FYS-STK4155 Week 37

Janita Ovidie Sandtrøen Willumsen (Dated: September 17, 2023)

EXERCISE 1

We have assumed that our data can be described by the continous function f(x), and an error term $\epsilon N(0, \sigma^2)$. If we approximate the function with the solution derived from a model $\tilde{y} = X\beta$ the data can be described with $y = X\beta + \epsilon$. The expectation value

$$\mathbb{E}(\boldsymbol{y}) = \mathbb{E}(X\boldsymbol{\beta} + \boldsymbol{\epsilon})$$

$$= \mathbb{E}(X\boldsymbol{\beta}) + \mathbb{E}(\boldsymbol{\epsilon}) \qquad \text{where the expected value } \boldsymbol{\epsilon} = 0$$

$$\mathbb{E}(y_i) = \sum_{j=0}^{P-1} X_{i,j} \beta_j \qquad \text{for the each element}$$

$$= X_{i,*} \beta_i \qquad \text{where } * \text{replace the sum over index } i$$

The variance for the element y_i can be found by

$$V(y_{i}) = \mathbb{E}[(y_{i} - \mathbb{E}(y_{i}))^{2}]$$

$$= \mathbb{E}(y_{i}^{2}) - (\mathbb{E}(y_{i})^{2})$$

$$= \mathbb{E}((X_{i,*}\beta_{i} + \epsilon_{i})^{2}) - (X_{i,*}\beta_{i})^{2}$$

$$= \mathbb{E}((X_{i,*}\beta_{i})^{2} + 2\epsilon_{i}X_{i,*}\beta_{i} + \epsilon^{2}) - (X_{i,*}\beta_{i})^{2}$$

$$= \mathbb{E}((X_{i,*}\beta_{i})^{2}) + \mathbb{E}(2\epsilon_{i}X_{i,*}\beta_{i}) + \mathbb{E}(\epsilon^{2}) - (X_{i,*}\beta_{i})^{2}$$

$$= (X_{i,*}\beta_{i})^{2} + \mathbb{E}(\epsilon^{2}) - (X_{i,*}\beta_{i})^{2}$$

$$= \mathbb{E}(\epsilon^{2}) = \sigma^{2}$$

The expression for the optimal parameter

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

We find the expected value of $\hat{\beta}$

$$\begin{split} \mathbb{E}(\hat{\boldsymbol{\beta}}) &= \mathbb{E}((\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}) \\ &= (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\mathbb{E}(\boldsymbol{y}) & \text{using that } \boldsymbol{X} \text{ is a non-stochastic variable} \\ &= (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{\beta} & \text{using } \mathbb{E}(\boldsymbol{y}) = \boldsymbol{X}\boldsymbol{\beta} \\ &= \boldsymbol{\beta} \end{split}$$

we can find the variance by

$$\begin{split} \mathbb{V}(\hat{\boldsymbol{\beta}}) &= \mathbb{E}\big[(\hat{\boldsymbol{\beta}} - \mathbb{E}(\hat{\boldsymbol{\beta}}))^2\big] \\ &= \mathbb{E}(\hat{\boldsymbol{\beta}}\hat{\boldsymbol{\beta}}^T) - \mathbb{E}(\hat{\boldsymbol{\beta}})^2 \\ &= \mathbb{E}(((\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y})((\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y})^T) - \hat{\boldsymbol{\beta}}\hat{\boldsymbol{\beta}}^T \\ &= \mathbb{E}((\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}\boldsymbol{y}^T\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}) - \hat{\boldsymbol{\beta}}\hat{\boldsymbol{\beta}}^T \\ &= (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\mathbb{E}(\boldsymbol{y}\boldsymbol{y}^T)\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1} - \hat{\boldsymbol{\beta}}\hat{\boldsymbol{\beta}}^T \\ &= (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T(\boldsymbol{X}\boldsymbol{\beta}\boldsymbol{\beta}^T\boldsymbol{X}^T + \sigma^2)\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1} - \hat{\boldsymbol{\beta}}\hat{\boldsymbol{\beta}}^T \\ &= \boldsymbol{\beta}\boldsymbol{\beta}^T + \sigma^2((\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}) - \hat{\boldsymbol{\beta}}\hat{\boldsymbol{\beta}}^T \\ &= \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1} \end{split}$$

Knowing the expectation value and the variance of $\hat{\beta}$, we can define a confidence intervall for each $\hat{\beta}_j \pm std(\hat{\beta}_j)$ for j = 1, 2, ..., P - 1.

EXERCISE 2

Last week we showed that the optimal $\hat{\boldsymbol{\beta}}^{Ridge}$ can be derived from MSE, and is defined as

$$\hat{oldsymbol{eta}}^{Ridge} = (oldsymbol{X}^Toldsymbol{X} + \lambda oldsymbol{I})^{-1}oldsymbol{X}^Toldsymbol{y}$$

The expectation value is then

$$\begin{split} \mathbb{E}(\hat{\boldsymbol{\beta}}^{Ridge}) &= \mathbb{E}((\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^T\boldsymbol{y}) \\ &= (\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^T\mathbb{E}(\boldsymbol{y}) & \text{since } \boldsymbol{X} \text{ and } \lambda \boldsymbol{I} \text{ are non-stochastic variables} \\ &= (\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{\beta} & \text{using } \mathbb{E}(\boldsymbol{y}) \text{ from exercise } 1 \end{split}$$

For $\lambda = 0$ we have $\mathbb{E}(\hat{\boldsymbol{\beta}}^{OLS})$. The variance

$$\begin{split} \mathbb{V}(\hat{\boldsymbol{\beta}}^{Ridge}) &= \mathbb{E}(\hat{\boldsymbol{\beta}}_R \hat{\boldsymbol{\beta}}_R^T) - (\mathbb{E}(\hat{\boldsymbol{\beta}}_R))^2 \\ &= \mathbb{E}(((\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^T\boldsymbol{y})(((\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^T\boldsymbol{y}))^T) - (\mathbb{E}(\hat{\boldsymbol{\beta}}_R))^2 \\ &= \mathbb{E}((\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^T\boldsymbol{y}\boldsymbol{y}^T\boldsymbol{X}((\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1})^T) - (\mathbb{E}(\hat{\boldsymbol{\beta}}_R))^2 \\ &= (\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^T\mathbb{E}(\boldsymbol{y}\boldsymbol{y}^T)\boldsymbol{X}((\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1})^T - (\mathbb{E}(\hat{\boldsymbol{\beta}}_R))^2 \\ &= (\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^T(\boldsymbol{X}\boldsymbol{\beta}\boldsymbol{\beta}^T\boldsymbol{X}^T + \sigma^2)\boldsymbol{X}((\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1})^T - (\mathbb{E}(\hat{\boldsymbol{\beta}}_R))^2 \\ &= \sigma^2(\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^T\boldsymbol{X}((\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1})^T + (\mathbb{E}(\hat{\boldsymbol{\beta}}_R))^2 - (\mathbb{E}(\hat{\boldsymbol{\beta}}_R))^2 \\ &= \sigma^2(\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^T\boldsymbol{X}((\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1})^T \end{split}$$