# **Tode-RC**

## Hardware Development

Arduino-Mega Pro + Ebyte E32-433T30D [#AMPE32T30]

by TGit-Tech [ <a href="http://www.TGit-Tech.com">http://www.TGit-Tech.com</a> ]
Build Version: 21C9 / Last Updated: 2021-12-09

This guide covers everything needed to build the Left and/or Middle Units in the below picture.



## **Table of Contents**

| 2. KB-Display #TFT18KB6                          |   |
|--------------------------------------------------|---|
| 2.1 Bill of Materials (DOM) #0                   |   |
| 2.1 Bill of Materials (BOM) \$8                  | _ |
| 2.1.1 Parts \$6.16                               | 3 |
| 2.1.2 <u>Supplies \$1.48</u>                     | 3 |
| 2.1.3 <u>3D-Prints \$0.32</u>                    | 3 |
| 2.2 PCB Assembly                                 | 4 |
| 2.2.1 Obtain (Purchase/Make) the BUTTONS - PCB4  | 4 |
| 2.2.2 Attach SMT Resistors                       | 5 |
| 2.2.3 Install and Solder Buttons                 | 5 |
| 2.2.4 Keypad Connection                          | 5 |
| 2.2.5 Schematic & Layout                         | 6 |
| 2.3 <u>Display Assembly</u>                      | 6 |
| 2.3.1 Install Nuts to Tode-DispKB-Cover.stl      | 6 |
| 2.3.2 Install Stickers to Face                   | 6 |
| 2.3.3 Prepare and Insert Tode-DispKB-Buttons.stl | 7 |
| 2.3.4 Fasten Display & Keypad and Solder LED     | 7 |
| 3. <u>Tode-RC #AMPE32T30</u>                     | 7 |
| 3.1 Bill of Materials (BOM) \$31                 | 8 |
| 3.1.1 Parts \$27.84                              | 8 |
| 3.1.2 <u>Supplies \$1.94</u>                     | 9 |
| 3.1.3 <u>3D-Prints \$0.91</u> 10                 | 0 |

| 3.2 PCB Assembly                                       | .11 |
|--------------------------------------------------------|-----|
| 3.2.1 Obtain (Purchase/Make) the AMPE32T30 - PCB       |     |
| 3.2.2 Attach Female Dupont Headers                     | 11  |
| 3.2.3 Solder Female Headers to the PCB                 | 11  |
| 3.2.4 Attach & Solder J11 1x10P [SidelO] Female Header | 12  |
| 3.2.5 BUZZER OPTION (OPTIONAL) Buzzer Resistor         | 12  |
| 3.2.6 Solder the Ebyte E32 Radio to the PCB            | 12  |
| 3.2.7 Prepare 5V 3A Power Module                       | 12  |
| 3.2.8 Wire 5V 3A Power Supply(PS) Ground               | 13  |
| A. Schematic & Layout                                  | .14 |
| 3.3 Final Assembly                                     | .15 |
| 4. Battery Tray                                        | .17 |
| 4.1 Bill of Materials (BOM) \$4                        | 17  |
| 4.1.1 <u>Supplies \$3</u>                              | .17 |
| 4.1.2 <u>3D-Prints \$1</u>                             | .17 |
| 4.2 Assembly                                           | .18 |
| 4.2.1 Place Insert and Plugs                           | 18  |
| 4.2.2 Cut-to-fit wires and strip                       | 19  |
| 4.2.3 Solder wires to DC-Barrel Plug                   |     |
| 4.2.4 Assemble the Tode-BattTray-Bottom.stl            | 19  |
| 4.2.5 Attach Tode-BattTray-Cover.stl to Tode-RC Unit   | 20  |
| 4.3 Loading / Replacing Batteries                      | .20 |
|                                                        |     |

## 1. Introduction

- ✔ The Tode Project is a Universal Platform of...
  - o Face UI Options
  - o Tode Backplane with optional Radio & Arduino Micro-Controller
  - o Extensions IO Interfaces, Battery Trays

| Face Options ( User Interface ) |                                          |                                                                                                      |  |  |  |  |
|---------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|
| Model Components Resources      |                                          |                                                                                                      |  |  |  |  |
| #TFT18KB6                       | 1.8" TFT LCD Color Screen (6) Key keypad | Design Files <a href="https://github.com/TGit-Tech/Tode-RC">https://github.com/TGit-Tech/Tode-RC</a> |  |  |  |  |
| #COVER                          | A Cover Only                             | Not available at this time                                                                           |  |  |  |  |

| Tode Models (post-fix RC=Remote/Radio Control equipped) |                                                                        |                                                                                                                                                                                                                         |  |  |  |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Model Components                                        |                                                                        | Resources                                                                                                                                                                                                               |  |  |  |  |  |
| Tode #AMP                                               | Arduino Mega Pro (AtMega2560)                                          | Not available at this time                                                                                                                                                                                              |  |  |  |  |  |
| Tode-RC #AMPE32T30                                      | Arduino Mega Pro (AtMega2560)<br>Ebyte E32-433T30D Radio (1W/30dbm)    | Design Files <a href="https://github.com/TGit-Tech/Tode-RC">https://github.com/TGit-Tech/Tode-RC</a> Firmware <a href="https://github.com/TGit-Tech/Tode-RC-Firmware">https://github.com/TGit-Tech/Tode-RC-Firmware</a> |  |  |  |  |  |
| Tode-RC #AMPE32T20                                      | Arduino Mega Pro (AtMega2560)<br>Ebyte E32-433T20D Radio (250mW/20dbm) | Not available at this time                                                                                                                                                                                              |  |  |  |  |  |
| Tode-RC #AMPXBEE                                        | Arduino Mega Pro (AtMega2560)<br>Digi Xbee Radio                       | Not available at this time                                                                                                                                                                                              |  |  |  |  |  |

( 1. Introduction :: Introduction ) Page -3-

| SIO Stations ( Input/Output by Todes Side-IO [SIO] plug ) |                 |                                                                                                            |  |  |  |  |
|-----------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Model Components Resources                                |                 |                                                                                                            |  |  |  |  |
| #SIOST                                                    | Screw Terminals | Design Files <a href="https://github.com/TGit-Tech/Tode-SIOST">https://github.com/TGit-Tech/Tode-SIOST</a> |  |  |  |  |
| #SIOAP                                                    | Aviation Plugs  | Not available at this time                                                                                 |  |  |  |  |

The Tode System is licensed under the MIT License. It's hosted on Github.com at: <a href="https://github.com/TGit-Tech/Tode-RC">https://github.com/TGit-Tech/Tode-RC</a>

✓ See the "Tode General Hardware Development" document for required tools

## 2. KB-Display #TFT18KB6

#### 2.1 Bill of Materials (BOM) \$8

#### 2.1.1 Parts \$6.16



✓ 1.8 / 1.77 -Inch TFT LCD Display

5Vdc o Power-In:

Resolutions: 128 x 160dpi ST7735 RGB

୍ Dimensions: 35mm x 56mm -20C to 70C o Temp:

(8)Pin-Order: GND,VCC,SCL,SDA,RES,DC,CS,BL

o Pricing: ~ \$4.75/each



**Tode Buttons PCB** 

Manufacturer: Oshpark.com Pricing Each: \$1.41

o Batch Price: \$112.80 per 80

### 2.1.2 Supplies \$1.48



**QTY**: 1 @ \$0.01/pin = \$0.03

1x3P Male Pin Header (Cut from 40-Pin)

Dupont 2.54mm-Pitch Keypad Connector



**QTY**: 10 @ \$0.01/ea = \$0.10

0805 SMT Resistors

(2)1500, 1200, 910, 680, 330, 10



**QTY**: 2 @ \$0.10/pair = \$0.20

M2x0.4 - 8mm Machine Screw & Nut (Keypad & Disp)

2.2.2 Display | Hardware Assembly | Step #1,3

**QTY**: 1 @ \$0.10/ea = \$0.10

M2x0.04 – 20mm Machine Screw Only (*Heat stem*)

2.2.2 Display | Hardware Assembly | Step #1



**QTY**: 6 @ \$0.15/ea = \$0.90

6x6x7mm DIP-4 Tactile Push Buttons Through-Hole leads



**QTY**: 1 @ \$0.05/ea = \$0.05

3mm Green LED



**QTY**: 4 @ \$0.10/ea = \$0.40 #2 - 3/8" Pan Sheet Metal Screws Used to Attach DispKB to AMPCenter

2.4 Final Assembly | Step #7

#### 2.1.3 3D-Prints \$0.32

- ✓ 3D Print the Following Casing (Order according to Assembly Needed)
  - Files in Folder: /3DPrints/

| File Name               | Grams    | Plastic Cost<br>\$0.02/g | Time   | Power + Machine Use<br>\$0.01/hr | Total<br>Cost | Supports |
|-------------------------|----------|--------------------------|--------|----------------------------------|---------------|----------|
| Tode-DispKB-Cover.stl   | 13-grams | \$0.26                   | 2h 31m | \$0.03                           | \$0.29        | YES      |
| Tode-DispKB-Buttons.stl | 1-gram   | \$0.02                   | 0:16m  | \$0.01                           | \$0.03        | NO       |

- Pricing at \$20/per 1KG Roll
- 0.15 Layer Height

#### 2.2 PCB Assembly

Printed Circuit Boards can be either ordered from a Custom PCB Manufacturer or created with a CNC Router.

- Custom Manufactured PCB
  - Benefits Custom PCB manufacturing is by far the better approach.
    - Copper through holes provide better connection
    - A Silk Sscreen for better corrosion resistance
    - Far easier to solder
  - Common Custom Manufacturing Businesses
    - https://oshpark.com/
    - https://jlcpcb.com/
    - https://www.pcbway.com/orderonline.aspx
    - https://www.customcircuitboards.com/
    - https://custompcb.com/
- ✔ CNC Routed PCB
  - Benefits
    - Generally cheaper by a couple dollars
    - Instant product (No shipping/manufacturing wait time)
    - Good for designing phases; not good for finished design production.

#### **2.2.1** Obtain (Purchase/Make) the **BUTTONS – PCB**

- ✔ Design File
  - FOLDER = /kicad/Buttons/output/
  - GERBER FILE = Buttons-F\_Cu.gbr
- ✓ CNC Routing
  - OCNC File = Buttons-F\_Cu.45S045D.gbr.nc
  - Hole Sizes = 0.8mm, 2.7mm



#### 2.2.2 Attach SMT Resistors

- 1. Use <u>Schematic & Layout</u> to determine Resistor Locations
- 2. Apply solder paste at all Resistor locations (as shown)
- 3. Place SMT Resistors at correct Locations
- 4. Place Board w/Resistors & Paste in Reflow Oven T-962 Select Wave #3 and Start the Reflow Oven



#### 2.2.3 Install and Solder Buttons

- 5. Push (6) 6x6x7mm Tacticle Push buttons into place
- 6. Solder the buttons to the board



#### 2.2.4 Keypad Plug

- 7. Insert a 3P Male Header as shown
- 8. Push pins down flush with the top.
- 9. Solder from the bottom-side instead of top



#### 2.2.5 Schematic & Layout





- ✓ Surface Mount (SMT) 0805 Resistors
  - $\circ$  LFT–SW6 = (R1) 910-ohm
  - $\circ$  UP-SW3 = (R2) 330-ohm
  - $\circ$  DWN–SW5 = (R3) 680-ohm
  - $\circ$  RHT–SW4 = (R4) 10-ohm or less
  - $\circ$  OK-SW2 = (R5) 1200-ohm
  - $\circ$  SET-SW1 = (R6) 1500-ohm
  - o LED = (R7) 1500-ohm

- ✓ D1(LED) = 3mm Round LED
  - J1(KEYB) Pin #2 is 5V / R7(1500) = 3.3mA through LED
  - Polarity = +/Long-Lead to J1 Side, -/Short-Lead to Bottom
- ✓ SW1 to SW6 are ALL 7mm Tactical Switches

## 2.3 Display Assembly

#### 2.3.1 Install Nuts to Tode-DispKB-Cover.stl

- 10. Thread a M2 nut to a long M2 Machine Screw
- 11. Heat the Nut with a heat gun
- 12. Press the heated nut into the plastic as shown.
- 13. Repeat for both nut locations under display opening



#### 2.3.2 Install Stickers to Face

This step requires a cutting machine and special materials and design files.

Contact Tgit-Tech if you'd like to purchase face stickers. DIY hobbyists can skip this step to create a unit without custom face stickers.

#### 2.3.3 Attach Tode-DispKB-Buttons.stl

- 14. Use Scissors to cut Buttons apart at the center
- 15. Push Buttons onto tactile switches as shown
  - a) Skinny legged arrow belongs on top
  - b) If button don't push-on use 3.5mm bit to drill-out
- 16. Place 3mm LED light into PCB but do not solder yet.a) Square-Pad is Negative (short-lead)

#### 2.3.4 Fasten Display & Keypad and Solder LED

- 17. Place 1.8/1.77-Inch TFT Display in opening
  a) Solder the 8P Male Header to Screen if separate
- 18. Place the Keypad in Shell over the LCD as shown a) Fasten with **M2x0.4 8mm** machine screw
- 19. Use LED pins to position LED in Shell Hole for LED
- 20. Solder and cut LED pins to PCB

NOTE: On Manufactured Keypad PCBs a proper fit may require cutting, sanding above the 3P Connection Header.





## 3. Tode-RC #AMPE32T30

## 3.1 Bill of Materials (BOM) \$31

#### 3.1.1 Parts \$27.84



✔ Arduino Mega Pro Mini [ATmega2560 @ 16MHz]

o Power In: 6Vdc to 9Vdc (Peek 18Vdc)

Power Out: 5Vdc @ 800mA + 3Vdc @ 800mA

o Load Amps: 5Vdc @ 220mA

IO-Pins: 54-Digital, 16-AnalogMemory: 256kb RAM, 4kb EEPROM

Temp Rng: -40C to 85CPricing: ~ \$10/each

Web @ <a href="https://robotdyn.com/mega-2560-pro-embed-ch340g-atmega2560-16au.html">https://robotdyn.com/mega-2560-pro-embed-ch340g-atmega2560-16au.html</a>



✓ Ebyte E32433T30D

• Power In: 3.3Vdc to 5.2Vdc ( + = Damage )

Load Amps: Tx @ 106mA, Rx @ 15mAData Rate: 0.3Kbps to 19.2Kbps

o Antenna Plg: SMA-K

• Frequency: 410MHz to 441MHz

o RF: Tx @ 30dBm, Rx @ -147dBm

• Pricing: ~ \$10/each

Web @ <a href="https://www.ebyte.com/en/index.aspx">https://www.ebyte.com/en/index.aspx</a>

https://www.ebyte.com/en/product-view-news.html?id=108



10mm/0.39in

#### 20mm/0.78in

✔ Dorhea 5V @ 3A Buck Power Supply Module

o Input Voltage: 4.5Vdc to 24Vdc

Output Voltage: 0.8-17V (Fixed Voltage by Trace-Cut)

Max Output: 3ANominal Output: 1.5APricing: \$1/ea

Web @ <a href="https://www.amazon.com/dp/B08Y674Z6F">https://www.amazon.com/dp/B08Y674Z6F</a>



✓ Tode #EMPE32T30 PCB

Manufacturer: Oshpark.com

o Pricing: \$3.84

Batch Price: \$115.20 per 30



- ✓ 433M SMA Aerial Antenna
- ✓ Various Models may be used ranging from \$1 to \$5/ea
- ✔ Price estimate at \$3/ea

#### 3.1.2 Supplies \$1.94



**QTY**: 1 @ \$0.10/ea = \$0.10 1x9P Female Pin Header Dupont 2.54mm-Pitch (J8) On AMPE32T30



**QTY**: 4 @ \$0.10/ea = \$0.40 2x3P Female Pin Header Dupont 2.54mm Pitch (J1-PWR)(J2-ISCP)(J3)(J7) on AMPE32T30



**QTY**: 1 @ \$0.10/ea = \$0.10 1x10P Female Pin Header Dupont 2.54mm-Pitch (J11) On AMPE32T30 for Side-IO



**QTY**: 1 @ \$0.10 = \$0.10 1x3P LONG-Lead Female Pin Header Dupont 2.54mm-Pitch (J6-Keypad) on AMPE32T30



**QTY**: 1.1x4P @ \$0.01/pin = \$0.04Male Pin Header (Cut from 40-Pin) Dupont 2.54mm-Pitch E32 Align



**QTY**: 1 @ \$0.10 = \$0.10 1x8P LONG-Lead Female Pin Header Dupont 2.54mm-Pitch (J5-Display) on AMPE32T30



QTY: 1 @ \$0.50 (OPTIONAL) 9x4.2mm [0942] Active Piezo Buzzer 2-Lead, 5Vdc, Ultra-Thin



**QTY**: 4" Red @ \$0.10/ft = \$0.05 **QTY**: 4" Black @ \$0.10/ft = \$0.05 22AWG Stranded Colored Wire



**QTY**: 1 @ \$0.20/ea = \$0.20 5.5x2.1mm DC Barrel Jack + Nut Female Panel Mount 2-Terminal



**QTY**: 2 @ \$0.10/pair = \$0.20 M2.5x0.45 x 6mm Machine Screw & Nut To fasten Mega-Pro to AMPCenter 2.4 AMPE32T30 | Final Assembly | Step #1



**QTY**: 4 @ \$0.10/ea = \$0.40 #2 – 5/8" Pan Sheet Metal Screws AMPE32T30 Casing to AMPCenter 2.4 Final Assembly | Step #7



**QTY**: 2 @ \$0.10/pair = \$0.20 #2-56 x 1/4" Machine Screw & Nut (AMP PCB) **QTY**: 1 @ \$0.10/ea = \$0.10

#### 3.1.3 3D-Prints \$0.91

- ✓ 3D Print the Following Casing (Order according to Assembly Needed)
  - Files in Folder: /3DPrints/

| File Name                   | Grams    | Plastic Cost<br>\$0.02/g | Time   | Power + Machine Use<br>\$0.01/hr | Total<br>Cost | Supports |
|-----------------------------|----------|--------------------------|--------|----------------------------------|---------------|----------|
| Tode-Handheld-AMPE32T30.stl | 24-grams | \$0.48                   | 4h 50m | \$0.05                           | \$0.53        | NO       |
| Tode-Handheld-AMPCenter.stl | 17-grams | \$0.34                   | 3h 25m | \$0.04                           | \$0.38        | NO       |

- Pricing at \$20/per 1KG Roll
- ୦ 0.15 Layer Height
- ✓ See separate Section #3.Battery Tray|outline for the Battery Tray Extension



#### 3.2 PCB Assembly

#### 3.2.1 Obtain (Purchase/Make) the AMPE32T30 - PCB

- ✔ Design File
  - FOLDER = /kicad/AMPE32T30/output/
  - GERBER FILE = AMPE32T30-F\_Cu.gbr
- CNC Routing
  - OCNC File = AMPE32T30-F\_Cu.gbr.nc
  - o CNC Settings: Z-Down: -0.045, Speed: 45mm/s
  - ONC Isolation Bit = Pyramid 0.2mm Tip 45-deg
  - Hole Sizes = 0.8mm, 2.7mm

#### 3.2.2 Attach Female Dupont Headers

- ✔ Plug the following Female Headers onto the Mega-Pro Pins
  - $\circ$  J1 [PWR] = 2x3P Female Header ( Very Top left )
  - J2 [ICSP] = 2x3P Female Header (ICSP 6-Pin Port)
  - J3 [D44...] = 2x3P Female Header ( Bottom-Right Corner )
  - $\circ$  J7 [D18...] = 2x3P Female Header ( 4-Pin Rows Up on Left )
  - J8 [A1...] = 1x9P Female Header (Top Inner on Right)
- ✔ Refer to <u>Schematic & Layout</u> to place Pin-Headers

#### 3.2.3 Solder Female Headers to the PCB

- ✔ Place the Arduino Mega Pro and Headers into proper place on PCB
- ✓ Solder the Female Pin-Headers from Step #3 to the PCB board.





#### 3.2.4 Attach & Solder J11 1x10P [SideIO] Female Header

#### WARNING: Never solder-on E32 Radio before STEP #4.

- 1. Unplug the Arduino Mega Pro from PCB
- 2. Press header pins on a flat surface; bend to 90-deg
- 3. J11 [IO] = 1x10P Female Header w/bent pins
- 4. Insert as shown. Be sure face is parallel with edge of board
- 5. Use a Clip to hold in place while soldering the pins to the PCB.
- ✓ Refer to <u>Schematic & Layout</u>



#### 3.2.5 BUZZER OPTION (OPTIONAL) Buzzer Resistor

- ✓ Using <u>Schematic & Layout</u> Solder-Paste SMT Resistors
  - $\circ$  R1 = 910K $\Omega$  SMT 0805 Resistor
  - $\circ$  R2 = 470K $\Omega$  SMT 0805 Resistor
  - $\circ$  R3 = 39 $\Omega$  SMT 0805 Resistor
- ✔ Bake the PCB in Reflow Oven
- ✓ Insert Ultra-Thin 5Vdc Piezo Buzzer into Bottom-Left
- ✓ Solder the Piezo Buzzer leads and snip to board level.

**SKIP THIS STEP** – The battery monitor is no longer relevant due to the required external 3A Power Supply.

If a Buzzer Feature is desired - Manually solder the R3 =  $39\Omega$  SMT Resistor.

#### 3.2.6 Solder the Ebyte E32 Radio to the PCB

- 1. Cut a 4P Male Header and Insert at the top for alignment a) The red circle in the picture
- 2. Insert Ebyte E32 RF Module into the AMPE32T30 PCB (as shown)
- 3. Solder Pins that attach to the PCB
  a) No need to solder the 4P top alignment pins to E32 Module



#### 3.2.7 Solder Ground Wire Junction

- 4. Using 22awg Black Solder together a junction as shown
  - a) 1" Stem Wire to...
    - 1-1/2" Tied Split
    - 2-1/2" Tied Split
    - 3" Tied Split
  - b) Slide and attach Heat Shrink tubing
- 5. Solder the Junction Stem-Wire to the left-top circle pin on PCB



#### A. Schematic & Layout





| ~ | Female Du | pont 2.54mm | pitch | Connectors |
|---|-----------|-------------|-------|------------|
|---|-----------|-------------|-------|------------|

| J1  | PWR    | 2x3P Female Header                 |
|-----|--------|------------------------------------|
| J2  | ICSP   | 2x3P Female Header                 |
| J3  | D44-   | 2x3P Female Header                 |
| J4  | E32    | E32 Radio Module ( Direct Solder ) |
| J5  | TFT    | 1x8P Female Header ( TFT ) Display |
| J6  | КВ     | Keypad PCB                         |
| J7  | D18    | 2x3P Female Header                 |
| J8  | A1-10  | 1x9P Female Header                 |
| J10 | SideIO | 1x10P Female Header                |

- ✓ J4(E32) Direct Solder
- ✓ Battery Monitor Resistors
  - o R1 910Kohm 0805 SMD (No longer used)
  - o R2 470Kohm 0805 SMD (No longer used)
  - Due to the external 3A power regulator the battery monitor feature design is no longer used.
- ✔ Buzzer Feature (If a buzzer feature is desired)
  - o R3 390hm 0805 SMD
  - BZ1 Direct Solder

## 3.3 Final Assembly

#### 3.3.1 Fasten Mega 2560-Pro Board to AMPCenter

- 1. Install a Mega-Pro 2560 Micro-Controller into the Tode-Handheld-AMPCenter.stl Model as shown.
- 2. Fasten with **M2.5x0.45 6mm** long machine screws and nuts.



#### 3.3.2 Prepare KB-Display Plug

- 3. With an Assmbled KB-Display #TFT18KB6
  - a) Plug a Long-Leg 3P Female Header to keypad
  - b) Plug a Long-Leg 8P Female Header to Display



#### 3.3.3 Align and Solder KB-Display Plugs

- 4. Carefully Align the Mega-Pro Pins [from Step#1] with the AMPE32T30 back-plane PCB as well as the Screen and Keypad pins
- 5. Compress the assembly verifying all plugs are seated.
  a) Lift Plugs on Display & Keypad just a hair.
- 6. Solder the Display and Keypad Plug Pins to the PCB.a) Cut off excessive leads



### 3.3.4 Prepare 5V 3A Power Module

- 7. Using Razor Knife cut the Top Trace (label ADJ)
- 8. Jump a Solder bridge where 5V is labeled
- 9. Do a Continuity Test verifying changes



#### 3.3.5 Solder Ground Wire Junction Wires

- 10. Solder the shortest 1-1/2" GND Junction Wire to the GND pin of the E32 Radio Module
- 11. Solder the middle-length 2-1/2" GND Junction Wire to the GND Pin of the 5V 3A Power Module. ( *Ignore the extra black wire in picture on PS module incorrect* )

NOTE – It was found that the Mega-Pro on board power regulator couldn't feed the radio while set to high-power (30dbm) and would cause the Mega-Pro to reset during transmission.

The Solution is an external 3A Power Module feeding directly into the Radio but GND must also feed to PCB/Mega.



#### 3.3.6 Wire 5V 3A Power Supply Power to E32 Radio

- 12. Solder a 1-1/2" long 22awg Red Wire a) PS Module VO+ → E32 Radio VCC
- 13. Solder a 1-1/2" long 22awg Red Wirea) PS Module VI+ Pin ( later will go to switch )



#### 3.3.7 Attach AMPE32T30 PCB to Housing

- 14. Slide PCB from bottom to top and E32 Antenna plug through hole
- 15. Pull #2 nuts into plastic using a long #2 screw.
- 16. Fasten using (2) #2-56 x 1/4" Machine Screws



#### 3.3.8 Solder Switch

- 17. Thread the 1-1/2" red wire from PS VI+ [Step #13] through the switch hole and solder to the bottom leg of the switch as shown.
- 18. Solder a <u>1-1/2"</u> long red wire to switch top leg and thread it through the switch hole as shown.



#### 3.3.9 Finish Wiring

- 19. Route DC Barrel Nut over 3" GND Junction wire.
- 20. Insert DC Barrel Plug and solder the 3" GND Junction Wire to the DC Barrel Plug (long-leg)
- 21. Tighten barrel jack with Nut
- 22. Wire Switch top-leg to Barrel Plug (short-leg)
- 23. Insert Switch fully and arrange wires





#### 3.3.10 Final Assembly and Functional Test

- 24. Plug the Mega-Pro Into the AMPE32T30 Backplane
- 25. Plug & Fasten the DiskKB using (4) #2 x 3/8" SMS.
- 26. Fasten Back to Center using (4) #2 x 5/8" SMS.
- 27. Insert a **#2-56** nut in slot of Side-IO Plug Cover
- 28. Fasten with #2-56 x 3/4" Machine Screw.
- 29. Plug the Tode-RC into Computer via Top-USB
- 30. Upload the firmware and test button/screen operation

**NOTICE** – E32 Radio's must be configured in 'Fixed' Mode for the Tode to Work. See the Users Guide for more info.



## 4. Battery Tray

## 4.1 Bill of Materials (BOM) \$4

#### 4.1.1 Supplies \$3



QTY: 1 @ \$1.75/ea 5.5x2.1mm DC Barrel Plug Female Panel Mount 2-Terminal with Nut



QTY: 2 @ \$0.35/ea = \$0.90

Hard Plastic Side-Exit Wires 9V Battery Connector Clip \*Wires must exit from a side / must be hard plastic.



Pan-Head Screws @ \$0.10/ea

(1) #2 x 1/4" Long.

(1) #4 x 3/4" Long.

#### 4.1.2 3D-Prints \$1

- ✓ 3D Print the Following Casing (Order according to Assembly Needed)
  - Files in Folder: /3DPrints/

| File Name                | Grams   | Plastic Cost<br>\$0.02/g | Time   | Power + Machine Use<br>\$0.01/hr | Total<br>Cost | Supports |
|--------------------------|---------|--------------------------|--------|----------------------------------|---------------|----------|
| Tode-BattTray-Top.stl    | 7-grams | \$0.14                   | 1h 43m | \$0.02                           | \$0.16        | NO       |
| Tode-BattTray-Bottom.stl | 4-grams | \$0.08                   | 1h 0m  | \$0.01                           | \$0.09        | NO       |
| Tode-BattTray-Insert.stl | 2-grams | \$0.04                   | 0h 20m | \$0.01                           | \$0.05        | NO       |
| Tode-BattTray-Cover.stl  | 14-gram | \$0.28                   | 2h 54m | \$0.03                           | \$0.31        | NO       |

- Pricing at \$20/per 1KG Roll
- 0.15 Layer Height



#### 4.2 Assembly

#### 4.2.1 Place Insert and Plugs

- ✔ Place (2) 9V Clips in Tode-BattTray-Insert.stl
- ✔ Bend wires back behind the clip as shown
- ✓ Slide the Insert w/Plugs into the <u>Tode-BattTray-Top.stl</u>



#### 4.2.2 Cut-to-fit wires and strip

- ✔ Pull the wires together to the edge of the model
- ✓ Snip the wires and strip their ends
- ✔ Bend the long DC-Barrel Plug Lead over to fit in model
- ✓ Cut the wire holding part off with dikes



#### 4.2.3 Solder wires to DC-Barrel Plug

- ✓ Twist the two red wires together and solder to short lead on DC-Barrel plug
- ✓ Twist the two black wires together and solder them to the longer (cut-off & bent) lead.



#### 4.2.4 Assemble the Tode-BattTray-Bottom.stl

- ✓ Slide the Bottom down over the top
- ✓ Make sure wires don't get trapped in the joint
- ✓ Use #4 3/4" long screw to tighten/hold assembly



#### 4.2.5 Attach <u>Tode-BattTray-Cover.stl</u> to Tode-RC Unit

- ✔ Place a #2 1/4" Long Screw on a screwdriver
- ✔ Run the screw up through the holes in the Tray Cover
- ✔ Hold the screw up and place Tode-RC on top
  - Where the Grooves mesh together
- ✓ Tighten the Screw with the screwdriver



## 4.3 Loading / Replacing Batteries

- ✔ Plug (2) 9V Batteries onto battery clips
- Slide the assembly right into battery cover
- ✓ The DC-Barrel jack will align correctly with Tode-RC

