Normes

Exercice 1 ***

CCP MP 2016

Soient $\alpha_0, \dots, \alpha_n$ des réels distincts $(n \ge 1)$. On pose $N(P) = \sum_{k=0}^{n} |P(\alpha_k)|$. Montrer que N est une norme non euclidienne sur $\mathbb{R}_n[X]$.

Exercice 2 ★★★

On considère un espace euclidien E de produit scalaire $\langle \cdot, \cdot \rangle$ que l'on munit d'une norme N (qui n'est pas nécessairement la norme euclidienne associée au produit scalaire précédent). On note S la sphère unité pour la norme N i.e. $S = \{y \in E, \ N(y) = 1\}$ et on pose pour $x \in E$

$$N^*(x) = \sup_{y \in S} |\langle x, y \rangle|$$

- 1. Montrer que l'application N* est bien définie sur E.
- **2.** Montrer que N* une norme sur E.
- **3.** Dans cette question, on suppose que $E = \mathbb{R}^n$ et que $\langle \cdot, \cdot \rangle$ est le produit scalaire usuel sur \mathbb{R}^n .

Déterminer N* lorsque N est la norme $\|\cdot\|_2$, la norme $\|\cdot\|_{\infty}$ et la norme $\|\cdot\|_1$.

Exercice 3 ***

Quelques normes matricielles

Pour $A \in \mathcal{M}_{n,p}(\mathbb{R})$, on pose

$$\begin{split} \mathbf{N}_{1}(\mathbf{A}) &= \max_{1 \leq i \leq n} \sum_{j=1}^{p} |\mathbf{A}_{i,j}| \\ \mathbf{N}_{2}(\mathbf{A}) &= \max_{1 \leq j \leq p} \sum_{i=1}^{n} |\mathbf{A}_{i,j}| \\ \mathbf{N}_{3}(\mathbf{A}) &= \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{p} \mathbf{A}_{i,j}^{2}} \\ \end{split}$$

- **1.** Montrer que N_1 , N_2 , N_3 et N_4 sont des normes sur $\mathcal{M}_{n,n}(\mathbb{R})$.
- **2.** Montrer que si n = p, ce sont des normes d'algèbre sur $\mathcal{M}_n(\mathbb{R})$.

Exercice 4 **

Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

1. Montrer que pour tout $(x, y) \in E^2$,

$$||x|| + ||y|| \le 2 \max\{||x + y||, ||x - y||\}$$

- **2.** Montrer que l'on peut avoir l'égalité même si *x* et *y* sont non nuls.
- 3. Désormais la norme est euclidienne. Montrer que pour tout $(x, y) \in E^2$

$$||x|| + ||y|| \le \sqrt{2} \max\{||x + y||, ||x - y||\}$$

Peut-on améliorer la constante $\sqrt{2}$?

Exercice 5 ★★

Comparaison de normes usuelles de \mathbb{K}^n

On pose pour $x = (x_1, ..., x_n) \in \mathbb{K}^n$,

$$N_1(x) = \sum_{i=1}^n |x_i|$$
 $N_2(x) = \sqrt{\sum_{i=1}^n |x_i|^2}$ $N_{\infty}(x) = \max_{1 \le i \le n} |x_i|$

Montrer que

$$\mathbf{N}_{\infty} \leq \mathbf{N}_{1} \leq n \mathbf{N}_{\infty} \qquad \qquad \mathbf{N}_{\infty} \leq \mathbf{N}_{2} \leq \sqrt{n} \mathbf{N}_{\infty} \qquad \qquad \mathbf{N}_{2} \leq \mathbf{N}_{1} \leq \sqrt{n} \mathbf{N}_{2}$$

et montrer que chacune des ces inégalités est optimale.

Exercice 6 ★

Soit E un \mathbb{R} -espace vectoriel muni d'une norme $\|.\|$. On se donne $(x_1,\ldots,x_n)\in \mathbb{E}^n$. Montrer que l'application

$$\mathbf{N}: \left\{ \begin{array}{ccc} \mathbb{R}^n & \longrightarrow & \mathbb{R}_+ \\ (\lambda_1, \dots, \lambda_n) & \longmapsto & \left\| \sum_{k=1}^n \lambda_k x_k \right\| \end{array} \right.$$

est une norme sur \mathbb{R}^n si et seulement si (x_1, \dots, x_n) est une famille libre.

Exercice 7 ★★

Soit E un espace vectoriel que l'on munit de deux normes N_1 et N_2 . On définit les deux boules unités $B_1=\{x\in E,\ N_1(x)\le 1\}$ et $B_2=\{x\in E,\ N_2(x)\le 1\}$. Montrer que $N_1=N_2$ si et seulement si $B_1=B_2$.

Exercice 8 ★

Soit $f_n: x \in \mathbb{R}_+ \mapsto xe^{-nx}$ pour $n \in \mathbb{N}^*$. Calculer $||f_n||_{\infty}$.

Exercice 9 ★

Soit $f_n: x \in \mathbb{R} \mapsto \sin^n(x) \cos(x)$ pour $n \in \mathbb{N}^*$. Calculer $||f_n||_{\infty}$

Exercice 10 ***

Inégalités de Hölder et Minkowski

Soient p et q deux nombres réels strictement positifs tels que $\frac{1}{p} + \frac{1}{q} = 1$.

1. Prouver l'inégalité de Young,

$$\forall (u; v) \in (\mathbb{R}_+^*)^2, \ uv \le \frac{u^p}{p} + \frac{u^q}{q}$$

2. Soient x_1, \dots, x_n et y_1, \dots, y_n des réels strictement positifs. Prouver l'inégalité de Hölder,

$$\sum_{k=1}^{n} x_k y_k \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} y_k^q\right)^{\frac{1}{q}}$$

3. Soient $p > 1, x_1, \dots, x_n$ et y_1, \dots, y_n des réels strictement positifs. Prouver l'inégalité de Minkowski,

$$\left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}}.$$

Distance

Exercice 11 ★★

On considère E l'espace vectoriel des suites réelles bornées que l'on munit de la norme uniforme. On pose $u: n \in \mathbb{N} \mapsto (-1)^n$. Calculer la distance de u au sous-espace vectoriel F de E formé des suites convergentes.

Exercice 12 ★★

Soit A une partie non vide d'un espace vectoriel normé E. On pose $d(x, A) = \inf_{a \in A} d(x, a)$ pour $x \in E$. Montrer que

$$\forall (x, y) \in E^2, |d(x, A) - d(y, A)| \le d(x, y)$$

Equivalence de normes

Exercice 13 ★★★

On pose $E = C^1([0, 1], \mathbb{R})$ et pour $f \in E$, $N(f) = ||f||_{\infty} + ||f'||_{\infty}$.

- 1. Montrer que N est une norme sur E. N est-elle équivalente à $\|.\|_{\infty}$?
- **2.** Pour $f \in E$, on pose $N'(f) = |f(0)| + ||f'||_{\infty}$. Montrer que N' est une norme et qu'elle est équivalente à N.

Exercice 14 ★★★

Centrale MP 2010

Donner un exemple de deux normes non équivalentes sur un espace vectoriel normé.

Exercice 15 ★★★

Centrale PSI 2010

Soit E = $\mathcal{C}([0,1])$. Pour $f \in E$, on pose $||f||_{\infty} = \sup_{[0,1]} |f|$ et $||f||_2 = \left(\int_{[0,1]} f^2\right)^{\frac{1}{2}}$.

- **1.** Montrer qu'il existe $b \in \mathbb{R}_+$ tel que $\forall f \in \mathbb{E}$, $||f||_2 \le b||f||_{\infty}$.
- **2.** Soit V un sous-espace vectoriel de E de dimension finie. Montrer qu'il existe $c \in \mathbb{R}_+$ tel que $\forall f \in V$, $||f||_{\infty} \le c||f||_2$.
- 3. Soit V un sous-espace vectoriel de E. On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $\forall f \in V$, $||f||_{\infty} \le n||f||_{2}$. Montrer que V est de dimension finie et que dim $V \le n^2$.

Exercice 16 ***

D'après Centrale MP 2006

On note E l'ensemble des fonctions f de classe \mathcal{C}^2 sur [0,1] telles que f(0)=f'(0)=0. Pour $f\in E$, on pose

$$\mathrm{N}_{\infty}(f) = \sup_{[0,1]} |f| \qquad \mathrm{N}(f) = \mathrm{N}_{\infty}(f + f'') \qquad \mathrm{N}_{1}(f) = \mathrm{N}_{\infty}(f) + \mathrm{N}_{\infty}(f'')$$

- 1. Montrer que N_{∞} , N et N_1 sont des normes sur E.
- 2. Montrer que N_{∞} n'est équivalente ni à N ni à N_1 .
- **3.** Soit $f \in E$. Montrer que pour tout $x \in [0, 1]$,

$$f(x) = \int_0^x \sin(x - t)(f(t) + f''(t)) dt$$

4. Montrer que N et N₁ sont équivalentes.

Exercice 17 ★★

Comparaison de normes usuelles de $\mathcal{C}^0([a,b],\mathbb{K})$

On pose pour $f \in \mathcal{C}^0([a, b], \mathbb{K})$,

$$N_1(x) = \int_a^b |f(t)| dt$$
 $N_2(x) = \sqrt{\int_a^b |f(t)|^2 dt}$ $N_{\infty}(x) = \max_{t \in [a,b]} |f(t)|$

1. Montrer que

$$\mathrm{N}_1 \leq (b-a)\mathrm{N}_{\infty} \qquad \quad \mathrm{N}_2 \leq \sqrt{b-a}\mathrm{N}_{\infty} \qquad \quad \mathrm{N}_1 \leq \sqrt{b-a}\mathrm{N}_2$$

et montrer que chacune des ces inégalités est optimale.

2. Montrer que ces trois normes ne sont pas équivalentes.

Exercice 18 ★★★

TPE-EIVP MP 2012

On pose pour une partie A de \mathbb{R} et $P \in \mathbb{R}[X]$, $N_A(P) = \sup_{x \in A} |P(x)|$.

A quelle condition nécessaire et suffisante N_A est-elle une norme sur $\mathbb{R}[X]$?

Exercice 19 ***

Banque Mines-Ponts MP 2022

Soit $E = C^1([0,1], \mathbb{R})$. On pose pour tout $f \in E$:

•
$$||f||_1 = \int_0^1 |f(x)| \, \mathrm{d}x;$$

- $N_1(f) = ||f||_1 + ||f'||_1$;
- $N_2(f) = |f(0)| + ||f'||_1$
- 1. Montrer que N_1 et N_2 sont des normes.
- **2.** N_1 et N_2 sont-elles équivalentes?

Suites

Exercice 20 ***

Soit E un espace vectoriel normé de dimension finie. Soit $u \in \mathcal{L}(E)$ tel que $||u(x)|| \le ||x||$ pour tout $x \in E$.

- **1.** Montrer que $E = Ker(Id_E u) \oplus Im(Id_E u)$.
- **2.** Soit $x \in E$. Pour $n \in \mathbb{N}^*$, on pose $x_n = \frac{1}{n} \sum_{k=0}^{n-1} u^k(x)$. Montrer que (x_n) converge vers la projection de x sur $\operatorname{Ker}(\operatorname{Id}_E u)$ parallèlement à $\operatorname{Im}(\operatorname{Id}_E u)$.

Exercice 21 ★

Soit $A \in \mathcal{M}_p(\mathbb{R})$ telle que la suite de terme général A^n converge vers L. Montrer que L est une matrice de projecteur.

Exercice 22 ***

Soit E un espace préhilbertien réel muni de son produit scalaire $\langle\cdot,\cdot\rangle$. On note $\|\cdot\|$ la norme associée.

On dit qu'une suite $(x_n) \in E^{\mathbb{N}}$ converge *fortement* vers $x \in E$ si $\lim_{n \to +\infty} ||x_n - x|| = 0$ et que (x_n) converge *faiblement* vers x si $\forall y \in E$, $\lim_{n \to +\infty} \langle x_n - x, y \rangle = 0$.

- 1. a. Montrer que si (x_n) converge faiblement, sa limite est unique.
 - **b.** Montrer que la convergence forte implique la convergence faible.
- 2. Montrer que (x_n) converge fortement vers x si et seulement si (x_n) converge faiblement vers x et $\lim_{n \to +\infty} \|x_n\| = \|x\|$.
- 3. Montrer que, en dimension finie, ces deux modes de convergence sont équivalents.
- **4.** Donner un contre-exemple en dimension infinie.

Exercice 23 ★★★★

- 1. Soit (u_n) une suite à valeurs réelles telle que $\lim_{n \to +\infty} u_{n+1} u_n = 0$. Montrer que l'ensemble des valeurs d'adhérence de (u_n) est un intervalle.
- **2.** Soit $f:[a,b] \to [a,b]$ continue et (u_n) définie par $u_0 \in [a,b]$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$. Montrer que (u_n) converge si et seulement si $\lim_{n \to +\infty} u_{n+1} u_n = 0$.

Exercice 24 ★

Soit A une matrice antisymétrique réelle telle que $(A^n)_{n\in\mathbb{N}}$ converge. Montrer que la limite est nulle.

Exercice 25 ★★★

Soit $a \in \mathbb{R}$. Pour $n \in \mathbb{N}^*$, on pose $A_n = \begin{pmatrix} 1 & -\frac{a}{n} \\ \frac{a}{n} & 1 \end{pmatrix}$.

Montrer que $\lim_{n \to +\infty} A_n^n = \begin{pmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{pmatrix}$.

Exercice 26 ★★

Soient A le point d'affixe i et B le point d'affixe -i. On définit la suite $(M_n)_{n \in \mathbb{N}}$ de points du plan par M_0 , M_1 le milieu de $[AM_0]$, M_2 le milieu de $[BM_1]$, M_3 le milieu de $[AM_2]$, M_4 le milieu de $[BM_3]$ et ainsi de suite.

- **1.** Soit $n \in \mathbb{N}$. Préciser la définition des points M_{2n} et M_{2n+1} .
- **2.** On note, pour tout $n \in \mathbb{N}$, z_n l'affixe de M_n . Montrer que les suites $(z_{2n})_{n \in \mathbb{N}}$ et $(z_{2n+1})_{n \in \mathbb{N}}$ sont arithmético-géométriques.
- **3.** Etudier la convergence des suites $(M_{2n})_{n\in\mathbb{N}}$, $(M_{2n+1})_{n\in\mathbb{N}}$ et $(M_n)_{n\in\mathbb{N}}$.
- **4.** Que dire de la suite $(M_{3n})_{n \in \mathbb{N}}$?

CCP MP 2019

Exercice 27 ★★

Soit $(z_n)_{n\in\mathbb{N}}$ une suite complexe telle que pour tout $n\in\mathbb{N}$

$$z_{n+1} = \frac{z_n + |z_n|}{2}$$

- 1. On note x_n et y_n les parties réelle et imaginaire de z_n .
 - **a.** Déterminer une relation de récurrence liant y_n et y_{n+1} . En déduire la limite de (y_n) .
 - **b.** Déterminer le sens de variation de $(|z_n|)$.
 - **c.** Déterminer le sens de variation de (x_n) .
 - **d.** En déduire la convergence de (x_n) . On ne cherchera pas à calculer la limite de cette suite.
 - e. En déduire la convergence de (z_n) . Que peut-on dire de sa limite?
 - **f.** Déterminer la limite de (z_n) si $z_0 \in \mathbb{R}_+$ et si $z_0 \in \mathbb{R}_-$.
- **2.** On note r_n le module et θ_n l'argument principal (i.e. appartenant à $]-\pi,\pi]$) de z_n .
 - **a.** En exprimant z_{n+1} sous forme exponentielle, exprimer d'une part r_{n+1} en fonction de r_n et θ_n et d'autre part θ_{n+1} en fonction de θ_n .
 - **b.** Déterminer la limite de (θ_n) .
 - c. Soit $\alpha \in]-\pi, 0[\cup]0, \pi[$. En remarquant que pour $a \not\equiv 0[\pi]$, $\cos a = \frac{\sin 2a}{2\sin a}$, donner une expression simplifiée de $S_n = \prod_{k=1}^n \cos \frac{\alpha}{2^k}$ pour $n \in \mathbb{N}^*$. En déduire que (S_n) converge vers $\frac{\sin \alpha}{\alpha}$.
 - **d.** En déduire la limite de (r_n) puis celle de (z_n) en fonction de r_0 et θ_0 .

Suites extraites

Exercice 28 ★★

Pour $x \in \mathbb{R}$, on note $\{x\} = x - \lfloor x \rfloor$ la partie fractionnaire de x. Montrer que la suite $(\{\sqrt{n}\})$ n'admet pas de limite.

Exercice 29 ***

ENS Ulm/Lyon PC

Soient (a_n) , (b_n) , (c_n) trois suites réelles telles que $a_n + b_n + c_n$ tend vers 0 et $e^{a_n} + e^{b_n} + e^{c_n}$ tend vers a_n . Montrer que les suites a_n , a_n ,

Exercice 30 ***

Centrale PC 2016

Soient (x_n) et (y_n) deux suites telles que $(x_0, y_0) = (0, 0)$ et

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = \sqrt{7 - y_n} \\ y_{n+1} = \sqrt{7 + x_n} \end{cases}$$

- 1. Montrer que les suites (x_n) et (y_n) sont bien définies.
- **2.** On suppose que les deux suites convergent. Déterminer rigoureusement leur(s) limite(s) possible(s).
- **3.** Montrer que (x_n) et (y_n) convergent.

Exercice 31 ***

Soient (u_n) et (v_n) deux suites de nombres réels et p et q deux entiers naturels impairs tels que

$$\lim_{n \to +\infty} u_n + v_n = 0$$
$$\lim_{n \to +\infty} u_n^p - v_n^q = 0$$

- 1. Montrer que les suites (u_n) et (v_n) sont bornées.
- 2. Que peut-on dire des valeurs d'adhérence des suites (u_n) et (v_n) ?
- **3.** En déduire que $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = 0$.

Révision suites

Exercice 32 ***

Soient a et b deux réels tels que 0 < a < b. On définit deux suites (u_n) et (v_n) par :

$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{2} \left(u_n + \sqrt{u_n v_n} \right) \end{cases}$$
$$\begin{cases} v_0 = b \\ \forall n \in \mathbb{N}, \ v_{n+1} = \frac{1}{2} \left(v_n + \sqrt{u_n v_n} \right) \end{cases}$$

- 1. Montrer que les suites (u_n) et (v_n) convergent vers une limite commune $l \in \mathbb{R}$.
- 2. Soit x et y deux réels tels que 0 < x < y. Montrer que $\frac{1}{y} \le \frac{\ln y \ln x}{y x} \le \frac{1}{x}$.
- 3. Montrer que la suite de terme général $c_n = \frac{v_n u_n}{\ln v_n \ln u_n}$ est bien définie puis montrer que la suite (c_n) est constante.
- **4.** En déduire la valeur de *l*.

Exercice 33 ★★ CCP

On pose pour $x \in \mathbb{R}$, $f(x) = \int_0^1 |x - t| \, dt$. On définit une suite (u_n) par $u_0 \in [0, 1]$ et la relation de récurrence $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.

- **1.** Exprimer f(x) pour $x \in [0,1]$, pour $x \in]-\infty,0]$ et pour $x \in [1,+\infty[$.
- **2.** Montrer que $u_n \in [0,1]$ pour tout $n \in \mathbb{N}$.
- 3. Montrer que $u_n \in \left[\frac{1}{4}, \frac{1}{2}\right]$ à partir d'un certain rang.
- **4.** Majorer $|f'| \sup \left[\frac{1}{4}, \frac{1}{2}\right]$. En déduire que (u_n) converge vers une limite finie à déterminer
- 5. Que peut-on dire de (u_n) si $u_0 > 1$ ou si $u_0 < 0$?

Exercice 34 ★★

Mines-Télécom (hors Mines-Ponts) MP 2021

Soit $n \in \mathbb{N}^*$. On note (E_n) l'équation $\frac{\ln(x)}{x} = \frac{1}{n}$.

- **1.** Montrer qu'il existe des suites (u_n) et (v_n) telles que, pour n assez grand, u_n et v_n vérifient (E_n) et $0 < u_n < e < v_n$.
- **2.** Montrer que la suite (u_n) converge. On note ℓ sa limite
- 3. Trouver un équivalent de $u_n \ell$.

Exercice 35 ENSEA

- **1.** Montrer que pour tout $n \in \mathbb{N}^*$, l'équation $\cos x = nx$ possède une unique solution $x_n \in [0, 1]$.
- **2.** Déterminer la limite de (x_n) .
- **3.** Etudier la monotonie de (x_n) .
- **4.** Etablir que $x_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$.
- 5. Déterminer un équivalent de $x_n \frac{1}{n}$.

Séries à valeurs dans un espace vectoriel normé

Exercice 36 ★★

Soient E un espace vectoriel normé de dimension finie, $k \in [0, 1[$ et $f : E \rightarrow E$ tels que

$$\forall (x, y) \in E^2, \|f(x) - f(y)\| \le k\|x - y\|$$

Soit $u \in E^{\mathbb{N}}$ telle que $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$. En considérant la série $\sum_{n \in \mathbb{N}} u_{n+1} - u_n$, montrer que u converge.

Exercice 37 ★

Petites Mines 2016

Soit $\sum u_n$ une série numérique absolument convergente.

Pour tout $n \in \mathbb{N}$, on pose $v_n = \sum_{k=0}^n \frac{u_{n-k}}{2^k}$.

- 1. Montrer que la série $\sum v_n$ converge et calculer sa somme.
- 2. Reprendre la question précédente lorsque $\sum u_n$ est une série absolument convergente à termes dans un espace vectoriel normé de dimension finie.

Exercice 38 ★★

Pour $P \in \mathbb{K}_n[X]$, on pose D(P) = P' et T(P) = P(X + 1). Il est clair que D et T sont des endomorphismes de $\mathbb{K}_n[X]$. Montrer que $\exp(D) = T$.