Radiometry and Fresnel Reflectance

 $70001-Advanced\ Computer\ Graphics:\ Photographic\ Image\ Synthesis$

Abhijeet Ghosh

Lecture 07, Feb. 02nd 2024

1

Radiometry & Geometric Optics

- Light transport modeled using geometric or ray optics
 - light as particle, not wave!
 - some exceptions, i.e., polarization
- Basic properties of geometric optics:
 - Linearity
 - Energy conservation

Radiometry & Geometric Optics

- Typical assumptions:
 - No polarization of electromagnetic field
 - No fluorescence
 - wavelength independence
 - Steady state
 - no phosphorescence
- Wave like effects not modeled!
 - diffraction
 - interference

3

Lambert's Law

 Irradiance E proportional to cosine of the angle between light direction I and surface normal n

$$E = d\Phi/dA$$
,

hence $E_1 = \Phi/A$,

and $E_2 = \Phi \cos \theta / A$.

Radiometric Integrals

- $E(x,n) = \int_{\Omega} L_i(x,\omega) \cos\theta d\omega$.
 - Irradiance at surfaces computed over a hemisphere of directions
 - Volumetric integrals computed about a sphere of directions

5

Spherical Coordinates

• Direction vector (x,y,z) related to spherical coordinates (θ, φ) :

$$x = \sin\theta \cos\varphi$$

$$y = \sin\theta \sin\varphi$$

$$z = \cos\theta$$
.

Hemispherical integral

$$\mathsf{E}(\mathsf{x},\mathsf{n}) = \int_0^{2\pi} \int_0^{\pi/2} \mathsf{L}_i(\mathsf{x},\,\theta,\,\varphi) \, \mathsf{cos}\theta \, \mathsf{sin}\theta \, \mathsf{d}\theta \, \mathsf{d}\varphi.$$

Area Integral

- $E(x,n) = \int_{\Omega} L \cos \theta_i d\omega$ = $\int_{A} L \cos \theta_i \cos \theta_o dA / r^2$.
 - useful for area light sources!

7

BRDF

• Defined as the ratio of reflected radiance to incident irradiance:

$$\begin{split} f_r(\mathbf{x}, \, \omega_r, \, \omega_i) &= \mathsf{dL}_r(\mathbf{x}, \, \omega_r)/\mathsf{dE}_i(\mathbf{x}, \, \omega_i) \\ &= \mathsf{dL}_r(\mathbf{x}, \, \omega_r)/(\mathsf{L}_i(\mathbf{x}, \, \omega_i) \, \mathsf{cos}\theta \, \mathsf{d}\omega_i). \end{split}$$

- the units of a BRDF are inverse steradian [1/sr].

BRDF

• Physically based BRDFs have 2 important properties:

Helmholtz Reciprocity: $f_r(\mathbf{x}, \omega_r, \omega_i) = f_r(\mathbf{x}, \omega_i, \omega_r)$.

and

Energy Conservation: $\int_{\Omega} f_r(\mathbf{x}, \, \omega_r, \, \omega_i) \, \cos\theta_i \, d\omega_i \leq 1$, for all ω_r in Ω .

9

Reflected Radiance

• The Rendering Equation [Kajiya 86]:

 $\mathsf{L}_r(\mathsf{x},\,\omega_r) = \, \textstyle \int_\Omega f_r(\mathsf{x},\,\omega_r,\,\omega_i) \, \, \mathsf{L}_i(\mathsf{x},\,\omega_i) \, \, \mathsf{cos} \theta_i \, \mathsf{d}\omega_i.$

Snell's Law

• Perfect specular reflection: $\theta_i = \theta_r$

- Specular transmission
 - depends on index of refraction

 $\eta_i \sin \theta_i = \eta_t \sin \theta_t$

11

Dispersion

• Index of refraction is wavelength dependent!

 different wavelengths refract by differing amount causing dispersion of light!

Polarization

- Light a transverse electromagnetic wave
 - natural state un-polarized
- Linear polarization
 - electric field in fixed plane

13

Fresnel Reflectance

- Reflection from a surface is view dependent
- Fresnel equations
 - Maxwell's equations at smooth surfaces
 - index of refraction and polarization!
- Two kinds of Fresnel equations:
 - Dielectric materials (insulators) reflection & transmission
 - Conductors (metals) only reflection & some absorption

Dielectrics Fresnel

• Fresnel reflectance for parallel polarized light r₁:

$$R_{i} = \frac{\eta_{t} \cos \theta_{i} - \eta_{i} \cos \theta_{t}}{\eta_{t} \cos \theta_{i} + \eta_{i} \cos \theta_{t}} \Big|^{2}$$

• Fresnel reflectance for perpendicular polarized light r.:

$$R_{i} = \left| \frac{\eta_{i} \cos \theta_{i} - \eta_{t} \cos \theta_{t}}{\eta_{i} \cos \theta_{i} + \eta_{t} \cos \theta_{t}} \right|^{2}$$

- Unpolarized reflectance $F_r = \frac{1}{2}(R_1 + R_1)$.
 - Transmittance $T_r = 1 F_r$.

15

Polarized reflection in dielectrics

Dielectrics Fresnel angles

- Brewster's angle θ_B : $tan(\theta_B) = (n_2/n_1)$
- Critical angle θ_C : $sin(\theta_C) = (n_2/n_1)$

19

Schlick's Approximation

Polynomial approximation of unpolarized Fresnel reflectance

[Schlick 93]:

$$F_r(\cos\theta) = R_0 + (1 - R_0)(1 - \cos\theta)^5$$

where \mathbf{R}_0 is reflectance at normal incidence

and $\cos\theta = h \cdot v = h \cdot l$

Advantage: does not need estimate of index of refraction!

Conductors Fresnel

• No transmission, but some absorption k:

$$R_{i} = \frac{(\eta^{2} + k^{2}) \cos \theta_{i}^{2} - 2\eta \cos \theta_{i} + 1}{(\eta^{2} + k^{2}) \cos \theta_{i}^{2} + 2\eta \cos \theta_{i} + 1}$$

And $R_{\lambda} = \frac{(\eta^2 + k^2) - 2\eta \cos\theta_i + \cos\theta_i^2}{(\eta^2 + k^2) + 2\eta \cos\theta_i + \cos\theta_i^2}$

21

Conductors

- Much less data on η and k available for conductors
- In computer graphics, approximate one by fixing the other!

if k = 0, and $\cos \theta_i = 1$ (normal incidence),

$$R_{\parallel} = R_{\perp} = \frac{\eta^2 - 2\eta + 1}{\eta^2 + 2\eta + 1} = \frac{(\eta - 1)^2}{(\eta + 1)^2}$$

if reflectance at normal incidence $R_{\rm 0}$ is known, then

$$\eta = 1 + \sqrt{R_0}$$

$$\frac{1 - \sqrt{R_0}}{1 - \sqrt{R_0}}$$