Lecture 12

Thu (Horrish-Chardis) 8=04-084: Z(gro)~ TV, 9= U/t) Prost that in (8) 5 TW: From last time it only rangins to show that if $\lambda - J G f'$ is claminant integral and CREAT is simple, the $V(s_{\alpha}\lambda) \subseteq V(\lambda)$ where $V(\mu) := U(cy_{\sigma}) \otimes C(\mu-\overline{\sigma})$ y simply × od l∈ £ v st. 1-2 is commant. $= \chi(z)(z) = \chi(z)(y)$ => $|u(x)| \leq r^w$

Set $\omega = \lambda - \delta$, $V_o = 101 \in V(\lambda)$ is a highest weight vector on which t acts by ω .

Fact $\Delta^+ = \{\alpha_{1-}, \alpha_{11}\}$, \exists a basis $\{E_{-\alpha_{11}}, H_{\alpha_{11}}, E_{\alpha_{11}}, 1 \le i \le n\}$ for g_{ϵ} such that $O \neq E_{-\alpha_{11}} \in g_{-\alpha_{11}}$, $O \neq E_{\alpha_{11}} \in g_{\alpha_{11}}$

· H; = [Ea;, E-a;] · Yuet, u(Hx) = 2 < (u, x;)

Then note CE_g; + CHO CEq; = Ale

injection. Independence of Δ^{\dagger} Say we have two choices Δ^{\dagger}_{1} and Δ^{\dagger}_{2} of positive roots. Wat to check $abla_{1} = abla_{1} + abla_{2} = abla_{2} + abla_{3} = abla_{4} = abla_{2} = abla_{4} = abla_{4}$ WLOG, con assume $\Delta_2^{\dagger} = S_{\alpha} \Delta_1^{\dagger}$ with α a simple root in Δ_1^{\dagger} and $S_{\alpha} \in \mathbb{W}$. Then if $S_{\alpha}, \alpha_2, ..., \alpha_m$ is a base for Δ_1^{\dagger} , a base for Δ_2^{\dagger} is $S_{-\alpha}$, α_2 , ..., α_m ?

Can check $\Delta_2 = S_1 - \alpha = S_{\alpha} S_1$ Soy V is a fun dim unsel sop of ofe and λ = highest wasget wort Δ t Then Sol = highest weight work Di. And ZE Z(cyc) acts on this space by $\mathcal{S}_{\Delta_{1}^{+}}(z)(\lambda) = \mathcal{S}_{\Delta_{2}^{+}}(z)(s_{4}\lambda) = \mathcal{S}_{\Delta_{3}}(s_{4}\lambda + \mathcal{S}_{2})$ $\mathcal{E}_{\Delta_1}(z)(\lambda+\mathcal{E}_1)=\mathcal{E}_{\Delta_1}(z)(\mathcal{E}_{\alpha}(\lambda+\mathcal{E}_1))$ = 8, (z) (sax+sadi) = (2)(5~)+0,-9) $= \sqrt{\mathcal{V}^1(S)(S^{\alpha})} + \mathcal{V}^{\alpha}$ So & Ze (lloge) and I clownest integral for At, we how

=>] a map U(Sol) -> U(2) and can check it is an

Prop Any character $\chi = Z(Q_e) \rightarrow C^{\times}$ is of the form $\chi = \chi_{\lambda} = \lambda \circ X \quad \text{for} \quad \lambda : \lambda \rightarrow C$ and I is unquely determined up to W, Proof It is a feet the T is a funt free Traly of sork IWI. So if x: T > C is a chevarter, then the maximal ideal m = hor x e T w lise below a moximal ideal M of T, which also has residus fld C, so we can extend x to \: T -> T/m = C Now say we have $\lambda, \mu = T \rightarrow C$ such that $\mu \neq w \cdot l$ for any $w \in W$. Would to check $x_{\lambda} \neq \chi_{\mu}$. Can find a polynomial on \mathcal{L} that is 1 an $W\lambda$ and C an $W\mu$. This g = IWI wewp has the same property and is W-INVOVENT.

Herrish-Chandra is c = 3 $Z \in Z(c_{g_c})$ with f(Z) = g.

Then $\chi_{\lambda}(Z) = g(\lambda) = 1$ and $\chi_{\mu}(Z) = g(\mu) = C$. Det It V is a (cg, K)-noclule on which Z(cg) acts by a character X (e.g. V is issed) We coll X or NEX if X=Xx the intintessimal character of V Eg V is an invol first dinnspend representation with highest weight & (for some choice A+ of ope), then the infortessinal

Character is A+J, J= & sum of tvo roots. Eg Fer 52, representation generated by \$1 with f a moduler term of wt 632. We sow Z(1/2) = C[] ~ C[H] H= (1 -1) Ω misth-t and $\Omega = -2\Delta$, with $\Delta p_{\uparrow} = -\frac{1}{2}(\frac{1}{2}-1)$ So Dep= le (2-1) and via 8, H2= 20+1 acts by $k(k-2)+1=(k-1)^2$ The innel for reps of ste our Sym [2, N = C, Which hour highest weight H -> n. How 5 (H)=1, so the inf there on Sym C2 is given by H= (n+1) for n>0 So it le = 7, the of hos the sans int char as the fin din rop Syn 2 C2 We'll see soon that if F is a number field and Tis an automorphic representation of GLn (Mp), this port of the data of Ti is a (g, K)-module for the IR-Lie group G:= Gln (F@ 1R) & TT GLn (IR) × TT GLn (C) We say it is regular algebraic if it has the same infinites simul character as an irred fin dimensional rep of To-

Of = (176 = T)
$$Sh_R \times T$$
 $Sh_R \times T$ Sh_R

 $\mathbb{Z}_{n}^{+} = \{(\lambda_{n}, \lambda_{n}) \in \mathbb{Z}_{n} \mid \lambda_{1} \neq \lambda_{2} \neq -\beta_{1} \lambda_{1} \}$ λ= (λ, λη) cos to the weight dieg(t, tn) > + 1 +2 - +2.

The weight of
$$n$$
 is then the tuple $(Z_{+})^{How}(F,G)$

Eq $n=2$, $\lambda=(G,B)$ with $G>B$, the firedim rep is S_{ym}