ن: ۱۲۰ دقیقه	مدت امتحار	۸ صبح	ساعت شروع:	عربی	رشتهی : علوم تج	سؤالات امتحان نهایی درس: ریاضی (۳)
نحه : ۲	تعداد صف	1897 / 8 /	م امتحان: ١١	تاريخ		سال سوم أموزش متوسطه
	ـــــــــــــــــــــــــــــــــــــ) سال ۱۳۹۲	داد ماه	: سراسر کشور (خرد	دانش آموزان روزانه ، بزرگسال و داوطلبان آزاد

نمره	سؤالات	رديف
1/۵	یک تاس و یک سکه را با هم پرتاب میکنیم.	١
	الف) فضای نمونهای این آزمایش تصادفی را بنویسید.	
	ب) پیشامد آن که سکه « رو » یا تاس ۵ بیاید را مشخص کنید.	
1/۵	می خواهیم از بین ۵ مرد و ۳ زن یک کمیتهی ۳ نفری انتخاب کنیم . مطلوب است محاسبهی احتمال آن که:	٢
	الف) حد اکثر یک مرد انتخاب شود.	
	ب) هرسه مرد باشند.	
1	احتمال قبولی علی و محمد در المپیاد زیست شناسی به ترتیب برابر ۸۰٪ و ۲۰٪ است . احتمال هریک از	٣
	پیشامد های زیر را به دست اَورید.	
	الف) هردوی آن ها در المپیاد قبول شوند.	
	ب) حداقل یکی از آن ها در المپیاد قبول شود.	
1/0	نامعادلهی $\frac{x+7}{x-1} \le \frac{x+7}{x-7}$ را حل کنید و مجموعهی جواب را به صورت بازه نشان دهید.	٤
1/٢۵	اگر $\dfrac{\Psi}{\alpha}=\dfrac{\pi}{\alpha}$ و $lpha$ زاویهای منفرجه باشد، حاصل $lpha$ tan ۲ $lpha$ را به دست آورید.	۵
١	. تابع $f(x)=egin{cases} x^ ext{+r} & x<\circ \ x-1 & x\geq\circ \end{cases}$ داده شده است .	7
	الف) نمودار تابع f را رسم کنید.	
	ب) حاصل $f(f(-1))$ را به دست اَورید.	
+/۵	دامنهی تابع زیر را به دست آورید.	٧
	$y = \frac{x + \Delta}{x^{T} - Fx + F}$	
)	در تابع $y=ax^{T}+bx-T$ مقادیر a و b را طوری بیابید که نمودار تابع از نقطه ی $y=ax^{T}+bx-T$ بگذرد و	٨
	محور x ها را در نقطه ای به طول ۱ قطع کند.	
	« ادامه در صفحه ی دوم »	

١

A	مدت امتحان : ۱۲۰ دقیق	۸ صبح	ساعت شروع:	ثربی	رشتهی: علوم تج	سؤالات امتحان نهایی درس: ریاضی (۳)
	تعداد صفحه: ٢	1347 / T /	م امتحان: ١١	تاريخ	,	سال سوم أموزش متوسطه
	عش آموزش و پرورش http://aee.me) سال ۱۳۹۲	داد ماه	: سراسرکشور (خرد	دانش آموزان روزانه ، بزرگسال و داوطلبان آزاه

نمره	سؤالات	رديف
1/٧۵	توابع f و g با ضابطه های $f(x)=7$ و $f(x)=7$ و واده شده اند.	٩
	. الف) ضابطهی تابع gof را بنویسید	
	ب) دامنهی تابع gof را با استفاده از تعریف به دست آورید.	
+/٧۵	را در $x=\circ$ تعیین کنید. $g(x)$ حد تابع $g(x)$ را در $x=\circ$ تعیین کنید.	1.
٣	حاصل هر یک از حدهای زیر را حساب کنید.	11
	الف $\lim_{x \to \tau} \frac{\sqrt{x} - \tau}{x^{\tau} - 19}$ (الف $\lim_{x \to \infty} \frac{\sin(\tau x) \tan(\tau x)}{x^{\tau}}$	
	$z) \lim_{x \to r^{-}} \frac{x^{r} + 1}{r - x} \qquad z) \lim_{x \to +\infty} \frac{rx^{r} + \sqrt{r}x + r}{rx^{r} + \Delta x}$	
1/20		١٢
	مقدار a را طوری تعیین کنید که تابع $x=-1$ $x=-1$ در نقطهی $x=-1$ پیوسته باشد. $x^{r}-\Delta x$ $x<-1$	
7/0	مشتق توابع زیر را به دست آورید . (ساده کردن مشتق الزامی نیست)	١٣
	الف) $f(x) = (rx^{4} - rx + 1)(x^{7} + x)$ (ب) $g(x) = \frac{\sqrt{x^{7} + 1}}{4x - 2}$	
	$ (x) = \cot(\Delta x) + \cos^{r}(x) $	
١	آهنگ متوسط تغییر تابع $f(x) = \sqrt{x+1}$ وقتی متغیر از $x_1 = \pi$ به $x_2 = \pi$ تغییر می کند را بیابید.	18
+/۵	شیب خط مماس بر نمودار تابع $y=x^{T}-x$ را در نقطهی $x=a$ به دست آورید.	10
۲٠	« موفق باشید »	

رشتهی : علوم تجربی	راهنمای تصحیح امتحان نهایی درس: ریاضی (۳)
تاریخ امتحان: ۱۳۹۲/۳/۱۱	سال سوم أموزش متوسطه
مرکز سنجش اَموزش وپرورش http://aee.medu.ir	دانش آموزان روزانه ، بزرگسال و داوطلبان آزاد سراسر کشور (خرداد ماه) سال ۱۳۹۲

نمره	راهنمای تصحیح	رديف
1/4	$S = \{ (1, \psi), (1, \psi$	١
	$A = \{(1, 0), (1, 0), (1, 0), (2, 0), (2, 0), (2, 0), (2, 0)\}$ (٠/۵)	
1/6	$P(A) = \frac{n(A)}{n(S)} = \frac{\binom{(\cdot/\Upsilon\Delta)}{\Upsilon} \binom{(\cdot/\Upsilon\Delta)}{\Upsilon}}{\binom{\Lambda}{\Upsilon}} = \frac{19}{\Delta 9}$ (\(\frac{\cdot}{\TA}\))	۲
	(ب) $P(B) = \frac{n(B)}{n(S)} = \frac{\begin{pmatrix} \lambda \\ r \end{pmatrix}}{\begin{pmatrix} \lambda \\ r \end{pmatrix}} = \frac{1}{\lambda S}$ (٠/٢۵)	
1	الف $P(A \cap B) = P(A) \times P(B) = \cdot / $ ۶۰×۰/۸۰ = ۰/۴۸ (۰/۲۵)	٣
	$(\cdot/\Upsilon \delta)$ $(\cdot/\Upsilon \delta)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \cdot/\$ \cdot + \cdot/ \land \cdot - \cdot/\$ \land = \cdot/\$ \Upsilon \qquad (\cdot/\Upsilon \delta)$ $(\cdot/\Upsilon \delta)$	
1/4	$\frac{x+r}{r_{x-1}} - \frac{1}{x-r} \le 0 \implies \frac{(x+r)(x-r) - (r_{x-1})}{(r_{x-1})(x-r)} \le 0 \implies \frac{x^r - r_{x-r}}{(r_{x-1})(x-r)} \le 0$ $\begin{cases} x^r - r_{x-r} = 0 \implies x = r &, x = -1 \\ (r_{x-1})(x-r) = 0 \implies x = \frac{1}{r} &, x = r \end{cases}$	٤
	$x - \infty - 1 \frac{1}{r} + \infty$	
	$x^{T} - T x - T \qquad + \qquad - \qquad - \qquad + \qquad + \qquad + \qquad + \qquad + \qquad + \qquad +$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$=\left[-1,\frac{1}{r}\right]\cup\left(r,r\right]$ مجموعه جواب $=\left[-1,\frac{1}{r}\right]$	
	« ادامه در صفحه ی دوم »	

١

رشتهی : علوم تجربی	راهنمای تصحیح امتحان نهایی درس: ریاضی (۳)
تاریخ امتحان: ۱۳۹۲/۳/۱۱	سال سوم أموزش متوسطه
مرکز سنجش أموزش وپرورش http://aee.medu.ir	دانش آموزان روزانه ، بزرگسال و داوطلبان آزاد سراسر کشور (خرداد ماه) سال ۱۳۹۲

نمره	راهنمای تصحیح	رديف
1/40	$\sin \alpha = \frac{r}{\Delta} \Rightarrow \cos \alpha = -\sqrt{1 - \sin^{r} \alpha} = -\frac{r}{\Delta} \Rightarrow \tan \alpha = -\frac{r}{r} (\cdot/r\Delta)$	۵
	$\tan \Upsilon \alpha = \frac{\Upsilon \tan \alpha}{1 - \tan^{\Upsilon} \alpha} = \frac{\Upsilon(-\frac{r}{r})}{1 - (-\frac{r}{r})^{\Upsilon}} = -\frac{\Upsilon^{r}}{\Upsilon} (\cdot/\Upsilon \Delta)$	
	رسم سهمی (۰/۲۰) رسم خط (۰/۲۰) ×	٦
	$f(f(-1)) = f(f) = r(\cdot/r\Delta)$ (ب $f(-1)$) $f(f(-1)) = f(f) = r(\cdot/r\Delta)$	
+/۵	$x^{\Upsilon} - fx + f \neq 0$ $(\cdot/\Upsilon\Delta) \Rightarrow D = R - \{\Upsilon\}$ $(\cdot/\Upsilon\Delta)$	٧
١	$A(-1, \Upsilon) \Rightarrow \Upsilon = a - b - \Upsilon \qquad (\cdot/\Upsilon \Delta) \qquad \Rightarrow a - b = \Upsilon $ $B(1, \circ) \Rightarrow \circ = a + b - \Upsilon \qquad (\cdot/\Upsilon \Delta) \qquad \Rightarrow a + b = \Upsilon $ $\begin{cases} a = \Upsilon \qquad (\cdot/\Upsilon \Delta) \\ b = -1 \qquad (\cdot/\Upsilon \Delta) \end{cases}$	٨
1/40	(الف) $(gof)(x) = g(f(x)) = g(\Upsilon x - \Upsilon) = \sqrt{\Upsilon x - \Upsilon}$ (\cdot / Δ) $D_f = R (\cdot / \Upsilon \Delta) \mathcal{D}_g = [\mathcal{F}, +\infty) (\cdot / \Upsilon \Delta)$ $D_{gof} = \{x \in D_f \mid f(x) \in D_g\} = \{x \in R \mid \Upsilon x - \Upsilon \geq \mathcal{F}\} = [\Delta, +\infty) (\cdot / \Upsilon \Delta)$ ($\cdot / \Upsilon \Delta$) ($\cdot / \Upsilon \Delta$)	٩
+/YA	$ \left.\begin{array}{l} Lim \Upsilon \cos x = \Upsilon (./\Upsilon \Delta) \\ x \to \circ \\ Lim (\Upsilon - x^{\Upsilon}) = \Upsilon (./\Upsilon \Delta) \\ \end{array}\right\} \Rightarrow Lim g(x) = \Upsilon \qquad (\cdot/\Upsilon \Delta) $	1.
	« ادامه در صفحه ی سوم »	

رشتهی : علوم تجربی	راهنمای تصحیح امتحان نهایی درس: ریاضی (۳)
تاریخ امتحان: ۱۳۹۲/۳/۱۱	سال سوم أموزش متوسطه
مرکز سنجش آموزش وپرورش http://aee.medu.ir	دانش آموزان روزانه ، بزرگسال و داوطلبان آزاد سراسر کشور (خرداد ماه) سال ۱۳۹۲

نمره	راهنمای تصحیح	رديف
٣	$Lim_{x \to f} \frac{\sqrt{x} - f}{x^{7} - 16} \times \frac{\sqrt{x} + f}{\sqrt{x} + f} = Lim_{x \to f} \frac{(\cdot/7\Delta)}{(x - f)(x + f)(\sqrt{x} + f)} = \frac{1}{(\cdot/7\Delta)}$	11
	$\lim_{x \to \tau} \frac{1}{(x+\tau)(\sqrt{x}+\tau)} = \frac{1}{\tau\tau} (\cdot/\tau\Delta)$	
	$\lim_{x \to \infty} \frac{\sin(\forall x)\tan(\forall x)}{x^{\forall}} = \lim_{x \to \infty} \frac{\sin \forall x}{x} \times \lim_{x \to \infty} \frac{\tan \forall x}{x} = \underbrace{\forall x \forall x}_{(\cdot/\forall \Delta)} = \underbrace{\forall x}_{(\cdot/\forall \Delta)} = \underbrace{\forall x}_{(\cdot/\forall \Delta)} = \underbrace{\forall x \forall x}_{(\cdot/\forall \Delta)} = \underbrace{\forall x}_{($	
	$\lim_{x \to r^{-}} \frac{x^{r} + 1}{r - x} = \frac{1}{0} = +\infty \qquad (./7\Delta)$	
	a) $\lim_{x \to +\infty} \frac{rx^{\tau} + \sqrt{rx + \tau}}{rx^{\tau} + \Delta x} = \lim_{x \to +\infty} \frac{rx^{\tau}}{rx^{\tau}} = \frac{r}{r}$ (./٢\Delta)	
1/70	$x \rightarrow -1^+$ $x \rightarrow -1^+$	١٢
	$ \left\{ \begin{array}{l} Lim f(x) = Lim (x^{T} - \Delta x) = F \\ x \to -1^{T} x \to -1^{T} \end{array} \right. $ $ \left\{ \begin{array}{l} (./T\Delta) \\ f(-1) = F (./T\Delta) \end{array} \right\} \Rightarrow a + F = F \Rightarrow a = T \\ (./T\Delta) (./T\Delta) $	
1	(الف) $f'(x) = (17x^{T} - T)(x^{T} + x) + (Tx^{T} + 1) (Tx^{T} - Tx + 1)$ $(./T\Delta) (./T\Delta) (./T\Delta)$ $\frac{Tx^{T}}{Tx^{T}} (Tx - \Delta) - T\sqrt{x^{T} + 1}$ $(Tx - \Delta)^{T} (Tx - \Delta)^{\mathsf$	١٣
	« ادامه در صفحه ی چهارم »	

رشتهی : علوم تجربی	راهنمای تصحیح امتحان نهایی درس: ریاضی (۳)
تاریخ امتحان: ۱۳۹۲/۳/۱۱	سال سوم أموزش متوسطه
مرکز سنجش أموزش وپرورش http://aee.medu.ir	دانش آموزان روزانه ، بزرگسال و داوطلبان آزاد سراسرکشور (خرداد ماه) سال ۱۳۹۲

نمره	راهنمای تصحیح	رديف
1	$\frac{f(x_{\gamma}) - f(x_{\gamma})}{x_{\gamma} - x_{\gamma}} = \frac{f(\lambda) - f(\gamma)}{\lambda - \gamma} = \frac{\gamma - \gamma}{\lambda} = \frac{\gamma}{\lambda} (./\gamma \lambda)$	١٤
+/۵	$y = x^{r} - x \implies y' = rx - 1 \implies m = y'(\Delta) = 9 \qquad (\cdot/r\Delta)$	۱۵
۲٠	جمع نمره	

باسلام و خسته نباشید، مصححین محترم ، لطفأ برای راه حل های درست دیگر بارم را به تناسب تقسیم نمائید.