Convergence of solution for test case: Monolithic DD with mortars of different degree

July 31, 2019

1. Physical parameters used: double c0=1;

```
double alpha=1;
int num_cycle=4;
int max_itr=500;
double tolerence = 1.e-12;
BiotParameters bparam (0.001.2.c0.alpha)
```

- 2. $\Delta t = 10^{-3}$, final step= $2 \times \Delta t$.
- 3. Tests were done using coupled monolithic scheme for five variable quasistatic Biot system with weakly imposed symmetry.
- 4. Number of subdomains = 4.
- 5. Let h_m, h_1, h_2 be the mesh size of the mortar space, $\{\Omega_1, \Omega_3\}$ and $\{\Omega_2, \Omega_4\}$ respectively. Then $h_m: h_1: h_2=1: 1/4: 1/9$.
- 6. FE space used: $\Lambda_u \times \Lambda_p = \mathcal{RT}_m^2 \cdot n \times \mathcal{RT}_m \cdot n$, where m is the mortar degree.
- 7. As expected, the accuracy seems to be increasing with increase in degree of mortar space, m.

1 Convergence table

Table 1: Linear, m=1

cycle	# gmres		$ z-z_h _{L^{\infty}(H_{div})}$		$ p-p_h _{L^{\infty}(L^2)}$		$\ \sigma - \sigma_h\ _{L^{\infty}(H_{div})}$		$\ u-u_h\ _{L^{\infty}(L^2)}$	
0	22	-	1.349e+00	-	5.999e-02	-	5.849e-01	-	5.778e-01	-
1	40	-0.86	5.561e-01	1.28	2.970e-02	1.01	2.883e-01	1.02	2.915e-01	0.99
2	75	-0.91	1.616e-01	1.78	1.479e-02	1.01	1.425e-01	1.02	1.460e-01	1.00
3	145	-0.95	4.048e-02	2.00	7.394e-03	1.00	7.078e-02	1.01	7.306e-02	1.00

Table 2: Quadratic, m = 2

cycle	# gmres		$ z-z_h _{L^{\infty}(H_{div})}$		$ p-p_h _{L^{\infty}(L^2)}$		$\ \sigma-\sigma_h\ _{L^\infty(H_{div})}$		$ u-u_h _{L^{\infty}(L^2)}$	
0	32	-	6.490e-01	-	5.923e-02	-	5.508e-01	ı	5.786e-01	-
1	57	-0.83	1.971e-01	1.72	2.958e-02	1.00	2.796e-01	0.98	2.916e-01	0.99
2	108	-0.92	5.302e-02	1.89	1.479e-02	1.00	1.403e-01	0.99	1.461e-01	1.00
3	201	-0.90	1.480e-02	1.84	7.395e-03	1.00	7.023e-02	1.00	7.306e-02	1.00

Table 3: Cubic, m = 3

cycle	# gmres		$ z-z_h _{L^{\infty}(H_{div})}$		$ p-p_h _{L^{\infty}(L^2)}$		$\ \sigma - \sigma_h\ _{L^{\infty}(H_{div})}$		$ u-u_h _{L^{\infty}(L^2)}$	
0	42	-	6.332e-01	-	5.919e-02	-	5.513e-01	-	5.785e-01	-
1	76	-0.86	5.289e-02	3.58	1.479e-02	2.00	1.404e-01	1.97	1.461e-01	1.99
2	149	-0.97	4.214e-03	3.65	3.697e-03	2.00	3.512e-02	2.00	3.653 e-02	2.00