Analysis Qualifying exam - Fall 10

Burckel & Naibo

Instructions: Do all ten problems. Start each problem on a separate page and clearly indicate the problem number.

Notation: (X, \mathcal{M}, μ) is a measure space, \mathbb{N} is the positive integers, \mathbb{R} the reals, \mathbb{C} the complexes, U an open non-empty subset of \mathbb{C} , H(U) is the set of holomorphic functions in U, := means a definition equation, Re(z) means the real part of z.

- 1. (a) State Rouché's theorem.
 - (b) State the Boundary Maximum Modulus Principle.
 - (c) Derive (1b) from (1a). **Hint:** U is a bounded open set, f is continuous on \overline{U} , holomorphic in U and $M := \max |f(\partial U)|$. If $w \in \mathbb{C}$ and |w| > M, use Rouché's theorem to show that f w cannot have a zero.
- 2. Prove that if U is connected, then H(U) is an integral domain; that is, fg = 0 only if f = 0 or g = 0. **Hint:** If fg = 0, then in any disk in U one of f or g has infinitely many zeros.
- 3. U is called simply connected if $\mathbb{C} \setminus U$ has no compact component. State two properties of H(U) which are each equivalent to U being simply-connected but which make no reference to $\mathbb{C} \setminus U$.
- 4. (a) Show that $f(z) := \frac{e^{iz}-1}{z}$ defines a function in $H(\mathbb{C})$. What is f(0)?
 - (b) Using Cauchy's theorem, show that for every r > 0

$$\int_{-r}^{r} f(x) dx - \pi i = -i \int_{0}^{\pi} \exp(ire^{ix}) dx.$$

(c) Show that

$$\int_0^{\pi} \left| \exp(ire^{ix}) \right| dx = \int_0^{\pi} \exp(\operatorname{Re}(ire^{ix})) \, dx = 2 \int_0^{\pi/2} \exp(-r\sin x) \, dx < 2 \int_0^{\pi/2} e^{-2rx/\pi} \, dx.$$

Hint: From the graph see that $\sin x \ge \frac{2}{\pi}x$ for $x \in [0, \pi/2]$.

(d) Take imaginary parts in (4b) and infer that

$$\left| \int_{-r}^{r} \frac{\sin x}{x} \, dx - \pi \right| < \frac{\pi}{r} \qquad \forall r > 0$$

and deduce the existence and the numerical value of $\lim_{r\to\infty}\int_{-r}^r \frac{\sin x}{x} dx$.

- 5. $f_n \in H(U), n \in \mathbb{N}, \lim_{n \to \infty} f_n = f_0$ locally uniformly in U.
 - (a) Show that f_0 is continuous.
 - (b) Use Morera's and Cauchy's theorems for triangles to infer that f_0 is in fact holomorphic on U.
 - (c) Use Cauchy's integral formula for circles to show anew that f_0 is holomorphic and moreover, $f'_n \to f'_0$ locally uniformly in U.
 - (d) Does the analog of conclusion (5b) hold for differentiable functions on an open interval of \mathbb{R} ?
- 6. (a) State Fatou's lemma, the monotone convergence theorem, and the dominated convergence theorem.
 - (b) Let $f_n: X \to \mathbb{C}$, $n \in \mathbb{N}$, and $f: X \to \mathbb{C}$ be measurable functions. Prove that if $f_n \to f$ almost uniformly, then $f_n \to f$ a.e.[μ] and $f_n \to f$ in measure.
- 7. Suppose (X, \mathcal{M}, μ) is σ -finite and let $f \in L^1(X)$, $f \geq 0$. Prove that the set

$$G_f = \{(x, y) \in X \times \mathbb{R} : 0 \le y \le f(x)\}.$$

is $\mathcal{M} \times \mathcal{B}_{\mathbb{R}}$ -measurable and that $(\mu \times m)(G_f) = \int_X f \, d\mu$. **Hint:** To show that G_f is measurable note that the function $F: X \times \mathbb{R} \to \mathbb{R}$ given by F(x,y) = f(x) - y is the composition of $F_1: X \times \mathbb{R} \to \mathbb{R}^2$ defined by $F_1(x,y) = (f(x),y)$ and $F_2: \mathbb{R}^2 \to \mathbb{R}$ defined by $F_2(z,y) = z - y$.

- 8. (a) If $\mu(X) < \infty$ and $0 prove that <math>L^q(X) \subset L^p(X)$ and $||f||_p \le ||f||_q \mu(X)^{\frac{1}{p}-\frac{1}{q}}$. Give an example of a measure space of infinite measure and indexes $0 for which <math>L^q(X)$ is not a subset of $L^p(X)$.
 - (b) Chebyshev's inequality. Prove that if $0 and <math>f \in L^p(X)$ then for all $\lambda > 0$,

$$\mu\left(\left\{x:|f(x)|>\lambda\right\}\right) \le \left(\frac{\|f\|_p}{\lambda}\right)^p.$$

9. Prove that if $f \in L^p(\mathbb{R}^d)$, $1 \leq p < \infty$, then

$$\lim_{|h| \to 0} ||f(\cdot + h) - f(\cdot)||_p = 0.$$

Hint: First settle the case when f is a continuous function with compact support.

- 10. (a) Give four equivalent definitions of an orthonormal basis in a Hilbert space H.
 - (b) Let H be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$. Prove that if $\{e_n\}_{n \in \mathbb{N}}$ is an orthonormal sequence in H, then $\lim_{n \to \infty} \langle v, e_n \rangle = 0$ for every $v \in H$.

(c) Prove the Riemann-Lebesgue lemma: Every $f \in L^1([0,2\pi])$ satisfies

$$\lim_{n \to \infty} \int_0^{2\pi} f(x) \cos(nx) \, dx = \lim_{n \to \infty} \int_0^{2\pi} f(x) \sin(nx) \, dx = 0.$$

Remark: Note that $L^1([0, 2\pi])$ is not a Hilbert space. Can nevertheless part (10b) be used?