AGM NoSQL Database Overview

205 Project 3 Presentation

Members:

- Kara Christensen
- Negin Djalali
- Gray Selby
- Yidai Yao

Why Now?

- \$98,739,408 in gross revenue last year
- > 29,836 customers a month

Upskilling with NoSQL databases will allow us to **implement the leadership team's vision** of the future:

- Integration with BART
- Dynamic Menus
- Delivery Via Robot

Integration With BART

- Goal
 - Allow customers to pick up meals at certain BART stations
 - Use BART transport network for deliveries:
 - From our headquarters to select stations
- Benefits
 - BART has lots of traffic, especially with commuters who may be looking for lunch or dinner
 - BART avoids traffic
 - Limits carbon footprint

Integration With BART Adding Pickup at BART Stations

- Conduct a pilot with a select number of stations
- Populus stations that are also well connected to the BART network

We recommend Neo4j

Why not a relational database?

 Neo4j includes algorithms to quickly identify stations with high 'betweenness' or 'closeness' centrality

Neo4j: Integration With BART

- Selecting Pickup at BART Stations as calculated by betweenness centrality

Betweenness

	name	betweenness
0	Rockridge	5509.000000
1	MacArthur	5239.000000
2	Orinda	4997.000000
3	Lafayette	4469.000000
4	Walnut Creek	3925.000000
5	12th Street	3752.333333
6	Lake Merritt	3723.000000
7	West Oakland	3647.750000
8	Coliseum	3603.750000
9	19th Street	3535.000000
10	Fruitvale	3521.666667
11	Pleasant Hill	3365.000000
12	Embarcadero	2920.750000
13	Concord	2789.000000
14	Montgomery Street	2774.750000

Considering Ridership

		station	avg_exits
\star	0	Embarcadero	400825
	1	Montgomery Street	328108
\star	2	12th Street	118680
	3	19th Street	115691
\star	4	Fruitvale	98468

Neo4j: Integration With BART

- Selecting Pickup at BART Stations as calculated by closeness centrality

Closeness

	name	closeness
0	West Oakland	0.137729
1	12th Street	0.135047
2	Lake Merritt	0.133280
3	Embarcadero	0.132576
4	19th Street	0.127444
5	Montgomery Street	0.126801
6	Fruitvale	0.125870
7	Powell Street	0.120608
8	MacArthur	0.119942
9	Coliseum	0.117110
10	Civic Center	0.114187
11	San Leandro	0.110960
12	Rockridge	0.110284
13	Ashby	0.109433
14	16th Street Mission	0.107698

Considering Ridership

		station	avg_exits
<u></u>	0	Embarcadero	400825
	1	Montgomery Street	328108
	2	Powell Street	303280
4	3	Civic Center	225182
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4	16th Street Mission	149587

Neo4j: Integration With BART

- (Single Source) Shortest Path
 - Trial deliveries from our HQ in Downtown Berkeley
 - Search the BART graph and weight connections based on travel time to determine efficient delivery paths

Why not a relational database?

Neo4j allows us to treat shortest path as a weighted graph problem

	$X \rightarrow X$	-X
	station	totalCost
0	Downtown Berkeley	0.000000
1	North Berkeley	120.000000
2	Ashby	180.000000
3	El Cerrito Plaza	300.000000
4	MacArthur	439.666667
5	El Cerrito del Norte	480.000000
6	19th Street	619.666667
7	Rockridge	719.000000
8	12th Street	739.666667
9	Richmond	780.000000
10	Orinda	1019.000000
11	Lake Merritt	1106.000000
12	West Oakland	1176.250000
13	Lafayette	1319.000000
14	Fruitvale	1386.000000

- Dynamic Menus

- Goal
 - Provide menu offerings dynamically based on the trending meal choices at different BART stations
 - Collects and analyzes customer feedback, ratings, and local food trends
 - Constantly adjusts menu offerings to reflect customers' preferences
- Benefits
 - Enhances customer satisfaction by providing options popular in local areas
 - Ongoing updates and adjustments for a consistently optimized experience
 - o Positions AGM as an innovative leader in the food service industry

- Implementation
 - Document
 - <u>Each BART station</u>
 - Key information:
 - Station ID: Index
 - Location: Latitude, longitude
 - Meal choices: Sub-document
 - Sub-Document
 - Meal Choice
 - Key information:
 - Meal ID: Index
 - Rating: Numerical, 1 (lowest) to 5 (highest)
 - Feedback: Quantitative, reflect dining experience

- Data Structure Example

```
"station id": 1,
"station name": "Downtown Berkeley",
"location": {
  "latitude": 37.869799,
  "longitude": -122.268197
"meal choices": [
    "meal id": 1,
    "meal name": "Pistachio Salmon",
    "ratings": [1,2,3,4,5],
    "feedback": ["Good taste!", "Fast service!", "Overcooked"]
    "meal id": 2,
    "meal name": "Brocolli Stir Fry",
    "ratings": [1,2,3,4.5,5],
    "feedback": ["Delicious!", "Good seasoning"]
```


- Advantages over Relational Database
 - Schema Flexibility
 - Document-oriented database
 - Accommodate dynamic data
 - Adding, modifying fields
 - Dynamic Data Handling
 - Fluid representation of data
 - Better performance without complex operations
 - Scalability
 - Horizontal
 - Growing dataset associated with BART stations
 - Vertical
 - Increasing demands of dynamic menu offerings

Redis Business Case

- Goal
 - Using robots to optimize food delivery
 - Real-order tracking
 - Automated task handling
- Benefits
 - o Efficiency and speed as robots can navigate through traffic
 - Cost optimization: Using robots for food delivery can reduce human labor costs
 - Scalability and expansion: Accommodating more customers and serve a large database without compromising delivery times

Redis Business Case

- Why Redis?
 - Real-time data handling
 - Key-Value Store: managing current status of robots
 - Communication between different components
- Why not Relational Database?
 - Performance overhead: cannot deal with high amount of data updates
 - Fixed Schema: not suitable for rapidly changing data structures

Conclusion

NoSQL Databases will allow us to accomplish the companies vision more effectively than relational databases alone.

