

Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia de Teleinformática

Métodos Numéricos Trabalho Computacional Extra

NOME	Kayann Costa Soares	MATRICULA	429866
CURSO	Engenharia de Computação	TURMA	T01
PROFESSOR	César Lincoln	DATA	05/12/18

FORTALEZA-CE

2018

INTRODUÇÃO

Métodos numéricos são algoritmos computacionais que resolvem problemas matemáticos de maneira numérica e fornecendo um resultado aproximado, apesar de serem resultados aproximados existem series de algoritmos de controle de erro, para diminuir a probabilidade de erro e encontrar um valor mais aproximado possível.

Neste trabalho trataremos de trabalhar com métodos numéricos mais específicos usando a linguagem de programação Python em um ambiente computacional e virtual interativo, Jupyter Notebook. Dessa forma o trabalho se baseia e implementar e explicar os algoritmos dos métodos de interpolação e os de Integração numérica.

Algoritmos implementados:

- Métodos de Interpolação
 - Interpolação via resolução de sistemas lineares
 - Interpolação polinomial via forma de Lagrange
 - Interpolação polinomial via forma de Newton
 - Interpolação inversa
- Métodos de Integração Numérica
 - Regra dos trapézios
 - Regra 1/3 de Simpson
 - Regra 3/8 de Simpson

Os algoritmos serão enviados em anexo juntamente com um cenário de teste para analise de seu funcionamento além da logica de como os mesmo foram criados.

INTERPOLAÇÃO

É o método que permite construir um novo conjunto de dados a partir de um conjunto discreto de dados pontuais previamente conhecidos. É também a aproximação de funções complicadas por funções mais simples de modo que através da interpolação, pode-se construir uma função que aproximadamente semelhantes para tais dados pontuais.

Interpolar uma função consiste em pegar f(x) e aproximar essa função por uma outra função g(x) escolhida entre uma classe de funções pré-definidas.

INTERPOLAÇÃO POLINOMIAL.

Quando g(x) é um polinômio do tipo $(x_0, f(x_0)), (x_1, f(x_1)), ..., (x_n, f(x_n))$, devemos aproximar a função f(x) por um polinômio $p_n(x)$, $P_N(x) = a_0 + a_1x + a_2x^2 + \cdots + a_Nx^N$ de grau menor ou igual a n.

A partir disso, criamos uma matriz de polinômios que representará o sistema linear com as equações e variáveis, essa matriz é conhecida como matriz de Vandermond:

$$V_N = \begin{pmatrix} x_0^N & x_0^{N-1} & \cdots & x_0^2 & x_0^1 & 1 \\ x_1^N & x_1^{N-1} & \cdots & x_1^2 & x_1^1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & 1 \\ x_N^N & x_N^{N-1} & \cdots & x_N^2 & x_N^1 & 1 \end{pmatrix}$$

A partir dessa matriz usamos um método de sistema linear para resolvê-la e encontramos os valores dos coeficientes dos polinômios, em seguinte diminuímos os valores dos coeficientes pelos pontos dado e encontramos a solução.

INTERPOLAÇÃO DE LAGRANGE

Sejam $x_0, x_1, ..., x_n$, n+1 pontos distintos e $y_i = f(x_i)$, i = 0, ..., n. Seja $p_n(x)$ o polinômio de grau \leq n que interpola f em $x_0, x_1, ..., x_n$. Podemos representar $p_n(x)$ na forma.

$$p_n(x) = y_0 L_0(x) + y_1 L_1(x) + \dots + y_n L_n(x)$$

Onde os polinômios $L_k(x)$ são de grau n, e em seguida usamos o polinômio interpolador e encontramos seus respectivos valores:

$$L_k(x) = \prod_{\substack{j=0\\j\neq k}}^n \frac{x - x_j}{x_k - x_j}$$

INTERPOLAÇÃO DE NEWTON:

A interpolação usando a forma de Newton é constituída a partir da semelhança de triângulos:

$$\frac{p_1(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

A partir disso conseguimos montar um operador de diferenças divididas para que possamos resolver a interpolação:

$$f[x_i] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{(x_n - x_0)}$$

Com este operador conseguimos resolver e encontrar os valores da interpolação de maneira mais aproximada possível.

INTERPOLAÇÃO INVERSA

A interpolação inversa é utilizada quando não conhecemos a função inversa e pretendemos determinar a que valor de x correspondente a um dado f(x).

A abordagem para encontrarmos algum valor de x_i para um dado $f[x_i]$ consiste em dois passos. O primeiro deles seria utilizar os valores (n+1) tabelados para interpolarmos um polinômio de grau n . Com isso, teremos uma função aproximada f(x) tal que nos permita construir a função g(x)tal que $g(x) = f(x) - f(x_i)$. O segundo passo consiste em utilizar algum método numérico de busca de raízes para encontrar x tal que g(x) = 0.

INTEGRAÇÃO: REGRA DOS TRAPEZIOS

Seja uma função f(x) aproximada por um polinômio interpolador, por exemplo um polinômio de Lagrange, o polinômio interpola f(x) em pontos de [a,b] igualmente espaçados. No caso da Regra dos Trapézios o polinômio é de grau 1.

$$I = \frac{h}{2} [f(x_0) + f(x_1)]$$

INTEGRAÇÃO: REGRAS DE SIMPSON

Basicamente as regras de Simpson baseia-se em aproximar a integral definida pela área sob arcos de parábola que interpolam a função. Também trata-se de outro exemplo de Fórmula de Newton-Cotes fechada, mas podemos considerar graus superiores dos polinômios.

Simpson 1/3:

$$T = \frac{h}{3}[f(x_0) + 4f(x_1) + f(x_2)]$$

Simpson 3/8:

$$0 = \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)]$$

CONCLUSÃO

O desenvolvimento do trabalho foi de suma importância para entendemos o funcionamento de tais algoritmos e compreendermos como cada um funciona passo a passo, sua criação desenvolve nossa mente e nos ajuda a entender mais ainda o conteúdo teórico, podemos ver as possibilidades de aplicações práticas e a importância de tais métodos de maneira computacional para o meio físico real. Podese perceber com a criação desses algoritmos a importância do tratamentos dos erros e aproximações numéricas para n setores. Assim o trabalho foi fundamental para a cadeira e para mim, o estudante.