Solutions: Real and Complex Analysis by Walter Rudin

Hassaan Naeem

November 29, 2022

Chapter 1. Abstract Integration

Exercise 1

Does there exist an infinite σ -algebra which has only countably many members?

Solution: No. Impossible.

Exercise 2

Prove an analog of Theorem 1.8 for n functions.

Solution: We have that $u_1, u_2, ..., u_n$ are real measurable functions on a measurable space.

We let $f(x) = (u_1(x), u_2(x), ..., u_n(x))$. Since $h = \Phi \circ f$, Theorem 1.7 shows that it is enough to prove measurability of f.

We let $B = I_1 \times I_2 \times ... \times I_n$. We then have $f(B) = (u_1(I_1), u_2(I_2)), ..., u_n(I_n)$. We then have that $f^{-1}(B) = u_1^{-1}(I_1) \cap u_2^{-1}(I_2) \cap ... \cap u_n^{-1}(I_n)$, which is measurable by our measurability assumption on $u_1, u_2, ..., u_n$.

Every open set V in $I_1 \times I_2 \times ... \times I_n$ is a countable union of such B which we call B_i . Hence we have that $f^{-1}(V) = f^{-1}(\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} f^{-1}(B_i)$. Hence $f^{-1}(V)$ is measurable. \square

Exercise 3

Prove that if f is a real function on a measurable space X such that $\{x : f(x) \ge r\}$ is measurable for every rational r, then f is measurable.

Solution: We know that f is measurable if for every open set V in \mathcal{O}_{std} ,

 $f^{-1}(V)$ is measurable set. Here $\mathcal{O}_{std}: \{(a,b): a < x < b \ \forall x \in \mathbb{R}\}$ is the standard topology on \mathbb{R} and is just the collection of all open intervals (a,b). We know that $\{x \in X: f(x) \geq q\}$ is a measurable set $\forall q \in \mathbb{Q}$. Since we know that \mathbb{Q} is a dense subset of \mathbb{R} , we can always get arbitrarily close to any $r \in \mathbb{R}$. We let $\forall r \in \mathbb{R}, \ (q_n)_{n \in \mathbb{N}}$ be a decreasing sequence in \mathbb{Q} such that $\lim_{n \to \infty} q_n = r$. We then have that $\{x \in X: f(x) > r\} = \bigcup_{n=1}^{\infty} \{x \in X: f(x) > q_n\}$. By definition, the right hand side is measurable, hence every r is measurable. Hence, for every open interval in $I \in \mathcal{O}_{std}$, $f^{-1}(I)$ is a measurable set, hence f is measurable.

Exercise 4

Let $\{a_n\}$ and $\{b_n\}$ be sequences in $[-\infty, \infty]$, and prove the following assertions:

(a)
$$\limsup_{n \to \infty} (-a_n) = -\liminf_{n \to \infty} a_n$$

(b)
$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

provided none of the sums is of the form $\infty - \infty$.

(c) If $a_n \leq b_n$ for all n, then

$$\liminf_{n \to \infty} a_n \le \liminf_{n \to \infty} b_n$$

Show by an example that strict inequality can hold for (b).

Solution:

a)
$$\limsup_{n \to \infty} (-a_n) = \inf_{n \ge 0} \sup_{m \ge n} (-a_m)$$
$$= \inf_{n \ge 0} (-\inf_{m \ge n} a_m)$$
$$= -\sup_{n \ge 0} \inf_{m \ge n} a_m$$
$$= -\liminf_{n \to \infty} (a_n)$$

b) We let $a_n = \sup_{m \ge n} a_m$ and $b_n = \sup_{m \ge n} b_m$. It is trivial that $A \subseteq B \implies \sup A \le \sup B$. We can then observe that $\forall m \ge n, \ a_n \ge a_m$ and $b_n \ge b_m$.

Hence we have that:

$$a_n + b_n \ge a_m + b_m$$

$$\sup_{m \ge n} (a_n + b_n) = a_n + b_n \ge \sup_{m \ge n} (a_m + b_m)$$

$$\lim_{n \to \infty} (a_n + b_n) \ge \lim_{n \to \infty} \sup_{m \ge n} (a_m + b_m)$$

$$\lim_{n \to \infty} (\sup_{m \ge n} a_m + \sup_{m \ge n} b_m) \ge \lim_{n \to \infty} \sup_{m \ge n} (a_m + b_m)$$

$$\lim_{n \to \infty} \sup_{m \ge n} a_m + \lim_{n \to \infty} \sup_{m \ge n} b_m \ge \lim_{n \to \infty} \sup_{m \ge n} (a_m + b_m)$$

$$\lim_{n \to \infty} \sup_{n \to \infty} a_n + \lim_{n \to \infty} \sup_{n \to \infty} b_n \ge \lim_{n \to \infty} \sup_{n \to \infty} (a_n + b_n) \quad \square$$

$$\lim_{n \to \infty} \sup_{n \to \infty} a_n + \lim_{n \to \infty} \sup_{n \to \infty} b_n \ge \lim_{n \to \infty} \sup_{n \to \infty} (a_n + b_n) \quad \square$$

c) We have that $\forall n$:

$$\inf_{m \ge n} a_m \le \inf_{m \ge n} b_m$$

Where for the sequences $(\inf_{m\geq n} a_m)_{n\in\mathbb{N}}$ and $(\inf_{m\geq n} b_m)_{n\in\mathbb{N}}$ we have:

$$\lim_{n \to \infty} \inf_{m \ge n} a_m \le \lim_{n \to \infty} \inf_{m \ge n} b_m$$
$$\liminf_{n \to \infty} a_n \le \liminf_{n \to \infty} b_n \quad \Box$$

Exercise 5

- (a) Suppose $f:X\to [-\infty,\infty]$ and $g:X\to [-\infty,\infty]$ are measurable. Prove that the sets $\{x:f(x)< g(x)\}, \{x:f(x)=g(x)\}$ are measurable.
- (b) Prove that the set of points at which a sequence of measurable real-valued functions converges (to a finite limit) is measurable.

Solution:

a) Since f and g are measurable, from Excercise 3, we can deduce that $\forall q \in \mathbb{Q}, \{x: f(x) \geq q\}$ and $\{x: g(x) \geq q\}$ are measurable sets. Hence their complements and strict inequality conditioned sets $\{x: f(x) < q\}, \{x: g(x) < q\}, \{x: f(x) > q\}, \{x: g(x) > q\}, \{x: g(x) \leq q\}, \{x: g(x) \leq q\}$ are also measurable. We then have that $\{x: f(x) < g(x)\}, \{x: f(x) = g(x)\} \iff \{x: f(x) \leq g(x)\} = X$. Then we have:

$$\begin{split} X^C &= \{x: f(x) > g(x)\} = \bigcup_{q \in \mathbb{Q}} \left\{ \{x: f(x) > q\} \cap \{x: g(x) < q\} \right\} \\ &= \bigcup_{q \in \mathbb{Q}} \left\{ \{x: f(x) \leq q\} \cup \{x: g(x) \geq q\} \right\} \end{split}$$

which measurable since it is the union of countably many measurable sets. Hence we have that $(X^C)^C = X$ is measurable.

b) If we have a sequence of real-valued measurable functions $(f_n)_{n\in\mathbb{N}}$ which converge to a finite limit say a, we know that:

$$\lim_{n \to \infty} f_n = a \iff \liminf_{n \to \infty} f_n = \limsup_{n \to \infty} f_n = a$$

By **Theorem 1.14** we know that $h = \limsup_{n \to \infty} f_n$ and $g = \sup_{n \ge 1} f_n$ are measurable. From these it follows that $\inf_{n \ge 1} f_n$ and $\liminf_{n \to \infty} f_n$ are measurable. Then we have that $\{x : \liminf_{n \to \infty} f_n = \limsup_{n \to \infty}\} = X$ and:

$$X^{C} = \{x : \liminf_{n \to \infty} f_n > \limsup_{n \to \infty} \} \cup \{x : \liminf_{n \to \infty} f_n < \limsup_{n \to \infty} \}$$

which we know by (a) to be measurable. Hence X is measurable.

Exercise 6

Let X be an uncountable set, let \mathfrak{M} be the collection of all sets $E \subset X$ such that such that either E or E^C is at most countable, and define $\mu(E)=0$ in the first case, $\mu(E)=1$ in the second. Prove that \mathfrak{M} is a σ -algebra in X and that μ is a measure on \mathfrak{M} . Describe the corresponding measurable functions and their integrals.

Solution: By defintion $X,\emptyset\in\mathfrak{M}$. Additionally if $E\in\mathfrak{M}$, then $E^C\in\mathfrak{M}$. We then let $E=\cup_{i=1}^\infty E_i$ where $E_i\in\mathfrak{M}$. If all E_i are countable then we have that E is also countable, since a countable union of countable sets is countable, hence $E\in\mathfrak{M}$. If $\exists E_{i_u}$ such that $E_{i_u}^C$ is countable, then $E^C=\cap_{i=1}^\infty E_i^C\subseteq E_{i_u}^C$, and hence E^C is countable, hence $E\in\mathfrak{M}$. Hence \mathfrak{M} is a σ -algebra in X.

We then look at μ . We let $E = \bigcup_{i=1}^{\infty} E_i$ be a countable collection of pairwise disjoint sets $E_i \in \mathfrak{M}$. Similar to before if all E_i are countable then E is countable and hence $\sum_{i=1}^{\infty} \mu(E_i) = \sum_{i=1}^{\infty} 0 = 0 = \mu(E)$. If $\exists E_{i_k}$ such that $E_{i_k}^C$ is countable, then E^C is countable. Hence $\sum_{i=1}^{\infty} \mu(E_i) = \sum_{i=1, i \neq i_k}^{\infty} \mu(E_i) + \mu(E_{i_k}) = \sum_{i=1}^{\infty} 0 + 1 = 1 = \mu(E)$. Hence we have that $\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$. Hence μ is a measure on \mathfrak{M} .

Let $f: X \to R$, where R is an arbitrary range. We know that if f is measurable then either $f^{-1}(x)$ or $(f^{-1}(x))^C$ is measurable and hence countable. If we have that $(f^{-1}(x))^C$ is countable then by the measure μ that we have f(x) is almost constant.

Exercise 7

Suppose $f_n: X \to [0, \infty]$ is measurable for $n = 1, 2, 3, ..., f_1 \ge f_2 \ge f_3 \ge ... \ge 0$, $f_n(x) \to f(x)$ as $n \to \infty$, for every $x \in X$, and $f_1 \in L^1(\mu)$. Prove that then

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu$$

and show that this conclusion does *not* follow if the condition " $f_1 \in L^1(\mu)$ " is omitted.

Solution: If $\forall x \in X$, $f_1(x) < \infty$. We have that $\lim_{n\to\infty} f_n(x) = f(x)$ where each f_n is measurable on X. We also have that $f_1(x) \geq f_n(x) \geq 0$ hence $|f_n(x)| \leq f_1(x) \in L^1(\mu)$. By Lebesgue's Dominated Convergence Theorem (LDCT), the conclusion then follows.

Else we can let $E = \{x \in X : f_1(x) = \infty\}$. If we assume that $\mu(E) > 0$, then we also have that $\int_X |f_1| d\mu = \infty$, but since $f_1 \in L^1(\mu)$, this is a contradiction, hence $\mu(E) = 0$. Therefore we have that $\int_X |f_1| d\mu = \int_{X \setminus E} |f_1| d\mu + \int_E |f_1| d\mu = \int_{X \setminus E} |f_1| d\mu < \infty$. Hence the conclusion again follows by above.

As seen above if " $f_1 \in L^1(\mu)$ " is omitted, the conclusion does not follow.

Exercise 8

Put $f_n = \chi_E$ if n is odd, $f_n = 1 - \chi_E$ if n is even. What is the relavance of this example to Fatou's Lemma ?

Solution:

Exercise 9

Suppose μ is a positive measure on $X, f: X \to [0, \infty]$ is measurable, $\int_X f d\mu = c$, where $0 < c < \inf$, and α is a constant. Prove that

$$\lim_{n \to \infty} \int_X n \log[1 + (f/n)^{\alpha}] d\mu = \begin{cases} \infty & \text{if } 0 < \alpha < 1 \\ c & \text{if } \alpha = 1 \\ 0 & \text{if } 1 < \alpha < \infty \end{cases}$$

Solution:

Exercise 10

Suppose $\mu(X) < \infty$, $\{f_n\}$ is a sequence of bounded complex measurable functions on X, and $f_n \to f$ uniformly on X. Prove that

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f_n \, d\mu$$

and show that the hypothesis " $\mu(X) < \infty$ " cannot be omitted.

Solution: Since we have a sequence of bounded complex measurable functions, we have that $|f_n(x)| \leq g(x)$, where g(x) is some bound. Since $\mu(X) < \infty$,

then $\int_X |g(x)| < \infty$, hence $g(x) \in L^1(\mu)$. By uniform convergence, we also have that $f(x) = \lim_{n \to \infty} f_n(x)$. The conclusion then follows by LDCT.

If " $\mu(X) < \infty$ " is omitted, then we can have $\int_X |g(x)| = \infty$, and hence $g(x) \notin L^1(\mu)$ and hence LDCT does not apply, and the conclusion does not follow.

Exercise 11

Show that

$$A = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$$

in Theorem 1.41, and hence prove the theorem without any reference to integration.

Solution: If $x \in \bigcup_{k \in K} E_k$ then x is in at least one of the E_k . If $x \in \bigcap_{k \in K} E_k$ then x is in all of the E_k . Hence we can conclude that $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$ are all the elements in either $E_n, E_{n+1}, E_{n+2}, ...$, without regard for the the size of n. Hence this must be the same as being part of infinitely many of the E_k .

More formally, if x is in infinitely many E_k , then for all $n=1,2,3,...,\infty$ $\exists \, k > n: x \in E_k$. Hence $x \in \bigcup_{k=n}^{\infty} E_k$, however it is so for all n, hence it is in the interesection of all such unions, hence $x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$. For the other direction, it is enough to show that if x is not in infinitely many E_k then $A \neq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$. Hence, if x is not in infinitely many E_k , then there is some largest k and hence E_k in which x lies. Therefore, $\exists \, n > k: x \notin \bigcup_{k=n}^{\infty} E_k$. Hence $x \notin \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$ \square

We let $F_n = \bigcup_{k=n}^{\infty} E_k$. From this it is obvious that $F_{n+1} \subset F_n$. We then have that

$$\mu(A) = \mu(\bigcap_{n=1}^{\infty} F_n)$$

$$= \lim_{n \to \infty} \mu(F_n) \quad \text{(Theorem 1.19 (e))}$$

$$= \lim_{n \to \infty} \mu(\bigcup_{k=n}^{\infty} E_k)$$

$$\leq \lim_{n \to \infty} \sum_{k=n}^{\infty} \mu(E_k) = 0$$

since we know that $\sum_{k=1}^{\infty} \mu(E_k) < \infty$, as well as the fact that the tail must go to 0 (Theorem 3.23, Principles of Mathematical Analysis; Rudin).

Exercise 12

Suppose $f \in L^1(\mu)$. Prove that to each $\epsilon > 0$ there exists a $\delta > 0$ such that $\int_E |f| d\mu < \epsilon$ whenever $\mu(E) < \delta$.

Solution: Since $f \in L^1(\mu)$ we know that $\int_E |f| \, d\mu$ is finite. By definition $\int_E |f| \, d\mu = \sup \sum_{i=1}^\infty \alpha_i \mu(A_i \cap E)$. In addition we know that $\mu(E) < \delta$. Therefore for each ϵ we can choose $\delta = \frac{\epsilon}{\sum_{i=1}^n \alpha_i}$. hence we have:

$$\int_{E} |f| d\mu = \sup \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E)$$

$$\leq \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E)$$

$$\leq \sum_{i=1}^{n} \alpha_{i} \mu(E) = \mu(E) \sum_{i=1}^{n} \alpha_{i} = \delta \sum_{i=1}^{n} \alpha_{i} = \epsilon$$

Exercise 13

Show that proposition 1.24(c) is also true when $c = \infty$.

Solution: If f=0, then we have that $\int_E cf \, d\mu = \int_E \infty \cdot 0 \, d\mu = \int_E 0 \, d\mu = 0 = \infty \cdot 0 = \infty \cdot \int_E 0 \, d\mu = c \int_E f \, d\mu$.

If f>0, we know that $\infty \cdot f=\infty \ \forall f>1$. Then we have that if $\mu(E)=0$ then $\int_E cf \ d\mu=0=c\int_E f \ d\mu.$ If $\mu(E)\neq 0$, then $\int_E cf \ d\mu=\int_E \infty \cdot f \ d\mu=\int_E \infty \cdot f \ d\mu=\int_E \infty \cdot f \ d\mu=\int_E \infty \cdot \int_E f \ d\mu=c\int_E f \ d\mu.$ test