

MINISTÉRIO DA EDUCAÇÃO Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas IFSULDEMINAS - Câmpus Poços de Caldas

Avenida Dirce Pereira Rosa, 300. Poços de Caldas/MG. CEP 37713-100 Fone: (35) 3713-5120

Inteligência Artificial - Trabalho Prático 2

Pré-Processamento e Análise de Dados

Prof. Douglas Castilho

Disponível Desde: 11 de maio de 2023

Data de Entrega: 08 de junho de 2023

Valor: 1.5 pontos

Adrian Damião

Objetivo

O objetivo deste trabalho é analisar uma base de dados escolhida pelo professor e aplicar técnicas de pré-processamento para que seja possível utilizar um algoritmo de aprendizado de máquina de maneira mais eficiente para predizer algum atributo de saída.

Base de dados escolhida

A base de dados que será utilizada para realizar as análises se trata de uma extração razoavelmente limpa feita por Barry Becker do banco de dados do Censo de 1994. O objetivo é utilizá-la na classificação de pessoas que ganham mais de 50 mil dólares por ano.

Atributos da base de dados

Age

Workclass

Fnlwgt

Education

Education-num

Marital-status

Occupation

Relationship

Race

Sex

Capital-gain

Capital-loss

Hours-per-week

Native-country

Above-Limit → Nome escolhido para o atributo de saída

Abaixo, podemos ver como visualizar o dataset e o comando utilizado para exibi-lo:

1. Identificação do atributo alvo (saída)

Como atributo de saída, será utilizado o atributo intitulado **Above-Limit**, onde por meio dos outros atributos socioeconômicos, descobriremos se o indivíduo ganha acima de 50 mil dólares por ano ou não. Para exibi-lo podemos usar os seguintes comandos:

2. Identificação dos tipos de dados dos atributos de entrada (quantitativo, qualitativo)

Para identificar os tipos de dados dos atributos de entrada, podemos utilizar os seguintes comandos:

3. Identificação da escala de dados dos atributos de entrada (nominal, ordinal, intervalar, racional)

Para visualizar a escala de dados dos atributos de entrada podemos utilizar os seguintes comandos abaixo:

4. Exploração dos dados através de medidas de localidade

Acidez Fixa

Podemos ver que a Acidez Fixa possui muitos outliers, logo optou-se por fazer uma mediana.

Acidez Volátil

Com a Acidez Volátil foi usada a média pois existem poucas ocorrências de outlier.

Ácido Cítrico

No caso do Ácido Cítrico, os valores estão muito dispersos, por isso, foi optado por fazer uma mediana.

Açúcar Residual

Devido ao fato da maioria dos valores estarem localizados juntos a alguns exemplares estarem distantes dessa linha principal, estes foram considerados como *outliers*, portanto, usou-se uma mediana.

Cloretos

Pelo mesmo motivo do atributo anterior, foi utilizada uma mediana.

Dióxido de Enxofre Livre

Nesse caso, apenas alguns dos exemplares estão localizados distantes da maioria, nesse caso pode-se utilizar uma média.

Dióxido de Enxofre Total

Pode-se fazer uma média pois existem muito poucos *outliers*. **Densidade**

Os exemplares estão localizados muito distantes, por isso é melhor usar uma mediana.

pН

Foi optado utilizar uma mediana pois existem valores fora da curva. ${f Sulfatos}$

Pode-se ver vários outliers, portanto, mediana.

Álcool

Os valores estão localizados de maneira dispersa, por isso, mediana.

5. Exploração dos dados através de medidas de espalhamento

Para explorar as medidas de espalhamento, nos atributos Acidez Volátil, Dióxido de Enxofre Livre e Total foi possível utilizar apenas uma variância, devido a presença de poucos *outliers*, já nos demais atributos foi utilizado o desvio padrão para tentar minimizar os danos dos *outliers*.

6. Exploração dos dados através de medidas de distribuição

Para se explorar os dados utilizando medidas de distribuição, é possível utilizar os histogramas. Pode-se ver nos histogramas abaixo, que a maioria dos atributos possuem exemplares que se distribuem em faixas de valores próximos, com exceção do Ácido Cítrico, o Dióxido de Enxofre e o Álcool, que são mais dispersos.

7. Identificação e separação do conjunto de teste, que será utilizado para testar o desempenho dos modelos

o conjunto de testes deve ser representativo e ter as características da população completa.
Caso sua base de dados já tenha o conjunto de teste definido, analisar se este segue as características do conjunto de treinamento;

8. Identificação e eliminação de atributos não necessários

Ao pesquisar sobre o assunto de análise da qualidade de vinhos, podemos encontrar em diversos lugares que todos os atributos presentes no dataset são utilizados para determinar a qualidade de um vinho, com exceção da densidade. Outro motivo para não se utilizar a densidade como parâmetro preditivo é porque os valores dela não variam muito entre os exemplares.

- 9. Identificação e eliminação de exemplos não necessários
- 10. Análise e aplicação de técnicas de amostragem de dados (caso não seja necessário, analisar o porquê)

No caso deste dataset, não será necessário o uso de técnicas de amostragem muito complexas, pois o número de exemplos pode ser considerado baixo, sendo possível fazer a análise com eficiência e sem muito custo computacional, portanto, foi feita uma amostragem aleatória, pegando aleatoriamente 217 elementos da classe majoritária e 217 elementos da classe minoritária(para manter a base balanceada) considerando a seguinte classificação:

- Exemplos com qualidade igual ou superior a 7 foram considerados bons.
 - Exemplos com qualidade abaixo de 6 foram considerados ruins.

11. Identificação e aplicação de técnicas para minimizar problemas de desbalanceamento (caso não seja necessário, analisar o porquê)

Como podemos ver nas duas imagens abaixo, esse dataset possui mais exemplos ruins do que exemplos bons, fazendo com que ela seja desbalanceada.

equilibrada (under-sampling), portanto a estratégia utilizada foi igualar a quantidade de classes eliminando elementos aleatórios da classe majoritária como podemos ver abaixo:

O dataset gerado chamado **datasetBalanceado** agora possui o mesmo número de classes majoritárias e minoritárias.

12. Limpeza de dados:

a. Identificação e eliminação de ruídos ou outliers

Não foram utilizadas técnicas para eliminação de ruídos e outliers.

b. Identificação e eliminação de dados inconsistentes

Não foram encontrados dados inconsistentes no dataset.

c. Identificação e eliminação de dados redundantes

Para remover os exemplos redundantes podemos utilizar o seguinte comando para remover a coluna de índice para não nos atrapalhar:

Como podemos ver, temos 42 dados duplicados, para removê-los, utilizamos o seguinte comando:

d. Identificação e resolução de dados incompletos (ausentes) – utilização de alguma técnica de preenchimento e justificar

Para identificar os valores faltantes podemos utilizar a seguinte função:

Como pôde-se perceber, todos os resultados foram FALSE, isso significa que o dataset não possui nenhum valor nulo ou ausente.

13. Identificação e conversão dos tipos de dados (caso não seja necessário, analisar o porquê):

Foi considerado que neste dataset não seria necessário o uso de reescala, pois os limites dos

valores dos atributos não são muito discrepantes entre si e nem mesmo uma conversão, pois todos os valores são muito úteis para serem utilizados da forma que estão.

14. Análise e aplicação de alguma técnica para redução de dimensionalidade:

Dentre as técnicas de dimensionalidade que poderiam ser aplicadas a esse dataset, podemos citar a **Agregação**, onde os atributos Acidez Fixa e Acidez Volátil poderiam ser transformados em um novo atributo que classificaria uma Acidez única, podendo chamar apenas Acidez. O mesmo poderia ser feito com o Dióxido de Enxofre Livre e Dióxido de Enxofre Total