

Enseignes et afficheurs à LED

PWM: Modulation de Largeur d'Impulsion

Pierre-Yves Rochat

PWM: Modulation de Largeur d'Impulsion

Pierre-Yves Rochat

PWM: Modulation de Largeur d'Impulsion

- Principe
- Fréquence
- Programmer un PWM
- Convertisseur numérique-analogique
- Réalisation par des circuits logiques

Intensité variable

Comment faire varier l'intensité d'une LED ?

Intensité variable

Comment faire varier l'intensité d'une LED ?

Autre solution

1

Intensité variable

Clignotement

Intensité variable

Clignotement

... plus rapide

< 20ms

PWM: principe

PWM: principe

Pulse Width Modulation = Modulation de Largeur d'Impulsion

2

 Selon les applications du PWM, les fréquences sont très différentes, de quelques Hz à des dizaines de MHz.

2

 Selon les applications du PWM, les fréquences sont très différentes, de quelques Hz à des dizaines de MHz.

Pour des applications visuelles :

P

 Selon les applications du PWM, les fréquences sont très différentes, de quelques Hz à des dizaines de MHz.

Pour des applications visuelles :

• L'œil a une fréquence limite de perception du clignotement

• Selon les applications du PWM, les fréquences sont très différentes, de quelques Hz à des dizaines de MHz.

Pour des applications visuelles :

- L'œil a une fréquence limite de perception du clignotement
- On ne voit pas clignoter un tube fluorescent, à 100 Hz (2 x 50 Hz)

• Selon les applications du PWM, les fréquences sont très différentes, de quelques Hz à des dizaines de MHz.

Pour des applications visuelles :

- L'œil a une fréquence limite de perception du clignotement
- On ne voit pas clignoter un tube fluorescent, à 100 Hz (2 x 50 Hz)
- Les cônes et les bâtonnets n'ont pas la même fréquence limite

Comment programmer des signaux PWM avec un microcontrôleur?

Comment programmer des signaux PWM avec un microcontrôleur?

Allumer – attendre

Comment programmer des signaux PWM avec un microcontrôleur?

- Allumer attendre
- éteindre attendre

Comment programmer des signaux PWM avec un microcontrôleur?

- Allumer attendre
- éteindre attendre
- et répéter!


```
1 #define LedOn digitalWrite(P1 0, 1)
 2 #define LedOff digitalWrite(P1 0, 0)
 3 uint16_t
   pwmLed;
  // valeur du PWM, 0 à 100
 7 void setup() {
8 // Initialisations
   pinMode(P1_0, OUTPUT);
10 // LED en sortie
   pwmLed = 25;
12 // valeur du PWM.
13|}
15 void loop() {
  // Boucle infinie, durée 10ms => un cycle du PWM à 100 Hz
    LedOn;
    delavMicrosecond(
```

Programmer plusieurs PWM

Comment programmer plusieurs signaux PWM en même temps ?

Programmer plusieurs PWM

Comment programmer plusieurs signaux PWM en même temps ?

Difficile si la boucle principale dure une période complète du PWM

Programmer plusieurs PWM

Comment programmer plusieurs signaux PWM en même temps ?

- Difficile si la boucle principale dure une période complète du PWM
- Plus facile si la boucle principale dure le temps de la plus courte impulsion possible du PWM

Programmer plusieurs PW

void loop() {


```
1 uint8 t pwmLed;
 2 // valeur du PWM, 0 à 255 (8 bits)
 3 uint8_t cptPwm;
 4 // compteur du PWM
 6 void setup() {
 7 // Initialisations
    pinMode(P1_0, OUTPUT);
 9 // LED en sortie
   pwmLed = 64;
11// valeur du PWM. Elle est ici fixe, mais pourrait changer
13 // à tout moment en complétant le programme.
   cptPwm = 0;
15 // compteur du PWM
16 }
```


Comment utiliser ce PWM ?

- Comment utiliser ce PWM ?
- Sur des enseignes et afficheurs,
 on peut créer des séquences.

- Comment utiliser ce PWM ?
- Sur des enseignes et afficheurs,
 on peut créer des séquences.
- Exemple : LED imitant le repos.


```
1 uint16 t pwmLed;
 2// valeur du PWM, 0 à 255 (8 bits,16 bits pour les calculs)
3 uint16 t
4 cpt10ms = 0;
 5 // compteur des cycles, de 0 à 400 (par 10ms, total 4s)
6 void loop() {
 7 // Boucle infinie, durée 39us (256 * 39us = ~10ms)
    if (cptPwm==0
   cpt10ms++;
      if (cpt10ms<</pre>
12 100) {
13 //première seconde
   pwmLed = cpt10ms *
15 256 / 100;
16 // droite montante
    } else if
18 (cpt10ms<200) {
19 // deuxième seconde
        pwmLed =
```

Convertisseur numérique-analogique en PWM

 Transmettre une information variable vers l'extérieur

Convertisseur numérique-analogique en PWM

- Transmettre une information variable vers l'extérieur
- Conversion Numérique-Analogique
 DAC Digital to Analog Converter

Convertisseur numérique-analogique en PWM

 Comment soulager le microcontrôleur de la génération du PWM ?

 Comment soulager le microcontrôleur de la génération du PWM ?

 En utilisant des circuits logiques spécialisés!

C'est le Timer d'un microcontrôleur

PWM: Modulation de Largeur d'Impulsion

- Principe : Published Princip
- Fréquence : > 100 Hz pour l'oeil
- Programmer un PWM (occupe le proc.)
- Convertisseur DAC (+ filtre)
- Réalisation par des circuits logiques, inclus dans les microcontrôleurs