PRINTABLE VERSION

Question 1

Compute $(f \circ g)(x)$, given that $f(x) = \frac{4x-3}{2x-1}$ and $g(x) = \frac{1}{2x}$.

a)
$$\frac{8x^2-4x-1}{2(2x-1)x}$$
 $f(g(x)) = \frac{4(\frac{1}{2x})-3}{2(\frac{1}{2x})-1} = \frac{\frac{2}{x}-3}{\frac{1}{x}-1} = \frac{3x-2}{x-1}$

b)
$$\frac{2x-1}{8x-6}$$

e)
$$\frac{3x+1}{x}$$

e)
$$\frac{2(4x-3)x}{2x-1}$$

Question 2

Find the coordinates of the x-intercept(s) for $f(x) = \frac{x^2 - x - 20}{x^2 - 8x + 15}$.

a)
$$(0,5)$$
 and $(0,4)$ $(\times,0) \Rightarrow find \times such that $f(x) = 0$$

b)
$$(-3,0)$$
 and $(-5,0)$

$$\Rightarrow \chi^2 \chi - x_0 = 0$$

$$(-4,0)$$

$$\Rightarrow (x-5)(x+4)=0$$

(5,0) and
$$(=4,0)$$

Question 3

The graph of the function $f(x) = \frac{3x^2 + 12x + 12}{2x^2 - 3x + 1}$ has a horizontal asymptote. If the graph crosses this asymptote, give the x-coordinate of the intersection Otherwise

$$\frac{3X^{2}+12X+12}{2X^{2}-3X+1}X^{\frac{3}{2}} \Rightarrow 6X^{\frac{3}{2}}+24X+14=6X^{\frac{3}{2}}-9X+3$$

$$\Rightarrow 33X=-21 \Rightarrow X=-\frac{7}{11}$$

$$1/21/2015$$

asymptote.

a)
$$x = -\frac{6}{11}$$

(c)
$$x = -\frac{10}{11}$$

$$d) \qquad x = -\frac{5}{11}$$

e) The graph does not cross the asymptote.

Question 4

Find f(8), f(-2) and f(-5) given

$$f(x) = \begin{cases} 3x^2 + 6 & x \le -3\\ 4 & -3 < x < 4\\ -2x - 2 & x \ge 4 \end{cases}$$

a)
$$f(8) = 4$$
, $f(-2) = 18$ and $f(-5) = 81$
b) $f(8) = -18$, $f(-2) = 4$ and $f(-5) = 81$
c) $f(8) = -18$, $f(-2) = 18$ and $f(-5) = 4$ $f(-5)$, $f(-5) = 3(-5) = 3(-5) = 4$

c)
$$f(8) = -18$$
, $f(-2) = 18$ and $f(-5) = 4$ $f(-5)$, $(-5 \le -7) = 7 + (-5) = 3(-5) + (-5) + (-5) = 3(-5) + (-5) + (-5) = 3(-5) + (-5) + (-5) + (-5) = 3(-5) + (-5) +$

d)
$$f(8) = 4$$
, $f(-2) = 4$ and $f(-5) = 81$

e)
$$f(8) = 198$$
, $f(-2) = -2$ and $f(-5) = 4$

Question 5

Find the coordinates of the vertex for the following parabola.

$$y = -\frac{1}{4}x^{2} + 4x + 6$$

$$y = -\frac{1}{4}(x^{2} + 16x + 64) + 6 + \frac{64}{4}$$
a) (8,0)
$$= -\frac{1}{4}(x - 8)^{2} + 22$$
b) (0,6)

- (8, 6)c)
- d) (4, 18)
- (8, 22)

Find the linear function f with $f^{-1}(-6) = 3$ and $f^{-1}(-2) = 4$.

a)
$$f(x) = -\frac{1}{4}x + 3$$
 \Rightarrow $f(x) = -6$ $f(x) = -2$.
b) $f(x) = 4x + 18$ \Rightarrow $x = -2$.

b)
$$f(x) = 4x + 18$$

e)
$$f(x) = \frac{1}{4}x - 3 \longrightarrow X$$

d)
$$f(x) = \frac{1}{4}x + 18$$

e) $f(x) = 4x - 18$

Question 7

Put the equation in standard form for a hyperbola. $16x^2 - 9y^2 + 64x + 36y = 116$

a)
$$\frac{(x-2)^2}{9} - \frac{(y-2)^2}{16} = 1$$
 Squarely them

a)
$$\frac{1}{9} - \frac{1}{16} = 1$$
 Squared cross $\frac{(x+2)^2}{9} - \frac{(y-2)^2}{16} = 1$ $\frac{16(x+4x+4) - 9(y^2-4y+4)}{16(x+4x+4)} = 116 + (4+6)6$

c)
$$\frac{(x+2)^2}{16} + \frac{(y-2)^2}{9} = 1$$

divided by (44 on both 5idls)

 $\frac{x^2}{16} - \frac{y^2}{16} = 1$

d)
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

e) $\frac{x^2}{9} - \frac{y^2}{16} = 1$

Alviced by $(44 \text{ on both Sides})$

$$\frac{(x+z)^2}{9} - \frac{(y-z)^2}{16} = 1$$

Question 8

Find the x-coordinates of the points of intersection for the functions: $f(x) = x^2 - 6$ and $g(x) = -x + 12 \quad .$

$$\chi^{2}-6=-X+12$$

a) =
$$\{-1/4 + 1/4\sqrt{73}, 1/2 + 1/2\sqrt{73}\}$$

b)
$$\{-1 - \sqrt{73}, -1 + \sqrt{73}\}$$

c)
$$\{1/2 - 1/2\sqrt{73}, 1/2 + 1/2\sqrt{73}\}$$

(d)
$$\{-1/2 - 1/2\sqrt{73}, -1/2 + 1/2\sqrt{73}\}$$

e)
$$\{-13/2 - 1/2\sqrt{73}, -13/2 + 1/2\sqrt{73}\}$$

=> x7+X-18=0 quartic formula $\Rightarrow x = \frac{-1 \pm \sqrt{73}}{2}$ $= \frac{-1 \pm \sqrt{73}}{2}$ $= \frac{-1 \pm \sqrt{73}}{2} \text{ or } -\frac{1}{2} - \frac{\sqrt{33}}{2}.$

Question 9

Find all roots of the polynomial $P(x) = \frac{3}{4}x^5 - 6x^2$.

find x such that
$$p(x)=0$$
. $\Rightarrow \frac{3}{4}x^5-6x^2=0$

a)
$$\{x = -2, x = -1\}$$

(b)
$$\{x = 0, x = 2\}$$

e)
$$\{x = 0, x = 2, x = 3\}$$

d)
$$\{x = -2, x = 0\}$$

e)
$$\{x = 0, x = 3\}$$

$$= 3 \times 5 - 24 \times 2 = 0$$

$$= 3 \times 5 - 8 \times 2 = 0$$

$$= 3 \times (3 - 8) = 0$$

$$= 7 \times = 0 \text{ or } 2 \cdot (2 = 5)$$

Question 10

Which of the following are true statements?

II.
$$\sin^2 \theta + \cos^2 \theta = 1$$

VII. $\tan^2 \theta + 1 = \sec^2 \theta$
VIV. $\frac{1}{\csc^2 \theta} + \frac{1}{\sec^2 \theta} = 1$

I and III only. a)

sind + cosd = 1. $\frac{1}{csco} = sind$ $\frac{1}{seco} = cosd$

II and III only. b)

I, II, and III only. c)

- d) None of these are true.
- e) All of these statements are true.

Simplify the expression:
$$\frac{7 \sec(A)}{\tan(A) + \cot(A)} = 7 \frac{\cos(A)}{\sin(A)}$$

$$\frac{7 \sec(A)}{\cos(A)} = 7 \frac{\cos(A)}{\sin(A)}$$

$$\frac{1}{\sin(A) + \cot(A)} = 7 \frac{\cos(A)}{\sin(A)}$$

$$\frac{1}{\cos(A) + \cot(A)} = 7 \sin(A)$$

$$\frac{1}{\cos(A) + \cot(A)} =$$

Question 12

 $7 \cos(A)$

Which of the following functions matches the graph below?

a)
$$f(x) = (x+3)^{-2} - 1$$

(b)
$$f(x) = -(x+3)^{-2} + 1$$

c)
$$f(x) = -(x-3)^{-2} + 1$$

d)
$$f(x) = -(x+1)^{-2} + 3$$

e)
$$f(x) = (x-1)^{-2} + 3$$

Given $f(x) = \sqrt{3x-5}$ and $g(x) = x^2 - 4x - 12$, find the domain of $\frac{g}{f}$.

>f +0. and the value of f

a)
$$[\frac{5}{3}, 6) \cup (6, \infty)$$

$$\sqrt{3X-5} \implies 3X-5>0 \implies X>\frac{5}{3}$$

b)
$$\left[\frac{5}{3}, \infty \right)$$

c)
$$(-\infty, \frac{5}{3}) \cup (\frac{5}{3}, \infty)$$

d)
$$(-\infty, -2) \cup (6, \infty)$$

Question 14

Perform the indicated operation and reduce completely.
$$\frac{x}{x^2 + 1! \, x + 30} + \frac{3}{x^2 + 3 \, x - 10} - \frac{x}{x^2 + 4 \, x - 12}$$

a)
$$\frac{x^{2} + 11x + 30}{= \frac{x}{x^{2} + 3x - 10}} = \frac{x^{2} + 4x - 12}{(X+5)(X+6)}$$
$$= \frac{x}{(X+5)(X+6)} + \frac{3}{(X+5)(X-2)} \times (X-2)(X+6)$$
$$= \frac{-20x^{2} - 18x + 36}{(x+6)(x+5)(x-6)(x-2)} \times (X+5)(X+6) - X \times (X+5)$$

a)
$$\frac{-20x^2 - 18x + 36}{(x+6)(x+5)(x-6)(x-2)}$$

$$\frac{(x+6)(x+5)(x-6)(x-2)}{(x+6)(x+5)(x-2)} = \frac{(x+6)(x+5)(x-2)}{(x+6)(x+5)(x-2)} = \frac{(x+6)(x+5)(x-2)}{(x+6)(x+5)(x-2)}$$

c)
$$\frac{x^3 + 10x^2 + 35x + 18}{(x+6)(x+5)(x-2)} = \frac{\cancel{X} - 2X + 3X + 18 + \cancel{X} - 5X}{(X+6)(X+5)(X-2)} = \frac{\cancel{A} - 4X + 18}{(X+6)(X+5)(X-2)}$$

d)
$$\frac{-x^3 - 12x^2 - 25x + 18}{(x+6)(x+5)(x-2)}$$

e)
$$\frac{-22x^2 - 18x + 108}{(x+6)(x+5)(x-6)(x-2)}$$

Simplify the following:

a)
$$\frac{(\frac{x-5}{xy^3})}{(\frac{x^2-6x+5}{x^{11}y^{17}})}$$

$$=\frac{x-5}{x^{2}}, \frac{x^{2}(y^{17})}{x^{2}-6x+5}$$

$$=\frac{(x-5)}{x^{2}}, \frac{x^{2}(y^{17})}{x^{2}-6x+5}$$

$$=\frac{(x-5)}{x^{2}}, \frac{x^{2}(y^{17})}{x^{2}-6x+5}$$

$$=\frac{(x-5)}{x^{2}}, \frac{x^{2}(y^{17})}{x^{2}-6x+5}$$

$$=\frac{(x-5)}{x^{2}}, \frac{x^{2}(y^{17})}{x^{2}-6x+5}$$

$$=\frac{(x-5)}{x^{2}}, \frac{x^{2}(y^{17})}{x^{2}-6x+5}$$

$$=\frac{x^{2}}{x^{2}}, \frac{x^{2}}{x^{2}-6x+5}$$

$$=\frac{x^{2}}{x^{2}}, \frac{x^{2}}{x^{2}}, \frac{x^{$$

Question 16

Simplify the following. No answer should contain negative exponents.

$$\frac{x^{3}y^{-2}z^{2}}{(3x^{-13}y^{5})^{-1}}$$

$$= \chi^{3}y^{-2}z^{2} \xrightarrow{3} \chi^{3}y^{5}$$

e)
$$\frac{-y^3z^2}{3x^{10}}$$

e)
$$3x^{16}y^3z^2$$

Given $f(x) = \frac{x-1}{x+3}$, simplify $\frac{f(x+h)-f(x)}{h}$, $h \neq 0$ when x = -1.

a)
$$\frac{h-1}{h+3} \qquad \frac{1}{h} \left(\frac{(x+h)-1}{(x+h)+3} - \frac{x-1}{x+3} \right)$$

b)
$$\frac{2}{h-2} \Rightarrow \frac{1}{h} \left(\frac{h-2}{h+2} - \frac{2}{2} \right)$$

$$\frac{2}{h+2}$$

$$\frac{2}{h+2} = \frac{1}{h} \left(\frac{h-2}{h+2} + 1 \right) = \frac{2}{h} \frac{2h}{h+2} = \frac{2}{h+2}.$$
e) $h-1 = \frac{1}{h} \left(\frac{h-2+h+2}{h+2} \right) = \frac{1}{h} \cdot \frac{2h}{h+2} = \frac{2}{h+2}.$

$$\frac{2h}{h+2} = \frac{2}{h+2}$$

Question 18

Given that
$$f(x) = x^2 + 3x$$
 and $g(x) = 5x - 2$, find $(f \circ g)(2)$.

a) 48

$$\begin{cases}
9(2) = 5^2 - 2 \\
= 6(2)
\end{cases}$$

$$= \begin{cases}
7 + 3 - 8 \\
= 64 + 24 \\
= 88
\end{cases}$$

Question 19

Let $f(x) = \frac{5x^2 - 3}{4x^2 + 5}$. Find the *y*-intercept of $f(\sqrt{2x + 5})$. $= \frac{5(2X + 5) - 3}{4(2X + 5) + 5} = \frac{10X + 22}{9X + 25}$ $\Rightarrow x = 0 \Rightarrow f(0) = \frac{22}{x}$

a)
$$(0, -\frac{3}{5})$$

b)
$$= (0, \frac{5}{4})$$

c)
$$(0, \frac{17}{21})$$

(0,
$$\frac{22}{25}$$
)

e)
$$(0, \frac{122}{105})$$

a)
$$\sin(B) = \frac{\sqrt{57}}{19}$$

c)
$$\sin(B) = -\frac{\sqrt{57}}{19}$$

$$\mathbf{d}) \qquad \sin(B) = -\frac{\sqrt{3}}{11}$$

$$\mathbf{e)} = \sin(B) = \frac{\sqrt{57}}{11}$$

d)
$$(0, \frac{22}{25})$$

e) $(0, \frac{122}{105})$
Question 20
Suppose that $\sec(B) = -\frac{11}{8}$ and that $180^{\circ} < B < 270^{\circ}$. Find $\sin(B)$.

(1)
$$SIN(B) < 0$$
 $\frac{37}{2}$
(2) $Sed(B) = \frac{-1}{OS(B)} \Rightarrow COS(B) = -\frac{2}{11}$

$$COS(B)+SIN^{2}(B)=|-\frac{64}{121}$$

$$=\frac{57}{121}$$

=\frac{57}{11} \left(\text{but sin(B)<0}\right)

Question 21

Suppose that θ is an acute angle of a right triangle and that $\sec(\theta) = \frac{8}{5}$. Find $\cos(\theta)$ and $\csc(\theta)$.

a)
$$\cos(\theta) = \frac{\sqrt{39}}{8}$$
 and $\csc(\theta) = \frac{5\sqrt{39}}{39}$

(b)
$$cos(\theta) = \frac{5}{8}$$
 and $csc(\theta) = \frac{8\sqrt{39}}{39}$

$$= \frac{1}{8} \operatorname{and} \operatorname{csc}(\theta) = \frac{1}{39}$$

$$\Rightarrow \cos(\theta) = \frac{1}{39}$$

$$\Rightarrow ? = \sqrt{64-25} = \sqrt{39}$$

and $seco = \frac{8}{7}$

$$\Rightarrow \cos 30 = \frac{1}{5} = \frac{5}{8}$$
, $\cos 0 = \frac{5}{100} = \frac{8}{139} = \frac{8}{39} \int_{\frac{1}{2}}^{\frac{1}{2}} \int_{\frac{1}{2}}^{\frac{1}$

c)
$$\cos(\theta) = \frac{8}{5}$$
 and $\csc(\theta) = \frac{8\sqrt{39}}{39}$

d)
$$\cos(\theta) = \frac{8\sqrt{39}}{39}$$
 and $\csc(\theta) = \frac{\sqrt{39}}{5}$

e)
$$\cos(\theta) = \frac{5}{8}$$
 and $\csc(\theta) = \frac{\sqrt{39}}{8}$

List all x-intercepts for $y = -3\sin(\frac{1}{2}x + \frac{\pi}{5})$, on the interval $[-\frac{2\pi}{5}, 4\pi]$.

a)
$$\{\frac{\pi}{5}, \frac{9\pi}{5}, \frac{18\pi}{5}\}$$

(b)
$$\{-\frac{2\pi}{5}, \frac{8\pi}{5}, \frac{18\pi}{5}\}$$

e)
$$\{-\frac{2\pi}{5}, \frac{9\pi}{5}, \frac{19\pi}{5}\}$$

$$\mathbf{d}) = \{0, \frac{8\pi}{5}, \frac{18\pi}{5}\}$$

e)
$$\{=\frac{2\pi}{5}, \frac{8\pi}{5}, \frac{4\pi}{5}\}$$

$$\Rightarrow 0 = \sin(\frac{x}{2} + \frac{1}{5}).$$

$$\Rightarrow \underbrace{\times}_{2} + \underbrace{\top}_{5} = 0, \, \exists 1, \,$$

Question 23

Solve $\sec^2(x) = 1$ over the interval $\left[-\frac{\pi}{2}, \frac{5\pi}{2}\right]$.

e)
$$\{0, \frac{5\pi}{2}\}$$

d)
$$\{\frac{\pi}{2}, \frac{3\pi}{2}\}$$

$$\Rightarrow$$
 Sec $X + = 0$

$$\Rightarrow$$
 $tanx = 0$

$$\Rightarrow X=0,T,2T$$
.

e)
$$\{-\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}\}$$

Given
$$f(x) = \frac{3x^2 - 9x}{2x^2 - 18}$$
, identify any horizontal asymptotes.

b)
$$y = -3$$

c)
$$y = 3$$

$$\mathbf{d)} \quad y = 0$$

There are none. e)

$$\Rightarrow \bigcirc \qquad 4 = \frac{3}{3}$$

Tasymptotes.
$$f = \frac{p(x)}{Q(x)}$$

$$y = \frac{3}{2}$$

$$\begin{cases} dog p > dog Q, lm f DNE \\ (xy) & (x$$

Question 25

Find the exact value of the following expression. If undefined, state, undefined.

$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

⇒ X= - I

$$SINX = -\frac{3}{5}$$

$$\mathbf{b)} \quad \frac{5\pi}{6}$$

c)
$$\frac{\pi}{3}$$

undefined

$$e) = -\frac{5\pi}{6}$$

