EJERCICIOS IMPRESCINDIBLES

► Números complejos

(1) Escribe como número de la forma ib las siguientes raíces:

$$a) \sqrt{-1}$$

d)
$$\sqrt{-16}$$

$$g) \sqrt{-49}$$

$$m) \sqrt{-3}$$

b)
$$\sqrt{-4}$$

e)
$$\sqrt{-25}$$

h)
$$\sqrt{-64}$$

$$k) \sqrt{-121}$$

$$(3) \sqrt{-5}$$

$$c) \sqrt{-9}$$

$$f) \sqrt{-36}$$

i)
$$\sqrt{-81}$$

$$l) \sqrt{-144}$$

$$n) \sqrt{-5}$$

(2) De los siguientes números indica cuáles son reales, imaginarios y complejos:

c)
$$2 - 3i$$

$$e) \sqrt{2}$$

$$g)$$
 i

$$b) -i$$

$$d) 4 + i2$$

$$f) \frac{4}{0}$$

$$h) \ \frac{11}{3}$$

(3) Identifica la parte real e imaginaria de los siguientes números:

a)
$$2 - 3i$$

$$c)$$
 4

$$e)$$
 4

$$g) \frac{i2}{3}$$

b)
$$-1 + \frac{i}{4}$$
 d) $\frac{2+7i}{3}$ f) $-\frac{2}{5} + i$

$$d) \ \frac{2+7i}{3}$$

$$f(x) = \frac{2}{5} + i$$

(4) Resuelve las siguientes ecuaciones:

a)
$$x^2 - 2x + 5 = 0$$

$$b) \ x^2 - 2x + 10 = 0$$

a)
$$x^2 - 2x + 5 = 0$$
 b) $x^2 - 2x + 10 = 0$ c) $2x^2 - 2x + 1 = 0$

(5) La ecuación $x^2 + 25 = 0$, ¿tiene raíces reales? ¿y complejas? Calcúlalas.

▶ Operaciones

(6) Realiza las siguientes operaciones:

a)
$$(3+2i)+(5-3i)-2\cdot(-4+6i)$$
 d) $(2-3i)\cdot(3+4i)$

$$(2-3i)\cdot(3+4i)$$

b)
$$(5-3i) + \frac{1}{2} \cdot (4+2i) - (-5+7i)$$
 e) $(4+5i) \cdot (2-i)$
f) $(1-i)^2$

e)
$$(4+5i) \cdot (2-i)$$

c)
$$\sqrt{-16} + \sqrt{4} - \sqrt{-49} - \sqrt{9}$$

$$a) (4-3i)^2$$

(7) Divide:

a)
$$\frac{1+3i}{3-i}$$

$$b) \ \frac{2-5i}{4+2i}$$

c)
$$\frac{3-3i}{-2+5i}$$

a)
$$\frac{1+3i}{3-i}$$
 b) $\frac{2-5i}{4+2i}$ c) $\frac{3-3i}{-2+5i}$ d) $\frac{5+i}{-3-2i}$ e) $\frac{1+7i}{3+4i}$

$$e) \frac{1+7i}{3+4i}$$

(8) Calcula $i^5,\,i^6,\,i^7,\,i^8,\,i^{20},\,i^{30},\,i^{100},\,i^{105}$

(9) Realiza las siguientes operaciones:

$$a) \frac{3\sqrt{2} + 2\sqrt{3}i}{3\sqrt{2} - 2\sqrt{3}i}$$

b)
$$\frac{5}{3-4i} + \frac{10}{4+3i}$$
 c) $\frac{3-i}{1+2i} - \frac{1+3i}{2-i}$

$$c) \ \frac{3-i}{1+2i} - \frac{1+3i}{2-i}$$

(10) ¿Qué se obtiene al multiplicar dos números imaginarios puros?

(11) Dados los complejos 2 - ai y 3 - bi hallar los valores que deben tomar a y b para que el producto de aquellos sea igual a 8 + 4i.

(12) Hallar el valor que hay que dar a m en $\frac{2-(1+m)i}{1-mi}$ para que dicho cociente sea un número real.

(13) Calcula

$$a) \sqrt{i}$$

b)
$$\sqrt{-9i}$$

c)
$$\sqrt{3-2i}$$

c)
$$\sqrt{3-2i}$$
 d) $\sqrt{-1+2\sqrt{6}i}$

▶ Representación geométrica

(14) Representa los siguientes números complejos:

a)
$$2-3i$$
 b) $3+2i$ c) $4i$

b)
$$3 + 2i$$

$$c)$$
 $4i$

$$e) -2 + i$$

(15) Representa gráficamente el opuesto (respecto de la suma) y el conjugado de:

a)
$$1 + i$$

b)
$$2 - 3i$$

$$c) -1 - i$$

¿Serías capaz de indicar cómo representar el opuesto y el conjugado de un número complejo cualquiera z = a + bi?

(16) **Paso de binómica a polar.** Escribe en forma polar:

a)
$$1 - i$$

b)
$$-1 - i2\sqrt{3}$$
 c) $3i$

$$c)$$
 3

$$d) -4$$

(17) Paso de polar a binómica. Escribe en forma binómica los siguientes números complejos:

a) 4_{90}

b) $2_{120^{\circ}}$

 $c) 1_{225^{\circ}}$

(18) Expresa en forma polar y trigonométrica los siguientes números complejos:

$$a) -1 + i$$

$$b) -1 - i$$

$$c) \ \frac{3\sqrt{3}}{2} - \frac{3}{2}i$$

(19) Dado el complejo $3_{30^{\circ}}$ hallar su opuesto respecto del producto, su conjugado y el conjugado de su opuesto.

(20) Indica cómo son entre sí los complejos $2_{30^{\circ}}$ y $2_{330^{\circ}}$ y qué les ocurre a sus afijos.

- (21) Dado un número complejo cualquiera ¿qué relación existe entre el conjugado de su opuesto y el opuesto de su conjugado?
- (22) Al unir el afijo de cierto complejo con el origen, se obtiene un segmento de $2\sqrt{2}$ unidades. Hallar en forma polar y binómica dicho complejo sabiendo que está situado en la bisectriz del primer-tercer cuadrante.

▶ Operaciones con complejos en forma polar

- (23) Calcula $4_{20^{\circ}} \cdot 3_{25^{\circ}}$ expresando el resultado en forma binómica.
- (24) Halla [6(cos 130° + i sen 130°)] [3(cos 80° + i sen 80°)] dando el resultado en forma binómica.
- (25) Dados los complejos $z_1 = \sqrt{3} + i; z_2 = -\sqrt{3} + 3i$, pasarlos a forma polar y hallar su producto.
- (26) Calcula el cociente $\frac{12_{54^{\circ}}}{3_{24^{\circ}}}$, expresando el resultado en forma binómica.
- (27) Halla $\frac{20(\cos 83^{\circ} + i \sin 83^{\circ})}{5(\cos 23^{\circ} + i \sin 23^{\circ})}$, expresando el resultado en forma binómica.
- (28) Dados los complejos $z_1 = 2 2\sqrt{3}i$; $z_2 = 1 + i$, hallar su cociente en forma binómica y en forma polar.

▶ Potencias de complejos. fórmula de moivre

- (29) Calcula $(1_{30^{\circ}})^3$ expresando el resultado en forma binómica.
- (30) Calcula $[4(\cos 20^{\circ} + i \sin 20^{\circ})]^{3}$
- (31) Dado el complejo $(1-i)^4$ pasarlo a forma polar y aplicar la fórmula de Moivre.
- (32) Obtener el valor de $(-1+i)^6$ expresando el resultado en forma binómica.
- (33) Calcula el valor de $\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)^{30}$
- (34) Halla $\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right)^{100}$
- (35) Calcula sen 3α y $\cos 3\alpha$
- (36) Calcula sen 4α y $\cos 4\alpha$

► Radicación de complejos

(37) Calcula, representando todas las raíces:

a)
$$\sqrt[6]{-64}$$

b)
$$\sqrt[3]{8(\cos 45 + i \sin 45)}$$