Tópicos Extra

I - Sobre conjuntos infinitos e cardinais infinitos diferentes

Exercício 1: Mostre, usando a definição de conjunto infinito que os conjuntos: \mathbb{N} , \mathcal{Z} , um intervalo $]a,b[\subset \mathbb{R},\ a,b\in \mathbb{R},\ a< b$ são conjuntos infinitos.

Exercício 2: Defina uma bijecção entre o intervalo $]-\pi/2,\pi/2[$ e $\mathbb{R}.$

Esta bijecção garante, por uma lado, que \mathbb{R} é um conjunto infinito e, por outro, que o intervalo $]-\pi/2,\pi/2/[$ tem a mesma cardinalidade do conjunto \mathbb{R} .

Teorema de Cantor(1891) Não existe nenhuma bijecção entre os conjuntos \mathbb{N} e]0,1[.

Nota: Qualquer número do intervalo]0,1[é representado por uma dízima finita ou infinita da forma $0,a_1a_2a_3...a_n...$, $a_i \in \{0,1,2,3,4,5,6,7,8,9\}$. Os números representados por dízimas finitas, têm tambem uma (única) representação como dízima infinita de período 9. Exemplos: 0,1=0,0(9),0,3256=0,3255(9). Tomaremos neste caso as dzimas finitas prolongadas com infinitos 0's. Podemos pois dizer que qualquer número do intervalo]0,1[é representado de maneira única por uma dízima infinita.

Demonstração. A demonstração do teorema de Cantor é feita por absurdo.

Suponhamos que existe uma bijecção $f : \mathbb{N} \longrightarrow]0, 1[$ que a cada número natural $n \in \mathbb{N}$ faz corresponder um número $f(n) = 0, a_1 a_2 a_3...$ do intervalo]0, 1[, representado pela sua dízima infinita.

Consideremos um número real $b = 0, b_1b_2b_3...$ cujas casas decimais b_k , $k \in \mathbb{N}$ são escolhidas de modo a satisfazer as duas condições seguintes:

- (i) b_k é diferente da k-ésima casa decimal do número f(k)
- (ii) $b_k \neq 0, 9$.

Qualquer número b "construido" de modo a satisfazer as condições acima é um número real do intervalo]0,1[representado por uma dízima infinita e que, por definição não é nenhum dos números $f(n),\ n\in\mathbb{N}$. Portanto a bijecção f não é sobrejectiva, uma contradição!

Exercício 3: Porque é que na demonstração do teorema de Cantor exigimos $b_k \neq 0, 9$?

Exercício 4: Deduza do Teorema de Cantor que não existe nenhuma bijecção entre \mathbb{N} e \mathbb{R} .