Компьютерная криптография (с 70-х годов XX века)

Основные этапы развития криптографии

• Интуитивная (до начала XVI века) • Формальная (конец XV века - начало XX века) • Научная (30-е - 60-е годы XX века) • Компьютерная (с 70-х годов XX века)

Модель протокола симметричного шифрования

Свойства модели

- Симметричные ключи (также называемые секретными ключами (secret key) - имеет двойную функциональность и применяется для зашифрования и для расшифрования
- Каждый из абонентов должен хранить ключ в секрете и надлежащим образом защищать его
- Поскольку оба абонента используют один и тот же ключ, то симметричные криптосистемы могут обеспечить только конфиденциальность, но не аутентификацию или неотказуемость

Блочный шифр

- Сообщение делится на блоки битов, которые передаются на обработку математическим функциям,
 по одному блоку за раз
- Для обеспечения стойкости шифра, в нем должны в достаточной степени использоваться два основных метода: перемешивание (confusion) и рассеивание (diffusion). Перемешивание обычно выполняется с помощью замены, тогда как рассеивание – с помощью перестановки.

Поточный шифр

- Поточные шифры (stream cipher) обрабатывают сообщение, как поток битов и выполняют математические функции над каждым битом отдельно
- Поточные шифры используют генератор ключевого потока, который производит поток битов, объединяемых с помощью операции XOR с битами открытого текста

Модель протокола асимметричного шифрования

Свойства модели

- В асимметричных системах для зашифровки и расшифровки используются различные (асимметричные) ключи, которые связаны между собой математически и образуют пару
- Открытый ключ (public key) может быть известен всем
- Закрытый ключ (private key) должен знать только его владелец
- Знание открытого ключа другого абонента не позволяет узнать соответствующий ему закрытый ключ

Использование асимметричных ключей

- Конфиденциальность обеспечивается зашифровкой сообщения на открытом ключе получателя. Такую зашифровку называют закрытым форматом сообщения (secure message format)
- Аутентификация обеспечивается зашифровкой на закрытом (приватном) ключе отправителя. Такую зашифровку называют открытым форматом сообщения (open message format)

Сравнение моделей шифрования

Атрибут	Симметричный	Асимметричный
Ключи	Один ключ используется совместно двумя или более субъектами	Один субъект имеет открытый ключ, другой субъект – соответствующий ему закрытый ключ
Обмен ключами	Нестандартный защищенный механизм	Открытый ключ делается общедоступным, а закрытый ключ хранит в секрете его владелец
Скорость	Алгоритм менее сложный и поэтому быстрый	Алгоритм более сложный и поэтому медленный
Использование	Комплексное шифрование (т.е. шифрование файлов и коммуникационных каналов)	Распространение ключей и цифровые подписи
Предоставляемые сервисы безопасности	Конфиденциальность	Аутентификация и неотказуемость

Модель протокола гибридного шифрования

Пример протокола гибридного шифрования

- 1. Сообщение шифруется симметричным секретным ключом
- 2. Секретный ключ шифруется открытым ключом получателя
- Зашифрованное сообщение и зашифрованный ключ составляют цифровой конверт (digital envelope), который отправляется получателю
- 4. Получатель сначала расшифровывает секретный ключ, а затем расшифровывает секретным (сеансовым) ключом шифротекст сообщения

Классификация по видам преобразований

Классификация по видам криптостойкости

