NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

AY2021, Semester 1 MA1508E Linear Algebra for Engineering Tutorial 3

- 1. Use the method of Gaussian elimination to determine if the following matrices are invertible. If the matrix is invertible, find its inverse.
 - (a) $\begin{pmatrix} -1 & 3 \\ 3 & -2 \end{pmatrix}$.
 - (c) $\begin{pmatrix} -1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9 \end{pmatrix} .$
- 2. (a) Use the method of Gaussian elimination to write down the conditions so that the matrix $\begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}$ is invertible.
 - (b) Notice that the above matrix is the transpose of the order 3 Vandermonde matrix. By (a), what are the conditions needed for the 3 points $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ on the xy-plane to ensure that there is a unique polynomial of degree 2 whose graph passes through those points.
- 3. (a) Solve the matrix equation $\begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 3 & 2 \end{pmatrix} \mathbf{X} = \begin{pmatrix} 2 & 3 & 4 & 1 \\ 1 & 0 & 3 & 7 \\ 2 & 1 & 1 & 2 \end{pmatrix}$.
 - (b) Hence, solve for $\begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 3 & 2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$. (Hint: look at the columns of the matrix on the right.)
- 4. (Cramer's Rule)
 - (a) Compute the determinant of the following matrices.
 - (i) $\mathbf{A} = \begin{pmatrix} 1 & 5 & 3 \\ 0 & 2 & -2 \\ 0 & 1 & 3 \end{pmatrix}$
 - (ii) $\mathbf{A}_1 = \begin{pmatrix} 1 & 5 & 3 \\ 2 & 2 & -2 \\ 0 & 1 & 3 \end{pmatrix}$
 - (iii) $\mathbf{A}_2 = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 2 & -2 \\ 0 & 0 & 3 \end{pmatrix}$
 - (iv) $\mathbf{A}_3 = \begin{pmatrix} 1 & 5 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 0 \end{pmatrix}$

(b) Solve the matrix equation
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
, where $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$.

(c) Compute
$$\frac{1}{\det(\mathbf{A})} \begin{pmatrix} \det(\mathbf{A}_1) \\ \det(\mathbf{A}_2) \\ \det(\mathbf{A}_3) \end{pmatrix}$$
. How is this related to the answer in (b)?

Observe that the matrix \mathbf{A}_k is obtained by replacing the k-th column of \mathbf{A} by b. Cramer's rule state that if A is an invertible matrix of order n and \mathbf{A}_k is the matrix obtained from \mathbf{A} by replacing the k-th column of \mathbf{A} by b, then the matrix equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution

$$\mathbf{x} = \frac{1}{\det(\mathbf{A})} \begin{pmatrix} \det(\mathbf{A}_1) \\ \det(\mathbf{A}_2) \\ \vdots \\ \det(\mathbf{A}_n) \end{pmatrix}.$$

5. Let
$$\mathbf{A} = \begin{pmatrix} -x & 1 & 0 \\ 0 & -x & 1 \\ 2 & -5 & 4 - x \end{pmatrix}$$
. Find all values of x such $\det(\mathbf{A}) = 0$. For each of the x found, solve the homogeneous linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$.

6. A square matrix $\mathbf{P} = (p_{ij})$ of order n is a stochastic matrix, or a Markov matrix if the sum of each column vector is equal to 1,

$$p_{1i} + p_{2i} + \dots + p_{ni} = 1$$

for every j = 1, ..., n.

- (a) Give an example of an invertible stochastic matrix, and a singular one.
- (b) Show that if ${\bf P}$ is a stochastic matrix, then ${\bf I}-{\bf P}$ is singular.
- (c) Check that $\mathbf{P} = \begin{pmatrix} 0.2 & 0.8 & 0.4 \\ 0.3 & 0.2 & 0.4 \\ 0.5 & 0 & 0.2 \end{pmatrix}$ is a stochastic matrix. Solve the homogeneous system $(\mathbf{I} \mathbf{P})\mathbf{x} = \mathbf{0}$.

7. Show that
$$\begin{vmatrix} a + px & b + qx & c + rx \\ p + ux & q + vx & r + wx \\ u + ax & v + bx & w + cx \end{vmatrix} = (1 + x^3) \begin{vmatrix} a & b & c \\ p & q & r \\ u & v & w \end{vmatrix}.$$

8. (Application of determinants to computing areas.) Consider the triangle with vertices (x_1, y_1) , (x_2, y_2) and (x_3, y_3) as shown in the figure below.

We may compute the area of the triangle as

(area of trapezoid AP_1P_2B)+(area of trapezoid BP_2P_3C)-(area of trapezoid AP_1P_3C)

(a) Recall that the area of a trapezoid is $\frac{1}{2}$ the distance between the parallel sides of the trapezoid times the sum of the lengths of the parallel sides. Use this fact to show that the area of the triangle $P_1P_2P_3$ is

$$-\frac{1}{2}\left[\left(x_{2}y_{3}-x_{3}y_{2}\right)-\left(x_{1}y_{3}-x_{3}y_{1}\right)+\left(x_{1}y_{2}-x_{2}y_{1}\right)\right].$$

(b) Show that the expression in the square brackets obtained in part (a) is the determinant of the following matrix

$$\mathbf{A} = \begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix}.$$

(c) Explain why we need to take the absolute value of $\det(\mathbf{A})$ before concluding that the area of the triangle is

$$\frac{1}{2}|\det(\mathbf{A})|.$$

- (d) Find the area of the following quadrilaterals with the given vertices.
 - (i) P with vertices (2,3), (5,3), (4,5), (7,5).
 - (ii) Q with vertices (-2,3), (1,4), (3,0), (-1,-3).