作业4简答

李子钰, 肖子达

2021年10月24日

问题 1. Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix}$$
 and $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$. Compute AD and

DA. Explain how the columns or rows of A change when A is multiplied by D on the right or on the left. Find a 3×3 matrix B, not the identity matrix or the zero matrix, such that AB = BA.

解答. 直接计算

$$AD = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 5 \\ 2 & 6 & 15 \\ 2 & 12 & 25 \end{bmatrix},$$

以及

$$DA = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 3 & 6 & 9 \\ 5 & 20 & 25 \end{bmatrix}.$$

$$B$$
 的取法不唯一,最简单的是取非单位的纯量矩阵 $\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$,也可以取
$$A^2 = \begin{bmatrix} 3 & 7 & 9 \\ 6 & 17 & 22 \\ 10 & 29 & 38 \end{bmatrix}$$
,注意到 A 可逆之后还有 $A^{-1} = \begin{bmatrix} 1 & \frac{1}{2} & -\frac{1}{2} \\ 1 & -2 & 1 \\ -1 & \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$ 等等.

问题 2. Show that if the columns of B are linearly dependent, then so are the columns of AB.

解答. 这是一个矩阵问题,但是我们从线性映射角度和线性方程组角度解更简单.

线性方程组 由定理 2, 只要说明 $AB\vec{x} = 0$ 有非零解, 设 $\vec{y} \neq B\vec{x} = 0$ 的非零解, 则 \vec{y} 也是 $AB\vec{x} = 0$ 的非零解;

线性映射 把 A 看成线性映射 $\vec{v} \rightarrow A\vec{v}$,则由命题 3,它保持线性相关性.从 而 B 的列在 A 的作用下线性相关,即 AB 的列线性相关.

问题 3. Suppose that $CA = I_n$. Show that the equation $A\vec{x} = 0$ has only the trivial solution. Explain why A can not have more columns than rows.

解答. 若 \vec{x} 是 $A\vec{x} = 0$ 的解,则 $\vec{x} = CA\vec{x} = C0 = 0$. 因而 $A\vec{x} = 0$ 只有平凡解. 而 A 的列数多于行数一定有非平凡解¹.

问题 4. Suppose that A is an $m \times n$ matrix and there exists $n \times m$ matrices C and D such that $CA = I_n$ and $AD = I_m$. Prove that m = n and C = D.

解答·由前一问, A 的列数不超过 A 的行数, 从而 $n \le m$, D 的列数不超过 A 的行数, 从而 $m \le n$, 两个一起得到 m = n.C = D 由下式得到:

$$D = (CA)D = CAD = C(AD) = C.$$

问题 5. Let A be an invertible $n \times n$ matrix, let B be an $n \times p$ matrix. Show that the equation AX = B has a unique solution $A^{-1}B$.

解答. 首先 $X_0 = A^{-1}B$ 代入后满足方程,因而是解. 其次如果还有解 X_1 满足 AX = B,即有 $AX_1 = B$,两边同时乘上 A^{-1} 则有 $X_1 = A^{-1}B = X_0$.

问题 6. Let A be an invertible $n \times n$ matrix, let B be an $n \times p$ matrix. Explain why $A^{-1}B$ can be computed by row reduction: If $[AB] \sim \cdots \sim [I_nX]$, then $X = A^{-1}B$.

解答. 设 A 经过初等行变换 $\mathcal{P}_1, \ldots, \mathcal{P}_n$ 变为单位矩阵, 设 \mathcal{P}_i 对应的矩阵 为 P_i , 则有 $P_n \ldots P_1 A = I$, 即

$$A^{-1} = P_n \dots P_1,$$

从而用这些初等行变换把 [AB] 中的 A 变为单位矩阵时 ,B 变为 $=P_n\dots P_1B=A^{-1}B$.

¹几何意义是如果生成元的个数多于分量的个数,则一定线性相关.

评论 1. 特别, 当矩阵 B 为向量 \vec{b} 的时候, 此算法就是求线性方程组解的算法.

问题 7. Use the algorithm of this section to find the inverse of

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} and \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Let A be an $n \times n$ matrix of the same form, find its inverse A^{-1} .

法一. 可以直接应用求逆的算法,得到一般的
$$A^{-1}$$
 为 $A=\begin{bmatrix} 1\\ -1 & 1\\ & -1 & 1\\ & & \ddots & \ddots\\ & & & -1 & 1 \end{bmatrix}$

法二.令

$$J = A = \begin{bmatrix} -1 & & & \\ -1 & & & \\ & -1 & & \\ & & \ddots & \ddots & \\ & & & -1 & \end{bmatrix},$$

注意 $J^n=0$,从而 $\forall k\geq 0$,都有 $J^{n+k}=0$,且

$$A = I + J + J^{2} + \dots + J^{n-1} = I + J + J^{2} + \dots + J^{n-1} + J^{n} + \dots,$$

类比微积分中的等式

$$(1-x)^{-1} = 1 + x + x^2 + \dots + x^n + \dots,$$

猜测 A 的逆为 I-J, 然后验证 I-J 确实是 A 的逆.

问题 8. Find the inverse of
$$A = \begin{bmatrix} 1 & & & & \\ 1 & 2 & & & \\ 1 & 2 & 3 & & \\ \vdots & & \ddots & & \\ 1 & 2 & 3 & \cdots & n \end{bmatrix}$$
.

解答. 直接应用求逆的算法,得到

$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ -1/2 & 1/2 & 0 & & 0 \\ 0 & -1/3 & 1/3 & & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & -1/n & 1/n \end{bmatrix}.$$

问题 9. Both A and B are square, show that if AB is invertible, so is A and B.

解答. 对于方阵而言,可逆等价于列向量线性无关. 由问题 2, B 的列向量一定线性无关,从而 B 可逆. 于是直接验证 $(AB)^{-1}$ 满足 $(AB)^{-1}A=B^{-1}$, 从而 A 可逆.