

Proposal experimental plan draft - Version 0.1

Mohammad Rahmani

DECIDE Doctoral School

12 August 2020

Proposal Goal

Scientific

 To find out whether intelligent agents semantic-awareness help with emergence of better collective behavior (NULL hypothesis)

Technical

Scalable object transportation (and vertical landing in vertical mode)

Semantic-awareness meaning

- A mutual understanding of the meaning of the language from which generative (Bayesian) models that agents use are derived
- Considering the meaning of different parts of this language in the context in which they appear to provide
 - Temporality semantics
 - Similarity semantics

Goal - semantic perspective

Each agent receives sequences of generative models that neighboring agents have, are or will experience(d) and they decide for individual actions which emerges in a collective behavior to solve a problem.

Related study area

- Bayesian self-aware Artificial Intelligence
- Collective adaptive systems
 - Collective object transportation
- Swarm navigation and Self-organizing
- Dynamic system modeling
 - Dynamic Bayesian modeling
- Discretization of continuous features
- Semantics

Methodology

A Bayesian self-aware Artificial intelligence approach will be taken which must include

- Individual perception
- Discretization (using clustering methods) of state space and derive the alphabet of two languages
 - Alphabets of words describing interaction between neighboring agents
 - Alphabets of words describing individual dynamism
- Abnormality detection in individual motion

Methodology - 2

- Abnormality detection in interaction
- Generative individual models
- Generative interaction models
- Descriminative models
- Control decision making according abnormality detection

Horizontal Frame Scenarios

Reference transportation

The importance of such obstacles is that every surface can be divided to small, similar surfaces such that they approach the shape of the surface.

Horizontal Frame Scenarios - Frame passage transportation

New Generative DBN models can be learned out of the following scenarios.

Horizontal Frame Scenarios

New Generative DBN models can be learned out of the following scenarios.

Horizontal Frame Scenarios

- **Scenario 1**: Row formation to pass through a vertically narrow frame
- Scenario 2: Line formation to pass through a horizontally narrow frame
- Scenario 3: Compact formation to pass through a small window

The goal is that through semantic transaction of generative models, such formations are achieved

Scenario: Vertical column avoidance

Unlike frames, a collective behavior is not necessary in this scenario

Scenario: Horizontal column avoidance

Unlike frames, a collective behavior is **not** necessary in this scenario

Scenario: Horizontal column avoidance

More scenarios could be devised such that interaction orientation changes between consecutive ranks is not necessary

Scenario: Horizontal column avoidance

The goal of the last three scenarios is to prove that semantic communication not only helps better individual actions but also it can signify whether a communication is needed at all or not.

Communication rules

To keep communication decentralized, a ranking strategy according to closeness of agents to destination is needed and the following rules should be observed.

- No agent can transmit the generative models from other agents to the neighboring agent.
- Messages can be made of one generative model and the senders rank or more than one (for distributional semantics)
- Messages can only be transmitted to neighboring ranked nodes when the generative model an agent is practicing changes.

Communication rules - Ranking

Requirements

- At least three drones so that neighboring communication is meaningful, although the results could be evaluated a lot better using more drones
- Minimum two different sensors to establish a relationship between heterogeneous sensors. The best of such sensors for depth and obstacle selection in low speed are active sensors:
 - Lidar
 - Sonar

