- 1.Download the Employee Attrition Dataset https://www.kaggle.com/datasets/patelprashant/employee-attrition
- 2.Perfrom Data Preprocessing
- 3. Model Building using Logistic Regression and Decision Tree and Random Forest
- 4.Calculate Performance metrics

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

df=pd.read_csv('/content/WA_Fn-UseC_-HR-Employee-Attrition.csv')
df

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Educatio
0	41	Yes	Travel_Rarely	1102	Sales	1	
1	49	No	Travel_Frequently	279	Research & Development	8	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	
3	33	No	Travel_Frequently	1392	Research & Development	3	
4	27	No	Travel_Rarely	591	Research & Development	2	
1465	36	No	Travel_Frequently	884	Research & Development	23	
1466	39	No	Travel_Rarely	613	Research & Development	6	
1467	27	No	Travel_Rarely	155	Research & Development	4	
1468	49	No	Travel_Frequently	1023	Sales	2	
1469	34	No	Travel_Rarely	628	Research & Development	8	
1470 r	ows ×	35 columns					

df.head()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber	
(41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1	
	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2	•
2	2 37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	4	
;	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	7	

5 rows × 35 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

Column Non-Null Count Dtype
--- ---0 Age 1470 non-null int64

1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
1tvn	es: int64(26), object(9)		

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

df.describe()

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRate	JobIn
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.000000	14
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.891156	
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.329428	
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.000000	
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.000000	
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.000000	
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.750000	
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.000000	

8 rows × 26 columns

df.shape

(1470, 35)

#Checking for Null Values
df.isnull().any()

Age	False
Attrition	False
BusinessTravel	False
DailyRate	False
Department	False
DistanceFromHome	False
Education	False
EducationField	False
EmployeeCount	False
EmployeeNumber	False
EnvironmentSatisfaction	False
Gender	False
HourlyRate	False
JobInvolvement	False
JobLevel	False

False JobRole JobSatisfaction False MaritalStatus False MonthlyIncome False MonthlyRate False NumCompaniesWorked False Over18 False OverTime False PercentSalaryHike False PerformanceRating False RelationshipSatisfaction False StandardHours False StockOptionLevel False TotalWorkingYears False TrainingTimesLastYear False WorkLifeBalance False YearsAtCompany False YearsInCurrentRole False YearsSinceLastPromotion False YearsWithCurrManager False dtype: bool

df.isnull().sum()

0 Attrition 0 BusinessTravel 0 DailyRate Department 0 DistanceFromHome 0 Education EducationField 0 EmployeeCount EmployeeNumber 0 EnvironmentSatisfaction 0 Gender HourlyRate 0 JobInvolvement 0 JobLevel 0 JobRole 0 JobSatisfaction 0 0 MaritalStatus MonthlyIncome 0 MonthlyRate 0 a NumCompaniesWorked Over18 0 OverTime PercentSalaryHike 0 PerformanceRating 0 RelationshipSatisfaction StandardHours 0 StockOptionLevel 0 TotalWorkingYears TrainingTimesLastYear 0 WorkLifeBalance 0 YearsAtCompany 0 YearsInCurrentRole 0 YearsSinceLastPromotion 0 YearsWithCurrManager dtype: int64

sns.distplot(df['Age'])

<ipython-input-494-0fafe04ea3f6>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(df['Age'])
<Axes: xlabel='Age', ylabel='Density'>

0.05

df.corr()
```

<ipython-input-495-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versio
 df.corr()

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	Hourly
Age	1.000000	0.010661	-0.001686	0.208034	NaN	-0.010145	0.010146	0.02
DailyRate	0.010661	1.000000	-0.004985	-0.016806	NaN	-0.050990	0.018355	0.02
DistanceFromHome	-0.001686	-0.004985	1.000000	0.021042	NaN	0.032916	-0.016075	0.03
Education	0.208034	-0.016806	0.021042	1.000000	NaN	0.042070	-0.027128	0.01
EmployeeCount	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
EmployeeNumber	-0.010145	-0.050990	0.032916	0.042070	NaN	1.000000	0.017621	0.03
EnvironmentSatisfaction	0.010146	0.018355	-0.016075	-0.027128	NaN	0.017621	1.000000	-0.04
HourlyRate	0.024287	0.023381	0.031131	0.016775	NaN	0.035179	-0.049857	1.00
Joblnvolvement	0.029820	0.046135	0.008783	0.042438	NaN	-0.006888	-0.008278	0.04
JobLevel	0.509604	0.002966	0.005303	0.101589	NaN	-0.018519	0.001212	-0.02
JobSatisfaction	-0.004892	0.030571	-0.003669	-0.011296	NaN	-0.046247	-0.006784	-0.07
MonthlyIncome	0.497855	0.007707	-0.017014	0.094961	NaN	-0.014829	-0.006259	-0.01
MonthlyRate	0.028051	-0.032182	0.027473	-0.026084	NaN	0.012648	0.037600	-0.01
NumCompaniesWorked	0.299635	0.038153	-0.029251	0.126317	NaN	-0.001251	0.012594	0.02
PercentSalaryHike	0.003634	0.022704	0.040235	-0.011111	NaN	-0.012944	-0.031701	-0.00
PerformanceRating	0.001904	0.000473	0.027110	-0.024539	NaN	-0.020359	-0.029548	-0.00
RelationshipSatisfaction	0.053535	0.007846	0.006557	-0.009118	NaN	-0.069861	0.007665	0.00
StandardHours	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
StockOptionLevel	0.037510	0.042143	0.044872	0.018422	NaN	0.062227	0.003432	0.05
TotalWorkingYears	0.680381	0.014515	0.004628	0.148280	NaN	-0.014365	-0.002693	-0.00
TrainingTimesLastYear	-0.019621	0.002453	-0.036942	-0.025100	NaN	0.023603	-0.019359	-0.00
WorkLifeBalance	-0.021490	-0.037848	-0.026556	0.009819	NaN	0.010309	0.027627	-0.00
YearsAtCompany	0.311309	-0.034055	0.009508	0.069114	NaN	-0.011240	0.001458	-0.01
YearsInCurrentRole	0.212901	0.009932	0.018845	0.060236	NaN	-0.008416	0.018007	-0.02
YearsSinceLastPromotion	0.216513	-0.033229	0.010029	0.054254	NaN	-0.009019	0.016194	-0.02
YearsWithCurrManager	0.202089	-0.026363	0.014406	0.069065	NaN	-0.009197	-0.004999	-0.02

26 rows × 26 columns

sns.heatmap(df.corr())

<ipython-input-496-aa4f4450a243>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versio
sns.heatmap(df.corr())
<Axes: >

- 1.0 Age DistanceFromHome EmployeeCount - 0.8 EnvironmentSatisfaction Jobinvolvement 0.6 JobSatisfaction MonthlyRate 0.4 PercentSalaryHike RelationshipSatisfaction StockOptionLevel 0.2 TrainingTimesLastYear YearsAtCompany 0.0 YearsSinceLastPromotion DailyRate
anceFromHome
Education
EmployeeCount
mployeeNumber
nentSatisfaction
HourlyRate
jobSatisfaction
MonthlyIncome
MonthlyRate
mpaniesWorked
rcentSalaryHike
formanceRating
StandardHours
tockOptionLevel
formanceRating
shipSatisfaction
StandardHours
tockOptionLevel
forMorkLifeBalance
MorkLifeBalance
fearsAtCompany
arsinCurrentRole
elastPromotion

df.head()

A	ge	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber	
0 4	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1	
1 4	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	4	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	7	

5 rows × 35 columns

sns.boxplot(df['Age'])

sns.boxplot(df['DailyRate'],color='cyan')

df.head()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber	
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	4	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	7	

5 rows × 35 columns

#Splitting of dependent and independent variables
x=df.iloc[:,[i for i in range(df.shape[1]) if i!=1]]
x.head()

	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber	EnvironmentSa
0	41	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1	
1	49	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2	
2	37	Travel_Rarely	1373	Research & Development	2	2	Other	1	4	
3	33	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5	
4	27	Travel_Rarely	591	Research & Development	2	1	Medical	1	7	

5 rows × 34 columns

y=df.iloc[:,1:2]
y.head()

```
Attrition

O Yes

1 No

print(x.shape)

print(y.shape)

(1470, 34)
(1470, 1)

#LabelEncoding

from sklearn.preprocessing import LabelEncoder

le=LabelEncoder()

a=['Age','Department','EducationField','BusinessTravel','Gender','JobRole','MaritalStatus','Over18','OverTime']

for i in a:
    x[i]=le.fit_transform(x[i])
x[a]
```

```
<ipython-input-504-8cae39b6351b>:6: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-co">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-co</a>
      x[i]=le.fit transform(x[i])
    <ipython-input-504-8cae39b6351b>:6: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-co">https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-co</a>
      x[i]=le.fit_transform(x[i])
    <ipython-input-504-8cae39b6351b>:6: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
#x=x.drop('Over18',axis=1)
#x=x.drop('OverTime',axis=1)
    <ipytnon-input-504-&cae39063510>:6: SettingwithCopywarning:
y['Attrition']=le.fit_transform(y['Attrition'])
y.head()
       Attrition
     0
              1
              0
     1
              1
              0
     3
    <ipython-input-504-8cae39b6351b>:6: SettingWithCopyWarning:
#Feature Scaling
from sklearn.preprocessing import MinMaxScaler
ms=MinMaxScaler()
x_scaled=pd.DataFrame(ms.fit_transform(x),columns=x.columns)
    <ipytnon-input-504-8cae39b635ib>:6: Settingwithcopywarning:
#Splitting data into train and test data
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x_scaled,y,test_size=0.3)
      Y[I]=IE.III(Y[I])
#Model Building- LOGISTIC REGRESSION
from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
model.fit(x train,y train)
pred=model.predict(x_test)
    /usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1143: DataConversionWarning: A column-vector y was passed when a 1d
      y = column_or_1d(y, warn=True)
pred
    0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
          1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
```

```
0,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,\ 0,\ 0,
#Evaluation of Model- LOGISTIC REGRESSION
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report,roc_auc_score,roc_curve
accuracy_score(y_test,pred)
    0.8458049886621315
confusion_matrix(y_test,pred)
    array([[355, 13],
         [ 55, 18]])
print(y_test.shape)
print(pred.shape)
    (441, 1)
    (441,)
print(classification_report(y_test,pred))
               precision
                         recall f1-score
                                        support
            0
                   0.87
                           0.96
                                   0.91
                                           368
            1
                   0.58
                           0.25
                                   0.35
                                            73
      accuracy
                                   0.85
                                           441
                   0.72
                           0.61
                                           441
      macro avg
                                   0.63
    weighted avg
                   0.82
                           0.85
                                   0.82
                                           441
#Model Building- Decision Tree Clasifier
from sklearn.tree import DecisionTreeClassifier
model1 = DecisionTreeClassifier(max_depth=4,splitter='best',criterion='entropy')
model1.fit(x_train,y_train)
d_y_predict = model1.predict(x_test)
d_y_predict
    array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
         0,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0,
         0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
         0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
         0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
         1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
         0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1,
         0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
#Evaluating Metrics- Decision Tree
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
print('Testing Accuracy = ', accuracy_score(y_test,d_y_predict))
    Testing Accuracy = 0.8344671201814059
{\tt confusion\_matrix}(y\_{\tt test}, {\tt d\_y\_predict})
    array([[343, 25],
         [ 48, 25]])
print(classification_report(y_test,d_y_predict))
```

```
Assignment4_PrasannaVenkatesh_VITC_MorningBatch.ipynb - Colaboratory
                       precision
                                      recall f1-score
                                                             support
                   0
                             0.88
                                         0.93
                                                     0.90
                                                                  368
                   1
                             0.50
                                         0.34
                                                     0.41
                                                                   73
                                                     0.83
                                                                  441
          accuracy
          macro avg
                             0.69
                                         0.64
                                                     0.66
                                                                  441
                             0.81
                                         0.83
                                                     0.82
                                                                  441
      weighted avg
from six import StringIO
from IPython.display import Image
import pydotplus
from sklearn.tree import export_graphviz
dot data =StringIO()
export_graphviz(model1,out_file=dot_data,feature_names= x.columns,
                   filled=True,rounded= True,special_characters=True)
graph = pydotplus.graph from dot data(dot data.getvalue())
Image(graph.create_png())
                                                                                                                                         OverTime ≤ 0.5
                                                                                                                                        entropy = 0.633
samples = 1029
value = [865, 164]
                                                                                                                                                                False
                                                                                                                       True
                                                                                                  TotalWorkingYears ≤ 0.063
entropy = 0.477
samples = 741
value = [665, 76]
                                                                                                                                                                     Month
                                                                                                                                                                        en
                                                     HourlyRate ≤ 0.414
entropy = 0.948
samples = 60
                                                                                                      Age ≤ 0.369
entropy = 0.4
samples = 681
value = [627, 54]
                                                                                                                                                                       Marit
                                                                                                                                                                        en
                                                       value = [38, 22]
                 EnvironmentSatisfaction ≤ 0.833
                                                                                   NumCompaniesWorked ≤ 0.5
                                                                                                                                                       MonthlyIncome ≤ 0.081
                                                    MonthlyRate ≤ 0.459
                                                                                                              EmployeeNumber ≤ 0.028
#Model Building- Random Forest Classifier(Ensemble Model)
from sklearn.ensemble import RandomForestClassifier
model2 =RandomForestClassifier(criterion='entropy')
model2.fit(x_train,y_train)
      <ipython-input-522-4b132850df9e>:4: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the
        model2.fit(x_train,y_train)
                    RandomForestClassifier
      RandomForestClassifier(criterion='entropy')
```

```
r_y_predict = model2.predict(x_test)
r_y_predict_train = model2.predict(x_train)
#Evaluation Metrics- Random Forest
print('Testing Accuracy = ', accuracy_score(y_test,r_y_predict))
print('Training Accuracy = ', accuracy_score(y_train,r_y_predict_train))
     Testing Accuracy = 0.8458049886621315
     Training Accuracy = 1.0
print(classification_report(y_test,r_y_predict))
                   precision
                                recall f1-score
                                                   support
                0
                        0.85
                                  0.99
                                            0.91
                                                        368
                        0.73
                                                        73
                                            0.19
         accuracy
                                            0.85
                                                        441
        macro avg
                        0.79
                                  0.55
                                            0.55
                                                        441
```

0.85

0.79

confusion_matrix(y_test,r_y_predict)

0.83

weighted avg

441

array([[365, 3], [65, 8]])