WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 99/33814 C07D 239/26, C09K 19/34 A1 (43) International Publication Date:

8 July 1999 (08.07.99)

(21) International Application Number:

PCT/US98/14624

(22) International Filing Date:

15 July 1998 (15.07.98)

(30) Priority Data:

08/998,400

24 December 1997 (24.12.97)

(71) Applicant: MINNESOTA MINING AND MANUFACTUR-ING COMPANY [US/US]; 3M Center, P.O. Box 33427, Saint Paul, MN 55133-3427 (US).

(72) Inventors: HASEGAWA, Masakazu; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). KEYES, Michael, P.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). RAD-CLIFFE, Marc, D.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). SAVU, Patricia, M.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). SNUSTAD, Daniel, C.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US). SPAWN, Terence, D.; P.O. Box 33427, Saint Paul, MN 55133-3427 (US).

(74) Agents: WEISS, Lucy, C. et al.; Minnesota Mining and Manufacturing Company, Office of Intellectual Property Counsel, P.O. Box 33427, Saint Paul, MN 55133-3427 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: LIQUID CRYSTAL COMPOUNDS HAVING A CHIRAL FLUORINATED TERMINAL PORTION

(57) Abstract

Fluorine-containing, chiral liquid crystal compounds comprise (a) a chiral fluorochemical terminal portion comprising (i) at least one chiral center, which can optionally be heteroatom-substituted; (ii) a terminal fluoroalkyl, fluoroether, perfluoroalkyl, or perfluoroether group; and (iii) an alkylene or fluoroalkylene group optionally containing at least one catenary ether oxygen atom; (b) a chiral or achiral terminal portion consisting of a hydrocarbon or hydrocarbon ether group, and, when chiral, comprising at least one chiral center, which can optionally be heteroatom-substituted; and (c) a central core connecting the terminal portions; the alkylene or fluoroalkylene group of the chiral fluorochemical terminal portion having at least 3 in-chain atoms and being located between the chiral center of the chiral fluorochemical terminal portion and the central core. The compounds have smectic mesophases or latent smectic mesophases and are useful, for example, in liquid crystal display devices.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Scacgal
AU	Australia	GA	Gabon	LV	Latvia	8 Z	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD/	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ircland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
	Belanz	IS	iceland	MW	Malawi	us	United States of America
BY	• • • • • • • • • • • • • • • • • • • •	IT	Italy	MX	Mexico	UZ	Uzbekistan
CA	Canada	JP	Japan	NE	Niger	VN	Vict Nam
CF	Central African Republic	KE	•	NL	Netherlands	YU	Yugoslavia
CC	Congo		Kenya	NO	Norway	zw	Zimbabwe
CH	Switzerland	KG	Kyrgyzstan		New Zealand	2,,	Zaracutowo
a	Côte d'Ivoire	KP	Democratic People's	NZ			
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	Pr	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	ıc	Saint Lucia	RU	Russian Federation		
DR	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

LIQUID CRYSTAL COMPOUNDS HAVING A CHIRAL FLUORINATED TERMINAL PORTION

Field of the Invention

5 This invention relates to fluorinated chiral smectic liquid crystal compounds, to a process for the preparation of such compounds (and to intermediates for use therein), and to liquid crystal compound mixtures and electrooptical display devices containing such compounds.

Background of the Invention

15

20

Devices employing liquid crystals have found use in a variety of electrooptical applications, in particular those which require compact, energy-efficient, voltage-controlled light valves, e.g., watch and calculator displays, as well as the flat-panel displays found in portable computers and compact televisions. Liquid crystal displays have a number of unique characteristics, including low voltage and low power of operation, which make them the most promising of the non-emissive electrooptical display candidates currently available.

One of the most important characteristics of a

25 liquid crystal display device is its response time,
 i.e., the time required for the device to switch from
 the on (light) state to the off (dark) state. In a
 ferroelectric or anti-ferroelectric device, response
 time (\tau=\eta/P_sE) is proportional to the rotational

30 viscosity (\eta) of the liquid crystal compound(s)
 contained within the device and is inversely
 proportional to their polarization (P_s) and to the
 applied electric field (E). Thus, response time can be
 reduced by using compound(s) having high polarizations

PCT/US98/14624 WO 99/33814

or low viscosities, and such compounds are greatly desired in the art.

In the passive addressing of liquid crystal compounds exhibiting a spontaneous polarization, 5 however, low polarization mixtures can be important for the practical operation of a liquid crystal device. Polarization reversal fields are larger for higher polarization mixtures, and polarization reversal fields cause switching or partial switching back to a material's original director alignment. This results in loss of the bistability that is crucial to the passive-matrix driving of ferroelectric liquid crystal devices.

Another potential disadvantage of using high polarization mixtures is the partial switching of their 15 director alignment in response to non-switching (secondary) signals in a driving waveform. continued response or fluctuation of the director causes a large decrease in the contrast ratio of a 20 ferroelectric liquid crystal device.

In addition to fast response times, compounds should ideally possess broad smectic temperature ranges to enable operation of the device over a broad range of temperatures (or should be capable of combination with 25 other liquid crystal compounds having different smectic temperature ranges without adversely affecting the smectic phase behavior of the base mixture).

Summary of the Invention

10

Briefly, in one aspect, this invention provides 30 fluorine-containing, chiral liquid crystal compounds having smectic mesophases or latent smectic mesophases. (Compounds having latent smectic mesophases are those which by themselves do not exhibit a smectic mesophase, but which, when in admixture with compounds having 35

smectic mesophases or with other compounds having latent smectic mesophases, develop smectic mesophases under appropriate conditions.) The chiral liquid crystal compounds of the invention comprise (a) a 5 chiral fluorochemical terminal portion that comprises (i) at least one chiral center (or chiral moiety), which can optionally be heteroatom-substituted; (ii) a terminal fluoroalkyl, fluoroether, perfluoroalkyl, or perfluoroether group (preferably, perfluoroalkyl or perfluoroether); and (iii) an alkylene or 10 fluoroalkylene group optionally containing at least one catenary, i.e., in-chain, ether oxygen atom; (b) a chiral or achiral terminal portion consisting of a hydrocarbon or hydrocarbon ether group and, when chiral, comprising at least one chiral center, which 15 can optionally be heteroatom-substituted; and (c) a central core connecting the terminal portions; the alkylene or fluoroalkylene group of the chiral fluorochemical terminal portion having at least 3 in-20 chain atoms and being located between the chiral center of the chiral fluorochemical terminal portion and the central core (an "extended group").

The chiral fluorochemical terminal portion of the compounds of the invention can be represented by the formula -D-R*-D-R_f, where R* is a cyclic or acyclic chiral moiety containing at least one chiral center (asymmetric carbon atom); R_f is fluoroalkyl, perfluoroalkyl, fluoroether, or perfluoroether; and each D is independently and non-directionally selected from the group consisting of a covalent bond,

-C(=O)-O-C_rH_{2r}-, -O-C_rH_{2r}-, -O-(O=)C-C_rH_{2r}-, -C=C-,
-CH=CH-, -C(=O)-,

35 $-O+C_sH_{2s}O+_cC_r\cdot H_{2r}\cdot -$, $-C_rH_{2r}-$, $+C_sH_{2s}O+_cC_r\cdot H_{2r}\cdot -$, -O-, -S-,

-OSO₂-, -SO₂-, -SO₂-C_rH_{2r}-, -C_rH_{2r}-N-SO₂-, -N(C_pH_{2p+1})-, | C_pH_{2p+1}

5 $-C_rH_{2r}-N-C (=0)-, -CH=N-,$ and combinations thereof, where one or more hydrogen atoms can optionally be replaced with fluorine, and where r and r' are independently integers of 0 to about 10 20, s is independently an integer of 1 to about 10 for each (C_sH_{2s}O), t is an integer of 1 to about 6, and p is an integer of 0 to about 4; with the proviso that at least one chiral center of R* is spaced from the central core by at least 3 in-chain atoms. Preferably, 15 R_f is perfluoroalkyl or perfluoroether; more preferably, Rf is perfluoroether, as the perfluoroether-containing compounds of the invention exhibit, e.g., a broad smectic C mesophase, good compatibility with other smectic C compounds, and advantageous layer spacing 20 behavior. When the Rf group of the fluorochemical terminal portion is perfluoroalkyl or perfluoroether, it can contain small amounts of residual carbon-bonded hydrogen atoms but is preferably completely fluorinated.

In general, the compounds of this invention have a central core comprised of at least one or two rings independently selected from the group consisting of aromatic, heteroaromatic, alicyclic, substituted aromatic, substituted heteroaromatic, and substituted alicyclic rings, the rings being connected one with another by a covalent bond or by chemical groups selected from the group consisting of -COO-, -COS-, -HC=N-, -CH=CH-, -C=C-, and -COSe-. The rings can be fused or non-fused. The heteroatoms within the heteroaromatic rings comprise at least one atom selected from the group consisting of nitrogen, oxygen,

and sulfur. Non-adjacent ring carbon atoms in the alicyclic rings can be substituted by nitrogen, oxygen, or sulfur atoms. When the ring(s) are aromatic, heteroaromatic, substituted aromatic, or substituted heteroaromatic, the non-fused rings of the core are preferably no more than about two in number.

The chiral liquid crystal compounds of the invention exhibit exceptionally wide mesomorphic temperature ranges. When used in electrooptical devices, the compounds provide fast response times upon application of an electric field over broad temperature ranges. This makes them extremely useful in the preparation of mixtures that operate in their active mesomorphic phase in the range of from about -30°C to about 70°C.

10

15

20

30

Surprisingly, in comparison with similar compounds having fewer than 3 in-chain atoms between at least one chiral center of the fluorochemical terminal portion and the central core, the compounds of the invention provide comparable electrooptic response speeds in spite of their lower measured polarization values. These lower polarization values in combination with broad mesogenic temperature ranges enable the utilization of liquid crystal mixtures that contain up to 100% of the chiral (optically active) compounds of the invention. In general, mixtures containing a high concentration of the compounds of this invention exhibit more temperature independent switching properties, which is important for the reliable and consistent operation of liquid crystal devices.

Furthermore, the use of high concentrations of liquid crystal compounds having low polarizations also provides a decrease (relative to the use of low concentrations of compounds having high polarizations) in the partial switching response of the resulting

compositions to non-switching (secondary) signals in the driving waveform that is commonly used in the passive addressing of liquid crystal devices. Such a decrease in this response is critical for improving the contrast of a device.

The compounds of the invention are useful in admixture with themselves or with other chiral or achiral liquid crystal compounds (as dopants or as the major components), for electrooptical display applications. The compounds have a number of desirable properties when used in admixture with themselves or with other liquid crystal compounds, preferably compounds having fluorinated terminal portions such as those compounds disclosed, for example, in U.S. Pat. Nos. 4,886,619 (Janulis), 5,082,587 (Janulis), 5,262,082 (Janulis et al.), and 5,658,491 (Kistner et al.).

10

For example, the compounds of the invention when admixed with such preferred liquid crystal compounds show excellent compatibility, show a beneficial effect or only a minimal negative effect on the smectic C temperature range of the resulting mixtures (even when present at high concentrations), and provide ferroelectric mixtures having fast electrical response 25 times. Mixtures containing the compounds exhibit favorable alignment, switching, response to an electric field, temperature dependence of response speed, temperature dependence of polarization, contrast, layer structure, and mesomorphic temperature ranges. 30 Compounds of the invention can also be used to optimize mixture properties such as tilt angle, memory angle, spontaneous polarization and its temperature dependence, mesomorphic transition temperatures, switching behavior, birefringence, and the temperature 35 dependence of layer spacing.

In other aspects, this invention also provides liquid crystal compounds (described below) having two fluorochemical terminal portions, a mixture of liquid crystal compounds comprising at least one liquid crystal compound of the invention, a liquid crystal display device containing at least one liquid crystal compound of the invention, and liquid crystal intermediate compounds.

10 Brief Description of the Drawing

These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawing, wherein:

15 Figure 1 shows a plot of smectic C layer spacing (in Angstroms) versus temperature (in degrees Centigrade) for selected compounds of the invention that were prepared by the procedures given in the designated Examples.

20 Detailed Description of the Invention

A class of the above-described liquid crystal compounds of the present invention can be represented by the general formula I:

25
$$R-(M)_a-A+N+_bB+P+_c-D-R+D-R_f$$
 (I)
$$\begin{vmatrix} & & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

where M, N, and P are each independently selected from 30 the group consisting of

5

a, b, and c are each independently zero or an integer
of from 1 to 3, with the proviso that the sum of a + b
+ c be at least 1 (and preferably no greater than 2);

10

each A and B are non-directionally and independently selected from the group consisting of a covalent bond,

15

-C(=0)-Te-, $-(CH_2CH_2)_k-$ where k is 1 to 4, -CH=CH-, -C=C-, -CH=N-, $-CH_2-O-$, -C(=O)-, and -O-;

each X, Y, and Z are independently selected from the group consisting of -H, -Cl, -F, -Br, -I, -OH, -OCH₃, -CH₃, -CF₃, -OCF₃, -CN, and -NO₂;

each 1, m, and n are independently zero or an integer of 1 to 4;

25

each D is non-directionally and independently selected from the group consisting of a covalent bond, $-C \ (=O) - O - C_r H_{2r} - , \quad -O - C_r H_{2r} - , \quad -O - (O=) \ C - C_r H_{2r} - , \quad -C = C - , \\ -CH = CH - , \quad -C \ (=O) - ,$

30

$$-O(C_{s}H_{2s}O)+_{c}C_{r}\cdot H_{2r}\cdot -, -C_{r}H_{2r}-, +C_{s}H_{2s}O)+_{c}C_{r}\cdot H_{2r}\cdot -, -O-, -S-,$$

$$-OSO_{2}-, -SO_{2}-, -SO_{2}-C_{r}H_{2r}-, -C_{r}H_{2r}-N-SO_{2}-, -N(C_{p}H_{2p+1})-,$$

$$\begin{vmatrix} & & & & & & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

where one or more hydrogen atoms can optionally be replaced with fluorine, and where r and r' are independently integers of 0 to about 20, s is independently an integer of 1 to about 10 for each (C₃H₂₃O), t is an integer of 1 to about 6, and p is an

15 integer of 0 to about 4;

5

20

30

R is selected from the group consisting of
$$-O - ((C_q \cdot H_{2q'-v'} - (R')_{v'}) - O)_w - C_q H_{2q+1-v} - (R')_v , \\ - ((C_q \cdot H_{2q'-v'} - (R')_{v'}) - O)_w - C_q H_{2q+1-v} - (R')_v , \\ -C (=O) - O - C_q H_{2q+1-v} - (R')_v , \qquad -O - (O=) C - C_q H_{2q+1-v} - (R')_v ,$$

$$-CR'H-(D)_{q}-CR'H-C_{q}H_{2q+1-v}-(R')_{v}$$
,

where each R' is independently selected from the group consisting of -Cl, -F, -CF₃, -NO₂, -CN, -H, -C_qH_{2q+1},

-O-(O=)C-C_qH_{2q+1}, -C(=O)-O-C_qH_{2q+1}, -Br, -OH, and -OC_qH_{2q+1}
(preferably, -H or -F); q' is independently an integer of 1 to about 20 for each (C_q·H_{2q}·-O); q is an integer of 1 to about 20; w is an integer of 0 to about 10; v is

an integer of 0 to about 2; each v' is independently an integer of 0 to about 2; g is an integer of 1 to about 3; each D is independently and non-directionally selected from the group set forth for D above, with the proviso that the ring containing D has from about 3 to about 10 ring atoms; each W is independently selected from the group consisting of N, CR', and SiR'; and R can be chiral or achiral; and

10 R* is a cyclic or acyclic chiral moiety containing at least one chiral center; and

 $R_{\rm f}$ is fluoroalkyl, perfluoroalkyl, fluoroether, or perfluoroether;

15

with the proviso that there are at least 3 in-chain atoms between the central core structure $-(M)_a-A+(N)_bB+(P)_c-$ and at least one chiral center of R*.

Preferably, R_f is perfluoroalkyl or perfluoroether and R^* is selected from the group consisting of $-O-((C_q\cdot H_{2q'-v'}-(R^!)_{v'})-O)_w-C_qH_{2q-v}-(R^!)_{v'}-,\\ -((C_q\cdot H_{2q'-v'}-(R^!)_{v'})-O)_w-C_qH_{2q-v}-(R^!)_{v'}-,$

$$-C (=0) - O - C_q H_{2q-v} - (R^*)_v - , \quad -O - (O=) C - C_q H_{2q-v} - (R^*)_v - ,$$

D
/ \
---W W---, and -CR'H-(D)g-CR'H-,

30 \/

where each R' is independently selected from the group consisting of -Cl, -F, -CF₃, -NO₂, -CN, -H, -C_qH_{2q+1},

-O-(O=)C-C_qH_{2q+1}, -C(=O)-O-C_qH_{2q+1}, -Br, -OH, and -OC_qH_{2q+1} (preferably, -H, -F, -CF₃, -Br, -OH, or -OCH₃; more preferably, -H, -F, or -CF₃); q' is independently an

5 integer of 1 to about 20 for each ((C_q·H_{2q'-v'}-(R')_{v'})-O); q is an integer of 1 to about 20; w is an integer of 0 to about 10; v is an integer of 0 to about 3; each v' is independently an integer of 0 to about 3; g is an integer of 1 to about 3; each D is independently and non-directionally selected from the group set forth for D above, with the proviso that the ring containing D has from about 3 to about 10 ring atoms; and each W is independently selected from the group consisting of N, CR', and SiR'. More preferably, R_f is perfluoroether.

15 In defining Rf, particularly preferred perfluoroalkyl groups are those which can be represented by the formula $-C_qF_{2q}X'$, where q is as defined above (and, preferably, is at least about 5) and X' is hydrogen or fluorine. Particularly preferred 20 perfluoroether groups are those which can be represented by the formula $-(C_xF_{2x}O)_zC_yF_{2y+1}$, where x is independently an integer of 1 to about 10 for each $(C_xF_{2x}O)$, y is an integer of 1 to about 10, and z is an integer of 1 to about 10. Preferably, the 25 perfluoroether group is linear, x is independently an integer of 1 to about 6 for each $(C_xF_{2x}O)$, y is an integer of 1 to about 6, and z is an integer of 1 to about 6.

Preferred subclasses of the above-described chiral compounds of the invention can be represented by the following formula:

$$R'' - (0)_{j} - G - D' - R^* - (C_s, H_{2s}, 0)_{t}, C_r, H_{2r}, R_f$$
 (II)

where R'' is (R'),-CqH2q+1-v, where q is an integer of 2 to about 10, each R' is independently selected from the group consisting of hydrogen, fluorine, chlorine, methyl, and perfluoromethyl, and v is an integer of 1 to about 2;

j is an integer of 0 or 1;

G is selected from the group consisting of

10

20

where one or more of the aromatic hydrogen atoms can be replaced with fluorine;

D' is selected from the group consisting of $-O+C_2H_{2s}O+_{c}C_{r}\cdot H_{2r}$, $-C_rH_{2r}$, $+C_sH_{2s}O+_{c}C_{r}\cdot H_{2r}$, and $-O-C_rH_{2r}$, where r and r' are independently integers of 0 to about 12, s is independently an integer of 1 to about 10 for each $(C_sH_{2s}O)$, and t is an integer of 1 to about 3;

R* is selected from the group consisting of

$$-C_qH_{2q-v}-(R^*)_v-$$
 and

where R' is -F, q is an integer of 1 to about 4, v is an integer of 1 to about 3, W is N or CH, and D" is -C(=0)-O- or -CH₂-;

s' in Formula II is an integer of 1 to about 6;

15 t' in Formula II is an integer of 0 or 1;

r" in Formula II is an integer of 1 to about 3; and

 R_f is selected from the group consisting of $-C_qF_{2q+1} \text{ and } -(C_xF_{2x}O)_zC_yF_{2y+1}, \text{ where q is an integer of 1}$ to about 6, x is independently an integer of 1 to about 10 for each $(C_xF_{2x}O)$, y is an integer of 1 to about 8, and z is an integer of 1 to about 5;

25 with the proviso that there are at least 3 in-chain atoms between the central core structure
G and at least one chiral center of R*.

More preferably, s', t', and r" in Formula II are each 30 an integer of 1.

The fluorine-containing liquid crystal compounds of the invention can be prepared by a process comprising the steps of (a) mixing at least one compound represented by the formula

PCT/US98/14624 WO 99/33814

$$R_{M}_{*}A_{N}_{b}^{-D-(R^{*})}_{X}^{-B^{*}}$$
 (III)
 $X_{1} Y_{m}$

5

with at least one compound represented by the formula

$$B^{"}+P_{c}-D-R^{*}-D-R_{f} \qquad (IV)$$

$$\begin{vmatrix} & & & \\$$

or mixing at least one compound represented by the formula

15
$$R_{M} = D - (R^*)_{X} - A^* \qquad (V)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_1$$

with at least one compound represented by the formula

20

25 or mixing at least one compound represented by the formula

$$R_{-}(M)_{-a}A_{-}(N)_{-b}-D-(R^{*})_{-x}-B^{*} \qquad (III)$$

$$| \qquad | \qquad |$$

$$X_{1} \qquad Y_{m}$$

with at least one compound represented by the formula

$$B^{\dagger\dagger}-D-R_{f} \qquad (VII),$$

35

where M, N, P, a, b, c, A, B, X, Y, Z, 1, m, n, D, R, R^* , and R_f are as defined above for formula I; x is an integer of 0 or 1; and each A', A'', B', and B'' are

independently selected from the group consisting of -H, -Cl, -Br, -I, -OH, -COOH, -CH(CH₂OH)₂, -SH, -SeH, -TeH, -NH₂, -COCl, -CHO, -OSO₂R_f''', -OSO₂CH₃, -C=CH, dialkyl borane, -CH=CH₂, -NH(C=O)OC_qH_{2q+1}, -NCO,

5 -OSO₂-cyclo(C₆H₄)-CH₃, -CH₂COOH, and -CH(C(O)O-C_qH_{2q+1})₂, where R_f''' is a perfluoroalkyl group having from 1 to about 10 carbon atoms and q is an integer of 0 to about 20, and with the proviso that (R*)_X-A' can enter into an addition or condensation reaction with A'' and that (R*)_X-B' can enter into an addition or condensation reaction with B'';

and (b) allowing compounds III and IV, compounds V and VI, or compounds III and VII to react, optionally in the presence of suitable coupling agent(s), i.e., reagent(s) which effect coupling. For Formula IV, B'' is preferably selected from the group consisting of -C=CH, dialkyl borane, and -CH=CH₂ (more preferably -CH=CH₂), and -D-R*-D-R_f is preferably -D'-R*-(C_S'H_{2S}'O)_t'C_T"H_{2T}"-R_f as defined above for

In another aspect, liquid crystal compounds of the present invention also include compounds that have two fluorochemical terminal portions and can be represented by the general formula VIII:

$$R_{f}-CH_{2}O-C_{n}\cdot H_{2n}\cdot - (O)_{j}-(M)_{a}-A-(N)_{b}B+(P)_{c}-D-R*-D-R_{f}$$
 (VIII)
 $\begin{vmatrix} & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & &$

30

35

25

Formula II.

where n' is an integer of 0 to about 10 (preferably from about 2 to about 6); j is an integer of 0 or 1; each R_f moiety is independently selected from the group consisting of fluoroalkyl, fluoroether, perfluoroalkyl, and perfluoroether (preferably, perfluoroalkyl or

perfluoroether; more preferably, perfluoroether); and definitions (and preferred definitions) for the other moieties are as stated above for Formula I. Such compounds can be prepared by the above-described methods involving Formulas III, IV, V, VI, and VII, wherein the R moiety is replaced with R_f-CH₂O-C_n·H_{2n}·O-(wherein R_f and n' are as defined for Formula VIII).

Preferred subclasses of the above-described chiral compounds of the invention having two fluorochemical terminal portions can be represented by the following formula:

$$R_f - CH_2O - C_n \cdot H_{2n'}O - G - D' - R^* - (C_s \cdot H_{2s'}O)_t \cdot C_r \cdot H_{2r''} - R_f$$
 (IX)

where n' is an integer of about 2 to about 6 (preferably, 3 or 4); each R_f is independently selected from the group defined above for R_f in regard to Formula II; and all other moieties (and preferred moieties) are as defined above for Formula II.

20 Most of the compounds of the present invention have enhanced smectic mesophases. Mixtures of the compounds of the invention with other liquid crystal materials can be formulated to provide desired transition temperatures and broad mesophase temperature 25 ranges. Such mixtures preferably contain compounds having fluorinated terminal portions, such as those compounds described, for example, in U.S. Pat. Nos. 4,886,619 (Janulis) and 5,082,587 (Janulis) and, most preferably, 5,262,082 (Janulis et al.) and 5,658,491 (Kistner et al.). The liquid crystal compounds of the 30 invention can also be used to prepare ferroelectric liquid crystal devices such as, e.g., those described in U.S. Patent Nos. 5,417,883 (Radcliffe) and 5,641,427 (Shinjo) and in EP 769582 and EP 769543.

The compounds of this invention in admixture with other chiral or achiral liquid crystal compounds may exhibit chiral smectic liquid crystal behavior. Furthermore, many of the perfluoroether groupcontaining liquid crystal compounds of the invention when used alone or when mixed with other liquid crystal compounds of the invention or with achiral, fluorinecontaining liquid crystal compounds (preferably, the perfluoroether group-containing liquid crystal compounds described in U.S. Pat. No. 5,262,082 (Janulis et al.)) exhibit a reduced temperature dependence of the smectic interlayer spacing. This property provides for the spontaneous generation of an essentially bookshelf type layer structure, which is ideal for a ferroelectric liquid crystal device. In general, the 15 compounds of the invention exhibit maintenance or expansion of the smectic C layer spacing with decreasing temperature.

Another advantage of using the materials of this
invention in the formulation of liquid crystal mixtures
is the low birefringence which can be obtained. The
low birefringence of the liquid crystal compounds of
the invention (relative to their non-fluorinecontaining analoques) allows the fabrication of devices
with larger device spacings. Light transmission
through, e.g., a surface-stabilized ferroelectric
device (as described in U.S. Patent No. 4,367,924) with
two polarizers is represented by the following
equation:

30

$$I = I_o (\sin^2(4\Theta)) (\sin^2(\pi\Delta nd/\lambda))$$

where I_o = transmission through parallel polarizers Θ = material tilt angle

 $\Delta n =$ liquid crystal birefringence

d = device spacing

25

30

 λ = wavelength of light used

To maximize the transmission, both sin²(4Θ) and sin²(πΔnd/λ) must be at maximum. This occurs when each term equals one. The first term is a maximum when the tilt angle equals 22.5°. This is a function of the liquid crystal and is constant for a given material at a given temperature. The second term is maximum when Δnd =λ/2. This demonstrates the criticality of the low birefringence of the materials of this invention. Low birefringence allows a larger device thickness, d, for a given wavelength of light. Thus, a larger device spacing is possible while still maximizing transmission, allowing easier device construction.

Objects and advantages of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention.

In the following examples, all temperatures are in degrees Celsius and all parts and percentages are by weight unless indicated otherwise. Commercially available materials were chemically transformed by reaction pathways well-known to those skilled in the art and detailed in the examples. Chemical transformations were comprised of acylation, esterification, etherification, alkylation, and combinations thereof using fluorine-containing and non-fluorine-containing reactants to provide the precursor compounds, which, in turn, were caused to react

together to yield the chiral, fluorine-containing liquid crystal compounds of this invention.

Compounds prepared in the various examples of this invention were characterized by their melting or boiling point, and structures were confirmed by using at least one of the following methods of analysis: chromatography; ¹³C-, ¹H-, and ¹⁹F-NMR; and infrared and mass spectroscopies.

10 EXAMPLES

The 5-alkyl-2-(4-hydroxyphenyl) pyrimidines used in the examples were prepared essentially as described by Zaschke and Stolle in "Synthese niedrigschmelzender Kristallin-Flussiger Heterocyclen; 5-n-Alkyl-2-[4-nalkanoyloxy-phenyl]pyrimidine, "Z.Chem. 15, 441-3 15 (1975). (S) - and (R) -2-fluoro-decyl-p-toluenesulfonate were prepared essentially as described by Nohira et al. in Mol. Cryst. Liq. Cryst. 180B, 379 (1990). Fluorinated alcohols were prepared essentially as 20 described in U.S. Patent No. 5,262,082 (Janulis et al.) by sodium borohydride reduction of the corresponding perfluorinated acids (or derivatives), which had been prepared by electrochemical fluorination (ECF) or by direct fluorination (using elemental fluorine) of the corresponding hydrocarbon acids (or derivatives). e.g., the description of ECF given in U.S. Patent No. 2,519,983 (Simons). Direct fluorination is described, e.g., in U.S. Patent No. 5,362,919 (Costello et al.).

30 Example 1

Preparation of (S)-5-Octyl-2-[4-(8-(2-(2-(2-(2-(trifluoromethoxy(tetrafluoroethoxy)tetrafluoroethoxy)-2,2-difluoroethoxy)-7-fluorooctyl)phenyl)pyrimidine

Preparation of Starting Material:

(Trifluoromethoxy(tetrafluoroethoxy) tetrafluoroethoxy) - 2,2-difluoroethoxy) -7-fluorooct-1-ene

5 Into a dry 3 liter flask fitted with a reflux condenser, a nitrogen inlet, a thermocouple, and an addition funnel, were placed magnesium turnings (37.8 g, 1.55 mol) and dry t-butylmethylether (100 mL). 5bromo-1-pentene (225 g, 1.51 mol) was added to the flask dropwise at a rate which maintained the reflux temperature of the reaction mixture (55-6°C). Additional t-butylmethylether (about 1.5 L) was added in 50 mL portions during the addition of the bromide. After the addition was complete, the resulting mixture was heated to reflux for an additional 30 minutes. 15 mixture was then cooled to -65°C. Dilithiotetrachlorocuprate (302 mL, 0.1 M in tetrahydrofuran (THF)) was added, and the resulting

reaction mixture was stirred for 45 minutes at -65°C

20 followed by addition of

R(-)-epichlorohydrin (125.7 g, 1.36 mol) at a rate not
to exceed a reaction mixture temperature of -40°C. The
reaction mixture was stirred for an additional 30

minutes, was warmed to -5°C, and was then quenched by

the addition of 250 g of ammonium chloride in 2.5 liters of water. The resulting aqueous phase was extracted with t-butylmethylether (300 mL), and the combined ether layers were washed with ammonium chloride/ammonium hydroxide buffer (2x500 mL) and

saturated sodium chloride (2x500 mL). The solvent was removed under reduced pressure, and the resulting residue was distilled (b.p. = 57 - 72°C at 0.15 torr) to give 183 g of (R)-8-chloro-7-hydroxy-oct-1-ene.

This chlorohydrin was converted in situ to (R)
1,2-epoxy-7-octene and reacted with 2-(2-(2-

(trifluoromethoxy(tetrafluoroethoxy) tetrafluoroethoxy) -2,2-difluoroethanol using the following procedure: (R)-8-chloro-7-hydroxy-oct-1-ene (100 g, 0.61 mol), aqueous potassium hydroxide (45 mL of 45 wt.%), 2-(2-5 (2-(trifluoromethoxy(tetrafluoroethoxy)tetrafluoroethoxy)-2,2-difluoroethanol (291 g, 0.733 mol), Adogen™ 464 (60 g), and 1,2-dimethoxyethane (60 mL) were added to a one liter flask fitted with a mechanical stirrer, an addition funnel, a reflux condenser, and a thermometer. 10 The resulting solution was stirred for one hour at 45°C and then warmed to 60°C, at which time aqueous potassium hydroxide (70 mL of 45 wt%) was added dropwise. This solution was heated for 2 hours at 60°C and then at 70°C for 8 hours. Water (300 mL) was 15 added, and the resulting organic phase was separated and washed with 7 weight % HCl (300 mL). The organic phase was again separated and was concentrated under reduced pressure (25 torr). The resulting crude 20 product was then purified by silica gel chromatography using toluene as eluent to give 268 g of (R)-8-(2-(2-(2-(trifluoromethoxy(tetrafluoroethoxy) tetrafluoroethoxy) -2,2-difluoroethoxy)-7-hydroxyoct-1-ene. 25 Under a nitrogen atmosphere, (R)-8-(2-(2-(2-(trifluoromethoxy(tetrafluoroethoxy) tetrafluoroethoxy) -2,2-difluoroethoxy)-7-hydroxyoct-1-ene (60 g, 0.103 mol) and dry toluene (120 mL) were added to an ovendried flask with stirring. The resulting solution was 30 cooled to -15°C, perfluorobutanesulfonyl fluoride (58.9 g, 0.185 mol) was added, and the resulting reaction mixture was stirred for 5 minutes. 1,8-Diazabicyclo[5.4.0]undec-7-ene (28.7 g, 0.189 mol) was then added at a rate so as not to exceed a temperature

35 of 5°C for the reaction mixture. The reaction mixture

Preparation of Starting Material:

15 4-(5-Octylpyrimidine-2-yl)phenyl Nonafluorobutane Sulfonate

A 12 liter flask fitted with a mechanical stirrer, a constant addition funnel, a thermometer, and a reflux condenser was charged with of 5-octyl-2-(4hydroxyphenyl)pyrimidine (300 g, 1.05 mol), perfluorobutanesulfonyl fluoride (378 g, 1.25 mol), and tert-butylmethylether (3 L) under positive nitrogen pressure and was cooled with an ice bath to 16°C. 1,8-Diazabicyclo [5.4.0] undec-7-ene (180 g, 1.18 mol) was added to the resulting mixture over 25 minutes, while 25 maintaining the temperature of the mixture below 20°C. After the addition was complete, the mixture was stirred at room temperature for 2 hours, and then 3 liters of water was added. The resulting aqueous phase was separated from the resulting organic phase, and the organic phase was washed with a mixture of 2.25 liters of water and 0.75 liters of concentrated HCl. solvent was removed from the organic phase under reduced pressure to yield 697 g of crude product, which was recrystallized from ethanol to yield 4-(5-octyl

pyrimidine-2-yl)phenyl nonafluorobutane sulfonate (499 g, 84% yield).

Preparation of Product:

5 A 1 liter flask fitted with a magnetic stirring bar, a thermocouple, and a nitrogen inlet was charged with anhydrous tetrahydrofuran (230 mL) and 9borabicyclo[3.3.1]nonane (229 mL, 0.5 M in THF) under a nitrogen atmosphere. The resulting solution was cooled 10 (trifluoromethoxy(tetrafluoroethoxy)tetrafluoroethoxy)-2,2-difluoroethoxy)-7-fluorooct-1-ene (50 g, 95.4 mmol) was added via syringe at a rate such that the temperature of the resulting mixture was maintained below 7°C. The mixture was stirred for 14 hours, and 15 then PdCl₂(Ph₃P)₂ (2.0 g, 2.86 mmol), NaOH (11.4 g, 286.1 mmol), and 4-(5-octyl pyrimidine-2-yl)phenyl nonafluorobutane sulfonate (54.0 g, 95.4 mmol) were added. The resulting mixture was heated to 50°C for 1.5 hours and was then poured into 1 liter of water. The resulting product was extracted with toluene (3x100) mL), and the toluene extracts were washed with water (3x100 mL). The solvent was removed under reduced pressure, and the resulting crude brown product was 25 chromatographed through 200 g of silica gel (10 volume % ethyl acetate in heptanes eluent) and was further purified by recrystallization from heptane at -20°C followed by Kugelrohr distillation (b.p. 195 - 197°C at 0.02 torr; yield 54.7 g).

30

Examples 2 through 140

Example 2 - 140 were prepared essentially as described in Example 1 using homologous starting materials according to the following general Scheme 1

(where n is an integer of 0 to 7 and $R_{\rm f}$ and R are as defined above for Formula I.

Scheme 1

5

20

Example 141

Preparation of 5-Hexyloxy-2-[4(-6-(2-pentafluoroethoxy)-2,2-difluoroethoxy)-(S)-7-

10 fluorooctyl)phenyl]pyrimidine

The starting material, 5-hexyloxy-2-[4(-6-(2-pentafluoroethoxy)-2,2-difluoroethoxy)-(R)-7-hydroxyoctyl)phenyl]pyrimidine, was prepared by combining 5-hexyloxy-2-[4-(1,2-

epoxyhexyl)phenyl]pyrimidine (3.0 g, 7.85 mmol; which can be prepared from (R)-1,2-epoxy-7-octene and 4-(5-hexyloxypyrimidine-2-yl)phenyl

trifluoromethanesulfonate by the method described in Oh-e, T. et. al., J. Org. Chem. 58, 2201 (1993).), 2-pentfluoroethoxy-2,2-difluoroethanol (2.04 g, 9.42 mmol), AdogenTM 464 (0.4 mL), potassium hydroxide (1.0 mL 50 weight % in H_2O), and THF (1 mL). The resulting

alcohol was purified by recrystallization from acetonitrile (yield 3.99 g).

The title compound was prepared by dropwise addition of 5-hexyloxy-2-[4(-6-(2-pentafluoroethoxy)-2,2-difluoroethoxy)-(R)-7hydroxyoctyl)phenyl]pyrimidine (3.99 g, 6.68 mmol) in THF (13 mL) to a solution of diethylaminosulfur trifluoride (1.2 g, 7.35 mmol) in THF (22 mL) at -50°C. The resulting mixture was then warmed to 0°C and subsequently cooled to -50°C before addition of pyridine (1.1 mL). The mixture was stirred at room temperature for 12 hours and was then added to a slurry of silica gel (15 g in 100 mL diethyl ether). Solvent was removed under reduced pressure, and the resulting 15 product was purified by column chromatography (silica gel), eluting with 10:1 hexane/ethyl acetate, followed by Kugelrohr distillation (b.p. 156-165°C at 0.1 torr; yield 0.93 g).

20 Examples 142 through 163

25

Examples 142 - 163 were prepared essentially as described in Example 141 using homologous materials as shown in the following general Scheme 2. In Scheme 2, n is an integer of 4 to 6, and $R_{\rm f}$ and R are as defined above for Formula I.

Scheme 2

PCT/US98/14624 WO 99/33814

Examples 164 through 175

10

Examples 164 - 175 were prepared essentially as described in Example 141 using (S) 3-(3-butenyloxy)-5 1,2-epoxy-propane (prepared from (R) epichlorohydrin and 3-buten-1-ol using BF3 Et2O and subsequent treatment with base) in place of (R)-1,2-epoxy-7-octene according to the following general Scheme 3. In Scheme 3, n is an integer of 4, and R_f and R are as defined above for Formula I.

Scheme 3

$$(CH_2)_{n}OCH_2$$

$$\downarrow 1)RfCH_2OH$$

$$\downarrow 2)fluorination$$

$$\downarrow E$$

$$\uparrow CH_2)_{n}OCH_2 \stackrel{E}{\hookrightarrow} CH_2OCH_2R_f$$

Examples 176 through 186

Examples 176 - 186 were prepared essentially as 15 described in Example 1 using (R) 1-chloro-3-(5hexenyloxy) - 2-propanol (prepared from (R) epichlorohydrin and 5-hexen-1-ol using BF3'Et2O) in place of (R)1-chloro-7-octen-2-ol according to the following general Scheme 4 (where n is an integer of 4 to 6, and R and R_f are as defined above for Formula I): 20 Scheme 4

Example 187

10

Example 187 was prepared essentially as described in Example 1 using (S) 1-chloro-3-(5-octenyloxy)- 2
5 propanol (prepared from (R) epichlorohydrin and 7octen-1-ol using BF₃ Et₂O) in place of (R) 1-chloro-7octen-2-ol.

Examples 188 - 201 were prepared essentially as

Examples 188 through 201

described in Example 176 using 5-benzyloxy-2-(4trifluoromethanesulfonyloxyphenyl) pyrimidine in place of 5-octyloxy-2-(4-nonafluorobutanesulfonyloxyphenyl) pyrimidine. The resulting compound was treated with 10 15 weight % palladium on carbon under hydrogen pressure (trifluoromethoxy(tetrafluoroethoxy) tetrafluoroethoxy) -2,2-difluoroethoxy)-(S)-2fluoropropyloxy)hexyl)phenyl]pyrimidine. This material was then treated under basic conditions with the 20 corresponding chloride or methane sulfonate to give the final products. The procedure is shown in the following general Scheme 5 (where Bn is a benzyl protecting group, n is an integer of 3 or 4, m is an 25 integer of 0 or 1, and R_f and R are as defined above for Formula I):

Scheme 5

Example 202

5 Preparation of 5-Octyloxy-2-[4-(2-(3-(2-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2,2-difluoroethoxy)-(R)-2-

fluoropropoxy) ethoxy) phenyl]pyridine

The title compound was prepared by combining 5octyloxy-2-[4-hydroxyphenyl]pyrimidine (2.2 g, 7.4 10 mmol), 2-(3-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2,2-difluoroethoxy) - (R) -2-hydroxypropoxy) ethyl chloride (4.2 g, 7.4 mmol), and potassium carbonate (1.2 g, 8.9)mmol) in a 1:1 mixture of acetonitrile and dimethyl formamide. After heating overnight, the resulting 15 mixture was poured into deionized water (40 mL), was filtered, and the resulting product purified by chromatography, eluting with 4:1 and then 2:1 hexane/ethyl acetate (yield 2.56 g). The resulting chiral (R)-hydroxy compound (2.5 g, 3.0 mmol) was treated with diethylaminosulfur trifluoride (0.58 g, 3.6 mmol) to produce the title compound, which was purified by recrystallization from ethanol, followed by

Kugelrohr distillation (b.p. 210-20°C at 0.4 torr; yield 1.42 g).

Example 203

5 Preparation of 5-heptyl-2-[4-(3-(3-(2-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2,2-difluoroethoxy)-(S)-2-

fluoropropoxy) propoxy) phenyl] pyrimidine

The starting material, 3-(3-(2-(2-10 (nonafluorobutoxy) tetrafluoroethoxy) -2, 2difluoroethoxy)-(S)-2-fluoropropoxy)propyl chloride, was prepared by combining 3-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy)-2,2difluoroethoxy)-(5)-2-fluoropropanol (20 g, 39.4 mmol) 15 and 1-bromo-3-chloropropane (18.6 g, 118 mmol). resulting compound (2.0 g, 3.4 mmol) was then combined with 5-heptyl-2-(4-hydroxyphenyl)pyrimidine (0.9 g, 3.4 mmol) in acetonitrile/dimethyl formamide (1:1, 20 mL) using essentially the procedure of Example 8 of International Patent Publication No. WO 96/33251. 20 resulting crude product was further purified by

chromatography, eluting with 30:1 toluene/ethyl acetate, followed by Kugelrohr distillation (180-90°C at 0.01 torr; yield 0.96 g).

25

Example 204

Preparation of 5-Hexyloxy-2-[4-(3-(3-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2,2-difluoroethoxy)-(S)-2-

30 fluoropropoxy) propoxy) phenyl] pyrimidine

The title compound was prepared essentially as described in Example 8 of International Patent Publication No. WO 96/33251 by combining 3-(3-(2-(2-(nonafluorobutoxy)tetrafluoroethoxy)-2,2-

35 difluoroethoxy)-(S)-2-fluoropropoxy)propyl chloride

(3.0 g, 5.1 mmol) with 5-hexyloxy-2-(4-hydroxyphenyl)pyrimidine (1.4 g, 5.1 mmol). The resulting crude product was purified by Kugelrohr distillation (b.p. 170-80°C at 0.01 torr).

5

Example 205

Preparation of 5-Octyloxy-2-[4-(4-(2-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2,2-difluoroethoxy)-(S)-3-fluorobutoxy) phenyl]pyrimidine

The starting material, 4-(2-(2-(nonafluorobutoxy)tetrafluoroethoxy)-2,2-difluoroethoxy)-(S)-3-fluorobutane-1-methanesulfonate, was prepared by the following procedure: 4-benzyloxy-(R)-1,2-epoxybutane (8.0 g, 44.9 mmol, prepared

essentially as described by J. A. Frick in Synthesis 7, 621 (1992)) was combined with 2-(2- (nonafluorobutoxy)tetrafluoroethoxy)-2,2-difluoroethoxy (23.3 g, 53.9 mmol), potassium hydroxide (3.0 g, 53.9 mmol, aqueous) in tetrahydrofuran (3 mL) and refluxed

(nonafluorobutoxy) tetrafluoroethoxy) -2,2difluoroethoxy) - (R) -3-hydroxybutane-1methanesulfonate. This (R)-hydroxy compound (20 g,
32.8 mmol) was treated with diethylaminosulfur

20 for 3 hours to produce 4-(2-(2-

25 tetrafluoride (6.3 g, 39.3 mmol) and was then hydrogenated using Pd(OH)₂ on carbon to remove the benzyl protecting group.

The title compound was prepared by combining 5-octyloxy-2-(4-hydroxyphenyl)pyrimidine (1.1 g, 3.8

purified by chromatography, followed by Kugelrohr distillation (yield 1.92 g).

Example 206

5 Preparation of 5-Hexyloxy-2-[3-(4-(2-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2,2-difluoroethoxy) -(S) -3-

fluorobutoxy)propyl)phenyl]pyrimidine The title compound was prepared by adding (nonafluorobutoxy) tetrafluoroethoxy) -2, 2-10 difluoroethoxy) - (S) -3-fluorobutoxy) prop-1-ene (3.5 g, 6.2 mmol, prepared by addition of 3-bromopropene to 4-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy)-2,2difluoroethoxy)-(S)-3-fluorobutanol) to a mixture of 5hexyloxy-2-[trifluoromethylsulfonyloxyphenyl]pyrimidine 15 (2.5 g, 6.22 mmol), 9-borabicyclononane (12.4 mL of 0.5 M in THF), PdCl₂dPPF ([1,1'-bis(diphenylphosphino)ferrocene]palladium(II) chloride, 50 mg, 0.062 mmol), and K_3PO_4 (2.8 g, 13.1 mmol) in dioxane (17 mL) at a temperature less than 5°C. After stirring the resulting 20 mixture at 100°C for 16 hours, water was added, and the mixture was extracted with toluene. The combined toluene extracts were dried, and the resulting crude product was purified by chromatography, eluting first 25 with 10:1 then 4:1 hexanes/ethyl acetate, followed by Kugelrohr distillation (b.p. 180°C at 0.01 torr; yield $0.95 \, a)$.

Example 207

difluoroethoxy)-(S)-3-fluorobutanol (2.0 g, 3.8 mmol), 5-octyloxy-2-[bromomethylphenyl]pyrimidine (prepared essentially as described in EP 474196, 1.44 g, 3.8 mmol), potassium hydroxide (0.21 g, 3.8 mmol), and

5 Adogen™ 464 (0.15 g) in tetrahydrofuran and then heating the resulting mixture overnight at 75°C. The resulting crude product was purified by chromatography, eluting with 8:1 hexanes/ethyl acetate, followed by Kugelrohr distillation (yield 0.45 g).

10

Example 208

Preparation of 5-Hexyloxy-2-[4-(4-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2,2-difluoroethoxy)-(S)-3-

15 fluorobutoxy) butoxy) phenyl]pyrimidine

The starting material, 4-(4-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2, 2difluoroethoxy) - (S) -3-fluorobutoxy) butyl bromide, was prepared by combining 1,4-dibromobutane (4.9 g, 22.8 mmol) with 2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -20 2,2-difluoroethoxy)-(S)-3-fluorobutanol (4.0 g, 7.6 mmol). The title compound was prepared essentially as described in Example 8 of International Patent (nonafluorobutoxy) tetrafluoroethoxy) -2, 2-25 difluoroethoxy) - (S) -3-fluorobutoxy) butyl bromide (2.7 g, 4.1 mmol) with 5-hexyloxy-2-(4hydroxyphenyl)pyrimidine (1.1 g, 4.1 mmol). resulting crude product was purified by chromatography, eluting with 6:1 hexanes/ethyl acetate (yield 0.58 g). 30

Example 209

Preparation of 5-Octyl-2-[4-(4-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2,2-

difluoroethoxy) - (S) -3-

fluorobutoxy) butoxy) phenyl]pyrimidine

The title compound was prepared essentially as described in Example 8 of International Patent

5 Publication No. WO 96/33251 by combining 4-(4-(2-(2-(nonafluorobutoxy)tetrafluoroethoxy)-2,2-difluoroethoxy)-(S)-3-fluorobutoxy)butyl bromide (2.6 g, 3.95 mmol) with 5-octyl-2-(4-hydroxyphenyl)pyrimidine (1.1 g, 3.95 mmol). The resulting crude product was purified by chromatography, eluting with 6:1 hexanes/ethyl acetate (yield 2.4 g).

Example 210

derivative

Preparation of 5-Heptyl-2-[4-(7-(2-(2-

15 (nonafluorobutoxy) tetrafluoroethoxy) -2,2difluoroethoxy) - (R) -6-fluoroheptyloxy) phenyl] pyrimidine

The starting material, 7-(2-(2(nonafluorobutoxy) tetrafluoroethoxy)-2,2difluoroethoxy)-(R)-6-fluoroheptane-1-methanesulfonate,

20 was prepared by the following procedure: 7-(2-(2(nonafluorobutoxy) tetrafluoroethoxy)-2,2difluoroethoxy)-(R)-6-fluorohept-1-ene (10 g, 18.8
mmol) was treated with BH₃ THF (9.4 mmol) in
tetrahydrofuran, followed by oxidation with hydrogen

25 peroxide (30% aqueous, 9.4 mmol) to produce the
corresponding heptanol. This heptanol (8.9 g, 15.7
mmol) was treated with methanesulfonyl chloride (1.98
g, 17.3 mmol) to produce the methanesulfonate

The title compound was prepared by combining 5heptyl-2-(4-hydroxyphenyl)pyrimidine (1.1 g, 3.8 mmol)
and 4-(2-(2-(nonafluorobutoxy)tetrafluoroethoxy)-2,2difluoroethoxy)-(S)-3-fluoropropoxy)butane-1methanesulfonate (2.3 g, 3.8 mmol) essentially as
described in Example 8 of International Patent

Publication No. WO 96/33251. The resulting crude product was further purified by recrystallization from heptane, then from ethanol, followed by Kugelrohr distillation (b.p. 200°C at 0.1 torr; yield 1.79 g).

5

Example 211

Preparation of 5-Hexyloxy-2-[4-(7-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2,2difluoroethoxy) - (R) -6-fluoroheptyloxy) phenyl]pyrimidine 10 The title compound was prepared by combining 5hexyloxy-2-(4-hydroxyphenyl)pyrimidine (0.36 g, 1.32 mmol) and 4-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2, 2difluoroethoxy) - (S) -3-fluoropropoxy) butane-1-15 methanesulfonate (0.85 g, 1.32 mmol) essentially as described in Example 8 of International Patent Publication No. WO 96/33251. The resulting crude product was further purified by chromatography, eluting with 10:1 hexanes/ethyl acetate, followed by Kugelrohr 20 distillation (b.p. 190-210°C at 0.01 torr; yield 0.67 g).

Example 212

Preparation of 5-Octyloxy-2-[4-(7-(2-(2-25 (nonafluorobutoxy) tetrafluoroethoxy)-2,2difluoroethoxy)-(R)-6-fluoroheptyloxy)-2,3difluorophenyl]pyrimidine

The title compound was prepared essentially as described in Example 211 by combining 5-octyloxy-2-(4-30 hydroxyphenyl)-2,3-difluoropyrimidine and 4-(2-(2-(nonafluorobutoxy)tetrafluoroethoxy)-2,2-difluoroethoxy)-(S)-3-fluoropropoxy)butane-1-methanesulfonate essentially as described in Example 8 of International Patent Publication No. WO 96/33251.

The resulting crude product was further purified by

chromatography, eluting with 10:1 hexanes/ethyl acetate, followed by Kugelrohr distillation.

Example 213

5 Preparation of 5-Octyloxy-2-[4-(7-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy)-2,2-difluoroethoxy)-(R)-6-fluoroheptyloxy)-2,3-difluorophenyl]pyrimidine

The title compound was prepared essentially as

10 described in Example 211 by combining 5-octyloxy-2-(4-hydroxyphenyl)-3-fluoropyrimidine and 4-(2-(2-(nonafluorobutoxy)) tetrafluoroethoxy)-2,2-difluoroethoxy)-(S)-3-fluoropropoxy) butane-1-methanesulfonate essentially as described in Example 8

15 of International Patent Publication No. WO 96/33251.

The resulting crude product was further purified by chromatography, eluting with 10:1 hexanes/ethyl acetate, followed by Kugelrohr distillation.

20 Example 214

Preparation of 5-(2-(S)-Fluorodecyloxy-2-[4-(6-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2,2-difluoroethoxy)-(S)-5-fluorohexyl)phenyl]pyrimidine

The title compound was prepared by adding

(nonafluorobutoxy) tetrafluoroethoxy) -2,2
difluoroethoxy) - (S) -5-fluorohex-1-ene (4.0 g, 7.5 mmol)

to a mixture of 5-(2-(S)-fluorodecyloxy-2-[6-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2,2
difluoroethoxy) - (S) -5-fluorohexyl) phenyl] pyrimidine

(3.6 g, 7.5 mmol), 2-(2, 9-borabicyclononane (15 mL of 0.5 M in THF), PdCl₂dPPF (60 mg, 0.075 mmol), and K₃PO₄

(3.3 g, 15.8 mmol) in dioxane (17 mL) at a temperature less than 5°C. After stirring the resulting mixture at room temperature overnight, water was added, and the mixture was extracted with toluene. The combined

toluene extracts were dried, and the resulting crude product was purified by chromatography, eluting with 10:1 hexanes/ethyl acetate, followed by Kugelrohr distillation (b.p. 190-210°C at 0.01 torr) and recrystallization from heptane (yield 2.2 g).

Example 215

Preparation of 5-Hexyloxy-2-[4-(3-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2,2-

10 difluoroethoxy)) - (R) -2-fluoropropyloxy) - (R) -2methylpropyloxy) phenyl]pyrimidine

The starting material, 3-(2-(2-(nonafluorobutoxy)tetrafluoroethoxy)-2,2-difluoroethoxy))-(R)-2-fluoropropyloxy)-(R)-2-

- 15 methylpropane-1-methanesulfonate, was prepared as follows: (S)-2-methyl-3-bromopropanol was alkylated with benzyl bromide to produce (S)-2-methyl-3-bromo-1-benzyloxypropane, which was then combined with 3-(2-(2-(nonafluorobutoxy)tetrafluoroethoxy)-2,2-
- difluoroethoxy))-(R)-2-fluoropropanol, followed by
 hydrogenation with 10% Pd/C to remove the benzyl
 protecting group. The title compound was prepared by
 combining 5-hexyloxy-2-(4-hydroxyphenyl)pyrimidine (0.7
 g, 2.58 mmol) and 3-(2-(2-
- 25 (nonafluorobutoxy) tetrafluoroethoxy) -2,2difluoroethoxy)) (R) -2-fluoropropyloxy) (R) -2methylpropane-1-methanesulfonate (1.7 g, 2.58 mmol)
 essentially as described in Example 8 of International
 Patent Publication No. WO 96/33251. The resulting
 30 crude product was further purified by chromatography,
 - eluting with 10:1 hexanes/ethyl acetate, and was recrystallized from heptane, followed by Kugelrohr distillation (b.p. 180-190°C at 0.02 torr; yield 1.28 g).

35

Example 216

Preparation of 5-Heptyloxy-2-[4-(3-(2-(2-(nonafluorobutoxy) tetrafluoroethoxy) -2,2-difluoroethoxy))-(S)-1-

5 (trifluoromethyl)ethyl)propyl)phenyl]pyrimidine

The title compound was prepared by adding 3-(2-(2-(nonafluorobutoxy)tetrafluoroethoxy)-2,2-difluoroethoxy))-(S)-1-(trifluoromethyl)ethyl)prop-1-ene (6.0 g, 10.3 mmol, prepared by addition of 3-

[trifluoromethylsulfonyloxyphenyl]pyrimidine (4.3 g,

- 15 10.3 mmol), 9-borabicyclononane (20.6 mL of 0.5 M in THF), PdCl₂dPPF (82 mg, 0.1 mmol), and K₃PO₄ (2.8 g, 13.1 mmol) in dioxane (17 mL) at a temperature less than 5°C. After stirring the resulting mixture at 100°C for 16 hours, water was added, and the mixture was
- extracted with toluene. The combined toluene extracts were dried, and the resulting crude product was purified by chromatography, eluting with 10:1 hexanes/ethyl acetate, and was recrystallized from heptane, followed by Kugelrohr distillation (b.p. 160-
- 25 70°C at 0.02 torr; yield 3.04 g).

Example 217

Preparation of 5-Hexyloxy-2-[4-(2-(2-(2-(2-(trifluoromethoxy) tetrafluoroethoxy)

30 tetrafluoroethoxy) -2,2-difluoroethoxy) - (R) -8fluorononyloxy) phenyl pyrimidine

The starting material, 2-(2-(2-(2-(trifluoromethoxy)tetrafluoroethoxy)-(2,2-difluoroethoxy)-(R)-8-fluorononyl-1-

35 methanesulfonate, was prepared by hydroboration of 2-

(2 - (2 -

(trifluoromethoxy) tetrafluoroethoxy) tetrafluoroethoxy) - 2,2-difluoroethoxy) - (R) -8-fluoronon-1-ene using BH $_3$ in tetrahydrofuran, followed by mesylation of the

5 resulting nonanol. The title compound was prepared by combining 5-hexyloxy-2-(4-hydroxyphenyl)pyrimidine (2.0 g, 7.8 mmol) and 2-(2-(2-

(trifluoromethoxy) tetrafluoroethoxy)

tetrafluoroethoxy)-2,2-difluoroethoxy)-(R)-8-

10 fluorononyl-1-methanesulfonate (4.9 g, 7.8 mmol) essentially as described in Example 8 of International Patent Publication No. WO 96/33251. The resulting crude product was further purified by recrystallization from hexanes, followed by chromatography (eluting with 15 10:1 hexanes/ethyl acetate) and then by Kugelrohr

distillation (b.p. 185-95°C at 0.01 torr; yield 2.3 g).

Example 218

Preparation of 5-Heptyloxy-2-(4-[5-(3-(2-(2-

20 (nonafluorobutoxy) tetrafluoroethoxy) -2,2difluoroethoxy)) - (S) -2-(fluoropropoxy) -2,2,3,3,4,4hexafluoropentyloxy) phenyl] pyrimidine

The title compound was prepared essentially as in Example 97 of International Patent Publication No.

96/15092 by combining 5-heptyloxy-2-(4hydroxyphenyl)pyrimidine with 5-(3-(2-(2(nonafluorobutoxy)tetrafluoroethoxy)-2,2difluoroethoxy))-(S)-2-(fluoropropoxy)-2,2,3,3,4,4hexafluoropentyl-1-butanesulfonate. The resulting
product was purified by chromatography, followed by
Kugelrohr distillation (b.p. 200-5°C at 0.008 torr).

Example 219

Preparation of 5-Heptyloxy-2-(4-[4-(3-(2-(2-

35 (nonafluorobutoxy) tetrafluoroethoxy) -2,2-

difluoroethoxy))-(S)-2-(fluoropropoxy)-2,2,3,3,tetrafluorobutyloxy)phenyl]pyrimidine

The title compound was prepared essentially as in Example 97 of International Patent Publication No.

5 96/15092 by combining 5-heptyloxy-2-(4-hydroxyphenyl)pyrimidine with 4-(3-(2-(2-(nonafluorobutoxy)tetrafluoroethoxy)-2,2-difluoroethoxy))-(S)-2-(fluoropropoxy)-2,2,3,3-tetrafluorobutyl-1-butanesulfonate. The resulting product was purified by chromatography, followed by Kugelrohr distillation (b.p. 195-200°C at 0.01 torr).

The compounds of the Examples were evaluated for transition temperatures by differential scanning calorimetry (DSC) and/or optical observation of material phase changes using a hot stage and a polarizing microscope. The transition temperatures (°C) were obtained upon cooling through the isotropic state (I) to the smectic A mesophase (S_A), the smectic C mesophase (S_C), and higher order mesophases (M1 and M2) and are set forth in Table 1 below.

Table 1.

20

Ex. No.	Structure	I to SA	to S _C	to S _{M1}	to K	to S _C	to S _A
1	California Contract alocate places	79.3	56.7	-4.2		22.2	59.2
2	C ₄ N ₄ O—ON CON ₂ CF ₁ OC ₃ F ₄ OC ₃ F ₇ OC ₃	90.9	61.3	41.5		46.6	63.2
3	C4H40-CH10C4F40C4F4	92.3	70.1	43.2		48.2	72.5
4	C4H4O-CH2h4-C7F4OC4F6	92.1	57.6	41.1		52.8	59.5
5	C1H110-CH2CF2OC2F4OCF,	83.4		34.3			48.7
6	C ₁ M ₁₁ O—OCH ₂ MCH ₃ MCF ₃ OCH ₅ CF ₃ MOCF ₃	95	61	27.7		37.7	63.3

Er. No.	Structure	I to SA	to S _C	to S _{M1}	to K	to Sc	to S _A
7	C ₀ M _{e1} O————————————————————————————————————	89.6		32.4			45.2
8	C8H140	84.1		30			47.9
9	C3H40-0-1CH214-0CH2C3F60C3F6	95	50	38			
10	CyMyro-CH2h CH2h CCH3CF30C4F3	91.7	59.7	25.8		34.1	62
11	CpH +10-CH26-F-0C-F-7	98.4	63.6	34		42.7	65.9
12	C ₆ H ₁₁ O—ON—OCH ₂ CF ₂ OC ₄ F ₆	83.5		29.9			42.9
13	C3H40-CH2D-CH2CF2OC4F4	93.1	69.6	27.4		34.7	72.1
14	CaM 110 CH2C2F40C4F4	91.5	54.8	23.5		40.8	57.6
15	C _p M ₁ p CCM ₂ CF ₂ (OC ₂ F ₄) ₂ OCF,	72.8	40.9	21.4		33.9	43.6
16	C ₀ H ₁ , C ₀ F ₀ C ₁ F ₀ CCF ₁	67.2	31.5	17.2		25	33,9
17	CoHigh OCHICF,OC,FdC,FG	65.9		26.1			40.5
18	C ₆ H ₆₃ —OCH ₂ CF ₁ OC ₃ F ₄ OC ₃ F ₁	67.7	38	18.2		26.6	40.3
19	C ₀ H ₁ y-OCH ₂ CF ₁ OC ₂ F ₄ OC ₂ F ₆	72.8	48.4	19.2		26.1	51
20	C ₀ M ₀₁ O————————————————————————————————————	92		14.9			31.3
21	CaMaro-CH2 CH2 CH2 CF1 (OC 2F4)2 CCF3	103.4	74.6	12.1		33.4	76.2
22	C ₂ H _{1,2} O————————————————————————————————————	98.3	53	19.4		41.5	
23	C#H 220—CH 26-7F 40C 3F 4	91.8		13.5			27.2
24	C ₄ M ₁₂ O————————————————————————————————————	98.6	74.1	11.6		30.5	76.3

Ex. No.	Structure	It SA	to S _C	to S _{M1}	to K	to S _C	t S _A
25	Cell 40 CH 7CH 7CH 7CF 60CF7	103.1	69.6	15.3		29.9	72
26	C eH 120-CH26-2F 60C4F8	98.1	70.3	2.6		17.6	72.6
27	C ₁ M _{es} —C ₁ C ₁ C ₁ C ₂ C ₂ C ₂ C ₂ C ₂ C ₃ C ₄ C ₅	80.4	46.7	8		24.8	49.4
28	CrH44 CHANGE COC4F	73	19	13			32
29	C7H16————————————————————————————————————	65.4	9	7			16.3
30	C,H1,-CF,CC1,F0C1,F0C1,F0	78	53	<rt< td=""><td></td><td></td><td></td></rt<>			
31	CHI45—CH2Ja DCH2CyFeOC4Fe	73.1	35.2	-1.7		21.3	37.4
32	C,H,10—CH2h CCH2CF3OC,F4OCF3	92.4	58.1	5.9		20	60.8
33	C;H1;0-CH2h CCH2F,0CCF3	100.3	74.7	-15.1		12.5	77.1
34	C ₂ H ₁₃ O-CH ₂ L ₃ CH ₂ CF ₂ OC ₂ F ₄ OC ₂ F ₅	98.7	75.5	0		28.4	77.8
35	C ₂ H ₁₅ O————————————————————————————————————	93.1	59.5	5		21.6	62
36	C,H150-CH2C3F60C2F5	100	73.6	18.1		29.1	76.1
37	CHINGO CHICSFOCSF	103.7	80.2	1.1		21	82.4
38	C,H ₁₁ O———————————————————————————————————	90.8	67.6	1.1		13.6	70.6
39	C H 15 O C H 26 F 4 O C 4 F	98.6	80.7	-14.9)	15.3	82.8
40	CoH, CF, (OC, Fal, OCF	78.7	50.4	-4.5		19.6	53.5
41	C ₂ H ₁ , ————————————————————————————————————	74	41	-0.1		22.5	45.1

EL No.	Structure	I to SA	to S _C	to S _{M1}	to K	to S _C	to SA
42	C_H_17—CH_2)2 CH_2C_F_0CC_F_0	72.5	47	-0.1		24.5	
43	C ₀ H ₁₇ O-O-CH ₂ h OCH ₂ CF ₂ OC ₂ F ₃	88.1	61.9	-15.1		29.5	64.4
44	C gH 170 CH 26 T G H	95.5	79.9 -	-12.1		18.6	82.5
45	Called Control ochic focus	93.8	82.2	-12.1		20.9	84.6
46	CoM170-ON-(CM1) COM1/CF20C8F40C4F4	104.4	96.4	-8		-0.2	98.7
48	C ₀ H ₀ O—O CH ₂ CF ₂ OC ₃ F ₄ OC ₃ F ₅	94.6	37	16.7			39
49	C ₀ M ₀ O————————————————————————————————————	97.6	70.6	13.8		27.1	72.9
50	C4H40-CH2CF60C1F40C4F6	112.4	89.5	26.3		30	91.9
51	C ₃ M ₂ O————————————————————————————————————	100.7	80.6	20.6		42.9	83.2
52	C 3 M 4 1 O C M 2 C F 2 (OC 3 F 4 b) OC F 3	101.4	68.6	-0.4		28.9	71
53	C ₂ M ₁₁ O—OH ₂ CF ₂ OC ₃ F ₄ OC ₃ F ₅	95.2	46.4	3.2		38.5	49.1
54	C,HHO CHOC,F,OC,F	88.9	5	4.7		31.3	
55	C,H110-CH2)-CH224-OCH2CF3OC4F1	87.6	32	-4.1		32.1	
56	C ₁ M ₁₁ O—OCM ₂ C ₃ F ₁ OC ₃ F ₄ OC ₄ F	112.1	89.3	43	0.7	7	91.5
57	C4M140-CH264F40C4F	97.3	59.2	-7.5		33.7	61.6
58	C ₁ H ₁₇ O—Q ———————————————————————————————————	101.3	80.4	15		49.8	82.5
59	Cahlar CH3rk CCH3rs 300;F400;	74.1	42.7	-8.1		4.9	45.2

Ex. No.	Structur	I to SA	to Sc	to S _{M1}	t K	to S _C	to S _A
60	C ₀ H ₁ pO-OCH ₂ CF ₂ OC ₃ F ₄ OC ₃ F ₄	101.5	70.3	-28		29.2	72.7
61	CeN-120—CH204—CH2CeFeOCsFs	107.3	76.6	-23.2		7.6	79.1
62	C ₂ H ₁₃ O————————————————————————————————————	93.6	55	-38.8		9.7	
63	C ₀ M ₁₉ C—CM ₂ M—CM ₂ M—CCM ₁ CF ₂ OC ₂ F ₆ OC ₄ F ₆	105.8	81.2	-31.8		5	83.1
64	C ₀ M ₀ ,OCH ₂ C ₃ F ₀ OC ₃ F	116.4	97.9	42	-29	-22	100.2
65	CpH130—CH3C3F40C4F4	103.2	76.7	-38.5		-28.7	78.8
66	CaH150-CH2F40C5F40C6H15	107.1	89.8	-24.2		23.7	92
67	C _P H ₁₅ —OCH ₂ CF ₂ (OC ₁ F ₄ O) ₂ OCF ₃	81	48	-23.9		3.3	50.2
68	C,H15—COCH2CF3OC3F4OC4H13	81.6	60.9	-19.6		18.7	63.3
69	C1H110-C1+40C1+4	94.3	70.4	-22.5		-12.4	72.8
70	C,H150-OCH5CF2OC4F6	92.6	73	-23		14.8	75.4
71	CH460-CH204-CH204F	99.7	83.1	-19.9		-10.1	85.4
72	C+M+1-CH274 OCH20C-2-10C-2-1	74.8	56.2	<-30		9	58.7
73	C ₀ M ₁ yO—O—OCH ₂ CF ₂ OC ₁ F ₀ OC ₄ F ₀	105,8		-22.8			20.8
74	C ₀ H ₁₃ O-OCH ₂ C ₃ F ₀ C ₄ F ₀	109.9		-5.9			18.3
75	C4H42O-OCH3CF3OC3F4OC4H43	108.3		6.3			39.9
76	C,Hu-CH3h CCH3h CCH3CF3CC3F4CC4F	83.9		11.8			34.7

Ex. No.	Structure	I to SA	to S _C	to S _{MI}	to K	to S _C	to S _A
77	C ₇ M ₁₀ —CCH ₂) ₅ CCH ₂ C ₃ F ₆ OC ₄ F ₆	86.7		17			34.9
78	C,H,,O—COH,CF,(OC,F,d),OCF,	108.1		-7.3			29.2
79	C ₂ M _{1,0} O————————————————————————————————————	103		-5.2			36.7
80	C ₁ M ₁ ₂ D———————————————————————————————————	107.9		-17.2		•	27.9
81	C1H150-CH263F40C4F6	101.5	88.1	-25.3		15.8	88.6
82	C pH 410 CH 26 CH 26 F 40C 4F 6	102.3		-24.9			15.6
83	C7H410-CH2FFOC4F6	109.3		-9.8			24.3
84	С ₇ М _{1,9} ОСМ ₂ Ь ССМ ₃ СГ ₉ ОС ₃ Г ₄ ОС ₆ М ₁₃	109-2	70.7	8.6		43.5	73.7
85	C ₀ M ₃ CF ₃ (OC ₃ F ₄) ₂ OCF ₅	84		14			36
86	C ₉ H _G —CH ₂ D—CH ₂ CF ₂ OC ₂ F ₄ OC ₂ F ₄	78.1		17.8			44.3
87	Call of CH2P4 OCH2CF3OC3F4OC4F	83.2		14:5			36.8
88	C ₀ H ₁₇ —OCH ₂ C ₂ F ₄ OC ₄ F ₀	77.4		2.5			23.1
89	C ₀ H ₁₇ —OCH ₂ C ₂ F ₄ OC ₄ F ₆	76.7		-2.5			20.8
90	C ₆ M ₁ p————————————————————————————————————	86.3		25.7			49
91	C ₀ H ₁ pO————————————————————————————————————	110.3	66	-17.7		28.9	
92	C ₀ H ₁ yO-CH ₂ CF ₂ OC ₂ F ₄ OC ₃ F ₅	105.5	35	-5.3			35.4
93	C ₉ M ₁₇ O————————————————————————————————————	108.3	72	-18		29.2	

Er.	Structure	I to SA	to S _C	to S _{MI}	to K	to Sc	to SA
94	C ₆ M ₁ 70————————————————————————————————————	109.7	70	-17.3		28	
95	COM170-CO-1CH26 COCH2C SF OCCOFO	104.6	62.7	-14.8		21.5	65.7
96	CeH170-CH26-CH26-CH3C3F6OC4F6	104.2	58	-15.1		20.5	
97	C _{ve} M _{2F} CCH ₂ D CCH ₂ CF ₁ OC ₂ F ₄) ₇ OCF ₅	86.6	43.3	25.7			49.6
98	C ₂ H ₄₁ O-OCH ₂ CF ₃ OC ₃ F ₄ OC ₄ F ₆	102.5		14			38.6
99	C ₀ H ₁₇ —Ch ₂ CF ₂ OC ₂ F ₄ OC ₄ F ₆	79.7		22.6			43.8
100	C ₂ H ₁ yO— (CH ₂ h) CH ₂ h (CH ₂ h) (CH ₂ h)	107.7	45	11.2		39.2	
101	C ₂ H ₁ PO—OH ₂ CF ₂ OC ₃ F ₆ OC ₄ F ₆	106.7	80	9.4		37.8	
102	C.H., O-CH, DCH, CF, OC, F, OC, F, OC, F	105.4		-34			9.4
103	C ₂ M ₁₂ O ₂ O ₂ F ₂ OC ₃ F ₄ OC ₄ F ₆	111.4	-3.3	<-30			8.5
104	C,Hq,O-O-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q	112.7	37	-15.6		23	
105	C,H,10-CH2CF2OC2F4OC3F3	109	38.8	-13.5		27.6	41
106	C,M1,50-CH2,b3-CH2,CH2,OC1,F4,OC4,F4	109.9	77.1	-15		19	79.3
107	C7H15O-CH2CF4OC4F	105.9	50.6	-11.6		-6.1	53.6
108	C ₁ M ₁ /O—CH ₁ CF ₁ OCH ₂ CF ₁ OCF ₂ OCH ₂ CF ₂ OCH ₂ CF ₂ OCH ₂ CF ₂ OCH ₂ CF ₂ OCF ₂ OCH ₂ CF ₂ OCH ₂ CF ₂ OCF	113.5	72.1	-10.9		23.7	73.9
109	C ₀ M ₁₇ O-OM ₁ CF ₁ OC ₀ F ₀ OC ₃ F	109.7	70.6	-16.1		30.1	73.2
110	C gH 170-CH222 CCH2C3F 40C4F	106.4	73.6	-7.1		-4.5	75.9
111	C ₀ M ₀ ,0———————————————————————————————————	89.9	63.1	42.8		47.6	65.4

Ex. No.	Structure	I to SA	to S _C	t S _{M1}	to K	to S _C	to SA
112	C ₆ M ₁₁ O-OCM ₂ CF ₂ OC ₁ F ₆ OC ₆ F ₆	90.5	64.9	36.8		42.2	67.2
113	C ₀ H ₁ pO————————————————————————————————————	98	73.6	30.4		40.2	75.9
114	C ₀ M ₁₁ O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O	91.2	33	31.2			45.6
115	С. И 150-СИ 36-35-30С 35-3	96.4	62.8	35.2		42.3	64.5
116	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96.2	80.7	28.5		37.1	83.2
117	C7H15—C7H2C3F6CC3F7	75.3	46.5	28.4		35.2	48.2
118	C ₇ H ₄ ,0————————————————————————————————————	95	77.2	23.5		39.2	79.3
119	CH110-CH2N-CH2CF2CC1F4CC1F4	93.5	68	18.8		46.6	69.8
120	C7H15O-CH2C3F4OC3F4	86	37	15.5		26.8	
121	C1H150-CH2CF60C2F5	94.8	61.5	31.1		38.6	60.9
122	C2H16O-CH265-CCH2C3F6OC3F7	97.9	75.8	25.3		34.1	77.5
123	C,M410—CH2)2 CCM2CF70C1F6	88.1	57.3	22.5		41.4	59.9
124	C ₂ M ₁₇ —C)—CH ₂) ₂ OCH ₂ CF ₂ (OC ₂ F ₄) ₂ OCF ₁	77.6	59.9	9.2		34	81.1
125	C ₀ H ₀ -CH ₂ h ₀ -CCH ₂ h ₀ -CCH ₂ CF ₇ OC ₂ F ₄ OC ₃ F ₄ OC ₄ F ₄ OC ₄ OC ₄ F ₄ OC ₄ F ₄ OC ₄ OC ₄ F ₄ OC ₄ O	71.1	30	15.6			36.1
126	C ₀ H ₁ , CH ₂ J ₀ OCH ₂ C ₃ F ₀ OC ₃ F ₇	74.5	49.8	22		36	51.5
127	C ₂ M ₁₇ —CCH ₂ CF ₇ OC ₄ F ₈	64.5	26.4	21			32.6
128	C _p H ₁₇ O—OCH ₂ CF ₁ OC ₂ F ₄ OC ₂ F ₅	97.9	85.1	8.9		37.7	87.4

Ex. No.	Structure	I to SA	to Sc	to S _{M1}	to K	to Sc	to SA
129	C ₆ H ₁ yO—OCH ₂ C ₂ F ₆ OC ₂ F ₆	93	69.6	-3.5		30.4	71.3
130	C ₉ H ₁ ,O	97.9	85.1	8.9		37.7	87.4
131	C ₉ H ₁₇ D — CH ₂ M ₃ CCH ₂ C ₃ F ₉ DC ₃ F ₇	101.4	89.2	11.7		29.8	90.5
132	C _a H ₁₇ O	92.7	79.3	6		20	81.5
133	C_H1,10-0-10-10-10-10-10-10-10-10-10-10-10-10	103	93.7	12.9		32.9	95.6
134	C*H*M———————————————————————————————————	76.7	48	26.8	15.6	36.9	
135	C ₄ H ₁₆ —CH ₂ h ₂ CH ₂ C ₃ F ₆ OC ₃ F ₇	80	60	23.5		41.4	64
136	C ₀ H ₁₀ —OCH ₂ CF ₂ OC ₄ F ₁	70.3	38	14.8	·	32.6	
137	C ₂ H ₂ H ₂ D ₂ CH ₂ CF ₃ COC ₂ F ₃ hOCF ₃	86.3	64.9	45.6		50.7	67.3
138	C ₂ M _{1,1} O—(CH ₂) ₁₀ OCH ₂ CF ₃ (OC ₃ F ₃) ₁ OCF ₃	94.3	67	35			40.4
139	C ₀ H ₁ CH ₀ J ₁₁ CH ₀ J ₁₁ CCH ₂ CF ₃ [OC ₃ F ₄] ₂ OCF ₁	77.6	59.9	9.2		34	81.1
140	C9H19O-C9H12CHCH2OCH2C2F4OCF3	88.3	79.2	15.4		37.5	80.4
141	C+H19O-CH2N2-CCH2CF3CC;F1	82.6		23.5			37.7
142	C#H130-CH20FF0CFF	99.2	51	21.3		38.3	
143	C ₆ M ₁₃ O————————————————————————————————————	90	27	8.8			29
144	C ₂ M ₁ ,—C ₃ M ₂ —C ₄ C ₃ F ₄ CC ₄ F ₆	76.9	59.5	-5.7		14.5	62
145	C4H120-0CH2CF30C3F40C4F8	100.2	82.5	9.1		18.9	84.8

Er. No.	Structure	I to SA	to S _C	to S _{M1}	to K	to S _C	to S _A
146	C,H,pO-OCH,DF,OCF,OCF,	96	74				
147	C4H170-CH23-F0H2CF1(OC1F0)+OCF2	106.1	95.6	-8.8		9.1	97.8
148	C ₈ H ₁₇ O————————————————————————————————————	88	61				
149	Call 170-Ch26 OCH2C2FeOC4Fe	100.8	90.9	-8.2		13.6	93.4
150	C10H21 CH22H CCH2CF2OC2F4OCF3	64.80	59.1		19.3	25.1	61.6
151	C ₂ M ₁₁ O-C ₃ M ₂ C ₂ F ₂ OC ₂ F ₄ OC ₄ F ₆	96.3	68.7	-4.4	-	25.6	71.7
152	C ₀ H ₁₃ —COH ₂ L ₃ CCH ₂ CF ₂ (OC ₁ F ₄) ₂ OCF ₃	75.2	32.3	-8.7		5.1	34.6
153	C ₂ M ₁₃ —CCH ₂ CF ₁ OC ₂ F ₄	67.9	19	-8.4		12.6	
154	C ₂ H ₁₃ O ₂ C ₃ C ₃ F ₄ OCF ₃	96.1	40	-32		8.7	_
155	C ₁ M ₁₂ O————————————————————————————————————	106.1	83.2	-27.4		22.8	85.7
156	C4H110-CH2N-CH2N-CCH2CF2OC1F4OC1F7	102.1	79.2	-27.3		20.9	81.7
157	C ₂ M ₄₆ —CH ₂ I ₄ CCH ₂ CC ₂ F ₄ OC ₄ F	78.4	55.2	-24.5		2.7	57.6
158	C ₉ H ₄ , — OCH ₂ L ₂ — OCH ₂ CF ₃ (OC,F ₃) ₂ OCF ₃	79.00	57.5		-29.8	9.9	
159	C ₀ H ₁₇ —Ch ₂ CH ₂ CF ₂ OC ₂ F ₁	55.9	12	-24.5			16.4
160	C ₀ H ₁₂ —CH ₂ J ₀ —CCH ₂ CF ₂ OC ₃ F ₄ OC ₃ F	72.00	47.6		-25	15.7	
161	C ₆ H ₆₇ —CH ₂ I ₄ —CCH ₂ CF ₃ OC ₂ F ₄ OC ₄ F	79.50	62.00	-25.40		-10.40	
162	C ₆ H ₁₇ —OCH ₂ L ₆ CCH ₂ L ₆ CC ₆ F	73.20	55.1		-29	25.4	

Ex. No.	Structure	I to SA	to S _C	to S _{M1}	to K	to S _C	to S _A
163	C+H110-CH2)4 CCH1CF10CFF40CF3	94.6	81.6	-16.7		-9.8	84
164	C.H.D-O-KHALL DCH,CF,HOCF, BLOCF,	73.9		-22.9			28.9
165	CHO-Q-CHIA CHOCHOCHOCH	71.8	35.3	-21.6		26.6	39.8
166	C ₀ M ₀ O————————————————————————————————————	91.6	57.6	12.6		20	60.3
167	C.H. 10-00-10-10-10-10-10-10-10-10-10-10-10-1	76.8	4	<-40			20
168	C ₀ M ₁ ,0————————————————————————————————————	74.7	40	-36.5	22.4	43.7	
169	C. M. PO-CHOLO CHUCE P. NOCE P. NOCE P.	84.4	56	<-35		-34.7	
170	C ₄ M ₁₂ O————————————————————————————————————	94.5	62.8	<-47			65.3
171	C ₂ M _{1,2} O————————————————————————————————————	76.7		<-47			
172	Calling Congression (CH shape Congression CH shape Congression Chief Congression Chi	80.2	25	<-47			
173	Calling Conference to October 1900 Conference to	82	63.5	-44.5		-32	65.8
174	C0M190-0-10-10-10-10-10-10-10-10-10-10-10-10-	84.3	55.7	<-47		-35.5	58.2
175	C pH 120 — (C H2)4 D C H2C 7F 15	83.1		-14.8			36.2
176	C.M.O.—Chilly Coch, CF, OC, F,	70.7	49.1	10.1		14.7	50.5
177	CqM110—CO-GCM214 CCHGCF2OC2F4OC4F6	73.8	50.1	-9.6		17	52.1
178	CaMaso CHack OC Hack OC ACC PACC PR	78.3		-40.2			5.7
179	C#4, 10 — CH3/10 — CH	80.3		-35.9			6.4
180	California Charles OCAF OCAF OCAF	83.1	69.8	<-40		0.7	71.2
181	C ₀ H ₁ ₂ O-C ₁ H ₂ C ₂ F ₀ OC ₄ F ₀	84.3	57.4	-34.5		6.8	59.8

Ex. No.	Structure	I to SA	to S _C	to S _{M3}	to K	to Sc	to S _A
182	C, Mag O CHab O CHab O CHABOCF ALCOCF	86.3	73.7	-20.3		-12.6	75.9
183	C,M,,D——————————————————————————————————	79.1	58	-23.3		6.6	
184	CHILD CHILD OCH, CIF, OCK,	80.3	55	-24.7		7.8	58.6
185	C _p M ₁ ,r _O —O C _p M ₂ C _p F ₂ OC _q F _q	78	70.4	-33		11.9	72.6
186	C_M_1,D_CM_2C_1F_0CC_1F_5	77.6	74	0.6	-11.2	3.2	77.3
187	CoM110-Chocos occs	73/71	54.4	8.7		15.6	56.6
188	CH-OCCH-OC-P-1-OCP-	93.5	84.4	<-47		<-47	86.9
189	CHOCHO CHES, SEC P. LOCO.	61.9	54.4	16.3		21.8	56.5
190	CW-CCHO-Q-CHIP CCHCF, bCCF,	55.2	47.2	8.2	-29.4	22.1	50.1
191	CHAOCHLO-CHAOCPALOCT	69.2	61.3	-22.2		-8.6	63.9
192	chiachiahacha	61.6	57	4.2		16.4	
193	CT TOTAL SON	32	24	-14	<u> </u>	12.5	26.6
194	(CM) JOHCHM 1,40-00,5 CC2F 3	69.6	63		16.2	17.8	65
195	CH40C4M40-CH40CH40CH40CH40CH40CH40CF40C4F4	78.8	51.8	-19		10.5	55
196	CH40CH40	50	37.1		<5		
197	CHACANAO - CHA130CHCHCH30CHCF30(C1F40)1CF3	56.7	38.6	9.8	2.9	23.8	40.7
198	C++0C+40	61.9	54.4	16.3		21.8	56.5
199	CHACHO - CH., COLFAD), EF	85.4	71.1	-0.9		10.1	73.1
200	CF_CQUOCANO CF_CCF_CCF_CCF_CCF_CCF_CCF_CCF_CCF_CCF_	86.7	78.1	-5		22.7	80.4
201	C.F.,,CH,QC,H,Q-	F	47.1	-2		13.3	
202	C4M170-OC2M40CH2CHCH2OCH2CF20C2F40C	108.9	93.6	19.9		39.2	

Ex. No.	Structure	I to SA	to Sc	to S _{M1}	to K	to S _C	to SA
203	ant-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	73		- 41.9			31.5
204		99.5	77.8	14.5		-1.6	80.3
205	Chille Containching	129.7	80.4	-5		17.6	82.8
206	creo-Q}-Q>-_____	82	70.6	39.5		-30.8	73
207	CHINO-Q-Q-Q-CHOCHOCHOCH	81	68	⊲RT			
208		100.8	94.1	- 12.7		19.2	96.5
209		78.2	60.3	11.3		32.5	62.5
210	CHE-Q-Q-Q-CALCONOROROR	100.5	79.8	-0.6		11.7	82.3
211		120.1	103. 1	-5.3		17.9	105. 9
212	CoH170-0-10-10-10-10-10-10-10-10-10-10-10-10-	100.9	75.5	2.2		24	78
213	C_H170-C_N -CSH18CHCH2OCH6CF3DC3F40C4F8	111.5	94.2	-7.3		14.4	96.7
214	CAL_O_O_O_OCAGOCA,OCA.	96.4	85.4	59.2		63.2	87.6
215	C+L-0-ON C+C-F, CC-F, CC	82	65	2			
216	C7H150-OH2CF70C7F40C4	68	48	-7			
217	C ₀ M ₁₀ O————————————————————————————————————	93	81	24			
218	CHI-90-CHC-F-DH-DOH-CHCHC-F-DC-F-DC-F-DC-F-DC-F-DC-F-DC-F-	82.5	67.4	4			
219	CHI-90-CONCLESON CONCLESON	73.8	57.7	1.7			

The data in Table 1 shows that most of the compounds of the invention exhibit smectic mesophases

and that many of the compounds exhibit a broad smectic C mesophase, which makes the compounds well-suited for use in liquid crystal display devices. As a result of the breadth of the smectic C mesophase, the compounds are useful in admixture with themselves or with other liquid crystal compounds, even at high concentration.

The smectic C layer spacing of selected compounds of the invention was measured as a function of temperature by Small Angle X-ray Scattering (SAXS), essentially as described in U.S. Patent No. 5,417,883, and a plot of the data is shown in Figure 1. This data indicates that the compounds of the invention generally exhibited maintenance or expansion of the smectic C layer spacing with decreasing temperature (and can be used to control layer spacing with respect to temperature as described in U.S. Patent No. 5,417,883). The expansion rate varied with structure.

Examples 220 through 236

10

15

A series of devices, each containing a chiral 20 compound of this invention (designated by a parenthetical reference to Example No. in Table 2 below), was prepared essentially as described in U.S. Patent No. 5,377,033 (Radcliffe). The ITO-constituted electrodes of each device were connected to an arbitrary waveform generator with variable output voltage. The device was driven by a voltage waveform consisting of bipolar, square pulses of $\pm 10V/\mu m$ amplitude, spaced 30 milliseconds apart by a train of square pulses having the same width and 3.3 $V/\mu m$ 30 amplitude. The device was heated to the temperatures noted in Table 3 (below) and the polarization (nC/cm²), the $\tau_{electric}$, the smectic viscosity, and the tilt angle ϕ_t were determined as described below:

The polarization of the device was determined essentially as described by Miyasato et al. in Jap. J. Appl. Phys. 22, 661 (1983). The electronic response time, τ_{electric}, was derived from the displacement current of the ferroelectric liquid crystal device under an applied square voltage pulse. The current was viewed on a 100 megahertz bandwidth oscilloscope. The usual decaying exponential, associated with a dielectric filled capacitor, was followed by the spontaneous polarization (P_S) switching pulse. The time from the rising edge of the voltage pulse to the peak of the P_S pulse was taken to be τ_{electric}. The rotational viscosity (smectic viscosity, η) was calculated as shown below:

15

20

 $\eta(10^{-3} \text{ kg / m} \cdot \text{s}) = 0.01 \cdot P_{\text{S}} \cdot \text{E} \cdot \text{velectric}$, where the units of P_{S} , E, and τ_{electric} are respectively nC/cm²†, V/ μ m, and μ s. The tilt angle ϕ_{t} of the mixture was taken to be half the angle separating the extinction points of the driven states. The results given in Table 2 show fast response times over a wide temperature range.

Table 2.

Example No.	Temper- ature (°C)	Reduced Temper- ature (T-T _C , *C)	Polari- zation (nC/cm²)	Response Time (µs)	Smectic Viscosity (mPa·s)	Tilt Angle (degrees)
220	50.2	-9.3	25.3	5.8	14.6	22.6
(using	39.6	-19.9	31.6	7.0	22.0	24.1
compound	29.6	-29.9	37.1	8.1	29.9	24.6
of Ex.	19.5	-40.0	42.2	9.9	41.7	24.7
No. 144)	14.2	-45.3	45.0	11.2	50.4	24.7

		Reduced				
Example No.	Temp r-	Temper-	Polari-	Resp nse	Smectic	Tilt Angle
	ature (°C)	ature	zation	Time	Viscosity	(degrees)
		(T-T _c , °C)	(nC/cm²)	(µ s)	(mPa·s)	
221	40.5	-9.9	27.1	5.0	13.6	20.8
(using	30.3	-20.1	33.1	6.4	21.2	21.7
compound	20.1	-30.3	38.8	7.5	29.1	22.1
of Ex. No. 40)	9.9	-40.5	45.2	9.4	42.5	0.0
222	53.0	3.0	2.1	8.0	1.7	
(using	42.7	-7.3	3.7	37.9	14.0	16.1
compound	32.5	-17.5	3.8	76.5	29.1	18.1
of Ex. No.	22.1	-27.9	2.1			18.9
106)	Ì					
223	73.5	-8.5	27.5	5.2	14.4	23.3
(uzing	62.9	-19.1	34.6	6.1	21.0	24.9
compound	52.7	-29.3	41.2	7.0	28.6	25.6
of Ex.	42.7	-39.3	47.0	8.2	38.4	25.8
No. 45)	32.3	-49.7	53.3	10.3	54.8	25.9
	22.3	-59.7	59.3	13.4	79.6	25.7
	12.0	-70.1	61.2	19.5	119.6	25.5
224	87.6	-8.4	26.7	5.5	14.7	28.6
(using	77.5	-18.5	32.7	6.3	20.5	30.2
compound	67.2	-28.8	38.0	7.0	26.5	31.8
of Ex.	57.0	-39.0	42.6	8.0	33.9	32.0
No. 46)	46.8	-49.2	47.3	9.4	44.7	32.0
	36.5	-59.5	52.4	11.5	60.5	31.7
	26.2	-69.8	57.5	15.4	88.3	31.4
	16.0	-80.1	63.7	21.9	139.5	31.1
225	70.7	-1.3	6.4	6.2	4.0	15.3
(using	60.3	-11.7	9.7	10.5	10.2	18.0
compound	50.2	-21.8	11.7	13.1	15.2	18.8
of Ex.	40.1	-31.9	13.1	16.5	21.6	19.1
No. 93)	30.0	-42.0	14.2	22.1	31.4	19.1
226	91.6	-12.4	23.7	6.4	15.3	28.7
(using	78.0	-26.0	31.2	8.1	25.4	31.4

		Reduced				
Example No.	Temper-	Temper-	Polari-	Response	Smectic	Tilt Angle
	ature (°C)	ature	zation	Time	Viscosity	(degrees)
		(T-T _c , °C)	(nC/cm²)	(µs)	(mPa·s)	
compound	64.1	-39.9	38.5	10.6	40.9	32.6
of Ex.	50.1	-53.9	47.0	14.8	69.8	33.2
No. 73)	36.1	-67.9	58.1	22.6	131.4	33.6
	22.2	-81.8	72.6	39.9	289.4	33.9
227	85.6	-9.9	17.0	6.6	11.2	26.4
(using	75.8	-19.7	20.5	7.5	15.4	27.9
compound	65.6	-29.9	23.1	8.5	19.5	28.4
of Ex.	55.8	-39.7	25.2	9.7	24.5	28.4
No. 133)	45.6	-49.9	27.9	11.4	31.9	28.3
	35.6	-59.9	30.8	14.0	43.0	28.0
	25.5	-70.0	34.8	18.3	63.7	
228	69.1	-9.9	19.0	7.4	14.1	22.2
(using	58.9	-20.1	22.0	9.7	21.3	23.2
compound	49.0	-30.0	23.9	12.7	30,4	23.3
of Ex.	38.8	-40.2	25.6	17.3	44.3	22.9
No. 204)	29.1	-49.9	27.0	24.8	67.0	22.2
	19.0	-60.0	28.5	42.0	119.7	21.4
	9.1	-69.9	30.1	77.2	232.4	20.6
229	55.3	-10.2	21.4	7.9	16.8	23.5
(using	45.4	-20.1	24.2	9.3	22.5	24.6
compound	35.5	-30.0	27.5	11.7	32.1	24.8
of Ex.	25.2	-40.3	30.0	15.8	47.4	24.7
No. 173)	15.2	-50.3	31.6	23.3	73.8	24.4
	5.4	-60.1	33.8	39.7	134.5	23.9
230	62.1	-10.1	21.7	8.8	19.0	27.4
(using	52.1	-20.1	27.9	10.2	28.3	29.1
compound	42.0	-30.2	34.6	12.1	41.8	29.8
of Ex.	32.1	-40.1	41.4	15.3	63.5	30.0
No. 206)	22.1	-50.1	49.2	20.5	100.9	30.1
	12.1	-60.1	56.2	30.2	169.8	30.0
<u></u>	2.1	-70.1	65.4	51.8	338.6	29.8

		Reduced				
Example No.	Temper-	Temper-	Polari-	Response	Smectic	Tilt Angle
	ature (°C)	ature	zation	Time	Viscosity	(degrees)
		(T-T _c , °C)	(nC/cm²)	(µ s)	(mPa·s)	
231	72.1	-4.6	4.4	8.7	3.9	15.2
(using	67.2	-9.5	5.2	10.3	5.3	16.2
compound	56.8	-19.9	6.9	11.1	7.7	16.3
of Ex.	46.8	-29.9	8.1	12.1	9.8	16.1
No. 101)	36.7	-40.0	9.0	13.8	12.4	15.8
ļ	26.7	-50.0	10.5	16.4	17.2	15.6
	16.6	-60.1	11.4	21.5	24.6	15.2
232	39.4	-9.9	74.3	11.5	85.6	35.3
(using	29.1	-20.2	89.8	16.4	147.2	37.1
compound	19.1	-30.2	98.3	25.6	251.5	37.9
of Ex.	9.1	-40.2	101.3	46.2	467.7	38.3
No. 216)	-1.0	-50.3	104.9	106.2	1114.0	38.4
233	39.3	-6.5	38.1	5.0	19.2	·
(using	32.2	-13.6	47.5	6.9	33.0	
compound	24.2	-21.6	58.2	8.7	50.6	
of Ex.	17.0	-28.8	69.3	10.6	73.7	
No. 59)	9.6	-36.2	82.2	14.0	115.1	
234	77.0	-11.5	38.2	4.6	17.8	
(using	66.8	-21.7	46.3	5.2	24.0	27.9
compound	56.8	-31.7	55.6	6.0	33.3	28.6
of Ex.	46.9	-41.6	61.1	7.0	42.7	28.8
No. 63)	36.9	-51.6	68.1	8.7	59.4	28.8
	26.8	-61.7	74.4	11.5	85.2	
	16.7	-71.8	80.1	16.4	131.2	
235	43.1	-7.1	42.7	4.2	17.9	
(using	38.4	-11.8	49.0	5.1	25.1	
compound	33.7	-16.5	55.5	6.0	33.6	
of Ex.	28.7	-21.5	62.8	7.1	44.4	
No. 53)	23.7	-26.5	70.0	8.3	57.8	
	18.8	-31.4	78.1	9.7	76.0	
	13.6	-36.6	88.4	11.5	101.8	

Example No.	Temper- ature (°C)	Reduced Temper- ature (T-T _C , *C)	Polari- zation (nC/cm²)	Response Time (μs)	Smectic Viscosity (mPa·s)	Tilt Angle (degrees)
236	68.0	-10.0	13.0	7.4	9.6	23.4
(using	58.0	-20.0	16.2	8.4	13.6	24.7
compound	48.0	-30.0	17.6	10.0	17.6	25.0
of Ex.	38.0	-40.0	19.1	12.6	24.1	24.9
No. 182)	28.0	-50.0	20.4	16.7	34.1	24.6
	18.0	-60.0	21.9	24.0	52.6	24.1
	8.0	-70.0	23.4	39.9	93.4	23.6

Example 237

A device was prepared essentially as described above using a mixture of 90 weight % of the compound of the invention prepared in Example 93 and 10 weight % 5-octyloxy-2-[4-(3-(4-

(nonafluorobutoxy)octafluorobutoxy)-2,2,3,3,4,4hexafluorobutoxy)2-(S)-fluoropropoxyphenyl]pyrimidine
(prepared essentially as described in Example 12 of

International Patent Publication No. WO 96/33251), and
the electrooptical properties of the mixture were
measured essentially as previously described. The
results are shown in Table 4.

15 Example 238 - 242

In the following Examples, a series of devices, each containing at least one chiral compound of this invention, were prepared essentially as described in U.S. Patent No. 5,377,033 (Radcliffe) and filled with a mixture of liquid crystal compounds. The composition of each mixture (in weight percent) and the phase transition temperatures of the mixtures are shown in Table 3.

quenched with water, and the resulting crude product was isolated by extraction with toluene and further purified essentially as in Example 1, followed by Kugelrohr distillation (187-92°C at 0.01 to 0.015 torr) to provide a yield of 4.45 g.

20 (trifluoromethoxy) tetrafluoroethoxy) 2,2-difluoroethoxy) hex-1-ene and 5-heptyloxy-2-(4(trifluoromethylsulfonyl) phenyl) pyrimidine.

Compound C, 5-heptyloxy-2-[4-(6-(3-(pentafluoroethoxy)-2,2,3,3-

25 tetrafluoropropoxy)hexyl)phenyl]pyrimidine was prepared
using essentially the procedure of Example 1 by
combining 3-(pentafluoroethoxy)-2,2,3,3tetrafluoropropoxy)hex-1-ene and 5-heptyloxy-2-(4(trifluoromethylsulfonyl)phenyl)pyrimidine.

30

10

Table 3.

		Example No.				
Compound	237	238	239	240	241	242
Example 93	90					
Example 12 of	10					

	Example No.					
Compound	237	238	239	240	241	242
WO 96/33251						
Example 155		15	15	10		
Example 63		30	30	20		
Example 211		25				
Example 30 of		10	10	10		
US 5658491						
Compound A		20	20	20		
Example 204			25	<u></u>		
Example 34				40		
Example 200					54	
Example 13					46	
Example 112						15
Example 44						20
Example 35						20
Example 151						10
Compound B						15
Compound C	<u> </u>					20
Tran	Transition Temperature Data (°C)					
I to SA	112.3	106.1	102.6	101.2	96.0	98.0
to Sc	55.4	74.0	68.2	64	79.2	55.4
to S _m	<6	<1	<1	<-1	10	<-5

Table 4.

Example No.	Temper- ature (°C)	Reduced Temper- ature (T-T _c , °C)	Polari- zation (nC/cm²)	Response Time (µs)	Smeetic Viscosity (mPa · s)	Tilt Angle (degrees)
237	46.6	-8.8	13.4	6.1	8.2	14.8
	36.7	-18.7	15.7	8.3	13.0	15.5
	26.8	-28.6	17.4	10.9	19.0	15.4
	16.5	-38.9	18.5	15.6	28.8	15.1
	6.4	-49.0	19.8	24.4	48.4	14.8

		Reduced				
Example	Temper-	Temper-	Polari-	Response	Smectic	Tilt Angle
No.	ature	ature	zation	Time	Viscosity	(degrees)
	(C)	(T-T _c , °C)	(nC/cm ²)	(µs)	(mPa·s)	
238	62	-10	22.5	6.1	13.7	23.3
	52	-20	27.7	7.3	20.2	24.9
	42	-30	31.9	9.0	28,7	25.6
	32	-40	36.2	11.4	41.1	25.9
	22	-50	40.7	15.9	64.5	26.0
239	58	-10	20.7	6.3	13.1	22.4
1	48	-20	25.4	7.7	19.6	24.0
	38	-30	29.1	9.5	27.5	24.6
	28	-40	32.6	12.1	39,4	24.8
	18	-50	35.7	17.7	63.1	24.8
240	52	-10	24.3	6.3	15.4	
	42	-20	28.8	7.4	21.5	
	32	-30	33.4	9.4	31.4	
	22	-40	37.1	12.8	47.5	
	12	-50	41.8	18.7	78.2	
241	69	-10	33.7	6.9	23.1	29.0
	59	-20	41.7	8.0	33.3	30.9
	49	-30	48.5	9.6	46.6	31,8
·	39	-40	57.0	12.0	68.3	32.3
	29	-50	64.9	15.7	102.2	32.5
	19	-60	76.3	22.2	169.2	32.7
242	49	-7	16.4	5.6	9.2	17.7
	38	-17	21.6	8.5	18.3	19.6
1	28	-27	26.3	11.1	29.3	20.6
	23	-32	28.4	12.9	36.6	20.9
	18	-37	31.1	15.3	47.8	21.1
	8	-47	36.8	23.4	86.0	21.5

The results shown in Table 4 indicate that the compounds of the invention can be used in mixtures in liquid crystal display devices to provide low mixture viscosities and improve the performance of the devices.

Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention.

What Is Claimed Is:

- Fluorine-containing, chiral liquid crystal compounds having smectic mesophases or latent smectic 5 mesophases, the compounds comprising (a) a chiral fluorochemical terminal portion comprising (i) at least one chiral center, which can optionally be heteroatomsubstituted; (ii) a terminal fluoroalkyl, fluoroether, perfluoroalkyl, or perfluoroether group; and (iii) an alkylene or fluoroalkylene group optionally containing 10 at least one catenary ether oxygen atom; (b) a chiral or achiral terminal portion consisting of a hydrocarbon or hydrocarbon ether group and, when chiral, comprising at least one chiral center, which can optionally be 15 heteroatom-substituted; and (c) a central core connecting said terminal portions; said alkylene or fluoroalkylene group of said chiral fluorochemical terminal portion having at least 3 in-chain atoms and being located between said chiral center of said chiral fluorochemical terminal portion and said central core. 20
- The compounds of Claim 1 wherein said chiral fluorochemical terminal portion is represented by the formula -D-R*-D-R_f, where R* is a cyclic or acyclic chiral moiety containing at least one chiral center; R_f is fluoroalkyl, perfluoroalkyl, fluoroether, or perfluoroether; and each D is independently and non-directionally selected from the group consisting of a covalent bond,
- 30 $-C (=O) -O C_r H_{2r} -$, $-O C_r H_{2r} -$, $-O (O=) C C_r H_{2r} -$, -C = C -, -CH = CH -, -C (=O) -,
 - $-O(C_sH_{2s}O)_tC_rH_{2r}-$, $-C_rH_{2r}-$, $+C_sH_{2s}O)_tC_rH_{2r}-$, -O-, -S-,

$$-OSO_{2}-, -SO_{2}-, -SO_{2}-C_{r}H_{2r}-, -C_{r}H_{2r}-N-SO_{2}-, -N\left(C_{p}H_{2p+1}\right)-, \\ | \\ C_{p}H_{2p+1}$$

- 5 -C_rH_{2r}-N-C(=0)-, -CH=N-,
 and combinations thereof, where one or more hydrogen
 atoms can optionally be replaced with fluorine, and
 where r and r' are independently integers of 0 to about
 20, s is independently an integer of 1 to about 10 for
 each (C_sH_{2s}O), t is an integer of 1 to about 6, and p is
 an integer of 0 to about 4; with the proviso that there
 are at least 3 in-chain atoms between said central core
 and at least one said chiral center of R*.
- 15 3. The compounds of Claim 1 wherein said compounds are represented by the general formula (I):

where M, N, and P are each independently selected from the group consisting of

5

a, b, and c are each independently zero or an integer
of from 1 to 3, with the proviso that the sum of a + b
+ c be at least 1;

10 each A and B are non-directionally and independently selected from the group consisting of a covalent bond,

$$-C(=0)-O-$$
, $-C(=0)-S-$, $-C(=0)-Se-$,

15 -C(=0)-Te-, -(CH₂CH₂)_k- where k is 1 to 4, -CH=CH-, -C=C-, -CH=N-, -CH₂-O-, -C(=0)-, and -O-;

each X, Y, and Z are independently selected from the group consisting of -H, -Cl, -F, -Br, -I, -OH, -OCH₃, 20 -CH₃, -CF₃, -OCF₃, -CN, and -NO₂;

each 1, m, and n are independently zero or an integer of 1 to 4;

- each D is non-directionally and independently selected from the group consisting of a covalent bond,

 -C(=O)-O-C_rH_{2r}-, -O-C_rH_{2r}-, -O-(O=)C-C_rH_{2r}-, -C≡C-,

 -CH=CH-, -C(=O)-,
- 30 $-O+C_sH_{2s}O+_tC_{r'}H_{2r'}-$, $-C_rH_{2r}-$, $+C_sH_{2s}O+_tC_{r'}H_{2r'}-$, -O-, -S-,

$$-OSO_{2}-, -SO_{2}-, -SO_{2}-C_{r}H_{2r}-, -C_{r}H_{2r}-N-SO_{2}-, -N\left(C_{p}H_{2p+1}\right)-, \\ | \\ C_{p}H_{2p+1}$$

where one or more hydrogen atoms can optionally be
replaced with fluorine, and where r and r' are
independently integers of 0 to about 20, s is
independently an integer of 1 to about 10 for each
(C₃H_{2s}O), t is an integer of 1 to about 6, and p is an
integer of 0 to about 4;

15 $\label{eq:Resolvent} $$R$ is selected from the group consisting of $$-O-((C_q\cdot H_{2q'-v'}-(R^*)_{v'})-O)_w-C_qH_{2q+1-v}-(R^*)_v , $$-((C_q\cdot H_{2q'-v'}-(R^*)_{v'})-O)_w-C_qH_{2q+1-v}-(R^*)_v , $$$

20
$$-C (=0) - 0 - C_q H_{2q+1-v} - (R^{\dagger})_v$$
, $-0 - (O=) C - C_q H_{2q+1-v} - (R^{\dagger})_v$,

30 where each R' is independently selected from the group consisting of -Cl, -F, -CF₃, -NO₂, -CN, -H, -C_qH_{2q+1},

 $-O-(O=)C-C_qH_{2q+1}$, $-C(=O)-O-C_qH_{2q+1}$, -Br, -OH, and $-OC_qH_{2q+1}$; q^* is independently an integer of 1 to about 20 for each $(C_{q^*}H_{2q^*}-O)$; q is an integer of 1 to about 20; w is an integer of 0 to about 10; v is an integer of 0 to about 2; each v^* is independently an integer of 0 to

about 2; g is an integer of 1 to about 3; each D is independently and non-directionally selected from the group set forth for D above, with the proviso that the ring containing D has from about 3 to about 10 ring atoms; each W is independently selected from the group consisting of N, CR', and SiR'; and R can be chiral or achiral; and

R* is a cyclic or acyclic chiral moiety containing at
least one chiral center; and

R_f is fluoroalkyl, perfluoroalkyl, fluoroether, or perfluoroether;

- with the proviso that there are at least 3 in-chain atoms between said central core structure -(M)_a-A-(N)_bB-(P)_c- and at least one said chiral center of R*.

D / \

30 D

25

where each R' is independently selected from the group consisting of -Cl, -F, -CF₃, -NO₂, -CN, -H, -C_qH_{2q+1}, -O-(O=)C-C_qH_{2q+1}, -C(=0)-O-C_qH_{2q+1}, -Br, -OH, and -OC_qH_{2q+1}; q' is independently an integer of 1 to about 20 for

each (Cq'H2q'-0); q is an integer of 1 to about 20; w is
an integer of 0 to about 10; v is an integer of 0 to
about 3; each v' is independently an integer of 0 to
about 3; g is an integer of 1 to about 3; each D is
independently and non-directionally selected from the
group set forth for D in Claim 3, with the proviso that
the ring containing D has from about 3 to about 10 ring
atoms; each W is independently selected from the group
consisting of N, CR', and SiR'; and with the proviso
that R* is chiral.

5. The compounds of Claim 3 wherein said compounds are represented by the general formula (II):

15
$$R'' - (0)_{j} - G - D' - R^* - (C_{s'} H_{2s'} 0)_{t'} C_{r''} H_{2r''} - R_{f}$$
 (II)

where R'' is (R')_v-C_qH_{2q+1-v}, where q is an integer of 2 to about 10, each R' is independently selected from the group consisting of hydrogen, fluorine, chlorine, 20 methyl, and perfluoromethyl, and v is an integer of 1 to about 2;

- j is an integer of 0 or 1;
- 25 G is selected from the group consisting of

where one or more aromatic hydrogen atoms can be replaced with fluorine;

D' is selected from the group consisting of $-O(C_sH_{2s}O)_tC_r\cdot H_{2r}$, $-C_rH_{2r}$, $-(C_sH_{2s}O)_tC_r\cdot H_{2r}$, and $-O-C_rH_{2r}$, where r and r' are independently integers of 0 to about 12, s is independently an integer of 1 to about 10 for each $(C_sH_{2s}O)$, and t is an integer of 1 to about 3;

 R^* is selected from the group consisting of $-C_gH_{2g-v}-(R^*)_v-$ and

5

20

where R' is -F, q is an integer of 1 to about 4, v is an integer of 1 to about 3, W is N or CH, and D" is -C (=0) -O- or $-CH_2-$;

s' is an integer of 1 to about 6;

t' is an integer of 0 or 1;

5

r" is an integer of 1 to about 3; and

Rf is selected from the group consisting of $-C_qF_{2q+1}$ and $-(C_xF_{2x}O)_zC_yF_{2y+1}$, where q is an integer of 1 to about 6, x is independently an integer of 1 to about 10 for each $(C_xF_{2x}O)$, y is an integer of 1 to about 8, and z is an integer of 1 to about 5;

with the proviso that there are at least 3 in-chain atoms between said central core structure G and at least one said chiral center of R*.

Fluorine-containing, chiral liquid crystal compounds having smectic mesophases or latent smectic mesophases, the compounds comprising (a) a chiral fluorochemical terminal portion comprising (i) at least one chiral center, which can optionally be heteroatomsubstituted; (ii) a terminal perfluoroether group; and (iii) an alkylene group optionally containing at least one catenary ether oxygen atom; (b) a chiral or achiral 25 terminal portion consisting of a hydrocarbon or hydrocarbon ether group, and, when chiral, comprising at least one chiral center, which can optionally be heteroatom-substituted; and (c) a central core 30 connecting said terminal portions; said alkylene group of said chiral fluorochemical terminal portion having at least 3 in-chain atoms and being located between said chiral center of said chiral fluorochemical terminal portion and said central core.

7. Fluorine-containing, chiral liquid crystal compounds having smectic mesophases or latent smectic mesophases, the compounds comprising two fluorochemical terminal portions and being represented by the general formula VIII:

10

5

where n' is an integer of 0 to about 10; j is an integer of 0 or 1; each R_f moiety is independently selected from the group consisting of fluoroalkyl, fluoroether, perfluoroalkyl, and perfluoroether; and all other moieties are as defined in Claim 3 above.

8. Chiral liquid crystal intermediate compounds represented by the following general formulas IV, VI, and VII:

20

15

$$B^{\dagger,\dagger}(P)_{c}-D-R^{\star}-D-R_{f} \qquad (IV),$$

$$\begin{vmatrix} & & \\ & &$$

25

and

$$A''+N_{b}B+P_{c}-D-R^{*}-D-R_{f} \qquad (VI),$$

$$| \qquad | \qquad |$$

$$Y_{m} \qquad Z_{n}$$

30

where N, P, b, c, B, Y, Z, m, n, D, R*, and R_f are as defined in Claim 4; and A'' and B'' are selected from the group consisting of -H, -Cl, -Br, -I, -OH, -COOH, -CH(CH_2OH)₂, -SH, -SeH, -TeH, -NH₂, -COCl, -CHO,

35 -C≡CH, dialkyl borane, -CH=CH₂, -OSO₂R_f''', -OSO₂CH₃, -OSO₂-cyclo(C₆H₄)-CH₃, -CH₂COOH,

-NH(C=0)OC $_q$ H $_2$ q+1 , -NCO, and -CH(C(0)O-C $_q$ H $_2$ q+1) $_2$, where R $_1$ ''' is a perfluoroalkyl group having from 1 to about 10 carbon atoms and q is an integer of 0 to about 20.

- 5 9. The compounds of any of Claims 1, 2, 3, 4, 7, or 8 wherein said R_f is perfluoroalkyl or perfluoroether.
- 10. The compounds of any of Claims 1, 2, 3, 4, 7, 10 or 8 wherein said R_f is perfluoroether.
- 11. A mixture of liquid crystal compounds comprising at least one fluorine-containing liquid crystal compound of any of Claims 1, 2, 3, 4, 5, 6, 7, 15 9, or 10.
 - 12. A liquid crystal display device containing at least one fluorine-containing liquid crystal compound of any of Claims 1, 2, 3, 4, 5, 6, 7, 9, or 10.

INTERNATIONAL SEARCH REPORT

Int .tional Application No PCT/US 98/14624

A. CLASSIF	FICATION OF SUBJECT MATTER CO7D239/26 C09K19/34					
According to	International Patent Classification(IPC) or to both national classification	on and IPC	·			
B. FIELDS	SEARCHED currentation searched (classification system followed by classification	symbols)				
IPC 6	CO7D CO9K	, -1 ,,				
			·			
Documentati	ion searched other than minimum documentation to the extent that su	ch documents are included in the fields sea	rched			
Electronic da	ata base consulted during the international search (name of data bas	and, where practical, search terms used)				
			,			
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.			
Calegory						
x	EP 0 667 384 A (SUMITOMO CHEMICAL	co)	1-3,5,9,			
	16 August 1995	0 24 55	11,12			
!	see claims 1,11,12; examples 22,2	0,34,33				
Y	WO 96 33251 A (MINNESOTA MINING &	MFG)	1-12			
	24 October 1996 cited in the application					
	see the whole document					
l		/				
		7 -				
	·					
1						
	i					
1						
			<u> </u>			
X Fun	ther documents are listed in the continuation of box C.	Patent family members are listed	in annex.			
* Special c	ategories of cited documents :	T* later document published after the inte	rnational filing date			
"A" docum	nent defining the general state of the art which is not idered to be of particular relevance	or priority date and not in conflict with cited to understand the principle or the invention	i trie application but learly underlying the			
"E" earlier	document but published on or after the international	"X" document of particular relevance; the				
"L" docum	cate hent which may throw doubts on priority claim(s) or his cited to establish the publicationdate of another	cannot be considered novel or cannot involve an inventive step when the di	ocument is taken alone			
citatio	on or other special reason (as specified)	"Y" document of particular relevance; the cannot be considered to involve an is document is combined with one or m	ventive step when the			
other	"O" document referring to an oral disclosure, use, exhibition or other means of the result is combined with one or more other such documents, such combination being obvious to a person skilled in the art.					
later	nent published prior to the international filing date but than the priority date claimed	"&" document member of the same paten				
Date of the	actual completion of theinternational search	Date of mailing of the international se	arch report			
	8 October 1998	2 2. 10.	1998			
Name and	I mailing address of the ISA	Authorized officer	· · 			
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijawijk Tel. (-31-70) 340-2040, Tx. 31 651 epo nl,	0				
i i	181. (+31*/U) 3*0*20*0, 1A. 31 031 VPO 18,	Puetz, C				

1

INTERNATIONAL SEARCH REPORT

ti .ational Application No PCT/US 98/14624

C.(Continue	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Υ	NAGASHIMA Y ET AL: "THE SYNTHESIS AND MESOMORPHIC PROPERTIES OF FERROELECTRIC LIQUID CRYSTALS WITH A FLUORINATED ASYMMETRIC FRAME" LIQUID CRYSTALS, vol. 23, no. 4, October 1997, pages 537-546, XP000723914 see page 540, line 1 - page 541, left-hand column see tables 1,2	1-12
A	see scheme 1 EP 0 499 221 A (CANON KK) 19 August 1992 see page 7, line 1 - page 22, line 46	1,11,12
A	see examples EP 0 434 297 A (SUMITOMO CHEMICAL CO) 26 June 1991 see claims 1-4	1
A	EP 0 301 511 A (CANON KK) 1 February 1989 see page 10, line 10 - page 22, line 7	1,11

1

International application No. PCT/US 98/14624

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This international Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

The ISA considers that the claims 1-12 fail to comply with the prescribed requirements of Article 6 PCT, namely that of support in the description , to such an extent that a meaningful search could not be carried out to cover the claimed subject-matter (cf. Article 17(2)(a)(ii) & (b) PCT). Said noncompliance with Article 6 PCT is considered to arise, due to the scope of said claims encompassing a vast number of possible solutions (compounds), whose number and scope is far greater than that which might reasonably be considered commensurate with the support provided by the examples - it includes a vast number of compounds structurally quite different and thus removed from the structure of said examples, even when taking into consideration a limited generalised structure o the latter. Consequently, the search has been directed to those parts (i.e. compounds) of the claims with are supported by specific examples in the description and/or by a generic structure derived from a limited generalisation thereof commensurate with the scope of of said specific examples (cf. Article 17(2)(b) PCT).

INTERNATIONAL SEARCH REPORT

Information on patent family members

in stional Application No PCT/US 98/14624

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
EP 0667384	A 16-08-1995	JP US	7267885 A 5779934 A	17-10-1995 14-07-1998	
WO 9633251	Α	24-10-1996	US CA EP	5702637 A 2217608 A 0821719 A	30-12-1997 24-10-1996 04-02-1998
EP 0499221	Α	19-08-1992	US JP JP JP	5281362 A 1959193 C 5065276 A 6084357 B	25-01-1994 10-08-1995 19-03-1993 26-10-1994
EP 0434297	Α	26-06-1991	DE DE US	69028905 D 69028905 T 5238598 A	21-11-1996 22-05-1997 24-08-1993
EP 0301511	A	01-02-1989	JP JP DE JP JP US US	1242543 A 2510664 B 3867949 A 2000127 A 2660551 B 4918213 A 5073306 A	27-09-1989 26-06-1996 05-03-1992 05-01-1990 08-10-1997 17-04-1990