### **Recurrent Neural Networks**

10/10 points (100%)

Quiz, 10 questions

## **✓** Congratulations! You passed!

Next Item



1/1 points

1.

Suppose your training examples are sentences (sequences of words). Which of the following refers to the  $j^{th}$  word in the  $i^{th}$  training example?



$$x^{(i) < j >}$$

#### Correct

We index into the  $i^{th}$  row first to get the  $i^{th}$  training example (represented by parentheses), then the  $j^{th}$  column to get the  $j^{th}$  word (represented by the brackets).

- $x^{< i > (j)}$
- $igcap x^{(j) < i >}$
- $igcap x^{< j > (i)}$



1/1 points

2.

Consider this RNN:



This specific type of architecture is appropriate when:



#### Correct

It is appropriate when every input should be matched to an output.

$$\bigcap T_x < T_y$$

$$\bigcap T_x > T_y$$

$$\bigcap T_x=1$$



3.

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).



## Speech recognition (input an audio clip and output a

# Recurrent Neural Networks

10/10 points (100%)

Quiz, 10 questions

**Un-selected** is correct





Correct!

points

4.

You are training this RNN language model.



At the  $t^{th}$  time step, what is the RNN doing? Choose the best answer.



Estimating 
$$P(y^{<1>},y^{<2>},\ldots,y^{< t-1>})$$

### Recurrent Neural Networks <t>)

10/10 points (100%)

Quiz, 10 questions



#### Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

O Estimating 
$$P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>})$$



5.

You have finished training a language model RNN and are using it to sample random sentences, as follows:



What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as  $\hat{y}^{< t>}$ . (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as  $\hat{y}^{< t>}$ . (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as  $\hat{y}^{< t>}$ . (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as  $\hat{y}^{< t>}$ . (ii) Then pass this selected word to the next time-step.

Correct

Yes!

## Recurrent Neural Networks

10/10 points (100%)

Quiz, 10 questions

| <b>~</b>                                                                                                                                                                                         | 1 / 1<br>points                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| 6. You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?             |                                                                              |  |
|                                                                                                                                                                                                  | Vanishing gradient problem.                                                  |  |
| 0                                                                                                                                                                                                | Exploding gradient problem.                                                  |  |
| Correct                                                                                                                                                                                          |                                                                              |  |
|                                                                                                                                                                                                  | ReLU activation function g(.) used to compute g(z), where z is too large.    |  |
|                                                                                                                                                                                                  | Sigmoid activation function g(.) used to compute g(z), where z is too large. |  |
| <b>~</b>                                                                                                                                                                                         | 1 / 1<br>points                                                              |  |
| 7. Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$ . What is the dimension of $\Gamma_u$ at each time step? |                                                                              |  |
|                                                                                                                                                                                                  | 1                                                                            |  |
| 0                                                                                                                                                                                                | 100                                                                          |  |
| Correct $ \text{Correct, } \Gamma_u \text{ is a vector of dimension equal to the number of hidden units in the LSTM.} $                                                                          |                                                                              |  |
|                                                                                                                                                                                                  | 300                                                                          |  |
|                                                                                                                                                                                                  | 10000                                                                        |  |
|                                                                                                                                                                                                  |                                                                              |  |

1/1

### Recurrent Neural Networks

10/10 points (100%)

Quiz, 10 questions

8.

Here're the update equations for the GRU.

**GRU** 

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

Alice proposes to simplify the GRU by always removing the  $\Gamma_u$ . I.e., setting  $\Gamma_u$  = 1. Betty proposes to simplify the GRU by removing the  $\Gamma_r$ . I. e., setting  $\Gamma_r$  = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- Alice's model (removing  $\Gamma_u$ ), because if  $\Gamma_r \approx 0$  for a timestep, the gradient can propagate back through that timestep without much decay.
- Alice's model (removing  $\Gamma_u$ ), because if  $\Gamma_r \approx 1$  for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing  $\Gamma_r$ ), because if  $\Gamma_u \approx 0$  for a timestep, the gradient can propagate back through that timestep without much decay.

#### Correct

Yes. For the signal to backpropagate without vanishing, we need  $c^{< t>}$  to be highly dependant on  $c^{< t-1>}$ .

Betty's model (removing  $\Gamma_r$ ), because if  $\Gamma_u \approx 1$  for a timestep, the gradient can propagate back through that timestep without much decay.



noint

9.

Here are the equations for the GRU and the LSTM:

### Recurrent Neural Networks

LSTM

10/10 points (100%)

Quiz, 10 questions

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$a^{< t>} = c^{< t>} \qquad \qquad c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to \_\_\_\_\_ and \_\_\_\_ in the GRU. What should go in the the blanks?

| 1 |
|---|
| J |
|   |

 $\Gamma_u$  and  $1-\Gamma_u$ 

### Correct

Yes, correct!

- $\bigcap$   $\Gamma_u$  and  $\Gamma_r$
- $\bigcirc \qquad 1-\Gamma_u ext{ and } \Gamma_u$
- $\bigcap$   $\Gamma_r$  and  $\Gamma_u$



1/1 points

10.

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as  $x^{<1>},\dots,x^{<365>}$ . You've also collected data on your dog's mood, which you represent as  $y^{<1>},\dots,y^{<365>}$ . You'd like to build a model to map from  $x\to y$ . Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

- Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.



Unidirectional RNN, because the value of  $y^{< t>}$  depends only on  $x^{<1>},\dots,x^{< t>}$  , but not on  $x^{< t+1>},\dots,x^{< 365>}$  Recurrent Neural Networks

10/10 points (100%)

Quiz, 10 questions

Correct

Yes!

Unidirectional RNN, because the value of  $y^{< t>}$  depends only on  $x^{< t>}$  , and not other days' weather.

