I. OPERATORI CHIUSI

È noto che gli operatori non limitati non sono continui. Per esempio, in $L^2[0,\infty]$ per l'operatore di moltiplicazione per x, Tf=g=xf, definito sul dominio $D_T=\{f\in L^2, xf\in L^2\}$ esistono successioni $f_n=\frac{1}{n}\chi_{[0,n]}$ tali che $\|f_n\|^2=\frac{1}{n}\to 0$, mentre $\|xf_n\|^2=\frac{n}{3}\to\infty$. Anche per l'operatore derivata definito su $C^1[0,1]\subset L^2[0,1]$, Df=f'(x), che non è limitato (se $f_n\equiv \exp(inx)$ è $\|f_n\|=1$, $\|Df_n\|\to\infty$) la successione $\frac{1}{n}f_n$ tende a 0, mentre $\frac{1}{n}Df_n$ non tende a D0=0: $\|\frac{1}{n}Df_n\|=1$.

In entrambi i casi esistono successioni x_n di vettori nel dominio dell'operatore convergenti a un vettore x nel dominio (il vettore nullo, nei due casi visti), ma è $\lim Tx_n \neq Tx$, proprietà che evidenzia la non continuità, Esiste però una differenza notevole. Per T (Tf = xf) vale questa proprietà: se $D_T \ni f_n \to f$ e $xf_n \to g$, allora $f \in D_T$ e g = xf. In altre parole, sulle successioni convergenti tali che anche la successione dei trasformati converge l'operatore si comporta "come se fosse continuo". La non continuità è manifestata nel fatto che esistono successioni convergenti i cui trasformati non convergeno. Verifichiamo che T la proprietà detta.

Sia $f_n \to f$, $xf_n \to g$ (in norma L^2). Dobbiamo vedere che $f \in D_T$, cioè che $xf \in L^2$, e che g = xf. Dato che è $xf \in L^2[0,R] \ \forall R > 0$, usando $|a+b|^2 \le |a+b|^2 + |a-b|^2 = 2|a|^2 + 2|b|^2$ si ha:

$$\int_0^R |xf - g|^2 dx = \int_0^R |xf - xf_n + xf_n - g|^2 dx \le 2 \int_0^R |xf - xf_n|^2 dx + 2 \int_0^R |xf_n - g|^2 dx \le 2 \int_0^R |xf - xf_n|^2 dx + 2 \int_0^R |xf - xf_n|^2 dx \le 2 \int_0^R |xf - xf$$

$$2R^2 \int_0^R |f - f_n|^2 dx + 2 \int_0^\infty |x f_n - g|^2 dx \le 2R^2 \int_0^\infty |f - f_n|^2 dx + 2 \int_0^\infty |x f_n - g|^2 dx.$$

Fissato ϵ , dato che $||f_n - f|| \to 0$ e $||xf_n - g|| \to 0$ posso prendere n così grande che entrambi gli addendi nell'ultimo membro siano $< \epsilon$ onde il primo membro è $< 2\epsilon$. Per l'arbitrarietà di ϵ ne segue $\int_0^R |xf - g|^2 dx = 0$, cioè xf = g in [0, R] quasi ovunque. Dato che questo vale per ogni R, è $xf = g \in L^2$ q.o., cioè $f \in D_T$. È quindi vero che il limite delle f_n è in D_T , e che $g = \lim T f_n = xf = T \lim f_n$.

delle f_n è in D_T , e che $g = \lim T f_n = xf = T \lim f_n$. Per l'operatore D definito su C^1 questo non accade. Vediamo un esempio. Sia $f(x) = |x - \frac{1}{2}|$, $\{e_n = \exp(2n\pi ix)\}$ una base di L^2 , $f_N = \sum_{-N}^{N} (e_k, f) e_k \equiv \sum_{-N}^{N} a_k e_k$. I coefficienti a_k sono

$$a_k = \frac{(-1)^k - 1}{2k^2\pi^2}$$
 so $k \neq 0$ $a_0 = \frac{1}{4}$.

Ora, la successione f_N converge a f, la successione Df_N è ancora convergente perché i suoi coefficienti di Fourier decrescono come $\frac{1}{k}$ (il suo limite è la "derivata a tratti" g(x) = -1 in $(0, \frac{1}{2})$, g(x) = 1 in $(\frac{1}{2}, 1)$: è generale che se $\{a_k\}$ e $\{ka_k\}$ sono in l^2 allora f è assolutamente continua e la derivata si può passare sotto la serie; oppure si può verificare che g ha i coefficienti detti). Ma $f \notin C^1$, quindi, sebbene convergano le f_N e le Df_N non è vero che lim $f_N \in D_D$.

Gli operatori che si comportano come T, tali cioè che, se $D_T \ni x_n \to x$ e $Tx_n \to y$, allora $x \in D_T$ e y = Tx, si chiamano operatori chiusi. Quelli per cui questo non accade si dicono non chiusi. La spiegazione del nome è nella seguente controparte geometrica della definizione.

Sia $K \equiv H \times H$. Un suo elemento lo indico con $\{x,y\}$, $x,y \in H$. Definiamo in K una struttura vettoriale nel modo ovvio:

$$\{x,y\} + \{a,b\} = \{x+a,y+b\}$$
 $\alpha\{x,y\} = \{\alpha x, \alpha y\}.$

Introduciamo in K il prodotto scalare

$$(\{x,y\},\{a,b\}) \equiv (x,a) + (y,b).$$

Allora

$$\|\{x,y\}\|^2 \equiv (\{x,y\},\{x,y\}) = \|x\|^2 + \|y\|^2$$

è definita positiva e ha le proprietà di una norma, rispetto alla quale K risulta completo. Infatti, se $\{\{x_n, y_n\}\}$ è di Cauchy, dato ϵ , per $n, p > N_{\epsilon}$ è

$$\epsilon > \|\{x_n, y_n\} - \{x_p, y_p\}\|^2 = \|x_n - x_p\|^2 + \|y_n - y_p\|^2,$$

da cui si vede che anche $\{x_n\}$ e $\{y_n\}$ sono di Cauchy. Se x e y sono i rispettivi limiti, è immediato verificare che $\{x,y\}$ è il limite di $\{\{x_n, y_n\}\}$. Quindi K è completo ed è uno spazio di Hilbert. In generale

$$\{a_n.b_n\} \to \{a,b\} \Leftrightarrow a_n \to a, \quad b_n \to b.$$

Il grafico di un operatore T, G_T , è definito in modo naturale come segue:

$$G_T = \{\{a, b\}; a \in D_T, b = Ta\}.$$

 G_T è un sottospazio vettoriale di K, perché D_T è un sottospazio vettoriale di H. G_T può essere chiuso relativamente alla norma di K (nel qual caso è un sottospazio di Hilbert) oppure no. Verifichiamo che G_T è chiuso se e solo se T è chiuso (e questo giustifica il nome).

 G_T chiuso $\Rightarrow T$ chiuso. Sia $\{x_n\} \subset D_T$ una successione tale che $x_n \to x$ e $Tx_n \to y$. Allora in K la successione di elementi di G_T $\{x_n, Tx_n\}$ converge a $\{x, y\}$, che è in G_T perché G_T è chiuso. Questo significa che $x \in D_T$ e y = Tx, cioè T è chiuso.

T chiuso $\Rightarrow G_T$ chiuso. Sia $\{x_n, Tx_n\}$ una successione di Cauchy in G_T . Allora in K, che è chiuso, esiste un elemento $\{x,y\}$ tale che $\{x_n,Tx_n\} \to \{x,y\}$. Questo equivale a dire che $x_n \to x$, $Tx_n \to y$. Dato che T è chiuso, $x \in D_T$ e y = Tx. Allora $\{x, y\} \in G_T$ e quindi G_T è chiuso.

Un operatore limitato, essendo continuo, è evidentemente chiuso, perché se $x_n \to x$ certamente Tx_n converge a un certo y, e per la continuità è y=Tx. Un operatore chiuso può non essere limitato (esempio Tf=xf in L^2 su un intervallo non limitato), ma se un operatore chiuso è definito su tutto H si può dimostrare che è limitato (teorema del grafico chiuso).

AGGIUNTO DI UN OPERATORE

Una famiglia importante di operatori chiusi è data dagli aggiunti di operatori T non limitati. L'aggiunto T^{\dagger} di un operatore T non limitato (ma definito su un D_T denso, vedremo perché) è definito come segue. Il suo dominio $D_{T^{\dagger}}$ è costituito dai vettori x per i quali esiste un vettore x^* con la proprietà che

$$(x, Ty) = (x^*, y) \quad \forall y \in D_T.$$

Il vettore x^* è unico, perché se supponiamo che per due vettori x_1^* e x_2^* valga la proprietà detta, per la differenza sarebbe $(x_1^* - x_2^*, y) = 0 \ \forall y \in D_T$ denso, e quindi $x_1^* - x_2^* = 0$ (onde la richiesta che D_T sia denso). T^{\dagger} è quindi ben definito, e per la linearità del prodotto scalare $D_{T^{\dagger}}$ è un sottospazio vettoriale e T^{\dagger} è un operatore lineare. Non è mai $D_{T^{\dagger}} = \emptyset$, perché x = 0 è sempre in $D_{T^{\dagger}}$, con $x^* = 0$.

Verifichiamo che T^{\dagger} è chiuso. Se $D_{T^{\dagger}} \ni x_n \to x$ e $x_n^* \to z$, per ogni n è

$$(x_n, Ty) = (x_n^*, y) \quad \forall y \in D_T.$$

Facendo il limite per $n \to \infty$, per la continuità del prodotto scalare si trova

$$(x, Ty) = (z, y) \quad \forall y \in D_T.$$

Questa relazione dice che $x \in D_{T^{\dagger}}$ e che è $z = x^* \equiv T^{\dagger}x$. Quindi T^{\dagger} è chiuso. Come per gli operatori limitati, T^{\dagger} soddisfa con T la relazione

$$(x, Ty) = (T^{\dagger}x, y) \quad \forall y \in D_T,$$

con la differenza che per operatori limitati $D_T = H$, $D_{T^{\dagger}} = H$, mentre per operatori non limitati D_T è solamente denso, e $D_{T^{\dagger}}$ può ridursi al solo vettore nullo (vedremo un esempio).

Nel caso dell'operatore T visto all'inizio, Tf = xf, esso ha dominio denso (le funzioni a supporto compatto sono in D_T). Cerchiamo T^{\dagger} e vediamo che è $T^{\dagger} = T$ (onde T è necessariamente chiuso, come del resto si è già visto). Dapprima vediamo che se $g \in D_{T^{\dagger}}$ allora è $g \in D_T$ e $T^{\dagger}g = Tg$ (e questa situazione, $D_{T^{\dagger}} \subset D_T$ e $T^{\dagger}g = Tg$ per $g \in D_{T^{\dagger}}$, si indica con la notazione $T^{\dagger} \subset T$) e poi vediamo che vale anche la relazione inversa $T \subset T^{\dagger}$. Quindi T e T^{\dagger} risulteranno avere lo stesso dominio su cui agiscono nello stesso modo, per cui è $T=T^{\dagger}$. In generale, se per due operatori $A \in B \ e$ $D_A \subset D_B \ e$ su $D_A \ e$ Bx = Ax si dice che B e un'estensione di A, e si indica questo fatto con la notazione $A \subset B$.

 $T^{\dagger} \subset T$. Se $g \in D_{T^{\dagger}}$ esiste g^* tale che $\forall f \in D_T$ è $(g^*, f) = (g, xf)$, ossia $\int_0^{\infty} [\overline{g^*} - x\overline{g}] f dx = 0$. Non sappiamo ancora che $xg \in L^2[0, \infty)$, ma certamente $xg \in L^2[0, R]$, perché è |xg| < R|g|. Se consideriamo le f con supporto in [0, R], si vede che $g^* - xg$ è ortogonale a tali funzioni, e quindi in [0, R] è $g^* = xg$ q.o.. Essendo R qualunque, è $L^2 \ni g^* = xg$, da cui $g \in D_T$ e $g^* \equiv T^{\dagger}g = xg = Tg$, ossia $D_{T^{\dagger}} \subset D_T$ e $T^{\dagger}g = Tg$. $T \subset T^{\dagger}$. Se $g \in D_T$ è $xg \in L^2$, e evidentemente $(xg, f) = (g, xf) \ \forall f \in D_T$, da cui $D_T \subset D_{T^{\dagger}}$ e $T^{\dagger}g = xg = Tg$.

CHIUSURA DI UN OPERATORE

Nel caso dell'operatore derivata definito su C^1 , che risulta non chiuso perché esiste una successione convergente f_n , con Df_n anch'essa convergente, ma con $\lim f_n \notin D_D$, si potrebbe pensare di estendere il dominio di D aggiungendovi proprio quelle funzioni f che sono limiti di $f_n \in D_D$ tali che $Df_n \to g$ definendo Df = g. È quanto si fa quando si ha un operatore limitato definito su un sottospazio denso. In termini di grafico, l'estensione di un operatore T secondo il criterio detto (aggiungere al dominio gli $x = \lim x_n \in D_T$ tali che Tx_n convergono), se è possibile, corrisponde a definire un operatore il cui grafico è $\overline{G_T}$, che si chiama "chiusura di T" e si indica con \overline{T} . Quando è possibile, questa costruzione produce l'operatore \overline{T} il cui grafico $G_{\overline{T}}$ è $\overline{G_T}$. Notiamo che in ogni caso, anche se non è il grafico di un operatore, $\overline{G_T}$ è un sottospazio vettoriale di K: se $\{a,b\}$ e $\{c,d\}$ sono in $\overline{G_T}$ esistono $x_n \to a$, $z_n \to c$ tali che $Tx_n \to b$ e $Tz_n \to d$, per cui $x_n + z_n \to a + c$ e $T(x_n + z_n) \to b + d$, onde $\{a + c, b + d\} \in \overline{G_T}$. Discorso simile per $\lambda\{a, b\}$.

Il problema con un operatore T non limitato è che possono esistere due diverse successioni di vettori $\{x_n\}$ e $\{x'_n\}$ in D_T convergenti allo stesso x e tali che Tx_n e Tx'_n convergono a due limiti distinti. Per esempio, l'operatore definito in $L^2(-\pi,\pi) \cap C^0$ da $Tf = g(x) \equiv f(0)$ non è limitato (se $f_n(x) = \cos nx \chi_{\left[-\frac{\pi}{2n},\frac{\pi}{2n}\right]}$ è $f_n \to 0$, $Tf_n = 1$) e ha questa proprietà. Infatti, se $f_n(x) = 0$ per $x \le 0$, $f_n(x) = nx$ per $0 \le x \le \frac{1}{n}$, $f_n(x) = 1$ per $x \ge \frac{1}{n}$, allora $f_n \to f(x) = 0$ per $x \le 0$, f(x) = 1 per x > 0, e $Tf_n = 0 \,\forall n$. D'altra parte, se $g_n(x) = 0$ per $x \le -\frac{1}{n}$, $g_n(x) = 1 + nx$ per $-\frac{1}{n} \le x \le 0$, $g_n(x) = 1$ per $x \ge 0$. g_n ha lo stesso limite delle f_n (i limiti differiscono solo in x = 0) e $Tg_n = 1$. Abbiamo cioè in D_T due successioni convergenti allo stesso elemento di L^2 , i cui trasformati hanno limiti diversi.

In termini di grafico, i due vettori di $K\{f(x),0\}$ e $\{f(x),1\}$ appartengono entrambi alla chiusura $\overline{G_T}$ di G_T , essendo i limiti rispettivamente di $\{f_n, Tf_n\}$ e di $\{g_n, Tg_n\}$. Quindi anche $\{0, 1\} = \lim\{g_n - f_n, T(g_n - f_n)\}$ è in $\overline{G_T}$. Ora, il fatto che un vettore di K $\{0, a\}$ con $a \neq 0$ sia in $\overline{G_T}$ ci dice che $\overline{G_T}$ non può essere il grafico di un operatore lineare, che necessariamente trasforma il vettore nullo nel vettore nullo. Quindi condizione necessaria perché sia possibile l'estensione di T col procedimento detto è che $\{0, a \neq 0\} \notin \overline{G_T}$. La condizione d'altra parte è sufficiente a permettere la costruzione di \overline{T} . Infatti, se in $\overline{G_T}$ comparissero due elementi $\{x,y\}$ e $\{x,y'\}$ per linearità sarebbe in $\overline{G_T}$ anche la differenza $\{0,y-y'\}$. In conclusione, l'operatore \overline{T} esiste se e solo se in $\overline{G_T}$ non compaiono elementi $\{0,a\}$ con $a\neq 0$. Questo equivale a dire che se una successione $\{x_n\}$ in D_T tende a 0 e la successione dei trasformati Tx_n tende a yallora è y=0.

Verifichiamo che l'operatore D definito in $C^1[0,1]$ da Df=f' soddisfa la condizione detta. Sia $f_n \in D_D$, $f_n \to 0$, $f'_n \to g$. Per vedere che è g=0 basta vedere che è $(\varphi,g)=0$ $\forall \varphi \in C_0^{\infty}$, che è denso in L^2 . Si ha

$$(\varphi, Df_n) = (\varphi, f'_n) = \int_0^1 \overline{\varphi(x)} f'_n(x) dx = \overline{\varphi(x)} f_n(x) |_0^1 - \int_0^1 \overline{\varphi'(x)} f_n(x) dx = -(\varphi', f_n),$$

avendo eliminato il termine di bordo perché $\varphi(0) = \varphi(1) = 0$. Facendo il limite per $n \to \infty$, dato che $f'_n \to g$ mentre $f_n \to 0$, si trova $(\varphi, g) = 0$, da cui g(x) = 0 perché è ortogonale al denso C_0^{∞} . Quindi l'operatore T ammette chiusura T, il cui dominio è implicitamente definito proprio dalla condizione: $f = \lim_{n \to \infty} f_n \in D_T$ con Tf_n convergente a una certa g(x), e $\overline{T}f \equiv g(x)$.

Tale dominio è costituito dalle f(x) assolutamente continue (AC) le cui derivate sono in L^2 . Ricordiamo che le funzioni assolutamente continue sono quelle funzioni tali che $f(x) = f(0) + \int_0^x h(t)dt$ con $h \in L^1$. Si dimostra che allora f risulta derivabile quasi ovunque con f'(x) = h(x) quasi ovunque, onde nell'integrale si può sostituire h con f'. Verifichiamo che l'operatore \overline{T} è proprio l'operatore di derivazione, esteso da C^1 alle funzioni assolutamente continue con $f' \in L^2$ (che è incluso in L^1): $\overline{T}f = f'$. Sia $f = \lim f_n$ con $f_n \in C^1$, $g = \lim f'_n$. Per le f_n è

$$f_n(x) = f_n(0) + \int_0^x f'_n(t)dt.$$

Il fatto che sia $f'_n \to g$ implica $\int_0^x f'_n(t)dt \to \int_0^x g(t)dt$ uniformemente, e quindi in L^2 :

$$|\int_0^x f_n'(t)dt - \int_0^x g(t)dt| \le \int_0^x |f_n' - g|dx \le \sqrt{x} \sqrt{\int_0^x |f_n' - g|^2 dt} \le ||f_n' - g||.$$

Inoltre, dato che $f_n \to f$ in L^2 , anche la successione delle funzioni costanti $f_n(0)$ ha limite. Tale limite è evidentemente una funzione costante (le $f_n(0)$ sono ortogonali alle $\exp(2n\pi ix)$ con $n \neq 0$, e per la continuità del prodotto scalare lo è anche il limite), per cui facendo il limite si trova

$$f(x) = a + \int_0^x g(t)dt,$$

dove si legge che f è assolutamente continua $(L^2(0,1) \subset L^1(0,1))$, è a = f(0) e g = f'.

Quanto visto mostra che il dominio di \overline{D} è incluso nell'insieme delle f AC con $f' \in L^2$. Vediamo che viceversa una funzione f di tale insieme è $f(x) = \lim f_n$ con $f_n \in C^1$ e f'_n convergente in L^2 a f'. Per vederlo usiamo il fatto che se h(x) è il limite in L^2 di una successione $\{h_N\}$, allora su un compatto $\int_0^x h_N(t)dt \to \int_0^x h(t)dt$ uniformemente, e quindi in L^2 . In particolare per $x \in [0,1]$ è

$$\left| \int_0^x h(t)dt - \int_0^x h_N(t)dt \right| \le \int_0^x |h(t) - h_N(t)|dt \le \sqrt{x} \left[\int_0^x |h(t) - h_N(t)|^2 dt \right]^{\frac{1}{2}} < \|h - h_N\|.$$

Allora, se è $f(x) = f(0) + \int_0^x f'(t)dt$ e $L^2 \ni f'(t) = \lim \sum^N a_k \cos k\pi t \equiv \lim g_N(t)$, è

$$f(x) = f(0) + \int_0^x \lim g_N(t)dt = \lim [f(0) + \int_0^x g_N(t)dt] \equiv \lim f_N(x)$$

nel senso di L^2 . Ora, le f_N sono evidentemente in C^1 , e le $f_N' = g_N$ convergono a f'. Quindi $\{f, f'\} \in \overline{G_T}$, ossia $f \in D_{\overline{T}}$ e $\overline{T}f = f'$.

IV. ANCORA SULLA DERIVATA

Si poteva essere tentati di definire l'operatore D di derivata sul dominio seguente:

$$D_D = \{f(x) : f(x) \text{ è derivabile q.o.}, f'(x) \in L^2\}.$$

Un tale operatore non è chiuso. Si vede notando che sono nel dominio le funzioni a gradino (cioè costanti su sottointervalli), che sono dense in L^2 . Infatti in L^2 sono dense le funzioni continue, che su [0,1] sono anche uniformemente continue, onde possono essere approssimate uniformemente, e quindi in L^2 , da funzioni a gradino. Per vederlo, presa f continua e dato ϵ , sia $\delta(\epsilon)$ buono per la uniforme continuità. Se si suddivide [0,1] in N sottointervalli di lunghezza minore di δ e in ogni sottointevallo si definisce $s_n(x) = f(a_n)$, essendo a_n l'estremo sinistro del sottointervallo, risulta $|f(x) - s_n(x)| < \epsilon$, da cui segue $||f - s_n|| < \epsilon$.

Quindi le funzioni a gradino approssimano bene quanto si vuole le funzioni continue, e quindi tutte le f di L^2 . In particolare, data f(x) = x, esiste una successione $s_n(x)$ di funzioni a gradino che converge in norma a f(x). Per tali $s_n
in Ds_n = s'_n(x) = 0$ q.o., e quindi si ha: $s_n \to f$, $s'_n = 0$, $f \in D_D$, ma $\lim s'_n \neq Df = 1$. Quindi sul dominio detto D non è chiuso, per una ragione in un certo senso opposta a quella per cui non era chiuso se il dominio era C^1 . In quel caso, il dominio era troppo piccolo, ora è troppo grande.

L'operatore definito sopra è un esempio di operatore il cui aggiunto ha come dominio il solo vettore nullo. Infatti, supponiamo che sia $f(x) \in D_{D^{\dagger}}$, cioè esiste f^* tale che $\forall g \in D_D$ sia $(f,Dg)=(f,g')=(f^*,g)$. Considerando come g le funzioni a scalino (g'(x)=0 q.o.) si trova $(f^*,g)=(f,g')=0$, e siccome le funzioni a scalino sono dense si conclude $f^*=0$, cioè sul suo dominio D^{\dagger} fa 0. D'altra parte, se è $g(x)=\cos n\pi x$, essendo $f^*=0$ si trova $(f,\sin n\pi x)=0$, e quindi, essendo ortogonale alla base dei seni, è f(x)=0: il dominio di D^{\dagger} contiene solo il vettore nullo.

Ora cerchiamo l'aggiunto dell'operatore D (derivata definita su \mathcal{C}^1) e della sua chiusura \overline{D} , definita sulle f(x) AC con $f' \in L^2$. Risulta $D^{\dagger} = \overline{D}^{\dagger}$ per le seguenti ragioni. Essendo $D \subset \overline{D}$ sarà $D^{\dagger} \supset \overline{D}^{\dagger}$: in generale $A \subset B \Rightarrow A^{\dagger} \supset B^{\dagger}$, perché se $x \in D_{B^{\dagger}}$ è $(x, By) = (B^{\dagger}x, y) \ \forall y \in D_B$, quindi in particolare per $y \in D_A$, onde $x \in D_{B^{\dagger}} \Rightarrow x \in D_{A^{\dagger}}$ e $A^{\dagger}x = B^{\dagger}x$, cioè $B^{\dagger} \subset A^{\dagger}$. Ma per un operatore T e la sua chiusura \overline{T} definita sul dominio degli $z = \lim z_n \in D_T$ tali che $Tz_n \to y$ è anche $T^{\dagger} \subset \overline{T}^{\dagger}$: per $x \in D_{T^{\dagger}}$ e $z \in D_{\overline{T}}$ infatti si ha

$$(x, \overline{T}z) = (x, \lim Tz_n) = \lim(x, Tz_n) = \lim(T^{\dagger}x, z_n) = (T^{\dagger}x, z)$$

cioè $x \in D_{T^{\dagger}} \Rightarrow x \in D_{\overline{T}^{\dagger}}$ e $\overline{T}^{\dagger}x = T^{\dagger}x$, ossia $T^{\dagger} \subset \overline{T}^{\dagger}$.

Fissiamo le idee su \overline{D} , e per semplicità chiamiamolo T. Se $f \in D_{T^{\dagger}}$ e $f^* = T^{\dagger}f$ deve essere $(f, Tg) \equiv (f, g') = (f^*, g)$. Definendo $F^*(x) = \int_0^x f^*(t)dt$ si trova

$$(f,g') = (f^*,g) = \int_0^1 \overline{f^*(x)}g(x)dx = \overline{F^*(x)}g(x)|_0^1 - \int_0^1 \overline{F^*(x)}g'(x)dx = (f^*,u) - \int_0^1 \overline{F^*(x)}g'(x)dx$$

con u(x) = 1, $u \in D_T$. Ma essendo $f^* = T^{\dagger} f$ è $(f^*, u) = (T^{\dagger} f, u) = (f, Tu) = 0$. Quindi il termine di bordo scompare e si ottiene

$$0 = \int_0^1 [\overline{f(x)} + \overline{F^*(x)}] g'(x) dx \Rightarrow f(x) + \int_0^x f^*(t) dt = 0$$

perché le g' con $g \in D_T$ sono un insieme denso (per esempio le x^n sono di questo tipo). Quindi ogni $f \in D_{T^{\dagger}}$ è AC e $L^2 \ni f^* = T^{\dagger} f = -f', f(0) = 0$ e $f(1) = -(f^*, u) = 0$. Queste condizioni su f sono necessarie perché sia $f \in D_{T^{\dagger}}$, ma esse risultano anche sufficienti perché l'uguaglianza (f, g') = (-f', g) sia soddisfatta $\forall g \in D_T$:

$$(f,g') + (f',g) = \int_0^1 [\overline{f(x)}g'(x) + \overline{f(x)}g'(x)]dx = \int_0^1 \frac{d}{dx} [\overline{f(x)}g(x)]dx = \overline{f(1)}g(1) - \overline{f(0)}g(0) = 0.$$

In conclusione è $D_{T^{\dagger}} = \{f(x), f \in AC, f(1) = f(0) = 0, f' \in L^2\}$ e $T^{\dagger}f = -f'$.

L'operatore $CD_{T^{\dagger}} = \{f(x), f \in AC, f(1) = f(0) = 0, f \in L\}$ e $I \circ f = I \circ f = -f$. L'operatore T^{\dagger} ha quindi un dominio incluso in D_T e sulle f di tale dominio è $T^{\dagger}f = -f' = -Tf$. T^{\dagger} è necessariamente chiuso, essendo l'aggiunto di un operatore, ma si può verificarne la chiusura anche direttamente. Infatti, sia $\{f_n\}$ una successione di funzioni AC, con $f'_n \in L^2$ e tali che $f_n(1) = f_n(0) = 0$ (cioè in $D_{T^{\dagger}}$), tali che $f_n \to f$ e $T^{\dagger}f_n = -f'_n \to g$. Da $f_n(x) = \int_0^x f'_n(t) \, dt$ mandando n a ∞ si ricava $f(x) = -\int_0^x g(t) \, dt$. Ne segue che f è AC con f' = -g, che è f(0) = 0 e

$$f(1) = -\int_0^1 g(t) dt = (1, \lim f'_n) = \lim(1, f'_n) = \lim 0 = 0$$

avendo usato il fatto che $\int_0^1 f_n'(t)dt = f_n(1) - f_n(0) = 0$. Quindi f è AC e vale 0 agli estremi, $f' = -g \in L^2$, cioè f è in $D_{T^{\dagger}}$, e il limite dei trasformati (-g) è il trasformato del limite delle f_n , cioè di f. Quindi ritroviamo che l'operatore è chiuso.

Come abbiamo già discusso, se restringiamo D_T , il dominio del corrispondente operatore aggiunto sarà più grande (o uguale) del dominio attuale Chiediamoci se sia possibile restringere il dominio D_T (che deve comunque rimanere denso in H perché esista T^{\dagger}) in modo tale che sia $D_{T^{\dagger}} = D_{T}$. Vediamo che anche sul risultante dominio esteso di T^{\dagger} è $T^{\dagger}g = -g'$. Non si può ripetere il discorso di prima, perché, avendo ristretto D_T , il vettore u potrebbe non appartenere piú a D_T (e infatti come vedremo in generale $u \notin D_T$). Però in $D_{T^{\dagger}}$ ci sono certamente i sin $n\pi x$, perché sono nel dominio del T^{\dagger} originario. Allora da

$$(f^*,g) = (f,g') = \int_0^1 \overline{f(x)}g'(x)dx = \int_0^1 \overline{f^*(x)}g(x)dx = \overline{F^*(x)}g(x)|_0^1 - \int_0^1 \overline{F^*(x)}g'(x)dx$$

ponendo $g(x) = \sin n\pi x$ si vede che il termine di bordo scompare, e si ottiene $(f + F^*, \cos n\pi x) = 0$ per $n \ge 1$, onde $f(x) + \int_0^x f^*(t)dt = \text{costante} = f(0), \text{ e } f^*(x) = -f'(x).$

Una conseguenza di $T^{\dagger}f = -f'$ e dell'uguaglianza dei domini (ancora da determinare) di T^{\dagger} e T è la seguente. Se $g \in D_T$ è

$$(g, Tg) = (g, g') = (T^{\dagger}g, g) = -(g', g),$$

cioè $\int_0^1 \frac{d}{dx} |g(x)|^2 dx = 0$, da cui $|g(1)|^2 = |g(0)|^2$, ossia $g(1) = e^{i\alpha_g} g(0)$. Prendendo g e h in D_T , e quindi htale che $h(1) = e^{i\alpha_h}h(0)$, da $(h, Tg) = (T^{\dagger}h, g)$ segue (h, g') + (h', g) = 0, e quindi $\overline{h(1)}g(1) - \overline{h(0)}g(0) = 0$, cioè $[e^{i(\alpha_g-\alpha_h)}-1]\overline{h(0)}g(0)=0$. Questo significa che α_g di fatto è indipendente da g, e quindi le funzioni di un D_T cosí ristretto sono tali che $g(1) = e^{i\alpha}g(0)$. Notiamo che u(x) = 1 non soddisfa questa condizione se non è $\alpha = 0$.

Chiamiamo T_{α} l'operatore derivata definito sulle g AC con $g' \in L^2$ che soddisfano la condizione al contorno detta, con α fissato. Verifichiamo che, se è

$$D_{T_{\alpha}} = \{ f : f \ AC, \quad f \in L^2, \quad f(1) = e^{i\alpha} f(0) \}$$

allora $T_{\alpha}^{\dagger} = -T_{\alpha}$. Se $f \in D_{T_{\alpha}}$, per ogni $g \in D_{T_{\alpha}}$ è

$$(f, T_{\alpha}g) = (f, g') = \overline{f}g|_{0}^{1} - (f', g) = -(f', g) \equiv (T_{\alpha}^{\dagger}f, g)$$

da cui si vede che è $-T_{\alpha} \subset T_{\alpha}^{\dagger}$. Ma è anche $T_{\alpha}^{\dagger} \subset -T^{\alpha}$. Dato che sappiamo già che f è AC e $T_{\alpha}^{\dagger}f = -f'$, basta vedere che se $f \in D_{T_{\alpha}^{\dagger}}$ allora è $f(1) = e^{i\alpha}f(0)$. In effetti, se $f \in D_{T_{\alpha}^{\dagger}}$ e $g \in D_{T_{\alpha}}$ si ha

$$(f, T_{\alpha}g) = (f, g') = (T_{\alpha}^{\dagger}f, g) = -(f', g) \Rightarrow \overline{f(1)}g(1) = \overline{f(0)}g(0) \Rightarrow [\overline{f(1)}e^{i\alpha} - f(0)]g(0) = 0,$$

da cui $f(1) = e^{i\alpha} f(0)$. È quindi vero che le funzioni in $D_{T_{\alpha}^{\dagger}}$ sono anche in $D_{T_{\alpha}}$, e quindi è $T_{\alpha}^{\dagger} = -T_{\alpha}$. Se $Z_{\alpha} \equiv -iT_{\alpha}$, Z_{α} risulta autoaggiunto.

Si poteva procedere diversamente, partendo con un operatore derivata definito sul dominio

$$D_T = \{ f(x) : f \ AC, \quad f' \in L^2, \quad f(0) = f(1) = 0 \}.$$

Il dominio è denso perché contiene i $\sin n\pi x$, T è tale che $(f,Tg)+(Tf,g)=\int_0^1\frac{d}{dx}[\overline{f(x)}g(x)]dx=0 \ \forall f,g\in D_T;$ quindi $D_{T^\dagger}\supseteq D_T$, e su D_T $T^\dagger f=-f'=-Tf$. Vediamo che D_{T^\dagger} è costituito dalle f AC con $f'\in L^2$. Se $g(x)=\sin n\pi x$ come già visto si ha

$$(f,g') = (f^*,g) \Rightarrow f(x) = a - \int_0^x f^*(t)dt \Rightarrow f^*(x) = -f'.$$

Questa condizione è anche sufficiente a garantire (f, g') = -(f', g) perchè il termine di bordo scompare grazie alla condizione g(1) = g(0) = 0, quindi

$$D_{T^{\dagger}} = \{ f \ AC, f' \in L^2 \}.$$

Ora si può allargare il dominio di T, con conseguente restrizione di D_{T^\dagger} e ritrovare la condizione perché sia $D_T = D_{T^\dagger}$. Finché è $D_T \subseteq D_{T^\dagger}$ la richiesta $(g,g') = -(g',g) \Rightarrow g(1) = e^{i\alpha_g}g(0)$, e da (h,g') = -(h',g) per ogni $h,g \in D_T$ si vede che α è la stessa per tutte le funzioni di D_T . Cercando l'aggiunto di T definito sul dominio delle f AC con $f(1) = e^{i\alpha}f(0)$ e $f' \in L^2$ si ritrova che T^\dagger ha lo stesso dominio, e inoltre, come già notato, $T^\dagger f = -f' = -Tf$. In $L^2(-\infty,\infty)$, se definiamo la derivata su $D_T = \{f \ AC, \ f' \in L^2\}$, tale operatore risulta antiautoaggiunto, cioè $T^\dagger = -T$, e se $Z = \pm iT$ è $Z^\dagger = Z$. Infatti, essendo $f(x)f'(x) \in L^1$ in quanto prodotto di funzioni L^2 , deve esistere il limite per $a \to \pm \infty$ di $\int_0^a f(x)f'(x)dx = \frac{1}{2}[f^2(a) - f^2(0)]$, e quindi di f(a). Ma se una $f \in L^2$ ha limite per $x \to \pm \infty$, tale limite è 0. Questo garantisce che se $f \in D_T$ allora $f \in D_{T^\dagger}$ e $T^\dagger f = -f'$. Infatti $\forall f, g \in D_T$ è

$$(f,Tg) = \int \overline{f(x)}g'(x)dx = \overline{f(x)}g(x)|_{-\infty}^{\infty} - \int \overline{f'(x)}g(x)dx = (-f',g) \equiv (T^{\dagger}f,g).$$

Vediamo ora che è $D_{T^{\dagger}} \subset D_T$. Fissato R, le funzioni $\{\sin n\pi \frac{x}{R}, \cos(n+\frac{1}{2})\pi \frac{x}{R}\}$, che sono un insieme completo in $L^2[-R,R]$, se prolungate a 0 oltre $|x| \leq R$ sono in D_T , e anche l'insieme delle loro derivate, più la costante, è un insieme completo in $L^2[-R,R]$ (sono le soluzioni di $X''=-\lambda X$ con condizioni al contorno $X(\pm R)=0$ o $X'(\pm R)=0$ rispettivamente). Se $\{g_n\}$ è il primo dei due insiemi completi e $f\in D_{T^{\dagger}}$, si trova

$$(f, g'_n) = (f^*, g_n) = \overline{F^*}g_n|_{-R}^R - (F^*, g'_n) = -(F^*, g'_n)$$

perchè il termine di bordo scompare. Si trova $(f+F^*,g'_n)=0$, da cui $f+F^*=$ costante in [-R,R], e siccome R è qualunque, $f(x)+F^*(x)=f(0)$, da cui f è AC , $f'=-f^*\in L^2$, cioè $D_{T^\dagger}\subset D_T$. In conclusione è $D_{T^\dagger}=D_T$ e $T^\dagger=-T$: T è antiautoaggiunto, -iT è autoaggiunto.