Misura della velocità del suono in aria^a

Francesco Polleri^{1, b} e Mattia Sotgia^{1, c} (Gruppo A1)

¹ Dipartimento di Fisica,
Università degli Studi di Genova, I-16146 Genova,
Italia

(Dated: presa dati 20 marzo 2022, consegnata in data 9 aprile 2022)

I. INTRODUZIONE

L'obiettivo di questa esperienza di laboratorio è effettuare una misura della velocità del suono in aria. Per ottenere tale misura sfruttiamo l'intervallo di tempo che l'onda sonora impiega a percorrere la distanza che separa l'emettitore e il ricevitore. Infatti, una volta misurato tale intervallo di tempo, è necessario solamente conoscere appunto la distanza tra i due dispositivi per ricavare la velocità del suono. Il problema principale è però ottenere una misura precisa del tempo in quanto sappiamo che l'intervalli che andiamo a misurare sono molto brevi perchè il suono viaggia ad una velocità di circa 340 m s⁻¹ per cui se posizioniamo emettitore e ricevitore ad una distanza nell'ordine delle decine di centimetri il tempo che l'onda impiega a percorrere tale distanza sarà allora nell'ordine dei millisecondi. Per misurare gli intervalli di tempo utilizziamo quindi due diversi metodi. Il primo metodo consiste nell'effettuare la misurazione in maniera analogica, osservando sull'oscilloscopio il ritardo temporale che intercorre tra il segnale prodotto dall'emettitore e il segnale prodotto dal ricevitore. Il secondo metodo invece ???

II. CARATTERIZZAZIONE APPARATO SPERIMENTALE ANALOGICO

Il sistema di misura è composto da un emettitore ed un ricevitore posti ad una distanza d = [0.1, 0.5] m. Questi due strumenti messi in comunicazione con un oscillatore ci permettono di misurare il ritardo tra il fronte dell'onda trasmessa e quello dell'onda ricevuta, permettendoci di individuare il ritardo tra le due onde, e quindi inferire il valore della velocità del suono in aria.

L'emettitore L'emettitore consiste in un semplice altoparlante elettronico (attuatore), caratterizzato da un diametro esterno di 5.985(5) cm capace di convertire in onde sonore un segnale

che può essere fornito in ingresso. Questo viene alimentato dal generatore digilab che permette di fornire in ingresso un'onda quadra, di frequenza e ampiezza variabile. Il generatore digilab fornisce inoltre anche un segnale TTL standardizzato che può essere utilizzato come riferimento per la misura di quest'onda. Per la misura si è utilizzata un'onda quadra di frequenza variabile (in base alle necessità della misura) tra 10 Hz e 10 kHz.

Il ricevitore Lo strumento è composto da un microfono (trasduttore) che permette di convertire in segnale analogico l'onda sonora che riceve. Il segnale analogico continuo viene poi mandato in ingresso ad un comparatore a soglia fissa, che quindi permette di ottenere solo due letture in uscita, un segnale alto e un segnale basso.

III. CONCLUSIONI

Figura 1 Dipendenza lineare del ritardo dal tempo t, il coefficiente di proporzionalità esprime la velocità di propagazione di un onda sonora in aria.

^a Esperienza n. 6

b s5025011@studenti.unige.it

c s4942225@studenti.unige.it

Figura 2 Dipendenza lineare del ritardo dal tempo t, il coefficiente di proporzionalità esprime la velocità di propagazione di un onda sonora in aria. Raccolta dati effettuata autonomamente con sistema integrato. Dati preliminari

Figura 3 Risultati complessivi analisi dati. Differenza sperimentale tra il valore teorico della velocità del suono $344\,\mathrm{m\,s^{-1}}$ e il valore misurato in laboratorio. Miglior stima del valore ottenuto.