Conformalized Survival Distributions A Generic Post-Process to Increase Calibration

Shi-ang Qi¹, Yakun Yu¹, Russell Greiner^{1,2}

¹University of Alberta, ²Alberta Machine Intelligence Institute

{shiang, yakun2, rgreiner}@ualberta.ca

OBJECTIVES

Boost a survival model's calibration ability while maintaining the same discrimination ability.

Survival Analysis

A subject (described x_i) is **right-censored** iff it has not experienced an event at the observed time. Each subject is: $[\boldsymbol{x}_i, \text{ observed time } t_i, \text{ indicator } \delta_i],$ which is based on event time e_i and censor time c_i .

$$t_i \triangleq \min\{e_i, c_i\}$$
 and $\delta_i \triangleq \mathbf{1}[e_i \leq c_i]$

Assumptions: (i) **exchangeable** and (ii) **condi**tional independent censoring, $e_i \perp c_i \mid \boldsymbol{x}_i$

Individual Survival Distribution (ISD) is a probability curve for all future times for a patient:

$$S(t \mid \boldsymbol{x}_i) = \Pr(e_i > t \mid \boldsymbol{x}_i).$$

DISCRIMINATION vs CALIBRATION

Discrimination: ability to accurately rank subjects. Calibration: predicted probs. match the obs.

Calibration in Survival Analysis

 \Rightarrow **Distribution calibration (D-cal)**[1]: the predicted survival probability at true event time, $\{\hat{S}(e_i)\}$ $\{x_i\}_i$, should follow $\mathcal{U}[0,1]$ (inverse transform theorem). For a censored subject, it follows $\mathcal{U}[0,\hat{S}(c_i\mid \boldsymbol{x}_i)]$. \Rightarrow KM calibration (KM-cal): the average predicted ISD should align with the empirical survival distribution for the dataset (Kaplan-Meier curve). See the paper for a visual example.

Conformalized Survival Distribution 0.75 0.50 0.25 0.25 --- Perfect Cal. Main steps of CSD (for uncensored subjects): Split data to a training set $\mathcal{D}_{\text{train}}$ and a conformal set \mathcal{D}_{con} . Learn a model \mathcal{M} from $\mathcal{D}_{\text{train}}$ and predict ISDs for \mathcal{D}_{con} . 3 Discretize the ISD predictions at predefined percentile levels ρ . $\hat{q}_{\mathcal{M}}(\rho \mid \boldsymbol{x}_i) = \inf\{t : \hat{S}_{\mathcal{M}}(t \mid \boldsymbol{x}_i) \leq \rho\} = \hat{S}_{\mathcal{M}}^{-1}(\rho \mid \boldsymbol{x}_i),$ • Apply conformal quantile regression [2] at each percentile level.

$\mathbf{2}\,\hat{q}'_{\mathcal{M}}(\rho \mid \boldsymbol{x}_i) = \hat{q}_{\mathcal{M}}(\rho \mid \boldsymbol{x}_i) - \text{Quantile}\left[\,\rho; \mathcal{S}_{\mathcal{M}}(\rho)\,\right],$

 $\mathbf{1} s_{i,\mathcal{M}}(\rho) = \hat{q}_{\mathcal{M}}(\rho \mid \boldsymbol{x}_i) - t_i, \quad \mathcal{S}_{\mathcal{M}}(\rho) = \{s_{j,\mathcal{M}}(\rho)\}_{j=1}^{|\mathcal{D}_{\text{con}}|},$

• Apply rearranging methods to $\hat{q}'_{\mathcal{M}}(\rho \mid \boldsymbol{x}_i)$ and transform to ISDs.

THEORETICAL GUARANTEES

Discrimination Applying the CSD adjustment does not affect the Harrell's C-index of the model.

D-cal Under the assumptions (i) & (ii), CSD exhibits exact D-cal. $\forall \rho, \quad \rho \leq \Pr(t_i \in [\hat{q}'_{\mathcal{M}}(\rho \mid \boldsymbol{x}_i), \infty] \mid \boldsymbol{x}_i) \leq \rho + 1/(|\mathcal{D}_{con}| + 1).$ KM-cal Under the assumptions (i) & (ii), CSD asymptotically exhibits exact integrated calibration at all time points.

KM-Sampling

Problem: We do not know t_i for censored subjects (step 4).

Solution: Approximate the uncertainty of t_i using a "best-guess" distribution", and sampling surrogate times from it:

$$S_{ ext{KM}}(t \mid t > c_i) = \min \left\{ \frac{S_{ ext{KM}}(t)}{S_{ ext{KM}}(c_i)}, 1 \right\}.$$

Repeat every subject R times:

$$s_{i,\mathcal{M}}^{r}(\rho) = \hat{q}_{\mathcal{M}}(\rho \mid \boldsymbol{x}_{i}) - t_{i}^{r},$$

For a censored subject:

 $t_i^r \sim S_{\text{KM}}(t \mid t > c_i)$. For an uncensored subject:

 $t_i^r \leftarrow e_i$

Why choose KM? It is guaranteed to be asymptotically calibrated (both D-cal and KM-cal).

Empirical Results

Blue: baseline, Orange: baseline + CSD Red dash line: empirical lower bound for calib.

Using 11 real datasets and 7 baselines, we have 76 comparisons (AFT does not converge for 1 case).

	C-index	D-cal	KM-cal	IBS	MAE-PC
Non-CSD	3(0)	8(1)	20(7)	12(0)	30(0)
CSD	13(0)	68(35)	56(30)	61(14)	45 (4)
ties	60	0	0	3	1

Number of wins (Number of significant wins with p < 0.05).

Findings from ablation studies:

- KM sampling outperforms other naive methods.
- ullet For small size data, we should reuse $\mathcal{D}_{\text{train}}$ in the conformal step to maintain discriminative power.
- Different values of ρ have minimal impacts.

REFERENCES

- [1] Humza Haider et al. Effective ways to build and evaluate individual survival distributions. JMLR 2020
- [2] Yaniv Romano et al. Conformalized Quantile Regression. NeurIPS 2019