Learning Dirichlet Processes from Partially Observed Groups

Avinava Dubey[†], Indrajit Bhattacharya[‡], Mrinal Das[‡] Tanveer Faruquie[†] and Chiranjib Bhattacharyya[‡]

> † IBM India Research Lab ‡ Indian Institute of Science

> > India

Motivation: Non Parametric Clustering

- Cluster articles in a single news paper according to topics
- ▶ Number of topics not known apriori

Motivation: Non Parametric Clustering

- Cluster articles in a single news paper according to topics
- Number of topics not known apriori
- ► Addressed by Dirichlet Process (DP)¹.

¹C. Antoniak, 1974

Motivation: NP Clustering of Multiple Groups of Data

- ▶ Cluster articles in multiple newspapers according to topics.
- ► Topics shared between newspapers.
- Number of topics not known apriori.

Motivation: NP Clustering of Multiple Groups of Data

- Cluster articles in multiple newspapers according to topics.
- Topics shared between newspapers.
- ▶ Number of topics not known apriori.
- Addressed by Hierarchical Dirichlet Process(HDP)².

²Y. Teh et. al., 2006

Motivation: NP Clustering for Topics and Groups

- ► Association between articles and newspapers not observed.
- Cluster articles according to newspapers, as well as topics.
- Number of topics, newspapers not known apriori.

Motivation: NP Clustering for Topics and Groups

- Association between articles and newspapers not observed.
- Cluster articles according to newspapers, as well as topics.
- Number of topics, newspapers not known apriori.
- ► Challenging problem: Not directly addressed in literature.
- ► HDP-HMM³ addresses sequential variant.

³E. Fox et. al., ICML 2008

Our Problem: NP Clustering with Partially Observed Groups

- One or more newspapers available with articles and topics.
- ► For new set of articles, determine newspaper and topic.
- Previously unseen newspapers and topics possible.

Mrinal Das

Our Problem: NP Clustering with Partially Observed Groups

- ▶ One or more newspapers available with articles and topics.
- ► For new set of articles, determine newspaper and topic.
- Previously unseen newspapers and topics possible.

Informal Problem Statement

- ► Traditional DP-based models consider observed groups
- We investigate DP-based models to infer latent topics as well as latent groups of target data items
- Conditional variant where topics and groups are observed for source collection

▶ First work studying DP-based conditional models

Related Work

Existing Models

- Dirichlet Process (DP)
- Hierarchical Dirichlet Process (HDP)
- Dependent Dirichlet Processes (DDP)⁴
- Pairwise-constrained DP (PC-DP)⁵.

Variants of DP-based models with partial observations

- Sequential DP (Seq-DP)
- Partially observed DP (PO-DP)
- Partially observed HDP

⁴D. Lin et. al. NIPS 2010

⁵A. Vlachos et. al. ACI 2009

Data with Partially Observed Groups (POG Data)

Observed Group Data

$$\mathcal{D}_o = \{x_i^o, \eta_i^o, z_i^o\}$$

- features of data item {x_i^o}; observed
- ▶ group label $z_i^o \in \{1, ..., m\}$; observed
- topic label η^o_i; observed

Each observed group label: one Source

Target Data

$$\mathcal{D}_u = \{x_i^u, \eta_i^u, z_i^u\}$$

- $\triangleright x_i^u$ observed
- groups z_i^o , topics η_i^o not observed.

Problem Statement: Inference for POG Data

- Find posterior distribution of topic and group variables for target data items, conditioned on source data items
 - $P(\eta_1^u, z_1^u \dots \eta_n^u, z_n^u | x_1^u \dots x_n^u, \mathcal{D}_o)$
- Assume prior distribution of target topics $P(\eta_1^u \dots \eta_n^u)$ belongs to the Dirichlet Process family

No assumption about distribution $P(\eta_1^o \dots \eta_n^o, z_i^o \dots z_n^o)$ of source groups and topics

Our Contributions

- First study of DP-based models for partially observed groups
- Propose POG-DP
- Conditional model
 - No generative assumptions for known groups
- Propose Combinatorial DP and partially observed variant
 - ▶ Finer coupling of topic selection probabilities within a group

Our Contributions

- First study of DP-based models for partially observed groups
- Propose POG-DP
- Conditional model
 - No generative assumptions for known groups
- Propose Combinatorial DP and partially observed variant
 - ▶ Finer coupling of topic selection probabilities within a group

- Developed 3 simple extensions of DP as baselines.
- Evaluated for 3 different applications.
- Outperform existing DP-based models and variants.

1 20 9 0

Background: Dirichlet Process (DP) Mixture Model

 $DP(\alpha, G_0)$: scalar α , base distribution G_0 .

Can be used as *non-parametric* prior for mixture models.

- $G \sim DP(\alpha, G_0)$
- ▶ For *i*th data item
 - $n_i \sim 0$
 - $x_i \sim F(\eta_i)$

Background: Dirichlet Process (DP) Mixture Model

 $DP(\alpha, G_0)$: scalar α , base distribution G_0 .

Can be used as *non-parametric* prior for mixture models.

- \triangleright $G \sim DP(\alpha, G_0)$
- ▶ For ith data item

Conditional Distribution of n^{th} topic:

$$ightharpoonup \eta_n \mid \eta_{1,n-1} \sim \alpha G_0 + \sum_{i=1}^k m_i \delta_{\phi_i}$$

Works for a single group of data items

Mrinal Das

Background: Hierarchical Dirichlet Process (HDP)

One DP for each group of data items.

Coupled through shared base distribution.

Two level hierarchy of DPs.

- $G_0 \sim DP(\gamma, H)$
- For j^{th} group
 - $G_i \sim DP(\alpha, G_0)$
 - For i^{th} data item in j^{th} group

$$\qquad \qquad \eta_{ij} \sim G_j; \quad x_{ij} \sim F(\eta_{ij})$$

All group variables need to be observed

HDP for Unobserved Groups (UG-HDP)

- \triangleright HDP generates data x_{ii} with known group memberships.
- For unobserved groups, introduce prior over groups.
- ▶ Non-parametric prior for unknown number of groups.
 - ▶ Stick-breaking prior $GEM(\beta)$

For
$$j^{th}$$
 group
$$G_j \sim DP(\alpha, G_0)$$

- ► For *i*th data item
 - $z_i \sim mult(\pi)$

Not specifically studied; HDP-HMM: sequential variant

Mrinal Das

Modeling POG Data: Issues

- ▶ Groups z_i^u take known values $1 \dots m$ from D^o or new values
- Restrict to at most one new value m+1
 - Do not distinguish between different new groups

- ▶ Topics η_i^u take known values $\psi_1 \dots \psi_k$ from D^o or new values
- Restrict new topics only to new group m+1
 - Assume large volume of observed data D^o

Modeling POG Data: Issues II

- ▶ Base Distribution G_0 for new group G_{m+1}
- ▶ Same as the base distribution H_0 for existing groups?

$G_0=H_0$

- Partially observed variant of UG-HDP (PO-HDP)
- ▶ Generative assumption on $G_1 ... G_m$ for known groups
 - Unnecessary, and possibly inappropriate
- Baseline for comparison

Modeling POG Data: Issues II

- ▶ Base Distribution G_0 for new group G_{m+1}
- ▶ Same as the base distribution H_0 for existing groups?

$G_0 \neq H_0$

- Proposed model POG-DP
- **Benefit:** D_o conditionally independent of $G_1 \dots G_m$ given η^o
 - ▶ No generative assumptions on observed data D_o
- Price: Topics under G_0 distinct from existing topics η^o
 - Not restrictive for most applications

Dirichlet Processes for POG Data (POG-DP)

For
$$k = 1, ..., m$$
 sources
$$\mu^k \sim Dir(\alpha^k), k = 1...m$$

- ▶ For each ith data item
 - $> z_i^u \sim mult(\pi)$

$$\begin{array}{ll} & \eta_i^u \sim \sum_j \mu_j^k \delta_{\phi_j^k}, \quad z_i^u = k, k = 1 \dots m \\ & \eta_i^u \sim G_{m+1}, \qquad z_i^u = m+1 \end{array}$$

$$\eta_i^u \sim G_{m+1}, \qquad z_i^u = m+1$$

- Distribution over the existing groups is parametrized
- \triangleright These parameters are learned over both D_0 and D_0
- \triangleright PO-HDP has empirical distribution in D_{α}

イロン イ御シ イヨン イヨン

POG-DP: Conditional Distribution

Conditional Distribution of n^{th} topic in POG-DP

$$\eta_{n}^{u}|\eta^{o}, \eta_{1:n-1}^{u}, z_{1:n-1}^{u}, \alpha, \beta, H_{0}$$

$$\sim (\beta + n_{.}^{m+1}) \left(\sum_{i=1}^{K^{m+1}} n_{i}^{m+1} \delta_{\phi_{i}^{m+1}} + \alpha^{m+1} H_{0}\right)$$

$$+ \sum_{k=1}^{m} (\beta + n_{.}^{k}) \left(\sum_{i=1}^{K^{k}} (\alpha^{i} + n_{i}^{k}) \delta_{\phi_{i}^{k}}\right)$$

POG-DP: Conditional Distribution

Conditional Distribution of n^{th} topic in POG-DP

$$\begin{split} & \eta_{n}^{u}|\eta^{o}, \eta_{1:n-1}^{u}, z_{1:n-1}^{u}, \alpha, \beta, H_{0} \\ \sim & (\beta + n_{.}^{m+1}) \left(\sum_{i=1}^{K^{m+1}} n_{i}^{m+1} \delta_{\phi_{i}^{m+1}} + \alpha^{m+1} H_{0} \right) \\ & + \sum_{k=1}^{m} (\beta + n_{.}^{k}) \left(\sum_{i=1}^{K^{k}} (\alpha^{i} + n_{i}^{k}) \delta_{\phi_{i}^{k}} \right) \end{split}$$

Conditional distribution of n^{th} topic in PO-HDP

$$\eta_{jn} \mid \eta_{1:j-1}, \eta_{j1} \dots \eta_{j,n-1}; \alpha, H \sim \alpha \left(\sum_k m_k \delta_{\psi_k} + \gamma H \right) + \sum_i n_i^j \delta_{\theta_j^i}$$

- ▶ In PO-HDP, topic selection probabilities decoupled
- In POG-DP, they are coupled within each group

□ > 4 □ > 4 = > 4 = > 0 0 0

Mrinal Das IISc, India

Coupling of Topics Selection Probabilities

- POG-DP couples all topics within a group
- Appropriate when all topics in a group form a coherent set
- Ideally, coupling only for coherent topic subsets in a group
- In general, involves searching over subsets; hard

- For POG data, assume group intersections form coherent subsets
- ▶ Introduce coupling of topics only within group intersections

Combinatorial Dirichlet Processes for POG Data (POG-CDP)

- ▶ Group Intersection ≡ Combination of existing groups (sources)
- Selection probabilities for group combinations instead of individual groups
- Group label z_i^u in D^u now a binary vector
- ▶ Parametrize prior distribution over z_i^u using independence of groups

Utility:

- Coupling of topics only within group intersections
- Answer richer queries
 - Predict combination of existing groups for new data item

Approximate Inference using Gibbs Sampling

Collapsed Gibbs Sampling

▶ Repeated sample topic η_i^u and group z_i^u for each target data item from conditional distribution

Block sample (η_i^u, z_i^u) for POG-DP

Faster convergence

Large space of possible values of z_i^u for POG-CDP

- Sample each position of vector individually
- Slower: but scales with number of sources

Evaluation – Application I : Vernacular news analysis

- ► Topics from news articles in English and Hindi given.
- Task is to find out topics in Bengali that corresponds to some topics in English or Hindi.
- Also find out topics reported exclusively in Bengali.
- ▶ Bengali⁶, Hindi⁷ and English⁸ news from 01-2007 to 12-2007.
- ▶ 3000 documents over a vocabulary of 5000 words.

4 D > 4 A > 4 B > 4 B > B 9 Q C

⁶www.anandabazar.com

⁷in.jagran.yahoo.com/epaper

⁸www.telegraphindia.com

Evaluation – Application II: Customer feedback analysis

- Finding issues from customer feedbacks.
- Given previously analyzed collection of surveys for 2 Web-service provider companies.
 - Individual feedbacks are labelled with issues in the survey.
- ► Task is to label feedbacks for Tele-comm company with known issues from Web-service companies or new issues exclusive to Tele-comm company.
- Tele-communication company as target, Web-service provider companies as source.
- ▶ 500 documents over 1200 words.

Mrinal Das IISc, India

Evaluation – Application III : News-group analysis

- Given a collection of postings categorized into news topics.
- Task is to label new discussions with known topics or breaking discussion topics.
- 20 Newsgroups dataset.
- ▶ 14,000 postings over 5000 words.

Evaluation – Baselines

▶ DP mixture model, Partially Observed HDP (PO-HDP)

- Sequential DP (Seq-DP) source items known.
- Partially observed DP (PO-DP) source topics known.
- Pair-constrained DP (PC-DP) pair-wise must-link and cannot-link constraints known for source.

 Merged source POG-DP (msPOG-DP) – multiple sources merged into one

) Q (~

Evaluation – Results

Single source

	DP	Seq DP	PO-DP	PC-DP	PO-HDP	POG-DP
VerNewsAna	0.25	0.51	0.63	0.59	0.59	0.71
CustFeedAna	0.26	0.26	0.33	0.31	0.32	0.39
NewsGrpAna	0.34	0.34	0.44	0.44	0.45	0.53

POG-DP outperforms other baselines.

- Modeling source is inappropriate.
- ▶ Coupling among topics in a group helps.

4 D > 4 A > 4 B > 4 B > B 900

Evaluation – Results

Multiple sources

	PO-DP	PC-DP	PO-HDP	msPOG-DP	POG-DP	POG-CDP
VerNewsAna	0.71	0.69	0.73	0.81	0.81	0.86
CustFeedAna	0.33	0.31	0.34	0.37	0.33	0.43
NewsGrpAna	0.60	0.60	0.63	0.67	0.62	0.69

POG-DP outperforms other baselines.

Combinatorial model (POG-CDP) better for overlapped sources.

 Finer grained coupling of topics inside groups useful for overlapped sources.

◆□ → ◆□ → ◆ = → ◆ = → り へ ⊙

Conclusion

- Proposed Dirichlet Process for partially observed groups.
- Models target data conditioned on the source data.
- Proposed combinatorial DP to model overlapping sources.
- Usefulness verified over various baselines on real life datasets.
- POG-DP outperforms variants of DP and HDP.
- For multiple overlapping source case, POG-CDP is the best.

