

Improving Local Search Algorithms via Probabilistic Configuration Checking

Weilin Luo¹, Rongzhen Ye¹, Hai Wan^{1,*}, Shaowei Cai^{2,*}, Biqing Fang¹, Delong Zhang¹

¹Sun Yat-sen University, Guangzhou, China ²Chinese Academy of Sciences, China

Motivation

Local search is a popular method for solving combinatorial optimization problems (COPs), e.g.

- minimum weight dominating set problem (MWDS)
- maximum weight clique problem (MWCP)

Configuration checking (CC) is an effective mechanism to alleviate the cycling problem for COPs.

The configuration of a vertex in the previous CC strategies:

- MWDS: 2-level neighborhoods
- MWCP: 1-level neighborhoods

Neighborhoods with more than two levels can have an impact on a vertex and should be considered in the configuration.

	_		CC^2FS	5		CC ² FS	-H
-	Instances	min	avg	time	min	avg	time (s)
	frb30-15-1	212	214.2	2.59	212	212.0	0.11
	frb30-15-2	242	242.0	8.81	242	242.0	0.18
	frb30-15-3	175	175.0	0.01	175	175.0	0.03
	frb30-15-4	166	168.6	0.19	166	166.0	0.08
	frb30-15-5	160	160.0	0.01	160	160.0	0.02
	frb35-17-1	274	274.9	0.57	274	274.0	0.11
1	frb35-17-2	208	208.3	67.44	208	208.0	0.29
_	frb35-17-3	201	201.0	0.38	201	201.0	0.10
	frb35-17-4	286	286.8	0.73	286	286.0	0.45
	frb35-17-5	295	295.7	5.60	295	295.0	0.11
	frb40-19-1	262	262.0	1.99	262	262.0	0.14
)	frb40-19-2	243	243.9	0.66	243	243.0	0.18
	frb40-19-3	250	251.8	102.43	250	250.0	3.88
	frb40-19-4	250	250.0	0.07	249	249.0	95.82
	frb40-19-5	272	282.3	0.31	272	277.6	82.50
	frb45-21-1	328	328.3	7.82	328	328.0	0.64
1	frb45-21-2	259	261.7	46.82	259	259.1	1.39
	frb45-21-3	233	233.9	9.19	233	233.0	0.89
7	frb45-21-4	399	399.2	22.67	399	399.0	0.95
	frb45-21-5	312	318.8	128.19	312	312.0	1.82
	frb50-23-1	261	264.7	90.71	261	261.0	8.97
	frb50-23-2	277	277.0	0.01	277	277.0	0.17
	frb50-23-3	299	301.9	1.21	281	292.2	31.13
5	frb50-23-4	265	265.0	3.04	265	265.0	0.47
	frb50-23-5	410	418.8	128.09	410	411.1	158.96
	frb53-24-1	229	230.0	95.41	229	229.0	2.35
	frb53-24-2	298	298.0	1.04	298	298.0	0.38
	frb53-24-3	182	182.1	0.01	182	182.0	0.26
5	frb53-24-4	189	189.0	0.02	189	189.0	0.27
	frb53-24-5	204	204.0	0.01	204	204.0	0.29
_	frb56-25-1	229	229.2	0.32	229	229.0	0.41
5	frb56-25-2	319	319.5	25.27	319	319.0	3.46
	frb56-25-3	336	338.7	30.21	336	336.0	38.80
	frb56-25-4	268	268.0	0.21	268	268.0	0.41
)	frb56-25-5	425	427.6	103.13	425	425.0	1.83
	frb59-26-1	262	264.0	1.62	262	262.0	25.31
_	frb59-26-2	383	391.1	97.04	383	383.0	5.64
2	frb59-26-3	248	248.0	1.13	246	246.0	14.24
	frb59-26-4	248	248.9	47.47	248	248.0	0.62
	frb59-26-5	288	288.8	195.62	288	288.0	3.26
	frb100-40	350	350.0	2.04	350	350.0	9.70
	#win	0	0	7	3	29	25

Contributions

- 1. Probabilistic configuration (PC). A general way to define the configuration of a vertex.
- 2. Probabilistic configuration checking (PCC). The strategy of the new configuration.

i-th-level Neighborhoods

Definition 1 For a vertex v, we define its i-th-level neighborhoods as $N_i(v) = \{u \in V \mid dist(u,v) = i\}$, i-level neighborhoods as $N_{\leq i}(v) = \bigcup_{j=1}^{i} N_j(v)$, and its i^+ -level neighborhoods as $N_{>i}(v) = \bigcup_{j=i+1}^{i} N_j(v)$, particularly, $N_1(v) = N_{\leq 1}(v) = N(v)$.

Probabilistic Configuration (PC)

Definition 2 Given an undirected graph G = (V, E) and a candidate solution S, the probabilistic configuration (PC) of a vertex $v \in V$ is a vector consisting of the states of all vertices in $(\bigcup_{i=1}^2 (N_i(v))^{p_i}) \cup (N_{>2}(v))^{p_3}$, where $p_i \in [0,1]$, i=1,2,3, and $\{*\}^{p_i}$ is randomly chosen vertices from the set $\{*\}$ with the size of $[|\{*\}| \cdot p_i]$.

Probabilistic Configuration Checking (PCC)

Algorithm 1 SelectConf $(v, N_1(v), N_2(v), N_{>2}(v), P)$

Input: a vertex v and $N_1(v)$, $N_2(v)$, $N_{>2}(v)$, $P = \{p_1, p_2, p_3\}$ a set of probabilities.

Output: the configuration Conf.

- 1: $Q_1 \leftarrow \text{randomly choose } \lceil |N_1(v)| \cdot p_1 \rceil \text{ vertices from } N_1(v);$
- 2: $Q_2 \leftarrow \text{randomly choose } \lceil |N_2(v)| \cdot p_2 \rceil \text{ vertices from } N_2(v);$
- 3: $Q_3 \leftarrow \text{randomly choose } [|N_{>2}(v)| \cdot p_3] \text{ vertices from } N_{>2}(v);$
- 4: $Conf(v) \leftarrow Q_1 \cup Q_2 \cup Q_3$;
- 5: **return** Conf(v);
- Firstly, carry out a preprocessing to compute the 1st-, 2nd-, and 2^+ level neighborhoods for each vertex, which can be quickly implemented with a breadth-first search algorithm with the time complexity of $O(|V| \cdot |E|)$, which only needs to be run once.
- In each search step, for the operated vertex v, select vertices from $N_1(v)$, $N_2(v)$ and $N_{>2}(v)$ to form its configuration (Algorithm 1).

Comparison PCC with CC

MWDS: CC^2FS , CC^2FS -P (ours, one PC for each COP)

			CC^2FS		CC ² F	-S-P	sum of diff		
	Benchmarks	#inst.	#w.m.	#w.a.	#w.m.	#w.a.	min	avg	
	T1	5	0	0	5	5	-167	-167.0	
_	T2	5	0	0	3	3	-49	-49.0	
train	UDG	4	4	4	0	0	30	30.0	
7	BHOSLIB	4	0	0	1	4	-1	-8.4	
	DIMACS	8	0	0	0	0	0	0.0	
	T1	525	10	10	152	152	-2129	-2129.0	
	T2	525	0	0	57	57	-697	-697.0	
test	UDG	116	81	81	16	16	541	541.0	
	BHOSLIB	37	0	0	6	26	-52	-105.1	
	DIMACS	29	0	0	2	9	-4	-27.2	
Total		1258	95	95	242	272	-2528	-2611.7	

MWCP: LSCC, LSCC-P (ours, one PC for each COP)

			LSCC		LSC	C-P	sum of diff	
	Benchmarks	#inst.	#w.m.	#w.a.	#w.m.	#w.a.	min	avg
 	BHOSLIB	4	1	0	2	4	13	67
train	DIMACS	8	0	1	3	3	124	166.8
	BHOSLIB	37	2	3	14	26	315	462.7
test	DIMACS	29	2	2	0	2	-19	52.9
Tot	al	78	5	6	19	35	433	749.4

Discussion About the Bias of Training

 CC^2FS-P performs worse even in the training set with respect to the UDG benchmark in MWDS. Therefore, we argue that it results from the adverse bias generated from training data from other benchmarks.

The results below show that the PC specially trained for each benchmark can improve the performance.

Discussion About the Bias of Training

MWDS: CC^2FS-P , CC^2FS-SP (ours, one PC for each benchmark)

		11.	CC^2F	S-P	CC^2F	S-SP	sum of diff	
	Benchmarks	#ınst.	#w.m.	#w.a.	#w.m.	#w.a.	min	avg
	T1	5	0	0	2	2	-17	-17.0
ے	T2	5	0	0	0	0	0	0.0
train	UDG	4	0	0	4	4	-38	-38.0
۲	BHOSLIB	4	0	0	0	0	0	0.0
	DIMACS	8	0	0	0	0	0	0.0
	T1	525	17	17	36	36	-76	-76.0
_	T2	525	1	1	1	1	0	0.0
test	UDG	116	22	22	82	82	-555	-555.0
	BHOSLIB	37	0	0	0	1	0	-4.0
	DIMACS	29	0	1	0	0	0	0.1
To	otal	1258	40	41	125	126	-686	-689.9
						<u>'</u>		

MWCP: LSCC-P, LSCC-SP (ours, one PC for each benchmark)

			LSCC-P		LSCC	C-SP	sum of diff	
	Benchmarks	#inst.	#w.m.	#w.a.	#w.m.	#w.a.	max	avg
	BHOSLIB	4	1	2	2	2	-5	2.4
train	DIMACS	8	0	0	0	0	0	0
	BHOSLIB	37	9	8	6	15	56	39.6
test	DIMACS	29	0	0	0	0	0	0
Total		78	10	10	8	17	51	42

Reducing the Cycling Problem

first 10^5 candidate solutions.

- (a) Comparison of the number of different candidate solutions of non-CC, CC, PCC, SPCC.
- (b) Comparison of CPU time.
- (c) The scores of CC²FS-P with different configurations on MWDS benchmark. The X-axis, Y-axis, and Z-axis represent p_1, p_2 , and p_3 respectively.

- The result shows that PCC does not have much more time consumption to improve the exploration in local search and potentially alleviates the cycling problem.
- It is necessary to tune for an optimal PC for a given COP.

Acknowledgments

We thank anonymous referees for helpful comments. This paper was supported by the National Natural Science Foundation of China (No. 61976232), Humanities and Social Science Research Project of Ministry of Education (18YJCZH006).