Klotski: Efficient Mixture-of-Expert Inference via Expert-Aware Multi-Batch Pipeline

Zhiyuan Fang, Yuegui Huang, Zicong Hong, Yufeng Lyu, Wuhui Chen, Yue Yu, Fan Yu, Zibin Zheng

Presented by Jiawei Yi @ USTC 2025-04-08

- **□**Background
- **Motivation**
- **IKlotski**
- **Evaluation**

□MoE - Mixture-of-Expert

Decompose the large FFN into smaller experts with selective activation

Scalability: Scale up model size without significantly increasing computational costs

Background: MoE LLM

☐ The total size of MoE layers is too large!

	DeepSeek-V3/R1									
Hidden Dim.	Intermediate Dim.	Data Type								
7168	2048	Float8								
# Experts	# Activated Experts	# MoE Layers								
256	8	60								

Parameter size:

- A single expert: 7168 * 2048 * 3 = 42MB
- All the experts: 42MB * 256 * 60 = 630GB

Background: MoE LLM

☐ The total size of MoE layers is too large!

	DeepSeek-V3/R1									
Hidden Dim.	Intermediate Dim.	Data Type								
7168	2048	Float8								
# Experts	# Activated Experts	# MoE Layers								
256	8	60								

Parameter size:

• A single expert: 7168 * 2048 * 3 = 42MB

• All the experts: 42MB * 256 * 60 = 630GB

Activated experts (for one token): 42MB * 8 * 60 = 19.7GB

The size of activated model weights is much smaller than the total size

Background: Expert Offloading

□Solution: Expert offloading

CPU: hold all the experts

GPU: only fetch activated experts

❖Problem: PCIe transmission overhead

□Solution: Expert predicting & prefetching

- ☐ Targets of expert prefetching:
 - Completely hide the PCIe transmission overhead
 - **❖**Predict experts accurately

- ☐ Targets of expert prefetching:
 - Completely hide the PCIe transmission overhead
 - **Predict experts accurately**
- **■**Most existing works focus on the second target:
 - **❖ProMoE:** Trained predictor
 - ***fMoE: Predict with semantic hints**
 - *****.....
 - *****However, these works fail to hide transmission overhead due to limited PCIe bandwidth
- [1] ProMoE: Fast MoE-based LLM Serving using Proactive Caching
- [2] fMoE: Fine-Grained Expert Offloading for Large Mixture-of-Experts Serving

□PCIe bandwidth cannot meet the overlapping requirements

❖DeepSeek-V2-Lite, SGLang, A40 GPU x1

Batch Size	Context Length	Decode Step Time (ms)	#Activated Experts (Worst)	#Prefetchable Experts
1	8K	14.56	156	22
2	8K	15.36	312	24
4	8K	15.64	624	24
1	16K	18.26	156	28
2	16K	19.12	312	29
1	32K	25.69	156	40

Are there any other solutions?

- Expert Size ~0.016 GB
- PCIe Bandwidth ~ 25 GB/sec

- **□**Background
- **□**Motivation
- **E**Klotski
- **Evaluation**

- ☐ Target on offloading all the model weights and KVCache
- □ Target on offline inference, focus on throughput
- □Explore the overlapping opportunities through multi-batch pipeline

□For dense model offloading, previous work has proposed multibatch pipeline to hide PCIe transmission overhead

□For dense model offloading, previous work has proposed multibatch pipeline to hide PCIe transmission overhead

□For dense model offloading, previous work has proposed multibatch pipeline to hide PCIe transmission overhead

Attention	Atter	ntion	Attention	E1	E2	E3		E4	E5	E2	
Load E1 Load E2		E2	Load	E3	Load	E4	Load E5	Load	Attentio	n, KVCache	

Multi-batch

- → Increased #activated experts
- → Lower reuse rates for loaded model weights

Attention	Atte	ntion	Attention	E1.	E2	E3		E4	E 5	E2	
Load E1		Load	E2	Load	E3	Load	E4	Load E5	Load	Attentio	n, KVCache
 									 . 🍃		

Multi-batch

- → Increased #activated experts
- → Lower reuse rates for loaded model weights

Unbalanced activation

→ More GPU bubbles if neglecting the hotness of expert

Attention	Atte	ntion	Attention	E 1	E2	E3		E4	E5	E2		<u>.</u>
Load E1		Load	E2	Load	E3	Load	E4	Load E5	Load	Attentic	on, KVCache	
									 			-

Multi-batch

- → Increased #activated experts
- → Lower reuse rates for loaded model weights

Unbalanced activation

→ More GPU bubbles if neglecting the hotness of expert

How to solve?

- **□**Background
- **I**Motivation
- **□Klotski**
- **Evaluation**

- □Klotski: Expert-aware multi-batch pipeline
 - **❖**What is, and why expert-aware multi-batch pipeline?
 - **❖**How to implement expert-aware multi-batch pipeline?
 - **Other technical points**

- ☐ The key to amortize PCIe overhead: module weights sharing
 - \clubsuit Suppose: N batches, and m module weights are required
 - **The amortized PCIe overhead is** $\frac{m}{N}T_{PCIe}$

Dense Model: m = 1

The smaller $\frac{m}{N}$, the easier to overlap / amortize

MoE Model: $k \le m \le Nk$ k is #activated experts

□Obversation: Expert activation are highly unbalanced

□Accordingly, batch(token)-centric computation can be reordered as expert-centric

□Accordingly, batch(token)-centric computation can be reordered as expert-centric

□Benefit:

❖The computation of hot experts helps to hide the loading overhead of cold experts

Attentio	on	Gate	E2	E4	E5	E3	E7		E 1		•	
Load E2	Load E4		Load E5	Load E3	Load	E7	Loa	d E1	Lo	ad		

□Benefit:

❖The computation of hot experts helps to hide the loading overhead of cold experts, especially for large batch sizes or #batches

- **□Summary for MoE module:**
 - Only prefetch hot experts before MoE gate
 - *Reorder the computation to form expert-centric token batches, and prioritize the computation of hot experts
 - **❖**Prefetch cold experts during the computation of hot experts

- □Klotski: Expert-aware multi-batch pipeline
 - **❖** What is, and why expert-aware multi-batch pipeline?
 - **❖**How to implement expert-aware multi-batch pipeline?
 - **Other technical points**

- **□**To implement expert-aware multi-batch pipeline:
 - **❖**How to predict and prefetch hot experts?
 - **❖**How to set batch size and #batches?

Klotski: Hot Experts Prefetching

□Expert correlation table

❖Key idea: the activation pattern of layer L-1 can reflect the activation tendency of layer L

	Layer L - 1		Layer L	
	Expert	Expert	Activated Frequence	
		0	38	
For one token	0	1	27	
L-1 activates:	U	2	97	Predict L will activate:
• Expert 0		3	15	Expert 2
• Expert 1		0	66	Expert 3
	1	1	35	
	1	2	41	
		3	117	
		•••		

Klotski: Hot Experts Prefetching

- **□**Expert correlation table
 - **❖Key idea:** the activation pattern of layer L-1 can reflect the activation tendency of layer L

□Expert correlation table

- **❖Key idea:** the activation pattern of layer L-1 can reflect the activation tendency of layer L
- **❖**The correlation tables are produced during a pre-run, using random samples wikitext-2 dataset

- □ The overlapping efficiency is significantly influenced by:
 - **❖**Batch size
 - **∜**#Batches (n)
- □Batch size is restricted to multiples of 4
 - **❖Only a few options are available, typically ranging from 4 to 64**
- \Box For n, Klotski designs a cost model to search it

Klotski: Configuration Searching

□Cost model

At 4 key moments of the pipeline, their required weights must have been completely loaded

A	Attention G	Fate	Hot Experts	Cold Experts	•••	Computation
			(II)	/ (111)	(IV)	
Gate	Hot Experts		Cold Experts	Attention	•••	IO (Data loading)

Klotski: Configuration Searching

□Cost model

At 4 key moments of the pipeline, their required weights must have been completely loaded

□Cost model

At 4 key moments of the pipeline, their required weights must have been completely loaded

A	Attention Ga	Hot Experts	Cold Experts	•••	Computation
	(I)			(IV)	
Gate	Hot Experts	Cold Experts	Attention	•••	IO (Data loading)

$$n * t_{c_A} \ge t_{IO_G}$$

$$n * (t_{c_A} + t_{c_G}) \ge t_{IO_G} + K * t_{IO_E}$$
(II)

Before the computation of hot experts begins, the IO of all the K hot experts should have finished

□Cost model

*At 4 key moments of the pipeline, their required weights must have been completely loaded

A	Attention Ga	Hot Experts	Cold Experts	•••	Computation
	(I)	(1 1)		(IV)	
Gate	Hot Experts	Cold Experts	Attention	•••	IO (Data loading)

$$\mathbf{T} n * t_{c_A} \ge t_{IO_G} \tag{I}$$

$$\begin{cases}
 n * t_{c_A} \ge t_{IO_G} \\
 n * (t_{c_A} + t_{c_G}) \ge t_{IO_G} + K * t_{IO_E} \\
 n * (t_{c_A} + t_{c_G}) + t_{c_hot-E} \ge t_{IO_G} + (K+1) * t_{IO_E}
\end{cases}$$
(II)

$$n * (t_{c_A} + t_{c_G}) + t_{c_hot-E} \ge t_{IO_G} + (K+1) * t_{IO_E}$$
 (III)

Before the computation of cold experts begins, the IO of at least 1 cold expert should have been finished

□Cost model

At 4 key moments of the pipeline, their required weights must have been completely loaded

□Cost model

At 4 key moments of the pipeline, their required weights must have been completely loaded

A	Attention	Gate	Hot Experts	Cold Experts	•••	Computation
	(I)		(II)	: / [:():::::::::::::::::::::::::::::::	(IV)	
Gate	Hot Experts	s	Cold Experts	Attention	•••	IO (Data loading)

$$\begin{cases}
n * t_{c_A} \ge t_{IO_G} \\
n * (t_{c_A} + t_{c_G}) \ge t_{IO_G} + K * t_{IO_E}
\end{cases}$$
How to get? Offline profiling
$$n * (t_{c_A} + t_{c_G}) + t_{c_hot-E} \ge t_{IO_G} + (K+1) * t_{IO_E}$$

$$n * (t_{c_A} + t_{c_G}) + t_{c_hot-E} + \sum_{E_i \in C} t_{c_E_i} \ge t_{IO_G} + (K+len(C)) * t_{IO_E} + t_{IO_A}$$
(IV)

□Cost model

At 4 key moments of the pipeline, their required weights must have been completely loaded

A	Attention	Gate	Hot Experts	Cold Experts	•••	Computation
	(I)		(II)	7 (III)		
Gate	Hot Experts	S	Cold Experts	Attention	•••	IO (Data loading)

- **□Klotski:** Expert-aware multi-batch pipeline
 - **❖** What is, and why expert-aware multi-batch pipeline?
 - **❖**How to implement expert-aware multi-batch pipeline?
 - **Other technical points**

Klotski: Other Technical Points

☐ Tensor Placement

- **❖GPU HBM + CPU DRAM + Disk**
- **❖**Different placement strategy for different types of tensors
 - > Priority of using high-end memory: expert weights > others
 - ➤ Granularity: Layer

- □Klotski also supports compression as optional optimizations:
 - **Quantization (4-bits) for model weights**
 - **❖**Compression (StreamlingLLM) for KVCache

^[2] Efficient Streaming Language Models with Attention Sinks, ICLR 2024

- **□**Background
- **I**Motivation
- **E**Klotski
- **□**Evaluation

Evaluation: Setup

□Hardware

Hardware	Environment	1	Environment 2		
пагимаге	Model	Memory	Model	Memory	
GPU	NVIDIA RTX 3090 x1	24 GB	NVIDIA H800 x1	80 GB	
CPU	Intel Xeon Gold 5318Y	256 GB	Intel Xeon Platinum 8470	800 GB	
Disk	SSD	2 TB	SSD	1 TB	
PCIe	4.0 x 16 (~25 GB/	/sec)	5.0 x 16 (~47 GB/se	ec)	
Disk Read	1 GB/sec		/		

□Models & Datasets

Model	Mixtral-8×7B	Mixtral-8×22B		
#Params.	46.7 B	141 B		
#Act. Params.	12.9 B	39.2 B		
#Layers	32	56		
#Experts	8	8		
#Act. Experts	2	2		

Dataset	wikitext-103
Input Len.	512
Output Len.	32

Evaluation: Setup

□Baselines

- **❖**Single batch, no prefetching:
 - > Hugging Face Accelerate (Accelerate)
 - > DeepSpeed-FastGen (FastGen)
- **❖**Multi-batch pipeline, no adaptation for MoE:
 - > FlexGen, ICML 2023
- **❖Single batch, compute MoE on CPU**
 - > Fiddler, PML4LRS@ICLR 2024
- **❖Single batch, predict and prefetch experts**
 - ➤ MoE-Infinity, arXiv 24.01

Evaluation: Main Results

□N2N Throughput

4-bits quantization

#Batches (n) = 15Relatively constrained PCIe

Extremely constrained PCIe

#Batches (n) = 15
Relatively constrained PCIe

□Latency(?)-throughput trade-off

❖Latency refers to the time cost of finishing a given dataset

Evaluation: Ablation Study

□ Impacts of optimizations

Model	Enviro	Environment 1			
1,10001	Mixtral-8×7B	Mixtral-8×22B	Mixtral-8×22B		
Simple Pipeline	5.721	0.01	1.149		
+ Multi batches	18.24	0.97	34.07	non-MoE modules	
+ Only prefetch hot experts	19.074	1.127	44.17	Avoid incorrect prefetching	
Кьотsкі (+ adjust order)	22.414	1.325	52.85	Hide IO overhead of –cold experts	
Кьотѕкі (q)	22.604	1.366	53.125	-colu experts	

\square Impacts of batch size and n

- **❖**The larger, the higher throughput
- **❖Should not be too large to prevent KVCache being too heavy**

□Accuracy of prefetching

- **❖**Green line: the recognized hot experts are always activated
- **❖Blue line: the accuracy of predicting hot experts, not very good**

□GPU bubble reduction

- **❖Env1**, Mixtral-8×7B
- **❖Klotski** *vs* signle batch + simple prefetching

□Klotski:

- **❖**Designed for MoE whole-model offloading in resource-constrained environments
- **❖Introduces expert-hotness-aware MoE pipeline to multi-batch pipeline, hiding PCIe transmission overhead and improving throughput**

□Limitations:

- **❖**Only recommended for offline large batch inference
 - ➤ Multi-batch and large batch size significantly increase latency (TTFT, TPOT), making Klotski unsuitable for online serving deployment
 - > Personal deployment generally cannot provide sufficiently large or numerous batches

□Limitations:

- **Only recommended for offline large batch inference**
- *Only covers old MoE model like Mixtral 8x7B, Switch
 - ➤ They are large-expert, low-sparsity models (Mixtral 8x7B, activates 2 of 8 experts), while current mainstream models are small-expert, high-sparsity (DeepSeek-V3, activates 8 from 256 experts)
 - ➤ Klotski's design relies on unbalanced expert activation, while current MoE models pursue expert load balancing

□Limitations:

- **❖**Only recommended for offline large batch inference
- **❖Only covers old MoE model like Mixtral 8x7B, Switch**
- **❖**Constrained context length due to the heavy KVCache of multi-batch
 - ➤ For example, 512+32 in the paper's evaluation section

□Thank you!