Symulacja Cyfrowa Projekt

Oskar Czyżewski

numer albumu: 126142

numer zadania: D3 S2 M3

metoda symulacji: ABC

1. Treść zadania

W chińskiej restauracji pracuje k kelnerów obsługujących n_2 stolików dwuosobowych, n_3 stolików trzyosobowych oraz n_4 stolików czteroosobowych. Klienci pojawiają się w restauracji jako grupy 1-, 2, 3- lub 4-osobowe z prawdopodobieństwami odpowiednio p_1 , p_2 , p_3 oraz p_4 . Odstęp czasu rozdzielający pojawienie się kolejnych grup klientów jest zmienną losową o rozkładzie normalnym ze średnią μ_a i wariancją σ_a^2 . Jeśli jest dostępny stolik odpowiadający wielkości grupy (lub większy), klienci są do niego prowadzeni przez kierownika sali (czynność ta zajmuje s jednostek czasu). W przeciwnym przypadku grupa oczekuje na stolik w kolejce. Średnio połowa klientów korzysta z samoobsługowego bufetu, przy którym może znajdować się jednocześnie b osób. Czas spędzany przy bufecie przez grupę klientów jest zmienną losową o rozkładzie normalnym ze średnią μ_h i wariancją σ_h^2 . Pozostali klienci są obsługiwani przez tego z kelnerów, który jako pierwszy będzie wolny. W pierwszej kolejności klienci otrzymują napoje, a następnie serwowane jest danie główne. Czas obsługi w obu przypadkach jest zmienną losową o rozkładzie wykładniczym ze średnimi odpowiednio λ_n oraz λ_i (te dwie wielkości uwzględniają zarówno czas oczekiwania na zrealizowanie zamówienia jak i sam czas podania napojów i posiłku głównego) Po zakończeniu konsumpcji, której długość jest zmienną losową o rozkładzie wykładniczym ze średnią λ_f , klient płaci jednemu z c zatrudnionych kasjerów. Czas obsługi przez kasjera jest zmienną losową o rozkładzie wykładniczym ze średnią λ_p . W restauracji zamontowano nieprawidłowo system przeciwpożarowy. Co jakiś czas, bez przyczyny, rozlega się dźwięk alarmu. Część gości, świadoma nieprawidłowości, pozostaje na miejscu, natomiast reszta opuszcza restaurację. Odstęp czasu rozdzielający kolejne alarmy jest zmienną losową o rozkładzie normalnym ze średnią $\mu_e = 4200$ i wariancją $\sigma_e^2 = 50^2$. Prawdopodobieństwo, że dana grupa nie opuści restauracji wynosi 70%. Zakładając, że kierownik sali zawsze wybiera stolik najlepiej pasujący do danej grupy oraz stosuje jedną z podanych niżej zasad obsługi kolejki, oszacuj za pomocą odpowiedniego eksperymentu symulacyjnego:

- a) średni czas oczekiwania na stolik,
- b) średnia długość kolejki oczekujących na stolik,
- c) średni czas oczekiwania na obsługę przez kelnera od momentu zajęcia miejsca przy stoliku,
- d) średnią długość kolejki przy kasach.

2. Opis modelu symulacyjnego

Schemat modelu symulacyjnego

Opis klas wchodzących w skład systemu i ich atrybutów

Nazwa Klasy	Opis	Atrybuty
Restaurant	Klasa reprezentująca	-waiters zawiera liczbę kelnerów w
	restaurację. Zawiera	restauracji
	wszystkie kolejki i atrybuty	- table_two zawiera liczbę stolików
	potrzebne do symulacji.	dwuosobowych w restauracji
		-table_three zawiera liczbę stolików
		trzyosobowych w restauracji
		- table_four zawiera liczbę stolików
		czteroosobowych w restauracji
		- buffet_seats zawiera liczbę miejsc w
		bufecie
		- manager flaga bool sprawdzająca czy
		kierownik restauracji prowadzi klientów do
		stolika
		cashiers zawiera liczbę kasjerów w
		restauracji
		· · · · · · · · · · · · · · · · · · ·
		queue_for_table reprezentuje kolejkę
		klientów do kierownika
		queue_for_buffet reprezentuje kolejkę
		klientów do bufetu
		queue_for_cashiers reprezentuje kolejkę
		klientów do kasjera
		queue_for_drink reprezentuje kolejkę
		klientów do kelnera po napoje
		queue_for_meal reprezentuje kolejkę
		klientów do kelnera po jedzenie
		1 3
		buffet_members_ - reprezentuje grupę
		klientów znajdujących się w bufecie
		clients_group_drinks reprezentuje grupe
		klientów obsługiwanych przez kelnera (
		podanie napojów)
		clients_group_meals reprezentuje grupę
		klientów obsługiwanych przez kelnera (
		podawanie jedzenia)
		members_consumption_ reprezentuje grupę
		klientów konsumujących jedzenie
Event	Klasa po której dziedziczą	event_time reprezentuje symulacyjny czas
	wszystkie zdarzenia	występowania zdarzenia
	czasowe wykorzystywane w	flag reprezentuje zmienną bool, która jest
	symulacji	przypisywana do każdego zdarzenia
		czasowego. Za jej pomocą weryfikuje się czy
		zdarzenie ma być usunięte z listy zdarzeń
		system_time reprezentuje czas systemowy

		id służy do ustawiania ID kolejnym wchodzącym klientom do restauracji
		manager_time reprezentuje systemowy czas prowadzenia klienta przez managera
Events	Klasa zawierająca metody wykonujące zdarzenia warunkowe	
Generators	Klasa służy do generowania	avg_a - parametr μ_a
	liczb pseudolosowych. Zawiera w sobie	$sigma_a$ - parametr σ_a
	implementację generatorów	$\mathbf{avg}_{\mathbf{b}}$ - parametr μ_{b}
	o rozkładzie normalnym, wykładniczym i	sigma_b_ - parametr σ_b
	równomiernym	lambda_n parametr λ_n
	·	lambda_j_ - parametr λ_j
		lambda_f_ - parametr λ_f
		lambda_p_ - parametr λ_p
		$\mathbf{avg}_{-}\mathbf{e}_{-}$ - parametr μ_{e}
		sigma_e_ - parametr σ_e
		x ziarno
Statistic	Klasa generująca statystyki	Atrybuty do generowania:
		Średniego czasu oczekiwania na stolik avg_wait_for_table_; count_wait_for_table_; n_wait_for_table_;
		Średniej długości kolejki do stolików avg_queue_table_length_; count_queue_table_length_; n_queue_table_length_;
		Średniego czasu oczekiwania na kelnera avg_waiter_; count_waiter_; n_waiter_;
		Średniej długości kolejki do kasjera avg_queue_cashier_length_; count_queue_cashier_length_; n_queue_cashier_length_;
		<pre>phase definiuje czy faza początkowa już się zakończyła</pre>

Client	Klasa reprezentująca grupę klientów przechodzącego przez kolejne elementy restauracji	client_id unikalny atrybut każdego klienta przypisywany przy wejściu do restauracji number_people reprezentuje ilość osób w grupie time_to_table reprezentuje czas oczekiwania klienta na stolik time_to_waiter reprezentuje czas oczekiwania klienta na kelnera aware zmienna boolowska reprezentująca czy klient ma świadomość wadliwości alarmu table reprezentuje wielkość stolika przy którym siedzi grupa klientów consumption – używana do sortowania klientów przy zdarzeniach czasowych
Alarm	Klasa reprezentująca zdarzenie czasowe: rozleganie się dźwięku alarmu	event_time reprezentuje symulacyjny czas występowania zdarzenia flag reprezentuje zmienną bool, która jest przypisywana do każdego zdarzenia czasowego. Za jej pomocą weryfikuje się czy zdarzenie ma być usunięte z listy zdarzeń
CashierEvent	Klasa reprezentująca zdarzenie czasowe: koniec obsługi klienta przez kasjera	event_time reprezentuje symulacyjny czas występowania zdarzenia flag reprezentuje zmienną bool, która jest przypisywana do każdego zdarzenia czasowego. Za jej pomocą weryfikuje się czy zdarzenie ma być usunięte z listy zdarzeń
EndBuffet	Klasa reprezentująca zdarzenie czasowe: koniec konsumpcji klienta w bufecie	event_time reprezentuje symulacyjny czas występowania zdarzenia flag reprezentuje zmienną bool, która jest przypisywana do każdego zdarzenia czasowego. Za jej pomocą weryfikuje się czy zdarzenie ma być usunięte z listy zdarzeń
EndConsumption	Klasa reprezentująca zdarzenie czasowe: koniec konsumpcji klienta przy stoliku	event_time reprezentuje symulacyjny czas występowania zdarzenia flag reprezentuje zmienną bool, która jest przypisywana do każdego zdarzenia czasowego. Za jej pomocą weryfikuje się czy zdarzenie ma być usunięte z listy zdarzeń
EndDrinks	Klasa reprezentująca zdarzenie czasowe: koniec obsługi klientów przez kelnera	event_time reprezentuje symulacyjny czas występowania zdarzenia flag reprezentuje zmienną bool, która jest przypisywana do każdego zdarzenia czasowego. Za jej pomocą weryfikuje się czy zdarzenie ma być usunięte z listy zdarzeń
EndMeal	Klasa reprezentująca zdarzenie czasowe: koniec obsługi klientów przez kelnera	event_time reprezentuje symulacyjny czas występowania zdarzenia flag reprezentuje zmienną bool, która jest przypisywana do każdego zdarzenia czasowego. Za jej pomocą weryfikuje się czy zdarzenie ma być usunięte z listy zdarzeń
NewClient	Klasa reprezentująca zdarzenie czasowe: pojawienie się nowego klienta	event_time reprezentuje symulacyjny czas występowania zdarzenia flag reprezentuje zmienną bool, która jest przypisywana do każdego zdarzenia czasowego. Za jej pomocą weryfikuje się czy zdarzenie ma być usunięte z listy zdarzeń

TakeTableSit	Klasa reprezentująca zdarzenie czasowe: pojawienie się nowego klienta	event_time reprezentuje symulacyjny czas występowania zdarzenia flag reprezentuje zmienną bool, która jest przypisywana do każdego zdarzenia czasowego. Za jej pomocą weryfikuje się czy zdarzenie ma być usunięte z listy zdarzeń
--------------	--	--

3. Opis przydzielonej metody symulacyjnej

Schemat blokowy pętli głównej

Lista zdarzeń czasowych i warunkowych

Zdarzenia czasowe

Zdarzenie	Opis	Algorytm
Pojawienie się	Zdarzenie generuje nowego klienta i	1. Wylosuj czas z generatora
nowego klienta	umieszcza ich w kolejce do bufetu lub w	2. Utwórz nowego klienta (
	kolejce do kierownika.	restauracja lub bufet)
		3. Umieść klienta na koniec
		kolejki
		4. Zaplanuj przybycie nowego
		klienta
Posadzenie klientów	Kierownik prowadząc klientów przez s	1. Zwolnij kierownika
przy stoliku przez	czasu umieszcza ich w odpowiednim	2. Umieść klientów na końcu
kierownika	stoliku.	kolejki po napoje
Koniec Konsumpcji	Zdarzenie wywoływane podczas	1. Zwiększ liczbę dostępnych
w Bufecie	zakończenia konsumpcji w bufecie przez	miejsc w bufecie o liczbę osób
	określoną grupę klientów.	w grupie klientów
		2. Usuń klientów z bufetu
		3. Umieść klientów na końcu
		kolejki do kasjera
Zakończenie obsługi	Kelner podał napoje klientom i zakończył	1.Usuń klientów z grupy
przez kelnera	obsługę	obsługiwanych przez kelnera
(napoje)		2.Umieść klientów na koniec
		kolejki do obsługi przez
		kelnera (jedzenie)
		3. Zwiększ liczbę dostępnych
		kelnerów o 1
Zakończenie obsługi	Kelner podał jedzenie klientom i zakończył	1.Usuń klientów z grupy
przez kelnera	obsługę	obsługiwanych przez kelnera
(jedzenie)		2.Umieść klientów do grupy
		konsumpcja
		3. Zwiększ liczbę dostępnych
Zakończenie	Viant zalrań azwi transuma się wy stalilay i	kelnerów o 1
	Klient zakończył konsumpcję w stoliku i	1.Usuń klientów z grupy
konsumpcji w stoliku	udaje się do kolejki do kasy	konsumpcja 2.Zwiększ liczbę dostępnych
Stoliku		stolików
		3.Umieść klientów w kolejce
		do kasy
Zakończenie obsługi	Kasjer zakończył obsługę klienta	1.Zwiększ liczbę dostępnych
przez kasjera	Kasjei zakonezyi oosiugę knema	kasjerów o 1
Alarm	W restauracji zamontowano nieprawidłowo	Wylosuj czas z generatora
1 11411111	system przeciwpożarowy. Co jakiś czas,	2. Usuń z restauracji
	bez przyczyny, rozlega się dźwięk alarmu.	wszystkich nieświadomych
	see prejugging, reelega sig aemigh anaima.	klientów i wszystkie
		przypisane do nich zdarzenia
		czasowe
		3. Zaplanuj czas następnego
		alarmu

Zdarzenia warunkowe

Zdarzenie	Opis	Algorytm
Przydzielenie stolików	Kierownik zaczyna prowadzić	1.Usuń klientów z kolejki do
ManagerWork	klientów z kolejki do stolika	stolików
		2.Zmiejsz liczbę dostępnych
		stolików
		3.Zaplanuj zdarzenie czasowe:
		Posadzenie klientów przy
		stoliku przez kierownika
Przydziel stanowisko w bufecie	Umieszczenie klientów z	1.Usuń klientów z kolejki do
BuffetMembers	kolejki w bufecie	bufetu
		2.Zmiejsz liczbę dostępnych
		miejsc w bufecie
		3.Zaplanuj czas końca
		konsumpcji przez klientów
Zacznij obsługę klientów przez	Kelner rozpoczyna obsługę	1.Usuń klienta z kolejki do
kelnera (napoje)	klientów	kelnera
WaiterDrink		2.Zmiejsz liczbę dostępnych
		kelnerów o 1
		3. Umieść klienta do grupy
		obsługiwanych przez kelnerów
		4.Zaplanuj czas zakończenia
		obsługi
Zacznij obsługę klientów przez	Kelner rozpoczyna obsługę	1.Usuń klienta z kolejki do
kelnera (jedzenie)	klientów	kelnera
WaiterFood		2.Zmiejsz liczbę dostępnych
		kelnerów o 1
		3. Umieść klienta do grupy
		obsługiwanych przez kelnerów
		4. Zaplanuj czas zakończenia
		obsługi
Rozpocznij płatność u kasjera		1.Usuń klientów z kolejki do
CashierWork		kasjera
		2. Zmniejsz liczbę dostępnych
		kasjerów
		3.Zaplanuj czas zakończenia
		obsługi

4. Parametry wywołania programu

```
int Generators::avg_a_ = 420;
int Generators::sigma_a_ = 50;

int Generators::avg_b_ = 2900;
int Generators::sigma_b_ = 80;
int Generators::lambda_n_ = 830;
int Generators::lambda_j_ = 2000;
int Generators::lambda_f_ = 2020;
int Generators::lambda_p_ = 2500;
int Generators::avg_e_ = 4200;
int Generators::sigma_e_ = 50;
```

5. Generatory

Generowanie ziaren

Generowałem ziarna za pomocą funkcji:

```
h=x/q
x=a*(x-q*h)-r*h
dla danych:
a=16807,
q=127773,
r=2836.
```

Po wygenerowaniu 10000 ziaren zapisałem do pliku seed.txt co 1000 ziarno. Wygenerowane ziarna:

```
423669749 2025999803 169051120622 1164489620 370389800 2060109426 736449719 1623301720 125633416 105704401
```

Generator liczb pseudolosowych o rozkładzie równomiernym

Generator uzyskuje wartości w przedziale od 0 do 1

Histogram został wygenerowany na podstawie 10000 próbek

Generator licz losowych o rozkładzie wykładniczym

```
double Generators::Exp(double avg, int & x)
{
         double k = log(Generators::Uniform((x)));
         double const val = ((-1)*(k))*avg;
         return val;
}
```

Histogram został wygenerowany na podstawie 10000 próbek i parametru $\lambda = 200$

Generator liczb losowych o rozkładzie normalnym

Histogram został wygenerowany na podstawie 10000 próbek i parametrów: μ =500 oraz σ =1

Niezależność sekwencji losowych

Najistotniejszą metodą zapewnienia niezależności jest fakt, że każda z symulacji rozpoczyna się z innym ziarnem początkowym, którym jest czas w milisekundach.

Generator liniowy wykorzystuje wartości q=127773 i r=2836 co pozwala uzyskać 2^31-1 niepowtarzalnych wartości

6. Opis zastosowanej metody testowania i weryfikacji poprawności działania programu.

Weryfikacja poprawności działania programu polegała m.in. na krokowym przechodzeniu przez pętle symulacyjną,

W ten sposób sprawdzałem czy zdarzeniom czasowym przypisywane są odpowiednie czasy symulacyjne, czy generatory zwracają odpowiednie wartości do ich parametrów oraz czy sortowanie listy zdarzeń przebiega prawidłowo.

Pomocnym sposobem weryfikacji było także debugowanie metod zastosowanych w symulacji.

Pozwoliło to sprawdzić i udowodnić, że zastosowane algorytmy, np. wyboru z kolejki pierwszej grupy mieszczącej się w wolnych stolikach, działają prawidłowo.

7. Wyniki symulacji

Wyznaczenie długości fazy początkowej

Wykres powstał na podstawie 10 symulacji z ziarnami z pliku seed.txt

Wykres stabilizuje się przy wartości około 5000 klientów i taką wartość przyjąłem jako koniec fazy początkowej.

Wyznaczenie parametrów symulacji Podczas testowania symulacji konieczna była zmiana kilku parametrów.

Parametr	Wartość początkowa	Wartość końcowa
k	13	5
n_2, n_3, n_4	8,14,4	8,14,4
p_1, p_2, p_3, p_4	0.11,0.33,0.33,0.23	0.19,0.35,0.30,0.16
$\mu_a (\sigma_a^2)$	$1500(100^2)$	$420(50^2)$
S	40	240
b	20	20
$\mu_b (\sigma_b^2)$	$2900(80^2)$	$2900(80^2)$
λ_n	370	830
λ_i	2000	2000
λ_f	2020	2020
С	6	6
λ_p	220	2500
$\mu_e (\sigma_e^2)$	$4200(50^2)$	4200 (50 ²)

Największym zmianom uległy parametry:

- Ilość kelnerów w symulacji
- Średnia i wariancja pojawiania się nowych klientów
- Średni czas obsługi przez kasjera

Tabela z wynikami symulacji dla każdego przebiegu symulacyjnego

nr symulacji	średni czas oczekiwania na stolik	średnia długość kolejki oczekujących na stolik	średni czas oczekiwania na kelnera	średnia długość kolejki przy kasach
1	571,2333	0,996202	8,253636	0,425164
2	1512,058	2,090308	9,058175	0,568700
3	1094,51	1,609844	14,91208	0,440516
4	131,8122	0,491381	23,15778	0,523892
5	1726,533	2,336981	5,461877	0,422959
6	94,69939	0,480836	29,50044	0,561609
7	132,9122	0,534596	20,71463	0,469176
8	203,8316	1,437249	20,4848	0,398151
9	214,9111	0,593854	23,58792	0,444952
10	131,7714	0,491381	14,91208	0,561609

Wyniki końcowe w postaci uśrednionych wyników po wszystkich przebiegach

średni czas oczekiwania na stolik	średnia długość kolejki oczekujących na stolik	średni czas oczekiwania na kelnera	średnia długość kolejki przy kasach
581,427223	1,106263	17,004312	0,481673

Wykres średniej ilości klientów w restauracji po odcięciu fazy początkowej

Wykres powstał na podstawie uśrednienia danych z 10 symulacji z ziarnami z pliku seed.txt Po odcięciu fazy początkowej na wykresie od początku stabilizuje się na poziomie 9 klientów. Wykres średniego czasu oczekiwania na stolik po odcięciu fazy początkowej

Wykres powstał na podstawie uśrednienia danych z 10 symulacji z ziarnami z pliku seed.txt

Po analizie symulacji stwierdziłem, że wartość średniego czasu oczekiwania na stolik jest mocno skorelowana z ilością grup 4 osobowych klientów w kolejce, ponieważ to ta grupa ma najmniejsze szanse na wejście do stolika.

Wykres średniego czasu oczekiwania na stolik po odcięciu fazy początkowej

Wykres powstał na podstawie uśrednienia danych z 10 symulacji z ziarnami z pliku seed.txt Jak można zauważyć na wykresie średni czas oczekiwania na kelnera stabilizuje się na poziomie 17 czasu symulacyjnego.

Wykres średniej kolejki do kasjerów po odcięciu fazy początkowej

Wykres powstał na podstawie uśrednienia danych z 10 symulacji z ziarnami z pliku seed.txt Po zwiększeniu czasu obsługi przez kasjera można zauważyć stabilizację ilości osób w kolejce.

Wykres średniej kolejki do kierownika po odcięciu fazy początkowej

Wykres powstał na podstawie uśrednienia danych z 10 symulacji z ziarnami z pliku seed.txt

Po odpowiednim doborze parametrów pojawiania się nowego klienta i parametru s wykres stabilizuje się na poziomie 1 klienta w kolejce.

Przedziały ufności dla parametrów z prawdopodobieństwem 95%

Parametr	min	średnia	max
średni czas	191,6168	581,4272236	971,2376
oczekiwania na			
stolik			
średnia długość	0,663402	1,106263	1,549124
kolejki			
oczekujących na			
stolik			
Średni czas	12,18152	17,00434112	21,82717
oczekiwania na			
kelnera			
średnia długość	0,440899	0,481673	0,522447
kolejki przy kasach			

8.Wnioski

Otrzymane wyniki symulacyjne są zadowalające. Poprawnie wyznaczyłem parametr końca fazy początkowej co widać na wykresie średniej liczby osób w systemie po jej odcięciu. Po wielu próbach zmian parametrów symulacji jedynym parametrem, którego nie udało mi się ustabilizować jest średni czas oczekiwania na stolik. Wynika to z faktu dłuższego, w stosunku do mniej licznych grup, oczekiwania na stolik przez 4 osobowe grupy klientów, którzy mogą usiąść jedynie w stoliku 4 osobowym.

Model symulacyjny może zostać wykorzystany w rzeczywistej restauracji w celu optymalizacji jej parametrów np. ilości stolików.