac{R_1 R_2 C}{R_1 + R_2}$	A _{vn} T ₄	1A ₁ 1 12	
	ω	ω	
C, C ₂ I ₂	sT ₂	-s ² RC ₄ C ₂	
V ₁ 0	1+ sT ₂	1+sT ₁	
V10 7 7 2	1 7 5 12	17311	
₹ R			
0		1/	
		2 1	
$T_{4} = R(C_{4} + C_{2})$	//	* /	
T ₂ = RC ₁	1 1		
	A _{vn}	IA ₊ I T ₁	
		ω	
	ω	3	

VI-8 RC CIRCUIT CHARACTERISTICS

THREE-ELEMENT NETWORKS		
Network	Open circuit voltage gain A _{vn} =V ₂ /V ₁	Short circuit transfer admittance A _t =I ₂ /V ₁
$V_4 \circ V_2 \circ V_2$	- sT ₂	-sC + sT ₃
$ \begin{array}{c} C \\ T_1 = (R_1 + R_2)C \\ T_2 = R_2C \\ T_3 = R_1C \end{array} $	$A_{vn} = \frac{R_2}{R_1 + R_2}$ $\omega \longrightarrow$	$\begin{array}{c} \downarrow \\ \downarrow $
V ₁ O N 1 1 2 V ₂ C ₂	C ₁ /(C ₁ +C ₂) 1+sT ₁	-sC ₁ 1+sT ₂
$T_1 = \frac{RC_1C_2}{C_1 + C_2}$ $T_2 = RC_1$	$ \begin{array}{c c} C_1 \\ \hline C_1 + C_2 \\ \hline T_1 \end{array} $ $ \omega \longrightarrow $	$\begin{array}{c} 1 \\ \downarrow \\$

	THREE-ELEMENT NETWORK	
Newsork	Open circuit	Short circuit
Network	voltage gain	transfer admittance
	A vn = V2 /V1	$A_1 = I_2 / V_1$
R_4 I_2	1+sT ₂	4
V ₁ 0 - V ₂	1+sT ₁	- ' R ₁
± c		·
 R ₂		
•		1
	1 -1 R ₂	↑ R ₁
$T_1 = (R_1 + R_2)C$	R ₁ +R ₂	
T ₂ = R ₂ C	Avn + 1	IA _† I
2 2	T ₂	
	ω	ω
C ₁ I ₂	C (1+sT ₄)	
	$\frac{1}{(C_1+C_2)(1+sT_2)}$	- s C
V ₁ OV ₂	1 2 2	
* "		
0		1/
	C1	1
T ₁ = RC ₂	C ₁ +C ₂	
$T_2 = \frac{RC_1C_2}{C_1 + C_2}$	A _{vn} $\frac{1}{T_2}$	IA ₁ C ₁
C1+C2	T,	101
	ω	ω

VI-10 RC CIRCUIT CHARACTERISTICS

THREE-ELEMENT NETWORKS		
Network	Open circuit voltage gain A _{vn} =V ₂ /V ₁	Short circuit transfer admittance $A_1 = I_2/V_1$
V ₁ 0 V ₂	T R ₁ C(1+sT)	- 1 R ₁
2 1 c	R ₂	1 R ₁
$T = \frac{R_1 R_2 C}{R_1 + R_2}$	Δ _{νη}	 IA _↑ ω
$V_1 \circ V_2$	sT ₂ 1+sT ₁	-sC ₁
R \$	C ₁ C ₁ +C ₂	1
T ₁ = R(C ₁ + C ₂) T ₂ = RC ₁	1 Τ ₁ ω	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

THREE-ELEMENT NETWORKS		
Network	Open circuit voltage gain A _{vn} =V ₂ /V ₁	Short circuit transfer admittance $A_1 = I_2/V_1$
V ₁ O V ₂ V ₂	$\frac{R_{2}^{(1+sT_{1})}}{(R_{1}+R_{2})(1+sT_{2})}$	- 1+sT ₁ R ₁
$T_1 = R_1C$ $T_2 = \frac{R_1R_2C}{R_1 + R_2}$		
V ₁ O V ₂	ω → 1+sT ₂ / 1+sT ₄	ω —— 1+s T ₂ R
$T_1 = R(C_1 + C_2)$ $T_2 = RC_1$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ R \\ 1 \\ 1 \\ 1 \\ T_2 \end{array} $ $ \omega \longrightarrow $

VI-12 RC CIRCUIT CHARACTERISTICS

FOUR-ELEMENT NETWORKS		
Network	Open circuit voltage gain A _{vn} = V ₂ / V ₁	Short circuit transfer admittance A ₁ = I ₂ /V ₁
$V_1 \circ V_2 \circ V_2$	1	$\frac{-s(C_1+C_2)(1+sT_2)}{(1+sT_1)(1+sT_3)}$
$ \begin{array}{c c} R_{2} & C_{2} \\ \hline & & \\ & $	1 ————————————————————————————————————	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
R_1 R_2 I_2 V_1 V_2	1	-(1+sT ₁)(1+sT ₃)
$C_{1} C_{2}$ $T_{1} = R_{1}C_{4}$ $T_{2} = \frac{R_{1}R_{2}(C_{1} + C_{2})}{R_{1} + R_{2}}$ $T_{3} = R_{2}C_{2}$ $T_{3} T_{2} < T_{1}$	1 ———— Α _{νη}	$\begin{array}{c c} & & & & \\ \hline & & & \\ \hline & & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ \hline & \\ & & \\ \hline & & \\ \hline & \\ & \\$

FOUR-ELEMENT NETWORKS		
Network	Open circuit voltage gain A _{vn} = V ₂ /V ₁	Short circuit transfer admittance $A_{\dagger} = I_2/V_{\dagger}$
V ₁ O V ₂ V ₂ V ₂	1	$\frac{-\frac{(1+sT_1)(1+sT_3)}{R_2(1+sT_2)}}$
$ \begin{array}{c c} C_2 & & \\ \hline C_3 & & \\ \hline C_2 & & \\ \hline C_1 & & \\ \hline C_2 & & \\ \hline C_2 & & \\ \hline C_3 & & \\ \hline C_2 & & \\ \hline C_1 & & \\ \hline C_2 & & \\ \hline C_2 & & \\ \hline C_1 & & \\ \hline C_2 & & \\ \hline C_2 & & \\ \hline C_1 & & \\ \hline C_2 & & \\ \hline C_2 & & \\ \hline C_1 & & \\ \hline C_2 & & \\ \hline C_2 & & \\ \hline C_1 & & \\ \hline C_2 & & \\ \hline C_2 & & \\ \hline C_1 & & \\ \hline C_2 & & \\ \hline C_2 & & \\ \hline C_1 & & \\ \hline C_2 & & \\ \hline C_2 & & \\ \hline C_1 & & \\ \hline C_2 & & $	Λ 1 ———————————————————————————————————	$ \begin{array}{c c} \uparrow & \hline \uparrow & \hline \downarrow & \hline \uparrow & \hline \uparrow & \hline \downarrow & \hline \uparrow & \hline \uparrow & \hline \downarrow & \hline \uparrow & \hline \uparrow & \hline \downarrow $
V ₁ O V ₂ V ₂ V ₂	1	- sC ₁ (1+sT ₂) (1+sT ₁)(1+sT ₃)
T ₂ = R ₂ C ₂ T ₁ T ₃ = R ₁ R ₂ C ₁ C ₂ T ₁ + T ₃ = R ₁ C ₁ + R ₂ C ₂ + R ₂ C ₁ T ₃ < T ₂ < T ₁	1 ————————————————————————————————————	$\begin{array}{c c} & \frac{1}{R_1} \\ \downarrow & \frac{1}{T_1} & \frac{1}{T_2} \\ & \omega & \longrightarrow \end{array}$

VI-14 RC CIRCUIT CHARACTERISTICS

FOUR-ELEMENT NETWORKS		
Network	Open circuit voltage gain	Short circuit transfer admittance
	A _{vn} = V ₂ /V ₁	A ₁ =I ₂ /V ₁
V ₁ O	1	-(1+sT ₄)(1+sT ₃) (R ₄ +R ₂)(1+sT ₂)
$T_{2} = \frac{R_{1}R_{2}C_{2}}{R_{1}+R_{2}}$ $T_{1} = R_{1}R_{2}C_{1}C_{2}$ $T_{1} + T_{3} = R_{1}C_{1} + R_{2}C_{2} + R_{2}C_{1}$ $T_{3} < T_{2} < T_{1}$	Λ 1 ———————————————————————————————————	$\begin{vmatrix} \frac{1}{R_1 + R_2} & \frac{1}{T_1} & \frac{1}{T_2} & \frac{1}{T_3} \\ A_1 & \frac{1}{T_1} & \frac{1}{T_2} & \frac{1}{T_3} \end{vmatrix}$
$V_1 \circ \begin{array}{c} R_1 & \stackrel{I_2}{\longleftarrow} \\ C_1 & R_2 \\ \end{array}$	1	-(1+sT ₁)(1+sT ₃)
T ₂ = R ₂ (C ₁ +C ₂) T ₁ T ₃ = R ₁ R ₂ C ₁ C ₂ T ₁ + T ₃ = R ₁ C ₁ +R ₂ C ₂ +R ₂ C ₁ T ₃ < T ₂ < T ₁	Λ _{νη} 1	$ \begin{array}{c c} \uparrow & \uparrow \\ \uparrow & \uparrow \\ \downarrow & \downarrow \\ \downarrow & \uparrow \\ \downarrow & \downarrow \\ \downarrow & \uparrow \\ \downarrow & \downarrow \\ \downarrow & $

FOUR-ELEMENT NETWORKS		
Network	Open circuit voltage gain A vn = V2 /V1	Short circuit transfer admittance $A_1=I_2/V_1$
V ₁ O R ₁	1	$\frac{-sC_{1}(1+sT_{2})}{(1-sT_{1})(1+sT_{3})}$
T ₂ =(R ₁ +R ₂)C ₂ T ₁ T ₃ =R ₁ R ₂ C ₁ C ₂ T ₁ T ₃ =R ₁ C ₁ +R ₂ C ₂ +R ₁ C ₂ T ₃ <t<sub>2<t<sub>1</t<sub></t<sub>	Α _{νη}	$\begin{array}{c c} & R_1 + R_2 \\ \hline & R_1 R_2 \\ \hline & 1 \\ \hline & 1 \\ \hline & T_1 \\ \hline & T_2 \\ \hline \end{array}$
V ₁ O V ₂ I ₂ V ₂ V ₂	1	$\frac{-s(C_1+C_2)(1+sT_2)}{(1+sT_1)(1+sT_3)}$
$T_{2} = \frac{R_{2}C_{1}C_{2}}{C_{1}+C_{2}}$ $T_{1}T_{3} = R_{1}R_{2}C_{1}C_{2}$ $T_{1}+T_{3} = R_{1}C_{1}+R_{2}C_{2}+R_{1}C_{2}$ T_{3}	Λ 1 ———————————————————————————————————	$\begin{array}{c c} & & & \\ & & & \\$

VI-16 RC CIRCUIT CHARACTERISTICS

FOUR-ELEMENT NETWORKS		
Network	Open circuit voltage gain A _{vn} = V ₂ /V ₁	Short circuit transfer admittance $A_1 = I_2/V_1$
$V_1 \circ W_2 \circ V_2$	1+sT ₃ 1+sT ₁	-(1+sT ₃) 2R ₁ (1+sT ₂)
$ \begin{array}{c} R_2 \\ T_1 = (R_1 + R_2)C \\ T_2 = (R_2 + R_1/2)C \\ T_3 = R_2C \\ T_3 < T_2 < T_1 \end{array} $	$A_{vn} = \frac{1}{\frac{1}{T_1}} \frac{R_2}{\frac{1}{T_3}}$	$ \begin{array}{c c} & 1 & 1 & 1 \\ & 1 & 1 & $
$V_1 \circ V_2$	$\frac{C_{1}(1+sT_{1})}{(C_{1}+C_{2})(1+sT_{3})}$	$ \begin{array}{c} \omega \longrightarrow \\ -sC_1^2(1+sT_1) \\ \hline (2C_1+C_2)(1+sT_2) \end{array} $
$T_{1} = RC_{2}$ $T_{2} = \frac{2RC_{1}C_{2}}{2C_{1}^{2}+C_{2}}$ $T_{3} = \frac{RC_{1}C_{2}}{C_{1}^{2}+C_{2}}$ $T_{3} < T_{2} < T_{1}$	$\begin{array}{c} C_1 \\ \uparrow C_1 + C_2 \\ \downarrow A_{VD} \\ \downarrow T_1 \\ \downarrow T_3 \\ \downarrow C_1 + C_2 \\ \downarrow C_2 + C_2 \\ \downarrow C_1 + C_2 \\ \downarrow C_2 + C_2 \\ \downarrow C_1 + C_2 \\ \downarrow C_2 + C_2 \\ \downarrow C_2 + C_2 \\ \downarrow C_1 + C_2 \\ \downarrow C_2 + $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

	FOUR ELEMENT NETWORKS	
Network	Open circuit voltage gain	Short circuit transfer admittance
	A _{vn} = V ₂ /V ₁	A ₁ = I ₂ / V ₁
$\begin{array}{c c} R_1 & C_1 & I_2 \\ \hline V_1 & V_2 & \\ \hline \end{array}$	1+sT ₂ 1+sT ₁	-sC ₁ (1+sT ₄) (1+sT ₃)(1+sT ₅)
$ \begin{array}{c} C \\ T_1 = (R_1 + R_2)C_2 \\ T_2 = R_2C_2 \\ T_4 = R_2C_2 \\ T_3 T_5 = R_1R_2C_1C_2 \\ T_3 + T_5 = R_1C_1 + R_2C_2 + R_1C_2 \\ T_2 < T_1 \\ T_5 < T_4 < T_3 \end{array} $	$A_{vn} = \frac{1}{\frac{1}{T_1} \cdot \frac{1}{T_2}} \frac{R_2}{R_1 + R_2}$ $\omega \longrightarrow$	$\omega \longrightarrow \frac{1}{T_3} \frac{1}{T_4} \frac{1}{T_5}$
V ₁ O V ₂ V ₂	$\frac{(1+sT_1)(1+sT_2)}{s^2T_1T_2+s(T_1+T_2+T_3)+1}$	1+sT ₁ R
$C_1 \geqslant R_2$ $C_2 \qquad C_2$ $T_1 = R_1 C_1$ $T_2 = R_2 C_2$ $T_3 = R_1 C_2$	$\begin{array}{c} T_1 + T_2 \\ \hline T_1 + T_2 + T_3 \\ \end{array}$ $A_{vn} \qquad \begin{array}{c} \frac{1}{T_1} & \frac{1}{T_2} \\ \end{array}$ $\omega \longrightarrow$	$ \begin{array}{c} \frac{1}{R_1} \\ \downarrow \\ \downarrow$

VI-18 RC CIRCUIT CHARACTERISTICS

FOUR-ELEMENT NETWORKS		
Network	Open circuit voltage gain A _{vn} = V ₂ /V ₁	Short circuit transfer admittance A ₁ =I ₂ /V ₁
$\begin{array}{c c} C_1 & C_2 & I_2 \\ \hline V_1 & O & O & O \\ \hline \end{array}$	sR ₂ C ₁ 1+sT ₁	$\frac{-s^{2}/R_{1}}{s^{2}+s(\omega_{1}/A)+\omega_{1}^{2}}$
$\omega_{1}^{2} = \frac{1}{R_{1} R_{2} C_{1} C_{2}}$ $A = \frac{1/\omega_{1}}{(R_{1} + R_{2}) C_{1} + R_{2} C_{2}}$ $T_{1} = (R_{1} + R_{2}) C_{1}$ $T_{2} T_{3} = \frac{2A}{\omega_{1} \pm \omega_{1} (1 - 4A^{2})^{1/2}}$	$A_{\text{Vn}} = \frac{R_2}{R_1 + R_2}$ $\omega \longrightarrow$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₁ /(C ₁ +C ₂) 1+sT ₁	$\frac{-s/R_1R_2C_2}{s^2 + s(\omega_1/A) + \omega_1^2}$
$ \begin{array}{c} O & O \\ \omega_{1}^{2} = \frac{1}{R_{1}R_{2}C_{1}C_{2}} \\ A = \frac{1/\omega_{1}}{(R_{1}+R_{2})C_{4}+R_{2}C_{2}} \\ T_{1} = \frac{R_{1}C_{1}C_{2}}{C_{1}+C_{2}} \end{array} $	$ \frac{C_1}{C_1 + C_2} \xrightarrow{1} \xrightarrow{T_1} $	$\begin{array}{c c} & & & \\ & & & \\$
$T_2, T_3 = \frac{2A}{\omega_1 \pm \omega_1 (1 - 4A^2)^{1/2}}$	ω	ω

FOUR-ELEMENT NETWORKS		
Network	Open circuit voltage gain A _{vn} =V ₂ /V ₁	Short circuit transfer admittance $A_1 = I_2/V_1$
$V_1 \longrightarrow \begin{array}{c} R_1 & R_2 & \overline{L_2} \\ & & C_1 & \end{array}$	1 1+sT ₃	-sC ₂ (1+sT ₁)(1+sT ₂)
$ \begin{array}{c} O & & & & & & & & & & & \\ T_1 T_2 = R_1 R_2 C_1 C_2 & & & & & & \\ T_1 + T_2 = R_1 C_1 + R_2 C_2 + R_1 C_2 & & & & \\ T_3 = R_1 C_1 & & & & & & \\ T_1 \neq T_2 & & & & & & \\ \end{array} $	A_{vn} Δ_{vn} Δ_{vn}	$\begin{array}{c c} & & & \\ & & \frac{1}{T_1} & \frac{1}{T_2} \\ & & & \\ & & \omega \end{array}$
$\begin{array}{c c} C_1 & C_2 & I_2 \\ \hline V_1 & O & O & V_2 \\ \hline & R_1 & O & O \end{array}$	sT ₃ 1+sT ₃	$\frac{-s^2 C_2 (T_1 T_2)^{1/2}}{(1+sT_1)(1+sT_2)}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Δ_{Vn} Δ_{Vn} Δ_{T_3}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

VI-20 RC CIRCUIT CHARACTERISTICS

FOUR-ELEMENT NETWORKS		
Network	Open circuit voltage gain A vn=V2/V1	Short circuit transfer admittance $A_1 = I_2 / V_4$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sR ₂ C ₁ (1+sT ₁)(1+sT ₂)	sC ₁ 1+sT ₃
$\omega_{1}, \omega_{2} = \frac{B^{+}(B^{2}-4A)^{1/2}}{2A}$ $T_{3} = R_{1}C_{1}$ $A = R_{1}R_{2}C_{1}C_{2}$ $B = R_{1}C_{1} + R_{2}C_{2} + R_{2}C_{1}$	Δ _{νη} ω ₁ ω ₂	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	ω	ω
V ₁ 0 I ₂ V ₂	R ₂ (1+sT ₁) (R ₁ +R ₂)(1+sT ₂)	- 1+sT ₃ R ₁
R ₁ R ₂ C ₂	$ \frac{C_1}{C_1+C_2} \xrightarrow{R_2} \frac{R_2}{R_1+R_2} $ $ R_2 \qquad \qquad$	1/
$T_{1} \text{ or } T_{2} = R_{1} C_{1}$ $T_{4} \text{ or } T_{2}$ $= \frac{R_{1} R_{2} (C_{1} + C_{2})}{R_{1} + R_{2}}$ $T_{3} = R_{1} C_{1}$	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{c c} \uparrow & \frac{1}{R_1} \\ \downarrow & \downarrow \\ \downarrow & $

FOUR ELEMENT NETWORKS		
Network	Open circuit voltage gain A _{vn} =V ₂ /V ₁	Short circuit transfer admittance $A_1 = I_2/V_1$
C C I ₂	sT ₃ 1+sT ₃	$\frac{-sR_{1}C(1+sT_{1})}{(R_{1}+R_{2})(1+sT_{2})}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A_{vn} $\omega \longrightarrow$	$R_{1} < R_{2}$ $2 \times \xi^{R_{2}}$ $1 \times \frac{1}{R_{2} < R_{1}}$ $1 \times \frac{1}{T_{1}}$ $1 \times \frac{1}{T_{2}}$ $1 \times \frac{1}{T_{2}}$
V ₄ O V ₂	1 1+sT ₁	-(1+sT ₂)
$T_{1} = RC_{1}$ $T_{2} \text{ or } T_{3} = RC_{2}$ $T_{2} \text{ or } T_{3} = \frac{R(C_{1} + C_{2})}{2}$	$ \begin{array}{cccc} & & & & & \\ \uparrow & & & & \\ A_{Vn} & & & & \\ & & & & \\ & & & & & \\ & & & & $	$C_{1} < C_{2}$ $C_{1} = C_{2}$ $C_{1} = C_{2}$ $C_{2} < C_{1}$ $\omega \longrightarrow T_{2}$

VI-22 RC CIRCUIT CHARACTERISTICS

FOUR-ELEMENT NETWORKS		
Network	Open-circuit voltage gain A _{vn} =V ₂ /V ₁	Short-circuit transfer admittance A _t =I ₂ /V _t
R_1 R_2 I_2 V_1 V_2 V_2 $C \leqslant R_3$	R ₃ (1+sT ₁) (R ₁ +R ₂ +R ₃)(1+sT ₂)	$-\frac{1+sT_{1}}{(R_{1}+R_{2})(1+sT_{3})}$
$T_{1} = R_{2}C$ $T_{2} = \frac{R_{2}(R_{1} + R_{3})C}{R_{1} + R_{2} + R_{3}}$ $T_{3} = \frac{R_{1}R_{2}C}{R_{1} + R_{2}}$	$ \begin{array}{c c} R_3 & \overline{R_1 + R_2 + R_3} \\ A_{vn} & \overline{T_1} & \overline{T_2} \\ \omega & \longrightarrow \end{array} $	$ \begin{array}{c c} 1 \\ R_1+R_2 \end{array} $ $ \begin{array}{c c} 1 \\ \hline R_1 \end{array} $ $ \begin{array}{c c} 1 \\ \hline R_1 \end{array} $ $ \begin{array}{c c} 1 \\ \hline R_1 \end{array} $ $ \begin{array}{c c} 0 \\ \end{array} $ $ \begin{array}{c c} 0 \\ \end{array} $
$V_1 \circ V_2 \circ V_2$	(R ₂ R ₃)(I+sT ₂) (R ₁ +R ₂ +R ₃)(I+sT ₄)	- 1 R ₁
$ \begin{array}{c} R_3 \\ C \\ T_4 = \frac{R_2(R_1 + R_3)C}{R_1 + R_2 + R_3} \\ T_2 = \frac{R_2R_3C}{R_2 + R_3} \end{array} $	$ \begin{array}{c} R_2+R_3 \\ \hline R_1+R_2+R_3 \\ \downarrow \\ A_{VI} \end{array} $ $ \begin{array}{c} 1 \\ \hline T_1 \end{array} $ $ \begin{array}{c} T_2 \end{array} $ $ \begin{array}{c} W \end{array} $	1 R ₁

FOUR-ELEMENT NETWORKS		
Network	Open circuit voltage gain A _{vn} = V ₂ /V ₁	Short circuit transfer admittance A _t = I ₂ /V ₄
V_1 R_1 I_2 V_2 R_2 R_2	R ₃ (1+sT ₂) (R ₄ +R ₃)(1+sT ₄)	- 1 R ₁
$T_{1} = \frac{(R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3})C}{R_{1} + R_{3}}$ $T_{2} = R_{2}C$	$A_{vn} = \begin{bmatrix} R_3 \\ \hline R_1 + R_3 \end{bmatrix} - \begin{bmatrix} R_2 & IIR_3 \\ \hline R_1 + R_2 & IIR_3 \end{bmatrix}$ $\omega \longrightarrow \omega$	1A ₁ ! ω——
V, O R, C V2	R ₃ (1+sT ₁) (R ₁ +R ₃)(1+sT ₂)	- \frac{1+sT_4}{R_1(1+sT_3)}
$T_{1} = (R_{1} + R_{2})C$ $T_{2} = \frac{(R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3})C}{R_{1} + R_{3}}$ $T_{3} = R_{2}C$	$ \begin{array}{c c} R_3 & \hline R_1+R_3 & \hline A_{Vn} & \hline T_1 & \hline T_2 & \hline \end{array} $ $ \begin{array}{c c} R_3 & \hline R_1 R_2+R_3 & \hline \end{array} $ $ \begin{array}{c c} \omega & \hline \end{array} $	$ \begin{array}{c c} & R_1 + R_2 \\ \hline & R_1 \\ \hline & R_1 \\ \hline & R_2 \end{array} $ $ \begin{array}{c} & R_1 + R_2 \\ \hline & R_1 \\ \hline & R_2 \end{array} $ $ \begin{array}{c} & \omega \\ \hline & \omega \\ \end{array} $

VI-24 RC CIRCUIT CHARACTERISTICS

FOUR-ELEMENT NETWORKS		
Network	Open circuit voltage gain A _{vn} = V ₂ /V ₁	Short circuit transfer admittance $A_1 = I_2/V_1$
$V_1 \circ V_2 \circ V_2$	ω ² ₀ (s+2.618ω ₀) (s+0.382ω ₀)	-1 (R ₁ +R ₂)(1+sT)
$R = R_1 = R_2$ $C = C_1 = C_2$ $T_1 = \frac{R_1 R_2 C_1}{R_1 + R_2}$	0.382 w ₀ -2 A _{vn} 2.618 w ₀	$ \begin{array}{c c} & & \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ $
R ₁ +R ₂	ω	ω
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	s ² (s+0.117ω ₀) (s+2.82ω ₀)	-s ² R ₁ C ₁ C ₂ 1+sT ₁
$\omega_0 = \frac{1}{RC}$ $R = R_1 = R_2$ $C = C_1 = C_2$	2/1 2.82 ω ₀ A _{vn} 0.177 ω ₀	1 2 1 1 1 1 T
T ₁ = R ₁ (C ₁ +C ₂)	ω	ω

Index

Ac-dc converter, 16-5	Amplifiers (Cont.):
Active inductorless filters:	differentiating, 15-1
bandpass, 12-1 to 12-12	error, 9-1
bandstop, 13-1 to 13-8	gated, 18-7
high-pass, 11-1 to 11-10	instrumentation, 9-8 to 9-10
low-pass, 10-1 to 10-12	integrating, 15-9
Active RC filters:	inverting, 1-2, 1-12 to 1-13, 2-1 to 2-2,
bandpass, 12-1 to 12-12	4-1 to 4-10
bandstop, 13-1 to 13-8	level-shifting, 1-27
high-pass, 11-1 to 11-10	limited, 16-1
low-pass, 10-1 to 10-12	linear, 1-5
Active resonator, 12-1, 12-7	log, 1 7 -1
A/D (analog-to-digital) converter, 6-1 to	logarithmic, 17-1
6-8	noninverting, 1-2, 1-14, 2-2, 2-3, 4-10
ADC (analog-to-digital converter), 6-1	to 4-12
to 6-8	nonlinear, 1-5
Adder (see Amplifiers, summing)	output-power, inside op amp, 1-27
Adding/substracting amplifier (see	photodiode (see transresistance below)
Amplifiers, summing)	summing, 1-3, 4-20 to 4-21
Adjustable lead/lag circuits, 26-3 to 26-5	switching-mode, 18-9
Admittance:	transadmittance (see transconductance
input, 2 -23	below)
output, 2 -23	transconductance, 1-3, 4-16 to 4-17,
transfer, 2-23	24 -17, 24 -19
All-pass circuit, 26-1, 26-3	transducer, 9-1
AM demodulator, synchronous, 7-1 to	transimpedance (see transresistance
7-4	below)
AM detector, precision, 16-5	transresistance, 4-14 to 4-15
AM modulator, 18-1 to 18-7	two-state, 18-9
Amplifiers, 4-1 to 4-21	voltage-controlled, 19-1
ac-coupled, 4-17 to 4-18	voltage-to-current, 24-17, 24-19
active bandpass, 12-1 to 12-12	Amplitude leveler, 16-1
antilog, 17-8 to 17-12	Amplitude limiter, 16-1 to 16-4
capacitive transducer (see charge-	Amplitude modulator, 18-1 to 18-7
sensitive below)	Analog commutator, 25-1, 25-4
capacitor-coupled (see ac-coupled	Analog compressor, 17-1
above)	Analog divider, 19-6
charge-sensitive, 4-18 to 4-20	Analog gate, 18-7, 25-1, 25-4
current, 1-4, 4-12 to 4-14	Analog integrator, 15-9
data, 9-1	Analog multiplexer, 25-1, 25-4
dc-isolated (see ac-coupled above)	Analog multiplier, 19-6
differential, 1-2, 9-1 to 9-10	Analog switch, 25-1, 25-4
inside op amp, 1-26 to 1-27	Analog timer, 26-5 to 26-8

Analog-to-digital converter, 6-1 to 6-8 Antilog converter, 17-8 Antilogarithmic amplifier, 17-8 to 17-12 Astable multivibrator, 20-1 to 20-4

Bandpass filter: multiple-feedback, 12-1 to 12-7 state-variable, 12-7 to 12-12 Bandstop filter: active inductor, 13-1 to 13-4 twin-tee, 13-4 to 13-8 Bandwidth, 1-10, 2-16, 3-31, I-1 Bandwidth/power booster, op amp, 23-1 to 23-6 Basic rules of op amp circuit design, 2-1 Bessel filter: high-pass, 11-1 to 11-11 low-pass, 10-1 to 10-12 Binary counter, 20-4 Bipolar flip-flop, 20-4 Biquadratic filter, 12-7 Bistable multivibrator, 20-4 Bode approximation, 1-22 to 1-23 Buck regulator, 24-15 Buffer, op amp, 23-1, 23-7 Bufferred zener source, 24-1 Butterworth filter: high-pass, 11-1 to 11-11 low-pass, 10-1 to 10-12 Bypassing/grounding problems, 3-26, III-4 to III-5

Capacitance: input, 3-7, 3-24 to 3-25, I-1 stray, effect on feedback stability, 3-26 Capacitive transducer amplifier, 4-18 Capacitor-coupled amplifier, 4-17 Capacitor multiplier, 22-1 to 22-3 Charge-sensitive amplifier, 4-18 to 4-20 Charge-to-voltage converter, 4-18 Chebyshev filter: high-pass, 11-1 to 11-11 low-pass, 10-1 to 10-12 Circuit fabrication techniques, III-1 to III-7 Closed-loop gain, general method to compute, 2-21 to 2-25

CMR (common-mode rejection), 9-2 to 9-3 CMRR (see Common-mode rejection

Common-mode gain, 2-19 to 2-20, 9-1 to 9-10 circuit, 9-2 to 9-10

op amp, 9-2 to 9-10 and circuit, 9-1 to 9-4

Common-mode rejection, 9-2 to 9-3

Common-mode rejection ratio; op amp, **2**-18 to **2**-21, **9**-2 to **9**-10, **I**-1 and circuit, 9-3 to 9-7 Commutator, analog, 25-1, 25-4 Comparators, 1-5, 5-1 frequency, 14-6 latching, 5-5, 5-11 regenerative, 5-5, 5-11 zero-crossing, 5-1, 5-5 Compensation: data sheet recommendation, 3-19 effect on slew rate, 2-17 to 2-18 lag, 3-11 to 3-13 lead, 3-13 to 3-15, 3-30 to 3-31

lead-lag, 3-15 to 3-18, 3-32 to 3-35 Complementary transistor op amp

booster, 23-1, 23-7

Converters: ac-dc, 16-5 analog-to-digital, 6-1 to 6-8 antilog, 17-8 capacitance-to-inductance, 22-3 charge-to-voltage, 4-18 current-to-current, 4-12 current-to-voltage, 4-14 digital-to-analog, 6-8 to 6-10

exponential, 17-8 logarithmic, 17-1 phase-to-dc, 8-4 voltage-to-current, 24-17, 24-19

voltage-to-frequency, 21-5 voltage-to-pulse width, 18-9 Counter, binary, 20-4

Current: input bias, 1-11, 2-5, I-1 input offset, 1-11, 2-8, I-1

Current regulator: floating-load, 24-17 to 24-19 grounded-load, 24-19 to 24-21

Current sink, 24-17 Current source: controlled, 24-17 (See also Amplifiers, transconductance)

Current-to-current converter (see Amplifiers, current) Current-to-voltage converter (see

Amplifiers, transresistance)

D/A (digital-to-analog) converter, 6-8 to 6 - 10DAC (digital-to-analog converter), 6-8 to 6-10 Damping factor, 10-2 to 10-7, 11-3 to 11-6 Data amplifier, 9-1 Data compressor, 17-1

Data expander, 17-8 Dc-isolated amplifier (see Amplifiers,

ac-coupled)

Decibels, calculations using, 1-21, V-1	Design equations (Cont.):
to V-3	integrator, 15-11 to 15-12
Demodulators:	log-antilog multiplier/divider, 19-9 to
AM, 7-1, 16-5	19-10
FM, 7-4 to 7-8	logarithmic amplifier, 17-4 to 17-6
phase-sensitive, 7-1	low-pass filter: second-order, 10-4 to
suppressed-carrier, 7-1	10-5
synchronous AM, 7-1 to 7-4	third-order, 10-10
Design equations:	monostable multivibrator, 20-8 to 20-9
adjustable lead/lag circuits, 26-5	op amp bandwidth/power booster, 23-
amplifier: ac-coupled, 4-18	op amp output-voltage booster, 23-10
charge-sensitive, 4-20	phase lead/lag circuit, 26-3
current, 4-13	precision gate multiplexer, 25-6
inverting, 4-3 to 4-4	precision voltage reference, 24-13
noninverting, 4-11 to 4-12	pulse-amplitude modulator 18-8 to
summing, 4-21	18-9
transconductance, 4-17	pulse-width modulator, 18-12 to 18-13
transresistance, 4-15	sample-and-hold circuit, 25-8
amplitude limiter, 16-4	shunt voltage regulator, 24-12
amplitude modulator, 18-4	sine-wave oscillator, 21-3
analog timer, 26-7	switching voltage regulator, 24-16 to
antilog amplifier, 17-10 to 17-11	24-17
astable multivibrator, 20-3 to 20-4	
bandpass filter: multiple-feedback,	voltage-controlled oscillator, 21-8
12-3	voltage ramp generator, 27-3 to 27-4
state-variable, 12-9	voltage staircase generator, 27-11
bandstop filter: active inductor, 13-3	voltage triangle generator, 27-6 to 27-
twin-tee, 13-6 to 13-7	Design examples:
bistable multivibrator, 20-6	amplifier, inverting, 4-5 to 4-10
capacitance multipler, 22-3	gain of 10, 3-27 to 3-31
converter: analog-to-digital, 6-5	wide-bandwidth, 3-31 to 3-35
digital-to-analog, 6-10	amplitude modulator, 18-5 to 18-7
current-limited voltage regulator, 24-4	analog timer, 26-8
to 24-5	antilog amplifier, 17-11 to 17-12
demodulator: FM, 7-7	bandpass filter: multiple-feedback,
	12-5 to 12-7
synchronous AM, 7-4	state-variable, 12-10 to 12-12
detector: level, 5-11	bandstop filter: active inductor, 13-4
with hysteresis, 5-15	twin-tee, 13-7 to 13-8
peak, 8-3	converter, analog-to-digital, 6-6 to 6-7
phase, 8-6 to 8-7	current-limited voltage regulator, 24-6
zero-crossing, 5-5	to 24-9
with hysteresis, 5-8	detector: level, with hysteresis, 5-16
differential amplifier, 9-4	to 5-18
differentiator, 15-4 to 15-5	phase, 8-9 to 8-11
discriminator, pulse-width, 7-10 to 7-11	differential amplifier, 9-6 to 9-8
dual voltage regulator, 24-14	differentiator, 15-7 to 15-8
FET-controlled multiplier, 19-3 to 19-4	discriminator, pulse-width, 7-14 to 7-1
FET multiplexer, 25-4	FET-controlled multiplier, 19-4 to
floating-load current regulator, 24-18	19-6
to 24-19	frequency-difference detector, 14-10
frequency-difference detector, 14-8 to	to 14-11
14-9	frequency doubler, 14-5
trequency doubler, 14-3 to 14-4	half-wave rectifier, 16-10 to 16-12
grounded-load current regulator, 24-21	high-pass filter: second-order, 11-5 to
half-wave rectifier, 16-7 to 16-8	11-6
high-pass filter: second-order, 11-3 to	third-order, 11-9 to 11-10
11-4	inductance simulator, 22-7 to 22-8
third-order, 11-8	log-antilog multiplier/divider, 19-10
high-voltage regulator, 24-10 to 24-11	to 19-11
inductance simulator 22-6	logarithmic amplifier, 17-6 to 17-8

Design examples (Cont.):	Design parameters (Cont.):
low-pass filter:	low-pass filter: second-order, 10-4
second-order, 10-6 to 10-7	third-order, 10-10
third-order, 10-11	monostable multivibrator, 20-7 to 20-8
monostable multivibrator, 20 -12 to 20 -13	op amp bandwidth/power booster, 23-3 to 23-4
op amp bandwidth/power booster, 23-5 to 23-6	op amp output-voltage booster, 23-9 to 23-10
pulse-width modulator, 18-13 to	phase lead/lag circuit, 26-2 to 26-3
18-14 sample-and-hold circuit, 25-9 to 25-10	precision gate multiplexer, 25-5 to 25-6
sine-wave oscillator, 21-4 to 21-5	pulse-amplitude modulator, 18-7 to
voltage-controlled oscillator, 21-9 to	18-8
21-10	pulse-width modulator, 18-12
voltage triangle generator, 27-7 to 27-8	sample-and-hold circuit, 25-8
Design parameters:	sine-wave oscillator, 21-2 to 21-3
adjustable lead/lag circuits, 26-3	voltage-controlled oscillator, 21-7
amplifier: current, 4-14	voltage ramp generator, 27-2
inverting, 4-2 to 4-3	to 27 -3
transconductance, 4-16	voltage staircase generator, 27-10
transresistance, 4-15	voltage triangle generator, 27-5 to 27-6
amplitude limiter, 16-3	Design procedure and steps:
amplitude modulator, 18-3	amplifier, inverting, 4-4 to 4-5
analog timer, 26-6 to 26-7	amplitude modulator, 18-4 to 18-5
antilog amplifier, 17-10	analog timer, 26-7 to 26-8
astable multivibrator, 20-2	antilog amplifier, 17-11
bandpass filter: multiple-feedback,	bandpass filter: multiple-feedback,
12 -2 to 12 -3	12-4 to 12-5
state-variable, 12-8 to 12-9	state-variable, 12-10
bandstop filter: active inductor, 13-3 twin-tee, 13-6	bandstop filter: active inductor, 13-3 to 13-4
bistable multivibrator, 20-6	twin-tee, 13-7
capacitance multiplier, 22-2	converter, analog-to-digital, 6-5 to 6-6
converter: analog-to-digital, 6-4	current-limited voltage regulator, 24-5
digital-to-analog, 6-9 to 6-10	to 24 -6
current-limited voltage regulator, 24-3	detector: level, with hysteresis, 5-15
to 24-4	to 5-16
demodulator, FM, 7-7	phase, 8-7 to 8-9
detector: level, 5-10 to 5-11	differential amplifier, 9-4 to 9-6
with hysteresis, 5-13 to 5-14	differentiator, 15-6 to 15-7
peak, 8-3	discriminator, pulse-width, 7-11 to
phase, 8-5 to 8-6	7-14
zero-crossing, 5-4	FET-controlled multiplier, 19-4
with hysteresis, 5-7 to 5-8	frequency-difference detector, 14-9 to
differential amplifier, 9-3	14-10
differentiator, 15-3	frequency doubler, 14-4 to 14-5
discriminator, pulse-width, 7-10	half-wave rectifier, 16-8 to 16-10
FET-controlled multiplier, 19-3	high-pass filter: second-order, 11-4 to
FET multiplexer, 25-3	11-5 third-order, 11-8 to 11-9
floating-load current regulator, 24-18	inductance simulator, 22-6 to 22-7
frequency-difference detector, 14-8	log-antilog multiplier/divider, 19-10
frequency doubler, 14-3 grounded-load current regulator, 24-20	logarithmic amplifier, 17-6
	low-pass filter: second-order, 10-5 to
half-wave rectifier, 16-7	10-6
high-pass filter: second-order, 11-3	third-order, 10-10 to 10-11
third-order, 11-8 inductance simulator, 22-6	monostable multivibrator, 20-9 to 20-12
	op amp bandwidth/power booster,
integrator, 15-11 log-antilog multiplier/divider, 19-8 to	23-5
19-9	pulse-width modulator, 18-13
logarithmic amplifier, 17-4	sample-and-hold circuit, 25-8 to 25-9

Design procedure and steps (Cont.):	Feedback network calculations, 3-6 to
sine-wave oscillator, 21-3 to 21-4 voltage-controlled oscillator, 21-8 to	3-9, 3-24 to 3-25 Feedback stability:
21-9	first-cut analysis, 3-3
voltage triangle generator, 27-7	graphical analysis, 3-4, 3-20
Detectors:	Feedback-stability-design examples,
FM, 7-4	3-27 to 3-35
frequency-difference, 14-6 to 14-11	Feedback-stability measurements (see
level: inverting, 5-9 to 5-11	Measurements, feedback-stability)
with hysteresis, 5-11 to 5-18	Feedback theory, 3-1 to 3-18
noninverting, 5-10 to 5-11	FET controlled multiplier, 19-1 to 19-6
with hysteresis, 5-13 to 5-15 peak, 8-1 to 8-3	FET multiplexer, 25-1 to 25-4
phase, 8-4 to 8-11	Field-effect transistor (see FET-
phase-error, 8-4	controlled multiplier; FET
phase-sensitive, 7-1	multiplexer) Filters:
phase-shift, 8-4	bandpass: multiple-feedback, 12-1 to
positive-peak, 8-1 to 8-3	12-7
pulse-width, 7-8	state-variable, 12-7 to 12-12
zero-crossing: inverting, 5-1 to 5-5	bandstop: active inductor, 13-1 to 13-4
with hysteresis, 5-5 to 5-8	twin-tee, 13-4 to 13-8
noninverting, 5-3 to 5-5	high-pass: second-order, 11-1 to 11-6
with hysteresis, 5-6 to 5-8	third-order, 11-7 to 11-10
Design steps (see Design procedure and	low-pass: second-order, 10-1 to 10-7
steps)	third-order, 10-8 to 10-11
Difference amplifier, 9-1	First-derivative circuit, 15-1
Differential amplifier:	Flip-flop, 20-4
inside op amp, 1-25 to 1-27	Floating-load current regulator, 24-17
linear, 9-1 to 9-10	to 24-19
logarithmic, 17-1	FM demodulator, 7-4 to 7-8
Differential gain, 9-1 to 9-10	FM detector, 7-4
Differentiating amplifier, 15-1	Follower, voltage (see Amplifiers,
Differentiator, 1-3, 15-1 to 15-8	noninverting)
Digital-to-analog converter, 6-8 to 6-10	Frequency comparator, 14-6
Discriminators:	Frequency-difference detector, 14-6 to
AM, 7-1, 16-5	14-11
FM, 7-4, 14-6	Frequency discriminator, 7-4, 14-6
pulse-width, 7-8 to 7-16	Frequency doubler, 14-1 to 14-5
Dividers:	Frequency meter, 7-4
analog, 19-6	Frequency multiplier, 14-1
(See also Multiplier/divider) Doubler, frequency, 14-1	
Dual power supply, 24-13 to 24-14	
Dual-slope A/D converter, 6-1	Gain:
dur stope 11/2 converter, o 1	closed-loop, how to compute, 2-21
	common-mode, 2-19 to 2-20, 9-1 to
Error amplifier, 9-1	9-10
Errors, operational amplifier, 2-3 to 2-21	effect of input resistance on, 1-16
Exponential amplifier, 17-8	effect of open-loop gain on, 1-14 to
Exponential converter, 17-8	1-15
	effect of output resistance on, 1-17
	loop (see Loop gain and phase)
Feedback:	minimum stable closed-loop, 3-21 to
design examples, 3-27 to 3-35	3 -22
positive and negative, 3-2, 3-3	Gain margin, 3-10 to 3-38
Feedback equation, 1-17 to 1-19, 3-5	Gated amplifier, 18-7
Feedback instability, seven causes of,	Generators:
3-1, 3-18 to 3-27	pulse, 20-7, 21-5
Feedback limiter, 16-1	ramp, 27-1 to 27-4
Feedback network, transfer admittance,	rectangular, 20-1
2 -22 to 2 -25	sawtooth, 27-1

Generators (Cont.):
sine-wave, 21-1
square-wave, 20-1
staircase, 27-8
step, 27-8
triangle, 27-4
triggered pulse, 20-7
voltage-controlled, 21-5
Grounding/bypassing problems, 3-26,
III-4 to III-5

Half-wave rectifier, 16-5 to 16-12
Harmonic generator, 14-1
Heterodyne circuit, 14-6
High-pass filter:
differentiator, 15-1
second-order, 11-1 to 11-6
third-order, 11-7 to 11-10
High-voltage op amp booster, 23-7
High-voltage regulator, 24-9 to 24-11
Hum-reduction circuit, 13-1, 13-4
Hysteresis:
in level detector, 5-12
in zero-crossing detector, 5-5

Ideal diode (half-wave rectifier), 16-5 Impedance transformer (see Amplifiers, current) Inductance simulator, 22-3 to 22-8 Inductorless bandpass filter, 12-1, 12-7 Inductorless bandstop filter, 13-1, 13-4 Inductorless high-pass filter, 11-1, 11-7 Inductorless low-pass filter, 10-1, 10-8 Instability, feedback, seven causes of, 3-1, 3-18 to 3-27 Instrumentation amplifier: high-quality, 9-8 to 9-10 low-cost, 9-1 Integral amplifier, 15-9 Integrating amplifier, 15-9 Integrator, 1-3, 15-9 to 15-12 Interval timer, 26-5 Inverse log amplifier, 17-8 Inverter (see Amplifiers, inverting)

Lag circuit, 26-1, 26-3
Large-signal behavior of op amps, 1-19
to 1-20
Latch, bilevel, 20-4
Lead circuit, 26-1, 26-3
Lead/lag circuit, 26-1, 26-3
Level detector (see Detectors, level)
Limited amplifier, 16-1
Limiter, amplitude, 16-1 to 16-4
Linear amplitude modulator, 18-1
Linear modulator, 18-1, 18-7
Linear multiplier, 19-1
Load, capacitive, effect on stability, 3-22
to 3-24

Lock-in amplifier, 7-1
Logarithmic amplifier, 1-6, 17-1 to 17-8
Logarithms, 1-21, 17-1
Log ratio circuit, 17-1
Log subtracting circuit, 17-1
Loop gain and phase, 1-24 to 1-26, 3-3
to 3-11
with lag compensation, 3-11 to 3-13
with lead compensation, 3-15 to 3-18
Low-pass filter:
integrator, 15-9
second-order, 10-1
third-order, 10-8

gain, 3-10 to 3-38 phase, 1-25, 3-10 to 3-38 Maximum ratings of op amps, II-1 Measurements, feedback-stability: closed-loop ac method, 3-37 to loop-gain method, 3-35 to 3-36 transient-response method, 3-38 Memory, one-bit, 20-4 Modulators: AM, 18-1 to 18-7 FM, 21-5 linear amplitude, 18-1 pulse-amplitude, 18-7 to 18-9 pulse-duration, 18-9 pulse-width, 18-9 to 18-14 Monostable multivibrator, 20-7 to 20-13 Multiple-feedback bandpass filter, 12-1 to 12-7 Multiplexer: analog, 18-7, 25-1 FET (CMOS), 25-1 to 25-4

Multiplier/divider:
log-antilog, 19-6 to 19-11
single-quadrant, 19-6
Multipliers:
analog, 19-1, 19-6
capacitor, 22-1 to 22-3
FET-controlled, 19-1 to 19-6
linear, 19-1
Multivibrators, 1-6
astable, 20-1 to 20-4
bistable, 20-4 to 20-6
monostable, 20-7 to 20-13
MUX (see Multiplexer)

precision gate, 25-4 to 25-6

single-channel, 18-7

Noise:

Margin:

input current, 2-9, I-2 input voltage, 2-9, I-2 Noise prevention techniques, III-3 to III-6 Notation, IV-1 to IV-3 Notch filter, 13-1, 13-4

One-shot, 20-7 Operational amplifiers: applications, 1-5 bandwidth, 1-10, 1-12, 1-15, 2-16, I-1 closed-loop, 2-16 full-power, 2-16 to 2-17, I-1 unity-gain, 2-16, I-1 bandwidth/power booster, 23-1 to 23-6 circuits inside, 1-25 to 1-28 closed-loop characteristics, 1-23 to 1-24 common-mode gain, 2-19 to 2-20, 9-1 common-mode rejection ratio, 2-18 to 2-21, 9-2 to 9-10, I-1 differential gain, 2-19, I-1 equivalent input noise, 2-9 to 2-12, I-2 errors, minimizing, 2-3 to 2-21 full-power output, 2-16 input bias current, 1-11, 2-5 to 2-7, I-1 input capacitance, 2-12 to 2-13, I-1 input offset current, 1-11, 2-8 to 2-9, input offset voltage, 1-11, 2-3 to 2-6, input resistance, 1-11, 1-12, 1-16, 2-12, I-2 large-signal behavior, 1-19 to 1-20, 5-3 maximum ratings, II-1 narrow-band spot-noise, 2-11, I-2 noise-figure, 2-11 open-loop characteristics, 1-21 output resistance, 1-12, 1-17, 2-13, **2-14**, **I-**2 ouptut voltage booster, 23-7 to 23-10 packaging, 1-8 to 1-10 parameters, 1-4, I-1 to I-2 phase-shift, open-loop, 1-20 to 1-22 power-supply rejection ratio, 2-21, I-2 protection circuits, III-1 to III-3 real versus ideal, 1-14 rise time, 2-16, I-2 slew rate, 1-11, 2-17 to 2-18, I-2 symbol, illustrated, 1-1, 1-4 voltage gain, 1-9, 1-12, 1-14, 1-21, 2-14 to 2-16, I-1 Oscillators, 1-7 sine-wave, 21-1 staircase, 27-8 sweep, free-running, 27-1 voltage-controlled, 21-5 to 21-10

Packaging, op amp, 1-8 discrete parts, 1-10 dual in-line, illustrated, 1-10 flat package, illustrated, 1-10 TO-99 package, illustrated, 1-8 PAM (see Pulse-amplitude modulator) Parallel regulator, 24-11 Parameters, op amp, 1-9 to 1-11, I-1 to Parasitic suppressor, 13-1, 13-4 Passive devices, III-6 Peak detector, 8-1 to 8-3 Peak-signal tracker, 8-1 Phase detector, 8-4 to 8-11 Phase-difference detector, 8-4 Phase-error detector, 8-4 Phase inverter (see Amplifiers, inverting) Phase lag circuit, 26-1 Phase lead circuit, 26-1 Phase lead/lag circuit, 26-1 to 26-3 Phase margin, 1-25, 3-10 to 3-38 Phase-sensitive demodulator, 7-1 Phase-shift detector, 8-4 Phase-shift oscillator, 21-1 Phase-to-dc converter, 8-4 Photodiode amplifier (see Amplifiers, transresistance) Polarity selector, 16-5 Pole, gain and phase of, 1-22 Pole locations in s plane: high-pass filter, second-order, 11-2 to low-pass filter: second-order, 10-2 to third-order, 10-9 Positive peak detector, 8-1 Power booster, op amp, 23-1, 23-7 Power supply: bypass caps for, 3-26 to 3-27 voltage-regulated, 24-1 Power-supply rejection ratio, 2-21, I-2 Precision gate multiplexer, 25-4 Precision half-wave rectifier, 16-5 to 16-12 Precision limiter, 16-1 Precision voltage supply, 24-1, 24-13 PSRR (see Power-supply rejection ratio) Pulse-amplitude modulator, 18-7 to 18-9 Pulse catcher, 7-8 Pulse-counting FM demodulator, 7-4 Pulse-duration modulator, 18-9 Pulse generator: triggered, 20-7 voltage-controlled, 21-5 Pulse-height modulator, 18-7 Pulse-width demodulator, 7-8 Pulse-width detector, 7-8 Pulse-width discriminator, 7-8 to 7-16 Pulse-width modulator, 18-9 to 18-14 Push-pull buffer, op amp, 23-1, 23-7

Q of filter: high-pass, 11-3 low-pass, 10-2 to 10-4

PWM (see Pulse-width modulator)

Ramp generator, voltage, 27-1 to 27-4 RC circuit characteristics, VI-1 to VI-24 RC timer, 26-5 Rectangular-waveform generator, 20-1 Rectifier, precision half-wave, 16-5 Reference, precision voltage, 24-1, 24-13 Regulators, 1-7 current: floating-load, 24-17 to 24-19 grounded-load, 24-19 to 24-21 dual voltage, 24-13 high-voltage, 24-9 to 24-11 shunt, voltage, 24-11 to 24-12 switching, voltage, 24-15 tracking, dual, 24-13 voltage, current-limited, 24-1 Resistance, op amp input, 1-11, 2-12, I-2 Resistor-capacitor timer, 26-5 Resonator, active, 12-1 Rise time, 1-11, I-2 Rules, basic for op amp circuit design, Sample-and-hold circuit, 25-6 to 25-10 Sampling circuit, 1-8, 18-7, 25-1, 25-4 Sampling gate, 18-7, 25-1, 25-4

Sawtooth generator, 27-1 Schmitt trigger (see Detectors, level: zero-crossing) Second-order filter: high-pass, 11-1 to 11-6 low-pass, 10-1 to 10-7 S/H (sample-and-hold) circuit, 25-6 to 25-10 Shielding/guarding, III-5 to III-6 Short-circuit-proof voltage regulator, 24 - 1Shunt regulator, 24-11 Simulator: capacitor, 22-1 inductor, 22-3 to 22-8 Sine-wave oscillator, 21-1 Single-shot, 20-7 Slew rate, 1-11, 2-17, I-2 Slew-rate booster, 23-1 Source, current, 4-16 to 4-17, 24-17 to 24-21 Square-wave generator, 20-1 Stability analysis, first-cut, 3-3 Staircase generator, 27-8 State-variable bandpass filter, 12-7 to 12-12 Step generator, 27-8 Sweep generator, 27-1 Switching-mode amplifier, 18-9 Switching voltage regulator, 24-15 to

Suppressed-carrier AM demodulator, 7-1

24-17

Synchronous detector, 7-1 Synchronous switching demodulator, 7-1

Third-order filter: high-pass, 11-7 to 11-10 low-pass, 10-8 to 10-11 Time-averaging FM demodulator, 7-4 Timer, 26-5 to 26-8 Tracking regulator, 24-13 Transadmittance amplifier (see Amplifiers, transconductance) Transfer admittance, 2-23 Transimpedance amplifier (see Transresistance amplifier) Transresistance amplifier, 4-14 to 4-15 Triangle generator, 27-4 Trigger, Schmitt (see Detectors, level: zero-crossing) Triggered pulse generator, 20-7 Twin-tee bandstop filter, 13-4 Two-state modulator, 18-9

Unity-gain filter: high-pass: second-order, 11-1 to 11-6 third-order, 11-7 to 11-10 low-pass: second-order, 10-1 to 10-7 third-order, 10-8 to 10-11

VCO (voltage-controlled oscillator), 21-5 to 21-10 V/F (voltage-to-frequency) converter, 21-5VFC (voltage-to-frequency converter), 21-5 Voltage, input offset, 1-11, 2-3, I-2 Voltage-controlled amplifier, 19-1 Voltage-controlled oscillator, 21-5 to Voltage follower, 4-10 Voltage ramp generator, 27-1 to 27-4 Voltage reference, precision, 24-13 Voltage regulators: current-limited, 24-1 to 24-9 dual, 24-13 to 24-14 high-voltage, 24-9 to 24-11 shunt, 24-11 to 24-12 switching, 24-15 to 24-17 Voltage source, dual, 24-13 Voltage staircase generator, 27-8 to 27-11 Voltage step generator, 27-8 Voltage-sweep generator, 27-1 to 27-4 Voltage-to-current converter, 4-16, 24-17, Voltage-to-frequency converter, 21-5 Voltage-to-pulse width converter, 18-9

Voltage triangle generator, 27-4 to 27-8

Waveform generator: rectangular, 20-1 sawtooth, 27-1, 27-4

Volume compressor, 16-1

Waveform generator (Cont.):
square-wave, 20-1
staircase, 27-8
Wien-bridge sine-wave oscillator, 21-1
to 21-5

Y parameters: in closed-loop gain calculation, 2-24 Y parameters (Cont.): how to compute, 2-23 relation to Z parameters, 2-21 to 2-22

Zero, gain and phase of, 1-22 to 1-23 Zero-bound circuit, 16-5 Zero-crossing comparator, 5-1, 5-5 Zero-crossing detector (see Detectors, zero-crossing)

