2020/8/16 晓教学

参考答案

【答案】

1. (1) B, D (2) **200** g

(3) $\Delta E_p = 0.198 J$, $\Delta E_k = 0.196 J$;

2. (1) ①B; ②A; ③B; ④ mgx_2 ; $\frac{x_3-x_1}{2T}$; ⑤ $v^2=0.01+4.7W$; 质量; ⑥C.

(2) ①0.550; 0.545; ②重力加速度; ③D.

3. (1) 1. 29: M.

(2) 交流; 0.97; 0.047; 0.048.

(3) $v = \frac{d}{t}$; $\frac{2g}{d^2}$.

4.(1) 不挂; 相等

(2) ①
$$\frac{d}{t_1}$$
, $\frac{d}{t_2}$, $\frac{(\frac{d}{t_2})^2 - (\frac{d}{t_1})^2}{2s}$; ②乙, 丙

5. (1) $v^2 = 2ax$

(2) A

(3) B, C

【解析】

1.(1) 在该实验中, 需测量物体下降的高度和物体的速度, 所以纸带处理时需要刻度尺, 还需要交流电源, 供计时 器工作: 而比较重力做功和动能变化的关系, 两边都有质量, 可以约去, 不需要天平, 同时不需要秒表, 因 打点计时器; BD选项正确, AC选项错误。

故选BD选项

- (2) 为了减小阻力的影响, 重锤选择质量大, 体积小的, 即密度大的, 所以选择质量为200 q的重锤;
- (3) 从开始到B过程中,重锤重力势能变化量: $\Delta E_p = mgh_B$,即 $\Delta E_p = 0.198~J$;根据某段时间内的平均速度等 于中间时刻的瞬时速度得: $v_B=rac{x_{AC}}{2T}$,解得: $v_B=1.98\,m/s$,从开始到B过程中,重锤动能变化量 $\Delta E_k = \frac{1}{2} m v_B^2$,解得: $\Delta E_k = 0.196 J$;
- 2.(1) ①打点计时器均使用交流电源, 故选B;
 - ②平衡摩擦和其他阻力,是通过垫高木板右端,构成斜面,使重力沿斜面向下的分力跟它们平衡,故选A;
 - ③平衡摩擦力时需要让打点计时器工作,纸带跟打点计时器限位孔间会有摩擦力,且可以通过纸带上打出的 点迹判断小车的运动是否为匀速直线运动,故选B;
 - ④ 小车拖动纸带移动的距离等于重物下落的距离,又小车所受拉力约等于重物重力,因此拉力对小车做的 功: $W = mgx_2$,

小车做匀变速直线运动,因此打B点时小车的速度为打AC段的平均速度,则有: $v_B = \frac{x_3 - x_1}{2T}$;

⑤由图示图线可知: $k = \frac{(\Delta v)^2}{\Delta W} = \frac{0.47 \times 10^{-2}}{10} = 4.7$, 纵截距为: b = 0.01, 则 v^2 随W变化的表达式为: $v^2 = 0.01 + 4.7W$

功是能量转化的量度,所以功和能的单位是相同的,斜率设为k,则 $k = \frac{v^2}{W}$

代入单位后,k的单位为 kq^{-1} ,所以与该斜率有关的物理量为质量;

⑥若重物质量m不满足远小于小车质量M,则绳子对小车的拉力实际不等于重物的重力,由mq = (M+m)a和F = Ma可得:

$$F=rac{M}{M+m}mg$$
,由动能定理得: $Fx=rac{1}{2}Mv^2$, $v^2=rac{2F}{M}x=rac{2mg}{M+m}x$,而: $W=mgx$,则实际 v^2-W 图线的斜率: $k=rac{2}{M+m}$,重物质量 m 与小车质量 M 不变,速度虽然增大,但斜率不变,故选 C .

(2) ①当打点计时器打到B点时,重物重力势能的减少量为:

$$\triangle$$
 $E_p = mgh = 0.1 \times 9.8 \times 56.10 \times 10^{-2}J = 0.550J;$
 B 点的速度为: $v_B = \frac{x_{AC}}{2T} = \frac{(62.80 - 49.60) \times 10^{-2}}{0.04} m/s = 3.3 m/s,$ 则动能的增加量为: \triangle $E_k = mv_B^2 = \frac{1}{2} \times 0.1 \times 3.3^2 J = 0.545J.$

- ②根据机械能守恒有: $mgh = \frac{1}{2}mv^2$, 则 $\frac{1}{2}v^2 = gh$, 图线斜率表示的物理量是重力加速度g.
- ③实验中摩擦不可避免,纸带越短克服摩擦做功越小,但是纸带不是越短越好,故A错误.验证动能的增加量和重力势能的减小量是否相等,质量可以约去,可以不测量重物的质量,故B错误.不能根据v=gt求出瞬时速度,否则就默认了机械能守恒,失去验证的意义,故C错误.若纸带前面几点较为密集且不清楚,可以舍去前面比较密集的点,合理选取一段打点比较清晰的纸带,同样可以验证,故D正确.故选D.
- 3. (1) 由M纸带可知,右侧应为与物块相连的位置,由图可知,两点间的距离先增大后减小,故2.58段时物体应脱离弹簧,因 $T = \frac{1}{50} = 0.02s$,则由平均速度可求得,其速度 $v = \frac{s}{T} = \frac{2.58}{0.02} = 1.29 m/s$;因弹簧的弹性势能转化为物体的动能,则可知离开时速度越大,则弹簧的弹性势能越大,由图可知,M中的速度要大于L中速度,所以M纸带对应的弹性势能大。
 - (2) ①组装时应注意调节计时器的面板在竖直面内, 打点计时器应接在交流电源上;

②因
$$T = \frac{1}{50} = 0.02s$$
,打下6号点的速度为: $v_6 = \frac{x_{5 \to 7}}{2T} = \frac{s}{2T} = \frac{0.0388}{0.04} = 0.97m/s$,则动能为: $E_k = \frac{1}{2}m{v_6}^2 = \frac{1}{2} \times 0.1 \times 0.97^2 = 0.047J$,

重物重力势能的减小量: $\triangle E_p = mgh = 0.1 \times 9.8 \times 0.049J = 0.048J$.

- (3) ①根据极短时间内的平均速度等于瞬时速度知,小球经过光电门B时的速度 $v=\frac{d}{t}$;
 - ②当重力势能的減小量等于动能的增加量时,有: $mgH = \frac{1}{2}mv^2 = \frac{1}{2}m\frac{d^2}{t^2}$,解得 $\frac{1}{t^2} = \frac{2gh}{d^2}$,则图线的斜率 $k = \frac{2g}{d^2}$.
- 4. (1) 第1空: 本实验平衡小车下滑过程中所受的摩擦力时, 小车应不挂钩码

第2空: 反复调整垫块位置(或高度),应使小车匀速下滑,经过光电门A、光电门B时的挡光时间相等。

(2) ①小车经过光电门A、光电门B时的速度分别为

第1空:
$$v_A = \frac{d}{t_1}$$

第2空: $v_B = \frac{d}{t_2}$

第3空: 则由运动学公式 $2as = v_B^2 - v_A^2$ 可知,其加速度的表达式为

$$a=rac{\left(rac{d}{t_2}
ight)^2-\left(rac{d}{t_1}
ight)^2}{2s}$$

②如果实验误差很小,a - F图象应为过原点的倾斜直线,即为乙图线;如果长木板保持水平或倾角过小,则是未平衡或未完全平衡小车受到的摩擦力,a - F图象应为丙图线。

- 5. (1) 小车做初速度为零的匀加速直线运动,由匀变速直线运动的速度位移公式有: $v^2 0 = 2ax$ 即 $v^2 = 2ax$
 - (2) 由 (1) 可知: $v^2 = 2ax$,结合牛顿第二定律: F = ma,则: $v^2 = \frac{2x}{m}F$, $v^2 = \frac{2x}{m}F$, $v^2 = \frac{2x}{m}F$,故A选项正确,BCD选项错误。

故选A选项。

2020/8/16 晓教学

(3) A选项:以系统为研究对象,加速度: $a=\frac{m_2g}{m}$,系统所受拉力等于 m_2g ,不需要满足 $m_2\ll m_1$,故A选项错误:

BC选项:为使系统所受合力等于桶与桶中砝码的重力,实验需要平衡摩擦力,还需要细线在桌面上的部分与长木板平行,故BC选项正确;

D选项:为减小实验误差,图中A、B之间的距离x应尽量大些,故D选项错误。故选BC选项。

teaching.xiaojiaoyu100.com 3/3