Entrega 3: Mètode variacional

Arnau Mas

3 de juny de 2019

Considerem un hamiltonià H amb espectre E_n , $n \ge 1$, ordenat de manera creixent, és a dir $E_n \le E_m$ si $n \le m$. Desenvoluparem un mètode per a trobar fites per a qualsevol de les energies.

Considerem una base ortonormal $|\phi_k\rangle$, $k \geq 1$, i denotem per $H^{(n)}$ el hamiltonià H restringit al subespai generat pels estats $|\phi_1\rangle, \ldots, |\phi_n\rangle$. És a dir, $H^{(n)}$ actua sobre $|\phi_k\rangle$ segons

$$H^{(n)}|\phi_k\rangle = \sum_{r=1}^n \langle \phi_r | H | \phi_k \rangle | \phi_r \rangle$$

per $1 \le k \le n$. $H^{(n)}$ és hermític ja que tenim

$$\langle \phi_i | H^{(n)} | \phi_i \rangle = \langle \phi_i | H | \phi_i \rangle = \langle \phi_i | H | \phi_i \rangle = \langle \phi_i | H^{(n)} | \phi_i \rangle.$$

Com que $H^{(n)}$ és hermític hi ha una base ortonormal que el diagonalitza, que denotarem per $|\phi_k^{(n)}\rangle$, $1 \leq n$. L'espectre de $H^{(n)}$ el denotarem per $E_k^{(n)}$, $1 \leq k \leq n$. Provarem que la successió $E_k^{(n)}$ és decreixent en n, és a dir, $E_k^{(n)} < E_k^{(m)}$ si n < m.

Suposem que hem diagonalitzat $H^{(n)}$. Els estats $|\phi_1^{(n)}\rangle, \dots, |\phi_n^{(n)}\rangle, |\phi_{n+1}\rangle$ són una base del subespai on està definit $H^{(n+1)}$. La representació matricial de $H^{(n+1)}$ en aquesta base és

$$H^{(n+1)} = \begin{pmatrix} \langle \phi_{1}^{(n)} | H | \phi_{1}^{(n)} \rangle & \cdots & \langle \phi_{1}^{(n)} | H | \phi_{n}^{(n)} \rangle & \langle \phi_{1}^{(n)} | H | \phi_{n+1} \rangle \\ \vdots & \ddots & \vdots & \vdots \\ \langle \phi_{n}^{(n)} | H | \phi_{1}^{(n)} \rangle & \cdots & \langle \phi_{n}^{(n)} | H | \phi_{n}^{(n)} \rangle & \langle \phi_{n}^{(n)} | H | \phi_{n+1} \rangle \\ \langle \phi_{n+1} | H | \phi_{1}^{(n)} \rangle & \cdots & \langle \phi_{n+1} | H | \phi_{n}^{(n)} \rangle & \langle \phi_{n+1} | H | \phi_{n+1} \rangle \end{pmatrix}$$

$$= \begin{pmatrix} E_{1}^{(n)} & \cdots & 0 & h_{1} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & E_{n}^{(n)} & h_{n} \\ h_{1}^{*} & \cdots & h_{n}^{*} & H_{n+1} \end{pmatrix},$$

on hem definit $h_i = \langle \phi_i^{(n)} | H | \phi_{n+1} \rangle$ i $H_{n+1} = \langle \phi_{n+1} | H | \phi_{n+1} \rangle$.

Per diagonalitzar $H^{(n+1)}$ hem de calcular-ne primer els valors propis, que són les arrels del seu polinomi característic. Si el denotem per $P_{n+1}(x)$ aleshores

$$P_{n+1}(x) = \begin{vmatrix} E_1^{(n)} - x & \cdots & 0 & h_1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & E_n^{(n)} - x & h_n \\ h_1^* & \cdots & h_n^* & H_{n+1} - x \end{vmatrix}$$

$$= (E_1^{(n)} - x) \begin{vmatrix} E_2^{(n)} - x & \cdots & 0 & h_2 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & E_n^{(n)} - x & h_n \\ h_1^* & \cdots & h_n^* & H_{n+1} - x \end{vmatrix}$$

$$+ (-1)^{n+1} h_1 \begin{vmatrix} 0 & E_2^{(n)} - x & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & E_n^{(n)} - x \\ h_1^* & h_2^* & \cdots & h_n^* \end{vmatrix}$$

$$= (E_1^{(n)} - x) \begin{vmatrix} E_2^{(n)} - x & \cdots & 0 & h_2 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & E_n^{(n)} - x & h_n \\ h_1^* & \cdots & h_n^* & H_{n+1} - x \end{vmatrix} - |h_1|^2 \prod_{k=2}^n (E_k^{(n)} - x)$$

El primer terme és un determinant de la mateixa forma que el que acabem de calcular. Així doncs apareixerà per una banda el terme $-|h_2|^2 \prod_{k=3}^n (E_k^{(n)}-x)$ multiplicat per $(E_1^{(n)}-x)$ i un determinant de la mateixa forma multiplicat per $(E_1^{(n)}-x)(E_2^{(n)}-x)$. Inductivament arribem a

$$P_{n+1}(x) = (H_{n+1} - x) \prod_{k=1}^{n} (E_k^{(n)} - x) - \sum_{k=1}^{n} |h_k|^2 \prod_{\substack{r=1\\r \neq k}}^{n} (E_r^{(n)} - x).$$

Calculem $P_{n+1}(E_k^{(n)})$:

$$P_{n+1}(E_k^{(n)}) = -|h_k|^2 \prod_{\substack{r=1\\r\neq k}}^n (E_r^{(n)} - E_s^{(n)}).$$

Com que $E_k^{(n)} \leq E_r^{(n)}$ quan $k \leq r$ i $E_k^{(n)} \geq E_r^{(n)}$ si $k \geq r$, hi ha k-1 factors negatius i n-1-(k-1)=n-k factors positius. Així doncs, si k és parell aleshores k-1 és senar i tot el producte acaba sent negatiu, i per tant $P_{n+1}(E_k^{(n)}) \geq 0$ ja que va acompanyat d'un signe negatiu. De la mateixa manera, si k és senar aleshores deduïm $P_{n+1}(E_k^{(n)}) \leq 0$.

D'altra banda, tenim

$$P_{n+1}(x) = (-1)^{n+1}(x - H_{n+1}) \prod_{k=1}^{n} (x - E_k^{(n)}) - (-1)^n \sum_{k=1}^{n} |h_k|^2 \prod_{\substack{r=1 \ n \neq k}}^{n} (x - E_r^{(n)}),$$

i per tant el terme de grau més alt de $P_{n+1}(x)$ és $(-1)^{n+1}x^{n+1}$. Si n és senar aleshores és x^{n+1} , per tant $\lim_{x\to\infty}P_{n+1}(x)=\lim_{x\to\infty}P_{n+1}(x)=\infty$. I en canvi, si n és parell aleshores és $-x^{n+1}$ i per tant $\lim_{x\to\infty}P_{n+1}(x)=-\infty$ i $\lim_{x\to-\infty}P_{n+1}(x)=\infty$.

Com que $H^{(n+1)}$ és hermític, el seu polinomi característic ha de tenir n+1 arrels, $E_k^{(n+1)}$, i per tant alterna de signe n+1 vegades. D'altra banda hem vist que el polinomi característic avaluat a $E_k^{(n)}$ alterna de signe, per tant $E_k^{(n)}$ ha d'estar entre $E_k^{(n+1)}$ i $E_{k+1}^{(n+1)}$. Com que $\lim_{x\to\infty} P_{n+1}(x) = \infty$, per a $x < E_1^{(n+1)}$ es té $P_{n+1}(x) > 0$. I com que $P_{n+1}(E_1^{(n)}) \le 0$ hem de tenir $E_1^{(n+1)} \le E_1^{(n)} \le E_2^{(n+1)}$. I pel que acabem de comentar concloem $E_k^{(n+1)} < E_k^{(n)} < E_{k+1}^{(n)}$.

concloem $E_k^{(n+1)} \leq E_k^{(n)} \leq E_{k+1}^{(n+1)}$.

Tenim, doncs, que $E_k^{(n)} \leq E_k^{(n+1)}$.

Tenim, doncs, que $E_k^{(n)} \leq E_k^{(n+1)}$ i per tant la successió $E_k^{(n)}$ és decreixent. Quan $n \to \infty$, $H^{(n)} \to H$ i per tant $E_k^{(n)} \to E_k$. Per tant la successió $E_k^{(n)}$ decreix cap a E_k i per tant $E_k^{(n)} > E_k$. Així doncs, si anem iterant el procés anirem obtenint fites millors i millors per a E_k .