

MACHINE REASONING DAY 2

https://robohub.org/wp-content/uploads/2016/11/bigstock-Retro-Robot-Reading-A-Book-Is-110707406.jpg

DAY 2 AGENDA

2.1 Knowledge Acquisition (Business Rules)

2.2 Knowledge Models (Acquired → Represented)

Format Acquired Knowledge into Representation Templates

2.3 Machine Inference (part 1)

2.4 Knowledge Modelling Workshop

DAY 2 TIMETABLE

No	Time	Topic	By Whom	Where
1	9 am	2.1 Knowledge Acquisition2.2 Knowledge Models	GU Zhan (Sam)	Class
2	10.10 am	Morning Break		
3	10.30 am	2.3 Machine Inference (1/2)	GU Zhan (Sam)	Class
4	12.10 pm	Lunch Break		
5	1.30 pm	2.4 Knowledge Modelling Workshop Tutorial	GU Zhan (Sam) All	Class
6	3.10 pm	Afternoon Break		
7	3.30 pm	2.4 Knowledge Modelling Workshop	All	Class
8	4.50 pm	Summary and Review	All	Class
9	5 pm	End		

2.2 KNOWLEDGE ACQUISITION (BUSINESS RULES)

2.1 KNOWLEDGE ACQUISITION (BUSINESS RULES)

- Knowledge Acquisition is the transfer and transformation of problem solving knowledge into a form that can be used to build intelligent systems.
- Knowledge acquisition is also called:
 - Knowledge capture
 - Knowledge elicitation
 - Requirements engineering
- Personnel involved:
 - Knowledge holder, e.g. subject matter expert (SME); process owner
 - Knowledge engineer, e.g. business analyst; system analyst; consultant

2.1 KNOWLEDGE ACQUISITION (BUSINESS RULES) Knowledge Sources

- Two types of knowledge can be used to build KBS/RBS:
 - Documented sources
 - Collection from printed sources
 - Machine learning (rule induction, decision tree, neural network, deep learning, etc.)
 - Undocumented sources
 - Tacit knowledge that can only be captured by elicitation from human experts

2.1 KNOWLEDGE ACQUISITION (BUSINESS RULES)

Acquisition Methods

2.1 KNOWLEDGE ACQUISITION (BUSINESS RULES) Interview Elicitation

- Elicitation is acquisition of tacit knowledge from a subject matter expert
- The Knowledge elicitation approach:
 - Capture knowledge using interviews
 - Interpret & Analyze the transcripts and data obtained
 - Build knowledge models (knowledge representation)
 - Use the knowledge models to guide further elicitation
 - Verify & Validate the captured knowledge
 - Stop when the knowledge model is enough for building business reasoning system

2.1 KNOWLEDGE ACQUISITION (BUSINESS RULES)

Interview Best Practices

- More Beneficial interviewing expert at their workplace
- Make sure the meeting place is quiet and free from interruptions
- Before the interview:
 - Do background research on the domain area
 - Background check on the domain expert
 - Design and phrase your questions
 - Email questions to domain expert
 - Acquire and prepare the tools for the interview

During the interview:

- Introductions & Social preliminaries
- State purpose of interview
- Give a brief on the roles and responsibilities
- Be courteous; Listen closely; Avoid arguments
- Investigate each topic in detail
- Evaluate session outcome
- Observe confidentiality

- After acquiring domain knowledge from the experts and other sources, how do we present a comprehensive view of this knowledge?
- Knowledge Models (Templates for knowledge representation)
 - A knowledge model is a group of structured representations of knowledge that allows us to better understand the domain and the processes involved in decision making.
 - Documented models provide rich descriptions of domain knowledge that is independent of any particular software implementation.
 - These models also serve as a basis for communication among stakeholders: experts, analysts, developers, and end users.

2.2 KNOWLEDGE MODELS (ACQUIRED → REPRESENTED) Document Templates

- Concept Dictionary
- Concept Tree
- Composition Tree
- Decision Tree
- Goal Reduction Tree
- Inference Diagram
 KIE Rule Flow Groups: Task (Activity/Sub-Goal) level
- Attribute Worksheet
 KIE Data Model: Object; Field; Type
- HMI/UI System-User Dialogue
 KIE Form: Task level
- Rules & Decision Table
 KIE Guided Rules; Decision Table
- **Dependency Diagram** KIE Rule Flow Groups: Rule level
- Flowchart (Workflow)
 KIE Process Flow: Task level for Business Functions
- Activity Flow Diagram
 KIE Process Flow: Task level for Business Teams/Roles
- RACI Matrix KIE Business Teams/Departments/Roles/Groups

Concept Dictionary

Concept	Synonyms Abbr	Meaning Meaning					
Esophagus	Gullet Oesophagus	Sometimes known as the gullet. Muscular tube through which food passes from pharynx to the stomach					
Duodenum		The first section of the small intestine					
Peptic ulcer	PUD	Area of the gastrointestinal tract that is extremely painful. Mucosal erosions equal to or greater than 0.5cm.					
Hyperacidity	Acid dyspepsia, Amalpitta	A condition of excreting more than the normal amount of hydrochloric acid in the stomach					

- A concept dictionary contains the list of all relevant concepts that are used in the problem domain to solve the problem.
- The dictionary provides a detailed explanation of the concept and can include any information that is useful for a good understanding of the concept.
- It can be similar to a glossary.
- It does not have any particular format.

Concept Tree

- Tree that shows concepts and the classes and sub-classes.
- All relationships must be "is a".
- Check the tree by looking at the lowest and highest nodes and asking "is <sub-concept> a type of <concept>".
- Nodes should have clear & complete names.
- Captured terminology and landscape of the domain.

Composition Tree

- Detailed concept breakdowns into its constituent parts.
- All relationships must be "part of".
- Understand things as
 - Products (parts of a machinery)
 - Organisations (your organisation chart)
 - Documents (the table of contents)

Decision Tree

- Tree shows the alternative courses of action or casual consequences for a particular decision.
- Condition/Rule based domain knowledge
- A snapshot of the experts knowhow

Goal Reduction Tree

- Indicate relations between goal & sub-goals
- Incorporates AND/OR links (OR is implicit)
- Typical patterns of problem-solution behavior can be analyzed

Goal Reduction Trees are

- More "action" oriented while the Decision Tree is more static and causal.
- Useful for planning a overall strategy "sub-goals" for problem solving

Decision Trees are

More detailed conditional rule sets

Goal Reduction Tree vs. Decision Tree

 Have "labeled links" where every node has a specific question/condition to check

Inference Diagram

KIE Rule Flow Group; Task

2.2 KNOWLEDGE MODELS (ACQUIRED → REPRESENTED) Inference Diagram **KIE Rule Flow Group; Task**

- A Inference Diagram is a type of goal reduction tree, extended with detailed observable/controllable input factors.
- A Inference Diagram consists of problem-solving factors arranged in a hierarchical tree structure.
- The top-level (tree root) node is the final decision goal.
- The intermediate nodes are the sub-factors or sub-goals.
- The bottom-level (tree leaves) nodes are the input factors.
- An Inference Diagram shows the different level of inferences in the decision process.

Attribute Worksheet

KIE Data Model: Object; Field; Type

Sub-goal	Attribute	Inferable or Observable	KIE Fiel	d Type & Vo	alue	English Translation
KIE Data Model: Data Object	KIE Data Model: Object Field	KIE Form: User Interface	String, Integer, Float, Boolean, Date, etc.	Value Range	Value Unit	KIE Data Model: Comments
	franchise-fee	Observable	Float	1 - 50,000	SGD\$	The price to be paid for the franchise
Franchise	royalty	Observable	Float	1 - 10,000	SGD\$	The monthly fee payable to franchisor
	lease-period	Observable	Integer	1 - 5	years	The Franchise Lease period
Profit	Income	Inferable	Float	1 – 1,000,000	SGD\$	Annual income from sale of goods
FIOIII	Expenditure	Inferable	Float	1 – 1,000,000	SGD\$	Annual expenditure from sale of goods
Income	goods	Observable	Float	1 – 1,000,000	SGD\$	The sales proceeds from goods sold
income	services	Observable	Float	1 – 1,000,000	SGD\$	Sales proceeds from services rendered
Location	in-city	Observable	Boolean	True or False	N.A.	Planned shop in city area
LOCUIION	in-suburb	Observable	Boolean	True or False	N.A.	Planned shop in suburb area

UI System-User	Dialogue	KIE Form	

Sub-goal	Franchise
System Questions / KIE Forms	Example User Response
How much is the franchise Fee?	\$10,000
How much is the monthly royalty fee?	\$2,000
How long is the lease period?	3 years

- Compose User Interface (UI)
 System-User Dialogues
- Define questions that will be asked by the reasoning system; Or forms to be filled by end user.
- Define responses that the user is expected to give
- Use System-User Dialogue tables

2.2 KNOWLEDGE MODELS (ACQUIRED → REPRESENTED) Rules & Decision Table KIE Guided Rules; Decision Table

Rule No.	Condition 1	Logical Operand	Condition 2	Sub-goal			
F-1	franchise-fee ≤ threshold1	AND	royalty ≤ threshold2	Franchise = ok			
F-2	franchise-fee ≤ threshold1	AND	royalty > 20% x franchise-fee	Franchise = not-ok			
F-\$	•••	•••	•••	•••			

Dependency Diagram

KIE Rule Flow Groups

- Dependency Diagram captures sub-goals with corresponding rules.
- It also shows the relationship between the different sub-goals (rule groups).
- To be used to construct rule flow groups based on subgoals, in KIE Task.

Dependency Diagram KIE Rule Flow Groups

Flowchart

KIE Process Flow: Task level for Business Functions

- The key to develop Flowchart to model/capture business process workflow, is to define the sequence of activities, and to identify those points where the flow can go two ways, depending on the circumstances.
- Write the activity name in as few words as possible, e.g. Verb + Noun pairs
- Write decision points as clear questions to which the answer is either "yes/true" or "no/false".

Activity Flow Diagram KIE Process Flow: Task level for Business Teams/Roles

Process Name: Produce music products

Process owner: Simon Cowell, Head of Production

Prepared: 3rd March 2007

Version: 1.0

- Activity Flow Diagram captures "who does what (activity)" in the workflow.
- Identify roles and responsibilities (Swimlanes)
- A single activity should map to a single role. If this doesn't seem possible, then consider whether the activity should actually be split out into multiple activities.
- Expand flowchart by drawing swimlanes for each activity under the identified roles/teams.

RACI Matrix KIE Business Teams/Departments/Roles/Groups

Process step	Holda	Solect	Contra	Name & members	Organi,	Organi.	Stylise .	Finds	Contracting musicia	Write sc	Book r.	Recording studio	Record vocale	Record	Mix traci	Shoot		Design	Draft cr.	Review	Compile and cover	File album and DVD
Note	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	-
Talent Scout	AR	AR	R		_			С			_	-		_	_	_	-					-
Legal Advisor	_		AR		_				AR											R	_	-
Band Member				1	-1	- 1	1				-1		R			R			-	R		
Record Producer			С	AR			C	AR	R	C	AR	AR	AR	AR	AR	R	С	R	AR	R	AR	
Artist Development				С	AR	AR	AR			С								С		R		
Songwriter										AR										R		
Musician											1	R		R						R		
Video Production																AR	AR			R	R	
Artist																		AR		R		
Key				aniu.																		
R - Responsible A - Accountable	Has	Yes/l	No au	thorit	y - th	ere c	an on	ly be	one '	A" p	er act	ivity	Degr	ee of	respo	nsibi	lity is	dete	rmine	d by	the "A	ζ".
C - Consulted I - Informed		volved prior to decision or action - two-way communication eeds to know of the decision or action - one-way communic										tion.										

Responsible; Accountable; Consulted; Informed

- **R** for responsible means, "the person who actually does the activity". Responsibility for an activity can be shared, if necessary.
- A for accountable means, "the buck stops here", and the role has ultimate yes/no authority.
- C for consulted means, "kept in the loop", and implies two-way communication prior to the activity.
- I for informed means, "kept in the picture", and implies one-way communication after the activity.

Best Practices:

- There can only be one accountability (A) per activity.
- Recommend one responsibility (R) only per activity.
- Roles can combine both accountability and responsibility for activities.
- Minimize the number of consults (C) and informs (I).
- Authority must accompany accountability.
- Don't map decision points on the RACI matrix, only activities.

Design Process

Exercise

Exercise 2.2

Refer to Airport Gate Assignment System (AGAS) case.

Create relevant Knowledge Models.

2.3

MACHINE INFERENCE

(PART 1)

Rule Inference

[Psychology] Information Processing Theory

[AI] Recognise-Act Control Cycle

Three main components of Rule Based System (RBS)

- A set of business rules (Knowledge Base) [long term memory]
 - A rule represents a single chunk of problem-solving knowledge
- A working memory (WM) [short term memory]
 - Contains Rules and Data (current state of program execution)
- A rule engine [pattern matching controller]
 - A computational system that implements the control strategy and applies (fire) the rules
 - The patterns in WM are matched against the conditions of the rules
 - Matched rules are called the conflict set
 - The control strategy determines the order in which the rules are fired and resolves any rule conflicts
 - Uses the Recognise-Act cycle

National University of Singapore

Rules form a Search Tree

- R1 IF A and B and C and D THEN E
- R2 IF X and Y THEN A
- R3 IF Z THEN B
- R4 IF W THEN C
- R5 IF F THEN D
- R6 IF G THEN D
- R7 IF H THEN G

Inference strategy is known as "chaining".

Forward Chaining & Backward Chaining

Forward Chaining Example

Rule 1:

IF the patient has a sore throat

AND we suspect a Bacterial infection

THEN we believe the Illness is a strep throat

Rule 2:

IF the patient's temperature is > 100

THEN the patient has a fever

Rule 3:

IF the patient has been sick for over a month

AND the patient has a fever

THEN we suspect a bacterial infection

Facts: Temperature = 104°F (40°C) F1

Patient has been sick for 2 months F2

Patient has a sore throat F3

Forward Chaining Example

Rule 1:

the patient has a sore throat IF

we suspect a Bacterial infection AND

we believe the Illness is a strep throat THEN

Rule 2:

IF. the patient's temperature is > 100

the patient has a fever THEN

Rule 3:

IF the patient has been sick for over a month

the patient has a fever AND

we suspect a bacterial infection THEN

Temperature = $104^{\circ}F$ ($40^{\circ}C$) Facts:

Patient has been sick for 2 months

Patient has a sore throat

patient has a fever

F1

F2

F3

Forward Chaining Example

Rule 1:

IF the patient has a sore throat

AND we suspect a Bacterial infection

THEN we believe the Illness is a strep throat

Rule 2:

IF the patient's temperature is > 100

THEN the patient has a fever

Rule 3:

IF the patient has been sick for over a month

AND the patient has a fever

THEN we suspect a bacterial infection

Facts: Temperature = 104°F (40°C)

Patient has been sick for 2 months

Patient has a sore throat

patient has a fever

suspect a bacterial infection

F1

Forward Chaining Example

Rule 1:

IF the patient has a sore throat

AND we suspect a Bacterial infection

THEN we believe the illness is a strep throat

Rule 2:

IF the patient's temperature is > 100

THEN the patient has a fever

Rule 3:

IF the patient has been sick for over a month

AND the patient has a fever

THEN we suspect a bacterial infection

Facts: Temperature = 104°F (40°C)

Patient has been sick for 2 months F2

Patient has a sore throat

patient has a fever F4

suspect a bacterial infection F5

illness is a strep throat

F1

Forward Chaining Example

Initial state of working memory WM: [F1, F2, F3]

Rule-2 [F1]

Add F4: "patient has a fever"

Rule-3 [F2, F4]

Add F5: "suspect a bacterial infection"

Rule-1 [F3, F5]

Add F6: "illness is a strep throat"

No more rules to fire → halt

Conclusion → illness is a strep throat

2.3 MACHINE INFERENCE Forward Chaining Definition

- A forward chaining system
 - Begin with a set of facts in the Working Memory, then apply rules to generate new facts until the desired goal is reached.
- Rules whose premise (IF..) is known to be true are fired, and their conclusions (THEN..) are declared true.
 - This process continues until no more rules can be triggered/fired.
 The system then reports its conclusions.

Backward Chaining Example

Rule 1:

IF the patient has a sore throat

AND we suspect a Bacterial infection

THEN we believe the illness is a strep throat

Rule 2:

IF the patient's temperature is > 100°F

THEN the patient has a fever

<u>Rule 3:</u>

IF the patient has been sick for over a month

AND the patient has a fever

THEN we suspect a bacterial infection

F1: Temperature = 104°F (40°C)

F2: Patient has been sick for 2 months

F3: Patient has a sore throat

F4: Is the illness a strep throat?

goal / hypothesis to prove

National University of Singapore

Backward Chaining Example

Rule 1:

IF the patient has a sore throat

AND we suspect a Bacterial infection

THEN we believe the illness is a strep throat

Rule 2:

IF the patient's temperature is > 100°F

THEN the patient has a fever

Rule 3:

IF the patient has been sick for over a month

AND the patient has a fever

THEN we suspect a bacterial infection

F1: Temperature = 104°F (40°C)

F2: Patient has been sick for 2 months

F3: Patient has a sore throat

F4: Is the illness a strep throat?

National University of Singapore

Backward Chaining Example

Rule 1:

IF the patient has a sore throat \square

AND we suspect a Bacterial infection [?]

THEN we believe the illness is a strep throat

Rule 2:

IF the patient's temperature is > 100°F

THEN the patient has a fever

<u>Rule 3:</u>

IF the patient has been sick for over a month

AND the patient has a fever

THEN we suspect a bacterial infection

F1: Temperature = 104°F (40°C)

F2: Patient has been sick for 2 months

F3: Patient has a sore throat

F4: Is the illness a strep throat?

Backward Chaining Example

Rule 1:

IF the patient has a sore throat \square

AND we suspect a Bacterial infection [?]

THEN we believe the illness is a strep throat

Rule 2:

IF the patient's temperature is > 100°F

THEN the patient has a fever

Rule 3:

IF the patient has been sick for over a month

AND the patient has a fever

THEN we suspect a bacterial infection

F1: Temperature = 104°F (40°C)

F2: Patient has been sick for 2 months

F3: Patient has a sore throat

F4: Is the illness a strep throat?

F5: Do we suspect a bacterial infection?

Backward Chaining Example

Rule 1:

IF the patient has a sore throat \square

AND we suspect a Bacterial infection [?]

THEN we believe the illness is a strep throat

Rule 2:

IF the patient's temperature is > 100°F

THEN the patient has a fever

Rule 3:

IF the patient has been sick for over a month

AND the patient has a fever [?]

THEN we suspect a bacterial infection

F1: Temperature = 104°F (40°C)

F2: Patient has been sick for 2 months

F3: Patient has a sore throat

F4: Is the illness a strep throat?

F5: Do we suspect a bacterial infection?

Backward Chaining Example

```
Rule 1:
   IF
           the patient has a sore throat \square
           we suspect a Bacterial infection [?]
   AND
   THEN
           we believe the illness is a strep throat
Rule 2:
   IF
           the patient's temperature is > 100°F
           the patient has a fever
   THEN
Rule 3:
   IF
           the patient has been sick for over a month 
   AND
           the patient has a fever [?]
           we suspect a bacterial infection
   THEN
```

F1: Temperature = $104^{\circ}F$ ($40^{\circ}C$)

F2: Patient has been sick for 2 months

F3: Patient has a sore throat

F4: Is the illness a strep throat?

F5: Do we suspect a bacterial infection?

F6: Does the patient have a fever?

Backward Chaining Example

```
Rule 1:
   IF
           the patient has a sore throat \square
           we suspect a Bacterial infection [?]
   AND
           we believe the illness is a strep throat
   THEN
Rule 2:
           the patient's temperature is > 100°F ✓
   IF
           the patient has a fever
   THEN
Rule 3:
   IF
           the patient has been sick for over a month 
   AND
           the patient has a fever [?]
   THEN
           we suspect a bacterial infection
```

F1: Temperature = $104^{\circ}F$ ($40^{\circ}C$)

F2: Patient has been sick for 2 months

F3: Patient has a sore throat

F4: Is the illness a strep throat?

F5: Do we suspect a bacterial infection?

F6: Does the patient have a fever?

Proved: Patient has a strep throat.

National University of Singapore

Backward Chaining Example

Initial state of working memory WM: [Facts + Hypothesis]

Rule-1 [Hypothesis F4]

Goal: we suspect a strep throat? {new goal to pursue Add F4}

Check: patient has a sore throat? {proved by F3}

Check: we suspect bacterial infection? {new goal to pursue Add F5}

Rule-3 [F5]

Check: patient has been sick for over a week? {proved by F2}

Check: patient has a fever? {new goal to pursue Add F6}

Rule-2 [F6]

Check: patient's temperature is > 100°F (37.8°C)? {proved by F1}

No more rules to fire {all proved} → halt

Conclusion → yes, illness is a strep throat

Backward Chaining Definition

- A backward chaining inference engine starts from a goal or hypothesis.
 - It works through the rules trying to match the goal with the action clauses (THEN part) of a rule.
 - When a match is found, the condition clauses (IF part) of the matching rule become "sub-goals".
 - The cycle is repeated until a verifiable set of condition clauses is found.

Forward Chaining vs. Backward Chaining

Forward Chaining	Backward Chaining
Planning, monitoring, surveillance, control, decision	Diagnosis, trouble-shooting
Present to future Antecedent to consequent	Present to past Consequent to antecedent
Data driven, bottom-up reasoning	Goal driven, top-down reasoning
Work forward to find what solutions that follow from the facts	Work backwards to find facts that support a given hypothesis
Facilitates Breadth-First-Search	Facilitates Depth-First-Search
Does not facilitate Explanation	Facilitates Explanation
CLIPS, KIE Drools	PROLOG, KIE Drools

Forward Chaining vs. Backward Chaining

- FC is data-driven
 - The focus of attention starts form known data & business rules
 - e.g., object recognition, routine decisions
 - May do lots of work that is irrelevant to the goal
- BC is goal-driven
 - Appropriate for problem-solving & investigation
 - e.g., Where are my keys? How do I get into a PhD program?

© Computer memory consumption of BC can be much less than FC when knowledge base is large.

2.4 WORKSHOP KNOWLEDGE MODELLING

2.4 WORKSHOP KNOWLEDGE MODELLING

Requirement Analysis

Problem selection: Identify business value and purposes

Design (Knowledge Representation and Acquisition)

- Knowledge acquisition, interviews
- Definition of problem domain: Draw high level Inference Diagram
- System design: Compose other relevant Knowledge Models

Implementation (KIE Development)

System development: KIE tools

Testing

Integrate, test, revise, deploy, and use

Evolution

https://i1.wp.com/melsatar.blog/wp-content/uploads/2012/03/sdlc.png?fit=830%2C374&ssl=1

DAY 2 REFERENCE

- 1. Designing a decision service using guided rules

 https://access.redhat.com/documentation/en-us/red hat decision manager/7.2/html-single/designing a decision service using guided rules/
- 2. KIE Workbench Tutorial: Human Machine Interaction https://www.youtube.com/watch?v=NfNnUsr66Cc
- 3. KIE Workbench Tutorial: Guided Decision Tables https://www.youtube.com/watch?v=qBgxVoc2qfw
- 4. Jay Pujara & Sameer Singh. (2018). Mining Knowledge Graphs from Text

https://kgtutorial.github.io/

DAY 2 SUMMARY

2.1 Knowledge Acquisition (Business Rules)

- Documented sources vs. Undocumented sources
- Knowledge capture; Knowledge elicitation

2.2 Knowledge Models (Acquired → Represented)

 Concept Dictionary; Concept Tree; Composition Tree; Decision Tree; Goal Reduction Tree; Inference Diagram; Attribute Worksheet; HMI/UI System-User Dialogue; Rules & Decision Table; Dependency Diagram; Flowchart; Activity Flow Diagram; RACI Matrix

2.3 Machine Inference (part 1)

- Knowledge/Rule Base; Inference Engine; Working Memory
- Forward Chaining & Backward Chaining

2.4 Knowledge Modelling Workshop

END OF LECTURE NOTES