ELE532 Digital HARDWARE

Final Examination Examiner: S. G. Zaky Spring 2001

Time: Two and a half hours

No aids allowed

This paper has FOUR questions All questions are of equal value

1. [15 Marks]

- a) Repeaters are often introduced on a long line on an IC to divide the line into shorter sections.
 - · Give at least two reasons why this may be necessary.
 - Is the same thing needed for long lines on a printed-circuit board? Why?
- b) The delay t_d and risetime t_r for a line of length d connecting two points on an IC may be approximated by

$$t_{\rm d} = 0.4 \ d^2RC$$
$$t_{\rm r} = d^2RC$$

where R and C are the line resistance and capacitance per unit length. Two clock lines on this IC are 20 mm long each and have $RC = 1.5 \times 10^{-17} \text{ s/}\mu\text{m}^2$.

- Calculate the timing jitter on each line assuming that noise is limited to a maximum of $\pm 10\%$ of the signal swing.
- What is the maximum clock skew between these two lines?
- c) It is proposed to divide each of the clock lines of bart (b) into n sections using repeaters. Each repeater introduces a delay in the range 50 to 150 ps.
 - Find a suitable value for n to minimize clock skew.

2. [15 Marks]

A 15 mm×15mm integrated circuit has a power supply voltage of 3.3 V, and a clock frequency of 300 MHz. Each gate switches every three clock cycles and drives a capacitive load of 150 fF, on average. A gate completes switching in about a third of a clock cycle.

- a) Compute the average supply current per gate.
 - Estimate, with explanation, a suitable value for the current waveform factor k_i .
 - Based on the symbiotic capacitance of neighbouring gates, compute the voltage variation ΔV experienced by individual gates during switching.
- b) Additional bypass capacitance can be provided using the oxide layer as the dielectric, at 5 fF/μm².
 - Estimate chip area per gate that needs to be dedicated to bypass capacitance to limit ΔV to 0.15 V.
 - Assuming that each gate occupies $200 \, \mu m^2$, how many gates can this chip accommodate?
 - What other approaches would you consider to reduce or eliminate the area used to provide bypass capacitors?

3. [15Marks]

- a) When IBM researchers announced that they have successfully used copper for the metallization layer in CMOS ICs, this was regarded as a breakthrough that would lead to significant improvements in performance.
 - Discuss at least two aspects of digital IC design that would be impacted when aluminum is replaced by copper.
- b) Ball Grid Array is an expensive technology. Yet, it is widely used in high-performance ICs.
 - Give at least two reasons why BGA can improve the electrical performance of a digital system.
- c) Having signals with a short risetime is one of the factors that make it possible to design fast circuits.
 - Give at least three reasons why you may want to deliberately increase the risetime of a logic signal.
- d) Ground connections provide the return path for signal and power supply current.
 - Why are ground connections implemented in the form of a ground plane?
 - What are the trade-offs in deciding how close to the ground plane signal lines should be?

4. [15 Marks]

Link AB in the figure below has a characteristic impedance of 75 Ω . It is driven by a matched driver at point A and connected to a matched receiver at point B. As a result of a layout error, an unterminated 75- Ω line is connected to this link at point C. Propagation delays on various line segments are as shown in the figure.

- a) Let V_{CD} and V_{DC} be the waves travelling from C to D and from D to C, respectively.
 - Complete the table below for the first 12 ns following a 0-to-3 V transition at point A. (Copy the table in your answer book.)
 - Plot the voltage waveforms at points A, C, B, and D during the same period.
 - What is the steady-state voltage at these points?

Time (ns)	0	2	4	6	8	10	12
$V_{\rm CD}$							
V_{DC}			-				
$v_{\rm C}$							
$\overline{v_{D}}$							_

- b) The link from A to B is used to transmit information at the rate of 250 MHz.
 - · What is the worst-case intersymbol interference?

