

Introduction to NLP

Representing and Understanding Meaning

Understanding Meaning

- If an agent hears a sentence and can act accordingly, the agent is said to understand it
- Example
 - Leave the book on the table
- Understanding may involve inference
 - Maybe the book is wrapped in paper?
- And pragmatics
 - Which book? Which table?
- So, understanding may involve a procedure

Properties

- Verifiability
 - Can a statement be verified against a knowledge base (KB)
 - Example: does my cat Martin have whiskers?
- Unambiguousness
 - Give me the book
 - Which book?
- Canonical form
- Expressiveness
 - Can the formalism express temporal relations, beliefs, ...?
 - Is it domain-independent?
- Inference

Representing Meaning

- One traditional approach is to use logic representations, e.g., FOL (first order logic)
- One can then use theorem proving (inference) to determine whether one statement entails another

Syntax of Propositional Logic

- The simplest type of logic
- The proposition symbols P_1 , P_2 , ... are sentences
 - If S is a sentence, ¬S is a sentence (negation)
 - If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
 - If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)
 - If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
 - If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional Logic in Backus Naur Form

- Sentence → AtomicSentence | ComplexSentence
- AtomicSentence → True | False | S | T | U ...
- ComplexSentence → (Sentence)
 - | ¬Sentence
 - | Sentence A Sentence
 - | Sentence v Sentence
 - | Sentence ⇒ Sentence
 - | Sentence ⇔ Sentence

Operator Precedence

- (highest)

Λ

V

 \Rightarrow

⇔ (lowest)

Translating Propositions to English

- A = Today is a holiday.
- B = We are going to the park.
- A ⇒ B
- A ∧ ¬ B
- ¬ A ⇒ B
- ¬ B ⇒ A
- $B \Rightarrow A$

Translating Propositions to English

- A = Today is a holiday.
- B = We are going to the park.
- A ⇒ B
 If today is a holiday, we are going to the park.
- A ∧ ¬ B
 Today is a holiday and we are not going to the park.
- ¬ A ⇒ ¬ B
 If today is not a holiday, then we are not going to the park.
- ¬ B ⇒ ¬ A
 If we are not going to the park, then today is not a holiday.
- B ⇒ A
 If we are going to the park, then today is a holiday.

Semantics of Propositional Logic

- ¬S is true iff S is false
- $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true
- $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true
- $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true
- i.e., is false iff S_1 is true and S_2 is false
- $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true
- Recursively, one can compute the truth value of longer formulas

Connectives

P	Q	¬P	P^Q	PvQ	P⇒Q	P⇔Q
F	F	Т	F	F	Т	Т
F	Т	Т	F	Т	Т	F
T	F	F	F	Т	F	F
Т	Т	F	Т	Т	Т	Т

Logical Equivalence

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) commutativity of \wedge
          (\alpha \vee \beta) \equiv (\beta \vee \alpha) commutativity of \vee
((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) associativity of \land
((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) associativity of \vee
            \neg(\neg\alpha) \equiv \alpha double-negation elimination
      (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) contraposition
      (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) implication elimination
      (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) biconditional elimination
       \neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta) de Morgan
       \neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) de Morgan
(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) distributivity of \wedge over \vee
(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) distributivity of \vee over \wedge
```

