





## CENTRUL NAȚIONAL DE POLITICI ȘI EVALUARE ÎN EDUCAȚIE

## V. Országos Magyar Matematikaolimpia XXXII. EMMV

országos szakasz, Arad, 2023. február 20–23.

IX. osztály – II. forduló

## 1. feladat.

- a) Igazold, hogy az 5-nél nagyobb prímszámok 6k+1 vagy 6k+5 alakúak, ahol  $k \in \mathbb{N}^*$ .
- b) Határozd meg azokat az a és b prímszámokat, amelyekre a + 2b és a + 7b egyszerre prímek!
- **2. feladat.** Legyen C egy adott AB szakasz felezőpontja, D pedig a BC szakasz felezőpontja. Ugyanakkor legyen E a B középpontú, BC sugarú kör, C-től különböző tetszőleges pontja. Jelölje F az E pontnak a D pont szerinti szimmetrikusát. Bizonvítsd be, hogy EA = EF.
- 3. feladat. Igazold, hogy bármely n természetes szám esetén  $(5-\sqrt{5})^n+(5+\sqrt{5})^n$  osztható  $2^n$ -nel!
- **4. feladat.** A táblára felírtuk a természetes számokat 1-től n-ig. Minden lépésben kitörlünk két tetszőleges a és b számot, helyette felírjuk az a+b-n számot. Határozd meg az (n,k) számpárokat úgy, hogy k lépés után a táblán maradt számok összege 2023 legyen!
- **5. feladat.** Határozd meg az a, b, c nullától különböző természetes számokat, ha tudjuk, hogy páronként relatív prímek és  $3a + 4b + 5c = 5\sqrt{2(a^2 + b^2 + c^2)}$ .
- **6. feladat.** Az ABCD négyzetben legyen P az AD oldal felezőpontja, valamint  $AR \perp BP$  és  $CS \perp BP$ , ahol  $R, S \in BP$  és  $CS \cap AB = \{Q\}$ . Igazold, hogy:

a) 
$$\frac{AR}{CS} = \frac{1}{2}$$
;

b) 
$$CR = DS = AB$$
;

c) 
$$\frac{T_{ARSQ}}{T_{ABCD}} = \frac{3}{20}$$
.