第5章 Algebraic Stacks and Spaces

七条彰紀

2019年6月19日

目次

1	Fiber Product	2
2	Diagonal Map	5
3	Local Property of Scheme/Morphism of Them	5
4	Algebraic Space	8
4.1	Representable Ones	8
4.2	Definition of Algebraic Space	9
4.3	Properties of Algebraic Space/Morphism of Algebraic Spaces	9
5	Algebraic Stack	11
5.1	Representable Ones	12
5.2	Definition of Algebraic Stack	12
5.3	Properties of Algebraic Stack/Morphism of Algebraic Stacks	13
6	Definition of Quotient stack	14
6.1	Definitions	14
7	Quotient Stack is an Artin Stack.	17
7.1	Preparation	17
7.2	Proof.	20

affine scheme, scheme. algebraic space, algebraic stack という貼り合わせの連なりを意識した定義をした後、algebraic stack が scheme の貼り合わせとして定義できることを示す。 algebraic space と algebraic stack の定義は全く平行に行われる。そのことが分かりやすい記述を志向する.

1 Fiber Product

命題 1.1

任意の site :: C について, C 上の sheaf の圏 Shv(C) は fiber poduct を持つ.

(証明). 二つの射 $\mathcal{F} \to \mathcal{H}, \mathcal{G} \to \mathcal{H}$ をとる.

$$\mathbf{C} \ni U \mapsto \mathcal{F}(U) \times_{\mathcal{H}(U)} \mathcal{G}(U)$$

とすれば、これは fiber product となる.

 ${f B}$:: category とする. この時, ${f Fib}^{
m bp}({f B})$ は以下のような圏であった.

Objects: fibered categories over B.

Arrows: base-preserving natural transformation.

新たに圏 CFG(B) を以下のように定義する.

Objects: categories fibered in groupoids(CFG) over B.

Arrows: base-preserving natural transformation.

重要なのは次の存在命題である.

命題 1.2 ([3] p.10)

任意の圏 C について, $\mathbf{Fib}^{\mathrm{bp}}(\mathbf{B})$ と $\mathbf{CFG}(\mathbf{B})$ は fibered product を持つ.

(証明). $\mathbf{Fib}^{\mathrm{bp}}(\mathbf{B})$ の射 $F: \mathfrak{X} \to \mathfrak{X}$ と $F: \mathcal{Y} \to \mathfrak{X}$ をとり, F, G の fiber product を実際に構成する.

■圏 P の構成 圏 P を以下のように定義する.

Objects: 以下の 4 つ組

- (i) $b \in \mathbf{B}$,
- (ii) $x \in \mathfrak{X}(b)$,
- (iii) $y \in \mathcal{Y}(b)$,
- (iv) \mathfrak{T} の恒等射上の同型射 $\alpha: Fx \to Gy$.

Arrows:

射 $(b,x,y,\alpha) \to (b',x',y',\alpha')$ は,二つの射 $\phi_{\mathfrak{X}}\colon x\to x',\phi_{\mathfrak{Y}}\colon y\to y'$ であって以下を満たすもの: $\phi_{\mathfrak{X}},\phi_{\mathfrak{Y}}$ は同じ射 $b'\to b$ 上の射で,以下の可換図式を満たすもの.

$$Fx \xrightarrow{\alpha} Gy$$

$$F\phi_x \downarrow \qquad \qquad \downarrow G\phi_y$$

$$Fx' \xrightarrow{\alpha'} Gy'$$

■Cartesian Lifting in P. この圏は π : $(b, x, y, \alpha) \mapsto b$ によって fibered category と成る. $f: b' \to b$ の $\xi = (b, x, y, \alpha)$ に関する Cartesian Lifting :: $f^*\xi \to \xi$ は次のように定義される.

$$\chi_{\xi} = (f^*x \xrightarrow{\chi_x} x, f^*y \xrightarrow{\chi_y} y) \colon f^*\xi = (b', f^*x, f^*y, \bar{\alpha}) \to \xi.$$

ここで χ_x : $f^*x \to x$ は f の x に関する Cartesian Lifting である. χ_y も同様. さらに $\bar{\alpha}$ は以下の Triangle Lifting で得られる射である $^{\dagger 1}$.

fibered category の間の射は cartesian arrow を保つので $F\chi_x$, $G\chi_y$ も cartesian. したがって Triangle Lifting が出来る. $\bar{\alpha}$ が同型であることは Triangle Lifting の一意性を用いて容易に証明できる. また, この可換図式から χ_{ξ} が ${\bf P}$ の射であることも分かる.

■ $\mathfrak{X}, \mathcal{Y}, \mathfrak{X}$ が category fibered in groupoids(CFG) ならば P も CFG $\mathfrak{X}, \mathcal{Y}, \mathfrak{X}$ が CFG ならば P も CFG となる. 実際, $\phi_{\mathfrak{X}}: x \to x'$ と $\phi_{\mathfrak{Y}}: y \to y'$ の両方が cartesian ならば $(\phi_{\mathfrak{X}}, \phi_{\mathfrak{Y}}): (b, x, y, \alpha) \to (b', x', y', \alpha')$ は cartesian である.

■P からの射影写像. 定義から明らかに $\operatorname{pr}_1\colon \mathbf{P}\to \mathfrak{X}, \operatorname{pr}_2\colon \mathbf{P}\to \mathcal{Y}$ が定義できる. 射の定義にある可換図 式は,以下の A が natural transformation であることを意味している.

$$\begin{array}{cccc} A\colon & F\operatorname{pr}_1 & \to & G\operatorname{pr}_2 \\ & (F\operatorname{pr}_1)((b,x,y,\alpha)) = Fx & \mapsto & \alpha(Fx) = \alpha((F\operatorname{pr}_1)((b,x,y,\alpha))) \end{array}$$

A が base-preserving であることは α が恒等射上のもの (i.e. $\pi_{\mathfrak{T}}(\alpha)=\mathrm{id}$) であることから,isomorphism であることは α が同型であることから示される.

■P: fiber product. 今、 $W \in \mathbf{Fib}^{\mathrm{bp}}(\mathbf{B})$ と射 $S \colon W \to \mathfrak{X}, T \colon W \to \mathcal{Y}$ 及び base-preserving isomorphism :: $\delta \colon FS \to GT$ をとる. base-preserving なので、任意の $w \in W$ について $\pi_{\mathfrak{T}}(FS(w)) = \pi_{\mathfrak{T}}(GT(w))$. そこで次のように関手が定義できる.

 $f^*\alpha: f^*Fx \to f^*Gy$ とは異なる.同型 $Ff^*x \to F^*Fx, Gf^*y \to f^*Gy$ と $f^*\alpha: Fx \to Gy$ を合成しても $\bar{\alpha}$ は得られる.

$$H:$$
 $\mathcal{W} \rightarrow \mathbf{P}$ Object $w \mapsto (\pi_{\mathcal{Z}}(FS(w)), Sw, Tw, \delta_w)$ Arrow $[\phi: w \rightarrow w'] \mapsto (S\phi: Sw \rightarrow Sw', T\phi: Tw \rightarrow Tw')$

このように置くと、 $S=\operatorname{pr}_1H,T=\operatorname{pr}_2H$ となる。逆に $S\cong\operatorname{pr}_1H',T\cong\operatorname{pr}_2H'$ となる関手 $H':\mathcal{W}\to\mathbf{P}$ は H と同型に成ることが直ちに分かる.

注意 1.3

session4 命題 4.5 より、CFG の恒等射上の射は同型射である. したがって α : $Fx \to Gy$ に課せられた条件 は、 $\mathfrak Z$ が CFG ならば一つしか無い.

例 1.4

representable fibered category \mathcal{O} fiber product.

sheaf に対応する fibered category の fiber product $\int \mathcal{F} \times_{\int \mathcal{H}} \int \mathcal{G}$ に対応する sheaf は、sheaf の fiber product に対応する.

$$\left(\int \mathcal{F} \times_{\int \mathcal{H}} \int \mathcal{G}\right)(-) = \mathcal{F} \times_{\mathcal{H}} \mathcal{G} \quad \in \mathbf{Shv}(\mathbf{C})$$

我々が扱うのは stack であるから, stack という性質が fiber product で保たれていて欲しいが, 果たしてそうなる.

命題 **1.5** ([5] Prop 4.6.4)

 $\mathfrak{X}, \mathcal{Y}, \mathfrak{X}$:: stack over \mathbf{C} とし、morphism of stacks :: $F: \mathfrak{X} \to \mathfrak{X}, G: \mathcal{Y} \to \mathfrak{X}$ をとる. この時、F, G についての fiber product :: $\mathfrak{X} \times_{\mathfrak{X}} \mathcal{Y}$ は stack である.

したがって結局 $\mathbf{Fib}^{\mathrm{bp}}(\mathbf{B})$, $\mathbf{CFG}(\mathbf{B})$ と、stack の圏及び stack in groupoids の圏は fiber product を持つ. 我々が実際に扱うのは stack in groupoids である.

(証明). $\mathcal{P} = \mathfrak{X} \times_{\mathfrak{T}} \mathcal{Y}$ とおく. $U \in \mathbf{C}, \mathcal{U} = \{\phi_i \colon U_i \to U\} \in \mathrm{Cov}(U)$ を任意にとり, $\epsilon_{\mathcal{U}} \colon \mathcal{P}(U) \to \mathcal{P}(\mathcal{U})$ を計算する.

 $\blacksquare \epsilon_{\mathcal{U}}(\xi)$. $\xi = (b, x, y, \alpha)$ をとり、 $\epsilon_{\mathcal{U}}(\xi)$ を計算する. まず $\{\phi_i^* \xi\}_i$ は既に詳しく説明した. 注意が必要なのは同型 $\sigma_{ij}\colon \operatorname{pr}_2^* \phi_i^* \xi \to \operatorname{pr}_1^* \phi_i^* \xi$ である. 可換性は以下の図式から分かる.

 $\blacksquare \epsilon_{\mathcal{U}}(\kappa)$. (TODO)

2 Diagonal Map

注意 2.1

以降はS:: scheme をとり、 $\mathbf{C} = \mathrm{ET}(S)$:: big etale site over S 上の sheaf あるいは stack in groupoids の みを考える.

定義 2.2 (Diagonal Map)

sheaf あるいは stack in groupoids over S:: \mathfrak{X}/S (すなわち射 $\mathfrak{X} \to S$) の diagonal map :: Δ とは,以下の可換図式に収まる射のことである.

3 Local Property of Scheme/Morphism of Them

定義 3.1 ([2] p.100, Local Property for the topology.)

S :: scheme とし, (\mathbf{Sch}/S) 上の site :: \mathbf{C} を考える. X,Y :: scheme とし, $\{\phi_i\colon X_i \to X\}$ \in

 $Cov(X), \{\psi_i : Y_i \to Y\} \in Cov(Y)$ を任意に取る.

- (i) P を scheme の性質とする. P が local for the topology であるとは、以下が成り立つということ: X が P であることは、全ての U_i が P であることと同値.
- (ii) P を scheme の射の性質とする. P が local on source であるとは、以下が成り立つということ: $f\colon X\to Y$ が P であることは、全ての $f\circ\phi_i$ が P であることと同値.
- (iii) P を scheme の射の性質とする. P が local on target であるとは、以下が成り立つということ: $f\colon X\to Y$ が P であることは、全ての $\operatorname{pr}_2\colon X\times_Y Y_i\to Y_i$ が P であることと同値.
- (iv) ([5] 5.1.3) P を scheme の射の性質とする. 以下が全て成り立つ時, P は stable であると呼ばれる.
 - 任意の同型は P.
 - Pは、射の合成で保たれる。
 - P は、任意の \mathbb{C} の射による base change で保たれる.
 - local on target.
- (v) ([4] p.33, [3] p.16) P を scheme の射の性質とする. 以下が全て成り立つ時, P は smooth (resp. etale) local on source and target であると呼ばれる. : $X' \to Y' \times X, Y' \to Y$ が smooth (resp. etale) surjective であるような、次の形の任意の可換図式をとる.

$$X' \longrightarrow Y' \times X \longrightarrow X$$

$$\downarrow \qquad \text{p.b.} \qquad \downarrow^f$$

$$Y' \longrightarrow Y$$

この時, f が P であることは f' が P であることと同値

例 **3.2** ([6] Tag 0238)

etale topology での定義を挙げる.

local for the topology である性質の例

locally Noetherian, reduced, normal, regular.

local on source である性質の例

flat, locally of finite presentation, locally of finite type, open, smooth, etale, unramified, locally quasi-finite.

local on target である性質の例

quasi-compact, quasi-separated, universally closed, separated, surjective, locally of finite type, locally of finite presentation, proper, smooth, etale, unramified, flat.

local on source and target である性質の例

flat, locally of finite presentation, locally finite type, smooth, etale, unramified...

注意 3.3

"local on source and target"は、algebraic space、algebraic stack の射について性質を定めるときに必要に成る.この定義は文献に寄って数種類ある.私が知る限りのものを以下に列挙する.

SP

[6] Tag 04QZ.

DM

X,Y を scheme とし、 $\{\phi_i\colon X_i\to X\}\in \mathrm{Cov}(X), \{\psi_i\colon Y_i\to Y\}\in \mathrm{Cov}(Y)$ を任意の cover とする、 $\{f_i\colon X_i\to Y_i\}$ を以下の可換図式を満たす射の族とする.

$$X_{i} \xrightarrow{\phi_{i}} X$$

$$f_{i} \downarrow \qquad \downarrow f$$

$$Y_{i} \xrightarrow{\psi_{i}} Y$$

この時、射fがPであることと、全ての射 f_i がPであることは同値。[2], p.100 より.

DM'

以下の scheme の可換図式が成立しているとする.

$$X' \longrightarrow X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \longrightarrow Y$$

ただし $X' \to X, Y' \to Y$ は cover である. この時、射 f が P であることと、射 f' が P であることは 同値. [6] Tag 04R4 で Deligne-Mumford の定義として参照されている.

ST

local on source かつ local on target.

ST+

次の5条件を合わせたもの.

- 同型について成立する,
- stable under composition,
- stable under base change,
- local on source,
- local on target.

[5] Def 5.1.3, 5.4.11 で採用されている.

La

X,Y:: scheme とし、射 $Y'\to Y, X'\to Y'\times X$ を cover とする. この時、 $f:X\to Y$ と合わせると 次の可換図式が得られる.

この時, f が P であることは f' が P であることと同値. [4] p.33, [3] p.16 で採用されている.

La'

X,Y:: scheme とし、射 $Y'\to Y, X'\to X$ を cover とする. この時、 $f\colon X\to Y$ と合わせると次の可換図式が得られる.

$$X' \times_{Y} Y' \longrightarrow Y'$$

$$f' \downarrow \qquad \text{p.b.} \qquad \downarrow$$

$$X' \longrightarrow X \xrightarrow{f} Y$$

この時, f が P であることは f' が P であることと同値.

強弱関係は次の通り.

$$ST+ \Longrightarrow SP \Longrightarrow DM \Longrightarrow DM' \Longrightarrow La \Longrightarrow La'$$

 $SP \Longrightarrow DM \Longrightarrow ST$ は [6] Tag 04R4 による. $SP \Longrightarrow DM \Longrightarrow ST$, $DM' \Longrightarrow La \Longrightarrow La'$ のそれぞれの \Longrightarrow は逆が成り立たないことも分かっている. また, DM' と local on target を合わせたものは DM と同値である.

我々としては、「便利な性質」をもち、かつ弱い定義を取りたい.後に示すとおり、Laを仮定すれば十分「便利」である.

4 Algebraic Space

4.1 Representable Ones.

定義 4.1 (Representable Space)

stack :: $\mathfrak X$ が representable (by scheme) であるとは、ある scheme :: X が存在し、 $\mathfrak X\cong X=\mathbf{Sch}/X$ であるということ.

定義 4.2 (Representable Morphism of Spaces)

morphism of spaces :: $f: \mathcal{X} \to \mathcal{Y}$ が representable (by scheme) であるとは、任意の S-scheme :: $U \succeq \mathbf{C}$ の 射 $U \to \mathcal{Y}$ について、fiber product :: $U \times_{\mathcal{Y}} \mathcal{X}$ が representable (by scheme) であるということ、

命題 4.3 (Representable Diagonal Morphism)

 \mathcal{F} :: stack on $\tau(S)$ 以下は同値である.

- (i) $\Delta: \mathcal{X} \to \mathcal{X} \times_S \mathcal{X}$ は表現可能.
- (ii) 任意の scheme :: U と射 $U \to \mathcal{X}$ について, $U \to \mathfrak{X}$:: representable.
- (iii) 任意の scheme :: $U, V \geq$ 射 $u: U \to \mathcal{X}, v: V \to \mathcal{X}$ について $U \times_{\mathcal{X}} V$:: representable.

(証明). (ii) \iff (iii) は representable morphism の定義から直ちに分かる. (i) \iff (iii) は以下が pullback diagram であることから分かる.

$$\begin{array}{c} U \times_{\mathcal{X}} V & \longrightarrow & U \times_{S} V \\ \downarrow & \text{p.b.} & \downarrow^{u \times v} \\ \mathcal{X} & \longrightarrow_{\Delta} & \mathcal{X} \times_{S} \mathcal{X} \end{array}$$

(TODO: もう少し詳しく.)

定義 4.4 (Property of Representable Spaces/Morphism of Them)

(i) $\mathcal P$ を scheme の性質で local for etale topology であるものとする. この時, representable space :: $\mathcal X$ が性質 $\mathcal P$ を持つとは, $\mathcal X$ を represent する scheme が性質 $\mathcal P$ を持つということである.

(ii) $\mathcal P$ を morphism of schemes の性質で local on target かつ stable under base change であるものとする. この時, representable morphism of spaces :: $f\colon \mathcal X\to \mathcal Y$ が性質 $\mathcal P$ を持つとは, 任意の $U\in \mathbf C$ と射 $U\to \mathcal Y$ について, $\operatorname{pr}\colon \mathcal X\times_{\mathcal Y} U\to U$ (に対応する morphism of algebraic schemes)が性質 $\mathcal P$ を持つということである.

4.2 Definition of Algebraic Space

定義 4.5 (Algebraic Space)

S:: scheme とし、 $\mathcal X$ を space over S (すなわち big etale site $\mathrm{Et}(S)$ 上の sheaf) とする. $\mathcal X$ が algebraic であるとは、次が成り立つということである.

- (ii) scheme :: U からの etale surjective morphism :: $U \to \mathcal{X}$ が存在する.

Algebraic space の射は space としてのものである.

以下では scheme の性質と scheme の射の性質を algebraic space へ拡張する.

4.3 Properties of Algebraic Space/Morphism of Algebraic Spaces

定義 4.6 (Property of Algebraic Spaces)

- (i) \mathcal{P} を scheme の性質であって、local for etale topology であるものとする.この時、algebraic stack :: \mathcal{X} が性質 \mathcal{P} を持つとは、 \mathcal{X} のある atlas が性質 \mathcal{P} を持つということである.
- (ii) algebraic stack :: \mathcal{X} が quasi-compact $^{\dagger 2}$ であるとは、 \mathcal{X} のある atlas が性質 \mathcal{P} を持つということである.

定義 4.7 (Property of Morphism of Algebraic Spaces)

 \mathcal{P} を morphism of scheme の性質であって、local on source and target であるものとする. 以下の可換図式で、 $V \to \mathcal{Y}, U \to V \times \mathcal{X}$ は cover であるとする.

$$U \longrightarrow V \times \mathcal{X} \longrightarrow \mathcal{X}$$

$$\downarrow \qquad \text{p.b.} \qquad \downarrow f$$

$$V \longrightarrow \mathcal{V}$$

$$(PM)$$

この時, morphism of algebraic spaces $:: f: \mathcal{X} \to \mathcal{Y}$ が性質 \mathcal{P} を持つとは、この可換図式にある f' (に対応する morphism of scheme) が性質 \mathcal{P} を持つということである.

補題 4.8

- (a) \mathcal{X} を representable space とし、P を algebraic space の性質とする。f が algebraic space として性質 P を持つことと、representable space として性質 P を持つことは同値。
- (b) $f: \mathcal{X} \to \mathcal{Y}$ を representable morphism とし、P を algebraic space の射の性質とする。f が algebraic space の射として性質 P を持つことと、representable morphism として性質 P を持つことは同値。

^{†2} 明らかに、これは local for etale topology ではない.

(証明). \mathcal{X} が scheme :: X で表現されるならば $X \to \mathbf{Sch}/X \cong \mathcal{X}$ が atlas なので (a) が成立する.

以下の図式で id: $V \to V$ が etale surjective なので $U \to V \times \mathcal{X}$ も etale surjective である. また representable morphism の性質は、scheme の射の性質として local on target であるものに限っていた. したがって (b) が成立する.

$$U \longrightarrow V \times \mathcal{X} \longrightarrow \mathcal{X}$$

$$f'' \downarrow \quad \text{p.b.} \quad \downarrow f' \quad \text{p.b.} \quad \downarrow f$$

$$V \longrightarrow \text{id} \quad V \longrightarrow \mathcal{Y}$$

補題 4.9

- (a) *P* を scheme の性質で local for etale topology なものとする.
 - 一つの etale surjective morphism :: $U \to \mathcal{X}$ について U が性質 P を持つならば、任意の etale surjective morphism :: $U \to \mathcal{X}$ について U が性質 P を持つ.
- (b) P を morphism of scheme の性質であって,local on source and target であるものとする. -つの $V \to \mathcal{Y}, U \to U \times \mathcal{X}$ の組み合わせについて図式 (PM) の f' が性質 P を持つならば, 任意の $V \to \mathcal{Y}, U \to U \times \mathcal{X}$ の組み合わせについて図式 (PM) の f' が性質 P を持つ.

(証明). [6] Tag 06FM

補題 4.10

P を algebraic space の射の性質とする.

- (a) P が scheme の射の性質として stable under base change ならば, algebraic space の射の性質として も stable under base change.
- (b) *P* が scheme の射の性質として stable under composition ならば, algebraic space の射の性質として も stable under composition.

(証明). (a) は [6] Tag 0CII を参考にすれば良い.

(b) を示す. 準備として次を示す.

主張 4.11

U:: scheme とする. $f: U \to \mathcal{X}, g: \mathcal{X} \to \mathcal{Y}$ が etale, surjective ならば、合成 $g \circ f: U \to \mathcal{X} \to \mathcal{Y}$ も etale, surjective である.

(証明). etale, surjective は scheme の射の性質として stable under base change かつ stable under composition であることに注意する.

 $V \to \mathcal{Y}, W \to V \times_{\mathcal{V}} \mathcal{X}$ を scheme からの etale surjective (e.s.) 射とする. この時 fiber product を組み合

わせて以下の可換図式が得られる. (pullback lemma を暗黙のうちに用いている.)

$$W \times_{\mathcal{X}} U \longrightarrow V \times_{\mathcal{X}} U \longrightarrow U$$

$$\downarrow \quad \text{p.b.} \quad \downarrow \quad \text{p.b.} \quad \downarrow^{f}$$

$$W \longrightarrow V \times_{\mathcal{Y}} \mathcal{X} \longrightarrow \mathcal{X}$$

$$\downarrow \quad \text{p.b.} \quad \downarrow^{g}$$

$$V \longrightarrow \mathcal{V}$$

この時,以下のように $W \times U \to W \to V \otimes W \times U \to V \times U$ が e.s. であることが示せる.

- $f: U \to \mathcal{X} :: \text{e.s.} \ \mathcal{D} \to \text{representable} \implies W \times U \to W :: \text{e.s.}$
- $\mathcal{X} \to \mathcal{Y} :: \text{e.s.} \implies W \to V :: \text{e.s.}$
- $W \times U \to W, W \to V :: \text{e.s.} \implies W \times U \to W \to V :: \text{e.s.}$
- $W \to V \times \mathcal{X}$:: e.s. かつ representable $\implies W \times U = W \times (V \times U) \to V \times U$:: e.s.

etale は local on source な性質なので $V \times U \to V \times X \to V$ も etale. また surjective の圏論的な性質から surjective であることも分かる. この二つから, representable morphism :: $g \circ f : U \to \mathcal{X} \to \mathcal{Y}$ は e.s. である.

この主張を用いて (b) を示す.

etale surjective 射 :: $W \to \mathcal{Z}, V \to W \times \mathcal{Y}, U \to V \times \mathcal{X}$ から次の可換図式が得られる.

定義から g が P であることと g' が P であることは同値.また,主張から $W \to W \times \mathcal{Y} \to \mathcal{Y}$ は etale surjective 射である.したがって再び定義から,f が P であることと f' が P であることは同値.最後に, $U \to V \times \mathcal{X} \to W \times \mathcal{X}$ も etale surjective であるから, $g \circ f$ が P であることと $g' \circ f'$ が P であることは同値である.

5 Algebraic Stack

節 5.2 以外は algebraic space の節にある定義文を

- "Space" \rightarrow "Stack",
- \bullet "Scheme" \rightarrow "Algebraic Space"

と置換しただけで得られるので読み飛ばして構わない.

5.1 Representable Ones

定義 5.1 (#Representable Stack)

stack :: $\mathfrak X$ が representable であるとは、ある algebraic space :: $\mathcal X$ が存在し、 $\mathfrak X\cong\mathcal X=\int\mathcal X$ であるということ.

定義 5.2 (#Representable Morphism of Stacks)

morphism of stacks :: $f: \mathfrak{X} \to \mathcal{Y}$ が representable であるとは、任意の S-algebraic space :: $U \succeq \mathbf{C}$ の射 $U \to \mathcal{Y}$ について、fiber product :: $U \times_{\mathcal{Y}} \mathfrak{X}$ が representable であるということ.

補題 5.3 (#)

X:: stack in groupoids on C とする. 以下は同値である.

- (i) $\Delta: \mathfrak{X} \to \mathfrak{X} \times_S \mathfrak{X}$ は表現可能.
- (ii) 任意の algebraic space :: U と射 $U \to \mathfrak{X}$ について, $U \to \mathfrak{X}$:: representable.
- (iii) 任意の algebraic space :: $U, V \ge$ 射 $U \to \mathfrak{X}, V \to \mathfrak{X}$ について $U \times_{\mathfrak{X}} V$:: representable.

定義 5.4 (#Property of Representable Stacks/Morphism of Them)

- (i) \mathcal{P} を scheme の性質で local for etale topology であるものとする. この時, representable stack :: \mathfrak{X} が性質 \mathcal{P} を持つとは、 \mathfrak{X} を represent する algebraic space が性質 \mathcal{P} を持つということである.
- (ii) \mathcal{P} を morphism of scheme の性質で local on target かつ stable under base change であるものとする. この時, representable morphism of stacks :: $f \colon \mathcal{X} \to \mathcal{Y}$ が性質 \mathcal{P} を持つとは, 任意の $U \in \mathbf{C}$ と 射 $U \to \mathcal{Y}$ について, pr: $\mathcal{X} \times_{\mathcal{Y}} U \to U$ (に対応する morphism of algebraic algebraic spaces) が性質 \mathcal{P} を持つということである.

5.2 Definition of Algebraic Stack

定義 5.5 (Algebraic Stack (Artin Stack))

S :: scheme とし、 $\mathfrak X$ を stack on $\mathrm{ET}(S)$ とする、 $\mathfrak X$ が algebraic であるとは、次が成り立つということである。

- (a) diagonal morphism :: Δ : $\mathfrak{X} \to \mathfrak{X} \times_S \mathfrak{X}$ が representable である.
- (b) algebraic space :: U からのsmooth surjective morphism :: $U \to \mathfrak{X}$ が存在する.

射は stack in groupoids としての射である.

補題 (5.3) から, 二つの条件は意味を成す.

定義 5.6 (#Deligne-Mumford(DM) Stack)

S :: scheme とし、 $\mathfrak X$ を stack on $\mathrm{ET}(S)$ とする、 $\mathfrak X$ が algebraic であるとは、次が成り立つということである。

(a) diagonal morphism :: $\Delta : \mathfrak{X} \to \mathfrak{X} \times_S \mathfrak{X}$ \mathfrak{h}^{\sharp} representable $\mathfrak{C}\mathfrak{B}\mathfrak{Z}$.

(b) algebraic space :: U からの<u>etale</u> surjective morphism :: $U \to \mathfrak{X}$ が存在する.

射は stack in groupoids としての射である.

以下, Algebraic Stack と言った時は DM か Artin かを限定しない.

注意 5.7

我々が採用する algebraic stack の定義は、しばしば Artin stack の定義として参照される.

歴史的には、DM stack の方が先に定義された.これは 1969 年の論文 [2] でのことである.動機は algebraic stack \bar{M}_g を通して,coarse moduli scheme の性質を調べることだった.しばしば DM stack の定義として $\Delta\colon \mathfrak{X}\to \mathfrak{X}\times \mathfrak{X}$ は quasi-compact かつ separated であるものとする.しかしこれは [2] では要求されて居ない.

一方, Artin stack は 1974 年の論文 [1] で DM stack の一般化として定義された. 我々が扱う Algebraic stack の定義(したがって多くの文献での "Artin stack"の定義)は,原論文のものとは異なる. Artin stack をどの site 上の stack として定義するか,という部分にも文献に寄って違いがある. [1], [6] では fppf site を考え, [4], [5] では etale site を考える.

5.3 Properties of Algebraic Stack/Morphism of Algebraic Stacks

以下では scheme の性質と scheme の射の性質を algebraic stack へ拡張する.

定義 5.8 (#Property of Algebraic Stack)

- (i) \mathcal{P} を scheme の性質であって、local for etale topology であるものとする.この時、algebraic stack :: \mathfrak{X} が性質 \mathcal{P} を持つとは、 \mathfrak{X} のある atlas が性質 \mathcal{P} を持つということである.
- (ii) algebraic stack :: $\mathfrak X$ が quasi-compact $^{\dagger 3}$ であるとは、 $\mathfrak X$ のある atlas が性質 $\mathcal P$ を持つということである.

定義 5.9 (#Property of Morphism of Algebraic Stack, [4] p.33, [2] p.100)

 \mathcal{P} を morphism of scheme の性質であって, smooth local on source and target であるものとする. あるいは, DM stack を考えるならば etale local on source and target であるものとする. 以下の可換図式で, $V \to \mathcal{Y}, U \to V \times \mathfrak{X}$ は atlas であるとする^{†4}.

$$U \xrightarrow{V \times \mathfrak{X}} V \xrightarrow{\mathfrak{g}.b.} \mathcal{Y}$$

$$V \xrightarrow{f'} V \xrightarrow{\mathcal{Y}} \mathcal{Y}$$

$$V \xrightarrow{f'} \mathcal{Y}$$

この時、 $\underline{\text{morphism of algebraic spaces}}$:: $f: \mathfrak{X} \to \mathcal{Y}$ が性質 \mathcal{P} を持つとは、この可換図式にある f' (に対応 する morphism of scheme) が性質 \mathcal{P} を持つということである.

補題 5.10 (#)

^{†3} 明らかに、これは local for etale topology ではない.

^{†4} すなわち, algebraic stack(Artin stack) を考えているならば smooth surjective morphism を考え, DM stack を考えているならば etale surjective morphism を考える.

- (i) \mathcal{X} を representable stack とし、P を algebraic stack の性質とする。f が algebraic stack として性質 P を持つことと、representable stack として性質 P を持つことは同値。
- (ii) $f: \mathcal{X} \to \mathcal{Y}$ を representable morphism とし、P を algebraic stack の射の性質とする。f が algebraic stack の射として性質 P を持つことと、representable morphism として性質 P を持つことは同値。

補題 5.11 (#)

- (i) P を scheme の性質で local for etale topology なものとする. 一つの etale surjective morphism :: $U \to \mathfrak{X}$ について U が性質 P を持つならば, 任意の etale surjective morphism :: $U \to \mathfrak{X}$ について U が性質 P を持つ.
- (ii) P を morphism of scheme の性質であって,local on source and target であるものとする. -つの $V \to \mathcal{Y}, U \to U \times \mathfrak{X}$ の組み合わせについて図式 (PM) の f' が性質 P を持つならば, 任意の $V \to \mathcal{Y}, U \to U \times \mathfrak{X}$ の組み合わせについて図式 (PM) の f' が性質 P を持つ.

(証明). [6] Tag 06FM

補題 5.12 (#)

P を algebraic stack の射の性質とする.

- (i) P が scheme の射の性質として stable under base change ならば, algebraic stack の射の性質として も stable under base change.
- (ii) P が scheme の射の性質として stable under composition ならば, algebraic stack の射の性質として も stable under composition.

(証明). algebraic space の場合の繰り返しである.

6 Definition of Quotient stack

Algebraic stack の具体例として Quotient stack を扱う. この例を通じて特に,「diagonal morphism $\Delta: \mathfrak{X} \to \mathfrak{X} \times_S \mathfrak{X}$ が表現可能とはどういうことか」ということを考えたい. 参考文献として [4] 1.3.2, [2] Example 4.8, [5] Example 8.1.12 を参照する.

6.1 Definitions.

6.1.1 \mathcal{G} -torsor

定義 **6.1** (Equivariant Morphism)

一般の site :: \mathbb{C} をとり, \mathcal{G} を \mathbb{C} 上の sheaf of groups とする. sheaf :: \mathcal{F} と, \mathcal{G} からの左作用 α : $\mathcal{G} \times \mathcal{F} \to \mathcal{F}$ を組にして (\mathcal{F},α) と書く. \mathcal{G} からの左作用を持つ sheaf の間の射 $(\mathcal{F},\alpha) \to (\mathcal{F}',\alpha')$ とは,sheaf の射 $f: \mathcal{F} \to \mathcal{F}'$ であって以下が可換図式であるもの.

このような射 f は G-equivariant morphism (G 同変写像) と呼ばれる.

定義 **6.2** (*G*-Torsor, [5] 4.5.1, [6] Tag 04UJ)

一般の site :: \mathbf{C} をとり、 \mathcal{G} を \mathbf{C} 上の sheaf of groups とする。 \mathbf{C} 上の \mathcal{G} -torsor とは、 \mathbf{C} 上の sheaf :: \mathcal{P} と 左作用 α : $\mathcal{G} \times \mathcal{P} \to \mathcal{P}$ の組であって、次を満たすもの。

T1 任意の $X \in \mathbb{C}$ について cover of $X :: \{X_i \to X\}$ が存在し, $\mathcal{P}(X_i) \neq \emptyset$.

T2 写像

$$\langle \operatorname{pr}_2, \alpha \rangle \colon \mathcal{G} \times \mathcal{P} \to \mathcal{P} \times \mathcal{P}; \quad (p, g) \mapsto (p, \alpha(g, p))$$

は同型. ただし、 $\langle pr_1, \alpha \rangle$ は $\mathcal{P} \times \mathcal{P}$ の普遍性と $pr_1, \alpha \colon \mathcal{P} \times \mathcal{G} \to \mathcal{P}$ から得られる射である.

G-torsor の射は G-equivariant morphism である.

 (\mathcal{P},α) が \mathcal{G} -torsor $:: (\mathcal{G},m)$ (ただし $m: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ は積写像)と同型である時 \mathcal{G} -torsor $:: (\mathcal{P},\alpha)$ は自明 (trivial) であると言う.

注意 6.3

 \mathcal{G} , \mathcal{P} の両方が scheme で表現できる場合には、 \mathcal{G} -torsor は principal bundle と呼ばれる. group scheme に対応する representable sheaf が

注意 6.4

任意の $X \in \mathbb{C}$ について $\mathcal{P}(X) \neq \emptyset$ である場合には、条件 T2 は作用 α が単純推移的であることを意味する. すなわち、任意の $p,q \in \mathcal{P}(X)$ についてただ一つの $q \in \mathcal{G}(X)$ が存在し、 $q = q * q = \alpha(q,p)$ となる.

補題 **6.5** ([6] Tag 03AI, [5] 4.5.1)

- (i) \mathcal{G} -torsor :: (\mathcal{P}, α) が自明であることと, \mathcal{P} が global section $^{\dagger 5}$ を持つことと同値.
- (ii) $\mathcal{P}(X) \neq \emptyset$ ならば制限 $\mathcal{P}|_X$ は trivial.
- (iii) 同型 $\mathcal{G}|_X \to \mathcal{P}|_X$ と $\mathcal{P}(X)$ の元は一対一に対応する.

(証明). (\mathcal{P}, α) が自明であると仮定すると、次のように global section が得られる.

$$1 \to \mathcal{G} \cong \mathcal{P}; \quad * \mapsto e$$

ただしeは \mathcal{G} の単位元である.

$$\mathcal{G} \to \mathcal{P}; \quad g \mapsto \alpha(g, p)$$

という射が定義できる. これは定義にある条件 T2 から同型である.

 $s \in \mathcal{P}(X)$ をとれば、scheme の任意の射 $\phi: U \to X$ について

$$1 \to (\mathcal{P}|_X)(U) = \mathcal{P}(U); \quad * \mapsto \phi^* s$$

のように global section :: $1 \to \mathcal{P}|_X$ が定まる.

^{†5} 前層の圏 $\mathbf{PSh}(\mathbf{C})$ の terminal object から \mathcal{P} への射のこと ([6] Tag 06UN). $\mathbf{PSh}(\mathbf{C})$ の terminal object は自明群で定まる constant sheaf である.

系 6.6

G-torsor の任意の射は同型.

(証明). isomorphism は etale local on the target なので (TODO), 条件 T1 にあるような etale cover $\{\phi_i \colon U_i \to X\}$ を取れば主張は「trivial $(\phi_i)^*\mathcal{G}$ -torsor の射は同型」という命題に帰着される.

 \mathcal{G} の単位元(射 $e: 1 \to \mathcal{G}$ の像)を e と書くことにすると、射 $(\phi_i)^*\mathcal{G} \to (\phi_i)^*\mathcal{G}$ は、 $g \mapsto g \cdot f(e)$ と書ける. $f(e) \in (\phi_i)^*\mathcal{G}$ も群の元なので逆元が存在する.なので $g' \mapsto g' \cdot f(e)^{-1}$ とすれば逆射が作れる.

6.1.2 Quotient Stack

定義 **6.7** (Quotient Stack, [5] Example 8.1.12)

X :: algebraic space, G :: smooth group scheme over S, acting on X とする. すなわち左作用 α : $\underline{G} \times X \to X$ が存在するものとする. この時, fibered category :: $[X/G](\to \operatorname{ET}(S))$ を以下で定める.

Object 以下の3つ組.

- S-scheme :: U,
- $G_U(:= G \times_S U)$ -torsor on $ET(U) :: \mathcal{P}$,
- G_U -torsor の射 $\pi: \mathcal{P} \to X_U (:= X \times_S U)$.

Arrow 射 $(U, \mathcal{P}, \pi) \to (U', \mathcal{P}', \pi')$ は二つの射の組 $(f: U \to U', f^{\flat}: \mathcal{P} \to f^*\mathcal{P}')$ であって,以下が可換となるもの.

 π と $f^*\pi'$ の codomain, すなわち X_U と $f^*X_{U'}$ が一致していることに注意.

fibration は $(U, \mathcal{P}, \pi) \mapsto U, (f, f^{\flat}) \mapsto f$ で与えられる.

注意 6.8

任意の $[U \to S] \in \mathbf{Sch}/S$ について, $G_U (:= G \times U)$ は群になる.単位セクション $e_U : 1 \to G_U$, $e : 1 \to G$ の pullback から得られる.積 m_U なども同様.特に射影 $\mathrm{pr}_U : G_U \to U$ は,smooth morphism $:: G \to S$ の pullback なので smooth.

補題 6.9

S:: scheme, X:: algebraic space, G:: smooth group scheme over S, acting on X とする. Quotient stack :: [X/G] は stack in groupoids である.

(証明). stack であることは sheaf の貼り合わせが可能であることに拠る. 詳しくは [5] 4.2.12, [6] Tag 04UK を参照せよ. [X/G] が category fibered in groupoids(CFG) であることを確かめる. これは恒等射上の [X/G] の射が同型射であることを確かめれば良い.

 $U \in \mathrm{ET}(S)$ を固定し、射 $(\mathrm{id}_U, f^{\flat}): (U, \mathcal{P}, \pi) \to (U, \mathcal{P}', \pi')$ を考える.定義から、次が可換である.

7 Quotient Stack is an Artin Stack.

定理 7.1

X :: algebraic space, G :: smooth group scheme over S, acting on X とする. Quotient Stack :: [X/G] は Artin stack である.

7.1 Preparation.

7.1.1 Definition of $\mathbf{Isom}(X, Y)$

最初に $\mathfrak X$ の cleavage を選択せずとも出来る **Isom** の構成を述べる. 後の注意で特に splitting を選択した 場合の構成も述べておく.

定義 7.2 ($\mathbf{Isom}(X,Y)$)

stack とは限らない fibration :: $\mathfrak{X} \to \mathbf{B}$ と, $U \in \mathbf{B}$ 及び U 上の対象 $X,Y \in \mathfrak{X}$ をとる.この時,CFG over \mathbf{B}/U :: $\mathbf{Isom}(X,Y)$ を以下のように定める.

Object. 以下の 4 つ組.

- \mathbf{B}/U の対象 $f: V \to U$.
- $f \circ C$ cartesian lifting :: $f^*X \to X, f^*Y \to Y$.
- 同型 $\phi \colon f^*X \to f^*Y$.

Arrow. 射

$$(V \xrightarrow{f} U, f^*X \to X, f^*Y \to Y, f^*X \xrightarrow{\phi} f^*Y) \to (W \xrightarrow{g} U, g^*X \to X, g^*Y \to Y, g^*X \xrightarrow{\psi} g^*Y)$$

は,以下の2つからなる.

- \mathbf{B}/U の射 $h: V \to W$ (したがって $g \circ h = f$ が成立),
- 射 $h^*\psi, \phi$ の間の canonical な同型射 $(h^*g^*X \to f^*X, h^*g^*Y \to f^*Y)$.

 $(h^*g^*X \to f^*X, h^*g^*Y \to f^*Y)$ を選択することで, $h^*g^*X \to X, h^*g^*Y \to Y$ が定まる.また Triangle Lifting により $h^*\psi$ も定まる.以下の図式を参考にすると良い.

fibration は次のように与えられる.

 $\pi\colon \qquad \mathbf{Isom}(X,Y) \qquad \to \quad \mathbf{B}/U$ Objects: $(f\colon V\to U, f^*X, f^*Y, \phi\colon f^*X\to f^*Y) \mapsto f$ Arrows: $(h\colon V\to W, h^*g^*X\to f^*X, h^*g^*Y\to f^*Y) \mapsto h$

注意 7.3

 $\mathfrak{X} \to \mathbf{B}$ の splitting を選んだ場合には $\mathbf{Isom}(X,Y)$ の定義は次のように簡単に成る.

Object. \mathbf{B}/U の対象 $f\colon V\to U$ と同型 $\phi\colon f^*X\to f^*Y$ の組.

Arrow. 射 $(f, \phi) \rightarrow (g, \psi)$ は, $g \circ h = f$ を満たす \mathbf{B}/U の射 h.

以下では $\mathbf{Isom}(X,Y)$ が algebraic space(これは sheaf)と同型であるかどうかを考えるので,こちらの定義だけを覚えていても問題はない.

7.1.2 Propositions

補題 7.4

任意の $U \in \mathbf{B}$ と $X, Y \in \mathfrak{X}(U)$ について、 $\mathbf{Isom}(X, Y)$ は category fibered in sets.

(証明). 恒等射上の射は恒等射しかないことを確かめれば良い. $\mathbf{Isom}(X,Y)$ の射の定義から、恒等射上の射は次の形になっている.

$$(id_U, f^*X \to f^*X, f^*Y \to f^*Y): (f, f^*X, f^*Y, \phi) \to (f, f^*X, f^*Y, \psi)$$

 $f^*X \to f^*X, f^*Y \to f^*Y$ は Triangle Lifting から得られる canonical なものなので、恒等射である.

 \mathfrak{X} :: stack の場合は ($\mathfrak{X} \to \mathbf{B}$ の splitting を選べば) $\mathbf{Isom}(X,Y)$ は sheaf になる.

補題 7.5

一般の site :: \mathbf{C} と CFG :: $\mathfrak{X} \to \mathbf{C}$ をとる. さらに \mathfrak{X} は split fibered category であるとする. 以下の二つは 互いに同値.

- (i) X は prestack である.
- (ii) 任意の $X,Y \in \mathfrak{X}$ について $\mathbf{Isom}(X,Y)$ の fiber は sheaf である.

(証明). (TODO: 出典)

7.1.3 Representability of Diagonal Morphism.

注意 7.6

以下, scheme S を固定し, 特に断らない限り big etale site :: $\mathrm{ET}(S)$ 上の stack in groupoids のみ考える.

補題 7.7

 \mathfrak{X} :: stack in groupoids on $\mathbf{C}(=\mathrm{ET}(S))$ とする. この時, $\Delta:\mathfrak{X}\to\mathfrak{X}\times_S\mathfrak{X}$ が表現可能であることと,任意の $U\in\mathbf{C}$ と任意の $X,Y\in\mathfrak{X}(U)$ について $\mathbf{Isom}(X,Y)$ が algebraic space であることは同値.

(証明). x,y: $\mathbf{Sch}/U(=U) \to \mathfrak{X}$ を、2-Yoneda Lemma により得られる $X,Y \in \mathfrak{X}(U)$ に対応する射とする $^{\dagger 6}$.

以下の図式が pullback diagram であることから分かる.

$$\mathbf{Isom}(X,Y) \xrightarrow{\mathrm{pr}_{U}} \mathbf{Sch}/U$$

$$\downarrow^{\mathrm{pr}_{\mathfrak{A}}} \qquad \downarrow^{x \times y}$$

$$\mathfrak{X} \xrightarrow{\Delta} \mathfrak{X} \times_{S} \mathfrak{X}$$

任意の射 $\mathbf{Sch}/U \to \mathfrak{X} \times \mathfrak{X}$ が $x \times y$ の形で表されることは、 $\mathfrak{X} \times \mathfrak{X}$ の普遍性から得られる.

まず、射と自然同型を定義する. $\mathbf{Isom}(X,Y)$ から伸びる射は次の関手である. ただし $\xi=(f\colon V\to U,f^*X,f^*Y,\phi\colon f^*X\to f^*Y),\eta=(g\colon W\to U,g^*X,g^*Y,\psi\colon g^*X\to f^*Y)$ とした.

$$\begin{array}{llll} \operatorname{pr}_U & \mathbf{Isom}(X,Y) & \to & \mathbf{Sch}/U \\ \mathbf{Objects:} & \xi & \mapsto & f \\ \mathbf{Arrows:} & [\xi \to \eta] & \mapsto & h \end{array}$$

$$\begin{array}{llll} \operatorname{pr}_{\mathfrak{X}} & \mathbf{Isom}(X,Y) & \to & \mathfrak{X} \\ \mathbf{Objects:} & \xi & \mapsto & f^*X \\ \mathbf{Arrows:} & [\xi \to \eta] & \mapsto & f^*X \to h^*g^*X \end{array}$$

自然同型 a は次で定める.

$$a_{\xi} \colon ((x \times y) \operatorname{pr}_{U})(\xi) \to (\Delta \operatorname{pr}_{\mathfrak{X}})(\xi)$$
$$(f \colon V \to U, f^{*}X, f^{*}X, \alpha) \mapsto (\operatorname{id}_{f^{*}X}, \phi)$$

^{†6} 例えばxは $f \in \mathbf{Sch}/U$ を cartesian lifting f^*X へ写す.

 $\mathbf{Isom}(X,Y)$ が pullback であることは、 $\mathbf{Isom}(X,Y)$ が普遍性を持つことを通して確かめる.(\mathbf{TODO})

7.2 Proof.

7.2.1 Δ is Representable.

示した補題から、任意の $U \in \mathbf{C}$ と任意の G_U -torsor :: $\mathcal{P}_1, \mathcal{P}_2 \in \mathfrak{X}(U)$ について $\mathbf{Isom}(\mathcal{P}_1, \mathcal{P}_2)$ が algebraic space であることは同値である.これは次のようにして自明な場合に帰着できる.

■ \mathcal{P}_1 , \mathcal{P}_2 が自明な場合に帰着させる.

補題 7.8 ([5] Exc 5.G)

U :: scheme をとる. sheaf on $\mathrm{ET}(U)$:: \mathcal{F} と etale surjective morphism :: $V \to U$ に対し, $V \times_U \mathcal{F}$ が algebraic space ならば, \mathcal{F} は algebraic space.

補題 7.9

 $X,Y \in \mathfrak{X}(U) \succeq v \colon V \to U$ について

$$V \times_U \mathbf{Isom}(X, Y) \cong \mathbf{Isom}(v^*X, v^*Y).$$

(補題 7.8 の証明). $\mathcal{F}' := (V \times_U \mathcal{F}) \times_V (V \times_U \mathcal{F})$ とおく.

まず diagonal morphism の表現可能性を考える. pullback lemma から次が分かる.

$$(V \times_{U} \mathcal{F}) \times_{V} (V \times_{U} \mathcal{F}) \cong (V \times_{U} \mathcal{F}) \times_{U} \mathcal{F} \cong V \times_{U} (\mathcal{F} \times_{U} \mathcal{F}).$$

このことから、 $\Delta: \mathcal{F} \to \mathcal{F} \times_U \mathcal{F}$ を $V \to Y$ で pullback したものが $\Delta': \mathcal{F}' \to \mathcal{F}' \times \mathcal{F}'$ だと分かる. atlas の存在は次のように分かる. $A \to \mathcal{F}'$ を \mathcal{F}' の atlas とする.

 $V \to Y$ が etale surjective なので $\mathcal{F}' \to \mathcal{F}$ も etale surjective. 今 $A \to \mathcal{F}'$ が etale surjective なので、併せて $A \to \mathcal{F}$ が etale surjective と分かる.

(補題 7.9 の証明). 定義を変形するだけである.

$$\begin{split} &(V\times_{U}(\mathbf{Isom}(X,Y)))(W)\\ =&V(W)\times_{U(W)}\mathbf{Isom}(X,Y)(W)\\ =&\{(w\colon W\to V,f\colon W\to U,\rho\colon f^{*}X\xrightarrow{\cong}f^{*}Y)\mid u\circ v=f\}\\ =&\{(w\colon W\to V,\rho\colon w^{*}u^{*}X\xrightarrow{\cong}w^{*}u^{*}Y)\}\\ =&\mathbf{Isom}(v^{*}X,v^{*}Y)(V) \end{split}$$

 $\mathcal{P}_1, \mathcal{P}_2$ が自明に成る etale cover :: $\mathcal{V}^{\dagger 7}$ をとり、 $v \colon V = \bigsqcup_{V \in \mathcal{V}} V \to X$ とすれば、 $v^* \mathcal{P}, v^* \mathcal{P}_2$ は自明な G_U -torsor となる.こうして $\mathcal{P}_1, \mathcal{P}_2$ が自明な場合に議論を帰着させることが出来る.

^{†7} i.e. $\forall V \in \mathcal{V}, \ \mathcal{P}_1(V), \mathcal{P}_2(V) \neq \emptyset.$

同型 $G_Y \cong \mathcal{P}_1, G_Y \cong \mathcal{P}_2$ を固定する. これらと π_1, π_2 を合成して

$$\rho_1 \colon G_Y \to X_Y, \quad \rho_2 \colon G_Y \to X_Y$$

を得る.

Isom($(G_Y, \rho_1), (G_Y, \rho_2)$) がどのような sheaf か考える. trivial torsor の任意の自己同型 $\phi: G_Y \to G_Y$ は、これが equivariant であることから、 $\phi(e)$ の左からの積になっている。逆に任意の G_Y の元を取れば左からの積が自己同型になるから、集合 $\mathbf{Isom}((G_Y, \rho_1), (G_Y, \rho_2))$ は G_Y の部分集合である。そこで、 $g \in G_Y$ (i.e. $g: 1 \to G_Y$) から得られる自己同型 $(\cdot g): G_Y \to G_Y$ が満たすべき条件を考える。

[X/G] の定義から、次が可換である.

 $(\cdot g)$ は equivariant だから、この図式が可換であることは $\rho_1(e)=\rho_2(g)$ と同値である.したがって

Isom(
$$(G_Y, \rho_1), (G_Y, \rho_2)$$
)(V)
={ $g \in G_Y(V) \mid \rho_1(e) = \rho_2(g)$ }
={ $(g, x) \in G_Y(V) \times X_Y(V) \mid (\rho_1(e), \rho_2(g)) = (x, x)$ }

これは次のように、fiber product で表現出来る.

$$\mathbf{Isom}(\ (G_Y, \rho_1), (G_Y, \rho_2)\) \longrightarrow G_Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_Y \xrightarrow{\Delta} X_Y \times_Y X_Y$$

射 $G_Y \to X_Y \times_Y X_Y$ は $g \mapsto (\rho_1(e), \rho_2(g))$ である.この図式が pullback diagram であることは $\mathbf{Isom}(\ (G_Y, \rho_1), (G_Y, \rho_2)\)$ が algebraic space であることを意味している.

7.2.2 [X/G] has an Atlas.

射 $a: X \to [X/G]$ を trivial G_X -torsor $:: (G_X, m_X) \in [X/G](X)$ に(2-Yoneda Lemma によって)対応 する射とする.この射 a が atlas であることを示す.a が representable であることは Δ が representable で あることから分かる.a が smooth, surjective であることを示す.

以下の pullback diagram を考える.

$$\begin{array}{c} \mathbf{P} & \longrightarrow X \\ \downarrow & \text{p.b.} & \downarrow_{(G_X, m_X)} \\ Y & \xrightarrow{(\mathcal{P}, \pi)} [X/G] \end{array}$$

ただし $Y \to [X/G]$ は a と同様に $(\mathcal{P},\pi) \in [X/G](Y)$ に対応する射である。 \mathcal{P} は作用 $\alpha \colon G_Y \times \mathcal{P} \to \mathcal{P}$ を持つとする。

この時、 ${\bf P}$ は sheaf として ${\cal P}$ と同型である.これは次のように同型が得られる.まず ${\bf P}(U)$ は以下の 3 つの組の集合である.

• $x: U \to X$,

• $y: U \to Y$,

• $\rho \colon x^*(G_X, m_X) \xrightarrow{\cong} y^*(\mathcal{P}, \pi)$).

ただしx,yについて以下が可換.

$$\begin{array}{ccc} U & \xrightarrow{x} & X \\ y \downarrow & & \downarrow \\ Y & \longrightarrow & S \end{array}$$

上のような x,y を一つとり, x_0,y_0 と名前を付ける。すると $(y_0)^*G_Y=(x_0)^*G_X$ となる。 $\mathbf{P}(U)$ の元 (x,y,ρ) が存在するならば, $x^*X=y^*X_Y$ ゆえに x,y は上の可換図式を満たすことに注意せよ。

次のように同型を定める.

$$\begin{array}{cccc} \mathbf{P}(U) & \to & \mathcal{P}(U) \\ (x, y, \rho) & \mapsto & \rho_U(e) \\ (x_0, y_0, (y_0)^* \alpha(-, p)) & \hookleftarrow & p \end{array}$$

 $(f^*\mathcal{P})(U) = \mathcal{P}(U)$ は f^* の colomit を用いた定義から得られる.

最後に $\mathcal{P} \to Y$ が etale surjective であることを確かめる. $\mathcal{P}(Y_i) \neq \emptyset$ となる Y の cover :: $\{Y_i \to Y\}$ をとる. $\mathcal{P}|_{Y_i}$ は trivial torsor :: G_{Y_i} と同型となる. $\operatorname{pr}_{Y_i} : G_{Y_i} \to Y_i$ は smooth surjective であり、smooth, surjective はどちらも etale local on target な性質なので、 $\mathcal{P} \to Y$ も etale, surjective. (ついでに \mathcal{P} :: algebraic space も分かる.)

参考文献

- [1] M. Artin. Versal deformations and algebraic stacks. *Inventiones mathematicae*, Vol. 27, No. 3, pp. 165–189, Sep 1974.
- [2] Pierre Deligne and David Mumford. The irreducibility of the space of curves of given genus. *Publications Mathématiques de l'Institut des Hautes Études Scientifiques*, Vol. 36, No. 1, pp. 75–109, Jan 1969.
- [3] Tomàs L. Gòmez. Algebraic stacks, 1999. https://arxiv.org/abs/math/9911199v1.
- [4] G. Laumon and L. Moret-Bailly. *Champs algébriques*. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge (A Series of Modern Surveys in Mathematics). Springer Berlin Heidelberg, 1999.
- [5] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.
- [6] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.