Conditional Logic Equivalences

	Conditional '→'	Biconditional '↔'
	$\phi \to \psi \iff \neg \phi \lor \psi$	
Implication	$\neg(\phi \to \psi) \Leftrightarrow \phi \land \neg \psi$	
Equivalence		$\varphi \leftrightarrow \psi \Leftrightarrow (\varphi \to \psi) \land (\psi \to \varphi)$
Equivalence		$\varphi \leftrightarrow \psi \Leftrightarrow (\varphi \land \psi) \lor (\neg \varphi \land \neg \psi)$
Contraposition	$\phi \to \psi \iff \neg \psi \to \neg \phi$	
Exportation	$\phi \to (\psi \to \lambda) \iff (\phi \land \psi) \to \lambda$	
'Distribution'	$\phi \rightarrow (\psi \land \lambda) \Leftrightarrow (\phi \rightarrow \psi) \land (\phi \rightarrow \lambda)$	
	$(\phi \lor \psi) \to \lambda \Leftrightarrow (\phi \to \lambda) \land (\psi \to \lambda)$	
	$\varphi \to (\psi \lor \lambda) \Leftrightarrow (\varphi \to \psi) \lor (\varphi \to \lambda)$	
	$(\phi \land \psi) \to \lambda \Leftrightarrow (\phi \to \lambda) \lor (\psi \to \lambda)$	
	$\phi \wedge (\phi \rightarrow \psi) \Leftrightarrow \phi \wedge \psi$	$\varphi \wedge (\varphi \leftrightarrow \psi) \Leftrightarrow \varphi \wedge \psi$
'Reduction'	$\neg \Psi \wedge (\phi \rightarrow \Psi) \Leftrightarrow \neg \Psi \wedge \neg \phi$	$\neg \phi \land (\phi \leftrightarrow \psi) \Leftrightarrow \neg \phi \land \neg \psi$
'Knight's Rule'		$\varphi \leftrightarrow (\varphi \land \psi) \Leftrightarrow \varphi \rightarrow \psi$
'Knaves' Rule'		$\phi \leftrightarrow (\phi \lor \psi) \Leftrightarrow \psi \to \phi$
	(0) (0 🗇 (0	
'Idempotence'		
1	Ψ / Ψ Ψ	
	$\phi \rightarrow \phi \Leftrightarrow T$	$\phi \leftrightarrow \phi \Leftrightarrow T$
'Complement'		$\phi \leftrightarrow \neg \phi \Leftrightarrow \bot$
'Identity'	$\phi \to \bot \Leftrightarrow \neg \phi$	$\phi \leftrightarrow \bot \Leftrightarrow \neg \phi$
	$T \rightarrow \phi \Leftrightarrow \phi$	$\phi \leftrightarrow T \Leftrightarrow \phi$
'Annihilation'	$\phi \to T \Leftrightarrow T$	
Biconditional	$\perp \rightarrow \phi \Leftrightarrow T$	(2 ()) () () () ()
Negation Negation		$\neg(\phi \leftrightarrow \psi) \Leftrightarrow \neg\phi \leftrightarrow \psi$ $\phi \leftrightarrow \psi \Leftrightarrow \neg\phi \leftrightarrow \neg\psi$
1 togation		$\psi \leftrightarrow \psi \Leftrightarrow \neg \psi \leftrightarrow \neg \psi$
Biconditional		$\phi \leftrightarrow \psi \Leftrightarrow \psi \leftrightarrow \phi$
Commutation		
Biconditional		$\phi \leftrightarrow (\psi \leftrightarrow \lambda) \Leftrightarrow (\phi \leftrightarrow \psi) \leftrightarrow \lambda$
Association		$\psi \wedge (\psi \wedge \wedge \wedge) \hookrightarrow (\psi \leftrightarrow \psi) \leftrightarrow \wedge$
-		$(\phi \leftrightarrow \psi) \land S(\phi) \Leftrightarrow (\phi \leftrightarrow \psi) \land S(\psi)$
Biconditional		
Substitution		