Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Институт Информационных Технологий, Математики и Механики

Направление: Прикладная математика и информатика

Магистерская программа: Компьютерные науки и приложения

ОТЧЕТ

по лабораторной работе №3

Тема:

«Разработка свёрточных нейронных сетей»

Выполнили: студенты группы 381803-4м
Котова О.А.
Подпись
Лицов А.
Подпись
Синицкая О.
Подпись
Преподаватель: доцент, к.т.н. Кустикова В.Д.
Подпись

Нижний Новгород 2019

Оглавление

1. Постановка задачи	3
2. Тренировочные и тестовые наборы данных	
3. Метрика качества решения	4
4. Разработанные программы	4
5. Тестовые конфигурации сетей	5
6. Результаты эксперимента	7
7. Заключение	7

Постановка задачи

Цели

Цель настоящей работы состоит в том, чтобы построить архитектуру сверточной нейронной сети, которая позволяет решать практическую задачу с высокими показателями качества.

Задачи

Выполнение практической работы предполагает решение следующих задач:

- 1. Разработка нескольких архитектур сверточных нейронных сетей (варьируются количество слоев и виды функций активации на каждом слое) в формате, который принимается выбранной библиотекой глубокого обучения.
 - 2. Обучение разработанных глубоких моделей.
 - 3. Тестирование обученных глубоких моделей.
 - 4. Публикация разработанных программ/скриптов в репозитории на GitHub.
- 5. Подготовка отчета, содержащего минимальный объем информации по каждому этапу выполнения работы.

Тренировочные и тестовые наборы данных

Выбранная задача - Intel Image Classification: https://www.kaggle.com/puneet6060/intel-image-classification.

Эти данные содержат около 25 тыс. цветных изображений размером 150х150, распределенных по 6 категориям: здания, лес, ледник, гора, море, улица. Изображения хранятся в фомате jpg.

Тренировочная выборка содержит 14034 изображений.

Тестовая выборка содержит 3000 изображений.

Размер каждого изображения 150х150.

N₂	Категории	Размер тренировочной выборки	Размер тестовой выборки	
1	mountain	2512	525	
2	street	2382	501	
3	glasier	2404	553	
4	buildings	2191	437	
5	sea	2274	510	
6	forest	2271	474	

Процентное соотношение категорий. Тренировочная выборка:

Процентное соотношение категорий. Тестовая выборка:

Метрика качества решения

Для оценки качества решения задачи выбрана метрика "Точность" ("Ассигасу"). Она вычисляет, как часто прогнозы соответствуют меткам. Иными словами, частота с которой у pred совпадает с у true.

$$accuracy(y_{pred}, y_{true}) = \frac{1}{N} \sum_{i=1}^{N} 1(y_{pred_i} == y_{true_i})$$

Разработанные программы

Lab3.ipynb – скрипт для обучения свёрточных нейронных сетей.

Тестовые конфигурации сетей

С помощью класса ImageDataGenerator и его метода flow_from_directory() генерируем пакеты. Данные возвращаются в формате (x, y), где x, y - numpy массивы.

Форма х: (batch_size, 150, 150, 3).

Форма у: (batch_size, 6).

Методу fit_generator подается на вход генератор данных в формате (x, y). Сети подается на вход массив numpy формата (150, 150, 3), который "сглаживается" сетью с помощью метода Flatten().

Конфигурация 1

Конфигурация 2

Результаты эксперимента

В таблице приведены конфигурация системы и программное обеспечение, с помощью которых проводилось обучение и тестирование построенных моделей.

Параметры	Версия				
GPU	Tesla P100, having 3584 CUDA cores, 16GB(16.28GB Usable) GDDR6 VRAM Tesla P100 Spec Sheet				
Python	3.7.5				
TensorFlow	2.0.0				

Параметры обучения:

Количество эпох	20
Размер пачки	128

Результаты экспериментов:

Номер сети	1	2	3	4	5	6	7
Среднее время обучения за одну эпоху, с	35.305	41.307	46.414	43.393	113	119	115
Ошибка на тренировочном наборе	0.0135	0.071	0.401	0.2511	0.2606	0.4344	0.6398
Ошибка на тестовом наборе	0.5915	0.6261	0.5070	0.4767	0.5015	0.5179	0.6688
Номер эпохи с достигнутым максимальным качеством решения на тренировочном наборе	14	19	20	20	20	19	19
Точность (Ассигасу) на тренировочном наборе, %	99.80	99.91	85.55	90.97	91.09	85.24	77.61
Номер эпохи с достигнутым максимальным качеством решения на тестовом наборе	14	19	20	13	15	15	19
Точность (Ассигасу) на тестовом наборе, %	79.47	80.33	82.37	84.07	84.03	82.13	75.57

Анализ результатов