LHAPTER 2 PLANAR TRANSFORMATIONS + DISPLACEMENT	<u> </u>		
Pass 1:			
Headings			
o Points/Vectors			
 Affine Spaces 			
 Affine Spaces don't have any vectors, they 	r're basically where po	oints live	e. (You can't
add points, only subtract them)	, , , , , , , , , , , , , , , , , , , ,		
 Vector Spaces 		ν̃εR²	ve R³
 Vectors usually expressed as other vectors 	3	T SELONGS TO	BELLINGS TO 3D
► Orthonormal bases		an a	SINCE
The most useful bases (orthogonal and unit	t vector as base)		
Coordinate systems	,		
 Locating arbitrary points 			
Planar rotational Transformations			
 Composition of Planar Rotations 			
Planar coordinate Transforms			
 Composition of Coordinate Transformations 			
 Two-link Planar manipulator kinematics 			
 Homogeneous Transformations in a plane 			
 Composition of Homogeneous Transformations 	}		
 Homogeneous Coordinates and the Affine Plane 			
○ Operators			
Composition of operators			
 Operation about a different frame 			
 Poles of planar displacements 			
There's a summary at the end of all these chapters Ju	ust start with that stup	oid thing	I
Pass 2:	Point aotation		O; = Fixed Grigin
ADDITION OF POINTS POEMY MAKE SENSE BUT SUBTRACTION OF POINTS DOES	· HAUL CAPITAL LETTER V	SUBSCRIPT	i
	VELTOR NOTATION :- COO	POLLATE AN	is /Rase
Basis = minimal set of Veltors in a vector space	i → / = 200	PAINKE	
$\vec{\mathbf{x}}_i - \vec{\mathbf{y}}_j$	•		
MOST IMPORTANT DEPHONDRANGE			
BASES (UNIT LENGTH)			
· ·			
VECTOR COORDINATES ARE LINEAR COMBINATIONS OF ORTHONORMAL BASE VECTORS			
POTATION MATERX: $j-1$ R; = R(θ_i)			
Describes & O; From Axes ;-1 to axes ;			
. Columns ARE THE Axes of 1 EXPLOSED IN TERMS OF AXES 1-1			
. INVERSE OF POTATION MATERY IS ITS TRANSPOSE			
COOPDINATE TRANSPORMATION:			
PELATIONSHIP BETWEEN TWO ARBITRARY COORDINATE SYSTEMS BY A DISPLACEMENT BETWEEN	I opligins + Rotation Between ax	(ES	
· · · · · · · · · · · · · · · · · · ·			
Pole			
POINT THAT DOGNT MOVE UNDER PLANAR DEFATOR			
. Unique INVELL dicas C BUS TRANSPATION			

A.																		
OPERATORS CAN	BE	PELATED TO	POLE	ВÀ	Ppe	2	POST	MULTIPL	YING T	N	COOPPINATE	TRANSFORMATION	70	DIFFERENT	Frame	+	MS	inverse

PASS 3 :

. WE ATTACH COOPDINATE SYSTEMS TO PRIETS + ROTATE THEM

· UNIT VECTORS ARE EQUAL IF THEY ARE POINTED IN THE SAME DIRECTION

. We can describe points as $X_2 = O_2 + \vec{x}_2$

$$X_j = 0_j + \vec{x}_j$$
 or $X_1 - 0_1 = \vec{x}_1$

ARBITRARY POINTS

PRINT: P_2 $P_2 = P_{21} \frac{x_2}{x_2} + \frac{2}{P_{22} \frac{y_2}{y_2}}$ Point P_2 Vector wet Basis $\{2\}$

Pr = P21 1 1 1 P22 4 1 } " WET BASIS [1

PLANAR ROTATION TRANSFORMATION

Two coordinate systems:

·ORIGINS COINCIDE

· Axes 1 ROTATED BY O, FROM AXES O

AXES I WET AXES

$$\frac{\alpha_{x_{1}}}{x_{1}} = \frac{\alpha_{x_{1}}}{\alpha_{x_{0}}} + \frac{\alpha_{x_{12}}}{\alpha_{x_{12}}} + \frac{\alpha_{x_{$$

PELATIONSHIPS :

$$\frac{\delta_{X_1}}{X_1} = \frac{\delta_{X_2}}{X_3} \cos \theta_1 + \frac{\delta_{X_3}}{Y_3} \cos \theta_1 = \begin{bmatrix} \delta_{X_3} & \delta_{Y_3} \\ \delta_{Y_3} & \delta_{Y_3} \end{bmatrix} \begin{bmatrix} \cos \theta_1 \\ \cos \theta_2 \end{bmatrix} = \begin{bmatrix} \cos \theta_1 \\ \sin \theta_2 \end{bmatrix} = \begin{bmatrix} \cos \theta_1 \\ \cos \theta_2 \end{bmatrix} = \begin{bmatrix} \cos \theta_1 \\ \cos \theta_2 \end{bmatrix}$$

PLANAR ROTATION MATRIX ...

Composition in Serimon America (Serimon America):

$$y = y(0)^{T-1}y$$
Composition in Serimon America (Rea and $j = 1$)

$$y = y(0)$$
Anti-tod in to

$$y = y(0)$$

$$y = y(0)$$
Allowing that:

$$y = y(0)$$

$$y = y(0)$$

$$y = y(0)$$
(E₁) - $y(0)$ - $y(0)$

Respectively.

$$y = y(0)$$
(E₂) - $y(0)$

$$y = y(0)$$
(E₂) - $y(0)$

Respectively.

$$y = y(0)$$
(E₂) - $y(0)$

$$y = y(0)$$
(E₂) - $y(0)$

$$y = y(0)$$
(E₃) - $y(0)$

$$y = y(0)$$
(E₄) - $y(0)$

(E₄

$$P = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \xrightarrow{\Gamma} \qquad P = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$\begin{cases} b_1 \\ b_2 \\ b_3 \end{cases}$$

COORDINATE TRANSFORM

$$\begin{bmatrix} {}^{\circ}P_{1} \\ {}^{1} \end{bmatrix} = \begin{bmatrix} {}^{\circ}P_{1}, {}^{\circ}P_{1} + {}^{\circ}\overline{P}_{0}, \\ {}^{\circ}P_{1}, {}^{\circ}P_{1} + {}^{\circ}\overline{P}_{0}, \\ {}^{\circ}P_{1}, {}^{\circ}P_{1} + {}^{\circ}\overline{P}_{0}, \\ {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1} + {}^{\circ}\overline{P}_{0}, \\ {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, \\ {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, \\ {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, {}^{\circ}P_{1}, \\ {}^{\circ}P_{1}, {}^{\circ}P_{$$

COMPOSITION OF HOMOGENEOUS TRANSFORMATIONS

HOMOGENEOUS MEANS SAME COORDINATE SPACE

OPERATORS.

. COOPDINATE TRANSFORMS ARE STATIC REPRESENTATIONS OF PELATIVE LOCATION MITHIN A NON-STATIC SYSTEM

· DEGEMER = DISPLACEMENT = A PROCESS OF MOVING A POINT WET TO A COORDINATE AXIS

OPERATIONS ARE IN THE FIXED FRAME

COORDINATE TRANSFORMS ARE WILL WERENT FRAME

OPERATORS:

Trans
$$(\underline{v})$$
 σ — TRANSLATES POINT P_1

$$P_2 = \sqrt{rans} \left(\frac{\sigma_1}{4} \right) P_1$$

GENERAL TRANSFORMATION OPERATOR

$$P_{L} = \begin{bmatrix} \frac{1}{2} (0) & \frac{1}{2} \\ \frac{0}{2} & 1 \end{bmatrix} P_{l} = \frac{0}{2} T_{l} P_{l}$$

Poles OF PLANAR DISPLACEMENTS	
· THERE ARE POINTS WHERE THE POINT DOESN'T MOVE	
C = POLE VECTOR P(6) = ABBITRARY ROTATION	
C : POLE POINT 1 TRANSLATION	
<u></u>	
c = R'c + d => c = (I - P) d	
PURE TRANSLATION MAS Z= I	