Calculate Skewness, Kurtosis & draw inferences on the following data

```
In [1]: import pandas as pd
In [2]: cars_speed_distance=pd.read_csv("Q9_a.csv")
         sp_weight=pd.read_csv("Q9_b.csv")
In [3]: | cars_speed_distance.head()
Out[3]:
            Index speed dist
          0
                1
                           2
          1
                2
                      4
                          10
                3
                           4
          3
                4
                      7
                          22
                5
                      8
                          16
In [4]: sp_weight.head()
Out[4]:
            Unnamed: 0
                              SP
                                        WT
          0
                     1 104.185353 28.762059
          1
                     2 105.461264 30.466833
          2
                     3 105.461264 30.193597
          3
                     4 113.461264 30.632114
                     5 104.461264 29.889149
In [5]: | cars_speed_distance.shape,sp_weight.shape
Out[5]: ((50, 3), (81, 3))
```

In [6]: round(cars_speed_distance.describe(),2)

Out[6]:

	Index	speed	dist
count	50.00	50.00	50.00
mean	25.50	15.40	42.98
std	14.58	5.29	25.77
min	1.00	4.00	2.00
25%	13.25	12.00	26.00
50%	25.50	15.00	36.00
75%	37.75	19.00	56.00
max	50.00	25.00	120.00

In [7]: cars_speed_distance.boxplot()

Out[7]: <AxesSubplot:>

In [8]: cars_speed_distance["dist"].median()
according to the data at avg speed of 15.5 the dist covered is 36

Out[8]: 36.0

```
In [9]: round(sp_weight.describe(),0)
#at 122 sp mean weight is 32
```

Out[9]:

	Unnamed: 0	SP	WT
count	81.0	81.0	81.0
mean	41.0	122.0	32.0
std	24.0	14.0	7.0
min	1.0	100.0	16.0
25%	21.0	114.0	30.0
50%	41.0	118.0	33.0
75%	61.0	126.0	37.0
max	81.0	170.0	53.0

```
In [10]: sp_weight.columns
```

```
Out[10]: Index(['Unnamed: 0', 'SP', 'WT'], dtype='object')
```

```
In [11]: from scipy.stats import kurtosis
from scipy.stats import skew
```

```
In [12]: cars_speed_distance=cars_speed_distance.drop("Index",axis=1)
```

```
In [13]: sp_weight=sp_weight.drop("Unnamed: 0",axis=1)
```

In [20]: print("Kurtosis:\n",cars_speed_distance.kurtosis(),"\n\n","Skewness:\n",cars_spee # as kurtosis is less than 3 dataset has less tails #speed is -ve skewed and dist is +ve skewed #+ve skewed is right skewed and -ve skewed is left skewed

Kurtosis:

speed -0.508994 dist 0.405053 dtype: float64

Skewness:

speed -0.117510 dist 0.806895 dtype: float64

```
In [21]: print("Kurtosis:\n",sp_weight.kurtosis(),"\n\n","Skewness:\n",sp_weight.skew())
# as kurtosis is less than 3 dataset has less tails
#WT is -ve skewed and SP is +ve skewed
#+ve skewed is right skewed and -ve skewed is left skewed
```

Kurtosis:

SP 2.977329
WT 0.950291
dtype: float64

Skewness:

SP 1.611450 WT -0.614753 dtype: float64

In []: #Skewness affects "accuracy" and kurtosis affects "stability"