Student Dropout Rates

Maeve O'Toole, Lindsay Spratt, Duha Kanjo

Our Dataset

- Dataset Link
- Demographics
- Socioeconomic Factors
- Academic Performance
- Student Retention

Columns of Data

Marital status

Course

Daytime/evening attendance

Previous qualification

Nationality

Mother's qualification

Father's qualification

Mother's occupation

Father's occupation

Displaced

Debtor

Tuition fees up to date

Gender

Scholarship holder

Age at enrollment

International

Curricular units 1st sem (credited)

Curricular units 1st sem (enrolled)

Curricular units 1st sem (evaluations)

Curricular units 1st sem (approved)

Unemployment Rate

GDP

<u>Inflation</u> Rate

Target (type - object)

Our Initial Focus -

- What factors are the biggest contributors to assessing the population as a whole?
- Do evening/nighttime classes affect dropout rates?
- **Debtors**.. whether or not financial stress has implications on **success rates**?
- What societal pressures have an impact on these implications?
- Be able to predict based on certain variables whether a student would fall into a success or dropout model

Scaled Data.head()

Scaling the data at an early stage makes it easier for a model to learn and understand the problem

	Marital status	Course	Daytime/evening attendance	Previous qualification	Nacionality	Mother's qualification	Father's qualification	Mother's occupation	Father's occupation	Displaced	 Curricular units 1st sem (without evaluations)	Curricular units 2nd sem (credited)
0	-0.294829	-1.823744	0.350082	-0.386404	-0.145586	0.075111	-0.584526	-0.329669	0.449087	0.907512	 -0.199273	-0.282442
1	-0.294829	0.254153	0.350082	-0.386404	-0.145586	-1.254495	-1.218380	-0.829997	-0.786461	0.907512	 -0.199273	-0.282442
2	-0.294829	-1.131112	0.350082	-0.386404	-0.145586	1.072315	0.954834	0.670987	0.449087	0.907512	 -0.199273	-0.282442
3	-0.294829	1.177663	0.350082	-0.386404	-0.145586	1.183116	0.954834	-0.329669	-0.786461	0.907512	 -0.199273	-0.282442
4	1.356212	-1.592866	-2.856470	-0.386404	-0.145586	1.072315	1.045384	0.670987	0.449087	-1.101914	 -0.199273	-0.282442
4419	-0.294829	1.177663	0.350082	-0.386404	-0.145586	-1.254495	-1.399481	-0.329669	-0.580536	-1.101914	 -0.199273	-0.282442
4420	-0.294829	1.177663	0.350082	-0.386404	10.150427	-1.254495	-1.399481	0.670987	0.449087	0.907512	 -0.199273	-0.282442
4421	-0.294829	0.485030	0.350082	-0.386404	-0.145586	1.072315	0.954834	0.670987	0.449087	0.907512	 -0.199273	-0.282442
4422	-0.294829	-0.207602	0.350082	-0.386404	-0.145586	1.072315	0.954834	0.170659	-0.580536	0.907512	 -0.199273	-0.282442
4423	-0.294829	1.177663	0.350082	-0.386404	4.430420	1.183116	0.954834	-0.329669	0.449087	0.907512	 -0.199273	-0.282442
4424 r	ows × 32 c	columns										

What factors have the highest positive correlation with each other?

Aka which variables grow proportionally to each other

	Marital status	Course	Daytime/evening attendance	Previous qualification	Nacionality	Mother's qualification	Father's qualification	Mother's occupation	Father's occupation	Displaced	 Curricular units 1st sem (without evaluations)
Marital status	1.000000	0.018203	-0.274340	0.121026	-0.020702	0.185451	0.128230	0.069645	0.024280	-0.235162	 0.034754
Course	0.018203	1.000000	-0.069024	-0.158734	-0.004832	0.059482	0.046156	0.030013	0.016712	0.006563	 -0.060638
Daytime/evening attendance	-0.274340	-0.069024	1.000000	-0.103314	0.024386	-0.195084	-0.137476	-0.037701	0.001065	0.252521	 0.045577
Previous qualification	0.121026	-0.158734	-0.103314	1.000000	-0.039038	0.019158	0.013408	0.006367	0.005499	-0.149168	 0.018225
Nacionality	-0.020702	-0.004832	0.024386	-0.039038	1.000000	-0.043759	-0.088826	0.044197	0.024584	-0.010687	 0.026184
Mother's qualification	0.185451	0.059482	-0.195084	0.019158	-0.043759	1.000000	0.524201	0.294850	0.115716	-0.076576	 0.003440
Father's qualification	0.128230	0.046156	-0.137476	0.013408	-0.088826	0.524201	1.000000	0.206728	0.183780	-0.055628	 -0.017661
Mother's occupation	0.069645	0.030013	-0.037701	0.006367	0.044197	0.294850	0.206728	1.000000	0.723963	-0.038951	 -0.012480
Father's occupation	0.024280	0.016712	0.001065	0.005499	0.024584	0.115716	0.183780	0.723963	1.000000	-0.019579	 -0.035241
Displaced	-0.235162	0.006563	0.252521	-0.149168	-0.010687	-0.076576	-0.055628	-0.038951	-0.019579	1.000000	 -0.021554

10 rows × 32 columns

Correlation Heat Map to show the correlation between features in a more visually pleasing way

Initial Differing Variables Among Students

The biggest contributors to differentiating the population as a whole

Gender

Marital Status

Taking a look at the distribution of our dataset...

We can see the various fields that students choose to study and their corresponding weights of whether these students are enrolled, have dropped out, or have graduated.

Percentages of students graduate vs dropout vs enrolled

This pie chart splits the entire population based on the 'Target' column

Split the data into <u>training</u> and <u>test</u> data to then use target prediction to get accuracy rates

```
target prediction = bin log.predict(X test)
In [36]:
           print(target prediction)
        0 2 2 0 1 1 1 0 2 0
           \begin{smallmatrix} 0 & 2 & 2 & 0 & 0 & 2 & 0 & 2 & 2 & 0 & 2 & 1 & 2 & 2 & 0 & 0 & 2 & 1 & 0 & 2 & 2 & 2 & 1 & 2 & 2 & 0 & 0 & 2 & 2 & 2 & 0 \\ \end{smallmatrix}
        \begin{smallmatrix} 2 & 2 & 1 & 0 & 1 & 2 & 2 & 1 & 1 & 2 & 2 & 0 & 2 & 0 & 0 & 0 & 2 & 2 & 0 & 2 & 1 & 2 & 0 & 2 & 2 & 0 & 1 & 0 \\ \end{smallmatrix}
        \begin{smallmatrix} 2 & 2 & 2 & 1 & 0 & 0 & 2 & 2 & 0 & 0 & 2 & 2 & 2 & 0 & 1 & 0 & 1 & 2 & 2 & 2 & 1 & 2 & 0 & 2 & 2 & 2 & 2 & 0 & 1 & 0 & 0 \\ \end{smallmatrix}
                    2 2 2 0 2 0 2 0 2 1 2 2 1 0 0 2
           2 2 1 2 2 1 1 2 0 1 0 2 0 2 2 2 1 0 2 2 2 1
        \begin{smallmatrix} 0 & 2 & 1 & 1 & 2 & 2 & 2 & 1 & 2 & 0 & 0 & 0 & 2 & 2 & 2 & 0 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 0 & 2 & 0 & 1 & 2 & 0 \\ \end{smallmatrix}
        In [37]:
           data accuracy = accuracy score(Y test, target prediction)
          print("Accuracy:", data accuracy)
                                           ~ 78%
        Accuracy: 0.7762711864406779
                                          accuracy
```

Variance Among Components within the dataset...

<u>WCSS</u> – within-cluster sum of square

- The sum of the squared distance between each point and the centroid in a particular cluster
 - This is useful for clustering to ensure, based on each feature, the distance between the data point and the centroids

This graph is useful to see the cumulative variance which we can see displays that the <u>35</u> components, or features, explains <u>100%</u> of the data.

- Finding the *principal component* is a beneficial way to show correlated variables.

Elbow and Silhouette Graphs to predict our k value...

K should equal 3!

Principal Component Analysis Clusters

Clustering over our entire dataset...

Here we have the 3 clusters that we got from the K Means

	0	1	2
Mother's qualification	8.071429	7.750000	1.000000
Father's qualification	8.090909	8.090909	4.545455
Mother's occupation	2.161290	1.290323	3.612903
Father's occupation	1.200000	2.000000	2.800000
Nacionality	1.000000	1.000000	1.000000
Marital status	6.400000	2.800000	1.000000
Daytime/evening attendance	10.000000	10.000000	10.000000
Previous qualification	1.000000	1.000000	1.000000
Debtor	1.000000	1.000000	1.000000
Gender	10.000000	1.000000	10.000000
Scholarship holder	1.000000	1.000000	1.000000
Age at enrollment	1.679245	1.169811	2.698113
International	1.000000	1.000000	1.000000
Curricular units 2nd sem (grade)	7.396923	6.330769	7.930000
Curricular units 1st sem (grade)	6.098319	7.437086	1.000000
Target	10.000000	1.000000	1.000000
Unemployment rate	4.348837	2.883721	6.023256
Tuition fees up to date	10.000000	10.000000	10.000000

Features within each cluster...

Cluster 1	Cluster 2	Cluster 3				
High Mother qualification	The High Mother qualification	Low Mother qualification				
High Father's qualification	High Father's qualification	Low Father's qualification				
High value of Previous qualification	Low value of Previous qualification	High value of Previous qualification				
Legally Separated	Widower	Single				
High grade In the 2ns semester	low grade In the 2ns semester	High grade in the 2ns semester				
Has the High Employment rate	Has the Low Employment rate	Has the <u>Highiest</u> Employment rate				
Tuition fees is up to date	Tuition fees is up to date	Tuition fees is up to date				
Scholarship holder Student	Scholarship holder Student	NOT Scholarship holder Student				

These **dendrograms** for our entire dataset are branching diagrams that represents the **relationships of similarities** among the entire dataset

This type of graph is a tree-structured graph that is used in heat maps to visualize the result of a **hierarchical clustering** calculation.

The result of a clustering is presented as both the **distance and the similarity** between the **clustered columns**.

Using Chi-Squared test to find out which variables have the greatest impact on a student's success academically

```
In [68]:
            X train chi2=X train[['Marital status', "Father's occupation", "Mother's occupation", 'Gender',
                                  "Debtor"]]
In [69]:
          1 from sklearn.feature selection import chi2
          2 f_score_p=chi2(X_train_chi2,y_train)
                                                                                                     According to this
          3 f score p
                                                                                                   test, we can see that
Out[69]: (array([ 10.78673053, 96.45896671, 46.40816666, 110.66314568,
                160.136733991),
                                                                                                        GENDER and
          array([4.54664689e-03, 1.13292592e-21, 8.36747940e-11, 9.32831582e-25,
                1.68558260e-351))
                                                                                                         MOTHER'S
                                                                                                    OCCUPATION have
In [70]:
            p values=pd.Series(f score p[1])
                                                                                                    the biggest impact
          2 p values.index=X train chi2.columns
          3 p values.sort values()
                                                                                                       on a student's
Out[70]: Debtor
                               1.685583e-35
                                                                                                           success
        Gender
                               9.328316e 25
         Father's occupation
                               1.132926e-21
        Mother's occupation
                               8.367479e 11
         Marital status
                               4.546647e-03
         dtype: float64
```

This test is used for classification purposes...

K-Means Clustering on PCA Embeddings...

20

Parallel coordinates graph for the features of our dataset split by gender

- 1: Men

- 2: Women

Father's occupation, age at enrollment, curricular units 1st semester (evaluations), curricular units 2nd semester (evaluations)

3/20/23 21

How could we use our findings in a real-life scenario?

- Technology companies (Quizlet, Chegg, etc.) could use these clusters to understand the customer body more and target students who are likely to drop out.
- Universities and Graduate Schools could use this information to understand their student body more while also understanding what features may play into a student's success.

NEXT STEP:

A recommender system that would be able to predict the outcome of a student's academic success based on certain features.

Thank you!