Számítógépes Grafika

Bán Róbert robert.ban102+cg@gmail.com

Eötvös Loránd Tudományegyetem Informatikai Kar

2022-2023. tavaszi félév

Görbék, felületek leírása

- Az görbéket, felületeket (amik közé az egyenes és a sík is tartozik) egy-egy ponthalmaznak tekintjük.
- ► Hogyan adjuk meg ezeket a halmazokat?
 - explicit: y = f(x) $\rightarrow \{(x, f(x)) \mid x \in \mathcal{D}_f\}$

 - ▶ implicit: f(x, y) = 0 $\xrightarrow{\mathcal{D}} \{\mathbf{x} \in \mathcal{D}_f \mid f(\mathbf{x}) = 0\}$
- ▶ De hogyan tudjuk ezeket kirajzolni?

Tartalom

Egyszerű görbék és felületek

Görbék Felületek

A fény útja

Ideális tükröződés Ideális törés

Görbék transzformációja

Hogyan transzformálunk görbéket a különböző megadási módokban?

- ► Explicit
 - Függőleges eltolás és nyújtás: a függvényérték módosítása $\rightarrow y = a \cdot f(x) + b$
 - Vízszintes eltolás és nyújtás: a paraméter módosítása $\rightarrow y = f(\frac{x}{c} d)$
- Parametrikus: az eredménypont transzformációja $\rightarrow A \cdot \mathbf{p}(t)$
- ▶ Implicit: a paraméter transzformációja az inverzzel $\rightarrow f(A^{-1} \cdot \mathbf{x}) = 0$

Parabola

Az y tengelyű, (0, p) fókuszpontú parabola egy

► Implicit egyenlete: $x^2 = 4py$

Explicit egyenlete: $y = \frac{x^2}{4p}$, $x \in \mathbb{R}$

Parametrikus egyenlete: $\mathbf{p}(t) = \begin{bmatrix} t \\ \frac{t^2}{4\rho} \end{bmatrix}$, $t \in \mathbb{R}$

Parabola

- Mi van, ha a c pontba akarjuk eltolni az origóból a parabolát?
- Az implicit és explicit alakban be kell vinni a (c_x, c_y) koordinátákat (pl. implicitből $(x - c_x)^2 = 4p(y - c_y)$ lesz)
- Parametrikus alakban egyszerűen $\mathbf{p}(t) + \mathbf{c}$ lesz az új alak.

Kör

- ightharpoonup A $\mathbf{c} \in \mathbb{E}^2$ középpontú, r sugarú kör egy
 - Implicit egyenlete: $(x c_x)^2 + (y c_y)^2 = r^2$
 - Explicit alakban nem tudjuk az egész kört leírni egy függvénnyel (DE két darabban menne, pl. $\mathbf{c} = \mathbf{0}, r = 1$ mellett $y = \pm \sqrt{1 - x^2}$, ahol $x \in [-1, 1]$)
 - Parametrikus egyenlete: $\mathbf{p}(t) = r \begin{bmatrix} \cos t \\ \sin t \end{bmatrix} + \mathbf{c}$, ahol $t \in [0, 2\pi)$

Ellipszis

- ightharpoonup A $\mathbf{c} \in \mathbb{E}^2$ középpontú, nagytengelyével az x tengellyel párhuzamos, 2a nagytengelyű és 2b kistengelyű ellipszis egy

 - ▶ Implicit egyenlete: $\frac{(x-c_x)^2}{a^2} + \frac{(y-c_y)^2}{b^2} = 1$ ▶ Explicit alakban ugyanaz a probléma, mint a körnél (lásd
 - Parametrikus egyenlete: $\mathbf{p}(t) = \begin{bmatrix} a\cos t \\ b\sin t \end{bmatrix} + \mathbf{c}$, ahol $t \in [0, 2\pi)$

Ellipszis

- ► De mi van, ha nem akarjuk, hogy *x*, *y* tengellyel párhuzamosak legyenek a tengelyeink?
 - ► Implicit egyenlet: ez munkás(nak tűnik és habár nem az, de), nekünk most nem kell...
 - Parametrikus egyenlete: báziscsere! Ha az új tengelyek **k**, **l**, akkor $\mathbf{p}(t) = a\cos t \cdot \mathbf{k} + b\sin t \cdot \mathbf{l} + \mathbf{c}$, ahol $t \in [0, 2\pi)$

Görbék parametrikus alakja

- ▶ Deriváltak: $\mathbf{p}^{(i)}(t) = \begin{bmatrix} x^{(i)}(t) \\ y^{(i)}(t) \end{bmatrix}$, $t \in [...]$, i = 0, 1, 2, ...
- ► Ha a görbét egy mozgó pont pályájának tekintjük, akkor az első derivált a sebességnek tekinthető, a második a gyorsulásnak stb.

Szakasz

▶ Legyen adott két pont, $\mathbf{a}, \mathbf{b} \in \mathbb{E}^3$. A két ponton átmenő egyenes parametrikus egyenlete:

$$\mathbf{p}(t) = (1-t)\mathbf{a} + t\mathbf{b},$$

ahol $t \in \mathbb{R}$.

▶ Ha $t \in [0,1]$, akkor az \mathbf{a}, \mathbf{b} pontokat összekötő egyenes szakaszt kapjuk.

Felületek megadása

- ► Explicit: z = f(x, y) \rightarrow $\{(x, y, f(x, y)) \mid (x, y) \in \mathcal{D}_f\}$
- ▶ Implicit: f(x, y, z) = 0 \rightarrow { $\mathbf{x} \in \mathcal{D}_f | f(\mathbf{x}) = 0$ }
- Parametrikus: $\mathbf{p}(u, v) = \begin{bmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{bmatrix}$, $(u, v) \in [a, b] \times [c, d]$ $\rightarrow \{\mathbf{p}(u, v) \mid (u, v) \in \mathcal{D}_{\mathbf{p}}\}$
- Hogyan rajzoljuk ki őket?

Felületek felületi normálisa

- ► A felület érintősíkjának normálisa
- ► Ha parametrikus alakban adott a felület: $\mathbf{n}(u, v) = \partial_u \mathbf{p}(u, v) \times \partial_v \mathbf{p}(u, v)$
- ▶ Implicit alakban adott felületnél $\mathbf{n}(x, y, z) = \nabla f$, ahol $\nabla f = [f_x, f_y, f_z]^T$

Gömb

- ► Implicit: $(x c_x)^2 + (y c_y)^2 + (z c_z)^2 = r^2$
- ► Parametrikus:

$$\mathbf{p}(u,v) = r \begin{bmatrix} \cos u \sin v \\ \sin u \sin v \\ \cos v \end{bmatrix} + \mathbf{c},$$

$$(u,v)\in[0,2\pi)\times[0,\pi]$$

Ellipszoid

- ► Implicit: $\frac{(x-c_x)^2}{a^2} + \frac{(y-c_y)^2}{b^2} + \frac{(z-c_z)^2}{c^2} = 1$
- Parametrikus: $\mathbf{p}(u, v) = \begin{bmatrix} a \cos u \sin v \\ b \sin u \sin v \\ c \cos v \end{bmatrix} + \mathbf{c},$ $(u, v) \in [0, 2\pi) \times [0, \pi]$

Egy egyszerű paraboloid

Parametrikus: $\mathbf{p}(u, v) = \begin{bmatrix} u \\ v \\ au^2 + bv^2 \end{bmatrix} + \mathbf{c}, (u, v) \in \mathbb{R}^2$

Amire figyelni érdemes

- ► Matematikában általában a felfelé mutató tengelynek a *z* tengelyt tekintik
- A fenti képletek is ennek megfelelően adják a "várt" képet
- ► Grafikában viszont sokszor az *y* mutat felfelé!

Jelölések

- I a megvilágító, a fényt "adó" pont felé mutató vektor, ekkor a beesési irány −I
- ▶ n a felületi normális
- ▶ v, l, n egységvektorok
- $\triangleright \theta'$ az **l** és az **n** által bezárt szög

Ideális visszaverődés

Visszaverődési törvény

A beesési irány ($-\mathbf{I}$), a felületi normális (\mathbf{n}), és a kilépési irány (\mathbf{r}) egy síkban van, valamint a beesési szög (θ') megegyezik a visszaverődési szöggel (θ).

Visszaverődési irány

- Általános esetben, egy v beeső vektorból a visszaverődési- vagy tükörirány:
- $\mathbf{v}_r = \mathbf{v} 2\mathbf{n}(\mathbf{n} \cdot \mathbf{v})$
- Mivel $\cos \theta = -\mathbf{n} \cdot \mathbf{v}$, és \mathbf{n} , \mathbf{v} egységnyi hosszúak.

Ideális törés

Snellius-Descartes törvény

A beesési irány (-I), a felületi normális (n), és a törési irány (t) egy síkban van, valamint $\eta = \frac{\sin \theta'}{\sin \theta}$, ahol η az anyagok relatív törésmutatója.

Néhány törésmutató

- ► Vákuum 1.0
- ► Levegő 1.0003
- ► Víz 1.3333
- ▶ Üveg 1.5
- ► Gyémánt 2.417

Törési irány

► Snellius-Descartes törvény:

$$\eta = \frac{\sin \alpha}{\sin \beta}$$

 $\mathbf{v}_t = \mathbf{n}_{\perp} \sin \beta - \mathbf{n} \cos \beta$

$$\mathbf{n}_{\perp} = \frac{\mathbf{v} + \mathbf{n}\cos\alpha}{\sin\alpha}$$

$$ightharpoonup \mathbf{v}_t = rac{\mathbf{v}}{\eta} + \mathbf{n} \left(rac{\cos lpha}{\eta} - \cos eta
ight)$$

